SuiteSparse/0000755001170100242450000000000010712416123011744 5ustar davisfacSuiteSparse/AMD/0000755001170100242450000000000010620447137012354 5ustar davisfacSuiteSparse/AMD/Doc/0000755001170100242450000000000010711427507013061 5ustar davisfacSuiteSparse/AMD/Doc/Makefile0000644001170100242450000000200010423447623014512 0ustar davisfac#------------------------------------------------------------------------------ # AMD Makefile for compiling on Unix systems (for GNU or original make) #------------------------------------------------------------------------------ default: dist include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) *.aux *.bbl *.blg *.log *.toc #------------------------------------------------------------------------------ # Create the User Guide and Quick Start Guide #------------------------------------------------------------------------------ AMD_UserGuide.pdf: AMD_UserGuide.tex AMD_UserGuide.bib pdflatex AMD_UserGuide bibtex AMD_UserGuide pdflatex AMD_UserGuide pdflatex AMD_UserGuide dist: AMD_UserGuide.pdf - $(RM) *.aux *.bbl *.blg *.log *.toc SuiteSparse/AMD/Doc/AMD_UserGuide.bib0000644001170100242450000000470310250413605016110 0ustar davisfac@string{SIREV = "{SIAM} Review"} @string{SIMAX = "{SIAM} J. Matrix Anal. Applic."} @string{SIAMJSC = "{SIAM} J. Sci. Comput."} @string{TOMS = "{ACM} Trans. Math. Softw."} @article{schu:01, author = {J. Schulze}, title = {Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods}, journal = {BIT}, volume = {41}, number = {4}, pages = "800--841", year = {2001} } @article{GeorgeLiu89, author={George, A. and Liu, J. W. H.}, year={1989}, title={The Evolution of the Minimum Degree Ordering Algorithm}, journal=SIREV, volume={31}, number={1}, pages={1--19}} @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996} ,volume={17} ,number={4} ,pages={886-905} } @article{AmestoyDavisDuff04, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: An approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={381-388} } @misc{hsl:2002, author = {HSL}, title = "{HSL} 2002: {A} collection of {F}ortran codes for large scale scientific computation", note = {{\tt www.cse.clrc.ac.uk/nag/hsl}}, year = 2002} @article{RothbergEisenstat98, author={Rothberg, E. and Eisenstat, S. C.}, title={Node selection strategies for bottom-up sparse matrix orderings}, journal=SIMAX, year={1998} ,volume={19} ,number={3} ,pages={682-695} } @article{KarypisKumar98e, author={Karypis, G. and Kumar, V.}, title={A fast and high quality multilevel scheme for partitioning irregular graphs}, journal=SIAMJSC, year={1998} ,volume={20} ,pages={359-392} } @article{Chaco, author={B. Hendrickson and E. Rothberg}, title={Improving the runtime and quality of nested dissection ordering}, journal=SIAMJSC, year={1999} ,volume={20} ,pages={468--489} } @article{PellegriniRomanAmestoy00, author={Pellegrini, F. and Roman, J. and Amestoy, P.}, title={Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering}, journal={Concurrency: Practice and Experience}, year={2000} ,volume={12} ,pages={68-84} } @article{DavisGilbertLarimoreNg04, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={A column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,pages={353-376} } SuiteSparse/AMD/Doc/AMD_UserGuide.pdf0000644001170100242450000053112110617112147016130 0ustar davisfac%PDF-1.4 3 0 obj << /Length 3445 /Filter /FlateDecode >> stream xڕr`V,XKhmQJK*"!eA+׿d0y9X89HǾa0Z< 󭵣woz{>Xe_qn<^1^]178=.WpGU>s04x$RI2ljލMe-j%?5y3x@_ FJ#iH?ClO@&=E5wM})v$rL묨; 88)L(=_&hb?NPo,(XLGF&"FƤa6ٲe>Q'Q(]gN@|kҼ TE ro0lKyC+ jQ[og7@\hG([r'"z dS=A1}Q/Nj`I5xvTc5o;Wm=md;б;^n|bYSDdGV_`jad7F_r sSm^][=mcjŃq|[ɖ8 <"q{37qebp'ISDZhSjZD6-:8d$K@9kF[-fxD Pjr$?4 ˙8D1hz >AHt;t+ZV)ﲬIL]e$6/zMIYy'BX? RVQ*&qɩ_HP6Apw51f%6U`VKVU4e}e(2P.COp@Q'ehOGRGM &D nH@ra2rQ}tȞLa'qbވ,g[g3>JV|-qd#_qF^VكT\W+xj NVQ0RbR\geͶ `?rNa ]'I}5Gk Bw.?` woРRoR4B&TtuGS<`jJwP' @e)lj +V@Yr^ru3IS[QZ /HJ|&ڣ Jnz*7XӶԂ%Hyṃ?iiG U I`l9TUqfos9_pSp)&/||w^'z'fC*DR몈=w눇wɳ1ec@C{(%K[oϘَ1E!a.CqrU27I$75U Qćq1Cq(- bK|VGµd Idg9,hDڶ|.fWW\8ybOPnlHhF[Z1: &p3WSgC;L;G>QkDZ~4#߾k.;(ͱѓTº(^ MGd b53( ^^/>^`F}d?wDag70ѻ4wjE͞ cYʛLx:Ul149xBT B]+%۳&dHFVZ&eV4=܍%-vJR . 锜70S#~!)$AegQٕ!06Ih[XhmڸH#й!9-oqoXXKB.(0' k-80%ZIU/Xy<={:o@D}̯N ~5Ep$ogy(RZ|vCăUM9y! ,L3-)4wqK.LlCu7‡CD {5v(XbɑRHskH(RiUuew ;߅+ t}"y!WƅPb'v9L$fyY䨣1w M)ش<VzN/Hfh=y9Cr#~2bBSy߂.ü:g,AtMe@UWҹw` k%I38$>-ߧ68h\ $mgM?=}~~H*b{z`K[Iw7ViY ]fx}j3) .#\DZ'|R#=HCۮCN4 G0Q> D'1 c $DŽO^7PGiۈFF} |ᤉT<72z}y^/53se:/l1uϬeDZ9I囌=g+K6oCB?OnNoǦ{d$7 ԙUfE6#TNEfIOfiĪDV TšdWC E}MRG*c?2@ImK6=͸uF5ΗR*}رwQ=j 8q@9_'<Ė?b0#}a >P{lB1#uxph?, y0x/"TRpOFqlτ׻LBǩo#M|ìpX7 ?w#w,1lu'8;?gT=qE9iWt akty:?QkYL`i'Pn$|Ee51P*Iĥ {(*TϰiUWk])WKb#3@+T%[Rm.īu@ 9>=CLNN-ps | ›u#\(f#y/q^GGiOqoNue|~U}_7C% ,?nfE"%# ّΉ-+Y8ӍOx_~ b̽ aUFQ`YE}nIlɯSe> ˌ :X -Q^N9N9"!is@ݺY&K;Ohm%זAn>C2g HC4|K|c{W?NgAz㯱*#@a+`tendstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F24 12 0 R /F29 15 0 R /F8 18 0 R /F30 21 0 R /F25 24 0 R /F26 27 0 R /F28 30 0 R >> /ProcSet [ /PDF /Text ] >> endobj 34 0 obj << /Length 478 /Filter /FlateDecode >> stream xmRMo0 W(gQk5; ;(uBVߏeov,ͧG|2(P?ٶ?d:RYB:ƅP'4❔r?1n{G Ko7b:ƺn_ހ[80/Cm>O$(E(ǂ,qrQH7h͒[ֵ/k8˟=Hi$X?Z,2NdUFA5Pre0endstream endobj 33 0 obj << /Type /Page /Contents 34 0 R /Resources 32 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 32 0 obj << /Font << /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 4005 /Filter /FlateDecode >> stream xڕZKsϯX_If٤-w(RKRx~}aͦeR@ht7~}G Iǫ,8B]nZ+'VZU? j|W|c~ǫjxI7Xu"(1T8}#?4m%ď]=߶U_-<9ot(Ǿ:#S8Ns^7Z6LXnƮcjQqW38PJ)Xe 40EyongW䅦,G^ݺFd_m]_I竕C0 ޸%`㝺Ɨ,yZ+<iWrqUϳH"C biDB1*I:(&L8]J.ta5) 4p#bS(̕,u~EqIeW`šo}ˊB'0ov>ySIQ4NfK E<]ğFI=U?w"|bw3PbѢyu7qsE;e$axl Mj#XY\ZY_PI!\M 0 @W:sShos/h嶲$hUbd hnC܄6*kD},* &˹xè &>p > MHZ`["\ZEmot#X/ݏDg F0^H ֱ1cP1SLh0bsq}Vjy2JG U{8I`FƬED6]6v}>>]̿|Z/ ]VЂg62Oc/[EAKr*i0u&DБdgݸbT G:~1a%RJ175s @zj`0ɼ0ˋjNGbJMw):``H&ֈ=CmZePb{ Me%}r)pB/+콯v@T'qI;|\d/.D\D`[VJHǑ =;7ak_MadTHT#%8`?B=DŰJyv7ENub7Ab*zw{b\D7)r"۸\ Ae1<9{qŖ(`ws$B4E:#iG {oҊy`[v/aVϺ&qJŴr'Wr}ݒA6$.R uazN{R]q1.6$uU&:0ٜJғtTkp{hT{ m:6s4j*OO{ |0kWv>0܃e[H~Z _\PX7,opB75)teuTç lNʺ 0l`,6ٳgՔn=R- Xi , rQ|6YT`5y-4/sMd/rPOkaRr'D'5AyNO)\ˢ)TD*6vO_uV; #,bR2Ż2䊉j\׉[FRGx%d/9NZ1^ъrOX;@pZ ,!+C cUf )%rob|?5,ϱC-wʤ8P`A>h$RWWkAeCVRr;OkJل$50 i tGO{#0l  2nkar[saM{;7L'L/ߣD5?F)74R:awi0c&;üXN8TYzv4USAF|qY\@^ɑ~%}LE,%~kɘ{y6M呔 Nr%jF Y@MӤe[|\%"bͅo `d6J(VCD؜6 Fn!y~wBe|1KHgC%r-9-G21!oȶ n~ >ʷ#!" *<9ÔΔ/,cUlSǗ`ޫA8WܧӽB.g(d0k١Ox.̬ꛗOe?%g qͧL eГ,_(ߥ&寧0MJi{w+endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 35 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F29 15 0 R /F38 43 0 R /F34 46 0 R /F21 49 0 R /F40 52 0 R /F41 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 58 0 obj << /Length 3871 /Filter /FlateDecode >> stream xڭZYsF~ׯ`eBUќ8ʃSNĉJ9$*$`dק@w*[ ><9fLYalgY2rvnNJi7VۛӅIũ߫->in0x?9}wl%BFNkZ<]X 澸x^wUU.T.Ln,^ZT/ f@j*`_?k)+xStDW0p_o@)U{ ePZ&f~M)lv !a[XZ݀NO-u4kD-KUyS#|#~)dx8mmŚ;vZ+Om5x(ޒg̉:n;F`7>Rč_ZԼѾ_FsW`%5Gݣ=`cveиFJgw|Z(\(C^[I|;]NjUN Z)~/Now[u -PA:툇oߖ5K'*d%Ajǧ<*N;O HC)JS?tRnJ\|&ؖŖi)A5w|TX:ƞߗ'%gjfm&TYbz9;9[w'\afwАB^oN&>y}S\pW\ |A]~ǎ݉9;;v 8q;օ[ֲXsXᬌQ'c?~^aמ#[DJc{35v0J-TgR0df3* Gޖ#`Ή"hGPn.-[m5?Nbz'Oraed&ץ'䵗 qn! QVT6r"cQ0KuԶ+k|c i>vxUnqnVe2t5; -9<˖,̓wQwQyOaQ?$r7IZ&I&oɵk'?^t^#j篫IX&EǡCq .:I<װAܝPGDMtMz%gD-ntQ 穝 e(!2!k?_M LmVFk7d&eT!MmBiǝLj7I6 ^Q|޹h+0)NPΪ".R*}C \ 89Q` qoDXȢ(T=p6Q̸aAD?<$㺭*+NJp^yC,cG Q(;h3 @^/%(j=LCSHa]tY[و)@< e0 |+m=}W.xyw -\*[ Lc9#*G !A$O t:a'%lMǞJoؐ@X#|d祩7SR#Dusj/c21c,d8g-a iE0D k"}qջ@XI{p8"11R2L'.xցoW 9y"\I-yWT1t$VjEi5LB$JL>!*t*B TDE`JzC.8'wЀ$$i\2+IJ8dlZ0 _=`>ڴ\67G[9"ceP4q%=m2Fm~db>x?=ŞzB9^Ae[MА&=_'P{m:xxCEC0c:|Y4lNd/0Py*WQ:c+HH/*ڮzT}-Ѝ 8r\AՃ7@bQ4%b2M ou[,Ѽ($E_%]3n?'@cO^:K+?8L!xM˛\.ߜM3>MSU0(E/=RGcTG5h(},(P% 쒗j Hn+.9a,7h5OQٻLqX͍mpǵj"NHR9aok gc=h q:q4U j)@W6t,4v?'ؓ7wʄքˑl'88 cE, S 1A kD“mхV7TrPCX`9#,|Z\F>H4סLn5Rh s ~@U;[?:R(!&s mj7-7Pg>Nҹݠ/(cq؆7\ሞwYWoRjyD@|fa˿U|r7vc<צ0w ’'BA<*(bёqcX%]EC> endobj 56 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F30 21 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 64 0 obj << /Length 3530 /Filter /FlateDecode >> stream x[ݓ۶B>TX03>N<ԎSҙDZ$I*.D S<bX R&Wk L4*||;}֬gs6鶯\H5nZq= Cf]5eB.b%:˜B„7y3DmPbHV͏v8PİBqO2,&DfsMoq. C0x XDX^Ie_7 W\jAF,(b)ZJ8nv8cQ,1T#DJb5p%.(aۏfs/O1> ً,Nެ(MV\ъ-Fm-}c"jSB55#5Y/:Q-x^ѻWK?k9.Oo?om@\Gɲ>4"I&Z7vJVD%_ȳܑتxԾȰ ID!agq_%3Yфjs @`%0 3&My|]Un.I!TYZFf.n,Hw&Ɲ?a;tl^M v>~LHb iD_g0D 0Fj:ЂXiu~n8tYM_~uow >;E*@x TM`H>P= ,/-Fw}_>-=7eT0gә5?V$'otaM^HN.̈A0) &vOiŎ0R&o͇&L?r% Lmh>gTǥ ) E׬*[o}GXkK#Qq]3("mܤ&OLq()#/[ؘjcEȳ:-Cc`Q06SVɦny/jeV5@0{+:a *')/&  qX_|xNtZ% o닂BoE|̜/FF_5(,P;) 2nQN:#9,,&P\GP$!Ɍp@` gĢi}9#I {,>rGEb1Q<#6Llz2&8څy. !Pod67(Q.}{k/>v*1bo:egR ~Xٓ]&ԎLXEʪC?2g' fR|Jy!ŬF9Ffv ߟ|q`4Wf[E>70_K d$ŀ 8,BZi?TV)afz}amBH$É0d F'2|o gV[kwΊW.4lQUK)0΅Z?9{ >zyBYZA Hp>; f BU]]Zs>9ErVCKw:bO)n6d 3þ9?k:R f,}0H.<#\o$T&|N~p _Q|bOf.+ 6\Bw* {lYz7_ڷ9@_inc }3k8f? T \ !5et]3kbu0CvƱh˶\hdn3N 0vF/ @[;:v$@o#)zOWNIcӫHdxSѽR8#: IA4' (44#Pn'D9e,.6 1:#I:SY{L7Q  r;\zק@N&"2>p7r )}m'QqvşTI*[H3<UiJd 8V?.V 蝒!+'DHQ(vцe#M@]|Ww_BV%~ 4⌻t6ƒ7{d!O.xAԏ(>a|H2wTf7!E,bV._"D4G'Bhv&ʙ$"p(d1Rp0$nlNNZ*)Ʋ! *SyC..%K^cuq5''-)f*sh'AL@m?.S*O[V|\2Wʌ8&ٴ\8CX|y!je |O1dh="վ>bqpcq"|WyB$}l*4dS4_^}ږl!nV-˹ 0֜)ds8sHH * , +S0xOɏsB+6!%AUe*w~Ё>μ9Mc$ʮwOJ-gVAj\xa|bOQk`Hw?C|,3Pvrrwavʺݕ("c(ɢ`x7+ rѶ"V[brk3@)0W+Wq7CQlooc*wۤ[Ι1m]6 ҁ.pVЀfǙ9: >x~fo4l "ev{ B-`%5OLd6NaTn?v7B|*_Er.Vs(WPËol{Qf[f'y~3nz;X~7̝{ 12gY=#_\5AXe5}QEn.R+YDblr7Ωendstream endobj 63 0 obj << /Type /Page /Contents 64 0 R /Resources 62 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 62 0 obj << /Font << /F8 18 0 R /F34 46 0 R /F29 15 0 R /F41 55 0 R /F38 43 0 R /F30 21 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 67 0 obj << /Length 4259 /Filter /FlateDecode >> stream xڵ[Ks6W(RIл؞=K[v%QU!Yӏ/d RkBd"_&^_jUҗoo/*[䗥1*onZ[eVpWzq;Uwc=XeWzۏW7o'SEV9 JŒv`}s웁9\-Ǻ <[m F'ov>Z;V?]yzZ+l[e(uHp漌#)R֮ЙZ[ ZXm_OIf hahӋo̳"609E'G\e뾯IwOwJ0IQ.+HNP5:+ zQ)BkwmMcJ3cӺi6mf W7qXvuWwf^١aZWF^ ?T+ Fz@p==%ORۦOق [` B5B)@y:unlcR0d5#YX eZTWО6aY40s )pc7O1# |á=@墣qgz Nr4e>auOX*6SjEsי)Nl|W$hС!irDn[WZ)&s<􃮨@>#~/ΑzN2 ] i8OK?oK l0 %w:dЀ3'ഋ强P@B}:v.ʌ?%׍Y#%\٠&!)XUy퐗޳ k6w+B%tKe81 7.f-" MnR^e*//6!6עCX#`F:W-EaC6ǀ°'&iA~DfTlCzKG`[Tt)uX1|RDg"7;q')pwڑs X֟gGJg0R㳐+T JtlKy9Ypʴ#ePiWKX./Kf) b{ds)?ԳSN0i{C`v> Gr$+ULNg&q?z7t`46+0C.pHrV//8D9DhҥX)2JYs ¸]wp*Vy#R+KXy`P/SۻC YECRcU=w@g,%U00uʜ[Լ@PD X+h?w"n7Ӝh9wO#Of@$ׁH}D*܆pkӺB*AH9 /4q.Vd bYz7Ձ|W22|_U}PXh3JVŒt'J{)JL"yo lʋ@Qlߦ>*7}%0F+&XԲ4?'^;!N SJ4wϓJ :Y]'bG yE#/F9TTsk]:, IOah&OVQTȧJsڽ?,-i rlCgF)D)~I9!k<+un%xq5exE=HN繇sAgqe h*_Liyj-P>pFK' T؇It.Qo"뽴! c@1'(%djL{U.=? w  k*O9P0-˓Hq='r ,]80]vq'0Q Iww5i>u_ Hԇ.dM=N͜p&>8Fl~B:]Q2KgС  t#5/X$gd xh&0]MQT_TڢJd_TI>*?).M(g!Tya2}@ZW?4!O(2;$ݟ}%\KAWk3 BE2yǕ*"ψmxJ/?} sW! H} S yHvW5x*c0* yhEXpۥ yVΦ D M:+\PoGlh 򪔟Zo0bb Noыy3Ns%gg5}. ,š ƒ2@PS5ŠTCtӔ6X )p:Y I646Ɯ(αLH9w+y!0IzN- :;}\K9wyå#[xC'.t”/m!vUK8@౻jxK!uS) ț (˓`L% UH=ii.ۤTa]N&]c`7]!0hʇ' R_]ciذ.qw]endstream endobj 66 0 obj << /Type /Page /Contents 67 0 R /Resources 65 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 65 0 obj << /Font << /F8 18 0 R /F29 15 0 R /F34 46 0 R /F41 55 0 R /F38 43 0 R /F33 40 0 R /F30 21 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 70 0 obj << /Length 2669 /Filter /FlateDecode >> stream xYo6bCueDn)]OQȻ-D+iv7!p\^ w/fTN/f?xjta^"|5=~ݔ+gl!8n?ݠ0H+S=Cl#׫?vU3z>ل?lZ5o~o{˨H$òyJ?taM :>?|:fP~1ޓ<; z[tvdQ~~pfb&RfU OUAZi AM]¸'U`RH{mҎw6RBttNb"JIB4 30do͌%J'n0 Y~Xv.e*K tN@@2% ~8h b|,-G' 4S&:IZN fgvdSz֢å"Q=rXew `^Hp|~yr> ⸆pg\sY7mb -OzQݲ<:x o+pYs:5&1!r:~̼hר]wJЗg KSϽF)S_I8$cCұH38u@*C,'_B= IҀߣ \w{$D~wv.z-D~M y=nہ!7yi˒fꦾ+چLnөIЀeHd/C3AhvzIA>X?s?NtIJ+0טB ݱie׿ syn]2!R>9<(R;ظs &yHA+=9'E^MG]pWWb%@%Dͥ+HִxGv;xt |[t]Y_ncZ L9DEI NHhmW.yE8J8z` Y_G*\ v pgXrD~b bu2A ;TK$=پ,WEKZca)==;Pj@!@ Ph>"܈a=ʗyEꣷҙ-| 'rgo?w}@Vu-N Gz΀"/4lHugb5gp5әRr}g|:_ s/ j])K{uo=Eq1fkiJ'ʲesKȪAOPK3&9r/5zKrH2W]\@G/}<*9RVSd> =`(N3P"%(b1fhDG;bݰe(*^ Usx*l.^΅I;x #غiLT J20 VBscӲa̙ӉV~ǘ0ԖyϢLSȘIŒ ʦab1fLR2p]|K 8MI+ǁp j5Cu)'t%P8$+ rGݑ}bOwиu1F^#0o=1Bw"iF1׭Ƚ$lx9Nϑ{.Q$*$:@\icL &&.C5{SϮB9~, RcB&DP+OTyX%߉ҫ bo}Ӆ 8GU)ɁU_EAg5_ {`І a$!e8A+FDh@Q/3A7eU8XM?!y2jZw_J a抺$FNO~6xszH/Ebvhb>7|DAF49lExc+*`BM ae (<;(Ʈ!Eao{~ 3zZMTϷ>[UMѺX\{X(@0 :vu\2NQP7sZ~){4UJX,Aai*Rfj@UbTxw 5ZKrH9\סíE+25_ ۨqh8;r !QVv .bqrW7o F7B`$2>(/ez'zz ߬mXMT߲ٽ:tƽdi/޽=ׁkoWo_{7~[x]|kOO}p`ce9VėˌK^E skD9=_MLJ=a$#~=Ře_vq3X}&G0p<(sJ!Djw/9>, upWBtWPySѓ#ZQ'|q@.\9{ ܎(5Y9[5el;Uac,z? nt_V_գlh8+`POƒ1<"@Meendstream endobj 69 0 obj << /Type /Page /Contents 70 0 R /Resources 68 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 68 0 obj << /Font << /F42 61 0 R /F8 18 0 R /F41 55 0 R /F29 15 0 R /F1 73 0 R /F34 46 0 R /F38 43 0 R /F33 40 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 4748 /Filter /FlateDecode >> stream x;nF av$y29Y@V۽n[^x*J"-I#3y(Y%HwDwJ)mI!Of-+{z.4u\vuq*V?|fUiVz_X?ws__s'"7=O%@bNeWvVUa}>nU]uܲ0~ښ_p /ͺ^gZ=| c2) 8Ke ??j= ׄfC?@c_{P{Vl% c!cY}r.TftɸZwmM XZm;khz Вw<)5I۷t0ddJG:m)!2Y a!<}sSm ~H軯z'5 3yl9 ;n3JΉn2-6$b}xnXM.2U yt¦1 WRM@Yd6E!U>h}X[_<}g9Re97Eou7i9<;[c^8:*ۯǏ>$ʬrR{ {ni:~wwu$<U pAHR]鎈{I+B|yˏuL,pAH\1ک_hZ]KҶ[dFk=(S@@đI"dG;Ipm3&zƼLuҚp"'2D dы/,Zf@Om 7%{`(6TB~y=ݪۑPP0}N6-Vt"=TJQk$WtQ/[M񢷤s ޑ@E"|0\ʷ-mYYhWkOq0TlP#"(3ވxx]Xh"haVkNnZþ>2xG3*iώ7TOt3z0t<}} ҎUE-O">IwL66  { ͝%lIFH+`R>_sXtAXz}gx5q}@sߐl`eQԭR/t"/P1h;L@oDb4x&m8L6 6: jL<=$϶-Col@Gfa@ 讆E>3MUڎax&%ySsXI_3LAL^ 0 ƻ*N $Bs!H Q_MiȀIj` Q.#jf?!mIj/-qeLYG6, Zf8f-`aQ#@ _21hZo6c.27FK)d5d~Xk{9M+ ^Ynd06|ej&!ZEkUz8:N_O V°bwHY5!5:EEh*;/ʕaDAE ƶxx Zd[Qsv X%|7)@mBsTDo>wdxtڤL{z$]4$0[摦{aaD׷x6&`fDAv#i+20vIt_yq[G̈́GC7N >?=x}(V$rޕG="+rWJ{7LO!S?A +~@;v!/O\VZ-%S"E؍' | }z_/~Ës.q7b龫/Lxh 7.:܇z칄S{~YxS #""^ŏ]hx )#,=m;l|,2֤)bj[a|ٛ>|! $)c{x^mIgؖu¼"3ݓN6x_IpڳpY A"$'iwۑgz&}2BF33 _&|8aUXlN[{7Zp _\wM#Fћtf<~¾) q7uUL0#.=Qƍ)mrґ2~~ȶfww.2y?h$+X?鏞(ᤚQ"Z~d_YZ)K5BX ȱh4F}&sB&S[/Q>u9npOq \-8I*@hy3LDUR8V(YJjGD3I]Lڼ<6\0&F;ON`*)?N[iil .#eF=BCXRM;(j֫hCE'N/= 3"ҧ>NU3S R 7 Dz`XFψJcGv~@p9x11O˄Dt.l.1)|\s'LeN4>_pғL2`[kQ#\ ev0lg>v =KV>*pLk @m2#\{4Ԗ0C 2MQ1DAH̍ 1-#6vn7=R7lx_SBZAϥEH1X"A/^IݾD }9>Y֮}1KId$O }ygdn(KR#Po0 M0iTDSkx[(l,1]I2W֠4""e)&6 V4VR6=9_kR}3)8=&D#Z1vD.3k8?&M/>EA—rVq`Ưm.Y c8ެ KEDtcL"O*.iF敊kv=KzEie1RI|=9  1/9ra= Ít@3 F + `Xw,r"@)r+HJEHQ-L\ɃLjYPJȢ99H  - .(v$9T=y|[| 7lFmGtq=PO"sʖG8܈|pG)wwhT711>CQRK,]2nC3J3|:K=QAY}k]=KZC*c/h :4  ?r%^Z?{lSE%by,{t]0W+/q'9cVH:os]Q$c8&EƴKKEôn@.Ԇy 5 _ ^6| ^eEiͽibc:YdO0hRg)=؛c.1Y`3-ٴt+#=gIAēGBO#%H)̙yP]ṞQ8yb1#҄ xL#ŴU^F] 3(v,xzGah+=X8V9[ bQ^83؁㷦,F8!^gf.?$u0e7 o$/3 `j)SENK1|ǤR } <㱉#*j3;@hBƼ\0 ȍKny<6g4\a:1`$D*EY^DWU_ELu#Ti2La-TQumd+g|}.啱蔍{_>['w!85-%(p̡^Ojz_vd֭/*%#IIJ }*-1s,01 b!׺x0 l$LbmB]J(DA/N7 cPaG!+<zT(krl~kw&)bmW Y1R+{Xp(7lƤ ?+[VX_9v@$ Pt1鷺g&]~,:˜蕘g(*<2Ƒ6 $L\֛;3\x}1sTG[M=3K$ĔV\1U$mcrƂ*c9Ƃm!mRѿ!Ŀ.7Y5GhZ 5&;&QyFUhl\ X8&Qcν> endobj 75 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F29 15 0 R /F42 61 0 R /F34 46 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 3004 /Filter /FlateDecode >> stream xڭkS9;* 5SW لjۀ+7/au񌑁PEyhuK~Go,ozNŸdbwk9(Ǣ?9G# ~~ALhMg4 V4YͨQ"wy ׋R֪?\,D뗫@l5;·(-ׄ7_^,=lM˫U#>~㽁P\z65J&hWc*߅u%*ɾG2sNjѾ$a9,qO`:3. E-!zqSؕeΨ|􏏣QLY)Y?Ggً\3~b5MᓎI.#6Üth&UᦶDi ,./u1wb7(%tp+_tzbJ劾^ eۚ'',˕#vJ nwKw("Ԩ(ܶK7zAj[w\)<VSZ5)k^ 0AH^Α E=ǝ-$}-7'^tVexB4d.ZLҦ_yYg @L o?̞PUW`R:2;Xz8PyOX`o:9z~G3gwD#Ŵ:G 4m?Wɤ3fG x2,I*y\X&*0;\zm0>wZrȺ]<ڡ6`u+G꜁>nPecͷǙ^=mU,19}U2cm? >L@`i Ĭiy|,O 8 8qArƹIUn6&n #Jah@G[`/-bQMk.vbUlCښ9ǙNOe5G㴔muD"O9(v=⏗+p&gyvpHڢ gI~ b (T9 ! ܨʞp8 ڴ&(@ keӹϤ%>IZ#E@]A]p')H]>`! jCkv`n~ \E1׋tST}7P˛h@G; y!6|PT!SE(qM| s|ߊY_?0)}0$ i8p/0^ ׸b,e@MA7)!МC8a9E= =n0(S9Ldk7ph@+ݠ&6ţDbstbz&8hL*q.t?C(f)  wబ3B؁( 02P!/}P_8vi[W涢#5I03jooP w&(k߭O5_,v9HfCMڐ'n0ꫩ69`I`lOR 36U &La*3t8KdËCcg_MņΤԎoyhjY|ȼ[Bsfѕݦ-/8And! &9dSu@m4ໜKٿ%%b9SX- *~8~4}(RwZS xj1rq%=]No=VL3c22ƭPM8/gҎ36@l :_,B4ějPVꗱx.&uM]ѴB; AŠTȄ:"b ̡.cEs[{BpJ[u=VԉE>HpYYCd1.#oC8 qrOdd84;Ne 181yh݉|d ^Pͬwod$@֭J:> (&;MT莹DH^ɾvQH|BC:pQd1 El/j,C4W u l+k~j휅eP+ /) ̀W0>U`zQ maQ=?U.ֽ =17`'ƠnfZJ{9YIcC.U;\\G}T$| wc^|h}66mh _R{tgX6 b3A̺#5%D_Zƭ(=mbCȺ;,N^|-'o Ir?GEO|Ԯχa٧*dž[ 04u-$P'剂dMA()!42||%C`}NdTb+'eU;Ժw/m)wH/: r|q<'W<0Szr@7,_ao:.rAA=Og*6{`r@-4Q8lUh[0T #'clhAs Ll&v}NY j6ڏ{>|ckakᛖ9'opyH˥yt/*+f02> endobj 78 0 obj << /Font << /F8 18 0 R /F41 55 0 R /F33 40 0 R /F29 15 0 R /F1 73 0 R /F38 43 0 R /F34 46 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 83 0 obj << /Length 4387 /Filter /FlateDecode >> stream xڵ[[s8~P͓\1ą PN:[֎ճ53EۜH:9$%HJ/n;O~ g.wbaam)YnmӱRe:izل̔àus-]}ˡzsow.AcύղߠbJ<Ͽrwv]ߴ~mu-K^]-WP_WMn=9<õUK}BbeL+S.VBev6cǮھ^)i`X46=Wijk+3RvCuGπ-"-4|ĴowxlZŊNwGڒGJQ\:sq̙՞]MD9;'ޕRYې4T{~Omf}OML:4>7^*Y`u2|XASB_[6Tsyg~"/~ѡL=e0=7ާSsi} 0\uOENuAtjB0 .v#&Ⱥ#6:Q, faE5i],Y҈ 6IҕlI@42my$#ΆI!=aTJ$42EC䜭ȍ*Kubb@U=8x,'L'hH4LۧL(Q^i")vh !Wf :&N1oFźL̜2-@ i) l [=@la4=c3xsb=Eɉ&*"RlcH)h 3&C(E³MvɃ0_Pxex$;,ԔEȮLc n _bGkknf!jHcd{L#3+*spGFV# C1( Chfȡ@g@ō!~v#FgH?12va-\ s6yyHB=n#瓀V:FV`[)CڎK~4zQ #oV?%D+ R.a0LWb!m崃.B(< 49DeU1hٹ95 :1;FE[slwwOq3˕X](2 ɵ'Dj]H tfD *oH.Vvh$c(;#"IF5 eB;F ,׏~{E4cT%L )PtK2BfOy$yMx..Usef2x"ù@z. 3Aφ0MeN!6B;ۀ/q RIcģ^ I8top%] X" [+ L*7uV[*gǦ܂cTnk {.MH.mu %P%qO7pnj4A\*]VM9eJ`x׻eb)izC"-<ӽmDQB9^Lᨫ?_ Z(WGX_?_A`g*9uJ= Wqtʟ>a1*' z0p2RXsXZ ]h&bG W(}ApGSXk@^X͵T߅X(ZGt3!ZS|>mVeI3^hhJrg\MLUDžacbdO) %^Z5yn]>oOVˆ]꺾C @XNaUv<\ (Sn3e(jXiɗ|G"m^4CZ@(: ݆->Dj!} 2 ŇW,^⌫)` 1ĺr\TE*! S61;nR0qݏci}ʊL 4q52ie5& empp(ξ+ <39sgiN+85/_qKV?esZ$(3aEpfo řBl60ŝBi%lkZ尜t8㥝jNjHڋjKjVZ㦽 ][nO`U}LL4zD/ie^@qFX"/@3V-?xiژ6:mm4JO/aiKX r @a\ c(endstream endobj 82 0 obj << /Type /Page /Contents 83 0 R /Resources 81 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 81 0 obj << /Font << /F8 18 0 R /F41 55 0 R /F33 40 0 R >> /ProcSet [ /PDF /Text ] >> endobj 86 0 obj << /Length 1664 /Filter /FlateDecode >> stream xڵXmo6_aj,VMb,]S`X(D $ݟI$eKUhĤD'\;Z팦nkӞv,wx؞]_ LXt]|'-ױN.!l9-C+- qqmcgo3 asg$5Co-1JӪcycsW`A='2F~pN;8F+-$T=s55h~kO9_/H|sQp1lf,r9XV[5.Hd/f/# p:LAA] ɶ\!EYښ3wݻ]\_I2&t78 ']gsI 乎>pL0ڊ{J5jbnj݁;= ^i(Yl}=F܏zTk1l|8U b$8gDSvTݧ$9d-QF&V28Xö7θ_u"_Bt#Y&{s:;yc4oe;L+m(ֆh 8sf*8И2YyԯED9dP"ʻ8DV2cgC3a.7ϗ13v31.J`8xƝ/?+Q(~3`"dV?X;g=|O]ͮ8Eq+խ p4&~3ƄG쎻&AXȚ:C,QI Hv$N/jX-ez+?7\-y4 X L>rPqv{Hg.PpFEm|ZA"g$ ˼ 9K^RKKnTc @g s;Z)ZI)'mY%%{c2Fލt♱$X5dII]IVpW? d,ԛTFVH0j?Y۝,Bs" AY`J 3ZšWs ?}c$vŬBGEް qL6Bý mhE+>47kro+ʝqCP)ῢ4Rݫe- iòN.h!7<'Vy ֺff͑iLIh҄OLM'(!ډ'(S\z3^xغ /a MчCRi^~34))[Hȡe؎5v%t+blj/v/O?_^oՅik8erwHYjJĞxSZGzH]Vխ֢&uXTޕvۈcc9S{TXAqrT^%endstream endobj 85 0 obj << /Type /Page /Contents 86 0 R /Resources 84 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 84 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 1536 /Filter /FlateDecode >> stream xڥY]s8}`lCt;ö ӡ/eŖA-y%9)+aIN,qνJ~_]M̛_^Nz7Y8{0y[_ /‹>eϯc=8/yEmPuĠ||2 76(_Gg_=7 |o~1wAn<<1 M;< څZ/|k66[;'l8\__S?{`e$F <Ἁ7cy8ߕGr'*䊡6syiM);$ws0ۺ *VI t~pE&.0AX ֊*2jogA_бTĕ8NuĦYmI}X[etƯպOw) ɂJtvꊤ/.K2'=F5dcȐ H! &T[LhU39 zp3^;$ *Ȫ]E vcԡ?C&ֆ|В6fR0My ]6X#| !6<"( R]}Ѯ@kKl `ָSQZQ>b6ptUh^t$(UawCm!k\w8`ñ K-4d1֠cT 1!7#i)J ȒD7l"}룢ōuhOWŇu1hjiyn4zzz"ĠW$b$h1qmep@&[aM)-:y-jFzW֦o/c{~4a*H-@Ё+M}7E~dD]#+/\ լ'1I/ l< {7 Kz?UfzXendstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 87 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 92 0 obj << /Length 1536 /Filter /FlateDecode >> stream xڥXmS6~"sZhC v&Ꮇp3-eŖlɕ]ZV8oxal: {q:vAzqΠݒTiW;-"iyBvy]Iu& xt~mtq~~iu[;nhZpOoPXkZ aQgƆuGwNb[9,X(&'B01BIh2kVJe$d@2ig3OgO׷6q\d 7bb&Ԛf cVx`N 2^k1_! rlFLFd\ 5qpնYY&E _ #LZhRU"ӌY9~HT>/~v*=@Q(;YuԬ*# ͜yX~3AmPe0JȃVl8cMal.4 ZFh|1:Mrn2d[kʏAM>zF0}hQ 1΄(hClJS,z2o8cC@YFu@5Vd"S@WRrf՜<S8kI@&(!H[4qF݆G?lr-> endobj 90 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 1462 /Filter /FlateDecode >> stream xڵX[s6~_A,Bit`)m&#X+KIȯ1,_@aK6ss|1}6νY1]4gޠ3xt^l7ӓ{9f ~w_x|5O'- g5Xu/k")Svxz):;84`7 4XuՋVHВ3eO0X q+%fWd2eRcjc4^We?hEa&.(.p/6 1 'FD??|g~ɮ_je`: .+\H8k:x{'r-293QK!.)%)ʘh[._ =_fJ԰~.GVp{nh?~~KKVdy/ g 7{xߌn'Yd=c5P#74TH2+TBayucsK-mvRZP := Tѫ/ǤJ;rsIM(‰1O2)mT{ySrZQTe-UD @qmpWK¾A3/:8ګ 1KdG;b4$Z}YS`q!8-eX, عV`rr‰#472#dI JJe7;||5#JG+&˞C?*8 Y6iv:H69WB`dC)msnvsZ]xxlFP\0OK,l8r3Tl~h9Գay@+ >ֻMcM6zp:ЇJcûʯ`Dbz(R)\Ph^xO!#;mT6xmX,Wk3 $?%z?% + s:#8cv8 R`l|סPncz9VXT{:6;٨@ eN*MC # 4 GYA9ga~Rf,"Ds(X%/'2^LgfDy8Eom#fsIOwaMo HT "5s_{|@?(B%_s9:rZVWrA E PP% ߗ>>tӼyp|;Nn/&~'5"IhHٯ 3y4uK^}='1F~v_4s];~/]j?H$Aendstream endobj 95 0 obj << /Type /Page /Contents 96 0 R /Resources 94 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 94 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 99 0 obj << /Length 978 /Filter /FlateDecode >> stream xWMs0WF4N4i&C -LqLF׭[ ֪L]]=OĚǧ79Xnqo䌺$WNqKCq4"x8,nAPvW< &uܳAws1^D@Mxq]w]: ;ߚ& z C<"_+(Z-Q Ane + 84pVP1C C %H.D= V Ʒ|[ʅ*yV&q:>dEYlgX+Ӏ A[^>dX/&$qF:ɡ<$=;c J*"~rV$X7hfvO3;aK Rzef}YXyBp;_73L5Ѩ1 fanpfh,fi4O1|75 hoVc_nI[o/UqI*PAO{Vrvi J z/l\Jyb!IZZg=IYE>Re5&݄MStA&R/J0XJIX\>_.1- 5#bSy)Q1TT{a22GNjRH(żˆDT\щ4GȟhuRSf|2JuT+OKO7zߚ!$?jdR_pgpMܛY~43nm)DM?ttghMKmkh;eG3endstream endobj 98 0 obj << /Type /Page /Contents 99 0 R /Resources 97 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 97 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 102 0 obj << /Length 935 /Filter /FlateDecode >> stream xX]o0}`K%;NIթKN*`R$j:Lu~`SB>J {=~~vzSjC}4h6lt 9aVׂ֡ϟ([кGpaXF !AmaϓWյqkJwj\IƼ8ZcX>F{^ X? R/m^Y~1Ꙅ=CbhuMhR?jE,9[FV.*&GA@{Σ/ʬv ύ#m$*'^ ;&rJ=a'|bw!y*'42\!FdR=%1x./(]zX|罋kG A5g'CiaUjVdV0 zF6N;Yr|[FiSµGA8䡷"ngX*<{5y*~JGUfTfW=L E\ҀœjJu$icl`6n;1wԭ`޶"ƪJ&ubZʠ['MIUxnog2.($*A)4XE|>It,+ZvGY6K?^EK1kjB.V?2?RT~3C\PH3iHۂ0Uᖅ#6m+_C̏/f9{`UZs/>^5&^x;M/4o6tMF8PHO& "&hϝ@E1?!~p&B6sS|7r }A݂"$|g;'ic p>2P&+mxSt|}JFe.+NedEWFvo:2,dp[eiԕpl 56endstream endobj 101 0 obj << /Type /Page /Contents 102 0 R /Resources 100 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 100 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 1338 /Filter /FlateDecode >> stream xڽXkoH_m SHDˣ &v<&g&~_lQ̜{g5.wmғ77aUd妯V KZÚ:d X|85ISYMfC\B"8:_'zT؜r_B,b5Ğ+:ŗLFő X̣s&z =r;`0p%&u;}^SC3i鱣Găj/RaṊTwV RC8\ZN&CktUZj'Y;>x|S: qw|c,QjI^#>:oFz0M6K}e/u#ک)rK 9/ʛ\\E9uOؾ_%p2@˂pC(|Yo`3 cwST@a. ׁ? ( b, nls×oS Fu# >,$e2E X/r8~ڄm&|ɆrB |ސ#Ds9U|վ)E&V+<&"d&gu>;+,r!B"~?Koaa_'8Y:T kk:la,gwl-ieC[m 03xɗ8,̾tBяxqZY[ŧv<)`[Ky 3n8_+6:ײ3>ÃX7 `>Fk$g˚kvK~K E4ENM:|(S/ED}Eō'89lp#:' BJ 3K1Em>~3 #~,f}|LǩZ ji&bMy. {.9\-wnPK8[6Eڙ퉟ߍa  X},hPÇh6=2"|k!=$LJga-FmȲ| &[dXI%Xg˶C,E_Hƥ`#z3GJwoѰ漬Kzh2ɨjj @ۅ >$ ԜqP]GV1F,HAإ3U7a>'{npT'R n.% a@$ Uq'xS!c=|WGlhгa#2dg/M#SPҼUGNi=tX5Y몝py> endobj 103 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 108 0 obj << /Length 137 /Filter /FlateDecode >> stream xm1 0.k̥Us6 wM-poyɌgP!xH& Km%e/yjk:KhOGʟ0aIgJ\xeIkN|s3endstream endobj 107 0 obj << /Type /Page /Contents 108 0 R /Resources 106 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 106 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 111 0 obj << /Length 1689 /Filter /FlateDecode >> stream xŗKoF:R@D\8v4 [hI EKD)R(??ߙ!U].׾:z$MMFӇQO"Jh:y3 k7"Lj=lhFXhmorIAQyr^O#Iģ ޚ[m23bdڄ6HG{81V6Ғg/V+z_ }S:yC9CZ oM[(! VڅǼ5& s? 0a<ʛ/Vou Udl:#6wy ,adaxK> ^?P+ E϶S H4ț2sw>hHZZ`FPi%5QPueJщ2{?Bpm%&NjؖcӦwsw>==:4 7Ul.;ز;G\d8fsW. ~A_l^V*A9Y :Dd(zoE1_ѱCe[>r"ǨW \J(jio8zELB+F[]$!.Qp ꚳĆ յ%>‘n-?4h˴bY_c~[$j'cl'iܼ|gŏ(@dT}P~=fe[eғ _ (!ui5V*ϧ~l Twl մ*{9Gfq)$lW+ӵy_rpu^sY5&p <4Tjٵ$/AHؽ6J*yJ^%%wڗᮏ,|u֐0gC)6ZCJ.`}3|^`ߞKuf2Ml;oIN$j> 俾(&C6J)B FVGG `=*ʟzlOS*/{O˯}uJ66- $ ZQa#\1ԸSd[7ᣍ}:|QF%:e'xPA's;F# I!#.B@d]hIE}Dp ξ$Sendstream endobj 110 0 obj << /Type /Page /Contents 111 0 R /Resources 109 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 112 0 R >> endobj 109 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F40 52 0 R /F41 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 72 0 obj << /Length1 887 /Length2 1357 /Length3 532 /Length 1954 /Filter /FlateDecode >> stream xR{9!{?s#1f5Ʀ(]|@0׎ 8Zp(`2i\@DNc01@`yF0abDG0L-Lf@a ?Db ПwiH<2`.[0@&ʄK%V;$g^~!4~9Pn0sz̹ (%"46D'p `8@A: `!B2$`dLy qO!BÇ$_dP~[r=3 noh|>MI"eHsaDB$05Q)`ϧу@ 27B_5-"#"fI$"ŤCF8sgEM ܡEP>" wV/5l 1Lu=8ҾDP6"T^|l1)`+>r hϨ9mف9n 4ž\[}ћWxz.>N))wn̲z߰X8$_5ø+d{%620QrS\tl~wo+[ji=_7Wf л ƪo;Xڠ5_~F(=jGIxB_s$Ld^yyv0]qvY8[c?ͩ{GikͿ|̴jf+H :pc:@*F& R|2sr7]XKd2*oߘ%}GF>Էb/t.63YGsEbb6}/]ؘ`^/z;ZWנF*dB {N&6uERM7OQb5!E[,uuS%b/ddIO҆䚣{ e9L)}*Kﳝ3>m |])w+@r4l21O9^Ӌ䇞okǦl>kEGste~fXrIAfk_I͌ dNWs;Ce)Jp{%IUޑֹSCGCﬞlBͬM9x\fE:wL3{Uc^}bqPYӳaʜz[z iQ輰{;L}oyRM|Lc f~h}mHaUejfTl@ceAܫdUyML8ټ>R!~]"Ѵ%e9+˯D;\m5#3pΞ_N?3`z][9җNyp~ªqk!LBmM4F1m)RJK O)/⋩?߶dtN >o\m:AQeKndjDNOk\Zw=nČ'IJ|ݎEY{CvȖ5RNl2kdN\W˸Jv> endobj 71 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /UIPAST+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 72 0 R >> endobj 114 0 obj [667 667 667 667 667 667 ] endobj 113 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 60 0 obj << /Length1 2166 /Length2 13284 /Length3 532 /Length 14462 /Filter /FlateDecode >> stream xUX]Ͷh !݂ww ]!Xp ~ދ}}ezQU5Ȉ鄌 Ml虸"**\&zFX22Gg ;[Qgn@ `bfeff%{8Z;(EI٘8Zd MlsX,L=Bp(8821-&f Iٚ8+lb?C&N@)%P T42kMߐߓX[3?M l,=; kglhSMMJ9X[ ٚY+d$nnb`ldpvt1W;/1%QMM)X:x{L l;@ -<  <`HloL [cw;Зo#?`[+#`u1gl?c;kkǏ# `0F w 0+#pG[kӿL_#\G$#;p=&kae݇!+p-NNJEٚـnl@ogsG2ʦv.cZu(d+pLl@U[E8Y_q3Fف&Nb8|l>;[C$A@|PDb&`qV `U6IꃀA@|E.rt7q]>X]郀Օ?X]僀U?X]타?X]ダ5M\Z섡\@+C`?%˿G'#;Ǐ>^.ML@-sB_l_ NV!P/Z}PLL@+ۿheB_r yB_r V!_dh<3_&flmsFc^l+?Ҍ\W>cfbnbΈ'29GpTج%Nw .p9Ժd\ځz^2 )KqJ!.mU0ó W:C!y T~~sklC}@.FJ n…;C2}Ah+{觏/[+g=H߳0Sʹͭ^iW:{]! ooFz(~{:V6)-h>rOx_|;MIY"am4>#(Gފ&j@^ f:B؟\]fΉ$D{)BM$L~p[1|4#S5nb}F4qCY0oocQp*K$(bW;U#] Q?^t<~Zݘ {dP3BKI6**Ţd % V9{x {aI?OT4Z=%P/r5:{1^ (w&Eu(vV4KĵLE@әN>}ykKE hӫg᪼o9Qط7mLXR{Qd  _ār {$iXrf暢};*pnEu$, 'Vp]tˏO90O +N$_h62vߘzO;Hn8[BA +]]e/,8۝T7P* y{TP:\7E=o J7dINbF  EDs&YQno)A#܎w~W=8G'E R[bPJCyO9v R}Ao$o)Ҡ. ٓI&1!Q{ǫdmT~ňG"lgV ÑL \ QՑW5)^œʸ9ENe@ar"}r~;-"@cX<qZ葡&& s|a&t [-s rfyɟBƠCՋcؿhp<I9bWѕI1]񻈭-]z bL9} tn]kռgoI9 %b+$" 1npSk;)O M^b. 5߬1=R%P,m.,mwR|]ƚjѫ`}=Ap921ʷ25te/O̰ka&Uܙ9Dg!3(=D7Tė-Y^)oͻ+ߒj-mnN>?Jଖ8Ru>zL~z8%"A6: %s.k9LI*ɚ,hV L^7#s4Tcپ'W7M~BI+и+AH+ng_Z7.x>GW|0HpCJlGI.Z˞9{GU ;&7|0V lٰq``~tK6<5Ϭ!i{%C:1䟟czk61(,n.;t:ww1,Pwe G*E/G>]|4S%A:X'ht-QXe5-18 A_cJ>I(,uf:uXt"i bI=h #=Uy" H{vdrgCb/;NcaCT5Kz#XQhMx]NճHP99(3v?i3Q %uv>z|Ҡ .lΦגDLPЙ8w0YS U݉HQ7}Zem HB.PHq dh2>;D)`dT'~ޖP2+?J|*NAnJ!G\Jl :QvFh3*,UY6cR2 {Ӧk K_4Od jR@D{lb i6>KE"4RlM_3vպmȁ;MjnrPWF{gޒ{N7JY믙Q7]4,Ѿ4 "h%3L~ ȌU|AV;7)9H$7r3%2mx< hZ8ͳ8Q2u%~mi!ȓ|"s,V uQ6t2uBi%"/oSZ>s ҞXT_C:wt;_6 lUV(QpB'?GI>GLzOchsuNw?Z)n^c4+gz,OodhAQeDA#XꆩZQ1>%Xg"dHw-xAs/kCn"3J/'x@a*S!,$I:}%&qsgcRθDa()qL& ?Dd(]%9m$1#V23:& rvx[]:WX, .*~*e#jlhYEOæ~T'}V (NJG kc!f43w]($ǪZ Jĺ`#Rm.$х?s$5"or@748ӁPq96S ܞdd7 |1T#ͥ8VWϥUzڃn)%7 ;8lߦyj+L-=bлa" [n& T7"s^rrB!o/ΐSt|CEf6,\βR{0 KSxjYk'y͑AZ`ix얶z}°*+.|-Nݑ+h_ ]K+f+]m{\ {.E`ʚJ́8'铊yK⾧=,i\L 7q[F#Kͺ|;d{8pie'^YEWIS(o.ae/9(o]MsV:'N.+p ts! |-qɃmWC$}]_^& @.Kؾ#<>n6R4PEhm%LY"[M;+#UJ^(w=!/Bw \1)VY&e)5byhD`gCҮJ-.5N5P-lѭ ξ4}!MGݟ̓FxD>W jD\P{u\Ԅ]TVUttJxXȗvN@Io 8RQF{[l ?`2ȮQG8Eh 5A|mB00}Z>y-fSNX9ku0a|U)o:B ,A;V.$M/;N 1..Ug]r?_&py!3p!(iY79:nCzj1y[Q߶:ggpA>|c*j`+_EX5ixSK٢$-<wl guyQ3c/<>A9h!އ;e:̸'%Dk]z]>~]*I~9vY~Ԋ^n<}vr5# eQLg *-һWz݄ F~ȳr݈qN5S=ǟ:a}SS~ʕ5_cE?Ê(w{" 6XSZwۈθ?ʵz3F˾ ]!-/?./4aE^<LjMo2e ^ACJ]K󅭂U@Z!|}ĉ~z:ք"% {* (|UޖqjzI)Jb(D\jaSɵQP@ɦѮ‹`h (\1mBxތ|&W׮*z]B~Ʒ,iL.4 c0TGڭ#tx|VL u2 NIC~/>Ǡ0;`ڱ H*A q>ں6`4, Et>XyYዳ }bm9 5]{sIV% e*$9`$7̦MGUAQ#1X`Uivz-aSM9'f"ЎÜB\6%>8 {5OzK6w/F- &7NNۛ_ʰ]te6 El"jtNK>K$d9'ar΅HPBp_ؚXni;5BAlTV`(kArUKY[Րe~ݦb{G9+NeP9wc[qqߧJ'|Ħ㳱 ,% v_Y { b",|^t&wI\5{FvpVp9SYrҒ#tVժo`_į":RQΡ*}IkF))}':ˠ5Z.qDO;=dnIA}FY N-L7s2iգR3'^ʼnJn`ÕvIoEU%`xL7~G_!Ghm\3E0WIt~\Ov,RBl}pz8am\ؑ+ד!(=sV2P:aI.aL2G +O}'DVdedF,+ DxCǷ]C!BRLX@ +ЪUQZ 9;W8 QԨ2+GK/u<C3trɿ^u]UZ:"pPf9~(4.̀1wh- r޿f-%Z7s;OoP)LH.XfLֳH!MR,՗#:*6X^@fr |)<9c*5<,4]SсBB^ׁoyOk~FkDt T2hb*c 8p0+eMQE?ɬvO掞2Gt."i N~gBۇN G*̬ ܍QzKdì ϥi:CHJon51g]!2 ?+vb5a#h95$;D (%=h^}1̷}wrY9;nÆx1 Ft@%B,$(XrFkEm&LܭۗM ї^aQ^oX{Z.j}:"$BKBS(a=zJ ]@uN J1NztM;2K6V3]eYPl{ WҾx6ztr12hxضyS'q+NJFA%1{Y}q^RJl,ʈp :ʜser|~pLABG28HUR[=MqX;cb_k~F |eKJ/?_jc4? E$:-R7ukPîūWB|lEq~"U. 8S1#=H~z.}zƁԓ׬W" !t}ux϶It<7|!k+"N AE%( Tfʜ"Xq7iXI)1Y[x;" K o+lY]̘([o,02a^LA^ PI飄A$Ѕ *M3=-9)4eS4 O['dX(ZCq|oj?\)"=*?9I|F,oT}V@X7:zʞ7 m<,̴uS~ StXJԓM<`NGgyVBPZJUP}Gi?$Y¶J7W2sJ)Lg e (Cpɉqe`+Xz̾27KeLܫtmΜ*kk|oOH]9HC3_AХ .eZ.|P:pwُ%&x0Սd2͆, ʑ>tg"lLG_PP(QPY*sEfN-5sm .DbI+dOȥ,JTgmi$ /kn*r5-G6C)KmC%,č'|$A~B1T nDJ},+k.'s>P3̓5,4Up 5̵ k.Oʰ< GiEoЍ*t0d$waњRL\qZ%)G(ph2\A.g)!Zۀ})J(,\45~*X0P]گzx˳(A7d@HniaɟeXwa,h2V1fUlj荸>/j̟ۨQHxNNYJԯXbHeYQDŜN|yD[` e_wU% &U]idC%A7ʕET"9l]F<ޘe6Qc)JEr+ :7 Y'IEl'D#Q@?cNO8=Wh0tW@*-&[ڟ8Nlz{,`5qgD-c7GK~');n7;xdj*zZl=OSfDWĄ_8#Ji5WQ}Ajl{Rk<)BՔƱeHKw-33XymL#&F_PD=߶}+k!,MK>)$]FBYSRcٖ_KqKbޙPʇRԯ# )}=6DN!kVo;gvwNOCfUu #(Id3?{hSݾ|_khIL9=U&>F͌F b(քI Sߋ7R8_zeOpqvBt`3!݇)ԈJoz^({0i rFt KA /Ke+Z_+ /fȩ5OR)~QYtQ #>5·nBkgeR8,E٩;mcṇ3*SE\~egcH/[#S]g\%S,B+aÁ`d+ֆBN!Mhjpsn0er,_?@+Rl5&R_MV$$lth%77%od6~![/儚핓"BoKr%ؤt]8|w0F%>dQr[L* /&8wNL_)'nS;0/(Iv=$秡D3Ӗ滚A8!,MgG}2v9Lɝ(%j2K͌/EDTEF4Iq*Ow%<E˔dFcfwMXU;zо%SX7ؓR9v[=K$ Ȋ3J n7i!).(_2VE&b#kGg;G+endstream endobj 61 0 obj << /Type /Font /Subtype /Type1 /Encoding 115 0 R /FirstChar 33 /LastChar 125 /Widths 116 0 R /BaseFont /ERDYCY+CMTT9 /FontDescriptor 59 0 R >> endobj 59 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /ERDYCY+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright) /FontFile 60 0 R >> endobj 116 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 ] endobj 115 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 54 0 obj << /Length1 1778 /Length2 11077 /Length3 532 /Length 12069 /Filter /FlateDecode >> stream xUXݲpHpwi!KN4C$5w ^d/55f̦$UVc5w4J9:YX ,V&1xJJq AD\l\V>6 bmiЈ X8L@V@{f&v5G3k ȋ jgP W*4gge[@Kkxd,6ws%w+X @/MZX `gVtW]ͥM_M; t(8]3U _r @sk7\Y:X,v+[̬ 7@tw_kQ]1=.֞=pY?I:9[;X8&..&^'``=L #pO.Qv^#Kjx_a hW`6qg W۷ ;8-`6s7ypo!.SBfW;Woۃ<9n.opeW_G:p$F`7H*Ro"F`on%F`7ȿE.ovQ7]F`7E.ov|#]o_9]6HBo.dobeW2 y? Z[[`'ۿ,e|0;`+ǿl5\/kB_p o u&&`dc++xXW n|+[XP hь?&sdd eCbMLBB]3Oү{0{$*cRgis/{{_/*x:^sB*M'ee+H[!sŭ-N#,';*jsq8GتjrՉ`n菹ﳒ^ `2&lþ2KX>F j :)MUtWD6;,-uLn5WwyA>o}0= O7uW*OL)iv8[\( HJPD>%eap+J-)1M_ …V۞Te/(<.%/lzTGaMQ`^S33D%X#`F;Y1-?"CXe1cS\ lȟ$ KUF5k qA~P\@.^}zԜ[rfp|cxыL4Ys#6GCNGȈ[ $;=liCz˦t01:k~9 #/BzB2X:՟/&tO"kHyImr|tJ.Os*3cx 4Ezp2IqJLn{uW8ihe'W5ym7ܿ`UQskw}W`/-5_ Qz.*e,3n a Sc(Gḉܡ.G'xw," NO.nn!7|="Gzל"y_L9#1T W|F4ɶ'Wԥ -C|g,-2:Mc &6~Tw.P+ɘ:. {݄ZʦҪĄ^%O6 ^hGsoU5DcnBι@RK4\ rud- )zͣu Ad蓚C m'i Yiv)sTٚ9묊{51:d BYI䣜$3rDW{Z"6:˹$x<ϔ$"bT.PL=Mq#[XɅ~s9PK2?$2c`V+k`rERO<_947=YQD,c) =*`vېvXsvH[ pB+Q{xW;Z԰9huCbYUfs&Ȯ9tyLu>y6?^C+4Bplҥɺ}QprdHГO̜랂}13ךrQ:w[Pl:+|]~Fl${sNeKvs/eĵBv_.#y2Q:ªs:J7UA[ru2xԍ( 7^ Y19eݜ.o2)\ E=cŎ9y߂L*&7twH>yƠ]Lт<ᔃHN45Q)*~hDvЭmD?OS&ܚ/Q`*1w Fg7gPmxj-P ѝv>KCD{q@JJ0ER/Wvz"v\'9Md`q&s8aJ*L/5_ȯF;}߭5Y&3\>JhUZD|Gwc.Yn\{qՓV'H3qUXPC"JDԚ+// Y}sOچIjUm0V#Pǘv>_yPVΌ٣rׇ`&Q|Xiv9牱w>)Ka?,` @PEw덛D=.&FݫO9\g!o8rePf:ʂψP\86ښe}ckq#'g??T8+I'/ߨQH_ljߝi#XOI>'36v}`#r81" e;|aSס\t`Bg4ۍr{@TX0*۾G$+P3a=uA^sC"+G(a,3| jw\J3xRg,p?dݎf@u]p{0\tE\21q_~ :xb([|ɢ[S-+(~vQ|.m$rA5cyJ!6 R*9 \q; Aڋaɷ>_*8-7U>^ޔ*:jR JY0W.ʰ۶!]>2Ga<65#Qcdr?{ Sk4kr}!6IɫĒ-"PVѪ2F⿭ŭխ=MW 7FT=XOG%S\{W-}=xdܣ>M\1R-Pڻ%c-ׯ-:&v]D;w45n(˫-3v7,~4!m>u<*pΚǘtՃ6T%419md"OkP#vʇpُh:d|v:H5MN͂=S5If|ʹ iQPɻIKs(xB1\C++#?`[\:\82!9I>ޢ/}$J?CfMN |y9>S { q61raq]۾y>eS3\Rq{S=Wƣۚ0z~* wO&f]]JJs? B Ė}_/Oz8~aąg>l-ubhIk'CfdߎY:j`gjD}-?zDtADL3z!bB#fi$ekgCDZ7Ǧ{MB O'1Dt^/Rsp'5+[QZP8>+yYO)2_II0Ɗ$}sm}:g.]A^v @*Όii&7JqE=wƜ^- nk0~kM^LaڃM cpIib:[0TؤBA P9S7=~fyLR/!eLKj~eJ2IO4NP~3nHz)lN`Ob蟽}}r8m[{FZE %UI1ə$)<,` ~O_?3Hu&%ɻ [ -pF=sN@-GI0 ?vU82QHd![Km?V":$È.)R E:jK.; V!C@'S{q@c7>:DH|;4V蕄}bՆ5?xxxOy\pZ4&5v.^*8+;Rj9bxgDxqha/ٹx?,{gL3엎Uw0^B?oudP,Б8h]Yu WMh};QlU (ghRqYY_Qi9/%zkFSr#jiZ3js[E&+9`5cbD$X -؜-R?˧hlJbzF,W'i,{{M[-H1N\iz#B"W҅Dt6}-͈1 q{QbFp\:jRp:/|n) #V?'xBU{=!je2LBуU r{ZiF&JǛjAn]|XӠųq&.[Y=VK!l4-1eZ{hPgbt阫,|#K ġ+`čbErJDddčyTNP]eg8Z|뮿yZ*j{5PyWݾ%4|.A7қpu 1Ao߅TbC9r N}'0@ث[,ۊv&@|l*UmOgZ/@1f~LGek}S\Qt@mfYnbKtcsɚwnUQw/S9c$%6X%$%5nYT.S˝21(xrg~xg-~)2==/YcU1q'M<ϖ}2(#+؏'p y}]; ~)ydǦ #^&b 8o\:_uV[0׊֝ebaokPj>;f0?0(Xάss+ moMMVE(2YV#7 ClME/&/Tr93( ԰0A<7Mc{u,zu)WEMy_>R>arM8 F4DX+He'$"+t,CJ3Lϲ06Ϥ#C I]EV#L3?}dh)Ksok2~Pϋ=Zj`ЊU8Nn_9J&jh|ZlTf C2g_҆bx.q~"N6Mn= VP5Hbϩruq9ﭚH&3}t7@60*fgVmk8ǵM \ݝl1@t4aL^-z7) Oun$öXM D6H (76]aWF}- R9Z`!/o'H[:KQsRc(evJĘfֈߞ#M3,//0wyk wwrcɬV<+&ğ~{\JHfdčR`7C zJ$'JUӏEhL<8]:I~ò~iA;YM@Ia/ʞX^qA!:EG1?k(Վ êqچ7%SUzAq-E P'^1 5 w&zV7~|cnMa&{1Qo ю}A_rk.VÊ55~{ʹ~/Tf|b0]g;O.'60M\l^endstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 117 0 R /FirstChar 39 /LastChar 122 /Widths 118 0 R /BaseFont /LGHNGB+CMTT10 /FontDescriptor 53 0 R >> endobj 53 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /LGHNGB+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/four/seven/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/z) /FontFile 54 0 R >> endobj 118 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 0 525 0 0 0 0 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 525 ] endobj 117 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two 51/.notdef 52/four 53/.notdef 55/seven 56/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x 121/.notdef 122/z 123/.notdef] >> endobj 51 0 obj << /Length1 1224 /Length2 7813 /Length3 532 /Length 8589 /Filter /FlateDecode >> stream xeX `L A{ 20N\w .A%9{}>>?z]U/4Y-2P8+C(%K%a`S8*e  992`KG@tpA@FIx` T6[b5!`(ngk3P -@4[A4C-epqג+$ L&H l `Sqx~CqS1+ߕ;pwta@e 0  <b.Y9@\e8@j5 O%O[nߋj(\ do߱?Uם$;X@V@Nn) fx'zq!P ; u?m>UhW. Sk,m;=u_n ?EIC@6 ?dS)؁lj'Mz=E7=M?$S\?!SMDSo٠S"?)>%r |>p9dO2<9^$Z@Vp0Ti9[bv`ö!r$mvh)A'1j)ǩ!QFVd>;&&(%jK5iϥ#('yLvc⁴Gxr@$s'XQ F$~Atݩ7}04ɟ4S_ -SA#<;K*vieoO>ޡ}7 QXҀ[7#3 2"7T?mdŬW*V\B:cZ=&YlTxɫ=`O /ۂEаQ[e!;)Qp2K+unp;򚧴W 94*}~gYԀWy#:z$orJX kI_ g8,LZZ?7qB|Z&Rj]+w0M~ ^i PNO3臭`krP< h[}t~czl]~s/3??;ڄ=*϶iXPo#xI_)E [m'Zo󱁶}T.nؑ |69hq\kAC4[vxk.+k>j/TDbV`9n0ϭ8ò'4TbLc\[{a76=Gɒ\)>m2*jƠ4G/F0 oSm `ɻh^nPP2 >o#E0;ɱRnGqI'+64}!{A>//Qtb}' \RZSԤ~ř]06=Ks3lA"Ev)7>*E.]Y fNyyM__@ o~v+*{.j * @gSg*ebw΄6(9C~![j_dY Z:Q+]3zc]uuC}#x>"A3b- !_{!j3=o;1ߓ1I?GV?Z\,Hh,}v`lb~tp wE}ZKI6 4s|O{_I:5w5ИHKN`#fܸ,X!)R EKvM|y6 kH$FȑN7"/ tdiW54(1KZų#xEY!9QoWAϸsS-\gxmrǯ6u5hʣ}I' 5Ҩ 6|'*.Kf'A>bsalP7;_fb垺}cܕ7{[GK$'2}?zzB3ux׸DaZpFUu9ciR/ >s|F>e*ߜXg:scTQYW3)ltR$b hQpו:0kwlÕoSHya61~] /ZR²3zyתJvbwbM7`[cŪқ#|&+E;R."}cxI)ٌ],=ߐhE!]6ƃ>3DT9iQt"BDYJlԝ 41]&LUE W`\RۂӬN‚*h*xt-rWW7ޢiэj3k-Hj{ \jHc8\"s0gfל2]. D?$4tSyg'=N6ԭje/umg\nzK6$zQCxTӐ3~.÷}.߉ `<O[c$[{\cEZ"ȅ;E݄Oc*g,kqG\ڕYVnX^;*ՕIގ|ieAqmŪ: hJ"@ZWC:1k or%YuM>5I{Jbص$gL U5;o6=ɋ;#YN;z/֚^2Plbthd F>k.[WI2>1L}cn㘴ӯc+'TvY0ϧM(/]D|[;$GETTiww ґBt`8u)mc@iL0.2^k]OYB۳4Z!"{߹g)}u_=թ9΅svԼ7a(KE$R^]j? ߐP2zNHSܔ3Itͧ#-*隑.5)_%;y񞟁 T['/g-ν|U#D la<9LVH7FJon ~_4!7Je:12}A3"v$RisIO漜mE?ÿĆ耾cU}.јN#d-DԢ7=\||V0?PJC{"R@)8٧v˫6B;c̳}9O vĩ1j)L-Q™&=S+-_S*6:Z"d%./fO^vR]"&8v%36Em/a}DU>UR&%&Y-`v޿a4$kq3R␺V~E](jUپ^߷X7zG,>lgf%Zn8D<){=&R= ZoLޝ[Y9ٓV%&^VeG2ZT5KwN.n]||X=q}CoPe HCrNvj֛4(pDD/AgDk?ʁ.MAy% PrvܛbUE7*D%&y%]]4'9H1Aڌ{3Bo5kkaXD ̨+ka_O>v{ 4d$y~^A~\ZZqÆ2*/4il}Gؑw2pj䳼p R: w]aV"Ƨ`0g[3df/g|$L<V/*5ߠsxguQg- p:]6\6y{7hv.§ )2vIKL_! DZ nUĀ __ U ;~ |KBH-*r+g7BUNc`Ye‹RʿX<\T@TDwq+["_psv\Fo~UmDJ-_,ٌ1Y9h|=n3o|_aUeJC`E%G,!R)rTVȂo*aCOY EyZ32lH&tJtYk[ Jĕ>UC)̏CR.}cfdQ+>{B֎HǾ/` "2QXPoec@h`^r7C} %.5@o bљXX;o3!8 id:3Xp)u'7xެè!{_iD\4n J\>3e &&KO&Q@LJ6Ed"E`X'YJD14Kvxj%ɒOhZ)*{^-~M[^ɘVv#?k\C»a ) #QJ<}ap#mf~> خ)c`GQas{nq4ʽtW!C>ɸ}GALN:JEQ1EXhӳ>#>S/!4Sh0@ 1$wMbyZ徭͒ ؒ-5zTdup Dh&ڲh_x&;ˢoyX|~CC(N.yy݇_arl.K|I?& ޝ0}RY9Prp+Q:Wh|:#&1ž.B_";"9PkX_Af.]H2s1Iy]Dᙹ붝/T[N'dfg|N}0hݵ$gSUk'};M<>4w o7񭂠$yi[n{03bSy={|ˌN{7XfiLC'U:We]GËYu]S?_+ ^Եw$XL *i>51׃رQGQ/0]l~=`?%X 4X͠W\C2+WV~Wwk#k/L~~u[aon] F/th"z> BQ&>+ٿ/+Xw 5%ƈpM;FV ^ SD1ԣGKLȷ b>_Oy-[MG_"v.P#/G7oX{ @IE`wjX_nJhQybK 5F{c9GBGE1ke*` 7]b2TKٹ1{FWs+Zo/Ms U\tkĂ9$^1?Мp"Bg~E˒mF$[9U+?' ? F~p' \"\oȭqߟsO'EW홭!qvRnGRz]Up*1: CTi^x w "DM5kbXoϰB<>)b\WkNE$Ln8 ~LK-Igu9Fp3=PKS!gIߜȜImM5lJ F-Ff%n5mSK*,c8!xOv|>W_TExFU_jUQKcE M~οRSvT](ey6M7C0w \գeyBD뢈33g̬glZ-H?}5Vb6e?F^Pe☃QEU!%UVEO8e`ZiY>`[TXŧ_J9tmp[kX/V])sS\q>qaIN76Z QpQjJ%jإZN&i[#fP+V+ G\V GE J6ŝZmg IGM۴)LM/3%RVFd}wS%R5wO##w:B̻E88 Nm;xVYPN +ųM6J:r=,]+7𰞳&|.kٱg=C!6o4 )ȍ)Rl,$W/Tm!&`-A vI0}Dq/"rӂ];Y.(h83tziQ=>mx>7M)l[)RuFlii OR$T, a 0K=1ekx})>6: &LW7LZZy:8 z4x`}#?MTES@Lpx߸푏99g8V3 E6_G7JUָebjZ%u>|f,Tp<> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /KIVJOL+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/period/colon/A/B/C/E/I/J/M/P/R/S/T/a/c/d/e/f/h/i/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 51 0 R >> endobj 120 0 obj [307 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 743 704 716 0 678 0 0 0 386 525 0 0 897 0 0 678 0 729 562 716 0 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 307 0 511 307 0 0 256 818 562 511 511 0 422 409 332 537 460 664 464 486 ] endobj 119 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 58/colon 59/.notdef 65/A/B/C 68/.notdef 69/E 70/.notdef 73/I/J 75/.notdef 77/M 78/.notdef 80/P 81/.notdef 82/R/S/T 85/.notdef 97/a 98/.notdef 99/c/d/e/f 103/.notdef 104/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 48 0 obj << /Length1 761 /Length2 1294 /Length3 532 /Length 1854 /Filter /FlateDecode >> stream xR{<,8ZC aň[qe4{k̼^3.mǎQj 2CMnE%$Ŋm9y}} 3&ˎE@g`x9- [![:''2-D{Oq&;0N@!^[/(U  0(58l>B8(LT>_>1  rB! [#c+Ԋ)jŦ54E`~18?D9 TzoZ-!؂ef ~oD-(@ 1@.$z |Cy|#8`Pr1J([ `i6/vdC0 !W0w⁃x,OPߧ]ȪY0B0 E RH"`<+ 0"T$YUo "WFCA  oDEAXj|2K9E7qD)-:^^fc{EVr=;>ۅznIщo|JppІTqs" ңӬo}K}3"kBwb[6_֩(ޤ=^|w$C #٘Yoօ OQ\j1 >7P#_+)]eYVE?s12|s`t_yWE^"ph{|&n1bJ˼*ޞZ?86#Qʩw}:3tq#뒝?~i,&|DDa% xML$SGHs1/_.fbQ`:DwQFM=PRlc(7_&=awd]e?\ Op "6Iendstream endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding 121 0 R /FirstChar 105 /LastChar 106 /Widths 122 0 R /BaseFont /USTSCB+CMMI8 /FontDescriptor 47 0 R >> endobj 47 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /USTSCB+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/i/j) /FontFile 48 0 R >> endobj 122 0 obj [362 430 ] endobj 121 0 obj << /Type /Encoding /Differences [ 0 /.notdef 105/i/j 107/.notdef] >> endobj 45 0 obj << /Length1 865 /Length2 2167 /Length3 532 /Length 2778 /Filter /FlateDecode >> stream xRiL6^%מ.sk߅ܭK:m֧@XT^gg}*UX6kViZ^It ယHu渳sC2oJ6vaNֱ/Y_ЬIuD *,p,8/O/}͉'T5γS}ǣM:ZF+S\f/Zߪd3#Bn90o⥈GGFE:G>~#fJfu7BmKkVu%Sv4 }A "UІ/FHL\˟y#pZ]S̙ E2rSc Ow$Sx̝|d&$jUϪh>~khWrV~L;L!)Z.}WB<,a8M\w cߨxϒ,QWbךI$=mgdgbך v9M5\FDZsF&uםYlwIM|n:p52s-?|vAP.]/$ԏhMAtS֤%"z*E*!}25;7Wvܚ jV UQg-JpwrOZ͇W_٨K \]n%b6/mtZeG9h{&[6ȩ򄚲v|[B ֶlnᔝihLs.2.AB9&+;ENv,ɢ_5}TWC!'#?rVGlzŦi揸cY]|s샚͹w90Dܑ~c#nC2FEDdXKh"3]m0 W 2*. VM3(/!UX2oclĜ׊M[1$`E'NZZS~x}Mr>ՂE}K&m0=Yme>+䝳\=ޛ$x[9_uտB9y8h}bӮZ_3;}L[Xr%/sJr磢B1be6r1}ƛ̲ec' ]ewS^2PSN R~UJl9,)~: ?dxs Gfg7`کv= f:=^Wt;x|mSI3ͣ:=Q6½~9992z?1fDjOB(n*Ep6oRۨ~YR]ӣ{f,YO`*Z> endobj 44 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /XDZFJC+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/period/comma/greater/a/e/i/j/n) /FontFile 45 0 R >> endobj 124 0 obj [278 278 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 466 0 0 0 345 412 0 0 0 600 ] endobj 123 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/period/comma 60/.notdef 62/greater 63/.notdef 97/a 98/.notdef 101/e 102/.notdef 105/i/j 107/.notdef 110/n 111/.notdef] >> endobj 42 0 obj << /Length1 736 /Length2 1025 /Length3 532 /Length 1568 /Filter /FlateDecode >> stream xkXUDmqBBY\̲\%aQPAv., x P,Ez1@$) ^PDQLpz/olBB9^2"8A+ } \>!!JaR ..*0Xӓ"l"RC8B= R Rz.Rj e\&@4T`87 zՖi^ \hD@ ^0AijV Fգ!m1wRA x*-0zԟBU W ja?Le!%rTc}Cй!V ^hOMM} Ryڭ@,94^QrQUO2J]험kn9YM@#=c#?hT4|‘YŤ2˟{j$ ] f'Z]:>S>yړ)𓖜Yg9j\|VSidyǴ5^veWW W|Uֈa9ע'v]y}r yk%SLU'O)Lp{vzMyͪRE7$7m=`榨$Bx+ 9*o_^> 6 4!2 1ݳ}o5>Y"xf?3P>zi8Kڹ~R26}*Hytd~̋'YfJ *:Y֞,歀liyxL^?ssۘ#zk@WU`8p`w ,dgM5v{LUG#TإO_+L.58*3;sx'[ZO߭+KD mk6yk .9!:9X/9}y>W/󨶟ux_WƦswk-tc:8k}<9Uyw $ צe.*ӟL#+M򍖻 7?Y#_o+|Kw/_27%#_-1^biDu8k̟46)!vj:6I^ Y! nzk>x„X mMOY O\tjm)=ۣ"kYbx[;S^TQ"( fCendstream endobj 43 0 obj << /Type /Font /Subtype /Type1 /Encoding 125 0 R /FirstChar 84 /LastChar 84 /Widths 126 0 R /BaseFont /UVJKDB+CMSS8 /FontDescriptor 41 0 R >> endobj 41 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /UVJKDB+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/T) /FontFile 42 0 R >> endobj 126 0 obj [726 ] endobj 125 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef] >> endobj 39 0 obj << /Length1 1423 /Length2 7684 /Length3 532 /Length 8529 /Filter /FlateDecode >> stream xe\]K`莡[CC:C@CJBJI$3[.+ofxw``o 7'77? P0~ 0:d!6 ou/['?+>&0 .w/o#e `?2\nMp'n ?7pA/Mҿ ,MpoJ ^E7&x#4!!&ooO7}Ceά~\rÍFp  :p]B@.p!$@x?@=@ ?n7u}@7NZ?f< Dk qcf[0@ k9hCFsdy\DSi$a OJU\YVf`"R{Stkʟ&e>zZfRg^781<ͨ/& ͓ƞpACl'4ڸ|Q^i)VP?-vx>#ڌ[\6MƯ6-(T2J2Y80]̪tY/1JWJY FI}R-cxjQHs{Ǧh_i섶.@&&9QW%b1q.BWucP[R=hn\ZMٝH/a}%Igbhrx1 rV |깟@UER Z=,p; F"K=SzCW{@yɆzqiLO(Bճew%k 2ȺA|^=iՆ}?< />ș/*eumCp)Ze$Z`h{6dgFBN?݂rZ0 hs3XIz;N %< O"@{0lOWJBI6^ny5dQ07>{ ~AIƍM 7D v^h+lNX+D Ulg5Jz:'ΰX`j8Q&[~˼ Ag Bâ7#f6Sխ! ,ZErW U uGLU׸t'v%_.@2"I8cy`MD+Q QPKqy ONxHG\m3X|[ eto,>q#QwH j>~#8g' &]|ؽ3%uor}OXOf:*8"Νre0hTZ>42.d]S@4 [ޢ@+ۋW]7钞(~8΄&?;i'9)6c8|ڶ֎A:. I2H⮩8Kvi/+<о͓r qVooZ}Uyr2)%6+:&l *m0Ěm,nig,2^>)PmH-g^Jw c\=Iș18AWeH7AkmI$;<;RFÄY.>OYvj.bb(g)mE`3#L~w Zѭ@8LJӀZ'+r -ϬGlwq/X*:G}R_Fi>@DF;G.dF7Q&$/"V=_jȜ2# 뺟)+:;$b] pfvgQ@pGb2M}Nde5|WIIߊَ0 uMy9A>Z~J52;Mƥ)C6[2F,ɳaSvLޒ9$fF~ij`,@˜e큲 ^}ޜ-oW.VGOs͉Plŭ+{Be[ӛsLTBo*Qo_ɠ5 @:ަp2aFV2o%.U@xgԾK58g0VJPN?;bX? "a{r[F %d(_,et4b*}G2⩎wu68aYMqcaH4n9.S4%ɡ|5Oy5[5Ƕ2@L78O*QJP $ҥZ KZ/J$@RS-ßu`h7d'+nNݡrHu$XG-s]v%<1A,?c >n]8f{]?7uKynĩmRD@(cylݟS4F}kvߘWj8`yWаeKhb\hc$+9X'DNÃ=ǟ>óԳ)i!{2#b@ZpC6IXE.u}iy"$`(T;+5 O C6@o7!CԊ3+3=BG;mY,>S&"'QcΊ?VIfž2B@hL+ UA:3gee~Գ^rT.$/"v<ňk3q Q=lӜ<g 6ӧ=u-.wC iVJfzȑc {ЯCTW:U6>АP.#?HW'1HڐċڋVAAi"!8m5CΌkt2DD+ةM}4z`Mp3nƙ?? Vq?}sT`)) gϧe_~J@ZÞG0E42^Y#ӼwO5Lʩx6Ҕo>2=Qdּ᰺n{ÁDGhUuH&| 5yk\jd^<_IH8`$%w\ODೀ)+(+cmâ5 ŖR Cf2QsNl1^p p^xbWȅu@`)5En<~B˦IxnvW~O+VyyuMnM>*1'E!sTqԍLj'rZDΔRO%WFȈٓ T]) B~_)-'H彵zbd53-m&wlto-_DYO!Yu(}xtbJ2`J1Bw2)lۅ%Nr7&uUh55< pdtErkNNF̕ ' !|.x0WS;BeNaqD>-_㊮Kٯ19Ndc^ zP DW '/v+_V\0*ur׻W}єE}Ѩ3!ZA*a9A&7@Vj ! Ӑn ͑x'Գ:c?ͣ݀W{UTC Y eכ{ޜ;RY;!, :Y@>weڗ-UF:"x*z7'[?=(#$rkcP&Ep:h F`n*d8lzOKb2lIyM*qd]z%KKQ}{tEN"ԅ^m,2M~k0+Uo=W2JP7ɌsEGibɌI 2|9: 7LzBփA[0m?IWΔQH*nQ!^7Z7J[]ml!P}j>6I~;Z<yS(WQ( C<R=0f}S7cʝ~׏~o&QF>\mV4nRIQʑA81iTlCg*$Щ_-6'!yj:}VE 3&^1Oͣ/gru\U_^3aTPݑmY,f^Uaݗ[Rk(NXYzpyg6q u0Q kU6ttkͅ<5<:>OmN*xQt+Tp%F1]/ơZ2R+˼*pLy xNvCZAU+)XT ȡךDS}'1^GX|T' $ 6bs\ Hf%:㽐m~upW,A˩ZgETKhehxI3Y*Oͦ ӹѴES)=e5:w|pUc^ 2y4%gF7\b`>DNY{\E4ݾڽ@|lZճM].S!ҵf8O1a:5>; }μoJCgYo=#-7+w4Ly]#-Cu߿Cd\ʙA;|ƗF_]lw#Gi=m[P{ô4NKЌyûÄ[h +W!Wҁ-pgs4$ǢUf:OIb_OrJY;|>|)ʠO̮\H:<9'5eʾt % k8꡴KF_qv~<ű>+%2=U1@ۧeY(9D)Ce t _zzIg__إV<s^ ܾ}(JVo]"bmat+ݬ*ܮ#j%g#G%26ϢRN՛qۇSGL)np8>OwǜkP2G N;~J̆=C\]2ĩW4ky0&͞Z}n&]W4n5ڙ#̉O~m.T^J{b/˃K۟CIG2Z\Tʹ}*@xT?"7/lwP|ı"Ֆw8"/ox?tQB8i+Ѓ(!{a =kv`8-E)D{Mc44B;D*_R-vgGύr;Zה> endobj 38 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /DXZTCW+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/hyphen/period/one/two/three/four/five/six/seven/eight/nine/A/B/C/D/F/I/L/M/O/R/S/T/U/a/b/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/w/y/z) /FontFile 39 0 R >> endobj 128 0 obj [375 312 0 0 562 562 562 562 562 562 562 562 562 0 0 0 0 0 0 0 850 800 812 862 0 707 0 0 419 0 0 676 1067 0 845 0 0 839 625 782 865 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 0 0 312 937 625 562 625 0 459 444 437 625 594 812 0 594 500 ] endobj 127 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen/period 47/.notdef 49/one/two/three/four/five/six/seven/eight/nine 58/.notdef 65/A/B/C/D 69/.notdef 70/F 71/.notdef 73/I 74/.notdef 76/L/M 78/.notdef 79/O 80/.notdef 82/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y/z 123/.notdef] >> endobj 29 0 obj << /Length1 748 /Length2 648 /Length3 532 /Length 1187 /Filter /FlateDecode >> stream xSU uLOJu+53Rp T03RUu.JM,sI,IR04Tp,MW04U002222RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`GE8GiCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!- F& řK,Ipaz)Z@ABLܼEariQQj^ 8OajjEj2k-Yӷs]|a>k_d?nvfJm@%>wX,iG /vRfǝ%ش ̵Ɵh3pi8LsEN͚ϯ/%>nԸ[l)* W2nT<.s9EN{6oc^YD/jWh?V(9+AM _{DCO2=)s#oY;ݟsC=՗b;*rSgr_*}=.MrV3W;vfu/ lI(k-<; S=ء~&O,֫ZD_m_7 ?QTZsׄݛ7,g;EZOy,L+գg^Ԕ^T;nOxkcoXw\ ز_IWNO~綡{r(Fw懄;ӌ+n2Inс_[=8gkԀaa@rNjbQI~nbQ6m鑌endstream endobj 30 0 obj << /Type /Font /Subtype /Type1 /Encoding 129 0 R /FirstChar 24 /LastChar 24 /Widths 130 0 R /BaseFont /ZZDBWZ+CMSY9 /FontDescriptor 28 0 R >> endobj 28 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /ZZDBWZ+CMSY9 /ItalicAngle -14.035 /StemV 87 /XHeight 431 /FontBBox [-30 -958 1146 777] /Flags 4 /CharSet (/similar) /FontFile 29 0 R >> endobj 130 0 obj [799 ] endobj 129 0 obj << /Type /Encoding /Differences [ 0 /.notdef 24/similar 25/.notdef] >> endobj 26 0 obj << /Length1 1676 /Length2 10964 /Length3 532 /Length 11920 /Filter /FlateDecode >> stream xUXMhwEpwwwwׅ[ [!H48uᅮa̪s̪z끂TYA( SP02SPMܬM܀%OstvrP3 bt63q(YA9Ljf@7oF@U+h06s-qpp;l?C@W$I);:ýLZ@R\N=FMhtqZ)ͭ{TL`wU hlff0s+t0o жKIF^YJE_!ek7uo$g  :ppL\\LAD_9 21:8@[pt0Adؿ vAvf h'>Lf&"&+o'+ß'h-8 q\L\DL>@??r32rr5Ԉ˟a+/518@fE;?8AiMeCMR!P!.P{Ԝ5&@%@SCzJ!nP=?@T5@k!P=gs/x@cb2dB /\B_ AF!H/Y ?p A!H/u [!XB_ A3y :z2XAhk8\D3wwl[X9 hhfQ Q 4-ekbcB7Bj2]ل3VSU kLʴ`KoY>Y NCOQ:[o8&+tJs/GN a6H<8%4"(HUQ?;WFGnz@mΆD¶ѭ_9v?c%ub UDԿ g,\aU'dB0"r}%.qf$<~ѷwiRpl4b3*]-eL)vix]'z]l7Z Q@*rraAv/^~&aP&F Zbr{GOL!Z1=oe c4R)r<<ǨoOć݊æ}b኶b:\ hIgZj -K違~,*{lREs r)xYue)JH1V ig<8@?G;N. R#z+N\.T^63T`'tK#X`Y󙦔&;.%ۺ֥ #܏\nYRXɔRiTa=؛N!(Yv]̚\zA-.*'bpU;AOW$hD^czxlS|]^5jZh+MuȎfW mB$v6B F^D)ЂS9ęOTל\6 pxbwww'2TYOpi9堃1|ӑ?l\~!nʁ8Tn8A%UNِE0 3S/*y糨Է+WskjD#<;+F1ĦnMY0ˈxfDi'ਧCώAQ +DfG㇡x܊h ɌN䞺X\^m4lz^'CRXg'6lfNFמԮ_XbEo?g;!Kg iH&TJ'"=O?#75D-x4Sl }Z^(\E'cI4a9;`1[ VB2|9hjG+ͤ>=%?n *َmKvg(ǽKT1=5&.~* Ed{Fs3bYHIAG5VN}\2 <ݕo? f3 $0A0ZV-mv_@Vٯ9qQkc .҃CȈ0F\RW*?b*\j T'q" "`سpOQ͕8 3g6`l ө!7%7!z!oc~%}΋BY񃰫9\)0/ֵ1NOY§L܂v:rhfv^L7LnOG3XL&)/POd}!|uro}MFm>majo[fz`\G0wY*p濩Ŗ+sEyE  yX KUzBf~@Ebzg9S% 9֒oE{vV9(=oĹE/1q82ʺl! Fu7%Vw2Uϛ:FǍӘ6.>m5X$zY<_Bwkڽ:M>Ғ`@0eKPƫ\&# /6yʹˑ`7`W4Y9})l#_i^4so/As ~V[I)BZT(8FdR^?&-.`Ibv] wuT9WgวC }IAbnGnMТ宪[:)QHsEwsn#K6n *) zkUyч^nG ;/+:YfԘ% c`xMpOkRR fyuṇ-h~{Mm/ k;?aG.`tW'BzB7iY|ß(0H,%Rcy׬L~:>ٕvى~v/Z GN\P3:`"Ez4҄O\]8uP=TO#.g"̿Ҏ\(/e* ;S n؁K[\8uC 듉ןY15GrsV:Ch6;![&03g| GY῭bJ%% svp"y'7./ruT~ͱ_DJUC%Y۪>qK oaT9;dNƪE0ͭbuC(F.AY$j%or[ 3,[*5b T7Y?ޑ>ʶwZw_9L[_uBkbSRcr\8;P4Jq!bWwbH]xǡ7HgrjFfʧfwei,o=|/譲0P$Eӡڶ[وVzczy4d$)UTa_5`x$hl~$jyH7ÖJ\%W^O Ǹƃ$p ֔oo+W6s_nD=H_6 L&.w ;e.S!iR{ww h\p "- V>'}֏2hּ06OÂ#lt1o5nl|T ͊+yL{:mIcTRON0;լvt*k}fZ S7UC/^CbA4KڎBʞ22?.3JөtQ$#ZäWp0= %Lb6'M1kKnn"G)F6힡{5aYuv(Ls>K AW T zlVd/UjGnOQd"Mc5P'glv% X|kTnsH^A-3dG];t`BZ~ka௟0 T;Rb.6i"ZUMTU5x\GϚLc]3sP3B8VVnիC QH2GYoݲ0ڰt.rS?.f"\bo>#kcq)xӖC{ap/"»Κ3"v~3q䬪{ <#LT+fM/.w+QW+ul%ؑ(-Vw"Fp|f6T Q]!KYEЭSLb~.Dg{$T cmEį/럞/TrgK h-&LٯwwT `/yGϊïRv2):u1,] d9z}8+m\ 8I=$> >}˜I!nqbjڧZr,-X{rҭ1&\6g%y%3PTX(&z~{seBh0<Ȧcl,@#p@0E\Ƌjo}S\kS>U}%>06e %B䪟@y&ۊ~r\+-<μK bCr\W/6f>$j%wU)}}GE%VrYrn}\@E  Q6~JA ǰtGUg%NtFDyY$qb>yYoѝ؆̩(#$8ȇ%fl%&d GzСcY<7 2JTygM[9˞BwgЯ}B-r &/Z2ytj%|EY+Or[Ei:I!Y3F@NMN{} l;LU65:`ܶ-hB n(Q?>x\f63wnEa1,w5)0 8IsV6/xa*x=qii@/.ZF#>ܮ0Yд0jN( =[F.2$3I$BI#tžtml;GcG|g@{VT_>QO$(S a,C\ }p[ـq7o<ȘsœtT1%ơGD?w{q%  Q.K5EV xWԋO -艬{jOmO3ZQgm_wt%b>7L[.'jWΥ Q;̖&W m^D\Ή7nkVj*V~n&# ۲%)\\Lv&ˇg 1WOldz>yB`J[1\- EIRCvYLWOxr^r!T>pZXh#^mId!l9bI'q=ZWS׮{ =~897*b7#$tSقe?Т._MK`}ӗi=@/0A}9"7db6Sq3_Otͭ-}[t?7W"PId7ܠŻp lņkgz⊡%`6XaDsRA'5S).a`U!aDH>Gx]c $A:LZoubOu Ȍ6[+4@:i UEJ/ˬ)cEƷ-Y=Ȕ3̹e~uLXik0y(ْ9CWـV n;4mwTDIo7+JfNh'\Qs'ݗ6M" | 7eʽrH[ZLN zˋY ˋG]qVM%xZFʘ_yqxH/y޴Y.P++uՐuʄ2eLojAwlx ~|Wҗ*F^iErKKDR;i Z-GJC}sV=L<ƲTY\UP44q)&u*TH^8:.\ ].jT5P;?=y.5-tX"m3Yzow >zɾ#b$bCNX|Hdm_bnxY†Z{RsCO#=;C0>oGBd;Ifdݎۏ>6A?䲜]ܝ<\ QKL!uQά*)R7ባR1?8x"4Pm^sOp\v.'ژM5$f3O0OK!`#djuI)C"^Q-7;5TH'bv4~*L!,=1Jw}uFzggse0$pS|^u/j4BIȆwUf=C[ n'u֩R mCMa +R"_iv,;/ EO)f6BȳfLggwM'f7cS {ݢw`:iT[ʡmM%0/L;Yù}q-%h%o&J+GѬ gbU:ͽ|BȦ` }[Vqn.-de>r5cJ&dS?ږs̊Ǘl28sb: >ΌE7 YT$bNGO!JC H~o`-Y0:a D]L|ҹ`!z!+\^)nCCm@ctJl.O`/] 5-o4 aG._d%](1mwI\ɾfVdҤ*i$ui m!\/Q{M))WrlU岲SLlT4$2hjT5F7&qG"z V=nqƺ>o&z[-Z ROuA/ o,A<·zcvS~cjj'ӛ2)Qw鋽X  M<1R4MC:`c\O ͈3{ڊ}XBmh`c)-?~̡1F_*#/Ehhe|Sg룵otNjZ|tV&(ӁNBc riD 9.&H<Ң#z"60Qd 7)O߽3يE˩qI֌Kᥡ uxn@Lߨ&4zm❞ꂛv;BL,J9ִ#gZ!4E6!R%41zʺد4u%c\be00 цdRÎ~j#hۻ5I$ 8$d/Dز4eXogVk}-e6~TŘ-uMx|mQQnd:wIBwp6C5+n@ .dpW 6r۶Jo CFhݱiu]TMaҹz>>Wٜ#~qVB?ug2}qA|t|Qk+Ҥڅ\Ql `&j$bIrʀth5{^AtnL( Ě˔IVr($h(z67|pN??0:#!"%Ү7Ek l׎-rĻ\9Q5k }UTdb ɲw㞗O N"DlCǧ~ert QD*u{ZjuIV{B"t=WyvE e+ c8Cwཧy8 Tq7L5yrab .gUK0q |D# 7tpY2 6֬Cpq-{̦2,WWbFo( /v%QI 2uwuըֲ 8"w'}pYaG{4Ϥ| CB|z˽>Z+@Sq<*l~OfY[9 kpQVNo%5?XǑ"Zm<SY/s%-E6p83[vF1̘Vu'Wl]3,3Y5<N`цKIšG礪;p]Z4| a/.O&HEq 9`Nu ʥ79|f+.Xe]L'_YBkV0G<Ä6V&,## AR1|< ? Ys/3VinNzR4P'C,3KV+[*kF^1ϋT m{(Q>yngB@W.rTl$JlCԣvg("(icNӢ}G 0:0Q>ڣ䑞mxNXV$Yߔտ6j5u[aǜᙡZG!JB⼂,JVaxP2EF+#e$ZV~(>:4e  &.n&. Tendstream endobj 27 0 obj << /Type /Font /Subtype /Type1 /Encoding 131 0 R /FirstChar 11 /LastChar 121 /Widths 132 0 R /BaseFont /ILPGQO+CMR9 /FontDescriptor 25 0 R >> endobj 25 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ILPGQO+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/ff/fl/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/six/seven/eight/nine/colon/at/A/B/C/D/E/F/G/H/I/L/M/N/O/P/Q/R/S/T/U/X/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 26 0 R >> endobj 132 0 obj [600 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400 400 0 0 285 343 285 514 514 514 514 514 514 0 514 514 514 514 285 0 0 0 0 0 799 771 728 742 785 699 671 806 771 371 0 0 642 942 771 799 699 799 756 571 742 771 0 0 771 0 0 0 0 0 0 0 0 514 571 457 571 457 314 514 571 285 0 542 285 856 571 514 571 0 402 405 400 571 542 742 542 542 ] endobj 131 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff 12/.notdef 13/fl 14/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four 53/.notdef 54/six/seven/eight/nine/colon 59/.notdef 64/at/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P/Q/R/S/T/U 86/.notdef 88/X 89/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 23 0 obj << /Length1 794 /Length2 1341 /Length3 532 /Length 1922 /Filter /FlateDecode >> stream xR{8T֎< *K-e͸\eQXf-cf\&хC-RB.=BQCTԜ:$K3{z9g{{w2eaa8* ds-pf $3@bT(pĈ- ؐc,ideK!R-pY-PNl<+|CِxAH/`C<'dXbyʓ!c0 KYl^t1Cَ9JJ"W4 " _ouc@@UwL>;L2'r|}{1F@Y $h P$$Ah.[$!pJDH$o E$r2 #/;F9$LH$X5 S)62?tX CK^޷9 'R%o>sLV+oɿp-W#..x թ V+*.*<`/IIYhpod؜E]} &LFMzx~YO~wSvu,{ƫO+< 8Qee j uqsDo6\Y{Ĵ_SP9ǂ+K/*{P歾$CޯF񓾊Teڟ$LLRG4dkRݽS]ԚܙYǯ=NU."xlZ{ƅOYt[&jW}HpO+=-G&Jꕅcq)/ =$#Om7+C59I-nQŽ '}0pUUqNu~5&VkHUۮ՘ҍP RK+֪ 3=O^:~UOiL"k˙/)mk+0^([˱cQ3k D̛;ّ' *rw/$(q~K(A1 9TdhXA۠~-U/AE'7eK 55_Vsf6,Le5lֈIϗku]Kv^ q%,-XMRqQ^QҪ^7|N+]md|Ӱ:5ʳJ9Q7 #٩ J֣T!\ZUj ڶK^7ܷIsv%{xL3ƽVrK6io]N{)d%>X _J3!ͤ"6dњ [;jhiߪXμ`U=ѱЌ~=@_Pd9Am3ۧ[YnSwy!(M*G//xZK,VvKu.o!ɲS4S󍷷wqk9 Q]Ue*!r9?{X> endobj 22 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /ZEBOJV+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/asteriskmath/dagger/daggerdbl) /FontFile 23 0 R >> endobj 134 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 574 574 ] endobj 133 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 121/dagger/daggerdbl 123/.notdef] >> endobj 20 0 obj << /Length1 821 /Length2 1005 /Length3 532 /Length 1597 /Filter /FlateDecode >> stream xUkTeʢxYOtvwYdA˂xfwYvgaVaH! %THb< bI*@ E_f>~y.qH)t' !" '`sDi$PM@@`/l.p%QJ WK= Pxt(T13d2Q`oo_"t9x-r.gOelyw\.n^Le5s}wwb>J3qm־QniBv:M(: O OLs~EJ1si8[Sjæw[\}a}uKSpyn>NҫMuUM59d)v>29֏kԂ;lRzopO+*U#tsvhX^o='ҁ}m_9q;UVW+M Nk: ÅAS݆[or#rp/ m b W]NʫNjTSj^_r$xuig@s@ء f9A8kFtt^w75';ő29OQ gfD:99?&UQ9Y֪lpd*Is#" ӷ&;;q;t=6bHkbPSxLyٚO%u{:>f8`_M07~\Þ[1+Fd-ŮU{Uk >)|{'}o$uW^aʼn4*f.76>huxbhF~)Czvy8>\}p#)HkI߲lmj^0u{=2a zNε]ȂO{j'M_o9S8RԾFoExzzo9EÂP&U(j5bPendstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 135 0 R /FirstChar 13 /LastChar 112 /Widths 136 0 R /BaseFont /NVQPGJ+CMSY10 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /NVQPGJ+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/circlecopyrt/bullet/greaterequal/radical) /FontFile 20 0 R >> endobj 136 0 obj [1000 0 500 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 833 ] endobj 135 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef 21/greaterequal 22/.notdef 112/radical 113/.notdef] >> endobj 17 0 obj << /Length1 2018 /Length2 14755 /Length3 532 /Length 15850 /Filter /FlateDecode >> stream xct]'vNŶӱm۶m۶mu?{s>qjԨ\sZs?P^VD֙ $`c`%%r41p6p60rr2DM ?.V.V&XR3B$v-@85@ك `m P@Ę`la 041ǒ.j4MJФ^f=?Sl]M2v&;U俼ɘ[V gk #[3k,D-M-N&o ,l==?b? ;@X^F`"?t `h =@bx1,lM&@tv.`M|v,(pM/ddd'O33\M k-fa8ZeJ[8 ll DX&Bl^@Y;?!vO 4h䯌*e'O,\uh/79Zm9[Չal,34hbg؀r(%2B!؁C@?,_'/^ЋzC@/E"o?v/F!wύ aNj9p )_ f!! l`,B'hstew_te]@W!Е_ϡ B+/rr ix?lj|h.} R+?YI*h;Ns b>+SD˜EC܏}W4&\4={o'H- r#I}'Ы ]Z҃EӬUBkɘ ?p( c ]s62zʮ9&']=٨Yq Mﴤ 3RG`:L 8,- 5*GDos\$LUMghWZϼ@r2!g41 3U*яd)97ZURɒS/-}͓6CGȞ/˅?MG b 嫯!Ro?QfVi^ELG/1W[1tUښ3Q22`(kvFJ yIA㬦|YT!^*! Nn3ÖU~-KZՓM3}يΩUjmlV8FTmHT.9K{߀`&yJM /}Cq{29nwOWrV)ۄ!"y˧FxS\g~K>*ygC*H!ELk!@o$FiK59X`I$))1`tW,MlE8ZIly^nV,6Ջw}@t #yxHbPQ-oIjRЩS tڻv  пP˘0Onڍ;_˜~S>y~/j)sjBDUTCgsR>HM͖BͻmQIP7'_]G,WS7f9c!fcb'E9zA^oqM;_ʤ; ,6pcWzgON8)ѻ*IpΤqO!?@'L0jG6l 'ʓp,T SK|ZsJy;}ԑ ͨLq>uv^R!h6SyVJ*?-Pk mXw],p4$)xLy*֒ Y`AOU V^`}xԈp+SdsEs{f=U#PдaN_G±$%wUZi9vԽtN]㹄C3N4U4|"COl>"viBYϜk1;j:4U&|Þ+&9[M.ׄ1Km}/B͡+O#F3oqnSkg p r P2vH^ͻa7V_["7Q|3(t|VV44.!oZ'?8gհt(5ۖůÕW cMzLJ<bhڔʚ~s]Byf˟[4=O5x!% &:|瀂]'Ƽ\$_ޘD)%%ws~:x D"\ \=SFP( dʐ~\o$ 5RDm5)Y&O/,ҼzRT9} i^ AшUX*/v$_f-_ۤ$T&K- EWtOpD&o/P(ewL2ά84Z'+Ru)xO ._"֘QifXHu% 2iR+U7SA^LHn{Z-0U*gw cA|c|Y1{0 k $DW\b9>3"Jb1M 5 و{`’&Dn'z\Ke[wT1?a3mD[{:='2DdYmkUb xvÆ^qf`5xH(؇$k+g,ibg CH§b/y|R|#Ns!Ү*]fz*Q2d4M45Nry!" q+G:vt1kwHc[l5=8i?Ӏl$`g-i)Sѳ^iT2+itS_4^ :vLQǯV "|'kUegj*^NQ_=ъeKqw'=.? W4xR[<@aKKy4Z:8rXt,L/BC%5x}MPdW,ף,oj L-;l'w97V։.L1IT>eNb/~ }_A{ƶ[^k`]WqS>*gQ~Aa^0pҘkJáĤ*|&!6# ϿFh2ކG/0Xl(:ӬHeK~ y>y;R<ꦥUƪs ]9r#78P$KM+ӵV *<0 [5GBV\HLYx4O1K|,M(oHIL+#*)pрU#DG W{6(@u;v x` Bp/aF5bAd3_S%;WX/L>Ub!NC8VK+I~7+}v[ǎo=|,ZNouyLS_[W^SMj'lI|@% nO sIKG!yܣa&B~noPN7u W Þ(=/8 &6cؒxWq" huJ Ä2ʴ.u5_HiKgt}><tnVߚ °1( Mz] ݳ{J'fƻĮbN)_ME'q/f A];Aj -3bwl>}@ _nw*G=Q[}"Kg@Ӂ e2&&y/-T})UtCO4(HZZ,եgK'ԝ. NfZ7:J #Xx?F,vd<[#JаժTSy ƌb8R u&-%)"rIv\k ;LJPN7S3`Z_ vH%[acgdxO&d0ǹ?<Ȫ.e[ AO(AXs]•囅dܩn>|f(/$ul aJC2_ȑ'JA @]>#wE|K8g공dߴ/rFf8|Lg' Q[Ag[gڋIZF3ܔ93^iF5KsmGBB(B署3? %і},չ1QbTJ8=}[c7ҋ}l0a 39UYS KlI ^wOx cND?}l.s'9Mc旜a*܃n,]Ib ]֟!Lt~ %\,M1(lPKBC"I`MgyɌ +[Q>qe+#h##F[}p,[:Z4gPyAp:1OMCrj!Gw;Vh͐ ʱ˷6lLZ(-t :D B} 6˴Tj1`ұGt\O)'Mn!ŭJV6=;QIv839'D`k@ %%NWS˭!&CZJPtkW5@0>Q^5Iyũk3b¹FnG ZJxsK|_5*6H }oϥD 9@Ͱ9Sʋ0ZL6M|J#^B%O&`f 坣b*ro< yTl jnf X0VhZ T,ɢGck"p.ܖUN&帚 (yP`!|wn. CO`ޮk  N>(wĒBHt釓f~£3>ӡc*ިSʁs,1V<9kLQ[<ا\3.D۲vQ_@-j"5J F٨ ȤJv19=ϧ-F)}#_)"ji]'iRlɶI#]d*W.S.TOV LQ޺H""|']IKQ#D?H2p${n=m)\)#*F2 IWia畽 c)j>O˗C1dֵ"$hpdIZ#<9z s^_+8lժW0\mZKXeI:+)+sŗю~q pz#MûW#bAq +8{uE'd M2?jIQC$ߞEƮΊ[Ev[HW"ۓWfڶyP }JbM7v\lZeӢFؚ2x? 8EVfJkts}Ցoq CHؔ:)h71dԺ-*`1u?ʲ)yPQ&A=:.*N'ƪwZ~"(=Ch8jphYX%:JuWkd s>E#3{}t}z^^}~syϯ-R֣CmS'/?G+3 1)JsF]CeyA$&ݏCL5cG!g{, ҵ?M9D  oR Fݾpnk uot1$tNR_.>XTԇ@Lm>J>sdZ?:f=FDJ2[PlIY?伤raL!]Xy?讏Q3f`bc4avtX\n,\[8QZEPt7~UaBs84AH ,Q&2#&)l8BKǨk6CXBHK@yRHeStU,l^&g].:j2LTϙcYE8LS.U Z[|'7fRVhþFzmbЫKkBFC_Zec_LhXPb?- ]$EWC}wJREBK!o5ͬ-9)k`؝z`c3[]M3S+3lf=[@Nz (q=>"G4 i.I bbMMA !)'-7xwE_[-26cs*GL^ӡGbrg O_ ( aO5A<+᫬6K̹hƔOʮUc%#+X%}\_c`iV zЌ@n7ߵtfF,LC_F)`+1@ > A m1~xsOSyJIM픻pRVt|R3+z pi%Ht/BR2YT3zCK_ O u>';<tgrUz,)Wb庹^of&hy''o SE7ZyF6xdJ8l"ssD_s @j]ɺ}EKʌ4Z_ӰC j|m!yEPz'o#i0K+'G0% ƠH9ш|:qE"_td-<ĕm=:}PT~3UHoժ4 PL*,βp(ȷ$ƊЌubVڱg)=tbq1XVGXe}F,}3~ T?Z9Dgp u=w$z#*1/F~`fg+~QhG= F_Z͕uQ)" 7${ـqy::cvKc]C +kg9"ί$bKa8ζvp0ۇ ILi"YpМI<\1@ pRB`SYfsemiz/#uWMnp5"c@ ( j!"qŖL{)>W (= $ZK٫$oÕW}NjYsuPܗ 7A mWcNiehy5|;m!M5ZoEJjD5+pMa`$&Jg2/ 7i*cR~a.* irJ j+Rw{ٿYUkUᥟx#G1e@.;X7;r1Z RS{'`&9>9{5*,Uflbo8l<,F%sukF?iL%̋߄5Ġ~n3綇l?Kck>Пe~2([%CgyenCWfhfYtJ&t}g*2,60>Rgkܰ8[4JW¹B"AH5? `2Ni-@{V̜Gmz\hߍ1 zS&wGK?qѤ(H |&SZGosD4p=qxr )GG{jpTw{ѮVDBܠ^y>Y搑!Kܑԥ|"L&%Z:ǜ;5 v.ozKG+R\!)\yjjA9ςt="ȳpw nmi[ah;y%.M "V+VB}bd0H3C1((-A|a4>J-|*vL qr~ԓe!7M#B/(b~CQ(3Uh7@pW+lÐPql!wV NE[/1YU'eSV䏟h|L9CiejjL$CY yASupF>HunmTe?KP[sV UwՑpz7]XsU jiK_lOwC mRsK.L\KTZ#a`7ο[b4>`|ƨEw=oQe 2]7Z!%q)Dh=@X"a}:Wm(]~L5\E7y}h#$9(S=)f務oۼa:΁"Y٫xC튕 ![O7* nZꁚհ|*woz NvɎp+{fCG#4M:[kA!Uނ} > ɥУfqOyP$<VKq҆S ML@<EџV1 \A/t視x$b2JiG)RkCf~9 'F0w"jqZuˣ_}[9+GZ)6.R ^İŔ,a{lyU:G aTFϓOt=a-:WjxBzb@[-Wƾo:?b ^Os!( R<#.vv6[(Q@N&]5;36| ޯx9%"Aޮ0_!zol myi~CG@M%9eʓgVP T$ ˆ$LJ pm/]U_#wT(86_-xI$X7 ߑ|@BꪒH`aCM ;XF*?̇%\~):rAX;'đT쐶[/==I[aL^1BYKdT235h92IĦj^F0aڕ]H7ƹ%ZQ,`aѯ0eM,?u&OޢYya7 pV~XwpkTR(9 2Д(}k~PP&ЋN #(J:2)Mfo|5s8KnPg2Y9L\ VMQ_U;iDC?T,Ƥ#kꮰygDxugqtJ="B}¹dij Uhm0%^&g𯻜=R Zj@٥`0I?fF'ሣ*gк3# /v|s2Y4JۆXN3Xy*YXG" ~b:㥨 Hi5,O*TƸz}4{'U\?[2>J &qqK4<{Eh$܃:rWefK<٥o4ljdn)zh E j>g8,~n \a~ZW5\XY- Hn+5c2ėoyU?[ >>Tt(kml¬͋@2?.5n|j i)y4ȝRI_%Ёu9$ֆ>hhiۢVWcQY25gbb=?M=X>uC[#dmqc ͺM[VX"0}^c|8N'dA BR;*]HNm1>YSr?҆.}G1*K/QŮ)vM`f&㛓4Yc y(g39ԫk/(-vBdȖn UɢbR>ޟE[UwOPyg_>A_hG[8n+bb,A,wyclaxϭ}EaW0E\g.5~U^Cw ,鏇V3Ʒ>--_h{ԇOi^K,L6\8e~ZX/PׂE}a?:.$5ҊQz`A-p}~>>}b+QK&e w kw$1?N@ ā!V%@m-G>i+h|i\H='?P(&PTeN'qy ፫UH6e ij?=_i$ ѣP`ͅB9/rd9ƫur8iކ$9b0p?i4:\/5E[=c.#S /{:a?ŋ:RܞpUNWagaTù0|+  *.dwfװA ]E"k8i܍?W`"] {, S5TZ)"gٷb&KKn'X僚c(+R2)vw"O<ͨC`LӚ[u($7( 9_xF*(z%:B|۬Zm2? 1)nܬ<'JF2'ɿg!^u>@bYGbF@æA/yO ,i \5FK=G8V]Eq8,JyErųCcq$|_+Z'.mNP^7˅! txt>%b2AUب~"|q.Py nYnJ7)#ݯ9fX61NeK%)^gбQ99׋Z!Ѱ8+[{H&ڟ9R:Z.?STLsgvsAeu\#W) XLUaJYd?./DhH)}hs™uء5=M7IjE=3ƻ-bqHhWm~H2XP)U\{&U >od Og0Zlq>U OUNse DO[n|vaߤ=y͖K D4E]N{_?&o)4X풰XJ|IVNxWfB/w.6{Q%ICքZ; ?/pԙ7*E"W`VEH2f%^.Q؇GS@z@($i"ؤX1 U j˺߇}ᛎ! 4qt S Ԕ% GZ# Ly lAO;3+1O4 d"[6]c^*g൪L_זGnsI)# H lO޲}y>9ĦqtZUk8왽?w='* ͆%|ORdZ&äju6#U]ym^ l e$xof{ގ뾿h:YA *U}nQ*;Y&H 6~V{#A8oKz9jE%UBthBIQXi=i F׎x~:->vr2B&m敋VKՉݱGbwS:4ԟ=)4#fƩg|gs]A2s31=?W77j%ey;fD}JOЂE~BWc ߁ϲF jW t'%/{4n ׹N>Cp豺> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /EJPBFE+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/ffi/quotedblright/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 17 0 R >> endobj 138 0 obj [583 556 556 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 0 736 556 722 750 750 1028 750 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 137 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 34/quotedblright 35/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 14 0 obj << /Length1 1097 /Length2 5694 /Length3 532 /Length 6406 /Filter /FlateDecode >> stream xe\TmAE%$afh;N!NI)IIiAKS@i%>=Ws/w]Z^:|r6(k2  &`ɓrp(h Ee5<z!(\|vhƒDrp7 @h{3 Gp?@ w '6` C IyRCڢ x{5mktmIZ(,uN:?(g4 Aݐj 9yɨN +pWFxmth=#mq  xgu$ef?`¶M~31%$ e@EP77)`I 6poȏD[ؖlQn TX ĆGD@Hي(vM!B!lHom@0@?be@r"@@rB^oc"/~%0Bq!-GoE`& ~F$"*۽KЪl% Mu*pY5(ˤ `dtnVvZ]@^~38#R{ 5W-j܇1[7Fd{rIw\8/BNÃq FG%RY=Gma?F.UKn|\n͠GzI{-/" ;|m[)){ 1uZ}|L GI^$x}ɬ@͞?kbI'ziXeZɓ# [БUs| 鷐Im[8mp҅gκb(*'1!x!,{wz(NpU>0y6 1,I:K1~bY%8: 1Q&οt~m-uje3{(EE찝.9=P:0$fSBNoIia4qOP}TkY: ϖ"hȲ@Knt´ܩ]=zfls|Hc果$(M'hos) yN,]<.i*+4vߔAM3м[㑿2d%EоjpAͷels3}d쀙m ZPx GJ@Q~Io/\E);ipݘ#F+9ɴ-\_ݭmCzh%ّ:_%pR&I'"26ח1~G O~ eԫJ7qc"0γ7e,7ȴ,_QݨqR5w-\ŏ sQ:w3i6#ժ.AK,Ag`Yw2muցsSĺ m=`|JAptOv*g}v^Śz?K9DRwء ?W$D~hϺdVVF|ԍ/Hے.. 9rUvAMrge]I2^[ oeŪk^kT2MX[ 1淤uτTD(J 70M JFEkMuAFHS?띉gS:svR<;Ulje|R-JSݽM,eThM\0!dN l~U)l<]:?bRc(qy "hply_9?3̎tW'ӒͱT@6*m$bj,!qp`z ehkSĮH,LJ i7>]$Pc1aƲӈ}Z&kː[lOsl"ZoTW O̹1IG]4ƥi9# Sb .#UǨWa+[Oc~eƙ B/ށ>pL_8ͫe2xPDf[qձ C; ]껷ZD 3t;JiG =t}w׹ed~0A]ƜճʌQI(Tl0K/j5 ܝ+oH=p* TP?I 7'*7)鬵;Ach Tl>?G+M%ܷɡ YMpO5S>sd#щ=%k֎M_0~m+5LeCAyy{ɱDʋ!}",K<2zoxN;&- .}2}RWw䶙t1~n$qV ,񷆥O>7<*WUb&;׏ӱ0^z N6$7J':<~gZLZ@{kNww%4'WR %:fbs]G岌UnZUdݤy"T%WDfGC$7-E]}P#=7٦~^?^en5sȍ"X۲<ͷnim/(աf>F%B~o""s]dagh)I$r⬖kK9OBYzf:36}#﫝9}#{47˔sg ynp\rϭCӨ%5+@ΘeӣITq,vF2˭iwmnI% x>muFQ;Mz3XhM ~#O 2Q%o?^ھG%OE MHb8TAy3=h>S)nhb"LY\wΒBV۬a)'o? n0=>ܹNQ4/"/z3zbW['&V$|k-]:vVMㆸ  Iy*|AuKuޟ[]~^#UȒUH`^N$# $^Jĕ9(/Lޝ&M (nnvVpq#MIK1 YOzӫ!oȈyA d?;/tA 'hqzUw8kGØ4 po?},sfh^YCA-j wn}n]qN|ۢ0qwWP 2}2M8Złm>f3nehw٩횃n.y47旅Znp/lOsFdVytH7ؿ a|aE vLhH.u4'B?|j3):7G:gXݎ'ɕH,9P3һۤ`WOsWD!(l#*55F4$ k&;h'YWX#֜>q5&YPůEsmSk2EV蝵z-7ڟַZQx=?o+?)rMKC(?|'°){tckkNL;/I"pɧZK9`IR gT7 5%1S"\ne.y$~iijK ȷP'ڢW?C\e#d'"#voB~` W'I+Zg[ģv!}̭i04eA![tz_}c2~;{ 75PmS~Ir处8 "{wƎ7&nnx52e싔c,nSјgOJ)9vN܉SR,z]@zFIݡ5!GA~H}SlzQ{5j% Fp`_ScWu>|KsUx_iǠH&Ng-yUo9xoo `~J (&dEE5? sHOwVFK?thߓ{]&ُڿv]B ,T>2CyCo hl t.{:f(Cr/ P*>2:dۯ3IЎζwGE0[ephIF W !a bKRDɰՙAzwdQ1,:k`4fcѢ}tyWېBl|u)c58JqS< HRkAN&txr\Q\> ÒUMM]‡KKC/쯓QT,ήt}V9B]ýQ y1Q)=9I<'9AV=1x\dzRtXC !LsNf/^]\tZBc$l&}W{WG֣#>#`$3aӟ#@p06sCluĸ΂}hQ&Ss;U#lӬisRRS oR2zn `R1Ou=B5n*x_s'$s6 H=OWUm6d619Φ[8ۛ8й)Wr?cMuB]~Ƥnæ.1a;sHK"LMq; )2?⻔Y4+1p]n}Q&NiJe6*DmɄ͞%/}i]GX0 ⡐3=ТPZrUk8 Ti*~3e@񧚥db(=LTͰE}Sn kWg?^,J3] wx]",;SXr:İO3]o-GZf>UL ]P]Ә<]Eba;tlQ='"(sC(g#'endstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 139 0 R /FirstChar 58 /LastChar 121 /Widths 140 0 R /BaseFont /SDNRUN+CMBX10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /SDNRUN+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/colon/A/B/D/L/M/P/a/b/c/d/e/g/i/k/l/m/n/o/r/s/t/v/w/y) /FontFile 14 0 R >> endobj 140 0 obj [319 0 0 0 0 0 0 869 818 0 882 0 0 0 0 0 0 0 692 1092 0 0 786 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 559 639 511 639 527 0 575 0 319 0 607 319 958 639 575 0 0 474 454 447 0 607 831 0 607 ] endobj 139 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/colon 59/.notdef 65/A/B 67/.notdef 68/D 69/.notdef 76/L/M 78/.notdef 80/P 81/.notdef 97/a/b/c/d/e 102/.notdef 103/g 104/.notdef 105/i 106/.notdef 107/k/l/m/n/o 112/.notdef 114/r/s/t 117/.notdef 118/v/w 120/.notdef 121/y 122/.notdef] >> endobj 11 0 obj << /Length1 795 /Length2 1322 /Length3 532 /Length 1901 /Filter /FlateDecode >> stream xRiTYU`UP'tYTb ѰHB)ER I*A "FEDiA@FhG"B8PhaXuѣ"i{ g3L?{}+ʪBY4•a  9/0@T:B@eFX8 "`8CpdJ* gͬ < ` `E,"%<(PRDfwA"G𝈐J D PD ,LLDp9 !"PI@Đh2,H5ߜ(Yْ@RT@&OT 8Ʉ͗ !((` *D8@kt&ʹh2"܊* ȑ9m tsVAxпfLt N!BHoڄ dBkqV)@1! d"0@4 bd8iRˉPyq'1 @"QFK?~,9ŁINDrd6)߄DG0ܟEyA$z{d/eJ7}fW"T*)N(i1\+phvr:Չos3XשM>YiI.(;:p}U%a=y3: MLϺg, b9i3sV&<+]j&}z,73WFĂoV3~ZXT_Q{xm!kß`j'M3㨍wCz վ|WP"6ME9mh]겱u3Uޮ7zqG~ˎ=6PV1qj~pPþ\:yG$j a5ՉweRB{q(13PB됋T!鸾X3e{[Q}frP?%ŷF /rk':B-X-]=~]ʚpCuZڜǷxE:9Ѕێl~7 Z:cz>8zyB$s*2 茶04Qdz^Y{.q2ɗ[c׷vO`3Ͻ#Ty>!{ɘFzAi obI_\Ԛˢ꩐V^AU \bHh lH{Ixz R^מCҥ~榨[ 6ʬuQzFUDM`iV1uWiJ@هV 7˒5Z:62e YcwV5DmKgBY-xwp_Ց cW-dQт GKctı٣|m4nhSq1wIS?~ EPez˹wNq<9 k;uD`YQj^rHeڔY߈]!@ A`\!xDendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 141 0 R /FirstChar 3 /LastChar 122 /Widths 142 0 R /BaseFont /KEZTFZ+CMSY8 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /KEZTFZ+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/asteriskmath/dagger/daggerdbl) /FontFile 11 0 R >> endobj 142 0 obj [531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 472 ] endobj 141 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 121/dagger/daggerdbl 123/.notdef] >> endobj 8 0 obj << /Length1 1193 /Length2 5893 /Length3 532 /Length 6657 /Filter /FlateDecode >> stream xg<lu1z1D F']2E'(IE BD!z%":уyOrOgu_׽UWOiSE"|R@%P_H2  JJ =B@A1)a )QP w@+qU$Ttá A;\0P3P >@Egg_'P@=  mP4fG@@! z; sGaLcLr1mg-Fbz0NOqUggm_ 鿥!.pgStq@܁`-ưyl.@CPE3 ( P;C R5; #>U7 ft@s~AL!_KEB!>f`H'#la@70Dc13 !='AvF tqAGCIA0w$DaQ ;/ivpQ! `0?1LD7aZ(C@oo~o,#-%17CQ`  1JN F7 b!@2(byyF!ߗCO@qQCc6l? 榑P0 *e<߽~>B:\4ƳTkrYFMuńz~ۋ 'iML&Gi`lg ;:Kɦ=۹ .bu{u9Fr QFD.zQ$'-:Fj?D~̿tcq}\6cJ1<50y+<7N!N+_KYMvx%.ذ\DH, #IxV]Wn'i}HGKʻRgשׁL5THy}uSt{JdxGXByihBH\l*cU q(p EeiiG<:}&Xڊ#s[[Puj9p&.x[%gahv:Fnyzj,k󚾪(!l"\I2J$֜Ad3M`IVJn54ǁ ҘI(PYk^ +IQ,V_):vڿ1!MO0<zJXL+g]sˣƬiyhm!![&p w-`( hJhmy+-eiϺ*:26lkhl?ԋy3Sa|)dvԚ`W# IjlT;\Gs H^|i0YZ_f0FDJ?1-'W0>7 4aL?=u)A L1y(G>"f序])c_ˆ9Cbx>T7[@v|mA1$58Ǿkl?KS a xjǔekk6j1w ,} hjbow;!t(Ӱ?qY-o#,!t˰ŲT9`^0a2vBTG}nlqp٫yOZ-a͓ߟ !?iRtI>FZ{4eCwD 65pF1˨?<6R$89jk2(=\ܛ=c V!8/f9a ϳ% n w;ުw&. ݠwxMBTSɭR6$rSmB+2- uR 6Ie}! ˀVh<{fṶ_wRPZ,D1wTV ,ȟ b9ΐ9q r&MC"};! 'jkWԙ%Ov~tm ۸H0Z8vmoPDJ]^ *UN"ur[<Neü+AY$}bࣵöDz)%S\_H;Ѧ}4p|qB̦#{Mzf^qa[qXA Ƒ Tv[DziI؝jWӮ8 i/xnYדg$b*b1;`8ۜu"Z>ljDaG;lCs&n*ռ>m)zBuw6- (k)q߀j8}O&.(H!h?p1pT9>Qs.8rT疝>1.ְ0m6}HP1zC2\MNl.Z)3(V'Tΰ~C_6Bw Е!Rn){R۹~6jvNt:s8=$e 8Ȫ/C@X|59p AȣIzדHbvN ճ /MƲ"HFo.l$߷a{47ɷG3Ậ3J>ø Q/R=q~!f/Fl0`~7.uf%b,y_'zb`*Qq]2ݐS/Q3tKA_ ̍#KKA\uIXNJ-XPf5eN%[CIf]k| E#Qy~6i)c=21fq6T*->JR1 cwg@!NU~k|nou6`lkwF>296Ĩd,0D(6L|qG7ꤊzrx,l>cԪjO%6=2W0O#@o6V0i}C7 6zv@@mK{?rŒk'"eW>my8 ~Qd;YPVpWÚ#$phq) &ṠtQOAaΟh ꔿ^JNK.~,9u E #ٛ)7!:_B'θgel*o4[>dTfVL$ӭ|Y /vZy4ƻq06[~|sSJ[\STO3{X%U1d(k=ϔ9%H?Z V8!ƜǕڥtg+rf3ϙO)S$b^(݇Ս!;-ZX h$@bd-OCyzկWbh %fiVEk}ܾ Gphgv&R3o +t Q||(0_@){)CD+DV>-j @VO-q_!Hvm+=N\|͢[(߇|qmlzsfC zm?SKD@ACJJC! d+ךdfb(RRqԬpe25L?]W(@XCG4 crDĒiFKFKQu.'4#֏aY;wX.h|!ctq&6.tJ2¹+.хB>xФNI a1mNR6hxvIkyyP}a`{aOM'7TcmMMW>OLF|a_| \isqeuR.377e(Y? g@;2n0,vw_%$yW+^`΄) FɼѶnȇl=5o)l8*Y)m,BTBH)\+#>[7ςsP\ǟ@J?A^WC5 (WӚ}o X SqV{m(Ҍ |&s9nvZRdiaD5782nW,fww4dk2W®+@ ℷ֗aNQjVq[բ;a~ܶbݦQP_9\g:x\kvV'!${o6be0oA>53P, LvUP<ֲYEDcwy̦+h}J a~nwl(T!KD߄_S7PԞ+교K*zՀѱM7 :@&:˙Rʚ f18n Qn{q¥KjC&r&ϾMªU%}Jf 5'|o fhQ(ME >,?lV>[-tVN*d37/6,s zp+DT_Pgt; BRYendstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 143 0 R /FirstChar 11 /LastChar 121 /Widths 144 0 R /BaseFont /FXRSLK+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FXRSLK+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/ff/comma/period/zero/one/two/three/seven/A/D/I/M/P/R/S/T/a/c/e/h/i/k/m/n/o/r/s/t/u/v/y) /FontFile 8 0 R >> endobj 144 0 obj [571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 0 272 0 490 490 490 490 0 0 0 490 0 0 0 0 0 0 0 0 0 734 0 0 748 0 0 0 0 353 0 0 0 897 0 0 666 0 721 544 707 0 0 0 0 0 0 0 0 0 0 0 0 490 0 435 0 435 0 0 544 272 0 517 0 816 544 490 0 0 381 386 381 544 517 0 0 517 ] endobj 143 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff 12/.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two/three 52/.notdef 55/seven 56/.notdef 65/A 66/.notdef 68/D 69/.notdef 73/I 74/.notdef 77/M 78/.notdef 80/P 81/.notdef 82/R/S/T 85/.notdef 97/a 98/.notdef 99/c 100/.notdef 101/e 102/.notdef 104/h/i 106/.notdef 107/k 108/.notdef 109/m/n/o 112/.notdef 114/r/s/t/u/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 960 /Length2 3288 /Length3 532 /Length 3940 /Filter /FlateDecode >> stream xy< ǭ9YGKe,cKBƖ}O13 c[VRv ;t(!d_Zdߞsz|Ƣ*H= D!b@M" @$@||jxa ("/T<I USj87_<щ T0(<p C8ET\]B!@D#=unPx(@$R IDⰮÑzHJ?D8UQǐ Ǡ]}'q$.cjC. ӫE*XGW Ch pz~QX?ES3_ɐ4<IϟK!XA@8.D2?@c(C,.H)i&Ni( F $#q1TW,dqݿHg7E R/HIB `/( AR/H}G8Q))@T2|Cx(,';IgB8bsruDAzN_!c#WĒu M2(exn!կb#Uwލ{'tz 7 Ď,&OXyUAe-`/KR #ǽ{C# ^z2yl{i|z2)YMyG*E3J(?)36Aθ-,q\-_^7uLMJ2$߻B4ZQvQ.zFWj5)>E9,#1`d|;>Y_Kxr嬍X4 bj<1˴ x* bD Vzb);]ZLxF6OD&tHikAO[GNCfkobRYv*>:F,/:]`v3< n$M˵-Oq/68ז"N}^LT\-c+v%?txiv;B\ (${rvB vn1w2cj#V8]Nv?PXC e*Kd.'H̝5W关ߡ A)?! &K?|Dl,Ŕgu#L Vv2*0ʊ߫8i9q׺)͙*2Heyd?Z^UzɈj+FOj!h-bs\FЅźzJK~Hh.}X'cپik fru~OML-1I͒xpO(C_4>"3Ԧ6`i}׆bhdhPCQ.쏪8*066Џ bl-?Iۚ3oJb}.1Ly<{YS]nF,I9*FSMCLTSy;z[/T"G:}{҆wo3\W^c|1&ft*%jZ/wEkf^سdNW '}Q~왬Fg52+8bf-pGWsvɇ/|}6,v)G'4`3C_{кsrpx^ZJR˵gߟ$cnmɯ^n}~1{1!tܠdbn$p*""3h\_cB3D+Ӎ3pJ^ɝP= Fz TdbQyzNbPޜś D 7U4{SP^}u^˖'ahZNNEg$vo7HS:r\z8\WPo1dm/ Ni7'eC79!,m!; r#* q6ڞg{c+b7  j;ՠSL'i+Mv7?3:i23dUYyRv j'|[p 9XbeUڢ ,jg_F{Dfr%oY {ˣͼ7sb7otMۭ^?:-t |Pkk?K.f ;ry(PyALr.P6{mP {WKTZ;Ϡ\ȱ$NR {ť63i̶ g{~xHʌ}?wAo0h~*20-Sk-4C_K%}n]y|OWзݹoVc&Mf&%2]Hv#BD%)",m1mLj J!aVE}C疌U^pt=K[/IkS6**Bإ!iUńGnM͆uхjb" ĒE[k2sJnuH*\250|2B3LQ9%]˫r- /QVFyPlT^x`򋹏RVg3(ꪓllMWwn>w9[gX˥>lh?Jp8ʱPX\q)-JF0)"*aLi!%I#q'؁Qk9"-k`cn jc7+j (%ؐ; b &+m x uU~&)sqRNVJ4֊t]OYv B*Sjfذ7nΧXl/l醆7K҅C4A;֦˶W-ŅÄ oWOaxп:[endstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 145 0 R /FirstChar 46 /LastChar 117 /Widths 146 0 R /BaseFont /SQQAKK+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /SQQAKK+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/period/two/A/D/G/M/U/V/d/e/i/n/o/r/s/u) /FontFile 5 0 R >> endobj 146 0 obj [250 0 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 707 0 0 726 0 0 0 0 0 850 0 0 0 0 0 0 0 693 693 0 0 0 0 0 0 0 0 0 0 0 0 0 511 406 0 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 ] endobj 145 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 50/two 51/.notdef 65/A 66/.notdef 68/D 69/.notdef 71/G 72/.notdef 77/M 78/.notdef 85/U/V 87/.notdef 100/d/e 102/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u 118/.notdef] >> endobj 31 0 obj << /Type /Pages /Count 6 /Parent 147 0 R /Kids [2 0 R 33 0 R 36 0 R 57 0 R 63 0 R 66 0 R] >> endobj 74 0 obj << /Type /Pages /Count 6 /Parent 147 0 R /Kids [69 0 R 76 0 R 79 0 R 82 0 R 85 0 R 88 0 R] >> endobj 93 0 obj << /Type /Pages /Count 6 /Parent 147 0 R /Kids [91 0 R 95 0 R 98 0 R 101 0 R 104 0 R 107 0 R] >> endobj 112 0 obj << /Type /Pages /Count 1 /Parent 147 0 R /Kids [110 0 R] >> endobj 147 0 obj << /Type /Pages /Count 19 /Kids [31 0 R 74 0 R 93 0 R 112 0 R] >> endobj 148 0 obj << /Type /Catalog /Pages 147 0 R >> endobj 149 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20070505102751-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 150 0000000000 65535 f 0000003647 00000 n 0000003532 00000 n 0000000009 00000 n 0000172102 00000 n 0000167887 00000 n 0000171945 00000 n 0000166874 00000 n 0000159941 00000 n 0000166717 00000 n 0000159322 00000 n 0000157144 00000 n 0000159164 00000 n 0000156394 00000 n 0000149708 00000 n 0000156234 00000 n 0000148300 00000 n 0000132170 00000 n 0000148141 00000 n 0000131535 00000 n 0000129659 00000 n 0000131375 00000 n 0000129041 00000 n 0000126842 00000 n 0000128883 00000 n 0000125673 00000 n 0000113474 00000 n 0000125515 00000 n 0000113155 00000 n 0000111692 00000 n 0000112997 00000 n 0000172810 00000 n 0000004484 00000 n 0000004366 00000 n 0000003809 00000 n 0000008755 00000 n 0000008637 00000 n 0000004553 00000 n 0000110729 00000 n 0000101920 00000 n 0000110569 00000 n 0000101619 00000 n 0000099774 00000 n 0000101461 00000 n 0000099215 00000 n 0000096158 00000 n 0000099055 00000 n 0000095842 00000 n 0000093709 00000 n 0000095682 00000 n 0000092866 00000 n 0000083997 00000 n 0000092706 00000 n 0000082832 00000 n 0000070482 00000 n 0000082672 00000 n 0000012976 00000 n 0000012858 00000 n 0000008908 00000 n 0000069002 00000 n 0000054260 00000 n 0000068843 00000 n 0000016820 00000 n 0000016702 00000 n 0000013093 00000 n 0000021417 00000 n 0000021299 00000 n 0000016961 00000 n 0000024436 00000 n 0000024318 00000 n 0000021570 00000 n 0000053770 00000 n 0000051538 00000 n 0000053611 00000 n 0000172919 00000 n 0000029533 00000 n 0000029415 00000 n 0000024588 00000 n 0000032863 00000 n 0000032745 00000 n 0000029662 00000 n 0000037599 00000 n 0000037481 00000 n 0000033015 00000 n 0000039553 00000 n 0000039435 00000 n 0000037692 00000 n 0000041391 00000 n 0000041273 00000 n 0000039658 00000 n 0000043205 00000 n 0000043087 00000 n 0000041472 00000 n 0000173029 00000 n 0000044945 00000 n 0000044827 00000 n 0000043286 00000 n 0000046201 00000 n 0000046083 00000 n 0000045026 00000 n 0000047418 00000 n 0000047297 00000 n 0000046282 00000 n 0000049039 00000 n 0000048918 00000 n 0000047500 00000 n 0000049459 00000 n 0000049338 00000 n 0000049121 00000 n 0000051432 00000 n 0000051310 00000 n 0000049541 00000 n 0000173142 00000 n 0000054093 00000 n 0000054049 00000 n 0000069951 00000 n 0000069571 00000 n 0000083573 00000 n 0000083251 00000 n 0000093379 00000 n 0000093141 00000 n 0000096072 00000 n 0000096044 00000 n 0000099587 00000 n 0000099445 00000 n 0000101838 00000 n 0000101814 00000 n 0000111322 00000 n 0000111053 00000 n 0000113386 00000 n 0000113362 00000 n 0000126424 00000 n 0000126058 00000 n 0000129535 00000 n 0000129269 00000 n 0000132005 00000 n 0000131776 00000 n 0000149208 00000 n 0000148801 00000 n 0000156843 00000 n 0000156644 00000 n 0000159817 00000 n 0000159551 00000 n 0000167455 00000 n 0000167151 00000 n 0000172527 00000 n 0000172331 00000 n 0000173219 00000 n 0000173302 00000 n 0000173355 00000 n trailer << /Size 150 /Root 148 0 R /Info 149 0 R /ID [ ] >> startxref 173559 %%EOF SuiteSparse/AMD/Doc/AMD_UserGuide.tex0000644001170100242450000014675310617112144016171 0ustar davisfac\documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in %------------------------------------------------------------------------------ \begin{document} %------------------------------------------------------------------------------ \title{AMD Version 2.2 User Guide} \author{Patrick R. Amestoy\thanks{ENSEEIHT-IRIT, 2 rue Camichel 31017 Toulouse, France. email: amestoy@enseeiht.fr. http://www.enseeiht.fr/$\sim$amestoy.} \and Timothy A. Davis\thanks{ Dept.~of Computer and Information Science and Engineering, Univ.~of Florida, Gainesville, FL, USA. email: davis@cise.ufl.edu. http://www.cise.ufl.edu/$\sim$davis. This work was supported by the National Science Foundation, under grants ASC-9111263, DMS-9223088, and CCR-0203270. Portions of the work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from Stanford University and the SciDAC program). } \and Iain S. Duff\thanks{Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England. email: i.s.duff@rl.ac.uk. http://www.numerical.rl.ac.uk/people/isd/isd.html. This work was supported by the EPSRC under grant GR/R46441. }} \date{May 31, 2007} \maketitle %------------------------------------------------------------------------------ \begin{abstract} AMD is a set of routines that implements the approximate minimum degree ordering algorithm to permute sparse matrices prior to numerical factorization. There are versions written in both C and Fortran 77. A MATLAB interface is included. \end{abstract} %------------------------------------------------------------------------------ Technical report TR-04-002 (revised), CISE Department, University of Florida, Gainesville, FL, 2007. AMD Version 2.2, Copyright\copyright 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD is available under alternate licences; contact T. Davis for details. {\bf AMD License:} Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. {\bf Availability:} http://www.cise.ufl.edu/research/sparse/amd {\bf Acknowledgments:} This work was supported by the National Science Foundation, under grants ASC-9111263 and DMS-9223088 and CCR-0203270. The conversion to C, the addition of the elimination tree post-ordering, and the handling of dense rows and columns were done while Davis was on sabbatical at Stanford University and Lawrence Berkeley National Laboratory. %------------------------------------------------------------------------------ \newpage \section{Overview} %------------------------------------------------------------------------------ AMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It uses an approximate minimum degree ordering algorithm \cite{AmestoyDavisDuff96,AmestoyDavisDuff04} to find a permutation matrix $\m{P}$ so that the Cholesky factorization $\m{PAP}\tr=\m{LL}\tr$ has fewer (often much fewer) nonzero entries than the Cholesky factorization of $\m{A}$. The algorithm is typically much faster than other ordering methods and minimum degree ordering algorithms that compute an exact degree \cite{GeorgeLiu89}. Some methods, such as approximate deficiency \cite{RothbergEisenstat98} and graph-partitioning based methods \cite{Chaco,KarypisKumar98e,PellegriniRomanAmestoy00,schu:01} can produce better orderings, depending on the matrix. The algorithm starts with an undirected graph representation of a symmetric sparse matrix $\m{A}$. Node $i$ in the graph corresponds to row and column $i$ of the matrix, and there is an edge $(i,j)$ in the graph if $a_{ij}$ is nonzero. The degree of a node is initialized to the number of off-diagonal nonzeros in row $i$, which is the size of the set of nodes adjacent to $i$ in the graph. The selection of a pivot $a_{ii}$ from the diagonal of $\m{A}$ and the first step of Gaussian elimination corresponds to one step of graph elimination. Numerical fill-in causes new nonzero entries in the matrix (fill-in refers to nonzeros in $\m{L}$ that are not in $\m{A}$). Node $i$ is eliminated and edges are added to its neighbors so that they form a clique (or {\em element}). To reduce fill-in, node $i$ is selected as the node of least degree in the graph. This process repeats until the graph is eliminated. The clique is represented implicitly. Rather than listing all the new edges in the graph, a single list of nodes is kept which represents the clique. This list corresponds to the nonzero pattern of the first column of $\m{L}$. As the elimination proceeds, some of these cliques become subsets of subsequent cliques, and are removed. This graph can be stored in place, that is using the same amount of memory as the original graph. The most costly part of the minimum degree algorithm is the recomputation of the degrees of nodes adjacent to the current pivot element. Rather than keep track of the exact degree, the approximate minimum degree algorithm finds an upper bound on the degree that is easier to compute. For nodes of least degree, this bound tends to be tight. Using the approximate degree instead of the exact degree leads to a substantial savings in run time, particularly for very irregularly structured matrices. It has no effect on the quality of the ordering. In the C version of AMD, the elimination phase is followed by an elimination tree post-ordering. This has no effect on fill-in, but reorganizes the ordering so that the subsequent numerical factorization is more efficient. It also includes a pre-processing phase in which nodes of very high degree are removed (without causing fill-in), and placed last in the permutation $\m{P}$. This reduces the run time substantially if the matrix has a few rows with many nonzero entries, and has little effect on the quality of the ordering. The C version operates on the symmetric nonzero pattern of $\m{A}+\m{A}\tr$, so it can be given an unsymmetric matrix, or either the lower or upper triangular part of a symmetric matrix. The two Fortran versions of AMD are essentially identical to two versions of the AMD algorithm discussed in an earlier paper \cite{AmestoyDavisDuff96} (approximate minimum external degree, both with and without aggressive absorption). For a discussion of the long history of the minimum degree algorithm, see \cite{GeorgeLiu89}. %------------------------------------------------------------------------------ \section{Availability} %------------------------------------------------------------------------------ In addition to appearing as a Collected Algorithm of the ACM, \newline AMD is available at http://www.cise.ufl.edu/research/sparse. The Fortran version is available as the routine {\tt MC47} in HSL (formerly the Harwell Subroutine Library) \cite{hsl:2002}. %------------------------------------------------------------------------------ \section{Using AMD in MATLAB} %------------------------------------------------------------------------------ The MATLAB function {\tt amd} is now a built-in function in MATLAB 7.3 (R2006b). The built-in {\tt amd} and the {\tt amd2} function provided here differ in how the optional parameters are passed (the 2nd input parameter). To use AMD2 in MATLAB, you must first compile the AMD2 mexFunction. Just type {\tt make} in the Unix system shell, while in the {\tt AMD/MATLAB} directory. You can also type {\tt amd\_make} in MATLAB, while in the {\tt AMD/MATLAB} directory. Place the {\tt AMD/MATLAB} directory in your MATLAB path. This can be done on any system with MATLAB, including Windows. See Section~\ref{Install} for more details on how to install AMD. The MATLAB statement {\tt p=amd(A)} finds a permutation vector {\tt p} such that the Cholesky factorization {\tt chol(A(p,p))} is typically sparser than {\tt chol(A)}. If {\tt A} is unsymmetric, {\tt amd(A)} is identical to {\tt amd(A+A')} (ignoring numerical cancellation). If {\tt A} is not symmetric positive definite, but has substantial diagonal entries and a mostly symmetric nonzero pattern, then this ordering is also suitable for LU factorization. A partial pivoting threshold may be required to prevent pivots from being selected off the diagonal, such as the statement {\tt [L,U,P] = lu (A (p,p), 0.1)}. Type {\tt help lu} for more details. The statement {\tt [L,U,P,Q] = lu (A (p,p))} in MATLAB 6.5 is not suitable, however, because it uses UMFPACK Version 4.0 and thus does not attempt to select pivots from the diagonal. UMFPACK Version 4.1 in MATLAB 7.0 and later uses several strategies, including a symmetric pivoting strategy, and will give you better results if you want to factorize an unsymmetric matrix of this type. Refer to the UMFPACK User Guide for more details, at http://www.cise.ufl.edu/research/sparse/umfpack. The AMD mexFunction is much faster than the built-in MATLAB symmetric minimum degree ordering methods, SYMAMD and SYMMMD. Its ordering quality is comparable to SYMAMD, and better than SYMMMD \cite{DavisGilbertLarimoreNg04}. An optional input argument can be used to modify the control parameters for AMD (aggressive absorption, dense row/column handling, and printing of statistics). An optional output argument provides statistics on the ordering, including an analysis of the fill-in and the floating-point operation count for a subsequent factorization. For more details (once AMD is installed), type {\tt help amd} in the MATLAB command window. %------------------------------------------------------------------------------ \section{Using AMD in a C program} \label{Cversion} %------------------------------------------------------------------------------ The C-callable AMD library consists of seven user-callable routines and one include file. There are two versions of each of the routines, with {\tt int} and {\tt long} integers. The routines with prefix {\tt amd\_l\_} use {\tt long} integer arguments; the others use {\tt int} integer arguments. If you compile AMD in the standard ILP32 mode (32-bit {\tt int}'s, {\tt long}'s, and pointers) then the versions are essentially identical. You will be able to solve problems using up to 2GB of memory. If you compile AMD in the standard LP64 mode, the size of an {\tt int} remains 32-bits, but the size of a {\tt long} and a pointer both get promoted to 64-bits. The following routines are fully described in Section~\ref{Primary}: \begin{itemize} \item {\tt amd\_order} ({\tt long} version: {\tt amd\_l\_order}) {\footnotesize \begin{verbatim} #include "amd.h" int n, Ap [n+1], Ai [nz], P [n] ; double Control [AMD_CONTROL], Info [AMD_INFO] ; int result = amd_order (n, Ap, Ai, P, Control, Info) ; \end{verbatim} } Computes the approximate minimum degree ordering of an $n$-by-$n$ matrix $\m{A}$. Returns a permutation vector {\tt P} of size {\tt n}, where {\tt P[k] = i} if row and column {\tt i} are the {\tt k}th row and column in the permuted matrix. This routine allocates its own memory of size $1.2e+9n$ integers, where $e$ is the number of nonzeros in $\m{A}+\m{A}\tr$. It computes statistics about the matrix $\m{A}$, such as the symmetry of its nonzero pattern, the number of nonzeros in $\m{L}$, and the number of floating-point operations required for Cholesky and LU factorizations (which are returned in the {\tt Info} array). The user's input matrix is not modified. It returns {\tt AMD\_OK} if successful, {\tt AMD\_OK\_BUT\_JUMBLED} if successful (but the matrix had unsorted and/or duplicate row indices), {\tt AMD\_INVALID} if the matrix is invalid, {\tt AMD\_OUT\_OF\_MEMORY} if out of memory. \item {\tt amd\_defaults} ({\tt long} version: {\tt amd\_l\_defaults}) {\footnotesize \begin{verbatim} #include "amd.h" double Control [AMD_CONTROL] ; amd_defaults (Control) ; \end{verbatim} } Sets the default control parameters in the {\tt Control} array. These can then be modified as desired before passing the array to the other AMD routines. \item {\tt amd\_control} ({\tt long} version: {\tt amd\_l\_control}) {\footnotesize \begin{verbatim} #include "amd.h" double Control [AMD_CONTROL] ; amd_control (Control) ; \end{verbatim} } Prints a description of the control parameters, and their values. \item {\tt amd\_info} ({\tt long} version: {\tt amd\_l\_info}) {\footnotesize \begin{verbatim} #include "amd.h" double Info [AMD_INFO] ; amd_info (Info) ; \end{verbatim} } Prints a description of the statistics computed by AMD, and their values. \item {\tt amd\_valid} ({\tt long} version: {\tt amd\_valid}) {\footnotesize \begin{verbatim} #include "amd.h" int n, Ap [n+1], Ai [nz] ; int result = amd_valid (n, n, Ap, Ai) ; \end{verbatim} } Returns {\tt AMD\_OK} or {\tt AMD\_OK\_BUT\_JUMBLED} if the matrix is valid as input to {\tt amd\_order}; the latter is returned if the matrix has unsorted and/or duplicate row indices in one or more columns. Returns {\tt AMD\_INVALID} if the matrix cannot be passed to {\tt amd\_order}. For {\tt amd\_order}, the matrix must also be square. The first two arguments are the number of rows and the number of columns of the matrix. For its use in AMD, these must both equal {\tt n}. \item {\tt amd\_2} ({\tt long} version: {\tt amd\_l2}) AMD ordering kernel. It is faster than {\tt amd\_order}, and can be called by the user, but it is difficult to use. It does not check its inputs for errors. It does not require the columns of its input matrix to be sorted, but it destroys the matrix on output. Additional workspace must be passed. Refer to the source file {\tt AMD/Source/amd\_2.c} for a description. \end{itemize} The nonzero pattern of the matrix $\m{A}$ is represented in compressed column form. For an $n$-by-$n$ matrix $\m{A}$ with {\tt nz} nonzero entries, the representation consists of two arrays: {\tt Ap} of size {\tt n+1} and {\tt Ai} of size {\tt nz}. The row indices of entries in column {\tt j} are stored in {\tt Ai[Ap[j]} $\ldots$ {\tt Ap[j+1]-1]}. For {\tt amd\_order}, if duplicate row indices are present, or if the row indices in any given column are not sorted in ascending order, then {\tt amd\_order} creates an internal copy of the matrix with sorted rows and no duplicate entries, and orders the copy. This adds slightly to the time and memory usage of {\tt amd\_order}, but is not an error condition. The matrix is 0-based, and thus row indices must be in the range {\tt 0} to {\tt n-1}. The first entry {\tt Ap[0]} must be zero. The total number of entries in the matrix is thus {\tt nz = Ap[n]}. The matrix must be square, but it does not need to be symmetric. The {\tt amd\_order} routine constructs the nonzero pattern of $\m{B} = \m{A}+\m{A}\tr$ (without forming $\m{A}\tr$ explicitly if $\m{A}$ has sorted columns and no duplicate entries), and then orders the matrix $\m{B}$. Thus, either the lower triangular part of $\m{A}$, the upper triangular part, or any combination may be passed. The transpose $\m{A}\tr$ may also be passed to {\tt amd\_order}. The diagonal entries may be present, but are ignored. %------------------------------------------------------------------------------ \subsection{Control parameters} \label{control_param} %------------------------------------------------------------------------------ Control parameters are set in an optional {\tt Control} array. It is optional in the sense that if a {\tt NULL} pointer is passed for the {\tt Control} input argument, then default control parameters are used. % \begin{itemize} \item {\tt Control[AMD\_DENSE]} (or {\tt Control(1)} in MATLAB): controls the threshold for ``dense'' rows/columns. A dense row/column in $\m{A}+\m{A}\tr$ can cause AMD to spend significant time in ordering the matrix. If {\tt Control[AMD\_DENSE]} $\ge 0$, rows/columns with more than {\tt Control[AMD\_DENSE]} $\sqrt{n}$ entries are ignored during the ordering, and placed last in the output order. The default value of {\tt Control[AMD\_DENSE]} is 10. If negative, no rows/columns are treated as ``dense.'' Rows/columns with 16 or fewer off-diagonal entries are never considered ``dense.'' % \item {\tt Control[AMD\_AGGRESSIVE]} (or {\tt Control(2)} in MATLAB): controls whether or not to use aggressive absorption, in which a prior element is absorbed into the current element if it is a subset of the current element, even if it is not adjacent to the current pivot element (refer to \cite{AmestoyDavisDuff96,AmestoyDavisDuff04} for more details). The default value is nonzero, which means that aggressive absorption will be performed. This nearly always leads to a better ordering (because the approximate degrees are more accurate) and a lower execution time. There are cases where it can lead to a slightly worse ordering, however. To turn it off, set {\tt Control[AMD\_AGGRESSIVE]} to 0. % \end{itemize} Statistics are returned in the {\tt Info} array (if {\tt Info} is {\tt NULL}, then no statistics are returned). Refer to {\tt amd.h} file, for more details (14 different statistics are returned, so the list is not included here). %------------------------------------------------------------------------------ \subsection{Sample C program} %------------------------------------------------------------------------------ The following program, {\tt amd\_demo.c}, illustrates the basic use of AMD. See Section~\ref{Synopsis} for a short description of each calling sequence. {\footnotesize \begin{verbatim} #include #include "amd.h" int n = 5 ; int Ap [ ] = { 0, 2, 6, 10, 12, 14} ; int Ai [ ] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ; int P [5] ; int main (void) { int k ; (void) amd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL) ; for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ; return (0) ; } \end{verbatim} } The {\tt Ap} and {\tt Ai} arrays represent the binary matrix \[ \m{A} = \left[ \begin{array}{rrrrr} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ \end{array} \right]. \] The diagonal entries are ignored. % AMD constructs the pattern of $\m{A}+\m{A}\tr$, and returns a permutation vector of $(0, 3, 1, 4, 2)$. % Since the matrix is unsymmetric but with a mostly symmetric nonzero pattern, this would be a suitable permutation for an LU factorization of a matrix with this nonzero pattern and whose diagonal entries are not too small. The program uses default control settings and does not return any statistics about the ordering, factorization, or solution ({\tt Control} and {\tt Info} are both {\tt (double *) NULL}). It also ignores the status value returned by {\tt amd\_order}. More example programs are included with the AMD package. The {\tt amd\_demo.c} program provides a more detailed demo of AMD. Another example is the AMD mexFunction, {\tt amd\_mex.c}. %------------------------------------------------------------------------------ \subsection{A note about zero-sized arrays} %------------------------------------------------------------------------------ AMD uses several user-provided arrays of size {\tt n} or {\tt nz}. Either {\tt n} or {\tt nz} can be zero. If you attempt to {\tt malloc} an array of size zero, however, {\tt malloc} will return a null pointer which AMD will report as invalid. If you {\tt malloc} an array of size {\tt n} or {\tt nz} to pass to AMD, make sure that you handle the {\tt n} = 0 and {\tt nz = 0} cases correctly. %------------------------------------------------------------------------------ \section{Synopsis of C-callable routines} \label{Synopsis} %------------------------------------------------------------------------------ The matrix $\m{A}$ is {\tt n}-by-{\tt n} with {\tt nz} entries. {\footnotesize \begin{verbatim} #include "amd.h" int n, status, Ap [n+1], Ai [nz], P [n] ; double Control [AMD_CONTROL], Info [AMD_INFO] ; amd_defaults (Control) ; status = amd_order (n, Ap, Ai, P, Control, Info) ; amd_control (Control) ; amd_info (Info) ; status = amd_valid (n, n, Ap, Ai) ; \end{verbatim} } The {\tt amd\_l\_*} routines are identical, except that all {\tt int} arguments become {\tt long}: {\footnotesize \begin{verbatim} #include "amd.h" long n, status, Ap [n+1], Ai [nz], P [n] ; double Control [AMD_CONTROL], Info [AMD_INFO] ; amd_l_defaults (Control) ; status = amd_l_order (n, Ap, Ai, P, Control, Info) ; amd_l_control (Control) ; amd_l_info (Info) ; status = amd_l_valid (n, n, Ap, Ai) ; \end{verbatim} } %------------------------------------------------------------------------------ \section{Using AMD in a Fortran program} %------------------------------------------------------------------------------ Two Fortran versions of AMD are provided. The {\tt AMD} routine computes the approximate minimum degree ordering, using aggressive absorption. The {\tt AMDBAR} routine is identical, except that it does not perform aggressive absorption. The {\tt AMD} routine is essentially identical to the HSL routine {\tt MC47B/BD}. Note that earlier versions of the Fortran {\tt AMD} and {\tt AMDBAR} routines included an {\tt IOVFLO} argument, which is no longer present. In contrast to the C version, the Fortran routines require a symmetric nonzero pattern, with no diagonal entries present although the {\tt MC47A/AD} wrapper in HSL allows duplicates, ignores out-of-range entries, and only uses entries from the upper triangular part of the matrix. Although we have an experimental Fortran code for treating ``dense'' rows, the Fortran codes in this release do not treat ``dense'' rows and columns of $\m{A}$ differently, and thus their run time can be high if there are a few dense rows and columns in the matrix. They do not perform a post-ordering of the elimination tree, compute statistics on the ordering, or check the validity of their input arguments. These facilities are provided by {\tt MC47A/AD} and other subroutines from HSL. Only one {\tt integer} version of each Fortran routine is provided. Both Fortran routines overwrite the user's input matrix, in contrast to the C version. % The C version does not return the elimination or assembly tree. The Fortran version returns an assembly tree; refer to the User Guide for details. The following is the syntax of the {\tt AMD} Fortran routine. The {\tt AMDBAR} routine is identical except for the routine name. {\footnotesize \begin{verbatim} INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), DEGREE (N), NV (N), $ NEXT (N), LAST (N), HEAD (N), ELEN (N), W (N), LEN (N) CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ LAST, HEAD, ELEN, DEGREE, NCMPA, W) CALL AMDBAR (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ LAST, HEAD, ELEN, DEGREE, NCMPA, W) \end{verbatim} } The input matrix is provided to {\tt AMD} and {\tt AMDBAR} in three arrays, {\tt PE}, of size {\tt N}, {\tt LEN}, of size {\tt N}, and {\tt IW}, of size {\tt IWLEN}. The size of {\tt IW} must be at least {\tt NZ+N}. The recommended size is {\tt 1.2*NZ + N}. On input, the indices of nonzero entries in row {\tt I} are stored in {\tt IW}. {\tt PE(I)} is the index in {\tt IW} of the start of row {\tt I}. {\tt LEN(I)} is the number of entries in row {\tt I}. The matrix is 1-based, with row and column indices in the range 1 to {\tt N}. Row {\tt I} is contained in {\tt IW (PE(I)} $\ldots \:$ {\tt PE(I) + LEN(I) - 1)}. The diagonal entries must not be present. The indices within each row must not contain any duplicates, but they need not be sorted. The rows themselves need not be in any particular order, and there may be empty space between the rows. If {\tt LEN(I)} is zero, then there are no off-diagonal entries in row {\tt I}, and {\tt PE(I)} is ignored. The integer {\tt PFREE} defines what part of {\tt IW} contains the user's input matrix, which is held in {\tt IW(1}~$\ldots~\:${\tt PFREE-1)}. The contents of {\tt IW} and {\tt LEN} are undefined on output, and {\tt PE} is modified to contain information about the ordering. As the algorithm proceeds, it modifies the {\tt IW} array, placing the pattern of the partially eliminated matrix in {\tt IW(PFREE} $\ldots \:${\tt IWLEN)}. If this space is exhausted, the space is compressed. The number of compressions performed on the {\tt IW} array is returned in the scalar {\tt NCMPA}. The value of {\tt PFREE} on output is the length of {\tt IW} required for no compressions to be needed. The output permutation is returned in the array {\tt LAST}, of size {\tt N}. If {\tt I=LAST(K)}, then {\tt I} is the {\tt K}th row in the permuted matrix. The inverse permutation is returned in the array {\tt ELEN}, where {\tt K=ELEN(I)} if {\tt I} is the {\tt K}th row in the permuted matrix. On output, the {\tt PE} and {\tt NV} arrays hold the assembly tree, a supernodal elimination tree that represents the relationship between columns of the Cholesky factor $\m{L}$. If {\tt NV(I)} $> 0$, then {\tt I} is a node in the assembly tree, and the parent of {\tt I} is {\tt -PE(I)}. If {\tt I} is a root of the tree, then {\tt PE(I)} is zero. The value of {\tt NV(I)} is the number of entries in the corresponding column of $\m{L}$, including the diagonal. If {\tt NV(I)} is zero, then {\tt I} is a non-principal node that is not in the assembly tree. Node {\tt -PE(I)} is the parent of node {\tt I} in a subtree, the root of which is a node in the assembly tree. All nodes in one subtree belong to the same supernode in the assembly tree. The other size {\tt N} arrays ({\tt DEGREE}, {\tt HEAD}, {\tt NEXT}, and {\tt W}) are used as workspace, and are not defined on input or output. If you want to use a simpler user-interface and compute the elimination tree post-ordering, you should be able to call the C routines {\tt amd\_order} or {\tt amd\_l\_order} from a Fortran program. Just be sure to take into account the 0-based indexing in the {\tt P}, {\tt Ap}, and {\tt Ai} arguments to {\tt amd\_order} and {\tt amd\_l\_order}. A sample interface is provided in the files {\tt AMD/Demo/amd\_f77cross.f} and {\tt AMD/Demo/amd\_f77wrapper.c}. To compile the {\tt amd\_f77cross} program, type {\tt make cross} in the {\tt AMD/Demo} directory. The Fortran-to-C calling conventions are highly non-portable, so this example is not guaranteed to work with your compiler C and Fortran compilers. The output of {\tt amd\_f77cross} is in {\tt amd\_f77cross.out}. %------------------------------------------------------------------------------ \section{Sample Fortran main program} %------------------------------------------------------------------------------ The following program illustrates the basic usage of the Fortran version of AMD. The {\tt AP} and {\tt AI} arrays represent the binary matrix \[ \m{A} = \left[ \begin{array}{rrrrr} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ \end{array} \right] \] in a conventional 1-based column-oriented form, except that the diagonal entries are not present. The matrix has the same as nonzero pattern of $\m{A}+\m{A}\tr$ in the C program, in Section~\ref{Cversion}. The output permutation is $(4, 1, 3, 5, 2)$. It differs from the permutation returned by the C routine {\tt amd\_order} because a post-order of the elimination tree has not yet been performed. {\footnotesize \begin{verbatim} INTEGER N, NZ, J, K, P, IWLEN, PFREE, NCMPA PARAMETER (N = 5, NZ = 10, IWLEN = 17) INTEGER AP (N+1), AI (NZ), LAST (N), PE (N), LEN (N), ELEN (N), $ IW (IWLEN), DEGREE (N), NV (N), NEXT (N), HEAD (N), W (N) DATA AP / 1, 2, 5, 8, 9, 11/ DATA AI / 2, 1,3,5, 2,4,5, 3, 2,3 / C load the matrix into the AMD workspace DO 10 J = 1,N PE (J) = AP (J) LEN (J) = AP (J+1) - AP (J) 10 CONTINUE DO 20 P = 1,NZ IW (P) = AI (P) 20 CONTINUE PFREE = NZ + 1 C order the matrix (destroys the copy of A in IW, PE, and LEN) CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, LAST, HEAD, $ ELEN, DEGREE, NCMPA, W) DO 60 K = 1, N PRINT 50, K, LAST (K) 50 FORMAT ('P (',I2,') = ', I2) 60 CONTINUE END \end{verbatim} } The {\tt Demo} directory contains an example of how the C version may be called from a Fortran program, but this is highly non-portable. For this reason, it is placed in the {\tt Demo} directory, not in the primary {\tt Source} directory. %------------------------------------------------------------------------------ \section{Installation} \label{Install} %------------------------------------------------------------------------------ The following discussion assumes you have the {\tt make} program, either in Unix, or in Windows with Cygwin. System-dependent configurations are in the {\tt ../UFconfig/UFconfig.mk} file. You can edit that file to customize the compilation. The default settings will work on most systems. Sample configuration files are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. To compile and install the C-callable AMD library, go to the {\tt AMD} directory and type {\tt make}. The library will be placed in {\tt AMD/Lib/libamd.a}. Three demo programs of the AMD ordering routine will be compiled and tested in the {\tt AMD/Demo} directory. The outputs of these demo programs will then be compared with output files in the distribution. To compile and install the Fortran-callable AMD library, go to the {\tt AMD} directory and type {\tt make fortran}. The library will be placed in {\tt AMD/Lib/libamdf77.a}. A demo program will be compiled and tested in the {\tt AMD/Demo} directory. The output will be compared with an output file in the distribution. Typing {\tt make clean} will remove all but the final compiled libraries and demo programs. Typing {\tt make purge} or {\tt make distclean} removes all files not in the original distribution. If you compile AMD and then later change the {\tt ../UFconfig/UFconfig.mk} file then you should type {\tt make purge} and then {\tt make} to recompile. When you compile your program that uses the C-callable AMD library, you need to add the {\tt AMD/Lib/libamd.a} library and you need to tell your compiler to look in the {\tt AMD/Include} directory for include files. To compile a Fortran program that calls the Fortran AMD library, you need to add the {\tt AMD/Lib/libamdf77.a} library. See {\tt AMD/Demo/Makefile} for an example. If all you want to use is the AMD2 mexFunction in MATLAB, you can skip the use of the {\tt make} command entirely. Simply type {\tt amd\_make} in MATLAB while in the {\tt AMD/MATLAB} directory. This works on any system with MATLAB, including Windows. Alternately, type {\tt make} in the {\tt AMD/MATLAB} directory, or just use the built-in {\tt amd} in MATLAB 7.3 or later. If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command, prior to {\tt make mex} or {\tt make} in the MATLAB directory (or just use {\tt amd\_make.m} inside MATLAB. If you are including AMD as a subset of a larger library and do not want to link the C standard I/O library, or if you simply do not need to use them, you can safely remove the {\tt amd\_control.c} and {\tt amd\_info.c} files. Similarly, if you use default parameters (or define your own {\tt Control} array), then you can exclude the {\tt amd\_defaults.c} file. Each of these files contains the user-callable routines of the same name. None of these auxiliary routines are directly called by {\tt amd\_order}. The {\tt amd\_dump.c} file contains debugging routines that are neither used nor compiled unless debugging is enabled. The {\tt amd\_internal.h} file must be edited to enable debugging; refer to the instructions in that file. The bare minimum files required to use just {\tt amd\_order} are {\tt amd.h} and {\tt amd\_internal.h} in the {\tt Include} directory, and {\tt amd\_1.c}, {\tt amd\_2.c}, {\tt amd\_aat.c}, {\tt amd\_global.c}, {\tt and\_order.c}, {\tt amd\_postorder.c}, {\tt amd\_post\_tree.c}, {\tt amd\_preprocess.c}, and {\tt amd\_valid.c} in the {\tt Source} directory. %------------------------------------------------------------------------------ \newpage \section{The AMD routines} \label{Primary} %------------------------------------------------------------------------------ The file {\tt AMD/Include/amd.h} listed below describes each user-callable routine in the C version of AMD, and gives details on their use. {\footnotesize \begin{verbatim} /* ========================================================================= */ /* === AMD: approximate minimum degree ordering =========================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* AMD finds a symmetric ordering P of a matrix A so that the Cholesky * factorization of P*A*P' has fewer nonzeros and takes less work than the * Cholesky factorization of A. If A is not symmetric, then it performs its * ordering on the matrix A+A'. Two sets of user-callable routines are * provided, one for int integers and the other for UF_long integers. * * The method is based on the approximate minimum degree algorithm, discussed * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm", * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp. * 886-905, 1996. This package can perform both the AMD ordering (with * aggressive absorption), and the AMDBAR ordering (without aggressive * absorption) discussed in the above paper. This package differs from the * Fortran codes discussed in the paper: * * (1) it can ignore "dense" rows and columns, leading to faster run times * (2) it computes the ordering of A+A' if A is not symmetric * (3) it is followed by a depth-first post-ordering of the assembly tree * (or supernodal elimination tree) * * For historical reasons, the Fortran versions, amd.f and amdbar.f, have * been left (nearly) unchanged. They compute the identical ordering as * described in the above paper. */ #ifndef AMD_H #define AMD_H /* make it easy for C++ programs to include AMD */ #ifdef __cplusplus extern "C" { #endif /* get the definition of size_t: */ #include /* define UF_long */ #include "UFconfig.h" int amd_order /* returns AMD_OK, AMD_OK_BUT_JUMBLED, * AMD_INVALID, or AMD_OUT_OF_MEMORY */ ( int n, /* A is n-by-n. n must be >= 0. */ const int Ap [ ], /* column pointers for A, of size n+1 */ const int Ai [ ], /* row indices of A, of size nz = Ap [n] */ int P [ ], /* output permutation, of size n */ double Control [ ], /* input Control settings, of size AMD_CONTROL */ double Info [ ] /* output Info statistics, of size AMD_INFO */ ) ; UF_long amd_l_order /* see above for description of arguments */ ( UF_long n, const UF_long Ap [ ], const UF_long Ai [ ], UF_long P [ ], double Control [ ], double Info [ ] ) ; /* Input arguments (not modified): * * n: the matrix A is n-by-n. * Ap: an int/UF_long array of size n+1, containing column pointers of A. * Ai: an int/UF_long array of size nz, containing the row indices of A, * where nz = Ap [n]. * Control: a double array of size AMD_CONTROL, containing control * parameters. Defaults are used if Control is NULL. * * Output arguments (not defined on input): * * P: an int/UF_long array of size n, containing the output permutation. If * row i is the kth pivot row, then P [k] = i. In MATLAB notation, * the reordered matrix is A (P,P). * Info: a double array of size AMD_INFO, containing statistical * information. Ignored if Info is NULL. * * On input, the matrix A is stored in column-oriented form. The row indices * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1]. * * If the row indices appear in ascending order in each column, and there * are no duplicate entries, then amd_order is slightly more efficient in * terms of time and memory usage. If this condition does not hold, a copy * of the matrix is created (where these conditions do hold), and the copy is * ordered. This feature is new to v2.0 (v1.2 and earlier required this * condition to hold for the input matrix). * * Row indices must be in the range 0 to * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n]. * The matrix does not need to be symmetric, and the diagonal does not need to * be present (if diagonal entries are present, they are ignored except for * the output statistic Info [AMD_NZDIAG]). The arrays Ai and Ap are not * modified. This form of the Ap and Ai arrays to represent the nonzero * pattern of the matrix A is the same as that used internally by MATLAB. * If you wish to use a more flexible input structure, please see the * umfpack_*_triplet_to_col routines in the UMFPACK package, at * http://www.cise.ufl.edu/research/sparse/umfpack. * * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0 * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these * restrictions are not met, AMD returns AMD_INVALID. * * AMD returns: * * AMD_OK if the matrix is valid and sufficient memory can be allocated to * perform the ordering. * * AMD_OUT_OF_MEMORY if not enough memory can be allocated. * * AMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is * NULL. * * AMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate * entries, but was otherwise valid. * * The AMD routine first forms the pattern of the matrix A+A', and then * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of * the original is the kth pivotal row. In MATLAB notation, the permuted * matrix is A (P,P), except that 0-based indexing is used instead of the * 1-based indexing in MATLAB. * * The Control array is used to set various parameters for AMD. If a NULL * pointer is passed, default values are used. The Control array is not * modified. * * Control [AMD_DENSE]: controls the threshold for "dense" rows/columns. * A dense row/column in A+A' can cause AMD to spend a lot of time in * ordering the matrix. If Control [AMD_DENSE] >= 0, rows/columns * with more than Control [AMD_DENSE] * sqrt (n) entries are ignored * during the ordering, and placed last in the output order. The * default value of Control [AMD_DENSE] is 10. If negative, no * rows/columns are treated as "dense". Rows/columns with 16 or * fewer off-diagonal entries are never considered "dense". * * Control [AMD_AGGRESSIVE]: controls whether or not to use aggressive * absorption, in which a prior element is absorbed into the current * element if is a subset of the current element, even if it is not * adjacent to the current pivot element (refer to Amestoy, Davis, * & Duff, 1996, for more details). The default value is nonzero, * which means to perform aggressive absorption. This nearly always * leads to a better ordering (because the approximate degrees are * more accurate) and a lower execution time. There are cases where * it can lead to a slightly worse ordering, however. To turn it off, * set Control [AMD_AGGRESSIVE] to 0. * * Control [2..4] are not used in the current version, but may be used in * future versions. * * The Info array provides statistics about the ordering on output. If it is * not present, the statistics are not returned. This is not an error * condition. * * Info [AMD_STATUS]: the return value of AMD, either AMD_OK, * AMD_OK_BUT_JUMBLED, AMD_OUT_OF_MEMORY, or AMD_INVALID. * * Info [AMD_N]: n, the size of the input matrix * * Info [AMD_NZ]: the number of nonzeros in A, nz = Ap [n] * * Info [AMD_SYMMETRY]: the symmetry of the matrix A. It is the number * of "matched" off-diagonal entries divided by the total number of * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also * an entry, for any pair (i,j) for which i != j. In MATLAB notation, * S = spones (A) ; * B = tril (S, -1) + triu (S, 1) ; * symmetry = nnz (B & B') / nnz (B) ; * * Info [AMD_NZDIAG]: the number of entries on the diagonal of A. * * Info [AMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the * diagonal. If A is perfectly symmetric (Info [AMD_SYMMETRY] = 1) * with a fully nonzero diagonal, then Info [AMD_NZ_A_PLUS_AT] = nz-n * (the smallest possible value). If A is perfectly unsymmetric * (Info [AMD_SYMMETRY] = 0, for an upper triangular matrix, for * example) with no diagonal, then Info [AMD_NZ_A_PLUS_AT] = 2*nz * (the largest possible value). * * Info [AMD_NDENSE]: the number of "dense" rows/columns of A+A' that were * removed from A prior to ordering. These are placed last in the * output order P. * * Info [AMD_MEMORY]: the amount of memory used by AMD, in bytes. In the * current version, this is 1.2 * Info [AMD_NZ_A_PLUS_AT] + 9*n * times the size of an integer. This is at most 2.4nz + 9n. This * excludes the size of the input arguments Ai, Ap, and P, which have * a total size of nz + 2*n + 1 integers. * * Info [AMD_NCMPA]: the number of garbage collections performed. * * Info [AMD_LNZ]: the number of nonzeros in L (excluding the diagonal). * This is a slight upper bound because mass elimination is combined * with the approximate degree update. It is a rough upper bound if * there are many "dense" rows/columns. The rest of the statistics, * below, are also slight or rough upper bounds, for the same reasons. * The post-ordering of the assembly tree might also not exactly * correspond to a true elimination tree postordering. * * Info [AMD_NDIV]: the number of divide operations for a subsequent LDL' * or LU factorization of the permuted matrix A (P,P). * * Info [AMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a * subsequent LDL' factorization of A (P,P). * * Info [AMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a * subsequent LU factorization of A (P,P), assuming that no numerical * pivoting is required. * * Info [AMD_DMAX]: the maximum number of nonzeros in any column of L, * including the diagonal. * * Info [14..19] are not used in the current version, but may be used in * future versions. */ /* ------------------------------------------------------------------------- */ /* direct interface to AMD */ /* ------------------------------------------------------------------------- */ /* amd_2 is the primary AMD ordering routine. It is not meant to be * user-callable because of its restrictive inputs and because it destroys * the user's input matrix. It does not check its inputs for errors, either. * However, if you can work with these restrictions it can be faster than * amd_order and use less memory (assuming that you can create your own copy * of the matrix for AMD to destroy). Refer to AMD/Source/amd_2.c for a * description of each parameter. */ void amd_2 ( int n, int Pe [ ], int Iw [ ], int Len [ ], int iwlen, int pfree, int Nv [ ], int Next [ ], int Last [ ], int Head [ ], int Elen [ ], int Degree [ ], int W [ ], double Control [ ], double Info [ ] ) ; void amd_l2 ( UF_long n, UF_long Pe [ ], UF_long Iw [ ], UF_long Len [ ], UF_long iwlen, UF_long pfree, UF_long Nv [ ], UF_long Next [ ], UF_long Last [ ], UF_long Head [ ], UF_long Elen [ ], UF_long Degree [ ], UF_long W [ ], double Control [ ], double Info [ ] ) ; /* ------------------------------------------------------------------------- */ /* amd_valid */ /* ------------------------------------------------------------------------- */ /* Returns AMD_OK or AMD_OK_BUT_JUMBLED if the matrix is valid as input to * amd_order; the latter is returned if the matrix has unsorted and/or * duplicate row indices in one or more columns. Returns AMD_INVALID if the * matrix cannot be passed to amd_order. For amd_order, the matrix must also * be square. The first two arguments are the number of rows and the number * of columns of the matrix. For its use in AMD, these must both equal n. * * NOTE: this routine returned TRUE/FALSE in v1.2 and earlier. */ int amd_valid ( int n_row, /* # of rows */ int n_col, /* # of columns */ const int Ap [ ], /* column pointers, of size n_col+1 */ const int Ai [ ] /* row indices, of size Ap [n_col] */ ) ; UF_long amd_l_valid ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ] ) ; /* ------------------------------------------------------------------------- */ /* AMD memory manager and printf routines */ /* ------------------------------------------------------------------------- */ /* The user can redefine these to change the malloc, free, and printf routines * that AMD uses. */ #ifndef EXTERN #define EXTERN extern #endif EXTERN void *(*amd_malloc) (size_t) ; /* pointer to malloc */ EXTERN void (*amd_free) (void *) ; /* pointer to free */ EXTERN void *(*amd_realloc) (void *, size_t) ; /* pointer to realloc */ EXTERN void *(*amd_calloc) (size_t, size_t) ; /* pointer to calloc */ EXTERN int (*amd_printf) (const char *, ...) ; /* pointer to printf */ /* ------------------------------------------------------------------------- */ /* AMD Control and Info arrays */ /* ------------------------------------------------------------------------- */ /* amd_defaults: sets the default control settings */ void amd_defaults (double Control [ ]) ; void amd_l_defaults (double Control [ ]) ; /* amd_control: prints the control settings */ void amd_control (double Control [ ]) ; void amd_l_control (double Control [ ]) ; /* amd_info: prints the statistics */ void amd_info (double Info [ ]) ; void amd_l_info (double Info [ ]) ; #define AMD_CONTROL 5 /* size of Control array */ #define AMD_INFO 20 /* size of Info array */ /* contents of Control */ #define AMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */ #define AMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */ /* default Control settings */ #define AMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */ #define AMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */ /* contents of Info */ #define AMD_STATUS 0 /* return value of amd_order and amd_l_order */ #define AMD_N 1 /* A is n-by-n */ #define AMD_NZ 2 /* number of nonzeros in A */ #define AMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */ #define AMD_NZDIAG 4 /* # of entries on diagonal */ #define AMD_NZ_A_PLUS_AT 5 /* nz in A+A' */ #define AMD_NDENSE 6 /* number of "dense" rows/columns in A */ #define AMD_MEMORY 7 /* amount of memory used by AMD */ #define AMD_NCMPA 8 /* number of garbage collections in AMD */ #define AMD_LNZ 9 /* approx. nz in L, excluding the diagonal */ #define AMD_NDIV 10 /* number of fl. point divides for LU and LDL' */ #define AMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */ #define AMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */ #define AMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */ /* ------------------------------------------------------------------------- */ /* return values of AMD */ /* ------------------------------------------------------------------------- */ #define AMD_OK 0 /* success */ #define AMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */ #define AMD_INVALID -2 /* input arguments are not valid */ #define AMD_OK_BUT_JUMBLED 1 /* input matrix is OK for amd_order, but * columns were not sorted, and/or duplicate entries were present. AMD had * to do extra work before ordering the matrix. This is a warning, not an * error. */ /* ========================================================================== */ /* === AMD version ========================================================== */ /* ========================================================================== */ /* AMD Version 1.2 and later include the following definitions. * As an example, to test if the version you are using is 1.2 or later: * * #ifdef AMD_VERSION * if (AMD_VERSION >= AMD_VERSION_CODE (1,2)) ... * #endif * * This also works during compile-time: * * #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif * * Versions 1.1 and earlier of AMD do not include a #define'd version number. */ #define AMD_DATE "May 31, 2007" #define AMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define AMD_MAIN_VERSION 2 #define AMD_SUB_VERSION 2 #define AMD_SUBSUB_VERSION 0 #define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION,AMD_SUB_VERSION) #ifdef __cplusplus } #endif #endif #endif \end{verbatim} } %------------------------------------------------------------------------------ \newpage % References %------------------------------------------------------------------------------ \bibliographystyle{plain} \bibliography{AMD_UserGuide} \end{document} SuiteSparse/AMD/Doc/License0000644001170100242450000000342710616377407014403 0ustar davisfacAMD, Copyright (c) by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD is available under alternate licenses, contact T. Davis for details. AMD License: Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/amd ------------------------------------------------------------------------------- SuiteSparse/AMD/Doc/ChangeLog0000644001170100242450000001122010620613776014633 0ustar davisfacMay 31, 2007: version 2.2.0 * port to 64-bit MATLAB * Makefile moved from Source/ to Lib/ * minor changes to printing routines (amd_control.c, amd_info.c) Dec 12, 2006, version 2.0.4 * minor MATLAB code cleanup Nov 29, 2006, version 2.0.3 * changed MATLAB function name to amd2, so as not to conflict with the now built-in version of AMD in MATLAB (which is the same thing as the AMD here...). Sept 28, 2006, version 2.0.2 * #define SIZE_T_MAX not done if already defined (Mac OSX). Aug 31, 2006: * trivial change to comments in amd.m Apr 30, 2006: AMD Version 2.0: * long integer redefined as UF_long, controlled by UFconfig.h. * amd_order no longer requires its input to have sorted columns. It can also tolerate duplicate entries in each column. If these conditions hold, but the matrix is otherwise valid, amd_order returns AMD_OK_BUT_JUMBLED (a warning, not an error). * amd_preprocess no longer deemed user-callable, since it is no longer needed (it was used to ensure the input matrix had sorted columns with no duplicate entries). It still exists, with additional parameters, and is called by amd_order if necessary. amd_wpreprocess and amd_preprocess_valid removed. Fortran interface routine amdpreproc removed. * Integer overflow computations modified, to extend the size of problem that the "int" version can solve when used in an LP64 compilation. * amd_demo2.c simplified (it tests AMD with a jumbled matrix). * amd_valid returned TRUE/FALSE in v1.2. It now returns AMD_OK, AMD_OK_BUT_JUMBLED, or AMD_INVALID. Only in the latter case is the matrix unsuitable as input to amd_order. * amd_internal.h include file moved from AMD/Source to AMD/Include. Nov 15, 2005: * minor editting of comments; version number (1.2) unchanged. Aug. 30, 2005: AMD Version 1.2 * AMD v1.2 is upward compatible with v1.1 and v1.0, except that v1.2 no longer includes the compile-time redefinition of malloc and free. * Makefile modified to use UFconfig.mk. "Make" directory removed. * License changed to GNU LGPL. * Easier inclusion in C++ programs. * option to allow compile-time redefinition of malloc and free (added to v1.1) removed for v1.2. Replaced with a run-time redefinition. AMD includes function pointers for malloc, free, calloc, realloc, and printf, so that all those routines can be redefined at compile time. These function pointers are global variables, and so are not technically thread-safe, unless you use defaults and don't need to change them (the common case) or if you change them in one thread before using them in other threads. * added #define'd version number * minor modification to AMD_2 to ensure all lines can be tested, without conditional compilation. * moved the prototype for AMD_2 from amd_internal.h to amd.h * moved the prototype for AMD_valid from amd_internal.h to amd.h * MATLAB mexFunction uses libamd.a (compiled with cc) instead of compiling each AMD source file with the mex command * long demo (amd_l_demo.c) added. Jan. 21, 2004: AMD Version 1.1 * No bugs found or fixed - new features added, only * amd_preprocess added, to allow for more general input of the matrix A. * ME=0 added to amd*.f, unused DEXT variable removed from amdbar.f, to avoid spurious compiler warnings (this was not a bug). * amd_demo2.c and amd_demo2.out added, to test/demo amd_preprocess. * option to allow compile-time redefinition of malloc, free, printf added * amd_demo.c shortened slightly (removed printing of PAP') * User Guide modified (more details added) * linewidth reduced from 80 to 79 columns Oct. 7, 2003: AMD version 1.0.1. * MATLAB mexFunction modified, to remove call to mexCallMATLAB function. This function can take a long time to call, particularly if you are ordering many small matrices. May 6, 2003: AMD Version 1.0 released. * converted to C (compare amd.f and amdbar.f with amd_2.c) * dense rows/column removed prior to ordering * elimination tree post-ordering added * demos, user guide written * statistics added (nz in L, flop count, symmetry of A) * computes the pattern of A+A' if A is unsymmetric * user's input matrix no longer overwritten * degree lists initialized differently * IOVFLO argument removed from Fortran versions (amd.f and amdbar.f) * parameters added (dense row/column detection, aggressive absorption) * MATLAB mexFunction added Jan, 1996: * amdbar.f posted at http://www.netlib.org (with a restricted License) * amd.f appears as MC47B/BD in the Harwell Subroutine Library (without the IOVFLO argument) SuiteSparse/AMD/Doc/lesser.txt0000644001170100242450000006350010263214067015120 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/AMD/Lib/0000755001170100242450000000000010711435721013057 5ustar davisfacSuiteSparse/AMD/Lib/Makefile0000644001170100242450000000611110617345350014521 0ustar davisfac#------------------------------------------------------------------------------- # AMD Makefile for compiling on Unix systems (for original Make ONLY) #------------------------------------------------------------------------------- # This is a very ugly Makefile, and is only provided for those who do not # have GNU make. Note that it is not used if you have GNU make. It ignores # dependency checking and just compiles everything. default: everything include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CONFIG) -I../Include -I../../UFconfig everything: $(C) -DDINT -c ../Source/amd_aat.c -o amd_i_aat.o $(C) -DDINT -c ../Source/amd_1.c -o amd_i_1.o $(C) -DDINT -c ../Source/amd_2.c -o amd_i_2.o $(C) -DDINT -c ../Source/amd_dump.c -o amd_i_dump.o $(C) -DDINT -c ../Source/amd_postorder.c -o amd_i_postorder.o $(C) -DDINT -c ../Source/amd_post_tree.c -o amd_i_post_tree.o $(C) -DDINT -c ../Source/amd_defaults.c -o amd_i_defaults.o $(C) -DDINT -c ../Source/amd_order.c -o amd_i_order.o $(C) -DDINT -c ../Source/amd_control.c -o amd_i_control.o $(C) -DDINT -c ../Source/amd_info.c -o amd_i_info.o $(C) -DDINT -c ../Source/amd_valid.c -o amd_i_valid.o $(C) -DDINT -c ../Source/amd_preprocess.c -o amd_i_preprocess.o $(C) -DDLONG -c ../Source/amd_aat.c -o amd_l_aat.o $(C) -DDLONG -c ../Source/amd_1.c -o ../Source/amd_l_1.o $(C) -DDLONG -c ../Source/amd_2.c -o amd_l_2.o $(C) -DDLONG -c ../Source/amd_dump.c -o amd_l_dump.o $(C) -DDLONG -c ../Source/amd_postorder.c -o amd_l_postorder.o $(C) -DDLONG -c ../Source/amd_post_tree.c -o amd_l_post_tree.o $(C) -DDLONG -c ../Source/amd_defaults.c -o amd_l_defaults.o $(C) -DDLONG -c ../Source/amd_order.c -o amd_l_order.o $(C) -DDLONG -c ../Source/amd_control.c -o amd_l_control.o $(C) -DDLONG -c ../Source/amd_info.c -o amd_l_info.o $(C) -DDLONG -c ../Source/amd_valid.c -o amd_l_valid.o $(C) -DDLONG -c ../Source/amd_preprocess.c -o amd_l_preprocess.o $(C) -c ../Source/amd_global.c $(AR) ../Lib/libamd.a amd_i_aat.o amd_i_1.o amd_i_2.o amd_i_dump.o \ amd_i_postorder.o amd_i_post_tree.o amd_i_defaults.o amd_i_order.o \ amd_i_control.o amd_i_info.o amd_i_valid.o amd_l_aat.o amd_l_1.o \ amd_l_2.o amd_l_dump.o amd_l_postorder.o amd_l_post_tree.o \ amd_l_defaults.o amd_l_order.o amd_l_control.o amd_l_info.o \ amd_l_valid.o amd_i_preprocess.o amd_l_preprocess.o amd_global.o - $(RANLIB) ../Lib/libamd.a #------------------------------------------------------------------------------- # compile the Fortran versions and the libamdf77.a library #------------------------------------------------------------------------------- fortran: $(F77) $(F77FLAGS) -c ../Source/amd.f -o amd.o $(F77) $(F77FLAGS) -c ../Source/amdbar.f -o amdbar.o $(AR) ../Lib/libamdf77.a amd.o amdbar.o - $(RANLIB) ../Lib/libamdf77.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) ../Lib/libamd.a ../Lib/libamdf77.a SuiteSparse/AMD/Lib/libamd.def0000644001170100242450000000021010423471333014757 0ustar davisfacLIBRARY libamd.dll EXPORTS amd_order amd_defaults amd_control amd_info amd_2 amd_l_order amd_l_defaults amd_l_control amd_l_info amd_l2 SuiteSparse/AMD/Lib/GNUmakefile0000644001170100242450000000512410617345323015136 0ustar davisfac#------------------------------------------------------------------------------- # AMD Makefile for compiling on Unix systems (for GNU make only) #------------------------------------------------------------------------------- default: ../Lib/libamd.a include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CONFIG) -I../Include -I../../UFconfig #------------------------------------------------------------------------------- # source files #------------------------------------------------------------------------------- AMD = amd_aat amd_1 amd_2 amd_dump amd_postorder amd_post_tree amd_defaults \ amd_order amd_control amd_info amd_valid amd_preprocess UFCONFIG = ../../UFconfig/UFconfig.h INC = ../Include/amd.h ../Include/amd_internal.h $(UFCONFIG) #------------------------------------------------------------------------------- # object files for each version #------------------------------------------------------------------------------- AMDI = $(addsuffix .o, $(subst amd_,amd_i_,$(AMD))) AMDL = $(addsuffix .o, $(subst amd_,amd_l_,$(AMD))) #------------------------------------------------------------------------------- # compile each int and long routine (with no real/complex version) #------------------------------------------------------------------------------- amd_global.o: ../Source/amd_global.c $(INC) $(C) -c $< -o $@ amd_i_%.o: ../Source/amd_%.c $(INC) $(C) -DDINT -c $< -o $@ amd_l_%.o: ../Source/amd_%.c $(INC) $(C) -DDLONG -c $< -o $@ #------------------------------------------------------------------------------- # Create the libamd.a library (C versions only) #------------------------------------------------------------------------------- ../Lib/libamd.a: amd_global.o $(AMDI) $(AMDL) $(AR) ../Lib/libamd.a $^ - $(RANLIB) ../Lib/libamd.a #------------------------------------------------------------------------------- # compile the Fortran versions and the libamdf77.a library #------------------------------------------------------------------------------- fortran: ../Lib/libamdf77.a AMDF77 = amd.o amdbar.o amd.o: ../Source/amd.f $(F77) $(F77FLAGS) -c ../Source/amd.f -o amd.o amdbar.o: ../Source/amdbar.f $(F77) $(F77FLAGS) -c ../Source/amdbar.f -o amdbar.o ../Lib/libamdf77.a: $(AMDF77) $(AR) ../Lib/libamdf77.a $^ - $(RANLIB) ../Lib/libamdf77.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) ../Lib/libamd.a ../Lib/libamdf77.a SuiteSparse/AMD/Demo/0000755001170100242450000000000010711435721013235 5ustar davisfacSuiteSparse/AMD/Demo/amd_l_demo.out0000644001170100242450000001664410616431751016064 0ustar davisfacAMD version 2.2, date: May 31, 2007 AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 Input matrix: 24-by-24, with 160 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to AMD, since AMD computes the ordering of A+A'. The diagonal entries are also not needed, since AMD ignores them. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 5 6 12 13 17 18 19 21 Column: 1, number of entries: 6, with row indices in Ai [9 ... 14]: row indices: 1 8 9 13 14 17 Column: 2, number of entries: 6, with row indices in Ai [15 ... 20]: row indices: 2 6 11 20 21 22 Column: 3, number of entries: 6, with row indices in Ai [21 ... 26]: row indices: 3 7 10 15 18 19 Column: 4, number of entries: 6, with row indices in Ai [27 ... 32]: row indices: 4 7 9 14 15 16 Column: 5, number of entries: 6, with row indices in Ai [33 ... 38]: row indices: 0 5 6 12 13 17 Column: 6, number of entries: 9, with row indices in Ai [39 ... 47]: row indices: 0 2 5 6 11 12 19 21 23 Column: 7, number of entries: 9, with row indices in Ai [48 ... 56]: row indices: 3 4 7 9 14 15 16 17 18 Column: 8, number of entries: 4, with row indices in Ai [57 ... 60]: row indices: 1 8 9 14 Column: 9, number of entries: 9, with row indices in Ai [61 ... 69]: row indices: 1 4 7 8 9 13 14 17 18 Column: 10, number of entries: 6, with row indices in Ai [70 ... 75]: row indices: 3 10 18 19 20 21 Column: 11, number of entries: 6, with row indices in Ai [76 ... 81]: row indices: 2 6 11 12 21 23 Column: 12, number of entries: 6, with row indices in Ai [82 ... 87]: row indices: 0 5 6 11 12 23 Column: 13, number of entries: 6, with row indices in Ai [88 ... 93]: row indices: 0 1 5 9 13 17 Column: 14, number of entries: 6, with row indices in Ai [94 ... 99]: row indices: 1 4 7 8 9 14 Column: 15, number of entries: 6, with row indices in Ai [100 ... 105]: row indices: 3 4 7 15 16 18 Column: 16, number of entries: 4, with row indices in Ai [106 ... 109]: row indices: 4 7 15 16 Column: 17, number of entries: 9, with row indices in Ai [110 ... 118]: row indices: 0 1 5 7 9 13 17 18 19 Column: 18, number of entries: 9, with row indices in Ai [119 ... 127]: row indices: 0 3 7 9 10 15 17 18 19 Column: 19, number of entries: 9, with row indices in Ai [128 ... 136]: row indices: 0 3 6 10 17 18 19 20 21 Column: 20, number of entries: 6, with row indices in Ai [137 ... 142]: row indices: 2 10 19 20 21 22 Column: 21, number of entries: 9, with row indices in Ai [143 ... 151]: row indices: 0 2 6 10 11 19 20 21 22 Column: 22, number of entries: 4, with row indices in Ai [152 ... 155]: row indices: 2 20 21 22 Column: 23, number of entries: 4, with row indices in Ai [156 ... 159]: row indices: 6 11 12 23 Plot of input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from amd_l_order: 0 (should be 0) AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 3032 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 Inverse permutation vector: 16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3 Plot of permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X X . . . . . . . . . . . . . . . X . . . . X . 1: X X X . . . . . . . . . . . . . . X . . . . X X 2: . X X . . . . . . . . . . . . . . . X . . X X X 3: . . . X X . . . . . . . . . . . . . . X X . . . 4: . . . X X X . . . . . . . . . . X . . X X . . . 5: . . . . X X . . . . . . . . X X X . . X . . . . 6: . . . . . . X . . X X X . . . . . . . . . . . . 7: . . . . . . . X X . . . X X . . . . . . . . . . 8: . . . . . . . X X X . X X X . . . . . . . . . . 9: . . . . . . X . X X X X . X . . . . . . . . . . 10: . . . . . . X . . X X X . . . . . . X . . X . . 11: . . . . . . X . X X X X . X . X . . X . . X . . 12: . . . . . . . X X . . . X X X X . . . . . . . . 13: . . . . . . . X X X . X X X X X . . . . . X . . 14: . . . . . X . . . . . . X X X X X . . . . . . . 15: . . . . . X . . . . . X X X X X X . . . . X . X 16: . . . . X X . . . . . . . . X X X . . X . X X X 17: X X . . . . . . . . . . . . . . . X . X X . X . 18: . . X . . . . . . . X X . . . . . . X . . X . X 19: . . . X X X . . . . . . . . . . X X . X X . X X 20: . . . X X . . . . . . . . . . . . X . X X . X . 21: . . X . . . . . . . X X . X . X X . X . . X . X 22: X X X . . . . . . . . . . . . . X X . X X . X X 23: . X X . . . . . . . . . . . . X X . X X . X X X SuiteSparse/AMD/Demo/amd_f77simple.f0000644001170100242450000000272010616376325016053 0ustar davisfacC ---------------------------------------------------------------------- C AMD, Copyright (c) by Timothy A. Davis, Patrick R. C Amestoy, and Iain S. Duff. See ../README.txt for C License. email: davis at cise.ufl.edu CISE Department, Univ. of C Florida. web: http://www.cise.ufl.edu/research/sparse/amd C ---------------------------------------------------------------------- C This program provides an example of how to call the Fortran version C of AMD. It uses the same matrix as the amd_simple.c demo (in C). C Note that the diagonal entries are not present, and the matrix is C symmetric. INTEGER N, NZ, J, K, P, IWLEN, PFREE, NCMPA PARAMETER (N = 5, NZ = 10, IWLEN = 17) INTEGER AP (N+1), AI (NZ), LAST (N), PE (N), LEN (N), ELEN (N), $ IW (IWLEN), DEGREE (N), NV (N), NEXT (N), HEAD (N), W (N) DATA AP / 1, 2, 5, 8, 9, 11/ DATA AI / 2, 1,3,5, 2,4,5, 3, 2,3 / C load the matrix into the AMD workspace DO 10 J = 1,N PE (J) = AP (J) LEN (J) = AP (J+1) - AP (J) 10 CONTINUE DO 20 P = 1,NZ IW (P) = AI (P) 20 CONTINUE PFREE = NZ + 1 C order the matrix (destroys the copy of A in IW, PE, and LEN) CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, LAST, HEAD, $ ELEN, DEGREE, NCMPA, W) DO 60 K = 1, N PRINT 50, K, LAST (K) 50 FORMAT ('P (',I2,') = ', I2) 60 CONTINUE END SuiteSparse/AMD/Demo/Makefile0000644001170100242450000000552410617111726014704 0ustar davisfac#----------------------------------------------------------------------------- # compile the AMD demo (for both GNU make or original make) #----------------------------------------------------------------------------- default: amd_simple amd_demo amd_demo2 amd_l_demo include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) -I../Include -I../../UFconfig INC = ../Include/amd.h ../../UFconfig/UFconfig.h library: ( cd ../Lib ; $(MAKE) ) f77lib: ( cd ../Lib ; $(MAKE) fortran ) #------------------------------------------------------------------------------ # Create the demo program, run it, and compare the output #------------------------------------------------------------------------------ dist: amd_demo: amd_demo.c library $(INC) $(C) -o amd_demo amd_demo.c ../Lib/libamd.a $(LIB) ./amd_demo > my_amd_demo.out - diff amd_demo.out my_amd_demo.out amd_l_demo: amd_l_demo.c library $(INC) $(C) -o amd_l_demo amd_l_demo.c ../Lib/libamd.a $(LIB) ./amd_l_demo > my_amd_l_demo.out - diff amd_l_demo.out my_amd_l_demo.out amd_demo2: amd_demo2.c library $(INC) $(C) -o amd_demo2 amd_demo2.c ../Lib/libamd.a $(LIB) ./amd_demo2 > my_amd_demo2.out - diff amd_demo2.out my_amd_demo2.out amd_simple: amd_simple.c library $(INC) $(C) -o amd_simple amd_simple.c ../Lib/libamd.a $(LIB) ./amd_simple > my_amd_simple.out - diff amd_simple.out my_amd_simple.out #------------------------------------------------------------------------------ # compile the Fortran demo #------------------------------------------------------------------------------ fortran: amd_f77demo amd_f77simple cross: amd_f77cross amd_f77demo: amd_f77demo.f f77lib $(F77) $(F77FLAGS) -o amd_f77demo amd_f77demo.f ../Lib/libamdf77.a \ $(F77LIB) ./amd_f77demo > my_amd_f77demo.out - diff amd_f77demo.out my_amd_f77demo.out amd_f77simple: amd_f77simple.f f77lib $(F77) $(F77FLAGS) -o amd_f77simple amd_f77simple.f \ ../Lib/libamdf77.a $(F77LIB) ./amd_f77simple > my_amd_f77simple.out - diff amd_f77simple.out my_amd_f77simple.out amd_f77wrapper.o: amd_f77wrapper.c $(C) -DDINT -c amd_f77wrapper.c amd_f77cross: amd_f77cross.f amd_f77wrapper.o ../Lib/libamd.a $(F77) $(F77FLAGS) -o amd_f77cross amd_f77cross.f amd_f77wrapper.o \ ../Lib/libamd.a $(F77LIB) ./amd_f77cross > my_amd_f77cross.out - diff amd_f77cross.out my_amd_f77cross.out #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) amd_demo my_amd_demo.out - $(RM) amd_l_demo my_amd_l_demo.out - $(RM) amd_demo2 my_amd_demo2.out - $(RM) amd_simple my_amd_simple.out - $(RM) amd_f77demo my_amd_f77demo.out - $(RM) amd_f77simple my_amd_f77simple.out - $(RM) amd_f77cross my_amd_f77cross.out SuiteSparse/AMD/Demo/amd_f77cross.out0000644001170100242450000000374410250414043016264 0ustar davisfacInput matrix: 5-by- 5 with 14 entries Column: 1 number of entries: 2 with row indices in AI ( 1 ... 2) row indices: 1 2 Column: 2 number of entries: 4 with row indices in AI ( 3 ... 6) row indices: 1 2 3 5 Column: 3 number of entries: 4 with row indices in AI ( 7 ... 10) row indices: 2 3 4 5 Column: 4 number of entries: 2 with row indices in AI ( 11 ... 12) row indices: 3 4 Column: 5 number of entries: 2 with row indices in AI ( 13 ... 14) row indices: 2 5 amd: approximate minimum degree ordering, results: status: OK n, dimension of A: 5 nz, number of nonzeros in A: 14 symmetry of A: 0.8889 number of nonzeros on diagonal: 5 nonzeros in pattern of A+A' (excl. diagonal): 10 # dense rows/columns of A+A': 0 memory used, in bytes: 228 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 5 nonzeros in L (including diagonal): 10 # divide operations for LDL' or LU: 5 # multiply-subtract operations for LDL': 6 # multiply-subtract operations for LU: 7 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 22 LDL' flop count for real A: 17 LDL' flop count for complex A: 93 LU flop count for real A (with no pivoting): 19 LU flop count for complex A (with no pivoting): 101 PERM ( 1) = 1 PERM ( 2) = 4 PERM ( 3) = 3 PERM ( 4) = 5 PERM ( 5) = 2 SuiteSparse/AMD/Demo/amd_demo2.out0000644001170100242450000002140210616431751015617 0ustar davisfacAMD demo, with a jumbled version of the 24-by-24 Harwell/Boeing matrix, can_24: AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 Jumbled input matrix: 24-by-24, with 116 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to AMD, since AMD computes the ordering of A+A'. The diagonal entries are also not needed, since AMD ignores them. This version of the matrix has jumbled columns and duplicate row indices. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 17 18 21 5 12 5 0 13 Column: 1, number of entries: 5, with row indices in Ai [9 ... 13]: row indices: 14 1 8 13 17 Column: 2, number of entries: 6, with row indices in Ai [14 ... 19]: row indices: 2 20 11 6 11 22 Column: 3, number of entries: 8, with row indices in Ai [20 ... 27]: row indices: 3 3 10 7 18 18 15 19 Column: 4, number of entries: 5, with row indices in Ai [28 ... 32]: row indices: 7 9 15 14 16 Column: 5, number of entries: 4, with row indices in Ai [33 ... 36]: row indices: 5 13 6 17 Column: 6, number of entries: 7, with row indices in Ai [37 ... 43]: row indices: 5 0 11 6 12 6 23 Column: 7, number of entries: 9, with row indices in Ai [44 ... 52]: row indices: 3 4 9 7 14 16 15 17 18 Column: 8, number of entries: 5, with row indices in Ai [53 ... 57]: row indices: 1 9 14 14 14 Column: 9, number of entries: 5, with row indices in Ai [58 ... 62]: row indices: 7 13 8 1 17 Column: 10, number of entries: 0, with row indices in Ai [63 ... 62]: row indices: Column: 11, number of entries: 3, with row indices in Ai [63 ... 65]: row indices: 2 12 23 Column: 12, number of entries: 3, with row indices in Ai [66 ... 68]: row indices: 5 11 12 Column: 13, number of entries: 3, with row indices in Ai [69 ... 71]: row indices: 0 13 17 Column: 14, number of entries: 3, with row indices in Ai [72 ... 74]: row indices: 1 9 14 Column: 15, number of entries: 3, with row indices in Ai [75 ... 77]: row indices: 3 15 16 Column: 16, number of entries: 4, with row indices in Ai [78 ... 81]: row indices: 16 4 4 15 Column: 17, number of entries: 4, with row indices in Ai [82 ... 85]: row indices: 13 17 19 17 Column: 18, number of entries: 5, with row indices in Ai [86 ... 90]: row indices: 15 17 19 9 10 Column: 19, number of entries: 6, with row indices in Ai [91 ... 96]: row indices: 17 19 20 0 6 10 Column: 20, number of entries: 4, with row indices in Ai [97 ... 100]: row indices: 22 10 20 21 Column: 21, number of entries: 11, with row indices in Ai [101 ... 111]: row indices: 6 2 10 19 20 11 21 22 22 22 22 Column: 22, number of entries: 0, with row indices in Ai [112 ... 111]: row indices: Column: 23, number of entries: 4, with row indices in Ai [112 ... 115]: row indices: 12 11 12 23 Plot of (jumbled) input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . X . . . . . . X . . . . . X . . . . 1: . X . . . . . . X X . . . . X . . . . . . . . . 2: . . X . . . . . . . . X . . . . . . . . . X . . 3: . . . X . . . X . . . . . . . X . . . . . . . . 4: . . . . . . . X . . . . . . . . X . . . . . . . 5: X . . . . X X . . . . . X . . . . . . . . . . . 6: . . X . . X X . . . . . . . . . . . . X . X . . 7: . . . X X . . X . X . . . . . . . . . . . . . . 8: . X . . . . . . . X . . . . . . . . . . . . . . 9: . . . . X . . X X . . . . . X . . . X . . . . . 10: . . . X . . . . . . . . . . . . . . X X X X . . 11: . . X . . . X . . . . . X . . . . . . . . X . X 12: X . . . . . X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X . . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . . . . . . . . . . . . . . . . 19: . . . X . . . . . . . . . . . . . X X X . X . . 20: . . X . . . . . . . . . . . . . . . . X X X . . 21: X . . . . . . . . . . . . . . . . . . . X X . . 22: . . X . . . . . . . . . . . . . . . . . X X . . 23: . . . . . . X . . . . X . . . . . . . . . . . X Plot of symmetric matrix to be ordered by amd_order: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from amd_order: 1 (should be 1) AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 102 symmetry of A: 0.4000 number of nonzeros on diagonal: 17 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 2080 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 Inverse permutation vector: 16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3 Plot of (symmetrized) permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X X . . . . . . . . . . . . . . . X . . . . X . 1: X X X . . . . . . . . . . . . . . X . . . . X X 2: . X X . . . . . . . . . . . . . . . X . . X X X 3: . . . X X . . . . . . . . . . . . . . X X . . . 4: . . . X X X . . . . . . . . . . X . . X X . . . 5: . . . . X X . . . . . . . . X X X . . X . . . . 6: . . . . . . X . . X X X . . . . . . . . . . . . 7: . . . . . . . X X . . . X X . . . . . . . . . . 8: . . . . . . . X X X . X X X . . . . . . . . . . 9: . . . . . . X . X X X X . X . . . . . . . . . . 10: . . . . . . X . . X X X . . . . . . X . . X . . 11: . . . . . . X . X X X X . X . X . . X . . X . . 12: . . . . . . . X X . . . X X X X . . . . . . . . 13: . . . . . . . X X X . X X X X X . . . . . X . . 14: . . . . . X . . . . . . X X X X X . . . . . . . 15: . . . . . X . . . . . X X X X X X . . . . X . X 16: . . . . X X . . . . . . . . X X X . . X . X X X 17: X X . . . . . . . . . . . . . . . X . X X . X . 18: . . X . . . . . . . X X . . . . . . X . . X . X 19: . . . X X X . . . . . . . . . . X X . X X . X X 20: . . . X X . . . . . . . . . . . . X . X X . X . 21: . . X . . . . . . . X X . X . X X . X . . X . X 22: X X X . . . . . . . . . . . . . X X . X X . X X 23: . X X . . . . . . . . . . . . X X . X X . X X X SuiteSparse/AMD/Demo/amd_f77cross.f0000644001170100242450000000415510616376310015711 0ustar davisfacC ====================================================================== C === AMD_cross ======================================================== C ====================================================================== C ---------------------------------------------------------------------- C AMD, Copyright (c) by Timothy A. Davis, Patrick R. C Amestoy, and Iain S. Duff. See ../README.txt for C License. email: davis at cise.ufl.edu CISE Department, Univ. of C Florida. web: http://www.cise.ufl.edu/research/sparse/amd C ---------------------------------------------------------------------- C This program provides an example of how to call the C version of AMD C from a Fortran program. It is HIGHLY non-portable. C The amd_order routine returns PERM (1) < 0 if an error occurs. C (-1: out of memory, -2: invalid matrix) C Note that the input matrix is 0-based. From Fortran, column j of the C matrix is in AI (AP (I)+1 ... AP (I+1)). The row indices in this C set are in the range 0 to N-1. To demonstrate this translation, C the input matrix is printed in 1-based form. This program uses C the same 5-by-5 test matrix as amd_simple.c. INTEGER N, NZ, K, P PARAMETER (N = 5, NZ = 14) INTEGER AP (N+1), AI (NZ), PERM (N) DATA AP / 0, 2, 6, 10, 12, 14 / DATA AI / 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 / DOUBLE PRECISION CONTROL (5), INFO (20) C print the input matrix PRINT 10, N, N, NZ 10 FORMAT ('Input matrix:', I2, '-by-', I2, ' with',I3,' entries') DO 40 J = 1, N PRINT 20, J, AP (J+1) - AP (J), AP (J)+1, AP (J+1) 20 FORMAT ( /, 'Column: ', I2, ' number of entries: ', I2, $ ' with row indices in AI (', I3, ' ... ', I3, ')') PRINT 30, ((AI (P) + 1), P = AP (J) + 1, AP (J+1)) 30 FORMAT (' row indices: ', 24I3) 40 CONTINUE CALL AMDDEFAULTS (CONTROL) CALL AMDORDER (N, AP, AI, PERM, CONTROL, INFO) CALL AMDINFO (INFO) DO 60 K = 1, N PRINT 50, K, PERM (K) + 1 50 FORMAT ('PERM (',I2,') = ', I2) 60 CONTINUE END SuiteSparse/AMD/Demo/amd_simple.c0000644001170100242450000000145310616376360015525 0ustar davisfac/* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ #include #include "amd.h" int n = 5 ; int Ap [ ] = { 0, 2, 6, 10, 12, 14} ; int Ai [ ] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ; int P [5] ; int main (void) { int k ; (void) amd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL) ; for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ; return (0) ; } SuiteSparse/AMD/Demo/amd_f77demo.out0000644001170100242450000002723210250414043016055 0ustar davisfacAMD Fortran 77 demo, with the 24-by-24 Harwell/Boeing matrix, can_24: Input matrix: 24-by-24 with 136 entries Note that the Fortran version of AMD requires that no diagonal entries be present. Column: 1 number of entries: 8 with row indices in AI ( 1 ... 8) row indices: 6 7 13 14 18 19 20 22 Column: 2 number of entries: 5 with row indices in AI ( 9 ... 13) row indices: 9 10 14 15 18 Column: 3 number of entries: 5 with row indices in AI ( 14 ... 18) row indices: 7 12 21 22 23 Column: 4 number of entries: 5 with row indices in AI ( 19 ... 23) row indices: 8 11 16 19 20 Column: 5 number of entries: 5 with row indices in AI ( 24 ... 28) row indices: 8 10 15 16 17 Column: 6 number of entries: 5 with row indices in AI ( 29 ... 33) row indices: 1 7 13 14 18 Column: 7 number of entries: 8 with row indices in AI ( 34 ... 41) row indices: 1 3 6 12 13 20 22 24 Column: 8 number of entries: 8 with row indices in AI ( 42 ... 49) row indices: 4 5 10 15 16 17 18 19 Column: 9 number of entries: 3 with row indices in AI ( 50 ... 52) row indices: 2 10 15 Column: 10 number of entries: 8 with row indices in AI ( 53 ... 60) row indices: 2 5 8 9 14 15 18 19 Column: 11 number of entries: 5 with row indices in AI ( 61 ... 65) row indices: 4 19 20 21 22 Column: 12 number of entries: 5 with row indices in AI ( 66 ... 70) row indices: 3 7 13 22 24 Column: 13 number of entries: 5 with row indices in AI ( 71 ... 75) row indices: 1 6 7 12 24 Column: 14 number of entries: 5 with row indices in AI ( 76 ... 80) row indices: 1 2 6 10 18 Column: 15 number of entries: 5 with row indices in AI ( 81 ... 85) row indices: 2 5 8 9 10 Column: 16 number of entries: 5 with row indices in AI ( 86 ... 90) row indices: 4 5 8 17 19 Column: 17 number of entries: 3 with row indices in AI ( 91 ... 93) row indices: 5 8 16 Column: 18 number of entries: 8 with row indices in AI ( 94 ... 101) row indices: 1 2 6 8 10 14 19 20 Column: 19 number of entries: 8 with row indices in AI (102 ... 109) row indices: 1 4 8 10 11 16 18 20 Column: 20 number of entries: 8 with row indices in AI (110 ... 117) row indices: 1 4 7 11 18 19 21 22 Column: 21 number of entries: 5 with row indices in AI (118 ... 122) row indices: 3 11 20 22 23 Column: 22 number of entries: 8 with row indices in AI (123 ... 130) row indices: 1 3 7 11 12 20 21 23 Column: 23 number of entries: 3 with row indices in AI (131 ... 133) row indices: 3 21 22 Column: 24 number of entries: 3 with row indices in AI (134 ... 136) row indices: 7 12 13 Plot of input matrix pattern: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1: X . . . . X X . . . . . X X . . . X X X . X . . 2: . X . . . . . . X X . . . X X . . X . . . . . . 3: . . X . . . X . . . . X . . . . . . . . X X X . 4: . . . X . . . X . . X . . . . X . . X X . . . . 5: . . . . X . . X . X . . . . X X X . . . . . . . 6: X . . . . X X . . . . . X X . . . X . . . . . . 7: X . X . . X X . . . . X X . . . . . . X . X . X 8: . . . X X . . X . X . . . . X X X X X . . . . . 9: . X . . . . . . X X . . . . X . . . . . . . . . 10: . X . . X . . X X X . . . X X . . X X . . . . . 11: . . . X . . . . . . X . . . . . . . X X X X . . 12: . . X . . . X . . . . X X . . . . . . . . X . X 13: X . . . . X X . . . . X X . . . . . . . . . . X 14: X X . . . X . . . X . . . X . . . X . . . . . . 15: . X . . X . . X X X . . . . X . . . . . . . . . 16: . . . X X . . X . . . . . . . X X . X . . . . . 17: . . . . X . . X . . . . . . . X X . . . . . . . 18: X X . . . X . X . X . . . X . . . X X X . . . . 19: X . . X . . . X . X X . . . . X . X X X . . . . 20: X . . X . . X . . . X . . . . . . X X X X X . . 21: . . X . . . . . . . X . . . . . . . . X X X X . 22: X . X . . . X . . . X X . . . . . . . X X X X . 23: . . X . . . . . . . . . . . . . . . . . X X X . 24: . . . . . . X . . . . X X . . . . . . . . . . X ------------------------------------------ ordering the matrix with AMD ------------------------------------------ Permutation vector: 24 23 17 9 15 5 21 13 6 11 16 8 2 10 14 18 1 3 4 19 7 12 22 20 Inverse permutation vector: 17 13 18 19 6 9 21 12 4 14 10 22 8 15 5 11 3 16 20 24 7 23 2 1 Plot of permuted matrix pattern: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1: X . . . . . . X . . . . . . . . . . . . X X . . 2: . X . . . . X . . . . . . . . . . X . . . . X . 3: . . X . . X . . . . X X . . . . . . . . . . . . 4: . . . X X . . . . . . . X X . . . . . . . . . . 5: . . . X X X . . . . . X X X . . . . . . . . . . 6: . . X . X X . . . . X X . X . . . . . . . . . . 7: . X . . . . X . . X . . . . . . . X . . . . X X 8: X . . . . . . X X . . . . . . . X . . . X X . . 9: . . . . . . . X X . . . . . X X X . . . X . . . 10: . . . . . . X . . X . . . . . . . . X X . . X X 11: . . X . . X . . . . X X . . . . . . X X . . . . 12: . . X . X X . . . . X X . X . X . . X X . . . . 13: . . . X X . . . . . . . X X X X . . . . . . . . 14: . . . X X X . . . . . X X X X X . . . X . . . . 15: . . . . . . . . X . . . X X X X X . . . . . . . 16: . . . . . . . . X . . X X X X X X . . X . . . X 17: . . . . . . . X X . . . . . X X X . . X X . X X 18: . X . . . . X . . . . . . . . . . X . . X X X . 19: . . . . . . . . . X X X . . . . . . X X . . . X 20: . . . . . . . . . X X X . X . X X . X X . . . X 21: X . . . . . . X X . . . . . . . X X . . X X X X 22: X . . . . . . X . . . . . . . . . X . . X X X . 23: . X . . . . X . . X . . . . . . X X . . X X X X 24: . . . . . . X . . X . . . . . X X . X X X . X X New column: 1 old column: 24 number of entries: 3 new row indices: 21 22 8 New column: 2 old column: 23 number of entries: 3 new row indices: 18 7 23 New column: 3 old column: 17 number of entries: 3 new row indices: 6 12 11 New column: 4 old column: 9 number of entries: 3 new row indices: 13 14 5 New column: 5 old column: 15 number of entries: 5 new row indices: 13 6 12 4 14 New column: 6 old column: 5 number of entries: 5 new row indices: 12 14 5 11 3 New column: 7 old column: 21 number of entries: 5 new row indices: 18 10 24 23 2 New column: 8 old column: 13 number of entries: 5 new row indices: 17 9 21 22 1 New column: 9 old column: 6 number of entries: 5 new row indices: 17 21 8 15 16 New column: 10 old column: 11 number of entries: 5 new row indices: 19 20 24 7 23 New column: 11 old column: 16 number of entries: 5 new row indices: 19 6 12 3 20 New column: 12 old column: 8 number of entries: 8 new row indices: 19 6 14 5 11 3 16 20 New column: 13 old column: 2 number of entries: 5 new row indices: 4 14 15 5 16 New column: 14 old column: 10 number of entries: 8 new row indices: 13 6 12 4 15 5 16 20 New column: 15 old column: 14 number of entries: 5 new row indices: 17 13 9 14 16 New column: 16 old column: 18 number of entries: 8 new row indices: 17 13 9 12 14 15 20 24 New column: 17 old column: 1 number of entries: 8 new row indices: 9 21 8 15 16 20 24 23 New column: 18 old column: 3 number of entries: 5 new row indices: 21 22 7 23 2 New column: 19 old column: 4 number of entries: 5 new row indices: 12 10 11 20 24 New column: 20 old column: 19 number of entries: 8 new row indices: 17 19 12 14 10 11 16 24 New column: 21 old column: 7 number of entries: 8 new row indices: 17 18 9 22 8 24 23 1 New column: 22 old column: 12 number of entries: 5 new row indices: 18 21 8 23 1 New column: 23 old column: 22 number of entries: 8 new row indices: 17 18 21 10 22 24 7 2 New column: 24 old column: 20 number of entries: 8 new row indices: 17 19 21 10 16 20 7 23 ------------------------------------------ ordering the matrix with AMDBAR ------------------------------------------ Permutation vector: 24 23 17 9 15 5 21 13 6 11 16 8 2 10 14 18 1 3 4 19 7 12 22 20 Inverse permutation vector: 17 13 18 19 6 9 21 12 4 14 10 22 8 15 5 11 3 16 20 24 7 23 2 1 Plot of permuted matrix pattern: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1: X . . . . . . X . . . . . . . . . . . . X X . . 2: . X . . . . X . . . . . . . . . . X . . . . X . 3: . . X . . X . . . . X X . . . . . . . . . . . . 4: . . . X X . . . . . . . X X . . . . . . . . . . 5: . . . X X X . . . . . X X X . . . . . . . . . . 6: . . X . X X . . . . X X . X . . . . . . . . . . 7: . X . . . . X . . X . . . . . . . X . . . . X X 8: X . . . . . . X X . . . . . . . X . . . X X . . 9: . . . . . . . X X . . . . . X X X . . . X . . . 10: . . . . . . X . . X . . . . . . . . X X . . X X 11: . . X . . X . . . . X X . . . . . . X X . . . . 12: . . X . X X . . . . X X . X . X . . X X . . . . 13: . . . X X . . . . . . . X X X X . . . . . . . . 14: . . . X X X . . . . . X X X X X . . . X . . . . 15: . . . . . . . . X . . . X X X X X . . . . . . . 16: . . . . . . . . X . . X X X X X X . . X . . . X 17: . . . . . . . X X . . . . . X X X . . X X . X X 18: . X . . . . X . . . . . . . . . . X . . X X X . 19: . . . . . . . . . X X X . . . . . . X X . . . X 20: . . . . . . . . . X X X . X . X X . X X . . . X 21: X . . . . . . X X . . . . . . . X X . . X X X X 22: X . . . . . . X . . . . . . . . . X . . X X X . 23: . X . . . . X . . X . . . . . . X X . . X X X X 24: . . . . . . X . . X . . . . . X X . X X X . X X New column: 1 old column: 24 number of entries: 3 new row indices: 21 22 8 New column: 2 old column: 23 number of entries: 3 new row indices: 18 7 23 New column: 3 old column: 17 number of entries: 3 new row indices: 6 12 11 New column: 4 old column: 9 number of entries: 3 new row indices: 13 14 5 New column: 5 old column: 15 number of entries: 5 new row indices: 13 6 12 4 14 New column: 6 old column: 5 number of entries: 5 new row indices: 12 14 5 11 3 New column: 7 old column: 21 number of entries: 5 new row indices: 18 10 24 23 2 New column: 8 old column: 13 number of entries: 5 new row indices: 17 9 21 22 1 New column: 9 old column: 6 number of entries: 5 new row indices: 17 21 8 15 16 New column: 10 old column: 11 number of entries: 5 new row indices: 19 20 24 7 23 New column: 11 old column: 16 number of entries: 5 new row indices: 19 6 12 3 20 New column: 12 old column: 8 number of entries: 8 new row indices: 19 6 14 5 11 3 16 20 New column: 13 old column: 2 number of entries: 5 new row indices: 4 14 15 5 16 New column: 14 old column: 10 number of entries: 8 new row indices: 13 6 12 4 15 5 16 20 New column: 15 old column: 14 number of entries: 5 new row indices: 17 13 9 14 16 New column: 16 old column: 18 number of entries: 8 new row indices: 17 13 9 12 14 15 20 24 New column: 17 old column: 1 number of entries: 8 new row indices: 9 21 8 15 16 20 24 23 New column: 18 old column: 3 number of entries: 5 new row indices: 21 22 7 23 2 New column: 19 old column: 4 number of entries: 5 new row indices: 12 10 11 20 24 New column: 20 old column: 19 number of entries: 8 new row indices: 17 19 12 14 10 11 16 24 New column: 21 old column: 7 number of entries: 8 new row indices: 17 18 9 22 8 24 23 1 New column: 22 old column: 12 number of entries: 5 new row indices: 18 21 8 23 1 New column: 23 old column: 22 number of entries: 8 new row indices: 17 18 21 10 22 24 7 2 New column: 24 old column: 20 number of entries: 8 new row indices: 17 19 21 10 16 20 7 23 SuiteSparse/AMD/Demo/amd_l_demo.c0000644001170100242450000001306710616376347015504 0ustar davisfac/* ========================================================================= */ /* === AMD demo main program (UF_long integer version) ===================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to AMD. */ #include "amd.h" #include #include #include "UFconfig.h" int main (void) { /* The symmetric can_24 Harwell/Boeing matrix, including upper and lower * triangular parts, and the diagonal entries. Note that this matrix is * 0-based, with row and column indices in the range 0 to n-1. */ UF_long n = 24, nz, Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100, 106, 110, 119, 128, 137, 143, 152, 156, 160 }, Ai [ ] = { /* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21, /* column 1: */ 1, 8, 9, 13, 14, 17, /* column 2: */ 2, 6, 11, 20, 21, 22, /* column 3: */ 3, 7, 10, 15, 18, 19, /* column 4: */ 4, 7, 9, 14, 15, 16, /* column 5: */ 0, 5, 6, 12, 13, 17, /* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23, /* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18, /* column 8: */ 1, 8, 9, 14, /* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18, /* column 10: */ 3, 10, 18, 19, 20, 21, /* column 11: */ 2, 6, 11, 12, 21, 23, /* column 12: */ 0, 5, 6, 11, 12, 23, /* column 13: */ 0, 1, 5, 9, 13, 17, /* column 14: */ 1, 4, 7, 8, 9, 14, /* column 15: */ 3, 4, 7, 15, 16, 18, /* column 16: */ 4, 7, 15, 16, /* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19, /* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19, /* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21, /* column 20: */ 2, 10, 19, 20, 21, 22, /* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22, /* column 22: */ 2, 20, 21, 22, /* column 23: */ 6, 11, 12, 23 } ; UF_long P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [AMD_CONTROL], Info [AMD_INFO] ; char A [24][24] ; /* here is an example of how to use AMD_VERSION. This code will work in * any version of AMD. */ #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE(1,2)) printf ("AMD version %d.%d, date: %s\n", AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_DATE) ; #else printf ("AMD version: 1.1 or earlier\n") ; #endif printf ("AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ amd_l_defaults (Control) ; amd_l_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nInput matrix: %ld-by-%ld, with %ld entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to AMD, since AMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since AMD ignores them.\n" , n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %ld, number of entries: %ld, with row indices in" " Ai [%ld ... %ld]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %ld", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = amd_l_order (n, Ap, Ai, P, Control, Info) ; printf ("return value from amd_l_order: %ld (should be %d)\n", result, AMD_OK) ; /* print the statistics */ amd_l_info (Info) ; if (result != AMD_OK) { printf ("AMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2ld", j) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2ld", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of permuted matrix pattern:\n") ; for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/AMD/Demo/amd_simple.out0000644001170100242450000000006210425660213016074 0ustar davisfacP [0] = 0 P [1] = 3 P [2] = 2 P [3] = 4 P [4] = 1 SuiteSparse/AMD/Demo/amd_f77wrapper.c0000644001170100242450000000636710616376335016253 0ustar davisfac/* ========================================================================= */ /* === amd_f77wrapper ====================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Fortran interface for the C-callable AMD library (int version only). This * is HIGHLY non-portable. You will need to modify this depending on how your * Fortran and C compilers behave. Two examples are provided. * * To avoid using I/O, and to avoid the extra porting step of a Fortran * function, the status code is returned as the first entry in P (P [0] in C * and P (1) in Fortran) if an error occurs. The error codes are negative * (-1: out of memory, -2: invalid matrix). * * For some C and Fortran compilers, the Fortran compiler appends a single "_" * after each routine name. C doesn't do this, so the translation is made * here. Some Fortran compilers don't append an underscore (xlf on IBM AIX, * for * example). * * Tested with the following compilers: * Solaris with cc and f77 from Sun WorkShop 6 update 1. * SGI Irix with MIPSpro cc and f77 compilers version 7.4 * Linux with GNU gcc or Intel's icc, and GNU g77 Intel's ifc Fortran compiler. * (any combination). Note that with g77, a call to amd_order in Fortran * gets translated to a call to amd_order__, with two underscores ("_"). * Thus, the Fortran names do not include an underscore. */ #include "amd.h" #include /* ------------------------------------------------------------------------- */ /* Linux, Solaris, SGI */ /* ------------------------------------------------------------------------- */ void amdorder_ (int *n, const int *Ap, const int *Ai, int *P, double *Control, double *Info) { int result = amd_order (*n, Ap, Ai, P, Control, Info) ; if (result != AMD_OK && P) P [0] = result ; } void amddefaults_ (double *Control) { amd_defaults (Control) ; } void amdcontrol_ (double *Control) { fflush (stdout) ; amd_control (Control) ; fflush (stdout) ; } void amdinfo_ (double *Info) { fflush (stdout) ; amd_info (Info) ; fflush (stdout) ; } /* ------------------------------------------------------------------------- */ /* IBM AIX. Probably Windows, Compaq Alpha, and HP Unix as well. */ /* ------------------------------------------------------------------------- */ void amdorder (int *n, const int *Ap, const int *Ai, int *P, double *Control, double *Info) { int result = amd_order (*n, Ap, Ai, P, Control, Info) ; if (result != AMD_OK && P) P [0] = result ; } void amddefaults (double *Control) { amd_defaults (Control) ; } void amdcontrol (double *Control) { fflush (stdout) ; amd_control (Control) ; fflush (stdout) ; } void amdinfo (double *Info) { fflush (stdout) ; amd_info (Info) ; fflush (stdout) ; } SuiteSparse/AMD/Demo/amd_f77demo.f0000644001170100242450000001437510616376317015520 0ustar davisfacC ====================================================================== C === Fortran AMD demo main program ==================================== C ====================================================================== C ---------------------------------------------------------------------- C AMD, Copyright (c) by Timothy A. Davis, Patrick R. C Amestoy, and Iain S. Duff. See ../README.txt for C License. email: davis at cise.ufl.edu CISE Department, Univ. of C Florida. web: http://www.cise.ufl.edu/research/sparse/amd C ---------------------------------------------------------------------- C A simple Fortran 77 main program that illustrates the use of the C Fortran version of AMD (both the AMD and AMDBAR routines). Note C that aggressive absorption has no effect on this particular matrix. C AP and AI contain the symmetric can_24 Harwell/Boeing matrix, C including upper and lower triangular parts, but excluding the C diagonal entries. Note that this matrix is 1-based, with row C and column indices in the range 1 to N. INTEGER N, NZ, IWLEN, PFREE, I, J, K, JNEW, P, INEW, $ METHOD, NCMPA PARAMETER (N = 24, NZ = 136, IWLEN = 200) INTEGER PE (N), DEGREE (N), NV (N), NEXT (N), PERM (N), W (N), $ HEAD (N), PINV (N), LEN (N), AP (N+1), AI (NZ), IW (IWLEN) CHARACTER A (24,24) DATA AP $ / 1, 9, 14, 19, 24, 29, 34, 42, 50, 53, 61, 66, 71, $ 76, 81, 86, 91, 94, 102, 110, 118, 123, 131, 134, 137 / DATA AI / $ 6, 7, 13, 14, 18, 19, 20, 22, $ 9, 10, 14, 15, 18, $ 7, 12, 21, 22, 23, $ 8, 11, 16, 19, 20, $ 8, 10, 15, 16, 17, $ 1, 7, 13, 14, 18, $ 1, 3, 6, 12, 13, 20, 22, 24, $ 4, 5, 10, 15, 16, 17, 18, 19, $ 2, 10, 15, $ 2, 5, 8, 9, 14, 15, 18, 19, $ 4, 19, 20, 21, 22, $ 3, 7, 13, 22, 24, $ 1, 6, 7, 12, 24, $ 1, 2, 6, 10, 18, $ 2, 5, 8, 9, 10, $ 4, 5, 8, 17, 19, $ 5, 8, 16, $ 1, 2, 6, 8, 10, 14, 19, 20, $ 1, 4, 8, 10, 11, 16, 18, 20, $ 1, 4, 7, 11, 18, 19, 21, 22, $ 3, 11, 20, 22, 23, $ 1, 3, 7, 11, 12, 20, 21, 23, $ 3, 21, 22, $ 7, 12, 13 / C print the input matrix PRINT 11, N, N, NZ 11 FORMAT ('AMD Fortran 77 demo, with the 24-by-24', $ ' Harwell/Boeing matrix, can_24:' $ /, 'Input matrix: ', I2, '-by-', I2,' with ',I3,' entries', $ /, 'Note that the Fortran version of AMD requires that' $ /, 'no diagonal entries be present.') DO 20 J = 1, N PRINT 21, J, AP (J+1) - AP (J), AP (J), AP (J+1)-1 21 FORMAT ( /, 'Column: ', I2, ' number of entries: ', I2, $ ' with row indices in AI (', I3, ' ... ', I3, ')') PRINT 10, ((AI (P)), P = AP (J), AP (J+1) - 1) 10 FORMAT (' row indices: ', 24I3) 20 CONTINUE C print a character plot of the input matrix. This is only C reasonable because the matrix is small. PRINT 31 31 FORMAT ('Plot of input matrix pattern:') DO 50 J = 1,N DO 30 I = 1,N A (I, J) = '.' 30 CONTINUE C add the diagonal entry to the plot A (J, J) = 'X' DO 40 P = AP (J), AP (J+1) - 1 I = AI (P) A (I, J) = 'X' 40 CONTINUE 50 CONTINUE PRINT 60, ((MOD (J, 10)), J = 1,N) 60 FORMAT (' ', 24I2) DO 80 I = 1,N PRINT 70, I, (A (I, J), J = 1,N) 70 FORMAT (' ', I2, ': ', 24A2) 80 CONTINUE DO 190 METHOD = 1,2 C load the matrix into AMD's workspace DO 90 J = 1,N PE (J) = AP (J) LEN (J) = AP (J+1) - AP (J) 90 CONTINUE DO 100 P = 1,NZ IW (P) = AI (P) 100 CONTINUE PFREE = NZ + 1 C order the matrix using AMD or AMDBAR IF (METHOD .EQ. 1) THEN PRINT 101 101 FORMAT (/, '------------------------------------------', $ /, 'ordering the matrix with AMD', $ /, '------------------------------------------') CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ PERM, HEAD, PINV, DEGREE, NCMPA, W) ELSE PRINT 102 102 FORMAT (/, '------------------------------------------', $ /, 'ordering the matrix with AMDBAR', $ /, '------------------------------------------') CALL AMDBAR (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ PERM, HEAD, PINV, DEGREE, NCMPA, W) ENDIF C print the permutation vector, PERM, and its inverse, PINV. C row/column J = PERM (K) is the Kth row/column in the C permuted matrix. PRINT 110, (PERM (K), K = 1,N) 110 FORMAT (/, 'Permutation vector: ', /, 24I3) PRINT 120, (PINV (J), J = 1,N) 120 FORMAT (/, 'Inverse permutation vector: ', /, 24I3) C print a character plot of the permuted matrix. PRINT 121 121 FORMAT ('Plot of permuted matrix pattern:') DO 150 JNEW = 1,N J = PERM (JNEW) DO 130 INEW = 1,N A (INEW, JNEW) = '.' 130 CONTINUE C add the diagonal entry to the plot A (JNEW, JNEW) = 'X' DO 140 P = AP (J), AP (J+1) - 1 INEW = PINV (AI (P)) A (INEW, JNEW) = 'X' 140 CONTINUE 150 CONTINUE PRINT 60, ((MOD (J, 10)), J = 1,N) DO 160 I = 1,N PRINT 70, I, (A (I, J), J = 1,N) 160 CONTINUE C print the permuted matrix, PERM*A*PERM' DO 180 JNEW = 1,N J = PERM (JNEW) PRINT 171, JNEW, J, AP (J+1) - AP (J) 171 FORMAT (/, 'New column: ', I2, ' old column: ', I2, $ ' number of entries: ', I2) PRINT 170, (PINV (AI (P)), P = AP (J), AP (J+1) - 1) 170 FORMAT (' new row indices: ', 24I3) 180 CONTINUE 190 CONTINUE END SuiteSparse/AMD/Demo/amd_demo.out0000644001170100242450000001664210616431751015547 0ustar davisfacAMD version 2.2, date: May 31, 2007 AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 Input matrix: 24-by-24, with 160 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to AMD, since AMD computes the ordering of A+A'. The diagonal entries are also not needed, since AMD ignores them. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 5 6 12 13 17 18 19 21 Column: 1, number of entries: 6, with row indices in Ai [9 ... 14]: row indices: 1 8 9 13 14 17 Column: 2, number of entries: 6, with row indices in Ai [15 ... 20]: row indices: 2 6 11 20 21 22 Column: 3, number of entries: 6, with row indices in Ai [21 ... 26]: row indices: 3 7 10 15 18 19 Column: 4, number of entries: 6, with row indices in Ai [27 ... 32]: row indices: 4 7 9 14 15 16 Column: 5, number of entries: 6, with row indices in Ai [33 ... 38]: row indices: 0 5 6 12 13 17 Column: 6, number of entries: 9, with row indices in Ai [39 ... 47]: row indices: 0 2 5 6 11 12 19 21 23 Column: 7, number of entries: 9, with row indices in Ai [48 ... 56]: row indices: 3 4 7 9 14 15 16 17 18 Column: 8, number of entries: 4, with row indices in Ai [57 ... 60]: row indices: 1 8 9 14 Column: 9, number of entries: 9, with row indices in Ai [61 ... 69]: row indices: 1 4 7 8 9 13 14 17 18 Column: 10, number of entries: 6, with row indices in Ai [70 ... 75]: row indices: 3 10 18 19 20 21 Column: 11, number of entries: 6, with row indices in Ai [76 ... 81]: row indices: 2 6 11 12 21 23 Column: 12, number of entries: 6, with row indices in Ai [82 ... 87]: row indices: 0 5 6 11 12 23 Column: 13, number of entries: 6, with row indices in Ai [88 ... 93]: row indices: 0 1 5 9 13 17 Column: 14, number of entries: 6, with row indices in Ai [94 ... 99]: row indices: 1 4 7 8 9 14 Column: 15, number of entries: 6, with row indices in Ai [100 ... 105]: row indices: 3 4 7 15 16 18 Column: 16, number of entries: 4, with row indices in Ai [106 ... 109]: row indices: 4 7 15 16 Column: 17, number of entries: 9, with row indices in Ai [110 ... 118]: row indices: 0 1 5 7 9 13 17 18 19 Column: 18, number of entries: 9, with row indices in Ai [119 ... 127]: row indices: 0 3 7 9 10 15 17 18 19 Column: 19, number of entries: 9, with row indices in Ai [128 ... 136]: row indices: 0 3 6 10 17 18 19 20 21 Column: 20, number of entries: 6, with row indices in Ai [137 ... 142]: row indices: 2 10 19 20 21 22 Column: 21, number of entries: 9, with row indices in Ai [143 ... 151]: row indices: 0 2 6 10 11 19 20 21 22 Column: 22, number of entries: 4, with row indices in Ai [152 ... 155]: row indices: 2 20 21 22 Column: 23, number of entries: 4, with row indices in Ai [156 ... 159]: row indices: 6 11 12 23 Plot of input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from amd_order: 0 (should be 0) AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 Inverse permutation vector: 16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3 Plot of permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X X . . . . . . . . . . . . . . . X . . . . X . 1: X X X . . . . . . . . . . . . . . X . . . . X X 2: . X X . . . . . . . . . . . . . . . X . . X X X 3: . . . X X . . . . . . . . . . . . . . X X . . . 4: . . . X X X . . . . . . . . . . X . . X X . . . 5: . . . . X X . . . . . . . . X X X . . X . . . . 6: . . . . . . X . . X X X . . . . . . . . . . . . 7: . . . . . . . X X . . . X X . . . . . . . . . . 8: . . . . . . . X X X . X X X . . . . . . . . . . 9: . . . . . . X . X X X X . X . . . . . . . . . . 10: . . . . . . X . . X X X . . . . . . X . . X . . 11: . . . . . . X . X X X X . X . X . . X . . X . . 12: . . . . . . . X X . . . X X X X . . . . . . . . 13: . . . . . . . X X X . X X X X X . . . . . X . . 14: . . . . . X . . . . . . X X X X X . . . . . . . 15: . . . . . X . . . . . X X X X X X . . . . X . X 16: . . . . X X . . . . . . . . X X X . . X . X X X 17: X X . . . . . . . . . . . . . . . X . X X . X . 18: . . X . . . . . . . X X . . . . . . X . . X . X 19: . . . X X X . . . . . . . . . . X X . X X . X X 20: . . . X X . . . . . . . . . . . . X . X X . X . 21: . . X . . . . . . . X X . X . X X . X . . X . X 22: X X X . . . . . . . . . . . . . X X . X X . X X 23: . X X . . . . . . . . . . . . X X . X X . X X X SuiteSparse/AMD/Demo/amd_f77simple.out0000644001170100242450000000007410250414043016415 0ustar davisfacP ( 1) = 4 P ( 2) = 1 P ( 3) = 3 P ( 4) = 5 P ( 5) = 2 SuiteSparse/AMD/Demo/amd_demo.c0000644001170100242450000001300010616376270015147 0ustar davisfac/* ========================================================================= */ /* === AMD demo main program =============================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to AMD. */ #include "amd.h" #include #include int main (void) { /* The symmetric can_24 Harwell/Boeing matrix, including upper and lower * triangular parts, and the diagonal entries. Note that this matrix is * 0-based, with row and column indices in the range 0 to n-1. */ int n = 24, nz, Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100, 106, 110, 119, 128, 137, 143, 152, 156, 160 }, Ai [ ] = { /* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21, /* column 1: */ 1, 8, 9, 13, 14, 17, /* column 2: */ 2, 6, 11, 20, 21, 22, /* column 3: */ 3, 7, 10, 15, 18, 19, /* column 4: */ 4, 7, 9, 14, 15, 16, /* column 5: */ 0, 5, 6, 12, 13, 17, /* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23, /* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18, /* column 8: */ 1, 8, 9, 14, /* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18, /* column 10: */ 3, 10, 18, 19, 20, 21, /* column 11: */ 2, 6, 11, 12, 21, 23, /* column 12: */ 0, 5, 6, 11, 12, 23, /* column 13: */ 0, 1, 5, 9, 13, 17, /* column 14: */ 1, 4, 7, 8, 9, 14, /* column 15: */ 3, 4, 7, 15, 16, 18, /* column 16: */ 4, 7, 15, 16, /* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19, /* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19, /* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21, /* column 20: */ 2, 10, 19, 20, 21, 22, /* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22, /* column 22: */ 2, 20, 21, 22, /* column 23: */ 6, 11, 12, 23 } ; int P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [AMD_CONTROL], Info [AMD_INFO] ; char A [24][24] ; /* here is an example of how to use AMD_VERSION. This code will work in * any version of AMD. */ #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE(1,2)) printf ("AMD version %d.%d, date: %s\n", AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_DATE) ; #else printf ("AMD version: 1.1 or earlier\n") ; #endif printf ("AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ amd_defaults (Control) ; amd_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nInput matrix: %d-by-%d, with %d entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to AMD, since AMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since AMD ignores them.\n" , n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %d, number of entries: %d, with row indices in" " Ai [%d ... %d]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %d", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = amd_order (n, Ap, Ai, P, Control, Info) ; printf ("return value from amd_order: %d (should be %d)\n", result, AMD_OK) ; /* print the statistics */ amd_info (Info) ; if (result != AMD_OK) { printf ("AMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2d", j) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2d", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of permuted matrix pattern:\n") ; for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/AMD/Demo/amd_demo2.c0000644001170100242450000001413610616376252015244 0ustar davisfac/* ========================================================================= */ /* === AMD demo main program (jumbled matrix version) ====================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to AMD. * * Identical to amd_demo.c, except that it operates on an input matrix that has * unsorted columns and duplicate entries. */ #include "amd.h" #include #include int main (void) { /* The symmetric can_24 Harwell/Boeing matrix (jumbled, and not symmetric). * Since AMD operates on A+A', only A(i,j) or A(j,i) need to be specified, * or both. The diagonal entries are optional (some are missing). * There are many duplicate entries, which must be removed. */ int n = 24, nz, Ap [ ] = { 0, 9, 14, 20, 28, 33, 37, 44, 53, 58, 63, 63, 66, 69, 72, 75, 78, 82, 86, 91, 97, 101, 112, 112, 116 }, Ai [ ] = { /* column 0: */ 0, 17, 18, 21, 5, 12, 5, 0, 13, /* column 1: */ 14, 1, 8, 13, 17, /* column 2: */ 2, 20, 11, 6, 11, 22, /* column 3: */ 3, 3, 10, 7, 18, 18, 15, 19, /* column 4: */ 7, 9, 15, 14, 16, /* column 5: */ 5, 13, 6, 17, /* column 6: */ 5, 0, 11, 6, 12, 6, 23, /* column 7: */ 3, 4, 9, 7, 14, 16, 15, 17, 18, /* column 8: */ 1, 9, 14, 14, 14, /* column 9: */ 7, 13, 8, 1, 17, /* column 10: */ /* column 11: */ 2, 12, 23, /* column 12: */ 5, 11, 12, /* column 13: */ 0, 13, 17, /* column 14: */ 1, 9, 14, /* column 15: */ 3, 15, 16, /* column 16: */ 16, 4, 4, 15, /* column 17: */ 13, 17, 19, 17, /* column 18: */ 15, 17, 19, 9, 10, /* column 19: */ 17, 19, 20, 0, 6, 10, /* column 20: */ 22, 10, 20, 21, /* column 21: */ 6, 2, 10, 19, 20, 11, 21, 22, 22, 22, 22, /* column 22: */ /* column 23: */ 12, 11, 12, 23 } ; int P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [AMD_CONTROL], Info [AMD_INFO] ; char A [24][24] ; printf ("AMD demo, with a jumbled version of the 24-by-24\n") ; printf ("Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ amd_defaults (Control) ; amd_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nJumbled input matrix: %d-by-%d, with %d entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to AMD, since AMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since AMD ignores them.\n" " This version of the matrix has jumbled columns and duplicate\n" " row indices.\n", n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %d, number of entries: %d, with row indices in" " Ai [%d ... %d]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %d", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of (jumbled) input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* print a character plot of the matrix A+A'. */ printf ("\nPlot of symmetric matrix to be ordered by amd_order:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; } for (j = 0 ; j < n ; j++) { A [j][j] = 'X' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; A [j][i] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = amd_order (n, Ap, Ai, P, Control, Info) ; printf ("return value from amd_order: %d (should be %d)\n", result, AMD_OK_BUT_JUMBLED) ; /* print the statistics */ amd_info (Info) ; if (result != AMD_OK_BUT_JUMBLED) { printf ("AMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2d", j) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2d", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of (symmetrized) permuted matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; } for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; A [jnew][jnew] = 'X' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; A [jnew][inew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/AMD/Makefile0000644001170100242450000000326310617136643014023 0ustar davisfac#------------------------------------------------------------------------------ # AMD Makefile (for GNU Make or original make) #------------------------------------------------------------------------------ default: demo include ../UFconfig/UFconfig.mk # Compile all C code, including the C-callable routines. # Do not compile the FORTRAN versions, or MATLAB interface. demo: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile all C code, including the C-callable routine and the mexFunctions. # Do not compile the FORTRAN versions. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # compile just the C-callable libraries (not mexFunctions or Demos) library: ( cd Lib ; $(MAKE) ) # compile the FORTRAN libraries and demo programs (not compiled by "make all") fortran: ( cd Lib ; $(MAKE) fortran ) ( cd Demo ; $(MAKE) fortran ) # compile a FORTRAN demo program that calls the C version of AMD # (not compiled by "make all") cross: ( cd Demo ; $(MAKE) cross ) # remove object files, but keep the compiled programs and library archives clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) ( cd Doc ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) ( cd Doc ; $(MAKE) purge ) distclean: purge # create PDF documents for the original distribution doc: ( cd Doc ; $(MAKE) ) # get ready for distribution dist: purge ( cd Demo ; $(MAKE) dist ) ( cd Doc ; $(MAKE) ) ccode: library lib: library # compile the MATLAB mexFunction mex: ( cd MATLAB ; $(MAKE) ) SuiteSparse/AMD/MATLAB/0000755001170100242450000000000010711653375013320 5ustar davisfacSuiteSparse/AMD/MATLAB/Makefile0000644001170100242450000000210310616365605014754 0ustar davisfac#------------------------------------------------------------------------------ # Makefile for the AMD MATLAB mexFunction #------------------------------------------------------------------------------ default: amd2 include ../../UFconfig/UFconfig.mk AMD = ../Lib/libamd.a I = -I../Include -I../../UFconfig INC = ../Include/amd.h ../Include/amd_internal.h ../../UFconfig/UFconfig.h SRC = ../Source/amd_1.c ../Source/amd_2.c ../Source/amd_aat.c \ ../Source/amd_control.c ../Source/amd_defaults.c ../Source/amd_dump.c \ ../Source/amd_global.c ../Source/amd_info.c ../Source/amd_order.c \ ../Source/amd_postorder.c ../Source/amd_post_tree.c \ ../Source/amd_preprocess.c ../Source/amd_valid.c amd2: $(SRC) $(INC) amd_mex.c $(MEX) -DDLONG $(I) -output amd2 amd_mex.c $(SRC) #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) amd2.mex* SuiteSparse/AMD/MATLAB/Contents.m0000644001170100242450000000114410620366115015263 0ustar davisfac%Contents of the AMD sparse matrix ordering package: % % amd2 - p = amd2 (A), the approximate minimum degree ordering of A % amd_demo - a demo of amd2, using the can_24 matrix % amd_make - to compile amd2 for use in MATLAB % amd_install - compile and install amd2 for use in MATLAB % % See also: amd, amd2, colamd, symamd, colmmd, symmmd, umfpack % % Note that amd2 and the built-in amd function in MATLAB 7.3 and later are one % and the same. % % Example: % p = amd2 (A) ; % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, and Iain S. Duff. help Contents SuiteSparse/AMD/MATLAB/amd_mex.c0000644001170100242450000001364310616377050015102 0ustar davisfac/* ========================================================================= */ /* === AMD mexFunction ===================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* * Usage: * p = amd (A) * p = amd (A, Control) * [p, Info] = amd (A) * [p, Info] = amd (A, Control) * Control = amd ; % return the default Control settings for AMD * amd ; % print the default Control settings for AMD * * Given a square matrix A, compute a permutation P suitable for a Cholesky * factorization of the matrix B (P,P), where B = spones (A) + spones (A'). * The method used is the approximate minimum degree ordering method. See * amd.m and amd.h for more information. * * The input matrix need not have sorted columns, and can have duplicate * entries. */ #include "amd.h" #include "mex.h" #include "matrix.h" #include "UFconfig.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { UF_long i, m, n, *Ap, *Ai, *P, nc, result, spumoni, full ; double *Pout, *InfoOut, Control [AMD_CONTROL], Info [AMD_INFO], *ControlIn ; mxArray *A ; /* --------------------------------------------------------------------- */ /* get control parameters */ /* --------------------------------------------------------------------- */ amd_malloc = mxMalloc ; amd_free = mxFree ; amd_calloc = mxCalloc ; amd_realloc = mxRealloc ; amd_printf = mexPrintf ; spumoni = 0 ; if (nargin == 0) { /* get the default control parameters, and return */ pargout [0] = mxCreateDoubleMatrix (AMD_CONTROL, 1, mxREAL) ; amd_l_defaults (mxGetPr (pargout [0])) ; if (nargout == 0) { amd_l_control (mxGetPr (pargout [0])) ; } return ; } amd_l_defaults (Control) ; if (nargin > 1) { ControlIn = mxGetPr (pargin [1]) ; nc = mxGetM (pargin [1]) * mxGetN (pargin [1]) ; Control [AMD_DENSE] = (nc > 0) ? ControlIn [AMD_DENSE] : AMD_DEFAULT_DENSE ; Control [AMD_AGGRESSIVE] = (nc > 1) ? ControlIn [AMD_AGGRESSIVE] : AMD_DEFAULT_AGGRESSIVE ; spumoni = (nc > 2) ? (ControlIn [2] != 0) : 0 ; } if (spumoni > 0) { amd_l_control (Control) ; } /* --------------------------------------------------------------------- */ /* get inputs */ /* --------------------------------------------------------------------- */ if (nargout > 2 || nargin > 2) { mexErrMsgTxt ("Usage: p = amd (A)\nor [p, Info] = amd (A, Control)") ; } A = (mxArray *) pargin [0] ; n = mxGetN (A) ; m = mxGetM (A) ; if (spumoni > 0) { mexPrintf (" input matrix A is %d-by-%d\n", m, n) ; } if (mxGetNumberOfDimensions (A) != 2) { mexErrMsgTxt ("amd: A must be 2-dimensional") ; } if (m != n) { mexErrMsgTxt ("amd: A must be square") ; } /* --------------------------------------------------------------------- */ /* allocate workspace for output permutation */ /* --------------------------------------------------------------------- */ P = mxMalloc ((n+1) * sizeof (UF_long)) ; /* --------------------------------------------------------------------- */ /* if A is full, convert to a sparse matrix */ /* --------------------------------------------------------------------- */ full = !mxIsSparse (A) ; if (full) { if (spumoni > 0) { mexPrintf ( " input matrix A is full (sparse copy of A will be created)\n"); } mexCallMATLAB (1, &A, 1, (mxArray **) pargin, "sparse") ; } Ap = (UF_long *) mxGetJc (A) ; Ai = (UF_long *) mxGetIr (A) ; if (spumoni > 0) { mexPrintf (" input matrix A has %d nonzero entries\n", Ap [n]) ; } /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ result = amd_l_order (n, Ap, Ai, P, Control, Info) ; /* --------------------------------------------------------------------- */ /* if A is full, free the sparse copy of A */ /* --------------------------------------------------------------------- */ if (full) { mxDestroyArray (A) ; } /* --------------------------------------------------------------------- */ /* print results (including return value) */ /* --------------------------------------------------------------------- */ if (spumoni > 0) { amd_l_info (Info) ; } /* --------------------------------------------------------------------- */ /* check error conditions */ /* --------------------------------------------------------------------- */ if (result == AMD_OUT_OF_MEMORY) { mexErrMsgTxt ("amd: out of memory") ; } else if (result == AMD_INVALID) { mexErrMsgTxt ("amd: input matrix A is corrupted") ; } /* --------------------------------------------------------------------- */ /* copy the outputs to MATLAB */ /* --------------------------------------------------------------------- */ /* output permutation, P */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; Pout = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) { Pout [i] = P [i] + 1 ; /* change to 1-based indexing for MATLAB */ } mxFree (P) ; /* Info */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (AMD_INFO, 1, mxREAL) ; InfoOut = mxGetPr (pargout [1]) ; for (i = 0 ; i < AMD_INFO ; i++) { InfoOut [i] = Info [i] ; } } } SuiteSparse/AMD/MATLAB/amd2.m0000644001170100242450000001000710620366010014301 0ustar davisfacfunction [p, Info] = amd2 (A, Control) %#ok %AMD2 p = amd2 (A), the approximate minimum degree ordering of A % P = AMD2 (S) returns the approximate minimum degree permutation vector for % the sparse matrix C = S+S'. The Cholesky factorization of C (P,P), or % S (P,P), tends to be sparser than that of C or S. AMD tends to be faster % than SYMMMD and SYMAMD, and tends to return better orderings than SYMMMD. % S must be square. If S is full, amd(S) is equivalent to amd(sparse(S)). % % Note that the built-in AMD routine in MATLAB is identical to AMD2, % except that AMD in MATLAB allows for a struct input to set the parameters. % % Usage: P = amd2 (S) ; % finds the ordering % [P, Info] = amd2 (S, Control) ; % optional parameters & statistics % Control = amd2 ; % returns default parameters % amd2 ; % prints default parameters. % % Control (1); If S is n-by-n, then rows/columns with more than % max (16, (Control (1))* sqrt(n)) entries in S+S' are considered % "dense", and ignored during ordering. They are placed last in the % output permutation. The default is 10.0 if Control is not present. % Control (2): If nonzero, then aggressive absorption is performed. % This is the default if Control is not present. % Control (3): If nonzero, print statistics about the ordering. % % Info (1): status (0: ok, -1: out of memory, -2: matrix invalid) % Info (2): n = size (A,1) % Info (3): nnz (A) % Info (4): the symmetry of the matrix S (0.0 means purely unsymmetric, % 1.0 means purely symmetric). Computed as: % B = tril (S, -1) + triu (S, 1) ; symmetry = nnz (B & B') / nnz (B); % Info (5): nnz (diag (S)) % Info (6): nnz in S+S', excluding the diagonal (= nnz (B+B')) % Info (7): number "dense" rows/columns in S+S' % Info (8): the amount of memory used by AMD, in bytes % Info (9): the number of memory compactions performed by AMD % % The following statistics are slight upper bounds because of the % approximate degree in AMD. The bounds are looser if "dense" rows/columns % are ignored during ordering (Info (7) > 0). The statistics are for a % subsequent factorization of the matrix C (P,P). The LU factorization % statistics assume no pivoting. % % Info (10): the number of nonzeros in L, excluding the diagonal % Info (11): the number of divide operations for LL', LDL', or LU % Info (12): the number of multiply-subtract pairs for LL' or LDL' % Info (13): the number of multiply-subtract pairs for LU % Info (14): the max # of nonzeros in any column of L (incl. diagonal) % Info (15:20): unused, reserved for future use % % An assembly tree post-ordering is performed, which is typically the same % as an elimination tree post-ordering. It is not always identical because % of the approximate degree update used, and because "dense" rows/columns % do not take part in the post-order. It well-suited for a subsequent % "chol", however. If you require a precise elimination tree post-ordering, % then see the example below: % % Example: % % P = amd2 (S) ; % C = spones (S) + spones (S') ; % skip this if S already symmetric % [ignore, Q] = etree (C (P,P)) ; % P = P (Q) ; % % See also AMD, COLMMD, COLAMD, COLPERM, SYMAMD, SYMMMD, SYMRCM. % -------------------------------------------------------------------------- % Copyright 1994-2007, Tim Davis, University of Florida % Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. % email: davis at cise.ufl.edu CISE Department, Univ. of Florida. % web: http://www.cise.ufl.edu/research/sparse/amd % -------------------------------------------------------------------------- % % Acknowledgements: This work was supported by the National Science % Foundation, under grants ASC-9111263, DMS-9223088, and CCR-0203270. error ('amd2 mexFunction not found') ; SuiteSparse/AMD/MATLAB/can_240000644001170100242450000000240010301472250014267 0ustar davisfac 1 1 1 6 1 1 7 1 1 13 1 1 14 1 1 18 1 1 19 1 1 20 1 1 22 1 1 2 2 1 9 2 1 10 2 1 14 2 1 15 2 1 18 2 1 3 3 1 7 3 1 12 3 1 21 3 1 22 3 1 23 3 1 4 4 1 8 4 1 11 4 1 16 4 1 19 4 1 20 4 1 5 5 1 8 5 1 10 5 1 15 5 1 16 5 1 17 5 1 1 6 1 6 6 1 7 6 1 13 6 1 14 6 1 18 6 1 1 7 1 3 7 1 6 7 1 7 7 1 12 7 1 13 7 1 20 7 1 22 7 1 24 7 1 4 8 1 5 8 1 8 8 1 10 8 1 15 8 1 16 8 1 17 8 1 18 8 1 19 8 1 2 9 1 9 9 1 10 9 1 15 9 1 2 10 1 5 10 1 8 10 1 9 10 1 10 10 1 14 10 1 15 10 1 18 10 1 19 10 1 4 11 1 11 11 1 19 11 1 20 11 1 21 11 1 22 11 1 3 12 1 7 12 1 12 12 1 13 12 1 22 12 1 24 12 1 1 13 1 6 13 1 7 13 1 12 13 1 13 13 1 24 13 1 1 14 1 2 14 1 6 14 1 10 14 1 14 14 1 18 14 1 2 15 1 5 15 1 8 15 1 9 15 1 10 15 1 15 15 1 4 16 1 5 16 1 8 16 1 16 16 1 17 16 1 19 16 1 5 17 1 8 17 1 16 17 1 17 17 1 1 18 1 2 18 1 6 18 1 8 18 1 10 18 1 14 18 1 18 18 1 19 18 1 20 18 1 1 19 1 4 19 1 8 19 1 10 19 1 11 19 1 16 19 1 18 19 1 19 19 1 20 19 1 1 20 1 4 20 1 7 20 1 11 20 1 18 20 1 19 20 1 20 20 1 21 20 1 22 20 1 3 21 1 11 21 1 20 21 1 21 21 1 22 21 1 23 21 1 1 22 1 3 22 1 7 22 1 11 22 1 12 22 1 20 22 1 21 22 1 22 22 1 23 22 1 3 23 1 21 23 1 22 23 1 23 23 1 7 24 1 12 24 1 13 24 1 24 24 1 SuiteSparse/AMD/MATLAB/amd_install.m0000644001170100242450000000110510620366052015752 0ustar davisfacfunction amd_install %AMD_INSTALL compile and install amd2 for use in MATLAB % Your current directory must be AMD/MATLAB for this function to work. % % Example: % amd_install % % See also amd, amd2. % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, and Iain S. Duff. % This orders the same matrix as the ANSI C demo, amd_demo.c. It includes an amd_make addpath (pwd) fprintf ('\nThe following path has been added. You may wish to add it\n') ; fprintf ('permanently, using the MATLAB pathtool command.\n') ; fprintf ('%s\n\n', pwd) ; amd_demo SuiteSparse/AMD/MATLAB/amd_demo.m.out0000644001170100242450000001355610620423605016051 0ustar davisfacamd_demo AMD2 p = amd2 (A), the approximate minimum degree ordering of A P = AMD2 (S) returns the approximate minimum degree permutation vector for the sparse matrix C = S+S'. The Cholesky factorization of C (P,P), or S (P,P), tends to be sparser than that of C or S. AMD tends to be faster than SYMMMD and SYMAMD, and tends to return better orderings than SYMMMD. S must be square. If S is full, amd(S) is equivalent to amd(sparse(S)). Note that the built-in AMD routine in MATLAB is identical to AMD2, except that AMD in MATLAB allows for a struct input to set the parameters. Usage: P = amd2 (S) ; % finds the ordering [P, Info] = amd2 (S, Control) ; % optional parameters & statistics Control = amd2 ; % returns default parameters amd2 ; % prints default parameters. Control (1); If S is n-by-n, then rows/columns with more than max (16, (Control (1))* sqrt(n)) entries in S+S' are considered "dense", and ignored during ordering. They are placed last in the output permutation. The default is 10.0 if Control is not present. Control (2): If nonzero, then aggressive absorption is performed. This is the default if Control is not present. Control (3): If nonzero, print statistics about the ordering. Info (1): status (0: ok, -1: out of memory, -2: matrix invalid) Info (2): n = size (A,1) Info (3): nnz (A) Info (4): the symmetry of the matrix S (0.0 means purely unsymmetric, 1.0 means purely symmetric). Computed as: B = tril (S, -1) + triu (S, 1) ; symmetry = nnz (B & B') / nnz (B); Info (5): nnz (diag (S)) Info (6): nnz in S+S', excluding the diagonal (= nnz (B+B')) Info (7): number "dense" rows/columns in S+S' Info (8): the amount of memory used by AMD, in bytes Info (9): the number of memory compactions performed by AMD The following statistics are slight upper bounds because of the approximate degree in AMD. The bounds are looser if "dense" rows/columns are ignored during ordering (Info (7) > 0). The statistics are for a subsequent factorization of the matrix C (P,P). The LU factorization statistics assume no pivoting. Info (10): the number of nonzeros in L, excluding the diagonal Info (11): the number of divide operations for LL', LDL', or LU Info (12): the number of multiply-subtract pairs for LL' or LDL' Info (13): the number of multiply-subtract pairs for LU Info (14): the max # of nonzeros in any column of L (incl. diagonal) Info (15:20): unused, reserved for future use An assembly tree post-ordering is performed, which is typically the same as an elimination tree post-ordering. It is not always identical because of the approximate degree update used, and because "dense" rows/columns do not take part in the post-order. It well-suited for a subsequent "chol", however. If you require a precise elimination tree post-ordering, then see the example below: Example: P = amd2 (S) ; C = spones (S) + spones (S') ; % skip this if S already symmetric [ignore, Q] = etree (C (P,P)) ; P = P (Q) ; See also AMD, COLMMD, COLAMD, COLPERM, SYMAMD, SYMMMD, SYMRCM. If the next step fails, then you have not yet compiled the AMD mexFunction. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 input matrix A is 24-by-24 input matrix A has 160 nonzero entries AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 23 21 11 24 13 6 17 9 15 5 16 8 2 10 14 18 1 3 4 7 12 19 22 20 Analyze A(p,p) with MATLAB's symbfact routine: number of nonzeros in L (including diagonal): 120 floating point operation count for chol (A (p,p)): 656 Results from AMD's approximate analysis: number of nonzeros in L (including diagonal): 121 floating point operation count for chol (A (p,p)): 671 Note that the nonzero and flop counts from AMD are slight upper bounds. This is due to the approximate minimum degree method used, in conjunction with "mass elimination". See the discussion about mass elimination in amd.h and amd_2.c for more details. diary off SuiteSparse/AMD/MATLAB/amd_demo.m0000644001170100242450000000460110620664020015230 0ustar davisfacfunction amd_demo %AMD_DEMO a demo of amd2, using the can_24 matrix % % A demo of AMD for MATLAB. % % Example: % amd_demo % % See also: amd, amd2, amd_make % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, and Iain S. Duff. % This orders the same matrix as the ANSI C demo, amd_demo.c. It includes an % additional analysis of the matrix via MATLAB's symbfact routine. % First, print the help information for AMD help amd2 % Get the Harwell/Boeing can_24 matrix. load can_24 A = spconvert (can_24) ; n = size (A,1) ; figure (1) clf hold off subplot (2,2,1) ; spy (A) title ('HB/can24 matrix') ; % order the matrix. Note that the Info argument is optional. fprintf ('\nIf the next step fails, then you have\n') ; fprintf ('not yet compiled the AMD mexFunction.\n') ; [p, Info] = amd2 (A) ; %#ok % order again, but this time print some statistics [p, Info] = amd2 (A, [10 1 1]) ; fprintf ('Permutation vector:\n') ; fprintf (' %2d', p) ; fprintf ('\n\n') ; subplot (2,2,2) ; spy (A (p,p)) ; title ('Permuted matrix') ; % The amd_demo.c program stops here. fprintf ('Analyze A(p,p) with MATLAB''s symbfact routine:\n') ; [cn, height, parent, post, R] = symbfact (A (p,p)) ; subplot (2,2,3) ; spy (R') ; title ('Cholesky factor, L') ; subplot (2,2,4) ; treeplot (parent) ; title ('elimination tree') ; % results from symbfact lnz = sum (cn) ; % number of nonzeros in L, incl. diagonal cn = cn - 1 ; % get the count of off-diagonal entries fl = n + sum (cn.^2 + 2*cn) ; % flop count for chol (A (p,p) fprintf ('number of nonzeros in L (including diagonal): %d\n', lnz) ; fprintf ('floating point operation count for chol (A (p,p)): %d\n', fl) ; % approximations from amd: lnz2 = n + Info (10) ; fl2 = n + Info (11) + 2 * Info (12) ; fprintf ('\nResults from AMD''s approximate analysis:\n') ; fprintf ('number of nonzeros in L (including diagonal): %d\n', lnz2) ; fprintf ('floating point operation count for chol (A (p,p)): %d\n\n', fl2) ; if (lnz2 ~= lnz | fl ~= fl2) %#ok fprintf ('Note that the nonzero and flop counts from AMD are slight\n') ; fprintf ('upper bounds. This is due to the approximate minimum degree\n'); fprintf ('method used, in conjunction with "mass elimination".\n') ; fprintf ('See the discussion about mass elimination in amd.h and\n') ; fprintf ('amd_2.c for more details.\n') ; end SuiteSparse/AMD/MATLAB/amd_make.m0000644001170100242450000000163610620366073015235 0ustar davisfacfunction amd_make %AMD_MAKE to compile amd2 for use in MATLAB % % Example: % amd_make % % See also amd, amd2. % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, and Iain S. Duff. details = 0 ; % 1 if details of each command are to be printed d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end i = sprintf ('-I..%sInclude -I..%s..%sUFconfig', filesep, filesep, filesep) ; cmd = sprintf ('mex -O %s -DDLONG -output amd2 %s amd_mex.c', d, i) ; files = {'amd_order', 'amd_dump', 'amd_postorder', 'amd_post_tree', ... 'amd_aat', 'amd_2', 'amd_1', 'amd_defaults', 'amd_control', ... 'amd_info', 'amd_valid', 'amd_global', 'amd_preprocess' } ; for i = 1 : length (files) cmd = sprintf ('%s ..%sSource%s%s.c', cmd, filesep, filesep, files {i}) ; end if (details) fprintf ('%s\n', cmd) ; end eval (cmd) ; fprintf ('AMD successfully compiled.\n') ; SuiteSparse/AMD/Include/0000755001170100242450000000000010661134516013736 5ustar davisfacSuiteSparse/AMD/Include/amd.h0000644001170100242450000004161510616646472014670 0ustar davisfac/* ========================================================================= */ /* === AMD: approximate minimum degree ordering =========================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* AMD finds a symmetric ordering P of a matrix A so that the Cholesky * factorization of P*A*P' has fewer nonzeros and takes less work than the * Cholesky factorization of A. If A is not symmetric, then it performs its * ordering on the matrix A+A'. Two sets of user-callable routines are * provided, one for int integers and the other for UF_long integers. * * The method is based on the approximate minimum degree algorithm, discussed * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm", * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp. * 886-905, 1996. This package can perform both the AMD ordering (with * aggressive absorption), and the AMDBAR ordering (without aggressive * absorption) discussed in the above paper. This package differs from the * Fortran codes discussed in the paper: * * (1) it can ignore "dense" rows and columns, leading to faster run times * (2) it computes the ordering of A+A' if A is not symmetric * (3) it is followed by a depth-first post-ordering of the assembly tree * (or supernodal elimination tree) * * For historical reasons, the Fortran versions, amd.f and amdbar.f, have * been left (nearly) unchanged. They compute the identical ordering as * described in the above paper. */ #ifndef AMD_H #define AMD_H /* make it easy for C++ programs to include AMD */ #ifdef __cplusplus extern "C" { #endif /* get the definition of size_t: */ #include /* define UF_long */ #include "UFconfig.h" int amd_order /* returns AMD_OK, AMD_OK_BUT_JUMBLED, * AMD_INVALID, or AMD_OUT_OF_MEMORY */ ( int n, /* A is n-by-n. n must be >= 0. */ const int Ap [ ], /* column pointers for A, of size n+1 */ const int Ai [ ], /* row indices of A, of size nz = Ap [n] */ int P [ ], /* output permutation, of size n */ double Control [ ], /* input Control settings, of size AMD_CONTROL */ double Info [ ] /* output Info statistics, of size AMD_INFO */ ) ; UF_long amd_l_order /* see above for description of arguments */ ( UF_long n, const UF_long Ap [ ], const UF_long Ai [ ], UF_long P [ ], double Control [ ], double Info [ ] ) ; /* Input arguments (not modified): * * n: the matrix A is n-by-n. * Ap: an int/UF_long array of size n+1, containing column pointers of A. * Ai: an int/UF_long array of size nz, containing the row indices of A, * where nz = Ap [n]. * Control: a double array of size AMD_CONTROL, containing control * parameters. Defaults are used if Control is NULL. * * Output arguments (not defined on input): * * P: an int/UF_long array of size n, containing the output permutation. If * row i is the kth pivot row, then P [k] = i. In MATLAB notation, * the reordered matrix is A (P,P). * Info: a double array of size AMD_INFO, containing statistical * information. Ignored if Info is NULL. * * On input, the matrix A is stored in column-oriented form. The row indices * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1]. * * If the row indices appear in ascending order in each column, and there * are no duplicate entries, then amd_order is slightly more efficient in * terms of time and memory usage. If this condition does not hold, a copy * of the matrix is created (where these conditions do hold), and the copy is * ordered. This feature is new to v2.0 (v1.2 and earlier required this * condition to hold for the input matrix). * * Row indices must be in the range 0 to * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n]. * The matrix does not need to be symmetric, and the diagonal does not need to * be present (if diagonal entries are present, they are ignored except for * the output statistic Info [AMD_NZDIAG]). The arrays Ai and Ap are not * modified. This form of the Ap and Ai arrays to represent the nonzero * pattern of the matrix A is the same as that used internally by MATLAB. * If you wish to use a more flexible input structure, please see the * umfpack_*_triplet_to_col routines in the UMFPACK package, at * http://www.cise.ufl.edu/research/sparse/umfpack. * * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0 * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these * restrictions are not met, AMD returns AMD_INVALID. * * AMD returns: * * AMD_OK if the matrix is valid and sufficient memory can be allocated to * perform the ordering. * * AMD_OUT_OF_MEMORY if not enough memory can be allocated. * * AMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is * NULL. * * AMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate * entries, but was otherwise valid. * * The AMD routine first forms the pattern of the matrix A+A', and then * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of * the original is the kth pivotal row. In MATLAB notation, the permuted * matrix is A (P,P), except that 0-based indexing is used instead of the * 1-based indexing in MATLAB. * * The Control array is used to set various parameters for AMD. If a NULL * pointer is passed, default values are used. The Control array is not * modified. * * Control [AMD_DENSE]: controls the threshold for "dense" rows/columns. * A dense row/column in A+A' can cause AMD to spend a lot of time in * ordering the matrix. If Control [AMD_DENSE] >= 0, rows/columns * with more than Control [AMD_DENSE] * sqrt (n) entries are ignored * during the ordering, and placed last in the output order. The * default value of Control [AMD_DENSE] is 10. If negative, no * rows/columns are treated as "dense". Rows/columns with 16 or * fewer off-diagonal entries are never considered "dense". * * Control [AMD_AGGRESSIVE]: controls whether or not to use aggressive * absorption, in which a prior element is absorbed into the current * element if is a subset of the current element, even if it is not * adjacent to the current pivot element (refer to Amestoy, Davis, * & Duff, 1996, for more details). The default value is nonzero, * which means to perform aggressive absorption. This nearly always * leads to a better ordering (because the approximate degrees are * more accurate) and a lower execution time. There are cases where * it can lead to a slightly worse ordering, however. To turn it off, * set Control [AMD_AGGRESSIVE] to 0. * * Control [2..4] are not used in the current version, but may be used in * future versions. * * The Info array provides statistics about the ordering on output. If it is * not present, the statistics are not returned. This is not an error * condition. * * Info [AMD_STATUS]: the return value of AMD, either AMD_OK, * AMD_OK_BUT_JUMBLED, AMD_OUT_OF_MEMORY, or AMD_INVALID. * * Info [AMD_N]: n, the size of the input matrix * * Info [AMD_NZ]: the number of nonzeros in A, nz = Ap [n] * * Info [AMD_SYMMETRY]: the symmetry of the matrix A. It is the number * of "matched" off-diagonal entries divided by the total number of * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also * an entry, for any pair (i,j) for which i != j. In MATLAB notation, * S = spones (A) ; * B = tril (S, -1) + triu (S, 1) ; * symmetry = nnz (B & B') / nnz (B) ; * * Info [AMD_NZDIAG]: the number of entries on the diagonal of A. * * Info [AMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the * diagonal. If A is perfectly symmetric (Info [AMD_SYMMETRY] = 1) * with a fully nonzero diagonal, then Info [AMD_NZ_A_PLUS_AT] = nz-n * (the smallest possible value). If A is perfectly unsymmetric * (Info [AMD_SYMMETRY] = 0, for an upper triangular matrix, for * example) with no diagonal, then Info [AMD_NZ_A_PLUS_AT] = 2*nz * (the largest possible value). * * Info [AMD_NDENSE]: the number of "dense" rows/columns of A+A' that were * removed from A prior to ordering. These are placed last in the * output order P. * * Info [AMD_MEMORY]: the amount of memory used by AMD, in bytes. In the * current version, this is 1.2 * Info [AMD_NZ_A_PLUS_AT] + 9*n * times the size of an integer. This is at most 2.4nz + 9n. This * excludes the size of the input arguments Ai, Ap, and P, which have * a total size of nz + 2*n + 1 integers. * * Info [AMD_NCMPA]: the number of garbage collections performed. * * Info [AMD_LNZ]: the number of nonzeros in L (excluding the diagonal). * This is a slight upper bound because mass elimination is combined * with the approximate degree update. It is a rough upper bound if * there are many "dense" rows/columns. The rest of the statistics, * below, are also slight or rough upper bounds, for the same reasons. * The post-ordering of the assembly tree might also not exactly * correspond to a true elimination tree postordering. * * Info [AMD_NDIV]: the number of divide operations for a subsequent LDL' * or LU factorization of the permuted matrix A (P,P). * * Info [AMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a * subsequent LDL' factorization of A (P,P). * * Info [AMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a * subsequent LU factorization of A (P,P), assuming that no numerical * pivoting is required. * * Info [AMD_DMAX]: the maximum number of nonzeros in any column of L, * including the diagonal. * * Info [14..19] are not used in the current version, but may be used in * future versions. */ /* ------------------------------------------------------------------------- */ /* direct interface to AMD */ /* ------------------------------------------------------------------------- */ /* amd_2 is the primary AMD ordering routine. It is not meant to be * user-callable because of its restrictive inputs and because it destroys * the user's input matrix. It does not check its inputs for errors, either. * However, if you can work with these restrictions it can be faster than * amd_order and use less memory (assuming that you can create your own copy * of the matrix for AMD to destroy). Refer to AMD/Source/amd_2.c for a * description of each parameter. */ void amd_2 ( int n, int Pe [ ], int Iw [ ], int Len [ ], int iwlen, int pfree, int Nv [ ], int Next [ ], int Last [ ], int Head [ ], int Elen [ ], int Degree [ ], int W [ ], double Control [ ], double Info [ ] ) ; void amd_l2 ( UF_long n, UF_long Pe [ ], UF_long Iw [ ], UF_long Len [ ], UF_long iwlen, UF_long pfree, UF_long Nv [ ], UF_long Next [ ], UF_long Last [ ], UF_long Head [ ], UF_long Elen [ ], UF_long Degree [ ], UF_long W [ ], double Control [ ], double Info [ ] ) ; /* ------------------------------------------------------------------------- */ /* amd_valid */ /* ------------------------------------------------------------------------- */ /* Returns AMD_OK or AMD_OK_BUT_JUMBLED if the matrix is valid as input to * amd_order; the latter is returned if the matrix has unsorted and/or * duplicate row indices in one or more columns. Returns AMD_INVALID if the * matrix cannot be passed to amd_order. For amd_order, the matrix must also * be square. The first two arguments are the number of rows and the number * of columns of the matrix. For its use in AMD, these must both equal n. * * NOTE: this routine returned TRUE/FALSE in v1.2 and earlier. */ int amd_valid ( int n_row, /* # of rows */ int n_col, /* # of columns */ const int Ap [ ], /* column pointers, of size n_col+1 */ const int Ai [ ] /* row indices, of size Ap [n_col] */ ) ; UF_long amd_l_valid ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ] ) ; /* ------------------------------------------------------------------------- */ /* AMD memory manager and printf routines */ /* ------------------------------------------------------------------------- */ /* The user can redefine these to change the malloc, free, and printf routines * that AMD uses. */ #ifndef EXTERN #define EXTERN extern #endif EXTERN void *(*amd_malloc) (size_t) ; /* pointer to malloc */ EXTERN void (*amd_free) (void *) ; /* pointer to free */ EXTERN void *(*amd_realloc) (void *, size_t) ; /* pointer to realloc */ EXTERN void *(*amd_calloc) (size_t, size_t) ; /* pointer to calloc */ EXTERN int (*amd_printf) (const char *, ...) ; /* pointer to printf */ /* ------------------------------------------------------------------------- */ /* AMD Control and Info arrays */ /* ------------------------------------------------------------------------- */ /* amd_defaults: sets the default control settings */ void amd_defaults (double Control [ ]) ; void amd_l_defaults (double Control [ ]) ; /* amd_control: prints the control settings */ void amd_control (double Control [ ]) ; void amd_l_control (double Control [ ]) ; /* amd_info: prints the statistics */ void amd_info (double Info [ ]) ; void amd_l_info (double Info [ ]) ; #define AMD_CONTROL 5 /* size of Control array */ #define AMD_INFO 20 /* size of Info array */ /* contents of Control */ #define AMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */ #define AMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */ /* default Control settings */ #define AMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */ #define AMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */ /* contents of Info */ #define AMD_STATUS 0 /* return value of amd_order and amd_l_order */ #define AMD_N 1 /* A is n-by-n */ #define AMD_NZ 2 /* number of nonzeros in A */ #define AMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */ #define AMD_NZDIAG 4 /* # of entries on diagonal */ #define AMD_NZ_A_PLUS_AT 5 /* nz in A+A' */ #define AMD_NDENSE 6 /* number of "dense" rows/columns in A */ #define AMD_MEMORY 7 /* amount of memory used by AMD */ #define AMD_NCMPA 8 /* number of garbage collections in AMD */ #define AMD_LNZ 9 /* approx. nz in L, excluding the diagonal */ #define AMD_NDIV 10 /* number of fl. point divides for LU and LDL' */ #define AMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */ #define AMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */ #define AMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */ /* ------------------------------------------------------------------------- */ /* return values of AMD */ /* ------------------------------------------------------------------------- */ #define AMD_OK 0 /* success */ #define AMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */ #define AMD_INVALID -2 /* input arguments are not valid */ #define AMD_OK_BUT_JUMBLED 1 /* input matrix is OK for amd_order, but * columns were not sorted, and/or duplicate entries were present. AMD had * to do extra work before ordering the matrix. This is a warning, not an * error. */ /* ========================================================================== */ /* === AMD version ========================================================== */ /* ========================================================================== */ /* AMD Version 1.2 and later include the following definitions. * As an example, to test if the version you are using is 1.2 or later: * * #ifdef AMD_VERSION * if (AMD_VERSION >= AMD_VERSION_CODE (1,2)) ... * #endif * * This also works during compile-time: * * #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif * * Versions 1.1 and earlier of AMD do not include a #define'd version number. */ #define AMD_DATE "May 31, 2007" #define AMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define AMD_MAIN_VERSION 2 #define AMD_SUB_VERSION 2 #define AMD_SUBSUB_VERSION 0 #define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION,AMD_SUB_VERSION) #ifdef __cplusplus } #endif #endif SuiteSparse/AMD/Include/amd_internal.h0000644001170100242450000002204410636070275016551 0ustar davisfac/* ========================================================================= */ /* === amd_internal.h ====================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* This file is for internal use in AMD itself, and does not normally need to * be included in user code (it is included in UMFPACK, however). All others * should use amd.h instead. * * The following compile-time definitions affect how AMD is compiled. * * -DNPRINT * * Disable all printing. stdio.h will not be included. Printing can * be re-enabled at run-time by setting the global pointer amd_printf * to printf (or mexPrintf for a MATLAB mexFunction). * * -DNMALLOC * * No memory manager is defined at compile-time. You MUST define the * function pointers amd_malloc, amd_free, amd_realloc, and * amd_calloc at run-time for AMD to work properly. */ /* ========================================================================= */ /* === NDEBUG ============================================================== */ /* ========================================================================= */ /* * Turning on debugging takes some work (see below). If you do not edit this * file, then debugging is always turned off, regardless of whether or not * -DNDEBUG is specified in your compiler options. * * If AMD is being compiled as a mexFunction, then MATLAB_MEX_FILE is defined, * and mxAssert is used instead of assert. If debugging is not enabled, no * MATLAB include files or functions are used. Thus, the AMD library libamd.a * can be safely used in either a stand-alone C program or in another * mexFunction, without any change. */ /* AMD will be exceedingly slow when running in debug mode. The next three lines ensure that debugging is turned off. */ #ifndef NDEBUG #define NDEBUG #endif /* To enable debugging, uncomment the following line: #undef NDEBUG */ /* ------------------------------------------------------------------------- */ /* ANSI include files */ /* ------------------------------------------------------------------------- */ /* from stdlib.h: size_t, malloc, free, realloc, and calloc */ #include #if !defined(NPRINT) || !defined(NDEBUG) /* from stdio.h: printf. Not included if NPRINT is defined at compile time. * fopen and fscanf are used when debugging. */ #include #endif /* from limits.h: INT_MAX and LONG_MAX */ #include /* from math.h: sqrt */ #include /* ------------------------------------------------------------------------- */ /* MATLAB include files (only if being used in or via MATLAB) */ /* ------------------------------------------------------------------------- */ #ifdef MATLAB_MEX_FILE #include "matrix.h" #include "mex.h" #endif /* ------------------------------------------------------------------------- */ /* basic definitions */ /* ------------------------------------------------------------------------- */ #ifdef FLIP #undef FLIP #endif #ifdef MAX #undef MAX #endif #ifdef MIN #undef MIN #endif #ifdef EMPTY #undef EMPTY #endif #ifdef GLOBAL #undef GLOBAL #endif #ifdef PRIVATE #undef PRIVATE #endif /* FLIP is a "negation about -1", and is used to mark an integer i that is * normally non-negative. FLIP (EMPTY) is EMPTY. FLIP of a number > EMPTY * is negative, and FLIP of a number < EMTPY is positive. FLIP (FLIP (i)) = i * for all integers i. UNFLIP (i) is >= EMPTY. */ #define EMPTY (-1) #define FLIP(i) (-(i)-2) #define UNFLIP(i) ((i < EMPTY) ? FLIP (i) : (i)) /* for integer MAX/MIN, or for doubles when we don't care how NaN's behave: */ #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* logical expression of p implies q: */ #define IMPLIES(p,q) (!(p) || (q)) /* Note that the IBM RS 6000 xlc predefines TRUE and FALSE in . */ /* The Compaq Alpha also predefines TRUE and FALSE. */ #ifdef TRUE #undef TRUE #endif #ifdef FALSE #undef FALSE #endif #define TRUE (1) #define FALSE (0) #define PRIVATE static #define GLOBAL #define EMPTY (-1) /* Note that Linux's gcc 2.96 defines NULL as ((void *) 0), but other */ /* compilers (even gcc 2.95.2 on Solaris) define NULL as 0 or (0). We */ /* need to use the ANSI standard value of 0. */ #ifdef NULL #undef NULL #endif #define NULL 0 /* largest value of size_t */ #ifndef SIZE_T_MAX #define SIZE_T_MAX ((size_t) (-1)) #endif /* ------------------------------------------------------------------------- */ /* integer type for AMD: int or UF_long */ /* ------------------------------------------------------------------------- */ /* define UF_long */ #include "UFconfig.h" #if defined (DLONG) || defined (ZLONG) #define Int UF_long #define ID UF_long_id #define Int_MAX UF_long_max #define AMD_order amd_l_order #define AMD_defaults amd_l_defaults #define AMD_control amd_l_control #define AMD_info amd_l_info #define AMD_1 amd_l1 #define AMD_2 amd_l2 #define AMD_valid amd_l_valid #define AMD_aat amd_l_aat #define AMD_postorder amd_l_postorder #define AMD_post_tree amd_l_post_tree #define AMD_dump amd_l_dump #define AMD_debug amd_l_debug #define AMD_debug_init amd_l_debug_init #define AMD_preprocess amd_l_preprocess #else #define Int int #define ID "%d" #define Int_MAX INT_MAX #define AMD_order amd_order #define AMD_defaults amd_defaults #define AMD_control amd_control #define AMD_info amd_info #define AMD_1 amd_1 #define AMD_2 amd_2 #define AMD_valid amd_valid #define AMD_aat amd_aat #define AMD_postorder amd_postorder #define AMD_post_tree amd_post_tree #define AMD_dump amd_dump #define AMD_debug amd_debug #define AMD_debug_init amd_debug_init #define AMD_preprocess amd_preprocess #endif /* ========================================================================= */ /* === PRINTF macro ======================================================== */ /* ========================================================================= */ /* All output goes through the PRINTF macro. */ #define PRINTF(params) { if (amd_printf != NULL) (void) amd_printf params ; } /* ------------------------------------------------------------------------- */ /* AMD routine definitions (user-callable) */ /* ------------------------------------------------------------------------- */ #include "amd.h" /* ------------------------------------------------------------------------- */ /* AMD routine definitions (not user-callable) */ /* ------------------------------------------------------------------------- */ GLOBAL size_t AMD_aat ( Int n, const Int Ap [ ], const Int Ai [ ], Int Len [ ], Int Tp [ ], double Info [ ] ) ; GLOBAL void AMD_1 ( Int n, const Int Ap [ ], const Int Ai [ ], Int P [ ], Int Pinv [ ], Int Len [ ], Int slen, Int S [ ], double Control [ ], double Info [ ] ) ; GLOBAL void AMD_postorder ( Int nn, Int Parent [ ], Int Npiv [ ], Int Fsize [ ], Int Order [ ], Int Child [ ], Int Sibling [ ], Int Stack [ ] ) ; GLOBAL Int AMD_post_tree ( Int root, Int k, Int Child [ ], const Int Sibling [ ], Int Order [ ], Int Stack [ ] #ifndef NDEBUG , Int nn #endif ) ; GLOBAL void AMD_preprocess ( Int n, const Int Ap [ ], const Int Ai [ ], Int Rp [ ], Int Ri [ ], Int W [ ], Int Flag [ ] ) ; /* ------------------------------------------------------------------------- */ /* debugging definitions */ /* ------------------------------------------------------------------------- */ #ifndef NDEBUG /* from assert.h: assert macro */ #include #ifndef EXTERN #define EXTERN extern #endif EXTERN Int AMD_debug ; GLOBAL void AMD_debug_init ( char *s ) ; GLOBAL void AMD_dump ( Int n, Int Pe [ ], Int Iw [ ], Int Len [ ], Int iwlen, Int pfree, Int Nv [ ], Int Next [ ], Int Last [ ], Int Head [ ], Int Elen [ ], Int Degree [ ], Int W [ ], Int nel ) ; #ifdef ASSERT #undef ASSERT #endif /* Use mxAssert if AMD is compiled into a mexFunction */ #ifdef MATLAB_MEX_FILE #define ASSERT(expression) (mxAssert ((expression), "")) #else #define ASSERT(expression) (assert (expression)) #endif #define AMD_DEBUG0(params) { PRINTF (params) ; } #define AMD_DEBUG1(params) { if (AMD_debug >= 1) PRINTF (params) ; } #define AMD_DEBUG2(params) { if (AMD_debug >= 2) PRINTF (params) ; } #define AMD_DEBUG3(params) { if (AMD_debug >= 3) PRINTF (params) ; } #define AMD_DEBUG4(params) { if (AMD_debug >= 4) PRINTF (params) ; } #else /* no debugging */ #define ASSERT(expression) #define AMD_DEBUG0(params) #define AMD_DEBUG1(params) #define AMD_DEBUG2(params) #define AMD_DEBUG3(params) #define AMD_DEBUG4(params) #endif SuiteSparse/AMD/Source/0000755001170100242450000000000010672324407013615 5ustar davisfacSuiteSparse/AMD/Source/amd.f0000644001170100242450000014662110250413605014526 0ustar davisfacC----------------------------------------------------------------------- C AMD: approximate minimum degree, with aggressive absorption C----------------------------------------------------------------------- SUBROUTINE AMD $ (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ LAST, HEAD, ELEN, DEGREE, NCMPA, W) INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), $ DEGREE (N), NV (N), NEXT (N), LAST (N), HEAD (N), $ ELEN (N), W (N), LEN (N) C Given a representation of the nonzero pattern of a symmetric matrix, C A, (excluding the diagonal) perform an approximate minimum C (UMFPACK/MA38-style) degree ordering to compute a pivot order C such that the introduction of nonzeros (fill-in) in the Cholesky C factors A = LL^T are kept low. At each step, the pivot C selected is the one with the minimum UMFPACK/MA38-style C upper-bound on the external degree. C C Aggresive absorption is used to tighten the bound on the degree. C ********************************************************************** C ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** C ********************************************************************** C References: C C [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern C multifrontal method for sparse LU factorization", SIAM J. C Matrix Analysis and Applications, vol. 18, no. 1, pp. C 140-158. Discusses UMFPACK / MA38, which first introduced C the approximate minimum degree used by this routine. C C [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An C approximate degree ordering algorithm," SIAM J. Matrix C Analysis and Applications, vol. 17, no. 4, pp. 886-905, C 1996. Discusses AMD, AMDBAR, and MC47B. C C [3] Alan George and Joseph Liu, "The evolution of the minimum C degree ordering algorithm," SIAM Review, vol. 31, no. 1, C pp. 1-19, 1989. We list below the features mentioned in C that paper that this code includes: C C mass elimination: C Yes. MA27 relied on supervariable detection for mass C elimination. C indistinguishable nodes: C Yes (we call these "supervariables"). This was also in C the MA27 code - although we modified the method of C detecting them (the previous hash was the true degree, C which we no longer keep track of). A supervariable is C a set of rows with identical nonzero pattern. All C variables in a supervariable are eliminated together. C Each supervariable has as its numerical name that of C one of its variables (its principal variable). C quotient graph representation: C Yes. We use the term "element" for the cliques formed C during elimination. This was also in the MA27 code. C The algorithm can operate in place, but it will work C more efficiently if given some "elbow room." C element absorption: C Yes. This was also in the MA27 code. C external degree: C Yes. The MA27 code was based on the true degree. C incomplete degree update and multiple elimination: C No. This was not in MA27, either. Our method of C degree update within MC47B/BD is element-based, not C variable-based. It is thus not well-suited for use C with incomplete degree update or multiple elimination. C----------------------------------------------------------------------- C Authors, and Copyright (C) 1995 by: C Timothy A. Davis, Patrick Amestoy, Iain S. Duff, & John K. Reid. C C Acknowledgements: C This work (and the UMFPACK package) was supported by the C National Science Foundation (ASC-9111263 and DMS-9223088). C The UMFPACK/MA38 approximate degree update algorithm, the C unsymmetric analog which forms the basis of MC47B/BD, was C developed while Tim Davis was supported by CERFACS (Toulouse, C France) in a post-doctoral position. C C Date: September, 1995 C----------------------------------------------------------------------- C----------------------------------------------------------------------- C INPUT ARGUMENTS (unaltered): C----------------------------------------------------------------------- C n: The matrix order. C C Restriction: 1 .le. n .lt. (iovflo/2)-2, where iovflo is C the largest positive integer that your computer can represent. C iwlen: The length of iw (1..iwlen). On input, the matrix is C stored in iw (1..pfree-1). However, iw (1..iwlen) should be C slightly larger than what is required to hold the matrix, at C least iwlen .ge. pfree + n is recommended. Otherwise, C excessive compressions will take place. C *** We do not recommend running this algorithm with *** C *** iwlen .lt. pfree + n. *** C *** Better performance will be obtained if *** C *** iwlen .ge. pfree + n *** C *** or better yet *** C *** iwlen .gt. 1.2 * pfree *** C *** (where pfree is its value on input). *** C The algorithm will not run at all if iwlen .lt. pfree-1. C C Restriction: iwlen .ge. pfree-1 C----------------------------------------------------------------------- C INPUT/OUPUT ARGUMENTS: C----------------------------------------------------------------------- C pe: On input, pe (i) is the index in iw of the start of row i, or C zero if row i has no off-diagonal non-zeros. C C During execution, it is used for both supervariables and C elements: C C * Principal supervariable i: index into iw of the C description of supervariable i. A supervariable C represents one or more rows of the matrix C with identical nonzero pattern. C * Non-principal supervariable i: if i has been absorbed C into another supervariable j, then pe (i) = -j. C That is, j has the same pattern as i. C Note that j might later be absorbed into another C supervariable j2, in which case pe (i) is still -j, C and pe (j) = -j2. C * Unabsorbed element e: the index into iw of the description C of element e, if e has not yet been absorbed by a C subsequent element. Element e is created when C the supervariable of the same name is selected as C the pivot. C * Absorbed element e: if element e is absorbed into element C e2, then pe (e) = -e2. This occurs when the pattern of C e (that is, Le) is found to be a subset of the pattern C of e2 (that is, Le2). If element e is "null" (it has C no nonzeros outside its pivot block), then pe (e) = 0. C C On output, pe holds the assembly tree/forest, which implicitly C represents a pivot order with identical fill-in as the actual C order (via a depth-first search of the tree). C C On output: C If nv (i) .gt. 0, then i represents a node in the assembly tree, C and the parent of i is -pe (i), or zero if i is a root. C If nv (i) = 0, then (i,-pe (i)) represents an edge in a C subtree, the root of which is a node in the assembly tree. C pfree: On input the tail end of the array, iw (pfree..iwlen), C is empty, and the matrix is stored in iw (1..pfree-1). C During execution, additional data is placed in iw, and pfree C is modified so that iw (pfree..iwlen) is always the unused part C of iw. On output, pfree is set equal to the size of iw that C would have been needed for no compressions to occur. If C ncmpa is zero, then pfree (on output) is less than or equal to C iwlen, and the space iw (pfree+1 ... iwlen) was not used. C Otherwise, pfree (on output) is greater than iwlen, and all the C memory in iw was used. C----------------------------------------------------------------------- C INPUT/MODIFIED (undefined on output): C----------------------------------------------------------------------- C len: On input, len (i) holds the number of entries in row i of the C matrix, excluding the diagonal. The contents of len (1..n) C are undefined on output. C iw: On input, iw (1..pfree-1) holds the description of each row i C in the matrix. The matrix must be symmetric, and both upper C and lower triangular parts must be present. The diagonal must C not be present. Row i is held as follows: C C len (i): the length of the row i data structure C iw (pe (i) ... pe (i) + len (i) - 1): C the list of column indices for nonzeros C in row i (simple supervariables), excluding C the diagonal. All supervariables start with C one row/column each (supervariable i is just C row i). C if len (i) is zero on input, then pe (i) is ignored C on input. C C Note that the rows need not be in any particular order, C and there may be empty space between the rows. C C During execution, the supervariable i experiences fill-in. C This is represented by placing in i a list of the elements C that cause fill-in in supervariable i: C C len (i): the length of supervariable i C iw (pe (i) ... pe (i) + elen (i) - 1): C the list of elements that contain i. This list C is kept short by removing absorbed elements. C iw (pe (i) + elen (i) ... pe (i) + len (i) - 1): C the list of supervariables in i. This list C is kept short by removing nonprincipal C variables, and any entry j that is also C contained in at least one of the elements C (j in Le) in the list for i (e in row i). C C When supervariable i is selected as pivot, we create an C element e of the same name (e=i): C C len (e): the length of element e C iw (pe (e) ... pe (e) + len (e) - 1): C the list of supervariables in element e. C C An element represents the fill-in that occurs when supervariable C i is selected as pivot (which represents the selection of row i C and all non-principal variables whose principal variable is i). C We use the term Le to denote the set of all supervariables C in element e. Absorbed supervariables and elements are pruned C from these lists when computationally convenient. C C CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. C The contents of iw are undefined on output. C----------------------------------------------------------------------- C OUTPUT (need not be set on input): C----------------------------------------------------------------------- C nv: During execution, abs (nv (i)) is equal to the number of rows C that are represented by the principal supervariable i. If i is C a nonprincipal variable, then nv (i) = 0. Initially, C nv (i) = 1 for all i. nv (i) .lt. 0 signifies that i is a C principal variable in the pattern Lme of the current pivot C element me. On output, nv (e) holds the true degree of element C e at the time it was created (including the diagonal part). C ncmpa: The number of times iw was compressed. If this is C excessive, then the execution took longer than what could have C been. To reduce ncmpa, try increasing iwlen to be 10% or 20% C larger than the value of pfree on input (or at least C iwlen .ge. pfree + n). The fastest performance will be C obtained when ncmpa is returned as zero. If iwlen is set to C the value returned by pfree on *output*, then no compressions C will occur. C elen: See the description of iw above. At the start of execution, C elen (i) is set to zero. During execution, elen (i) is the C number of elements in the list for supervariable i. When e C becomes an element, elen (e) = -nel is set, where nel is the C current step of factorization. elen (i) = 0 is done when i C becomes nonprincipal. C C For variables, elen (i) .ge. 0 holds until just before the C permutation vectors are computed. For elements, C elen (e) .lt. 0 holds. C C On output elen (1..n) holds the inverse permutation (the same C as the 'INVP' argument in Sparspak). That is, if k = elen (i), C then row i is the kth pivot row. Row i of A appears as the C (elen(i))-th row in the permuted matrix, PAP^T. C last: In a degree list, last (i) is the supervariable preceding i, C or zero if i is the head of the list. In a hash bucket, C last (i) is the hash key for i. last (head (hash)) is also C used as the head of a hash bucket if head (hash) contains a C degree list (see head, below). C C On output, last (1..n) holds the permutation (the same as the C 'PERM' argument in Sparspak). That is, if i = last (k), then C row i is the kth pivot row. Row last (k) of A is the k-th row C in the permuted matrix, PAP^T. C----------------------------------------------------------------------- C LOCAL (not input or output - used only during execution): C----------------------------------------------------------------------- C degree: If i is a supervariable, then degree (i) holds the C current approximation of the external degree of row i (an upper C bound). The external degree is the number of nonzeros in row i, C minus abs (nv (i)) (the diagonal part). The bound is equal to C the external degree if elen (i) is less than or equal to two. C C We also use the term "external degree" for elements e to refer C to |Le \ Lme|. If e is an element, then degree (e) holds |Le|, C which is the degree of the off-diagonal part of the element e C (not including the diagonal part). C head: head is used for degree lists. head (deg) is the first C supervariable in a degree list (all supervariables i in a C degree list deg have the same approximate degree, namely, C deg = degree (i)). If the list deg is empty then C head (deg) = 0. C C During supervariable detection head (hash) also serves as a C pointer to a hash bucket. C If head (hash) .gt. 0, there is a degree list of degree hash. C The hash bucket head pointer is last (head (hash)). C If head (hash) = 0, then the degree list and hash bucket are C both empty. C If head (hash) .lt. 0, then the degree list is empty, and C -head (hash) is the head of the hash bucket. C After supervariable detection is complete, all hash buckets C are empty, and the (last (head (hash)) = 0) condition is C restored for the non-empty degree lists. C next: next (i) is the supervariable following i in a link list, or C zero if i is the last in the list. Used for two kinds of C lists: degree lists and hash buckets (a supervariable can be C in only one kind of list at a time). C w: The flag array w determines the status of elements and C variables, and the external degree of elements. C C for elements: C if w (e) = 0, then the element e is absorbed C if w (e) .ge. wflg, then w (e) - wflg is the size of C the set |Le \ Lme|, in terms of nonzeros (the C sum of abs (nv (i)) for each principal variable i that C is both in the pattern of element e and NOT in the C pattern of the current pivot element, me). C if wflg .gt. w (e) .gt. 0, then e is not absorbed and has C not yet been seen in the scan of the element lists in C the computation of |Le\Lme| in loop 150 below. C C for variables: C during supervariable detection, if w (j) .ne. wflg then j is C not in the pattern of variable i C C The w array is initialized by setting w (i) = 1 for all i, C and by setting wflg = 2. It is reinitialized if wflg becomes C too large (to ensure that wflg+n does not cause integer C overflow). C----------------------------------------------------------------------- C LOCAL INTEGERS: C----------------------------------------------------------------------- INTEGER DEG, DEGME, DEXT, DMAX, E, ELENME, ELN, HASH, HMOD, I, $ ILAST, INEXT, J, JLAST, JNEXT, K, KNT1, KNT2, KNT3, $ LENJ, LN, MAXMEM, ME, MEM, MINDEG, NEL, NEWMEM, $ NLEFT, NVI, NVJ, NVPIV, SLENME, WE, WFLG, WNVI, X C deg: the degree of a variable or element C degme: size, |Lme|, of the current element, me (= degree (me)) C dext: external degree, |Le \ Lme|, of some element e C dmax: largest |Le| seen so far C e: an element C elenme: the length, elen (me), of element list of pivotal var. C eln: the length, elen (...), of an element list C hash: the computed value of the hash function C hmod: the hash function is computed modulo hmod = max (1,n-1) C i: a supervariable C ilast: the entry in a link list preceding i C inext: the entry in a link list following i C j: a supervariable C jlast: the entry in a link list preceding j C jnext: the entry in a link list, or path, following j C k: the pivot order of an element or variable C knt1: loop counter used during element construction C knt2: loop counter used during element construction C knt3: loop counter used during compression C lenj: len (j) C ln: length of a supervariable list C maxmem: amount of memory needed for no compressions C me: current supervariable being eliminated, and the C current element created by eliminating that C supervariable C mem: memory in use assuming no compressions have occurred C mindeg: current minimum degree C nel: number of pivots selected so far C newmem: amount of new memory needed for current pivot element C nleft: n - nel, the number of nonpivotal rows/columns remaining C nvi: the number of variables in a supervariable i (= nv (i)) C nvj: the number of variables in a supervariable j (= nv (j)) C nvpiv: number of pivots in current element C slenme: number of variables in variable list of pivotal variable C we: w (e) C wflg: used for flagging the w array. See description of iw. C wnvi: wflg - nv (i) C x: either a supervariable or an element C----------------------------------------------------------------------- C LOCAL POINTERS: C----------------------------------------------------------------------- INTEGER P, P1, P2, P3, PDST, PEND, PJ, PME, PME1, PME2, PN, PSRC C Any parameter (pe (...) or pfree) or local variable C starting with "p" (for Pointer) is an index into iw, C and all indices into iw use variables starting with C "p." The only exception to this rule is the iwlen C input argument. C p: pointer into lots of things C p1: pe (i) for some variable i (start of element list) C p2: pe (i) + elen (i) - 1 for some var. i (end of el. list) C p3: index of first supervariable in clean list C pdst: destination pointer, for compression C pend: end of memory to compress C pj: pointer into an element or variable C pme: pointer into the current element (pme1...pme2) C pme1: the current element, me, is stored in iw (pme1...pme2) C pme2: the end of the current element C pn: pointer into a "clean" variable, also used to compress C psrc: source pointer, for compression C----------------------------------------------------------------------- C FUNCTIONS CALLED: C----------------------------------------------------------------------- INTRINSIC MAX, MIN, MOD C======================================================================= C INITIALIZATIONS C======================================================================= WFLG = 2 MINDEG = 1 NCMPA = 0 NEL = 0 HMOD = MAX (1, N-1) DMAX = 0 MEM = PFREE - 1 MAXMEM = MEM ME = 0 DO 10 I = 1, N LAST (I) = 0 HEAD (I) = 0 NV (I) = 1 W (I) = 1 ELEN (I) = 0 DEGREE (I) = LEN (I) 10 CONTINUE C ---------------------------------------------------------------- C initialize degree lists and eliminate rows with no off-diag. nz. C ---------------------------------------------------------------- DO 20 I = 1, N DEG = DEGREE (I) IF (DEG .GT. 0) THEN C ---------------------------------------------------------- C place i in the degree list corresponding to its degree C ---------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT HEAD (DEG) = I ELSE C ---------------------------------------------------------- C we have a variable that can be eliminated at once because C there is no off-diagonal non-zero in its row. C ---------------------------------------------------------- NEL = NEL + 1 ELEN (I) = -NEL PE (I) = 0 W (I) = 0 ENDIF 20 CONTINUE C======================================================================= C WHILE (selecting pivots) DO C======================================================================= 30 CONTINUE IF (NEL .LT. N) THEN C======================================================================= C GET PIVOT OF MINIMUM DEGREE C======================================================================= C ------------------------------------------------------------- C find next supervariable for elimination C ------------------------------------------------------------- DO 40 DEG = MINDEG, N ME = HEAD (DEG) IF (ME .GT. 0) GOTO 50 40 CONTINUE 50 CONTINUE MINDEG = DEG C ------------------------------------------------------------- C remove chosen variable from link list C ------------------------------------------------------------- INEXT = NEXT (ME) IF (INEXT .NE. 0) LAST (INEXT) = 0 HEAD (DEG) = INEXT C ------------------------------------------------------------- C me represents the elimination of pivots nel+1 to nel+nv(me). C place me itself as the first in this set. It will be moved C to the nel+nv(me) position when the permutation vectors are C computed. C ------------------------------------------------------------- ELENME = ELEN (ME) ELEN (ME) = - (NEL + 1) NVPIV = NV (ME) NEL = NEL + NVPIV C======================================================================= C CONSTRUCT NEW ELEMENT C======================================================================= C ------------------------------------------------------------- C At this point, me is the pivotal supervariable. It will be C converted into the current element. Scan list of the C pivotal supervariable, me, setting tree pointers and C constructing new list of supervariables for the new element, C me. p is a pointer to the current position in the old list. C ------------------------------------------------------------- C flag the variable "me" as being in Lme by negating nv (me) NV (ME) = -NVPIV DEGME = 0 IF (ELENME .EQ. 0) THEN C ---------------------------------------------------------- C construct the new element in place C ---------------------------------------------------------- PME1 = PE (ME) PME2 = PME1 - 1 DO 60 P = PME1, PME1 + LEN (ME) - 1 I = IW (P) NVI = NV (I) IF (NVI .GT. 0) THEN C ---------------------------------------------------- C i is a principal variable not yet placed in Lme. C store i in new list C ---------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI PME2 = PME2 + 1 IW (PME2) = I C ---------------------------------------------------- C remove variable i from degree list. C ---------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 60 CONTINUE C this element takes no new memory in iw: NEWMEM = 0 ELSE C ---------------------------------------------------------- C construct the new element in empty space, iw (pfree ...) C ---------------------------------------------------------- P = PE (ME) PME1 = PFREE SLENME = LEN (ME) - ELENME DO 120 KNT1 = 1, ELENME + 1 IF (KNT1 .GT. ELENME) THEN C search the supervariables in me. E = ME PJ = P LN = SLENME ELSE C search the elements in me. E = IW (P) P = P + 1 PJ = PE (E) LN = LEN (E) ENDIF C ------------------------------------------------------- C search for different supervariables and add them to the C new list, compressing when necessary. this loop is C executed once for each element in the list and once for C all the supervariables in the list. C ------------------------------------------------------- DO 110 KNT2 = 1, LN I = IW (PJ) PJ = PJ + 1 NVI = NV (I) IF (NVI .GT. 0) THEN C ------------------------------------------------- C compress iw, if necessary C ------------------------------------------------- IF (PFREE .GT. IWLEN) THEN C prepare for compressing iw by adjusting C pointers and lengths so that the lists being C searched in the inner and outer loops contain C only the remaining entries. PE (ME) = P LEN (ME) = LEN (ME) - KNT1 IF (LEN (ME) .EQ. 0) THEN C nothing left of supervariable me PE (ME) = 0 ENDIF PE (E) = PJ LEN (E) = LN - KNT2 IF (LEN (E) .EQ. 0) THEN C nothing left of element e PE (E) = 0 ENDIF NCMPA = NCMPA + 1 C store first item in pe C set first entry to -item DO 70 J = 1, N PN = PE (J) IF (PN .GT. 0) THEN PE (J) = IW (PN) IW (PN) = -J ENDIF 70 CONTINUE C psrc/pdst point to source/destination PDST = 1 PSRC = 1 PEND = PME1 - 1 C while loop: 80 CONTINUE IF (PSRC .LE. PEND) THEN C search for next negative entry J = -IW (PSRC) PSRC = PSRC + 1 IF (J .GT. 0) THEN IW (PDST) = PE (J) PE (J) = PDST PDST = PDST + 1 C copy from source to destination LENJ = LEN (J) DO 90 KNT3 = 0, LENJ - 2 IW (PDST + KNT3) = IW (PSRC + KNT3) 90 CONTINUE PDST = PDST + LENJ - 1 PSRC = PSRC + LENJ - 1 ENDIF GOTO 80 ENDIF C move the new partially-constructed element P1 = PDST DO 100 PSRC = PME1, PFREE - 1 IW (PDST) = IW (PSRC) PDST = PDST + 1 100 CONTINUE PME1 = P1 PFREE = PDST PJ = PE (E) P = PE (ME) ENDIF C ------------------------------------------------- C i is a principal variable not yet placed in Lme C store i in new list C ------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI IW (PFREE) = I PFREE = PFREE + 1 C ------------------------------------------------- C remove variable i from degree link list C ------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 110 CONTINUE IF (E .NE. ME) THEN C set tree pointer and flag to indicate element e is C absorbed into new element me (the parent of e is me) PE (E) = -ME W (E) = 0 ENDIF 120 CONTINUE PME2 = PFREE - 1 C this element takes newmem new memory in iw (possibly zero) NEWMEM = PFREE - PME1 MEM = MEM + NEWMEM MAXMEM = MAX (MAXMEM, MEM) ENDIF C ------------------------------------------------------------- C me has now been converted into an element in iw (pme1..pme2) C ------------------------------------------------------------- C degme holds the external degree of new element DEGREE (ME) = DEGME PE (ME) = PME1 LEN (ME) = PME2 - PME1 + 1 C ------------------------------------------------------------- C make sure that wflg is not too large. With the current C value of wflg, wflg+n must not cause integer overflow C ------------------------------------------------------------- IF (WFLG + N .LE. WFLG) THEN DO 130 X = 1, N IF (W (X) .NE. 0) W (X) = 1 130 CONTINUE WFLG = 2 ENDIF C======================================================================= C COMPUTE (w (e) - wflg) = |Le\Lme| FOR ALL ELEMENTS C======================================================================= C ------------------------------------------------------------- C Scan 1: compute the external degrees of previous elements C with respect to the current element. That is: C (w (e) - wflg) = |Le \ Lme| C for each element e that appears in any supervariable in Lme. C The notation Le refers to the pattern (list of C supervariables) of a previous element e, where e is not yet C absorbed, stored in iw (pe (e) + 1 ... pe (e) + iw (pe (e))). C The notation Lme refers to the pattern of the current element C (stored in iw (pme1..pme2)). If (w (e) - wflg) becomes C zero, then the element e will be absorbed in scan 2. C ------------------------------------------------------------- DO 150 PME = PME1, PME2 I = IW (PME) ELN = ELEN (I) IF (ELN .GT. 0) THEN C note that nv (i) has been negated to denote i in Lme: NVI = -NV (I) WNVI = WFLG - NVI DO 140 P = PE (I), PE (I) + ELN - 1 E = IW (P) WE = W (E) IF (WE .GE. WFLG) THEN C unabsorbed element e has been seen in this loop WE = WE - NVI ELSE IF (WE .NE. 0) THEN C e is an unabsorbed element C this is the first we have seen e in all of Scan 1 WE = DEGREE (E) + WNVI ENDIF W (E) = WE 140 CONTINUE ENDIF 150 CONTINUE C======================================================================= C DEGREE UPDATE AND ELEMENT ABSORPTION C======================================================================= C ------------------------------------------------------------- C Scan 2: for each i in Lme, sum up the degree of Lme (which C is degme), plus the sum of the external degrees of each Le C for the elements e appearing within i, plus the C supervariables in i. Place i in hash list. C ------------------------------------------------------------- DO 180 PME = PME1, PME2 I = IW (PME) P1 = PE (I) P2 = P1 + ELEN (I) - 1 PN = P1 HASH = 0 DEG = 0 C ---------------------------------------------------------- C scan the element list associated with supervariable i C ---------------------------------------------------------- DO 160 P = P1, P2 E = IW (P) C dext = | Le \ Lme | DEXT = W (E) - WFLG IF (DEXT .GT. 0) THEN DEG = DEG + DEXT IW (PN) = E PN = PN + 1 HASH = HASH + E ELSE IF (DEXT .EQ. 0) THEN C aggressive absorption: e is not adjacent to me, but C the |Le \ Lme| is 0, so absorb it into me PE (E) = -ME W (E) = 0 ELSE C element e has already been absorbed, due to C regular absorption, in do loop 120 above. Ignore it. CONTINUE ENDIF 160 CONTINUE C count the number of elements in i (including me): ELEN (I) = PN - P1 + 1 C ---------------------------------------------------------- C scan the supervariables in the list associated with i C ---------------------------------------------------------- P3 = PN DO 170 P = P2 + 1, P1 + LEN (I) - 1 J = IW (P) NVJ = NV (J) IF (NVJ .GT. 0) THEN C j is unabsorbed, and not in Lme. C add to degree and add to new list DEG = DEG + NVJ IW (PN) = J PN = PN + 1 HASH = HASH + J ENDIF 170 CONTINUE C ---------------------------------------------------------- C update the degree and check for mass elimination C ---------------------------------------------------------- IF (DEG .EQ. 0) THEN C ------------------------------------------------------- C mass elimination C ------------------------------------------------------- C There is nothing left of this node except for an C edge to the current pivot element. elen (i) is 1, C and there are no variables adjacent to node i. C Absorb i into the current pivot element, me. PE (I) = -ME NVI = -NV (I) DEGME = DEGME - NVI NVPIV = NVPIV + NVI NEL = NEL + NVI NV (I) = 0 ELEN (I) = 0 ELSE C ------------------------------------------------------- C update the upper-bound degree of i C ------------------------------------------------------- C the following degree does not yet include the size C of the current element, which is added later: DEGREE (I) = MIN (DEGREE (I), DEG) C ------------------------------------------------------- C add me to the list for i C ------------------------------------------------------- C move first supervariable to end of list IW (PN) = IW (P3) C move first element to end of element part of list IW (P3) = IW (P1) C add new element to front of list. IW (P1) = ME C store the new length of the list in len (i) LEN (I) = PN - P1 + 1 C ------------------------------------------------------- C place in hash bucket. Save hash key of i in last (i). C ------------------------------------------------------- HASH = MOD (HASH, HMOD) + 1 J = HEAD (HASH) IF (J .LE. 0) THEN C the degree list is empty, hash head is -j NEXT (I) = -J HEAD (HASH) = -I ELSE C degree list is not empty C use last (head (hash)) as hash head NEXT (I) = LAST (J) LAST (J) = I ENDIF LAST (I) = HASH ENDIF 180 CONTINUE DEGREE (ME) = DEGME C ------------------------------------------------------------- C Clear the counter array, w (...), by incrementing wflg. C ------------------------------------------------------------- DMAX = MAX (DMAX, DEGME) WFLG = WFLG + DMAX C make sure that wflg+n does not cause integer overflow IF (WFLG + N .LE. WFLG) THEN DO 190 X = 1, N IF (W (X) .NE. 0) W (X) = 1 190 CONTINUE WFLG = 2 ENDIF C at this point, w (1..n) .lt. wflg holds C======================================================================= C SUPERVARIABLE DETECTION C======================================================================= DO 250 PME = PME1, PME2 I = IW (PME) IF (NV (I) .LT. 0) THEN C i is a principal variable in Lme C ------------------------------------------------------- C examine all hash buckets with 2 or more variables. We C do this by examing all unique hash keys for super- C variables in the pattern Lme of the current element, me C ------------------------------------------------------- HASH = LAST (I) C let i = head of hash bucket, and empty the hash bucket J = HEAD (HASH) IF (J .EQ. 0) GOTO 250 IF (J .LT. 0) THEN C degree list is empty I = -J HEAD (HASH) = 0 ELSE C degree list is not empty, restore last () of head I = LAST (J) LAST (J) = 0 ENDIF IF (I .EQ. 0) GOTO 250 C while loop: 200 CONTINUE IF (NEXT (I) .NE. 0) THEN C ---------------------------------------------------- C this bucket has one or more variables following i. C scan all of them to see if i can absorb any entries C that follow i in hash bucket. Scatter i into w. C ---------------------------------------------------- LN = LEN (I) ELN = ELEN (I) C do not flag the first element in the list (me) DO 210 P = PE (I) + 1, PE (I) + LN - 1 W (IW (P)) = WFLG 210 CONTINUE C ---------------------------------------------------- C scan every other entry j following i in bucket C ---------------------------------------------------- JLAST = I J = NEXT (I) C while loop: 220 CONTINUE IF (J .NE. 0) THEN C ------------------------------------------------- C check if j and i have identical nonzero pattern C ------------------------------------------------- IF (LEN (J) .NE. LN) THEN C i and j do not have same size data structure GOTO 240 ENDIF IF (ELEN (J) .NE. ELN) THEN C i and j do not have same number of adjacent el GOTO 240 ENDIF C do not flag the first element in the list (me) DO 230 P = PE (J) + 1, PE (J) + LN - 1 IF (W (IW (P)) .NE. WFLG) THEN C an entry (iw(p)) is in j but not in i GOTO 240 ENDIF 230 CONTINUE C ------------------------------------------------- C found it! j can be absorbed into i C ------------------------------------------------- PE (J) = -I C both nv (i) and nv (j) are negated since they C are in Lme, and the absolute values of each C are the number of variables in i and j: NV (I) = NV (I) + NV (J) NV (J) = 0 ELEN (J) = 0 C delete j from hash bucket J = NEXT (J) NEXT (JLAST) = J GOTO 220 C ------------------------------------------------- 240 CONTINUE C j cannot be absorbed into i C ------------------------------------------------- JLAST = J J = NEXT (J) GOTO 220 ENDIF C ---------------------------------------------------- C no more variables can be absorbed into i C go to next i in bucket and clear flag array C ---------------------------------------------------- WFLG = WFLG + 1 I = NEXT (I) IF (I .NE. 0) GOTO 200 ENDIF ENDIF 250 CONTINUE C======================================================================= C RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVAR. FROM ELEMENT C======================================================================= P = PME1 NLEFT = N - NEL DO 260 PME = PME1, PME2 I = IW (PME) NVI = -NV (I) IF (NVI .GT. 0) THEN C i is a principal variable in Lme C restore nv (i) to signify that i is principal NV (I) = NVI C ------------------------------------------------------- C compute the external degree (add size of current elem) C ------------------------------------------------------- DEG = MIN (DEGREE (I) + DEGME - NVI, NLEFT - NVI) C ------------------------------------------------------- C place the supervariable at the head of the degree list C ------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT LAST (I) = 0 HEAD (DEG) = I C ------------------------------------------------------- C save the new degree, and find the minimum degree C ------------------------------------------------------- MINDEG = MIN (MINDEG, DEG) DEGREE (I) = DEG C ------------------------------------------------------- C place the supervariable in the element pattern C ------------------------------------------------------- IW (P) = I P = P + 1 ENDIF 260 CONTINUE C======================================================================= C FINALIZE THE NEW ELEMENT C======================================================================= NV (ME) = NVPIV + DEGME C nv (me) is now the degree of pivot (including diagonal part) C save the length of the list for the new element me LEN (ME) = P - PME1 IF (LEN (ME) .EQ. 0) THEN C there is nothing left of the current pivot element PE (ME) = 0 W (ME) = 0 ENDIF IF (NEWMEM .NE. 0) THEN C element was not constructed in place: deallocate part C of it (final size is less than or equal to newmem, C since newly nonprincipal variables have been removed). PFREE = P MEM = MEM - NEWMEM + LEN (ME) ENDIF C======================================================================= C END WHILE (selecting pivots) GOTO 30 ENDIF C======================================================================= C======================================================================= C COMPUTE THE PERMUTATION VECTORS C======================================================================= C ---------------------------------------------------------------- C The time taken by the following code is O(n). At this C point, elen (e) = -k has been done for all elements e, C and elen (i) = 0 has been done for all nonprincipal C variables i. At this point, there are no principal C supervariables left, and all elements are absorbed. C ---------------------------------------------------------------- C ---------------------------------------------------------------- C compute the ordering of unordered nonprincipal variables C ---------------------------------------------------------------- DO 290 I = 1, N IF (ELEN (I) .EQ. 0) THEN C ---------------------------------------------------------- C i is an un-ordered row. Traverse the tree from i until C reaching an element, e. The element, e, was the C principal supervariable of i and all nodes in the path C from i to when e was selected as pivot. C ---------------------------------------------------------- J = -PE (I) C while (j is a variable) do: 270 CONTINUE IF (ELEN (J) .GE. 0) THEN J = -PE (J) GOTO 270 ENDIF E = J C ---------------------------------------------------------- C get the current pivot ordering of e C ---------------------------------------------------------- K = -ELEN (E) C ---------------------------------------------------------- C traverse the path again from i to e, and compress the C path (all nodes point to e). Path compression allows C this code to compute in O(n) time. Order the unordered C nodes in the path, and place the element e at the end. C ---------------------------------------------------------- J = I C while (j is a variable) do: 280 CONTINUE IF (ELEN (J) .GE. 0) THEN JNEXT = -PE (J) PE (J) = -E IF (ELEN (J) .EQ. 0) THEN C j is an unordered row ELEN (J) = K K = K + 1 ENDIF J = JNEXT GOTO 280 ENDIF C leave elen (e) negative, so we know it is an element ELEN (E) = -K ENDIF 290 CONTINUE C ---------------------------------------------------------------- C reset the inverse permutation (elen (1..n)) to be positive, C and compute the permutation (last (1..n)). C ---------------------------------------------------------------- DO 300 I = 1, N K = ABS (ELEN (I)) LAST (K) = I ELEN (I) = K 300 CONTINUE C======================================================================= C RETURN THE MEMORY USAGE IN IW C======================================================================= C If maxmem is less than or equal to iwlen, then no compressions C occurred, and iw (maxmem+1 ... iwlen) was unused. Otherwise C compressions did occur, and iwlen would have had to have been C greater than or equal to maxmem for no compressions to occur. C Return the value of maxmem in the pfree argument. PFREE = MAXMEM RETURN END SuiteSparse/AMD/Source/amd_post_tree.c0000644001170100242450000000730710616426533016616 0ustar davisfac/* ========================================================================= */ /* === AMD_post_tree ======================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Post-ordering of a supernodal elimination tree. */ #include "amd_internal.h" GLOBAL Int AMD_post_tree ( Int root, /* root of the tree */ Int k, /* start numbering at k */ Int Child [ ], /* input argument of size nn, undefined on * output. Child [i] is the head of a link * list of all nodes that are children of node * i in the tree. */ const Int Sibling [ ], /* input argument of size nn, not modified. * If f is a node in the link list of the * children of node i, then Sibling [f] is the * next child of node i. */ Int Order [ ], /* output order, of size nn. Order [i] = k * if node i is the kth node of the reordered * tree. */ Int Stack [ ] /* workspace of size nn */ #ifndef NDEBUG , Int nn /* nodes are in the range 0..nn-1. */ #endif ) { Int f, head, h, i ; #if 0 /* --------------------------------------------------------------------- */ /* recursive version (Stack [ ] is not used): */ /* --------------------------------------------------------------------- */ /* this is simple, but can caouse stack overflow if nn is large */ i = root ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { k = AMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ; } Order [i] = k++ ; return (k) ; #endif /* --------------------------------------------------------------------- */ /* non-recursive version, using an explicit stack */ /* --------------------------------------------------------------------- */ /* push root on the stack */ head = 0 ; Stack [0] = root ; while (head >= 0) { /* get head of stack */ ASSERT (head < nn) ; i = Stack [head] ; AMD_DEBUG1 (("head of stack "ID" \n", i)) ; ASSERT (i >= 0 && i < nn) ; if (Child [i] != EMPTY) { /* the children of i are not yet ordered */ /* push each child onto the stack in reverse order */ /* so that small ones at the head of the list get popped first */ /* and the biggest one at the end of the list gets popped last */ for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { head++ ; ASSERT (head < nn) ; ASSERT (f >= 0 && f < nn) ; } h = head ; ASSERT (head < nn) ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { ASSERT (h > 0) ; Stack [h--] = f ; AMD_DEBUG1 (("push "ID" on stack\n", f)) ; ASSERT (f >= 0 && f < nn) ; } ASSERT (Stack [h] == i) ; /* delete child list so that i gets ordered next time we see it */ Child [i] = EMPTY ; } else { /* the children of i (if there were any) are already ordered */ /* remove i from the stack and order it. Front i is kth front */ head-- ; AMD_DEBUG1 (("pop "ID" order "ID"\n", i, k)) ; Order [i] = k++ ; ASSERT (k <= nn) ; } #ifndef NDEBUG AMD_DEBUG1 (("\nStack:")) ; for (h = head ; h >= 0 ; h--) { Int j = Stack [h] ; AMD_DEBUG1 ((" "ID, j)) ; ASSERT (j >= 0 && j < nn) ; } AMD_DEBUG1 (("\n\n")) ; ASSERT (head < nn) ; #endif } return (k) ; } SuiteSparse/AMD/Source/amd_defaults.c0000644001170100242450000000246510616426300016411 0ustar davisfac/* ========================================================================= */ /* === AMD_defaults ======================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* User-callable. Sets default control parameters for AMD. See amd.h * for details. */ #include "amd_internal.h" /* ========================================================================= */ /* === AMD defaults ======================================================== */ /* ========================================================================= */ GLOBAL void AMD_defaults ( double Control [ ] ) { Int i ; if (Control != (double *) NULL) { for (i = 0 ; i < AMD_CONTROL ; i++) { Control [i] = 0 ; } Control [AMD_DENSE] = AMD_DEFAULT_DENSE ; Control [AMD_AGGRESSIVE] = AMD_DEFAULT_AGGRESSIVE ; } } SuiteSparse/AMD/Source/amd_aat.c0000644001170100242450000001147710616426273015363 0ustar davisfac/* ========================================================================= */ /* === AMD_aat ============================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* AMD_aat: compute the symmetry of the pattern of A, and count the number of * nonzeros each column of A+A' (excluding the diagonal). Assumes the input * matrix has no errors, with sorted columns and no duplicates * (AMD_valid (n, n, Ap, Ai) must be AMD_OK, but this condition is not * checked). */ #include "amd_internal.h" GLOBAL size_t AMD_aat /* returns nz in A+A' */ ( Int n, const Int Ap [ ], const Int Ai [ ], Int Len [ ], /* Len [j]: length of column j of A+A', excl diagonal*/ Int Tp [ ], /* workspace of size n */ double Info [ ] ) { Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ; double sym ; size_t nzaat ; #ifndef NDEBUG AMD_debug_init ("AMD AAT") ; for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; #endif if (Info != (double *) NULL) { /* clear the Info array, if it exists */ for (i = 0 ; i < AMD_INFO ; i++) { Info [i] = EMPTY ; } Info [AMD_STATUS] = AMD_OK ; } for (k = 0 ; k < n ; k++) { Len [k] = 0 ; } nzdiag = 0 ; nzboth = 0 ; nz = Ap [n] ; for (k = 0 ; k < n ; k++) { p1 = Ap [k] ; p2 = Ap [k+1] ; AMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; if (j < k) { /* entry A (j,k) is in the strictly upper triangular part, * add both A (j,k) and A (k,j) to the matrix A+A' */ Len [j]++ ; Len [k]++ ; AMD_DEBUG3 ((" upper ("ID","ID") ("ID","ID")\n", j,k, k,j)); p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; nzdiag++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Tp [j] != EMPTY) ; ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; if (i < k) { /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; AMD_DEBUG3 ((" lower ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; nzboth++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } /* Tp [k] points to the entry just below the diagonal in column k */ Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; AMD_DEBUG3 ((" lower cleanup ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; } } /* --------------------------------------------------------------------- */ /* compute the symmetry of the nonzero pattern of A */ /* --------------------------------------------------------------------- */ /* Given a matrix A, the symmetry of A is: * B = tril (spones (A), -1) + triu (spones (A), 1) ; * sym = nnz (B & B') / nnz (B) ; * or 1 if nnz (B) is zero. */ if (nz == nzdiag) { sym = 1 ; } else { sym = (2 * (double) nzboth) / ((double) (nz - nzdiag)) ; } nzaat = 0 ; for (k = 0 ; k < n ; k++) { nzaat += Len [k] ; } AMD_DEBUG1 (("AMD nz in A+A', excluding diagonal (nzaat) = %g\n", (double) nzaat)) ; AMD_DEBUG1 ((" nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n", nzboth, nz, nzdiag, sym)) ; if (Info != (double *) NULL) { Info [AMD_STATUS] = AMD_OK ; Info [AMD_N] = n ; Info [AMD_NZ] = nz ; Info [AMD_SYMMETRY] = sym ; /* symmetry of pattern of A */ Info [AMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */ Info [AMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */ } return (nzaat) ; } SuiteSparse/AMD/Source/amd_postorder.c0000644001170100242450000001272510616426531016631 0ustar davisfac/* ========================================================================= */ /* === AMD_postorder ======================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Perform a postordering (via depth-first search) of an assembly tree. */ #include "amd_internal.h" GLOBAL void AMD_postorder ( /* inputs, not modified on output: */ Int nn, /* nodes are in the range 0..nn-1 */ Int Parent [ ], /* Parent [j] is the parent of j, or EMPTY if root */ Int Nv [ ], /* Nv [j] > 0 number of pivots represented by node j, * or zero if j is not a node. */ Int Fsize [ ], /* Fsize [j]: size of node j */ /* output, not defined on input: */ Int Order [ ], /* output post-order */ /* workspaces of size nn: */ Int Child [ ], Int Sibling [ ], Int Stack [ ] ) { Int i, j, k, parent, frsize, f, fprev, maxfrsize, bigfprev, bigf, fnext ; for (j = 0 ; j < nn ; j++) { Child [j] = EMPTY ; Sibling [j] = EMPTY ; } /* --------------------------------------------------------------------- */ /* place the children in link lists - bigger elements tend to be last */ /* --------------------------------------------------------------------- */ for (j = nn-1 ; j >= 0 ; j--) { if (Nv [j] > 0) { /* this is an element */ parent = Parent [j] ; if (parent != EMPTY) { /* place the element in link list of the children its parent */ /* bigger elements will tend to be at the end of the list */ Sibling [j] = Child [parent] ; Child [parent] = j ; } } } #ifndef NDEBUG { Int nels, ff, nchild ; AMD_DEBUG1 (("\n\n================================ AMD_postorder:\n")); nels = 0 ; for (j = 0 ; j < nn ; j++) { if (Nv [j] > 0) { AMD_DEBUG1 (( ""ID" : nels "ID" npiv "ID" size "ID " parent "ID" maxfr "ID"\n", j, nels, Nv [j], Fsize [j], Parent [j], Fsize [j])) ; /* this is an element */ /* dump the link list of children */ nchild = 0 ; AMD_DEBUG1 ((" Children: ")) ; for (ff = Child [j] ; ff != EMPTY ; ff = Sibling [ff]) { AMD_DEBUG1 ((ID" ", ff)) ; ASSERT (Parent [ff] == j) ; nchild++ ; ASSERT (nchild < nn) ; } AMD_DEBUG1 (("\n")) ; parent = Parent [j] ; if (parent != EMPTY) { ASSERT (Nv [parent] > 0) ; } nels++ ; } } } AMD_DEBUG1 (("\n\nGo through the children of each node, and put\n" "the biggest child last in each list:\n")) ; #endif /* --------------------------------------------------------------------- */ /* place the largest child last in the list of children for each node */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < nn ; i++) { if (Nv [i] > 0 && Child [i] != EMPTY) { #ifndef NDEBUG Int nchild ; AMD_DEBUG1 (("Before partial sort, element "ID"\n", i)) ; nchild = 0 ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { ASSERT (f >= 0 && f < nn) ; AMD_DEBUG1 ((" f: "ID" size: "ID"\n", f, Fsize [f])) ; nchild++ ; ASSERT (nchild <= nn) ; } #endif /* find the biggest element in the child list */ fprev = EMPTY ; maxfrsize = EMPTY ; bigfprev = EMPTY ; bigf = EMPTY ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { ASSERT (f >= 0 && f < nn) ; frsize = Fsize [f] ; if (frsize >= maxfrsize) { /* this is the biggest seen so far */ maxfrsize = frsize ; bigfprev = fprev ; bigf = f ; } fprev = f ; } ASSERT (bigf != EMPTY) ; fnext = Sibling [bigf] ; AMD_DEBUG1 (("bigf "ID" maxfrsize "ID" bigfprev "ID" fnext "ID " fprev " ID"\n", bigf, maxfrsize, bigfprev, fnext, fprev)) ; if (fnext != EMPTY) { /* if fnext is EMPTY then bigf is already at the end of list */ if (bigfprev == EMPTY) { /* delete bigf from the element of the list */ Child [i] = fnext ; } else { /* delete bigf from the middle of the list */ Sibling [bigfprev] = fnext ; } /* put bigf at the end of the list */ Sibling [bigf] = EMPTY ; ASSERT (Child [i] != EMPTY) ; ASSERT (fprev != bigf) ; ASSERT (fprev != EMPTY) ; Sibling [fprev] = bigf ; } #ifndef NDEBUG AMD_DEBUG1 (("After partial sort, element "ID"\n", i)) ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { ASSERT (f >= 0 && f < nn) ; AMD_DEBUG1 ((" "ID" "ID"\n", f, Fsize [f])) ; ASSERT (Nv [f] > 0) ; nchild-- ; } ASSERT (nchild == 0) ; #endif } } /* --------------------------------------------------------------------- */ /* postorder the assembly tree */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < nn ; i++) { Order [i] = EMPTY ; } k = 0 ; for (i = 0 ; i < nn ; i++) { if (Parent [i] == EMPTY && Nv [i] > 0) { AMD_DEBUG1 (("Root of assembly tree "ID"\n", i)) ; k = AMD_post_tree (i, k, Child, Sibling, Order, Stack #ifndef NDEBUG , nn #endif ) ; } } } SuiteSparse/AMD/Source/amd_global.c0000644001170100242450000000627510616377251016057 0ustar davisfac/* ========================================================================= */ /* === amd_global ========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ #include #ifdef MATLAB_MEX_FILE #include "mex.h" #include "matrix.h" #endif #ifndef NULL #define NULL 0 #endif /* ========================================================================= */ /* === Default AMD memory manager ========================================== */ /* ========================================================================= */ /* The user can redefine these global pointers at run-time to change the memory * manager used by AMD. AMD only uses malloc and free; realloc and calloc are * include for completeness, in case another package wants to use the same * memory manager as AMD. * * If compiling as a MATLAB mexFunction, the default memory manager is mxMalloc. * You can also compile AMD as a standard ANSI-C library and link a mexFunction * against it, and then redefine these pointers at run-time, in your * mexFunction. * * If -DNMALLOC is defined at compile-time, no memory manager is specified at * compile-time. You must then define these functions at run-time, before * calling AMD, for AMD to work properly. */ #ifndef NMALLOC #ifdef MATLAB_MEX_FILE /* MATLAB mexFunction: */ void *(*amd_malloc) (size_t) = mxMalloc ; void (*amd_free) (void *) = mxFree ; void *(*amd_realloc) (void *, size_t) = mxRealloc ; void *(*amd_calloc) (size_t, size_t) = mxCalloc ; #else /* standard ANSI-C: */ void *(*amd_malloc) (size_t) = malloc ; void (*amd_free) (void *) = free ; void *(*amd_realloc) (void *, size_t) = realloc ; void *(*amd_calloc) (size_t, size_t) = calloc ; #endif #else /* no memory manager defined at compile-time; you MUST define one at run-time */ void *(*amd_malloc) (size_t) = NULL ; void (*amd_free) (void *) = NULL ; void *(*amd_realloc) (void *, size_t) = NULL ; void *(*amd_calloc) (size_t, size_t) = NULL ; #endif /* ========================================================================= */ /* === Default AMD printf routine ========================================== */ /* ========================================================================= */ /* The user can redefine this global pointer at run-time to change the printf * routine used by AMD. If NULL, no printing occurs. * * If -DNPRINT is defined at compile-time, stdio.h is not included. Printing * can then be enabled at run-time by setting amd_printf to a non-NULL function. */ #ifndef NPRINT #ifdef MATLAB_MEX_FILE int (*amd_printf) (const char *, ...) = mexPrintf ; #else #include int (*amd_printf) (const char *, ...) = printf ; #endif #else int (*amd_printf) (const char *, ...) = NULL ; #endif SuiteSparse/AMD/Source/amd_valid.c0000644001170100242450000000576410616426546015722 0ustar davisfac/* ========================================================================= */ /* === AMD_valid =========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Check if a column-form matrix is valid or not. The matrix A is * n_row-by-n_col. The row indices of entries in column j are in * Ai [Ap [j] ... Ap [j+1]-1]. Required conditions are: * * n_row >= 0 * n_col >= 0 * nz = Ap [n_col] >= 0 number of entries in the matrix * Ap [0] == 0 * Ap [j] <= Ap [j+1] for all j in the range 0 to n_col. * Ai [0 ... nz-1] must be in the range 0 to n_row-1. * * If any of the above conditions hold, AMD_INVALID is returned. If the * following condition holds, AMD_OK_BUT_JUMBLED is returned (a warning, * not an error): * * row indices in Ai [Ap [j] ... Ap [j+1]-1] are not sorted in ascending * order, and/or duplicate entries exist. * * Otherwise, AMD_OK is returned. * * In v1.2 and earlier, this function returned TRUE if the matrix was valid * (now returns AMD_OK), or FALSE otherwise (now returns AMD_INVALID or * AMD_OK_BUT_JUMBLED). */ #include "amd_internal.h" GLOBAL Int AMD_valid ( /* inputs, not modified on output: */ Int n_row, /* A is n_row-by-n_col */ Int n_col, const Int Ap [ ], /* column pointers of A, of size n_col+1 */ const Int Ai [ ] /* row indices of A, of size nz = Ap [n_col] */ ) { Int nz, j, p1, p2, ilast, i, p, result = AMD_OK ; if (n_row < 0 || n_col < 0 || Ap == NULL || Ai == NULL) { return (AMD_INVALID) ; } nz = Ap [n_col] ; if (Ap [0] != 0 || nz < 0) { /* column pointers must start at Ap [0] = 0, and Ap [n] must be >= 0 */ AMD_DEBUG0 (("column 0 pointer bad or nz < 0\n")) ; return (AMD_INVALID) ; } for (j = 0 ; j < n_col ; j++) { p1 = Ap [j] ; p2 = Ap [j+1] ; AMD_DEBUG2 (("\nColumn: "ID" p1: "ID" p2: "ID"\n", j, p1, p2)) ; if (p1 > p2) { /* column pointers must be ascending */ AMD_DEBUG0 (("column "ID" pointer bad\n", j)) ; return (AMD_INVALID) ; } ilast = EMPTY ; for (p = p1 ; p < p2 ; p++) { i = Ai [p] ; AMD_DEBUG3 (("row: "ID"\n", i)) ; if (i < 0 || i >= n_row) { /* row index out of range */ AMD_DEBUG0 (("index out of range, col "ID" row "ID"\n", j, i)); return (AMD_INVALID) ; } if (i <= ilast) { /* row index unsorted, or duplicate entry present */ AMD_DEBUG1 (("index unsorted/dupl col "ID" row "ID"\n", j, i)); result = AMD_OK_BUT_JUMBLED ; } ilast = i ; } } return (result) ; } SuiteSparse/AMD/Source/amd_preprocess.c0000644001170100242450000000746010616426536017002 0ustar davisfac/* ========================================================================= */ /* === AMD_preprocess ====================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Sorts, removes duplicate entries, and transposes from the nonzero pattern of * a column-form matrix A, to obtain the matrix R. The input matrix can have * duplicate entries and/or unsorted columns (AMD_valid (n,Ap,Ai) must not be * AMD_INVALID). * * This input condition is NOT checked. This routine is not user-callable. */ #include "amd_internal.h" /* ========================================================================= */ /* === AMD_preprocess ====================================================== */ /* ========================================================================= */ /* AMD_preprocess does not check its input for errors or allocate workspace. * On input, the condition (AMD_valid (n,n,Ap,Ai) != AMD_INVALID) must hold. */ GLOBAL void AMD_preprocess ( Int n, /* input matrix: A is n-by-n */ const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ /* output matrix R: */ Int Rp [ ], /* size n+1 */ Int Ri [ ], /* size nz (or less, if duplicates present) */ Int W [ ], /* workspace of size n */ Int Flag [ ] /* workspace of size n */ ) { /* --------------------------------------------------------------------- */ /* local variables */ /* --------------------------------------------------------------------- */ Int i, j, p, p2 ; ASSERT (AMD_valid (n, n, Ap, Ai) != AMD_INVALID) ; /* --------------------------------------------------------------------- */ /* count the entries in each row of A (excluding duplicates) */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { W [i] = 0 ; /* # of nonzeros in row i (excl duplicates) */ Flag [i] = EMPTY ; /* Flag [i] = j if i appears in column j */ } for (j = 0 ; j < n ; j++) { p2 = Ap [j+1] ; for (p = Ap [j] ; p < p2 ; p++) { i = Ai [p] ; if (Flag [i] != j) { /* row index i has not yet appeared in column j */ W [i]++ ; /* one more entry in row i */ Flag [i] = j ; /* flag row index i as appearing in col j*/ } } } /* --------------------------------------------------------------------- */ /* compute the row pointers for R */ /* --------------------------------------------------------------------- */ Rp [0] = 0 ; for (i = 0 ; i < n ; i++) { Rp [i+1] = Rp [i] + W [i] ; } for (i = 0 ; i < n ; i++) { W [i] = Rp [i] ; Flag [i] = EMPTY ; } /* --------------------------------------------------------------------- */ /* construct the row form matrix R */ /* --------------------------------------------------------------------- */ /* R = row form of pattern of A */ for (j = 0 ; j < n ; j++) { p2 = Ap [j+1] ; for (p = Ap [j] ; p < p2 ; p++) { i = Ai [p] ; if (Flag [i] != j) { /* row index i has not yet appeared in column j */ Ri [W [i]++] = j ; /* put col j in row i */ Flag [i] = j ; /* flag row index i as appearing in col j*/ } } } #ifndef NDEBUG ASSERT (AMD_valid (n, n, Rp, Ri) == AMD_OK) ; for (j = 0 ; j < n ; j++) { ASSERT (W [j] == Rp [j+1]) ; } #endif } SuiteSparse/AMD/Source/amd_1.c0000644001170100242450000001323610616426266014753 0ustar davisfac/* ========================================================================= */ /* === AMD_1 =============================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering. * * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style * compressed-column form, with sorted row indices in each column, and no * duplicate entries. Diagonal entries may be present, but they are ignored. * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The * size of the matrix, n, must be greater than or equal to zero. * * This routine must be preceded by a call to AMD_aat, which computes the * number of entries in each row/column in A+A', excluding the diagonal. * Len [j], on input, is the number of entries in row/column j of A+A'. This * routine constructs the matrix A+A' and then calls AMD_2. No error checking * is performed (this was done in AMD_valid). */ #include "amd_internal.h" GLOBAL void AMD_1 ( Int n, /* n > 0 */ const Int Ap [ ], /* input of size n+1, not modified */ const Int Ai [ ], /* input of size nz = Ap [n], not modified */ Int P [ ], /* size n output permutation */ Int Pinv [ ], /* size n output inverse permutation */ Int Len [ ], /* size n input, undefined on output */ Int slen, /* slen >= sum (Len [0..n-1]) + 7n, * ideally slen = 1.2 * sum (Len) + 8n */ Int S [ ], /* size slen workspace */ double Control [ ], /* input array of size AMD_CONTROL */ double Info [ ] /* output array of size AMD_INFO */ ) { Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, *Elen, *Degree, *s, *W, *Sp, *Tp ; /* --------------------------------------------------------------------- */ /* construct the matrix for AMD_2 */ /* --------------------------------------------------------------------- */ ASSERT (n > 0) ; iwlen = slen - 6*n ; s = S ; Pe = s ; s += n ; Nv = s ; s += n ; Head = s ; s += n ; Elen = s ; s += n ; Degree = s ; s += n ; W = s ; s += n ; Iw = s ; s += iwlen ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; /* construct the pointers for A+A' */ Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ Tp = W ; pfree = 0 ; for (j = 0 ; j < n ; j++) { Pe [j] = pfree ; Sp [j] = pfree ; pfree += Len [j] ; } /* Note that this restriction on iwlen is slightly more restrictive than * what is strictly required in AMD_2. AMD_2 can operate with no elbow * room at all, but it will be very slow. For better performance, at * least size-n elbow room is enforced. */ ASSERT (iwlen >= pfree + n) ; #ifndef NDEBUG for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; #endif for (k = 0 ; k < n ; k++) { AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; p1 = Ap [k] ; p2 = Ap [k+1] ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; ASSERT (j >= 0 && j < n) ; if (j < k) { /* entry A (j,k) in the strictly upper triangular part */ ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; Iw [Sp [j]++] = k ; Iw [Sp [k]++] = j ; p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; if (i < k) { /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; } } #ifndef NDEBUG for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; ASSERT (Sp [n-1] == pfree) ; #endif /* Tp and Sp no longer needed ] */ /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ AMD_2 (n, Pe, Iw, Len, iwlen, pfree, Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; } SuiteSparse/AMD/Source/amd_2.c0000644001170100242450000017646710616426270014767 0ustar davisfac/* ========================================================================= */ /* === AMD_2 =============================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed * by a postordering (via depth-first search) of the assembly tree using the * AMD_postorder routine. */ #include "amd_internal.h" /* ========================================================================= */ /* === clear_flag ========================================================== */ /* ========================================================================= */ static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n) { Int x ; if (wflg < 2 || wflg >= wbig) { for (x = 0 ; x < n ; x++) { if (W [x] != 0) W [x] = 1 ; } wflg = 2 ; } /* at this point, W [0..n-1] < wflg holds */ return (wflg) ; } /* ========================================================================= */ /* === AMD_2 =============================================================== */ /* ========================================================================= */ GLOBAL void AMD_2 ( Int n, /* A is n-by-n, where n > 0 */ Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */ Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1] * holds the matrix on input */ Int Len [ ], /* Len [0..n-1]: length for row/column i on input */ Int iwlen, /* length of Iw. iwlen >= pfree + n */ Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */ /* 7 size-n workspaces, not defined on input: */ Int Nv [ ], /* the size of each supernode on output */ Int Next [ ], /* the output inverse permutation */ Int Last [ ], /* the output permutation */ Int Head [ ], Int Elen [ ], /* the size columns of L for each supernode */ Int Degree [ ], Int W [ ], /* control parameters and output statistics */ double Control [ ], /* array of size AMD_CONTROL */ double Info [ ] /* array of size AMD_INFO */ ) { /* * Given a representation of the nonzero pattern of a symmetric matrix, A, * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style) * degree ordering to compute a pivot order such that the introduction of * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style * upper-bound on the external degree. This routine can optionally perform * aggresive absorption (as done by MC47B in the Harwell Subroutine * Library). * * The approximate degree algorithm implemented here is the symmetric analog of * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern * MultiFrontal PACKage, both by Davis and Duff). The routine is based on the * MA27 minimum degree ordering algorithm by Iain Duff and John Reid. * * This routine is a translation of the original AMDBAR and MC47B routines, * in Fortran, with the following modifications: * * (1) dense rows/columns are removed prior to ordering the matrix, and placed * last in the output order. The presence of a dense row/column can * increase the ordering time by up to O(n^2), unless they are removed * prior to ordering. * * (2) the minimum degree ordering is followed by a postordering (depth-first * search) of the assembly tree. Note that mass elimination (discussed * below) combined with the approximate degree update can lead to the mass * elimination of nodes with lower exact degree than the current pivot * element. No additional fill-in is caused in the representation of the * Schur complement. The mass-eliminated nodes merge with the current * pivot element. They are ordered prior to the current pivot element. * Because they can have lower exact degree than the current element, the * merger of two or more of these nodes in the current pivot element can * lead to a single element that is not a "fundamental supernode". The * diagonal block can have zeros in it. Thus, the assembly tree used here * is not guaranteed to be the precise supernodal elemination tree (with * "funadmental" supernodes), and the postordering performed by this * routine is not guaranteed to be a precise postordering of the * elimination tree. * * (3) input parameters are added, to control aggressive absorption and the * detection of "dense" rows/columns of A. * * (4) additional statistical information is returned, such as the number of * nonzeros in L, and the flop counts for subsequent LDL' and LU * factorizations. These are slight upper bounds, because of the mass * elimination issue discussed above. * * (5) additional routines are added to interface this routine to MATLAB * to provide a simple C-callable user-interface, to check inputs for * errors, compute the symmetry of the pattern of A and the number of * nonzeros in each row/column of A+A', to compute the pattern of A+A', * to perform the assembly tree postordering, and to provide debugging * ouput. Many of these functions are also provided by the Fortran * Harwell Subroutine Library routine MC47A. * * (6) both int and UF_long versions are provided. In the descriptions below * and integer is and int or UF_long depending on which version is * being used. ********************************************************************** ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** ********************************************************************** ** If you want error checking, a more versatile input format, and a ** ** simpler user interface, use amd_order or amd_l_order instead. ** ** This routine is not meant to be user-callable. ** ********************************************************************** * ---------------------------------------------------------------------------- * References: * ---------------------------------------------------------------------------- * * [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal * method for sparse LU factorization", SIAM J. Matrix Analysis and * Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38, * which first introduced the approximate minimum degree used by this * routine. * * [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate * minimum degree ordering algorithm," SIAM J. Matrix Analysis and * Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and * MC47B, which are the Fortran versions of this routine. * * [3] Alan George and Joseph Liu, "The evolution of the minimum degree * ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989. * We list below the features mentioned in that paper that this code * includes: * * mass elimination: * Yes. MA27 relied on supervariable detection for mass elimination. * * indistinguishable nodes: * Yes (we call these "supervariables"). This was also in the MA27 * code - although we modified the method of detecting them (the * previous hash was the true degree, which we no longer keep track * of). A supervariable is a set of rows with identical nonzero * pattern. All variables in a supervariable are eliminated together. * Each supervariable has as its numerical name that of one of its * variables (its principal variable). * * quotient graph representation: * Yes. We use the term "element" for the cliques formed during * elimination. This was also in the MA27 code. The algorithm can * operate in place, but it will work more efficiently if given some * "elbow room." * * element absorption: * Yes. This was also in the MA27 code. * * external degree: * Yes. The MA27 code was based on the true degree. * * incomplete degree update and multiple elimination: * No. This was not in MA27, either. Our method of degree update * within MC47B is element-based, not variable-based. It is thus * not well-suited for use with incomplete degree update or multiple * elimination. * * Authors, and Copyright (C) 2004 by: * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid. * * Acknowledgements: This work (and the UMFPACK package) was supported by the * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270). * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog * which forms the basis of AMD, was developed while Tim Davis was supported by * CERFACS (Toulouse, France) in a post-doctoral position. This C version, and * the etree postorder, were written while Tim Davis was on sabbatical at * Stanford University and Lawrence Berkeley National Laboratory. * ---------------------------------------------------------------------------- * INPUT ARGUMENTS (unaltered): * ---------------------------------------------------------------------------- * n: The matrix order. Restriction: n >= 1. * * iwlen: The size of the Iw array. On input, the matrix is stored in * Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger * than what is required to hold the matrix, at least iwlen >= pfree + n. * Otherwise, excessive compressions will take place. The recommended * value of iwlen is 1.2 * pfree + n, which is the value used in the * user-callable interface to this routine (amd_order.c). The algorithm * will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n. * Note that this is slightly more restrictive than the actual minimum * (iwlen >= pfree), but AMD_2 will be very slow with no elbow room. * Thus, this routine enforces a bare minimum elbow room of size n. * * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty, * and the matrix is stored in Iw [0..pfree-1]. During execution, * additional data is placed in Iw, and pfree is modified so that * Iw [pfree..iwlen-1] is always the unused part of Iw. * * Control: A double array of size AMD_CONTROL containing input parameters * that affect how the ordering is computed. If NULL, then default * settings are used. * * Control [AMD_DENSE] is used to determine whether or not a given input * row is "dense". A row is "dense" if the number of entries in the row * exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or * fewer entries are never considered "dense". To turn off the detection * of dense rows, set Control [AMD_DENSE] to a negative number, or to a * number larger than sqrt (n). The default value of Control [AMD_DENSE] * is AMD_DEFAULT_DENSE, which is defined in amd.h as 10. * * Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive * absorption is to be performed. If nonzero, then aggressive absorption * is performed (this is the default). * ---------------------------------------------------------------------------- * INPUT/OUPUT ARGUMENTS: * ---------------------------------------------------------------------------- * * Pe: An integer array of size n. On input, Pe [i] is the index in Iw of * the start of row i. Pe [i] is ignored if row i has no off-diagonal * entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty * rows. * * During execution, it is used for both supervariables and elements: * * Principal supervariable i: index into Iw of the description of * supervariable i. A supervariable represents one or more rows of * the matrix with identical nonzero pattern. In this case, * Pe [i] >= 0. * * Non-principal supervariable i: if i has been absorbed into another * supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined * as (-(j)-2). Row j has the same pattern as row i. Note that j * might later be absorbed into another supervariable j2, in which * case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is * < EMPTY, where EMPTY is defined as (-1) in amd_internal.h. * * Unabsorbed element e: the index into Iw of the description of element * e, if e has not yet been absorbed by a subsequent element. Element * e is created when the supervariable of the same name is selected as * the pivot. In this case, Pe [i] >= 0. * * Absorbed element e: if element e is absorbed into element e2, then * Pe [e] = FLIP (e2). This occurs when the pattern of e (which we * refer to as Le) is found to be a subset of the pattern of e2 (that * is, Le2). In this case, Pe [i] < EMPTY. If element e is "null" * (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY, * and e is the root of an assembly subtree (or the whole tree if * there is just one such root). * * Dense variable i: if i is "dense", then Pe [i] = EMPTY. * * On output, Pe holds the assembly tree/forest, which implicitly * represents a pivot order with identical fill-in as the actual order * (via a depth-first search of the tree), as follows. If Nv [i] > 0, * then i represents a node in the assembly tree, and the parent of i is * Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i]) * represents an edge in a subtree, the root of which is a node in the * assembly tree. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Info: A double array of size AMD_INFO. If present, (that is, not NULL), * then statistics about the ordering are returned in the Info array. * See amd.h for a description. * ---------------------------------------------------------------------------- * INPUT/MODIFIED (undefined on output): * ---------------------------------------------------------------------------- * * Len: An integer array of size n. On input, Len [i] holds the number of * entries in row i of the matrix, excluding the diagonal. The contents * of Len are undefined on output. * * Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the * description of each row i in the matrix. The matrix must be symmetric, * and both upper and lower triangular parts must be present. The * diagonal must not be present. Row i is held as follows: * * Len [i]: the length of the row i data structure in the Iw array. * Iw [Pe [i] ... Pe [i] + Len [i] - 1]: * the list of column indices for nonzeros in row i (simple * supervariables), excluding the diagonal. All supervariables * start with one row/column each (supervariable i is just row i). * If Len [i] is zero on input, then Pe [i] is ignored on input. * * Note that the rows need not be in any particular order, and there * may be empty space between the rows. * * During execution, the supervariable i experiences fill-in. This is * represented by placing in i a list of the elements that cause fill-in * in supervariable i: * * Len [i]: the length of supervariable i in the Iw array. * Iw [Pe [i] ... Pe [i] + Elen [i] - 1]: * the list of elements that contain i. This list is kept short * by removing absorbed elements. * Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]: * the list of supervariables in i. This list is kept short by * removing nonprincipal variables, and any entry j that is also * contained in at least one of the elements (j in Le) in the list * for i (e in row i). * * When supervariable i is selected as pivot, we create an element e of * the same name (e=i): * * Len [e]: the length of element e in the Iw array. * Iw [Pe [e] ... Pe [e] + Len [e] - 1]: * the list of supervariables in element e. * * An element represents the fill-in that occurs when supervariable i is * selected as pivot (which represents the selection of row i and all * non-principal variables whose principal variable is i). We use the * term Le to denote the set of all supervariables in element e. Absorbed * supervariables and elements are pruned from these lists when * computationally convenient. * * CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. * The contents of Iw are undefined on output. * ---------------------------------------------------------------------------- * OUTPUT (need not be set on input): * ---------------------------------------------------------------------------- * * Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to * the number of rows that are represented by the principal supervariable * i. If i is a nonprincipal or dense variable, then Nv [i] = 0. * Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a * principal variable in the pattern Lme of the current pivot element me. * After element me is constructed, Nv [i] is set back to a positive * value. * * On output, Nv [i] holds the number of pivots represented by super * row/column i of the original matrix, or Nv [i] = 0 for non-principal * rows/columns. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Elen: An integer array of size n. See the description of Iw above. At the * start of execution, Elen [i] is set to zero for all rows i. During * execution, Elen [i] is the number of elements in the list for * supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is * set, where esize is the size of the element (the number of pivots, plus * the number of nonpivotal entries). Thus Elen [e] < EMPTY. * Elen (i) = EMPTY set when variable i becomes nonprincipal. * * For variables, Elen (i) >= EMPTY holds until just before the * postordering and permutation vectors are computed. For elements, * Elen [e] < EMPTY holds. * * On output, Elen [i] is the degree of the row/column in the Cholesky * factorization of the permuted matrix, corresponding to the original row * i, if i is a super row/column. It is equal to EMPTY if i is * non-principal. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Note that the contents of Elen on output differ from the Fortran * version (Elen holds the inverse permutation in the Fortran version, * which is instead returned in the Next array in this C version, * described below). * * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY * if i is the head of the list. In a hash bucket, Last [i] is the hash * key for i. * * Last [Head [hash]] is also used as the head of a hash bucket if * Head [hash] contains a degree list (see the description of Head, * below). * * On output, Last [0..n-1] holds the permutation. That is, if * i = Last [k], then row i is the kth pivot row (where k ranges from 0 to * n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'. * * Next: Next [i] is the supervariable following i in a link list, or EMPTY if * i is the last in the list. Used for two kinds of lists: degree lists * and hash buckets (a supervariable can be in only one kind of list at a * time). * * On output Next [0..n-1] holds the inverse permutation. That is, if * k = Next [i], then row i is the kth pivot row. Row i of A appears as * the (Next[i])-th row in the permuted matrix, PAP'. * * Note that the contents of Next on output differ from the Fortran * version (Next is undefined on output in the Fortran version). * ---------------------------------------------------------------------------- * LOCAL WORKSPACE (not input or output - used only during execution): * ---------------------------------------------------------------------------- * * Degree: An integer array of size n. If i is a supervariable, then * Degree [i] holds the current approximation of the external degree of * row i (an upper bound). The external degree is the number of nonzeros * in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to * the exact external degree if Elen [i] is less than or equal to two. * * We also use the term "external degree" for elements e to refer to * |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the * degree of the off-diagonal part of the element e (not including the * diagonal part). * * Head: An integer array of size n. Head is used for degree lists. * Head [deg] is the first supervariable in a degree list. All * supervariables i in a degree list Head [deg] have the same approximate * degree, namely, deg = Degree [i]. If the list Head [deg] is empty then * Head [deg] = EMPTY. * * During supervariable detection Head [hash] also serves as a pointer to * a hash bucket. If Head [hash] >= 0, there is a degree list of degree * hash. The hash bucket head pointer is Last [Head [hash]]. If * Head [hash] = EMPTY, then the degree list and hash bucket are both * empty. If Head [hash] < EMPTY, then the degree list is empty, and * FLIP (Head [hash]) is the head of the hash bucket. After supervariable * detection is complete, all hash buckets are empty, and the * (Last [Head [hash]] = EMPTY) condition is restored for the non-empty * degree lists. * * W: An integer array of size n. The flag array W determines the status of * elements and variables, and the external degree of elements. * * for elements: * if W [e] = 0, then the element e is absorbed. * if W [e] >= wflg, then W [e] - wflg is the size of the set * |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for * each principal variable i that is both in the pattern of * element e and NOT in the pattern of the current pivot element, * me). * if wflg > W [e] > 0, then e is not absorbed and has not yet been * seen in the scan of the element lists in the computation of * |Le\Lme| in Scan 1 below. * * for variables: * during supervariable detection, if W [j] != wflg then j is * not in the pattern of variable i. * * The W array is initialized by setting W [i] = 1 for all i, and by * setting wflg = 2. It is reinitialized if wflg becomes too large (to * ensure that wflg+n does not cause integer overflow). * ---------------------------------------------------------------------------- * LOCAL INTEGERS: * ---------------------------------------------------------------------------- */ Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j, jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft, nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa, dense, aggressive ; unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/ /* * deg: the degree of a variable or element * degme: size, |Lme|, of the current element, me (= Degree [me]) * dext: external degree, |Le \ Lme|, of some element e * lemax: largest |Le| seen so far (called dmax in Fortran version) * e: an element * elenme: the length, Elen [me], of element list of pivotal variable * eln: the length, Elen [...], of an element list * hash: the computed value of the hash function * i: a supervariable * ilast: the entry in a link list preceding i * inext: the entry in a link list following i * j: a supervariable * jlast: the entry in a link list preceding j * jnext: the entry in a link list, or path, following j * k: the pivot order of an element or variable * knt1: loop counter used during element construction * knt2: loop counter used during element construction * knt3: loop counter used during compression * lenj: Len [j] * ln: length of a supervariable list * me: current supervariable being eliminated, and the current * element created by eliminating that supervariable * mindeg: current minimum degree * nel: number of pivots selected so far * nleft: n - nel, the number of nonpivotal rows/columns remaining * nvi: the number of variables in a supervariable i (= Nv [i]) * nvj: the number of variables in a supervariable j (= Nv [j]) * nvpiv: number of pivots in current element * slenme: number of variables in variable list of pivotal variable * wbig: = INT_MAX - n for the int version, UF_long_max - n for the * UF_long version. wflg is not allowed to be >= wbig. * we: W [e] * wflg: used for flagging the W array. See description of Iw. * wnvi: wflg - Nv [i] * x: either a supervariable or an element * * ok: true if supervariable j can be absorbed into i * ndense: number of "dense" rows/columns * dense: rows/columns with initial degree > dense are considered "dense" * aggressive: true if aggressive absorption is being performed * ncmpa: number of garbage collections * ---------------------------------------------------------------------------- * LOCAL DOUBLES, used for statistical output only (except for alpha): * ---------------------------------------------------------------------------- */ double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ; /* * f: nvpiv * r: degme + nvpiv * ndiv: number of divisions for LU or LDL' factorizations * s: number of multiply-subtract pairs for LU factorization, for the * current element me * nms_lu number of multiply-subtract pairs for LU factorization * nms_ldl number of multiply-subtract pairs for LDL' factorization * dmax: the largest number of entries in any column of L, including the * diagonal * alpha: "dense" degree ratio * lnz: the number of nonzeros in L (excluding the diagonal) * lnzme: the number of nonzeros in L (excl. the diagonal) for the * current element me * ---------------------------------------------------------------------------- * LOCAL "POINTERS" (indices into the Iw array) * ---------------------------------------------------------------------------- */ Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ; /* * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for * Pointer) is an index into Iw, and all indices into Iw use variables starting * with "p." The only exception to this rule is the iwlen input argument. * * p: pointer into lots of things * p1: Pe [i] for some variable i (start of element list) * p2: Pe [i] + Elen [i] - 1 for some variable i * p3: index of first supervariable in clean list * p4: * pdst: destination pointer, for compression * pend: end of memory to compress * pj: pointer into an element or variable * pme: pointer into the current element (pme1...pme2) * pme1: the current element, me, is stored in Iw [pme1...pme2] * pme2: the end of the current element * pn: pointer into a "clean" variable, also used to compress * psrc: source pointer, for compression */ /* ========================================================================= */ /* INITIALIZATIONS */ /* ========================================================================= */ /* Note that this restriction on iwlen is slightly more restrictive than * what is actually required in AMD_2. AMD_2 can operate with no elbow * room at all, but it will be slow. For better performance, at least * size-n elbow room is enforced. */ ASSERT (iwlen >= pfree + n) ; ASSERT (n > 0) ; /* initialize output statistics */ lnz = 0 ; ndiv = 0 ; nms_lu = 0 ; nms_ldl = 0 ; dmax = 1 ; me = EMPTY ; mindeg = 0 ; ncmpa = 0 ; nel = 0 ; lemax = 0 ; /* get control parameters */ if (Control != (double *) NULL) { alpha = Control [AMD_DENSE] ; aggressive = (Control [AMD_AGGRESSIVE] != 0) ; } else { alpha = AMD_DEFAULT_DENSE ; aggressive = AMD_DEFAULT_AGGRESSIVE ; } /* Note: if alpha is NaN, this is undefined: */ if (alpha < 0) { /* only remove completely dense rows/columns */ dense = n-2 ; } else { dense = alpha * sqrt ((double) n) ; } dense = MAX (16, dense) ; dense = MIN (n, dense) ; AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n", alpha, aggressive)) ; for (i = 0 ; i < n ; i++) { Last [i] = EMPTY ; Head [i] = EMPTY ; Next [i] = EMPTY ; /* if separate Hhead array is used for hash buckets: * Hhead [i] = EMPTY ; */ Nv [i] = 1 ; W [i] = 1 ; Elen [i] = 0 ; Degree [i] = Len [i] ; } #ifndef NDEBUG AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ; AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last, Head, Elen, Degree, W, -1) ; #endif /* initialize wflg */ wbig = Int_MAX - n ; wflg = clear_flag (0, wbig, W, n) ; /* --------------------------------------------------------------------- */ /* initialize degree lists and eliminate dense and empty rows */ /* --------------------------------------------------------------------- */ ndense = 0 ; for (i = 0 ; i < n ; i++) { deg = Degree [i] ; ASSERT (deg >= 0 && deg < n) ; if (deg == 0) { /* ------------------------------------------------------------- * we have a variable that can be eliminated at once because * there is no off-diagonal non-zero in its row. Note that * Nv [i] = 1 for an empty variable i. It is treated just * the same as an eliminated element i. * ------------------------------------------------------------- */ Elen [i] = FLIP (1) ; nel++ ; Pe [i] = EMPTY ; W [i] = 0 ; } else if (deg > dense) { /* ------------------------------------------------------------- * Dense variables are not treated as elements, but as unordered, * non-principal variables that have no parent. They do not take * part in the postorder, since Nv [i] = 0. Note that the Fortran * version does not have this option. * ------------------------------------------------------------- */ AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ; ndense++ ; Nv [i] = 0 ; /* do not postorder this node */ Elen [i] = EMPTY ; nel++ ; Pe [i] = EMPTY ; } else { /* ------------------------------------------------------------- * place i in the degree list corresponding to its degree * ------------------------------------------------------------- */ inext = Head [deg] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = i ; Next [i] = inext ; Head [deg] = i ; } } /* ========================================================================= */ /* WHILE (selecting pivots) DO */ /* ========================================================================= */ while (nel < n) { #ifndef NDEBUG AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ; if (AMD_debug >= 2) { AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last, Head, Elen, Degree, W, nel) ; } #endif /* ========================================================================= */ /* GET PIVOT OF MINIMUM DEGREE */ /* ========================================================================= */ /* ----------------------------------------------------------------- */ /* find next supervariable for elimination */ /* ----------------------------------------------------------------- */ ASSERT (mindeg >= 0 && mindeg < n) ; for (deg = mindeg ; deg < n ; deg++) { me = Head [deg] ; if (me != EMPTY) break ; } mindeg = deg ; ASSERT (me >= 0 && me < n) ; AMD_DEBUG1 (("=================me: "ID"\n", me)) ; /* ----------------------------------------------------------------- */ /* remove chosen variable from link list */ /* ----------------------------------------------------------------- */ inext = Next [me] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = EMPTY ; Head [deg] = inext ; /* ----------------------------------------------------------------- */ /* me represents the elimination of pivots nel to nel+Nv[me]-1. */ /* place me itself as the first in this set. */ /* ----------------------------------------------------------------- */ elenme = Elen [me] ; nvpiv = Nv [me] ; ASSERT (nvpiv > 0) ; nel += nvpiv ; /* ========================================================================= */ /* CONSTRUCT NEW ELEMENT */ /* ========================================================================= */ /* ----------------------------------------------------------------- * At this point, me is the pivotal supervariable. It will be * converted into the current element. Scan list of the pivotal * supervariable, me, setting tree pointers and constructing new list * of supervariables for the new element, me. p is a pointer to the * current position in the old list. * ----------------------------------------------------------------- */ /* flag the variable "me" as being in Lme by negating Nv [me] */ Nv [me] = -nvpiv ; degme = 0 ; ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; if (elenme == 0) { /* ------------------------------------------------------------- */ /* construct the new element in place */ /* ------------------------------------------------------------- */ pme1 = Pe [me] ; pme2 = pme1 - 1 ; for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++) { i = Iw [p] ; ASSERT (i >= 0 && i < n && Nv [i] >= 0) ; nvi = Nv [i] ; if (nvi > 0) { /* ----------------------------------------------------- */ /* i is a principal variable not yet placed in Lme. */ /* store i in new list */ /* ----------------------------------------------------- */ /* flag i as being in Lme by negating Nv [i] */ degme += nvi ; Nv [i] = -nvi ; Iw [++pme2] = i ; /* ----------------------------------------------------- */ /* remove variable i from degree list. */ /* ----------------------------------------------------- */ ilast = Last [i] ; inext = Next [i] ; ASSERT (ilast >= EMPTY && ilast < n) ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = ilast ; if (ilast != EMPTY) { Next [ilast] = inext ; } else { /* i is at the head of the degree list */ ASSERT (Degree [i] >= 0 && Degree [i] < n) ; Head [Degree [i]] = inext ; } } } } else { /* ------------------------------------------------------------- */ /* construct the new element in empty space, Iw [pfree ...] */ /* ------------------------------------------------------------- */ p = Pe [me] ; pme1 = pfree ; slenme = Len [me] - elenme ; for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++) { if (knt1 > elenme) { /* search the supervariables in me. */ e = me ; pj = p ; ln = slenme ; AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ; } else { /* search the elements in me. */ e = Iw [p++] ; ASSERT (e >= 0 && e < n) ; pj = Pe [e] ; ln = Len [e] ; AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ; ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ; } ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ; /* --------------------------------------------------------- * search for different supervariables and add them to the * new list, compressing when necessary. this loop is * executed once for each element in the list and once for * all the supervariables in the list. * --------------------------------------------------------- */ for (knt2 = 1 ; knt2 <= ln ; knt2++) { i = Iw [pj++] ; ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY)); nvi = Nv [i] ; AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n", i, Elen [i], Nv [i], wflg)) ; if (nvi > 0) { /* ------------------------------------------------- */ /* compress Iw, if necessary */ /* ------------------------------------------------- */ if (pfree >= iwlen) { AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ; /* prepare for compressing Iw by adjusting pointers * and lengths so that the lists being searched in * the inner and outer loops contain only the * remaining entries. */ Pe [me] = p ; Len [me] -= knt1 ; /* check if nothing left of supervariable me */ if (Len [me] == 0) Pe [me] = EMPTY ; Pe [e] = pj ; Len [e] = ln - knt2 ; /* nothing left of element e */ if (Len [e] == 0) Pe [e] = EMPTY ; ncmpa++ ; /* one more garbage collection */ /* store first entry of each object in Pe */ /* FLIP the first entry in each object */ for (j = 0 ; j < n ; j++) { pn = Pe [j] ; if (pn >= 0) { ASSERT (pn >= 0 && pn < iwlen) ; Pe [j] = Iw [pn] ; Iw [pn] = FLIP (j) ; } } /* psrc/pdst point to source/destination */ psrc = 0 ; pdst = 0 ; pend = pme1 - 1 ; while (psrc <= pend) { /* search for next FLIP'd entry */ j = FLIP (Iw [psrc++]) ; if (j >= 0) { AMD_DEBUG2 (("Got object j: "ID"\n", j)) ; Iw [pdst] = Pe [j] ; Pe [j] = pdst++ ; lenj = Len [j] ; /* copy from source to destination */ for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++) { Iw [pdst++] = Iw [psrc++] ; } } } /* move the new partially-constructed element */ p1 = pdst ; for (psrc = pme1 ; psrc <= pfree-1 ; psrc++) { Iw [pdst++] = Iw [psrc] ; } pme1 = p1 ; pfree = pdst ; pj = Pe [e] ; p = Pe [me] ; } /* ------------------------------------------------- */ /* i is a principal variable not yet placed in Lme */ /* store i in new list */ /* ------------------------------------------------- */ /* flag i as being in Lme by negating Nv [i] */ degme += nvi ; Nv [i] = -nvi ; Iw [pfree++] = i ; AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i])); /* ------------------------------------------------- */ /* remove variable i from degree link list */ /* ------------------------------------------------- */ ilast = Last [i] ; inext = Next [i] ; ASSERT (ilast >= EMPTY && ilast < n) ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = ilast ; if (ilast != EMPTY) { Next [ilast] = inext ; } else { /* i is at the head of the degree list */ ASSERT (Degree [i] >= 0 && Degree [i] < n) ; Head [Degree [i]] = inext ; } } } if (e != me) { /* set tree pointer and flag to indicate element e is * absorbed into new element me (the parent of e is me) */ AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ; Pe [e] = FLIP (me) ; W [e] = 0 ; } } pme2 = pfree - 1 ; } /* ----------------------------------------------------------------- */ /* me has now been converted into an element in Iw [pme1..pme2] */ /* ----------------------------------------------------------------- */ /* degme holds the external degree of new element */ Degree [me] = degme ; Pe [me] = pme1 ; Len [me] = pme2 - pme1 + 1 ; ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; Elen [me] = FLIP (nvpiv + degme) ; /* FLIP (Elen (me)) is now the degree of pivot (including * diagonal part). */ #ifndef NDEBUG AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ; for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme])); AMD_DEBUG3 (("\n")) ; #endif /* ----------------------------------------------------------------- */ /* make sure that wflg is not too large. */ /* ----------------------------------------------------------------- */ /* With the current value of wflg, wflg+n must not cause integer * overflow */ wflg = clear_flag (wflg, wbig, W, n) ; /* ========================================================================= */ /* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */ /* ========================================================================= */ /* ----------------------------------------------------------------- * Scan 1: compute the external degrees of previous elements with * respect to the current element. That is: * (W [e] - wflg) = |Le \ Lme| * for each element e that appears in any supervariable in Lme. The * notation Le refers to the pattern (list of supervariables) of a * previous element e, where e is not yet absorbed, stored in * Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme * refers to the pattern of the current element (stored in * Iw [pme1..pme2]). If aggressive absorption is enabled, and * (W [e] - wflg) becomes zero, then the element e will be absorbed * in Scan 2. * ----------------------------------------------------------------- */ AMD_DEBUG2 (("me: ")) ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; eln = Elen [i] ; AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ; if (eln > 0) { /* note that Nv [i] has been negated to denote i in Lme: */ nvi = -Nv [i] ; ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ; wnvi = wflg - nvi ; for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ; if (we >= wflg) { /* unabsorbed element e has been seen in this loop */ AMD_DEBUG4 ((" unabsorbed, first time seen")) ; we -= nvi ; } else if (we != 0) { /* e is an unabsorbed element */ /* this is the first we have seen e in all of Scan 1 */ AMD_DEBUG4 ((" unabsorbed")) ; we = Degree [e] + wnvi ; } AMD_DEBUG4 (("\n")) ; W [e] = we ; } } } AMD_DEBUG2 (("\n")) ; /* ========================================================================= */ /* DEGREE UPDATE AND ELEMENT ABSORPTION */ /* ========================================================================= */ /* ----------------------------------------------------------------- * Scan 2: for each i in Lme, sum up the degree of Lme (which is * degme), plus the sum of the external degrees of each Le for the * elements e appearing within i, plus the supervariables in i. * Place i in hash list. * ----------------------------------------------------------------- */ for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ; AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i])); p1 = Pe [i] ; p2 = p1 + Elen [i] - 1 ; pn = p1 ; hash = 0 ; deg = 0 ; ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ; /* ------------------------------------------------------------- */ /* scan the element list associated with supervariable i */ /* ------------------------------------------------------------- */ /* UMFPACK/MA38-style approximate degree: */ if (aggressive) { for (p = p1 ; p <= p2 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; if (we != 0) { /* e is an unabsorbed element */ /* dext = | Le \ Lme | */ dext = we - wflg ; if (dext > 0) { deg += dext ; Iw [pn++] = e ; hash += e ; AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; } else { /* external degree of e is zero, absorb e into me*/ AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n", e, me)) ; ASSERT (dext == 0) ; Pe [e] = FLIP (me) ; W [e] = 0 ; } } } } else { for (p = p1 ; p <= p2 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; if (we != 0) { /* e is an unabsorbed element */ dext = we - wflg ; ASSERT (dext >= 0) ; deg += dext ; Iw [pn++] = e ; hash += e ; AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; } } } /* count the number of elements in i (including me): */ Elen [i] = pn - p1 + 1 ; /* ------------------------------------------------------------- */ /* scan the supervariables in the list associated with i */ /* ------------------------------------------------------------- */ /* The bulk of the AMD run time is typically spent in this loop, * particularly if the matrix has many dense rows that are not * removed prior to ordering. */ p3 = pn ; p4 = p1 + Len [i] ; for (p = p2 + 1 ; p < p4 ; p++) { j = Iw [p] ; ASSERT (j >= 0 && j < n) ; nvj = Nv [j] ; if (nvj > 0) { /* j is unabsorbed, and not in Lme. */ /* add to degree and add to new list */ deg += nvj ; Iw [pn++] = j ; hash += j ; AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n", j, hash, nvj)) ; } } /* ------------------------------------------------------------- */ /* update the degree and check for mass elimination */ /* ------------------------------------------------------------- */ /* with aggressive absorption, deg==0 is identical to the * Elen [i] == 1 && p3 == pn test, below. */ ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ; if (Elen [i] == 1 && p3 == pn) { /* --------------------------------------------------------- */ /* mass elimination */ /* --------------------------------------------------------- */ /* There is nothing left of this node except for an edge to * the current pivot element. Elen [i] is 1, and there are * no variables adjacent to node i. Absorb i into the * current pivot element, me. Note that if there are two or * more mass eliminations, fillin due to mass elimination is * possible within the nvpiv-by-nvpiv pivot block. It is this * step that causes AMD's analysis to be an upper bound. * * The reason is that the selected pivot has a lower * approximate degree than the true degree of the two mass * eliminated nodes. There is no edge between the two mass * eliminated nodes. They are merged with the current pivot * anyway. * * No fillin occurs in the Schur complement, in any case, * and this effect does not decrease the quality of the * ordering itself, just the quality of the nonzero and * flop count analysis. It also means that the post-ordering * is not an exact elimination tree post-ordering. */ AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ; Pe [i] = FLIP (me) ; nvi = -Nv [i] ; degme -= nvi ; nvpiv += nvi ; nel += nvi ; Nv [i] = 0 ; Elen [i] = EMPTY ; } else { /* --------------------------------------------------------- */ /* update the upper-bound degree of i */ /* --------------------------------------------------------- */ /* the following degree does not yet include the size * of the current element, which is added later: */ Degree [i] = MIN (Degree [i], deg) ; /* --------------------------------------------------------- */ /* add me to the list for i */ /* --------------------------------------------------------- */ /* move first supervariable to end of list */ Iw [pn] = Iw [p3] ; /* move first element to end of element part of list */ Iw [p3] = Iw [p1] ; /* add new element, me, to front of list. */ Iw [p1] = me ; /* store the new length of the list in Len [i] */ Len [i] = pn - p1 + 1 ; /* --------------------------------------------------------- */ /* place in hash bucket. Save hash key of i in Last [i]. */ /* --------------------------------------------------------- */ /* NOTE: this can fail if hash is negative, because the ANSI C * standard does not define a % b when a and/or b are negative. * That's why hash is defined as an unsigned Int, to avoid this * problem. */ hash = hash % n ; ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ; /* if the Hhead array is not used: */ j = Head [hash] ; if (j <= EMPTY) { /* degree list is empty, hash head is FLIP (j) */ Next [i] = FLIP (j) ; Head [hash] = FLIP (i) ; } else { /* degree list is not empty, use Last [Head [hash]] as * hash head. */ Next [i] = Last [j] ; Last [j] = i ; } /* if a separate Hhead array is used: * Next [i] = Hhead [hash] ; Hhead [hash] = i ; */ Last [i] = hash ; } } Degree [me] = degme ; /* ----------------------------------------------------------------- */ /* Clear the counter array, W [...], by incrementing wflg. */ /* ----------------------------------------------------------------- */ /* make sure that wflg+n does not cause integer overflow */ lemax = MAX (lemax, degme) ; wflg += lemax ; wflg = clear_flag (wflg, wbig, W, n) ; /* at this point, W [0..n-1] < wflg holds */ /* ========================================================================= */ /* SUPERVARIABLE DETECTION */ /* ========================================================================= */ AMD_DEBUG1 (("Detecting supervariables:\n")) ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ; if (Nv [i] < 0) { /* i is a principal variable in Lme */ /* --------------------------------------------------------- * examine all hash buckets with 2 or more variables. We do * this by examing all unique hash keys for supervariables in * the pattern Lme of the current element, me * --------------------------------------------------------- */ /* let i = head of hash bucket, and empty the hash bucket */ ASSERT (Last [i] >= 0 && Last [i] < n) ; hash = Last [i] ; /* if Hhead array is not used: */ j = Head [hash] ; if (j == EMPTY) { /* hash bucket and degree list are both empty */ i = EMPTY ; } else if (j < EMPTY) { /* degree list is empty */ i = FLIP (j) ; Head [hash] = EMPTY ; } else { /* degree list is not empty, restore Last [j] of head j */ i = Last [j] ; Last [j] = EMPTY ; } /* if separate Hhead array is used: * i = Hhead [hash] ; Hhead [hash] = EMPTY ; */ ASSERT (i >= EMPTY && i < n) ; AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ; while (i != EMPTY && Next [i] != EMPTY) { /* ----------------------------------------------------- * this bucket has one or more variables following i. * scan all of them to see if i can absorb any entries * that follow i in hash bucket. Scatter i into w. * ----------------------------------------------------- */ ln = Len [i] ; eln = Elen [i] ; ASSERT (ln >= 0 && eln >= 0) ; ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ; /* do not flag the first element in the list (me) */ for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++) { ASSERT (Iw [p] >= 0 && Iw [p] < n) ; W [Iw [p]] = wflg ; } /* ----------------------------------------------------- */ /* scan every other entry j following i in bucket */ /* ----------------------------------------------------- */ jlast = i ; j = Next [i] ; ASSERT (j >= EMPTY && j < n) ; while (j != EMPTY) { /* ------------------------------------------------- */ /* check if j and i have identical nonzero pattern */ /* ------------------------------------------------- */ AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ; /* check if i and j have the same Len and Elen */ ASSERT (Len [j] >= 0 && Elen [j] >= 0) ; ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ; ok = (Len [j] == ln) && (Elen [j] == eln) ; /* skip the first element in the list (me) */ for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++) { ASSERT (Iw [p] >= 0 && Iw [p] < n) ; if (W [Iw [p]] != wflg) ok = 0 ; } if (ok) { /* --------------------------------------------- */ /* found it! j can be absorbed into i */ /* --------------------------------------------- */ AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i)); Pe [j] = FLIP (i) ; /* both Nv [i] and Nv [j] are negated since they */ /* are in Lme, and the absolute values of each */ /* are the number of variables in i and j: */ Nv [i] += Nv [j] ; Nv [j] = 0 ; Elen [j] = EMPTY ; /* delete j from hash bucket */ ASSERT (j != Next [j]) ; j = Next [j] ; Next [jlast] = j ; } else { /* j cannot be absorbed into i */ jlast = j ; ASSERT (j != Next [j]) ; j = Next [j] ; } ASSERT (j >= EMPTY && j < n) ; } /* ----------------------------------------------------- * no more variables can be absorbed into i * go to next i in bucket and clear flag array * ----------------------------------------------------- */ wflg++ ; i = Next [i] ; ASSERT (i >= EMPTY && i < n) ; } } } AMD_DEBUG2 (("detect done\n")) ; /* ========================================================================= */ /* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */ /* ========================================================================= */ p = pme1 ; nleft = n - nel ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; nvi = -Nv [i] ; AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ; if (nvi > 0) { /* i is a principal variable in Lme */ /* restore Nv [i] to signify that i is principal */ Nv [i] = nvi ; /* --------------------------------------------------------- */ /* compute the external degree (add size of current element) */ /* --------------------------------------------------------- */ deg = Degree [i] + degme - nvi ; deg = MIN (deg, nleft - nvi) ; ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ; /* --------------------------------------------------------- */ /* place the supervariable at the head of the degree list */ /* --------------------------------------------------------- */ inext = Head [deg] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = i ; Next [i] = inext ; Last [i] = EMPTY ; Head [deg] = i ; /* --------------------------------------------------------- */ /* save the new degree, and find the minimum degree */ /* --------------------------------------------------------- */ mindeg = MIN (mindeg, deg) ; Degree [i] = deg ; /* --------------------------------------------------------- */ /* place the supervariable in the element pattern */ /* --------------------------------------------------------- */ Iw [p++] = i ; } } AMD_DEBUG2 (("restore done\n")) ; /* ========================================================================= */ /* FINALIZE THE NEW ELEMENT */ /* ========================================================================= */ AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ; Nv [me] = nvpiv ; /* save the length of the list for the new element me */ Len [me] = p - pme1 ; if (Len [me] == 0) { /* there is nothing left of the current pivot element */ /* it is a root of the assembly tree */ Pe [me] = EMPTY ; W [me] = 0 ; } if (elenme != 0) { /* element was not constructed in place: deallocate part of */ /* it since newly nonprincipal variables may have been removed */ pfree = p ; } /* The new element has nvpiv pivots and the size of the contribution * block for a multifrontal method is degme-by-degme, not including * the "dense" rows/columns. If the "dense" rows/columns are included, * the frontal matrix is no larger than * (degme+ndense)-by-(degme+ndense). */ if (Info != (double *) NULL) { f = nvpiv ; r = degme + ndense ; dmax = MAX (dmax, f + r) ; /* number of nonzeros in L (excluding the diagonal) */ lnzme = f*r + (f-1)*f/2 ; lnz += lnzme ; /* number of divide operations for LDL' and for LU */ ndiv += lnzme ; /* number of multiply-subtract pairs for LU */ s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ; nms_lu += s ; /* number of multiply-subtract pairs for LDL' */ nms_ldl += (s + lnzme)/2 ; } #ifndef NDEBUG AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ; for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++) { AMD_DEBUG3 ((" "ID"", Iw [pme])) ; } AMD_DEBUG3 (("\n")) ; #endif } /* ========================================================================= */ /* DONE SELECTING PIVOTS */ /* ========================================================================= */ if (Info != (double *) NULL) { /* count the work to factorize the ndense-by-ndense submatrix */ f = ndense ; dmax = MAX (dmax, (double) ndense) ; /* number of nonzeros in L (excluding the diagonal) */ lnzme = (f-1)*f/2 ; lnz += lnzme ; /* number of divide operations for LDL' and for LU */ ndiv += lnzme ; /* number of multiply-subtract pairs for LU */ s = (f-1)*f*(2*f-1)/6 ; nms_lu += s ; /* number of multiply-subtract pairs for LDL' */ nms_ldl += (s + lnzme)/2 ; /* number of nz's in L (excl. diagonal) */ Info [AMD_LNZ] = lnz ; /* number of divide ops for LU and LDL' */ Info [AMD_NDIV] = ndiv ; /* number of multiply-subtract pairs for LDL' */ Info [AMD_NMULTSUBS_LDL] = nms_ldl ; /* number of multiply-subtract pairs for LU */ Info [AMD_NMULTSUBS_LU] = nms_lu ; /* number of "dense" rows/columns */ Info [AMD_NDENSE] = ndense ; /* largest front is dmax-by-dmax */ Info [AMD_DMAX] = dmax ; /* number of garbage collections in AMD */ Info [AMD_NCMPA] = ncmpa ; /* successful ordering */ Info [AMD_STATUS] = AMD_OK ; } /* ========================================================================= */ /* POST-ORDERING */ /* ========================================================================= */ /* ------------------------------------------------------------------------- * Variables at this point: * * Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]), * or EMPTY if j is a root. The tree holds both elements and * non-principal (unordered) variables absorbed into them. * Dense variables are non-principal and unordered. * * Elen: holds the size of each element, including the diagonal part. * FLIP (Elen [e]) > 0 if e is an element. For unordered * variables i, Elen [i] is EMPTY. * * Nv: Nv [e] > 0 is the number of pivots represented by the element e. * For unordered variables i, Nv [i] is zero. * * Contents no longer needed: * W, Iw, Len, Degree, Head, Next, Last. * * The matrix itself has been destroyed. * * n: the size of the matrix. * No other scalars needed (pfree, iwlen, etc.) * ------------------------------------------------------------------------- */ /* restore Pe */ for (i = 0 ; i < n ; i++) { Pe [i] = FLIP (Pe [i]) ; } /* restore Elen, for output information, and for postordering */ for (i = 0 ; i < n ; i++) { Elen [i] = FLIP (Elen [i]) ; } /* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0 * is the size of element e. Elen [i] is EMPTY for unordered variable i. */ #ifndef NDEBUG AMD_DEBUG2 (("\nTree:\n")) ; for (i = 0 ; i < n ; i++) { AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ; ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ; if (Nv [i] > 0) { /* this is an element */ e = i ; AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ; ASSERT (Elen [e] > 0) ; } AMD_DEBUG2 (("\n")) ; } AMD_DEBUG2 (("\nelements:\n")) ; for (e = 0 ; e < n ; e++) { if (Nv [e] > 0) { AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e, Elen [e], Nv [e])) ; } } AMD_DEBUG2 (("\nvariables:\n")) ; for (i = 0 ; i < n ; i++) { Int cnt ; if (Nv [i] == 0) { AMD_DEBUG3 (("i unordered: "ID"\n", i)) ; j = Pe [i] ; cnt = 0 ; AMD_DEBUG3 ((" j: "ID"\n", j)) ; if (j == EMPTY) { AMD_DEBUG3 ((" i is a dense variable\n")) ; } else { ASSERT (j >= 0 && j < n) ; while (Nv [j] == 0) { AMD_DEBUG3 ((" j : "ID"\n", j)) ; j = Pe [j] ; AMD_DEBUG3 ((" j:: "ID"\n", j)) ; cnt++ ; if (cnt > n) break ; } e = j ; AMD_DEBUG3 ((" got to e: "ID"\n", e)) ; } } } #endif /* ========================================================================= */ /* compress the paths of the variables */ /* ========================================================================= */ for (i = 0 ; i < n ; i++) { if (Nv [i] == 0) { /* ------------------------------------------------------------- * i is an un-ordered row. Traverse the tree from i until * reaching an element, e. The element, e, was the principal * supervariable of i and all nodes in the path from i to when e * was selected as pivot. * ------------------------------------------------------------- */ AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ; j = Pe [i] ; ASSERT (j >= EMPTY && j < n) ; AMD_DEBUG3 ((" j: "ID"\n", j)) ; if (j == EMPTY) { /* Skip a dense variable. It has no parent. */ AMD_DEBUG3 ((" i is a dense variable\n")) ; continue ; } /* while (j is a variable) */ while (Nv [j] == 0) { AMD_DEBUG3 ((" j : "ID"\n", j)) ; j = Pe [j] ; AMD_DEBUG3 ((" j:: "ID"\n", j)) ; ASSERT (j >= 0 && j < n) ; } /* got to an element e */ e = j ; AMD_DEBUG3 (("got to e: "ID"\n", e)) ; /* ------------------------------------------------------------- * traverse the path again from i to e, and compress the path * (all nodes point to e). Path compression allows this code to * compute in O(n) time. * ------------------------------------------------------------- */ j = i ; /* while (j is a variable) */ while (Nv [j] == 0) { jnext = Pe [j] ; AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ; Pe [j] = e ; j = jnext ; ASSERT (j >= 0 && j < n) ; } } } /* ========================================================================= */ /* postorder the assembly tree */ /* ========================================================================= */ AMD_postorder (n, Pe, Nv, Elen, W, /* output order */ Head, Next, Last) ; /* workspace */ /* ========================================================================= */ /* compute output permutation and inverse permutation */ /* ========================================================================= */ /* W [e] = k means that element e is the kth element in the new * order. e is in the range 0 to n-1, and k is in the range 0 to * the number of elements. Use Head for inverse order. */ for (k = 0 ; k < n ; k++) { Head [k] = EMPTY ; Next [k] = EMPTY ; } for (e = 0 ; e < n ; e++) { k = W [e] ; ASSERT ((k == EMPTY) == (Nv [e] == 0)) ; if (k != EMPTY) { ASSERT (k >= 0 && k < n) ; Head [k] = e ; } } /* construct output inverse permutation in Next, * and permutation in Last */ nel = 0 ; for (k = 0 ; k < n ; k++) { e = Head [k] ; if (e == EMPTY) break ; ASSERT (e >= 0 && e < n && Nv [e] > 0) ; Next [e] = nel ; nel += Nv [e] ; } ASSERT (nel == n - ndense) ; /* order non-principal variables (dense, & those merged into supervar's) */ for (i = 0 ; i < n ; i++) { if (Nv [i] == 0) { e = Pe [i] ; ASSERT (e >= EMPTY && e < n) ; if (e != EMPTY) { /* This is an unordered variable that was merged * into element e via supernode detection or mass * elimination of i when e became the pivot element. * Place i in order just before e. */ ASSERT (Next [i] == EMPTY && Nv [e] > 0) ; Next [i] = Next [e] ; Next [e]++ ; } else { /* This is a dense unordered variable, with no parent. * Place it last in the output order. */ Next [i] = nel++ ; } } } ASSERT (nel == n) ; AMD_DEBUG2 (("\n\nPerm:\n")) ; for (i = 0 ; i < n ; i++) { k = Next [i] ; ASSERT (k >= 0 && k < n) ; Last [k] = i ; AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ; } } SuiteSparse/AMD/Source/amd_order.c0000644001170100242450000001351410616426526015724 0ustar davisfac/* ========================================================================= */ /* === AMD_order =========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* User-callable AMD minimum degree ordering routine. See amd.h for * documentation. */ #include "amd_internal.h" /* ========================================================================= */ /* === AMD_order =========================================================== */ /* ========================================================================= */ GLOBAL Int AMD_order ( Int n, const Int Ap [ ], const Int Ai [ ], Int P [ ], double Control [ ], double Info [ ] ) { Int *Len, *S, nz, i, *Pinv, info, status, *Rp, *Ri, *Cp, *Ci, ok ; size_t nzaat, slen ; double mem = 0 ; #ifndef NDEBUG AMD_debug_init ("amd") ; #endif /* clear the Info array, if it exists */ info = Info != (double *) NULL ; if (info) { for (i = 0 ; i < AMD_INFO ; i++) { Info [i] = EMPTY ; } Info [AMD_N] = n ; Info [AMD_STATUS] = AMD_OK ; } /* make sure inputs exist and n is >= 0 */ if (Ai == (Int *) NULL || Ap == (Int *) NULL || P == (Int *) NULL || n < 0) { if (info) Info [AMD_STATUS] = AMD_INVALID ; return (AMD_INVALID) ; /* arguments are invalid */ } if (n == 0) { return (AMD_OK) ; /* n is 0 so there's nothing to do */ } nz = Ap [n] ; if (info) { Info [AMD_NZ] = nz ; } if (nz < 0) { if (info) Info [AMD_STATUS] = AMD_INVALID ; return (AMD_INVALID) ; } /* check if n or nz will cause size_t overflow */ if (((size_t) n) >= SIZE_T_MAX / sizeof (Int) || ((size_t) nz) >= SIZE_T_MAX / sizeof (Int)) { if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; return (AMD_OUT_OF_MEMORY) ; /* problem too large */ } /* check the input matrix: AMD_OK, AMD_INVALID, or AMD_OK_BUT_JUMBLED */ status = AMD_valid (n, n, Ap, Ai) ; if (status == AMD_INVALID) { if (info) Info [AMD_STATUS] = AMD_INVALID ; return (AMD_INVALID) ; /* matrix is invalid */ } /* allocate two size-n integer workspaces */ Len = amd_malloc (n * sizeof (Int)) ; Pinv = amd_malloc (n * sizeof (Int)) ; mem += n ; mem += n ; if (!Len || !Pinv) { /* :: out of memory :: */ amd_free (Len) ; amd_free (Pinv) ; if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; return (AMD_OUT_OF_MEMORY) ; } if (status == AMD_OK_BUT_JUMBLED) { /* sort the input matrix and remove duplicate entries */ AMD_DEBUG1 (("Matrix is jumbled\n")) ; Rp = amd_malloc ((n+1) * sizeof (Int)) ; Ri = amd_malloc (MAX (nz,1) * sizeof (Int)) ; mem += (n+1) ; mem += MAX (nz,1) ; if (!Rp || !Ri) { /* :: out of memory :: */ amd_free (Rp) ; amd_free (Ri) ; amd_free (Len) ; amd_free (Pinv) ; if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; return (AMD_OUT_OF_MEMORY) ; } /* use Len and Pinv as workspace to create R = A' */ AMD_preprocess (n, Ap, Ai, Rp, Ri, Len, Pinv) ; Cp = Rp ; Ci = Ri ; } else { /* order the input matrix as-is. No need to compute R = A' first */ Rp = NULL ; Ri = NULL ; Cp = (Int *) Ap ; Ci = (Int *) Ai ; } /* --------------------------------------------------------------------- */ /* determine the symmetry and count off-diagonal nonzeros in A+A' */ /* --------------------------------------------------------------------- */ nzaat = AMD_aat (n, Cp, Ci, Len, P, Info) ; AMD_DEBUG1 (("nzaat: %g\n", (double) nzaat)) ; ASSERT ((MAX (nz-n, 0) <= nzaat) && (nzaat <= 2 * (size_t) nz)) ; /* --------------------------------------------------------------------- */ /* allocate workspace for matrix, elbow room, and 6 size-n vectors */ /* --------------------------------------------------------------------- */ S = NULL ; slen = nzaat ; /* space for matrix */ ok = ((slen + nzaat/5) >= slen) ; /* check for size_t overflow */ slen += nzaat/5 ; /* add elbow room */ for (i = 0 ; ok && i < 7 ; i++) { ok = ((slen + n) > slen) ; /* check for size_t overflow */ slen += n ; /* size-n elbow room, 6 size-n work */ } mem += slen ; ok = ok && (slen < SIZE_T_MAX / sizeof (Int)) ; /* check for overflow */ ok = ok && (slen < Int_MAX) ; /* S[i] for Int i must be OK */ if (ok) { S = amd_malloc (slen * sizeof (Int)) ; } AMD_DEBUG1 (("slen %g\n", (double) slen)) ; if (!S) { /* :: out of memory :: (or problem too large) */ amd_free (Rp) ; amd_free (Ri) ; amd_free (Len) ; amd_free (Pinv) ; if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; return (AMD_OUT_OF_MEMORY) ; } if (info) { /* memory usage, in bytes. */ Info [AMD_MEMORY] = mem * sizeof (Int) ; } /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ AMD_1 (n, Cp, Ci, P, Pinv, Len, slen, S, Control, Info) ; /* --------------------------------------------------------------------- */ /* free the workspace */ /* --------------------------------------------------------------------- */ amd_free (Rp) ; amd_free (Ri) ; amd_free (Len) ; amd_free (Pinv) ; amd_free (S) ; if (info) Info [AMD_STATUS] = status ; return (status) ; /* successful ordering */ } SuiteSparse/AMD/Source/amd_dump.c0000644001170100242450000001174410616402631015550 0ustar davisfac/* ========================================================================= */ /* === AMD_dump ============================================================ */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* Debugging routines for AMD. Not used if NDEBUG is not defined at compile- * time (the default). See comments in amd_internal.h on how to enable * debugging. Not user-callable. */ #include "amd_internal.h" #ifndef NDEBUG /* This global variable is present only when debugging */ GLOBAL Int AMD_debug = -999 ; /* default is no debug printing */ /* ========================================================================= */ /* === AMD_debug_init ====================================================== */ /* ========================================================================= */ /* Sets the debug print level, by reading the file debug.amd (if it exists) */ GLOBAL void AMD_debug_init ( char *s ) { FILE *f ; f = fopen ("debug.amd", "r") ; if (f == (FILE *) NULL) { AMD_debug = -999 ; } else { fscanf (f, ID, &AMD_debug) ; fclose (f) ; } if (AMD_debug >= 0) { printf ("%s: AMD_debug_init, D= "ID"\n", s, AMD_debug) ; } } /* ========================================================================= */ /* === AMD_dump ============================================================ */ /* ========================================================================= */ /* Dump AMD's data structure, except for the hash buckets. This routine * cannot be called when the hash buckets are non-empty. */ GLOBAL void AMD_dump ( Int n, /* A is n-by-n */ Int Pe [ ], /* pe [0..n-1]: index in iw of start of row i */ Int Iw [ ], /* workspace of size iwlen, iwlen [0..pfree-1] * holds the matrix on input */ Int Len [ ], /* len [0..n-1]: length for row i */ Int iwlen, /* length of iw */ Int pfree, /* iw [pfree ... iwlen-1] is empty on input */ Int Nv [ ], /* nv [0..n-1] */ Int Next [ ], /* next [0..n-1] */ Int Last [ ], /* last [0..n-1] */ Int Head [ ], /* head [0..n-1] */ Int Elen [ ], /* size n */ Int Degree [ ], /* size n */ Int W [ ], /* size n */ Int nel ) { Int i, pe, elen, nv, len, e, p, k, j, deg, w, cnt, ilast ; if (AMD_debug < 0) return ; ASSERT (pfree <= iwlen) ; AMD_DEBUG3 (("\nAMD dump, pfree: "ID"\n", pfree)) ; for (i = 0 ; i < n ; i++) { pe = Pe [i] ; elen = Elen [i] ; nv = Nv [i] ; len = Len [i] ; w = W [i] ; if (elen >= EMPTY) { if (nv == 0) { AMD_DEBUG3 (("\nI "ID": nonprincipal: ", i)) ; ASSERT (elen == EMPTY) ; if (pe == EMPTY) { AMD_DEBUG3 ((" dense node\n")) ; ASSERT (w == 1) ; } else { ASSERT (pe < EMPTY) ; AMD_DEBUG3 ((" i "ID" -> parent "ID"\n", i, FLIP (Pe[i]))); } } else { AMD_DEBUG3 (("\nI "ID": active principal supervariable:\n",i)); AMD_DEBUG3 ((" nv(i): "ID" Flag: %d\n", nv, (nv < 0))) ; ASSERT (elen >= 0) ; ASSERT (nv > 0 && pe >= 0) ; p = pe ; AMD_DEBUG3 ((" e/s: ")) ; if (elen == 0) AMD_DEBUG3 ((" : ")) ; ASSERT (pe + len <= pfree) ; for (k = 0 ; k < len ; k++) { j = Iw [p] ; AMD_DEBUG3 ((" "ID"", j)) ; ASSERT (j >= 0 && j < n) ; if (k == elen-1) AMD_DEBUG3 ((" : ")) ; p++ ; } AMD_DEBUG3 (("\n")) ; } } else { e = i ; if (w == 0) { AMD_DEBUG3 (("\nE "ID": absorbed element: w "ID"\n", e, w)) ; ASSERT (nv > 0 && pe < 0) ; AMD_DEBUG3 ((" e "ID" -> parent "ID"\n", e, FLIP (Pe [e]))) ; } else { AMD_DEBUG3 (("\nE "ID": unabsorbed element: w "ID"\n", e, w)) ; ASSERT (nv > 0 && pe >= 0) ; p = pe ; AMD_DEBUG3 ((" : ")) ; ASSERT (pe + len <= pfree) ; for (k = 0 ; k < len ; k++) { j = Iw [p] ; AMD_DEBUG3 ((" "ID"", j)) ; ASSERT (j >= 0 && j < n) ; p++ ; } AMD_DEBUG3 (("\n")) ; } } } /* this routine cannot be called when the hash buckets are non-empty */ AMD_DEBUG3 (("\nDegree lists:\n")) ; if (nel >= 0) { cnt = 0 ; for (deg = 0 ; deg < n ; deg++) { if (Head [deg] == EMPTY) continue ; ilast = EMPTY ; AMD_DEBUG3 ((ID": \n", deg)) ; for (i = Head [deg] ; i != EMPTY ; i = Next [i]) { AMD_DEBUG3 ((" "ID" : next "ID" last "ID" deg "ID"\n", i, Next [i], Last [i], Degree [i])) ; ASSERT (i >= 0 && i < n && ilast == Last [i] && deg == Degree [i]) ; cnt += Nv [i] ; ilast = i ; } AMD_DEBUG3 (("\n")) ; } ASSERT (cnt == n - nel) ; } } #endif SuiteSparse/AMD/Source/amd_info.c0000644001170100242450000001023510616426641015537 0ustar davisfac/* ========================================================================= */ /* === AMD_info ============================================================ */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* User-callable. Prints the output statistics for AMD. See amd.h * for details. If the Info array is not present, nothing is printed. */ #include "amd_internal.h" #define PRI(format,x) { if (x >= 0) { PRINTF ((format, x)) ; }} GLOBAL void AMD_info ( double Info [ ] ) { double n, ndiv, nmultsubs_ldl, nmultsubs_lu, lnz, lnzd ; PRINTF (("\nAMD version %d.%d.%d, %s, results:\n", AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_SUBSUB_VERSION, AMD_DATE)) ; if (!Info) { return ; } n = Info [AMD_N] ; ndiv = Info [AMD_NDIV] ; nmultsubs_ldl = Info [AMD_NMULTSUBS_LDL] ; nmultsubs_lu = Info [AMD_NMULTSUBS_LU] ; lnz = Info [AMD_LNZ] ; lnzd = (n >= 0 && lnz >= 0) ? (n + lnz) : (-1) ; /* AMD return status */ PRINTF ((" status: ")) ; if (Info [AMD_STATUS] == AMD_OK) { PRINTF (("OK\n")) ; } else if (Info [AMD_STATUS] == AMD_OUT_OF_MEMORY) { PRINTF (("out of memory\n")) ; } else if (Info [AMD_STATUS] == AMD_INVALID) { PRINTF (("invalid matrix\n")) ; } else if (Info [AMD_STATUS] == AMD_OK_BUT_JUMBLED) { PRINTF (("OK, but jumbled\n")) ; } else { PRINTF (("unknown\n")) ; } /* statistics about the input matrix */ PRI (" n, dimension of A: %.20g\n", n); PRI (" nz, number of nonzeros in A: %.20g\n", Info [AMD_NZ]) ; PRI (" symmetry of A: %.4f\n", Info [AMD_SYMMETRY]) ; PRI (" number of nonzeros on diagonal: %.20g\n", Info [AMD_NZDIAG]) ; PRI (" nonzeros in pattern of A+A' (excl. diagonal): %.20g\n", Info [AMD_NZ_A_PLUS_AT]) ; PRI (" # dense rows/columns of A+A': %.20g\n", Info [AMD_NDENSE]) ; /* statistics about AMD's behavior */ PRI (" memory used, in bytes: %.20g\n", Info [AMD_MEMORY]) ; PRI (" # of memory compactions: %.20g\n", Info [AMD_NCMPA]) ; /* statistics about the ordering quality */ PRINTF (("\n" " The following approximate statistics are for a subsequent\n" " factorization of A(P,P) + A(P,P)'. They are slight upper\n" " bounds if there are no dense rows/columns in A+A', and become\n" " looser if dense rows/columns exist.\n\n")) ; PRI (" nonzeros in L (excluding diagonal): %.20g\n", lnz) ; PRI (" nonzeros in L (including diagonal): %.20g\n", lnzd) ; PRI (" # divide operations for LDL' or LU: %.20g\n", ndiv) ; PRI (" # multiply-subtract operations for LDL': %.20g\n", nmultsubs_ldl) ; PRI (" # multiply-subtract operations for LU: %.20g\n", nmultsubs_lu) ; PRI (" max nz. in any column of L (incl. diagonal): %.20g\n", Info [AMD_DMAX]) ; /* total flop counts for various factorizations */ if (n >= 0 && ndiv >= 0 && nmultsubs_ldl >= 0 && nmultsubs_lu >= 0) { PRINTF (("\n" " chol flop count for real A, sqrt counted as 1 flop: %.20g\n" " LDL' flop count for real A: %.20g\n" " LDL' flop count for complex A: %.20g\n" " LU flop count for real A (with no pivoting): %.20g\n" " LU flop count for complex A (with no pivoting): %.20g\n\n", n + ndiv + 2*nmultsubs_ldl, ndiv + 2*nmultsubs_ldl, 9*ndiv + 8*nmultsubs_ldl, ndiv + 2*nmultsubs_lu, 9*ndiv + 8*nmultsubs_lu)) ; } } SuiteSparse/AMD/Source/amdbar.f0000644001170100242450000014607210250413605015213 0ustar davisfacC----------------------------------------------------------------------- C AMDBAR: approximate minimum degree, without aggressive absorption C----------------------------------------------------------------------- SUBROUTINE AMDBAR $ (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ LAST, HEAD, ELEN, DEGREE, NCMPA, W) INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), $ DEGREE (N), NV (N), NEXT (N), LAST (N), HEAD (N), $ ELEN (N), W (N), LEN (N) C Given a representation of the nonzero pattern of a symmetric matrix, C A, (excluding the diagonal) perform an approximate minimum C (UMFPACK/MA38-style) degree ordering to compute a pivot order C such that the introduction of nonzeros (fill-in) in the Cholesky C factors A = LL^T are kept low. At each step, the pivot C selected is the one with the minimum UMFPACK/MA38-style C upper-bound on the external degree. C C This routine does not do aggresive absorption (as done by AMD). C ********************************************************************** C ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** C ********************************************************************** C References: C C [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern C multifrontal method for sparse LU factorization", SIAM J. C Matrix Analysis and Applications, vol. 18, no. 1, pp. C 140-158. Discusses UMFPACK / MA38, which first introduced C the approximate minimum degree used by this routine. C C [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An C approximate degree ordering algorithm," SIAM J. Matrix C Analysis and Applications, vol. 17, no. 4, pp. 886-905, C 1996. Discusses AMD, AMDBAR, and MC47B. C C [3] Alan George and Joseph Liu, "The evolution of the minimum C degree ordering algorithm," SIAM Review, vol. 31, no. 1, C pp. 1-19, 1989. We list below the features mentioned in C that paper that this code includes: C C mass elimination: C Yes. MA27 relied on supervariable detection for mass C elimination. C indistinguishable nodes: C Yes (we call these "supervariables"). This was also in C the MA27 code - although we modified the method of C detecting them (the previous hash was the true degree, C which we no longer keep track of). A supervariable is C a set of rows with identical nonzero pattern. All C variables in a supervariable are eliminated together. C Each supervariable has as its numerical name that of C one of its variables (its principal variable). C quotient graph representation: C Yes. We use the term "element" for the cliques formed C during elimination. This was also in the MA27 code. C The algorithm can operate in place, but it will work C more efficiently if given some "elbow room." C element absorption: C Yes. This was also in the MA27 code. C external degree: C Yes. The MA27 code was based on the true degree. C incomplete degree update and multiple elimination: C No. This was not in MA27, either. Our method of C degree update within MC47B/BD is element-based, not C variable-based. It is thus not well-suited for use C with incomplete degree update or multiple elimination. C----------------------------------------------------------------------- C Authors, and Copyright (C) 1995 by: C Timothy A. Davis, Patrick Amestoy, Iain S. Duff, & John K. Reid. C C Acknowledgements: C This work (and the UMFPACK package) was supported by the C National Science Foundation (ASC-9111263 and DMS-9223088). C The UMFPACK/MA38 approximate degree update algorithm, the C unsymmetric analog which forms the basis of MC47B/BD, was C developed while Tim Davis was supported by CERFACS (Toulouse, C France) in a post-doctoral position. C C Date: September, 1995 C----------------------------------------------------------------------- C----------------------------------------------------------------------- C INPUT ARGUMENTS (unaltered): C----------------------------------------------------------------------- C n: The matrix order. C C Restriction: 1 .le. n .lt. (iovflo/2)-2, where iovflo is C the largest positive integer that your computer can represent. C iwlen: The length of iw (1..iwlen). On input, the matrix is C stored in iw (1..pfree-1). However, iw (1..iwlen) should be C slightly larger than what is required to hold the matrix, at C least iwlen .ge. pfree + n is recommended. Otherwise, C excessive compressions will take place. C *** We do not recommend running this algorithm with *** C *** iwlen .lt. pfree + n. *** C *** Better performance will be obtained if *** C *** iwlen .ge. pfree + n *** C *** or better yet *** C *** iwlen .gt. 1.2 * pfree *** C *** (where pfree is its value on input). *** C The algorithm will not run at all if iwlen .lt. pfree-1. C C Restriction: iwlen .ge. pfree-1 C----------------------------------------------------------------------- C INPUT/OUPUT ARGUMENTS: C----------------------------------------------------------------------- C pe: On input, pe (i) is the index in iw of the start of row i, or C zero if row i has no off-diagonal non-zeros. C C During execution, it is used for both supervariables and C elements: C C * Principal supervariable i: index into iw of the C description of supervariable i. A supervariable C represents one or more rows of the matrix C with identical nonzero pattern. C * Non-principal supervariable i: if i has been absorbed C into another supervariable j, then pe (i) = -j. C That is, j has the same pattern as i. C Note that j might later be absorbed into another C supervariable j2, in which case pe (i) is still -j, C and pe (j) = -j2. C * Unabsorbed element e: the index into iw of the description C of element e, if e has not yet been absorbed by a C subsequent element. Element e is created when C the supervariable of the same name is selected as C the pivot. C * Absorbed element e: if element e is absorbed into element C e2, then pe (e) = -e2. This occurs when the pattern of C e (that is, Le) is found to be a subset of the pattern C of e2 (that is, Le2). If element e is "null" (it has C no nonzeros outside its pivot block), then pe (e) = 0. C C On output, pe holds the assembly tree/forest, which implicitly C represents a pivot order with identical fill-in as the actual C order (via a depth-first search of the tree). C C On output: C If nv (i) .gt. 0, then i represents a node in the assembly tree, C and the parent of i is -pe (i), or zero if i is a root. C If nv (i) = 0, then (i,-pe (i)) represents an edge in a C subtree, the root of which is a node in the assembly tree. C pfree: On input the tail end of the array, iw (pfree..iwlen), C is empty, and the matrix is stored in iw (1..pfree-1). C During execution, additional data is placed in iw, and pfree C is modified so that iw (pfree..iwlen) is always the unused part C of iw. On output, pfree is set equal to the size of iw that C would have been needed for no compressions to occur. If C ncmpa is zero, then pfree (on output) is less than or equal to C iwlen, and the space iw (pfree+1 ... iwlen) was not used. C Otherwise, pfree (on output) is greater than iwlen, and all the C memory in iw was used. C----------------------------------------------------------------------- C INPUT/MODIFIED (undefined on output): C----------------------------------------------------------------------- C len: On input, len (i) holds the number of entries in row i of the C matrix, excluding the diagonal. The contents of len (1..n) C are undefined on output. C iw: On input, iw (1..pfree-1) holds the description of each row i C in the matrix. The matrix must be symmetric, and both upper C and lower triangular parts must be present. The diagonal must C not be present. Row i is held as follows: C C len (i): the length of the row i data structure C iw (pe (i) ... pe (i) + len (i) - 1): C the list of column indices for nonzeros C in row i (simple supervariables), excluding C the diagonal. All supervariables start with C one row/column each (supervariable i is just C row i). C if len (i) is zero on input, then pe (i) is ignored C on input. C C Note that the rows need not be in any particular order, C and there may be empty space between the rows. C C During execution, the supervariable i experiences fill-in. C This is represented by placing in i a list of the elements C that cause fill-in in supervariable i: C C len (i): the length of supervariable i C iw (pe (i) ... pe (i) + elen (i) - 1): C the list of elements that contain i. This list C is kept short by removing absorbed elements. C iw (pe (i) + elen (i) ... pe (i) + len (i) - 1): C the list of supervariables in i. This list C is kept short by removing nonprincipal C variables, and any entry j that is also C contained in at least one of the elements C (j in Le) in the list for i (e in row i). C C When supervariable i is selected as pivot, we create an C element e of the same name (e=i): C C len (e): the length of element e C iw (pe (e) ... pe (e) + len (e) - 1): C the list of supervariables in element e. C C An element represents the fill-in that occurs when supervariable C i is selected as pivot (which represents the selection of row i C and all non-principal variables whose principal variable is i). C We use the term Le to denote the set of all supervariables C in element e. Absorbed supervariables and elements are pruned C from these lists when computationally convenient. C C CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. C The contents of iw are undefined on output. C----------------------------------------------------------------------- C OUTPUT (need not be set on input): C----------------------------------------------------------------------- C nv: During execution, abs (nv (i)) is equal to the number of rows C that are represented by the principal supervariable i. If i is C a nonprincipal variable, then nv (i) = 0. Initially, C nv (i) = 1 for all i. nv (i) .lt. 0 signifies that i is a C principal variable in the pattern Lme of the current pivot C element me. On output, nv (e) holds the true degree of element C e at the time it was created (including the diagonal part). C ncmpa: The number of times iw was compressed. If this is C excessive, then the execution took longer than what could have C been. To reduce ncmpa, try increasing iwlen to be 10% or 20% C larger than the value of pfree on input (or at least C iwlen .ge. pfree + n). The fastest performance will be C obtained when ncmpa is returned as zero. If iwlen is set to C the value returned by pfree on *output*, then no compressions C will occur. C elen: See the description of iw above. At the start of execution, C elen (i) is set to zero. During execution, elen (i) is the C number of elements in the list for supervariable i. When e C becomes an element, elen (e) = -nel is set, where nel is the C current step of factorization. elen (i) = 0 is done when i C becomes nonprincipal. C C For variables, elen (i) .ge. 0 holds until just before the C permutation vectors are computed. For elements, C elen (e) .lt. 0 holds. C C On output elen (1..n) holds the inverse permutation (the same C as the 'INVP' argument in Sparspak). That is, if k = elen (i), C then row i is the kth pivot row. Row i of A appears as the C (elen(i))-th row in the permuted matrix, PAP^T. C last: In a degree list, last (i) is the supervariable preceding i, C or zero if i is the head of the list. In a hash bucket, C last (i) is the hash key for i. last (head (hash)) is also C used as the head of a hash bucket if head (hash) contains a C degree list (see head, below). C C On output, last (1..n) holds the permutation (the same as the C 'PERM' argument in Sparspak). That is, if i = last (k), then C row i is the kth pivot row. Row last (k) of A is the k-th row C in the permuted matrix, PAP^T. C----------------------------------------------------------------------- C LOCAL (not input or output - used only during execution): C----------------------------------------------------------------------- C degree: If i is a supervariable, then degree (i) holds the C current approximation of the external degree of row i (an upper C bound). The external degree is the number of nonzeros in row i, C minus abs (nv (i)) (the diagonal part). The bound is equal to C the external degree if elen (i) is less than or equal to two. C C We also use the term "external degree" for elements e to refer C to |Le \ Lme|. If e is an element, then degree (e) holds |Le|, C which is the degree of the off-diagonal part of the element e C (not including the diagonal part). C head: head is used for degree lists. head (deg) is the first C supervariable in a degree list (all supervariables i in a C degree list deg have the same approximate degree, namely, C deg = degree (i)). If the list deg is empty then C head (deg) = 0. C C During supervariable detection head (hash) also serves as a C pointer to a hash bucket. C If head (hash) .gt. 0, there is a degree list of degree hash. C The hash bucket head pointer is last (head (hash)). C If head (hash) = 0, then the degree list and hash bucket are C both empty. C If head (hash) .lt. 0, then the degree list is empty, and C -head (hash) is the head of the hash bucket. C After supervariable detection is complete, all hash buckets C are empty, and the (last (head (hash)) = 0) condition is C restored for the non-empty degree lists. C next: next (i) is the supervariable following i in a link list, or C zero if i is the last in the list. Used for two kinds of C lists: degree lists and hash buckets (a supervariable can be C in only one kind of list at a time). C w: The flag array w determines the status of elements and C variables, and the external degree of elements. C C for elements: C if w (e) = 0, then the element e is absorbed C if w (e) .ge. wflg, then w (e) - wflg is the size of C the set |Le \ Lme|, in terms of nonzeros (the C sum of abs (nv (i)) for each principal variable i that C is both in the pattern of element e and NOT in the C pattern of the current pivot element, me). C if wflg .gt. w (e) .gt. 0, then e is not absorbed and has C not yet been seen in the scan of the element lists in C the computation of |Le\Lme| in loop 150 below. C C for variables: C during supervariable detection, if w (j) .ne. wflg then j is C not in the pattern of variable i C C The w array is initialized by setting w (i) = 1 for all i, C and by setting wflg = 2. It is reinitialized if wflg becomes C too large (to ensure that wflg+n does not cause integer C overflow). C----------------------------------------------------------------------- C LOCAL INTEGERS: C----------------------------------------------------------------------- INTEGER DEG, DEGME, DMAX, E, ELENME, ELN, HASH, HMOD, I, $ ILAST, INEXT, J, JLAST, JNEXT, K, KNT1, KNT2, KNT3, $ LENJ, LN, MAXMEM, ME, MEM, MINDEG, NEL, NEWMEM, $ NLEFT, NVI, NVJ, NVPIV, SLENME, WE, WFLG, WNVI, X C deg: the degree of a variable or element C degme: size, |Lme|, of the current element, me (= degree (me)) C dext: external degree, |Le \ Lme|, of some element e C dmax: largest |Le| seen so far C e: an element C elenme: the length, elen (me), of element list of pivotal var. C eln: the length, elen (...), of an element list C hash: the computed value of the hash function C hmod: the hash function is computed modulo hmod = max (1,n-1) C i: a supervariable C ilast: the entry in a link list preceding i C inext: the entry in a link list following i C j: a supervariable C jlast: the entry in a link list preceding j C jnext: the entry in a link list, or path, following j C k: the pivot order of an element or variable C knt1: loop counter used during element construction C knt2: loop counter used during element construction C knt3: loop counter used during compression C lenj: len (j) C ln: length of a supervariable list C maxmem: amount of memory needed for no compressions C me: current supervariable being eliminated, and the C current element created by eliminating that C supervariable C mem: memory in use assuming no compressions have occurred C mindeg: current minimum degree C nel: number of pivots selected so far C newmem: amount of new memory needed for current pivot element C nleft: n - nel, the number of nonpivotal rows/columns remaining C nvi: the number of variables in a supervariable i (= nv (i)) C nvj: the number of variables in a supervariable j (= nv (j)) C nvpiv: number of pivots in current element C slenme: number of variables in variable list of pivotal variable C we: w (e) C wflg: used for flagging the w array. See description of iw. C wnvi: wflg - nv (i) C x: either a supervariable or an element C----------------------------------------------------------------------- C LOCAL POINTERS: C----------------------------------------------------------------------- INTEGER P, P1, P2, P3, PDST, PEND, PJ, PME, PME1, PME2, PN, PSRC C Any parameter (pe (...) or pfree) or local variable C starting with "p" (for Pointer) is an index into iw, C and all indices into iw use variables starting with C "p." The only exception to this rule is the iwlen C input argument. C p: pointer into lots of things C p1: pe (i) for some variable i (start of element list) C p2: pe (i) + elen (i) - 1 for some var. i (end of el. list) C p3: index of first supervariable in clean list C pdst: destination pointer, for compression C pend: end of memory to compress C pj: pointer into an element or variable C pme: pointer into the current element (pme1...pme2) C pme1: the current element, me, is stored in iw (pme1...pme2) C pme2: the end of the current element C pn: pointer into a "clean" variable, also used to compress C psrc: source pointer, for compression C----------------------------------------------------------------------- C FUNCTIONS CALLED: C----------------------------------------------------------------------- INTRINSIC MAX, MIN, MOD C======================================================================= C INITIALIZATIONS C======================================================================= WFLG = 2 MINDEG = 1 NCMPA = 0 NEL = 0 HMOD = MAX (1, N-1) DMAX = 0 MEM = PFREE - 1 MAXMEM = MEM ME = 0 DO 10 I = 1, N LAST (I) = 0 HEAD (I) = 0 NV (I) = 1 W (I) = 1 ELEN (I) = 0 DEGREE (I) = LEN (I) 10 CONTINUE C ---------------------------------------------------------------- C initialize degree lists and eliminate rows with no off-diag. nz. C ---------------------------------------------------------------- DO 20 I = 1, N DEG = DEGREE (I) IF (DEG .GT. 0) THEN C ---------------------------------------------------------- C place i in the degree list corresponding to its degree C ---------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT HEAD (DEG) = I ELSE C ---------------------------------------------------------- C we have a variable that can be eliminated at once because C there is no off-diagonal non-zero in its row. C ---------------------------------------------------------- NEL = NEL + 1 ELEN (I) = -NEL PE (I) = 0 W (I) = 0 ENDIF 20 CONTINUE C======================================================================= C WHILE (selecting pivots) DO C======================================================================= 30 CONTINUE IF (NEL .LT. N) THEN C======================================================================= C GET PIVOT OF MINIMUM DEGREE C======================================================================= C ------------------------------------------------------------- C find next supervariable for elimination C ------------------------------------------------------------- DO 40 DEG = MINDEG, N ME = HEAD (DEG) IF (ME .GT. 0) GOTO 50 40 CONTINUE 50 CONTINUE MINDEG = DEG C ------------------------------------------------------------- C remove chosen variable from link list C ------------------------------------------------------------- INEXT = NEXT (ME) IF (INEXT .NE. 0) LAST (INEXT) = 0 HEAD (DEG) = INEXT C ------------------------------------------------------------- C me represents the elimination of pivots nel+1 to nel+nv(me). C place me itself as the first in this set. It will be moved C to the nel+nv(me) position when the permutation vectors are C computed. C ------------------------------------------------------------- ELENME = ELEN (ME) ELEN (ME) = - (NEL + 1) NVPIV = NV (ME) NEL = NEL + NVPIV C======================================================================= C CONSTRUCT NEW ELEMENT C======================================================================= C ------------------------------------------------------------- C At this point, me is the pivotal supervariable. It will be C converted into the current element. Scan list of the C pivotal supervariable, me, setting tree pointers and C constructing new list of supervariables for the new element, C me. p is a pointer to the current position in the old list. C ------------------------------------------------------------- C flag the variable "me" as being in Lme by negating nv (me) NV (ME) = -NVPIV DEGME = 0 IF (ELENME .EQ. 0) THEN C ---------------------------------------------------------- C construct the new element in place C ---------------------------------------------------------- PME1 = PE (ME) PME2 = PME1 - 1 DO 60 P = PME1, PME1 + LEN (ME) - 1 I = IW (P) NVI = NV (I) IF (NVI .GT. 0) THEN C ---------------------------------------------------- C i is a principal variable not yet placed in Lme. C store i in new list C ---------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI PME2 = PME2 + 1 IW (PME2) = I C ---------------------------------------------------- C remove variable i from degree list. C ---------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 60 CONTINUE C this element takes no new memory in iw: NEWMEM = 0 ELSE C ---------------------------------------------------------- C construct the new element in empty space, iw (pfree ...) C ---------------------------------------------------------- P = PE (ME) PME1 = PFREE SLENME = LEN (ME) - ELENME DO 120 KNT1 = 1, ELENME + 1 IF (KNT1 .GT. ELENME) THEN C search the supervariables in me. E = ME PJ = P LN = SLENME ELSE C search the elements in me. E = IW (P) P = P + 1 PJ = PE (E) LN = LEN (E) ENDIF C ------------------------------------------------------- C search for different supervariables and add them to the C new list, compressing when necessary. this loop is C executed once for each element in the list and once for C all the supervariables in the list. C ------------------------------------------------------- DO 110 KNT2 = 1, LN I = IW (PJ) PJ = PJ + 1 NVI = NV (I) IF (NVI .GT. 0) THEN C ------------------------------------------------- C compress iw, if necessary C ------------------------------------------------- IF (PFREE .GT. IWLEN) THEN C prepare for compressing iw by adjusting C pointers and lengths so that the lists being C searched in the inner and outer loops contain C only the remaining entries. PE (ME) = P LEN (ME) = LEN (ME) - KNT1 IF (LEN (ME) .EQ. 0) THEN C nothing left of supervariable me PE (ME) = 0 ENDIF PE (E) = PJ LEN (E) = LN - KNT2 IF (LEN (E) .EQ. 0) THEN C nothing left of element e PE (E) = 0 ENDIF NCMPA = NCMPA + 1 C store first item in pe C set first entry to -item DO 70 J = 1, N PN = PE (J) IF (PN .GT. 0) THEN PE (J) = IW (PN) IW (PN) = -J ENDIF 70 CONTINUE C psrc/pdst point to source/destination PDST = 1 PSRC = 1 PEND = PME1 - 1 C while loop: 80 CONTINUE IF (PSRC .LE. PEND) THEN C search for next negative entry J = -IW (PSRC) PSRC = PSRC + 1 IF (J .GT. 0) THEN IW (PDST) = PE (J) PE (J) = PDST PDST = PDST + 1 C copy from source to destination LENJ = LEN (J) DO 90 KNT3 = 0, LENJ - 2 IW (PDST + KNT3) = IW (PSRC + KNT3) 90 CONTINUE PDST = PDST + LENJ - 1 PSRC = PSRC + LENJ - 1 ENDIF GOTO 80 ENDIF C move the new partially-constructed element P1 = PDST DO 100 PSRC = PME1, PFREE - 1 IW (PDST) = IW (PSRC) PDST = PDST + 1 100 CONTINUE PME1 = P1 PFREE = PDST PJ = PE (E) P = PE (ME) ENDIF C ------------------------------------------------- C i is a principal variable not yet placed in Lme C store i in new list C ------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI IW (PFREE) = I PFREE = PFREE + 1 C ------------------------------------------------- C remove variable i from degree link list C ------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 110 CONTINUE IF (E .NE. ME) THEN C set tree pointer and flag to indicate element e is C absorbed into new element me (the parent of e is me) PE (E) = -ME W (E) = 0 ENDIF 120 CONTINUE PME2 = PFREE - 1 C this element takes newmem new memory in iw (possibly zero) NEWMEM = PFREE - PME1 MEM = MEM + NEWMEM MAXMEM = MAX (MAXMEM, MEM) ENDIF C ------------------------------------------------------------- C me has now been converted into an element in iw (pme1..pme2) C ------------------------------------------------------------- C degme holds the external degree of new element DEGREE (ME) = DEGME PE (ME) = PME1 LEN (ME) = PME2 - PME1 + 1 C ------------------------------------------------------------- C make sure that wflg is not too large. With the current C value of wflg, wflg+n must not cause integer overflow C ------------------------------------------------------------- IF (WFLG + N .LE. WFLG) THEN DO 130 X = 1, N IF (W (X) .NE. 0) W (X) = 1 130 CONTINUE WFLG = 2 ENDIF C======================================================================= C COMPUTE (w (e) - wflg) = |Le\Lme| FOR ALL ELEMENTS C======================================================================= C ------------------------------------------------------------- C Scan 1: compute the external degrees of previous elements C with respect to the current element. That is: C (w (e) - wflg) = |Le \ Lme| C for each element e that appears in any supervariable in Lme. C The notation Le refers to the pattern (list of C supervariables) of a previous element e, where e is not yet C absorbed, stored in iw (pe (e) + 1 ... pe (e) + iw (pe (e))). C The notation Lme refers to the pattern of the current element C (stored in iw (pme1..pme2)). If (w (e) - wflg) becomes C zero, then the element e will be absorbed in scan 2. C ------------------------------------------------------------- DO 150 PME = PME1, PME2 I = IW (PME) ELN = ELEN (I) IF (ELN .GT. 0) THEN C note that nv (i) has been negated to denote i in Lme: NVI = -NV (I) WNVI = WFLG - NVI DO 140 P = PE (I), PE (I) + ELN - 1 E = IW (P) WE = W (E) IF (WE .GE. WFLG) THEN C unabsorbed element e has been seen in this loop WE = WE - NVI ELSE IF (WE .NE. 0) THEN C e is an unabsorbed element C this is the first we have seen e in all of Scan 1 WE = DEGREE (E) + WNVI ENDIF W (E) = WE 140 CONTINUE ENDIF 150 CONTINUE C======================================================================= C DEGREE UPDATE AND ELEMENT ABSORPTION C======================================================================= C ------------------------------------------------------------- C Scan 2: for each i in Lme, sum up the degree of Lme (which C is degme), plus the sum of the external degrees of each Le C for the elements e appearing within i, plus the C supervariables in i. Place i in hash list. C ------------------------------------------------------------- DO 180 PME = PME1, PME2 I = IW (PME) P1 = PE (I) P2 = P1 + ELEN (I) - 1 PN = P1 HASH = 0 DEG = 0 C ---------------------------------------------------------- C scan the element list associated with supervariable i C ---------------------------------------------------------- C UMFPACK/MA38-style approximate degree: DO 160 P = P1, P2 E = IW (P) WE = W (E) IF (WE .NE. 0) THEN C e is an unabsorbed element DEG = DEG + WE - WFLG IW (PN) = E PN = PN + 1 HASH = HASH + E ENDIF 160 CONTINUE C count the number of elements in i (including me): ELEN (I) = PN - P1 + 1 C ---------------------------------------------------------- C scan the supervariables in the list associated with i C ---------------------------------------------------------- P3 = PN DO 170 P = P2 + 1, P1 + LEN (I) - 1 J = IW (P) NVJ = NV (J) IF (NVJ .GT. 0) THEN C j is unabsorbed, and not in Lme. C add to degree and add to new list DEG = DEG + NVJ IW (PN) = J PN = PN + 1 HASH = HASH + J ENDIF 170 CONTINUE C ---------------------------------------------------------- C update the degree and check for mass elimination C ---------------------------------------------------------- IF (ELEN (I) .EQ. 1 .AND. P3 .EQ. PN) THEN C ------------------------------------------------------- C mass elimination C ------------------------------------------------------- C There is nothing left of this node except for an C edge to the current pivot element. elen (i) is 1, C and there are no variables adjacent to node i. C Absorb i into the current pivot element, me. PE (I) = -ME NVI = -NV (I) DEGME = DEGME - NVI NVPIV = NVPIV + NVI NEL = NEL + NVI NV (I) = 0 ELEN (I) = 0 ELSE C ------------------------------------------------------- C update the upper-bound degree of i C ------------------------------------------------------- C the following degree does not yet include the size C of the current element, which is added later: DEGREE (I) = MIN (DEGREE (I), DEG) C ------------------------------------------------------- C add me to the list for i C ------------------------------------------------------- C move first supervariable to end of list IW (PN) = IW (P3) C move first element to end of element part of list IW (P3) = IW (P1) C add new element to front of list. IW (P1) = ME C store the new length of the list in len (i) LEN (I) = PN - P1 + 1 C ------------------------------------------------------- C place in hash bucket. Save hash key of i in last (i). C ------------------------------------------------------- HASH = MOD (HASH, HMOD) + 1 J = HEAD (HASH) IF (J .LE. 0) THEN C the degree list is empty, hash head is -j NEXT (I) = -J HEAD (HASH) = -I ELSE C degree list is not empty C use last (head (hash)) as hash head NEXT (I) = LAST (J) LAST (J) = I ENDIF LAST (I) = HASH ENDIF 180 CONTINUE DEGREE (ME) = DEGME C ------------------------------------------------------------- C Clear the counter array, w (...), by incrementing wflg. C ------------------------------------------------------------- DMAX = MAX (DMAX, DEGME) WFLG = WFLG + DMAX C make sure that wflg+n does not cause integer overflow IF (WFLG + N .LE. WFLG) THEN DO 190 X = 1, N IF (W (X) .NE. 0) W (X) = 1 190 CONTINUE WFLG = 2 ENDIF C at this point, w (1..n) .lt. wflg holds C======================================================================= C SUPERVARIABLE DETECTION C======================================================================= DO 250 PME = PME1, PME2 I = IW (PME) IF (NV (I) .LT. 0) THEN C i is a principal variable in Lme C ------------------------------------------------------- C examine all hash buckets with 2 or more variables. We C do this by examing all unique hash keys for super- C variables in the pattern Lme of the current element, me C ------------------------------------------------------- HASH = LAST (I) C let i = head of hash bucket, and empty the hash bucket J = HEAD (HASH) IF (J .EQ. 0) GOTO 250 IF (J .LT. 0) THEN C degree list is empty I = -J HEAD (HASH) = 0 ELSE C degree list is not empty, restore last () of head I = LAST (J) LAST (J) = 0 ENDIF IF (I .EQ. 0) GOTO 250 C while loop: 200 CONTINUE IF (NEXT (I) .NE. 0) THEN C ---------------------------------------------------- C this bucket has one or more variables following i. C scan all of them to see if i can absorb any entries C that follow i in hash bucket. Scatter i into w. C ---------------------------------------------------- LN = LEN (I) ELN = ELEN (I) C do not flag the first element in the list (me) DO 210 P = PE (I) + 1, PE (I) + LN - 1 W (IW (P)) = WFLG 210 CONTINUE C ---------------------------------------------------- C scan every other entry j following i in bucket C ---------------------------------------------------- JLAST = I J = NEXT (I) C while loop: 220 CONTINUE IF (J .NE. 0) THEN C ------------------------------------------------- C check if j and i have identical nonzero pattern C ------------------------------------------------- IF (LEN (J) .NE. LN) THEN C i and j do not have same size data structure GOTO 240 ENDIF IF (ELEN (J) .NE. ELN) THEN C i and j do not have same number of adjacent el GOTO 240 ENDIF C do not flag the first element in the list (me) DO 230 P = PE (J) + 1, PE (J) + LN - 1 IF (W (IW (P)) .NE. WFLG) THEN C an entry (iw(p)) is in j but not in i GOTO 240 ENDIF 230 CONTINUE C ------------------------------------------------- C found it! j can be absorbed into i C ------------------------------------------------- PE (J) = -I C both nv (i) and nv (j) are negated since they C are in Lme, and the absolute values of each C are the number of variables in i and j: NV (I) = NV (I) + NV (J) NV (J) = 0 ELEN (J) = 0 C delete j from hash bucket J = NEXT (J) NEXT (JLAST) = J GOTO 220 C ------------------------------------------------- 240 CONTINUE C j cannot be absorbed into i C ------------------------------------------------- JLAST = J J = NEXT (J) GOTO 220 ENDIF C ---------------------------------------------------- C no more variables can be absorbed into i C go to next i in bucket and clear flag array C ---------------------------------------------------- WFLG = WFLG + 1 I = NEXT (I) IF (I .NE. 0) GOTO 200 ENDIF ENDIF 250 CONTINUE C======================================================================= C RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVAR. FROM ELEMENT C======================================================================= P = PME1 NLEFT = N - NEL DO 260 PME = PME1, PME2 I = IW (PME) NVI = -NV (I) IF (NVI .GT. 0) THEN C i is a principal variable in Lme C restore nv (i) to signify that i is principal NV (I) = NVI C ------------------------------------------------------- C compute the external degree (add size of current elem) C ------------------------------------------------------- DEG = MAX (1, MIN (DEGREE (I) + DEGME-NVI, NLEFT-NVI)) C ------------------------------------------------------- C place the supervariable at the head of the degree list C ------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT LAST (I) = 0 HEAD (DEG) = I C ------------------------------------------------------- C save the new degree, and find the minimum degree C ------------------------------------------------------- MINDEG = MIN (MINDEG, DEG) DEGREE (I) = DEG C ------------------------------------------------------- C place the supervariable in the element pattern C ------------------------------------------------------- IW (P) = I P = P + 1 ENDIF 260 CONTINUE C======================================================================= C FINALIZE THE NEW ELEMENT C======================================================================= NV (ME) = NVPIV + DEGME C nv (me) is now the degree of pivot (including diagonal part) C save the length of the list for the new element me LEN (ME) = P - PME1 IF (LEN (ME) .EQ. 0) THEN C there is nothing left of the current pivot element PE (ME) = 0 W (ME) = 0 ENDIF IF (NEWMEM .NE. 0) THEN C element was not constructed in place: deallocate part C of it (final size is less than or equal to newmem, C since newly nonprincipal variables have been removed). PFREE = P MEM = MEM - NEWMEM + LEN (ME) ENDIF C======================================================================= C END WHILE (selecting pivots) GOTO 30 ENDIF C======================================================================= C======================================================================= C COMPUTE THE PERMUTATION VECTORS C======================================================================= C ---------------------------------------------------------------- C The time taken by the following code is O(n). At this C point, elen (e) = -k has been done for all elements e, C and elen (i) = 0 has been done for all nonprincipal C variables i. At this point, there are no principal C supervariables left, and all elements are absorbed. C ---------------------------------------------------------------- C ---------------------------------------------------------------- C compute the ordering of unordered nonprincipal variables C ---------------------------------------------------------------- DO 290 I = 1, N IF (ELEN (I) .EQ. 0) THEN C ---------------------------------------------------------- C i is an un-ordered row. Traverse the tree from i until C reaching an element, e. The element, e, was the C principal supervariable of i and all nodes in the path C from i to when e was selected as pivot. C ---------------------------------------------------------- J = -PE (I) C while (j is a variable) do: 270 CONTINUE IF (ELEN (J) .GE. 0) THEN J = -PE (J) GOTO 270 ENDIF E = J C ---------------------------------------------------------- C get the current pivot ordering of e C ---------------------------------------------------------- K = -ELEN (E) C ---------------------------------------------------------- C traverse the path again from i to e, and compress the C path (all nodes point to e). Path compression allows C this code to compute in O(n) time. Order the unordered C nodes in the path, and place the element e at the end. C ---------------------------------------------------------- J = I C while (j is a variable) do: 280 CONTINUE IF (ELEN (J) .GE. 0) THEN JNEXT = -PE (J) PE (J) = -E IF (ELEN (J) .EQ. 0) THEN C j is an unordered row ELEN (J) = K K = K + 1 ENDIF J = JNEXT GOTO 280 ENDIF C leave elen (e) negative, so we know it is an element ELEN (E) = -K ENDIF 290 CONTINUE C ---------------------------------------------------------------- C reset the inverse permutation (elen (1..n)) to be positive, C and compute the permutation (last (1..n)). C ---------------------------------------------------------------- DO 300 I = 1, N K = ABS (ELEN (I)) LAST (K) = I ELEN (I) = K 300 CONTINUE C======================================================================= C RETURN THE MEMORY USAGE IN IW C======================================================================= C If maxmem is less than or equal to iwlen, then no compressions C occurred, and iw (maxmem+1 ... iwlen) was unused. Otherwise C compressions did occur, and iwlen would have had to have been C greater than or equal to maxmem for no compressions to occur. C Return the value of maxmem in the pfree argument. PFREE = MAXMEM RETURN END SuiteSparse/AMD/Source/amd_control.c0000644001170100242450000000351210616431707016263 0ustar davisfac/* ========================================================================= */ /* === AMD_control ========================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* User-callable. Prints the control parameters for AMD. See amd.h * for details. If the Control array is not present, the defaults are * printed instead. */ #include "amd_internal.h" GLOBAL void AMD_control ( double Control [ ] ) { double alpha ; Int aggressive ; if (Control != (double *) NULL) { alpha = Control [AMD_DENSE] ; aggressive = Control [AMD_AGGRESSIVE] != 0 ; } else { alpha = AMD_DEFAULT_DENSE ; aggressive = AMD_DEFAULT_AGGRESSIVE ; } PRINTF (("\nAMD version %d.%d.%d, %s: approximate minimum degree ordering\n" " dense row parameter: %g\n", AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_SUBSUB_VERSION, AMD_DATE, alpha)) ; if (alpha < 0) { PRINTF ((" no rows treated as dense\n")) ; } else { PRINTF (( " (rows with more than max (%g * sqrt (n), 16) entries are\n" " considered \"dense\", and placed last in output permutation)\n", alpha)) ; } if (aggressive) { PRINTF ((" aggressive absorption: yes\n")) ; } else { PRINTF ((" aggressive absorption: no\n")) ; } PRINTF ((" size of AMD integer: %d\n\n", sizeof (Int))) ; } SuiteSparse/AMD/README.txt0000644001170100242450000002151010617112024014037 0ustar davisfacAMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD is available under alternate licences; contact T. Davis for details. AMD: a set of routines for permuting sparse matrices prior to factorization. Includes a version in C, a version in Fortran, and a MATLAB mexFunction. Requires UFconfig, in the ../UFconfig directory relative to this directory. Quick start (Unix, or Windows with Cygwin): To compile, test, and install AMD, you may wish to first configure the installation by editting the ../UFconfig/UFconfig.mk file. Next, cd to this directory (AMD) and type "make" (or "make lib" if you do not have MATLAB). To compile and run a demo program for the Fortran version, type "make fortran". When done, type "make clean" to remove unused *.o files (keeps the compiled libraries and demo programs). See the User Guide (Doc/AMD_UserGuide.pdf), or ../UFconfig/UFconfig.mk for more details. Quick start (for MATLAB users); To compile, test, and install the AMD mexFunction, cd to the AMD/MATLAB directory and type amd_make at the MATLAB prompt. If you have MATLAB 7.2 or earlier and use "make mex", you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command (or just use amd_make.m inside MATLAB). ------------------------------------------------------------------------------- AMD License: Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/amd ------------------------------------------------------------------------------- This is the AMD README file. It is a terse overview of AMD. Refer to the User Guide (Doc/AMD_UserGuide.pdf) for how to install and use AMD. Description: AMD is a set of routines for pre-ordering sparse matrices prior to Cholesky or LU factorization, using the approximate minimum degree ordering algorithm. Written in ANSI/ISO C with a MATLAB interface, and in Fortran 77. Authors: Timothy A. Davis (davis at cise.ufl.edu), University of Florida. Patrick R. Amestory, ENSEEIHT, Toulouse, France. Iain S. Duff, Rutherford Appleton Laboratory, UK. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. Portions of this work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from the SciDAC program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon for making this sabbatical possible. ------------------------------------------------------------------------------- Files and directories in the AMD distribution: ------------------------------------------------------------------------------- --------------------------------------------------------------------------- Subdirectories of the AMD directory: --------------------------------------------------------------------------- Doc documentation Source primary source code Include include file for use in your code that calls AMD Demo demo programs. also serves as test of the AMD installation. MATLAB AMD mexFunction for MATLAB, and supporting m-files Lib where the compiled C-callable and Fortran-callable AMD libraries placed. --------------------------------------------------------------------------- Files in the AMD directory: --------------------------------------------------------------------------- Makefile top-level Makefile for GNU make or original make. Windows users would require Cygwin to use "make" README.txt this file --------------------------------------------------------------------------- Doc directory: documentation --------------------------------------------------------------------------- ChangeLog change log License the AMD License Makefile for creating the documentation AMD_UserGuide.bib AMD User Guide (references) AMD_UserGuide.tex AMD User Guide (LaTeX) AMD_UserGuide.pdf AMD User Guide (PDF) lesser.txt the GNU LGPL license --------------------------------------------------------------------------- Source directory: --------------------------------------------------------------------------- amd_order.c user-callable, primary AMD ordering routine amd_control.c user-callable, prints the control parameters amd_defaults.c user-callable, sets default control parameters amd_info.c user-callable, prints the statistics from AMD amd_1.c non-user-callable, construct A+A' amd_2.c user-callable, primary ordering kernel (a C version of amd.f and amdbar.f, with post-ordering added) amd_aat.c non-user-callable, computes nnz (A+A') amd_dump.c non-user-callable, debugging routines amd_postorder.c non-user-callable, postorder amd_post_tree.c non-user-callable, postorder just one tree amd_valid.c non-user-callable, verifies a matrix amd_preprocess.c non-user-callable, computes A', removes duplic amd.f user-callable Fortran 77 version amdbar.f user-callable Fortran 77 version --------------------------------------------------------------------------- Include directory: --------------------------------------------------------------------------- amd.h include file for C programs that use AMD amd_internal.h non-user-callable, include file for AMD --------------------------------------------------------------------------- Demo directory: --------------------------------------------------------------------------- Makefile for GNU make or original make amd_demo.c C demo program for AMD amd_demo.out output of amd_demo.c amd_demo2.c C demo program for AMD, jumbled matrix amd_demo2.out output of amd_demo2.c amd_l_demo.c C demo program for AMD (UF_long version) amd_l_demo.out output of amd_l_demo.c amd_simple.c simple C demo program for AMD amd_simple.out output of amd_simple.c amd_f77demo.f Fortran 77 demo program for AMD amd_f77demo.out output of amd_f77demo.f amd_f77simple.c simple Fortran 77 demo program for AMD amd_f77simple.out output of amd_f77simple.f amd_f77cross.f Fortran 77 demo, calls the C version of AMD amd_f77cross.out output of amd_f77cross.f amd_f77wrapper.c Fortran-callable wrapper for C version of AMD --------------------------------------------------------------------------- MATLAB directory: --------------------------------------------------------------------------- GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) Contents.m for "help amd2" listing of toolbox contents amd2.m MATLAB help file for AMD amd_make.m MATLAB m-file for compiling AMD mexFunction amd_install.m compile and install the AMD mexFunction amd_mex.c AMD mexFunction for MATLAB amd_demo.m MATLAB demo for AMD amd_demo.m.out diary output of amd_demo.m can_24.mat input file for AMD demo --------------------------------------------------------------------------- Lib directory: libamd.a and libamdf77.a libraries placed here --------------------------------------------------------------------------- GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) libamd.def AMD definitions for Windows SuiteSparse/BTF/0000755001170100242450000000000010620160773012364 5ustar davisfacSuiteSparse/BTF/Doc/0000755001170100242450000000000010711427547013077 5ustar davisfacSuiteSparse/BTF/Doc/ChangeLog0000644001170100242450000000203410711427514014642 0ustar davisfacNov 1, 2007: version 1.0.1 * trivial change to BTF/MATLAB/btf.c mexFunction: unused variable removed. May 31, 2007: version 1.0 released * the C application program interface has been modified (see below) * maxtrans function renamed to btf_maxtrans * strongcomp function renamed to btf_strongcomp * full statement coverage tests (KLU/Tcov) * maxwork parameter added to btf_maxtrans and btf_order * btf_maxtrans modified; now returns Q[i] = -1 if row i is unmatched; code to complete the permutation moved to btf_order. This also changes the maxtrans mexFunction. * btf_install added for easy MATLAB installation * illustrative recursive version of maxtrans removed (see the recursive version of cs_maxtrans in CSparse instead) * MAXTRANS_* macros renamed BTF_* * no bug fixes in this release Dec 12, 2006: version 0.11 * minor MATLAB cleanup Apr 30, 2006: * minor editing of comments. dmperm.c moved to MATLAB directory, since it requires MATLAB. Version number not changed. SuiteSparse/BTF/Doc/lesser.txt0000644001170100242450000006350010275714132015133 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/BTF/Lib/0000755001170100242450000000000010711435722013072 5ustar davisfacSuiteSparse/BTF/Lib/Makefile0000644001170100242450000000221710616443561014540 0ustar davisfacdefault: all ccode: all include ../../UFconfig/UFconfig.mk # for testing only: # TEST = -DTESTING C = $(CC) $(CFLAGS) INC = ../Include/btf.h ../Include/btf_internal.h I = -I../Include -I../../UFconfig all: library library: libbtf.a OBJ = btf_order.o btf_maxtrans.o btf_strongcomp.o \ btf_l_order.o btf_l_maxtrans.o btf_l_strongcomp.o libbtf.a: $(OBJ) $(AR) libbtf.a $(OBJ) $(RANLIB) libbtf.a $(OBJ): $(INC) #------------------------------------------------------------------------------- btf_order.o: ../Source/btf_order.c $(C) -c $(I) $< -o $@ btf_maxtrans.o: ../Source/btf_maxtrans.c $(C) -c $(I) $< -o $@ btf_strongcomp.o: ../Source/btf_strongcomp.c $(C) -c $(I) $< -o $@ #------------------------------------------------------------------------------- btf_l_order.o: ../Source/btf_order.c $(C) -c $(I) -DDLONG $< -o $@ btf_l_maxtrans.o: ../Source/btf_maxtrans.c $(C) -c $(I) -DDLONG $< -o $@ btf_l_strongcomp.o: ../Source/btf_strongcomp.c $(C) -c $(I) -DDLONG $< -o $@ #------------------------------------------------------------------------------- purge: distclean distclean: clean - $(RM) libbtf.a clean: - $(RM) $(CLEAN) SuiteSparse/BTF/Makefile0000644001170100242450000000036610616404675014040 0ustar davisfacdefault: library include ../UFconfig/UFconfig.mk library: ( cd Lib ; $(MAKE) ) clean: ( cd Lib ; $(MAKE) clean ) distclean: ( cd Lib ; $(MAKE) distclean ) ( cd MATLAB ; $(MAKE) distclean ) mex: ( cd MATLAB ; $(MAKE) ) purge: distclean SuiteSparse/BTF/MATLAB/0000755001170100242450000000000010711653376013333 5ustar davisfacSuiteSparse/BTF/MATLAB/drawbtf.m0000644001170100242450000000077610620365500015140 0ustar davisfacfunction drawbtf (A, p, q, r) %DRAWBTF plot the BTF form of a matrix % % A(p,q) is in BTF form, r the block boundaries % % Example: % [p,q,r] = dmperm (A) % drawbtf (A, p, q, r) % % See also btf, maxtrans, strongcomp, dmperm. % Copyright 2004-2007, Tim Davis, University of Florida nblocks = length (r) - 1 ; hold off spy (A (p,abs(q))) hold on for k = 1:nblocks k1 = r (k) ; k2 = r (k+1) ; nk = k2 - k1 ; if (nk > 1) plot ([k1 k2 k2 k1 k1]-.5, [k1 k1 k2 k2 k1]-.5, 'r') ; end end SuiteSparse/BTF/MATLAB/Test/0000755001170100242450000000000010711445542014244 5ustar davisfacSuiteSparse/BTF/MATLAB/Test/test1.m0000644001170100242450000000642710711445424015472 0ustar davisfacfunction test1 (nmat) %TEST1 test for BTF % Requires CSparse and UFget % Example: % test1 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, University of Florida index = UFget ; % f = find (index.sprank < min (index.nrows, index.ncols)) ; f = 1:length (index.nrows) ; % too much time: skip = [1514 1297 1876 1301] ; f = setdiff (f, skip) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; if (nargin < 1) nmat = 1000 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; T0 = zeros (nmat,1) ; T1 = zeros (nmat,1) ; Anz = zeros (nmat,1) ; figure (1) ; MN = zeros (nmat, 2) ; Nzdiag = zeros (nmat,1) ; % warmup p = maxtrans (sparse (1)) ; %#ok p = cs_dmperm (sparse (1)) ; %#ok a = cs_transpose (sparse (1)) ; %#ok h = waitbar (0, 'BTF test 1 of 6') ; try for k = 1:nmat Prob = UFget (f (k), index) ; A = Prob.A ; clear Prob t = 0 ; waitbar (k/nmat, h) ; r = full (sum (spones (A), 2)) ; c = full (sum (spones (A))) ; m2 = length (find (r > 0)) ; n2 = length (find (c > 0)) ; if (m2 < n2) tic A = cs_transpose (A) ; t = toc ; end Nzdiag (k) = nnz (diag (A)) ; [m n] = size (A) ; Anz (k) = nnz (A) ; MN (k,:) = [m n] ; tic q = maxtrans (A) ; t0 = toc ; s0 = sum (q > 0) ; T0 (k) = max (1e-9, t0) ; tic p = cs_dmperm (A) ; t1 = toc ; s1 = sum (p > 0) ; T1 (k) = max (1e-9, t1) ; fprintf (... '%4d maxtrans %10.6f %10.6f cs_dmperm %10.6f m/n %8.2f', ... f(k), t, t0, t1, m/n) ; if (t1 ~= 0) fprintf (' rel: %8.4f', t0 / t1) ; end fprintf ('\n') ; if (s0 ~= s1) error ('!') ; end if (s0 == n & m == n) %#ok B = A (:, q) ; subplot (2,2,1) ; cspy (B) ; if (nnz (diag (B)) ~= n) error ('?') end clear B else cspy (0) ; end maxnz = nnz (A) ; zfree = find (MN (1:k,1) == MN (1:k,2) & Nzdiag (1:k) == MN(1:k,1)) ; square = find (MN (1:k,1) == MN (1:k,2) & Nzdiag (1:k) ~= MN(1:k,1)) ; tall = find (MN (1:k,1) > MN (1:k,2)) ; squat = find (MN (1:k,1) < MN (1:k,2)) ; subplot (2,2,2) ; loglog (Anz (square), T0 (square) ./ T1 (square), ... 'o', [1 maxnz], [1 1], 'r-') ; title ('square') ; subplot (2,2,3) ; loglog (Anz (tall), T0 (tall) ./ T1 (tall), ... 'o', [1 maxnz], [1 1], 'r-') ; title ('tall') ; subplot (2,2,4) ; title ('square, intially zero-free') ; loglog (Anz (zfree), T0 (zfree) ./ T1 (zfree), ... 'o', [1 maxnz], [1 1], 'r-') ; title ('square, zero-free diag') ; drawnow end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/Test/test2.m0000644001170100242450000000436610711445435015475 0ustar davisfacfunction test2 (nmat) %TEST2 test for BTF % Requires CSparse and UFget % Example: % test2 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, University of Florida index = UFget ; f = find (index.nrows == index.ncols) ; % too much time: skip = [1514 1297 1876 1301] ; f = setdiff (f, skip) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; if (nargin < 1) nmat = 1000 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; T0 = zeros (nmat,1) ; T1 = zeros (nmat,1) ; Anz = zeros (nmat,1) ; figure (1) ; clf MN = zeros (nmat, 2) ; Nzdiag = zeros (nmat,1) ; % warmup p = maxtrans (sparse (1)) ; %#ok p = btf (sparse (1)) ; %#ok p = cs_dmperm (sparse (1)) ; %#ok a = cs_transpose (sparse (1)) ; %#ok h = waitbar (0, 'BTF test 2 of 6') ; try for k = 1:nmat Prob = UFget (f (k), index) ; A = Prob.A ; waitbar (k/nmat, h) ; Nzdiag (k) = nnz (diag (A)) ; [m n] = size (A) ; Anz (k) = nnz (A) ; MN (k,:) = [m n] ; tic [p,q,r] = btf (A) ; t0 = toc ; s0 = sum (q > 0) ; T0 (k) = max (1e-9, t0) ; tic [p2,q2,r2] = cs_dmperm (A) ; t1 = toc ; s1 = sum (dmperm (A) > 0) ; T1 (k) = max (1e-9, t1) ; fprintf ('%4d btf %10.6f cs_dmperm %10.6f', f(k), t0, t1) ; if (t1 ~= 0) fprintf (' rel: %8.4f', t0 / t1) ; end fprintf ('\n') ; if (s0 ~= s1) error ('!') ; end C = A (p, abs (q)) ; subplot (1,2,1) ; cspy (C) ; z = find (q < 0) ; zd = nnz (diag (C (z,z))) ; if (zd > 0) error ('?') ; end minnz = Anz (1) ; maxnz = nnz (A) ; subplot (1,2,2) ; loglog (Anz (1:k), T0 (1:k) ./ T1 (1:k), ... 'o', [minnz maxnz], [1 1], 'r-') ; drawnow clear C A Prob end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/Test/test3.m0000644001170100242450000003770210711445507015476 0ustar davisfacfunction test3 (nmat) %TEST3 test for BTF % Requires UFget % Example: % test3 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, Univ. of Florida doplot = 1 ; dopause = 0 ; dostrong = 1 ; index = UFget ; f = find (index.nrows == index.ncols) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; clear i figure (1) % short test set: seg faults, lots of blocks, lots of work, and so on: nasty = [ % --- various test matrices (no seg fault, quick run time) -(1:8)' % generated matrices 904 % vanHeukelum/cage3 (5-by-5) 819 % Simon/raefsky6 (permuted triangular matrix) % % --- older seg faults: 264 % HB/west0156, causes older strongcomp_recursive to fail 824 % TOKAMAK/utm300 (300-by-300), causes older code to fail 868 % Pothen/bodyy4 % % --- seg faults in old MATLAB dmperm 290 % Averous/epb3 983 % Sanghavi/ecl32 885 % Pothen/tandem_dual 879 % Pothen/onera_dual 955 % Schenk_IBMSDS/2D_54019_highK 957 % Schenk_IBMSDS/3D_51448_3D 958 % Schenk_IBMSDS/ibm_matrix_2 912 % vanHeukelum/cage11 924 % Andrews/Andrews 960 % Schenk_IBMSDS/matrix-new_3 862 % Kim/kim1 544 % Hamm/scircuit 897 % Norris/torso2 801 % Ronis/xenon1 53 % HB/bcsstk31 958 % Schenk_IBMSDS/matrix_9 844 % Cunningham/qa8fk 845 % Cunningham/qa8fk 821 % Simon/venkat25 822 % Simon/venkat50 820 % Simon/venkat01 812 % Simon/bbmat 804 % Rothberg/cfd1 54 % HB/bcsstk32 913 % vanHeukelum/cage12 846 % Boeing/bcsstk39 972 % Schenk_IBMSDS/para-10 974 % Schenk_IBMSDS/para-5 975 % Schenk_IBMSDS/para-6 976 % Schenk_IBMSDS/para-7 977 % Schenk_IBMSDS/para-8 978 % Schenk_IBMSDS/para-9 961 % Schenk_ISEI/barrier2-10 962 % Schenk_ISEI/barrier2-11 963 % Schenk_ISEI/barrier2-12 964 % Schenk_ISEI/barrier2-1 965 % Schenk_ISEI/barrier2-2 966 % Schenk_ISEI/barrier2-3 967 % Schenk_ISEI/barrier2-4 968 % Schenk_ISEI/barrier2-9 851 % Chen/pkustk05 979 % Kamvar/Stanford 374 % Bova/rma10 % % --- lots of time: 395 % DRIVCAV/cavity16 396 % DRIVCAV/cavity17 397 % DRIVCAV/cavity18 398 % DRIVCAV/cavity19 399 % DRIVCAV/cavity20 400 % DRIVCAV/cavity21 401 % DRIVCAV/cavity22 402 % DRIVCAV/cavity23 403 % DRIVCAV/cavity24 404 % DRIVCAV/cavity25 405 % DRIVCAV/cavity26 1109 % Sandia/mult_dcop_01 1110 % Sandia/mult_dcop_02 1111 % Sandia/mult_dcop_03 376 % Brethour/coater2 284 % ATandT/onetone2 588 % Hollinger/mark3jac100 589 % Hollinger/mark3jac100sc 452 % Grund/bayer01 920 % Hohn/sinc12 590 % Hollinger/mark3jac120 591 % Hollinger/mark3jac120sc 809 % Shyy/shyy161 448 % Graham/graham1 283 % ATandT/onetone1 445 % Garon/garon2 541 % Hamm/bcircuit 592 % Hollinger/mark3jac140 593 % Hollinger/mark3jac140sc 435 % FIDAP/ex40 912 % Hohn/sinc15 894 % Norris/lung2 542 % Hamm/hcircuit 752 % Mulvey/finan512 753 % Mulvey/pfinan512 564 % Hollinger/g7jac180 565 % Hollinger/g7jac180sc 566 % Hollinger/g7jac200 567 % Hollinger/g7jac200sc 748 % Mallya/lhr34 749 % Mallya/lhr34c 922 % Hohn/sinc18 447 % Goodwin/rim 807 % Rothberg/struct3 286 % ATandT/twotone 982 % Tromble/language 953 % Schenk_IBMNA/c-73 890 % Norris/heart1 750 % Mallya/lhr71 751 % Mallya/lhr71c 925 % FEMLAB/ns3Da 827 % Vavasis/av41092 931 % FEMLAB/sme3Db 1297 % GHS_index/boyd2 1301 % GHS_indef/cont-300 % % --- lots of time, and seg faults: 285 % ATandT/pre2 % --- huge matrix, turn off plotting 940 % Shenk/af_shell1, memory leak in plot, after call to btf, once. % ---- ]' ; % maxtrans_recursive causes a seg fault on these matrices, because of % stack overflow (this is expected) skip_list_maxtrans_recursive = 285 ; % p = dmperm (A) in MATLAB 7.4 causes a seg fault on these matrices: skip_list_dmperm = [285 1301 1231 1251 1232 1241] ; % [p,q,r] = dmperm (A) in MATLAB 7.4 causes a seg fault on these matrices: skip_list_dmperm_btf = ... [ 285 879 885 290 955 957 958 924 960 897 959 844 845 ... 821 822 820 804 913 846 972 974:978 961:968 979 940 ... 1422 1513 1412 1510 1301 1231 1251 1434 1213 1232 1241 1357 1579 1431 1281] ; % length(skip_list_dmperm_btf) % time intensive skip_costly = [1514 1297 1876 1301] ; % strongcomp (recursive) causes a seg fault on these matrices because of % stack overflow (this is expected). skip_list_strongcomp_recursive = ... [983 285 879 885 290 955 957 958 912 924 960 862 544 897 801 53 959 844 845 ... 821 822 820 812 804 54 913 846 972 974:978 961:968 851 374 940] ; skip_list_strongcomp_recursive = ... [ skip_list_strongcomp_recursive 592 593 752 753 807 286 982 855 566 567 ] ; % matrices with the largest # of nonzeros in the set (untested) toobig = [ 928 853 852 356 761 368 973 895 805 849 932 ... 803 854 936 802 850 537 856 898 857 859 971 937 ... 914 858 980 896 806 538 863 369 938 860 941 942 ... 943 944 945 946 947 948 915 939 916 ] ; f = [ -(1:8) f ] ; % f = nasty ; h = waitbar (0, 'BTF test 3 of 6') ; if (nargin < 1) nmat = 1000 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; try for matnum = 1:nmat waitbar (matnum/nmat, h) ; j = f (matnum) ; if (any (j == toobig) | any (j == skip_costly)) %#ok fprintf ('\n%4d: %3d %s/%s too big\n', ... matnum, j, index.Group{j}, index.Name{j}) ; continue ; end rand ('state', 0) ; % clear all unused variables. % nothing here is left that is proportional to the matrix size clear A p1 p2 p3 q3 r3 match1 match2 match4 pa ra sa qa B C pb rb pc rc clear jumble B11 B12 B13 B21 B22 B23 B31 B32 B33 pjumble qjumble ans clear c kbad kgood % whos % pause if (j > 0) Problem = UFget (j, index) ; name = Problem.name ; A = Problem.A ; clear Problem else % construct the jth test matrix j = -j ; if (j == 1 | j == 2) %#ok B11 = UFget ('Grund/b1_ss') ; % 7-by-7 diagonal block B11 = B11.A ; B12 = sparse (zeros (7,2)) ; B12 (3,2) = 1 ; B13 = sparse (ones (7,5)) ; B21 = sparse (zeros (2,7)) ; B22 = sparse (ones (2,2)) ; % 2-by-2 diagonal block B23 = sparse (ones (2,5)) ; B31 = sparse (zeros (5,7)) ; B32 = sparse (zeros (5,2)) ; B33 = UFget ('vanHeukelum/cage3') ; % 5-by-5 diagonal block B33 = B33.A ; A = [ B11 B12 B13 ; B21 B22 B23 ; B31 B32 B33 ] ; name = '(j=1 test matrix)' ; end if (j == 2) pjumble = [ 10 7 11 1 13 12 8 2 5 14 9 6 4 3 ] ; qjumble = [ 3 14 2 11 1 8 5 7 10 12 4 13 9 6 ] ; A = A (pjumble, qjumble) ; name = '(j=2 test matrix)' ; elseif (j == 3) A = sparse (1) ; elseif (j == 4) A = sparse (0) ; elseif (j == 5) A = sparse (ones (2)) ; elseif (j == 6) A = sparse (2,2) ; elseif (j == 7) A = speye (2) ; elseif (j == 8) A = sparse (2,2) ; A (2,1) = 1 ; end if (j > 2) full (A) end end [m n] = size (A) ; if (m ~= n) continue ; end fprintf ('\n%4d: ', matnum) ; fprintf (' =========================== Matrix: %3d %s\n', j, name) ; fprintf ('n: %d nz: %d\n', n, nnz (A)) ; if (nnz (A) > 6e6) doplot = 0 ; end %----------------------------------------------------------------------- % now try maxtrans tic match1 = maxtrans (A) ; t = toc ; s1 = sum (match1 > 0) ; fprintf ('n-sprank: %d\n', n-s1) ; fprintf ('maxtrans: %8.2f seconds\n', t) ; singular = s1 < n ; if (doplot) % figure (1) clf subplot (2,4,1) spy (A) title (name) ; end p1 = match1 ; if (any (p1 <= 0)) % complete the permutation badrow = find (p1 <= 0) ; badcol = ones (1,n) ; badcol (p1 (p1 > 0)) = 0 ; badcol = find (badcol) ; p1 (badrow) = badcol ; % construct the older form of match1 match1 (badrow) = -p1 (badrow) ; end if (any (sort (p1) ~= 1:n)) error ('!!') ; end B = A (:,p1) ; if (doplot) subplot (2,4,2) hold off spy (B) hold on badcol = find (match1 < 0) ; Junk = sparse (badcol, badcol, ones (length (badcol), 1), n, n) ; % if (~isempty (A)) % spy (Junk, 'ro') ; % end title ('maxtrans') ; end d = nnz (diag (B)) ; if (d ~= s1) error ('bad sprank') ; end clear B %----------------------------------------------------------------------- % try p = dmperm(A) skip_dmperm = any (j == skip_list_dmperm) ; if (~skip_dmperm) tic match4 = dmperm (A) ; t = toc ; fprintf ('p=dmperm(A): %8.2f seconds\n', t) ; s4 = sum (match4 > 0) ; singular4 = (s4 < n) ; if (doplot) if (~singular4) subplot (2,4,3) spy (A (match4,:)) title ('dmperm') ; end end if (singular ~= singular4) error ('s4?') ; end if (s1 ~= s4) error ('bad sprank') ; end else fprintf ('p=dmperm(A): skip\n') ; end %----------------------------------------------------------------------- nblocks = -1 ; skip_dmperm_btf = any (j == skip_list_dmperm_btf) ; if (~skip_dmperm_btf) % get btf form tic [pa,qa,ra,sa] = dmperm (A) ; t = toc ; fprintf ('[p,q,r,s]=dmperm(A): %8.2f seconds\n', t) ; nblocks = length (ra) - 1 ; fprintf ('nblocks: %d\n', nblocks) ; if (~singular4) checkbtf (A, pa, qa, ra) ; if (doplot) subplot (2,4,4) drawbtf (A, pa, qa, ra) title ('dmperm blocks') end end else fprintf ('[p,q,r,s]=dmperm(A): skip\n') ; end jumble = randperm (n) ; %----------------------------------------------------------------------- % try strongcomp, non-recursive version %------------------------------------------------------------------- % try strongcomp on original matrix B = A (:,p1) ; tic ; [pb,rb] = strongcomp (B) ; t = toc ; fprintf ('strongcomp %8.2f seconds\n', t) ; if (~singular & ~skip_dmperm_btf & (length (rb) ~= nblocks+1)) %#ok error ('BTF:invalid (rb)') ; end checkbtf (B, pb, pb, rb) ; if (doplot) subplot (2,4,5) drawbtf (B, pb, pb, rb) ; title ('strongcomp') ; end %------------------------------------------------------------------- % try btf on original matrix tic ; [pw,qw,rw] = btf (A) ; t = toc ; fprintf ('btf %8.2f seconds nblocks %d\n', ... t, length (rw)-1) ; if (any (pw ~= pb)) error ('pw') ; end if (any (rw ~= rb)) error ('rw') ; end if (any (abs (qw) ~= p1 (pw))) error ('qw') ; end c = diag (A (pw,abs (qw))) ; if (~singular & ~skip_dmperm_btf & (length (rw) ~= nblocks+1)) %#ok error ('BTF:invalid (rw)') ; end checkbtf (A, pw, abs (qw), rw) ; kbad = find (qw < 0) ; kgood = find (qw > 0) ; if (any (c (kbad) ~= 0)) error ('kbad') ; end if (any (c (kgood) == 0)) %#ok error ('kgood') ; end if (doplot) subplot (2,4,6) drawbtf (A, pw, abs (qw), rw) ; if (n < 500) for k = kbad plot ([k (k+1) (k+1) k k]-.5, ... [k k (k+1) (k+1) k]-.5, 'r') ; end end title ('btf') ; end %------------------------------------------------------------------- % try [p,q,r] = strongcomp (A, qin) form tic [pz,qz,rz] = strongcomp (A, match1) ; t = toc ; fprintf ('[p,q,r]=strongcomp(A,qin)%8.2f seconds\n', t) ; if (any (pz ~= pb)) error ('pz') ; end if (any (rz ~= rb)) error ('rz') ; end if (any (abs (qz) ~= p1 (pz))) error ('qz') ; end c = diag (A (pz,abs (qz))) ; if (~singular & ~skip_dmperm_btf & (length (rz) ~= nblocks+1)) %#ok error ('BTF:invalid (rz)') ; end checkbtf (A, pz, abs (qz), rz) ; kbad = find (qz < 0) ; kgood = find (qz > 0) ; if (any (c (kbad) ~= 0)) error ('kbad') ; end if (any (c (kgood) == 0)) %#ok error ('kgood') ; end if (doplot) subplot (2,4,7) drawbtf (A, pz, abs (qz), rz) ; if (n < 500) for k = kbad plot ([k (k+1) (k+1) k k]-.5, ... [k k (k+1) (k+1) k]-.5, 'r') ; end end title ('strongcomp(A,qin)') ; end %------------------------------------------------------------------- % try strongcomp again, on a randomly jumbled matrix C = sparse (B (jumble, jumble)) ; tic ; [pc,rc] = strongcomp (C) ; t = toc ; fprintf ('strongcomp (rand) %8.2f seconds\n', t) ; if (~singular & ~skip_dmperm_btf & (length (rc) ~= nblocks+1)) %#ok error ('BTF:invalid (rc)') ; end checkbtf (C, pc, pc, rc) ; if (doplot) subplot (2,4,8) drawbtf (C, pc, pc, rc) ; title ('strongcomp(rand)') ; end if (length (rc) ~= length (rb)) error ('strongcomp random mismatch') ; end %----------------------------------------------------------------------- if (doplot) drawnow end if (matnum ~= nmat & dopause) %#ok input ('Hit enter: ') ; end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/Test/test4.m0000644001170100242450000000407310711445477015500 0ustar davisfacfunction test4 (nmat) %TEST4 test for BTF % Requires UFget % Example: % test4 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, University of Florida index = UFget ; f = find (index.nrows == index.ncols) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; % time intensive skip_costly = [1514 1297 1876 1301] ; f = setdiff (f, skip_costly) ; if (nargin < 1) nmat = 1000 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; h = waitbar (0, 'BTF test 4 of 6') ; try for k = 1:nmat Prob = UFget (f (k), index) ; A = Prob.A ; waitbar (k/nmat, h) ; for tr = [1 -1] if (tr == -1) AT = A' ; [m n] = size (A) ; if (m == n) if (nnz (spones (AT) - spones (A)) == 0) fprintf ('skip transpose\n') ; continue ; end end A = AT ; end tic [p1,q1,r1,work1] = btf (A) ; t1 = toc ; n1 = length (r1) - 1 ; tic [p2,q2,r2,work2] = btf (A, 10) ; t2 = toc ; n2 = length (r2) - 1 ; fprintf (... '%4d %4d : %10.4f %8d %8g : %10.4f %8d %8g :', ... k, f(k), t1, n1, work1, t2, n2, work2) ; if (t2 ~= 0) fprintf (' rel %8.4f %8.4f' , t1 / t2, n2 / (max (1, n1))) ; end fprintf ('\n') ; if (n1 ~= n2 | work1 ~= work2) %#ok disp (Prob) ; fprintf ('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n') ; end end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/Test/test5.m0000644001170100242450000000371410711445520015467 0ustar davisfacfunction test5 (nmat) %TEST5 test for BTF % Requires UFget % Example: % test5 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, University of Florida index = UFget ; [ignore f] = sort (index.nnz) ; % time intensive skip_costly = [1514 1297 1876 1301] ; f = setdiff (f, skip_costly) ; if (nargin < 1) nmat = 1000 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; h = waitbar (0, 'BTF test 5 of 6') ; try for k = 1:nmat i = f(k) ; Prob = UFget (i, index) ; A = Prob.A ; waitbar (k/nmat, h) ; for tr = [1 -1] if (tr == -1) AT = A' ; [m n] = size (A) ; if (m == n) if (nnz (spones (AT) - spones (A)) == 0) fprintf ('skip test with transpose\n') ; continue ; end end A = AT ; end tic q1 = maxtrans (A) ; t1 = toc ; r1 = sum (q1 > 0) ; tic q2 = maxtrans (A, 10) ; t2 = toc ; r2 = sum (q2 > 0) ; fprintf (... '%4d %4d : %10.4f %8d : %10.4f %8d', k, f(k), t1, r1, t2, r2) ; fprintf (' rel sprank %8.4f', r2 / (max (1, r1))) ; if (t2 ~= 0) fprintf (': rel time %8.4f', t1 / t2) ; end fprintf ('\n') ; if (r1 ~= r2) disp (Prob) ; fprintf ('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n') ; end end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/Test/btf_test.m0000644001170100242450000000052110710446670016234 0ustar davisfacfunction btf_test (nmat) %BTF_TEST test for BTF % Requires CSparse (or CXSparse) and UFget % Example: % btf_test % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5, test6. if (nargin < 1) nmat = 800 ; end test1 (nmat) ; test2 (nmat) ; test3 (nmat) ; test4 (nmat) ; test5 (nmat) ; test6 ; SuiteSparse/BTF/MATLAB/Test/checkbtf.m0000644001170100242450000000152710620664675016211 0ustar davisfacfunction checkbtf (A, p, q, r) %CHECKBTF ensure A(p,q) is in BTF form % % A(p,q) is in BTF form, r the block boundaries % % Example: % [p,q,r] = dmperm (A) % checkbtf (A, p, q, r) % % See also drawbtf, maxtrans, strongcomp. % Copyright 2007, Timothy A. Davis, University of Florida [m n] = size (A) ; if (m ~= n) error ('A must be square') ; end if (any (sort (p) ~= 1:n)) error ('p not a permutation') ; end if (any (sort (q) ~= 1:n)) error ('q not a permutation') ; end nblocks = length (r) - 1 ; if (r (1) ~= 1) error ('r(1) not one') ; end if (r (end) ~= n+1) error ('r(end) not n+1') ; end if (nblocks < 1 | nblocks > n) %#ok error ('nblocks wrong') ; end nblocks = length (r) - 1 ; rdiff = r (2:(nblocks+1)) - r (1:nblocks) ; if (any (rdiff < 1) | any (rdiff > n)) %#ok error ('r bad') end SuiteSparse/BTF/MATLAB/Test/test6.m0000644001170100242450000000774110711445541015477 0ustar davisfacfunction test6 %TEST6 test for BTF % Requires UFget % Example: % test6 % See also btf, maxtrans, strongcomp, dmperm, UFget, % test1, test2, test3, test4, test5. % Copyright 2007, Timothy A. Davis, University of Florida quick2 = [ ... 1522 -272 1463 1521 460 1507 -838 1533 -1533 -1456 -1512 734 211 ... -385 -735 394 -397 1109 -744 ... -734 -375 -1200 -1536 -837 519 -519 520 -520 189 -189 454 385 ... 387 -387 384 -384 386 -386 388 -388 525 -525 526 -526 735 ... 1508 209 210 1243 -1243 1534 -840 1234 -1234 390 -390 392 -392 ... -394 1472 1242 -1242 389 -389 391 -391 393 -393 1215 -1215 1216 ... -1216 736 -736 737 -737 455 -455 -224 -839 1426 -1426 -1473 396 ... -396 398 -398 400 -400 402 -402 404 -404 -1531 395 -395 397 ... 399 -399 401 -401 403 -403 405 -405 -738 -739 1459 -1459 1111 ... 1110 376 -376 284 -284 -740 -742 -741 -743 1293 -1293 452 920 ... -745 -446 1462 -1461 448 -448 283 -283 1502 -1502 1292 -1292 1503 ... -1503 1291 -1291 445 -445 -746 -747 1300 -1300 435 -435 -1343 -1345 ... -1344 1305 -1305 921 -1513 1307 -1307 1369 -1369 1374 -1374 1377 ... -1377 748 -748 -749 1510 922 -922 ] ; index = UFget ; nmat = length (quick2) ; dopause = 0 ; h = waitbar (0, 'BTF test 6 of 6') ; try for k = 1:nmat waitbar (k/nmat, h) ; i = quick2 (k) ; Prob = UFget (abs (i), index) ; disp (Prob) ; if (i < 0) fprintf ('transposed\n') ; A = Prob.A' ; [m n] = size (A) ; if (m == n) if (nnz (spones (A) - spones (Prob.A)) == 0) fprintf ('skip...\n') ; continue ; end end else A = Prob.A ; end tic [p1,q1,r1,work1] = btf (A) ; t1 = toc ; n1 = length (r1) - 1 ; m1 = nnz (diag (A (p1, abs (q1)))) ; limit = work1/nnz(A) ; fprintf ('full search: %g * nnz(A)\n', limit) ; works = linspace(0,limit,9) ; works (1) = eps ; nw = length (works) ; T2 = zeros (nw, 1) ; N2 = zeros (nw, 1) ; M2 = zeros (nw, 1) ; T2 (end) = t1 ; N2 (end) = n1 ; M2 (end) = m1 ; fprintf ('full time %10.4f blocks %8d nnz(diag) %8d\n\n', t1, n1, m1) ; subplot (3,4,4) ; drawbtf (A, p1, abs (q1), r1) ; title (Prob.name, 'Interpreter', 'none') ; for j = 1:nw-1 maxwork = works (j) ; tic [p2,q2,r2,work2] = btf (A, maxwork) ; t2 = toc ; n2 = length (r2) - 1 ; m2 = nnz (diag (A (p2, abs (q2)))) ; T2 (j) = t2 ; N2 (j) = n2 ; M2 (j) = m2 ; fprintf ('%9.1f %10.4f blocks %8d nnz(diag) %8d\n', ... maxwork, t2, n2, m2) ; subplot (3,4,4+j) ; drawbtf (A, p2, abs (q2), r2) ; title (sprintf ('%g', maxwork)) ; ss = [1:j nw] ; subplot (3,4,1) ; plot (works(ss), T2(ss), 'o-') ; title ('time vs work') ; axis ([0 limit 0 max(0.1,max(T2))]) ; subplot (3,4,2) ; plot (works(ss), N2(ss), 'o-') ; title ('blocks vs work') ; axis ([0 limit 0 n1]) ; subplot (3,4,3) ; plot (works(ss), M2(ss), 'o-') ; title ('nnz(diag) vs work') ; axis ([0 limit 0 m1]) ; drawnow end fprintf ('full time %10.4f blocks %8d nnz(diag) %8d\n', t1, n1, m1) ; if (dopause) input ('hit enter: ') ; end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/BTF/MATLAB/strongcomp.c0000644001170100242450000001243210616144521015663 0ustar davisfac/* ========================================================================== */ /* === stongcomp mexFunction ================================================ */ /* ========================================================================== */ /* STRONGCOMP: Find a symmetric permutation to upper block triangular form of * a sparse square matrix. * * Usage: * * [p,r] = strongcomp (A) ; * * [p,q,r] = strongcomp (A,qin) ; * * In the first usage, the permuted matrix is C = A (p,p). In the second usage, * the matrix A (:,qin) is symmetrically permuted to upper block triangular * form, where qin is an input column permutation, and the final permuted * matrix is C = A (p,q). This second usage is equivalent to * * [p,r] = strongcomp (A (:,qin)) ; * q = qin (p) ; * * That is, if qin is not present it is assumed to be qin = 1:n. * * C is the permuted matrix, with a number of blocks equal to length(r)-1. * The kth block is from row/col r(k) to row/col r(k+1)-1 of C. * r(1) is one and the last entry in r is equal to n+1. * The diagonal of A (or A (:,qin)) is ignored. * * strongcomp is normally proceeded by a maximum transversal: * * [p,q,r] = strongcomp (A, maxtrans (A)) * * if the matrix has full structural rank. This is identical to * * [p,q,r] = btf (A) * * (except that btf handles the case when A is structurally rank-deficient). * It essentially the same as * * [p,q,r] = dmperm (A) * * except that p, q, and r will differ between btf and dmperm. Both return an * upper block triangular form with a zero-free diagonal. The number and sizes * of the blocks will be identical, but the order of the blocks, and the * ordering within the blocks, can be different. For structurally rank * deficient matrices, dmpmerm returns the maximum matching as a zero-free * diagonal that is above the main diagonal; btf always returns the matching as * the main diagonal (which will thus contain zeros). * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. * * See also maxtrans, btf, dmperm */ /* ========================================================================== */ #include "mex.h" #include "btf.h" void mexFunction ( int nargout, mxArray *pargout[], int nargin, const mxArray *pargin[] ) { UF_long b, n, i, k, j, *Ap, *Ai, *P, *R, nblocks, *Work, *Q, jj ; double *Px, *Rx, *Qx ; /* ---------------------------------------------------------------------- */ /* get inputs and allocate workspace */ /* ---------------------------------------------------------------------- */ if (!((nargin == 1 && nargout <= 2) || (nargin == 2 && nargout <= 3))) { mexErrMsgTxt ("Usage: [p,r] = strongcomp (A)" " or [p,q,r] = strongcomp (A,qin)") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetN (pargin [0])) { mexErrMsgTxt ("strongcomp: A must be sparse, square, and non-empty") ; } /* get sparse matrix A */ Ap = (UF_long *) mxGetJc (pargin [0]) ; Ai = (UF_long *) mxGetIr (pargin [0]) ; /* get output arrays */ P = mxMalloc (n * sizeof (UF_long)) ; R = mxMalloc ((n+1) * sizeof (UF_long)) ; /* get workspace of size 4n (recursive code only needs 2n) */ Work = mxMalloc (4*n * sizeof (UF_long)) ; /* get the input column permutation Q */ if (nargin == 2) { if (mxGetNumberOfElements (pargin [1]) != n) { mexErrMsgTxt ("strongcomp: qin must be a permutation vector of size n") ; } Qx = mxGetPr (pargin [1]) ; Q = mxMalloc (n * sizeof (UF_long)) ; /* connvert Qin to 0-based and check validity */ for (i = 0 ; i < n ; i++) { Work [i] = 0 ; } for (k = 0 ; k < n ; k++) { j = Qx [k] - 1 ; /* convert to 0-based */ jj = BTF_UNFLIP (j) ; if (jj < 0 || jj >= n || Work [jj] == 1) { mexErrMsgTxt ("strongcomp: qin must be a permutation vector of size n") ; } Work [jj] = 1 ; Q [k] = j ; } } else { /* no input column permutation */ Q = (UF_long *) NULL ; } /* ---------------------------------------------------------------------- */ /* find the strongly-connected components of A */ /* ---------------------------------------------------------------------- */ nblocks = btf_l_strongcomp (n, Ap, Ai, Q, P, R, Work) ; /* ---------------------------------------------------------------------- */ /* create outputs and free workspace */ /* ---------------------------------------------------------------------- */ /* create P */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; Px = mxGetPr (pargout [0]) ; for (k = 0 ; k < n ; k++) { Px [k] = P [k] + 1 ; /* convert to 1-based */ } /* create Q */ if (nargin == 2 && nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, n, mxREAL) ; Qx = mxGetPr (pargout [1]) ; for (k = 0 ; k < n ; k++) { Qx [k] = Q [k] + 1 ; /* convert to 1-based */ } } /* create R */ if (nargout == nargin + 1) { pargout [nargin] = mxCreateDoubleMatrix (1, nblocks+1, mxREAL) ; Rx = mxGetPr (pargout [nargin]) ; for (b = 0 ; b <= nblocks ; b++) { Rx [b] = R [b] + 1 ; /* convert to 1-based */ } } mxFree (P) ; mxFree (R) ; mxFree (Work) ; if (nargin == 2) { mxFree (Q) ; } } SuiteSparse/BTF/MATLAB/strongcomp.m0000644001170100242450000000332410620366436015703 0ustar davisfacfunction [p,q,r] = strongcomp (A, qin) %#ok %STRONGCOMP symmetric permutation to upper block triangular form % The matrix must be sparse and square. % % Example: % [p,r] = strongcomp (A) ; % [p,q,r] = strongcomp (A,qin) ; % % In the first usage, the permuted matrix is C = A (p,p). In the second usage, % the matrix A (:,qin) is symmetrically permuted to upper block triangular % form, where qin is an input column permutation, and the final permuted % matrix is C = A (p,q). This second usage is equivalent to % % [p,r] = strongcomp (A (:,qin)) ; % q = qin (p) ; % % That is, if qin is not present it is assumed to be qin = 1:n. % % C is the permuted matrix, with a number of blocks equal to length(r)-1. % The kth block is from row/col r(k) to row/col r(k+1)-1 of C. % r(1) is one and the last entry in r is equal to n+1. % The diagonal of A (or A (:,qin)) is ignored. % % strongcomp is normally proceeded by a maximum transversal. % Assuming A is square and structurally nonsingular, % % [p,q,r] = strongcomp (A, maxtrans (A)) % % is essentially identical to % % [p,q,r] = dmperm (A) % % except that p, q, and r will differ. Both return an upper block triangular % form with a zero-free diagonal. The number and sizes of the blocks will be % identical, but the order of the blocks, and the ordering within the blocks, % can be different. If the matrix is structurally singular, both strongcomp % and maxtrans return a vector q containing negative entries. abs(q) is a % permutation of 1:n, and find(q<0) gives a list of the indices of the % diagonal of A(p,q) that are zero. % % See also btf, maxtrans, dmperm % Copyright 2004-2007, Tim Davis, University of Florida error ('strongcomp mexFunction not found') ; SuiteSparse/BTF/MATLAB/Makefile0000644001170100242450000000176010616443621014771 0ustar davisfac include ../../UFconfig/UFconfig.mk I = -I../Include -I../../UFconfig MX = $(MEX) $(I) -DDLONG all: maxtrans.mexglx strongcomp.mexglx btf.mexglx recursive: strongcomp_recursive.mexglx maxtrans.mexglx: ../Source/btf_maxtrans.c ../Include/btf.h maxtrans.c \ ../Include/btf_internal.h $(MX) maxtrans.c ../Source/btf_maxtrans.c strongcomp.mexglx: ../Source/btf_strongcomp.c ../Include/btf.h \ strongcomp.c ../Include/btf_internal.h $(MX) strongcomp.c ../Source/btf_strongcomp.c strongcomp_recursive.mexglx: ../Source/btf_strongcomp.c ../Include/btf.h \ strongcomp.c ../Include/btf_internal.h $(MX) -DRECURSIVE -output strongcomp_recursive \ ../Source/btf_strongcomp.c strongcomp.c btf.mexglx: ../Source/btf_strongcomp.c ../Include/btf.h btf.c \ ../Include/btf_internal.h \ ../Source/btf_maxtrans.c ../Source/btf_order.c $(MX) btf.c ../Source/btf_maxtrans.c \ ../Source/btf_strongcomp.c ../Source/btf_order.c distclean: purge purge: clean - $(RM) *.o *.mex* clean: - $(RM) $(CLEAN) SuiteSparse/BTF/MATLAB/btf.c0000644001170100242450000001052010634323167014244 0ustar davisfac/* ========================================================================== */ /* === btf mexFunction ====================================================== */ /* ========================================================================== */ /* BTF: Permute a square matrix to upper block triangular form with a zero-free * diagonal, or with a maximum number of nonzeros along the diagonal if a * zero-free permutation does not exist. * * Usage: * * [p,q,r] = btf (A) ; * [p,q,r] = btf (A, maxwork) ; * * If the matrix has structural full rank, this is essentially identical to * * [p,q,r] = dmperm (A) * * except that p, q, and r will differ in trivial ways. Both return an upper * block triangular form with a zero-free diagonal, if the matrix is * structurally non-singular. The number and sizes of the blocks will be * identical, but the order of the blocks, and the ordering within the blocks, * can be different. * * If the matrix is structurally singular, q will contain negative entries. * The permuted matrix is C = A(p,abs(q)), and find(q<0) gives a list of * indices of the diagonal of C that are equal to zero. This differs from * dmperm, which does not place the maximum matching along the main diagonal * of C=A(p,q), but places it above the diagonal instead. * * See maxtrans, or btf.m, for a description of maxwork. * * An optional fourth output [p,q,r,work] = btf (...) returns the amount of * work performed, or -1 if the maximum work limit is reached (in which case * the maximum matching might not have been found). * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. * * See also maxtrans, strongcomp, dmperm */ /* ========================================================================== */ #include "mex.h" #include "btf.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double work, maxwork ; UF_long b, n, k, *Ap, *Ai, *P, *R, nblocks, *Work, *Q, nmatch ; double *Px, *Rx, *Qx, *w ; /* ---------------------------------------------------------------------- */ /* get inputs and allocate workspace */ /* ---------------------------------------------------------------------- */ if (nargin < 1 || nargin > 2 || nargout > 4) { mexErrMsgTxt ("Usage: [p,q,r] = btf (A)") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetN (pargin [0])) { mexErrMsgTxt ("btf: A must be sparse, square, and non-empty") ; } /* get sparse matrix A */ Ap = (UF_long *) mxGetJc (pargin [0]) ; Ai = (UF_long *) mxGetIr (pargin [0]) ; /* get output arrays */ Q = mxMalloc (n * sizeof (UF_long)) ; P = mxMalloc (n * sizeof (UF_long)) ; R = mxMalloc ((n+1) * sizeof (UF_long)) ; /* get workspace */ Work = mxMalloc (5*n * sizeof (UF_long)) ; maxwork = 0 ; if (nargin > 1) { maxwork = mxGetScalar (pargin [1]) ; } work = 0 ; /* ---------------------------------------------------------------------- */ /* find the permutation to BTF */ /* ---------------------------------------------------------------------- */ nblocks = btf_l_order (n, Ap, Ai, maxwork, &work, P, Q, R, &nmatch, Work) ; /* ---------------------------------------------------------------------- */ /* create outputs and free workspace */ /* ---------------------------------------------------------------------- */ /* create P */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; Px = mxGetPr (pargout [0]) ; for (k = 0 ; k < n ; k++) { Px [k] = P [k] + 1 ; /* convert to 1-based */ } /* create Q */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, n, mxREAL) ; Qx = mxGetPr (pargout [1]) ; for (k = 0 ; k < n ; k++) { Qx [k] = Q [k] + 1 ; /* convert to 1-based */ } } /* create R */ if (nargout > 2) { pargout [2] = mxCreateDoubleMatrix (1, nblocks+1, mxREAL) ; Rx = mxGetPr (pargout [2]) ; for (b = 0 ; b <= nblocks ; b++) { Rx [b] = R [b] + 1 ; /* convert to 1-based */ } } /* create work output */ if (nargout > 3) { pargout [3] = mxCreateDoubleMatrix (1, 1, mxREAL) ; w = mxGetPr (pargout [3]) ; w [0] = work ; } mxFree (P) ; mxFree (R) ; mxFree (Work) ; mxFree (Q) ; } SuiteSparse/BTF/MATLAB/btf.m0000644001170100242450000000332210620366273014260 0ustar davisfacfunction [p,q,r] = btf (A) %#ok %BTF permute a square sparse matrix into upper block triangular form % with a zero-free diagonal, or with a maximum number of nonzeros along the % diagonal if a zero-free permutation does not exist. % % Example: % [p,q,r] = btf (A) ; % [p,q,r] = btf (A,maxwork) ; % % If the matrix has structural full rank, this is essentially identical to % % [p,q,r] = dmperm (A) % % except that p, q, and r will differ in trivial ways. Both return an upper % block triangular form with a zero-free diagonal, if the matrix is % structurally non-singular. The number and sizes of the blocks will be % identical, but the order of the blocks, and the ordering within the blocks, % can be different. % % If the matrix is structurally singular, the q from btf will contain negative % entries. The permuted matrix is C = A(p,abs(q)), and find(q<0) gives a list % of indices of the diagonal of C that are equal to zero. This differs from % dmperm, which does not place the maximum matching along the main diagonal % of C=A(p,q), but places it above the diagonal instead. % % The second input limits the maximum amount of work the function does to % be maxwork*nnz(A), or no limit at all if maxwork <= 0. If the function % terminates early as a result, a maximum matching may not be found, and the % diagonal of A(p,abs(q)) might not have the maximum number of nonzeros % possible. Also, the number of blocks (length(r)-1) may be larger than % what btf(A) or dmperm(A) would compute. % % See also maxtrans, strongcomp, dmperm, sprank % Copyright 2004-2007, Tim Davis, University of Florida % with support from Sandia National Laboratories. All Rights Reserved. error ('btf mexFunction not found') ; SuiteSparse/BTF/MATLAB/maxtrans.c0000644001170100242450000000602610620707602015327 0ustar davisfac/* ========================================================================== */ /* === maxtrans mexFunction ================================================= */ /* ========================================================================== */ #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* MAXTRANS: Find a column permutation for a zero-free diagonal. * * Usage: * * q = maxtrans (A) ; * q = maxtrans (A,maxwork) ; * * A (:,q) has a zero-free diagonal if sprank(A) == n. * If the matrix is structurally singular, q will contain zeros. Similar * to p = dmperm (A), except that dmperm returns a row permutation. * * An optional second output [q,work] = maxtrans (...) returns the amount of * work performed, or -1 if the maximum work limit is reached (in which case * the maximum matching might not have been found). * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ /* ========================================================================== */ #include "mex.h" #include "btf.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double maxwork, work ; UF_long nrow, ncol, i, *Ap, *Ai, *Match, nmatch, *Work ; double *Matchx, *w ; /* ---------------------------------------------------------------------- */ /* get inputs and allocate workspace */ /* ---------------------------------------------------------------------- */ if (nargin < 1 || nargin > 2 || nargout > 2) { mexErrMsgTxt ("Usage: q = maxtrans (A)") ; } nrow = mxGetM (pargin [0]) ; ncol = mxGetN (pargin [0]) ; if (!mxIsSparse (pargin [0])) { mexErrMsgTxt ("maxtrans: A must be sparse, and non-empty") ; } /* get sparse matrix A */ Ap = (UF_long *) mxGetJc (pargin [0]) ; Ai = (UF_long *) mxGetIr (pargin [0]) ; /* get output array */ Match = mxMalloc (nrow * sizeof (UF_long)) ; /* get workspace of size 5n (recursive version needs only 2n) */ Work = mxMalloc (5*ncol * sizeof (UF_long)) ; maxwork = 0 ; if (nargin > 1) { maxwork = mxGetScalar (pargin [1]) ; } work = 0 ; /* ---------------------------------------------------------------------- */ /* perform the maximum transversal */ /* ---------------------------------------------------------------------- */ nmatch = btf_l_maxtrans (nrow, ncol, Ap, Ai, maxwork, &work, Match, Work) ; /* ---------------------------------------------------------------------- */ /* create outputs and free workspace */ /* ---------------------------------------------------------------------- */ pargout [0] = mxCreateDoubleMatrix (1, nrow, mxREAL) ; Matchx = mxGetPr (pargout [0]) ; for (i = 0 ; i < nrow ; i++) { Matchx [i] = Match [i] + 1 ; /* convert to 1-based */ } if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; w = mxGetPr (pargout [1]) ; w [0] = work ; } mxFree (Work) ; mxFree (Match) ; } SuiteSparse/BTF/MATLAB/maxtrans.m0000644001170100242450000000235510620366412015342 0ustar davisfacfunction q = maxtrans (A) %#ok %MAXTRANS permute the columns of a sparse matrix so it has a zero-free diagonal % (if it exists). If no zero-free diagonal exists, then a maximum matching is % found. Note that this differs from p=dmperm(A), which returns a row % permutation. % % Example: % q = maxtrans (A) % q = maxtrans (A,maxwork) % % If row i and column j are matched, then q(i) = j. Otherwise, if row is % unmatched, then q(i) = 0. This is similar to dmperm, except that % p = dmperm(A) returns p(j)=i if row i and column j are matched, or p(j)=0 if % column j is unmatched. % % If A is structurally nonsingular, then A(:,maxtrans(A)) has a zero-free % diagonal, as does A (dmperm(A),:). % % The second input limits the maximum amount of work the function does % (excluding the O(nnz(A)) cheap match phase) to be maxwork*nnz(A), or no limit % at all if maxwork <= 0. If the function terminates early as a result, a % maximum matching may not be found. An optional second output % [q,work] = maxtrans (...) returns the amount of work performed, or -1 if the % maximum work limit is reached. % % See also: btf, strongcomp, dmperm, sprank % Copyright 2004-2007, Tim Davis, University of Florida error ('maxtrans mexfunction not found') ; SuiteSparse/BTF/MATLAB/btf_demo.m0000644001170100242450000000150110620366517015262 0ustar davisfac%BTF_DEMO demo for BTF % % Example: % btf_demo % % See also btf, dmperm, strongcomp, maxtrans % Copyright 2004-2007, Tim Davis, University of Florida load west0479 ; A = west0479 ; figure (1) clf subplot (2,3,1) ; spy (A) title ('west0479') ; subplot (2,3,2) ; [p, q, r] = btf (A) ; % spy (A (p, abs(q))) ; drawbtf (A, p, q, r) ; title ('btf') ; fprintf ('\nbtf_demo: n %d nnz(A) %d # of blocks %d\n', ... size (A,1), nnz (A), length (r) - 1) ; subplot (2,3,3) ; [p, q, r, s] = dmperm (A) ; drawbtf (A, p, q, r) ; title ('dmperm btf') subplot (2,3,4) ; [p, r] = strongcomp (A) ; % spy (A (p, abs(q))) ; drawbtf (A, p, p, r) ; title ('strongly conn. comp.') ; subplot (2,3,5) ; q = maxtrans (A) ; spy (A (:,q)) title ('max transversal') ; subplot (2,3,6) ; p = dmperm (A) ; spy (A (p,:)) title ('dmperm maxtrans') ; SuiteSparse/BTF/MATLAB/Contents.m0000644001170100242450000000116210620366573015305 0ustar davisfac% BTF ordering toolbox: % % Primary functions: % % btf - permute a square sparse matrix into upper block triangular form % maxtrans - permute the columns of a sparse matrix so it has a zero-free diagonal % strongcomp - symmetric permutation to upper block triangular form % % Other: % btf_install - compile and install BTF for use in MATLAB. % btf_demo - demo for BTF % drawbtf - plot the BTF form of a matrix % btf_make - compile BTF for use in MATLAB % % Example: % q = maxtrans (A) % [p,q,r] = btf (A) % [p,r] = strongcomp (A) % Copyright 2004-2007, Tim Davis, University of Florida SuiteSparse/BTF/MATLAB/btf_make.m0000644001170100242450000000157010620366573015263 0ustar davisfacfunction btf_make %BTF_MAKE compile BTF for use in MATLAB % Your current working directory must be BTF/MATLAB for this function to work. % % Example: % btf_make % % See also btf, maxtrans, stroncomp, dmperm. % Copyright 2004-2007, Tim Davis, University of Florida details = 0 ; % if 1, print details of each command mexcmd = 'mex -O -DDLONG -I../Include -I../../UFconfig ' ; if (~isempty (strfind (computer, '64'))) mexcmd = [mexcmd '-largeArrayDims '] ; end s = [mexcmd 'maxtrans.c ../Source/btf_maxtrans.c'] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; s = [mexcmd 'strongcomp.c ../Source/btf_strongcomp.c'] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; s = [mexcmd 'btf.c ../Source/btf_maxtrans.c ../Source/btf_strongcomp.c ../Source/btf_order.c'] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; fprintf ('BTF successfully compiled.\n') ; SuiteSparse/BTF/MATLAB/btf_install.m0000644001170100242450000000074210620366505016007 0ustar davisfacfunction btf_install %BTF_INSTALL compile and install BTF for use in MATLAB. % Your current working directory must be BTF/MATLAB for this function to work. % % Example: % btf_install % % See also btf, maxtrans, stroncomp, dmperm. % Copyright 2004-2007, Tim Davis, University of Florida btf_make addpath (pwd) ; fprintf ('BTF has been compiled and installed. The path:\n') ; disp (pwd) ; fprintf ('has been added to your path. Use pathtool to add it permanently.\n'); btf_demo SuiteSparse/BTF/Include/0000755001170100242450000000000010711427556013755 5ustar davisfacSuiteSparse/BTF/Include/btf.h0000644001170100242450000002714110711427247014703 0ustar davisfac/* ========================================================================== */ /* === BTF package ========================================================== */ /* ========================================================================== */ /* BTF_MAXTRANS: find a column permutation Q to give A*Q a zero-free diagonal * BTF_STRONGCOMP: find a symmetric permutation P to put P*A*P' into block * upper triangular form. * BTF_ORDER: do both of the above (btf_maxtrans then btf_strongcomp). * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ /* ========================================================================== */ /* === BTF_MAXTRANS ========================================================= */ /* ========================================================================== */ /* BTF_MAXTRANS: finds a permutation of the columns of a matrix so that it has a * zero-free diagonal. The input is an m-by-n sparse matrix in compressed * column form. The array Ap of size n+1 gives the starting and ending * positions of the columns in the array Ai. Ap[0] must be zero. The array Ai * contains the row indices of the nonzeros of the matrix A, and is of size * Ap[n]. The row indices of column j are located in Ai[Ap[j] ... Ap[j+1]-1]. * Row indices must be in the range 0 to m-1. Duplicate entries may be present * in any given column. The input matrix is not checked for validity (row * indices out of the range 0 to m-1 will lead to an undeterminate result - * possibly a core dump, for example). Row indices in any given column need * not be in sorted order. However, if they are sorted and the matrix already * has a zero-free diagonal, then the identity permutation is returned. * * The output of btf_maxtrans is an array Match of size n. If row i is matched * with column j, then A(i,j) is nonzero, and then Match[i] = j. If the matrix * is structurally nonsingular, all entries in the Match array are unique, and * Match can be viewed as a column permutation if A is square. That is, column * k of the original matrix becomes column Match[k] of the permuted matrix. In * MATLAB, this can be expressed as (for non-structurally singular matrices): * * Match = maxtrans (A) ; * B = A (:, Match) ; * * except of course here the A matrix and Match vector are all 0-based (rows * and columns in the range 0 to n-1), not 1-based (rows/cols in range 1 to n). * The MATLAB dmperm routine returns a row permutation. See the maxtrans * mexFunction for more details. * * If row i is not matched to any column, then Match[i] is == -1. The * btf_maxtrans routine returns the number of nonzeros on diagonal of the * permuted matrix. * * In the MATLAB mexFunction interface to btf_maxtrans, 1 is added to the Match * array to obtain a 1-based permutation. Thus, in MATLAB where A is m-by-n: * * q = maxtrans (A) ; % has entries in the range 0:n * q % a column permutation (only if sprank(A)==n) * B = A (:, q) ; % permuted matrix (only if sprank(A)==n) * sum (q > 0) ; % same as "sprank (A)" * * This behaviour differs from p = dmperm (A) in MATLAB, which returns the * matching as p(j)=i if row i and column j are matched, and p(j)=0 if column j * is unmatched. * * p = dmperm (A) ; % has entries in the range 0:m * p % a row permutation (only if sprank(A)==m) * B = A (p, :) ; % permuted matrix (only if sprank(A)==m) * sum (p > 0) ; % definition of sprank (A) * * This algorithm is based on the paper "On Algorithms for obtaining a maximum * transversal" by Iain Duff, ACM Trans. Mathematical Software, vol 7, no. 1, * pp. 315-330, and "Algorithm 575: Permutations for a zero-free diagonal", * same issue, pp. 387-390. Algorithm 575 is MC21A in the Harwell Subroutine * Library. This code is not merely a translation of the Fortran code into C. * It is a completely new implementation of the basic underlying method (depth * first search over a subgraph with nodes corresponding to columns matched so * far, and cheap matching). This code was written with minimal observation of * the MC21A/B code itself. See comments below for a comparison between the * maxtrans and MC21A/B codes. * * This routine operates on a column-form matrix and produces a column * permutation. MC21A uses a row-form matrix and produces a row permutation. * The difference is merely one of convention in the comments and interpretation * of the inputs and outputs. If you want a row permutation, simply pass a * compressed-row sparse matrix to this routine and you will get a row * permutation (just like MC21A). Similarly, you can pass a column-oriented * matrix to MC21A and it will happily return a column permutation. */ #ifndef _BTF_H #define _BTF_H /* make it easy for C++ programs to include BTF */ #ifdef __cplusplus extern "C" { #endif #include "UFconfig.h" int btf_maxtrans /* returns # of columns matched */ ( /* --- input, not modified: --- */ int nrow, /* A is nrow-by-ncol in compressed column form */ int ncol, int Ap [ ], /* size ncol+1 */ int Ai [ ], /* size nz = Ap [ncol] */ double maxwork, /* maximum amount of work to do is maxwork*nnz(A); no limit * if <= 0 */ /* --- output, not defined on input --- */ double *work, /* work = -1 if maxwork > 0 and the total work performed * reached the maximum of maxwork*nnz(A). * Otherwise, work = the total work performed. */ int Match [ ], /* size nrow. Match [i] = j if column j matched to row i * (see above for the singular-matrix case) */ /* --- workspace, not defined on input or output --- */ int Work [ ] /* size 5*ncol */ ) ; /* long integer version (all "int" parameters become "UF_long") */ UF_long btf_l_maxtrans (UF_long, UF_long, UF_long *, UF_long *, double, double *, UF_long *, UF_long *) ; /* ========================================================================== */ /* === BTF_STRONGCOMP ======================================================= */ /* ========================================================================== */ /* BTF_STRONGCOMP finds the strongly connected components of a graph, returning * a symmetric permutation. The matrix A must be square, and is provided on * input in compressed-column form (see BTF_MAXTRANS, above). The diagonal of * the input matrix A (or A*Q if Q is provided on input) is ignored. * * If Q is not NULL on input, then the strongly connected components of A*Q are * found. Q may be flagged on input, where Q[k] < 0 denotes a flagged column k. * The permutation is j = BTF_UNFLIP (Q [k]). On output, Q is modified (the * flags are preserved) so that P*A*Q is in block upper triangular form. * * If Q is NULL, then the permutation P is returned so that P*A*P' is in upper * block triangular form. * * The vector R gives the block boundaries, where block b is in rows/columns * R[b] to R[b+1]-1 of the permuted matrix, and where b ranges from 1 to the * number of strongly connected components found. */ int btf_strongcomp /* return # of strongly connected components */ ( /* input, not modified: */ int n, /* A is n-by-n in compressed column form */ int Ap [ ], /* size n+1 */ int Ai [ ], /* size nz = Ap [n] */ /* optional input, modified (if present) on output: */ int Q [ ], /* size n, input column permutation */ /* output, not defined on input */ int P [ ], /* size n. P [k] = j if row and column j are kth row/col * in permuted matrix. */ int R [ ], /* size n+1. block b is in rows/cols R[b] ... R[b+1]-1 */ /* workspace, not defined on input or output */ int Work [ ] /* size 4n */ ) ; UF_long btf_l_strongcomp (UF_long, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *) ; /* ========================================================================== */ /* === BTF_ORDER ============================================================ */ /* ========================================================================== */ /* BTF_ORDER permutes a square matrix into upper block triangular form. It * does this by first finding a maximum matching (or perhaps a limited matching * if the work is limited), via the btf_maxtrans function. If a complete * matching is not found, BTF_ORDER completes the permutation, but flags the * columns of P*A*Q to denote which columns are not matched. If the matrix is * structurally rank deficient, some of the entries on the diagonal of the * permuted matrix will be zero. BTF_ORDER then calls btf_strongcomp to find * the strongly-connected components. * * On output, P and Q are the row and column permutations, where i = P[k] if * row i of A is the kth row of P*A*Q, and j = BTF_UNFLIP(Q[k]) if column j of * A is the kth column of P*A*Q. If Q[k] < 0, then the (k,k)th entry in P*A*Q * is structurally zero. * * The vector R gives the block boundaries, where block b is in rows/columns * R[b] to R[b+1]-1 of the permuted matrix, and where b ranges from 1 to the * number of strongly connected components found. */ int btf_order /* returns number of blocks found */ ( /* --- input, not modified: --- */ int n, /* A is n-by-n in compressed column form */ int Ap [ ], /* size n+1 */ int Ai [ ], /* size nz = Ap [n] */ double maxwork, /* do at most maxwork*nnz(A) work in the maximum * transversal; no limit if <= 0 */ /* --- output, not defined on input --- */ double *work, /* return value from btf_maxtrans */ int P [ ], /* size n, row permutation */ int Q [ ], /* size n, column permutation */ int R [ ], /* size n+1. block b is in rows/cols R[b] ... R[b+1]-1 */ int *nmatch, /* # nonzeros on diagonal of P*A*Q */ /* --- workspace, not defined on input or output --- */ int Work [ ] /* size 5n */ ) ; UF_long btf_l_order (UF_long, UF_long *, UF_long *, double , double *, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *) ; /* ========================================================================== */ /* === BTF marking of singular columns ====================================== */ /* ========================================================================== */ /* BTF_FLIP is a "negation about -1", and is used to mark an integer j * that is normally non-negative. BTF_FLIP (-1) is -1. BTF_FLIP of * a number > -1 is negative, and BTF_FLIP of a number < -1 is positive. * BTF_FLIP (BTF_FLIP (j)) = j for all integers j. UNFLIP (j) acts * like an "absolute value" operation, and is always >= -1. You can test * whether or not an integer j is "flipped" with the BTF_ISFLIPPED (j) * macro. */ #define BTF_FLIP(j) (-(j)-2) #define BTF_ISFLIPPED(j) ((j) < -1) #define BTF_UNFLIP(j) ((BTF_ISFLIPPED (j)) ? BTF_FLIP (j) : (j)) /* ========================================================================== */ /* === BTF version ========================================================== */ /* ========================================================================== */ /* All versions of BTF include these definitions. * As an example, to test if the version you are using is 1.2 or later: * * if (BTF_VERSION >= BTF_VERSION_CODE (1,2)) ... * * This also works during compile-time: * * #if (BTF >= BTF_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif */ #define BTF_DATE "Nov 1, 2007" #define BTF_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define BTF_MAIN_VERSION 1 #define BTF_SUB_VERSION 0 #define BTF_SUBSUB_VERSION 1 #define BTF_VERSION BTF_VERSION_CODE(BTF_MAIN_VERSION,BTF_SUB_VERSION) #ifdef __cplusplus } #endif #endif SuiteSparse/BTF/Include/btf_internal.h0000644001170100242450000000257610616443513016602 0ustar davisfac/* ========================================================================== */ /* === btf_internal include file ============================================ */ /* ========================================================================== */ #ifndef _BTF_INTERNAL_H #define _BTF_INTERNAL_H /* * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ /* Not to be included in any user program. */ #ifdef DLONG #define Int UF_long #define Int_id UF_long_id #define BTF(name) btf_l_ ## name #else #define Int int #define Int_id "%d" #define BTF(name) btf_ ## name #endif /* ========================================================================== */ /* make sure debugging and printing is turned off */ #ifndef NDEBUG #define NDEBUG #endif #ifndef NPRINT #define NPRINT #endif /* To enable debugging and assertions, uncomment this line: #undef NDEBUG */ /* To enable diagnostic printing, uncomment this line: #undef NPRINT */ /* ========================================================================== */ #include #include #define ASSERT(a) assert(a) #undef TRUE #undef FALSE #undef PRINTF #undef MIN #ifndef NPRINT #define PRINTF(s) { printf s ; } ; #else #define PRINTF(s) #endif #define TRUE 1 #define FALSE 0 #define EMPTY (-1) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #endif SuiteSparse/BTF/Source/0000755001170100242450000000000010664634152013631 5ustar davisfacSuiteSparse/BTF/Source/btf_maxtrans.c0000644001170100242450000003424710620341747016474 0ustar davisfac/* ========================================================================== */ /* === BTF_MAXTRANS ========================================================= */ /* ========================================================================== */ /* Finds a column permutation that maximizes the number of entries on the * diagonal of a sparse matrix. See btf.h for more information. * * This function is identical to cs_maxtrans in CSparse, with the following * exceptions: * * (1) cs_maxtrans finds both jmatch and imatch, where jmatch [i] = j and * imatch [j] = i if row i is matched to column j. This function returns * just jmatch (the Match array). The MATLAB interface to cs_maxtrans * (the single-output cs_dmperm) returns imatch, not jmatch to the MATLAB * caller. * * (2) cs_maxtrans includes a pre-pass that counts the number of non-empty * rows and columns (m2 and n2, respectively), and computes the matching * using the transpose of A if m2 < n2. cs_maxtrans also returns quickly * if the diagonal of the matrix is already zero-free. This pre-pass * allows cs_maxtrans to be much faster than maxtrans, if the use of the * transpose is warranted. * * However, for square structurally non-singular matrices with one or more * zeros on the diagonal, the pre-pass is a waste of time, and for these * matrices, maxtrans can be twice as fast as cs_maxtrans. Since the * maxtrans function is intended primarily for square matrices that are * typically structurally nonsingular, the pre-pass is not included here. * If this maxtrans function is used on a matrix with many more columns * than rows, consider passing the transpose to this function, or use * cs_maxtrans instead. * * (3) cs_maxtrans can operate as a randomized algorithm, to help avoid * rare cases of excessive run-time. * * (4) this maxtrans function includes an option that limits the total work * performed. If this limit is reached, the maximum transveral might not * be found. * * Thus, for general usage, cs_maxtrans is preferred. For square matrices that * are typically structurally non-singular, maxtrans is preferred. A partial * maxtrans can still be very useful when solving a sparse linear system. * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ #include "btf.h" #include "btf_internal.h" /* ========================================================================== */ /* === augment ============================================================== */ /* ========================================================================== */ /* Perform a depth-first-search starting at column k, to find an augmenting * path. An augmenting path is a sequence of row/column pairs (i1,k), (i2,j1), * (i3,j2), ..., (i(s+1), js), such that all of the following properties hold: * * * column k is not matched to any row * * entries in the path are nonzero * * the pairs (i1,j1), (i2,j2), (i3,j3) ..., (is,js) have been * previously matched to each other * * (i(s+1), js) is nonzero, and row i(s+1) is not matched to any column * * Once this path is found, the matching can be changed to the set of pairs * path. An augmenting path is a sequence of row/column pairs * * (i1,k), (i2,j1), (i3,j2), ..., (i(s+1), js) * * Once a row is matched with a column it remains matched with some column, but * not necessarily the column it was first matched with. * * In the worst case, this function can examine every nonzero in A. Since it * is called n times by maxtrans, the total time of maxtrans can be as high as * O(n*nnz(A)). To limit this work, pass a value of maxwork > 0. Then at * most O((maxwork+1)*nnz(A)) work will be performed; the maximum matching might * not be found, however. * * This routine is very similar to the dfs routine in klu_kernel.c, in the * KLU sparse LU factorization package. It is essentially identical to the * cs_augment routine in CSparse, and its recursive version (augment function * in cs_maxtransr_mex.c), except that this routine allows for the search to be * terminated early if too much work is being performed. * * The algorithm is based on the paper "On Algorithms for obtaining a maximum * transversal" by Iain Duff, ACM Trans. Mathematical Software, vol 7, no. 1, * pp. 315-330, and "Algorithm 575: Permutations for a zero-free diagonal", * same issue, pp. 387-390. The code here is a new implementation of that * algorithm, with different data structures and control flow. After writing * this code, I carefully compared my algorithm with MC21A/B (ACM Algorithm 575) * Some of the comparisons are partial because I didn't dig deeply into all of * the details of MC21A/B, such as how the stack is maintained. The following * arguments are essentially identical between this code and MC21A: * * maxtrans MC21A,B * -------- ------- * n N identical * k JORD identical * Ap IP column / row pointers * Ai ICN row / column indices * Ap[n] LICN length of index array (# of nonzeros in A) * Match IPERM output column / row permutation * nmatch NUMNZ # of nonzeros on diagonal of permuted matrix * Flag CV mark a node as visited by the depth-first-search * * The following are different, but analogous: * * Cheap ARP indicates what part of the a column / row has * already been matched. * * The following arguments are very different: * * - LENR # of entries in each row/column (unused in maxtrans) * Pstack OUT Pstack keeps track of where we are in the depth- * first-search scan of column j. I think that OUT * plays a similar role in MC21B, but I'm unsure. * Istack PR keeps track of the rows in the path. PR is a link * list, though, whereas Istack is a stack. Maxtrans * does not use any link lists. * Jstack OUT? PR? the stack for nodes in the path (unsure) * * The following control structures are roughly comparable: * * maxtrans MC21B * -------- ----- * for (k = 0 ; k < n ; k++) DO 100 JORD=1,N * while (head >= 0) DO 70 K=1,JORD * for (p = Cheap [j] ; ...) DO 20 II=IN1,IN2 * for (p = head ; ...) DO 90 K=1,JORD */ static Int augment ( Int k, /* which stage of the main loop we're in */ Int Ap [ ], /* column pointers, size n+1 */ Int Ai [ ], /* row indices, size nz = Ap [n] */ Int Match [ ], /* size n, Match [i] = j if col j matched to i */ Int Cheap [ ], /* rows Ai [Ap [j] .. Cheap [j]-1] alread matched */ Int Flag [ ], /* Flag [j] = k if j already visited this stage */ Int Istack [ ], /* size n. Row index stack. */ Int Jstack [ ], /* size n. Column index stack. */ Int Pstack [ ], /* size n. Keeps track of position in adjacency list */ double *work, /* work performed by the depth-first-search */ double maxwork /* maximum work allowed */ ) { /* local variables, but "global" to all DFS levels: */ Int found ; /* true if match found. */ Int head ; /* top of stack */ /* variables that are purely local to any one DFS level: */ Int j2 ; /* the next DFS goes to node j2 */ Int pend ; /* one past the end of the adjacency list for node j */ Int pstart ; Int quick ; /* variables that need to be pushed then popped from the stack: */ Int i ; /* the row tentatively matched to i if DFS successful */ Int j ; /* the DFS is at the current node j */ Int p ; /* current index into the adj. list for node j */ /* the variables i, j, and p are stacked in Istack, Jstack, and Pstack */ quick = (maxwork > 0) ; /* start a DFS to find a match for column k */ found = FALSE ; i = EMPTY ; head = 0 ; Jstack [0] = k ; ASSERT (Flag [k] != k) ; while (head >= 0) { j = Jstack [head] ; pend = Ap [j+1] ; if (Flag [j] != k) /* a node is not yet visited */ { /* -------------------------------------------------------------- */ /* prework for node j */ /* -------------------------------------------------------------- */ /* first time that j has been visited */ Flag [j] = k ; /* cheap assignment: find the next unmatched row in col j. This * loop takes at most O(nnz(A)) time for the sum total of all * calls to augment. */ for (p = Cheap [j] ; p < pend && !found ; p++) { i = Ai [p] ; found = (Match [i] == EMPTY) ; } Cheap [j] = p ; /* -------------------------------------------------------------- */ /* prepare for DFS */ if (found) { /* end of augmenting path, column j matched with row i */ Istack [head] = i ; break ; } /* set Pstack [head] to the first entry in column j to scan */ Pstack [head] = Ap [j] ; } /* ------------------------------------------------------------------ */ /* quick return if too much work done */ /* ------------------------------------------------------------------ */ if (quick && *work > maxwork) { /* too much work has been performed; abort the search */ return (EMPTY) ; } /* ------------------------------------------------------------------ */ /* DFS for nodes adjacent to j */ /* ------------------------------------------------------------------ */ /* If cheap assignment not made, continue the depth-first search. All * rows in column j are already matched. Add the adjacent nodes to the * stack by iterating through until finding another non-visited node. * * It is the following loop that can force maxtrans to take * O(n*nnz(A)) time. */ pstart = Pstack [head] ; for (p = pstart ; p < pend ; p++) { i = Ai [p] ; j2 = Match [i] ; ASSERT (j2 != EMPTY) ; if (Flag [j2] != k) { /* Node j2 is not yet visited, start a depth-first search on * node j2. Keep track of where we left off in the scan of adj * list of node j so we can restart j where we left off. */ Pstack [head] = p + 1 ; /* Push j2 onto the stack and immediately break so we can * recurse on node j2. Also keep track of row i which (if this * search for an augmenting path works) will be matched with the * current node j. */ Istack [head] = i ; Jstack [++head] = j2 ; break ; } } /* ------------------------------------------------------------------ */ /* determine how much work was just performed */ /* ------------------------------------------------------------------ */ *work += (p - pstart + 1) ; /* ------------------------------------------------------------------ */ /* node j is done, but the postwork is postponed - see below */ /* ------------------------------------------------------------------ */ if (p == pend) { /* If all adjacent nodes of j are already visited, pop j from * stack and continue. We failed to find a match. */ head-- ; } } /* postwork for all nodes j in the stack */ /* unwind the path and make the corresponding matches */ if (found) { for (p = head ; p >= 0 ; p--) { j = Jstack [p] ; i = Istack [p] ; /* -------------------------------------------------------------- */ /* postwork for node j */ /* -------------------------------------------------------------- */ /* if found, match row i with column j */ Match [i] = j ; } } return (found) ; } /* ========================================================================== */ /* === maxtrans ============================================================= */ /* ========================================================================== */ Int BTF(maxtrans) /* returns # of columns in the matching */ ( /* --- input --- */ Int nrow, /* A is nrow-by-ncol in compressed column form */ Int ncol, Int Ap [ ], /* size ncol+1 */ Int Ai [ ], /* size nz = Ap [ncol] */ double maxwork, /* do at most maxwork*nnz(A) work; no limit if <= 0. This * work limit excludes the O(nnz(A)) cheap-match phase. */ /* --- output --- */ double *work, /* work = -1 if maxwork > 0 and the total work performed * reached the maximum of maxwork*nnz(A)). * Otherwise, work = the total work performed. */ Int Match [ ], /* size nrow. Match [i] = j if column j matched to row i */ /* --- workspace --- */ Int Work [ ] /* size 5*ncol */ ) { Int *Cheap, *Flag, *Istack, *Jstack, *Pstack ; Int i, j, k, nmatch, work_limit_reached, result ; /* ---------------------------------------------------------------------- */ /* get workspace and initialize */ /* ---------------------------------------------------------------------- */ Cheap = Work ; Work += ncol ; Flag = Work ; Work += ncol ; /* stack for non-recursive depth-first search in augment function */ Istack = Work ; Work += ncol ; Jstack = Work ; Work += ncol ; Pstack = Work ; /* in column j, rows Ai [Ap [j] .. Cheap [j]-1] are known to be matched */ for (j = 0 ; j < ncol ; j++) { Cheap [j] = Ap [j] ; Flag [j] = EMPTY ; } /* all rows and columns are currently unmatched */ for (i = 0 ; i < nrow ; i++) { Match [i] = EMPTY ; } if (maxwork > 0) { maxwork *= Ap [ncol] ; } *work = 0 ; /* ---------------------------------------------------------------------- */ /* find a matching row for each column k */ /* ---------------------------------------------------------------------- */ nmatch = 0 ; work_limit_reached = FALSE ; for (k = 0 ; k < ncol ; k++) { /* find an augmenting path to match some row i to column k */ result = augment (k, Ap, Ai, Match, Cheap, Flag, Istack, Jstack, Pstack, work, maxwork) ; if (result == TRUE) { /* we found it. Match [i] = k for some row i has been done. */ nmatch++ ; } else if (result == EMPTY) { /* augment gave up because of too much work, and no match found */ work_limit_reached = TRUE ; } } /* ---------------------------------------------------------------------- */ /* return the Match, and the # of matches made */ /* ---------------------------------------------------------------------- */ /* At this point, row i is matched to j = Match [i] if j >= 0. i is an * unmatched row if Match [i] == EMPTY. */ if (work_limit_reached) { /* return -1 if the work limit of maxwork*nnz(A) was reached */ *work = EMPTY ; } return (nmatch) ; } SuiteSparse/BTF/Source/btf_order.c0000644001170100242450000001116510620341601015731 0ustar davisfac/* ========================================================================== */ /* === BTF_ORDER ============================================================ */ /* ========================================================================== */ /* Find a permutation P and Q to permute a square sparse matrix into upper block * triangular form. A(P,Q) will contain a zero-free diagonal if A has * structural full-rank. Otherwise, the number of nonzeros on the diagonal of * A(P,Q) will be maximized, and will equal the structural rank of A. * * Q[k] will be "flipped" if a zero-free diagonal was not found. Q[k] will be * negative, and j = BTF_UNFLIP (Q [k]) gives the corresponding permutation. * * R defines the block boundaries of A(P,Q). The kth block consists of rows * and columns R[k] to R[k+1]-1. * * If maxwork > 0 on input, then the work performed in btf_maxtrans is limited * to maxwork*nnz(A) (excluding the "cheap match" phase, which can take another * nnz(A) work). On output, the work parameter gives the actual work performed, * or -1 if the limit was reached. In the latter case, the diagonal of A(P,Q) * might not be zero-free, and the number of nonzeros on the diagonal of A(P,Q) * might not be equal to the structural rank. * * See btf.h for more details. * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ #include "btf.h" #include "btf_internal.h" /* This function only operates on square matrices (either structurally full- * rank, or structurally rank deficient). */ Int BTF(order) /* returns number of blocks found */ ( /* input, not modified: */ Int n, /* A is n-by-n in compressed column form */ Int Ap [ ], /* size n+1 */ Int Ai [ ], /* size nz = Ap [n] */ double maxwork, /* do at most maxwork*nnz(A) work in the maximum * transversal; no limit if <= 0 */ /* output, not defined on input */ double *work, /* work performed in maxtrans, or -1 if limit reached */ Int P [ ], /* size n, row permutation */ Int Q [ ], /* size n, column permutation */ Int R [ ], /* size n+1. block b is in rows/cols R[b] ... R[b+1]-1 */ Int *nmatch, /* # nonzeros on diagonal of P*A*Q */ /* workspace, not defined on input or output */ Int Work [ ] /* size 5n */ ) { Int *Flag ; Int nblocks, i, j, nbadcol ; /* ---------------------------------------------------------------------- */ /* compute the maximum matching */ /* ---------------------------------------------------------------------- */ /* if maxwork > 0, then a maximum matching might not be found */ *nmatch = BTF(maxtrans) (n, n, Ap, Ai, maxwork, work, Q, Work) ; /* ---------------------------------------------------------------------- */ /* complete permutation if the matrix is structurally singular */ /* ---------------------------------------------------------------------- */ /* Since the matrix is square, ensure BTF_UNFLIP(Q[0..n-1]) is a * permutation of the columns of A so that A has as many nonzeros on the * diagonal as possible. */ if (*nmatch < n) { /* get a size-n work array */ Flag = Work + n ; for (j = 0 ; j < n ; j++) { Flag [j] = 0 ; } /* flag all matched columns */ for (i = 0 ; i < n ; i++) { j = Q [i] ; if (j != EMPTY) { /* row i and column j are matched to each other */ Flag [j] = 1 ; } } /* make a list of all unmatched columns, in Work [0..nbadcol-1] */ nbadcol = 0 ; for (j = n-1 ; j >= 0 ; j--) { if (!Flag [j]) { /* j is matched to nobody */ Work [nbadcol++] = j ; } } ASSERT (*nmatch + nbadcol == n) ; /* make an assignment for each unmatched row */ for (i = 0 ; i < n ; i++) { if (Q [i] == EMPTY && nbadcol > 0) { /* get an unmatched column j */ j = Work [--nbadcol] ; /* assign j to row i and flag the entry by "flipping" it */ Q [i] = BTF_FLIP (j) ; } } } /* The permutation of a square matrix can be recovered as follows: Row i is * matched with column j, where j = BTF_UNFLIP (Q [i]) and where j * will always be in the valid range 0 to n-1. The entry A(i,j) is zero * if BTF_ISFLIPPED (Q [i]) is true, and nonzero otherwise. nmatch * is the number of entries in the Q array that are non-negative. */ /* ---------------------------------------------------------------------- */ /* find the strongly connected components */ /* ---------------------------------------------------------------------- */ nblocks = BTF(strongcomp) (n, Ap, Ai, Q, P, R, Work) ; return (nblocks) ; } SuiteSparse/BTF/Source/btf_strongcomp.c0000644001170100242450000005312110616145037017021 0ustar davisfac/* ========================================================================== */ /* === BTF_STRONGCOMP ======================================================= */ /* ========================================================================== */ /* Finds the strongly connected components of a graph, or equivalently, permutes * the matrix into upper block triangular form. See btf.h for more details. * Input matrix and Q are not checked on input. * * Copyright (c) 2004-2007. Tim Davis, University of Florida, * with support from Sandia National Laboratories. All Rights Reserved. */ #include "btf.h" #include "btf_internal.h" #define UNVISITED (-2) /* Flag [j] = UNVISITED if node j not visited yet */ #define UNASSIGNED (-1) /* Flag [j] = UNASSIGNED if node j has been visited, * but not yet assigned to a strongly-connected * component (aka block). Flag [j] = k (k in the * range 0 to nblocks-1) if node j has been visited * (and completed, with its postwork done) and * assigned to component k. */ /* This file contains two versions of the depth-first-search, a recursive one * and a non-recursive one. By default, the non-recursive one is used. */ #ifndef RECURSIVE /* ========================================================================== */ /* === dfs: non-recursive version (default) ================================= */ /* ========================================================================== */ /* Perform a depth-first-search of a graph, stored in an adjacency-list form. * The row indices of column j (equivalently, the out-adjacency list of node j) * are stored in Ai [Ap[j] ... Ap[j+1]-1]. Self-edge (diagonal entries) are * ignored. Ap[0] must be zero, and thus nz = Ap[n] is the number of entries * in the matrix (or edges in the graph). The row indices in each column need * not be in any particular order. If an input column permutation is given, * node j (in the permuted matrix A*Q) is located in * Ai [Ap[Q[j]] ... Ap[Q[j]+1]-1]. This Q can be the same as the Match array * output from the maxtrans routine, for a square matrix that is structurally * full rank. * * The algorithm is from the paper by Robert E. Tarjan, "Depth-first search and * linear graph algorithms," SIAM Journal on Computing, vol. 1, no. 2, * pp. 146-160, 1972. The time taken by strongcomp is O(nnz(A)). * * See also MC13A/B in the Harwell subroutine library (Iain S. Duff and John * K. Reid, "Algorithm 529: permutations to block triangular form," ACM Trans. * on Mathematical Software, vol. 4, no. 2, pp. 189-192, 1978, and "An * implementation of Tarjan's algorithm for the block triangular form of a * matrix," same journal, pp. 137-147. This code is implements the same * algorithm as MC13A/B, except that the data structures are very different. * Also, unlike MC13A/B, the output permutation preserves the natural ordering * within each block. */ static void dfs ( /* inputs, not modified on output: */ Int j, /* start the DFS at node j */ Int Ap [ ], /* size n+1, column pointers for the matrix A */ Int Ai [ ], /* row indices, size nz = Ap [n] */ Int Q [ ], /* input column permutation */ /* inputs, modified on output (each array is of size n): */ Int Time [ ], /* Time [j] = "time" that node j was first visited */ Int Flag [ ], /* Flag [j]: see above */ Int Low [ ], /* Low [j]: see definition below */ Int *p_nblocks, /* number of blocks (aka strongly-connected-comp.)*/ Int *p_timestamp, /* current "time" */ /* workspace, not defined on input or output: */ Int Cstack [ ], /* size n, output stack to hold nodes of components */ Int Jstack [ ], /* size n, stack for the variable j */ Int Pstack [ ] /* size n, stack for the variable p */ ) { /* ---------------------------------------------------------------------- */ /* local variables, and initializations */ /* ---------------------------------------------------------------------- */ /* local variables, but "global" to all DFS levels: */ Int chead ; /* top of Cstack */ Int jhead ; /* top of Jstack and Pstack */ /* variables that are purely local to any one DFS level: */ Int i ; /* edge (j,i) considered; i can be next node to traverse */ Int parent ; /* parent of node j in the DFS tree */ Int pend ; /* one past the end of the adjacency list for node j */ Int jj ; /* column j of A*Q is column jj of the input matrix A */ /* variables that need to be pushed then popped from the stack: */ Int p ; /* current index into the adj. list for node j */ /* the variables j and p are stacked in Jstack and Pstack */ /* local copies of variables in the calling routine */ Int nblocks = *p_nblocks ; Int timestamp = *p_timestamp ; /* ---------------------------------------------------------------------- */ /* start a DFS at node j (same as the recursive call dfs (EMPTY, j)) */ /* ---------------------------------------------------------------------- */ chead = 0 ; /* component stack is empty */ jhead = 0 ; /* Jstack and Pstack are empty */ Jstack [0] = j ; /* put the first node j on the Jstack */ ASSERT (Flag [j] == UNVISITED) ; while (jhead >= 0) { j = Jstack [jhead] ; /* grab the node j from the top of Jstack */ /* determine which column jj of the A is column j of A*Q */ jj = (Q == (Int *) NULL) ? (j) : (BTF_UNFLIP (Q [j])) ; pend = Ap [jj+1] ; /* j's row index list ends at Ai [pend-1] */ if (Flag [j] == UNVISITED) { /* -------------------------------------------------------------- */ /* prework at node j */ /* -------------------------------------------------------------- */ /* node j is being visited for the first time */ Cstack [++chead] = j ; /* push j onto the stack */ timestamp++ ; /* get a timestamp */ Time [j] = timestamp ; /* give the timestamp to node j */ Low [j] = timestamp ; Flag [j] = UNASSIGNED ; /* flag node j as visited */ /* -------------------------------------------------------------- */ /* set Pstack [jhead] to the first entry in column j to scan */ /* -------------------------------------------------------------- */ Pstack [jhead] = Ap [jj] ; } /* ------------------------------------------------------------------ */ /* DFS rooted at node j (start it, or continue where left off) */ /* ------------------------------------------------------------------ */ for (p = Pstack [jhead] ; p < pend ; p++) { i = Ai [p] ; /* examine the edge from node j to node i */ if (Flag [i] == UNVISITED) { /* Node i has not been visited - start a DFS at node i. * Keep track of where we left off in the scan of adjacency list * of node j so we can restart j where we left off. */ Pstack [jhead] = p + 1 ; /* Push i onto the stack and immediately break * so we can recurse on node i. */ Jstack [++jhead] = i ; ASSERT (Time [i] == EMPTY) ; ASSERT (Low [i] == EMPTY) ; /* break here to do what the recursive call dfs (j,i) does */ break ; } else if (Flag [i] == UNASSIGNED) { /* Node i has been visited, but still unassigned to a block * this is a back or cross edge if Time [i] < Time [j]. * Note that i might equal j, in which case this code does * nothing. */ ASSERT (Time [i] > 0) ; ASSERT (Low [i] > 0) ; Low [j] = MIN (Low [j], Time [i]) ; } } if (p == pend) { /* If all adjacent nodes of j are already visited, pop j from * Jstack and do the post work for node j. This also pops p * from the Pstack. */ jhead-- ; /* -------------------------------------------------------------- */ /* postwork at node j */ /* -------------------------------------------------------------- */ /* determine if node j is the head of a component */ if (Low [j] == Time [j]) { /* pop all nodes in this SCC from Cstack */ while (TRUE) { ASSERT (chead >= 0) ; /* stack not empty (j in it) */ i = Cstack [chead--] ; /* pop a node from the Cstack */ ASSERT (i >= 0) ; ASSERT (Flag [i] == UNASSIGNED) ; Flag [i] = nblocks ; /* assign i to current block */ if (i == j) break ; /* current block ends at j */ } nblocks++ ; /* one more block has been found */ } /* update Low [parent], if the parent exists */ if (jhead >= 0) { parent = Jstack [jhead] ; Low [parent] = MIN (Low [parent], Low [j]) ; } } } /* ---------------------------------------------------------------------- */ /* cleanup: update timestamp and nblocks */ /* ---------------------------------------------------------------------- */ *p_timestamp = timestamp ; *p_nblocks = nblocks ; } #else /* ========================================================================== */ /* === dfs: recursive version (only for illustration) ======================= */ /* ========================================================================== */ /* The following is a recursive version of dfs, which computes identical results * as the non-recursive dfs. It is included here because it is easier to read. * Compare the comments in the code below with the identical comments in the * non-recursive code above, and that will help you see the correlation between * the two routines. * * This routine can cause stack overflow, and is thus not recommended for heavy * usage, particularly for large matrices. To help in delaying stack overflow, * global variables are used, reducing the amount of information each call to * dfs places on the call/return stack (the integers i, j, p, parent, and the * return address). Note that this means the recursive code is not thread-safe. * To try this version, compile the code with -DRECURSIVE or include the * following line at the top of this file: #define RECURSIVE */ static Int /* for recursive illustration only, not for production use */ chead, timestamp, nblocks, n, *Ap, *Ai, *Flag, *Cstack, *Time, *Low, *P, *R, *Q ; static void dfs ( Int parent, /* came from parent node */ Int j /* at node j in the DFS */ ) { Int p ; /* current index into the adj. list for node j */ Int i ; /* edge (j,i) considered; i can be next node to traverse */ Int jj ; /* column j of A*Q is column jj of the input matrix A */ /* ---------------------------------------------------------------------- */ /* prework at node j */ /* ---------------------------------------------------------------------- */ /* node j is being visited for the first time */ Cstack [++chead] = j ; /* push j onto the stack */ timestamp++ ; /* get a timestamp */ Time [j] = timestamp ; /* give the timestamp to node j */ Low [j] = timestamp ; Flag [j] = UNASSIGNED ; /* flag node j as visited */ /* ---------------------------------------------------------------------- */ /* DFS rooted at node j */ /* ---------------------------------------------------------------------- */ /* determine which column jj of the A is column j of A*Q */ jj = (Q == (Int *) NULL) ? (j) : (BTF_UNFLIP (Q [j])) ; for (p = Ap [jj] ; p < Ap [jj+1] ; p++) { i = Ai [p] ; /* examine the edge from node j to node i */ if (Flag [i] == UNVISITED) { /* Node i has not been visited - start a DFS at node i. */ dfs (j, i) ; } else if (Flag [i] == UNASSIGNED) { /* Node i has been visited, but still unassigned to a block * this is a back or cross edge if Time [i] < Time [j]. * Note that i might equal j, in which case this code does * nothing. */ Low [j] = MIN (Low [j], Time [i]) ; } } /* ---------------------------------------------------------------------- */ /* postwork at node j */ /* ---------------------------------------------------------------------- */ /* determine if node j is the head of a component */ if (Low [j] == Time [j]) { /* pop all nodes in this strongly connected component from Cstack */ while (TRUE) { i = Cstack [chead--] ; /* pop a node from the Cstack */ Flag [i] = nblocks ; /* assign node i to current block */ if (i == j) break ; /* current block ends at node j */ } nblocks++ ; /* one more block has been found */ } /* update Low [parent] */ if (parent != EMPTY) { /* Note that this could be done with Low[j] = MIN(Low[j],Low[i]) just * after the dfs (j,i) statement above, and then parent would not have * to be an input argument. Putting it here places all the postwork * for node j in one place, thus making the non-recursive DFS easier. */ Low [parent] = MIN (Low [parent], Low [j]) ; } } #endif /* ========================================================================== */ /* === btf_strongcomp ======================================================= */ /* ========================================================================== */ #ifndef RECURSIVE Int BTF(strongcomp) /* return # of strongly connected components */ ( /* input, not modified: */ Int n, /* A is n-by-n in compressed column form */ Int Ap [ ], /* size n+1 */ Int Ai [ ], /* size nz = Ap [n] */ /* optional input, modified (if present) on output: */ Int Q [ ], /* size n, input column permutation. The permutation Q can * include a flag which indicates an unmatched row. * jold = BTF_UNFLIP (Q [jnew]) is the permutation; * this function ingnores these flags. On output, it is * modified according to the permutation P. */ /* output, not defined on input: */ Int P [ ], /* size n. P [k] = j if row and column j are kth row/col * in permuted matrix. */ Int R [ ], /* size n+1. kth block is in rows/cols R[k] ... R[k+1]-1 * of the permuted matrix. */ /* workspace, not defined on input or output: */ Int Work [ ] /* size 4n */ ) #else Int BTF(strongcomp) /* recursive version - same as above except for Work size */ ( Int n_in, Int Ap_in [ ], Int Ai_in [ ], Int Q_in [ ], Int P_in [ ], Int R_in [ ], Int Work [ ] /* size 2n */ ) #endif { Int j, k, b ; #ifndef RECURSIVE Int timestamp, nblocks, *Flag, *Cstack, *Time, *Low, *Jstack, *Pstack ; #else n = n_in ; Ap = Ap_in ; Ai = Ai_in ; Q = Q_in ; P = P_in ; R = R_in ; chead = EMPTY ; #endif /* ---------------------------------------------------------------------- */ /* get and initialize workspace */ /* ---------------------------------------------------------------------- */ /* timestamp is incremented each time a new node is visited. * * Time [j] is the timestamp given to node j. * * Low [j] is the lowest timestamp of any node reachable from j via either * a path to any descendent of j in the DFS tree, or via a single edge to * an either an ancestor (a back edge) or another node that's neither an * ancestor nor a descendant (a cross edge). If Low [j] is equal to * the timestamp of node j (Time [j]), then node j is the "head" of a * strongly connected component (SCC). That is, it is the first node * visited in its strongly connected component, and the DFS subtree rooted * at node j spans all the nodes of the strongly connected component. * * The term "block" and "component" are used interchangebly in this code; * "block" being a matrix term and "component" being a graph term for the * same thing. * * When a node is visited, it is placed on the Cstack (for "component" * stack). When node j is found to be an SCC head, all the nodes from the * top of the stack to node j itself form the nodes in the SCC. This Cstack * is used for both the recursive and non-recursive versions. */ Time = Work ; Work += n ; Flag = Work ; Work += n ; Low = P ; /* use output array P as workspace for Low */ Cstack = R ; /* use output array R as workspace for Cstack */ #ifndef RECURSIVE /* stack for non-recursive dfs */ Jstack = Work ; Work += n ; /* stack for j */ Pstack = Work ; /* stack for p */ #endif for (j = 0 ; j < n ; j++) { Flag [j] = UNVISITED ; Low [j] = EMPTY ; Time [j] = EMPTY ; #ifndef NDEBUG Cstack [j] = EMPTY ; #ifndef RECURSIVE Jstack [j] = EMPTY ; Pstack [j] = EMPTY ; #endif #endif } timestamp = 0 ; /* each node given a timestamp when it is visited */ nblocks = 0 ; /* number of blocks found so far */ /* ---------------------------------------------------------------------- */ /* find the connected components via a depth-first-search */ /* ---------------------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { /* node j is unvisited or assigned to a block. Cstack is empty. */ ASSERT (Flag [j] == UNVISITED || (Flag [j] >= 0 && Flag [j] < nblocks)); if (Flag [j] == UNVISITED) { #ifndef RECURSIVE /* non-recursive dfs (default) */ dfs (j, Ap, Ai, Q, Time, Flag, Low, &nblocks, ×tamp, Cstack, Jstack, Pstack) ; #else /* recursive dfs (for illustration only) */ ASSERT (chead == EMPTY) ; dfs (EMPTY, j) ; ASSERT (chead == EMPTY) ; #endif } } ASSERT (timestamp == n) ; /* ---------------------------------------------------------------------- */ /* construct the block boundary array, R */ /* ---------------------------------------------------------------------- */ for (b = 0 ; b < nblocks ; b++) { R [b] = 0 ; } for (j = 0 ; j < n ; j++) { /* node j has been assigned to block b = Flag [j] */ ASSERT (Time [j] > 0 && Time [j] <= n) ; ASSERT (Low [j] > 0 && Low [j] <= n) ; ASSERT (Flag [j] >= 0 && Flag [j] < nblocks) ; R [Flag [j]]++ ; } /* R [b] is now the number of nodes in block b. Compute cumulative sum * of R, using Time [0 ... nblocks-1] as workspace. */ Time [0] = 0 ; for (b = 1 ; b < nblocks ; b++) { Time [b] = Time [b-1] + R [b-1] ; } for (b = 0 ; b < nblocks ; b++) { R [b] = Time [b] ; } R [nblocks] = n ; /* ---------------------------------------------------------------------- */ /* construct the permutation, preserving the natural order */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { P [k] = EMPTY ; } #endif for (j = 0 ; j < n ; j++) { /* place column j in the permutation */ P [Time [Flag [j]]++] = j ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) { ASSERT (P [k] != EMPTY) ; } #endif /* Now block b consists of the nodes k1 to k2-1 in the permuted matrix, * where k1 = R [b] and k2 = R [b+1]. Row and column j of the original * matrix becomes row and column P [k] of the permuted matrix. The set of * of rows/columns (nodes) in block b is given by P [k1 ... k2-1], and this * set is sorted in ascending order. Thus, if the matrix consists of just * one block, P is the identity permutation. */ /* ---------------------------------------------------------------------- */ /* if Q is present on input, set Q = Q*P' */ /* ---------------------------------------------------------------------- */ if (Q != (Int *) NULL) { /* We found a symmetric permutation P for the matrix A*Q. The overall * permutation is thus P*(A*Q)*P'. Set Q=Q*P' so that the final * permutation is P*A*Q. Use Time as workspace. Note that this * preserves the negative values of Q if the matrix is structurally * singular. */ for (k = 0 ; k < n ; k++) { Time [k] = Q [P [k]] ; } for (k = 0 ; k < n ; k++) { Q [k] = Time [k] ; } } /* ---------------------------------------------------------------------- */ /* how to traverse the permuted matrix */ /* ---------------------------------------------------------------------- */ /* If Q is not present, the following code can be used to traverse the * permuted matrix P*A*P' * * // compute the inverse of P * for (knew = 0 ; knew < n ; knew++) * { * // row and column kold in the old matrix is row/column knew * // in the permuted matrix P*A*P' * kold = P [knew] ; * Pinv [kold] = knew ; * } * for (b = 0 ; b < nblocks ; b++) * { * // traverse block b of the permuted matrix P*A*P' * k1 = R [b] ; * k2 = R [b+1] ; * nk = k2 - k1 ; * for (jnew = k1 ; jnew < k2 ; jnew++) * { * jold = P [jnew] ; * for (p = Ap [jold] ; p < Ap [jold+1] ; p++) * { * iold = Ai [p] ; * inew = Pinv [iold] ; * // Entry in the old matrix is A (iold, jold), and its * // position in the new matrix P*A*P' is (inew, jnew). * // Let B be the bth diagonal block of the permuted * // matrix. If inew >= k1, then this entry is in row/ * // column (inew-k1, jnew-k1) of the nk-by-nk matrix B. * // Otherwise, the entry is in the upper block triangular * // part, not in any diagonal block. * } * } * } * * If Q is present replace the above statement * jold = P [jnew] ; * with * jold = Q [jnew] ; * or * jold = BTF_UNFLIP (Q [jnew]) ; * * then entry A (iold,jold) in the old (unpermuted) matrix is at (inew,jnew) * in the permuted matrix P*A*Q. Everything else remains the same as the * above (simply replace P*A*P' with P*A*Q in the above comments). */ /* ---------------------------------------------------------------------- */ /* return # of blocks / # of strongly connected components */ /* ---------------------------------------------------------------------- */ return (nblocks) ; } SuiteSparse/BTF/README.txt0000644001170100242450000001010610620160773014060 0ustar davisfacBTF Version 1.0, May 31, 2007, by Timothy A. Davis Copyright (C) 2004-2007, University of Florida BTF is also available under other licenses; contact the author for details. http://www.cise.ufl.edu/research/sparse BTF is a software package for permuting a matrix into block upper triangular form. It includes a maximum transversal algorithm, which finds a permutation of a square or rectangular matrix so that it has a zero-free diagonal (if one exists); otherwise, it finds a maximal matching which maximizes the number of nonzeros on the diagonal. The package also includes a method for finding the strongly connected components of a graph. These two methods together give the permutation to block upper triangular form. Requires UFconfig, in the ../UFconfig directory relative to this directory. KLU relies on this package to permute To compile the libbtf.a library, type "make". The compiled library is located in BTF/Lib/libbtf.a. Compile code that uses BTF with -IBTF/Include. Type "make clean" to remove all but the compiled library, and "make distclean" to remove all files not in the original distribution. This package does not include a statement coverage test (Tcov directory) or demo program (Demo directory). See the KLU package for both. The BTF package does include a MATLAB interface, a MATLAB test suite (in the MATLAB/Test directory), and a MATLAB demo. See BTF/Include/btf.h for documentation on how to use the C-callable functions. Use "help btf", "help maxtrans" and "help strongcomp" in MATLAB, for details on how to use the MATLAB-callable functions. Additional details on the use of BTF are given in the KLU User Guide, normally in ../KLU/Doc/KLU_UserGuide.pdf relative to this directory. -------------------------------------------------------------------------------- BTF is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -------------------------------------------------------------------------------- A full text of the license is in Doc/lesser.txt. -------------------------------------------------------------------------------- Files and directories in the BTF package: Doc documentation and license Include include files Lib compiled BTF library Makefile Makefile for C and MATLAB versions MATLAB MATLAB interface README.txt this file Source BTF source code ./Doc: ChangeLog changes in BTF lesser.txt license ./Include: btf.h primary user include file btf_internal.h internal include file, not for user programs ./Lib: Makefile Makefile for C library ./MATLAB: btf.c btf mexFunction btf_install.m compile and install BTF for use in MATLAB btf.m btf help Contents.m contents of MATLAB interface Makefile Makefile for MATLAB functions maxtrans.c maxtrans mexFunction maxtrans.m maxtrans help strongcomp.c strongcomp mexFunction strongcomp.m strongcomp help Test MATLAB test directory ./MATLAB/Test: checkbtf.m check a BTF ordering drawbtf.m plot a BTF ordering test1.m compare maxtrans and cs_dmperm test2.m compare btf and cs_dmperm test3.m extensive test (maxtrans, strongcomp, and btf) test4b.m test btf maxwork option test4.m test btf maxwork option test5.m test maxtrans maxwork option ./Source: btf_maxtrans.c btf_maxtrans C function btf_order.c btf_order C function btf_strongcomp.c btf_strongcomp C function SuiteSparse/KLU/0000755001170100242450000000000010710765365012414 5ustar davisfacSuiteSparse/KLU/Doc/0000755001170100242450000000000010711442214013103 5ustar davisfacSuiteSparse/KLU/Doc/Makefile0000644001170100242450000000266610620343272014560 0ustar davisfac#------------------------------------------------------------------------------ # KLU Makefile for creating the user guide #------------------------------------------------------------------------------ default: dist include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) *.aux *.bbl *.blg *.log *.toc #------------------------------------------------------------------------------ # Create the User Guide and Quick Start Guide #------------------------------------------------------------------------------ KLU_UserGuide.pdf: KLU_UserGuide.tex KLU_UserGuide.bib \ ../Include/klu.h ../../BTF/Include/btf.h echo '\begin{verbatim}' > klu_h.tex expand -8 ../Include/klu.h >> klu_h.tex echo '\end{verbatim}' >> klu_h.tex echo '\begin{verbatim}' > btf_h.tex expand -8 ../../BTF/Include/btf.h >> btf_h.tex echo '\end{verbatim}' >> btf_h.tex echo '\begin{verbatim}' > klu_simple_c.tex expand -8 ../Demo/klu_simple.c >> klu_simple_c.tex echo '\end{verbatim}' >> klu_simple_c.tex pdflatex KLU_UserGuide bibtex KLU_UserGuide pdflatex KLU_UserGuide pdflatex KLU_UserGuide dist: KLU_UserGuide.pdf - $(RM) *.aux *.bbl *.blg *.log *.toc - $(RM) klu_simple_c.tex klu_h.tex btf_h.tex SuiteSparse/KLU/Doc/KLU_UserGuide.bib0000644001170100242450000001210710620156075016177 0ustar davisfac%------------------------------------------------------------------------------- @string{TOMS = "{ACM} Trans. Math. Software"} @string{SIAMJSSC = "{SIAM} J. Sci. Statist. Comput."} @string{SIMAX = "{SIAM} J. Matrix Anal. Appl."} @string{SICOMP= "{SIAM} J. Comput."} @string{SIAMJSC = "{SIAM} J. Sci. Comput."} @techreport{NagelPederson, author={Nagel, L. W and Pederson, D. O.}, title={{SPICE} (Simulation Program with Integrated Circuit Emphasis)}, number={Memorandum No. ERL-M382}, address={University of California, Berkeley}, year={1973}} @incollection{Kundert86, author={Kundert, K. S.}, year={1986}, title={Sparse Matrix Techniques and Their Applications to Circuit Simulation}, editor={Ruehli, A. E.}, booktitle={Circuit Analysis, Simulation and Design}, publisher={New York: North-Holland}} @techreport{KundertSangiovanniVincentelli85, author={Kundert, K. S. and Sangiovanni-Vincentelli, A.}, month={Oct.}, year={1985}, title={User's Guide: Sparse1.2}, institution={Dept.~of EE and CS, UC Berkeley}, keywords={ 31 Sparse1.2 software package direct methods}} @phdthesis{Quarles:M89/42, Author = {Thomas L. Quarles}, Title = {Analysis of Performance and Convergence Issues for Circuit Simulation}, School = {EECS Department, University of California, Berkeley}, Year = {1989}, URL = {http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/1216.html}, Number = {UCB/ERL M89/42}} @book{Davis06book, author={T. A. Davis}, title={Direct Methods for Sparse Linear Systems}, publisher={SIAM}, year={2006}, address={Philadelphia, PA}} @article{GilbertPeierls88, author={Gilbert, J. R. and Peierls, T.}, year={1988}, title={Sparse Partial Pivoting in Time Proportional to Arithmetic Operations}, journal=SIAMJSSC, volume={9}, pages={862-874}} @article{Duff78a, author={Duff, I. S. and Reid, J. K.}, year={1978}, title={An Implementation of {Tarjan}'s Algorithm for the Block Triangularization of a Matrix}, journal=TOMS, volume={4}, pages={137-147}} @article{Duff81, author={Duff, I. S.}, year={1981}, title={On Algorithms for Obtaining a Maximum Transversal}, journal=TOMS, volume={7}, pages={315-330}} @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996}, volume={17}, pages={886--905}} @article{AmestoyDavisDuff03, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: {AMD}, an approximate minimum degree ordering algorithm}, journal=TOMS, year={2004}, volume={30}, pages={381-388}} @article{Tarjan72, author={Tarjan, R. E.}, title={Depth first search and linear graph algorithms}, journal=SICOMP, year={1972}, volume={1}, pages={146--160}} @article{DavisGilbertLarimoreNg00, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={A column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004}, volume={30}, pages={353-376}} @article{DavisGilbertLarimoreNg00_algo, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={Algorithm 836: {COLAMD}, a column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004}, volume={30}, pages={377-380}} @article{ChenDavisHagerRajamanickam06, author={Chen, Y. and Davis, T. A. and Hager, W. W. and Rajamanickam, S.}, title={Algorithm 8xx: {CHOLMOD}, supernodal sparse {Cholesky} factorization and update/downdate}, journal=TOMS, note={(submitted)}, year={2006}} @article{KarypisKumar98e, author={Karypis, G. and Kumar, V.}, title={A fast and high quality multilevel scheme for partitioning irregular graphs}, journal=SIAMJSC, year={1998}, volume={20}} @article{ACM679a, author={Dongarra, J. J. and {Du Croz}, J. and Duff, I. S. and Hammarling, S.}, title={A set of level-3 basic linear algebra subprograms}, journal=TOMS, year={1990}, volume={16}, pages={1--17}} @article{SuperLU99, author={Demmel, J. W. and Eisenstat, S. C. and Gilbert, J. R. and Li, X. S. and Liu, J. W. H.}, title={A supernodal approach to sparse partial pivoting}, journal=SIMAX, year={1999}, volume={20}, pages={720-755} } @article{Davis03, author={Davis, T. A.}, title={A column pre-ordering strategy for the unsymmetric-pattern multifrontal method}, journal=TOMS, year={2004}, volume={30}, pages={165--195}} @article{Davis03_algo, author={Davis, T. A.}, title={Algorithm 832: {UMFPACK V4.3}, an unsymmetric-pattern multifrontal method}, journal=TOMS, year={2002}, volume={30}, pages={196--199}} @article{Hager84, author={Hager, W. W.}, title={Condition estimates}, journal=SIAMJSSC, year={1984},volume={5}, pages={311-316}} @article{HighamTisseur00, author={Higham, N. J. and Tisseur, F.}, title={A block algorithm for matrix 1-norm estimation with an application to 1-norm pseudospectra}, journal=SIMAX, year={2000},volume={21},pages={1185--1201} } @techreport{Palamadai05, author={Palamadai, E.}, title={{KLU} - a high performance sparse linear system solver for circuit simulation problems}, note={M.S. Thesis}, address={CISE Department, Univ. of Florida}} SuiteSparse/KLU/Doc/KLU_UserGuide.pdf0000644001170100242450000066714010711442214016223 0ustar davisfac%PDF-1.4 3 0 obj << /Length 1438 /Filter /FlateDecode >> stream xڍVKs6WHD0S$q3X%")cRTHJPz!>]z5UY*5j)iE2e։$IU%~ W|H;eM7Wq D=Hntk!|<,w%W_n#D}ϕlF+Uv#H<εAvX6if. *e;mR{{4O DG>m-J_hIuBaR+vC~K K)cy<q\H:פh# rY #>M ?Eq;T7݆}w_zW f(5G ջmߣBiI$mP;٫0@r񥻬|CCaVFzBP \ z4i :{tk2$xhͤ Oɳ{ x`#+@3]P`SDCr3 O7 b*SyB#@z\YdoX e 8vRU*5dUļY!s1e 9CH<0~7Gp#Q9'=ffŠ[3-jˎUtAZ!T6]* b`|!YTڌiB O069:˹' WwX&IbG|ѩtYd9W1\]׼szp.ĻGEЖU)0j &Hi'W/dTda".*Δj4_ge жTwSzo r3`%UMez@vЊ303Z$ɜV`pt0F43q~75fWpasf]U|1;"}t[zbLw:M41{J@2hR`Н3:ka!PzfGd揂8NNKQxr˫N'b-&CE{V]p.CQ@9yMN2|[=S38itCrB?f8CW_!Z#3C:kOylxrC9c`vNV/q2{%x2 o;$@w%Ť\hXnx>#GpnW:ք-M!` Lz1%!=^wPe g>#PGSS7ypsC$ ;v{mGz&&' tw-3hx U<`Z8g--0oquʜ޾:Q4\I oF Oj@Mm_Oendstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F24 12 0 R /F29 15 0 R /F8 18 0 R /F25 21 0 R /F26 24 0 R /F28 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 31 0 obj << /Length 2099 /Filter /FlateDecode >> stream x[K6WHUEr]qƳ́#q4L(RKQc˿>(26DRu|{?=SeLAxz)zW8*fGuIT}OHi<WގgsMxt-b SEXw(W3eF+'cQF4وs~bL`$ oĘ8oNǛ`QbZv!W^ާ9a@ʍݧ;盙ݛ`Jl&w_\$khĘF9VSę&#cB|tmZZ;/fsΣ_Uk!8cŴn~߮P5fD9?<̳5<Suۓ:LYyKqv{mLlkypʾ8Opxs99 c*|gd&O̥x 2ňSX)zO?$0ՊO?I0DzB|qF8o|kiA0eHr_6}\.Ha)`1PfF7ISG**78 ߵ >v~S^9ǤH״1 %/esyRe8epbąNjR$7%^'ah@;A?%8*ň _THKvU(% *F*F zD5LÁ7*ș>>&:| ҐC'3cId_:3TviǟX{]HQ&zKe׃̟ӳw2lߞ,2"M;b m)y)> <>Q|LV gXCHgXEMlbqy~Yȳ", [Ge:kF?jc" AJ.JT4=K0l*VrL^V g@Rb>zvє5؃.n[̻-E&3. 6/a)0 X3cO{1΂_ =1x!L(U^ a&F/{^Xl߿za??o"I>].Eh a!LDN ̆An- rWu;'p">=^n]8:n nE Yaqu܃BhDS6bL@>FD[e$9r4c[vw!c~5%`Ԗ-@ o<]ڰ2U0%uDGKe/:%髪 xYf*9]7!s٭i#RT2&c¡AqQKyهf(.c3wz -fP$==|K9zTGh5aaT[|į-lHlgw hH |`fjYV ?&5luyp俯rkopֆ!Ɨll7' ~` D~(a5Z J [*{L/u,._LDwIZ%7Dxo'* ~o{3}\'y^.^Y@ VS$#6h|uZ#XC=3֯T)4a+6H0pUzίt]V^$]m7AjgZ#q2^?ԏ]|TR;킜v&?371gv-.a (-o<$BQ a6؇ f X]jQ7@IX+|߰t.Vi'2(`]ts>l%R-dmr.^-RMv5'rٺtyHߪR.V4D^QknLԎBzI)KBR+Lug W5TK>mk)½b[%pO.nߢq(5Iɿ0c[rWY|(2ˑ_QG bVQcQ5k`2BxU"¿oF:endstream endobj 30 0 obj << /Type /Page /Contents 31 0 R /Resources 29 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 29 0 obj << /Font << /F31 34 0 R /F29 15 0 R /F8 18 0 R /F35 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 40 0 obj << /Length 1988 /Filter /FlateDecode >> stream xڍXo6_aIj"eܮIi8mLBdɐew_Gy<w?.]\` #=ZnF?( F^0z^fƎ'&zi'\cx/5q=nqҎ\|q9Oیhᬩ$Љxf<[7yU2!ǁ=L>|=@AIolFR3>؄'WFѤ J"&T:=9nnKZr̻,ש?E+wNwܡ۰0=ha xyi^+_X$?FƟ P KHI[t "\$6ǏP4ky}z 7lS\.F+G~bkƉ4',3qwNunT$ AX 5IB斱8TR5[$a XD~Bw5Y2:mv2'Iqb^؍ڭ\7N9J ҶĀ2:_x>- ԟ_Z[JMO9I} tāЇ'$rAZw^xē8j0ߊ]C2|"r2dR%5i]u*\`[DѪ@2DgδutaUth\6=6B=ՆL.%')%vad-eKgNkd]h1Tud\cZ0KCMU2C- \rHZ:{%gUOk{d9M乥uq~4ls MiJ!7ʼn`9VܼO8i#,_=,Y{ho~w7TAsNUt2lGhɔΧ*dEP Ȃ\)_?BT Rޚ˛/s'sܒ;6FonAַ{@}5{x帇ݮa ƮliktH#$sXgήZ9_$XȻ[bӭt ڲ.ϲ>t̞'~9P@Zg@[|7HK J;<#p;Ϯa2&Q]U L. $"E&$omδ5:j9S.3_:nS!NK$nȎV$C6z?sA`E  yr}]BZm`7{%ZzTI!]kC`GЎie; KS:}>F,ȹ4hѾ&ݩY]}lʭ%ٱY44-VaܗeAl94*$N1/@k%{%T[[(e/9ku;"AsX=3,+I +Oi~,$6Sjiit8.z%ɶMYl gɠS3PV1j&8 J80δBANAB)XJcZ-oᡱ2b{(0)ӼpS.]8Һ&eg٬{;HN;^t1@+z.a{u5Fт {cB¼:W,atJMe?~Ҫk[\ܽw~ ccpďEYqXi ] yWӗmg?6oׇ66EO^<!gv3ti z" *.ÿj}k+~RYj\sV5U]\ra{j4(Lqo:jǀHW"!m'+uWOk43[g/YnKշO7Viet\TdU_ |x1M}^*)Qendstream endobj 39 0 obj << /Type /Page /Contents 40 0 R /Resources 38 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 38 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F34 43 0 R /F29 15 0 R /F35 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 4036 /Filter /FlateDecode >> stream x]s=“>TZ ALk26mҩ3}ڢl飨_?dH:mg<,b򋯾7LT]2 :\],R),~pnԢ젹p>.LQ+l_5!ˏ/M͢h۵;WM)kh?oCf:n[2H]5.qiSFPG|mΗ=n+`s! =}̼)A(%6gU-z 0bd#VG,Ů+[F;;$hnpں`fNĕB |{~/_.b-,.o-ċqDO)5]`g~]|y{&c\/~-vʒifq(l'm#eï]beY%ZE *~RΉ rzQW`ipT8-S|-cawpoOR4Nt }=>uE]w$wU{q],c(y  `)0= -OH%|.ϝ/B{!VXje7J_6lKV.; w8c?pzS?-%jJfO)< i]+A::yR,O|E2 >>CA7<K ,$^o=E* kb>ߕ@;pYf7d벐!bۂXbODWzh-Fz Y$?]3ѻ[!+|n5=T 5\v]x-o ^'- KZ15ɄG, R*z,6kjcū+6k)=Gm=b[~GrK#k #͝ޟ@|aX)7ev;Cnkn`lUHf~~1S@i$9FFi.Mx+ BQP(QM82c-u3`ٵA"Ujt(6_,,&8)K7)ϡ 3.5Yd-ovB^9c.I1=Y4e*\|X$!2]dO:I\Zy?>̵֕3-IzAHaCuрz\pGZN (e=SFg 9較QKz1Y1/t%Ipuf\$:<]8hƱ^Rփ0І]vl+3t$/4 &'ۑeoB4ULw; !V–̫BdCqG\tDG&é:$@QӔJnOm'q!)sF_hj j!Zb%+Ds _EGn'޲茺1]q=Zqv@@ | %F9kX< R(쎓"8Be]p)ǘ:ɀJDi`1i!3 E!u?R>1+JdmVS3&yjچnR7!x$eiθ$؎龰J^z?^$ kŎ%|څw SQu( 'K i h"ms0_bN˿>}|&0ITEOR0:LIOIb6S"\iрIiHM1Dy.ȳp³F؃LEɣ4ӔV'{v  OD_ogϲg_qg )eBXgj)9dCu3<s9;x>d ԑ̕'xN۽8C)53wS|ڣ/^1|$J8'NT3BmE&PCnx쮓wx~\pa%*Hf9b< 1\s7rI܆4T 6g<e`cnşdOSi~=,S҇N@_{}y`=xĢ `P;?SrBYڿ,ҙ8g] `ezJ%s6C) |$M~Mo&H )7atj|#&ɬ8VrA2S|/X_vF}Їid|)<--xVyKPf:D/*Pڈ= !llwKZ5;sx`ãe*q΅.{2Uʊ M J"]kxK qߣPnL $Y*f #;Q4)sK02A lk@鏝Cm!q89q> *J84'qIե+6!jckca;1hY^:i~ 1V8fgch lbo\kKTPx?j]?,5T?0<峫y#9x%÷Ի DgE#MK!T:C0eH'=% ufX'-'KxWU9h۔BDм7\m&2,R>.7 bendstream endobj 45 0 obj << /Type /Page /Contents 46 0 R /Resources 44 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 44 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F33 49 0 R /F1 52 0 R /F18 55 0 R /F34 43 0 R /F21 58 0 R /F24 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 61 0 obj << /Length 3458 /Filter /FlateDecode >> stream xڝZKsWrY0!qݵ˒*@ W+3)hcUwq{v>Ku)v sg0mѷ3ߩkɓhy~6R}4ݭ0wM) (Xղe};GIܛ LW|x -swb}ʈtmJ*\]*ONF"$VKa'DE[u"腃jf!>,fDRro mށ35ƒ4b&'mi|v|eۛ٫OHg֪l70ʼ֍xBƺ~T6ʦa1Q6i\ònci|hMuK i{m\ qkjJ8)*LD6؆@ZD \-!C{4 wu~kWqZjg,@Š'cxMO"Il ,2 %S IB} 6NN#xucC7V<e$2PBRhP$2yx rrJxr£Exit+\^[twPzᤲȜUwi/6 V! <$i%L2wIscreщuB,Mq`dIFѡb Ѩ(kQVT0iS!Fİ3(Yw< /D2:J^o,xIHWuξRZ6F912HM$q@kc&:U $H[H$$zr/حX/<+1Ri%;miu!5vG,/o~}/Ԛ!Sa:v4plv?j*v}۬hr '..\ rud,ISX(ńt1d9F4ȽEJI1a"^T@ +Z1 h߲zC*JͷM^&<]9?:F8Յd[/\Q[&hU ڧdaEf,r*)_MqH `?Vwy/Ӂ8OZz"r%M f?ܩ:[E׏w]YiD2G^'>τ$.1E4℩,hX~ 88鵈86%MYg܍bc%=\?NrEBa+avl9,{:?l|SlQ=ʲG2#ZVl;)+/4A"6᧾GSjwr織I&<R4s#~Fan¾(;aB1琺-Q4>p.??M"|(I&$ OP̟rsGQ%87>QV+OLĦWSʍ8&=8TP>k^J5TgLi|Ų㔊ѥ>pb }wĮRendstream endobj 60 0 obj << /Type /Page /Contents 61 0 R /Resources 59 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 59 0 obj << /Font << /F8 18 0 R /F36 64 0 R /F35 37 0 R /F31 34 0 R /F37 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 70 0 obj << /Length 4369 /Filter /FlateDecode >> stream xڭ[[s8~p>k!UNjg'9ĩZmN(QCQx~ 4deN* 4}~}{Mq(e.o/s >?.+讖Xt߯78ᴽɼTffnQϺ5n[ܱ/WP5[>p5G|]-VUWEsS{йhܝEW,Re~/XQYzO[H:}>Ә_q5FėK0*.gKM[Ri Nmʊ-F-Sq⏧G)BD*}R(mÀϏ |5p1 66lqtwuE>t2~6UMg<6}`ya,;:V]|?XLx%ft"yᑉ#^뱯S7RJ{~drwQ\s2܊*~{7n؟`zVpAUa)#IF[ic=YY$3*RC<yz><3)3>ßIIXb#.D[Wyq)2 tU{X/T;~?4x8!K \/ǂ uݏIhŌ[жtE0?^Ȉ;!)xh+N||w?]-v 7hj *x\"kQ# #A@ChvC{oJoY |˟-7@ zt843dzbyVK@ZmE8ѿ|wsb}5?#8G )]ۄt;4=(|tu5"}T61[„B*ʡ JIrqե zУ9MŃ U`2~L@!^+wWޝiX;Ӫax+fiͦA| #T6՗,+ZꥀFdY`}}XudS uCBB;o)FnhE>,Z'7utarϠAk3Ol7d]!ƏtOs,>>(TF–c@Y;JՂ`75׀$91(>QWu|jazFHk%7l8Xta,!ů;0d'4 H1怂 zr^ _d:-Z[Sd xU64ʣeK KG>$ VF\F4-9="lwYB '&:|P4!9`h}@yA׆;(WlMg̉ݡԜ$[&ԍ.F`"ŽϾrytDwLd8Jʸ{e!T9$/RpAa l.n/_wpg\|y k4:f)㎪ #)s=~BqL3cɔp%2 fƙ$ĩd/Wa=+ZQdh_S"˳UbЩ0+{f!}VAr&^p7C*aKDۘw\hb~ v(߅b,d3+0y<]5<]j%.I% GDzUEuj>̠qjb،5#;ϞL XR&Y%4<~F,$12xuj%gUo =k<ĪE;j6[y؉T>9c19gKYϠϜ%.rh_+a_p裺UH] X{qӻ2㮯C2 V. 3fz̎cs:>치giWqA Ψ]?gS@Ud@b ,Ix6bć C>mM8dO@'lqWB`1b"WJQhkxj?r4wZ%{MK(twd8HLw3M$K)ń!"!:uF"r .5Q&b5aCMw (3󴲅ʨяW^\&{-gY1p >OsR98fNqX,`'?,c?}Tʈr 6F)lq{kƙcsMf'ύCPW\:!vЇ7ς JC~{f\L@ր⸗X1V >LWiw=U.J]gΈ)Kx+k4us΀gNdr\i]7wA6>|W{{bCM=dN U2FY 7rLZJРf-xۛٔjkfG3k 5=s7ݙGPdԕK >LAi}-Ɠ93.SXG%e(s{42Fjg,o?r4aR bkan۳4rhkХ/r|-? {Uyw }FS8#J|cK=EsTRBȳaXX`  D]0zkV 1I;V_ >"3^ 'kv~41I$d,B/θOI "8.탠MML 00>S=/ϵE.縠]xb„`s1R4 X WzS:axoas[7)pNe.bJ3`  Ш9^5wz#(Y‡VEI EM_0~eo y6ZS I-aza;z?QXFz=qqYLo*?GE0 ]j?v ?y~3%U!_,}!ZtȈ42_%cۚ2\f"hy l3j}=-p_^+gƦ“1N'GEQ_G'`N$裝> sVHF@@vYīQp]ϥ] żߌ Z5@E&Ÿ&6`6 a40)s+ 5)endstream endobj 69 0 obj << /Type /Page /Contents 70 0 R /Resources 68 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 68 0 obj << /Font << /F8 18 0 R /F35 37 0 R /F37 67 0 R /F33 49 0 R /F31 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 73 0 obj << /Length 4200 /Filter /FlateDecode >> stream xڭZY۸~_1BpwTy٪d2~r\3\K<}@P>эF?{eo SZogt.WRp'7S T|s3oԬ?f‡fT\z[пY*3zN~%SӘݍgCpDs! Wma8.~3dfDž*5ȫ2<kwZJYn_#6M@W Qȑ(]C\"m ҳv9nw/FV;n>]NN#Y/]ƈZ=eFWtVñ|Z7 n[Q-fR@IJ%<'R>s ^̻~QB-SU5z 2.Gؗ.q;i Vȡ BO둫W\_ ߿ztϻ4~ P? TNNjr3̡bo84C ep-* ϸԈkߣ-saZSWȅ")QZ!]t]gV(S߆hoo^ & +g?h߫p%PeqrAz~+ZZ%DUb{;ypOPB0m 'ߑ:au)M~bfeЕsǻ[(%^}.r9noXHV/('=27N*)2/Q'EYI̦-Uh:SP5immР ?>r=]bҥ͒S|wj,)Jy͊9G 1 ^ޓ-„>w{t#tH+tj*xƼ!8\B] 3\]uj 2T}TXgjKSIYLg'3&|ijv,܇fM.)=뭔*kt?ƕ+C047כQv/Xq.KC}M<]d,q, 4VR}Wl97!ҨpuمfpܐzK?ǖϻb^|Dw0>!v; pJ@ۉau7ywQRsC30GCUm>>u/[/r ~ˍf\Mbzg7_f(>k>XyG]4?(TTpTqy:e([fwȝE-l ]E%M3e˙겦@~Vri[5XIHzazD44oظo܆7,f׵c$ǯ#E}x"{ \XwGTpKt։5wMI=4Ò{TvѤE8՜(KiBϢZw+@[Gyvp\SbŸ%Wog^) 8S2_}F(. 0#Xj߷{^n0r=ޓ nA^W]2¿TmPE]UV^*YXDۤoRyiN}pk kG'.nso325nmʋ2Þ(Փ ; ={(f34ۑ c?Qm/XgrGS\Usg??Xxp;37b- 09B* XAϕΑ3q4Ea6"ӯ {6X˩aTK?+sd{rl( [>$s?pSxKV=faº>|0e3iC S2IA>Q'>$Ț$:i'̑>֦KQS=]8fKF&HO㫆miB%9~Bg:7=)rXh0F'AS /H8MT^jnyh30Gi^R/9?MlW#9S`6T@ɻ\ |2|#)= p$Tlpx ޹t: —6u7|?_mUdS#qxs0 N1WY i1f1ҹ=9+yv*]UTDsɢl͋ *LIf!#Čy򥏣'NzNqQ~#3+/`|*, (e]Av,YiY,Ũ鞱ZE}j;rB*P3ЦFQ!KBH Z˜$aU_% `}+ }`2pZ=yw@}Jl1uŶVWWaׯb,vT6< :q)#nj[݇' EUaiҳDË5==_샵{}#Fڹc88S46{6|AQpV! mzŏsץ"L!+Qد=8<1s4PpeR+lr\:@8|0wNX-,r M>QJ硎t ÐD*dll%F(sF /!?tosӁ ?z`|믕Lx\Uh}\ *XߊU8ivendstream endobj 72 0 obj << /Type /Page /Contents 73 0 R /Resources 71 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 71 0 obj << /Font << /F34 43 0 R /F35 37 0 R /F8 18 0 R /F37 67 0 R /F33 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 3912 /Filter /FlateDecode >> stream xڭZs6_G|lizKM&ͤy%%fNcHIp^"X, xu?E-ϯޟu*+Jm6LWs!%?w l 6x{xog]vu^TUtBbX.P[.]쥶S^v?n6%\I\òҲOgo߉ř8L^D)Zti3}u߉,QMIw_Ze]viS4v@jݦYk=[~pgJaز@$0K!B([BN NrI'} &}\1albu؆w2umjud K[K7-O=/l{}3_*J:R f%7U$pӑ-//*L乔em•f \ӖHRAPloZ!u}t8]| тn(Qڸ gEƒJC5/!<4nM'L6fE@ H7 tv5 2L>Btbu4i! 9!.f౨6t~vC2,IuhmF䴍 ҭ:)sv#]V% U\`A-/qCZfif%Vw?ەC4:ߎgS+SZ> Cwwn:W X] X+rоxQʯ'D19oJ=ZW0R|ڔ+䝚Ł{I3I4&XR,ߖ@8H@(={e FUʘ?/ș&K6G-]$aYCVYʛ;F z:rr+)DEH&4G}wk|&$zD@ző>/VpHw[ 6?ᇳEAr83RhXfr7bht*"$ ='$Ag1L1Ŧu;Dޗb& 4I@2<)rWCr!wo!r# ok&32̼8 } BEԺ˪\FNNMGd5c&Kj &A)l/2^X[دl<+YG8G-mTa'n9n)r3'UZJdHy U?oI9ܳvLk ÒDSݰ\ Ɉ0܁S>&3\e$UaI@uldb&HWK{IX_ǯۅY!Y4CO 'C>+"lY?U۾)v놳:gΕ"/Z˃gTCIqŴ&Z5 a U>cuԋ׼R{`  @zt0 hqnSz{OK@Vb(&N8@NG)$3rgGjǬݐPc1GS5P Th__N5@CHM U$tblS bzWv>o>>%KP- |ޭj9:*%\<1gn#_S<5Jcn@YBy7R1Ʋ}](72Cm)n1.\ A"UDq{&3+H -k&lpZI $ˁK,z(K)__KH,ہ)4eBx 0n󁟛e>.h nw:$aIQ[̓{Ȅv B vnbDS|~* i$:%j. &nW [Ovap^8U^8yo0ɇ5Ua/\tawdLf 05(_xt}-(@`) D=' Q31XJp?-.4[w’^;{yny)xR~7?(,E XbPVqb!Hpa9YJ/96ٳAoy[ʧW19Q_HQk{X T)TDr WYwWu˵'PfRFK )y8 K~z47 1%6t\ЖV>ɅԲi|||b ;@ ZqIEԓC,}dL!vA$Г $2dYGkqCf|+a%WSXRs1I [ΟD*}Qn ҸLBH8WfwT yJkž>f ,fU+dnUNhO'h $'uz$Zt|̱UK7mE{<S]`S.e3t9Ox%A^'gk3M\Z^QsSW}ڑ*<Ce=tcr=@"O ӦP/pQwyN 2)` ֕_W#kO[90Jݬg&j@ ~>ㇲĻ-c׷L6 y鴩>0OPf͘|\11=̋I=T/Nky$`,ICx㭮s`pwmfO9Ck` /4)l_BLJ8׫,0pI)bMlZ5^˛=3X@ZQ5VɷvXq$TX˅]C}'rp\59 -IE*etaR=XPCvO [>@`PFx_6H%^4Wf,|D bN mL;Hhؙ`sQ?'_c\AqQGx(gP\ 9BٍhpM:ā.e~RGj&Nz8ߺn {a _6]z떮 ~``we>hF"+j'ȑ0])ڀfڌ7͞(I Гh'=8ה(>Rq3m֦I_g26n>!9u=3'hz}`R] wܓ⫇V 0b<^ q{p(cwpjw{]z?){n ֊wUo^Nx^BVǥ!w Ʒkdώ/7F  *endstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 75 0 obj << /Font << /F8 18 0 R /F35 37 0 R /F31 34 0 R /F36 64 0 R /F34 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 2063 /Filter /FlateDecode >> stream xXm۸_a\B _%䚶 Ŗw},' )K.bMRÙp8Cp>{QswN7Lß2j~~8X-^ ~(jHSsI徭J(7|r]n٫r3)tPnfدf/f{^rZ=pZz%)Wtۇ`ʹ/Nd_b$dlCE4*bˎAi>WRx7"3./۔_ny9?65كa\^C>n~++< ijZӗ(57VUYDc{ϫݶooWCNOt,+:OY:%w`*8.bmwY*'pIWYT DV$1hIG3~Rs냑fÓ$wiF;m]6*j-6Fu3vou#h|L "[%xAQVLi#bsB̄-&3ߒ1/>kq[7MBxߍ1.AlRac8*B}|.y.|Z:B k`}K8^Y>֫zKyW7}`.$;iwSR0ͪeqО}?8?T=&+ڤ&偶4'Z/#w}m-,_j{Tvi^ACV`/-ԃPmˡV":#ןN3'PYCEEu ! +) pq, 8Fj2.U`iE/!dlˈ+*{,ЪwmS}: TU)\:&Tu#".b}mƕЬRu/f}!E e'XuMxxːlLܔH)4T쳉8X+<ӧP?_}X5w[ZҤȼ*oc޽M{p G7( 2z2倶-ȜϾA% * lAn n[P NQn*!ymRv8=:.|D@H=}}4Yߡ*/?l9qdX>|  ^6{]' t(>}|y 7 auڝp+kU$ ]=bRL1E}ry"jKr 4p7cFOv@71&'Bۥ}z~&8 zIMNz a.2E\loI\C|!87^ 5 /×Q"Ozxgѓ0_t.`x?rח iI|R _>NB2#CHxs7e},"FOP> endobj 78 0 obj << /Font << /F31 34 0 R /F39 83 0 R /F8 18 0 R /F29 15 0 R /F37 67 0 R /F35 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 86 0 obj << /Length 1928 /Filter /FlateDecode >> stream xX]o6}06`PҊ  0 ۚ=uErV2INYjh/IS`byy﹇:yJ2b55c$Q_,_Ej˓X2>_kW߆Odӄd2̊MwyT<}9{dޢl~NZ>Ϋ]沼.?+:LރXZD/N+jZ߯ƅ=9d6I1KH CF(.)n!:~ao2M:W*!:bz̗d,!<> V806a=$,Un.zd pE2J k+IClDh\ \Kbc wy_5Α ] 8L(źp` gl.>I6WLYaC@[&--c: 2mCYmzї{n^ ;p*cmy/{J<1p]mWvUjNQf m5PkvMTK S1#10/ 8\(K2B(H,+p?}](۔k } ]$I~e60: !;n@L轍и."/e/VYQWqv6o~k"29+ ?X&Ym_f㡍.&1lgt_ No@VȈk RFM+ )NI叟vܵ0Il}j'P@B-w+k,ڶq&3K/$C.8trsԝ%_. {]}l /BlY Gne}[n(b8iQo7E;Leɑqg AJ T, h+7>^{:㌤Z=|/!cHX= &$&bLLcyɊkL|:E>6yLͮ7k#BĻTÜLVthQ]9^E!ؽ쥶 ]թkg_6tf^&đ6Ҭ|" n ]?`}%mЌ P>gnې *Db6P+19Pܐp9ABEoxq!2";PR(4 \C9!)*RE);v,]-Q27L@g&2u-Мl{TO7mcВiMk5.4ٍ2UUnq5Sae9y2.:._zb8@GdFe VTd>m;texPb!pAR_\ $Iߦ lSwB)aKFn/+ ̲ooAftz =t2>b5~blfq;@FkS@{Ƅ H1t.fU)uDpAl[f >βPsy;X;0Ģ pf;বK7Ӂ,qJY«~%8,;$\bȒ(k|VP2ͣY ^Yp-(ᤕZg#n@mWe_o-9dc}O3i2I⢷_o2ur]:+춋Ze̡- CNUs*=i2fT<\yŧ͜_+f]S]Z#|x~ cYL_GpEi>;=> endobj 84 0 obj << /Font << /F37 67 0 R /F31 34 0 R /F39 83 0 R /F8 18 0 R /F35 37 0 R /F33 49 0 R /F21 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 2563 /Filter /FlateDecode >> stream xko~!Zmv OaPwňG*$z,yL6@A$~ߜF#'g +O2z8YK ;^D'*˔~Ey,-H*_j1oz=_#Δwfq bs*Ť4FNh[ $v}1T2U$KZЭOL9 fV`[W}JZ5H|2`_c$|t܎`uyIUsۻe< ]!}6/v R?7ӺD]#؋{wUM ~?ݻgUo6hv^_w37'52xOot>`= K!8W/hwIPxo0[}iH$|/.Ր;:7O|(Z~ifbI&d{lnIHKlf {-qpf+^kC2<0Cwn" 0fpUim7TNj64Q1?V]hʚf]jf*=ȫLssՏM}28nv%TPv}VX)3jx: m c[Ybt>WBx3|cj>xe5B01Br<69"` KߛluCPS!Ҵ2E^`!gj EMDeIE!8GHEcꯢAԉk9{}c cMކfk\Ǜ#91asGxdO|O_N'f5 `9˃'Bxl3N(MB?XH'Ɍ2fI9@/1^Sj^ZlrP ]ǜkIU*"(!r6~\FԢKK` 1ujSB> 뜪& пZ}2D!~:O,ƺ("es>ҧ4u~Iu|mQFe4zryk }pE,0]UZXqն2 +΢!aËˡ:]~fEse'jzێ/뉼 dIHAhU$/TYo5|(y 8瀮$s9,?Pendstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 87 0 obj << /Font << /F31 34 0 R /F39 83 0 R /F8 18 0 R /F33 49 0 R /F21 58 0 R /F35 37 0 R /F37 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 92 0 obj << /Length 1823 /Filter /FlateDecode >> stream xڽXmo6_at@'Q;C:4SWZeɕ&D8ĔHû{z}2983ÍO# J)lȫ=3e3_xIA/iD\ݢK>i)ۃ#Mcf0@"f4r Fd/y9R{Ͼkx|:6v!|ngUŇnەVeUҢ?[7YvM?\睾9 ) E;xA/ )]:: dqFGx$&Q)%qS!-1|M&ea v1g59x˧@Lkا#b.'&?|§o')9'd-IQ9A8a;clz b&!e`CunK-NU]*>Z7v]Տ=I>֧'@x{6ep"`oVaZOHCwtl*I2Š!q\ @u:;He V{L?I9w5 E]'qc Ț)(rA,AI" -ۄD:%i ro'ϑʴ1T A 9⋐0 `ZoTPx+fLL89# %mX-:%k9J d3u-k`}ooZXCڭ%=`QCK0h=͓Mjm]vI3η5sK˼HP9IZ6a,im|Dl^ޅqjxmR7m1FϦ8$]vD[u5Un0;W}K>)NIÃb(t)]Ju+Ԛnr#8.f ыm\w4 M mbMxd;\ޙ?)4w`,VkQtP3-.gT66*m cIk1CN%]?;+zĢQBl>pJHo†mq2F9_j{:3 Co1=ZQco>koezBF5Nl5ޛ &x#̥%Nw_#Qnt:{6ZpWrx|52Ok{P 3d \L*%="t:~R/f dchC$M}X!> endobj 90 0 obj << /Font << /F8 18 0 R /F37 67 0 R /F31 34 0 R /F39 83 0 R /F35 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 95 0 obj << /Length 2171 /Filter /FlateDecode >> stream xY_oFקZGf=܃S\:OQ0%Hjǟ3;Kt(ǵHDzvvfvv7/ 1rz&Ic'7a]^OsS)3nY>2c`]u1ysɧ 8L9kW0L8'ۉb@(q1uߎ8|U'dR1ThbV;+㒠wv>c7<6aNu?*֧8$&e&Qo䜋*--X%Օ2aLݎԕJ0MA̺+1ShK]?gJFv?*OW~z3m3gaRm'6~@^# FpjTx3yK (RJ5zg،{UQ&#`֫{0K)  1cޒ_qWAR<$ =.bJ Ǎџ5,ҽ?,2H}C@q@7 .r8x_RPBڣ ;w ]lԀ3i=>1RAMIp8<1`rLl͵RD>w;Zdfa(Yqg9"1c3:M-rwWH&P(5 e,D'|S~+.۹_VwEr䳻|YMy־\@M{w`w~yݴ/xX)pɣpB8(O}>\]}؂+Wx>\pqUM&1Vy/ 5%7r߱+ߙ rPZa*^*,o?f3?MP| WπmaPkG5 GqPXT !5bjH!:# "ACB)MƍoA:(>*+J=;Tq F"xs<~kά"Sa/1!]g?G^#ΚMxr\묕+"IB|AXL%^lY B/endstream endobj 94 0 obj << /Type /Page /Contents 95 0 R /Resources 93 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 96 0 R >> endobj 93 0 obj << /Font << /F31 34 0 R /F39 83 0 R /F8 18 0 R /F35 37 0 R /F37 67 0 R /F36 64 0 R /F21 58 0 R /F34 43 0 R /F33 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 99 0 obj << /Length 2254 /Filter /FlateDecode >> stream xYQoܸ~_ZmIk94@w0h%y Sv >_gҦz~ `>og)/g3\C)49l2nUW7Yk@L8,5|< +mVXS)=T}n"eT69M֞qRuqvn늭j݄p)h#lSfP,Lnj߂5Hc}b89M}sB`\ϿN\o!įlP ~^e"WGWUm~Y9 M~O 'K gp;]/6F/FEhɳ3JgI *d2[/swo~+g^,+_~#K?cmSP Z.VJcHK '5,RWHB d̴u(&4 Jfc,p\YR2'~J.@zFZݧ@a"v)*C iʀ<]hUպ-GSroKDQ$cF's8Vί1*Fs]Wá)cv -8֘}“@^!,욏ԭ78@^m,|*'Gwjt@gc&dJ5b^{ =b_>H]ظ/, *p,6ڃKH;",|pQSёˍlKsV|$LeO(?B!1O[NL“!Y2]DCWqWWEQç$nKuv. 5m(ɑݍMOs%YyrtKx`W6V2=%,Qʎ䈧 {D3k %HucC5HJf&~L@ jޣ4J?g~\0%{;XI?ڌ#ǜ ,}k|i7[@1> endobj 97 0 obj << /Font << /F8 18 0 R /F35 37 0 R /F37 67 0 R /F31 34 0 R /F39 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 102 0 obj << /Length 2537 /Filter /FlateDecode >> stream xYoFB9 7\kPm\PzĬ)R%KRQٙyvE60$RJO(acS)]~BR :(~ß72DBZD:eΪnn^ż^n70T.w(KwuDndֻ=? " XH4>`~z$S!Kp4M&ѤXjq\X@mPqLӴ,>Dp0J`/]slhW[4-[OyS<3%?e"JC~({gaz> M2+ZgK݃DFȄNHUgq݉hF=tbFMY(&Yⓥ*NDv>*'êFrZgbu# LpOTe /e:IJU2}t~JR %>8cVzXUr[UڅM8Esl30hzF몵J{4+u)y\3,{QҠAOTi Iq)hpZX1TfȖx =\č3 p(1c^jqY5KkVM"F>ba9kuQ> 㔇Dgެ\cUoIvOpjwGjl> endobj 100 0 obj << /Font << /F8 18 0 R /F35 37 0 R /F37 67 0 R /F31 34 0 R /F39 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 3449 /Filter /FlateDecode >> stream xZ[o~X@!xEl5I~J@ޕmJ6pHdsϦː7pyyafen˛ey)!r-].>v~>U8+w?L>??9˭*h^[}zݵ4{rJ:QZ S/}F-ag /? /*t]uCy~oË sk>{G}]<'?s'w`̑㬹z:Σ0#fmVØ_|9H yarJ9 .JwLu:|v<&ZPARSp/O8, \)9vXzlL8%XY+ ӡt@8]j+,Sp:NEZ?;Iıx]`lP8,tܟƉbP32:Tktٵ PPgf`BB0P6::cr#up%~5(Ӕׁ3NO%eV^7mRAḶ::+(cs@̿5!($7M\iK 6Pe8p>;Ľ;YkrY]违#'GB7Hkz,j*GKu& UL7@iYd?$nvpJ}Et ӎ;BxBH 4]IiIJ]Q,C6N`DQBh8h>AN@@+BN]R!:ʶ."® |.!)],78Fvk"747g7}Tc~ L%Sr27$Zc .$7?eK"s7G*aG'20Zj<d3}bH"lEz T<7 S 0u3Kݾ"cbS4!y @P^(HZN<+-rBl-KpFÂ\DՐZC֥hr-P ($S93rq0a9U`W41A¹/ǧڿ:y4g %+hԕ6DRjaǼ_iR# 2O 8SLHAaG`̹*Ď u0*qn(ėbjJhqMhp\0U ph܄Yt}iJ l]>Hw;ǰ.!5\ 2y rQ>%d`j׏`A.@DˇN IojإLuW@Sg,DA.%v-k P3bWZ_k>v>}[,})O%͋< "\e$jo@ڿnX4}ZɯHٯx\/ұ@'iA q,}=8,- " oWTY:ek_hI,0RYcQr!_l{(]SK,*CR%.1&BD>\6*DGe2l}*:(ni&*T ATD*8 Ƀ4mR 1 š2ZPw:1 C1%PI 5p.ɦXҖ",0mk\dT&`H%t f>0Ahp,mG?6K1 ݁r|n6`H O긆Q@C&X=)m'uaPjNׯ @$'f _AJXORP}d@3=Mx&  sJ!3. cA)$SpK 60%@IbKj@G-Rj[<|0xvQKNֻUDu-sy7wzšcLF|Ξ. a&6:*Om.Ķ5y=HB:JKP"-ˍTu:z($SɂV#*hDӘb?ž]wよG_/*6g~)ݳT qc߁da5Tԃo k~!:2"@D:(%J$WU¡G3mLh.ut :: "j^ WibDBM`@ IڼOu#0 !+7=gt/_}  [% a_ `nޏ;@TS>Ob{йB;[!G>QphH&M ^NE37d]zd׿⾚XbƤ5ѫE @SSQ!aoߵ|frMf7}AjWąE\*fu:I ͰPơU$ŭ_}ܣX @~USaQc|*G>12|)"ԽYsfl]},W 2FmFoPDZCϽ -8BW[Z\ކǴԁG-fO` V~p/endstream endobj 104 0 obj << /Type /Page /Contents 105 0 R /Resources 103 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 96 0 R >> endobj 103 0 obj << /Font << /F37 67 0 R /F31 34 0 R /F39 83 0 R /F8 18 0 R /F35 37 0 R /F33 49 0 R /F36 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 108 0 obj << /Length 2772 /Filter /FlateDecode >> stream xZs6_X we&sCВ,,.%N$%H5I3XrX,]ٷ/H"-fd%IԤd*ƫ𧪗x{l<||(u]nbǷ 9||-lFc5e o 'YrU[$mYqד)qo fOq\SEWnfQ: ]HD(â8MȒBefso_*70WI@:2ik 2K=Sٶ0ULԨ!> E8#m̸FŜ^0OXlo|s6ΆYH|SOd1ޒh~t_I깟Th$agi܌%MDTCٿ.i8|IhڈnjTsj Ƒ%5k1d"1o`4S1kV$ՋPƑ ",ꉢPxau"ְ ib L "| 8>>vd+i {ӾH@7̂G.q?VBo/ _L5uSlqp 5!0oɯsv42Y%frue82 9Rx 9X:02 Ԧ󧕦co;")ySMf>Ci$N"FnjދA#D.bu$5 ^SKQT&\ri!" z78[_(#^:m]>V7)A z'Z  zV'(n*7a]3ZFJ.?Ce@$P&M$E2e {t "oUuxl=..\2%{IW8w%I  Xፀ`tmׂg g &+G 7/z7oSUMVa@K?==ӾHz e75!_~u|ۡ=,mK߿" ME0ʡD8Wj }J3O*.肛Z~G}+ö}hm-kqW8ǑVhk3٥;xT 8ח;;^kX7B1pILzw~wQ ] ov8[hi\vhb7vɊN6mAg޸2OiJX'R9jh\tNvmnqΚ!)`!naڽv):8: :R|:\}1Ve?zdl;;  dةR y_> endobj 106 0 obj << /Font << /F8 18 0 R /F35 37 0 R /F37 67 0 R /F31 34 0 R /F39 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 111 0 obj << /Length 2610 /Filter /FlateDecode >> stream x]7}CM[9`6i{EOIp޹wVdϰٺpp^bhh~9Kl=t_rHpsu=⣱հB+j j6H,K쬡a d]b*ӥ(,g:9Fo[:L4)qf4Yz M3νDL1Nߋg?-qӠs(9;d@~0/y0!rf*FnM9vSgQ]c˳_¨mf( 2;Y`gB1aVYRSꗡ_d"44,ޞK!{l{>idۧ8? `h/~}<_Gz1ֳ_iY⢦vRU."&v0Y^H Q4a߼M^`خ80)@Wŏ"h"m3r_AM&Z#5z(Z>ߝPD]WشXό٬Z 69ZhVjdV/7`  T\B/464Ht 3hx"'a ڂ@@ &.(v覬-*@ jZ::kIKҝoSAبV,Ѝ00R@}0-l`0NhۀO9ͬc9s4I!Ed AQ#F0 9zcFtpЦAr 90fe1X ɲL LA 3 m.44 5QzOZkמi&~(T1Z߫|qh:>g܁uXɤ.8`:n@nL>c:f蘀L٨ŀ2H3g+׺r:,䝘uLi gm8RB™ ]bk)^X4M8\e a_@ܐd| n);`k@ĩ@5rIߐ}o,LT1ZD(gD5q!^XXHm!4TA1 {ꝆukEV|mP!+ ^a+jX/jP V̰TYUQ|}P?BgySrvW -"uOt!4۔"YEKlv3`)NÉU.YԐێ=G3 @}?^uoI0tzvTXW:Փ%\A_ܝ #_L]CJ#wǪdI[? r ;|j/$a'{ ʑ^-yvN#Ch"o X4(Vn``rЉ ̏ st%"w0kKl{aa.W>]mD(μj;G;ݽ*m!HͶv+678TB]6)@ C6<qj<bD1Oc* ҳl(Ҋ6iQ"ScETdcu'c{HBZƺX"5J9[pwp`0$c>^)f=x,IfU#ɜ k:o_5f~2,҆]b2UI'gQ:g?FD )xdP8~>3Oj_6d >bKO 81j%̺$ {̐L$hcz6>y?Mendstream endobj 110 0 obj << /Type /Page /Contents 111 0 R /Resources 109 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 96 0 R >> endobj 109 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F35 37 0 R /F37 67 0 R /F33 49 0 R /F1 52 0 R /F34 43 0 R /F21 58 0 R /F18 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 114 0 obj << /Length 3548 /Filter /FlateDecode >> stream xڥZ[s6~#=cčvgMkOf7δDˬ)ե{.Iɔl2\sw7Gn"^Ln&VŸ_rUd}j*|L7ՌG˦]d=l]q{VC˲?rz,mrϽ[մǩt ?@?;N-j@qQnVg^6maɦquv·޴aHNൃH\mnTh/! /6^F&DOjN/ά Wypy ٢аYV(x4yގ̔Qb2/8RI@ˬ@:@'F4udщJoOϩw:@h Jb}Me7FB#&LMQp D-L^~) 7>x TrWN7rSuqj Bފ (Lj# y@ R?D$'Yf#x>ES}gvsy4XKd"Y&p`G>K=9nR./7~>;A3TE&5բ=}h3xf1^T`{Xs7#;(h*Sr3BQ* sDV+:5*DDch #:wz4Ktrxk>qP!imt2>]⤣nDL3r5) 9 3]qodvO?xК' 'HeU4GtH=)Q~k<"Ġ|ld'xMU &7`C:>̹yCU|*pqMl*YhvWpu]3DP6=yv[fm0y dx1I;$F@:{b&Kщ6h<3ĊNV4!Aaɓ:RnC0n!S0Y%ˍAɔbAɇ91)Zrޔ7 @ *<]Liԁ=#w}}q>sTRJm`"tHq^Tnd1p]/jԩh9aޒz9<;qY> 8:<&/8gN%7Wg_K#tg arlW fɩMjh1hl[% C,!'=_L[=^G0Px"; cxw t Z(i<םa8D8/™8E܎J13 ^ ͕oTYj:eH$p qsJb!WP 6uZv,;t ]=a *R @% ; qgbvplsZe3լFŷT:}‹]>o_4tul){!D ͪ;QMؑrIO xBL2T u$pn eN>hcp #T].abD:˟l -^sɃ.O>p> !×~ O'uCl0/;?=eP1vݗlwdStۈU; ,o/8Dh @Gw7' Ahub/sL}Ky M\q)̀qW:ze#0`s3S6.0 Uh @;@Zӊ*2U،R 5T LFg]Wڳ!2B $Ӧ#\TL42J@$'{o3` N@3Ex3,ۆ.cBŁPΌX3X] b|ET֝cc,2Cd]>Ժ4s*߫܁Fp~&rc`͝F>DhpeN#w㙋rmśxTo]PEެy^ya{ nϺ[.LP9G 6+tW*YVj`xޫNJ}I#F;Ӧ*9,] ,Zp 9:`vC HhمheRIpe1croϖb|+ģ~I! ~=c"3R̞!2 MYC@S%%rA N=FzNQ xbpX:>ήiA"F N*"6:틤-y&Ԏ`Ą-SƼ{lX 0% wiz䠚xbN bOIpcRZ hFR/.+c-}Cni!zniA#k\ЉoH8k>tQ՗wMg Za$-?)ԸMPFcD)G@mk#r1"Bф!I_ c7\>Dv7iЂ3nB B {,XA[p?%CdJEfebDc*GsG. >PU͖J8]r' $]U󣖧+lz+gH 3daJLhbO)BRhpi8 p+ZS5V;>?/}qi|ah WJF8 /3͵H1+̓w~Zh`dl]A9Oò,y{=( A0p}Fk3d3 kNakC/UcgD&'<@ulCg`ߧu8#ׁxD-R9KL$sߒ^<<4~.U `6lTrKzAo^UWtt}c_3fPͳ{&a CJ_[J jU>_ԋ3gEQm3+Xn!sмƫWB(ݡ bT2!b?ՎV)ݢ<4Ϭ`$QQ!V.YC\+ݞI_.ƋJѢ~'Fc琨J^χURzPQID,X} d7eXDGblu z^Ӓ?riP9vLտv4-endstream endobj 113 0 obj << /Type /Page /Contents 114 0 R /Resources 112 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 115 0 R >> endobj 112 0 obj << /Font << /F8 18 0 R /F33 49 0 R /F18 55 0 R /F35 37 0 R /F31 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 118 0 obj << /Length 1274 /Filter /FlateDecode >> stream xڵXr6}Wh6)jn6q$ DjPy-u]oՓhl gw.`4@{0S~lӚ`~NGB7s&#Ùzßo?AEN)~ ˜Yh` {]W:|{Bnx=}a)UJ)AKT70k?1=wfX\ 1h1BcWwXvʚTY%mO9L\2.+ g}bI*X &K/k~o>F<HmRJqYƹjS^ivXH"!-~ԅ d.s(RJg۞WWZ&Uٟ9qbl"+u)')WbV)a!Akc;IhO:]QKPd|u6YbƗ@fWn8jv_b4$)e+%l[嶡.f81p inkp AmZȯY/?Ig7U˘2)lU8+)16qVA6jQʓ kNEY10U! ɓމǧn/н"YN\'ReLg;rmw#SV:bB}v?ְ"+A⭎Ѵ/?:P`5C^,m4 "LꮪkVg5صbse9X6۹;W7S*X~ɘ.e%4j剤freTRrc߶9vةj[LZy& ,dU2w}x̵˹\kAbQo\+Sm6+~J:My`V v3WZIW}?t݁h?*tȣHorԯ1[vmZӽ,OޒyYR6& Xfom} a׳ t"&ӮVƥKo䯂dy/F]/9[ӴHqH1{wf{=`s(KY< f\oz~PRpk|j6[лYD9zoֹcö}s=TLߟ ,UWJendstream endobj 117 0 obj << /Type /Page /Contents 118 0 R /Resources 116 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 115 0 R >> endobj 116 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F35 37 0 R /F37 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 121 0 obj << /Length 1131 /Filter /FlateDecode >> stream xX[6~_ԗL VJU]t 83n2U{ &$vGj^߹?'0T[o4\6mru4O;ͽ1sf,O0ø~9_0kfA$ d? {H%z8~^Ya[rXV ^ s,SD OIC&&cƞ V?|&z~LK-3?|idfß[2j̆$` Fr:"~ VnL\s>[L5ñͥ. "۸c2%ۥk? eA#E ,h$͸L+rգ$^ JےC^y\!] #:%I:8JU&:ˬa7Ow7-tmq`uFشzֻvO0=[˪6#B!|T7<*CTwvhIā'X +da> endobj 119 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 124 0 obj << /Length 1216 /Filter /FlateDecode >> stream xڽX[s6~ϯL_-w7I׉۬˴Fa#DnJ AvvC@ptwn~<:G=:˨3q7:#ϳ,ߏS}vb qwbc='A][DCRW&m4!=/\'[[f~LDܽ|"vK>j?(2-w\d\{ mRLuN\Izw2i*n%q  UC)CAzԛ'IBV$;g7!: Sq$j>) sOaq44[> dXbײ1a*RAZ-̿ZVⴼ!./?{].> cY".C0k(=#wF1/V D 0l+ ;V6cW/7;_= T)xSSEe 8["Ub" PA X&kj? 8&$[Fօ]bGĂ0b܊P\,khJH^}8tIt\7^9J-_!BixI*OFkڈImƣFPյhq)XT춶ksu~W>ysP6LWHcgZ  jf%ڣ41,}](dҠDMQI!f*[QikQLB^f/yf7$5L %㣭spljNtL(#*.UJv; $Fld(1 TsAE}* F} %ؗ )h HS5n/;J'^ M~"sW?h?V=ޗz4ðxx6bjAH Tg5a9$;q%G'e.`JmMeׂhK^t7 f>;ŀF'nPi մL Q :ى!KHť&8ٸ#8_#a]o#> endobj 122 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 127 0 obj << /Length 1360 /Filter /FlateDecode >> stream xڽXKo6W% $GWK.@aB%*Z"$)KJ$Eʒlms" g!X</Tb%p_CJ5]41"$1ic;E VɊ 滯>U{ܖSR1 j[]g )zsyXT IP5'ή! qVWBVţƅnfw6TS )%o l?VVNи8_lL>DUY5 ME/1 ^S}1QĕDfZ%[h32;o'M@IS,SYh12­s·xTxp:Q j ^5XwH$*^_K r6u i{fM2TAqstE lڛ}\eM8!a4LWt7Vk2N,;AzZOS#G(zAX7'۫$J N6t+!c1R zō&Y&}hFj?ׅ:\.tnh֧亮sg݈6^ޫҜ6K `{鱡PJBTK)1<T;XCP;& ;. px}Gxoc`au;^ Ylf4R)mqb'3Pa<*`Q2b2(E(~3-#tlC@zmo*E~Cۻes:Wc={7H=;@ oCDB6w-9@t/wuNrτO q$E>Bo9Ήq7:b*Քi]O}u*d5LT/_ :9k:yԗ Ҹʓ[I*ιkZIN]V*RQ؂(*<kzNhX5=gz]Lwuϋ<_^Q,p65c< Y1Hћendstream endobj 126 0 obj << /Type /Page /Contents 127 0 R /Resources 125 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 115 0 R >> endobj 125 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 130 0 obj << /Length 748 /Filter /FlateDecode >> stream xWMS0+|+c9qСf‰2V@-ydf+[?t\ax7=÷&Ș- 1<,lǘW?Lqlǔȝ׳φm&=|=IlkF_0xz(RS9S"3EG,䏞FLڐ}];4w"j!'{9G)Q+r> endobj 128 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 133 0 obj << /Length 703 /Filter /FlateDecode >> stream xW[o0~Wd$8P0PHLqJ˯@ @!$ߎs\3}ǹFSͅM6z۰}e׶rMRm?j@3e "8bpirDC1U 5jZvYR8 {srp91vBz@ ka( O*tͪ Gx]Lh.K{ 5TRz`6+`k'7:`ʄ.T0ۆd!#t zy38s#FMu˽PޫV^1>S0UY }`' yđX71W@wXz:DquU%ߨ$lnkNNjciƍh剭=Ja`sJ2gmZQg\S^ wrgn]sq᤯ ŗ H~wc$!P+ͻOEA= M|Q"-gAgڹd˨%lendstream endobj 132 0 obj << /Type /Page /Contents 133 0 R /Resources 131 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 131 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 137 0 obj << /Length 719 /Filter /FlateDecode >> stream xW[o0} kBJ.@0M{XSWpؕ/ω܀C"v.'7+sc0|W]Bǘ&?3GSnհ uf2K1ZR>Kg@6mq c?xHKkyN`nc[(@),H%X'?KkZؠ/ǘsr$@0^ȆLey\9ZuRG(uuČQ=kW˯3a. Hx糷\=7\%4Qt \Oڱx!]般h]9Fr̕0Iahh; tWG@2TUigJn +c.Ys&TTB;Y׷V>Hn@?O^h/-wve7.wq]yhѽ<V7W MJURzN/Y?hp 5av-}0Q0Q~Uf"F֮2.H"d֫ Z"3mWI0NPT6Ti8.xZJ q=%kH ep>WR?l%F(鬗Lq r> endobj 135 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length 671 /Filter /FlateDecode >> stream xWMs0Wp vCCMNiƃA4<ĿlA3M>޷oV+pGRl1M]qCAXt4 .fEnϽ4H|/˟^\DaD0y'IATCcN#.nڧI|tٜиUkYvuBtݚs=&`~| 'Y1k?eZ=9(cD>4o",r-Ŗw|/u h  OZ1K5{N64nTp)IR]c~)˩`4H7Ϸ^΀?s"pȯPisږi Ꝟ3*OCmCFH=$d9P$'+!Kt)0ʫ{AAb:{ÔTȩ-_ K5,Ǜ"|jlohNн\e'Ā( i^+&20NW-d,@Lk>۔&-c8dHSKmc R3mb.׆Ux)dd8bwkg?*Y V*\T mЍ2E:Vu0تLG endstream endobj 139 0 obj << /Type /Page /Contents 140 0 R /Resources 138 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 138 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 143 0 obj << /Length 486 /Filter /FlateDecode >> stream xWMS0W0:m 'uQ/IB aG@6?Ƕ:#.;oŽ=r} `8Xab!: M{ Jݽ -Ciq5Bn+2ʔt' wԚ#%g:/uTA}l4h֌KmX!"'\,{2$׽L2n:1(@,/䴷&Ay]F:TQ,g#zoeG}*@T;rY5— ƩUzkM{! //\WŪ4_endstream endobj 142 0 obj << /Type /Page /Contents 143 0 R /Resources 141 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 141 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj << /Length 1000 /Filter /FlateDecode >> stream xXn6}WmגM"pvQSDHKJi/%^$*]/pxp̜!9Ux1A஖ |o0a|;.i&{Fl# rwb$B@vS1d+8" r#$`_ޅ?gL"XB91{J`"gv6rbR,]LAE0稁Ӎlw0('aJ=e tѡ7mEMh 1foT6*(C>2i9Sbyp݃QSdL #U,?(uqø}J%7XJ$y6k> endobj 144 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 149 0 obj << /Length 712 /Filter /FlateDecode >> stream xW]o0}ϯ1#HI@[;G{6q nwǻs(O@Z߰Y' F X> endobj 147 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 152 0 obj << /Length 757 /Filter /FlateDecode >> stream xW]o0}a ᣝ&eSyMUZ;2fl$3ѺEQ͹__˳?q4lB[&cU_0mh95p ,mLÛ^3;5=GxSu0)X##1JYO78!82l^ L [xʚ W-Cydᖓ~~x;=۰{> endobj 150 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 635 /Filter /FlateDecode >> stream xWM0WpL@ ZR[-*Y8UDA vdc%!" l {?7hO^obkd2V XhP/1$I~>O[P9'~&K/]Q *_G8o lv) dYf4(J9Ll VJ<C؊Cap?NI׈n#?U$N8꥽1E7UU?V}YEI! $jB 0 N; ~O$ @2<.p=xߩvendstream endobj 155 0 obj << /Type /Page /Contents 156 0 R /Resources 154 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 153 0 R >> endobj 154 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 159 0 obj << /Length 789 /Filter /FlateDecode >> stream xW[o0~߯*qsi.4v&A CUָ[4.N1~=v8Iv`HDU9;;pgpZF7™gYZ{kv% A[A352 F g”;َpt Ssѧ M>+# oHkTL!2C419IpDh`x|.ꕔ~됟#{_D+"_l%?D:{$"(ᐙ4T"oKcM0^UŸ@u[x$M E/5Zɼmo6`ŌBB.kx8H-D׬xN-"5!jId?J x5=\a(/+ )S+)ৢk@Pl´T<97P:hO%R7 bWQaMnbUզm[y#B6:пnieyiv NRB Y3u>=*ΔӃjۜo JPʤn qAzjA#ORx%O;gv5 XnĹ=3ĝjB٤HLHSp۶BQ&P=[4UB Į~`fpJ/9 w~endstream endobj 158 0 obj << /Type /Page /Contents 159 0 R /Resources 157 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 153 0 R >> endobj 157 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 162 0 obj << /Length 235 /Filter /FlateDecode >> stream xs w36Wг433QIS07"#=3KCh Դ̼TM]S#S o0נ`OxgS<$  $ AjA(CK86K@A@|=`KP'TmjI(ZotМ$Fz2ӀvA̍O.)-alԼ42n PRHS023515U55376r Bendstream endobj 161 0 obj << /Type /Page /Contents 162 0 R /Resources 160 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 153 0 R >> endobj 160 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 165 0 obj << /Length 1812 /Filter /FlateDecode >> stream xY[o6~0;Kc9Cv:4$0 Zm&RP$%J݀-"Y$wrV/=gLmozV܅_מ,*#qp,o>ɐ%qqnVgb/&Bf0X.n!oU3F3<4u̟aqAxm5ıg#r >=ȥ <`2FؼQ'(Bk!PyF9-/#חJb;H3u2;ϞMBl>ScyCDCy%RM+2D"D<.l O*l''SFǷ=g0F ?BqaPBySĠIQp\Tqu&8Stu Cnj!˝N3m)v:t|{FA;L-3+V$+o=cy'P`dIQH= S06,Qz.!O(2P0Iu9f8<̍LK8I#X?u>;%|+[Y#+1}TaH):R2G4&BCl?{K1P զ)ÜҝHfE1T~.:M|SK*A1jKTMƐZ@iq6:;y^Onc9Wq[޶^)9i:K4PktrܠN Лq1ryQ'b5$נV1mvscA;7} ZNf'Iǖ~ufhuAb.M=x5DUP-6hwD;i!C=HX6N} ~՚[˟WFMJ4^BKRk'='h/uy\Gcdp=&=>﫚waJXF{aQIEP2}R;qsD,5bVCp35,,32mf{m6D_,uv(툷fɫ TȺZmlIƷd\wQmGSÚkjnV)\7d.<4Hgy< 2sJx,0!)uOCջYQω5EE"jǍ8>/F "U.'&gY 8?)]4kNJy9΂ғE\ga=2{JeBN5*};jdrSFs@Ǡ옂CC=`V]+9x/B Qz<ܿ¸UGUuCyN̔IWs _{gwçSI},毽qO2v5! һ1rW<^/t4^{h}$iWÞ`|.f\„A$g\ rr æ*bu'6'kY Zf.Iڇx5zg'Tvy?'zr%>o&uoL37endstream endobj 164 0 obj << /Type /Page /Contents 165 0 R /Resources 163 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 153 0 R >> endobj 163 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F35 37 0 R /F37 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 168 0 obj << /Length 1607 /Filter /FlateDecode >> stream xڵXmo6_a$഑"[pР}ꂀD*ٟQ")QR7>R$sw}|wr9f|29,tNh0 כ21|7|8r9`o4]B*caG^R譺ΒWtuS*tϢqD(b边Q|86+$4#)ʔ|S/ڌ` >5ODGQ2J 9{E*‹+\*AbJ(.|gQVz>U(+li6;Tx:>+Jɕ"sDcQOvB9:268;WxA >#ű&3_qg2OG|oBlMYrsk2"F0.ӌQp{`~l,f2Ig ź g$(%bL5$8۰el1"\(#&{v|uQ^o!ؚ9"e44Jt/V+B(;Lꮴ0m$J`(9hBУ*:.ER%84 !d8֬^,a-Ʀe4T$yV]򋊥/Z25;bY{AMvMvrѰ#ěpt2Q^p}tݐ21C#$уڙdЃDa J9yaKcME|Xfip2FY /0F8ƮB-;Yw*Dw[aT.׊8ԅ;IH@PֺiWtZTӢVUdM6(MMyp\]'S<;xwH"h_*nΗ7L+n}m0^|`J25O\7X(_HT9qN\]'HEA4F]nZyȭ9\eM l0h|Ԟ2̝~wt21gw4R(T05GohLRW;NhS[)^5/jpQ^o0 *<mdoV]|}2~VUI%,t&5vK)}6Џ:7&dgݿMUzs^%&fLR":M .)3CMXjHLi"Ǩwcӊ4^]D -\r{OkJWT^Q* f-$̻t_,ԩ_p\#O oN 4ˑ`R1O|oendstream endobj 167 0 obj << /Type /Page /Contents 168 0 R /Resources 166 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 153 0 R >> endobj 166 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 171 0 obj << /Length 1213 /Filter /FlateDecode >> stream xX[s6~ϯ%$6\zy`ۥl,v&e2 HlJ,.iKy,$ܾsƠ1Vnp:q]nczlώ1/hF0 (f,%b %,*'(Gٵ-mX=k@48Bs|% MAH/_(ϐD)4Smmno#<$.TczQv/^鲬ӵn-S|IB-֘šRx-A9_w.bhTA}^Ö`ˇ0D\:,h@ƾI%w@\pImSiV,i~8ie de2M;]uSoF¸~̐KãOV =HZV}PyUlZZjTѯx?pj *B-t2> endobj 169 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 175 0 obj << /Length 1484 /Filter /FlateDecode >> stream xڽXYo8~ϯ0җıdImR E 6ɺX,F@KX&]~#΢hL|3A~/ĞFY{߳̂~zãw Inx>t,ϵx)\g]qة=vƃmO0@|ZHa$NRxK =MQZ/be mus#!)ntc PL'K'n)+w{G]4Q+̨FB 6n; |2je$`ɍ EhsYmN&^toɭsW5=];q`MQT8fƙf1"<5@ O0M=J_p%ƯAKFQT LjP'II ) \aD+h|nbRR@GHx`iЂL^,Q}Ve$4&,fk*Pbd,iT!vaBd*sx-NGBHqZr 4X"ZTRHM~3&в@ }7ig3I Z="^}Q2ZjsҔyV3 mDҒq*)_q9oN+tw?doZYTPMQEg1 D*B$I]J_E/[ie ɧTe؎wZP@ER/gfGuE%*1-Qt/&ڕ>uTUE6kJu.~( Rx3zmiK{55 {)[ى wƒö."7]HEE5th?* v%[Ry+qqjAQ9>>bpAI>w^_W_^)|7x4u(u[-8xj!  {$qK8xYrc9hLM0K bu@$^#. DvYnH[U:[~qL tUEYܳz[fUT<^9N!V2j.?RV?m;DdubE“ vSšt˫ P^s3 K`I}F5&kÈl8889R/_L M'Ӈ0KHrzqv> endobj 173 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 178 0 obj << /Length 569 /Filter /FlateDecode >> stream xڵV[0~W0k%&AѪ3vZw}v*KpvKH #Qr9;98;Åf(&bg_ B~]dRձޛڋrxedtYz[ TT:o\.D~-Q՚[^ɬ9> 373ŗs'?%(`IMH{a$p!I2,Ô8+7PFIHt%;|SՐK(E;|X/Wl󕨙Bys= 4f@MuEհ0ru͢ #!Eendstream endobj 177 0 obj << /Type /Page /Contents 178 0 R /Resources 176 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 172 0 R >> endobj 176 0 obj << /Font << /F37 67 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 181 0 obj << /Length 2594 /Filter /FlateDecode >> stream xYKsFW` cf0@7d[%)qR " c)ۯA :UawkZyQG*M裛Tß$SG7_⮨Gcդzs;RQE(uwdX>VkZu4Q|8Gcc]p%ɒjW#킇3s$qp%dlKA>q#?gUO48=ijـtb0rAkoN竅Ǿ4'-揼-W4\>l 6bJڂ?j(&D%4!ӼXIq:+!Kc0ZSI؀+ڨ.˶ Z壈;ےe[Ŗ($aȸŁ F+E\|ڶr@B aI6Tp0|ηPc,\h;ߢanˢoeՇosx%߷=FքQOh6 2HnYVL@[.4-=bl0{@&`M gk2Z]N5o1=?_b?4`]0~8b.J|8+ ꤕo"a0O\S ޖU?4m*[8Jp pcX1肽d*4JTM;Nai*~E ^㙋ݔъ_6.MU _yg8I,g rhqr5q: Rt`͓B](so(stlCw\p' h]`z]Pq.8.iA-˛4&LP8{?SD.c'qb.с~%-EnIʐ Bƞ _,")YI"( >h t;@gŭ5&MK@c)Za<+$,'0̩/R ,RXڼ.eŕ)XH{-rtw~iFT_ 9sV#<:Jbd-jpEj6l+ }S=4'*3 چv|ClUj\u K֫?u!N_ _+?Ҽ33LJݬk,VyXb? ;}Nz]| Uڣ~:5 &N^yeFg0EG:cdPky, !Q=wr%ɵ-~e<1P~ʙx7ߢp-J?A.?I+ImirZ7\ tjvxPoEBG}> ꓌ETTӒm_TVXXG].#>|i0"ff|=v09R&yC}>nrG`C1G(!X1O5)=s,&F?T;.ʾ=]{W<"7]5'mhzKut{e:VG}jp(tǥ-׾K7/slcOfk-ׁ e]ݺ9"kh6/eCv3/0fԘ5X+0H/뺘Q 2Ag5n>\%,Fihmն\Sq;Eo$^E+B`Sx]akE@-X2u!5$y3qy-_E9%<?L%7eˬFJE.є Hqg^zjStΪ~>gC(a?]p .\zm{V4=a^"=] 9c|>L||ZVmD*bB*2eh8B泗7kendstream endobj 180 0 obj << /Type /Page /Contents 181 0 R /Resources 179 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 172 0 R >> endobj 179 0 obj << /Font << /F31 34 0 R /F8 18 0 R /F36 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 184 0 obj << /Length 964 /Filter /FlateDecode >> stream xڍUKo8WHIToi6;Ck3zE~Aq7 p83~݅8*BN<_nW_Wia*" B 1t \Jс0- g f]I.4_% K 1bpUUgnI& 4YA噘o1xS2J"0J%޶VLA״i}q։VP(EB?w)D \f,#QNQ~ʺ W'L攏>/Ǡ0iDׇAHey 5x$ʈ/]Eqn_oT&r:coq3OֻV۰b۵ּ6|ITV|DTH*I9QQ7/{H@F2U+o8:j0w5]hv2H$ĺ)zA`@w4==t8 _"WoRĞo8)G[ڮlj,{>y$b 7cA޵=t;[ۍUUƁOt8 V)>G8HXݒso^z9?*W]48Q ]MzzPnzEv4_O&[-6Գ(= ̺zesGW!{wX&220žI*[=![%K;Uu4^=2HQ> endobj 182 0 obj << /Font << /F8 18 0 R /F36 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 82 0 obj << /Length1 1107 /Length2 4956 /Length3 532 /Length 5658 /Filter /FlateDecode >> stream xgXS[DJ4*U*E$@ $ IGz& HҥHG.J\r5Ϝk %n@Er!T BTpH8܁rTV (b*%'!)'!E`]e$# M "b_$ mMP# #Ϡ;.gP;AI:D 3H@A_%j` Q{.gw}gP  Q 5A_H9gy^?FY} $$)YIf!1?$qv("H[OXۛ)%~$t 5IЅ=ڮŸL_]"_r?bGW:rz)ݫt;]sڏuݯ${Kgmv?cL1}aMsFZ:(,_}kIDش;}RA~aE&o~S&X!O.c35@]Gvͷԕ 'VH;/|7{gV:1U7pXr/?^Q<&R[VeNuq1Npx6K/Kkdbֹ#`2BFJp3?;WM70w]/{%Z z=g[R[*z]>s:4hih rBm~"f}2'mAʋ\|49.|Kz{1z[)-LtO_ѧ:٣/d~>Oɔ׶/mCԦ3[;-Mo|jli}OU/,#ġZl~Eui=7dv{4D\fejQJ!?/hCqWE֦(u:BCmYIPKIdA .6럱Εlڤ *N|ʺI0haw8T5b\&ɐOw*CTT1,.e1ĉVPB:l'FxjKvCebkID~3̇We}\ #Y^}0Ɂֳ0튱%UOhNC[Boq:xԠQ{ywBƶI%śk:P^o{_L[J޷A@ :]3bSWL(Tcٺ1(<-aTuEgAׄ;[B~Bk/qY#' Y".kRi`KT UkD#uz{If%3 UTHy.{dk_/w]X$m3gb ,ēy\jPk-(ļLSstn&~nE=h4FnS@JӻݡϬVʖ5=%_јe&LS Io~ndÁ%OyMotNd .xH5mAYOٚpc8%ekzM(<ǗCGq.|WG w3ۏC6i|Ɜ6#_̕z'4t;Ԟ~՜dž"zŴU:jr[S \kSsUf0%hS'?t/8oA: ʬЌ|Fː`PaC8Vq#e F[CEa-WNڮ؁AD%YfN^fӭ&3:LH-fQYjJ5\u^ct+-oR+DL8}5~wWw-] FXz^e)~#'+%!0˫|A 5'ra_O "be0K- C#,t&V T=;1K\o}mwK0W"Ne'hn_`=H=x]_ޠgA=d ڋ|!"3E,NvNU݇.>}M+zW$U\J㲫$Kyt[( a؅>%~mKd@̐#z^I@dq5%W d^:[pNW \çzˠ ɘ8<%lK e[YZƫ|^M&ƙ}T ?fcJLT:-xNbIɌWۏ{,#w1I#aG6 C%O7& L =;)֜wk#]=|`M$g/-v9Oi WɿZ9]֩q HvG-fޡr2jxۭĘ^DG</,i}sVԼZ0,',.m߽ZsL׺R`ZiAZ%KunρyBk.U­G@j$ H_2)-LS\K4HKQdI#{Uy cR`]aKo5X~*gS< iR KMG.s<; iPI6~liv7ZHFKD1?~9Ms,Z NqE@,j+lci*|6XY+>a+qpxs+1jYpԉ\CaLH24ʸ)i&>h-!qHw'Z.̷PW \:kY zb)I4T=~vrI86:q,$PвSkyko0 ݄6Ț辝}M,? ?'_R}C6 a@>=J͢>ߔhϡޒUFEkXe&B>)dX4R;Ze4A&E&=ڳJ@6+~i*"kJ7aE5[N<1w:C :Vr`*}_/jԧfzsF@I{! $uh]l-W AD0<,`WclN>ϱ1ݳڣ@K-'ܹR-jŝNR(L}F|ݷvͭ;%^:3tb:=Jc]dzشـ7kGlQCm ޤy >_̂fhZѢ!nb 8ie&Lϑc['xk*  u:/Z5G1бr]VsfOwWEAR:s?fp;w Rj9b]5]H|J6 D>$UiJkxL9i6_iqSĸlNU~yK0lucwe?g## npo:5/椫x<8r3,(٫)7:HǮL"筡ΦQ/'c}U|d 8 }hv$TxpXߵ/og 6wH0Ryb91'`݈`]7Tw\O2HƀAJႠ`O#vGC/isGҕ"Cr=8q]qJ& E[&\ou(cH-Cܳ b;r$'$n4;|dr//4п6^3|8,ݪߗM_.CCRYsT/zFZPf㡯Jy_<)Wb󭘈TI?E/#oI?Rr yRtw4\ǵٮ(dcYZ3#ljV8#D ނuYگ{V.✅AeO=>Tzp8'u"z$Zޛ3Cn6Il|^ YifOP6w흘jb3n]]xM&rHۯc(/2F/̸ؘ,WųL#dsF%+C?dr2nl(ED-]P3]6%l[wlQ0)M0._+OtIퟟ3ޗ>_S|S9v|YhdԄgaEşS0NNj+em_̸?4]aQX*^&:\Z'%Xx7}HW"yJ|\F`rl,>d20УLԂg>*cƃ S+[,M8L'ė&nZ_VUEOf&*^U *iT!b`Bv܁OZ;_s-*g !ЬA*&"CE Rs"2:sm77Xpԧy5/p?O*ͷ"i(d!C +.S0,ZPgUzYyNKKѧ)|R売Ol7;wjUvOZmRpL9ΡmiJ pCK`}ҟUT_z$ [T>'Gӧ?_x27,qBU?/ѝα|X!]O>Zl  ow;Ze2"ŧ CޛL{˦?vf| J[{>_D[4#`8' jnendstream endobj 83 0 obj << /Type /Font /Subtype /Type1 /Encoding 185 0 R /FirstChar 78 /LastChar 122 /Widths 186 0 R /BaseFont /IPCFUG+CMTT12 /FontDescriptor 81 0 R >> endobj 81 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /IPCFUG+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/N/S/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 82 0 R >> endobj 186 0 obj [515 0 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 ] endobj 185 0 obj << /Type /Encoding /Differences [ 0 /.notdef 78/N 79/.notdef 83/S 84/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 66 0 obj << /Length1 2135 /Length2 13067 /Length3 532 /Length 14224 /Filter /FlateDecode >> stream xUT]ݖp nhp@p 9?tۅXsSrt@Qk+:&z/!i%%.=#<9PJXp403ؿaf'Y۸ڙ8(ڙYLzEkS+=@= hH045pM2pW9ARJ$hhme 03XjA&oH䢎2zgz=h6Yr:ZzV@LEM]r&;G@+0(IW;LNAI/fzgؙ4@A%be`mhjZl=;;=Wx `jet]@ VW)YMVP'd0X9Zbc0hgrxq,AQ{=4;Yfe%гZY2w fe'{4=7{M\mL7~7d}{%n@;#f6s6 e#kGH ]{Pg Y{_.2c"@VpOK-2:wdl|fgy@Μ HT@z';DM #w鈽HE@@ե T]@e T] .NNj;\ N wE: ́@M.Mqq;{k:hwC@&&FФ,P TwL~_fKVXa>C~T6&euIw/ͭO*Mu׆1rs paznoEq> 1XSMgz;hrp` Jmak3JB긿Y0lu#cWp?f f_tt{VVq\ 3X 'W@]n$.j#q΀o'tߟ&b͍]R$QJ&rlXQi8L@ec1ScSb)zÏ׌0[&*@n 7b$țLROaYMG{a",:Jɴ_$Ku̟Q`cs!6Bk)܆e^Ze8GM0IXQ[+#-/`!`qLi)ű?!\5XLdfJBy: bf(wFqMA 7:%F4maC[u;Q=W7Zz2ժao(q w@}ZoiU<:Uivkk̈́*ZGJ! }[mF:3J>5G5M`-ԩF/sD>?|t sD0лrt;e?2oY~PT$#/PlјjVsz?IV8=J jZ7JW~@[3O?kHl7Bx*9۷"(n9wa9+F+:r-;L|@D#0hAlW7Kr%Q+%,>ܚA0;z[#8wTzD`h]QjŮc.$+Aa9/LZt&L6 o7-XHq'nQ5|I1Lq|c df'"{* [ QHy6?7Ƌ9,%:ܓLW%<?/і\vH ,0T7+hosDy~#]&h%^Nڵ8)i 3"K PۙTS0v&q՚SlɰxΘIjT%kY-(i+B 芝z C #oiT%t0F6O[Ԃ wkPam<òdrg,Qjt]]oꑈ䕎;^C1d/|H[> P0!Y,`Y#)nzy&iXH"W~]m\Vi ;MS`<^0̵ȂN1~ =mM,'Eq۪eIj5W+r b/?755a5۲\u* CVo30׽xPCj+d,%MdVhu+ k^#iBT̲:AAvx"2d[ 'x% zLo7qW%>kyXC>aA=·ėny8.hVo>͎Ɛ ᔲ rKFo Z:1%bb9N;bK]޲Qxm?w!C qPR1ӲCP)|eNpEӏȹ03Y~C[>EX+օ [@ PA$#KbFEv5BLccjX k p>'@mGngsݓP#"MWj:u'wPé礔]VO[Xs8Bg=&C `)w'i+rgSn:BZȠGV]ñq+w9+ iBc+UÃQuMK".y6AkT͈ ˞[~0܄~Ƿ {Zw` 6}VGysV"£d7Zqn۴'%X췸3Xӥ"J~!e `/*2|Hr?vk3Ҫ5ơ^&&)7$QAJ hO{ԟ𹜫zGyJ}gb;$oW'B>BOB %0/yC܇,VcB?Cw<<#j_4y܈8c.?Fp]K! )PW9"@Φ"hQǡ+P$D KCDŽ745+rO]V BD!!U!{stllRĺKٳcH0/ȁlj6oSALA:_Ƅ5)|KT}/l.Cɩ6-ɗϭr{L7H<ڌHtf&*]izlg.h,z>+a 2af~^n~2,w5p&J( ¨-"_iFᇷI6t1VW}Mng͐S0F?v(!t5oE~kMiAKY rZOup|)J|:E PoOHܲYt)mYR]H~l4q%& zlp*{>Sug ^4o#$e)+2b~$!lI oz#37Q9} @XW^7D,/@w{2$Z$P|}jC!U/1l% NJ4珦UZG,OSy˳9v6Qf&3Cqjkndi2R(J#JZ3%vJc5ʘ-?d8I5;ٍ1 C?c&+*S =9D$3 Һ@x+o\H%5`n=ztXul)=%a;hm6k`:,.pV)OjC~z17šELI/#cD柼+;mpK[^ZV=r.ꇣ1Ƃ * "X%qƷ#AݡvdՒ<OӬU{Gz[Be#L.RlUE[&=>\{ʼny?KDUt5iӖ`‰D:fQb,*TRCսnA1AC*.<; Kި]i/V*z`/Lm7!&PA扺-'Z,lgf\xkUcX.Ǧ\g.c,O9j)pt%3C} ]/?Ƶ /gup)p¤kv 9NO=zOw}B:?>R!fҗk S03%0;/Ίh'f`Ms kcdR{?roϕr5>oT@6i֞ѾimKZ, @2d!!}]&*FDO)#|wUm`U [N`M=XH1t |JXv[|"ݾH!r,Ż]M1_:2ϵDut5A=?(IZ./>c0ȰM+yHuY KF>0z(q_^ZD]Y!\:qd35oNAҫBB'dvqj97Y"45C4< &y[gCS 9gsqEG% F[!qU9{O޾{iܹ4|(p^9ٚ#_f| 1udE1"7{ďQR ? 3{^6y62|4$'tiMS1iiH2\mjFYR(1M@ifŵ:_g\aN#Kn"=q)VNK*j໽DG;\ATyZ8\Y6cXJv.Vx(݃%*#b<MCcDƝ^ 6.1}Om]E$$bFT7F ) ܑ{kष"1{&(ov5 ,qj0˧ 18HeR!JJ{Ï6QbcTO3*9!_s2:/z0M-iiTF4>rO߱tS7ŏfT:&HVbr6- s_0Tq^ӽs%NkmSr\sxR:xOtS8Uʓ_ܸ y{K bSzuD W2">LZL@ 0/Aj<_S2;,&^geDRWS?ꩾsFMJ>tYob{DS=EldfB4O–}.Fe(y;f- a5- ,^:m $kXBl/SBZvvתa!ޏw.@nͯtUQed >kM2^onPBK4*OPuXNe^ kMoc;68#ȕH 1~ ůrSrQoKCtgvhgsrO@lDBe5)u4P ;&˂Ng/?)o(^x0Eq\Ȑd}" RnU':4M=a2dB3ûpZwǩ : EM(է \z%\\n[_O$:!H2HB4.J5PӍrC.}ǃrOVͬQ5[Z_3DR<5q2ukj­xsmM[<mi?2 ֖I#*tRN@Z5$3L.1`bz7AGdf4&$x_a::vWq_پ vT_rsvvV7x=ŗʵ6!"IFS]Z>wVbϳ#G*lڪ1{D֛~|pc w@}h99 `7N=@+ z '\Tà^2-)qp?XmV[]V[`YzZ4tZ%,#Z)195M,f](nA'ES"YƟgbii\63-IDc\QC/CNѧ^/P2`?69pWQTv=_}OD2yN BHyK}DqAFY;1KQS!`sأ)v'ga"qB$dȧ/L=Sk\]`ߊIU2a8dL_4(R.`9h\vg_U!]ĶY6Eq)]g16>ۮnK?NH獢ɈN8>3-{~"~1N sL,s 9 xհo2E\S5f݉FH$]=D肁KԯLK~]|6߮JkKщT:u3-|77 (jpbbaE1 +QXXKzm{cl8 Jnqm9j}zJnQyV@Z$ϋO@ֺ?n1^@?eSj!i[~C\g)'Weo]ϊ5ZhzWB""yeK{K 9Zy_oEep\8HAvJ[~᥷o2?VC%_PJ5 ӂ8(̓>Mնh>SL]o+ԍTBXkk[Bz;<"2G byɋɍ_ÏyɅ?Wz3wv1$.H" 6'u`'e&wLHh'nX%֣ĆCK2 N- y<^$12wEZڵg;&}*y, [ib+ѥJ5~jp.4Y:wBL^"H|(I^@/t *K2b/UFdï<H1fr NZgۥX*6 >.$Ĉ'iΧKvr;V6I3?="qf8R<7LW;5Y)K^!Í~FS5!-t/DY~fSï}}7bxN7%-@]t9 p]ƵXMbϻFGn$UH^_}'mwΜ|pneAϟDM~zg@}ⶡe7S.eWʊɜ+GS&W|T/ؔ%?aBæDNژ>C9NY(W%c<: A$yLۍerLO ; ~FhEdM鍝ԆD˛i gy[ ?R)?(kӝ0U>jFz'M + >?M=zF ba$.g϶|⌭ c|T(*SN} J-),mNY-UrQ=zj)*ee-)?noӕ?daFlƘ ٻ+Y`{>߼;sf<8A([- ETDB8qZT6R3Y|(?ř uK!uThx١S7hx/4uDۿxiơE'#R67Xi{NoohX[Zw0ࠄSc6NmY ":vVHs? R>I0Ri4BH'GZ`JgV;9sTvLSZ}hnzg*Su',ӊ^\:Ի+ǟI#-pGW#S^>E Nڝ\ϫ6nns=Doɨä?pX[p㮓|6ʭ~$[k~/Ǩo_Tƌ:W/y+1_qbFkh^+.[=Gd&绥ԙ5n p|@ 1@ͺ2/ϭhtOջ@ (d< -<X(=T$}rpCCe+ik™<=s)xR=@@u&v=ia & 86qv57EHSHf`jEzT|> ס ^}2ӆ!ˌ=s"ܯثuiEH_ ÕwxAd^&-I-|`;tۉNW[9aÖoyd."e;+cJqjӶnbrCe-FO LZsjyg(OtI(=͑F9%]hԊ.t_ gBRveqWkm;e|"d; `ajn>MoH5t~^0dj|Ē,(5^H@?Sf JXA՗.+D4?8{ bx&tb>;^a"C Ɋ\(9m-_i0&{޶OsBa(![,wAYto-  DPpݪ.Й"^P"$}2ZFԁIv8t.oXP2z4~8s_Z8Q V~4-?r*l׹ɫNaceh5\شA\sb .Bq7l1grR~.u3S>k;iuqVbh,jIH+[0,~_Yٞ:qwFMKVioP<9Ex6a4(#؈'!,x4B[q7^*r6%OPsֶ=P^QN8fȢkR( : EML:}2k-ʹB|t fugTfg>SR] V?_;RI/CBș9ᒈZٹ8L$`DYfmCx*noQz.6- #QX%aB'Lˈj%)ؔV I61kLRX:˪rZ-Y >N,j\ A/=]rpnȭ(3MHHGnکR{m`Pj{* BtIal!g1R#%x ^@}U i.bm!|/47c⦈ێq?=U8,r 0CN$WO|&u/ݥ]0"J)qFnG$KDZ{ReOW U|t>?ذ~ras]k>isB݂?"/&3%*[ , ")QiMTHXF+˪Ρ|@ۈrjlUa8 ݏQf8A\D7~.%X%P(^]x3D֌ؼ)Am~NE4tV0 "yܲJ2 FMv}؃sq$:]{A K(v{>~a}[?ksH& ܲk`^Csw>|P ">UZN$M b~e,k[ R=Pjo X9/ zs2F|*SLcݩ G;#Xb- enF:]y),#I';?imZ.{,`TWl|*>eCԔ$%>@C ψiՒ=ɣu X(?Lkaii촘D/I t\" 9^@.!~ϊ1wPFl*[dޥ+K&4̽_/H:(ɠLƗ{`mZvwp&xrH%ügI"9;YV^FnjI+\)xJ'BTFFCYhJ]ÿv|Cmr 'J=n 9[.vCKd$rxYƔkXKxpY0]x=9Z6t6Jdn`[dMNݮ7&t 5dgƞfZ/aK4:xXm4w86p*%ʰtE3$w01}7pD`&'aؾLPE#_OVԋOc),;#"oMot)F_Tf+75vj7ͥ<~ziO{Q.m4y6ݵ|/aG}ݡ ƅek&j8pxm=hL9)r.,hf5GLE4NpV .Ӗe2<&" a*(#gtkJm@~ló ҚfɭKvhE(JGu;N,(cga 6c1WQ):w!{Yf9нSXiod|vύWLw[H-/5x3U$5L m: x]+ 3m#_;gYȍ}bM%̣&ti ,/e9fs8 Q[z$u%f@Yv۳p0p!R%p1y2`C |&f'D 9rbendstream endobj 67 0 obj << /Type /Font /Subtype /Type1 /Encoding 187 0 R /FirstChar 34 /LastChar 125 /Widths 188 0 R /BaseFont /EARCMO+CMTT9 /FontDescriptor 65 0 R >> endobj 65 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /EARCMO+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright) /FontFile 66 0 R >> endobj 188 0 obj [525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 ] endobj 187 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question 64/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 63 0 obj << /Length1 1268 /Length2 8301 /Length3 532 /Length 9088 /Filter /FlateDecode >> stream xe\[ۺ)\)Z$ ܡ@wNKEZ7ks㽟&0cy1gؙu]l!.0> ? @A@( 㲳+Cl<.0EPRR E^ ODŞp .З.Ϝ!P iaqFjl. (× pqq@ B^BaeRٹ5 t)/; wLn2$ Cp\ndS\I/;?mNUqh!,5+& tYU'(8 u {8$C@ڿ'ul0_W@# " D"}efJ0  { ظ"D@ >0-dgv.@lFr{HL (C0rR\BCHoCHMi!5 Ms&B$%K7?B?DHWlu/. DH#\"cxB> 27ϣ,/ Q )&UM;dJkeJrmL$o#b\"/+sD0A&PL+psʠћr8lrzB1Gnp+hٝs?BAr=y7kW&tO~ -azqe)e(:V1A@a~R.f_GH<~qb;TKu?TZ_P"#^QMkʾNv׋df j|ir3BsLnu]˭&ϸ~_FЬbp~O>,^*jCe>4jy:|ڰU`9yrB+MQ5E&XF.; IpmOk ;W"=άj"oyn7"'c=OFպ").9*xZmLi5R֌Zuw1G.h{X|p]54m>-ClվoF o_̶b|NE;|MUs- s-ZOܭ[2^ M-[Eo]gq!iY .}o+Ӣ 骁NöyzC |B"K'|1im$s֦;m+ႬNB7ELf@r#kJjڐ9؛|| l ,%zPFf4M8hwoVpT)&7vj e:@ ''=MEM!%4 il; ƪb:3`Vx-*lO.TYŮ]k?WEc,O WWj47>0oQgCzFJ(xlx,/|m>I#AYŁGmhFk i  o`4!Mk-[5iX<ڟh3QۜߗYO}"rwl/xћq]BOҭ?YE#f_-V%>p봦ei}5ϊS4┌L]ƐSGܜ_/'DU[ _kj5v~8{t|f1mZwP _;!n"nf ~JS,}9y: D}fؗS>ȲYiZr*>- +y .q52`uw闀KU}:J PtD G`獴{yNyA?+,2%EYCܖY^8;)SK/8rBcGI񪰿A V>V1I-Sg/Y,+_J aTR_H.X/*Su:dFZ-=֧6U myex1E廿6O[VCr3ăL@ Lr`P9N$\e&Bi_ufCK=WNܳZ|ʬWKΐ\G/ˇ3K.O\ݣ(S%O(헀II1'{|u?#eW=M_nD6G:hl;񷛨 T&SMeaԪwSZab,6K4$?Sywp!fqIM^cZFPm5uoaGh1-MÙM2?ϋzQ ^rsKu97ztɬs4d xk)}SWadY/*Vē!n^H]&mN7im% [$4xmtT4ʂiNHw+A+E lGU/[Yyv6&CQb|\>SsHm~zz9@C?l*z=+P#SA{_W;Kdb_}/|P2ҽޫ9 ՔI*%Th#7QK$ƔdOrCd8 nۦz8iR^h@:âq9ND|c'T9TDG~{RS / +`}tZQxd'jJmrx&imDJ u4Yi ޮw:Ώ*B}@(}I 'Sr|1_/eLXuU?lz=l-Q$LE_.OG~GU<c ;lr:^4)d)wf2e;yUsx62i QmM=U1Fm`26xF:qkƽӁ[ndNSi:{v`n>ץp5=Wo2=&9Up;y5RCM6 X(FoId~sI2.rIk$=I{IQPExJI=r[ύ?cdq=IWϞDS*yB?̍S83ͮE f~c{*9]dLyR0ȭbE2Km=eM1XNaѴ/ t]/V QazDO)7usVIi0nkuJu4 =kFw+¥ !Kм MR ,^f{s}7zEhOZ,0}zpvJK2b2B]oAv-7ޣKzC})6C+æ%^g]8Q ˺0 ݻHلYgR5 -sBd >^(ybB=<,\ކ$x.gL+oWq fپVQ'Ӵʂar@C4FglVi\A18%e|luE#63c#ͅ s &,T׆RV3v 4,~aoi!Ոu6tO],wӯ%ɒto1DWp?|,`lIc QAB1Ldr4: hu 0XeYsKGeB"=ί`*wL:Ĉ`\B%Z֡J d&w}Un>iz%^g2MwGy[dhwdq[aڛ_mcq4#W6Z:saZӲ w t;(>\Ͻ`K,F_a˱&u]s݉4Aމ{Δ=aE"E`&y\v7^ m |4lwq-41~9sH,a\zoW u@!v6U96+nЌKP:gM_w@48cN N^|_?a:<coO =4,5xr52يoʵ`#o;cq{ ^]lJ[ EhAQE3v&x`u vq۷RR_ 8Wb!Jhv4A'gh]ZB;ZK$pc(WVs0[)Jܖ4sGe*N m9R$X 93ntJmxV2}U8sku 1CQC 0 zG4޽0鈟uksI/iH lyR ,irsgs{T=;!PcZm-Z>&c1^S~`&kc;bN`V"+_ҁ&_>v=I` :7y3Yv4Bi-N?̵̂k"1wOC길A9|pZNYՃ%;nN&^'*b0g2gmU|=pNR--fLl.TkpxfЍFf[7n}6}kQgoq*ljp`͜H 1z桒fxF(-9?\*xo .?@jу_RPza3@Aꖒ#Npï wjd5h82{t%haS|fuF3JV2.G}vd-K|ގܷfD|͐[*/)j5(kAX|1\ϛ39qn ġNJ"O/ᚒj(0x"&١!"zV`c*¸0O87JCX(ʜlYκKޑ-S_ğc&PH5O0ϻxP),IFͭ4?Iq{=nyMc5ȯ T_JR7|nB!A*ʕM\ӿ#Z #dz^_14+.dSxЕztV0If36wiN0XdIU7>vhWyQAI왅?WHaհ3v=t5#꼗(bS$l-)f@^` 8tܡt#ֳzҘU7]^x]S:Rd%åA}PR Нxg#K%GSI6CX  #%G; N1K+mzʞge T)7zvGxǙ7q|t:u噍')yMvAyf@UDq Ț(1\=,WZ݌vBp$;ֽ0e'n5]9$g c|N`9LuX ú3[i{4lG19İX'JP>甉<ga_G<mAՑ[4==GzXtD4Ÿ'\4IU3r#5J&_"$t>TbHɀf4Y6eKR}d*Jfv 55;7l3= ΥouMu;쯣~09^Qi8Q5Պ!͞伣W-PxF%r]zliт[]Ȼ*n8BjPWN 8n>Elx7S[T`O۝f=wj0ħs,s:'m?sݺuG&p1RXn2j D8&_ LI{oL/\DW߅;;fGlo(NS/ol ?'@NwgwG|~endstream endobj 64 0 obj << /Type /Font /Subtype /Type1 /Encoding 189 0 R /FirstChar 44 /LastChar 122 /Widths 190 0 R /BaseFont /IAZRBZ+CMTI10 /FontDescriptor 62 0 R >> endobj 62 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /IAZRBZ+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/comma/period/A/C/D/I/J/K/L/M/P/S/T/U/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 63 0 R >> endobj 190 0 obj [307 0 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 743 0 716 755 0 0 0 0 386 525 769 627 897 0 0 678 0 0 562 716 743 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 307 460 511 307 0 0 256 818 562 511 511 0 422 409 332 537 460 664 464 486 409 ] endobj 189 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 46/period 47/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 73/I/J/K/L/M 78/.notdef 80/P 81/.notdef 83/S/T/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 57 0 obj << /Length1 804 /Length2 2103 /Length3 532 /Length 2689 /Filter /FlateDecode >> stream xy< ql#a6ujfPքpdi<03cdl-(mI*e;Ȓ}+!Q2T%K8w{y_u>=v82C . 266D LȢB S" 4Pe @HF &4 Zk&,L*l, iD8=2d8 T )T d29qȇ41>$bB2 CB@>p ͖H__D:ODbL"LVg HѿZ4* Ǡ@@N 4AE@p2ߓǷ΁pwv=;"r uSGĤH8+2c 2A}dC`H~PA# xCLڭbZi]R($@P"_$@˿=t{]4B!,oFR 2X?ho* I0n7D2^v&YƋ\am)Yb'9GPyV*FʗdҔU>yP 怈z"!u;Ad4!ؒܰvn޿\{Om~x}(8~'%Ն`@ĶPĽ":u0/bx>fCwMk4_'7 lW([k$)%&L@'\z:d*SU6ms2GbYK#Ƿ/(z.seqjS*dcȢaxd9G#/Wr:sUİ㇅cei. @)YͧDF?|Qq6U{8SqFhu[yEh /A'7 8ޥa\U! IFS#ӓ«$'$;K ߬ 3Uz2͔6[l)BN&9pLjd|v`yBw©~G2M xGu*ZKrd",gߩ$;)f5{i m4ɻԭVe 2<]qDe)vK禶q쭧$U˸[=-Z5ãdbu 'ofCRfίJ'}%8j>53=udCF`|K$[M{eXC\D@Z8~FMï[0>puyAsͮ$iϮnOʒ$O$&cD.@ze+zS\Jʺ@k$ۖ#0@P#3{r*swq74.][XXI͟m<ųLUN'$;"x[,졳z /7KeƸSR\ꭙݖv ke]me`R~'d6F<,%V*Sٸ5w5QKbiX}F}BYTx,R-bsثsUԩݷs݀\u/U)hUSPmoꎻek<dӷ~*%4': ^m(# ]Ǣg`sLtKJf#<_րs# Ţ%-8߫ njm*jg>xi@7t' ^Z#WːHe BIH8@>ljMDq[O58]e̒d<ދ)CU:_6g@QHB&]t%bPWһ]3@44Nm_i>͕O<5ɽ|AmCZtyGY+m9ʺu.rĻZ-[aʰ=ܭN>-dodo-:cY1΢CSK WhnpwrbFLr8n- /)%re/+S֜B:=t;Esiqp*L9_#SޖR6)'8N[4Ux8ձP;ƜW0rGK~;xo;LĮxcU2+Ҷp y< >Oh ɂDendstream endobj 58 0 obj << /Type /Font /Subtype /Type1 /Encoding 191 0 R /FirstChar 72 /LastChar 107 /Widths 192 0 R /BaseFont /IXRVLR+CMMI8 /FontDescriptor 56 0 R >> endobj 56 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /IXRVLR+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/H/T/i/j/k) /FontFile 57 0 R >> endobj 192 0 obj [873 0 0 0 0 0 0 0 0 0 0 0 619 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 362 430 553 ] endobj 191 0 obj << /Type /Encoding /Differences [ 0 /.notdef 72/H 73/.notdef 84/T 85/.notdef 105/i/j/k 108/.notdef] >> endobj 54 0 obj << /Length1 786 /Length2 1519 /Length3 532 /Length 2087 /Filter /FlateDecode >> stream xRy<(M%),ؗ Nɠ5/3j6c`B8Be9h,ɮ=)43tΟu?yy>TU\I?dИ:84vr7ph,JU՚LـL<+8CS=S}! FBp@ PX&x*D pUA)!C04P b@t6DBp8?Pe?id0Z&B!4 MjB$F HqFwAB' Sߋ۲(g,//] SG!,&DD}OZsH0} D<-د%a s +$d€V al+0އ]iJia!]`ܟX >X4߷ݱO#"$&C0p.0q#A $ #tc-W0C?1Nп0t aW m++g pX#,`d7"EC4D ɰ0j@DB4;]{ҭv&/i7^>)UΏqo7ݬ@ĥIGyWikݷ\m^HeUjsIC#m#!TΉDǡRb㢃$ZsH=KZP"QtD>mg Ѻ@0k-Iͯ :ѫUf=Z}q.T{lMEz\Udwqr\NBuj%l{5XaQ}a܃[T;?5|K?Q#zm[F7l/+ELw=ZM":tԦS^/k̘kfɭ6MhrNc?]^f31$ DِRw̖<ȷjak_J'G$WJE66E52]%Tpm%hȲ@顛 JvvPa-ql/P 崕6Y\ vMk*APe8S0{"l7^`Ȓ=.eѝJ`jN+a9%cd25S?v]\}4zlUTFVuu'J+bLm.E7MֆdE.Uy}Va.l%΁Hnq5ܞ `C\v>pAZ""W[]:ר RuDC7E^dTt _hhKGo\qꭣC>Ϊcärj^BQ&U<7\zWd+e`)Hi:vɁR2蝨ٛl7+Kq;~ gL(*rTw6KޫMǗ"e{:svz<.hGՑe<}IT}F|/yQƙWuf) ,5Z`=cç?x-yxO\):jYkt1td_$'~tWnL,vxV gH4ztmf+ tQ'FsN8Ab_T3MQPs'AcpTElrm9m^[ǯ&|`˱֬7S6. 6lElHc[Epy52ԐPޑ'Z2CbkT=ŗNr'j&'#co5FJ}oHVDUS^#jZcQY;NAqL5(byK3%#Z)\F%f}4凟vvG5]KΉgiK됚ϡ7wq<f{/3ŠNAh_9asyG psEKl3?[G5xk:KLBu߹U=p/?!@@ PAz0Q endstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 193 0 R /FirstChar 49 /LastChar 52 /Widths 194 0 R /BaseFont /WCZTPS+CMR8 /FontDescriptor 53 0 R >> endobj 53 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /WCZTPS+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/one/two/three/four) /FontFile 54 0 R >> endobj 194 0 obj [531 531 531 531 ] endobj 193 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two/three/four 53/.notdef] >> endobj 51 0 obj << /Length1 944 /Length2 1530 /Length3 532 /Length 2137 /Filter /FlateDecode >> stream xRyS5m]TTdBZ0 =/1j]8#jBגf}8; սc xfQp}鳓OPltRcVCGd6a"|0߈ڃx3NaI&CNm=IN׼[i+YR6 ҝEN%,B~_jcP[] ՔlEiEk z+{?(ooP:u{VQ&&DBlw{~/Ն{^5)IXSSJ:&˭KLJqy^"7}VڔRĬB]I,ϥKbTe&Rgnz }Y)W(;̟ZM29:gޝI`|TIfW~ ؝d_5*+<iۯ'>mr:ﴜۭJ q4?t<1 Y+7Uǧ0_Ҡ<UPޥKG^9J]mƩ,:+2uzaZU"Me' fxiԜ6huOb$xj'c#őÄkXԲujE o%? 'LjjOdXxxuN$`ƽ.wxNCG<ӖXS9[v OeCs̮3T%lV%%i SJ[J/b\*oNl)(|%ZњG.(umnZ\ڇ8+/x<=`0u$xnI-'T[%(2tYV[S{Yp)xS(owjؾ%f6YhkY:v n/Y^z˪O&t6U]~An5]qD}Zrl'ҺB N@3 C_:R(ԉz蝳ycy^PQU]Lyn ' T.!8oyr7cM;XIKJPD Ab{SILxZ*vzU0h|d}X'nw [4tBr.])a6)kP݅lR|8:DgvM Q4R؎R^zpGƻVڝOe]9j@]H3./My&?br`KSϣ}h½Fŕ4uHcuf}BZ߅U#ʲ9tm4#:}=.Cs錪t2WRvV\2Ml> endobj 50 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /SERLHW+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketleftBigg/bracketrightBigg/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 51 0 R >> endobj 196 0 obj [583 583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 667 667 667 667 667 ] endobj 195 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/bracketleftBigg/bracketrightBigg 36/.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 48 0 obj << /Length1 945 /Length2 3352 /Length3 532 /Length 4004 /Filter /FlateDecode >> stream xRy<}FDeN?4؍=Kb 11cϾKB)K)dZZȒ5Fx|us}9 1 k9=4 cDP@! @D % $ 8@A”aʪ @Dzxi}"U@CĢx$yb|h5PH`M@a1 y@~fV? gB4E0X<+';PF} c~4S/2$h;+،@놡yFd I[KA%0DN@cJ/`4ǠdFMHHa9zc]Vrd.ݕgvXcG9;X3:]eAGO^sdW%6[CU קּyΌDK|du.h<2}x@!sh8\gq"> >1W?g cV+IJڏL,e?e0i|vK uGuTSG?Wc]ӧu(d庳Z;¸Ἳ; Y *Ddrueʼ0MGz^L1bMy3x ԇ"x$Xa;>Y:ӝ ڟ&*\4wrm}YUb]`dD9BpOL[X8Ӝ yuu ڢgs(2uG7CLGKe*"aL/ڜ Q[fh1r SBۄYfyW1~8B0yC{P-myJ]Jf[*Oizچ'+4(k8yhY($fG? gl%q6rȞn.$Kh!Jj?~~[RN&MЏ}x@hgcp&ǾqF$ZJ8lnTNEt~4y;E$z&&12ﭱj}UDVUkJ^J}רw8Zg,^|SmTxۚ a6qص6+[K nŶcPƮ3O,g5TL/]Us_Q* Q$;5Ǐ5i`EVMI&M6淯+_D$[ ^!!^lir2^|<4a/yx|9nkjM- #&vRS(q=o6XچwrTE} \oK&W'Uղd=qQ^c3.N`5ĺG3]YIѾOۓHY+5b/GH>/w9ܼul)g]NκlM%*lLTD[SLsݰDy_(9\t>pX`D%O ҢֽqDZWY0_0$ i-(2%]bjs&ʍ> td߸;ݞpd_ٖ@^!ScOo fvO(=yQ69瓫4&dTgon+0#泲N4* cXV5{tNao ZTcyMK ,g[3/4~>{_KjAN9B3\ iN7ne}\E̡ӃzW5o_^Di#$粃׎3zƝpo<m0Bn ZP4(],vENFAR\lA1{'xϬu"W}|rpБew)E#7tgQohO:̕q'܏Y:TMrYm AjQUslk.׺(]1*:rÏ <*[і`s4%'f{35y_cN۪φ>fbTf֟5<%S\ZT/)/w>,<)S=@s3<~+OR~=sت#DH"JJ_=;oF÷!TwqdaŬe_Sˍo%:q [Ԫc䜹ъĻ Zٽ r2QEGk_F8G):r4| Փ~rdJK^G׃oDu[[ֽҽPG:F*7KUˀT WwrkdܫYv A7kd`]’&/R4b^4>2'LL7*?6(q[|RzիW/,x =$>Bk{بYi1DuvS&%vy6-Bڦ42lUT7e>_Yޤ#tsY w8e|/HйS% 32JD.s',tKXuz [[SVwAP}y8~fR!`ūa8$LG|&U.JʯXZ7:8\ 38ϕoȩYN: 4 A37^y6+9ˬz'3v Pͣtffo+͌U %gT^b\j%[B TR72S4?8|x$V7ZL ~jQ>ξts~.? Rf9J))TqT9:q՛OԦ4ݦ͉`}d$ߵ'(W28,Nsɗ!5 98XvíęKHpdhIi} =р&~p |boBARxH+*b5^q+~r6D;GBQSs3Na)vr|򚻕^˩2y^ e`ㅪjJ W&3SX );.Np̗ASUe(+ycG:2][&@F'EA"bM5ٝuS,_# 8 G]Ȯfʨ&0+-,Ф a)/ 9l.OO617L=>ټp-03{^ZDp^VvV>/i҅/Z5 @%JS5ҿSP-@Fa8M~5'1Bz0@%R<9FJp̛``4x?`+l|F "ws'dCp kxfS B{[12w0T{#@hsVBpuc`A+jj~vV$! 0@4Ѿ3 GC~t\])]8^ xbG- ;H7!iBd3~_\p\* jM"mYZU6@zG#4'q!"xa]|qCD7ۋd[-x.0YfD7&]RhnY.Imgd[Ѿ|v7V=A F<^Xm(1]뉞 1CS>xpDU3Nc9Unf'K7U}gGM =޺VyaLn'g8gj/WKFβ,M}Z{)vJz=ޘZhar޴)xj &1)FlYU5'~ޝK]Zf]auf_[BgZɨ-rI[ut՟Zl)jy,HwkqϪ%GQ<}9xA䓔wĤ>/^.vY^ )=ŇOj+MJkO҆%UM:yM76{Zwra2mѼnyzصBYhs7Ba&җt=4c%ܳ䈎-o FE 5 ];i"(:teJa5}87O4`Pj^TMendstream endobj 43 0 obj << /Type /Font /Subtype /Type1 /Encoding 199 0 R /FirstChar 0 /LastChar 106 /Widths 200 0 R /BaseFont /KSJANT+CMSY10 /FontDescriptor 41 0 R >> endobj 41 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /KSJANT+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/periodcentered/circlecopyrt/bullet/bar) /FontFile 42 0 R >> endobj 200 0 obj [778 278 0 0 0 0 0 0 0 0 0 0 0 1000 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 ] endobj 199 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered 2/.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef 106/bar 107/.notdef] >> endobj 36 0 obj << /Length1 1822 /Length2 11252 /Length3 532 /Length 12275 /Filter /FlateDecode >> stream xUXqww'w\-A. ݒlr\\3wWVՋnh(Tՙߚ9]YJlv66q$ g+Hx  pqh^Vz7ځ&%WK8zzr9XfV@W)/Orfn^r9M6i`o0#*;^on&v{RۺD89Jf g˜W\Mlo-lAIV.V 3U+W% 7oUSMM[\6EU+{W /72xO2@[4)v",CUpbX~Fۇ'x"vn\").myx?ûX:Ckϑ6i)7$ˡ|UzIz <aujiNe\kI 0k!-WnX pQ9K͓̄|kkDnV̪6ە-^/mDSqƒaEz)~3 iT5J% /!al%R?D3U@!t / !dMa)S]VoB}LkRגʧhT w$ZX՜?^0'SqN zwoOhvizǸ=F ]ҩ'A!l0N3PZ{P%ɰUy Z vbȳ-:#= blV !w=;yP$Uaums 60Oc}vvu|Rߎ/EK?,3zz®=9,T;@X cNJ♨(*ꩤ2@^qqhs%e)g2ʊ7i/g='dY.j,}J?fGV1k}0>"Tp9+yѳCt1 B7BW"s3Cpcw\˜\P#jhue%-)NY"G &'8 8I!A͔F΃e$y>'ΐYWƟkFnx3 yܪ׶-e)+ZI5ƂR9X*hܑGx}bQOLHWp~mGMkѣ P2s *_YGÁ1竩rռ^*P)bϠӻn-UJuL#qz=Aw<F+̔V%7qF[v`[˷k zI~6:J/ R=I#W SK A#-lBU}|]ij2b!vwh#.\h\qQjQSF9m*z93XśׄexXE(cXm򱧘Rڬ]L(~SVerO5g*]㜐UV>%&&oս[nw`wz;xjrSƠq;B r6`OmBioJ4ЭTɪ# :K^u'ԎqFvRELtrX;kw` ݪ&$6왆GYPm'}jz.h OP2:m4Lm)Լ[I@[(J{#AfQh#ٛ;{VRN=w#{kwܟL,HG=N+PIr>ovN?Vwk) r;m %v|T&nK Fz }'OZB%Js&B)Ob"eK=-s;fbǏi #n,kXŨabdq>^vfjt,;څ̈*{?g!_]Ph^#)5iqUIb/'v gK]9Tn3 J3KV&6t6:d;WzDt]$췜JOɤgE)[^abo>uHOal1oa j1s)$xӅw@ҶA~xcVZO'L$Ɋ,6i̴c<Mf(+9b(MKoV}7@Ąyim氘O+dO=}#κ~؜"ml/y8Sh=]8K]ڄh=~HUdDȇۿtλAGc`e$w`囶yݞB1&LD0 'QFnYo $c0csX_ v2Tg6@?hzA@[sǮ{Fލ.{p ȷ^M? ;-bqH#VS1ڃㄉ|^R:u1H߂rz[jRAlOW[h!k G2&Ћ)g;h%ҴwA^8T"IMNmÿbz`Lq" yu`?_Š?΀h~g 9kRTcrG( п 4(YM+ _a$zƔZΎ^{K#ZR+ϹH)_ԥtڗtwEy GDvW;vEFq Otշͻ:!Q8 J 9nZl0hT>}M@Cq2N?Ps7 -UJn+e0JsySrf⡟;xmC/0_|bܠBV`|vVLi- , v&.'̮ נ];A;ߝ翎rr6aT,q1q8. 0MVVna+F;y׮v\ڟ=h.8!CK~Go^Z6$7O+aL(}:?7[JqU/G^tޕ~"$K6nL<&KT+[]6co}b 1^vg$;ycFRdqSكKx۔aa@r-imQ3d`ꈘ78^+(y9I?,,dnGELwE4i@_dRƻTXm d;&fןBe%!^D%M sA#~}\|X8ݘ^ཥHyghccW'3o fmսOR#;%(]\4(P82`cggg@sb*mQlt_Ͻg>^NɓΨjc-3(~$|a7g?u` 7O89|-G{c6Ȥ08?^loR]VĊ IC8^gjsI*?uZH*b|ȋǧ53UԒbo>h I~H⾜!y$0Anݜ^ c JD)TӍ.%E~z;STA|9E g sbR,@i%0F:k/-(J@~v(Ʀ־eqMlD.+r'_D=C[ $ Vsx8K FȻ;+MO6>il1)+ݙWsj,z)fn^x N$u5D»( fʇnD" #Na71NU)$WB/Qƻ_wEP[K >,"뾹"^,[1,%T.6$ʈύVD߫!jH=_q"4FPY|"^j9쀚]ƅ j7b$mۢUQTx GܬOY$do.Z|pVVOU fWM6l_.q 2Pp0\qz *Tv]0,#VB ɒ b_,T7j[7J1{B!^[hYzܷ_\8zt -iGIҊ(bNAL5:W[ujOB%= /CR`9%I4g7Ez-qiƪ#m-D/Iwx8=olhms\5V\Q1J4kҸWح;O46m=cCU֨%SIzi ҒޛN;xs{a=~@h=[}Fdh,2>- NO@hr3}Y" 2-Lv< 0GJ)܏Nηf{\SZ^PDGNQ3 pmz2M&1gSc}|5/(w%!$ 2Fey!VOŪXYW}f<Hi]_98a8{4fskiu6EFG`c\ZámTp+RAb۟=Ky{F5#ゥ=3t@f7ռ#E!Yh!q(;gWi1J?r=(we`4g$n%ȃ|CD2(M Z;#~rzd{AR3Ju; *aGd0ѕ!~Uzy (^{Ztiejv~[@lqQ1;bgt]k0*^3vTVuz-Ĩ ٢'R*W:l sx+ I:u1H8xyO!Ύ 4lbO>I4uB[Ʈ- B幒q R~RM(#61ό3*Z ڣDg c(PbظEO~oN1mޝrl/ Oάſ8 4Y3_\guc!um`ZqGĄtCATU:c|Q07h9k@ o>L8H菅ʬxC8{ Q~(J\+}Y/+!\ M ص*cH>T$^cl;^c;"9AM`7zPʼn;V9^>2kiLA|øҴJSpQMxE3M0jp: U<%iedYBh Az55˽8귲O9}T/nY״YV#:ji-m5'qYZ]QO@Sv i$煫0{\LEZ(tOH~RE{Rt15J6Cc-lU;8iyE6t%{ܮ%Ĩ`zwM4dWF*v QT##++lA R8Wo֒zt!D0Y *΍SE-ZĴ6ٿٶDt0LJmt%V𷐉n^:k5.XEAؚK%Nռso73>8W@Es /"DD_R."n" *jbK D-I߄W MvP`v~e']H媁xұY5u)Ϟ䁽O[Ljv+loGXWa0$S~#vln̸!D"^}Qֵ!~j<.wI|TWߟa}"|/r0q<C0l2O>4ɐ85HU;]_q#ٽڀt'$e,W]La1fP#%*ִY歫=ٙUp/S:=e"&ܘ+ tLKyl(WI%x> zG镍v?#yw V%nEQF\&pdaED%vhDTGKd80W*_a`;7Jbh^Y 0Hko<֫ [O8b.~5g0٧2-(UMxkzxK┱ҤRƊqIZF13%TXʆOl޿C4\Ij@cI5Ч\kKCx Vz^Ζ4˞pdL.53ǑT'6\<;1vx#£=u QEabi +U~a4˶i_.ҽQxڌ ^NQ& zZj6_3%=0v< };ezHZy'7% LHwۛVHiwc.K-ݼ<ە9RDHDp+vt•Q݅ tHI*o#~u`dy ^֟/Scpa\mhN %2ɐ!%}aFT!{☑X3l l­.P+dH0BqS;Xۣem4 =Tk᜾I]CZBPm<Ϝu,nh"C8hhfsQ <[e8?7ڨ.khy_un'ײdTAg 谛oNo)IM QCZ0Pg {9 !{rtö[ac''&, XMnp+%Ko#(wKiNd-n i;huAW!VI?_ѮhĻA^Ili'Ӝ*9vD:1y6\Tե\NM( y̟ .~W <?鹬\Gɋ'ux#i㌀X8AH`\r]$4=i#-ÞҐKghPYMfYp "wVY.wE;Xa\)ݱ bo.U#F +PI lBSކV *ʻp9K-rmrp1X;n'g,H@rGl+t|k|?cmgH&N^)Z_rz&^lAO-)σ'!sWTd梱&YId$GKD4[ʉ)UQ|ibƮ\OmW# [@ݶW+9@7SϊNں{8|۠;v9T &ZF!Zb޼olrt6| 5O-m2ch4K 2sb`k79ZImI2bc;o:(v2᣿VMO6`C_vZ{M;bR؞(Tx]p3ܟ82٣ ޞhV K@ЌYur٘B Ue\O[baС_]FP1*$ c23yP<&J;23 z'jzytof&(h<%嚫xuy!޸}$ոG3 Xc&~(OˌC﹜=85r[&+2hN̿LGHX߱Gyq5ܧ:Ng{ 3C󼠪K3>XQu2هS$ֻa#8?Ԓe.XyteCExN[|%1y..t1H۞EAQ:j?]›M*ҼزPwOIz*tO9qGG% t#Rd;k71cP#b1ǰFۏȮIV7Tlvr-'}0T0@ ŝZuw|1'bbؙ`7K.Uk~ esP!X1:9膟Lp8un}[:k 6*T~i@`ybJ5ΔqCW KXӪ6:02y݂d2Xٞ۬Ό0Z>VknB@<&%Z;fއ#qOrjێ|}5 z67-slNP}\&M:ḅX/nd-zZ }HY**xztE,v?AO -F1Sfس|0$k&orGĕZD٧3l?]ej~_RrqEdy,tlٴ:2('.g-;7ȜlLZ΂ ^DuhH#1)h /]@#[=1,,q}`RLSZ$k)Ńک]V&`4.:LX *T`DBXGw?6Fzlyɮf0X1*>mo&Jd$PccS0v~D Z$xE"jPZ6,e"E!~ХD>j4&7M"V)ZHF%zho!VNPaCPKҡw nÚX4|3'ݘ62MZwL!#E8>"VrN7l> endobj 35 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /URRXBO+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/numbersign/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/four/six/colon/less/equal/greater/A/B/C/D/E/F/I/K/L/M/N/O/P/Q/R/S/T/U/W/X/bracketleft/backslash/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 36 0 R >> endobj 202 0 obj [525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 0 0 0 525 0 525 525 525 0 0 525 525 525 525 525 525 0 0 525 0 525 525 525 525 525 525 525 525 525 525 525 0 525 525 0 0 525 525 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 201 0 obj << /Type /Encoding /Differences [ 0 /.notdef 35/numbersign 36/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two 51/.notdef 52/four 53/.notdef 54/six 55/.notdef 58/colon 59/.notdef 60/less/equal/greater 63/.notdef 65/A/B/C/D/E/F 71/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U 86/.notdef 87/W/X 89/.notdef 91/bracketleft/backslash/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 33 0 obj << /Length1 1531 /Length2 8933 /Length3 532 /Length 9822 /Filter /FlateDecode >> stream xe\q% ^=8 ^(.ŋiq+šhx9O;~4IYk=[:*5MVq+Hvgz@NNdnKׯq'+-ÍF8غ%J;\,esw[#@bira;:4\=AVlh@ `e$p#OT d@ `G]ߐ2*N{빹d@=AeI@8WMdfni 6wtSl *驳~POٿfo7M~?I-!Vv`AOx~@ yCwtIW`v+7rs-!NN#vgA~ Wk; y8^l #;𗇝P7;O=ZF7AKH&p: M* ZE7A(&o.?]M~=bA,~?Nnk@Uv t J9P+Z@Z9P ?sB5@^z{P ?7-!cYVN^CGh }qBFAhKK0ES̰6 *=3]oaKG]2(Hݢ:eB\<2}?]d*:S߼9h*LgSoV/LvDx=NKE$wĚ$7(m,+N"'SxqTmQq5@CNjY܍2jkgs TQ+e)aEwSi|Hl]+53P+'U}n+p)/χK?4eP%|:)V}*޼x<$ mqm3TQ=8*;r FAu!P7g|4/e6&G=DHۘVO7>+к˂XcI ӝnpҏ2u6UVc8tI$ nz*5z_/sQ$-Zcg-ftsBpH?l#Id%q?Y_6bBHB;ӊ|VD7$g=kNlEuͽGxмB*~"*X3G<_c˗˷WsesEN3_k [|λLu'\k{Y3S=h|]l[n, 82X[!?aQp{39S$uXbr8 &Lr 0 p"eg=* _0fb5]1dO%,LPzR0{u G31CuMkHh;,?A ?蹈`npͩ,麦`[[8d܍~i\(3XJgTxޅl}V~Au`MӊhYS}_]HRpЃnxfB*.?B[=K[aDDɌ?#lJӬ[C#* Z2I0cZ)z 5 qArLxN D\i挂W5/e6[LDBQ|<|;mTm#l\[)|)k06JYOa)՞b6e5r+B!)ԘM!K@FP9]'JUx4:hC6(x%yWv_jŞVj- )aGJ[5Cl3ND5*G$O׆yS0tŴ]vqg\vrcclI#Hb_͚ю[J+ kwW$&.PJ{axE೴uu},qGͷPt3D]܋uO* t DlooIi zYAlN~B[ MyQ^rp \N^kl-OOۅ l茋֮Snyㅪ1W405EOqy#q-7&+tg?Rw-M>9+7.U --u IW kZ?_4?D o±&mfren&,;> jogIDŽMGrĠ(W8|K63>puC=ۀd{'D"Ls};[/qˉT;7ٳp Kv{y6rۧ8CS%F\_5&m>X %Fh쎅=1^#~q/u_:8~TK\]zC[BRJQO(ECR_GO̫un6gXˑ ٛ,s$,5RUS5hñymܑ^aG.UH dj#*o5o7 :uB~DžLc}RjQQ4U^P׎zT حgebb1,vĦd7nؾϝTFnt6,ijkƉ5쬸[b]01pѝ/;5i`++ pH|/,m(Cv~0Q=k@Kң5y^ytw;S%m&Mo*g _k1d=fD8K huyEwҹE7gB :*PɍN֎WMS)==6]U_WXvK;r,,_}kW'YT|$cjN4REBּ\70o%3E:P[s*,L\2U"I/w}UH P )vP|ogt@p|D;φT(+n7ND֐~퓿0-\ Ze l YWS]n{+9@^N|uĕqEp-6'Uclx!4xM%=3 %b & >ɶ ץcl| Mȭ^&a .@龀{P~syc8.0ILYDs}JE_=0iY3Ijg}Ue u!/YźR~`/P.d/\Tf9o|< EY Dr]R×>-ɳzPT&evHTV E2 G̝ehW5N" .9BzE3*| JM|1c!yڊB6uL؎S<#¹әA΍U?ӆJ"X8(d%]# oZj= #8Y'W~~ډ!<uo>28qE5q-@nLQ#%bE*:+Nv'lu0yqklFel.[gb\0"SN c}=PvH"ۂQ,!HgҮ:T 2ù X)9 w1oQx-cb)V= RAi-{*af}/lAmm/Bm DVQ?}3쿳19K8Jص%u~s W`Nmj! 袥4y)<+#Р-2"NTfy1f9 >⣄ 8]T'MF~_5?s[)s^jN^ sOLrܞ"lG}\]0wTqc:Iz>ֱƠ+  h=ՌN`!f؃ҖhWܖx'fF N?w뙌&ϧ+nffmpT]Rj0q#w D3&[y&04Ph]%YM_ ~0kBޏt6P4"\"$8?ɍp$vӬŀg=K G؝7? d5-Sn,:ihHj;]>aSv^tJu?|;U[V=^YckK~#`0{7t5$WA!a{ئvׯφ0-9iW&(Er|91V5!A}ëDc_4Ъvo- 0D>dDlM5%~CB~l#\8sgK.⼁ާafCPQ,xi5=H(x߇lW˚nt(5;ZI`mL񙮪i LO{ky*tv0j%DJK ״!@ǟDwDNbc tʅP ?UXWLG.{[ dIa\wIh[+?.5nL$ȴ1Rm.W<۰%2-+tկ_pc\&np*{vj= G6B1>|?/,E &<3u|Q$8iC;Y~:M;" ]M'>ۥD"4םއes2wX' E|H<;{j8I&o%W U3\&DX?$)yvAOG'BYH]fvWJU^R6Y7jbX^ HYS*t-3zD;wbo:5qÃTt>m)Y\Iyo36JC*5ktJ>'kR‘Um#jo3(݈FF05AbivI3*bJD!Zz2"XVc`xd-9~O7kl⅜Hx?@(_܏E{͛lpk300֑H3zX4h8me*ZurwdE5Q8~wS9K?ێI٨/_%˄Mr k=فZwnƧ2&DҸR^u 7Fjpvqt}l܋-U.>:Ƶ(#L]2$~wPࡠ2]Sk~ߡ/At ݙ7. 9+VgtS@}O0,"Q8eyȪ=Ce9"%dscYhhh(EFISڳ5~fLpY@DlCdd%F8n*ϫ*O/EoeGE]qR8^` ׍Gb29̥]VG,T 1wQ CWrZ>8nџu1549!<%!–`rjAdefRj#63ECW.l^. &. 'J\۷E!)$(#i j4}NU뜸$wi03K?B- >J)]R: k":c{4FtV:4e}5cF%?͎zRVh&pUj4s?cŕGmowN%Zr]D@{pmv[]gr꫷3i Kf6GG@~DXOp,z]Km2.ْvC@G( 9{laG~qPO-oq EOl9.怗T]nPIN"fX&L2_L\V||q .,1uѢ,%k?ٸe_-y8 ._7Z]֥46*ڢILX<.<y[v;{¹Y4So/=xl {\y.nW1JZUyIpzutmb chZ ;W.JյeZ)FAoi:4܇%@W)-BC 7')'`_TT`0;"h>]&˄] p L8zZy7m(aǗnj76R.Lf7Ծ^Gv0>pid]QBIRGiui arXj"P}8FvgTAX>ӱ^v7V#_1h!%/'2ҭU SF,:9<]7r8@c ӾJ0mLsI*l+^ަxrMR36U_M2_f])zI_e׊S +4avW{u@J -n2^cj<27+U]X:yjp%Աf.s_$4Wֈ/JJ,Π S)or١Ɋ! <,[*KY省ˉԵn,Vw(gɍ.wvyR \}vGA[*PZPM?'Tء<Ueao|ӗCqƷnARZ˹Q~}(Z\04{WXLg=s=ݹ˩~e&I܀αka Aʇ$Ftzb%H,2sXT[ALSLڈzzbaox E({ev,5aRnBZP ]? ZH=kӷ`5\bI׫wLs#3j/)Wm\ ~/ _a꽟#suCy:ZLLZI:]|StaA9G+O1005BdMzbxfwU?|"io0 kG-T|x0J=r [>6G^[Oo8GB}@!/<c?VK}* dKW<_|:2tv3ýLS\t{!G6'6q&b!SKMS j:z4;. Ϫ_.vc /uF߬iN"=wJQ,9\'2 npPcq(WDƧ 멷He:"Hle0 r} {,>D^`snO&Ax; e\ T Imڅ~/ō9ʵvLքhպYeĬ}0Opxy\š~\,p |g g19trn=x\xaN`ZGQé8.{0[Tu+b(gnܧ%g\CQpgb` ZͦY Iΐ#UG,\^#hh OV;+l͇JUiQ-O,b"\,G0Z;CH⏗ނ?W'$1Z*&ܜ%KkŖZ*JQy/fC`M$b4i{pҧ[2ljcY*jolW㞌aJHBɪP#]+Zpt1o=m&*4tj oveps~"z&[>Kef 3F>mHꉹJˑZw4?ڽbTu/M-0U_i|Zj/7~@vgHTX;?_w\!:,ҾBzh_lN; r$L% } & ^|9wk5'XJM"!Fb>A񷨒GRҶ&zO^f:Z.VN}%nﰹG?zn BW'?ǎi~Q؋Sm,%KzX&'Cn"~BV5-bgk^KE_HˆVg= zJ>Xڈ:]o;&TlQ2Z'T|Z8#=4frk8n+.1T2TZw~hg缀S5&+su;tPۙHcA7؍MG ƳD{l;2 y_>0r2*sVCMx&Hd8ŢֵLv y?49J25~قDMղ&tCGqJv26Ry =c8^7+r/4G7艝ή~up(^LGq{:^vFTٴƬmC> endobj 32 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /GHGLXQ+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fl/comma/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/A/B/C/F/I/K/L/M/N/O/R/S/T/U/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 33 0 R >> endobj 204 0 obj [625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312 0 312 0 562 562 562 562 562 562 562 562 562 562 312 0 0 0 0 0 0 850 800 812 0 0 707 0 0 419 0 881 676 1067 880 845 0 0 839 625 782 865 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 344 594 312 937 625 562 625 0 459 444 437 625 594 812 594 594 500 ] endobj 203 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/fl 14/.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 65/A/B/C 68/.notdef 70/F 71/.notdef 73/I 74/.notdef 75/K/L/M/N/O 80/.notdef 82/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 26 0 obj << /Length1 748 /Length2 648 /Length3 532 /Length 1187 /Filter /FlateDecode >> stream xSU uLOJu+53Rp T03RUu.JM,sI,IR04Tp,MW04U002222RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`yDzxhCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!- F& řK,Ipaz)Z@ABLܼEariQQj^ 8OajjEj2k-Yӷs]|a>k_d?nvfJm@%>wX,iG /vRfǝ%ش ̵Ɵh3pi8LsEN͚ϯ/%>nԸ[l)* W2nT<.s9EN{6oc^YD/jWh?V(9+AM _{DCO2=)s#oY;ݟsC=՗b;*rSgr_*}=.MrV3W;vfu/ lI(k-<; S=ء~&O,֫ZD_m_7 ?QTZsׄݛ7,g;EZOy,L+գg^Ԕ^T;nOxkcoXw\ ز_IWNO~綡{r(Fw懄;ӌ+n2Inс_[=8gkԀaa@rNjbQI~nbQ6&xendstream endobj 27 0 obj << /Type /Font /Subtype /Type1 /Encoding 205 0 R /FirstChar 24 /LastChar 24 /Widths 206 0 R /BaseFont /RHYHHT+CMSY9 /FontDescriptor 25 0 R >> endobj 25 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /RHYHHT+CMSY9 /ItalicAngle -14.035 /StemV 87 /XHeight 431 /FontBBox [-30 -958 1146 777] /Flags 4 /CharSet (/similar) /FontFile 26 0 R >> endobj 206 0 obj [799 ] endobj 205 0 obj << /Type /Encoding /Differences [ 0 /.notdef 24/similar 25/.notdef] >> endobj 23 0 obj << /Length1 1390 /Length2 7708 /Length3 532 /Length 8547 /Filter /FlateDecode >> stream xeX[(-P\ -A݋Kq{-Pdo=yί}O1|9f^]]j ;ssp *Bn.L&& rKn!!n% - +$/B<`֖Vf _II;0 dP9[f @ jf vHB Ϳv84N`+؜`nm 0[ZcrG WK`nhxPx-0S).迭!spq*Ps0?S6vUgLp+d$k6Wv6X N`{4o85Te%_}/흵=+o\\\D߿> ^k{s;auo[0:Ln^t(EufP;;<~P!AdO_ wD.+MpM&opCGMGMVM ʿ &>u!s\7}C\ )w`-Xp ܄w6~#7܆6@x]mp ܆o{ y@J4s+7[Xï16\ۤ6N"HY6ǫtb}y)ȺZSAMvG1&{6v;óJ,CcˁW^{!?HY뢁O;h_6f f@tBk9󅭸'% LڄXp!)DK|0EG`AǫJ#~XZW?T# ԂQ5?+d{RʘL˄v3 o0*R4Z1v?Es?CJVdτr/-`@܃a7yMJGΤ1Fm9EE:ǃ %|g@ڷi++N4!r23܁xdL \;f2oMLA4["B35SjbFta9 X8"ArXOJl'|Zqta.DAAw!Iʈ'4ZOeШuI]!R Nl-./,U|RɚE/mAGP Uq㡮.9ȩòީZCuk z(_# mޓ}' 5  E++R4ɉk%YNf{'܁AbJ&AGEN:d@u*LA;*"DNREcd?p`= =a5ҙ0:sρ@BU H FX|B?c嵜} x#h%X+|3j=g+& fkֳDQE$9Xvfq_Vø'"  lB* J?x" Moo# q5mVڊe0Cz3ZC _§;Ēq꫊lMemY^A2 Z^ !m3Ƌ)YUw\qԽ2>wM񩞟Zeh :@m[$ֈB<=ͼB'':zvW ʟO P(h<ӳS}f{_GNv2eWxǥj ݃b7# gD|¢ɗHs5R1#EJ v#9ʟnXPվTu1m0+ЕQʖ/Q/S)>C?H_h\_UK,bI"[Ѐ | 5w_9UzKC 0)껳%Ĕ:He_':/y?|OzkcMUMǞwZVu1{=6a/sE=Y]N5VLKc,''IJ2sYӔ^U[&-luQS+U8֐-`v+HRiiJePD**27fbWGc1ˬڑ_r!cȏUJ\9yȿ5MԀ3M,`|#a6u&8UjL6w96UYl5R,8{ÉHCl&d!KZc/GfDc+q*>K\MIl_y]N%FѣyS2G qY(ŗ_~Egm`2 S Oa|5kė&.fLN/ =Dq/p;iUUYl+l"BcI.L$$$_`RUgikZ\NVuXnu@a^#zX&Jj8K6!O^Q!  .DR` 6xXFNJ`8Iߐ>>,O~؆5pܝ>$iI }n^+sۏ f5՟'Nd վ3zzϔ붜?ˏD,VAظ w֑ZZkpN O5Gt&z.ΐqtvxwCƢ<5Ӗ 5,4+CAVͧ )`c_em9dʺwMϮ/ָJ6L !6qtmiI2 V&_A qqkG1tbV'PS)w.t~ o1<+FsI#ʚ:lٝ<u?2CzK I5c%0T#(0p7Re J6²Dn cA3&9U=7ƔL̂ꖪ_E敨7kл85rM3*<8^egqh7@9ӋÄ➠s 좾O>T'zɥiR\)*r>}r?Dna*Z83鯥Ak Mf"x._ e1KQ! E"Fwz}2ͮ@*VM&*X͏# 6+ |>J}-K";㌦[rkt=MBߝJq|B(#M.M.)2fCyJmN}FgCᓭ NE])Qk+@\4x +ojnK(rYKhOs QT X@ v(R`OtыTPۘ@(2)Ys䱺OŶ^A- :pÇmeYJnvD 4GE,: \gihd*i)9F` VS.uo9/,\Kgm(Mq~KRb|"dY:mFJx¦4@KR#%>O:Ճ{ cD}T8wHR7]ԮL7Φ}.עa%މ}V#6Ww,0ʰlX5vdW 3QE@c6 .\cmBd Fy^%P7\fVʘksCCeec>ޟTVRa]vշh-ZNC %_Y묰Y*z0ߊxzoWs?WAG kOTd*O2:r` ,aW>Ƈy6ւ~A. /)a`# D%cbWX-ڙ[=ѯ%g<v>K#bϖC4-Bm,Up%Ge0腍&zNZS3$hAAPFXDxSA5-P5'n Vh3c,/Ua^Y&,S khO)D6١xϙ*lQx -eG^gDoR֢up`?F:+ _ڍlUļ1#>tPw= ^1yΟ Z 5 ՟ ʚUXW^D9/MWqLυ:E"r0Tx<.TRPp@= )8IKӥxwߴt"E@˂J4BIղrzm"iNSW*2TxCY*^Qe}vI5"o~7sJW8G ,Nt9o-n7kT):.`..=e '; OX\{ޘ Epjh.nY=wTΪou,| eO˳^y *3dzwVմ~&,Wvkl.F,K+VIAfGA+i>Xmu]DcՃHn?+r-bV>dE}f 0, ȡ8XXKz'*fm$I41wطMs/iQL,4zH" >+z MA:Z-zư0 x2f}jIOVX˅58+q$C^*"櫭=l75O-aΜ|ZBRzV̛:a W%6JmfNJRқ^# }w/'lkGŌC~dd;.x[l_@XU<<4vT6L&g[fҸqA#>%ɲA/PCxMƢiIeR^v0K`*$ez\%^T;7^PPj\ &]9GսSYνTd!~'FN4"*QT_lo$BδUe2d a lb)rfz:QHOWu2HMb8Ŏ꽄Ok%-ݔRkZZ nУݦL`^(zIl?9(+sp8:+- XxȰZU#v 4&Xᝏ)GKJRo@K/Z)iHcTh|i}!?3)cga>D@ywxu.WKl@h"~^EWaVhyyѸKXmzGtZ*Rٽ;w@2Ԥ!V (N9%W]Q'qR~uk88snJ4wUחy:J2Tp> endobj 22 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /QNESDA+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/fl/parenleft/parenright/comma/period/slash/colon/at/A/B/C/D/E/F/G/I/L/N/P/S/T/U/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 23 0 R >> endobj 208 0 obj [571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400 400 0 0 285 0 285 514 0 0 0 0 0 0 0 0 0 0 285 0 0 0 0 0 799 771 728 742 785 699 671 806 0 371 0 0 642 0 771 0 699 0 0 571 742 771 0 0 0 0 0 0 0 0 0 0 0 514 571 457 571 457 314 514 571 285 0 542 285 856 571 514 571 0 402 405 400 571 542 742 0 542 ] endobj 207 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/fl 14/.notdef 40/parenleft/parenright 42/.notdef 44/comma 45/.notdef 46/period/slash 48/.notdef 58/colon 59/.notdef 64/at/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 76/L 77/.notdef 78/N 79/.notdef 80/P 81/.notdef 83/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y 122/.notdef] >> endobj 20 0 obj << /Length1 751 /Length2 733 /Length3 532 /Length 1278 /Filter /FlateDecode >> stream xSU uLOJu+53Rp 4S03RUu.JM,sI,IR04Tp,MW04U002226RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`;8hCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!-  ,IH 3NNպ& & F f(KRJ"0~Z&0SS+Rn^Onɚme X9X&u3SjM*,y־% mHx֮"&4׻,^5+Åa3>_xV/'x楼pZkBZAo`(&^y?ҊoO^~ש&x,o:e} ;yVђ T~x̝4lWg%?.qp>$oW>hJ;Ǻ' DG2O^k$[Ĭe C6WP,~ٸ~ゟ;ͳgdxMPđ:o)]؊^Ujn:u{2wGٹޡiNʓn艜Z\=kGNs| d |ິ _l{ݷ^xBYZ잋gqxTD5o\k;YCs(TTyN AU+Ke ڵ=\q_Pܕz2Z[N58?Hy.;֬7sU/.̙{'l>W`OO<3 ʥwlKUQ_Y~X*A@NL-Rw\>e%=;l5=_ҰiNK,LnG r^P'iXh--XͲ +z (\ sRJsӿendstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 209 0 R /FirstChar 3 /LastChar 3 /Widths 210 0 R /BaseFont /APCOOL+CMSY6 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /APCOOL+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/asteriskmath) /FontFile 20 0 R >> endobj 210 0 obj [639 ] endobj 209 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef] >> endobj 17 0 obj << /Length1 2032 /Length2 14982 /Length3 532 /Length 16079 /Filter /FlateDecode >> stream xeT]ݖh wwwwwٸK . NUޯh)1DIA ioK,&L, KA!0r7rKbN.b4L"8YXl{ڛX\<EllUYLp8LaYXM-M\vL(ؙsWN@)bi%Ml\v&vĬFNNF$bobK;S1(hg\B /? Wd!@9Q tK[|?p3XV A •0šwo$y,3`3(].fJ(zz?!NS)Op郔EF͊ K{0#s݋.KWA(U8COķrJOi`_8+܀ ah'c͖| 뜼 {pMa*f$)3< XPxo#PGfj2D D,H7F N1o/2s[5΁}TS$u+hKL uޚ`8N1|.c5&xbNL|$rKю3A_w[R5Kig(Hi\)א2ʿt\Y \Si+z p_cg;%+d]HHBnvhi{JC:S>bljJoub\EM߾]. Tm?}\b5e>rvodn;&Lj5w($NQe8uYL\w7Vc]SO7g#^tQU6FPtc®2xZ9*ro"ߑ1JФ '=d]3>,#>ZWAgz:zǸ_]93’ ݶeN9.6ҽ+*nFS\7#$ݧB"GλpN.Xкrnp;z.N_uw ټqn֖KLbx=M8~;H)I߂U<^y*bPY3 4q~wΙE0D $ODf"LVbBh,xg&WU~."⑕y4/a&"sо2Y>3}HstBxofD.c X;\ZW؜ '+nQIOύ-QǍ틸mRh l} \GxXiی=;w2eXwxG>|Vmi3|7ޯ*:z6GǭM!JTXН94>cj\jγ-}b|y..Dxa^|Skcf}J߿ՋeYm5qҷrA[終C+N2]2b2@gzu~gŠRke_\xu0;R4#[6}>){]S· Bݑ/z% vPaܗٍsf"nOVg_ɨ Am?i'ChRh Nntz@ N̢h.yG㆞WC:XNHzwTF{d1κyHru+GXcچℲgDIY[VG:iw3M>ɨ/1dk}D?HP3#v=tq#)n-+$rL9TSRrh~FLb\FBYadC%5p~3{A(oiXw=5$_GLӬkNlD7i} S; ^m=ʽ̖= ;tǂb&{h$z~C wPbNfn@inAwC&)Z")EN2eԢ CGi !f絀pIT?WЦŻ>ت_V0?4|wwgS@HЃ!ؼ}u6:*Q.gtJ[N$^ډ]M.X~r/釼OB)NkWPwE<xOc3R<`ebFe(RѱKmr YO* m*N!LS'aԆ/}YQ詵x?YL۳Sby|e%9ʧu/迫W~ENPW#dkD)uE7C`%Kra|/Xp b*lR1q#l:AvBӘ_s!tS.=kkQe7}v0։SCh~t#^6 r޲zܭӳUNA<XFt&Ma JsL <0^N ^GOC\dwQ\陵G˘hx߁\rvQQano.tP'Wj>x'}ֳ>C!,^o 4S]$ʵuaIp7yõwU% E!8KBnd߻BX#K o)[ȏOMQHN_,l6~c̓,64UL ͂Կ禝2L^B'&=9& qtO#/MI_,(7@@)X_m*`fH[MӒl;;;i{QO l+yJ3}F/KLC[\Hu˿.8/0@MAtk*.8,Ps(ڃ귎L/4C4|;H<54#ZP$!n#,YS{ҩn/,0B_<qI͇A(%9oW&iW@E&QpB<$p{lpf`\Sߥ|X r]Ur@/2PN3ЀuQ"G為#f{sc2ܘ wŮM< NCޠ&њ'LI}w벞vӪ9e/Lez2-[f0MHv"С$hu$A`˫c>+q͔@+ Us>ZbZ pgU{No>۠oǴ`n)jN~> 4sDE}x(69u{Ǟ8gG&cKhqT'g'qxIs:_N( .$-JG?ӗꩠ\.y?6Gw⚔7Xyڴ2+GMj.EtjʰiX-b>D@ђՈXNYZ&l To5RF"vGv$ C4TUl:9YO7tڹ]A9x~$^֥Ŏ)d/a{<h񗇝ʌϣT]>1S' #ƁD`Q \᫷R;)'YrÔ#nˢz+Å7~VS PȽLӽs8 w3r_h5nIxÀybM1-P!m9/q A-6l O,Z&Ґ8ǻ]sqW! |z:VHjûio^z-2ؾ+H465UN#2e7}~LRdv0>OPA3rj47r` ;`֬ uBA@A4^B=zHw0ߪ"X #K&=G``F6,K.Mjx65[ Qk 8#~#rRͮ,ŘQlm :Բ0_{)Q‘Ga*7|xw@1{Ҋ*٬Ý^?*[|̤VDMB)=YJj +4#ogp^dCv[ ͯY98(ߩbht)fy.:5,*4,"'O}|)dc$tA_c^nzՐ_dg$]rR9Gw4h 67!—&~xs(ySܪe6ovr L9!A */gA_ b7Hq\Hpbz!hX'RރWMBA,!\KiG%q}uO;2̊e=K-WYzʎ;Ln{"'9j5 O_y8 ȹ㤝mSz|'-UFFBAʓ3Z:hBM/Q@w$$z6PF-uSooGTyNDl{4m=D` dQ_=A4V7l.3ՌЦj}uJ[~6pnJ &>gWlF =ߕ~TTI tP$cW(>U2{yh!:.mg|fi\-VΙl)ʯТ6lXE7}ÉA+vlD;eWخzcLPYKwQhSt5L2ɷkt/΂^N/i ^Az.[ݓr+&|$nGD VV"w}'|ݩ6` z֣QltWEDzZ*<m*?OGYYdϞPmyzZ<sԨ@JT% S֚Ͼ4<)hWʩaErp+ sqBp]j(, Zz?K4|lX=GRiZt, I+3d8A)RyJ囅@~k_)J]trG k]ӭi긤 lޥ `L;XsR`]%;[U$M%7}m$CUf)xIa<=x9<_Cu.J,ikF|067Eh"菉#Vwpkvx'o>0qb#(dQ1l_o6q;΋<vcFaGu8qt8{uU]MVR HmQYbge<#*^roQpzMp٠Tnxhp̢Å_  |v2s]%;S "2i XqX̤m+2cpAg WYNo9"I bPs-aѦDŬ_dIA:j<ÉI7VB /uhˀkw>l4K"UJDou- q‡fCz;±Y?l`El{I :>)Ax7du3>L#ݯI/mT@{^NZqV@j9h*, i7D~L=±DBF؁j_L4Yp+߰ٯ|@Qr[ǘѿD+ȫ]hj19Y^_KPEr ɩؠluvow9HS6־8a[aBƧr; ru$IȡEn=D IO&MqcSIA.(л<ٿSI1D$ۢ7ŸaB~$*B񳂎ʜo 7i%Fz\lA*f0Ľ]dn]1a} d9)s.?Q *Aþ8I&T7s@ {b;l'wzvkSh,wS ݥPax_Z0"DHd7|p`( v\> .cs%l6!r ʑ1ihGEkو GJk nr^Io}X?nLTR<m-R;mg6%p%1 0o#&083QomAyQݲ1}C`C3 pa$pUb^Ki`8w%:ϳ>͠dˊaH8 _dHP E)8=2ڍܔ?c@Ĺٷ-;ײ/*GD^a+.{n+ 8%{!" ū[@!]J𵎳`OBjV,\1QƇ-fנ_*F*mukkn^ #n B}ʶqbW:"liOG"4C6}EdX9$ k5~ x^Uj!6K]05i_rS|TZ NbC^)2':,a~:Le) :˲W$v'GsN,<48׷AM}yN!)ZOhw%]=|hU%};bIMDN/Fuh/0TP]ˮ;cgUL->M7!̨k#~1+Y_C@\PT)a#zEFͿqnchɁN;l1qoWU1u "j6,+_Xb^; uH=#[.7}(XgیpD <~ҮND܁fk7 İ\deSbä[:WU7( O\C݉&lrQ)iC6dXO-v }`XrN } D[g\P ]X^/S5~mba8+ST(Ӟ7^!v/phfT=14L-ENP3FTKKdw"!9ޏ%AWdˢI}1/a/hxa&zcK/wqآ L%kt aq{*MmՋAXޚQPT@\.00v}‰;Ro좳+!c `9YɓFdAS8H" T3܌p?t >46?H#y$ƃu yEELe^VnB<:=5 1)gu'ǡْhEӦ.L_D rt!h%D}1J׏ bg`֡VYsmЩ Xw+d[A_E@Asx@l}Aj 9`ۧflCUQ'7r!沏^6Y/ע`>>19VLܯP7䴕-WQ@=`Y+~=UV=Dv-V+GB&ӊD<>5-,4zNϖSrKUjex9ŽDK5:*~G3ΚYP%! JA2_P3O#;wjCŒm"=c/UUHAIzWixa.5iv1&֚$t=Y)OtJ殇b5$5muπ b˽.Ͼbg%6OG"Wˤʹ%^_ٶx)O9sޅ ^/Wkt֗l1=/KnkL/}l]Oepf)rhl(p0TEpP̔ "&K0@e=vݻO.-IMZEA22]ZNVCa&Ȃ-}fFUV9?HvÌGo17E>DjIoz+ȣznÂ]D[.~<sHWUʊIfЇ;!aOV-5!-u-L|nwe B#kV<%Eh$6Bs)-~f4+jAטeNIJ*{3zX2&Hoe靁kAS\ 9{¤.CK-au{Tqc[,B(OE d'( _~ 砙P x % mo2[徒o1aRPIѲxD|~A#8Ғ5_VxO:lئ_G._^z| stz8A^bʹ&&|4aԢ*9fͷNA_8E}5'YU6D;k &o@znzJ "1Mne=*WW @##K⥀DyF ??Wt1x NJ| >E aVxUʂ[! fM˦ꢳ²!ʤ65FS؞ECwGʥuXnz 9dI]qQ{l 5$X=+sAuh{š<Д&@ Ix(EJ/t3x7޸}Hi>|!Le`75F]&睯 #.A3qyl$[itCS'nQݡe\:E6"pӬ緄<n=m]m=ͧ{ o .Kd#+Vg+!Nʝ,B8&>,"K.#kw^g7PϨU4G kkegOt/tfےgz(mu&tY `_BVҺXL(ځ^$Ww|3'o-LΒ,^]xz|dBNj9J3^Z1 %"ײaȺ?_(9BBc=SdQ\9uϟz4̅3H]L8&ovAD:/2(Ti3}ww]2IKoec*RClDL4裖蜁Ubaɠn>o`~ ~n9_Fƽ93qeq\vdqۖIĹيO$;S~?s-?J'z}{vɞ Ę,@Ң+Iyjiby]?{+p̅0{ K#æ.f}_j6G/п -&^.J*` paD|iy-m해2ћ{+^r/;Goĺ-@wm*9SO|c;]Im"C;3q8ΊS&H5p]*CQsU}Eu/a oHfx> Q`shA8(!}ssI8o#> B2V<+rKĮQ8~ZeUϻڝB!S uiB ۑNvnzK~{pd+S}1VߐS!z^`$jVaHi #Gtٵ, fC0,ֶ 7?^gFI4rv~׳̜o 2[SSiP/ph Be .v3.ӂ'h2&&&Sb׉OϜYÛ}z'7yij'P +b \{a2娚@0'y[qozƥ(פ4r-H"٫iUݚ%w c9UHy@E~ _*6wy \cg E h{V <̈́Uzӧgq(E]D T(̄{,gI̍@E8k'HG *[m{xI88 2ͳ; k? -sJڌqŠ"( 9z>N"3xa"ju,nToo"yQ_' b6/~ObO.( 2 U]ⳞyPZVC> c9O(QCx֎sv\>}d$ TYYY|X~ҳ 'DZv:' .ΨJaTT1ʽEdEj7]@>Qo=̤ 32¯2縩5:haz]H]Y;l@TI3\dY`㋺~2!H;!ʊQ ԞJ}rQ=($h.EFݝ(/" DWhl7Ԡ&>Mxn;eB!2%{}Ɋ(-ܧ&J抶bg~_Be+9>{:.5g:#k,rId#Po#T 6J %b;ʧjRb9nY7Y=<3ҶbPk휕T%G)Աx_*Re;U9w>acpACI5~͙>]@:/ '__(VxNEȓw- "WXGͻTsWfE&Ș`? "=wdB9ؼ*_Ҙ}Þ˿ ?xCZw:\bYFwL3E4ԓ|MAA,*ٮ3,I|§~NA[j`M^dW@:j U꥽$kOb4۠*O:V k'Lg˾Wn8@<r4F:K<~ݠ> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CCIHLL+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/ffi/quotedblright/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 17 0 R >> endobj 212 0 obj [583 556 556 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 211 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 34/quotedblright 35/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 14 0 obj << /Length1 1382 /Length2 8688 /Length3 532 /Length 9520 /Filter /FlateDecode >> stream xe\\!{ph ޸K 4N݃{A\2}ߓ̽g>ovY]oj*U qsSޅC $`eg@L\R&. A'2~@_AnAv^Tlid+ nLJ&.V ;-@ r` P9 A欨s d Ge˓_asWAd@M;zAlj Sjklbߝq;d89 %s?S߂eNȹ؂-mA@;\bf0uٛh6$ f={Pl_3ovvCM?Iۛ9-<zzA;1 t  y E9؃avq([A@dp,\!\6gza(ރGxlڍ"|6{FNl~Oʈ&oN&?UQMPUQM֨CEi&?=l& 7AU!v5?^jBkZТ?Zu~#<к tO@h]ОP ?j7rBz}$$ܽX-aChn7i ]^zqA w3`Ԇ_RFX 8Ω6xXO NK5:wex[[nZFNqi3O[2WFZ_ו˧̰ RNs* 冝k,: +©C+]!r^̭bd3I CR@:>܆Q%JM[ӕ:u_H:MDogڟXŞې@EI3jvc/G+ pju#ZfݗK>o>_%/`HK<+68=Y#[OG4zrQ_`Xsj$bCq`b>DRޏY|b< [^ViPK pA9rr[ Yvz~'n<)EUoaY ~_NpCenG3uc֏kzU諬[ɘ[ЙY}y!FP4}ס֢\O q,wP[[ [>Oly옕:RjX4fR|3r)SUw7wŀ[#¨sWڴ\c?kHݙw8?!= *\bL= SE@y̴]ߧ|;吚Ӗ 0)V>$! g+"Dmt$A5P;Z>ϖWd4/kV]Zq}WQQgvpR74ҝ>>>sr~ffLM!k"1aJBc0:έчg #ƚ+f _EXL"s8kÓV*dD*Sm,96P3yex9B)Sɀl"dC7o2vLZh"|/[ܠ8,}bό>"r&])[D-I; :[ӄ'@k+C[{D࠴F ,uq"!iɜ.S.W7'jޒ4?<=_c(3=)kbg>zBpr"\^#yVTby#xhCDt+vWji-9+'N#M"HS:N(bi{_[>iZn:3u\Ƿ@[iKhs4^h6QzKm[Q.8Paq9KSv縞_i<FX٤}BَRž ~؛9r J`W AS5OUeZ0ZUkE*2gLCOQq a伻qA$[sb$ >Tau%zϡضDrGԇ3^F܄`#`!{0EҿDHN 9/qdwR]];/-b u&{Jֿ]1-luH<#=FBaJZaD;FQ-'-AQ7?sTU Q0ccxE;Z+0)NHbX|q>" (}c쭻%inc vdL1j*otoLqUoᝠBh態vPRkk'Zrљi{aOiLhhiUyLpAQo˱e}n +ED^z6i.i\`T:JvzK%3,o<tT wuYk3j]+L-BI4jnOщӔP:b&T!r.HBYԥ4fSҞn&NZ.yfzǾr|s72{w(XR|?C9U0zPH)IpV|N F :g>>7՟BMsE4:/:v/shK27m )qG]0%|VC|NdO[ Nt𠕱J߸7x7TY%j%1R%I@i5*U;GYs@aot:vsV̹_ȡ3} rP.R3eS!O9k_= F]&lsr2~[Mc#w쾏v=1>e*g000܉#fฑ~:&3J)\R8I޷2ZHlkruufCuQHC9%jLe{(uyd ""^o3.&ޥ؊GRˁu}"{;{sx9fK}Nq8%({qW;YN,[LV~Է_x'ѕ(\ywdU1*ޞ4̺ʆМȲ8`xR:P?ȒF#ƀOr~lm ;Xb-6\8*_V PW=x&ҷ$ AGHoi(;\NY?d*^rzSX؏Fڴ'ۇA [͡!&m1ΉW}QL W˒cV<ݞߕpզ>ϖioT濸v!)FQՒgו`lAQR![dZ^V. J˖0Wϕx5[!`+$5k&"Ul ʗrAoqaJQ$U2ՕLVli+REDI+Xf +Is dn5pD[|݆w >l |:Qj2֢ ypԊJ2}u pW|'PoiNeab9ƮW nဒ5 KsQ(hgU}#CI+lj;8;8O>߈O&?D/1K~wT7ڴvk[D1^ E޿B ?vK=Tƴ`PXBt[<^|V1T$~U~(Ѽ658TK꽣2ԍ/˨at;ݱ٣sh|NTk?*J(F ~uɽo=Ñl AV;Je!_EVW"!5kݸ^f0cImxɳBU2G=XdΩ0A C>ol0>ƅtR%36_`zUV' qC͔`Xk߷r7"UB0r7m>D)df% }1;/D Gu!}R ;dP Kc6T1%謞C gh(Zd/;l8bJC{խ`w{4 "rj*ɺʹ. hzNjbOi%·yAaz]ylbȂ(bbb S'jIҗbۢE?"8u QFH#cE.፷Ref h[F{H_- ~G"]« 1$'{WDBɧw\OKgg>id9 8Ft8Dj8.`5K5"e/ L:k.4,]7fe9ZV /q33T8UXY>xoekDTegaDc9_ f,Lw^:j8~|-|&J>K]G5BqƗW hX^n/_&9lu߾;>fhwX"?Wѩ,9/H v͢B9a_9KW;?E;*Δ/̽rmIk51KL$MݦY]:N0+j21-lȝ'!pmzet1s߹1/|7֦a ,eP3eX ɗTʹPCZh5s5qkMv,Yoq߇c (ȟlD/azèz_R'u C`f$FS͉ʛm4"|^yf.!#WZ[xvneyY)"Y\d++dx-F E-wfѲO}^WnKI1xj..S?ʗ^ ,{>&v9֫ize}RNCt ˾>Rź4kuN8Cdy/gB*:^Upު⻉@] 1e} i_&CG<2*j1Vx,!FZLtM0Ɩ0H&s^ wq~/ zIi>wb2}ز?ZPy"gBc3 +?e*> .LUaY7D0HyH{XI&nCG;8[sX0ZnzP?Me1G)WTQ 8IܐVL.tsb:7}K6ѾLD= N$[2bB1o7d'VZ2,V?;`yb0 :"/[~2<`1G*BؑbEև9( hI\{@n0 pB8t|*>.IOݟvT?"!R\?d&Vco8 9\XxCf2?hdZv8?Ypݭ^򆋠A;3l;F82Odt3mTs%9'y4A~ʺyG(4(F!11iQ~Uסl[v1B~{.cIFxE'~_B2q1$?.j5a`,{>YCeIgɃ,l-r6ﭷ4:J"/_tQTn2#`eKq#}_%Vcn9ݯf?H X /R{HRs> -?N_0j.٭|fʝב؎!~{-{bVY&PgXճZ,DiPMaIEN5mj/ncmrP>T(F-6 %75Qm'㜾=?8_Oxf`(^ox(b!U5]T̶o0c2Rvwd\v6>H{~ ( GXK azNz{(cb qXMg9D+[+v qE nD@9g6r_%dE-SMG3u3CF*] vf*xjWܗ%IpF: 0ywGq(_ubtT:Ft *idE 2c9j;_¡=w-RﲹrO2]В8:*rCŢr&b˱fWU@me`#![F 8ФnLY3EáJFRV&"I N*>vpxTQgGSi| o&\UIL~aԱ:kJC.2NF`<ÌŊ!%%NnxEeD`&BdfB_s=6% 'G8%Rݨp`M:pq )> 6g(l7]78Qjk*|Y7LUQY v@y-ĭ<\u:ޗp'O8 ]U||i/_8RRQWb ܟsk dt ~ d $"LLE:nC 21|=X[ɨ|fu;f n#s#TlK@W ʀR8Ucl{ꇎ9jv߀W/iEȮΜ*t@#sS?f5y,؎z&7͐ۏGS4q[}0n~dc_JWd?x933qpq#h#8dxWBlmr_კwsY?Wh/Rlbýjj#ibw`V6 y*K7SO=(\ݶ&j`f/xߩ]heg3%As9*]/BpR\ӜBl>qG c._z}wUqލQ6ȯ5/-`gA_Vendstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 213 0 R /FirstChar 48 /LastChar 121 /Widths 214 0 R /BaseFont /MCQNFE+CMBX10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /MCQNFE+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/zero/one/two/three/four/five/six/seven/eight/nine/colon/A/B/C/F/I/K/L/M/O/T/U/a/b/c/d/e/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 14 0 R >> endobj 214 0 obj [575 575 575 575 575 575 575 575 575 575 319 0 0 0 0 0 0 869 818 831 0 0 724 0 0 436 0 901 692 1092 0 864 0 0 0 0 800 885 0 0 0 0 0 0 0 0 0 0 0 559 639 511 639 527 0 575 639 319 0 607 319 958 639 575 639 0 474 454 447 639 607 831 0 607 ] endobj 213 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 65/A/B/C 68/.notdef 70/F 71/.notdef 73/I 74/.notdef 75/K/L/M 78/.notdef 79/O 80/.notdef 84/T/U 86/.notdef 97/a/b/c/d/e 102/.notdef 103/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y 122/.notdef] >> endobj 11 0 obj << /Length1 770 /Length2 805 /Length3 532 /Length 1360 /Filter /FlateDecode >> stream xRkPW1 VQ I ERBD:ݸ VQQ*(8*` RĊ":@s=:؆]|q*R$ ɗpi2E X@$qu , S*-M*m o< % e0P%S-* pB   qƀhKhkTHYS˚ X8E*1~΂H@R !}RWiHCI] NhGRU/q ܄$ J0ĠJ5CiMo? /yxCX(JLV=yFlF4"<akňY H 2 =JӨ#`\B$X|I1& b(cXj6)BDabW{CQIk]œ b!7F/4jmim|R?v7"wrڊm)ws@Ccuo0ԞFmSXT鵮o<\Ǖh62O쑢$5sn%kcSofqTcgeY7.uE9UVmS* v.Dz{yK*>+ƽ]5Q6Y^lt/sn)vJ<_'-zt!ۤNtq]l2K x wNAw{= xdwsg*~`lRww81O92]rlm Xu트tPr5ciU?ӡn,(1iZ3"oh諧Exm^ beyUPbı27 +qqY;/mIa E{K*|W-<]'[[<%oy/G_׋7TzA(ʷ4^Is N,1[E9v 63,l%̱)=%6z;KM8o p$w|isKYnXx6 1٨ q/ٱO88w $5RtxBp0 iVwc,J4Jr:k`/x@/~ϦYDr/*8aLaendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 215 0 R /FirstChar 3 /LastChar 48 /Widths 216 0 R /BaseFont /XLISBD+CMSY8 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /XLISBD+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/asteriskmath/prime) /FontFile 11 0 R >> endobj 216 0 obj [531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 288 ] endobj 215 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 48/prime 49/.notdef] >> endobj 8 0 obj << /Length1 1088 /Length2 4507 /Length3 532 /Length 5215 /Filter /FlateDecode >> stream xW\S۶.EDP!.4A!  Ћ"#Mz#M@D@4Al.7=[>>]esL.6=8A`)>Xpq)aPVR@$j Ť RB.yxP,E8; : 00$)Tpt\G n ‘0aD@? im0@pWX) $/oA;zH wa⪮:POM4t 1p҇i#HW?8#uD !]T@]h?MϜ=t[g `@3!A!!0{a8Q1 z'Q7D@0H=`)"0(g?% WHB`1@E <~s ;"("/«M$WEx&<~ K!7@!~S  oo7KBaZ??gDQ- @qQ!Vsbhܟ?hf$~, 0h1O%o@Ѷ)Vs<`c{| 'etTKDKnTwM<_r{|x/Ua:uk(@II~OΛ=$.uw:rCiKBEBiهŴ^=#͎?7_7cL@MNٽG9A#"EnEE5TF ܱ x ɷ}3~r]*pp]Ǥ ;ۚv(xghݠbOP6iYu?BqMQRC$%b4&Y*c~Q}><62=!';6qJI"?Y@LDžgK.'IhA.kyfanhN [ɘ>ڼd&)/>৬q(3/c':J{kŇRdRyX%;|8y3li97-ipeաIx^@u_.Sr`А ͳWk9Rm7hI 3lI#SU)[m#Afg1x򬷛kdra9 O}R)%Q=(ibt'99HQY_IV*N}J:#2LϪ?Y,[t%1)簬MwYJ>#LNʋmbYHVnOsuZ:uw;xN2M?N ToȿX槪2[t ,H-Ap9vJYjJQ~y({7lKCQd(irM eD%˱3RUFLq<D*3_XUvŇil+b{7k"I ?Wo>X}Uj:k?\=$}bHћNq*S7 q7UPƥȯJxWcu _Q__ui { 'E)[lt;Yed9yNx|p'smQ船Uds]eIy>d@\"XDS\6{{Olt$( sW7($&M'fN6]\ϷՉ%Z\d5Gk52 rG9aJW.$㗣+sܕvj.ٔrGD1|쟔pvyHd=y,'P*aExY&r#D#K9W_3^dt6ZO ֫h Ps _fqy %'I& @'7yH ^:) 3[X]ʝޅ Ν ;¯jK?6E[* -zO}ͨظ1 ;8=?oɂVӾhmv1RhH\H|=xV_檭{Ă'@RXX҂V"uJHrrRlrEHkhh ,Xl74mgAϕ9SUF'%)32 ,~F3}QCD|DcIdzJ Z_8+6RKx%n+L`DgJފѫ'^V=&xXe"O_g$;S}h Fug +&CЭw̑kM,3+F`ٗM{e%Ar=sX7dz9-ãM2Xr(c Oʙ"X.]yp/4|󵎰bK$ d`nU>TqXݓg:MZϷ! WHd&OPB`gtve#L5Q.D2q|3̵"PA?*=Xv_Q}6F^x;yax5{VGqIΊ^$w(x>O9h,Rmu-:Ko8;z)]q9{w+GZEO>v8ϭwml@ý OK:gcRƨ}K lBBّi.#x08K5Nrkxkj>^}/a{VA\%|{yKJ̬vd[D5ZHjV?6C\jsE'VPE[ c3 \O!0ٳzvRקr .um5yh+y›Frǹa.:uᗨBҀ3&aOp6l;85-;)UL .R6'5옺iWDDŽ8b-Y"k4@ '`Y+?JQqD5NWSsƧ13q f Z@>־)W9fpjqH9؉j1O('2Sd&in1ԉKjM,԰%!Fi8莛9o4rբ.)"_ASަћyu[ 벺gnPW$HQx]Khwx0{̧_:nN9^ n֝fQ ~1hH(ѓ>aUO61ȳ_k r#/n :^Gu3=,sJߎߺ`_8§L $p Ycr}9_fGnyR拶a&IiS/t df:L?zOڇ,8°VpRlHFu̺"/x'q6Y*Y}YbpAP]n`qqMd|9LQ>$qqYߢ;R)y ܯY6OL(Ώy^MJXtKo݅5݈H[i۷򾤗Ff2 TڏX.ut;c34Q/7p%O{o߶6I6I&ʮZL$az_M-4 )QJ /*:V'H7@274- f>FOL3k;؀ Mb{'k *r755+fݴ|Zz5 PZHb)(l(XȣdO]a,|%H_H?Ud!Y-<>;_?5e5^&kq3lmˬӢ< $?zuSfrro'6ƴ۫)ё?R5^k%\"B@Y:H7푸,kc4][&(^{k\H"l ?|/B戀bqendstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 217 0 R /FirstChar 44 /LastChar 121 /Widths 218 0 R /BaseFont /YJZJVT+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /YJZJVT+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/period/zero/one/two/seven/A/D/E/N/P/T/a/d/h/i/k/l/m/o/s/t/v/y) /FontFile 8 0 R >> endobj 218 0 obj [272 0 272 0 490 490 490 0 0 0 0 490 0 0 0 0 0 0 0 0 0 734 0 0 748 666 0 0 0 0 0 0 0 0 734 0 666 0 0 0 707 0 0 0 0 0 0 0 0 0 0 0 0 490 0 0 544 0 0 0 544 272 0 517 272 816 0 490 0 0 0 386 381 0 517 0 0 517 ] endobj 217 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two 51/.notdef 55/seven 56/.notdef 65/A 66/.notdef 68/D/E 70/.notdef 78/N 79/.notdef 80/P 81/.notdef 84/T 85/.notdef 97/a 98/.notdef 100/d 101/.notdef 104/h/i 106/.notdef 107/k/l/m 110/.notdef 111/o 112/.notdef 115/s/t 117/.notdef 118/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 1034 /Length2 4042 /Length3 532 /Length 4720 /Filter /FlateDecode >> stream xWXSA@4 HM! 5*E@@DT ]" E"(UiG Hssg曽_o\lz (-Z%aB0I@I[& ..%<IHZ!0@0qI( P¹1WgcX@IpDk!]8; +(?3<}F `0#h )Hk$2(ú(=#BogqUO?n+pn4ơx?CiF0j.; exb|(= Gx O  ]Ec- O |3Obt*ˆ_襂á0XAH< "^>ڇ(")q&=NQqF  @x/Y7I@/_$@~1 iFn ȿ %6DĎPĺ_#bCb.7$J\ߐ(Om+*|""XX D QDXŸ?d⁡>h;(N*).J`)?C}NupDR=ZM2(nxxD կ자>cf!ӯ{^7+bCӽ%)E9]x RN{մeKfF{-¦)ݽ$R4bRJԻ;N>n^zKaMib\!)b¦qUb莅$yp=?yZ 'm:qa]Ug];v^;>x0bB ]&>.WZ=1=3|~2}ԊKW}tPn!5P_STNl nϨQZWO}LS#ï .NxPjz^=ިEU#puUDa7,Lx?L~ |CsƢ4TtSC2.4еa겪-_>Ȣk`HdIX*7[q/kB,ӥ"rPb8]D_c^*&~irߤ/o!I{.xd([i/M;c. =I +UzzܬIy 4c?."h\ ?;:GXt'<&b,r889WRb/N0w)|;8 -6Wcgwv})tÎѫV4׮Φ[}߰{b$:*$e1_8 bs`vox%p~GE"GQB([Ds`qsuj:'>KV22 260",x˦f*9ϰbeܓBMwsyspbOa~ )&{m juKu{tXM 2vy^~\ l\d,Db |gIs!|'BG+QpǎҡK Xn4E=j 2 zcUpia0 F yMnƤT~[nSfˎQJ,S0y|}2Zbz~5iP*]w]!*};iځ`|96?H߸S7=hʩ_:3NZدuƋe3E 3,)z.ƴ|,%"7wwU wZH4DJ\dnYYq" _\uY/SVZʁmm`1,e[~?r HZ?G ,B)wgnI~ғu=L}zTmi(KsA|8hVc<#8½Rľ~F;K |(,t^ǶE|mV8&\g)ۤ^WR%-g*^PPo퉑*Ȍv:웶-{/4Q̓sˍDi o_E<͒r88D]XҘ&ry5M!*y-X׵-s4;MIb N:oX>.{}ghn:9hЯZJq':$UB[p0RS0hU(K[Ld|5'L4sء*6 };Qg"4%$i2-'P^k߫ALg8+uau?IUTMWnt699lRbIGIE,[iQ"Nh)8$FZFvs䇬3We2E}ݏ#fZjOFf7RQTU+l'E 7@6gwх$nogxR.=76MNzap+˰j\td0\zc*xEkjZ;ՓzF#9|nx*r4@8£AeZO'5_zGy֧+6o':o)e.LY3FJZ3Oh+K^x,"vYtԨIJel1Q%@MaSmX.^qWI*׽u!_I2Fr WYlV$H*b.H2߂Wd׊*[O^p7TίFޓݺ[EZrͷϩEUg=u;ͺ-XƜ/r-xл#עqlR~VΏ!~Сz 3 sTƅS0OKB'~ִ؇6]'gFX*麗˾w];0yaJJ.e[9`҉M5e(SRåXEMKD&+C~lT9" OU0lLB V3ǣ j~9s_uw`NS+{y9:ۥ|["Nvs깿bsq~-EgZK_Q-JЛOU(i-zo˔Xc{S0o)'LlϽe9Y@ӝܖ?+Z' 75V'2 rNC'R7;- 4'DJ5Rp ƂJ3Z1 >h~qkZ\9(F)5[D;kgYGEm~?QpH3_endstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 219 0 R /FirstChar 46 /LastChar 117 /Widths 220 0 R /BaseFont /IOBWKI+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /IOBWKI+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/period/zero/one/B/F/G/K/L/T/U/V/a/d/e/f/i/n/o/r/s/u) /FontFile 5 0 R >> endobj 220 0 obj [250 0 459 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 654 0 0 0 602 726 0 0 0 719 576 0 0 0 0 0 0 0 668 693 693 0 0 0 0 0 0 0 0 0 0 459 0 0 511 406 276 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 ] endobj 219 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 48/zero/one 50/.notdef 66/B 67/.notdef 70/F/G 72/.notdef 75/K/L 77/.notdef 84/T/U/V 87/.notdef 97/a 98/.notdef 100/d/e/f 103/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u 118/.notdef] >> endobj 28 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [2 0 R 30 0 R 39 0 R 45 0 R 60 0 R 69 0 R] >> endobj 74 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [72 0 R 76 0 R 79 0 R 85 0 R 88 0 R 91 0 R] >> endobj 96 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [94 0 R 98 0 R 101 0 R 104 0 R 107 0 R 110 0 R] >> endobj 115 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [113 0 R 117 0 R 120 0 R 123 0 R 126 0 R 129 0 R] >> endobj 134 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [132 0 R 136 0 R 139 0 R 142 0 R 145 0 R 148 0 R] >> endobj 153 0 obj << /Type /Pages /Count 6 /Parent 221 0 R /Kids [151 0 R 155 0 R 158 0 R 161 0 R 164 0 R 167 0 R] >> endobj 172 0 obj << /Type /Pages /Count 5 /Parent 222 0 R /Kids [170 0 R 174 0 R 177 0 R 180 0 R 183 0 R] >> endobj 221 0 obj << /Type /Pages /Count 36 /Parent 223 0 R /Kids [28 0 R 74 0 R 96 0 R 115 0 R 134 0 R 153 0 R] >> endobj 222 0 obj << /Type /Pages /Count 5 /Parent 223 0 R /Kids [172 0 R] >> endobj 223 0 obj << /Type /Pages /Count 41 /Kids [221 0 R 222 0 R] >> endobj 224 0 obj << /Type /Catalog /Pages 223 0 R >> endobj 225 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20071029163732-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 226 0000000000 65535 f 0000001640 00000 n 0000001525 00000 n 0000000009 00000 n 0000218126 00000 n 0000213130 00000 n 0000217969 00000 n 0000212262 00000 n 0000206771 00000 n 0000212105 00000 n 0000206326 00000 n 0000204691 00000 n 0000206169 00000 n 0000203757 00000 n 0000193957 00000 n 0000203597 00000 n 0000192557 00000 n 0000176198 00000 n 0000192398 00000 n 0000175872 00000 n 0000174320 00000 n 0000175716 00000 n 0000173271 00000 n 0000164446 00000 n 0000173113 00000 n 0000164127 00000 n 0000162664 00000 n 0000163969 00000 n 0000218870 00000 n 0000004086 00000 n 0000003968 00000 n 0000001790 00000 n 0000161599 00000 n 0000151497 00000 n 0000161439 00000 n 0000150224 00000 n 0000137668 00000 n 0000150064 00000 n 0000006376 00000 n 0000006258 00000 n 0000004191 00000 n 0000137021 00000 n 0000135233 00000 n 0000136862 00000 n 0000010726 00000 n 0000010608 00000 n 0000006493 00000 n 0000134581 00000 n 0000130298 00000 n 0000134421 00000 n 0000129692 00000 n 0000127277 00000 n 0000129533 00000 n 0000126931 00000 n 0000124568 00000 n 0000126774 00000 n 0000124138 00000 n 0000121171 00000 n 0000123979 00000 n 0000014533 00000 n 0000014415 00000 n 0000010878 00000 n 0000120334 00000 n 0000110966 00000 n 0000120174 00000 n 0000109478 00000 n 0000094974 00000 n 0000109319 00000 n 0000019216 00000 n 0000019098 00000 n 0000014650 00000 n 0000023730 00000 n 0000023612 00000 n 0000019333 00000 n 0000218979 00000 n 0000027956 00000 n 0000027838 00000 n 0000023847 00000 n 0000030333 00000 n 0000030215 00000 n 0000028073 00000 n 0000094375 00000 n 0000088437 00000 n 0000094215 00000 n 0000032587 00000 n 0000032469 00000 n 0000030462 00000 n 0000035488 00000 n 0000035370 00000 n 0000032728 00000 n 0000037649 00000 n 0000037531 00000 n 0000035629 00000 n 0000040134 00000 n 0000040016 00000 n 0000037766 00000 n 0000219089 00000 n 0000042750 00000 n 0000042632 00000 n 0000040299 00000 n 0000045605 00000 n 0000045484 00000 n 0000042867 00000 n 0000049373 00000 n 0000049252 00000 n 0000045723 00000 n 0000052488 00000 n 0000052367 00000 n 0000049515 00000 n 0000055417 00000 n 0000055296 00000 n 0000052606 00000 n 0000059332 00000 n 0000059210 00000 n 0000055582 00000 n 0000219203 00000 n 0000060926 00000 n 0000060804 00000 n 0000059450 00000 n 0000062365 00000 n 0000062243 00000 n 0000061032 00000 n 0000063865 00000 n 0000063743 00000 n 0000062447 00000 n 0000065509 00000 n 0000065387 00000 n 0000063947 00000 n 0000066541 00000 n 0000066419 00000 n 0000065591 00000 n 0000067528 00000 n 0000067406 00000 n 0000066623 00000 n 0000219320 00000 n 0000068531 00000 n 0000068409 00000 n 0000067610 00000 n 0000069486 00000 n 0000069364 00000 n 0000068613 00000 n 0000070256 00000 n 0000070134 00000 n 0000069568 00000 n 0000071540 00000 n 0000071418 00000 n 0000070338 00000 n 0000072536 00000 n 0000072414 00000 n 0000071622 00000 n 0000073577 00000 n 0000073455 00000 n 0000072618 00000 n 0000219437 00000 n 0000074496 00000 n 0000074374 00000 n 0000073659 00000 n 0000075569 00000 n 0000075447 00000 n 0000074578 00000 n 0000076088 00000 n 0000075966 00000 n 0000075651 00000 n 0000078184 00000 n 0000078062 00000 n 0000076170 00000 n 0000080099 00000 n 0000079977 00000 n 0000078290 00000 n 0000081596 00000 n 0000081474 00000 n 0000080181 00000 n 0000219554 00000 n 0000083364 00000 n 0000083242 00000 n 0000081678 00000 n 0000084217 00000 n 0000084095 00000 n 0000083446 00000 n 0000087095 00000 n 0000086973 00000 n 0000084299 00000 n 0000088355 00000 n 0000088233 00000 n 0000087189 00000 n 0000094781 00000 n 0000094619 00000 n 0000110414 00000 n 0000110040 00000 n 0000120865 00000 n 0000120615 00000 n 0000124448 00000 n 0000124346 00000 n 0000127178 00000 n 0000127142 00000 n 0000130084 00000 n 0000130004 00000 n 0000134995 00000 n 0000134821 00000 n 0000137511 00000 n 0000137266 00000 n 0000151005 00000 n 0000150673 00000 n 0000162291 00000 n 0000161944 00000 n 0000164358 00000 n 0000164334 00000 n 0000173913 00000 n 0000173587 00000 n 0000176107 00000 n 0000176083 00000 n 0000193469 00000 n 0000193060 00000 n 0000204328 00000 n 0000204073 00000 n 0000206660 00000 n 0000206544 00000 n 0000212744 00000 n 0000212520 00000 n 0000218574 00000 n 0000218368 00000 n 0000219663 00000 n 0000219778 00000 n 0000219855 00000 n 0000219925 00000 n 0000219978 00000 n trailer << /Size 226 /Root 224 0 R /Info 225 0 R /ID [ ] >> startxref 220182 %%EOF SuiteSparse/KLU/Doc/KLU_UserGuide.tex0000644001170100242450000016406210711442140016243 0ustar davisfac\documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in %------------------------------------------------------------------------------ \begin{document} %------------------------------------------------------------------------------ \title{User Guide for KLU Version 1.0.1 and BTF Version 1.0.1} \author{ Timothy A. Davis\thanks{ Dept.~of Computer and Information Science and Engineering, Univ.~of Florida, Gainesville, FL, USA. email: davis@cise.ufl.edu. http://www.cise.ufl.edu/$\sim$davis. This work was supported by Sandia National Labs, and the National Science Foundation. Portions of the work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from Stanford University and the SciDAC program). } \and Eka Palamadai} \date{Nov 1, 2007} \maketitle %------------------------------------------------------------------------------ \begin{abstract} KLU is a set of routines for solving sparse linear systems of equations. It is particularly well-suited to matrices arising in SPICE-like circuit simulation applications. It relies on a permutation to block triangular form (BTF), several methods for finding a fill-reducing ordering (variants of approximate minimum degree, and nested dissection), and a sparse left-looking LU factorization method to factorize each block. A MATLAB interface is included. \end{abstract} %------------------------------------------------------------------------------ \newpage \tableofcontents \newpage %------------------------------------------------------------------------------ \section{License and Copyright} %------------------------------------------------------------------------------ KLU Version 1.0.1, Copyright\copyright 2007 University of Florida. All Rights Reserved. KLU is available under alternate licenses; contact T. Davis for details. {\bf KLU License:} Your use or distribution of KLU or any modified version of KLU implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. {\bf Availability:} {\tt http://www.cise.ufl.edu/research/sparse/klu} {\tt http://www.cise.ufl.edu/research/sparse/btf} {\bf Acknowledgments:} This work was supported by Sandia National Laboratories (Mike Heroux) and the National Science Foundation under grants 0203270 and 0620286. %------------------------------------------------------------------------------ \newpage \section{Overview} %------------------------------------------------------------------------------ KLU is a set of routines for solving sparse linear systems of equations. It first permutes the matrix into upper block triangular form, via the BTF package. This is done by first finding a permutation for a zero-free diagonal (a maximum transversal) \cite{Duff81}. If there is no such permutation, then the matrix is structurally rank-deficient, and is numerically singular. Next, Tarjan's method \cite{Duff78a,Tarjan72} is used to find the strongly-connected components of the graph. The block triangular form is essentially unique; any method will lead to the same number and sizes of blocks, although the ordering of the blocks may vary (consider a diagonal matrix, for example). Assuming the matrix has full structural rank, the permuted matrix has the following form: \[ PAQ = \left[ \begin{array}{ccc} A_{11} & \cdots & A_{1k} \\ & \ddots & \vdots \\ & & A_{kk} \\ \end{array} \right], \] where each diagonal block is square with a zero-free diagonal. Next, each diagonal block is factorized with a sparse left-looking method \cite{GilbertPeierls88}. The kernel of this factorization method is an efficient method for solving $Lx=b$ when $L$, $x$, and $b$ are all sparse. This kernel is used to compute each column of $L$ and $U$, one column at a time. The total work performed by this method is always proportional to the number of floating-point operations, something that is not true of any other sparse LU factorization method. Prior to factorizing each diagonal block, the blocks are ordered to reduce fill-in. By default, the symmetric approximate minimum degree (AMD) ordering is used on $A_{ii}+A_{ii}^T$ \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}. Another ordering option is to find a column ordering via COLAMD \cite{DavisGilbertLarimoreNg00_algo,DavisGilbertLarimoreNg00}. Alternatively, a permutation can be provided by the user, or a pointer to a user-provided ordering function can be passed, which is then used to order each block. Only the diagonal blocks need to be factorized. Consider a linear system where the matrix is permuted into three blocks, for example: \[ \left[ \begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ & A_{22} & A_{23} \\ & & A_{33} \\ \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ \end{array} \right] = \left[ \begin{array}{c} b_{1} \\ b_{2} \\ b_{3} \\ \end{array} \right]. \] The non-singular system $A_{33} x_{3} = b_{3}$ can first be solved for $x_{3}$. After a block back substitution, the resulting system becomes \[ \left[ \begin{array}{cc} A_{11} & A_{12} \\ & A_{22} \\ \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ \end{array} \right] = \left[ \begin{array}{c} b_{1} - A_{13} x_{3}\\ b_{2} - A_{23} x_{3}\\ \end{array} \right] = \left[ \begin{array}{c} b'_{1} \\ b'_{2} \\ \end{array} \right] \] and the $A_{22} x_{2} = b'_{2}$ system can be solved for $x_{2}$. The primary advantage of this method is that no fill-in occurs in the off-diagonal blocks ($A_{12}$, $A_{13}$, and $A_{23}$). This is particular critical for sparse linear systems arising in SPICE-like circuit simulation \cite{Kundert86,KundertSangiovanniVincentelli85,NagelPederson,Quarles:M89/42}. Circuit matrices are typically permutable into block triangular form, with many singletons (1-by-1 blocks). They also often have a handful of rows and columns with many nonzero entries, due to voltage and current sources. These rows and columns are pushed into the upper block triangular form, and related to the singleton blocks (for example, $A_{33}$ in the above system is 1-by-1, and the column in $A_{13}$ and $A_{23}$ has many nonzero entries). Since these nearly-dense rows and columns do not appear in the LU factorization of the diagonal blocks, they cause no fill-in. The structural rank of a matrix is based solely on the pattern of its entries, not their numerical values. With random entries, the two ranks are equal with probability one. The structural rank of any matrix is an upper bound on the numerical rank. The maximum transversal algorithm in the BTF package is useful in determining if a matrix is structurally rank deficient, and if so, it reveals a (non-unique) set of rows and columns that contribute to that rank deficiency. This is useful in determining what parts of a circuit are poorly formulated (such as dangling components). When ordered and factorized with KLU, very little fill-in occurs in the resulting LU factors, which means that there is little scope for use of the BLAS \cite{ACM679a}. Sparse LU factorization methods that use the BLAS (such as SuperLU \cite{SuperLU99} amd UMFPACK \cite{Davis03_algo,Davis03}) are slower than KLU when applied to sparse matrices arising in circuit simulation. Both KLU and SuperLU are based on Gilbert and Peierl's left-looking method \cite{GilbertPeierls88}. SuperLU uses supernodes, but KLU does not; thus the name {\em KLU} refers to a ``Clark Kent'' LU factorization algorithm (what SuperLU was before it became Super). For details of the permutation to block triangular form, left-looking sparse LU factorization, and approximate minimum degree, refer to \cite{Davis06book}. Concise versions of these methods can be found in the CSparse package. KLU is also the topic of a Master's thesis by Palamadai \cite{Palamadai05}; a copy of the thesis can be found in the {\tt KLU/Doc} directory. It includes a description of an earlier version of KLU; some of the function names and parameter lists have changed in this version. The descriptions of the methods used still applies to the current version of KLU, however. %------------------------------------------------------------------------------ \section{Availability} %------------------------------------------------------------------------------ KLU and its required ordering packages (BTF, COLAMD, AMD, and UFconfig) are available at \newline {\tt http://www.cise.ufl.edu/research/sparse.} In addition, KLU can make use of any user-provided ordering function. One such function is included, which provides KLU with an interface to the ordering methods used in CHOLMOD \cite{ChenDavisHagerRajamanickam06}, such as METIS, a nested dissection method \cite{KarypisKumar98e}. After permutation to block triangular form, circuit matrices have very good node separators, and are thus excellent candidates for nested dissection. The METIS ordering takes much more time to compute than the AMD ordering, but if the ordering is reused many times (typical in circuit simulation) the better-quality ordering can pay off in lower total simulation time. To use KLU, you must obtain the KLU, BTF, UFconfig, AMD, and COLAMD packages in the SuiteSparse suite of sparse matrix libraries. See {\tt http://www.cise.ufl.edu/research/sparse} for each of these packages. They are also all contained within the single {\tt SuiteSparse.zip} or {\tt SuiteSparse.tar.gz} distribution. %------------------------------------------------------------------------------ \section{Using KLU and BTF in MATLAB} %------------------------------------------------------------------------------ KLU has a single MATLAB interface which provides several options for factorizing a matrix and/or using the factors to solve a linear system. The following is a synopsis of its use. For more details, type {\tt help klu} in MATLAB. {\footnotesize \begin{verbatim} LU = klu (A) factorizes R\A(p,q) into L*U+F, returning a struct x = klu (A,'\',b) x = A\b x = klu (b,'/',A) x = b/A x = klu (LU,'\',b) x = A\b, where LU = klu(A) x = klu (b,'/',LU) x = b/A, where LU = klu(A) \end{verbatim} } With a single input {\tt klu(A)} returns a MATLAB struct containing the LU factors. The factorization is in the form \verb'L*U + F = R \ A(p,q)' where {\tt L*U} is the LU factorization of just the diagonal blocks of the block triangular form, {\tt F} is a sparse matrix containing the entries in the off-diagonal blocks, {\tt R} is a diagonal matrix containing the row scale factors, and {\tt p} and {\tt q} are permutation vectors. The {\tt LU} struct also contains a vector {\tt r} which describes the block boundaries (the same as the third output parameter of {\tt dmperm}). The {\tt k}th block consists of rows and columns {\tt r(k)} to {\tt r(k+1)-1} in the permuted matrix {\tt A(p,q)} and the factors {\tt L} and {\tt U}. An optional final input argument ({\tt klu(A,opts)} for example) provides a way of modifying KLU's user-definable parameters, including a partial pivoting tolerance and ordering options. A second output argument ({\tt [LU,info] = klu ( ... )}) provides statistics on the factorization. The BTF package includes three user-callable MATLAB functions which replicate most of features of the MATLAB built-in {\tt dmperm} function, and provide an additional option which can significantly limit the worst-case time taken by {\tt dmperm}. For more details, type {\tt help btf}, {\tt help maxtrans}, and {\tt help strongcomp} in MATLAB. Additional information about how these functions work can be found in \cite{Davis06book}. {\footnotesize \begin{verbatim} [p,q,r] = btf (A) similar to [p,q,r] = dmperm (A) q = maxtrans (A) similar to q = dmperm (A') [p,r] = strongcomp (A) similar to [p,q,r] = dmperm (A + speye(n)) \end{verbatim} } Both {\tt btf} and {\tt maxtrans} include a second option input, {\tt maxwork}, which limits the total work performed in the maximum transversal to {\tt maxwork * nnz(A)}. The worst-case time taken by the algorithm is $O$ ({\tt n * nnz(A)}), where the matrix {\tt A} is {\tt n}-by-{\tt n}, but this worst-case time is rarely reached in practice. To use the KLU and BTF functions in MATLAB, you must first compile and install them. In the {\tt BTF/MATLAB} directory, type {\tt btf\_install}, and then type {\tt klu\_install} in the {\tt KLU/MATLAB} directory. Alternatively, if you have the entire SuiteSparse, simply run the {\tt SuiteSparse\_install} function in the {\tt SuiteSparse} directory. To use METIS 4.0.1 with KLU (and CHOLMOD, another part of SuiteSparse) you must first download it from {\tt http://glaros.dtc.umn.edu/gkhome/views/metis} and place the {\tt metis-4.0} directory in the {\tt SuiteSparse} directory, alongside the {\tt KLU} and {\tt BTF} directories. After running the installation scripts, type {\tt pathtool} and save your path for future MATLAB sessions. If you cannot save your path because of file permissions, edit your {\tt startup.m} by adding {\tt addpath} commands (type {\tt doc startup} and {\tt doc addpath} for more information). %------------------------------------------------------------------------------ \section{Using KLU and BTF in a C program} \label{Cversion} %------------------------------------------------------------------------------ KLU and BTF include the following C-callable functions. Each function is available in two or four versions: with {\tt int} or {\tt long} integers, and (for functions that deal with numerical values), with {\tt double} or complex {\tt double} values. The {\tt long} integer is actually a {\tt UF\_long}, which is typically a {\tt long}, defined with a {\tt \#define} statement. It becomes an {\tt \_\_int64} on Microsoft Windows 64, however. The usage of real and complex, and {\tt int} and {\tt UF\_long}, must not be mixed, except that some functions can be used for both real and complex cases. %------------------------------------------------------------------------------ \subsection{KLU Common object} %------------------------------------------------------------------------------ The {\tt klu\_common} object ({\tt klu\_l\_common} for the {\tt UF\_long} version) contains user-definable parameters and statistics returned from KLU functions. This object appears in every KLU function as the last parameter. Details are given in the {\tt klu.h} include file, which also appears below in Section~\ref{klu_include}. Primary parameters and statistics are summarized below. The defaults are chosen specifically for circuit simulation matrices. \begin{itemize} \item {\tt tol}: partial pivoting tolerance. If the diagonal entry has a magnitude greater than or equal to {\tt tol} times the largest magnitude of entries in the pivot column, then the diagonal entry is chosen. Default value: 0.001. \item {\tt ordering}: which fill-reducing ordering to use: 0 for AMD, 1 for COLAMD, 2 for a user-provided permutation {\tt P} and {\tt Q} (or a natural ordering if {\tt P} and {\tt Q} are NULL), or 3 for the {\tt user\_order} function. Default: 0 (AMD). \item {\tt scale}: whether or not the matrix should be scaled. If {\tt scale < 0}, then no scaling is performed and the input matrix is not checked for errors. If {\tt scale >= 0}, the input matrix is check for errors. If {\tt scale=0}, then no scaling is performed. If {\tt scale=1}, then each row of {\tt A} is divided by the sum of the absolute values in that row. If {\tt scale=2}, then each row of {\tt A} is divided by the maximum absolute value in that row. Default: 2. \item {\tt btf}: if nonzero, then BTF is used to permute the input matrix into block upper triangular form. This step is skipped if {\tt Common.btf} is zero. Default: 1. \item {\tt maxwork}: sets an upper limit on the amount of work performed in {\tt btf\_maxtrans} to \newline {\tt maxwork*nnz(A)}. If the limit is reached, a partial zero-free diagonal might be found. This has no effect on whether or not the matrix can be factorized, since the matrix can be factorized with no BTF pre-ordering at all. This option provides a tradeoff between the effectiveness of the BTF ordering and the cost to compute it. A partial result can result in fewer, and larger, blocks in the BTF form, resulting to more work required to factorize the matrix. No limit is enforced if {\tt maxwork <= 0}. Default: 0. \item {\tt user\_order}: a pointer to a function that can be provided by the application that uses KLU, to redefine the fill-reducing ordering used by KLU for each diagonal block. The {\tt int} and {\tt UF\_long} prototypes must be as follows: {\footnotesize \begin{verbatim} int my_ordering_function (int n, int Ap [ ], int Ai [ ], int Perm [ ], klu_common *Common) ; UF_long my_long_ordering_function (UF_long n, UF_long Ap [ ], UF_long Ai [ ], UF_long Perm [ ], klu_l_common *Common); \end{verbatim} } The function should return 0 if an error occurred, and either -1 or a positive (nonzero) value if no error occurred. If greater than zero, then the return value is interpreted by KLU as an estimate of the number of nonzeros in $L$ or $U$ (whichever is greater), when the permuted matrix is factorized. Only an estimate is possible, since partial pivoting with row interchanges is performed during numerical factorization. The input matrix is provided to the function in the parameters {\tt n}, {\tt Ap}, and {\tt Ai}, in compressed-column form. The matrix {\tt A} is {\tt n}-by-{\tt n}. The {\tt Ap} array is of size {\tt n+1}; the {\tt j}th column of {\tt A} has row indices {\tt Ai[Ap[j] ... Ap[j+1]-1]}. The {\tt Ai} array is of size {\tt Ap[n]}. The first column pointer {\tt Ap[0]} is zero. The row indices might not appear sorted in each column, but no duplicates will appear. The output permutation is to be passed back in the {\tt Perm} array, where {\tt Perm[k]=j} means that row and column {\tt j} of {\tt A} will appear as the {\tt k}th row and column of the permuted matrix factorized by KLU. The {\tt Perm} array is already allocated when it is passed to the user function. The user function may use, and optionally modify, the contents of the {\tt klu\_common Common} object. In particular, prior to calling KLU, the user application can set both {\tt Common.user\_order} and {\tt Common.user\_data}. The latter is a {\tt void *} pointer that KLU does not use, except to pass to the user ordering function pointed to by {\tt Common.user\_order}. This is a mechanism for passing additional arguments to the user function. An example user function is provided in the {\tt KLU/User} directory, which provides an interface to the ordering method in CHOLMOD. \end{itemize} %------------------------------------------------------------------------------ \subsection{KLU Symbolic object} %------------------------------------------------------------------------------ KLU performs its sparse LU factorization in two steps. The first is purely symbolic, and does not depend on the numerical values. This analysis returns a {\tt klu\_symbolic} object ({\tt klu\_l\_symbolic} in the {\tt UF\_long} version). The {\tt Symbolic} object contains a pre-ordering which combines the block triangular form with the fill-reducing ordering, and an estimate of the number of nonzeros in the factors of each block. Its size is thus modest, only proportional to {\tt n}, the dimension of {\tt A}. It can be reused multiple times for the factorization of a sequence of matrices with identical nonzero pattern. Note: a {\em nonzero} in this sense is an entry present in the data structure of {\tt A}; such entries may in fact be numerically zero. %------------------------------------------------------------------------------ \subsection{KLU Numeric object} %------------------------------------------------------------------------------ The {\tt Numeric} object contains the numeric sparse LU factorization, including the final pivot permutations. To solve a linear system, both the {\tt Symbolic} and {\tt Numeric} objects are required. %------------------------------------------------------------------------------ \subsection{A sparse matrix in KLU} %------------------------------------------------------------------------------ % From here on, only the {\tt int} version is described. In the {\tt UF\_long} % version, the function names change slightly ({\tt klu\_factor} becomes % {\tt klu\_l\_factor}, and the {\tt int}/complex version {\tt klu\_z\_factor} % becomes {\tt klu\_zl\_factor}, for example). For more details on the % {\tt UF\_long} version, refer to Section~\ref{klu_include}. The input matrix provided to KLU is in sparse compressed-column form, which is the same data structure used internally in MATLAB, except that the version used here allows for the row indices to appear in any ordering, and this version also allows explicit zero entries to appear in the data structure. The same data structure is used in CSparse, which is fully documented in \cite{Davis06book}. If you wish to use a simpler input data structure, consider creating a triplet matrix in CSparse (or CXSparse if you use the long and/or complex versions of KLU), and then convert this data structure into a sparse compressed-column data structure, using the CSparse {\tt cs\_compress} and {\tt cs\_dupl} functions. Similar functions are available in CHOLMOD {\tt cholmod\_triplet\_to\_sparse}. The matrix is described with four parameters: \begin{itemize} \item {\tt n}: an integer scalar. The matrix is {\tt n}-by-{\tt n}. Note that KLU only operates on square matrices. \item {\tt Ap}: an integer array of size {\tt n+1}. The first entry is {\tt Ap[0]=0}, and the last entry {\tt nz=Ap[n]} is equal to the number of entries in the matrix. \item {\tt Ai}: an integer array of size {\tt nz = Ap[n]}. The row indices of entries in column {\tt j} of {\tt A} are located in {\tt Ai [Ap [j] ... Ap [j+1]-1]}. The matrix is zero-based; row and column indices are in the range 0 to {\tt n-1}. \item {\tt Ax}: a {\tt double} array of size {\tt nz} for the real case, or {\tt 2*nz} for the complex case. For the complex case, the real and imaginary parts are interleaved, compatible with Fortran and the ANSI C99 Complex data type. KLU does not rely on the ANSI C99 data type, however, for portability reasons. The numerical values in column {\tt j} of a real matrix are located in {\tt Ax [Ap [j] ... Ap [j+1]-1]}. For a complex matrix, they appear in {\tt Ax [2*Ap [j] ... 2*Ap [j+1]-1]}, as real/imaginary pairs (the real part appears first, followed by the imaginary part). \end{itemize} %------------------------------------------------------------------------------- \subsection{{\tt klu\_defaults}: set default parameters} %------------------------------------------------------------------------------- This function sets the default parameters for KLU and clears the statistics. It may be used for either the real or complex cases. A value of 0 is returned if an error occurs, 1 otherwise. This function {\bf must} be called before any other KLU function can be called. {\footnotesize \begin{verbatim} #include "klu.h" int ok ; klu_common Common ; ok = klu_defaults (&Common) ; /* real or complex */ #include "klu.h" UF_long ok ; klu_l_common Common ; ok = klu_l_defaults (&Common) ; /* real or complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_analyze}: order and analyze a matrix} %------------------------------------------------------------------------------- The following usage returns a {\tt Symbolic} object that contains the fill-reducing ordering needed to factorize the matrix {\tt A}. A NULL pointer is returned if a failure occurs. The error status for this function, and all others, is returned in {\tt Common.status}. These functions may be used for both real and complex cases. The AMD ordering is used if {\tt Common.ordering = 0}, COLAMD is used if it is 1, the natural ordering is used if it is 2, and the user-provided {\tt Common.user\_ordering} is used if it is 3. {\footnotesize \begin{verbatim} #include "klu.h" int n, Ap [n+1], Ai [nz] ; klu_symbolic *Symbolic ; klu_common Common ; Symbolic = klu_analyze (n, Ap, Ai, &Common) ; /* real or complex */ #include "klu.h" UF_long n, Ap [n+1], Ai [nz] ; klu_l_symbolic *Symbolic ; klu_l_common Common ; Symbolic = klu_l_analyze (n, Ap, Ai, &Common) ; /* real or complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_analyze\_given}: order and analyze a matrix} %------------------------------------------------------------------------------- In this routine, the fill-reducing ordering is provided by the user ({\tt Common.ordering} is ignored). Instead, the row permutation {\tt P} and column permutation {\tt Q} are used. These are integer arrays of size {\tt n}. If NULL, a natural ordering is used (so to provide just a column ordering, pass {\tt Q} as non-NULL and {\tt P} as NULL). A NULL pointer is returned if an error occurs. These functions may be used for both real and complex cases. {\footnotesize \begin{verbatim} #include "klu.h" int n, Ap [n+1], Ai [nz], P [n], Q [n] ; klu_symbolic *Symbolic ; klu_common Common ; Symbolic = klu_analyze_given (n, Ap, Ai, P, Q, &Common) ; /* real or complex */ #include "klu.h" UF_long n, Ap [n+1], Ai [nz], P [n], Q [n] ; klu_l_symbolic *Symbolic ; klu_l_common Common ; Symbolic = klu_l_analyze_given (n, Ap, Ai, P, Q, &Common) ; /* real or complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_factor}: numerical factorization} %------------------------------------------------------------------------------- The {\tt klu\_factor} function factorizes a matrix, using a sparse left-looking method with threshold partial pivoting. The inputs {\tt Ap} and {\tt Ai} must be unchanged from the previous call to {\tt klu\_analyze} that created the {\tt Symbolic} object. A NULL pointer is returned if an error occurs. {\footnotesize \begin{verbatim} #include "klu.h" int Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; Numeric = klu_factor (Ap, Ai, Ax, Symbolic, &Common) ; /* real */ Numeric = klu_z_factor (Ap, Ai, Az, Symbolic, &Common) ; /* complex */ #include "klu.h" UF_long Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; Numeric = klu_l_factor (Ap, Ai, Ax, Symbolic, &Common) ; /* real */ Numeric = klu_zl_factor (Ap, Ai, Az, Symbolic, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_solve}: solve a linear system} %------------------------------------------------------------------------------- Solves the linear system $Ax=b$, using the {\tt Symbolic} and {\tt Numeric} objects. The right-hand side {\tt B} is overwritten with the solution on output. The array {\tt B} is stored in column major order, with a leading dimension of {\tt ldim}, and {\tt nrhs} columns. Thus, the real entry $b_{ij}$ is stored in {\tt B [i+j*ldim]}, where {\tt ldim >= n} must hold. A complex entry $b_{ij}$ is stored in {\tt B [2*(i+j*ldim)]} and {\tt B [2*(i+j*ldim)+1]} (for the real and imaginary parts, respectively). Returns 1 if successful, 0 if an error occurs. {\footnotesize \begin{verbatim} #include "klu.h" int ldim, nrhs, ok ; double B [ldim*nrhs], Bz [2*ldim*nrhs] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_solve (Symbolic, Numeric, ldim, nrhs, B, &Common) ; /* real */ ok = klu_z_solve (Symbolic, Numeric, ldim, nrhs, Bz, &Common) ; /* complex */ #include "klu.h" UF_long ldim, nrhs, ok ; double B [ldim*nrhs], Bz [2*ldim*nrhs] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_l_solve (Symbolic, Numeric, ldim, nrhs, B, &Common) ; /* real */ ok = klu_zl_solve (Symbolic, Numeric, ldim, nrhs, Bz, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_tsolve}: solve a transposed linear system} %------------------------------------------------------------------------------- Solves the linear system $A^Tx=b$ or $A^Hx=b$. The {\tt conj\_solve} input is 0 for $A^Tx=b$, or nonzero for $A^Hx=b$. Otherwise, the function is identical to {\tt klu\_solve}. {\footnotesize \begin{verbatim} #include "klu.h" int ldim, nrhs, ok ; double B [ldim*nrhs], Bz [2*ldim*nrhs] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_tsolve (Symbolic, Numeric, ldim, nrhs, B, &Common) ; /* real */ ok = klu_z_tsolve (Symbolic, Numeric, ldim, nrhs, Bz, conj_solve, &Common) ; /* complex */ #include "klu.h" UF_long ldim, nrhs, ok ; double B [ldim*nrhs], Bz [2*ldim*nrhs] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_l_tsolve (Symbolic, Numeric, ldim, nrhs, B, &Common) ; /* real */ ok = klu_zl_tsolve (Symbolic, Numeric, ldim, nrhs, Bz, conj_solve, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_refactor}: numerical refactorization} %------------------------------------------------------------------------------- The {\tt klu\_refactor} function takes as input the {\tt Numeric} object created by {\tt klu\_factor} (or as modified by a previous call to {\tt klu\_refactor}). It factorizes a new matrix with the same nonzero pattern as that given to the call to {\tt klu\_factor} which created it. The same pivot order is used. Since this can lead to numeric instability, the use of {\tt klu\_rcond}, {\tt klu\_rgrowth}, or {\tt klu\_condest} is recommended to check the accuracy of the resulting factorization. The inputs {\tt Ap} and {\tt Ai} must be unmodified since the call to {\tt klu\_factor} that first created the {\tt Numeric} object. This is function is much faster than {\tt klu\_factor}, and requires no dynamic memory allocation. {\footnotesize \begin{verbatim} #include "klu.h" int ok, Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_refactor (Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_refactor (Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok, Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_refactor (Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_refactor (Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_free\_symbolic}: destroy the {\tt Symbolic} object} %------------------------------------------------------------------------------- It is the user's responsibility to destroy the {\tt Symbolic} object when it is no longer needed, or else a memory leak will occur. It is safe to pass a NULL {\tt Symbolic} pointer. These functions may be used for both real and complex cases. {\footnotesize \begin{verbatim} #include "klu.h" klu_symbolic *Symbolic ; klu_common Common ; klu_free_symbolic (&Symbolic, &Common) ; /* real or complex */ #include "klu.h" klu_l_symbolic *Symbolic ; klu_l_common Common ; klu_l_free_symbolic (&Symbolic, &Common) ; /* real or complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_free\_numeric}: destroy the {\tt Numeric} object} %------------------------------------------------------------------------------- It is the user's responsibility to destroy the {\tt Numeric} object when it is no longer needed, or else a memory leak will occur. It is safe to pass a NULL {\tt Numeric} pointer. {\footnotesize \begin{verbatim} #include "klu.h" klu_numeric *Numeric ; klu_common Common ; klu_free_numeric (&Numeric, &Common) ; /* real */ klu_z_free_numeric (&Numeric, &Common) ; /* complex */ #include "klu.h" klu_l_numeric *Numeric ; klu_l_common Common ; klu_l_free_numeric (&Numeric, &Common) ; /* real */ klu_zl_free_numeric (&Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_sort}: sort the columns of L and U} %------------------------------------------------------------------------------- The {\tt klu\_factor} function creates a {\tt Numeric} object with factors {\tt L} and {\tt U} stored in a compressed-column form (not the same data structure as {\tt A}, but similar). The columns typically contain lists of row indices in unsorted order. This function sorts these indices, for two purposes: (1) to return {\tt L} and {\tt U} to MATLAB, which expects its sparse matrices to have sorted columns, and (2) to slightly improve the performance of subsequent calls to {\tt klu\_solve} and {\tt klu\_tsolve}. Except within a MATLAB mexFunction (see {\tt KLU/MATLAB/klu\_mex.c}, the use of this function is optional. {\footnotesize \begin{verbatim} #include "klu.h" int ok ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_sort (Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_sort (Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_sort (Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_sort (Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_flops}: determine the flop count} %------------------------------------------------------------------------------- This function determines the number of floating-point operations performed when the matrix was factorized by {\tt klu\_factor} or {\tt klu\_refactor}. The result is returned in {\tt Common.flops}. {\footnotesize \begin{verbatim} #include "klu.h" int ok ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_flops (Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_flops (Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_flops (Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_flops (Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_rgrowth}: determine the pivot growth} %------------------------------------------------------------------------------- Computes the reciprocal pivot growth, $\mbox{\em rgrowth} = \min_j (( \max_i |c_{ij}| ) / ( \max_i |u_{ij}| ))$, where $c_{ij}$ is a scaled entry in a diagonal block of the block triangular form. In MATLAB notation: \begin{verbatim} rgrowth = min (max (abs (R\A(p,q) - F)) ./ max (abs (U))) \end{verbatim} where the factorization is \verb'L*U + F = R \ A(p,q)'. This function returns 0 if an error occurred, 1 otherwise. If {\tt rgrowth} is very small, an inaccurate factorization may have been performed. The inputs {\tt Ap}, {\tt Ai}, and {\tt Ax} ({\tt Az} in the complex case) must be unchanged since the last call to {\tt klu\_factor} or {\tt klu\_refactor}. The result is returned in {\tt Common.rgrowth}. {\footnotesize \begin{verbatim} #include "klu.h" int ok, Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_rgrowth (Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok, Ap [n+1], Ai [nz] ; double Ax [nz], Az [2*nz] ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_rgrowth (Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_condest}: accurate condition number estimation} %------------------------------------------------------------------------------- This function is essentially the same as the MATLAB {\tt condest} function. It computes an estimate of the 1-norm condition number, using Hager's method \cite{Hager84} and the generalization by Higham and Tisseur \cite{HighamTisseur00}. The inputs {\tt Ap}, and {\tt Ax} ({\tt Az} in the complex case) must be unchanged since the last call to {\tt klu\_factor} or {\tt klu\_refactor}. The result is returned in {\tt Common.condest}. {\footnotesize \begin{verbatim} #include "klu.h" int ok, Ap [n+1] ; double Ax [nz], Az [2*nz] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_condest (Ap, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_condest (Ap, Az, Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok, Ap [n+1] ; double Ax [nz], Az [2*nz] ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_condest (Ap, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_condest (Ap, Az, Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_rcond}: cheap reciprocal condition number estimation} %------------------------------------------------------------------------------- This function returns the smallest diagonal entry of {\tt U} divided by the largest, which is a very crude estimate of the reciprocal of the condition number of the matrix {\tt A}. It is very cheap to compute, however. In MATLAB notation, {\tt rcond = min(abs(diag(U))) / max(abs(diag(U)))}. If the matrix is singular, {\tt rcond} will be zero. The result is returned in {\tt Common.rcond}. {\footnotesize \begin{verbatim} #include "klu.h" int ok ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_rcond (Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_rcond (Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long ok ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_rcond (Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_rcond (Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_scale}: scale and check a sparse matrix} %------------------------------------------------------------------------------- This function computes the row scaling factors of a matrix and checks to see if it is a valid sparse matrix. It can perform two kinds of scaling, computing either the largest magnitude in each row, or the sum of the magnitudes of the entries each row. KLU calls this function itself, depending upon the {\tt Common.scale} parameter, where {\tt scale < 0} means no scaling, {\tt scale=1} means the sum, and {\tt scale=2} means the maximum. That is, in MATLAB notation, {\tt Rs = sum(abs(A'))} or {\tt Rs = max(abs(A'))}. KLU then divides each row of {\tt A} by its corresponding scale factor. The function returns 0 if the matrix is invalid, or 1 otherwise. A valid sparse matrix must meet the following conditions: \begin{enumerate} \item {\tt n > 0}. Note that KLU does not handle empty (0-by-0) matrices. \item {\tt Ap}, {\tt Ai}, and {\tt Ax} ({\tt Az} for the complex case) must not be NULL. \item {\tt Ap[0]=0}, and {\tt Ap [j] <= Ap [j+1]} for all {\tt j} in the range 0 to {\tt n-1}. \item The row indices in each column, {\tt Ai [Ap [j] ... Ap [j+1]-1]}, must be in the range 0 to {\tt n-1}, and no duplicates can appear. If the workspace {\tt W} is NULL on input, the check for duplicate entries is skipped. \end{enumerate} {\footnotesize \begin{verbatim} #include "klu.h" int scale, ok, n, Ap [n+1], Ai [nz], W [n] ; double Ax [nz], Az [2*nz], Rs [n] ; klu_common Common ; ok = klu_scale (scale, n, Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_z_scale (scale, n, Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ #include "klu.h" UF_long scale, ok, n, Ap [n+1], Ai [nz], W [n] ; double Ax [nz], Az [2*nz], Rs [n] ; klu_l_common Common ; ok = klu_l_scale (scale, n, Ap, Ai, Ax, Symbolic, Numeric, &Common) ; /* real */ ok = klu_zl_scale (scale, n, Ap, Ai, Az, Symbolic, Numeric, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_extract}: extract the LU factorization} %------------------------------------------------------------------------------- This function extracts the LU factorization into a set of data structures suitable for passing back to MATLAB, with matrices in conventional compressed-column form. The {\tt klu\_sort} function should be called first if the row indices should be returned sorted. The factorization is returned in caller-provided arrays; if any of them are NULL, that part of the factorization is not extracted (this is not an error). Returns 1 if successful, 0 otherwise. The sizes of {\tt Li}, {\tt Lx}, and {\tt Lz} are {\tt Numeric->lnz}, {\tt Ui}, {\tt Ux}, and {\tt Uz} are of size {\tt Numeric->unz}, and {\tt Fi}, {\tt Fx}, and {\tt Fz} are of size {\tt Numeric->nzoff}. Note that in the complex versions, the real and imaginary parts are returned in separate arrays, to be compatible with how MATLAB stores complex matrices. This function is not required to solve a linear system with KLU. KLU does not itself make use of the extracted LU factorization returned by this function. It is only provided to simplify the MATLAB interface to KLU, and it may be of use to the end user who wishes to examine the contents of the LU factors. {\footnotesize \begin{verbatim} #include "klu.h" int ok, Lp [n+1], Li [lnz], Up [n+1], Ui [unz], Fp [n+1], Fi [nzoff], P [n], Q [n], R [n] ; double Lx [lnz], Lz [lnz], Ux [unz], Uz [unz], Fx [nzoff], Fz [nzoff], Rs [n] ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; ok = klu_extract (Numeric, Symbolic, Lp, Li, Lx, Up, Ui, Ux, Fp, Fi, Fx, P, Q, Rs, R, &Common) ; /* real */ ok = klu_z_extract (Numeric, Symbolic, Lp, Li, Lx, Lz, Up, Ui, Ux, Uz, Fp, Fi, Fx, Fz, P, Q, Rs, R, &Common) ; /* complex */ #include "klu.h" UF_long ok, Lp [n+1], Li [lnz], Up [n+1], Ui [unz], Fp [n+1], Fi [nzoff], P [n], Q [n], R [n] ; double Lx [lnz], Lz [lnz], Ux [unz], Uz [unz], Fx [nzoff], Fz [nzoff], Rs [n] ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; ok = klu_l_extract (Numeric, Symbolic, Lp, Li, Lx, Up, Ui, Ux, Fp, Fi, Fx, P, Q, Rs, R, &Common) ; /* real */ ok = klu_zl_extract (Numeric, Symbolic, Lp, Li, Lx, Lz, Up, Ui, Ux, Uz, Fp, Fi, Fx, Fz, P, Q, Rs, R, &Common) ; /* complex */ \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt klu\_malloc}, {\tt klu\_free}, {\tt klu\_realloc}: memory management} %------------------------------------------------------------------------------- KLU uses a set of wrapper routines for {\tt malloc}, {\tt free}, and {\tt realloc}. By default, these wrapper routines call the ANSI C versions of these functions. However, pointers to functions in {\tt Common} can be modified after calling {\tt klu\_defaults} to allow the use of other memory management functions (such as the MATLAB {\tt mxMalloc}, {\tt mxFree}, and {\tt mxRealloc}. These wrapper functions keep track of the current and peak memory usage of KLU. They can be called by the user. {\tt klu\_malloc} is essentially the same as {\tt p = malloc (n * sizeof (size))}, {\tt klu\_free} is essentially the same as {\tt free(p)} except that {\tt klu\_free} returns NULL which can then be assigned to {\tt p}. {\tt klu\_realloc} is similar to {\tt realloc}, except that if the reallocation fails, {\tt p} is returned unchanged. Failure conditions are returned in {\tt Common.status}. {\footnotesize \begin{verbatim} #include "klu.h" size_t n, nnew, nold, size ; void *p ; klu_common Common ; p = klu_malloc (n, size, &Common) ; p = klu_free (p, n, size, &Common) ; p = klu_realloc (nnew, nold, size, p, &Common) ; #include "klu.h" size_t n, nnew, nold, size ; void *p ; klu_l_common Common ; p = klu_l_malloc (n, size, &Common) ; p = klu_l_free (p, n, size, &Common) ; p = klu_l_realloc (nnew, nold, size, p, &Common) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt btf\_maxtrans}: maximum transversal} %------------------------------------------------------------------------------- The BTF package includes three user-callable functions (each with {\tt int} and {\tt UF\_long} versions). They do not need to be called directly by an application that uses KLU. KLU will call these functions to perform the permutation into upper block triangular form. The {\tt btf\_maxtrans} function finds a column permutation {\tt Q} that gives {\tt A*Q} a zero-free diagonal, if one exists. If row {\tt i} is matched to column {\tt j}, then {\tt Match[i]=j}. If the matrix is structurally singular, there will be some unmatched rows. If row {\tt i} is unmatched, then {\tt Match[i]=-1}. If the matrix is square and structurally non-singular, then {\tt Q=Match} is the column permutation. The {\tt btf\_maxtrans} function can accept as input a rectangular matrix; it operates on the bipartite graph of {\tt A}. It returns the number of columns matched. Unlike the KLU user-callable functions, the BTF functions do not check its inputs at all; a segmentation fault will occur if any input pointers are NULL, for example. The function can require up to $O$({\tt n*nnz(A)}) time (excluding the {\em cheap match} phase, which takes another $O$({\tt nnz(A)}) time. If {\tt maxwork > 0} on input, the work is limited to $O$({\tt maxwork*nnz(A)}) (excluding the cheap match), but the maximum transversal might not be found if the limit is reached. The {\tt Work} array is workspace required by the methods; its contents are undefined on input and output. {\footnotesize \begin{verbatim} int nrow, ncol, Ap [ncol+1], Ai [nz], Match [nrow], Work [5*ncol], nmatch ; double maxwork, work ; nmatch = btf_maxtrans (nrow, ncol, Ap, Ai, maxwork, &work, Match, Work) ; UF_long nrow, ncol, Ap [ncol+1], Ai [nz], Match [nrow], Work [5*ncol], nmatch ; double maxwork, work ; nmatch = btf_l_maxtrans (nrow, ncol, Ap, Ai, maxwork, &work, Match, Work) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt btf\_strongcomp}: strongly connected components} %------------------------------------------------------------------------------- The {\tt btf\_strongcomp} function finds the strongly connected components of a directed graph, returning a symmetric permutation {\tt P}. The matrix {\tt A} must be square. The diagonal of {\tt A} (or {\tt A*Q} if a column permutation is given on input) is ignored. If {\tt Q} is NULL on input, the matrix {\tt P*A*P'} is in upper block triangular form. Otherwise, {\tt Q} is modified on output so that {\tt P*A*Q} is in upper block triangular form. The vector {\tt R} gives the block boundaries, where the {\tt k}th block consists of rows and columns {\tt R[k]} through {\tt R[k+1]-1} in the permuted matrix. The function returns the number of strongly connected components found (the diagonal blocks in the block triangular form). {\footnotesize \begin{verbatim} int n, Ap [n+1], Ai [nz], Q [n], P [n], R [n+1], Work [4*n], ncomp ; ncomp = btf_strongcomp (n, Ap, Ai, Q, P, R, Work) ; UF_long n, Ap [n+1], Ai [nz], Q [n], P [n], R [n+1], Work [4*n], ncomp ; ncomp = btf_l_strongcomp (n, Ap, Ai, Q, P, R, Work) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{{\tt btf\_order}: permutation to block triangular form} %------------------------------------------------------------------------------- The {\tt btf\_order} function combines the above two functions, first finding a maximum transversal and then permuting the resulting matrix into upper block triangular form. Unlike {\tt dmperm} in MATLAB, it always reveals the maximum matching along the diagonal, even if the matrix is structurally singular. On output, {\tt P} and {\tt Q} are the row and column permutations, where {\tt i = P[k]} if row {\tt i} of {\tt A} is the {\tt k}th row of {\tt P*A*Q}, and {\tt j = BTF\_UNFLIP(Q[k])} if column {\tt j} of {\tt A} is the {\tt k}th column of {\tt P*A*Q}. If {\tt Q[k] < 0}, then the {\tt (k,k)}th entry in {\tt P*A*Q} is structurally zero. The vector {\tt R}, and the return value, are the same as {\tt btf\_strongcomp}. {\footnotesize \begin{verbatim} int n, Ap [n+1], Ai [nz], P [n], Q [n], R [n+1], nfound, Work [5*n], ncomp, nfound ; double maxwork, work ; ncomp = btf_order (n, Ap, Ai, maxwork, &work, P, Q, R, &nfound, Work) ; UF_long n, Ap [n+1], Ai [nz], P [n], Q [n], R [n+1], nfound, Work [5*n], ncomp, nfound ; double maxwork, work ; ncomp = btf_l_order (n, Ap, Ai, maxwork, &work, P, Q, R, &nfound, Work) ; \end{verbatim} } %------------------------------------------------------------------------------ \subsection{Sample C programs that use KLU} %------------------------------------------------------------------------------ Here is a simple main program, {\tt klu\_simple.c}, that illustrates the basic usage of KLU. It uses KLU, and indirectly makes use of BTF and AMD. COLAMD is required to compile the demo, but it is not called by this example. It uses statically defined global variables for the sparse matrix {\tt A}, which would not be typical of a complete application. It just makes for a simpler example. {\footnotesize \input{klu_simple_c.tex} } The {\tt Ap}, {\tt Ai}, and {\tt Ax} arrays represent the matrix \[ A = \left[ \begin{array}{ccccc} 2 & 3 & 0 & 0 & 0 \\ 3 & 0 & 4 & 0 & 6 \\ 0 & -1 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 2 & 0 & 1 \\ \end{array} \right]. \] The solution to $Ax=b$ is $x = [1 \, 2 \, 3 \, 4 \, 5]^T$. The program uses default control settings (no scaling, permutation to block triangular form, and the AMD ordering). It ignores the error codes in the return values and {\tt Common.status}. The block triangular form found by {\tt btf\_order} for this matrix is given below \[ PAQ = \left[ \begin{array}{c|ccc|c} 2 & 0 & 0 & -1 & -3 \\ \hline & 2 & 0 & 3 & 0 \\ & 3 & 6 & 0 & 4 \\ & 0 & 1 & 4 & 1 \\ \hline & & & & 1 \\ \end{array} \right]. \] This ordering is not modified by the AMD ordering because the 3-by-3 matrix $A_{22} + A_{22}^T$ happens to be a dense matrix. No partial pivoting happens to occur during LU factorization; all pivots are selected along the diagonal of each block. The matrix contains two singletons, which are the original entries $a_{34}=2$ and $a_{43}=1$, and one 3-by-3 diagonal block (in which a single fill-in entry occurs during factorization: the $u_{23}$ entry of this 3-by-3 matrix). For a more complete program that uses KLU, see {\tt KLU/Demo/kludemo.c} for an {\tt int} version, and {\tt KLU/Demo/kluldemo.c} for a version that uses {\tt UF\_long} instead. The top-level main routine uses CHOLMOD to read in a compressed-column sparse matrix from a Matrix Market file, because KLU does not include such a function. Otherwise, no CHOLMOD functions are used. Unlike {\tt klu\_simple.c}, CHOLMOD is required to run the {\tt kludemo.c} and {\tt kluldemo.c} programs. %------------------------------------------------------------------------------ \section{Installation} \label{Install} %------------------------------------------------------------------------------ Installation of the C-callable interface requires the {\tt make} utility, in Linux/Unix. Alternatively, you can use the Cygwin {\tt make} in Windows. The MATLAB installation in any platform, including Windows is simple; just type {\tt klu\_install} to compile and install KLU, BTF, AMD, and COLAMD. For {\tt make}, system-dependent configurations are in the {\tt ../UFconfig/UFconfig.mk} file. You can edit that file to customize the compilation. The default settings will work on most systems. Sample configuration files are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. To compile and install the C-callable KLU, BTF, AMD, and COLAMD libraries, go to the {\tt KLU} directory and type {\tt make}. The KLU and BTF libraries are placed in {\tt KLU/Lib/libklu.a} and {\tt BTF/Lib/libbtf.a}. Two KLU demo programs will be compiled and tested in the {\tt KLU/Demo} directory. You can compare the output of {\tt make} with the results in the KLU distribution, {\tt kludemo.out}. Typing {\tt make clean} will remove all but the final compiled libraries and demo programs. Typing {\tt make purge} or {\tt make distclean} removes all files not in the original distribution. If you compile KLU or BTF and then later change the {\tt ../UFconfig/UFconfig.mk} file then you should type {\tt make purge} and then {\tt make} to recompile. When you compile your program that uses the C-callable KLU library, you need to add the {\tt KLU/Lib/libklu.a}, {\tt BTF/Lib/libbtf.a}, {\tt AMD/Lib/libamd.a}, and {\tt COLAMD/Lib/libamd.a} libraries, a nd you need to tell your compiler to look in the {\tt KLU/Include} and {\tt BTF/Include} directory for include files. If all you want to use is the KLU mexFunction in MATLAB, you can skip the use of the {\tt make} command entirely. Simply type {\tt klu\_install} in the MATLAB command window while in the {\tt KLU/MATLAB} directory. This works on any system with MATLAB, including Windows. Alternately, type {\tt make} in the {\tt KLU/MATLAB} directory. If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to remove the {\tt -largeArrayDims} option from the {\tt MEX} command, prior to {\tt make mex} or {\tt make} in the MATLAB directory (or just use {\tt klu\_install.m} inside MATLAB, which handles this case). %------------------------------------------------------------------------------ \newpage \section{The KLU routines} \label{klu_include} %------------------------------------------------------------------------------ The file {\tt KLU/Include/klu.h} listed below describes each user-callable routine in the C version of KLU, and gives details on their use. {\footnotesize \input{klu_h.tex} } %------------------------------------------------------------------------------ \newpage \section{The BTF routines} \label{btf_include} %------------------------------------------------------------------------------ The file {\tt BTF/Include/btf.h} listed below describes each user-callable routine in the C version of BTF, and gives details on their use. {\footnotesize \input{btf_h.tex} } %------------------------------------------------------------------------------ \newpage % References %------------------------------------------------------------------------------ \bibliographystyle{plain} \bibliography{KLU_UserGuide} \end{document} SuiteSparse/KLU/Doc/palamadai_e.pdf0000644001170100242450000121113410426213540016017 0ustar davisfac%PDF-1.3 %쏢 63 0 obj <> stream xT=o0+4iR"Q:hNE|Ht(4xG޽{זmI\b͵9VϗvST[^-U m4w}?AY`ܝ)\OnjR0\ꂎ {JZ0AhC 90}2 ȺҘ>ԦɎIҲĖS0 WbWr(++HP~ 1s5KJ$3UێaDBMry> stream xEN0 y avv& oOB98?<!YapBfL 7?`^J=R y=BUG?O {L&g<QCy[a{JW/w39ĴmQ[6jS/sܡK\t*W뷺> stream x}n {2)n.?6RII唷`2@v 锻م]8fV~-{z7 G5(!nȁn4og~1 qL{]D@B,0-Q"h[yV-w P + Kb@ a r$;*B%L wZ!V5m"n+!3!M4x:4պۃ7JB4~]_9߶0~_Fc{H4Բ\~"6C6`!t"endstream endobj 76 0 obj 308 endobj 79 0 obj <> stream xWKsF +3fߏc;2_NQ&GJK vE'Xygf8% ۈiV&7qVJxVa;lfm"~cTE4m}.N珩;D\Da<@\\-V=W9?Ŧ"rS3*^Wӌ0[+'D{g4P" F,OgQ҃)7uwy]ߋg f M~h;QH0QĶ-ɶ=]WQ>N-릪|E@|`uY@Ԗ6}׷y#4Tyh3O6|(X٦ODh!ĝ U|_zD3mmzX=UEr$,BGۢYjmBv^3.;@ ɲPQ F*c1|Xdendstream endobj 80 0 obj 1213 endobj 83 0 obj <> stream x\Ks6WGnbȏZtzdef#Q%I} @QډC#1Yb"H?9[ > >ElM?]K4 HDFH20gt1x=}3cWRH4 )2'b$ N6_L'7S:fFFFFDy2{0t am~~SO~ VH I`X̮:?\\'"!K?=Z? UQe@Ŝ fTwa.xQ/<^("ټF5717j )ESD UZ&>0aŊ&)ZW39#v(KџidB &XvrvzsݞT Iؖ Qk&D\hw!8nBSf pę)znKa*uڒ-!~0TkJыy…Wk{_$ɛW*?i9 Y˽M./ni! IcK;,]ϴ"EKP{-nL>0 s6ɕ1_zRkPK7mI%R}P",9yIJp`)" ͆v0n>V60J|Toj]=Qϕ+[\Нy&U&qRUse!SE 8 &W*‘ /5^zJ`,?ٽ z?Vi +~tf:]f-y$6To[kpc"o4n)&OkI>_0D6>p~â--b$;uaf!VJ[`[Xɗ-#BY"eJәH~0_V-^1GR-u} W[ Exn7j0Ht<[;*l4u)XM؝)y9]813ڧ.J; (8[7m9# B㜇9|Jy6)pZoƕqhG“]ivO^/pE*{2t 2<nS]f$8̋dްH))s6UŶ47D݅ $0@E|WZ7a}߂~ROC NbʻI2\"\ep+ps4< To:tq&~u7I''K >KR^oiжsmm5M{']߲/\#||Cs _F6iv`YÑ4a35e\h_vQZA}01$M c/X*^9IUY#SC;$|_Sw`Jt,`>܁%d̿r.|Sn8:a?+#Xq]Tkфhx'ԯy aeGgk|ΠN: S*MXbIU`|ӕŵ𥬺3b|ŇS-zPG \oGptVbKG7g#Rߌ^xFw{^]FCGn9x&/) ?Dm=Y@>A8d1=}<]ә-a\v;g"|]$1㢰!i]+0Dni1T *d[خ.q%eH > stream x[v6ݫ?eSx?#;9iG?@i(%GCHmij( @p/f?Fs>H4dw){y~H4ގ*$"#UFh1$>bLtތ|()FRa,Ieٙ#™mEaS$Ҷ^[lՇYK am;˳KٮabdUO0ńQ ^S1!i#B0`(gN[gW$8m H) оǀP4Ǔg㫎$7>dD5ਦ‹ S]L_z}BmWoӳW]7~Q2 ;sS509W_R.vendstream endobj 119 0 obj 1766 endobj 146 0 obj <> stream xWn7}W5hqPFXywKRU+ ?9g3 _cEv1Q 9D6 #5:WWߌ9BPiM~&8 Uy7ä*_\iooh2a 33Ʉ͎̗cVY:0n}΋et ?L6:o?ݱ' 2͑>~fF_WI]6ղ]ҊqTq֛q m0TJ`ܚ,an2(]}FǀFSo FϛCkG™uo uyfBUI1%B0=u& |TmY"Ci~Vj[(,1Nu 6b2fnp(CQu _e6WUU ԇh 5b<ܔ4)/|]z,&̋ԎqEiӱ.F&.3{ $PPyTcWP ɿ&f"G<^G:/,AK@_~/n~}4Zˆ-0%_+LTLTDsUknB2}E.$N%pk4$ͻ/]Lt nn+rLRpK6WyE{'mM u;R|\"t)j9m|JE+?vj8#w;ڒ -$<?O"Irx).9 `zڝ20SmT4(b9YTa1L;)dws"ͱ/?D$yQ"n'@lάomk3CxX^䙅_ s)i׏̊(hG&_.eNw*ۛpW3| $!vPI7ԙ Sh#v,ߋ+[endstream endobj 147 0 obj 1081 endobj 158 0 obj <> stream xXKo8W=%9|@ŦPlQזZc;H'ZcǡJJXIÓޓeqWܕ,k,_UkKƈլ X5#R%T@Y-o߼>@ HP/]DIIvauU^QJAP)KAdV'ΈiBMoۆLp hF[XUΆ +Œ7몈e R]€D[i`Umnd I%(o]VKS% .tAQjuO Nx%P{:nsw!jy3t~# pAnCϏwox ĿQ fѴ][/2S9\6> stream xYrHk&x&o,-/#}@ 4 ъ2󽗥 qkbx:׍ J3+%[IPfDj{]?ty1sLLhޭQqbd\[=}ջu2a5ﻲ/3̈́Cv b&,m<~c"'k|=" '߂fܐeb2}ڒ) >*$`MůB.1[U#J[ۮZti&þwK:Spnr6N3d+Uu <3`rډGL R`> A0n]ǚڤ(H3*T'aywPT+ŋWԚ۫7D2Lc޽ "/$݋7>f }m:HHz.?!6m771"=9uy9ddz6.F$M ;/)!b!yf "CF3=N=k_; (GOk$b%.n=*eƸ5 l m>Tm@/:PTS[]6)ˮj6!% '@DF$I㵴D}#}@b˰%NH$ Ut4<}\#s|,c<4FiuBLoCWFCll`vP}%zS!i70e2tO ZuPc1$ECʵzzy[#;V} Dhz0˴HO#1 0vz 8?'1ܞUs{xPPe ~J0%X#9pTP:G7P?LƆr 5h@ / (@_*)]I`eltCkFl#c09N M567ޕM?veVuY`h!׺7m׿$F U?o9960 Qoӱ}wDN$b!tUl@0k,^43.ǘ+(4]T(HVhڋŶco%|W0YZ$3wy> QGg|몾ZM^jXdjuU?,,)bÀ&сK̆I`߸f?sI~BG7&kG\vkq0 *nk uǥ)gſܿ>wendstream endobj 169 0 obj 2406 endobj 172 0 obj <> stream xTn0 ӃY1zjzh~"16[ɲ)9wDq& Y޼y3VPS͒ ڡV_~jS3FR>Vk'CPaP{yVPnۮ~ؘ%J(mۻ*41LlɈTdSaX_! |Iie0o p=pj0fc IÀb VljT 4w9ZRo4% =9,Ėf)FhI8 b^ RΉۼsӹS&a;?8cZ8"v+^ 6д % }Oߊ -|LFPUcc 7DlOy=~ PqkFEU)}rD L@Kw8C2oA1%1vKH&iw T03/W_|6# 1dc加4: 846IӥG2sI5۬ {_XՎñ(A6FSF%L3aقSB*s^ &Kp"-JD1sD)cJSG\lqU"Z]z(SZ'%feW P3fv~Uu@-$wK-B0䖥LJ+\dÊX:f>^6rǀ2`̫{߇iHOburү+ʁ}Ʊ Vou[/=endstream endobj 173 0 obj 741 endobj 176 0 obj <> stream xZKsFkSxsReM8W⍭{ID2Z}z^ QrlrAAO}_PK?ۋ,(6mvuq"kjh]Fq" g6`p鏯Sd!lq=؊;Wq16$RHO\GZ [vj['lL>nՆ QwNya a_3~¦\':\`WD>v@nw)W^iAv$lw$}{ =}̥ܭ3"%'Pu‰eնuʖbN!BeQXkHU瘞{3h o DQ6÷OAXjybor9 *n l<C`.PD9t{R\99]{z9D%=YHR4nQ]:e|\Ň2cu*H3M~rǀ U}b2^m=l$LO_E)ι㨘xz9OY-&ωh-s|2a'pr&sկm4fq=yfOACҚ%q]'奊CWoP+HFg6Lç} oH`D3L3T(L}riݡ7]5 4]45(/g2ßyYH#?޵ˡ}7Cwκ69*L3!9>?0u6 XuPy MՠEZ,lP3iN:ۮ-ѣ7m DðHW^;а 1/F*\wvQ:Η5m1Z!,SP[!5HLr 1 HAY3v\9u3Pi2yUIPgUY6o! @KPJ7C$ IGUݮwQwT;{aS &*=/+ nO|$DM si4ۯ@'a|Y!ZD7Cr86PBO8 Vݍﶎ?Go*Է ;jʄ5LF+]T;‚J=)]سRPz`Lh}{X 뙨,ê>C_N(U~Zv+}\F]k§ft~.&?{OrΚYl@K-Rb)Z -7 7]~ܘoeqHk՗ yc:)ɰXlP= 4<7zƔx: LF9ae ouӜj-V2!).1*HD(MB*"NME"n;G>hua cNc a g mn1$_)?J'x"2ek=?=JMc!رU1'-e𰄜'3&"yq;sMӶI 8:EuH5:3h$R=uy>h(L  c~ pt2l (Sz &퓞9FwzxWG@e)w|?IncUzlpHѩȫns w2E]L [!itg9^r2.z{,VhWS-;*^! uv4Zi\Jyr|CZEu_͉~:p&K; Wšt{5ﶡ&5@o!*b UHSʶRڗR!4y9){gmA9{آd҉,h'%o>˻aWEұ8m/ (M/*]TQxt$Q/oUl:}k#aŬ7|oj"Ⱥendstream endobj 177 0 obj 2683 endobj 188 0 obj <> stream xZMO-NՊ&hbW[W.p%̈6?$_h#H[Ia ht~17e6߻ k׮|/0VX.~mjEUX.67m%Wz0Fih?O-^W_EiŕXSX`Vivץ(d~0nҲJߨn *uxBTezaâ.L%҃{ףptVo~UQ2/q/ʒR*Ҵag) mJ2q uae -CX XQ[>B[&iyvc^\/X.ewSLs_ [n[[Gy-z<&=GJawσEWEGR&|[YD3NoPOnB0UzM9XYy>,{ KFƍfQ(qнQрZ!Wac<NǀPP~@MmJ "UtCCq/)L]|p9&MS@ #(!`I5 ,֪$np`Kg<Ҍ_R:[{(_Jgh#'Cx@Xq!!^H6GDȊ+dQzF3 c'ʂ6ȳ!Z*mn>m %՚BqƦD wnVUp꾙eARE׺ڊ <Իg=71+a/_/ & MIG ONnj\bzиOYLwRiTqR7mmz*u X1eQƷӓzی| qE4ɐ24'/r 7ÞdxJHN97{2VgBysB %o+KXþX66Rh %qwHI75r 6;p kλ?!QvE.1Y$S]RC"gY0>V<!?֧ij"lX06]/笠\l.%&qjümLzv#E`aJz+@k'rW*}tbRAW*TrUE }FX˪#iYNhGd ϱ%U~ rk!# Ò)*6L]'DA~+b1ebxPrLTlAH#0-ϵ0=C@},a:nS%+FM OM'CǪWP"7'Ol7IZ?]L|?aTk?b~3KcIAi%$iqVZt;Q ÀʳL;rlݮ=gbvXW.+%vMHj(cKZu6J9 =\s7)$ؤZPzzHzVU&O)#ǭx \cD-J吒6b t,Gz>w@^d=&*3$zb`w/bx*b ,$# etTz1) |rcA^Ht@Rܖ#"\Ƿwsݴ{iiAا4;KwitD%uӹ ey68qg1~ch=Mqp'b.S!@SjUA;KN)KKU3,ΗgVP~> Aəc!`")Yq);A坒0ǘ[a!Y7[Nz:K[Tȳ`"Xn/ek\/xM9 _WNMIåO;3D&h=G?6}E)֊1ϤUw]@z\>1s۔+lY dnс#:4ʽuC0ezFf>9{:4_pp u%0V$)>ylp~Te]ֳoa\].>~uK]ǃng>TdS=OYӠчgsdA *~[YjSz[0W!oy :D>3Z|*HՓ_u h@&,CC[ KK)K43!l~rOdx\7(qFze_LOoׯgnLS D+=M b+nacR:kSLxHwiJNH'hZ? -M} SaiC7CFw4zwNMsZ^!)1ZҝLl|7%Ŕd\7u*hJhHA@%n9LI#~EB?Q(_qYsƦ ;y?k]/_eP0@RjSk7?~endstream endobj 189 0 obj 2720 endobj 195 0 obj <> stream xYɒoD1/Ǒ-"&,Hj},,rԊ>tD|eTtE_>}~-[V/~+J++%[=l t%9+Ue_=^ww/$׫{f*c$]=l^æ=!TE)?C;M(~-2R1jT\5ЎS+:77lE ?nSOi[Ty?ǽ ˕L?\k\m${-Mxe7h.Di˟MφWozt!#D$ۻw4AWHE QWTZc58o+yŤI~>%UiKE7)ڴTOm|#,?kl^i1a6Fi AB۳TJ3,y P2ogv$-JPBҳy8Fp"D"(I»>|`ěcd.$D⺟>VTYyjuՀ%%fܡT$h liqR ¦]}iϹL_P1ǘF.HݯЏ19eIK A!}Zq֡s;GKSI譽Z؆Tѩښ}{h;ijZz(3h]JmB!\P ߷'sI9B8+(=<4yL 9E +!ˌ.a P$RgĦ`> ڣ` n &ͤ:mٴgn/JWQ Kuwrle4W#2WK8b\f˯ye1CR%<=r)F+faa!K.,bm &u 9%by ^XxC3K]]7KԶ]2 w_z}+ht:`C$-E;Тhq7)aсô+i/~ǘ\hrq]zTfV.8BrJ Ű@\2U}{CASY6U xmt4'F^BG{98_j\/ŸBOKD`x KMga=ZꄧFC1"R@%1;馮Wy?Q0$("ňbOP~"hhX%i)h~E7 sAQO]m`$>wX]F%  廹kumo3zۤd^c"^}"CcNOSTUTҌ)Mr,5|:eyn ;8&P=yuYAo/Lju rp)*ų.B;j,'/Πn{ 8Wg*4pxJʴʢ6~)pt0bJj'yLnH"th%#N }ǁ4Rm w(ITxu~ƺG<8S]<Ǘ &X09w9 ISÁh@Z<҆ė}7פ<-rwQ }y c8WP tR P,T{P0c]27F-ZSc=\~琬q^ Ss8|(;(՜͡[L>59Id?.pst6Ѵ$neHBh|SԪ9[{HMbpKؕ7te~XJ<(`. SIg9yi'0ndyu*L&qRrnXGQPHz8(j v&R{BS2|HS.o)']%bvOSUgd&Bsg38GdypjR0!6#=ַOc\\҃&@|W9A[F?wo endstream endobj 196 0 obj 2679 endobj 199 0 obj <> stream xYK6G蘭`x+NULN=Fb,2Iٞ4^ =06H6_5~A [P']z`a--^^6 H_]B ADFhp]}+}յ(ak[ܮƕ~ߐ0&Ofׯ*D ט$R%MLd^r~!K.t۹y$ΈM[/'pyٍC7#xzk!7%MzҎk2/Ovn{)ADjߎ{DJ՜< %2 C> i]na. | rP2MXDh)XS aecU/}*͏3C m%a(#I͉y0-0 z/!%y/AB}Sƙǣ")`+"L@U~E < őD6m(_!TNC*wNT T\+"5p)ӗo~K0Jy*Xe|ػm(+`GfZ-;TWJl~c.p1M?7Jݙ;TasHPM;xX{G wY( Gy j~SU"0+*领=6e-u6F70zH;C*^JI4#`}b⭖{򙌔xҐV'g:wDd`]Ɖ6$nMy`G$F@x$⿥6y׏f>$櫻s1MT}tVF  >mȉwEf8ꀱb-gm؉AvI gcp)X[F#`Zlt$Ϝʲs6umĀ$6ۚtMZc1l]2IuͰ=SKA a'X)D0ۭh*sьH(cq]VQE~onc,vu|CRabȇP<$ժBG:z>16ٳ0& eӓdxv{F*]a99(_'vak>uX⨚"@s(3qiH_n2 -#tVy%j3d eX!2vF,ANF-`~~0o7d µl'VLp4l?$jKO W?*2©<6B3Q0NCjm$QL5Ph:) ŕXha3T5=7>}4E-~7!Tt6-DӭxyM}\j_o1 kf''AkqZu}jA_DA||q/.R֔5eOEfˡN⤑s{_)vpTvTsεatueV]|[sa?`=0skzш@HilMjI}Iqp # ʴ'T Y`J‹{(PѬ| _f_qh/ KY]ge1~ID ޵e$_DJig P<=u+[Y'KU:U}6_L@wK 5|7obpPxG %|kq~1 d9% e/endstream endobj 200 0 obj 2405 endobj 206 0 obj <> stream xZ[on7?bjdEHhBK+kSIʲ?ofgWY^$ smv>Qÿdzŵӳo.-Z*<Fzƕ,g/雋_Ό`r &bB) oPCJOuX#ͼ k)(_&Jͬ7_:NB{+ ڹB1bU]bΙQoOxo^$Abc?kt93\h.Ť 3D/H*nXWW*:1k!J&2j~^Fj͔qi}y<'%$j!J]UCZ(q#zSo(!fkGę,g JBE`h<`> bp,o{X# {~ 윩YjR[-Hji"uکHJeKy1_gMer%J.`_q ]dQ;EG+; IEb]E .@6>gY=5Ӟoڢ>XdYmCFRq!w!4DŽ5 I< L0I Far.rtoW vI&Ta]iڀ2RX'$۰8dnۻWz2 0sڲBQd@IHK}> B3N]+T~RfD`a[} 離mLUH1 snEM\e 3[m):6sj96-7} ET1z$-bF0 BMGX ߷ٍ:xD].|HK0 0x1 L#+b:+e@) {r18DŽ xF#='=l#:A:$?6lRWmQ][mB}oy9iVT!q^iq> /}5&SZ MRu8fI;ȒnCpf8W{QOY:Vm\|s~P%v@ovlM`PUOinrWCt-5hq G}p}M0EȣgpB. # mir>9kJ\m!UZz enbe<]8 haGzX=0%0BK{)We nOG :$$Du4T6?ͽ{jl 37ys:Oj4} xإ[jj>+3uH {W)Lv"O搡3SB\7H)I uMGɠRWYPx\t&!|>{g4P i BwSRr>wP!y8>DpIj|vwZ.#glc͛4QbM;Y&3p^_nDڼ (ˬB5u83jVݯ,jGMjlszJn /?כ(EM0G~%_l$aP4ah41}){~G.J'y9`0WuRot^-Y~\Uj-7dh0z_cM{K 9&OUe"=DL܉M!'.:J{,HcyDw$wiRf-Y7jh; ӇՇ#o(tW) ;R`}4W \sDDbP1Tw󪼪}rT^; |_glk/ ; ڧ2QXbh& 00z9AFvn]#]! 0h+%zt#f:13'6g鶚<ew;ܸS{1m>\|^'KN@erpc 4 ˮSSgWWu@̠kZj!M?%RUppn5ڲ k-77#LKuҿwL%P?q s|uUґ6M-}m,_R´Yj ӦO j{Ѭ^7.5vtoAEUȟ(4tlnu^m 2$tyHuK{=Fp(*Ѻ}mU>ԗ',,^鳶~T  M'@endstream endobj 207 0 obj 2364 endobj 227 0 obj <> stream xZIo[ 7"?vw~sB˔ ؓ=#%0lVUu-L4oWOOkU;c!IhLzXiܬ&̏7LhmsZ47'sD5Rſmw&-a2oMˉ?nO"~_;p@rǸtwZTQnUgUdsX~ iΪ@KY/KK*>q 3Һf*PZ@gK/dO,VYaђFy' m G2{AcY.N4:T)D#xޚ Qa{T!5Tm_hfuʩqA]"硽':"jsF}3 [};mnPtx#F)8 Lej&9Tuv_ET`Ny6hgto\po4䒾 9o^'މd<*2N]Z; J-𢐖IdBʞqqZ;ۋwv5 xai.cМF7ʓ)7 ƒ)n}'0A#Sm1dz~pSgD2xqHRs/U Hro2hyЄn]EMҗKvY 8Җ1i^PM.`>]CRf~I-c-}Yt (L!FoyKY' 5Pd3:{162"U'kUavMMwb 5M1uo׉a3Pn2IQ&O&gXS@DuRg(]}Ne* .mS"|V8 (k )n#jAZfr"F fv߈zL~E5>(JU\`ÌkTeX߈%Rδ^Gs^U< BbNڎwN'gO(tcV>ݧ3+TG!j:En"L&OKVR}^W4OJV_<TpP4C﷩S&K'p6"M'P -wS+BQ,tNߡQL 5~A :UXD} l*Z*L߄ҹKLK%bAq{fA)/YìV[H-VB wD7ԣ@1(u| "CJdCahL4XO׆VjIptОns 4WW+8Fs9*@^NsR=MsPrta^(z@kbnDKx ͙1]@'B$䪪!~R{.xce=+MkC{deȪOLj&+ʳ_nU}kӇO%.Ð:O RU^z+D,\t04)uWڨڒ\+\;xdi>1T]OgFE:((8 }@^~\%AW[ Gk#^FJ>Zx~xLV,T& . {:ω`%$%X76 ]촟 0pƒ?߿Coc荘wi|%-3nh]( NOpg2XYzC/ۙ@mX( *co7*N0f[h4v.7w A ٙ}6lJڎ3zDˌB'Sra?[L1b |?is(g'XUE9I}PPVf tg ssDI6k E> stream xYKsF3 Ů&~neSTj Bbв?yA0ӏzqM [_[VW̯?nڬ#N)^Z ASk#4q\vWKI9ar-Vfjmvv0g,qklzݴ[fa0^zd%FHGqƉwޗ[5騺O/qF;McƥfZr2.}ߎc7PhÒLP*+wKtɂ/F)36*GRM^#Tb|D.5Ea7+JuZQ *U͏a*)?ٶ;HRZPLT9^&B,kV'#Tu5r4$"p 0*U 5#Du3eAeZ.Ѯsn%P\[!f@50b09jB 1µp<;z8 ul}1 i5f`!Y]ST=q m NB}%66 r08Wei.G+c{^-ݾ9j"=`Jd>~m*as4}_P"(40 _-5%]gpfJ)T` RVɥS\oaʧwc<أ,$xF^43v)x}8 Uo)ϥZOiZI>Y !5-Mrs^7Х[߹ x8!E3G#(R4E#hs)C&!Ln/lGNk }ӏ@Á? /竼,{)@4L&;rq@FShwkkmp ^+H ._Hhfkx ^f~/Q/ +r{RB@͵O:"-Bb''xH_*95 RzJܪЕA*&&i蛻}ԑ"(+Ԉ vh% yh2жiwF[}MZc4o$1X`6M!Xyn0bH1шusB7x08DSuLvgͤUk>CX} 2ٰk@r>H@rl D~ n$b*w5¡ = å S0v9.>'(kX%(ES#Bkg|6k@j"58'p7L[>/ Ny=݃H ii8 I1axIt:*ax+ 2Y!?|ZoFy:8t."b ٬a-lHORw.נ{4vCpk+švA.л*3f?:,*;ha9/Zq|CTn&6w#Ub1T0oT[nhvH"j'ޚsG8+ʨJb!@VAƔ@eϏs%{&Ӊr5UXQ{ZȳCR)`b.΄Xct̹#0?Q'gk!1tf~FpG2[FYP;6X=&Dendstream endobj 236 0 obj 2306 endobj 240 0 obj <> stream xXɎF=oA؈}m8A΁8LI땢H$iV^SJؔ{||0-^k3e8t~3 T ASS#4q\L3|d&)' #3nMɳc s񉆱vo"e{f]kaj Oc' ͲYaOa 6s ^u Hbi?IeL&5fP3yq1Re{".UzD /C=.60FI-`:iyl6 I\E܅ddyuWX.^Nby\0b˻^}@>JBlЄicu68Y"̆QLAw{$89.i9H8?n))|*|`v3 )nZaKIcJ2-Տuۺ:M`0T1,3ie6^ ʢ4\W]$ۛ]؄)h͇?!+d\ y2SŶaH1q>#w./xj8Fq}t=ʎ Nt ߇Kѣ6`_"%AuQ߉.l ?dڱ3Jv*|'x^IڬG|ٶ aa`uض nA.z:d&)V28˅̗Ldy^ ¼iU%\ 5/y\D\9(UmvFs 2ӭua9s*EOsnIq\w:*ŽC#OSbeC3;O|  H= : OP4g$˳\6p!4g)X ,w)XjgQ$(3>ݦ / jk RJ^Y@9/4,.'ӧfJDM) &֖ i-W)" -G9_ S Ft8Ex2˽gt`?iNi>E~VdsO`h |b/eJ)Ź&wI~;?a僙` OqC u},=C`͗8~^C#фuhٖ:T$cj3;5w뱻D+q?`ȥeekl7*zS}gIO" ߌZ_(+䳚(Nw(-*Z +%l EwP`wP:if:9ĸ-5+WMlHrzޘs/).k( s B-P uQxm@j=64Rץ9l#,+h)~ITOg2Q'i%M/tf,[Umr8_:e-zy\i1E`_uE}-oC*j' g)= iٱ׀6'cö }(S-ݫ(6q4mwgFz PS:js.riC`D)Ύ)M.9uz(#,1ZWX VU\RT[ׁPgأyN$?fendstream endobj 241 0 obj 1953 endobj 244 0 obj <> stream xZMs6Lo$Fvrhg^rǽJci]Eڒ3aXv]T/w lT 9:{h *#4s(ő;>8 ZfrqnA&+& o&4nq\`@vP+t=(7`yd:G)*)lKW92iFV'@LvѢ9nO]3E5Sr܁B KEk: R"m@%۪(3Xz'VISO40il\ .qLQvjahgΰT$}e4C̀mvp6UmЂCVZ[6m2)%T2a]ҧi OJPrEHI$bИJ2'`Ƥ$v3L3Z6A֦!I&)VɡnϒbtBNcOAx8b|42 FoEr^vi*/IZUiBc[EA'L(Y C3xtaZ>p'Kҙox<.N|LZ哒࿤|ڹҨBzIRrc\G;?kU$D.jJ`,118Ӻ8*OG:P\:L *]W$QvzR ?Dلsu`T.BEek9+{A,^]=p]<$˫q%0c $K/׫MrEV}CD/?0o.\W+$pWvdUqSRR8HQQ J@/GFg IpΕt eud$1Y-d s$9Y,޲Nr4>MNGnVZrs- }IsH L?`L7uu Lr{Gɽ$ņ8EW!n2K8{T5OB=3=Ac\d)m;lOJi"D1Rl=DWͤ;P2;W99 TZoډ݁j z\n^ ߴ> /^JB%oO |t󩨶\Pjx):ޭ @%^ԁ<WG&B,Y*\Og(Rޒ}$x)I puI :h҇D̮!v{WO{}IuG{X'r/$-hp֝=b&I?T*on ̔lU.'Nh?l>| g0)Rtzgj^'UϏ_W ^mWq׉ŲƄo |lֵJvB;6]J\>k^GRt\;q}!LXy,E۪i8|YNũX ^nִc&A1J{%%u^R 1դos e\"- q?1ge%-biP{p*XzۍNO#d_[;w<{|:?g!]2Ugcϗ61hZ =fo|Py^SmryLbCܛL>oHl* v7d:|_(a[;gSa81c[ZH_ٖ kBI[1Yա2sv`6<۩sb1"`/(;8Xإԑ%~6"& 6Oߒ=?}ضmC/9ZA'.:dBM<9ďSL|6䪛L?Oendstream endobj 245 0 obj 2023 endobj 255 0 obj <> stream xZK7`n@^`!kLno~df-kxEb_PvW/Xx[6 ƈS/o/(FhX\ﮞ0?WK4V,k[\\=VLkl,>|?WA/o("3H%T "~oB۾zтW3ISUW…!*~SKSTFMM770꙯TOPz1R^eƭJ*#GSiѪ#0"MFXvwǰX–&p߆!&K q "Nsgaeoq g/KW.&)>ImPTAmEVgK$;] M67Eq\=Ċo%'}[ ճkdKcKD{1KS0b/932%Sl$2,8gqSi+geq r`ɹz.Is}]҃u֔G3*h3p,91b|ևic5I `%?=v(£qً=2#5<1& @voDI>uuRmB-3X5kbZb=U2C U3"ÆW !xe6*sv$ QOqDCƓk\XFRe^Wc;' ﻘ6$Ҋo&;&n@5p{Ǵ!a/1F>oB3*WvvwMۅB!c󄅛1.66/kC>S~uV(c9h$cY\̱ dw9x#!~Wqk.% 'sc]}` )r%i=$]1a}l/֚m?ov)1:疯M7(.GY)DC)HcdΕŶ-B3bƛ o6]%L͵g³G$p,#A Wx |=<62 CPb;<9ϧ\d>CZs~{RxlϏ_S~6h9sd6T/AA>]FN_\=5xӳpÒy(h6HIkWXto5iI8%f23MͧX׹%&97?t'yq$nsOrxpiD:N@nod;*˃V#н1vNz.{jm?ܦ~nuAIq[x c|Y LZ91G̖ړv!G{m% IuDN{cEt=1%/iޗťfpDj\|VC v<_ITrQ{"Ƀn_,p,6iXI`ovWNb)EE}'+Ʒ7ZTDfBBTUJcI? A޻cFu͛vk*swh\]kWmN |endstream endobj 256 0 obj 2864 endobj 266 0 obj <> stream xZɒ _;Ykj_&B8B4D!qJ9۝%HCw`ɪ彗~?ͨI7g,\˿O7?fqJM|7D)=3Bv}n%sD;;sKUlvy Bhvkn )bNk),/W}[5o7{eU41I.]`u~CW3Ϯl{yL<,a*.mQÌʫmu8cJMC/3!`|,8'|gɐ#T´Px䧹P)!Xվ*<(Un6!R!*Pe]<9|T-c#`b]R0[V!pZ;Es^?)9!(z 1jqRvm [m/-MX=чbg?ރmp"8.Q~ϋnD bIgfLxdzNr$a!)Rz(͇HK2)ḉpM5lv}UasLpuuF lqAĮjZ%ڈ]:lZ ?|zRM:J;4]f  nUM@39ke^b"t8 NU}_!,٠:H1).̥&gyۂFX}SHaiud64c1\NhK"(a <%lb3j; ~Q@'Z+$?ъ9:ZS"]A+T'z%F#),SJhx~]7h";C1V]m 0 fNtDCJw8 hG#d&=z3!)8$R3tPm_n$3Iώ_ogjՋGJLi Υ#F<`AgucN" UB@[lDE@&0ZP#_Z~T>oK,xTfSR Q 8qS)h|-Qc.> `1ͅ"#Ό[i5ENn I*G[KA}S3{Qs*4e7^fr2Nɱj*)y=iTQBɤm EQO)wj3n| ^jE䜄!.@f]]2fuԡ4xOyj-Civ.Ul[k'ul 0#AeJڭThz/Q,.J2EB~ SvbAo%GO5>uΫi ̸"SHz~7pz5Ӆanw)9Fm{,g=UߥnkԿQk{Qcو.TNDcF 講.v Kq[1JM+G>]_$._e  48$( (~ImJpߚƯ;\ mm*_gN@m>b մ3b|FHfYdLZ=vMX=ɷ! ilQ6A y3A=;bĻ3dFbq˾CX@rAAZQ܈gb1,3n@ &"v舘s ̀&H:/ xGYb<`؞jc~U{J`*M4|; P+ Af 5˔q-@o ӸN{HF)(qe^S sN'KJ)4l@Y=*KEԬomQ5[0)MhQ! + P/a52i w%F pgHʾjz_sSb58JD0>թ]6r2 ϸt`.&{PP#ƻ4218A :aNs@앒At uE܈ZXkHd!iMf߿I4\T:šYfɀr%AۜC+b; #7"qŌ-sMr&^~Q+G;Vc =ܡ&nDYy3Ӄ_5qk@>)[HI2)5(J|Տq0,r E=o/(Dǘ<>%2 5A6ڀ2J|*/ I4z0/9/+Jw膐%L>K,90]i8`(^:"FE/q?hkG.wM:o2~R~K߉?]07S婨Ш6(}~LdLIS=a5<;6ryL^dAF4} ^?y/Q<;~zVӑ=-)8`vy8?2=4K=㣰I_ar:Aendstream endobj 267 0 obj 2587 endobj 274 0 obj <> stream xZKܸd/#lX`$ /rfF{ =E,գz>xbWU_aE "_paEz~PzEiad ]I )JsUXW7ۋy_0M\ j eꊙIW7ng3^V7/oW/.(6u_oG~ld!4 }CFjgUn &bݾn6/$&t,w W/4e砆$Q?s`J8:,l˯c,L:S9mV(4W˨dqrVh SXQEy{f^Ϣc*E{! uD?gu/9# 88=Uہ =V:JK6.}_ۦ:.;B=ZYRDB:'s tngWPqo>IR5|Vȡcv[rGw1JhģG rm>Bt<+s;Ub2P߳h 3d]uhM뜝(ݱ<.=5vڕup,6yҠ7ӿpc94~aJar;BXmu5]Ow&}H# >)3}>cesI&B,V|IJ#`ȶ@y^ٵg,KRYB҅LVB(s3*Bj 2YΣ>Q8Ys ѳyL-ТrpA3J|hu=n6i.I0'}Q(} YdFLlrZZXv멂ɠu''@Hª1g}@Qt;odyQ0͒NT JQp;0d=NQWatv=9-G8Ё`A.\k<2뗒yɩEd)p⨀7.#}Mš$0ȪN-;H[B%A, Ɛ,OӖ d#1g/k:xx!Zń6'774BZ'5ܣVtcǡ #]_Ϲф+sp2q2vʍ xo4kVw&pf|@,0չ#0Xj.^MV7!#-3W%zT90^3)QlS/_4MN+("Uh|S+S*5Q9DfѱD-hIϮ dwyO54$ iGX.RyX{猥-0VSX|$ 7%LW'wT,0i ,X:1>j>qH%Yy,F9i;`KtKL P3Lk8F މC6D l t }u5ʢ>us>^/nf|"2 YM[@-@~hNg•H=t,e&pqDw.tX93Ӑmá^M7QpJ|KD5jfNA;PLcjI.3SL..3D;IK-h:vS`DBDbi1l_/a@my {ShKa3* waLQ+7:HP%lVΖ G"HASl K1x$> * DD;x6o$e}¯88*6w&ڟB.Oq spmH }833bɓ@ +ҝ5δiŸ.J{ԊAЦ=g[j NSfg͡nI- A-% Ǐ.ΧmXGKX Tj ҙgZ']?! OFV:;>qK"qr={G WrFxN'||ܓK|)!ݞ{P&ErU55Te;P$in]űQG|3ؽ_pp+GoMGcЩO7^>endstream endobj 275 0 obj 3076 endobj 278 0 obj <> stream xZKN0G0[~!b'9D9ݑșՐOflr*AzUI j[j6c)ūE<* QJWFh⸨oxvv׫OY͉-Z-YHʄtd]v!J[A $%~RJ?W IE;03Ht;AԄs 洞Kg璯-415)uy D ZE\js¥jtߑߜ /;iA\|s^ϒsɃ"msP$$Ǔ9"P.y1Ϳ#!GqsVorΑ9_6B0b2g\ K^LgwՑ9>rN`9Y!8|9_6!s( m9JLYGEfl/ -eB:9f "<]? 4v7H  69+LwM}ߕs[8H2;!͓‘KZ(Sp{b?2+)\ ̈́ LKuOH@#G6ᰠD7&!Cb Ve ԙDzIKXBXra6%RfQ1/1< HcDjujvA,@>x\ լPtV鋴g( [,LdXe4b殅бjq@íaGYCȊ[J"Q=L))Oe+6 i󻒖`";brX;}|/!y|nhv1 BD] t>8V4pB#P :B/ۢ%u}9TE>{tlGt%@4 ~43s탶^9U!o˻V 2C6%"ߵ@#)K.0 xnT 5Ë.Pњfa]54@5J,/P ?R@Άq00mBXf&2ɬj3$$Y⦉p}mfdns%/)FרY$*ou_~׬ b 5`P2A bP`ܼ~.,P|.'pQ@16&Wf20),Y!vLҗm3ޙً?Dit6e;_k!l̇$ h<9c=7W}KiF59AP /}M_|e,OF~Lni]ɬJ_l8\y? !Fl_?L:Esr^GP%0wUEP5D,S mxyE[܋f>♳\bݺ,j%AYndFmPƗ7a!\՚WCR6ԺUEaѭ?t>I g|)\.1U 񔩠Q 4gxaIc &DYxM`˓t$y>fT'p4q.м?CdԜYJo @kJ`k6-uN B*q{ZWu$ώ+ *;4>Hy5f~tUcLc&%45q}$z]*Wzp ͗G rz{F?׫tQM3[aTf2 2b'fS+9ki|Naa̋;oUJ::>k`#v,bۀCDHP ,>6wT@<O\PI^Sn|>퍢6>>@q;|0&m=yCQsDqaԆFDˎ|A1~*652WæR}U?,er* p/sip,cfT[[J&IQz\~R>J3څۡ/gAjV`CEJ\9E榇` o*0%pEC(=]3& p mN[%oz-;aզO CYfOơq>A9]8P0|{Lq})@tbN=%Ӄgei V'&u&@Eg i*0OMKSfϠGEޏVl-2+ѨO| e>>ycendstream endobj 279 0 obj 2885 endobj 290 0 obj <> stream xYKs+{?%rc3A[IvݸSDH@[Oϫ,U|k0Eſ ҟa[+%[/B2MT /VK*^~X jfd#b6F+sdƕ>5 5)7}0!K-/7#$bkE$Z}%EO~SF2MPjosLfj[/KجL\E\q>%C(3Rۜ[+uڸVdKkz3[z6t%E]j&Ec%4(:oƛni>6T$cu3Rd ĀrN!NI0&WfRhIrƵ.t{S&MR.γ" t`Ī(^%|Qk,{0FV E-5&ݭ(f~%L:5M4.o:UΈ4 uFh<^$܆H`J1.LI07$}yהw$ծH!΃n] }/FKn4Vp[&m(%:Ŵc2vhOǫ$㈭2ܑDOW~̀f2zsN3EUwyW^/\1q[K0`h_b`a r!X2&8[2]{)-ccCGWv(ub5tGIHsEanZ_~y~JD=Z_!Pfӈc"$"Bд{F~-?U˙J+"j̎n fMsq7؝)M` SYpHïAYTuIcz쇢U"`#|t-6N C&TDF B1Epb4UʁzXǹ:@ h4}bV&Ms[O3vJuE<3G&Ea @E4jF6)1z6e^ݜ&"Ih?]q .\`91 #~],U[8SS,n5bgs䦷qD3(%\@R [7Ci܏9Ӂ/ ;KrfILtIy_Eq/8'S"1I!PY}#WO8L)|}9+.99ʱFGyOCNﻨ(:Ѿ_rȠ\`vCS=( ~~Au22/ Ͳ1fr8ETR̓G%blOL \TuhP. 7sHEEs*n\3p(#NG])$׏t %7);0:Szsl|OAMR27S(`,9da$2ޟnV'lCY员Iط1%Q-GFO ~}^-0t`o:SSwfF@`*xLqQd8VvHR A>)<u)*@]ZJ@;p&ԑl ڧ|Q8i ն2dL*J˿T2;۪̎@.ܺiMǚ9퀷eSl`tݑc2q>ͷ12>&V8gGHQoR]αg8oӾ`j -k} 5Fˡ #CAˠRԲF2[ߖ V$7]50y)㼛RJR*:fVmJT$[b1qoQ&@ 9VՄݏ#{yE` nJin132|=kN?ogʋbꞬ iA6|Ko5dP> stream x[KNSd8Fb AA=2"gw"RSiNϐ]0h6Q._aDV w7oޯw|T+BoJP+$2v7o[f$nFZ ܼ~D( X?qF6뫭- q7vcD㕟X1;dRiDapbL0ݾH8#7.rFF4kCT:5qcv`+GD!qhnP ҾMVxG7YN_j; :t@%}vXFN&(p~{ܵNn#bXsF,,鸩.zAZ{CMCNs_6p8xD%sC|BnwWQϵgȂO;ǭnn8ʹz>50(S_)&ێ%=\t7'[PHdr?i,d*jã[H0Sq}i8P'ꧮ6&i-*[^!3xG[J!ɐxzJg)4cMZ0q˺Z`0[pE["JWLsG&$Gp,WtpyqNUI<W;xSG cZy@4'b?3\I˜j`ha‰v. ǭg@ (cE!ucݮAq,>dccEsc)`te,#ϜDž>#\_.x46 _->y̒>ķQA.ǛY]MvLWt[bgBm— Kd*b*(+}C}2_FOvѳ ÆuqRpֳJ8Qgt% uߨ$uҋyhC]$hv,Q{ '蠗>gO `&qOrx`(LCfhn({C5RTW_@Z2{ á;Ji[&6>Z" 唂'.p> rabv?cS?{7I0UU}LWuխ2(<de.&y4D 3߅7Lk&C+'%ꐼ(g!m.(K2I  *xKp9}sƩE'3N ? Q:(9<,Ϸ5mu9_.>c_OJ}.4-J|B'f"n=-4:b:{#3*NJp-_Ei(NR}2P'UjAPxE?CW};.-<sFfYY~3yK\i8r>h'9ĕ}%.}`TļQ5>`=xe2P g`TqOg ~gKiUG߾ <5,Na)C贮:H4uEM0s4=mO bFE$Fh~0w9R)9/9x{Wih̢syu RHi ,kTJd819L#x|s3 +;zgL[_Tʼn͊ʵf vҶ66fp)u]?7JMoq!ëhbm?P\ ~^~7B_׶BM)n, q7=d#h^俎[F:i#)fگ C<-T5cR}r=K.1&-c!6_*"icȥ$w˓ ?SCW"ٯZsRɗ+S޷䭡PUYb A؈*ը}_5E0> stream xYKs3T>GJDx#ڧ=jseD! i<9Cb(ޤ\\sE T??~,ջ_V VJV$DJUie]ހz{im'4*ҌRZIŸ́#ij8w "ܾskU~ɟT}6xi8 ZA>j0ް2Ld6+}dlPOVq5%AqSy MF4)]cRA3bDk?~h@)hE5);G S0ʋF%VhtZF4CJ^gOX`1&cE`qʷ/0eWH]+d5G~ }KDԪ~(;x9V_FQ ?i.6-S``fх+-{0;D oJ FH=BhTkU!ydf^y+H0WHa`\\6 K+gaþkt(ÒQ͍2E(8]@Sx8TBBDtkޢ8eGA޽pJwDUӤ`s%Y!  D'6~Lec0)_e5tM,C`:Pjv-㛲8b&,I9mxQ¸i臒p !w\'j7b,=Dyїr?8jNhQdQnkzOI }ĄSGOQ.?Dr frTĥcJ5 F֪dEs29?*d>n$6JOU>3~tiuZ%!%9Ao` \vBTRwVؐÍ2YoYKӟ&zcL&DO!qJ"ҤCd`'M͢]@ys-c )i ,D9= *\B ,Dk<sDpCYԭsh}!2vu^Hag ҖC>*\Mڹ"]@BVmQ'vܔ5 >Br;:sIM!9_:D$yv6SVh/:=nyFRk5,?#WQлsQJ3ul7p2_c2K^!U9Eru ~ƪrr0:?[,ȳ')M-hhĹtϸCDZ!4v>YL>pHmc}rڒ~uydSΣG>wnS/)_l^Y)S (ѠQT^pbæuQ\D1p &Xݾ]@( ,fjp qkViŦBt={)ΒN9^{ż#UpQDAPx7WX98lVM*"۠$X\ٻǺKSb-\FmDG7n^ھ|%بs0c`՛ui̿85Od^ EaAKJ|ykWpx:z8ާiξ9 *zLbb $Vu<VRGĕp&Ǝ R"nax/ 0g-1ƞDVXQ&SؽHT(+~;͇ B,B][oڗy I&2#!7OAE}]vr o&_k686 ,yvtJZ$Iu"TT7uVI"r^W gzDqMW~ L\N"P!ZD t9Lԭ&6pn(MIBdt)[<.bTnRE`o(W"6@i0f/0wendstream endobj 303 0 obj 2257 endobj 307 0 obj <> stream xZ͓۶yS=S/qdlC%&7@iՀ { J؂z{ cvoY0FR|q"^bqx_..%UDXXjyIXHhX]K?%R8USDjbKma E12^TyX[1G.VN` g _.ap,FÚӚeqI!J,ۯ˖Xo3e.GyUgJoOH_rXt:B?,x) ܂a/tL'rqi%20Na ڥib{)_ r8Beh\-Ej|HnJ$\OK?xUij !LOLlnr}Y:@ia3 e8:\\2br*ev=82dL]̨|0uaM9Mvw5sɹc4nuolt}MP]`ʶFyJl۷a9T[l!c G D $/rBquvﭙ7"UTsɤ|x4UO3DJh'Sno'LP5aX1zlXҗA D4=s72GI@WS(͓a㻾mU R>NL9=D)Ef:gU[ܬIV4eUP < =I.00˪cHI,Ç_ i95X7Q3F!|,4SIg$xgρtp4]fI=oG09.?Uۈƣ#g9AiNV` gwX9ǼJ4ݰSidqq@|m)$b6P,R8Gi8Θcj.~FZ&[zP6xjúx ̌&=e:xX,S}Y5mկ13:&Kyfd~ L>9t [GleS[_Nل"jy"ꓴ& UtABȌdInN:Z~ E `PvI b f9lu )L#LbMY|Nsx{_+`.jΌ`A!t BK"}TUl#0mǾSU]$) S e` iZބw\Ӷ8+:122r֜y.Z!3V]m=ߋƺI/oY&r;kc>mplŝi4'5v},U4x!)˥"`^7^-a%v9ĹJ]FWA&f- 33jb nfM%a`8-οⵎgΎtIU, ]^0'?r9|őa 0[Ve]ENiO4|^b(o?n{BθE36gmT@ſ_90R@S7_lfǏNa[VO$ E?KmIz:|Z.c[6 ̠X7ᣖ]CRF8JC:/+}ʶk³xA8Ly.t1WFe{-~*}auxs ,C1'V1cs3)AT[~$Lݓ"13ƃ5GɳKBFL;z<) =(GUP43h܄;(c]@r)}2|{H;{ӛ}>zϕ}dC cZRL3w> stream xZ[#y uQKiqxzfzcm{ >.tݞeG!SU[_D/H{ok`ٜ]1qʲ Usv=@Ϟ>?k}8%ӮmDYʹ'vjv5Yn&UdÎLFZoXVykÙ ^ΤY;011@nVنh(Ȣ'PB@O`fyhu}7SK`۰ÓdJ0,$"˙^3iܘ$R*EC$95\(B 'PL@ǪZtt@a'K&t&tW k< IU,P:ABfZ$=VժhL2 '/IQxh!(yXP&!!D8ТGZrUNZ7cu3Z7ZnSDC(9tC! YhHU'IA&1ՙD:(Љ,9Qu1d8mL! [3!ARrX7))nJ(uGݔ)t־P5qvtBHN,H7OؙT،#XGv#f8QÒփ~%@!,In0AhY^6F)zpαqAXWE61'~nv@"ܞ_i >p1<G]2o>6Qk$*O +Jde]'E2|&9@5:kNq1 YA݆]]ʑ d* jl'Efjs:P;N}{_< 3C$>{{ (.+@u1?8V.?Erb&uBs~([{[bPzl#Z19_@̜b2Ip$CI|Fk+Qձx/ӖB ٴe47nۖA:inF?rА'N){e2SR{CdqR/t5̡kcQ`PPjc CQqi;N/]I UΣzl_iD5lWu^ e+7C]1UWIff=l?St5QaZ^-'lۗ%NWc^0C?n;7QJ b<49f]llH1ƒSrs}%pjw,{^cx^ZC2xyq" HQUϖ-rhֽaܩ#L+SFuX6}q4<-j{kΨ7A?Q4"PXs~/s)D8+| qC\m^k)DHQvVl`AqW͛ݶ02J|.#bwM[]ͅGz2ֶr(Μu˒s@t!9%I7}w 'GC9jsrmxy|& f! {Eyϕ$⃋nK&l1[_7R% &B N˪Z3yp !1{sgfL 6>jJ=fAKA'%H*M='2H\ƒ=>3Co =MS!crN; Ǐw@Ӿ `Eil|#N0# > stream xZIOG(WDR9*J8AaHy=d3S: hv{{+RqMsÊgϦY}ssJ(-lus{~@WBJ\Msگn~Z j ejLaʽd Bp=iqn0ֽp|{Ԑ\uuX\NиnCyqѻ>_MGn >@bJ$IIh(hB 8kI8+@ tR`٘m*p7TŹ"h[Rum;sN [tVHl޿)aaSֿ g0f*Y82CFh_JȲksI\HWc?CsNVeFiqbU*22MlRYT<)}*bI)W,npF GPt :Ө: g2zy^rıaY rrԜKU.I]$t G)HEr! ' |m}jEPQN(^l@B$)řܙ), ӯ?\<T%-=L@G$& 8E7!ĮdW}#.}VAx,+H 3.\l!Fȉ i Yu@O&)gu8p6sD$c- f@٧"KC)wp0,ω,O3lY!zMk6ͦl0?R:qfn(y=p Op߆_9]Y9E]x[O`flPzDL3HoBgko8pĪb-$APq9N3uEm@`0#\ߑvQMoK'Ȉx`kF2]t!,> ?-x=XΓrU mA!͚=y!@H8qX5͠\Hm&@~ɘ%bSviɁC"Ŏ#gbꦜk8/{ (dY;\8_0\0n+oNa(Gj6}w.L}!c}HBIRGZSeEv"竻)Ȕ3l{\ᆿ=Sس' h4G.o` ivrRuڀO d$Kdf1(5]c0&S+?3+Hon}D9 IP ]± 9L5jT36,4? ǓبmT>8qG-}>QDu(e1ݸ <t׋H#Aʑsc}S59qGm?3)(uӬk3M曾r"C)qtc!}n4 0?7s-T|ehoaPX:/ z0#/0JHdRbb))byb~O(F M3wms ј!_*5cƗJeR)5zri&.w!H>vXABd`>fm!bیEv 3ɜ'ӕ_MfwF")" zygȀgL;M37]S/Ҕ"adŲ ]?F;׻fCNkGgڈϋ:ݷqFrP5!\깉$ {Yd<&,vZdO(ۺk*DA.oB~ hjHyA)iXqwv3:4ci[A}Ooγ(d_L\)~?Gwsi.Cr:h|M-Kz(s?x;|5@ bg@&f_L؋s3|=*/mo)endstream endobj 331 0 obj 3016 endobj 338 0 obj <> stream xZɒXŽ>HYHѶ/j$Eբy'lYC+@|e?HAg ۛ7fԭ?ͳJ(-lv{w@gBJ5\1#On52lʢ,%.oo]sVPY 8.n!\e꺰*>xQͲODM<% BXXVHAJҪEak,1mfrQpVU5,yᣅB2.K n]1eCqiA:;ü$/JG8иXێCo\8_N\xm7pYpM$e!BV6jy&QƇ33-yv3Tǽ*E!ƈoBFZ /z14s/Ä&`XP4,em+Ӹ-BK%Dԛ ڜv\(5CkLM-p$ \ŒVRɣz2<?~8fwpr]2в`Ů%?E-Y}&ẓݲ6HBg.ӹ4&n*kZCtJhL#zu2h{sb&!(B ߻Q-`V&ƾ^h11 -WP DA}@p}knmipaw9gDr[6 S>2 b,_e:Zj>j%M=`S~Wj9O5 {ENQ>aʍ!!s@'Rgq{eH?֎".!`J p \yCv-(gr y£ CWW{tѴts )'mn/5MqF}),# 8]9Sg Ѯ)}Mt6\}GLUH`Tv-Rx5)(thumkVAzpA*& C9"m;`MnM!HN\0qSuw{8 )KLWX{rMlT: Xv)- ~g@G4ziȝڧuui4a~es=2$gӶ `"K$Ɍ/oLs})My;NGIw5$7NJulw_?9àO}W#} TNr.% "p,*ěI2b)yi%pxR"2%-vce!P}AĽq1]| eGwN6䫡$‰fƹf{)>a$Tv 8.0 F߽ٴbXժ*H jIM&$4\u~w$sy{t!ţ+!t؏׊oy72ϐI !CEih;>|5|˟?2}ncx,hҎvSTdR?EѦκY !p=vu̞f("TfgK^h#F[(E9ۜ݁ +s)]B]7ݩ:[$XrB`_*J˼<D;7 `N̑Vc^ӭF2 31~ Wo~OشD;jؕA[X43D}>3PT(V,)ЄQ `6a/a3 DD 4N1&7JJmo?ƗDzP4>> 'ӭe:b_M6^3VhΓ(} &,ϡ`)w].d,(.o@09B!Hr:yKi:3ConD2]m4Pa!Յ}M2M\'M \_L܅5~E;۴Ssĺ ]bxRLяpJ@9b|gϋ5[DW4 q޾"_[?\]MK'I̾F򋠱E).-r"!"?o $m< SsœpBgx"B_}s` L8ɥi)PZ$cKB7vl} ;y`cCxendstream endobj 339 0 obj 2806 endobj 344 0 obj <> stream xW]c5 }!5$v>y xeUS4δ]$vrӖJ;cNrsƨǩAP9W p^O|yf=?LDhʚ[CNxlyd_(~@HOpv lh3 gk.NV꺯k .CpN_MK~^$|K 8aAiچt莀Ii7cHZi?; I*1z.ANŮo@qD:5 /yc)L9OJխ Ke'٤tPvZ֭/ŮoTZj^zgRm;T1BC.#zCm %3},›j_j_MK~^$|OZZ)kؔŸl" Mu6Wkэ_jy]ʓڔ =pFzGرpX,xФGK.fK0-zVA ichNo,V*c'0|(LY lRUL&DWD)D>[L9Dȯ2HKk`^<}KĹH1`ȕjP lE-X &oE.GAm?Nw*XtVviW[UkF%O[vyh PtEJ͡8Z7ucst9*&{lwAoR%4rw1ɗDSFEtڍmuR0v!vW᪏Q{wD\vy{w" k]r᪏QYXջ(p,QQK.Q%B~ZfTxHP :J|=fOE񭢿 Pti0yF!v|R:rs}H!ſ'ɴ^uɽqrv1\_tAE$_L ~*PJ[A-V"6ݩn^X6E#ez XʣWVG n|oJ>e4D|׎6:#vx=> stream xZKo^ 7!omgUoA"H r@KD5"5l||5eyn6X`D l¿cAZg{(~Y}T!Aʿ@ ABId(+6;JoZsb4XSVGc)A]zlhEQ.Rq^f,,F(TD;:H2[IOa:.6wn<ǭFRpÉ]2Hqa>]P>7G(r[eŮz8Wrv8]U:A (Hה!m7}ZZ`3 )iV>ݣ;Y"I0TTL,JĬJn|+X'ܰٽs@UI;v)Nq=l 8O ^]kf$8ye0=NtH n;]Hu &2KuvΥA_C41}W9H|} /qr$ABf.D6.ȋٶԋ\&AsVQn6 2Ig\9zWy:qwaHA," ĔVe<:V粫 02dpJPH:A#=v:ĎB\"<' 4&~ l@f|戊W_ 62ĚpbɢN x?ˣw QŦ'p4%ś˹$)^V2<աXH} i".u0/\{|.UrR|83b٫Y~,UT* k޸ z1@"D/Smlq31e!9lrn<(AߗHw3e|vi]Z1)9 &BVEU"hrK2)^8 e@\Lϱ,eӺK A/13"v(uwDR[o:Յ@Sn| SAXn(\~'O*W *XbF`,eq"+pj[؜w #޳̡R5o.w -'"&{8g 0Nc| KMo`?,Qj@j~ٖ.t=@BrP(-Gh"9ʔ@@a;.~$+hX[Ky{C.fs(v_ ?DFhf)Isټ*yhλA\3ZW c?}ȉoycwSk2—q-JK77b{4!Ix`&͊E?$>11+lX>mM邔endstream endobj 349 0 obj 2554 endobj 352 0 obj <> stream xZK-6`uC "_h3b$?jvwͮ>n5J~C P']~ƵWyfqJCxm7D)1B'G*"5l!N[y=y^n߆-N$s8_S'ǍoP!W`_e W%1m4-pЛ-:6d eA!t*H7N3%[e¥ťx`8⤃XsƄK5Ŭ|1\ b %EE~\@XM[(K ӔYV8BbL&O"w#:x\n\3aT&K  W'(N Bx$TB\:TG.$ C6R |p'lFUƅ +hv~CdMlhbQMW"_Rn0Wia&1Ϧ-8/>-`m214,@FINpp,_Z#|]Oa JKxx?.5A t_ߟy%/AJ<Ԟ?!E~XtXtoEWC5 &K˴f7]&%GyLΩ͌KFמj|\zoƳ5QcdM'-KܙICh <ñL!zKaxN]&C\5ZOY,lԦGטExe_91qWR>/IR!ǕB)t/WNKFH tlO%ȼS~Nx~6k``Sϑ``QAP-ؓ/ 8*s|cj"<yxdAۏyO Z$𴫿ȋR}g4ԵjUv@ZNe*C1tg?PҤdϲvW} +.V58|J=G~DGꋛzчR0,s3ԧD$%a2lpZAQ+VMq)ʹXiJni$*yWBCai{XWpqxOWV(f3] ŷ"ER8əE nyqQ8y%+Uwy> |9Rb"({bbQ^Y $!Xh9ԡ4+cDT) *A?!~Wݴ1bC!djaOu8 bbPZ3Bca[[c2~zx݅܇fĠ\BgrszЩ̠ب>SSBH zK-.Ô,0]<~UWn/倥A磊꣼uQ-0WWVz")8 + Q+Hխs벚^yɕKSʶ9}'"ʺ ]HL3  鯙5]]< aL F [N-_ƤZP4x2(؂*ꩨ >C˩,%V?eЊօD Sa^?r/F_|2LLW3a-~K(=`A?.pNs wQKz uMJ!iFA.S ⫷<\Ie&/DP03"uH :b; E]>_WX%pvfxuW%1h-ղk·"}Q@IQKYIU^?ž|x}&m:>@ tZ9v~Nr]Z1I6Q2-"T1p8Ĝsq:@i.|>uh&Y)e[sE1y(O Z :/fPA6 "_kU}>KtŅ/y ׽lCQ7p_*hձ~qv&-*ӈi1 l>S4KRP+}.}b%|Loᅪ.8e lcu !h~ZIɏcj liZ웄q\^ F.hՠW4VT MUC@J!DO74eC߳oSjKr}[@θ;jd51$ K YV(2nosāɂ}`((?0P6^F]N~I^R $b娱r#;v#m`gz3onԭ_"6;!LDpŜt+ĭ'ȃ3H$|:(34-ug2|*jc9짘 /E-L7:Bߖ8 ң!uvO,3*Bdi01֧q@o}ʶN.K?tS&endstream endobj 353 0 obj 2824 endobj 356 0 obj <> stream xZKoFЛ[b"(AziH ;$E-eJqC /3|3̇#R`~/׳qkr]|~/UA2Bbq3/BPbʊzş9'I9HkAUg H)@]l[H1RܮWU[>gB g[~I eXv QvE"" +4UA%"tw_SunO>4QHHT_AsVk&غ B v osfѩolI ĆwP0(.^ɋ3x.}w0#M]AIkV\(&uؤ +8b VԜaX(ih8˜ǀ"B05' džU w߁!$5"m. )68?gOY{J$%CRBE[)Sm9C3vjoq$sNαT$gQZ8ڼ,B tLÐ ~W8!cB.iX]FY K%bl15_|h'u]9[zS=r8nܽv.WbJnC!b\~"&G+gδ/ /]hU p+8Ul(9!E ʑRk3Z ngurw[5mpIz*(:#/p9 B(Id%ab09 2'6Ĕ܏/û{LŻ8.# 0{G}?.B@-5%=m!K,3U6p#ڕ͓Xܛa|p@)o|oɠ'+S&1D;)GGzTx.FП;.daN.x$8=] $&enW-[Bhs?[wH_mPy,XΘЈNBv^2)DXMhL^;00'@YF痛`l  FҤuBhV20bPYǴÜ;TG̳.])t8Kէ];^>4Ujpz NQ6P[ƒ7I 6ߧk\,Evs6:u2շcf"X¢1-;U)Z8:2θFv*i 'OC G:MhEm5y73d$~/F& B<{ILy_s CasdY#k Mku!'Xkvбų 8VA^ !Iy_e{35a +[fk~#P JM_Ҩ . 3dcn>e,2ĩ|o㸄 .S'$Y;IOg0gI Ko71'I&e 3;4~m b]mWê [?E8GEvӪendstream endobj 357 0 obj 2009 endobj 360 0 obj <> stream xZK6&?Hd1 conpgLfɑߞ'rfV@If?j-0"ۛq_C~ !hq{_ ! $2WT;A4aT EM EqyƏNL vW~%l6I ؀ĆԎaHq+7`E_X>q$'a&>Pl!iBct!2Ń2aF 0$F#dqE<)P0_AJPJ ;fvΎ$5vI.0e}Ge+7)-i4 ~Z=9ʒ)լ %v>$3#䙙DLa OTG/>ޥAb>ȯ?' %@|6ƏxXob ނ]>:.=~;BHKr{3oۮeYx޷P"9G4е.On mӁΉrP ׸?1Q&19 d+S֐{6n9œLJO]F*H>U7}XaGޕ̓;&E¨}">'7dP5x(*]|:P ``ċdƻ@¥b pBN?bGf'3YR{uG3_XCytSe W9Eu[Q&%2:ܶM_'W% c.b&LxHl'H]`xB}y*ݼqͨs[ D&鴻|hI7L@I^;ʡƟP:C"v𱲭_R\b:?&ajNKrw$/Ba +Bjj/+8`(Dtߤtx cHQee%La=VJINK%Pyz_4_(ښ^?~lU`, \ cZϕw>ô΀9.>c.9SMn{%\y/wdf8`cݜ/`a?ll;2D_ͱL <O X11rZq{CZZ@xn4NCl]Ae3X SjT.u tj[+u%R1z.mZ9!g ޾D LR/'ҦTOGHNAq1e<+&ޘvFY( ~Xe55UtgyG[h6=><)'k9nK蠪@NO\6 lRjP7WL]Cеyj [eӪ2"2Dd3c1'U$nå! ċ!E 7 xt=Cw тɐ-Vqh!BҊԲ[ `%_arZ U/32L~ʶmH߇>dhۿ!V >ˎ $6ls/!qnλahy6O+rn+Y9,KeEmZb0+k_QhRŒU䨛O`|(0/ρscIR~[>7 iվ-bBMt ?xaAe3ʯ7дJBݧR 66G PV޲HU2iLn] wK挹SBС0f> stream xZˎ5X_w}^؁c0D!{fZCj9^rcˆu=uTuΈ^>\}Q-X~3J++%]^L2]If2>^_dRTH:^^\ԫUts^Q& orAJxǮvnZq!d\oîU'apECPh)#0S,]kOWP+&xd%K[wVƻ@YX] \ a啱lT.JIm=>hb,"zJsBCيl|m>}PJ<~)'c&7G 'Q'T=e~-s&zN`PŽד&9V]_`2MtnXF&S[2Ћ@xUq PKqr&B XE޺ݢtv\g'΅"dz|M6=(Yr}E$֯chjM8$7FǠ,2 p"(%""1ӌ Mg]<%ȜM=(ՒnQqSlV&+X?}5 (Lk,>T~~~8uAuivBQ1?,͝ l~zɱumAΪJ|\:UMՑ}m( P<;]}sM+I5:kr_L2s~kVFL* t4u"+X|@鈲6 RTuͪha0)HXV+QM,*)rYQs+M&ߵw^- 9ʃDotpу|4>FOQNbU2p\.8fZ]6/61 ,1x߾M\ٜ[^Iý~V\\,,hBCO]!GZ..-*gfѾan%?k *h g.( ;hUKXw4:!CIKF }Y hpR4@I@yhhbj59㹍:`y4oٿ3!G(AP@R\ݞHL)3㎲@BIQn$t`s[lΆ+)2֚,ۀۻc*4שIPn' V xҔ}&p}WrëN(ex XCCW/"(/M_j~vkcrDjuoDa+J SܟJtj\ȃv0ʊűroatnPX\)zFAqX;/~z^}㊒t/bV ouyC5XFxqf _?ҽ;M Dwχ֨0(Ftfi90n sZ 40z3Uu hM5.4aLPR:'Bt RٰaDK2 (+n= u~A'8N G A|GF xY .hkҴJhT}S§M w'OZҍY?4I)5? |۵AKTÚȮx ʧC:e{@̵nElg{;]x , kTQPmSW P )Lb@t.3}POʌ犁M \xNLF$+\ Nu=Kx]6KEIZȣ꣞V}?PV2IQ9c o 瘇:u*nP?%U5 ?lC6S_cvo qJ߿ג(LMEOMYxmVlT@ 3y>!'VԽ˕=A₦:P?w:=ZMAy\'RHO"$ҿG)c<&.ۯ./vh JJi>ԫ 6e*ES16m榝!a.+7~E"8-sp[v\b\uO`OIV}Whz&)EhF 1?endstream endobj 365 0 obj 2787 endobj 369 0 obj <> stream xZIw r+/ r``  &nѦ̟ϫD%6R}K_ݽ{bYޭ/ڬ#N)zx_`+ QJqzݽ滇t{4V_Vk;"'%O92ʢh`hVq-ӵax !ҹrwⰌ10q ;1EH[qb)l Kv0K&K_}71%0*W+"JˬU{ ׹^"\*<Ŗ `@0N8;m)÷NO=0?<` Lp$/S)BHV#FI[uOsyyaHpUzB`L|~pȀu[W] -YWC앖,}4lm8e]Y_קZ%KV> րRM͇vuje ;XuCS [U :b.uW ta`E~wU}M:ΖP4}68z8t}䠑[xvUYTGV&jwl?'7Qa U,?Z` 8.U}M:BjI!&y.{#w_W} XTT]M) Dfbl4?U"?_*>C D>կmm|w35\ܑW?d5RB`_oTRbaͮCxe-?;cpHe(nXgW}`\ =7)||Ρu{7%)E8l8땅v}K@RTuCSPBlc|=+mC:H9AȣI$MIh!ͳ`z6E {fj^ŷfS\  It" 0AqژZ"T'n1e ^٘Pi^g//l%;UyX[m%LSͥmnSw ̅ \և4ԅI%QoOEw|}_V+Yݐ,nz#TKs.9"|p| , h4C'C$͍SJ\nNTٯk>3OM@vY!3:f?0pB?Pac׃/rܲ46'F&JQy5ו1F+R< ޠm5[RUEYRF-X.͂*_ë u,82bE9W-MQ.`*+ v#^QS(x,*> n{Tp ƦỳJFz|u3v}a$J1+G3Z^4@M\ʙYy qGz+XʘM.DVĕm^/dhtK'C5@Z>5i!;&.a!7Xpl,NWZ |,a(#&yb1*?GpRQ<х|ැn4w1oGq`_2(W臹I˭y8Z2pDyo|p&fTs䭟w@sQރ_Cg l:0T|+|)äU(Y|ށ96!:;LTmK0ά؛Rg0/e?ŎO~ui/Sw|^ϛ?aK8$ƓОvٳIO4uB |zԨ.MiPSjYF r㐞iUmT]^zM2]P}-4)t_Oq38p"q6e'p~$"`b2ZW>֠[Cz$'mW3B}\ETHѱ(DL4u8n~wPi*W>v:f1|fh3B?nZQlDKB|AT?LDMJG8 ^zs9|?&qQ^)McGB%a3P^ۏ^scY_/?1Qջj]3lw$2SҔR,Rʌ# B`UVC!T$!5 k-M/,YMIMـ ɒy.]dQbCi9PS6W6O4W>3IrPs"'</Cgw9*0>$ci1Wlie]/033]xIá%Y,hre̼ܨeRVΧ̕4oο@'Z[*YIg}0=`n/CWC' sendstream endobj 370 0 obj 2937 endobj 375 0 obj <> stream xY˒#x\Gxz8{p_KO?}jG2BӧT!!N1 eÏT$=Rdq0}r:Kh"5ik%i-i;uG;uQaizBCϳg)$,8`fOn ^GqԵM߿0$0MֿR c,-C%D(˜IB r'GbCFv')'&"8'!KX#QEӣt?ϴ0vs0\cW $pۮY> -i`(=LM:<0ʑw#DN2#sAh(!VNv)S!6Ljx;^q>DNR=p?# c nqR?>6ia߹[vË(|)THS#0c +m%0\Gwo;tɑaK%0zy)ɝĨe~eI% ˤ H(ﴳZH3f-%R^SGgv17y#t;yO1 A"S"q K6+VF1Lx,A؁-U K (; DR+#tݒdnUCa2&$D A@%r F3R, B8h *J$ mX.g̥W4w.Y%AP2uް!4mң&bŁtxuER`7/'WWhp(Dm t۟R9+sWj_5Q+_KY&s%0pM[ @ss|)3d},`^2@LR˅ 23' 4# +XA{ PKfiJnzOO (PY䗿&19k/|Fh"\N.:b?-پު.>Ȝ ^ح`hl4x\! 'XO(5re>D[!ջH9MOj1xJO),\4e0_]Ĝgվu[I> E3-nk>6MʤMtH=HT0ːqHm` \jE%)&kur{V .S0:wV{ZrNcP!joA\cWT&C2®"!4?w&k 31g4”IST;ș}j$-:/ۅp&] AsO7AJ.K53?yj@qXyu͈Vs '~ZLodw ղLg&učmd\vrx@5Vw翖#J^TqJC){2~Y~ms ~KRU{ґLcƛ s4dB{w/qr/Ù67!bMVCr/`jpC)=4CGŸ&\!hZ3)$&߸~`_b A7LK2ib8 .xTìeV);^ʕOkOK*mnf\3\Ko{97SgY$ U2Bf[g}a(%-=msʒ&UaFT%yR>^i(Yb650JS=,~ \?Ɂ,zʹi{1ZZM1jSEBɽඦ: 0L͇H*j+Vg8'ywՁ #ReRRU(.M̟ƾO?8pJoG2CR>J> stream xZKsYo[1~lmʣa`& d{j䐢l%)=3XQ*NJkp}6c)ū뛫V)nR2BEuzw׿\ӄ[Q%*V]o^o]=z385XmF4FsXD;k;qL/9¸2- .r<ݻm#?ʅIKܝSl/6o /;?d*<~l3pSIvib%wTY M!EΟ`:v`:piS&_oCI4|WoXwD r6cˤr`|Mpq0 ה,;?kpBrې?0x|fϺoZM27as`<Ȃ6>2IRZ=vge9cXEқ Xڒ?wBG`3Eon}S : ×aWPz%E}& ,$7H]Y P E^C}_ p!R84bYy|b}*=F MnB" V |pI釘ɜĹn_dyf/Q OKkhT p &p/2ۃkQzʆKCWv,BS.} =LrٓZ%; `N/y-L"t=+?3ސ̈E ltO -~%<8Às{O5xS ^{lcxz (`'l&?7M *s~jcm3Ҭc:ËVx?PY6_՗O]=򳠑"t1c nq1戥8SmVfc lh7MS 6E.҆u'٠]$-ȖI)%+(LQ77Ufe;N~KLt4ų@3گ?8 N!¯<0,v:|Aa-DEhNX/O ㌊DŽZhA"9RW=BÂ^&H>fP!V,g( 9Y9֓,ALe}EQ)}b}еz£gMbe}u De38/=Kvy_ʿgADŝ"Lfw!G/i};RmۺTΙƇx$nǔYӝsg[ќ'`8@%eN1}D`)fﲍC ‹s|[PT8m0 a]pG~:')\ns\@5\Ë᱋7rAIN4 b=y~L  >9a\P&||`'Op ʲ,krYa8nzSSA>iwIc13z!4l:phD^ϊi5Qgh_uLkٷ>Xm65]B/$Lf;{пT0,$\ft4 (B< QFDb&ժ!J"4.wMfOiUϏq adI| {; 0 & lV}v7b/&ycbEX `-~rd% ΉG:$a)ȓ:ou@^kԵ~I/AN%`Q߁zMc(ع%\_Gq_SG`-nqϑEswVY97z2@}Զ#맶7!RSP#ZN(c=I_a<5@I endstream endobj 380 0 obj 2515 endobj 387 0 obj <> stream xZr#Uo }Lh׾P8,YGt`M-,yZ ( hry2҆㿳ه ?E狳?WR,|6VJhZxs8{ɛW&LL$k>{[8K b?*@&"-!Ɨ Mr$Phii$6FY+H.12UPSnk]>j&+chg[(lmh 5F6`wBFi\-}O1nj } TYl?x7kQRQ?Oow@@fIvw `$1t{ZmH:ȶT2iөu]>uZ&! wNT\f5Z<>,SUIufhV"; "yX6m 8x#g%((^]U,k Nr0j8[yT}@i$yO%P 1 rM,t _Cpwj` p]`kXu 1|<|]'P텥e&rD[!V"݈Dƒ$6UkZxYIV!H3N! |Qz󕂡)s"OĘ*00'7ݶKe'az =<ͳ>V>8GL T35QWI*U}ImcA#OE*"&.h&f„m%mnYC=)SunjÏ|u5,[e[~E$nR.lR(n)9Iy%wjtdRY6{%dM$wE#4_*MԷc$;6 6)fö_vDs v1 ln$Pbwt#V0zEF dTA!D$9HZ: 5 u?O'"sGf k  p^EBGfۍG25V2~r y1ȡQI}hNtڮV&a)ՉFHwo(tar!JO 1&rxlvK9yY5'{tVsGgO8Q *=:N[s=iLHRqO*RR.9?3xK!cLBe?tz/2Pb\Riua!wgY)NNE2 J3R-\Oc@k 8h*;]س$rI\!y r1]Ͻʐض/ۙaؤJKwU:Q9F/mrb M?wE˙!p /OWRCjck.k8$LoS L$/ݎcN W~t-ɋW&[{8|n,!y6-a,2nWdr pLC-qnͻ֪Xͩ Si<ҧU5tHk 뾩W|֩lUn+y .ܙM N߇d̽ DeeT%a&)v~~^]HO2~F"_ۦZ=$ow j{N &D%߭n.9+./%5hK~qKmO\P28vۿ"5*hVa4ad0TSJ|܋D"1L4Վ0>sPNhF ̫eRJ f}P8[e΀Y,AX-ul^u0dp6Y2f8i쁏8~;!P/.F ԯ7HHoE I ^u> 8A3'p6RNZj_&"L)t=ﻵrB2SZ]":-feh(zTU/..rV.f"h<״|sQuxظ`$f %*~SY@Ѧ`E sý靈،__My؟zmeyw|$"Uo[ksNtVE"jzrDC61CD*W)}HnWMPZ>endstream endobj 388 0 obj 2759 endobj 393 0 obj <> stream xZM6OGTY0 ʞ$BKImh@$1=9LH~_7qS)_;|۝6yJmnnt#&RX7Wxf+%ʚ͖bͫC.2A !8l܍aP.pF%ZR%Z}5Tݩn()^z?o(T%K%<?thԄ쫲GReac. ݸ5DqqGb.TX<;jdzwӜC)h}WsNַǫPDr/NUkh&PzM0!n_u%^~vac A+m0n̲ۃ$7.|`#P5hH k?n גغ5]eFSc2F.˱mMq5ۂ1_:o~^#| 0[v0I 0ju\B<n!K.%8=^r& 7bSi|92[wDz1!p\A'MGQij8Dx_ۮcHNHi31!m]t})ւ'm_]P|:a+ғ"YL9*8w-4JBu|r-Cק3ӳKC$%.|/S(r %* MmE*GƼ~Im AՖ^E-|ϮR):9 JԌˣYx0 BzMUx9{&>^=@j&aT?u<(c]P&jL.#7PR<{`mXD!l^H> ި}w9/An(}z{aU8<䷙g_x"A4QSĈCK2IL1o6>P=`B-4҅=ya1(5ywn؄2HX09eZpWMnic/'_ X_+C=O%hQ8rMj%˧KNj_CY+*z!m>`\Yy2|_ ,'T' ^'Nhy, N$}>";B-hv-Ptba*']J$:(2L&g| n*4ޜ2MlbЂD'&諻KsVFAGMoyosS`:lJDjF܀abR.n&YR%S1GAқFHHq UAK#W<'s ֩ J 8FXW0XR4*ŜzOQ^7z筂bMNC>XGģeUR?`dr+41Qā@ӆ3 zgt "X^fpOQ*,Ěe 8F/8qIv!E\<[w=n˒Sӆع̊]/h7IH:@~ "ڮsLD&bG/s菦GS=ͤsG |h1\:b:c]aLL杦9bj¹w\؇5G@NLzѿi1.YUȇ(K1-9[_aM.\G!7 rzf^\8q[D˻Wg0 S{"@-q7bIZ(UDgG#dë]8k5[hق NS*ZmruA@ڨeEp֧sx6тtTph)-m`D;ls=S9g$w%J/N̬}Hh6oҝPrR^p:Uٙ㳨Qomȣ`c&1h; ǪvREDzoS1r6@"FG)5~!G`| J3HIv3!fU844@  -2^uc|2:|ڨh7|=]B<2bƑl(|2a/_w\yj0H.D) _@a.[@&X=A#a^Ѐ0,>n r-Ls3D/ g*{qs?yHeendstream endobj 394 0 obj 2483 endobj 397 0 obj <> stream xZMO#tLvm8HĘ$gЦH-IzSMvIIig9 ]U^%lG_>>|ܱa-ˏEc)wϯl!J8.vLJ_$UDX{Xy" ~?~7aTf:<-څ/i´+cіyV!)>QL:p^&,1TyN>m?+D|h\d^Mx9-hBfUM"Zܕ4ILdE/ú%ڸ:kPa!/¥`<,}K0n[aFY(57E}ؚt|>CrN@=BxWNWKW^&oc:7 OEKB1+> T܆aw|Jeh%Ԙ`dzŇdr$8%_?Ip7h־8HL\tZlꐈ% ?WS ~ dÂ[Z"a]_wh˕_cq{m&AG`ŧLTx GT>|.P~ELN Cd8>U\y_GS]CQp'R%oGDɐ9|;J@`ƚO'yv(7tVe"fӛ|6Z2秲4Riwk?̌|>nz>! tRz /?ѹz kʨ`$0Ǵ ƹ eZ뛃鶺ۛ"OM%. ]MUlOU0O(/Cƕm?6Zl5z9LuAJS&wLJɪqBgپ%Uy3e[CH$ 5Cydw\*QS5ڊb(6]č$54ȡ,~u&IsLKs/cтCyc̚7R,,3]LA( l-%q6c_eendstream endobj 398 0 obj 2567 endobj 401 0 obj <> stream xZKFG40Jlw6:ۀwK9>څݦQ:K#cٳC.(Fl@L M I >!"I,Dc *XIq3+n_( |,>w)(MR՛M<C5LȬ5:VJ _OuLqP0B)@S"EfF#J9" g LY )%8]H$z1Y5h}PG"nPRX3%kh8þ2m P.s@Ngwd$)OGvMew^ËajG .H'eA*\jc+z;ݒμ*ڎ]g ޭ TसNP\&@>;2*ԱZ5(F8 Э&AN:&*9`LJ31U{Ź@I9C Sgpf Qɨ:h\R*=Ǚ@~GLKfKyh({u5ӪB=65*wLAq\'VErB7GvII qD,L.3-qZ{njo@rΙ d047fv2@- c1*OdpW.c1cʕ/UÚYc tN`khw!\4~pQ8d34 Z, ({Wo"}L@)9&09v7f=)f޾:@h }A6ۇX 1X N9M䷎?ZYoJhX>29K}Y~>P.Tq4xBDd/8ʢFsw1œ|JZqcsV31"!>[ b|ZH' ‘ӦGkf##ɋb_DD hgRxN&!XDE&tq?PAFN/>vRgw Pcsh:$ 0,6C*RxE7UWϾ[ J2f*}+%F$>~(?f1t!({đ5BTWhvv}El]J~]yd ꄧC=F9Fޜ`ݟ8w }3q@#7;Ȕ;%8*@Zs0+ ЖV[$uLPp&2#SȄ(rdb?4,.,'Nj9!y@X 2QXrŲT1qbgqOX6EPjސLÐtYƊC"'T^KNK C'x̿eDU|PA %SFK$RsGՇC[=/ غڦ SO\^XH.v89jA)Sv_n}R7]=tQǻperRS>X'ɕay6P5N iJBCГӦ.b g E,ݦ^gmÓY3 T= src:kT Pxg8s%J> stream x\]cq}ࣝ o oV%J%DѦLq;8c[ΟO.9UTRꞾ} iS?~\VEOo>~>&U}@[:Mڬ?=~e?>]}KjK z2[oOq&iyGNRFm0kٚ=ƹY+6y:KEޯC,N5B~5FX1v,'8 X Gxد>͊/ qJ9C DSSs2hvfϏ6 C,iDl 38@Ѱ! X Gx([*R`6DSS T#5wq;l4 9B4lHf(j -M~bM45HeOZSnvQA#DÆ$`amrfiJjzrC'ѓwNIDlHfi$BIbN2GQʶThl:9l[ΐ&qlŦu)J Q㊆([3G $!# 0[l Vcv0DSOD_hJFt0g9Q.`@p.` Èmr̤[R  [jT챉(ؠAfpaCEPhurQ %YR-ASR#°rˑ r4bpLINB,5{ٶLhlkDé1$sK,* h@I!6$(9m{4yxZ#˪r[Ă;@mP7Sr[Ű- P6qP4^ _cADf "G\-ƪz1Xpa1nqF)蚆sLF Xp4 ;b4tȂ5%{[ "np~ 5QD/u$u0G1naІW Ջߎ0,wĂs#Bߗꎔr5%{ 8p:'蚆sCFh 9,AdA !FC,Ă#q[t.7.ю[ũ?~Љ.D1:tS~4,wĂшPㆩK,msKIu"֕Vf;rb,bPP.5QJ Gx@\$y&ɗY=IOqZ,5;Q>͗i\hr[nupabd0hl.7vDhi_J;cDޯ65N|:!h淪ELpb`bJ/1fl L~R[_Wy-zh.|=94)^))XxL_,!`\&`:? 0x)J: e"{^@X O|wX,#P06 DTV>_E1(_r.ZwXh5z94O[!7>F/篈FUjm'O9RUFaR+w\ȟAdAO&r] `M˻z%@Y_΀Egh/ vˡ7JJ ^c)0SGf3v+5_YV:ExW{W{R8~d)Vƫj{`]FU?^K:/+uj6:H58֊9^{XYǯU#^B'0ZW4b]WM_kQ2uo5)&M}[M*TuCFW:=u:g)xCәvYt]&k9ZsE}bC3?}ipߜݗrSS h/z?].F65`L`2Ʃh Rt+(mzl~P[hq,Eۥ@VW(Q*z:śUeXzIJRT]Y_i\UB}&{yVPhIg@Dc IYn$@ykqM'|^_xhp|€bXBo`pJczCK{WЪ<&>yem_QV>|K7}dUv3m?1d4/՘[C 픥<:VP9ǐmɊ0ݥ̒Is},D!eϱ@Wh1sH;Ȋˑ)'$`=&\|tu~]bmoN0d/@i{JBm6}bDyh1OJ -#qRkVE:8iLG3E(cc\(@$m-#KVh ;%õ_s?]Ӂ2IRɤqϼ> uD>Iϧ?%C\~b+!șAnF̙vyJոR.RG,u־Wd=ڡI5>QCRX{f+A-@*vj ?rn;9uwOgK![^_y$My)jC綯];s ő|v!#jr#-DnoO<>:qmϻ h)-S]GI6.xE;v/+/I{OuIyIRclӶ"䏘_Q}͚ +~L'æ zD `unrr~zxm0:9Yϗ%{k^X(ko;> stream xX]SF}w~+֛L(MZļ"lȖ#?߻3C'dvWw9ܳ:ƈΖcrt\1!A62 xqt6}vHRft:2;4!!MxB8S'n=paԎ2"qNj#;b6ӓO+$5Ggg'n;rF?}qH*HE0ET $~Ep_PHcYySEXPfr]Mބ)XmD * ƫ7!*޳iuqkĤv0s7O0`2|sj˼TNq !)p2ݭ%C rfmQPh@c@mdDZ+"`!.e<[)zVcH*Cun6eGmFʔpP,ju3!,3յ' DPH iD. p|(A>~Y rӇP$a2&0!4' WͦvdeqP•~*Ԍ4iu{SČ΋Ze"M0eXƲNXzXD~ujnFŖMVۊL< Y']31/.A^e{MPe7%RXHۺCyDP#y:(ބAKQP=7m]n 4U*<)SðR].ɰ4^/Ca,t"`$#/aDhhA;t *"j,ӳ`IDZmD1sDr DHG &ȗ i̷NXuƒ1b7K'W66b lsxgɕ'`zfsմEI<`lUUSAiָ_V'FfJIG= L9ܿ1|xqK(MU[-p;'fd9,TF_D0i ![w`p .. .v4g("(<imx!Vu^Gx1u,Et6 v(}R D-v(cyBWy|҄؅P5Jd̒IH5;!4HbZa-X&q^k_. 'bBBLMݶ탈<#psfXǼDme}㨃 -O6<0sm4?g j6ᑮW(k6_&/ֈwc,cc%%ݳv@(?uyT/3o$mL˧v kEڹ&@y:;\V)UGuyUdB BeZ#cGYgt$*҇  LFLuEfa- %uA3ʧ ;~:{d'endstream endobj 410 0 obj 1862 endobj 413 0 obj <> stream xYKoO^d9(n`0F$&eTjf&MI>hTw݄6_;_^x7aa-/'Z c)'7w6QM+T2G)Z&7~;#^~oS:תmȉ¤ūQJk3qLڴT%G<\&htqPcxZ8cWr%DZ^nYp!ڮ)g-nmE+zh9E@eRKU5:o-0 E3n/b*k7a!V |l!佔%z"6j>lep)TlEm!hl=<[)КթimKnN0:PXDM-DAvYFk WKlk)٠Y_Խۨ2YWpa'Gي!',=S:%RP-< WY:D)a+nE >1^F)&@ ;iQ*'M1w^GUq˫9S(ݍvrٶ7s5r|Ǹu)`P( <'%tDKׅtټ砹Skqdr\>r lta01ݩMƅUOm!%x0C3.4ň}W*Wc~%>E&@%P"G]fC[$|.CZJ>>}!/vL`TX1Q{~ w }&u.5+E5K\K1."p0}ޤx @Qee-^lB E^q'PTq 2mlC,>, 2;fj5 AdQ}r%6j}_و :wռk7ͧp^O#&ye5H1ݤEpU~.;#E"nz&pieBvC*)9vhA֘]Bh,da҇61 lq0n2o>Dl(vMu߮"LBu;/YmB{X.զN_G&8uވͧ?%=EoC;z^ԩ|C n)~m%zQTjffz4ψ\L98 %׃ b) l@`CY,VWIao -w)h,$F^omts8\#Ű[) OkZ,b=zƎm*&8(S~/yɍdP7m"Xq0rq7J\tƏa)U>=lI&U=İM}Aw;db H2"p 80V~^:U4Bjq,aؐS]Ʀ)?LO3/bSA@@/$<Ӹ2"a%XH6&@gҠXn0Hq=Jٛ`} 7i'`G!Ot"0N-Ø9c/Fe^P qfD'R,,#܎Cb%3brv|dNʁ{y*Q9)H*cOQOb{.?vzTj3ڜ)fVSNٶk]Q1̏$beQH1bkCYƞY_ {sm-;4H{<UG#&,,e[oҍC94Ƕ?Y6UJ8R?qȃנ`$,499 ̅3뷱K+e盇u¿ѣy 06NDi?PuB\w]|xP\/&C(UaC4Πm|ozڿ[;1zXtoKγ2@<:t{Uendstream endobj 414 0 obj 2163 endobj 419 0 obj <> stream xZKo>M?؈#Vl GreDɒy'g$J7€ETWW}UUQg kb5;=;y^c)gg'6SM+a^op&̅A)cWP!~CaZwyo3KGq|b&~3e}g( ;lΈʰwO'#aֿ*QRa;MITڗ'kXIqs&{#ãSm@ǭeV⏰bg%)q$3r{fK`6K݋b2VFq~ ư 1̙AVĒT3͌@["7VFǤ1[OΙx:B4b3;U #ܲϿF ')}~:iEDV_FmZջ]gZs؅cm!5U Lyi6[Ǡ槟5JO+u&@[O.ׂm*m4y+_O҇P` aA0xG5ȑHKm7-C!L+ict [cL ^_p=k0EqqlVͺԓ+U}s0l~k#fD1k_L) `aP#,3Q4# XdORa3ܶ=`Bin&ES]j %QFpPDXZ:{&G+lH.#R޼IK$'LЇJ1B(!p kdi)d*z8N)(nfÍ_Isj'G 5 FC݁ܧxvZ7>KJđESv13?KS ڡ?^W]]cBOE1r{`&k?6bl5-}Ÿ+E88lҚxUTyy[QMլlЩRԷ60=t xVU$ 5Rt lPJwgf}VmWyƵuv,iw42HdPS0JhW!1 u}g"ˬjH4ʬԠMc&7U$'9 AmV.ۄ硳¯ tlxd† ʕmԙSU 9e}EWi쟧}:قIM^ڼX,EuvR&6}PibdY?%3nz -Ӧ])[?or_AF(k0. 2k'iTWuFwwdhJ߻aַn1v@T%zKCkfsaXnlj^l`vmeUAl^Ha$pF2]Kp/N[uM|ICf*syv| [Qh>!P&CoWڿ.-f/o79s]2TCn3oP n KD]e**^]GOIN K[Pqo49,H)GgL96 >UHfu\V\S!Mۛ\p-wbG8Z_mUxl$+R)D#N뾹7>i5p}r- ᰀ;eW̆˕JfB-.ym_ u"w%t-'1+fҶ˺l#<'snE%// C"pKUtxb$uJx\' ]83fx&=mK$tRk -cMJQhĘ2WC,;رbGx#Y)-IX˔uXt\xYÆnH/,Eތt5WM:%QL1V_]+Nu] kX6R)|CmKr9O% dM.~{@{ל䟛c3> stream xZK S ejq!S6{|83%R&E{~(JaWʇjhÇ?8+O[[VB`\ݤHnj+, Rnw7?)n*X&ZgtPf\k[e]5Li/]\)M^;-jC^%\߭r`"cá8m5g 㳚I'۴hwNr|^OSqqi@82]]4ö3-6\l!YekZVj %!6`qEyS Vւ)iKO ehq)cGC89.!Sw8qB{M^um Яq3!S~[kof\)վ]yB$gur%7*<'|u.5KI66o %T"S21.1v83z_7egh;]}DY!7VnmW^mX_ԀU2C!̪nIOWHYHOLҁLχn@BpإE|,Ղ9fR7U"X4ݷPFh rPH\["ȵ:bp qPƋ L[iԙSGgC/ 2Yorʪ30}uS iϜ]vz헺g*M?}'bU>W/:a5Js0:aH0h(PZ}=_ qCC*,pP7'Y@C|w;/١6N1*d_e~nFj ާ~UuwbC:v#GHXȄL`V⥹Pup'GQI)[ϥTL߼9fyu[zfNd?q$AeU646W,hU;"/c %U!m`@dc}?8bIFhypO0E ܳ7ղpY-FLBCXB&*Ifs&\]Qr-!*>UNX7(> |\Tk퇇վ8 a6'Go0p_m><&m@ vTh!ቝ+bg':9oPF#II{^%h,d3L\F4RBu&(7*(G:6%hrN5{AO}LXXM(@|Zt y72=E!=]^B*Ω~41H鈀[uU)H[ ̋і>\DܾC`<%D$@WT+d( hH:O/4n"vUPtp'Wn@ \@3f\iykL)l+O:I ~VFK*0$Yz 8[{:Šdh z2y02ukYZo,uA=T,|!B>8L\馴,mS+@9aHy7|A-&e Dֺ!b \%4CPYki pOk|YTĦ2@w%9] zEA[_5r[ TWlgũ$ms~Y}`\'n]?G4s֓cAXgܟ{/9C#(?ӣffl-$RX(G q$:4*QmcES\ ZXli8!ͤg?汏ŋmP)'M(}#UE֡QD1/RE~GU "<|uFhvؑx4}GOzj 6Qു1HĦχl[rzԪ (AiT1yAjalR?&w9@IS fX^OIft`9GK|?)qU/~غgϊu֗m\4.}[9o*$ƊvlC,s_ũ,Ju?Z1m8s>?Rendstream endobj 430 0 obj 2629 endobj 433 0 obj <> stream xM[,A$IMzK$Ki QK0C AJ Xw~ͯ+Heۻ?d @cMrrhEP߼ݿot'QZ>oޯPY77`=DVAeBS |赔j{s1B} 3L'饻q~gV I>?vxKkJbBҪw&L*@Hys|<پ @}}NhR"|=޿ۦWtm Pwy{x7zp.ԹmJj7b_cKۇԷľRHKfq|nQPǑp:K.O#V(-OEo? $yQ׻d5PՎɣK2VcfSyЄK[ӻ jxx'N=V"\lBj<HD 2LP(}1F ;&v7Id t]j-y,}T|7oYJHJKטj&W!AbisLR֘'޿mNicqws7ha7 i3T@XON5@dnieB}.,u:v:P̢Cba&eOOT pu:{qrĩ!@pMi"h]>-$ ϟ4Q]oS˲mL=[b ܜwhgT*A%ؓ󷡊C(ۛvr7lX2!d|W%X 3z`Uij2pe-jg.@s٢8EDs!{=iNi64V/=\jiN дji65h+9 v{eլPj\Zr5-ʒ-ĹfCCiVLsE#4ZbZAVK撋PSˑU Ujkɍj j&[*ԍ-V3fPr@[j.u#GP5ZQXj.u+CpW2=+ԆA YZL$ijMxU00$b30%֪#q`I-.NM i.PKnZ&XF'yC] l hk-dL()|8r\zj QԒ]"Xģ Mh*맕lv8cɒ|;K$Mh&t:5w\jclLjA827%Fa Ĝ`*aT[ˌR_v3,07ސI-1k@7:g. #ƽ!ZJ9̥Sn\J,e :~=e9,`2%E] 8s;I =lriW|Wȥ"h@@Q JD_D;t 21xM`}Vg2\)`h0biت Wb.9upquXAOĻM'+F^gf%yfm"k&#K7+ͷ\ji8,P{șM.m ֌UZArjk%鏞dMQuS X3 N JѨ,|R4e+[5CC0PͥW^/c}U/c+p,vz5^zN51j#[2Ljj RVZ5mHfR+w+YKn[iW2 +/zi&c*Ӎ1DL3ULs{S3%O퇶-yj.}+(I\GYc2Hc Z @5%6tm?`ͤVm +lz%i4xqU/awX.`T#\bk^D$v3Fl6iخK-mcqlzlz=`_`;岧lv=5I;I[9fN9GVZ7\jNLYp8`E<|Q^޳e/9Ls6^:vBΤL6`${.K-݋QgK.Mz\zl{ߢtHfdŃjZJfd3Snl"fҫd `!LjFe+dz}UL6^(4Bw/C=l&c ٍ-(LzV0%Xnw\jFz 8%WnRd_d-R]P."1ͤWnmH6`!hdZ! c4%gpCoAo\sѦujag1ɔN(g!+&9h)ݟSJ 剥Z}?Z $ǔzM[[>qowc,}p>LRkkFpLnž>JisJs0j]ɴ(h_TJdendstream endobj 434 0 obj 3425 endobj 441 0 obj <> stream xKFW0 cKHti`~{ꈖ>E"ȕ>kU7)&7*m7wM)ݻKY텵nƉvpyE/_"پT v._K?$K_s&B{GUZLJ?=9+~+MGEao>(ZsSJK]i)|jo(7-?ޖ6-1CnTQx+[קO [9;7ϏOAƵQywQ~z|Af Z.}w_qh#J-1ݞw,Iٛi"Zk{摦R0'MF* k+ 2V E߆Uְ,J75eZ Қn7Mb-\U˨*ߺp_皶\;ҹ慓.}^!_J8xx[p>g}xn iA*L}O4ҵ0׷3L8Pm NtU*cф#0 mqZ B"XeȖx}~zfp_*\t ҳb\9NC3a K KHl8O!Թ~z=Ťr.K)R{cJTMK wWF_'9*pJȔ5ʔ )Ӵ4NTByyάr#kDJiV( z^OaբpETQ#} >.b)GK$# E"$Āý&`٤rX%v+QJ&XR'ȘSZɥ7&mZ̑MZz4R&ٴ Dl6M(M(XwOinmD D6MDMjSM֧t'6ёMư4ĒoJل"6 &4cd6`&ֽ4{fmD3d&4tJ6@P(ih="(aCYkU&q1DgL b2DL(Z33MJ*vM3m)ʤ R2ler&IkK_Xb6miD"i P4IM b_Ve6}i2Ni&!enS;L&X3KHHꍐ\BK6"F V%{=T䏈|a7LSZQ)  QT 7 H3id lQHx#ohYvnuX6nD(`hN9;t ϴS5"P(m4'#;H"HTB F;{J `)K b)aYe:U5RXvJiyš̡uc't3yPIJ1L-#AѲ<*.s{@ĺ3R+83BΈK̞SZb_ S >=lԎ¥(u-ub7߱tDoYE: |<鄢5x԰W@ĮBe;4#NiU'}?kH &M=O`O61)4qxU^uBN@CJ8ŦyFdBL2νF:bPfOR2u@Ja*aXVMwF2F̉JI`I~ &?DZ0bQ)rN9=w D.D#e2heeeD3n"VBDD:ͳ&Oľ5J OD>ѡO`OC0^O4|iBO3:O bi 5I gz b]ZO bi *A~N+>}Ac~5oƩ7PhZ7Fr=<`=כ:ϓ=%{#QGNJP0ڞ*8={P|El<m=U<mB6I(w wR/:bi1l1W"QyN bDDJQ,+졈ɰ]1iU'}O]~5|^^[z7˳{zLj&/"n$Ո`=c;"GQĖD y紪%] GZ}}V}BO3P@T`? v8E>1 (bi"zv8V}2طi ;x_\^3%(Xr)ͦ 6ʞ5I;*]hݤȿt"i [PI.NV@t`Pi#PĦ#j@@Tb0)Z}}ɳ;O(bi&@@TDEk>MK2]}O8ËO bi";Utwt|Uz;endstream endobj 442 0 obj 2453 endobj 445 0 obj <> stream xے@7#@7WbjwV$-ϧ @ɡrkT53.WRLۻwW*_=lW_?ίZ+P+֭<85w0~o|lsV+/ ~aBXvu> 0\BƁ0,D#J{F]ߔQD[}N?߭.O=M?! 9bE Q}.D ĥ8Im R@VHx#a~ ~.92iNRYv)^; ԰W߈9Ag /_-}}a)z۹y7ݬ v\+SR _dhkVNRkj)}&|63R DcF>ya1jXJX3sw5bp+dCS/9J'EŖB&/^5}9i?Wƺ0-,ҝ4ha&ٚrls߉CdMyzٚt711`,.s^kUT]0oK r5I sXպ}lyͽ!6M<,B`~<V<< }湶s2gl]i;(sh8c7^yj=bǓCʢ77z\琐 xl6M^¹G2Tq.jqnqqꆷ*eee1mN,ݺB9La-I~sqt:`#F%mNpbI#q)e(n5G#BX_?1I< ycRw-Ƣ\4 vf`6E )T++q)Y %P4-Hޱ0*%I{ڵQB6|>f+`q5ɀqJv6+K&$>pl4gҼb798"xܬq>Jxi ֏v&d/ 9/{wRIhM^rѲ#n,.F.^~5.&Vyev0_džD$"٧iอ}Evِu!F-aEI3( ̷܀k /xIKjSSO`FP9}Ӆ QpY\""ۈt \gCVQ:d DpDŽkt8xū IEa5Q DbDYQ4~"Ʀ0r\ w6dC„ktPQpMg42QxU6 DN_„kt8s1,Š(wQ{fx;!u:„k:zj x..^2ı|+ж SpLǙ!eM>u1-)lų!gSz$]s)=kxՔo6iUSƶxŅ8KǔeX>3>2lA}z"M@L9y(]9ǣ?:| V:LC6WpJVw| b~=Dhz^ޗ鐫vb#7Rj> stream xZK6#tJRkc~MvS޵'\h#1Do$%GΖvA XQVI7n>X7x͊1ۻ[)nRze&;ɿdhgW/%*|WoL-ǪQV__&lö0l'%ima!jF^Hdۿߕcp* m90ߤ_OXO"j\ kK"(͖q܂y?|'$4N %a=A$<am:$Tʼy [X͒ ]]1Ja3g ޽+lC 9p_M[}. +iwadް\DH`ʏ،0mcb <̲jq,oUشIs8quG}BjP p=p18ƈQc{ חp\ Yz\1Fqɳ&GQe\>q{j]ũh9)r,#=o iA]),. 0H\p;J+rs |@%b4)=t)3/ϰJcTyaUH"Xi˿ g{}rD1 WVLcKtMJ2G-8nR D,2D@Kͳզ*͡*@¡t-NQ4 ;g]KKr9Eۣ LyD3 -yQus ~9D.V9HY&ESBe2Y">1axԠf@ Wp8fˬC.j Ц2%^Ź{H‚*\kszdKUn" 64g(9՛PPyQb>x—w4hT0piTUj bvRW6a-E_fRJ~L3SH$̫9q'bn-bX`c-[9?^ ][Pn%u4 6/oC$uS7=4=:4$IBePx n8$h+EK aPklH$RWEV} ̬[Yꌕ v<&+ܷ AnjRLQwu.cK.T:[tzRoLx{/h3YjMf} cMʆFH;KopxK a&9RJ6@sv[4U`]3:dK^Š!ISPwgoDg/ƝۼuB)jF V;vP@ ?Aeȩ8_}`} bA ?5PeOXkbC{b<Y2,}Հ Ni 7өDwn0%%/[8@|ìߡKюPUIuaQ7+Eϡ`Nu߆T1@UQ<)9Nڊ*WCJxq !N̗08Ǭ7눲.sK!h -(5k kNs<-c> stream xKo6+tLІ<-i[c.I.HɡH\HZԮpHOwLcOwë?b\ C}  !+H 8.q8^Cq&? }x{="K9ҿ4\?#+#"b$vș`%dKhge YgEܢ=-f.m̗vqI[RaV`F6B{Ŭp$tA±NTvC%3ÍQP|o>ZQ5,c.eeWX!#(ˌpe-.'enIg2+lYtʲ]\,rl\MHeeyeQ(eM, XeFŲJ 2+lYRlW- -- _ZidF-Y K#ܒ4bF%ki!DTY-Y.c*-cVْIu_fdX],%[jK pScq+Ǭpcv *RlW%C0`%C?uY\XJ1@P4H$8e^F,,ÒZS$E.^!DlkQ Ʌqi"̲bdXYF,Fy+;|+֘.5iEVCUީXyew@fY澫I[Vhhwfės%ӽV\wIzz""wh& ^e,Z\.Nnc@~iJqʊ7 9M}\*iيIjF'U&a|u(EX,3UbG#dF%٫^ތ6HHJ]XMVI~p--3nj j9Et1xS1tǞWMQȻ_LX ړmQ0Dh†jFZnFa] 7ϚUtƕu[gFԚVh`jMyӵ0M5?ـY/.WUۭrF6q\hF,S4X++ӌp칏nXh3Y[b%o?DKѣ*y%COOC[ȊS4+^]qBϋ#K=/3Ee>L7`1{v}Vp-znZ6ǒXF*w8 I2xu=O^?*fƛ}XR8]Yޜ+9Z5`՚h"Ъ̼aFZ)bxj 1Ĩ}^UM7c1#w5TەjF,5db֪\}Q>hƛUkˀIW]^ULwhep9SXת35h@.NҮfˋkFZ%ȹx9{֪j`WH{ĄO"(E& OAoQ" =f\&}R فtz. ,Q,y'zuendstream endobj 455 0 obj 1873 endobj 458 0 obj <> stream xZvHݻ }sXh9 ]oD9mkP24GdV6p̌ǽq#ė%lA? kjY0FR|qz~_` QJ/q8]<Ivvq-Vӫ'McRT.tD(ړ X W: i?*n-jupoE9R 4]~j` #V7`1g1V%URnY8O _|{PoUMsMfLigY$1a`iG˛4,ÍiDʬgK~ $% cwz}2@Jh_5ڪn mz@5ٮ!LI"]:p~Oց Ӏ XrT MLO5Ko6Mv8/THar?||6BOBɉ|R ]-ۑ2(_MC݆qp▂[E|i:qc$Gk?9t25)$7K`5"2c-)n[,V}1cCc9NK1,ƚ'NIP,"5Mcf}@6-$mr|'5E spʘ|s$SKpLVYq xV~]*h >/[}{'%$P&Z/:Vh%yg[ٝK_U d6c9Ǜ2 ZeEg2ԫtQ9:7},tionkjՍKQ:]'Q?+ժM22(>zaPE'ByG8 3^!u)JJwQ8@k5gl\E@>FތU^0i:4G2躏*x> 1Rj<7ʙi"@wpDv`Q1-z`4r-fR r o> 1֡j̇{wռm PK.rgֻ\'3c oXJ(0o`VpJ˻1m疎9}-˻Ku6C ^B',^H@$گ+]&JQsDp٦K1ɱ͑nJoP\Q8%YZ颼fd)Arx uY}фH~iGgYQzLRMt{ܨ6V'(ًF\O%[s j*܈Ԕ]ʀtQVNPisC ) L5\>z Ϡh)O!X&_]-dug$u~tnucb8M5WB:}ؚFM@6"Bdh gr0=vyG L#U7ȱ~Y?Ij^9GIb*gߓo='R"J>R@57D2H(-ipO:0MۆM}smhDʧ#-晽9ڌs67WugF8޸`DeT2M hp˨,Ǥ2|/tM5U6&— vH)g)Dz]5x^"+Hl_%79?)k &ϊQ[lb|z"Q]0i;$*P"ΐۀPcm}{Gw@Q@Qwl@Õn(BH[iֶc.~խwߵqv Am<7nsM6虖?QEREky".o7Q)e5>;x2$Z 4aD6%EL+xMۏAB+&@sloq$ "e9d.<0l,Ưոjl~HjLv q^5&[y<= \Vh:>e2!ί}Q=N~pr+2bu:xlbS~j7|ׅiNP!3pz"lendstream endobj 459 0 obj 2601 endobj 464 0 obj <> stream xYے}#f;oR˲B!D (ϧ WʥULOӧ{>0"+lqMzT+B7T!!J1 eus-Xѫ;ւۛo?P ̴]ɾT ;J$+C0annseeF^ V7RXpWQAXuf"zԝPdR?茄_S,[w$c?&X(D1C[#Yx<3„'!<:s(u}W]|aH]GT \'X.6h2m+{g58?C^(Dܖ`US7tv1) #18sR:yr[B7f *{ESVC9w/n[vV"BX`"Xt׮lO08ashC 1>FI}FҒ|hS ]){ю\I܊r:аlJ:CѼ#F(Mw#q#M_ϼ&R @гl`uĠadHDɏʮ܇d^88"Kd$51Hv,{!Gp@u)S?n! 18 {bc;+ MS`"e.PyZ)CH"e[L'.ye \}*nއu ':z I|2 0pL#*nINȺv^sJ'^QtNP D'>yt? TxQXV(?9'b@?NUp_h+v1}x4 [!L4 H*$.BxXcFV2*ťEZp(/KQ8kZI2g-Lol[?brïٶ1nwo<S5DPx eNܜil(\f,BS,·b}Q'yV6Ey R.T(/\3g\J٦%dK\4'9܇)H`eJ#f$U4j ;eFTѴډ,P2On\~  .ir]EuëѢv>Kg2B*(U9CH#V}#y ޖ4k81g"j$کZ/ ծMwKUzb:H<gU8Wif-ЖK~u&}ˀi)ai.<\FV# SaD0L;ߤ/w}GZ jʛ==x0H/*OEYOCp5 T-mܦ;z)6tPm ˻m{ n˔JEoz,p5Em #M=S7ou~6 kP"~xIuR.TS( p6ܱUաcws0ƳpU[kR؟A˶znن mDAQBscը(qx%> H#srm,q11#@%? EF7IhoH|_!endstream endobj 465 0 obj 2371 endobj 470 0 obj <> stream xr\Kҩ!rsR')'.Z,Dɦ83>shK3?ЍpW?\p_/z\WWP pp_K(×̜׷W_\Jx7wUkkO/ǫ9Dկ߼m8&7u3Wz髉=/)S$K50O/_k!A^=ܽ@9F< ^/\+L*e8p-^!C\6g;b( fljGsUKђˠop`|PxsHqpSvNsMezܟRm)(Dգ7wɶOCUzgk2FC M0&~? k{]ilr+Ek6FU(aҖ1 dpOhGr j-EKCIEP-=,[Z1eK]o޾_D$}9GB4^N/G]z/,)e_WkB5퓫%E]mtgUoh4lƵNYljQ6IɆU]X)ƕKR1K^Z]0eUpԚFlXi?٩^ye2QaeSizOW!R7B=VM`æb%æKKo:P9w߽zǵl]fEQ[P@qa)+$?͸x RE2q{ɳk1/\ONkS\pXȋk vx`Z ^fW0򦏒YW>ZxG`95f:^Gnld}gEp`jpFY(f-rř>n}̽YEt袅K\- dbl6JZp56m䄛6bkن.rȉ7#+̂4FM#oG^fŐ<Ǐoo_|{! v|nX?g6r*(ԶM!MkمȉIdB2^E 8zMT=m3[Zݳ'BO\V5?4R|z`=NI!L/ l P%/\㊾D1< [⦁"b@IV??PSǧf0ēQ)Ꙁeu{f0'VRZ[~8FJbI~$ŒINj%|`, ֟C}3cO^8vȚY9a4ŷKE& Ϙ85wYY'AH޵ưI`3xifJ7X7MfבUxi$#4ij2kb %ymS[M[+F&u՟zv4+ mKzF_𠊐RiLRQpQ}6ZT(ƈ{7;^.\S͛^W4'q/ѠՈ 7j>-8Fjf 7S 1n^$7#LVN zxXVlX$GXJx7}~$%>o\֝A}K|mH]#(݉6v+,n:+(Lpa_}ğVN ]琖h`y~j 7.'2ۧ^&&ȋ6oMY;ƂA覬wqCX}oRت5%Ysۦ^eFm}zj wZpO^ia;dF{pGYnz7e]|bX"0e=ʜC!*O^;Q휛d)q#v#[YH%%[zH ! (V407dngG85LwySɷ EzxPeCB;44 )bv(xˊW=;i|ab3w7`?lW 0GCś7wS۴>|o>nRgYӻHٹ h,5~d 7R8SN!GX1ه܀"N;+=;)]860T$$gVJlm+qG˽pDe!W4m&/īzqq/HTx3J<&*j.ojd8PL:NA⁎?o>xz;xBJ;='zTAdpcIoODO 腛+` kf w2&8f "ޔnh}G)}-Zѷ3%YW9ڭ^1%fb/1_i۽ht!y:эvLWDkE^S8>mo?#tӢendstream endobj 471 0 obj 3671 endobj 474 0 obj <> stream xo?1G/*>syIUn{d{zؒ?>{ⴼ+=_U}iev;uwkWw./޾agJE{9 9 U"]]_/go7~}*7奠lM^r{SU>tW:S{ጳ˵?W˯m՞n8j>^{.M mׇ?n?].rc~ڇ cxv>7_ULrǛp~^/kZ}5^}_:|(CWק1V7ZP^yg*l`bcl ZO9% kNK4Etr͉gkc05=9P񘒊 coO۴ffK4@C$Fd^\iY6e9]z.gjcPJ&g;@ztٜc0 ӦNenL.cy + /jx6/}:)q3$,*d[YfQG}~?ui5gSN#;6Nyz5p!։O^Xo24"UŽ9E fʏ-"PDߓ<'īIyi++IDnHM^K"g˫࿑D&QC',)hYu\v"6ۤ΍QIEi5Pe+`iZ^x-XL"PWyjȫM^+!k^ Q֦˫m7l$.w1jHEL~# kPZ Exm f$BJ%ψ$$=2l *i$w%diq<0~cs0cgƫv,BZi"nYkYT1dEVֶ w޿:<^}0tBĦ@O*Xȓ,O61Lu]q*IyZ=}47W'4dWk(~[;pˡژ(nʣr)uR :<?D"JRMwIϊ.W,䏐<#{[BM^]c+l2"]]]n8ͮi#6M5UY9pm"iFv(ڲPqSQS^{gϘyf뜿;z[PRWM,ts A+ U'Y+]998e U'畛Tͺ:%9%M^NJb^<\k I-F (ҡp#NI (pUM\?ҫ|t|̃s+ !UG%^k'lNyM0!f c!ϝ!yMHoR⤐("I!7yMH݅6lTj6tVߨZ)l#WPe̖<9hxA{Q{לjz՘m/kܼF\޲D4bh=?vem[]hFfLd쮵aWx~=J*eBgU(2\KXϠxp-qrFZpɫJ;)$endstream endobj 475 0 obj 3044 endobj 478 0 obj <> stream xWMSFG趦g#X*e2'2(%#d7 %RLfz_ys`Dlb=%b|>K4F2QL"CY2]\LM81HLFZ LqV~ a\;BKmX}S0y Ę *TخqayH[$ڛI"ei| ň72~Cd_O%Q\|t㰖*o=&[ NIX5/bF i#ݷYȰ#ɩG;*߻0lv72D "e9@9VMY~UyXѴ8<|uGwTĜm b"&teIϠF~oC1^^2׳EQP۱!˫A69xZ,) n6f=ccgc.E)vnxB%٢ώ5_=RmVl u0oޙQn.O\w/U{ /DZ`]t/W!Lyn?1;g =>4zyg} 9_/c%-ܰN)%}$ Jóف{(Sh@H]O@%fqUZϋk\oUVNAbB3 Jw!.ĄgӴݦ^"Bk+Ƃg~WtrOm},Vlݶ] }8/AIUٺ ؞oH0),Z^0jGuKS6 }liJh^j)Aη2dE,[WdSzoS<9`v%19-}Yu6Ak.)ƵRendstream endobj 479 0 obj 1451 endobj 483 0 obj <> stream xKs{"+8'UbBL%UɗOzvVҁpv ̿ ?.]A~}wyv \q(|˷_Rܽ(<*9NQ>ۥW*U_s WqXAr /ߴO*:B_˽C3#,]=޴rwWeh/>߿vI]$#zavϷy!e`vA@_ 좌|GՇLDŌEg0B+1,p0ˑQC`VՌbv3A-F}<OR 7gl…EX8[ѣrz(8³Q_HEl#YML CeAѯ@[F9yሲ)8 DnqCVh+Ɂ3N-(5 Y&ЅBr ]҅F`C(CamkC &R]Ȋ\(8E.dk. N\d)*uJM](%GFzуRzx5&%ߊr͇y'HM3Î'dQ9GqH X$%UiY)>Fyg޳Ir4({Z|If8H>祺p nL'ځhmʃpm3AVÁŕ m 1 F{0Pzm2ƦkyD^jKu2Zr:$θuub[ Npd­m\W6JT6Рj2"U~~۬\PVfX;jr)yT\mBKCOسԃ4|ˊ'$NIʭ6ݭdA3u+e tzWq#rPfrhdz#ue4-"Lʉhb0Ѱ+2%ϴʷhb&A{6i{7. ^TJ)tYz@-Bpush{& v#Z/D̺\15i_ˌhKR[I}6i}8Kk>\=ᷧ/?|ޗL8raل* l5Zd 2Ҭi+\-UcIupTIghMfZ0kJeUl"9EVu2ڌ\T=p9*P[JwP^g:VEd2RmQT TӪF.P5 |/񅒒 c޼|u T ~)JN}K%aҴѸ[N'#(mk)uVJqڈR-ه&"}&m7ј~D< 6h1ʰ'&֭qG딚,yhnXZzta,,+UŌVIM/Az-xmC82{.dU x> i0FG"#Z3K]pe^8 E J`M\#m(dx«7qڇׁ^{@VFN`lLrYV0Ft Ӂ |:OcY68H'_u,7ltcp<VdgV)8M,lj*abT`MUȊjmú|Tp(FcW]+cڢ_`#)& `R⼟dFV:>4,pUm"W[6hktxŕLɤ ?KQGxExm'F/ -l > [EBGV=m%pjϊq%O:֪7q]jV8ZG۸M\W۶Qj`!{?6 yKYȤd!^-0ᐳ6 +S\3s9m7#զd_ڿu -'~]3zQ<()Hn!g cP]+\U$NeA+^p]V<0ƨ4OJ|Jb$idt?6cVޭ֣wW4&[ڹ0q9mvуۿb (K֢}GaejR)NꀢP`/V(VwU *̶dIUÉV6\8V~k\Tb맹&OsXmXam57 rhxR9l[$Ѳ|j Z8yfkk|6 WgIg\H:,nmKZ,RE8]uImeAќSTB+ANm;qh[8"zbR 0xtɫ ;+lq8uڈmm7i]F%ai2w6k`IY,endstream endobj 484 0 obj 3156 endobj 487 0 obj <> stream xKs7}tϽmQM&r(\ =$zڊUS?H O50yti6\.. q0{.`aLF귋o)1Lf4<]\*_Ebڴ{p[Zљr>ҟjk0G<RIG-%hTPi㑥_4Iy4X \UIʑH=Mf>Ef>:+nO%M7U_ϸ{jr S6I?g G+hZzшk=?9ڶ^sHVb4wvY,90YLAO-a9m]87ˣ uNṼB8٦^s2,Uֽd#M'Dbf\re~ /Si~感)]Z~93Ǒ?޿M!eSzѺGWѶ iRĤ~gIlcL!d{S@Ϲ4:P zjL.ܩ_tX"ŕ)1TH\;!i6U퀗ο:{z7X :nٳDEPΦA9ZlJ\2uz#xgC+*^׼Z*k^f=hzY'*#(~GPpn4m)ֲҋ찭W̥@n83=}?\csQMr4Bs6pU{]a0FX WGفZt1Dx}*mwxZ}_wF4z%ͬkjѕCZ#NΡ\ZoabkQA97{Zjo.ߟ|I~tew5*'B]lS^QWv^"Ίq$ $A}SQGՂR=:Nu0Nv־ ]:~oF WzyըQdz :V$㆙^+J|}&|aqBo(n mu*YI-a#$M jEY29؍Vt,]ג\F9jH\K/ۛm5I]7mNm!o~Ur%`C%.ʇZzu+ζ^#U+;#PslW91-,ʃ5HKrLGؔk(j5# wOaj謩yIfbSpr%AZvXo>=+6\8k ym}.'ƂΦ^i!NaCCtW_~S>pMΊC yqNAi87 QޠWF=m ZB fiT:3e2v0kJƴh"ԙ" %% Ŧ^e9ibֳhule¢\YUKoa1EĶ^cTr֡?5^#|Ri )[\R2UD`5A-VIVcЯľS E &1ZQk@F=41n5 ^5Ec楜9 G~i3#:{ <ԒkHL "sVOw9kJɑ$jk-Uǻsr?k@P5=E*Z[;G2.oCmT+ub8(f F-9LIM!z`62PMcsS-9d`)ټ 댮Gc"[zdzdܖTs9bdW,nBo`W^ZrWrN$Io*\>2y\ QSқI=to5bA5ExM,W'Z6kbot$)k#/"2ɂ/Yۛ18yue3 !ނl,m5d2G[<Ҫ\e.v6FLIoY[xzOڣendstream endobj 488 0 obj 2337 endobj 491 0 obj <> stream xXKo6AG2r ЃI-eծ$[HZkÆEE"g=8jv=e|MR"[fad:2-(E5;z?gZ0kO#CsIcaTÆ_NN0 ,s~CI.5~B9c* p,&g]۬qI1r'Y2ŤTyYZ-ɷfB.gY^W[INGނ'UU/lڪiƎ3Ñ0&_ [zT F&5!@؄DЀx`o-B}ޕ\=h/_ўB$U&ĝM)O ysӖedTڙ;RCn͠4Wy}wMh@sqn=)=>bV'>vdKNd+CWZ»%:[nLaΊz IOvKEy)5#I 12^@" f|/@vyK߅oo5j8C2f>8!RW$I(fi]B7vMG]OU%&6݀0B,ڼ^&S{(M{p \Ūh :|ɜtJY7n⥹4=ON?MT/@M>ʍtx['y+Mr@6Ѽ)]pQ)١אӝIWZk{rWv4Bş.dT/e]vUQ*Lt~+7NNoE=Zeh:bIapM9ȑ;Z'^LTw15]P75r'5=Cqg{$ ͅ7߮ tF3Go>'ߒQ˚ Cp:k@h:ogԯKo+¸AP&j5 NR!OjL1Iu@!a> stream xXKoFxkG) q JTBLRT d.G~(aw||Xx N#N))nR:3BE6Z ?9 Gd:rKU,MG媩q :tWʟ(E*K/cJm5 97wAh ֡.IQO'X;"xY=W^.k)"F4osɈI :iݓDkqEMuŧ[*¬d/j Ap|\E`&WY⤝xZA5ڇEwpBP™|(D z6 a:*j0+¿O {(V/cq[/W]yGY tVnB%Oh7^7Gc4&i~ԩmI?Zb&Zko'<igV5әKu^7~V^w6u5dA)T?uɽY9aچ4lbݤ@i 8 t0Ӧ׳859a{+%'85UpA~tۮdq e^Tx{pD[, 4j˧yUd7) M^& UO.JU9͕ /KT!XjnEO%2`@:#/gw-X$lk-= Ih5 CA'i}İ-d3PgebֻΔ6=) ܦ;|it'6iJ@F 0 6q~5ۂ]LMY0gm|n~5yێs):k ̢p lA(=KtqLb=0.1MeIlpg/=:#`[~l!!ygDB/XwŁ<*Rj *lLJ͢%n|wxim"0zU1y4-R!n,_~@Oendstream endobj 496 0 obj 1425 endobj 499 0 obj <> stream xXMs#5a hՒfo m-s{;q%> &&N!zیQ~m\,Zm#ϖ ˀk2-)Ȗ,\䢠D2ceOӸF;.~hf]ٗjzCa Diax,vḁ1\7A"L6Āt wQ@c1!TL}k%i]WX L]7B\9HAtCq Fʔ:* V@W3\Āt0W~5ADg1)0԰N@jHìOʹSQaY&'YK!b63%51H@\AUD&<I(Z$r7LM9VCCUtvA!XbĒ`_Tk; x;GIMRk(o))K)ԚPc"JK&V$[y\qai\>6 W}/R.z_@At7Qn r(u4> stream xXMo7+=:Es9iZH[z}XKk{Z~}\kIq諌Ȩ jt5ϴ'#3bdlOL2MTXƳI5ړј[Jl 1FB6&! \0bDI\Y\7\~oɈ͉yӶ!\FPnޜ\~.# њX01i28IfUpл#iyXֳK8"{ִ >|p"9EWv;0KMSԨ$TBkBXv+8 hA`Yh &0zռT0B mS_ J'/Rx\'OrWEt1GTY7u>;J<%x+0b}vK՘, _0i^O$7+U%lplݗq~:4_C|Xt-DmIK|!<7x߯#`!T"73~"ʚx=z{NAiJ&K|۲k$+:bR[qsIB;wrv/ԙڻI%*y` _x>Vd>nl?HH­9i` H>,z_ip'm\_&o8Հ}WGtAw$N~ e*[mG(gUjfkw4# *qK%.TUѵ7){=16ʼDLAĤ":A!LGq\.JXJzܗކ|C CI R4meUmiX>쳔Y ܲB-*4 0)М5$!L̶1羯Ģg5Iq!*endstream endobj 504 0 obj 1254 endobj 507 0 obj <> stream xXKoFxLj3έ-zC?D$8˖C)c@;U|r3]g)Z^Ӧ`N),Y8BÔ҅9b3{f,i[=nHΥ)P*&m!*pHsYeIe\XoN2`֢nH!T2 ֪}b KtU w޺tLi chJ3ўvSur\ 48((|qQ5Ίxrv(RqCje]CjCQGiݬnSu\ (( _Z9H&8k8MWqqU. B'e_1n97WL[2 a2)ʺ%W, ⶔ99k:IFhbN~3 ;[q5&YG%s,|#ې)xVY6C7LF6&)fO(Ìm>e !I0I!!չ)ꡫWJeȵyKjѣl/> stream xXV0g_Uϑ]ÎMip}}}DzF8!@ў,rx4ݹs5Eƙxbp`,0= 12"32c *{^ sdCsFd`}]SjM3.uTD[S.ZɄ>Z Ki欥֤ 6,y&xOx1?JDS1-fE[i8$8'ײ 䔇4_N hj#5dTʯ!+m⸽53E:u>CCꘕE[ƒK//:WWK8ү bYk`|Rς1zaFDB:|W@0 ;>)C(T࣮BD__H!ZUWJ]V.af$3ӟ'1Q`PC?rJ%@~O]9W'|'@;D8Υ2aĥbi^8[7d{cUF6\l̈́[s-)ldֆ|1vުqx|$Jl+_ք3' .'ՙӚ]߈Lֶ\]QXk?"L~<M'_@,3Ob=Rz\ΊPːnP0GRzq<^˳Bq]|oh{}Ebbq2?4"ofy $Jy .mU'Uu+ (BAi:yхc%L?O?ϫ\/QL4> stream xWKo7+@V',iуm@@se%m]{%I~}Oij* xpo J/Ζmޖ~f; bdj>B2MTXƋrt&ߣ1PŘbb2Mܒ!x3}q6`*lՏƉxBtQ9;Di/7Йac_yu[D˒?4%%oUƩѶz_FkCNA,dmFV#eݬ]sU &W]nu?.E\{ እWlv۫w i̘$ eB/{P w(R D/8 ϡ\4zV+D .y&]Xwx̵_H€ͪ{b Q*ZѺ7jQ-ð1t;mȞo(swߘ` |B 9K%Ǘ~G_wuH}C8 akT/1GvO߫es ߿=u06endstream endobj 516 0 obj 1236 endobj 519 0 obj <> stream xXmD Q?KtT !*$JjHvh g׻KtE']3%%lI_oo,ffxR%c)ŗ[*nRzi&zxpH+n-_q$x1NIV> 2AA)bIT۰iL"XהP`\tXl¯A$|Ѐ<)hqA rŒtQZ{&L$9÷8ƒW.㘴|m>7 5Uq.(V#)Re}[rA2,ɟ7a3GJd>h_TuĖhiX.^&yTZfL|*&gݱl9UɡWb .ǥw~g|^V n[jLI"]Jsjٖ{AЧ,AnM2`7pV0CEܶl% O#"N=/1$Xl}UY1ZG+H i`J>;v!5R .엜pL\M3!ٞؖV:U(G'X\NXbMP+2\;Pem .Ҁe>~AhDgɣ~ԏBgWX/|v)mnHOG>kwX*R#S: CM觛p*\Jţ8jjs/"[EYOܦ1vS"׈'?Ҍ]7/ )_)Uĉ*NF9φfMqe .ʄg euY VgŔ|M}}vls s؋(6Soq fsꦏ16gg’my%Np8 B )ZB-ԡ@n  LQ0z _|=˘ab| .yN+ӗ4we2{`4yU |tq"#wRU'FU~Cb EXA/.TSwՃ-DEt}5"Z ĖO/BEL)M\120nR,Lp !qjf@8 BOQp]Bf?bmq_Gwȯ_MP~xH/8.endstream endobj 520 0 obj 1893 endobj 526 0 obj <> stream xXKoF xtj{r(P$fk6%6u;dI;@fwgfgymA +2n h̋ףsm ƈS `( #4q\H?vPCŐ[bbh:87ǝe ~iu7qJHkq "zIe4@DP'?'BqHU=&ɉcZ}*pIp.QkO҄in*8PqqL]6'zMlEP&dH!@drAM37uJl )QYfl박E[j%aD g˶, aT*хV\*7+Tіف^*[hMA[ % i30ں4&aU׻S^SSy!a'҂Uaz|}rճ D5GV[eѪĎ8͵ f5'`u.wu5 qg@Et 9qӐ9b<2ߏR r̙^w?pzrvi<%p#PM>|/n`Dhje9I=X= kIZ!iA Y CcJsMaȒ锥X$5X"p[HrUGD5m8Hd/Sj,(fxV̀S4֚EU_2%Rя%\R[ ׸qٗfZ9^ӤӔȍ!mw0 R7<'h:AʎKa@Ur$_\ài 崛$%+!{j4KfZ_Rm] J+}xp`V],;zCCfE } 4*bO[)RւS*4y ձYzQ*fT$}$.S3x*CAHМMV 'D.Yu,zCÙBmNq Fn{5 T!i{5!h5j=Gܰ-zִށiki{#Ƹ ŎZ".ĺ~{t )OmlzTh^IٖPCU 2o7wnh}}]{P0H}f4~JBecmIsTa:<)E*4E}3Fl ʫe{#>BBׇdş={ٜ=CD'NkƧXA_>[BlK #}[9]we>S q__~ħ?@g|aBZqDHq$~ ~z?qdUӍX8*x6,c|P 8i3~O*Y5deÞ\U>??/endstream endobj 527 0 obj 1478 endobj 530 0 obj <> stream xXKo6tL.)z(h=EjJw%GlɱaaR!@A_ޟ/ͱx>{JX)YޝPH\x>=R%V1%ܒhm3 z{h۞*-( ΰ?@LQ"JC|V$/V`6?7޸F +SBaam㾑xT3qyb Lt5,NUݷ A]{ƣ%(aڊ8+7C*!(:%M6-#d rO[fD Uh< Z.]*G!6$FjU]_0qCYB}8\%CO`͊J0Q˄Ht?_5.d(b)`eUg{PQ^nۇۉk̥B#vB S9x$T"2`32>rthT(jnby"PGi֯&]  ..qo'pMy|Y W SլldLSxh˅DN7uV48T^\`R=eCǔ$Vx{* B@tӱBCYreYb!Ti~w:XڔU/^ĊL&lǺ_ DZ6Mwy 'N^4Y[%s+_a2YSkwr^5f)ƵsC#mB`7&V>6XL0l-ٛƷ*TMm]O1~,da;lf~G|Vvw>o+Rs(dLSLUn" ~OU6EJ &플iZQnߕP|lH [wR2޻p8BNҵL~wOǖtri "3dNltu,KWMh,1Ȟ e8f0]y.nJ|[ a(廤Ʀ+0r@RLahݸBwų(+lPcԵItWwxBh* qgENr8࢛*S*)BEPAL6>8V1x!uJ PLOƠxEsiٻ1d`F11!Nޟ;aw> d. .nLۯ.E13b9tEsDq,h~7@a,´WW&N|(`su'}{k!AM ]Iz2Dۡ[HsgG/Le!7O^M͐&aMYzu~E{vٽdiendstream endobj 531 0 obj 1750 endobj 534 0 obj <> stream xYrF_Vdr%UyKR.D8$ 9?0TCUpfzy5XP qXf6զ`8x1Pta&bd*&܊b-Vb-h4voHJq2mlbLZLm9^Q%GT/Uxn6}&)A6̖U,+p9 5Ҽ]? k<lW*C-mIXxZoOZ|`qbw b 9\mϳWHS=a\B[ [IbN]5{aYxsB=% FcXͼ/>NA@ ;NQ}f- h-E/˘QJ;cou\uD0wf'yiZTUٕ)թ'⸔x Xє_+` gT 4υw?ّ&Qq?ewٮ7\C6rك1}BL ǣRȋOHȘ)WO"Q iSLo]9.d3p*& ~OT?ğ>{+[U"[BvLPCb)*c:h[[/\*>0K(Ek2 Y36~ec9wLfVQx\z}_`) ɆS%äӮAƲ((q@p)4QbRo: H7eːq{3 ܕZ Aܷ&?`DAk?b @pd^ Rg__]JbD?'UgUTM*ę=2*@X9CNd5wFVWzR ] bv*\="V`ANaER/Yj3RtX͡W0gz/DJ 7OX/.:Z %ʝVSY@!S1v0gաSy0څQ F + JI #bu&a쌈߼I1t/ H9IxN;!Ζ9C(KK ?(V+,w߫=N1NM7?Gc0 e%DWa4x[Re3V mz,WuY'cܜ _%;?yZn P*sՇxG74DJ3W:MQ uB<~kR1DEyw(JoKětty@ ?\SʕzǏ!endstream endobj 535 0 obj 1784 endobj 538 0 obj <> stream xYKo+B #,% 19Kr虡lG̐CuTWW}Cf?rsÌ5~X\fqJ*~fb\pp+fsn\`զwնnL0kTZiM.,,Vᨄ9uA $΄"L5p\1Xlʫ'>[N <*lxz[bLR#<ÕOrׅGxC\!TBh離іqx1]Sl]^_%4yʍ_~yrK̅0.:ģ\!PZ0A:)x`Q'SwSb$qVOX"h'"7ew6#դ ew6xQ *wjbCdFe0Tl*E2ʦ_0s}]@R&9xis*Q=` B9F^aW9Þ*N)ë: #d mr]ȎPU`zGLA"/*CN":¥JLЬIA wKؘ nr ,^d,&*) 8pg wF1̉VmRېRj\slE8q, =w u@R& av 'RTA*R ⯓ /CG4'r or|ą!xe3!+D2-}MoL΀?.ai*OP<"V$/X$&E5-HgY.$ CRYiO*XGisqcSu](2+0aœ ztG1 uHjxfNFbRC~7[3e9\cXZm_~WM}O\c_IjvT;pDz,I9EXI:u};|zWΔYr=@`O*'=yY{H hQZ mdշhnRz >h'2O]k nðicԞq;:U? qWx|Q3=u߼/ ],WW#LCۛom8a4ˢo~ 0՟ͤF/7(PwBƢR[H2@&J6*kF1)dܕPyYˉmmHQg0x림+xyjNs yj;OyT0̿ʚxoS~J=xv׏nb-lk K)!ع4QwuN7'-hȭCrl?oj ߕE~y$a 9I  ]u:`7T(9?ϓQāQj f'pѓ 1s/}q7ET| XnJƮ)zƴxt]JnY#eXm!in yu*h Oý,IMdz[dx#vhBs%.(]tq~ኃT06s4 iLNl-nSB{NĻ8i]8F܆]B[sY~[Jxjg,#Oʍ||\BT+vؒĢQ'[Dwק뾁Ug´\48L˫/}(S,Oa9اo!/qF$t6:Jbzr&u~R0=07+P,F ma^xֳ]ALëNf\M}AsSpp]!@/RMG!W4v e N }_՞pDǐ}m$ϙx @ͣ'`4lKrݲ*48;F/-:_e_]endstream endobj 539 0 obj 2213 endobj 542 0 obj <> stream xYˎF7/hx2]tQ<4<~$B̋dl883JyS}x_4_*ܦڿRr"Ѕ P4'ƪܼ m. 3gwiiGobKFs4VMUҹy)mU:YM̑490u}Lvk}S, 'iSn^3},$|J`V?΅\iO$ʤz*c򆹑9w ;ˍۛe:)CPEenuSuP&UG@k 5_R?DVn\|5&ǵ] a0F{uW܂@߲]e#OfSkڲHSm,ZنK.ip URExJ_`dٺ*'\/aEFqM;QL]]˿|Đ`߭*T"ɥ\aBd X c?IǭS[z,Q5ٳlڐ\2Ӈ؝U_u@0II<&.Y=-A2vu#%\']U`K~3tF׭\H% nLa뻇+ez -ןԧ)*@׽6 RrE7QhC;Ax<b4 @=g$"upU\>X`frD')27HSyqs:%hKA8Fu]7{}d'~'ҹkFLuo!#[)n4 -]ϧ\^)WcGf'"7#MYK_{|ִb.5EfuJYfӵ/c-wxm+%d qgUPvnPc@T=}WI2+Apb":>'-}b(a0ͦ+. WdfR@5mX612T6+\SvτE@{ښj \ŽAF"  P:wn,GQvBQO}c&_Ny:>&]q`@6[ejW/^; UL _%=5HYt7-%(YlQ}ag)6DY? fj 0_q!UOnsOdcHX,Nj2n J*FSI?i(+z轚=JSnz;Ǔ%׊B9;3 0 [k)wp IO$1k$ :[.8Y^?M'Knafl^onןo7sWEs&>P9FW82@MgC7R*KsEJٓ> stream xYMo6tL.oR-z@"wXI?Ou@aR y3{xw`~,Z.^M)EX QJFhRrQ\.i[P$Z%+QZb-Vk+6Ϛvt_sJJj%tcR%Ri΍!TӲXtvLS\~H[kZsb˭Nn۬W ,Ǖ_ũC|C;>n+ ff܃nZT?払Drq}1w3%-u<`jiE\wش>ܒnʄ/QPx[Gܙi]ywfY:]wRY`$i7aK|X2<{?z(7zkl]"j[yE`Rs6c1S" z$lHZG5qj7ې:ReH]5BB "D/l9g 1i` .D0sqj) ]@̦^o( ǙޏӊiK8[A1dJr`K@:@= Y?dH^xef7GO*b)DqmdEߠH#pNk ,Ei#hMN2+mz)' MӢ~zEg)hSI~j35p[v$ЂJGzI t2:+sHs;̘g9,Cf´I#a]?Xy]{_]:'BfOR\:G`X`!]y:BkEC>vRbYݷSƵQԞ:аGgg9ڭ.3`[ ԲWUj}?Risjbsw@nnRir`];4C \f>wuח,4*ћz8H̥vz%P#4gKuO)tQNJ.iNFa0Y3m5 a4G:0L>nGrY_˸5ƈSKqez۔IlHh r:*ܻNj̜X8˞Ul-dô D%ÛEޥQOsLe@5fN.Јi‘ -%]5uv8RHssVۏRl}rUŠj?,OFqM4`挨b?p?3eJ\a)PcwI܅14.]%D˚g#t) 7uP[\ AA*2(ÓcƃP[^Z7%h7TI{zdqM%1Wis<J8YK']> stream xYM/upN \dcW{{aSFaڷ_Hؘ%M}pJ2JKyԻoWvx7_Qls#P]1$ U0~vq]1bͱԗcKp ljIe%a~SU^I!-.G ߊ9)G;05GL()7m7(=&kYC k3zeD5!UUP VRQ--T^C}v{&֙f:Oj\ ::ΣVStko'Py $J#gzk㏗dDp`I!ͬ? _d:j4f{ qB^p>XrqPua<41p'9l!]r׺oJWNilpCvZ]<,Tw!XӨdŵ_Ù(@R2tpL ׵gDrSEv-=G ~yc uՑgThtN4}uPgƗ:zUaPa0f!ow7j|=xR]+e/Ĩ4ө ȏh'SMbWKgQAeMKzNi1uљ?41,3' 3qz.S8&7J-IOuB o ђw)S򯾱7:Vd1qnf؍!JxQ7K#S:'2AV wAH帛'W.CS:אgшi}X>Ca &MHQO<u|'ֆ0~#yGx<`IJą'ݦTϦ?Z WyM\'S~o߾Osj]ٳ-_OZwz,r= {SqA_mJ=%W,CJvP'3gļɍ QWbY31u'ɍ d?{/s}VH&J%,K׹riYHΧ(=J}hN{Tht !,ȣc캩&~Ѕ> stream xXKo7ҿGǨ3|6@z+UT{rw%Zye+ɢ(t 9} LM _.~M^զ9d1[L P0ta@3''Z})äb*-Vbv=Ԯ=.2ȃ_/qeif /v, +5˜8|7/7gby~6~YӶ1KN~LgHw(rLHCtޏ(vV:ޕm@AqZ%+QfvM)p (7]ó mҖ`G-U&u6EsfůDB[(&aL*TQWgM"2Ã=%c83>xu2p8y֡|<>^aB 8qij doaso'}ܴ1"2d (mכOzK>j^o7 i"eOcG TD"h*)ɬ[v/Ҟ]SKN:s /SR1棡E x/cBt >`"eѴl-âce=!ZI$TrYU3ϛLCoG"J%^-XAGR-5\;4j7%A6 =A{ OUm:Ӵd*H=$?.n GS~MDM;>M UTa/_剩"T:1,vʊDw9ŋigiƸTS}*L5Rru%kx!`"4\mW谶+RUu4bVxpbM[c"Gd>, ϕug #L(-?vǕX\u锣Hz핹.]5OUM Pt<D4x;X/ۢvMe+s&xANJN4CG==tAD], B+Ut0c)zw?Ꟑ2E%S;*Zջe=9(!vYIZn"[4VDȴP($q$+okC9"|Scsk ,M .z&:6Xvu;;,l"J]$*uU<фI!2j3\Z*zz|W_~Og vb~ʽ HLӽQ/O|6!ƹ˥n E;qG_.gㇶRD_ v E7/~YW'VHaixYN1XIɧ>Aq~o8 |-&BOE >f-Fۀ$Z GCuq`C<=SZ'ujRǷj$zv9f;  oendstream endobj 555 0 obj 1483 endobj 558 0 obj <> stream xZnF}<:Kv_?xrz}0V1gd* RCFVq 3ؼ:iVkyiC^֋ø$3J|[:0.-ֈca"]˸xjqYTWe˜KR2ˋΡ#|7 6fբ,޿J=7:IbvS^44gANjyY8˒g~Gᘷ OzS\Yϧ+N w:=z7njuByQ|3Eo>{;S18;Oh ܛR=,7Ew/+͸Y}ݱd&d+~}Nҗi++oLqH 񌛀Lzzbxrdu^MS=gxկp'6o^-H3 &93툣\J6-yW+WU E|Уʡyu>V)J!Gvm@Jp'؁ 8mdCmLء hcwi#hLUА%"?"6;83P)4"32/nv &7`}l@}k:0@3Z1kcj1,mcWqLk"&3V^)Qa1αX`-Sc gjK?%^So8he=j7eĬrwTUƜcB:^օr HyPg)@!uC՛  # 4$*>""͌jcD*eߣB(}kr>/gYHYW,f}-mWt6C- pDf?{&m*gU9*ܡ0o' 'r(c1uU?Un-,rΘī)VV$ղ_t{\,)E5,TEqMx4%>.-JRU@M[V#<S(R i{G )bH#5# YءȮkmzh;$6T 9Z%Dwב*!<~0pH!_ӈ{d0=C0tK5[7I״S(%F 0!xǽݲ_rHjj^"5t2ZNS|bL60>]Z 7xtJ}B$1bI]V % O {Vϗ6OvJxdʾ;Ԩ&TU@/%eܔY:y7Ca|{3P͗r^d :냇"}>v(Vm[J`84 0ՂvqIU1T_ & Q,ֺsە5 Z P+Xn3vӣy܁x3$:lwBePL-L?#'aZxa3ƲX44Ay)7Iir}?D7PD{86zS6m1rfgfy=x@ "707t±58B o!DnS)0wp)rpHuduendstream endobj 559 0 obj 2303 endobj 565 0 obj <> stream xZrF+Ʃ:~xJHb< H$Ad~~n.Y媙҂UFs}>(a#>xqXԣ'h3b8h|_`# QJq1'/nədX1:Xh|w_?P4,G/jF[`-Hc7ߜki&()|F* .&1iPن#̹4YYb*Ͼo0E^C)-˰!b,y87Jm*J(skKq::XH V3&`l8J" U1)Cȳ b=+k$LwDK͓ew"|VX873}0)6|4 5_߽Ld k&c$Qb 0 K&؄lz91BFUI1,~SVw$>nNqm]4"!on݄J qPkL$Qߢ 溭t3P(fQ0VY 6M |Rgɧ߸Sq| Rel08؄'v/g56O弬D:Bhт}:hgZ,~6  oy8(l! RMU n>"R oߓQN4g6c|^}Ӵwi{Jv]Va5x)|X)p  |h$k?H|@gX3r6>}Lm9i"94KpJYvPA]C\;-W,QQϋ:):C[M B-9J,(fMKrfdyr98n3+qOFz UGB3)"bh%R*:=Ҩ б8V' ڵ=kIvRiNRnRc~Xipc T?$AVlc}fWE Gmc|: bU|TX) G3}̼f=0J}!&.oE4C[ ֢{v+|^z񒳯0h|p䌏QذG9:@1I RSQFDWFhFݡX.qù.t^i՗4WHz dw2Ovm>4te0B9MP_ *P qBu;.* KӲ=M!8pw؁>#L6]_'sGj_.CӵEAꔿLc {'!,!8@Շ>Fx@x͚ySF o鬨s:n@UMnDrygJ {.w-];3a(EyH&5:غ4jO2/$^h5(!4v_\}Jn,~G% 2C*V+x6p;фy5^hsC *pqs'XdpPq&6n(Q>'￀ ;endstream endobj 566 0 obj 2406 endobj 569 0 obj <> stream xVMo8Wjv6nnŞ#_#CǍ `:Ù7o9et[/ 6mlY|MJl_X6*E_>}[}Y8~ %gHj%r)a "eLhƅ)r%qoK"4842wlZ mҟWQܠ W^ʼnCc皚hsa! ֕!n ݺ]pPj֎e s^`jU 34Иf0N # ,ip NyLU.Ru.E8P690bm3('VMSDOD撢>Pw("h\7G7PCmI5S|."az<5 6O\aVgZ?Ә"ϲ?X4"tо΁{*jSI] 4U~O]nZY%R] B-1nCyG91)yu܍q4, $eUdV 8ޢ sNfxTX_i)ҊN+Fw01B/xUk~$0P[ѳuy(5C':v'Kj856&4^v%^ɤ vOarlΧC(1[%)*+& 8 bh}uiFa)NQ Kh9Cf,}.~] LötZZ6̨z[?*>Hb/׈blY-L^Lza g -nD* 8iGa_Fd3Ǩv0Ը"]N;ě_}"=^&˕I(ڒ#r; ̾$`M_(κl:i̫hꓺ8PYP#vp0 .ɒ&^1m̊yCL@KHh²&s1|fendstream endobj 570 0 obj 1086 endobj 4 0 obj <> /Contents 63 0 R >> endobj 70 0 obj <> /Contents 71 0 R >> endobj 74 0 obj <> /Contents 75 0 R >> endobj 78 0 obj <> /Contents 79 0 R >> endobj 82 0 obj <> /Annots[85 0 R 86 0 R 87 0 R 88 0 R 89 0 R 90 0 R 91 0 R 92 0 R 93 0 R 94 0 R 95 0 R 96 0 R 97 0 R 98 0 R 99 0 R 100 0 R 101 0 R 102 0 R 103 0 R 104 0 R 105 0 R 106 0 R 107 0 R 108 0 R 109 0 R 110 0 R 111 0 R 112 0 R 113 0 R 114 0 R 115 0 R]/Contents 83 0 R >> endobj 117 0 obj <> /Annots[120 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R 131 0 R 132 0 R 133 0 R 134 0 R 135 0 R 136 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R]/Contents 118 0 R >> endobj 145 0 obj <> /Annots[148 0 R 149 0 R 150 0 R 151 0 R 152 0 R 153 0 R 154 0 R 155 0 R]/Contents 146 0 R >> endobj 157 0 obj <> /Annots[160 0 R 161 0 R 162 0 R 163 0 R 164 0 R 165 0 R]/Contents 158 0 R >> endobj 167 0 obj <> /Contents 168 0 R >> endobj 171 0 obj <> /Contents 172 0 R >> endobj 175 0 obj <> /Annots[181 0 R 182 0 R 183 0 R 184 0 R 185 0 R]/Contents 176 0 R >> endobj 187 0 obj <> /Contents 188 0 R >> endobj 194 0 obj <> /Contents 195 0 R >> endobj 198 0 obj <> /Annots[201 0 R 202 0 R 203 0 R]/Contents 199 0 R >> endobj 205 0 obj <> /Annots[217 0 R 224 0 R]/Contents 206 0 R >> endobj 226 0 obj <> /Annots[229 0 R]/Contents 227 0 R >> endobj 234 0 obj <> /Annots[237 0 R]/Contents 235 0 R >> endobj 239 0 obj <> /Contents 240 0 R >> endobj 243 0 obj <> /Annots[252 0 R]/Contents 244 0 R >> endobj 254 0 obj <> /Annots[257 0 R 258 0 R 259 0 R 260 0 R 261 0 R 262 0 R 263 0 R]/Contents 255 0 R >> endobj 265 0 obj <> /Annots[268 0 R]/Contents 266 0 R >> endobj 273 0 obj <> /Contents 274 0 R >> endobj 277 0 obj <> /Annots[286 0 R 287 0 R]/Contents 278 0 R >> endobj 289 0 obj <> /Annots[292 0 R 293 0 R 294 0 R 295 0 R]/Contents 290 0 R >> endobj 297 0 obj <> /Contents 298 0 R >> endobj 301 0 obj <> /Annots[304 0 R]/Contents 302 0 R >> endobj 306 0 obj <> /Annots[309 0 R 310 0 R 311 0 R 312 0 R 313 0 R]/Contents 307 0 R >> endobj 315 0 obj <> /Annots[326 0 R 327 0 R]/Contents 316 0 R >> endobj 329 0 obj <> /Annots[332 0 R 333 0 R 334 0 R 335 0 R]/Contents 330 0 R >> endobj 337 0 obj <> /Annots[340 0 R 341 0 R]/Contents 338 0 R >> endobj 343 0 obj <> /Contents 344 0 R >> endobj 347 0 obj <> /Contents 348 0 R >> endobj 351 0 obj <> /Contents 352 0 R >> endobj 355 0 obj <> /Contents 356 0 R >> endobj 359 0 obj <> /Contents 360 0 R >> endobj 363 0 obj <> /Annots[366 0 R]/Contents 364 0 R >> endobj 368 0 obj <> /Annots[371 0 R 372 0 R]/Contents 369 0 R >> endobj 374 0 obj <> /Contents 375 0 R >> endobj 378 0 obj <> /Annots[381 0 R 382 0 R 383 0 R 384 0 R]/Contents 379 0 R >> endobj 386 0 obj <> /Annots[389 0 R 390 0 R]/Contents 387 0 R >> endobj 392 0 obj <> /Contents 393 0 R >> endobj 396 0 obj <> /Contents 397 0 R >> endobj 400 0 obj <> /Contents 401 0 R >> endobj 404 0 obj <> /Contents 405 0 R >> endobj 408 0 obj <> /Contents 409 0 R >> endobj 412 0 obj <> /Annots[415 0 R 416 0 R]/Contents 413 0 R >> endobj 418 0 obj <> /Annots[421 0 R 422 0 R 423 0 R 424 0 R 425 0 R 426 0 R]/Contents 419 0 R >> endobj 428 0 obj <> /Contents 429 0 R >> endobj 432 0 obj <> /Annots[435 0 R 436 0 R 437 0 R 438 0 R]/Contents 433 0 R >> endobj 440 0 obj <> /Contents 441 0 R >> endobj 444 0 obj <> /Contents 445 0 R >> endobj 448 0 obj <> /Annots[451 0 R]/Contents 449 0 R >> endobj 453 0 obj <> /Contents 454 0 R >> endobj 457 0 obj <> /Annots[460 0 R 461 0 R]/Contents 458 0 R >> endobj 463 0 obj <> /Annots[466 0 R 467 0 R]/Contents 464 0 R >> endobj 469 0 obj <> /Contents 470 0 R >> endobj 473 0 obj <> /Contents 474 0 R >> endobj 477 0 obj <> /Annots[480 0 R]/Contents 478 0 R >> endobj 482 0 obj <> /Contents 483 0 R >> endobj 486 0 obj <> /Contents 487 0 R >> endobj 490 0 obj <> /Contents 491 0 R >> endobj 494 0 obj <> /Contents 495 0 R >> endobj 498 0 obj <> /Contents 499 0 R >> endobj 502 0 obj <> /Contents 503 0 R >> endobj 506 0 obj <> /Contents 507 0 R >> endobj 510 0 obj <> /Contents 511 0 R >> endobj 514 0 obj <> /Contents 515 0 R >> endobj 518 0 obj <> /Contents 519 0 R >> endobj 525 0 obj <> /Contents 526 0 R >> endobj 529 0 obj <> /Contents 530 0 R >> endobj 533 0 obj <> /Contents 534 0 R >> endobj 537 0 obj <> /Contents 538 0 R >> endobj 541 0 obj <> /Contents 542 0 R >> endobj 545 0 obj <> /Contents 546 0 R >> endobj 549 0 obj <> /Contents 550 0 R >> endobj 553 0 obj <> /Contents 554 0 R >> endobj 557 0 obj <> /Contents 558 0 R >> endobj 564 0 obj <> /Contents 565 0 R >> endobj 568 0 obj <> /Contents 569 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R 70 0 R 74 0 R 78 0 R 82 0 R 117 0 R 145 0 R 157 0 R 167 0 R 171 0 R 175 0 R 187 0 R 194 0 R 198 0 R 205 0 R 226 0 R 234 0 R 239 0 R 243 0 R 254 0 R 265 0 R 273 0 R 277 0 R 289 0 R 297 0 R 301 0 R 306 0 R 315 0 R 329 0 R 337 0 R 343 0 R 347 0 R 351 0 R 355 0 R 359 0 R 363 0 R 368 0 R 374 0 R 378 0 R 386 0 R 392 0 R 396 0 R 400 0 R 404 0 R 408 0 R 412 0 R 418 0 R 428 0 R 432 0 R 440 0 R 444 0 R 448 0 R 453 0 R 457 0 R 463 0 R 469 0 R 473 0 R 477 0 R 482 0 R 486 0 R 490 0 R 494 0 R 498 0 R 502 0 R 506 0 R 510 0 R 514 0 R 518 0 R 525 0 R 529 0 R 533 0 R 537 0 R 541 0 R 545 0 R 549 0 R 553 0 R 557 0 R 564 0 R 568 0 R ] /Count 79 >> endobj 6 0 obj << /Count 11 /First 7 0 R /Last 61 0 R >> endobj 1 0 obj <> endobj 7 0 obj << /Title(ACKNOWLEDGMENTS) /Dest/chapter*.1 /Parent 6 0 R /Next 8 0 R >> endobj 8 0 obj << /Title(LIST OF TABLES) /Dest/chapter*.3 /Parent 6 0 R /Prev 7 0 R /Next 9 0 R >> endobj 9 0 obj << /Title(LIST OF FIGURES) /Dest/chapter*.4 /Parent 6 0 R /Prev 8 0 R /Next 10 0 R >> endobj 10 0 obj << /Title(ABSTRACT) /Dest/chapter*.4 /Parent 6 0 R /Prev 9 0 R /Next 11 0 R >> endobj 11 0 obj << /Title(CHAPTER) /Dest/chapter*.4 /Parent 6 0 R /Prev 10 0 R /Next 12 0 R >> endobj 12 0 obj << /Title(INTRODUCTION) /Dest/chapter.1 /Parent 6 0 R /Prev 11 0 R /Next 13 0 R >> endobj 14 0 obj << /Title(Dense LU) /Dest/section.2.1 /Parent 13 0 R /Next 15 0 R >> endobj 15 0 obj << /Title(Sparse LU) /Dest/section.2.2 /Parent 13 0 R /Prev 14 0 R /Next 16 0 R >> endobj 16 0 obj << /Title(Left Looking Gaussian Elimination) /Dest/section.2.3 /Parent 13 0 R /Prev 15 0 R /Next 17 0 R >> endobj 18 0 obj << /Title(Symbolic Analysis) /Dest/subsection.2.4.1 /Parent 17 0 R /Next 19 0 R >> endobj 19 0 obj << /Title(Numerical Factorization) /Dest/subsection.2.4.2 /Parent 17 0 R /Prev 18 0 R >> endobj 17 0 obj << /Title(Gilbert-Peierls' Algorithm) /Dest/section.2.4 /Count -2 /Parent 13 0 R /Prev 16 0 R /Next 20 0 R /First 18 0 R /Last 19 0 R >> endobj 20 0 obj << /Title(Maximum Transversal) /Dest/section.2.5 /Parent 13 0 R /Prev 17 0 R /Next 21 0 R >> endobj 21 0 obj << /Title(Block Triangular Form) /Dest/section.2.6 /Parent 13 0 R /Prev 20 0 R /Next 22 0 R >> endobj 22 0 obj << /Title(Symmetric Pruning) /Dest/section.2.7 /Parent 13 0 R /Prev 21 0 R /Next 23 0 R >> endobj 23 0 obj << /Title(Ordering) /Dest/section.2.8 /Parent 13 0 R /Prev 22 0 R /Next 24 0 R >> endobj 24 0 obj << /Title(Pivoting) /Dest/section.2.9 /Parent 13 0 R /Prev 23 0 R /Next 25 0 R >> endobj 25 0 obj << /Title(Scaling) /Dest/section.2.10 /Parent 13 0 R /Prev 24 0 R /Next 26 0 R >> endobj 26 0 obj << /Title(Growth Factor) /Dest/section.2.11 /Parent 13 0 R /Prev 25 0 R /Next 27 0 R >> endobj 27 0 obj << /Title(Condition Number) /Dest/section.2.12 /Parent 13 0 R /Prev 26 0 R /Next 28 0 R >> endobj 28 0 obj << /Title(Depth First Search) /Dest/section.2.13 /Parent 13 0 R /Prev 27 0 R /Next 29 0 R >> endobj 29 0 obj << /Title(Memory Fragmentation) /Dest/section.2.14 /Parent 13 0 R /Prev 28 0 R /Next 30 0 R >> endobj 30 0 obj << /Title(Complex Number Support) /Dest/section.2.15 /Parent 13 0 R /Prev 29 0 R /Next 31 0 R >> endobj 31 0 obj << /Title(Parallelism in KLU) /Dest/section.2.16 /Parent 13 0 R /Prev 30 0 R >> endobj 13 0 obj << /Title(THEORY: SPARSE LU) /Dest/chapter.2 /Count -16 /Parent 6 0 R /Prev 12 0 R /Next 32 0 R /First 14 0 R /Last 31 0 R >> endobj 33 0 obj << /Title(Characteristics of Circuit Matrices) /Dest/section.3.1 /Parent 32 0 R /Next 34 0 R >> endobj 34 0 obj << /Title(Linear Systems in Circuit Simulation) /Dest/section.3.2 /Parent 32 0 R /Prev 33 0 R /Next 35 0 R >> endobj 35 0 obj << /Title(Performance Benchmarks) /Dest/section.3.3 /Parent 32 0 R /Prev 34 0 R /Next 36 0 R >> endobj 36 0 obj << /Title(Analyses and Findings) /Dest/section.3.4 /Parent 32 0 R /Prev 35 0 R /Next 37 0 R >> endobj 37 0 obj << /Title(Alternate Ordering Experiments) /Dest/section.3.5 /Parent 32 0 R /Prev 36 0 R /Next 38 0 R >> endobj 39 0 obj << /Title(Different Ordering Schemes in KLU) /Dest/subsection.3.6.1 /Parent 38 0 R /Next 40 0 R >> endobj 40 0 obj << /Title(Timing Different Phases in KLU) /Dest/subsection.3.6.2 /Parent 38 0 R /Prev 39 0 R /Next 41 0 R >> endobj 41 0 obj << /Title(Ordering Quality among KLU, UMFPACK and Gilbert-Peierls) /Dest/subsection.3.6.3 /Parent 38 0 R /Prev 40 0 R /Next 42 0 R >> endobj 42 0 obj << /Title(Performance Comparison between KLU and UMFPACK) /Dest/subsection.3.6.4 /Parent 38 0 R /Prev 41 0 R >> endobj 38 0 obj << /Title(Experiments with UF Sparse Matrix Collection) /Dest/section.3.6 /Count -4 /Parent 32 0 R /Prev 37 0 R /First 39 0 R /Last 42 0 R >> endobj 32 0 obj << /Title(CIRCUIT SIMULATION: APPLICATION OF KLU) /Dest/chapter.3 /Count -6 /Parent 6 0 R /Prev 13 0 R /Next 43 0 R /First 33 0 R /Last 38 0 R >> endobj 45 0 obj << /Title(klu_common) /Dest/subsection.4.1.1 /Parent 44 0 R /Next 46 0 R >> endobj 46 0 obj << /Title(klu_symbolic) /Dest/subsection.4.1.2 /Parent 44 0 R /Prev 45 0 R /Next 47 0 R >> endobj 47 0 obj << /Title(klu_numeric) /Dest/subsection.4.1.3 /Parent 44 0 R /Prev 46 0 R >> endobj 44 0 obj << /Title(The Primary KLU Structures) /Dest/section.4.1 /Count -3 /Parent 43 0 R /Next 48 0 R /First 45 0 R /Last 47 0 R >> endobj 49 0 obj << /Title(klu_analyze) /Dest/subsection.4.2.1 /Parent 48 0 R /Next 50 0 R >> endobj 50 0 obj << /Title(klu_analyze_given) /Dest/subsection.4.2.2 /Parent 48 0 R /Prev 49 0 R /Next 51 0 R >> endobj 51 0 obj << /Title(klu_*factor) /Dest/subsection.4.2.3 /Parent 48 0 R /Prev 50 0 R /Next 52 0 R >> endobj 52 0 obj << /Title(klu_*solve) /Dest/subsection.4.2.4 /Parent 48 0 R /Prev 51 0 R /Next 53 0 R >> endobj 53 0 obj << /Title(klu_*tsolve) /Dest/subsection.4.2.5 /Parent 48 0 R /Prev 52 0 R /Next 54 0 R >> endobj 54 0 obj << /Title(klu_*refactor) /Dest/subsection.4.2.6 /Parent 48 0 R /Prev 53 0 R /Next 55 0 R >> endobj 55 0 obj << /Title(klu_defaults) /Dest/subsection.4.2.7 /Parent 48 0 R /Prev 54 0 R /Next 56 0 R >> endobj 56 0 obj << /Title(klu_*rec_pivot_growth) /Dest/subsection.4.2.8 /Parent 48 0 R /Prev 55 0 R /Next 57 0 R >> endobj 57 0 obj << /Title(klu_*estimate_cond_number) /Dest/subsection.4.2.9 /Parent 48 0 R /Prev 56 0 R /Next 58 0 R >> endobj 58 0 obj << /Title(klu_free_symbolic) /Dest/subsection.4.2.10 /Parent 48 0 R /Prev 57 0 R /Next 59 0 R >> endobj 59 0 obj << /Title(klu_free_numeric) /Dest/subsection.4.2.11 /Parent 48 0 R /Prev 58 0 R >> endobj 48 0 obj << /Title(KLU Routines) /Dest/section.4.2 /Count -11 /Parent 43 0 R /Prev 44 0 R /First 49 0 R /Last 59 0 R >> endobj 43 0 obj << /Title(USER GUIDE FOR KLU) /Dest/chapter.4 /Count -2 /Parent 6 0 R /Prev 32 0 R /Next 60 0 R /First 44 0 R /Last 48 0 R >> endobj 60 0 obj << /Title(REFERENCES) /Dest/chapter*.5 /Parent 6 0 R /Prev 43 0 R /Next 61 0 R >> endobj 62 0 obj <> endobj 68 0 obj <> endobj 69 0 obj <> endobj 73 0 obj <> endobj 77 0 obj <> endobj 81 0 obj <> endobj 85 0 obj <>endobj 86 0 obj <>endobj 87 0 obj <>endobj 88 0 obj <>endobj 89 0 obj <>endobj 90 0 obj <>endobj 91 0 obj <>endobj 92 0 obj <>endobj 93 0 obj <>endobj 94 0 obj <>endobj 95 0 obj <>endobj 96 0 obj <>endobj 97 0 obj <>endobj 98 0 obj <>endobj 99 0 obj <>endobj 100 0 obj <>endobj 101 0 obj <>endobj 102 0 obj <>endobj 103 0 obj <>endobj 104 0 obj <>endobj 105 0 obj <>endobj 106 0 obj <>endobj 107 0 obj <>endobj 108 0 obj <>endobj 109 0 obj <>endobj 110 0 obj <>endobj 111 0 obj <>endobj 112 0 obj <>endobj 113 0 obj <>endobj 114 0 obj <>endobj 115 0 obj <>endobj 116 0 obj <> endobj 120 0 obj <>endobj 121 0 obj <>endobj 122 0 obj <>endobj 123 0 obj <>endobj 124 0 obj <>endobj 125 0 obj <>endobj 126 0 obj <>endobj 127 0 obj <>endobj 128 0 obj <>endobj 129 0 obj <>endobj 130 0 obj <>endobj 131 0 obj <>endobj 132 0 obj <>endobj 133 0 obj <>endobj 134 0 obj <>endobj 135 0 obj <>endobj 136 0 obj <>endobj 137 0 obj <>endobj 138 0 obj <>endobj 139 0 obj <>endobj 140 0 obj <>endobj 141 0 obj <>endobj 142 0 obj <>endobj 143 0 obj <>endobj 144 0 obj <> endobj 148 0 obj <>endobj 149 0 obj <>endobj 150 0 obj <>endobj 151 0 obj <>endobj 152 0 obj <>endobj 153 0 obj <>endobj 154 0 obj <>endobj 155 0 obj <>endobj 156 0 obj <> endobj 160 0 obj <>endobj 161 0 obj <>endobj 162 0 obj <>endobj 163 0 obj <>endobj 164 0 obj <>endobj 165 0 obj <>endobj 166 0 obj <> endobj 170 0 obj <> endobj 174 0 obj <> endobj 181 0 obj <>endobj 182 0 obj <>endobj 183 0 obj <>endobj 184 0 obj <>endobj 185 0 obj <>endobj 186 0 obj <> endobj 193 0 obj <> endobj 197 0 obj <> endobj 201 0 obj <>endobj 202 0 obj <>endobj 203 0 obj <>endobj 204 0 obj <> endobj 217 0 obj <>endobj 224 0 obj <>endobj 225 0 obj <> endobj 229 0 obj <>endobj 233 0 obj <> endobj 237 0 obj <>endobj 238 0 obj <> endobj 242 0 obj <> endobj 252 0 obj <>endobj 253 0 obj <> endobj 257 0 obj <>endobj 258 0 obj <>endobj 259 0 obj <>endobj 260 0 obj <>endobj 261 0 obj <>endobj 262 0 obj <>endobj 263 0 obj <>endobj 264 0 obj <> endobj 268 0 obj <>endobj 272 0 obj <> endobj 276 0 obj <> endobj 286 0 obj <>endobj 287 0 obj <>endobj 288 0 obj <> endobj 292 0 obj <>endobj 293 0 obj <>endobj 294 0 obj <>endobj 295 0 obj <>endobj 296 0 obj <> endobj 300 0 obj <> endobj 304 0 obj <>endobj 305 0 obj <> endobj 309 0 obj <>endobj 310 0 obj <>endobj 311 0 obj <>endobj 312 0 obj <>endobj 313 0 obj <>endobj 314 0 obj <> endobj 320 0 obj <>stream 0 0 0 0 146 74 d1 146 0 0 74 0 0 cm BI /IM true /W 146 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 321 0 obj <>stream 0 0 0 74 144 146 d1 144 0 0 72 0 74 cm BI /IM true /W 144 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &h 恗e EeІ]eSh *3?R !Bt!ON&Seh 3e EeІ]eSh *3?R !Bt!ON&Seh  EI endstream endobj 322 0 obj <>stream 0 0 0 0 146 74 d1 146 0 0 74 0 0 cm BI /IM true /W 146 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 323 0 obj <>stream 0 0 0 74 144 146 d1 144 0 0 72 0 74 cm BI /IM true /W 144 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &h 恗e EeІ]eSh *3?R !Bt!ON&Seh 3e EeІ]eSh *3?R !Bt!ON&Seh  EI endstream endobj 324 0 obj <>stream 0 0 0 0 146 74 d1 146 0 0 74 0 0 cm BI /IM true /W 146 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 325 0 obj <>stream 0 0 0 74 144 146 d1 144 0 0 72 0 74 cm BI /IM true /W 144 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &h 恗e EeІ]eSh *3?R !Bt!ON&Seh 3e EeІ]eSh *3?R !Bt!ON&Seh  EI endstream endobj 326 0 obj <>endobj 327 0 obj <>endobj 328 0 obj <> endobj 332 0 obj <>endobj 333 0 obj <>endobj 334 0 obj <>endobj 335 0 obj <>endobj 336 0 obj <> endobj 340 0 obj <>endobj 341 0 obj <>endobj 342 0 obj <> endobj 346 0 obj <> endobj 350 0 obj <> endobj 354 0 obj <> endobj 358 0 obj <> endobj 362 0 obj <> endobj 366 0 obj <>endobj 367 0 obj <> endobj 371 0 obj <>endobj 372 0 obj <>endobj 373 0 obj <> endobj 377 0 obj <> endobj 381 0 obj <>endobj 382 0 obj <>endobj 383 0 obj <>endobj 384 0 obj <>endobj 385 0 obj <> endobj 389 0 obj <>endobj 390 0 obj <>endobj 391 0 obj <> endobj 395 0 obj <> endobj 399 0 obj <> endobj 403 0 obj <> endobj 407 0 obj <> endobj 411 0 obj <> endobj 415 0 obj <>endobj 416 0 obj <>endobj 417 0 obj <> endobj 421 0 obj <>endobj 422 0 obj <>endobj 423 0 obj <>endobj 424 0 obj <>endobj 425 0 obj <>endobj 426 0 obj <>endobj 427 0 obj <> endobj 431 0 obj <> endobj 435 0 obj <>endobj 436 0 obj <>endobj 437 0 obj <>endobj 438 0 obj <>endobj 439 0 obj <> endobj 443 0 obj <> endobj 447 0 obj <> endobj 451 0 obj <>endobj 452 0 obj <> endobj 456 0 obj <> endobj 460 0 obj <>endobj 461 0 obj <>endobj 462 0 obj <> endobj 466 0 obj <>endobj 467 0 obj <>endobj 468 0 obj <> endobj 472 0 obj <> endobj 476 0 obj <> endobj 480 0 obj <>endobj 481 0 obj <> endobj 485 0 obj <> endobj 489 0 obj <> endobj 493 0 obj <> endobj 497 0 obj <> endobj 501 0 obj <> endobj 505 0 obj <> endobj 509 0 obj <> endobj 513 0 obj <> endobj 517 0 obj <> endobj 524 0 obj <> endobj 528 0 obj <> endobj 532 0 obj <> endobj 536 0 obj <> endobj 540 0 obj <> endobj 544 0 obj <> endobj 548 0 obj <> endobj 552 0 obj <> endobj 556 0 obj <> endobj 563 0 obj <> endobj 567 0 obj <> endobj 571 0 obj <> endobj 66 0 obj <> endobj 65 0 obj <>stream xzxWaȌ`zz5۸ޛ"K:-r/lLԐ $@d\g#~?<ҙs=9ckƦ;.+,zd'!6.›8dcfC>ȱ/%Y%(8&tߞp\:L5kâ@н^2՞{|=ɛA^{}cvXA<''4.A>}Be%߸jQkj mk\}.]$oҰ=NľM#]WDxn^{1Ιf=Q9IԱݵަ{HɚlzPDj8FSvjM9R#Rj5@-&S;5D-PoQ j*5LQ-*j:5JjrfRQ\ 'HQ(5zSA`G R()՟C%QnKuQ=l07Q4 M͟ :kL/lw>K+fͷKsiϦ^{=m3OJBq2쿣#\8g`6U;(v>oYC3НC\_\w͇ 0aa;mv02@ *5c=f:} do x> Ԡ .%M(HhfpP"?b ]ۂb%ƢGlR gdp]Ѝjc8d2]1 U(U`,t  40P& xϬΏT|}]l>}'!" 5ܾJ(P_vha/)Q')*e%侫t][|{V&q~傭k8/ezs2dn]$诂MaűkKNߎEȮ4SAQ%Ů}M@lni]ο*#h]"YġcϵC- +!\`*? bA{vxڡL}`Dcd!)&[D]IO | u$AWd? lj@2Z:vL&=NVQ-~)H{#ӶݒvDZD`ϭQG.F^3rnr& vFFem#=@(u݄nO$G[@R>~=q|ypY貎qe4[fb 2YZۖgY4oG &H~֘ :drS!פr<ŶLj)>m8tWZVFH4v;Ar؋PYvLp2->c 9au}x dkރ#9zjﺝ |,}g0lSG{X+tNLYBHG3f,<>RZ/Ѱ[ ,%4/^)KAgl0!Ao.;׵eߕK"y ]=pDQQ{6$` am1'%U85x :*CdAz6@,ngǐ*C~FV4ݷ9vVhz$ѓ+$(u2F;(JNeѲi /)6&!A 얓dwVi |nUx7Cs!ۖ\g:x*UIZZ%WiԊ4m]N偽T< -G3K. 2OS0d0K#8:7Nx%*0u.lA&ab(E%HgL6{H@Kh͔U50mPW9,6&`n? w=M /MP"+S.K(-Ap/,2v?C8efZZT!3 st ZėR6M~+UY:L̬SI 䄝 x2rA[h 1; }HϾGCa%Cljʹ=CA?I4C+pG<ǃ~.'‘vYռb ^Q3qâ}kwϰ2Ul՝e")"q}aE@Zc- <^*ł, ,ߓOwP'ׇf+w&-gPs*S[[m` BL"'Pl()`WSh.K-9f`1;6*"ƈ|lݡ*7yla;vO?/CM~B'ɄN<ZQ?@ӘbN8h0VsE=&M\9`T@jOuq C Xxc 6< XGm zo0d "u*cS?Ta1lz״cc.߻u[ cۦ2Q פXHi龢})(h$X6a3O/(XHJtDr*P`-MrӴt0Dy2$>?SoozVUg 9(cx<e^5s,58O$Kw۟l  >Sg>qڔ,&%;}{ ? V$0Xfs]]4\4 D|<ƀDa6z~_ym>UWa#_`_60`(ux4dU4LcC"~'/q%rM݈M{<-ȧi{s xAT6*<($"28"^Cl4+)R\Sp/tG|jn^ oa5W |ܸxY{8s: vYJTnߚ헗繓DHf;^{'Sr! dx+ldn^?|=+;.5:{O"<v C0,2 ¬חXϒkS7E%,.tC^q+8w/ؘؒC|Nwob稃60hXl49VT$g,^Hɤu?Qc /Xh2uq_vjjϹ= l/-L,4R@BWLe˴KYKA/( 0(.&YcY˜"CS8 9ʤQ8׎K@j"-dGкFÃ,0貊;)t? ;lT‚65q|vib QrS!b?X qLTT#p[!CY,)T^|wN$/̒C$WNktGŋ]5wЇ0~;x,v0k ' ,MQ .z|fMUڕr2pD>IH"'m_QYsB.)_rN;X.R W-"roxH⫫}}ԅkhG[$eW cH\H!4pąvcP2kL R&WZ5A:7Q/+j:VٍG|qa_}Jo#"ׯ?C@Pd3RsɠDMv/q>N2}.dde2ն% [Wڧny->?F&Fj2v?gw`fr]!+M((.hxȩxg2E㝪3`>3tR.sGQ`̗ >/Fl7$Bniv> נ:Pdn.&D@=XY|쎘j5Ɲ;3 4P%m ;M(V{!*˻ݲe(B/fX6c3"` 5"YSsWg%x"ZN.$" >59"_§mt.|aM $fpuygᴸ CV̴T^UBq33UdW]* 49_jn>q2kL\ocWA8&RVζ*3Y`ЗԶ|tJ` Oө3ӈKUHtwu{+&h"9o H/$I-/4hSWWA>0 RRSU5pz_<btaŧ/ _M]L\k٪oTretfvMKfVQH6\YtE ,9 ozGGxl# >:LJ;~}Ԣ;k; ?Д(U)TsazxS$~K\Q[_ІA*3ujF l_^4ۃF\aQ} `9|AX%BY3SqlYkP_" dcR]Up ߽\/4ҳwEne|3:܈M6F0ű"-(X""h[.Bw)!FF}Lȇ4l(4jEnV㣦rNir""̎'0c6NM=4>aHwuR,8i!Ն-i4R&BwQbmEA{`x&urj> Ĝ__pmIg/G~, A2dN>]E۟"Y#{JBTMRf8`F8lLϿWVo^6]'(7d'3x!w~Aؚ/4 BtkDA-՟/G3w|k9{krZ q̰$Oy8<1hՏpwlu5ꘪY0˜ΗyZpKwmKPZϞGFNDH@FԖIOMWc,w[9>3H hdKCBbCVx>BP/dQzm 2Α䗟6?c鄃gK㚈=TUsIu< m9&7 S^dz!ANPYTxh`etyuFLK۷˾} A%&TY]UVVlƨCz Ke@,k^z; aI1hu\ L\>nNiq9K{ 9D-13̿nSO"8b 1 CJ*9QuV&ضggfv4>AȾ-6OXxw{27Xe3V)V`\sC %TY˥[=?(F66 vӢĥi`.1nheUMoQk\TfKZuh ;/7ܼy1px^&8g!gB˼ö.p S F]wP))iS|D#rBϳZ>2 ]П;صmmvZZJ{1%Ǩs?<E9l9FDou jnerFqa|GiD .T1m%*i  V^tjU^Cqh,ih$3glgh{(l C2t1?CBs*6e".5yq ^-.ê 49\< 33`f[Ӷ sUҠd5hT\GO\˳-ڰǻpm`ӡZ_>xBDxu+EF O2~"ΐHSPXH⃳͢㋹G?;YƍY٫.\QX? "͚WF6<@*b{8&t1?lDy|A c cPgu㶎w pW:q8NgʳOHQAR ϷP$Wpn_,B/N.^\t,VuULRuq,rE< ;bՙo~w;c9,BLk9[I@{4^C|P֧ϛo ۮ Ar L 񸅎9z~Р̢fAFe ,똗,>/-*Td&y<:rg0fB}QRnJ Ivה}<$&e$2 O}I2j`$I7*y4|)vXqy =8imU IP2Mh&LXCF}囻a(Z0Ik9VXT9cÞm^>1a\HF}00q-?> endobj 214 0 obj <>stream xT}PTHT ٷbjtiMm6. fR]@ Zɪ1N#mơvLƎ)nL/Pis޹A̲!Tܰa]_߷ocH,/h,7T8^.R?}b%~ %v5|3̼~z][^bTnߨܼm[V^>*-|H~Q5oޤ|VQ0Ao'cZ:^OwkU6ZTzs o0*o]Fol*p6jc7[yB~k-LҨk0Q-jzme3#YR-U 31Ǒ-xFKyy12 Aȇ((h)2343ա+,˪VHE7_O.y "Gp\1Yvf $~aL51ؔb4&S@ϊ:dƇGfAo !6[^P2xzu&S[[l!z'`=KyP_m!u.Ϻc7XUW=u,0.^"9\N2)o+aOx_|?WTBq]n޺D%-K(KLf"s#~+ @ K(VxgKU[VRo%eP}wѰ\`Q޺rݧTO`Ԥ LL`aotUf)A#+'76raR.0q RStvQiq5m?`w϶m;&Р+j skZ$Pِ)n RIބgTe=`6ͬU&9~(3,==qG5ɚ.zzK}0wL)s &F=[<{=bE F8Z Aw8 |^|^aߣxqs]>5?}vSÐ!FjQ< @#V8H活\3䪘ES`o8\g%]am<l#d%)l"R,ŏa%^ ?#w̃JA D=` `a9L 켑-!wAo~ֈ=A($rs3bGx;FO|B-# Qn v'ubCp2B6tS-7}x{k7Y[j軇9]Gsu׼CIͥI5,u KoJ})ʇ䮖JZW\᪇[D D=i3D8>׀K#N7X :Nq_tZB(90xPL4鹕-wIrs塸*uFds8,E3YBşOU#HW0]'z+epaA_'!M#tI%M#餢#HIIP-\Q:lr '!C endstream endobj 573 0 obj 1683 endobj 212 0 obj <> endobj 211 0 obj <>stream xcd`ab`dds wvvu04(f!CXK 뺟3X>OD n>e-q/,L(QpT04WpM-LNSM,HM,rr3SK*sr@:RSRS ;)槤%%&g䤦$@9`J yMw|]\X*y87Ob^yQ endstream endobj 574 0 obj 378 endobj 209 0 obj <> endobj 208 0 obj <>stream xU{PTuuYŮ{o %G@ PgD\X./iYv^Qem0a 3*6Z(cJGNLsq{?iu\|\lrk71Dz?И/1A_(c& 3D!8f`A+NKS,]n( ҐzyGBW+(֥?1!ѐ+ȣ(jаߙ.E) HM^R&Q*95VSin +;3rDdӽxA㯽/K8<.#Oa.Q">D6e0B .v3QTgTo1>#^3nFV FCbs0| K7u][0 rV0`oy gG5\!_!mMa9N8':٧ʌzS6+G-]o7KRo_a{ \f;5p~c1KDC C&]cs8&gۿN#I d3LWԗT'J?r`I\D<:Aydp^>hX*q,'76YaD⚬`jih4qۀSZm^UvsL!Qx |TӎNT\a4?_fSH+(-0 وE-]WQ>?ٮ_ZP{ %"UɷC.V$ AkS*dwekGv4iq T"䆭ͷ|'ֺU=f覽F5v3Yiv `+'205I[V#=t(ݙ%!òڰ47MBB8(YA׮]y%eև]E%j DTIgH'鰣YAR[^PV5&ܡiT(o9= endstream endobj 575 0 obj 1164 endobj 191 0 obj <> endobj 190 0 obj <>stream xVyp_Y 6@HNLIse&-`lؖuX^-˷emnG % 4ҁ3LrL43ͤdvf{A&e!,+(X8Cn/խqY{I=Ljpז ⚽yys]dQzfweCnAZP_)er7 wseސ $LPu]LbV<3Prl!:}<9W\׸t@v%'`KqM-A~z fdIeP1z C TЀ {A,UIӘ183o\>{ o5䍶/u[=Z,6cbyIRC,s!w?ݖ_"ht/;NrU<,5e`WestFAbm.Hs?F: UZ\gr93hH9GY(DOy h ҳpӡԘw0.n.tOgS7x,6T:D͙//яʬ[Yj޾epbBR5'?&•U.}j|S*5HZ]1;\~j5,ZhAK.ݵk7Z:}{+x>Uj&$;}~PoWٲS_I?C*]HH{H)r|o b2swV)[~o~}(M126@ \P-9Mޤfj u (Z%SSOt-Zz~&IEB<"bkփTNy ڭŵ%:kޏݠr)/Dr<{8HGă_9u$Au`/Z6J椷ft6`6nm:p7LkA'de6 a3juc酀v#am[q&NA@@>=]q@!/W8;34J@}XN?U_b5xdkI@؉Gz5!"Ŧ'465X cFzBXw" )VLS&ZU".t:[٠ܶTg2 }H8[}7 ʞIඍ%;EbҔD&ggpF}Iw\tSۗpuFX{5*΂dz_ڕL?S?@E~{hDǩT lznAH"k1HTQIbOj#vko-6єMV9} ے DC4jO"aݍ$ 8ZcaE>dxɡNcipY[=vnٚVE @!@ʪW2rK6e]20[ܴ-=Sgb?Ag2:z~]2Amk:SbYf\Al 6kˍpSCӯ-r潕;P,|4#,ԙ@YzTzM$Ezf[ǛWmhs>{;?v§a:l܁klwwS~ʕxm,MxYѦڛ%fnn27 --zVA]8o?"ߎE,_߻;,!hoڶ(<2ݕK]̖z܊s֨ vk=ޣ,Y,lƄHuA Ϫ endstream endobj 576 0 obj 2649 endobj 179 0 obj <> endobj 178 0 obj <>stream xy xSeBh8"V#9PADv X BWZoi4moo=钴龗R(KAVYDG(p늎:˗z:љ+3wӇ<|;޷LQ &9~GYiӺ/ Le OzIWo ޑ-)/) )qѫ2yIᛲr3ܔ8!~q AfM+YF5y)? -2=n?#%˖6n'3L82cc:c7c c5c1y F4#c&c+c ccMBlv o11^d<Èdg,b`l`<LjbldXxDƓ eS,3׌3Bf\gߍi!_?Hؗ~hʸ~szq N$Ш&?V ?^<)-a[nq+bfjϦv'@0*'Ȉ?0C`~: {@Y.Ua ) 6xz>21%62*EOjh$o/ ^* t:K t Loқ@FV * тFO{q/B/bR:N+Xf? (!˄E,bqR"FZPT=T ЬJL|+mv>BÐL'58gة)Vm`.ꡜ<~ht@X zKkkTSGk*Ph"V!b~ncydߝ>)BehNvRP zQz |(t)UO}xB<%3SjI T2r}L)%~Uz zv噺su7SDwFY2Qin#u[93EInz B1 F괢Ibn.ڢX70DSP| ţZWrg$lم4OY~oS/fʨjB%8)!IhvS3h4#Sz^a\>ߴҀ$oܵU6eTZ$)i$Y*P6{dk3y-FK#Plx ˈwKJBOiuvEүGfZO6Zvz=u@<5 lG+QBy˳_a8:`V*JjC0w4#Ftu3T2^X4:փ:Io؎+rƨ-VgZnYusBx4zK7Dn*SȄb~6`ʾ搧Tco(s;-@΢CrȘ 5V)ȋW#=z2 PY D:?^QkA~{/qz I4v.rւ=+0OYhᇜE#~яklBI(|/ gNUH|Ee~h"8x4V%>h6+-0bZ®UbIDUi&]XW/6.-H)Zϯ.[|<].\$Z ʓF8:+r 3IGxFzdō ñn? 6 @sR6"=b\>=/AoQ Bi*1-Zݤ`hi;oٿ<J(NZO)6ײ.6&"Y0teX!LZz8K #-K=!¾e4 33(J5!76GsH\RU y/1}immz!l4&u-dR)J ![ =C#@.VjUjq:~#a,+%>tuh"F70(ȫbH PQ&w<3e,tTZf`@sզ*Tpe՝r:jUvIeAwMp [6ze9hUZhP򶶘ͤo|=zm1XM6F%PҦAkMuIpqCM x)S,_DdLnQdSh\±:uإVMV/ MEsfdfh >r HG!FY!T 0/!MؿZ"D蟳ͱ'׿>Tl'i ݝtx=%efU+'b]Q՞]Q2*J0W\ك֍`]eCeCOk{"mW ֫FZgAUpmWvT<6Q_0*zX ?8xwJh~`/:9vO1Fq4%n.NS$g5Ǒ^CocqT<,@_FU!=h-"JcҬ>zV۷nҠi:^ Dn M+|є rvTxǠOULBUZ u JLZL/Fs?_IU0Πf({7bt[zatJj!_,8q jLgPIۗG= G/N:{"1Lq Lk@+~9>LBEvmt,ܲ[,_&#C\ut,E-سߝF-fA<-'/*V 245U:484L@{';;jG38@-gA|z*Nuņ:g_Ղ9rЦ唤xT9@Q(zЙ)rr}2g]umUq]XD}H*VTJ*QZmu8\Pz M!{RU_QdK|C<Ҝ/hi7I0L'L`IǁVUZ zNqe^O%|+M$4[ґARLX^V_}ste6H3;jlɃY>oJ ykR?4WZߵ56ݔRgwt`(X(S %t<&.^95Jq~2l6KN{d{.Lh2 2Y7v xp~8 tc,7,cΎg˕FDvmk┑p>w7{\vDYi/'Dxg'Pသ\̩)fc@* V?Tr ן9ءQeJ ; B>JZ{+\HTicSE*(4*+#VLƲ Cni?o> \L3xyl]Z QDdGod! F P.~ !x^a-9 ܰ\9bAE%5`? R 4JIwTojUq7u "|M)Q[;OwuUU" DaXeP ЁvwWt{ν{(TYaQW@pԫW777}ko⫫IIŸ.uVXFht <92EVQ A&8JCAp-/ţLZD+!Kx)b~FГfYj]^W딵 q 8itM_cHA*M>w0Ù-!ZAwWGɖ2}f?A{dV0>WsQpn1[i?@sFį7"DŽSEa;HYjLUֆ̄[RJ5A[r78=8 i=?imV`5Kd&dFƢRHu AQqVK_Rhi8wxl#d+# βin:d{QsSqn[}܄dry8}諭뎮|` _Jn1+>fjE˾ zlqyׇz6osq65XB?zv$G34ր3r/A KgRF&XXˡKOs~e@/#Ɲm!r#Mba#iSTp*E+^LYk|NRO' _H^ťMk^X,C}G3q@j䘼'tdnAaaLU:1Uj"c=yX BK&zgR"xmwIkF: OCh_ֿ0G'p~4|eP'Q7&㨌5QvӺqI NVkMW7j*~0qֳLہ7Eg0S >eϠVc+{Lu9;>pX%ǎ~;*˸q ^V endstream endobj 577 0 obj 6656 endobj 270 0 obj <> endobj 269 0 obj <>stream xWyTSW!psUժ8`UPԧ Bb(! aSC8jڪZY~Vkjwz"u}!x߄Il V^"b4'΄HN! $D0k8bI"ry#FkYfs?Ϳov] 9l,5ʃ:HψwFz1j⨮nghҾaC=GG9;}lGN2sV0nT`xHa䣥w@&3DZO.LUVASRX!xL <0m/Mi@,d1} %~!mDe[Ob[?K@<.} e~Fbv(?ǩ㇌^6~0 #4uӏB.!1A&3vpJ[9po儦ZG' a"L* GHzo F: AǠgu\P?P')[_o4Kc ^~?͹ 9Ëq݀~5%̛;VgPo;;aۮlԱa1s:+x:0d^4]4e9c(i f^C M ټ3킚cgttO;˗y83):]/ҝ Zh\Svz}N1VMWbyRpﯳRSt-W/@Y3u>[8yt2]M]?2Y;MODw\n9d'5B.iFcHD]wL8B>rB'HIZQF{b?FݼxT Rx2jnX#dqVQ(-QLS{вC 4@|%'u%%lCFW>~pv#m6רԱJPݺ|a+l.OjGJ#vmg qQu 9Aq)kaėkO&@#z̙#N mOhW#5{7M5p#p :HL:$ W\T$ao,‡yk;AaŻʴrht=: P<)PdF*HTyE9sR)cȷ!soNc=pXgxzIFNɔQ:&w%9R ܣÛHsgB5'd&O[P%Jv vi*P EAP2֭fu%|But$tGSR_ Xn/(@f'j 5q5s= z$Y8۸Mw'=mFa $%3;%@-<.%A,NIRZZZߠ||{1i+-? V48\<)t`P_S5g~y u[ :ZVjY74ؒ)JDQ*Y R%^}LenJ XUDanQyjUFOoY"֠yzC)oZU㰍%-$7 `]kyD+aU47hYqjϰ`᣽khn+X%|<>*/CJ>FMe4 ϱy*![z`YSI*QV]?$1o|N!A#?#{fx:|:.-//Z.%7`oMٙj,!R}RRJr=2rov 4g}uTmA8{kOqK*4AaEQ(O ~ n$x,Um,-=ó >:~=mX&ҥ7>Q1PR4j@.H5~)d>a9׫w~U AxPv3ؕhn?NFɂ5[:y[9$inn[>9ȯfc욚Kk?8LVwh+D 葀b';qˌ-6Hd|C7uN1 b9dH*n&`q &iP͗vcY+đ]Q d/}ij x,f@M^ؓİb;0Ӫ@/\wK7EPYc&jD:b͂$:Ix 3bjp'2bMC 5_̠*nB˲E curk4’e!A#>j/bS"6r @JejC '#SE–uH=,ȟ 7i%?\s %r 7Fĩ~7zz<}B_0Sb"A zo.r@n?>yNƣ^x)gW6 ظl~yⷧo4^JP43}[iK%r;m.܇D1bqL\]m̐ 3h7w-21..+.2J/Ӥ'e;\U/*etߚI$;2 H믣/KhNK-dBm_!y2h44w(SkJ+#=<;pΖ=k҉l1@_8i5K3$?_2>tYrhІ&pP;m']2ENn[L.2'ELR7A*,mh_fHr==wsB:ˍt!c:@â :c!8l37zDV6 >%s-P7jtF{{[W6]f`p`vNAd9]eSQ͍J?ONd+jq6+Inϵ~nSCOjTE*[RV\>M;G<[w|p偶u!xRaZ P1/x\60sJa^&dPznz4TdTbA4A'\j+J̫M/_.N <5>Vfhi]`BM9hJs3ٹy9rFrP斋:DpNX*A*ͨ*+(gTÇyeX]VyVꠞv# \>zݽ8$ YNVY^}[x<O#σL*G-kjl0v3?ÝAw ҹg%&[Zi2ry ;\QrQA+她@eȲ9S~R@.K[V^ZfҧP@q/V[]Tot%wt4Xit܊5+ jSY  # GF6'  endstream endobj 578 0 obj 4061 endobj 250 0 obj <> endobj 249 0 obj <>stream x5kHSav5˜d@Yi7*,tyeyVl՜3 e%Z^ S4+ Ӯ#"HE 2#PG=C!? (juJjrjvvuVr+SBD(gKc\0$ ؽI)*%|*6u4'!!M2q^_ZfZ+8SU\lYs]l,bs*bVjLY2ROٻt:db+\4GPvI#_C奮>RoS *Od9_\=nC4J+ւH2pYڧ6E-{ +0 ?yc"kptN2x.!GWx]w8`;Kteӵ\cntnzrӛ7/ 3uMRfG':jz& 0]sOB[&s aO y%*W֐V_7&& 6, z{7Hd ْS3un`x7ߩ >י# h"Yrnoj5a6nrx QY nWST-(vOSr6W60P珙o ă^hz %![3864ax;yob;N3rǕJcmSxD:p\L$7@%#%r_ (W1~݊[ (JxQ endstream endobj 579 0 obj 748 endobj 247 0 obj <> endobj 246 0 obj <>stream xe LgR?-~Lt %($ :(EZtCDm>2pSJ1#cLd,K61k^w%%{a\FQ&k7nJ%ELDs1\& rs*rxК>NØe햌DSIy1/ߢL|Gzu&PjktzKHoS`)W_X>Y`67侰M4Y )PZLQHcفB!BudYOdDv4# DB DN ]f1*eIOe X <\|u09lq8vf8 sS(׸jSr4R\^*sYL%|M;$ܥ4ƮOgѰK0cř*ZG: pʣ~եn|7䌩-R!_8Y}d109QB\peNb˩]sn|=TA~NW =jQ(3OJȓFroV{= W}In”N|EǬO#P~/T4dʅt& 0ؙVaU۴qXNy]omuv?<&MIpژRBX O`>i R/rTncQqV3* Qx Y4X]h4WEэi:܆RYtb6?8&&"IZ*<-SxWվ9svq%q 䊡Lsx?Wl<]gqMנG)awMپ J .ic'*ꭟj-&Ϧ]j} P4%3 0Zd&sڡʿ$(>0(IMº'{/7lO\1Q'8 'ܢ)4&VBUzYk: .Vs8CgRvF~wM!d=U OB >Vo)3(,-߻+HwY2XqP<Hh&l ?ylbʥ&"V$szC endstream endobj 580 0 obj 1231 endobj 231 0 obj <> endobj 230 0 obj <>stream x%ORaߗïʨtlv8Y6]TE9ɪ "s(Ң#!JB"?eU[[7_n߃AǺ{>|!P*#e԰j{|ؠ~((ċso@YmU%K/ੳ@ eɂwS7G /QcשIx%ܴKNͅGI=&Xjfi&D5} G3%+vQ5 0 *h6` &LA_(ewt]bba jxE_Z-xO5DWE >U eo GFx?FH[zXZKotp~;C{\&"NF|d5E銤J Avc#;mMw%L\&Ъ!f>xODU/:jL5Q9!jv}U83 VC݇WETOvixzu!56".[@lu3,NJ}GTRQM.gI[oߪMMSbORB endstream endobj 581 0 obj 562 endobj 222 0 obj <> endobj 221 0 obj <>stream xl RRINYU+CMMI6 52/FKZCopyright (C) 1997 American Mathematical Society. All Rights ReservedCMMI6Computer ModernnOMUPiEeeqtykrbVۣb{copburqroYuˋXxP` y^z{zXgy}x{VbQXxM?YK{> endobj 218 0 obj <>stream xU]LSw9`š ;=Y(&Ne`n错}l* iiS*"6T/kE',]2/آ35KDža8/ރV0sϓGIPJu-͟[7eUh׸},R $bu1^!i4nʆ\r=M fm;ޜqWC[-W9r\E=v\g{Zi&h5+YHŤ𹱄'鐆jHhVPE+qnqf.pJ`76>!ٗ(m3kp6kpKPR:]B {̩cUܥi vVp;ّt:\_aKh\WPñSu~'g^՛6Y9pK{[O<3H9O8k21V.;CDMp%o5ƂhU6/-]OepSQvX?썹W Ld[*>t|#=AǥYzMfSKeN}LMmq-MAo$ ~ 1#{ȦN DB+Kz+DI8t|f!K6mAdAw<,(|9 d7 ufFq1"4DPo8&3 kbkXC¡Hp !4C511Rߠ똖YyprTW&ٱw endstream endobj 583 0 obj 808 endobj 561 0 obj <> endobj 560 0 obj <>stream xW{TSw1Wb4]uef3Znۭc||U$$ !$@7!$A@AT|nW=Sۙ=\v>NOv} @9}˟Oۘ6i7oa_& =d{FB`iRP\”^{5eyI(7@Ea^I?HS2dEy Riyeyredj4YIi"OQ&ɓ br\V//(+Teg]W!Q,";tb%L"!5Dk"XKl#/ۉ%/,b#&6# D`iP0/-13q(i}ҕ;&+Q1YO̲<5gt/_O^( (A$͔)-:RvL.x3]jO */qTbTxu]o 1bLN?}&aqu0^lfS \%B[ѽ/1{Cc qCߜo9-DuBT㩖Z+?afdxaw𗑫;R!rȎgu @}2r ]buHԋe'uJvMVaVe!u K6+L̖c_Qܨayy!r63|=; Cf, @I= ɥwOF}Aʽt`Hc=9'tb 8P[ ~Ī;X5`lEnׇ!\Ey nHn/WA)[<~ќM|2?)K?C6vڞ+YY#i1phI&-MDbT0'Ĝ@6{[C3`}%`7sqWQb$u(.hiJ33?5z'Sˆ-zub!Jw!&Q K2!@OsG:.LU6?P[nO$&5@fm 0)X{PnQ`d65Z3U!gF=?onsr{ԝc@uںO,Τ̒oQQ. ቗D'[19*j;IOAoav+7h{ѽe~:K~9B6#0hC<ԒS+Tߨ e@[Z[j4} 3z qydlMlNϰ;@;CAW YQ : NE/_ Mn뷄[ }ĶeIcξ<þSYФ*2KAG͑Hw@D)yA$MnVN kC&.fWXAMhB_ү;YG[޸)Dh@TA?z肰ʪ9  }ck\yoS{J&qW|0dQ%}Za({>"<,>όwb)4o A=4 B) QZUdܿi6 1'Qbݎ3 {[3ХWOFO 9\ʔԹHs0vJF³VvRgFȎ{wbmA}i t|X=V~][SpepF΢?ɨdtW8/V]ȃ& T+TrC9OM|e-0Y*CawgιNEBH% "ަH]S:S]> :-D'O>X)+ǰ ;(~äKd,j0[L݊ŧ/x m9ig$wJ石|+nt~Qby}^JU,,yJT !M1kV7*zKȧ@iԁZ`1`VK7MkpOE#0h'dى72 82t3΄} ڹîv#7t.c%@J{Ai'9YY *~ 7aMCGѳ0NU4UrZFJk$)Um;yW;#7O8d$RS5JiKy4cɷ 1va9XQ^;<e{03C52wc>luOΰwr+tkZ2ybh`(9K7evޮN;?2B.Apׇao94AҬ DMTluo ^$DD F&-4m=TubY+Eel;=:ʏ fyf" endstream endobj 584 0 obj 3426 endobj 522 0 obj <> endobj 521 0 obj <>stream xW TSgھ!psE%^uZZ+v+RPVEl@XB a_@ؒ(bݪ^kFN{v֩S:=2…XN &#gb$1/ H(d  w ?srptکUF;Yȝ#R:rm|] j]?p1L9X~ ]pBdҙGZ)DC dJK] STT=T3OɚԬP/NM4PHC ܃iٜP}83v'y8µY I7u8HaR%(abͤOݗ̖zhLcv<^8mT$_g@h<@$U9@PA)k1ඐ!b/{elqgE_"/n!J2EΛ=e??z>f9.#.e0XWwvTm'dcA_Z`Eq=BnhI(Pd39I;zgH&?LVV> acuc4+G}:rCll2dqaE*>-Nh,y'w6*d5Euo HcEoUg1òՐjW׽jY_\Nc1JD yieUTY1 @/hA[T[$1! uܙCG jΕ4*+Z0A`hxxHg4;Λbsrrcp0^D{yn_?7gbݰ 'o , L7YUMf9`_@;#T힄sb1`,t\%xwnV^E_$h~xJGj>}'_]1@!Rh$]KA7P= Z{FY)RҕP[ fU(۲+NԴ\'?O'qc hmSzaFaށ26KG0g\<7"\/d2=`N.m ,QT;uϬh@j%$jrAtfZ&s_(.^[R-?~-bɅtlJ.`vwA%oM߫*?Ħm݃y$r-IzFs(OREY,n {:24: j zmy*V|ǮϙS]ͧt~I,q249a4ؾnkF$t7 6yJ&h`_{S@h}Q9x ^bO;}ڃ]d a2||}lN4)@ TdnwB\|׏DE;{>vH`(iP|t^ 16YMDB:.a@Tp/ΝF~3'JH$wI!ݢ,Ŗl\Ƚ…ǗΌd]'d1w澘Fo<&DEgJZ^F22E`ᮐHIT[XjwjҋW;s;Q4_-KC{{aaPB|l4V鎨H\*rHHTY9lH "r,E+ Uuڢ]b|g+o rX4b@!6XGl&~;d m3> |vvKq@sY,Zx}œ2rAEe(ntGPKCck?FFD@Dfַ0ħj]d"UJ*˩f`#&6e#2hX/D{dBDk+53} )p(CEMeu@ʫ׶e*Ût$V,֑R6je((_T! endstream endobj 585 0 obj 3649 endobj 284 0 obj <> endobj 283 0 obj <>stream xcd`ab`dd qv4434Lf!C9w߯i?XWhn+݂3#Os~AeQfzFcnjQfrbobIFjnb ZRQZZT9?$H7?%()!Nv:F|W-hSb3c1~N1+Rqj}Mݝmrt4t6wWKFnH޷fU欙ycB{kSW[M\[eXr7Gn &-Ϥvwfg}y?tD[닻+85\`鲭2+JWvs/mo4wb1%>Zڻ6?/$lIWvO_3,;qWŶk7nY 7;`on/C80)#b閅gsƁf_}gwou|e ~/til/:-b>s$> endstream endobj 586 0 obj 539 endobj 281 0 obj <> endobj 280 0 obj <>stream xmyTS׾OsG նhb:TDdT$@ NH2@< *8UV-[{x{{VVY}70 ֎vG/LrVDBȅ Y;^&1A|o]#?|6x17eɲSr?<Ѳe 6&$p/'=UEY0wc`6~,0/J LLN%{E%yYYC> \zfc^-Z.LIɁ@Ab2` =7[6(] 96phC`X`/UOO0lLxlv(yooGxvꮜL~4)pyk>^n)@!q>dyG‘*d? YF # AKd-"0dEB C8 y !#zo:FF,^bZyo2EgQt-8FgG>?gN's5>s|R}2|>3||m=7`/ Kz,Ny\<-9R ^.)]wQRΦ;pv*gvCWQ.H*>e$oKP*yFJ-QǗ0΅Klm5v{ thYM8PA( JlF6SmL_Ng RDFB,/.ӕhKv :{ TAr҈;$%R\[P)(U_^:S arX:PhԘI\$'+{3p%U]TΦ2"1$UjYq\ʀeL1i,Ƥ}8Ό6t|a L%0C,Ҷ|yn#LkD3kvxE.ADԜ>.VRŭWdnnip5^yz}\$5 6G+蠳j^y/GȺiWwX U=.lYiwq2&f_AQgT>idRqR{M 3K1Rǩ]g&y#'?i4ӎZEaMb?Vom6*w=}]  Y5_:m&7mnp@5Wm S%8S,ca`^LYRSZpțN5_9*aN4 :'p!!3ibu*9[)O/8AaAPu!\31Fӡi#״1,'eZ^SoqU"b2yd䔦]z !`!3KSEpVRߩc[(r() b} r9 &p]xY6.ZtKӞ%;~()k@qoĞ? a5 Փ=`4lkע('4BVBBԪ-Qw_tjS,kGpV-(EitLw,~guГ[g8 W15ͺ/yAx34L#DKimY N6]r ڶQR~Q3;1HE.l*W78zj…4<$J1 W)/ @˭7[T9bP5-~Z\q(ƺNm5Zgx;>=Q#W(q*\~.0ㄹw>lm] ҟ8&rE\Ue>N \-$(w;+:}P%W,jGtVFJ@d-㜁.0VNQl+pJkJme ::[,h7*pJ;@tknU-#Y. /նS-rSVs$i%zc&u?O@E.(Slkz1F6 AQoFY/K{̙6z٦ .x͘g>3т~B*j>}I!MW5pM+,@KK eeŀcFR,6_)"&@ױW2z%9NŤm RN^sa2¨ f2kB6⺅o^s6{_Bnfl;u#}M# Q'si{Ue:PW"huZ%RGy]מ ~|_Ƚ RW)G0vE+Vȇ+ŅK 2s[j-apUxV_ezF@HȐ{|c=];S~ __Q &95aPg΃ 9v| qG`p.mO]Z:Jttjq6_STehXlnthLa:Sy?RImF [;0l8lGp_@Ψ:6i3J=+tsn0nOAO^pṻ́ޘ*:b X,&rgnj΂y[}wj}t͔/!Hc3`] p ?vH}plUX FBW)J9B]ly/`"$SQzs9W9p<@&w(x/!pݺ0mz=N=cCS1Xd2YjM4n"9d* %e4hl! ɗϝsoÀ O (Džgo 8ċw9%BUx"n;r[0ӇEFp2n}]_|r͇W_åvQj2ək~y@\M8}]|"bW/eI,M)A9)yi'w>j:==r|vJ5 .u *6Ad)9[ al@ Ryͮ.IngLƧ[brJ}5 {i&AiQ/<|'x/Ad, I}"_S> endobj 319 0 obj <>/FontBBox[0 -74 146 74]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 5/Widths[ 0 0 0 0 0 0] >> endobj 232 0 obj <> endobj 282 0 obj <> endobj 223 0 obj <> endobj 220 0 obj <> endobj 216 0 obj <> endobj 213 0 obj <> endobj 210 0 obj <> endobj 192 0 obj <> endobj 180 0 obj <> endobj 67 0 obj <> endobj 562 0 obj <> endobj 523 0 obj <> endobj 285 0 obj <> endobj 271 0 obj <> endobj 251 0 obj <> endobj 318 0 obj <> endobj 61 0 obj << /Title(BIOGRAPHICAL SKETCH) /Dest/chapter*.6 /Parent 6 0 R /Prev 60 0 R >> endobj 5 0 obj <> /Doc-Start<> /page.2<> /page.3<> /page.4<> /chapter*.1<> /page.5<> /chapter*.2<> /page.6<> /page.7<> /chapter*.3<> /page.8<> /chapter*.4<> /page.9<> /page.10<> /chapter.1<> /chapter.2<> /section.2.1<> /equation.2--1<> /equation.2--2<> /equation.2--3<> /equation.2--4<> /equation.2--5<> /equation.2--6<> /equation.2--7<> /section.2.2<> /equation.2--9<> /section.2.3<> /equation.2--10<> /equation.2--19<> /equation.2--20<> /equation.2--21<> /section.2.4<> /page.11<> /subsection.2.4.1<> /page.12<> /equation.2--22<> /page.13<> /figure.2.1<> /subsection.2.4.2<> /page.14<> /section.2.5<> /page.15<> /page.16<> /figure.2.2<> /section.2.6<> /Item.1<> /page.17<> /Item.2<> /Item.3<> /page.18<> /figure.2.3<> /section.2.7<> /page.19<> /section.2.8<> /page.20<> /page.21<> /figure.2.4<> /figure.2.5<> /page.22<> /section.2.9<> /equation.2--23<> /equation.2--24<> /page.23<> /equation.2--25<> /equation.2--26<> /section.2.10<> /page.24<> /equation.2--27<> /equation.2--28<> /equation.2--29<> /equation.2--30<> /page.25<> /equation.2--31<> /section.2.11<> /page.26<> /equation.2--32<> /equation.2--33<> /equation.2--34<> /page.27<> /equation.2--35<> /equation.2--36<> /section.2.12<> /page.28<> /page.29<> /equation.2--37<> /page.30<> /equation.2--38<> /equation.2--39<> /equation.2--40<> /section.2.13<> /page.31<> /section.2.14<> /Item.4<> /Item.5<> /page.32<> /Item.6<> /page.33<> /section.2.15<> /section.2.16<> /page.34<> /figure.2.6<> /page.35<> /chapter.3<> /Item.7<> /Item.8<> /Item.9<> /Item.10<> /Item.11<> /Item.12<> /equation.3--1<> /equation.3--2<> /page.36<> /equation.3--3<> /equation.3--4<> /equation.3--5<> /equation.3--6<> /page.37<> /equation.3--7<> /equation.3--8<> /section.3.1<> /page.38<> /section.3.2<> /page.39<> /section.3.3<> /table.3.1<> /page.40<> /table.3.2<> /page.41<> /section.3.4<> /table.3.3<> /page.42<> /section.3.5<> /page.43<> /table.3.4<> /page.44<> /section.3.6<> /Item.13<> /Item.14<> /Item.15<> /Item.16<> /subsection.3.6.1<> /page.45<> /subsection.3.6.2<> /Item.17<> /Item.18<> /Item.19<> /Item.20<> /subsection.3.6.3<> /page.46<> /table.3.5<> /page.47<> /table.3.6<> /page.48<> /subsection.3.6.4<> /page.49<> /table.3.7<> /page.50<> /table.3.8<> /page.51<> /chapter.4<> /section.4.1<> /subsection.4.1.1<> /page.52<> /page.53<> /subsection.4.1.2<> /page.54<> /page.55<> /subsection.4.1.3<> /page.56<> /page.57<> /page.58<> /section.4.2<> /Item.21<> /Item.22<> /Item.23<> /subsection.4.2.1<> /page.59<> /subsection.4.2.2<> /subsection.4.2.3<> /page.60<> /subsection.4.2.4<> /page.61<> /subsection.4.2.5<> /page.62<> /subsection.4.2.6<> /page.63<> /subsection.4.2.7<> /subsection.4.2.8<> /page.64<> /subsection.4.2.9<> /page.65<> /subsection.4.2.10<> /page.66<> /subsection.4.2.11<> /page.67<> /chapter*.5<> /cite.blas1<> /cite.blas2<> /cite.blas3<> /cite.blas4<> /cite.blas5<> /cite.superlu<> /cite.umf1<> /cite.umf2<> /cite.Gilbert-Peierls<> /cite.paper<> /cite.duff1<> /page.68<> /cite.duff2<> /cite.duff-reid1<> /cite.duff-reid2<> /cite.Tarjan<> /cite.CLR<> /cite.Eisenstat-Liu<> /cite.amd1<> /cite.amd2<> /cite.colamd1<> /cite.colamd2<> /cite.Hager<> /cite.Higham<> /page.69<> /chapter*.6<>>>endobj 2 0 obj <>endobj xref 0 588 0000000000 65535 f 0000195138 00000 n 0000313929 00000 n 0000194401 00000 n 0000181456 00000 n 0000289031 00000 n 0000195081 00000 n 0000195262 00000 n 0000195350 00000 n 0000195449 00000 n 0000195550 00000 n 0000195645 00000 n 0000195740 00000 n 0000197764 00000 n 0000195839 00000 n 0000195924 00000 n 0000196023 00000 n 0000196350 00000 n 0000196146 00000 n 0000196245 00000 n 0000196503 00000 n 0000196612 00000 n 0000196723 00000 n 0000196830 00000 n 0000196928 00000 n 0000197026 00000 n 0000197124 00000 n 0000197228 00000 n 0000197335 00000 n 0000197444 00000 n 0000197555 00000 n 0000197668 00000 n 0000199163 00000 n 0000197906 00000 n 0000198018 00000 n 0000198144 00000 n 0000198256 00000 n 0000198367 00000 n 0000199005 00000 n 0000198487 00000 n 0000198602 00000 n 0000198727 00000 n 0000198877 00000 n 0000201069 00000 n 0000199617 00000 n 0000199325 00000 n 0000199417 00000 n 0000199524 00000 n 0000200942 00000 n 0000199757 00000 n 0000199850 00000 n 0000199962 00000 n 0000200068 00000 n 0000200173 00000 n 0000200279 00000 n 0000200387 00000 n 0000200494 00000 n 0000200610 00000 n 0000200730 00000 n 0000200843 00000 n 0000201211 00000 n 0000288937 00000 n 0000201309 00000 n 0000000015 00000 n 0000000709 00000 n 0000227220 00000 n 0000226686 00000 n 0000283298 00000 n 0000201380 00000 n 0000201412 00000 n 0000181617 00000 n 0000000729 00000 n 0000001018 00000 n 0000201444 00000 n 0000181761 00000 n 0000001038 00000 n 0000001418 00000 n 0000201476 00000 n 0000181905 00000 n 0000001438 00000 n 0000002723 00000 n 0000201508 00000 n 0000182049 00000 n 0000002744 00000 n 0000004895 00000 n 0000201540 00000 n 0000201674 00000 n 0000201808 00000 n 0000201942 00000 n 0000202076 00000 n 0000202210 00000 n 0000202343 00000 n 0000202476 00000 n 0000202610 00000 n 0000202745 00000 n 0000202880 00000 n 0000203015 00000 n 0000203155 00000 n 0000203295 00000 n 0000203430 00000 n 0000203563 00000 n 0000203699 00000 n 0000203835 00000 n 0000203971 00000 n 0000204106 00000 n 0000204243 00000 n 0000204380 00000 n 0000204517 00000 n 0000204654 00000 n 0000204791 00000 n 0000204927 00000 n 0000205060 00000 n 0000205196 00000 n 0000205332 00000 n 0000205468 00000 n 0000205603 00000 n 0000205739 00000 n 0000182435 00000 n 0000004916 00000 n 0000006756 00000 n 0000205772 00000 n 0000205908 00000 n 0000206049 00000 n 0000206190 00000 n 0000206329 00000 n 0000206470 00000 n 0000206604 00000 n 0000206740 00000 n 0000206881 00000 n 0000207022 00000 n 0000207163 00000 n 0000207299 00000 n 0000207440 00000 n 0000207581 00000 n 0000207722 00000 n 0000207863 00000 n 0000208004 00000 n 0000208144 00000 n 0000208285 00000 n 0000208426 00000 n 0000208567 00000 n 0000208708 00000 n 0000208850 00000 n 0000208985 00000 n 0000209120 00000 n 0000182782 00000 n 0000006778 00000 n 0000007933 00000 n 0000209153 00000 n 0000209285 00000 n 0000209419 00000 n 0000209553 00000 n 0000209687 00000 n 0000209821 00000 n 0000209955 00000 n 0000210089 00000 n 0000210222 00000 n 0000183001 00000 n 0000007955 00000 n 0000008966 00000 n 0000210255 00000 n 0000210390 00000 n 0000210524 00000 n 0000210659 00000 n 0000210794 00000 n 0000210928 00000 n 0000211063 00000 n 0000183204 00000 n 0000008987 00000 n 0000011467 00000 n 0000211096 00000 n 0000183351 00000 n 0000011489 00000 n 0000012304 00000 n 0000211129 00000 n 0000183498 00000 n 0000012325 00000 n 0000015082 00000 n 0000243190 00000 n 0000242837 00000 n 0000282373 00000 n 0000211162 00000 n 0000211296 00000 n 0000211431 00000 n 0000211565 00000 n 0000211700 00000 n 0000211835 00000 n 0000183693 00000 n 0000015104 00000 n 0000017898 00000 n 0000240078 00000 n 0000239823 00000 n 0000281441 00000 n 0000211881 00000 n 0000183840 00000 n 0000017920 00000 n 0000020673 00000 n 0000211940 00000 n 0000183987 00000 n 0000020695 00000 n 0000023174 00000 n 0000211973 00000 n 0000212110 00000 n 0000212244 00000 n 0000212378 00000 n 0000184166 00000 n 0000023196 00000 n 0000025634 00000 n 0000238549 00000 n 0000238280 00000 n 0000280514 00000 n 0000237793 00000 n 0000237488 00000 n 0000279556 00000 n 0000235695 00000 n 0000235327 00000 n 0000278683 00000 n 0000212411 00000 n 0000259131 00000 n 0000258877 00000 n 0000277744 00000 n 0000258354 00000 n 0000258138 00000 n 0000276806 00000 n 0000212549 00000 n 0000212685 00000 n 0000184337 00000 n 0000025656 00000 n 0000028486 00000 n 0000212809 00000 n 0000257467 00000 n 0000257238 00000 n 0000274907 00000 n 0000212946 00000 n 0000184500 00000 n 0000028508 00000 n 0000030888 00000 n 0000213083 00000 n 0000213221 00000 n 0000184663 00000 n 0000030910 00000 n 0000032937 00000 n 0000213267 00000 n 0000184810 00000 n 0000032959 00000 n 0000035056 00000 n 0000255897 00000 n 0000255652 00000 n 0000273733 00000 n 0000254795 00000 n 0000254562 00000 n 0000287925 00000 n 0000213352 00000 n 0000213489 00000 n 0000184973 00000 n 0000035078 00000 n 0000038016 00000 n 0000213613 00000 n 0000213752 00000 n 0000213891 00000 n 0000214030 00000 n 0000214169 00000 n 0000214308 00000 n 0000214446 00000 n 0000214591 00000 n 0000185184 00000 n 0000038038 00000 n 0000040699 00000 n 0000214715 00000 n 0000250391 00000 n 0000249956 00000 n 0000287000 00000 n 0000214850 00000 n 0000185347 00000 n 0000040721 00000 n 0000043871 00000 n 0000214922 00000 n 0000185494 00000 n 0000043893 00000 n 0000046852 00000 n 0000269203 00000 n 0000268851 00000 n 0000275780 00000 n 0000268203 00000 n 0000267979 00000 n 0000286071 00000 n 0000215020 00000 n 0000215159 00000 n 0000215298 00000 n 0000185665 00000 n 0000046874 00000 n 0000049503 00000 n 0000215396 00000 n 0000215531 00000 n 0000215665 00000 n 0000215800 00000 n 0000215935 00000 n 0000185852 00000 n 0000049525 00000 n 0000052578 00000 n 0000216020 00000 n 0000185999 00000 n 0000052600 00000 n 0000054931 00000 n 0000216118 00000 n 0000216253 00000 n 0000186162 00000 n 0000054953 00000 n 0000057913 00000 n 0000216351 00000 n 0000216485 00000 n 0000216625 00000 n 0000216764 00000 n 0000216899 00000 n 0000217031 00000 n 0000186357 00000 n 0000057935 00000 n 0000061072 00000 n 0000288865 00000 n 0000274665 00000 n 0000217116 00000 n 0000217297 00000 n 0000217676 00000 n 0000217857 00000 n 0000218236 00000 n 0000218417 00000 n 0000218796 00000 n 0000218939 00000 n 0000219073 00000 n 0000186536 00000 n 0000061094 00000 n 0000064184 00000 n 0000219168 00000 n 0000219302 00000 n 0000219436 00000 n 0000219573 00000 n 0000219710 00000 n 0000186723 00000 n 0000064206 00000 n 0000067086 00000 n 0000219782 00000 n 0000219916 00000 n 0000220050 00000 n 0000186894 00000 n 0000067108 00000 n 0000068468 00000 n 0000220122 00000 n 0000187041 00000 n 0000068490 00000 n 0000071118 00000 n 0000220168 00000 n 0000187188 00000 n 0000071140 00000 n 0000074038 00000 n 0000220253 00000 n 0000187335 00000 n 0000074060 00000 n 0000076143 00000 n 0000220338 00000 n 0000187482 00000 n 0000076165 00000 n 0000079099 00000 n 0000220436 00000 n 0000187629 00000 n 0000079121 00000 n 0000081982 00000 n 0000220534 00000 n 0000220672 00000 n 0000187792 00000 n 0000082004 00000 n 0000085015 00000 n 0000220783 00000 n 0000220922 00000 n 0000221061 00000 n 0000187963 00000 n 0000085037 00000 n 0000087332 00000 n 0000221159 00000 n 0000188110 00000 n 0000087354 00000 n 0000089943 00000 n 0000221205 00000 n 0000221344 00000 n 0000221483 00000 n 0000221622 00000 n 0000221757 00000 n 0000188297 00000 n 0000089965 00000 n 0000092798 00000 n 0000221842 00000 n 0000221980 00000 n 0000222115 00000 n 0000188468 00000 n 0000092820 00000 n 0000095377 00000 n 0000222226 00000 n 0000188615 00000 n 0000095399 00000 n 0000098040 00000 n 0000222272 00000 n 0000188762 00000 n 0000098062 00000 n 0000101074 00000 n 0000222305 00000 n 0000188909 00000 n 0000101096 00000 n 0000105768 00000 n 0000222364 00000 n 0000189056 00000 n 0000105790 00000 n 0000107726 00000 n 0000222410 00000 n 0000189203 00000 n 0000107748 00000 n 0000109985 00000 n 0000222469 00000 n 0000222605 00000 n 0000222743 00000 n 0000189374 00000 n 0000110007 00000 n 0000112635 00000 n 0000222841 00000 n 0000222979 00000 n 0000223116 00000 n 0000223253 00000 n 0000223391 00000 n 0000223529 00000 n 0000223664 00000 n 0000189577 00000 n 0000112657 00000 n 0000115360 00000 n 0000223749 00000 n 0000189724 00000 n 0000115382 00000 n 0000118881 00000 n 0000223808 00000 n 0000223941 00000 n 0000224075 00000 n 0000224209 00000 n 0000224343 00000 n 0000189911 00000 n 0000118903 00000 n 0000121430 00000 n 0000224376 00000 n 0000190058 00000 n 0000121452 00000 n 0000124843 00000 n 0000224409 00000 n 0000190205 00000 n 0000124865 00000 n 0000127522 00000 n 0000224442 00000 n 0000224576 00000 n 0000190368 00000 n 0000127544 00000 n 0000129491 00000 n 0000224609 00000 n 0000190515 00000 n 0000129513 00000 n 0000132188 00000 n 0000224642 00000 n 0000224776 00000 n 0000224908 00000 n 0000190686 00000 n 0000132210 00000 n 0000134655 00000 n 0000224941 00000 n 0000225075 00000 n 0000225208 00000 n 0000190857 00000 n 0000134677 00000 n 0000138422 00000 n 0000225241 00000 n 0000191004 00000 n 0000138444 00000 n 0000141562 00000 n 0000225274 00000 n 0000191151 00000 n 0000141584 00000 n 0000143109 00000 n 0000225307 00000 n 0000225440 00000 n 0000191314 00000 n 0000143131 00000 n 0000146361 00000 n 0000225486 00000 n 0000191461 00000 n 0000146383 00000 n 0000148794 00000 n 0000225519 00000 n 0000191608 00000 n 0000148816 00000 n 0000150223 00000 n 0000225552 00000 n 0000191755 00000 n 0000150245 00000 n 0000151744 00000 n 0000225598 00000 n 0000191902 00000 n 0000151766 00000 n 0000153061 00000 n 0000225657 00000 n 0000192049 00000 n 0000153083 00000 n 0000154411 00000 n 0000225703 00000 n 0000192196 00000 n 0000154433 00000 n 0000155683 00000 n 0000225749 00000 n 0000192343 00000 n 0000155705 00000 n 0000156804 00000 n 0000225795 00000 n 0000192490 00000 n 0000156826 00000 n 0000158136 00000 n 0000225841 00000 n 0000192637 00000 n 0000158158 00000 n 0000160125 00000 n 0000264220 00000 n 0000263861 00000 n 0000285146 00000 n 0000225887 00000 n 0000192784 00000 n 0000160147 00000 n 0000161699 00000 n 0000225959 00000 n 0000192931 00000 n 0000161721 00000 n 0000163545 00000 n 0000226031 00000 n 0000193078 00000 n 0000163567 00000 n 0000165425 00000 n 0000226103 00000 n 0000193225 00000 n 0000165447 00000 n 0000167734 00000 n 0000226175 00000 n 0000193372 00000 n 0000167756 00000 n 0000169834 00000 n 0000226273 00000 n 0000193519 00000 n 0000169856 00000 n 0000171702 00000 n 0000226345 00000 n 0000193666 00000 n 0000171724 00000 n 0000173772 00000 n 0000226417 00000 n 0000193813 00000 n 0000173794 00000 n 0000175351 00000 n 0000226489 00000 n 0000193960 00000 n 0000175373 00000 n 0000177750 00000 n 0000260325 00000 n 0000260048 00000 n 0000284220 00000 n 0000226561 00000 n 0000194107 00000 n 0000177772 00000 n 0000180252 00000 n 0000226607 00000 n 0000194254 00000 n 0000180274 00000 n 0000181434 00000 n 0000226653 00000 n 0000235305 00000 n 0000237466 00000 n 0000238259 00000 n 0000239801 00000 n 0000242815 00000 n 0000249934 00000 n 0000254540 00000 n 0000255631 00000 n 0000257216 00000 n 0000258117 00000 n 0000258856 00000 n 0000260027 00000 n 0000263839 00000 n 0000267957 00000 n 0000268830 00000 n 0000273711 00000 n trailer << /Size 588 /Root 1 0 R /Info 2 0 R >> startxref 314067 %%EOF 1 0 obj<> endobj 2 0 obj<> endobj 82 0 obj<>/Type/Page>> endobj 117 0 obj<>/Type/Page>> endobj 157 0 obj<>/Type/Page>> endobj 588 0 obj<>/A 589 0 R/H/N/Border[0 0 0]/Type/Annot>> endobj 589 0 obj<> endobj 590 0 obj<>/F 128/H/N/Border[0 0 0]/Type/Annot>> endobj 591 0 obj<>/A 592 0 R/H/N/Border[0 0 0]/Type/Annot>> endobj 592 0 obj<> endobj 593 0 obj<>/A 594 0 R/H/N/Border[0 0 0]/Type/Annot>> endobj 594 0 obj<> endobj 595 0 obj<>/A 596 0 R/H/N/Border[0 0 0]/Type/Annot>> endobj 596 0 obj<> endobj 597 0 obj<>stream application/pdf LaTeX with hyperref package 2005-08-11T14:26:09-04:00 2005-08-11T14:26:09-04:00 2005-08-11T14:26:09-04:00 dvips + ESP Ghostscript 7.07 uuid:326c1698-5ec3-461b-ba89-0a56ed46c76c uuid:4befb542-e345-443e-85a7-13d13a11dc0e endstream endobj xref 1 2 0000325909 00000 n 0000326040 00000 n 82 1 0000326244 00000 n 117 1 0000326637 00000 n 157 1 0000326983 00000 n 588 10 0000327193 00000 n 0000327323 00000 n 0000327383 00000 n 0000327509 00000 n 0000327639 00000 n 0000327700 00000 n 0000327830 00000 n 0000327889 00000 n 0000328019 00000 n 0000328078 00000 n trailer <<08B18604ABD4C44591BD54ED57A7B366>]/Prev 314067 >> startxref 331883 %%EOF SuiteSparse/KLU/Doc/ChangeLog0000644001170100242450000000321010711427761014663 0ustar davisfacNov 1, 2007, version 1.0.1 * minor lint cleanup May 31, 2007, version 1.0 * Overview: this is the first clean release of KLU. Only one bug was fixed since in the last pre-1.0 version (see below). This release adds a 64-bit version, a better Demo, a 100% statement coverage test, new parameters and statistics in the KLU Common object, reduced memory usage, a method for limiting worst-case work in the BTF ordering, and a completely redesigned MATLAB interface. * scaling default changed from no scaling, to max row scaling * C-callable API modified for klu_malloc, klu_free, klu_realloc, klu_rcond, klu_rgrowth, klu_condest. API of other user-callable KLU functions not modified. * user ordering function prototype modified (final argument is now klu_common, not Common->user_data) * User Guide added. * KLU Demo completely rewritten. Now depends on CHOLMOD to read in its matrices, in Matrix Market format. * port to 64-bit version * reduction in memory usage, particularly when the BTF form results in many small diagonal blocks * new Common parameter (maxwork) and statistics (work, memusage, mempeak) * Makefile and object files (*.o) now placed in KLU/Lib, not KLU/Source * added klu_install.m, klu_demo.m, klu_make.m to KLU/MATLAB. * klu mexFunction now returns a struct for LU, not a lengthy list of matrices. MATLAB interface completely rewritten. * Tcov tests completely rewritten * bug fix in complex klu_z_refactor, when both btf and scaling are in use * bug fix in klu_rgrowth, when the matrix is scaled Dec 12, 2006: version 0.11 * minor MATLAB cleanup SuiteSparse/KLU/Doc/lesser.txt0000644001170100242450000006350010275713647015165 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/KLU/Lib/0000755001170100242450000000000010711435723013113 5ustar davisfacSuiteSparse/KLU/Lib/Makefile0000644001170100242450000001430010617112702014543 0ustar davisfacdefault: all ccode: all include ../../UFconfig/UFconfig.mk # for testing only: # TEST = -DTESTING C = $(CC) $(CFLAGS) INC = ../Include/klu.h ../Include/klu_internal.h ../Include/klu_version.h \ ../../UFconfig/UFconfig.h Makefile I = -I../../AMD/Include -I../../COLAMD/Include -I../../BTF/Include \ -I../Include -I../../UFconfig all: library library: libklu.a KLU_D = klu_d.o klu_d_kernel.o klu_d_dump.o \ klu_d_factor.o klu_d_free_numeric.o klu_d_solve.o \ klu_d_scale.o klu_d_refactor.o \ klu_d_tsolve.o klu_d_diagnostics.o klu_d_sort.o klu_d_extract.o KLU_Z = klu_z.o klu_z_kernel.o klu_z_dump.o \ klu_z_factor.o klu_z_free_numeric.o klu_z_solve.o \ klu_z_scale.o klu_z_refactor.o \ klu_z_tsolve.o klu_z_diagnostics.o klu_z_sort.o klu_z_extract.o KLU_L = klu_l.o klu_l_kernel.o klu_l_dump.o \ klu_l_factor.o klu_l_free_numeric.o klu_l_solve.o \ klu_l_scale.o klu_l_refactor.o \ klu_l_tsolve.o klu_l_diagnostics.o klu_l_sort.o klu_l_extract.o KLU_ZL = klu_zl.o klu_zl_kernel.o klu_zl_dump.o \ klu_zl_factor.o klu_zl_free_numeric.o klu_zl_solve.o \ klu_zl_scale.o klu_zl_refactor.o \ klu_zl_tsolve.o klu_zl_diagnostics.o klu_zl_sort.o klu_zl_extract.o COMMON = \ klu_free_symbolic.o klu_defaults.o klu_analyze_given.o \ klu_analyze.o klu_memory.o \ klu_l_free_symbolic.o klu_l_defaults.o klu_l_analyze_given.o \ klu_l_analyze.o klu_l_memory.o OBJ = $(COMMON) $(KLU_D) $(KLU_Z) $(KLU_L) $(KLU_ZL) libklu.a: $(OBJ) $(AR) libklu.a $(OBJ) $(RANLIB) libklu.a $(OBJ): $(INC) #------------------------------------------------------------------------------- klu_d.o: ../Source/klu.c $(C) -c $(I) $< -o $@ klu_z.o: ../Source/klu.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_kernel.o: ../Source/klu_kernel.c $(C) -c $(I) $< -o $@ klu_z_kernel.o: ../Source/klu_kernel.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_sort.o: ../Source/klu_sort.c $(C) -c $(I) $< -o $@ klu_z_sort.o: ../Source/klu_sort.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_diagnostics.o: ../Source/klu_diagnostics.c $(C) -c $(I) $< -o $@ klu_z_diagnostics.o: ../Source/klu_diagnostics.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_dump.o: ../Source/klu_dump.c $(C) -c $(I) $< -o $@ klu_z_dump.o: ../Source/klu_dump.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_factor.o: ../Source/klu_factor.c $(C) -c $(I) $< -o $@ klu_z_factor.o: ../Source/klu_factor.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_free_numeric.o: ../Source/klu_free_numeric.c $(C) -c $(I) $< -o $@ klu_z_free_numeric.o: ../Source/klu_free_numeric.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_extract.o: ../Source/klu_extract.c $(C) -c $(I) $< -o $@ klu_z_extract.o: ../Source/klu_extract.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_refactor.o: ../Source/klu_refactor.c $(C) -c $(I) $< -o $@ klu_z_refactor.o: ../Source/klu_refactor.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_scale.o: ../Source/klu_scale.c $(C) -c $(I) $< -o $@ klu_z_scale.o: ../Source/klu_scale.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_solve.o: ../Source/klu_solve.c $(C) -c $(I) $< -o $@ klu_z_solve.o: ../Source/klu_solve.c $(C) -c -DCOMPLEX $(I) $< -o $@ klu_d_tsolve.o: ../Source/klu_tsolve.c $(C) -c $(I) $< -o $@ klu_z_tsolve.o: ../Source/klu_tsolve.c $(C) -c -DCOMPLEX $(I) $< -o $@ #------------------------------------------------------------------------------- klu_analyze.o: ../Source/klu_analyze.c $(C) -c $(I) $< -o $@ klu_analyze_given.o: ../Source/klu_analyze_given.c $(C) -c $(I) $< -o $@ klu_defaults.o: ../Source/klu_defaults.c $(C) -c $(I) $< -o $@ klu_free_symbolic.o: ../Source/klu_free_symbolic.c $(C) -c $(I) $< -o $@ klu_memory.o: ../Source/klu_memory.c $(C) -c $(I) $< -o $@ #------------------------------------------------------------------------------- purge: distclean distclean: clean - $(RM) libklu.a clean: - $(RM) $(CLEAN) #------------------------------------------------------------------------------- klu_l.o: ../Source/klu.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl.o: ../Source/klu.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_kernel.o: ../Source/klu_kernel.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_kernel.o: ../Source/klu_kernel.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_sort.o: ../Source/klu_sort.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_sort.o: ../Source/klu_sort.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_diagnostics.o: ../Source/klu_diagnostics.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_diagnostics.o: ../Source/klu_diagnostics.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_dump.o: ../Source/klu_dump.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_dump.o: ../Source/klu_dump.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_factor.o: ../Source/klu_factor.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_factor.o: ../Source/klu_factor.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_free_numeric.o: ../Source/klu_free_numeric.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_free_numeric.o: ../Source/klu_free_numeric.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_extract.o: ../Source/klu_extract.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_extract.o: ../Source/klu_extract.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_refactor.o: ../Source/klu_refactor.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_refactor.o: ../Source/klu_refactor.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_scale.o: ../Source/klu_scale.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_scale.o: ../Source/klu_scale.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_solve.o: ../Source/klu_solve.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_solve.o: ../Source/klu_solve.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ klu_l_tsolve.o: ../Source/klu_tsolve.c $(C) -c -DDLONG $(I) $< -o $@ klu_zl_tsolve.o: ../Source/klu_tsolve.c $(C) -c -DCOMPLEX -DDLONG $(I) $< -o $@ #------------------------------------------------------------------------------- klu_l_analyze.o: ../Source/klu_analyze.c $(C) -c -DDLONG $(I) $< -o $@ klu_l_analyze_given.o: ../Source/klu_analyze_given.c $(C) -c -DDLONG $(I) $< -o $@ klu_l_defaults.o: ../Source/klu_defaults.c $(C) -c -DDLONG $(I) $< -o $@ klu_l_free_symbolic.o: ../Source/klu_free_symbolic.c $(C) -c -DDLONG $(I) $< -o $@ klu_l_memory.o: ../Source/klu_memory.c $(C) -c -DDLONG $(I) $< -o $@ #------------------------------------------------------------------------------- SuiteSparse/KLU/Demo/0000755001170100242450000000000010711435723013271 5ustar davisfacSuiteSparse/KLU/Demo/klu_simple.c0000644001170100242450000000142110620342701015567 0ustar davisfac/* klu_simple: a simple KLU demo */ #include #include "klu.h" int n = 5 ; int Ap [ ] = {0, 2, 5, 9, 10, 12} ; int Ai [ ] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ; double Ax [ ] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ; double b [ ] = {8., 45., -3., 3., 19.} ; int main (void) { klu_symbolic *Symbolic ; klu_numeric *Numeric ; klu_common Common ; int i ; klu_defaults (&Common) ; Symbolic = klu_analyze (n, Ap, Ai, &Common) ; Numeric = klu_factor (Ap, Ai, Ax, Symbolic, &Common) ; klu_solve (Symbolic, Numeric, 5, 1, b, &Common) ; klu_free_symbolic (&Symbolic, &Common) ; klu_free_numeric (&Numeric, &Common) ; for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, b [i]) ; return (0) ; } SuiteSparse/KLU/Demo/Makefile0000644001170100242450000000330710710765233014735 0ustar davisfac# KLU Demo Makefile. The klu_simple demo is stand-alone. The other demos # require CHOLMOD. default: all include ../../UFconfig/UFconfig.mk LIB = ../Lib/libklu.a ../../BTF/Lib/libbtf.a \ ../../AMD/Lib/libamd.a ../../COLAMD/Lib/libcolamd.a CHOLMOD = ../../CHOLMOD/Lib/libcholmod.a I = -I../../UFconfig -I../../AMD/Include -I../../COLAMD/Include \ -I../../BTF/Include -I../Include -I../../CHOLMOD/Include all: $(LIB) klu_simple $(CHOLMOD) kludemo kluldemo - ./klu_simple - ./kludemo < ../Matrix/1c.mtx - ./kludemo < ../Matrix/arrowc.mtx - ./kludemo < ../Matrix/arrow.mtx - ./kludemo < ../Matrix/impcol_a.mtx - ./kludemo < ../Matrix/w156.mtx - ./kludemo < ../Matrix/ctina.mtx - ./kluldemo < ../Matrix/1c.mtx - ./kluldemo < ../Matrix/arrowc.mtx - ./kluldemo < ../Matrix/arrow.mtx - ./kluldemo < ../Matrix/impcol_a.mtx - ./kluldemo < ../Matrix/w156.mtx - ./kluldemo < ../Matrix/ctina.mtx ../Lib/libklu.a: ( cd ../Lib ; $(MAKE) ) ../../BTF/Lib/libbtf.a: ( cd ../../BTF ; $(MAKE) library ) ../../AMD/Lib/libamd.a: ( cd ../../AMD ; $(MAKE) library ) ../../COLAMD/Lib/libcolamd.a: ( cd ../../COLAMD ; $(MAKE) library ) ../../CHOLMOD/Lib/libcholmod.a: ( cd ../../CHOLMOD ; $(MAKE) library ) # ( cd ../../CAMD ; $(MAKE) ) # ( cd ../../CCOLAMD ; $(MAKE) ) # ( cd ../../metis-4.0 ; $(MAKE) ) purge: distclean distclean: clean - $(RM) kludemo kluldemo klu_simple clean: - $(RM) $(CLEAN) kludemo: kludemo.c Makefile $(LIB) $(CC) $(CFLAGS) $(I) kludemo.c -o kludemo $(LIB) $(CHOLMOD) -lm kluldemo: kludemo.c Makefile $(LIB) $(CC) $(CFLAGS) $(I) kluldemo.c -o kluldemo $(LIB) $(CHOLMOD) -lm klu_simple: klu_simple.c Makefile $(LIB) $(CC) $(CFLAGS) $(I) klu_simple.c -o klu_simple $(LIB) -lm - ./klu_simple SuiteSparse/KLU/Demo/kludemo.out0000644001170100242450000000467110711432712015465 0ustar davisfac./klu_simple x [0] = 1 x [1] = 2 x [2] = 3 x [3] = 4 x [4] = 5 ./kludemo < ../Matrix/1c.mtx KLU: Nov 1, 2007, version: 1.0.1 n 1 nnz(A) 1 nnz(L+U+F) 1 resid 0 recip growth 1 condest 1 rcond 1 flops 0 peak memory usage: 492 bytes ./kludemo < ../Matrix/arrowc.mtx KLU: Nov 1, 2007, version: 1.0.1 n 100 nnz(A) 298 nnz(L+U+F) 298 resid 1.68007e-14 recip growth 0.019999 condest 295.99 rcond 0.019999 flops 297 peak memory usage: 32244 bytes ./kludemo < ../Matrix/arrow.mtx KLU: Nov 1, 2007, version: 1.0.1 n 100 nnz(A) 298 nnz(L+U+F) 298 resid 1.77636e-15 recip growth 0.0204082 condest 303 rcond 0.0204082 flops 297 peak memory usage: 20412 bytes ./kludemo < ../Matrix/impcol_a.mtx KLU: Nov 1, 2007, version: 1.0.1 n 207 nnz(A) 572 nnz(L+U+F) 615 resid 6.98492e-10 recip growth 0.00957447 condest 4.35093e+07 rcond 4.5277e-05 flops 259 peak memory usage: 34276 bytes ./kludemo < ../Matrix/w156.mtx KLU: Nov 1, 2007, version: 1.0.1 n 156 nnz(A) 362 nnz(L+U+F) 396 resid 6.23816e-08 recip growth 0.00889922 condest 1.79787e+09 rcond 0.000124785 flops 175 peak memory usage: 39516 bytes ./kludemo < ../Matrix/ctina.mtx KLU: Nov 1, 2007, version: 1.0.1 n 11 nnz(A) 36 nnz(L+U+F) 45 resid 4.44089e-16 recip growth 1 condest 56 rcond 1 flops 73 peak memory usage: 4268 bytes ./kluldemo < ../Matrix/1c.mtx KLU: Nov 1, 2007, version: 1.0.1 n 1 nnz(A) 1 nnz(L+U+F) 1 resid 0 recip growth 1 condest 1 rcond 1 flops 0 peak memory usage: 600 bytes ./kluldemo < ../Matrix/arrowc.mtx KLU: Nov 1, 2007, version: 1.0.1 n 100 nnz(A) 298 nnz(L+U+F) 298 resid 1.68007e-14 recip growth 0.019999 condest 295.99 rcond 0.019999 flops 297 peak memory usage: 39000 bytes ./kluldemo < ../Matrix/arrow.mtx KLU: Nov 1, 2007, version: 1.0.1 n 100 nnz(A) 298 nnz(L+U+F) 298 resid 1.77636e-15 recip growth 0.0204082 condest 303 rcond 0.0204082 flops 297 peak memory usage: 29584 bytes ./kluldemo < ../Matrix/impcol_a.mtx KLU: Nov 1, 2007, version: 1.0.1 n 207 nnz(A) 572 nnz(L+U+F) 615 resid 6.98492e-10 recip growth 0.00957447 condest 4.35093e+07 rcond 4.5277e-05 flops 259 peak memory usage: 44800 bytes ./kluldemo < ../Matrix/w156.mtx KLU: Nov 1, 2007, version: 1.0.1 n 156 nnz(A) 362 nnz(L+U+F) 396 resid 6.23816e-08 recip growth 0.00889922 condest 1.79787e+09 rcond 0.000124785 flops 175 peak memory usage: 47480 bytes ./kluldemo < ../Matrix/ctina.mtx KLU: Nov 1, 2007, version: 1.0.1 n 11 nnz(A) 36 nnz(L+U+F) 45 resid 4.44089e-16 recip growth 1 condest 56 rcond 1 flops 73 peak memory usage: 5144 bytes SuiteSparse/KLU/Demo/kluldemo.c0000644001170100242450000002363010620326237015253 0ustar davisfac/* ========================================================================== */ /* === KLU DEMO (long integer version) ====================================== */ /* ========================================================================== */ /* Read in a Matrix Market matrix (using CHOLMOD) and solve a linear system. * UF_long is normally a "long", but it becomes "_int64" on Windows 64. */ #include #include #include "klu.h" /* for handling complex matrices */ #define REAL(X,i) (X [2*(i)]) #define IMAG(X,i) (X [2*(i)+1]) #define CABS(X,i) (sqrt (REAL (X,i) * REAL (X,i) + IMAG (X,i) * IMAG (X,i))) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) /* ========================================================================== */ /* === klu_l_backslash ====================================================== */ /* ========================================================================== */ static UF_long klu_l_backslash /* return 1 if successful, 0 otherwise */ ( /* --- input ---- */ UF_long n, /* A is n-by-n */ UF_long *Ap, /* size n+1, column pointers */ UF_long *Ai, /* size nz = Ap [n], row indices */ double *Ax, /* size nz, numerical values */ UF_long isreal, /* nonzero if A is real, 0 otherwise */ double *B, /* size n, right-hand-side */ /* --- output ---- */ double *X, /* size n, solution to Ax=b */ double *R, /* size n, residual r = b-A*x */ /* --- scalar output --- */ UF_long *lunz, /* nnz (L+U+F) */ double *rnorm, /* norm (b-A*x,1) / norm (A,1) */ /* --- workspace - */ klu_l_common *Common /* default parameters and statistics */ ) { double anorm = 0, asum ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; UF_long i, j, p ; if (!Ap || !Ai || !Ax || !B || !X || !B) return (0) ; /* ---------------------------------------------------------------------- */ /* symbolic ordering and analysis */ /* ---------------------------------------------------------------------- */ Symbolic = klu_l_analyze (n, Ap, Ai, Common) ; if (!Symbolic) return (0) ; if (isreal) { /* ------------------------------------------------------------------ */ /* factorization */ /* ------------------------------------------------------------------ */ Numeric = klu_l_factor (Ap, Ai, Ax, Symbolic, Common) ; if (!Numeric) { klu_l_free_symbolic (&Symbolic, Common) ; return (0) ; } /* ------------------------------------------------------------------ */ /* statistics (not required to solve Ax=b) */ /* ------------------------------------------------------------------ */ klu_l_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, Common) ; klu_l_condest (Ap, Ax, Symbolic, Numeric, Common) ; klu_l_rcond (Symbolic, Numeric, Common) ; klu_l_flops (Symbolic, Numeric, Common) ; *lunz = Numeric->lnz + Numeric->unz - n + ((Numeric->Offp) ? (Numeric->Offp [n]) : 0) ; /* ------------------------------------------------------------------ */ /* solve Ax=b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { X [i] = B [i] ; } klu_l_solve (Symbolic, Numeric, n, 1, X, Common) ; /* ------------------------------------------------------------------ */ /* compute residual, rnorm = norm(b-Ax,1) / norm(A,1) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { R [i] = B [i] ; } for (j = 0 ; j < n ; j++) { asum = 0 ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { /* R (i) -= A (i,j) * X (j) */ R [Ai [p]] -= Ax [p] * X [j] ; asum += fabs (Ax [p]) ; } anorm = MAX (anorm, asum) ; } *rnorm = 0 ; for (i = 0 ; i < n ; i++) { *rnorm = MAX (*rnorm, fabs (R [i])) ; } /* ------------------------------------------------------------------ */ /* free numeric factorization */ /* ------------------------------------------------------------------ */ klu_l_free_numeric (&Numeric, Common) ; } else { /* ------------------------------------------------------------------ */ /* statistics (not required to solve Ax=b) */ /* ------------------------------------------------------------------ */ Numeric = klu_zl_factor (Ap, Ai, Ax, Symbolic, Common) ; if (!Numeric) { klu_l_free_symbolic (&Symbolic, Common) ; return (0) ; } /* ------------------------------------------------------------------ */ /* statistics */ /* ------------------------------------------------------------------ */ klu_zl_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, Common) ; klu_zl_condest (Ap, Ax, Symbolic, Numeric, Common) ; klu_zl_rcond (Symbolic, Numeric, Common) ; klu_zl_flops (Symbolic, Numeric, Common) ; *lunz = Numeric->lnz + Numeric->unz - n + ((Numeric->Offp) ? (Numeric->Offp [n]) : 0) ; /* ------------------------------------------------------------------ */ /* solve Ax=b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < 2*n ; i++) { X [i] = B [i] ; } klu_zl_solve (Symbolic, Numeric, n, 1, X, Common) ; /* ------------------------------------------------------------------ */ /* compute residual, rnorm = norm(b-Ax,1) / norm(A,1) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < 2*n ; i++) { R [i] = B [i] ; } for (j = 0 ; j < n ; j++) { asum = 0 ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { /* R (i) -= A (i,j) * X (j) */ i = Ai [p] ; REAL (R,i) -= REAL(Ax,p) * REAL(X,j) - IMAG(Ax,p) * IMAG(X,j) ; IMAG (R,i) -= IMAG(Ax,p) * REAL(X,j) + REAL(Ax,p) * IMAG(X,j) ; asum += CABS (Ax, p) ; } anorm = MAX (anorm, asum) ; } *rnorm = 0 ; for (i = 0 ; i < n ; i++) { *rnorm = MAX (*rnorm, CABS (R, i)) ; } /* ------------------------------------------------------------------ */ /* free numeric factorization */ /* ------------------------------------------------------------------ */ klu_zl_free_numeric (&Numeric, Common) ; } /* ---------------------------------------------------------------------- */ /* free symbolic analysis, and residual */ /* ---------------------------------------------------------------------- */ klu_l_free_symbolic (&Symbolic, Common) ; return (1) ; } /* ========================================================================== */ /* === klu_l_demo =========================================================== */ /* ========================================================================== */ /* Given a sparse matrix A, set up a right-hand-side and solve X = A\b */ static void klu_l_demo (UF_long n, UF_long *Ap, UF_long *Ai, double *Ax, UF_long isreal) { double rnorm ; klu_l_common Common ; double *B, *X, *R ; UF_long i, lunz ; printf ("KLU: %s, version: %d.%d.%d\n", KLU_DATE, KLU_MAIN_VERSION, KLU_SUB_VERSION, KLU_SUBSUB_VERSION) ; /* ---------------------------------------------------------------------- */ /* set defaults */ /* ---------------------------------------------------------------------- */ klu_l_defaults (&Common) ; /* ---------------------------------------------------------------------- */ /* create a right-hand-side */ /* ---------------------------------------------------------------------- */ if (isreal) { /* B = 1 + (1:n)/n */ B = klu_l_malloc (n, sizeof (double), &Common) ; X = klu_l_malloc (n, sizeof (double), &Common) ; R = klu_l_malloc (n, sizeof (double), &Common) ; if (B) { for (i = 0 ; i < n ; i++) { B [i] = 1 + ((double) i+1) / ((double) n) ; } } } else { /* real (B) = 1 + (1:n)/n, imag(B) = (n:-1:1)/n */ B = klu_l_malloc (n, 2 * sizeof (double), &Common) ; X = klu_l_malloc (n, 2 * sizeof (double), &Common) ; R = klu_l_malloc (n, 2 * sizeof (double), &Common) ; if (B) { for (i = 0 ; i < n ; i++) { REAL (B, i) = 1 + ((double) i+1) / ((double) n) ; IMAG (B, i) = ((double) n-i) / ((double) n) ; } } } /* ---------------------------------------------------------------------- */ /* X = A\b using KLU and print statistics */ /* ---------------------------------------------------------------------- */ if (!klu_l_backslash (n, Ap, Ai, Ax, isreal, B, X, R, &lunz, &rnorm, &Common)) { printf ("KLU failed\n") ; } else { printf ("n %d nnz(A) %d nnz(L+U+F) %d resid %g\n" "recip growth %g condest %g rcond %g flops %g\n", n, Ap [n], lunz, rnorm, Common.rgrowth, Common.condest, Common.rcond, Common.flops) ; } /* ---------------------------------------------------------------------- */ /* free the problem */ /* ---------------------------------------------------------------------- */ if (isreal) { klu_l_free (B, n, sizeof (double), &Common) ; klu_l_free (X, n, sizeof (double), &Common) ; klu_l_free (R, n, sizeof (double), &Common) ; } else { klu_l_free (B, 2*n, sizeof (double), &Common) ; klu_l_free (X, 2*n, sizeof (double), &Common) ; klu_l_free (R, 2*n, sizeof (double), &Common) ; } printf ("peak memory usage: %g bytes\n\n", (double) (Common.mempeak)) ; } /* ========================================================================== */ /* === main ================================================================= */ /* ========================================================================== */ /* Read in a sparse matrix in Matrix Market format using CHOLMOD, and then * solve Ax=b with KLU. Note that CHOLMOD is only used to read the matrix. */ #include "cholmod.h" int main (void) { cholmod_sparse *A ; cholmod_common ch ; cholmod_l_start (&ch) ; A = cholmod_l_read_sparse (stdin, &ch) ; if (A) { if (A->nrow != A->ncol || A->stype != 0 || (!(A->xtype == CHOLMOD_REAL || A->xtype == CHOLMOD_COMPLEX))) { printf ("invalid matrix\n") ; } else { klu_l_demo (A->nrow, A->p, A->i, A->x, A->xtype == CHOLMOD_REAL) ; } cholmod_l_free_sparse (&A, &ch) ; } cholmod_l_finish (&ch) ; return (0) ; } SuiteSparse/KLU/Demo/kludemo.c0000644001170100242450000002331410620325770015077 0ustar davisfac/* ========================================================================== */ /* === KLU DEMO ============================================================= */ /* ========================================================================== */ /* Read in a Matrix Market matrix (using CHOLMOD) and solve a linear system. */ #include #include #include "klu.h" /* for handling complex matrices */ #define REAL(X,i) (X [2*(i)]) #define IMAG(X,i) (X [2*(i)+1]) #define CABS(X,i) (sqrt (REAL (X,i) * REAL (X,i) + IMAG (X,i) * IMAG (X,i))) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) /* ========================================================================== */ /* === klu_backslash ======================================================== */ /* ========================================================================== */ static int klu_backslash /* return 1 if successful, 0 otherwise */ ( /* --- input ---- */ int n, /* A is n-by-n */ int *Ap, /* size n+1, column pointers */ int *Ai, /* size nz = Ap [n], row indices */ double *Ax, /* size nz, numerical values */ int isreal, /* nonzero if A is real, 0 otherwise */ double *B, /* size n, right-hand-side */ /* --- output ---- */ double *X, /* size n, solution to Ax=b */ double *R, /* size n, residual r = b-A*x */ /* --- scalar output --- */ int *lunz, /* nnz (L+U+F) */ double *rnorm, /* norm (b-A*x,1) / norm (A,1) */ /* --- workspace - */ klu_common *Common /* default parameters and statistics */ ) { double anorm = 0, asum ; klu_symbolic *Symbolic ; klu_numeric *Numeric ; int i, j, p ; if (!Ap || !Ai || !Ax || !B || !X || !B) return (0) ; /* ---------------------------------------------------------------------- */ /* symbolic ordering and analysis */ /* ---------------------------------------------------------------------- */ Symbolic = klu_analyze (n, Ap, Ai, Common) ; if (!Symbolic) return (0) ; if (isreal) { /* ------------------------------------------------------------------ */ /* factorization */ /* ------------------------------------------------------------------ */ Numeric = klu_factor (Ap, Ai, Ax, Symbolic, Common) ; if (!Numeric) { klu_free_symbolic (&Symbolic, Common) ; return (0) ; } /* ------------------------------------------------------------------ */ /* statistics (not required to solve Ax=b) */ /* ------------------------------------------------------------------ */ klu_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, Common) ; klu_condest (Ap, Ax, Symbolic, Numeric, Common) ; klu_rcond (Symbolic, Numeric, Common) ; klu_flops (Symbolic, Numeric, Common) ; *lunz = Numeric->lnz + Numeric->unz - n + ((Numeric->Offp) ? (Numeric->Offp [n]) : 0) ; /* ------------------------------------------------------------------ */ /* solve Ax=b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { X [i] = B [i] ; } klu_solve (Symbolic, Numeric, n, 1, X, Common) ; /* ------------------------------------------------------------------ */ /* compute residual, rnorm = norm(b-Ax,1) / norm(A,1) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { R [i] = B [i] ; } for (j = 0 ; j < n ; j++) { asum = 0 ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { /* R (i) -= A (i,j) * X (j) */ R [Ai [p]] -= Ax [p] * X [j] ; asum += fabs (Ax [p]) ; } anorm = MAX (anorm, asum) ; } *rnorm = 0 ; for (i = 0 ; i < n ; i++) { *rnorm = MAX (*rnorm, fabs (R [i])) ; } /* ------------------------------------------------------------------ */ /* free numeric factorization */ /* ------------------------------------------------------------------ */ klu_free_numeric (&Numeric, Common) ; } else { /* ------------------------------------------------------------------ */ /* statistics (not required to solve Ax=b) */ /* ------------------------------------------------------------------ */ Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic, Common) ; if (!Numeric) { klu_free_symbolic (&Symbolic, Common) ; return (0) ; } /* ------------------------------------------------------------------ */ /* statistics */ /* ------------------------------------------------------------------ */ klu_z_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, Common) ; klu_z_condest (Ap, Ax, Symbolic, Numeric, Common) ; klu_z_rcond (Symbolic, Numeric, Common) ; klu_z_flops (Symbolic, Numeric, Common) ; *lunz = Numeric->lnz + Numeric->unz - n + ((Numeric->Offp) ? (Numeric->Offp [n]) : 0) ; /* ------------------------------------------------------------------ */ /* solve Ax=b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < 2*n ; i++) { X [i] = B [i] ; } klu_z_solve (Symbolic, Numeric, n, 1, X, Common) ; /* ------------------------------------------------------------------ */ /* compute residual, rnorm = norm(b-Ax,1) / norm(A,1) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < 2*n ; i++) { R [i] = B [i] ; } for (j = 0 ; j < n ; j++) { asum = 0 ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { /* R (i) -= A (i,j) * X (j) */ i = Ai [p] ; REAL (R,i) -= REAL(Ax,p) * REAL(X,j) - IMAG(Ax,p) * IMAG(X,j) ; IMAG (R,i) -= IMAG(Ax,p) * REAL(X,j) + REAL(Ax,p) * IMAG(X,j) ; asum += CABS (Ax, p) ; } anorm = MAX (anorm, asum) ; } *rnorm = 0 ; for (i = 0 ; i < n ; i++) { *rnorm = MAX (*rnorm, CABS (R, i)) ; } /* ------------------------------------------------------------------ */ /* free numeric factorization */ /* ------------------------------------------------------------------ */ klu_z_free_numeric (&Numeric, Common) ; } /* ---------------------------------------------------------------------- */ /* free symbolic analysis, and residual */ /* ---------------------------------------------------------------------- */ klu_free_symbolic (&Symbolic, Common) ; return (1) ; } /* ========================================================================== */ /* === klu_demo ============================================================= */ /* ========================================================================== */ /* Given a sparse matrix A, set up a right-hand-side and solve X = A\b */ static void klu_demo (int n, int *Ap, int *Ai, double *Ax, int isreal) { double rnorm ; klu_common Common ; double *B, *X, *R ; int i, lunz ; printf ("KLU: %s, version: %d.%d.%d\n", KLU_DATE, KLU_MAIN_VERSION, KLU_SUB_VERSION, KLU_SUBSUB_VERSION) ; /* ---------------------------------------------------------------------- */ /* set defaults */ /* ---------------------------------------------------------------------- */ klu_defaults (&Common) ; /* ---------------------------------------------------------------------- */ /* create a right-hand-side */ /* ---------------------------------------------------------------------- */ if (isreal) { /* B = 1 + (1:n)/n */ B = klu_malloc (n, sizeof (double), &Common) ; X = klu_malloc (n, sizeof (double), &Common) ; R = klu_malloc (n, sizeof (double), &Common) ; if (B) { for (i = 0 ; i < n ; i++) { B [i] = 1 + ((double) i+1) / ((double) n) ; } } } else { /* real (B) = 1 + (1:n)/n, imag(B) = (n:-1:1)/n */ B = klu_malloc (n, 2 * sizeof (double), &Common) ; X = klu_malloc (n, 2 * sizeof (double), &Common) ; R = klu_malloc (n, 2 * sizeof (double), &Common) ; if (B) { for (i = 0 ; i < n ; i++) { REAL (B, i) = 1 + ((double) i+1) / ((double) n) ; IMAG (B, i) = ((double) n-i) / ((double) n) ; } } } /* ---------------------------------------------------------------------- */ /* X = A\b using KLU and print statistics */ /* ---------------------------------------------------------------------- */ if (!klu_backslash (n, Ap, Ai, Ax, isreal, B, X, R, &lunz, &rnorm, &Common)) { printf ("KLU failed\n") ; } else { printf ("n %d nnz(A) %d nnz(L+U+F) %d resid %g\n" "recip growth %g condest %g rcond %g flops %g\n", n, Ap [n], lunz, rnorm, Common.rgrowth, Common.condest, Common.rcond, Common.flops) ; } /* ---------------------------------------------------------------------- */ /* free the problem */ /* ---------------------------------------------------------------------- */ if (isreal) { klu_free (B, n, sizeof (double), &Common) ; klu_free (X, n, sizeof (double), &Common) ; klu_free (R, n, sizeof (double), &Common) ; } else { klu_free (B, 2*n, sizeof (double), &Common) ; klu_free (X, 2*n, sizeof (double), &Common) ; klu_free (R, 2*n, sizeof (double), &Common) ; } printf ("peak memory usage: %g bytes\n\n", (double) (Common.mempeak)) ; } /* ========================================================================== */ /* === main ================================================================= */ /* ========================================================================== */ /* Read in a sparse matrix in Matrix Market format using CHOLMOD, and then * solve Ax=b with KLU. Note that CHOLMOD is only used to read the matrix. */ #include "cholmod.h" int main (void) { cholmod_sparse *A ; cholmod_common ch ; cholmod_start (&ch) ; A = cholmod_read_sparse (stdin, &ch) ; if (A) { if (A->nrow != A->ncol || A->stype != 0 || (!(A->xtype == CHOLMOD_REAL || A->xtype == CHOLMOD_COMPLEX))) { printf ("invalid matrix\n") ; } else { klu_demo (A->nrow, A->p, A->i, A->x, A->xtype == CHOLMOD_REAL) ; } cholmod_free_sparse (&A, &ch) ; } cholmod_finish (&ch) ; return (0) ; } SuiteSparse/KLU/Tcov/0000755001170100242450000000000010711175713013320 5ustar davisfacSuiteSparse/KLU/Tcov/vklultests0000755001170100242450000000135210620325360015461 0ustar davisfac#!/bin/csh # 57 unique statements: valgrind ./klultest < ../Matrix/impcol_a.mtx # 20: valgrind ./klultest < ../Matrix/GD99_cc.mtx # 17: valgrind ./klultest < ../Matrix/two.mtx # 10: valgrind ./klultest < ../Matrix/w156.mtx # 3, xsize memgrow in klu_kernel valgrind ./klultest < ../Matrix/arrow.mtx # 3, xsize memgrow in klu_kernel, 1 in klu_z_condest, valgrind ./klultest < ../Matrix/arrowc.mtx # 2 in klu_z_kernel (if pivot == 0 and halt_if_singular, and in complex divide) valgrind ./klultest < ../Matrix/onec.mtx # 1 in klu_kernel (if pivot == 0 and halt if singular) valgrind ./klultest < ../Matrix/one.mtx # 1 in klu_z_condest: valgrind ./klultest < ../Matrix/1c.mtx # 1 in klu_z_condest: valgrind ./klultest < ../Matrix/ctina.mtx SuiteSparse/KLU/Tcov/Makefile0000644001170100242450000003102310710765317014763 0ustar davisfac# If the libraries (AMD, COLAMD, CAMD, CCOLAMD, metis, and CHOLMOD) are not # yet built, use "make libs" first. Then "make" to compile and run all tests. default: all include ../../UFconfig/UFconfig.mk # CFLAGS = -Wall -W -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ # -Wredundant-decls -Wnested-externs -Wdisabled-optimization \ # -pedantic -ansi -O3 -pg # for statement coverage, picky tests CFLAGS = -Wall -W -Werror -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization \ -ansi -g -ftest-coverage -fprofile-arcs -fexceptions C = $(CC) $(CFLAGS) LIB = ../../AMD/Lib/libamd.a ../../COLAMD/Lib/libcolamd.a \ ../../CHOLMOD/Lib/libcholmod.a \ ../../CAMD/Lib/libcamd.a ../../CCOLAMD/Lib/libccolamd.a \ ../../metis-4.0/libmetis.a \ -lm I = -I../../UFconfig -I../../AMD/Include -I../../COLAMD/Include \ -I../../BTF/Include -I../../CHOLMOD/Include -I../../CAMD/Include \ -I../../CCOLAMD/Include -I../../metis-4.0/Lib -I../Include -I../User PRETTY = grep -v "^\#" | indent -bl -nce -ss -bli0 -i4 -sob all: purge libs klutest klultest - ./klultests > klultests.out - ./klutests > klutests.out - ./coverage valgrind: purge klutest klultest - ./vklutests > klutests.out - ./vklultests > klultests.out - ./coverage libs: ( cd ../../AMD ; $(MAKE) library ) ( cd ../../COLAMD ; $(MAKE) library ) ( cd ../../CAMD ; $(MAKE) library ) ( cd ../../CCOLAMD ; $(MAKE) library ) ( cd ../../metis-4.0 ; $(MAKE) ) ( cd ../../CHOLMOD ; $(MAKE) library ) purge: distclean distclean: clean - $(RM) klutest klultest *.c.gcov *.out *.a cov_*.c *.gcda *.gcno clean: - $(RM) $(CLEAN) INC = \ ../Include/klu.h \ ../Include/klu_internal.h \ ../Include/klu_version.h BTFOBJ = \ cov_btf_order.o \ cov_btf_maxtrans.o \ cov_btf_strongcomp.o \ BTFLOBJ = \ cov_btf_l_order.o \ cov_btf_l_maxtrans.o \ cov_btf_l_strongcomp.o KLUOBJ = \ cov_klu_analyze.o \ cov_klu_analyze_given.o \ cov_klu_defaults.o \ cov_klu_free_symbolic.o \ cov_klu_memory.o \ cov_klu_d.o \ cov_klu_d_diagnostics.o \ cov_klu_d_dump.o \ cov_klu_d_factor.o \ cov_klu_d_free_numeric.o \ cov_klu_d_kernel.o \ cov_klu_d_extract.o \ cov_klu_d_refactor.o \ cov_klu_d_scale.o \ cov_klu_d_solve.o \ cov_klu_d_tsolve.o \ cov_klu_z.o \ cov_klu_z_diagnostics.o \ cov_klu_z_dump.o \ cov_klu_z_factor.o \ cov_klu_z_free_numeric.o \ cov_klu_z_kernel.o \ cov_klu_z_extract.o \ cov_klu_z_refactor.o \ cov_klu_z_scale.o \ cov_klu_z_solve.o \ cov_klu_z_tsolve.o KLULOBJ = \ cov_klu_l_analyze.o \ cov_klu_l_analyze_given.o \ cov_klu_l_defaults.o \ cov_klu_l_free_symbolic.o \ cov_klu_l_memory.o \ cov_klu_l.o \ cov_klu_l_diagnostics.o \ cov_klu_l_dump.o \ cov_klu_l_factor.o \ cov_klu_l_free_numeric.o \ cov_klu_l_kernel.o \ cov_klu_l_extract.o \ cov_klu_l_refactor.o \ cov_klu_l_scale.o \ cov_klu_l_solve.o \ cov_klu_l_tsolve.o \ cov_klu_zl.o \ cov_klu_zl_diagnostics.o \ cov_klu_zl_dump.o \ cov_klu_zl_factor.o \ cov_klu_zl_free_numeric.o \ cov_klu_zl_kernel.o \ cov_klu_zl_extract.o \ cov_klu_zl_refactor.o \ cov_klu_zl_scale.o \ cov_klu_zl_solve.o \ cov_klu_zl_tsolve.o KLUCHOLMODOBJ = cov_klu_cholmod.o KLUCHOLMODLOBJ = cov_klu_l_cholmod.o OBJ = $(BTFOBJ) $(KLUOBJ) $(KLUCHOLMODOBJ) LOBJ = $(BTFLOBJ) $(KLULOBJ) $(KLUCHOLMODLOBJ) $(OBJ): $(INC) $(LOBJ): $(INC) klutest: $(OBJ) klutest.c $(C) $(I) klutest.c -o klutest $(OBJ) $(LIB) klultest: $(LOBJ) klutest.c $(C) -DDLONG $(I) klutest.c -o klultest $(LOBJ) $(LIB) .c.o: $(C) -c $(I) $*.c #------------------------------------------------------------------------------- cov_klu_d.o: ../Source/klu.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d.c $(C) -c $(I) cov_klu_d.c cov_klu_z.o: ../Source/klu.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z.c $(C) -c $(I) cov_klu_z.c cov_klu_d_kernel.o: ../Source/klu_kernel.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_kernel.c $(C) -c $(I) cov_klu_d_kernel.c cov_klu_z_kernel.o: ../Source/klu_kernel.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_kernel.c $(C) -c $(I) cov_klu_z_kernel.c cov_klu_d_diagnostics.o: ../Source/klu_diagnostics.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_diagnostics.c $(C) -c $(I) cov_klu_d_diagnostics.c cov_klu_z_diagnostics.o: ../Source/klu_diagnostics.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_diagnostics.c $(C) -c $(I) cov_klu_z_diagnostics.c cov_klu_d_dump.o: ../Source/klu_dump.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_dump.c $(C) -c $(I) cov_klu_d_dump.c cov_klu_z_dump.o: ../Source/klu_dump.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_dump.c $(C) -c $(I) cov_klu_z_dump.c cov_klu_d_factor.o: ../Source/klu_factor.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_factor.c $(C) -c $(I) cov_klu_d_factor.c cov_klu_z_factor.o: ../Source/klu_factor.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_factor.c $(C) -c $(I) cov_klu_z_factor.c cov_klu_d_free_numeric.o: ../Source/klu_free_numeric.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_free_numeric.c $(C) -c $(I) cov_klu_d_free_numeric.c cov_klu_z_free_numeric.o: ../Source/klu_free_numeric.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_free_numeric.c $(C) -c $(I) cov_klu_z_free_numeric.c cov_klu_d_extract.o: ../Source/klu_extract.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_extract.c $(C) -c $(I) cov_klu_d_extract.c cov_klu_z_extract.o: ../Source/klu_extract.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_extract.c $(C) -c $(I) cov_klu_z_extract.c cov_klu_d_refactor.o: ../Source/klu_refactor.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_refactor.c $(C) -c $(I) cov_klu_d_refactor.c cov_klu_z_refactor.o: ../Source/klu_refactor.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_refactor.c $(C) -c $(I) cov_klu_z_refactor.c cov_klu_d_scale.o: ../Source/klu_scale.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_scale.c $(C) -c $(I) cov_klu_d_scale.c cov_klu_z_scale.o: ../Source/klu_scale.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_scale.c $(C) -c $(I) cov_klu_z_scale.c cov_klu_d_solve.o: ../Source/klu_solve.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_solve.c $(C) -c $(I) cov_klu_d_solve.c cov_klu_z_solve.o: ../Source/klu_solve.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_solve.c $(C) -c $(I) cov_klu_z_solve.c cov_klu_d_tsolve.o: ../Source/klu_tsolve.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_d_tsolve.c $(C) -c $(I) cov_klu_d_tsolve.c cov_klu_z_tsolve.o: ../Source/klu_tsolve.c $(C) -E $(I) -DCOMPLEX $< | $(PRETTY) > cov_klu_z_tsolve.c $(C) -c $(I) cov_klu_z_tsolve.c #------------------------------------------------------------------------------- cov_klu_analyze.o: ../Source/klu_analyze.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_analyze.c $(C) -c $(I) cov_klu_analyze.c cov_klu_analyze_given.o: ../Source/klu_analyze_given.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_analyze_given.c $(C) -c $(I) cov_klu_analyze_given.c cov_klu_defaults.o: ../Source/klu_defaults.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_defaults.c $(C) -c $(I) cov_klu_defaults.c cov_klu_free_symbolic.o: ../Source/klu_free_symbolic.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_free_symbolic.c $(C) -c $(I) cov_klu_free_symbolic.c cov_klu_memory.o: ../Source/klu_memory.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_memory.c $(C) -c $(I) cov_klu_memory.c #------------------------------------------------------------------------------- cov_btf_order.o: ../../BTF/Source/btf_order.c $(C) -E $(I) $< | $(PRETTY) > cov_btf_order.c $(C) -c $(I) cov_btf_order.c cov_btf_maxtrans.o: ../../BTF/Source/btf_maxtrans.c $(C) -E $(I) $< | $(PRETTY) > cov_btf_maxtrans.c $(C) -c $(I) cov_btf_maxtrans.c cov_btf_strongcomp.o: ../../BTF/Source/btf_strongcomp.c $(C) -E $(I) $< | $(PRETTY) > cov_btf_strongcomp.c $(C) -c $(I) cov_btf_strongcomp.c #------------------------------------------------------------------------------- cov_klu_cholmod.o: ../User/klu_cholmod.c $(C) -E $(I) $< | $(PRETTY) > cov_klu_cholmod.c $(C) -c $(I) cov_klu_cholmod.c #------------------------------------------------------------------------------- cov_klu_l.o: ../Source/klu.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l.c $(C) -c $(I) cov_klu_l.c cov_klu_zl.o: ../Source/klu.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl.c $(C) -c $(I) cov_klu_zl.c cov_klu_l_kernel.o: ../Source/klu_kernel.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_kernel.c $(C) -c $(I) cov_klu_l_kernel.c cov_klu_zl_kernel.o: ../Source/klu_kernel.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_kernel.c $(C) -c $(I) cov_klu_zl_kernel.c cov_klu_l_diagnostics.o: ../Source/klu_diagnostics.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_diagnostics.c $(C) -c $(I) cov_klu_l_diagnostics.c cov_klu_zl_diagnostics.o: ../Source/klu_diagnostics.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_diagnostics.c $(C) -c $(I) cov_klu_zl_diagnostics.c cov_klu_l_dump.o: ../Source/klu_dump.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_dump.c $(C) -c $(I) cov_klu_l_dump.c cov_klu_zl_dump.o: ../Source/klu_dump.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_dump.c $(C) -c $(I) cov_klu_zl_dump.c cov_klu_l_factor.o: ../Source/klu_factor.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_factor.c $(C) -c $(I) cov_klu_l_factor.c cov_klu_zl_factor.o: ../Source/klu_factor.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_factor.c $(C) -c $(I) cov_klu_zl_factor.c cov_klu_l_free_numeric.o: ../Source/klu_free_numeric.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_free_numeric.c $(C) -c $(I) cov_klu_l_free_numeric.c cov_klu_zl_free_numeric.o: ../Source/klu_free_numeric.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_free_numeric.c $(C) -c $(I) cov_klu_zl_free_numeric.c cov_klu_l_extract.o: ../Source/klu_extract.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_extract.c $(C) -c $(I) cov_klu_l_extract.c cov_klu_zl_extract.o: ../Source/klu_extract.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_extract.c $(C) -c $(I) cov_klu_zl_extract.c cov_klu_l_refactor.o: ../Source/klu_refactor.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_refactor.c $(C) -c $(I) cov_klu_l_refactor.c cov_klu_zl_refactor.o: ../Source/klu_refactor.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_refactor.c $(C) -c $(I) cov_klu_zl_refactor.c cov_klu_l_scale.o: ../Source/klu_scale.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_scale.c $(C) -c $(I) cov_klu_l_scale.c cov_klu_zl_scale.o: ../Source/klu_scale.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_scale.c $(C) -c $(I) cov_klu_zl_scale.c cov_klu_l_solve.o: ../Source/klu_solve.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_solve.c $(C) -c $(I) cov_klu_l_solve.c cov_klu_zl_solve.o: ../Source/klu_solve.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_solve.c $(C) -c $(I) cov_klu_zl_solve.c cov_klu_l_tsolve.o: ../Source/klu_tsolve.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_tsolve.c $(C) -c $(I) cov_klu_l_tsolve.c cov_klu_zl_tsolve.o: ../Source/klu_tsolve.c $(C) -E $(I) -DDLONG -DCOMPLEX $< | $(PRETTY) > cov_klu_zl_tsolve.c $(C) -c $(I) cov_klu_zl_tsolve.c #------------------------------------------------------------------------------- cov_klu_l_analyze.o: ../Source/klu_analyze.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_analyze.c $(C) -c $(I) cov_klu_l_analyze.c cov_klu_l_analyze_given.o: ../Source/klu_analyze_given.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_analyze_given.c $(C) -c $(I) cov_klu_l_analyze_given.c cov_klu_l_defaults.o: ../Source/klu_defaults.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_defaults.c $(C) -c $(I) cov_klu_l_defaults.c cov_klu_l_free_symbolic.o: ../Source/klu_free_symbolic.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_free_symbolic.c $(C) -c $(I) cov_klu_l_free_symbolic.c cov_klu_l_memory.o: ../Source/klu_memory.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_memory.c $(C) -c $(I) cov_klu_l_memory.c #------------------------------------------------------------------------------- cov_btf_l_order.o: ../../BTF/Source/btf_order.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_btf_l_order.c $(C) -c $(I) cov_btf_l_order.c cov_btf_l_maxtrans.o: ../../BTF/Source/btf_maxtrans.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_btf_l_maxtrans.c $(C) -c $(I) cov_btf_l_maxtrans.c cov_btf_l_strongcomp.o: ../../BTF/Source/btf_strongcomp.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_btf_l_strongcomp.c $(C) -c $(I) cov_btf_l_strongcomp.c #------------------------------------------------------------------------------- cov_klu_l_cholmod.o: ../User/klu_l_cholmod.c $(C) -E $(I) -DDLONG $< | $(PRETTY) > cov_klu_l_cholmod.c $(C) -c $(I) cov_klu_l_cholmod.c SuiteSparse/KLU/Tcov/klultests0000755001170100242450000000122010620325707015272 0ustar davisfac#!/bin/csh # 57 unique statements: ./klultest < ../Matrix/impcol_a.mtx # 20: ./klultest < ../Matrix/GD99_cc.mtx # 17: ./klultest < ../Matrix/two.mtx # 10: ./klultest < ../Matrix/w156.mtx # 3, xsize memgrow in klu_kernel ./klultest < ../Matrix/arrow.mtx # 3, xsize memgrow in klu_kernel, 1 in klu_z_condest, ./klultest < ../Matrix/arrowc.mtx # 2 in klu_z_kernel (if pivot == 0 and halt_if_singular, and in complex divide) ./klultest < ../Matrix/onec.mtx # 1 in klu_kernel (if pivot == 0 and halt if singular) ./klultest < ../Matrix/one.mtx # 1 in klu_z_condest: ./klultest < ../Matrix/1c.mtx # 1 in klu_z_condest: ./klultest < ../Matrix/ctina.mtx SuiteSparse/KLU/Tcov/klutest.c0000644001170100242450000011210510620326154015153 0ustar davisfac/* ========================================================================== */ /* === KLU test ============================================================= */ /* ========================================================================== */ /* Exhaustive test for KLU and BTF (int, long, real, and complex versions) */ #include #include "cholmod.h" #include "klu_cholmod.h" #include "klu_internal.h" #define ID Int_id #define NRHS 6 #define HALT { fprintf (stderr, "Test failure: %d\n", __LINE__) ; abort () ; } #define OK(a) { if (!(a)) HALT ; } #define FAIL(a) { if (a) HALT ; } #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifdef DLONG #define klu_z_scale klu_zl_scale #define klu_z_solve klu_zl_solve #define klu_z_tsolve klu_zl_tsolve #define klu_z_free_numeric klu_zl_free_numeric #define klu_z_factor klu_zl_factor #define klu_z_refactor klu_zl_refactor #define klu_z_lsolve klu_zl_lsolve #define klu_z_ltsolve klu_zl_ltsolve #define klu_z_usolve klu_zl_usolve #define klu_z_utsolve klu_zl_utsolve #define klu_z_defaults klu_zl_defaults #define klu_z_rgrowth klu_zl_rgrowth #define klu_z_rcond klu_zl_rcond #define klu_z_extract klu_zl_extract #define klu_z_condest klu_zl_condest #define klu_z_flops klu_zl_flops #define klu_scale klu_l_scale #define klu_solve klu_l_solve #define klu_tsolve klu_l_tsolve #define klu_free_numeric klu_l_free_numeric #define klu_factor klu_l_factor #define klu_refactor klu_l_refactor #define klu_lsolve klu_l_lsolve #define klu_ltsolve klu_l_ltsolve #define klu_usolve klu_l_usolve #define klu_utsolve klu_l_utsolve #define klu_defaults klu_l_defaults #define klu_rgrowth klu_l_rgrowth #define klu_rcond klu_l_rcond #define klu_extract klu_l_extract #define klu_condest klu_l_condest #define klu_flops klu_l_flops #define klu_analyze klu_l_analyze #define klu_analyze_given klu_l_analyze_given #define klu_malloc klu_l_malloc #define klu_free klu_l_free #define klu_realloc klu_l_realloc #define klu_free_symbolic klu_l_free_symbolic #define klu_free_numeric klu_l_free_numeric #define klu_defaults klu_l_defaults #define klu_cholmod klu_l_cholmod #endif #ifdef DLONG #define CHOLMOD_print_sparse cholmod_l_print_sparse #define CHOLMOD_print_dense cholmod_l_print_dense #define CHOLMOD_copy_sparse cholmod_l_copy_sparse #define CHOLMOD_copy_dense cholmod_l_copy_dense #define CHOLMOD_transpose cholmod_l_transpose #define CHOLMOD_sdmult cholmod_l_sdmult #define CHOLMOD_norm_dense cholmod_l_norm_dense #define CHOLMOD_norm_sparse cholmod_l_norm_sparse #define CHOLMOD_free_sparse cholmod_l_free_sparse #define CHOLMOD_free_dense cholmod_l_free_dense #define CHOLMOD_start cholmod_l_start #define CHOLMOD_read_sparse cholmod_l_read_sparse #define CHOLMOD_allocate_dense cholmod_l_allocate_dense #define CHOLMOD_finish cholmod_l_finish #else #define CHOLMOD_print_sparse cholmod_print_sparse #define CHOLMOD_print_dense cholmod_print_dense #define CHOLMOD_copy_sparse cholmod_copy_sparse #define CHOLMOD_copy_dense cholmod_copy_dense #define CHOLMOD_transpose cholmod_transpose #define CHOLMOD_sdmult cholmod_sdmult #define CHOLMOD_norm_dense cholmod_norm_dense #define CHOLMOD_norm_sparse cholmod_norm_sparse #define CHOLMOD_free_sparse cholmod_free_sparse #define CHOLMOD_free_dense cholmod_free_dense #define CHOLMOD_start cholmod_start #define CHOLMOD_read_sparse cholmod_read_sparse #define CHOLMOD_allocate_dense cholmod_allocate_dense #define CHOLMOD_finish cholmod_finish #endif /* ========================================================================== */ /* === random numbers ======================================================= */ /* ========================================================================== */ #define MY_RAND_MAX 32767 static unsigned long next = 1 ; static Int my_rand (void) { next = next * 1103515245 + 12345 ; return ((unsigned)(next/65536) % (MY_RAND_MAX+1)) ; } static void my_srand (unsigned seed) { next = seed ; } /* ========================================================================== */ /* === memory management ==================================================== */ /* ========================================================================== */ void *my_malloc (size_t size) ; void *my_calloc (size_t n, size_t size) ; void *my_realloc (void *p, size_t size) ; Int my_tries = -1 ; void *my_malloc (size_t size) { if (my_tries == 0) return (NULL) ; /* pretend to fail */ if (my_tries > 0) my_tries-- ; return (malloc (size)) ; } void *my_calloc (size_t n, size_t size) { if (my_tries == 0) return (NULL) ; /* pretend to fail */ if (my_tries > 0) my_tries-- ; return (calloc (n, size)) ; } void *my_realloc (void *p, size_t size) { if (my_tries == 0) return (NULL) ; /* pretend to fail */ if (my_tries > 0) my_tries-- ; return (realloc (p, size)) ; } static void normal_memory_handler (KLU_common *Common) { Common->malloc_memory = malloc ; Common->calloc_memory = calloc ; Common->realloc_memory = realloc ; Common->free_memory = free ; my_tries = -1 ; } static void test_memory_handler (KLU_common *Common) { Common->malloc_memory = my_malloc ; Common->calloc_memory = my_calloc ; Common->realloc_memory = my_realloc ; Common->free_memory = free ; my_tries = -1 ; } /* ========================================================================== */ /* === print_sparse ========================================================= */ /* ========================================================================== */ /* print a sparse matrix */ static void print_sparse (Int n, Int isreal, Int *Ap, Int *Ai, double *Ax, double *Az) { double ax, az ; Int i, j, p ; for (j = 0 ; j < n ; j++) { printf ("column "ID":\n", j) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (isreal) { ax = Ax [p] ; az = 0 ; } else if (Az) { /* split complex */ ax = Ax [p] ; az = Az [p] ; } else { /* merged complex */ ax = Ax [2*p ] ; az = Ax [2*p+1] ; } printf (" row "ID" : %g", i, ax) ; if (!isreal) { printf (" + (%g)i", az) ; } printf ("\n") ; } } fflush (stdout) ; } /* ========================================================================== */ /* === print_int ============================================================ */ /* ========================================================================== */ /* print an Int vector */ static void print_int (Int n, Int *P) { Int j ; for (j = 0 ; j < n ; j++) { printf (" "ID" : "ID"\n", j, P [j]) ; } fflush (stdout) ; } /* ========================================================================== */ /* === print_double ========================================================= */ /* ========================================================================== */ /* print a double vector */ static void print_double (Int n, double *X) { Int j ; for (j = 0 ; j < n ; j++) { printf (" "ID" : %g\n", j, X [j]) ; } fflush (stdout) ; } /* ========================================================================== */ /* === ludump =============================================================== */ /* ========================================================================== */ /* extract and print the LU factors */ static void ludump (KLU_symbolic *Symbolic, KLU_numeric *Numeric, Int isreal, cholmod_common *ch, KLU_common *Common) { Int *Lp, *Li, *Up, *Ui, *Fp, *Fi, *P, *Q, *R ; double *Lx, *Ux, *Fx, *Lz, *Uz, *Fz, *Rs ; Int n, lnz, unz, fnz, nb, result ; if (Symbolic == NULL || Numeric == NULL) { return ; } n = Symbolic->n ; lnz = Numeric->lnz ; unz = Numeric->unz ; fnz = Numeric->Offp [n] ; nb = Symbolic->nblocks ; printf ("n "ID" lnz "ID" unz "ID" fnz "ID" nblocks "ID" isreal "ID"\n", n, lnz, unz, fnz, nb, isreal) ; fflush (stdout) ; Lp = malloc ((n+1) * sizeof (Int)) ; Li = malloc (lnz * sizeof (Int)) ; Lx = malloc (lnz * sizeof (double)) ; Lz = malloc (lnz * sizeof (double)) ; Up = malloc ((n+1) * sizeof (Int)) ; Ui = malloc (unz * sizeof (Int)) ; Ux = malloc (unz * sizeof (double)) ; Uz = malloc (unz * sizeof (double)) ; Fp = malloc ((n+1) * sizeof (Int)) ; Fi = malloc (fnz * sizeof (Int)) ; Fx = malloc (fnz * sizeof (double)) ; Fz = malloc (fnz * sizeof (double)) ; P = malloc (n * sizeof (Int)) ; Q = malloc (n * sizeof (Int)) ; Rs = malloc (n * sizeof (double)) ; R = malloc ((nb+1) * sizeof (double)) ; if (isreal) { result = klu_extract (Numeric, Symbolic, Lp, Li, Lx, Up, Ui, Ux, Fp, Fi, Fx, P, Q, Rs, R, Common) ; } else { result = klu_z_extract (Numeric, Symbolic, Lp, Li, Lx, Lz, Up, Ui, Ux, Uz, Fp, Fi, Fx, Fz, P, Q, Rs, R, Common) ; } if (my_tries != 0) OK (result) ; if (ch->print >= 5) { printf ("------ L:\n") ; print_sparse (n, isreal, Lp, Li, Lx, Lz) ; printf ("------ U:\n") ; print_sparse (n, isreal, Up, Ui, Ux, Uz) ; printf ("------ F:\n") ; print_sparse (n, isreal, Fp, Fi, Fx, Fz) ; printf ("------ P:\n") ; print_int (n, P) ; printf ("------ Q:\n") ; print_int (n, Q) ; printf ("------ Rs:\n") ; print_double (n, Rs) ; printf ("------ R:\n") ; print_int (nb+1, R) ; } free (Lp) ; free (Li) ; free (Lx) ; free (Lz) ; free (Up) ; free (Ui) ; free (Ux) ; free (Uz) ; free (Fp) ; free (Fi) ; free (Fx) ; free (Fz) ; free (P) ; free (Q) ; free (Rs) ; free (R) ; } /* ========================================================================== */ /* === randperm ============================================================= */ /* ========================================================================== */ /* return a random permutation vector */ static Int *randperm (Int n, Int seed) { Int *p, k, j, t ; p = malloc (n * sizeof (Int)) ; for (k = 0 ; k < n ; k++) { p [k] = k ; } my_srand (seed) ; /* get new random number seed */ for (k = 0 ; k < n ; k++) { j = k + (my_rand ( ) % (n-k)) ; /* j = my_rand in range k to n-1 */ t = p [j] ; /* swap p[k] and p[j] */ p [j] = p [k] ; p [k] = t ; } return (p) ; } /* ========================================================================== */ /* === do_1_solve =========================================================== */ /* ========================================================================== */ static double do_1_solve (cholmod_sparse *A, cholmod_dense *B, cholmod_dense *Xknown, Int *Puser, Int *Quser, KLU_common *Common, cholmod_common *ch, Int *nan) { Int *Ai, *Ap ; double *Ax, *Bx, *Xknownx, *Xx, *Ax2, *Axx ; KLU_symbolic *Symbolic = NULL ; KLU_numeric *Numeric = NULL ; cholmod_dense *X = NULL, *R = NULL ; cholmod_sparse *AT = NULL, *A2 = NULL, *AT2 = NULL ; double one [2], minusone [2], rnorm, anorm, bnorm, xnorm, relresid, relerr, err = 0. ; Int i, j, nrhs2, isreal, n, nrhs, transpose, step, k, save, tries ; printf ("\ndo_1_solve: btf "ID" maxwork %g scale "ID" ordering "ID" user: " ID" P,Q: %d halt: "ID"\n", Common->btf, Common->maxwork, Common->scale, Common->ordering, Common->user_data ? (*((Int *) Common->user_data)) : -1, (Puser != NULL || Quser != NULL), Common->halt_if_singular) ; fflush (stdout) ; fflush (stderr) ; CHOLMOD_print_sparse (A, "A", ch) ; CHOLMOD_print_dense (B, "B", ch) ; Ap = A->p ; Ai = A->i ; Ax = A->x ; n = A->nrow ; isreal = (A->xtype == CHOLMOD_REAL) ; Bx = B->x ; Xknownx = Xknown->x ; nrhs = B->ncol ; one [0] = 1 ; one [1] = 0 ; minusone [0] = -1 ; minusone [1] = 0 ; /* ---------------------------------------------------------------------- */ /* symbolic analysis */ /* ---------------------------------------------------------------------- */ Symbolic = NULL ; my_tries = 0 ; for (tries = 0 ; Symbolic == NULL && my_tries == 0 ; tries++) { my_tries = tries ; if (Puser != NULL || Quser != NULL) { Symbolic = klu_analyze_given (n, Ap, Ai, Puser, Quser, Common) ; } else { Symbolic = klu_analyze (n, Ap, Ai, Common) ; } } printf ("sym try "ID" btf "ID" ordering "ID"\n", tries, Common->btf, Common->ordering) ; if (Symbolic == NULL) { printf ("Symbolic is null\n") ; return (998) ; } my_tries = -1 ; /* create a modified version of A */ A2 = CHOLMOD_copy_sparse (A, ch) ; Ax2 = A2->x ; my_srand (42) ; for (k = 0 ; k < Ap [n] * (isreal ? 1:2) ; k++) { Ax2 [k] = Ax [k] * (1 + 1e-4 * ((double) my_rand ( )) / ((double) MY_RAND_MAX)) ; } AT = isreal ? NULL : CHOLMOD_transpose (A, 1, ch) ; AT2 = isreal ? NULL : CHOLMOD_transpose (A2, 1, ch) ; /* ---------------------------------------------------------------------- */ /* factorize then solve */ /* ---------------------------------------------------------------------- */ for (step = 1 ; step <= 3 ; step++) { printf ("step: "ID"\n", step) ; fflush (stdout) ; /* ------------------------------------------------------------------ */ /* factorization or refactorization */ /* ------------------------------------------------------------------ */ /* step 1: factor step 2: refactor with same A step 3: refactor with modified A, and scaling forced on and solve each time */ if (step == 1) { /* numeric factorization */ Numeric = NULL ; my_tries = 0 ; for (tries = 0 ; Numeric == NULL && my_tries == 0 ; tries++) { my_tries = tries ; if (isreal) { Numeric = klu_factor (Ap, Ai, Ax, Symbolic, Common) ; } else { Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic, Common) ; } } printf ("num try "ID" btf "ID"\n", tries, Common->btf) ; my_tries = -1 ; if (Common->status == KLU_OK || (Common->status == KLU_SINGULAR && !Common->halt_if_singular)) { OK (Numeric) ; } else { FAIL (Numeric) ; } if (Common->status < KLU_OK) { printf ("factor failed: "ID"\n", Common->status) ; } } else if (step == 2) { /* numeric refactorization with same values, same scaling */ if (isreal) { klu_refactor (Ap, Ai, Ax, Symbolic, Numeric, Common) ; } else { klu_z_refactor (Ap, Ai, Ax, Symbolic, Numeric, Common) ; } } else { /* numeric refactorization with different values */ save = Common->scale ; if (Common->scale == 0) { Common->scale = 1 ; } for (tries = 0 ; tries <= 1 ; tries++) { my_tries = tries ; if (isreal) { klu_refactor (Ap, Ai, Ax2, Symbolic, Numeric, Common) ; } else { klu_z_refactor (Ap, Ai, Ax2, Symbolic, Numeric, Common) ; } } my_tries = -1 ; Common->scale = save ; } if (Common->status == KLU_SINGULAR) { printf ("# singular column : "ID"\n", Common->singular_col) ; } /* ------------------------------------------------------------------ */ /* diagnostics */ /* ------------------------------------------------------------------ */ Axx = (step == 3) ? Ax2 : Ax ; if (isreal) { klu_rgrowth (Ap, Ai, Axx, Symbolic, Numeric, Common) ; klu_condest (Ap, Axx, Symbolic, Numeric, Common) ; klu_rcond (Symbolic, Numeric, Common) ; klu_flops (Symbolic, Numeric, Common) ; } else { klu_z_rgrowth (Ap, Ai, Axx, Symbolic, Numeric, Common) ; klu_z_condest (Ap, Axx, Symbolic, Numeric, Common) ; klu_z_rcond (Symbolic, Numeric, Common) ; klu_z_flops (Symbolic, Numeric, Common) ; } printf ("growth %g condest %g rcond %g flops %g\n", Common->rgrowth, Common->condest, Common->rcond, Common->flops) ; ludump (Symbolic, Numeric, isreal, ch, Common) ; if (Numeric == NULL || Common->status < KLU_OK) { continue ; } /* ------------------------------------------------------------------ */ /* solve */ /* ------------------------------------------------------------------ */ /* forward/backsolve to solve A*X=B or A'*X=B */ for (transpose = (isreal ? 0 : -1) ; transpose <= 1 ; transpose++) { for (nrhs2 = 1 ; nrhs2 <= nrhs ; nrhs2++) { /* mangle B so that it has only nrhs2 columns */ B->ncol = nrhs2 ; X = CHOLMOD_copy_dense (B, ch) ; CHOLMOD_print_dense (X, "X before solve", ch) ; Xx = X->x ; if (isreal) { if (transpose) { /* solve A'x=b */ klu_tsolve (Symbolic, Numeric, n, nrhs2, Xx, Common) ; } else { /* solve A*x=b */ klu_solve (Symbolic, Numeric, n, nrhs2, Xx, Common) ; } } else { if (transpose) { /* solve A'x=b (if 1) or A.'x=b (if -1) */ klu_z_tsolve (Symbolic, Numeric, n, nrhs2, Xx, (transpose == 1), Common) ; } else { /* solve A*x=b */ klu_z_solve (Symbolic, Numeric, n, nrhs2, Xx, Common) ; } } CHOLMOD_print_dense (X, "X", ch) ; /* compute the residual, R = B-A*X, B-A'*X, or B-A.'*X */ R = CHOLMOD_copy_dense (B, ch) ; if (transpose == -1) { /* R = B-A.'*X (use A.' explicitly) */ CHOLMOD_sdmult ((step == 3) ? AT2 : AT, 0, minusone, one, X, R, ch) ; } else { /* R = B-A*X or B-A'*X */ CHOLMOD_sdmult ((step == 3) ? A2 :A, transpose, minusone, one, X, R, ch) ; } CHOLMOD_print_dense (R, "R", ch) ; /* compute the norms of R, A, X, and B */ rnorm = CHOLMOD_norm_dense (R, 1, ch) ; anorm = CHOLMOD_norm_sparse ((step == 3) ? A2 : A, 1, ch) ; xnorm = CHOLMOD_norm_dense (X, 1, ch) ; bnorm = CHOLMOD_norm_dense (B, 1, ch) ; CHOLMOD_free_dense (&R, ch) ; /* relative residual = norm (r) / (norm (A) * norm (x)) */ relresid = rnorm ; if (anorm > 0) { relresid /= anorm ; } if (xnorm > 0) { relresid /= xnorm ; } if (SCALAR_IS_NAN (relresid)) { *nan = TRUE ; } else { err = MAX (err, relresid) ; } /* relative error = norm (x - xknown) / norm (xknown) */ /* overwrite X with X - Xknown */ if (transpose || step == 3) { /* not computed */ relerr = -1 ; } else { for (j = 0 ; j < nrhs2 ; j++) { for (i = 0 ; i < n ; i++) { if (isreal) { Xx [i+j*n] -= Xknownx [i+j*n] ; } else { Xx [2*(i+j*n) ] -= Xknownx [2*(i+j*n) ] ; Xx [2*(i+j*n)+1] -= Xknownx [2*(i+j*n)+1] ; } } } relerr = CHOLMOD_norm_dense (X, 1, ch) ; xnorm = CHOLMOD_norm_dense (Xknown, 1, ch) ; if (xnorm > 0) { relerr /= xnorm ; } if (SCALAR_IS_NAN (relerr)) { *nan = TRUE ; } else { err = MAX (relerr, err) ; } } CHOLMOD_free_dense (&X, ch) ; printf (ID" "ID" relresid %10.3g relerr %10.3g %g\n", transpose, nrhs2, relresid, relerr, err) ; B->ncol = nrhs ; /* restore B */ } } } /* ---------------------------------------------------------------------- */ /* free factorization and temporary matrices, and return */ /* ---------------------------------------------------------------------- */ klu_free_symbolic (&Symbolic, Common) ; if (isreal) { klu_free_numeric (&Numeric, Common) ; } else { klu_z_free_numeric (&Numeric, Common) ; } CHOLMOD_free_sparse (&A2, ch) ; CHOLMOD_free_sparse (&AT, ch) ; CHOLMOD_free_sparse (&AT2, ch) ; fflush (stdout) ; fflush (stderr) ; return (err) ; } /* ========================================================================== */ /* === do_solves ============================================================ */ /* ========================================================================== */ /* test KLU with many options */ static double do_solves (cholmod_sparse *A, cholmod_dense *B, cholmod_dense *X, Int *Puser, Int *Quser, KLU_common *Common, cholmod_common *ch, Int *nan) { double err, maxerr = 0 ; Int n = A->nrow, sflag ; *nan = FALSE ; /* ---------------------------------------------------------------------- */ /* test KLU with the system A*X=B and default options */ /* ---------------------------------------------------------------------- */ maxerr = do_1_solve (A, B, X, NULL, NULL, Common, ch, nan) ; /* ---------------------------------------------------------------------- */ /* test with non-default options */ /* ---------------------------------------------------------------------- */ Common->user_order = klu_cholmod ; for (Common->btf = 0 ; Common->btf <= 2 ; Common->btf++) { Common->maxwork = (Common->btf == 2) ? 0.001 : 0 ; for (Common->halt_if_singular = 0 ; Common->halt_if_singular <= 1 ; Common->halt_if_singular++) { for (Common->scale = 0 ; Common->scale <= 2 ; Common->scale++) { fprintf (stderr, ".") ; fflush (stderr) ; /* orderings: 0: AMD, 1: COLAMD, 2: natural, 3: user function */ for (Common->ordering = 0 ; Common->ordering <= 3 ; Common->ordering++) { err = do_1_solve (A, B, X, NULL, NULL, Common, ch, nan) ; maxerr = MAX (maxerr, err) ; } /* user-ordering, unsymmetric case */ Common->ordering = 3 ; Common->user_data = &sflag ; sflag = 0 ; err = do_1_solve (A, B, X, NULL, NULL, Common, ch, nan) ; maxerr = MAX (maxerr, err) ; Common->user_data = NULL ; /* Puser and Quser, but only for small matrices */ Common->ordering = 2 ; if (n < 200) { err = do_1_solve (A, B, X, Puser, Quser, Common, ch, nan) ; maxerr = MAX (maxerr, err) ; } } } } /* restore defaults */ Common->btf = TRUE ; Common->maxwork = 0 ; Common->ordering = 0 ; Common->scale = -1 ; Common->halt_if_singular = TRUE ; Common->user_order = NULL ; my_tries = -1 ; return (maxerr) ; } /* ========================================================================== */ /* === main ================================================================= */ /* ========================================================================== */ int main (void) { KLU_common Common ; cholmod_sparse *A, *A2 ; cholmod_dense *X, *B ; cholmod_common ch ; Int *Ap, *Ai, *Puser, *Quser, *Gunk ; double *Ax, *Bx, *Xx, *A2x ; double one [2], zero [2], xsave, maxerr ; Int n, i, j, nz, save, isreal, k, nan ; KLU_symbolic *Symbolic, *Symbolic2 ; KLU_numeric *Numeric ; one [0] = 1 ; one [1] = 0 ; zero [0] = 0 ; zero [1] = 0 ; printf ("klu test: -------------------------------------------------\n") ; OK (klu_defaults (&Common)) ; CHOLMOD_start (&ch) ; ch.print = 0 ; normal_memory_handler (&Common) ; /* ---------------------------------------------------------------------- */ /* read in a sparse matrix from stdin */ /* ---------------------------------------------------------------------- */ A = CHOLMOD_read_sparse (stdin, &ch) ; if (A->nrow != A->ncol || A->stype != 0) { fprintf (stderr, "error: only square unsymmetric matrices handled\n") ; CHOLMOD_free_sparse (&A, &ch) ; return (0) ; } if (!(A->xtype == CHOLMOD_REAL || A->xtype == CHOLMOD_COMPLEX)) { fprintf (stderr, "error: only real or complex matrices hanlded\n") ; CHOLMOD_free_sparse (&A, &ch) ; return (0) ; } n = A->nrow ; Ap = A->p ; Ai = A->i ; Ax = A->x ; nz = Ap [n] ; isreal = (A->xtype == CHOLMOD_REAL) ; /* ---------------------------------------------------------------------- */ /* construct random permutations */ /* ---------------------------------------------------------------------- */ Puser = randperm (n, n) ; Quser = randperm (n, n) ; /* ---------------------------------------------------------------------- */ /* select known solution to Ax=b */ /* ---------------------------------------------------------------------- */ X = CHOLMOD_allocate_dense (n, NRHS, n, A->xtype, &ch) ; Xx = X->x ; for (j = 0 ; j < NRHS ; j++) { for (i = 0 ; i < n ; i++) { if (isreal) { Xx [i] = 1 + ((double) i) / ((double) n) + j * 100; } else { Xx [2*i ] = 1 + ((double) i) / ((double) n) + j * 100 ; Xx [2*i+1] = - ((double) i+1) / ((double) n + j) ; if (j == NRHS-1) { Xx [2*i+1] = 0 ; /* zero imaginary part */ } else if (j == NRHS-2) { Xx [2*i] = 0 ; /* zero real part */ } } } Xx += isreal ? n : 2*n ; } /* B = A*X */ B = CHOLMOD_allocate_dense (n, NRHS, n, A->xtype, &ch) ; CHOLMOD_sdmult (A, 0, one, zero, X, B, &ch) ; Bx = B->x ; /* ---------------------------------------------------------------------- */ /* test KLU */ /* ---------------------------------------------------------------------- */ test_memory_handler (&Common) ; maxerr = do_solves (A, B, X, Puser, Quser, &Common, &ch, &nan) ; /* ---------------------------------------------------------------------- */ /* basic error checking */ /* ---------------------------------------------------------------------- */ FAIL (klu_defaults (NULL)) ; FAIL (klu_extract (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_extract (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_extract (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_extract (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_analyze (0, NULL, NULL, NULL)) ; FAIL (klu_analyze (0, NULL, NULL, &Common)) ; FAIL (klu_analyze_given (0, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_analyze_given (0, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_cholmod (0, NULL, NULL, NULL, NULL)) ; FAIL (klu_factor (NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_factor (NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_factor (NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_factor (NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_refactor (NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_refactor (NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_refactor (NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_refactor (NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_rgrowth (NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_rgrowth (NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_rgrowth (NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_rgrowth (NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_condest (NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_condest (NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_condest (NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_condest (NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_flops (NULL, NULL, NULL)) ; FAIL (klu_flops (NULL, NULL, &Common)) ; FAIL (klu_z_flops (NULL, NULL, NULL)) ; FAIL (klu_z_flops (NULL, NULL, &Common)) ; FAIL (klu_rcond (NULL, NULL, NULL)) ; FAIL (klu_rcond (NULL, NULL, &Common)) ; FAIL (klu_z_rcond (NULL, NULL, NULL)) ; FAIL (klu_z_rcond (NULL, NULL, &Common)) ; FAIL (klu_free_symbolic (NULL, NULL)) ; OK (klu_free_symbolic (NULL, &Common)) ; FAIL (klu_free_numeric (NULL, NULL)) ; OK (klu_free_numeric (NULL, &Common)) ; FAIL (klu_z_free_numeric (NULL, NULL)) ; OK (klu_z_free_numeric (NULL, &Common)) ; FAIL (klu_scale (0, 0, NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_scale (0, 0, NULL, NULL, NULL, NULL, NULL, &Common)) ; OK (klu_scale (-1, 0, NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_z_scale (0, 0, NULL, NULL, NULL, NULL, NULL, NULL)) ; FAIL (klu_z_scale (0, 0, NULL, NULL, NULL, NULL, NULL, &Common)) ; OK (klu_z_scale (-1, 0, NULL, NULL, NULL, NULL, NULL, &Common)) ; FAIL (klu_solve (NULL, NULL, 0, 0, NULL, NULL)) ; FAIL (klu_solve (NULL, NULL, 0, 0, NULL, &Common)) ; FAIL (klu_z_solve (NULL, NULL, 0, 0, NULL, NULL)) ; FAIL (klu_z_solve (NULL, NULL, 0, 0, NULL, &Common)) ; FAIL (klu_tsolve (NULL, NULL, 0, 0, NULL, NULL)) ; FAIL (klu_tsolve (NULL, NULL, 0, 0, NULL, &Common)) ; FAIL (klu_z_tsolve (NULL, NULL, 0, 0, NULL, 0, NULL)) ; FAIL (klu_z_tsolve (NULL, NULL, 0, 0, NULL, 0, &Common)) ; FAIL (klu_malloc (0, 0, NULL)) ; FAIL (klu_malloc (0, 0, &Common)) ; FAIL (klu_malloc (Int_MAX, 1, &Common)) ; FAIL (klu_realloc (0, 0, 0, NULL, NULL)) ; FAIL (klu_realloc (0, 0, 0, NULL, &Common)) ; FAIL (klu_realloc (Int_MAX, 1, 0, NULL, &Common)) ; Gunk = (Int *) klu_realloc (1, 0, sizeof (Int), NULL, &Common) ; OK (Gunk) ; OK (klu_realloc (Int_MAX, 1, sizeof (Int), Gunk, &Common)) ; OK (Common.status == KLU_TOO_LARGE) ; klu_free (Gunk, 1, sizeof (Int), &Common) ; /* ---------------------------------------------------------------------- */ /* mangle the matrix, and other error checking */ /* ---------------------------------------------------------------------- */ printf ("\nerror handling:\n") ; Symbolic = klu_analyze (n, Ap, Ai, &Common) ; OK (Symbolic) ; Xx = X->x ; if (nz > 0) { /* ------------------------------------------------------------------ */ /* row index out of bounds */ /* ------------------------------------------------------------------ */ save = Ai [0] ; Ai [0] = -1 ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; if (isreal) { FAIL (klu_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } else { FAIL (klu_z_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } Ai [0] = save ; /* ------------------------------------------------------------------ */ /* row index out of bounds */ /* ------------------------------------------------------------------ */ save = Ai [0] ; Ai [0] = Int_MAX ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; if (isreal) { FAIL (klu_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } else { FAIL (klu_z_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } Ai [0] = save ; /* ------------------------------------------------------------------ */ /* column pointers mangled */ /* ------------------------------------------------------------------ */ save = Ap [n] ; Ap [n] = -1 ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; if (isreal) { FAIL (klu_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } else { FAIL (klu_z_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } Ap [n] = save ; /* ------------------------------------------------------------------ */ /* column pointers mangled */ /* ------------------------------------------------------------------ */ save = Ap [n] ; Ap [n] = Ap [n-1] - 1 ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; if (isreal) { FAIL (klu_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } else { FAIL (klu_z_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } Ap [n] = save ; /* ------------------------------------------------------------------ */ /* duplicates */ /* ------------------------------------------------------------------ */ if (n > 1 && Ap [1] - Ap [0] > 1) { save = Ai [1] ; Ai [1] = Ai [0] ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; if (isreal) { FAIL (klu_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } else { FAIL (klu_z_scale (1, n, Ap, Ai, Ax, Xx, Puser, &Common)) ; } Ai [1] = save ; } /* ------------------------------------------------------------------ */ /* invalid ordering */ /* ------------------------------------------------------------------ */ save = Common.ordering ; Common.ordering = 42 ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; Common.ordering = save ; /* ------------------------------------------------------------------ */ /* invalid ordering (klu_cholmod, with NULL user_ordering) */ /* ------------------------------------------------------------------ */ save = Common.ordering ; Common.user_order = NULL ; Common.ordering = 3 ; FAIL (klu_analyze (n, Ap, Ai, &Common)) ; Common.ordering = save ; } /* ---------------------------------------------------------------------- */ /* tests with valid symbolic factorization */ /* ---------------------------------------------------------------------- */ Common.halt_if_singular = FALSE ; Common.scale = 0 ; Numeric = NULL ; if (nz > 0) { /* ------------------------------------------------------------------ */ /* Int overflow */ /* ------------------------------------------------------------------ */ if (n == 100) { Common.ordering = 2 ; Symbolic2 = klu_analyze (n, Ap, Ai, &Common) ; OK (Symbolic2) ; Common.memgrow = Int_MAX ; if (isreal) { Numeric = klu_factor (Ap, Ai, Ax, Symbolic2, &Common) ; } else { Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic2, &Common) ; } Common.memgrow = 1.2 ; Common.ordering = 0 ; klu_free_symbolic (&Symbolic2, &Common) ; klu_free_numeric (&Numeric, &Common) ; } /* ------------------------------------------------------------------ */ /* Int overflow again */ /* ------------------------------------------------------------------ */ Common.initmem = Int_MAX ; Common.initmem_amd = Int_MAX ; if (isreal) { Numeric = klu_factor (Ap, Ai, Ax, Symbolic, &Common) ; } else { Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic, &Common) ; } Common.initmem = 10 ; Common.initmem_amd = 1.2 ; klu_free_numeric (&Numeric, &Common) ; /* ------------------------------------------------------------------ */ /* mangle the matrix */ /* ------------------------------------------------------------------ */ save = Ai [0] ; Ai [0] = -1 ; if (isreal) { Numeric = klu_factor (Ap, Ai, Ax, Symbolic, &Common) ; } else { Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic, &Common) ; } FAIL (Numeric) ; Ai [0] = save ; /* ------------------------------------------------------------------ */ /* nan and inf handling */ /* ------------------------------------------------------------------ */ xsave = Ax [0] ; Ax [0] = one [0] / zero [0] ; if (isreal) { Numeric = klu_factor (Ap, Ai, Ax, Symbolic, &Common) ; klu_rcond (Symbolic, Numeric, &Common) ; klu_condest (Ap, Ax, Symbolic, Numeric, &Common) ; } else { Numeric = klu_z_factor (Ap, Ai, Ax, Symbolic, &Common) ; klu_z_rcond (Symbolic, Numeric, &Common) ; klu_z_condest (Ap, Ax, Symbolic, Numeric, &Common) ; } printf ("Nan case: rcond %g condest %g\n", Common.rcond, Common.condest) ; OK (Numeric) ; Ax [0] = xsave ; /* ------------------------------------------------------------------ */ /* mangle the matrix again */ /* ------------------------------------------------------------------ */ save = Ai [0] ; Ai [0] = -1 ; if (isreal) { FAIL (klu_refactor (Ap, Ai, Ax, Symbolic, Numeric, &Common)) ; } else { FAIL (klu_z_refactor (Ap, Ai, Ax, Symbolic, Numeric, &Common)) ; } Ai [0] = save ; /* ------------------------------------------------------------------ */ /* all zero */ /* ------------------------------------------------------------------ */ A2 = CHOLMOD_copy_sparse (A, &ch) ; A2x = A2->x ; for (k = 0 ; k < nz * (isreal ? 1:2) ; k++) { A2x [k] = 0 ; } for (Common.halt_if_singular = 0 ; Common.halt_if_singular <= 1 ; Common.halt_if_singular++) { for (Common.scale = -1 ; Common.scale <= 2 ; Common.scale++) { if (isreal) { klu_refactor (Ap, Ai, A2x, Symbolic, Numeric, &Common) ; klu_condest (Ap, A2x, Symbolic, Numeric, &Common) ; } else { klu_z_refactor (Ap, Ai, A2x, Symbolic, Numeric, &Common) ; klu_z_condest (Ap, A2x, Symbolic, Numeric, &Common) ; } OK (Common.status = KLU_SINGULAR) ; } } CHOLMOD_free_sparse (&A2, &ch) ; /* ------------------------------------------------------------------ */ /* all one, or all 1i for complex case */ /* ------------------------------------------------------------------ */ A2 = CHOLMOD_copy_sparse (A, &ch) ; A2x = A2->x ; for (k = 0 ; k < nz ; k++) { if (isreal) { A2x [k] = 1 ; } else { A2x [2*k ] = 0 ; A2x [2*k+1] = 1 ; } } Common.halt_if_singular = 0 ; Common.scale = 0 ; if (isreal) { klu_refactor (Ap, Ai, A2x, Symbolic, Numeric, &Common) ; klu_condest (Ap, A2x, Symbolic, Numeric, &Common) ; } else { klu_z_refactor (Ap, Ai, A2x, Symbolic, Numeric, &Common) ; klu_z_condest (Ap, A2x, Symbolic, Numeric, &Common) ; } OK (Common.status = KLU_SINGULAR) ; CHOLMOD_free_sparse (&A2, &ch) ; } klu_free_symbolic (&Symbolic, &Common) ; if (isreal) { klu_free_numeric (&Numeric, &Common) ; } else { klu_z_free_numeric (&Numeric, &Common) ; } /* ---------------------------------------------------------------------- */ /* free problem and quit */ /* ---------------------------------------------------------------------- */ CHOLMOD_free_dense (&X, &ch) ; CHOLMOD_free_dense (&B, &ch) ; CHOLMOD_free_sparse (&A, &ch) ; free (Puser) ; free (Quser) ; CHOLMOD_finish (&ch) ; fprintf (stderr, " maxerr %10.3e", maxerr) ; printf (" maxerr %10.3e", maxerr) ; if (maxerr < 1e-8) { fprintf (stderr, " test passed") ; printf (" test passed") ; } else { fprintf (stderr, " test FAILED") ; printf (" test FAILED") ; } if (nan) { fprintf (stderr, " *") ; printf (" *") ; } fprintf (stderr, "\n") ; printf ("\n-----------------------------------------------------------\n") ; return (0) ; } SuiteSparse/KLU/Tcov/coverage0000755001170100242450000000014610614771343015045 0ustar davisfac#!/bin/csh gcov cov*.c >& /dev/null echo -n 'statements not covered: ' grep "#####" *.c.gcov | wc -l SuiteSparse/KLU/Tcov/README.txt0000644001170100242450000000035510614773140015021 0ustar davisfacTest suite for KLU To compile and run the test suite, first type "make" in the Linux/Unix shell. The libraries must be compiled first (if they aren't use "make libs"). "make clean" or "make distclean" will remove all unnecessary files. SuiteSparse/KLU/Tcov/vklutests0000755001170100242450000000134010620325362015304 0ustar davisfac#!/bin/csh # 57 unique statements: valgrind ./klutest < ../Matrix/impcol_a.mtx # 20: valgrind ./klutest < ../Matrix/GD99_cc.mtx # 17: valgrind ./klutest < ../Matrix/two.mtx # 10: valgrind ./klutest < ../Matrix/w156.mtx # 3, xsize memgrow in klu_kernel valgrind ./klutest < ../Matrix/arrow.mtx # 3, xsize memgrow in klu_kernel, 1 in klu_z_condest, valgrind ./klutest < ../Matrix/arrowc.mtx # 2 in klu_z_kernel (if pivot == 0 and halt_if_singular, and in complex divide) valgrind ./klutest < ../Matrix/onec.mtx # 1 in klu_kernel (if pivot == 0 and halt if singular) valgrind ./klutest < ../Matrix/one.mtx # 1 in klu_z_condest: valgrind ./klutest < ../Matrix/1c.mtx # 1 in klu_z_condest: valgrind ./klutest < ../Matrix/ctina.mtx SuiteSparse/KLU/Tcov/klutests0000755001170100242450000000120610620325354015120 0ustar davisfac#!/bin/csh # 57 unique statements: ./klutest < ../Matrix/impcol_a.mtx # 20: ./klutest < ../Matrix/GD99_cc.mtx # 17: ./klutest < ../Matrix/two.mtx # 10: ./klutest < ../Matrix/w156.mtx # 3, xsize memgrow in klu_kernel ./klutest < ../Matrix/arrow.mtx # 3, xsize memgrow in klu_kernel, 1 in klu_z_condest, ./klutest < ../Matrix/arrowc.mtx # 2 in klu_z_kernel (if pivot == 0 and halt_if_singular, and in complex divide) ./klutest < ../Matrix/onec.mtx # 1 in klu_kernel (if pivot == 0 and halt if singular) ./klutest < ../Matrix/one.mtx # 1 in klu_z_condest: ./klutest < ../Matrix/1c.mtx # 1 in klu_z_condest: ./klutest < ../Matrix/ctina.mtx SuiteSparse/KLU/User/0000755001170100242450000000000010620123411013306 5ustar davisfacSuiteSparse/KLU/User/klu_l_cholmod.c0000644001170100242450000000633710616733361016316 0ustar davisfac/* ========================================================================== */ /* === klu_cholmod ========================================================== */ /* ========================================================================== */ /* klu_l_cholmod: user-defined ordering function to interface KLU to CHOLMOD. * * This routine is an example of a user-provided ordering function for KLU. * Its return value is klu_l_cholmod's estimate of max (nnz(L),nnz(U)): * 0 if error, * -1 if OK, but estimate of max (nnz(L),nnz(U)) not computed * > 0 if OK and estimate computed. * * This function can be assigned to KLU's Common->user_order function pointer. */ #include "klu_cholmod.h" #include "cholmod.h" #define TRUE 1 #define FALSE 0 UF_long klu_l_cholmod ( /* inputs */ UF_long n, /* A is n-by-n */ UF_long Ap [ ], /* column pointers */ UF_long Ai [ ], /* row indices */ /* outputs */ UF_long Perm [ ], /* fill-reducing permutation */ /* user-defined */ klu_l_common *Common /* user-defined data is in Common->user_data */ ) { double one [2] = {1,0}, zero [2] = {0,0}, lnz = 0 ; cholmod_sparse Amatrix, *A, *AT, *S ; cholmod_factor *L ; cholmod_common cm ; UF_long *P ; UF_long k, symmetric ; if (Ap == NULL || Ai == NULL || Perm == NULL || n < 0) { /* invalid inputs */ return (0) ; } /* start CHOLMOD */ cholmod_l_start (&cm) ; cm.supernodal = CHOLMOD_SIMPLICIAL ; cm.print = 0 ; /* use KLU memory management routines for CHOLMOD */ cm.malloc_memory = Common->malloc_memory ; cm.realloc_memory = Common->realloc_memory ; cm.calloc_memory = Common->calloc_memory ; cm.free_memory = Common->free_memory ; /* construct a CHOLMOD version of the input matrix A */ A = &Amatrix ; A->nrow = n ; /* A is n-by-n */ A->ncol = n ; A->nzmax = Ap [n] ; /* with nzmax entries */ A->packed = TRUE ; /* there is no A->nz array */ A->stype = 0 ; /* A is unsymmetric */ A->itype = CHOLMOD_INT ; A->xtype = CHOLMOD_PATTERN ; A->dtype = CHOLMOD_DOUBLE ; A->nz = NULL ; A->p = Ap ; /* column pointers */ A->i = Ai ; /* row indices */ A->x = NULL ; /* no numerical values */ A->z = NULL ; A->sorted = FALSE ; /* columns of A are not sorted */ /* get the user_data; default is symmetric if user_data is NULL */ symmetric = (Common->user_data == NULL) ? TRUE : (((UF_long *) (Common->user_data)) [0] != 0) ; /* AT = pattern of A' */ AT = cholmod_l_transpose (A, 0, &cm) ; if (symmetric) { /* S = the symmetric pattern of A+A' */ S = cholmod_l_add (A, AT, one, zero, FALSE, FALSE, &cm) ; cholmod_l_free_sparse (&AT, &cm) ; if (S != NULL) { S->stype = 1 ; } } else { /* S = A'. CHOLMOD will order S*S', which is A'*A */ S = AT ; } /* order and analyze S or S*S' */ L = cholmod_l_analyze (S, &cm) ; /* copy the permutation from L to the output */ if (L != NULL) { P = L->Perm ; for (k = 0 ; k < n ; k++) { Perm [k] = P [k] ; } lnz = cm.lnz ; } cholmod_l_free_sparse (&S, &cm) ; cholmod_l_free_factor (&L, &cm) ; cholmod_l_finish (&cm) ; return (lnz) ; } SuiteSparse/KLU/User/Makefile0000644001170100242450000000104510615511420014753 0ustar davisfacdefault: all include ../../UFconfig/UFconfig.mk all: libklu_cholmod.a I = -I../../CHOLMOD/Include -I../../UFconfig -I../Include -I../../AMD/Include \ -I../../BTF/Include -I../../COLAMD libklu_cholmod.a: library klu_cholmod.c klu_cholmod.h $(CC) $(CFLAGS) $(I) -c klu_cholmod.c $(AR) libklu_cholmod.a klu_cholmod.o $(RANLIB) libklu_cholmod.a distclean: purge purge: clean - $(RM) *.o *.a clean: - $(RM) $(CLEAN) library: ( cd ../../AMD ; $(MAKE) library ) ( cd ../../COLAMD ; $(MAKE) library ) ( cd ../../CHOLMOD/Lib ; $(MAKE) ) SuiteSparse/KLU/User/klu_cholmod.c0000644001170100242450000000625010616230755015774 0ustar davisfac/* ========================================================================== */ /* === klu_cholmod ========================================================== */ /* ========================================================================== */ /* klu_cholmod: user-defined ordering function to interface KLU to CHOLMOD. * * This routine is an example of a user-provided ordering function for KLU. * Its return value is klu_cholmod's estimate of max (nnz(L),nnz(U)): * 0 if error, * -1 if OK, but estimate of max (nnz(L),nnz(U)) not computed * > 0 if OK and estimate computed. * * This function can be assigned to KLU's Common->user_order function pointer. */ #include "klu_cholmod.h" #include "cholmod.h" #define TRUE 1 #define FALSE 0 int klu_cholmod ( /* inputs */ int n, /* A is n-by-n */ int Ap [ ], /* column pointers */ int Ai [ ], /* row indices */ /* outputs */ int Perm [ ], /* fill-reducing permutation */ /* user-defined */ klu_common *Common /* user-defined data is in Common->user_data */ ) { double one [2] = {1,0}, zero [2] = {0,0}, lnz = 0 ; cholmod_sparse Amatrix, *A, *AT, *S ; cholmod_factor *L ; cholmod_common cm ; int *P ; int k, symmetric ; if (Ap == NULL || Ai == NULL || Perm == NULL || n < 0) { /* invalid inputs */ return (0) ; } /* start CHOLMOD */ cholmod_start (&cm) ; cm.supernodal = CHOLMOD_SIMPLICIAL ; cm.print = 0 ; /* use KLU memory management routines for CHOLMOD */ cm.malloc_memory = Common->malloc_memory ; cm.realloc_memory = Common->realloc_memory ; cm.calloc_memory = Common->calloc_memory ; cm.free_memory = Common->free_memory ; /* construct a CHOLMOD version of the input matrix A */ A = &Amatrix ; A->nrow = n ; /* A is n-by-n */ A->ncol = n ; A->nzmax = Ap [n] ; /* with nzmax entries */ A->packed = TRUE ; /* there is no A->nz array */ A->stype = 0 ; /* A is unsymmetric */ A->itype = CHOLMOD_INT ; A->xtype = CHOLMOD_PATTERN ; A->dtype = CHOLMOD_DOUBLE ; A->nz = NULL ; A->p = Ap ; /* column pointers */ A->i = Ai ; /* row indices */ A->x = NULL ; /* no numerical values */ A->z = NULL ; A->sorted = FALSE ; /* columns of A are not sorted */ /* get the user_data; default is symmetric if user_data is NULL */ symmetric = (Common->user_data == NULL) ? TRUE : (((int *) (Common->user_data)) [0] != 0) ; /* AT = pattern of A' */ AT = cholmod_transpose (A, 0, &cm) ; if (symmetric) { /* S = the symmetric pattern of A+A' */ S = cholmod_add (A, AT, one, zero, FALSE, FALSE, &cm) ; cholmod_free_sparse (&AT, &cm) ; if (S != NULL) { S->stype = 1 ; } } else { /* S = A'. CHOLMOD will order S*S', which is A'*A */ S = AT ; } /* order and analyze S or S*S' */ L = cholmod_analyze (S, &cm) ; /* copy the permutation from L to the output */ if (L != NULL) { P = L->Perm ; for (k = 0 ; k < n ; k++) { Perm [k] = P [k] ; } lnz = cm.lnz ; } cholmod_free_sparse (&S, &cm) ; cholmod_free_factor (&L, &cm) ; cholmod_finish (&cm) ; return (lnz) ; } SuiteSparse/KLU/User/klu_cholmod.h0000644001170100242450000000034210616223645015775 0ustar davisfac#include "klu.h" #include "UFconfig.h" int klu_cholmod (int n, int Ap [ ], int Ai [ ], int Perm [ ], klu_common *) ; UF_long klu_l_cholmod (UF_long n, UF_long Ap [ ], UF_long Ai [ ], UF_long Perm [ ], klu_l_common *) ; SuiteSparse/KLU/User/README.txt0000644001170100242450000000016410615514712015021 0ustar davisfacThis directory contains a sample user-ordering function, klu_cholmod. Its use (and the use of CHOLMOD) is optional. SuiteSparse/KLU/Makefile0000644001170100242450000000071710710742743014054 0ustar davisfacdefault: library include ../UFconfig/UFconfig.mk library: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) clean: ( cd Demo ; $(MAKE) clean ) ( cd Lib ; $(MAKE) clean ) ( cd Tcov ; $(MAKE) clean ) distclean: ( cd Demo ; $(MAKE) distclean ) ( cd Lib ; $(MAKE) distclean ) ( cd Tcov ; $(MAKE) distclean ) ( cd User ; $(MAKE) distclean ) ( cd MATLAB ; $(MAKE) distclean ) mex: ( cd MATLAB ; $(MAKE) ) purge: distclean cov: library ( cd Tcov ; $(MAKE) ) SuiteSparse/KLU/MATLAB/0000755001170100242450000000000010712165101013334 5ustar davisfacSuiteSparse/KLU/MATLAB/klu_make.m0000644001170100242450000002474610621026431015320 0ustar davisfacfunction klu_make (with_cholmod) %KLU_MAKE compiles the KLU mexFunctions % % Example: % klu_make % compiles KLU without CHOLMOD % klu_make (1) % with CHOLMOD, CCAMD, CCOLAMD, and METIS % % KLU relies on AMD, COLAMD, and BTF for its ordering options, and can % optionally use CHOLMOD, CCOLAMD, CAMD, and METIS as well. By default, % CHOLMOD, CCOLAMD, CAMD, and METIS are not used. % % See http://www-users.cs.umn.edu/~karypis/metis for a copy of METIS 4.0.1. % % You must type the klu_make command while in the KLU/MATLAB directory. % % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse if (nargin < 1) with_cholmod = 0 ; end details = 0 ; % if 1, print details of each command % modify this if your copy of METIS is not in SuiteSparse/metis-4.0: metis_path = '../../metis-4.0' ; d = '' ; if (~isempty (strfind (computer, '64'))) % 64-bit MATLAB d = '-largeArrayDims' ; end fprintf ('Compiling KLU ') ; kk = 0 ; include = '-I. -I../../AMD/Include -I../../COLAMD/Include -I../Include -I../../UFconfig -I../../BTF/Include' ; if (with_cholmod) include = [include ' -I../../CCOLAMD/Include -I../../CAMD/Include -I../../CHOLMOD/Include -I../../UFconfig -I' metis_path '/Lib -I../User'] ; end % do not attempt to compile CHOLMOD with large file support (not needed) include = [include ' -DNLARGEFILE'] ; % fix the METIS 4.0.1 rename.h file if (with_cholmod) fprintf ('with CHOLMOD, CCAMD, CCOLAMD, and METIS\n') ; f = fopen ('rename.h', 'w') ; if (f == -1) error ('unable to create rename.h in current directory') ; end fprintf (f, '/* do not edit this file; generated by klu_make */\n') ; fprintf (f, '#undef log2\n') ; fprintf (f, '#include "%s/Lib/rename.h"\n', metis_path) ; fprintf (f, '#undef log2\n') ; fprintf (f, '#define log2 METIS__log2\n') ; fprintf (f, '#include "mex.h"\n') ; fprintf (f, '#define malloc mxMalloc\n') ; fprintf (f, '#define free mxFree\n') ; fprintf (f, '#define calloc mxCalloc\n') ; fprintf (f, '#define realloc mxRealloc\n') ; fclose (f) ; include = ['-DNSUPERNODAL -DNMODIFY -DNMATRIXOPS -DNCHECK ' include] ; else fprintf ('without CHOLMOD, CCAMD, CCOLAMD, and METIS\n') ; include = ['-DNCHOLMOD ' include] ; end include = strrep (include, '/', filesep) ; amd_src = { ... '../../AMD/Source/amd_1', ... '../../AMD/Source/amd_2', ... '../../AMD/Source/amd_aat', ... '../../AMD/Source/amd_control', ... '../../AMD/Source/amd_defaults', ... '../../AMD/Source/amd_dump', ... '../../AMD/Source/amd_global', ... '../../AMD/Source/amd_info', ... '../../AMD/Source/amd_order', ... '../../AMD/Source/amd_postorder', ... '../../AMD/Source/amd_post_tree', ... '../../AMD/Source/amd_preprocess', ... '../../AMD/Source/amd_valid' } ; camd_src = { ... '../../CAMD/Source/camd_1', ... '../../CAMD/Source/camd_2', ... '../../CAMD/Source/camd_aat', ... '../../CAMD/Source/camd_control', ... '../../CAMD/Source/camd_defaults', ... '../../CAMD/Source/camd_dump', ... '../../CAMD/Source/camd_global', ... '../../CAMD/Source/camd_info', ... '../../CAMD/Source/camd_order', ... '../../CAMD/Source/camd_postorder', ... '../../CAMD/Source/camd_preprocess', ... '../../CAMD/Source/camd_valid' } ; colamd_src = { '../../COLAMD/Source/colamd', ... '../../COLAMD/Source/colamd_global' } ; ccolamd_src = { '../../CCOLAMD/Source/ccolamd', ... '../../CCOLAMD/Source/ccolamd_global' } ; metis_src = { 'Lib/balance', ... 'Lib/bucketsort', ... 'Lib/ccgraph', ... 'Lib/coarsen', ... 'Lib/compress', ... 'Lib/debug', ... 'Lib/estmem', ... 'Lib/fm', ... 'Lib/fortran', ... 'Lib/frename', ... 'Lib/graph', ... 'Lib/initpart', ... 'Lib/kmetis', ... 'Lib/kvmetis', ... 'Lib/kwayfm', ... 'Lib/kwayrefine', ... 'Lib/kwayvolfm', ... 'Lib/kwayvolrefine', ... 'Lib/match', ... 'Lib/mbalance2', ... 'Lib/mbalance', ... 'Lib/mcoarsen', ... 'Lib/memory', ... 'Lib/mesh', ... 'Lib/meshpart', ... 'Lib/mfm2', ... 'Lib/mfm', ... 'Lib/mincover', ... 'Lib/minitpart2', ... 'Lib/minitpart', ... 'Lib/mkmetis', ... 'Lib/mkwayfmh', ... 'Lib/mkwayrefine', ... 'Lib/mmatch', ... 'Lib/mmd', ... 'Lib/mpmetis', ... 'Lib/mrefine2', ... 'Lib/mrefine', ... 'Lib/mutil', ... 'Lib/myqsort', ... 'Lib/ometis', ... 'Lib/parmetis', ... 'Lib/pmetis', ... 'Lib/pqueue', ... 'Lib/refine', ... 'Lib/separator', ... 'Lib/sfm', ... 'Lib/srefine', ... 'Lib/stat', ... 'Lib/subdomains', ... 'Lib/timing', ... 'Lib/util' } ; for i = 1:length (metis_src) metis_src {i} = [metis_path '/' metis_src{i}] ; end cholmod_src = { '../../CHOLMOD/Core/cholmod_aat', ... '../../CHOLMOD/Core/cholmod_add', ... '../../CHOLMOD/Core/cholmod_band', ... '../../CHOLMOD/Core/cholmod_change_factor', ... '../../CHOLMOD/Core/cholmod_common', ... '../../CHOLMOD/Core/cholmod_complex', ... '../../CHOLMOD/Core/cholmod_copy', ... '../../CHOLMOD/Core/cholmod_dense', ... '../../CHOLMOD/Core/cholmod_error', ... '../../CHOLMOD/Core/cholmod_factor', ... '../../CHOLMOD/Core/cholmod_memory', ... '../../CHOLMOD/Core/cholmod_sparse', ... '../../CHOLMOD/Core/cholmod_transpose', ... '../../CHOLMOD/Core/cholmod_triplet', ... '../../CHOLMOD/Cholesky/cholmod_amd', ... '../../CHOLMOD/Cholesky/cholmod_analyze', ... '../../CHOLMOD/Cholesky/cholmod_colamd', ... '../../CHOLMOD/Cholesky/cholmod_etree', ... '../../CHOLMOD/Cholesky/cholmod_postorder', ... '../../CHOLMOD/Cholesky/cholmod_rowcolcounts', ... '../../CHOLMOD/Partition/cholmod_ccolamd', ... '../../CHOLMOD/Partition/cholmod_csymamd', ... '../../CHOLMOD/Partition/cholmod_camd', ... '../../CHOLMOD/Partition/cholmod_metis', ... '../../CHOLMOD/Partition/cholmod_nesdis' } ; btf_src = { '../../BTF/Source/btf_maxtrans', ... '../../BTF/Source/btf_order', ... '../../BTF/Source/btf_strongcomp' } ; klu_src = { '../Source/klu_free_symbolic', ... '../Source/klu_defaults', ... '../Source/klu_analyze_given', ... '../Source/klu_analyze', ... '../Source/klu_memory' } ; if (with_cholmod) klu_src = [klu_src { '../User/klu_l_cholmod' }] ; %#ok end klu_zlsrc = { '../Source/klu', ... '../Source/klu_kernel', ... '../Source/klu_dump', ... '../Source/klu_factor', ... '../Source/klu_free_numeric', ... '../Source/klu_solve', ... '../Source/klu_scale', ... '../Source/klu_refactor', ... '../Source/klu_tsolve', ... '../Source/klu_diagnostics', ... '../Source/klu_sort', ... '../Source/klu_extract', ... } ; klu_lobj = { 'klu_l', ... 'klu_l_kernel', ... 'klu_l_dump', ... 'klu_l_factor', ... 'klu_l_free_numeric', ... 'klu_l_solve', ... 'klu_l_scale', ... 'klu_l_refactor', ... 'klu_l_tsolve', ... 'klu_l_diagnostics', ... 'klu_l_sort', ... 'klu_l_extract', ... } ; klu_zlobj = { 'klu_zl', ... 'klu_zl_kernel', ... 'klu_zl_dump', ... 'klu_zl_factor', ... 'klu_zl_free_numeric', ... 'klu_zl_solve', ... 'klu_zl_scale', ... 'klu_zl_refactor', ... 'klu_zl_tsolve', ... 'klu_zl_diagnostics', ... 'klu_zl_sort', ... 'klu_zl_extract', ... } ; try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) % Windows does not have drand48 and srand48, required by METIS. Use % drand48 and srand48 in CHOLMOD/MATLAB/Windows/rand48.c instead. obj_extension = '.obj' ; cholmod_src = [cholmod_src {'../../CHOLMOD/MATLAB/Windows/rand48'}] ; include = [include ' -I../../CHOLMOD/MATLAB/Windows'] ; else obj_extension = '.o' ; end % compile each library source file obj = ' ' ; source = [amd_src btf_src klu_src colamd_src] ; if (with_cholmod) source = [metis_src ccolamd_src camd_src cholmod_src source] ; end for f = source fs = strrep (f {1}, '/', filesep) ; slash = strfind (fs, filesep) ; if (isempty (slash)) slash = 1 ; else slash = slash (end) + 1 ; end o = fs (slash:end) ; obj = [obj ' ' o obj_extension] ; %#ok s = sprintf ('mex %s -DDLONG -O %s -c %s.c', d, include, fs) ; kk = do_cmd (s, kk, details) ; end for k = 1:length(klu_zlsrc) ff = strrep (klu_zlsrc {k}, '/', filesep) ; slash = strfind (ff, filesep) ; if (isempty (slash)) slash = 1 ; else slash = slash (end) + 1 ; end o = ff (slash:end) ; s = sprintf ('mex %s -DDLONG -O %s -c %s.c', d, include, ff) ; kk = do_cmd (s, kk, details) ; lobj = klu_lobj {k} ; obj = [obj ' ' lobj obj_extension] ; %#ok mvfile ([o obj_extension], [lobj obj_extension]) ; s = sprintf ('mex %s -DDLONG -DCOMPLEX -O %s -c %s.c', d, include, ff) ; kk = do_cmd (s, kk, details) ; zlobj = klu_zlobj {k} ; obj = [obj ' ' zlobj obj_extension] ; %#ok mvfile ([o obj_extension], [zlobj obj_extension]) ; end % compile the KLU mexFunction s = sprintf ('mex %s -DDLONG -O %s -output klu klu_mex.c', d, include) ; s = [s obj] ; %#ok kk = do_cmd (s, kk, details) ; % clean up s = ['delete ' obj] ; do_cmd (s, kk, details) ; fprintf ('\nKLU successfully compiled\n') ; %------------------------------------------------------------------------------- function rmfile (file) % rmfile: delete a file, but only if it exists if (length (dir (file)) > 0) %#ok delete (file) ; end %------------------------------------------------------------------------------- function cpfile (src, dst) % cpfile: copy the src file to the filename dst, overwriting dst if it exists rmfile (dst) if (length (dir (src)) == 0) %#ok fprintf ('File does not exist: %s\n', src) ; error ('File does not exist') ; end copyfile (src, dst) ; %------------------------------------------------------------------------------- function mvfile (src, dst) % mvfile: move the src file to the filename dst, overwriting dst if it exists cpfile (src, dst) ; rmfile (src) ; %------------------------------------------------------------------------------- function kk = do_cmd (s, kk, details) %DO_CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s\n', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; SuiteSparse/KLU/MATLAB/Test/0000755001170100242450000000000010711446037014264 5ustar davisfacSuiteSparse/KLU/MATLAB/Test/klu_test.m0000644001170100242450000000043610710510521016264 0ustar davisfacfunction klu_test (nmat) %klu_test KLU test % Example: % klu_test % % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse if (nargin < 1) nmat = 500 ; end test1 (nmat) ; test2 (nmat) ; test3 ; test4 (nmat) ; test5 ; SuiteSparse/KLU/MATLAB/Test/test1.m0000644001170100242450000000455310711446035015507 0ustar davisfacfunction test1 (nmat) %test1: KLU test % Example: % test1 % % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; index = UFget ; f = find (index.nrows == index.ncols & index.isReal) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; h = waitbar (0, 'KLU test 1 of 5') ; if (nargin < 1) nmat = 500 ; end nmat = min (nmat, length (f)) ; % just use the first 100 matrices nmat = min (nmat, 100) ; f = f (1:nmat) ; % f = 274 % f = 101 ; % MATLAB condest is poor nmat = length (f) ; conds_klu = ones (1,nmat) ; conds_matlab = ones (1,nmat) ; figure (1) clf try for k = 1:nmat waitbar (k/nmat, h) ; i = f (k) ; try c = -1 ; blocks = 0 ; rho = 0 ; c2 = 0 ; r1 = 0 ; r2 = 0 ; err = 0 ; Prob = UFget (i,index) ; A = Prob.A ; c = condest (A) ; % klu (A) % [L,U,p,q,R,F,r,info] = klu (A) ; [LU, info, c2] = klu (A) ; L = LU.L ; U = LU.U ; p = LU.p ; q = LU.q ; R = LU.R ; F = LU.F ; r = LU.r ; blocks = length (r) - 1 ; n = size (A,1) ; b = rand (n,1) ; x = klu (LU,'\',b) ; err = norm (A*x-b,1) / norm (A,1) ; % info rho = lu_normest (R\A(p,q) - F, L, U) ; r1 = info.rcond ; r2 = full (min (abs (diag (U))) / max (abs (diag (U)))) ; if (r1 ~= r2) fprintf ('!\n') ; pause end conds_klu (k) = c2 ; conds_matlab (k) = c ; catch disp (lasterr) ; end fprintf (... 'blocks %6d err %8.2e condest %8.2e %8.2e rcond %8.2e %8.2e err %8.2e\n', ... blocks, rho, c2, c, r1, r2, err) ; end k = nmat ; plot (1:k, log10 (conds_klu (1:k) ./ conds_matlab (1:k)), 'o') ; drawnow catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/KLU/MATLAB/Test/test2.m0000644001170100242450000001162210711445567015514 0ustar davisfacfunction test2 (nmat) %test2: KLU test % Example: % test2 % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; % warning ('off', 'MATLAB:singularMatrix') ; % warning ('off', 'MATLAB:nearlySingularMatrix') ; % warning ('off', 'MATLAB:divideByZero') ; index = UFget ; f = find (index.nrows == index.ncols) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; if (nargin < 1) nmat = 500 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; if (~isempty (strfind (computer, '64'))) is64 = 1 ; else is64 = 0 ; end Tklu = 1e-6 * ones (2*nmat,1) ; Tmatlab = zeros (2*nmat,1) ; Tcsparse = zeros (2*nmat,1) ; LUnz = zeros (2*nmat, 1) ; k = 0 ; h = waitbar (0, 'KLU test 2 of 5') ; figure (1) clf try for kk = 1:nmat Prob = UFget (f (kk), index) ; waitbar (kk/nmat, h) ; disp (Prob) ; if (isfield (Prob, 'kind')) if (~isempty (strfind (Prob.kind, 'subsequent'))) fprintf ('skip ...\n') ; continue end end A = Prob.A ; for do_complex = 0:1 k = k + 1 ; if (do_complex) A = sprand (A) + 1i * sprand (A) ; end try [L,U,p,q] = lu (A, 'vector') ; catch % older version of MATLAB, which doesn't have 'vector' option [L,U,P,Q] = lu (A) ; [p ignore1 ignore2] = find (P') ; [q ignore1 ignore2] = find (Q) ; clear ignore1 ignore2 P Q end LU.L = L ; LU.U = U ; if (is64) LU.p = int64 (p) ; LU.q = int64 (q) ; else LU.p = int32 (p) ; LU.q = int32 (q) ; end C = A (p,q) ; LUnz (k) = nnz (L) + nnz (U) ; n = size (A,1) ; do_klu = (nnz (diag (U)) == n) ; if (do_klu) fprintf ('klu...\n') ; err = 0 ; erc = 0 ; er2 = 0 ; for nrhs = 10:-1:1 b = rand (n,nrhs) ; tic ; x = klu (LU,'\',b) ; Tklu (k) = max (1e-6, toc) ; tic ; y = U \ (L \ b (p,:)) ; y (q,:) = y ; Tmatlab (k) = max (1e-6, toc) ; if (nrhs == 1 & isreal (U) & isreal (L) & isreal (b)) %#ok tic ; z = cs_usolve (U, cs_lsolve (L, b (p))) ; z (q) = z ; Tcsparse (k) = max (1e-6, toc) ; erc = norm (A*z-b,1) / norm (A,1) ; end err = max (err, norm (A*x-b,1) / norm (A,1)) ; er2 = max (er2, norm (A*y-b,1) / norm (A,1)) ; if (err > 100*er2) fprintf ('error %g %g\n', err, er2) ; error ('?') ; end end fprintf ('klu... with randomized scaling for L\n') ; er3 = 0 ; er4 = 0 ; D = spdiags (rand (n,1), 0, n, n) ; LU.L = D * L ; A2 = D * A (p,q) ; if (is64) LU.p = int64 (1:n) ; LU.q = int64 (1:n) ; else LU.p = int32 (1:n) ; LU.q = int32 (1:n) ; end for nrhs = 1:10 b = rand (n,nrhs) ; x = klu (LU,'\',b) ; y = U \ (LU.L \ b) ; er3 = max (er3, norm (A2*x-b,1) / norm (A,1)) ; er4 = max (er4, norm (A2*y-b,1) / norm (A,1)) ; if (er3 > 1e3*er4) fprintf ('error %g %g\n', er3, er4) ; error ('?') ; end end else err = Inf ; er2 = Inf ; er3 = Inf ; er4 = Inf ; erc = Inf ; end lumax = max (LUnz (1:k)) ; loglog (... LUnz (1:k), Tmatlab (1:k) ./ Tklu (1:k), 'o', ... LUnz (1:k), Tcsparse (1:k) ./ Tklu (1:k), 'x', ... [20 lumax], [1 1], 'r-') ; axis ([20 lumax .1 20]) ; drawnow fprintf ('err %g %g %g\n', err, er2, erc) ; end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/KLU/MATLAB/Test/test3.m0000644001170100242450000000310210710414316015472 0ustar davisfacfunction test3 %test3: KLU test % Example: % test3 % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse h = waitbar (1/12, 'KLU test 3 of 5') ; rand ('state', 0) ; load west0479 A = west0479 ; % A = sparse (rand (4)) ; % A (3:4, 1:2) = 0 ; n = size (A,1) ; b = rand (n,1) ; spparms ('spumoni',2) x = A\b ; spparms ('spumoni',0) fprintf ('MATLAB resid %g\n', norm (A*x-b,1)) ; [LU,info,cond_estimate] = klu (A) ; fprintf ('\nLU = \n') ; disp (LU) ; fprintf ('\ninfo = \n') ; disp (info) ; fprintf ('KLU condest %g\n', cond_estimate) ; matlab_condest = condest (A) ; matlab_cond = cond (full (A)) ; fprintf ('MATLAB condest %g cond %g\n', matlab_condest, matlab_cond) ; for nrhs = 1:10 waitbar (nrhs/12, h) ; b = rand (n,nrhs) ; x = klu (LU,'\',b) ; fprintf ('nrhs: %d resid: %g\n', ... nrhs, norm (A*x-b,1) / norm (A,1)) ; end [x,info,cond_estimate] = klu (A, '\', b) ; fprintf ('\ninfo = \n') ; disp (info) ; fprintf ('KLU cond_estimate %g\n', cond_estimate) ; waitbar (11/12, h) ; [x,info] = klu (A, '\', b, struct ('ordering',1)) ; fprintf ('\ninfo = \n') ; disp (info) ; [x,info,cond_estimate] = klu (A, '\', b, struct ('ordering',2)) ; fprintf ('\ninfo = \n') ; disp (info) ; try [x,info,cond_estimate] = klu (A, '\', b, struct ('ordering',3)) ; fprintf ('\ninfo = \n') ; disp (info) ; [x,info,cond_estimate] = klu (A, '\', b, struct ('ordering',4)) ; fprintf ('\ninfo = \n') ; disp (info) ; catch fprintf ('KLU test with CHOLMOD skipped (CHOLMOD not installed)\n') ; end close (h) ; SuiteSparse/KLU/MATLAB/Test/test4.m0000644001170100242450000001363610711445573015522 0ustar davisfacfunction test4 (nmat) %test4: KLU test % Example: % test4 % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse % rand ('state', 0) ; % warning ('off', 'MATLAB:singularMatrix') ; % warning ('off', 'MATLAB:nearlySingularMatrix') ; % warning ('off', 'KLU:rcond') ; % warning ('off', 'MATLAB:Axes:NegativeDataInLogAxis') ; index = UFget ; f = find (index.nrows == index.ncols & index.isReal & index.amd_lnz > 0) ; [ignore i] = sort (index.amd_lnz (f)) ; f = f (i) ; % f = f (1:100) ; if (nargin < 1) nmat = 500 ; end nmat = min (nmat, length (f)) ; f = f (1:nmat) ; if (1) Tlu = -ones (nmat,1) ; Tklu = -ones (nmat,1) ; Tklu2 = -ones (nmat,1) ; LUnz = -ones (nmat,1) ; k = 0 ; end if (~isempty (strfind (computer, '64'))) is64 = 1 ; else is64 = 0 ; end % 589: Sieber h = waitbar (0, 'KLU test 4 of 5') ; figure (1) clf try for kk = 1:nmat Prob = UFget (f (kk), index) ; waitbar (kk/nmat, h) ; disp (Prob) ; if (isfield (Prob, 'kind')) if (~isempty (strfind (Prob.kind, 'subsequent'))) fprintf ('skip ...\n') ; continue end if (~isempty (strfind (Prob.kind, 'random'))) fprintf ('skip ...\n') ; continue end end k = k + 1 ; A = Prob.A ; n = size (A,1) ; err1 = 0 ; err2 = 0 ; err4 = 0 ; terr1 = 0 ; terr2 = 0 ; terr4 = 0 ; for do_imag = 0:1 if (do_imag) A = sprand (A) + 1i * sprand (A) ; end % compare with UMFPACK try tic [L,U,p,q,R1] = lu (A, 'vector') ; t1 = max (1e-6, toc) ; catch % older version of MATLAB, which doesn't have 'vector' option tic [L,U,P,Q] = lu (A) ; t1 = max (1e-6, toc) ; [p ignore1 ignore2] = find (P') ; [q ignore1 ignore2] = find (Q) ; clear ignore1 ignore2 P Q R1 = speye (n) ; end if (Tlu (k) == -1) Tlu (k) = t1 ; LUnz (k) = nnz (L) + nnz (U) ; end % note that the scaling R1 and R2 are different with KLU and UMFPACK % UMFPACK: L*U-P*(R1\A)*Q % KLU: L*U-R2\(P*A*Q) % % R1 and R2 are related, via P, where R2 = P*R*P', or equivalently % R2 = R1 (p,p). rcond = min (abs (diag (U))) / max (abs (diag (U))) ; if (rcond < 1e-15) fprintf ('skip...\n') ; break ; end F.L = L ; F.U = U ; if (is64) F.p = int64(p) ; F.q = int64(q) ; else F.p = int32(p) ; F.q = int32(q) ; end F.R = R1(p,p) ; b = rand (n,1) ; x = klu (F, '\', b) ; y = klu (b', '/', F) ; fprintf ('solve with klu %g\n', ... norm (A*x-b,1)/norm(A,1)) ; fprintf ('solve with klu %g transpose\n', ... norm (y*A-b',1)/norm(A,1)) ; for nrhs = 1:10 for do_b_imag = 0:1 b = rand (n, nrhs) ; if (do_b_imag) b = b + 1i * rand (n, nrhs) ; end % KLU backslash tic ; x = klu (A,'\',b) ; t2 = max (1e-6, toc) ; % KLU slash xt = klu (b','/',A) ; % KLU backslash with precomputed LU tic LU = klu (A) ; z = klu (LU,'\',b) ; t4 = max (1e-6, toc) ; % KLU slash with precomputed LU zt = klu (b','/',LU) ; % UMFPACK tic rb = R1 \ b ; y = U \ (L \ rb (p,:)) ; y (q,:) = y ; t3 = max (1e-6, toc) ; yt = (L' \ (U' \ b (q,:))) ; yt (p,:) = yt ; yt = R1 \ yt ; yt = yt' ; if (Tklu (k) == -1) Tlu (k) = Tlu (k) + t3 ; Tklu (k) = t2 ; Tklu2 (k) = t4 ; end err1 = max (err1, norm (A*x-b,1) / norm (A,1)) ; err2 = max (err2, norm (A*y-b,1) / norm (A,1)) ; err4 = max (err4, norm (A*z-b,1) / norm (A,1)) ; terr1 = max (terr1, norm (xt*A-b',1) / norm (A,1)) ; terr2 = max (terr2, norm (yt*A-b',1) / norm (A,1)) ; terr4 = max (terr4, norm (zt*A-b',1) / norm (A,1)) ; end end end fprintf ('err %g %g %g\n', err1, err2, err4) ; if (err1 > 1e4*err2 | err4 > 1e4*err2) %#ok fprintf ('warning: KLU inaccurate!\n') end fprintf ('terr %g %g %g\n', terr1, terr2, terr4) ; if (terr1 > 1e4*terr2 | terr4 > 1e4*terr2) %#ok fprintf ('warning: KLU T inaccurate!\n') end lunzmax = max (LUnz (1:k)) ; loglog ( ... LUnz (1:k), Tklu (1:k) ./ Tlu (1:k), 'o', ... LUnz (1:k), Tklu2 (1:k) ./ Tlu (1:k), 'x', ... [10 lunzmax], [1 1], 'r-') ; drawnow end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/KLU/MATLAB/Test/test5.m0000644001170100242450000001163010711445576015516 0ustar davisfacfunction test5 %test5: KLU test % Example: % test5 % % test circuit matrices in the UF sparse matrix collection. % % See also klu % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse do_diary = 0 ; if (do_diary) diary off s = date ; t = clock ; s = sprintf ('diary test5_%s_%d-%d-%d.txt\n', s, t (4), t(5), fix(t(6))); eval (s) ; end % ATandT frequency-domain circuits, exclude these: freq = [ 283 284 285 286 ] ; % sorted in order of MATLAB 7.3 x=A\b time on storm % (AMD Opteron, 64-bit, 8GB mem, 2 cores) circ = [ 1195 % Rajat/rajat11 n: 135 nz 665 1198 % Rajat/rajat14 n: 180 nz 1475 1189 % Rajat/rajat05 n: 301 nz 1250 1169 % Sandia/oscil_trans_01 n: 430 nz 1614 1112 % Sandia/oscil_dcop_01 n: 430 nz 1544 1346 % Rajat/rajat19 n: 1157 nz 3699 1199 % Hamrle/Hamrle1 n: 32 nz 98 1106 % Sandia/fpga_trans_01 n: 1220 nz 7382 1188 % Rajat/rajat04 n: 1041 nz 8725 1055 % Sandia/fpga_dcop_01 n: 1220 nz 5892 1108 % Sandia/init_adder1 n: 1813 nz 11156 1196 % Rajat/rajat12 n: 1879 nz 12818 1053 % Sandia/adder_trans_01 n: 1814 nz 14579 539 % Hamm/add20 n: 2395 nz 13151 371 % Bomhof/circuit_2 n: 4510 nz 21199 540 % Hamm/add32 n: 4960 nz 19848 1186 % Rajat/rajat02 n: 1960 nz 11187 466 % Grund/meg4 n: 5860 nz 25258 465 % Grund/meg1 n: 2904 nz 58142 370 % Bomhof/circuit_1 n: 2624 nz 35823 1200 % Hamrle/Hamrle2 n: 5952 nz 22162 1197 % Rajat/rajat13 n: 7598 nz 48762 1187 % Rajat/rajat03 n: 7602 nz 32653 372 % Bomhof/circuit_3 n: 12127 nz 48137 1185 % Rajat/rajat01 n: 6833 nz 43250 1183 % IBM_Austin/coupled n: 11341 nz 97193 1376 % Rajat/rajat27 n: 20640 nz 97353 543 % Hamm/memplus n: 17758 nz 99147 1109 % Sandia/mult_dcop_01 n: 25187 nz 193276 1371 % Rajat/rajat22 n: 39899 nz 195429 1375 % Rajat/rajat26 n: 51032 nz 247528 1414 % IBM_EDA/ckt11752_tr_0 n: 49702 nz 332807 541 % Hamm/bcircuit n: 68902 nz 375558 1413 % IBM_EDA/ckt11752_dc_1 n: 49702 nz 333029 542 % Hamm/hcircuit n: 105676 nz 513072 1316 % Rajat/rajat15 n: 37261 nz 443573 1190 % Rajat/rajat06 n: 10922 nz 46983 1191 % Rajat/rajat07 n: 14842 nz 63913 1372 % Rajat/rajat23 n: 110355 nz 555441 373 % Bomhof/circuit_4 n: 80209 nz 307604 544 % Hamm/scircuit n: 170998 nz 958936 1412 % AMD/G2_circuit n: 150102 nz 726674 is this solid state device? 1415 % Sandia/ASIC_100k n: 99340 nz 940621 1416 % Sandia/ASIC_100ks n: 99190 nz 578890 1420 % Sandia/ASIC_680ks n: 682712 nz 1693767 1192 % Rajat/rajat08 n: 19362 nz 83443 1193 % Rajat/rajat09 n: 24482 nz 105573 1323 % IBM_EDA/trans4 n: 116835 nz 749800 1320 % IBM_EDA/dc1 n: 116835 nz 766396 1194 % Rajat/rajat10 n: 30202 nz 130303 1418 % Sandia/ASIC_320ks n: 321671 nz 1316085 1417 % Sandia/ASIC_320k n: 321821 nz 1931828 1343 % Rajat/rajat16 n: 94294 nz 476766 1345 % Rajat/rajat18 n: 94294 nz 479151 1344 % Rajat/rajat17 n: 94294 nz 479246 1377 % Rajat/rajat28 n: 87190 nz 606489 1369 % Rajat/rajat20 n: 86916 nz 604299 1374 % Rajat/rajat25 n: 87190 nz 606489 1370 % Rajat/rajat21 n: 411676 nz 1876011 1419 1396 1201 1397 1421 1398 1373 % Rajat/rajat24 n: 358172 nz 1946979 ]' ; fprintf ('Running KLU on %d circuits.\n', length (circ)) ; index = UFget ; opts_noscale.scale = -1 ; opts_sum.scale = 1 ; opts_max.scale = 2 ; % default scaling h = waitbar (0, 'KLU test 5 of 5') ; nmat = length (circ) ; try for kk = 1:nmat k = circ (kk) ; Prob = UFget (k, index) ; waitbar (kk/nmat, h) ; A = Prob.A ; n = size (A,1) ; b = rand (n,1) ; fprintf ('\n%d : %s n: %d nz %d\n', k, Prob.name, n, nnz (A)) ; try tic ; x2 = klu (A, '\', b, opts_noscale) ; t2 = toc ; e2 = norm (A*x2-b) ; catch t2 = 0 ; e2 = 0 ; end fprintf ('KLU no scale: err %8.2e t: %8.4f\n', e2, t2) ; try tic ; x4 = klu (A, '\', b, opts_max) ; t4 = toc ; e4 = norm (A*x4-b) ; catch t4 = 0 ; e4 = 0 ; end fprintf ('KLU max scale: err %8.2e t: %8.4f\n', e4, t4) ; try tic ; x3 = klu (A, '\', b, opts_sum) ; t3 = toc ; e3 = norm (A*x3-b) ; catch t3 = 0 ; e3 = 0 ; end fprintf ('KLU sum scale: err %8.2e t: %8.4f\n', e3, t3) ; tic x1 = A\b ; t1 = toc ; e1 = norm (A*x1-b) ; fprintf ('matlab: err %8.2e t: %8.4f\n', e1, t1) ; fprintf (' speedup %8.2f\n', t1 / t4) ; clear Prob if (do_diary) diary off diary on end end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; SuiteSparse/KLU/MATLAB/Makefile0000644001170100242450000003520310617133712015006 0ustar davisfac#=============================================================================== # KLU/MATLAB/Makefile #=============================================================================== default: all include ../../UFconfig/UFconfig.mk # with CHOLMOD and supporting functions (CAMD, CCOLAMD, METIS) I = -I. -I../../AMD/Include -I../../COLAMD/Include \ -I../Include -I../../UFconfig -I../../BTF/Include -I../User \ -I../../CCOLAMD/Include -I../../CAMD/Include \ -I$(METIS_PATH)/Lib -I../../CHOLMOD/Include all: klu MX = $(MEX) -DDLONG -DNLARGEFILE $(I) distclean: purge purge: clean - $(RM) *.mex* rename.h clean: - $(RM) $(CLEAN) #=============================================================================== AMD_INC = ../../AMD/Include/amd.h ../../AMD/Include/amd_internal.h AMD = \ amd_1.o \ amd_2.o \ amd_aat.o \ amd_control.o \ amd_defaults.o \ amd_dump.o \ amd_global.o \ amd_info.o \ amd_order.o \ amd_postorder.o \ amd_post_tree.o \ amd_preprocess.o \ amd_valid.o $(AMD): $(AMD_INC) amd_1.o: ../../AMD/Source/amd_1.c $(MX) -c $< amd_2.o: ../../AMD/Source/amd_2.c $(MX) -c $< amd_aat.o: ../../AMD/Source/amd_aat.c $(MX) -c $< amd_control.o: ../../AMD/Source/amd_control.c $(MX) -c $< amd_defaults.o: ../../AMD/Source/amd_defaults.c $(MX) -c $< amd_dump.o: ../../AMD/Source/amd_dump.c $(MX) -c $< amd_global.o: ../../AMD/Source/amd_global.c $(MX) -c $< amd_info.o: ../../AMD/Source/amd_info.c $(MX) -c $< amd_order.o: ../../AMD/Source/amd_order.c $(MX) -c $< amd_postorder.o: ../../AMD/Source/amd_postorder.c $(MX) -c $< amd_post_tree.o: ../../AMD/Source/amd_post_tree.c $(MX) -c $< amd_preprocess.o: ../../AMD/Source/amd_preprocess.c $(MX) -c $< amd_valid.o: ../../AMD/Source/amd_valid.c $(MX) -c $< #=============================================================================== CAMD_INC = ../../CAMD/Include/camd.h ../../CAMD/Include/camd_internal.h CAMD = \ camd_1.o \ camd_2.o \ camd_aat.o \ camd_control.o \ camd_defaults.o \ camd_dump.o \ camd_global.o \ camd_info.o \ camd_order.o \ camd_postorder.o \ camd_preprocess.o \ camd_valid.o $(CAMD): $(CAMD_INC) camd_1.o: ../../CAMD/Source/camd_1.c $(MX) -c $< camd_2.o: ../../CAMD/Source/camd_2.c $(MX) -c $< camd_aat.o: ../../CAMD/Source/camd_aat.c $(MX) -c $< camd_control.o: ../../CAMD/Source/camd_control.c $(MX) -c $< camd_defaults.o: ../../CAMD/Source/camd_defaults.c $(MX) -c $< camd_dump.o: ../../CAMD/Source/camd_dump.c $(MX) -c $< camd_global.o: ../../CAMD/Source/camd_global.c $(MX) -c $< camd_info.o: ../../CAMD/Source/camd_info.c $(MX) -c $< camd_order.o: ../../CAMD/Source/camd_order.c $(MX) -c $< camd_postorder.o: ../../CAMD/Source/camd_postorder.c $(MX) -c $< camd_post_tree.o: ../../CAMD/Source/camd_post_tree.c $(MX) -c $< camd_preprocess.o: ../../CAMD/Source/camd_preprocess.c $(MX) -c $< camd_valid.o: ../../CAMD/Source/camd_valid.c $(MX) -c $< #=============================================================================== COLAMD_INC = ../../COLAMD/Include/colamd.h COLAMD = colamd.o colamd_global.o $(COLAMD): $(COLAMD_INC) colamd.o: ../../COLAMD/Source/colamd.c $(MX) -c $< colamd_global.o: ../../COLAMD/Source/colamd_global.c $(MX) -c $< #=============================================================================== CCOLAMD_INC = ../../CCOLAMD/Include/ccolamd.h CCOLAMD = ccolamd.o ccolamd_global.o $(CCOLAMD): $(CCOLAMD_INC) ccolamd.o: ../../CCOLAMD/Source/ccolamd.c $(MX) -c $< ccolamd_global.o: ../../CCOLAMD/Source/ccolamd_global.c $(MX) -c $< #=============================================================================== # patch METIS 4.0.1 rename.h: $(METIS_PATH)/Lib/rename.h echo '/* do not edit this file; generated by KLU/MATLAB/Makefile */' > rename.h echo '#undef log2' >> rename.h echo '#include "$(METIS_PATH)/Lib/rename.h"' >> rename.h echo '#undef log2' >> rename.h echo '#define log2 METIS__log2' >> rename.h echo '#include "mex.h"' >> rename.h echo '#define malloc mxMalloc' >> rename.h echo '#define free mxFree' >> rename.h echo '#define calloc mxCalloc' >> rename.h echo '#define realloc mxRealloc' >> rename.h METIS_INC = rename.h \ $(METIS_PATH)/Lib/defs.h \ $(METIS_PATH)/Lib/macros.h \ $(METIS_PATH)/Lib/metis.h \ $(METIS_PATH)/Lib/proto.h \ $(METIS_PATH)/Lib/rename.h \ $(METIS_PATH)/Lib/struct.h METIS = \ balance.o \ bucketsort.o \ ccgraph.o \ coarsen.o \ compress.o \ debug.o \ estmem.o \ fm.o \ fortran.o \ frename.o \ graph.o \ initpart.o \ kmetis.o \ kvmetis.o \ kwayfm.o \ kwayrefine.o \ kwayvolfm.o \ kwayvolrefine.o \ match.o \ mbalance2.o \ mbalance.o \ mcoarsen.o \ memory.o \ mesh.o \ meshpart.o \ mfm2.o \ mfm.o \ mincover.o \ minitpart2.o \ minitpart.o \ mkmetis.o \ mkwayfmh.o \ mkwayrefine.o \ mmatch.o \ mmd.o \ mpmetis.o \ mrefine2.o \ mrefine.o \ mutil.o \ myqsort.o \ ometis.o \ parmetis.o \ pmetis.o \ pqueue.o \ refine.o \ separator.o \ sfm.o \ srefine.o \ stat.o \ subdomains.o \ timing.o \ util.o $(METIS): $(METIS_INC) balance.o: $(METIS_PATH)/Lib/balance.c $(MX) -c $< bucketsort.o: $(METIS_PATH)/Lib/bucketsort.c $(MX) -c $< ccgraph.o: $(METIS_PATH)/Lib/ccgraph.c $(MX) -c $< coarsen.o: $(METIS_PATH)/Lib/coarsen.c $(MX) -c $< compress.o: $(METIS_PATH)/Lib/compress.c $(MX) -c $< debug.o: $(METIS_PATH)/Lib/debug.c $(MX) -c $< estmem.o: $(METIS_PATH)/Lib/estmem.c $(MX) -c $< fm.o: $(METIS_PATH)/Lib/fm.c $(MX) -c $< fortran.o: $(METIS_PATH)/Lib/fortran.c $(MX) -c $< frename.o: $(METIS_PATH)/Lib/frename.c $(MX) -c $< graph.o: $(METIS_PATH)/Lib/graph.c $(MX) -c $< initpart.o: $(METIS_PATH)/Lib/initpart.c $(MX) -c $< kmetis.o: $(METIS_PATH)/Lib/kmetis.c $(MX) -c $< kvmetis.o: $(METIS_PATH)/Lib/kvmetis.c $(MX) -c $< kwayfm.o: $(METIS_PATH)/Lib/kwayfm.c $(MX) -c $< kwayrefine.o: $(METIS_PATH)/Lib/kwayrefine.c $(MX) -c $< kwayvolfm.o: $(METIS_PATH)/Lib/kwayvolfm.c $(MX) -c $< kwayvolrefine.o: $(METIS_PATH)/Lib/kwayvolrefine.c $(MX) -c $< match.o: $(METIS_PATH)/Lib/match.c $(MX) -c $< mbalance2.o: $(METIS_PATH)/Lib/mbalance2.c $(MX) -c $< mbalance.o: $(METIS_PATH)/Lib/mbalance.c $(MX) -c $< mcoarsen.o: $(METIS_PATH)/Lib/mcoarsen.c $(MX) -c $< memory.o: $(METIS_PATH)/Lib/memory.c $(MX) -c $< mesh.o: $(METIS_PATH)/Lib/mesh.c $(MX) -c $< meshpart.o: $(METIS_PATH)/Lib/meshpart.c $(MX) -c $< mfm2.o: $(METIS_PATH)/Lib/mfm2.c $(MX) -c $< mfm.o: $(METIS_PATH)/Lib/mfm.c $(MX) -c $< mincover.o: $(METIS_PATH)/Lib/mincover.c $(MX) -c $< minitpart2.o: $(METIS_PATH)/Lib/minitpart2.c $(MX) -c $< minitpart.o: $(METIS_PATH)/Lib/minitpart.c $(MX) -c $< mkmetis.o: $(METIS_PATH)/Lib/mkmetis.c $(MX) -c $< mkwayfmh.o: $(METIS_PATH)/Lib/mkwayfmh.c $(MX) -c $< mkwayrefine.o: $(METIS_PATH)/Lib/mkwayrefine.c $(MX) -c $< mmatch.o: $(METIS_PATH)/Lib/mmatch.c $(MX) -c $< mmd.o: $(METIS_PATH)/Lib/mmd.c $(MX) -c $< mpmetis.o: $(METIS_PATH)/Lib/mpmetis.c $(MX) -c $< mrefine2.o: $(METIS_PATH)/Lib/mrefine2.c $(MX) -c $< mrefine.o: $(METIS_PATH)/Lib/mrefine.c $(MX) -c $< mutil.o: $(METIS_PATH)/Lib/mutil.c $(MX) -c $< myqsort.o: $(METIS_PATH)/Lib/myqsort.c $(MX) -c $< ometis.o: $(METIS_PATH)/Lib/ometis.c $(MX) -c $< parmetis.o: $(METIS_PATH)/Lib/parmetis.c $(MX) -c $< pmetis.o: $(METIS_PATH)/Lib/pmetis.c $(MX) -c $< pqueue.o: $(METIS_PATH)/Lib/pqueue.c $(MX) -c $< refine.o: $(METIS_PATH)/Lib/refine.c $(MX) -c $< separator.o: $(METIS_PATH)/Lib/separator.c $(MX) -c $< sfm.o: $(METIS_PATH)/Lib/sfm.c $(MX) -c $< srefine.o: $(METIS_PATH)/Lib/srefine.c $(MX) -c $< stat.o: $(METIS_PATH)/Lib/stat.c $(MX) -c $< subdomains.o: $(METIS_PATH)/Lib/subdomains.c $(MX) -c $< timing.o: $(METIS_PATH)/Lib/timing.c $(MX) -c $< util.o: $(METIS_PATH)/Lib/util.c $(MX) -c $< #=============================================================================== CHOLMOD_INC = \ ../../CHOLMOD/Include/cholmod_blas.h \ ../../CHOLMOD/Include/cholmod_cholesky.h \ ../../CHOLMOD/Include/cholmod_complexity.h \ ../../CHOLMOD/Include/cholmod_config.h \ ../../CHOLMOD/Include/cholmod_core.h \ ../../CHOLMOD/Include/cholmod.h \ ../../CHOLMOD/Include/cholmod_internal.h \ ../../CHOLMOD/Include/cholmod_io64.h \ ../../CHOLMOD/Include/cholmod_partition.h \ ../../CHOLMOD/Include/cholmod_template.h CHOLMOD = \ cholmod_amd.o \ cholmod_analyze.o \ cholmod_colamd.o \ cholmod_etree.o \ cholmod_postorder.o \ cholmod_rowcolcounts.o \ cholmod_aat.o \ cholmod_add.o \ cholmod_band.o \ cholmod_change_factor.o \ cholmod_common.o \ cholmod_complex.o \ cholmod_copy.o \ cholmod_dense.o \ cholmod_error.o \ cholmod_factor.o \ cholmod_memory.o \ cholmod_sparse.o \ cholmod_transpose.o \ cholmod_triplet.o \ cholmod_camd.o \ cholmod_ccolamd.o \ cholmod_csymamd.o \ cholmod_metis.o \ cholmod_nesdis.o $(CHOLMOD): $(CHOLMOD_INC) CH = -DNSUPERNODAL -DNMODIFY -DNMATRIXOPS -DNCHECK cholmod_amd.o: ../../CHOLMOD/Cholesky/cholmod_amd.c $(MX) $(CH) -c $< cholmod_analyze.o: ../../CHOLMOD/Cholesky/cholmod_analyze.c $(MX) $(CH) -c $< cholmod_colamd.o: ../../CHOLMOD/Cholesky/cholmod_colamd.c $(MX) $(CH) -c $< cholmod_etree.o: ../../CHOLMOD/Cholesky/cholmod_etree.c $(MX) $(CH) -c $< cholmod_postorder.o: ../../CHOLMOD/Cholesky/cholmod_postorder.c $(MX) $(CH) -c $< cholmod_rowcolcounts.o: ../../CHOLMOD/Cholesky/cholmod_rowcolcounts.c $(MX) $(CH) -c $< cholmod_aat.o: ../../CHOLMOD/Core/cholmod_aat.c $(MX) $(CH) -c $< cholmod_add.o: ../../CHOLMOD/Core/cholmod_add.c $(MX) $(CH) -c $< cholmod_band.o: ../../CHOLMOD/Core/cholmod_band.c $(MX) $(CH) -c $< cholmod_change_factor.o: ../../CHOLMOD/Core/cholmod_change_factor.c \ ../../CHOLMOD/Core/t_cholmod_change_factor.c $(MX) $(CH) -c $< cholmod_common.o: ../../CHOLMOD/Core/cholmod_common.c $(MX) $(CH) -c $< cholmod_complex.o: ../../CHOLMOD/Core/cholmod_complex.c $(MX) $(CH) -c $< cholmod_copy.o: ../../CHOLMOD/Core/cholmod_copy.c $(MX) $(CH) -c $< cholmod_dense.o: ../../CHOLMOD/Core/cholmod_dense.c \ ../../CHOLMOD/Core/t_cholmod_dense.c $(MX) $(CH) -c $< cholmod_error.o: ../../CHOLMOD/Core/cholmod_error.c $(MX) $(CH) -c $< cholmod_factor.o: ../../CHOLMOD/Core/cholmod_factor.c $(MX) $(CH) -c $< cholmod_memory.o: ../../CHOLMOD/Core/cholmod_memory.c $(MX) $(CH) -c $< cholmod_sparse.o: ../../CHOLMOD/Core/cholmod_sparse.c $(MX) $(CH) -c $< cholmod_transpose.o: ../../CHOLMOD/Core/cholmod_transpose.c \ ../../CHOLMOD/Core/t_cholmod_transpose.c $(MX) $(CH) -c $< cholmod_triplet.o: ../../CHOLMOD/Core/cholmod_triplet.c \ ../../CHOLMOD/Core/t_cholmod_triplet.c $(MX) $(CH) -c $< cholmod_camd.o: ../../CHOLMOD/Partition/cholmod_camd.c $(MX) $(CH) -c $< cholmod_ccolamd.o: ../../CHOLMOD/Partition/cholmod_ccolamd.c $(MX) $(CH) -c $< cholmod_csymamd.o: ../../CHOLMOD/Partition/cholmod_csymamd.c $(MX) $(CH) -c $< cholmod_metis.o: ../../CHOLMOD/Partition/cholmod_metis.c $(MX) $(CH) -c $< cholmod_nesdis.o: ../../CHOLMOD/Partition/cholmod_nesdis.c $(MX) $(CH) -c $< #=============================================================================== BTF_INC = ../../BTF/Include/btf.h ../../BTF/Include/btf_internal.h BTF = btf_maxtrans.o btf_order.o btf_strongcomp.o $(BTF): $(BTF_INC) btf_maxtrans.o: ../../BTF/Source/btf_maxtrans.c $(MX) -c $< btf_order.o: ../../BTF/Source/btf_order.c $(MX) -c $< btf_strongcomp.o: ../../BTF/Source/btf_strongcomp.c $(MX) -c $< #=============================================================================== KLU_INC = ../Include/klu.h ../Include/klu_internal.h ../Include/klu_version.h \ ../User/klu_cholmod.h KLU_L = klu_l.o klu_l_kernel.o klu_l_dump.o \ klu_l_factor.o klu_l_free_numeric.o klu_l_solve.o \ klu_l_scale.o klu_l_refactor.o \ klu_l_tsolve.o klu_l_diagnostics.o klu_l_sort.o klu_l_extract.o KLU_ZL = klu_zl.o klu_zl_kernel.o klu_zl_dump.o \ klu_zl_factor.o klu_zl_free_numeric.o klu_zl_solve.o \ klu_zl_scale.o klu_zl_refactor.o \ klu_zl_tsolve.o klu_zl_diagnostics.o klu_zl_sort.o klu_zl_extract.o COMMON = klu_free_symbolic.o klu_defaults.o klu_analyze_given.o \ klu_analyze.o klu_memory.o USER = klu_l_cholmod.o KLU = $(COMMON) $(KLU_L) $(KLU_ZL) $(USER) $(KLU): $(KLU_INC) #------------------------------------------------------------------------------- klu_l.o: ../Source/klu.c $(MX) -c $< $(MV) klu.o $@ klu_zl.o: ../Source/klu.c $(MX) -c -DCOMPLEX $< $(MV) klu.o $@ klu_l_kernel.o: ../Source/klu_kernel.c $(MX) -c $< $(MV) klu_kernel.o $@ klu_zl_kernel.o: ../Source/klu_kernel.c $(MX) -c -DCOMPLEX $< $(MV) klu_kernel.o $@ klu_l_sort.o: ../Source/klu_sort.c $(MX) -c $< $(MV) klu_sort.o $@ klu_zl_sort.o: ../Source/klu_sort.c $(MX) -c -DCOMPLEX $< $(MV) klu_sort.o $@ klu_l_diagnostics.o: ../Source/klu_diagnostics.c $(MX) -c $< $(MV) klu_diagnostics.o $@ klu_zl_diagnostics.o: ../Source/klu_diagnostics.c $(MX) -c -DCOMPLEX $< $(MV) klu_diagnostics.o $@ klu_l_dump.o: ../Source/klu_dump.c $(MX) -c $< $(MV) klu_dump.o $@ klu_zl_dump.o: ../Source/klu_dump.c $(MX) -c -DCOMPLEX $< $(MV) klu_dump.o $@ klu_l_factor.o: ../Source/klu_factor.c $(MX) -c $< $(MV) klu_factor.o $@ klu_zl_factor.o: ../Source/klu_factor.c $(MX) -c -DCOMPLEX $< $(MV) klu_factor.o $@ klu_l_free_numeric.o: ../Source/klu_free_numeric.c $(MX) -c $< $(MV) klu_free_numeric.o $@ klu_zl_free_numeric.o: ../Source/klu_free_numeric.c $(MX) -c -DCOMPLEX $< $(MV) klu_free_numeric.o $@ klu_l_extract.o: ../Source/klu_extract.c $(MX) -c $< $(MV) klu_extract.o $@ klu_zl_extract.o: ../Source/klu_extract.c $(MX) -c -DCOMPLEX $< $(MV) klu_extract.o $@ klu_l_refactor.o: ../Source/klu_refactor.c $(MX) -c $< $(MV) klu_refactor.o $@ klu_zl_refactor.o: ../Source/klu_refactor.c $(MX) -c -DCOMPLEX $< $(MV) klu_refactor.o $@ klu_l_scale.o: ../Source/klu_scale.c $(MX) -c $< $(MV) klu_scale.o $@ klu_zl_scale.o: ../Source/klu_scale.c $(MX) -c -DCOMPLEX $< $(MV) klu_scale.o $@ klu_l_solve.o: ../Source/klu_solve.c $(MX) -c $< $(MV) klu_solve.o $@ klu_zl_solve.o: ../Source/klu_solve.c $(MX) -c -DCOMPLEX $< $(MV) klu_solve.o $@ klu_l_tsolve.o: ../Source/klu_tsolve.c $(MX) -c $< $(MV) klu_tsolve.o $@ klu_zl_tsolve.o: ../Source/klu_tsolve.c $(MX) -c -DCOMPLEX $< $(MV) klu_tsolve.o $@ #------------------------------------------------------------------------------- klu_analyze.o: ../Source/klu_analyze.c $(MX) -c $< klu_analyze_given.o: ../Source/klu_analyze_given.c $(MX) -c $< klu_defaults.o: ../Source/klu_defaults.c $(MX) -c $< klu_free_symbolic.o: ../Source/klu_free_symbolic.c $(MX) -c $< klu_memory.o: ../Source/klu_memory.c $(MX) -c $< #------------------------------------------------------------------------------- klu_l_cholmod.o: ../User/klu_l_cholmod.c $(MX) $(CH) -c $< #=============================================================================== OBJ = $(AMD) $(CAMD) $(COLAMD) $(CCOLAMD) $(METIS) $(CHOLMOD) $(KLU) $(BTF) klu: klu_mex.c $(OBJ) $(MX) -output klu klu_mex.c $(OBJ) SuiteSparse/KLU/MATLAB/klu_demo.m.out0000644001170100242450000000325310711435170016127 0ustar davisfacklu_demo MATLAB condest: 1.42443e+12 KLU condest: 1.42443e+12 cond: 3.25816e+11 KLU with scaling, AMD ordering and condition number estimate: resid: 3.88932e-13 KLU condest: 1.42443e+12 rgrowth: 1.85769e-05 noffdiag: 12 nrealloc: 0 rcond: 7.1253e-09 rgrowth: 1.8577e-05 flops: 31592 nblocks: 166 ordering: 0 scale: 1 lnz: 1923 unz: 1892 offnz: 450 tol: 1.0000e-03 memory: 136748 KLU with COLAMD ordering resid: 1.00707e-11 noffdiag: 14 nrealloc: 0 rcond: 9.1888e-10 rgrowth: 4.3963e-08 flops: 42513 nblocks: 166 ordering: 1 scale: 2 lnz: 1956 unz: 2490 offnz: 450 tol: 1.0000e-03 memory: 397692 KLU with natural ordering (lots of fillin) resid: 3.13025e-13 noffdiag: 437 nrealloc: 0 rcond: 6.4525e-08 rgrowth: 1.7654e-04 flops: 328911 nblocks: 2 ordering: 2 scale: 2 lnz: 7846 unz: 7332 offnz: 40 tol: 1.0000e-03 memory: 453556 KLU with CHOLMOD(A'*A) ordering resid: 1.7568e-13 noffdiag: 24 nrealloc: 0 rcond: 4.1814e-09 rgrowth: 1.0676e-04 flops: 36747 nblocks: 166 ordering: 3 scale: 2 lnz: 2020 unz: 2227 offnz: 450 tol: 1.0000e-03 memory: 191132 KLU with CHOLMOD(A+A') ordering resid: 5.1045e-13 noffdiag: 13 nrealloc: 0 rcond: 3.9046e-11 rgrowth: 2.4378e-06 flops: 31925 nblocks: 166 ordering: 4 scale: 2 lnz: 2000 unz: 1878 offnz: 450 tol: 1.0000e-03 memory: 136044 diary off SuiteSparse/KLU/MATLAB/klu.m0000644001170100242450000000717010620376517014327 0ustar davisfacfunction [LU_or_x,info,c] = klu (A,operation,b,opts) %#ok %KLU sparse left-looking LU factorization, using a block triangular form. % % Example: % LU = klu (A) factorizes R\A(p,q) into L*U+F, returning a struct % x = klu (A,'\',b) x = A\b, using KLU % x = klu (b,'/',A) x = b/A, using KLU % x = klu (LU,'\',b) x = A\b, where LU = klu(A) % x = klu (b,'/',LU) x = b/A, where LU = klu(A) % % KLU(A) factorizes a square sparse matrix, L*U+F = R\A(p,q), where L and U % are the factors of the diagonal blocks of the block, F are the entries % above the diagonal blocks. r corresponds to the 3rd output of dmperm; it % specifies where the block boundaries are. The kth block consists of % rows/columns r(k) to r(k+1)-1 of A(p,q). % % Note that the use of the scale factor R differs between KLU and UMFPACK % (and the LU function, which is based on UMFPACK). In LU, the factorization % is L*U = P*(R1\A)*Q; in KLU it is L*U+F = R2\(P*A*Q). R1 and R2 are related % via R2 = P*R1*P', or equivalently R2 = R1(p,p). % % The LU output is a struct containing members L, U, p, q, R, F, and r. % % opts is an optional input struct which appears as the last input argument. % Entries not present are set to their defaults: % % opts.tol 0.001 partial pivoting tolerance; valid range 0 to 1. % opts.btf 1 use block triangular form (BTF) if nonzero % opts.ordering 0 how each block is ordered: % 0: AMD, 1: COLAMD, 2: natural, % 3: CHOLMOD's ordering of (A'*A), % 4: CHOLMOD's ordering of (A+A') % opts.scale -1 1: R = diag(sum(abs(A)')), row-sum % 2: R = diag(max(abs(A)')), max in each row % otherwise: none (R=I) % opts.maxwork 0 if > 0, limit work in BTF ordering to % opts.maxwork*nnz(A); no limit if <= 0. % % The CHOLMOD ordering is to try AMD (for A+A') or COLAMD (for A'*A) % first. If the fill-in with AMD or COLAMD is high, METIS is tried (on % A+A' or A'*A), and the best ordering found is selected. CHOLMOD, METIS, % CAMD, and CCOLAMD are required. If not available, only ordering options % 0, 1, and 2 may be used (AMD and COLAMD are always required by KLU). % % Two optional outputs, [LU,info,c] = klu (A) or [x,info,c] = klu (A,'\',b) % provide statistics about the factorization: % % info.noffdiag number of off-diagonal pivots chosen (after preordering) % info.nrealloc number of memory reallocations of L and U % info.rcond a very cheap estimate of 1/(condition number) % info.rgrowth reciprocal pivot growth % info.flops flop count % info.nblocks # of blocks in BTF form (1 if not computed) % info.ordering AMD, COLAMD, natural, cholmod(AA'), cholmod(A+A') % info.scale scaling (<=0: none, 1: sum, 2: max) % info.lnz nnz(L), including diagonal % info.unz nnz(U), including diagonal % info.offnz nnz(F) % info.tol pivot tolerance used % info.memory peak memory usage in bytes % c the same as MATLAB's condest % % info and c are relevant only if the matrix is factorized (LU = klu (A), % x = klu (A,'/',b), or x = klu (b,'/',A) usages). % % See also BTF, LU, DMPERM, CONDEST, CHOLMOD, AMD, COLAMD, CAMD, CCOLAMD. % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % http://www.cise.ufl.edu/research/sparse error ('klu mexFunction not found') ; SuiteSparse/KLU/MATLAB/klu_install.m0000644001170100242450000000312610620376415016047 0ustar davisfacfunction klu_install (with_cholmod) %KLU_INSTALL compiles and installs the KLU, BTF, AMD, and COLAMD mexFunctions % % Example: % klu_install % compiles KLU without CHOLMOD % klu_install (1) % with CHOLMOD, CCAMD, CCOLAMD, and METIS % % KLU relies on AMD, COLAMD, and BTF for its ordering options, and can % optionally use CHOLMOD, CCOLAMD, CAMD, and METIS as well. By default, % CHOLMOD, CCOLAMD, CAMD, and METIS are not used. % % See http://www-users.cs.umn.edu/~karypis/metis for a copy of METIS 4.0.1. % % You must type the klu_install command while in the KLU/MATLAB directory. % % See also klu, btf % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida if (nargin < 1) with_cholmod = 0 ; end % compile KLU and add to the path klu_make (with_cholmod) ; klu_path = pwd ; addpath (klu_path) fprintf ('\nNow compiling the AMD, COLAMD, and BTF mexFunctions:\n') ; % compile BTF and add to the path cd ../../BTF/MATLAB btf_make btf_path = pwd ; addpath (btf_path) % compile AMD and add to the path cd ../../AMD/MATLAB amd_make amd_path = pwd ; addpath (amd_path) % compile COLAMD and add to the path cd ../../COLAMD/MATLAB colamd_make colamd_path = pwd ; addpath (colamd_path) cd (klu_path) fprintf ('\nThe following paths have been added. You may wish to add them\n') ; fprintf ('permanently, using the MATLAB pathtool command.\n') ; fprintf ('%s\n', klu_path) ; fprintf ('%s\n', amd_path) ; fprintf ('%s\n', colamd_path) ; fprintf ('%s\n', btf_path) ; fprintf ('\nTo try your new mexFunctions, cut-and-paste this command:\n') ; fprintf ('klu_demo, btf_demo, amd_demo, colamd_demo\n') ; SuiteSparse/KLU/MATLAB/Contents.m0000644001170100242450000000072210620376375015327 0ustar davisfac% KLU: a "Clark Kent" LU factorization algorithm % % klu - sparse left-looking LU factorization, using a block triangular form. % klu_install - compiles and installs the KLU, BTF, AMD, and COLAMD mexFunctions % klu_demo - KLU demo % klu_make - compiles the KLU mexFunctions % % Example: % % LU = klu (A) ; % x = klu (A, '\', b) ; % x = klu (LU, '\', b) ; % % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida % KLU Version 1.0. SuiteSparse/KLU/MATLAB/Makefile_no_CHOLMOD0000644001170100242450000001346610617133736016664 0ustar davisfac#=============================================================================== # KLU/MATLAB/Makefile_no_CHOLMOD #=============================================================================== # Makefile for klu mexFunction, without the use of CHOLMOD. Ordering options # 3 and 4 for klu will not be available. See "help klu" in MATLAB for more # details. Usage: # # make -f Makefile_no_CHOLMOD default: all include ../../UFconfig/UFconfig.mk # without CHOLMOD I = -I. -I../../AMD/Include -I../../AMD/Source -I../../COLAMD/Include \ -I../Include -I../../UFconfig -I../../BTF/Include all: klu MX = $(MEX) -DDLONG -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE $(I) distclean: purge purge: clean - $(RM) *.mex* rename.h clean: - $(RM) $(CLEAN) #=============================================================================== AMD_INC = ../../AMD/Include/amd.h ../../AMD/Include/amd_internal.h AMD = \ amd_1.o \ amd_2.o \ amd_aat.o \ amd_control.o \ amd_defaults.o \ amd_dump.o \ amd_global.o \ amd_info.o \ amd_order.o \ amd_postorder.o \ amd_post_tree.o \ amd_preprocess.o \ amd_valid.o $(AMD): $(AMD_INC) amd_1.o: ../../AMD/Source/amd_1.c $(MX) -c $< amd_2.o: ../../AMD/Source/amd_2.c $(MX) -c $< amd_aat.o: ../../AMD/Source/amd_aat.c $(MX) -c $< amd_control.o: ../../AMD/Source/amd_control.c $(MX) -c $< amd_defaults.o: ../../AMD/Source/amd_defaults.c $(MX) -c $< amd_dump.o: ../../AMD/Source/amd_dump.c $(MX) -c $< amd_global.o: ../../AMD/Source/amd_global.c $(MX) -c $< amd_info.o: ../../AMD/Source/amd_info.c $(MX) -c $< amd_order.o: ../../AMD/Source/amd_order.c $(MX) -c $< amd_postorder.o: ../../AMD/Source/amd_postorder.c $(MX) -c $< amd_post_tree.o: ../../AMD/Source/amd_post_tree.c $(MX) -c $< amd_preprocess.o: ../../AMD/Source/amd_preprocess.c $(MX) -c $< amd_valid.o: ../../AMD/Source/amd_valid.c $(MX) -c $< #=============================================================================== COLAMD_INC = ../../COLAMD/Include/colamd.h COLAMD = colamd.o colamd_global.o $(COLAMD): $(COLAMD_INC) colamd.o: ../../COLAMD/Source/colamd.c $(MX) -c $< colamd_global.o: ../../COLAMD/Source/colamd_global.c $(MX) -c $< #=============================================================================== BTF_INC = ../../BTF/Include/btf.h ../../BTF/Include/btf_internal.h BTF = btf_maxtrans.o btf_order.o btf_strongcomp.o $(BTF): $(BTF_INC) btf_maxtrans.o: ../../BTF/Source/btf_maxtrans.c $(MX) -c $< btf_order.o: ../../BTF/Source/btf_order.c $(MX) -c $< btf_strongcomp.o: ../../BTF/Source/btf_strongcomp.c $(MX) -c $< #=============================================================================== KLU_INC = ../Include/klu.h ../Include/klu_internal.h ../Include/klu_version.h KLU_L = klu_l.o klu_l_kernel.o klu_l_dump.o \ klu_l_factor.o klu_l_free_numeric.o klu_l_solve.o \ klu_l_scale.o klu_l_refactor.o \ klu_l_tsolve.o klu_l_diagnostics.o klu_l_sort.o klu_l_extract.o KLU_ZL = klu_zl.o klu_zl_kernel.o klu_zl_dump.o \ klu_zl_factor.o klu_zl_free_numeric.o klu_zl_solve.o \ klu_zl_scale.o klu_zl_refactor.o \ klu_zl_tsolve.o klu_zl_diagnostics.o klu_zl_sort.o klu_zl_extract.o COMMON = klu_free_symbolic.o klu_defaults.o klu_analyze_given.o \ klu_analyze.o klu_memory.o KLU = $(COMMON) $(KLU_L) $(KLU_ZL) $(KLU): $(KLU_INC) #------------------------------------------------------------------------------- klu_l.o: ../Source/klu.c $(MX) -c $< $(MV) klu.o $@ klu_zl.o: ../Source/klu.c $(MX) -c -DCOMPLEX $< $(MV) klu.o $@ klu_l_kernel.o: ../Source/klu_kernel.c $(MX) -c $< $(MV) klu_kernel.o $@ klu_zl_kernel.o: ../Source/klu_kernel.c $(MX) -c -DCOMPLEX $< $(MV) klu_kernel.o $@ klu_l_sort.o: ../Source/klu_sort.c $(MX) -c $< $(MV) klu_sort.o $@ klu_zl_sort.o: ../Source/klu_sort.c $(MX) -c -DCOMPLEX $< $(MV) klu_sort.o $@ klu_l_diagnostics.o: ../Source/klu_diagnostics.c $(MX) -c $< $(MV) klu_diagnostics.o $@ klu_zl_diagnostics.o: ../Source/klu_diagnostics.c $(MX) -c -DCOMPLEX $< $(MV) klu_diagnostics.o $@ klu_l_dump.o: ../Source/klu_dump.c $(MX) -c $< $(MV) klu_dump.o $@ klu_zl_dump.o: ../Source/klu_dump.c $(MX) -c -DCOMPLEX $< $(MV) klu_dump.o $@ klu_l_factor.o: ../Source/klu_factor.c $(MX) -c $< $(MV) klu_factor.o $@ klu_zl_factor.o: ../Source/klu_factor.c $(MX) -c -DCOMPLEX $< $(MV) klu_factor.o $@ klu_l_free_numeric.o: ../Source/klu_free_numeric.c $(MX) -c $< $(MV) klu_free_numeric.o $@ klu_zl_free_numeric.o: ../Source/klu_free_numeric.c $(MX) -c -DCOMPLEX $< $(MV) klu_free_numeric.o $@ klu_l_extract.o: ../Source/klu_extract.c $(MX) -c $< $(MV) klu_extract.o $@ klu_zl_extract.o: ../Source/klu_extract.c $(MX) -c -DCOMPLEX $< $(MV) klu_extract.o $@ klu_l_refactor.o: ../Source/klu_refactor.c $(MX) -c $< $(MV) klu_refactor.o $@ klu_zl_refactor.o: ../Source/klu_refactor.c $(MX) -c -DCOMPLEX $< $(MV) klu_refactor.o $@ klu_l_scale.o: ../Source/klu_scale.c $(MX) -c $< $(MV) klu_scale.o $@ klu_zl_scale.o: ../Source/klu_scale.c $(MX) -c -DCOMPLEX $< $(MV) klu_scale.o $@ klu_l_solve.o: ../Source/klu_solve.c $(MX) -c $< $(MV) klu_solve.o $@ klu_zl_solve.o: ../Source/klu_solve.c $(MX) -c -DCOMPLEX $< $(MV) klu_solve.o $@ klu_l_tsolve.o: ../Source/klu_tsolve.c $(MX) -c $< $(MV) klu_tsolve.o $@ klu_zl_tsolve.o: ../Source/klu_tsolve.c $(MX) -c -DCOMPLEX $< $(MV) klu_tsolve.o $@ #------------------------------------------------------------------------------- klu_analyze.o: ../Source/klu_analyze.c $(MX) -c $< klu_analyze_given.o: ../Source/klu_analyze_given.c $(MX) -c $< klu_defaults.o: ../Source/klu_defaults.c $(MX) -c $< klu_free_symbolic.o: ../Source/klu_free_symbolic.c $(MX) -c $< klu_memory.o: ../Source/klu_memory.c $(MX) -c $< #=============================================================================== OBJ = $(AMD) $(COLAMD) $(KLU) $(BTF) klu: klu_mex.c $(OBJ) $(MX) -DNCHOLMOD -output klu klu_mex.c $(OBJ) SuiteSparse/KLU/MATLAB/klu_demo.m0000644001170100242450000000366010620376407015331 0ustar davisfacfunction klu_demo % KLU demo % % Example: % klu_demo % % See also klu, btf % Copyright 2004-2007 Timothy A. Davis, Univ. of Florida load west0479 A = west0479 ; n = size (A,1) ; b = rand (n,1) ; clf subplot (2,2,1) ; spy (A) title ('west0479') ; subplot (2,2,2) ; [p, q, r] = btf (A) ; drawbtf (A, p, q, r) ; title ('BTF form') ; [x,info,c] = klu (A, '\', b) ; matlab_condest = condest (A) ; matlab_cond = cond (full (A)) ; fprintf ('MATLAB condest: %g KLU condest: %g cond: %g\n', ... matlab_condest, c, matlab_cond) ; fprintf ('\nKLU with scaling, AMD ordering and condition number estimate:\n') ; [LU,info] = klu (A, struct ('ordering',0, 'scale', 1)) ; x = klu (LU, '\', b) ; resid = norm (A*x-b,1) / norm (A,1) ; rgrowth = full (min (max (abs ((LU.R \ A (LU.p,LU.q)) - LU.F)) ./ ... max (abs (LU.U)))) ; fprintf ('resid: %g KLU condest: %g rgrowth: %g\n', resid, c, rgrowth) ; disp (info) ; subplot (2,2,3) ; spy (LU.L + LU.U + LU.F) ; title ('KLU+AMD factors') ; fprintf ('\nKLU with COLAMD ordering\n') ; [LU,info] = klu (A, struct ('ordering',1)) ; x = klu (LU, '\', b) ; resid = norm (A*x-b,1) / norm (A,1) ; fprintf ('resid: %g\n', resid) ; disp (info) ; subplot (2,2,4) ; spy (LU.L + LU.U + LU.F) ; title ('KLU+COLAMD factors') ; fprintf ('\nKLU with natural ordering (lots of fillin)\n') ; [x,info] = klu (A, '\', b, struct ('ordering',2)) ; resid = norm (A*x-b,1) / norm (A,1) ; fprintf ('resid: %g\n', resid) ; disp (info) ; try fprintf ('\nKLU with CHOLMOD(A''*A) ordering\n') ; [x,info] = klu (A, '\', b, struct ('ordering',3)) ; resid = norm (A*x-b,1) / norm (A,1) ; fprintf ('resid: %g\n', resid) ; disp (info) ; fprintf ('\nKLU with CHOLMOD(A+A'') ordering\n') ; [x,info] = klu (A, '\', b, struct ('ordering',4)) ; resid = norm (A*x-b,1) / norm (A,1) ; fprintf ('resid: %g\n', resid) ; disp (info) ; catch fprintf ('KLU test with CHOLMOD skipped (CHOLMOD not installed)\n') ; end SuiteSparse/KLU/MATLAB/klu_mex.c0000644001170100242450000013715410634325173015171 0ustar davisfac/* ========================================================================== */ /* === klu mexFunction ====================================================== */ /* ========================================================================== */ /* KLU: a MATLAB interface to a "Clark Kent" sparse LU factorization algorithm. 3 or 4 input arguments: factorize and solve, returning the solution: x = klu (A, '\', b) x = klu (A, '\', b, opts) x = klu (b, '/', A) x = klu (b, '/', A, opts) A can be the LU struct, instead: x = klu (LU, '\', b) x = klu (LU, '\', b, opts) x = klu (b, '/', LU) x = klu (b, '/', LU, opts) where LU is a struct containing members: L, U, p, q, R, F, and r. Only L and U are required. The factorization is L*U+F = R\A(p,q), where r defines the block boundaries of the BTF form, and F contains the entries in the upper block triangular part. with 1 or 2 input arguments: factorize, returning the LU struct: LU = klu (A) LU = klu (A, opts) 2nd optional output: info, which is only meaningful if A was factorized. A must be square. b can be a matrix, but it cannot be sparse. Obscure options, mainly for testing: opts.memgrow 1.2 when L and U need to grow, inc. by this ratio. valid range: 1 or more. opts.imemamd 1.2 initial size of L and U with AMD or other symmetric ordering is 1.2*nnz(L)+n; valid range 1 or more. opts.imem 10 initial size of L and U is 10*nnz(A)+n if a symmetric ordering not used; valid range 1 or more */ /* ========================================================================== */ #include "klu.h" #include #ifndef NCHOLMOD #include "klu_cholmod.h" #endif #include "mex.h" #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define ABS(x) (((x) < 0) ? -(x) : (x)) #define STRING_MATCH(s1,s2) (strcmp ((s1), (s2)) == 0) /* Complex division. This uses ACM Algo 116, by R. L. Smith, 1962. */ /* Note that c cannot be the same variable as a or b */ #define DIV(cx,cz,ax,az,bx,bz) \ { \ double r, den ; \ if (ABS (bx) >= ABS (bz)) \ { \ r = bz / bx ; \ den = bx + r * bz ; \ cx = (ax + az * r) / den ; \ cz = (az - ax * r) / den ; \ } \ else \ { \ r = bx / bz ; \ den = r * bx + bz ; \ cx = (ax * r + az) / den ; \ cz = (az * r - ax) / den ; \ } \ } /* complex multiply/subtract, c -= a*b */ /* Note that c cannot be the same variable as a or b */ #define MULT_SUB(cx,cz,ax,az,bx,bz) \ { \ cx -= ax * bx - az * bz ; \ cz -= az * bx + ax * bz ; \ } /* complex multiply/subtract, c -= a*conj(b) */ /* Note that c cannot be the same variable as a or b */ #define MULT_SUB_CONJ(cx,cz,ax,az,bx,bz) \ { \ cx -= ax * bx + az * bz ; \ cz -= az * bx - ax * bz ; \ } /* ========================================================================== */ /* === klu mexFunction ====================================================== */ /* ========================================================================== */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double ukk, lkk, rs, s, lik, uik, x [4], offik, z, ukkz, lkkz, sz, wx, wz ; double *X, *B, *Xz, *Xx, *Bx, *Bz, *A, *Ax, *Az, *Lx, *Ux, *Rs, *Offx, *Wx, *Uz, *Lz, *Offz, *Wz, *W, *Xi, *Bi ; UF_long *Ap, *Ai, *Lp, *Li, *Up, *Ui, *P, *Q, *R, *Rp, *Ri, *Offp, *Offi ; char *operator ; mxArray *L_matlab, *U_matlab, *p_matlab, *q_matlab, *R_matlab, *F_matlab, *r_matlab, *field ; const mxArray *A_matlab = NULL, *LU_matlab, *B_matlab = NULL, *opts_matlab ; klu_l_symbolic *Symbolic ; klu_l_numeric *Numeric ; klu_l_common Common ; UF_long n = 0, k, nrhs = 0, do_solve, do_factorize, symmetric, A_complex = 0, B_complex, nz, do_transpose = 0, p, pend, nblocks, R1 [2], chunk, nr, i, j, block, k1, k2, nk, bn = 0, ordering ; int mx_int ; static const char *fnames [ ] = { "noffdiag", /* # of off-diagonal pivots */ "nrealloc", /* # of memory reallocations */ "rcond", /* cheap reciprocal number estimate */ "rgrowth", /* reciprocal pivot growth */ "flops", /* flop count */ "nblocks", /* # of blocks in BTF form (1 if not computed) */ "ordering", /* AMD, COLAMD, natural, cholmod(AA'), cholmod(A+A') */ "scale", /* scaling (<=0: none, 1: sum, 2: max */ "lnz", /* nnz(L), including diagonal */ "unz", /* nnz(U), including diagonal */ "offnz", /* nnz(F), including diagonal */ "tol", /* pivot tolerance used */ "memory" /* peak memory usage */ }, *LUnames [ ] = { "L", "U", "p", "q", "R", "F", "r" } ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin < 1 || nargin > 4 || nargout > 3) { mexErrMsgTxt ( "Usage: x = klu(A,'\',b), x = klu(A,'/',b) or LU = klu(A)") ; } /* return the solution x, or just do LU factorization */ do_solve = (nargin > 2) ; /* determine size of the MATLAB integer */ if (sizeof (UF_long) == sizeof (INT32_T)) { mx_int = mxINT32_CLASS ; } else { mx_int = mxINT64_CLASS ; } if (do_solve) { /* ------------------------------------------------------------------ */ /* slash or backslash */ /* ------------------------------------------------------------------ */ /* usage, where opts is the optional 4th input argument: x = klu (A, '\', b) x = klu (LU, '\', b) x = klu (b, '/', A) x = klu (b, '/', LU) */ /* determine the operator, slash (/) or backslash (\) */ if (!mxIsChar (pargin [1])) { mexErrMsgTxt ("invalid operator") ; } operator = mxArrayToString (pargin [1]) ; if (STRING_MATCH (operator, "\\")) { do_transpose = 0 ; A_matlab = pargin [0] ; B_matlab = pargin [2] ; nrhs = mxGetN (B_matlab) ; bn = mxGetM (B_matlab) ; } else if (STRING_MATCH (operator, "/")) { do_transpose = 1 ; A_matlab = pargin [2] ; B_matlab = pargin [0] ; nrhs = mxGetM (B_matlab) ; bn = mxGetN (B_matlab) ; } else { mexErrMsgTxt ("invalid operator") ; } if (mxIsSparse (B_matlab)) { mexErrMsgTxt ("B cannot be sparse") ; } opts_matlab = (nargin > 3) ? pargin [3] : NULL ; /* determine if the factorization needs to be performed */ do_factorize = !mxIsStruct (A_matlab) ; if (do_factorize) { LU_matlab = NULL ; } else { LU_matlab = A_matlab ; A_matlab = NULL ; } } else { /* ------------------------------------------------------------------ */ /* factorize A and return LU factorization */ /* ------------------------------------------------------------------ */ /* usage, where opts in the optional 2nd input argument: LU = klu (A) */ LU_matlab = NULL ; A_matlab = pargin [0] ; B_matlab = NULL ; opts_matlab = (nargin > 1) ? pargin [1] : NULL ; do_factorize = 1 ; if (mxIsStruct (A_matlab)) { mexErrMsgTxt ("invalid input, A must be a sparse matrix") ; } } /* ---------------------------------------------------------------------- */ /* get options and set Common defaults */ /* ---------------------------------------------------------------------- */ klu_l_defaults (&Common) ; /* memory management routines */ Common.malloc_memory = mxMalloc ; Common.calloc_memory = mxCalloc ; Common.free_memory = mxFree ; Common.realloc_memory = mxRealloc ; /* factorization options */ if (opts_matlab != NULL && mxIsStruct (opts_matlab)) { if ((field = mxGetField (opts_matlab, 0, "tol")) != NULL) { Common.tol = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "memgrow")) != NULL) { Common.memgrow = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "imemamd")) != NULL) { Common.initmem_amd = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "imem")) != NULL) { Common.initmem = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "btf")) != NULL) { Common.btf = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "ordering")) != NULL) { Common.ordering = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "scale")) != NULL) { Common.scale = mxGetScalar (field) ; } if ((field = mxGetField (opts_matlab, 0, "maxwork")) != NULL) { Common.maxwork = mxGetScalar (field) ; } } if (Common.ordering < 0 || Common.ordering > 4) { mexErrMsgTxt ("invalid ordering option") ; } ordering = Common.ordering ; #ifndef NCHOLMOD /* ordering option 3,4 becomes KLU option 3, with symmetric 0 or 1 */ symmetric = (Common.ordering == 4) ; if (symmetric) Common.ordering = 3 ; Common.user_order = klu_l_cholmod ; Common.user_data = &symmetric ; #else /* CHOLMOD, METIS, CAMD, CCOLAMD, not available */ if (Common.ordering > 2) { mexErrMsgTxt ("invalid ordering option") ; } #endif if (Common.scale < 1 || Common.scale > 2) { Common.scale = -1 ; /* no scaling, and no error checking either */ } /* ---------------------------------------------------------------------- */ /* factorize, if needed */ /* ---------------------------------------------------------------------- */ if (do_factorize) { /* get input matrix A to factorize */ n = mxGetN (A_matlab) ; if (!mxIsSparse (A_matlab) || n != mxGetM (A_matlab) || n == 0) { mexErrMsgTxt ("A must be sparse, square, and non-empty") ; } Ap = (UF_long *) mxGetJc (A_matlab) ; Ai = (UF_long *) mxGetIr (A_matlab) ; Ax = mxGetPr (A_matlab) ; Az = mxGetPi (A_matlab) ; nz = Ap [n] ; A_complex = mxIsComplex (A_matlab) ; if (do_solve && (n != bn || nrhs == 0)) { mexErrMsgTxt ("B must be non-empty with same number of rows as A") ; } /* ------------------------------------------------------------------ */ /* analyze */ /* ------------------------------------------------------------------ */ Symbolic = klu_l_analyze (n, Ap, Ai, &Common) ; if (Symbolic == (klu_l_symbolic *) NULL) { mexErrMsgTxt ("klu symbolic analysis failed") ; } /* ------------------------------------------------------------------ */ /* factorize */ /* ------------------------------------------------------------------ */ if (A_complex) { /* A is complex */ A = mxMalloc (nz * 2 * sizeof (double)) ; for (k = 0 ; k < nz ; k++) { A [2*k ] = Ax [k] ; /* real part */ A [2*k+1] = Az [k] ; /* imaginary part */ } Numeric = klu_zl_factor (Ap, Ai, A, Symbolic, &Common) ; if (nargout > 1) { /* flops and rgrowth, if requested */ klu_zl_flops (Symbolic, Numeric, &Common) ; klu_zl_rgrowth (Ap, Ai, A, Symbolic, Numeric, &Common) ; } mxFree (A) ; } else { /* A is real */ Numeric = klu_l_factor (Ap, Ai, Ax, Symbolic, &Common) ; if (nargout > 1) { /* flops, if requested */ klu_l_flops (Symbolic, Numeric, &Common) ; klu_l_rgrowth (Ap, Ai, Ax, Symbolic, Numeric, &Common) ; } } if (Common.status != KLU_OK) { mexErrMsgTxt ("klu numeric factorization failed") ; } /* ------------------------------------------------------------------ */ /* compute cheap condition number estimate */ /* ------------------------------------------------------------------ */ if (A_complex) { klu_zl_rcond (Symbolic, Numeric, &Common) ; } else { klu_l_rcond (Symbolic, Numeric, &Common) ; } /* ------------------------------------------------------------------ */ /* return info, if requested */ /* ------------------------------------------------------------------ */ #define INFO(i,x) \ mxSetFieldByNumber (pargout [1], 0, i, mxCreateScalarDouble (x)) if (nargout > 1) { pargout [1] = mxCreateStructMatrix (1, 1, 13, fnames) ; INFO (0, Common.noffdiag) ; INFO (1, Common.nrealloc) ; INFO (2, Common.rcond) ; INFO (3, Common.rgrowth) ; INFO (4, Common.flops) ; INFO (5, Symbolic->nblocks) ; INFO (6, ordering) ; INFO (7, Common.scale) ; INFO (8, Numeric->lnz) ; INFO (9, Numeric->unz) ; INFO (10, Numeric->nzoff) ; INFO (11, Common.tol) ; INFO (12, Common.mempeak) ; } if (nargout > 2) { /* this is done separately, since it's costly */ klu_l_condest (Ap, Ax, Symbolic, Numeric, &Common) ; pargout [2] = mxCreateDoubleMatrix (1, 1, mxREAL) ; Wx = mxGetPr (pargout [2]) ; Wx [0] = Common.condest ; } } else { /* create an empty "info" and "condest" output */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (0, 0, mxREAL) ; } if (nargout > 2) { pargout [2] = mxCreateDoubleMatrix (0, 0, mxREAL) ; } } /* ---------------------------------------------------------------------- */ /* solve, or return LU factorization */ /* ---------------------------------------------------------------------- */ if (do_solve) { /* ------------------------------------------------------------------ */ /* solve, x = klu ( ... ) usage */ /* ------------------------------------------------------------------ */ B_complex = mxIsComplex (B_matlab) ; if (do_factorize) { /* -------------------------------------------------------------- */ /* solve using KLU factors computed above */ /* -------------------------------------------------------------- */ /* klu (A,'\',b) or klu (b,'/',A) usage */ /* create X */ if (do_transpose) { pargout [0] = mxCreateDoubleMatrix (nrhs, n, (A_complex || B_complex) ? mxCOMPLEX : mxREAL) ; } else { pargout [0] = mxCreateDoubleMatrix (n, nrhs, (A_complex || B_complex) ? mxCOMPLEX : mxREAL) ; } if (A_complex) { /* ---------------------------------------------------------- */ /* A is complex, but B might be real */ /* ---------------------------------------------------------- */ X = mxMalloc (n * nrhs * 2 * sizeof (double)) ; Bx = mxGetPr (B_matlab) ; Bz = mxGetPi (B_matlab) ; if (do_transpose) { /* X = B', merge and transpose B */ for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < n ; i++) { X [2*(i+j*n) ] = Bx [j+i*nrhs] ; /* real */ X [2*(i+j*n)+1] = Bz ? (-Bz [j+i*nrhs]) : 0 ; } } /* solve A'x=b (complex conjugate) */ klu_zl_tsolve (Symbolic, Numeric, n, nrhs, X, 1, &Common) ; /* split and transpose the solution */ Xx = mxGetPr (pargout [0]) ; Xz = mxGetPi (pargout [0]) ; for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < n ; i++) { Xx [j+i*nrhs] = X [2*(i+j*n) ] ; /* real part */ Xz [j+i*nrhs] = -X [2*(i+j*n)+1] ; /* imag part */ } } } else { /* X = B, but create merged X from a split B */ for (k = 0 ; k < n*nrhs ; k++) { X [2*k ] = Bx [k] ; /* real part */ X [2*k+1] = Bz ? (Bz [k]) : 0 ; /* imaginary part */ } /* solve Ax=b */ klu_zl_solve (Symbolic, Numeric, n, nrhs, X, &Common) ; /* split the solution into real and imaginary parts */ Xx = mxGetPr (pargout [0]) ; Xz = mxGetPi (pargout [0]) ; for (k = 0 ; k < n*nrhs ; k++) { Xx [k] = X [2*k ] ; /* real part */ Xz [k] = X [2*k+1] ; /* imaginary part */ } } mxFree (X) ; } else { if (do_transpose) { /* solve in chunks of 4 columns at a time */ W = mxMalloc (n * MAX (nrhs,4) * sizeof (double)) ; X = mxGetPr (pargout [0]) ; B = mxGetPr (B_matlab) ; Xi = mxGetPi (pargout [0]) ; Bi = mxGetPi (B_matlab) ; for (chunk = 0 ; chunk < nrhs ; chunk += 4) { /* A is real: real(X) = real(b) / real(A) */ UF_long chunksize = MIN (nrhs - chunk, 4) ; for (j = 0 ; j < chunksize ; j++) { for (i = 0 ; i < n ; i++) { W [i+j*n] = B [i*nrhs+j] ; } } klu_l_tsolve (Symbolic, Numeric, n, chunksize, W, &Common) ; for (j = 0 ; j < chunksize ; j++) { for (i = 0 ; i < n ; i++) { X [i*nrhs+j] = W [i+j*n] ; } } X += 4 ; B += 4 ; if (B_complex) { /* B is complex: imag(X) = imag(B) / real(A) */ for (j = 0 ; j < chunksize ; j++) { for (i = 0 ; i < n ; i++) { W [i+j*n] = Bi [i*nrhs+j] ; } } klu_l_tsolve (Symbolic, Numeric, n, chunksize, W, &Common) ; for (j = 0 ; j < chunksize ; j++) { for (i = 0 ; i < n ; i++) { Xi [i*nrhs+j] = W [i+j*n] ; } } Xi += 4 ; Bi += 4 ; } } mxFree (W) ; } else { /* A is real: real(X) = real(A) \ real(b) */ X = mxGetPr (pargout [0]) ; B = mxGetPr (B_matlab) ; for (k = 0 ; k < n*nrhs ; k++) { X [k] = B [k] ; } klu_l_solve (Symbolic, Numeric, n, nrhs, X, &Common) ; if (B_complex) { /* B is complex: imag(X) = real(A) \ imag(B) */ X = mxGetPi (pargout [0]) ; B = mxGetPi (B_matlab) ; for (k = 0 ; k < n*nrhs ; k++) { X [k] = B [k] ; } klu_l_solve (Symbolic, Numeric, n, nrhs, X, &Common) ; } } } /* -------------------------------------------------------------- */ /* free Symbolic and Numeric objects */ /* -------------------------------------------------------------- */ klu_l_free_symbolic (&Symbolic, &Common) ; if (A_complex) { klu_zl_free_numeric (&Numeric, &Common) ; } else { klu_l_free_numeric (&Numeric, &Common) ; } } else { /* -------------------------------------------------------------- */ /* solve using LU struct given on input */ /* -------------------------------------------------------------- */ /* the factorization is L*U+F = R\A(p,q), where L*U is block diagonal, and F contains the entries in the upper block triangular part */ L_matlab = mxGetField (LU_matlab, 0, "L") ; U_matlab = mxGetField (LU_matlab, 0, "U") ; p_matlab = mxGetField (LU_matlab, 0, "p") ; q_matlab = mxGetField (LU_matlab, 0, "q") ; R_matlab = mxGetField (LU_matlab, 0, "R") ; F_matlab = mxGetField (LU_matlab, 0, "F") ; r_matlab = mxGetField (LU_matlab, 0, "r") ; if (!L_matlab || !U_matlab || !mxIsSparse (L_matlab) || !mxIsSparse (U_matlab)) { mexErrMsgTxt ("invalid LU struct") ; } n = mxGetM (L_matlab) ; if (n != mxGetN (L_matlab) || n != mxGetM (U_matlab) || n != mxGetN (U_matlab) /* ... */ ) { mexErrMsgTxt ("invalid LU struct") ; } if (n != bn || nrhs == 0) { mexErrMsgTxt ( "B must be non-empty with same number of rows as L and U") ; } /* get L */ if (!mxIsSparse (L_matlab) || n != mxGetM (L_matlab) || n != mxGetN (L_matlab)) { mexErrMsgTxt ("LU.L must be sparse and same size as A") ; } Lp = (UF_long *) mxGetJc (L_matlab) ; Li = (UF_long *) mxGetIr (L_matlab) ; Lx = mxGetPr (L_matlab) ; Lz = mxGetPi (L_matlab) ; /* get U */ if (!mxIsSparse (U_matlab) || n != mxGetM (U_matlab) || n != mxGetN (U_matlab)) { mexErrMsgTxt ("LU.U must be sparse and same size as A") ; } Up = (UF_long *) mxGetJc (U_matlab) ; Ui = (UF_long *) mxGetIr (U_matlab) ; Ux = mxGetPr (U_matlab) ; Uz = mxGetPi (U_matlab) ; /* get p */ if (p_matlab) { if (mxGetNumberOfElements (p_matlab) != n || mxIsSparse (p_matlab) || mxGetClassID (p_matlab) != mx_int) { mexErrMsgTxt ("P invalid") ; } P = (UF_long *) mxGetData (p_matlab) ; for (k = 0 ; k < n ; k++) { if (P [k] < 1 || P [k] > n) mexErrMsgTxt ("P invalid") ; } } else { /* no P, use identity instead */ P = NULL ; } /* get q */ if (q_matlab) { if (mxGetNumberOfElements (q_matlab) != n || mxIsSparse (q_matlab) || mxGetClassID (q_matlab) != mx_int) { mexErrMsgTxt ("Q invalid") ; } Q = (UF_long *) mxGetData (q_matlab) ; for (k = 0 ; k < n ; k++) { if (Q [k] < 1 || Q [k] > n) mexErrMsgTxt ("Q invalid.") ; } } else { /* no Q, use identity instead */ Q = NULL ; } /* get r */ R1 [0] = 1 ; R1 [1] = n+1 ; if (r_matlab) { nblocks = mxGetNumberOfElements (r_matlab) - 1 ; if (nblocks < 1 || nblocks > n || mxIsSparse (r_matlab) || mxGetClassID (r_matlab) != mx_int) { mexErrMsgTxt ("r invalid") ; } R = (UF_long *) mxGetData (r_matlab) ; if (R [0] != 1) mexErrMsgTxt ("r invalid") ; for (k = 1 ; k <= nblocks ; k++) { if (R [k] <= R [k-1] || R [k] > n+1) { mexErrMsgTxt ("rinvalid") ; } } if (R [nblocks] != n+1) mexErrMsgTxt ("r invalid") ; } else { /* no r */ nblocks = 1 ; R = R1 ; } /* get R, scale factors */ if (R_matlab) { /* ensure R is sparse, real, and has the right size */ if (!mxIsSparse (R_matlab) || n != mxGetM (R_matlab) || n != mxGetN (R_matlab)) { mexErrMsgTxt ("LU.R must be sparse and same size as A") ; } Rp = (UF_long *) mxGetJc (R_matlab) ; Rs = mxGetPr (R_matlab) ; if (Rp [n] != n) { mexErrMsgTxt ("LU.R invalid, must be diagonal") ; } } else { /* no scale factors */ Rs = NULL ; } /* get F, off diagonal entries */ if (F_matlab) { if (!mxIsSparse (F_matlab) || n != mxGetM (F_matlab) || n != mxGetN (F_matlab)) { mexErrMsgTxt ("LU.F must be sparse and same size as A") ; } Offp = (UF_long *) mxGetJc (F_matlab) ; Offi = (UF_long *) mxGetIr (F_matlab) ; Offx = mxGetPr (F_matlab) ; Offz = mxGetPi (F_matlab) ; } else { /* no off-diagonal entries */ Offp = NULL ; Offi = NULL ; Offx = NULL ; Offz = NULL ; } /* -------------------------------------------------------------- */ /* solve */ /* -------------------------------------------------------------- */ if (mxIsComplex (L_matlab) || mxIsComplex (U_matlab) || (F_matlab && mxIsComplex (F_matlab)) || B_complex) { /* ========================================================== */ /* === complex case ========================================= */ /* ========================================================== */ /* create X */ if (do_transpose) { pargout [0] = mxCreateDoubleMatrix (nrhs, n, mxCOMPLEX) ; } else { pargout [0] = mxCreateDoubleMatrix (n, nrhs, mxCOMPLEX) ; } Xx = mxGetPr (pargout [0]) ; Xz = mxGetPi (pargout [0]) ; Bx = mxGetPr (B_matlab) ; Bz = mxGetPi (B_matlab) ; /* get workspace */ Wx = mxMalloc (n * sizeof (double)) ; Wz = mxMalloc (n * sizeof (double)) ; /* ---------------------------------------------------------- */ /* do just one row/column of the right-hand-side at a time */ /* ---------------------------------------------------------- */ if (do_transpose) { for (chunk = 0 ; chunk < nrhs ; chunk++) { /* -------------------------------------------------- */ /* transpose and permute right hand side, W = Q'*B' */ /* -------------------------------------------------- */ for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Wx [k] = Bx [i*nrhs] ; Wz [k] = Bz ? (-Bz [i*nrhs]) : 0 ; } /* -------------------------------------------------- */ /* solve W = (L*U + Off)'\W */ /* -------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { /* ---------------------------------------------- */ /* block of size nk, rows/columns k1 to k2-1 */ /* ---------------------------------------------- */ k1 = R [block] - 1 ; /* R is 1-based */ k2 = R [block+1] - 1 ; nk = k2 - k1 ; /* ---------------------------------------------- */ /* block back-substitution for off-diagonal-block */ /* ---------------------------------------------- */ if (block > 0 && Offp != NULL) { for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; /* W [k] -= W [i] * conj(Off [p]) ; */ z = Offz ? Offz [p] : 0 ; MULT_SUB_CONJ (Wx [k], Wz [k], Wx [i], Wz [i], Offx [p], z) ; } } } /* solve the block system */ if (nk == 1) { /* W [k1] /= conj (L(k1,k1)) ; */ p = Lp [k1] ; s = Lx [p] ; sz = Lz ? (-Lz [p]) : 0 ; DIV (wx, wz, Wx [k1], Wz [k1], s, sz) ; Wx [k1] = wx ; Wz [k1] = wz ; /* W [k1] /= conj (U(k1,k1)) ; */ p = Up [k1] ; s = Ux [p] ; sz = Uz ? (-Uz [p]) : 0 ; DIV (wx, wz, Wx [k1], Wz [k1], s, sz) ; Wx [k1] = wx ; Wz [k1] = wz ; } else { /* ------------------------------------------ */ /* W = U'\W and then W=L'\W */ /* ------------------------------------------ */ /* W = U'\W */ for (k = k1 ; k < k2 ; k++) { pend = Up [k+1] - 1 ; /* w = W [k] */ wx = Wx [k] ; wz = Wz [k] ; for (p = Up [k] ; p < pend ; p++) { i = Ui [p] ; /* w -= W [i] * conj(U [p]) */ z = Uz ? Uz [p] : 0 ; MULT_SUB_CONJ (wx, wz, Wx [i], Wz [i], Ux [p], z) ; } /* W [k] = w / conj(ukk) ; */ ukk = Ux [pend] ; ukkz = Uz ? (-Uz [pend]) : 0 ; DIV (Wx [k], Wz [k], wx, wz, ukk, ukkz) ; } /* W = L'\W */ for (k = k2-1 ; k >= k1 ; k--) { p = Lp [k] ; pend = Lp [k+1] ; /* w = W [k] */ wx = Wx [k] ; wz = Wz [k] ; lkk = Lx [p] ; lkkz = Lz ? (-Lz [p]) : 0 ; for (p++ ; p < pend ; p++) { i = Li [p] ; /* w -= W [i] * conj (Lx [p]) ; */ z = Lz ? Lz [p] : 0 ; MULT_SUB_CONJ (wx, wz, Wx [i], Wz [i], Lx [p], z) ; } /* W [k] = w / conj(lkk) ; */ DIV (Wx [k], Wz [k], wx, wz, lkk, lkkz) ; } } } /* -------------------------------------------------- */ /* scale, permute, and tranpose: X = (P*(R\W))' */ /* -------------------------------------------------- */ if (Rs == NULL) { /* no scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Xx [i*nrhs] = Wx [k] ; Xz [i*nrhs] = Wz ? (-Wz [k]) : 0 ; } } else { /* with scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Xx [i*nrhs] = Wx [k] / rs ; Xz [i*nrhs] = Wz ? (-Wz [k] / rs) : 0 ; } } /* -------------------------------------------------- */ /* go to the next row of B and X */ /* -------------------------------------------------- */ Xx++ ; Xz++ ; Bx++ ; if (Bz) Bz++ ; } } else { for (chunk = 0 ; chunk < nrhs ; chunk++) { /* -------------------------------------------------- */ /* scale and permute the right hand side, W = P*(R\B) */ /* -------------------------------------------------- */ if (Rs == NULL) { /* no scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Wx [k] = Bx [i] ; Wz [k] = Bz ? Bz [i] : 0 ; } } else { /* with scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Wx [k] = Bx [i] / rs ; Wz [k] = Bz ? (Bz [i] / rs) : 0 ; } } /* -------------------------------------------------- */ /* solve W = (L*U + Off)\W */ /* -------------------------------------------------- */ for (block = nblocks-1 ; block >= 0 ; block--) { /* ---------------------------------------------- */ /* block of size nk, rows/columns k1 to k2-1 */ /* ---------------------------------------------- */ k1 = R [block] - 1 ; /* R is 1-based */ k2 = R [block+1] - 1 ; nk = k2 - k1 ; /* solve the block system */ if (nk == 1) { /* W [k1] /= L(k1,k1) ; */ p = Lp [k1] ; s = Lx [p] ; sz = Lz ? Lz [p] : 0 ; DIV (wx, wz, Wx [k1], Wz [k1], s, sz) ; Wx [k1] = wx ; Wz [k1] = wz ; /* W [k1] /= U(k1,k1) ; */ p = Up [k1] ; s = Ux [p] ; sz = Uz ? Uz [p] : 0 ; DIV (wx, wz, Wx [k1], Wz [k1], s, sz) ; Wx [k1] = wx ; Wz [k1] = wz ; } else { /* ------------------------------------------ */ /* W = L\W and then W=U\W */ /* ------------------------------------------ */ /* W = L\W */ for (k = k1 ; k < k2 ; k++) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p] ; lkkz = Lz ? Lz [p] : 0 ; /* w = W [k] / lkk ; */ DIV (wx, wz, Wx [k], Wz [k], lkk, lkkz) ; Wx [k] = wx ; Wz [k] = wz ; for (p++ ; p < pend ; p++) { i = Li [p] ; /* W [i] -= Lx [p] * w ; */ z = Lz ? Lz [p] : 0 ; MULT_SUB (Wx [i], Wz [i], Lx [p], z, wx, wz) ; } } /* W = U\W */ for (k = k2-1 ; k >= k1 ; k--) { pend = Up [k+1] - 1 ; ukk = Ux [pend] ; ukkz = Uz ? Uz [pend] : 0 ; /* w = W [k] / ukk ; */ DIV (wx, wz, Wx [k], Wz [k], ukk, ukkz) ; Wx [k] = wx ; Wz [k] = wz ; for (p = Up [k] ; p < pend ; p++) { i = Ui [p] ; /* W [i] -= U [p] * w ; */ z = Uz ? Uz [p] : 0 ; MULT_SUB (Wx [i], Wz [i], Ux [p], z, wx, wz) ; } } } /* ---------------------------------------------- */ /* block back-substitution for off-diagonal-block */ /* ---------------------------------------------- */ if (block > 0 && Offp != NULL) { for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; wx = Wx [k] ; wz = Wz [k] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; /* W [Offi [p]] -= Offx [p] * w ; */ z = Offz ? Offz [p] : 0 ; MULT_SUB (Wx [i], Wz [i], Offx [p], z, wx, wz) ; } } } } /* -------------------------------------------------- */ /* permute the result, X = Q*W */ /* -------------------------------------------------- */ for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Xx [i] = Wx [k] ; Xz [i] = Wz [k] ; } /* -------------------------------------------------- */ /* go to the next column of B and X */ /* -------------------------------------------------- */ Xx += n ; Xz += n ; Bx += n ; if (Bz) Bz += n ; } } /* free workspace */ mxFree (Wx) ; mxFree (Wz) ; } else { /* ========================================================== */ /* === real case ============================================ */ /* ========================================================== */ /* create X */ if (do_transpose) { pargout [0] = mxCreateDoubleMatrix (nrhs, n, mxREAL) ; } else { pargout [0] = mxCreateDoubleMatrix (n, nrhs, mxREAL) ; } Xx = mxGetPr (pargout [0]) ; Bx = mxGetPr (B_matlab) ; if (do_transpose) { /* ------------------------------------------------------ */ /* solve in chunks of one row at a time */ /* ------------------------------------------------------ */ /* get workspace */ Wx = mxMalloc (n * sizeof (double)) ; for (chunk = 0 ; chunk < nrhs ; chunk++) { /* -------------------------------------------------- */ /* transpose and permute right hand side, W = Q'*B' */ /* -------------------------------------------------- */ for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Wx [k] = Bx [i*nrhs] ; } /* -------------------------------------------------- */ /* solve W = (L*U + Off)'\W */ /* -------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { /* ---------------------------------------------- */ /* block of size nk, rows/columns k1 to k2-1 */ /* ---------------------------------------------- */ k1 = R [block] - 1 ; /* R is 1-based */ k2 = R [block+1] - 1 ; nk = k2 - k1 ; /* ---------------------------------------------- */ /* block back-substitution for off-diagonal-block */ /* ---------------------------------------------- */ if (block > 0 && Offp != NULL) { for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; for (p = Offp [k] ; p < pend ; p++) { Wx [k] -= Wx [Offi [p]] * Offx [p] ; } } } /* solve the block system */ if (nk == 1) { Wx [k1] /= Lx [Lp [k1]] ; Wx [k1] /= Ux [Up [k1]] ; } else { /* ------------------------------------------ */ /* W = U'\W and then W=L'\W */ /* ------------------------------------------ */ /* W = U'\W */ for (k = k1 ; k < k2 ; k++) { pend = Up [k+1] - 1 ; for (p = Up [k] ; p < pend ; p++) { Wx [k] -= Wx [Ui [p]] * Ux [p] ; } Wx [k] /= Ux [pend] ; } /* W = L'\W */ for (k = k2-1 ; k >= k1 ; k--) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p] ; for (p++ ; p < pend ; p++) { Wx [k] -= Wx [Li [p]] * Lx [p] ; } Wx [k] /= lkk ; } } } /* -------------------------------------------------- */ /* scale, permute, and tranpose: X = (P*(R\W))' */ /* -------------------------------------------------- */ if (Rs == NULL) { /* no scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Xx [i*nrhs] = Wx [k] ; } } else { /* with scaling */ for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Xx [i*nrhs] = Wx [k] / rs ; } } /* -------------------------------------------------- */ /* go to the next row of B and X */ /* -------------------------------------------------- */ Xx++ ; Bx++ ; } } else { /* ------------------------------------------------------ */ /* solve in chunks of 4 columns at a time */ /* ------------------------------------------------------ */ /* get workspace */ Wx = mxMalloc (n * MAX (4, nrhs) * sizeof (double)) ; for (chunk = 0 ; chunk < nrhs ; chunk += 4) { /* -------------------------------------------------- */ /* get the size of the current chunk */ /* -------------------------------------------------- */ nr = MIN (nrhs - chunk, 4) ; /* -------------------------------------------------- */ /* scale and permute the right hand side, W = P*(R\B) */ /* -------------------------------------------------- */ if (Rs == NULL) { /* no scaling */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Wx [k] = Bx [i] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Wx [2*k ] = Bx [i ] ; Wx [2*k + 1] = Bx [i + n ] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Wx [3*k ] = Bx [i ] ; Wx [3*k + 1] = Bx [i + n ] ; Wx [3*k + 2] = Bx [i + n*2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; Wx [4*k ] = Bx [i ] ; Wx [4*k + 1] = Bx [i + n ] ; Wx [4*k + 2] = Bx [i + n*2] ; Wx [4*k + 3] = Bx [i + n*3] ; } break ; } } else { switch (nr) { case 1: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Wx [k] = Bx [i] / rs ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Wx [2*k ] = Bx [i ] / rs ; Wx [2*k + 1] = Bx [i + n ] / rs ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Wx [3*k ] = Bx [i ] / rs ; Wx [3*k + 1] = Bx [i + n ] / rs ; Wx [3*k + 2] = Bx [i + n*2] / rs ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = P ? (P [k] - 1) : k ; rs = Rs [k] ; Wx [4*k ] = Bx [i ] / rs ; Wx [4*k + 1] = Bx [i + n ] / rs ; Wx [4*k + 2] = Bx [i + n*2] / rs ; Wx [4*k + 3] = Bx [i + n*3] / rs ; } break ; } } /* -------------------------------------------------- */ /* solve W = (L*U + Off)\W */ /* -------------------------------------------------- */ for (block = nblocks-1 ; block >= 0 ; block--) { /* ---------------------------------------------- */ /* block of size nk is rows/columns k1 to k2-1 */ /* ---------------------------------------------- */ k1 = R [block] - 1 ; /* R is 1-based */ k2 = R [block+1] - 1 ; nk = k2 - k1 ; /* solve the block system */ if (nk == 1) { /* this is not done if L comes from KLU, since in that case, L is unit lower triangular */ s = Lx [Lp [k1]] ; if (s != 1.0) switch (nr) { case 1: Wx [k1] /= s ; break ; case 2: Wx [2*k1] /= s ; Wx [2*k1 + 1] /= s ; break ; case 3: Wx [3*k1] /= s ; Wx [3*k1 + 1] /= s ; Wx [3*k1 + 2] /= s ; break ; case 4: Wx [4*k1] /= s ; Wx [4*k1 + 1] /= s ; Wx [4*k1 + 2] /= s ; Wx [4*k1 + 3] /= s ; break ; } s = Ux [Up [k1]] ; if (s != 1.0) switch (nr) { case 1: Wx [k1] /= s ; break ; case 2: Wx [2*k1] /= s ; Wx [2*k1 + 1] /= s ; break ; case 3: Wx [3*k1] /= s ; Wx [3*k1 + 1] /= s ; Wx [3*k1 + 2] /= s ; break ; case 4: Wx [4*k1] /= s ; Wx [4*k1 + 1] /= s ; Wx [4*k1 + 2] /= s ; Wx [4*k1 + 3] /= s ; break ; } } else { /* ------------------------------------------ */ /* W = L\W and then W=U\W */ /* ------------------------------------------ */ switch (nr) { case 1: /* W = L\W */ for (k = k1 ; k < k2 ; k++) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p++] ; x [0] = Wx [k] / lkk ; Wx [k] = x [0] ; for ( ; p < pend ; p++) { Wx [Li [p]] -= Lx [p] * x [0] ; } } /* W = U\W */ for (k = k2-1 ; k >= k1 ; k--) { pend = Up [k+1] - 1 ; ukk = Ux [pend] ; x [0] = Wx [k] / ukk ; Wx [k] = x [0] ; for (p = Up [k] ; p < pend ; p++) { Wx [Ui [p]] -= Ux [p] * x [0] ; } } break ; case 2: /* W = L\W */ for (k = k1 ; k < k2 ; k++) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p++] ; x [0] = Wx [2*k ] / lkk ; x [1] = Wx [2*k + 1] / lkk ; Wx [2*k ] = x [0] ; Wx [2*k + 1] = x [1] ; for ( ; p < pend ; p++) { i = Li [p] ; lik = Lx [p] ; Wx [2*i ] -= lik * x [0] ; Wx [2*i + 1] -= lik * x [1] ; } } /* W = U\W */ for (k = k2-1 ; k >= k1 ; k--) { pend = Up [k+1] - 1 ; ukk = Ux [pend] ; x [0] = Wx [2*k ] / ukk ; x [1] = Wx [2*k + 1] / ukk ; Wx [2*k ] = x [0] ; Wx [2*k + 1] = x [1] ; for (p = Up [k] ; p < pend ; p++) { i = Ui [p] ; uik = Ux [p] ; Wx [2*i ] -= uik * x [0] ; Wx [2*i + 1] -= uik * x [1] ; } } break ; case 3: /* W = L\W */ for (k = k1 ; k < k2 ; k++) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p++] ; x [0] = Wx [3*k ] / lkk ; x [1] = Wx [3*k + 1] / lkk ; x [2] = Wx [3*k + 2] / lkk ; Wx [3*k ] = x [0] ; Wx [3*k + 1] = x [1] ; Wx [3*k + 2] = x [2] ; for ( ; p < pend ; p++) { i = Li [p] ; lik = Lx [p] ; Wx [3*i ] -= lik * x [0] ; Wx [3*i + 1] -= lik * x [1] ; Wx [3*i + 2] -= lik * x [2] ; } } /* W = U\W */ for (k = k2-1 ; k >= k1 ; k--) { pend = Up [k+1] - 1 ; ukk = Ux [pend] ; x [0] = Wx [3*k ] / ukk ; x [1] = Wx [3*k + 1] / ukk ; x [2] = Wx [3*k + 2] / ukk ; Wx [3*k ] = x [0] ; Wx [3*k + 1] = x [1] ; Wx [3*k + 2] = x [2] ; for (p = Up [k] ; p < pend ; p++) { i = Ui [p] ; uik = Ux [p] ; Wx [3*i ] -= uik * x [0] ; Wx [3*i + 1] -= uik * x [1] ; Wx [3*i + 2] -= uik * x [2] ; } } break ; case 4: /* W = L\W */ for (k = k1 ; k < k2 ; k++) { p = Lp [k] ; pend = Lp [k+1] ; lkk = Lx [p++] ; x [0] = Wx [4*k ] / lkk ; x [1] = Wx [4*k + 1] / lkk ; x [2] = Wx [4*k + 2] / lkk ; x [3] = Wx [4*k + 3] / lkk ; Wx [4*k ] = x [0] ; Wx [4*k + 1] = x [1] ; Wx [4*k + 2] = x [2] ; Wx [4*k + 3] = x [3] ; for ( ; p < pend ; p++) { i = Li [p] ; lik = Lx [p] ; Wx [4*i ] -= lik * x [0] ; Wx [4*i + 1] -= lik * x [1] ; Wx [4*i + 2] -= lik * x [2] ; Wx [4*i + 3] -= lik * x [3] ; } } /* Wx = U\Wx */ for (k = k2-1 ; k >= k1 ; k--) { pend = Up [k+1] - 1 ; ukk = Ux [pend] ; x [0] = Wx [4*k ] / ukk ; x [1] = Wx [4*k + 1] / ukk ; x [2] = Wx [4*k + 2] / ukk ; x [3] = Wx [4*k + 3] / ukk ; Wx [4*k ] = x [0] ; Wx [4*k + 1] = x [1] ; Wx [4*k + 2] = x [2] ; Wx [4*k + 3] = x [3] ; for (p = Up [k] ; p < pend ; p++) { i = Ui [p] ; uik = Ux [p] ; Wx [4*i ] -= uik * x [0] ; Wx [4*i + 1] -= uik * x [1] ; Wx [4*i + 2] -= uik * x [2] ; Wx [4*i + 3] -= uik * x [3] ; } } break ; } } /* ---------------------------------------------- */ /* block back-substitution for off-diagonal-block */ /* ---------------------------------------------- */ if (block > 0 && Offp != NULL) { switch (nr) { case 1: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = Wx [k] ; for (p = Offp [k] ; p < pend ; p++) { Wx [Offi [p]] -= Offx[p] * x[0]; } } break ; case 2: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = Wx [2*k ] ; x [1] = Wx [2*k + 1] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; Wx [2*i ] -= offik * x [0] ; Wx [2*i + 1] -= offik * x [1] ; } } break ; case 3: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = Wx [3*k ] ; x [1] = Wx [3*k + 1] ; x [2] = Wx [3*k + 2] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; Wx [3*i ] -= offik * x [0] ; Wx [3*i + 1] -= offik * x [1] ; Wx [3*i + 2] -= offik * x [2] ; } } break ; case 4: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = Wx [4*k ] ; x [1] = Wx [4*k + 1] ; x [2] = Wx [4*k + 2] ; x [3] = Wx [4*k + 3] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; Wx [4*i ] -= offik * x [0] ; Wx [4*i + 1] -= offik * x [1] ; Wx [4*i + 2] -= offik * x [2] ; Wx [4*i + 3] -= offik * x [3] ; } } break ; } } } /* -------------------------------------------------- */ /* permute the result, X = Q*W */ /* -------------------------------------------------- */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Xx [i] = Wx [k] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Xx [i ] = Wx [2*k ] ; Xx [i + n ] = Wx [2*k + 1] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Xx [i ] = Wx [3*k ] ; Xx [i + n ] = Wx [3*k + 1] ; Xx [i + n*2] = Wx [3*k + 2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Q ? (Q [k] - 1) : k ; Xx [i ] = Wx [4*k ] ; Xx [i + n ] = Wx [4*k + 1] ; Xx [i + n*2] = Wx [4*k + 2] ; Xx [i + n*3] = Wx [4*k + 3] ; } break ; } /* -------------------------------------------------- */ /* go to the next chunk of B and X */ /* -------------------------------------------------- */ Xx += n*4 ; Bx += n*4 ; } } /* free workspace */ mxFree (Wx) ; } } } else { /* ------------------------------------------------------------------ */ /* LU = klu (A) usage; extract factorization */ /* ------------------------------------------------------------------ */ /* sort the row indices in each column of L and U */ if (A_complex) { klu_zl_sort (Symbolic, Numeric, &Common) ; } else { klu_l_sort (Symbolic, Numeric, &Common) ; } /* L */ L_matlab = mxCreateSparse (n, n, Numeric->lnz, A_complex ? mxCOMPLEX: mxREAL) ; Lp = (UF_long *) mxGetJc (L_matlab) ; Li = (UF_long *) mxGetIr (L_matlab) ; Lx = mxGetPr (L_matlab) ; Lz = mxGetPi (L_matlab) ; /* U */ U_matlab = mxCreateSparse (n, n, Numeric->unz, A_complex ? mxCOMPLEX: mxREAL) ; Up = (UF_long *) mxGetJc (U_matlab) ; Ui = (UF_long *) mxGetIr (U_matlab) ; Ux = mxGetPr (U_matlab) ; Uz = mxGetPi (U_matlab) ; /* p */ p_matlab = mxCreateNumericMatrix (1, n, mx_int, mxREAL) ; P = (UF_long *) mxGetData (p_matlab) ; /* q */ q_matlab = mxCreateNumericMatrix (1, n, mx_int, mxREAL) ; Q = (UF_long *) mxGetData (q_matlab) ; /* R, as a sparse diagonal matrix */ R_matlab = mxCreateSparse (n, n, n+1, mxREAL) ; Rp = (UF_long *) mxGetJc (R_matlab) ; Ri = (UF_long *) mxGetIr (R_matlab) ; Rs = mxGetPr (R_matlab) ; for (k = 0 ; k <= n ; k++) { Rp [k] = k ; Ri [k] = k ; } /* F, off diagonal blocks */ F_matlab = mxCreateSparse (n, n, Numeric->nzoff, A_complex ? mxCOMPLEX: mxREAL) ; Offp = (UF_long *) mxGetJc (F_matlab) ; Offi = (UF_long *) mxGetIr (F_matlab) ; Offx = mxGetPr (F_matlab) ; Offz = mxGetPi (F_matlab) ; /* r, block boundaries */ nblocks = Symbolic->nblocks ; r_matlab = mxCreateNumericMatrix (1, nblocks+1, mx_int, mxREAL) ; R = (UF_long *) mxGetData (r_matlab) ; /* extract the LU factorization from KLU Numeric and Symbolic objects */ if (A_complex) { klu_zl_extract (Numeric, Symbolic, Lp, Li, Lx, Lz, Up, Ui, Ux, Uz, Offp, Offi, Offx, Offz, P, Q, Rs, R, &Common) ; } else { klu_l_extract (Numeric, Symbolic, Lp, Li, Lx, Up, Ui, Ux, Offp, Offi, Offx, P, Q, Rs, R, &Common) ; } /* fix p and q for 1-based indexing */ for (k = 0 ; k < n ; k++) { P [k]++ ; Q [k]++ ; } /* fix r for 1-based indexing */ for (k = 0 ; k <= nblocks ; k++) { R [k]++ ; } /* create output LU struct */ pargout [0] = mxCreateStructMatrix (1, 1, 7, LUnames) ; mxSetFieldByNumber (pargout [0], 0, 0, L_matlab) ; mxSetFieldByNumber (pargout [0], 0, 1, U_matlab) ; mxSetFieldByNumber (pargout [0], 0, 2, p_matlab) ; mxSetFieldByNumber (pargout [0], 0, 3, q_matlab) ; mxSetFieldByNumber (pargout [0], 0, 4, R_matlab) ; mxSetFieldByNumber (pargout [0], 0, 5, F_matlab) ; mxSetFieldByNumber (pargout [0], 0, 6, r_matlab) ; /* ------------------------------------------------------------------ */ /* free Symbolic and Numeric objects */ /* ------------------------------------------------------------------ */ klu_l_free_symbolic (&Symbolic, &Common) ; klu_l_free_numeric (&Numeric, &Common) ; } } SuiteSparse/KLU/Matrix/0000755001170100242450000000000010615726227013656 5ustar davisfacSuiteSparse/KLU/Matrix/GD99_cc.mtx0000644001170100242450000000311010614651617015523 0ustar davisfac%%MatrixMarket matrix coordinate complex general % imaginary part is Pajek/GD99_c, real part is zero 105 105 149 6 1 0 1 5 2 0 1 7 2 0 1 4 3 0 1 8 3 0 1 5 4 0 1 1 5 0 1 24 6 0 1 6 7 0 1 7 8 0 1 26 9 0 1 105 10 0 1 94 11 0 1 40 12 0 1 26 13 0 1 16 14 0 1 26 15 0 1 26 16 0 1 16 17 0 1 16 19 0 1 16 20 0 1 57 21 0 1 15 22 0 1 31 22 0 1 13 23 0 1 15 24 0 1 13 25 0 1 9 26 0 1 16 26 0 1 57 26 0 1 24 27 0 1 85 28 0 1 85 29 0 1 32 30 0 1 86 30 0 1 22 31 0 1 45 31 0 1 57 31 0 1 22 32 0 1 85 32 0 1 54 33 0 1 88 33 0 1 91 33 0 1 91 34 0 1 92 34 0 1 95 35 0 1 50 36 0 1 98 37 0 1 98 38 0 1 38 39 0 1 38 40 0 1 102 41 0 1 101 42 0 1 103 43 0 1 100 44 0 1 104 44 0 1 31 45 0 1 93 45 0 1 28 46 0 1 50 47 0 1 87 47 0 1 100 47 0 1 53 48 0 1 99 48 0 1 87 49 0 1 89 49 0 1 45 50 0 1 94 50 0 1 31 51 0 1 104 51 0 1 48 52 0 1 90 52 0 1 91 52 0 1 89 53 0 1 87 54 0 1 90 54 0 1 93 54 0 1 99 55 0 1 29 56 0 1 18 57 0 1 21 57 0 1 26 57 0 1 31 57 0 1 95 58 0 1 45 59 0 1 103 59 0 1 59 60 0 1 102 61 0 1 61 62 0 1 61 63 0 1 53 64 0 1 64 65 0 1 65 66 0 1 64 67 0 1 91 67 0 1 92 67 0 1 88 68 0 1 97 69 0 1 96 70 0 1 97 70 0 1 96 71 0 1 92 72 0 1 48 73 0 1 64 73 0 1 98 73 0 1 40 74 0 1 86 75 0 1 96 76 0 1 86 77 0 1 82 78 0 1 78 79 0 1 82 79 0 1 81 80 0 1 84 80 0 1 78 81 0 1 33 82 0 1 82 83 0 1 83 84 0 1 32 85 0 1 30 86 0 1 47 87 0 1 54 87 0 1 33 88 0 1 97 88 0 1 49 89 0 1 99 89 0 1 52 90 0 1 55 90 0 1 33 91 0 1 67 91 0 1 34 92 0 1 50 93 0 1 50 94 0 1 95 94 0 1 94 95 0 1 70 96 0 1 88 97 0 1 73 98 0 1 55 99 0 1 89 99 0 1 47 100 0 1 101 100 0 1 100 101 0 1 102 101 0 1 101 102 0 1 59 103 0 1 105 103 0 1 105 104 0 1 104 105 0 1 SuiteSparse/KLU/Matrix/onec.mtx0000644001170100242450000000012710614241571015325 0ustar davisfac%%MatrixMarket matrix coordinate complex general 2 2 4 1 1 0 0 1 2 0 0 2 1 0 0 2 2 0 0 SuiteSparse/KLU/Matrix/impcol_a.mtx0000644001170100242450000001636610557446060016206 0ustar davisfac%%MatrixMarket matrix coordinate real general %------------------------------------------------------------------------------- % UF Sparse Matrix Collection, Tim Davis % http://www.cise.ufl.edu/research/sparse/matrices/HB/impcol_a % name: HB/impcol_a % [UNSYMMETRIC MATRIX - HEAT EXCHANGER NETWORK (CHEM ENG) ,1982] % id: 171 % date: 1982 % author: D. Bogle % ed: I. Duff, R. Grimes, J. Lewis % fields: title A name id date author ed kind % kind: chemical process simulation problem %------------------------------------------------------------------------------- 207 207 572 5 1 -1 6 1 -1 8 1 -1 11 1 .0662129 12 1 .1634 1 2 1 2 2 1 11 2 -.579712 12 2 -.422521 3 3 1 4 3 1 10 3 -1 11 3 17.8775 12 3 44.1179 5 4 -1 65 4 1 66 4 .5 1 5 -1 62 5 -1 3 6 -1 64 6 -1 6 7 680 7 8 1 9 9 1 8 10 1 14 10 -1 17 10 .00297937 18 10 .0247819 12 11 1 17 11 -.220568 18 11 -.808841 10 12 1 16 12 -1 17 12 .804429 18 12 6.69112 11 13 .0708967 12 13 -.0706236 13 14 -1 17 14 -.0323714 18 14 -.00352409 23 14 -1 24 14 -1 17 15 -.779432 18 15 -.191159 19 15 1 20 15 1 15 16 -1 17 16 -7.57491 18 16 -.824638 21 16 1 22 16 1 13 17 1 31 17 -1 33 17 -150 17 18 1 33 18 -234 15 19 1 32 19 -1 14 20 1 34 20 -1 36 20 -126.8 16 21 1 17 22 .104857 18 22 -.0908757 23 23 -1 26 23 -1 29 23 -.0311679 30 23 -.103571 19 24 -1 29 24 -.757389 30 24 -.625946 21 25 -1 28 25 -1 29 25 -10.7841 30 25 -35.8356 24 26 580 25 27 1 27 28 1 26 29 1 31 29 -1 33 29 -142.6 28 30 1 29 31 -.0979613 30 31 .0483804 31 32 1 33 32 145.6 33 33 580 32 34 1 34 35 -1 36 35 -161 38 35 1 35 36 -1 40 36 1 34 37 -1 36 37 -152.2 203 37 1 205 38 1 34 39 -1 36 39 -136.3 197 39 1 199 40 1 34 41 -1 36 41 -108.6 98 41 1 100 42 1 34 43 -1 36 43 -120.7 67 43 1 69 44 1 34 45 1 36 45 128 95 45 1 96 45 .2 36 46 680 92 46 -1 35 47 1 94 47 -1 38 48 -1 41 48 1.65272 42 48 2.82163 47 48 -1 41 49 -.607865 42 49 -.263986 43 49 -1 40 50 -1 41 50 36.3599 42 50 62.0759 45 50 -1 37 51 1 39 52 1 41 53 .559606 42 53 -.677581 47 54 1 48 54 .7 53 54 -1 44 55 -1 49 55 -1 46 56 -1 51 56 -1 47 57 -1 48 57 -1 203 57 -1 206 57 .478232 207 57 1.21868 43 58 1 44 58 1 206 58 -.330881 207 58 -.280695 45 59 1 46 59 1 205 59 -1 206 59 21.9987 207 59 56.0594 48 60 68 53 61 1 54 61 .6 59 61 -1 50 62 -1 55 62 -1 52 63 -1 57 63 -1 53 64 -1 54 64 -1 197 64 -1 200 64 .27161 201 64 .629158 49 65 1 50 65 1 200 65 -.561642 201 65 -.382811 51 66 1 52 66 1 199 66 -1 200 66 24.7165 201 66 57.2534 54 67 159 59 68 1 60 68 .2 65 68 -1 56 69 -1 61 69 -1 58 70 -1 63 70 -1 59 71 -1 60 71 -1 98 71 -1 101 71 .244371 102 71 1.02444 55 72 1 56 72 1 101 72 -.272351 102 72 -.432602 57 73 1 58 73 1 100 73 -1 101 73 11.7298 102 73 49.1733 60 74 207 65 75 -1 66 75 -1 67 75 -1 71 75 .232813 72 75 .061436 61 76 1 62 76 1 71 76 -.573583 72 76 -.869891 63 77 1 64 77 1 69 77 -1 71 77 47.4938 72 77 12.5329 66 78 411 68 79 -1 71 79 -.341668 72 79 -.40286 74 79 1 70 80 -1 71 80 -34.1668 72 80 -40.286 76 80 1 68 81 1 70 82 1 71 83 -.0459958 72 83 .0938315 73 84 -1 77 84 .179968 78 84 .0328426 83 84 -1 84 84 -1 77 85 -.53763 78 85 -.943234 79 85 1 80 85 1 75 86 -1 77 86 36.7135 78 86 6.69988 81 86 1 82 86 1 74 87 -1 77 87 -.311136 78 87 -.186857 164 87 1 76 88 -1 77 88 -31.1136 78 88 -18.6857 166 88 1 73 89 1 109 89 -1 111 89 -201 75 90 1 77 91 -.012899 78 91 .026314 83 92 1 84 92 .4 89 92 -1 80 93 -1 85 93 -1 82 94 -1 87 94 -1 83 95 -1 131 95 -1 134 95 .0222685 135 95 .0916503 79 96 -1 134 96 -.852598 135 96 -.686678 81 97 -1 133 97 -1 134 97 6.30198 135 97 25.937 84 98 487 89 99 1 90 99 .1 95 99 -1 86 100 -1 91 100 -1 88 101 -1 93 101 -1 89 102 -1 90 102 -1 104 102 -1 107 102 .306796 108 102 1.72865 85 103 1 86 103 1 107 103 -.953179 108 103 -.478015 87 104 1 88 104 1 106 104 -1 107 104 14.7262 108 104 82.9751 90 105 535 95 106 -1 96 106 -1 122 106 1 123 106 .6 91 107 1 92 107 1 119 107 -1 93 108 1 94 108 1 121 108 -1 96 109 680 97 110 -1 101 110 -.312836 102 110 -.082762 103 110 1 99 111 -1 101 111 -31.2836 102 111 -8.2762 105 111 1 97 112 1 99 113 1 101 114 .409192 102 114 -.852483 104 115 1 109 115 -1 111 115 -273.9 106 116 1 107 117 .147934 108 117 -.0810126 109 118 -1 111 118 -176.9 131 118 1 110 119 -1 133 119 1 109 120 -1 111 120 -209.1 125 120 1 127 121 1 109 122 -1 111 122 -193 113 122 1 111 123 -54 117 123 1 115 124 1 109 125 1 111 125 197 161 125 1 162 125 .6 111 126 680 158 126 -1 110 127 1 160 127 -1 113 128 -1 116 128 .250032 117 128 .597517 122 128 -1 116 129 -.585577 117 129 -.406865 118 129 -1 115 130 -1 116 130 13.5017 117 130 32.2659 120 130 -1 112 131 1 202 131 -1 206 131 -.419796 207 131 -.122705 114 132 1 204 132 -1 206 132 -41.9796 207 132 -12.2705 116 133 .239041 117 133 -.242126 122 134 -1 123 134 -1 125 134 -1 128 134 .158767 129 134 .340658 118 135 1 119 135 1 128 135 -.588216 129 135 -.353609 120 136 1 121 136 1 127 136 -1 128 136 14.4478 129 136 30.9999 123 137 145 124 138 -1 128 138 -.307616 129 138 -.130446 190 138 1 128 139 -.411784 129 139 -.646391 194 139 1 126 140 -1 128 140 -30.7616 129 140 -13.0446 192 140 1 124 141 1 196 141 -1 200 141 -.562373 201 141 -.225697 126 142 1 198 142 -1 200 142 -56.2373 201 142 -22.5697 128 143 .10564 129 143 -.116088 130 144 -1 134 144 -.276727 135 144 -.171445 140 144 -1 141 144 -1 134 145 -.147402 135 145 -.313322 136 145 1 137 145 1 132 146 -1 134 146 -28.7796 135 146 -17.8303 138 146 1 139 146 1 130 147 1 154 147 -1 156 147 -193.6 132 148 1 155 148 -1 134 149 .087773 135 149 -.0322558 140 150 -1 143 150 -1 146 150 -.0323781 147 150 -.0683179 136 151 -1 146 151 -.60537 147 151 -.349597 138 152 -1 145 152 -1 146 152 -12.1741 147 152 -25.6875 141 153 480 142 154 1 144 155 1 143 156 1 149 156 -1 152 156 -.00472003 153 156 -.0317473 147 157 1 152 157 -.934841 153 157 -.792495 145 158 1 151 158 -1 152 158 -1.77473 153 158 -11.937 146 159 -.0203625 147 159 .0218773 148 160 1 150 161 1 149 162 1 154 162 -1 156 162 -198 153 163 1 156 163 -376 151 164 1 152 165 -.0366465 153 165 .00813435 154 166 1 156 166 197.2 155 167 1 161 168 -1 162 168 -1 163 168 -1 167 168 .0165562 168 168 .00408216 157 169 1 158 169 1 167 169 -.832633 168 169 -.729721 159 170 1 160 170 1 165 170 -1 167 170 7.21849 168 170 1.77982 161 171 -1 191 171 -1 194 171 .00193333 195 171 .0781847 157 172 -1 194 172 -.995803 195 172 -.705952 159 173 -1 193 173 -1 194 173 .471732 195 173 19.0771 162 174 680 164 175 -1 167 175 -.0379488 168 175 -.16853 170 175 1 167 176 -.167367 168 176 -.270279 174 176 1 166 177 -1 167 177 -3.79488 168 177 -16.853 172 177 1 163 178 1 185 178 -1 188 178 .0406846 189 178 .100421 165 179 1 187 179 -1 188 179 17.7385 189 179 43.7834 167 180 -.0235888 168 180 .102847 169 181 -1 173 181 .123883 174 181 .0243372 191 181 1 171 182 -1 173 182 30.2273 174 182 5.93828 193 182 1 170 183 -1 173 183 -.242234 174 183 -.211144 176 183 1 173 184 -.3775 174 184 -.0788991 180 184 1 172 185 -1 173 185 -24.2234 174 185 -21.1144 178 185 1 169 186 1 181 186 -1 183 186 -281.7 171 187 1 182 187 -1 173 188 -.0173768 174 188 .0423995 175 189 -1 179 189 .0149554 180 189 .00262203 181 189 1 183 189 291 179 190 -.825997 180 190 -.904947 183 190 680 177 191 -1 179 191 10.1696 180 191 1.78298 182 191 1 175 192 1 177 193 1 179 194 -.00696415 180 194 .0362189 181 195 -1 183 195 -296 185 195 1 187 196 1 184 197 1 188 198 1 186 199 1 188 200 .0382256 189 200 -.0306734 194 201 .00264546 195 201 -.000781169 196 202 1 198 203 1 200 204 .229712 201 204 -.25243 202 205 1 204 206 1 206 207 .27097 207 207 -.589066 SuiteSparse/KLU/Matrix/two.mtx0000644001170100242450000000007210614235637015217 0ustar davisfac%%MatrixMarket matrix coordinate real general 2 2 1 1 1 3 SuiteSparse/KLU/Matrix/w156.mtx0000644001170100242450000002616710614162203015111 0ustar davisfac%%MatrixMarket matrix coordinate complex general % complex matrix with the same real part, and same pattern, as HB/west0156 156 156 362 147 1 1 -89.00615831818635 148 2 1 19.968263502718298 149 2 -.1632648 -21.370801333956592 59 3 -1.16206 -56.926762937042156 134 3 -.8122999 -63.520075069490886 149 3 1 -84.64919515773938 52 4 1 -98.51526079522304 53 5 1 57.75659925548426 54 5 -.2166122 -96.44247397535688 54 6 1 75.58829308886945 59 6 -.1 -29.491646321365707 118 7 1 44.42795357432983 119 8 1 93.69016787815801 120 8 -.2113848 -68.86640328523129 59 9 1 -67.40889160696356 105 9 .699017 -37.32052633277537 120 9 1 -94.12369035075191 150 10 1.009263 -28.474976610167545 151 10 11.46533 -94.56192034360119 150 11 .9908224 58.733403730195796 152 11 -.5284282 99.84615089171123 153 11 -.4980997 -77.95229509053108 156 11 -.06675177 24.520231739121968 152 12 1 -73.48563095366146 153 13 1 -37.99404220990422 155 13 -.8429148 -73.0424624342159 154 14 1 -55.33473746935735 156 14 -.0344062 -20.690642338915623 155 15 1 -72.97130102560114 156 15 -.00102006 -51.78826211728082 134 16 5.047402 85.50322996314317 156 16 1 -21.779825201968972 138 17 -1.052632 2.25255469346175 141 17 -.6666667 -81.42077676767339 141 18 1 -95.66021714041189 143 18 -.4480102 -68.09303466517918 143 19 -2.988037 68.90318876644317 143 20 1 75.83069648519695 145 20 1 -62.60209482759951 146 20 -1 98.26098380691137 2 21 -.0535949 42.4059682333364 144 21 2 74.27292331881648 131 22 1 -4.0737630474247055 133 22 -.9965392 -.7990146886149518 132 23 1 -42.493627158378786 133 23 -.003460798 -87.811709810653 133 24 1 -47.506459158247225 135 24 1 -62.747796590550934 134 25 1 83.41795736466501 135 25 1 -75.34426113632455 137 26 .07513964 -97.31092337989851 138 26 1 -26.06185629381749 144 27 -5.47842 39.72822166458327 145 27 -3.3405 77.86944264650091 142 28 1 18.754103827151415 146 28 -1 -68.66182065372685 121 29 1.006185 -36.66211626227418 122 29 10.73614 -53.320902834444595 121 30 .9938532 -98.31558725078405 123 30 -.5209677 -20.61924162618064 124 30 -.4971525 29.973626118500405 127 30 -.07339495 -82.99987875707477 123 31 1 53.761900651751795 124 32 1 93.94034099433995 126 32 -.8391701 42.95944637524101 125 33 1 56.39236839209942 127 33 -.0258101 -52.4869835919564 126 34 1 -60.85384724334488 127 34 -.00199955 -47.357216964877104 105 35 -5.396799 42.757012919227776 127 35 1 95.51994788712943 109 36 -.5263158 27.42438816918027 112 36 -.3333333 9.184831019804385 112 37 1 69.61144488338648 114 37 -1.265049 60.41953169602192 114 38 -1.778183 33.66128201334357 114 39 1 34.19652679396956 116 39 1 64.12873645714785 117 39 -1 94.09447492182123 2 40 -.0535949 -2.615000891619801 115 40 2 63.49370710939066 102 41 1 28.314233569200088 104 41 -.9965392 -38.73012809722005 103 42 1 32.186426447893 104 42 -.003460798 -28.396577322438276 104 43 1 87.63988602024271 106 43 1 -2.4666050470267376 105 44 1 -81.8019284512067 106 44 1 34.7668233724147 108 45 .1709599 2.976063797565698 109 45 1 -55.68413072287828 115 46 -5.47842 45.001874190444255 116 46 -3.3405 -86.35067780598133 113 47 1 92.82485367450755 117 47 -1 -58.46868232626774 55 48 -1 -67.77635488972467 111 48 -1 27.644276518549617 120 48 -1 -99.9543654216764 118 49 -.5238095 -32.87341132956595 120 49 -2.325233 -44.9800357067578 55 50 -.2113848 -91.09449592159396 56 50 1 -81.22070048053217 101 50 -1 -18.000520045594502 120 50 -.2113848 63.37846389879085 4 51 -1 74.1034143618639 17 51 -1 -95.48897590879422 19 51 3.328735e-12 45.435396739586366 20 51 1 69.60188961279125 5 52 -1 45.72003820360473 23 52 1 91.01972665502697 24 52 1 31.27022211937156 15 53 -1 48.46102670181145 17 53 -.2113848 -31.006797219415848 18 53 1 76.80438993503029 61 54 -1 -30.551182700157376 102 54 1 -88.10466389149548 103 54 1 43.682918215884015 110 54 -1 91.64285858148136 117 54 1 -68.63302698512894 63 55 -1 -16.72937877072226 107 55 -1 -81.19302620544275 66 56 -1 -10.010709210238765 99 56 -1 73.83048511517521 102 56 1.009514 -21.676555467798853 113 56 -1.008042 -49.443269787795316 67 57 -1 -29.123614686250242 100 57 -1 48.59559363996606 103 57 106.1112 30.166404491500764 113 57 -.1547227 87.9586081050228 60 58 1 66.5598249196907 76 58 -1 -6.004426629012382 139 58 1 25.973121452632107 62 59 1 -88.36243043738105 136 59 1 8.437479459481146 64 60 1 -8.854807545659217 76 60 -.9795877 72.61737844345258 128 60 1 71.03939394472891 65 61 1 -5.548863487187949 76 61 -3.145565 57.38487793395959 129 61 1 31.19642765119832 34 62 -.008064516 -99.99202208021522 36 63 1.974212 -73.75256764965177 37 63 -.8416949 -1.0250487994832636 37 64 1 -92.33336856681214 38 64 -.008525207 -54.512838099295834 38 65 1 -34.42340854356044 39 65 -1 79.89375753843836 47 65 -1 -37.25390248725466 39 66 1 -49.66479762290302 40 66 -1 -13.402173664778449 40 67 1.895931 68.47644730738057 41 67 -.9987282 -63.10220167747585 41 68 1 1.6358424738914135 42 68 2.087875 -9.552066657022863 42 69 -1 -34.88311211669629 46 69 -1 -23.984738606508827 43 70 5.616771 77.29599272885395 44 70 7.392325 52.252152063678636 44 71 1 76.75326698731126 45 71 7.20301 -8.51874880007002 45 72 -1 59.84045826963149 46 72 -.3258084 -73.18457603806863 2 73 -2.146936 -86.93726233197341 46 73 1 -24.971068398888395 1 74 -6.821893 -25.29540601492628 47 74 1 -3.1955205789929164 91 75 2.431413 93.89184641063227 93 75 -1 -31.58778114773145 91 76 -2.431413 -49.4621487710556 92 76 1 16.977383351584187 93 77 1 4.740718882261197 94 77 -1.26 -67.31619071487106 2 78 -.8858734 -2.7203702821855025 94 78 2 -.7878501044749853 95 79 1 68.63881664718761 96 79 -1 61.23964308235974 1 80 -.02308312 71.5571192607996 96 80 1 21.950827565571494 82 81 1 13.146073550568627 84 81 .9638 22.379704330589135 97 81 1 -79.40469554532865 84 82 .9905759 -68.33681654633787 98 82 1 -17.27002806448744 5 83 1.068219 12.082089707594035 16 83 -1 -46.26454171200754 6 84 9.305934e-22 56.85083285313337 7 84 -.19106 -22.425843053832928 8 84 -.3460553 -93.8032758232799 7 85 1 17.10036588328181 9 85 -.2113848 11.711705644935023 9 86 1 -59.860885505008746 10 86 -1 -82.51562297274859 14 86 -1 86.64597186070104 10 87 1 -48.124005287383966 11 87 -1 -59.165721082767206 12 88 1 -90.15831162239165 13 88 -5.165179 21.23218795450579 11 89 2.109794 9.269748032162251 12 89 -.4423309 -80.83251277071686 2 90 -1.200652 27.39912937614759 13 90 1 -11.410334391483856 1 91 -2.151087 -86.72360822705714 14 91 1 -25.141483188003487 7 92 -3.221332 -50.17945514204103 8 92 -.08256881 84.9750583295307 16 92 1.030078 25.899858515648553 68 93 .00729927 75.66175530017894 69 94 .009933775 28.334886205187427 70 95 2.109489 59.67812719925334 71 96 1.923841 -12.994792290221335 72 97 1 96.2280502631985 76 97 -.9703559 -80.80844033399066 73 98 1 5.496479792736464 76 98 -.02964405 9.129164943297008 74 99 1 -43.131448638051594 77 99 -.9703559 -25.83946813902346 75 100 1 -87.06147957359738 77 100 -.02964405 8.961812886476107 76 101 1 67.27512065071366 77 101 1 -70.93560166316104 79 101 1 -65.69594863822117 78 102 .009933775 -86.39056354840274 79 102 -.3 64.80230680396102 79 103 -3.333333 -73.2058484284056 81 103 1 76.95725769618616 2 104 -.3581659 2.947479893374072 80 104 .9144476 92.7271192399364 80 105 -2.355064 -75.90106649225966 81 105 -2.599699 -90.342023563869 1 106 1 -23.969599224575187 3 106 -.5 -17.441756388313255 2 107 1 -19.721740669438702 3 107 -.5 -15.800573906372883 3 108 1 -24.609261720375176 110 109 1 81.46730529244041 131 109 -.9431611 34.03242893843479 132 109 -.5 92.36770491956567 139 109 -1 -67.40413278123356 146 109 1 49.72988179123301 107 110 1 -25.186855192188627 136 110 -1 -9.152697748159888 99 111 1 -92.28786082587108 128 111 -1 12.486401290146553 131 111 -.9521341 -25.537570672597443 142 111 -1.008042 58.55674146933576 100 112 1 59.046194569800136 129 112 -1 -23.417105544732607 132 112 -53.05558 -49.44203913337082 142 112 -.1547227 -31.414428806369965 4 113 1 93.56089866913022 9 113 -1.098983 -4.038321887840279 111 113 1 -26.334487417080844 127 113 -1.006101 52.91343104779358 15 114 1 -24.570205949318236 101 114 1 80.06124313084004 127 114 -.2126745 -63.313589410507554 17 115 3.875969e-8 -26.336536744115246 19 115 -1 83.49140785169018 21 116 -.9939418 3.183211228849636 23 117 -1 -81.93854756530253 17 118 2.727302e-20 47.06229753702564 18 118 -1 -99.05756753456353 17 119 1 20.62462338921529 20 119 -1 91.37333280835817 25 119 -1 -20.513614148643057 27 119 .9972523 46.310157066657176 28 119 1.02473 36.92776530123669 22 120 -.9939418 95.70060448966404 29 120 1 -59.24296668628066 30 120 1 18.66056780239591 24 121 -1 90.31250335814364 31 121 1 -47.94551850968427 32 121 1 2.9355241818408873 17 122 .2113848 27.26637973052666 25 122 -.2113848 -19.808178764946284 26 122 1 -2.677737852379014 19 123 5453728 50.091622636210076 20 123 -.2113848 -74.7606532733799 25 124 .9 -91.38750367809608 27 124 -1 -25.812131278013382 140 124 -1 38.66042415449142 156 124 -1.009619 87.16498856941061 29 125 -1 -4.484878166369444 153 125 -.5019003 -74.17998047268341 156 125 -.2294135 -3.2337575851525746 31 126 -1 89.11943234297857 137 126 -1 -26.45117330526361 151 126 1 -34.30288621503337 25 127 .1897236 54.575096067325134 26 127 -1 -40.54519558973049 130 127 -1 -64.42912801819011 156 127 -.2128317 38.15983229583313 25 128 .1 -47.211028939720535 28 128 -1 -8.452188579330155 33 128 1 68.73848491242163 38 128 -1.007626 76.29973210306002 30 129 -1 40.00399128013372 36 129 -1 51.13819898638041 38 129 -.2680827 94.90296027698403 32 130 -1 -19.569463307138236 34 130 1 -73.74427235921586 25 131 .02166122 44.94677740033393 35 131 1 79.903641471542 38 131 -.2182642 -65.85973708326853 27 132 .234872 -91.3942617588595 28 132 -2.113848 -4.168155014702535 55 133 .9 -81.21274304896602 140 133 1 30.009966330192217 149 133 -.7744864 90.45550778420308 57 134 1.052135 -8.457460121512772 137 134 .9248604 7.376129401205689 55 135 .1897236 -86.70257083968079 130 135 1 -1.2259832834904283 149 135 -.1632648 -16.491805524055003 33 136 -1 -41.548589946331724 48 136 1 -42.06721249302474 35 137 -1 50.769199337537785 51 137 1 -80.6408576103972 48 138 -1 -84.6165978311754 54 138 -1 44.18300600646185 55 138 .1 52.982301945926324 49 139 -1 31.588984823676935 52 139 -.5238095 62.08170441145384 54 139 -2.382735 -25.151381648928016 50 140 -.991453 -38.7537048036034 58 140 1.06422 -25.86008018285866 51 141 -1 41.34942373575503 54 141 -.2166122 -66.32674228356838 55 141 .02166122 62.744201350248474 50 142 -.06837607 -6.7543369226229055 60 143 -1 44.45713521489259 85 143 175966.4 98.97378279407572 86 143 -1 -27.499396494334206 91 143 -2.431413 46.16562887690614 95 143 -1 29.933482992494255 69 144 .9900662 36.26781509331472 70 144 -1.091241 -98.47761599001427 76 144 -13 30.829860743864714 78 144 .9900662 89.04702870503172 87 144 1 22.65420709853554 88 144 1 56.585595081575036 62 145 -1 -99.36930257401184 89 145 1 59.39156971639217 90 145 -1 28.363331197466945 64 146 -1 -64.30427579759511 82 146 -1 5.880145934392633 84 146 -.9638 -56.25129719765649 95 146 -1.009514 9.61048763756911 97 146 -1 -88.35252745679256 65 147 -1 17.51741912019611 85 147 1.8672e7 -16.77928832091964 92 147 -106.1112 -62.7109528243285 86 148 .7396663 -87.21785589638561 87 149 -1 -85.04344448822249 89 150 -.6169444 -37.992508436142 82 151 .9905759 88.81698357390519 83 152 1 96.14532626091892 85 153 -175966.4 11.023098151583245 86 153 .2603337 97.70512729352296 88 154 -1 38.311980523494384 90 155 1 -51.66782743196781 84 156 .9905759 61.96273642788614 SuiteSparse/KLU/Matrix/ctina.mtx0000644001170100242450000000064410615726227015512 0ustar davisfac%%MatrixMarket matrix coordinate complex general % complex matrix with same nonzero pattern as Pajek/Tina_AskCog 11 11 36 3 1 0 1 6 1 0 1 10 1 0 1 1 2 0 1 3 2 0 1 5 2 0 1 6 2 0 1 8 2 0 1 9 2 0 1 10 2 0 1 1 3 0 1 6 3 0 1 10 3 0 1 2 4 0 1 6 4 0 1 7 4 0 1 8 4 0 1 11 4 0 1 6 5 0 1 10 5 0 1 5 6 0 1 11 6 0 1 4 7 0 1 6 7 0 1 9 7 0 1 2 8 0 1 4 8 0 1 5 8 0 1 6 8 0 1 7 8 0 1 9 8 0 1 11 8 0 1 7 9 0 1 3 10 0 1 5 10 0 1 8 11 0 1 SuiteSparse/KLU/Matrix/arrow.mtx0000644001170100242450000000425110614643602015536 0ustar davisfac%%MatrixMarket matrix coordinate integer general 100 100 298 1 1 2 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 20 1 1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1 1 27 1 1 28 1 1 29 1 1 30 1 1 31 1 1 32 1 1 33 1 1 34 1 1 35 1 1 36 1 1 37 1 1 38 1 1 39 1 1 40 1 1 41 1 1 42 1 1 43 1 1 44 1 1 45 1 1 46 1 1 47 1 1 48 1 1 49 1 1 50 1 1 51 1 1 52 1 1 53 1 1 54 1 1 55 1 1 56 1 1 57 1 1 58 1 1 59 1 1 60 1 1 61 1 1 62 1 1 63 1 1 64 1 1 65 1 1 66 1 1 67 1 1 68 1 1 69 1 1 70 1 1 71 1 1 72 1 1 73 1 1 74 1 1 75 1 1 76 1 1 77 1 1 78 1 1 79 1 1 80 1 1 81 1 1 82 1 1 83 1 1 84 1 1 85 1 1 86 1 1 87 1 1 88 1 1 89 1 1 90 1 1 91 1 1 92 1 1 93 1 1 94 1 1 95 1 1 96 1 1 97 1 1 98 1 1 99 1 1 100 1 1 1 2 2 2 2 1 1 3 1 3 3 1 1 4 1 4 4 1 1 5 1 5 5 1 1 6 1 6 6 1 1 7 1 7 7 1 1 8 1 8 8 1 1 9 1 9 9 1 1 10 1 10 10 1 1 11 1 11 11 1 1 12 1 12 12 1 1 13 1 13 13 1 1 14 1 14 14 1 1 15 1 15 15 1 1 16 1 16 16 1 1 17 1 17 17 1 1 18 1 18 18 1 1 19 1 19 19 1 1 20 1 20 20 1 1 21 1 21 21 1 1 22 1 22 22 1 1 23 1 23 23 1 1 24 1 24 24 1 1 25 1 25 25 1 1 26 1 26 26 1 1 27 1 27 27 1 1 28 1 28 28 1 1 29 1 29 29 1 1 30 1 30 30 1 1 31 1 31 31 1 1 32 1 32 32 1 1 33 1 33 33 1 1 34 1 34 34 1 1 35 1 35 35 1 1 36 1 36 36 1 1 37 1 37 37 1 1 38 1 38 38 1 1 39 1 39 39 1 1 40 1 40 40 1 1 41 1 41 41 1 1 42 1 42 42 1 1 43 1 43 43 1 1 44 1 44 44 1 1 45 1 45 45 1 1 46 1 46 46 1 1 47 1 47 47 1 1 48 1 48 48 1 1 49 1 49 49 1 1 50 1 50 50 1 1 51 1 51 51 1 1 52 1 52 52 1 1 53 1 53 53 1 1 54 1 54 54 1 1 55 1 55 55 1 1 56 1 56 56 1 1 57 1 57 57 1 1 58 1 58 58 1 1 59 1 59 59 1 1 60 1 60 60 1 1 61 1 61 61 1 1 62 1 62 62 1 1 63 1 63 63 1 1 64 1 64 64 1 1 65 1 65 65 1 1 66 1 66 66 1 1 67 1 67 67 1 1 68 1 68 68 1 1 69 1 69 69 1 1 70 1 70 70 1 1 71 1 71 71 1 1 72 1 72 72 1 1 73 1 73 73 1 1 74 1 74 74 1 1 75 1 75 75 1 1 76 1 76 76 1 1 77 1 77 77 1 1 78 1 78 78 1 1 79 1 79 79 1 1 80 1 80 80 1 1 81 1 81 81 1 1 82 1 82 82 1 1 83 1 83 83 1 1 84 1 84 84 1 1 85 1 85 85 1 1 86 1 86 86 1 1 87 1 87 87 1 1 88 1 88 88 1 1 89 1 89 89 1 1 90 1 90 90 1 1 91 1 91 91 1 1 92 1 92 92 1 1 93 1 93 93 1 1 94 1 94 94 1 1 95 1 95 95 1 1 96 1 96 96 1 1 97 1 97 97 1 1 98 1 98 98 1 1 99 1 99 99 1 1 100 1 100 100 1 SuiteSparse/KLU/Matrix/arrowc.mtx0000644001170100242450000000537510614643650015714 0ustar davisfac%%MatrixMarket matrix coordinate complex general 100 100 298 1 1 0 1 2 1 1 0 3 1 1 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 1 0 8 1 1 0 9 1 1 0 10 1 1 0 11 1 1 0 12 1 1 0 13 1 1 0 14 1 1 0 15 1 1 0 16 1 1 0 17 1 1 0 18 1 1 0 19 1 1 0 20 1 1 0 21 1 1 0 22 1 1 0 23 1 1 0 24 1 1 0 25 1 1 0 26 1 1 0 27 1 1 0 28 1 1 0 29 1 1 0 30 1 1 0 31 1 1 0 32 1 1 0 33 1 1 0 34 1 1 0 35 1 1 0 36 1 1 0 37 1 1 0 38 1 1 0 39 1 1 0 40 1 1 0 41 1 1 0 42 1 1 0 43 1 1 0 44 1 1 0 45 1 1 0 46 1 1 0 47 1 1 0 48 1 1 0 49 1 1 0 50 1 1 0 51 1 1 0 52 1 1 0 53 1 1 0 54 1 1 0 55 1 1 0 56 1 1 0 57 1 1 0 58 1 1 0 59 1 1 0 60 1 1 0 61 1 1 0 62 1 1 0 63 1 1 0 64 1 1 0 65 1 1 0 66 1 1 0 67 1 1 0 68 1 1 0 69 1 1 0 70 1 1 0 71 1 1 0 72 1 1 0 73 1 1 0 74 1 1 0 75 1 1 0 76 1 1 0 77 1 1 0 78 1 1 0 79 1 1 0 80 1 1 0 81 1 1 0 82 1 1 0 83 1 1 0 84 1 1 0 85 1 1 0 86 1 1 0 87 1 1 0 88 1 1 0 89 1 1 0 90 1 1 0 91 1 1 0 92 1 1 0 93 1 1 0 94 1 1 0 95 1 1 0 96 1 1 0 97 1 1 0 98 1 1 0 99 1 1 0 100 1 1 0 1 2 2 0 2 2 1 0 1 3 1 0 3 3 1 0 1 4 1 0 4 4 1 0 1 5 1 0 5 5 1 0 1 6 1 0 6 6 1 0 1 7 1 0 7 7 1 0 1 8 1 0 8 8 1 0 1 9 1 0 9 9 1 0 1 10 1 0 10 10 1 0 1 11 1 0 11 11 1 0 1 12 1 0 12 12 1 0 1 13 1 0 13 13 1 0 1 14 1 0 14 14 1 0 1 15 1 0 15 15 1 0 1 16 1 0 16 16 1 0 1 17 1 0 17 17 1 0 1 18 1 0 18 18 1 0 1 19 1 0 19 19 1 0 1 20 1 0 20 20 1 0 1 21 1 0 21 21 1 0 1 22 1 0 22 22 1 0 1 23 1 0 23 23 1 0 1 24 1 0 24 24 1 0 1 25 1 0 25 25 1 0 1 26 1 0 26 26 1 0 1 27 1 0 27 27 1 0 1 28 1 0 28 28 1 0 1 29 1 0 29 29 1 0 1 30 1 0 30 30 1 0 1 31 1 0 31 31 1 0 1 32 1 0 32 32 1 0 1 33 1 0 33 33 1 0 1 34 1 0 34 34 1 0 1 35 1 0 35 35 1 0 1 36 1 0 36 36 1 0 1 37 1 0 37 37 1 0 1 38 1 0 38 38 1 0 1 39 1 0 39 39 1 0 1 40 1 0 40 40 1 0 1 41 1 0 41 41 1 0 1 42 1 0 42 42 1 0 1 43 1 0 43 43 1 0 1 44 1 0 44 44 1 0 1 45 1 0 45 45 1 0 1 46 1 0 46 46 1 0 1 47 1 0 47 47 1 0 1 48 1 0 48 48 1 0 1 49 1 0 49 49 1 0 1 50 1 0 50 50 1 0 1 51 1 0 51 51 1 0 1 52 1 0 52 52 1 0 1 53 1 0 53 53 1 0 1 54 1 0 54 54 1 0 1 55 1 0 55 55 1 0 1 56 1 0 56 56 1 0 1 57 1 0 57 57 1 0 1 58 1 0 58 58 1 0 1 59 1 0 59 59 1 0 1 60 1 0 60 60 1 0 1 61 1 0 61 61 1 0 1 62 1 0 62 62 1 0 1 63 1 0 63 63 1 0 1 64 1 0 64 64 1 0 1 65 1 0 65 65 1 0 1 66 1 0 66 66 1 0 1 67 1 0 67 67 1 0 1 68 1 0 68 68 1 0 1 69 1 0 69 69 1 0 1 70 1 0 70 70 1 0 1 71 1 0 71 71 1 0 1 72 1 0 72 72 1 0 1 73 1 0 73 73 1 0 1 74 1 0 74 74 1 0 1 75 1 0 75 75 1 0 1 76 1 0 76 76 1 0 1 77 1 0 77 77 1 0 1 78 1 0 78 78 1 0 1 79 1 0 79 79 1 0 1 80 1 0 80 80 1 0 1 81 1 0 81 81 1 0 1 82 1 0 82 82 1 0 1 83 1 0 83 83 1 0 1 84 1 0 84 84 1 0 1 85 1 0 85 85 1 0 1 86 1 0 86 86 1 0 1 87 1 0 87 87 1 0 1 88 1 0 88 88 1 0 1 89 1 0 89 89 1 0 1 90 1 0 90 90 1 0 1 91 1 0 91 91 1 0 1 92 1 0 92 92 1 0 1 93 1 0 93 93 1 0 1 94 1 0 94 94 1 0 1 95 1 0 95 95 1 0 1 96 1 0 96 96 1 0 1 97 1 0 97 97 1 0 1 98 1 0 98 98 1 0 1 99 1 0 99 99 1 0 1 100 1 0 100 100 1 0 SuiteSparse/KLU/Matrix/one.mtx0000644001170100242450000000011410614241237015155 0ustar davisfac%%MatrixMarket matrix coordinate real general 2 2 4 1 1 0 1 2 0 2 1 0 2 2 0 SuiteSparse/KLU/Matrix/1c.mtx0000644001170100242450000000007710614640703014710 0ustar davisfac%%MatrixMarket matrix coordinate complex general 1 1 1 1 1 1 1 SuiteSparse/KLU/Include/0000755001170100242450000000000010711427774013777 5ustar davisfacSuiteSparse/KLU/Include/klu.h0000644001170100242450000006664310711427303014746 0ustar davisfac/* ========================================================================== */ /* === klu include file ===================================================== */ /* ========================================================================== */ /* Include file for user programs that call klu_* routines */ #ifndef _KLU_H #define _KLU_H /* make it easy for C++ programs to include KLU */ #ifdef __cplusplus extern "C" { #endif #include "amd.h" #include "colamd.h" #include "btf.h" /* -------------------------------------------------------------------------- */ /* Symbolic object - contains the pre-ordering computed by klu_analyze */ /* -------------------------------------------------------------------------- */ typedef struct { /* A (P,Q) is in upper block triangular form. The kth block goes from * row/col index R [k] to R [k+1]-1. The estimated number of nonzeros * in the L factor of the kth block is Lnz [k]. */ /* only computed if the AMD ordering is chosen: */ double symmetry ; /* symmetry of largest block */ double est_flops ; /* est. factorization flop count */ double lnz, unz ; /* estimated nz in L and U, including diagonals */ double *Lnz ; /* size n, but only Lnz [0..nblocks-1] is used */ /* computed for all orderings: */ int n, /* input matrix A is n-by-n */ nz, /* # entries in input matrix */ *P, /* size n */ *Q, /* size n */ *R, /* size n+1, but only R [0..nblocks] is used */ nzoff, /* nz in off-diagonal blocks */ nblocks, /* number of blocks */ maxblock, /* size of largest block */ ordering, /* ordering used (AMD, COLAMD, or GIVEN) */ do_btf ; /* whether or not BTF preordering was requested */ /* only computed if BTF preordering requested */ int structural_rank ; /* 0 to n-1 if the matrix is structurally rank * deficient. -1 if not computed. n if the matrix has * full structural rank */ } klu_symbolic ; typedef struct /* 64-bit version (otherwise same as above) */ { double symmetry, est_flops, lnz, unz ; double *Lnz ; UF_long n, nz, *P, *Q, *R, nzoff, nblocks, maxblock, ordering, do_btf, structural_rank ; } klu_l_symbolic ; /* -------------------------------------------------------------------------- */ /* Numeric object - contains the factors computed by klu_factor */ /* -------------------------------------------------------------------------- */ typedef struct { /* LU factors of each block, the pivot row permutation, and the * entries in the off-diagonal blocks */ int n ; /* A is n-by-n */ int nblocks ; /* number of diagonal blocks */ int lnz ; /* actual nz in L, including diagonal */ int unz ; /* actual nz in U, including diagonal */ int max_lnz_block ; /* max actual nz in L in any one block, incl. diag */ int max_unz_block ; /* max actual nz in U in any one block, incl. diag */ int *Pnum ; /* size n. final pivot permutation */ int *Pinv ; /* size n. inverse of final pivot permutation */ /* LU factors of each block */ int *Lip ; /* size n. pointers into LUbx[block] for L */ int *Uip ; /* size n. pointers into LUbx[block] for U */ int *Llen ; /* size n. Llen [k] = # of entries in kth column of L */ int *Ulen ; /* size n. Ulen [k] = # of entries in kth column of U */ void **LUbx ; /* L and U indices and entries (excl. diagonal of U) */ size_t *LUsize ; /* size of each LUbx [block], in sizeof (Unit) */ void *Udiag ; /* diagonal of U */ /* scale factors; can be NULL if no scaling */ double *Rs ; /* size n. Rs [i] is scale factor for row i */ /* permanent workspace for factorization and solve */ size_t worksize ; /* size (in bytes) of Work */ void *Work ; /* workspace */ void *Xwork ; /* alias into Numeric->Work */ int *Iwork ; /* alias into Numeric->Work */ /* off-diagonal entries in a conventional compressed-column sparse matrix */ int *Offp ; /* size n+1, column pointers */ int *Offi ; /* size nzoff, row indices */ void *Offx ; /* size nzoff, numerical values */ int nzoff ; } klu_numeric ; typedef struct /* 64-bit version (otherwise same as above) */ { UF_long n, nblocks, lnz, unz, max_lnz_block, max_unz_block, *Pnum, *Pinv, *Lip, *Uip, *Llen, *Ulen ; void **LUbx ; size_t *LUsize ; void *Udiag ; double *Rs ; size_t worksize ; void *Work, *Xwork ; UF_long *Iwork ; UF_long *Offp, *Offi ; void *Offx ; UF_long nzoff ; } klu_l_numeric ; /* -------------------------------------------------------------------------- */ /* KLU control parameters and statistics */ /* -------------------------------------------------------------------------- */ /* Common->status values */ #define KLU_OK 0 #define KLU_SINGULAR (1) /* status > 0 is a warning, not an error */ #define KLU_OUT_OF_MEMORY (-2) #define KLU_INVALID (-3) #define KLU_TOO_LARGE (-4) /* integer overflow has occured */ typedef struct klu_common_struct { /* ---------------------------------------------------------------------- */ /* parameters */ /* ---------------------------------------------------------------------- */ double tol ; /* pivot tolerance for diagonal preference */ double memgrow ; /* realloc memory growth size for LU factors */ double initmem_amd ; /* init. memory size with AMD: c*nnz(L) + n */ double initmem ; /* init. memory size: c*nnz(A) + n */ double maxwork ; /* maxwork for BTF, <= 0 if no limit */ int btf ; /* use BTF pre-ordering, or not */ int ordering ; /* 0: AMD, 1: COLAMD, 2: user P and Q, * 3: user function */ int scale ; /* row scaling: -1: none (and no error check), * 0: none, 1: sum, 2: max */ /* memory management routines */ void *(*malloc_memory) (size_t) ; /* pointer to malloc */ void *(*realloc_memory) (void *, size_t) ; /* pointer to realloc */ void (*free_memory) (void *) ; /* pointer to free */ void *(*calloc_memory) (size_t, size_t) ; /* pointer to calloc */ /* pointer to user ordering function */ int (*user_order) (int, int *, int *, int *, struct klu_common_struct *) ; /* pointer to user data, passed unchanged as the last parameter to the * user ordering function (optional, the user function need not use this * information). */ void *user_data ; int halt_if_singular ; /* how to handle a singular matrix: * FALSE: keep going. Return a Numeric object with a zero U(k,k). A * divide-by-zero may occur when computing L(:,k). The Numeric object * can be passed to klu_solve (a divide-by-zero will occur). It can * also be safely passed to klu_refactor. * TRUE: stop quickly. klu_factor will free the partially-constructed * Numeric object. klu_refactor will not free it, but will leave the * numerical values only partially defined. This is the default. */ /* ---------------------------------------------------------------------- */ /* statistics */ /* ---------------------------------------------------------------------- */ int status ; /* KLU_OK if OK, < 0 if error */ int nrealloc ; /* # of reallocations of L and U */ int structural_rank ; /* 0 to n-1 if the matrix is structurally rank * deficient (as determined by maxtrans). -1 if not computed. n if the * matrix has full structural rank. This is computed by klu_analyze * if a BTF preordering is requested. */ int numerical_rank ; /* First k for which a zero U(k,k) was found, * if the matrix was singular (in the range 0 to n-1). n if the matrix * has full rank. This is not a true rank-estimation. It just reports * where the first zero pivot was found. -1 if not computed. * Computed by klu_factor and klu_refactor. */ int singular_col ; /* n if the matrix is not singular. If in the * range 0 to n-1, this is the column index of the original matrix A that * corresponds to the column of U that contains a zero diagonal entry. * -1 if not computed. Computed by klu_factor and klu_refactor. */ int noffdiag ; /* # of off-diagonal pivots, -1 if not computed */ double flops ; /* actual factorization flop count, from klu_flops */ double rcond ; /* crude reciprocal condition est., from klu_rcond */ double condest ; /* accurate condition est., from klu_condest */ double rgrowth ; /* reciprocal pivot rgrowth, from klu_rgrowth */ double work ; /* actual work done in BTF, in klu_analyze */ size_t memusage ; /* current memory usage, in bytes */ size_t mempeak ; /* peak memory usage, in bytes */ } klu_common ; typedef struct klu_l_common_struct /* 64-bit version (otherwise same as above)*/ { double tol, memgrow, initmem_amd, initmem, maxwork ; UF_long btf, ordering, scale ; void *(*malloc_memory) (size_t) ; void *(*realloc_memory) (void *, size_t) ; void (*free_memory) (void *) ; void *(*calloc_memory) (size_t, size_t) ; UF_long (*user_order) (UF_long, UF_long *, UF_long *, UF_long *, struct klu_l_common_struct *) ; void *user_data ; UF_long halt_if_singular ; UF_long status, nrealloc, structural_rank, numerical_rank, singular_col, noffdiag ; double flops, rcond, condest, rgrowth, work ; size_t memusage, mempeak ; } klu_l_common ; /* -------------------------------------------------------------------------- */ /* klu_defaults: sets default control parameters */ /* -------------------------------------------------------------------------- */ int klu_defaults ( klu_common *Common ) ; UF_long klu_l_defaults (klu_l_common *Common) ; /* -------------------------------------------------------------------------- */ /* klu_analyze: orders and analyzes a matrix */ /* -------------------------------------------------------------------------- */ /* Order the matrix with BTF (or not), then order each block with AMD, COLAMD, * a natural ordering, or with a user-provided ordering function */ klu_symbolic *klu_analyze ( /* inputs, not modified */ int n, /* A is n-by-n */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ klu_common *Common ) ; klu_l_symbolic *klu_l_analyze (UF_long, UF_long *, UF_long *, klu_l_common *Common) ; /* -------------------------------------------------------------------------- */ /* klu_analyze_given: analyzes a matrix using given P and Q */ /* -------------------------------------------------------------------------- */ /* Order the matrix with BTF (or not), then use natural or given ordering * P and Q on the blocks. P and Q are interpretted as identity * if NULL. */ klu_symbolic *klu_analyze_given ( /* inputs, not modified */ int n, /* A is n-by-n */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ int P [ ], /* size n, user's row permutation (may be NULL) */ int Q [ ], /* size n, user's column permutation (may be NULL) */ klu_common *Common ) ; klu_l_symbolic *klu_l_analyze_given (UF_long, UF_long *, UF_long *, UF_long *, UF_long *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_factor: factors a matrix using the klu_analyze results */ /* -------------------------------------------------------------------------- */ klu_numeric *klu_factor /* returns KLU_OK if OK, < 0 if error */ ( /* inputs, not modified */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* size nz, numerical values */ klu_symbolic *Symbolic, klu_common *Common ) ; klu_numeric *klu_z_factor /* returns KLU_OK if OK, < 0 if error */ ( /* inputs, not modified */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* size 2*nz, numerical values (real,imag pairs) */ klu_symbolic *Symbolic, klu_common *Common ) ; /* long / real version */ klu_l_numeric *klu_l_factor (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_common *) ; /* long / complex version */ klu_l_numeric *klu_zl_factor (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_solve: solves Ax=b using the Symbolic and Numeric objects */ /* -------------------------------------------------------------------------- */ int klu_solve ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, /* leading dimension of B */ int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size ldim*nrhs */ klu_common *Common ) ; int klu_z_solve ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, /* leading dimension of B */ int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size 2*ldim*nrhs */ klu_common *Common ) ; UF_long klu_l_solve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long, double *, klu_l_common *) ; UF_long klu_zl_solve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long, double *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_tsolve: solves A'x=b using the Symbolic and Numeric objects */ /* -------------------------------------------------------------------------- */ int klu_tsolve ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, /* leading dimension of B */ int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size ldim*nrhs */ klu_common *Common ) ; int klu_z_tsolve ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, /* leading dimension of B */ int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size 2*ldim*nrhs */ int conj_solve, /* TRUE: conjugate solve, FALSE: solve A.'x=b */ klu_common *Common ) ; UF_long klu_l_tsolve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long, double *, klu_l_common *) ; UF_long klu_zl_tsolve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long, double *, UF_long, klu_l_common * ) ; /* -------------------------------------------------------------------------- */ /* klu_refactor: refactorizes matrix with same ordering as klu_factor */ /* -------------------------------------------------------------------------- */ int klu_refactor /* return TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* size nz, numerical values */ klu_symbolic *Symbolic, /* input, and numerical values modified on output */ klu_numeric *Numeric, klu_common *Common ) ; int klu_z_refactor /* return TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* size 2*nz, numerical values */ klu_symbolic *Symbolic, /* input, and numerical values modified on output */ klu_numeric *Numeric, klu_common *Common ) ; UF_long klu_l_refactor (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_refactor (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_free_symbolic: destroys the Symbolic object */ /* -------------------------------------------------------------------------- */ int klu_free_symbolic ( klu_symbolic **Symbolic, klu_common *Common ) ; UF_long klu_l_free_symbolic (klu_l_symbolic **, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_free_numeric: destroys the Numeric object */ /* -------------------------------------------------------------------------- */ /* Note that klu_free_numeric and klu_z_free_numeric are identical; each can * free both kinds of Numeric objects (real and complex) */ int klu_free_numeric ( klu_numeric **Numeric, klu_common *Common ) ; int klu_z_free_numeric ( klu_numeric **Numeric, klu_common *Common ) ; UF_long klu_l_free_numeric (klu_l_numeric **, klu_l_common *) ; UF_long klu_zl_free_numeric (klu_l_numeric **, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_sort: sorts the columns of the LU factorization */ /* -------------------------------------------------------------------------- */ /* this is not needed except for the MATLAB interface */ int klu_sort ( /* inputs, not modified */ klu_symbolic *Symbolic, /* input/output */ klu_numeric *Numeric, klu_common *Common ) ; int klu_z_sort ( /* inputs, not modified */ klu_symbolic *Symbolic, /* input/output */ klu_numeric *Numeric, klu_common *Common ) ; UF_long klu_l_sort (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_sort (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_flops: determines # of flops performed in numeric factorzation */ /* -------------------------------------------------------------------------- */ int klu_flops ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, /* input/output */ klu_common *Common ) ; int klu_z_flops ( /* inputs, not modified */ klu_symbolic *Symbolic, klu_numeric *Numeric, /* input/output */ klu_common *Common ) ; UF_long klu_l_flops (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_flops (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_rgrowth : compute the reciprocal pivot growth */ /* -------------------------------------------------------------------------- */ /* Pivot growth is computed after the input matrix is permuted, scaled, and * off-diagonal entries pruned. This is because the LU factorization of each * block takes as input the scaled diagonal blocks of the BTF form. The * reciprocal pivot growth in column j of an LU factorization of a matrix C * is the largest entry in C divided by the largest entry in U; then the overall * reciprocal pivot growth is the smallest such value for all columns j. Note * that the off-diagonal entries are not scaled, since they do not take part in * the LU factorization of the diagonal blocks. * * In MATLAB notation: * * rgrowth = min (max (abs ((R \ A(p,q)) - F)) ./ max (abs (U))) */ int klu_rgrowth ( int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_numeric *Numeric, klu_common *Common /* Common->rgrowth = reciprocal pivot growth */ ) ; int klu_z_rgrowth ( int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_numeric *Numeric, klu_common *Common /* Common->rgrowth = reciprocal pivot growth */ ) ; UF_long klu_l_rgrowth (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_rgrowth (UF_long *, UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_condest */ /* -------------------------------------------------------------------------- */ /* Computes a reasonably accurate estimate of the 1-norm condition number, using * Hager's method, as modified by Higham and Tisseur (same method as used in * MATLAB's condest */ int klu_condest ( int Ap [ ], /* size n+1, column pointers, not modified */ double Ax [ ], /* size nz = Ap[n], numerical values, not modified*/ klu_symbolic *Symbolic, /* symbolic analysis, not modified */ klu_numeric *Numeric, /* numeric factorization, not modified */ klu_common *Common /* result returned in Common->condest */ ) ; int klu_z_condest ( int Ap [ ], double Ax [ ], /* size 2*nz */ klu_symbolic *Symbolic, klu_numeric *Numeric, klu_common *Common /* result returned in Common->condest */ ) ; UF_long klu_l_condest (UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_condest (UF_long *, double *, klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_rcond: compute min(abs(diag(U))) / max(abs(diag(U))) */ /* -------------------------------------------------------------------------- */ int klu_rcond ( klu_symbolic *Symbolic, /* input, not modified */ klu_numeric *Numeric, /* input, not modified */ klu_common *Common /* result in Common->rcond */ ) ; int klu_z_rcond ( klu_symbolic *Symbolic, /* input, not modified */ klu_numeric *Numeric, /* input, not modified */ klu_common *Common /* result in Common->rcond */ ) ; UF_long klu_l_rcond (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; UF_long klu_zl_rcond (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_scale */ /* -------------------------------------------------------------------------- */ int klu_scale /* return TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ int scale, /* <0: none, no error check; 0: none, 1: sum, 2: max */ int n, int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* outputs, not defined on input */ double Rs [ ], /* workspace, not defined on input or output */ int W [ ], /* size n, can be NULL */ klu_common *Common ) ; int klu_z_scale /* return TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ int scale, /* <0: none, no error check; 0: none, 1: sum, 2: max */ int n, int Ap [ ], /* size n+1, column pointers */ int Ai [ ], /* size nz, row indices */ double Ax [ ], /* outputs, not defined on input */ double Rs [ ], /* workspace, not defined on input or output */ int W [ ], /* size n, can be NULL */ klu_common *Common ) ; UF_long klu_l_scale (UF_long, UF_long, UF_long *, UF_long *, double *, double *, UF_long *, klu_l_common *) ; UF_long klu_zl_scale (UF_long, UF_long, UF_long *, UF_long *, double *, double *, UF_long *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* klu_extract */ /* -------------------------------------------------------------------------- */ int klu_extract /* returns TRUE if successful, FALSE otherwise */ ( /* inputs: */ klu_numeric *Numeric, klu_symbolic *Symbolic, /* outputs, either allocated on input, or ignored otherwise */ /* L */ int *Lp, /* size n+1 */ int *Li, /* size Numeric->lnz */ double *Lx, /* size Numeric->lnz */ /* U */ int *Up, /* size n+1 */ int *Ui, /* size Numeric->unz */ double *Ux, /* size Numeric->unz */ /* F */ int *Fp, /* size n+1 */ int *Fi, /* size Numeric->nzoff */ double *Fx, /* size Numeric->nzoff */ /* P, row permutation */ int *P, /* size n */ /* Q, column permutation */ int *Q, /* size n */ /* Rs, scale factors */ double *Rs, /* size n */ /* R, block boundaries */ int *R, /* size Symbolic->nblocks+1 (nblocks is at most n) */ klu_common *Common ) ; int klu_z_extract /* returns TRUE if successful, FALSE otherwise */ ( /* inputs: */ klu_numeric *Numeric, klu_symbolic *Symbolic, /* outputs, all of which must be allocated on input */ /* L */ int *Lp, /* size n+1 */ int *Li, /* size nnz(L) */ double *Lx, /* size nnz(L) */ double *Lz, /* size nnz(L) for the complex case, ignored if real */ /* U */ int *Up, /* size n+1 */ int *Ui, /* size nnz(U) */ double *Ux, /* size nnz(U) */ double *Uz, /* size nnz(U) for the complex case, ignored if real */ /* F */ int *Fp, /* size n+1 */ int *Fi, /* size nnz(F) */ double *Fx, /* size nnz(F) */ double *Fz, /* size nnz(F) for the complex case, ignored if real */ /* P, row permutation */ int *P, /* size n */ /* Q, column permutation */ int *Q, /* size n */ /* Rs, scale factors */ double *Rs, /* size n */ /* R, block boundaries */ int *R, /* size Symbolic->nblocks+1 (nblocks is at most n) */ klu_common *Common ) ; UF_long klu_l_extract (klu_l_numeric *, klu_l_symbolic *, UF_long *, UF_long *, double *, UF_long *, UF_long *, double *, UF_long *, UF_long *, double *, UF_long *, UF_long *, double *, UF_long *, klu_l_common *) ; UF_long klu_zl_extract (klu_l_numeric *, klu_l_symbolic *, UF_long *, UF_long *, double *, double *, UF_long *, UF_long *, double *, double *, UF_long *, UF_long *, double *, double *, UF_long *, UF_long *, double *, UF_long *, klu_l_common *) ; /* -------------------------------------------------------------------------- */ /* KLU memory management routines */ /* -------------------------------------------------------------------------- */ void *klu_malloc /* returns pointer to the newly malloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ klu_common *Common ) ; void *klu_free /* always returns NULL */ ( /* ---- in/out --- */ void *p, /* block of memory to free */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ klu_common *Common ) ; void *klu_realloc /* returns pointer to reallocated block */ ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated block */ size_t nold, /* current size of block, in # of items */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to realloc */ /* --------------- */ klu_common *Common ) ; void *klu_l_malloc (size_t, size_t, klu_l_common *) ; void *klu_l_free (void *, size_t, size_t, klu_l_common *) ; void *klu_l_realloc (size_t, size_t, size_t, void *, klu_l_common *) ; /* ========================================================================== */ /* === KLU version ========================================================== */ /* ========================================================================== */ /* All versions of KLU include these definitions. * As an example, to test if the version you are using is 1.2 or later: * * if (KLU_VERSION >= KLU_VERSION_CODE (1,2)) ... * * This also works during compile-time: * * #if (KLU >= KLU_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif */ #define KLU_DATE "Nov 1, 2007" #define KLU_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define KLU_MAIN_VERSION 1 #define KLU_SUB_VERSION 0 #define KLU_SUBSUB_VERSION 1 #define KLU_VERSION KLU_VERSION_CODE(KLU_MAIN_VERSION,KLU_SUB_VERSION) #ifdef __cplusplus } #endif #endif SuiteSparse/KLU/Include/klu_internal.h0000644001170100242450000001430510616717326016641 0ustar davisfac/* ========================================================================== */ /* === KLU/Include/klu_internal.h =========================================== */ /* ========================================================================== */ /* For internal use in KLU routines only, not for user programs */ #ifndef _KLU_INTERNAL_H #define _KLU_INTERNAL_H #include "klu.h" #include "btf.h" #include "klu_version.h" /* ========================================================================== */ /* make sure debugging and printing is turned off */ #ifndef NDEBUG #define NDEBUG #endif #ifndef NPRINT #define NPRINT #endif /* To enable debugging and assertions, uncomment this line: #undef NDEBUG */ /* To enable diagnostic printing, uncomment this line: #undef NPRINT */ /* ========================================================================== */ #include #include #include #include #include #undef ASSERT #ifndef NDEBUG #define ASSERT(a) assert(a) #else #define ASSERT(a) #endif #define SCALAR_IS_NAN(x) ((x) != (x)) /* true if an integer (stored in double x) would overflow (or if x is NaN) */ #define INT_OVERFLOW(x) ((!((x) * (1.0+1e-8) <= (double) INT_MAX)) \ || SCALAR_IS_NAN (x)) #undef TRUE #undef FALSE #undef MAX #undef MIN #undef PRINTF #undef FLIP #ifndef NPRINT #define PRINTF(s) { printf s ; } ; #else #define PRINTF(s) #endif #define TRUE 1 #define FALSE 0 #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* FLIP is a "negation about -1", and is used to mark an integer i that is * normally non-negative. FLIP (EMPTY) is EMPTY. FLIP of a number > EMPTY * is negative, and FLIP of a number < EMTPY is positive. FLIP (FLIP (i)) = i * for all integers i. UNFLIP (i) is >= EMPTY. */ #define EMPTY (-1) #define FLIP(i) (-(i)-2) #define UNFLIP(i) (((i) < EMPTY) ? FLIP (i) : (i)) size_t KLU_kernel /* final size of LU on output */ ( /* input, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers for A */ Int Ai [ ], /* size nz = Ap [n], row indices for A */ Entry Ax [ ], /* size nz, values of A */ Int Q [ ], /* size n, optional input permutation */ size_t lusize, /* initial size of LU */ /* output, not defined on input */ Int Pinv [ ], /* size n */ Int P [ ], /* size n */ Unit **p_LU, /* size lusize on input, size Uxp[n] on output*/ Entry Udiag [ ], /* size n, diagonal of U */ Int Llen [ ], /* size n, column length of L */ Int Ulen [ ], /* size n, column length of U */ Int Lip [ ], /* size n+1 */ Int Uip [ ], /* size n+1 */ Int *lnz, /* size of L */ Int *unz, /* size of U */ /* workspace, not defined on input */ Entry X [ ], /* size n, zero on output */ /* workspace, not defined on input or output */ Int Stack [ ], /* size n */ Int Flag [ ], /* size n */ Int adj_pos [ ], /* size n */ /* workspace for pruning only */ Int Lpend [ ], /* size n workspace */ /* inputs, not modified on output */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ], /* inverse of P from symbolic factorization */ double Rs [ ], /* scale factors for A */ /* inputs, modified on output */ Int Offp [ ], /* off-diagonal matrix (modified by this routine) */ Int Offi [ ], Entry Offx [ ], KLU_common *Common /* the control input/output structure */ ) ; size_t KLU_kernel_factor /* 0 if failure, size of LU if OK */ ( /* inputs, not modified */ Int n, /* A is n-by-n. n must be > 0. */ Int Ap [ ], /* size n+1, column pointers for A */ Int Ai [ ], /* size nz = Ap [n], row indices for A */ Entry Ax [ ], /* size nz, values of A */ Int Q [ ], /* size n, optional column permutation */ double Lsize, /* initial size of L and U */ /* outputs, not defined on input */ Unit **p_LU, /* row indices and values of L and U */ Entry Udiag [ ], /* size n, diagonal of U */ Int Llen [ ], /* size n, column length of L */ Int Ulen [ ], /* size n, column length of U */ Int Lip [ ], /* size n+1, column pointers of L */ Int Uip [ ], /* size n+1, column pointers of U */ Int P [ ], /* row permutation, size n */ Int *lnz, /* size of L */ Int *unz, /* size of U */ /* workspace, undefined on input */ Entry *X, /* size n entries. Zero on output */ Int *Work, /* size 5n Int's */ /* inputs, not modified on output */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ], /* inverse of P from symbolic factorization */ double Rs [ ], /* scale factors for A */ /* inputs, modified on output */ Int Offp [ ], /* off-diagonal matrix (modified by this routine) */ Int Offi [ ], Entry Offx [ ], KLU_common *Common /* the control input/output structure */ ) ; void KLU_lsolve ( /* inputs, not modified: */ Int n, Int Lp [ ], Int Li [ ], Unit LU [ ], Int nrhs, /* right-hand-side on input, solution to Lx=b on output */ Entry X [ ] ) ; void KLU_ltsolve ( /* inputs, not modified: */ Int n, Int Lp [ ], Int Li [ ], Unit LU [ ], Int nrhs, #ifdef COMPLEX Int conj_solve, #endif /* right-hand-side on input, solution to L'x=b on output */ Entry X [ ] ) ; void KLU_usolve ( /* inputs, not modified: */ Int n, Int Up [ ], Int Ui [ ], Unit LU [ ], Entry Udiag [ ], Int nrhs, /* right-hand-side on input, solution to Ux=b on output */ Entry X [ ] ) ; void KLU_utsolve ( /* inputs, not modified: */ Int n, Int Up [ ], Int Ui [ ], Unit LU [ ], Entry Udiag [ ], Int nrhs, #ifdef COMPLEX Int conj_solve, #endif /* right-hand-side on input, solution to U'x=b on output */ Entry X [ ] ) ; Int KLU_valid ( Int n, Int Ap [ ], Int Ai [ ], Entry Ax [ ] ) ; Int KLU_valid_LU ( Int n, Int flag_test_start_ptr, Int Xip [ ], Int Xlen [ ], Unit LU [ ] ); size_t KLU_add_size_t (size_t a, size_t b, Int *ok) ; size_t KLU_mult_size_t (size_t a, size_t k, Int *ok) ; KLU_symbolic *KLU_alloc_symbolic (Int n, Int *Ap, Int *Ai, KLU_common *Common) ; #endif SuiteSparse/KLU/Include/klu_version.h0000644001170100242450000004441310620326133016500 0ustar davisfac#ifndef _KLU_VERSION_H #define _KLU_VERSION_H #ifdef DLONG #define Int UF_long #define Int_id UF_long_id #define Int_MAX UF_long_max #else #define Int int #define Int_id "%d" #define Int_MAX INT_MAX #endif #define NPRINT #define BYTES(type,n) (sizeof (type) * (n)) #define CEILING(b,u) (((b)+(u)-1) / (u)) #define UNITS(type,n) (CEILING (BYTES (type,n), sizeof (Unit))) #define DUNITS(type,n) (ceil (BYTES (type, (double) n) / sizeof (Unit))) #define GET_I_POINTER(LU, Xip, Xi, k) \ { \ Xi = (Int *) (LU + Xip [k]) ; \ } #define GET_X_POINTER(LU, Xip, Xlen, Xx, k) \ { \ Xx = (Entry *) (LU + Xip [k] + UNITS (Int, Xlen [k])) ; \ } #define GET_POINTER(LU, Xip, Xlen, Xi, Xx, k, xlen) \ { \ Unit *xp = LU + Xip [k] ; \ xlen = Xlen [k] ; \ Xi = (Int *) xp ; \ Xx = (Entry *) (xp + UNITS (Int, xlen)) ; \ } /* function names */ #ifdef COMPLEX #ifdef DLONG #define KLU_scale klu_zl_scale #define KLU_solve klu_zl_solve #define KLU_tsolve klu_zl_tsolve #define KLU_free_numeric klu_zl_free_numeric #define KLU_factor klu_zl_factor #define KLU_refactor klu_zl_refactor #define KLU_kernel_factor klu_zl_kernel_factor #define KLU_lsolve klu_zl_lsolve #define KLU_ltsolve klu_zl_ltsolve #define KLU_usolve klu_zl_usolve #define KLU_utsolve klu_zl_utsolve #define KLU_kernel klu_zl_kernel #define KLU_valid klu_zl_valid #define KLU_valid_LU klu_zl_valid_LU #define KLU_sort klu_zl_sort #define KLU_rgrowth klu_zl_rgrowth #define KLU_rcond klu_zl_rcond #define KLU_extract klu_zl_extract #define KLU_condest klu_zl_condest #define KLU_flops klu_zl_flops #else #define KLU_scale klu_z_scale #define KLU_solve klu_z_solve #define KLU_tsolve klu_z_tsolve #define KLU_free_numeric klu_z_free_numeric #define KLU_factor klu_z_factor #define KLU_refactor klu_z_refactor #define KLU_kernel_factor klu_z_kernel_factor #define KLU_lsolve klu_z_lsolve #define KLU_ltsolve klu_z_ltsolve #define KLU_usolve klu_z_usolve #define KLU_utsolve klu_z_utsolve #define KLU_kernel klu_z_kernel #define KLU_valid klu_z_valid #define KLU_valid_LU klu_z_valid_LU #define KLU_sort klu_z_sort #define KLU_rgrowth klu_z_rgrowth #define KLU_rcond klu_z_rcond #define KLU_extract klu_z_extract #define KLU_condest klu_z_condest #define KLU_flops klu_z_flops #endif #else #ifdef DLONG #define KLU_scale klu_l_scale #define KLU_solve klu_l_solve #define KLU_tsolve klu_l_tsolve #define KLU_free_numeric klu_l_free_numeric #define KLU_factor klu_l_factor #define KLU_refactor klu_l_refactor #define KLU_kernel_factor klu_l_kernel_factor #define KLU_lsolve klu_l_lsolve #define KLU_ltsolve klu_l_ltsolve #define KLU_usolve klu_l_usolve #define KLU_utsolve klu_l_utsolve #define KLU_kernel klu_l_kernel #define KLU_valid klu_l_valid #define KLU_valid_LU klu_l_valid_LU #define KLU_sort klu_l_sort #define KLU_rgrowth klu_l_rgrowth #define KLU_rcond klu_l_rcond #define KLU_extract klu_l_extract #define KLU_condest klu_l_condest #define KLU_flops klu_l_flops #else #define KLU_scale klu_scale #define KLU_solve klu_solve #define KLU_tsolve klu_tsolve #define KLU_free_numeric klu_free_numeric #define KLU_factor klu_factor #define KLU_refactor klu_refactor #define KLU_kernel_factor klu_kernel_factor #define KLU_lsolve klu_lsolve #define KLU_ltsolve klu_ltsolve #define KLU_usolve klu_usolve #define KLU_utsolve klu_utsolve #define KLU_kernel klu_kernel #define KLU_valid klu_valid #define KLU_valid_LU klu_valid_LU #define KLU_sort klu_sort #define KLU_rgrowth klu_rgrowth #define KLU_rcond klu_rcond #define KLU_extract klu_extract #define KLU_condest klu_condest #define KLU_flops klu_flops #endif #endif #ifdef DLONG #define KLU_analyze klu_l_analyze #define KLU_analyze_given klu_l_analyze_given #define KLU_alloc_symbolic klu_l_alloc_symbolic #define KLU_free_symbolic klu_l_free_symbolic #define KLU_defaults klu_l_defaults #define KLU_free klu_l_free #define KLU_malloc klu_l_malloc #define KLU_realloc klu_l_realloc #define KLU_add_size_t klu_l_add_size_t #define KLU_mult_size_t klu_l_mult_size_t #define KLU_symbolic klu_l_symbolic #define KLU_numeric klu_l_numeric #define KLU_common klu_l_common #define BTF_order btf_l_order #define BTF_strongcomp btf_l_strongcomp #define AMD_order amd_l_order #define COLAMD colamd_l #define COLAMD_recommended colamd_l_recommended #else #define KLU_analyze klu_analyze #define KLU_analyze_given klu_analyze_given #define KLU_alloc_symbolic klu_alloc_symbolic #define KLU_free_symbolic klu_free_symbolic #define KLU_defaults klu_defaults #define KLU_free klu_free #define KLU_malloc klu_malloc #define KLU_realloc klu_realloc #define KLU_add_size_t klu_add_size_t #define KLU_mult_size_t klu_mult_size_t #define KLU_symbolic klu_symbolic #define KLU_numeric klu_numeric #define KLU_common klu_common #define BTF_order btf_order #define BTF_strongcomp btf_strongcomp #define AMD_order amd_order #define COLAMD colamd #define COLAMD_recommended colamd_recommended #endif /* -------------------------------------------------------------------------- */ /* Numerical relop macros for correctly handling the NaN case */ /* -------------------------------------------------------------------------- */ /* SCALAR_IS_NAN(x): True if x is NaN. False otherwise. The commonly-existing isnan(x) function could be used, but it's not in Kernighan & Ritchie 2nd edition (ANSI C). It may appear in , but I'm not certain about portability. The expression x != x is true if and only if x is NaN, according to the IEEE 754 floating-point standard. SCALAR_IS_ZERO(x): True if x is zero. False if x is nonzero, NaN, or +/- Inf. This is (x == 0) if the compiler is IEEE 754 compliant. SCALAR_IS_NONZERO(x): True if x is nonzero, NaN, or +/- Inf. False if x zero. This is (x != 0) if the compiler is IEEE 754 compliant. SCALAR_IS_LTZERO(x): True if x is < zero or -Inf. False if x is >= 0, NaN, or +Inf. This is (x < 0) if the compiler is IEEE 754 compliant. */ /* These all work properly, according to the IEEE 754 standard ... except on */ /* a PC with windows. Works fine in Linux on the same PC... */ #define SCALAR_IS_NAN(x) ((x) != (x)) #define SCALAR_IS_ZERO(x) ((x) == 0.) #define SCALAR_IS_NONZERO(x) ((x) != 0.) #define SCALAR_IS_LTZERO(x) ((x) < 0.) /* scalar absolute value macro. If x is NaN, the result is NaN: */ #define SCALAR_ABS(x) ((SCALAR_IS_LTZERO (x)) ? -(x) : (x)) /* print a scalar (avoid printing "-0" for negative zero). */ #ifdef NPRINT #define PRINT_SCALAR(a) #else #define PRINT_SCALAR(a) \ { \ if (SCALAR_IS_NONZERO (a)) \ { \ PRINTF ((" (%g)", (a))) ; \ } \ else \ { \ PRINTF ((" (0)")) ; \ } \ } #endif /* -------------------------------------------------------------------------- */ /* Real floating-point arithmetic */ /* -------------------------------------------------------------------------- */ #ifndef COMPLEX typedef double Unit ; #define Entry double #define SPLIT(s) (1) #define REAL(c) (c) #define IMAG(c) (0.) #define ASSIGN(c,s1,s2,p,split) { (c) = (s1)[p] ; } #define CLEAR(c) { (c) = 0. ; } #define CLEAR_AND_INCREMENT(p) { *p++ = 0. ; } #define IS_NAN(a) SCALAR_IS_NAN (a) #define IS_ZERO(a) SCALAR_IS_ZERO (a) #define IS_NONZERO(a) SCALAR_IS_NONZERO (a) #define SCALE_DIV(c,s) { (c) /= (s) ; } #define SCALE_DIV_ASSIGN(a,c,s) { a = c / s ; } #define SCALE(c,s) { (c) *= (s) ; } #define ASSEMBLE(c,a) { (c) += (a) ; } #define ASSEMBLE_AND_INCREMENT(c,p) { (c) += *p++ ; } #define DECREMENT(c,a) { (c) -= (a) ; } #define MULT(c,a,b) { (c) = (a) * (b) ; } #define MULT_CONJ(c,a,b) { (c) = (a) * (b) ; } #define MULT_SUB(c,a,b) { (c) -= (a) * (b) ; } #define MULT_SUB_CONJ(c,a,b) { (c) -= (a) * (b) ; } #define DIV(c,a,b) { (c) = (a) / (b) ; } #define RECIPROCAL(c) { (c) = 1.0 / (c) ; } #define DIV_CONJ(c,a,b) { (c) = (a) / (b) ; } #define APPROX_ABS(s,a) { (s) = SCALAR_ABS (a) ; } #define ABS(s,a) { (s) = SCALAR_ABS (a) ; } #define PRINT_ENTRY(a) PRINT_SCALAR (a) #define CONJ(a,x) a = x /* for flop counts */ #define MULTSUB_FLOPS 2. /* c -= a*b */ #define DIV_FLOPS 1. /* c = a/b */ #define ABS_FLOPS 0. /* c = abs (a) */ #define ASSEMBLE_FLOPS 1. /* c += a */ #define DECREMENT_FLOPS 1. /* c -= a */ #define MULT_FLOPS 1. /* c = a*b */ #define SCALE_FLOPS 1. /* c = a/s */ #else /* -------------------------------------------------------------------------- */ /* Complex floating-point arithmetic */ /* -------------------------------------------------------------------------- */ /* Note: An alternative to this Double_Complex type would be to use a struct { double r ; double i ; }. The problem with that method (used by the Sun Performance Library, for example) is that ANSI C provides no guarantee about the layout of a struct. It is possible that the sizeof the struct above would be greater than 2 * sizeof (double). This would mean that the complex BLAS could not be used. The method used here avoids that possibility. ANSI C *does* guarantee that an array of structs has the same size as n times the size of one struct. The ANSI C99 version of the C language includes a "double _Complex" type. It should be possible in that case to do the following: #define Entry double _Complex and remove the Double_Complex struct. The macros, below, could then be replaced with instrinsic operators. Note that the #define Real and #define Imag should also be removed (they only appear in this file). For the MULT, MULT_SUB, MULT_SUB_CONJ, and MULT_CONJ macros, the output argument c cannot be the same as any input argument. */ typedef struct { double component [2] ; /* real and imaginary parts */ } Double_Complex ; typedef Double_Complex Unit ; #define Entry Double_Complex #define Real component [0] #define Imag component [1] /* for flop counts */ #define MULTSUB_FLOPS 8. /* c -= a*b */ #define DIV_FLOPS 9. /* c = a/b */ #define ABS_FLOPS 6. /* c = abs (a), count sqrt as one flop */ #define ASSEMBLE_FLOPS 2. /* c += a */ #define DECREMENT_FLOPS 2. /* c -= a */ #define MULT_FLOPS 6. /* c = a*b */ #define SCALE_FLOPS 2. /* c = a/s or c = a*s */ /* -------------------------------------------------------------------------- */ /* real part of c */ #define REAL(c) ((c).Real) /* -------------------------------------------------------------------------- */ /* imag part of c */ #define IMAG(c) ((c).Imag) /* -------------------------------------------------------------------------- */ /* Return TRUE if a complex number is in split form, FALSE if in packed form */ #define SPLIT(sz) ((sz) != (double *) NULL) /* c = (s1) + (s2)*i, if s2 is null, then X is in "packed" format (compatible * with Entry and ANSI C99 double _Complex type). */ /*#define ASSIGN(c,s1,s2,p,split) \ { \ if (split) \ { \ (c).Real = (s1)[p] ; \ (c).Imag = (s2)[p] ; \ } \ else \ { \ (c) = ((Entry *)(s1))[p] ; \ } \ }*/ /* -------------------------------------------------------------------------- */ #define CONJ(a, x) \ { \ a.Real = x.Real ; \ a.Imag = -x.Imag ; \ } /* c = 0 */ #define CLEAR(c) \ { \ (c).Real = 0. ; \ (c).Imag = 0. ; \ } /* -------------------------------------------------------------------------- */ /* *p++ = 0 */ #define CLEAR_AND_INCREMENT(p) \ { \ p->Real = 0. ; \ p->Imag = 0. ; \ p++ ; \ } /* -------------------------------------------------------------------------- */ /* True if a == 0 */ #define IS_ZERO(a) \ (SCALAR_IS_ZERO ((a).Real) && SCALAR_IS_ZERO ((a).Imag)) /* -------------------------------------------------------------------------- */ /* True if a is NaN */ #define IS_NAN(a) \ (SCALAR_IS_NAN ((a).Real) || SCALAR_IS_NAN ((a).Imag)) /* -------------------------------------------------------------------------- */ /* True if a != 0 */ #define IS_NONZERO(a) \ (SCALAR_IS_NONZERO ((a).Real) || SCALAR_IS_NONZERO ((a).Imag)) /* -------------------------------------------------------------------------- */ /* a = c/s */ #define SCALE_DIV_ASSIGN(a,c,s) \ { \ a.Real = c.Real / s ; \ a.Imag = c.Imag / s ; \ } /* c /= s */ #define SCALE_DIV(c,s) \ { \ (c).Real /= (s) ; \ (c).Imag /= (s) ; \ } /* -------------------------------------------------------------------------- */ /* c *= s */ #define SCALE(c,s) \ { \ (c).Real *= (s) ; \ (c).Imag *= (s) ; \ } /* -------------------------------------------------------------------------- */ /* c += a */ #define ASSEMBLE(c,a) \ { \ (c).Real += (a).Real ; \ (c).Imag += (a).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c += *p++ */ #define ASSEMBLE_AND_INCREMENT(c,p) \ { \ (c).Real += p->Real ; \ (c).Imag += p->Imag ; \ p++ ; \ } /* -------------------------------------------------------------------------- */ /* c -= a */ #define DECREMENT(c,a) \ { \ (c).Real -= (a).Real ; \ (c).Imag -= (a).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a*b, assert because c cannot be the same as a or b */ #define MULT(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real = (a).Real * (b).Real - (a).Imag * (b).Imag ; \ (c).Imag = (a).Imag * (b).Real + (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a*conjugate(b), assert because c cannot be the same as a or b */ #define MULT_CONJ(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real = (a).Real * (b).Real + (a).Imag * (b).Imag ; \ (c).Imag = (a).Imag * (b).Real - (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c -= a*b, assert because c cannot be the same as a or b */ #define MULT_SUB(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real -= (a).Real * (b).Real - (a).Imag * (b).Imag ; \ (c).Imag -= (a).Imag * (b).Real + (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c -= a*conjugate(b), assert because c cannot be the same as a or b */ #define MULT_SUB_CONJ(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real -= (a).Real * (b).Real + (a).Imag * (b).Imag ; \ (c).Imag -= (a).Imag * (b).Real - (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a/b, be careful to avoid underflow and overflow */ #ifdef MATHWORKS #define DIV(c,a,b) \ { \ (void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (b).Imag, \ &((c).Real), &((c).Imag)) ; \ } #else /* This uses ACM Algo 116, by R. L. Smith, 1962. */ /* c can be the same variable as a or b. */ /* Ignore NaN case for double relop br>=bi. */ #define DIV(c,a,b) \ { \ double r, den, ar, ai, br, bi ; \ br = (b).Real ; \ bi = (b).Imag ; \ ar = (a).Real ; \ ai = (a).Imag ; \ if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \ { \ r = bi / br ; \ den = br + r * bi ; \ (c).Real = (ar + ai * r) / den ; \ (c).Imag = (ai - ar * r) / den ; \ } \ else \ { \ r = br / bi ; \ den = r * br + bi ; \ (c).Real = (ar * r + ai) / den ; \ (c).Imag = (ai * r - ar) / den ; \ } \ } #endif /* -------------------------------------------------------------------------- */ /* c = 1/c, be careful to avoid underflow and overflow */ /* Not used if MATHWORKS is defined. */ /* This uses ACM Algo 116, by R. L. Smith, 1962. */ /* Ignore NaN case for double relop cr>=ci. */ #define RECIPROCAL(c) \ { \ double r, den, cr, ci ; \ cr = (c).Real ; \ ci = (c).Imag ; \ if (SCALAR_ABS (cr) >= SCALAR_ABS (ci)) \ { \ r = ci / cr ; \ den = cr + r * ci ; \ (c).Real = 1.0 / den ; \ (c).Imag = - r / den ; \ } \ else \ { \ r = cr / ci ; \ den = r * cr + ci ; \ (c).Real = r / den ; \ (c).Imag = - 1.0 / den ; \ } \ } /* -------------------------------------------------------------------------- */ /* c = a/conjugate(b), be careful to avoid underflow and overflow */ #ifdef MATHWORKS #define DIV_CONJ(c,a,b) \ { \ (void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (-(b).Imag), \ &((c).Real), &((c).Imag)) ; \ } #else /* This uses ACM Algo 116, by R. L. Smith, 1962. */ /* c can be the same variable as a or b. */ /* Ignore NaN case for double relop br>=bi. */ #define DIV_CONJ(c,a,b) \ { \ double r, den, ar, ai, br, bi ; \ br = (b).Real ; \ bi = (b).Imag ; \ ar = (a).Real ; \ ai = (a).Imag ; \ if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \ { \ r = (-bi) / br ; \ den = br - r * bi ; \ (c).Real = (ar + ai * r) / den ; \ (c).Imag = (ai - ar * r) / den ; \ } \ else \ { \ r = br / (-bi) ; \ den = r * br - bi; \ (c).Real = (ar * r + ai) / den ; \ (c).Imag = (ai * r - ar) / den ; \ } \ } #endif /* -------------------------------------------------------------------------- */ /* approximate absolute value, s = |r|+|i| */ #define APPROX_ABS(s,a) \ { \ (s) = SCALAR_ABS ((a).Real) + SCALAR_ABS ((a).Imag) ; \ } /* -------------------------------------------------------------------------- */ /* exact absolute value, s = sqrt (a.real^2 + amag^2) */ #ifdef MATHWORKS #define ABS(s,a) \ { \ (s) = utFdlibm_hypot ((a).Real, (a).Imag) ; \ } #else /* Ignore NaN case for the double relops ar>=ai and ar+ai==ar. */ #define ABS(s,a) \ { \ double r, ar, ai ; \ ar = SCALAR_ABS ((a).Real) ; \ ai = SCALAR_ABS ((a).Imag) ; \ if (ar >= ai) \ { \ if (ar + ai == ar) \ { \ (s) = ar ; \ } \ else \ { \ r = ai / ar ; \ (s) = ar * sqrt (1.0 + r*r) ; \ } \ } \ else \ { \ if (ai + ar == ai) \ { \ (s) = ai ; \ } \ else \ { \ r = ar / ai ; \ (s) = ai * sqrt (1.0 + r*r) ; \ } \ } \ } #endif /* -------------------------------------------------------------------------- */ /* print an entry (avoid printing "-0" for negative zero). */ #ifdef NPRINT #define PRINT_ENTRY(a) #else #define PRINT_ENTRY(a) \ { \ if (SCALAR_IS_NONZERO ((a).Real)) \ { \ PRINTF ((" (%g", (a).Real)) ; \ } \ else \ { \ PRINTF ((" (0")) ; \ } \ if (SCALAR_IS_LTZERO ((a).Imag)) \ { \ PRINTF ((" - %gi)", -(a).Imag)) ; \ } \ else if (SCALAR_IS_ZERO ((a).Imag)) \ { \ PRINTF ((" + 0i)")) ; \ } \ else \ { \ PRINTF ((" + %gi)", (a).Imag)) ; \ } \ } #endif /* -------------------------------------------------------------------------- */ #endif /* #ifndef COMPLEX */ #endif SuiteSparse/KLU/Source/0000755001170100242450000000000010660617102013641 5ustar davisfacSuiteSparse/KLU/Source/klu_tsolve.c0000644001170100242450000002433210616200241016171 0ustar davisfac/* ========================================================================== */ /* === KLU_tsolve =========================================================== */ /* ========================================================================== */ /* Solve A'x=b using the symbolic and numeric objects from KLU_analyze * (or KLU_analyze_given) and KLU_factor. Note that no iterative refinement is * performed. Uses Numeric->Xwork as workspace (undefined on input and output), * of size 4n Entry's (note that columns 2 to 4 of Xwork overlap with * Numeric->Iwork). */ #include "klu_internal.h" Int KLU_tsolve ( /* inputs, not modified */ KLU_symbolic *Symbolic, KLU_numeric *Numeric, Int d, /* leading dimension of B */ Int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size n*nrhs, in column-oriented form, with * leading dimension d. */ #ifdef COMPLEX Int conj_solve, /* TRUE for conjugate transpose solve, FALSE for * array transpose solve. Used for the complex * case only. */ #endif /* --------------- */ KLU_common *Common ) { Entry x [4], offik, s ; double rs, *Rs ; Entry *Offx, *X, *Bz, *Udiag ; Int *Q, *R, *Pnum, *Offp, *Offi, *Lip, *Uip, *Llen, *Ulen ; Unit **LUbx ; Int k1, k2, nk, k, block, pend, n, p, nblocks, chunk, nr, i ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } if (Numeric == NULL || Symbolic == NULL || d < Symbolic->n || nrhs < 0 || B == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ Bz = (Entry *) B ; n = Symbolic->n ; nblocks = Symbolic->nblocks ; Q = Symbolic->Q ; R = Symbolic->R ; /* ---------------------------------------------------------------------- */ /* get the contents of the Numeric object */ /* ---------------------------------------------------------------------- */ ASSERT (nblocks == Numeric->nblocks) ; Pnum = Numeric->Pnum ; Offp = Numeric->Offp ; Offi = Numeric->Offi ; Offx = (Entry *) Numeric->Offx ; Lip = Numeric->Lip ; Llen = Numeric->Llen ; Uip = Numeric->Uip ; Ulen = Numeric->Ulen ; LUbx = (Unit **) Numeric->LUbx ; Udiag = Numeric->Udiag ; Rs = Numeric->Rs ; X = (Entry *) Numeric->Xwork ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; /* ---------------------------------------------------------------------- */ /* solve in chunks of 4 columns at a time */ /* ---------------------------------------------------------------------- */ for (chunk = 0 ; chunk < nrhs ; chunk += 4) { /* ------------------------------------------------------------------ */ /* get the size of the current chunk */ /* ------------------------------------------------------------------ */ nr = MIN (nrhs - chunk, 4) ; /* ------------------------------------------------------------------ */ /* permute the right hand side, X = Q'*B */ /* ------------------------------------------------------------------ */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { X [k] = Bz [Q [k]] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Q [k] ; X [2*k ] = Bz [i ] ; X [2*k + 1] = Bz [i + d ] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Q [k] ; X [3*k ] = Bz [i ] ; X [3*k + 1] = Bz [i + d ] ; X [3*k + 2] = Bz [i + d*2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Q [k] ; X [4*k ] = Bz [i ] ; X [4*k + 1] = Bz [i + d ] ; X [4*k + 2] = Bz [i + d*2] ; X [4*k + 3] = Bz [i + d*3] ; } break ; } /* ------------------------------------------------------------------ */ /* solve X = (L*U + Off)'\X */ /* ------------------------------------------------------------------ */ for (block = 0 ; block < nblocks ; block++) { /* -------------------------------------------------------------- */ /* the block of size nk is from rows/columns k1 to k2-1 */ /* -------------------------------------------------------------- */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("tsolve %d, k1 %d k2-1 %d nk %d\n", block, k1,k2-1,nk)) ; /* -------------------------------------------------------------- */ /* block back-substitution for the off-diagonal-block entries */ /* -------------------------------------------------------------- */ if (block > 0) { switch (nr) { case 1: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; for (p = Offp [k] ; p < pend ; p++) { #ifdef COMPLEX if (conj_solve) { MULT_SUB_CONJ (X [k], X [Offi [p]], Offx [p]) ; } else #endif { MULT_SUB (X [k], Offx [p], X [Offi [p]]) ; } } } break ; case 2: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [2*k ] ; x [1] = X [2*k + 1] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (offik, Offx [p]) ; } else #endif { offik = Offx [p] ; } MULT_SUB (x [0], offik, X [2*i]) ; MULT_SUB (x [1], offik, X [2*i + 1]) ; } X [2*k ] = x [0] ; X [2*k + 1] = x [1] ; } break ; case 3: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [3*k ] ; x [1] = X [3*k + 1] ; x [2] = X [3*k + 2] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (offik, Offx [p]) ; } else #endif { offik = Offx [p] ; } MULT_SUB (x [0], offik, X [3*i]) ; MULT_SUB (x [1], offik, X [3*i + 1]) ; MULT_SUB (x [2], offik, X [3*i + 2]) ; } X [3*k ] = x [0] ; X [3*k + 1] = x [1] ; X [3*k + 2] = x [2] ; } break ; case 4: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [4*k ] ; x [1] = X [4*k + 1] ; x [2] = X [4*k + 2] ; x [3] = X [4*k + 3] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; #ifdef COMPLEX if (conj_solve) { CONJ(offik, Offx [p]) ; } else #endif { offik = Offx [p] ; } MULT_SUB (x [0], offik, X [4*i]) ; MULT_SUB (x [1], offik, X [4*i + 1]) ; MULT_SUB (x [2], offik, X [4*i + 2]) ; MULT_SUB (x [3], offik, X [4*i + 3]) ; } X [4*k ] = x [0] ; X [4*k + 1] = x [1] ; X [4*k + 2] = x [2] ; X [4*k + 3] = x [3] ; } break ; } } /* -------------------------------------------------------------- */ /* solve the block system */ /* -------------------------------------------------------------- */ if (nk == 1) { #ifdef COMPLEX if (conj_solve) { CONJ (s, Udiag [k1]) ; } else #endif { s = Udiag [k1] ; } switch (nr) { case 1: DIV (X [k1], X [k1], s) ; break ; case 2: DIV (X [2*k1], X [2*k1], s) ; DIV (X [2*k1 + 1], X [2*k1 + 1], s) ; break ; case 3: DIV (X [3*k1], X [3*k1], s) ; DIV (X [3*k1 + 1], X [3*k1 + 1], s) ; DIV (X [3*k1 + 2], X [3*k1 + 2], s) ; break ; case 4: DIV (X [4*k1], X [4*k1], s) ; DIV (X [4*k1 + 1], X [4*k1 + 1], s) ; DIV (X [4*k1 + 2], X [4*k1 + 2], s) ; DIV (X [4*k1 + 3], X [4*k1 + 3], s) ; break ; } } else { KLU_utsolve (nk, Uip + k1, Ulen + k1, LUbx [block], Udiag + k1, nr, #ifdef COMPLEX conj_solve, #endif X + nr*k1) ; KLU_ltsolve (nk, Lip + k1, Llen + k1, LUbx [block], nr, #ifdef COMPLEX conj_solve, #endif X + nr*k1) ; } } /* ------------------------------------------------------------------ */ /* scale and permute the result, Bz = P'(R\X) */ /* ------------------------------------------------------------------ */ if (Rs == NULL) { /* no scaling */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { Bz [Pnum [k]] = X [k] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; Bz [i ] = X [2*k ] ; Bz [i + d ] = X [2*k + 1] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; Bz [i ] = X [3*k ] ; Bz [i + d ] = X [3*k + 1] ; Bz [i + d*2] = X [3*k + 2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; Bz [i ] = X [4*k ] ; Bz [i + d ] = X [4*k + 1] ; Bz [i + d*2] = X [4*k + 2] ; Bz [i + d*3] = X [4*k + 3] ; } break ; } } else { switch (nr) { case 1: for (k = 0 ; k < n ; k++) { SCALE_DIV_ASSIGN (Bz [Pnum [k]], X [k], Rs [k]) ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (Bz [i], X [2*k], rs) ; SCALE_DIV_ASSIGN (Bz [i + d], X [2*k + 1], rs) ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (Bz [i], X [3*k], rs) ; SCALE_DIV_ASSIGN (Bz [i + d], X [3*k + 1], rs) ; SCALE_DIV_ASSIGN (Bz [i + d*2], X [3*k + 2], rs) ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (Bz [i], X [4*k], rs) ; SCALE_DIV_ASSIGN (Bz [i + d], X [4*k + 1], rs) ; SCALE_DIV_ASSIGN (Bz [i + d*2], X [4*k + 2], rs) ; SCALE_DIV_ASSIGN (Bz [i + d*3], X [4*k + 3], rs) ; } break ; } } /* ------------------------------------------------------------------ */ /* go to the next chunk of B */ /* ------------------------------------------------------------------ */ Bz += d*4 ; } return (TRUE) ; } SuiteSparse/KLU/Source/klu_sort.c0000644001170100242450000000757710616721417015675 0ustar davisfac/* ========================================================================== */ /* === KLU_sort ============================================================= */ /* ========================================================================== */ /* sorts the columns of L and U so that the row indices appear in strictly * increasing order. */ #include "klu_internal.h" /* ========================================================================== */ /* === sort ================================================================= */ /* ========================================================================== */ /* Sort L or U using a double-transpose */ static void sort (Int n, Int *Xip, Int *Xlen, Unit *LU, Int *Tp, Int *Tj, Entry *Tx, Int *W) { Int *Xi ; Entry *Xx ; Int p, i, j, len, nz, tp, xlen, pend ; ASSERT (KLU_valid_LU (n, FALSE, Xip, Xlen, LU)) ; /* count the number of entries in each row of L or U */ for (i = 0 ; i < n ; i++) { W [i] = 0 ; } for (j = 0 ; j < n ; j++) { GET_POINTER (LU, Xip, Xlen, Xi, Xx, j, len) ; for (p = 0 ; p < len ; p++) { W [Xi [p]]++ ; } } /* construct the row pointers for T */ nz = 0 ; for (i = 0 ; i < n ; i++) { Tp [i] = nz ; nz += W [i] ; } Tp [n] = nz ; for (i = 0 ; i < n ; i++) { W [i] = Tp [i] ; } /* transpose the matrix into Tp, Ti, Tx */ for (j = 0 ; j < n ; j++) { GET_POINTER (LU, Xip, Xlen, Xi, Xx, j, len) ; for (p = 0 ; p < len ; p++) { tp = W [Xi [p]]++ ; Tj [tp] = j ; Tx [tp] = Xx [p] ; } } /* transpose the matrix back into Xip, Xlen, Xi, Xx */ for (j = 0 ; j < n ; j++) { W [j] = 0 ; } for (i = 0 ; i < n ; i++) { pend = Tp [i+1] ; for (p = Tp [i] ; p < pend ; p++) { j = Tj [p] ; GET_POINTER (LU, Xip, Xlen, Xi, Xx, j, len) ; xlen = W [j]++ ; Xi [xlen] = i ; Xx [xlen] = Tx [p] ; } } ASSERT (KLU_valid_LU (n, FALSE, Xip, Xlen, LU)) ; } /* ========================================================================== */ /* === KLU_sort ============================================================= */ /* ========================================================================== */ Int KLU_sort ( KLU_symbolic *Symbolic, KLU_numeric *Numeric, KLU_common *Common ) { Int *R, *W, *Tp, *Ti, *Lip, *Uip, *Llen, *Ulen ; Entry *Tx ; Unit **LUbx ; Int n, nk, nz, block, nblocks, maxblock, k1 ; size_t m1 ; if (Common == NULL) { return (FALSE) ; } Common->status = KLU_OK ; n = Symbolic->n ; R = Symbolic->R ; nblocks = Symbolic->nblocks ; maxblock = Symbolic->maxblock ; Lip = Numeric->Lip ; Llen = Numeric->Llen ; Uip = Numeric->Uip ; Ulen = Numeric->Ulen ; LUbx = (Unit **) Numeric->LUbx ; m1 = ((size_t) maxblock) + 1 ; /* allocate workspace */ nz = MAX (Numeric->max_lnz_block, Numeric->max_unz_block) ; W = KLU_malloc (maxblock, sizeof (Int), Common) ; Tp = KLU_malloc (m1, sizeof (Int), Common) ; Ti = KLU_malloc (nz, sizeof (Int), Common) ; Tx = KLU_malloc (nz, sizeof (Entry), Common) ; PRINTF (("\n======================= Start sort:\n")) ; if (Common->status == KLU_OK) { /* sort each block of L and U */ for (block = 0 ; block < nblocks ; block++) { k1 = R [block] ; nk = R [block+1] - k1 ; if (nk > 1) { PRINTF (("\n-------------------block: %d nk %d\n", block, nk)) ; sort (nk, Lip + k1, Llen + k1, LUbx [block], Tp, Ti, Tx, W) ; sort (nk, Uip + k1, Ulen + k1, LUbx [block], Tp, Ti, Tx, W) ; } } } PRINTF (("\n======================= sort done.\n")) ; /* free workspace */ KLU_free (W, maxblock, sizeof (Int), Common) ; KLU_free (Tp, m1, sizeof (Int), Common) ; KLU_free (Ti, nz, sizeof (Int), Common) ; KLU_free (Tx, nz, sizeof (Entry), Common) ; return (Common->status == KLU_OK) ; } SuiteSparse/KLU/Source/klu_diagnostics.c0000644001170100242450000003416510634325142017201 0ustar davisfac/* ========================================================================== */ /* === KLU_diagnostics ====================================================== */ /* ========================================================================== */ /* Linear algebraic diagnostics: * KLU_rgrowth: reciprocal pivot growth, takes O(|A|+|U|) time * KLU_condest: condition number estimator, takes about O(|A|+5*(|L|+|U|)) time * KLU_flops: compute # flops required to factorize A into L*U * KLU_rcond: compute a really cheap estimate of the reciprocal of the * condition number, min(abs(diag(U))) / max(abs(diag(U))). * Takes O(n) time. */ #include "klu_internal.h" /* ========================================================================== */ /* === KLU_rgrowth ========================================================== */ /* ========================================================================== */ /* Compute the reciprocal pivot growth factor. In MATLAB notation: * * rgrowth = min (max (abs ((R \ A (p,q)) - F))) ./ max (abs (U))) */ Int KLU_rgrowth /* return TRUE if successful, FALSE otherwise */ ( Int *Ap, Int *Ai, double *Ax, KLU_symbolic *Symbolic, KLU_numeric *Numeric, KLU_common *Common ) { double temp, max_ai, max_ui, min_block_rgrowth ; Entry aik ; Int *Q, *Ui, *Uip, *Ulen, *Pinv ; Unit *LU ; Entry *Aentry, *Ux, *Ukk ; double *Rs ; Int i, newrow, oldrow, k1, k2, nk, j, oldcol, k, pend, len ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } if (Symbolic == NULL || Ap == NULL || Ai == NULL || Ax == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } if (Numeric == NULL) { /* treat this as a singular matrix */ Common->rgrowth = 0 ; Common->status = KLU_SINGULAR ; return (TRUE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* compute the reciprocal pivot growth */ /* ---------------------------------------------------------------------- */ Aentry = (Entry *) Ax ; Pinv = Numeric->Pinv ; Rs = Numeric->Rs ; Q = Symbolic->Q ; Common->rgrowth = 1 ; for (i = 0 ; i < Symbolic->nblocks ; i++) { k1 = Symbolic->R[i] ; k2 = Symbolic->R[i+1] ; nk = k2 - k1 ; if (nk == 1) { continue ; /* skip singleton blocks */ } LU = (Unit *) Numeric->LUbx[i] ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; Ukk = ((Entry *) Numeric->Udiag) + k1 ; min_block_rgrowth = 1 ; for (j = 0 ; j < nk ; j++) { max_ai = 0 ; max_ui = 0 ; oldcol = Q[j + k1] ; pend = Ap [oldcol + 1] ; for (k = Ap [oldcol] ; k < pend ; k++) { oldrow = Ai [k] ; newrow = Pinv [oldrow] ; if (newrow < k1) { continue ; /* skip entry outside the block */ } ASSERT (newrow < k2) ; if (Rs != NULL) { /* aik = Aentry [k] / Rs [oldrow] */ SCALE_DIV_ASSIGN (aik, Aentry [k], Rs [newrow]) ; } else { aik = Aentry [k] ; } /* temp = ABS (aik) */ ABS (temp, aik) ; if (temp > max_ai) { max_ai = temp ; } } GET_POINTER (LU, Uip, Ulen, Ui, Ux, j, len) ; for (k = 0 ; k < len ; k++) { /* temp = ABS (Ux [k]) */ ABS (temp, Ux [k]) ; if (temp > max_ui) { max_ui = temp ; } } /* consider the diagonal element */ ABS (temp, Ukk [j]) ; if (temp > max_ui) { max_ui = temp ; } /* if max_ui is 0, skip the column */ if (SCALAR_IS_ZERO (max_ui)) { continue ; } temp = max_ai / max_ui ; if (temp < min_block_rgrowth) { min_block_rgrowth = temp ; } } if (min_block_rgrowth < Common->rgrowth) { Common->rgrowth = min_block_rgrowth ; } } return (TRUE) ; } /* ========================================================================== */ /* === KLU_condest ========================================================== */ /* ========================================================================== */ /* Estimate the condition number. Uses Higham and Tisseur's algorithm * (A block algorithm for matrix 1-norm estimation, with applications to * 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21(4):1185-1201, 2000. */ Int KLU_condest /* return TRUE if successful, FALSE otherwise */ ( Int Ap [ ], double Ax [ ], KLU_symbolic *Symbolic, KLU_numeric *Numeric, KLU_common *Common ) { double xj, Xmax, csum, anorm, ainv_norm, est_old, est_new, abs_value ; Entry *Udiag, *Aentry, *X, *S ; Int *R ; Int nblocks, i, j, jmax, jnew, pend, n ; #ifndef COMPLEX Int unchanged ; #endif /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } if (Symbolic == NULL || Ap == NULL || Ax == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } abs_value = 0 ; if (Numeric == NULL) { /* treat this as a singular matrix */ Common->condest = 1 / abs_value ; Common->status = KLU_SINGULAR ; return (TRUE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ n = Symbolic->n ; nblocks = Symbolic->nblocks ; R = Symbolic->R ; Udiag = Numeric->Udiag ; /* ---------------------------------------------------------------------- */ /* check if diagonal of U has a zero on it */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { ABS (abs_value, Udiag [i]) ; if (SCALAR_IS_ZERO (abs_value)) { Common->condest = 1 / abs_value ; Common->status = KLU_SINGULAR ; return (TRUE) ; } } /* ---------------------------------------------------------------------- */ /* compute 1-norm (maximum column sum) of the matrix */ /* ---------------------------------------------------------------------- */ anorm = 0.0 ; Aentry = (Entry *) Ax ; for (i = 0 ; i < n ; i++) { pend = Ap [i + 1] ; csum = 0.0 ; for (j = Ap [i] ; j < pend ; j++) { ABS (abs_value, Aentry [j]) ; csum += abs_value ; } if (csum > anorm) { anorm = csum ; } } /* ---------------------------------------------------------------------- */ /* compute estimate of 1-norm of inv (A) */ /* ---------------------------------------------------------------------- */ /* get workspace (size 2*n Entry's) */ X = Numeric->Xwork ; /* size n space used in KLU_solve, tsolve */ X += n ; /* X is size n */ S = X + n ; /* S is size n */ for (i = 0 ; i < n ; i++) { CLEAR (S [i]) ; CLEAR (X [i]) ; REAL (X [i]) = 1.0 / ((double) n) ; } jmax = 0 ; ainv_norm = 0.0 ; for (i = 0 ; i < 5 ; i++) { if (i > 0) { /* X [jmax] is the largest entry in X */ for (j = 0 ; j < n ; j++) { /* X [j] = 0 ;*/ CLEAR (X [j]) ; } REAL (X [jmax]) = 1 ; } KLU_solve (Symbolic, Numeric, n, 1, (double *) X, Common) ; est_old = ainv_norm ; ainv_norm = 0.0 ; for (j = 0 ; j < n ; j++) { /* ainv_norm += ABS (X [j]) ;*/ ABS (abs_value, X [j]) ; ainv_norm += abs_value ; } #ifndef COMPLEX unchanged = TRUE ; for (j = 0 ; j < n ; j++) { double s = (X [j] >= 0) ? 1 : -1 ; if (s != (Int) REAL (S [j])) { S [j] = s ; unchanged = FALSE ; } } if (i > 0 && (ainv_norm <= est_old || unchanged)) { break ; } #else for (j = 0 ; j < n ; j++) { if (IS_NONZERO (X [j])) { ABS (abs_value, X [j]) ; SCALE_DIV_ASSIGN (S [j], X [j], abs_value) ; } else { CLEAR (S [j]) ; REAL (S [j]) = 1 ; } } if (i > 0 && ainv_norm <= est_old) { break ; } #endif for (j = 0 ; j < n ; j++) { X [j] = S [j] ; } #ifndef COMPLEX /* do a transpose solve */ KLU_tsolve (Symbolic, Numeric, n, 1, X, Common) ; #else /* do a conjugate transpose solve */ KLU_tsolve (Symbolic, Numeric, n, 1, (double *) X, 1, Common) ; #endif /* jnew = the position of the largest entry in X */ jnew = 0 ; Xmax = 0 ; for (j = 0 ; j < n ; j++) { /* xj = ABS (X [j]) ;*/ ABS (xj, X [j]) ; if (xj > Xmax) { Xmax = xj ; jnew = j ; } } if (i > 0 && jnew == jmax) { /* the position of the largest entry did not change * from the previous iteration */ break ; } jmax = jnew ; } /* ---------------------------------------------------------------------- */ /* compute another estimate of norm(inv(A),1), and take the largest one */ /* ---------------------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { CLEAR (X [j]) ; if (j % 2) { REAL (X [j]) = 1 + ((double) j) / ((double) (n-1)) ; } else { REAL (X [j]) = -1 - ((double) j) / ((double) (n-1)) ; } } KLU_solve (Symbolic, Numeric, n, 1, (double *) X, Common) ; est_new = 0.0 ; for (j = 0 ; j < n ; j++) { /* est_new += ABS (X [j]) ;*/ ABS (abs_value, X [j]) ; est_new += abs_value ; } est_new = 2 * est_new / (3 * n) ; ainv_norm = MAX (est_new, ainv_norm) ; /* ---------------------------------------------------------------------- */ /* compute estimate of condition number */ /* ---------------------------------------------------------------------- */ Common->condest = ainv_norm * anorm ; return (TRUE) ; } /* ========================================================================== */ /* === KLU_flops ============================================================ */ /* ========================================================================== */ /* Compute the flop count for the LU factorization (in Common->flops) */ Int KLU_flops /* return TRUE if successful, FALSE otherwise */ ( KLU_symbolic *Symbolic, KLU_numeric *Numeric, KLU_common *Common ) { double flops = 0 ; Int *R, *Ui, *Uip, *Llen, *Ulen ; Unit **LUbx ; Unit *LU ; Int k, ulen, p, n, nk, block, nblocks, k1 ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } Common->flops = EMPTY ; if (Numeric == NULL || Symbolic == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ n = Symbolic->n ; R = Symbolic->R ; nblocks = Symbolic->nblocks ; /* ---------------------------------------------------------------------- */ /* get the contents of the Numeric object */ /* ---------------------------------------------------------------------- */ LUbx = (Unit **) Numeric->LUbx ; /* ---------------------------------------------------------------------- */ /* compute the flop count */ /* ---------------------------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { k1 = R [block] ; nk = R [block+1] - k1 ; if (nk > 1) { Llen = Numeric->Llen + k1 ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; LU = LUbx [block] ; for (k = 0 ; k < nk ; k++) { /* compute kth column of U, and update kth column of A */ GET_I_POINTER (LU, Uip, Ui, k) ; ulen = Ulen [k] ; for (p = 0 ; p < ulen ; p++) { flops += 2 * Llen [Ui [p]] ; } /* gather and divide by pivot to get kth column of L */ flops += Llen [k] ; } } } Common->flops = flops ; return (TRUE) ; } /* ========================================================================== */ /* === KLU_rcond ============================================================ */ /* ========================================================================== */ /* Compute a really cheap estimate of the reciprocal of the condition number, * condition number, min(abs(diag(U))) / max(abs(diag(U))). If U has a zero * pivot, or a NaN pivot, rcond will be zero. Takes O(n) time. */ Int KLU_rcond /* return TRUE if successful, FALSE otherwise */ ( KLU_symbolic *Symbolic, /* input, not modified */ KLU_numeric *Numeric, /* input, not modified */ KLU_common *Common /* result in Common->rcond */ ) { double ukk, umin = 0, umax = 0 ; Entry *Udiag ; Int j, n ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } if (Symbolic == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } if (Numeric == NULL) { Common->rcond = 0 ; Common->status = KLU_SINGULAR ; return (TRUE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* compute rcond */ /* ---------------------------------------------------------------------- */ n = Symbolic->n ; Udiag = Numeric->Udiag ; for (j = 0 ; j < n ; j++) { /* get the magnitude of the pivot */ ABS (ukk, Udiag [j]) ; if (SCALAR_IS_NAN (ukk) || SCALAR_IS_ZERO (ukk)) { /* if NaN, or zero, the rcond is zero */ Common->rcond = 0 ; Common->status = KLU_SINGULAR ; return (TRUE) ; } if (j == 0) { /* first pivot entry */ umin = ukk ; umax = ukk ; } else { /* subsequent pivots */ umin = MIN (umin, ukk) ; umax = MAX (umax, ukk) ; } } Common->rcond = umin / umax ; if (SCALAR_IS_NAN (Common->rcond) || SCALAR_IS_ZERO (Common->rcond)) { /* this can occur if umin or umax are Inf or NaN */ Common->rcond = 0 ; Common->status = KLU_SINGULAR ; } return (TRUE) ; } SuiteSparse/KLU/Source/klu.c0000644001170100242450000004616410616721046014617 0ustar davisfac/* ========================================================================== */ /* === klu ================================================================== */ /* ========================================================================== */ /* KLU: factorizes P*A into L*U, using the Gilbert-Peierls algorithm [1], with * optional symmetric pruning by Eisenstat and Liu [2]. The code is by Tim * Davis. This algorithm is what appears as the default sparse LU routine in * MATLAB version 6.0, and still appears in MATLAB 6.5 as [L,U,P] = lu (A). * Note that no column ordering is provided (see COLAMD or AMD for suitable * orderings). SuperLU is based on this algorithm, except that it adds the * use of dense matrix operations on "supernodes" (adjacent columns with * identical). This code doesn't use supernodes, thus its name ("Kent" LU, * as in "Clark Kent", in contrast with Super-LU...). This algorithm is slower * than SuperLU and UMFPACK for large matrices with lots of nonzeros in their * factors (such as for most finite-element problems). However, for matrices * with very sparse LU factors, this algorithm is typically faster than both * SuperLU and UMFPACK, since in this case there is little chance to exploit * dense matrix kernels (the BLAS). * * Only one block of A is factorized, in the BTF form. The input n is the * size of the block; k1 is the first row and column in the block. * * NOTE: no error checking is done on the inputs. This version is not meant to * be called directly by the user. Use klu_factor instead. * * No fill-reducing ordering is provided. The ordering quality of * klu_kernel_factor is the responsibility of the caller. The input A must * pre-permuted to reduce fill-in, or fill-reducing input permutation Q must * be provided. * * The input matrix A must be in compressed-column form, with either sorted * or unsorted row indices. Row indices for column j of A is in * Ai [Ap [j] ... Ap [j+1]-1] and the same range of indices in Ax holds the * numerical values. No duplicate entries are allowed. * * Copyright 2004-2007, Tim Davis. All rights reserved. See the README * file for details on permitted use. Note that no code from The MathWorks, * Inc, or from SuperLU, or from any other source appears here. The code is * written from scratch, from the algorithmic description in Gilbert & Peierls' * and Eisenstat & Liu's journal papers [1,2]. * * If an input permutation Q is provided, the factorization L*U = A (P,Q) * is computed, where P is determined by partial pivoting, and Q is the input * ordering. If the pivot tolerance is less than 1, the "diagonal" entry that * KLU attempts to choose is the diagonal of A (Q,Q). In other words, the * input permutation is applied symmetrically to the input matrix. The output * permutation P includes both the partial pivoting ordering and the input * permutation. If Q is NULL, then it is assumed to be the identity * permutation. Q is not modified. * * [1] Gilbert, J. R. and Peierls, T., "Sparse Partial Pivoting in Time * Proportional to Arithmetic Operations," SIAM J. Sci. Stat. Comp., * vol 9, pp. 862-874, 1988. * [2] Eisenstat, S. C. and Liu, J. W. H., "Exploiting Structural Symmetry in * Unsymmetric Sparse Symbolic Factorization," SIAM J. Matrix Analysis & * Applic., vol 13, pp. 202-211, 1992. */ /* ========================================================================== */ #include "klu_internal.h" size_t KLU_kernel_factor /* 0 if failure, size of LU if OK */ ( /* inputs, not modified */ Int n, /* A is n-by-n. n must be > 0. */ Int Ap [ ], /* size n+1, column pointers for A */ Int Ai [ ], /* size nz = Ap [n], row indices for A */ Entry Ax [ ], /* size nz, values of A */ Int Q [ ], /* size n, optional column permutation */ double Lsize, /* estimate of number of nonzeros in L */ /* outputs, not defined on input */ Unit **p_LU, /* row indices and values of L and U */ Entry Udiag [ ], /* size n, diagonal of U */ Int Llen [ ], /* size n, column length of L */ Int Ulen [ ], /* size n, column length of U */ Int Lip [ ], /* size n, column pointers for L */ Int Uip [ ], /* size n, column pointers for U */ Int P [ ], /* row permutation, size n */ Int *lnz, /* size of L */ Int *unz, /* size of U */ /* workspace, undefined on input */ Entry *X, /* size n double's, zero on output */ Int *Work, /* size 5n Int's */ /* inputs, not modified on output */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ], /* inverse of P from symbolic factorization */ double Rs [ ], /* scale factors for A */ /* inputs, modified on output */ Int Offp [ ], /* off-diagonal matrix (modified by this routine) */ Int Offi [ ], Entry Offx [ ], /* --------------- */ KLU_common *Common ) { double maxlnz, dunits ; Unit *LU ; Int *Pinv, *Lpend, *Stack, *Flag, *Ap_pos, *W ; Int lsize, usize, anz, ok ; size_t lusize ; ASSERT (Common != NULL) ; /* ---------------------------------------------------------------------- */ /* get control parameters, or use defaults */ /* ---------------------------------------------------------------------- */ n = MAX (1, n) ; anz = Ap [n+k1] - Ap [k1] ; if (Lsize <= 0) { Lsize = -Lsize ; Lsize = MAX (Lsize, 1.0) ; lsize = Lsize * anz + n ; } else { lsize = Lsize ; } usize = lsize ; lsize = MAX (n+1, lsize) ; usize = MAX (n+1, usize) ; maxlnz = (((double) n) * ((double) n) + ((double) n)) / 2. ; maxlnz = MIN (maxlnz, ((double) INT_MAX)) ; lsize = MIN (maxlnz, lsize) ; usize = MIN (maxlnz, usize) ; PRINTF (("Welcome to klu: n %d anz %d k1 %d lsize %d usize %d maxlnz %g\n", n, anz, k1, lsize, usize, maxlnz)) ; /* ---------------------------------------------------------------------- */ /* allocate workspace and outputs */ /* ---------------------------------------------------------------------- */ /* return arguments are not yet assigned */ *p_LU = (Unit *) NULL ; /* these computations are safe from size_t overflow */ W = Work ; Pinv = (Int *) W ; W += n ; Stack = (Int *) W ; W += n ; Flag = (Int *) W ; W += n ; Lpend = (Int *) W ; W += n ; Ap_pos = (Int *) W ; W += n ; dunits = DUNITS (Int, lsize) + DUNITS (Entry, lsize) + DUNITS (Int, usize) + DUNITS (Entry, usize) ; lusize = (size_t) dunits ; ok = !INT_OVERFLOW (dunits) ; LU = ok ? KLU_malloc (lusize, sizeof (Unit), Common) : NULL ; if (LU == NULL) { /* out of memory, or problem too large */ Common->status = KLU_OUT_OF_MEMORY ; lusize = 0 ; return (lusize) ; } /* ---------------------------------------------------------------------- */ /* factorize */ /* ---------------------------------------------------------------------- */ /* with pruning, and non-recursive depth-first-search */ lusize = KLU_kernel (n, Ap, Ai, Ax, Q, lusize, Pinv, P, &LU, Udiag, Llen, Ulen, Lip, Uip, lnz, unz, X, Stack, Flag, Ap_pos, Lpend, k1, PSinv, Rs, Offp, Offi, Offx, Common) ; /* ---------------------------------------------------------------------- */ /* return LU factors, or return nothing if an error occurred */ /* ---------------------------------------------------------------------- */ if (Common->status < KLU_OK) { LU = KLU_free (LU, lusize, sizeof (Unit), Common) ; lusize = 0 ; } *p_LU = LU ; PRINTF ((" in klu noffdiag %d\n", Common->noffdiag)) ; return (lusize) ; } /* ========================================================================== */ /* === KLU_lsolve =========================================================== */ /* ========================================================================== */ /* Solve Lx=b. Assumes L is unit lower triangular and where the unit diagonal * entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs * and is stored in ROW form with row dimension nrhs. nrhs must be in the * range 1 to 4. */ void KLU_lsolve ( /* inputs, not modified: */ Int n, Int Lip [ ], Int Llen [ ], Unit LU [ ], Int nrhs, /* right-hand-side on input, solution to Lx=b on output */ Entry X [ ] ) { Entry x [4], lik ; Int *Li ; Entry *Lx ; Int k, p, len, i ; switch (nrhs) { case 1: for (k = 0 ; k < n ; k++) { x [0] = X [k] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; /* unit diagonal of L is not stored*/ for (p = 0 ; p < len ; p++) { /* X [Li [p]] -= Lx [p] * x [0] ; */ MULT_SUB (X [Li [p]], Lx [p], x [0]) ; } } break ; case 2: for (k = 0 ; k < n ; k++) { x [0] = X [2*k ] ; x [1] = X [2*k + 1] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; lik = Lx [p] ; MULT_SUB (X [2*i], lik, x [0]) ; MULT_SUB (X [2*i + 1], lik, x [1]) ; } } break ; case 3: for (k = 0 ; k < n ; k++) { x [0] = X [3*k ] ; x [1] = X [3*k + 1] ; x [2] = X [3*k + 2] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; lik = Lx [p] ; MULT_SUB (X [3*i], lik, x [0]) ; MULT_SUB (X [3*i + 1], lik, x [1]) ; MULT_SUB (X [3*i + 2], lik, x [2]) ; } } break ; case 4: for (k = 0 ; k < n ; k++) { x [0] = X [4*k ] ; x [1] = X [4*k + 1] ; x [2] = X [4*k + 2] ; x [3] = X [4*k + 3] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; lik = Lx [p] ; MULT_SUB (X [4*i], lik, x [0]) ; MULT_SUB (X [4*i + 1], lik, x [1]) ; MULT_SUB (X [4*i + 2], lik, x [2]) ; MULT_SUB (X [4*i + 3], lik, x [3]) ; } } break ; } } /* ========================================================================== */ /* === KLU_usolve =========================================================== */ /* ========================================================================== */ /* Solve Ux=b. Assumes U is non-unit upper triangular and where the diagonal * entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs * and is stored in ROW form with row dimension nrhs. nrhs must be in the * range 1 to 4. */ void KLU_usolve ( /* inputs, not modified: */ Int n, Int Uip [ ], Int Ulen [ ], Unit LU [ ], Entry Udiag [ ], Int nrhs, /* right-hand-side on input, solution to Ux=b on output */ Entry X [ ] ) { Entry x [4], uik, ukk ; Int *Ui ; Entry *Ux ; Int k, p, len, i ; switch (nrhs) { case 1: for (k = n-1 ; k >= 0 ; k--) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; /* x [0] = X [k] / Udiag [k] ; */ DIV (x [0], X [k], Udiag [k]) ; X [k] = x [0] ; for (p = 0 ; p < len ; p++) { /* X [Ui [p]] -= Ux [p] * x [0] ; */ MULT_SUB (X [Ui [p]], Ux [p], x [0]) ; } } break ; case 2: for (k = n-1 ; k >= 0 ; k--) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; ukk = Udiag [k] ; /* x [0] = X [2*k ] / ukk ; x [1] = X [2*k + 1] / ukk ; */ DIV (x [0], X [2*k], ukk) ; DIV (x [1], X [2*k + 1], ukk) ; X [2*k ] = x [0] ; X [2*k + 1] = x [1] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; uik = Ux [p] ; /* X [2*i ] -= uik * x [0] ; X [2*i + 1] -= uik * x [1] ; */ MULT_SUB (X [2*i], uik, x [0]) ; MULT_SUB (X [2*i + 1], uik, x [1]) ; } } break ; case 3: for (k = n-1 ; k >= 0 ; k--) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; ukk = Udiag [k] ; DIV (x [0], X [3*k], ukk) ; DIV (x [1], X [3*k + 1], ukk) ; DIV (x [2], X [3*k + 2], ukk) ; X [3*k ] = x [0] ; X [3*k + 1] = x [1] ; X [3*k + 2] = x [2] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; uik = Ux [p] ; MULT_SUB (X [3*i], uik, x [0]) ; MULT_SUB (X [3*i + 1], uik, x [1]) ; MULT_SUB (X [3*i + 2], uik, x [2]) ; } } break ; case 4: for (k = n-1 ; k >= 0 ; k--) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; ukk = Udiag [k] ; DIV (x [0], X [4*k], ukk) ; DIV (x [1], X [4*k + 1], ukk) ; DIV (x [2], X [4*k + 2], ukk) ; DIV (x [3], X [4*k + 3], ukk) ; X [4*k ] = x [0] ; X [4*k + 1] = x [1] ; X [4*k + 2] = x [2] ; X [4*k + 3] = x [3] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; uik = Ux [p] ; MULT_SUB (X [4*i], uik, x [0]) ; MULT_SUB (X [4*i + 1], uik, x [1]) ; MULT_SUB (X [4*i + 2], uik, x [2]) ; MULT_SUB (X [4*i + 3], uik, x [3]) ; } } break ; } } /* ========================================================================== */ /* === KLU_ltsolve ========================================================== */ /* ========================================================================== */ /* Solve L'x=b. Assumes L is unit lower triangular and where the unit diagonal * entry is NOT stored. Overwrites B with the solution X. B is n-by-nrhs * and is stored in ROW form with row dimension nrhs. nrhs must in the * range 1 to 4. */ void KLU_ltsolve ( /* inputs, not modified: */ Int n, Int Lip [ ], Int Llen [ ], Unit LU [ ], Int nrhs, #ifdef COMPLEX Int conj_solve, #endif /* right-hand-side on input, solution to L'x=b on output */ Entry X [ ] ) { Entry x [4], lik ; Int *Li ; Entry *Lx ; Int k, p, len, i ; switch (nrhs) { case 1: for (k = n-1 ; k >= 0 ; k--) { GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; x [0] = X [k] ; for (p = 0 ; p < len ; p++) { #ifdef COMPLEX if (conj_solve) { /* x [0] -= CONJ (Lx [p]) * X [Li [p]] ; */ MULT_SUB_CONJ (x [0], X [Li [p]], Lx [p]) ; } else #endif { /*x [0] -= Lx [p] * X [Li [p]] ;*/ MULT_SUB (x [0], Lx [p], X [Li [p]]) ; } } X [k] = x [0] ; } break ; case 2: for (k = n-1 ; k >= 0 ; k--) { x [0] = X [2*k ] ; x [1] = X [2*k + 1] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (lik, Lx [p]) ; } else #endif { lik = Lx [p] ; } MULT_SUB (x [0], lik, X [2*i]) ; MULT_SUB (x [1], lik, X [2*i + 1]) ; } X [2*k ] = x [0] ; X [2*k + 1] = x [1] ; } break ; case 3: for (k = n-1 ; k >= 0 ; k--) { x [0] = X [3*k ] ; x [1] = X [3*k + 1] ; x [2] = X [3*k + 2] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (lik, Lx [p]) ; } else #endif { lik = Lx [p] ; } MULT_SUB (x [0], lik, X [3*i]) ; MULT_SUB (x [1], lik, X [3*i + 1]) ; MULT_SUB (x [2], lik, X [3*i + 2]) ; } X [3*k ] = x [0] ; X [3*k + 1] = x [1] ; X [3*k + 2] = x [2] ; } break ; case 4: for (k = n-1 ; k >= 0 ; k--) { x [0] = X [4*k ] ; x [1] = X [4*k + 1] ; x [2] = X [4*k + 2] ; x [3] = X [4*k + 3] ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { i = Li [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (lik, Lx [p]) ; } else #endif { lik = Lx [p] ; } MULT_SUB (x [0], lik, X [4*i]) ; MULT_SUB (x [1], lik, X [4*i + 1]) ; MULT_SUB (x [2], lik, X [4*i + 2]) ; MULT_SUB (x [3], lik, X [4*i + 3]) ; } X [4*k ] = x [0] ; X [4*k + 1] = x [1] ; X [4*k + 2] = x [2] ; X [4*k + 3] = x [3] ; } break ; } } /* ========================================================================== */ /* === KLU_utsolve ========================================================== */ /* ========================================================================== */ /* Solve U'x=b. Assumes U is non-unit upper triangular and where the diagonal * entry is stored (and appears last in each column of U). Overwrites B * with the solution X. B is n-by-nrhs and is stored in ROW form with row * dimension nrhs. nrhs must be in the range 1 to 4. */ void KLU_utsolve ( /* inputs, not modified: */ Int n, Int Uip [ ], Int Ulen [ ], Unit LU [ ], Entry Udiag [ ], Int nrhs, #ifdef COMPLEX Int conj_solve, #endif /* right-hand-side on input, solution to Ux=b on output */ Entry X [ ] ) { Entry x [4], uik, ukk ; Int k, p, len, i ; Int *Ui ; Entry *Ux ; switch (nrhs) { case 1: for (k = 0 ; k < n ; k++) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; x [0] = X [k] ; for (p = 0 ; p < len ; p++) { #ifdef COMPLEX if (conj_solve) { /* x [0] -= CONJ (Ux [p]) * X [Ui [p]] ; */ MULT_SUB_CONJ (x [0], X [Ui [p]], Ux [p]) ; } else #endif { /* x [0] -= Ux [p] * X [Ui [p]] ; */ MULT_SUB (x [0], Ux [p], X [Ui [p]]) ; } } #ifdef COMPLEX if (conj_solve) { CONJ (ukk, Udiag [k]) ; } else #endif { ukk = Udiag [k] ; } DIV (X [k], x [0], ukk) ; } break ; case 2: for (k = 0 ; k < n ; k++) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; x [0] = X [2*k ] ; x [1] = X [2*k + 1] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (uik, Ux [p]) ; } else #endif { uik = Ux [p] ; } MULT_SUB (x [0], uik, X [2*i]) ; MULT_SUB (x [1], uik, X [2*i + 1]) ; } #ifdef COMPLEX if (conj_solve) { CONJ (ukk, Udiag [k]) ; } else #endif { ukk = Udiag [k] ; } DIV (X [2*k], x [0], ukk) ; DIV (X [2*k + 1], x [1], ukk) ; } break ; case 3: for (k = 0 ; k < n ; k++) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; x [0] = X [3*k ] ; x [1] = X [3*k + 1] ; x [2] = X [3*k + 2] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (uik, Ux [p]) ; } else #endif { uik = Ux [p] ; } MULT_SUB (x [0], uik, X [3*i]) ; MULT_SUB (x [1], uik, X [3*i + 1]) ; MULT_SUB (x [2], uik, X [3*i + 2]) ; } #ifdef COMPLEX if (conj_solve) { CONJ (ukk, Udiag [k]) ; } else #endif { ukk = Udiag [k] ; } DIV (X [3*k], x [0], ukk) ; DIV (X [3*k + 1], x [1], ukk) ; DIV (X [3*k + 2], x [2], ukk) ; } break ; case 4: for (k = 0 ; k < n ; k++) { GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; x [0] = X [4*k ] ; x [1] = X [4*k + 1] ; x [2] = X [4*k + 2] ; x [3] = X [4*k + 3] ; for (p = 0 ; p < len ; p++) { i = Ui [p] ; #ifdef COMPLEX if (conj_solve) { CONJ (uik, Ux [p]) ; } else #endif { uik = Ux [p] ; } MULT_SUB (x [0], uik, X [4*i]) ; MULT_SUB (x [1], uik, X [4*i + 1]) ; MULT_SUB (x [2], uik, X [4*i + 2]) ; MULT_SUB (x [3], uik, X [4*i + 3]) ; } #ifdef COMPLEX if (conj_solve) { CONJ (ukk, Udiag [k]) ; } else #endif { ukk = Udiag [k] ; } DIV (X [4*k], x [0], ukk) ; DIV (X [4*k + 1], x [1], ukk) ; DIV (X [4*k + 2], x [2], ukk) ; DIV (X [4*k + 3], x [3], ukk) ; } break ; } } SuiteSparse/KLU/Source/klu_extract.c0000644001170100242450000001472110620223666016343 0ustar davisfac/* ========================================================================== */ /* === KLU_extract ========================================================== */ /* ========================================================================== */ /* Extract KLU factorization into conventional compressed-column matrices. * If any output array is NULL, that part of the LU factorization is not * extracted (this is not an error condition). * * nnz(L) = Numeric->lnz, nnz(U) = Numeric->unz, and nnz(F) = Numeric->Offp [n] */ #include "klu_internal.h" Int KLU_extract /* returns TRUE if successful, FALSE otherwise */ ( /* inputs: */ KLU_numeric *Numeric, KLU_symbolic *Symbolic, /* outputs, all of which must be allocated on input */ /* L */ Int *Lp, /* size n+1 */ Int *Li, /* size nnz(L) */ double *Lx, /* size nnz(L) */ #ifdef COMPLEX double *Lz, /* size nnz(L) for the complex case, ignored if real */ #endif /* U */ Int *Up, /* size n+1 */ Int *Ui, /* size nnz(U) */ double *Ux, /* size nnz(U) */ #ifdef COMPLEX double *Uz, /* size nnz(U) for the complex case, ignored if real */ #endif /* F */ Int *Fp, /* size n+1 */ Int *Fi, /* size nnz(F) */ double *Fx, /* size nnz(F) */ #ifdef COMPLEX double *Fz, /* size nnz(F) for the complex case, ignored if real */ #endif /* P, row permutation */ Int *P, /* size n */ /* Q, column permutation */ Int *Q, /* size n */ /* Rs, scale factors */ double *Rs, /* size n */ /* R, block boundaries */ Int *R, /* size nblocks+1 */ KLU_common *Common ) { Int *Lip, *Llen, *Uip, *Ulen, *Li2, *Ui2 ; Unit *LU ; Entry *Lx2, *Ux2, *Ukk ; Int i, k, block, nblocks, n, nz, k1, k2, nk, len, kk, p ; if (Common == NULL) { return (FALSE) ; } if (Symbolic == NULL || Numeric == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } Common->status = KLU_OK ; n = Symbolic->n ; nblocks = Symbolic->nblocks ; /* ---------------------------------------------------------------------- */ /* extract scale factors */ /* ---------------------------------------------------------------------- */ if (Rs != NULL) { if (Numeric->Rs != NULL) { for (i = 0 ; i < n ; i++) { Rs [i] = Numeric->Rs [i] ; } } else { /* no scaling */ for (i = 0 ; i < n ; i++) { Rs [i] = 1 ; } } } /* ---------------------------------------------------------------------- */ /* extract block boundaries */ /* ---------------------------------------------------------------------- */ if (R != NULL) { for (block = 0 ; block <= nblocks ; block++) { R [block] = Symbolic->R [block] ; } } /* ---------------------------------------------------------------------- */ /* extract final row permutation */ /* ---------------------------------------------------------------------- */ if (P != NULL) { for (k = 0 ; k < n ; k++) { P [k] = Numeric->Pnum [k] ; } } /* ---------------------------------------------------------------------- */ /* extract column permutation */ /* ---------------------------------------------------------------------- */ if (Q != NULL) { for (k = 0 ; k < n ; k++) { Q [k] = Symbolic->Q [k] ; } } /* ---------------------------------------------------------------------- */ /* extract each block of L */ /* ---------------------------------------------------------------------- */ if (Lp != NULL && Li != NULL && Lx != NULL #ifdef COMPLEX && Lz != NULL #endif ) { nz = 0 ; for (block = 0 ; block < nblocks ; block++) { k1 = Symbolic->R [block] ; k2 = Symbolic->R [block+1] ; nk = k2 - k1 ; if (nk == 1) { /* singleton block */ Lp [k1] = nz ; Li [nz] = k1 ; Lx [nz] = 1 ; #ifdef COMPLEX Lz [nz] = 0 ; #endif nz++ ; } else { /* non-singleton block */ LU = Numeric->LUbx [block] ; Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; for (kk = 0 ; kk < nk ; kk++) { Lp [k1+kk] = nz ; /* add the unit diagonal entry */ Li [nz] = k1 + kk ; Lx [nz] = 1 ; #ifdef COMPLEX Lz [nz] = 0 ; #endif nz++ ; GET_POINTER (LU, Lip, Llen, Li2, Lx2, kk, len) ; for (p = 0 ; p < len ; p++) { Li [nz] = k1 + Li2 [p] ; Lx [nz] = REAL (Lx2 [p]) ; #ifdef COMPLEX Lz [nz] = IMAG (Lx2 [p]) ; #endif nz++ ; } } } } Lp [n] = nz ; ASSERT (nz == Numeric->lnz) ; } /* ---------------------------------------------------------------------- */ /* extract each block of U */ /* ---------------------------------------------------------------------- */ if (Up != NULL && Ui != NULL && Ux != NULL #ifdef COMPLEX && Uz != NULL #endif ) { nz = 0 ; for (block = 0 ; block < nblocks ; block++) { k1 = Symbolic->R [block] ; k2 = Symbolic->R [block+1] ; nk = k2 - k1 ; Ukk = ((Entry *) Numeric->Udiag) + k1 ; if (nk == 1) { /* singleton block */ Up [k1] = nz ; Ui [nz] = k1 ; Ux [nz] = REAL (Ukk [0]) ; #ifdef COMPLEX Uz [nz] = IMAG (Ukk [0]) ; #endif nz++ ; } else { /* non-singleton block */ LU = Numeric->LUbx [block] ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; for (kk = 0 ; kk < nk ; kk++) { Up [k1+kk] = nz ; GET_POINTER (LU, Uip, Ulen, Ui2, Ux2, kk, len) ; for (p = 0 ; p < len ; p++) { Ui [nz] = k1 + Ui2 [p] ; Ux [nz] = REAL (Ux2 [p]) ; #ifdef COMPLEX Uz [nz] = IMAG (Ux2 [p]) ; #endif nz++ ; } /* add the diagonal entry */ Ui [nz] = k1 + kk ; Ux [nz] = REAL (Ukk [kk]) ; #ifdef COMPLEX Uz [nz] = IMAG (Ukk [kk]) ; #endif nz++ ; } } } Up [n] = nz ; ASSERT (nz == Numeric->unz) ; } /* ---------------------------------------------------------------------- */ /* extract the off-diagonal blocks, F */ /* ---------------------------------------------------------------------- */ if (Fp != NULL && Fi != NULL && Fx != NULL #ifdef COMPLEX && Fz != NULL #endif ) { for (k = 0 ; k <= n ; k++) { Fp [k] = Numeric->Offp [k] ; } nz = Fp [n] ; for (k = 0 ; k < nz ; k++) { Fi [k] = Numeric->Offi [k] ; } for (k = 0 ; k < nz ; k++) { Fx [k] = REAL (((Entry *) Numeric->Offx) [k]) ; #ifdef COMPLEX Fz [k] = IMAG (((Entry *) Numeric->Offx) [k]) ; #endif } } return (TRUE) ; } SuiteSparse/KLU/Source/klu_refactor.c0000644001170100242450000003103110616721351016466 0ustar davisfac/* ========================================================================== */ /* === KLU_refactor ========================================================= */ /* ========================================================================== */ /* Factor the matrix, after ordering and analyzing it with KLU_analyze, and * factoring it once with KLU_factor. This routine cannot do any numerical * pivoting. The pattern of the input matrix (Ap, Ai) must be identical to * the pattern given to KLU_factor. */ #include "klu_internal.h" /* ========================================================================== */ /* === KLU_refactor ========================================================= */ /* ========================================================================== */ Int KLU_refactor /* returns TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ double Ax [ ], KLU_symbolic *Symbolic, /* input/output */ KLU_numeric *Numeric, KLU_common *Common ) { Entry ukk, ujk, s ; Entry *Offx, *Lx, *Ux, *X, *Az, *Udiag ; double *Rs ; Int *P, *Q, *R, *Pnum, *Offp, *Offi, *Ui, *Li, *Pinv, *Lip, *Uip, *Llen, *Ulen ; Unit **LUbx ; Unit *LU ; Int k1, k2, nk, k, block, oldcol, pend, oldrow, n, p, newrow, scale, nblocks, poff, i, j, up, ulen, llen, maxblock, nzoff ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } Common->status = KLU_OK ; if (Numeric == NULL) { /* invalid Numeric object */ Common->status = KLU_INVALID ; return (FALSE) ; } Common->numerical_rank = EMPTY ; Common->singular_col = EMPTY ; Az = (Entry *) Ax ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ n = Symbolic->n ; P = Symbolic->P ; Q = Symbolic->Q ; R = Symbolic->R ; nblocks = Symbolic->nblocks ; maxblock = Symbolic->maxblock ; /* ---------------------------------------------------------------------- */ /* get the contents of the Numeric object */ /* ---------------------------------------------------------------------- */ Pnum = Numeric->Pnum ; Offp = Numeric->Offp ; Offi = Numeric->Offi ; Offx = (Entry *) Numeric->Offx ; LUbx = (Unit **) Numeric->LUbx ; scale = Common->scale ; if (scale > 0) { /* factorization was not scaled, but refactorization is scaled */ if (Numeric->Rs == NULL) { Numeric->Rs = KLU_malloc (n, sizeof (double), Common) ; if (Common->status < KLU_OK) { Common->status = KLU_OUT_OF_MEMORY ; return (FALSE) ; } } } else { /* no scaling for refactorization; ensure Numeric->Rs is freed. This * does nothing if Numeric->Rs is already NULL. */ Numeric->Rs = KLU_free (Numeric->Rs, n, sizeof (double), Common) ; } Rs = Numeric->Rs ; Pinv = Numeric->Pinv ; X = (Entry *) Numeric->Xwork ; Common->nrealloc = 0 ; Udiag = Numeric->Udiag ; nzoff = Symbolic->nzoff ; /* ---------------------------------------------------------------------- */ /* check the input matrix compute the row scale factors, Rs */ /* ---------------------------------------------------------------------- */ /* do no scale, or check the input matrix, if scale < 0 */ if (scale >= 0) { /* check for out-of-range indices, but do not check for duplicates */ if (!KLU_scale (scale, n, Ap, Ai, Ax, Rs, NULL, Common)) { return (FALSE) ; } } /* ---------------------------------------------------------------------- */ /* clear workspace X */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < maxblock ; k++) { /* X [k] = 0 */ CLEAR (X [k]) ; } poff = 0 ; /* ---------------------------------------------------------------------- */ /* factor each block */ /* ---------------------------------------------------------------------- */ if (scale <= 0) { /* ------------------------------------------------------------------ */ /* no scaling */ /* ------------------------------------------------------------------ */ for (block = 0 ; block < nblocks ; block++) { /* -------------------------------------------------------------- */ /* the block is from rows/columns k1 to k2-1 */ /* -------------------------------------------------------------- */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; if (nk == 1) { /* ---------------------------------------------------------- */ /* singleton case */ /* ---------------------------------------------------------- */ oldcol = Q [k1] ; pend = Ap [oldcol+1] ; CLEAR (s) ; for (p = Ap [oldcol] ; p < pend ; p++) { newrow = Pinv [Ai [p]] - k1 ; if (newrow < 0 && poff < nzoff) { /* entry in off-diagonal block */ Offx [poff] = Az [p] ; poff++ ; } else { /* singleton */ s = Az [p] ; } } Udiag [k1] = s ; } else { /* ---------------------------------------------------------- */ /* construct and factor the kth block */ /* ---------------------------------------------------------- */ Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; LU = LUbx [block] ; for (k = 0 ; k < nk ; k++) { /* ------------------------------------------------------ */ /* scatter kth column of the block into workspace X */ /* ------------------------------------------------------ */ oldcol = Q [k+k1] ; pend = Ap [oldcol+1] ; for (p = Ap [oldcol] ; p < pend ; p++) { newrow = Pinv [Ai [p]] - k1 ; if (newrow < 0 && poff < nzoff) { /* entry in off-diagonal block */ Offx [poff] = Az [p] ; poff++ ; } else { /* (newrow,k) is an entry in the block */ X [newrow] = Az [p] ; } } /* ------------------------------------------------------ */ /* compute kth column of U, and update kth column of A */ /* ------------------------------------------------------ */ GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ; for (up = 0 ; up < ulen ; up++) { j = Ui [up] ; ujk = X [j] ; /* X [j] = 0 */ CLEAR (X [j]) ; Ux [up] = ujk ; GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ; for (p = 0 ; p < llen ; p++) { /* X [Li [p]] -= Lx [p] * ujk */ MULT_SUB (X [Li [p]], Lx [p], ujk) ; } } /* get the diagonal entry of U */ ukk = X [k] ; /* X [k] = 0 */ CLEAR (X [k]) ; /* singular case */ if (IS_ZERO (ukk)) { /* matrix is numerically singular */ Common->status = KLU_SINGULAR ; if (Common->numerical_rank == EMPTY) { Common->numerical_rank = k+k1 ; Common->singular_col = Q [k+k1] ; } if (Common->halt_if_singular) { /* do not continue the factorization */ return (FALSE) ; } } Udiag [k+k1] = ukk ; /* gather and divide by pivot to get kth column of L */ GET_POINTER (LU, Lip, Llen, Li, Lx, k, llen) ; for (p = 0 ; p < llen ; p++) { i = Li [p] ; DIV (Lx [p], X [i], ukk) ; CLEAR (X [i]) ; } } } } } else { /* ------------------------------------------------------------------ */ /* scaling */ /* ------------------------------------------------------------------ */ for (block = 0 ; block < nblocks ; block++) { /* -------------------------------------------------------------- */ /* the block is from rows/columns k1 to k2-1 */ /* -------------------------------------------------------------- */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; if (nk == 1) { /* ---------------------------------------------------------- */ /* singleton case */ /* ---------------------------------------------------------- */ oldcol = Q [k1] ; pend = Ap [oldcol+1] ; CLEAR (s) ; for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] - k1 ; if (newrow < 0 && poff < nzoff) { /* entry in off-diagonal block */ /* Offx [poff] = Az [p] / Rs [oldrow] */ SCALE_DIV_ASSIGN (Offx [poff], Az [p], Rs [oldrow]) ; poff++ ; } else { /* singleton */ /* s = Az [p] / Rs [oldrow] */ SCALE_DIV_ASSIGN (s, Az [p], Rs [oldrow]) ; } } Udiag [k1] = s ; } else { /* ---------------------------------------------------------- */ /* construct and factor the kth block */ /* ---------------------------------------------------------- */ Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; LU = LUbx [block] ; for (k = 0 ; k < nk ; k++) { /* ------------------------------------------------------ */ /* scatter kth column of the block into workspace X */ /* ------------------------------------------------------ */ oldcol = Q [k+k1] ; pend = Ap [oldcol+1] ; for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] - k1 ; if (newrow < 0 && poff < nzoff) { /* entry in off-diagonal part */ /* Offx [poff] = Az [p] / Rs [oldrow] */ SCALE_DIV_ASSIGN (Offx [poff], Az [p], Rs [oldrow]); poff++ ; } else { /* (newrow,k) is an entry in the block */ /* X [newrow] = Az [p] / Rs [oldrow] */ SCALE_DIV_ASSIGN (X [newrow], Az [p], Rs [oldrow]) ; } } /* ------------------------------------------------------ */ /* compute kth column of U, and update kth column of A */ /* ------------------------------------------------------ */ GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ; for (up = 0 ; up < ulen ; up++) { j = Ui [up] ; ujk = X [j] ; /* X [j] = 0 */ CLEAR (X [j]) ; Ux [up] = ujk ; GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ; for (p = 0 ; p < llen ; p++) { /* X [Li [p]] -= Lx [p] * ujk */ MULT_SUB (X [Li [p]], Lx [p], ujk) ; } } /* get the diagonal entry of U */ ukk = X [k] ; /* X [k] = 0 */ CLEAR (X [k]) ; /* singular case */ if (IS_ZERO (ukk)) { /* matrix is numerically singular */ Common->status = KLU_SINGULAR ; if (Common->numerical_rank == EMPTY) { Common->numerical_rank = k+k1 ; Common->singular_col = Q [k+k1] ; } if (Common->halt_if_singular) { /* do not continue the factorization */ return (FALSE) ; } } Udiag [k+k1] = ukk ; /* gather and divide by pivot to get kth column of L */ GET_POINTER (LU, Lip, Llen, Li, Lx, k, llen) ; for (p = 0 ; p < llen ; p++) { i = Li [p] ; DIV (Lx [p], X [i], ukk) ; CLEAR (X [i]) ; } } } } } /* ---------------------------------------------------------------------- */ /* permute scale factors Rs according to pivotal row order */ /* ---------------------------------------------------------------------- */ if (scale > 0) { for (k = 0 ; k < n ; k++) { REAL (X [k]) = Rs [Pnum [k]] ; } for (k = 0 ; k < n ; k++) { Rs [k] = REAL (X [k]) ; } } #ifndef NDEBUG ASSERT (Offp [n] == poff) ; ASSERT (Symbolic->nzoff == poff) ; PRINTF (("\n------------------- Off diagonal entries, new:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; if (Common->status == KLU_OK) { PRINTF (("\n ########### KLU_BTF_REFACTOR done, nblocks %d\n",nblocks)); for (block = 0 ; block < nblocks ; block++) { k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (( "\n================KLU_refactor output: k1 %d k2 %d nk %d\n", k1, k2, nk)) ; if (nk == 1) { PRINTF (("singleton ")) ; PRINT_ENTRY (Udiag [k1]) ; } else { Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; LU = (Unit *) Numeric->LUbx [block] ; PRINTF (("\n---- L block %d\n", block)) ; ASSERT (KLU_valid_LU (nk, TRUE, Lip, Llen, LU)) ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; PRINTF (("\n---- U block %d\n", block)) ; ASSERT (KLU_valid_LU (nk, FALSE, Uip, Ulen, LU)) ; } } } #endif return (TRUE) ; } SuiteSparse/KLU/Source/klu_solve.c0000644001170100242450000002202210616200177016007 0ustar davisfac/* ========================================================================== */ /* === KLU_solve ============================================================ */ /* ========================================================================== */ /* Solve Ax=b using the symbolic and numeric objects from KLU_analyze * (or KLU_analyze_given) and KLU_factor. Note that no iterative refinement is * performed. Uses Numeric->Xwork as workspace (undefined on input and output), * of size 4n Entry's (note that columns 2 to 4 of Xwork overlap with * Numeric->Iwork). */ #include "klu_internal.h" Int KLU_solve ( /* inputs, not modified */ KLU_symbolic *Symbolic, KLU_numeric *Numeric, Int d, /* leading dimension of B */ Int nrhs, /* number of right-hand-sides */ /* right-hand-side on input, overwritten with solution to Ax=b on output */ double B [ ], /* size n*nrhs, in column-oriented form, with * leading dimension d. */ /* --------------- */ KLU_common *Common ) { Entry x [4], offik, s ; double rs, *Rs ; Entry *Offx, *X, *Bz, *Udiag ; Int *Q, *R, *Pnum, *Offp, *Offi, *Lip, *Uip, *Llen, *Ulen ; Unit **LUbx ; Int k1, k2, nk, k, block, pend, n, p, nblocks, chunk, nr, i ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } if (Numeric == NULL || Symbolic == NULL || d < Symbolic->n || nrhs < 0 || B == NULL) { Common->status = KLU_INVALID ; return (FALSE) ; } Common->status = KLU_OK ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ Bz = (Entry *) B ; n = Symbolic->n ; nblocks = Symbolic->nblocks ; Q = Symbolic->Q ; R = Symbolic->R ; /* ---------------------------------------------------------------------- */ /* get the contents of the Numeric object */ /* ---------------------------------------------------------------------- */ ASSERT (nblocks == Numeric->nblocks) ; Pnum = Numeric->Pnum ; Offp = Numeric->Offp ; Offi = Numeric->Offi ; Offx = (Entry *) Numeric->Offx ; Lip = Numeric->Lip ; Llen = Numeric->Llen ; Uip = Numeric->Uip ; Ulen = Numeric->Ulen ; LUbx = (Unit **) Numeric->LUbx ; Udiag = Numeric->Udiag ; Rs = Numeric->Rs ; X = (Entry *) Numeric->Xwork ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; /* ---------------------------------------------------------------------- */ /* solve in chunks of 4 columns at a time */ /* ---------------------------------------------------------------------- */ for (chunk = 0 ; chunk < nrhs ; chunk += 4) { /* ------------------------------------------------------------------ */ /* get the size of the current chunk */ /* ------------------------------------------------------------------ */ nr = MIN (nrhs - chunk, 4) ; /* ------------------------------------------------------------------ */ /* scale and permute the right hand side, X = P*(R\B) */ /* ------------------------------------------------------------------ */ if (Rs == NULL) { /* no scaling */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { X [k] = Bz [Pnum [k]] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; X [2*k ] = Bz [i ] ; X [2*k + 1] = Bz [i + d ] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; X [3*k ] = Bz [i ] ; X [3*k + 1] = Bz [i + d ] ; X [3*k + 2] = Bz [i + d*2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; X [4*k ] = Bz [i ] ; X [4*k + 1] = Bz [i + d ] ; X [4*k + 2] = Bz [i + d*2] ; X [4*k + 3] = Bz [i + d*3] ; } break ; } } else { switch (nr) { case 1: for (k = 0 ; k < n ; k++) { SCALE_DIV_ASSIGN (X [k], Bz [Pnum [k]], Rs [k]) ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (X [2*k], Bz [i], rs) ; SCALE_DIV_ASSIGN (X [2*k + 1], Bz [i + d], rs) ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (X [3*k], Bz [i], rs) ; SCALE_DIV_ASSIGN (X [3*k + 1], Bz [i + d], rs) ; SCALE_DIV_ASSIGN (X [3*k + 2], Bz [i + d*2], rs) ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Pnum [k] ; rs = Rs [k] ; SCALE_DIV_ASSIGN (X [4*k], Bz [i], rs) ; SCALE_DIV_ASSIGN (X [4*k + 1], Bz [i + d], rs) ; SCALE_DIV_ASSIGN (X [4*k + 2], Bz [i + d*2], rs) ; SCALE_DIV_ASSIGN (X [4*k + 3], Bz [i + d*3], rs) ; } break ; } } /* ------------------------------------------------------------------ */ /* solve X = (L*U + Off)\X */ /* ------------------------------------------------------------------ */ for (block = nblocks-1 ; block >= 0 ; block--) { /* -------------------------------------------------------------- */ /* the block of size nk is from rows/columns k1 to k2-1 */ /* -------------------------------------------------------------- */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("solve %d, k1 %d k2-1 %d nk %d\n", block, k1,k2-1,nk)) ; /* solve the block system */ if (nk == 1) { s = Udiag [k1] ; switch (nr) { case 1: DIV (X [k1], X [k1], s) ; break ; case 2: DIV (X [2*k1], X [2*k1], s) ; DIV (X [2*k1 + 1], X [2*k1 + 1], s) ; break ; case 3: DIV (X [3*k1], X [3*k1], s) ; DIV (X [3*k1 + 1], X [3*k1 + 1], s) ; DIV (X [3*k1 + 2], X [3*k1 + 2], s) ; break ; case 4: DIV (X [4*k1], X [4*k1], s) ; DIV (X [4*k1 + 1], X [4*k1 + 1], s) ; DIV (X [4*k1 + 2], X [4*k1 + 2], s) ; DIV (X [4*k1 + 3], X [4*k1 + 3], s) ; break ; } } else { KLU_lsolve (nk, Lip + k1, Llen + k1, LUbx [block], nr, X + nr*k1) ; KLU_usolve (nk, Uip + k1, Ulen + k1, LUbx [block], Udiag + k1, nr, X + nr*k1) ; } /* -------------------------------------------------------------- */ /* block back-substitution for the off-diagonal-block entries */ /* -------------------------------------------------------------- */ if (block > 0) { switch (nr) { case 1: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [k] ; for (p = Offp [k] ; p < pend ; p++) { MULT_SUB (X [Offi [p]], Offx [p], x [0]) ; } } break ; case 2: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [2*k ] ; x [1] = X [2*k + 1] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; MULT_SUB (X [2*i], offik, x [0]) ; MULT_SUB (X [2*i + 1], offik, x [1]) ; } } break ; case 3: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [3*k ] ; x [1] = X [3*k + 1] ; x [2] = X [3*k + 2] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; MULT_SUB (X [3*i], offik, x [0]) ; MULT_SUB (X [3*i + 1], offik, x [1]) ; MULT_SUB (X [3*i + 2], offik, x [2]) ; } } break ; case 4: for (k = k1 ; k < k2 ; k++) { pend = Offp [k+1] ; x [0] = X [4*k ] ; x [1] = X [4*k + 1] ; x [2] = X [4*k + 2] ; x [3] = X [4*k + 3] ; for (p = Offp [k] ; p < pend ; p++) { i = Offi [p] ; offik = Offx [p] ; MULT_SUB (X [4*i], offik, x [0]) ; MULT_SUB (X [4*i + 1], offik, x [1]) ; MULT_SUB (X [4*i + 2], offik, x [2]) ; MULT_SUB (X [4*i + 3], offik, x [3]) ; } } break ; } } } /* ------------------------------------------------------------------ */ /* permute the result, Bz = Q*X */ /* ------------------------------------------------------------------ */ switch (nr) { case 1: for (k = 0 ; k < n ; k++) { Bz [Q [k]] = X [k] ; } break ; case 2: for (k = 0 ; k < n ; k++) { i = Q [k] ; Bz [i ] = X [2*k ] ; Bz [i + d ] = X [2*k + 1] ; } break ; case 3: for (k = 0 ; k < n ; k++) { i = Q [k] ; Bz [i ] = X [3*k ] ; Bz [i + d ] = X [3*k + 1] ; Bz [i + d*2] = X [3*k + 2] ; } break ; case 4: for (k = 0 ; k < n ; k++) { i = Q [k] ; Bz [i ] = X [4*k ] ; Bz [i + d ] = X [4*k + 1] ; Bz [i + d*2] = X [4*k + 2] ; Bz [i + d*3] = X [4*k + 3] ; } break ; } /* ------------------------------------------------------------------ */ /* go to the next chunk of B */ /* ------------------------------------------------------------------ */ Bz += d*4 ; } return (TRUE) ; } SuiteSparse/KLU/Source/klu_free_symbolic.c0000644001170100242450000000170710616721454017516 0ustar davisfac/* ========================================================================== */ /* === KLU_free_symbolic ==================================================== */ /* ========================================================================== */ /* Free the KLU Symbolic object. */ #include "klu_internal.h" Int KLU_free_symbolic ( KLU_symbolic **SymbolicHandle, KLU_common *Common ) { KLU_symbolic *Symbolic ; Int n ; if (Common == NULL) { return (FALSE) ; } if (SymbolicHandle == NULL || *SymbolicHandle == NULL) { return (TRUE) ; } Symbolic = *SymbolicHandle ; n = Symbolic->n ; KLU_free (Symbolic->P, n, sizeof (Int), Common) ; KLU_free (Symbolic->Q, n, sizeof (Int), Common) ; KLU_free (Symbolic->R, n+1, sizeof (Int), Common) ; KLU_free (Symbolic->Lnz, n, sizeof (double), Common) ; KLU_free (Symbolic, 1, sizeof (KLU_symbolic), Common) ; *SymbolicHandle = NULL ; return (TRUE) ; } SuiteSparse/KLU/Source/klu_free_numeric.c0000644001170100242450000000361710617236422017336 0ustar davisfac/* ========================================================================== */ /* === KLU_free_numeric ===================================================== */ /* ========================================================================== */ /* Free the KLU Numeric object. */ #include "klu_internal.h" Int KLU_free_numeric ( KLU_numeric **NumericHandle, KLU_common *Common ) { KLU_numeric *Numeric ; Unit **LUbx ; size_t *LUsize ; Int block, n, nzoff, nblocks ; if (Common == NULL) { return (FALSE) ; } if (NumericHandle == NULL || *NumericHandle == NULL) { return (TRUE) ; } Numeric = *NumericHandle ; n = Numeric->n ; nzoff = Numeric->nzoff ; nblocks = Numeric->nblocks ; LUsize = Numeric->LUsize ; LUbx = (Unit **) Numeric->LUbx ; if (LUbx != NULL) { for (block = 0 ; block < nblocks ; block++) { KLU_free (LUbx [block], LUsize ? LUsize [block] : 0, sizeof (Unit), Common) ; } } KLU_free (Numeric->Pnum, n, sizeof (Int), Common) ; KLU_free (Numeric->Offp, n+1, sizeof (Int), Common) ; KLU_free (Numeric->Offi, nzoff+1, sizeof (Int), Common) ; KLU_free (Numeric->Offx, nzoff+1, sizeof (Entry), Common) ; KLU_free (Numeric->Lip, n, sizeof (Int), Common) ; KLU_free (Numeric->Llen, n, sizeof (Int), Common) ; KLU_free (Numeric->Uip, n, sizeof (Int), Common) ; KLU_free (Numeric->Ulen, n, sizeof (Int), Common) ; KLU_free (Numeric->LUsize, nblocks, sizeof (size_t), Common) ; KLU_free (Numeric->LUbx, nblocks, sizeof (Unit *), Common) ; KLU_free (Numeric->Udiag, n, sizeof (Entry), Common) ; KLU_free (Numeric->Rs, n, sizeof (double), Common) ; KLU_free (Numeric->Pinv, n, sizeof (Int), Common) ; KLU_free (Numeric->Work, Numeric->worksize, 1, Common) ; KLU_free (Numeric, 1, sizeof (KLU_numeric), Common) ; *NumericHandle = NULL ; return (TRUE) ; } SuiteSparse/KLU/Source/klu_kernel.c0000644001170100242450000007154610634325116016157 0ustar davisfac/* ========================================================================== */ /* === KLU_kernel =========================================================== */ /* ========================================================================== */ /* Sparse left-looking LU factorization, with partial pivoting. Based on * Gilbert & Peierl's method, with a non-recursive DFS and with Eisenstat & * Liu's symmetric pruning. No user-callable routines are in this file. */ #include "klu_internal.h" /* ========================================================================== */ /* === dfs ================================================================== */ /* ========================================================================== */ /* Does a depth-first-search, starting at node j. */ static Int dfs ( /* input, not modified on output: */ Int j, /* node at which to start the DFS */ Int k, /* mark value, for the Flag array */ Int Pinv [ ], /* Pinv [i] = k if row i is kth pivot row, or EMPTY if * row i is not yet pivotal. */ Int Llen [ ], /* size n, Llen [k] = # nonzeros in column k of L */ Int Lip [ ], /* size n, Lip [k] is position in LU of column k of L */ /* workspace, not defined on input or output */ Int Stack [ ], /* size n */ /* input/output: */ Int Flag [ ], /* Flag [i] == k means i is marked */ Int Lpend [ ], /* for symmetric pruning */ Int top, /* top of stack on input*/ Unit LU [], Int *Lik, /* Li row index array of the kth column */ Int *plength, /* other, not defined on input or output */ Int Ap_pos [ ] /* keeps track of position in adj list during DFS */ ) { Int i, pos, jnew, head, l_length ; Int *Li ; l_length = *plength ; head = 0 ; Stack [0] = j ; ASSERT (Flag [j] != k) ; while (head >= 0) { j = Stack [head] ; jnew = Pinv [j] ; ASSERT (jnew >= 0 && jnew < k) ; /* j is pivotal */ if (Flag [j] != k) /* a node is not yet visited */ { /* first time that j has been visited */ Flag [j] = k ; PRINTF (("[ start dfs at %d : new %d\n", j, jnew)) ; /* set Ap_pos [head] to one past the last entry in col j to scan */ Ap_pos [head] = (Lpend [jnew] == EMPTY) ? Llen [jnew] : Lpend [jnew] ; } /* add the adjacent nodes to the recursive stack by iterating through * until finding another non-visited pivotal node */ Li = (Int *) (LU + Lip [jnew]) ; for (pos = --Ap_pos [head] ; pos >= 0 ; --pos) { i = Li [pos] ; if (Flag [i] != k) { /* node i is not yet visited */ if (Pinv [i] >= 0) { /* keep track of where we left off in the scan of the * adjacency list of node j so we can restart j where we * left off. */ Ap_pos [head] = pos ; /* node i is pivotal; push it onto the recursive stack * and immediately break so we can recurse on node i. */ Stack [++head] = i ; break ; } else { /* node i is not pivotal (no outgoing edges). */ /* Flag as visited and store directly into L, * and continue with current node j. */ Flag [i] = k ; Lik [l_length] = i ; l_length++ ; } } } if (pos == -1) { /* if all adjacent nodes of j are already visited, pop j from * recursive stack and push j onto output stack */ head-- ; Stack[--top] = j ; PRINTF ((" end dfs at %d ] head : %d\n", j, head)) ; } } *plength = l_length ; return (top) ; } /* ========================================================================== */ /* === lsolve_symbolic ====================================================== */ /* ========================================================================== */ /* Finds the pattern of x, for the solution of Lx=b */ static Int lsolve_symbolic ( /* input, not modified on output: */ Int n, /* L is n-by-n, where n >= 0 */ Int k, /* also used as the mark value, for the Flag array */ Int Ap [ ], Int Ai [ ], Int Q [ ], Int Pinv [ ], /* Pinv [i] = k if i is kth pivot row, or EMPTY if row i * is not yet pivotal. */ /* workspace, not defined on input or output */ Int Stack [ ], /* size n */ /* workspace, defined on input and output */ Int Flag [ ], /* size n. Initially, all of Flag [0..n-1] < k. After * lsolve_symbolic is done, Flag [i] == k if i is in * the pattern of the output, and Flag [0..n-1] <= k. */ /* other */ Int Lpend [ ], /* for symmetric pruning */ Int Ap_pos [ ], /* workspace used in dfs */ Unit LU [ ], /* LU factors (pattern and values) */ Int lup, /* pointer to free space in LU */ Int Llen [ ], /* size n, Llen [k] = # nonzeros in column k of L */ Int Lip [ ], /* size n, Lip [k] is position in LU of column k of L */ /* ---- the following are only used in the BTF case --- */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ] /* inverse of P from symbolic factorization */ ) { Int *Lik ; Int i, p, pend, oldcol, kglobal, top, l_length ; top = n ; l_length = 0 ; Lik = (Int *) (LU + lup); /* ---------------------------------------------------------------------- */ /* BTF factorization of A (k1:k2-1, k1:k2-1) */ /* ---------------------------------------------------------------------- */ kglobal = k + k1 ; /* column k of the block is col kglobal of A */ oldcol = Q [kglobal] ; /* Q must be present for BTF case */ pend = Ap [oldcol+1] ; for (p = Ap [oldcol] ; p < pend ; p++) { i = PSinv [Ai [p]] - k1 ; if (i < 0) continue ; /* skip entry outside the block */ /* (i,k) is an entry in the block. start a DFS at node i */ PRINTF (("\n ===== DFS at node %d in b, inew: %d\n", i, Pinv [i])) ; if (Flag [i] != k) { if (Pinv [i] >= 0) { top = dfs (i, k, Pinv, Llen, Lip, Stack, Flag, Lpend, top, LU, Lik, &l_length, Ap_pos) ; } else { /* i is not pivotal, and not flagged. Flag and put in L */ Flag [i] = k ; Lik [l_length] = i ; l_length++; } } } /* If Llen [k] is zero, the matrix is structurally singular */ Llen [k] = l_length ; return (top) ; } /* ========================================================================== */ /* === construct_column ===================================================== */ /* ========================================================================== */ /* Construct the kth column of A, and the off-diagonal part, if requested. * Scatter the numerical values into the workspace X, and construct the * corresponding column of the off-diagonal matrix. */ static void construct_column ( /* inputs, not modified on output */ Int k, /* the column of A (or the column of the block) to get */ Int Ap [ ], Int Ai [ ], Entry Ax [ ], Int Q [ ], /* column pre-ordering */ /* zero on input, modified on output */ Entry X [ ], /* ---- the following are only used in the BTF case --- */ /* inputs, not modified on output */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ], /* inverse of P from symbolic factorization */ double Rs [ ], /* scale factors for A */ Int scale, /* 0: no scaling, nonzero: scale the rows with Rs */ /* inputs, modified on output */ Int Offp [ ], /* off-diagonal matrix (modified by this routine) */ Int Offi [ ], Entry Offx [ ] ) { Entry aik ; Int i, p, pend, oldcol, kglobal, poff, oldrow ; /* ---------------------------------------------------------------------- */ /* Scale and scatter the column into X. */ /* ---------------------------------------------------------------------- */ kglobal = k + k1 ; /* column k of the block is col kglobal of A */ poff = Offp [kglobal] ; /* start of off-diagonal column */ oldcol = Q [kglobal] ; pend = Ap [oldcol+1] ; if (scale <= 0) { /* no scaling */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; i = PSinv [oldrow] - k1 ; aik = Ax [p] ; if (i < 0) { /* this is an entry in the off-diagonal part */ Offi [poff] = oldrow ; Offx [poff] = aik ; poff++ ; } else { /* (i,k) is an entry in the block. scatter into X */ X [i] = aik ; } } } else { /* row scaling */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; i = PSinv [oldrow] - k1 ; aik = Ax [p] ; SCALE_DIV (aik, Rs [oldrow]) ; if (i < 0) { /* this is an entry in the off-diagonal part */ Offi [poff] = oldrow ; Offx [poff] = aik ; poff++ ; } else { /* (i,k) is an entry in the block. scatter into X */ X [i] = aik ; } } } Offp [kglobal+1] = poff ; /* start of the next col of off-diag part */ } /* ========================================================================== */ /* === lsolve_numeric ======================================================= */ /* ========================================================================== */ /* Computes the numerical values of x, for the solution of Lx=b. Note that x * may include explicit zeros if numerical cancelation occurs. L is assumed * to be unit-diagonal, with possibly unsorted columns (but the first entry in * the column must always be the diagonal entry). */ static void lsolve_numeric ( /* input, not modified on output: */ Int Pinv [ ], /* Pinv [i] = k if i is kth pivot row, or EMPTY if row i * is not yet pivotal. */ Unit *LU, /* LU factors (pattern and values) */ Int Stack [ ], /* stack for dfs */ Int Lip [ ], /* size n, Lip [k] is position in LU of column k of L */ Int top, /* top of stack on input */ Int n, /* A is n-by-n */ Int Llen [ ], /* size n, Llen [k] = # nonzeros in column k of L */ /* output, must be zero on input: */ Entry X [ ] /* size n, initially zero. On output, * X [Ui [up1..up-1]] and X [Li [lp1..lp-1]] * contains the solution. */ ) { Entry xj ; Entry *Lx ; Int *Li ; Int p, s, j, jnew, len ; /* solve Lx=b */ for (s = top ; s < n ; s++) { /* forward solve with column j of L */ j = Stack [s] ; jnew = Pinv [j] ; ASSERT (jnew >= 0) ; xj = X [j] ; GET_POINTER (LU, Lip, Llen, Li, Lx, jnew, len) ; ASSERT (Lip [jnew] <= Lip [jnew+1]) ; for (p = 0 ; p < len ; p++) { /*X [Li [p]] -= Lx [p] * xj ; */ MULT_SUB (X [Li [p]], Lx [p], xj) ; } } } /* ========================================================================== */ /* === lpivot =============================================================== */ /* ========================================================================== */ /* Find a pivot via partial pivoting, and scale the column of L. */ static Int lpivot ( Int diagrow, Int *p_pivrow, Entry *p_pivot, double *p_abs_pivot, double tol, Entry X [ ], Unit *LU, /* LU factors (pattern and values) */ Int Lip [ ], Int Llen [ ], Int k, Int n, Int Pinv [ ], /* Pinv [i] = k if row i is kth pivot row, or EMPTY if * row i is not yet pivotal. */ Int *p_firstrow, KLU_common *Common ) { Entry x, pivot, *Lx ; double abs_pivot, xabs ; Int p, i, ppivrow, pdiag, pivrow, *Li, last_row_index, firstrow, len ; pivrow = EMPTY ; if (Llen [k] == 0) { /* matrix is structurally singular */ if (Common->halt_if_singular) { return (FALSE) ; } for (firstrow = *p_firstrow ; firstrow < n ; firstrow++) { PRINTF (("check %d\n", firstrow)) ; if (Pinv [firstrow] < 0) { /* found the lowest-numbered non-pivotal row. Pick it. */ pivrow = firstrow ; PRINTF (("Got pivotal row: %d\n", pivrow)) ; break ; } } ASSERT (pivrow >= 0 && pivrow < n) ; CLEAR (pivot) ; *p_pivrow = pivrow ; *p_pivot = pivot ; *p_abs_pivot = 0 ; *p_firstrow = firstrow ; return (FALSE) ; } pdiag = EMPTY ; ppivrow = EMPTY ; abs_pivot = EMPTY ; i = Llen [k] - 1 ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; last_row_index = Li [i] ; /* decrement the length by 1 */ Llen [k] = i ; GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; /* look in Li [0 ..Llen [k] - 1 ] for a pivot row */ for (p = 0 ; p < len ; p++) { /* gather the entry from X and store in L */ i = Li [p] ; x = X [i] ; CLEAR (X [i]) ; Lx [p] = x ; /* xabs = ABS (x) ; */ ABS (xabs, x) ; /* find the diagonal */ if (i == diagrow) { pdiag = p ; } /* find the partial-pivoting choice */ if (xabs > abs_pivot) { abs_pivot = xabs ; ppivrow = p ; } } /* xabs = ABS (X [last_row_index]) ;*/ ABS (xabs, X [last_row_index]) ; if (xabs > abs_pivot) { abs_pivot = xabs ; ppivrow = EMPTY ; } /* compare the diagonal with the largest entry */ if (last_row_index == diagrow) { if (xabs >= tol * abs_pivot) { abs_pivot = xabs ; ppivrow = EMPTY ; } } else if (pdiag != EMPTY) { /* xabs = ABS (Lx [pdiag]) ;*/ ABS (xabs, Lx [pdiag]) ; if (xabs >= tol * abs_pivot) { /* the diagonal is large enough */ abs_pivot = xabs ; ppivrow = pdiag ; } } if (ppivrow != EMPTY) { pivrow = Li [ppivrow] ; pivot = Lx [ppivrow] ; /* overwrite the ppivrow values with last index values */ Li [ppivrow] = last_row_index ; Lx [ppivrow] = X [last_row_index] ; } else { pivrow = last_row_index ; pivot = X [last_row_index] ; } CLEAR (X [last_row_index]) ; *p_pivrow = pivrow ; *p_pivot = pivot ; *p_abs_pivot = abs_pivot ; ASSERT (pivrow >= 0 && pivrow < n) ; if (IS_ZERO (pivot) && Common->halt_if_singular) { /* numerically singular case */ return (FALSE) ; } /* divide L by the pivot value */ for (p = 0 ; p < Llen [k] ; p++) { /* Lx [p] /= pivot ; */ DIV (Lx [p], Lx [p], pivot) ; } return (TRUE) ; } /* ========================================================================== */ /* === prune ================================================================ */ /* ========================================================================== */ /* Prune the columns of L to reduce work in subsequent depth-first searches */ static void prune ( /* input/output: */ Int Lpend [ ], /* Lpend [j] marks symmetric pruning point for L(:,j) */ /* input: */ Int Pinv [ ], /* Pinv [i] = k if row i is kth pivot row, or EMPTY if * row i is not yet pivotal. */ Int k, /* prune using column k of U */ Int pivrow, /* current pivot row */ /* input/output: */ Unit *LU, /* LU factors (pattern and values) */ /* input */ Int Uip [ ], /* size n, column pointers for U */ Int Lip [ ], /* size n, column pointers for L */ Int Ulen [ ], /* size n, column length of U */ Int Llen [ ] /* size n, column length of L */ ) { Entry x ; Entry *Lx, *Ux ; Int *Li, *Ui ; Int p, i, j, p2, phead, ptail, llen, ulen ; /* check to see if any column of L can be pruned */ GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ; for (p = 0 ; p < ulen ; p++) { j = Ui [p] ; ASSERT (j < k) ; PRINTF (("%d is pruned: %d. Lpend[j] %d Lip[j+1] %d\n", j, Lpend [j] != EMPTY, Lpend [j], Lip [j+1])) ; if (Lpend [j] == EMPTY) { /* scan column j of L for the pivot row */ GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ; for (p2 = 0 ; p2 < llen ; p2++) { if (pivrow == Li [p2]) { /* found it! This column can be pruned */ #ifndef NDEBUG PRINTF (("==== PRUNE: col j %d of L\n", j)) ; { Int p3 ; for (p3 = 0 ; p3 < Llen [j] ; p3++) { PRINTF (("before: %i pivotal: %d\n", Li [p3], Pinv [Li [p3]] >= 0)) ; } } #endif /* partition column j of L. The unit diagonal of L * is not stored in the column of L. */ phead = 0 ; ptail = Llen [j] ; while (phead < ptail) { i = Li [phead] ; if (Pinv [i] >= 0) { /* leave at the head */ phead++ ; } else { /* swap with the tail */ ptail-- ; Li [phead] = Li [ptail] ; Li [ptail] = i ; x = Lx [phead] ; Lx [phead] = Lx [ptail] ; Lx [ptail] = x ; } } /* set Lpend to one past the last entry in the * first part of the column of L. Entries in * Li [0 ... Lpend [j]-1] are the only part of * column j of L that needs to be scanned in the DFS. * Lpend [j] was EMPTY; setting it >= 0 also flags * column j as pruned. */ Lpend [j] = ptail ; #ifndef NDEBUG { Int p3 ; for (p3 = 0 ; p3 < Llen [j] ; p3++) { if (p3 == Lpend [j]) PRINTF (("----\n")) ; PRINTF (("after: %i pivotal: %d\n", Li [p3], Pinv [Li [p3]] >= 0)) ; } } #endif break ; } } } } } /* ========================================================================== */ /* === KLU_kernel =========================================================== */ /* ========================================================================== */ size_t KLU_kernel /* final size of LU on output */ ( /* input, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers for A */ Int Ai [ ], /* size nz = Ap [n], row indices for A */ Entry Ax [ ], /* size nz, values of A */ Int Q [ ], /* size n, optional input permutation */ size_t lusize, /* initial size of LU on input */ /* output, not defined on input */ Int Pinv [ ], /* size n, inverse row permutation, where Pinv [i] = k if * row i is the kth pivot row */ Int P [ ], /* size n, row permutation, where P [k] = i if row i is the * kth pivot row. */ Unit **p_LU, /* LU array, size lusize on input */ Entry Udiag [ ], /* size n, diagonal of U */ Int Llen [ ], /* size n, column length of L */ Int Ulen [ ], /* size n, column length of U */ Int Lip [ ], /* size n, column pointers for L */ Int Uip [ ], /* size n, column pointers for U */ Int *lnz, /* size of L*/ Int *unz, /* size of U*/ /* workspace, not defined on input */ Entry X [ ], /* size n, undefined on input, zero on output */ /* workspace, not defined on input or output */ Int Stack [ ], /* size n */ Int Flag [ ], /* size n */ Int Ap_pos [ ], /* size n */ /* other workspace: */ Int Lpend [ ], /* size n workspace, for pruning only */ /* inputs, not modified on output */ Int k1, /* the block of A is from k1 to k2-1 */ Int PSinv [ ], /* inverse of P from symbolic factorization */ double Rs [ ], /* scale factors for A */ /* inputs, modified on output */ Int Offp [ ], /* off-diagonal matrix (modified by this routine) */ Int Offi [ ], Entry Offx [ ], /* --------------- */ KLU_common *Common ) { Entry pivot ; double abs_pivot, xsize, nunits, tol, memgrow ; Entry *Ux ; Int *Li, *Ui ; Unit *LU ; /* LU factors (pattern and values) */ Int k, p, i, j, pivrow = 0, kbar, diagrow, firstrow, lup, top, scale, len ; size_t newlusize ; #ifndef NDEBUG Entry *Lx ; #endif ASSERT (Common != NULL) ; scale = Common->scale ; tol = Common->tol ; memgrow = Common->memgrow ; *lnz = 0 ; *unz = 0 ; CLEAR (pivot) ; /* ---------------------------------------------------------------------- */ /* get initial Li, Lx, Ui, and Ux */ /* ---------------------------------------------------------------------- */ PRINTF (("input: lusize %d \n", lusize)) ; ASSERT (lusize > 0) ; LU = *p_LU ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ firstrow = 0 ; lup = 0 ; for (k = 0 ; k < n ; k++) { /* X [k] = 0 ; */ CLEAR (X [k]) ; Flag [k] = EMPTY ; Lpend [k] = EMPTY ; /* flag k as not pruned */ } /* ---------------------------------------------------------------------- */ /* mark all rows as non-pivotal and determine initial diagonal mapping */ /* ---------------------------------------------------------------------- */ /* PSinv does the symmetric permutation, so don't do it here */ for (k = 0 ; k < n ; k++) { P [k] = k ; Pinv [k] = FLIP (k) ; /* mark all rows as non-pivotal */ } /* initialize the construction of the off-diagonal matrix */ Offp [0] = 0 ; /* P [k] = row means that UNFLIP (Pinv [row]) = k, and visa versa. * If row is pivotal, then Pinv [row] >= 0. A row is initially "flipped" * (Pinv [k] < EMPTY), and then marked "unflipped" when it becomes * pivotal. */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { PRINTF (("Initial P [%d] = %d\n", k, P [k])) ; } #endif /* ---------------------------------------------------------------------- */ /* factorize */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n ; k++) { PRINTF (("\n\n==================================== k: %d\n", k)) ; /* ------------------------------------------------------------------ */ /* determine if LU factors have grown too big */ /* ------------------------------------------------------------------ */ /* (n - k) entries for L and k entries for U */ nunits = DUNITS (Int, n - k) + DUNITS (Int, k) + DUNITS (Entry, n - k) + DUNITS (Entry, k) ; /* LU can grow by at most 'nunits' entries if the column is dense */ PRINTF (("lup %d lusize %g lup+nunits: %g\n", lup, (double) lusize, lup+nunits)); xsize = ((double) lup) + nunits ; if (xsize > (double) lusize) { /* check here how much to grow */ xsize = (memgrow * ((double) lusize) + 4*n + 1) ; if (INT_OVERFLOW (xsize)) { PRINTF (("Matrix is too large (Int overflow)\n")) ; Common->status = KLU_TOO_LARGE ; return (lusize) ; } newlusize = memgrow * lusize + 2*n + 1 ; /* Future work: retry mechanism in case of malloc failure */ LU = KLU_realloc (newlusize, lusize, sizeof (Unit), LU, Common) ; Common->nrealloc++ ; *p_LU = LU ; if (Common->status == KLU_OUT_OF_MEMORY) { PRINTF (("Matrix is too large (LU)\n")) ; return (lusize) ; } lusize = newlusize ; PRINTF (("inc LU to %d done\n", lusize)) ; } /* ------------------------------------------------------------------ */ /* start the kth column of L and U */ /* ------------------------------------------------------------------ */ Lip [k] = lup ; /* ------------------------------------------------------------------ */ /* compute the nonzero pattern of the kth column of L and U */ /* ------------------------------------------------------------------ */ #ifndef NDEBUG for (i = 0 ; i < n ; i++) { ASSERT (Flag [i] < k) ; /* ASSERT (X [i] == 0) ; */ ASSERT (IS_ZERO (X [i])) ; } #endif top = lsolve_symbolic (n, k, Ap, Ai, Q, Pinv, Stack, Flag, Lpend, Ap_pos, LU, lup, Llen, Lip, k1, PSinv) ; #ifndef NDEBUG PRINTF (("--- in U:\n")) ; for (p = top ; p < n ; p++) { PRINTF (("pattern of X for U: %d : %d pivot row: %d\n", p, Stack [p], Pinv [Stack [p]])) ; ASSERT (Flag [Stack [p]] == k) ; } PRINTF (("--- in L:\n")) ; Li = (Int *) (LU + Lip [k]); for (p = 0 ; p < Llen [k] ; p++) { PRINTF (("pattern of X in L: %d : %d pivot row: %d\n", p, Li [p], Pinv [Li [p]])) ; ASSERT (Flag [Li [p]] == k) ; } p = 0 ; for (i = 0 ; i < n ; i++) { ASSERT (Flag [i] <= k) ; if (Flag [i] == k) p++ ; } #endif /* ------------------------------------------------------------------ */ /* get the column of the matrix to factorize and scatter into X */ /* ------------------------------------------------------------------ */ construct_column (k, Ap, Ai, Ax, Q, X, k1, PSinv, Rs, scale, Offp, Offi, Offx) ; /* ------------------------------------------------------------------ */ /* compute the numerical values of the kth column (s = L \ A (:,k)) */ /* ------------------------------------------------------------------ */ lsolve_numeric (Pinv, LU, Stack, Lip, top, n, Llen, X) ; #ifndef NDEBUG for (p = top ; p < n ; p++) { PRINTF (("X for U %d : ", Stack [p])) ; PRINT_ENTRY (X [Stack [p]]) ; } Li = (Int *) (LU + Lip [k]) ; for (p = 0 ; p < Llen [k] ; p++) { PRINTF (("X for L %d : ", Li [p])) ; PRINT_ENTRY (X [Li [p]]) ; } #endif /* ------------------------------------------------------------------ */ /* partial pivoting with diagonal preference */ /* ------------------------------------------------------------------ */ /* determine what the "diagonal" is */ diagrow = P [k] ; /* might already be pivotal */ PRINTF (("k %d, diagrow = %d, UNFLIP (diagrow) = %d\n", k, diagrow, UNFLIP (diagrow))) ; /* find a pivot and scale the pivot column */ if (!lpivot (diagrow, &pivrow, &pivot, &abs_pivot, tol, X, LU, Lip, Llen, k, n, Pinv, &firstrow, Common)) { /* matrix is structurally or numerically singular */ Common->status = KLU_SINGULAR ; if (Common->numerical_rank == EMPTY) { Common->numerical_rank = k+k1 ; Common->singular_col = Q [k+k1] ; } if (Common->halt_if_singular) { /* do not continue the factorization */ return (lusize) ; } } /* we now have a valid pivot row, even if the column has NaN's or * has no entries on or below the diagonal at all. */ PRINTF (("\nk %d : Pivot row %d : ", k, pivrow)) ; PRINT_ENTRY (pivot) ; ASSERT (pivrow >= 0 && pivrow < n) ; ASSERT (Pinv [pivrow] < 0) ; /* set the Uip pointer */ Uip [k] = Lip [k] + UNITS (Int, Llen [k]) + UNITS (Entry, Llen [k]) ; /* move the lup pointer to the position where indices of U * should be stored */ lup += UNITS (Int, Llen [k]) + UNITS (Entry, Llen [k]) ; Ulen [k] = n - top ; /* extract Stack [top..n-1] to Ui and the values to Ux and clear X */ GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; for (p = top, i = 0 ; p < n ; p++, i++) { j = Stack [p] ; Ui [i] = Pinv [j] ; Ux [i] = X [j] ; CLEAR (X [j]) ; } /* position the lu index at the starting point for next column */ lup += UNITS (Int, Ulen [k]) + UNITS (Entry, Ulen [k]) ; /* U(k,k) = pivot */ Udiag [k] = pivot ; /* ------------------------------------------------------------------ */ /* log the pivot permutation */ /* ------------------------------------------------------------------ */ ASSERT (UNFLIP (Pinv [diagrow]) < n) ; ASSERT (P [UNFLIP (Pinv [diagrow])] == diagrow) ; if (pivrow != diagrow) { /* an off-diagonal pivot has been chosen */ Common->noffdiag++ ; PRINTF ((">>>>>>>>>>>>>>>>> pivrow %d k %d off-diagonal\n", pivrow, k)) ; if (Pinv [diagrow] < 0) { /* the former diagonal row index, diagrow, has not yet been * chosen as a pivot row. Log this diagrow as the "diagonal" * entry in the column kbar for which the chosen pivot row, * pivrow, was originally logged as the "diagonal" */ kbar = FLIP (Pinv [pivrow]) ; P [kbar] = diagrow ; Pinv [diagrow] = FLIP (kbar) ; } } P [k] = pivrow ; Pinv [pivrow] = k ; #ifndef NDEBUG for (i = 0 ; i < n ; i++) { ASSERT (IS_ZERO (X [i])) ;} GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ; for (p = 0 ; p < len ; p++) { PRINTF (("Column %d of U: %d : ", k, Ui [p])) ; PRINT_ENTRY (Ux [p]) ; } GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ; for (p = 0 ; p < len ; p++) { PRINTF (("Column %d of L: %d : ", k, Li [p])) ; PRINT_ENTRY (Lx [p]) ; } #endif /* ------------------------------------------------------------------ */ /* symmetric pruning */ /* ------------------------------------------------------------------ */ prune (Lpend, Pinv, k, pivrow, LU, Uip, Lip, Ulen, Llen) ; *lnz += Llen [k] + 1 ; /* 1 added to lnz for diagonal */ *unz += Ulen [k] + 1 ; /* 1 added to unz for diagonal */ } /* ---------------------------------------------------------------------- */ /* finalize column pointers for L and U, and put L in the pivotal order */ /* ---------------------------------------------------------------------- */ for (p = 0 ; p < n ; p++) { Li = (Int *) (LU + Lip [p]) ; for (i = 0 ; i < Llen [p] ; i++) { Li [i] = Pinv [Li [i]] ; } } #ifndef NDEBUG for (i = 0 ; i < n ; i++) { PRINTF (("P [%d] = %d Pinv [%d] = %d\n", i, P [i], i, Pinv [i])) ; } for (i = 0 ; i < n ; i++) { ASSERT (Pinv [i] >= 0 && Pinv [i] < n) ; ASSERT (P [i] >= 0 && P [i] < n) ; ASSERT (P [Pinv [i]] == i) ; ASSERT (IS_ZERO (X [i])) ; } #endif /* ---------------------------------------------------------------------- */ /* shrink the LU factors to just the required size */ /* ---------------------------------------------------------------------- */ newlusize = lup ; ASSERT ((size_t) newlusize <= lusize) ; /* this cannot fail, since the block is descreasing in size */ LU = KLU_realloc (newlusize, lusize, sizeof (Unit), LU, Common) ; *p_LU = LU ; return (newlusize) ; } SuiteSparse/KLU/Source/klu_memory.c0000644001170100242450000001520310616721573016202 0ustar davisfac/* ========================================================================== */ /* === KLU_memory =========================================================== */ /* ========================================================================== */ /* KLU memory management routines: * * KLU_malloc malloc wrapper * KLU_free free wrapper * KLU_realloc realloc wrapper */ #include "klu_internal.h" /* ========================================================================== */ /* === KLU_add_size_t ======================================================= */ /* ========================================================================== */ /* Safely compute a+b, and check for size_t overflow */ size_t KLU_add_size_t (size_t a, size_t b, Int *ok) { (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ; return ((*ok) ? (a + b) : ((size_t) -1)) ; } /* ========================================================================== */ /* === KLU_mult_size_t ====================================================== */ /* ========================================================================== */ /* Safely compute a*k, where k should be small, and check for size_t overflow */ size_t KLU_mult_size_t (size_t a, size_t k, Int *ok) { size_t i, s = 0 ; for (i = 0 ; i < k ; i++) { s = KLU_add_size_t (s, a, ok) ; } return ((*ok) ? s : ((size_t) -1)) ; } /* ========================================================================== */ /* === KLU_malloc =========================================================== */ /* ========================================================================== */ /* Wrapper around malloc routine (mxMalloc for a mexFunction). Allocates * space of size MAX(1,n)*size, where size is normally a sizeof (...). * * This routine and KLU_realloc do not set Common->status to KLU_OK on success, * so that a sequence of KLU_malloc's or KLU_realloc's can be used. If any of * them fails, the Common->status will hold the most recent error status. * * Usage, for a pointer to Int: * * p = KLU_malloc (n, sizeof (Int), Common) * * Uses a pointer to the malloc routine (or its equivalent) defined in Common. */ void *KLU_malloc /* returns pointer to the newly malloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ KLU_common *Common ) { void *p ; size_t s ; Int ok = TRUE ; if (Common == NULL) { p = NULL ; } else if (size == 0) { /* size must be > 0 */ Common->status = KLU_INVALID ; p = NULL ; } else if (n >= INT_MAX) { /* object is too big to allocate; p[i] where i is an Int will not * be enough. */ Common->status = KLU_TOO_LARGE ; p = NULL ; } else { /* call malloc, or its equivalent */ s = KLU_mult_size_t (MAX (1,n), size, &ok) ; p = ok ? ((Common->malloc_memory) (s)) : NULL ; if (p == NULL) { /* failure: out of memory */ Common->status = KLU_OUT_OF_MEMORY ; } else { Common->memusage += s ; Common->mempeak = MAX (Common->mempeak, Common->memusage) ; } } return (p) ; } /* ========================================================================== */ /* === KLU_free ============================================================= */ /* ========================================================================== */ /* Wrapper around free routine (mxFree for a mexFunction). Returns NULL, * which can be assigned to the pointer being freed, as in: * * p = KLU_free (p, n, sizeof (int), Common) ; */ void *KLU_free /* always returns NULL */ ( /* ---- in/out --- */ void *p, /* block of memory to free */ /* ---- input --- */ size_t n, /* size of block to free, in # of items */ size_t size, /* size of each item */ /* --------------- */ KLU_common *Common ) { size_t s ; Int ok = TRUE ; if (p != NULL && Common != NULL) { /* only free the object if the pointer is not NULL */ /* call free, or its equivalent */ (Common->free_memory) (p) ; s = KLU_mult_size_t (MAX (1,n), size, &ok) ; Common->memusage -= s ; } /* return NULL, and the caller should assign this to p. This avoids * freeing the same pointer twice. */ return (NULL) ; } /* ========================================================================== */ /* === KLU_realloc ========================================================== */ /* ========================================================================== */ /* Wrapper around realloc routine (mxRealloc for a mexFunction). Given a * pointer p to a block allocated by KLU_malloc, it changes the size of the * block pointed to by p to be MAX(1,nnew)*size in size. It may return a * pointer different than p. This should be used as (for a pointer to Int): * * p = KLU_realloc (nnew, nold, sizeof (Int), p, Common) ; * * If p is NULL, this is the same as p = KLU_malloc (...). * A size of nnew=0 is treated as nnew=1. * * If the realloc fails, p is returned unchanged and Common->status is set * to KLU_OUT_OF_MEMORY. If successful, Common->status is not modified, * and p is returned (possibly changed) and pointing to a large block of memory. * * Uses a pointer to the realloc routine (or its equivalent) defined in Common. */ void *KLU_realloc /* returns pointer to reallocated block */ ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated block */ size_t nold, /* old # of items */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to realloc */ /* --------------- */ KLU_common *Common ) { void *pnew ; size_t snew, sold ; Int ok = TRUE ; if (Common == NULL) { p = NULL ; } else if (size == 0) { /* size must be > 0 */ Common->status = KLU_INVALID ; p = NULL ; } else if (p == NULL) { /* A fresh object is being allocated. */ p = KLU_malloc (nnew, size, Common) ; } else if (nnew >= INT_MAX) { /* failure: nnew is too big. Do not change p */ Common->status = KLU_TOO_LARGE ; } else { /* The object exists, and is changing to some other nonzero size. */ /* call realloc, or its equivalent */ snew = KLU_mult_size_t (MAX (1,nnew), size, &ok) ; sold = KLU_mult_size_t (MAX (1,nold), size, &ok) ; pnew = ok ? ((Common->realloc_memory) (p, snew)) : NULL ; if (pnew == NULL) { /* Do not change p, since it still points to allocated memory */ Common->status = KLU_OUT_OF_MEMORY ; } else { /* success: return the new p and change the size of the block */ Common->memusage += (snew - sold) ; Common->mempeak = MAX (Common->mempeak, Common->memusage) ; p = pnew ; } } return (p) ; } SuiteSparse/KLU/Source/klu_defaults.c0000644001170100242450000000362610620445504016477 0ustar davisfac/* ========================================================================== */ /* === KLU_defaults ========================================================= */ /* ========================================================================== */ /* Sets default parameters for KLU */ #include "klu_internal.h" Int KLU_defaults ( KLU_common *Common ) { if (Common == NULL) { return (FALSE) ; } /* parameters */ Common->tol = 0.001 ; /* pivot tolerance for diagonal */ Common->memgrow = 1.2; /* realloc size ratio increase for LU factors */ Common->initmem_amd = 1.2 ; /* init. mem with AMD: c*nnz(L) + n */ Common->initmem = 10 ; /* init. mem otherwise: c*nnz(A) + n */ Common->btf = TRUE ; /* use BTF pre-ordering, or not */ Common->maxwork = 0 ; /* no limit to work done by btf_order */ Common->ordering = 0 ; /* 0: AMD, 1: COLAMD, 2: user-provided P and Q, * 3: user-provided function */ Common->scale = 2 ; /* scale: -1: none, and do not check for errors * in the input matrix in KLU_refactor. * 0: none, but check for errors, * 1: sum, 2: max */ Common->halt_if_singular = TRUE ; /* quick halt if matrix is singular */ /* memory management routines */ Common->malloc_memory = malloc ; Common->calloc_memory = calloc ; Common->free_memory = free ; Common->realloc_memory = realloc ; /* user ordering function and optional argument */ Common->user_order = NULL ; Common->user_data = NULL ; /* statistics */ Common->status = KLU_OK ; Common->nrealloc = 0 ; Common->structural_rank = EMPTY ; Common->numerical_rank = EMPTY ; Common->noffdiag = EMPTY ; Common->flops = EMPTY ; Common->rcond = EMPTY ; Common->condest = EMPTY ; Common->rgrowth = EMPTY ; Common->work = 0 ; /* work done by btf_order */ Common->memusage = 0 ; Common->mempeak = 0 ; return (TRUE) ; } SuiteSparse/KLU/Source/klu_factor.c0000644001170100242450000003766110620333242016147 0ustar davisfac/* ========================================================================== */ /* === KLU_factor =========================================================== */ /* ========================================================================== */ /* Factor the matrix, after ordering and analyzing it with KLU_analyze * or KLU_analyze_given. */ #include "klu_internal.h" /* ========================================================================== */ /* === KLU_factor2 ========================================================== */ /* ========================================================================== */ static void factor2 ( /* inputs, not modified */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ Entry Ax [ ], KLU_symbolic *Symbolic, /* inputs, modified on output: */ KLU_numeric *Numeric, KLU_common *Common ) { double lsize ; double *Lnz, *Rs ; Int *P, *Q, *R, *Pnum, *Offp, *Offi, *Pblock, *Pinv, *Iwork, *Lip, *Uip, *Llen, *Ulen ; Entry *Offx, *X, s, *Udiag ; Unit **LUbx ; Int k1, k2, nk, k, block, oldcol, pend, oldrow, n, lnz, unz, p, newrow, nblocks, poff, nzoff, lnz_block, unz_block, scale, max_lnz_block, max_unz_block ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ n = Symbolic->n ; P = Symbolic->P ; Q = Symbolic->Q ; R = Symbolic->R ; Lnz = Symbolic->Lnz ; nblocks = Symbolic->nblocks ; nzoff = Symbolic->nzoff ; Pnum = Numeric->Pnum ; Offp = Numeric->Offp ; Offi = Numeric->Offi ; Offx = (Entry *) Numeric->Offx ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; Llen = Numeric->Llen ; Ulen = Numeric->Ulen ; LUbx = (Unit **) Numeric->LUbx ; Udiag = Numeric->Udiag ; Rs = Numeric->Rs ; Pinv = Numeric->Pinv ; X = (Entry *) Numeric->Xwork ; /* X is of size n */ Iwork = Numeric->Iwork ; /* 5*maxblock for KLU_factor */ /* 1*maxblock for Pblock */ Pblock = Iwork + 5*((size_t) Symbolic->maxblock) ; Common->nrealloc = 0 ; scale = Common->scale ; max_lnz_block = 1 ; max_unz_block = 1 ; /* compute the inverse of P from symbolic analysis. Will be updated to * become the inverse of the numerical factorization when the factorization * is done, for use in KLU_refactor */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { Pinv [k] = EMPTY ; } #endif for (k = 0 ; k < n ; k++) { ASSERT (P [k] >= 0 && P [k] < n) ; Pinv [P [k]] = k ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) ASSERT (Pinv [k] != EMPTY) ; #endif lnz = 0 ; unz = 0 ; Common->noffdiag = 0 ; Offp [0] = 0 ; /* ---------------------------------------------------------------------- */ /* optionally check input matrix and compute scale factors */ /* ---------------------------------------------------------------------- */ if (scale >= 0) { /* use Pnum as workspace. NOTE: scale factors are not yet permuted * according to the final pivot row ordering, so Rs [oldrow] is the * scale factor for A (oldrow,:), for the user's matrix A. Pnum is * used as workspace in KLU_scale. When the factorization is done, * the scale factors are permuted according to the final pivot row * permutation, so that Rs [k] is the scale factor for the kth row of * A(p,q) where p and q are the final row and column permutations. */ KLU_scale (scale, n, Ap, Ai, (double *) Ax, Rs, Pnum, Common) ; if (Common->status < KLU_OK) { /* matrix is invalid */ return ; } } #ifndef NDEBUG if (scale > 0) { for (k = 0 ; k < n ; k++) PRINTF (("Rs [%d] %g\n", k, Rs [k])) ; } #endif /* ---------------------------------------------------------------------- */ /* factor each block using klu */ /* ---------------------------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { /* ------------------------------------------------------------------ */ /* the block is from rows/columns k1 to k2-1 */ /* ------------------------------------------------------------------ */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("FACTOR BLOCK %d, k1 %d k2-1 %d nk %d\n", block, k1,k2-1,nk)) ; if (nk == 1) { /* -------------------------------------------------------------- */ /* singleton case */ /* -------------------------------------------------------------- */ poff = Offp [k1] ; oldcol = Q [k1] ; pend = Ap [oldcol+1] ; CLEAR (s) ; if (scale <= 0) { /* no scaling */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] ; if (newrow < k1) { Offi [poff] = oldrow ; Offx [poff] = Ax [p] ; poff++ ; } else { ASSERT (newrow == k1) ; PRINTF (("singleton block %d", block)) ; PRINT_ENTRY (Ax [p]) ; s = Ax [p] ; } } } else { /* row scaling. NOTE: scale factors are not yet permuted * according to the pivot row permutation, so Rs [oldrow] is * used below. When the factorization is done, the scale * factors are permuted, so that Rs [newrow] will be used in * klu_solve, klu_tsolve, and klu_rgrowth */ for (p = Ap [oldcol] ; p < pend ; p++) { oldrow = Ai [p] ; newrow = Pinv [oldrow] ; if (newrow < k1) { Offi [poff] = oldrow ; /* Offx [poff] = Ax [p] / Rs [oldrow] ; */ SCALE_DIV_ASSIGN (Offx [poff], Ax [p], Rs [oldrow]) ; poff++ ; } else { ASSERT (newrow == k1) ; PRINTF (("singleton block %d ", block)) ; PRINT_ENTRY (Ax[p]) ; SCALE_DIV_ASSIGN (s, Ax [p], Rs [oldrow]) ; } } } Udiag [k1] = s ; if (IS_ZERO (s)) { /* singular singleton */ Common->status = KLU_SINGULAR ; Common->numerical_rank = k1 ; Common->singular_col = oldcol ; if (Common->halt_if_singular) { return ; } } Offp [k1+1] = poff ; Pnum [k1] = P [k1] ; lnz++ ; unz++ ; } else { /* -------------------------------------------------------------- */ /* construct and factorize the kth block */ /* -------------------------------------------------------------- */ if (Lnz [block] < 0) { /* COLAMD was used - no estimate of fill-in */ /* use 10 times the nnz in A, plus n */ lsize = -(Common->initmem) ; } else { lsize = Common->initmem_amd * Lnz [block] + nk ; } /* allocates 1 arrays: LUbx [block] */ Numeric->LUsize [block] = KLU_kernel_factor (nk, Ap, Ai, Ax, Q, lsize, &LUbx [block], Udiag + k1, Llen + k1, Ulen + k1, Lip + k1, Uip + k1, Pblock, &lnz_block, &unz_block, X, Iwork, k1, Pinv, Rs, Offp, Offi, Offx, Common) ; if (Common->status < KLU_OK || (Common->status == KLU_SINGULAR && Common->halt_if_singular)) { /* out of memory, invalid inputs, or singular */ return ; } PRINTF (("\n----------------------- L %d:\n", block)) ; ASSERT (KLU_valid_LU (nk, TRUE, Lip+k1, Llen+k1, LUbx [block])) ; PRINTF (("\n----------------------- U %d:\n", block)) ; ASSERT (KLU_valid_LU (nk, FALSE, Uip+k1, Ulen+k1, LUbx [block])) ; /* -------------------------------------------------------------- */ /* get statistics */ /* -------------------------------------------------------------- */ lnz += lnz_block ; unz += unz_block ; max_lnz_block = MAX (max_lnz_block, lnz_block) ; max_unz_block = MAX (max_unz_block, unz_block) ; if (Lnz [block] == EMPTY) { /* revise estimate for subsequent factorization */ Lnz [block] = MAX (lnz_block, unz_block) ; } /* -------------------------------------------------------------- */ /* combine the klu row ordering with the symbolic pre-ordering */ /* -------------------------------------------------------------- */ PRINTF (("Pnum, 1-based:\n")) ; for (k = 0 ; k < nk ; k++) { ASSERT (k + k1 < n) ; ASSERT (Pblock [k] + k1 < n) ; Pnum [k + k1] = P [Pblock [k] + k1] ; PRINTF (("Pnum (%d + %d + 1 = %d) = %d + 1 = %d\n", k, k1, k+k1+1, Pnum [k+k1], Pnum [k+k1]+1)) ; } /* the local pivot row permutation Pblock is no longer needed */ } } ASSERT (nzoff == Offp [n]) ; PRINTF (("\n------------------- Off diagonal entries:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; Numeric->lnz = lnz ; Numeric->unz = unz ; Numeric->max_lnz_block = max_lnz_block ; Numeric->max_unz_block = max_unz_block ; /* compute the inverse of Pnum */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { Pinv [k] = EMPTY ; } #endif for (k = 0 ; k < n ; k++) { ASSERT (Pnum [k] >= 0 && Pnum [k] < n) ; Pinv [Pnum [k]] = k ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) ASSERT (Pinv [k] != EMPTY) ; #endif /* permute scale factors Rs according to pivotal row order */ if (scale > 0) { for (k = 0 ; k < n ; k++) { REAL (X [k]) = Rs [Pnum [k]] ; } for (k = 0 ; k < n ; k++) { Rs [k] = REAL (X [k]) ; } } PRINTF (("\n------------------- Off diagonal entries, old:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; /* apply the pivot row permutations to the off-diagonal entries */ for (p = 0 ; p < nzoff ; p++) { ASSERT (Offi [p] >= 0 && Offi [p] < n) ; Offi [p] = Pinv [Offi [p]] ; } PRINTF (("\n------------------- Off diagonal entries, new:\n")) ; ASSERT (KLU_valid (n, Offp, Offi, Offx)) ; #ifndef NDEBUG { PRINTF (("\n ############# KLU_BTF_FACTOR done, nblocks %d\n",nblocks)); Entry ss, *Udiag = Numeric->Udiag ; for (block = 0 ; block < nblocks && Common->status == KLU_OK ; block++) { k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("\n======================KLU_factor output: k1 %d k2 %d nk %d\n",k1,k2,nk)) ; if (nk == 1) { PRINTF (("singleton ")) ; /* ENTRY_PRINT (singleton [block]) ; */ ss = Udiag [k1] ; PRINT_ENTRY (ss) ; } else { Int *Lip, *Uip, *Llen, *Ulen ; Unit *LU ; Lip = Numeric->Lip + k1 ; Llen = Numeric->Llen + k1 ; LU = (Unit *) Numeric->LUbx [block] ; PRINTF (("\n---- L block %d\n", block)); ASSERT (KLU_valid_LU (nk, TRUE, Lip, Llen, LU)) ; Uip = Numeric->Uip + k1 ; Ulen = Numeric->Ulen + k1 ; PRINTF (("\n---- U block %d\n", block)) ; ASSERT (KLU_valid_LU (nk, FALSE, Uip, Ulen, LU)) ; } } } #endif } /* ========================================================================== */ /* === KLU_factor =========================================================== */ /* ========================================================================== */ KLU_numeric *KLU_factor /* returns NULL if error, or a valid KLU_numeric object if successful */ ( /* --- inputs --- */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ double Ax [ ], KLU_symbolic *Symbolic, /* -------------- */ KLU_common *Common ) { Int n, nzoff, nblocks, maxblock, k, ok = TRUE ; Int *R ; KLU_numeric *Numeric ; size_t n1, nzoff1, s, b6, n3 ; if (Common == NULL) { return (NULL) ; } Common->status = KLU_OK ; Common->numerical_rank = EMPTY ; Common->singular_col = EMPTY ; /* ---------------------------------------------------------------------- */ /* get the contents of the Symbolic object */ /* ---------------------------------------------------------------------- */ /* check for a valid Symbolic object */ if (Symbolic == NULL) { Common->status = KLU_INVALID ; return (NULL) ; } n = Symbolic->n ; nzoff = Symbolic->nzoff ; nblocks = Symbolic->nblocks ; maxblock = Symbolic->maxblock ; R = Symbolic->R ; PRINTF (("KLU_factor: n %d nzoff %d nblocks %d maxblock %d\n", n, nzoff, nblocks, maxblock)) ; /* ---------------------------------------------------------------------- */ /* get control parameters and make sure they are in the proper range */ /* ---------------------------------------------------------------------- */ Common->initmem_amd = MAX (1.0, Common->initmem_amd) ; Common->initmem = MAX (1.0, Common->initmem) ; Common->tol = MIN (Common->tol, 1.0) ; Common->tol = MAX (0.0, Common->tol) ; Common->memgrow = MAX (1.0, Common->memgrow) ; /* ---------------------------------------------------------------------- */ /* allocate the Numeric object */ /* ---------------------------------------------------------------------- */ /* this will not cause size_t overflow (already checked by KLU_symbolic) */ n1 = ((size_t) n) + 1 ; nzoff1 = ((size_t) nzoff) + 1 ; Numeric = KLU_malloc (sizeof (KLU_numeric), 1, Common) ; if (Common->status < KLU_OK) { /* out of memory */ Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } Numeric->n = n ; Numeric->nblocks = nblocks ; Numeric->nzoff = nzoff ; Numeric->Pnum = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Offp = KLU_malloc (n1, sizeof (Int), Common) ; Numeric->Offi = KLU_malloc (nzoff1, sizeof (Int), Common) ; Numeric->Offx = KLU_malloc (nzoff1, sizeof (Entry), Common) ; Numeric->Lip = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Uip = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Llen = KLU_malloc (n, sizeof (Int), Common) ; Numeric->Ulen = KLU_malloc (n, sizeof (Int), Common) ; Numeric->LUsize = KLU_malloc (nblocks, sizeof (size_t), Common) ; Numeric->LUbx = KLU_malloc (nblocks, sizeof (Unit *), Common) ; if (Numeric->LUbx != NULL) { for (k = 0 ; k < nblocks ; k++) { Numeric->LUbx [k] = NULL ; } } Numeric->Udiag = KLU_malloc (n, sizeof (Entry), Common) ; if (Common->scale > 0) { Numeric->Rs = KLU_malloc (n, sizeof (double), Common) ; } else { /* no scaling */ Numeric->Rs = NULL ; } Numeric->Pinv = KLU_malloc (n, sizeof (Int), Common) ; /* allocate permanent workspace for factorization and solve. Note that the * solver will use an Xwork of size 4n, whereas the factorization codes use * an Xwork of size n and integer space (Iwork) of size 6n. KLU_condest * uses an Xwork of size 2n. Total size is: * * n*sizeof(Entry) + max (6*maxblock*sizeof(Int), 3*n*sizeof(Entry)) */ s = KLU_mult_size_t (n, sizeof (Entry), &ok) ; n3 = KLU_mult_size_t (n, 3 * sizeof (Entry), &ok) ; b6 = KLU_mult_size_t (maxblock, 6 * sizeof (Int), &ok) ; Numeric->worksize = KLU_add_size_t (s, MAX (n3, b6), &ok) ; Numeric->Work = KLU_malloc (Numeric->worksize, 1, Common) ; Numeric->Xwork = Numeric->Work ; Numeric->Iwork = (Int *) ((Entry *) Numeric->Xwork + n) ; if (!ok || Common->status < KLU_OK) { /* out of memory or problem too large */ Common->status = ok ? KLU_OUT_OF_MEMORY : KLU_TOO_LARGE ; KLU_free_numeric (&Numeric, Common) ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* factorize the blocks */ /* ---------------------------------------------------------------------- */ factor2 (Ap, Ai, (Entry *) Ax, Symbolic, Numeric, Common) ; /* ---------------------------------------------------------------------- */ /* return or free the Numeric object */ /* ---------------------------------------------------------------------- */ if (Common->status < KLU_OK) { /* out of memory or inputs invalid */ KLU_free_numeric (&Numeric, Common) ; } else if (Common->status == KLU_SINGULAR) { if (Common->halt_if_singular) { /* Matrix is singular, and the Numeric object is only partially * defined because we halted early. This is the default case for * a singular matrix. */ KLU_free_numeric (&Numeric, Common) ; } } else if (Common->status == KLU_OK) { /* successful non-singular factorization */ Common->numerical_rank = n ; Common->singular_col = n ; } return (Numeric) ; } SuiteSparse/KLU/Source/klu_analyze_given.c0000644001170100242450000002367410616720575017541 0ustar davisfac/* ========================================================================== */ /* === klu_analyze_given ==================================================== */ /* ========================================================================== */ /* Given an input permutation P and Q, create the Symbolic object. BTF can * be done to modify the user's P and Q (does not perform the max transversal; * just finds the strongly-connected components). */ #include "klu_internal.h" /* ========================================================================== */ /* === klu_alloc_symbolic =================================================== */ /* ========================================================================== */ /* Allocate Symbolic object, and check input matrix. Not user callable. */ KLU_symbolic *KLU_alloc_symbolic ( Int n, Int *Ap, Int *Ai, KLU_common *Common ) { KLU_symbolic *Symbolic ; Int *P, *Q, *R ; double *Lnz ; Int nz, i, j, p, pend ; if (Common == NULL) { return (NULL) ; } Common->status = KLU_OK ; /* A is n-by-n, with n > 0. Ap [0] = 0 and nz = Ap [n] >= 0 required. * Ap [j] <= Ap [j+1] must hold for all j = 0 to n-1. Row indices in Ai * must be in the range 0 to n-1, and no duplicate entries can be present. * The list of row indices in each column of A need not be sorted. */ if (n <= 0 || Ap == NULL || Ai == NULL) { /* Ap and Ai must be present, and n must be > 0 */ Common->status = KLU_INVALID ; return (NULL) ; } nz = Ap [n] ; if (Ap [0] != 0 || nz < 0) { /* nz must be >= 0 and Ap [0] must equal zero */ Common->status = KLU_INVALID ; return (NULL) ; } for (j = 0 ; j < n ; j++) { if (Ap [j] > Ap [j+1]) { /* column pointers must be non-decreasing */ Common->status = KLU_INVALID ; return (NULL) ; } } P = KLU_malloc (n, sizeof (Int), Common) ; if (Common->status < KLU_OK) { /* out of memory */ Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } for (i = 0 ; i < n ; i++) { P [i] = EMPTY ; } for (j = 0 ; j < n ; j++) { pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { i = Ai [p] ; if (i < 0 || i >= n || P [i] == j) { /* row index out of range, or duplicate entry */ KLU_free (P, n, sizeof (Int), Common) ; Common->status = KLU_INVALID ; return (NULL) ; } /* flag row i as appearing in column j */ P [i] = j ; } } /* ---------------------------------------------------------------------- */ /* allocate the Symbolic object */ /* ---------------------------------------------------------------------- */ Symbolic = KLU_malloc (sizeof (KLU_symbolic), 1, Common) ; if (Common->status < KLU_OK) { /* out of memory */ KLU_free (P, n, sizeof (Int), Common) ; Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } Q = KLU_malloc (n, sizeof (Int), Common) ; R = KLU_malloc (n+1, sizeof (Int), Common) ; Lnz = KLU_malloc (n, sizeof (double), Common) ; Symbolic->n = n ; Symbolic->nz = nz ; Symbolic->P = P ; Symbolic->Q = Q ; Symbolic->R = R ; Symbolic->Lnz = Lnz ; if (Common->status < KLU_OK) { /* out of memory */ KLU_free_symbolic (&Symbolic, Common) ; Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } return (Symbolic) ; } /* ========================================================================== */ /* === KLU_analyze_given ==================================================== */ /* ========================================================================== */ KLU_symbolic *KLU_analyze_given /* returns NULL if error, or a valid KLU_symbolic object if successful */ ( /* inputs, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ Int Puser [ ], /* size n, user's row permutation (may be NULL) */ Int Quser [ ], /* size n, user's column permutation (may be NULL) */ /* -------------------- */ KLU_common *Common ) { KLU_symbolic *Symbolic ; double *Lnz ; Int nblocks, nz, block, maxblock, *P, *Q, *R, nzoff, p, pend, do_btf, k ; /* ---------------------------------------------------------------------- */ /* determine if input matrix is valid, and get # of nonzeros */ /* ---------------------------------------------------------------------- */ Symbolic = KLU_alloc_symbolic (n, Ap, Ai, Common) ; if (Symbolic == NULL) { return (NULL) ; } P = Symbolic->P ; Q = Symbolic->Q ; R = Symbolic->R ; Lnz = Symbolic->Lnz ; nz = Symbolic->nz ; /* ---------------------------------------------------------------------- */ /* Q = Quser, or identity if Quser is NULL */ /* ---------------------------------------------------------------------- */ if (Quser == (Int *) NULL) { for (k = 0 ; k < n ; k++) { Q [k] = k ; } } else { for (k = 0 ; k < n ; k++) { Q [k] = Quser [k] ; } } /* ---------------------------------------------------------------------- */ /* get the control parameters for BTF and ordering method */ /* ---------------------------------------------------------------------- */ do_btf = Common->btf ; do_btf = (do_btf) ? TRUE : FALSE ; Symbolic->ordering = 2 ; Symbolic->do_btf = do_btf ; /* ---------------------------------------------------------------------- */ /* find the block triangular form, if requested */ /* ---------------------------------------------------------------------- */ if (do_btf) { /* ------------------------------------------------------------------ */ /* get workspace for BTF_strongcomp */ /* ------------------------------------------------------------------ */ Int *Pinv, *Work, *Bi, k1, k2, nk, oldcol ; Work = KLU_malloc (4*n, sizeof (Int), Common) ; Pinv = KLU_malloc (n, sizeof (Int), Common) ; if (Puser != (Int *) NULL) { Bi = KLU_malloc (nz+1, sizeof (Int), Common) ; } else { Bi = Ai ; } if (Common->status < KLU_OK) { /* out of memory */ KLU_free (Work, 4*n, sizeof (Int), Common) ; KLU_free (Pinv, n, sizeof (Int), Common) ; if (Puser != (Int *) NULL) { KLU_free (Bi, nz+1, sizeof (Int), Common) ; } KLU_free_symbolic (&Symbolic, Common) ; Common->status = KLU_OUT_OF_MEMORY ; return (NULL) ; } /* ------------------------------------------------------------------ */ /* B = Puser * A */ /* ------------------------------------------------------------------ */ if (Puser != (Int *) NULL) { for (k = 0 ; k < n ; k++) { Pinv [Puser [k]] = k ; } for (p = 0 ; p < nz ; p++) { Bi [p] = Pinv [Ai [p]] ; } } /* ------------------------------------------------------------------ */ /* find the strongly-connected components */ /* ------------------------------------------------------------------ */ /* modifies Q, and determines P and R */ nblocks = BTF_strongcomp (n, Ap, Bi, Q, P, R, Work) ; /* ------------------------------------------------------------------ */ /* P = P * Puser */ /* ------------------------------------------------------------------ */ if (Puser != (Int *) NULL) { for (k = 0 ; k < n ; k++) { Work [k] = Puser [P [k]] ; } for (k = 0 ; k < n ; k++) { P [k] = Work [k] ; } } /* ------------------------------------------------------------------ */ /* Pinv = inverse of P */ /* ------------------------------------------------------------------ */ for (k = 0 ; k < n ; k++) { Pinv [P [k]] = k ; } /* ------------------------------------------------------------------ */ /* analyze each block */ /* ------------------------------------------------------------------ */ nzoff = 0 ; /* nz in off-diagonal part */ maxblock = 1 ; /* size of the largest block */ for (block = 0 ; block < nblocks ; block++) { /* -------------------------------------------------------------- */ /* the block is from rows/columns k1 to k2-1 */ /* -------------------------------------------------------------- */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("BLOCK %d, k1 %d k2-1 %d nk %d\n", block, k1, k2-1, nk)) ; maxblock = MAX (maxblock, nk) ; /* -------------------------------------------------------------- */ /* scan the kth block, C */ /* -------------------------------------------------------------- */ for (k = k1 ; k < k2 ; k++) { oldcol = Q [k] ; pend = Ap [oldcol+1] ; for (p = Ap [oldcol] ; p < pend ; p++) { if (Pinv [Ai [p]] < k1) { nzoff++ ; } } } /* fill-in not estimated */ Lnz [block] = EMPTY ; } /* ------------------------------------------------------------------ */ /* free all workspace */ /* ------------------------------------------------------------------ */ KLU_free (Work, 4*n, sizeof (Int), Common) ; KLU_free (Pinv, n, sizeof (Int), Common) ; if (Puser != (Int *) NULL) { KLU_free (Bi, nz+1, sizeof (Int), Common) ; } } else { /* ------------------------------------------------------------------ */ /* BTF not requested */ /* ------------------------------------------------------------------ */ nzoff = 0 ; nblocks = 1 ; maxblock = n ; R [0] = 0 ; R [1] = n ; Lnz [0] = EMPTY ; /* ------------------------------------------------------------------ */ /* P = Puser, or identity if Puser is NULL */ /* ------------------------------------------------------------------ */ for (k = 0 ; k < n ; k++) { P [k] = (Puser == NULL) ? k : Puser [k] ; } } /* ---------------------------------------------------------------------- */ /* return the symbolic object */ /* ---------------------------------------------------------------------- */ Symbolic->nblocks = nblocks ; Symbolic->maxblock = maxblock ; Symbolic->lnz = EMPTY ; Symbolic->unz = EMPTY ; Symbolic->nzoff = nzoff ; return (Symbolic) ; } SuiteSparse/KLU/Source/klu_dump.c0000644001170100242450000000746510616177425015653 0ustar davisfac/* ========================================================================== */ /* === KLU_dump ============================================================= */ /* ========================================================================== */ /* Debug routines for klu. Only used when NDEBUG is not defined at * compile-time. */ #include "klu_internal.h" #ifndef NDEBUG /* ========================================================================== */ /* === KLU_valid ============================================================ */ /* ========================================================================== */ /* Check if a column-form matrix is valid or not. The matrix A is * n-by-n. The row indices of entries in column j are in * Ai [Ap [j] ... Ap [j+1]-1]. Required conditions are: * * n >= 0 * nz = Ap [n_col] >= 0 number of entries in the matrix * Ap [0] == 0 * Ap [j] <= Ap [j+1] for all j in the range 0 to n_col. * row indices in Ai [Ap [j] ... Ap [j+1]-1] * must be in the range 0 to n_row-1, * and no duplicate entries can exist (duplicates not checked here). * * Not user-callable. Only used when debugging. */ Int KLU_valid (Int n, Int Ap [ ], Int Ai [ ], Entry Ax [ ]) { Int nz, j, p1, p2, i, p ; PRINTF (("\ncolumn oriented matrix, n = %d\n", n)) ; if (n <= 0) { PRINTF (("n must be >= 0: %d\n", n)) ; return (FALSE) ; } nz = Ap [n] ; if (Ap [0] != 0 || nz < 0) { /* column pointers must start at Ap [0] = 0, and Ap [n] must be >= 0 */ PRINTF (("column 0 pointer bad or nz < 0\n")) ; return (FALSE) ; } for (j = 0 ; j < n ; j++) { p1 = Ap [j] ; p2 = Ap [j+1] ; PRINTF (("\nColumn: %d p1: %d p2: %d\n", j, p1, p2)) ; if (p1 > p2) { /* column pointers must be ascending */ PRINTF (("column %d pointer bad\n", j)) ; return (FALSE) ; } for (p = p1 ; p < p2 ; p++) { i = Ai [p] ; PRINTF (("row: %d", i)) ; if (i < 0 || i >= n) { /* row index out of range */ PRINTF (("index out of range, col %d row %d\n", j, i)) ; return (FALSE) ; } if (Ax != (Entry *) NULL) { PRINT_ENTRY (Ax [p]) ; } PRINTF (("\n")) ; } } return (TRUE) ; } /* ========================================================================== */ /* === KLU_valid_LU ========================================================= */ /* ========================================================================== */ /* This function does the same validity tests as KLU_valid but for the * LU factor storage format. The flag flag_test_start_ptr is used to * test if Xip [0] = 0. This is not applicable for U. So when calling this * function for U, the flag should be set to false. Only used when debugging. */ Int KLU_valid_LU (Int n, Int flag_test_start_ptr, Int Xip [ ], Int Xlen [ ], Unit LU [ ]) { Int *Xi ; Entry *Xx ; Int j, p1, p2, i, p, len ; PRINTF (("\ncolumn oriented matrix, n = %d\n", n)) ; if (n <= 0) { PRINTF (("n must be >= 0: %d\n", n)) ; return (FALSE) ; } if (flag_test_start_ptr && Xip [0] != 0) { /* column pointers must start at Xip [0] = 0*/ PRINTF (("column 0 pointer bad\n")) ; return (FALSE) ; } for (j = 0 ; j < n ; j++) { p1 = Xip [j] ; p2 = Xip [j+1] ; PRINTF (("\nColumn: %d p1: %d p2: %d\n", j, p1, p2)) ; if (p1 > p2) { /* column pointers must be ascending */ PRINTF (("column %d pointer bad\n", j)) ; return (FALSE) ; } GET_POINTER (LU, Xip, Xlen, Xi, Xx, j, len) ; for (p = 0 ; p < len ; p++) { i = Xi [p] ; PRINTF (("row: %d", i)) ; if (i < 0 || i >= n) { /* row index out of range */ PRINTF (("index out of range, col %d row %d\n", j, i)) ; return (FALSE) ; } if (Xx != (Entry *) NULL) { PRINT_ENTRY (Xx [p]) ; } PRINTF (("\n")) ; } } return (TRUE) ; } #endif SuiteSparse/KLU/Source/klu_analyze.c0000644001170100242450000003545310616723523016343 0ustar davisfac/* ========================================================================== */ /* === klu_analyze ========================================================== */ /* ========================================================================== */ /* Order the matrix using BTF (or not), and then AMD, COLAMD, the natural * ordering, or the user-provided-function on the blocks. Does not support * using a given ordering (use klu_analyze_given for that case). */ #include "klu_internal.h" /* ========================================================================== */ /* === analyze_worker ======================================================= */ /* ========================================================================== */ static Int analyze_worker /* returns KLU_OK or < 0 if error */ ( /* inputs, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ Int nblocks, /* # of blocks */ Int Pbtf [ ], /* BTF row permutation */ Int Qbtf [ ], /* BTF col permutation */ Int R [ ], /* size n+1, but only Rbtf [0..nblocks] is used */ Int ordering, /* what ordering to use (0, 1, or 3 for this routine) */ /* output only, not defined on input */ Int P [ ], /* size n */ Int Q [ ], /* size n */ double Lnz [ ], /* size n, but only Lnz [0..nblocks-1] is used */ /* workspace, not defined on input or output */ Int Pblk [ ], /* size maxblock */ Int Cp [ ], /* size maxblock+1 */ Int Ci [ ], /* size MAX (nz+1, Cilen) */ Int Cilen, /* nz+1, or COLAMD_recommend(nz,n,n) for COLAMD */ Int Pinv [ ], /* size maxblock */ /* input/output */ KLU_symbolic *Symbolic, KLU_common *Common ) { double amd_Info [AMD_INFO], lnz, lnz1, flops, flops1 ; Int k1, k2, nk, k, block, oldcol, pend, newcol, result, pc, p, newrow, maxnz, nzoff, cstats [COLAMD_STATS], ok, err = KLU_INVALID ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ /* compute the inverse of Pbtf */ #ifndef NDEBUG for (k = 0 ; k < n ; k++) { P [k] = EMPTY ; Q [k] = EMPTY ; Pinv [k] = EMPTY ; } #endif for (k = 0 ; k < n ; k++) { ASSERT (Pbtf [k] >= 0 && Pbtf [k] < n) ; Pinv [Pbtf [k]] = k ; } #ifndef NDEBUG for (k = 0 ; k < n ; k++) ASSERT (Pinv [k] != EMPTY) ; #endif nzoff = 0 ; lnz = 0 ; maxnz = 0 ; flops = 0 ; Symbolic->symmetry = EMPTY ; /* only computed by AMD */ /* ---------------------------------------------------------------------- */ /* order each block */ /* ---------------------------------------------------------------------- */ for (block = 0 ; block < nblocks ; block++) { /* ------------------------------------------------------------------ */ /* the block is from rows/columns k1 to k2-1 */ /* ------------------------------------------------------------------ */ k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("BLOCK %d, k1 %d k2-1 %d nk %d\n", block, k1, k2-1, nk)) ; /* ------------------------------------------------------------------ */ /* construct the kth block, C */ /* ------------------------------------------------------------------ */ Lnz [block] = EMPTY ; pc = 0 ; for (k = k1 ; k < k2 ; k++) { newcol = k-k1 ; Cp [newcol] = pc ; oldcol = Qbtf [k] ; pend = Ap [oldcol+1] ; for (p = Ap [oldcol] ; p < pend ; p++) { newrow = Pinv [Ai [p]] ; if (newrow < k1) { nzoff++ ; } else { /* (newrow,newcol) is an entry in the block */ ASSERT (newrow < k2) ; newrow -= k1 ; Ci [pc++] = newrow ; } } } Cp [nk] = pc ; maxnz = MAX (maxnz, pc) ; ASSERT (KLU_valid (nk, Cp, Ci, NULL)) ; /* ------------------------------------------------------------------ */ /* order the block C */ /* ------------------------------------------------------------------ */ if (nk <= 3) { /* -------------------------------------------------------------- */ /* use natural ordering for tiny blocks (3-by-3 or less) */ /* -------------------------------------------------------------- */ for (k = 0 ; k < nk ; k++) { Pblk [k] = k ; } lnz1 = nk * (nk + 1) / 2 ; flops1 = nk * (nk - 1) / 2 + (nk-1)*nk*(2*nk-1) / 6 ; ok = TRUE ; } else if (ordering == 0) { /* -------------------------------------------------------------- */ /* order the block with AMD (C+C') */ /* -------------------------------------------------------------- */ result = AMD_order (nk, Cp, Ci, Pblk, NULL, amd_Info) ; ok = (result >= AMD_OK) ; if (result == AMD_OUT_OF_MEMORY) { err = KLU_OUT_OF_MEMORY ; } /* account for memory usage in AMD */ Common->mempeak = MAX (Common->mempeak, Common->memusage + amd_Info [AMD_MEMORY]) ; /* get the ordering statistics from AMD */ lnz1 = (Int) (amd_Info [AMD_LNZ]) + nk ; flops1 = 2 * amd_Info [AMD_NMULTSUBS_LU] + amd_Info [AMD_NDIV] ; if (pc == maxnz) { /* get the symmetry of the biggest block */ Symbolic->symmetry = amd_Info [AMD_SYMMETRY] ; } } else if (ordering == 1) { /* -------------------------------------------------------------- */ /* order the block with COLAMD (C) */ /* -------------------------------------------------------------- */ /* order (and destroy) Ci, returning column permutation in Cp. * COLAMD "cannot" fail since the matrix has already been checked, * and Ci allocated. */ ok = COLAMD (nk, nk, Cilen, Ci, Cp, NULL, cstats) ; lnz1 = EMPTY ; flops1 = EMPTY ; /* copy the permutation from Cp to Pblk */ for (k = 0 ; k < nk ; k++) { Pblk [k] = Cp [k] ; } } else { /* -------------------------------------------------------------- */ /* pass the block to the user-provided ordering function */ /* -------------------------------------------------------------- */ lnz1 = (Common->user_order) (nk, Cp, Ci, Pblk, Common) ; flops1 = EMPTY ; ok = (lnz1 != 0) ; } if (!ok) { return (err) ; /* ordering method failed */ } /* ------------------------------------------------------------------ */ /* keep track of nnz(L) and flops statistics */ /* ------------------------------------------------------------------ */ Lnz [block] = lnz1 ; lnz = (lnz == EMPTY || lnz1 == EMPTY) ? EMPTY : (lnz + lnz1) ; flops = (flops == EMPTY || flops1 == EMPTY) ? EMPTY : (flops + flops1) ; /* ------------------------------------------------------------------ */ /* combine the preordering with the BTF ordering */ /* ------------------------------------------------------------------ */ PRINTF (("Pblk, 1-based:\n")) ; for (k = 0 ; k < nk ; k++) { ASSERT (k + k1 < n) ; ASSERT (Pblk [k] + k1 < n) ; Q [k + k1] = Qbtf [Pblk [k] + k1] ; } for (k = 0 ; k < nk ; k++) { ASSERT (k + k1 < n) ; ASSERT (Pblk [k] + k1 < n) ; P [k + k1] = Pbtf [Pblk [k] + k1] ; } } PRINTF (("nzoff %d Ap[n] %d\n", nzoff, Ap [n])) ; ASSERT (nzoff >= 0 && nzoff <= Ap [n]) ; /* return estimates of # of nonzeros in L including diagonal */ Symbolic->lnz = lnz ; /* EMPTY if COLAMD used */ Symbolic->unz = lnz ; Symbolic->nzoff = nzoff ; Symbolic->est_flops = flops ; /* EMPTY if COLAMD or user-ordering used */ return (KLU_OK) ; } /* ========================================================================== */ /* === order_and_analyze ==================================================== */ /* ========================================================================== */ /* Orders the matrix with or with BTF, then orders each block with AMD, COLAMD, * or the user ordering function. Does not handle the natural or given * ordering cases. */ static KLU_symbolic *order_and_analyze /* returns NULL if error, or a valid KLU_symbolic object if successful */ ( /* inputs, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ /* --------------------- */ KLU_common *Common ) { double work ; KLU_symbolic *Symbolic ; double *Lnz ; Int *Qbtf, *Cp, *Ci, *Pinv, *Pblk, *Pbtf, *P, *Q, *R ; Int nblocks, nz, block, maxblock, k1, k2, nk, do_btf, ordering, k, Cilen, *Work ; /* ---------------------------------------------------------------------- */ /* allocate the Symbolic object, and check input matrix */ /* ---------------------------------------------------------------------- */ Symbolic = KLU_alloc_symbolic (n, Ap, Ai, Common) ; if (Symbolic == NULL) { return (NULL) ; } P = Symbolic->P ; Q = Symbolic->Q ; R = Symbolic->R ; Lnz = Symbolic->Lnz ; nz = Symbolic->nz ; ordering = Common->ordering ; if (ordering == 1) { /* COLAMD */ Cilen = COLAMD_recommended (nz, n, n) ; } else if (ordering == 0 || (ordering == 3 && Common->user_order != NULL)) { /* AMD or user ordering function */ Cilen = nz+1 ; } else { /* invalid ordering */ Common->status = KLU_INVALID ; KLU_free_symbolic (&Symbolic, Common) ; return (NULL) ; } /* AMD memory management routines */ amd_malloc = Common->malloc_memory ; amd_free = Common->free_memory ; amd_calloc = Common->calloc_memory ; amd_realloc = Common->realloc_memory ; /* ---------------------------------------------------------------------- */ /* allocate workspace for BTF permutation */ /* ---------------------------------------------------------------------- */ Pbtf = KLU_malloc (n, sizeof (Int), Common) ; Qbtf = KLU_malloc (n, sizeof (Int), Common) ; if (Common->status < KLU_OK) { KLU_free (Pbtf, n, sizeof (Int), Common) ; KLU_free (Qbtf, n, sizeof (Int), Common) ; KLU_free_symbolic (&Symbolic, Common) ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* get the common parameters for BTF and ordering method */ /* ---------------------------------------------------------------------- */ do_btf = Common->btf ; do_btf = (do_btf) ? TRUE : FALSE ; Symbolic->ordering = ordering ; Symbolic->do_btf = do_btf ; Symbolic->structural_rank = EMPTY ; /* ---------------------------------------------------------------------- */ /* find the block triangular form (if requested) */ /* ---------------------------------------------------------------------- */ Common->work = 0 ; if (do_btf) { Work = KLU_malloc (5*n, sizeof (Int), Common) ; if (Common->status < KLU_OK) { /* out of memory */ KLU_free (Pbtf, n, sizeof (Int), Common) ; KLU_free (Qbtf, n, sizeof (Int), Common) ; KLU_free_symbolic (&Symbolic, Common) ; return (NULL) ; } nblocks = BTF_order (n, Ap, Ai, Common->maxwork, &work, Pbtf, Qbtf, R, &(Symbolic->structural_rank), Work) ; Common->structural_rank = Symbolic->structural_rank ; Common->work += work ; KLU_free (Work, 5*n, sizeof (Int), Common) ; /* unflip Qbtf if the matrix does not have full structural rank */ if (Symbolic->structural_rank < n) { for (k = 0 ; k < n ; k++) { Qbtf [k] = BTF_UNFLIP (Qbtf [k]) ; } } /* find the size of the largest block */ maxblock = 1 ; for (block = 0 ; block < nblocks ; block++) { k1 = R [block] ; k2 = R [block+1] ; nk = k2 - k1 ; PRINTF (("block %d size %d\n", block, nk)) ; maxblock = MAX (maxblock, nk) ; } } else { /* BTF not requested */ nblocks = 1 ; maxblock = n ; R [0] = 0 ; R [1] = n ; for (k = 0 ; k < n ; k++) { Pbtf [k] = k ; Qbtf [k] = k ; } } Symbolic->nblocks = nblocks ; PRINTF (("maxblock size %d\n", maxblock)) ; Symbolic->maxblock = maxblock ; /* ---------------------------------------------------------------------- */ /* allocate more workspace, for analyze_worker */ /* ---------------------------------------------------------------------- */ Pblk = KLU_malloc (maxblock, sizeof (Int), Common) ; Cp = KLU_malloc (maxblock + 1, sizeof (Int), Common) ; Ci = KLU_malloc (MAX (Cilen, nz+1), sizeof (Int), Common) ; Pinv = KLU_malloc (n, sizeof (Int), Common) ; /* ---------------------------------------------------------------------- */ /* order each block of the BTF ordering, and a fill-reducing ordering */ /* ---------------------------------------------------------------------- */ if (Common->status == KLU_OK) { PRINTF (("calling analyze_worker\n")) ; Common->status = analyze_worker (n, Ap, Ai, nblocks, Pbtf, Qbtf, R, ordering, P, Q, Lnz, Pblk, Cp, Ci, Cilen, Pinv, Symbolic, Common) ; PRINTF (("analyze_worker done\n")) ; } /* ---------------------------------------------------------------------- */ /* free all workspace */ /* ---------------------------------------------------------------------- */ KLU_free (Pblk, maxblock, sizeof (Int), Common) ; KLU_free (Cp, maxblock+1, sizeof (Int), Common) ; KLU_free (Ci, MAX (Cilen, nz+1), sizeof (Int), Common) ; KLU_free (Pinv, n, sizeof (Int), Common) ; KLU_free (Pbtf, n, sizeof (Int), Common) ; KLU_free (Qbtf, n, sizeof (Int), Common) ; /* ---------------------------------------------------------------------- */ /* return the symbolic object */ /* ---------------------------------------------------------------------- */ if (Common->status < KLU_OK) { KLU_free_symbolic (&Symbolic, Common) ; } return (Symbolic) ; } /* ========================================================================== */ /* === KLU_analyze ========================================================== */ /* ========================================================================== */ KLU_symbolic *KLU_analyze /* returns NULL if error, or a valid KLU_symbolic object if successful */ ( /* inputs, not modified */ Int n, /* A is n-by-n */ Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ /* -------------------- */ KLU_common *Common ) { /* ---------------------------------------------------------------------- */ /* get the control parameters for BTF and ordering method */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (NULL) ; } Common->status = KLU_OK ; Common->structural_rank = EMPTY ; /* ---------------------------------------------------------------------- */ /* order and analyze */ /* ---------------------------------------------------------------------- */ if (Common->ordering == 2) { /* natural ordering */ return (KLU_analyze_given (n, Ap, Ai, NULL, NULL, Common)) ; } else { /* order with P and Q */ return (order_and_analyze (n, Ap, Ai, Common)) ; } } SuiteSparse/KLU/Source/klu_scale.c0000644001170100242450000000755310616200156015757 0ustar davisfac/* ========================================================================== */ /* === KLU_scale ============================================================ */ /* ========================================================================== */ /* Scale a matrix and check to see if it is valid. Can be called by the user. * This is called by KLU_factor and KLU_refactor. Returns TRUE if the input * matrix is valid, FALSE otherwise. If the W input argument is non-NULL, * then the input matrix is checked for duplicate entries. * * scaling methods: * <0: no scaling, do not compute Rs, and do not check input matrix. * 0: no scaling * 1: the scale factor for row i is sum (abs (A (i,:))) * 2 or more: the scale factor for row i is max (abs (A (i,:))) */ #include "klu_internal.h" Int KLU_scale /* return TRUE if successful, FALSE otherwise */ ( /* inputs, not modified */ Int scale, /* 0: none, 1: sum, 2: max */ Int n, Int Ap [ ], /* size n+1, column pointers */ Int Ai [ ], /* size nz, row indices */ double Ax [ ], /* outputs, not defined on input */ double Rs [ ], /* size n, can be NULL if scale <= 0 */ /* workspace, not defined on input or output */ Int W [ ], /* size n, can be NULL */ /* --------------- */ KLU_common *Common ) { double a ; Entry *Az ; Int row, col, p, pend, check_duplicates ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (Common == NULL) { return (FALSE) ; } Common->status = KLU_OK ; if (scale < 0) { /* return without checking anything and without computing the * scale factors */ return (TRUE) ; } Az = (Entry *) Ax ; if (n <= 0 || Ap == NULL || Ai == NULL || Az == NULL || (scale > 0 && Rs == NULL)) { /* Ap, Ai, Ax and Rs must be present, and n must be > 0 */ Common->status = KLU_INVALID ; return (FALSE) ; } if (Ap [0] != 0 || Ap [n] < 0) { /* nz = Ap [n] must be >= 0 and Ap [0] must equal zero */ Common->status = KLU_INVALID ; return (FALSE) ; } for (col = 0 ; col < n ; col++) { if (Ap [col] > Ap [col+1]) { /* column pointers must be non-decreasing */ Common->status = KLU_INVALID ; return (FALSE) ; } } /* ---------------------------------------------------------------------- */ /* scale */ /* ---------------------------------------------------------------------- */ if (scale > 0) { /* initialize row sum or row max */ for (row = 0 ; row < n ; row++) { Rs [row] = 0 ; } } /* check for duplicates only if W is present */ check_duplicates = (W != (Int *) NULL) ; if (check_duplicates) { for (row = 0 ; row < n ; row++) { W [row] = EMPTY ; } } for (col = 0 ; col < n ; col++) { pend = Ap [col+1] ; for (p = Ap [col] ; p < pend ; p++) { row = Ai [p] ; if (row < 0 || row >= n) { /* row index out of range, or duplicate entry */ Common->status = KLU_INVALID ; return (FALSE) ; } if (check_duplicates) { if (W [row] == col) { /* duplicate entry */ Common->status = KLU_INVALID ; return (FALSE) ; } /* flag row i as appearing in column col */ W [row] = col ; } /* a = ABS (Az [p]) ;*/ ABS (a, Az [p]) ; if (scale == 1) { /* accumulate the abs. row sum */ Rs [row] += a ; } else if (scale > 1) { /* find the max abs. value in the row */ Rs [row] = MAX (Rs [row], a) ; } } } if (scale > 0) { /* do not scale empty rows */ for (row = 0 ; row < n ; row++) { /* matrix is singular */ PRINTF (("Rs [%d] = %g\n", row, Rs [row])) ; if (Rs [row] == 0.0) { PRINTF (("Row %d of A is all zero\n", row)) ; Rs [row] = 1.0 ; } } } return (TRUE) ; } SuiteSparse/KLU/README.txt0000644001170100242450000001202710620334700014075 0ustar davisfacKLU Version 1.0, May 31, 2007, by Timothy A. Davis and Ekanathan Palamadai. Copyright (C) 2004-2007, University of Florida KLU is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Requires the AMD, COLAMD, and BTF libraries, in ../AMD, ../COLAMD, and ../BTF, respectively. Requires the ../UFconfig/UFconfig.mk configuration file. Optionally uses CHOLMOD (KLU/User example ordering). The Tcov tests and the Demo both require CHOLMOD. To compile the libklu.a library, type "make". The compiled library is located in KLU/Lib/libklu.a. Compile code that uses KLU with -IKLU/Include. Type "make clean" to remove all but the compiled library, and "make distclean" to remove all files not in the original distribution. -------------------------------------------------------------------------------- KLU is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -------------------------------------------------------------------------------- A full text of the license is in Doc/lesser.txt. Files in this distribution: Demo example programs that use KLU (requires CHOLMOD) Doc documentation Include include files Lib compiled library Makefile top-level Makefile MATLAB MATLAB interface Matrix test matrices README.txt this file Source source code Tcov exhaustive test of KLU and BTF User example user ordering function (interface to CHOLMOD) ./Demo: kludemo.c KLU demo (int version) kludemo.out output of "make" in this directory kluldemo.c KLU demo (UF_long version) Makefile Makefile for compiling the demo ./Doc: ChangeLog KLU_UserGuide.bib Bibiography KLU_UserGuide.pdf PDF version of KLU User Guide KLU_UserGuide.tex TEX source of KLU User Guide lesser.txt license (LGPL) Makefile Makefile for creating the User Guide palamadai_e.pdf Eka Palamadai's MS thesis ./Include: klu.h user include file klu_internal.h internal include file, not needed by the user klu_version.h internal include file, not needed by the user ./Lib: Makefile Makefile for compiling the KLU C-callable library ./MATLAB: Contents.m list of MATLAB functions in KLU klu_demo.m MATLAB demo klu_demo.m.out output of MATLAB demo klu_install.m compiles and installs KLU for use in MATLAB, runs demo klu.m MATLAB help for KLU klu_make.m compiles KLU for use in MATLAB klu_mex.c MATLAB mexFunction interface for KLU Makefile Makefile for KLU mexFunction, with CHOLMOD Makefile_no_CHOLMOD Makefile for KLU mexFunction, without CHOLMOD Test MATLAB tests ./MATLAB/Test: KLU tests, requires UFget test1.m test2.m test3.m test4.m test5.m ./Matrix: test matrices for programs in ./Demo and ./Tcov 1c.mtx arrowc.mtx arrow.mtx ctina.mtx GD99_cc.mtx impcol_a.mtx onec.mtx one.mtx two.mtx w156.mtx ./Source: klu_analyze.c klu_analyze and supporting functions klu_analyze_given.c klu_analyze_given and supporting functions klu.c kernel factor/solve functions, not user-callable klu_defaults.c klu_defaults function klu_diagnostics.c klu_rcond, klu_condest, klu_rgrowth, kluflops klu_dump.c debugging functions klu_extract.c klu_extract klu_factor.c klu_factor and supporting functions klu_free_numeric.c klu_free_numeric function klu_free_symbolic.c klu_free_symbolic function klu_kernel.c kernel factor functions, not user-callable klu_memory.c klu_malloc, klu_free, klu_realloc, and supporing func. klu_refactor.c klu_refactor function klu_scale.c klu_scale function klu_solve.c klu_solve function klu_sort.c klu_sort and supporting functions klu_tsolve.c klu_tsovle function ./Tcov: exhaustive test suite; requires Linux/Unix coverage determine statement coverage klultests KLU UF_long tests klutest.c KLU test program klutests KLU int tests Makefile Makefile for compiling and running the tests README.txt README file for Tcov vklutests KLU int tests, using valgrind vklultests KLU UF_long tests, using valgrind ./User: klu_cholmod.c sample KLU user ordering function (int version) klu_cholmod.h include file for klu_cholmod and klu_l_cholmod klu_l_cholmod.c sample KLU user ordering function (UF_long version) Makefile Makefile for compiling the user ordering functions README.txt README for User directory SuiteSparse/LDL/0000755001170100242450000000000010617142432012362 5ustar davisfacSuiteSparse/LDL/Doc/0000755001170100242450000000000010711442313013063 5ustar davisfacSuiteSparse/LDL/Doc/Makefile0000644001170100242450000000174310617140256014536 0ustar davisfac#------------------------------------------------------------------------------- # Makefile for the LDL documentation #------------------------------------------------------------------------------- default: ldl_userguide.pdf include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------- # clean-up: #------------------------------------------------------------------------------- distclean: purge purge: clean - $(RM) *.dvi *.aux *.log *.bak *.bbl *.blg *.ps clean: - $(RM) $(CLEAN) #------------------------------------------------------------------------------- # user guide: #------------------------------------------------------------------------------- ldl_userguide.pdf: ldl_userguide.tex ldl.bib latex ldl_userguide - bibtex ldl_userguide latex ldl_userguide latex ldl_userguide dvips ldl_userguide -o ldl_userguide.ps pdflatex ldl_userguide pdflatex ldl_userguide - $(RM) *.dvi *.aux *.log *.bak *.bbl *.blg *.ps SuiteSparse/LDL/Doc/ldl.bib0000644001170100242450000000705510617141160014324 0ustar davisfac@string{TOMS = "{ACM} Trans. Math. Softw."} @string{SIMAX = "{SIAM} J. Matrix Anal. Applic."} @string{SIAMJSC = "{SIAM} J. Sci. Comput."} @string{SIAMJSSC = "{SIAM} J. Sci. Statist. Comput."} @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996} ,volume={17} ,number={4} ,pages={886-905} } @article{AmestoyDavisDuff03, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: {AMD}, an approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={381-388}} @article{Davis05, author={Davis, T. A}, title={Algorithm 849: a concise sparse Cholesky factorization package}, journal=TOMS, year={2005}, volume={31}, number={4}, pages={587--591} } @article{GeorgeLiu79, author={George, A. and Liu, J. W. H.}, month={Jun.}, year={1979}, title={The Design of a User Interface for a Sparse Matrix Package}, journal=TOMS, annote={f}, volume={5}, number={2}, pages={139-162}, keywords={software user interface SPARSPAK}} @book{GeorgeLiu, author={George, A. and Liu, J. W. H.}, year={1981}, title={Computer Solution of Large Sparse Positive Definite Systems}, address={Englewood Cliffs, New Jersey}, publisher={Prentice-Hall}, keywords={ positive definite systems}, annote={sh} } @article{GilbertMolerSchreiber, author={Gilbert, J. R. and Moler, C. and Schreiber, R.}, title={Sparse matrices in {MATLAB}: design and implementation}, journal=SIMAX, year={1992} ,volume={13} ,number={1} ,pages={333-356} ,annote={f} } @article{GilbertNgPeyton94, author={Gilbert, J. R. and Ng, E. G. and Peyton, B. W.}, title={An efficient algorithm to compute row and column counts for sparse {C}holesky factorization}, journal=SIMAX, year={1994} ,volume={15} ,number={4} ,pages={1075-1091} ,annote={f} } @article{GilbertPeierls88, author={Gilbert, J. R. and Peierls, T.}, year={1988}, title={Sparse Partial Pivoting in Time Proportional to Arithmetic Operations}, journal=SIAMJSSC, annote={f}, volume={9}, pages={862-874}, keywords={316 partial pivoting, graph algorithms}} @article{Liu86c, author={Liu, J. W. H.}, month={Jun.}, year={1986}, title={A Compact Row Storage Scheme for {C}holesky Factors Using Elimination Trees}, journal=TOMS, volume={12}, number={2}, pages={127-148}, annote={f. previously Report CS-84-02, Dept. Computer Science, York University (1984)}} @article{Liu90a, author={Liu, J. W. H.}, title={The Role of Elimination Trees in Sparse Factorization}, journal=SIMAX, year={1990} ,volume={11} ,number={1} ,pages={134-172} ,annote={f} } @article{Liu91, author={Liu, J. W. H.}, title={A generalized envelope method for sparse factorization by rows}, journal=TOMS, year={1991} ,volume={17} ,number={1} ,pages={112-129} ,annote={f} } @article{NgPeyton93, author={Ng, E. G. and Peyton, B. W.}, title={A supernodal {Cholesky} factorization algorithm for shared-memory multiprocessors}, journal=SIAMJSC, year={1993} ,volume={14} ,pages={761-769} ,annote={f} } @article{RothbergGupta91, author={Rothberg, E. and Gupta, A.}, title={Efficient sparse matrix factorization on high-performance workstations - {E}xploiting the memory hierarchy}, journal=TOMS, year={1991} ,volume={17} ,number={3} ,pages={313-334} ,annote={f} } @techreport{Stewart03, author={Stewart, G. W.}, title={Building an old-fashioned sparse solver}, institution={Univ. Maryland (www.umd.cs.edu/$\sim$stewart)}, year={2003} ,annote={f} } SuiteSparse/LDL/Doc/ldl_userguide.pdf0000644001170100242450000044162610711442313016422 0ustar davisfac%PDF-1.4 3 0 obj << /Length 2840 /Filter /FlateDecode >> stream xڕr8_GBpuLy''DI,В5߾@IU"FZ>|6j$6^BIkT#HCQ#jIKtiB(L7# O#smpTr'}wűjD 7]/>(#ꯪʁo%[,YPS"eA:bs_QhB\ ߴ0o5V ΋(Nc5dkL;Ⱦq3+RC`4)p{[քTAKBᩏID|#N|8(`p&`\k%/T$f< J6s`N,p$gPt%+! u=1cQIMYo;m5hZ1L[Yxp'l1ų2 D(u3T(JM\!yTMdkTŚrAuo8cd [ i!MpPŒÞtt>i[?l c(a5# 0 pܕa/HO1|&+^'z&`9_ hK .`IA1t;ЀV̷WvgJ.D1'[}&A@x3=p6+/"<A!d0JA3w:ƱƱ(rG҇ mn(GG#*'kd}B 8VG89v2GLRU[OnC\0B8%eR+C.+l<՜Sm>?'L%P@A1^USpNyLu`yz"v ;(H{:ngyĉhhtfJD}8t@@%+Ac0r 3#Fh0y. Hso32ګ EA!CqXbUpA(* I-X2 ]>>._t}9مTMrhYia ~wrTB"y .|ӱ˺l0` –VRzn2Eauѿcb:])`?qB: ${vE)Åk20nvLϑoj+LS #Q34J}uΈ@VrQJK+oG+ūĸCsϥYWq3 h4KGwh F=,-vC݄VU)>aJM,x OD L h`V;^ >d3D>ܪ)QCxUCZR<.֡UUBirSEFǣ*N37y3g[U,~tj!q_ξ Zp؟=D,EX.NW7J066Iց\*3zu,v=䂖C9cOOI ^jHo,҈Bwխt` M^$;/SAYR0vU-S*&`g[RV=Qc! ]+8 М1vˮ b螮س@>Y~ FD 4 "MIcϩPWxڠXAJ 8't?X8Oƾ¤l(~Y撧$ mwendstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 40 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F14 12 0 R /F21 15 0 R /F20 18 0 R /F22 21 0 R /F24 24 0 R /F25 27 0 R /F38 30 0 R /F28 33 0 R /F29 36 0 R /F13 39 0 R >> /ProcSet [ /PDF /Text ] >> endobj 43 0 obj << /Length 4336 /Filter /FlateDecode >> stream x[Yo$q~_&<]V^aڇbȮ>pqdŬ&Z2 `UeggFEE>|勵֪wW^WO۶㡆Qvۺ;_|x+%?RTZTk=fu8va@{#\媹姻oΏ7oM3i﯃ZY\tkޕHBTR{+_E/$]%WkYMtV~mFܙma5Wl'S9%3*(2ZD 4tƹWkcDŗ21Ͻ;^nMݥ9D@DefJڼx\J5 D=gxW$@O6vNd+WNݖ;_a>m$(VUN?IPzQ~l%{F, ӕ4Ad-ɠ?.Rdu/iUB jĶ,Ks5m{g%p,N8U +Jh*;>Hkn;ng qbж_9!dcv 4X|Ba xj  Dв qĞH0)|l^|W{Y!pK!Pms8YǝrIaLɏ"y_%"W4Y6ӌ|ѕ".+x``($dHmE}^@#Q#l+eAH²> ӐXHD˖)5Nn _ 㷨mOY :zbòIJc}.B0v$of90lmYv*ᖣ;z+gy0{0b 21?bv 1$Ǯ93QØWBAk2k<<1Lͩ;zh?P}[zXb`Ce% QH,y6@v<]Vm8ΡE, ;xUל)WC^s23EpB5Y}{wóVLݎoJVvxWh斒Eq6E๤3#d*>.#x)">1۵6]cc5epbK/M295ئ̃5^k}>`o:xF~i徜  [)C}77elLӶAQѰ45GCڦπY Xf5Τb m^<[kk?;93Y4-S$0)3c G v#,qN7_%oONZn[dl;ᛶ0ι#,3o|Cܿ,x|W9WM~;i:x7)"+ GHaLS!yᗆ򂆛CЩ_igL ,Aj^za:Y3LPK9[icf>ewD0V+`6Hiydne`l!] bRfۀ Xa7G! z˂QѹMde{L-*Neтa2C1XkDYpDN@7, aj̍\ p9CBjZh`Pc(l97|Z!RϒO Fxn'[{c nx=<<}[@*1LH#4 a|2ɏѕz_*9:s 46ݱLl0>kh/s)!i"^bpjvMZvcciKTRŀb{.HQe~ pԻ>jl:ΤZu}`XQbt(=ݥ/XPQ AU^7quш(A~|n'rl_J(DTʇQX}Sjy'w :b3Y%'6cُ]<^zH!AX*RJvz#m9l JOF2@Q\kc#']DEsEt)1k~[fm|{odO ?Aԝ=R%5I΂YWFX=-oL UZv/`1FӦD0e<DfoΏqaJD,S 6WbI<؃p>lfDqdd`5o_.:g>QL=93u7<&Z نgO2%h3 1@ Ce_<[!]9#;}}⠚~7»7x@oSwQqT*E(6 ŀЙ`EFO 堁v0a)<N;6}g{NjvD3Նyª d(B XRؼZ~35`bWX_˾h[г7h12- -n薢+AO 8z< Zŧ[=Vջ)8pHwFw+j<] tv<`n𭫢$}QuupRQ]]}shXݙzuVH+*䚞EKe3M+ 3HRKsTHQi*wI'T=8 n+z IW]_~=g~ˎn q@`6msϿ@NInpSAè3?+iORY>OG'n$<#m:Vo1QöCZH>G[yԇ t4wHܓ铦VG0AY켯wpş Ҋ~LI^{P:H(U%|VP |Q@UTiAz_;Zō}PC<0=d'<#ea ~u@HN]dXoO.őt> endobj 41 0 obj << /Font << /F17 9 0 R /F24 24 0 R /F29 36 0 R /F26 46 0 R /F32 49 0 R /F28 33 0 R /F14 12 0 R /F38 30 0 R /F30 52 0 R >> /ProcSet [ /PDF /Text ] >> endobj 55 0 obj << /Length 4475 /Filter /FlateDecode >> stream x;n$ = E2<1$R)OȺ5dX "Y,knm0+L}iL\}άN[lաѧ~{?klVxtXh8eX?ps/c =z!#~ >;Ge+{nm=yj!pΰ=x{Zt*+yF58"+//`0BcNp,]ã"]I [bn n ueM@cZU&D-S#n Lflo&W|DHnۀ@&6uvbvKWi˂st;ޡtnG݉ nҶh!svaO yMlhg^RUa >m~!Q5Go>5ՁtQ]C17iEQK7̒ c&̔m G\`xLK$FMeSx~HpzG2ajWgJ.ֻJ8Yߠvi%JfQj2-Xګ\L10'= 3 /xȫXU +b3UXdjdP~Vdfok҂ ]tV) ~Levn۔{pdY.B6@ԟABб8?-c(C6֜\scMtCi\[J:5K8ϰY- eL?SSp>Qr fKb C@n#o|bQH#L.lJ7gh_v^z mw |u1@t *}ŔI?vft֖]Gڂ]=5Y]f=y E`16+C J䅚t;#ö!#,;:Tdzxnz32s NɵcGE@~uNh+ ; m"WBUgVD(%"(>uiw@3\,#aEE.>^ޒ^]2ol!-[5@dV_g -7}h/I<{EiPU_KC8G.f,9mvArZm{Eph ff"d`#Ga]:Uٺ,{"ٙ3DCfefybQj@Eb.lp%?E'KESLLHÏϑ+Ըۭ_Ei)Uc_$b8᪚ʍ-~eߜCw|lo@r=vr&ϔ7o2 g B Fgg)u'FǶot&/՟/ R/*381iܤrQn>gAY2{0%xQ`.I&8"wd1ɁXaX%uS`(9-kZ )ө}D%"mܑ;vmZjђąTu^9:cÝT̞ :xE vbn$^-Jnsd3Cr/փki||+8#pr+ b=9]cLDaApe7RG619>,;qvL9f 6K~ҢZ4 ~M~ܡH>?bx?Ez| /~$X/01zG;t'v݃jYi)mf9"'"a*128ybk=lZa %K;$T ۀ>*^8(Bt2T<=~1n-(R0_c9I$I^!qk"/'QSɆ Y+RLs#kϏt| D 5:wlqAEpb0'_I){3+gDsly/usW+J|1@?vG:i.ͮu  w-Ui2[;}BeRSDkB~3mq#ϥi\xmB `NEoЦ`ftPh(Ru>ZZ^i(D!('R| C:42)A?g(gspmlb圎ݯdr5u}dJ.ԊfJY.j$AMR>Ab-Fc =DTx_˫5ۿK9dcǡ B#-L:Ѕi.ռzĒ'%iH|ICLL9#0"OPVjfBގ6j4ȕ{. qznJ&jWߐaXJ+C,ق;%:/S *5 L&U0D We:܎ QEq _ Te>FH@.EȆ\wˑu#T\c_"+ ոzPqﲟՆ&1ݍk ɐz{?uUYq fno|wexɯ?S #(7lMtLm`)d@ܛ,19W%W4-cGhԙ p |kR^EnnӢ0O$ϒq~ŭ)T?xBfÏL?.žR,"7&7vÓzv _SN" ~$N\*WKR"(s#RxMbSvlf[8k87*0-|B.x4J1JIo{9eQ,SC|r8|ڗ\$9T57PKi4Ӄg 8A[qyNSLw3o~6K |٪@hx)u ֭f_\anc76d $j+Б+E\endstream endobj 54 0 obj << /Type /Page /Contents 55 0 R /Resources 53 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 40 0 R >> endobj 53 0 obj << /Font << /F17 9 0 R /F28 33 0 R /F29 36 0 R /F14 12 0 R /F24 24 0 R /F26 46 0 R /F32 49 0 R /F25 27 0 R /F38 30 0 R >> /ProcSet [ /PDF /Text ] >> endobj 58 0 obj << /Length 4709 /Filter /FlateDecode >> stream xڽ[IsHW6T $*8:TӞMDB5Z%3P Rn{&B!$D.oޒ]y'K)ZuypY(([~mZjٲbV]jS=m+[Myn|>p{4ݡf{ct޼Sf~]&*.-(E&mn| \εYnKcywGP638?&5Is#̓cjrOM#rZ]-Qج, { r8YKv owEn#[k`7-?tI*+:6z )*\'65,(3#쒤ȳMB_٪|S[Kq]f ""ͤ5TJWRA Tx|Lo^SeZxKJ k ] Q\[ P-5 S)$Ȗ$U Bo !MVrXأu fE.@+XlisFr{kw-`apW)0|:,(8l/ߑl7d`9۳Y_6 )(*zӼ,sY 8^MzNYhi@IXv?#hf ^L6ya {\PEBGZ] FZP  mPY}6 F# Fv3cm`=x2efcm ҬVsЦ -A(D'!!r=t\` ci nv/Sɱ+q.B"7VOUE CReh!e1`3Q1IM ;Rl.=^X!~S$Ȭx:wL

$&H_!G3 #NʑXL:50GVYe ɟy^ =&eb PI%vz"]KS$<.~6b%Y!L:j/Iid$BA!gJfꑂ`Cĉ^54|ʹA!#7@φ J~!gM"+/Ie\/ȥ%8UW-K}7;rX=]ywqi$$ޤSSGκ7hZYpC+ \{aŸh ,_嘈˘>G}`R742 ޵jՒOAв>CGtha$e֝py4D~.Q;0eӆ4> Duq)E >v?/>| q $`81t]gpGXG&TpyOM<' *+")fD}qC&S:(OtJp"JVϫ2Ikd=j9GtVͺT]C69Q *-_'*#~Fȁ5PT݁nɠuy[xĀ}`i)`Р+66K&I%NF*n"eqny06 Mct+Oΰx|VnIi[a+YI{:Ig_Qy ߡWrYfad&ĆOZb+?]q`>!G.`{1ɧ<@3)=;x뵩E!;{lx EMB[Xdmڤ1 @tҁ_d`=8Bt]`\Ih5 )t@B}vjjXpΧ  et⳻5]}א=^t(AO.^dB}hIK)5(8BU!WaxWsJҹo zl2=6\׃{r΂&~"ץVܻZ}bRkM3^DqZJ`q%+e2GLȜ Zԯ" t~^;Aߘo*+m D((~׊'']7${L1)!s!'O@ŀa+i8S[ ٩:`?Jv5 Й'C~oWCH 8Em5TL Og;."H18,}bO0[8MvXu}΍uw<1y%}ք`gfʔ*Or\b2?DOgv>|Nyޯ%dJZZnxV#oEwKTDk2*hip档@^j<$6ITLB> ř |pGL*T~jZf s}> `<|- S ~ض維s` Įm/qxw:|LoL a4#AC!rszH?D ш-vo)Q@jr xQer­ש=N',h#xJ`oFD6yfEzuQS`TŒSIa.dg,8_GA(QB Іy#)c$z;СP`Dc5%ѻެ"S: MY<6$ueJD=0WK])ߨ!SF QO\ WԤ fuLiNTeӥq#۴MGgӛ(,O'PnQFQ/ |Y@RTp8M[ɮS,gL%r>Oy8 # pvdFo&^.Tõ ՞ 4}GbzoU~N,{, uиA+~;ANZ F-u;UgQ2LvjV>'I-9O);O|]g/@[ 9'Ip߇e#0H m0 ͯwfJ56s+F;~FQ;Yr|jA&dkV@J_]fv$>\x{!s^SJfFeo1k:<p%GG$&iqGFMHMn#q4I:,}2Px \,RhrF- "+5 G; 2F%@WZ}a@\`ьU_&)?H,rÛ3g$M`ȧ\LfmHѹ fbZUVi8t>#:G (o#,h lՉ4K*5daYG 3q,8yߞ:Qc _sk:d[й5ٖnB>U* kW(lyV8]3\l/&` ʺNxjD͌a;&߉̖m|XMk!'{6'[*ilpJ k fb&xbZc '& %큩]Sku`n1)oPGc*/Kx2R7#佟 qyLDn,\&XQaQ1]j1 o7~_i|OQpŽ Atendstream endobj 57 0 obj << /Type /Page /Contents 58 0 R /Resources 56 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 40 0 R >> endobj 56 0 obj << /Font << /F17 9 0 R /F24 24 0 R /F25 27 0 R /F28 33 0 R /F38 30 0 R /F14 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 61 0 obj << /Length 1498 /Filter /FlateDecode >> stream xXoF~_9!,6KOwR#ɪ\5}r[ 8iR.b;Qދovḟء-o,mx5ꌌ3kG7/ַ_/n\O_%:*Lt; |! ; |`v~84 #86 CwW_ fGK0΄GBm'2?EFZf;7v)l[$9eQM Cjެ[$clol/fggn0wxpq8؄\מ/řw쏝aF7b; ?$~ρaԟ) kܔMάl.ŀ;㑘 |Ub0 -ѹ{` >~U x]bEjاiRV\l $gdL&UȋliJlq'1PZځ9tbB CKb-t^y[t Ki*au/t@=NGD, 6[:Y᪵  DtNc:ݕ&ёV@J -uFXJ@Ӗ8^z*qʮ{xL.Z4zHA;BQ9}빍?o߁Z}yfiJݦHALU xKDT&@'`./&' f]biJ &G]5C WvZ`{2?z%(yЯgS9XHd A<ݺU9>Ȟkr ͑vB{}fhVTp9|k @>KZp;ڢju{e `Pzٙw,S#&ˊ&~K5o+LM]h(:1k >TzŅ Bۛ4/6endstream endobj 60 0 obj << /Type /Page /Contents 61 0 R /Resources 59 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 40 0 R >> endobj 59 0 obj << /Font << /F17 9 0 R /F25 27 0 R /F40 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 67 0 obj << /Length 1909 /Filter /FlateDecode >> stream xYKs8WxoNl`vT9LeJ1'*`'o_[9\l$藾Zл3iSDZ9t{<==w:Wyfg <Ɩ7ŝȳSL0+^q1g^o-'c;?zFSN5 ݜN7ݩiWjAZQ+g]WUndB3.3f&H-~P$Bd$aWO=h=f+{z.,Ff3f?24.]lob.(kf05ǩߑ56s! װ`<—<b߆cD|(b.|:1ShSvmstI | ]acwb_4XMh #'P0æs>KjE'-('4) o'R9OIK|"4=?.rf7#]ХdFHnbmWG/*/blN&?a?(d!-:\FLa8$Cc~-ǨDKRV2I[kXYN%O 済1y|Zv GK%7J"r|G(m+ƞ9pX@6|XLpPsŮ. q+o:t BQ (mc s˻uRž$;,qՔM$Qh]b[|#Ǐ@? {uLrZ$ӚݚoXq`S$t!331ʙ2V$px&ʛyAY%[{ЁgQ0$H|.@4rY\فYhJSҩ7uC.;ZIe)av6 cjW[p޺ā/ ,*, !2Z`Ն : cP ľ aS9D*P%;0B%ۍOzd ݗa> :`.ՉQ=֠\ hǣ0`RW:P'unDGDCsI-tֵhY Cw6iyG_j/|l`^bjxe icO/?ǾP.m|}ѝB뙄6N|Dxu(ꫢQwTAᢈ5.ch(9'x6%b0?bV*x.,1Hz9[VyK']MݤX?4"I~^{d+Q}a( 艀eo:1R-po(CEdTp_jE>f(I{eH0,sP&@gldym0_*7R?˥SO 'ľ89&ٻ&LMbƝS(Nmd𩈖 ZV0#bN%(I!ɩ;IZTG5(Vi`d)툢?GS "s!Sj1@+59npLJ0 Kw-|nr/1%|wnFh;鲪=UqG8Dr mLjsU0BL0Q`%IpxVgwMfR AMSmШRdb(:Q-\0>iFֲ>nu'ېRUh1;v:*ɬG o=Jk**)9vMnDt,,2vdx-QLe_FU5T"}(b[rujܣo"\y'> endobj 65 0 obj << /Font << /F17 9 0 R /F25 27 0 R /F40 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 70 0 obj << /Length 671 /Filter /FlateDecode >> stream xX͎09&IYz([9D&RמqPͶPUrݴSaPjnj`k{!w v1g8ym,j-™0ܾ}c&% M+$/I%MͭM?Ǯc;U1 lb}".?údKgcv}Ov}Q&2+ezcw'u"â "RU!t-ckwwh2C*169`ǖssyXj%/XL>I]qfPJ尩|W)Vk*rNrtiT:~oQY R:!)ŝ>Zdž#VOEm^SQõUQJ&D;d/ށ4SS-?xK&;㾎> endobj 68 0 obj << /Font << /F17 9 0 R /F40 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 74 0 obj << /Length 3907 /Filter /FlateDecode >> stream x[ݏ߿^̈d>\r Z}H򠵵Bmٕ;!i+ۻw ,VD nILpfw3+ 7[>׷ ΅v]  iYxy~v9Z -a)/Xuy+_Ynj/|c.ںo]߷%crtuh-yfS7u9tz7 }ZC=mVGZMX7aQpE~U߅pi`Q,+$>#; t0iv+tn~Sόjrsߛ,fbMwz n ƽ H3[$> q]dLnv ԔG]q^]ꏷ+3|7K7;~_ oZҥەmWiA{T %m9.@@+Ov}&_Nh$P`wHW{nwGm ȅpb}MNV%u;ϸ6x}][uU1w VU]R1t˶ރȓJWD ~ T7D|y^Qx3Xeu5H"|D_upM6| <.C^RYFoͷ7 w>&E͒.=.O}D u D킓ڵus%{dEkOX/l(*dW4/zxed!.UKׇMrYg{R?h-nv}A xQ7]I:.'KxM0JYA퇂yT'R>"4`΁ݝCdDVg2*s}81 `̎Xv$\3dn‹h`Y0mr>DF5;Ep8J kC= m/:Of{nέbB+Y4>i[Dm`$fS0U.zf@p̂,N @ ]{q^c7W涧1M׋`q/p {A{C{=4iK]l\0[إ`(ɇG)nTҬ!XÈ?px2B$Y zia6R#d ً(!h?֢GGɇdDx(Ie O At,)^_`Kc5&Kǭ8nCT{ԔIt\=,+i+dwV4=p4x[7.M'L :>ZkT;8Hzl+2'B$j3&,,LϝDG(Q_[pVc$ ZyY@&g(T'f5Y9fur8ב33jw}/. K$ufdXLPR3畝)(^tJ_g))Oⶑ7ϻ"ըޝA-N4'+q0d)^[}i V3^>wF(G=Zz=u ?lF͊e5_$rkv'=8]YO~IV |ls@3dFfɞBy+ɧExM^^Y~(.ʃ!~.gR Fv1; ob&󙝃^L)ر\X;qE;N]Pѳeo)|pjH12zJ{9J8a^ ?4 (y{k KyyLV)?^6IarŔO=3+&1\W`.NrJ?vל4?sčG YЍoqQ6v .+Aŋ!Cr#x܄FW9W36,|U:A3f^? C{Ux,m0[SʘV+3 `KcJ'z)^+9ʉY埧N¸Q^ԬgZ+lWm8|n;LÚ=}n ;g<x\+<FƉb^W1srj|=ʎ8q{[@&>K§4Y5N85$V_NmKRaIÞ^Kl%^ Ob,3Hy{FԳr(e;$@`]>5sO'D𚐔Lcv{vju95xuŨ`f/UuܵME26(XYb*v82‹c90VbOo ͋).$GVWx:;Z0cX\Ħ(Q@l dx2 vi>+WJ#UCM-Nwj 3t*'L<+.ssKD6!_LDIKE \62>݅vsoYu 6v.y"n]09!6Pπ0ˆzD;Xߎ/^',/@_SL*z4&կh#mᰎ j8:mGC^MEk+Z%hRj@^[M]BQb`xp x|,+K۸LaDTµm_ Ci\*:ul{X6(NCq]VCL%j (!3Ti]G-12trXy9^J =A3S\I"lq,cGd~>rN}π"Ho@GQQE28$XMZƱ_ B}ΞnYRtqTF{ xsTU?tE8Q'TX}Ǻ64w!Mč<,'GM7/9CSڬQ:$g Ƅ?@0FH&oFOr Z8x%QءY&9nnt@f 5jdVC*@¨j<vc7zBū¶b. FJc&W= ?]͹<ס O1WV1ݡ9Z|9Oϳ+ &(=c SE[Փ6FwI)0r~NjΙI 5sq,͢_ ܦ_ߦ<[*_[֓#괰T߶@v1RS=wݬ=F4AT rfv`=cj++.o)v G#cc я:?v.%NcIgİKk?q>endstream endobj 73 0 obj << /Type /Page /Contents 74 0 R /Resources 72 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 71 0 R >> endobj 72 0 obj << /Font << /F24 24 0 R /F17 9 0 R /F25 27 0 R /F14 12 0 R /F38 30 0 R /F28 33 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 1271 /Filter /FlateDecode >> stream xڝ]O8_QB.fYN)x(,:$-KR@giCx=3krr1ARzM=R|yI|gŪS#[ ~[?6x*2kh2Ov/ a`S!~,ƈK$|I5Ck\sj|?ÞݳBw8#b}< T2O9xm,fPo1<+  4԰f/X$^+j8O,w_<4sskR7=I k Xf{?jb0?jA6jN$dz4 OCDy`^ Ӗ>px3W9WDz*SP/Vpe*U PI~v^., i ja T+<}M.L'>;bF[jզ4!F ە,{w^'ZofR|F>c4&-fH "mUx-!auw,5n?\Np6Bi ]kn~^yMmz,?Υ9?J+JT2Yn{\Y1:Gzq"kw@w,w(6)U gvkg;MB ӲXO;B*Vxn{|;p<ˀ6'?&'endstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 71 0 R >> endobj 75 0 obj << /Font << /F17 9 0 R /F40 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 1517 /Filter /FlateDecode >> stream xnF>rHH-[-a>T|}g%eP 1;;ݙwA'Hɒ$7DJhj'\f>Z~_ pLa_:z7,4NԮZ`Qn‚erLJ)%hP'ϸ#OxNX@40zA P?|E ZPd ȓ 80GXb_}I9eI@kCӔc N PKdXfv׺h1j >XPVA#IΙI\- 6`CL`Dd7X!F1D)OQmM$h"0x Pw(ƭk9xL)&?  !)K)3ސ39܁ٻ4C $,OLظL\x%(Y Ug+@w1ـC,Q; C((6 g %u'֌X:[`'t:45C4b࢘M]f)1n3٠EI!y%d<1OE36?2gq{FFD3@?’ɿ7BTq$ (V¸'2L"b qg$0W1*6n);V!0ˏ(Wr6F+S؋g@ܡU1hoԫHԾ RTÎ1OIӍĆ&xFL/Ɽ5LӏSBv.gбWXǺ~`1".u85iQjX#qS;ݮ^+7h)Ht!}=T>]N"->bxf@g]"ji-b9S!Q(s2Pu[rba (.^m%~ɪY&M>.\-P,8M=lO1;$NOoby>"f֖>7L0 +f[mId_4ZծڹMxWbȐ+fm]J&yf!|啘xð~Fspo-\-9m YoH],Xwy8|&B6٧Kխ8G{롿2戀i,=0nXuMٱm"kQ.ʰoׁVw= 0:\nr> endobj 78 0 obj << /Font << /F17 9 0 R /F25 27 0 R /F21 15 0 R /F20 18 0 R /F1 83 0 R /F41 86 0 R /F24 24 0 R /F28 33 0 R /F29 36 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 2316 /Filter /FlateDecode >> stream xXKo۸Wd)oRٹiEYxl%*[$'M|ѳ{4f[DV~X֡$F@c@7宰r 1Do+P#p-"(G8RARޔMK!Ӓ;qs㷱}_gU,˲6<}&pTmPlB@b6h{1V!Eo8`CՇ{ȕLOԏFݝ90x%A瀤T$#$射t򸄤EXOt\KB``Jrs9,w)pl=-1,'*~)D̒&~t5o%]n+:~)d+ xRȪ=M%Se/ķ"*ܱ+4GG5y'<O "' ydJN0mp"&'ЙF7 J|}(CEn`cN틑oyɫخ*DpE]Ґ[ZsYCƯ]?M/>mSR$(O V88d4mzEZߣOg u * 0q(FȜs{iutMLd?z1TU2&ܔۦ^&[1䵗pH:׀f(Cop5[ ||('"8jSwcDsGo Wࣃq\H{z?sendstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 71 0 R >> endobj 87 0 obj << /Font << /F24 24 0 R /F17 9 0 R /F44 92 0 R /F14 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 91 0 obj << /Length1 1202 /Length2 6902 /Length3 532 /Length 7664 /Filter /FlateDecode >> stream xg8\m-ZtF]D&f0ʌ2z IDމ.z轷$]tu}%||Oeֹ:}!> #yA| *HP Fp0*rv@$/"!, pq#\%䜡n00 FC4lN} 99zuyB!| AA`p|_T/yBL8Lr,Bp'jBՂ9a?ŕ<=v9W uh" P7CeN y8*9A !>~aJ0o(D؂ܡǡp:> Z</ap ;o!|ĻOQLnva '% , `ps #w&EwbrS?!aP7IHTTMBoMw*?Tӝ?tw$C_wvx$+Aw~]]xW+rƂlxw6~ ?ΆO'o?^A0W{;f[gzCmg6Ł#%X\)ma)|Kdn PƟaI@ Mg?}` g" T}}m}Y$L]xXO=۰*5P ݨ{SGWf AX$[f5k$B6|QF"f,ROofi:Rģ41̕+9{ Ot0To6\,5ys g8G LcкU}\QL#վUrg?/C<h s7ǷsaJ5| bO^?h)|$eR=2ցl|R4)i(1ZWgOw7;>騸M9ɿܜ,\MhN;WV9!a/b);-&]՝(ښ,SK;9~WRJs~ϘhKԂ;_>c@P<)Xj|'rW^KɚP˓]׀+D篞'6xkZ"23#"&B.SGՁ7?ډ &p_E>dP:}yanVD P?X c*@Hҍi=oˊB/ȡDGP,C+kC*f5"s]$'c8y8Adž)ȩb,"f5>(s,J[`pDz~V蜧f;27oD5#2%7XvJ\ <-jCTʔ!ʮ]@E0}Mn7.uu8ʧqd74G* Hj.iwxww(stו r&Rb9[8[3?4n[~XId&3:Mgh@ Dߙ\&j%gKoՋ)?b'x52 Z37sir) i( 1˒c-|5YS3g ɳ/L\ ДRaOԷmh>̒ PҲVd?3EqՕwr@+It)NثU`;%!iX逪Wc 4|7G&I7gjURSI1] "ۧ\uDzԒ}]{* YyXkw36zqAs [H]z&ŧ6YVu]\5h{K̓hצV8yuRm +52}cm|?WQXY*)Sǖ'jh#ݪET)7]&4s<9Tgq:gYP`|rS,emŏa($LugH<8O⊜SKMኗAY>~2K0IaHeyօ]0Z ,KF6iP8Z)yˤ b"}.w:}[[Y@LdU%zSG^N[~w& [>ѸXU섶{u3Sҵq )/Þr7Ba!+7_0'^w$qm^P[}_p1e|2麣Ia{ߒmSOM,U_I\,;]or 7@%->+trc$H>OKb nj_}VaS` ##"ZB$yiIHLi M®/:N9a3?>yAq<"lf#й79*{\O]u/(:fFGB2&^N1ySGӗ%2>|mjx*'(=v_NV\P˨GtFԽɇio o?@8Ƹ *4Ci[9׸45D@C+hte@QbJ# '#x 9J?i=9:\gl$^*AQʿ "e[l㴧0#,/Jd2D[DMj[yN?jK_s1xyO*u܈jUɛir5"š# 6&M#; JmTGكü\d}|#v@X?$/0?1ߔ=z34czcsi^DE@uP$LĶ֘Zlmp]Owaϧɝ1(o4GZ%t4V3}]BKT #ּ;pn f6o$机LQa"mJ(g}.!t%dN:((,`C*;JKBqZ=S +ÒsrŪYOO|9&KX]oƮ<Fx/%|ؽI2lžjvT6f^^?jx@!%9SXO t$7Z1'x&H8kqoD*~R,n46N9TZ ut$Uj`OtL[VC[ ebv܍ǩ {>gx$h7cCeJN%/Už ܏r/JгCP>X3#Qbj宷5ϰU΍sPZO÷X-qMx\& L-uN"B&j0y?sLTuED ? r/gޘ ay/';U)gK~v % hU7Yhb $ғsV"ժ2UlEXؑ[GB%H=9G egX~{qס?/, I)en 9zOZ)bc|L1P7HCj`SӎM-a:8_Q=S{t]sHÈP5 WzMW'+ںGMıM+sa2C~)ULO5&CS@lh?{$ !z^QglGB*O`n|0XyoQh\~)]kePM |06}OEkձYȷuER}ma&_Wtj󺆰!3pL0be 9hh0Y;LAzegZA>NTO~V&SIb?0nUW1BgL1i|r㒖)CmjG'EQ[/t25v/^5Oغ{ Ow~|52Y/IZ\_@藈k~c_=dxQM; ZۏMS~)X-N 'əS3͉kJͬ+tehഉ, E[ {7KBD9㩿 *$KKXҽO6ex.Qd Vh6go!Acݷ7TA xgf(ŠgT#k/u ZYeThDag6l#i|2Ҧq+6sHv e ZSH'`E(G2k+70% BSdhxB^ќs.wі֔zeFCҒٖ?p2ݼYjp9|Sk.aGlTyYl1}+3A "齬e ܦgÐ;Zora(J*ߘ- <9}!{8yĢ+9yخ&O`.h*l&~Y+oc`I"x_ h(AHE)(\`l(mXM£#8Ysyt]n^^|nٓ`-%6ks9;71#+U>tl\H2b|Yj:bBOH=v&mhi(С/>-svl-A61\,sR=|vUuN4X}ͯ-ҨdFN׏_|YKtK#QXWl{nyH"gw`NRrX@i%OR"zDxj@J /C;&cG*<=Ӧ^Oi\.0n>w:z0 U>EѱֵN"$rU hK7-"66h6M@QKߕ!<.){CN6_Pžf9.nW~.vPQG?.Zzև}'EQ~wB]s>Slwگ3 3ajq|<ĂȤnj~^9.n n< F~?4LK #=[14GU~ r m,4 ~n~mvQ%c}&6tXY^P_go&FahGf{#^kMw r G*8 MRـ_>Bah'y 7 tɢĥ ~@ 5.3Vf~;aO?YIo@MUu~ g^5*|DKz0EGYsTeg<ዩ;˂an> endobj 90 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /DGLNKM+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/fi/period/A/C/D/I/J/L/M/P/S/T/a/c/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 91 0 R >> endobj 94 0 obj [550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 727 0 700 738 0 0 0 0 377 513 0 613 877 0 0 663 0 0 550 700 0 0 0 0 0 0 0 0 0 0 0 0 500 0 450 0 450 300 450 500 300 0 0 250 800 550 500 500 0 413 400 325 525 450 650 450 475 ] endobj 93 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 46/period 47/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 73/I/J 75/.notdef 76/L/M 78/.notdef 80/P 81/.notdef 83/S/T 85/.notdef 97/a 98/.notdef 99/c 100/.notdef 101/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 85 0 obj << /Length1 753 /Length2 981 /Length3 532 /Length 1526 /Filter /FlateDecode >> stream xRiTWFVZZH}D$$ H0B,TTP Lf0ᄂ`ݕj9Zb(ĭ.@]\p#*(GB:Ogy~{}\N3%B9IОBPBJP@rC(IL@h(BL@4$28XRJa 4pu$ H )L@ЉPpH5T>q0#LɐJ(%S`.LW&!mޗR ̈=2y PayM& ߐ՛\ɈǩS!HNOC (IRDotV^ۻS 8BomKcFb:h<!Vף+2nNSy-q0tm٠al܊i7gި+xrív1=('-*nhs|caN5$Uje+4U,ƤᖘT|LlVC9Ғp xi@b銩.[ \pm>pe|yިE^ pw涎\y˗uve˞8Vλ{n Lqx;'`\^a@ݣ'ٍϪОO/}1ҫ "b=uhokymlJ:$U}?Nem͖̪?}ݣ EřK%ɚ!a~6F5jCģŝ;e>_5]0N57qͰiZ쒴(zL‹S/7bz4:3j}΂emNtSaGR`{xf^wΙ>;e^<xA;RDG#MxScmig>irKfW_ eB1ft-i 9e!jO nuлPsQ"MtᱪO}'-9qQ`$lV:xLKuY4wi^5py2B5Jqce]3sc%7AomپNB3ͫn(frhRvԔqrq8:rD#cIUws;W<"|mq29b}E]~>2s|߭ ~659fZyS)fS1y_*3dJV\kĕE+9Weǖj}*n"*$U]xG&γU|(2W,LX޲!}+yQCuv. 5& 5\endstream endobj 86 0 obj << /Type /Font /Subtype /Type1 /Encoding 95 0 R /FirstChar 58 /LastChar 58 /Widths 96 0 R /BaseFont /PKGVSF+CMMI10 /FontDescriptor 84 0 R >> endobj 84 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PKGVSF+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/period) /FontFile 85 0 R >> endobj 96 0 obj [278 ] endobj 95 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/period 59/.notdef] >> endobj 82 0 obj << /Length1 887 /Length2 1357 /Length3 532 /Length 1952 /Filter /FlateDecode >> stream xR{Z$iIKH.EHJRݐzR]v?~|=K: D59x` !JCc"̱"953A,g8)J, l Ѩ0APFe`"|}\ rA>  A2XD0`S BSK@sX|2PDXx(pZ6"RK9 !B@. A.g;ɜ3HثQBeA4K  ?@[IBc *+\j-X<<:oeD8+rÅx0_pP~Zu !\.aBġ< s`DH0Q!`ͥ@2 `"k+[AFDV  m}E+IjeBpƀl/&&+&iA\.Ap7_j$$@37flAMn{Oe2m"˭esW3eŇUBOuD@rFp̣<2UEXsWx~.8C)kE>̚;Lޜ6[(0Gh0v1n]??/ y[p_qr6Z~! hDg1 s^CrJFdpe!܃ziyNPiwס-u;ekni(r)6/8 1%ջ;+-&6Ǯ>@3r4Ec8=NkJHBF2fٝ*ƶt>[6xY䇍?{68-X}&߹m 8{taSzـfjelkcMoR^o}'YJ:]Q 3k6gQ\;bOKA]ܑ(ΠJoO&VC֤_8[:'(1,ϣCG z,jɆ*E=A"Q2sTн ]GZ)iu^NEgM9b*̼?ft8dp:~垜ڃ~cCLkw]%+*-m )F0Cws] nA'E(Qj>MU:!T *Puj M\e.-שh55wц]kYuo}ޥ;-袗:|,seҬigqq싄<Ǭ TmE1퉂ڵ "rۋ E3 (?5e ώEoc.0'KL }_fҠ?|P@*T-endstream endobj 83 0 obj << /Type /Font /Subtype /Type1 /Encoding 97 0 R /FirstChar 50 /LastChar 55 /Widths 98 0 R /BaseFont /BIXXUM+CMEX10 /FontDescriptor 81 0 R >> endobj 81 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /BIXXUM+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 82 0 R >> endobj 98 0 obj [667 667 667 667 667 667 ] endobj 97 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 63 0 obj << /Length1 1950 /Length2 11074 /Length3 532 /Length 12165 /Filter /FlateDecode >> stream xUXAڦ\:wwwq%-@p'' w ۙ==k{꭮}"ndqrteageH*kiYPii% SW'G)SW f`pq$6V֮IEqlj ranjt2zG@ `EegXؘ@V6BNn@ PIFT `D8AߐeUL~O{Ǧ6^*prpvsN MdaO]MmAF6O5G ro&"v㙚']fxXءg_v4wqn)l =Pl-@' n  0rnfn'A`s럌_ؠ`=_sS@PWg{7ȟjj`'jZ{9[(rCO؛B$|7'.oڻzy v*[:P]K*h[PY/Wh n"|l 8gAlf!/ *cB7/:P)jr VN!/j ֿjBB__._ Vzsp+pappr@}~~(3wCAaKyQgm?6./CdjW-h.Ӑ J]y:66)$W}TK|Ӷvw+te-gCnXɕҤ}Yyj RZ;/^|woë+nRGJ;ե4+l;)a{;037ܻOưaNAW}cMǜ ͉lOaߛxK2&=W8uH'I@HK zlҴ<ڬ~iYkP%~e.#4(KytdfRP/tn*)Fm T!1A,T3B@iY_4Qqϓlj )Q"&n&}t{/\,OF3gńavHm26`@u$REep=)m/)9F,.#&ߩњ #?!Y |'p\A= w6kxE%a"!:1v>@?,(FO5}iI理!To ۊF''y2B[x70= :By`]CQ1m _U%#U49ھjwxCc7t "Ovf6/ޘ0?fƙ ihk9r"Y~#PL%71^cj ]-aQ?6u}}7u}B`W7*~]NZDKDbSf:'uT:;=)sѕJG$g#_Fxt:u/GƧ.miMyٲ•J2C EF_K@>`~-ĚF)3$a}kK4j1 k|@4w_mj-إ"yry%T )䮕fΞ`v{WC8 7D( {#X0OBcRt#/e7{㠢$aظ|X3/b 8Xj靈_rfsG;ct L`ju+"fF晚Q>+v7G%Ig -I[|TeC y#'mx҇C{k~Ӆsew;.{; = );ڹ$T亢fY )CM}1~~̦k}.^4S%I\R5hrG&0al3st]؊~E6;Y.^Z~zGkZ6BPh؉%7bo'9>I;tIO$bv'2Is Τ=.IX~!NV0֢$?XULs:Q6tXI)K1ϔ뿛A'7P'FLƳ^'L jo`8@#"P^¿-n,;UCaSoIN2˳i/P3$9FFN0щ;Xp U AM1&\2+pAU0>x̮ĪrŊ2%22xOqQ ޞK[.+ K3*E7.3zs-@+$,i@(jg$GTSo}?r!ً X6e {BV[SZ{+}YoiKu^Zn'1?JGkM>e2EhL#A9}(s~F^ovծ[~l&L)!4m|A޴Y-iV#7/UΣ.sQAR:SG)í+ K [ CMBi@_¡m_`0*Ԥ[z"[Q>Є?mऐ1R5c=k:7G tɯuy/}pݰǫ=.8,5͚8JA,&{nrZ[E=Q][%{Klbk:^ Zܫ5G˔Otr2( "Qz}R"1^k}nU(q8cf\ڊ^LT@+, hj-l}MOHdOȉ*vT>u]3 ,Y0D0w%YWcjex_>UQPRaBv)UyQV.I )k,"O-}2WP'zvxPۈ\h3q18.Rܐr#5N~ډgɇ<u9MTEzegAԇ4C{ 1 ` Oq t2(([ ̧=tIQcPdL-b¿Dnu<|CT<&z1HPb)_4"1%e|C({:>3j r1p'˄[c>:oހswSZH@'XQe7d\UJI_XFq6G_hk̩X |P}JGLʒ;|"i˵1k5j֯yE3:|mZ6(Nb[BVܙm?2YbY7$OYCLnױKݵ8L:VzM0:< u?`lIPj^b}Nǹ3Z-xB:0CYKKmOMkQ/4}zLxb<2Uo,20sQmV2W?-AyBe66k77;aFۧ~Œ>'P^PIJwWq4}Kk=2H[>{W%F5O[ a:<:i|ێ0WG$&MAibPm{[#a BC{-P${;FU|Zt\ JPnL ,l.oLM? /v,,B>MjCAeB(943QGzh_d)ngT sjCў96ϕ m7rtl¨\;uqb )?T!P32جORXu`os'iYPO9~JNKOUۻ[s|]{㭘mDPSu>Ueb;ԒWllNXrV Uί;kO 5DGF:Xu_KN8QGPb"j[yN?ZaHtGN<` v]'KX`2yn@K}q/U;"\d*6\)4@xRUހC*)#zjX9~Y1&)/ʸvR"gFg30j"4z2C8t`24e %7#q.-%IIb`y&_N(5i]Pf ),fJvن-bMȷ}l^Ob=;j8V5Yt,~&ns1MW })EXj7)1&IC6Mjg@&ŝuE2ZNE0ܝDø ÓP/Ҭ"DES_@|\-RKiZ[lrZWq ݡ :7σyo|ۮ}WôSAF\WC㡆ʱNi („g{  WUح#YB!i~m[cAxYzLmm<ڼ/l S hZkiFtv7u#|U0K~9-^s>a.RŞ(ulKO%p@J+VV`E5q?υ_2kZӾ3]߄%qFj ?.vp‰4fD/s~9@XL/$Q^h_]叩'nܿ#؋~ś:ݰ& R$"Bl"vOR|M+,[Xv!s0&FK u*,lV &^5ahTEk%H3E6@N wuPOY%slIExaysAX7NW\,ՇA }Vv#5s Aï|:nrT3EC+ϸNg 67S-oaM?uf}pvU5r~=dЙ)7׮ ܎'p5"D#;0 /k& - 4a+')}3Zg}W6RO[$0`-_s!dcf,*!3v%p,FL?ӂkӁrg׉$n{ Bw1_ȣ ٦To{S?jbHVLj,1_ysSxoLV>#at^ol {%^~mƏ MEeZIcHR[l&S m5izhSPf:gu-Ϫ5DzZQ'v4>xe:^H~F|bz5dx|=S?JlDIqτmDuRl"V GQf mǟHӳTƋY/`ݼ4 2ƵD}ށ^%@y6Z(R":H ⱔM `qxa4HV\{E h^-bի s6w;_12OT% y—=~k,٪Y4*]11b//mT"2zvR%ԭrr[i&I=\!o~\H>_Ƿ/fexvVPd0gpMI:O{ayCސ6!@-ZN+355nx_oa^>1 [W7r ռ+k^9hύKz(ف, G ]ﷃ}LT+% fOP.[)d[t&i"dylX[&;3)ߪ-̳rܗ~qfF]x+{g׫Ulm:utg )P'a͆U`AcQA[k΂3tUfNd "iyǵk%cK&<+c9Hy+ !'yR _!M| o  \V\u[7t;Kfc_V.}ʊOR1CYZP;Y|jÒG+ۻԩ7Vj&s{phEH`4NxW}ڵd). K3'Q׋ QD_\AE_v)F,.=;ui*N)G:EOw!yH1'He<A? Yraw5$,#믾T)F|{%r-\@@ʞJJ'0hb_u'95 C~Mf}-hsot QgӒkpP( 舋?*|%Wt])k£)lJz(oz%Zᰍ)l߱N4I3)zyB"Yp%c yXXL<¼I'MT\jvpTBpO)v¢A ܾ0V$VԒUBBB:B/vT')[Cwes}M?/QrAv\bņ6ׯ){jHPi 7 a66!=:(=!(϶&sfyO wbvA+Tӗ+ґCE1h=NU)9\!''Uʆew䱿ߢ&ַJ-Tm4ob:J@ԋY)*+kBO]&iIC6%WIBIJ c:zGG]Ϸƭq](dᱴx.-|lU"8<~L+[M5|p7Fȟb>Ð=n?ֈue˜Pҗ=xPfK:woԻ^ JR|o-`XԔ+ cr_ I*SSx"M׾ d$ :%, '0+8,Q|Ou}npK&e:8̰UsK!nsNJqԚ=*V#,kwe"k栙n9>$dcV^J-f1A~9 :`/D8/ѐ 4GwJ_}Y֧Oc%g0r} KwhRѭɑ su>9wс&XtJs j5w bxs*s:G "K@~Bmufsnzg8>Y(BB +:K8C3@P.E'd+g'+̠c_WoY$' ֦`ԗ=mV<ʈ0^!Omrоއ McZOț1gH3>fRŝu;q*/QLNГzgxpF2,Cd)kc?SP9Ns[rUz/# /l.%m+K G:71'dBV=g,gr-+.ȊYfQY!qg],4ѯ| UyU? qP_By BX 9[]f!3ʥkC4koݥZUK/vLh8?ߧk9x(f=h!~Q! B Uqkv G˙S*G/2ܝLʙxfyQ ?izbJ4 .G _(R@^f LM x*lfix$D>U>fr &6YW~7 K*gNf,{E:9a5Q89BF00ZZ,F]qǩlĶjU3_R8+@Л"7-Ro|I.P#"(iVSb׳J%q*7f0-M* s I+hiI-)Aw?069Ψ)2\-SCW'lEwY. D'^J6kǽx<Z?Pthdxc xoNM{CΙ=R6XgIW;Օ6Xf,l>0gRiohkiuۏv4oBY94q?t)O? d vur0ۡ/a>endstream endobj 64 0 obj << /Type /Font /Subtype /Type1 /Encoding 99 0 R /FirstChar 33 /LastChar 125 /Widths 100 0 R /BaseFont /PINFPP+CMTT8 /FontDescriptor 62 0 R >> endobj 62 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /PINFPP+CMTT8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-5 -232 545 699] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/percent/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/A/D/F/I/L/N/P/U/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright) /FontFile 63 0 R >> endobj 100 0 obj [531 531 531 0 531 0 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 0 531 0 0 531 0 531 0 0 531 0 0 531 0 531 0 531 0 0 0 0 531 0 0 531 531 531 531 531 531 0 531 0 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 531 0 531 ] endobj 99 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 37/percent 38/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question 64/.notdef 65/A 66/.notdef 68/D 69/.notdef 70/F 71/.notdef 73/I 74/.notdef 76/L 77/.notdef 78/N 79/.notdef 80/P 81/.notdef 85/U 86/.notdef 88/X/Y/Z/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 51 0 obj << /Length1 744 /Length2 1100 /Length3 532 /Length 1657 /Filter /FlateDecode >> stream xiXSW[/U f dy %K{ͅ&"`E.PBEˠcE- T@$bE ȎT*\p| 8i9{95A"<1Ҟ`,DyL8ƇIx)8υ@4UK;oz ^9R'^^Wɦz?+ƖEV v [5ԻL>]](yɘn+ˊ-d׿.EZoJM ~ynlUSe SA䂭ylj2~뭃=tu ͹@vgž5ǚvFly/NV%+.${vv^>xG]mbwްQ/Ln:ӵ,Ѳ_ kE^NbQ|K$rKo@È{NNFOf7LyirxRhtG}C3kJigѬzlnh];΄w_I|#4S1a"ZaXN壞o?^Yu?roliQ^Sm\E7O?z=Tl\$ uul͕ZZab/g| i* Cy=`vHGٺ;۴U7g+p;Kĩ`}>37smj?`afJg}Ȱ]Sp=GR.}g<"ͻf3{mkUF}IG@XТaywc#Ay=Vy%Ytm_|(w~i&+gt?OL &$?gendstream endobj 52 0 obj << /Type /Font /Subtype /Type1 /Encoding 101 0 R /FirstChar 76 /LastChar 76 /Widths 102 0 R /BaseFont /KLNRIL+CMMI6 /FontDescriptor 50 0 R >> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /KLNRIL+CMMI6 /ItalicAngle -14.04 /StemV 85 /XHeight 431 /FontBBox [11 -250 1241 750] /Flags 4 /CharSet (/L) /FontFile 51 0 R >> endobj 102 0 obj [846 ] endobj 101 0 obj << /Type /Encoding /Differences [ 0 /.notdef 76/L 77/.notdef] >> endobj 48 0 obj << /Length1 745 /Length2 580 /Length3 532 /Length 1113 /Filter /FlateDecode >> stream xSU uLOJu+53Rp P03RUu.JM,sI,IR04Tp,MW04U00222*Rp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`GExkCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!-  y Q.L_89WT(Z 440U07EQ\ZTWN'2ᗚZuZ~uKmm+\_XŪڗ7D쨛Rl:/P1dɫϾ(l=Uhd_OܗEkv-X1tލ`i_y. 1dz:un~Q?3/S}] $e~s]F1ʻϯVltVtl_]ׂhWVM\|esWgE): ؾ|׻7/)xXmyjVrYXe]gL?=;paG[bgtN]Xg_%kUc>=#It|yfl(zXu)ODݝL̷a!kܚ`5y.z4&waSkiϰ˗L #~ә{:-и:8]ؔmbnT5sc%W YK5LZ23IӂcOzFӍk3,ua&zC :;PF $&&es>svendstream endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding 103 0 R /FirstChar 0 /LastChar 0 /Widths 104 0 R /BaseFont /ZVXJVS+CMSY8 /FontDescriptor 47 0 R >> endobj 47 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /ZVXJVS+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus) /FontFile 48 0 R >> endobj 104 0 obj [826 ] endobj 103 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef] >> endobj 45 0 obj << /Length1 770 /Length2 1258 /Length3 532 /Length 1821 /Filter /FlateDecode >> stream xR{<vt*-?*[.c c$ֺ1/\zbm7CJ܎P]ptvk-"$Sk'VEtQt^|?>7F@n\'- ](D\+]P$;{+\#`7u*P 3EDAlLAG@C P" 3 98U?ؼBއB)3`\"Lb zq7!x٫XF0"e^\&rSּ &,dz̠p"C0 CL_X,:‡p\om͂n͵/Hxrjj,@ bDn>˄9u [:%8^`aBb1xWX$Eq˴" "䯢;`@d[`"آW? WoNdl0lȄ#2( qk7 C͂h!H 1p\CJeId}&.nh(%\Dmp))طǎfL§ ui^_xF/3j }'rv=5sw_?~`("i=bmCs+DV 󏖝JUV&Em36 5dY99Du(H0p72Ȑ>WvS833|z_ݎ$% v]54jG!i97rG wLJ{qCA;%5 i߽9)JNB6a:^q$0/NvZ{Xۥe%VJݓdžގWo%v- ۨ9雛~dz8ImdCcu ~P tG>qP9C!DG\YK{w64sijv{a_<3%(+P: ZEW=UF܋̈`wʞk49K_퀟!n͎{j)hNg@ɓ6MhS'.floe {|ϥJE@pJ/~9߮~t鞓hJ+k–l~G)o)k{gmiE"brӜ}I-әz) Ԕ+>qiɶf"n o۟b{ O 7 cڱf瀞G(q>wZjDe9W3qs/CU r^no\}uh5=6ҽx=O**x/o5}g{^M8S/ *VOv}t]@AZ]s5皆VyRuEc_rnKֺ ~.> u\P!]uv_Cvu[ݒ焖z8R`r C6QU(e_IHDax:U :p=r⫬앐 Kĺf$`^4wusnw~iZ-<_VS\8|5]ŸαKP'=:ͯYbujF.֌ ?|p` pt4O;ʜendstream endobj 46 0 obj << /Type /Font /Subtype /Type1 /Encoding 105 0 R /FirstChar 43 /LastChar 58 /Widths 106 0 R /BaseFont /CXSVVH+CMR8 /FontDescriptor 44 0 R >> endobj 44 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CXSVVH+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/plus/one/colon) /FontFile 45 0 R >> endobj 106 0 obj [826 0 0 0 0 0 531 0 0 0 0 0 0 0 0 295 ] endobj 105 0 obj << /Type /Encoding /Differences [ 0 /.notdef 43/plus 44/.notdef 49/one 50/.notdef 58/colon 59/.notdef] >> endobj 38 0 obj << /Length1 752 /Length2 721 /Length3 532 /Length 1268 /Filter /FlateDecode >> stream xSU uLOJu+53Rp 4W03RUu.JM,sI,IR04Tp,MW04U002225RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`EjCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!-  ,IH 3NNպkij`hdj`naT0(5\Ae15"5d떬Vֹ.U牵/oQ7;36t^bzɒW m;,}Q+zp^/lZ,bB~]xi<\6cN#iEgu*\g^ ߻-4IKI bw_ ۟g{ 4$=?ؽlrڋ-СCg~ЖԭVw\S(ȸ͎'q9.qblSiqkx(}'ax9vUMyQ=)zvf;zBO7L"w+X*8fwvܲY&{z!g*_ Xmu0E5ae_پV/W*m˳ ʖ%z4U< ^}ru/z2){ hz l5kmio ~[W.l5əq3>ii7RA,+5zI:/zcfs}Ycow$ǯN-m欙eXŋ7;:FyXCҷOk24oh_rcٝS޺^?A03jWŖʛg^rdX#r9_jr4r,&fzflN Q9E%E\~Aendstream endobj 39 0 obj << /Type /Font /Subtype /Type1 /Encoding 107 0 R /FirstChar 3 /LastChar 3 /Widths 108 0 R /BaseFont /DPFXUM+CMSY7 /FontDescriptor 37 0 R >> endobj 37 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /DPFXUM+CMSY7 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-15 -951 1252 782] /Flags 4 /CharSet (/asteriskmath) /FontFile 38 0 R >> endobj 108 0 obj [585 ] endobj 107 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef] >> endobj 35 0 obj << /Length1 837 /Length2 2345 /Length3 532 /Length 2945 /Filter /FlateDecode >> stream xRi<>KH"YfBdmKԘyaf`D(Y+d*!kdOFc Q"T=91x(4u@[G--2 biDb\__ !m@Kmԁ)((0J#7`JDciaIAZ`J"NnN`0H 08q4#R`,YS|!@GG+sM*m\xB /Lr7l*nB"9`6L$Ch  + CȿviXgJ#:\GCKGlIx4#XR0R:݇AsCj?)4@I?17"*xhihiD['RRRpW DpHts kjP  &oSE8L~+MHдk!M 'hp-@533Ho\=Vq!T*H}ܐD\@`~gx?~\AB5{LCaC>jy3$'k}M#1fi՜ nӛ%^y[i"\mapHhm^\"w1ǟ7wL¼.#XA!Yόe/lS?)˞[ۗT /8 QNhm32F…>烏Cu"c8 #漌2}ɍ ~]=]Yiݷ6}i̢:7${}o'q-_D>\-S$+}ɔ}c4FJ=$ڳw^oV2JM{tlW!i)SWR gIr!=O,\`C>k&Ѱ,ghؠ;J# b}t}Qڮ(QŮ0ò-K.xO998IapL5_Krnz\I=䟐iX/P|_o]5vl{ZחGq8 .8'߮Q}̛#1QѷJh}^/,^i-g=UͿ2d??x*&bC u7FF_ +i^J$0 U8qڪ: >2Q *r> [,ʩEڦ0#޵Jwf@|3QcnһNbgyƑGO>?zdfU%<;ǟ$Jj o/XF7-SUqTl$OK:%_@yy߾`]q ?=5(aV5\|FD 7'UQ ~zDg^k5S'=qii9Ng(. +U"2cx]GJɓGBSJ-GO^jwFsj35vH#FHx°O2)Z w#6@k$hk8p(ӫ%q\KYƻ?dM1Esl8<؂zeδXwTefu'k\]?jx¢KE6^2hB>A>"Wn 6i(|[DLty}p|ӵu1ZXJ^kjŸQ>wx7Vt;Z4mMM:rU#ɉ#>^ږU,ǥ̹bϩE|̧ӁIVIWG tP5cz w%+\)0OQ?\ OH JXj]endstream endobj 36 0 obj << /Type /Font /Subtype /Type1 /Encoding 109 0 R /FirstChar 59 /LastChar 110 /Widths 110 0 R /BaseFont /VHDQOV+CMMI8 /FontDescriptor 34 0 R >> endobj 34 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VHDQOV+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/comma/G/L/i/j/k/n) /FontFile 35 0 R >> endobj 110 0 obj [295 0 0 0 0 0 0 0 0 0 0 0 828 0 0 0 0 723 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 362 430 553 0 0 645 ] endobj 109 0 obj << /Type /Encoding /Differences [ 0 /.notdef 59/comma 60/.notdef 71/G 72/.notdef 76/L 77/.notdef 105/i/j/k 108/.notdef 110/n 111/.notdef] >> endobj 32 0 obj << /Length1 973 /Length2 4078 /Length3 532 /Length 4758 /Filter /FlateDecode >> stream xSy<()Bd2(5`2 fB[e˾GYc9}y:yy뾾_5TEl7 x$T ikk@a 9IaMB+P9@ D^Q(+ ;{ v5ж&٣q50 1h?N}4FIPAȤ%?i_%W3 2@ " m !PnCSoM,5NGzKA9΀6vSzg8m4 gUd UvX4 c71h.lDOG3 ?sMtok?< @~b/Li30HA PenodkggkbBhwJb@(yA?*+)!~R IA0M$"&b`R(Ke@߈K7( 1r ob+/@?t:KRHd)M,"]x2꿰-h; # $Txq2\R~`OcPEڬsu!#'`;*U/pG˩˙kfRCO ,:V~+3x(5/x|^j'RTB>W)ՑNW8Q߶`,vȔ` ^~̩BJ *fWɇGne{Ĭ$cjO5o}WM`3#fC^?s\n6? l$}VmgdB:>=~N6ߠ6|͛P=zuMx8:8X8H#:~VNG=ACL "̀xx$k (Q8i:.q#ތ0\* v'(`Ɠ2'HE2/o@4ݕUz|NۇYH텚Uf5%+/WBomPV74 nr:nVnG~mkE| א_3*mȱ=\jA]fĴs $ _4]~7-+w==IQOc~BqZI9:w8TsiBg^zqoaF^%UNo02s_$w'N'\ Am@LGbW7_ǤTڵ=h$:$G隲"iCLHQ|oz{5QN5>c *-.or,ج>pKR\Bx_}^|qmg\O`yv]IĭqB3*ccJ$vSFث#ḗ]bfC9FH,דFl&M8Z5~] G5oz"Lh?CŘm<gAHni͆+\۝ٕqߔz^\1NR=2eβ? $)˚R 0gPYx/4ؼa~rqi.B|?FFrt@4~N$El7B:wM4Oȟ[=!]ljXtϯR rkSdž:7ol.#xR# aT:K;\`R{+F.8B 45撆3#j.Jӷm?@5=k +DNZGU rhF3 qnb~9R~M/1:NRãd+!Cvo&%Q9A``<ֲ'bPc9)cr2SYϺt9~*OS*$&ђt7P41{gveNJp1/|ƫln&˿Z#IP Z*[twEu|i G|{F*lj?Nu{]2ojأ>/O[/ k FaFc 9ƯUOv*ٔ[ZAh!dl{DnہcRo%/EamWfܬ$yK97~)AtLW **o gU u 'j⺲>K2n1d&}4ۛ)j0ƭ>DV.ʩe)\:`y/ev Z#b4ۙ &q8M}bx00;^;I0~ dJHdnysiIR^j 8}3bʸh8W` femٷ*B_- QqisN)( }LH?-/༺GŜQg: w緬ͧnt^\&>^z!# WR?br4,e\6ΦG@p~xהZ#  m4]6SPMbFL ^|&1DR3*a6EjJ-\>UjZڱJW=;XZ9+-k;5eLq΂^}ui#5QtdlED;%1wW>?y3nJ'dP edh%=CT1PW~/h}*ٽ!{ozp@SߞBHIФ1[c fR'.s=eJ E 2YR~O'ECg.G] O$rX.v&po7endstream endobj 33 0 obj << /Type /Font /Subtype /Type1 /Encoding 111 0 R /FirstChar 58 /LastChar 120 /Widths 112 0 R /BaseFont /MMYPME+CMMI12 /FontDescriptor 31 0 R >> endobj 31 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /MMYPME+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/period/comma/less/slash/greater/G/a/b/d/i/j/k/l/n/x) /FontFile 32 0 R >> endobj 112 0 obj [272 272 762 490 762 0 0 0 0 0 0 0 0 772 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 416 0 509 0 0 0 0 334 405 509 292 0 584 0 0 0 0 0 0 0 0 0 556 ] endobj 111 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/period/comma/less/slash/greater 63/.notdef 71/G 72/.notdef 97/a/b 99/.notdef 100/d 101/.notdef 105/i/j/k/l 109/.notdef 110/n 111/.notdef 120/x 121/.notdef] >> endobj 29 0 obj << /Length1 736 /Length2 1025 /Length3 532 /Length 1567 /Filter /FlateDecode >> stream xiTWB^`LD* AA:$7aB2 $VEE=X"`{idqVEh .z:g{{yeلreD,'pp7: \>%!JaR * 0XHГ"lߙC"VC8B8= R Rz.Vj e\&@,T`87 zӖiގ hD@ ^0AijV FCC!3F՘JP'h)H BI|4a 2L9 P&*oZAYFIUipⲑtnyosxb8OuH<\#t:$|.B}3ba8}!]JA r)py\%$ 1t6b >>. 8gړ""$oB$!N _:cPW x2zC骹L}=qiz{˳ nUFutll>5; v'.XYk H?yz:K.j)͋,9oM=B~a?ic]îu.ՒN6'H,(1yB^[W)38v<"h'+6K^іk^n Z%"Cn+*Viޱ%3µ~yqLF=c3!r^rߍZÎ13b핖? w5IW;^I D&O:wJ)}qAnOw-s'X1=U3]DUsN#ko%4(N;l` |+N`wEL]ԧ"ʕO݈sXuu!/ W4h6%3:OW2Qfg^u*W>,ٯmI9lz],įm~N%K/4g[R(eV{20tDIe0[-QLA#Vo]*|fw>W1zm8 Oڹ5|"?S/TѴ Y̳U$bqE#yy7+iUIxPw0EGa}"NV1ϝ]OVehnK@oxp`7~N/bifEd@(vn:Կ1-٭ CZ&VFmz ۛ%Z۞o=cL/{gE"}ꓶew  $EQ2;D%endstream endobj 30 0 obj << /Type /Font /Subtype /Type1 /Encoding 113 0 R /FirstChar 84 /LastChar 84 /Widths 114 0 R /BaseFont /WZGYIY+CMSS8 /FontDescriptor 28 0 R >> endobj 28 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /WZGYIY+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/T) /FontFile 29 0 R >> endobj 114 0 obj [726 ] endobj 113 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef] >> endobj 26 0 obj << /Length1 1456 /Length2 7107 /Length3 532 /Length 7982 /Filter /FlateDecode >> stream xg<{/ z^F!Qf0.[D QB-%ѢD/!=9Wrz>^.FJp[: * aHPCFB0U0" IIJ^a!H\ZTLZTw::!*<$JnO# nv`W A \]f b/HvH- #rs$%{g@pM0W?=āGׂ0^z`_A]wsBB<p{'쟡fӅC9B`п$(B 7"HO/_2fOh~HKנ CW_ xB}BBB t ?S0==~裁&1@C|_a DO{p{O) _@% `O `a[AǺz!~  [ܝ ߒ$0,-"н%q)v Bta߄7IWЫM$4M&m=v.uPJo{ߝB[MM !t]?_ @K^6]hn6 چ%?mm @ ?m7_>N*+}@aQAKW't#z?E?/Ď`~n']V2Y}c[^SL7a\-7ˍ5$7X|~2"yd`4?[wg;!l}w+vKzy*ݢt`h؀[xwһ//R\\=$&SՐ,ۣ*V4fɇ,4ηp,+J~e?njsMys @I8N2d@+m qCР`8NߑeYf"F{s #ٴ* \Μ Eˤ8me;j+T)>3H*+NئH,}Â9g">}5813x]Jd tfKqԊ*UkK6Pc $j PɲiBo`1Ui,_ӊH7M!B^&%0- ^Q˜ o|!McQK?j/2i3M;K#c%5%̾_+äV0eWj|'|:cҳ2@k-=x0F1}$5,1XbYCZ+x 'r\! E8G:8Zdj"!&b2<֭m6|ʧ"M$^ǂS |$֕R0e6ldqX O6' # Q**=kѭOת^N' pK*+'.KmR r? c4& <$!B mŸA eU!YҐ HYiK 둼葸t9}j}X X'긯eI<~ #qzۏ&A'O]l_r`ͪlo4T7Aχ-c)^`2Y .E3;$5ިh%b\]|6IX).9)J}GGks0@)0Q|nhF7 <9K1;sWWtM>*fHF,Bn~V?#nSKEz'Q*qI xn $o-7^N^sB9g՞*huqґ:O41-X1"ZyP qR`k̥AΌ:aoѝeLa Fnn˗;ZwgƼ9}<  K yo+BԒ@ BB}ᮮŨUgf3=m;{r3`w}:p=O]{lٿc:;[XdgiЖ]4gD/6tr<7 }Ƙu?RVtGi Z4'H"vbfS`x7ixNuE01:I9oN5qgxEU?)~Sv=CefqI2Kث݄~M)ۥ[|M8"h:7vI-P;X>>Fyѵ%ˠU75w({8?\>Q rكhնtbACZ1J?/s._pG{Y(ōEb&_ZaM3A SUN&ȗ.ۼ SN7M4uJC[v!v3G^u`NCmUB^N0u<֩YLH1wͭ,]&/"R~xWYGqrS};Bv,›H7:SA/5Ѱ['9k1 ̰C ʹ1781D{{e4>X>s=\#t>*DrrF``u"bjzZwa0{OX3Yoe%XH΍"6uAl9~w_ŖX^s?=Z sv( nfYs+1sE;q#˜ށ3쎧&c/c4מKNwVֳ Uv!rҭoKŇte V4L16X.`f[o6\XwwsɎ\3q[Z5".[1|W0}Na+2M5Loz7+%ioIlG2Z1 Qg8, uSx"sxuoJi}s;0ֱWS1}**UOWgZJ gv YFkߓ aNz"U=Lc66U1땭H[}'WޜhT{;gf\RM&?+H'c DgYVKmG<4. $55.8JhHǽXTz"jwTY&V$oNռO{S!4O^?(^:Sc?sLWk&S/~a%^ sn=PzUSjk%g<ѥN_0h v7-Sf&Z'A_+:gp@9A?M&nؽE3<:+ڦO褃@_ /qKQJzn6VcI/bXyxd!M|,N>M1[6 ]a4X?J[꽹ֽp(lr"8KYI> Ι#,rgYo+w˲ I}]+*8_g0ue%툽4Ŷ"MVsCY+N1Wҵ,d!b{]+WKiJ1|HR}J6t9r {|)a"rmucUBa< M2[T ^SmL7:k")Tml"knQi < 讪Fގ%g[ZPk^y spSkݪ_LXkg dwo, k F\S{8Rjq߼券F]q'"̰cZc%z zlrR!ƇOd[Q5zOss]dXh$F grؚ,JA$TqYV ג\У*ZR8jCW +i׉)ѫPz`Y95P<(/MFCz$'r5CgAGyFZkrN5 2T!9~3*fUnp`3n2Gv )gu[Ԅf{NCJ*2&ߟJXfqpaMBmYPl}B7WD$L"&;_H #H[abT< ;U G$X6ǯފ?_\榬H4&x#s30K*ڴw{[ VrTc ,|9 xsKPpdٿ`HKC}xB?Ҿ>ڛBsO*^Y- zAqZQc_kNW$6&U2P#9SjN!oxu{T]a4qa$fE#]MO4iw9cu>k1s*[Y8tPXŒe6dp*4¨0kq7`vc‰eO&گҴV9-!R4,X+}ʀzIz:]ܪGO#&R(p7эʈ"&D9 56(=p@_Y3_xq8.\۬*1 G}UD{3lTT<ԫZ* PNSFdNnԦ"^|/{B!*y#Řz]7XeaWk{%]s`Boci;7\\c\ioP+۷^Cw rp;i_~c4}O8u{w&S3#mҭ}7¥Oi'ӊ1e ;9T?n9TڽtvҤ Z1L7[݉wZ ɵK#Ir(=SB2KU>Oڥ [vH\uQ1J6&$6jVjk4k$mF50|`'a}mK,2-?.{__eL@dAHMM֞]7||,_k%Bß|'ՍL-^{}> >sVyQr56=nuru n=|,#܏uz/V j?#G ɋ4-h vm%SoJh4ȒZw2 uF%ɏYU-aEW~ݍq0 eI(  &PjT^|}~L䗱YHJཌྷ,h<"3QWǐwe옻/OQVvLBE5֨#eG^|ؾVhM+51~Âq.Ej oxC|+w|ـ%/a\jkuNϡG|,ϤC8/O~!I̐5oغWu|5Pv ڍ[tsDPg}$ħ ~ޙvOD,=>1WKʅs@ ? QZ5$FeaכC@%ޕnyt&M(z4}JքR^<>ƶu>>'bjxj?\ed'PwNJPD{(ͭ D[Vo< oamTcby:أPވ[IMs<j'by%xtսTLH3`;傢 #*B &[.Qu-]~ؤeȕ+KM Rq(%`)0"~k错ۀI'IމIZulGirvKrfUPLiM~D~H!8QmN)cr$mMˌ`@[H#7P'^v~i\y>_غ88Ug8QX4F|l2 ,T`sgQ|gwӮ-X\u!XE+3M^r'{=yfZS_c'5]Zu6.¿ZJ<ka@n,) ts 11~kw(S&xk2A8RQ]\k=\1)َUʉٳIi迺OuVW<ޅV;G曊󮉫z;aθnla g`QޭN|[(̃=n%G(F ?1g˦#\a[w{!)|94W !*y Ğ̶g vC$bxdNm-* ʅ.|5]čE)7TVz4Xi}D((VT D ,~pj#Y (Pa͐#ӳp&fttGbfu9Čui:md_jXݱ,kǠ22}$ۍpKDÈuA?dVМVBǏ܅\)'w}levzuy;iw u u9{1d2MpWmϟMlO ׶)I 2E\DocC6z3uBcmja>7ֹ X!I@x6[̳(OXcA&Ώp \~h˥f[3*$DLy 5UK/ -ךwNk)$sT "^QRLΞ]?.Ãj|àKFt y?M0ӑ/P:*#䇯&f&݂MkD& "!N[;͛X1 VQ}$$Q!}|<9VaQ[!ۀX6MC9M?X?9%:| /D ۨv{b̳>Mr7FYL΍ohJvq3H+! qpTys'YS׃uCS a_9(I/ّ-Šv> endobj 25 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /XJYSIB+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/zero/one/four/six/colon/equal/A/D/F/I/L/P/U/bracketleft/bracketright/a/b/c/d/e/f/g/i/j/k/l/m/n/o/p/r/s/t/u/v/x/y/z) /FontFile 26 0 R >> endobj 116 0 obj [515 515 515 515 515 515 515 0 0 515 515 0 0 515 0 515 0 0 0 515 0 0 515 0 0 0 515 0 0 515 0 515 0 0 515 0 0 515 0 0 0 515 0 0 0 0 515 0 0 0 0 0 515 0 515 0 0 0 515 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 0 515 515 515 515 515 0 515 515 515 ] endobj 115 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen 46/.notdef 48/zero/one 50/.notdef 52/four 53/.notdef 54/six 55/.notdef 58/colon 59/.notdef 61/equal 62/.notdef 65/A 66/.notdef 68/D 69/.notdef 70/F 71/.notdef 73/I 74/.notdef 76/L 77/.notdef 80/P 81/.notdef 85/U 86/.notdef 91/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g 104/.notdef 105/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 120/x/y/z 123/.notdef] >> endobj 23 0 obj << /Length1 1444 /Length2 7880 /Length3 532 /Length 8737 /Filter /FlateDecode >> stream xUXҠq {5;4M.![p .  N{sv2翜goU_۵ַhT5X-A2n@6 @RYB qJ Rfn AP@w89@^A.nAn4Z l`d+ nrX9ܬAfv G ͛ ngP W:dC 79 q@cH<@.P)TUttXU@PR]\NOChr(;Z\;U/9 GFb!8@@7 k+8c[]GIKMMM韲e `&Be_ͤ,-! 0sq1F (|% 98A@GrtAk;9Nf. ;_K[8ۛحACvG?ݬ]@dpح]~ƮЁym/]7%?]M~9o!~PMP_񛠦 A? @?63 @uP ?jaB5#B5@BaP ?B5<#c To/+Lw'ڽVtfZiԽzC5OmL$9)cit'˧TTJ@//q }y[.yI(6G19"t"𜤆ZF4:1ѻ@b%0w:JKea.[ang/*wY}!mD,NJ r@ҵ:[40&"nE>) j6<7ޏiM4 ,9WĚn=/_,\γ9- bRbA2ϻLu:hϞfӐ8m7 ]yqJdF8:7vCN\Z_RsetHcuzG=: % 5LYѐ=)6>aQx{bᨱTM{,sXZJg9#/*op^G ǂK/@I+Nb8NI?-j:i#GPE9UE? / @cy$S1p5MR:u?Kc$$ZhRD%$C(t~N٪O,PxϹ ⣣#ePf8 M-I3j3ef|mmC9L?/n}$^ :Nd´;;Y25x/ d>kM$=0+2ۋS&yhx#6#X1x<"9qV}jzn)R;V֊| N1=!n'E$DS"!IYEVf 'yDe(2Sn* VS$oU&5̈7*$- q}P7#+{Z\^+[/ n%{] rWrKt-FGLj;6ms5O|$;|y-TS(qv*5Wfa4j>EJb$qOe |.D#ξZBEj=.ļ1le oQu8y"p&5g(3_ێݩ`R]`&Uu%c&Hxf>!'2|R&#%\b`8TX}1Y#Ǘ&.ۋ{)Z$4-rneml8[ro<v^>8BԘYXoO샴m$7Q(#Zd8C稄QSǶ TȏzplsKs:dΓ:+(S)!K/}PO݌ 6uT($o^BkoU6[J0 5{G"b%:E> /:CGG=q /_o;`^Q1zᕄ"uҥN2"^׿֧ }BH)=Lȡk4lNxS#zrʹ6jByӛX^ꗞ׻lOfL_~  /+[ȃL~mX] A{bV?0897#8%'}jEؽRZN纇P9b[9*Wݡ퓐1_x>f.Wg>ܯnZZMs"41\sQгtr/jXʉZg:W+iM([n=^AEbz\j0奓?IH B_:'cf-ʍ#VZ!-(4mo1rz$M{fOlʕ)/ 9ӯ4!zC|,VLz :JА]I cn2m$ҍ*rPK03be^7]^'lR;i+mdrKY%pLCVBSUk4JƂa["CO^jNrFb[4_Qr\,|Ur<@N@F6p6pqk6C#fm@k6|a u@wbru¤iIIIIcă^^[5$)"e1|TݪYUƭR} raU&' -[Qxe}̮߽?#qotll2AzpW15܊7C a-,}qZi%IrXc_ +G]Bi?AweEqP1fv}~VKS>bE PAsЩPϋbT2I`rm@==SJX.냐KvcSwqvl*dӒwC{'~O׎IkG|I-ŹRN!g6><މ'RXy'koSE0fAbqܸY'zw+\;Fc ?:[.8+[Jְ3cݝoBŒGer3zC$]8)EQrnӒGQ3),2t7WNV3xmgSri"_b~z'EPCf? a \NNJpmR;Az hqo͉MRYU&[iش﫹7ե ~^y?{$r[.0w!DKX bʸ;pƲ6΄^SUIkAt߭8d\Ix$Jn=BsaZ׉ԇwBf&'szgEW"}Z @V[/I_Ow&"?zs24L3n>VXWkPi_AhZJlG+섺DT 4y[*uQg[2Sa3_xtOyR(vO El7LAvy:2-ZIWsVێwx/њ*/uP 5"$°󝃲$r"{gvk8:մY!`T"p*s{yM9պ`B[b7Ea:Bz=}-%c2Ge άC 2T 7d},Y+/7pԊlօTB؛k (wi~m@X{Z0 !ӮX[$Jm~{Tz76W9fһ_b!:65-UolNgsf~i.y-^ف&4B_˯̫扉w 8Ti^DYٙ Gۛ0*l1vI%U54x)ȴPvJ6i :"09Ϫ0L>7;;|CHT;b܉;aaF*A^DLmGIn5" lWSE$:;ufM^ G`eJYCB[8 bpDX׺WNGSiU]KRy6¼n Sz}=`X^uZ:OM=_D bjI>H_^z'~(ln*9j:sr P<=UWEJ hՆe&z=i MpH?߄byH"t3Y1oS S^x!n*yԏE;+ n Ǹ4nn{A0̓stH2{AOd4u+`]r/S>LKn%ؗ͟F+k(:-4 Gx; >`]~-9Nb GfA2vS'lp\I?hQYF}iHv9+^V,z4'evwe Ǖ45g.QI&vshHuo:$M{ @_!W%剂bmCZo=7˂<7+7=ͣChn H4 C4o*J,}uÌjgc0oUpG_sv}r*XPܣBc-glx{CgOzNT' nk4w$hg̖Urh*eDNoF2O>Q }|RqeV&`X2T&\N9xRazdyvTuEnLw NҞƴSSoz/ϒb|Nlm |[q HR 8g}aC CM6ؘfZ4,*_pj l~dg9KyB -[ K*-H0cFp(&,@*7zѥ&6=͓I툑6Y4KZᯖ9hz.(%D\캬I9ý,rb8/dp{݌)Fۍx;q` N+2ZSO Z}Er)^(SdeC 7t[Ul7Zߒu͘ℨlEjη% 3'+ZMhtHByOe^I*S ѬwX:ׅOl~%X6)@x29qf` 8%f˱wλGxuwۿBhXP3~"Ѭn3e2L:zCU'F޴}Lz9"Gѻ\s_I2e~ZZG5 RcE~a|V1dȄMn@CBXcM͛-Wyi'")_(PT>F1Q0CNI~Kc4ՍTүuze57?J-?N!ZȷA`N< zʙSxkj?04"]uKU޾EG~{n4,Dg gy,LC}bť""?.x-~WtLd#7T%L~ŘSk^O?ȧQATːUآW¼Tʺw˝;rډkr'ΧG  P>V*u_8l览laz5 > \~(ƩY~?!%t 5"K7/M)el y}'p([.u&I4SgprxSň81x(\hםurÇ%'W~yK>.nSȳK_/_dVWzr+ #&!TwvZt,{9lH'\BP&1+K0 03H8zaunD=7uc}bz\dul4\6-/ wx0o*-X؇c>:yE"y'*ˊ۳Ã]nkΠpaa×9^}YǁAKY* Gi +6h{kT9"3]S#VmE~ʀtt$uDźLd|X/-4m1@Om_v 37G{3[2Mpendstream endobj 24 0 obj << /Type /Font /Subtype /Type1 /Encoding 117 0 R /FirstChar 40 /LastChar 122 /Widths 118 0 R /BaseFont /WLUQQM+CMBX12 /FontDescriptor 22 0 R >> endobj 22 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /WLUQQM+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/parenleft/parenright/comma/hyphen/one/two/three/four/five/six/A/B/C/D/I/L/M/O/P/R/S/T/U/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 23 0 R >> endobj 118 0 obj [438 438 0 0 313 375 0 0 0 563 563 563 563 563 563 0 0 0 0 0 0 0 0 0 0 850 800 813 862 0 0 0 0 419 0 0 676 1067 0 845 769 0 839 625 782 865 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 0 459 444 438 625 594 813 594 594 500 ] endobj 117 0 obj << /Type /Encoding /Differences [ 0 /.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen 46/.notdef 49/one/two/three/four/five/six 55/.notdef 65/A/B/C/D 69/.notdef 73/I 74/.notdef 76/L/M 78/.notdef 79/O/P 81/.notdef 82/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 20 0 obj << /Length1 754 /Length2 1146 /Length3 532 /Length 1703 /Filter /FlateDecode >> stream xRm<f/QTt9μ/2۰(!2f33iOH)g^ [R[$ĩ-*/lNڏ{>y}}}7*(Cc!o(D  H&3qx'q0xqRThTOT,`~yϓ`.i<$Rkp9BraH*'ϯ`HaPJA,ćiޓwe^}+$jSNcMPD(<(Gb IB!#$>G 2P8I a A3$®#_,e/rK4e-NNdmsR5 HCTL`$󥨉~`3Ey0T:p0#ǩ#_ȴ/y1p3M>UXbY6g7,o 4=eR懥M9ƷQ1(jW2(++^h3tիMGγAڣl,y҇dVB &61>_|Rk~T|!ܾb=6z$w'Zg,L ۦb L)%.. JmIܺVOGJb-l㶻f m,ڻCǬ NhaOe VgE?Hi>z+zJ"*XfI?O7_Z8e핹 h/ +wυK T"ݗlUO2'?b`n(K],-!'IHn 'oeolt_Zt"=>]U..ek gOT3I9tujyꆄv+|ýrkhv.A])>׼l]WFcn8/~ Op"endstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 119 0 R /FirstChar 68 /LastChar 76 /Widths 120 0 R /BaseFont /FYBEPG+CMTT10 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /FYBEPG+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/D/L) /FontFile 20 0 R >> endobj 120 0 obj [525 0 0 0 0 0 0 0 525 ] endobj 119 0 obj << /Type /Encoding /Differences [ 0 /.notdef 68/D 69/.notdef 76/L 77/.notdef] >> endobj 17 0 obj << /Length1 1660 /Length2 11571 /Length3 532 /Length 12534 /Filter /FlateDecode >> stream xeT\6]{p $8}ޝ}>ݣGj֪zfF( L ;gzff 3I\hl 3vY@ pl lj l t45;[m1Lm SK@Nhƀ 04u?[!2#I\N`QɤEl<f@sDF8Y\F4[6_ [{g#@dtoWM࿵,]l{UT o;L`nlhg"FUUe1mQ֔-<1wn/3_Kdfi0vt4@O^K;3;`r_ φ2-Yhdc0;l h 5ca0Zx[8ׂgd `t1vc0zA F?g?u\/\'p`N@׿Y m@\8.Zk)\Cb\\'C¤8gC !.pL?TC"f &\b'4 i_φ`Bᯡe *lB ?B _a:_n_e`n,/ 2<""rg<韾r9΀@w)Ȕ7*9G`RsKBC78HQYzNJt,bg|No KWt6|O:n!g6 O߭@6dqpjIۨS:'ìOX·Ү^:]0 s^`v` սe>:`WUFBj< \Lɻ^ҵujsoZ,1]*(=_O d[~h yQz:$(mV8:؞̨x>߼\;!Z?ZP?( )gd782E ]oD{0l(F`?ȫAywcc`L7TJT}݃& e#҄ {80TÕ*t4ҤUv Ԏzy*s?٪wg|H1{Wn3wOvaѼS$8@+7Qc*у/:8NKB'W"xPԼrAY@V[`r&_aK+o34p5T=f9&)d^yw 'KG'D7kjb{a#J9Q>} G|q9av{ DcT֠{C\d 5c>tobj; "cQln #2Os"'s&&e[bžgjAlؓ ƽy߸]wڡQFU!?~K8|VUܿ, 2F95L/ƒ$*ʛph$dXɉ, XWo° {9[eCt髮`΂s+m"GR-viRƇY$)P\ O̠;nyyO{-0 ]nhOُ틄H~8Z0~]ͤi=7ju 5*apIBrmoE~ ;H]|nI3SsQz""Q䷕'bԭOZ'ݿr$B GH2=-4>C#o%Yzt.XvFq"'!`dmt6%ڦ!8̝:@s(d瘕b9~6i]L\@/2첶۩ ͠Yj@@W=q`I3~ƌ3|!Z-RY7 Ӟ*YycG?ՠfaN󕫤Ld-!c.e]{+.%%t"G< '^//&fz.YƩwL0/ 9ֵxܢp׷޸%D`O3B#m5 w:A`Vw`szľd,~qR9OuOefFU@e&c\7K|J쨍HB!:i"8 >]dg;xIJDs: Bgj=C^v!{?Mҡ3ydTEiܯ&;r;iѲOg_y;l'ō>Aw-]gs*Ls*"d[ސ w3?|om`7;j+0jOJQv/a.㞑mEd J{ӇϪwX|P>_B$Rr#Msz 8Ph.@S}tTNe&f252F` \]G`N>UtVXxpPBf&7DZ7z;/oҢ=פR؊ia,hc6b(C@}%+ZfJU-(wE.?B7irnkcO |<]^[_~8J^GQal~wn6Sg7o Qh9RBZR@S]<ڙFrv-Fk;pr4/tv!Kʣ$ºeW]ֳGNci c#oPBڷp/ z /Zdwl["Z$CH[!Oؖ 4/}aar箄B^.f1{p(H1#Z:4/mszKjAK؜vN"u x-MЯ؎IN)juڐFGyۨbWvJ$ * l>`ƶ!I:VEi.*վxK&M G $GM:bMUmR[ؒ`lkfHf.>JK|2+}*='rh/+BV򾲆܍`anX`tjhoX=F=;lј2F'C(/욽 Q|4=2S0}'33]]شa:"$rzweEs|NXAFx+E]&.@&וk f #6XXsUۃs?(0Nd:UKK)Ŋw҈H+cc>#` n<ɕ1'$&kh@^~3*mBN ؅~釱X%&Lj Id9Qy`I9SK摏2;6<g383푓H銲W 0{ 2ڽv0̨/dU'Qp 4$`? |%e 9M.7"PJD'VH z7BKdSk|Lc)IklRjmteGJcߩ0\d1QWYPElt =_z/{HWϏ;sVW>jQ|uX} O2Y ]AK;S:͗8IkVq/W+x0O^ Є#!-} X6P.kgaYkY9m^U⨱A1_1> MCYwJU('^R I5ч; ;\*)@х K]ubsZ6.`NeQ]a!Y0j'D6!yY\fo?b(PO/Q8o~ 76'=@#a*Q;f-hߨ­W[T ?oΈ>QU\Vqt. O"MlukbTe{s>;*P.|M oJ;%Ihiu@EBv 3)sdQyҠ_1|Ȅ(}#Kk,50j FBA?R7,(w7 l[%) q[*'\A\@xBiS=Jb/,fA;O#2ޏ:(M}r y\b?PN{FϼZ%ds:r~Xl"$4(PsEգ?&h,}[.y嬁m'p,X{6EVj!/BRٲ}HSBZAJ$ ;+U9z>w?h!""R3*h /ג5:䰮3͌CxQ_SqM6IK,9^:AGGr%8m_You:E٦881ٌv$4pZ!W,x`3Y@m,]1c2d Roeמ^/۱B{ϵN1#|f]3eRl:Ì3k>w. ut۩Dl)N0^,}(<+jk9 O \޿9@]b'.$vs_ U X*C]tmWya|T6#/`q2ᑫ/<\ߣ=S6q/סE o} E"Im %+TxP) i^!9q&7GFPW=ܢvD?[UW;NdO1췊?^so2G.S~|/8hݼ**LŤm=gpuXA0Y%MCcU v +j`)KFh]ZVj.ʪ -i' d2xTRM'։Pه%b { LxZ FֻG1x6Hl5 ӥǑ70Ke*}d#C*r|P3C?՗i"%`b^=I0u3ʄNC(G2!)Z9Xg#6A%+=nw74$J}M'5ֻV2U>,׫2)~mÿ˜YM5 \/X(*\zB&ړ]jEY)3ш* i[,K7%Q0D||D"Q[uu-3I`*e/bvWcĹ>y ao)grs~Zv׮>mt|O#_Jtt^Btt}LZIˡ/p,wwf4Z,7r|%f pJo{ 6l7ߩ "q% bp_FpO DJ@;*O5qr$p  ō9Z6,q eO$攑+ #[>32IƾRAcPy?ۡrY=dJڡYF&'KgǮ.(|dG0? ['[{??N1}禖5džJ_ibsa Җ2րܻ͍-ȏy܊yɠby<[Ĭrb_`!bH!=J*/LaM*nJ(Lx!PϦpx\޿stWEQ=\rိ*=)HDuIV0mrvL)*+R^qvĆt FV$g93n:n+e#Le4d!H&_T jZjVTkFtJ C K>HZ@zcB~­Oc3F$c@;j6Ɩ]Lawݟc, i+MXg(#udDS{H 1^[u|NPP8#+RrI!I)A?S}ybwwm |u]⫱sV/u"/ :vgaJ8s _zk|"ժ7oeZ4H%SůmK6|~Uxd y ocڅ-͸+2zCmk^'QMw- TR˱2 F 'aH7!";!}FʐeM#)"` s(njcu:9~KMki2׾i7d;+NLt^3]i;{|}^y`DkJb6*s7:kwAǧ>*] _Ѭ-`-(&?=`bynMIkg(9oH}gui *va]UQ"j;=N6x9$pW6AV io{@>H;SPFd?2ױSv9nR3Яp :p ~X,(ejhBX0Hܕ?ⵒfv >aJX IXn<mRiVX FK\Rx9BSɇFP4{Grb[H{WK9l>$-1/m ;YDqӵL[8#{aeS PHnw:3lӜfllԴQLZųZa{Okraa^k_)*g. vdgɻ[LG o!(i4S QoېT0B1U{8d';:`H@ T>^_ wWP~QQ&Rxj 9Z*¬0e9(,GAdG^}^쇒M({?^ @ gg*u6(mAvj׉rY_sr/!9\V;;+rߦIycvXߗ=wa%׶n^w Qmya=o{>\lBEZ.{>H76iri﷗K5~;RZn6AUng:ޖQ^u4ᗊR-'PŪOsΡ+?B6-s[X / Kz<@0᜷ !mVq9ৌIed/HL1(6#x9|#d90@mQo)67Ě|nn u'D_#Qd9.BKh:L 3=u, D8iX%BHMQY <7B].j+#/fq=6QoH*f1Des~RT)bIKМ:6z9Nm6%*#hHl &^ }¬*]L vt>)o7 wX?luOX/Z&L 329yސU]HKa~_78[f hXxLt\4sxr&YDQ3OOn6/IOxd8mLs O$/vog6koC Yaq65r2vO}oJz:}_ƛ-?4fIK#׭d;KۯFbs9͂=h]6]3&~uCo's Y"+ gH;`89DObeE:FF^uȔ$C` s0?<bE\GRy*<>F<(u^YpuIEZ8OAw<{G4T3 eVē&;$a9dܯbF; \Dou(HN;XKjNC_m>XM_;:\'@-DxS0'5%+3N%0G9Q뷁0Tf6̷T1# g Xd!y,81#Rg4'e2b&E~(@aM:%'vwJvAC)30gg,ɖC]Ĕ׹G^ĂK|}<2'`f&QM4~bXDPwGeȤA{hz~F\K'E3=&|#‰*اxQ M>4mqaKnƛsg^V]/J?Xn忎5r2㒔jrEQ].iWOCRC+٠͚勓>ZdC)~\C\~Q8Ueneٜn=l.rx00x@3P0<?AgJƺ=H=]sF'^l#?)Er(-lAAy;]:^|u`CZ;B%|fK"dBiSW^&4[(AG$JR.r5pKYk侍04oeTΥ\o5,UT6]N O9LƍLy مIf Ӎ`ޛ]kgmEMQ7DAC=e%dvf܈ ^. Tv2Y(], $;,r$xPR GYg|;Asg0)=[dҠ)~Eѳ(} %Қy]=`abɨ׾&:"ewIQt" &w/ iGG Q |y 6oVg]]gmvRbĵ6;߆\M:W&.sƥ搐ey䋈Ҙe}a5],#"Z3gl >«~mO%i_w8OA0DǬNM+eӧ˝jVn$Ɉ>H)m'PEnɆydp1pܙˬu5 j(^1=`"qAnXf!(A9_t{r{PTtS191 -'f4{Fq> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /SSQDYC+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/fi/fl/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/nine/colon/equal/at/A/B/C/D/E/F/G/I/L/M/N/P/R/S/T/U/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 17 0 R >> endobj 122 0 obj [556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 389 389 0 0 278 333 278 500 500 500 500 500 500 500 500 500 0 500 278 0 0 778 0 0 778 750 708 722 764 681 653 785 0 361 0 0 625 917 750 0 681 0 736 556 722 750 0 0 0 0 0 0 0 0 0 0 0 500 556 444 556 444 306 500 556 278 0 528 278 833 556 500 556 0 392 394 389 556 528 722 528 528 444 ] endobj 121 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi/fl 14/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven 56/.notdef 57/nine/colon 59/.notdef 61/equal 62/.notdef 64/at/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 76/L/M/N 79/.notdef 80/P 81/.notdef 82/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 14 0 obj << /Length1 829 /Length2 2799 /Length3 532 /Length 3389 /Filter /FlateDecode >> stream xRy!OD O+0@_ Q¿GM񗖧BWPV@?&֓Lԟ GX {.5,2/H7 m;Z_-Gػv#b˝fgw5z=z]MZθl-rW]8pw#գ/-&s /mJ_#-RQŧxR<Ƽy&0uFUHj)jt-ˈƠ%je܍2oąګdda*U(nHq7(z0_Ie+y[70R,"rWE> յP`g)hd$;: $&ȫuxg탰eOۡv o4Loy{؅-{yrzJ:.ê]AqgV(uN34M<_O"JCvs+KyPw$Y gAHQQR5~i,njМƜf&{Q&G?AXRKU3aG'̏6$&TH,G6屦/R bEP i~.I1[ pm@[}1PTG|ն]%![T2Vt/m~ĞX/ $S~Y>N"Nc?lpp;fcJ OZ!㺇 `C[!2z^lHtci͇U|'YbXJRmRE7L!.],XAs<'<.)! xtQS||oIyk#JPip(ju^'tQ;(IjG$X`勇in%z[ɬ‹Eʆ_V]'kT7]XMɸuֵ_" C(ihgDm4u'8\2}4\ihƞ)b^J-'_ܠ[\qVn뾔Y4,Q]gT3|7 "yny['0DQztJ:RX VG}){rKAM2g=ZL%RyP.v_>6h?<\ U^ Kĥ),Oz_fQӲUpr]|gEhw q__L߰lѻ'v~u9..A!=N>ӿ*@$^*^K.|xbYഹT~x$Kh*.ON5Aao8,*&m5q$\h Z3'.Wxgh%,re'*>KDhud˩Fm/EK]U3?9-^藥X?Ceu8s'>ǟE ]bkx0&@z{xC!9x$ U 2Mu!M?=H0xm?Ej_( D- pgR /-]' ,W' x|7-uMgH](jK]O^LZnk˥=6nxeuskΪn#Hڵ6_775 z׏ /džo>kt~Ju˻aشL:&rxʉ` VaFKʥ3ۄ4 c(Rvvog9#,:96;y/I baQP|n! D} RsM0O"⡚hlhjRXnޑ:mB[2 QDϫ'L&?&tN{n~!mjm@&Ū1iR9<(D2s2o 7FRmz8h:hv~Wh0޾xb|fU8;Rϻ"iR3*bzۮ=O596x)(\s%ڥTP:mMD7g!,#r^ r\h^EQtue'wUO;Oh4+c,7[ RR].ْO4CJ[GٺI!n&-Ԑk+%CZʼ;u{YW F.ʊj@MnByq+3qnwZ=QdyTVyǦ<֝sX`@f~"n+kGq~{a#L7x'U:U4p$iP`!C#rME0Y]K1bTCvѣendstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 123 0 R /FirstChar 65 /LastChar 116 /Widths 124 0 R /BaseFont /ZUPLAD+CMBX10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /ZUPLAD+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/A/a/b/c/r/s/t) /FontFile 14 0 R >> endobj 124 0 obj [869 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 559 639 511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 474 454 447 ] endobj 123 0 obj << /Type /Encoding /Differences [ 0 /.notdef 65/A 66/.notdef 97/a/b/c 100/.notdef 114/r/s/t 117/.notdef] >> endobj 11 0 obj << /Length1 908 /Length2 1806 /Length3 532 /Length 2450 /Filter /FlateDecode >> stream xRkȢ3E28,P7A̹ATsY2Ƅ#)֠Փ.! -8#hd\ -q!{xH el׎.gS8T:"Ap0M"(vF9G pxc5,:[.X |<8w`x;db t8vbA<cCm3AQ<@~‰A Ǒlkˉ22,oc0x oDǃ,l2<:<`(g=̚_erϖ^EFpgiCɍJNeU^J{bꄼ)S@BƊ9}OfRl >Dwo3Tm@=Ǒ:fJ/^$ҚݛٲS3Z>XΌ vDtvznuv)S?HlԈ9T!!F-Iwң{< [bohcCPm5tP`.֪ vx깘ߋ@FvËnM))«=W1kt?#͕s$MX=Q"9wl/N,]>a)P?ZF'vZL8-{!쭂j}NPtO_ˋ8]I>5-gV{g9أRye\37njdsuDCb"'xedGyk;dhO}L^#<[λ{SEjӲVl%f7hvFi!WUhuk$) M`O iʕD\&85SC-j+:R:Iߵd%R,> "ws]Uyms'\E ;S̵[۔yTR:}b#Eyk谑aa^)fyN!:ޛ^x"9d]Ox$F<qeU=Aa'㏕͆s+~ThQMn͑'\UOY#_u\KL0di핮/ovlܑGú Ι;ZׁBT~_մ4S`F˪?56I<%C</njƨ` kO] 6j/_MFϻ;=]}W}\N:SV;EDE +Kz;*:e_J^W]|Jts#:2lj_/ulm֬k?y;{~!U`h$ʯ"9VFz) JK/BG!\^ V#c1Hn++*)C/VN֞XfBR='cEh&uJ>P}:CVZPԊ|c5\:Go U~.x5MD 6vrٶm{ /?!@aB Oa<_Gendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 125 0 R /FirstChar 0 /LastChar 110 /Widths 126 0 R /BaseFont /SVGHCS+CMSY10 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /SVGHCS+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/asteriskmath/bullet/similar/element/negationslash/B/X/backslash) /FontFile 11 0 R >> endobj 126 0 obj [778 0 0 500 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 657 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 713 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 ] endobj 125 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 3/asteriskmath 4/.notdef 15/bullet 16/.notdef 24/similar 25/.notdef 50/element 51/.notdef 54/negationslash 55/.notdef 66/B 67/.notdef 88/X 89/.notdef 110/backslash 111/.notdef] >> endobj 8 0 obj << /Length1 1882 /Length2 12275 /Length3 532 /Length 13321 /Filter /FlateDecode >> stream xUXͶh@.=xp% x:{%{:inz̪wQU~$S lbguf`ad)X()Evb@^  @ `ee@{8Z;hDi:Z ́6Ɔր/v@gF5@'@'+Є`ba 0Y"0#$mkjw\N ) HR4M@ ?gr kkyCIǰ`gc tٙmTu&.6sTX`wIhhll05v+5}$_c*1펣;@4_tG-q[c; [PCpp  =@" mA@{0sD8A'dؿ ٙL@[k(岷vqe310{؛m8AOzO dmd' `: la۟q#,O[5:0H +m U[EY_G9A@?{ *'@DC!.FH!P??Z-^!Pu?.@CܠTO}Cz*v?]LFV@օBLZk@ڝks(?- %^1v/9Y :fdY +deB_O +d\B_/Yy +Ͽd6?oO;w/6v+]pq0y.;_?L\Ŧ t#Z3 Lk -6UM.b3^k1h)ܺxzsy&&>> SdҸEC|۾~g3uǞ=C jk)hifaI"*Xk}wV0'DjXH-2ZCi8{ؚZr"de\ʕ] 7Io:G3B8󜺶 6QRb[^+m>e'r7Q$Ώlx2΅~uce㴊/ (Xnz`xf ڢ^i+Ei'x;UԆTQ}C_pqvknk:QUؑ}[/MO`$ٴfYKg Ss˲;#Ўp52=4㉃ n}|0N)Yf $IL)! NװW$UmV]HV1{@E q׿7O~Rj;MWoNJt_zn5uk6t M;yP$ALןF-WN^|vB`O!^0/pAKnZ|/h6I-)%6;|_ς%;gq5xRģv:|_:'Y2c-z5r] v۵-]ˇٰ9,"YĴ7GA`ed''3:xzCO(lWxn%n\CCo-?E^Cd$¯G*Шvٖhg%e7͇aw>X}IMO*a-Ȕmc)QjP  MR zZZ>pƝfhK5\5h-,\>F >%82XI_$* vNp/6\ fI//*R=&5քv~GKfbV[^UY@6H.u;$QP{}DV/>6JxJ}[$-Be;H*'BsV \0M=?Ő/^9J$َzb梅Zl5xgiplSC^ءKOx1`v}aG@bF7ۘJY`Ɏ!Q0(@~âgGx-֦rP ]AkџܕeSۡea6(FzNW]?i1Pn!fU-u6uG*E9'7@da0 Ag1'|spͯWb?$?'* ߸Q|K4PuyqNAFe8_s1>:DMصe"3ۘ&'&ITK3W~҃-t}1Ŧ>D=aC`/qH &@QtO0 $Yz`7=K[(/ջ*) ]攜Y.#Hr"$wIy)#iJ} ? Tv70m`(R iʗ[F6Ihy A-W\pd U )|"hhe[JG9Vy Kiա3rÚ\,h=S^0yuBW22Y;X\/ :x{>~VWQD fXm,nlg#۟E ppD,a 1xy1dSvO!1uaF&>%ВD1$vh?Cu彏$25H:8Zz+'/33Pazs̓|7Q}G|۟dTM~5.ǜߕ}Nצ~sԕ߇6*\̚((o0nJu+}[/>w#8%E-JH(c\@ \Sj)J[G֤L`@)V1w6|.e|eG/_g^4%ߠNì+>5_ue9"]oʏbYd>_W6cGLw34DFNbDH{2$PѕQ>Fĵ;>gm\2_ϭ"~􎞰('?zO&Wϻ1.E-Ly]c{ӴEՏ&얉GZa*Hc%&;knٖ D$,;I֖^VO%ve0ݤG.gݭyUe$'[ƕ!$س224gKpڋh-4Ns:g~_yz9oJ_Ccn֟\'DAAm~]TnpDtM9өImM@7x6eQS^xZ") ,'hbԡ- Kmuܲy.SǒaL!FoOe6?N24ni#T?݉~rݤ bXX۾COTmR(W6wt`)rz֗˔ɎQD횯mvc`aY~u%`<4pBJ]2Nz.L8zkKڍ%0l{ko< Mwb[n׳Ti4.+u ΌWM0qP%1' tn&vTiCR楔.tERׄCG+{ &ұ_خ?Nq3)r|^ 8Վǯl WWoŻRra#rRp,Xqpu=Uy8j{۴(܄eaeڬfVRv!j6NcH<Ԏ p d(DWx_\MpN/JJ'a0Bq:*s/&H68 {Izp_m ]2÷i=_DE\:z9%~y灑ѳ\kyrRhzPIt _OU.'gdgYh^PxU&o5ׯ82g VAn\6H뢚 Y7X!6Qi1{`F4j&7DzE%,r疓9/S"kiru;jA=yKOϪtHBpQGc{qE|=D0J>[>QYv|Z18vx3j>BP(O{?*4@5qEhwU#gj,`f:JjzTg$-zg S "㶇Yltf gKyhCoWizWYPC <]QjD`hflkTUHO CUqL!4 ^b10put"zQ˛cx^D20u?FIòɮT/次 ~0(_cO 0BqW/Y޳!77Z=D<ǝT)#NvʱPkLib{܈G=.-fV q}7Oe6\GF)p#\m3E.)qelfj2Bi6O0yM`fk*ujer/㿮$4iLQ):H@}Ϙ=7/MB<_&7zEhAp7 :Lv,NôTG׷r1w3‘ V֟UW'ٶRV9qi~Ve|'m>FA$y/q/MTl1{L)r -;v-M5Ӱt.gl=蘛Hr U \mPa> ɶJ<)&UOR='ܥ+|WKdIH *ua]* A;VQFx J EJѫM:擛Kl[^V0Վwۥuj|[ֶه񾺅L*h<.A!߅C*,?IK04[-GҚUL:  b!)n<ʭHb|.WYb֔K[ vѮ Ejt_r'ӣR&كl%HIZD{aBܩf렒Z}|7J1X$n{N^*eK1k Nj<_͂r2bY-fCJZs Ǫ[<0 o::/[mvu0#L&""(:,Ǹy*jUd@ e}t.610DJsv Ɵ nhPi¹gNeю%Ծ"ēJA BA`N i~Jr՟)ĿM EV&IonҸ9! y4c]\27Bϸ57B$!lZHW{؄5NpߓH*@ҰlwYgK78{2[.ZBR0|h0#QK7oi2޾Ĝ7 L4x\ٰ_ L 2THֲ\*=q|BƯz,rOc%)?!X(pZu[EƭFP~ SꃨS=6>f}R\1r,!8+aJm4Kgws42%yQannAf_T'@/ ;$/eُޣ>thS6viGVVPdl(> J:! >d.Z^7g½͍M΃6 ˽X W$p6=*ۡpҀ_9D/rPJ12)$S;>C:{YuM'w$8 R'vCyX{Im'K=`TOԦynv3A2ԏ#]${_n,S4 .*cP-*xh> 2|-7ZI歂I"8}./,z]NT F3GcT^~g~Բd^1;iA&>$]{*)\؂NGhf!;6pDLyrU' (mŌ a*pqmVStye>,o5n0<ƣ^@DQWi'bj=bò{y Mf=ږ T4,}ul$X+dg,$RJٰ!\>S}܃'fbQ_ѽ$wX"n7a9.쳧>#Tޤ"F[kK`43[JIڑEzjvUC d8S#%+rǕGɭM·1ݟ䨳zb5 >'"&_xL:y TCPHPeC8s-Hcˊm \VO1,Qb\ ^_iw1fst6DPi\jl8c#_w٪khP0{T b]._G}+2 %֡K|^[{F z #\&FN&CdZ'YEB ǻ$KP͝VM'%}-spH&c>uZdWѥf९|{1de];s믡bJM1;Af]~uMIt_TfaܱxocB0~l t skƤ^\ᰇ[TKdfֹ.:\7$v|V7K~ea)L5$U,]$$c~Jm$%w)9 %; LW1b#d;޴ҖY&YhPWv_`#8YyCxվV7 m ]_&>132+Qg(zŭʝ" im> 75} 5d' I묶 -~ Pׅ# a1HoJ7>Z[|Zy蔠Yޗ"e܅Ya:{?GW"[;Uv5|AA(ВvcLyYHG L-e!~^.qKsih53Bi!q^[J!Nݐ>*Y|&k~-ɿ63.ч&[μzܼ{J-58םڟIɚ`4P<3ߎngc/ܙuo&YoiHL̯=;(OF|)Ѵ'g_QbN`51ZL|C ZJҍ¿pivR/:h= OrIrH> Yu芲K/ף~Ŕ.ޘ1&E(MYf=¬qC珳 A*ti<*jZ DU_ɛadLlG챴u] YozɿCWMHݎ=<W`;˯uW/=OswNz"zj s" [^x5ܰ  KdMxYӏIm?o W9IKb"EQam8g !m vWbwgwWg\ B4p}1ʛ nS['풚a=3Wgit&͌Lq ~c#Kc -H #+\r9u^ &Cu瞫PyM B]BwN d}0l0L Ⱦoa'^?SJe\%FaEPUo[C G=j |UQ"VB9c[Zu" USF\+:(E]_Z|D~i:Q:vO)EsR/e Va޷Vdxo@`caL`MQ]h'd( Cï]Ct?VjȒ"CPeJ8|ɚUQ9v0ɥ0MF.8h"=zfC |wEhTgέ>R`7 3g7zou,p)y:|~cb$M*o-= _W#{Ҩ^eB {?}d2!*@^jH)eC0HHd>vEY._`R*dۯF$Yu;=<<%剪H<;1O^'jvU3CT" oEۘ(ߐOa4,C a˦u]8?Y,Hx#iBXjȡj->oB\kĚsnɂPm4,{ݔ {ۑW/isfrjޱ4%+qEc z?(=Qi;} G+33ϓ{B,`‚ [U!|e2:u2m@GWdi"E (ay$2tӃ$uEn[!a͊Qg"ΒEDU/Bwh6M!Q|?vi}LO߀[&B H+#0eK%-ft%A=˃#?( Q‚jh_~G5cYKbщG86vb;*R꽍Ʈ.[)(?ٳUc IFw)z \6JJ.$/{f}Ŝ<}|pPndHfNh7DQ_SFWJ*u "CJFdO|[$L-@p_ÁcHO@8JgmQ] ebir(v5 z|k$?E[z E DejM<\8v|Ȯ&׼m.rnޟpЇggHٯA+c9;G  Vq> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PPOQGG+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/ff/fi/fl/ffi/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/L/M/N/O/P/R/S/T/U/W/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 8 0 R >> endobj 128 0 obj [571 544 544 816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 381 381 0 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 0 0 734 693 707 748 666 639 768 734 353 503 0 612 897 734 762 666 0 721 544 707 734 0 1006 0 0 0 272 0 272 0 0 0 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 490 ] endobj 127 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 40/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J 75/.notdef 76/L/M/N/O/P 81/.notdef 82/R/S/T/U 86/.notdef 87/W 88/.notdef 91/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 5 0 obj << /Length1 1062 /Length2 4468 /Length3 532 /Length 5165 /Filter /FlateDecode >> stream xe\TkiiDd-30%!0tIH* HR!"y9e^u'#^yDy$E-=1@SaH $$y7;@&^(=RI w`6`FC6`8iy8+uܡ>RAP;+ Y9{rņ!؈$@ m$ M*np6Me _ H'g74h!!P⟭F?iA!07p<,\U`P mc؂?P!Gc %C?50 rKW,7cwLORF !0v DD0 "ND@='60Dc_{"QSX TD$HLMH/@AkJH`]"~~ PB7 kbF/7"Co5BX#k7 b+(Hb~ "dq7°zBmHF6RIBs_r*jW 6^ ÅwkpO5>)NI5WGe3%6y⧻;)Z^ ADp~\`יյåH<Ɇj^՚,*f7 y{[M*٥(\8lʃ*T_CI-6$$+’"+bp?=Y ۛęwҴ Fs&#u^%Wu8mHM%q|]kẴ\H"1q3ϱtކ˨ʱ)牝e K,OUmfAO=+ ֕sIѩ.!TsC)*rXs_4t[9Peؤ<|\hޜxMk)(# #.ʯ` 6qiUYwMUk/T3r RaxL0!vLhr' e.΀Rl nZ_[ȡOy0^-RLy4y~ixS%2h E]+7_Y1)9sm\|~hH >r;V ycu˩V(GgvT3]E듸7G~#H~mrn"CVWIj7>SR0F t[QZ2 wGLEvaYjiTyߚR;..Sei]ƒNF#>?oa؆Ԇ[Sȇ=I>1eWej~]㒽qޚeߙgeJXD-Z˿̏LUcB4a0jT͑y 둲St|WU,f T$ֶ}>K eސ-">*sDQi#pʰĔ?C GD LY=w"<7dx׿Ǿn]pƘbBѽdT$F isR#wФTV,*a*1ئ\<>o2f!Xq._|9hYka(gpeATL/u0YS >.ƉgKV#:t_0dĚ* M=XDٱv(W Τ\-r~;P8 ΰτ"wXεV? L\aQ(Υ4AB٭dFL 7*"[VHgݹrVOAfH͞zUD7g}1++b@3hi٠Zda MGwDR5lNY*"($;h7׫z2sOVЪ1zssV rXP=>=x={!Ƽpǎg%5'gZ‚~#^»RsuUn'Ae@@-ojyEM2je{fHGrLfM! ^6u osQZZn |Ka 0Lk2Αm_8rwj,w~Bu|a~;eOHt-@W4F^S2@xS.O[V`~$qNjRer֘l|aL3CڻY79tslV?A!1s0͸Odi2t 81{>nLTғW֝e],_i,BH߲Q:xlFfg\QQF &ψK 2\&OK)j7%0{IcŹ\}vË4Bٙz 2cA )q#}qe}g3͗׫g0͎$ttmͻlQG&G4w՟B]ݯ%&|PWsMsVN5!7hF1.*mRĤ_j߭}R./cyzْľNG낝 #Qvzٔzy%X*36 2^A#2I#)~őBf:9:R P֏^;sxxˆ;]y Mo|Ek=O¨<=)|юE 84E/9wj̖cT\7'N3"zô $Wp2(''P3K҃ÉmJF [aKr.ࢸj$u2|"ᕗ|1|fosS+ 0,¡v=@cc^Oʍ#řIGe੤IovcDnN{mW_PgNwɧD}k ;e·Ell01{;Zy6"KĚx B#ʸWƽyк%n^C@ ˣR~m:!$#ļrK!t3n$M\D{֏*/ s{ ]~=˩[KxZZ\n|̓g@G4O U o$8EW(ye^Sa frt~QL[*ʜ(v^QT(-^vX)mE[$ w5YXMG*ޭ5l"x>nV*\E7CiwiQYZ2щj%lreU0zu7S",%i=-wrk<[sWhûmjI0x>,ڣꑰՂGUiRC} Q=nwb.)S^J|9ׄ&GE]:UUǏ+kg_ jG˦3)_uߋZ%P9GvkBޡ( q'r~Zѣ*#p+W^wP:3.[eVM1zo5l^è.|ӍZq" ;\ i4?vd8DlgM_ iXqJm7~kU*aZkBw{ϲFI}_+E2$X+m\͏L#[|Zec\cU졧?헗CZsG#*eT|L;e Mo~ vl| 3>#egk T9Hg rS\e4%ΗK:(\ S]'l Y5wẈujy@#{l;k,q^ڭSB(ETeU{8vd%"R]{? 6*y0,5ت$ 6&MN]MKJ|pg>ChlKV~guW%>>BV|5Hsڿe?k֤2լJ,0aQ흛c@J^_',?7>Ԯ)m s^PuZe o ~mw"kIPΜ嫥UO0F$l;e.€DFn;㈯f-ov•z`29ug}bIL&2F㵩P žR __O?OENG͋lg@@굪a.z#Y)Cr $oC:X2Xռ{m QLhq 6V/Tܙ~ʣXK&.VRԈp¯;&^߽K"'*RP.=(o5x䚔fwu0UF{zFӼ8%ܴ]+نaV-[ =e\LϽjHlEOsh:ӕRmPYT[y=b]Ϛ32{B"TgL9jFoGa1z5%t-fR-Ce:G!vRJ_pPͼ."6p(F:QQ~Wendstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 129 0 R /FirstChar 44 /LastChar 121 /Widths 130 0 R /BaseFont /DZBKDV+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /DZBKDV+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/comma/C/D/G/L/U/a/c/d/e/f/g/h/i/k/l/n/o/p/r/s/u/y) /FontFile 5 0 R >> endobj 130 0 obj [250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 668 707 0 0 726 0 0 0 0 576 0 0 0 0 0 0 0 0 693 0 0 0 0 0 0 0 0 0 0 0 459 0 406 511 406 276 459 511 250 0 485 250 0 511 459 511 0 354 359 0 511 0 0 0 485 ] endobj 129 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 67/C/D 69/.notdef 71/G 72/.notdef 76/L 77/.notdef 85/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 107/k/l 109/.notdef 110/n/o/p 113/.notdef 114/r/s 116/.notdef 117/u 118/.notdef 121/y 122/.notdef] >> endobj 40 0 obj << /Type /Pages /Count 6 /Parent 131 0 R /Kids [2 0 R 42 0 R 54 0 R 57 0 R 60 0 R 66 0 R] >> endobj 71 0 obj << /Type /Pages /Count 5 /Parent 131 0 R /Kids [69 0 R 73 0 R 76 0 R 79 0 R 88 0 R] >> endobj 131 0 obj << /Type /Pages /Count 11 /Kids [40 0 R 71 0 R] >> endobj 132 0 obj << /Type /Catalog /Pages 131 0 R >> endobj 133 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20071029163835-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 134 0000000000 65535 f 0000003042 00000 n 0000002927 00000 n 0000000009 00000 n 0000144238 00000 n 0000138797 00000 n 0000144081 00000 n 0000137471 00000 n 0000123873 00000 n 0000137314 00000 n 0000123095 00000 n 0000120367 00000 n 0000122936 00000 n 0000119894 00000 n 0000116226 00000 n 0000119734 00000 n 0000115033 00000 n 0000102219 00000 n 0000114874 00000 n 0000101883 00000 n 0000099902 00000 n 0000101724 00000 n 0000098929 00000 n 0000089912 00000 n 0000098769 00000 n 0000088755 00000 n 0000080493 00000 n 0000088595 00000 n 0000080192 00000 n 0000078348 00000 n 0000080034 00000 n 0000077697 00000 n 0000072660 00000 n 0000077537 00000 n 0000072148 00000 n 0000068925 00000 n 0000071989 00000 n 0000068598 00000 n 0000067056 00000 n 0000068442 00000 n 0000144995 00000 n 0000007774 00000 n 0000007656 00000 n 0000003241 00000 n 0000066668 00000 n 0000064571 00000 n 0000066511 00000 n 0000064268 00000 n 0000062881 00000 n 0000064112 00000 n 0000062576 00000 n 0000060642 00000 n 0000062418 00000 n 0000012611 00000 n 0000012493 00000 n 0000007939 00000 n 0000017682 00000 n 0000017564 00000 n 0000012776 00000 n 0000019506 00000 n 0000019388 00000 n 0000017811 00000 n 0000059139 00000 n 0000046695 00000 n 0000058981 00000 n 0000021705 00000 n 0000021587 00000 n 0000019599 00000 n 0000022666 00000 n 0000022548 00000 n 0000021798 00000 n 0000145104 00000 n 0000026851 00000 n 0000026733 00000 n 0000022747 00000 n 0000028448 00000 n 0000028330 00000 n 0000026980 00000 n 0000030243 00000 n 0000030125 00000 n 0000028529 00000 n 0000046207 00000 n 0000043979 00000 n 0000046050 00000 n 0000043664 00000 n 0000041863 00000 n 0000043507 00000 n 0000032920 00000 n 0000032802 00000 n 0000030407 00000 n 0000040967 00000 n 0000033025 00000 n 0000040809 00000 n 0000041539 00000 n 0000041236 00000 n 0000043893 00000 n 0000043870 00000 n 0000046529 00000 n 0000046486 00000 n 0000060022 00000 n 0000059672 00000 n 0000062799 00000 n 0000062775 00000 n 0000064497 00000 n 0000064473 00000 n 0000066933 00000 n 0000066875 00000 n 0000068834 00000 n 0000068810 00000 n 0000072502 00000 n 0000072364 00000 n 0000078124 00000 n 0000077948 00000 n 0000080411 00000 n 0000080387 00000 n 0000089399 00000 n 0000089121 00000 n 0000099541 00000 n 0000099260 00000 n 0000102121 00000 n 0000102079 00000 n 0000115781 00000 n 0000115419 00000 n 0000120242 00000 n 0000120104 00000 n 0000123623 00000 n 0000123365 00000 n 0000138315 00000 n 0000137922 00000 n 0000144700 00000 n 0000144478 00000 n 0000145207 00000 n 0000145275 00000 n 0000145328 00000 n trailer << /Size 134 /Root 132 0 R /Info 133 0 R /ID [<3562457E942F67F6A0C8C929B4A39ECD> <3562457E942F67F6A0C8C929B4A39ECD>] >> startxref 145532 %%EOF SuiteSparse/LDL/Doc/ldl_userguide.tex0000644001170100242450000007077010711442272016453 0ustar davisfac\documentclass[12pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in %------------------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------------------- \title{User Guide for LDL, a concise sparse Cholesky package} \author{Timothy A. Davis\thanks{ Dept.~of Computer and Information Science and Engineering, Univ.~of Florida, Gainesville, FL, USA. email: davis@cise.ufl.edu. http://www.cise.ufl.edu/$\sim$davis. This work was supported by the National Science Foundation, under grant CCR-0203270. Portions of the work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from Stanford University and the SciDAC program). }} \date{Nov 1, 2007} \maketitle %------------------------------------------------------------------------------- \begin{abstract} The {\tt LDL} software package is a set of short, concise routines for factorizing symmetric positive-definite sparse matrices, with some applicability to symmetric indefinite matrices. Its primary purpose is to illustrate much of the basic theory of sparse matrix algorithms in as concise a code as possible, including an elegant method of sparse symmetric factorization that computes the factorization row-by-row but stores it column-by-column. The entire symbolic and numeric factorization consists of less than 50 lines of code. The package is written in C, and includes a MATLAB interface. \end{abstract} %------------------------------------------------------------------------------- %------------------------------------------------------------------------------- \section{Overview} %------------------------------------------------------------------------------- {\tt LDL} is a set of short, concise routines that compute the $\m{LDL}\tr$ factorization of a sparse symmetric matrix $\m{A}$. Its primary purpose is to illustrate much of the basic theory of sparse matrix algorithms in as compact a code as possible, including an elegant method of sparse symmetric factorization (related to \cite{Liu86c,Liu91}). The lower triangular factor $\m{L}$ is computed row-by-row, in contrast to the conventional column-by-column method. Although it does not achieve the same level of performance as methods based on dense matrix kernels (such as \cite{NgPeyton93,RothbergGupta91}), its performance is competitive with column-by-column methods that do not use dense kernels \cite{GeorgeLiu79, GeorgeLiu, GilbertMolerSchreiber}. Section~\ref{Algorithm} gives a brief description of the algorithm used in the symbolic and numeric factorization. A more detailed tutorial-level discussion may be found in \cite{Stewart03}. Details of the concise implementation of this method are given in Section~\ref{Implementation}. Sections~\ref{MATLAB}~and~\ref{C} give an overview of how to use the package in MATLAB and in a stand-alone C program. %------------------------------------------------------------------------------- \section{Algorithm} \label{Algorithm} %------------------------------------------------------------------------------- The underlying numerical algorithm is described below. The $k$th step solves a lower triangular system of dimension $k-1$ to compute the $k$th row of $\m{L}$ and the $d_{kk}$ entry of the diagonal matrix $\m{D}$. Colon notation is used for submatrices. For example, $\m{L}_{k,1:k-1}$ refers to the first $k-1$ columns of the $k$th row of $\m{L}$. Similarly, $\m{L}_{1:k-1,1:k-1}$ refers to the leading $(k-1)$-by-$(k-1)$ submatrix of $\m{L}$. %--------------- \vspace{-0.2in} \begin{tabbing} \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\ {\bf Algorithm~1 ($\m{LDL}\tr$ factorization of a $n$-by-$n$ symmetric matrix $\m{A}$)} \\ \> {\bf for} $k = 1$ {\bf to} $n$ \\ \>\> (step 1) Solve $\m{L}_{1:k-1,1:k-1}\m{y} = \m{A}_{1:k-1,k}$ for $\m{y}$ \\ \>\> (step 2) $\m{L}_{k,1:k-1} = (\m{D}_{1:k-1,1:k-1}^{-1} \m{y})\tr$ \\ \>\> (step 3) $l_{kk} = 1$ \\ \>\> (step 4) $d_{kk} = a_{kk} - \m{L}_{k,1:k-1}\m{y}$ \\ \> {\bf end for} \end{tabbing} %--------------- The algorithm computes an $\m{LDL}\tr$ factorization without numerical pivoting. It can thus factorize any symmetric positive definite matrix, and any symmetric indefinite matrix whose leading minors are all well-conditioned. When $\m{A}$ and $\m{L}$ are sparse, step 1 of Algorithm~1 requires a triangular solve of the form $\m{Lx}=\m{b}$, where all three terms in the equation are sparse. This is the most costly step of the Algorithm. Steps 2 through 4 are fairly straightforward. Let ${\cal X}$ and ${\cal B}$ refer to the set of indices of nonzero entries in $\m{x}$ and $\m{b}$, respectively, in the lower triangular system $\m{Lx}=\m{b}$. To compute $\m{x}$ efficiently the nonzero pattern ${\cal X}$ must be found first. In the general case when $\m{L}$ is arbitrary \cite{GilbertPeierls88}, the nonzero pattern ${\cal X}$ is the set of nodes reachable via paths in the graph $G_L$ from all nodes in the set ${\cal B}$, and where the graph $G_L$ has $n$ nodes and a directed edge $(j,i)$ if and only if $l_{ij}$ is nonzero. To compute the numerical solution to $\m{Lx}=\m{b}$ by accessing the columns of $\m{L}$ one at a time, ${\cal X}$ can be traversed in any topological order of the subgraph of $G_L$ consisting of nodes in ${\cal X}$. That is, $x_j$ must be computed before $x_i$ if there is a path from $j$ to $i$ in $G_L$. The natural order ($1, 2, \ldots, n$) is one such ordering, but that requires a costly sort of ${\cal X}$. With a graph traversal and topological sort, the solution of $\m{Lx}=\m{b}$ can be computed using Algorithm~2 below. The computation of ${\cal X}$ and $\m{x}$ both take time proportional to the floating-point operation count. %--------------- \vspace{-0.2in} \begin{tabbing} \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\ {\bf Algorithm~2 (Solve $\m{Lx}=\m{b}$, where $\m{L}$ is lower triangular with unit diagonal)} \\ \> ${\cal X} = \mbox{Reach}_{G_L} ({\cal B})$ \\ \> $\m{x} = \m{b}$ \\ \> {\bf for} $i \in {\cal X}$ in any topological order \\ \>\> $\m{x}_{i+1:n} = \m{x}_{i+1:n} - \m{L}_{i+1:n,i} x_i$ \\ \> {\bf end for} \end{tabbing} %--------------- The general result also governs the pattern of $\m{y}$ in Algorithm~1. However, in this case $\m{L}$ arises from a sparse Cholesky factorization, and is governed by the elimination tree \cite{Liu90a}. A general graph traversal is not required. In the elimination tree, the parent of node $i$ is the smallest $j > i$ such that $l_{ji}$ is nonzero. Node $i$ has no parent if column $i$ of $\m{L}$ is completely zero below the diagonal; $i$ is a root of the elimination tree in this case. The nonzero pattern of $\m{x}$ is the union of all the nodes on the paths from any node $i$ (where $b_i$ is nonzero) to the root of the elimination tree \cite[Thm 2.4]{Liu86c}. It is referred to here as a tree, but in general it can be a forest. Rather than a general topological sort of the subgraph of $G_L$ consisting nodes reachable from nodes in ${\cal B}$, a simpler tree traversal can be used. First, select any nonzero entry $b_i$ and follow the path from $i$ to the root of tree. Nodes along this path are marked and placed in a stack, with $i$ at the top of the stack and the root at the bottom. Repeat for every other nonzero entry in $b_i$, in arbitrary order, but stop just before reaching a marked node (the result can be empty if $i$ is already in the stack). The stack now contains ${\cal X}$, a topological ordering of the nonzero pattern of $\m{x}$, which can be used in Algorithm~2 to solve $\m{Lx}=\m{b}$. The time to compute ${\cal X}$ using an elimination tree traversal is much faster than the general graph traversal, taking time proportional to the size of ${\cal X}$ rather than the number of floating-point operations required to compute $\m{x}$. In the $k$th step of the factorization, the set ${\cal X}$ becomes the nonzero pattern of row $k$ of $\m{L}$. This step requires the elimination tree of $\m{L}_{1:k-1,1:k-1}$, and must construct the elimination tree of $\m{L}_{1:k,1:k}$ for step $k+1$. Recall that the parent of $i$ in the tree is the smallest $j$ such that $i < j$ and $l_{ji} \ne 0$. Thus, if any node $i$ already has a parent $j$, then $j$ will remain the parent of $i$ in the elimination trees of all other larger leading submatrices of $\m{L}$, and in the elimination tree of $\m{L}$ itself. If $l_{ki} \ne 0$ and $i$ does not have a parent in the elimination tree of $\m{L}_{1:k-1,1:k-1}$, then the parent of $i$ is $k$ in the elimination tree of $\m{L}_{1:k,1:k}$. Node $k$ becomes the parent of any node $i \in {\cal X}$ that does not yet have a parent. Since Algorithm~2 traverses $\m{L}$ in column order, $\m{L}$ is stored in a conventional sparse column representation. Each column $j$ is stored as a list of nonzero values and their corresponding row indices. When row $k$ is computed, the new entries can be placed at the end of each list. As a by-product of computing $\m{L}$ one row at a time, the columns of $\m{L}$ are computed in a sorted manner. This is a convenient form of the output. MATLAB requires the columns of its sparse matrices to be sorted, for example. Sorted columns improve the speed of Algorithm~2, since the memory access pattern is more regular. The conventional column-by-column algorithm \cite{GeorgeLiu79,GeorgeLiu} does not produce columns of $\m{L}$ with sorted row indices. A simple symbolic pre-analysis can be obtained by repeating the subtree traversals. All that is required to compute the nonzero pattern of the $k$th row of $\m{L}$ is the partially constructed elimination tree and the nonzero pattern of the $k$th column of $\m{A}$. This is computed in time proportional to the size of this set, using the elimination tree traversal. Once constructed, the number of nonzeros in each column of $\m{L}$ is incremented, for each entry in ${\cal X}$, and then ${\cal X}$ is discarded. The set ${\cal X}$ need not be constructed in topological order, so no stack is required. The run time of the symbolic analysis algorithm is thus proportional to the number of nonzeros in $\m{L}$. This is more costly than the optimal algorithm \cite{GilbertNgPeyton94}, which takes time essentially proportional to the number of nonzeros in $\m{A}$. The memory requirements are just the matrix $\m{A}$ and a few size-$n$ integer arrays. The result of the algorithm is the elimination tree, a count of the number of nonzeros in each column of $\m{L}$, and the cumulative sum of the column counts. %------------------------------------------------------------------------------- \section{Implementation} \label{Implementation} %------------------------------------------------------------------------------- Because of its simplicity, the implementation of this algorithm leads to a very short, concise code. The symbolic analysis routine {\tt ldl\_symbolic} shown in Figure~\ref{ldlsymbolic} consists of only 18 lines of executable C code. This includes 5 lines of code to allow for a sparsity-preserving ordering $\m{P}$ so that either $\m{A}$ or $\m{PAP}\tr$ can be analyzed, 3 lines of code to compute the cumulative sum of the column counts, and one line of code to speed up a {\tt for} loop. An additional line of code allows for a more general form of the input sparse matrix $\m{A}$. The {\tt n}-by-{\tt n} sparse matrix $\m{A}$ is provided in compressed column form as an {\tt int} array {\tt Ap} of length {\tt n+1}, an {\tt int} array {\tt Ai} of length {\tt nz}, and a {\tt double} array {\tt Ax} also of length {\tt nz}, where {\tt nz} is the number of entries in the matrix. The numerical values of entries in column $j$ are stored in {\tt Ax[Ap[j]} $\ldots$ {\tt Ap[j+1]-1]} and the corresponding row indices are in {\tt Ai[Ap[j]} $\ldots$ {\tt Ap[j+1]-1]}. With {\tt Ap[0] = 0}, the number of entries in the matrix is {\tt nz = Ap[n]}. If no fill-reducing ordering {\tt P} is provided, only entries in the upper triangular part of $\m{A}$ are considered. If {\tt P} is provided and row/column {\tt i} of the matrix $\m{A}$ is the {\tt k}-th row/column of $\m{PAP}\tr$, then {\tt P[k]=i}. Only entries in the upper triangular part of $\m{PAP}\tr$ are considered. These entries may be in the lower triangular part of $\m{A}$, so to ensure that the correct matrix is factorized, all entries of $\m{A}$ should be provided when using the permutation input {\tt P}. The outputs of {\tt ldl\_symbolic} are three size-{\tt n} arrays: {\tt Parent} holds the elimination tree, {\tt Lnz} holds the counts of the number of entries in each column of $\m{L}$, and {\tt Lp} holds the cumulative sum of {\tt Lnz}. The size-{\tt n} array {\tt Flag} is used as workspace. None of the output or workspace arrays need to be initialized. \begin{figure} \caption{{\tt ldl\_symbolic:} finding the elimination tree and column counts} \label{ldlsymbolic} {\scriptsize \begin{verbatim} void ldl_symbolic ( int n, /* A and L are n-by-n, where n >= 0 */ int Ap [ ], /* input of size n+1, not modified */ int Ai [ ], /* input of size nz=Ap[n], not modified */ int Lp [ ], /* output of size n+1, not defined on input */ int Parent [ ], /* output of size n, not defined on input */ int Lnz [ ], /* output of size n, not defined on input */ int Flag [ ], /* workspace of size n, not defn. on input or output */ int P [ ], /* optional input of size n */ int Pinv [ ] /* optional output of size n (used if P is not NULL) */ ) { int i, k, p, kk, p2 ; if (P) { /* If P is present then compute Pinv, the inverse of P */ for (k = 0 ; k < n ; k++) { Pinv [P [k]] = k ; } } for (k = 0 ; k < n ; k++) { /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ Parent [k] = -1 ; /* parent of k is not yet known */ Flag [k] = k ; /* mark node k as visited */ Lnz [k] = 0 ; /* count of nonzeros in column k of L */ kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */ p2 = Ap [kk+1] ; for (p = Ap [kk] ; p < p2 ; p++) { /* A (i,k) is nonzero (original or permuted A) */ i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ; if (i < k) { /* follow path from i to root of etree, stop at flagged node */ for ( ; Flag [i] != k ; i = Parent [i]) { /* find parent of i if not yet determined */ if (Parent [i] == -1) Parent [i] = k ; Lnz [i]++ ; /* L (k,i) is nonzero */ Flag [i] = k ; /* mark i as visited */ } } } } /* construct Lp index array from Lnz column counts */ Lp [0] = 0 ; for (k = 0 ; k < n ; k++) { Lp [k+1] = Lp [k] + Lnz [k] ; } } \end{verbatim} } \end{figure} The {\tt ldl\_numeric} numeric factorization routine shown in Figure~\ref{ldlnumeric} consists of only 31 lines of executable code. It includes this same subtree traversal algorithm as {\tt ldl\_symbolic}, except that each path is placed on a stack that holds nonzero pattern of the $k$th row of $\m{L}$. This traversal is followed by a sparse forward solve using this pattern, and all of the nonzero entries in the resulting $k$th row of $\m{L}$ are appended to their respective columns in the data structure of $\m{L}$. \begin{figure} \caption{{\tt ldl\_numeric:} numeric factorization} \label{ldlnumeric} {\scriptsize \begin{verbatim} int ldl_numeric /* returns n if successful, k if D (k,k) is zero */ ( int n, /* A and L are n-by-n, where n >= 0 */ int Ap [ ], /* input of size n+1, not modified */ int Ai [ ], /* input of size nz=Ap[n], not modified */ double Ax [ ], /* input of size nz=Ap[n], not modified */ int Lp [ ], /* input of size n+1, not modified */ int Parent [ ], /* input of size n, not modified */ int Lnz [ ], /* output of size n, not defn. on input */ int Li [ ], /* output of size lnz=Lp[n], not defined on input */ double Lx [ ], /* output of size lnz=Lp[n], not defined on input */ double D [ ], /* output of size n, not defined on input */ double Y [ ], /* workspace of size n, not defn. on input or output */ int Pattern [ ], /* workspace of size n, not defn. on input or output */ int Flag [ ], /* workspace of size n, not defn. on input or output */ int P [ ], /* optional input of size n */ int Pinv [ ] /* optional input of size n */ ) { double yi, l_ki ; int i, k, p, kk, p2, len, top ; for (k = 0 ; k < n ; k++) { /* compute nonzero Pattern of kth row of L, in topological order */ Y [k] = 0.0 ; /* Y(0:k) is now all zero */ top = n ; /* stack for pattern is empty */ Flag [k] = k ; /* mark node k as visited */ Lnz [k] = 0 ; /* count of nonzeros in column k of L */ kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */ p2 = Ap [kk+1] ; for (p = Ap [kk] ; p < p2 ; p++) { i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ; /* get A(i,k) */ if (i <= k) { Y [i] += Ax [p] ; /* scatter A(i,k) into Y (sum duplicates) */ for (len = 0 ; Flag [i] != k ; i = Parent [i]) { Pattern [len++] = i ; /* L(k,i) is nonzero */ Flag [i] = k ; /* mark i as visited */ } while (len > 0) Pattern [--top] = Pattern [--len] ; } } /* compute numerical values kth row of L (a sparse triangular solve) */ D [k] = Y [k] ; /* get D(k,k) and clear Y(k) */ Y [k] = 0.0 ; for ( ; top < n ; top++) { i = Pattern [top] ; /* Pattern [top:n-1] is pattern of L(:,k) */ yi = Y [i] ; /* get and clear Y(i) */ Y [i] = 0.0 ; p2 = Lp [i] + Lnz [i] ; for (p = Lp [i] ; p < p2 ; p++) { Y [Li [p]] -= Lx [p] * yi ; } l_ki = yi / D [i] ; /* the nonzero entry L(k,i) */ D [k] -= l_ki * yi ; Li [p] = k ; /* store L(k,i) in column form of L */ Lx [p] = l_ki ; Lnz [i]++ ; /* increment count of nonzeros in col i */ } if (D [k] == 0.0) return (k) ; /* failure, D(k,k) is zero */ } return (n) ; /* success, diagonal of D is all nonzero */ } \end{verbatim} } \end{figure} After the matrix is factorized, the {\tt ldl\_lsolve}, {\tt ldl\_dsolve}, and {\tt ldl\_ltsolve} routines shown in Figure~\ref{ldlsolve} are provided to solve $\m{Lx}=\m{b}$, $\m{Dx}=\m{b}$, and $\m{L}\tr\m{x}=\m{b}$, respectively. Together, they solve $\m{Ax}=\m{b}$, and consist of only 10 lines of executable code. If a fill-reducing permutation is used, {\tt ldl\_perm} and {\tt ldl\_permt} must be used to permute $\m{b}$ and $\m{x}$ accordingly. \begin{figure} \caption{Solve routines} \label{ldlsolve} {\scriptsize \begin{verbatim} void ldl_lsolve ( int n, /* L is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ int Lp [ ], /* input of size n+1, not modified */ int Li [ ], /* input of size lnz=Lp[n], not modified */ double Lx [ ] /* input of size lnz=Lp[n], not modified */ ) { int j, p, p2 ; for (j = 0 ; j < n ; j++) { p2 = Lp [j+1] ; for (p = Lp [j] ; p < p2 ; p++) { X [Li [p]] -= Lx [p] * X [j] ; } } } void ldl_dsolve ( int n, /* D is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ double D [ ] /* input of size n, not modified */ ) { int j ; for (j = 0 ; j < n ; j++) { X [j] /= D [j] ; } } void ldl_ltsolve ( int n, /* L is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ int Lp [ ], /* input of size n+1, not modified */ int Li [ ], /* input of size lnz=Lp[n], not modified */ double Lx [ ] /* input of size lnz=Lp[n], not modified */ ) { int j, p, p2 ; for (j = n-1 ; j >= 0 ; j--) { p2 = Lp [j+1] ; for (p = Lp [j] ; p < p2 ; p++) { X [j] -= Lx [p] * X [Li [p]] ; } } } \end{verbatim} } \end{figure} In addition to appearing as a Collected Algorithm of the ACM \cite{Davis05}, {\tt LDL} is available at http://www.cise.ufl.edu/research/sparse. %------------------------------------------------------------------------------- \section{Using LDL in MATLAB} \label{MATLAB} %------------------------------------------------------------------------------- The simplest way to use {\tt LDL} is within MATLAB. Once the {\tt ldlsparse} mexFunction is compiled and installed, the MATLAB statement {\tt [L, D, Parent, fl] = ldlsparse (A)} returns the sparse factorization {\tt A = (L+I)*D*(L+I)'}, where {\tt L} is lower triangular, {\tt D} is a diagonal matrix, and {\tt I} is the {\tt n}-by-{\tt n} identity matrix ({\tt ldlsparse} does not return the unit diagonal of {\tt L}). The elimination tree is returned in {\tt Parent}. If no zero on the diagonal of {\tt D} is encountered, {\tt fl} is the floating-point operation count. Otherwise, {\tt D(-fl,-fl)} is the first zero entry encountered. Let {\tt d=-fl}. The function returns the factorization of {\tt A (1:d,1:d)}, where rows {\tt d+1} to {\tt n} of {\tt L} and {\tt D} are all zero. If a sparsity preserving permutation {\tt P} is passed, {\tt [L, D, Parent, fl] = ldlsparse (A,P)} operates on {\tt A(P,P)} without forming it explicitly. The statement {\tt x = ldlsparse (A, [ ], b)} is roughly equivalent to {\tt x = A}$\backslash${\tt b}, when {\tt A} is sparse, real, and symmetric. The $\m{LDL}\tr$ factorization of {\tt A} is performed. If {\tt P} is provided, {\tt x = ldlsparse (A, P, b)} still performs {\tt x = A}$\backslash${\tt b}, except that {\tt A(P,P)} is factorized instead. %------------------------------------------------------------------------------- \section{Using LDL in a C program} \label{C} %------------------------------------------------------------------------------- The C-callable {\tt LDL} library consists of nine user-callable routines and one include file. \begin{itemize} \item {\tt ldl\_symbolic}: given the nonzero pattern of a sparse symmetric matrix $\m{A}$ and an optional permutation $\m{P}$, analyzes either $\m{A}$ or $\m{PAP}\tr$, and returns the elimination tree, the number of nonzeros in each column of $\m{L}$, and the {\tt Lp} array for the sparse matrix data structure for $\m{L}$. Duplicate entries are allowed in the columns of $\m{A}$, and the row indices in each column need not be sorted. Providing a sparsity-preserving ordering is critical for obtaining good performance. A minimum degree ordering (such as AMD \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}) or a graph-partitioning based ordering are appropriate. \item {\tt ldl\_numeric}: given {\tt Lp} and the elimination tree computed by {\tt ldl\_symbolic}, and an optional permutation $\m{P}$, returns the numerical factorization of $\m{A}$ or $\m{PAP}\tr$. Duplicate entries are allowed in the columns of $\m{A}$ (any duplicate entries are summed), and the row indices in each column need not be sorted. The data structure for $\m{L}$ is the same as $\m{A}$, except that no duplicates appear, and each column has sorted row indices. \item {\tt ldl\_lsolve}: given the factor $\m{L}$ computed by {\tt ldl\_numeric}, solves the linear system $\m{Lx}=\m{b}$, where $\m{x}$ and $\m{b}$ are full $n$-by-1 vectors. \item {\tt ldl\_dsolve}: given the factor $\m{D}$ computed by {\tt ldl\_numeric}, solves the linear system $\m{Dx}=\m{b}$. \item {\tt ldl\_ltsolve}: given the factor $\m{L}$ computed by {\tt ldl\_numeric}, solves the linear system $\m{L}\tr\m{x}=\m{b}$. \item {\tt ldl\_perm}: given a vector $\m{b}$ and a permutation $\m{P}$, returns $\m{x}=\m{Pb}$. \item {\tt ldl\_permt}: given a vector $\m{b}$ and a permutation $\m{P}$, returns $\m{x}=\m{P}\tr\m{b}$. \item {\tt ldl\_valid\_perm}: Except for checking if the diagonal of $\m{D}$ is zero, none of the above routines check their inputs for errors. This routine checks the validity of a permutation $\m{P}$. \item {\tt ldl\_valid\_matrix}: checks if a matrix $\m{A}$ is valid as input to {\tt ldl\_symbolic} and {\tt ldl\_numeric}. \end{itemize} Note that the primary input to the {\tt ldl\_symbolic} and {\tt ldl\_numeric} is the sparse matrix $\m{A}$. It is provided in column-oriented form, and only the upper triangular part is accessed. This is slightly different than the primary output: the matrix $\m{L}$, which is lower triangular in column-oriented form. If you wish to factorize a symmetric matrix $\m{A}$ for which only the lower triangular part is supplied, you would need to transpose $\m{A}$ before passing it {\tt ldl\_symbolic} and {\tt ldl\_numeric}. An additional set of routines is available for use in a 64-bit environment. Each routine name changes uniformly; {\tt ldl\_symbolic} becomes {\tt ldl\_l\_symbolic}, and each {\tt int} parameter becomes type {\tt UF\_long}. The {\tt UF\_long} type is {\tt long}, except for Microsoft Windows 64, where it becomes {\tt \_\_int64}. \begin{figure} \caption{Example of use} \label{ldlsimple} {\scriptsize \begin{verbatim} #include #include "ldl.h" #define N 10 /* A is 10-by-10 */ #define ANZ 19 /* # of nonzeros on diagonal and upper triangular part of A */ #define LNZ 13 /* # of nonzeros below the diagonal of L */ int main (void) { /* only the upper triangular part of A is required */ int Ap [N+1] = {0, 1, 2, 3, 4, 6, 7, 9, 11, 15, ANZ}, Ai [ANZ] = {0, 1, 2, 3, 1,4, 5, 4,6, 4,7, 0,4,7,8, 1,4,6,9 } ; double Ax [ANZ] = {1.7, 1., 1.5, 1.1, .02,2.6, 1.2, .16,1.3, .09,1.6, .13,.52,.11,1.4, .01,.53,.56,3.1}, b [N] = {.287, .22, .45, .44, 2.486, .72, 1.55, 1.424, 1.621, 3.759}; double Lx [LNZ], D [N], Y [N] ; int Li [LNZ], Lp [N+1], Parent [N], Lnz [N], Flag [N], Pattern [N], d, i ; /* factorize A into LDL' (P and Pinv not used) */ ldl_symbolic (N, Ap, Ai, Lp, Parent, Lnz, Flag, NULL, NULL) ; printf ("Nonzeros in L, excluding diagonal: %d\n", Lp [N]) ; d = ldl_numeric (N, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Pattern, Flag, NULL, NULL) ; if (d == N) { /* solve Ax=b, overwriting b with the solution x */ ldl_lsolve (N, b, Lp, Li, Lx) ; ldl_dsolve (N, b, D) ; ldl_ltsolve (N, b, Lp, Li, Lx) ; for (i = 0 ; i < N ; i++) printf ("x [%d] = %g\n", i, b [i]) ; } else { printf ("ldl_numeric failed, D (%d,%d) is zero\n", d, d) ; } return (0) ; } \end{verbatim} } \end{figure} The program in Figure~\ref{ldlsimple} illustrates the basic usage of the {\tt LDL} routines. It analyzes and factorizes the sparse symmetric positive-definite matrix {\small \[ \m{A} = \left[ \begin{array}{cccccccccc} 1.7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .13 & 0 \\ 0 & 1. & 0 & 0 & .02 & 0 & 0 & 0 & 0 & .01 \\ 0 & 0 & 1.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & .02 & 0 & 0 & 2.6 & 0 & .16 & .09 & .52 & .53 \\ 0 & 0 & 0 & 0 & 0 & 1.2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & .16 & 0 & 1.3 & 0 & 0 & .56 \\ 0 & 0 & 0 & 0 & .09 & 0 & 0 & 1.6 & .11 & 0 \\ .13 & 0 & 0 & 0 & .52 & 0 & 0 & .11 & 1.4 & 0 \\ 0 & .01 & 0 & 0 & .53 & 0 & .56 & 0 & 0 & 3.1 \\ \end{array} \right] \] } and then solves a system $\m{Ax}=\m{b}$ whose true solution is $x_i = i/10$. Note that {\tt Li} and {\tt Lx} are statically allocated. Normally they would be allocated after their size, {\tt Lp[n]}, is determined by {\tt ldl\_symbolic}. More example programs are included with the {\tt LDL} package. \section{Acknowledgments} I would like to thank Pete Stewart for his comments on an earlier draft of this software and its accompanying paper. \newpage \bibliographystyle{plain} \bibliography{ldl} \end{document} SuiteSparse/LDL/Doc/ChangeLog0000644001170100242450000000174710620620364014651 0ustar davisfacMay 31, 2007: version 2.0.0 * C-callable 64-bit version added * ported to 64-bit MATLAB * subdirectories added (Source/, Include/, Lib/, Demo/, Doc/, MATLAB/) Dec 12, 2006: version 1.3.4 * minor MATLAB cleanup Sept 11, 2006: version 1.3.1 * The ldl m-file renamed to ldlsparse, to avoid name conflict with the new MATLAB ldl function (in MATLAB 7.3). Apr 30, 2006: version 1.3 * requires AMD v2.0. ldlmain.c demo program modified, since AMD can now handle jumbled matrices. Minor change to Makefile. Aug 30, 2005: * Makefile changed to use ../UFconfig/UFconfig.mk. License changed to GNU LGPL. July 4, 2005: * user guide added. Since no changes to the code were made, the version number (1.1) and code release date (Apr 22, 2005) were left unchanged. Apr. 22, 2005: LDL v1.1 released. * No real changes were made. The code was revised so that each routine fits on a single page in the documentation. Dec 31, 2003: LDL v1.0 released. SuiteSparse/LDL/Doc/lesser.txt0000644001170100242450000006350010301451045015122 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/LDL/Lib/0000755001170100242450000000000010711435723013073 5ustar davisfacSuiteSparse/LDL/Lib/Makefile0000644001170100242450000000136110617137600014532 0ustar davisfac#------------------------------------------------------------------------------- # Makefile for the LDL library #------------------------------------------------------------------------------- default: all include ../../UFconfig/UFconfig.mk I = -I../../UFconfig -I../Include C = $(CC) $(CFLAGS) $(I) all: libldl.a #------------------------------------------------------------------------------- # the ldl library: #------------------------------------------------------------------------------- libldl.a: ../Source/ldl.c ../Include/ldl.h $(C) -c ../Source/ldl.c -o ldl.o $(C) -DLDL_LONG -c ../Source/ldl.c -o ldll.o $(AR) libldl.a ldl.o ldll.o - $(RANLIB) libldl.a distclean: purge purge: clean - $(RM) libldl.a clean: - $(RM) $(CLEAN) SuiteSparse/LDL/Demo/0000755001170100242450000000000010711435723013251 5ustar davisfacSuiteSparse/LDL/Demo/Makefile0000644001170100242450000000465610617137440014724 0ustar davisfac#------------------------------------------------------------------------------- # LDL Demo Makefile #------------------------------------------------------------------------------- default: all include ../../UFconfig/UFconfig.mk I = -I../../UFconfig -I../Include C = $(CC) $(CFLAGS) $(I) all: ldlsimple ldllsimple ldlmain ldllmain ldlamd ldllamd library: ( cd ../../AMD ; $(MAKE) library ) ( cd ../Lib ; $(MAKE) ) #------------------------------------------------------------------------------- # stand-alone C programs: #------------------------------------------------------------------------------- ldlmain: ldlmain.c library $(C) ldlmain.c ../Lib/libldl.a -o ldlmain -lm - ./ldlmain > my_ldlmain.out - diff ldlmain.out my_ldlmain.out ldllmain: ldlmain.c library $(C) -DLDL_LONG ldlmain.c ../Lib/libldl.a -o ldllmain -lm - ./ldllmain > my_ldllmain.out - diff ldlmain.out my_ldllmain.out ldlsimple: ldlsimple.c library $(C) ldlsimple.c ../Lib/libldl.a -o ldlsimple -lm - ./ldlsimple > my_ldlsimple.out - diff ldlsimple.out my_ldlsimple.out ldllsimple: ldlsimple.c library $(C) $(I) -DLDL_LONG ldlsimple.c ../Lib/libldl.a -o ldllsimple -lm - ./ldllsimple > my_ldllsimple.out - diff ldlsimple.out my_ldllsimple.out ldlamd: ldlmain.c library - $(C) -I../../AMD/Include -DUSE_AMD \ ldlmain.c ../../AMD/Lib/libamd.a ../Lib/libldl.a -o ldlamd -lm - ./ldlamd > my_ldlamd.out - diff ldlamd.out my_ldlamd.out ldllamd: ldlmain.c library - $(C) -DLDL_LONG $(I) -I../../AMD/Include -DUSE_AMD \ ldlmain.c ../../AMD/Lib/libamd.a ../Lib/libldl.a -o ldllamd -lm - ./ldllamd > my_ldllamd.out - diff ldllamd.out my_ldllamd.out run: - ./ldlsimple > my_ldlsimple.out - diff ldlsimple.out my_ldlsimple.out - ./ldllsimple > my_ldllsimple.out - diff ldlsimple.out my_ldllsimple.out - ./ldlmain > my_ldlmain.out - diff ldlmain.out my_ldlmain.out - ./ldllmain > my_ldllmain.out - diff ldlmain.out my_ldllmain.out - ./ldlamd > my_ldlamd.out - diff ldlamd.out my_ldlamd.out - ./ldllamd > my_ldllamd.out - diff ldllamd.out my_ldllamd.out #------------------------------------------------------------------------------- # clean-up: #------------------------------------------------------------------------------- distclean: purge purge: clean - $(RM) ldlmain ldllmain ldlsimple ldllsimple ldlamd ldllamd - $(RM) my_ldlmain.out my_ldlamd.out my_ldlsimple.out my_ldllamd.out - $(RM) my_ldllsimple.out my_ldllmain.out clean: - $(RM) $(CLEAN) SuiteSparse/LDL/Demo/ldlsimple.out0000644001170100242450000000023410711433076015765 0ustar davisfacNonzeros in L, excluding diagonal: 13 x [0] = 0.1 x [1] = 0.2 x [2] = 0.3 x [3] = 0.4 x [4] = 0.5 x [5] = 0.6 x [6] = 0.7 x [7] = 0.8 x [8] = 0.9 x [9] = 1 SuiteSparse/LDL/Demo/ldlsimple.c0000644001170100242450000000571010616417061015404 0ustar davisfac/* ========================================================================== */ /* === ldlsimple.c: a simple LDL main program ============================== */ /* ========================================================================== */ /* LDLSIMPLE: this is a very simple main program that illustrates the basic * usage of the LDL routines. The output of this program is in ldlsimple.out. * This program factorizes the matrix * * A =[ ... * 1.7 0 0 0 0 0 0 0 .13 0 * 0 1. 0 0 .02 0 0 0 0 .01 * 0 0 1.5 0 0 0 0 0 0 0 * 0 0 0 1.1 0 0 0 0 0 0 * 0 .02 0 0 2.6 0 .16 .09 .52 .53 * 0 0 0 0 0 1.2 0 0 0 0 * 0 0 0 0 .16 0 1.3 0 0 .56 * 0 0 0 0 .09 0 0 1.6 .11 0 * .13 0 0 0 .52 0 0 .11 1.4 0 * 0 .01 0 0 .53 0 .56 0 0 3.1 ] ; * * and then solves a system Ax=b whose true solution is * x = [.1 .2 .3 .4 .5 .6 .7 .8 .9 1]' ; * * Note that Li and Lx are statically allocated, with length 13. This is just * enough to hold the factor L, but normally this size is not known until after * ldl_symbolic has analyzed the matrix. The size of Li and Lx must be greater * than or equal to lnz = Lp [N], which is 13 for this matrix L. * * LDL Version 1.3, Copyright (c) 2006 by Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #include #include "ldl.h" #define N 10 /* A is 10-by-10 */ #define ANZ 19 /* # of nonzeros on diagonal and upper triangular part of A */ #define LNZ 13 /* # of nonzeros below the diagonal of L */ int main (void) { /* only the upper triangular part of A is required */ int Ap [N+1] = {0, 1, 2, 3, 4, 6, 7, 9, 11, 15, ANZ}, Ai [ANZ] = {0, 1, 2, 3, 1,4, 5, 4,6, 4,7, 0,4,7,8, 1,4,6,9 } ; double Ax [ANZ] = {1.7, 1., 1.5, 1.1, .02,2.6, 1.2, .16,1.3, .09,1.6, .13,.52,.11,1.4, .01,.53,.56,3.1}, b [N] = {.287, .22, .45, .44, 2.486, .72, 1.55, 1.424, 1.621, 3.759}; double Lx [LNZ], D [N], Y [N] ; int Li [LNZ], Lp [N+1], Parent [N], Lnz [N], Flag [N], Pattern [N], d, i ; /* factorize A into LDL' (P and Pinv not used) */ ldl_symbolic (N, Ap, Ai, Lp, Parent, Lnz, Flag, NULL, NULL) ; printf ("Nonzeros in L, excluding diagonal: %d\n", Lp [N]) ; d = ldl_numeric (N, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Pattern, Flag, NULL, NULL) ; if (d == N) { /* solve Ax=b, overwriting b with the solution x */ ldl_lsolve (N, b, Lp, Li, Lx) ; ldl_dsolve (N, b, D) ; ldl_ltsolve (N, b, Lp, Li, Lx) ; for (i = 0 ; i < N ; i++) printf ("x [%d] = %g\n", i, b [i]) ; } else { printf ("ldl_numeric failed, D (%d,%d) is zero\n", d, d) ; } return (0) ; } SuiteSparse/LDL/Demo/ldllsimple.c0000644001170100242450000000600210616417067015561 0ustar davisfac/* ========================================================================== */ /* === ldllsimple.c: a simple LDL main program (long integer version) ====== */ /* ========================================================================== */ /* LDLSIMPLE: this is a very simple main program that illustrates the basic * usage of the LDL routines. The output of this program is in ldlsimple.out. * This program factorizes the matrix * * A =[ ... * 1.7 0 0 0 0 0 0 0 .13 0 * 0 1. 0 0 .02 0 0 0 0 .01 * 0 0 1.5 0 0 0 0 0 0 0 * 0 0 0 1.1 0 0 0 0 0 0 * 0 .02 0 0 2.6 0 .16 .09 .52 .53 * 0 0 0 0 0 1.2 0 0 0 0 * 0 0 0 0 .16 0 1.3 0 0 .56 * 0 0 0 0 .09 0 0 1.6 .11 0 * .13 0 0 0 .52 0 0 .11 1.4 0 * 0 .01 0 0 .53 0 .56 0 0 3.1 ] ; * * and then solves a system Ax=b whose true solution is * x = [.1 .2 .3 .4 .5 .6 .7 .8 .9 1]' ; * * Note that Li and Lx are statically allocated, with length 13. This is just * enough to hold the factor L, but normally this size is not known until after * ldl_symbolic has analyzed the matrix. The size of Li and Lx must be greater * than or equal to lnz = Lp [N], which is 13 for this matrix L. * * LDL Version 1.3, Copyright (c) 2006 by Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #ifndef LDL_LONG #define LDL_LONG #endif #include #include "ldl.h" #define N 10 /* A is 10-by-10 */ #define ANZ 19 /* # of nonzeros on diagonal and upper triangular part of A */ #define LNZ 13 /* # of nonzeros below the diagonal of L */ int main (void) { /* only the upper triangular part of A is required */ UF_long Ap[N+1] = {0, 1, 2, 3, 4, 6, 7, 9, 11, 15, ANZ}, Ai [ANZ] = {0, 1, 2, 3, 1,4, 5, 4,6, 4,7, 0,4,7,8, 1,4,6,9 } ; double Ax [ANZ] = {1.7, 1., 1.5, 1.1, .02,2.6, 1.2, .16,1.3, .09,1.6, .13,.52,.11,1.4, .01,.53,.56,3.1}, b [N] = {.287, .22, .45, .44, 2.486, .72, 1.55, 1.424, 1.621, 3.759}; double Lx [LNZ], D [N], Y [N] ; UF_long Li [LNZ], Lp [N+1], Parent [N], Lnz [N], Flag [N], Pattern [N], d, i ; /* factorize A into LDL' (P and Pinv not used) */ ldl_l_symbolic (N, Ap, Ai, Lp, Parent, Lnz, Flag, NULL, NULL) ; printf ("Nonzeros in L, excluding diagonal: %d\n", Lp [N]) ; d = ldl_l_numeric (N, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Pattern, Flag, NULL, NULL) ; if (d == N) { /* solve Ax=b, overwriting b with the solution x */ ldl_l_lsolve (N, b, Lp, Li, Lx) ; ldl_l_dsolve (N, b, D) ; ldl_l_ltsolve (N, b, Lp, Li, Lx) ; for (i = 0 ; i < N ; i++) printf ("x [%d] = %g\n", i, b [i]) ; } else { printf ("ldl_l_numeric failed, D (%d,%d) is zero\n", d, d) ; } return (0) ; } SuiteSparse/LDL/Demo/ldlmain.out0000644001170100242450000002446210711433076015431 0ustar davisfac -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 1 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 2 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 5 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 11 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 160 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 188 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 279 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 2.59625e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.72848e-10 -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 325 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 3.27418e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.32376e-10 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 400 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.38712e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 2.27374e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 472 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.27374e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 3.83693e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 24 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 26 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 306 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.96745e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 6.93889e-16 -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 5.55112e-16 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 342 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 1.11022e-15 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 407 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.68434e-14 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 2.15827e-12 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 4356 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 66 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 72 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid perm) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ap) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation Largest residual during all tests: 3.27418e-10 ldlmain: all tests passed SuiteSparse/LDL/Demo/ldlamd.out0000644001170100242450000014043710711433076015247 0ustar davisfac -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 1 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 36 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 2 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 52 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 80 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 5 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 112 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 136 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 11 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 196 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 160 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 188 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 2368 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 279 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 2180 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 2.59625e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.72848e-10 -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 325 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 3592 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 3.27418e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.32376e-10 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 400 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 3416 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.38712e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 2.27374e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 472 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 5500 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.27374e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 3.83693e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 24 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 1728 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 26 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2028 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 306 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 2964 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.96745e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 6.93889e-16 -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 4596 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 5.55112e-16 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 342 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 3576 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 1.11022e-15 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 407 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 5456 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.68434e-14 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 2.15827e-12 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 4356 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 22968 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 43936 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 66 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2376 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 72 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2932 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid perm) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ap) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation Largest residual during all tests: 3.27418e-10 ldlamd: all tests passed SuiteSparse/LDL/Demo/ldlmain.c0000644001170100242450000002762110617137675015057 0ustar davisfac/* ========================================================================== */ /* === ldlmain.c: LDL main program, for demo and testing ==================== */ /* ========================================================================== */ /* LDLMAIN: this main program has two purposes. It provides an example of how * to use the LDL routines, and it tests the package. The output of this * program is in ldlmain.out (without AMD) and ldlamd.out (with AMD). If you * did not download and install AMD, then the compilation of this program will * not work with USE_AMD defined. Compare your output with ldlmain.out and * ldlamd.out. * * The program reads in a set of matrices, in the Matrix/ subdirectory. * The format of the files is as follows: * * one line with the matrix description * one line with 2 integers: n jumbled * n+1 lines, containing the Ap array of size n+1 (column pointers) * nz lines, containing the Ai array of size nz (row indices) * nz lines, containing the Ax array of size nz (numerical values) * n lines, containing the P permutation array of size n * * The Ap, Ai, Ax, and P data structures are described in ldl.c. * The jumbled flag is 1 if the matrix could contain unsorted columns and/or * duplicate entries, and 0 otherwise. * * Once the matrix is read in, it is checked to see if it is valid. Some * matrices are invalid by design, to test the error-checking routines. If * valid, the matrix factorized twice (A and P*A*P'). A linear * system Ax=b is set up and solved, and the residual computed. * If any system is not solved accurately, this test will fail. * * This program can also be compiled as a MATLAB mexFunction, with the command * "mex ldlmain.c ldl.c". You can then run the program in MATLAB, with the * command "ldlmain". * * LDL Copyright (c) by Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #ifdef MATLAB_MEX_FILE #ifndef LDL_LONG #define LDL_LONG #endif #endif #include #include #include "ldl.h" #define NMATRICES 30 /* number of test matrices in Matrix/ directory */ #define LEN 200 /* string length */ #ifdef USE_AMD /* get AMD include file, if using AMD */ #include "amd.h" #define PROGRAM "ldlamd" #else #define PROGRAM "ldlmain" #endif #ifdef MATLAB_MEX_FILE #include "mex.h" #define EXIT_ERROR mexErrMsgTxt ("failure") ; #define EXIT_OK #else #define EXIT_ERROR exit (EXIT_FAILURE) ; #define EXIT_OK exit (EXIT_SUCCESS) ; #endif /* -------------------------------------------------------------------------- */ /* ALLOC_MEMORY: allocate a block of memory */ /* -------------------------------------------------------------------------- */ #define ALLOC_MEMORY(p,type,size) \ p = (type *) malloc ((((size) <= 0) ? 1 : (size)) * sizeof (type)) ; \ if (p == (type *) NULL) \ { \ printf (PROGRAM ": out of memory\n") ; \ EXIT_ERROR ; \ } /* -------------------------------------------------------------------------- */ /* FREE_MEMORY: free a block of memory */ /* -------------------------------------------------------------------------- */ #define FREE_MEMORY(p,type) \ if (p != (type *) NULL) \ { \ free (p) ; \ p = (type *) NULL ; \ } /* -------------------------------------------------------------------------- */ /* stand-alone main program, or MATLAB mexFunction */ /* -------------------------------------------------------------------------- */ #ifdef MATLAB_MEX_FILE void mexFunction ( int nargout, mxArray *pargout[ ], int nargin, const mxArray *pargin[ ] ) #else int main (void) #endif { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ #ifdef USE_AMD double Info [AMD_INFO] ; #endif double r, rnorm, flops, maxrnorm = 0. ; double *Ax, *Lx, *B, *D, *X, *Y ; LDL_int matrix, *Ai, *Ap, *Li, *Lp, *P, *Pinv, *Perm, *PermInv, n, i, j, p, nz, *Flag, *Pattern, *Lnz, *Parent, trial, lnz, d, jumbled ; FILE *f ; char s [LEN] ; /* ---------------------------------------------------------------------- */ /* check the error-checking routines with null matrices */ /* ---------------------------------------------------------------------- */ i = 1 ; n = -1 ; if (LDL_valid_perm (n, (LDL_int *) NULL, &i) || !LDL_valid_perm (0, (LDL_int *) NULL, &i) || LDL_valid_matrix (n, (LDL_int *) NULL, (LDL_int *) NULL) || LDL_valid_matrix (0, &i, &i)) { printf (PROGRAM ": ldl error-checking routine failed\n") ; EXIT_ERROR ; } /* ---------------------------------------------------------------------- */ /* read in a factorize a set of matrices */ /* ---------------------------------------------------------------------- */ for (matrix = 1 ; matrix <= NMATRICES ; matrix++) { /* ------------------------------------------------------------------ */ /* read in the matrix and the permutation */ /* ------------------------------------------------------------------ */ sprintf (s, "../Matrix/A%02d", (int) matrix) ; if ((f = fopen (s, "r")) == (FILE *) NULL) { printf (PROGRAM ": could not open file: %s\n", s) ; EXIT_ERROR ; } fgets (s, LEN, f) ; printf ("\n\n--------------------------------------------------------"); printf ("\nInput matrix: %s", s) ; printf ("--------------------------------------------------------\n\n"); fscanf (f, LDL_ID " " LDL_ID, &n, &jumbled) ; n = (n < 0) ? (0) : (n) ; ALLOC_MEMORY (P, LDL_int, n) ; ALLOC_MEMORY (Ap, LDL_int, n+1) ; for (j = 0 ; j <= n ; j++) { fscanf (f, LDL_ID, &Ap [j]) ; } nz = Ap [n] ; ALLOC_MEMORY (Ai, LDL_int, nz) ; ALLOC_MEMORY (Ax, double, nz) ; for (p = 0 ; p < nz ; p++) { fscanf (f, LDL_ID , &Ai [p]) ; } for (p = 0 ; p < nz ; p++) { fscanf (f, "%lg", &Ax [p]) ; } for (j = 0 ; j < n ; j++) { fscanf (f, LDL_ID , &P [j]) ; } fclose (f) ; /* ------------------------------------------------------------------ */ /* check the matrix A and the permutation P */ /* ------------------------------------------------------------------ */ ALLOC_MEMORY (Flag, LDL_int, n) ; /* To test the error-checking routines, some of the input matrices * are not valid. So this error is expected to occur. */ if (!LDL_valid_matrix (n, Ap, Ai) || !LDL_valid_perm (n, P, Flag)) { printf (PROGRAM ": invalid matrix and/or permutation\n") ; FREE_MEMORY (P, LDL_int) ; FREE_MEMORY (Ap, LDL_int) ; FREE_MEMORY (Ai, LDL_int) ; FREE_MEMORY (Ax, double) ; FREE_MEMORY (Flag, LDL_int) ; continue ; } /* ------------------------------------------------------------------ */ /* get the AMD permutation, if available */ /* ------------------------------------------------------------------ */ #ifdef USE_AMD /* recompute the permutation with AMD */ /* Assume that AMD produces a valid permutation P. */ #ifdef LDL_LONG if (amd_l_order (n, Ap, Ai, P, (double *) NULL, Info) < AMD_OK) { printf (PROGRAM ": call to AMD failed\n") ; EXIT_ERROR ; } amd_l_control ((double *) NULL) ; amd_l_info (Info) ; #else if (amd_order (n, Ap, Ai, P, (double *) NULL, Info) < AMD_OK) { printf (PROGRAM ": call to AMD failed\n") ; EXIT_ERROR ; } amd_control ((double *) NULL) ; amd_info (Info) ; #endif #endif /* ------------------------------------------------------------------ */ /* allocate workspace and the first part of LDL factorization */ /* ------------------------------------------------------------------ */ ALLOC_MEMORY (Pinv, LDL_int, n) ; ALLOC_MEMORY (Y, double, n) ; ALLOC_MEMORY (Pattern, LDL_int, n) ; ALLOC_MEMORY (Lnz, LDL_int, n) ; ALLOC_MEMORY (Lp, LDL_int, n+1) ; ALLOC_MEMORY (Parent, LDL_int, n) ; ALLOC_MEMORY (D, double, n) ; ALLOC_MEMORY (B, double, n) ; ALLOC_MEMORY (X, double, n) ; /* ------------------------------------------------------------------ */ /* factorize twice, with and without permutation */ /* ------------------------------------------------------------------ */ for (trial = 1 ; trial <= 2 ; trial++) { if (trial == 1) { printf ("Factorize PAP'=LDL' and solve Ax=b\n") ; Perm = P ; PermInv = Pinv ; } else { printf ("Factorize A=LDL' and solve Ax=b\n") ; Perm = (LDL_int *) NULL ; PermInv = (LDL_int *) NULL ; } /* -------------------------------------------------------------- */ /* symbolic factorization to get Lp, Parent, Lnz, and Pinv */ /* -------------------------------------------------------------- */ LDL_symbolic (n, Ap, Ai, Lp, Parent, Lnz, Flag, Perm, PermInv) ; lnz = Lp [n] ; /* find # of nonzeros in L, and flop count for LDL_numeric */ flops = 0 ; for (j = 0 ; j < n ; j++) { flops += ((double) Lnz [j]) * (Lnz [j] + 2) ; } printf ("Nz in L: "LDL_ID" Flop count: %g\n", lnz, flops) ; /* -------------------------------------------------------------- */ /* allocate remainder of L, of size lnz */ /* -------------------------------------------------------------- */ ALLOC_MEMORY (Li, LDL_int, lnz) ; ALLOC_MEMORY (Lx, double, lnz) ; /* -------------------------------------------------------------- */ /* numeric factorization to get Li, Lx, and D */ /* -------------------------------------------------------------- */ d = LDL_numeric (n, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Flag, Pattern, Perm, PermInv) ; /* -------------------------------------------------------------- */ /* solve, or report singular case */ /* -------------------------------------------------------------- */ if (d != n) { printf ("Ax=b not solved since D("LDL_ID","LDL_ID") is zero.\n", d, d) ; } else { /* construct the right-hand-side, B */ for (i = 0 ; i < n ; i++) { B [i] = 1 + ((double) i) / 100 ; } /* solve Ax=b */ if (trial == 1) { /* the factorization is LDL' = PAP' */ LDL_perm (n, Y, B, P) ; /* y = Pb */ LDL_lsolve (n, Y, Lp, Li, Lx) ; /* y = L\y */ LDL_dsolve (n, Y, D) ; /* y = D\y */ LDL_ltsolve (n, Y, Lp, Li, Lx) ; /* y = L'\y */ LDL_permt (n, X, Y, P) ; /* x = P'y */ } else { /* the factorization is LDL' = A */ for (i = 0 ; i < n ; i++) /* x = b */ { X [i] = B [i] ; } LDL_lsolve (n, X, Lp, Li, Lx) ; /* x = L\x */ LDL_dsolve (n, X, D) ; /* x = D\x */ LDL_ltsolve (n, X, Lp, Li, Lx) ; /* x = L'\x */ } /* compute the residual y = Ax-b */ /* note that this code can tolerate a jumbled matrix */ for (i = 0 ; i < n ; i++) { Y [i] = -B [i] ; } for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { Y [Ai [p]] += Ax [p] * X [j] ; } } /* rnorm = norm (y, inf) */ rnorm = 0 ; for (i = 0 ; i < n ; i++) { r = (Y [i] > 0) ? (Y [i]) : (-Y [i]) ; rnorm = (r > rnorm) ? (r) : (rnorm) ; } maxrnorm = (rnorm > maxrnorm) ? (rnorm) : (maxrnorm) ; printf ("relative maxnorm of residual: %g\n", rnorm) ; } /* -------------------------------------------------------------- */ /* free the size-lnz part of L */ /* -------------------------------------------------------------- */ FREE_MEMORY (Li, LDL_int) ; FREE_MEMORY (Lx, double) ; } /* free everything */ FREE_MEMORY (P, LDL_int) ; FREE_MEMORY (Ap, LDL_int) ; FREE_MEMORY (Ai, LDL_int) ; FREE_MEMORY (Ax, double) ; FREE_MEMORY (Pinv, LDL_int) ; FREE_MEMORY (Y, double) ; FREE_MEMORY (Flag, LDL_int) ; FREE_MEMORY (Pattern, LDL_int) ; FREE_MEMORY (Lnz, LDL_int) ; FREE_MEMORY (Lp, LDL_int) ; FREE_MEMORY (Parent, LDL_int) ; FREE_MEMORY (D, double) ; FREE_MEMORY (B, double) ; FREE_MEMORY (X, double) ; } printf ("\nLargest residual during all tests: %g\n", maxrnorm) ; if (maxrnorm < 1e-8) { printf ("\n" PROGRAM ": all tests passed\n") ; EXIT_OK ; } else { printf ("\n" PROGRAM ": one more tests failed (residual too high)\n") ; EXIT_ERROR ; } } SuiteSparse/LDL/Demo/ldllamd.out0000644001170100242450000014044310711433076015420 0ustar davisfac -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 1 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 72 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 2 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 104 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 160 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 5 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 224 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 272 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 11 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 392 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 160 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 3032 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 188 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 4736 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 279 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 4360 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 2.59625e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.72848e-10 -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 325 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 7184 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 3.27418e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.32376e-10 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 400 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 6832 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.38712e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 2.27374e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 472 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 11000 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.27374e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 3.83693e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 24 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 3456 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 26 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 4056 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 306 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 5928 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.96745e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 6.93889e-16 -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 9192 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 5.55112e-16 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 342 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 7152 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 1.11022e-15 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 407 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 10912 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.68434e-14 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 2.15827e-12 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 4356 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 45936 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 87872 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 66 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 4752 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 72 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 8 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 5864 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid perm) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ap) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation Largest residual during all tests: 3.27418e-10 ldlamd: all tests passed SuiteSparse/LDL/Makefile0000644001170100242450000000241510617136676014041 0ustar davisfac#------------------------------------------------------------------------------ # LDL Makefile #------------------------------------------------------------------------------ default: demo include ../UFconfig/UFconfig.mk # Compile all C code, including the C-callable routine. demo: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile all C code, including the C-callable routine and the mexFunctions. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # compile just the C-callable libraries (not mexFunctions or Demos) library: ( cd Lib ; $(MAKE) ) # remove object files, but keep the compiled programs and library archives clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) ( cd Doc ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) ( cd Doc ; $(MAKE) purge ) distclean: purge # create PDF documents for the original distribution doc: ( cd Doc ; $(MAKE) ) # get ready for distribution dist: purge ( cd Demo ; $(MAKE) dist ) ( cd Doc ; $(MAKE) ) ccode: library lib: library # compile the MATLAB mexFunction mex: ( cd MATLAB ; $(MAKE) ) SuiteSparse/LDL/MATLAB/0000755001170100242450000000000010711653377013334 5ustar davisfacSuiteSparse/LDL/MATLAB/ldlmain2.out0000644001170100242450000016535510711435406015575 0ustar davisfacldlmain2 LDLMAIN2 compiles and runs a longer test program for LDL Example: ldlmain2 See also ldlsparse. LDL successfully compiled. -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 1 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 2 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 5 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 11 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 160 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 188 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 279 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 2.59625e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.72848e-10 -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 325 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 3.27418e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.32376e-10 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 400 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.38712e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 2.27374e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 472 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.27374e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 3.83693e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 24 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 26 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 306 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.96745e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 6.93889e-16 -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 5.55112e-16 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 342 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 1.11022e-15 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 407 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.68434e-14 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 2.15827e-12 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 4356 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 66 -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 72 (jumbled version) -------------------------------------------------------- Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid perm) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ap) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlmain: invalid matrix and/or permutation Largest residual during all tests: 3.27418e-10 ldlmain: all tests passed -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 1 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 36 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 0 -------------------------------------------------------- Input matrix: name: Dense/1 n: 1 entries: 2 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 1 nz, number of nonzeros in A: 1 symmetry of A: 1.0000 number of nonzeros on diagonal: 1 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 52 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 1 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 1 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 8.32667e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 80 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 5.55112e-17 -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 5 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 2 nz, number of nonzeros in A: 4 symmetry of A: 1.0000 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 2 # dense rows/columns of A+A': 0 memory used, in bytes: 112 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1 nonzeros in L (including diagonal): 3 # divide operations for LDL' or LU: 1 # multiply-subtract operations for LDL': 1 # multiply-subtract operations for LU: 1 max nz. in any column of L (incl. diagonal): 2 chol flop count for real A, sqrt counted as 1 flop: 5 LDL' flop count for real A: 3 LDL' flop count for complex A: 17 LU flop count for real A (with no pivoting): 3 LU flop count for complex A (with no pivoting): 17 Factorize PAP'=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 1 Flop count: 3 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 136 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.11022e-16 -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 11 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 3 nz, number of nonzeros in A: 9 symmetry of A: 1.0000 number of nonzeros on diagonal: 3 nonzeros in pattern of A+A' (excl. diagonal): 6 # dense rows/columns of A+A': 0 memory used, in bytes: 196 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 3 nonzeros in L (including diagonal): 6 # divide operations for LDL' or LU: 3 # multiply-subtract operations for LDL': 4 # multiply-subtract operations for LU: 5 max nz. in any column of L (incl. diagonal): 3 chol flop count for real A, sqrt counted as 1 flop: 14 LDL' flop count for real A: 11 LDL' flop count for complex A: 59 LU flop count for real A (with no pivoting): 13 LU flop count for complex A (with no pivoting): 67 Factorize PAP'=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 Factorize A=LDL' and solve Ax=b Nz in L: 3 Flop count: 11 relative maxnorm of residual: 1.38778e-16 -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 160 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: HB/can_24 n: 24 entries: 188 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 2368 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Factorize PAP'=LDL' and solve Ax=b Nz in L: 96 Flop count: 632 Ax=b not solved since D(1,1) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 146 Flop count: 1360 Ax=b not solved since D(5,5) is zero. -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 279 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 2180 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 2.59625e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.72848e-10 -------------------------------------------------------- Input matrix: name: FIDAP/ex5 n: 27 entries: 325 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 27 nz, number of nonzeros in A: 279 symmetry of A: 1.0000 number of nonzeros on diagonal: 27 nonzeros in pattern of A+A' (excl. diagonal): 252 # dense rows/columns of A+A': 0 memory used, in bytes: 3592 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 126 nonzeros in L (including diagonal): 153 # divide operations for LDL' or LU: 126 # multiply-subtract operations for LDL': 414 # multiply-subtract operations for LU: 702 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 981 LDL' flop count for real A: 954 LDL' flop count for complex A: 4446 LU flop count for real A (with no pivoting): 1530 LU flop count for complex A (with no pivoting): 6750 Factorize PAP'=LDL' and solve Ax=b Nz in L: 126 Flop count: 954 relative maxnorm of residual: 3.27418e-10 Factorize A=LDL' and solve Ax=b Nz in L: 276 Flop count: 4206 relative maxnorm of residual: 2.32376e-10 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 400 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 3416 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.38712e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 2.27374e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk01 n: 48 entries: 472 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 400 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 352 # dense rows/columns of A+A': 0 memory used, in bytes: 5500 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 441 nonzeros in L (including diagonal): 489 # divide operations for LDL' or LU: 441 # multiply-subtract operations for LDL': 2760 # multiply-subtract operations for LU: 5079 max nz. in any column of L (incl. diagonal): 20 chol flop count for real A, sqrt counted as 1 flop: 6009 LDL' flop count for real A: 5961 LDL' flop count for complex A: 26049 LU flop count for real A (with no pivoting): 10599 LU flop count for complex A (with no pivoting): 44601 Factorize PAP'=LDL' and solve Ax=b Nz in L: 441 Flop count: 5961 relative maxnorm of residual: 2.27374e-13 Factorize A=LDL' and solve Ax=b Nz in L: 829 Flop count: 20103 relative maxnorm of residual: 3.83693e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 24 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 1728 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: HB/bcsstm01 n: 48 entries: 26 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 24 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2028 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 48 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 48 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 Ax=b not solved since D(3,3) is zero. -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 306 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 2964 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.96745e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 6.93889e-16 -------------------------------------------------------- Input matrix: name: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 48 nz, number of nonzeros in A: 306 symmetry of A: 1.0000 number of nonzeros on diagonal: 48 nonzeros in pattern of A+A' (excl. diagonal): 258 # dense rows/columns of A+A': 0 memory used, in bytes: 4596 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 288 nonzeros in L (including diagonal): 336 # divide operations for LDL' or LU: 288 # multiply-subtract operations for LDL': 1171 # multiply-subtract operations for LU: 2054 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 2678 LDL' flop count for real A: 2630 LDL' flop count for complex A: 11960 LU flop count for real A (with no pivoting): 4396 LU flop count for complex A (with no pivoting): 19024 Factorize PAP'=LDL' and solve Ax=b Nz in L: 288 Flop count: 2630 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 511 Flop count: 7383 relative maxnorm of residual: 5.55112e-16 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 342 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 3576 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.55112e-16 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 1.11022e-15 -------------------------------------------------------- Input matrix: name: Bai/bfwb62 n: 62 entries: 407 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 62 nz, number of nonzeros in A: 342 symmetry of A: 1.0000 number of nonzeros on diagonal: 62 nonzeros in pattern of A+A' (excl. diagonal): 280 # dense rows/columns of A+A': 0 memory used, in bytes: 5456 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 226 nonzeros in L (including diagonal): 288 # divide operations for LDL' or LU: 226 # multiply-subtract operations for LDL': 623 # multiply-subtract operations for LU: 1020 max nz. in any column of L (incl. diagonal): 9 chol flop count for real A, sqrt counted as 1 flop: 1534 LDL' flop count for real A: 1472 LDL' flop count for complex A: 7018 LU flop count for real A (with no pivoting): 2266 LU flop count for complex A (with no pivoting): 10194 Factorize PAP'=LDL' and solve Ax=b Nz in L: 226 Flop count: 1472 relative maxnorm of residual: 5.68434e-14 Factorize A=LDL' and solve Ax=b Nz in L: 662 Flop count: 11350 relative maxnorm of residual: 2.15827e-12 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 4356 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 22968 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 7.50219e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 4356 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 4290 # dense rows/columns of A+A': 0 memory used, in bytes: 43936 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 2145 nonzeros in L (including diagonal): 2211 # divide operations for LDL' or LU: 2145 # multiply-subtract operations for LDL': 47905 # multiply-subtract operations for LU: 93665 max nz. in any column of L (incl. diagonal): 66 chol flop count for real A, sqrt counted as 1 flop: 98021 LDL' flop count for real A: 97955 LDL' flop count for complex A: 402545 LU flop count for real A (with no pivoting): 189475 LU flop count for complex A (with no pivoting): 768625 Factorize PAP'=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 Factorize A=LDL' and solve Ax=b Nz in L: 2145 Flop count: 97955 relative maxnorm of residual: 8.59759e-13 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 66 -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2376 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: HB/bcsstm02 n: 66 entries: 72 (jumbled version) -------------------------------------------------------- AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 66 nz, number of nonzeros in A: 66 symmetry of A: 1.0000 number of nonzeros on diagonal: 66 nonzeros in pattern of A+A' (excl. diagonal): 0 # dense rows/columns of A+A': 0 memory used, in bytes: 2932 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 0 nonzeros in L (including diagonal): 66 # divide operations for LDL' or LU: 0 # multiply-subtract operations for LDL': 0 # multiply-subtract operations for LU: 0 max nz. in any column of L (incl. diagonal): 1 chol flop count for real A, sqrt counted as 1 flop: 66 LDL' flop count for real A: 0 LDL' flop count for complex A: 0 LU flop count for real A (with no pivoting): 0 LU flop count for complex A (with no pivoting): 0 Factorize PAP'=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 Factorize A=LDL' and solve Ax=b Nz in L: 0 Flop count: 0 relative maxnorm of residual: 2.22045e-16 -------------------------------------------------------- Input matrix: name: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid perm) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ap) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation -------------------------------------------------------- Input matrix: name: Dense/3 n: 3 entries: 9 (invalid Ai) -------------------------------------------------------- ldlamd: invalid matrix and/or permutation Largest residual during all tests: 3.27418e-10 ldlamd: all tests passed diary off SuiteSparse/LDL/MATLAB/Makefile0000644001170100242450000000133510617142011014755 0ustar davisfac#------------------------------------------------------------------------------- # Makefile for the LDL mexFunction #------------------------------------------------------------------------------- default: mex include ../../UFconfig/UFconfig.mk I = -I../../UFconfig -I../Include MX = $(MEX) $(I) -DLDL_LONG mex: ldlmex.c ../Source/ldl.c ../Include/ldl.h ldlsymbolmex.c - $(MX) -output ldlsparse ../Source/ldl.c ldlmex.c - $(MX) -output ldlsymbol ../Source/ldl.c ldlsymbolmex.c #------------------------------------------------------------------------------- # clean-up: #------------------------------------------------------------------------------- distclean: purge purge: clean - $(RM) *.mex* clean: - $(RM) $(CLEAN) SuiteSparse/LDL/MATLAB/ldl_install.m0000644001170100242450000000073510620377143016011 0ustar davisfacfunction ldl_install %LDL_INSTALL compile and install the LDL package for use in MATLAB. % Your current working directory must be LDL for this function to work. % % Example: % ldl_install % % See also ldlsparse, ldlsymbol % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida ldl_make addpath (pwd) ; fprintf ('LDL has been compiled and installed. The path:\n') ; disp (pwd) ; fprintf ('has been added to your path. Use pathtool to add it permanently.\n'); ldldemo SuiteSparse/LDL/MATLAB/ldlmain2.m0000644001170100242450000000206310707707603015212 0ustar davisfacfunction ldlmain2 %LDLMAIN2 compiles and runs a longer test program for LDL % % Example: % ldlmain2 % % See also ldlsparse. % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida help ldlmain2 detail = 0 ; ldl_make d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end mx = sprintf ('mex -O %s -DLDL_LONG -DDLONG -I../../UFconfig -I../Include', d) ; % compile ldlmain without AMD cmd = sprintf ('%s ../Demo/ldlmain.c ../Source/ldl.c', mx) ; if (detail) fprintf ('%s\n', cmd) ; end eval (cmd) ; ldlmain % compile ldlamd (ldlmain with AMD) cmd = sprintf ('%s -I../../AMD/Include', mx) ; files = {'amd_order', 'amd_dump', 'amd_postorder', 'amd_post_tree', ... 'amd_aat', 'amd_2', 'amd_1', 'amd_defaults', 'amd_control', ... 'amd_info', 'amd_valid', 'amd_global', 'amd_preprocess' } ; for i = 1 : length (files) cmd = sprintf ('%s ../../AMD/Source/%s.c', cmd, files {i}) ; end cmd = [cmd ' -DUSE_AMD -output ldlamd ../Demo/ldlmain.c ../Source/ldl.c'] ; if (detail) fprintf ('%s\n', cmd) ; end eval (cmd) ; ldlamd SuiteSparse/LDL/MATLAB/ldlmex.c0000644001170100242450000002511310634323125014754 0ustar davisfac/* ========================================================================== */ /* === ldlmex.c: LDL mexFunction =========================================== */ /* ========================================================================== */ /* MATLAB interface for numerical LDL' factorization using the LDL sparse matrix * package. * * MATLAB calling syntax is: * * [L, D, Parent, flops] = ldl (A) * [L, D, Parent, flops] = ldl (A, P) * [x, flops] = ldl (A, [ ], b) * [x, flops] = ldl (A, P, b) * * The factorization is L*D*L' = A or L*D*L' = A(P,P). A must be sparse, * square, and real. L is lower triangular with unit diagonal, but the diagonal * is not returned. D is diagonal sparse matrix. Let n = size (A,1). If P is * not present or empty, the factorization is: * * (L + speye (n)) * D * (L + speye (n))' = A * * otherwise, the factorization is * * (L + speye (n)) * D * (L + speye (n))' = A(P,P) * * P is a permutation of 1:n, an output of AMD, SYMAMD, or SYMRCM, for example. * Only the diagonal and upper triangular part of A or A(P,P) is accessed; the * lower triangular part is ignored. * * The elimination tree is returned in the Parent array. * * In the x = ldl (A, P, b) usage, the LDL' factorization is not returned. * Instead, the system A*x=b is solved for x, where b is a dense n-by-m matrix, * using P as the fill-reducing ordering for the LDL' factorization of A(P,P). * If P is not present or equal to [ ], it is assumed to be the identity * permutation. * * If no zero entry on the diagonal of D is encountered, then the flops argument * is the floating point count. * * If any entry on the diagonal of D is zero, then the LDL' factorization is * terminated at that point. If there is no flops output argument, an error * message is printed and no outputs are returned. Otherwise, flops is * negative, d = -flops, and D (d,d) is the first zero entry on the diagonal of * D. A partial factorization is returned. Let B = A if P is not present or * empty, or B = A(P,P) otherwise. Then the factorization is * * LDL = (L + speye (n)) * D * (L + speye (n))' * LDL (1:d, 1:d) = B (1:d,1:d) * * That is, the LDL' factorization of B (1:d,1:d) is in the first d rows and * columns of L and D. The rest of L and D are zero. * * LDL Copyright (c) by Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #ifndef LDL_LONG #define LDL_LONG #endif #include "ldl.h" #include "mex.h" /* ========================================================================== */ /* === LDL mexFunction ====================================================== */ /* ========================================================================== */ void mexFunction ( int nargout, mxArray *pargout[ ], int nargin, const mxArray *pargin[ ] ) { UF_long i, n, *Pattern, *Flag, *Li, *Lp, *Ap, *Ai, *Lnz, *Parent, do_chol, nrhs = 0, lnz, do_solve, *P, *Pinv, nn, k, j, permute, *Dp = NULL, *Di, d, do_flops, psrc, pdst ; double *Y, *D, *Lx, *Ax, flops, *X = NULL, *B = NULL, *p ; /* ---------------------------------------------------------------------- */ /* get inputs and allocate workspace */ /* ---------------------------------------------------------------------- */ do_chol = (nargin > 0) && (nargin <= 2) && (nargout <= 4) ; do_solve = (nargin == 3) && (nargout <= 2) ; if (!(do_chol || do_solve)) { mexErrMsgTxt ("Usage:\n" " [L, D, etree, flopcount] = ldl (A) ;\n" " [L, D, etree, flopcount] = ldl (A, P) ;\n" " [x, flopcount] = ldl (A, [ ], b) ;\n" " [x, flopcount] = ldl (A, P, b) ;\n" "The etree and flopcount arguments are optional.") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetN (pargin [0]) || mxIsComplex (pargin [0])) { mexErrMsgTxt ("ldl: A must be sparse, square, and real") ; } if (do_solve) { if (mxIsSparse (pargin [2]) || n != mxGetM (pargin [2]) || !mxIsDouble (pargin [2]) || mxIsComplex (pargin [2])) { mexErrMsgTxt ( "ldl: b must be dense, real, and with proper dimension") ; } } nn = (n == 0) ? 1 : n ; /* get sparse matrix A */ Ap = (UF_long *) mxGetJc (pargin [0]) ; Ai = (UF_long *) mxGetIr (pargin [0]) ; Ax = mxGetPr (pargin [0]) ; /* get fill-reducing ordering, if present */ permute = ((nargin > 1) && !mxIsEmpty (pargin [1])) ; if (permute) { if (mxGetM (pargin [1]) * mxGetN (pargin [1]) != n || mxIsSparse (pargin [1])) { mexErrMsgTxt ("ldl: invalid input permutation\n") ; } P = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Pinv = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; p = mxGetPr (pargin [1]) ; for (k = 0 ; k < n ; k++) { P [k] = p [k] - 1 ; /* convert to 0-based */ } } else { P = (UF_long *) NULL ; Pinv = (UF_long *) NULL ; } /* allocate first part of L */ Lp = (UF_long *) mxMalloc ((n+1) * sizeof (UF_long)) ; Parent = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; /* get workspace */ Y = (double *) mxMalloc (nn * sizeof (double)) ; Flag = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Pattern = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Lnz = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; /* make sure the input P is valid */ if (permute && !ldl_l_valid_perm (n, P, Flag)) { mexErrMsgTxt ("ldl: invalid input permutation\n") ; } /* note that we assume that the input matrix is valid */ /* ---------------------------------------------------------------------- */ /* symbolic factorization to get Lp, Parent, Lnz, and optionally Pinv */ /* ---------------------------------------------------------------------- */ ldl_l_symbolic (n, Ap, Ai, Lp, Parent, Lnz, Flag, P, Pinv) ; lnz = Lp [n] ; /* ---------------------------------------------------------------------- */ /* create outputs */ /* ---------------------------------------------------------------------- */ if (do_chol) { /* create the output matrix L, using the Lp array from ldl_l_symbolic */ pargout [0] = mxCreateSparse (n, n, lnz+1, mxREAL) ; mxFree (mxGetJc (pargout [0])) ; mxSetJc (pargout [0], (void *) Lp) ; /* Lp is not mxFree'd */ Li = (UF_long *) mxGetIr (pargout [0]) ; Lx = mxGetPr (pargout [0]) ; /* create sparse diagonal matrix D */ if (nargout > 1) { pargout [1] = mxCreateSparse (n, n, nn, mxREAL) ; Dp = (UF_long *) mxGetJc (pargout [1]) ; Di = (UF_long *) mxGetIr (pargout [1]) ; for (j = 0 ; j < n ; j++) { Dp [j] = j ; Di [j] = j ; } Dp [n] = n ; D = mxGetPr (pargout [1]) ; } else { D = (double *) mxMalloc (nn * sizeof (double)) ; } /* return elimination tree (add 1 to change from 0-based to 1-based) */ if (nargout > 2) { pargout [2] = mxCreateDoubleMatrix (1, n, mxREAL) ; p = mxGetPr (pargout [2]) ; for (i = 0 ; i < n ; i++) { p [i] = Parent [i] + 1 ; } } do_flops = (nargout == 4) ? (3) : (-1) ; } else { /* create L and D as temporary matrices */ Li = (UF_long *) mxMalloc ((lnz+1) * sizeof (UF_long)) ; Lx = (double *) mxMalloc ((lnz+1) * sizeof (double)) ; D = (double *) mxMalloc (nn * sizeof (double)) ; /* create solution x */ nrhs = mxGetN (pargin [2]) ; pargout [0] = mxCreateDoubleMatrix (n, nrhs, mxREAL) ; X = mxGetPr (pargout [0]) ; B = mxGetPr (pargin [2]) ; do_flops = (nargout == 2) ? (1) : (-1) ; } if (do_flops >= 0) { /* find flop count for ldl_l_numeric */ flops = 0 ; for (k = 0 ; k < n ; k++) { flops += ((double) Lnz [k]) * (Lnz [k] + 2) ; } if (do_solve) { /* add flop count for solve */ for (k = 0 ; k < n ; k++) { flops += 4 * ((double) Lnz [k]) + 1 ; } } pargout [do_flops] = mxCreateDoubleMatrix (1, 1, mxREAL) ; p = mxGetPr (pargout [do_flops]) ; p [0] = flops ; } /* ---------------------------------------------------------------------- */ /* numeric factorization to get Li, Lx, and D */ /* ---------------------------------------------------------------------- */ d = ldl_l_numeric (n, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Flag, Pattern, P, Pinv) ; /* ---------------------------------------------------------------------- */ /* singular case : truncate the factorization */ /* ---------------------------------------------------------------------- */ if (d != n) { /* D [d] is zero: report error, or clean up */ if (do_chol && do_flops < 0) { mexErrMsgTxt ("ldl: zero pivot encountered\n") ; } else { /* L and D are incomplete, compact them */ if (do_chol) { for (k = d ; k < n ; k++) { Dp [k] = d ; } Dp [n] = d ; } for (k = d ; k < n ; k++) { D [k] = 0 ; } pdst = 0 ; for (k = 0 ; k < d ; k++) { for (psrc = Lp [k] ; psrc < Lp [k] + Lnz [k] ; psrc++) { Li [pdst] = Li [psrc] ; Lx [pdst] = Lx [psrc] ; pdst++ ; } } for (k = 0 ; k < d ; k++) { Lp [k+1] = Lp [k] + Lnz [k] ; } for (k = d ; k <= n ; k++) { Lp [k] = pdst ; } if (do_flops >= 0) { /* return -d instead of the flop count (convert to 1-based) */ p = mxGetPr (pargout [do_flops]) ; p [0] = -(1+d) ; } } } /* ---------------------------------------------------------------------- */ /* solve Ax=b, if requested */ /* ---------------------------------------------------------------------- */ if (do_solve) { if (permute) { for (j = 0 ; j < nrhs ; j++) { ldl_l_perm (n, Y, B, P) ; /* y = Pb */ ldl_l_lsolve (n, Y, Lp, Li, Lx) ; /* y = L\y */ ldl_l_dsolve (n, Y, D) ; /* y = D\y */ ldl_l_ltsolve (n, Y, Lp, Li, Lx) ; /* y = L'\y */ ldl_l_permt (n, X, Y, P) ; /* x = P'y */ X += n ; B += n ; } } else { for (j = 0 ; j < nrhs ; j++) { for (k = 0 ; k < n ; k++) /* x = b */ { X [k] = B [k] ; } ldl_l_lsolve (n, X, Lp, Li, Lx) ; /* x = L\x */ ldl_l_dsolve (n, X, D) ; /* x = D\x */ ldl_l_ltsolve (n, X, Lp, Li, Lx) ; /* x = L'\x */ X += n ; B += n ; } } /* free the matrix L */ mxFree (Lp) ; mxFree (Li) ; mxFree (Lx) ; mxFree (D) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ if (do_chol && nargout < 2) { mxFree (D) ; } if (permute) { mxFree (P) ; mxFree (Pinv) ; } mxFree (Parent) ; mxFree (Y) ; mxFree (Flag) ; mxFree (Pattern) ; mxFree (Lnz) ; } SuiteSparse/LDL/MATLAB/ldlsparse.m0000644001170100242450000000320710620377467015507 0ustar davisfacfunction [arg1, arg2, arg3, arg4] = ldlsparse (A, P, b) %#ok %LDLSPARSE LDL' factorization of a real, sparse, symmetric matrix % % Example: % [L, D, Parent, fl] = ldlsparse (A) % [L, D, Parent, fl] = ldlsparse (A, P) % [x, fl] = ldlsparse (A, [ ], b) % [x, fl] = ldlsparse (A, P, b) % % Let I = speye (size (A,1)). The factorization is (L+I)*D*(L+I)' = A or A(P,P). % A must be sparse, square, and real. Only the diagonal and upper triangular % part of A or A(P,P) are accessed. L is lower triangular with unit diagonal, % but the diagonal is not returned. D is a diagonal sparse matrix. P is either % a permutation of 1:n, or an empty vector, where n = size (A,1). If not % present, or empty, then P=1:n is assumed. Parent is the elimination tree of % A or A(P,P). If positive, fl is the floating point operation count, or % negative if any entry on the diagonal of D is zero. % % In the x = ldlsparse (A, P, b) usage, the LDL' factorization is not returned. % Instead, the system A*x=b is solved for x, where both b and x are dense. % % If a zero entry on the diagonal of D is encountered, the LDL' factorization is % terminated at that point. If there is no fl output argument, an error occurs. % Otherwise, fl is negative, and let d=-fl. D(d,d) is the first zero entry on % the diagonal of D. A partial factorization is returned. Let B = A, or A(P,P) % if P is present. Let F = (L+I)*D*(L+I)'. Then F (1:d,1:d) = B (1:d,1:d). % Rows d+1 to n of L and D are all zero. % % See also chol, ldl, ldlsymbol, symbfact, etree % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida error ('ldlsparse mexFunction not found') ; SuiteSparse/LDL/MATLAB/ldl_make.m0000644001170100242450000000107310620377606015260 0ustar davisfacfunction ldl_make %LDL_MAKE compile LDL % % Example: % ldl_make % compiles ldlsparse and ldlsymbol % % See also ldlsparse, ldlsymbol % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end eval (sprintf ('mex -O %s -DLDL_LONG -I../../UFconfig -I../Include -output ldlsparse ../Source/ldl.c ldlmex.c', d)) ; eval (sprintf ('mex -O %s -DLDL_LONG -I../../UFconfig -I../Include -output ldlsymbol ../Source/ldl.c ldlsymbolmex.c', d)) ; fprintf ('LDL successfully compiled.\n') ; SuiteSparse/LDL/MATLAB/ldlrow.m0000644001170100242450000000361710620377512015015 0ustar davisfacfunction [L, D] = ldlrow (A) %LDLROW an m-file description of the algorithm used by LDL % % Example: % [L, D] = ldlrow (A) % % Compute the L*D*L' factorization of A, by rows. Returns % full L and D matrices. This routine serves as an outline % of the numerical factorization performed by ldl.c. % % Here is a diagram of how L is computed. "a" means an % entry that is accessed at the kth step, and "c" means an % entry that is computed. A "-" means neither accessed nor % computed. A "1" means the value of the entry is L (the % unit diagonal of L), and it is accessed at the kth step. % A "." means the value is zero. % % The L matrix % % 1 . . . . . . . % a 1 . . . . . . % a a 1 . . . . . % a a a 1 . . . . % c c c c c . . . <- kth row of L % - - - - - - . . % - - - - - - - . % - - - - - - - - % % The A matrix: % % the kth column of A % v % - - - - a - - - % - - - - a - - - % - - - - a - - - % - - - - a - - - % - - - - a - - - <- kth row of A % - - - - - - - - % - - - - - - - - % - - - - - - - - % % The D matrix: % % the kth column of D % v % a . . . . . . . % . a . . . . . . % . . a . . . . . % . . . a . . . . % . . . . c . . . <- kth row of D % . . . . . . . . % . . . . . . . . % . . . . . . . . % % See also ldlsparse. % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida [m n] = size (A) ; L = zeros (n, n) ; D = zeros (n, 1) ; A = full (A) ; L (1, 1) = 1 ; D (1) = A (1,1) ; for k = 2:n % note the sparse triangular solve. For the sparse % case, the pattern of y is the same as the pattern of % the kth row of L. y = L (1:k-1, 1:k-1) \ A (1:k-1, k) ; % scale row k of L L (k, 1:k-1) = (y ./ D (1:k-1))' ; L (k, k) = 1 ; % compute the diagonal D (k) = A (k,k) - L (k, 1:k-1) * y ; end D = diag (D) ; SuiteSparse/LDL/MATLAB/Contents.m0000644001170100242450000000241310620377626015306 0ustar davisfac% LDL package: simple sparse LDL factorization % % Primary routines: % % ldlsparse - LDL' factorization of a real, sparse, symmetric matrix % ldlsymbol - symbolic Cholesky factorization % % Helper routines: % % ldldemo - demo program for LDL % ldlrow - an m-file description of the algorithm used by LDL % ldltest - test program for LDL % ldlmain2 - compiles and runs a longer test program for LDL % ldl_install - compile and install the LDL package for use in MATLAB. % ldl_make - compile LDL % % Example: % % [L, D, Parent, fl] = ldlsparse (A) % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida % LDL License: GNU Lesser General Public License as published by the % Free Software Foundation; either version 2.1 of the License, or % (at your option) any later version. % % Availability: % % http://www.cise.ufl.edu/research/sparse/ldl % % Acknowledgements: % % This work was supported by the National Science Foundation, under % grant CCR-0203270. % % Portions of this work were done while on sabbatical at Stanford University % and Lawrence Berkeley National Laboratory (with funding from the SciDAC % program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon % for making this sabbatical possible. SuiteSparse/LDL/MATLAB/ldldemo.m0000644001170100242450000000531210620377476015135 0ustar davisfacfunction ldldemo %LDLDEMO demo program for LDL % % Example: % ldldemo % % See also ldlsparse. % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida % compile the LDLSPARSE and LDLSYMBOL mexFunctions help ldlsparse fprintf ('\nTesting ldlsparse and ldlsymbol:\n') ; % create a small random symmetric positive definite sparse matrix n = 100 ; d = 0.03 ; rand ('state', 0) ; randn ('state', 0) ; A = sprandn (n, n, d) ; A = speye (n) + A*A' ; b = randn (n, 1) ; figure (1) clf subplot (2,2,1) ; spy (A) ; title ('original matrix') ; % permute for sparsity p = symamd (A) ; C = A (p,p) ; subplot (2,2,2) ; spy (C) ; title ('permuted matrix') ; drawnow % factorize, without using ldlsparse's internal permutation [L, D, Parent, fl] = ldlsparse (C) ; L = L + speye (n) ; err = norm (L*D*L' - C, 1) ; fprintf ('norm (LDL''-PAP'') = %g\n', err) ; % solve Ax=b x = L' \ (D \ (L \ (b (p)))) ; x (p) = x ; resid = norm (A*x-b) ; fprintf ('residual %g for ldlsparse, flops %10.1f\n', resid, fl) ; % solve Ax=b with one call to ldlsparse x = ldlsparse (C, [ ], b (p)) ; x (p) = x ; resid = norm (A*x-b) ; fprintf ('residual %g for ldlsparse solve\n', resid) ; subplot (2,2,3) ; spy (L + D + L') ; title ('L+D+L''') ; subplot (2,2,4) ; treeplot (Parent) title ('elimination tree') ; % try ldlrow (this will be slow) [L, D] = ldlrow (C) ; x = L' \ (D \ (L \ (b (p)))) ; x (p) = x ; resid = norm (A*x-b) ; fprintf ('residual %g for ldlrow.m\n', resid) ; % factorize, using ldlsparse's internal permutation [L, D, Parent, fl] = ldlsparse (A, p) ; L = L + speye (n) ; err = norm (L*D*L' - C, 1) ; fprintf ('norm (LDL''-PAP'') = %g\n', err) ; % solve Ax=b x = L' \ (D \ (L \ (b (p)))) ; x (p) = x ; resid = norm (A*x-b) ; fprintf ('residual %g for ldlsparse, flops %10.1f\n', resid, fl) ; % solve Ax=b with one call to ldlsparse x = ldlsparse (A, p, b) ; resid = norm (A*x-b) ; fprintf ('residual %g for ldlsparse solve\n\n', resid) ; % compare ldlsymbol and symbfact [Lnz, Parent, fl] = ldlsymbol (A) ; fprintf ('Original matrix: nz in L: %5d flop count: %g\n', sum (Lnz), fl) ; Lnz2 = symbfact (A) - 1 ; Parent2 = etree (A) ; fl2 = sum (Lnz2 .* (Lnz2 + 2)) ; if (any (Lnz ~= Lnz2)) error ('Lnz mismatch') ; end if (any (Parent ~= Parent2)) error ('Parent mismatch') ; end if (fl ~= fl2) error ('fl mismatch') ; end [Lnz, Parent, fl] = ldlsymbol (A, p) ; fprintf ('Permuted matrix: nz in L: %5d flop count: %g\n', sum (Lnz), fl) ; Lnz2 = symbfact (A (p,p)) - 1 ; Parent2 = etree (A (p,p)) ; fl2 = sum (Lnz2 .* (Lnz2 + 2)) ; if (any (Lnz ~= Lnz2)) error ('Lnz mismatch') ; end if (any (Parent ~= Parent2)) error ('Parent mismatch') ; end if (fl ~= fl2) error ('fl mismatch') ; end fprintf ('\nldldemo: all tests passed\n') ; SuiteSparse/LDL/MATLAB/ldltest.out0000644001170100242450000000333210711435406015530 0ustar davisfacldltest LDLSPARSE LDL' factorization of a real, sparse, symmetric matrix Example: [L, D, Parent, fl] = ldlsparse (A) [L, D, Parent, fl] = ldlsparse (A, P) [x, fl] = ldlsparse (A, [ ], b) [x, fl] = ldlsparse (A, P, b) Let I = speye (size (A,1)). The factorization is (L+I)*D*(L+I)' = A or A(P,P). A must be sparse, square, and real. Only the diagonal and upper triangular part of A or A(P,P) are accessed. L is lower triangular with unit diagonal, but the diagonal is not returned. D is a diagonal sparse matrix. P is either a permutation of 1:n, or an empty vector, where n = size (A,1). If not present, or empty, then P=1:n is assumed. Parent is the elimination tree of A or A(P,P). If positive, fl is the floating point operation count, or negative if any entry on the diagonal of D is zero. In the x = ldlsparse (A, P, b) usage, the LDL' factorization is not returned. Instead, the system A*x=b is solved for x, where both b and x are dense. If a zero entry on the diagonal of D is encountered, the LDL' factorization is terminated at that point. If there is no fl output argument, an error occurs. Otherwise, fl is negative, and let d=-fl. D(d,d) is the first zero entry on the diagonal of D. A partial factorization is returned. Let B = A, or A(P,P) if P is present. Let F = (L+I)*D*(L+I)'. Then F (1:d,1:d) = B (1:d,1:d). Rows d+1 to n of L and D are all zero. See also chol, ldl, ldlsymbol, symbfact, etree err: 4.44089e-16 fl: 61 err: 4.44089e-16 err: 4.44089e-16 err: 0 err: 5.68989e-16 err: 5.68989e-16 fl: 123 err: 4.57967e-16 fl: 57 err: 4.57967e-16 err: 4.57967e-16 err: 0 err: 6.36644e-16 err: 6.36644e-16 fl: 119 ldl: all tests passed diary off SuiteSparse/LDL/MATLAB/ldltest.m0000644001170100242450000000730010707707627015170 0ustar davisfacfunction ldltest %LDLTEST test program for LDL % % Example: % ldltest % See also ldlsparse. % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida help ldlsparse A = sparse ([ ]) ; [L, D, Parent, fl] = ldlsparse (A) ; %#ok [L, D, Parent, fl] = ldlsparse (A, [ ]) ; %#ok try [L, D, Parent, fl] = ldlsparse (A, [1 2]) ; fprintf ('L = ') ; disp (L) fprintf ('D = ') ; disp (D) fprintf ('Parent = ') ; disp (Parent) fprintf ('fl = %g\n', fl) ; ok = 0 ; catch ok = 1 ; end if (~ok) error ('?') ; end try ldlsparse ok = 0 ; catch ok = 1 ; end if (~ok) error ('?') end try [L, D, Parent, fl] = ldlsparse (1) ; %#ok ok = 0 ; catch ok = 1 ; end if (~ok) error ('?') end try x = ldlsparse (1,2) ; %#ok ok = 0 ; catch ok = 1 ; end if (~ok) error ('?') end A =[ ... 1.7 0 0 0 0 0 0 0 .13 0 0 1.0 0 0 .02 0 0 0 0 .01 0 0 1.5 0 0 0 0 0 0 0 0 0 0 1.1 0 0 0 0 0 0 0 .02 0 0 2.6 0 .16 .09 .52 .53 0 0 0 0 0 1.2 0 0 0 0 0 0 0 0 .16 0 1.3 0 0 .56 0 0 0 0 .09 0 0 1.6 .11 0 .13 0 0 0 .52 0 0 .11 1.4 0 0 .01 0 0 .53 0 .56 0 0 3.1 ] ; A = sparse (A) ; b = [ ... .98 .64 .05 .58 .20 .44 .42 .37 .30 .51 .78 .84 .33 .68 .01 .43 .46 .76 .22 .56 .97 .57 .79 .99 .76 .05 .78 .52 .60 .43 ] ; P = [3 10 2 5 8 6 9 7 1 4] ; I = speye (10) ; [L, D, Parent, fl] = ldlsparse (A) ; err = norm ((L+I)*D*(L+I)'-A, 1) ; fprintf ('err: %g fl: %g\n', err, fl) ; if (err > 1e-14) error ('?') ; end ; Parent2 = etree (A) ; if (any (Parent2 ~= Parent)) error ('?') ; end [L, D, Parent] = ldlsparse (A) ; %#ok err = norm ((L+I)*D*(L+I)'-A, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; [L, D] = ldlsparse (A) ; err = norm ((L+I)*D*(L+I)'-A, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; L2 = ldlsparse (A) ; err = norm (L - L2, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; x = ldlsparse (A, [ ], b) ; err = norm (A*x-b, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; [x, fl] = ldlsparse (A, [ ], b) ; err = norm (A*x-b, 1) ; fprintf ('err: %g fl: %g\n', err, fl) ; if (err > 1e-14) error ('?') ; end ; [L, D, Parent, fl] = ldlsparse (A, P) ; err = norm ((L+I)*D*(L+I)'-A(P,P), 1) ; fprintf ('err: %g fl: %g\n', err, fl) ; if (err > 1e-14) error ('?') ; end ; Parent2 = etree (A (P,P)) ; if (any (Parent2 ~= Parent)) error ('?') ; end figure (1) clf subplot (2,2,1), spy (A), title ('original matrix') ; subplot (2,2,2), spy (A (P,P)), title ('permuted matrix') ; subplot (2,2,3), spy (L+D+L'), title ('L+D+L''') ; subplot (2,2,4), treeplot (Parent), title ('elimination tree') ; [L, D, Parent] = ldlsparse (A, P) ; err = norm ((L+I)*D*(L+I)'-A(P,P), 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; [L, D] = ldlsparse (A, P) ; err = norm ((L+I)*D*(L+I)'-A(P,P), 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; L2 = ldlsparse (A, P) ; err = norm (L - L2, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; x = ldlsparse (A, P, b) ; err = norm (A*x-b, 1) ; fprintf ('err: %g\n', err) ; if (err > 1e-14) error ('?') ; end ; [x, fl] = ldlsparse (A, P, b) ; err = norm (A*x-b, 1) ; fprintf ('err: %g fl: %g\n', err, fl) ; if (err > 1e-14) error ('?') ; end ; fprintf ('\nldl: all tests passed\n') ; SuiteSparse/LDL/MATLAB/ldlsymbol.m0000644001170100242450000000231110620377474015510 0ustar davisfacfunction [Lnz, Parent, fl] = ldlsymbol (A, P) %#ok %LDLSYMBOL symbolic Cholesky factorization % % Example: % [Lnz, Parent, fl] = ldlsymbol (A) % [Lnz, Parent, fl] = ldlsymbol (A, P) % % P is a permutation of 1:n, an output of AMD, SYMAMD, or SYMRCM, for example. % Only the diagonal and upper triangular part of A or A(P,P) is accessed; the % lower triangular part is ignored. If P is not provided, then P = 1:n is % assumed. % % The elimination tree is returned in the Parent array. The number of nonzeros % in each column of L is returned in Lnz. fl is the floating point operation % count for a subsequent LDL' factorization. This mexFunction replicates the % following MATLAB computations, using ldl_symbolic: % % Lnz = symbfact (A) - 1 ; % Parent = etree (A) ; % fl = sum (Lnz .* (Lnz + 2)) ; % % or, if P is provided, % % Lnz = symbfact (A (P,P)) - 1 ; % Parent = etree (A (P,P)) ; % fl = sum (Lnz .* (Lnz + 2)) ; % % Note that this routine is not required by LDL, since LDL does its own % symbolic factorization. % % See also ldlsparse, symbfact, etree % Copyright 2006-2007 by Timothy A. Davis, Univ. of Florida error ('ldlsymbol mexFunction not found') ; SuiteSparse/LDL/MATLAB/ldldemo.out0000644001170100242450000000365510711435406015505 0ustar davisfacldldemo LDLSPARSE LDL' factorization of a real, sparse, symmetric matrix Example: [L, D, Parent, fl] = ldlsparse (A) [L, D, Parent, fl] = ldlsparse (A, P) [x, fl] = ldlsparse (A, [ ], b) [x, fl] = ldlsparse (A, P, b) Let I = speye (size (A,1)). The factorization is (L+I)*D*(L+I)' = A or A(P,P). A must be sparse, square, and real. Only the diagonal and upper triangular part of A or A(P,P) are accessed. L is lower triangular with unit diagonal, but the diagonal is not returned. D is a diagonal sparse matrix. P is either a permutation of 1:n, or an empty vector, where n = size (A,1). If not present, or empty, then P=1:n is assumed. Parent is the elimination tree of A or A(P,P). If positive, fl is the floating point operation count, or negative if any entry on the diagonal of D is zero. In the x = ldlsparse (A, P, b) usage, the LDL' factorization is not returned. Instead, the system A*x=b is solved for x, where both b and x are dense. If a zero entry on the diagonal of D is encountered, the LDL' factorization is terminated at that point. If there is no fl output argument, an error occurs. Otherwise, fl is negative, and let d=-fl. D(d,d) is the first zero entry on the diagonal of D. A partial factorization is returned. Let B = A, or A(P,P) if P is present. Let F = (L+I)*D*(L+I)'. Then F (1:d,1:d) = B (1:d,1:d). Rows d+1 to n of L and D are all zero. See also chol, ldl, ldlsymbol, symbfact, etree Testing ldlsparse and ldlsymbol: norm (LDL'-PAP') = 6.51562e-15 residual 3.55986e-15 for ldlsparse, flops 14813.0 residual 3.86691e-15 for ldlsparse solve residual 3.64202e-15 for ldlrow.m norm (LDL'-PAP') = 6.63575e-15 residual 2.96267e-15 for ldlsparse, flops 14813.0 residual 3.53833e-15 for ldlsparse solve Original matrix: nz in L: 2206 flop count: 81044 Permuted matrix: nz in L: 893 flop count: 14813 ldldemo: all tests passed diary off SuiteSparse/LDL/MATLAB/ldlsymbolmex.c0000644001170100242450000001244010620716421016201 0ustar davisfac/* ========================================================================== */ /* === ldlsymbolmex.c: LDLSYMBOL mexFunction =============================== */ /* ========================================================================== */ /* MATLAB interface for symbolic LDL' factorization using the LDL sparse matrix * package. This mexFunction is not required by the LDL mexFunction. * * MATLAB calling syntax is: * * [Lnz, Parent, flopcount] = ldlsymbol (A) * [Lnz, Parent, flopcount] = ldlsymbol (A, P) * * P is a permutation of 1:n, an output of AMD, SYMAMD, or SYMRCM, for example. * Only the diagonal and upper triangular part of A or A(P,P) is accessed; the * lower triangular part is ignored. * * The elimination tree is returned in the Parent array. The number of nonzeros * in each column of L is returned in Lnz. This mexFunction replicates the * following MATLAB computations, using ldl_l_symbolic: * * Lnz = symbfact (A) - 1 ; * Parent = etree (A) ; * flopcount = sum (Lnz .* (Lnz + 2)) ; * * or, if P is provided, * * B = A (P,P) ; * Lnz = symbfact (B) - 1 ; * Parent = etree (B) ; * flopcount = sum (Lnz .* (Lnz + 2)) ; * * This code is faster than the above MATLAB statements, typically by a factor * of 4 to 40 (median speedup of 9) in MATLAB 6.5 on a Pentium 4 Linux laptop * (excluding the B=A(P,P) time), on a wide range of symmetric sparse matrices. * * LDL Version 1.3, Copyright (c) 2006 by Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #ifndef LDL_LONG #define LDL_LONG #endif #include "ldl.h" #include "mex.h" /* ========================================================================== */ /* === LDLSYMBOL mexFunction ================================================ */ /* ========================================================================== */ void mexFunction ( int nargout, mxArray *pargout[ ], int nargin, const mxArray *pargin[ ] ) { UF_long i, n, *Pattern, *Flag, *Lp, *Ap, *Ai, *Lnz, *Parent, *P, *Pinv, nn, k, j, permute ; double flops, *p ; /* ---------------------------------------------------------------------- */ /* get inputs and allocate workspace */ /* ---------------------------------------------------------------------- */ if (nargin == 0 || nargin > 2) { mexErrMsgTxt ("Usage:\n" " [Lnz, Parent, flopcount] = ldl (A) ;\n" " [Lnz, Parent, flopcount] = ldl (A, P) ;\n") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetN (pargin [0]) || mxIsComplex (pargin [0])) { mexErrMsgTxt ("ldlsymbol: A must be sparse, square, and real") ; } nn = (n == 0) ? 1 : n ; /* get sparse matrix A */ Ap = (UF_long *) mxGetJc (pargin [0]) ; Ai = (UF_long *) mxGetIr (pargin [0]) ; /* get fill-reducing ordering, if present */ permute = ((nargin > 1) && !mxIsEmpty (pargin [1])) ; if (permute) { if (mxGetM (pargin [1]) * mxGetN (pargin [1]) != n || mxIsSparse (pargin [1])) { mexErrMsgTxt ("ldlsymbol: invalid input permutation\n") ; } P = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Pinv = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; p = mxGetPr (pargin [1]) ; for (k = 0 ; k < n ; k++) { P [k] = p [k] - 1 ; /* convert to 0-based */ } } else { P = (UF_long *) NULL ; Pinv = (UF_long *) NULL ; } /* allocate first part of L */ Lp = (UF_long *) mxMalloc ((n+1) * sizeof (UF_long)) ; Parent = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; /* get workspace */ Flag = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Pattern = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; Lnz = (UF_long *) mxMalloc (nn * sizeof (UF_long)) ; /* make sure the input P is valid */ if (permute && !ldl_l_valid_perm (n, P, Flag)) { mexErrMsgTxt ("ldlsymbol: invalid input permutation\n") ; } /* note that we assume that the input matrix is valid */ /* ---------------------------------------------------------------------- */ /* symbolic factorization to get Lp, Parent, Lnz, and optionally Pinv */ /* ---------------------------------------------------------------------- */ ldl_l_symbolic (n, Ap, Ai, Lp, Parent, Lnz, Flag, P, Pinv) ; /* ---------------------------------------------------------------------- */ /* create outputs */ /* ---------------------------------------------------------------------- */ /* create the output Lnz vector */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; p = mxGetPr (pargout [0]) ; for (j = 0 ; j < n ; j++) { p [j] = Lnz [j] ; } /* return elimination tree (add 1 to change from 0-based to 1-based) */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, n, mxREAL) ; p = mxGetPr (pargout [1]) ; for (i = 0 ; i < n ; i++) { p [i] = Parent [i] + 1 ; } } if (nargout > 2) { /* find flop count for ldl_l_numeric */ flops = 0 ; for (k = 0 ; k < n ; k++) { flops += ((double) Lnz [k]) * (Lnz [k] + 2) ; } pargout [2] = mxCreateDoubleMatrix (1, 1, mxREAL) ; p = mxGetPr (pargout [2]) ; p [0] = flops ; } if (permute) { mxFree (P) ; mxFree (Pinv) ; } mxFree (Lp) ; mxFree (Parent) ; mxFree (Flag) ; mxFree (Pattern) ; mxFree (Lnz) ; } SuiteSparse/LDL/Matrix/0000755001170100242450000000000010232253701013621 5ustar davisfacSuiteSparse/LDL/Matrix/A010000644001170100242450000000004510232253701014064 0ustar davisfacname: Dense/0 n: 0 entries: 0 0 0 0 SuiteSparse/LDL/Matrix/A020000644001170100242450000000007010232253701014063 0ustar davisfacname: Dense/0 n: 0 entries: 0 (jumbled version) 0 1 0 SuiteSparse/LDL/Matrix/A030000644001170100242450000000006310232253701014066 0ustar davisfacname: Dense/1 n: 1 entries: 1 1 0 0 1 0 1.90275 0 SuiteSparse/LDL/Matrix/A040000644001170100242450000000012110232253701014062 0ustar davisfacname: Dense/1 n: 1 entries: 2 (jumbled version) 1 1 0 2 0 0 1.90275 0.606843 0 SuiteSparse/LDL/Matrix/A050000644001170100242450000000012710232253701014071 0ustar davisfacname: Dense/2 n: 2 entries: 4 2 0 0 2 4 0 1 0 1 1.78915 0.389047 0.389047 1.67505 0 1 SuiteSparse/LDL/Matrix/A060000644001170100242450000000016510232253701014074 0ustar davisfacname: Dense/2 n: 2 entries: 5 (jumbled version) 2 1 0 3 5 0 1 0 1 0 1.78915 0.389047 0.738207 1.67505 0.389047 0 1 SuiteSparse/LDL/Matrix/A070000644001170100242450000000022110232253701014066 0ustar davisfacname: Dense/3 n: 3 entries: 9 3 0 0 3 6 9 0 1 2 0 1 2 0 1 2 1.92648 0.776267 0.405764 0.776267 1.68063 0.250703 0.405764 0.250703 1.44517 0 1 2 SuiteSparse/LDL/Matrix/A080000644001170100242450000000027410232253701014077 0ustar davisfacname: Dense/3 n: 3 entries: 11 (jumbled version) 3 1 0 4 7 11 2 0 1 2 1 0 2 0 2 0 1 0.262576 1.92648 0.776267 0.405764 1.68063 0.776267 0.250703 0.262576 1.44517 0.405764 0.250703 0 1 2 SuiteSparse/LDL/Matrix/A090000644001170100242450000000162410232253701014100 0ustar davisfacname: HB/can_24 n: 24 entries: 160 24 0 0 9 15 21 27 33 39 48 57 61 70 76 82 88 94 100 106 110 119 128 137 143 152 156 160 0 5 6 12 13 17 18 19 21 1 8 9 13 14 17 2 6 11 20 21 22 3 7 10 15 18 19 4 7 9 14 15 16 0 5 6 12 13 17 0 2 5 6 11 12 19 21 23 3 4 7 9 14 15 16 17 18 1 8 9 14 1 4 7 8 9 13 14 17 18 3 10 18 19 20 21 2 6 11 12 21 23 0 5 6 11 12 23 0 1 5 9 13 17 1 4 7 8 9 14 3 4 7 15 16 18 4 7 15 16 0 1 5 7 9 13 17 18 19 0 3 7 9 10 15 17 18 19 0 3 6 10 17 18 19 20 21 2 10 19 20 21 22 0 2 6 10 11 19 20 21 22 2 20 21 22 6 11 12 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 SuiteSparse/LDL/Matrix/A100000644001170100242450000000236310232253701014071 0ustar davisfacname: HB/can_24 n: 24 entries: 188 (jumbled version) 24 1 0 10 16 23 30 37 44 54 67 71 81 89 95 102 108 114 123 128 141 152 161 168 179 183 188 12 6 13 5 17 21 19 0 21 18 14 17 9 8 1 13 2 21 22 21 11 6 20 15 10 18 3 7 19 10 16 9 14 15 7 7 4 6 17 12 0 5 17 13 21 0 6 11 23 6 2 12 5 19 17 15 15 14 7 3 18 16 4 4 9 18 17 8 1 9 14 18 8 14 9 13 17 17 1 7 4 20 20 21 3 19 18 3 10 12 23 11 21 6 2 11 23 5 12 0 23 6 5 0 9 17 13 1 7 1 4 9 14 8 7 15 7 18 15 18 16 4 3 16 4 7 16 15 17 7 5 17 9 0 13 1 19 5 18 7 9 15 0 19 9 7 18 3 7 17 15 10 21 10 3 6 18 19 17 20 0 19 21 2 10 22 10 20 21 19 10 22 11 20 0 0 2 2 6 20 2 21 22 6 12 23 11 12 1 1 1 1 1 0.435191 1 1 1 1 1 1 1 1 1 1 1 0.445161 1 1 1 1 1 1 1 1 1 1 1 0.00496365 1 1 1 1 1 0.215083 1 1 1 1 1 1 0.0801502 1 1 1 1 1 1 0.869867 1 1 1 1 0.436428 1 0.332466 1 1 1 0.367454 1 0.215083 1 1 1 1 1 1 1 1 1 1 1 1 1 0.409378 1 1 1 1 0.132225 1 1 1 1 1 0.00496365 1 1 1 1 1 1 1 1 1 1 1 1 0.483444 1 1 1 1 1 1 1 1 1 1 1 1 1 0.332466 0.23788 1 0.467118 1 1 1 1 1 0.645831 1 1 1 1 1 0.436428 1 0.13701 0.409378 1 1 1 1 0.0801502 1 1 1 1 1 1 1 0.367454 1 1 1 1 0.467118 1 1 1 1 1 1 1 1 1 1 1 1 1 0.132225 1 1 1 1 1 1 1 1 1 1 0.435191 1 0.445161 1 1 1 1 1 1 0.483444 1 1 1 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 SuiteSparse/LDL/Matrix/A110000644001170100242450000000626510232253701014077 0ustar davisfacname: FIDAP/ex5 n: 27 entries: 279 27 0 0 6 18 27 42 51 66 75 87 93 99 111 120 135 144 159 168 180 186 192 204 213 228 237 252 261 273 279 0 1 9 10 18 19 0 1 2 3 9 10 11 12 18 19 20 21 1 2 3 10 11 12 19 20 21 1 2 3 4 5 10 11 12 13 14 19 20 21 22 23 3 4 5 12 13 14 21 22 23 3 4 5 6 7 12 13 14 15 16 21 22 23 24 25 5 6 7 14 15 16 23 24 25 5 6 7 8 14 15 16 17 23 24 25 26 7 8 16 17 25 26 0 1 9 10 18 19 0 1 2 3 9 10 11 12 18 19 20 21 1 2 3 10 11 12 19 20 21 1 2 3 4 5 10 11 12 13 14 19 20 21 22 23 3 4 5 12 13 14 21 22 23 3 4 5 6 7 12 13 14 15 16 21 22 23 24 25 5 6 7 14 15 16 23 24 25 5 6 7 8 14 15 16 17 23 24 25 26 7 8 16 17 25 26 0 1 9 10 18 19 0 1 2 3 9 10 11 12 18 19 20 21 1 2 3 10 11 12 19 20 21 1 2 3 4 5 10 11 12 13 14 19 20 21 22 23 3 4 5 12 13 14 21 22 23 3 4 5 6 7 12 13 14 15 16 21 22 23 24 25 5 6 7 14 15 16 23 24 25 5 6 7 8 14 15 16 17 23 24 25 26 7 8 16 17 25 26 1.03704e+06 259259 -1.18519e+06 -296297 148148 37037.1 259259 296298 259259 -18518.6 -296297 -148149 -296297 -74074 37037.1 -148148 37037.1 92592.6 259259 1.03704e+06 259259 -296297 -1.18519e+06 -296297 37037.1 148148 37037.1 -18518.6 259259 296298 259259 -18518.6 -74074 -296297 -148149 -296297 -74074 92592.6 37037.1 -148148 37037.1 92592.6 259259 1.03704e+06 259259 -296297 -1.18519e+06 -296297 37037.1 148148 37037.1 -18518.6 259259 296298 259259 -18518.6 -74074 -296297 -148149 -296297 -74074 92592.6 37037.1 -148148 37037.1 92592.6 259259 1.03704e+06 259259 -296297 -1.18519e+06 -296297 37037.1 148148 37037.1 -18518.6 259259 296298 259259 -74074 -296297 -148149 -296297 92592.6 37037.1 -148148 37037.1 259259 1.03704e+06 -296297 -1.18519e+06 37037.1 148148 -1.18519e+06 -296297 2.37038e+06 592592 -1.18519e+06 -296297 -296297 -148149 -296297 -74074 592592 296300 592592 148148 -296297 -148149 -296297 -74074 -296297 -1.18519e+06 -296297 592592 2.37038e+06 592592 -296297 -1.18519e+06 -296297 -74074 -296297 -148149 -296297 -74074 148148 592592 296300 592592 148148 -74074 -296297 -148149 -296297 -74074 -296297 -1.18519e+06 -296297 592592 2.37038e+06 592592 -296297 -1.18519e+06 -296297 -74074 -296297 -148149 -296297 -74074 148148 592592 296300 592592 148148 -74074 -296297 -148149 -296297 -74074 -296297 -1.18519e+06 -296297 592592 2.37038e+06 592592 -296297 -1.18519e+06 -296297 -74074 -296297 -148149 -296297 148148 592592 296300 592592 -74074 -296297 -148149 -296297 -296297 -1.18519e+06 592592 2.37038e+06 -296297 -1.18519e+06 148148 37037.1 -1.18519e+06 -296297 1.03704e+06 259259 37037.1 -148148 37037.1 92592.6 -296297 -148149 -296297 -74074 259259 296298 259259 -18518.6 37037.1 148148 37037.1 -296297 -1.18519e+06 -296297 259259 1.03704e+06 259259 92592.6 37037.1 -148148 37037.1 92592.6 -74074 -296297 -148149 -296297 -74074 -18518.6 259259 296298 259259 -18518.6 37037.1 148148 37037.1 -296297 -1.18519e+06 -296297 259259 1.03704e+06 259259 92592.6 37037.1 -148148 37037.1 92592.6 -74074 -296297 -148149 -296297 -74074 -18518.6 259259 296298 259259 -18518.6 37037.1 148148 37037.1 -296297 -1.18519e+06 -296297 259259 1.03704e+06 259259 92592.6 37037.1 -148148 37037.1 -74074 -296297 -148149 -296297 -18518.6 259259 296298 259259 37037.1 148148 -296297 -1.18519e+06 259259 1.03704e+06 8 17 26 0 9 18 1 2 10 11 20 19 3 4 12 13 22 21 5 6 7 14 15 16 24 25 23 SuiteSparse/LDL/Matrix/A120000644001170100242450000000734010232253701014073 0ustar davisfacname: FIDAP/ex5 n: 27 entries: 325 (jumbled version) 27 1 0 6 19 31 47 57 76 87 101 109 115 127 139 158 168 186 196 211 217 223 236 247 265 275 293 303 318 325 19 9 10 18 1 0 0 2 12 9 12 3 1 11 21 19 10 18 20 21 1 20 12 2 3 11 12 21 10 11 19 22 20 23 19 21 13 19 10 14 11 3 2 12 4 1 5 13 5 22 4 23 21 14 22 3 12 13 14 7 23 15 4 7 3 24 21 25 16 12 5 6 12 14 6 22 5 16 25 5 23 23 6 14 15 24 7 5 26 24 25 17 8 5 14 16 8 15 23 7 6 25 17 16 26 7 25 8 7 9 1 0 10 19 18 18 9 10 11 19 2 1 21 3 12 20 0 11 12 10 21 19 21 20 1 2 2 20 3 5 2 20 22 12 4 14 2 11 1 5 1 19 13 23 12 3 10 21 14 23 23 5 22 21 13 4 12 3 4 6 24 22 3 16 15 16 21 12 23 21 13 5 25 7 14 5 5 7 16 14 23 6 25 15 25 24 6 14 5 7 26 15 24 26 24 25 17 8 23 14 16 16 8 17 25 26 7 18 1 10 9 19 0 1 12 11 18 3 21 0 19 9 2 10 3 20 11 19 21 20 3 10 2 20 11 1 12 22 11 13 4 14 20 19 11 2 23 1 3 10 21 5 12 2 14 12 3 23 13 21 4 4 14 5 22 6 15 13 23 3 5 24 22 14 16 6 7 25 25 21 4 13 12 7 15 5 24 14 6 16 25 23 16 5 8 6 26 14 23 17 23 15 24 15 7 8 25 16 16 7 25 16 26 17 8 37037.1 -1.18519e+06 -296297 148148 259259 1.03704e+06 259259 259259 -74074 -296297 0.440353 -18518.6 296298 -296297 92592.6 -148148 -148149 37037.1 37037.1 37037.1 259259 148148 -296297 1.03704e+06 259259 0.280408 0.33095 0.483351 -296297 -1.18519e+06 37037.1 37037.1 37037.1 92592.6 92592.6 -148148 -296297 0.293848 -74074 -74074 -296297 296298 259259 -148149 259259 -18518.6 -18518.6 -1.18519e+06 259259 0.0325172 1.03704e+06 37037.1 37037.1 -296297 148148 259259 -296297 -296297 -148149 0.401515 -148148 -296297 259259 -18518.6 -18518.6 37037.1 92592.6 92592.6 -74074 -74074 296298 0.158875 0.22728 0.0651008 259259 37037.1 259259 -296297 37037.1 0.158875 0.333923 37037.1 1.03704e+06 -296297 -1.18519e+06 148148 259259 -18518.6 37037.1 37037.1 -148148 -296297 0.308317 0.401515 -74074 -148149 259259 -296297 92592.6 296298 259259 37037.1 -1.18519e+06 -296297 148148 0.308317 0.255077 1.03704e+06 259259 2.37038e+06 -296297 -1.18519e+06 592592 -296297 -1.18519e+06 -296297 592592 296300 592592 -148149 -296297 -148149 -74074 -74074 148148 -296297 -296297 2.37038e+06 592592 592592 -296297 -296297 0.520633 0.49806 -296297 0.280408 -1.18519e+06 -1.18519e+06 -296297 0.22728 0.33095 -296297 -296297 0.904949 -296297 148148 -296297 592592 0.440353 -74074 -74074 -74074 592592 -74074 296300 -148149 148148 -148149 592592 0.166548 -296297 -296297 -1.18519e+06 -296297 2.37038e+06 -1.18519e+06 592592 -296297 -296297 -296297 -296297 -296297 -74074 0.411059 592592 148148 -74074 148148 -148149 0.238296 592592 -148149 -74074 -74074 296300 0.0651008 -296297 -296297 592592 592592 -296297 -1.18519e+06 -296297 2.37038e+06 0.34257 -1.18519e+06 -296297 0.411059 -74074 -148149 0.610887 592592 0.257604 -296297 -296297 -148149 592592 -296297 -74074 148148 296300 592592 -1.18519e+06 2.37038e+06 -296297 -1.18519e+06 -296297 1.03704e+06 37037.1 -296297 -1.18519e+06 259259 148148 -148148 -74074 -296297 259259 0.293848 -18518.6 37037.1 296298 -296297 37037.1 -148149 92592.6 259259 0.49806 259259 259259 0.0136264 37037.1 -296297 148148 1.03704e+06 -1.18519e+06 37037.1 -296297 259259 0.520633 -296297 37037.1 0.238296 259259 -18518.6 -296297 0.483351 -18518.6 92592.6 -148148 -74074 296298 92592.6 -148149 37037.1 -74074 -296297 37037.1 259259 -1.18519e+06 259259 0.0325172 148148 -296297 37037.1 1.03704e+06 37037.1 -296297 -296297 296298 92592.6 -148148 259259 259259 -148149 -74074 0.333923 92592.6 -18518.6 0.127177 -18518.6 37037.1 0.166548 -74074 37037.1 -1.18519e+06 37037.1 1.03704e+06 -296297 148148 0.257604 259259 259259 -296297 92592.6 37037.1 37037.1 259259 -74074 -18518.6 -296297 0.127177 -296297 259259 0.34257 -148148 0.255077 296298 -148149 0.610887 37037.1 259259 -296297 1.03704e+06 -1.18519e+06 148148 8 17 26 0 9 18 1 2 10 11 20 19 3 4 12 13 22 21 5 6 7 14 15 16 24 25 23 SuiteSparse/LDL/Matrix/A130000644001170100242450000001262510232253701014076 0ustar davisfacname: HB/bcsstk01 n: 48 entries: 400 48 0 0 8 16 24 32 40 48 56 64 72 80 88 96 107 119 131 142 154 166 174 182 190 198 206 214 221 226 231 238 243 248 256 264 272 280 288 296 304 312 320 328 336 344 354 363 372 382 391 400 0 4 5 6 10 18 24 29 1 3 5 7 9 19 23 25 2 3 4 8 20 22 26 27 1 2 3 7 9 21 26 27 0 2 4 6 10 20 22 28 0 1 5 11 19 23 24 29 0 4 6 10 11 12 30 35 1 3 7 9 11 13 17 31 2 8 9 10 14 16 32 33 1 3 7 8 9 15 32 33 0 4 6 8 10 14 16 34 5 6 7 11 13 17 30 35 6 12 16 17 18 22 36 41 42 46 47 7 11 13 14 15 17 19 21 37 43 44 45 8 10 13 14 15 16 20 38 39 43 44 45 9 13 14 15 19 21 38 39 43 44 45 8 10 12 14 16 17 18 22 40 42 46 47 7 11 12 13 16 17 23 36 41 42 46 47 0 12 16 18 22 23 42 47 1 5 13 15 19 21 23 43 2 4 14 20 21 22 44 45 3 13 15 19 20 21 44 45 2 4 12 16 18 20 22 46 1 5 17 18 19 23 42 47 0 5 24 28 29 30 34 1 25 27 31 33 2 3 26 27 32 2 3 25 26 27 31 33 4 24 28 30 34 0 5 24 29 35 6 11 24 28 30 34 35 36 7 25 27 31 33 35 37 41 8 9 26 32 33 34 38 40 8 9 25 27 31 32 33 39 10 24 28 30 32 34 38 40 6 11 29 30 31 35 37 41 12 17 30 36 40 41 42 46 13 31 35 37 39 41 43 45 14 15 32 34 38 39 40 44 14 15 33 37 38 39 43 45 16 32 34 36 38 40 42 46 12 17 31 35 36 37 41 47 12 16 17 18 23 36 40 42 46 47 13 14 15 19 37 39 43 44 45 13 14 15 20 21 38 43 44 45 13 14 15 20 21 37 39 43 44 45 12 16 17 22 36 40 42 46 47 12 16 17 18 23 41 42 46 47 2.83227e+06 1e+06 2.08333e+06 -3333.33 1e+06 -2.8e+06 -28935.2 2.08333e+06 1.63545e+06 -2e+06 5.55556e+06 -6666.67 -2e+06 -30864.2 5.55556e+06 -1.59792e+06 1.72437e+06 -2.08333e+06 -2.77778e+06 -1.68e+06 -15432.1 -2.77778e+06 -28935.2 -2.08333e+06 -2e+06 -2.08333e+06 1.00333e+09 2e+06 4e+08 -3.33333e+06 2.08333e+06 1e+08 1e+06 -2.77778e+06 1.0675e+09 -1e+06 2e+08 2.77778e+06 3.33333e+08 -833333 2.08333e+06 5.55556e+06 1.53533e+09 -2e+06 -5.55556e+06 6.66667e+08 -2.08333e+06 1e+08 -3333.33 -1e+06 2.83227e+06 -1e+06 2.08333e+06 -2.8e+06 -28935.2 2.08333e+06 -6666.67 2e+06 1.63545e+06 2e+06 5.55556e+06 -30864.2 5.55556e+06 -1.59792e+06 -1.68e+06 1.72437e+06 -2.08333e+06 -2.77778e+06 -15432.1 -2.77778e+06 -28935.2 -2.08333e+06 -2e+06 4e+08 2e+06 -2.08333e+06 1.00333e+09 -3.33333e+06 2.08333e+06 1e+08 1e+06 2e+08 -1e+06 -2.77778e+06 1.0675e+09 2.77778e+06 3.33333e+08 -833333 -2e+06 2.08333e+06 5.55556e+06 1.53533e+09 -5.55556e+06 6.66667e+08 -2.08333e+06 1e+08 -2.8e+06 2.8361e+06 -2.14929e+06 2.35916e+06 -3333.33 -1e+06 -28935.2 2.08333e+06 -3830.95 -1.14929e+06 275828 -30864.2 -5.55556e+06 1.76741e+06 517922 4.29857e+06 -5.55556e+06 -6666.67 2e+06 -1.59792e+06 -131963 -517922 2.29857e+06 -15432.1 2.77778e+06 517922 3.89004e+06 -2.63499e+06 2.77778e+06 -1.68e+06 -28935.2 -2.08333e+06 -517922 -2.16567e+06 -551657 -3.33333e+06 4.29857e+06 -2.63499e+06 1.97572e+09 -2e+06 4e+08 2.08333e+06 1e+08 -2.29857e+06 551657 4.86194e+08 -2.77778e+06 3.33333e+08 -2.14929e+06 2.77778e+06 1.52735e+09 -1.0978e+08 1e+06 2e+08 -833333 1.14929e+06 2.29725e+08 -5.57174e+07 5.55556e+06 6.66667e+08 2.35916e+06 -5.55556e+06 -1.0978e+08 1.56411e+09 -2e+06 -2.08333e+06 1e+08 -275828 -5.57174e+07 1.09412e+07 -2.8e+06 -3333.33 1e+06 2.83227e+06 1e+06 2.08333e+06 -28935.2 2.08333e+06 -30864.2 -5.55556e+06 -6666.67 -2e+06 1.63545e+06 -2e+06 -5.55556e+06 -1.59792e+06 -15432.1 2.77778e+06 -1.68e+06 1.72437e+06 -2.08333e+06 2.77778e+06 -28935.2 -2.08333e+06 -3.33333e+06 2e+06 4e+08 -2e+06 -2.08333e+06 1.00333e+09 2.08333e+06 1e+08 -2.77778e+06 3.33333e+08 -1e+06 2e+08 1e+06 2.77778e+06 1.0675e+09 -833333 5.55556e+06 6.66667e+08 -2e+06 2.08333e+06 -5.55556e+06 1.53533e+09 -2.08333e+06 1e+08 -28935.2 -2.08333e+06 60879.6 1.25e+06 416667 -4166.67 1.25e+06 -1.59792e+06 3.37292e+06 -2.5e+06 -8333.33 -2.5e+06 -28935.2 2.08333e+06 2.41171e+06 -416667 -2.355e+06 -2.08333e+06 1e+08 -2.5e+06 -416667 1.5e+09 2.5e+06 5e+08 -833333 1.25e+06 5.01833e+08 -1.25e+06 2.5e+08 2.08333e+06 1e+08 416667 5.025e+08 -2.5e+06 -28935.2 -2.08333e+06 -4166.67 -1.25e+06 3.98588e+06 -1.25e+06 416667 -3.925e+06 -1.59792e+06 -8333.33 2.5e+06 3.4115e+06 2.5e+06 6.94444e+06 -38580.2 6.94444e+06 -28935.2 2.08333e+06 -2.355e+06 2.431e+06 -416667 -3.47222e+06 -19290.1 -3.47222e+06 -2.08333e+06 1e+08 -2.5e+06 5e+08 2.5e+06 -416667 1.50417e+09 -4.16667e+06 -833333 1.25e+06 2.5e+08 -1.25e+06 -3.47222e+06 1.33517e+09 3.47222e+06 4.16667e+08 2.08333e+06 1e+08 -2.5e+06 416667 6.94444e+06 2.16917e+09 -6.94444e+06 8.33333e+08 -28935.2 -2.08333e+06 -3.925e+06 3.98588e+06 -1.25e+06 416667 -4166.67 -1.25e+06 -1.59792e+06 -38580.2 -6.94444e+06 3.4115e+06 2.5e+06 -6.94444e+06 -8333.33 2.5e+06 -28935.2 2.08333e+06 -19290.1 3.47222e+06 2.431e+06 -416667 3.47222e+06 -2.355e+06 -2.08333e+06 1e+08 -4.16667e+06 2.5e+06 -416667 1.50417e+09 -2.5e+06 5e+08 -833333 -3.47222e+06 4.16667e+08 -1.25e+06 3.47222e+06 1.33517e+09 1.25e+06 2.5e+08 2.08333e+06 1e+08 6.94444e+06 8.33333e+08 416667 -6.94444e+06 2.16917e+09 -2.5e+06 -3830.95 1.14929e+06 -275828 -28935.2 -2.08333e+06 -4166.67 1.25e+06 64710.6 2.39929e+06 140838 -131963 -517922 -2.29857e+06 -1.59792e+06 -8333.33 -2.5e+06 3.50488e+06 517922 -4.79857e+06 -517922 -2.16567e+06 551657 -28935.2 2.08333e+06 -2.355e+06 517922 4.57738e+06 134990 2.29857e+06 -551657 4.86194e+08 -2.08333e+06 1e+08 2.5e+06 5e+08 -4.79857e+06 134990 2.47239e+09 -1.14929e+06 2.29725e+08 -5.57174e+07 -833333 -1.25e+06 2.5e+08 2.39929e+06 9.6168e+08 -1.0978e+08 275828 -5.57174e+07 1.09412e+07 2.08333e+06 1e+08 -2.5e+06 140838 -1.0978e+08 5.31278e+08 25 26 27 9 39 21 44 45 43 15 3 33 41 11 28 29 24 10 0 30 6 23 22 40 46 42 4 16 18 34 5 1 2 8 12 13 14 17 19 20 31 32 35 36 37 38 47 7 SuiteSparse/LDL/Matrix/A140000644001170100242450000001437510232253701014103 0ustar davisfacname: HB/bcsstk01 n: 48 entries: 472 (jumbled version) 48 1 0 9 18 29 40 50 58 67 77 87 98 106 114 128 142 154 166 181 195 203 213 222 235 244 252 261 266 272 282 289 294 304 316 325 336 344 353 363 372 382 391 401 410 420 430 441 452 462 472 18 5 0 10 24 0 29 4 6 9 3 7 19 5 1 25 23 19 3 26 4 27 4 22 2 27 20 3 8 2 7 26 21 27 9 1 21 3 26 2 28 28 4 22 10 6 2 0 20 2 29 24 0 11 19 5 1 23 30 12 6 4 30 0 10 35 11 17 11 13 31 9 3 7 1 9 31 14 32 9 33 9 8 16 16 10 2 3 32 15 8 8 33 33 7 7 1 9 8 4 14 0 16 34 10 6 7 13 35 30 6 5 11 17 17 36 12 6 17 16 12 22 41 42 46 47 16 18 11 21 14 15 17 44 21 37 13 7 45 43 19 43 38 15 16 44 45 13 8 43 20 14 10 39 13 9 14 38 45 39 21 19 44 15 44 43 42 22 8 22 46 16 40 14 12 17 10 8 47 18 12 36 12 46 42 16 47 41 12 17 11 7 36 13 23 22 42 47 12 23 0 18 16 21 5 1 13 43 21 19 23 15 1 21 45 21 4 14 20 22 44 2 3 20 13 3 20 45 19 15 19 44 44 21 13 18 4 16 46 22 2 20 16 12 17 19 23 47 5 42 18 1 28 0 5 30 28 30 34 29 24 27 1 31 33 25 3 3 27 32 26 2 2 26 33 25 31 31 3 27 33 2 24 4 28 34 4 30 24 0 5 35 29 24 36 24 6 11 34 30 35 6 28 24 25 31 35 41 35 41 7 33 27 7 37 27 26 38 32 34 40 8 9 33 38 32 33 27 31 39 9 27 9 8 39 25 34 24 40 32 28 30 10 38 35 6 30 11 31 29 41 37 31 46 36 40 12 40 30 17 41 17 42 35 45 45 31 43 37 39 41 13 44 15 32 34 38 39 14 32 40 40 15 38 14 45 39 33 37 43 33 46 40 42 38 34 36 32 38 16 36 37 47 36 31 41 31 12 17 35 23 46 40 42 47 18 16 36 17 12 19 43 39 44 14 37 13 13 45 15 38 13 45 21 20 15 43 21 44 15 14 39 43 14 15 20 37 37 44 21 13 45 47 16 46 47 40 17 12 36 22 42 47 46 17 16 23 42 46 18 41 12 -2.8e+06 2.08333e+06 0.437734 1e+06 -28935.2 2.83227e+06 2.08333e+06 1e+06 -3333.33 -2e+06 -2e+06 -6666.67 0.156277 5.55556e+06 1.63545e+06 -1.59792e+06 5.55556e+06 -30864.2 -2.08333e+06 -28935.2 -2.77778e+06 0.0553259 0.317221 -2.77778e+06 1.72437e+06 -2.08333e+06 -15432.1 0.10277 -1.68e+06 0.10277 2e+06 2.08333e+06 -3.33333e+06 1e+08 4e+08 -2e+06 0.591763 1.00333e+09 0.0184915 -2.08333e+06 0.295898 -833333 1.0675e+09 3.33333e+08 2e+08 -1e+06 -2.77778e+06 1e+06 2.77778e+06 0.317221 1e+08 -2.08333e+06 2.08333e+06 -2e+06 -5.55556e+06 1.53533e+09 5.55556e+06 6.66667e+08 0.163355 -2.8e+06 2.83227e+06 -1e+06 -28935.2 -3333.33 -1e+06 2.08333e+06 2.08333e+06 5.55556e+06 5.55556e+06 -30864.2 0.394396 0.159583 2e+06 1.63545e+06 -6666.67 2e+06 -1.59792e+06 -15432.1 -28935.2 0.158939 -2.08333e+06 -2.08333e+06 1.72437e+06 -2.77778e+06 0.358447 -2.77778e+06 -1.68e+06 4e+08 2.08333e+06 -3.33333e+06 0.158939 -2.08333e+06 0.182244 1e+08 2e+06 0.159583 -2e+06 1.00333e+09 -2.77778e+06 2e+08 2.77778e+06 1e+06 3.33333e+08 -833333 1.0675e+09 -1e+06 5.55556e+06 -5.55556e+06 1e+08 -2.08333e+06 2.08333e+06 -2e+06 1.53533e+09 6.66667e+08 2.35916e+06 -28935.2 2.8361e+06 -2.8e+06 0.0962234 0.489896 0.0971951 -1e+06 2.08333e+06 -3830.95 -1.14929e+06 275828 -2.14929e+06 -3333.33 -5.55556e+06 0.447277 517922 4.29857e+06 -5.55556e+06 -517922 2e+06 -1.59792e+06 1.76741e+06 -30864.2 2.29857e+06 0.321655 -6666.67 -131963 -28935.2 -2.63499e+06 2.77778e+06 -2.16567e+06 -551657 517922 -15432.1 -517922 -1.68e+06 3.89004e+06 2.77778e+06 -2.08333e+06 4.29857e+06 -3.33333e+06 -2.63499e+06 2.08333e+06 4.86194e+08 1e+08 4e+08 -2e+06 551657 1.97572e+09 0.481793 -2.29857e+06 1.14929e+06 0.0572546 -2.77778e+06 2e+08 2.29725e+08 1.52735e+09 -833333 2.77778e+06 -2.14929e+06 -1.0978e+08 3.33333e+08 0.358447 -5.57174e+07 1e+06 0.489896 -2.08333e+06 0.0962234 -5.57174e+07 -275828 -1.0978e+08 1.09412e+07 1e+08 2.35916e+06 1.56411e+09 6.66667e+08 5.55556e+06 0.293721 -5.55556e+06 -2e+06 1e+06 -28935.2 2.08333e+06 -3333.33 2.08333e+06 -2.8e+06 2.83227e+06 1e+06 -2e+06 -5.55556e+06 0.156277 -6666.67 -1.59792e+06 0.422995 1.63545e+06 -5.55556e+06 -2e+06 -30864.2 -2.08333e+06 -2.08333e+06 0.268792 2.77778e+06 -1.68e+06 1.72437e+06 2.77778e+06 -28935.2 -15432.1 0.591763 0.268792 0.447277 -3.33333e+06 -2.08333e+06 1e+08 0.422995 4e+08 -2e+06 0.391284 2.08333e+06 1.00333e+09 2e+06 1e+06 3.33333e+08 2e+08 -833333 1.0675e+09 -2.77778e+06 2.77778e+06 0.0572546 -1e+06 -2e+06 -5.55556e+06 1.53533e+09 1e+08 6.66667e+08 -2.08333e+06 2.08333e+06 5.55556e+06 1.25e+06 -28935.2 -2.08333e+06 -4166.67 0.165025 0.116139 1.25e+06 416667 60879.6 -2.5e+06 -1.59792e+06 -8333.33 -2.5e+06 3.37292e+06 2.08333e+06 0.0184915 -416667 -2.355e+06 2.41171e+06 -28935.2 0.0553259 -416667 0.146524 -2.5e+06 0.117318 2.5e+06 1e+08 1.5e+09 5e+08 -2.08333e+06 0.165025 0.295898 5.01833e+08 2.5e+08 -833333 -1.25e+06 1.25e+06 2.08333e+06 1e+08 -2.5e+06 5.025e+08 416667 -3.925e+06 0.116139 0.163355 -2.08333e+06 -1.25e+06 3.98588e+06 416667 -28935.2 -1.25e+06 -4166.67 -8333.33 3.4115e+06 6.94444e+06 0.339354 0.310927 6.94444e+06 -1.59792e+06 2.5e+06 0.117318 0.394396 -38580.2 2.5e+06 -2.355e+06 -19290.1 2.431e+06 -3.47222e+06 -3.47222e+06 -28935.2 2.08333e+06 -416667 0.947466 -416667 1.50417e+09 0.146524 2.5e+06 0.233241 0.182244 5e+08 1e+08 -2.08333e+06 -4.16667e+06 -2.5e+06 1.33517e+09 1.25e+06 4.16667e+08 -3.47222e+06 2.5e+08 -1.25e+06 -833333 3.47222e+06 2.16917e+09 2.08333e+06 416667 1e+08 6.94444e+06 -2.5e+06 8.33333e+08 -6.94444e+06 0.310927 -1.25e+06 3.98588e+06 0.40864 -28935.2 -1.25e+06 -3.925e+06 -2.08333e+06 416667 0.293721 -4166.67 -6.94444e+06 0.462092 2.5e+06 -38580.2 -8333.33 3.4115e+06 2.5e+06 -6.94444e+06 -1.59792e+06 -2.355e+06 2.08333e+06 0.947466 3.47222e+06 2.431e+06 -416667 -28935.2 -19290.1 3.47222e+06 0.369374 1e+08 -416667 -2.08333e+06 5e+08 1.50417e+09 -4.16667e+06 2.5e+06 -2.5e+06 0.233241 2.5e+08 1.33517e+09 1.25e+06 3.47222e+06 4.16667e+08 -1.25e+06 -3.47222e+06 0.369374 -833333 0.40864 -6.94444e+06 -2.5e+06 416667 6.94444e+06 2.16917e+09 0.339354 2.08333e+06 1e+08 8.33333e+08 -2.08333e+06 2.39929e+06 1.25e+06 64710.6 140838 -28935.2 1.14929e+06 -4166.67 -275828 -3830.95 -1.59792e+06 3.50488e+06 -2.5e+06 517922 -517922 -8333.33 -131963 0.321655 -4.79857e+06 -2.29857e+06 -2.355e+06 -517922 134990 0.391284 -28935.2 0.481793 517922 2.08333e+06 4.57738e+06 551657 -2.16567e+06 5e+08 -4.79857e+06 -551657 4.86194e+08 -2.08333e+06 2.5e+06 0.462092 134990 1e+08 2.29857e+06 2.47239e+09 0.329891 2.29725e+08 9.6168e+08 -1.0978e+08 2.5e+08 -5.57174e+07 -1.14929e+06 -1.25e+06 -833333 2.39929e+06 5.31278e+08 -1.0978e+08 1.09412e+07 -5.57174e+07 1e+08 140838 0.329891 2.08333e+06 -2.5e+06 275828 25 26 27 9 39 21 44 45 43 15 3 33 41 11 28 29 24 10 0 30 6 23 22 40 46 42 4 16 18 34 5 1 2 8 12 13 14 17 19 20 31 32 35 36 37 38 47 7 SuiteSparse/LDL/Matrix/A150000644001170100242450000000072210232253701014073 0ustar davisfacname: HB/bcsstm01 n: 48 entries: 24 48 0 0 1 2 3 3 3 3 4 5 6 6 6 6 7 8 9 9 9 9 10 11 12 12 12 12 13 14 15 15 15 15 16 17 18 18 18 18 19 20 21 21 21 21 22 23 24 24 24 24 0 1 2 6 7 8 12 13 14 18 19 20 24 25 26 30 31 32 36 37 38 42 43 44 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SuiteSparse/LDL/Matrix/A160000644001170100242450000000100010232253701014062 0ustar davisfacname: HB/bcsstm01 n: 48 entries: 26 (jumbled version) 48 1 0 1 2 3 3 3 3 4 5 7 7 7 7 8 9 10 10 10 10 11 12 13 13 13 13 14 15 16 16 16 16 17 18 19 19 19 19 20 21 22 22 22 22 24 25 26 26 26 26 0 1 2 6 7 8 8 12 13 14 18 19 20 24 25 26 30 31 32 36 37 38 42 42 43 44 100 100 100 100 100 100 0.700744 100 100 100 100 100 100 200 200 200 200 200 200 200 200 200 200 0.803129 200 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SuiteSparse/LDL/Matrix/A170000644001170100242450000000743710232253701014107 0ustar davisfacname: Pothen/mesh1e1 n: 48 entries: 306 48 0 0 5 12 16 22 26 32 36 42 49 54 61 68 73 79 84 90 96 103 109 117 123 131 138 144 150 158 164 171 178 184 190 197 204 211 218 224 232 238 245 251 258 266 272 279 287 294 301 306 0 1 7 44 47 0 1 2 41 42 45 47 1 2 3 45 2 3 4 36 43 45 3 4 5 43 4 5 6 40 43 46 5 6 7 46 0 6 7 34 44 46 8 9 14 17 22 29 30 8 9 10 20 22 9 10 11 20 23 24 26 10 11 12 26 33 35 37 11 12 13 18 33 12 13 14 15 16 18 8 13 14 15 17 13 14 15 16 17 19 13 15 16 18 19 21 8 14 15 17 19 30 39 12 13 16 18 21 33 15 16 17 19 21 39 41 42 9 10 20 22 23 27 16 18 19 21 33 36 42 45 8 9 20 22 27 29 32 10 20 23 24 25 27 10 23 24 25 26 28 23 24 25 27 28 34 40 46 10 11 24 26 28 37 20 22 23 25 27 32 34 24 25 26 28 37 38 40 8 22 29 30 31 32 8 17 29 30 31 39 29 30 31 32 39 41 44 22 27 29 31 32 34 44 11 12 18 21 33 35 36 7 25 27 32 34 44 46 11 33 35 36 37 38 3 21 33 35 36 38 43 45 11 26 28 35 37 38 28 35 36 37 38 40 43 17 19 30 31 39 41 5 25 28 38 40 43 46 1 19 31 39 41 42 44 47 1 19 21 41 42 45 3 4 5 36 38 40 43 0 7 31 32 34 41 44 47 1 2 3 21 36 42 45 5 6 7 25 34 40 46 0 1 41 44 47 2.97757 -0.405002 0.156027 0.210025 1.20651 -0.405002 4.05851 0.216812 0.182615 0.638841 0.334952 1.28029 0.216812 2.12411 -0.0801154 0.827181 -0.0801154 3.0314 0.225935 0.58612 0.508613 0.630613 0.225935 2.10771 -0.0767794 0.804992 -0.0767794 3.07853 0.20558 0.712866 0.564706 0.518599 0.20558 2.09489 -0.0682339 0.821071 0.156027 -0.0682339 3.12635 0.648631 0.785688 0.467767 3.71365 0.0804484 0.0319802 0.576484 0.745579 0.652559 0.626599 0.0804484 3.00024 0.277821 1.21013 0.43184 0.277821 4.94357 -0.342455 0.309926 0.72918 1.17578 1.1084 -0.342455 5.01532 0.382281 0.83075 0.126147 1.10301 1.23069 0.382281 2.84056 0.139618 0.405272 0.913387 0.139618 4.11278 0.564372 0.231253 0.686969 1.49057 0.0319802 0.564372 3.09088 1.03355 0.460981 0.231253 1.03355 5.17655 1.43119 0.931275 0.549274 0.686969 1.43119 5.37487 0.680945 0.538425 1.03734 0.576484 0.460981 0.931275 4.71344 0.473941 0.694966 0.575795 0.405272 1.49057 0.680945 5.53917 0.77629 1.18609 0.549274 0.538425 0.473941 5.00599 0.434392 1.03075 0.197977 0.781231 1.21013 0.309926 4.96278 0.575195 1.12812 0.739411 1.03734 0.77629 0.434392 5.31945 0.340036 0.579572 0.462808 0.689014 0.745579 0.43184 0.575195 4.77471 0.928992 0.725312 0.367796 0.72918 1.12812 5.10028 0.727205 0.958298 0.557475 1.17578 0.727205 5.38101 0.822331 0.541164 1.11452 0.958298 0.822331 5.38342 0.746836 0.232295 0.301369 0.586612 0.735675 1.1084 0.83075 0.541164 5.41981 1.06827 0.871223 0.739411 0.928992 0.557475 0.746836 5.21091 0.469623 0.768575 1.11452 0.232295 1.06827 5.40175 0.587584 0.46828 0.930797 0.652559 0.725312 4.83636 1.06091 0.492282 0.90529 0.626599 0.694966 1.06091 4.77845 0.506239 0.889729 0.492282 0.506239 5.17327 0.988156 0.911091 0.667618 0.607887 0.367796 0.469623 0.90529 0.988156 5.16295 1.04802 0.384062 0.126147 0.913387 1.18609 0.340036 5.31264 1.0098 0.737174 0.648631 0.301369 0.768575 1.04802 5.2574 0.587907 0.902901 1.10301 1.0098 5.42794 0.751991 0.351124 1.21202 0.58612 0.579572 0.737174 0.751991 5.21087 0.292738 0.699639 0.563635 1.23069 0.871223 0.587584 0.351124 5.13196 1.09135 0.46828 1.21202 0.292738 1.09135 5.53358 0.587688 0.881508 0.575795 1.03075 0.889729 0.911091 5.09571 0.688341 0.712866 0.586612 0.930797 0.587688 5.13316 0.65952 0.655675 0.182615 0.197977 0.667618 0.688341 5.2111 1.17521 0.168889 1.13045 0.638841 0.781231 0.462808 1.17521 5.24342 1.18532 0.508613 0.804992 0.564706 0.699639 0.881508 0.65952 5.11898 0.210025 0.785688 0.607887 0.384062 0.587907 0.168889 5.09565 1.35119 0.334952 0.827181 0.630613 0.689014 0.563635 1.18532 5.23072 0.518599 0.821071 0.467767 0.735675 0.902901 0.655675 5.10169 1.20651 1.28029 1.13045 1.35119 5.96844 2 45 42 47 0 44 14 15 12 18 13 16 29 39 30 17 9 20 24 23 10 27 37 35 4 43 6 46 5 40 38 25 28 26 8 11 22 33 1 3 7 19 21 31 32 34 41 36 SuiteSparse/LDL/Matrix/A180000644001170100242450000001066210232253701014102 0ustar davisfacname: Pothen/mesh1e1 n: 48 entries: 359 (jumbled version) 48 1 0 6 14 19 27 31 37 42 50 58 66 74 82 88 94 99 106 114 121 129 139 147 157 166 173 179 187 193 202 211 217 224 232 243 250 259 266 274 282 290 297 305 313 320 328 337 344 351 359 44 7 47 0 7 1 41 2 0 1 47 45 47 42 45 2 1 3 3 2 4 43 2 43 45 36 3 4 5 3 43 43 5 4 40 46 6 7 6 5 46 7 7 6 44 0 46 0 6 34 9 22 14 8 29 17 30 9 22 10 8 9 20 22 20 8 24 26 20 9 10 23 11 11 10 37 10 35 26 11 33 12 33 13 11 12 18 18 15 16 14 18 12 13 13 15 8 17 14 17 19 13 15 16 14 16 15 16 18 21 13 15 19 16 17 14 30 15 8 19 39 16 18 21 12 33 13 21 12 17 39 21 19 21 42 16 15 41 42 27 10 9 9 23 22 20 23 42 33 19 36 16 19 21 18 18 45 20 32 9 22 9 29 27 8 32 20 24 25 27 10 23 20 28 10 23 24 26 25 46 27 23 25 34 24 40 28 11 37 10 28 24 26 32 34 23 25 22 34 27 20 32 38 26 37 37 38 28 25 24 40 30 8 29 32 31 22 30 31 8 17 39 29 31 30 30 29 31 44 32 39 41 34 32 31 32 22 34 29 27 44 22 27 36 33 35 18 21 12 11 34 44 32 27 27 46 25 32 7 38 33 35 11 36 37 35 35 43 3 33 36 38 45 21 35 38 26 28 28 11 37 37 36 35 28 28 38 37 40 43 17 41 30 31 39 39 19 25 5 40 28 46 38 43 40 39 47 44 41 31 42 19 1 19 19 1 45 41 21 42 38 3 43 3 36 40 5 4 31 7 0 47 47 41 44 34 32 42 1 3 36 21 2 45 46 34 6 40 25 5 7 0 41 47 47 44 1 1 44 0.210025 0.355287 1.20651 2.97757 0.156027 -0.405002 0.182615 0.216812 -0.405002 4.05851 1.28029 0.334952 0.0241885 0.638841 0.827181 2.12411 0.216812 0.418053 -0.0801154 -0.0801154 0.225935 0.508613 0.418053 0.176586 0.630613 0.58612 3.0314 2.10771 -0.0767794 0.225935 0.804992 0.564706 3.07853 -0.0767794 0.712866 0.518599 0.20558 0.397089 2.09489 0.20558 0.821071 -0.0682339 3.12635 -0.0682339 0.785688 0.355287 0.467767 0.156027 0.397089 0.648631 0.0336413 0.745579 0.0319802 3.71365 0.652559 0.576484 0.626599 0.0804484 0.43184 0.277821 0.0804484 3.00024 1.21013 0.407516 0.230467 0.0336413 1.17578 1.1084 0.309926 0.277821 4.94357 0.72918 0.246908 -0.342455 0.246908 1.23069 -0.342455 1.10301 0.83075 5.01532 0.126147 0.382281 0.913387 0.139618 0.382281 2.84056 0.244532 0.405272 0.231253 0.686969 0.564372 1.49057 0.139618 4.11278 0.564372 1.03355 0.0319802 0.460981 3.09088 0.931275 0.549274 0.231253 5.17655 0.306724 1.03355 1.43119 0.306724 0.491744 0.680945 1.03734 0.686969 1.43119 0.538425 5.37487 4.71344 0.460981 0.694966 0.931275 0.576484 0.473941 0.575795 0.680945 5.53917 0.248088 0.405272 1.18609 1.49057 0.77629 0.244532 0.473941 1.03075 0.434392 5.00599 0.187041 0.781231 0.538425 0.549274 0.197977 0.00546209 0.739411 0.309926 1.21013 0.230467 1.12812 0.575195 4.96278 0.0991541 0.462808 0.340036 0.187041 0.579572 1.03734 0.434392 5.31945 0.77629 0.248088 0.689014 0.575195 0.00218642 0.407516 4.77471 0.43184 0.725312 0.928992 0.745579 0.367796 0.0991541 0.727205 0.958298 0.557475 0.72918 5.10028 1.12812 1.11452 1.17578 0.727205 5.38101 0.541164 0.822331 0.735675 0.746836 0.958298 5.38342 0.301369 0.822331 0.586612 0.232295 0.83075 0.871223 1.1084 1.06827 0.541164 5.41981 0.469623 0.768575 0.557475 0.746836 0.928992 0.170003 5.21091 0.739411 0.145845 0.257947 1.06827 0.587584 0.155089 0.46828 5.40175 0.232295 1.11452 0.930797 1.06091 0.652559 4.83636 0.90529 0.492282 0.725312 4.77845 0.408389 0.626599 0.694966 0.889729 1.06091 0.506239 0.506239 0.408389 0.492282 5.17327 0.607887 0.988156 0.911091 0.667618 1.04802 5.16295 0.988156 0.985062 0.367796 0.250634 0.90529 0.145845 0.384062 0.00218642 0.469623 0.737174 5.31264 1.0098 1.18609 0.340036 0.913387 0.126147 5.2574 0.587907 0.250634 0.170003 0.768575 0.902901 0.301369 1.04802 0.648631 1.21202 1.0098 0.695714 1.10301 0.751991 0.351124 5.42794 0.751991 0.699639 0.58612 0.737174 5.21087 0.292738 0.563635 0.579572 0.351124 1.09135 0.871223 0.155089 0.587584 1.23069 5.13196 0.834412 0.292738 1.21202 0.257947 0.46828 5.53358 1.09135 0.587688 0.881508 0.575795 0.688341 0.889729 0.911091 0.73146 5.09571 1.03075 0.586612 0.712866 0.621992 0.930797 0.655675 0.587688 0.65952 5.13316 0.688341 1.13045 0.168889 5.2111 0.667618 1.17521 0.197977 0.182615 0.00546209 0.781231 0.638841 1.18532 1.17521 0.462808 5.24342 0.881508 0.176586 5.11898 0.508613 0.699639 0.65952 0.564706 0.804992 0.607887 0.785688 0.210025 1.35119 0.390013 0.168889 5.09565 0.587907 0.384062 1.18532 0.334952 0.630613 0.563635 0.689014 0.827181 5.23072 5.10169 0.902901 0.821071 0.655675 0.735675 0.518599 0.467767 1.20651 1.13045 0.0137927 5.96844 0.390013 0.0241885 1.28029 1.35119 2 45 42 47 0 44 14 15 12 18 13 16 29 39 30 17 9 20 24 23 10 27 37 35 4 43 6 46 5 40 38 25 28 26 8 11 22 33 1 3 7 19 21 31 32 34 41 36 SuiteSparse/LDL/Matrix/A190000644001170100242450000001200610232253701014075 0ustar davisfacname: Bai/bfwb62 n: 62 entries: 342 62 0 0 4 9 19 26 33 41 54 61 69 76 86 93 98 102 104 109 114 116 122 127 132 137 142 147 151 157 162 166 170 177 182 189 194 201 206 213 218 225 230 234 238 245 250 256 261 268 273 280 285 291 296 300 304 309 314 318 323 328 333 338 340 342 0 3 19 23 1 2 5 20 29 1 2 4 5 6 15 27 28 31 35 0 3 7 16 24 32 36 2 4 6 8 22 33 37 1 2 5 6 9 18 33 41 2 4 5 6 8 9 10 25 29 39 40 43 47 3 7 11 26 30 44 48 4 6 8 10 12 35 45 49 5 6 9 10 31 45 53 6 8 9 10 12 37 41 51 52 58 7 11 13 38 42 55 59 8 10 12 47 56 11 13 50 54 14 15 2 14 15 18 20 3 16 17 19 21 16 17 5 15 18 20 28 29 0 16 19 21 30 1 15 18 20 22 16 19 21 23 24 4 20 22 25 27 0 21 23 24 26 3 21 23 24 6 22 25 27 33 35 7 23 26 34 36 2 22 25 27 2 18 28 29 1 6 18 28 29 31 33 7 19 30 32 34 2 9 29 31 33 40 41 3 30 32 34 42 4 5 25 29 31 33 35 26 30 32 34 36 2 8 25 33 35 37 39 3 26 34 36 38 4 10 35 37 39 45 47 11 36 38 46 48 6 35 37 39 6 31 40 41 5 10 31 40 41 43 45 11 32 42 44 46 6 41 43 45 52 53 7 42 44 46 54 8 9 37 41 43 45 47 38 42 44 46 48 6 12 37 45 47 49 51 7 38 46 48 50 8 47 49 51 56 58 13 48 50 57 59 10 47 49 51 10 43 52 53 9 43 52 53 56 13 44 54 55 57 11 54 55 57 12 49 53 56 58 50 54 55 57 59 10 49 56 58 61 11 50 57 59 60 59 60 58 61 -1.14796e-05 1.27551e-06 2.55102e-06 2.55102e-06 -1.14796e-05 1.27551e-06 6.37755e-07 2.55102e-06 2.55102e-06 1.27551e-06 -2.29592e-05 1.27551e-06 1.27551e-06 1.27551e-06 2.55102e-06 2.55102e-06 2.55102e-06 2.55102e-06 2.55102e-06 1.27551e-06 -2.29592e-05 1.27551e-06 2.55102e-06 2.55102e-06 2.55102e-06 2.55102e-06 1.27551e-06 -1.14796e-05 1.27551e-06 6.37755e-07 2.55102e-06 2.55102e-06 2.55102e-06 6.37755e-07 1.27551e-06 -1.70281e-05 2.20026e-06 1.5625e-06 2.55102e-06 2.55102e-06 6.25e-06 1.27551e-06 1.27551e-06 2.20026e-06 -3.96046e-05 2.20026e-06 3.125e-06 3.125e-06 2.55102e-06 2.55102e-06 2.55102e-06 6.25e-06 6.25e-06 6.25e-06 1.27551e-06 -3.96046e-05 3.125e-06 2.55102e-06 2.55102e-06 6.25e-06 6.25e-06 6.37755e-07 2.20026e-06 -2.25765e-05 3.125e-06 1.5625e-06 2.55102e-06 6.25e-06 6.25e-06 1.5625e-06 3.125e-06 -2.8125e-05 3.125e-06 6.25e-06 6.25e-06 6.25e-06 3.125e-06 3.125e-06 3.125e-06 -5.625e-05 3.125e-06 6.25e-06 6.25e-06 6.25e-06 6.25e-06 6.25e-06 3.125e-06 -5.625e-05 3.125e-06 6.25e-06 6.25e-06 6.25e-06 6.25e-06 1.5625e-06 3.125e-06 -2.8125e-05 6.25e-06 6.25e-06 3.125e-06 -2.8125e-05 6.25e-06 6.25e-06 -2.04082e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -2.04082e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -2.04082e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -2.04082e-05 2.55102e-06 -1.02041e-05 -2.04082e-05 -1.02041e-05 2.55102e-06 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 6.25e-06 -1.02041e-05 -7.04082e-05 -1.02041e-05 -2.5e-05 -2.5e-05 2.55102e-06 -1.02041e-05 -7.04082e-05 -1.02041e-05 -2.5e-05 2.55102e-06 2.55102e-06 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 2.55102e-06 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 2.55102e-06 6.25e-06 -1.02041e-05 -7.04082e-05 -1.02041e-05 -2.5e-05 -2.5e-05 6.25e-06 -1.02041e-05 -7.04082e-05 -2.5e-05 -2.5e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -2.04082e-05 6.25e-06 -2.5e-05 -5e-05 -2.5e-05 6.25e-06 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 6.25e-06 -2.5e-05 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -5e-05 6.25e-06 -2.5e-05 -5e-05 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -5e-05 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -5e-05 -2.5e-05 -5e-05 17 16 24 21 0 23 19 55 60 59 57 13 54 50 46 11 44 48 42 38 34 3 7 26 30 32 36 40 41 51 61 58 49 12 52 53 56 39 37 14 15 28 18 1 27 22 20 33 2 25 29 4 35 5 6 8 9 10 31 43 47 45 SuiteSparse/LDL/Matrix/A200000644001170100242450000001372110232253701014072 0ustar davisfacname: Bai/bfwb62 n: 62 entries: 407 (jumbled version) 62 1 0 4 9 22 30 39 49 67 75 84 93 103 112 117 123 125 131 137 140 146 152 158 164 169 174 178 184 189 193 198 205 211 218 223 230 237 247 253 262 268 273 277 284 289 296 302 313 319 329 335 343 350 355 359 364 370 376 383 390 397 402 404 407 0 23 19 3 2 20 5 29 1 28 27 35 15 6 4 4 1 2 31 28 35 5 3 7 24 16 36 7 0 32 8 33 22 6 4 37 6 2 2 9 41 5 6 5 6 18 1 33 2 6 2 29 47 5 9 4 10 39 47 5 43 39 9 40 25 8 4 3 26 3 48 7 44 11 30 35 35 6 10 12 45 49 4 8 45 6 9 45 10 5 53 6 31 10 58 9 8 12 41 52 51 37 6 55 42 13 59 11 55 38 38 7 47 8 12 56 10 50 54 50 11 54 13 15 14 15 2 20 14 20 18 19 17 16 17 3 21 16 17 16 28 29 18 20 5 15 16 19 0 30 21 21 22 18 20 15 15 1 19 24 19 21 23 16 4 27 25 22 20 24 0 23 26 21 3 24 23 21 25 27 33 22 35 6 23 7 34 36 26 27 25 2 22 28 2 29 2 18 6 1 31 18 29 28 33 19 34 30 32 7 34 41 33 2 29 31 40 9 34 30 3 32 42 25 5 4 31 35 29 33 30 26 32 30 34 36 36 35 39 2 37 33 8 8 37 2 25 38 3 36 34 34 26 4 10 47 35 35 45 37 39 45 38 46 11 36 48 11 37 39 35 6 6 40 6 31 41 5 31 41 40 45 43 10 46 42 11 32 44 41 53 45 43 45 6 52 54 7 44 46 46 42 9 8 45 43 47 37 41 43 37 47 9 44 46 48 44 42 38 49 51 45 37 6 51 45 6 47 12 50 38 46 7 50 48 49 56 8 47 49 51 58 56 48 13 48 57 50 59 13 51 49 10 47 47 43 10 53 52 9 43 52 53 56 54 13 57 44 55 13 11 54 57 55 57 11 53 58 56 49 49 58 12 57 55 59 55 54 50 57 61 58 49 56 10 56 61 11 59 60 57 50 59 60 58 61 58 -1.14796e-05 2.55102e-06 2.55102e-06 1.27551e-06 1.27551e-06 2.55102e-06 6.37755e-07 2.55102e-06 -1.14796e-05 9.11109e-05 2.55102e-06 3.2896e-05 2.55102e-06 1.27551e-06 1.58494e-05 1.27551e-06 1.27551e-06 -2.29592e-05 2.55102e-06 2.55102e-06 2.55102e-06 1.27551e-06 -2.29592e-05 3.61393e-05 2.55102e-06 2.55102e-06 2.55102e-06 1.27551e-06 1.27551e-06 2.55102e-06 6.37755e-07 2.55102e-06 2.55102e-06 9.46304e-05 -1.14796e-05 2.55102e-06 1.27551e-06 1.27551e-06 1.58494e-05 1.5625e-06 6.25e-06 0.000151737 2.20026e-06 -1.70281e-05 2.51752e-05 2.55102e-06 6.37755e-07 2.55102e-06 1.27551e-06 -3.96046e-05 1.27551e-06 2.55102e-06 6.25e-06 2.20026e-06 9.83044e-05 9.46304e-05 3.125e-06 2.55102e-06 7.59102e-05 2.51752e-05 6.25e-06 5.96597e-05 3.125e-06 6.25e-06 2.55102e-06 2.20026e-06 1.27551e-06 3.61393e-05 2.55102e-06 1.27551e-06 6.25e-06 -3.96046e-05 6.25e-06 3.125e-06 2.55102e-06 2.14094e-05 2.55102e-06 2.20026e-06 3.125e-06 1.5625e-06 6.25e-06 6.25e-06 6.37755e-07 -2.25765e-05 0.000105332 9.83044e-05 -2.8125e-05 6.25e-06 3.125e-06 1.5625e-06 6.25e-06 3.125e-06 6.25e-06 -5.625e-05 6.25e-06 3.125e-06 3.125e-06 3.125e-06 6.25e-06 6.25e-06 6.25e-06 6.25e-06 3.125e-06 6.25e-06 6.25e-06 3.125e-06 6.25e-06 -5.625e-05 5.05726e-05 7.99479e-05 6.25e-06 3.125e-06 6.25e-06 1.5625e-06 -2.8125e-05 6.25e-06 3.125e-06 6.25e-06 6.25e-06 7.73089e-05 3.125e-06 6.48235e-05 -2.8125e-05 -1.02041e-05 -2.04082e-05 -4.08163e-05 2.55102e-06 2.7469e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 2.72501e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -2.04082e-05 2.72501e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 2.55102e-06 -1.02041e-05 4.44591e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 2.7469e-05 2.55102e-06 4.44591e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -4.08163e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -2.04082e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -2.04082e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -2.04082e-05 9.11109e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 2.55102e-06 2.55102e-06 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 4.98855e-05 -4.08163e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -2.5e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -7.04082e-05 -2.5e-05 6.25e-06 -1.02041e-05 -1.02041e-05 2.55102e-06 -7.04082e-05 -2.5e-05 -1.02041e-05 2.55102e-06 2.55102e-06 -1.02041e-05 -1.02041e-05 -1.02041e-05 -4.08163e-05 -1.02041e-05 -1.02041e-05 -1.02041e-05 4.98855e-05 -4.08163e-05 -1.02041e-05 8.85501e-05 -4.08163e-05 -1.02041e-05 2.55102e-06 -1.02041e-05 -1.02041e-05 2.14094e-05 2.55102e-06 2.91542e-05 3.2896e-05 -1.02041e-05 -1.02041e-05 2.55102e-06 -4.08163e-05 -1.02041e-05 8.85501e-05 -1.02041e-05 2.55102e-06 6.25e-06 -2.5e-05 2.91542e-05 -1.02041e-05 -2.5e-05 -7.04082e-05 -1.02041e-05 1.1493e-05 -7.04082e-05 -2.5e-05 6.25e-06 -1.02041e-05 -2.5e-05 7.99479e-05 -1.02041e-05 -2.04082e-05 -1.02041e-05 2.55102e-06 5.96597e-05 -5e-05 6.25e-06 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -0.0001 6.25e-06 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 3.14119e-05 -0.0001 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 6.25e-06 -0.0001 4.83544e-06 -2.5e-05 -2.5e-05 6.25e-06 6.25e-06 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 3.14119e-05 1.1493e-05 5.76103e-05 0.000105332 4.83544e-06 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 6.5083e-05 5.76103e-05 7.59102e-05 -0.0001 6.25e-06 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 1.09202e-05 -0.0001 0.000156832 4.37582e-05 6.25e-06 -2.5e-05 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 7.73089e-05 1.09202e-05 -2.5e-05 -0.0001 -2.5e-05 6.25e-06 -5e-05 -2.5e-05 6.25e-06 6.5083e-05 -2.5e-05 -2.5e-05 6.25e-06 -2.5e-05 -5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 -2.5e-05 -0.0001 6.48235e-05 -2.5e-05 -2.5e-05 -2.5e-05 6.25e-06 5.05726e-05 -2.5e-05 4.03933e-05 -5e-05 -2.5e-05 6.25e-06 -2.5e-05 -2.5e-05 -0.0001 4.37582e-05 -2.5e-05 4.74919e-05 6.25e-06 0.00016193 -2.5e-05 -2.5e-05 4.03933e-05 -2.5e-05 -2.5e-05 -0.0001 7.02188e-05 -0.0001 -2.5e-05 4.74919e-05 6.25e-06 -2.5e-05 -2.5e-05 6.25e-06 -0.0001 -2.5e-05 -2.5e-05 -2.5e-05 -2.5e-05 -5e-05 -2.5e-05 -5e-05 7.02188e-05 17 16 24 21 0 23 19 55 60 59 57 13 54 50 46 11 44 48 42 38 34 3 7 26 30 32 36 40 41 51 61 58 49 12 52 53 56 39 37 14 15 28 18 1 27 22 20 33 2 25 29 4 35 5 6 8 9 10 31 43 47 45 SuiteSparse/LDL/Matrix/A210000644001170100242450000015401210232253701014072 0ustar davisfacname: HB/bcsstk02 n: 66 entries: 4356 66 0 0 66 132 198 264 330 396 462 528 594 660 726 792 858 924 990 1056 1122 1188 1254 1320 1386 1452 1518 1584 1650 1716 1782 1848 1914 1980 2046 2112 2178 2244 2310 2376 2442 2508 2574 2640 2706 2772 2838 2904 2970 3036 3102 3168 3234 3300 3366 3432 3498 3564 3630 3696 3762 3828 3894 3960 4026 4092 4158 4224 4290 4356 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1990.33 567.912 775.784 -1386.8 -0.267855 -0.466904 -1.13048 0.392058 0.0262199 -490.288 -490.205 0.0251003 -59.4381 -38.6059 -385.481 0.0466086 -0.07465 -0.649846 0.154605 0.0447455 0.0143036 -0.021597 -0.136564 -0.225766 5.06186 -0.11502 -0.606937 0.42174 -0.0787629 -0.640284 0.583363 -0.146798 -0.0871747 -0.0304466 0.00205195 0.0243121 -1.20473 0.0507083 0.179964 -0.212499 -0.00346643 -0.0526655 -0.0754533 -0.0248233 0.0108515 -0.0125119 0.0729971 0.0242525 0.0162955 0.016102 -0.0204115 0.124351 1.7046e-05 -0.0389695 0.0538814 -0.00468958 -0.0116852 0.0292282 -0.0201849 -0.00931351 0.0108272 -0.0134893 -0.00188099 0.00488976 0.0122115 0.0116595 567.912 1990.33 775.784 0.392058 -1.13048 0.0262199 -0.267855 -1386.8 -0.466904 -490.205 -490.288 0.0251003 -38.6059 -59.4381 -385.481 0.0447455 0.154605 0.0143036 -0.07465 0.0466086 -0.649846 -0.136564 -0.021597 -0.225766 -0.11502 5.06186 -0.606937 -0.146798 0.583363 -0.0871747 -0.0787629 0.42174 -0.640284 0.00205195 -0.0304466 0.0243121 0.0507083 -1.20473 0.179964 -0.0248233 -0.0754533 0.0108515 -0.00346643 -0.212499 -0.0526655 0.0729971 -0.0125119 0.0242525 0.016102 0.0162955 -0.0204115 1.7046e-05 0.124351 -0.0389695 -0.0201849 0.0292282 -0.00931351 -0.00468958 0.0538814 -0.0116852 -0.0134893 0.0108272 -0.00188099 0.0122115 0.00488976 0.0116595 775.784 775.784 7797.07 -0.053135 -0.00304816 -1.02514 -0.00304816 -0.053135 -1.02514 -0.0251003 -0.0251003 -0.32666 -388.557 -388.557 -3897.53 -0.553346 -0.027228 -0.020746 -0.027228 -0.553346 -0.020746 -0.237089 -0.237089 -0.0465557 -0.337238 -0.337238 0.079704 0.110987 -0.0277104 0.074426 -0.0277104 0.110987 0.074426 0.037226 0.037226 0.00552773 0.0764976 0.0764976 -0.0308651 -0.00553496 0.00236739 6.17619e-05 0.00236739 -0.00553496 6.17619e-05 -0.0152097 -0.0152097 -0.00637744 -0.00155356 -0.00155356 0.00410436 -0.00778484 -0.00778484 0.00455579 0.00131965 -0.00105151 0.0024964 -0.00105151 0.00131965 0.0024964 0.00126122 0.00126122 0.000995693 -0.00103177 -0.00103177 -0.00220184 -1386.8 0.392058 -0.053135 3060.65 -710.327 -1533.01 -490.356 490.312 0.0504023 -1.13048 -0.267855 0.00304816 -1066.01 71.418 710.379 -58.5567 38.6301 386.582 -0.0274214 0.249666 0.360423 -5.37811 70.5226 47.1606 0.248145 -0.100585 -0.0920349 6.56901 0.264895 1.00508 -0.0738641 0.306412 0.114551 0.41147 -0.000773718 0.0549392 -0.181382 -0.00548262 -0.154083 -1.09651 -0.0469509 -0.160836 -0.0140005 -0.0455285 -0.00651007 -0.184547 -0.0828652 -0.0353681 -0.0100963 0.027968 0.0294307 0.0469962 -0.00341712 -0.0226327 0.176759 0.0183094 0.0372451 0.0052355 0.0144878 0.0141999 0.0389266 -0.0169269 0.00836761 -0.0188819 0.0186254 -0.0128916 -0.267855 -1.13048 -0.00304816 -710.327 3060.65 1533.01 490.312 -490.356 -0.0504023 0.392058 -1386.8 0.053135 70.5226 -5.37811 -47.1606 38.6301 -58.5567 -386.582 0.249666 -0.0274214 -0.360423 71.418 -1066.01 -710.379 -0.000773718 0.41147 -0.0549392 0.264895 6.56901 -1.00508 0.306412 -0.0738641 -0.114551 -0.100585 0.248145 0.0920349 -0.0828652 -0.184547 0.0353681 -0.0469509 -1.09651 0.160836 -0.0455285 -0.0140005 0.00651007 -0.00548262 -0.181382 0.154083 0.027968 -0.0100963 -0.0294307 -0.0169269 0.0389266 -0.00836761 0.0183094 0.176759 -0.0372451 0.0144878 0.0052355 -0.0141999 -0.00341712 0.0469962 0.0226327 0.0186254 -0.0188819 0.0128916 -0.466904 0.0262199 -1.02514 -1533.01 1533.01 8746.03 -0.0504023 0.0504023 -0.234861 -0.0262199 0.466904 -1.02514 710.389 -47.476 -474.485 389.148 -389.148 -3897.23 0.164121 -0.164121 -0.00505008 47.476 -710.389 -474.485 0.460779 -0.0404939 -0.0532046 0.380074 -0.380074 -0.0064657 0.0077342 -0.0077342 0.010514 0.0404939 -0.460779 -0.0532046 -0.117741 0.0161033 0.00676233 -0.074228 0.074228 -0.0264454 0.00311767 -0.00311767 -0.00052924 -0.0161033 0.117741 0.00676233 -0.00185284 0.00185284 -0.000119449 0.0154433 -0.00305095 -0.00441524 0.0136511 -0.0136511 0.00200577 0.00300295 -0.00300295 0.00035693 0.00305095 -0.0154433 -0.00441524 -0.00248795 0.00248795 0.000528505 -1.13048 -0.267855 -0.00304816 -490.356 490.312 -0.0504023 3060.65 -710.327 1533.01 -1386.8 0.392058 0.053135 -5.37811 70.5226 -47.1606 -0.0274214 0.249666 -0.360423 -58.5567 38.6301 -386.582 -1066.01 71.418 -710.379 0.41147 -0.000773718 -0.0549392 -0.0738641 0.306412 -0.114551 6.56901 0.264895 -1.00508 0.248145 -0.100585 0.0920349 -0.184547 -0.0828652 0.0353681 -0.0140005 -0.0455285 0.00651007 -1.09651 -0.0469509 0.160836 -0.181382 -0.00548262 0.154083 -0.0100963 0.027968 -0.0294307 0.0389266 -0.0169269 -0.00836761 0.0052355 0.0144878 -0.0141999 0.176759 0.0183094 -0.0372451 0.0469962 -0.00341712 0.0226327 -0.0188819 0.0186254 0.0128916 0.392058 -1386.8 -0.053135 490.312 -490.356 0.0504023 -710.327 3060.65 -1533.01 -0.267855 -1.13048 0.00304816 71.418 -1066.01 710.379 0.249666 -0.0274214 0.360423 38.6301 -58.5567 386.582 70.5226 -5.37811 47.1606 -0.100585 0.248145 -0.0920349 0.306412 -0.0738641 0.114551 0.264895 6.56901 1.00508 -0.000773718 0.41147 0.0549392 -0.00548262 -0.181382 -0.154083 -0.0455285 -0.0140005 -0.00651007 -0.0469509 -1.09651 -0.160836 -0.0828652 -0.184547 -0.0353681 0.027968 -0.0100963 0.0294307 -0.00341712 0.0469962 -0.0226327 0.0144878 0.0052355 0.0141999 0.0183094 0.176759 0.0372451 -0.0169269 0.0389266 0.00836761 0.0186254 -0.0188819 -0.0128916 0.0262199 -0.466904 -1.02514 0.0504023 -0.0504023 -0.234861 1533.01 -1533.01 8746.03 0.466904 -0.0262199 -1.02514 -47.476 710.389 -474.485 -0.164121 0.164121 -0.00505008 -389.148 389.148 -3897.23 -710.389 47.476 -474.485 -0.0404939 0.460779 -0.0532046 -0.0077342 0.0077342 0.010514 -0.380074 0.380074 -0.0064657 -0.460779 0.0404939 -0.0532046 0.0161033 -0.117741 0.00676233 -0.00311767 0.00311767 -0.00052924 0.074228 -0.074228 -0.0264454 0.117741 -0.0161033 0.00676233 0.00185284 -0.00185284 -0.000119449 -0.00305095 0.0154433 -0.00441524 -0.00300295 0.00300295 0.00035693 -0.0136511 0.0136511 0.00200577 -0.0154433 0.00305095 -0.00441524 0.00248795 -0.00248795 0.000528505 -490.288 -490.205 -0.0251003 -1.13048 0.392058 -0.0262199 -1386.8 -0.267855 0.466904 1990.33 567.912 -775.784 -0.021597 -0.136564 0.225766 0.154605 0.0447455 -0.0143036 0.0466086 -0.07465 0.649846 -59.4381 -38.6059 385.481 -0.0304466 0.00205195 -0.0243121 0.583363 -0.146798 0.0871747 0.42174 -0.0787629 0.640284 5.06186 -0.11502 0.606937 -0.0125119 0.0729971 -0.0242525 -0.0754533 -0.0248233 -0.0108515 -0.212499 -0.00346643 0.0526655 -1.20473 0.0507083 -0.179964 0.0162955 0.016102 0.0204115 0.0108272 -0.0134893 0.00188099 0.0292282 -0.0201849 0.00931351 0.0538814 -0.00468958 0.0116852 0.124351 1.7046e-05 0.0389695 0.00488976 0.0122115 -0.0116595 -490.205 -490.288 -0.0251003 -0.267855 -1386.8 0.466904 0.392058 -1.13048 -0.0262199 567.912 1990.33 -775.784 -0.136564 -0.021597 0.225766 -0.07465 0.0466086 0.649846 0.0447455 0.154605 -0.0143036 -38.6059 -59.4381 385.481 0.00205195 -0.0304466 -0.0243121 -0.0787629 0.42174 0.640284 -0.146798 0.583363 0.0871747 -0.11502 5.06186 0.606937 0.0729971 -0.0125119 -0.0242525 -0.00346643 -0.212499 0.0526655 -0.0248233 -0.0754533 -0.0108515 0.0507083 -1.20473 -0.179964 0.016102 0.0162955 0.0204115 -0.0134893 0.0108272 0.00188099 -0.00468958 0.0538814 0.0116852 -0.0201849 0.0292282 0.00931351 1.7046e-05 0.124351 0.0389695 0.0122115 0.00488976 -0.0116595 0.0251003 0.0251003 -0.32666 0.00304816 0.053135 -1.02514 0.053135 0.00304816 -1.02514 -775.784 -775.784 7797.07 0.237089 0.237089 -0.0465557 0.027228 0.553346 -0.020746 0.553346 0.027228 -0.020746 388.557 388.557 -3897.53 -0.037226 -0.037226 0.00552773 0.0277104 -0.110987 0.074426 -0.110987 0.0277104 0.074426 0.337238 0.337238 0.079704 0.0152097 0.0152097 -0.00637744 -0.00236739 0.00553496 6.17619e-05 0.00553496 -0.00236739 6.17619e-05 -0.0764976 -0.0764976 -0.0308651 0.00155356 0.00155356 0.00410436 -0.00126122 -0.00126122 0.000995693 0.00105151 -0.00131965 0.0024964 -0.00131965 0.00105151 0.0024964 0.00778484 0.00778484 0.00455579 0.00103177 0.00103177 -0.00220184 -59.4381 -38.6059 -388.557 -1066.01 70.5226 710.389 -5.37811 71.418 -47.476 -0.021597 -0.136564 0.237089 4392.03 660.493 993.176 -1585.35 -0.740773 -0.0339266 -1.78233 0.475093 0.0547535 -560.649 -560.722 -0.0747833 -57.7288 -38.8699 -387.225 -1062.43 -82.1391 -816.16 -7.00761 -81.0473 -62.6346 -0.00362438 -0.195686 -0.196187 6.65338 -0.0972213 -1.15425 0.461214 0.140634 0.162896 0.53653 0.0945193 -0.0839861 -0.0439697 -0.337222 -0.177623 -0.0740894 -0.114823 0.142988 -0.713025 0.0244686 0.209259 -0.160889 0.00403492 0.112973 -0.167947 0.1029 0.0540287 -0.0387499 0.0475908 0.00812452 -0.0171316 -0.0865195 -0.0779926 -38.6059 -59.4381 -388.557 71.418 -5.37811 -47.476 70.5226 -1066.01 710.389 -0.136564 -0.021597 0.237089 660.493 4392.03 993.176 0.475093 -1.78233 0.0547535 -0.740773 -1585.35 -0.0339266 -560.722 -560.649 -0.0747833 -38.8699 -57.7288 -387.225 -81.0473 -7.00761 -62.6346 -82.1391 -1062.43 -816.16 -0.195686 -0.00362438 -0.196187 -0.0972213 6.65338 -1.15425 0.0945193 0.53653 -0.0839861 0.140634 0.461214 0.162896 -0.337222 -0.0439697 -0.177623 -0.114823 -0.0740894 0.142988 0.0244686 -0.713025 0.209259 0.1029 -0.167947 0.0540287 0.00403492 -0.160889 0.112973 0.0475908 -0.0387499 0.00812452 -0.0865195 -0.0171316 -0.0779926 -385.481 -385.481 -3897.53 710.379 -47.1606 -474.485 -47.1606 710.379 -474.485 0.225766 0.225766 -0.0465557 993.176 993.176 10005.4 -0.0573311 0.0503289 -1.53545 0.0503289 -0.0573311 -1.53545 0.0747833 0.0747833 -0.268728 -389.959 -389.959 -3896.92 -816.667 -63.0733 -629.339 -63.0733 -816.667 -629.339 -0.190581 -0.190581 -0.0335171 -0.248471 -0.248471 -0.0727184 -0.498551 -0.0283692 -0.076313 -0.0283692 -0.498551 -0.076313 -0.0330982 -0.0330982 0.00266288 0.00554188 0.00554188 0.0155029 0.0360689 0.0360689 -0.0302927 0.0844287 0.0146399 0.0165473 0.0146399 0.0844287 0.0165473 0.00139059 0.00139059 0.00205525 -0.000503376 -0.000503376 -0.00568056 0.0466086 0.0447455 -0.553346 -58.5567 38.6301 389.148 -0.0274214 0.249666 -0.164121 0.154605 -0.07465 0.027228 -1585.35 0.475093 -0.0573311 2253.17 -638.199 -776.518 -560.361 560.313 0.0158984 -1.78233 -0.740773 -0.0503289 0.254632 0.0301724 0.269511 -58.2814 38.6878 385.877 -0.0278594 0.173959 0.123827 0.102477 0.0175985 0.0034759 0.624486 0.123809 0.647462 4.76759 0.0121186 0.726097 -0.00139241 -0.0731863 0.00227585 0.68789 0.17083 0.12819 0.0342053 -0.0319406 -0.122696 -0.17412 -0.00293026 0.0938044 -0.808359 -0.0544554 -0.192594 -0.0388056 -0.00845262 -0.0247343 -0.101597 0.0421317 -0.0244629 0.0570756 -0.0262496 0.0532159 -0.07465 0.154605 -0.027228 38.6301 -58.5567 -389.148 0.249666 -0.0274214 0.164121 0.0447455 0.0466086 0.553346 -0.740773 -1.78233 0.0503289 -638.199 2253.17 776.518 560.313 -560.361 -0.0158984 0.475093 -1585.35 0.0573311 0.0175985 0.102477 -0.0034759 38.6878 -58.2814 -385.877 0.173959 -0.0278594 -0.123827 0.0301724 0.254632 -0.269511 0.17083 0.68789 -0.12819 0.0121186 4.76759 -0.726097 -0.0731863 -0.00139241 -0.00227585 0.123809 0.624486 -0.647462 -0.0319406 0.0342053 0.122696 0.0421317 -0.101597 0.0244629 -0.0544554 -0.808359 0.192594 -0.00845262 -0.0388056 0.0247343 -0.00293026 -0.17412 -0.0938044 -0.0262496 0.0570756 -0.0532159 -0.649846 0.0143036 -0.020746 386.582 -386.582 -3897.23 -0.360423 0.360423 -0.00505008 -0.0143036 0.649846 -0.020746 -0.0339266 0.0547535 -1.53545 -776.518 776.518 7798.07 -0.0158984 0.0158984 -0.437385 -0.0547535 0.0339266 -1.53545 0.648808 -0.0270483 -0.052545 388.987 -388.987 -3897.43 0.32913 -0.32913 -0.0863819 0.0270483 -0.648808 -0.052545 -0.133462 -0.0231839 0.078835 0.261059 -0.261059 0.0748703 -0.0442692 0.0442692 0.0158796 0.0231839 0.133462 0.078835 0.00189813 -0.00189813 -0.0220231 0.00568033 0.0017499 -0.00020328 -0.038754 0.038754 -0.027308 0.0102927 -0.0102927 -0.00798257 -0.0017499 -0.00568033 -0.00020328 0.00215333 -0.00215333 0.0102405 0.154605 -0.07465 -0.027228 -0.0274214 0.249666 0.164121 -58.5567 38.6301 -389.148 0.0466086 0.0447455 0.553346 -1.78233 -0.740773 0.0503289 -560.361 560.313 -0.0158984 2253.17 -638.199 776.518 -1585.35 0.475093 0.0573311 0.102477 0.0175985 -0.0034759 -0.0278594 0.173959 -0.123827 -58.2814 38.6878 -385.877 0.254632 0.0301724 -0.269511 0.68789 0.17083 -0.12819 -0.00139241 -0.0731863 -0.00227585 4.76759 0.0121186 -0.726097 0.624486 0.123809 -0.647462 0.0342053 -0.0319406 0.122696 -0.101597 0.0421317 0.0244629 -0.0388056 -0.00845262 0.0247343 -0.808359 -0.0544554 0.192594 -0.17412 -0.00293026 -0.0938044 0.0570756 -0.0262496 -0.0532159 0.0447455 0.0466086 -0.553346 0.249666 -0.0274214 -0.164121 38.6301 -58.5567 389.148 -0.07465 0.154605 0.027228 0.475093 -1585.35 -0.0573311 560.313 -560.361 0.0158984 -638.199 2253.17 -776.518 -0.740773 -1.78233 -0.0503289 0.0301724 0.254632 0.269511 0.173959 -0.0278594 0.123827 38.6878 -58.2814 385.877 0.0175985 0.102477 0.0034759 0.123809 0.624486 0.647462 -0.0731863 -0.00139241 0.00227585 0.0121186 4.76759 0.726097 0.17083 0.68789 0.12819 -0.0319406 0.0342053 -0.122696 -0.00293026 -0.17412 0.0938044 -0.00845262 -0.0388056 -0.0247343 -0.0544554 -0.808359 -0.192594 0.0421317 -0.101597 -0.0244629 -0.0262496 0.0570756 0.0532159 0.0143036 -0.649846 -0.020746 0.360423 -0.360423 -0.00505008 -386.582 386.582 -3897.23 0.649846 -0.0143036 -0.020746 0.0547535 -0.0339266 -1.53545 0.0158984 -0.0158984 -0.437385 776.518 -776.518 7798.07 0.0339266 -0.0547535 -1.53545 -0.0270483 0.648808 -0.052545 -0.32913 0.32913 -0.0863819 -388.987 388.987 -3897.43 -0.648808 0.0270483 -0.052545 -0.0231839 -0.133462 0.078835 0.0442692 -0.0442692 0.0158796 -0.261059 0.261059 0.0748703 0.133462 0.0231839 0.078835 -0.00189813 0.00189813 -0.0220231 0.0017499 0.00568033 -0.00020328 -0.0102927 0.0102927 -0.00798257 0.038754 -0.038754 -0.027308 -0.00568033 -0.0017499 -0.00020328 -0.00215333 0.00215333 0.0102405 -0.021597 -0.136564 -0.237089 -5.37811 71.418 47.476 -1066.01 70.5226 -710.389 -59.4381 -38.6059 388.557 -560.649 -560.722 0.0747833 -1.78233 0.475093 -0.0547535 -1585.35 -0.740773 0.0339266 4392.03 660.493 -993.176 -0.00362438 -0.195686 0.196187 -7.00761 -81.0473 62.6346 -1062.43 -82.1391 816.16 -57.7288 -38.8699 387.225 -0.0439697 -0.337222 0.177623 0.53653 0.0945193 0.0839861 0.461214 0.140634 -0.162896 6.65338 -0.0972213 1.15425 -0.0740894 -0.114823 -0.142988 -0.0387499 0.0475908 -0.00812452 -0.167947 0.1029 -0.0540287 -0.160889 0.00403492 -0.112973 -0.713025 0.0244686 -0.209259 -0.0171316 -0.0865195 0.0779926 -0.136564 -0.021597 -0.237089 70.5226 -1066.01 -710.389 71.418 -5.37811 47.476 -38.6059 -59.4381 388.557 -560.722 -560.649 0.0747833 -0.740773 -1585.35 0.0339266 0.475093 -1.78233 -0.0547535 660.493 4392.03 -993.176 -0.195686 -0.00362438 0.196187 -82.1391 -1062.43 816.16 -81.0473 -7.00761 62.6346 -38.8699 -57.7288 387.225 -0.337222 -0.0439697 0.177623 0.140634 0.461214 -0.162896 0.0945193 0.53653 0.0839861 -0.0972213 6.65338 1.15425 -0.114823 -0.0740894 -0.142988 0.0475908 -0.0387499 -0.00812452 0.00403492 -0.160889 -0.112973 0.1029 -0.167947 -0.0540287 0.0244686 -0.713025 -0.209259 -0.0865195 -0.0171316 0.0779926 -0.225766 -0.225766 -0.0465557 47.1606 -710.379 -474.485 -710.379 47.1606 -474.485 385.481 385.481 -3897.53 -0.0747833 -0.0747833 -0.268728 -0.0503289 0.0573311 -1.53545 0.0573311 -0.0503289 -1.53545 -993.176 -993.176 10005.4 0.190581 0.190581 -0.0335171 63.0733 816.667 -629.339 816.667 63.0733 -629.339 389.959 389.959 -3896.92 0.0330982 0.0330982 0.00266288 0.0283692 0.498551 -0.076313 0.498551 0.0283692 -0.076313 0.248471 0.248471 -0.0727184 -0.00554188 -0.00554188 0.0155029 -0.00139059 -0.00139059 0.00205525 -0.0146399 -0.0844287 0.0165473 -0.0844287 -0.0146399 0.0165473 -0.0360689 -0.0360689 -0.0302927 0.000503376 0.000503376 -0.00568056 5.06186 -0.11502 -0.337238 0.248145 -0.000773718 0.460779 0.41147 -0.100585 -0.0404939 -0.0304466 0.00205195 -0.037226 -57.7288 -38.8699 -389.959 0.254632 0.0175985 0.648808 0.102477 0.0301724 -0.0270483 -0.00362438 -0.195686 0.190581 1607.4 469.247 776.404 -1108.36 -0.183225 -0.0252203 -1.70748 0.566816 0.121913 -391.559 -391.5 -0.00866082 -57.6025 -38.6618 -385.371 0.451009 -0.0141539 -0.406433 0.18314 -0.0667222 0.0421279 0.0214094 -0.0306797 0.0645324 0.0678189 -0.0778239 -0.57432 2.89767 0.0234001 -0.871894 0.421527 -0.0919603 -0.462379 0.685305 -0.215989 -0.20399 0.0348205 0.0425194 -0.0164578 0.0839516 0.0944766 0.314077 -0.11502 5.06186 -0.337238 -0.100585 0.41147 -0.0404939 -0.000773718 0.248145 0.460779 0.00205195 -0.0304466 -0.037226 -38.8699 -57.7288 -389.959 0.0301724 0.102477 -0.0270483 0.0175985 0.254632 0.648808 -0.195686 -0.00362438 0.190581 469.247 1607.4 776.404 0.566816 -1.70748 0.121913 -0.183225 -1108.36 -0.0252203 -391.5 -391.559 -0.00866082 -38.6618 -57.6025 -385.371 -0.0667222 0.18314 0.0421279 -0.0141539 0.451009 -0.406433 -0.0306797 0.0214094 0.0645324 -0.0778239 0.0678189 -0.57432 0.0234001 2.89767 -0.871894 -0.215989 0.685305 -0.20399 -0.0919603 0.421527 -0.462379 0.0425194 0.0348205 -0.0164578 0.0944766 0.0839516 0.314077 -0.606937 -0.606937 0.079704 -0.0920349 -0.0549392 -0.0532046 -0.0549392 -0.0920349 -0.0532046 -0.0243121 -0.0243121 0.00552773 -387.225 -387.225 -3896.92 0.269511 -0.0034759 -0.052545 -0.0034759 0.269511 -0.052545 0.196187 0.196187 -0.0335171 776.404 776.404 7796.54 0.0793758 0.0930565 -0.878158 0.0930565 0.0793758 -0.878158 0.00866082 0.00866082 -0.296703 -388.46 -388.46 -3897.62 -0.325255 -0.0227143 -0.0132897 -0.0227143 -0.325255 -0.0132897 -0.182641 -0.182641 -0.0732764 0.00527268 0.00527268 0.112376 -0.223009 -0.223009 0.128488 0.0352938 -0.0415334 0.0697438 -0.0415334 0.0352938 0.0697438 0.0111965 0.0111965 0.0138805 -0.0136747 -0.0136747 -0.0597699 0.42174 -0.146798 0.110987 6.56901 0.264895 0.380074 -0.0738641 0.306412 -0.0077342 0.583363 -0.0787629 0.0277104 -1062.43 -81.0473 -816.667 -58.2814 38.6878 388.987 -0.0278594 0.173959 -0.32913 -7.00761 -82.1391 63.0733 -1108.36 0.566816 0.0793758 3704.86 -492.682 -1033.72 -391.91 391.885 0.0584443 -1.70748 -0.183225 -0.0930565 -1020.42 93.1075 926.149 -56.913 38.8 386.539 -0.0526068 0.232665 -0.0277623 -9.20235 91.7568 83.888 -0.00589175 0.413315 0.849592 0.56814 -0.137338 -0.361101 4.4773 0.168613 1.21083 0.0793485 0.0835317 0.212446 0.559866 -0.154137 0.162958 -0.271408 0.221032 -0.383596 -0.0787629 0.583363 -0.0277104 0.264895 6.56901 -0.380074 0.306412 -0.0738641 0.0077342 -0.146798 0.42174 -0.110987 -82.1391 -7.00761 -63.0733 38.6878 -58.2814 -388.987 0.173959 -0.0278594 0.32913 -81.0473 -1062.43 816.667 -0.183225 -1.70748 0.0930565 -492.682 3704.86 1033.72 391.885 -391.91 -0.0584443 0.566816 -1108.36 -0.0793758 91.7568 -9.20235 -83.888 38.8 -56.913 -386.539 0.232665 -0.0526068 0.0277623 93.1075 -1020.42 -926.149 0.413315 -0.00589175 -0.849592 -0.154137 0.559866 -0.162958 0.168613 4.4773 -1.21083 0.0835317 0.0793485 -0.212446 -0.137338 0.56814 0.361101 0.221032 -0.271408 0.383596 -0.640284 -0.0871747 0.074426 1.00508 -1.00508 -0.0064657 -0.114551 0.114551 0.010514 0.0871747 0.640284 0.074426 -816.16 -62.6346 -629.339 385.877 -385.877 -3897.43 -0.123827 0.123827 -0.0863819 62.6346 816.16 -629.339 -0.0252203 0.121913 -0.878158 -1033.72 1033.72 10743.1 -0.0584443 0.0584443 -0.201006 -0.121913 0.0252203 -0.878158 926.189 -84.5177 -843.805 389.812 -389.812 -3897.08 0.103225 -0.103225 -0.0115568 84.5177 -926.189 -843.805 0.00516548 -0.00516548 -0.0909791 0.411145 -0.0317089 -0.125467 0.216071 -0.216071 -0.0427843 0.110541 -0.110541 -0.0308923 0.0317089 -0.411145 -0.125467 -0.0183012 0.0183012 0.0556577 0.583363 -0.0787629 -0.0277104 -0.0738641 0.306412 0.0077342 6.56901 0.264895 -0.380074 0.42174 -0.146798 -0.110987 -7.00761 -82.1391 -63.0733 -0.0278594 0.173959 0.32913 -58.2814 38.6878 -388.987 -1062.43 -81.0473 816.667 -1.70748 -0.183225 0.0930565 -391.91 391.885 -0.0584443 3704.86 -492.682 1033.72 -1108.36 0.566816 -0.0793758 -9.20235 91.7568 -83.888 -0.0526068 0.232665 0.0277623 -56.913 38.8 -386.539 -1020.42 93.1075 -926.149 -0.00589175 0.413315 -0.849592 0.559866 -0.154137 -0.162958 0.0793485 0.0835317 -0.212446 4.4773 0.168613 -1.21083 0.56814 -0.137338 0.361101 -0.271408 0.221032 0.383596 -0.146798 0.42174 0.110987 0.306412 -0.0738641 -0.0077342 0.264895 6.56901 0.380074 -0.0787629 0.583363 0.0277104 -81.0473 -1062.43 -816.667 0.173959 -0.0278594 -0.32913 38.6878 -58.2814 388.987 -82.1391 -7.00761 63.0733 0.566816 -1108.36 0.0793758 391.885 -391.91 0.0584443 -492.682 3704.86 -1033.72 -0.183225 -1.70748 -0.0930565 93.1075 -1020.42 926.149 0.232665 -0.0526068 -0.0277623 38.8 -56.913 386.539 91.7568 -9.20235 83.888 0.413315 -0.00589175 0.849592 -0.137338 0.56814 -0.361101 0.0835317 0.0793485 0.212446 0.168613 4.4773 1.21083 -0.154137 0.559866 0.162958 0.221032 -0.271408 -0.383596 -0.0871747 -0.640284 0.074426 0.114551 -0.114551 0.010514 -1.00508 1.00508 -0.0064657 0.640284 0.0871747 0.074426 -62.6346 -816.16 -629.339 0.123827 -0.123827 -0.0863819 -385.877 385.877 -3897.43 816.16 62.6346 -629.339 0.121913 -0.0252203 -0.878158 0.0584443 -0.0584443 -0.201006 1033.72 -1033.72 10743.1 0.0252203 -0.121913 -0.878158 -84.5177 926.189 -843.805 -0.103225 0.103225 -0.0115568 -389.812 389.812 -3897.08 -926.189 84.5177 -843.805 -0.00516548 0.00516548 -0.0909791 -0.0317089 0.411145 -0.125467 -0.110541 0.110541 -0.0308923 -0.216071 0.216071 -0.0427843 -0.411145 0.0317089 -0.125467 0.0183012 -0.0183012 0.0556577 -0.0304466 0.00205195 0.037226 0.41147 -0.100585 0.0404939 0.248145 -0.000773718 -0.460779 5.06186 -0.11502 0.337238 -0.00362438 -0.195686 -0.190581 0.102477 0.0301724 0.0270483 0.254632 0.0175985 -0.648808 -57.7288 -38.8699 389.959 -391.559 -391.5 0.00866082 -1.70748 0.566816 -0.121913 -1108.36 -0.183225 0.0252203 1607.4 469.247 -776.404 0.0214094 -0.0306797 -0.0645324 0.18314 -0.0667222 -0.0421279 0.451009 -0.0141539 0.406433 -57.6025 -38.6618 385.371 0.0678189 -0.0778239 0.57432 0.0348205 0.0425194 0.0164578 0.685305 -0.215989 0.20399 0.421527 -0.0919603 0.462379 2.89767 0.0234001 0.871894 0.0839516 0.0944766 -0.314077 0.00205195 -0.0304466 0.037226 -0.000773718 0.248145 -0.460779 -0.100585 0.41147 0.0404939 -0.11502 5.06186 0.337238 -0.195686 -0.00362438 -0.190581 0.0175985 0.254632 -0.648808 0.0301724 0.102477 0.0270483 -38.8699 -57.7288 389.959 -391.5 -391.559 0.00866082 -0.183225 -1108.36 0.0252203 0.566816 -1.70748 -0.121913 469.247 1607.4 -776.404 -0.0306797 0.0214094 -0.0645324 -0.0141539 0.451009 0.406433 -0.0667222 0.18314 -0.0421279 -38.6618 -57.6025 385.371 -0.0778239 0.0678189 0.57432 0.0425194 0.0348205 0.0164578 -0.0919603 0.421527 0.462379 -0.215989 0.685305 0.20399 0.0234001 2.89767 0.871894 0.0944766 0.0839516 -0.314077 0.0243121 0.0243121 0.00552773 0.0549392 0.0920349 -0.0532046 0.0920349 0.0549392 -0.0532046 0.606937 0.606937 0.079704 -0.196187 -0.196187 -0.0335171 0.0034759 -0.269511 -0.052545 -0.269511 0.0034759 -0.052545 387.225 387.225 -3896.92 -0.00866082 -0.00866082 -0.296703 -0.0930565 -0.0793758 -0.878158 -0.0793758 -0.0930565 -0.878158 -776.404 -776.404 7796.54 0.182641 0.182641 -0.0732764 0.0227143 0.325255 -0.0132897 0.325255 0.0227143 -0.0132897 388.46 388.46 -3897.62 -0.00527268 -0.00527268 0.112376 -0.0111965 -0.0111965 0.0138805 0.0415334 -0.0352938 0.0697438 -0.0352938 0.0415334 0.0697438 0.223009 0.223009 0.128488 0.0136747 0.0136747 -0.0597699 -1.20473 0.0507083 0.0764976 -0.181382 -0.0828652 -0.117741 -0.184547 -0.00548262 0.0161033 -0.0125119 0.0729971 0.0152097 6.65338 -0.0972213 -0.248471 0.624486 0.17083 -0.133462 0.68789 0.123809 -0.0231839 -0.0439697 -0.337222 0.0330982 -57.6025 -38.6618 -388.46 -1020.42 91.7568 926.189 -9.20235 93.1075 -84.5177 0.0214094 -0.0306797 0.182641 4334.65 1037.52 1069.1 -1330.96 -1.33531 -0.0481398 -1.81114 1.25534 0.0960574 -0.521198 -1.54 -0.197646 -941.584 -938.113 0.0375201 -47.2244 -38.8124 -385.388 -919.993 -102.357 -1021.61 -11.8759 -101.139 -112.779 -0.181416 0.0100031 0.110102 0.0111675 -1.5288 -2.30787 0.0507083 -1.20473 0.0764976 -0.00548262 -0.184547 0.0161033 -0.0828652 -0.181382 -0.117741 0.0729971 -0.0125119 0.0152097 -0.0972213 6.65338 -0.248471 0.123809 0.68789 -0.0231839 0.17083 0.624486 -0.133462 -0.337222 -0.0439697 0.0330982 -38.6618 -57.6025 -388.46 93.1075 -9.20235 -84.5177 91.7568 -1020.42 926.189 -0.0306797 0.0214094 0.182641 1037.52 4334.65 1069.1 1.25534 -1.81114 0.0960574 -1.33531 -1330.96 -0.0481398 -1.54 -0.521198 -0.197646 -938.113 -941.584 0.0375201 -38.8124 -47.2244 -385.388 -101.139 -11.8759 -112.779 -102.357 -919.993 -1021.61 0.0100031 -0.181416 0.110102 -1.5288 0.0111675 -2.30787 0.179964 0.179964 -0.0308651 -0.154083 0.0353681 0.00676233 0.0353681 -0.154083 0.00676233 -0.0242525 -0.0242525 -0.00637744 -1.15425 -1.15425 -0.0727184 0.647462 -0.12819 0.078835 -0.12819 0.647462 0.078835 0.177623 0.177623 0.00266288 -385.371 -385.371 -3897.62 926.149 -83.888 -843.805 -83.888 926.149 -843.805 -0.0645324 -0.0645324 -0.0732764 1069.1 1069.1 11761.3 0.530108 0.177773 -1.43166 0.177773 0.530108 -1.43166 0.197646 0.197646 1.00606 0.40851 0.40851 -4.19182 -390.383 -390.383 -3896.99 -1022.1 -113.893 -1136.29 -113.893 -1022.1 -1136.29 0.0372216 0.0372216 -0.0765286 -0.471714 -0.471714 -0.391224 -0.212499 -0.0248233 -0.00553496 -1.09651 -0.0469509 -0.074228 -0.0140005 -0.0455285 -0.00311767 -0.0754533 -0.00346643 -0.00236739 0.461214 0.0945193 -0.498551 4.76759 0.0121186 0.261059 -0.00139241 -0.0731863 0.0442692 0.53653 0.140634 0.0283692 0.451009 -0.0667222 -0.325255 -56.913 38.8 389.812 -0.0526068 0.232665 -0.103225 0.18314 -0.0141539 0.0227143 -1330.96 1.25534 0.530108 2374.33 -1016.59 -776.648 0.159235 0.613513 0.0593587 -1.81114 -1.33531 -0.177773 -941.473 937.916 -0.0890923 -0.403487 0.0781599 1.08711 -48.6372 38.1621 384.764 -0.144843 0.0341797 -0.17162 0.143585 -0.123433 -0.158027 0.482601 0.955785 1.62894 -0.00346643 -0.0754533 0.00236739 -0.0469509 -1.09651 0.074228 -0.0455285 -0.0140005 0.00311767 -0.0248233 -0.212499 0.00553496 0.140634 0.53653 -0.0283692 0.0121186 4.76759 -0.261059 -0.0731863 -0.00139241 -0.0442692 0.0945193 0.461214 0.498551 -0.0141539 0.18314 -0.0227143 38.8 -56.913 -389.812 0.232665 -0.0526068 0.103225 -0.0667222 0.451009 0.325255 -1.33531 -1.81114 0.177773 -1016.59 2374.33 776.648 0.613513 0.159235 -0.0593587 1.25534 -1330.96 -0.530108 937.916 -941.473 0.0890923 -0.123433 0.143585 0.158027 38.1621 -48.6372 -384.764 0.0341797 -0.144843 0.17162 0.0781599 -0.403487 -1.08711 0.955785 0.482601 -1.62894 -0.0526655 0.0108515 6.17619e-05 -0.160836 0.160836 -0.0264454 0.00651007 -0.00651007 -0.00052924 -0.0108515 0.0526655 6.17619e-05 0.162896 -0.0839861 -0.076313 0.726097 -0.726097 0.0748703 -0.00227585 0.00227585 0.0158796 0.0839861 -0.162896 -0.076313 -0.406433 0.0421279 -0.0132897 386.539 -386.539 -3897.08 0.0277623 -0.0277623 -0.0115568 -0.0421279 0.406433 -0.0132897 -0.0481398 0.0960574 -1.43166 -776.648 776.648 7800.77 -0.0593587 0.0593587 1.10347 -0.0960574 0.0481398 -1.43166 -0.397309 0.397309 -4.55593 0.260267 -0.0333222 -0.0296088 389.721 -389.721 -3897.27 0.010797 -0.010797 -0.142526 0.0333222 -0.260267 -0.0296088 0.308417 -0.308417 0.217768 -0.0754533 -0.00346643 0.00236739 -0.0140005 -0.0455285 0.00311767 -1.09651 -0.0469509 0.074228 -0.212499 -0.0248233 0.00553496 0.53653 0.140634 -0.0283692 -0.00139241 -0.0731863 -0.0442692 4.76759 0.0121186 -0.261059 0.461214 0.0945193 0.498551 0.18314 -0.0141539 -0.0227143 -0.0526068 0.232665 0.103225 -56.913 38.8 -389.812 0.451009 -0.0667222 0.325255 -1.81114 -1.33531 0.177773 0.159235 0.613513 -0.0593587 2374.33 -1016.59 776.648 -1330.96 1.25534 -0.530108 -941.473 937.916 0.0890923 0.143585 -0.123433 0.158027 -0.144843 0.0341797 0.17162 -48.6372 38.1621 -384.764 -0.403487 0.0781599 -1.08711 0.482601 0.955785 -1.62894 -0.0248233 -0.212499 -0.00553496 -0.0455285 -0.0140005 -0.00311767 -0.0469509 -1.09651 -0.074228 -0.00346643 -0.0754533 -0.00236739 0.0945193 0.461214 -0.498551 -0.0731863 -0.00139241 0.0442692 0.0121186 4.76759 0.261059 0.140634 0.53653 0.0283692 -0.0667222 0.451009 -0.325255 0.232665 -0.0526068 -0.103225 38.8 -56.913 389.812 -0.0141539 0.18314 0.0227143 1.25534 -1330.96 0.530108 0.613513 0.159235 0.0593587 -1016.59 2374.33 -776.648 -1.33531 -1.81114 -0.177773 937.916 -941.473 -0.0890923 0.0781599 -0.403487 1.08711 0.0341797 -0.144843 -0.17162 38.1621 -48.6372 384.764 -0.123433 0.143585 -0.158027 0.955785 0.482601 1.62894 0.0108515 -0.0526655 6.17619e-05 -0.00651007 0.00651007 -0.00052924 0.160836 -0.160836 -0.0264454 0.0526655 -0.0108515 6.17619e-05 -0.0839861 0.162896 -0.076313 0.00227585 -0.00227585 0.0158796 -0.726097 0.726097 0.0748703 -0.162896 0.0839861 -0.076313 0.0421279 -0.406433 -0.0132897 -0.0277623 0.0277623 -0.0115568 -386.539 386.539 -3897.08 0.406433 -0.0421279 -0.0132897 0.0960574 -0.0481398 -1.43166 0.0593587 -0.0593587 1.10347 776.648 -776.648 7800.77 0.0481398 -0.0960574 -1.43166 0.397309 -0.397309 -4.55593 -0.0333222 0.260267 -0.0296088 -0.010797 0.010797 -0.142526 -389.721 389.721 -3897.27 -0.260267 0.0333222 -0.0296088 -0.308417 0.308417 0.217768 -0.0125119 0.0729971 -0.0152097 -0.184547 -0.00548262 -0.0161033 -0.181382 -0.0828652 0.117741 -1.20473 0.0507083 -0.0764976 -0.0439697 -0.337222 -0.0330982 0.68789 0.123809 0.0231839 0.624486 0.17083 0.133462 6.65338 -0.0972213 0.248471 0.0214094 -0.0306797 -0.182641 -9.20235 93.1075 84.5177 -1020.42 91.7568 -926.189 -57.6025 -38.6618 388.46 -0.521198 -1.54 0.197646 -1.81114 1.25534 -0.0960574 -1330.96 -1.33531 0.0481398 4334.65 1037.52 -1069.1 -941.584 -938.113 -0.0375201 -0.181416 0.0100031 -0.110102 -11.8759 -101.139 112.779 -919.993 -102.357 1021.61 -47.2244 -38.8124 385.388 0.0111675 -1.5288 2.30787 0.0729971 -0.0125119 -0.0152097 -0.0828652 -0.181382 0.117741 -0.00548262 -0.184547 -0.0161033 0.0507083 -1.20473 -0.0764976 -0.337222 -0.0439697 -0.0330982 0.17083 0.624486 0.133462 0.123809 0.68789 0.0231839 -0.0972213 6.65338 0.248471 -0.0306797 0.0214094 -0.182641 91.7568 -1020.42 -926.189 93.1075 -9.20235 84.5177 -38.6618 -57.6025 388.46 -1.54 -0.521198 0.197646 -1.33531 -1330.96 0.0481398 1.25534 -1.81114 -0.0960574 1037.52 4334.65 -1069.1 -938.113 -941.584 -0.0375201 0.0100031 -0.181416 -0.110102 -102.357 -919.993 1021.61 -101.139 -11.8759 112.779 -38.8124 -47.2244 385.388 -1.5288 0.0111675 2.30787 0.0242525 0.0242525 -0.00637744 -0.0353681 0.154083 0.00676233 0.154083 -0.0353681 0.00676233 -0.179964 -0.179964 -0.0308651 -0.177623 -0.177623 0.00266288 0.12819 -0.647462 0.078835 -0.647462 0.12819 0.078835 1.15425 1.15425 -0.0727184 0.0645324 0.0645324 -0.0732764 83.888 -926.149 -843.805 -926.149 83.888 -843.805 385.371 385.371 -3897.62 -0.197646 -0.197646 1.00606 -0.177773 -0.530108 -1.43166 -0.530108 -0.177773 -1.43166 -1069.1 -1069.1 11761.3 -0.40851 -0.40851 -4.19182 -0.0372216 -0.0372216 -0.0765286 113.893 1022.1 -1136.29 1022.1 113.893 -1136.29 390.383 390.383 -3896.99 0.471714 0.471714 -0.391224 0.0162955 0.016102 -0.00155356 -0.0100963 0.027968 -0.00185284 -0.0100963 0.027968 0.00185284 0.0162955 0.016102 0.00155356 -0.0740894 -0.114823 0.00554188 0.0342053 -0.0319406 0.00189813 0.0342053 -0.0319406 -0.00189813 -0.0740894 -0.114823 -0.00554188 0.0678189 -0.0778239 0.00527268 -0.00589175 0.413315 0.00516548 -0.00589175 0.413315 -0.00516548 0.0678189 -0.0778239 -0.00527268 -941.584 -938.113 0.40851 -941.473 937.916 -0.397309 -941.473 937.916 0.397309 -941.584 -938.113 -0.40851 3767.74 -0.37335 8.41514e-16 0.0398147 -0.28458 0.484504 -0.0133142 0.446446 -0.583477 -0.0133142 0.446446 0.583477 0.0398147 -0.28458 -0.484504 -1.73201 -0.00154004 -6.32833e-16 0.016102 0.0162955 -0.00155356 0.027968 -0.0100963 0.00185284 0.027968 -0.0100963 -0.00185284 0.016102 0.0162955 0.00155356 -0.114823 -0.0740894 0.00554188 -0.0319406 0.0342053 -0.00189813 -0.0319406 0.0342053 0.00189813 -0.114823 -0.0740894 -0.00554188 -0.0778239 0.0678189 0.00527268 0.413315 -0.00589175 -0.00516548 0.413315 -0.00589175 0.00516548 -0.0778239 0.0678189 -0.00527268 -938.113 -941.584 0.40851 937.916 -941.473 0.397309 937.916 -941.473 -0.397309 -938.113 -941.584 -0.40851 -0.37335 3767.74 2.37769e-15 -0.28458 0.0398147 0.484504 0.446446 -0.0133142 0.583477 0.446446 -0.0133142 -0.583477 -0.28458 0.0398147 -0.484504 -0.00154004 -1.73201 2.02581e-15 -0.0204115 -0.0204115 0.00410436 0.0294307 -0.0294307 -0.000119449 -0.0294307 0.0294307 -0.000119449 0.0204115 0.0204115 0.00410436 0.142988 0.142988 0.0155029 -0.122696 0.122696 -0.0220231 0.122696 -0.122696 -0.0220231 -0.142988 -0.142988 0.0155029 -0.57432 -0.57432 0.112376 0.849592 -0.849592 -0.0909791 -0.849592 0.849592 -0.0909791 0.57432 0.57432 0.112376 0.0375201 0.0375201 -4.19182 -0.0890923 0.0890923 -4.55593 0.0890923 -0.0890923 -4.55593 -0.0375201 -0.0375201 -4.19182 8.41514e-16 2.37769e-15 1347.13 0.346281 0.346281 -0.168908 -0.585219 0.585219 -0.518555 0.585219 -0.585219 -0.518555 -0.346281 -0.346281 -0.168908 -8.90424e-17 -8.73228e-16 -1328.29 0.124351 1.7046e-05 -0.00778484 0.0469962 -0.0169269 0.0154433 0.0389266 -0.00341712 -0.00305095 0.0108272 -0.0134893 -0.00126122 -0.713025 0.0244686 0.0360689 -0.17412 0.0421317 0.00568033 -0.101597 -0.00293026 0.0017499 -0.0387499 0.0475908 -0.00139059 2.89767 0.0234001 -0.223009 0.56814 -0.154137 0.411145 0.559866 -0.137338 -0.0317089 0.0348205 0.0425194 -0.0111965 -47.2244 -38.8124 -390.383 -0.403487 -0.123433 0.260267 0.143585 0.0781599 -0.0333222 -0.181416 0.0100031 -0.0372216 0.0398147 -0.28458 0.346281 2714.38 1211.09 386.24 -1492.65 -0.824388 1.91922 -0.0449153 0.803843 -0.243475 0.466903 -0.647139 -0.358846 -1177.74 -1171.15 2.09744 1.7046e-05 0.124351 -0.00778484 -0.00341712 0.0389266 -0.00305095 -0.0169269 0.0469962 0.0154433 -0.0134893 0.0108272 -0.00126122 0.0244686 -0.713025 0.0360689 -0.00293026 -0.101597 0.0017499 0.0421317 -0.17412 0.00568033 0.0475908 -0.0387499 -0.00139059 0.0234001 2.89767 -0.223009 -0.137338 0.559866 -0.0317089 -0.154137 0.56814 0.411145 0.0425194 0.0348205 -0.0111965 -38.8124 -47.2244 -390.383 0.0781599 0.143585 -0.0333222 -0.123433 -0.403487 0.260267 0.0100031 -0.181416 -0.0372216 -0.28458 0.0398147 0.346281 1211.09 2714.38 386.24 0.803843 -0.0449153 -0.243475 -0.824388 -1492.65 1.91922 -0.647139 0.466903 -0.358846 -1171.15 -1177.74 2.09744 -0.0389695 -0.0389695 0.00455579 -0.0226327 -0.00836761 -0.00441524 -0.00836761 -0.0226327 -0.00441524 0.00188099 0.00188099 0.000995693 0.209259 0.209259 -0.0302927 0.0938044 0.0244629 -0.00020328 0.0244629 0.0938044 -0.00020328 -0.00812452 -0.00812452 0.00205525 -0.871894 -0.871894 0.128488 -0.361101 -0.162958 -0.125467 -0.162958 -0.361101 -0.125467 0.0164578 0.0164578 0.0138805 -385.388 -385.388 -3896.99 1.08711 0.158027 -0.0296088 0.158027 1.08711 -0.0296088 -0.110102 -0.110102 -0.0765286 0.484504 0.484504 -0.168908 386.24 386.24 3908.78 -1.22162 -0.0316826 -2.40273 -0.0316826 -1.22162 -2.40273 0.358846 0.358846 2.18802 -0.463774 -0.463774 -8.72164 0.0538814 -0.0201849 0.00131965 0.176759 0.0183094 0.0136511 0.0052355 0.0144878 -0.00300295 0.0292282 -0.00468958 0.00105151 -0.160889 0.1029 0.0844287 -0.808359 -0.0544554 -0.038754 -0.0388056 -0.00845262 -0.0102927 -0.167947 0.00403492 -0.0146399 0.421527 -0.215989 0.0352938 4.4773 0.168613 0.216071 0.0793485 0.0835317 -0.110541 0.685305 -0.0919603 0.0415334 -919.993 -101.139 -1022.1 -48.6372 38.1621 389.721 -0.144843 0.0341797 -0.010797 -11.8759 -102.357 113.893 -0.0133142 0.446446 -0.585219 -1492.65 0.803843 -1.22162 3646.59 -1006.75 521.724 0.413395 0.831819 0.296378 -0.0449153 -0.824388 0.0316826 -1178.34 1170.79 -1.96468 -0.00468958 0.0292282 -0.00105151 0.0183094 0.176759 -0.0136511 0.0144878 0.0052355 0.00300295 -0.0201849 0.0538814 -0.00131965 0.00403492 -0.167947 0.0146399 -0.0544554 -0.808359 0.038754 -0.00845262 -0.0388056 0.0102927 0.1029 -0.160889 -0.0844287 -0.0919603 0.685305 -0.0415334 0.168613 4.4773 -0.216071 0.0835317 0.0793485 0.110541 -0.215989 0.421527 -0.0352938 -102.357 -11.8759 -113.893 38.1621 -48.6372 -389.721 0.0341797 -0.144843 0.010797 -101.139 -919.993 1022.1 0.446446 -0.0133142 0.585219 -0.824388 -0.0449153 -0.0316826 -1006.75 3646.59 -521.724 0.831819 0.413395 -0.296378 0.803843 -1492.65 1.22162 1170.79 -1178.34 1.96468 -0.0116852 -0.00931351 0.0024964 0.0372451 -0.0372451 0.00200577 -0.0141999 0.0141999 0.00035693 0.00931351 0.0116852 0.0024964 0.112973 0.0540287 0.0165473 -0.192594 0.192594 -0.027308 0.0247343 -0.0247343 -0.00798257 -0.0540287 -0.112973 0.0165473 -0.462379 -0.20399 0.0697438 1.21083 -1.21083 -0.0427843 -0.212446 0.212446 -0.0308923 0.20399 0.462379 0.0697438 -1021.61 -112.779 -1136.29 384.764 -384.764 -3897.27 0.17162 -0.17162 -0.142526 112.779 1021.61 -1136.29 -0.583477 0.583477 -0.518555 1.91922 -0.243475 -2.40273 521.724 -521.724 6181.68 -0.296378 0.296378 2.0673 0.243475 -1.91922 -2.40273 0.242306 -0.242306 -8.49839 0.0292282 -0.00468958 -0.00105151 0.0052355 0.0144878 0.00300295 0.176759 0.0183094 -0.0136511 0.0538814 -0.0201849 -0.00131965 -0.167947 0.00403492 0.0146399 -0.0388056 -0.00845262 0.0102927 -0.808359 -0.0544554 0.038754 -0.160889 0.1029 -0.0844287 0.685305 -0.0919603 -0.0415334 0.0793485 0.0835317 0.110541 4.4773 0.168613 -0.216071 0.421527 -0.215989 -0.0352938 -11.8759 -102.357 -113.893 -0.144843 0.0341797 0.010797 -48.6372 38.1621 -389.721 -919.993 -101.139 1022.1 -0.0133142 0.446446 0.585219 -0.0449153 -0.824388 -0.0316826 0.413395 0.831819 -0.296378 3646.59 -1006.75 -521.724 -1492.65 0.803843 1.22162 -1178.34 1170.79 1.96468 -0.0201849 0.0538814 0.00131965 0.0144878 0.0052355 -0.00300295 0.0183094 0.176759 0.0136511 -0.00468958 0.0292282 0.00105151 0.1029 -0.160889 0.0844287 -0.00845262 -0.0388056 -0.0102927 -0.0544554 -0.808359 -0.038754 0.00403492 -0.167947 -0.0146399 -0.215989 0.421527 0.0352938 0.0835317 0.0793485 -0.110541 0.168613 4.4773 0.216071 -0.0919603 0.685305 0.0415334 -101.139 -919.993 -1022.1 0.0341797 -0.144843 -0.010797 38.1621 -48.6372 389.721 -102.357 -11.8759 113.893 0.446446 -0.0133142 -0.585219 0.803843 -1492.65 -1.22162 0.831819 0.413395 0.296378 -1006.75 3646.59 521.724 -0.824388 -0.0449153 0.0316826 1170.79 -1178.34 -1.96468 -0.00931351 -0.0116852 0.0024964 0.0141999 -0.0141999 0.00035693 -0.0372451 0.0372451 0.00200577 0.0116852 0.00931351 0.0024964 0.0540287 0.112973 0.0165473 -0.0247343 0.0247343 -0.00798257 0.192594 -0.192594 -0.027308 -0.112973 -0.0540287 0.0165473 -0.20399 -0.462379 0.0697438 0.212446 -0.212446 -0.0308923 -1.21083 1.21083 -0.0427843 0.462379 0.20399 0.0697438 -112.779 -1021.61 -1136.29 -0.17162 0.17162 -0.142526 -384.764 384.764 -3897.27 1021.61 112.779 -1136.29 0.583477 -0.583477 -0.518555 -0.243475 1.91922 -2.40273 0.296378 -0.296378 2.0673 -521.724 521.724 6181.68 -1.91922 0.243475 -2.40273 -0.242306 0.242306 -8.49839 0.0108272 -0.0134893 0.00126122 0.0389266 -0.00341712 0.00305095 0.0469962 -0.0169269 -0.0154433 0.124351 1.7046e-05 0.00778484 -0.0387499 0.0475908 0.00139059 -0.101597 -0.00293026 -0.0017499 -0.17412 0.0421317 -0.00568033 -0.713025 0.0244686 -0.0360689 0.0348205 0.0425194 0.0111965 0.559866 -0.137338 0.0317089 0.56814 -0.154137 -0.411145 2.89767 0.0234001 0.223009 -0.181416 0.0100031 0.0372216 0.143585 0.0781599 0.0333222 -0.403487 -0.123433 -0.260267 -47.2244 -38.8124 390.383 0.0398147 -0.28458 -0.346281 0.466903 -0.647139 0.358846 -0.0449153 0.803843 0.243475 -1492.65 -0.824388 -1.91922 2714.38 1211.09 -386.24 -1177.74 -1171.15 -2.09744 -0.0134893 0.0108272 0.00126122 -0.0169269 0.0469962 -0.0154433 -0.00341712 0.0389266 0.00305095 1.7046e-05 0.124351 0.00778484 0.0475908 -0.0387499 0.00139059 0.0421317 -0.17412 -0.00568033 -0.00293026 -0.101597 -0.0017499 0.0244686 -0.713025 -0.0360689 0.0425194 0.0348205 0.0111965 -0.154137 0.56814 -0.411145 -0.137338 0.559866 0.0317089 0.0234001 2.89767 0.223009 0.0100031 -0.181416 0.0372216 -0.123433 -0.403487 -0.260267 0.0781599 0.143585 0.0333222 -38.8124 -47.2244 390.383 -0.28458 0.0398147 -0.346281 -0.647139 0.466903 0.358846 -0.824388 -1492.65 -1.91922 0.803843 -0.0449153 0.243475 1211.09 2714.38 -386.24 -1171.15 -1177.74 -2.09744 -0.00188099 -0.00188099 0.000995693 0.00836761 0.0226327 -0.00441524 0.0226327 0.00836761 -0.00441524 0.0389695 0.0389695 0.00455579 0.00812452 0.00812452 0.00205525 -0.0244629 -0.0938044 -0.00020328 -0.0938044 -0.0244629 -0.00020328 -0.209259 -0.209259 -0.0302927 -0.0164578 -0.0164578 0.0138805 0.162958 0.361101 -0.125467 0.361101 0.162958 -0.125467 0.871894 0.871894 0.128488 0.110102 0.110102 -0.0765286 -0.158027 -1.08711 -0.0296088 -1.08711 -0.158027 -0.0296088 385.388 385.388 -3896.99 -0.484504 -0.484504 -0.168908 -0.358846 -0.358846 2.18802 0.0316826 1.22162 -2.40273 1.22162 0.0316826 -2.40273 -386.24 -386.24 3908.78 0.463774 0.463774 -8.72164 0.00488976 0.0122115 -0.00103177 -0.0188819 0.0186254 -0.00248795 -0.0188819 0.0186254 0.00248795 0.00488976 0.0122115 0.00103177 -0.0171316 -0.0865195 -0.000503376 0.0570756 -0.0262496 0.00215333 0.0570756 -0.0262496 -0.00215333 -0.0171316 -0.0865195 0.000503376 0.0839516 0.0944766 -0.0136747 -0.271408 0.221032 -0.0183012 -0.271408 0.221032 0.0183012 0.0839516 0.0944766 0.0136747 0.0111675 -1.5288 -0.471714 0.482601 0.955785 0.308417 0.482601 0.955785 -0.308417 0.0111675 -1.5288 0.471714 -1.73201 -0.00154004 -8.90424e-17 -1177.74 -1171.15 -0.463774 -1178.34 1170.79 0.242306 -1178.34 1170.79 -0.242306 -1177.74 -1171.15 0.463774 4713.21 1.40761 -1.45664e-15 0.0122115 0.00488976 -0.00103177 0.0186254 -0.0188819 0.00248795 0.0186254 -0.0188819 -0.00248795 0.0122115 0.00488976 0.00103177 -0.0865195 -0.0171316 -0.000503376 -0.0262496 0.0570756 -0.00215333 -0.0262496 0.0570756 0.00215333 -0.0865195 -0.0171316 0.000503376 0.0944766 0.0839516 -0.0136747 0.221032 -0.271408 0.0183012 0.221032 -0.271408 -0.0183012 0.0944766 0.0839516 0.0136747 -1.5288 0.0111675 -0.471714 0.955785 0.482601 -0.308417 0.955785 0.482601 0.308417 -1.5288 0.0111675 0.471714 -0.00154004 -1.73201 -8.73228e-16 -1171.15 -1177.74 -0.463774 1170.79 -1178.34 -0.242306 1170.79 -1178.34 0.242306 -1171.15 -1177.74 0.463774 1.40761 4713.21 -3.14819e-15 0.0116595 0.0116595 -0.00220184 -0.0128916 0.0128916 0.000528505 0.0128916 -0.0128916 0.000528505 -0.0116595 -0.0116595 -0.00220184 -0.0779926 -0.0779926 -0.00568056 0.0532159 -0.0532159 0.0102405 -0.0532159 0.0532159 0.0102405 0.0779926 0.0779926 -0.00568056 0.314077 0.314077 -0.0597699 -0.383596 0.383596 0.0556577 0.383596 -0.383596 0.0556577 -0.314077 -0.314077 -0.0597699 -2.30787 -2.30787 -0.391224 1.62894 -1.62894 0.217768 -1.62894 1.62894 0.217768 2.30787 2.30787 -0.391224 -6.32833e-16 2.02581e-15 -1328.29 2.09744 2.09744 -8.72164 -1.96468 1.96468 -8.49839 1.96468 -1.96468 -8.49839 -2.09744 -2.09744 -8.72164 -1.45664e-15 -3.14819e-15 1363.08 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 SuiteSparse/LDL/Matrix/A220000644001170100242450000017713410232253701014105 0ustar davisfacname: HB/bcsstk02 n: 66 entries: 5175 (jumbled version) 66 1 0 81 156 235 317 395 471 543 621 703 776 854 934 1011 1090 1168 1243 1322 1400 1476 1556 1633 1712 1788 1862 1940 2024 2106 2184 2262 2349 2434 2511 2593 2674 2748 2831 2915 2991 3073 3151 3229 3310 3390 3473 3549 3631 3708 3786 3860 3939 4010 4086 4162 4241 4321 4404 4479 4555 4632 4712 4793 4871 4943 5021 5098 5175 57 60 38 54 9 2 33 39 45 3 0 13 35 30 64 22 8 48 31 52 44 43 19 59 18 20 16 37 28 49 28 7 62 41 21 63 12 23 29 34 4 11 33 20 21 54 52 27 17 13 32 63 16 40 6 25 24 47 14 10 55 42 53 5 58 61 26 60 56 15 36 50 51 65 42 22 6 37 1 48 46 24 51 5 39 38 14 46 6 30 42 56 40 31 32 57 12 41 25 60 3 20 0 13 4 43 62 29 23 35 64 2 31 28 64 33 63 32 9 17 58 10 36 25 13 55 54 48 61 1 7 11 53 49 22 21 45 18 59 47 16 54 8 37 19 52 34 15 50 27 53 45 65 28 26 44 21 47 35 13 63 5 35 52 42 36 48 12 46 59 33 43 51 15 30 26 9 55 52 54 57 7 22 17 38 32 44 58 39 33 49 65 24 41 19 62 53 60 39 41 18 34 32 28 34 16 14 2 61 11 1 50 3 46 10 37 28 4 25 20 8 23 55 45 64 56 13 31 40 59 27 4 29 0 6 62 27 43 61 3 26 37 39 25 0 10 20 17 33 47 56 7 60 39 1 64 32 34 15 47 21 10 52 38 65 8 49 54 57 13 45 3 11 55 31 29 48 42 4 9 12 6 24 30 58 5 29 57 55 18 35 14 53 17 2 16 19 56 41 28 19 44 42 22 23 40 59 32 38 36 7 51 41 46 50 4 63 13 0 54 43 60 16 39 12 41 19 53 57 42 25 27 36 31 60 18 20 9 64 23 17 53 49 15 52 50 58 14 30 63 7 45 10 44 21 3 34 35 1 62 56 6 38 29 55 48 3 55 59 8 33 2 47 35 24 37 40 22 51 46 5 57 4 54 4 32 65 26 11 7 28 5 2 48 61 42 45 62 4 40 25 39 8 15 30 2 33 43 59 13 0 28 53 30 17 24 54 49 35 64 10 46 9 50 63 22 19 58 41 55 12 26 33 38 18 58 56 48 29 47 60 57 1 3 34 12 14 4 27 7 16 53 5 51 11 43 32 52 44 65 6 31 20 36 21 40 37 23 32 37 61 27 42 54 46 38 19 36 0 20 15 34 21 62 2 30 51 32 61 59 7 49 33 63 40 22 58 43 37 25 35 4 0 53 23 44 18 16 64 12 26 65 3 24 11 25 9 47 36 1 39 57 27 28 50 5 62 41 13 31 56 55 42 52 45 60 8 14 17 48 29 10 6 60 36 36 59 0 65 16 41 18 20 54 25 61 15 29 18 21 37 1 3 3 63 19 29 47 44 46 27 51 62 35 4 6 32 12 56 14 15 28 64 11 61 24 8 42 9 34 58 2 41 10 52 7 13 5 30 39 46 33 7 4 17 50 26 28 48 40 49 31 57 38 23 55 43 53 22 49 45 35 22 28 19 57 8 10 58 64 38 45 65 4 28 29 19 7 21 41 47 5 1 36 62 24 58 20 30 9 36 18 55 63 48 33 32 43 39 51 16 26 60 25 6 14 46 13 27 53 15 3 35 38 61 47 56 31 23 17 12 54 52 50 42 0 14 39 49 2 59 13 57 20 21 37 44 34 25 29 15 40 11 47 28 14 2 38 33 31 20 42 35 8 59 52 23 1 5 27 0 56 34 16 26 51 61 37 25 60 19 13 29 24 15 12 41 4 17 30 7 62 21 57 65 9 26 53 57 53 32 48 45 39 40 43 6 51 39 3 44 36 18 49 58 64 54 11 46 55 50 14 60 22 63 10 42 3 48 8 45 19 14 31 51 59 25 6 16 12 54 49 47 28 32 24 23 33 33 37 35 55 34 38 62 11 58 57 10 29 41 0 7 9 13 17 64 27 52 20 3 22 40 56 44 2 37 64 5 51 46 39 21 61 30 18 58 26 45 60 44 26 43 4 55 1 50 36 35 15 34 65 53 63 1 22 12 32 17 19 4 10 59 13 30 64 53 3 57 21 18 36 40 20 63 51 34 57 25 6 49 37 46 51 5 40 15 56 59 47 48 55 38 45 16 58 2 28 43 29 0 30 32 31 60 39 26 63 23 62 14 27 44 36 42 16 52 11 41 9 42 24 61 8 19 64 29 50 65 35 7 43 54 33 43 53 35 6 54 13 43 36 5 16 32 47 3 41 0 39 19 9 45 55 45 26 44 59 17 15 28 12 31 64 22 8 58 48 41 40 23 58 24 30 49 42 53 2 14 21 25 64 4 27 62 60 32 15 11 52 51 46 63 38 19 37 20 1 5 50 34 61 57 18 33 10 7 56 65 55 29 61 43 54 15 40 57 56 4 35 39 13 8 49 55 34 17 43 20 64 16 14 2 31 16 63 53 24 58 0 52 36 19 33 28 20 6 26 2 22 25 37 5 8 62 42 45 21 32 65 55 10 12 1 0 23 7 27 50 33 3 47 19 25 29 38 18 14 48 44 9 41 1 51 11 30 46 22 59 60 20 15 59 60 51 21 54 30 38 23 32 52 2 47 57 27 45 35 65 4 14 33 56 18 36 41 29 37 53 0 8 48 44 9 58 38 3 7 26 9 17 55 46 39 25 62 31 34 24 24 43 8 25 5 22 42 10 27 13 63 16 12 64 28 40 45 30 6 36 13 1 16 11 49 56 61 19 50 56 45 60 64 26 51 58 13 50 19 61 20 59 10 24 62 22 57 14 15 39 9 63 48 34 41 18 21 31 33 2 53 21 42 0 24 11 46 47 30 5 3 38 43 4 6 35 23 44 12 54 36 12 32 25 42 35 8 16 49 27 1 28 65 7 52 37 29 17 41 7 36 40 8 55 20 64 62 41 52 54 36 58 59 13 4 14 36 11 16 22 1 29 11 21 53 43 24 2 45 57 64 15 49 27 38 6 5 35 13 32 25 63 46 32 23 21 55 37 26 7 28 0 24 34 31 39 50 17 19 12 8 38 60 44 18 33 61 60 48 0 9 40 30 14 47 51 3 65 10 56 35 61 42 14 55 40 0 1 5 6 46 31 13 8 48 43 17 16 28 37 58 25 38 54 65 30 62 57 44 64 35 45 7 18 24 34 52 9 41 20 30 50 63 26 15 26 23 21 32 57 19 63 51 12 60 3 2 33 51 42 49 53 31 62 27 4 47 11 10 3 56 60 36 61 50 35 59 29 29 39 22 19 44 53 30 29 3 18 38 34 37 21 2 28 46 49 32 60 21 1 20 22 7 4 16 11 7 58 17 6 39 63 64 52 40 51 26 41 55 54 47 23 9 15 57 47 27 31 43 14 59 25 26 49 8 10 55 61 39 65 45 35 36 48 42 5 56 41 62 33 24 12 29 13 0 50 25 6 56 25 57 60 22 24 27 17 62 14 52 20 47 8 61 41 29 54 51 11 9 59 65 61 31 42 28 35 38 39 0 64 1 55 5 25 58 59 23 2 40 16 3 34 21 32 60 20 45 33 18 30 8 26 50 7 48 46 19 10 29 37 44 12 11 43 36 4 13 36 63 15 13 53 12 40 3 43 49 10 4 15 0 58 33 62 29 63 11 22 0 8 38 24 45 45 8 6 16 1 61 43 32 49 26 34 5 2 32 41 55 59 13 52 35 40 46 12 13 53 19 39 50 31 17 37 51 23 18 27 44 65 56 30 21 60 48 31 14 7 20 49 47 24 3 41 19 28 42 57 59 9 25 36 54 64 62 59 17 52 30 31 14 22 23 15 0 5 1 18 41 55 49 12 65 10 0 56 37 28 21 29 36 26 34 48 27 8 38 51 39 54 38 25 28 18 50 33 64 24 13 4 36 19 3 60 43 42 47 63 46 53 6 16 45 61 7 49 58 16 30 40 57 43 15 60 9 31 2 11 8 32 44 35 20 11 52 49 47 31 39 58 13 18 0 47 6 25 53 1 34 45 42 14 60 24 46 5 7 37 2 30 52 22 0 33 38 56 15 44 59 54 26 36 43 17 51 41 63 10 23 59 16 55 29 19 21 28 50 12 61 40 30 60 32 65 4 31 8 57 27 35 13 39 9 64 48 55 20 3 62 33 12 13 6 53 43 5 25 59 19 2 10 49 38 57 60 51 32 35 8 46 30 49 4 52 62 63 22 24 23 63 28 64 61 55 34 58 48 33 26 41 14 37 50 56 55 65 44 7 40 36 15 45 47 27 16 3 20 1 17 36 58 45 18 11 21 37 42 29 0 39 54 9 31 65 36 37 7 14 48 19 46 23 26 56 33 27 34 3 61 45 28 10 50 22 13 30 32 64 38 57 2 55 35 53 47 29 49 15 11 44 63 64 6 31 25 16 1 4 32 20 43 14 42 20 52 51 8 54 37 15 40 62 24 30 0 58 39 25 52 41 60 59 12 17 18 40 5 21 9 49 16 14 1 2 49 24 57 5 23 46 50 59 34 26 32 54 42 24 26 13 28 63 6 19 0 38 8 48 27 7 53 39 20 47 52 36 25 41 1 31 54 15 55 19 56 3 43 12 10 11 44 61 16 9 46 22 13 17 14 30 8 62 61 32 42 64 41 6 40 21 45 29 33 37 18 4 65 29 18 60 51 58 35 36 39 29 56 36 44 59 37 54 17 18 2 34 32 47 8 47 45 3 19 51 9 5 9 49 61 28 40 31 1 35 18 55 59 13 15 23 17 20 10 25 30 38 14 36 50 11 58 52 46 65 0 64 21 45 50 41 53 42 27 24 10 33 48 57 43 22 29 33 4 26 40 25 16 12 27 30 39 7 60 63 6 43 62 23 26 57 7 34 59 47 0 21 22 25 11 54 43 6 32 14 51 8 12 38 27 6 49 65 61 24 9 53 15 5 62 19 20 53 37 64 41 29 18 55 58 2 30 56 33 63 52 45 60 33 38 1 46 26 4 31 45 36 35 35 50 42 50 10 39 17 28 48 16 13 59 65 44 14 40 55 3 44 27 1 65 57 36 22 38 20 60 54 11 58 16 30 42 34 12 35 2 30 28 26 43 53 61 5 50 52 48 18 47 19 45 29 13 32 25 8 42 3 39 31 2 49 56 0 17 62 32 63 64 51 23 55 8 4 9 31 15 46 21 41 10 21 59 24 1 40 33 37 61 6 60 14 7 0 7 5 41 21 37 60 47 17 30 15 36 28 58 49 50 53 45 52 7 32 37 6 23 58 18 27 54 40 43 7 44 18 20 64 57 45 34 17 31 59 35 10 26 61 63 25 42 48 22 16 40 9 46 33 24 65 51 12 26 29 51 0 57 19 38 19 14 62 63 56 65 25 8 13 36 11 3 11 30 8 3 41 43 4 39 1 2 55 34 46 14 48 40 21 26 24 52 43 16 39 12 44 62 10 59 42 36 49 22 4 64 17 33 26 47 11 54 55 11 56 17 1 22 45 57 31 47 34 50 29 7 0 45 21 35 41 53 3 38 8 37 30 32 6 38 58 2 65 28 39 5 51 19 61 20 59 61 5 60 13 63 65 9 28 18 14 25 37 24 27 29 15 23 16 60 31 65 43 24 32 1 8 27 54 12 36 45 5 55 37 17 3 61 22 20 1 42 10 53 62 41 11 20 30 38 35 28 58 14 9 64 50 15 48 60 52 63 44 13 49 34 33 17 29 51 26 39 7 19 34 47 23 25 59 2 46 40 18 53 6 21 4 63 28 56 21 0 22 57 47 41 29 14 5 34 58 11 64 1 38 48 18 35 47 40 16 19 0 44 51 23 21 4 65 10 26 8 3 1 59 2 24 42 57 37 56 30 24 60 22 20 16 25 47 6 31 49 63 32 58 2 17 43 7 45 46 52 3 63 11 12 52 9 53 39 28 33 62 20 54 12 13 32 5 15 61 27 28 36 25 50 55 38 6 52 15 64 49 34 50 13 51 33 27 16 4 57 21 32 5 31 62 63 27 60 55 59 26 25 18 41 19 43 17 40 58 12 20 10 10 40 47 1 8 3 36 28 56 11 39 42 58 30 22 14 36 23 44 48 54 7 26 24 2 37 13 35 0 9 2 23 43 46 46 5 49 0 42 65 61 45 53 29 42 12 7 54 41 47 2 28 44 46 55 5 18 58 1 29 52 9 21 51 62 17 24 11 13 16 26 3 25 8 14 52 27 10 33 23 10 31 30 53 55 51 22 30 65 43 50 60 31 56 2 32 36 38 0 4 39 40 45 6 34 15 57 20 61 63 49 19 48 37 59 35 64 60 34 60 25 58 43 1 20 17 2 44 54 23 65 21 47 14 0 27 51 13 57 36 16 64 42 59 45 27 18 5 26 46 41 15 39 15 4 52 10 62 33 24 40 29 31 35 54 48 8 64 4 22 63 61 6 32 52 11 16 50 9 37 46 53 7 2 17 49 12 28 38 55 56 30 10 45 3 43 62 8 56 19 49 6 25 31 50 29 35 65 10 59 25 45 5 29 58 8 16 12 36 56 15 49 6 18 21 52 19 9 19 41 15 32 48 33 23 28 42 38 14 2 4 46 8 33 55 11 51 61 30 26 61 63 44 14 62 47 7 27 53 43 38 3 0 65 26 1 17 37 64 11 16 60 7 40 57 23 22 21 46 39 24 34 13 20 54 39 0 50 29 49 10 1 48 38 28 23 46 65 24 10 61 65 33 16 31 63 47 32 62 23 20 21 41 29 45 2 8 38 53 6 30 40 26 30 18 13 64 7 9 27 34 60 24 22 57 42 44 3 0 25 52 54 35 55 37 4 15 51 5 36 43 56 59 14 58 5 19 62 11 12 17 43 3 48 17 39 25 47 38 33 6 37 49 46 37 36 1 43 21 9 15 29 64 52 16 7 53 20 40 12 42 19 30 51 59 65 34 50 26 47 11 56 24 39 28 21 5 14 60 63 31 3 32 27 61 36 18 54 58 0 57 23 62 59 44 2 22 13 51 55 30 44 16 27 60 14 45 8 41 4 8 10 35 53 27 2 37 20 3 34 23 9 39 11 21 46 45 9 7 10 25 42 17 54 28 62 44 48 65 31 25 51 2 22 57 47 6 52 1 64 56 30 18 8 32 51 49 15 43 35 55 60 58 14 22 5 3 61 50 38 19 33 8 40 59 36 13 63 26 53 4 24 38 29 30 41 60 16 18 0 12 25 15 3 36 44 60 24 6 55 16 26 20 41 37 11 60 44 22 17 54 5 14 19 28 38 32 46 34 33 11 53 4 54 27 29 59 35 56 48 58 49 51 26 9 8 7 63 29 21 62 61 42 30 5 52 0 47 19 62 40 43 1 24 33 18 45 12 23 13 50 31 65 64 39 10 57 65 2 11 8 15 12 40 45 29 18 36 46 25 4 2 41 14 38 21 61 33 26 10 7 63 52 39 31 64 1 15 54 34 41 18 63 29 56 17 51 27 43 19 57 49 53 3 47 42 46 12 30 62 7 25 60 6 54 24 43 59 35 22 28 23 55 50 2 20 44 58 3 64 37 20 48 5 13 16 65 0 9 32 54 24 8 44 34 2 64 15 62 28 15 4 5 3 44 40 0 21 53 48 31 63 9 26 33 56 25 3 11 49 6 46 57 17 39 41 27 18 36 0 11 58 52 1 32 16 50 43 45 13 28 33 23 25 49 65 42 14 38 37 30 12 29 10 6 56 51 22 35 55 47 57 60 59 20 48 65 61 19 7 33 10 22 47 61 62 4 45 48 0 14 58 55 23 54 27 59 13 59 15 6 5 46 54 35 28 1 19 57 51 17 7 24 18 53 20 33 52 26 41 40 42 31 44 12 64 12 38 46 29 9 29 16 49 11 19 25 35 13 21 21 60 30 64 8 38 39 65 50 56 26 63 32 36 11 43 37 41 2 60 34 3 5 46 27 4 28 59 24 40 0 7 62 64 42 18 42 63 54 53 21 6 15 37 31 19 23 52 58 48 17 61 10 60 65 65 22 13 12 30 10 16 9 1 34 57 55 48 32 5 57 50 40 25 20 2 26 47 41 33 49 39 51 43 38 35 8 56 38 44 54 58 29 45 3 36 11 14 63 42 59 1 53 5 14 56 49 28 55 27 6 10 35 12 43 36 18 23 52 20 51 32 46 54 0 65 30 15 50 58 26 45 12 25 62 56 48 20 8 37 63 47 17 9 14 59 40 61 11 30 39 33 52 49 23 44 27 38 34 64 60 13 7 57 21 24 35 31 41 19 2 29 4 16 10 22 54 1 3 26 29 49 37 47 22 10 60 15 6 45 4 25 54 35 17 28 57 16 2 23 24 51 33 20 59 0 33 41 55 26 21 48 50 65 3 35 18 14 34 2 38 43 46 29 25 31 7 9 27 61 44 56 36 36 1 64 51 30 8 39 43 58 62 13 5 63 32 50 7 41 40 11 12 19 52 63 42 53 30 26 24 17 11 44 31 59 6 32 22 52 23 49 47 8 16 45 3 10 63 53 46 58 56 2 42 15 57 32 4 41 22 65 55 56 19 36 37 26 29 50 54 1 30 49 43 31 62 20 64 21 18 48 40 9 38 14 61 39 13 35 12 33 18 38 27 60 34 54 8 7 51 5 0 3 25 28 4 18 37 62 52 7 44 26 40 6 42 15 46 65 47 29 49 45 36 10 25 33 53 43 27 55 4 11 16 59 54 64 0 21 58 57 14 61 3 51 28 0 50 41 13 23 61 1 42 34 39 44 2 53 63 32 20 48 24 35 52 30 17 64 38 5 19 9 56 60 8 22 12 31 42 7 36 16 26 20 10 55 38 53 13 19 65 20 49 64 44 28 3 21 47 40 58 50 15 30 22 24 37 18 63 9 35 41 27 14 5 59 57 31 33 21 43 51 56 6 24 53 60 1 29 63 12 54 8 48 23 45 17 2 23 45 25 61 18 11 62 39 32 47 35 42 33 7 52 34 0 4 46 64 45 26 58 53 37 52 12 41 27 19 30 48 60 7 56 35 24 51 27 42 26 49 20 9 0 10 39 25 40 31 17 65 46 32 11 65 34 13 43 15 36 50 57 6 59 23 4 47 1 33 22 14 21 18 5 62 44 55 2 46 63 16 17 29 54 3 28 38 61 8 28 37 65 57 23 55 43 9 17 33 39 1 30 15 46 45 26 16 22 29 31 9 2 24 14 11 47 20 7 36 4 12 8 54 38 63 10 13 46 25 41 59 39 51 10 62 60 21 5 49 35 40 48 53 61 29 11 52 19 58 42 34 50 64 18 38 44 0 34 6 27 3 17 32 58 56 33 40 60 47 30 25 48 34 22 51 50 55 2 0 20 27 34 44 45 7 8 63 37 41 59 55 35 12 18 57 1 64 46 15 3 35 14 17 13 36 24 42 38 49 23 56 5 31 29 53 16 22 62 24 0 9 61 4 48 28 32 32 21 52 10 58 65 54 45 43 19 26 11 6 2 39 55 8 25 60 27 39 32 29 31 12 5 3 14 22 50 48 61 57 59 65 30 1 11 9 51 45 20 34 10 18 2 39 4 54 42 47 36 64 38 49 27 62 13 46 5 19 24 35 58 26 21 33 40 41 15 44 53 7 63 55 9 4 0 28 6 16 53 17 12 56 52 31 1 43 37 23 48 64 49 7 55 50 57 30 36 45 59 4 29 63 59 11 0 42 14 27 51 23 56 41 38 60 47 16 44 20 12 2 5 4 21 19 40 34 43 61 31 22 35 26 45 56 65 25 13 43 32 37 10 8 17 9 0 61 39 40 6 33 15 64 54 53 18 62 52 46 1 35 24 44 3 58 28 25 48 41 49 47 1 8 52 51 14 19 24 27 18 39 49 4 63 42 59 4 33 7 16 22 50 34 15 17 30 27 60 64 36 28 35 23 45 44 53 26 12 34 55 46 10 23 56 65 37 57 58 2 13 22 43 61 18 65 41 3 0 13 38 56 25 21 58 11 63 62 31 40 1 48 29 10 2 32 20 47 54 53 5 3 12 9 52 6 18 59 19 1 7 55 0 20 3 60 52 25 23 61 57 44 58 30 17 40 8 63 64 9 13 53 38 10 62 31 54 50 26 24 22 15 14 36 35 33 48 21 37 34 56 27 49 4 5 43 55 51 45 59 42 54 12 47 35 41 2 42 39 6 45 28 65 46 47 11 16 29 32 14 3 49 46 64 8 35 39 16 23 42 53 61 3 14 21 43 20 10 63 59 3 51 4 27 13 38 33 44 60 44 61 17 0 31 40 54 57 50 30 12 26 5 62 37 36 9 19 2 17 11 56 18 25 58 47 42 52 29 1 32 28 22 9 55 41 11 15 7 65 4 29 6 48 34 45 24 8 32 0 2 54 13 11 38 44 10 49 5 51 29 55 5 41 35 55 19 40 46 47 9 36 48 51 22 45 61 1 37 10 7 26 8 60 64 43 12 52 33 56 31 53 16 33 15 65 25 57 14 44 62 20 18 58 50 8 4 29 6 63 39 59 23 42 21 24 27 32 12 3 30 23 28 17 34 25 27 21 27 43 52 23 8 1 40 59 18 20 7 20 46 45 22 12 62 45 26 19 63 37 51 28 50 26 41 24 11 9 33 61 13 43 49 60 65 30 29 19 54 2 36 10 56 17 58 6 14 44 16 0 11 34 31 56 39 3 38 35 57 4 64 55 30 53 42 61 38 48 2 54 15 47 32 5 22 21 28 16 15 46 50 39 57 23 18 62 54 25 31 55 51 47 43 28 38 12 19 4 8 38 9 0 52 27 14 5 65 40 32 36 10 58 44 39 53 34 0 21 31 48 17 9 13 1 29 30 35 41 64 33 34 16 22 49 56 2 60 59 6 24 45 37 3 22 61 40 20 11 17 7 42 4 19 26 63 43 12 20 50 8 21 44 65 51 29 9 22 7 43 65 42 54 5 30 52 16 0 46 61 6 34 45 18 4 55 41 63 16 62 15 59 24 57 53 11 28 64 35 19 30 57 58 47 36 54 13 28 26 27 39 36 37 48 19 17 60 1 31 56 48 25 33 49 2 3 40 7 59 10 25 32 14 38 23 37 6 50 17 27 8 18 36 15 1 7 0 21 29 64 62 52 4 37 47 20 49 63 40 41 45 3 28 58 39 54 33 56 51 60 55 42 62 43 53 38 40 31 35 44 57 2 11 61 10 26 46 16 32 23 48 24 9 17 13 65 19 14 35 22 34 6 30 5 59 25 12 41 49 61 0 44 23 46 60 15 24 57 27 52 59 55 43 19 41 32 16 28 8 36 31 7 20 18 25 63 11 12 23 37 3 40 33 31 48 32 22 29 53 13 42 17 1 30 51 54 49 38 4 55 26 50 9 6 34 46 58 47 21 62 2 65 39 0 17 11 56 64 5 45 44 14 29 10 35 12 6 40 43 41 32 35 57 47 48 59 45 42 17 4 1 20 19 26 51 50 11 60 27 48 43 64 49 10 5 52 39 55 1 63 41 0 11 23 56 24 12 31 25 9 54 10 46 37 38 35 16 24 16 53 65 8 62 14 36 15 21 29 61 22 3 44 33 28 34 53 30 58 13 18 7 2 12 5 1 36 40 43 58 2 9 51 30 4 60 8 36 64 44 29 25 37 3 42 11 23 29 55 30 50 14 7 49 15 18 35 59 16 65 28 40 27 20 52 37 39 13 31 10 61 47 61 34 56 62 63 0 38 21 53 6 44 55 57 50 32 17 24 33 42 27 54 41 22 48 19 46 45 26 0.0292282 0.0523879 0.179964 0.0538814 -490.288 775.784 0.454294 -0.212499 -0.0125119 -1386.8 1990.33 0.466706 0.0243121 0.583363 0.0122115 0.0254577 0.0262199 0.0162955 -0.146798 1.7046e-05 0.0108515 -0.0248233 0.0447455 -0.00931351 0.154605 0.0553696 0.0378071 0.487612 0.368168 0.016102 -0.0787629 0.392058 -0.00188099 -0.0526655 0.222991 0.28082 -59.4381 -0.225766 -0.640284 0.00205195 -0.267855 0.0251003 -0.0304466 0.0143036 -0.021597 0.0770916 0.326135 0.42174 -0.649846 -38.6059 -0.0871747 0.00488976 -0.07465 -0.00346643 0.24295 -0.11502 5.06186 0.0242525 -385.481 -490.205 -0.00468958 -0.0754533 -0.0389695 -0.466904 -0.0201849 -0.0134893 -0.606937 0.0108272 -0.0116852 0.0466086 -1.20473 -0.0204115 0.124351 0.0116595 0.169042 -0.136564 -1.13048 0.0507083 567.912 0.0982632 0.0729971 -0.11502 1.7046e-05 0.0262199 -0.0248233 0.179964 -385.481 -0.0125119 -0.267855 -0.0787629 -0.00346643 -0.00931351 -0.0754533 0.427368 0.269971 -0.00468958 -38.6059 0.0108515 5.06186 -0.0134893 0.392058 -0.649846 567.912 -59.4381 -1.13048 -0.212499 -0.00188099 -0.0871747 -0.225766 0.0243121 0.00488976 775.784 0.42174 0.583363 0.403491 0.00205195 0.0122115 -0.640284 -490.205 0.0143036 0.0538814 -490.288 0.0507083 0.0918258 0.248216 0.0292282 0.272957 0.016102 0.0108272 1990.33 -1386.8 0.0251003 -0.0389695 0.0162955 -0.021597 -0.136564 0.363613 -0.07465 -0.0116852 0.0242525 0.154605 -0.0201849 -0.466904 -1.20473 0.0466086 0.124351 -0.0304466 0.0447455 -0.0204115 -0.146798 0.0278642 0.0729971 0.0116595 0.394284 -0.606937 -0.0526655 -0.237089 -0.00637744 0.00552773 -388.557 -0.00103177 -1.02514 0.0982647 0.320816 0.00236739 0.0764976 -0.00155356 -388.557 -0.0152097 0.0024964 0.207596 -0.00553496 -0.00778484 -0.553346 -0.0277104 0.079704 -0.0251003 -0.00105151 -0.00778484 0.00131965 -0.00105151 -0.053135 -0.237089 -0.020746 -0.0308651 0.0181363 6.17619e-05 0.00131965 0.08285 0.037226 -0.00155356 -0.00220184 -0.337238 0.513225 -0.553346 0.000995693 0.00455579 0.00126122 -0.00553496 6.17619e-05 -0.027228 0.308368 0.074426 0.489823 0.037226 -0.027228 -3897.53 7797.07 0.00126122 -0.32666 775.784 0.00410436 -0.053135 0.347194 -0.0251003 0.0764976 -0.0277104 0.262994 -0.337238 -0.020746 -1.02514 -0.0465557 0.485244 -0.0152097 -0.00103177 0.0024964 0.108702 0.110987 0.00236739 0.05414 0.110987 -0.00304816 0.074426 775.784 -0.00304816 0.00836761 6.56901 -0.0455285 -0.0169269 0.548507 -0.0920349 -0.00548262 0.387137 -0.100585 -1386.8 -0.267855 0.360423 386.582 0.41147 0.0551165 0.0372451 490.312 0.0389266 -1.09651 0.392058 0.0186254 0.114551 -0.000773718 -58.5567 -0.0353681 -5.37811 0.369009 -0.00341712 -0.154083 -0.0128916 0.0504023 0.027968 0.176759 0.0386458 71.418 -0.184547 3060.65 0.00304816 0.0183094 0.306412 0.480116 -0.0100963 0.306128 -710.327 -1.13048 -1066.01 -490.356 0.248145 -0.0738641 0.0144878 -1533.01 1.00508 0.0052355 0.0952533 -0.0274214 0.0549392 710.379 -0.0226327 0.790862 -0.053135 38.6301 0.468472 0.358928 -0.160836 0.264895 0.249666 -0.00651007 -0.0140005 70.5226 47.1606 -0.0469509 0.0141999 0.313659 0.490299 -0.181382 0.410699 0.0469962 0.304008 -0.0828652 0.0294307 0.41656 -0.0188819 -5.37811 -0.267855 0.181698 -0.0140005 0.381262 -58.5567 -0.0469509 70.5226 0.160836 -0.0274214 0.286048 0.362853 -0.0455285 0.41147 0.264895 -0.0828652 -0.0738641 -0.00341712 0.249666 -0.360423 0.392058 -0.0188819 -710.379 -386.582 -0.00836761 -0.0100963 38.6301 0.0389266 -0.0294307 0.0052355 -47.1606 0.306412 0.0186254 0.0994972 -0.00548262 -1386.8 0.00651007 71.418 -710.327 0.248145 0.0920349 -1.13048 0.0226327 -0.0372451 490.312 0.0353681 -1.00508 0.176759 0.027968 0.41656 0.46413 -0.0141999 -0.0504023 -0.100585 0.262994 0.154083 0.330058 -0.000773718 -0.184547 -1.09651 -1066.01 -0.0169269 -0.181382 1533.01 0.0144878 3060.65 0.0183094 0.131259 -0.114551 0.0128916 -0.0549392 0.053135 -490.356 6.56901 0.242268 -0.00304816 0.959843 0.0469962 0.00311767 -0.0161033 -0.00441524 0.242268 0.074228 -0.0404939 -0.074228 -0.234861 389.148 0.0077342 -1.02514 0.250792 0.101339 0.00035693 -47.476 -0.466904 -0.380074 0.335053 0.132127 -3897.23 0.460779 0.0136511 0.00185284 -0.0532046 0.00248795 0.466904 0.117741 -0.0262199 -0.000119449 -0.00248795 -710.389 -0.164121 0.137856 -0.0264454 -0.0136511 0.212123 -0.0532046 0.0404939 0.00676233 0.164121 -0.00300295 0.00200577 -0.00185284 -0.0064657 0.00676233 0.00305095 0.00300295 0.0262199 -1533.01 -0.460779 710.389 -474.485 1533.01 0.380074 0.0504023 -389.148 -0.00441524 8746.03 0.0154433 -1.02514 -0.00311767 0.485022 -0.00305095 -0.00052924 0.000528505 -0.0504023 -0.0077342 -0.00505008 -0.117741 47.476 0.367349 0.258363 -474.485 0.010514 0.0161033 -0.0154433 -0.0738641 -1.09651 0.0052355 -0.00548262 0.0353681 38.6301 -0.184547 -1.13048 -386.582 -0.0274214 -0.100585 -1066.01 0.0226327 -0.00304816 6.56901 0.0389266 -1.00508 -0.00341712 -0.0372451 -710.327 0.027968 0.248145 -0.0188819 -0.0455285 71.418 0.0183094 -0.0469509 -0.0828652 -0.000773718 0.0920349 490.312 0.24295 -0.00836761 -710.379 0.160836 -58.5567 0.249666 0.0186254 -5.37811 -0.0549392 0.0128916 -490.356 0.41147 0.053135 0.162088 -1386.8 0.154083 0.146815 -0.267855 -0.0140005 0.176759 0.11888 0.306412 -0.0294307 -0.0504023 0.380577 0.00651007 70.5226 0.264895 -0.0141999 0.0144878 0.192857 -0.0169269 -0.181382 0.0469962 1533.01 -47.1606 -0.360423 -0.0100963 -0.114551 0.392058 3060.65 -0.0169269 0.0697775 -0.00548262 0.0372451 0.392058 -0.0128916 -0.0274214 0.343451 0.055301 386.582 0.0144878 0.248145 0.614401 0.414901 0.114551 38.6301 70.5226 -0.181382 -1386.8 490.312 0.410699 0.0186254 -58.5567 0.39541 -0.0353681 -0.160836 0.295374 0.306412 -0.00341712 0.00836761 0.0549392 -490.356 -710.327 1.00508 71.418 0.0141999 710.379 0.249666 0.418613 -0.0188819 0.00304816 0.0389266 -0.100585 -1533.01 -0.0469509 -0.267855 0.41147 0.176759 -0.053135 -0.00651007 -1.13048 0.0469962 3060.65 -1066.01 0.0504023 0.264895 -0.0455285 -0.184547 -0.000773718 0.208374 0.0994972 0.360423 0.0294307 -0.0920349 -0.0738641 0.027968 -0.0140005 -0.0100963 6.56901 0.0183094 -0.154083 47.1606 0.0052355 -1.09651 -0.0226327 -5.37811 0.435683 -0.0828652 0.0379107 47.476 0.0939786 389.148 0.363291 8746.03 -0.0262199 0.0136511 -0.00248795 0.0811154 0.117741 0.000528505 -0.0504023 0.0077342 0.179846 0.242453 -1533.01 0.279248 -0.00052924 0.00676233 -0.234861 -0.466904 0.0161033 -0.00441524 -0.0404939 0.190531 -3897.23 -0.380074 0.466904 0.140512 -389.148 0.00300295 0.00248795 0.00185284 -0.460779 -0.0064657 -0.074228 0.526386 -0.00305095 0.164121 -0.0532046 -0.0154433 0.128344 1533.01 -474.485 -0.0161033 0.429603 -0.0077342 -0.00441524 -0.164121 0.0504023 -0.0532046 0.00676233 0.00305095 0.263591 0.00035693 0.380074 -474.485 -0.00505008 -47.476 -0.00300295 0.0154433 -0.000119449 0.074228 0.0262199 0.368446 -0.00311767 -0.00185284 -1.02514 0.00200577 710.389 -0.0136511 0.149422 -710.389 -0.117741 -0.0264454 0.0404939 0.460779 0.010514 0.412208 0.00311767 -1.02514 -0.179964 -0.146798 0.126087 -0.0251003 -0.0242525 5.06186 -0.0787629 0.649846 -0.212499 0.606937 0.466904 0.0116852 -0.0134893 385.481 -490.205 -0.0262199 0.583363 -490.288 0.00931351 -0.11502 0.0447455 0.290222 0.0108272 1.7046e-05 0.0729971 0.00205195 0.495495 -0.07465 -0.136564 0.0871747 -0.0304466 0.154605 -0.021597 -0.0108515 0.392058 -0.0143036 0.42174 -0.267855 0.0389695 -59.4381 0.0538814 -0.0116595 1990.33 -0.0243121 0.37963 0.209762 0.00188099 0.640284 0.0162955 -1.20473 0.421646 -0.0248233 -0.00346643 -1386.8 0.29241 -0.0754533 -1.13048 0.0526655 -0.0125119 0.0466086 0.016102 -0.00468958 0.0122115 0.0292282 -775.784 0.0507083 -0.0201849 0.0204115 0.225766 0.124351 -38.6059 0.00488976 567.912 -0.0248233 -0.267855 0.016102 -0.0262199 0.174421 0.154605 0.225766 0.583363 -0.0134893 0.00931351 -0.0304466 0.392058 0.0466086 -0.136564 -0.00468958 0.0162955 -0.179964 0.42174 0.0871747 0.00205195 385.481 0.462404 -0.11502 0.254358 0.606937 0.0538814 0.438809 -0.0242525 0.0389695 -775.784 0.0292282 -0.0201849 1990.33 0.640284 0.0526655 -490.205 -1.13048 567.912 -0.021597 0.649846 0.0476803 -0.0787629 0.0108272 -0.0143036 0.369009 -59.4381 -0.212499 0.0116852 0.409164 -0.0251003 -0.0125119 0.00488976 0.466904 0.101353 -1.20473 -0.00346643 -38.6059 0.124351 -0.146798 0.0447455 0.339747 -0.0243121 0.0507083 1.7046e-05 -0.0108515 0.37813 -0.0754533 -1386.8 0.0831705 -490.288 0.0204115 0.0729971 0.750544 -0.07465 5.06186 -0.0116595 0.00188099 0.0122115 0.0251003 388.557 0.237089 0.074426 -0.020746 0.027228 0.053135 -775.784 0.403972 0.237089 -0.110987 0.125976 0.000995693 0.00304816 0.352485 388.557 0.553346 0.824757 0.00553496 -0.020746 0.251176 -0.00126122 0.337238 -0.00131965 -0.037226 0.053135 0.00155356 0.0152097 -0.0764976 0.231427 -1.02514 0.23765 0.027228 0.0024964 0.0024964 -0.0308651 0.00155356 -0.00131965 -0.00637744 -0.0764976 0.553346 0.00105151 -0.32666 -0.110987 0.0367747 0.277669 0.0251003 0.133862 0.302013 0.0277104 0.00778484 -0.00236739 0.00552773 0.00103177 -3897.53 0.00455579 -0.0465557 0.0277104 6.17619e-05 0.0152097 0.448361 0.228198 -0.00126122 7797.07 6.17619e-05 -775.784 0.00553496 -0.037226 0.00778484 -1.02514 0.188373 0.00103177 0.074426 0.00410436 -0.00220184 0.079704 0.00304816 -0.00236739 0.00105151 0.337238 0.202538 0.121793 -0.196187 -5.37811 -0.160889 660.493 0.0945193 6.65338 710.389 -0.740773 0.0911485 -0.177623 -1066.01 0.162896 -59.4381 0.461214 0.475093 -0.021597 -0.0439697 0.298479 0.129153 -387.225 -0.0839861 0.0540287 -0.0339266 0.457969 -82.1391 4392.03 -81.0473 0.161947 -560.722 -47.476 0.1029 -0.0740894 0.00201871 0.140634 -0.0747833 0.0196557 -57.7288 -7.00761 -0.114823 0.53653 0.209259 -388.557 993.176 -560.649 -38.8699 -0.0865195 70.5226 -1062.43 0.00812452 -0.0387499 -62.6346 -1585.35 0.237089 0.0244686 -0.713025 -0.337222 -0.0171316 -1.15425 0.236371 -0.0972213 0.0547535 -38.6059 0.212123 0.142988 -0.195686 0.0475908 -0.167947 -1.78233 -0.00362438 -0.136564 71.418 0.112973 -0.0779926 0.00403492 -816.16 -0.0387499 0.461214 0.1029 0.475093 0.53653 0.00403492 0.0540287 -5.37811 -0.196187 0.0945193 4392.03 0.429603 -0.0740894 0.0600066 -0.00362438 0.0547535 0.115869 -0.0339266 -0.0171316 -1.78233 0.344064 0.108702 -1062.43 0.333412 -0.0865195 0.209259 -38.8699 -0.160889 -38.6059 -0.713025 -0.0972213 -1585.35 0.250464 -7.00761 0.271461 70.5226 -387.225 -388.557 0.349431 -57.7288 6.65338 -47.476 710.389 0.00812452 0.140634 -0.337222 -560.722 -816.16 -0.0779926 -0.167947 -0.021597 660.493 0.248216 0.466706 -0.0747833 -1066.01 -81.0473 0.142988 -0.195686 71.418 -0.177623 0.45571 0.0831713 -62.6346 -1.15425 -0.740773 993.176 -0.114823 0.162896 -0.136564 -0.0839861 -59.4381 0.0244686 0.237089 -82.1391 -0.0439697 -560.649 0.112973 0.0475908 -1.53545 -0.0573311 0.0165473 0.00139059 0.0360689 0.0747833 0.0844287 0.295305 -0.0727184 -0.268728 -629.339 0.0360689 -3897.53 0.00266288 0.0146399 0.409516 0.0487708 -0.0335171 -0.00568056 -47.1606 10005.4 -0.190581 0.146932 0.0503289 -0.248471 -0.076313 -629.339 -0.248471 -0.0302927 -385.481 0.368446 0.00554188 -0.076313 0.225766 0.0844287 0.14123 710.379 710.379 -3896.92 0.126087 -1.53545 0.0146399 -0.0330982 -0.498551 0.0303773 0.00205525 -816.667 -0.190581 -389.959 0.380001 -0.498551 -474.485 -389.959 -474.485 0.0747833 -0.0283692 0.225766 -816.667 993.176 -0.000503376 0.425486 993.176 -0.000503376 -63.0733 -0.0283692 -0.0330982 -63.0733 -47.1606 0.483819 0.344064 -385.481 0.0503289 -0.0465557 0.00554188 0.0165473 0.00139059 -0.0573311 0.0155029 -0.192594 0.68789 -0.101597 -0.0262496 0.269511 -0.17412 -0.00845262 0.475093 -0.122696 560.313 0.0421317 0.0158984 -0.0247343 -0.07465 0.254632 -0.0244629 -0.740773 -0.0388056 -0.0573311 2253.17 4.76759 0.154605 0.0570756 0.0342053 0.0175985 0.726097 -560.361 0.251296 0.173959 0.102477 -0.553346 0.0938044 -1.78233 0.358646 0.0466086 0.0627483 0.027228 0.17083 0.12819 -0.0278594 389.148 -58.5567 0.647462 -0.0731863 38.6301 -0.0274214 0.0034759 -0.0503289 0.00227585 -1585.35 -0.808359 0.164371 0.457969 0.123827 0.0301724 -0.00139241 0.0853305 0.412208 -638.199 -0.0319406 -58.2814 0.0447455 38.6878 0.0532159 0.249666 -0.00293026 0.123809 385.877 -776.518 0.314416 0.414901 0.624486 0.0121186 -0.164121 -0.0544554 -0.0158984 0.40486 -0.0938044 -0.726097 -0.101597 -0.0544554 0.17083 -0.0388056 0.0247343 -1.78233 -58.5567 0.0503289 0.450026 0.228198 2253.17 -1585.35 0.154605 -385.877 0.553346 0.475093 0.0244629 -0.00139241 0.282392 -0.027228 0.123809 -0.00845262 0.0570756 -638.199 0.0342053 38.6878 -0.12819 0.249666 -389.148 0.247902 0.333412 0.163459 0.102477 -0.0262496 0.624486 -0.123827 0.0573311 0.0459686 -0.808359 0.68789 -0.0034759 -0.0274214 -58.2814 -0.07465 0.0175985 0.254632 -0.0278594 0.0121186 0.122696 776.518 -560.361 -0.740773 0.164121 0.0469089 -0.00293026 -0.00227585 560.313 0.0301724 0.210711 0.428488 -0.0319406 0.0378071 0.0447455 4.76759 0.173959 0.425486 -0.647462 0.0421317 38.6301 -0.0532159 0.0466086 0.192594 -0.269511 -0.17412 -0.0731863 -1.53545 0.038754 -0.261059 -0.649846 0.0143036 -3897.23 -0.360423 0.133462 0.287196 0.0547535 -0.00505008 0.00189813 0.0442692 7798.07 776.518 -388.987 -0.0231839 -0.0102927 -0.0270483 0.078835 -0.038754 0.0102405 0.229911 -0.00020328 0.0102927 0.0158796 -0.00215333 -0.052545 0.0231839 0.360423 -0.0158984 0.648808 -0.648808 0.0017499 -0.0143036 0.0748703 -0.437385 0.32913 -0.0220231 0.00215333 -0.052545 -776.518 0.292424 -1.53545 -0.0547535 -0.0863819 0.327617 0.0158984 0.428712 0.0121846 -0.0339266 0.414273 386.582 -0.020746 0.0270483 0.00568033 -0.0442692 -0.00189813 -0.00020328 -0.32913 0.486843 388.987 -386.582 0.078835 -0.020746 0.649846 0.790862 -0.027308 -0.0017499 -0.133462 -0.00568033 0.394964 0.173842 -0.00798257 0.332129 -3897.43 0.261059 0.0339266 -638.199 -0.726097 0.0244629 -58.2814 -0.123827 -0.0274214 2253.17 -0.12819 0.0301724 0.17083 -1585.35 -0.027228 0.173959 0.123809 0.308979 -385.877 -0.17412 0.224992 -0.07465 776.518 0.475093 0.055301 0.249666 560.313 0.553346 38.6301 -0.0544554 -0.0158984 -58.5567 -0.00139241 0.0570756 -0.0262496 0.0421317 -0.0731863 -0.101597 -0.0034759 -0.00227585 -0.00845262 -0.0388056 0.321173 0.0573311 0.0466086 -560.361 -0.808359 -0.647462 -0.0278594 38.6878 0.0121186 0.0503289 0.192594 0.208424 0.117342 -0.0319406 -389.148 0.0447455 0.0686423 -0.00293026 0.072212 -0.0532159 0.624486 -0.269511 0.68789 0.0342053 4.76759 0.164121 0.0247343 0.190361 -0.0938044 0.254632 0.102477 -1.78233 0.0771985 -0.740773 0.154605 0.122696 0.0175985 38.6301 -0.0247343 0.406473 -0.0544554 0.0421317 -1.78233 0.0301724 0.173959 0.0158984 -0.0244629 -0.0573311 -0.17412 -776.518 0.12819 389.148 -0.101597 0.00227585 0.123827 -0.00845262 -0.00293026 0.027228 -0.07465 -0.192594 0.0532159 0.355883 -58.2814 0.0121186 -0.0278594 0.0034759 0.647462 -0.0731863 0.0447455 0.0570756 0.0466086 -0.0388056 -0.164121 0.254632 -0.808359 0.178313 -0.0503289 -0.553346 -0.00139241 -560.361 0.468472 0.102477 -0.740773 385.877 0.0508306 0.0063654 0.17083 0.0175985 -638.199 38.6878 0.242453 0.269511 -0.122696 -58.5567 -0.0319406 0.68789 2253.17 0.154605 0.429692 0.624486 0.726097 0.236371 0.188373 4.76759 0.476369 -0.0274214 -1585.35 0.123809 -0.0262496 560.313 0.45571 0.0938044 0.475093 0.22612 0.249666 0.179964 0.0342053 -0.0143036 -0.360423 0.0158984 0.0553696 -0.038754 -0.648808 -0.00020328 -0.0863819 -0.00215333 -0.020746 -0.0547535 0.0143036 0.149422 0.078835 -0.0270483 0.133462 0.462998 -3897.23 -386.582 -0.0158984 -0.649846 -0.0017499 0.261059 -3897.43 0.429927 -0.052545 0.0270483 -0.00505008 -0.020746 0.109518 0.0158796 0.0102927 -0.027308 0.271461 0.00568033 -0.052545 -0.0442692 0.0231839 0.0547535 -0.0339266 -0.00020328 0.0063654 0.0442692 -0.0220231 388.987 -0.437385 -0.133462 0.0017499 -1.53545 776.518 -0.32913 0.0748703 0.0102405 -0.00798257 -388.987 0.0339266 -0.00568033 -0.00189813 0.153932 -1.53545 386.582 7798.07 0.00189813 0.078835 0.456385 0.360423 0.141661 -776.518 0.32913 -0.261059 0.038754 0.417864 0.649846 0.648808 -0.0231839 -0.0102927 0.00215333 -0.209259 -0.112973 -0.0547535 0.0475908 0.232282 0.408476 0.0747833 660.493 -993.176 0.251296 0.222991 47.476 -0.136564 -1585.35 0.0839861 0.1029 -0.114823 -560.649 0.0779926 -38.6059 -0.021597 -0.0540287 -0.337222 0.452248 4392.03 62.6346 0.324337 0.196187 -38.8699 -0.0740894 -7.00761 0.279248 0.474632 -0.0387499 0.53653 -0.167947 0.177623 -0.195686 -81.0473 0.224992 -0.142988 -57.7288 -0.0865195 -0.00362438 -560.722 71.418 -0.0439697 -0.740773 -5.37811 -0.713025 0.140634 0.461214 1.15425 -0.0171316 -0.0972213 -0.00812452 -1066.01 0.0459686 6.65338 0.0244686 70.5226 0.331174 0.00403492 0.475093 -1062.43 0.0945193 -0.160889 0.450949 -1.78233 0.13479 -59.4381 -82.1391 -0.237089 388.557 -710.389 816.16 -0.162896 387.225 0.0339266 388.557 0.35173 -0.0740894 1.15425 -7.00761 0.140634 -0.167947 0.349431 0.475093 0.0254577 0.309991 71.418 -0.00362438 -0.00812452 -0.021597 -57.7288 -0.0972213 0.0945193 0.0747833 0.0244686 -0.195686 6.65338 -710.389 -5.37811 -0.0439697 -0.237089 -81.0473 -0.0387499 4392.03 -0.136564 -38.8699 0.177623 -0.112973 -0.740773 0.0839861 -0.0540287 0.00403492 0.196187 -0.337222 0.53653 0.0339266 0.0475908 -0.162896 -0.0865195 -59.4381 -993.176 0.0894851 -1585.35 -0.160889 816.16 -1.78233 660.493 -1062.43 -0.142988 -560.722 -0.713025 0.461214 0.281392 0.300643 62.6346 0.0779926 -1066.01 0.0775577 47.476 0.1029 -82.1391 387.225 -560.649 0.211373 -38.6059 -0.0171316 -0.114823 0.477351 -0.0547535 70.5226 -0.209259 0.354338 -0.0747833 -0.0747833 -710.379 0.00205525 0.0283692 -474.485 0.190581 0.0165473 -0.0503289 -0.0465557 385.481 0.387217 0.00266288 -0.0844287 -0.0360689 -0.00139059 -629.339 -3896.92 -474.485 0.248471 816.667 -0.00554188 -710.379 -0.00139059 -0.0302927 0.339694 -993.176 0.190581 10005.4 0.000503376 816.667 0.000503376 -0.0360689 -0.0844287 389.959 0.202756 -0.00554188 389.959 -0.0335171 -0.076313 -0.268728 0.480201 0.0155029 0.0165473 0.0968143 -0.00568056 -0.076313 47.1606 0.498551 0.392275 -0.0503289 0.334925 -0.0727184 63.0733 0.0573311 47.1606 -1.53545 -0.225766 -1.53545 0.0330982 -0.0146399 0.248471 0.0573311 -3897.53 -993.176 0.0330982 0.498551 -629.339 -0.225766 0.0283692 -0.0146399 385.481 63.0733 0.314077 -57.6025 0.35708 -0.100585 0.380001 0.0678189 0.0301724 -0.0306797 0.190581 776.404 -0.462379 -391.559 -1108.36 -391.5 0.248145 0.0425194 0.0214094 -0.183225 0.00205195 -0.57432 -0.195686 -38.8699 0.0676204 0.121913 0.0944766 -385.371 0.685305 -0.337238 -0.0919603 -0.00866082 -0.871894 0.0645324 -0.0252203 -0.0778239 0.254632 -0.037226 0.0421279 0.0839516 0.487793 0.41147 0.566816 0.348596 0.0175985 -0.11502 -0.000773718 0.157706 0.456385 -0.0667222 -389.959 0.18314 -0.0270483 0.116439 2.89767 -0.0404939 0.421527 -38.6618 0.0627483 0.218125 -0.0164578 1607.4 -1.70748 5.06186 -0.215989 0.451009 469.247 0.0234001 -0.406433 0.0348205 -0.20399 -57.7288 0.648808 0.102477 -0.0141539 0.460779 -0.00362438 -0.0304466 0.277406 0.282392 -389.959 0.0918258 -0.337238 0.0678189 469.247 -0.0919603 -0.0404939 0.190581 0.057522 -0.57432 -0.462379 -391.559 776.404 -0.0252203 0.450072 -0.0141539 0.348596 0.320337 -57.7288 -1.70748 0.0944766 -0.000773718 0.254632 -0.11502 -385.371 0.128344 -0.0778239 0.566816 0.248145 -0.871894 0.250324 0.648808 0.0645324 2.89767 -38.6618 1607.4 0.3416 5.06186 -1108.36 -0.215989 0.0301724 0.685305 0.406473 -0.20399 -0.100585 0.451009 -38.8699 -0.0304466 -0.037226 -0.406433 0.30809 0.102477 0.00205195 0.0214094 -0.00362438 0.0831713 -0.0270483 0.0303773 -0.183225 0.460779 -0.0164578 0.0348205 0.0711856 0.337179 0.0839516 0.0421279 0.162088 0.18314 -0.195686 -0.0306797 0.121913 -391.5 -57.6025 0.208424 0.41147 0.314077 0.0711145 0.0175985 0.0425194 0.0234001 0.421527 -0.00866082 0.490538 -0.0667222 -0.878158 0.0697438 0.447265 -0.0132897 0.0697438 -388.46 0.0352938 -0.052545 -0.0034759 0.079704 0.00866082 -0.878158 -0.0732764 -0.0532046 0.183044 0.208338 -0.0920349 0.269511 -0.223009 -0.0243121 -0.0532046 0.290222 0.00527268 0.0111965 0.0930565 0.288978 0.0793758 -0.606937 -0.296703 0.117342 -0.0415334 0.000271006 -387.225 0.269511 -0.0335171 0.292424 -0.052545 -0.0243121 776.404 0.468524 -3897.62 -3896.92 -388.46 0.41415 0.00552773 0.0352938 -0.223009 -0.182641 -0.0597699 -0.606937 -0.0136747 0.196187 -0.182641 0.112376 -0.0132897 0.128488 -0.0227143 0.11179 776.404 0.37813 0.00866082 0.00527268 -0.0415334 0.289221 0.196187 0.107049 0.331053 -0.0549392 7796.54 -0.0227143 0.320337 -0.0034759 -387.225 0.0793758 0.0930565 -0.325255 -0.0920349 0.0111965 -0.0136747 -0.0549392 -0.325255 0.0138805 63.0733 0.0793758 0.0793485 0.306412 -0.183225 0.289745 83.888 0.42174 -7.00761 -82.1391 0.566816 0.0277104 4.4773 0.232665 -0.0738641 0.0584443 -816.667 0.56814 -0.0077342 -1062.43 0.249522 3704.86 0.11888 0.413315 -0.383596 -0.154137 -1108.36 0.583363 0.155346 -58.2814 0.380074 0.162958 0.173959 -0.32913 -0.361101 93.1075 0.221032 386.539 -1033.72 -0.0278594 0.308185 0.0835317 0.110987 -391.91 1.21083 0.477955 -0.271408 -0.137338 0.435705 0.559866 -1.70748 926.149 -0.146798 91.7568 0.11179 0.264895 391.885 -9.20235 -1020.42 0.310543 -0.0930565 0.250645 -0.0526068 0.849592 -0.0787629 -56.913 388.987 -492.682 -0.00589175 38.6878 -81.0473 0.212446 0.279587 -0.0277623 0.409516 38.8 0.168613 6.56901 0.0277623 -492.682 0.394284 0.383596 0.0835317 91.7568 -1062.43 -83.888 0.32913 0.219142 0.168613 -0.110987 0.0793485 -58.2814 391.885 0.232665 -1108.36 -82.1391 -0.0793758 -0.0277104 0.376735 3704.86 0.0930565 -0.0526068 -0.162958 0.56814 -0.380074 -0.849592 0.559866 0.413315 0.173959 -926.149 -0.0278594 93.1075 1033.72 -7.00761 0.263036 -1.70748 0.0077342 0.394564 0.264895 38.8 -391.91 0.489823 -0.00589175 -1.21083 0.368168 -388.987 0.361101 -0.0584443 0.221032 -0.271408 -0.154137 816.667 4.4773 0.0939786 6.56901 -0.146798 0.39027 38.6878 -1020.42 0.452248 -386.539 0.42174 -81.0473 -0.212446 -0.183225 0.583363 -56.913 0.566816 -9.20235 0.515715 0.306412 -0.137338 -63.0733 0.418613 -0.0787629 -0.0738641 -0.0064657 -3897.08 62.6346 -84.5177 0.0317089 -843.805 -3897.43 0.720309 385.877 0.0803713 1033.72 -0.110541 -0.00516548 -0.0909791 -0.125467 0.253096 -0.0317089 0.114551 -0.201006 0.495264 -0.114551 -629.339 0.1858 0.0771985 -1033.72 0.216071 -389.812 0.255761 0.39541 -0.0115568 -0.123827 -0.0863819 0.0183012 0.110541 84.5177 0.0252203 0.332129 0.0584443 -0.0308923 -0.878158 0.640284 -0.878158 -0.411145 0.448458 0.121913 0.103225 0.00516548 816.16 -385.877 0.368963 0.0871747 -926.189 -0.121913 -0.0252203 0.0556577 0.411145 -816.16 0.107049 10743.1 0.479698 -0.640284 0.179226 0.123827 -843.805 0.429692 -629.339 -0.125467 -0.0183012 -0.0427843 0.035592 0.0711145 0.010514 -62.6346 926.189 0.074426 0.480116 0.277669 -0.0584443 0.179846 1.00508 0.478469 -0.103225 -1.00508 389.812 -0.0871747 0.074426 -0.216071 0.395085 93.1075 -63.0733 -0.00589175 0.232665 -1062.43 0.0930565 0.0676204 -0.154137 38.8 0.173959 0.244056 -7.00761 -386.539 0.361101 -0.146798 0.0999725 -56.913 -9.20235 0.413315 0.281392 0.306412 0.221032 0.32913 -1108.36 0.468524 -926.149 -0.110987 0.0793485 0.0835317 0.133862 -0.212446 0.229911 -0.0787629 -81.0473 -1020.42 4.4773 -492.682 0.232462 0.566816 -0.849592 -0.0584443 0.264895 0.583363 0.0107437 0.232282 -0.0793758 0.0277623 -0.162958 -0.0738641 -83.888 -0.380074 91.7568 3704.86 1033.72 6.56901 0.418529 0.168613 -0.0277104 0.383596 391.885 -0.0526068 0.132127 0.559866 38.6878 0.164035 -388.987 -1.21083 -0.137338 0.0077342 0.56814 -82.1391 -0.271408 0.0390101 0.42174 0.376735 -58.2814 0.295305 -0.183225 0.411123 -1.70748 -391.91 0.720309 -0.0278594 816.667 -0.0278594 0.307602 3704.86 -0.383596 -56.913 0.566816 -1033.72 0.427368 0.380074 391.885 0.0835317 -81.0473 93.1075 91.7568 -0.0077342 0.0793485 -1020.42 0.287196 0.306412 0.559866 0.0775577 388.987 0.42174 38.8 0.583363 -0.361101 0.162958 -0.0277623 0.0277104 0.153932 -492.682 926.149 -0.0930565 0.39027 4.4773 -816.667 -0.0787629 -0.271408 0.849592 0.173959 0.413315 -0.154137 0.56814 0.0173523 386.539 -1062.43 -0.00589175 0.261401 -0.183225 -0.32913 0.0584443 -0.137338 0.0793758 0.232665 6.56901 -58.2814 -1.70748 0.224966 63.0733 -1108.36 1.21083 0.110987 -9.20235 -0.0526068 38.6878 0.287869 0.264895 0.408476 -0.0738641 0.221032 -391.91 0.212446 -82.1391 -0.146798 -7.00761 0.168613 83.888 -0.0115568 -0.201006 -629.339 0.010514 -0.121913 0.216071 0.074426 -0.0183012 0.269971 -843.805 -0.00516548 -385.877 -0.878158 -843.805 0.103225 -0.123827 385.877 -0.0871747 -3897.08 -0.0317089 -629.339 816.16 -0.114551 0.0556577 0.0871747 -0.878158 -0.0064657 0.313659 -0.640284 -0.0427843 0.0181363 0.157706 -389.812 -0.216071 926.189 -0.0308923 1033.72 0.121913 -0.411145 62.6346 0.109518 0.163459 0.0711856 0.0334143 -1.00508 -1033.72 0.00516548 0.387547 10743.1 0.339813 0.074426 -0.0863819 389.812 1.00508 -926.189 84.5177 0.411145 0.114551 0.0183012 0.302013 -62.6346 0.448495 0.640284 -0.125467 -0.103225 0.263036 0.0252203 -0.125467 -3897.43 -0.110541 0.0911485 -816.16 0.212001 0.485022 0.123827 0.0317089 0.0584443 -0.0584443 -84.5177 -0.0252203 -0.0909791 0.110541 -0.0645324 0.248145 0.0425194 0.102477 0.0944766 -0.0778239 469.247 0.57432 -0.195686 0.0348205 1607.4 -1.70748 0.0301724 -0.100585 0.421527 -57.7288 0.0252203 0.0404939 -0.183225 0.871894 0.0839516 0.477955 2.89767 -0.215989 0.462379 0.331053 -391.5 0.254632 -0.0421279 0.0175985 0.467753 0.0270483 -0.0667222 -0.0919603 -0.00362438 -0.648808 0.462404 -0.11502 0.484358 385.371 0.00205195 -0.460779 0.41147 0.0214094 0.566816 0.20399 0.337238 0.18314 0.327433 0.455083 -1108.36 -38.8699 -0.190581 0.901432 0.354338 0.406433 0.0678189 0.685305 -0.000773718 0.00866082 -391.559 0.037226 -0.0306797 0.250464 -776.404 0.454294 5.06186 0.207596 389.959 -0.0141539 -38.6618 0.311233 0.250792 0.435713 -0.0304466 0.451009 -0.314077 0.0234001 -57.6025 0.0164578 -0.121913 -0.0667222 -0.195686 0.41147 -0.0919603 0.406433 385.371 0.308368 -1108.36 -0.0421279 -57.6025 0.148907 -0.460779 0.0301724 0.685305 -0.0304466 0.0252203 0.0348205 -0.11502 -38.8699 0.21045 0.871894 -0.648808 -391.5 0.337238 -0.00362438 0.254632 0.00866082 -0.000773718 -391.559 0.0404939 -0.190581 0.0607212 -0.183225 5.06186 469.247 389.959 0.438809 0.261401 0.566816 0.0164578 0.421527 0.0425194 -57.7288 0.395085 -0.314077 0.18314 0.57432 0.0234001 -1.70748 0.462379 0.037226 -0.121913 -0.0306797 -0.0645324 0.00205195 0.248145 -0.0141539 0.451009 -38.6618 -0.100585 1607.4 0.0175985 -0.215989 0.0270483 2.89767 0.0944766 0.0678189 0.102477 -0.0778239 0.0214094 0.20399 -776.404 0.0839516 0.303138 -776.404 0.223009 -0.00866082 0.0415334 0.312212 0.0243121 -0.052545 0.173842 0.00552773 -0.0132897 0.0415334 -3896.92 -0.0597699 387.225 -3897.62 -0.0335171 0.0243121 -0.0930565 -0.0111965 -0.196187 -0.0352938 0.182641 0.247902 0.0062741 0.325255 0.0697438 0.299749 0.310543 -0.269511 -0.0532046 -0.296703 388.46 -0.0132897 0.0034759 0.0227143 0.0853305 0.0920349 -0.0111965 0.606937 0.128488 -776.404 -0.00866082 0.325255 -0.878158 -0.0930565 7796.54 0.25875 -0.00527268 0.0379107 0.0136747 0.330058 387.225 0.0136747 0.223009 0.0920349 -0.878158 0.320088 0.079704 -0.269511 0.112376 0.606937 0.182641 0.464554 0.0138805 0.0549392 0.0982647 -0.052545 -0.00527268 -0.196187 -0.0793758 -0.0732764 -0.0352938 0.0697438 -0.0793758 0.750544 388.46 0.0549392 0.0227143 0.14843 -0.0532046 0.389811 0.0034759 0.216323 0.146815 -38.6618 93.1075 0.0375201 0.0803713 0.182641 -2.30787 0.0729971 -112.779 0.490538 -0.521198 -0.117741 926.189 -101.139 0.140512 0.17083 6.65338 4334.65 -1021.61 0.624486 -938.113 -0.184547 0.68789 0.324337 -38.8124 0.476369 -0.0125119 0.123809 -0.0481398 0.164371 -84.5177 -941.584 0.0214094 0.392275 91.7568 -1.81114 0.160817 0.483819 0.0764976 -0.0828652 -1.54 0.0161033 0.901432 -102.357 0.824757 -47.2244 0.0100031 -9.20235 -388.46 0.355977 0.0111675 0.0960574 -0.248471 0.110102 -0.197646 0.0697775 -1020.42 -385.388 1.25534 1069.1 -0.181382 -1.20473 0.0409264 0.447265 0.0507083 -0.133462 1037.52 -1.5288 0.0152097 0.450026 -0.181416 -0.00548262 -1.33531 -11.8759 0.0330982 -0.337222 -0.0439697 0.470657 -1330.96 -57.6025 -0.0306797 -0.0972213 -0.0231839 -919.993 1.25534 0.0507083 0.0375201 0.495264 -941.584 -0.0125119 -1.20473 -938.113 0.441725 -9.20235 0.0330982 -0.521198 0.214227 -38.6618 0.254358 -0.181416 -2.30787 -0.0306797 0.68789 -1020.42 -1.5288 -0.197646 926.189 0.110102 0.480201 -0.133462 -0.337222 0.0960574 -84.5177 -1.54 0.0764976 -0.117741 1069.1 -385.388 -0.0828652 91.7568 -1.81114 -388.46 0.411123 0.17083 6.65338 0.0111675 -0.181382 0.0729971 93.1075 0.0214094 0.0100031 0.35708 -0.0439697 -102.357 -1.33531 -0.0481398 -0.00548262 0.487612 -57.6025 -47.2244 -101.139 0.182641 -11.8759 4334.65 -0.184547 0.123809 -38.8124 0.258363 1037.52 -1330.96 -112.779 -1021.61 -0.248471 -919.993 0.0161033 0.624486 0.358069 0.0152097 -0.0972213 -0.0231839 0.166804 -0.154083 0.40851 0.078835 0.530108 -385.371 0.281379 11761.3 -0.0645324 0.0353681 1069.1 0.40851 0.197646 0.441725 1069.1 0.179964 0.530108 0.177623 -0.0242525 0.647462 -843.805 -0.471714 -390.383 -0.12819 -0.154083 -3896.99 0.078835 0.177773 -1.15425 0.177773 0.647462 0.418529 0.226929 0.374645 -0.391224 -0.0645324 -4.19182 -3897.62 1.00606 -0.00637744 -1136.29 -385.371 0.0143161 -83.888 0.474632 0.00676233 -0.0727184 0.0372216 -0.471714 926.149 0.490299 -843.805 926.149 0.0372216 0.160817 -0.12819 -1022.1 -1022.1 0.179964 -113.893 0.00266288 -0.0765286 -1136.29 0.0270346 -0.0308651 0.177623 -1.15425 -390.383 -113.893 -83.888 -1.43166 0.0469089 0.249522 0.41606 0.14123 0.197646 0.0811154 -1.43166 0.0353681 0.00676233 -0.0242525 -0.0732764 1.08711 -56.913 0.08285 1.25534 0.0442692 0.387137 -0.0141539 0.0283692 -0.0754533 2374.33 -0.00236739 0.53653 -1.33531 -1.81114 0.421646 -0.0455285 -0.00346643 -0.0667222 0.159235 0.261059 -48.6372 38.8 -0.158027 0.0593587 -941.473 1.62894 0.232665 0.250324 -0.403487 -0.00553496 0.140634 -0.144843 -0.177773 -0.0140005 0.0781599 -0.0248233 0.955785 384.764 -0.0526068 -0.00139241 0.526386 -0.103225 0.227299 937.916 4.76759 0.613513 0.0227143 38.1621 0.698114 0.0341797 -0.498551 0.211373 -0.074228 -1.09651 -0.123433 -0.0890923 0.0143161 -0.0731863 0.18314 -0.00311767 -1016.59 -0.17162 -1330.96 0.0945193 0.482601 -0.325255 0.081092 -0.0469509 0.451009 0.530108 389.812 0.244056 -776.648 0.143585 0.0121186 0.072212 -0.212499 0.461214 0.18314 0.0121186 -0.0469509 -1.33531 -0.0593587 0.113175 -0.0141539 -0.0455285 -48.6372 4.76759 0.288978 -0.0442692 776.648 -1.81114 0.23765 0.0781599 0.359395 0.461214 -0.261059 0.488867 0.367349 -0.0283692 0.22612 -56.913 0.177773 0.103225 -1330.96 0.451009 -0.0667222 0.00553496 0.158027 -1.09651 38.1621 38.8 0.368963 0.17162 0.325255 -384.764 937.916 -0.144843 -941.473 -0.123433 -0.0227143 -0.0248233 0.00311767 -0.0140005 0.955785 -389.812 0.0945193 0.128722 -0.403487 0.613513 0.232665 0.074228 0.143585 -0.00346643 -0.530108 -0.00139241 -1.08711 2374.33 0.159235 -0.0754533 0.218125 0.484358 -0.0731863 1.25534 0.140634 0.498551 0.53653 0.0890923 -0.0526068 -1.62894 0.482601 -1016.59 -0.212499 0.0341797 0.428354 0.00236739 6.17619e-05 -0.00052924 0.726097 0.162896 776.648 -0.0960574 0.478469 -0.00227585 -0.0481398 0.0481398 0.3416 0.160836 6.17619e-05 7800.77 -0.076313 -1.43166 0.0839861 -0.260267 -0.0421279 -0.0132897 0.0526655 0.343451 0.308417 -0.0333222 -776.648 -0.0277623 0.0567782 0.0108515 0.314416 389.721 0.406433 0.328101 0.190361 0.410233 -3897.08 -3897.27 0.0748703 0.260267 386.539 0.0593587 0.00227585 0.010797 0.397309 -0.0296088 0.304008 -1.43166 -0.0593587 0.086255 0.00201871 0.0277623 -0.0296088 -0.00651007 0.0421279 0.0333222 0.00651007 0.044391 -0.406433 0.123996 -0.142526 -0.0132897 -0.162896 -386.539 -0.076313 -389.721 -4.55593 0.513225 0.0158796 1.10347 -0.010797 -0.160836 -0.308417 0.0960574 0.141661 -0.397309 -0.0264454 -0.0839861 -0.726097 0.217768 -0.0526655 -0.0108515 -0.0115568 -0.144843 0.18314 0.074228 776.648 -0.0667222 0.00236739 0.955785 0.358646 -1.08711 0.232665 -0.00139241 -0.0455285 0.00311767 -0.0140005 0.123091 0.613513 0.169042 0.461214 0.158027 -941.473 38.8 0.482601 -0.212499 -0.0227143 0.327433 0.17162 -0.0141539 0.306128 0.448361 0.149588 0.192857 1.25534 0.452281 -0.0442692 0.159235 -0.0593587 -0.0526068 4.76759 -1.81114 -0.0754533 0.00553496 38.1621 -0.123433 -0.00346643 -389.812 -0.0731863 0.0890923 -1016.59 -1330.96 0.140634 0.394564 0.451009 0.498551 0.337179 937.916 -1.62894 2374.33 -0.0283692 0.177773 -1.33531 -56.913 0.53653 0.103225 -0.0248233 -1.09651 0.0531398 0.143585 0.0945193 0.325255 0.0341797 -0.530108 -48.6372 -0.403487 -384.764 -0.261059 0.379937 0.281268 0.0781599 0.0121186 -0.0469509 0.467753 -0.0754533 0.53653 -0.177773 0.143585 -0.158027 -0.0140005 -1.33531 937.916 -0.0248233 -0.498551 -48.6372 -0.144843 0.0283692 0.0341797 0.232665 0.339865 0.461214 384.764 -0.0731863 -0.0469509 0.101339 -1.81114 0.161792 0.0227143 -0.0526068 -0.212499 4.76759 38.1621 0.0781599 0.0442692 -1.09651 -0.0667222 0.0121186 1.08711 0.261059 -0.0141539 -0.403487 -0.325255 0.123996 0.159235 -1016.59 -56.913 -776.648 0.0945193 0.166954 0.202538 0.530108 0.199285 0.255761 -0.00346643 -0.103225 -0.00139241 -941.473 -0.00236739 0.179964 0.451009 0.312212 0.115869 0.140634 0.450949 -0.123433 38.8 0.482601 -0.074228 0.166804 0.613513 1.62894 -0.0890923 -0.17162 0.289221 0.955785 389.812 1.25534 0.0367747 2374.33 -1330.96 0.0593587 -0.00553496 0.226397 0.18314 -0.0455285 -0.00311767 -0.0960574 -0.0277623 0.00651007 0.0277623 -3897.27 0.0421279 0.359395 0.0108515 -0.160836 -0.0296088 0.308417 0.123091 -0.726097 776.648 0.281183 -0.010797 -0.0296088 -0.162896 0.160836 0.00227585 -0.0481398 386.539 0.726097 -0.076313 0.260267 0.100262 0.397309 0.0158796 0.0333222 -0.0108515 -0.260267 0.0444507 0.217768 0.0839861 0.162896 -0.0839861 -386.539 0.409164 -0.00227585 0.0526655 -0.0526655 -0.0421279 -389.721 0.010797 0.49366 -3897.08 -0.00052924 0.424533 -4.55593 -0.0593587 -0.406433 0.0748703 6.17619e-05 -0.0132897 -1.43166 1.10347 0.406433 -0.397309 0.0593587 -0.0333222 -776.648 0.0270346 -0.0132897 -0.0264454 -0.142526 -1.43166 7800.77 0.033936 389.721 -0.0115568 0.0481398 -0.00651007 0.0960574 6.17619e-05 -0.076313 -0.308417 -1330.96 0.488808 0.363613 -0.110102 -0.0161033 -0.0330982 112.779 0.0389464 93.1075 -101.139 -9.20235 -0.181382 0.0507083 0.299749 -0.0439697 -1.33531 -0.521198 0.624486 0.248471 0.0100031 0.133462 -0.181416 -926.189 1037.52 0.0985512 -0.0125119 2.30787 -1020.42 0.68789 -0.0375201 -102.357 0.208338 4334.65 0.129153 -0.0306797 385.388 0.447022 -941.584 0.462998 0.117741 -1.54 0.0111675 -1069.1 0.0231839 -1.20473 0.0487708 1021.61 1.25534 -38.8124 -0.0764976 0.0107437 -1.81114 -57.6025 0.497461 -938.113 0.334925 0.0481398 0.435705 0.197646 -38.6618 -1.5288 -47.2244 -0.337222 -0.0828652 -919.993 6.65338 0.0214094 388.46 91.7568 -0.0960574 0.17083 -0.0152097 0.253096 -0.00548262 0.123809 0.174421 -0.0972213 -11.8759 0.0729971 -0.184547 -0.182641 84.5177 -941.584 -0.521198 -1069.1 6.65338 -1.20473 -38.8124 0.17083 -0.00548262 1037.52 -0.181382 0.0214094 -102.357 0.464554 0.133462 -1020.42 -101.139 0.624486 0.347194 0.248471 -0.0306797 0.254133 0.311233 0.0231839 112.779 0.0729971 -38.6618 0.0481398 -919.993 -0.182641 -0.0972213 -938.113 -0.0375201 2.30787 -0.0828652 388.46 0.123809 -0.0330982 -57.6025 -0.0152097 0.197646 -1.81114 4334.65 -926.189 0.057522 -9.20235 -0.184547 0.0507083 91.7568 -47.2244 -0.0960574 1021.61 -1.54 0.470657 -0.0125119 0.0111675 0.0100031 93.1075 -0.0161033 -1.33531 0.199285 -11.8759 385.388 -0.0439697 0.117741 0.495986 84.5177 0.223545 0.295374 0.086255 -1330.96 -0.0764976 -0.337222 0.68789 -0.181416 -1.5288 1.25534 -0.110102 0.232462 -0.0732764 0.0645324 0.078835 -0.0308651 -1.43166 83.888 -1136.29 0.154083 -843.805 0.309991 -0.0372216 -0.0727184 -0.40851 11761.3 0.00676233 -0.647462 -1069.1 0.0551165 -0.179964 0.471714 -0.0765286 -1069.1 113.893 -1136.29 -0.00637744 -0.530108 0.12819 1022.1 0.0334143 0.154083 -1.43166 1.15425 -0.391224 1022.1 0.300527 0.12819 -0.197646 -0.197646 0.183044 -843.805 -4.19182 113.893 0.0242525 -926.149 0.279752 -0.177773 0.224966 -3896.99 0.078835 0.471714 1.15425 -0.647462 -0.40851 -0.530108 -0.179964 1.00606 0.00266288 390.383 -0.177773 -0.177623 -3897.62 -0.177623 385.371 0.321173 0.281379 83.888 390.383 385.371 0.0317682 0.263591 -0.0353681 -0.0372216 0.00676233 0.0242525 -0.0353681 0.0645324 -926.149 0.027968 0.0342053 -938.113 -0.484504 0.464981 0.027968 0.397309 0.00527268 937.916 -0.0100963 0.379937 0.0342053 -938.113 -6.32833e-16 -0.40851 0.00516548 -0.37335 -941.584 -941.584 0.016102 -0.0778239 0.0678189 0.365771 937.916 -0.00589175 0.446446 0.959843 0.00155356 -0.0319406 0.583477 -0.0133142 0.0457523 0.0982632 -0.0740894 0.446446 -0.0133142 0.00554188 -0.28458 -0.0100963 0.0398147 0.413315 0.0162955 8.41514e-16 -0.397309 -0.114823 -0.00554188 0.350393 0.016102 -941.473 -0.0778239 -941.473 0.49366 -0.00155356 0.484504 -1.73201 -0.00516548 -0.00189813 3767.74 0.0678189 -0.00527268 -0.28458 -0.00589175 0.00189813 -0.00154004 0.40851 -0.00185284 -0.0319406 0.0162955 -0.583477 0.0398147 0.00185284 -0.114823 -0.0740894 0.413315 937.916 0.435683 -938.113 0.0342053 0.00527268 0.429927 0.0162955 -0.0133142 0.40851 0.433662 -0.0740894 0.0342053 2.02581e-15 0.00189813 3767.74 -1.73201 -0.397309 -0.00589175 0.027968 -0.114823 -0.40851 -941.473 -0.0133142 2.37769e-15 -0.0319406 0.413315 -0.0740894 0.277406 -941.584 -0.0319406 -0.00154004 0.016102 -0.00527268 0.397309 0.413315 0.00554188 0.00185284 -0.583477 0.446446 -0.00589175 0.435713 0.331174 -941.473 -0.28458 0.583477 0.027968 -0.0778239 0.484504 -0.28458 0.0162955 -0.00516548 0.352335 -0.114823 0.446446 -0.00185284 -0.37335 -0.00554188 -938.113 -0.00189813 -0.00155356 0.387217 0.0389464 0.0678189 0.0398147 0.308979 0.00155356 -0.484504 937.916 0.00516548 0.279752 0.216323 0.149588 -0.0778239 -0.0100963 0.0398147 0.0678189 0.016102 -0.0100963 -941.584 -8.73228e-16 -0.0375201 0.112376 -0.585219 -0.168908 0.0375201 0.346281 0.142988 -4.55593 0.250645 -0.122696 -0.849592 8.41514e-16 -0.346281 0.0294307 -0.518555 0.112376 -0.57432 0.346281 0.849592 0.0890923 0.41415 2.37769e-15 -0.0220231 0.0204115 -0.0204115 0.0204115 -0.0890923 -0.57432 0.0890923 0.849592 -0.0220231 -1328.29 -0.0375201 -0.0909791 0.00410436 0.00686361 0.57432 0.142988 -0.0890923 -0.122696 0.0375201 1347.13 0.585219 -0.0294307 -0.518555 0.0155029 -0.0294307 -4.19182 -0.0204115 0.57432 -0.142988 0.0155029 -0.142988 0.122696 -0.000119449 -0.168908 -4.55593 0.585219 0.00410436 0.223545 -8.90424e-17 0.122696 0.394964 -0.0909791 -0.585219 0.0294307 -0.849592 -4.19182 -0.346281 -0.000119449 -0.154137 -38.8124 2.09744 -0.0449153 -0.00139059 -0.824388 0.0781599 0.0108272 0.0121846 0.0348205 -0.403487 1.7046e-05 0.559866 -0.17412 0.0100031 -0.181416 -0.223009 0.0421317 0.0475908 0.411145 -0.137338 0.29241 -0.00778484 2.89767 0.0360689 -0.00126122 -0.0372216 0.0017499 -0.00341712 -47.2244 -0.0169269 -0.713025 -0.00305095 -1492.65 0.226929 -1177.74 0.101353 0.0244686 0.254133 0.0234001 0.260267 -0.243475 0.227299 2714.38 -0.0134893 -0.358846 0.466903 -0.0387499 0.0154433 -0.28458 -0.0111965 -0.123433 0.0398147 386.24 -0.647139 0.479698 0.231427 1211.09 -0.00293026 0.803843 0.143585 0.0425194 0.346281 -1171.15 -0.101597 -390.383 -0.0333222 0.124351 0.21045 0.0389266 0.56814 0.0469962 0.00568033 -0.0317089 0.0960277 1.91922 0.0425194 0.143585 -0.647139 -0.0372216 -0.154137 2.89767 -0.28458 0.0607212 0.35173 1211.09 0.346281 0.261719 0.320816 1.7046e-05 0.00568033 -0.137338 0.0348205 0.260267 0.497461 0.0469962 0.0154433 -1171.15 -47.2244 -0.0333222 1.91922 -0.0449153 -0.0111965 0.0244686 0.0421317 -0.824388 0.124351 -1177.74 -0.181416 -0.00293026 -0.00341712 0.320088 0.0360689 0.0017499 -0.713025 -38.8124 0.116439 -0.123433 -390.383 0.0398147 -0.00139059 -0.243475 -0.00305095 0.56814 -0.0317089 386.24 -0.101597 -0.0387499 -0.358846 0.0234001 0.326135 -0.0134893 0.466903 0.0389266 0.464981 0.559866 0.411145 0.448495 0.0475908 2714.38 0.0108272 -1492.65 2.09744 0.803843 0.0100031 -0.403487 -0.17412 -0.223009 -0.00126122 -0.0169269 -0.00778484 0.0781599 0.318191 -0.00441524 -0.871894 0.358846 -0.361101 1.08711 -0.125467 -0.125467 -0.361101 0.121793 -0.00441524 -0.0226327 -0.0302927 -0.00812452 -0.168908 0.365771 0.358846 -0.0316826 -2.40273 -8.72164 -0.162958 0.0278642 0.000995693 0.00188099 386.24 -0.110102 -0.00020328 0.0164578 0.00188099 0.0244629 0.00455579 0.081092 -0.00836761 -1.22162 0.158027 -0.0765286 -385.388 -0.463774 -3896.99 0.433662 0.155346 2.18802 0.209259 -0.110102 0.335053 0.0938044 -0.871894 0.0138805 -1.22162 0.128488 -0.00812452 0.0164578 0.158027 -0.0296088 0.0938044 -0.0296088 3908.78 -0.0226327 -0.463774 -0.0316826 0.37963 0.286048 -0.0389695 -0.162958 -0.00836761 0.0244629 0.249794 -0.00020328 0.209259 -2.40273 386.24 0.287869 -0.0389695 1.08711 -385.388 0.00205525 0.484504 0.38065 0.484504 0.0144878 -1006.75 -0.585219 0.413395 0.0793485 -919.993 -11.8759 0.371591 0.0183094 0.216071 -1178.34 0.296378 0.00105151 0.0770916 -0.144843 0.0844287 4.4773 -1492.65 -0.0146399 521.724 0.044391 -1022.1 -0.0449153 0.0317682 -0.0544554 -0.010797 -0.0102927 -0.160889 0.00131965 0.0136511 0.181698 -0.167947 -0.00845262 38.1621 -0.0919603 0.161792 -0.824388 0.0835317 0.00403492 0.0415334 0.0352938 0.0985512 0.198036 -1.96468 -0.215989 0.1029 0.0341797 -0.110541 -101.139 -0.00468958 -0.00300295 -0.038754 0.0292282 0.0538814 0.0662045 -48.6372 0.488867 0.0052355 0.685305 -0.808359 1170.79 3646.59 -1.22162 -0.0388056 0.0316826 0.803843 -102.357 -0.0201849 0.25875 0.421527 0.033936 0.176759 0.831819 0.168613 0.450072 -0.0133142 389.721 0.446446 113.893 0.272957 0.00300295 -0.0449153 -0.824388 0.0146399 -0.0388056 -0.0919603 0.308185 0.0686423 38.1621 -0.0133142 0.176759 0.331345 0.0341797 -0.296378 0.46413 -0.215989 0.0052355 -0.808359 0.477351 0.585219 0.148907 -0.0544554 0.038754 0.0835317 0.168613 0.803843 -1178.34 -102.357 4.4773 -0.0352938 -0.0844287 -101.139 0.010797 -0.0316826 -0.0415334 0.00403492 0.421527 3646.59 -919.993 0.0538814 0.0968143 -521.724 1.96468 -11.8759 0.831819 0.27579 0.485244 0.0600066 -0.160889 -0.144843 -1492.65 -0.00845262 0.140058 -389.721 0.0183094 -0.00468958 -0.167947 -113.893 0.419852 0.685305 0.1029 0.413395 -0.00131965 1170.79 1.22162 0.0793485 -48.6372 0.0292282 0.446446 -0.216071 0.0831705 -0.00105151 0.110541 0.0102927 1022.1 -1006.75 0.318191 -0.0136511 0.0952533 0.298479 -0.0201849 0.261719 0.0144878 0.0247343 2.0673 -0.0247343 -0.00931351 0.0141999 -521.724 -0.0116852 -0.00798257 0.358928 0.243475 -0.243475 -0.20399 0.0165473 -1.91922 -0.296378 -0.142526 0.296378 -0.212446 -0.027308 -384.764 0.00035693 0.242306 -0.242306 0.00931351 0.0540287 -2.40273 -1136.29 0.0116852 -2.40273 0.212446 0.198036 -0.518555 0.0697438 -0.462379 -0.112973 -0.192594 0.146932 -1021.61 0.389811 0.20399 -0.583477 -0.0540287 -112.779 0.462379 6181.68 1.21083 0.583477 -0.0372451 0.00200577 -0.17162 0.419852 1.91922 0.447022 0.0592611 0.0531398 521.724 0.112973 -1136.29 0.0697438 -3897.27 0.0024964 0.17162 384.764 -0.0141999 112.779 -1.21083 -8.49839 1021.61 0.300527 0.0024964 0.192594 -0.0427843 -0.0308923 0.0165473 0.0372451 0.446446 -101.139 1170.79 -0.0136511 -0.0352938 -0.144843 -0.00845262 -0.0844287 0.452281 -0.0316826 0.803843 0.0386458 0.0146399 -0.160889 38.1621 0.038754 -0.0201849 -1178.34 -521.724 0.0052355 -0.0449153 0.362853 0.0793485 0.00403492 -113.893 0.421527 -389.721 -1492.65 0.424533 0.0463613 0.0102927 0.0292282 0.168613 0.0341797 0.413395 3646.59 0.585219 4.4773 -0.167947 -0.0415334 0.00300295 1.22162 -102.357 -11.8759 0.0538814 -0.0544554 -0.00105151 0.327617 0.352485 -0.296378 -0.808359 -0.0919603 -1006.75 1022.1 -48.6372 -0.824388 0.179226 -0.00468958 -0.216071 0.0835317 0.1029 0.209762 0.831819 0.010797 -0.00131965 -0.0388056 0.0183094 1.96468 0.0144878 0.110541 0.176759 -0.0133142 -0.215989 -919.993 0.685305 0.363291 0.339813 -0.0201849 0.00131965 0.831819 -0.160889 0.00105151 -1022.1 0.100262 0.0292282 -0.0133142 0.137856 0.803843 0.1858 0.27579 -0.00300295 -0.010797 0.0415334 0.413395 -0.808359 -0.144843 -11.8759 113.893 -0.00468958 -101.139 0.446446 0.0960277 -0.167947 -102.357 -0.0449153 0.0538814 -919.993 0.339747 0.176759 0.0352938 0.0136511 -0.824388 -1178.34 -48.6372 0.0196557 -1492.65 -0.0919603 0.296378 4.4773 -1.22162 -0.0388056 0.455083 -0.00845262 -1.96468 0.421527 -1006.75 0.0844287 389.721 0.0316826 -0.038754 -0.0544554 3646.59 -0.585219 0.190531 0.0052355 -0.110541 0.0183094 1170.79 0.0341797 521.724 0.202756 38.1621 0.00403492 -0.215989 0.0835317 0.216071 0.1029 0.0144878 0.168613 -0.0146399 0.0793485 -0.0102927 0.685305 -0.462379 0.212446 -0.112973 0.289745 384.764 1.91922 0.0165473 0.00200577 -0.0116852 0.17162 6181.68 0.192594 0.417864 0.0372451 -0.027308 112.779 0.488808 0.0894851 0.0540287 -2.40273 1021.61 0.000271006 -0.192594 -0.242306 -1021.61 -0.243475 -0.212446 -0.518555 0.0697438 -0.142526 -0.20399 0.403972 0.0116852 0.462379 0.0555941 0.112973 0.339865 -0.583477 -1.91922 -8.49839 0.0999725 -0.0308923 0.178313 0.296378 0.0024964 -112.779 0.00931351 2.0673 -0.00798257 521.724 -0.0372451 0.0165473 -3897.27 0.0247343 -0.00931351 0.0024964 0.20399 1.21083 0.0592611 -0.17162 0.0141999 0.374645 0.0697438 -521.724 -0.0141999 0.242306 -0.296378 -1.21083 -2.40273 -384.764 0.243475 -1136.29 0.583477 0.05414 0.371591 -0.0247343 -1136.29 -0.0427843 0.00035693 -0.0540287 0.13479 0.219142 -0.00293026 -0.101597 -38.8124 -0.346281 0.698114 -1492.65 -0.0360689 -0.17412 -386.24 -0.0449153 0.0425194 0.307602 0.803843 0.466903 390.383 0.226397 -0.137338 0.41606 -0.0387499 0.0508306 -0.00341712 -0.0154433 0.0372216 0.124351 0.0523879 -0.647139 0.559866 0.00139059 0.00305095 -2.09744 0.113175 -0.411145 -0.181416 1.7046e-05 -0.824388 -0.260267 0.143585 0.358846 0.303138 0.0108272 -0.713025 -0.154137 0.0398147 0.414273 0.495495 0.0475908 -0.0134893 0.0317089 0.56814 0.223009 0.0333222 -1171.15 2.89767 0.0234001 0.428488 0.0244686 -0.28458 0.243475 0.00126122 2714.38 -1.91922 0.0469962 0.0348205 -47.2244 0.0100031 0.0389266 0.300643 1211.09 0.0781599 -0.00568033 0.00778484 -0.0017499 -0.0169269 -0.403487 0.381262 0.0421317 0.0111965 -1177.74 -0.123433 0.0475908 -0.0017499 -0.346281 0.00305095 0.0244686 0.0333222 0.197094 -0.647139 -0.411145 1.7046e-05 -0.713025 0.614401 0.143585 -2.09744 0.0781599 -0.824388 -0.0154433 -0.137338 0.466903 -0.17412 -0.0134893 -47.2244 2714.38 -0.00341712 2.89767 -38.8124 -0.00293026 0.0469962 -1492.65 -0.260267 -1171.15 0.210711 -386.24 0.0421317 0.0555941 0.0425194 0.803843 0.358846 0.00778484 0.515715 -1177.74 0.223009 0.355883 0.164035 0.0463613 -0.0449153 390.383 0.0100031 0.0662045 -0.0387499 0.56814 0.0111965 -0.154137 -0.123433 0.355977 -0.181416 -0.28458 -0.101597 -0.00568033 1211.09 0.0108272 0.559866 -1.91922 0.350393 0.0348205 0.0234001 0.0398147 0.00126122 -0.0169269 -0.403487 0.0389266 0.243475 0.124351 0.30809 0.0317089 0.00139059 0.0372216 -0.0360689 0.110102 0.380577 -0.168908 -0.00020328 0.162958 -0.00441524 -0.0938044 0.110102 -0.0244629 -0.00188099 0.00836761 -0.00188099 -0.209259 -0.125467 0.463774 3908.78 -0.358846 0.0226327 0.358069 -3896.99 -0.00020328 -0.484504 0.463774 0.128722 -0.0296088 385.388 0.00836761 0.361101 0.0316826 -0.158027 0.0316826 0.871894 -2.40273 -0.358846 -386.24 1.22162 -1.08711 0.998046 -0.158027 2.18802 -0.0765286 -1.08711 0.162958 0.128488 -0.0296088 1.22162 0.000995693 0.00455579 -386.24 0.0389695 0.0138805 385.388 -0.0938044 -0.125467 -0.0302927 -0.484504 -0.0164578 0.0389695 0.486843 0.00812452 -8.72164 -0.0244629 0.00205525 0.14843 -0.209259 0.871894 0.0226327 0.361101 -0.00441524 -2.40273 -0.0164578 0.00812452 0.308417 -0.00154004 -1171.15 0.00488976 0.281183 0.000503376 0.495986 -1177.74 0.0570756 0.0839516 -1178.34 -0.271408 -1171.15 -0.242306 0.331345 0.955785 -0.0262496 0.410233 0.387547 -0.0262496 0.221032 0.00248795 0.0111675 0.0173523 0.0186254 -0.00215333 0.0570756 0.0944766 4713.21 0.251176 -0.0171316 0.339694 -1.5288 -0.0188819 0.955785 0.0839516 0.221032 -1.73201 0.0183012 -0.0865195 0.448458 -0.463774 -0.0865195 0.482601 0.428712 0.0122115 -0.271408 -1177.74 -1178.34 0.352335 -0.471714 0.0186254 1170.79 -0.0136747 -8.90424e-17 0.00488976 -0.0188819 0.0944766 -1.5288 1170.79 0.471714 -0.0171316 0.463774 -0.00103177 -1.45664e-15 0.482601 0.28082 0.00215333 0.00103177 0.242306 1.40761 -0.00248795 0.0111675 -0.308417 -0.000503376 -0.0183012 0.0122115 0.0136747 0.161947 0.0186254 0.482601 0.482601 0.0567782 -0.0183012 0.0062741 1170.79 0.471714 -0.00154004 0.242306 -1.5288 0.955785 -0.00215333 -0.0188819 0.00488976 0.00215333 0.0570756 -0.0136747 -1171.15 -8.73228e-16 0.125976 -1171.15 0.221032 0.0457523 0.166954 4713.21 -1.73201 0.0476803 0.00248795 -1177.74 0.955785 -1178.34 0.403491 1.40761 -0.308417 0.0122115 0.00103177 0.000503376 -0.242306 0.0944766 -0.0865195 -0.271408 0.0839516 0.0122115 1170.79 0.00488976 0.0111675 0.0111675 -0.471714 0.0136747 0.40486 0.487793 0.0570756 -0.463774 -3.14819e-15 -0.00248795 0.463774 -0.000503376 -1.5288 -0.0262496 -0.0865195 0.0183012 -1177.74 -0.0171316 0.0186254 0.308417 0.0944766 -0.271408 0.0839516 0.38065 0.221032 -1178.34 -0.0171316 -0.0262496 -0.0188819 -0.00103177 -0.0779926 0.000528505 0.0116595 0.0409264 -1.62894 1.62894 -1.96468 -0.00220184 -0.0116595 2.09744 0.383596 0.0128916 -2.09744 0.000528505 -2.30787 -3.14819e-15 0.217768 0.035592 0.314077 -2.30787 -0.0128916 0.281268 -0.00220184 -0.00568056 0.0556577 1.96468 0.0390101 -1328.29 -0.00568056 -0.0128916 2.02581e-15 0.0532159 -0.0532159 -0.0597699 -8.49839 -0.0532159 1363.08 0.383596 0.428354 0.279587 0.0102405 2.09744 0.214227 1.62894 -0.0779926 -0.383596 -0.0116595 -2.09744 -0.391224 0.197094 -0.314077 -8.49839 -8.72164 -1.45664e-15 0.0116595 -0.391224 0.0779926 -8.72164 0.0128916 0.0444507 0.140058 1.96468 0.00686361 0.0556577 0.0102405 0.314077 -0.314077 -1.62894 -0.383596 -1.96468 0.217768 0.0779926 -6.32833e-16 0.0532159 2.30787 2.30787 -0.0597699 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 SuiteSparse/LDL/Matrix/A230000644001170100242450000000233510232253701014074 0ustar davisfacname: HB/bcsstm02 n: 66 entries: 66 66 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 0.0921386 0.0921386 0.0921386 0.137996 0.137996 0.137996 0.137996 0.137996 0.137996 0.0921386 0.0921386 0.0921386 0.172829 0.172829 0.172829 0.0852384 0.0852384 0.0852384 0.0852384 0.0852384 0.0852384 0.172829 0.172829 0.172829 0.0617332 0.0617332 0.0617332 0.141308 0.141308 0.141308 0.141308 0.141308 0.141308 0.0617332 0.0617332 0.0617332 0.125427 0.125427 0.125427 0.0533209 0.0533209 0.0533209 0.0533209 0.0533209 0.0533209 0.125427 0.125427 0.125427 0.0231706 0.0231706 0.0231706 0.0305932 0.0305932 0.0305932 0.0648569 0.0648569 0.0648569 0.0648569 0.0648569 0.0648569 0.0305932 0.0305932 0.0305932 0.0197469 0.0197469 0.0197469 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 SuiteSparse/LDL/Matrix/A240000644001170100242450000000247010232253701014075 0ustar davisfacname: HB/bcsstm02 n: 66 entries: 72 (jumbled version) 66 1 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 67 68 69 70 71 72 0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 14 15 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 38 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 59 60 61 62 63 64 65 0.0921386 0.0921386 0.0921386 0.137996 0.137996 0.137996 0.137996 0.137996 0.137996 0.0921386 0.0921386 0.0921386 0.164449 0.172829 0.172829 0.172829 0.0039726 0.0852384 0.0852384 0.0852384 0.0852384 0.0852384 0.0852384 0.172829 0.172829 0.0606723 0.172829 0.0617332 0.0617332 0.0617332 0.141308 0.141308 0.141308 0.141308 0.141308 0.141308 0.0617332 0.0617332 0.0617332 0.125427 0.125427 0.13326 0.125427 0.160695 0.0533209 0.0533209 0.0533209 0.0533209 0.0533209 0.0533209 0.125427 0.125427 0.125427 0.0231706 0.0231706 0.0231706 0.0305932 0.0305932 0.0305932 0.0648569 0.0648569 0.0648569 0.0648569 0.0648569 0.15651 0.0648569 0.0305932 0.0305932 0.0305932 0.0197469 0.0197469 0.0197469 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 SuiteSparse/LDL/Matrix/A250000644001170100242450000000010410232253701014066 0ustar davisfacname: Dense/0 n: 0 entries: 0 (invalid matrix, Ap [0] = 99) 0 0 99 SuiteSparse/LDL/Matrix/A260000644001170100242450000000016010232253701014071 0ustar davisfacname: Dense/2 n: 2 entries: 4 (invalid perm, P[1]=99) 2 0 0 2 4 0 1 0 1 1.78915 0.389047 0.389047 1.67505 0 99 SuiteSparse/LDL/Matrix/A270000644001170100242450000000024010232253701014071 0ustar davisfacname: Dense/3 n: 3 entries: 9 (invalid perm) 3 0 0 3 6 9 0 1 2 0 1 2 0 1 2 1.92648 0.776267 0.405764 0.776267 1.68063 0.250703 0.405764 0.250703 1.44517 0 1 1 SuiteSparse/LDL/Matrix/A280000644001170100242450000000023610232253701014077 0ustar davisfacname: Dense/3 n: 3 entries: 9 (invalid Ap) 3 0 0 3 2 9 0 1 2 0 1 2 0 1 2 1.92648 0.776267 0.405764 0.776267 1.68063 0.250703 0.405764 0.250703 1.44517 0 1 2 SuiteSparse/LDL/Matrix/A290000644001170100242450000000023610232253701014100 0ustar davisfacname: Dense/3 n: 3 entries: 9 (invalid Ai) 3 0 0 3 6 9 0 1 3 0 1 2 0 1 2 1.92648 0.776267 0.405764 0.776267 1.68063 0.250703 0.405764 0.250703 1.44517 0 1 2 SuiteSparse/LDL/Matrix/A300000644001170100242450000000023710232253701014071 0ustar davisfacname: Dense/3 n: 3 entries: 9 (invalid Ai) 3 0 0 3 6 9 0 -1 2 0 1 2 0 1 2 1.92648 0.776267 0.405764 0.776267 1.68063 0.250703 0.405764 0.250703 1.44517 0 1 2 SuiteSparse/LDL/Include/0000755001170100242450000000000010617162634013753 5ustar davisfacSuiteSparse/LDL/Include/ldl.h0000644001170100242450000000753510711427321014701 0ustar davisfac/* ========================================================================== */ /* === ldl.h: include file for the LDL package ============================= */ /* ========================================================================== */ /* LDL Copyright (c) Timothy A Davis, * University of Florida. All Rights Reserved. See README for the License. */ #include "UFconfig.h" #ifdef LDL_LONG #define LDL_int UF_long #define LDL_ID UF_long_id #define LDL_symbolic ldl_l_symbolic #define LDL_numeric ldl_l_numeric #define LDL_lsolve ldl_l_lsolve #define LDL_dsolve ldl_l_dsolve #define LDL_ltsolve ldl_l_ltsolve #define LDL_perm ldl_l_perm #define LDL_permt ldl_l_permt #define LDL_valid_perm ldl_l_valid_perm #define LDL_valid_matrix ldl_l_valid_matrix #else #define LDL_int int #define LDL_ID "%d" #define LDL_symbolic ldl_symbolic #define LDL_numeric ldl_numeric #define LDL_lsolve ldl_lsolve #define LDL_dsolve ldl_dsolve #define LDL_ltsolve ldl_ltsolve #define LDL_perm ldl_perm #define LDL_permt ldl_permt #define LDL_valid_perm ldl_valid_perm #define LDL_valid_matrix ldl_valid_matrix #endif /* ========================================================================== */ /* === int version ========================================================== */ /* ========================================================================== */ void ldl_symbolic (int n, int Ap [ ], int Ai [ ], int Lp [ ], int Parent [ ], int Lnz [ ], int Flag [ ], int P [ ], int Pinv [ ]) ; int ldl_numeric (int n, int Ap [ ], int Ai [ ], double Ax [ ], int Lp [ ], int Parent [ ], int Lnz [ ], int Li [ ], double Lx [ ], double D [ ], double Y [ ], int Pattern [ ], int Flag [ ], int P [ ], int Pinv [ ]) ; void ldl_lsolve (int n, double X [ ], int Lp [ ], int Li [ ], double Lx [ ]) ; void ldl_dsolve (int n, double X [ ], double D [ ]) ; void ldl_ltsolve (int n, double X [ ], int Lp [ ], int Li [ ], double Lx [ ]) ; void ldl_perm (int n, double X [ ], double B [ ], int P [ ]) ; void ldl_permt (int n, double X [ ], double B [ ], int P [ ]) ; int ldl_valid_perm (int n, int P [ ], int Flag [ ]) ; int ldl_valid_matrix ( int n, int Ap [ ], int Ai [ ]) ; /* ========================================================================== */ /* === long version ========================================================= */ /* ========================================================================== */ void ldl_l_symbolic (UF_long n, UF_long Ap [ ], UF_long Ai [ ], UF_long Lp [ ], UF_long Parent [ ], UF_long Lnz [ ], UF_long Flag [ ], UF_long P [ ], UF_long Pinv [ ]) ; UF_long ldl_l_numeric (UF_long n, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], UF_long Lp [ ], UF_long Parent [ ], UF_long Lnz [ ], UF_long Li [ ], double Lx [ ], double D [ ], double Y [ ], UF_long Pattern [ ], UF_long Flag [ ], UF_long P [ ], UF_long Pinv [ ]) ; void ldl_l_lsolve (UF_long n, double X [ ], UF_long Lp [ ], UF_long Li [ ], double Lx [ ]) ; void ldl_l_dsolve (UF_long n, double X [ ], double D [ ]) ; void ldl_l_ltsolve (UF_long n, double X [ ], UF_long Lp [ ], UF_long Li [ ], double Lx [ ]) ; void ldl_l_perm (UF_long n, double X [ ], double B [ ], UF_long P [ ]) ; void ldl_l_permt (UF_long n, double X [ ], double B [ ], UF_long P [ ]) ; UF_long ldl_l_valid_perm (UF_long n, UF_long P [ ], UF_long Flag [ ]) ; UF_long ldl_l_valid_matrix ( UF_long n, UF_long Ap [ ], UF_long Ai [ ]) ; /* ========================================================================== */ /* === LDL version ========================================================== */ /* ========================================================================== */ #define LDL_DATE "Nov 1, 2007" #define LDL_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define LDL_MAIN_VERSION 2 #define LDL_SUB_VERSION 0 #define LDL_SUBSUB_VERSION 1 #define LDL_VERSION LDL_VERSION_CODE(LDL_MAIN_VERSION,LDL_SUB_VERSION) SuiteSparse/LDL/Source/0000755001170100242450000000000010661335241013623 5ustar davisfacSuiteSparse/LDL/Source/ldl.c0000644001170100242450000005060710616416710014553 0ustar davisfac/* ========================================================================== */ /* === ldl.c: sparse LDL' factorization and solve package =================== */ /* ========================================================================== */ /* LDL: a simple set of routines for sparse LDL' factorization. These routines * are not terrifically fast (they do not use dense matrix kernels), but the * code is very short. The purpose is to illustrate the algorithms in a very * concise manner, primarily for educational purposes. Although the code is * very concise, this package is slightly faster than the built-in sparse * Cholesky factorization in MATLAB 7.0 (chol), when using the same input * permutation. * * The routines compute the LDL' factorization of a real sparse symmetric * matrix A (or PAP' if a permutation P is supplied), and solve upper * and lower triangular systems with the resulting L and D factors. If A is * positive definite then the factorization will be accurate. A can be * indefinite (with negative values on the diagonal D), but in this case no * guarantee of accuracy is provided, since no numeric pivoting is performed. * * The n-by-n sparse matrix A is in compressed-column form. The nonzero values * in column j are stored in Ax [Ap [j] ... Ap [j+1]-1], with corresponding row * indices in Ai [Ap [j] ... Ap [j+1]-1]. Ap [0] = 0 is required, and thus * nz = Ap [n] is the number of nonzeros in A. Ap is an int array of size n+1. * The int array Ai and the double array Ax are of size nz. This data structure * is identical to the one used by MATLAB, except for the following * generalizations. The row indices in each column of A need not be in any * particular order, although they must be in the range 0 to n-1. Duplicate * entries can be present; any duplicates are summed. That is, if row index i * appears twice in a column j, then the value of A (i,j) is the sum of the two * entries. The data structure used here for the input matrix A is more * flexible than MATLAB's, which requires sorted columns with no duplicate * entries. * * Only the diagonal and upper triangular part of A (or PAP' if a permutation * P is provided) is accessed. The lower triangular parts of the matrix A or * PAP' can be present, but they are ignored. * * The optional input permutation is provided as an array P of length n. If * P [k] = j, the row and column j of A is the kth row and column of PAP'. * If P is present then the factorization is LDL' = PAP' or L*D*L' = A(P,P) in * 0-based MATLAB notation. If P is not present (a null pointer) then no * permutation is performed, and the factorization is LDL' = A. * * The lower triangular matrix L is stored in the same compressed-column * form (an int Lp array of size n+1, an int Li array of size Lp [n], and a * double array Lx of the same size as Li). It has a unit diagonal, which is * not stored. The row indices in each column of L are always returned in * ascending order, with no duplicate entries. This format is compatible with * MATLAB, except that it would be more convenient for MATLAB to include the * unit diagonal of L. Doing so here would add additional complexity to the * code, and is thus omitted in the interest of keeping this code short and * readable. * * The elimination tree is held in the Parent [0..n-1] array. It is normally * not required by the user, but it is required by ldl_numeric. The diagonal * matrix D is held as an array D [0..n-1] of size n. * * -------------------- * C-callable routines: * -------------------- * * ldl_symbolic: Given the pattern of A, computes the Lp and Parent arrays * required by ldl_numeric. Takes time proportional to the number of * nonzeros in L. Computes the inverse Pinv of P if P is provided. * Also returns Lnz, the count of nonzeros in each column of L below * the diagonal (this is not required by ldl_numeric). * ldl_numeric: Given the pattern and numerical values of A, the Lp array, * the Parent array, and P and Pinv if applicable, computes the * pattern and numerical values of L and D. * ldl_lsolve: Solves Lx=b for a dense vector b. * ldl_dsolve: Solves Dx=b for a dense vector b. * ldl_ltsolve: Solves L'x=b for a dense vector b. * ldl_perm: Computes x=Pb for a dense vector b. * ldl_permt: Computes x=P'b for a dense vector b. * ldl_valid_perm: checks the validity of a permutation vector * ldl_valid_matrix: checks the validity of the sparse matrix A * * ---------------------------- * Limitations of this package: * ---------------------------- * * In the interest of keeping this code simple and readable, ldl_symbolic and * ldl_numeric assume their inputs are valid. You can check your own inputs * prior to calling these routines with the ldl_valid_perm and ldl_valid_matrix * routines. Except for the two ldl_valid_* routines, no routine checks to see * if the array arguments are present (non-NULL). Like all C routines, no * routine can determine if the arrays are long enough and don't overlap. * * The ldl_numeric does check the numerical factorization, however. It returns * n if the factorization is successful. If D (k,k) is zero, then k is * returned, and L is only partially computed. * * No pivoting to control fill-in is performed, which is often critical for * obtaining good performance. I recommend that you compute the permutation P * using AMD or SYMAMD (approximate minimum degree ordering routines), or an * appropriate graph-partitioning based ordering. See the ldldemo.m routine for * an example in MATLAB, and the ldlmain.c stand-alone C program for examples of * how to find P. Routines for manipulating compressed-column matrices are * available in UMFPACK. AMD, SYMAMD, UMFPACK, and this LDL package are all * available at http://www.cise.ufl.edu/research/sparse. * * ------------------------- * Possible simplifications: * ------------------------- * * These routines could be made even simpler with a few additional assumptions. * If no input permutation were performed, the caller would have to permute the * matrix first, but the computation of Pinv, and the use of P and Pinv could be * removed. If only the diagonal and upper triangular part of A or PAP' are * present, then the tests in the "if (i < k)" statement in ldl_symbolic and * "if (i <= k)" in ldl_numeric, are always true, and could be removed (i can * equal k in ldl_symbolic, but then the body of the if statement would * correctly do no work since Flag [k] == k). If we could assume that no * duplicate entries are present, then the statement Y [i] += Ax [p] could be * replaced with Y [i] = Ax [p] in ldl_numeric. * * -------------------------- * Description of the method: * -------------------------- * * LDL computes the symbolic factorization by finding the pattern of L one row * at a time. It does this based on the following theory. Consider a sparse * system Lx=b, where L, x, and b, are all sparse, and where L comes from a * Cholesky (or LDL') factorization. The elimination tree (etree) of L is * defined as follows. The parent of node j is the smallest k > j such that * L (k,j) is nonzero. Node j has no parent if column j of L is completely zero * below the diagonal (j is a root of the etree in this case). The nonzero * pattern of x is the union of the paths from each node i to the root, for * each nonzero b (i). To compute the numerical solution to Lx=b, we can * traverse the columns of L corresponding to nonzero values of x. This * traversal does not need to be done in the order 0 to n-1. It can be done in * any "topological" order, such that x (i) is computed before x (j) if i is a * descendant of j in the elimination tree. * * The row-form of the LDL' factorization is shown in the MATLAB function * ldlrow.m in this LDL package. Note that row k of L is found via a sparse * triangular solve of L (1:k-1, 1:k-1) \ A (1:k-1, k), to use 1-based MATLAB * notation. Thus, we can start with the nonzero pattern of the kth column of * A (above the diagonal), follow the paths up to the root of the etree of the * (k-1)-by-(k-1) leading submatrix of L, and obtain the pattern of the kth row * of L. Note that we only need the leading (k-1)-by-(k-1) submatrix of L to * do this. The elimination tree can be constructed as we go. * * The symbolic factorization does the same thing, except that it discards the * pattern of L as it is computed. It simply counts the number of nonzeros in * each column of L and then constructs the Lp index array when it's done. The * symbolic factorization does not need to do this in topological order. * Compare ldl_symbolic with the first part of ldl_numeric, and note that the * while (len > 0) loop is not present in ldl_symbolic. * * LDL Version 1.3, Copyright (c) 2006 by Timothy A Davis, * University of Florida. All Rights Reserved. Developed while on sabbatical * at Stanford University and Lawrence Berkeley National Laboratory. Refer to * the README file for the License. Available at * http://www.cise.ufl.edu/research/sparse. */ #include "ldl.h" /* ========================================================================== */ /* === ldl_symbolic ========================================================= */ /* ========================================================================== */ /* The input to this routine is a sparse matrix A, stored in column form, and * an optional permutation P. The output is the elimination tree * and the number of nonzeros in each column of L. Parent [i] = k if k is the * parent of i in the tree. The Parent array is required by ldl_numeric. * Lnz [k] gives the number of nonzeros in the kth column of L, excluding the * diagonal. * * One workspace vector (Flag) of size n is required. * * If P is NULL, then it is ignored. The factorization will be LDL' = A. * Pinv is not computed. In this case, neither P nor Pinv are required by * ldl_numeric. * * If P is not NULL, then it is assumed to be a valid permutation. If * row and column j of A is the kth pivot, the P [k] = j. The factorization * will be LDL' = PAP', or A (p,p) in MATLAB notation. The inverse permutation * Pinv is computed, where Pinv [j] = k if P [k] = j. In this case, both P * and Pinv are required as inputs to ldl_numeric. * * The floating-point operation count of the subsequent call to ldl_numeric * is not returned, but could be computed after ldl_symbolic is done. It is * the sum of (Lnz [k]) * (Lnz [k] + 2) for k = 0 to n-1. */ void LDL_symbolic ( LDL_int n, /* A and L are n-by-n, where n >= 0 */ LDL_int Ap [ ], /* input of size n+1, not modified */ LDL_int Ai [ ], /* input of size nz=Ap[n], not modified */ LDL_int Lp [ ], /* output of size n+1, not defined on input */ LDL_int Parent [ ], /* output of size n, not defined on input */ LDL_int Lnz [ ], /* output of size n, not defined on input */ LDL_int Flag [ ], /* workspace of size n, not defn. on input or output */ LDL_int P [ ], /* optional input of size n */ LDL_int Pinv [ ] /* optional output of size n (used if P is not NULL) */ ) { LDL_int i, k, p, kk, p2 ; if (P) { /* If P is present then compute Pinv, the inverse of P */ for (k = 0 ; k < n ; k++) { Pinv [P [k]] = k ; } } for (k = 0 ; k < n ; k++) { /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ Parent [k] = -1 ; /* parent of k is not yet known */ Flag [k] = k ; /* mark node k as visited */ Lnz [k] = 0 ; /* count of nonzeros in column k of L */ kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */ p2 = Ap [kk+1] ; for (p = Ap [kk] ; p < p2 ; p++) { /* A (i,k) is nonzero (original or permuted A) */ i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ; if (i < k) { /* follow path from i to root of etree, stop at flagged node */ for ( ; Flag [i] != k ; i = Parent [i]) { /* find parent of i if not yet determined */ if (Parent [i] == -1) Parent [i] = k ; Lnz [i]++ ; /* L (k,i) is nonzero */ Flag [i] = k ; /* mark i as visited */ } } } } /* construct Lp index array from Lnz column counts */ Lp [0] = 0 ; for (k = 0 ; k < n ; k++) { Lp [k+1] = Lp [k] + Lnz [k] ; } } /* ========================================================================== */ /* === ldl_numeric ========================================================== */ /* ========================================================================== */ /* Given a sparse matrix A (the arguments n, Ap, Ai, and Ax) and its symbolic * analysis (Lp and Parent, and optionally P and Pinv), compute the numeric LDL' * factorization of A or PAP'. The outputs of this routine are arguments Li, * Lx, and D. It also requires three size-n workspaces (Y, Pattern, and Flag). */ LDL_int LDL_numeric /* returns n if successful, k if D (k,k) is zero */ ( LDL_int n, /* A and L are n-by-n, where n >= 0 */ LDL_int Ap [ ], /* input of size n+1, not modified */ LDL_int Ai [ ], /* input of size nz=Ap[n], not modified */ double Ax [ ], /* input of size nz=Ap[n], not modified */ LDL_int Lp [ ], /* input of size n+1, not modified */ LDL_int Parent [ ], /* input of size n, not modified */ LDL_int Lnz [ ], /* output of size n, not defn. on input */ LDL_int Li [ ], /* output of size lnz=Lp[n], not defined on input */ double Lx [ ], /* output of size lnz=Lp[n], not defined on input */ double D [ ], /* output of size n, not defined on input */ double Y [ ], /* workspace of size n, not defn. on input or output */ LDL_int Pattern [ ],/* workspace of size n, not defn. on input or output */ LDL_int Flag [ ], /* workspace of size n, not defn. on input or output */ LDL_int P [ ], /* optional input of size n */ LDL_int Pinv [ ] /* optional input of size n */ ) { double yi, l_ki ; LDL_int i, k, p, kk, p2, len, top ; for (k = 0 ; k < n ; k++) { /* compute nonzero Pattern of kth row of L, in topological order */ Y [k] = 0.0 ; /* Y(0:k) is now all zero */ top = n ; /* stack for pattern is empty */ Flag [k] = k ; /* mark node k as visited */ Lnz [k] = 0 ; /* count of nonzeros in column k of L */ kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */ p2 = Ap [kk+1] ; for (p = Ap [kk] ; p < p2 ; p++) { i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ; /* get A(i,k) */ if (i <= k) { Y [i] += Ax [p] ; /* scatter A(i,k) into Y (sum duplicates) */ for (len = 0 ; Flag [i] != k ; i = Parent [i]) { Pattern [len++] = i ; /* L(k,i) is nonzero */ Flag [i] = k ; /* mark i as visited */ } while (len > 0) Pattern [--top] = Pattern [--len] ; } } /* compute numerical values kth row of L (a sparse triangular solve) */ D [k] = Y [k] ; /* get D(k,k) and clear Y(k) */ Y [k] = 0.0 ; for ( ; top < n ; top++) { i = Pattern [top] ; /* Pattern [top:n-1] is pattern of L(:,k) */ yi = Y [i] ; /* get and clear Y(i) */ Y [i] = 0.0 ; p2 = Lp [i] + Lnz [i] ; for (p = Lp [i] ; p < p2 ; p++) { Y [Li [p]] -= Lx [p] * yi ; } l_ki = yi / D [i] ; /* the nonzero entry L(k,i) */ D [k] -= l_ki * yi ; Li [p] = k ; /* store L(k,i) in column form of L */ Lx [p] = l_ki ; Lnz [i]++ ; /* increment count of nonzeros in col i */ } if (D [k] == 0.0) return (k) ; /* failure, D(k,k) is zero */ } return (n) ; /* success, diagonal of D is all nonzero */ } /* ========================================================================== */ /* === ldl_lsolve: solve Lx=b ============================================== */ /* ========================================================================== */ void LDL_lsolve ( LDL_int n, /* L is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ LDL_int Lp [ ], /* input of size n+1, not modified */ LDL_int Li [ ], /* input of size lnz=Lp[n], not modified */ double Lx [ ] /* input of size lnz=Lp[n], not modified */ ) { LDL_int j, p, p2 ; for (j = 0 ; j < n ; j++) { p2 = Lp [j+1] ; for (p = Lp [j] ; p < p2 ; p++) { X [Li [p]] -= Lx [p] * X [j] ; } } } /* ========================================================================== */ /* === ldl_dsolve: solve Dx=b ============================================== */ /* ========================================================================== */ void LDL_dsolve ( LDL_int n, /* D is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ double D [ ] /* input of size n, not modified */ ) { LDL_int j ; for (j = 0 ; j < n ; j++) { X [j] /= D [j] ; } } /* ========================================================================== */ /* === ldl_ltsolve: solve L'x=b ============================================ */ /* ========================================================================== */ void LDL_ltsolve ( LDL_int n, /* L is n-by-n, where n >= 0 */ double X [ ], /* size n. right-hand-side on input, soln. on output */ LDL_int Lp [ ], /* input of size n+1, not modified */ LDL_int Li [ ], /* input of size lnz=Lp[n], not modified */ double Lx [ ] /* input of size lnz=Lp[n], not modified */ ) { int j, p, p2 ; for (j = n-1 ; j >= 0 ; j--) { p2 = Lp [j+1] ; for (p = Lp [j] ; p < p2 ; p++) { X [j] -= Lx [p] * X [Li [p]] ; } } } /* ========================================================================== */ /* === ldl_perm: permute a vector, x=Pb ===================================== */ /* ========================================================================== */ void LDL_perm ( LDL_int n, /* size of X, B, and P */ double X [ ], /* output of size n. */ double B [ ], /* input of size n. */ LDL_int P [ ] /* input permutation array of size n. */ ) { LDL_int j ; for (j = 0 ; j < n ; j++) { X [j] = B [P [j]] ; } } /* ========================================================================== */ /* === ldl_permt: permute a vector, x=P'b =================================== */ /* ========================================================================== */ void LDL_permt ( LDL_int n, /* size of X, B, and P */ double X [ ], /* output of size n. */ double B [ ], /* input of size n. */ LDL_int P [ ] /* input permutation array of size n. */ ) { LDL_int j ; for (j = 0 ; j < n ; j++) { X [P [j]] = B [j] ; } } /* ========================================================================== */ /* === ldl_valid_perm: check if a permutation vector is valid =============== */ /* ========================================================================== */ LDL_int LDL_valid_perm /* returns 1 if valid, 0 otherwise */ ( LDL_int n, LDL_int P [ ], /* input of size n, a permutation of 0:n-1 */ LDL_int Flag [ ] /* workspace of size n */ ) { LDL_int j, k ; if (n < 0 || !Flag) { return (0) ; /* n must be >= 0, and Flag must be present */ } if (!P) { return (1) ; /* If NULL, P is assumed to be the identity perm. */ } for (j = 0 ; j < n ; j++) { Flag [j] = 0 ; /* clear the Flag array */ } for (k = 0 ; k < n ; k++) { j = P [k] ; if (j < 0 || j >= n || Flag [j] != 0) { return (0) ; /* P is not valid */ } Flag [j] = 1 ; } return (1) ; /* P is valid */ } /* ========================================================================== */ /* === ldl_valid_matrix: check if a sparse matrix is valid ================== */ /* ========================================================================== */ /* This routine checks to see if a sparse matrix A is valid for input to * ldl_symbolic and ldl_numeric. It returns 1 if the matrix is valid, 0 * otherwise. A is in sparse column form. The numerical values in column j * are stored in Ax [Ap [j] ... Ap [j+1]-1], with row indices in * Ai [Ap [j] ... Ap [j+1]-1]. The Ax array is not checked. */ LDL_int LDL_valid_matrix ( LDL_int n, LDL_int Ap [ ], LDL_int Ai [ ] ) { LDL_int j, p ; if (n < 0 || !Ap || !Ai || Ap [0] != 0) { return (0) ; /* n must be >= 0, and Ap and Ai must be present */ } for (j = 0 ; j < n ; j++) { if (Ap [j] > Ap [j+1]) { return (0) ; /* Ap must be monotonically nondecreasing */ } } for (p = 0 ; p < Ap [n] ; p++) { if (Ai [p] < 0 || Ai [p] >= n) { return (0) ; /* row indices must be in the range 0 to n-1 */ } } return (1) ; /* matrix is valid */ } SuiteSparse/LDL/README.txt0000644001170100242450000001323710617136555014077 0ustar davisfacLDL Version 2.0: a sparse LDL' factorization and solve package. Written in C, with both a C and MATLAB mexFunction interface. These routines are not terrifically fast (they do not use dense matrix kernels), but the code is very short and concise. The purpose is to illustrate the algorithms in a very concise and readable manner, primarily for educational purposes. Although the code is very concise, this package is slightly faster than the built-in sparse Cholesky factorization in MATLAB 6.5 (chol), when using the same input permutation. Requires UFconfig, in the ../UFconfig directory relative to this directory. Quick start (Unix, or Windows with Cygwin): To compile, test, and install LDL, you may wish to first obtain a copy of AMD v2.0 from http://www.cise.ufl.edu/research/sparse, and place it in the ../AMD directory, relative to this directory. Next, type "make", which will compile the LDL library and three demo main programs (one of which requires AMD). It will also compile the LDL MATLAB mexFunction (if you have MATLAB). Typing "make clean" will remove non-essential files. AMD v2.0 or later is required. Its use is optional. Quick start (for MATLAB users); To compile, test, and install the LDL mexFunctions (ldlsparse and ldlsymbol), start MATLAB in this directory and type ldl_install. This works on any system supported by MATLAB. -------------------------------------------------------------------------------- LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. LDL License: Your use or distribution of LDL or any modified version of LDL implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/ldl Acknowledgements: This work was supported by the National Science Foundation, under grant CCR-0203270. Portions of this work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from the SciDAC program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon for making this sabbatical possible. I would like to thank Pete Stewart for his comments on a draft of this software and paper. -------------------------------------------------------------------------------- Files and directories in this distribution: -------------------------------------------------------------------------------- Documentation, and compiling: README.txt this file Makefile for compiling LDL ChangeLog changes since V1.0 (Dec 31, 2003) License license lesser.txt the GNU LGPL license ldl_userguide.pdf user guide in PDF ldl_userguide.ps user guide in postscript ldl_userguide.tex user guide in Latex ldl.bib bibliography for user guide The LDL library itself: ldl.c the C-callable routines ldl.h include file for any code that calls LDL A simple C main program that demonstrates how to use LDL: ldlsimple.c a stand-alone C program, uses the basic features of LDL ldlsimple.out output of ldlsimple ldllsimple.c long integer version of ldlsimple.c Demo C program, for testing LDL and providing an example of its use ldlmain.c a stand-alone C main program that uses and tests LDL Matrix a directory containing matrices used by ldlmain.c ldlmain.out output of ldlmain ldlamd.out output of ldlamd (ldlmain.c compiled with AMD) ldllamd.out output of ldllamd (ldlmain.c compiled with AMD, long) MATLAB-related, not required for use in a regular C program Contents.m a list of the MATLAB-callable routines ldl.m MATLAB help file for the LDL mexFunction ldldemo.m MATLAB demo of how to use the LDL mexFunction ldldemo.out diary output of ldldemo ldltest.m to test the LDL mexFunction ldltest.out diary output of ldltest ldlmex.c the LDL mexFunction for MATLAB ldlrow.m the numerical algorithm that LDL is based on ldlmain2.m compiles and runs ldlmain.c as a MATLAB mexFunction ldlmain2.out output of ldlmain2.m ldlsymbolmex.c symbolic factorization using LDL (see SYMBFACT, ETREE) ldlsymbol.m help file for the LDLSYMBOL mexFunction ldl_install.m compile, install, and test LDL functions ldl_make.m compile LDL (ldlsparse and ldlsymbol) ldlsparse.m help for ldlsparse See ldl.c for a description of how to use the code from a C program. Type "help ldl" in MATLAB for information on how to use LDL in a MATLAB program. SuiteSparse/CAMD/0000755001170100242450000000000010617112467012460 5ustar davisfacSuiteSparse/CAMD/Doc/0000755001170100242450000000000010621174211013153 5ustar davisfacSuiteSparse/CAMD/Doc/Makefile0000644001170100242450000000205710425640053014623 0ustar davisfac#------------------------------------------------------------------------------ # CAMD Makefile for compiling on Unix systems (for GNU or original make) #------------------------------------------------------------------------------ default: dist include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) - $(RM) camd_temp purge: distclean distclean: clean - $(RM) *.aux *.bbl *.blg *.log *.toc #------------------------------------------------------------------------------ # Create the User Guide and Quick Start Guide #------------------------------------------------------------------------------ CAMD_UserGuide.pdf: CAMD_UserGuide.tex CAMD_UserGuide.bib pdflatex CAMD_UserGuide bibtex CAMD_UserGuide pdflatex CAMD_UserGuide pdflatex CAMD_UserGuide dist: CAMD_UserGuide.pdf - $(RM) *.aux *.bbl *.blg *.log *.toc - $(RM) camd_temp SuiteSparse/CAMD/Doc/cdiff0000755001170100242450000000010510423445532014157 0ustar davisfac# echo diff $1 $2 sed -f camd.sed < $1 > camd_temp diff camd_temp $2 SuiteSparse/CAMD/Doc/docdiff0000755001170100242450000000411710616401241014502 0ustar davisfac./cdiff ../Demo/camd_demo2.c ../../AMD/Demo/amd_demo2.c ./cdiff ../Demo/camd_demo.c ../../AMD/Demo/amd_demo.c ./cdiff ../Demo/camd_l_demo.c ../../AMD/Demo/amd_l_demo.c ./cdiff ../Demo/camd_simple.c ../../AMD/Demo/amd_simple.c ./cdiff ../Demo/Makefile ../../AMD/Demo/Makefile ./cdiff ../Doc/CAMD_UserGuide.bib ../../AMD/Doc/AMD_UserGuide.bib ./cdiff ../Doc/CAMD_UserGuide.tex ../../AMD/Doc/AMD_UserGuide.tex ./cdiff ../Doc/lesser.txt ../../AMD/Doc/lesser.txt ./cdiff ../Doc/License ../../AMD/Doc/License ./cdiff ../Doc/Makefile ../../AMD/Doc/Makefile ./cdiff ../Include/camd.h ../../AMD/Include/amd.h ./cdiff ../Include/camd_internal.h ../../AMD/Include/amd_internal.h ./cdiff ../Lib/libcamd.def ../../AMD/Lib/libamd.def ./cdiff ../MATLAB/camd_demo.m ../../AMD/MATLAB/amd_demo.m ./cdiff ../MATLAB/camd.m ../../AMD/MATLAB/amd2.m ./cdiff ../MATLAB/camd_make.m ../../AMD/MATLAB/amd_make.m ./cdiff ../MATLAB/camd_mex.c ../../AMD/MATLAB/amd_mex.c ./cdiff ../MATLAB/can_24 ../../AMD/MATLAB/can_24 ./cdiff ../MATLAB/Contents.m ../../AMD/MATLAB/Contents.m ./cdiff ../MATLAB/Makefile ../../AMD/MATLAB/Makefile ./cdiff ../Source/camd_1.c ../../AMD/Source/amd_1.c ./cdiff ../Source/camd_2.c ../../AMD/Source/amd_2.c ./cdiff ../Source/camd_aat.c ../../AMD/Source/amd_aat.c ./cdiff ../Source/camd_control.c ../../AMD/Source/amd_control.c ./cdiff ../Source/camd_defaults.c ../../AMD/Source/amd_defaults.c ./cdiff ../Source/camd_dump.c ../../AMD/Source/amd_dump.c ./cdiff ../Source/camd_global.c ../../AMD/Source/amd_global.c ./cdiff ../Source/camd_info.c ../../AMD/Source/amd_info.c ./cdiff ../Source/camd_order.c ../../AMD/Source/amd_order.c ./cdiff ../Source/camd_postorder.c ../../AMD/Source/amd_postorder.c # ./cdiff ../Source/camd_post_tree.c ../../AMD/Source/amd_post_tree.c ./cdiff ../Source/camd_preprocess.c ../../AMD/Source/amd_preprocess.c ./cdiff ../Source/camd_valid.c ../../AMD/Source/amd_valid.c ./cdiff ../Source/GNUmakefile ../../AMD/Source/GNUmakefile ./cdiff ../Source/Makefile ../../AMD/Source/Makefile ./cdiff ../Makefile ../../AMD/Makefile ./cdiff ../README.txt ../../AMD/README.txt SuiteSparse/CAMD/Doc/camd.sed0000644001170100242450000000003210423445544014561 0ustar davisfacs/CAMD/AMD/g s/camd/amd/g SuiteSparse/CAMD/Doc/License0000644001170100242450000000345310616400731014470 0ustar davisfacCAMD, Copyright (c) by Timothy A. Davis, Yanqing Chen, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. CAMD is available under alternate licenses, contact T. Davis for details. CAMD License: Your use or distribution of CAMD or any modified version of CAMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/camd ------------------------------------------------------------------------------- SuiteSparse/CAMD/Doc/CAMD_UserGuide.bib0000644001170100242450000000470310325005010016304 0ustar davisfac@string{SIREV = "{SIAM} Review"} @string{SIMAX = "{SIAM} J. Matrix Anal. Applic."} @string{SIAMJSC = "{SIAM} J. Sci. Comput."} @string{TOMS = "{ACM} Trans. Math. Softw."} @article{schu:01, author = {J. Schulze}, title = {Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods}, journal = {BIT}, volume = {41}, number = {4}, pages = "800--841", year = {2001} } @article{GeorgeLiu89, author={George, A. and Liu, J. W. H.}, year={1989}, title={The Evolution of the Minimum Degree Ordering Algorithm}, journal=SIREV, volume={31}, number={1}, pages={1--19}} @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996} ,volume={17} ,number={4} ,pages={886-905} } @article{AmestoyDavisDuff04, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: An approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={381-388} } @misc{hsl:2002, author = {HSL}, title = "{HSL} 2002: {A} collection of {F}ortran codes for large scale scientific computation", note = {{\tt www.cse.clrc.ac.uk/nag/hsl}}, year = 2002} @article{RothbergEisenstat98, author={Rothberg, E. and Eisenstat, S. C.}, title={Node selection strategies for bottom-up sparse matrix orderings}, journal=SIMAX, year={1998} ,volume={19} ,number={3} ,pages={682-695} } @article{KarypisKumar98e, author={Karypis, G. and Kumar, V.}, title={A fast and high quality multilevel scheme for partitioning irregular graphs}, journal=SIAMJSC, year={1998} ,volume={20} ,pages={359-392} } @article{Chaco, author={B. Hendrickson and E. Rothberg}, title={Improving the runtime and quality of nested dissection ordering}, journal=SIAMJSC, year={1999} ,volume={20} ,pages={468--489} } @article{PellegriniRomanAmestoy00, author={Pellegrini, F. and Roman, J. and Amestoy, P.}, title={Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering}, journal={Concurrency: Practice and Experience}, year={2000} ,volume={12} ,pages={68-84} } @article{DavisGilbertLarimoreNg04, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={A column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,pages={353-376} } SuiteSparse/CAMD/Doc/CAMD_UserGuide.pdf0000644001170100242450000051110310617112546016337 0ustar davisfac%PDF-1.4 3 0 obj << /Length 3643 /Filter /FlateDecode >> stream xڕrP]5 Sbe*-Rk(R!qz&X@hޠ?<\p"W<,'*H+FkbԸĵ?$]S?O?{CnLcȨ~ƓMSSz"y 49źFVMGS-Ƶ ]'f?2-*>m>8mSf q5'DH˜p XHNL&:$hN g0HDgvM?OUq'0K񆆨#79%n%c2@VeRY*עV;֡ͦa?uLe]T(- M.(u٣w-DpYLP'8[ Yv5)HWnRg2XF8Znꆩ!q<zѻeSvE]F;%]BD#wxVHѢq` g+qRW7ΌgDZ< W +Xy㝨Na(QDQ Tyn%- 3Xt{!@ lY@/񵏶_yE" s#|h똝motzb:@_FCI< ^yLaE:b"^s)e>=!\Z"*F!{P`ʚhヸnnD00n',bJQɀ"F2H!Jhb$A1EQʒ^ vws~  ήaetNHhM;( EV s CZ#~pתJ,yI~KYޥEٺ}ZJ&& ?rE^Kk ~XB4B!0&.Vq艣2 .S_i%VuMNq+ג}+O$ `떇 ZRǛG '19!֓u*dݦDL[^Gؒ^06qM.04^HX%`vrJ%La$@i̠ѧȠ]%r)Vh$;;AкYВ{\)C⤄0&o]c R$;TƎ]VC} b](zc~]p󓭫eCnK\ȧ3TOLcv_TPn(~u^EEx\-V H(<1 >{4ӟ-ڳW̠6{qps\H'3# }uyx{Zs@<RzŹp^c^ y:Lӥ<u\Z[_׍Ӈvl3U@|xM ˛>2?ք\ikŁH<zqnDlҲgds"f\Fv=]wX)pG=E)3 qSf9_5EQ1S l6/-c\ҍSwC9C{\99! n~=f*J\z_ߘ ؾ&ҘI<In6,r6.Dk7u@"|\َ)ik=i:5xl~:M{,e)I>1 $Nmȏ QEJjwԡ gX挔ՕZ}WKbM'3@+ o 9w)T3v4 '癗F90;=Í%]oNLR(be|K^:~=J{D$`Wg}Ny6JC,Շ~d"X2,M'wO@Gtri:T 2%ZA|)DƖ 6<5yjo4!]i7 b j ܛm6eO@0 x)SI,88*Y8㰼 ĹBP쿒2w<4P'̧`tru[bJ ~i}IbYLV螰!5iva6s^ا!]|tE1re;۽m#?/SAu7G2 CC}xr>k_5HO'nGM"X"endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F24 12 0 R /F29 15 0 R /F8 18 0 R /F30 21 0 R /F25 24 0 R /F26 27 0 R /F28 30 0 R >> /ProcSet [ /PDF /Text ] >> endobj 34 0 obj << /Length 379 /Filter /FlateDecode >> stream xmRN0+rt$;rmNHmdV{< @7fɦ]>QMQ*>f%Ue/+Bv ,)-U\P*59Ѕπ^͟Gi1ʢ$ghb&w $fcUF8O ]x?;r 7EBa;|֣Ce߹~bpN|p%[/q]4N -¹@u~z%A! kr纛ni{qH_s2Y)SZ*JJ֤5J_>]}ƺendstream endobj 33 0 obj << /Type /Page /Contents 34 0 R /Resources 32 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 32 0 obj << /Font << /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 4289 /Filter /FlateDecode >> stream xڕ[K6Wm9#>j+ʖMNNđhKBRǿ~`5"h4~?|ܨ<5yooJ tyؼIJ)m|5*ixM>ުÇۇcuǛfa>5MnWFJF|,[g_ NRNC; 1-q󞚁Atf֡M'zqN=ou E;tf/@c&{Z*7U< d2kfIs1JpVgh urЈ4MZ$:6@$2km@.P]B,+I.'?4G:ɹ늢jphLiY%$pQ( ] 9f~:p"pnym ֦>7)XRlA;%D5׈SE1ǁ; Rd Y2'|[;7ܾh݊Mp;ĭ|kދЇk;Tou}*{ kd">! Ύ-Jbc= nGdoEYiOt9al(&M`UqmV3eV>g5:JF"kU.\b`ۺw]GGNyw~QצFxB Y] _=ȀndQY9iRV;aQ$cӤ6$C'p=ו-r9{TiY') H/rX-- bQzUZV 6EUbdlQgPFLpQ[8[f 6`#%Dݢ=`Rkx.4HkȘ v1JPWr'piysnXC%iyn'W9.L`D 'y>x-+[*SSeB@ 4uU4۵myW GX?E5R!/j@"ԀG29Cr4L #S~VgvR_ BF_:F)P;.T bP8JLS1ũ^P^f+A&q pBb~X~s_ #x&ds_x ];9"h]`@# Sqkq'$S0,DH<*0&ÕN/8tӞTIHmMf@\iލ*s:1oi}^|xqZG^n/ȾÃ׵"u6K FvB:M<cC&l@Iĝ?-0Yޙk#Я(>mBi v<t"7!g jͽDϓ{9cgQ("sˋOdU2͙x 1{9w&SJ+2luZ`YЌ0@ -[\ ˼(6vp qYN`S?pS8ʥz]> o@:5tTs1[+O |M$^)ձ6 07"P={s4j,Pgf=Χ<$ ̾b ~ფrޗ%bq{j+GZAOyӭ;$>(d}n](=.9QF5ّȪRM=0mr0 I[ebpkNb)zk^ѳfgNW<# <ǪJΔϕ7qaM}$8[vnR/wfdj)(LaVO*mTr+w2xgdZodG{ N(Do7[h'Cdq\IK`۔lכkLy2߆{k15)"6t5zm4yLH=`F#gl'v{i8Wmr0#\tPϿ9$ .餈#Ǚ*נi'Wk[֡[ឯA9 Y*4UIXV(@Ãw'G W nq (G<9C N# =gݰʿ@TygRF>( H/Uw='bv#T  E) R0^)NRELmCm.B֑J hi/5be\rF 2D-dg 3+qpb_įd%ແZkZSͻn`#MNj@Z+ K degZL dYyr_EP#ZMg)W6x8 \MYRSERSi ޚtY·R^8b8y'vPTv.pzӽPw 2tEB vBL ARx'ME/,u@W}E8+-"Hic ig5fYZnea'J+kĘc95kCR]5/"o@ճN'+{~I*eh绷X=AI?"t庮 kgYz>_|x܀u:AYxXm80چNS~/B[Ux *м+L8شH:5Y_;֔&1:(|K41/~}Ǐ"x& r]y6|ɥarMY[^\~qQ @Q y|,~^Y;BApӑf2}0`8pIn}˳9/ss𪴮2|4dȽU"pEžvlEP{x}7v+ׄ hV@\ÆWq+wEyuU.jόP{aT%VxDZs9}4o`w_9|U#q,^f= krư&;SМ2[Q}endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 35 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F29 15 0 R /F38 43 0 R /F34 46 0 R /F21 49 0 R /F40 52 0 R /F41 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 58 0 obj << /Length 3833 /Filter /FlateDecode >> stream xڭZ[s~ׯ!"Av454r; _s]dMf4ssY>xLDi+g׷3'O&zn.K!_~\X5/*Pbxūl&$Oq,-%,l^^^}̫ິl]78bv=wR_Sa@-klJ/\dy:^-25otEmq^U|ptKg?33Jع=SVVz}Oqe\p9Zi.Ɵt;^ϙ#(Uݙx emiJ$JfztWO Z Iv]bܟ/Nu2@GDHŰ^ora; RZ<ΛJdF[+x=k̸Hxp$q[W1w9Ӿ,F+ˉ-2(,`cmZN:zgc: T8Nd\bS˯ .u2aꎜ.Y7UIچvt??Lߏp.i*]>&P~|SVKG`[}><ˀP{JMP'@OA˱0%37{|+fh <43^7mۈ@G ;Wˣw0 !,)6" I>@۷\Pxnю`[0 A rin?wAް}@\ H+j'س]XWh{zdn"a$b3[^fp`-ŋI)|`S =*c4T@wߞy^538Kp(z?o atbU4I/ 5?< lFb]q8u< 9^*![?3H՗PJ.>;I2#7zCp eZԃkُJ{'T:>&uPٝCI"b\G㍝1vĠի7S_z/iB6$垢Ys@*M.4["㼁;:6h+ʷ\)npX,3.3 a3A+ $D*X?,)mjŭcVa懆<5\軧 Bͳb:-7vezyrG 8>PKQpXL@6Ic>`l- *<̥>sHL9k*ohZɳޢ% wy{pawk 05gut=hk1Ș8i>yU_&7Fon7єg/_t\(u̵kC8chH.:n×aU|KAV~GRj[ [n^w]0gL Z{Da'7q*Ԯ-P}/|zZ.I:v/%Tc \+;r-9 Hn=5r>[$z}?kpo8n@PB[~F.ѷ-/'w CW4M+hd Bq!*O=6A>gO1Z1J1ZAр*?xoǏL%({t(O DLq&^.T2'U|NFDcc剓/}S+%F"w/?95O鑙0?q>p Ks:Ǵa,Vw3qPn}'V:*_PJ8^4 VEʖF=oY,nl5}p7 yL6ԃB 5$Cάn9sÔA}c 8-zF0Zr-[4M')SsILnLŒ,O?<\Wx$|nF<<%O&}q#H`a Dfd˜yFl3Oo$V'n.nݣd%GOH8O)ILFC( ZL^v EUN8EWoґDEw,ı}l;JyV*>mQ5qH܌<<0'Ԁ`>uJg! 5|'S0/Էq.+;N>waٍ)+\}&U3ukv+cT۴#' Cn4s>4G%W171JyRCw97ޯM~|`\"-#0_|d6T7/9yڧtnBLOÈ%RM4D+!i@f2U}V?q)K\ #YV"ʰZv|w3p,Pj \wi(ǚ%ǟ_E% {AT,g@ͣendstream endobj 57 0 obj << /Type /Page /Contents 58 0 R /Resources 56 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 56 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F30 21 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 64 0 obj << /Length 2764 /Filter /FlateDecode >> stream xZ[o8~ϯ0fAkwR3؇6M.VI_f9anj"ύ߹(/N|dIQ>2 6:?(S6OYܷ8!ĉ4?фQR([f ڦyvߎߟ|<~In_odj?r1fUC]=qO|ـgYs` >;j6:dU_-'RqOꪃCn_aP/>]M 3 |ZϪ [ ^-ϥC6ya4u5I4Q҆χ܎o&9R B1 @WbLhbPa Hx"cկPfu1a  {AڢK E;}6@(j5A6XФ:J!'-%xbQX)b$ `kx 'a%% ~9۸u4Jc2l]j**|lhMVߧ.Zv?O$d/77Wn2Wt~{wU z75󫽗QO..]r|:NG0|Ö@hLD'pȳܕl\x~P*h^[> p}YuU,cPy,"320h?`:n&٢k!g1H!݂~Pi8.;/b ٲ3:ћ2VT@ v_Nɐ WlpixK5!Nu:<Bor5uV9/Q=Pd8ަfaZbX$!ɌrDSGbABHq' X|6xLwu0lӻo~4)$η" 5p]/ oʙ\v}&Jć3M$;[aA9XC:gLʰMԋ٥0ƁELYrf}SJx&^֥@4rﱕl B LC(Yr aZQR"UIHœe.ܽtDXZ$B*6gj틳Dn+gP>Iw?;\!?Xm 8s>te^ o HTp|b`$K׌Ɇ%FLuQ69]0ص|']NT@q1OEʇ#Qd%@(E5qFqWI_MBN6"J=w׵\ :@,b𵐟L2p+]̶dEJ2BDβ> yvBʋKBM$"%"h`Y*S6Ö́R8CezW(*}g5q%Ua~8gg Ka;S@doM5diW\P hHHtUQzV}'rNHBnDp2P e_y̅FQwasMK4Wy ؓ{]R{%̀[MzovCX68ÜeXuq bBY&ͬ}0~rd$ou3fSh$r#>)ml> %9ס@|rm[@x/AC()u @{q-XٕÛ] S#a,LQ1#Mej8nt% `geɷ/Hno;]\VIan_erB@B|{} K?n;ɣvJ6Nw{e^ Y?]&tuA˻mQ{0Rɡ)ƦTo ; 3|O[bB 'r?WY%Ik#_d wDwC]3'ѫh*E)51F=Ԑ6Jg`N z1QܥG)ЛzPbf ;̷~dgCkwJZ0I>_#9\&tE$)y6C};/cK9kdp*n{\}a{!mp9p}Lc @╂5\ʽ)2QܥH 1ڇ)[_v%\߃lOcZKz3SP32T( endstream endobj 63 0 obj << /Type /Page /Contents 64 0 R /Resources 62 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 31 0 R >> endobj 62 0 obj << /Font << /F42 61 0 R /F8 18 0 R /F34 46 0 R /F29 15 0 R /F41 55 0 R /F38 43 0 R /F30 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 67 0 obj << /Length 5073 /Filter /FlateDecode >> stream xڵ[KwFWdE02r}v2gb70 IH(_?U*QX@p}|o^UUy^WUKK{w_Z jqw/~j5FʷW?}ξ{^~ UV#ٟgdz<3wG)z~wf2k ~oޜO$S/qWũʬvoχf+KGק\mNUkye5R|lZLܧ:[5\bAX|/}{oʊ N(>F-e_zrc,xbi}nA_.wзlI?Xԛv/{nws꒢XYY n}DTy>&F103s&v,-Ld+#Η֔p`En2ga1pk:2Z抬kn}:O|B^N]Ý]?۴z=.t( i42Agv `lw]s n.3`apkJQW)seul^ͪ.d EW_%f7ճ\aJ쪷n1./dNN8+I+Y3ℒY2oJ|l) ^pni70J 0,j)ɔEfrǩ΃KʰF@OPԛhTucp,£~P0# jTIBWa-fS0lj!‰($fG6mi(1pN&ֈ_ dBQ+-Fy^ah.ma1:FÛ?5p^) B &dTr#2CZX82iA2A,g0 噐<C}@jM ,6*]~|7 TpLM">{0"٠F)x50v㮣#lzͪlUN `X+X16R||ǒO%f&b>/ae5іmMvQxl#-EfMvdN갑<^p1B=uB} mVhɨ.\4}OEsOu!N,n 8lmKR{J\!ώHD\2[o8|Yz`v,罐9ǰYjWkCK80|~WŰ!pq 8bWdWY{~|k 8AiRjnr|D/t~ռHj|e@? hpZ ATȯlJqL8c! 8Cq qkIg9E$0ӌIv6'BfT" ѽL,௴Zնy ߈r ,{9,q*!.1zgBDT斸YaLmu{'W!đdɛ;.<$M#Netۆ_fۦOض8o6cONZr^#/ b7D mU!̗HC̒P8iAH9ȯJ:0҄1)b&&Nʽd& Pt RߜJP@<|icsc̔WŤ&PDJ),I8j礣6Z5@M-sN*,k~.nÊ="Fg½de0ItxlmL:#INJ 0$CX̔z!\w޳WȾ8,RHtL&r׆|5`4&H,pMmZWSQ:Zd IƘ p$aVB^λN\҄XʠbL7Xc EMpBWp,yL֦*aAl@;Ij6],RWJ00{1ùq #cJ9_s}*5%26&WN\% C[M-wסJtw d VNÙ 08 bGD~G7InxnFE*53?ywDsœ[Ti׃ҰASNŕ@p9*zqǡD4\Pin@ULgMKDh?0W=! A^7ۮ;T,ts~C% &-*H!w0OHUIEți [Xc rNm&rr85.ˉ4 &+6C|bM&m>IY $\..ݴ%϶vsr,SH^˾ҵfPeTup09N*o?"dG~ku̖vX6پW "uly`9 dċ"1هI\Gm*b Ԡ9&F0]sS;Gh3"dʪ<8?>@ȍWXpE-z;o\awW/(2u=|=րn͚_ ׿)c͖O+YV["\nI!^+}c_y˥Ʌ(w6 Մ# h{җ'LxD8P= @9Xմ~;7⎀횟椛m+eJz.9N*X R{sV1o 1sFG;桳n/8cU+D?wcSXV۰odrKɄ6.#\li &,: }Ɲr~mp,s֑I*|ͫ'3 g(ǝ!܉}|CadU.~S'Wc;o@={O>hRqF m(l}?]bAh?rnQTۉlsss7IvM kGZuj8A[wxMHx!)>(-:A^C~K۝7VVHvc5+)b|;դ DXƥfka ('k6.$ώYBe vzëu3mҍE#~N""絓K$'0L*bTL `]9m~T=,O n?e`U55r? UݖOxxJ{%-|بr4H"tRe&cB;yiCJNh> +Yw B.&-U ocar).$SX_'OEV7 NRdBSgou.\ǦT6}\hsqC9H{D9W.TUZq6ߡjpt0_I pT {F9+⡎]xlD l V%P#<-d¹x(L%a>+C@>1zخ'6/&$3wpiBDڮ63v]Z2+rJ^US> endobj 65 0 obj << /Font << /F8 18 0 R /F41 55 0 R /F30 21 0 R /F29 15 0 R /F34 46 0 R /F38 43 0 R /F33 40 0 R >> /ProcSet [ /PDF /Text ] >> endobj 70 0 obj << /Length 2803 /Filter /FlateDecode >> stream xڭko6"- ")z) ]6S :p8'߼Pj!ˍE*dbqyh\D!Mm].W*9&mqƿ-Bpss:[D 䪩f)/ErYr Ӷna O SBƥ9\ tq"`/B"_\0jXN8y/6'| g*>8y.Ŵ:|'oN= \ WS? #I7F"7afʂ(-ćY#Oh,jMkjhl7UörT(dy*> B=iC÷1Ñ[nO8\$0a"7<BIWr8gT+`/u)$?N<Y tݯ:tT60ELy~ݔH4(LT~iWٯGgAQ i73plf?mYW#gA\_mwt.ݛw!-C;- [ʚ"C#BZ# b< ~#RB^m{Xӛ3b`-)HQ=En[Z޸/0 qҁA)3Jkhâ 4f78 YN^JP|-ʅ AӀ_I@"v'nZ>qrJ%\ +,UFxFdp9OJ2m Cψx\(`CG(4)~Bc;w+/kN~f\ĪBDB ϳG{-jOLq 0buh;:…?8B\[GH~VaHMH&T||wEQc9Eף!:rNQ)W*=-UC{9b&]ǪR]oiVаkHW8J<pFn0:qdGsIC]B.E*C^c 3&H]+S=ί-75$ds^4*pun"luxmCc@lNi`rm0C5-0z?I?h_C ) rfgS|0};2*nCG As\Sǟ6( 0B}GѤuy4O(vlϐ9z,wz#,0h.wz \L9Bi7K{]+!dB(񄐀jHv%d" K4`\MQF5goLv|i5<0WDUzz`5Ӗ xmǐ85 F s_AJ_,3Me* apI*Py~y? x5+X_ZVjsԳ;>p9X0AM8.`'Vnma.i鷙%{> * C>i-f 8fAavQp3aŕt>dśj)K },ހr7m<"̀CcOH34AY$ea/&XŞxx$9'^}OY YX#d|ή昋c_ҥCz?}:Nv$l2 \je-(׶)PC>/vmS!PEٸrYOۼV-;3#i]5 ^sd >qI8*rL34M'Bq!uJS5$OBθiSP}\Uu †bkWxMR#pyg`5-U%. LQ煂0]4I`瘨d<XA}K|~{mX=,35T)m)Re9KT^?nQqZcs߷uOXT+֢vHӤ8OP:UFNJCb.p͊ UU˟FnA,ژq4i`SMcFrdCGendstream endobj 69 0 obj << /Type /Page /Contents 70 0 R /Resources 68 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 68 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F42 61 0 R /F29 15 0 R /F1 73 0 R /F34 46 0 R /F38 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 3332 /Filter /FlateDecode >> stream xZms_q@ ^p8lg6R&$ DjP@0/wHiCg<&{{{>{ЫZNl'7I&៌OjVo4ibV,ӟo$H<9ͬVOZuWtk?}_~]=7کxѬkWxͷyE3cqϿE5)I<#/x5laLmE^nk? h*=[qrϿu5s`; \ A\LseTXVҢ7%Ob<|YK@EuD@_2JNm:-O~=d2?I&_$Gh$0!削q䟽i/q:bmK9,VrX4:If^'56Zo+283TD]!,EΠ;< NМa@WJE?,~C'.,Y tAXWW&M);w͚=B$erK!U7r_Nw:AK& [q\? /sX)Xi#kaE:aC+AYw5pj8$!0W0`.΍AH"slwYhт^s)'7uvRM]/e(M>< 5wm$L^˫ю;Kn5~{9bQT1Y0ĩِOw*)}O~6{\8~Oi 汢ECJo ܶCfg)q|[x!DTK{Euj{|::uj5\8]Jr+VtlAe$8v. 4$e;y͚O]U iЂъ'^FyΧQv>^\$)o 0܋:8V:HIK_ul=4o\Y=blTC#VIV/6qbӕN=aP.`L.ilLߏR>B}nB-&MG78ج3pAu 5PC1Ԙ!;{TxyL?@ NH}c$1HeAl#!O@Dk XVeqpe/P:cH JOLը]f̮mu 筹涧%w5NAV5K K0)8T}>R3cb qoGh]0?+XK'΢o%%NJvheKdj"^Vx!׈czH|J[\~Y&1 Ԓn/%LJ}\Fendstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 75 0 obj << /Font << /F42 61 0 R /F8 18 0 R /F41 55 0 R /F33 40 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 991 /Filter /FlateDecode >> stream xڵWMF W(d8Dn[,)[RraKY( )zIA !GVп`e5ɳs9)ĨF7~qsęDi IQ}K2_Cd\ ΰ,929AvT(M.鲪&e4徧0MUQcwUIvY!:v,y_n&sޜ\SYL~fJ,:jȘǩQ;$ӊ*롖u?͹RE`qԺF3SB-wLo|.#8Ɠ>+:;cxCh;w%ݸӇE D8td/=ĄgLI[~KqrWD]zsj -'L.tF  qY$?:{Q .?WM#gPoT#4g-HepArf\#ːĤ}M[[T$i0XZޠcp_V^NYdA?v׈j`VX\nH||g`T3D RQju~2]i~oe6^Rkp'3FL!A}kDf AuL!l$>5=5TAYqPwjʟfY+3mX VzĄѰz85{:/pG;?㝺z)wlwx.,X.0Z8rI?][1Ďq2~u>7uF0D[ [' ~k{Jc%mr cvt۩9u[ג%0׈K@&3ke\z3{ݫ;hҠm^*Ґپ4H JYZ,#F8W_9\endstream endobj 79 0 obj << /Type /Page /Contents 80 0 R /Resources 78 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 78 0 obj << /Font << /F41 55 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 83 0 obj << /Length 1556 /Filter /FlateDecode >> stream xڵXmO:_QkI7v冷nw) (mi,;Jډ6!6<9zg2vVktc06[ {{L|l~{*&=? 6b%eP ŗ٨e,oY܅8fa:8 G80Oz3EzzX4m}`աR\ѪY6#ܱFMs|#Pbj0ߕrk}h݈D*v,03D(pwh[53[;%kx/` p\̅QV݁ҥH9ms8;ZGULa/3KU}Dx☣5IB]/c`/0h -h~?^apr> "iă[]'[!hxÔ cV|\P>L|v4N{.oۘOK$&uUdw*7nFar%QJ_Vr0=' ȇAkP%O)5Rن}SH5*n<Ã:%Eƾꦣ mΛJ=KI^a=ٯo5|v .ϖZ\qՎxJٳڹVCm)WңЛNY L|?9{_yGi,&XPE=MOSN?2ߌ6!xN[i PPl a R>DqGӤi1'~ r k,,"?ZgvSʠ[fZ 3'[즊<_5r]ܞWhw/눮ĜEJŵf:P)d2f*DQXr2{XD3ѧendstream endobj 82 0 obj << /Type /Page /Contents 83 0 R /Resources 81 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 81 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F41 55 0 R /F42 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 86 0 obj << /Length 1476 /Filter /FlateDecode >> stream xڥXms8_nkcpfܤ5=frVDן@~iϮyn0=vF;c phcU}lx֝_.؝c[8)+FÊ#wPe|ܛm;7 :عeOPNBLlԷy'K^fN : ]*Sսjv6mL@^X-nD(F!N3c)GIEd±ה-FY" I!dQH_>z[D A{+1 -5;kb"QSO dF,n's,K%2(j ؓ%J)iZ#xHt֐":qQkq 8X)P_+2{k<%H}YK1Yԋ̷fkyCI≢eUGgwGG?((6!b\)qfp::TK@RT`#;[-ވ` sǾOܔ~3&Bnf^W< >XW7LXTEC̵oXwY=ύ1u*PˍWqWJ&%@Z'ȣa6Xѵz'r;;]lTv#}cQC?I$m ֐u+ @Qv7eCd:O&t٢5B1Y03!|a.&nAkFQi;Q(RD ChS EVrů.dmU7鞿s}̦o&.󩤎DL-Ъ$ߢCFiwnP4}>"2HJQ^EHHꤡ9ABb^%77=mu@߲$y!|cjJIhq$ƊQX-ЏAJ XQ\xH?M瓫YP6.m.%[XKiQn\^8(pwS1!\S?ٍquc,P n_u&T۲[YӅe+ @:%Y% H: %pvy{xK?5 $ ;ߓۛ룙cvyk!xĜˣ +@e; P4t']~XfݗٷLu0ezsGGN$ƟTifA#gu{%~0uO~g8> endobj 84 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 1699 /Filter /FlateDecode >> stream xڭYmS6~"Cz!$Ὕv+p 7sweŖqJr뻎$}G>ǣ7vnk`[kͭ^Wpqr݇ӓͭ^姞!%ZyJ!JHMͷP$yUFx-dYohy;굶e6qˇ9Q8rΔ4# ᖊ͗ORqs̤2c!SDF@0o_\0B455> J-Id+M'yozjfB2pj<8.9LN3TyG0A\G!4:!橷5& )xDlb^J`H`):Zj,)D꒤خl9iRΐ܃1:(@dј䉅$u FD,febR*hׅ^Oo3rA2TR5IFDPԢ<AY> 0|q%#7CTђ#(_&ɉ ʳ Rǃkp6I6/]u-cPR!mN0O5QJąbc ޲ /tUrEtzoIk9!ض0\gLòT?&=0+`qPT SBzu> s,[#a{\s:W@#L HMpxi7[EnSZLvV knkL&JU4Rn>eᴦ4&4pɱ05v AY򆹄\{Gǚk>nir[A 3a.ЋDPҊ*#iD#AJ 1=P~6 86;Fd1Dv) Np&wS_17J+Y!)H2'GoKH`k87S]UW1OQeR<8PPx6\s!Kت}a^DveZɘ5! N( IoĎxM?RcS>t#WBve:k%x6+zH;_9g1}bsV(qc4Sg uTqZSVE/%s<œ8@-G҂fՓ G`*ΔA+rq.I;=D}d.6-:ЊNm㻻Ӌן;bSp~v_(tw{3Ya<AT㈅K |qq:©]>>^s{Plw3>6v8Ƴ*bDr< Z7SNqw?AY5YP}[,]3(CᨯI7^pŕdHvZq[t@va*V@ }VkV 14;co|yaN79Vba2s/O},ZNq|'.:emyo&yĊ;3H{vs hрv4gZѬc0 l;lxzſI`=9 Rݝ`?(9RIendstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 74 0 R >> endobj 87 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 92 0 obj << /Length 1521 /Filter /FlateDecode >> stream xڵX]s8}`R$ag6lv4dgn&#lZ+P p&Cl,K>܏swW=q {qq\t/tnc|m^\36̓0ܘHDT #`d!"O㫇_pzo~O/f؎N6uA ˿~5s'aH6bvlE„ۮs ̛ Svsk'Ԇs%Q5x|=hPٵd̅ZN>mD$$7'Gab 8ZjϽ[M4z<-`i]m'UWoˌF'| }m~HV_ T\hk*iruddvm PɢtINC!A&YZH$:Ntcv| .H@ĔRh>IWkm4UY))~|Eb"S㙛box0ߚശ*iƩТ#-"MTPJA\= XB_Ha1bQD !e;KhdUC IxWx(GnXx2<,}JbAXP!9 iQ"r~%&U2 k*ٞ bwn%I%eӐq¾3mBA^^X - I) yVq^kHl^[TVk;' U*Ht'OʔnJ@̌bݪ!Cͪ1_UۚlDVAQ B 5s"aAmDX`^cu =9Ԁ\ߟ}Tl,&R(@yiX5GW7݄>Bǂ;><(-Ei&/Fۻw`K6wj IYn`MDҸ͘gScA ?Op2<ufw3` $]:X%d%jR8ྡྷY][r3ag{ztN]tO=s\g^\n:v~?Hg}X{ğUBвvR>|ƒQyٗjMՂCKIy"S.]i6dnsi7VAþ*n{Te[SZi%alrfR\o(c@**ЋH3R e)(5WAmDy[|IGY> endobj 90 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 772 /Filter /FlateDecode >> stream xW]o0}@KOMhn"Lvfگ6FڤľsqsЊ&XFd[Fຖ=cfLyW?GmmE~W 19DMV)p7 * A H_8!4\>"9F|X%H<Rʹ@vRNXe;թ:Va3Ѱ2wvޛv1zhN-*zRT\vQ1-ILK42hJTє-U|hUzmَM|FTG<U#UCrh YIM:X~PDY\Noӫ ~'qD H"6EV1*z W<+6{$v1Hl&$QL({:$%*bDHײ$aSA,F{N&8Ib?8$֒B8lQJ8== 'HLhdUmJ鴵\}Zg M:8EʱfӭSJ0x}³UcL;BAB4[8:1dؙqкgٶ7RuC|rǯ|oczp8 Stendstream endobj 95 0 obj << /Type /Page /Contents 96 0 R /Resources 94 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 94 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 99 0 obj << /Length 772 /Filter /FlateDecode >> stream xWo0~_/*!u mХҤB^‥`#۴9%ZR|w.}|2|'txę3wq8=/rJ~g \|qsOFA?+oȂч [V.1ݨ뭺MҷoF ջ\m_2x>eTW(Qzk³qĖn뛙ZL] 41Gzo+CdVؠ,ELȝxIF6~P =`\#~NF&~4F.AdQHW֖WNTA{|_>){kH1ݩD:gt+0A-5U $7JQ&hG|+HhGk4P7C袃dCbn$h T{> endobj 97 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 102 0 obj << /Length 1306 /Filter /FlateDecode >> stream xڽX]s8}ϯ`Ce> 8dh!tɴvԖcɶM<t]:j]tZ_zz@@kFSwOpy>gLTivj$ǁ%>79]:n}i5hplr(mAޖ P?tw *Fa| Co90+ 6A{oRn9Z#\";N8x_+<+C[nPˆrwЍ u$F7tR*Oƥ%jj^  qD"2L` ~NGT `y(;ya!rlLSON33ɉNA2>8 !:v`V]ui.?MiN,3ߚo*3^!KAϠ&n a:΄  2 yD# -Dbqey>r/M=ڳ]U*(!Y@7 Y%[g֭G{>̉?OAyy:v3jrBL!uẘP͘.[(-д8x+MZQ3l~-^CMnۭ1,jA/hd bfCendstream endobj 101 0 obj << /Type /Page /Contents 102 0 R /Resources 100 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 100 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 236 /Filter /FlateDecode >> stream xs w31Rг433QIS07"#=3KCh Դ̼TM]S#S gG_0נ`OxgS<$  $ AjA(CK86K@A@#|=`.18ԉ\}Z ӊkbxIݭ!cdgihn-3 h䂜bZMKLj2\FB$,LMLMtMMM A*\Cqx`endstream endobj 104 0 obj << /Type /Page /Contents 105 0 R /Resources 103 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 103 0 obj << /Font << /F42 61 0 R /F8 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 108 0 obj << /Length 1689 /Filter /FlateDecode >> stream xŗKoF:R@D\8v4 [hI EKD)R(??ߙ!U].׾:z$MMFӇQO"Jh:y3 k7"Lj=lhFXhmorIAQyr^O#Iģ ޚ[m23bdڄ6HG{81V6Ғg/V+z_ }S:yC9CZ oM[(! VڅǼ5& s? 0a<ʛ/Vou Udl:#6wy ,adaxK> ^?P+ E϶S H4ț2sw>hHZZ`FPi%5QPueJщ2{?Bpm%&NjؖcӦwsw>==:4 7Ul.;ز;G\d8fsW. ~A_l^V*A9Y :Dd(zoE1_ѱCe[>r"ǨW \J(jio8zELB+F[]$!.Qp ꚳĆ յ%>‘n-?4h˴bY_c~[$j'cl'iܼ|gŏ(@dT}P~=fe[eғ _ (!ui5V*ϧ~l Twl մ*{9Gfq)$lW+ӵy_rpu^sY5&p <4Tjٵ$/AHؽ6J*yJ^%%wڗᮏ,|u֐0gC)6ZCJ.`}3|^`ߞKuf2Ml;oIN$j> 俾(&C6J)B FVGG `=*ʟzlOS*/{O˯}uJ66- $ ZQa#\1ԸSd[7ᣍ}:|QF%:e'xPA's;F# I!#.B@d]hIE}Dpg_]M_ $Sendstream endobj 107 0 obj << /Type /Page /Contents 108 0 R /Resources 106 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 106 0 obj << /Font << /F33 40 0 R /F8 18 0 R /F40 52 0 R /F41 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 72 0 obj << /Length1 887 /Length2 1357 /Length3 532 /Length 1952 /Filter /FlateDecode >> stream xR{JM͒ RXQ 3pXSX<.DMK!# r!8Q&hШ,A Y,y8 7뢰X8(eKv }lӃ?C 7P` \vt$Q!"ͥ@2` +k;[EFB V" l}AIja ._ 4pVM҂\Yn> HI i'aߌqᄼ"Qm! bE[=X=dIK(,;MȀ̮ő#YGnyLg9+~ƣ/B \xSdˋ $M+эubvyXg-W78Ke BN /Vo j>O,7m7m-;mY*~bNw-nR9̏P 7P1#}ve5ahf뛗b>/ڬ'O\yj/Z %)D;,rFh5o4QgcQlzT736ïMG9 "Dz=Vvv+t{'4Gu چyN3RpD0tʡq lTaif:J-oɼ=oE4:U M39Lk,'kKGQסrlVh2ak!GqSRbɽ]Y !Mc3mMi ׍| ֗yďVemps1i#b7%("Z> D'&tf0#[F(/nXF N7ϴ8{"/5gzCYT:? KGl.'C=9<ʦMcġLq՞*IbI!GA4#ZM^8n#x+qd$9s6@*ӥ4ihM7JmKYA*s#1I%;3:ױJ{ƶsN8STOkkJ|Uīo~qGrvzڭCs5eS|&wJ=B+xȊm'3c'$%9}|Sa%v~'_"1Jw ip%>KUq) lt_NB~cҜ)/lchp'&sa_7&'TNj+Z"Q̭'?:|+-%lDDqyu dOsuVDy e;a% =({zD {RdחGjU6D qכtߝ}0/r/,t -ۯno'K]2i]zL+<1q } kaLGnLs|+!̫Bw{mxsZz%x{<(nNMݏW `OhUr3jB ֦w'`r f Z*'V*FG=͠e1S^mtv>aFT7Ӛc'ɷ|s=ԐwJ  rM+-endstream endobj 73 0 obj << /Type /Font /Subtype /Type1 /Encoding 109 0 R /FirstChar 50 /LastChar 55 /Widths 110 0 R /BaseFont /CTLDSE+CMEX10 /FontDescriptor 71 0 R >> endobj 71 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /CTLDSE+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 72 0 R >> endobj 110 0 obj [667 667 667 667 667 667 ] endobj 109 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 60 0 obj << /Length1 2147 /Length2 13059 /Length3 532 /Length 14226 /Filter /FlateDecode >> stream xUX\ͶkpMpw .%C \Cp{ssQ5x稚5'5 ( rtefgaPPSK6 GISW{;??;@ `y  rXY$ smMJ@HsS{s @-XP63# ?Br -ܜgvH  `DaUAj!&oHnʦIװO98%M haG\Mm ٸHx-Tm\ͭ`7@Giۿ X5k95jjL29`O ;d"?}_A60MP Bv8\! -X(&''2loOB\Vg7+5 `uts0gխ_üV' :@.;YkCO  tZeO  \^sk"od | Ր r/..֯ȝx&@37uj 5l r 6̀@ u YXV4h?l"8g"ltymf<c4I >qx%+A$Mү,Ji+A:$JW(E .ʯqQ7A\T_ R] 5^ R] յ^ R] u^ R] MO? MtC ;~CQXѲ ?[/xX6Y(ۿdBBqr !VbBB/ !V!/X+W~Y=B_ {̀~]E".a0s@jn_oh=(K sP JxhqDԐ$hg݇,]]r'v_q Č]w,V݋,%w!mMWG*kz%gt{+P=_zCyxu"h8)13+""V=0SV'Cm#Zݰ Rb9'm"'?|vX[JFgZ.owp,ee{B1> ȸiJodM?ZX;bqsO_=R-R=D;s6ބ :;s$dDӠ>$w+rKu73$zV}K2 XO OCh!ۻORӅF'NzE]jLX8Qt[&oZyⰻ%L܈~9zEsn|0 rV$CWɮMb@uRXRA؟ɊDlD[Ka>͌M83aTM[*ق4 2֬ɢ4{Scq>8~LaL4}8";iM#[1ʕMYYӁVf/QwȢ<@+x}6,b&qoiŕޅf&(WK $!ij05C4f,/^50 szEN0RngYт!@;8(v@ c(r 񛥢hMbk2Pob>*d{ h0:a1e5 4B7kէt_ʘTpx`Ur4CQaE04)> (r>@6P(?'8kճ,^0RagU%Yww͐ZKHAM,O-dݥ8OZS|5=eW'{fAA}KnѬksLˍJ7fh&abYu܄΅`-ƽ;"xMM#\ 49xنӦ)YbhH14<7D?`1h~qB1M,"vqm7}?qs J7 X;wy BfB#XfiVmo8P 6ۚM5F͸GmXh  9OCŲio"HڵR,55]Zu?T=Ω~d;Ja,r!H(X[0>k޲ZS4Jɧ Ó| Dk+#Gk1v4/#w/N2R&"o$3~oCE9 fؕG": y:_eʖ7[]@^HsA2 D{3Խs$)ԒL`N1J-yWozg^YoZ wEIVW.AjcDG m[Fuc:$)Q zр3]2vI`1F A)kQZ`|1lӴ,eOQ]<8Ddi$) k!EthKmgU/b+O=JbpqłgΜ?0QlȿNF16|lzgkcC7_O+ ύ7Fp ͛ ſ2:<mώ컜al^᜗)<?P%^)W~o nZ~h7Jeת4:7y=:;@zvw7Glhްϣl}'ѵǁgzJ-%Ps"on Grw.tݹ"] YR# !Vmo$Mq.7*h BX.'-L>\7]PN$5#72=^1.if5RJ2 ܫc %6N|Toל>S [ 6VY-ڤ)FFvo>Ŭ މJ}F=* V) )^e$hE~pxLo ^GEQ]efuTη6օ;rOO.]ctF[*% a` &^wǕKF'coZ^vя*{WN%DUգi*_mzGxBr,:ρ84}VO-2 _/\}:r=pa%]FV:aC8=Z<TGKȕ渠zf=u$XWn5 YL,aLr:◟IwmC^hxM$~nP l-Y/!IgxSgNJkq3iֳy-B:LjL "Vm+xK#eM.5AŭI.]+&p2ˢ6Ȗߔࡰ[-e[N@%ݿ oY-|و MF3U}s46*wHlȋNFVl( ~irgJ@oQK^j*O*O%=݂Br:sh9 -z(m\; wѻG͉rNaem84w9c7G6U]`*6w_uʞݢW&NUSӈQ % mv': ̚Nך\Fa!y޼d?8ڈAiU",u3iSID V`$h]Fhv[vAd#rUp\]6 ⁊La$1BS^B :`iDO0 aRJM\ϽO]I>؂Qq2% !ڱ!ӟt+In.r4) V;%jOIwfA:M[=rși}mH4N=Xz>»I5[ ph\[TD^7ՉĜ!D27 Ԩ|9%׋"=n w栢y0pВ';Tu}Qb𒕐1i$ 噕i6\gGWHև/kz_ePQ8w3>&=hi%qkA hE.&nFBcւ__؊?]M(jWHNIpr;Ő{t$=n`OU'3`SD" &mjYxb/_}faP# hx?a EMzIvKFʼƨ 6:1S 2_L1*CZvWFҔxXu%HKUd!ŠĀvc9VM2ynKE)IBQ =yY"h'6 F(<8bCWǑ| KYOm_ rOg7^G4Y/d!g>hs΂PdZyL2~s7TȎjDweߏC5Q|t{‘H4e~j$\JiDxd ~X?m9z) #|Oa?'zDw|K׏j$6$ZzL#++]/srŌ>JLmVLt4Z勺+\zY۪ff5ftGpy;v`;x!m>ubfa@1)hןrUBZ,"}dX>Wm8N#i:>J3.ԶJ 6O(0 UtjF1\`# +?dž'D0$ԍFnlcOI@_LSG8=gm>{N2@ڻU c9xO=C\>D0 Ij#Aت{ԨNxki¦cڕE+lMW0NV![YrPopIku!_ȡ&3 ;Pi䷝ZAY @!XM#h3pF>v8Z^{,,wcM4-> ydj䶋c:8#ʳI ʼn/$.m>CeL (_ Ll f!r=tğB 7GU@؃G]!@&T|1{OROmz*ѡɿCUmUʉ;)Ì*R^JІjN_6 ?o&a\z܏`76xF3&Iy+uR\0WݳvsՁ⏧"_ 𰨩 ؀R#<^kW6a┕M$u\UmZt%w(}$ˋJvŅ\>'\ ,偶77+B@CkYiׯg0%zl]/rM٪2ibXEqhQ- L ʡEKHM!?*e.o-WK )V&N`/. 3qni{Ibb5 %oNg  CŨ)㠐4�)kd^;ap$C 'Z80_K*D.}ئGk%|v71Nk y9Q9o`;v.hM|R7]x|mExR;ķd5MT(M6%gzS)e=WY\\.&Fs $]/ M ajf̎Se^NIx٠7Y ek0hB^!P3 hwʴfjwߵf̒25 Lab5c`KɃ-qӨaƅF#ݲTjJAmc-01- u?MEc~0b蓘,{b(;_38Tzy.<ݒm,A+vwY+3Z &TlGCNaWr1rhqaҽ21x]RQO!՚F7Rg*KH@V8^a1rŽ\ѩfpqrbk #7pSn:2[[wM3NQ}.ɽ׏ǪC/xm@y됛+nj\r~ʮGv"ٟ"oNGM\?͕rym*.W56=64m<,+pP5hG*2,:%/P>_yG' @l>%~hK+aٛJ[5u4ʖ >>4|75-],آ?P]rX}2.A[{pj"fmJ*kϝ9{e}Fk +| ^/'.z8 !wጞ?:uNߖC;=ÞՠhxĻXV&>H~t_Vz}`^Z+|(W3R!-ƙ,4 W>GA&D}̜b-sX0GE϶8)m4 }a <9DQà}{ҿqШw˷cIppu_vQb[f)eVKH["ь՛2!p$H}>u|>^0:yJ ?"w'Ꮯx1{Vqxs?m盔vc^'[䖏Չ0!ÎbqImTw 'Se"oq%6vn+jb(U W7)Rtzqzaj, ˈt| oQSttD*F}`wq"H";ƽB&.(%4DWNH?4i@ANڼJ]r(㛕Зe+y G yo9J8Vl 4` z[{mӤV ,U/.3IK &GΰP!ٸa@GC'mJvƘ؜q[.DqP<JavbwCyJXI[7ΝxRN!1\ EIqbI224f|̧5 4G 2V8rLShI:TM ,hwDH/_g[F$"oI( tH}^^U~tkjD gT%\aFG!}PyeKjwa[Y1 ̓E%)uƄfYm)~@ӳmm11iGyαB h+7kŷw&Hlc"f%_I7gR| 􆵟FTg~r:C~;_*L(,7h?oO4ϧ2oR'MosR_iIfo&~waLUW#&׀rklAYMĭD *.IL $GxwSr13^%e r$ge`o/aDzb}^ A;kcz*St Z[<=_fF({1]Bz$0Ct^x)Qz76,: הӹUʡpׄNA`7{xǽLA,܁/NIciH()& i%m#'%dI(mf]O{(ρY[חJVWj2F+*& 4[yOی`w }.h8xVTO&NyZ(o}mƶPWB~M+{YbyF|FO>VɟN3ߋ}g5EƲL}=9WCv.R.%hY߂Lql Hg}ĪO+]wZ M'Bo-*`g‪XSUeLMC"5}]69\cWsUokSLS<ƆUzbc6#`hUu"U۬YR7[@%$[_EAk_} . blzYۚ 7ƒ]šDÍrYJlY#|Cfu7noa}_b$.bB =I߼,|U0&a샸]]HUp4ʄp T4rՎO ֻb׽W#USΤ_hH]yJi:%T<[)Hϴ]7qȐufyv5Kl/ޅ#}8|cw)!i/]@+έdhHم noQ*| hR6Wp{eҷ[2ҭnW98tآ4NW{֦% 4[n#  fOFmԛ.ɥ/d;Nwb~,P߆:AgIiҋJZզ.xLx߱H8L7H]h:э^2EɐŗL˪;D Z-w^&*>=+fo"Gd}(% X Od2,ZWc0EN$bЫ֞ЄBgQl%G|W| )/#Btd!FJSOnE1$Ղ_R{jc]z ]%9^l,b'&m'7-Fw@瘡4{nCJu΂2Iǵ83=ɭ {ļ`Ix,!xbf7^M1zwqcn>"*~9dV;P(T9rH96ֺ#h ;0[5T tu>Aevte! { NeլDYV$Fdm2n(γ;=^3EP.Zd'Ds{)` C?fH]endstream endobj 61 0 obj << /Type /Font /Subtype /Type1 /Encoding 111 0 R /FirstChar 33 /LastChar 125 /Widths 112 0 R /BaseFont /UILTKI+CMTT9 /FontDescriptor 59 0 R >> endobj 59 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /UILTKI+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright) /FontFile 60 0 R >> endobj 112 0 obj [525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 ] endobj 111 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 54 0 obj << /Length1 1722 /Length2 10412 /Length3 532 /Length 11388 /Filter /FlateDecode >> stream xUXݲ $@`kpkơ ww\kp kI>Qo3j;Tՙ&@i33?@BIC*BE%4v$6>>v#P$G3V -djlP2vBs 3 fcP ' 4cFacL&@  ?\g5M:Ԥ0(ՀP/o.66ƶWuc[ #.@G h24窜 T`/ $ rM-Ύ.@;ܿ+`Cע1YbD^G;@_6h ? ) dg`;:CP%.g6 C 0ہ=Q9Q> ڥ5/bocR8YXb 5~Q,{K݋ } l"Xl,_^"@7^ֹ./Э\o#BPc/$BP?/5#oZ~!hH!huVW|!huVW~!hu/ Ax!hS^E^4^E^^ZO`hlj t_oN`y>VL^ ݋_ρ_-hBcB7 ; B)5_u B ǿ) 6B j/p{Av Z_L`L&v.A8Bq @w)l< DŽ#uXhI~yIY9<=ݩTY|;J m+J1y{Ĺ._R[)3i8ˈ eFJ )yD!&ÿ11XDd䪂ctuxq e裛Zp?!^=CӫIŖAͤz%y^0sK|r.6,eh|Z5||ؙ7P\QV!]q)u0t:$4-!p1=ː7] _M`x3@f`*fT:e0We:4gËc@wAXc/}klN* qœxoyL 9.B`~'\ i.0gAfEڛljK=5^\5ٕ9W wZcoM2]kV,Gkrz؆d1~ʮqtdGT&_"Ysλ7WdKpaLB DRۦ; nr]U?s*S{d#^ VTGY.+mRMَCR&rךr{JY|ˣ1nb_}Wbw3jQ#djmCpH+KA],bpcgn٫VeϞ0]9d%N^RBwQ ExWLqT P?yⱅL{q{pU*oeWkW~_wJYzra[5yv(%Sn6=drS3JT1_K ߢ{WrȢ0=3XܦEVl#*c6$M-6~Ux,sUmѴJWAE>ֹGПhNr3ruU,BA+|+甅 i{ޫ B@ B/ 293) xnP*cGa cLKEt'B󂮛[x~(NF\)c׍5O^ UUhҵ:]h?T䔐9!#9_{+XIb9ItFL+}VڌJ=PTO밾*呏a 7 &=c2YRpzQBU!!7 ˌG=0IY>"Ђ׫ܵgOTU(M0-1j}/,=qe8s A`柌6?L|WIStq>sT| )}E$ɳcB&2@A$^#xQmQ0㭹F΢;(DQu aWWɢ$s"BjUkKۥ~R:9˵U}.8o8?cG7{ނDϢ"seG~A##珊GӦK`,ʜ%/I-L` e䜏96\i\?:_IF#`EZ]ݓ*b!t6~h[wJ9ZTAARF^٨}ʻ4v{=fԝi 6V +9RMR.c!~=Ҏ#%$ZS6:LUvq<ɝ?NJ-=Hu5p~ba7OkkW/9^Ḓm+<@t IQw e C1Lݴ6\}x~h/D FtIk2~t)hZռErX`; ;+ |)(;smqŝÐ7|*9Gxn=l|: Xz%,)[Tu:^.Ү2؄2ώFghA&9:0hw$_J8Vs|Ѷ0/ҰbhkTK݄T<$0P 1Nrv"U$o!5TTfWe6׻: 7K\}Nh)\#T,ї,߭l%N,/i AwD۽ 碘Q愕(ӭv~.f[9"5F<Šz0,652Y8l=]sY,OT_)v!'>"1$Anvv:e{"FTd+>vʦa^3CꟅqB58Z_/7h$,coecһU~2DF1S;ɷs"rpȐ3ȪS6˰ͥWD.;j[^Xj~.g]V]o7}k8~cWٶex5DjPQI$tv#hS4dkq0NTB3Ml\u Ϧ_nT_-j$ ^M#?A3{3xLW-Ǫ 0:煴c:24퇰p'}O=5宝}R:]97z*b:*Tc>jt3tPpT"-o¸Cod3TSJ6*9-Q͂c Dz/ gw)B 2*-xk]|BUYi1R|1cN:Yh/]kgߖmlYx\ĐۭL0d|BZy|N\!Bь2X#WӌIWP 5i~4eF@$yDz5[Y+7>PR׶fUnǙ)rNiW6#JtATݚol 7Vbw{M% mkWJ#)6JU>z{g{CkꯡP>DW)՟y>4%gDbэ >iE-50̰.5zga'36(VMnMEo9 o΋>/S/n[AaWd 'Z?Qz\R:=D) j):ӣ?r(G8tYi62 EHI ٳ}5ʁ~-`4t`O=ӄ>2 RUv=֕2  !f^3Kd{Se=Ux:?++R"9Eqْx20MG~"fؓoU8ʃp)Ta*N00ǁ->?u|c:L挧蟏7U2 VD dVʼMci_ 6wE`m\tEj 8b1R憛isLģK-'"rE$v _dEt| dÏV|̌5CF +1fKiw$.-Շ0p X'3Y onO!=BX# '7ia`˴fc`d*i5E(]p^@u3ZsDCď\!YS0U11tTn%6`9;}}b1Uh[-lBITslbd5E.Ǻ!=fUp:icR])|xMX-{v&H^ lK"oM(i ͙6[x$^O˸$er"w:(F}uhW$dž?x4;S)KQDix5[ GÍӶl٘_d%&u*S0`"7L\Ι5oXDIZhrIM ljőPFjC'+Fq1|vNQ*60s!wE%3.}]yh_iI <Ԫ)6B4O/r=c܋PugTL.Z<t暗PI 3WV,YS!5ѐDL] FJ`S#K֣TB0Wvzs ЇRKܷ8KzLaӂz}%Wh0-w6#bnRwP}%D KɬesGt,LLplM5XsTh:sO6͔7^SS sLe*'l>{wfCÉP8yksY>L}oH;ta4Ŋ>|DٴwkX}=EgBY]]ptqy0ŜgܯNgTO`4n)?qȰ8@wNEt<:w[U']q7Stm_8imP'+hP =H`s  oV'Z?5s;gc=N/&}<5r:gDkz_p s o~cVZ剭+b%A*pQU8RMj'VxemA+6)̀?=B*y.E:7OS'k:?-[l<)t#hl b 4 03 ((X:_itL+b7"Q55nM4]wJ8:CvkT7 z_Ŝ8)%:7s^99Tzt2if:ygloöY&Hf(} Yᖏ*? yN: U PʪGWk0lDI1*+Bt_0{]N3lnx=F*\w~ PS6֖5Ft/7y|ufA]՟}r4q2k:6=ـm*_g뗕K1?01: Od6sj~Z#;z"x 2Y6d1Zxm,KG!)Eo#q#@ 0v$^fθumbR{t3kMsQW\5,j61?VA~ځSq]CM'{s-av#]UB5I$bmY2,b \FaI&,悫#H3E~"sFx ơDڶ7Iwe6ޓ,,3aԓ݆XJx+}}KLrbÙtsxYLZO^A艅1ezOzmN9{WE@'Èd8)QI+crjc^"3e&8xy9r ZTvd  . ﷶaJD 7&IێkVsʨhCz8DVIAճ[?Lقj 8.FIaRbpFu{i_qKOcK*WM^8 Kz}kf6UU~ᄚ^H*҃ Yep.&vT,Ӵ͂die[;Aw,ݒ#\s1aS91=[QeQRdnr"/0DȪԢD?i=sM¾,錙}Z=.}@29#k௞yS`r /xs5qĵ1d@5l FCU[q2(UZjjOݒKr&.[ sԨn;^IJҍx̒m 6ˑ!^Fx?z1`ӗGg~MVt׎;$VDdI7]?aJ6l鰉ޢJ:7I %~ז__~v\6"W2P4]ڱX- uKdl,*W&#Iϔ@ɜ>W(2n0ǯ|$=R;Qv$ L󅦈rLJ|JaC ?HWyr4z_r;uL%P߀}mhҚnϹSl ^Wq?4Rlg4;靎-E;=Wm=WUl5$_P"|l~и㶥M׸ `,4SmN!X[@{wMf[sb. ;5U ͹e? "9t`Cqуxs|} 6wHL88aa](γ_ldB9A:w5r kX;PDYb]:}UxXf]-;κaGXޗy]_Ɵ#"نiql"_Q٪&n_bDrgm4CĐJ*O`79I~:u&=)#M`d=6N돱HU;MG #|ynrNZ\-$[{.~P FJS(;#OfNT]2d;*ber< Ax&%ŗp9B}~l|_p"cP,Ā<@qLAtuaԗ؝]rcXkl3)C7$_Ϲ|rLW>)bmLEvol`E:JXƏm=x竓Ϋ`RfS-]wF._`̕u*lTIb`BHPhsa.F6GOe_)&Fhp1)q 4,v"L>ިs,j.떧egn pwu k2 y3^w╞@}قΐtmvOҸ{SD,O Jfsu܋H(ek^U ÍNı֬գ{{V"2#c.ogزY9m"uLiih@!Cܥuء!t@C-d^u5 K"}z~ Zݓ7Hiڻ3>=dމ9ڐ;TF|xؤ!<QW_6H،36D 8Sl3u@g-GW2-GˋRKgmqhC!VY!chmQ!k%p ip;^`\)FͮE.XN"eS0àZ[4U e~эwgj\ f*qim[6h58ʮ|nx۪Ex~m_X+`R\G+7.dd;mVirހ 93n_"PIxA@wc%j:hȷ 6?-Y giȐ/kY@OpF)VF{^ȧN9NDv8+nnwO6@cGg5q endstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 113 0 R /FirstChar 39 /LastChar 122 /Widths 114 0 R /BaseFont /BSJKSQ+CMTT10 /FontDescriptor 53 0 R >> endobj 53 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /BSJKSQ+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/four/seven/equal/A/B/C/D/E/F/G/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/Y/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/z) /FontFile 54 0 R >> endobj 114 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 0 525 0 0 0 0 0 525 0 0 0 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 0 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 525 ] endobj 113 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two 51/.notdef 52/four 53/.notdef 55/seven 56/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G 72/.notdef 73/I/J/K/L/M/N/O/P/Q/R/S/T/U/V 87/.notdef 89/Y 90/.notdef 91/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x 121/.notdef 122/z 123/.notdef] >> endobj 51 0 obj << /Length1 1224 /Length2 7813 /Length3 532 /Length 8589 /Filter /FlateDecode >> stream xeX `L A{ 20N\w .A%9{}>>?z]U/4Y-2P8+C(%K%a`S8*e  992`KG@tpA@FIx` T6[b5!`(ngk3P -@4[A4C-epqג+$ L&H l `Sqx~CqS1+ߕ;pwta@e 0  <b.Y9@\e8@j5 O%O[nߋj(\ do߱?Uם$;X@V@Nn) fx'zq!P ; u?m>UhW. Sk,m;=u_n ?EIC@6 ?dS)؁lj'Mz=E7=M?$S\?!SMDSo٠S"?)>%r |>p9dO2<9^$Z@Vp0Ti9[bv`ö!r$mvh)A'1j)ǩ!QFVd>;&&(%jK5iϥ#('yLvc⁴Gxr@$s'XQ F$~Atݩ7}04ɟ4S_ -SA#<;K*vieoO>ޡ}7 QXҀ[7#3 2"7T?mdŬW*V\B:cZ=&YlTxɫ=`O /ۂEаQ[e!;)Qp2K+unp;򚧴W 94*}~gYԀWy#:z$orJX kI_ g8,LZZ?7qB|Z&Rj]+w0M~ ^i PNO3臭`krP< h[}t~czl]~s/3??;ڄ=*϶iXPo#xI_)E [m'Zo󱁶}T.nؑ |69hq\kAC4[vxk.+k>j/TDbV`9n0ϭ8ò'4TbLc\[{a76=Gɒ\)>m2*jƠ4G/F0 oSm `ɻh^nPP2 >o#E0;ɱRnGqI'+64}!{A>//Qtb}' \RZSԤ~ř]06=Ks3lA"Ev)7>*E.]Y fNyyM__@ o~v+*{.j * @gSg*ebw΄6(9C~![j_dY Z:Q+]3zc]uuC}#x>"A3b- !_{!j3=o;1ߓ1I?GV?Z\,Hh,}v`lb~tp wE}ZKI6 4s|O{_I:5w5ИHKN`#fܸ,X!)R EKvM|y6 kH$FȑN7"/ tdiW54(1KZų#xEY!9QoWAϸsS-\gxmrǯ6u5hʣ}I' 5Ҩ 6|'*.Kf'A>bsalP7;_fb垺}cܕ7{[GK$'2}?zzB3ux׸DaZpFUu9ciR/ >s|F>e*ߜXg:scTQYW3)ltR$b hQpו:0kwlÕoSHya61~] /ZR²3zyתJvbwbM7`[cŪқ#|&+E;R."}cxI)ٌ],=ߐhE!]6ƃ>3DT9iQt"BDYJlԝ 41]&LUE W`\RۂӬN‚*h*xt-rWW7ޢiэj3k-Hj{ \jHc8\"s0gfל2]. D?$4tSyg'=N6ԭje/umg\nzK6$zQCxTӐ3~.÷}.߉ `<O[c$[{\cEZ"ȅ;E݄Oc*g,kqG\ڕYVnX^;*ՕIގ|ieAqmŪ: hJ"@ZWC:1k or%YuM>5I{Jbص$gL U5;o6=ɋ;#YN;z/֚^2Plbthd F>k.[WI2>1L}cn㘴ӯc+'TvY0ϧM(/]D|[;$GETTiww ґBt`8u)mc@iL0.2^k]OYB۳4Z!"{߹g)}u_=թ9΅svԼ7a(KE$R^]j? ߐP2zNHSܔ3Itͧ#-*隑.5)_%;y񞟁 T['/g-ν|U#D la<9LVH7FJon ~_4!7Je:12}A3"v$RisIO漜mE?ÿĆ耾cU}.јN#d-DԢ7=\||V0?PJC{"R@)8٧v˫6B;c̳}9O vĩ1j)L-Q™&=S+-_S*6:Z"d%./fO^vR]"&8v%36Em/a}DU>UR&%&Y-`v޿a4$kq3R␺V~E](jUپ^߷X7zG,>lgf%Zn8D<){=&R= ZoLޝ[Y9ٓV%&^VeG2ZT5KwN.n]||X=q}CoPe HCrNvj֛4(pDD/AgDk?ʁ.MAy% PrvܛbUE7*D%&y%]]4'9H1Aڌ{3Bo5kkaXD ̨+ka_O>v{ 4d$y~^A~\ZZqÆ2*/4il}Gؑw2pj䳼p R: w]aV"Ƨ`0g[3df/g|$L<V/*5ߠsxguQg- p:]6\6y{7hv.§ )2vIKL_! DZ nUĀ __ U ;~ |KBH-*r+g7BUNc`Ye‹RʿX<\T@TDwq+["_psv\Fo~UmDJ-_,ٌ1Y9h|=n3o|_aUeJC`E%G,!R)rTVȂo*aCOY EyZ32lH&tJtYk[ Jĕ>UC)̏CR.}cfdQ+>{B֎HǾ/` "2QXPoec@h`^r7C} %.5@o bљXX;o3!8 id:3Xp)u'7xެè!{_iD\4n J\>3e &&KO&Q@LJ6Ed"E`X'YJD14Kvxj%ɒOhZ)*{^-~M[^ɘVv#?k\C»a ) #QJ<}ap#mf~> خ)c`GQas{nq4ʽtW!C>ɸ}GALN:JEQ1EXhӳ>#>S/!4Sh0@ 1$wMbyZ徭͒ ؒ-5zTdup Dh&ڲh_x&;ˢoyX|~CC(N.yy݇_arl.K|I?& ޝ0}RY9Prp+Q:Wh|:#&1ž.B_";"9PkX_Af.]H2s1Iy]Dᙹ붝/T[N'dfg|N}0hݵ$gSUk'};M<>4w o7񭂠$yi[n{03bSy={|ˌN{7XfiLC'U:We]GËYu]S?_+ ^Եw$XL *i>51׃رQGQ/0]l~=`?%X 4X͠W\C2+WV~Wwk#k/L~~u[aon] F/th"z> BQ&>+ٿ/+Xw 5%ƈpM;FV ^ SD1ԣGKLȷ b>_Oy-[MG_"v.P#/G7oX{ @IE`wjX_nJhQybK 5F{c9GBGE1ke*` 7]b2TKٹ1{FWs+Zo/Ms U\tkĂ9$^1?Мp"Bg~E˒mF$[9U+?' ? F~p' \"\oȭqߟsO'EW홭!qvRnGRz]Up*1: CTi^x w "DM5kbXoϰB<>)b\WkNE$Ln8 ~LK-Igu9Fp3=PKS!gIߜȜImM5lJ F-Ff%n5mSK*,c8!xOv|>W_TExFU_jUQKcE M~οRSvT](ey6M7C0w \գeyBD뢈33g̬glZ-H?}5Vb6e?F^Pe☃QEU!%UVEO8e`ZiY>`[TXŧ_J9tmp[kX/V])sS\q>qaIN76Z QpQjJ%jإZN&i[#fP+V+ G\V GE J6ŝZmg IGM۴)LM/3%RVFd}wS%R5wO##w:B̻E88 Nm;xVYPN +ųM6J:r=,]+7𰞳&|.kٱg=C!6o4 )ȍ)Rl,$W/Tm!&`-A vI0}Dq/"rӂ];Y.(h83tziQ=>mx>7M)l[)RuFlii OR$T, a 0K=1ekx})>6: &LW7LZZy:8 z4x`}#?MTES@Lpx߸푏99g8V3 E6_G7JUָebjZ%u>|f,Tp<> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HHSBLO+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/period/colon/A/B/C/E/I/J/M/P/R/S/T/a/c/d/e/f/h/i/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 51 0 R >> endobj 116 0 obj [307 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 743 704 716 0 678 0 0 0 386 525 0 0 897 0 0 678 0 729 562 716 0 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 307 0 511 307 0 0 256 818 562 511 511 0 422 409 332 537 460 664 464 486 ] endobj 115 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 58/colon 59/.notdef 65/A/B/C 68/.notdef 69/E 70/.notdef 73/I/J 75/.notdef 77/M 78/.notdef 80/P 81/.notdef 82/R/S/T 85/.notdef 97/a 98/.notdef 99/c/d/e/f 103/.notdef 104/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 48 0 obj << /Length1 761 /Length2 1294 /Length3 532 /Length 1854 /Filter /FlateDecode >> stream xR{8[iq]hSEIzIRh*J/hG/C3mԭz[K[EUPTKGi,;g5~>KsӞAO/c.NvT[miIC@,I مBtD[486"5fD(<,>@g @JL D @rq@" `$Gc-y#`~jŃH`bP|n"#XX5 TyoZ-)rYef no+@9 _M ?zH[䂀=sXBWaďDBV""@P"a, TGU0@o#Xh$_RaQ='U3x@&"U0pE ٮ7EG< ڋQ6q+2W^rQ qZ7U7R-r"CnRILljnsLIxHZ ^WM/coN~9;_*Ó7IW/zڽHZ/GrСl0 ^pbrnVIYGL9CN^eٓElcن16?xt>u&tvޠZj? vYf5N?crl)~KDYrߎ_umZj '6e߅+GF6^Ϩ%ݢGMV#4Iܞa9,Dv2tTcdq?dš Ǯt>x9Sz^'LʳkL;ƽ nDWH¬? KsYTN zѫL(l%є<5;_FkIF`}]qx+hr<pGQu/Qa(?wZXy3%rڂƜ.M1 ԫ&H Z{''f5WI::^.Ǐ(ybj@Y{ÄO׏]P*nMmݥx.ei:)L5*q?M0u˥څs$W#&qS/EͿ8hk4?S[ܴۊvqʗy*hn* 1o)KMZͽQ?XnRx_O-m[^훓b$qmtS+S M Vc oĻer;40x!`#Q0l+Hi0К|-LiX[P}U'\%tOo3wΣa&zw(g ˡ^Ey$]cvO.3]z]8{L^! }iܿffv₌^ ASS[ӝڎ}ۀ*7+V!er{Ei(ǏYɲ.aȍuNO1슄1<9[iXN% i/uUub>h|^WE{ ϑ3isǘq+msXx{Zu̯:kGȧ̚#'dJAKv|ee*=>މ&:%ϷyD";˜6qn/_.prQp:ToQ9m{Z~ǐ,_.=id]e?\ O <:2endstream endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding 117 0 R /FirstChar 105 /LastChar 106 /Widths 118 0 R /BaseFont /INSBCN+CMMI8 /FontDescriptor 47 0 R >> endobj 47 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /INSBCN+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/i/j) /FontFile 48 0 R >> endobj 118 0 obj [362 430 ] endobj 117 0 obj << /Type /Encoding /Differences [ 0 /.notdef 105/i/j 107/.notdef] >> endobj 45 0 obj << /Length1 845 /Length2 2049 /Length3 532 /Length 2653 /Filter /FlateDecode >> stream xTgXSiE*M7`2j\J(J&@r!"( "%2HSD8CQ(#""EOęukw{;spGu32{ǀXh >`ۢQB &HdQ%h==mM0JGՁ! F Ic*D:dRIDY~ ߃D. dq53 p#p@f0HրJb߃T04g)dMʛ6UI2q2H!3|/ [_7DZiDINSi? z 2< 2gsxLeӿڲ4* 򥁀:ZKHe n D ?MHG7ks3+?FYt$R!/M!1JBϕWYA$ 6@d2\CT rwԀ,L@a0a0ȟϔ$1t_o b$/P@FB!38a@Fi:XTĿ Il&XBO9 6A2Ϫ/*zX]%HWtgƛa>fm7)qU̷אd lYx{ ԀxN) .;fHo{mwu7=Z'J #M+&:oKGDu=&+gjAU.9XJICs+Ą*‚1 ]1.qt9쇨~}ga"/dB3#7"Vu2Ϩz/N6^g+y\;h,[:FBCю%n]F R=sL;^{>0)B]/tCF g9|,ԇ\T>8)3%?l2Txt`h2;Z׷]7dHS~4?9Ec;d\M*Jcr\rre2'U4YQoӷz>Tj]?"A-;*z"g_'D]gtn(V cކ!lrp$u%Wi y3_ˍgmx/'r1/CFQ MuRRFd+#QcᰛbꜢZGJW .8GSB$&/^.nĉM';I:qy~}d?!|m P.ad}@b I A3kV*rzL iÇm{ w=} (h3,ҝ+o@37|Ŷd۔Y}ZWfHi?vaB1M,5dzmxmF_dOpQ&N@(СշvKum0Kq[~lxZ263Le죱uU4U՗[MCK>{FarZ_\zWDRllđhEKcs~kdi^5bOObyAcZ)ܪ5S9:Ǥ eEJo&oGk-'_1/ɿlbJvtEF&#kk(rrWdIoD %co>k\!&QRoE_O*{iؐjhu@dev7ޣ*ϞU:o۱~ѐ[wW\DZ'y5iQI޳J͓9*3?ld&7|IQ_٥h앰(77B#/WZvkOY-sʺgK= ER.) ?p_9tբq\k ڛ #nD5 b+ǟ+V[9'T0<%]: z،ƊvQ4\v4*~x5cwn{R嶗[vwrf]cBUqMn iV[ixGOJ; w rGzlDw؛2O4,xyDwaFP>feNU>b '//8j==C`u|բ[$3=|:Fcͣ wO(zz>`_J<ϠU-WKteLᬙk\pSVY̤ss͓ʄ&tfiH"/e] ZvIEؽS}q 8(%O4 @"Škendstream endobj 46 0 obj << /Type /Font /Subtype /Type1 /Encoding 119 0 R /FirstChar 58 /LastChar 110 /Widths 120 0 R /BaseFont /PVGBAE+CMMI10 /FontDescriptor 44 0 R >> endobj 44 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PVGBAE+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/period/comma/a/e/i/j/n) /FontFile 45 0 R >> endobj 120 0 obj [278 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 466 0 0 0 345 412 0 0 0 600 ] endobj 119 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/period/comma 60/.notdef 97/a 98/.notdef 101/e 102/.notdef 105/i/j 107/.notdef 110/n 111/.notdef] >> endobj 42 0 obj << /Length1 736 /Length2 1025 /Length3 532 /Length 1567 /Filter /FlateDecode >> stream xiTWK0 b F4˄@R!(,b0!7TP@,h{@@**UQ\(Zz:g{{yeلrdD #ppW \>!!JaR ..*0Xד"lC"RC8BX= R Rz.R j e\&@ T`87 zӖiߎ! hD@ ^0AijV FCC!3F՘JPk)H BI|t%|eV=rO*L+Tߴ09>e#!܆x>ޜ,p*LxFtHL\>+z^p)!pB89$Q=t2PG8AKI*$c8/lx ]2 pN'YDH߄R-IBtok9FJ7Rfe^E^-6q0V >~iZ{ˋ wKͺMg%5N,xcB֮k݉kמo[Z:KZ6F◆!l߰޶1JffgQ_jy2{Gev%}"L4)7guq:S \V(KM/wPyԔ[+vQ+ E(ͬWT`a\8pݭc{F@KCb~}-w^q> udΡc)F[}>>5>1opPV1pNpOr_-}~עk ȴ1VsN}qG/ޖ7{6,ww{/Gt/j;РwL[Q+J`wEtUG7"Jμ3焴bc_L[&`:e\DYl#+.Tn.7QrHӔ|dUܹ[|hmnLݽ(QY u k@O"0`x=wPQ9Ȭٰ:g IlO_$9,9oSԒKU0.n( #;Sf{7t ZœEuS$bqEyeiQO?=9Vh0`liy)8OP1EG=OWU`4p&=v+X, WdM57+r<;;p2Ԕxiٙ;v샆DNTjpmodf[.6can.+':jї ;#ll:8n7E ?]_ZZiq6rfRJ_6IzoM˜UX:ݎ,6[~!P4VV]Gc|K.24$#_-6<9zc҈V46),vj:ֿx _!Mnzkm}OƄX -Xo ^xfu=ۣ"<޵m1/+/Ç@(IjcDendstream endobj 43 0 obj << /Type /Font /Subtype /Type1 /Encoding 121 0 R /FirstChar 84 /LastChar 84 /Widths 122 0 R /BaseFont /NCZNZK+CMSS8 /FontDescriptor 41 0 R >> endobj 41 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /NCZNZK+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/T) /FontFile 42 0 R >> endobj 122 0 obj [726 ] endobj 121 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef] >> endobj 39 0 obj << /Length1 1374 /Length2 7218 /Length3 532 /Length 8040 /Filter /FlateDecode >> stream xe\]Vcir`ii.ii)iESR}?g~o@R]$ ssp dԤ y\ 2P"k R.0/0?&@jok0˰H9Vaeh;[ك`)0 7 Ys`rs`K=/GJg_akwynpSfIܢ3 `r;õ@p'7Lgqyw0Xw-Aj (?SA2' /%J b wYYl,n Zo* Rlt])W݁{^qqpqq߿? (~2CA^1'5v8]@ 8]l;$ta~.'7s #i=pÝ<0"H&-p&A?K)&<឵~oMpg\sZ&W}5;@?. N  \ A6mxpu}@^S?]ܼB ?- A`Mko_Z d8l%_` mSz]LVBpш+Z]y:66Orv?q ׸mtrt5-C'kIYy/euvVhz^yd a4Zi|᫞I ȫ!lgw蹉fHz*)8Fwqcׄ5&%Qj c+ZZ~>1tfcB[ |e @֎B]*ƀɦv;s#+y ;_ >"Ggpc[it܌U,yU͇=TruPaӍO~n Zht]a9Acw]\":|p_W B)VNu.ӏ1oP[qFgq$rc]zvn/u5LNb 5 vX,T>2eqFϞ$J3tGD168[X_K۹mᓷme$mpa=؜/40(2kc+*V\a&{QM̂sO}_m4pǔ,)?ldŏ ru>Z}f˝ (nNΝ@?Sr;r|sc`.m4~mt% saqJ^ PObܒl'>Mu F2 DζE~.oz%h[54T3_nL$a"Vϼ!SEeؠz5>]qXpp$#GWz V1dtK65ov A_kg+Oym6GSQjJa2gcxM>WXD*a7ȐiEG93{ӱv.OS6Urq!|Z O?7 .G~0աvP˩1,t8< {`CP2ua c)\X?V|iA ZbW*ƯeapSFJz"C=)+A$vN)ф-[T_kH 9F߬Xz8%}V($>t15f'ɏJV4$S|DHis+%'it y$f$x;2ѐ, dmJgŊ1)5b8f"3Fg)xn[ q ss? R / Օ):Ju "(T):-p7M4{Ac!Us)H/gxqXjƒs:qiOFm\ݪ$Yf'<$W9 p)A{w߈(Kt%cѠcW ~R v4b1i&U̼wh^@`#L"m탅Zs2[Ϝ4ZPR(/: tKq?uѩ"7=ye \Jkux iXt00&=lW y%~K!+%P/[F/0ـ'Oٖ+`PeC)6p?(I9K]S 0KËDXd U9 [j ߴ'=iO_#;c5^'3 d5 )*+*-W d(lhE3 ;=]T,U'a:  "{ ا8 vD;Z{2]1n.`rĊz[2E4+'M׸'Z9Q e/'8yfR%AXAw;g +EƏ )2e;3٠61D/6yULGT(>iJ3{K5ҝCK2d&RL>:9*{d9yFtS_4=3>[[%ܚ 3+o1D`&g$N9a*+ڮ+CDŽX Ǝ>FIZFSHߡ4qu4E)W:>xt^Fsxqְ>`x*uC(IqcϢ|F6P52Z֣vxXdP aѳpV9GR#cM~# &TK@=eDmo֑-g}Ƚ*p'45_9ikS&2֞ N-ЅtcNu{4һcΒ~ب@׸*#MNx> ʛ x]'^&r$bwxq׸u&wVEA{ovl,%qSxm_E)!d=-.5PpYJ%NAW>׶oQ/zk`4Wf8n^hEďKM:D\RMYD,΅>qMlz׮r;蹦;mQ37WCJ4,60 4J6Yx,߽wZ1;q|Г}@`9" J^%n }ާj;` LMj- çn.PzHʨ-DB{˰p8K5dF9e'/IL ۪l'ogZu>_C{pO/EέK[j&@q WW/Y378fd >)`(4ƩxS(DCA{{hSݛlFiExm gTְJҼ3hb̯r)E!64Aq>ΞkBLйdkg%o ΀7}/OF |6X f C(yU7[ˣjەoD4^'hއM/ 岦Hd(sFT+ӗL(o舿7ԑNQ-nVT:F%!"x] zm2pn"oxy\1ۜtk')o{4hCR> eh Ʌh﶐ !F1xHzgP-;G8T;yS860έȆ屒O (Ե'܉mB5+˷koR/xD h)ow:b >4p#1Kgߨ-T!%>n+ 9ʱH mN`N&C)/rhиA;n V6 4._z8AD9*.ڭ3n!P4_uR<~9ԭKۛ|"FlѺcͱfm氘gnre4 cL[CZ+q :JAIYʬ=650zj ;JϫYg%bMf֕DZH ^:-0sL"5a&z좻R3*(Rz[y7٠{fWuObu!4IҒkq0M#IHɐ1% {=jld}Kq@lCFnz\ZW]ԫr3gşZdc/TR%b5~حZDHH' ԣς0u[PsLOwD>\݀DĝH~ἲ<[Ct-$` eT()gmL} [i:BEd.GußYYˑ>9Ixg!>:P|LT~&$T{/Ӊw{9\Uڣ2 Yˋ2ߕOv$_U*B;^B4SYq]* U1V-M4& MS$nDV32漤Bl~[x&Q}Ms9g*HE󪅚CLKkQ!ݛ"Im\n./Lo~Mmpo1 O*'\6V=g[}%|;OψpISe/nUe)<6s'`[E!doo^U w5s릝aęl[߉/.ZoO1\OͬF\nFMF.Jg W<=B:I~Q*1}᤻(tݬ}hG0zBr]5,BAjFvtdAulˬD1SLQdh0i:_~ '@D1+jq20u5VR9rX"d l )@-]si_8Ѧ(!ixiO:byf~4@kLQA$[T_4ɱg[#kQFP|}ymXB`r<6ĘD̊IH2~pҹQ. I* !XF#WPėZ=̘lkoF>lrڝ/=f+|$_<1|FÝqԥݛcoUP*aeuߖp|ŒgEh*q4 Dϲ>{cah{ÛU<zQx+$U ,y8szA>zjZ>F}ycxA|/32x`uMe`\@}Dão>&uˋ8;Z MqR+:ҟF'~vQLNud Cugm6 c#gEkqKMO r*.Al:m7^2ULoJO{GQv~\8* bmblֈu,6vRORRaS1CI~1.Rc}u3,Yr1)nĸ>Cṟ1+^~ެMAY=8 @mjF'f"@c/._j|T1ܢ̊)F,zqV1bsH\t[ 0z* mXgb%xsA*_Ri/|{%}g׌Fy g^gSKuC۽¨=gJ2nZVg" /658 >d׿>8A@aӐ`'GHoR&Mz2{@aKg)s.$0=W^VTC~"Dʁ5a׌lm{Xm,0DvZ93&mQ ظ-g#1-+E`%h2RU 91yp&`JJ^Dm ;dJU^rxްhNєyhttYUU#s Ʀze,%ZTώG?7_wʚquwl&fz61OI_/e$>դ?@e* d Ѓ>L %K:˟LZ~v=[k̈́VThnyE喞IxzRoVJOa䔵Yixɔ KnvAkY& wIE~ہew!k0#/D+0 sv:b/_endstream endobj 40 0 obj << /Type /Font /Subtype /Type1 /Encoding 123 0 R /FirstChar 45 /LastChar 122 /Widths 124 0 R /BaseFont /KGHBAL+CMBX12 /FontDescriptor 38 0 R >> endobj 38 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /KGHBAL+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/hyphen/period/one/two/three/four/five/six/seven/A/B/C/D/I/L/M/O/R/S/T/U/a/b/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/w/y/z) /FontFile 39 0 R >> endobj 124 0 obj [375 312 0 0 562 562 562 562 562 562 562 0 0 0 0 0 0 0 0 0 850 800 812 862 0 0 0 0 419 0 0 676 1067 0 845 0 0 839 625 782 865 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 0 0 312 937 625 562 625 0 459 444 437 625 594 812 0 594 500 ] endobj 123 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen/period 47/.notdef 49/one/two/three/four/five/six/seven 56/.notdef 65/A/B/C/D 69/.notdef 73/I 74/.notdef 76/L/M 78/.notdef 79/O 80/.notdef 82/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y/z 123/.notdef] >> endobj 29 0 obj << /Length1 748 /Length2 648 /Length3 532 /Length 1187 /Filter /FlateDecode >> stream xSU uLOJu+53Rp T03RUu.JM,sI,IR04Tp,MW04U002222RUp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`臇9FjCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!- F& řK,Ipaz)Z@ABLܼEariQQj^ 8OajjEj2k-Yӷs]|a>k_d?nvfJm@%>wX,iG /vRfǝ%ش ̵Ɵh3pi8LsEN͚ϯ/%>nԸ[l)* W2nT<.s9EN{6oc^YD/jWh?V(9+AM _{DCO2=)s#oY;ݟsC=՗b;*rSgr_*}=.MrV3W;vfu/ lI(k-<; S=ء~&O,֫ZD_m_7 ?QTZsׄݛ7,g;EZOy,L+գg^Ԕ^T;nOxkcoXw\ ز_IWNO~綡{r(Fw懄;ӌ+n2Inс_[=8gkԀaa@rNjbQI~nbQ6$ɑendstream endobj 30 0 obj << /Type /Font /Subtype /Type1 /Encoding 125 0 R /FirstChar 24 /LastChar 24 /Widths 126 0 R /BaseFont /WVAXSE+CMSY9 /FontDescriptor 28 0 R >> endobj 28 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /WVAXSE+CMSY9 /ItalicAngle -14.035 /StemV 87 /XHeight 431 /FontBBox [-30 -958 1146 777] /Flags 4 /CharSet (/similar) /FontFile 29 0 R >> endobj 126 0 obj [799 ] endobj 125 0 obj << /Type /Encoding /Differences [ 0 /.notdef 24/similar 25/.notdef] >> endobj 26 0 obj << /Length1 1676 /Length2 10964 /Length3 532 /Length 11920 /Filter /FlateDecode >> stream xUXMhwEpwwwwׅ[ [!H48uᅮa̪s̪z끂TYA( SP02SPMܬM܀%OstvrP3 bt63q(YA9Ljf@7oF@U+h06s-qpp;l?C@W$I);:ýLZ@R\N=FMhtqZ)ͭ{TL`wU hlff0s+t0o жKIBNGGT_!ek7uo$g  :ppL\\LAD_9 21:8@[pt0Adؿ vAvf h'>Lf&"&+o'+ß'h-8 q\L\DL>@??r32rr5Ԉ˟a+/518@fE;?8AiMeCMR!P!.P{Ԝ5&@%@SCzJ!nP=?@T5@k!P=gs/x@cb2dB /\B_ AF!H/Y ?p A!H/u [!XB_ A3y :z2XAhk8\D3wwl[X9 hhfQ Q 4-ekbcB7Bj2]ل3VSU kLʴ`KoY>Y NCOQ:[o8&+tJs/GN a6H<8%4"(HUQ?;WFGnz@mΆD¶ѭ_9v?c%ub UDԿ g,\aU'dB0"r}%.qf$<~ѷwiRpl4b3*]-eL)vix]'z]l7Z Q@*rraAv/^~&aP&F Zbr{GOL!Z1=oe c4R)r<<ǨoOć݊æ}b኶b:\ hIgZj -K違~,*{lREs r)xYue)JH1V ig<8@?G;N. R#z+N\.T^63T`'tK#X`Y󙦔&;.%ۺ֥ #܏\nYRXɔRiTa=؛N!(Yv]̚\zA-.*'bpU;AOW$hD^czxlS|]^5jZh+MuȎfW mB$v6B F^D)ЂS9ęOTל\6 pxbwww'2TYOpi9堃1|ӑ?l\~!nʁ8Tn8A%UNِE0 3S/*y糨Է+WskjD#<;+F1ĦnMY0ˈxfDi'ਧCώAQ +DfG㇡x܊h ɌN䞺X\^m4lz^'CRXg'6lfNFמԮ_XbEo?g;!Kg iH&TJ'"=O?#75D-x4Sl }Z^(\E'cI4a9;`1[ VB2|9hjG+ͤ>=%?n *َmKvg(ǽKT1=5&.~* Ed{Fs3bYHIAG5VN}\2 <ݕo? f3 $0A0ZV-mv_@Vٯ9qQkc .҃CȈ0F\RW*?b*\j T'q" "`سpOQ͕8 3g6`l ө!7%7!z!oc~%}΋BY񃰫9\)0/ֵ1NOY§L܂v:rhfv^L7LnOG3XL&)/POd}!|uro}MFm>majo[fz`\G0wY*p濩Ŗ+sEyE  yX KUzBf~@Ebzg9S% 9֒oE{vV9(=oĹE/1q82ʺl! Fu7%Vw2Uϛ:FǍӘ6.>m5X$zY<_Bwkڽ:M>Ғ`@0eKPƫ\&# /6yʹˑ`7`W4Y9})l#_i^4so/As ~V[I)BZT(8FdR^?&-.`Ibv] wuT9WgวC }IAbnGnMТ宪[:)QHsEwsn#K6n *) zkUyч^nG ;/+:YfԘ% c`xMpOkRR fyuṇ-h~{Mm/ k;?aG.`tW'BzB7iY|ß(0H,%Rcy׬L~:>ٕvى~v/Z GN\P3:`"Ez4҄O\]8uP=TO#.g"̿Ҏ\(/e* ;S n؁K[\8uC 듉ןY15GrsV:Ch6;![&03g| GY῭bJ%% svp"y'7./ruT~ͱ_DJUC%Y۪>qK oaT9;dNƪE0ͭbuC(F.AY$j%or[ 3,[*5b T7Y?ޑ>ʶwZw_9L[_uBkbSRcr\8;P4Jq!bWwbH]xǡ7HgrjFfʧfwei,o=|/譲0P$Eӡڶ[وVzczy4d$)UTa_5`x$hl~$jyH7ÖJ\%W^O Ǹƃ$p ֔oo+W6s_nD=H_6 L&.w ;e.S!iR{ww h\p "- V>'}֏2hּ06OÂ#lt1o5nl|T ͊+yL{:mIcTRON0;լvt*k}fZ S7UC/^CbA4KڎBʞ22?.3JөtQ$#ZäWp0= %Lb6'M1kKnn"G)F6힡{5aYuv(Ls>K AW T zlVd/UjGnOQd"Mc5P'glv% X|kTnsH^A-3dG];t`BZ~ka௟0 T;Rb.6i"ZUMTU5x\GϚLc]3sP3B8VVnիC QH2GYoݲ0ڰt.rS?.f"\bo>#kcq)xӖC{ap/"»Κ3"v~3q䬪{ <#LT+fM/.w+QW+ul%ؑ(-Vw"Fp|f6T Q]!KYEЭSLb~.Dg{$T cmEį/럞/TrgK h-&LٯwwT `/yGϊïRv2):u1,] d9z}8+m\ 8I=$> >}˜I!nqbjڧZr,-X{rҭ1&\6g%y%3PTX(&z~{seBh0<Ȧcl,@#p@0E\Ƌjo}S\kS>U}%>06e %B䪟@y&ۊ~r\+-<μK bCr\W/6f>$j%wU)}}GE%VrYrn}\@E  Q6~JA ǰtGUg%NtFDyY$qb>yYoѝ؆̩(#$8ȇ%fl%&d GzСcY<7 2JTygM[9˞BwgЯ}B-r &/Z2ytj%|EY+Or[Ei:I!Y3F@NMN{} l;LU65:`ܶ-hB n(Q?>x\f63wnEa1,w5)0 8IsV6/xa*x=qii@/.ZF#>ܮ0Yд0jN( =[F.2$3I$BI#tžtml;GcG|g@{VT_>QO$(S a,C\ }p[ـq7o<ȘsœtT1%ơGD?w{q%  Q.K5EV xWԋO -艬{jOmO3ZQgm_wt%b>7L[.'jWΥ Q;̖&W m^D\Ή7nkVj*V~n&# ۲%)\\Lv&ˇg 1WOldz>yB`J[1\- EIRCvYLWOxr^r!T>pZXh#^mId!l9bI'q=ZWS׮{ =~897*b7#$tSقe?Т._MK`}ӗi=@/0A}9"7db6Sq3_Otͭ-}[t?7W"PId7ܠŻp lņkgz⊡%`6XaDsRA'5S).a`U!aDH>Gx]c $A:LZoubOu Ȍ6[+4@:i UEJ/ˬ)cEƷ-Y=Ȕ3̹e~uLXik0y(ْ9CWـV n;4mwTDIo7+JfNh'\Qs'ݗ6M" | 7eʽrH[ZLN zˋY ˋG]qVM%xZFʘ_yqxH/y޴Y.P++uՐuʄ2eLojAwlx ~|Wҗ*F^iErKKDR;i Z-GJC}sV=L<ƲTY\UP44q)&u*TH^8:.\ ].jT5P;?=y.5-tX"m3Yzow >zɾ#b$bCNX|Hdm_bnxY†Z{RsCO#=;C0>oGBd;Ifdݎۏ>6A?䲜]ܝ<\ QKL!uQά*)R7ባR1?8x"4Pm^sOp\v.'ژM5$f3O0OK!`#djuI)C"^Q-7;5TH'bv4~*L!,=1Jw}uFzggse0$pS|^u/j4BIȆwUf=C[ n'u֩R mCMa +R"_iv,;/ EO)f6BȳfLggwM'f7cS {ݢw`:iT[ʡmM%0/L;Yù}q-%h%o&J+GѬ gbU:ͽ|BȦ` }[Vqn.-de>r5cJ&dS?ږs̊Ǘl28sb: >ΌE7 YT$bNGO!JC H~o`-Y0:a D]L|ҹ`!z!+\^)nCCm@ctJl.O`/] 5-o4 aG._d%](1mwI\ɾfVdҤ*i$ui m!\/Q{M))WrlU岲SLlT4$2hjT5F7&qG"z V=nqƺ>o&z[-Z ROuA/ o,A<·zcvS~cjj'ӛ2)Qw鋽X  M<1R4MC:`c\O ͈3{ڊ}XBmh`c)-?~̡1F_*#/Ehhe|Sg룵otNjZ|tV&(ӁNBc riD 9.&H<Ң#z"60Qd 7)O߽3يE˩qI֌Kᥡ uxn@Lߨ&4zm❞ꂛv;BL,J9ִ#gZ!4E6!R%41zʺد4u%c\be00 цdRÎ~j#hۻ5I$ 8$d/Dز4eXogVk}-e6~TŘ-uMx|mQQnd:wIBwp6C5+n@ .dpW 6r۶Jo CFhݱiu]TMaҹz>>Wٜ#~qVB?ug2}qA|t|Qk+Ҥڅ\Ql `&j$bIrʀth5{^AtnL( Ě˔IVr($h(z67|pN??0:#!"%Ү7Ek l׎-rĻ\9Q5k }UTdb ɲw㞗O N"DlCǧ~ert QD*u{ZjuIV{B"t=WyvE e+ c8Cwཧy8 Tq7L5yrab .gUK0q |D# 7tpY2 6֬Cpq-{̦2,WWbFo( /v%QI 2uwuըֲ 8"w'}pYaG{4Ϥ| CB|z˽>Z+@Sq<*l~OfY[9 kpQVNo%5?XǑ"Zm<SY/s%-E6p83[vF1̘Vu'Wl]3,3Y5<N`цKIšG礪;p]Z4| a/.O&HEq 9`Nu ʥ79|f+.Xe]L'_YBkV0G<Ä6V&,## AR1|< ? Ys/3VinNzR4P'C,3KV+[*kF^1ϋT m{(Q>yngB@W.rTl$JlCԣvg("(icNӢ}G 0:0Q>ڣ䑞mxNXV$Yߔտ6j5u[aǜᙡZG!JB⼂,JVaxP2EF+#e$ZV~(>:4e  &.n&. > endobj 25 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /EKYYBK+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/ff/fl/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/six/seven/eight/nine/colon/at/A/B/C/D/E/F/G/H/I/L/M/N/O/P/Q/R/S/T/U/X/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 26 0 R >> endobj 128 0 obj [600 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400 400 0 0 285 343 285 514 514 514 514 514 514 0 514 514 514 514 285 0 0 0 0 0 799 771 728 742 785 699 671 806 771 371 0 0 642 942 771 799 699 799 756 571 742 771 0 0 771 0 0 0 0 0 0 0 0 514 571 457 571 457 314 514 571 285 0 542 285 856 571 514 571 0 402 405 400 571 542 742 542 542 ] endobj 127 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff 12/.notdef 13/fl 14/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four 53/.notdef 54/six/seven/eight/nine/colon 59/.notdef 64/at/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P/Q/R/S/T/U 86/.notdef 88/X 89/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 23 0 obj << /Length1 794 /Length2 1341 /Length3 532 /Length 1920 /Filter /FlateDecode >> stream xR{8T֎< >l17k\G(,sa͐ɥDQ$`!׮)*!.tvOϱ<~~[.nKYld}NSC @2<idhB!P p* Z{Qd,9 .pAGBPXـ"XG&e ?rq@tn~oTš@qB#8O|"N6v8%8([  p].e"_9"0YeYr ITWۢ XA b%ˣ[ BpsvuzK r }/ﳸ# $},׷e`(0H#(4" #&sy n&0R⋛B!; Z$p2 0(.;F%meŋ" S)hGXpK?os*.A"2MάKaQfNś^<bA7Zjp46ҥewF) IyEgIktFaY64bNN&*gzY5iъxh{~L|7`Ef[dS!9kk g>!i* ݤA3`>i:Nm ]M#ƽ)i,=͵[yj_^6TֿR+jD5Lwz|P':װc6R"T.!Y;dӏcx-rVy xT8dӑ"R]{ԥrӎ*Ra/{VTQ t2p%&'\N|EW{Ԅ%cE6PU|o=O->`pՃc1t]V=kq-:kT>8 w(TbuCcksF nuf+ b-3hLiTPHqy}fU ߟ ߚ 'DY>ܡ :RyP{.~rn]X"xTΓQ u5G]6{+ iܾw9$3˥= jCBkC೾5cvWӄA絅[2֮[1G>-CmڥxqsBCK9wc .T '4B]nv8Wl۟~@pm_h`5J~?D%aWNy2?Z5}d;{iUS670Lq9W RKCfӖ*3ڟI1]lhchG?iJll(U esmL rO{駕l2 徵̀(\ʋtL3 'z̔Ʈl[J7As/ <rc=_1Ǧ2_%U(schS^֢8,mwOWYm zwfRv$<_kxKe;y8֨.$"C!RAլ!/ 0a! endstream endobj 24 0 obj << /Type /Font /Subtype /Type1 /Encoding 129 0 R /FirstChar 3 /LastChar 122 /Widths 130 0 R /BaseFont /VSOUFS+CMSY6 /FontDescriptor 22 0 R >> endobj 22 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /VSOUFS+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/asteriskmath/dagger/daggerdbl) /FontFile 23 0 R >> endobj 130 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 574 574 ] endobj 129 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 121/dagger/daggerdbl 123/.notdef] >> endobj 20 0 obj << /Length1 821 /Length2 1005 /Length3 532 /Length 1596 /Filter /FlateDecode >> stream xUkTeƢxYOt"+ł("J| ,ì,x 6B#KPr%/y@ T.6'Y:}<9]o팑F5CD"Or](8I4Nd# \B(<$.:pVB DPdfHQ'8xY~F@j+xl.SNH`U/`DsF`$b$^$sd&wS+^R7~ܥWD=gJ$1H3qʉ;*p3Y xNKC UD>$RƅVyQ*/5f\p !2-.[EHI 'Bp@) b3TB@ #H9kbغX[Th l JHp5ߟ\)Ub1+} cB) 1e8(eRxyjGGV4{T_tU2.bC{k9a JϡʌSXva5?'C큙c׆O;c<%gdbwŁ9gF[ --M X&DiZr[yG7ֹp"ܴf2'}0Eqo '{4}&MCkFq cZ/X{G>cWn5Ɵ'm_}d/:07Dn;蒼+k$]q^ܯhء)&}_V9pcyi~έoy%z^km<Ts/Ұ:sF;uxN'u*Ah6r!7HtY❕y{֙Oկ,+Sr!_WN'*ZWgz9^iX[wm8a8ljhׁ=NZxWC3MD,+53mF & ԕw6s5 ^[ޝd9)8A?;c{v:wmqjvHPTQ +gB yy7YӪN L,UO;<AVXNܮ)=wO>.fE?@漉-ګ*4y(yagmg{t,=Os\H/O'߼״F찔ؕ҅X'?|ϵ.BK-z8#3[ZƬ٦i oVCb}S4%]>,Iլ C+W~{ {ݚJ;ГDcV8X\ )؏Zh1;IRpΧj"%$~Ǫ8EvurHyWv!>6kip̺RwV¹2 UPkQw'i-Ç߄R4D0Xb[endstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 131 0 R /FirstChar 13 /LastChar 112 /Widths 132 0 R /BaseFont /NEVRWO+CMSY10 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /NEVRWO+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/circlecopyrt/bullet/greaterequal/radical) /FontFile 20 0 R >> endobj 132 0 obj [1000 0 500 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 833 ] endobj 131 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef 21/greaterequal 22/.notdef 112/radical 113/.notdef] >> endobj 17 0 obj << /Length1 2018 /Length2 14755 /Length3 532 /Length 15850 /Filter /FlateDecode >> stream xct]'vNŶӱm۶m۶mu?{s>qjԨ\sZs?P^VD֙ $`c`%%r41p6p60rr2DM ?.V.V&XR3B$v-@85@ك `m P@Ę`la 041ǒ.j4MJФ^f=?Sl]M2v&;U俼ɘ[V gk #[3k,D-M-N&o ,l==?b? ;@X^F`"?t `h =@bx1,lM&@tv.`M|v,(pM/ddd'O33\M k-fa8ZeJ[8 ll DX&Bl^@Y;?!vO 4h䯌*e'O,\uh/79Zm9[Չal,34hbg؀r(%2B!؁C@?,_'/^ЋzC@/E"o?v/F!wύ aNj9p )_ f!! l`,B'hstew_te]@W!Е_ϡ B+/rr ix?lj|h.} R+?YI*h;Ns b>+SD˜EC܏}W4&\4={o'H- r#I}'Ы ]Z҃EӬUBkɘ ?p( c ]s62zʮ9&']=٨Yq Mﴤ 3RG`:L 8,- 5*GDos\$LUMghWZϼ@r2!g41 3U*яd)97ZURɒS/-}͓6CGȞ/˅?MG b 嫯!Ro?QfVi^ELG/1W[1tUښ3Q22`(kvFJ yIA㬦|YT!^*! Nn3ÖU~-KZՓM3}يΩUjmlV8FTmHT.9K{߀`&yJM /}Cq{29nwOWrV)ۄ!"y˧FxS\g~K>*ygC*H!ELk!@o$FiK59X`I$))1`tW,MlE8ZIly^nV,6Ջw}@t #yxHbPQ-oIjRЩS tڻv  пP˘0Onڍ;_˜~S>y~/j)sjBDUTCgsR>HM͖BͻmQIP7'_]G,WS7f9c!fcb'E9zA^oqM;_ʤ; ,6pcWzgON8)ѻ*IpΤqO!?@'L0jG6l 'ʓp,T SK|ZsJy;}ԑ ͨLq>uv^R!h6SyVJ*?-Pk mXw],p4$)xLy*֒ Y`AOU V^`}xԈp+SdsEs{f=U#PдaN_G±$%wUZi9vԽtN]㹄C3N4U4|"COl>"viBYϜk1;j:4U&|Þ+&9[M.ׄ1Km}/B͡+O#F3oqnSkg p r P2vH^ͻa7V_["7Q|3(t|VV44.!oZ'?8gհt(5ۖůÕW cMzLJ<bhڔʚ~s]Byf˟[4=O5x!% &:|瀂]'Ƽ\$_ޘD)%%ws~:x D"\ \=SFP( dʐ~\o$ 5RDm5)Y&O/,ҼzRT9} i^ AшUX*/v$_f-_ۤ$T&K- EWtOpD&o/P(ewL2ά84Z'+Ru)xO ._"֘QifXHu% 2iR+U7SA^LHn{Z-0U*gw cA|c|Y1{0 k $DW\b9>3"Jb1M 5 و{`’&Dn'z\Ke[wT1?a3mD[{:='2DdYmkUb xvÆ^qf`5xH(؇$k+g,ibg CH§b/y|R|#Ns!Ү*]fz*Q2d4M45Nry!" q+G:vt1kwHc[l5=8i?Ӏl$`g-i)Sѳ^iT2+itS_4^ :vLQǯV "|'kUegj*^NQ_=ъeKqw'=.? W4xR[<@aKKy4Z:8rXt,L/BC%5x}MPdW,ף,oj L-;l'w97V։.L1IT>eNb/~ }_A{ƶ[^k`]WqS>*gQ~Aa^0pҘkJáĤ*|&!6# ϿFh2ކG/0Xl(:ӬHeK~ y>y;R<ꦥUƪs ]9r#78P$KM+ӵV *<0 [5GBV\HLYx4O1K|,M(oHIL+#*)pрU#DG W{6(@u;v x` Bp/aF5bAd3_S%;WX/L>Ub!NC8VK+I~7+}v[ǎo=|,ZNouyLS_[W^SMj'lI|@% nO sIKG!yܣa&B~noPN7u W Þ(=/8 &6cؒxWq" huJ Ä2ʴ.u5_HiKgt}><tnVߚ °1( Mz] ݳ{J'fƻĮbN)_ME'q/f A];Aj -3bwl>}@ _nw*G=Q[}"Kg@Ӂ e2&&y/-T})UtCO4(HZZ,եgK'ԝ. NfZ7:J #Xx?F,vd<[#JаժTSy ƌb8R u&-%)"rIv\k ;LJPN7S3`Z_ vH%[acgdxO&d0ǹ?<Ȫ.e[ AO(AXs]•囅dܩn>|f(/$ul aJC2_ȑ'JA @]>#wE|K8g공dߴ/rFf8|Lg' Q[Ag[gڋIZF3ܔ93^iF5KsmGBB(B署3? %і},չ1QbTJ8=}[c7ҋ}l0a 39UYS KlI ^wOx cND?}l.s'9Mc旜a*܃n,]Ib ]֟!Lt~ %\,M1(lPKBC"I`MgyɌ +[Q>qe+#h##F[}p,[:Z4gPyAp:1OMCrj!Gw;Vh͐ ʱ˷6lLZ(-t :D B} 6˴Tj1`ұGt\O)'Mn!ŭJV6=;QIv839'D`k@ %%NWS˭!&CZJPtkW5@0>Q^5Iyũk3b¹FnG ZJxsK|_5*6H }oϥD 9@Ͱ9Sʋ0ZL6M|J#^B%O&`f 坣b*ro< yTl jnf X0VhZ T,ɢGck"p.ܖUN&帚 (yP`!|wn. CO`ޮk  N>(wĒBHt釓f~£3>ӡc*ިSʁs,1V<9kLQ[<ا\3.D۲vQ_@-j"5J F٨ ȤJv19=ϧ-F)}#_)"ji]'iRlɶI#]d*W.S.TOV LQ޺H""|']IKQ#D?H2p${n=m)\)#*F2 IWia畽 c)j>O˗C1dֵ"$hpdIZ#<9z s^_+8lժW0\mZKXeI:+)+sŗю~q pz#MûW#bAq +8{uE'd M2?jIQC$ߞEƮΊ[Ev[HW"ۓWfڶyP }JbM7v\lZeӢFؚ2x? 8EVfJkts}Ցoq CHؔ:)h71dԺ-*`1u?ʲ)yPQ&A=:.*N'ƪwZ~"(=Ch8jphYX%:JuWkd s>E#3{}t}z^^}~syϯ-R֣CmS'/?G+3 1)JsF]CeyA$&ݏCL5cG!g{, ҵ?M9D  oR Fݾpnk uot1$tNR_.>XTԇ@Lm>J>sdZ?:f=FDJ2[PlIY?伤raL!]Xy?讏Q3f`bc4avtX\n,\[8QZEPt7~UaBs84AH ,Q&2#&)l8BKǨk6CXBHK@yRHeStU,l^&g].:j2LTϙcYE8LS.U Z[|'7fRVhþFzmbЫKkBFC_Zec_LhXPb?- ]$EWC}wJREBK!o5ͬ-9)k`؝z`c3[]M3S+3lf=[@Nz (q=>"G4 i.I bbMMA !)'-7xwE_[-26cs*GL^ӡGbrg O_ ( aO5A<+᫬6K̹hƔOʮUc%#+X%}\_c`iV zЌ@n7ߵtfF,LC_F)`+1@ > A m1~xsOSyJIM픻pRVt|R3+z pi%Ht/BR2YT3zCK_ O u>';<tgrUz,)Wb庹^of&hy''o SE7ZyF6xdJ8l"ssD_s @j]ɺ}EKʌ4Z_ӰC j|m!yEPz'o#i0K+'G0% ƠH9ш|:qE"_td-<ĕm=:}PT~3UHoժ4 PL*,βp(ȷ$ƊЌubVڱg)=tbq1XVGXe}F,}3~ T?Z9Dgp u=w$z#*1/F~`fg+~QhG= F_Z͕uQ)" 7${ـqy::cvKc]C +kg9"ί$bKa8ζvp0ۇ ILi"YpМI<\1@ pRB`SYfsemiz/#uWMnp5"c@ ( j!"qŖL{)>W (= $ZK٫$oÕW}NjYsuPܗ 7A mWcNiehy5|;m!M5ZoEJjD5+pMa`$&Jg2/ 7i*cR~a.* irJ j+Rw{ٿYUkUᥟx#G1e@.;X7;r1Z RS{'`&9>9{5*,Uflbo8l<,F%sukF?iL%̋߄5Ġ~n3綇l?Kck>Пe~2([%CgyenCWfhfYtJ&t}g*2,60>Rgkܰ8[4JW¹B"AH5? `2Ni-@{V̜Gmz\hߍ1 zS&wGK?qѤ(H |&SZGosD4p=qxr )GG{jpTw{ѮVDBܠ^y>Y搑!Kܑԥ|"L&%Z:ǜ;5 v.ozKG+R\!)\yjjA9ςt="ȳpw nmi[ah;y%.M "V+VB}bd0H3C1((-A|a4>J-|*vL qr~ԓe!7M#B/(b~CQ(3Uh7@pW+lÐPql!wV NE[/1YU'eSV䏟h|L9CiejjL$CY yASupF>HunmTe?KP[sV UwՑpz7]XsU jiK_lOwC mRsK.L\KTZ#a`7ο[b4>`|ƨEw=oQe 2]7Z!%q)Dh=@X"a}:Wm(]~L5\E7y}h#$9(S=)f務oۼa:΁"Y٫xC튕 ![O7* nZꁚհ|*woz NvɎp+{fCG#4M:[kA!Uނ} > ɥУfqOyP$<VKq҆S ML@<EџV1 \A/t視x$b2JiG)RkCf~9 'F0w"jqZuˣ_}[9+GZ)6.R ^İŔ,a{lyU:G aTFϓOt=a-:WjxBzb@[-Wƾo:?b ^Os!( R<#.vv6[(Q@N&]5;36| ޯx9%"Aޮ0_!zol myi~CG@M%9eʓgVP T$ ˆ$LJ pm/]U_#wT(86_-xI$X7 ߑ|@BꪒH`aCM ;XF*?̇%\~):rAX;'đT쐶[/==I[aL^1BYKdT235h92IĦj^F0aڕ]H7ƹ%ZQ,`aѯ0eM,?u&OޢYya7 pV~XwpkTR(9 2Д(}k~PP&ЋN #(J:2)Mfo|5s8KnPg2Y9L\ VMQ_U;iDC?T,Ƥ#kꮰygDxugqtJ="B}¹dij Uhm0%^&g𯻜=R Zj@٥`0I?fF'ሣ*gк3# /v|s2Y4JۆXN3Xy*YXG" ~b:㥨 Hi5,O*TƸz}4{'U\?[2>J &qqK4<{Eh$܃:rWefK<٥o4ljdn)zh E j>g8,~n \a~ZW5\XY- Hn+5c2ėoyU?[ >>Tt(kml¬͋@2?.5n|j i)y4ȝRI_%Ёu9$ֆ>hhiۢVWcQY25gbb=?M=X>uC[#dmqc ͺM[VX"0}^c|8N'dA BR;*]HNm1>YSr?҆.}G1*K/QŮ)vM`f&㛓4Yc y(g39ԫk/(-vBdȖn UɢbR>ޟE[UwOPyg_>A_hG[8n+bb,A,wyclaxϭ}EaW0E\g.5~U^Cw ,鏇V3Ʒ>--_h{ԇOi^K,L6\8e~ZX/PׂE}a?:.$5ҊQz`A-p}~>>}b+QK&e w kw$1?N@ ā!V%@m-G>i+h|i\H='?P(&PTeN'qy ፫UH6e ij?=_i$ ѣP`ͅB9/rd9ƫur8iކ$9b0p?i4:\/5E[=c.#S /{:a?ŋ:RܞpUNWagaTù0|+  *.dwfװA ]E"k8i܍?W`"] {, S5TZ)"gٷb&KKn'X僚c(+R2)vw"O<ͨC`LӚ[u($7( 9_xF*(z%:B|۬Zm2? 1)nܬ<'JF2'ɿg!^u>@bYGbF@æA/yO ,i \5FK=G8V]Eq8,JyErųCcq$|_+Z'.mNP^7˅! txt>%b2AUب~"|q.Py nYnJ7)#ݯ9fX61NeK%)^gбQ99׋Z!Ѱ8+[{H&ڟ9R:Z.?STLsgvsAeu\#W) XLUaJYd?./DhH)}hs™uء5=M7IjE=3ƻ-bqHhWm~H2XP)U\{&U >od Og0Zlq>U OUNse DO[n|vaߤ=y͖K D4E]N{_?&o)4X풰XJ|IVNxWfB/w.6{Q%ICքZ; ?/pԙ7*E"W`VEH2f%^.Q؇GS@z@($i"ؤX1 U j˺߇}ᛎ! 4qt S Ԕ% GZ# Ly lAO;3+1O4 d"[6]c^*g൪L_זGnsI)# H lO޲}y>9ĦqtZUk8왽?w='* ͆%|ORdZ&äju6#U]ym^ l e$xof{ގ뾿h:YA *U}nQ*;Y&H 6~V{#A8oKz9jE%UBthBIQXi=i F׎x~:->vr2B&m敋VKՉݱGbwS:4ԟ=)4#fƩg|gs]A2s31=?W77j%ey;fD}JOЂE~BWc ߁ϲF jW t'%/{4n ׹N>Cp豺> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VPZYJW+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/ffi/quotedblright/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 17 0 R >> endobj 134 0 obj [583 556 556 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 0 736 556 722 750 750 1028 750 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 133 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 34/quotedblright 35/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 14 0 obj << /Length1 1111 /Length2 5864 /Length3 532 /Length 6580 /Filter /FlateDecode >> stream xe\F@BRB[:;FJ@ i)E;3dzs^Ϲ~q׵Z3k'o Q|E-S@R PDB(Y J$$*Pp.^H W@ A-0ꄩ vnP;ԖD@` 6P{3 /Om.^r"0\mr0&mp/-ԎA1^o*h8\Wߝu ?'4 h!lHL5˜_2Q`8 "l@ T`P[] ݠPgio@ʪʼsu0ge0;H'i&);C0g{(DH0Ӄ!s zb(%;!8,1QP!1PU0&SofS@@?bd@9:!( "@ysr1B oQP@x>¼% aQ-F"Ψ_I`IB=qDճM}ASsAxc6lo|H[UyZbU+EOړ'lu.f{ Z12_ǚ,'%؎5"Y~q=ݑ6tonՋ6zuCF˰uft_dd3z]>f*J睴PH#,|"AWm'Ҹù״ :RI`XO^Y%wtG̕H}שK "gq /exg14Rvʤ ksu0+${c=ZNqn٤lx-^ֲ&~06+(Z%H+D&Ӯ\"g0X6G=iKLnmp=\FmNW>]GVvlүSIo \M@[F0O]|cm d85̵}qy*9Q+,o[:zV֟^KZ$wdom•)oh:Z" #S<8xW0;f>"/-MÃE_7۔,N<&F_ܔ]%i( GNWQb[GwN.\Ijz~\mBֳ伂8CEP meuQw^O/p@#eXR{Yw/򧯿u O&"W?vI1$t_}F7t29[hH#&r f;u>/WwD>ghQ-k +%xҍXvpw3^t?)0Ͼc#g?R'_Jf\k?`}oB0{C}j RְH )ڔ~Pd#3HUQr|L˛tbkm_j '[yN[ߞ`~=bݟZoY VWf].dR#P*Iu]P-" zRfHsU5꡿zp[gudG$ k=ݸuZ:g8XJY?Y#טιqRX~er/mG,Lx6`j9 <4\K'*u-w`{R c3gp/] b:I(8WS1@?1~.1';ATI l+<JO[fp'g*ن%.%Y!C'4wyoIר[PfIn\sDz띺wjI=۩Z>@-;劗6jfT ip4Q*gctdT-kR{H B^[;7j gup߸6_J^Ye,"=2.oE9ҏ[%E)$B-;Ѩѽ(-nꇺ';9rST~G|enYaL^[_/rEɆKKlf;mkaT_bf$"20[o*r9TP iOp8u*C:$7F<6?{t_^E/l"!;Y^6efȣļ7){'SjXݭnctBCUMZiIW%eAT u򖋞:g=(Uel,-{Ж!J "" β1Sw3%6498^g-Ά~_DYP<|k9 GCt-Pl%+UTzAa{tPisc=;b/ʕLՔc4ð52- ELDND *;+;og}3|V/FLGZnHnRb@'yA O,F_5R/ JzR21ZՐހzgW>w"<vFv""榈O 2nVӵVypv8O6A"DkŪy;I^ƜIJ޺z { D˴@uwzAg%Zi4-{D*gD ofMM:!I+u#I 9S!~m d]jZ8:ώq7+ WUMsSûHl9 ۢ]J]}TI:6FWn'N_rl,k25D[v.c.fo9~[aCԽIbZaYh%D,Pw~*Mo8fca(J<0c 3?3Ģ{fn_bCTU+?J$o+=0#+ rhJaNBNiMyFHnu^E"4zw3$l[k/.EW55ÕWP5:2Jr{VWhx lסoMIc 5,MDV3Zus,}c wM>{f8`#mb>O^FW<|rNѰӒELKY+bDz"M 6v@ fڄReCW=FPeJEVFSe&T57d 52729q,>2~yLdZN5M;#evo]<;'3 7 =sBy %Fow^KkY &4q Fz(ZXls`~8q 憐 Ă[qTo2|JGYk C#U٠:nGKDBc7}Noھ'8h3SA@FZNdjOd7𾴴撇ɱ\g2?mOli"Cs^Ma=}eB*!qD(XT@C:F!y":#cK.0r# 酋䐴Nͼ؅<}\=ln« JDT-h&9/ @6{}X7V;Q-S.!:UR<]!#sZE]rU ceXLU:*ui>!]-)~joIOX;ɶI^:[7$H5_tdzFF>Sn+e:{c&ՉirR‚׺+8?F~mMi5ssF04~ -,2s_Cګ>!ZY#{C孆J:[ڏ[ KbxU&V֨Z]6+KU q(nOUc[s҄=; KJd' ArVvc.uLWQ?㫉EcLlj*~EVˁ Ϻ2,LTk}o1,1nEUDAd5uDֹermc/br[uq3K4H!s[`; ɴFvV$~ /i'Εњb] !Php?Z!|C0˸WHSc1G^\nlJĺ./\{m?k7:Z,@K/A6ij yS%KO+#7v"giEaU XE7K|\d ՑVʀcf}?ww`l0Z_6#yAKz0u㻲a-Sl QaL Y StX|$"ה.w 5!o7ɆDԞ--@s*W,ѳ4yIM|: 4V!~F.*fQ"^7ĸ n|;6~sZ[+^1qs楢a[GlDzGƒD=΋2?+vd-HWޞMr;_6h(x$VZ`Q̸kdF=NpI&xN7}J7MD&3‚^1J o _:uX[.^clr7M5r N ۡDvjC X >g_iDNԌɝLl{`r٤H7;hLnx߮d>$=NPdqţ+;{bsB kgVoalZ[TD%Ք TYO/_8D!HG)Z?_endstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 135 0 R /FirstChar 58 /LastChar 121 /Widths 136 0 R /BaseFont /RIEGNE+CMBX10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /RIEGNE+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/colon/A/B/C/D/L/M/P/a/b/c/d/e/g/i/k/l/m/n/o/r/s/t/v/w/y) /FontFile 14 0 R >> endobj 136 0 obj [319 0 0 0 0 0 0 869 818 831 882 0 0 0 0 0 0 0 692 1092 0 0 786 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 559 639 511 639 527 0 575 0 319 0 607 319 958 639 575 0 0 474 454 447 0 607 831 0 607 ] endobj 135 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/colon 59/.notdef 65/A/B/C/D 69/.notdef 76/L/M 78/.notdef 80/P 81/.notdef 97/a/b/c/d/e 102/.notdef 103/g 104/.notdef 105/i 106/.notdef 107/k/l/m/n/o 112/.notdef 114/r/s/t 117/.notdef 118/v/w 120/.notdef 121/y 122/.notdef] >> endobj 11 0 obj << /Length1 795 /Length2 1322 /Length3 532 /Length 1900 /Filter /FlateDecode >> stream xRiTYUvFVAQdIR1 D# AͦI*$!2,Jwmv*"AEQ=*"ˑx9kS߽w뾢tʢ S8@TpxI G`*6 @NNHlg"D#W(Vl8kDl!EpTc+b)!% P&@ <$0C9DT!*PhDb$\ o,Faab'j'ˉP2LB$Dg!DF/͹,+4,E% dDLؗc6"D_ X <0Z*Hr.Q 92#(D{AhC7}yF1E2<h2St[gm2!8+ItŠbIH2Fd b I124wL@DS<9r a(3 %S'"9oBA"#b"4ǠDH]2wSW~JTVMӟ[1ҭmmZ>*L dWg_ Vn2k_#pb~bjՙofnR)3U'[»)!8e7yǭ.*{OwZY/-45S u,[Y0p"΄_p./[?<8TgG> J[-3uwXW62WGĂo2Z~ZЩ-[D87z5.05דv+^bTjV>S**(6]u3^η{qG:~KO<{֗V1qnApP㞣nՂJG:$z n5ՉsURBk)81W@kT!%鸞Xs[Q=V539L(uC#yWUm!{,K.T wC9O__[nZb?;b]ЅmG X6TY 朶by^/Ѡ> 朋 =U_\[Hel/^lI|íj}3e=8;°WD*g{8j1nYBs'*op>/q*86h@QjB7İ_hy|e Y羶Ɖ7lVՅȚiA-dUFh٪V5 -]Q*l`קåsy ty}ӟ2ZYk\}s KK/Wgfw|]2*O-͹gJm|k3=?+uܑS[ -Ic9/0@OV=AKKow^Ytuj5&[եpY>Io}43^?pŨ wlf(nkcY9{W ŋhJ,BnE~B8F>ӈXN>e5]w2Э"2D" 56E4nFؘJ@ч֜ 7C'5ڶ|y2EYcwt4יFmKgrQ-xwp_טMdQ hvV/5q,on2+-K5{..>*hSysJn0AVkRu#޾]g՞[\=]- IL{v>O$+dR#9Iendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 137 0 R /FirstChar 3 /LastChar 122 /Widths 138 0 R /BaseFont /EZPYEV+CMSY8 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /EZPYEV+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/asteriskmath/dagger/daggerdbl) /FontFile 11 0 R >> endobj 138 0 obj [531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 472 ] endobj 137 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 121/dagger/daggerdbl 123/.notdef] >> endobj 8 0 obj << /Length1 1296 /Length2 6917 /Length3 532 /Length 7724 /Filter /FlateDecode >> stream xgXkiJ]4)&=^K $@( *#H*R*#"ґzֻߥ|yf晙,iSD"xy` ]~?/#+ G"!n0q?@  A`+ I s[C  CZan޼YGG_'P] pk7   /o. ..D8z0>M$: ]3&5鿙!NpGr@:9\H(񟮆զݝӪq["la$8Jjݬ6Gog]ӧ5Ͽm8?Qr3;p/)G;dH(^0 &@o@8 "n#tO6HWƉ8(9C\aGoMYgtrVю #%Q[!NB'ss`0?0ZM">oB'D|* 3k&oBM>MC1Gόv V?DGv :D'rщ\~zFt"<9G=E1QQYo3 fM0;~j1BH.L9ۦͺ6DLǒ~5Fw֙FkBv4N0ƾI1.i@C3FG}gVb~DX- .I˛B$)I8_B#=?@]'<;1ʞ6C ONM99Ac 1e5ldKHGLHf'Cޱ$M ^W]Z4εdr,"4wa 6n:pLhN,ش5D,, Dx*dHeYbƝgѤUQߴmvpcY) ̽N}-.x]Dg遰Pߴm3̀Q>̘ʉ9T6=އYc/&XEPVd8a^ v)كއUgY=_ ҆&,L.ZlP24WƮy(o6dbNꘈ)oi^WsY J}+UcqyEG"N'}]{ m;FWI5A/b.>pv fre:~w:p/^Ik/x`vKE)$dlH{g OQ.%5OuZd[] eTJBYu5WkT=~qLÛC_*y,>zBZ^-#UY5Vj(-CDuVPIw/5 51r 3թ.!D~ӿ6ecT"lH 6jj (2V#4ytM ?*ui-`:uUjCt XjCCMIPO5X?NS5{&ݿr,ؑ?QyMYqtaﲂK&wVhub c$I_bZ]D1B(wɩ{Ρ[/'}m1rG,USfzS'r,˰L[V('͢h!k̜r?7+rl]|l :E ^&203- ^@[V$E [*HU$h8i/;0*)1#ȧ𩑛+#|@:"͠ nNkX[AYJȢ0EwIB88kpC%d&˙ {줭B 9G_*F6R4^WVk~ FZ 0x=A [fjDu9H=uMkqsi(2I뙍R L{DtǙ!4{k nyzxYxKvfojθ2#U Lýan[-9@F«pz= uTkZ u5spap&!^ [Q"37w!F-NB'&yzKɨU {9=p>ye` M(TUz岲np }κqSY'+u$Oe2BHQ ixGZ QlRsCh1z4+2qkPHΓp] !Te>;ň٪/ʒ 1Kv=9J}dQ*XTq7[5#aaX3gYgX^B* 5cFEtB̄' ׋C ]I ( -R̞9{4 ޙ`[9p;igiD1YRoSR*l:mL*OZȓO\ 7]ye U@MQoݰ1x4ѝ ק@x}~qϝ՟ =dq%3W Pi(Z.jT$- |0rNDӛWٺbC\*d9u=F&T Krۨ(vmދ|Q\Ɠ,KS4' Dm -)ĜWbX3f*ZYxKw"eH.J:rB>w;b-N4yCMW}CHt|U\%=w~XYlţC6r7%VxZ*~0 hq>Դ)6=8wYs\s۶HCax=v:&EҷA#\fԜI3M^X<%6%ɱTbיvao C*,G1ނ]2G65)N٣C#[HP$d`VAAz%oΧI&qN!y\GuXz27< +9Hr*E4_Ҩy׾W^Ֆk!s`Sރ/E\z 'ig O-0[Loa`Th+XsTXu᳕Env%U&y9K$%+.xR8H c̎AlW{ݰ+lB~ l-rC%ȘYGnJ82yUH)z.2s_%$Zc,`.@ͤ{~Z^W OJ~= [ɥ 7 %%Ts0hƋ<]N_$jhI4#]fߔK£0)յ8{F'xn5d|\>:eREï#>՝`Hk.qzBϥQ:C紱A[6o6il5V}Q'O9Z 5˒ @^o؈9ϰt落O;*o?RM8DWG%Nys2yB(xE-3~Q3EQ/&p'=7iڡM- />E[و7"w-K U@U_VB0ُoy,/)(_EH2.Lq ?n0, U,_X{HӆUSڹ ?EFGZ2]?|%K@*v7YӎqMP$.3-_+)8FF-L{tk UP>"q viԊ2K~en7T~~"f)_pxf[;{l6iK %;z) 3Z1ANE͵־rƁGߪv# ϢәmaU׾D9̊5OpǥGRsbY0|15gg*cg׾]D(NC?jE7FV=ZaIsnKEBư8; olTS~2v93q<\\&drStN:+X8,Md$Qm փ2o˙ANk^A8$ qemͬ Cw./G!J+ #MPgBn_bNj($B|6Rs7Սe0ӹKV9@ϣLկsŀjʞt0p=֩^9f:մg#hMX#qƲvi5W] nUw6nk>hb*D!jT )g*4$&X03[kYn}-b8z#sjfV]OܕrLOjvz>>޿G(nQ#\ {~a*:HD\Kcu;I)\*Gf:RxJ|^ǒ$ nrW^14ټ?B9b'dnBՂ,31^<-[YzZfK"qkp65~a?{̎Ŧ3-=%qEQ_-&2wÆ]ڮHjM0|>)j`)\H.f߻魸bWKiJd "_[bP´W$ŷKN CƖf'ˬz5qeFےnOeQV_˷Iée_v*/]R9PVk8xZ"a47C+|Jx u8YP_Ec:s@+&y.%?˼v0̛NĽ`RVTuS";I|X75'1"Gڄo9*'|~Tcn0TUt\g`c \ hbKÔ.PsO^Fܻ_voLƵBgN\=|{Z\u\iD^z|vJ3mY>4eud>1AQ߄\h0~\`Hkb0~\Ӫ(D1Xbm;q#J^2k7RMV$vMUIݨAB2&.\:7NCGhǖB}jwiTUS8U:[3uWag!B"<}Du؃7S3XLߔK5ˍ/K.NWawql_(eYH,ͿA7.MlA3*䈋m amʓv X^<ط+^ܗZ_ ౏L0EE83 `]&I`ggEο`+o~Q:e+ƜfxrzgKT]=CøCM-k>ۄjoWcXh\0> SP/FZ'{8!qi 3X4`yN-ciu*?:I}>ӯWaC.ό+]i|į0ͭUJKlo3Xn} xyG}u-c=oVQg G11ŝ3?}oS4;ejb^}50O??`Rع` 6>rypt|bl^`N_Ā6[Pȹj3)%5hqb>a4bݽt>WQi]W6r 88> di4"Lx]o vȱ*T[bWZcNG6Th gJfeIRcU92}>Η*G1V(~jY)Nh p;`Pa]X f{v|Ri]41,UXsDV#] 7)EO~HY4req|1(>%(1Q`)$Nz9sIc!;e (5zܹ ]ϔ,wmIzy|&~yx>hj z!`½BidZqm!nӡ$/DKtAx>U g֎5(1*+H|c.Q=,{(^/s]p5W!i?w(nV!VЍ>wXe{&-Y@ vˣߙN* leh}Y4?F= @+vz%/ ?"# t:Tendstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 139 0 R /FirstChar 11 /LastChar 121 /Widths 140 0 R /BaseFont /QQUOTT+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /QQUOTT+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/ff/parenleft/parenright/comma/period/zero/one/two/three/seven/A/C/D/I/M/P/R/S/T/Y/a/c/e/g/h/i/k/m/n/o/q/r/s/t/u/v/y) /FontFile 8 0 R >> endobj 140 0 obj [571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 381 381 0 0 272 0 272 0 490 490 490 490 0 0 0 490 0 0 0 0 0 0 0 0 0 734 0 707 748 0 0 0 0 353 0 0 0 897 0 0 666 0 721 544 707 0 0 0 0 734 0 0 0 0 0 0 0 490 0 435 0 435 0 490 544 272 0 517 0 816 544 490 0 517 381 386 381 544 517 0 0 517 ] endobj 139 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff 12/.notdef 40/parenleft/parenright 42/.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two/three 52/.notdef 55/seven 56/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 73/I 74/.notdef 77/M 78/.notdef 80/P 81/.notdef 82/R/S/T 85/.notdef 89/Y 90/.notdef 97/a 98/.notdef 99/c 100/.notdef 101/e 102/.notdef 103/g/h/i 106/.notdef 107/k 108/.notdef 109/m/n/o 112/.notdef 113/q/r/s/t/u/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 974 /Length2 3441 /Length3 532 /Length 4102 /Filter /FlateDecode >> stream xWXS붆.e"!Z AzF4 tTHPDiwdGKڗ\y3c㟂|f0$*J %HA`(n` `: qX `} P, ǣ]'"?D£XAr'pF`33E0 0PxDH3K0uHo^dS٤(@a1B/i#Bogq-o !1/Û8$ 7S]vaaP_!4F.gEyn?-HZkL/ϟg4`w ~HJ L9&DcBN@z X$@ K89 $pSV $ Y^" I $Yi7)X"r[˿ ,En uP!9 d17$q, ɹ^!ٓOύ8@ @B<EY9"tx< K3ovA/ r0sVrMC +_K2ilbMu{MU[e1-.xl 2y-3)cϕ̀g<v"$Q LuSl ^fZ50|rΧ5+Jb3e$Nܡ|KWq| ͺOsIǜ\˴C߈BXl+.gs㣕UѪJgq^NQ6 I*~˦{W /{Ҙ=m0e!.*.7ݝʱt#ŚӘXt C:cVPȸ 1-@YFb+c=<#L۹ leĂ-PX| )16*+>ū'[ھWH/{s}r,Nsis8uy XBR2Ŵ GǘhDז oҜٺ}Fs6|t\Rr?m?.9ׄPs 9;% [xېjXxܳpY?/kBQQx3TO-d5L[FeBq"$ǮWUuʅ+ay걑 vEVp[&᥹S5i4|K\_B؍$eYfmat19Sh8F gcOLBЬpu0텭!퐅!,c܏S;+d?ķz1){Xp1Ⱥ=h0%){| Tѵ^$"5,2\[\\[1hpVi`Tu zMٕdJSm ;c۬DFJ :XxP8kˢ#L5 eiƢw<֛LuZI<((Id1..yr868@TMWKeaj'<|s|G*"!8zI o6ߢ<ڲƏ嘆T =/kB9,{F~?SǖeH~hO>~0EQB#TF1h wPE l`gś^pM9y Rnk]}AGRȫ>ug6Gk2 Tj _npβ6 )5^{6<&kf?vni]gxI2x~*QPr\!FΰtiX{Iۼ.ho_s/F<<=iPUѷl ׄJoC&xaN=[4zӔ唸ey{FL /4<+X]8yd߶,-z>Î WĻ_RKcu=sEgpJvi#a%u oZ>gy ;t+yv@~{X+Ox3y2b}=nS ӑ}qxʩi%QJio;E+'$‡FM<4Ӌ:VիS }oZ[ OY 5?=*~^|`hG]<]695Bq;{[JJBW"Ė+КmY 59P]O"G?".ʿ™XMxmY̫լ=8SX?vϡuJhv6"376*Jq ȥ^1:- Cd'mDmp+#'&anAkfN׌3h[9d?raw=iӼ_ n,i܍*u/jrdmN{n&BgtWUjoLyA71X$Ê| {#mTjod;ӞʫGȓV>j#(dǒ NzE/2Ooxz׾c7D :}%1.Gr=\N" KYHY]ʜ M( lm0Fx.p;2$9[ ݼK5ג&t8oOí\װ?m> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /XGTSAR+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/period/two/A/C/D/G/M/U/V/d/e/i/n/o/r/s/u) /FontFile 5 0 R >> endobj 142 0 obj [250 0 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 668 707 0 0 726 0 0 0 0 0 850 0 0 0 0 0 0 0 693 693 0 0 0 0 0 0 0 0 0 0 0 0 0 511 406 0 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 ] endobj 141 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 50/two 51/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 71/G 72/.notdef 77/M 78/.notdef 85/U/V 87/.notdef 100/d/e 102/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u 118/.notdef] >> endobj 31 0 obj << /Type /Pages /Count 6 /Parent 143 0 R /Kids [2 0 R 33 0 R 36 0 R 57 0 R 63 0 R 66 0 R] >> endobj 74 0 obj << /Type /Pages /Count 6 /Parent 143 0 R /Kids [69 0 R 76 0 R 79 0 R 82 0 R 85 0 R 88 0 R] >> endobj 93 0 obj << /Type /Pages /Count 6 /Parent 143 0 R /Kids [91 0 R 95 0 R 98 0 R 101 0 R 104 0 R 107 0 R] >> endobj 143 0 obj << /Type /Pages /Count 18 /Kids [31 0 R 74 0 R 93 0 R] >> endobj 144 0 obj << /Type /Catalog /Pages 143 0 R >> endobj 145 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20070505103206-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 146 0000000000 65535 f 0000003845 00000 n 0000003730 00000 n 0000000009 00000 n 0000164055 00000 n 0000159678 00000 n 0000163898 00000 n 0000158567 00000 n 0000150567 00000 n 0000158410 00000 n 0000149948 00000 n 0000147771 00000 n 0000149790 00000 n 0000147029 00000 n 0000140169 00000 n 0000146869 00000 n 0000138761 00000 n 0000122631 00000 n 0000138602 00000 n 0000121996 00000 n 0000120121 00000 n 0000121836 00000 n 0000119503 00000 n 0000117306 00000 n 0000119345 00000 n 0000116137 00000 n 0000103938 00000 n 0000115979 00000 n 0000103619 00000 n 0000102156 00000 n 0000103461 00000 n 0000164769 00000 n 0000004583 00000 n 0000004465 00000 n 0000004007 00000 n 0000009138 00000 n 0000009020 00000 n 0000004652 00000 n 0000101239 00000 n 0000092919 00000 n 0000101079 00000 n 0000092618 00000 n 0000090774 00000 n 0000092460 00000 n 0000090247 00000 n 0000087315 00000 n 0000090087 00000 n 0000086999 00000 n 0000084866 00000 n 0000086839 00000 n 0000084023 00000 n 0000075154 00000 n 0000083863 00000 n 0000073971 00000 n 0000062302 00000 n 0000073811 00000 n 0000013321 00000 n 0000013203 00000 n 0000009291 00000 n 0000060824 00000 n 0000046318 00000 n 0000060665 00000 n 0000016399 00000 n 0000016281 00000 n 0000013438 00000 n 0000021810 00000 n 0000021692 00000 n 0000016540 00000 n 0000024951 00000 n 0000024833 00000 n 0000021951 00000 n 0000045828 00000 n 0000043598 00000 n 0000045669 00000 n 0000164878 00000 n 0000028632 00000 n 0000028514 00000 n 0000025103 00000 n 0000029925 00000 n 0000029807 00000 n 0000028737 00000 n 0000031759 00000 n 0000031641 00000 n 0000030006 00000 n 0000033537 00000 n 0000033419 00000 n 0000031864 00000 n 0000035514 00000 n 0000035396 00000 n 0000033618 00000 n 0000037313 00000 n 0000037195 00000 n 0000035595 00000 n 0000164988 00000 n 0000038363 00000 n 0000038245 00000 n 0000037394 00000 n 0000039413 00000 n 0000039295 00000 n 0000038444 00000 n 0000041001 00000 n 0000040880 00000 n 0000039494 00000 n 0000041520 00000 n 0000041399 00000 n 0000041083 00000 n 0000043492 00000 n 0000043371 00000 n 0000041602 00000 n 0000046151 00000 n 0000046107 00000 n 0000061764 00000 n 0000061386 00000 n 0000074696 00000 n 0000074382 00000 n 0000084536 00000 n 0000084298 00000 n 0000087229 00000 n 0000087201 00000 n 0000090609 00000 n 0000090469 00000 n 0000092837 00000 n 0000092813 00000 n 0000101813 00000 n 0000101550 00000 n 0000103850 00000 n 0000103826 00000 n 0000116888 00000 n 0000116522 00000 n 0000119997 00000 n 0000119731 00000 n 0000122466 00000 n 0000122237 00000 n 0000139669 00000 n 0000139262 00000 n 0000147482 00000 n 0000147281 00000 n 0000150443 00000 n 0000150177 00000 n 0000159189 00000 n 0000158873 00000 n 0000164484 00000 n 0000164286 00000 n 0000165101 00000 n 0000165176 00000 n 0000165229 00000 n trailer << /Size 146 /Root 144 0 R /Info 145 0 R /ID [ ] >> startxref 165433 %%EOF SuiteSparse/CAMD/Doc/CAMD_UserGuide.tex0000644001170100242450000012734310617112542016373 0ustar davisfac\documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in %------------------------------------------------------------------------------ \begin{document} %------------------------------------------------------------------------------ \title{CAMD Version 2.2 User Guide} \author{Patrick R. Amestoy\thanks{ENSEEIHT-IRIT, 2 rue Camichel 31017 Toulouse, France. email: amestoy@enseeiht.fr. http://www.enseeiht.fr/$\sim$amestoy.} \and Yanqing (Morris) Chen \and Timothy A. Davis\thanks{ Dept.~of Computer and Information Science and Engineering, Univ.~of Florida, Gainesville, FL, USA. email: davis@cise.ufl.edu. http://www.cise.ufl.edu/$\sim$davis. This work was supported by the National Science Foundation, under grants ASC-9111263, DMS-9223088, and CCR-0203270. Portions of the work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from Stanford University and the SciDAC program). Ordering constraints added with support from Sandia National Laboratory (Dept. of Energy). } \and Iain S. Duff\thanks{Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England. email: i.s.duff@rl.ac.uk. http://www.numerical.rl.ac.uk/people/isd/isd.html. This work was supported by the EPSRC under grant GR/R46441. }} \date{May 31, 2007} \maketitle %------------------------------------------------------------------------------ \begin{abstract} CAMD is a set of ANSI C routines that implements the approximate minimum degree ordering algorithm to permute sparse matrices prior to numerical factorization. Ordering constraints can be optionally provided. A MATLAB interface is included. \end{abstract} %------------------------------------------------------------------------------ CAMD Version 2.2, Copyright\copyright 2007 by Timothy A. Davis, Yanqing (Morris) Chen, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. CAMD is available under alternate licences; contact T. Davis for details. {\bf CAMD License:} Your use or distribution of CAMD or any modified version of CAMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. {\bf Availability:} http://www.cise.ufl.edu/research/sparse/camd {\bf Acknowledgments:} This work was supported by the National Science Foundation, under grants ASC-9111263 and DMS-9223088 and CCR-0203270, and by Sandia National Labs (a grant from DOE). The conversion to C, the addition of the elimination tree post-ordering, and the handling of dense rows and columns were done while Davis was on sabbatical at Stanford University and Lawrence Berkeley National Laboratory. The ordering constraints were added by Chen and Davis. %------------------------------------------------------------------------------ \newpage \section{Overview} %------------------------------------------------------------------------------ CAMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It uses an approximate minimum degree ordering algorithm \cite{AmestoyDavisDuff96,AmestoyDavisDuff04} to find a permutation matrix $\m{P}$ so that the Cholesky factorization $\m{PAP}\tr=\m{LL}\tr$ has fewer (often much fewer) nonzero entries than the Cholesky factorization of $\m{A}$. The algorithm is typically much faster than other ordering methods and minimum degree ordering algorithms that compute an exact degree \cite{GeorgeLiu89}. Some methods, such as approximate deficiency \cite{RothbergEisenstat98} and graph-partitioning based methods \cite{Chaco,KarypisKumar98e,PellegriniRomanAmestoy00,schu:01} can produce better orderings, depending on the matrix. The algorithm starts with an undirected graph representation of a symmetric sparse matrix $\m{A}$. Node $i$ in the graph corresponds to row and column $i$ of the matrix, and there is an edge $(i,j)$ in the graph if $a_{ij}$ is nonzero. The degree of a node is initialized to the number of off-diagonal nonzeros in row $i$, which is the size of the set of nodes adjacent to $i$ in the graph. The selection of a pivot $a_{ii}$ from the diagonal of $\m{A}$ and the first step of Gaussian elimination corresponds to one step of graph elimination. Numerical fill-in causes new nonzero entries in the matrix (fill-in refers to nonzeros in $\m{L}$ that are not in $\m{A}$). Node $i$ is eliminated and edges are added to its neighbors so that they form a clique (or {\em element}). To reduce fill-in, node $i$ is selected as the node of least degree in the graph. This process repeats until the graph is eliminated. The clique is represented implicitly. Rather than listing all the new edges in the graph, a single list of nodes is kept which represents the clique. This list corresponds to the nonzero pattern of the first column of $\m{L}$. As the elimination proceeds, some of these cliques become subsets of subsequent cliques, and are removed. This graph can be stored in place, that is using the same amount of memory as the original graph. The most costly part of the minimum degree algorithm is the recomputation of the degrees of nodes adjacent to the current pivot element. Rather than keep track of the exact degree, the approximate minimum degree algorithm finds an upper bound on the degree that is easier to compute. For nodes of least degree, this bound tends to be tight. Using the approximate degree instead of the exact degree leads to a substantial savings in run time, particularly for very irregularly structured matrices. It has no effect on the quality of the ordering. The elimination phase is followed by an elimination tree post-ordering. This has no effect on fill-in, but reorganizes the ordering so that the subsequent numerical factorization is more efficient. It also includes a pre-processing phase in which nodes of very high degree are removed (without causing fill-in), and placed last in the permutation $\m{P}$ (subject to the constraints). This reduces the run time substantially if the matrix has a few rows with many nonzero entries, and has little effect on the quality of the ordering. CAMD operates on the symmetric nonzero pattern of $\m{A}+\m{A}\tr$, so it can be given an unsymmetric matrix, or either the lower or upper triangular part of a symmetric matrix. CAMD has the ability to order the matrix with constraints. Each node $i$ in the graph (row/column $i$ in the matrix) has a constraint, {\tt C[i]}, which is in the range {\tt 0} to {\tt n-1}. All nodes with {\tt C[i] = 0} are ordered first, followed by all nodes with constraint {\tt 1}, and so on. That is, {\tt C[P[k]]} is monotonically non-decreasing as {\tt k} varies from {\tt 0} to {\tt n-1}. If {\tt C} is NULL, no constraints are used (the ordering will be similar to AMD's ordering, except that the postordering is different). The optional {\tt C} parameter is also provided in the MATLAB interface, ({\tt p = camd (A,Control,C)}). For a discussion of the long history of the minimum degree algorithm, see \cite{GeorgeLiu89}. %------------------------------------------------------------------------------ \section{Availability} %------------------------------------------------------------------------------ CAMD is available at http://www.cise.ufl.edu/research/sparse. The Fortran version is available as the routine {\tt MC47} in HSL (formerly the Harwell Subroutine Library) \cite{hsl:2002}. {\tt MC47} does not include ordering constraints. %------------------------------------------------------------------------------ \section{Using CAMD in MATLAB} %------------------------------------------------------------------------------ To use CAMD in MATLAB, you must first compile the CAMD mexFunction. Just type {\tt make} in the Unix system shell, while in the {\tt CAMD} directory. You can also type {\tt camd\_make} in MATLAB, while in the {\tt CAMD/MATLAB} directory. Place the {\tt CAMD/MATLAB} directory in your MATLAB path. This can be done on any system with MATLAB, including Windows. See Section~\ref{Install} for more details on how to install CAMD. The MATLAB statement {\tt p=camd(A)} finds a permutation vector {\tt p} such that the Cholesky factorization {\tt chol(A(p,p))} is typically sparser than {\tt chol(A)}. If {\tt A} is unsymmetric, {\tt camd(A)} is identical to {\tt camd(A+A')} (ignoring numerical cancellation). If {\tt A} is not symmetric positive definite, but has substantial diagonal entries and a mostly symmetric nonzero pattern, then this ordering is also suitable for LU factorization. A partial pivoting threshold may be required to prevent pivots from being selected off the diagonal, such as the statement {\tt [L,U,P] = lu (A (p,p), 0.1)}. Type {\tt help lu} for more details. The statement {\tt [L,U,P,Q] = lu (A (p,p))} in MATLAB 6.5 is not suitable, however, because it uses UMFPACK Version 4.0 and thus does not attempt to select pivots from the diagonal. UMFPACK Version 4.1 in MATLAB 7.0 and later uses several strategies, including a symmetric pivoting strategy, and will give you better results if you want to factorize an unsymmetric matrix of this type. Refer to the UMFPACK User Guide for more details, at http://www.cise.ufl.edu/research/sparse/umfpack. The CAMD mexFunction is much faster than the built-in MATLAB symmetric minimum degree ordering methods, SYMAMD and SYMMMD. Its ordering quality is essentially identical to AMD, comparable to SYMAMD, and better than SYMMMD \cite{DavisGilbertLarimoreNg04}. An optional input argument can be used to modify the control parameters for CAMD (aggressive absorption, dense row/column handling, and printing of statistics). An optional output argument provides statistics on the ordering, including an analysis of the fill-in and the floating-point operation count for a subsequent factorization. For more details (once CAMD is installed), type {\tt help camd} in the MATLAB command window. %------------------------------------------------------------------------------ \section{Using CAMD in a C program} \label{Cversion} %------------------------------------------------------------------------------ The C-callable CAMD library consists of seven user-callable routines and one include file. There are two versions of each of the routines, with {\tt int} and {\tt long} integers. The routines with prefix {\tt camd\_l\_} use {\tt long} integer arguments; the others use {\tt int} integer arguments. If you compile CAMD in the standard ILP32 mode (32-bit {\tt int}'s, {\tt long}'s, and pointers) then the versions are essentially identical. You will be able to solve problems using up to 2GB of memory. If you compile CAMD in the standard LP64 mode, the size of an {\tt int} remains 32-bits, but the size of a {\tt long} and a pointer both get promoted to 64-bits. The following routines are fully described in Section~\ref{Primary}: \begin{itemize} \item {\tt camd\_order} ({\tt long} version: {\tt camd\_l\_order}) {\footnotesize \begin{verbatim} #include "camd.h" int n, Ap [n+1], Ai [nz], P [n], C [n] ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; int result = camd_order (n, Ap, Ai, P, Control, Info, C) ; \end{verbatim} } Computes the approximate minimum degree ordering of an $n$-by-$n$ matrix $\m{A}$. Returns a permutation vector {\tt P} of size {\tt n}, where {\tt P[k] = i} if row and column {\tt i} are the {\tt k}th row and column in the permuted matrix. This routine allocates its own memory of size $1.2e+9n$ integers, where $e$ is the number of nonzeros in $\m{A}+\m{A}\tr$. It computes statistics about the matrix $\m{A}$, such as the symmetry of its nonzero pattern, the number of nonzeros in $\m{L}$, and the number of floating-point operations required for Cholesky and LU factorizations (which are returned in the {\tt Info} array). The user's input matrix is not modified. It returns {\tt CAMD\_OK} if successful, {\tt CAMD\_OK\_BUT\_JUMBLED} if successful (but the matrix had unsorted and/or duplicate row indices), {\tt CAMD\_INVALID} if the matrix is invalid, {\tt CAMD\_OUT\_OF\_MEMORY} if out of memory. The array {\tt C} provides the ordering constraints. On input, {\tt C} may be null (to denote no constraints); otherwise, it must be an array size {\tt n}, with entries in the range {\tt 0} to {\tt n-1}. On output, {\tt C[P[0..n-1]]} is monotonically non-descreasing. \item {\tt camd\_defaults} ({\tt long} version: {\tt camd\_l\_defaults}) {\footnotesize \begin{verbatim} #include "camd.h" double Control [CAMD_CONTROL] ; camd_defaults (Control) ; \end{verbatim} } Sets the default control parameters in the {\tt Control} array. These can then be modified as desired before passing the array to the other CAMD routines. \item {\tt camd\_control} ({\tt long} version: {\tt camd\_l\_control}) {\footnotesize \begin{verbatim} #include "camd.h" double Control [CAMD_CONTROL] ; camd_control (Control) ; \end{verbatim} } Prints a description of the control parameters, and their values. \item {\tt camd\_info} ({\tt long} version: {\tt camd\_l\_info}) {\footnotesize \begin{verbatim} #include "camd.h" double Info [CAMD_INFO] ; camd_info (Info) ; \end{verbatim} } Prints a description of the statistics computed by CAMD, and their values. \item {\tt camd\_valid} ({\tt long} version: {\tt camd\_valid}) {\footnotesize \begin{verbatim} #include "camd.h" int n, Ap [n+1], Ai [nz] ; int result = camd_valid (n, n, Ap, Ai) ; \end{verbatim} } Returns {\tt CAMD\_OK} or {\tt CAMD\_OK\_BUT\_JUMBLED} if the matrix is valid as input to {\tt camd\_order}; the latter is returned if the matrix has unsorted and/or duplicate row indices in one or more columns. Returns {\tt CAMD\_INVALID} if the matrix cannot be passed to {\tt camd\_order}. For {\tt camd\_order}, the matrix must also be square. The first two arguments are the number of rows and the number of columns of the matrix. For its use in CAMD, these must both equal {\tt n}. \item {\tt camd\_2} ({\tt long} version: {\tt camd\_l2}) CAMD ordering kernel. It is faster than {\tt camd\_order}, and can be called by the user, but it is difficult to use. It does not check its inputs for errors. It does not require the columns of its input matrix to be sorted, but it destroys the matrix on output. Additional workspace must be passed. Refer to the source file {\tt CAMD/Source/camd\_2.c} for a description. \end{itemize} The nonzero pattern of the matrix $\m{A}$ is represented in compressed column form. For an $n$-by-$n$ matrix $\m{A}$ with {\tt nz} nonzero entries, the representation consists of two arrays: {\tt Ap} of size {\tt n+1} and {\tt Ai} of size {\tt nz}. The row indices of entries in column {\tt j} are stored in {\tt Ai[Ap[j]} $\ldots$ {\tt Ap[j+1]-1]}. For {\tt camd\_order}, if duplicate row indices are present, or if the row indices in any given column are not sorted in ascending order, then {\tt camd\_order} creates an internal copy of the matrix with sorted rows and no duplicate entries, and orders the copy. This adds slightly to the time and memory usage of {\tt camd\_order}, but is not an error condition. The matrix is 0-based, and thus row indices must be in the range {\tt 0} to {\tt n-1}. The first entry {\tt Ap[0]} must be zero. The total number of entries in the matrix is thus {\tt nz = Ap[n]}. The matrix must be square, but it does not need to be symmetric. The {\tt camd\_order} routine constructs the nonzero pattern of $\m{B} = \m{A}+\m{A}\tr$ (without forming $\m{A}\tr$ explicitly if $\m{A}$ has sorted columns and no duplicate entries), and then orders the matrix $\m{B}$. Thus, either the lower triangular part of $\m{A}$, the upper triangular part, or any combination may be passed. The transpose $\m{A}\tr$ may also be passed to {\tt camd\_order}. The diagonal entries may be present, but are ignored. %------------------------------------------------------------------------------ \subsection{Control parameters} \label{control_param} %------------------------------------------------------------------------------ Control parameters are set in an optional {\tt Control} array. It is optional in the sense that if a {\tt NULL} pointer is passed for the {\tt Control} input argument, then default control parameters are used. % \begin{itemize} \item {\tt Control[CAMD\_DENSE]} (or {\tt Control(1)} in MATLAB): controls the threshold for ``dense'' rows/columns. A dense row/column in $\m{A}+\m{A}\tr$ can cause CAMD to spend significant time in ordering the matrix. If {\tt Control[CAMD\_DENSE]} $\ge 0$, rows/columns with more than {\tt Control[CAMD\_DENSE]} $\sqrt{n}$ entries are ignored during the ordering, and placed last in the output order. The default value of {\tt Control[CAMD\_DENSE]} is 10. If negative, no rows/columns are treated as ``dense.'' Rows/columns with 16 or fewer off-diagonal entries are never considered ``dense.'' % \item {\tt Control[CAMD\_AGGRESSIVE]} (or {\tt Control(2)} in MATLAB): controls whether or not to use aggressive absorption, in which a prior element is absorbed into the current element if it is a subset of the current element, even if it is not adjacent to the current pivot element (refer to \cite{AmestoyDavisDuff96,AmestoyDavisDuff04} for more details). The default value is nonzero, which means that aggressive absorption will be performed. This nearly always leads to a better ordering (because the approximate degrees are more accurate) and a lower execution time. There are cases where it can lead to a slightly worse ordering, however. To turn it off, set {\tt Control[CAMD\_AGGRESSIVE]} to 0. % \end{itemize} Statistics are returned in the {\tt Info} array (if {\tt Info} is {\tt NULL}, then no statistics are returned). Refer to {\tt camd.h} file, for more details (14 different statistics are returned, so the list is not included here). %------------------------------------------------------------------------------ \subsection{Sample C program} %------------------------------------------------------------------------------ The following program, {\tt camd\_demo.c}, illustrates the basic use of CAMD. See Section~\ref{Synopsis} for a short description of each calling sequence. {\footnotesize \begin{verbatim} #include #include "camd.h" int n = 5 ; int Ap [ ] = { 0, 2, 6, 10, 12, 14} ; int Ai [ ] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ; int C [ ] = { 2, 0, 0, 0, 1 } ; int P [5] ; int main (void) { int k ; (void) camd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL, C) ; for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ; return (0) ; } \end{verbatim} } The {\tt Ap} and {\tt Ai} arrays represent the binary matrix \[ \m{A} = \left[ \begin{array}{rrrrr} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ \end{array} \right]. \] The diagonal entries are ignored. % CAMD constructs the pattern of $\m{A}+\m{A}\tr$, and returns a permutation vector of $(3, 2, 1, 4, 0)$. Note that nodes 1, 2, and 3 appear first (they are in the constraint set 0), node 4 appears next (since {\tt C[4] = 1}), and node 0 appears last. % Since the matrix is unsymmetric but with a mostly symmetric nonzero pattern, this would be a suitable permutation for an LU factorization of a matrix with this nonzero pattern and whose diagonal entries are not too small. The program uses default control settings and does not return any statistics about the ordering, factorization, or solution ({\tt Control} and {\tt Info} are both {\tt (double *) NULL}). It also ignores the status value returned by {\tt camd\_order}. More example programs are included with the CAMD package. The {\tt camd\_demo.c} program provides a more detailed demo of CAMD. Another example is the CAMD mexFunction, {\tt camd\_mex.c}. %------------------------------------------------------------------------------ \subsection{A note about zero-sized arrays} %------------------------------------------------------------------------------ CAMD uses several user-provided arrays of size {\tt n} or {\tt nz}. Either {\tt n} or {\tt nz} can be zero. If you attempt to {\tt malloc} an array of size zero, however, {\tt malloc} will return a null pointer which CAMD will report as invalid. If you {\tt malloc} an array of size {\tt n} or {\tt nz} to pass to CAMD, make sure that you handle the {\tt n} = 0 and {\tt nz = 0} cases correctly. %------------------------------------------------------------------------------ \section{Synopsis of C-callable routines} \label{Synopsis} %------------------------------------------------------------------------------ The matrix $\m{A}$ is {\tt n}-by-{\tt n} with {\tt nz} entries. {\footnotesize \begin{verbatim} #include "camd.h" int n, status, Ap [n+1], Ai [nz], P [n], C [n] ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; camd_defaults (Control) ; status = camd_order (n, Ap, Ai, P, Control, Info, C) ; camd_control (Control) ; camd_info (Info) ; status = camd_valid (n, n, Ap, Ai) ; \end{verbatim} } The {\tt camd\_l\_*} routines are identical, except that all {\tt int} arguments become {\tt long}: {\footnotesize \begin{verbatim} #include "camd.h" long n, status, Ap [n+1], Ai [nz], P [n], C [n] ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; camd_l_defaults (Control) ; status = camd_l_order (n, Ap, Ai, P, Control, Info, C) ; camd_l_control (Control) ; camd_l_info (Info) ; status = camd_l_valid (n, n, Ap, Ai) ; \end{verbatim} } %------------------------------------------------------------------------------ \section{Installation} \label{Install} %------------------------------------------------------------------------------ The following discussion assumes you have the {\tt make} program, either in Unix, or in Windows with Cygwin. System-dependent configurations are in the {\tt ../UFconfig/UFconfig.mk} file. You can edit that file to customize the compilation. The default settings will work on most systems. Sample configuration files are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. To compile and install the C-callable CAMD library, go to the {\tt CAMD} directory and type {\tt make}. The library will be placed in {\tt CAMD/Lib/libcamd.a}. Three demo programs of the CAMD ordering routine will be compiled and tested in the {\tt CAMD/Demo} directory. The outputs of these demo programs will then be compared with output files in the distribution. Typing {\tt make clean} will remove all but the final compiled libraries and demo programs. Typing {\tt make purge} or {\tt make distclean} removes all files not in the original distribution. If you compile CAMD and then later change the {\tt ../UFconfig/UFconfig.mk} file then you should type {\tt make purge} and then {\tt make} to recompile. When you compile your program that uses the C-callable CAMD library, you need to add the {\tt CAMD/Lib/libcamd.a} library and you need to tell your compiler to look in the {\tt CAMD/Include} directory for include files. See {\tt CAMD/Demo/Makefile} for an example. If all you want to use is the CAMD mexFunction in MATLAB, you can skip the use of the {\tt make} command entirely. Simply type {\tt camd\_make} in MATLAB while in the {\tt CAMD/MATLAB} directory. This works on any system with MATLAB, including Windows. Alternately, type {\tt make} in the {\tt CAMD/MATLAB} directory. If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command, prior to {\tt make mex} or {\tt make} in the MATLAB directory (or just use {\tt camd\_make.m} inside MATLAB. If you are including CAMD as a subset of a larger library and do not want to link the C standard I/O library, or if you simply do not need to use them, you can safely remove the {\tt camd\_control.c} and {\tt camd\_info.c} files. Similarly, if you use default parameters (or define your own {\tt Control} array), then you can exclude the {\tt camd\_defaults.c} file. Each of these files contains the user-callable routines of the same name. None of these auxiliary routines are directly called by {\tt camd\_order}. The {\tt camd\_dump.c} file contains debugging routines that are neither used nor compiled unless debugging is enabled. The {\tt camd\_internal.h} file must be edited to enable debugging; refer to the instructions in that file. The bare minimum files required to use just {\tt camd\_order} are {\tt camd.h} and {\tt camd\_internal.h} in the {\tt Include} directory, and {\tt camd\_1.c}, {\tt camd\_2.c}, {\tt camd\_aat.c}, {\tt camd\_global.c}, {\tt and\_order.c}, {\tt camd\_postorder.c}, {\tt camd\_preprocess.c}, and {\tt camd\_valid.c} in the {\tt Source} directory. %------------------------------------------------------------------------------ \newpage \section{The CAMD routines} \label{Primary} %------------------------------------------------------------------------------ The file {\tt CAMD/Include/camd.h} listed below describes each user-callable routine in CAMD, and gives details on their use. {\footnotesize \begin{verbatim} /* ========================================================================= */ /* === CAMD: approximate minimum degree ordering ========================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* CAMD finds a symmetric ordering P of a matrix A so that the Cholesky * factorization of P*A*P' has fewer nonzeros and takes less work than the * Cholesky factorization of A. If A is not symmetric, then it performs its * ordering on the matrix A+A'. Two sets of user-callable routines are * provided, one for int integers and the other for UF_long integers. * * The method is based on the approximate minimum degree algorithm, discussed * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm", * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp. * 886-905, 1996. */ #ifndef CAMD_H #define CAMD_H /* make it easy for C++ programs to include CAMD */ #ifdef __cplusplus extern "C" { #endif /* get the definition of size_t: */ #include /* define UF_long */ #include "UFconfig.h" int camd_order /* returns CAMD_OK, CAMD_OK_BUT_JUMBLED, * CAMD_INVALID, or CAMD_OUT_OF_MEMORY */ ( int n, /* A is n-by-n. n must be >= 0. */ const int Ap [ ], /* column pointers for A, of size n+1 */ const int Ai [ ], /* row indices of A, of size nz = Ap [n] */ int P [ ], /* output permutation, of size n */ double Control [ ], /* input Control settings, of size CAMD_CONTROL */ double Info [ ], /* output Info statistics, of size CAMD_INFO */ const int C [ ] /* Constraint set of A, of size n; can be NULL */ ) ; UF_long camd_l_order /* see above for description of arguments */ ( UF_long n, const UF_long Ap [ ], const UF_long Ai [ ], UF_long P [ ], double Control [ ], double Info [ ], const UF_long C [ ] ) ; /* Input arguments (not modified): * * n: the matrix A is n-by-n. * Ap: an int/UF_long array of size n+1, containing column pointers of A. * Ai: an int/UF_long array of size nz, containing the row indices of A, * where nz = Ap [n]. * Control: a double array of size CAMD_CONTROL, containing control * parameters. Defaults are used if Control is NULL. * * Output arguments (not defined on input): * * P: an int/UF_long array of size n, containing the output permutation. If * row i is the kth pivot row, then P [k] = i. In MATLAB notation, * the reordered matrix is A (P,P). * Info: a double array of size CAMD_INFO, containing statistical * information. Ignored if Info is NULL. * * On input, the matrix A is stored in column-oriented form. The row indices * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1]. * * If the row indices appear in ascending order in each column, and there * are no duplicate entries, then camd_order is slightly more efficient in * terms of time and memory usage. If this condition does not hold, a copy * of the matrix is created (where these conditions do hold), and the copy is * ordered. * * Row indices must be in the range 0 to * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n]. * The matrix does not need to be symmetric, and the diagonal does not need to * be present (if diagonal entries are present, they are ignored except for * the output statistic Info [CAMD_NZDIAG]). The arrays Ai and Ap are not * modified. This form of the Ap and Ai arrays to represent the nonzero * pattern of the matrix A is the same as that used internally by MATLAB. * If you wish to use a more flexible input structure, please see the * umfpack_*_triplet_to_col routines in the UMFPACK package, at * http://www.cise.ufl.edu/research/sparse/umfpack. * * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0 * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these * restrictions are not met, CAMD returns CAMD_INVALID. * * CAMD returns: * * CAMD_OK if the matrix is valid and sufficient memory can be allocated to * perform the ordering. * * CAMD_OUT_OF_MEMORY if not enough memory can be allocated. * * CAMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is * NULL. * * CAMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate * entries, but was otherwise valid. * * The CAMD routine first forms the pattern of the matrix A+A', and then * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of * the original is the kth pivotal row. In MATLAB notation, the permuted * matrix is A (P,P), except that 0-based indexing is used instead of the * 1-based indexing in MATLAB. * * The Control array is used to set various parameters for CAMD. If a NULL * pointer is passed, default values are used. The Control array is not * modified. * * Control [CAMD_DENSE]: controls the threshold for "dense" rows/columns. * A dense row/column in A+A' can cause CAMD to spend a lot of time in * ordering the matrix. If Control [CAMD_DENSE] >= 0, rows/columns * with more than Control [CAMD_DENSE] * sqrt (n) entries are ignored * during the ordering, and placed last in the output order. The * default value of Control [CAMD_DENSE] is 10. If negative, no * rows/columns are treated as "dense". Rows/columns with 16 or * fewer off-diagonal entries are never considered "dense". * * Control [CAMD_AGGRESSIVE]: controls whether or not to use aggressive * absorption, in which a prior element is absorbed into the current * element if is a subset of the current element, even if it is not * adjacent to the current pivot element (refer to Amestoy, Davis, * & Duff, 1996, for more details). The default value is nonzero, * which means to perform aggressive absorption. This nearly always * leads to a better ordering (because the approximate degrees are * more accurate) and a lower execution time. There are cases where * it can lead to a slightly worse ordering, however. To turn it off, * set Control [CAMD_AGGRESSIVE] to 0. * * Control [2..4] are not used in the current version, but may be used in * future versions. * * The Info array provides statistics about the ordering on output. If it is * not present, the statistics are not returned. This is not an error * condition. * * Info [CAMD_STATUS]: the return value of CAMD, either CAMD_OK, * CAMD_OK_BUT_JUMBLED, CAMD_OUT_OF_MEMORY, or CAMD_INVALID. * * Info [CAMD_N]: n, the size of the input matrix * * Info [CAMD_NZ]: the number of nonzeros in A, nz = Ap [n] * * Info [CAMD_SYMMETRY]: the symmetry of the matrix A. It is the number * of "matched" off-diagonal entries divided by the total number of * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also * an entry, for any pair (i,j) for which i != j. In MATLAB notation, * S = spones (A) ; * B = tril (S, -1) + triu (S, 1) ; * symmetry = nnz (B & B') / nnz (B) ; * * Info [CAMD_NZDIAG]: the number of entries on the diagonal of A. * * Info [CAMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the * diagonal. If A is perfectly symmetric (Info [CAMD_SYMMETRY] = 1) * with a fully nonzero diagonal, then Info [CAMD_NZ_A_PLUS_AT] = nz-n * (the smallest possible value). If A is perfectly unsymmetric * (Info [CAMD_SYMMETRY] = 0, for an upper triangular matrix, for * example) with no diagonal, then Info [CAMD_NZ_A_PLUS_AT] = 2*nz * (the largest possible value). * * Info [CAMD_NDENSE]: the number of "dense" rows/columns of A+A' that were * removed from A prior to ordering. These are placed last in the * output order P. * * Info [CAMD_MEMORY]: the amount of memory used by CAMD, in bytes. In the * current version, this is 1.2 * Info [CAMD_NZ_A_PLUS_AT] + 9*n * times the size of an integer. This is at most 2.4nz + 9n. This * excludes the size of the input arguments Ai, Ap, and P, which have * a total size of nz + 2*n + 1 integers. * * Info [CAMD_NCMPA]: the number of garbage collections performed. * * Info [CAMD_LNZ]: the number of nonzeros in L (excluding the diagonal). * This is a slight upper bound because mass elimination is combined * with the approximate degree update. It is a rough upper bound if * there are many "dense" rows/columns. The rest of the statistics, * below, are also slight or rough upper bounds, for the same reasons. * The post-ordering of the assembly tree might also not exactly * correspond to a true elimination tree postordering. * * Info [CAMD_NDIV]: the number of divide operations for a subsequent LDL' * or LU factorization of the permuted matrix A (P,P). * * Info [CAMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a * subsequent LDL' factorization of A (P,P). * * Info [CAMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a * subsequent LU factorization of A (P,P), assuming that no numerical * pivoting is required. * * Info [CAMD_DMAX]: the maximum number of nonzeros in any column of L, * including the diagonal. * * Info [14..19] are not used in the current version, but may be used in * future versions. */ /* ------------------------------------------------------------------------- */ /* direct interface to CAMD */ /* ------------------------------------------------------------------------- */ /* camd_2 is the primary CAMD ordering routine. It is not meant to be * user-callable because of its restrictive inputs and because it destroys * the user's input matrix. It does not check its inputs for errors, either. * However, if you can work with these restrictions it can be faster than * camd_order and use less memory (assuming that you can create your own copy * of the matrix for CAMD to destroy). Refer to CAMD/Source/camd_2.c for a * description of each parameter. */ void camd_2 ( int n, int Pe [ ], int Iw [ ], int Len [ ], int iwlen, int pfree, int Nv [ ], int Next [ ], int Last [ ], int Head [ ], int Elen [ ], int Degree [ ], int W [ ], double Control [ ], double Info [ ], const int C [ ], int BucketSet [ ] ) ; void camd_l2 ( UF_long n, UF_long Pe [ ], UF_long Iw [ ], UF_long Len [ ], UF_long iwlen, UF_long pfree, UF_long Nv [ ], UF_long Next [ ], UF_long Last [ ], UF_long Head [ ], UF_long Elen [ ], UF_long Degree [ ], UF_long W [ ], double Control [ ], double Info [ ], const UF_long C [ ], UF_long BucketSet [ ] ) ; /* ------------------------------------------------------------------------- */ /* camd_valid */ /* ------------------------------------------------------------------------- */ /* Returns CAMD_OK or CAMD_OK_BUT_JUMBLED if the matrix is valid as input to * camd_order; the latter is returned if the matrix has unsorted and/or * duplicate row indices in one or more columns. Returns CAMD_INVALID if the * matrix cannot be passed to camd_order. For camd_order, the matrix must also * be square. The first two arguments are the number of rows and the number * of columns of the matrix. For its use in CAMD, these must both equal n. */ int camd_valid ( int n_row, /* # of rows */ int n_col, /* # of columns */ const int Ap [ ], /* column pointers, of size n_col+1 */ const int Ai [ ] /* row indices, of size Ap [n_col] */ ) ; UF_long camd_l_valid ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ] ) ; /* ------------------------------------------------------------------------- */ /* camd_cvalid */ /* ------------------------------------------------------------------------- */ /* Returns TRUE if the constraint set is valid as input to camd_order, * FALSE otherwise. */ int camd_cvalid ( int n, const int C [ ] ) ; UF_long camd_l_cvalid ( UF_long n, const UF_long C [ ] ) ; /* ------------------------------------------------------------------------- */ /* CAMD memory manager and printf routines */ /* ------------------------------------------------------------------------- */ /* The user can redefine these to change the malloc, free, and printf routines * that CAMD uses. */ #ifndef EXTERN #define EXTERN extern #endif EXTERN void *(*camd_malloc) (size_t) ; /* pointer to malloc */ EXTERN void (*camd_free) (void *) ; /* pointer to free */ EXTERN void *(*camd_realloc) (void *, size_t) ; /* pointer to realloc */ EXTERN void *(*camd_calloc) (size_t, size_t) ; /* pointer to calloc */ EXTERN int (*camd_printf) (const char *, ...) ; /* pointer to printf */ /* ------------------------------------------------------------------------- */ /* CAMD Control and Info arrays */ /* ------------------------------------------------------------------------- */ /* camd_defaults: sets the default control settings */ void camd_defaults (double Control [ ]) ; void camd_l_defaults (double Control [ ]) ; /* camd_control: prints the control settings */ void camd_control (double Control [ ]) ; void camd_l_control (double Control [ ]) ; /* camd_info: prints the statistics */ void camd_info (double Info [ ]) ; void camd_l_info (double Info [ ]) ; #define CAMD_CONTROL 5 /* size of Control array */ #define CAMD_INFO 20 /* size of Info array */ /* contents of Control */ #define CAMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */ #define CAMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */ /* default Control settings */ #define CAMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */ #define CAMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */ /* contents of Info */ #define CAMD_STATUS 0 /* return value of camd_order and camd_l_order */ #define CAMD_N 1 /* A is n-by-n */ #define CAMD_NZ 2 /* number of nonzeros in A */ #define CAMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */ #define CAMD_NZDIAG 4 /* # of entries on diagonal */ #define CAMD_NZ_A_PLUS_AT 5 /* nz in A+A' */ #define CAMD_NDENSE 6 /* number of "dense" rows/columns in A */ #define CAMD_MEMORY 7 /* amount of memory used by CAMD */ #define CAMD_NCMPA 8 /* number of garbage collections in CAMD */ #define CAMD_LNZ 9 /* approx. nz in L, excluding the diagonal */ #define CAMD_NDIV 10 /* number of fl. point divides for LU and LDL' */ #define CAMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */ #define CAMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */ #define CAMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */ /* ------------------------------------------------------------------------- */ /* return values of CAMD */ /* ------------------------------------------------------------------------- */ #define CAMD_OK 0 /* success */ #define CAMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */ #define CAMD_INVALID -2 /* input arguments are not valid */ #define CAMD_OK_BUT_JUMBLED 1 /* input matrix is OK for camd_order, but * columns were not sorted, and/or duplicate entries were present. CAMD had * to do extra work before ordering the matrix. This is a warning, not an * error. */ /* ========================================================================== */ /* === CAMD version ========================================================= */ /* ========================================================================== */ /* * As an example, to test if the version you are using is 1.2 or later: * * if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2)) ... * * This also works during compile-time: * * #if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif */ #define CAMD_DATE "May 31, 2007" #define CAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define CAMD_MAIN_VERSION 2 #define CAMD_SUB_VERSION 2 #define CAMD_SUBSUB_VERSION 0 #define CAMD_VERSION CAMD_VERSION_CODE(CAMD_MAIN_VERSION,CAMD_SUB_VERSION) #ifdef __cplusplus } #endif #endif \end{verbatim} } %------------------------------------------------------------------------------ \newpage % References %------------------------------------------------------------------------------ \bibliographystyle{plain} \bibliography{CAMD_UserGuide} \end{document} SuiteSparse/CAMD/Doc/ChangeLog0000644001170100242450000000346210620614362014737 0ustar davisfacMay 31, 2007: version 2.2.0 * port to 64-bit MATLAB * Makefile moved from Source/ to Lib/ Dec 12, 2006, v2.1.3 * minor MATLAB cleanup Sept 28, 2006, v2.1.2 * #define SIZE_T_MAX not done if already defined (Mac OSX). Aug 31, 2006: v2.1.1 * trivial change to comments in camd.m June 27, 2006: CAMD Version 2.1 * bug fix. Ordering constraints not always met if dense and/or empty nodes are present in the matrix. Apr. 30, 2006: CAMD Version 2.0 * CAMD released, based on AMD v2.0. To compare the two codes, type the command ./docdiff in this directory (the "CAMD" and "camd" strings are replaced with "AMD" and "amd" when the two packages are compared, to make more evident the substantive differences between the packages). Primary differences with AMD v2.0: CAMD adds the ability to order the matrix with constraints. Each node i in the graph (row/column i in the matrix) has a constraint, C[i], which is in the range 0 to n-1. All nodes with C[i] = 0 are ordered first, followed by all nodes with constraint 1, and so on. That is, C[P[k]] is monotonically non-decreasing as k varies from 0 to n-1. camd_order has an additional C parameter; if NULL, no constraints are used (the ordering will be similar to AMD's ordering). The optional C parameter is also added to the MATLAB interface, p = camd (A,Control,C). Since the C parameter is optional, CAMD can replace AMD in any application that uses AMD. Just pass C = NULL (or omit C in the MATLAB interface). There is no Fortran version of CAMD, however. The postordering is different, and there is no camd_post_tree.c file. A new routine, camd_cvalid, has been added to check the validity of C. CAMD requires more workspace than AMD (n+1 integers). All user-visible names AMD* and amd* replaced with CAMD* and camd*. SuiteSparse/CAMD/Doc/lesser.txt0000644001170100242450000006350010423422510015213 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CAMD/Lib/0000755001170100242450000000000010711435721013162 5ustar davisfacSuiteSparse/CAMD/Lib/Makefile0000644001170100242450000000504510621147006014622 0ustar davisfac#------------------------------------------------------------------------------- # CAMD Makefile for compiling on Unix systems (for original Make ONLY) #------------------------------------------------------------------------------- # This is a very ugly Makefile, and is only provided for those who do not # have GNU make. Note that it is not used if you have GNU make. It ignores # dependency checking and just compiles everything. default: everything include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CONFIG) -I../Include -I../../UFconfig everything: $(C) -DDINT -c ../Source/camd_aat.c -o camd_i_aat.o $(C) -DDINT -c ../Source/camd_1.c -o camd_i_1.o $(C) -DDINT -c ../Source/camd_2.c -o camd_i_2.o $(C) -DDINT -c ../Source/camd_dump.c -o camd_i_dump.o $(C) -DDINT -c ../Source/camd_postorder.c -o camd_i_postorder.o $(C) -DDINT -c ../Source/camd_defaults.c -o camd_i_defaults.o $(C) -DDINT -c ../Source/camd_order.c -o camd_i_order.o $(C) -DDINT -c ../Source/camd_control.c -o camd_i_control.o $(C) -DDINT -c ../Source/camd_info.c -o camd_i_info.o $(C) -DDINT -c ../Source/camd_valid.c -o camd_i_valid.o $(C) -DDINT -c ../Source/camd_preprocess.c -o camd_i_preprocess.o $(C) -DDLONG -c ../Source/camd_aat.c -o camd_l_aat.o $(C) -DDLONG -c ../Source/camd_1.c -o camd_l_1.o $(C) -DDLONG -c ../Source/camd_2.c -o camd_l_2.o $(C) -DDLONG -c ../Source/camd_dump.c -o camd_l_dump.o $(C) -DDLONG -c ../Source/camd_postorder.c -o camd_l_postorder.o $(C) -DDLONG -c ../Source/camd_defaults.c -o camd_l_defaults.o $(C) -DDLONG -c ../Source/camd_order.c -o camd_l_order.o $(C) -DDLONG -c ../Source/camd_control.c -o camd_l_control.o $(C) -DDLONG -c ../Source/camd_info.c -o camd_l_info.o $(C) -DDLONG -c ../Source/camd_valid.c -o camd_l_valid.o $(C) -DDLONG -c ../Source/camd_preprocess.c -o camd_l_preprocess.o $(C) -c ../Source/camd_global.c $(AR) libcamd.a camd_i_aat.o camd_i_1.o camd_i_2.o camd_i_dump.o \ camd_i_postorder.o camd_i_defaults.o camd_i_order.o \ camd_i_control.o camd_i_info.o camd_i_valid.o camd_l_aat.o \ camd_l_1.o camd_l_2.o camd_l_dump.o camd_l_postorder.o \ camd_l_defaults.o camd_l_order.o camd_l_control.o camd_l_info.o \ camd_l_valid.o camd_i_preprocess.o camd_l_preprocess.o camd_global.o - $(RANLIB) libcamd.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) libcamd.a SuiteSparse/CAMD/Lib/libcamd.def0000644001170100242450000000022310423471324015231 0ustar davisfacLIBRARY libcamd.dll EXPORTS camd_order camd_defaults camd_control camd_info camd_2 camd_l_order camd_l_defaults camd_l_control camd_l_info camd_l2 SuiteSparse/CAMD/Lib/GNUmakefile0000644001170100242450000000405210617112305015230 0ustar davisfac#------------------------------------------------------------------------------- # CAMD Makefile for compiling on Unix systems (for GNU make only) #------------------------------------------------------------------------------- default: libcamd.a include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CONFIG) -I../Include -I../../UFconfig #------------------------------------------------------------------------------- # source files #------------------------------------------------------------------------------- CAMD = camd_aat camd_1 camd_2 camd_dump camd_postorder camd_defaults \ camd_order camd_control camd_info camd_valid camd_preprocess UFCONFIG = ../../UFconfig/UFconfig.h INC = ../Include/camd.h ../Include/camd_internal.h $(UFCONFIG) #------------------------------------------------------------------------------- # object files for each version #------------------------------------------------------------------------------- CAMDI = $(addsuffix .o, $(subst camd_,camd_i_,$(CAMD))) CAMDL = $(addsuffix .o, $(subst camd_,camd_l_,$(CAMD))) #------------------------------------------------------------------------------- # compile each int and long routine (with no real/complex version) #------------------------------------------------------------------------------- camd_global.o: ../Source/camd_global.c $(INC) $(C) -c $< -o $@ camd_i_%.o: ../Source/camd_%.c $(INC) $(C) -DDINT -c $< -o $@ camd_l_%.o: ../Source/camd_%.c $(INC) $(C) -DDLONG -c $< -o $@ #------------------------------------------------------------------------------- # Create the libcamd.a library (C versions only) #------------------------------------------------------------------------------- libcamd.a: camd_global.o $(CAMDI) $(CAMDL) $(AR) libcamd.a $^ - $(RANLIB) libcamd.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) libcamd.a SuiteSparse/CAMD/Demo/0000755001170100242450000000000010711435721013340 5ustar davisfacSuiteSparse/CAMD/Demo/Makefile0000644001170100242450000000346010617112412014775 0ustar davisfac#----------------------------------------------------------------------------- # compile the CAMD demo (for both GNU make or original make) #----------------------------------------------------------------------------- default: camd_simple camd_demo camd_demo2 camd_l_demo include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CONFIG) -I../Include -I../../UFconfig UFCONFIG = ../../UFconfig/UFconfig.h INC = ../Include/camd.h $(UFCONFIG) library: ( cd ../Lib ; $(MAKE) ) #------------------------------------------------------------------------------ # Create the demo program, run it, and compare the output #------------------------------------------------------------------------------ dist: camd_demo: camd_demo.c library $(INC) $(C) -o camd_demo camd_demo.c ../Lib/libcamd.a $(LIB) ./camd_demo > my_camd_demo.out - diff camd_demo.out my_camd_demo.out camd_l_demo: camd_l_demo.c library $(INC) $(C) -o camd_l_demo camd_l_demo.c ../Lib/libcamd.a $(LIB) ./camd_l_demo > my_camd_l_demo.out - diff camd_l_demo.out my_camd_l_demo.out camd_demo2: camd_demo2.c library $(INC) $(C) -o camd_demo2 camd_demo2.c ../Lib/libcamd.a $(LIB) ./camd_demo2 > my_camd_demo2.out - diff camd_demo2.out my_camd_demo2.out camd_simple: camd_simple.c library $(INC) $(C) -o camd_simple camd_simple.c ../Lib/libcamd.a $(LIB) ./camd_simple > my_camd_simple.out - diff camd_simple.out my_camd_simple.out #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) camd_demo my_camd_demo.out - $(RM) camd_l_demo my_camd_l_demo.out - $(RM) camd_demo2 my_camd_demo2.out - $(RM) camd_simple my_camd_simple.out SuiteSparse/CAMD/Demo/camd_simple.c0000644001170100242450000000153410616400305015756 0ustar davisfac/* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ #include #include "camd.h" int n = 5 ; int Ap [ ] = { 0, 2, 6, 10, 12, 14} ; int Ai [ ] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ; int C [ ] = { 2, 0, 0, 0, 1 } ; int P [5] ; int main (void) { int k ; (void) camd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL, C) ; for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ; return (0) ; } SuiteSparse/CAMD/Demo/camd_l_demo.out0000644001170100242450000001664010616403262016322 0ustar davisfacCAMD version 2.2, date: May 31, 2007 CAMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: camd version 2.2, May 31, 2007: approximate minimum degree ordering: dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes Input matrix: 24-by-24, with 160 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to CAMD, since CAMD computes the ordering of A+A'. The diagonal entries are also not needed, since CAMD ignores them. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 5 6 12 13 17 18 19 21 Column: 1, number of entries: 6, with row indices in Ai [9 ... 14]: row indices: 1 8 9 13 14 17 Column: 2, number of entries: 6, with row indices in Ai [15 ... 20]: row indices: 2 6 11 20 21 22 Column: 3, number of entries: 6, with row indices in Ai [21 ... 26]: row indices: 3 7 10 15 18 19 Column: 4, number of entries: 6, with row indices in Ai [27 ... 32]: row indices: 4 7 9 14 15 16 Column: 5, number of entries: 6, with row indices in Ai [33 ... 38]: row indices: 0 5 6 12 13 17 Column: 6, number of entries: 9, with row indices in Ai [39 ... 47]: row indices: 0 2 5 6 11 12 19 21 23 Column: 7, number of entries: 9, with row indices in Ai [48 ... 56]: row indices: 3 4 7 9 14 15 16 17 18 Column: 8, number of entries: 4, with row indices in Ai [57 ... 60]: row indices: 1 8 9 14 Column: 9, number of entries: 9, with row indices in Ai [61 ... 69]: row indices: 1 4 7 8 9 13 14 17 18 Column: 10, number of entries: 6, with row indices in Ai [70 ... 75]: row indices: 3 10 18 19 20 21 Column: 11, number of entries: 6, with row indices in Ai [76 ... 81]: row indices: 2 6 11 12 21 23 Column: 12, number of entries: 6, with row indices in Ai [82 ... 87]: row indices: 0 5 6 11 12 23 Column: 13, number of entries: 6, with row indices in Ai [88 ... 93]: row indices: 0 1 5 9 13 17 Column: 14, number of entries: 6, with row indices in Ai [94 ... 99]: row indices: 1 4 7 8 9 14 Column: 15, number of entries: 6, with row indices in Ai [100 ... 105]: row indices: 3 4 7 15 16 18 Column: 16, number of entries: 4, with row indices in Ai [106 ... 109]: row indices: 4 7 15 16 Column: 17, number of entries: 9, with row indices in Ai [110 ... 118]: row indices: 0 1 5 7 9 13 17 18 19 Column: 18, number of entries: 9, with row indices in Ai [119 ... 127]: row indices: 0 3 7 9 10 15 17 18 19 Column: 19, number of entries: 9, with row indices in Ai [128 ... 136]: row indices: 0 3 6 10 17 18 19 20 21 Column: 20, number of entries: 6, with row indices in Ai [137 ... 142]: row indices: 2 10 19 20 21 22 Column: 21, number of entries: 9, with row indices in Ai [143 ... 151]: row indices: 0 2 6 10 11 19 20 21 22 Column: 22, number of entries: 4, with row indices in Ai [152 ... 155]: row indices: 2 20 21 22 Column: 23, number of entries: 4, with row indices in Ai [156 ... 159]: row indices: 6 11 12 23 Plot of input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from camd_l_order: 0 (should be 0) camd: approximate minimum degree ordering, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 3288 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 135 nonzeros in L (including diagonal): 159 # divide operations for LDL' or LU: 135 # multiply-subtract operations for LDL': 541 # multiply-subtract operations for LU: 947 max nz. in any column of L (incl. diagonal): 12 chol flop count for real A, sqrt counted as 1 flop: 1241 LDL' flop count for real A: 1217 LDL' flop count for complex A: 5543 LU flop count for real A (with no pivoting): 2029 LU flop count for complex A (with no pivoting): 8791 Permutation vector: 23 3 1 5 0 22 4 8 9 7 6 21 17 19 10 14 2 11 20 15 12 13 18 16 Inverse permutation vector: 4 2 16 1 6 3 10 9 7 8 14 17 20 21 15 19 23 12 22 13 18 11 5 0 Plot of permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . . . . . X . . . . . . X . . X . . . 1: . X . . . . . . . X . . . X X . . . . X . . X . 2: . . X . . . . X X . . . X . . X . . . . . X . . 3: . . . X X . . . . . X . X . . . . . . . X X . . 4: . . . X X . . . . . X X X X . . . . . . X X X . 5: . . . . . X . . . . . X . . . . X . X . . . . . 6: . . . . . . X . X X . . . . . X . . . X . . . X 7: . . X . . . . X X . . . . . . X . . . . . . . . 8: . . X . . . X X X X . . X . . X . . . . . X X . 9: . X . . . . X . X X . . X . . X . . . X . . X X 10: X . . X X . . . . . X X . X . . X X . . X . . . 11: . . . . X X . . . . X X . X X . X X X . . . . . 12: . . X X X . . . X X . . X X . . . . . . . X X . 13: . X . . X . . . . . X X X X X . . . X . . . X . 14: . X . . . . . . . . . X . X X . . . X . . . X . 15: . . X . . . X X X X . . . . . X . . . . . . . . 16: . . . . . X . . . . X X . . . . X X X . . . . . 17: X . . . . . . . . . X X . . . . X X . . X . . . 18: . . . . . X . . . . . X . X X . X . X . . . . . 19: . X . . . . X . . X . . . . . . . . . X . . X X 20: X . . X X . . . . . X . . . . . . X . . X . . . 21: . . X X X . . . X . . . X . . . . . . . . X . . 22: . X . . X . . . X X . . X X X . . . . X . . X . 23: . . . . . . X . . X . . . . . . . . . X . . . X SuiteSparse/CAMD/Demo/camd_demo2.out0000644001170100242450000002153610616403262016071 0ustar davisfacCAMD demo, with a jumbled version of the 24-by-24 Harwell/Boeing matrix, can_24: camd version 2.2, May 31, 2007: approximate minimum degree ordering: dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes Jumbled input matrix: 24-by-24, with 116 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to CAMD, since CAMD computes the ordering of A+A'. The diagonal entries are also not needed, since CAMD ignores them. This version of the matrix has jumbled columns and duplicate row indices. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 17 18 21 5 12 5 0 13 Column: 1, number of entries: 5, with row indices in Ai [9 ... 13]: row indices: 14 1 8 13 17 Column: 2, number of entries: 6, with row indices in Ai [14 ... 19]: row indices: 2 20 11 6 11 22 Column: 3, number of entries: 8, with row indices in Ai [20 ... 27]: row indices: 3 3 10 7 18 18 15 19 Column: 4, number of entries: 5, with row indices in Ai [28 ... 32]: row indices: 7 9 15 14 16 Column: 5, number of entries: 4, with row indices in Ai [33 ... 36]: row indices: 5 13 6 17 Column: 6, number of entries: 7, with row indices in Ai [37 ... 43]: row indices: 5 0 11 6 12 6 23 Column: 7, number of entries: 9, with row indices in Ai [44 ... 52]: row indices: 3 4 9 7 14 16 15 17 18 Column: 8, number of entries: 5, with row indices in Ai [53 ... 57]: row indices: 1 9 14 14 14 Column: 9, number of entries: 5, with row indices in Ai [58 ... 62]: row indices: 7 13 8 1 17 Column: 10, number of entries: 0, with row indices in Ai [63 ... 62]: row indices: Column: 11, number of entries: 3, with row indices in Ai [63 ... 65]: row indices: 2 12 23 Column: 12, number of entries: 3, with row indices in Ai [66 ... 68]: row indices: 5 11 12 Column: 13, number of entries: 3, with row indices in Ai [69 ... 71]: row indices: 0 13 17 Column: 14, number of entries: 3, with row indices in Ai [72 ... 74]: row indices: 1 9 14 Column: 15, number of entries: 3, with row indices in Ai [75 ... 77]: row indices: 3 15 16 Column: 16, number of entries: 4, with row indices in Ai [78 ... 81]: row indices: 16 4 4 15 Column: 17, number of entries: 4, with row indices in Ai [82 ... 85]: row indices: 13 17 19 17 Column: 18, number of entries: 5, with row indices in Ai [86 ... 90]: row indices: 15 17 19 9 10 Column: 19, number of entries: 6, with row indices in Ai [91 ... 96]: row indices: 17 19 20 0 6 10 Column: 20, number of entries: 4, with row indices in Ai [97 ... 100]: row indices: 22 10 20 21 Column: 21, number of entries: 11, with row indices in Ai [101 ... 111]: row indices: 6 2 10 19 20 11 21 22 22 22 22 Column: 22, number of entries: 0, with row indices in Ai [112 ... 111]: row indices: Column: 23, number of entries: 4, with row indices in Ai [112 ... 115]: row indices: 12 11 12 23 Plot of (jumbled) input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . X . . . . . . X . . . . . X . . . . 1: . X . . . . . . X X . . . . X . . . . . . . . . 2: . . X . . . . . . . . X . . . . . . . . . X . . 3: . . . X . . . X . . . . . . . X . . . . . . . . 4: . . . . . . . X . . . . . . . . X . . . . . . . 5: X . . . . X X . . . . . X . . . . . . . . . . . 6: . . X . . X X . . . . . . . . . . . . X . X . . 7: . . . X X . . X . X . . . . . . . . . . . . . . 8: . X . . . . . . . X . . . . . . . . . . . . . . 9: . . . . X . . X X . . . . . X . . . X . . . . . 10: . . . X . . . . . . . . . . . . . . X X X X . . 11: . . X . . . X . . . . . X . . . . . . . . X . X 12: X . . . . . X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X . . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . . . . . . . . . . . . . . . . 19: . . . X . . . . . . . . . . . . . X X X . X . . 20: . . X . . . . . . . . . . . . . . . . X X X . . 21: X . . . . . . . . . . . . . . . . . . . X X . . 22: . . X . . . . . . . . . . . . . . . . . X X . . 23: . . . . . . X . . . . X . . . . . . . . . . . X Plot of symmetric matrix to be ordered by camd_order: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from camd_order: 1 (should be 1) camd: approximate minimum degree ordering, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 102 symmetry of A: 0.4000 number of nonzeros on diagonal: 17 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 2208 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 140 nonzeros in L (including diagonal): 164 # divide operations for LDL' or LU: 140 # multiply-subtract operations for LDL': 593 # multiply-subtract operations for LU: 1046 max nz. in any column of L (incl. diagonal): 13 chol flop count for real A, sqrt counted as 1 flop: 1350 LDL' flop count for real A: 1326 LDL' flop count for complex A: 6004 LU flop count for real A (with no pivoting): 2232 LU flop count for complex A (with no pivoting): 9628 Permutation vector: 23 3 1 5 4 8 9 7 17 22 21 6 10 14 0 2 11 15 20 13 16 12 18 19 Permuted constraints: 0 0 0 1 1 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 8 10 Inverse permutation vector: 14 2 15 1 4 3 11 7 5 6 12 16 21 19 13 17 20 8 22 23 18 10 9 0 Plot of (symmetrized) permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . . . . . . X . . . . X . . . . X . . 1: . X . . . . . X . . . . X . . . . X . . . . X X 2: . . X . . X X . X . . . . X . . . . . X . . . . 3: . . . X . . . . X . . X . . X . . . . X . X . . 4: . . . . X . X X . . . . . X . . . X . . X . . . 5: . . X . . X X . . . . . . X . . . . . . . . . . 6: . . X . X X X X X . . . . X . . . . . X . . X . 7: . X . . X . X X X . . . . X . . . X . . X . X . 8: . . X X . . X X X . . . . . X . . . . X . . X X 9: . . . . . . . . . X X . . . . X . . X . . . . . 10: . . . . . . . . . X X X X . X X X . X . . . . X 11: X . . X . . . . . . X X . . X X X . . . . X . X 12: . X . . . . . . . . X . X . . . . . X . . . X X 13: . . X . X X X X . . . . . X . . . . . . . . . . 14: . . . X . . . . X . X X . . X . . . . X . X X X 15: . . . . . . . . . X X X . . . X X . X . . . . . 16: X . . . . . . . . . X X . . . X X . . . . X . . 17: . X . . X . . X . . . . . . . . . X . . X . X . 18: . . . . . . . . . X X . X . . X . . X . . . . X 19: . . X X . . X . X . . . . . X . . . . X . . . . 20: . . . . X . . X . . . . . . . . . X . . X . . . 21: X . . X . . . . . . . X . . X . X . . . . X . . 22: . X . . . . X X X . . . X . X . . X . . . . X X 23: . X . . . . . . X . X X X . X . . . X . . . X X SuiteSparse/CAMD/Demo/camd_l_demo.c0000644001170100242450000001274210616400300015722 0ustar davisfac/* ========================================================================= */ /* === CAMD demo main program (UF_long integer version) ==================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to CAMD. */ #include "camd.h" #include #include /* define UF_long */ #include "UFconfig.h" int main (void) { /* The symmetric can_24 Harwell/Boeing matrix, including upper and lower * triangular parts, and the diagonal entries. Note that this matrix is * 0-based, with row and column indices in the range 0 to n-1. */ UF_long n = 24, nz, Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100, 106, 110, 119, 128, 137, 143, 152, 156, 160 }, Ai [ ] = { /* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21, /* column 1: */ 1, 8, 9, 13, 14, 17, /* column 2: */ 2, 6, 11, 20, 21, 22, /* column 3: */ 3, 7, 10, 15, 18, 19, /* column 4: */ 4, 7, 9, 14, 15, 16, /* column 5: */ 0, 5, 6, 12, 13, 17, /* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23, /* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18, /* column 8: */ 1, 8, 9, 14, /* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18, /* column 10: */ 3, 10, 18, 19, 20, 21, /* column 11: */ 2, 6, 11, 12, 21, 23, /* column 12: */ 0, 5, 6, 11, 12, 23, /* column 13: */ 0, 1, 5, 9, 13, 17, /* column 14: */ 1, 4, 7, 8, 9, 14, /* column 15: */ 3, 4, 7, 15, 16, 18, /* column 16: */ 4, 7, 15, 16, /* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19, /* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19, /* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21, /* column 20: */ 2, 10, 19, 20, 21, 22, /* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22, /* column 22: */ 2, 20, 21, 22, /* column 23: */ 6, 11, 12, 23 } ; UF_long P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; char A [24][24] ; UF_long C [ ] = { 0, 0, 4, 0, 1, 0, 2, 2, 1, 1, 3, 4, 5, 5, 3, 4, 5, 2, 5, 3, 4, 2, 1, 0 }; printf ("CAMD version %d.%d, date: %s\n", CAMD_MAIN_VERSION, CAMD_SUB_VERSION, CAMD_DATE) ; printf ("CAMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ camd_l_defaults (Control) ; camd_l_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nInput matrix: %ld-by-%ld, with %ld entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to CAMD, since CAMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since CAMD ignores them.\n" , n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %ld, number of entries: %ld, with row indices in" " Ai [%ld ... %ld]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %ld", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = camd_l_order (n, Ap, Ai, P, Control, Info, C) ; printf ("return value from camd_l_order: %ld (should be %d)\n", result, CAMD_OK) ; /* print the statistics */ camd_l_info (Info) ; if (result != CAMD_OK) { printf ("CAMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2ld", j) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2ld", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of permuted matrix pattern:\n") ; for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/CAMD/Demo/camd_demo.out0000644001170100242450000001663610616403262016014 0ustar davisfacCAMD version 2.2, date: May 31, 2007 CAMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: camd version 2.2, May 31, 2007: approximate minimum degree ordering: dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes Input matrix: 24-by-24, with 160 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to CAMD, since CAMD computes the ordering of A+A'. The diagonal entries are also not needed, since CAMD ignores them. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 5 6 12 13 17 18 19 21 Column: 1, number of entries: 6, with row indices in Ai [9 ... 14]: row indices: 1 8 9 13 14 17 Column: 2, number of entries: 6, with row indices in Ai [15 ... 20]: row indices: 2 6 11 20 21 22 Column: 3, number of entries: 6, with row indices in Ai [21 ... 26]: row indices: 3 7 10 15 18 19 Column: 4, number of entries: 6, with row indices in Ai [27 ... 32]: row indices: 4 7 9 14 15 16 Column: 5, number of entries: 6, with row indices in Ai [33 ... 38]: row indices: 0 5 6 12 13 17 Column: 6, number of entries: 9, with row indices in Ai [39 ... 47]: row indices: 0 2 5 6 11 12 19 21 23 Column: 7, number of entries: 9, with row indices in Ai [48 ... 56]: row indices: 3 4 7 9 14 15 16 17 18 Column: 8, number of entries: 4, with row indices in Ai [57 ... 60]: row indices: 1 8 9 14 Column: 9, number of entries: 9, with row indices in Ai [61 ... 69]: row indices: 1 4 7 8 9 13 14 17 18 Column: 10, number of entries: 6, with row indices in Ai [70 ... 75]: row indices: 3 10 18 19 20 21 Column: 11, number of entries: 6, with row indices in Ai [76 ... 81]: row indices: 2 6 11 12 21 23 Column: 12, number of entries: 6, with row indices in Ai [82 ... 87]: row indices: 0 5 6 11 12 23 Column: 13, number of entries: 6, with row indices in Ai [88 ... 93]: row indices: 0 1 5 9 13 17 Column: 14, number of entries: 6, with row indices in Ai [94 ... 99]: row indices: 1 4 7 8 9 14 Column: 15, number of entries: 6, with row indices in Ai [100 ... 105]: row indices: 3 4 7 15 16 18 Column: 16, number of entries: 4, with row indices in Ai [106 ... 109]: row indices: 4 7 15 16 Column: 17, number of entries: 9, with row indices in Ai [110 ... 118]: row indices: 0 1 5 7 9 13 17 18 19 Column: 18, number of entries: 9, with row indices in Ai [119 ... 127]: row indices: 0 3 7 9 10 15 17 18 19 Column: 19, number of entries: 9, with row indices in Ai [128 ... 136]: row indices: 0 3 6 10 17 18 19 20 21 Column: 20, number of entries: 6, with row indices in Ai [137 ... 142]: row indices: 2 10 19 20 21 22 Column: 21, number of entries: 9, with row indices in Ai [143 ... 151]: row indices: 0 2 6 10 11 19 20 21 22 Column: 22, number of entries: 4, with row indices in Ai [152 ... 155]: row indices: 2 20 21 22 Column: 23, number of entries: 4, with row indices in Ai [156 ... 159]: row indices: 6 11 12 23 Plot of input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from camd_order: 0 (should be 0) camd: approximate minimum degree ordering, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1644 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 135 nonzeros in L (including diagonal): 159 # divide operations for LDL' or LU: 135 # multiply-subtract operations for LDL': 541 # multiply-subtract operations for LU: 947 max nz. in any column of L (incl. diagonal): 12 chol flop count for real A, sqrt counted as 1 flop: 1241 LDL' flop count for real A: 1217 LDL' flop count for complex A: 5543 LU flop count for real A (with no pivoting): 2029 LU flop count for complex A (with no pivoting): 8791 Permutation vector: 23 3 1 5 0 22 4 8 9 7 6 21 17 19 10 14 2 11 20 15 12 13 18 16 Inverse permutation vector: 4 2 16 1 6 3 10 9 7 8 14 17 20 21 15 19 23 12 22 13 18 11 5 0 Plot of permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . . . . . X . . . . . . X . . X . . . 1: . X . . . . . . . X . . . X X . . . . X . . X . 2: . . X . . . . X X . . . X . . X . . . . . X . . 3: . . . X X . . . . . X . X . . . . . . . X X . . 4: . . . X X . . . . . X X X X . . . . . . X X X . 5: . . . . . X . . . . . X . . . . X . X . . . . . 6: . . . . . . X . X X . . . . . X . . . X . . . X 7: . . X . . . . X X . . . . . . X . . . . . . . . 8: . . X . . . X X X X . . X . . X . . . . . X X . 9: . X . . . . X . X X . . X . . X . . . X . . X X 10: X . . X X . . . . . X X . X . . X X . . X . . . 11: . . . . X X . . . . X X . X X . X X X . . . . . 12: . . X X X . . . X X . . X X . . . . . . . X X . 13: . X . . X . . . . . X X X X X . . . X . . . X . 14: . X . . . . . . . . . X . X X . . . X . . . X . 15: . . X . . . X X X X . . . . . X . . . . . . . . 16: . . . . . X . . . . X X . . . . X X X . . . . . 17: X . . . . . . . . . X X . . . . X X . . X . . . 18: . . . . . X . . . . . X . X X . X . X . . . . . 19: . X . . . . X . . X . . . . . . . . . X . . X X 20: X . . X X . . . . . X . . . . . . X . . X . . . 21: . . X X X . . . X . . . X . . . . . . . . X . . 22: . X . . X . . . X X . . X X X . . . . X . . X . 23: . . . . . . X . . X . . . . . . . . . X . . . X SuiteSparse/CAMD/Demo/camd_demo2.c0000644001170100242450000001463010616400254015477 0ustar davisfac/* ========================================================================= */ /* === CAMD demo main program (jumbled matrix version) ===================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to CAMD. * * Identical to camd_demo.c, except that it operates on an input matrix that has * unsorted columns and duplicate entries. */ #include "camd.h" #include #include int main (void) { /* The symmetric can_24 Harwell/Boeing matrix (jumbled, and not symmetric). * Since CAMD operates on A+A', only A(i,j) or A(j,i) need to be specified, * or both. The diagonal entries are optional (some are missing). * There are many duplicate entries, which must be removed. */ int n = 24, nz, Ap [ ] = { 0, 9, 14, 20, 28, 33, 37, 44, 53, 58, 63, 63, 66, 69, 72, 75, 78, 82, 86, 91, 97, 101, 112, 112, 116 }, Ai [ ] = { /* column 0: */ 0, 17, 18, 21, 5, 12, 5, 0, 13, /* column 1: */ 14, 1, 8, 13, 17, /* column 2: */ 2, 20, 11, 6, 11, 22, /* column 3: */ 3, 3, 10, 7, 18, 18, 15, 19, /* column 4: */ 7, 9, 15, 14, 16, /* column 5: */ 5, 13, 6, 17, /* column 6: */ 5, 0, 11, 6, 12, 6, 23, /* column 7: */ 3, 4, 9, 7, 14, 16, 15, 17, 18, /* column 8: */ 1, 9, 14, 14, 14, /* column 9: */ 7, 13, 8, 1, 17, /* column 10: */ /* column 11: */ 2, 12, 23, /* column 12: */ 5, 11, 12, /* column 13: */ 0, 13, 17, /* column 14: */ 1, 9, 14, /* column 15: */ 3, 15, 16, /* column 16: */ 16, 4, 4, 15, /* column 17: */ 13, 17, 19, 17, /* column 18: */ 15, 17, 19, 9, 10, /* column 19: */ 17, 19, 20, 0, 6, 10, /* column 20: */ 22, 10, 20, 21, /* column 21: */ 6, 2, 10, 19, 20, 11, 21, 22, 22, 22, 22, /* column 22: */ /* column 23: */ 12, 11, 12, 23 } ; int P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; char A [24][24] ; int C [ ] = { 3, 0, 4, 0, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 3, 4, 5, 2, 8, 10, 4, 2, 2, 0 } ; printf ("CAMD demo, with a jumbled version of the 24-by-24\n") ; printf ("Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ camd_defaults (Control) ; camd_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nJumbled input matrix: %d-by-%d, with %d entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to CAMD, since CAMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since CAMD ignores them.\n" " This version of the matrix has jumbled columns and duplicate\n" " row indices.\n", n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %d, number of entries: %d, with row indices in" " Ai [%d ... %d]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %d", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of (jumbled) input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* print a character plot of the matrix A+A'. */ printf ("\nPlot of symmetric matrix to be ordered by camd_order:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; } for (j = 0 ; j < n ; j++) { A [j][j] = 'X' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; A [j][i] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = camd_order (n, Ap, Ai, P, Control, Info, C) ; printf ("return value from camd_order: %d (should be %d)\n", result, CAMD_OK_BUT_JUMBLED) ; /* print the statistics */ camd_info (Info) ; if (result != CAMD_OK_BUT_JUMBLED) { printf ("CAMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2d", j) ; } printf ("\nPermuted constraints:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ printf (" %2d", C [P [k]]) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2d", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of (symmetrized) permuted matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; } for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; A [jnew][jnew] = 'X' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; A [jnew][inew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/CAMD/Demo/camd_demo.c0000644001170100242450000001262710616400272015421 0ustar davisfac/* ========================================================================= */ /* === CAMD demo main program ============================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to CAMD. */ #include "camd.h" #include #include int main (void) { /* The symmetric can_24 Harwell/Boeing matrix, including upper and lower * triangular parts, and the diagonal entries. Note that this matrix is * 0-based, with row and column indices in the range 0 to n-1. */ int n = 24, nz, Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100, 106, 110, 119, 128, 137, 143, 152, 156, 160 }, Ai [ ] = { /* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21, /* column 1: */ 1, 8, 9, 13, 14, 17, /* column 2: */ 2, 6, 11, 20, 21, 22, /* column 3: */ 3, 7, 10, 15, 18, 19, /* column 4: */ 4, 7, 9, 14, 15, 16, /* column 5: */ 0, 5, 6, 12, 13, 17, /* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23, /* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18, /* column 8: */ 1, 8, 9, 14, /* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18, /* column 10: */ 3, 10, 18, 19, 20, 21, /* column 11: */ 2, 6, 11, 12, 21, 23, /* column 12: */ 0, 5, 6, 11, 12, 23, /* column 13: */ 0, 1, 5, 9, 13, 17, /* column 14: */ 1, 4, 7, 8, 9, 14, /* column 15: */ 3, 4, 7, 15, 16, 18, /* column 16: */ 4, 7, 15, 16, /* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19, /* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19, /* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21, /* column 20: */ 2, 10, 19, 20, 21, 22, /* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22, /* column 22: */ 2, 20, 21, 22, /* column 23: */ 6, 11, 12, 23 } ; int P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [CAMD_CONTROL], Info [CAMD_INFO] ; char A [24][24] ; int C [ ] = { 0, 0, 4, 0, 1, 0, 2, 2, 1, 1, 3, 4, 5, 5, 3, 4, 5, 2, 5, 3, 4, 2, 1, 0 } ; printf ("CAMD version %d.%d, date: %s\n", CAMD_MAIN_VERSION, CAMD_SUB_VERSION, CAMD_DATE) ; printf ("CAMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24:\n") ; /* get the default parameters, and print them */ camd_defaults (Control) ; camd_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf ("\nInput matrix: %d-by-%d, with %d entries.\n" " Note that for a symmetric matrix such as this one, only the\n" " strictly lower or upper triangular parts would need to be\n" " passed to CAMD, since CAMD computes the ordering of A+A'. The\n" " diagonal entries are also not needed, since CAMD ignores them.\n" , n, n, nz) ; for (j = 0 ; j < n ; j++) { printf ("\nColumn: %d, number of entries: %d, with row indices in" " Ai [%d ... %d]:\n row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %d", i) ; } printf ("\n") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf ("\nPlot of input matrix pattern:\n") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } /* order the matrix */ result = camd_order (n, Ap, Ai, P, Control, Info, C) ; printf ("return value from camd_order: %d (should be %d)\n", result, CAMD_OK) ; /* print the statistics */ camd_info (Info) ; if (result != CAMD_OK) { printf ("CAMD failed\n") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector:\n") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2d", j) ; } printf ("\n\n") ; printf ("Inverse permutation vector:\n") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2d", k) ; } printf ("\n\n") ; /* print a character plot of the permuted matrix. */ printf ("\nPlot of permuted matrix pattern:\n") ; for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1d", j % 10) ; printf ("\n") ; for (i = 0 ; i < n ; i++) { printf ("%2d: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf ("\n") ; } return (0) ; } SuiteSparse/CAMD/Demo/camd_simple.out0000644001170100242450000000006210616403262016343 0ustar davisfacP [0] = 3 P [1] = 2 P [2] = 1 P [3] = 4 P [4] = 0 SuiteSparse/CAMD/Makefile0000644001170100242450000000264610617112221014114 0ustar davisfac#------------------------------------------------------------------------------ # CAMD Makefile (for GNU Make or original make) #------------------------------------------------------------------------------ default: demo include ../UFconfig/UFconfig.mk # Compile all C code, including the C-callable routine and the mexFunctions. # Do not compile the FORTRAN versions, or MATLAB interface. demo: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile all C code, including the C-callable routine and the mexFunctions. # Do not compile the FORTRAN versions. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # compile just the C-callable libraries (not mexFunctions or Demos) library: ( cd Lib ; $(MAKE) ) # remove object files, but keep the compiled programs and library archives clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) ( cd Doc ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) ( cd Doc ; $(MAKE) purge ) distclean: purge # create PDF documents for the original distribution doc: ( cd Doc ; $(MAKE) ) # get ready for distribution dist: purge ( cd Demo ; $(MAKE) dist ) ( cd Doc ; $(MAKE) ) ccode: library lib: library # compile the MATLAB mexFunction mex: ( cd MATLAB ; $(MAKE) ) SuiteSparse/CAMD/MATLAB/0000755001170100242450000000000010711653375013423 5ustar davisfacSuiteSparse/CAMD/MATLAB/camd_make.m0000644001170100242450000000164610620367253015505 0ustar davisfacfunction camd_make %CAMD_MAKE to compile camd for use in MATLAB % % Example: % camd_make % % See also camd. % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, Iain S. Duff, and Yanqing Chen. details = 0 ; % 1 if details of each command are to be printed d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end i = sprintf ('-I..%sInclude -I..%s..%sUFconfig', filesep, filesep, filesep) ; cmd = sprintf ('mex -O %s -DDLONG -output camd %s camd_mex.c', d, i) ; files = {'camd_order', 'camd_dump', 'camd_postorder', ... 'camd_aat', 'camd_2', 'camd_1', 'camd_defaults', 'camd_control', ... 'camd_info', 'camd_valid', 'camd_global', 'camd_preprocess' } ; for i = 1 : length (files) cmd = sprintf ('%s ..%sSource%s%s.c', cmd, filesep, filesep, files {i}) ; end if (details) fprintf ('%s\n', cmd) ; end eval (cmd) ; fprintf ('CAMD successfully compiled.\n') ; SuiteSparse/CAMD/MATLAB/Makefile0000644001170100242450000000207410616366211015060 0ustar davisfac#------------------------------------------------------------------------------ # Makefile for the CAMD MATLAB mexFunction #------------------------------------------------------------------------------ default: camd include ../../UFconfig/UFconfig.mk CAMD = ../Lib/libcamd.a I = -I../Include -I../../UFconfig INC = ../Include/camd.h ../Include/camd_internal.h ../../UFconfig/UFconfig.h SRC = ../Source/camd_1.c ../Source/camd_2.c ../Source/camd_aat.c \ ../Source/camd_control.c ../Source/camd_defaults.c ../Source/camd_dump.c \ ../Source/camd_global.c ../Source/camd_info.c ../Source/camd_order.c \ ../Source/camd_postorder.c \ ../Source/camd_preprocess.c ../Source/camd_valid.c camd: $(SRC) $(INC) camd_mex.c $(MEX) -DDLONG $(I) -output camd camd_mex.c $(SRC) #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) camd.mex* SuiteSparse/CAMD/MATLAB/Contents.m0000644001170100242450000000071310620367267015400 0ustar davisfac%Contents of the CAMD sparse matrix ordering package: % % camd - p = camd (A), the approximate minimum degree ordering of A % camd_demo - a demo of camd, using the can_24 matrix % camd_make - to compile camd for use in MATLAB % % Example: % p = camd(A) % % See also: camd, amd, colamd, symamd, colmmd, symmmd, umfpack % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, Iain S. Duff, and Yanqing Chen. help Contents SuiteSparse/CAMD/MATLAB/camd.m0000644001170100242450000001024310620367237014503 0ustar davisfacfunction [p, Info] = camd (A, Control, C) %#ok %CAMD p = camd (A), the approximate minimum degree ordering of A % P = CAMD (S) returns the approximate minimum degree permutation vector for % the sparse matrix C = S+S'. The Cholesky factorization of C (P,P), or % S (P,P), tends to be sparser than that of C or S. CAMD tends to be faster % than SYMMMD and SYMAMD, and tends to return better orderings than SYMMMD. % S must be square. If S is full, camd(S) is equivalent to camd(sparse(S)). % % Usage: P = camd (S) ; % finds the ordering % [P, Info] = camd (S,Control,C) ; % optional parameters & statistics % Control = camd ; % returns default parameters % camd ; % prints default parameters. % % Control (1); If S is n-by-n, then rows/columns with more than % max (16, (Control (1))* sqrt(n)) entries in S+S' are considered % "dense", and ignored during ordering. They are placed last in the % output permutation. The default is 10.0 if Control is not present. % Control (2): If nonzero, then aggressive absorption is performed. % This is the default if Control is not present. % Control (3): If nonzero, print statistics about the ordering. % % Info (1): status (0: ok, -1: out of memory, -2: matrix invalid) % Info (2): n = size (A,1) % Info (3): nnz (A) % Info (4): the symmetry of the matrix S (0.0 means purely unsymmetric, % 1.0 means purely symmetric). Computed as: % B = tril (S, -1) + triu (S, 1) ; symmetry = nnz (B & B') / nnz (B); % Info (5): nnz (diag (S)) % Info (6): nnz in S+S', excluding the diagonal (= nnz (B+B')) % Info (7): number "dense" rows/columns in S+S' % Info (8): the amount of memory used by CAMD, in bytes % Info (9): the number of memory compactions performed by CAMD % % The following statistics are slight upper bounds because of the % approximate degree in CAMD. The bounds are looser if "dense" rows/columns % are ignored during ordering (Info (7) > 0). The statistics are for a % subsequent factorization of the matrix C (P,P). The LU factorization % statistics assume no pivoting. % % Info (10): the number of nonzeros in L, excluding the diagonal % Info (11): the number of divide operations for LL', LDL', or LU % Info (12): the number of multiply-subtract pairs for LL' or LDL' % Info (13): the number of multiply-subtract pairs for LU % Info (14): the max # of nonzeros in any column of L (incl. diagonal) % Info (15:20): unused, reserved for future use % % An assembly tree post-ordering is performed, which is typically the same % as an elimination tree post-ordering. It is not always identical because % of the approximate degree update used, and because "dense" rows/columns % do not take part in the post-order. It well-suited for a subsequent % "chol", however. If you require a precise elimination tree post-ordering, % then do the following: % % Example: % P = camd (S) ; % C = spones (S) + spones (S') ; % skip this if S already symmetric % [ignore, Q] = etree (C (P,P)) ; % P = P (Q) ; % % CAMD has the ability to order the matrix with constraints. Each % node i in the graph (row/column i in the matrix) has a constraint, % C(i), which is in the range 1 to n. All nodes with C(i) = 1 are % ordered first, followed by all nodes with constraint 2, and so on. % That is, C(P) is monotonically non-decreasing. If C is not provided, % no constraints are used (the ordering will be similar to AMD's ordering, % except that the postordering is different). % % See also AMD, COLMMD, COLAMD, COLPERM, SYMAMD, SYMMMD, SYMRCM. % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, Iain S. Duff, and Yanqing Chen. % % Acknowledgements: This work was supported by the National Science % Foundation, under grants ASC-9111263, DMS-9223088, and CCR-0203270, % and by Sandia National Laboratories. % help camd error ('camd mexFunction not found! Type "camd_make" in MATLAB to compile camd'); SuiteSparse/CAMD/MATLAB/can_240000644001170100242450000000240010325005010014362 0ustar davisfac 1 1 1 6 1 1 7 1 1 13 1 1 14 1 1 18 1 1 19 1 1 20 1 1 22 1 1 2 2 1 9 2 1 10 2 1 14 2 1 15 2 1 18 2 1 3 3 1 7 3 1 12 3 1 21 3 1 22 3 1 23 3 1 4 4 1 8 4 1 11 4 1 16 4 1 19 4 1 20 4 1 5 5 1 8 5 1 10 5 1 15 5 1 16 5 1 17 5 1 1 6 1 6 6 1 7 6 1 13 6 1 14 6 1 18 6 1 1 7 1 3 7 1 6 7 1 7 7 1 12 7 1 13 7 1 20 7 1 22 7 1 24 7 1 4 8 1 5 8 1 8 8 1 10 8 1 15 8 1 16 8 1 17 8 1 18 8 1 19 8 1 2 9 1 9 9 1 10 9 1 15 9 1 2 10 1 5 10 1 8 10 1 9 10 1 10 10 1 14 10 1 15 10 1 18 10 1 19 10 1 4 11 1 11 11 1 19 11 1 20 11 1 21 11 1 22 11 1 3 12 1 7 12 1 12 12 1 13 12 1 22 12 1 24 12 1 1 13 1 6 13 1 7 13 1 12 13 1 13 13 1 24 13 1 1 14 1 2 14 1 6 14 1 10 14 1 14 14 1 18 14 1 2 15 1 5 15 1 8 15 1 9 15 1 10 15 1 15 15 1 4 16 1 5 16 1 8 16 1 16 16 1 17 16 1 19 16 1 5 17 1 8 17 1 16 17 1 17 17 1 1 18 1 2 18 1 6 18 1 8 18 1 10 18 1 14 18 1 18 18 1 19 18 1 20 18 1 1 19 1 4 19 1 8 19 1 10 19 1 11 19 1 16 19 1 18 19 1 19 19 1 20 19 1 1 20 1 4 20 1 7 20 1 11 20 1 18 20 1 19 20 1 20 20 1 21 20 1 22 20 1 3 21 1 11 21 1 20 21 1 21 21 1 22 21 1 23 21 1 1 22 1 3 22 1 7 22 1 11 22 1 12 22 1 20 22 1 21 22 1 22 22 1 23 22 1 3 23 1 21 23 1 22 23 1 23 23 1 7 24 1 12 24 1 13 24 1 24 24 1 SuiteSparse/CAMD/MATLAB/camd_mex.c0000644001170100242450000001456210616401062015340 0ustar davisfac/* ========================================================================= */ /* === CAMD mexFunction ===================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* * Usage: * p = camd (A) * p = camd (A, Control) * [p, Info] = camd (A) * [p, Info] = camd (A, Control, C) * Control = camd ; % return the default Control settings for CAMD * camd ; % print the default Control settings for CAMD * * Given a square matrix A, compute a permutation P suitable for a Cholesky * factorization of the matrix B (P,P), where B = spones (A) + spones (A'). * The method used is the approximate minimum degree ordering method. See * camd.m and camd.h for more information. * * The input matrix need not have sorted columns, and can have duplicate * entries. */ #include "camd.h" #include "mex.h" #include "matrix.h" #include "UFconfig.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { UF_long i, m, n, *Ap, *Ai, *P, nc, result, spumoni, full, *C, Clen ; double *Pout, *InfoOut, Control [CAMD_CONTROL], Info [CAMD_INFO], *ControlIn, *Cin ; mxArray *A ; /* --------------------------------------------------------------------- */ /* get control parameters */ /* --------------------------------------------------------------------- */ camd_malloc = mxMalloc ; camd_free = mxFree ; camd_calloc = mxCalloc ; camd_realloc = mxRealloc ; camd_printf = mexPrintf ; spumoni = 0 ; if (nargin == 0) { /* get the default control parameters, and return */ pargout [0] = mxCreateDoubleMatrix (CAMD_CONTROL, 1, mxREAL) ; camd_l_defaults (mxGetPr (pargout [0])) ; if (nargout == 0) { camd_l_control (mxGetPr (pargout [0])) ; } return ; } camd_l_defaults (Control) ; if (nargin > 1) { ControlIn = mxGetPr (pargin [1]) ; nc = mxGetM (pargin [1]) * mxGetN (pargin [1]) ; Control [CAMD_DENSE] = (nc > 0) ? ControlIn [CAMD_DENSE] : CAMD_DEFAULT_DENSE ; Control [CAMD_AGGRESSIVE] = (nc > 1) ? ControlIn [CAMD_AGGRESSIVE] : CAMD_DEFAULT_AGGRESSIVE ; spumoni = (nc > 2) ? (ControlIn [2] != 0) : 0 ; } if (spumoni > 0) { camd_l_control (Control) ; } /* --------------------------------------------------------------------- */ /* get inputs */ /* --------------------------------------------------------------------- */ if (nargout > 2 || nargin > 3) { mexErrMsgTxt ("Usage: p = camd (A)\n" "or [p, Info] = camd (A, Control, C)") ; } Clen = 0 ; C = NULL ; if (nargin > 2) { Cin = mxGetPr (pargin [2]) ; Clen = mxGetNumberOfElements (pargin [2]) ; if (Clen != 0) { C = (UF_long *) mxCalloc (Clen, sizeof (UF_long)) ; for (i = 0 ; i < Clen ; i++) { /* convert c from 1-based to 0-based */ C [i] = (UF_long) Cin [i] - 1 ; } } } A = (mxArray *) pargin [0] ; n = mxGetN (A) ; m = mxGetM (A) ; if (spumoni > 0) { mexPrintf (" input matrix A is %d-by-%d\n", m, n) ; } if (mxGetNumberOfDimensions (A) != 2) { mexErrMsgTxt ("camd: A must be 2-dimensional") ; } if (m != n) { mexErrMsgTxt ("camd: A must be square") ; } /* --------------------------------------------------------------------- */ /* allocate workspace for output permutation */ /* --------------------------------------------------------------------- */ P = mxMalloc ((n+1) * sizeof (UF_long)) ; /* --------------------------------------------------------------------- */ /* if A is full, convert to a sparse matrix */ /* --------------------------------------------------------------------- */ full = !mxIsSparse (A) ; if (full) { if (spumoni > 0) { mexPrintf ( " input matrix A is full (sparse copy of A will be created)\n"); } mexCallMATLAB (1, &A, 1, (mxArray **) pargin, "sparse") ; } Ap = (UF_long *) mxGetJc (A) ; Ai = (UF_long *) mxGetIr (A) ; if (spumoni > 0) { mexPrintf (" input matrix A has %d nonzero entries\n", Ap [n]) ; } /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ result = camd_l_order (n, Ap, Ai, P, Control, Info, C) ; /* --------------------------------------------------------------------- */ /* if A is full, free the sparse copy of A */ /* --------------------------------------------------------------------- */ if (full) { mxDestroyArray (A) ; } /* --------------------------------------------------------------------- */ /* print results (including return value) */ /* --------------------------------------------------------------------- */ if (spumoni > 0) { camd_l_info (Info) ; } /* --------------------------------------------------------------------- */ /* check error conditions */ /* --------------------------------------------------------------------- */ if (result == CAMD_OUT_OF_MEMORY) { mexErrMsgTxt ("camd: out of memory") ; } else if (result == CAMD_INVALID) { mexErrMsgTxt ("camd: input matrix A is corrupted") ; } /* --------------------------------------------------------------------- */ /* copy the outputs to MATLAB */ /* --------------------------------------------------------------------- */ /* output permutation, P */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; Pout = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) { Pout [i] = P [i] + 1 ; /* change to 1-based indexing for MATLAB */ } mxFree (P) ; if (nargin > 2) mxFree (C) ; /* Info */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (CAMD_INFO, 1, mxREAL) ; InfoOut = mxGetPr (pargout [1]) ; for (i = 0 ; i < CAMD_INFO ; i++) { InfoOut [i] = Info [i] ; } } } SuiteSparse/CAMD/MATLAB/camd_demo.m0000644001170100242450000000635410620664032015510 0ustar davisfacfunction camd_demo %CAMD_DEMO a demo of camd, using the can_24 matrix % % A demo of CAMD for MATLAB. % % Example: % camd_demo % % See also: camd, camd_make % Copyright 1994-2007, Tim Davis, University of Florida, % Patrick R. Amestoy, Iain S. Duff, and Yanqing Chen. % This orders the same matrix as the ANSI C demo, camd_demo.c. It includes an % additional analysis of the matrix via MATLAB's symbfact routine. % First, print the help information for CAMD help camd % Get the Harwell/Boeing can_24 matrix. load can_24 A = spconvert (can_24) ; n = size (A,1) ; rand ('state', 0) ; C = irand (6, n) ; figure (1) clf hold off subplot (2,2,1) ; spy (A) title ('HB/can24 matrix') ; % print the details during CAMD ordering and SYMBFACT % spparms ('spumoni', 1) ; % order the matrix. Note that the Info argument is optional. fprintf ('\nIf the next step fails, then you have\n') ; fprintf ('not yet compiled the CAMD mexFunction.\n') ; [p, Info] = camd (A) ; %#ok % order again, but this time print some statistics [p, camd_Info] = camd (A, [10 1 1], C) ; fprintf ('Permutation vector:\n') ; fprintf (' %2d', p) ; fprintf ('\n\n') ; fprintf ('Corresponding constraint sets:\n') ; if (any (sort (C (p)) ~= C (p))) error ('Error!') ; end for j = 1:n fprintf (' %2d', C (p (j))) ; end fprintf ('\n\n\n') ; subplot (2,2,2) ; spy (A (p,p)) ; title ('Permuted matrix') ; % The camd_demo.c program stops here. fprintf ('Analyze A(p,p) with MATLAB symbfact routine:\n') ; [cn, height, parent, post, R] = symbfact (A(p,p)) ; subplot (2,2,3) ; spy (R') ; title ('Cholesky factor L') ; subplot (2,2,4) ; treeplot (parent) ; title ('etree') ; % results from symbfact lnz = sum (cn) ; % number of nonzeros in L, incl. diagonal cn = cn - 1 ; % get the count of off-diagonal entries fl = n + sum (cn.^2 + 2*cn) ; % flop count for chol (A (p,p) fprintf ('number of nonzeros in L (including diagonal): %d\n', lnz) ; fprintf ('floating point operation count for chol (A (p,p)): %d\n', fl) ; % approximations from camd: lnz2 = n + camd_Info (10) ; fl2 = n + camd_Info (11) + 2 * camd_Info (12) ; fprintf ('\nResults from CAMD''s approximate analysis:\n') ; fprintf ('number of nonzeros in L (including diagonal): %d\n', lnz2) ; fprintf ('floating point operation count for chol (A (p,p)): %d\n\n', fl2) ; fprintf ('\nNote that the ordering quality is not as good as p=amd(A).\n') ; fprintf ('This is only because the ordering constraints, C, have been\n') ; fprintf ('randomly selected.\n') ; if (lnz2 ~= lnz | fl ~= fl2) %#ok fprintf ('Note that the nonzero and flop counts from CAMD are slight\n') ; fprintf ('upper bounds. This is due to the approximate minimum degree\n'); fprintf ('method used, in conjunction with "mass elimination".\n') ; fprintf ('See the discussion about mass elimination in camd.h and\n') ; fprintf ('camd_2.c for more details.\n') ; end % turn off diagnostic output in MATLAB's sparse matrix routines % spparms ('spumoni', 0) ; %------------------------------------------------------------------------------- function i = irand (n,s) % irand: return a random vector of size s, with values between 1 and n if (nargin == 1) s = 1 ; end i = min (n, 1 + floor (rand (1,s) * n)) ; SuiteSparse/CAMD/MATLAB/camd_demo.m.out0000644001170100242450000001427010620423703016310 0ustar davisfaccamd_demo CAMD p = camd (A), the approximate minimum degree ordering of A P = CAMD (S) returns the approximate minimum degree permutation vector for the sparse matrix C = S+S'. The Cholesky factorization of C (P,P), or S (P,P), tends to be sparser than that of C or S. CAMD tends to be faster than SYMMMD and SYMAMD, and tends to return better orderings than SYMMMD. S must be square. If S is full, camd(S) is equivalent to camd(sparse(S)). Usage: P = camd (S) ; % finds the ordering [P, Info] = camd (S,Control,C) ; % optional parameters & statistics Control = camd ; % returns default parameters camd ; % prints default parameters. Control (1); If S is n-by-n, then rows/columns with more than max (16, (Control (1))* sqrt(n)) entries in S+S' are considered "dense", and ignored during ordering. They are placed last in the output permutation. The default is 10.0 if Control is not present. Control (2): If nonzero, then aggressive absorption is performed. This is the default if Control is not present. Control (3): If nonzero, print statistics about the ordering. Info (1): status (0: ok, -1: out of memory, -2: matrix invalid) Info (2): n = size (A,1) Info (3): nnz (A) Info (4): the symmetry of the matrix S (0.0 means purely unsymmetric, 1.0 means purely symmetric). Computed as: B = tril (S, -1) + triu (S, 1) ; symmetry = nnz (B & B') / nnz (B); Info (5): nnz (diag (S)) Info (6): nnz in S+S', excluding the diagonal (= nnz (B+B')) Info (7): number "dense" rows/columns in S+S' Info (8): the amount of memory used by CAMD, in bytes Info (9): the number of memory compactions performed by CAMD The following statistics are slight upper bounds because of the approximate degree in CAMD. The bounds are looser if "dense" rows/columns are ignored during ordering (Info (7) > 0). The statistics are for a subsequent factorization of the matrix C (P,P). The LU factorization statistics assume no pivoting. Info (10): the number of nonzeros in L, excluding the diagonal Info (11): the number of divide operations for LL', LDL', or LU Info (12): the number of multiply-subtract pairs for LL' or LDL' Info (13): the number of multiply-subtract pairs for LU Info (14): the max # of nonzeros in any column of L (incl. diagonal) Info (15:20): unused, reserved for future use An assembly tree post-ordering is performed, which is typically the same as an elimination tree post-ordering. It is not always identical because of the approximate degree update used, and because "dense" rows/columns do not take part in the post-order. It well-suited for a subsequent "chol", however. If you require a precise elimination tree post-ordering, then do the following: Example: P = camd (S) ; C = spones (S) + spones (S') ; % skip this if S already symmetric [ignore, Q] = etree (C (P,P)) ; P = P (Q) ; CAMD has the ability to order the matrix with constraints. Each node i in the graph (row/column i in the matrix) has a constraint, C(i), which is in the range 1 to n. All nodes with C(i) = 1 are ordered first, followed by all nodes with constraint 2, and so on. That is, C(P) is monotonically non-decreasing. If C is not provided, no constraints are used (the ordering will be similar to AMD's ordering, except that the postordering is different). See also AMD, COLMMD, COLAMD, COLPERM, SYMAMD, SYMMMD, SYMRCM. If the next step fails, then you have not yet compiled the CAMD mexFunction. camd version 2.2, May 31, 2007: approximate minimum degree ordering: dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes input matrix A is 24-by-24 input matrix A has 160 nonzero entries camd: approximate minimum degree ordering, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1644 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 149 nonzeros in L (including diagonal): 173 # divide operations for LDL' or LU: 149 # multiply-subtract operations for LDL': 631 # multiply-subtract operations for LU: 1113 max nz. in any column of L (incl. diagonal): 12 chol flop count for real A, sqrt counted as 1 flop: 1435 LDL' flop count for real A: 1411 LDL' flop count for complex A: 6389 LU flop count for real A (with no pivoting): 2375 LU flop count for complex A (with no pivoting): 10245 Permutation vector: 24 21 8 2 15 10 16 4 19 22 7 3 11 6 9 23 12 14 20 1 5 13 18 17 Corresponding constraint sets: 1 1 1 2 2 3 3 3 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 Analyze A(p,p) with MATLAB symbfact routine: number of nonzeros in L (including diagonal): 173 floating point operation count for chol (A (p,p)): 1435 Results from CAMD's approximate analysis: number of nonzeros in L (including diagonal): 173 floating point operation count for chol (A (p,p)): 1435 Note that the ordering quality is not as good as p=amd(A). This is only because the ordering constraints, C, have been randomly selected. diary off SuiteSparse/CAMD/Include/0000755001170100242450000000000010616401025014031 5ustar davisfacSuiteSparse/CAMD/Include/camd_internal.h0000644001170100242450000002205510616401024017005 0ustar davisfac/* ========================================================================= */ /* === camd_internal.h ===================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* This file is for internal use in CAMD itself, and does not normally need to * be included in user code (it is included in UMFPACK, however). All others * should use camd.h instead. * * The following compile-time definitions affect how CAMD is compiled. * * -DNPRINT * * Disable all printing. stdio.h will not be included. Printing can * be re-enabled at run-time by setting the global pointer camd_printf * to printf (or mexPrintf for a MATLAB mexFunction). * * -DNMALLOC * * No memory manager is defined at compile-time. You MUST define the * function pointers camd_malloc, camd_free, camd_realloc, and * camd_calloc at run-time for CAMD to work properly. */ /* ========================================================================= */ /* === NDEBUG ============================================================== */ /* ========================================================================= */ /* * Turning on debugging takes some work (see below). If you do not edit this * file, then debugging is always turned off, regardless of whether or not * -DNDEBUG is specified in your compiler options. * * If CAMD is being compiled as a mexFunction, then MATLAB_MEX_FILE is defined, * and mxAssert is used instead of assert. If debugging is not enabled, no * MATLAB include files or functions are used. Thus, the CAMD library libcamd.a * can be safely used in either a stand-alone C program or in another * mexFunction, without any change. */ /* CAMD will be exceedingly slow when running in debug mode. The next three lines ensure that debugging is turned off. */ #ifndef NDEBUG #define NDEBUG #endif /* To enable debugging, uncomment the following line: #undef NDEBUG */ /* ------------------------------------------------------------------------- */ /* ANSI include files */ /* ------------------------------------------------------------------------- */ /* from stdlib.h: size_t, malloc, free, realloc, and calloc */ #include #if !defined(NPRINT) || !defined(NDEBUG) /* from stdio.h: printf. Not included if NPRINT is defined at compile time. * fopen and fscanf are used when debugging. */ #include #endif /* from limits.h: INT_MAX and LONG_MAX */ #include /* from math.h: sqrt */ #include /* ------------------------------------------------------------------------- */ /* MATLAB include files (only if being used in or via MATLAB) */ /* ------------------------------------------------------------------------- */ #ifdef MATLAB_MEX_FILE #include "matrix.h" #include "mex.h" #endif /* ------------------------------------------------------------------------- */ /* basic definitions */ /* ------------------------------------------------------------------------- */ #ifdef FLIP #undef FLIP #endif #ifdef MAX #undef MAX #endif #ifdef MIN #undef MIN #endif #ifdef EMPTY #undef EMPTY #endif #ifdef GLOBAL #undef GLOBAL #endif #ifdef PRIVATE #undef PRIVATE #endif /* FLIP is a "negation about -1", and is used to mark an integer i that is * normally non-negative. FLIP (EMPTY) is EMPTY. FLIP of a number > EMPTY * is negative, and FLIP of a number < EMTPY is positive. FLIP (FLIP (i)) = i * for all integers i. UNFLIP (i) is >= EMPTY. */ #define EMPTY (-1) #define FLIP(i) (-(i)-2) #define UNFLIP(i) ((i < EMPTY) ? FLIP (i) : (i)) /* for integer MAX/MIN, or for doubles when we don't care how NaN's behave: */ #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* logical expression of p implies q: */ #define IMPLIES(p,q) (!(p) || (q)) /* Note that the IBM RS 6000 xlc predefines TRUE and FALSE in . */ /* The Compaq Alpha also predefines TRUE and FALSE. */ #ifdef TRUE #undef TRUE #endif #ifdef FALSE #undef FALSE #endif #define TRUE (1) #define FALSE (0) #define PRIVATE static #define GLOBAL #define EMPTY (-1) /* Note that Linux's gcc 2.96 defines NULL as ((void *) 0), but other */ /* compilers (even gcc 2.95.2 on Solaris) define NULL as 0 or (0). We */ /* need to use the ANSI standard value of 0. */ #ifdef NULL #undef NULL #endif #define NULL 0 /* largest value of size_t */ #ifndef SIZE_T_MAX #define SIZE_T_MAX ((size_t) (-1)) #endif /* ------------------------------------------------------------------------- */ /* integer type for CAMD: int or UF_long */ /* ------------------------------------------------------------------------- */ /* define UF_long */ #include "UFconfig.h" #if defined (DLONG) || defined (ZLONG) #define Int UF_long #define ID UF_long_id #define Int_MAX UF_long_max #define CAMD_order camd_l_order #define CAMD_defaults camd_l_defaults #define CAMD_control camd_l_control #define CAMD_info camd_l_info #define CAMD_1 camd_l1 #define CAMD_2 camd_l2 #define CAMD_valid camd_l_valid #define CAMD_cvalid camd_l_cvalid #define CAMD_aat camd_l_aat #define CAMD_postorder camd_l_postorder #define CAMD_post_tree camd_l_post_tree #define CAMD_dump camd_l_dump #define CAMD_debug camd_l_debug #define CAMD_debug_init camd_l_debug_init #define CAMD_preprocess camd_l_preprocess #else #define Int int #define ID "%d" #define Int_MAX INT_MAX #define CAMD_order camd_order #define CAMD_defaults camd_defaults #define CAMD_control camd_control #define CAMD_info camd_info #define CAMD_1 camd_1 #define CAMD_2 camd_2 #define CAMD_valid camd_valid #define CAMD_cvalid camd_cvalid #define CAMD_aat camd_aat #define CAMD_postorder camd_postorder #define CAMD_post_tree camd_post_tree #define CAMD_dump camd_dump #define CAMD_debug camd_debug #define CAMD_debug_init camd_debug_init #define CAMD_preprocess camd_preprocess #endif /* ========================================================================= */ /* === PRINTF macro ======================================================== */ /* ========================================================================= */ /* All output goes through the PRINTF macro. */ #define PRINTF(params) { if (camd_printf != NULL) (void) camd_printf params ; } /* ------------------------------------------------------------------------- */ /* CAMD routine definitions (user-callable) */ /* ------------------------------------------------------------------------- */ #include "camd.h" /* ------------------------------------------------------------------------- */ /* CAMD routine definitions (not user-callable) */ /* ------------------------------------------------------------------------- */ GLOBAL size_t CAMD_aat ( Int n, const Int Ap [ ], const Int Ai [ ], Int Len [ ], Int Tp [ ], double Info [ ] ) ; GLOBAL void CAMD_1 ( Int n, const Int Ap [ ], const Int Ai [ ], Int P [ ], Int Pinv [ ], Int Len [ ], Int slen, Int S [ ], double Control [ ], double Info [ ], const Int C [ ] ) ; GLOBAL Int CAMD_postorder ( Int j, Int k, Int n, Int head [], Int next [], Int post [], Int stack [] ) ; GLOBAL void CAMD_preprocess ( Int n, const Int Ap [ ], const Int Ai [ ], Int Rp [ ], Int Ri [ ], Int W [ ], Int Flag [ ] ) ; /* ------------------------------------------------------------------------- */ /* debugging definitions */ /* ------------------------------------------------------------------------- */ #ifndef NDEBUG /* from assert.h: assert macro */ #include #ifndef EXTERN #define EXTERN extern #endif EXTERN Int CAMD_debug ; GLOBAL void CAMD_debug_init ( char *s ) ; GLOBAL void CAMD_dump ( Int n, Int Pe [ ], Int Iw [ ], Int Len [ ], Int iwlen, Int pfree, Int Nv [ ], Int Next [ ], Int Last [ ], Int Head [ ], Int Elen [ ], Int Degree [ ], Int W [ ], Int nel, Int BucketSet [], const Int C [], Int Curc ) ; #ifdef ASSERT #undef ASSERT #endif /* Use mxAssert if CAMD is compiled into a mexFunction */ #ifdef MATLAB_MEX_FILE #define ASSERT(expression) (mxAssert ((expression), "")) #else #define ASSERT(expression) (assert (expression)) #endif #define CAMD_DEBUG0(params) { PRINTF (params) ; } #define CAMD_DEBUG1(params) { if (CAMD_debug >= 1) PRINTF (params) ; } #define CAMD_DEBUG2(params) { if (CAMD_debug >= 2) PRINTF (params) ; } #define CAMD_DEBUG3(params) { if (CAMD_debug >= 3) PRINTF (params) ; } #define CAMD_DEBUG4(params) { if (CAMD_debug >= 4) PRINTF (params) ; } #else /* no debugging */ #define ASSERT(expression) #define CAMD_DEBUG0(params) #define CAMD_DEBUG1(params) #define CAMD_DEBUG2(params) #define CAMD_DEBUG3(params) #define CAMD_DEBUG4(params) #endif SuiteSparse/CAMD/Include/camd.h0000644001170100242450000004111710616400757015125 0ustar davisfac/* ========================================================================= */ /* === CAMD: approximate minimum degree ordering ========================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* CAMD finds a symmetric ordering P of a matrix A so that the Cholesky * factorization of P*A*P' has fewer nonzeros and takes less work than the * Cholesky factorization of A. If A is not symmetric, then it performs its * ordering on the matrix A+A'. Two sets of user-callable routines are * provided, one for int integers and the other for UF_long integers. * * The method is based on the approximate minimum degree algorithm, discussed * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm", * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp. * 886-905, 1996. */ #ifndef CAMD_H #define CAMD_H /* make it easy for C++ programs to include CAMD */ #ifdef __cplusplus extern "C" { #endif /* get the definition of size_t: */ #include /* define UF_long */ #include "UFconfig.h" int camd_order /* returns CAMD_OK, CAMD_OK_BUT_JUMBLED, * CAMD_INVALID, or CAMD_OUT_OF_MEMORY */ ( int n, /* A is n-by-n. n must be >= 0. */ const int Ap [ ], /* column pointers for A, of size n+1 */ const int Ai [ ], /* row indices of A, of size nz = Ap [n] */ int P [ ], /* output permutation, of size n */ double Control [ ], /* input Control settings, of size CAMD_CONTROL */ double Info [ ], /* output Info statistics, of size CAMD_INFO */ const int C [ ] /* Constraint set of A, of size n; can be NULL */ ) ; UF_long camd_l_order /* see above for description of arguments */ ( UF_long n, const UF_long Ap [ ], const UF_long Ai [ ], UF_long P [ ], double Control [ ], double Info [ ], const UF_long C [ ] ) ; /* Input arguments (not modified): * * n: the matrix A is n-by-n. * Ap: an int/UF_long array of size n+1, containing column pointers of A. * Ai: an int/UF_long array of size nz, containing the row indices of A, * where nz = Ap [n]. * Control: a double array of size CAMD_CONTROL, containing control * parameters. Defaults are used if Control is NULL. * * Output arguments (not defined on input): * * P: an int/UF_long array of size n, containing the output permutation. If * row i is the kth pivot row, then P [k] = i. In MATLAB notation, * the reordered matrix is A (P,P). * Info: a double array of size CAMD_INFO, containing statistical * information. Ignored if Info is NULL. * * On input, the matrix A is stored in column-oriented form. The row indices * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1]. * * If the row indices appear in ascending order in each column, and there * are no duplicate entries, then camd_order is slightly more efficient in * terms of time and memory usage. If this condition does not hold, a copy * of the matrix is created (where these conditions do hold), and the copy is * ordered. * * Row indices must be in the range 0 to * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n]. * The matrix does not need to be symmetric, and the diagonal does not need to * be present (if diagonal entries are present, they are ignored except for * the output statistic Info [CAMD_NZDIAG]). The arrays Ai and Ap are not * modified. This form of the Ap and Ai arrays to represent the nonzero * pattern of the matrix A is the same as that used internally by MATLAB. * If you wish to use a more flexible input structure, please see the * umfpack_*_triplet_to_col routines in the UMFPACK package, at * http://www.cise.ufl.edu/research/sparse/umfpack. * * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0 * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these * restrictions are not met, CAMD returns CAMD_INVALID. * * CAMD returns: * * CAMD_OK if the matrix is valid and sufficient memory can be allocated to * perform the ordering. * * CAMD_OUT_OF_MEMORY if not enough memory can be allocated. * * CAMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is * NULL. * * CAMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate * entries, but was otherwise valid. * * The CAMD routine first forms the pattern of the matrix A+A', and then * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of * the original is the kth pivotal row. In MATLAB notation, the permuted * matrix is A (P,P), except that 0-based indexing is used instead of the * 1-based indexing in MATLAB. * * The Control array is used to set various parameters for CAMD. If a NULL * pointer is passed, default values are used. The Control array is not * modified. * * Control [CAMD_DENSE]: controls the threshold for "dense" rows/columns. * A dense row/column in A+A' can cause CAMD to spend a lot of time in * ordering the matrix. If Control [CAMD_DENSE] >= 0, rows/columns * with more than Control [CAMD_DENSE] * sqrt (n) entries are ignored * during the ordering, and placed last in the output order. The * default value of Control [CAMD_DENSE] is 10. If negative, no * rows/columns are treated as "dense". Rows/columns with 16 or * fewer off-diagonal entries are never considered "dense". * * Control [CAMD_AGGRESSIVE]: controls whether or not to use aggressive * absorption, in which a prior element is absorbed into the current * element if is a subset of the current element, even if it is not * adjacent to the current pivot element (refer to Amestoy, Davis, * & Duff, 1996, for more details). The default value is nonzero, * which means to perform aggressive absorption. This nearly always * leads to a better ordering (because the approximate degrees are * more accurate) and a lower execution time. There are cases where * it can lead to a slightly worse ordering, however. To turn it off, * set Control [CAMD_AGGRESSIVE] to 0. * * Control [2..4] are not used in the current version, but may be used in * future versions. * * The Info array provides statistics about the ordering on output. If it is * not present, the statistics are not returned. This is not an error * condition. * * Info [CAMD_STATUS]: the return value of CAMD, either CAMD_OK, * CAMD_OK_BUT_JUMBLED, CAMD_OUT_OF_MEMORY, or CAMD_INVALID. * * Info [CAMD_N]: n, the size of the input matrix * * Info [CAMD_NZ]: the number of nonzeros in A, nz = Ap [n] * * Info [CAMD_SYMMETRY]: the symmetry of the matrix A. It is the number * of "matched" off-diagonal entries divided by the total number of * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also * an entry, for any pair (i,j) for which i != j. In MATLAB notation, * S = spones (A) ; * B = tril (S, -1) + triu (S, 1) ; * symmetry = nnz (B & B') / nnz (B) ; * * Info [CAMD_NZDIAG]: the number of entries on the diagonal of A. * * Info [CAMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the * diagonal. If A is perfectly symmetric (Info [CAMD_SYMMETRY] = 1) * with a fully nonzero diagonal, then Info [CAMD_NZ_A_PLUS_AT] = nz-n * (the smallest possible value). If A is perfectly unsymmetric * (Info [CAMD_SYMMETRY] = 0, for an upper triangular matrix, for * example) with no diagonal, then Info [CAMD_NZ_A_PLUS_AT] = 2*nz * (the largest possible value). * * Info [CAMD_NDENSE]: the number of "dense" rows/columns of A+A' that were * removed from A prior to ordering. These are placed last in the * output order P. * * Info [CAMD_MEMORY]: the amount of memory used by CAMD, in bytes. In the * current version, this is 1.2 * Info [CAMD_NZ_A_PLUS_AT] + 9*n * times the size of an integer. This is at most 2.4nz + 9n. This * excludes the size of the input arguments Ai, Ap, and P, which have * a total size of nz + 2*n + 1 integers. * * Info [CAMD_NCMPA]: the number of garbage collections performed. * * Info [CAMD_LNZ]: the number of nonzeros in L (excluding the diagonal). * This is a slight upper bound because mass elimination is combined * with the approximate degree update. It is a rough upper bound if * there are many "dense" rows/columns. The rest of the statistics, * below, are also slight or rough upper bounds, for the same reasons. * The post-ordering of the assembly tree might also not exactly * correspond to a true elimination tree postordering. * * Info [CAMD_NDIV]: the number of divide operations for a subsequent LDL' * or LU factorization of the permuted matrix A (P,P). * * Info [CAMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a * subsequent LDL' factorization of A (P,P). * * Info [CAMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a * subsequent LU factorization of A (P,P), assuming that no numerical * pivoting is required. * * Info [CAMD_DMAX]: the maximum number of nonzeros in any column of L, * including the diagonal. * * Info [14..19] are not used in the current version, but may be used in * future versions. */ /* ------------------------------------------------------------------------- */ /* direct interface to CAMD */ /* ------------------------------------------------------------------------- */ /* camd_2 is the primary CAMD ordering routine. It is not meant to be * user-callable because of its restrictive inputs and because it destroys * the user's input matrix. It does not check its inputs for errors, either. * However, if you can work with these restrictions it can be faster than * camd_order and use less memory (assuming that you can create your own copy * of the matrix for CAMD to destroy). Refer to CAMD/Source/camd_2.c for a * description of each parameter. */ void camd_2 ( int n, int Pe [ ], int Iw [ ], int Len [ ], int iwlen, int pfree, int Nv [ ], int Next [ ], int Last [ ], int Head [ ], int Elen [ ], int Degree [ ], int W [ ], double Control [ ], double Info [ ], const int C [ ], int BucketSet [ ] ) ; void camd_l2 ( UF_long n, UF_long Pe [ ], UF_long Iw [ ], UF_long Len [ ], UF_long iwlen, UF_long pfree, UF_long Nv [ ], UF_long Next [ ], UF_long Last [ ], UF_long Head [ ], UF_long Elen [ ], UF_long Degree [ ], UF_long W [ ], double Control [ ], double Info [ ], const UF_long C [ ], UF_long BucketSet [ ] ) ; /* ------------------------------------------------------------------------- */ /* camd_valid */ /* ------------------------------------------------------------------------- */ /* Returns CAMD_OK or CAMD_OK_BUT_JUMBLED if the matrix is valid as input to * camd_order; the latter is returned if the matrix has unsorted and/or * duplicate row indices in one or more columns. Returns CAMD_INVALID if the * matrix cannot be passed to camd_order. For camd_order, the matrix must also * be square. The first two arguments are the number of rows and the number * of columns of the matrix. For its use in CAMD, these must both equal n. */ int camd_valid ( int n_row, /* # of rows */ int n_col, /* # of columns */ const int Ap [ ], /* column pointers, of size n_col+1 */ const int Ai [ ] /* row indices, of size Ap [n_col] */ ) ; UF_long camd_l_valid ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ] ) ; /* ------------------------------------------------------------------------- */ /* camd_cvalid */ /* ------------------------------------------------------------------------- */ /* Returns TRUE if the constraint set is valid as input to camd_order, * FALSE otherwise. */ int camd_cvalid ( int n, const int C [ ] ) ; UF_long camd_l_cvalid ( UF_long n, const UF_long C [ ] ) ; /* ------------------------------------------------------------------------- */ /* CAMD memory manager and printf routines */ /* ------------------------------------------------------------------------- */ /* The user can redefine these to change the malloc, free, and printf routines * that CAMD uses. */ #ifndef EXTERN #define EXTERN extern #endif EXTERN void *(*camd_malloc) (size_t) ; /* pointer to malloc */ EXTERN void (*camd_free) (void *) ; /* pointer to free */ EXTERN void *(*camd_realloc) (void *, size_t) ; /* pointer to realloc */ EXTERN void *(*camd_calloc) (size_t, size_t) ; /* pointer to calloc */ EXTERN int (*camd_printf) (const char *, ...) ; /* pointer to printf */ /* ------------------------------------------------------------------------- */ /* CAMD Control and Info arrays */ /* ------------------------------------------------------------------------- */ /* camd_defaults: sets the default control settings */ void camd_defaults (double Control [ ]) ; void camd_l_defaults (double Control [ ]) ; /* camd_control: prints the control settings */ void camd_control (double Control [ ]) ; void camd_l_control (double Control [ ]) ; /* camd_info: prints the statistics */ void camd_info (double Info [ ]) ; void camd_l_info (double Info [ ]) ; #define CAMD_CONTROL 5 /* size of Control array */ #define CAMD_INFO 20 /* size of Info array */ /* contents of Control */ #define CAMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */ #define CAMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */ /* default Control settings */ #define CAMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */ #define CAMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */ /* contents of Info */ #define CAMD_STATUS 0 /* return value of camd_order and camd_l_order */ #define CAMD_N 1 /* A is n-by-n */ #define CAMD_NZ 2 /* number of nonzeros in A */ #define CAMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */ #define CAMD_NZDIAG 4 /* # of entries on diagonal */ #define CAMD_NZ_A_PLUS_AT 5 /* nz in A+A' */ #define CAMD_NDENSE 6 /* number of "dense" rows/columns in A */ #define CAMD_MEMORY 7 /* amount of memory used by CAMD */ #define CAMD_NCMPA 8 /* number of garbage collections in CAMD */ #define CAMD_LNZ 9 /* approx. nz in L, excluding the diagonal */ #define CAMD_NDIV 10 /* number of fl. point divides for LU and LDL' */ #define CAMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */ #define CAMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */ #define CAMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */ /* ------------------------------------------------------------------------- */ /* return values of CAMD */ /* ------------------------------------------------------------------------- */ #define CAMD_OK 0 /* success */ #define CAMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */ #define CAMD_INVALID -2 /* input arguments are not valid */ #define CAMD_OK_BUT_JUMBLED 1 /* input matrix is OK for camd_order, but * columns were not sorted, and/or duplicate entries were present. CAMD had * to do extra work before ordering the matrix. This is a warning, not an * error. */ /* ========================================================================== */ /* === CAMD version ========================================================= */ /* ========================================================================== */ /* * As an example, to test if the version you are using is 1.2 or later: * * if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2)) ... * * This also works during compile-time: * * #if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2)) * printf ("This is version 1.2 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif */ #define CAMD_DATE "May 31, 2007" #define CAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define CAMD_MAIN_VERSION 2 #define CAMD_SUB_VERSION 2 #define CAMD_SUBSUB_VERSION 0 #define CAMD_VERSION CAMD_VERSION_CODE(CAMD_MAIN_VERSION,CAMD_SUB_VERSION) #ifdef __cplusplus } #endif #endif SuiteSparse/CAMD/Source/0000755001170100242450000000000010617112500013704 5ustar davisfacSuiteSparse/CAMD/Source/camd_preprocess.c0000644001170100242450000000751010616401145017231 0ustar davisfac/* ========================================================================= */ /* === CAMD_preprocess ===================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* Sorts, removes duplicate entries, and transposes from the nonzero pattern of * a column-form matrix A, to obtain the matrix R. The input matrix can have * duplicate entries and/or unsorted columns (CAMD_valid (n,Ap,Ai) must not be * CAMD_INVALID). * * This input condition is NOT checked. This routine is not user-callable. */ #include "camd_internal.h" /* ========================================================================= */ /* === CAMD_preprocess ===================================================== */ /* ========================================================================= */ /* CAMD_preprocess does not check its input for errors or allocate workspace. * On input, the condition (CAMD_valid (n,n,Ap,Ai) != CAMD_INVALID) must hold. */ GLOBAL void CAMD_preprocess ( Int n, /* input matrix: A is n-by-n */ const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ /* output matrix R: */ Int Rp [ ], /* size n+1 */ Int Ri [ ], /* size nz (or less, if duplicates present) */ Int W [ ], /* workspace of size n */ Int Flag [ ] /* workspace of size n */ ) { /* --------------------------------------------------------------------- */ /* local variables */ /* --------------------------------------------------------------------- */ Int i, j, p, p2 ; ASSERT (CAMD_valid (n, n, Ap, Ai) != CAMD_INVALID) ; /* --------------------------------------------------------------------- */ /* count the entries in each row of A (excluding duplicates) */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { W [i] = 0 ; /* # of nonzeros in row i (excl duplicates) */ Flag [i] = EMPTY ; /* Flag [i] = j if i appears in column j */ } for (j = 0 ; j < n ; j++) { p2 = Ap [j+1] ; for (p = Ap [j] ; p < p2 ; p++) { i = Ai [p] ; if (Flag [i] != j) { /* row index i has not yet appeared in column j */ W [i]++ ; /* one more entry in row i */ Flag [i] = j ; /* flag row index i as appearing in col j*/ } } } /* --------------------------------------------------------------------- */ /* compute the row pointers for R */ /* --------------------------------------------------------------------- */ Rp [0] = 0 ; for (i = 0 ; i < n ; i++) { Rp [i+1] = Rp [i] + W [i] ; } for (i = 0 ; i < n ; i++) { W [i] = Rp [i] ; Flag [i] = EMPTY ; } /* --------------------------------------------------------------------- */ /* construct the row form matrix R */ /* --------------------------------------------------------------------- */ /* R = row form of pattern of A */ for (j = 0 ; j < n ; j++) { p2 = Ap [j+1] ; for (p = Ap [j] ; p < p2 ; p++) { i = Ai [p] ; if (Flag [i] != j) { /* row index i has not yet appeared in column j */ Ri [W [i]++] = j ; /* put col j in row i */ Flag [i] = j ; /* flag row index i as appearing in col j*/ } } } #ifndef NDEBUG ASSERT (CAMD_valid (n, n, Rp, Ri) == CAMD_OK) ; for (j = 0 ; j < n ; j++) { ASSERT (W [j] == Rp [j+1]) ; } #endif } SuiteSparse/CAMD/Source/camd_control.c0000644001170100242450000000342010616401111016511 0ustar davisfac/* ========================================================================= */ /* === CAMD_control ======================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* User-callable. Prints the control parameters for CAMD. See camd.h * for details. If the Control array is not present, the defaults are * printed instead. */ #include "camd_internal.h" GLOBAL void CAMD_control ( double Control [ ] ) { double alpha ; Int aggressive ; if (Control != (double *) NULL) { alpha = Control [CAMD_DENSE] ; aggressive = Control [CAMD_AGGRESSIVE] != 0 ; } else { alpha = CAMD_DEFAULT_DENSE ; aggressive = CAMD_DEFAULT_AGGRESSIVE ; } PRINTF (("\ncamd version %d.%d, %s: approximate minimum degree ordering:\n" " dense row parameter: %g\n", CAMD_MAIN_VERSION, CAMD_SUB_VERSION, CAMD_DATE, alpha)) ; if (alpha < 0) { PRINTF ((" no rows treated as dense\n")) ; } else { PRINTF (( " (rows with more than max (%g * sqrt (n), 16) entries are\n" " considered \"dense\", and placed last in output permutation)\n", alpha)) ; } if (aggressive) { PRINTF ((" aggressive absorption: yes\n\n")) ; } else { PRINTF ((" aggressive absorption: no\n\n")) ; } } SuiteSparse/CAMD/Source/camd_postorder.c0000644001170100242450000000370510616401142017064 0ustar davisfac/* ========================================================================= */ /* === CAMD_postorder ====================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* Perform a postordering (via depth-first search) of an assembly tree. */ #include "camd_internal.h" GLOBAL Int CAMD_postorder ( Int j, /* start at node j, a root of the assembly tree */ Int k, /* on input, next node is the kth node */ Int n, /* normal nodes 0 to n-1, place-holder node n */ Int head [], /* head of link list of children of each node */ Int next [], /* next[i] is the next child after i in link list */ Int post [], /* postordering, post [k] = p if p is the kth node */ Int stack [] /* recursion stack */ ) { int i, p, top = 0 ; stack [0] = j ; /* place j on the stack, maybe place-holder node n */ while (top >= 0) /* while (stack is not empty) */ { p = stack [top] ; /* p = top of stack */ i = head [p] ; /* i = youngest child of p */ if (i == -1) { top-- ; /* p has no unordered children left */ if (p != n) { /* node p is the kth postordered node. Do not postorder the * place-holder node n, which is the root of a subtree * containing all dense and empty nodes. */ post [k++] = p ; } } else { head [p] = next [i] ; /* remove i from children of p */ stack [++top] = i ; /* start dfs on child node i */ } } return (k) ; } SuiteSparse/CAMD/Source/camd_1.c0000644001170100242450000001373210616401100015176 0ustar davisfac/* ========================================================================= */ /* === CAMD_1 ============================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* CAMD_1: Construct A+A' for a sparse matrix A and perform the CAMD ordering. * * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style * compressed-column form, with sorted row indices in each column, and no * duplicate entries. Diagonal entries may be present, but they are ignored. * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The * size of the matrix, n, must be greater than or equal to zero. * * This routine must be preceded by a call to CAMD_aat, which computes the * number of entries in each row/column in A+A', excluding the diagonal. * Len [j], on input, is the number of entries in row/column j of A+A'. This * routine constructs the matrix A+A' and then calls CAMD_2. No error checking * is performed (this was done in CAMD_valid). */ #include "camd_internal.h" GLOBAL void CAMD_1 ( Int n, /* n > 0 */ const Int Ap [ ], /* input of size n+1, not modified */ const Int Ai [ ], /* input of size nz = Ap [n], not modified */ Int P [ ], /* size n output permutation */ Int Pinv [ ], /* size n output inverse permutation */ Int Len [ ], /* size n input, undefined on output */ Int slen, /* slen >= sum (Len [0..n-1]) + 7n+2, * ideally slen = 1.2 * sum (Len) + 8n+2 */ Int S [ ], /* size slen workspace */ double Control [ ], /* input array of size CAMD_CONTROL */ double Info [ ], /* output array of size CAMD_INFO */ const Int C [ ] /* Constraint set of size n */ ) { Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, *Elen, *Degree, *s, *W, *Sp, *Tp, *BucketSet ; /* --------------------------------------------------------------------- */ /* construct the matrix for CAMD_2 */ /* --------------------------------------------------------------------- */ ASSERT (n > 0) ; iwlen = slen - (7*n+2) ; /* allocate 7*n+2 workspace from S */ s = S ; Pe = s ; s += n ; Nv = s ; s += n ; Head = s ; s += n+1 ; /* NOTE: was size n in AMD; size n+1 in CAMD */ Elen = s ; s += n ; Degree = s ; s += n ; W = s ; s += n+1 ; /* NOTE: was size n in AMD; size n+1 in CAMD */ BucketSet = s ; s += n ; Iw = s ; s += iwlen ; ASSERT (CAMD_valid (n, n, Ap, Ai) == CAMD_OK) ; ASSERT (CAMD_cvalid (n, C)) ; /* construct the pointers for A+A' */ Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ Tp = W ; pfree = 0 ; for (j = 0 ; j < n ; j++) { Pe [j] = pfree ; Sp [j] = pfree ; pfree += Len [j] ; } /* Note that this restriction on iwlen is slightly more restrictive than * what is strictly required in CAMD_2. CAMD_2 can operate with no elbow * room at all, but it will be very slow. For better performance, at * least size-n elbow room is enforced. */ ASSERT (iwlen >= pfree + n) ; #ifndef NDEBUG for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; #endif for (k = 0 ; k < n ; k++) { CAMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; p1 = Ap [k] ; p2 = Ap [k+1] ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; ASSERT (j >= 0 && j < n) ; if (j < k) { /* entry A (j,k) in the strictly upper triangular part */ ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; Iw [Sp [j]++] = k ; Iw [Sp [k]++] = j ; p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; if (i < k) { /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; ASSERT (i >= 0 && i < n) ; /* A (i,j) is only in the lower part, not in upper */ ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; Iw [Sp [i]++] = j ; Iw [Sp [j]++] = i ; } } #ifndef NDEBUG for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; ASSERT (Sp [n-1] == pfree) ; #endif /* Tp and Sp no longer needed ] */ /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ CAMD_2 (n, Pe, Iw, Len, iwlen, pfree, Nv, Pinv, P, Head, Elen, Degree, W, Control, Info, C, BucketSet) ; } SuiteSparse/CAMD/Source/camd_2.c0000644001170100242450000021204710616401104015203 0ustar davisfac/* ========================================================================= */ /* === CAMD_2 ============================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* CAMD_2: performs the CAMD ordering on a symmetric sparse matrix A, followed * by a postordering (via depth-first search) of the assembly tree using the * CAMD_postorder routine. */ /* ========================================================================= */ /* === Macros and definitions ============================================== */ /* ========================================================================= */ /* True if node i is in the current Constraint Set */ #define IsInCurrentSet(C,i,curC) ((C == NULL) ? 1 : (C [i] == curC)) /* True if i and j are in the same Constraint Set */ #define InSameConstraintSet(C,i,j) ((C == NULL) ? 1 : (C [i] == C [j])) #include "camd_internal.h" /* ========================================================================= */ /* === clear_flag ========================================================== */ /* ========================================================================= */ static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n) { Int x ; if (wflg < 2 || wflg >= wbig) { for (x = 0 ; x < n ; x++) { if (W [x] != 0) W [x] = 1 ; } wflg = 2 ; } /* at this point, W [0..n-1] < wflg holds */ return (wflg) ; } /* ========================================================================= */ /* === CAMD_2 ============================================================== */ /* ========================================================================= */ GLOBAL void CAMD_2 ( Int n, /* A is n-by-n, where n > 0 */ Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */ Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1] * holds the matrix on input */ Int Len [ ], /* Len [0..n-1]: length for row/column i on input */ Int iwlen, /* length of Iw. iwlen >= pfree + n */ Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */ /* 7 size-n or size-n+1 workspaces, not defined on input: */ Int Nv [ ], /* size n, the size of each supernode on output */ Int Next [ ], /* size n, the output inverse permutation */ Int Last [ ], /* size n, the output permutation */ Int Head [ ], /* size n+1 (Note: it was size n in AMD) */ Int Elen [ ], /* size n, the size columns of L for each supernode */ Int Degree [ ], /* size n */ Int W [ ], /* size n+1 (Note: it was size n in AMD) */ /* control parameters and output statistics */ double Control [ ], /* array of size CAMD_CONTROL */ double Info [ ], /* array of size CAMD_INFO */ /* input, not modified: */ const Int C [ ], /* size n, C [i] is the constraint set of node i */ /* size-n workspace, not defined on input or output: */ Int BucketSet [ ] /* size n */ ) { /* * Given a representation of the nonzero pattern of a symmetric matrix, A, * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style) * degree ordering to compute a pivot order such that the introduction of * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style * upper-bound on the external degree. This routine can optionally perform * aggresive absorption (as done by MC47B in the Harwell Subroutine * Library). * * The approximate degree algorithm implemented here is the symmetric analog of * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern * MultiFrontal PACKage, both by Davis and Duff). The routine is based on the * MA27 minimum degree ordering algorithm by Iain Duff and John Reid. * * This routine is a translation of the original AMDBAR and MC47B routines, * in Fortran, with the following modifications: * * (1) dense rows/columns are removed prior to ordering the matrix, and placed * last in the output order. The presence of a dense row/column can * increase the ordering time by up to O(n^2), unless they are removed * prior to ordering. * * (2) the minimum degree ordering is followed by a postordering (depth-first * search) of the assembly tree. Note that mass elimination (discussed * below) combined with the approximate degree update can lead to the mass * elimination of nodes with lower exact degree than the current pivot * element. No additional fill-in is caused in the representation of the * Schur complement. The mass-eliminated nodes merge with the current * pivot element. They are ordered prior to the current pivot element. * Because they can have lower exact degree than the current element, the * merger of two or more of these nodes in the current pivot element can * lead to a single element that is not a "fundamental supernode". The * diagonal block can have zeros in it. Thus, the assembly tree used here * is not guaranteed to be the precise supernodal elemination tree (with * "funadmental" supernodes), and the postordering performed by this * routine is not guaranteed to be a precise postordering of the * elimination tree. * * (3) input parameters are added, to control aggressive absorption and the * detection of "dense" rows/columns of A. * * (4) additional statistical information is returned, such as the number of * nonzeros in L, and the flop counts for subsequent LDL' and LU * factorizations. These are slight upper bounds, because of the mass * elimination issue discussed above. * * (5) additional routines are added to interface this routine to MATLAB * to provide a simple C-callable user-interface, to check inputs for * errors, compute the symmetry of the pattern of A and the number of * nonzeros in each row/column of A+A', to compute the pattern of A+A', * to perform the assembly tree postordering, and to provide debugging * ouput. Many of these functions are also provided by the Fortran * Harwell Subroutine Library routine MC47A. * * (6) both "int" and "long" versions are provided. In the descriptions below * and integer is and "int" or "long", depending on which version is * being used. ********************************************************************** ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** ********************************************************************** ** If you want error checking, a more versatile input format, and a ** ** simpler user interface, use camd_order or camd_l_order instead. ** ** This routine is not meant to be user-callable. ** ********************************************************************** * ---------------------------------------------------------------------------- * References: * ---------------------------------------------------------------------------- * * [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal * method for sparse LU factorization", SIAM J. Matrix Analysis and * Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38, * which first introduced the approximate minimum degree used by this * routine. * * [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate * minimum degree ordering algorithm," SIAM J. Matrix Analysis and * Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and * MC47B, which are the Fortran versions of this routine. * * [3] Alan George and Joseph Liu, "The evolution of the minimum degree * ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989. * We list below the features mentioned in that paper that this code * includes: * * mass elimination: * Yes. MA27 relied on supervariable detection for mass elimination. * * indistinguishable nodes: * Yes (we call these "supervariables"). This was also in the MA27 * code - although we modified the method of detecting them (the * previous hash was the true degree, which we no longer keep track * of). A supervariable is a set of rows with identical nonzero * pattern. All variables in a supervariable are eliminated together. * Each supervariable has as its numerical name that of one of its * variables (its principal variable). * * quotient graph representation: * Yes. We use the term "element" for the cliques formed during * elimination. This was also in the MA27 code. The algorithm can * operate in place, but it will work more efficiently if given some * "elbow room." * * element absorption: * Yes. This was also in the MA27 code. * * external degree: * Yes. The MA27 code was based on the true degree. * * incomplete degree update and multiple elimination: * No. This was not in MA27, either. Our method of degree update * within MC47B is element-based, not variable-based. It is thus * not well-suited for use with incomplete degree update or multiple * elimination. * * AMD Authors, and Copyright (C) 2004 by: * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid. * Modifications for CAMD authored by Davis and Yanqing "Morris" Chen. * * Acknowledgements: This work (and the UMFPACK package) was supported by the * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270). * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog * which forms the basis of CAMD, was developed while Tim Davis was supported by * CERFACS (Toulouse, France) in a post-doctoral position. This C version, and * the etree postorder, were written while Tim Davis was on sabbatical at * Stanford University and Lawrence Berkeley National Laboratory. * Ordering constraints were added with support from Sandia National Labs (DOE). * ---------------------------------------------------------------------------- * INPUT ARGUMENTS (unaltered): * ---------------------------------------------------------------------------- * n: The matrix order. Restriction: n >= 1. * * iwlen: The size of the Iw array. On input, the matrix is stored in * Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger * than what is required to hold the matrix, at least iwlen >= pfree + n. * Otherwise, excessive compressions will take place. The recommended * value of iwlen is 1.2 * pfree + n, which is the value used in the * user-callable interface to this routine (camd_order.c). The algorithm * will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n. * Note that this is slightly more restrictive than the actual minimum * (iwlen >= pfree), but CAMD_2 will be very slow with no elbow room. * Thus, this routine enforces a bare minimum elbow room of size n. * * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty, * and the matrix is stored in Iw [0..pfree-1]. During execution, * additional data is placed in Iw, and pfree is modified so that * Iw [pfree..iwlen-1] is always the unused part of Iw. * * Control: A double array of size CAMD_CONTROL containing input parameters * that affect how the ordering is computed. If NULL, then default * settings are used. * * Control [CAMD_DENSE] is used to determine whether or not a given input * row is "dense". A row is "dense" if the number of entries in the row * exceeds Control [CAMD_DENSE] times sqrt (n), except that rows with 16 or * fewer entries are never considered "dense". To turn off the detection * of dense rows, set Control [CAMD_DENSE] to a negative number, or to a * number larger than sqrt (n). The default value of Control [CAMD_DENSE] * is CAMD_DEFAULT_DENSE, which is defined in camd.h as 10. * * Control [CAMD_AGGRESSIVE] is used to determine whether or not aggressive * absorption is to be performed. If nonzero, then aggressive absorption * is performed (this is the default). * * C: defines the ordering constraints. s = C [j] gives the constraint set s * that contains the row/column j (Restriction: 0 <= s < n). * In the output row permutation, all rows in set 0 appear first, followed * by all rows in set 1, and so on. If NULL, all rows are treated as if * they were in a single constraint set, and you will obtain a similar * ordering as AMD (slightly different because of the different * postordering used). * ---------------------------------------------------------------------------- * INPUT/OUPUT ARGUMENTS: * ---------------------------------------------------------------------------- * * Pe: An integer array of size n. On input, Pe [i] is the index in Iw of * the start of row i. Pe [i] is ignored if row i has no off-diagonal * entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty * rows. * * During execution, it is used for both supervariables and elements: * * Principal supervariable i: index into Iw of the description of * supervariable i. A supervariable represents one or more rows of * the matrix with identical nonzero pattern. In this case, * Pe [i] >= 0. * * Non-principal supervariable i: if i has been absorbed into another * supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined * as (-(j)-2). Row j has the same pattern as row i. Note that j * might later be absorbed into another supervariable j2, in which * case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is * < EMPTY, where EMPTY is defined as (-1) in camd_internal.h. * * Unabsorbed element e: the index into Iw of the description of element * e, if e has not yet been absorbed by a subsequent element. Element * e is created when the supervariable of the same name is selected as * the pivot. In this case, Pe [i] >= 0. * * Absorbed element e: if element e is absorbed into element e2, then * Pe [e] = FLIP (e2). This occurs when the pattern of e (which we * refer to as Le) is found to be a subset of the pattern of e2 (that * is, Le2). In this case, Pe [i] < EMPTY. If element e is "null" * (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY, * and e is the root of an assembly subtree (or the whole tree if * there is just one such root). * * Dense or empty variable i: if i is "dense" or empty (with zero degree), * then Pe [i] = FLIP (n). * * On output, Pe holds the assembly tree/forest, which implicitly * represents a pivot order with identical fill-in as the actual order * (via a depth-first search of the tree), as follows. If Nv [i] > 0, * then i represents a node in the assembly tree, and the parent of i is * Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i]) * represents an edge in a subtree, the root of which is a node in the * assembly tree. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Info: A double array of size CAMD_INFO. If present, (that is, not NULL), * then statistics about the ordering are returned in the Info array. * See camd.h for a description. * ---------------------------------------------------------------------------- * INPUT/MODIFIED (undefined on output): * ---------------------------------------------------------------------------- * * Len: An integer array of size n. On input, Len [i] holds the number of * entries in row i of the matrix, excluding the diagonal. The contents * of Len are undefined on output. Len also works as a temporary * workspace in post ordering with dense nodes detected. * * Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the * description of each row i in the matrix. The matrix must be symmetric, * and both upper and lower triangular parts must be present. The * diagonal must not be present. Row i is held as follows: * * Len [i]: the length of the row i data structure in the Iw array. * Iw [Pe [i] ... Pe [i] + Len [i] - 1]: * the list of column indices for nonzeros in row i (simple * supervariables), excluding the diagonal. All supervariables * start with one row/column each (supervariable i is just row i). * If Len [i] is zero on input, then Pe [i] is ignored on input. * * Note that the rows need not be in any particular order, and there * may be empty space between the rows. * * During execution, the supervariable i experiences fill-in. This is * represented by placing in i a list of the elements that cause fill-in * in supervariable i: * * Len [i]: the length of supervariable i in the Iw array. * Iw [Pe [i] ... Pe [i] + Elen [i] - 1]: * the list of elements that contain i. This list is kept short * by removing absorbed elements. * Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]: * the list of supervariables in i. This list is kept short by * removing nonprincipal variables, and any entry j that is also * contained in at least one of the elements (j in Le) in the list * for i (e in row i). * * When supervariable i is selected as pivot, we create an element e of * the same name (e=i): * * Len [e]: the length of element e in the Iw array. * Iw [Pe [e] ... Pe [e] + Len [e] - 1]: * the list of supervariables in element e. * * An element represents the fill-in that occurs when supervariable i is * selected as pivot (which represents the selection of row i and all * non-principal variables whose principal variable is i). We use the * term Le to denote the set of all supervariables in element e. Absorbed * supervariables and elements are pruned from these lists when * computationally convenient. * * CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. * The contents of Iw are undefined on output. * ---------------------------------------------------------------------------- * OUTPUT (need not be set on input): * ---------------------------------------------------------------------------- * * * Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to * the number of rows that are represented by the principal supervariable * i. If i is a nonprincipal or dense variable, then Nv [i] = 0. * Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a * principal variable in the pattern Lme of the current pivot element me. * After element me is constructed, Nv [i] is set back to a positive * value. * * On output, Nv [i] holds the number of pivots represented by super * row/column i of the original matrix, or Nv [i] = 0 for non-principal * rows/columns. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Nv also works as a temporary workspace in initializing the BucketSet * array. * * Elen: An integer array of size n. See the description of Iw above. At the * start of execution, Elen [i] is set to zero for all rows i. During * execution, Elen [i] is the number of elements in the list for * supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is * set, where esize is the size of the element (the number of pivots, plus * the number of nonpivotal entries). Thus Elen [e] < EMPTY. * Elen (i) = EMPTY set when variable i becomes nonprincipal. * * For variables, Elen (i) >= EMPTY holds until just before the * postordering and permutation vectors are computed. For elements, * Elen [e] < EMPTY holds. * * On output, Elen [i] is the degree of the row/column in the Cholesky * factorization of the permuted matrix, corresponding to the original row * i, if i is a super row/column. It is equal to EMPTY if i is * non-principal. Note that i refers to a row/column in the original * matrix, not the permuted matrix. * * Note that the contents of Elen on output differ from the Fortran * version (Elen holds the inverse permutation in the Fortran version, * which is instead returned in the Next array in this C version, * described below). * * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY * if i is the head of the list. In a hash bucket, Last [i] is the hash * key for i. * * Last [Head [hash]] is also used as the head of a hash bucket if * Head [hash] contains a degree list (see the description of Head, * below). * * On output, Last [0..n-1] holds the permutation. That is, if * i = Last [k], then row i is the kth pivot row (where k ranges from 0 to * n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'. * * Next: Next [i] is the supervariable following i in a link list, or EMPTY if * i is the last in the list. Used for two kinds of lists: degree lists * and hash buckets (a supervariable can be in only one kind of list at a * time). * * On output Next [0..n-1] holds the inverse permutation. That is, if * k = Next [i], then row i is the kth pivot row. Row i of A appears as * the (Next[i])-th row in the permuted matrix, PAP'. * * Note that the contents of Next on output differ from the Fortran * version (Next is undefined on output in the Fortran version). * ---------------------------------------------------------------------------- * LOCAL WORKSPACE (not input or output - used only during execution): * ---------------------------------------------------------------------------- * * Degree: An integer array of size n. If i is a supervariable, then * Degree [i] holds the current approximation of the external degree of * row i (an upper bound). The external degree is the number of nonzeros * in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to * the exact external degree if Elen [i] is less than or equal to two. * * We also use the term "external degree" for elements e to refer to * |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the * degree of the off-diagonal part of the element e (not including the * diagonal part). * * Head: An integer array of size n. Head is used for degree lists. * Head [deg] is the first supervariable in a degree list. All * supervariables i in a degree list Head [deg] have the same approximate * degree, namely, deg = Degree [i]. If the list Head [deg] is empty then * Head [deg] = EMPTY. * * During supervariable detection Head [hash] also serves as a pointer to * a hash bucket. If Head [hash] >= 0, there is a degree list of degree * hash. The hash bucket head pointer is Last [Head [hash]]. If * Head [hash] = EMPTY, then the degree list and hash bucket are both * empty. If Head [hash] < EMPTY, then the degree list is empty, and * FLIP (Head [hash]) is the head of the hash bucket. After supervariable * detection is complete, all hash buckets are empty, and the * (Last [Head [hash]] = EMPTY) condition is restored for the non-empty * degree lists. * * Head also workes as a temporary workspace in post ordering with dense * nodes detected. * * W: An integer array of size n. The flag array W determines the status of * elements and variables, and the external degree of elements. * * for elements: * if W [e] = 0, then the element e is absorbed. * if W [e] >= wflg, then W [e] - wflg is the size of the set * |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for * each principal variable i that is both in the pattern of * element e and NOT in the pattern of the current pivot element, * me). * if wflg > W [e] > 0, then e is not absorbed and has not yet been * seen in the scan of the element lists in the computation of * |Le\Lme| in Scan 1 below. * * for variables: * during supervariable detection, if W [j] != wflg then j is * not in the pattern of variable i. * * The W array is initialized by setting W [i] = 1 for all i, and by * setting wflg = 2. It is reinitialized if wflg becomes too large (to * ensure that wflg+n does not cause integer overflow). * * BucketSet: An integer array of size n. * During execution it stores the rows that sorted in the ascending order * based on C []. For instance: if C[]={0,2,1,0,1,0,2,1}, the * Bucketset will be {0,3,5,2,4,7,1,6}. * The elements in Bucketset are then modified, to maintain the order of * roots (Pe[i]=-1) in each Constraint Set. * ---------------------------------------------------------------------------- * LOCAL INTEGERS: * ---------------------------------------------------------------------------- */ Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j, jlast, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft, nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa, nnull, dense, aggressive ; unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/ /* * deg: the degree of a variable or element * degme: size, |Lme|, of the current element, me (= Degree [me]) * dext: external degree, |Le \ Lme|, of some element e * lemax: largest |Le| seen so far (called dmax in Fortran version) * e: an element * elenme: the length, Elen [me], of element list of pivotal variable * eln: the length, Elen [...], of an element list * hash: the computed value of the hash function * i: a supervariable * ilast: the entry in a link list preceding i * inext: the entry in a link list following i * j: a supervariable * jlast: the entry in a link list preceding j * k: the pivot order of an element or variable * knt1: loop counter used during element construction * knt2: loop counter used during element construction * knt3: loop counter used during compression * lenj: Len [j] * ln: length of a supervariable list * me: current supervariable being eliminated, and the current * element created by eliminating that supervariable * mindeg: current minimum degree * nel: number of pivots selected so far * nleft: n - nel, the number of nonpivotal rows/columns remaining * nvi: the number of variables in a supervariable i (= Nv [i]) * nvj: the number of variables in a supervariable j (= Nv [j]) * nvpiv: number of pivots in current element * slenme: number of variables in variable list of pivotal variable * wbig: = INT_MAX - n for the "int" version, LONG_MAX - n for the * "long" version. wflg is not allowed to be >= wbig. * we: W [e] * wflg: used for flagging the W array. See description of Iw. * wnvi: wflg - Nv [i] * x: either a supervariable or an element * * ok: true if supervariable j can be absorbed into i * ndense: number of "dense" rows/columns * nnull: number of empty rows/columns * dense: rows/columns with initial degree > dense are considered "dense" * aggressive: true if aggressive absorption is being performed * ncmpa: number of garbage collections * ---------------------------------------------------------------------------- * LOCAL DOUBLES, used for statistical output only (except for alpha): * ---------------------------------------------------------------------------- */ double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ; /* * f: nvpiv * r: degme + nvpiv * ndiv: number of divisions for LU or LDL' factorizations * s: number of multiply-subtract pairs for LU factorization, for the * current element me * nms_lu number of multiply-subtract pairs for LU factorization * nms_ldl number of multiply-subtract pairs for LDL' factorization * dmax: the largest number of entries in any column of L, including the * diagonal * alpha: "dense" degree ratio * lnz: the number of nonzeros in L (excluding the diagonal) * lnzme: the number of nonzeros in L (excl. the diagonal) for the * current element me * ---------------------------------------------------------------------------- * LOCAL "POINTERS" (indices into the Iw array) * ---------------------------------------------------------------------------- */ Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ; /* * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for * Pointer) is an index into Iw, and all indices into Iw use variables starting * with "p." The only exception to this rule is the iwlen input argument. * * p: pointer into lots of things * p1: Pe [i] for some variable i (start of element list) * p2: Pe [i] + Elen [i] - 1 for some variable i * p3: index of first supervariable in clean list * p4: * pdst: destination pointer, for compression * pend: end of memory to compress * pj: pointer into an element or variable * pme: pointer into the current element (pme1...pme2) * pme1: the current element, me, is stored in Iw [pme1...pme2] * pme2: the end of the current element * pn: pointer into a "clean" variable, also used to compress * psrc: source pointer, for compression */ Int curC, pBucket, pBucket2, degreeListCounter, c, cmax = 0, ndense_or_null ; Int *Bucket, *Perm ; /* * curC: the current Constraint Set being ordered * pBucket: pointer into Bucketset[] when building the degreelist for each * Constraint Set * pBucket2: pointer into Bucketset[] to tell the post ordering where to stop * degreeListCounter: number of elements remaining in the * degreelist of current Constraint Set * Bucket: used to construct BucketSet * Perm: permutation */ /* ========================================================================= */ /* INITIALIZATIONS */ /* ========================================================================= */ /* Note that this restriction on iwlen is slightly more restrictive than * what is actually required in CAMD_2. CAMD_2 can operate with no elbow * room at all, but it will be slow. For better performance, at least * size-n elbow room is enforced. */ ASSERT (iwlen >= pfree + n) ; ASSERT (n > 0) ; /* initialize output statistics */ lnz = 0 ; ndiv = 0 ; nms_lu = 0 ; nms_ldl = 0 ; dmax = 1 ; me = EMPTY ; mindeg = 0 ; ncmpa = 0 ; nel = 0 ; lemax = 0 ; curC = 0 ; /* camd work initBucketSet using CountingSort * BucketSort the index Array BucketSet According to Contrains Array C, Using * Nv[] as a temporary workspace * Input: Index Array from 0 to n.(index of rows) * Output: Index Array sorted according to C. worked as a bucket set. * * All the value in C must be 0 <= C[i] <= n-1 * For instance: if C[]={0,2,1,0,1,0,2,1}, the output Bucketset should be * {0,3,5,2,4,7,1,6} */ /* CountingSort BucketSet[] based on C[], It is O(n) linear time */ if (C == NULL) { /* store everything in bucket without changing order */ for (j = 0 ; j < n ; j++) { BucketSet [j] = j ; } } else { Bucket = Nv ; for (i = 0 ; i < n ; i++) { Bucket [i] = 0 ; } cmax = C [0] ; for (j = 0 ; j < n ; j++) { c = C [j] ; CAMD_DEBUG1 (("C [%d] = "ID"\n", j, c)) ; Bucket [c]++ ; cmax = MAX (cmax, c) ; ASSERT (c >= 0 && c < n) ; } CAMD_DEBUG1 (("Max constraint set: "ID"\n", cmax)) ; for (i = 1 ; i < n ; i++) { Bucket [i] += Bucket [i-1] ; } for (j = n-1 ; j >= 0 ; j--) { BucketSet [--Bucket [C [j]]] = j ; } #ifndef NDEBUG CAMD_DEBUG3 (("\nConstraint Set "ID" :", C [BucketSet [0]])); for (i = 0 ; i < n ; i++) { CAMD_DEBUG3 ((ID" ", BucketSet [i])) ; if (i == n-1) { CAMD_DEBUG3 (("\n")) ; break ; } if (C [BucketSet [i+1]] != C [BucketSet [i]]) { CAMD_DEBUG3 (("\nConstraint Set "ID" :", C [BucketSet [i+1]])) ; } } #endif } /* get control parameters */ if (Control != (double *) NULL) { alpha = Control [CAMD_DENSE] ; aggressive = (Control [CAMD_AGGRESSIVE] != 0) ; } else { alpha = CAMD_DEFAULT_DENSE ; aggressive = CAMD_DEFAULT_AGGRESSIVE ; } /* Note: if alpha is NaN, this is undefined: */ if (alpha < 0) { /* only remove completely dense rows/columns */ dense = n-2 ; } else { dense = alpha * sqrt ((double) n) ; } dense = MAX (16, dense) ; dense = MIN (n, dense) ; CAMD_DEBUG1 (("\n\nCAMD (debug), alpha %g, aggr. "ID"\n", alpha, aggressive)) ; for (i = 0 ; i < n ; i++) { Last [i] = EMPTY ; Head [i] = EMPTY ; Next [i] = EMPTY ; /* if separate Hhead array is used for hash buckets: * Hhead [i] = EMPTY ; */ Nv [i] = 1 ; W [i] = 1 ; Elen [i] = 0 ; Degree [i] = Len [i] ; } Head [n] = EMPTY ; /* initialize wflg */ wbig = Int_MAX - n ; wflg = clear_flag (0, wbig, W, n) ; /* --------------------------------------------------------------------- */ /* eliminate dense and empty rows */ /* --------------------------------------------------------------------- */ ndense = 0 ; nnull = 0 ; for (j = 0 ; j < n ; j++) { i = BucketSet [j] ; deg = Degree [i] ; ASSERT (deg >= 0 && deg < n) ; if (deg > dense || deg == 0) { /* ------------------------------------------------------------- * Dense or empty variables are treated as non-principal variables * represented by node n. That is, i is absorbed into n, just like * j is absorbed into i in supervariable detection (see "found it!" * comment, below). * ------------------------------------------------------------- */ if (deg > dense) { CAMD_DEBUG1 (("Dense node "ID" degree "ID" bucket "ID"\n", i, deg, j)) ; ndense++ ; } else { CAMD_DEBUG1 (("Empty node "ID" degree "ID" bucket "ID"\n", i, deg, j)) ; nnull++ ; } Pe [i] = FLIP (n) ; Nv [i] = 0 ; /* do not postorder this node */ Elen [i] = EMPTY ; nel++ ; } } ndense_or_null = ndense + nnull ; pBucket = 0 ; degreeListCounter = 0 ; pBucket2 = 0 ; /* ========================================================================= */ /* WHILE (selecting pivots) DO */ /* ========================================================================= */ while (nel < n) { /* ------------------------------------------------------------------ */ /* if empty, fill the degree list with next non-empty constraint set */ /* ------------------------------------------------------------------ */ while (degreeListCounter == 0) { mindeg = n ; /* determine the new constraint set */ curC = (C == NULL) ? 0 : C [BucketSet [pBucket]] ; for ( ; pBucket < n ; pBucket++) { /* add i to the degree list, unless it's dead or not in curC */ i = BucketSet [pBucket] ; if (!IsInCurrentSet (C, i, curC)) break ; deg = Degree [i] ; ASSERT (deg >= 0 && deg < n) ; if (Pe [i] >= 0) { /* ------------------------------------------------------ * place i in the degree list corresponding to its degree * ------------------------------------------------------ */ inext = Head [deg] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = i ; Next [i] = inext ; Head [deg] = i ; degreeListCounter++ ; Last [i] = EMPTY ; mindeg = MIN (mindeg, deg) ; } } } #ifndef NDEBUG CAMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ; if (CAMD_debug >= 2) { CAMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last, Head, Elen, Degree, W, nel, BucketSet, C, curC) ; } #endif /* ========================================================================= */ /* GET PIVOT OF MINIMUM DEGREE */ /* ========================================================================= */ /* ----------------------------------------------------------------- */ /* find next supervariable for elimination */ /* ----------------------------------------------------------------- */ ASSERT (mindeg >= 0 && mindeg < n) ; for (deg = mindeg ; deg < n ; deg++) { me = Head [deg] ; if (me != EMPTY) break ; } mindeg = deg ; ASSERT (me >= 0 && me < n) ; CAMD_DEBUG1 (("=================me: "ID"\n", me)) ; /* ----------------------------------------------------------------- */ /* remove chosen variable from link list */ /* ----------------------------------------------------------------- */ inext = Next [me] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = EMPTY ; Head [deg] = inext ; degreeListCounter-- ; /* ----------------------------------------------------------------- */ /* me represents the elimination of pivots nel to nel+Nv[me]-1. */ /* place me itself as the first in this set. */ /* ----------------------------------------------------------------- */ elenme = Elen [me] ; nvpiv = Nv [me] ; ASSERT (nvpiv > 0) ; nel += nvpiv ; CAMD_DEBUG1 (("nvpiv is initially "ID"\n", nvpiv)) ; /* ========================================================================= */ /* CONSTRUCT NEW ELEMENT */ /* ========================================================================= */ /* ----------------------------------------------------------------- * At this point, me is the pivotal supervariable. It will be * converted into the current element. Scan list of the pivotal * supervariable, me, setting tree pointers and constructing new list * of supervariables for the new element, me. p is a pointer to the * current position in the old list. * ----------------------------------------------------------------- */ /* flag the variable "me" as being in Lme by negating Nv [me] */ Nv [me] = -nvpiv ; degme = 0 ; ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; if (elenme == 0) { /* ------------------------------------------------------------- */ /* construct the new element in place */ /* ------------------------------------------------------------- */ pme1 = Pe [me] ; pme2 = pme1 - 1 ; for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++) { i = Iw [p] ; ASSERT (i >= 0 && i < n && Nv [i] >= 0) ; nvi = Nv [i] ; if (nvi > 0) { /* ----------------------------------------------------- */ /* i is a principal variable not yet placed in Lme. */ /* store i in new list */ /* ----------------------------------------------------- */ /* flag i as being in Lme by negating Nv [i] */ degme += nvi ; Nv [i] = -nvi ; Iw [++pme2] = i ; /* ----------------------------------------------------- */ /* remove variable i from degree list. */ /* ----------------------------------------------------- */ if (IsInCurrentSet (C, i, curC)) { ilast = Last [i] ; inext = Next [i] ; ASSERT (ilast >= EMPTY && ilast < n) ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = ilast ; if (ilast != EMPTY) { Next [ilast] = inext ; } else { /* i is at the head of the degree list */ ASSERT (Degree [i] >= 0 && Degree [i] < n) ; Head [Degree [i]] = inext ; } degreeListCounter-- ; } } } } else { /* ------------------------------------------------------------- */ /* construct the new element in empty space, Iw [pfree ...] */ /* ------------------------------------------------------------- */ p = Pe [me] ; pme1 = pfree ; slenme = Len [me] - elenme ; for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++) { if (knt1 > elenme) { /* search the supervariables in me. */ e = me ; pj = p ; ln = slenme ; CAMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ; } else { /* search the elements in me. */ e = Iw [p++] ; ASSERT (e >= 0 && e < n) ; pj = Pe [e] ; ln = Len [e] ; CAMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ; ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ; } ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ; /* --------------------------------------------------------- * search for different supervariables and add them to the * new list, compressing when necessary. this loop is * executed once for each element in the list and once for * all the supervariables in the list. * --------------------------------------------------------- */ for (knt2 = 1 ; knt2 <= ln ; knt2++) { i = Iw [pj++] ; ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY)); nvi = Nv [i] ; CAMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n", i, Elen [i], Nv [i], wflg)) ; if (nvi > 0) { /* ------------------------------------------------- */ /* compress Iw, if necessary */ /* ------------------------------------------------- */ if (pfree >= iwlen) { CAMD_DEBUG1 (("GARBAGE COLLECTION\n")) ; /* prepare for compressing Iw by adjusting pointers * and lengths so that the lists being searched in * the inner and outer loops contain only the * remaining entries. */ Pe [me] = p ; Len [me] -= knt1 ; /* check if nothing left of supervariable me */ if (Len [me] == 0) Pe [me] = EMPTY ; Pe [e] = pj ; Len [e] = ln - knt2 ; /* nothing left of element e */ if (Len [e] == 0) Pe [e] = EMPTY ; ncmpa++ ; /* one more garbage collection */ /* store first entry of each object in Pe */ /* FLIP the first entry in each object */ for (j = 0 ; j < n ; j++) { pn = Pe [j] ; if (pn >= 0) { ASSERT (pn >= 0 && pn < iwlen) ; Pe [j] = Iw [pn] ; Iw [pn] = FLIP (j) ; } } /* psrc/pdst point to source/destination */ psrc = 0 ; pdst = 0 ; pend = pme1 - 1 ; while (psrc <= pend) { /* search for next FLIP'd entry */ j = FLIP (Iw [psrc++]) ; if (j >= 0) { CAMD_DEBUG2 (("Got object j: "ID"\n", j)) ; Iw [pdst] = Pe [j] ; Pe [j] = pdst++ ; lenj = Len [j] ; /* copy from source to destination */ for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++) { Iw [pdst++] = Iw [psrc++] ; } } } /* move the new partially-constructed element */ p1 = pdst ; for (psrc = pme1 ; psrc <= pfree-1 ; psrc++) { Iw [pdst++] = Iw [psrc] ; } pme1 = p1 ; pfree = pdst ; pj = Pe [e] ; p = Pe [me] ; } /* ------------------------------------------------- */ /* i is a principal variable not yet placed in Lme */ /* store i in new list */ /* ------------------------------------------------- */ /* flag i as being in Lme by negating Nv [i] */ degme += nvi ; Nv [i] = -nvi ; Iw [pfree++] = i ; CAMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i])); /* ------------------------------------------------- */ /* remove variable i from degree link list */ /* ------------------------------------------------- */ if (IsInCurrentSet (C, i, curC)) { ilast = Last [i] ; inext = Next [i] ; ASSERT (ilast >= EMPTY && ilast < n) ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = ilast ; if (ilast != EMPTY) { Next [ilast] = inext ; } else { /* i is at the head of the degree list */ ASSERT (Degree [i] >= 0 && Degree [i] < n) ; Head [Degree [i]] = inext ; } degreeListCounter-- ; } } } if (e != me) { if (IsInCurrentSet (C, e, curC)) { /* absorb element here if in same bucket */ /* set tree pointer and flag to indicate element e is * absorbed into new element me (the parent of e is me) */ CAMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ; Pe [e] = FLIP (me) ; W [e] = 0 ; } else { /* make element a root; kill it if not in same bucket */ CAMD_DEBUG1 (("2 Element "ID" => "ID"\n", e, me)) ; Pe [e] = EMPTY ; W [e] = 0 ; } } } pme2 = pfree - 1 ; } /* ----------------------------------------------------------------- */ /* me has now been converted into an element in Iw [pme1..pme2] */ /* ----------------------------------------------------------------- */ /* degme holds the external degree of new element */ Degree [me] = degme ; Pe [me] = pme1 ; Len [me] = pme2 - pme1 + 1 ; ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; Elen [me] = FLIP (nvpiv + degme) ; /* FLIP (Elen (me)) is now the degree of pivot (including * diagonal part). */ #ifndef NDEBUG CAMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ; for (pme = pme1 ; pme <= pme2 ; pme++) CAMD_DEBUG3 ((" "ID"", Iw[pme])); CAMD_DEBUG3 (("\n")) ; #endif /* ----------------------------------------------------------------- */ /* make sure that wflg is not too large. */ /* ----------------------------------------------------------------- */ /* With the current value of wflg, wflg+n must not cause integer * overflow */ wflg = clear_flag (wflg, wbig, W, n) ; /* ========================================================================= */ /* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */ /* ========================================================================= */ /* ----------------------------------------------------------------- * Scan 1: compute the external degrees of previous elements with * respect to the current element. That is: * (W [e] - wflg) = |Le \ Lme| * for each element e that appears in any supervariable in Lme. The * notation Le refers to the pattern (list of supervariables) of a * previous element e, where e is not yet absorbed, stored in * Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme * refers to the pattern of the current element (stored in * Iw [pme1..pme2]). If aggressive absorption is enabled, and * (W [e] - wflg) becomes zero, then the element e will be absorbed * in Scan 2. * ----------------------------------------------------------------- */ CAMD_DEBUG2 (("me: ")) ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; eln = Elen [i] ; CAMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ; if (eln > 0) { /* note that Nv [i] has been negated to denote i in Lme: */ nvi = -Nv [i] ; ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ; wnvi = wflg - nvi ; for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; CAMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ; if (we >= wflg) { /* unabsorbed element e has been seen in this loop */ CAMD_DEBUG4 ((" unabsorbed, first time seen")) ; we -= nvi ; } else if (we != 0) { /* e is an unabsorbed element */ /* this is the first we have seen e in all of Scan 1 */ CAMD_DEBUG4 ((" unabsorbed")) ; we = Degree [e] + wnvi ; } CAMD_DEBUG4 (("\n")) ; W [e] = we ; } } } CAMD_DEBUG2 (("\n")) ; /* ========================================================================= */ /* DEGREE UPDATE AND ELEMENT ABSORPTION */ /* ========================================================================= */ /* ----------------------------------------------------------------- * Scan 2: for each i in Lme, sum up the degree of Lme (which is * degme), plus the sum of the external degrees of each Le for the * elements e appearing within i, plus the supervariables in i. * Place i in hash list. * ----------------------------------------------------------------- */ for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ; CAMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i])); p1 = Pe [i] ; p2 = p1 + Elen [i] - 1 ; pn = p1 ; hash = 0 ; deg = 0 ; ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ; /* ------------------------------------------------------------- */ /* scan the element list associated with supervariable i */ /* ------------------------------------------------------------- */ /* UMFPACK/MA38-style approximate degree: */ if (aggressive) { for (p = p1 ; p <= p2 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; if (we != 0) { /* e is an unabsorbed element */ /* dext = | Le \ Lme | */ dext = we - wflg ; if (dext > 0) { deg += dext ; Iw [pn++] = e ; hash += e ; CAMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; } else { if (IsInCurrentSet (C, e, curC)) { /* external degree of e is zero and if * C[e] = curC; absorb e into me */ CAMD_DEBUG1 ((" Element "ID" =>"ID" (aggr)\n", e, me)) ; ASSERT (dext == 0) ; Pe [e] = FLIP (me) ; W [e] = 0 ; } else { /* make element a root; kill it if not in same * bucket */ CAMD_DEBUG1 (("2 Element "ID" =>"ID" (aggr)\n", e, me)) ; ASSERT (dext == 0) ; Pe [e] = EMPTY ; W [e] = 0 ; } } } } } else { for (p = p1 ; p <= p2 ; p++) { e = Iw [p] ; ASSERT (e >= 0 && e < n) ; we = W [e] ; if (we != 0) { /* e is an unabsorbed element */ dext = we - wflg ; ASSERT (dext >= 0) ; deg += dext ; Iw [pn++] = e ; hash += e ; CAMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; } } } /* count the number of elements in i (including me): */ Elen [i] = pn - p1 + 1 ; /* ------------------------------------------------------------- */ /* scan the supervariables in the list associated with i */ /* ------------------------------------------------------------- */ /* The bulk of the CAMD run time is typically spent in this loop, * particularly if the matrix has many dense rows that are not * removed prior to ordering. */ p3 = pn ; p4 = p1 + Len [i] ; for (p = p2 + 1 ; p < p4 ; p++) { j = Iw [p] ; ASSERT (j >= 0 && j < n) ; nvj = Nv [j] ; if (nvj > 0) { /* j is unabsorbed, and not in Lme. */ /* add to degree and add to new list */ deg += nvj ; Iw [pn++] = j ; hash += j ; CAMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n", j, hash, nvj)) ; } } /* ------------------------------------------------------------- */ /* update the degree and check for mass elimination */ /* ------------------------------------------------------------- */ /* with aggressive absorption, deg==0 is identical to the * Elen [i] == 1 && p3 == pn test, below. */ ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ; if (Elen [i] == 1 && p3 == pn && IsInCurrentSet (C, i, curC)) { /* --------------------------------------------------------- */ /* mass elimination */ /* --------------------------------------------------------- */ /* There is nothing left of this node except for an edge to * the current pivot element. Elen [i] is 1, and there are * no variables adjacent to node i. Absorb i into the * current pivot element, me. Note that if there are two or * more mass eliminations, fillin due to mass elimination is * possible within the nvpiv-by-nvpiv pivot block. It is this * step that causes CAMD's analysis to be an upper bound. * * The reason is that the selected pivot has a lower * approximate degree than the true degree of the two mass * eliminated nodes. There is no edge between the two mass * eliminated nodes. They are merged with the current pivot * anyway. * * No fillin occurs in the Schur complement, in any case, * and this effect does not decrease the quality of the * ordering itself, just the quality of the nonzero and * flop count analysis. It also means that the post-ordering * is not an exact elimination tree post-ordering. */ CAMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ; Pe [i] = FLIP (me) ; nvi = -Nv [i] ; degme -= nvi ; nvpiv += nvi ; nel += nvi ; Nv [i] = 0 ; Elen [i] = EMPTY ; } else { /* --------------------------------------------------------- */ /* update the upper-bound degree of i */ /* --------------------------------------------------------- */ /* the following degree does not yet include the size * of the current element, which is added later: */ Degree [i] = MIN (Degree [i], deg) ; /* --------------------------------------------------------- */ /* add me to the list for i */ /* --------------------------------------------------------- */ /* move first supervariable to end of list */ Iw [pn] = Iw [p3] ; /* move first element to end of element part of list */ Iw [p3] = Iw [p1] ; /* add new element, me, to front of list. */ Iw [p1] = me ; /* store the new length of the list in Len [i] */ Len [i] = pn - p1 + 1 ; /* --------------------------------------------------------- */ /* place in hash bucket. Save hash key of i in Last [i]. */ /* --------------------------------------------------------- */ /* NOTE: this can fail if hash is negative, because the ANSI C * standard does not define a % b when a and/or b are negative. * That's why hash is defined as an unsigned Int, to avoid this * problem. */ hash = hash % n ; ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ; /* if the Hhead array is not used: */ j = Head [hash] ; if (j <= EMPTY) { /* degree list is empty, hash head is FLIP (j) */ Next [i] = FLIP (j) ; Head [hash] = FLIP (i) ; } else { /* degree list is not empty, use Last [Head [hash]] as * hash head. */ Next [i] = Last [j] ; Last [j] = i ; } /* if a separate Hhead array is used: * Next [i] = Hhead [hash] ; Hhead [hash] = i ; */ CAMD_DEBUG4 ((" s: "ID" hash "ID" \n", i, hash)) ; Last [i] = hash ; } } Degree [me] = degme ; /* ----------------------------------------------------------------- */ /* Clear the counter array, W [...], by incrementing wflg. */ /* ----------------------------------------------------------------- */ /* make sure that wflg+n does not cause integer overflow */ lemax = MAX (lemax, degme) ; wflg += lemax ; wflg = clear_flag (wflg, wbig, W, n) ; /* at this point, W [0..n-1] < wflg holds */ /* ========================================================================= */ /* SUPERVARIABLE DETECTION */ /* ========================================================================= */ CAMD_DEBUG1 (("Detecting supervariables:\n")) ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; CAMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ; if (Nv [i] < 0) { /* i is a principal variable in Lme */ /* --------------------------------------------------------- * examine all hash buckets with 2 or more variables. We do * this by examing all unique hash keys for supervariables in * the pattern Lme of the current element, me * --------------------------------------------------------- */ CAMD_DEBUG2 (("Last: "ID"\n", Last [i])) ; /* let i = head of hash bucket, and empty the hash bucket */ ASSERT (Last [i] >= 0 && Last [i] < n) ; hash = Last [i] ; /* if Hhead array is not used: */ j = Head [hash] ; if (j == EMPTY) { /* hash bucket and degree list are both empty */ i = EMPTY ; } else if (j < EMPTY) { /* degree list is empty */ i = FLIP (j) ; Head [hash] = EMPTY ; } else { /* degree list is not empty, restore Last [j] of head j */ i = Last [j] ; Last [j] = EMPTY ; } /* if separate Hhead array is used: * i = Hhead [hash] ; Hhead [hash] = EMPTY ; */ ASSERT (i >= EMPTY && i < n) ; CAMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ; while (i != EMPTY && Next [i] != EMPTY) { /* ----------------------------------------------------- * this bucket has one or more variables following i. * scan all of them to see if i can absorb any entries * that follow i in hash bucket. Scatter i into w. * ----------------------------------------------------- */ ln = Len [i] ; eln = Elen [i] ; ASSERT (ln >= 0 && eln >= 0) ; ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ; /* do not flag the first element in the list (me) */ for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++) { ASSERT (Iw [p] >= 0 && Iw [p] < n) ; W [Iw [p]] = wflg ; } /* ----------------------------------------------------- */ /* scan every other entry j following i in bucket */ /* ----------------------------------------------------- */ jlast = i ; j = Next [i] ; ASSERT (j >= EMPTY && j < n) ; while (j != EMPTY) { /* ------------------------------------------------- */ /* check if j and i have identical nonzero pattern */ /* ------------------------------------------------- */ CAMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ; /* check if i and j have the same Len and Elen */ /* and are in the same bucket */ ASSERT (Len [j] >= 0 && Elen [j] >= 0) ; ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ; ok = (Len [j] == ln) && (Elen [j] == eln) ; ok = ok && InSameConstraintSet (C,i,j) ; /* skip the first element in the list (me) */ for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++) { ASSERT (Iw [p] >= 0 && Iw [p] < n) ; if (W [Iw [p]] != wflg) ok = 0 ; } if (ok) { /* --------------------------------------------- */ /* found it! j can be absorbed into i */ /* --------------------------------------------- */ CAMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i)); Pe [j] = FLIP (i) ; /* both Nv [i] and Nv [j] are negated since they */ /* are in Lme, and the absolute values of each */ /* are the number of variables in i and j: */ Nv [i] += Nv [j] ; Nv [j] = 0 ; Elen [j] = EMPTY ; /* delete j from hash bucket */ ASSERT (j != Next [j]) ; j = Next [j] ; Next [jlast] = j ; } else { /* j cannot be absorbed into i */ jlast = j ; ASSERT (j != Next [j]) ; j = Next [j] ; } ASSERT (j >= EMPTY && j < n) ; } /* ----------------------------------------------------- * no more variables can be absorbed into i * go to next i in bucket and clear flag array * ----------------------------------------------------- */ wflg++ ; i = Next [i] ; ASSERT (i >= EMPTY && i < n) ; } } } CAMD_DEBUG2 (("detect done\n")) ; /* ========================================================================= */ /* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */ /* ========================================================================= */ p = pme1 ; nleft = n - nel ; for (pme = pme1 ; pme <= pme2 ; pme++) { i = Iw [pme] ; ASSERT (i >= 0 && i < n) ; nvi = -Nv [i] ; CAMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ; if (nvi > 0) { /* i is a principal variable in Lme */ /* restore Nv [i] to signify that i is principal */ Nv [i] = nvi ; /* --------------------------------------------------------- */ /* compute the external degree (add size of current element) */ /* --------------------------------------------------------- */ deg = Degree [i] + degme - nvi ; deg = MIN (deg, nleft - nvi) ; ASSERT (deg >= 0 && deg < n) ; /* --------------------------------------------------------- */ /* place the supervariable at the head of the degree list */ /* --------------------------------------------------------- */ if (IsInCurrentSet (C, i, curC)) { inext = Head [deg] ; ASSERT (inext >= EMPTY && inext < n) ; if (inext != EMPTY) Last [inext] = i ; Next [i] = inext ; Last [i] = EMPTY ; Head [deg] = i ; degreeListCounter++ ; } /* --------------------------------------------------------- */ /* save the new degree, and find the minimum degree */ /* --------------------------------------------------------- */ mindeg = MIN (mindeg, deg) ; Degree [i] = deg ; /* --------------------------------------------------------- */ /* place the supervariable in the element pattern */ /* --------------------------------------------------------- */ Iw [p++] = i ; } } CAMD_DEBUG2 (("restore done\n")) ; /* ========================================================================= */ /* FINALIZE THE NEW ELEMENT */ /* ========================================================================= */ CAMD_DEBUG2 (("ME = "ID" DONE\n", me)) ; Nv [me] = nvpiv ; /* save the length of the list for the new element me */ Len [me] = p - pme1 ; if (Len [me] == 0) { /* there is nothing left of the current pivot element */ /* it is a root of the assembly tree */ Pe [me] = EMPTY ; W [me] = 0 ; } if (elenme != 0) { /* element was not constructed in place: deallocate part of */ /* it since newly nonprincipal variables may have been removed */ pfree = p ; } /* Store the element back into BucketSet. This is the way to maintain * the order of roots (Pe[i]=-1) in each Constraint Set. */ BucketSet [pBucket2++] = me ; /* The new element has nvpiv pivots and the size of the contribution * block for a multifrontal method is degme-by-degme, not including * the "dense" rows/columns. If the "dense" rows/columns are included, * the frontal matrix is no larger than * (degme+ndense)-by-(degme+ndense). */ if (Info != (double *) NULL) { f = nvpiv ; r = degme + ndense ; dmax = MAX (dmax, f + r) ; /* number of nonzeros in L (excluding the diagonal) */ lnzme = f*r + (f-1)*f/2 ; lnz += lnzme ; /* number of divide operations for LDL' and for LU */ ndiv += lnzme ; /* number of multiply-subtract pairs for LU */ s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ; nms_lu += s ; /* number of multiply-subtract pairs for LDL' */ nms_ldl += (s + lnzme)/2 ; } #ifndef NDEBUG CAMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ; for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++) { CAMD_DEBUG3 ((" "ID"", Iw [pme])) ; } CAMD_DEBUG3 (("\n")) ; #endif } /* ========================================================================= */ /* DONE SELECTING PIVOTS */ /* ========================================================================= */ if (Info != (double *) NULL) { /* count the work to factorize the ndense-by-ndense submatrix */ f = ndense ; dmax = MAX (dmax, (double) ndense) ; /* number of nonzeros in L (excluding the diagonal) */ lnzme = (f-1)*f/2 ; lnz += lnzme ; /* number of divide operations for LDL' and for LU */ ndiv += lnzme ; /* number of multiply-subtract pairs for LU */ s = (f-1)*f*(2*f-1)/6 ; nms_lu += s ; /* number of multiply-subtract pairs for LDL' */ nms_ldl += (s + lnzme)/2 ; /* number of nz's in L (excl. diagonal) */ Info [CAMD_LNZ] = lnz ; /* number of divide ops for LU and LDL' */ Info [CAMD_NDIV] = ndiv ; /* number of multiply-subtract pairs for LDL' */ Info [CAMD_NMULTSUBS_LDL] = nms_ldl ; /* number of multiply-subtract pairs for LU */ Info [CAMD_NMULTSUBS_LU] = nms_lu ; /* number of "dense" rows/columns */ Info [CAMD_NDENSE] = ndense ; /* largest front is dmax-by-dmax */ Info [CAMD_DMAX] = dmax ; /* number of garbage collections in CAMD */ Info [CAMD_NCMPA] = ncmpa ; /* successful ordering */ Info [CAMD_STATUS] = CAMD_OK ; } /* ========================================================================= */ /* POST-ORDERING */ /* ========================================================================= */ /* ------------------------------------------------------------------------- * Variables at this point: * * Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]), * or EMPTY if j is a root. The tree holds both elements and * non-principal (unordered) variables absorbed into them. * Dense and empty variables are non-principal and unordered. They are * all represented by the fictitious node n (that is, Pe [i] = FLIP (n) * and Elen [i] = EMPTY if i is a dense or empty node). * * Elen: holds the size of each element, including the diagonal part. * FLIP (Elen [e]) > 0 if e is an element. For unordered * variables i, Elen [i] is EMPTY. * * Nv: Nv [e] > 0 is the number of pivots represented by the element e. * For unordered variables i, Nv [i] is zero. * * BucketSet: BucketSet [0.....pBucket2] holds all * the elements that removed during the elimination, in eliminated order. * * * Contents no longer needed: * W, Iw, Len, Degree, Head, Next, Last. * * The matrix itself has been destroyed. * * n: the size of the matrix. * ndense: the number of "dense" nodes. * nnull: the number of empty nodes (zero degree) * No other scalars needed (pfree, iwlen, etc.) * ------------------------------------------------------------------------- */ /* restore Pe */ for (i = 0 ; i < n ; i++) { Pe [i] = FLIP (Pe [i]) ; } /* restore Elen, for output information only */ for (i = 0 ; i < n ; i++) { Elen [i] = FLIP (Elen [i]) ; } /* Now, Pe [j] is the parent of j, or EMPTY if j is a root. * Pe [j] = n if j is a dense/empty node */ /* place all variables in the list of children of their parents */ for (j = n-1 ; j >= 0 ; j--) { if (Nv [j] > 0) continue ; /* skip if j is an element */ ASSERT (Pe [j] >= 0 && Pe [j] <= n) ; Next [j] = Head [Pe [j]] ; /* place j in list of its parent */ Head [Pe [j]] = j ; } /* place all elements in the list of children of their parents */ for (e = n-1 ; e >= 0 ; e--) { if (Nv [e] <= 0) continue ; /* skip if e is a variable */ if (Pe [e] == EMPTY) continue ; /* skip if e is a root */ Next [e] = Head [Pe [e]] ; /* place e in list of its parent */ Head [Pe [e]] = e ; } /* determine where to put the postordering permutation */ if (C != NULL && ndense_or_null > 0) { /* Perm needs to be computed in a temporary workspace, and then * transformed and copied into the output permutation, in Last */ Perm = Degree ; } else { /* the postorder computes the permutation directly, in Last */ Perm = Last ; } /* postorder the elements and their descendants (both elements and * variables), but not (yet) the dense/empty nodes */ for (k = 0 , i = 0 ; i < pBucket2 ; i++) { j = BucketSet [i] ; ASSERT (j >= 0 && j < n) ; if (Pe [j] == EMPTY) { k = CAMD_postorder (j, k, n, Head, Next, Perm, W) ; } } /* Perm [0..k-1] now contains a list of the nonempty/nondense nodes, * ordered via minimum degree and following the constraints. */ CAMD_DEBUG1 (("before dense/empty, k = "ID"\n", k)) ; fflush (stdout) ; ASSERT (k + ndense_or_null == n) ; if (ndense_or_null > 0) { if (C == NULL) { /* postorder the dense/empty nodes (the parent of all these is n) */ CAMD_postorder (n, k, n, Head, Next, Perm, W) ; } else { /* dense (or empty) nodes exist, AND C also exists. The dense/empty * nodes are a link list whose head is Head[n], and Next[i] gives the * next node after i in the list. They need to be sorted by their * constraints, and then merged with Perm [0..k-1].*/ /* count how many dense/empty nodes are in each constraint set */ Bucket = W ; /* use W as workspace (it has size n+1) */ /* count the number of dense/empty nodes in each constraint set */ for (c = 0 ; c <= cmax ; c++) { Bucket [c] = 0 ; } i = 0 ; for (j = Head [n] ; j != EMPTY ; j = Next [j]) { CAMD_DEBUG1 (("Dense/empty node: "ID" : "ID" "ID"\n", j, Pe [j], Elen [j])) ; fflush (stdout) ; ASSERT (Pe [j] == n && Elen [j] == EMPTY) ; i++ ; Bucket [C [j]]++ ; } ASSERT (i == ndense_or_null) ; /* find the cumulative sum of Bucket */ knt1 = 0 ; for (c = 0 ; c <= cmax ; c++) { i = Bucket [c] ; Bucket [c] = knt1 ; knt1 += i ; } CAMD_DEBUG1 (("knt1 "ID" dense/empty "ID"\n", knt1, ndense_or_null)); ASSERT (knt1 == ndense_or_null) ; /* place dense/empty nodes in BucketSet, in constraint order, * ties in natural order */ for (j = Head [n] ; j != EMPTY ; j = Next [j]) { BucketSet [Bucket [C [j]]++] = j ; } #ifndef NDEBUG /* each set is in monotonically increasing order of constraints */ for (i = 1 ; i < k ; i++) { ASSERT (C [Perm [i]] >= C [Perm [i-1]]) ; } for (i = 1 ; i < ndense_or_null ; i++) { /* in order of constraints, with ties in natural order */ ASSERT ( (C [BucketSet [i]] > C [BucketSet [i-1]]) || (C [BucketSet [i]] == C [BucketSet [i-1]] && (BucketSet [i] > BucketSet [i-1]))) ; } #endif /* merge Perm [0..k-1] and BucketSet [0..ndense+nnull] */ p1 = 0 ; p2 = 0 ; p3 = 0 ; while (p1 < k && p2 < ndense_or_null) { /* place the dense/empty nodes at the end of each constraint * set, after the non-dense/non-empty nodes in the same set */ if (C [Perm [p1]] <= C [BucketSet [p2]]) { /* non-dense/non-empty node */ Last [p3++] = Perm [p1++] ; } else { /* dense/empty node */ Last [p3++] = BucketSet [p2++] ; } } /* wrap up; either Perm[0..k-1] or BucketSet[ ] is used up */ while (p1 < k) { Last [p3++] = Perm [p1++] ; } while (p2 < ndense_or_null) { Last [p3++] = BucketSet [p2++] ; } } } #ifndef NDEBUG CAMD_DEBUG1 (("\nFinal constrained ordering:\n")) ; i = 0 ; CAMD_DEBUG1 (("Last ["ID"] = "ID", C["ID"] = "ID"\n", i, Last [i], Last [i], C [Last [i]])) ; for (i = 1 ; i < n ; i++) { CAMD_DEBUG1 (("Last ["ID"] = "ID", C["ID"] = "ID"\n", i, Last [i], Last [i], C [Last [i]])) ; /* This is the critical assertion. It states that the permutation * satisfies the constraints. */ ASSERT (C [Last [i]] >= C [Last [i-1]]) ; } #endif } SuiteSparse/CAMD/Source/camd_aat.c0000644001170100242450000001154510616401106015611 0ustar davisfac/* ========================================================================= */ /* === CAMD_aat ============================================================ */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* CAMD_aat: compute the symmetry of the pattern of A, and count the number of * nonzeros each column of A+A' (excluding the diagonal). Assumes the input * matrix has no errors, with sorted columns and no duplicates * (CAMD_valid (n, n, Ap, Ai) must be CAMD_OK, but this condition is not * checked). */ #include "camd_internal.h" GLOBAL size_t CAMD_aat /* returns nz in A+A' */ ( Int n, const Int Ap [ ], const Int Ai [ ], Int Len [ ], /* Len [j]: length of column j of A+A', excl diagonal*/ Int Tp [ ], /* workspace of size n */ double Info [ ] ) { Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ; double sym ; size_t nzaat ; #ifndef NDEBUG CAMD_debug_init ("CAMD AAT") ; for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ; ASSERT (CAMD_valid (n, n, Ap, Ai) == CAMD_OK) ; #endif if (Info != (double *) NULL) { /* clear the Info array, if it exists */ for (i = 0 ; i < CAMD_INFO ; i++) { Info [i] = EMPTY ; } Info [CAMD_STATUS] = CAMD_OK ; } for (k = 0 ; k < n ; k++) { Len [k] = 0 ; } nzdiag = 0 ; nzboth = 0 ; nz = Ap [n] ; for (k = 0 ; k < n ; k++) { p1 = Ap [k] ; p2 = Ap [k+1] ; CAMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; if (j < k) { /* entry A (j,k) is in the strictly upper triangular part, * add both A (j,k) and A (k,j) to the matrix A+A' */ Len [j]++ ; Len [k]++ ; CAMD_DEBUG3 ((" upper ("ID","ID") ("ID","ID")\n", j,k, k,j)); p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; nzdiag++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Tp [j] != EMPTY) ; ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; if (i < k) { /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; CAMD_DEBUG3 ((" lower ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; nzboth++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } /* Tp [k] points to the entry just below the diagonal in column k */ Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; CAMD_DEBUG3 ((" lower cleanup ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; } } /* --------------------------------------------------------------------- */ /* compute the symmetry of the nonzero pattern of A */ /* --------------------------------------------------------------------- */ /* Given a matrix A, the symmetry of A is: * B = tril (spones (A), -1) + triu (spones (A), 1) ; * sym = nnz (B & B') / nnz (B) ; * or 1 if nnz (B) is zero. */ if (nz == nzdiag) { sym = 1 ; } else { sym = (2 * (double) nzboth) / ((double) (nz - nzdiag)) ; } nzaat = 0 ; for (k = 0 ; k < n ; k++) { nzaat += Len [k] ; } CAMD_DEBUG1 (("CAMD nz in A+A', excluding diagonal (nzaat) = %g\n", (double) nzaat)) ; CAMD_DEBUG1 ((" nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n", nzboth, nz, nzdiag, sym)) ; if (Info != (double *) NULL) { Info [CAMD_STATUS] = CAMD_OK ; Info [CAMD_N] = n ; Info [CAMD_NZ] = nz ; Info [CAMD_SYMMETRY] = sym ; /* symmetry of pattern of A */ Info [CAMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */ Info [CAMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */ } return (nzaat) ; } SuiteSparse/CAMD/Source/camd_valid.c0000644001170100242450000000645510616401152016150 0ustar davisfac/* ========================================================================= */ /* === CAMD_valid ========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* Check if a column-form matrix is valid or not. The matrix A is * n_row-by-n_col. The row indices of entries in column j are in * Ai [Ap [j] ... Ap [j+1]-1]. Required conditions are: * * n_row >= 0 * n_col >= 0 * nz = Ap [n_col] >= 0 number of entries in the matrix * Ap [0] == 0 * Ap [j] <= Ap [j+1] for all j in the range 0 to n_col. * Ai [0 ... nz-1] must be in the range 0 to n_row-1. * * If any of the above conditions hold, CAMD_INVALID is returned. If the * following condition holds, CAMD_OK_BUT_JUMBLED is returned (a warning, * not an error): * * row indices in Ai [Ap [j] ... Ap [j+1]-1] are not sorted in ascending * order, and/or duplicate entries exist. * * Otherwise, CAMD_OK is returned. */ #include "camd_internal.h" GLOBAL Int CAMD_valid ( /* inputs, not modified on output: */ Int n_row, /* A is n_row-by-n_col */ Int n_col, const Int Ap [ ], /* column pointers of A, of size n_col+1 */ const Int Ai [ ] /* row indices of A, of size nz = Ap [n_col] */ ) { Int nz, j, p1, p2, ilast, i, p, result = CAMD_OK ; if (n_row < 0 || n_col < 0 || Ap == NULL || Ai == NULL) { return (CAMD_INVALID) ; } nz = Ap [n_col] ; if (Ap [0] != 0 || nz < 0) { /* column pointers must start at Ap [0] = 0, and Ap [n] must be >= 0 */ CAMD_DEBUG0 (("column 0 pointer bad or nz < 0\n")) ; return (CAMD_INVALID) ; } for (j = 0 ; j < n_col ; j++) { p1 = Ap [j] ; p2 = Ap [j+1] ; CAMD_DEBUG2 (("\nColumn: "ID" p1: "ID" p2: "ID"\n", j, p1, p2)) ; if (p1 > p2) { /* column pointers must be ascending */ CAMD_DEBUG0 (("column "ID" pointer bad\n", j)) ; return (CAMD_INVALID) ; } ilast = EMPTY ; for (p = p1 ; p < p2 ; p++) { i = Ai [p] ; CAMD_DEBUG3 (("row: "ID"\n", i)) ; if (i < 0 || i >= n_row) { /* row index out of range */ CAMD_DEBUG0 (("index out of range, col "ID" row "ID"\n", j, i)); return (CAMD_INVALID) ; } if (i <= ilast) { /* row index unsorted, or duplicate entry present */ CAMD_DEBUG1 (("index unsorted/dupl col "ID" row "ID"\n", j, i)); result = CAMD_OK_BUT_JUMBLED ; } ilast = i ; } } return (result) ; } GLOBAL Int CAMD_cvalid /* return TRUE if the Constraint set is valid, * FALSE otherwise */ ( /* inputs, not modified on output: */ Int n, /* the length of constraint set */ const Int C [ ] /* constraint set */ ) { Int i ; if (C != NULL) { for (i = 0 ; i < n ; i++) { if (C [i] < 0 || C [i] > n - 1) { CAMD_DEBUG0 (("C["ID"] = "ID" invalid\n", i, C [i])) ; return (FALSE) ; } } } return (TRUE) ; } SuiteSparse/CAMD/Source/camd_global.c0000644001170100242450000000634110616401124016302 0ustar davisfac/* ========================================================================= */ /* === camd_global ========================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ #include #ifdef MATLAB_MEX_FILE #include "mex.h" #include "matrix.h" #endif #ifndef NULL #define NULL 0 #endif /* ========================================================================= */ /* === Default CAMD memory manager ========================================= */ /* ========================================================================= */ /* The user can redefine these global pointers at run-time to change the memory * manager used by CAMD. CAMD only uses malloc and free; realloc and calloc are * include for completeness, in case another package wants to use the same * memory manager as CAMD. * * If compiling as a MATLAB mexFunction, the default memory manager is mxMalloc. * You can also compile CAMD as a standard ANSI-C library and link a mexFunction * against it, and then redefine these pointers at run-time, in your * mexFunction. * * If -DNMALLOC is defined at compile-time, no memory manager is specified at * compile-time. You must then define these functions at run-time, before * calling CAMD, for CAMD to work properly. */ #ifndef NMALLOC #ifdef MATLAB_MEX_FILE /* MATLAB mexFunction: */ void *(*camd_malloc) (size_t) = mxMalloc ; void (*camd_free) (void *) = mxFree ; void *(*camd_realloc) (void *, size_t) = mxRealloc ; void *(*camd_calloc) (size_t, size_t) = mxCalloc ; #else /* standard ANSI-C: */ void *(*camd_malloc) (size_t) = malloc ; void (*camd_free) (void *) = free ; void *(*camd_realloc) (void *, size_t) = realloc ; void *(*camd_calloc) (size_t, size_t) = calloc ; #endif #else /* no memory manager defined at compile-time; you MUST define one at run-time */ void *(*camd_malloc) (size_t) = NULL ; void (*camd_free) (void *) = NULL ; void *(*camd_realloc) (void *, size_t) = NULL ; void *(*camd_calloc) (size_t, size_t) = NULL ; #endif /* ========================================================================= */ /* === Default CAMD printf routine ========================================= */ /* ========================================================================= */ /* The user can redefine this global pointer at run-time to change the printf * routine used by CAMD. If NULL, no printing occurs. * * If -DNPRINT is defined at compile-time, stdio.h is not included. Printing * can then be enabled at run-time by setting camd_printf to a non-NULL function. */ #ifndef NPRINT #ifdef MATLAB_MEX_FILE int (*camd_printf) (const char *, ...) = mexPrintf ; #else #include int (*camd_printf) (const char *, ...) = printf ; #endif #else int (*camd_printf) (const char *, ...) = NULL ; #endif SuiteSparse/CAMD/Source/camd_order.c0000644001170100242450000001367610616401137016172 0ustar davisfac/* ========================================================================= */ /* === CAMD_order ========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* User-callable CAMD minimum degree ordering routine. See camd.h for * documentation. */ #include "camd_internal.h" /* ========================================================================= */ /* === CAMD_order ========================================================== */ /* ========================================================================= */ GLOBAL Int CAMD_order ( Int n, const Int Ap [ ], const Int Ai [ ], Int P [ ], double Control [ ], double Info [ ], const Int C [ ] ) { Int *Len, *S, nz, i, *Pinv, info, status, *Rp, *Ri, *Cp, *Ci, ok ; size_t nzaat, slen ; double mem = 0 ; #ifndef NDEBUG CAMD_debug_init ("camd") ; #endif /* clear the Info array, if it exists */ info = Info != (double *) NULL ; if (info) { for (i = 0 ; i < CAMD_INFO ; i++) { Info [i] = EMPTY ; } Info [CAMD_N] = n ; Info [CAMD_STATUS] = CAMD_OK ; } /* make sure inputs exist and n is >= 0 */ if (Ai == (Int *) NULL || Ap == (Int *) NULL || P == (Int *) NULL || n < 0) { if (info) Info [CAMD_STATUS] = CAMD_INVALID ; return (CAMD_INVALID) ; /* arguments are invalid */ } if (n == 0) { return (CAMD_OK) ; /* n is 0 so there's nothing to do */ } nz = Ap [n] ; if (info) { Info [CAMD_NZ] = nz ; } if (nz < 0) { if (info) Info [CAMD_STATUS] = CAMD_INVALID ; return (CAMD_INVALID) ; } /* check if n or nz will cause size_t overflow */ if ((size_t) n >= SIZE_T_MAX / sizeof (Int) || (size_t) nz >= SIZE_T_MAX / sizeof (Int)) { if (info) Info [CAMD_STATUS] = CAMD_OUT_OF_MEMORY ; return (CAMD_OUT_OF_MEMORY) ; /* problem too large */ } /* check the input matrix: CAMD_OK, CAMD_INVALID, or CAMD_OK_BUT_JUMBLED */ status = CAMD_valid (n, n, Ap, Ai) ; if (status == CAMD_INVALID) { if (info) Info [CAMD_STATUS] = CAMD_INVALID ; return (CAMD_INVALID) ; /* matrix is invalid */ } /* allocate two size-n integer workspaces */ Len = camd_malloc (n * sizeof (Int)) ; Pinv = camd_malloc (n * sizeof (Int)) ; mem += n ; mem += n ; if (!Len || !Pinv) { /* :: out of memory :: */ camd_free (Len) ; camd_free (Pinv) ; if (info) Info [CAMD_STATUS] = CAMD_OUT_OF_MEMORY ; return (CAMD_OUT_OF_MEMORY) ; } if (status == CAMD_OK_BUT_JUMBLED) { /* sort the input matrix and remove duplicate entries */ CAMD_DEBUG1 (("Matrix is jumbled\n")) ; Rp = camd_malloc ((n+1) * sizeof (Int)) ; Ri = camd_malloc (MAX (nz,1) * sizeof (Int)) ; mem += (n+1) ; mem += MAX (nz,1) ; if (!Rp || !Ri) { /* :: out of memory :: */ camd_free (Rp) ; camd_free (Ri) ; camd_free (Len) ; camd_free (Pinv) ; if (info) Info [CAMD_STATUS] = CAMD_OUT_OF_MEMORY ; return (CAMD_OUT_OF_MEMORY) ; } /* use Len and Pinv as workspace to create R = A' */ CAMD_preprocess (n, Ap, Ai, Rp, Ri, Len, Pinv) ; Cp = Rp ; Ci = Ri ; } else { /* order the input matrix as-is. No need to compute R = A' first */ Rp = NULL ; Ri = NULL ; Cp = (Int *) Ap ; Ci = (Int *) Ai ; } /* --------------------------------------------------------------------- */ /* determine the symmetry and count off-diagonal nonzeros in A+A' */ /* --------------------------------------------------------------------- */ nzaat = CAMD_aat (n, Cp, Ci, Len, P, Info) ; CAMD_DEBUG1 (("nzaat: %g\n", (double) nzaat)) ; ASSERT ((MAX (nz-n, 0) <= nzaat) && (nzaat <= 2 * (size_t) nz)) ; /* --------------------------------------------------------------------- */ /* allocate workspace for matrix, elbow room, and 7 size-n vectors */ /* --------------------------------------------------------------------- */ S = NULL ; slen = nzaat ; /* space for matrix */ ok = ((slen + nzaat/5) >= slen) ; /* check for size_t overflow */ slen += nzaat/5 ; /* add elbow room */ for (i = 0 ; ok && i < 8 ; i++) { ok = ((slen + n+1) > slen) ; /* check for size_t overflow */ slen += (n+1) ; /* size-n elbow room, 7 size-(n+1) workspace */ } mem += slen ; ok = ok && (slen < SIZE_T_MAX / sizeof (Int)) ; /* check for overflow */ ok = ok && (slen < Int_MAX) ; /* S[i] for Int i must be OK */ if (ok) { S = camd_malloc (slen * sizeof (Int)) ; } CAMD_DEBUG1 (("slen %g\n", (double) slen)) ; if (!S) { /* :: out of memory :: (or problem too large) */ camd_free (Rp) ; camd_free (Ri) ; camd_free (Len) ; camd_free (Pinv) ; if (info) Info [CAMD_STATUS] = CAMD_OUT_OF_MEMORY ; return (CAMD_OUT_OF_MEMORY) ; } if (info) { /* memory usage, in bytes. */ Info [CAMD_MEMORY] = mem * sizeof (Int) ; } /* --------------------------------------------------------------------- */ /* order the matrix */ /* --------------------------------------------------------------------- */ CAMD_1 (n, Cp, Ci, P, Pinv, Len, slen, S, Control, Info, C) ; /* --------------------------------------------------------------------- */ /* free the workspace */ /* --------------------------------------------------------------------- */ camd_free (Rp) ; camd_free (Ri) ; camd_free (Len) ; camd_free (Pinv) ; camd_free (S) ; if (info) Info [CAMD_STATUS] = status ; return (status) ; /* successful ordering */ } SuiteSparse/CAMD/Source/camd_defaults.c0000644001170100242450000000251210616401114016644 0ustar davisfac/* ========================================================================= */ /* === CAMD_defaults ======================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* User-callable. Sets default control parameters for CAMD. See camd.h * for details. */ #include "camd_internal.h" /* ========================================================================= */ /* === CAMD defaults ======================================================= */ /* ========================================================================= */ GLOBAL void CAMD_defaults ( double Control [ ] ) { Int i ; if (Control != (double *) NULL) { for (i = 0 ; i < CAMD_CONTROL ; i++) { Control [i] = 0 ; } Control [CAMD_DENSE] = CAMD_DEFAULT_DENSE ; Control [CAMD_AGGRESSIVE] = CAMD_DEFAULT_AGGRESSIVE ; } } SuiteSparse/CAMD/Source/camd_dump.c0000644001170100242450000001255510616402635016023 0ustar davisfac/* ========================================================================= */ /* === CAMD_dump =========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* Debugging routines for CAMD. Not used if NDEBUG is not defined at compile- * time (the default). See comments in camd_internal.h on how to enable * debugging. Not user-callable. */ #include "camd_internal.h" #ifndef NDEBUG /* This global variable is present only when debugging */ GLOBAL Int CAMD_debug = -999 ; /* default is no debug printing */ /* ========================================================================= */ /* === CAMD_debug_init ===================================================== */ /* ========================================================================= */ /* Sets the debug print level, by reading the file debug.camd (if it exists) */ GLOBAL void CAMD_debug_init ( char *s ) { FILE *f ; f = fopen ("debug.camd", "r") ; if (f == (FILE *) NULL) { CAMD_debug = -999 ; } else { fscanf (f, ID, &CAMD_debug) ; fclose (f) ; } if (CAMD_debug >= 0) { printf ("%s: CAMD_debug_init, D= "ID"\n", s, CAMD_debug) ; } } /* ========================================================================= */ /* === CAMD_dump =========================================================== */ /* ========================================================================= */ /* Dump CAMD's data structure, except for the hash buckets. This routine * cannot be called when the hash buckets are non-empty. */ GLOBAL void CAMD_dump ( Int n, /* A is n-by-n */ Int Pe [ ], /* pe [0..n-1]: index in iw of start of row i */ Int Iw [ ], /* workspace of size iwlen, iwlen [0..pfree-1] * holds the matrix on input */ Int Len [ ], /* len [0..n-1]: length for row i */ Int iwlen, /* length of iw */ Int pfree, /* iw [pfree ... iwlen-1] is empty on input */ Int Nv [ ], /* nv [0..n-1] */ Int Next [ ], /* next [0..n-1] */ Int Last [ ], /* last [0..n-1] */ Int Head [ ], /* head [0..n-1] */ Int Elen [ ], /* size n */ Int Degree [ ], /* size n */ Int W [ ], /* size n */ Int nel, Int BucketSet [ ], const Int C [ ], Int CurC ) { Int i, pe, elen, nv, len, e, p, k, j, deg, w, cnt, ilast ; if (CAMD_debug < 0) return ; ASSERT (pfree <= iwlen) ; CAMD_DEBUG3 (("\nCAMD dump, pfree: "ID"\n", pfree)) ; for (i = 0 ; i < n ; i++) { pe = Pe [i] ; elen = Elen [i] ; nv = Nv [i] ; len = Len [i] ; w = W [i] ; if (elen >= EMPTY) { if (nv == 0) { CAMD_DEBUG4 (("\nI "ID": nonprincipal: ", i)) ; ASSERT (elen == EMPTY) ; if (pe == FLIP(n)) { CAMD_DEBUG4 ((" dense node\n")) ; ASSERT (w == 1) ; } else { ASSERT (pe < EMPTY) ; CAMD_DEBUG4 ((" i "ID" -> parent "ID"\n", i, FLIP (Pe[i]))); } } else { CAMD_DEBUG4 (("\nI "ID": active principal supervariable:\n",i)); CAMD_DEBUG4 ((" nv(i): "ID" Flag: %d\n", nv, (nv < 0))) ; ASSERT (elen >= 0) ; ASSERT (nv > 0 && pe >= 0) ; p = pe ; CAMD_DEBUG4 ((" e/s: ")) ; if (elen == 0) CAMD_DEBUG4 ((" : ")) ; ASSERT (pe + len <= pfree) ; for (k = 0 ; k < len ; k++) { j = Iw [p] ; CAMD_DEBUG4 ((" "ID"", j)) ; ASSERT (j >= 0 && j < n) ; if (k == elen-1) CAMD_DEBUG4 ((" : ")) ; p++ ; } CAMD_DEBUG4 (("\n")) ; } } else { e = i ; if (w == 0) { CAMD_DEBUG4 (("\nE "ID": absorbed element: w "ID"\n", e, w)) ; ASSERT (nv > 0 && pe < 0) ; CAMD_DEBUG4 ((" e "ID" -> parent "ID"\n", e, FLIP (Pe [e]))) ; } else { CAMD_DEBUG4 (("\nE "ID": unabsorbed element: w "ID"\n", e, w)) ; ASSERT (nv > 0 && pe >= 0) ; p = pe ; CAMD_DEBUG4 ((" : ")) ; ASSERT (pe + len <= pfree) ; for (k = 0 ; k < len ; k++) { j = Iw [p] ; CAMD_DEBUG4 ((" "ID"", j)) ; ASSERT (j >= 0 && j < n) ; p++ ; } CAMD_DEBUG4 (("\n")) ; } } CAMD_DEBUG4 (("C[i] is :"ID"\n", (C == NULL) ? 0 : C [i])); } /* this routine cannot be called when the hash buckets are non-empty */ CAMD_DEBUG4 (("\nDegree lists:\n")) ; if (nel >= 0) { cnt = 0 ; for (deg = 0 ; deg < n ; deg++) { if (Head [deg] == EMPTY) continue ; ilast = EMPTY ; CAMD_DEBUG4 ((ID": \n", deg)) ; for (i = Head [deg] ; i != EMPTY ; i = Next [i]) { CAMD_DEBUG4 ((" "ID" : next "ID" last "ID" deg "ID"\n", i, Next [i], Last [i], Degree [i])) ; ASSERT (i >= 0 && i < n && ilast == Last [i] && deg == Degree [i]) ; cnt += Nv [i] ; ilast = i ; } CAMD_DEBUG4 (("\n")) ; } } CAMD_DEBUG4(("\nCurrent C[i] is "ID". current Buckets are:\n", CurC)) ; for (i = 0 ; i < n ; i++) { if ((C == NULL) ? 1 : (C [BucketSet [i]] <= CurC)) CAMD_DEBUG4((ID",",BucketSet [i])); } CAMD_DEBUG4 (("\n")) ; } #endif SuiteSparse/CAMD/Source/camd_info.c0000644001170100242450000001020610616401134015771 0ustar davisfac/* ========================================================================= */ /* === CAMD_info =========================================================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* CAMD, Copyright (c) Timothy A. Davis, Yanqing Chen, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/camd */ /* ------------------------------------------------------------------------- */ /* User-callable. Prints the output statistics for CAMD. See camd.h * for details. If the Info array is not present, nothing is printed. */ #include "camd_internal.h" #define PRI(format,x) { if (x >= 0) { PRINTF ((format, x)) ; }} GLOBAL void CAMD_info ( double Info [ ] ) { double n, ndiv, nmultsubs_ldl, nmultsubs_lu, lnz, lnzd ; if (!Info) { return ; } n = Info [CAMD_N] ; ndiv = Info [CAMD_NDIV] ; nmultsubs_ldl = Info [CAMD_NMULTSUBS_LDL] ; nmultsubs_lu = Info [CAMD_NMULTSUBS_LU] ; lnz = Info [CAMD_LNZ] ; lnzd = (n >= 0 && lnz >= 0) ? (n + lnz) : (-1) ; /* CAMD return status */ PRINTF (( "\ncamd: approximate minimum degree ordering, results:\n" " status: ")) ; if (Info [CAMD_STATUS] == CAMD_OK) { PRINTF (("OK\n")) ; } else if (Info [CAMD_STATUS] == CAMD_OUT_OF_MEMORY) { PRINTF (("out of memory\n")) ; } else if (Info [CAMD_STATUS] == CAMD_INVALID) { PRINTF (("invalid matrix\n")) ; } else if (Info [CAMD_STATUS] == CAMD_OK_BUT_JUMBLED) { PRINTF (("OK, but jumbled\n")) ; } else { PRINTF (("unknown\n")) ; } /* statistics about the input matrix */ PRI (" n, dimension of A: %.20g\n", n); PRI (" nz, number of nonzeros in A: %.20g\n", Info [CAMD_NZ]) ; PRI (" symmetry of A: %.4f\n", Info [CAMD_SYMMETRY]) ; PRI (" number of nonzeros on diagonal: %.20g\n", Info [CAMD_NZDIAG]) ; PRI (" nonzeros in pattern of A+A' (excl. diagonal): %.20g\n", Info [CAMD_NZ_A_PLUS_AT]) ; PRI (" # dense rows/columns of A+A': %.20g\n", Info [CAMD_NDENSE]) ; /* statistics about CAMD's behavior */ PRI (" memory used, in bytes: %.20g\n", Info [CAMD_MEMORY]) ; PRI (" # of memory compactions: %.20g\n", Info [CAMD_NCMPA]) ; /* statistics about the ordering quality */ PRINTF (("\n" " The following approximate statistics are for a subsequent\n" " factorization of A(P,P) + A(P,P)'. They are slight upper\n" " bounds if there are no dense rows/columns in A+A', and become\n" " looser if dense rows/columns exist.\n\n")) ; PRI (" nonzeros in L (excluding diagonal): %.20g\n", lnz) ; PRI (" nonzeros in L (including diagonal): %.20g\n", lnzd) ; PRI (" # divide operations for LDL' or LU: %.20g\n", ndiv) ; PRI (" # multiply-subtract operations for LDL': %.20g\n", nmultsubs_ldl) ; PRI (" # multiply-subtract operations for LU: %.20g\n", nmultsubs_lu) ; PRI (" max nz. in any column of L (incl. diagonal): %.20g\n", Info [CAMD_DMAX]) ; /* total flop counts for various factorizations */ if (n >= 0 && ndiv >= 0 && nmultsubs_ldl >= 0 && nmultsubs_lu >= 0) { PRINTF (("\n" " chol flop count for real A, sqrt counted as 1 flop: %.20g\n" " LDL' flop count for real A: %.20g\n" " LDL' flop count for complex A: %.20g\n" " LU flop count for real A (with no pivoting): %.20g\n" " LU flop count for complex A (with no pivoting): %.20g\n\n", n + ndiv + 2*nmultsubs_ldl, ndiv + 2*nmultsubs_ldl, 9*ndiv + 8*nmultsubs_ldl, ndiv + 2*nmultsubs_lu, 9*ndiv + 8*nmultsubs_lu)) ; } } SuiteSparse/CAMD/README.txt0000644001170100242450000002056410617112467014165 0ustar davisfacCAMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, Yanqing Chen, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. CAMD is available under alternate licences; contact T. Davis for details. CAMD: a set of routines for permuting sparse matrices prior to factorization. Includes a version in C, a version in Fortran, and a MATLAB mexFunction. Requires UFconfig, in the ../UFconfig directory relative to this directory. Quick start (Unix, or Windows with Cygwin): To compile, test, and install CAMD, you may wish to first configure the installation by editting the ../UFconfig/UFconfig.mk file. Next, cd to this directory (CAMD) and type "make" (or "make lib" if you do not have MATLAB). When done, type "make clean" to remove unused *.o files (keeps the compiled libraries and demo programs). See the User Guide (Doc/CAMD_UserGuide.pdf), or ../UFconfig/UFconfig.mk for more details. Quick start (for MATLAB users); To compile, test, and install the CAMD mexFunction, cd to the CAMD/MATLAB directory and type camd_make at the MATLAB prompt. If you have MATLAB 7.2 or earlier and use "make mex", you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command (or just use camd_make.m inside MATLAB). ------------------------------------------------------------------------------- CAMD License: Your use or distribution of CAMD or any modified version of CAMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/camd ------------------------------------------------------------------------------- This is the CAMD README file. It is a terse overview of CAMD. Refer to the User Guide (Doc/CAMD_UserGuide.pdf) for how to install and use CAMD. Description: CAMD is a set of routines for pre-ordering sparse matrices prior to Cholesky or LU factorization, using the approximate minimum degree ordering algorithm with optional ordering constraints. Written in ANSI/ISO C with a MATLAB interface. Authors: Timothy A. Davis (davis at cise.ufl.edu), University of Florida. Patrick R. Amestory, ENSEEIHT, Toulouse, France. Iain S. Duff, Rutherford Appleton Laboratory, UK. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. Portions of this work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from the SciDAC program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon for making this sabbatical possible. ------------------------------------------------------------------------------- Files and directories in the CAMD distribution: ------------------------------------------------------------------------------- --------------------------------------------------------------------------- Subdirectories of the CAMD directory: --------------------------------------------------------------------------- Doc documentation Source primary source code Include include file for use in your code that calls CAMD Demo demo programs. also serves as test of the CAMD installation. MATLAB CAMD mexFunction for MATLAB, and supporting m-files Lib where the compiled C-callable and Fortran-callable CAMD libraries placed. --------------------------------------------------------------------------- Files in the CAMD directory: --------------------------------------------------------------------------- Makefile top-level Makefile for GNU make or original make. Windows users would require Cygwin to use "make" README.txt this file --------------------------------------------------------------------------- Doc directory: documentation --------------------------------------------------------------------------- ChangeLog change log License the CAMD License Makefile for creating the documentation CAMD_UserGuide.bib CAMD User Guide (references) CAMD_UserGuide.tex CAMD User Guide (LaTeX) CAMD_UserGuide.pdf CAMD User Guide (PDF) lesser.txt the GNU LGPL license docdiff tools for comparing CAMD with AMD cdiff camd.sed --------------------------------------------------------------------------- Source directory: --------------------------------------------------------------------------- camd_order.c user-callable, primary CAMD ordering routine camd_control.c user-callable, prints the control parameters camd_defaults.c user-callable, sets default control parameters camd_info.c user-callable, prints the statistics from CAMD camd_1.c non-user-callable, construct A+A' camd_2.c user-callable, primary ordering kernel (a C version of camd.f and camdbar.f, with post-ordering added) camd_aat.c non-user-callable, computes nnz (A+A') camd_dump.c non-user-callable, debugging routines camd_postorder.c non-user-callable, postorder camd_valid.c non-user-callable, verifies a matrix camd_preprocess.c non-user-callable, computes A', removes duplic --------------------------------------------------------------------------- Include directory: --------------------------------------------------------------------------- camd.h include file for C programs that use CAMD camd_internal.h non-user-callable, include file for CAMD --------------------------------------------------------------------------- Demo directory: --------------------------------------------------------------------------- Makefile for GNU make or original make camd_demo.c C demo program for CAMD camd_demo.out output of camd_demo.c camd_demo2.c C demo program for CAMD, jumbled matrix camd_demo2.out output of camd_demo2.c camd_l_demo.c C demo program for CAMD ("long" version) camd_l_demo.out output of camd_l_demo.c camd_simple.c simple C demo program for CAMD camd_simple.out output of camd_simple.c --------------------------------------------------------------------------- MATLAB directory: --------------------------------------------------------------------------- GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) Contents.m for "help camd" listing of toolbox contents camd.m MATLAB help file for CAMD camd_make.m MATLAB m-file for compiling CAMD mexFunction camd_install.m compile and install CAMD mexFunctions camd_mex.c CAMD mexFunction for MATLAB camd_demo.m MATLAB demo for CAMD camd_demo.m.out diary output of camd_demo.m can_24.mat input file for CAMD demo --------------------------------------------------------------------------- Lib directory: libcamd.a library placed here --------------------------------------------------------------------------- GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) libcamd.def CAMD definitions for Windows SuiteSparse/RBio/0000755001170100242450000000000010711661157012607 5ustar davisfacSuiteSparse/RBio/Doc/0000755001170100242450000000000010711430326013304 5ustar davisfacSuiteSparse/RBio/Doc/dodiff0000755001170100242450000000072210617637234014502 0ustar davisfac # complex vs real diff ../RBcread_64.f ../RBrread_64.f diff ../RBcread_32.f ../RBrread_32.f # 32 vs 64 bit diff ../RBcread_32.f ../RBcread_64.f diff ../RBcsplit_32.f ../RBcsplit_64.f diff ../RBraw_mex_32.f ../RBraw_mex_64.f diff ../RBread_32.f ../RBread_64.f diff ../RBread_mex_32.f ../RBread_mex_64.f diff ../RBrread_32.f ../RBrread_64.f diff ../RBtype_mex_32.f ../RBtype_mex_64.f diff ../RBwrite_32.f ../RBwrite_64.f diff ../RBwrite_mex_32.f ../RBwrite_mex_64.f SuiteSparse/RBio/Doc/License.txt0000644001170100242450000000163010621162160015425 0ustar davisfacRBio toolbox. Copyright (C) 2006-2007, Timothy A. Davis RBio is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse -------------------------------------------------------------------------------- RBio is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. RBio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/RBio/Doc/gpl.txt0000644001170100242450000004313310532557055014645 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/RBio/Doc/ChangeLog0000644001170100242450000000040710711430001015045 0ustar davisfacNov 1, 2007: version 1.1.1 * minor lint cleanup May 31, 2007: version 1.1 * port to 64-bit MATLAB. Tested on Linux 32-bit and 64-bit. Not tested on Windows, since I do not have a Fortran compiler on that platform. Dec 1, 2006: version 1.0 released SuiteSparse/RBio/Test/0000755001170100242450000000000010711435016013517 5ustar davisfacSuiteSparse/RBio/Test/lap_25.rb0000644001170100242450000000117410524711202015125 0ustar davisfacHB/lap_25; 1980; I. Duff; ed: I. Duff et al. |1177 5 1 4 0 psa 25 25 97 0 (26I3) (26I3) 1 5 10 15 20 23 27 32 37 42 45 49 54 59 64 67 71 76 81 86 89 91 93 95 97 98 1 2 6 7 2 3 6 7 8 3 4 7 8 9 4 5 8 9 10 5 9 10 6 7 11 12 7 8 11 12 13 8 9 12 13 14 9 10 13 14 15 10 14 15 11 12 16 17 12 13 16 17 18 13 14 17 18 19 14 15 18 19 20 15 19 20 16 17 21 22 17 18 21 22 23 18 19 22 23 24 19 20 23 24 25 20 24 25 21 22 22 23 23 24 24 25 25 SuiteSparse/RBio/Test/west0479.rb0000644001170100242450000011504410524630002015351 0ustar davisfacHB/west0479; 1983; A. Westerberg; ed: I. Duff et al. |267 508 30 96 382 rua 479 479 1910 0 (16I5) (20I4) (5E15.7) 1 4 7 10 12 14 19 24 27 30 33 37 40 43 46 48 50 55 58 61 64 67 70 73 76 78 80 82 84 86 88 90 92 96 102 104 106 109 113 116 119 122 125 128 130 132 137 142 145 148 151 155 158 161 164 166 168 173 176 179 182 185 188 191 193 195 197 199 201 203 205 207 209 213 219 221 223 226 230 233 236 238 239 246 248 249 257 261 296 304 306 307 321 335 349 353 382 387 389 390 401 412 423 431 440 444 447 448 460 472 484 492 508 514 517 518 530 542 554 563 572 581 590 599 608 617 626 635 644 653 662 671 680 689 698 707 716 725 734 743 752 761 770 778 786 794 802 810 818 821 824 827 830 833 836 839 842 845 848 851 854 857 860 863 866 869 872 876 880 884 891 901 903 905 912 917 923 926 928 930 932 934 936 938 940 942 944 947 950 953 956 959 962 965 968 971 974 977 980 984 988 992 997 1005 1007 1009 1015 1018 1022 1023 1025 1027 1029 1031 1033 1035 1037 1039 1041 1049 1052 1055 1058 1059 1066 1073 1080 1088 1094 1095 1098 1099 1105 1111 1117 1125 1128 1131 1134 1135 1142 1149 1156 1158 1160 1162 1169 1175 1176 1179 1180 1186 1192 1198 1206 1209 1212 1215 1216 1223 1230 1237 1239 1241 1243 1251 1257 1258 1261 1262 1268 1274 1280 1288 1291 1294 1297 1298 1305 1312 1319 1321 1323 1325 1333 1339 1340 1343 1344 1350 1356 1362 1370 1373 1376 1379 1380 1387 1394 1401 1403 1405 1407 1415 1421 1422 1425 1426 1432 1438 1444 1452 1455 1458 1461 1462 1469 1476 1483 1485 1487 1489 1497 1503 1504 1507 1508 1514 1520 1526 1528 1530 1532 1534 1536 1538 1540 1542 1544 1546 1548 1550 1552 1554 1556 1558 1560 1562 1564 1566 1568 1570 1572 1574 1576 1578 1580 1582 1584 1586 1588 1590 1592 1594 1596 1598 1601 1605 1609 1611 1613 1615 1617 1619 1621 1626 1631 1636 1638 1640 1642 1644 1646 1648 1651 1654 1657 1659 1661 1666 1671 1674 1677 1680 1684 1687 1690 1693 1695 1697 1702 1704 1706 1708 1711 1715 1719 1721 1723 1725 1727 1729 1731 1736 1741 1746 1748 1750 1752 1754 1756 1758 1761 1764 1767 1769 1771 1776 1781 1784 1787 1790 1794 1797 1800 1803 1805 1807 1812 1815 1818 1821 1824 1827 1830 1832 1834 1836 1838 1840 1842 1844 1846 1848 1852 1858 1860 1862 1865 1869 1872 1875 1877 1879 1881 1883 1885 1887 1889 1891 1893 1895 1897 1899 1901 1903 1905 1907 1909 1911 25 31 87 26 31 88 27 31 89 28 29 29 30 30 31 87 88 89 32 43 111 112 113 33 43 111 34 43 112 35 43 113 36 37 38 39 37 43 111 38 43 112 39 43 113 40 42 41 42 42 43 111 112 113 2 8 11 3 9 12 4 10 13 5 8 11 6 9 12 7 10 13 8 17 27 9 17 10 17 11 18 12 18 13 18 14 17 15 17 16 17 17 19 30 42 18 20 23 24 30 41 19 21 20 21 21 22 30 22 24 40 41 23 30 42 24 30 42 68 74 99 69 74 100 70 74 101 71 72 72 73 73 74 99 100 101 75 86 123 124 125 76 86 123 77 86 124 78 86 125 79 80 81 82 80 86 123 81 86 124 82 86 125 83 85 84 85 85 86 123 124 125 45 51 54 46 52 55 47 53 56 48 51 54 49 52 55 50 53 56 51 60 52 60 53 60 54 61 55 61 56 61 57 60 58 60 59 60 60 62 73 85 61 63 66 67 73 84 62 64 63 64 64 65 73 65 67 83 84 66 73 85 67 73 85 31 244 43 1 17 18 31 35 43 243 74 388 86 44 60 61 74 78 86 384 387 385 386 387 388 96 97 98 120 121 122 141 142 143 185 186 187 389 438 439 440 441 442 443 450 451 452 455 456 458 459 461 462 463 464 472 473 474 475 476 182 183 184 391 455 456 458 468 388 467 479 203 204 205 209 210 211 382 385 437 453 454 467 469 479 203 204 205 209 210 211 383 386 437 453 454 467 470 479 203 204 205 209 210 211 384 387 437 453 454 467 471 479 241 242 243 244 108 109 110 132 133 134 245 395 396 397 398 399 400 407 408 409 412 413 415 416 418 419 420 421 429 430 431 432 433 246 412 413 415 425 244 424 436 160 161 162 238 241 394 410 411 424 426 436 160 161 162 239 242 394 410 411 424 427 436 160 161 162 240 243 394 410 411 424 428 436 241 242 243 244 253 254 255 256 135 136 137 151 152 153 245 248 249 148 149 150 247 244 248 256 249 147 169 170 171 175 176 177 238 241 248 249 253 147 169 170 171 175 176 177 239 242 248 249 254 147 169 170 171 175 176 177 240 243 248 249 255 363 364 365 366 385 386 387 388 215 216 217 218 219 220 227 228 229 232 233 235 236 389 392 393 232 233 235 368 369 390 366 388 392 393 181 194 195 196 230 231 360 363 382 385 392 393 181 194 195 196 230 231 361 364 383 386 392 393 181 194 195 196 230 231 362 365 384 387 392 393 93 96 248 262 284 306 328 350 372 94 97 248 262 284 306 328 350 372 95 98 248 262 284 306 328 350 372 93 96 248 262 284 306 328 350 372 94 97 248 262 284 306 328 350 372 95 98 248 262 284 306 328 350 372 105 108 264 286 308 330 352 374 392 106 109 264 286 308 330 352 374 392 107 110 264 286 308 330 352 374 392 105 108 264 286 308 330 352 374 392 106 109 264 286 308 330 352 374 392 107 110 264 286 308 330 352 374 392 117 120 249 263 285 307 329 351 373 118 121 249 263 285 307 329 351 373 119 122 249 263 285 307 329 351 373 117 120 249 263 285 307 329 351 373 118 121 249 263 285 307 329 351 373 119 122 249 263 285 307 329 351 373 129 132 265 287 309 331 353 375 393 130 133 265 287 309 331 353 375 393 131 134 265 287 309 331 353 375 393 129 132 265 287 309 331 353 375 393 130 133 265 287 309 331 353 375 393 131 134 265 287 309 331 353 375 393 135 141 266 288 310 332 354 376 136 142 267 289 311 333 355 377 137 143 268 290 312 334 356 378 135 141 266 288 310 332 354 376 136 142 267 289 311 333 355 377 137 143 268 290 312 334 356 378 138 148 238 139 149 239 140 150 240 144 182 382 145 183 383 146 184 384 395 401 404 396 402 405 397 403 406 398 401 404 399 402 405 400 403 406 160 401 410 161 402 410 162 403 410 163 404 411 164 405 411 165 406 411 160 161 407 410 160 162 408 410 161 162 409 410 163 164 165 410 412 423 435 157 163 164 165 411 413 416 417 423 434 412 414 413 414 158 163 164 165 414 415 423 157 415 417 433 434 163 164 165 416 423 435 417 423 435 148 178 149 179 150 180 148 166 149 167 150 168 148 154 149 155 150 156 215 221 224 216 222 225 217 223 226 218 221 224 219 222 225 220 223 226 194 221 230 195 222 230 196 223 230 197 224 231 198 225 231 199 226 231 194 195 227 230 194 196 228 230 195 196 229 230 197 198 199 230 232 191 197 198 199 231 233 236 237 232 234 233 234 192 197 198 199 234 235 191 235 237 197 198 199 236 237 182 212 183 213 184 214 182 200 183 201 184 202 182 188 183 189 184 190 241 242 243 244 253 254 255 256 257 264 265 246 247 258 244 256 264 265 238 241 250 253 261 264 265 239 242 251 254 261 264 265 240 243 252 255 261 264 265 253 254 255 256 275 276 277 278 257 262 263 266 267 268 259 256 262 278 263 250 253 260 262 263 275 251 254 260 262 263 276 252 255 260 262 263 277 253 254 255 256 275 276 277 278 279 286 287 258 259 280 256 278 286 287 250 253 272 275 283 286 287 251 254 273 276 283 286 287 252 255 274 277 283 286 287 250 269 251 270 252 271 275 276 278 297 298 299 300 279 284 285 288 289 290 281 278 284 300 285 272 275 282 284 285 297 273 276 282 284 285 298 274 277 282 284 285 299 275 276 277 278 297 298 299 300 301 308 309 280 281 302 278 300 308 309 272 275 294 297 305 308 309 273 276 295 298 305 308 309 274 277 296 299 305 308 309 272 291 273 292 274 293 297 298 299 300 319 320 321 322 301 306 307 310 311 312 303 300 306 322 307 294 297 304 306 307 319 295 298 304 306 307 320 296 299 304 306 307 321 297 298 299 300 319 320 321 322 323 330 331 302 303 324 300 322 330 331 294 297 316 319 327 330 331 295 298 317 320 327 330 331 296 299 318 321 327 330 331 294 313 295 314 296 315 319 320 321 322 341 342 343 344 323 328 329 332 333 334 325 322 328 344 329 316 319 326 328 329 341 317 320 326 328 329 342 318 321 326 328 329 343 319 320 321 322 341 342 343 344 345 352 353 324 325 346 322 344 352 353 316 319 338 341 349 352 353 317 320 339 342 349 352 353 318 321 340 343 349 352 353 316 335 317 336 318 337 341 342 343 344 363 364 365 366 345 350 351 354 355 356 347 344 350 366 351 338 341 348 350 351 363 339 342 348 350 351 364 340 343 348 350 351 365 341 342 343 344 363 364 365 366 367 374 375 346 347 368 344 366 374 375 338 341 360 363 371 374 375 339 342 361 364 371 374 375 340 343 362 365 371 374 375 338 357 339 358 340 359 363 364 365 366 385 386 387 388 367 372 373 376 377 378 369 366 372 388 373 360 363 370 372 373 385 361 364 370 372 373 386 362 365 370 372 373 387 360 379 361 380 362 381 87 93 88 94 89 95 90 96 91 97 92 98 99 105 100 106 101 107 102 108 103 109 104 110 111 117 112 118 113 119 114 120 115 121 116 122 123 129 124 130 125 131 126 132 127 133 128 134 135 138 136 139 137 140 141 144 142 145 143 146 151 154 152 155 153 156 157 158 159 158 163 164 165 159 163 164 165 160 163 161 164 162 165 163 166 164 167 165 168 169 172 175 176 177 170 173 175 176 177 171 174 175 176 177 172 175 173 176 174 177 175 178 176 179 177 180 102 418 424 103 419 424 104 420 424 421 422 422 423 102 103 104 423 424 126 127 128 425 436 126 426 436 127 427 436 128 428 436 429 430 431 432 126 430 436 127 431 436 128 432 436 433 435 434 435 126 127 128 435 436 185 188 186 189 187 190 191 192 193 192 197 198 199 193 197 198 199 194 197 195 198 196 199 197 200 198 201 199 202 203 206 209 210 211 204 207 209 210 211 205 208 209 210 211 206 209 207 210 208 211 209 212 210 213 211 214 90 461 467 91 462 467 92 463 467 464 465 465 466 90 91 92 466 467 114 115 116 468 479 114 469 479 115 470 479 116 471 479 472 473 474 475 114 473 479 115 474 479 116 475 479 476 478 477 478 114 115 116 478 479 438 444 447 439 445 448 440 446 449 441 444 447 442 445 448 443 446 449 444 453 445 453 446 453 447 454 448 454 449 454 450 453 451 453 452 453 453 455 466 478 454 456 459 460 466 477 455 457 456 457 457 458 466 458 460 476 477 459 466 478 460 466 478 266 269 267 270 268 271 288 291 289 292 290 293 310 313 311 314 312 315 332 335 333 336 334 337 354 357 355 358 356 359 376 379 377 380 378 381 0.1000000E+01 -0.3764813E-01 -0.3442396E+00 0.1000000E+01 -0.2452262E-01 -0.3737086E+00 0.1000000E+01 -0.3661304E-01 -0.8369379E+00 0.1300000E+03 -0.2433767E+01 0.1000000E+01 -0.1614091E+01 0.1614091E+01 -0.2187321E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1138352E+01 0.3669428E-01 0.9931636E-01 0.9931636E-01 0.9931636E-01 -0.5000000E+00 0.1611729E-01 0.8724576E-01 -0.3611918E+00 0.1164286E-01 0.1050415E+00 -0.3218876E+00 0.1037591E-01 0.1404166E+00 -0.4362416E+00 -0.7680425E+00 -0.1430279E+00 -0.1593886E+00 0.1000000E+01 -0.4856082E-01 -0.2628684E+00 0.1000000E+01 -0.3092595E-01 -0.2790128E+00 0.1000000E+01 -0.4612359E-01 -0.6241882E+00 0.5282436E+01 -0.6123921E+00 0.2886822E+00 -0.2163815E+00 0.1328774E+01 -0.3694686E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.4817647E+02 -0.1000000E+01 -0.3347484E-04 0.8350000E+02 -0.1000000E+01 -0.4136539E-04 0.1719412E+03 -0.1000000E+01 -0.8484345E-04 0.9665138E+02 0.2500000E+01 0.3347484E-04 0.1682706E+03 0.2500000E+01 0.4136539E-04 0.3475872E+03 0.2500000E+01 0.8484345E-04 0.1000000E+01 -0.1106967E+00 0.1605232E+01 0.1000000E+01 -0.8980852E-01 0.1000000E+01 -0.1517369E+00 0.1010455E+01 -0.5000000E+00 0.1005978E+01 -0.3000000E+00 0.1002885E+01 -0.2000000E+00 0.1000000E+01 -0.1811855E+00 0.1000000E+01 -0.2400239E+00 0.1000000E+01 -0.2265484E+00 0.1000000E+01 -0.1000000E+01 0.1500000E+01 0.5000000E+00 0.1000000E+01 -0.3162200E+06 -0.1232369E+05 -0.1000000E+01 -0.3522680E+05 0.1844902E+05 0.5298339E+01 0.2452687E-02 0.1080859E+04 -0.2050215E+00 0.1441920E+00 0.6305986E+02 -0.1159299E+00 -0.1844902E+05 0.8453339E+00 -0.1844902E+05 -0.1559558E+05 0.1000000E+01 0.2020493E+00 -0.8854710E+00 0.1000234E-03 0.2448339E+01 0.8161130E+00 0.1000000E+01 -0.2278669E-03 -0.2624395E+00 0.1000000E+01 -0.4188763E-03 -0.3216196E+00 0.1000000E+01 -0.1576933E-02 -0.7264761E+00 0.3000000E+03 -0.2851891E+01 0.1000000E+01 -0.2870159E+00 0.2870159E+00 -0.4341322E-02 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1138352E+01 0.4200286E-01 0.9414806E+00 0.9414806E+00 0.9414806E+00 -0.3218876E+00 0.1187700E-01 0.1331095E+01 -0.3611918E+00 0.1332724E-01 0.9957529E+00 -0.5000000E+00 0.1844898E-01 0.8270560E+00 -0.1000000E+01 -0.1924000E+02 -0.3803000E+01 -0.9481000E+01 0.1000000E+01 -0.8875784E-03 -0.9947392E-01 0.1000000E+01 -0.1331368E-02 -0.9947392E-01 0.1000000E+01 -0.2218946E-02 -0.9947392E-01 0.1177613E+01 -0.3108963E+01 0.9919425E+00 -0.2640056E+01 0.3192112E+01 -0.4461363E-01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1098688E+03 -0.1000000E+01 -0.3308110E-04 0.1913846E+03 -0.1000000E+01 -0.4108467E-04 0.3954796E+03 -0.1000000E+01 -0.8456383E-04 0.2217339E+03 0.2500000E+01 0.3308110E-04 0.3870092E+03 0.2500000E+01 0.4108467E-04 0.8008165E+03 0.2500000E+01 0.8456383E-04 0.1000000E+01 -0.9170229E-02 0.1000000E+01 -0.4644110E-01 0.1000000E+01 -0.4899919E+00 0.1004530E+01 -0.2000000E+00 0.1002591E+01 -0.3000000E+00 0.1001250E+01 -0.5000000E+00 0.1000000E+01 -0.3750053E-01 0.1000000E+01 -0.1241430E+00 0.1000000E+01 -0.2927532E+00 0.1000000E+01 -0.1000000E+01 0.1853733E+00 0.6179109E-01 0.1000000E+01 -0.3162200E+06 -0.1636419E+05 -0.1000000E+01 -0.4696782E+04 0.1318540E+03 0.2212913E+02 0.9537526E+00 0.2494290E+04 -0.1021587E+01 0.8878281E+00 0.1040042E+01 -0.2640056E+01 -0.1318540E+03 0.8057470E-02 -0.1318540E+03 -0.1062409E+01 0.1000000E+01 0.1016426E+00 -0.6179109E-01 0.7645257E-02 0.2309895E+02 0.7699649E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.3850231E+01 -0.8459935E-04 0.2015910E+01 0.1000000E+01 0.1596171E+01 -0.7897512E+00 0.1000000E+01 0.8817562E+00 0.1000000E+01 0.1000000E+01 -0.2793760E+01 -0.8445823E-04 0.2015665E+01 0.1000000E+01 0.1593994E+01 0.0000000E+00 -0.9619150E+00 0.2424669E-02 0.3036278E-01 0.6730451E+00 0.1459360E+01 0.1689661E-01 0.3484803E-01 -0.6008018E-01 -0.5552717E+00 -0.4770398E+00 -0.1858293E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.5518857E+02 -0.9567686E+02 -0.2158377E+03 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1890756E-02 -0.1531140E-02 -0.1013726E-02 0.2500000E+01 0.2606370E+02 0.1000000E+01 -0.1500000E+01 -0.9603181E+01 -0.9454185E+01 -0.9437681E+01 -0.4829572E+02 0.9075922E+00 -0.4375967E+01 -0.8997992E+01 -0.8881958E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1000000E+01 -0.2606370E+02 -0.1000000E+01 0.1000000E+01 -0.1459360E+01 0.1000000E+01 0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5695310E+02 0.7058325E+00 0.1000000E+01 -0.6491372E+00 -0.3294841E-04 0.5380748E+00 0.1000000E+01 0.8247112E-01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1158384E+02 0.7058325E+00 0.1000000E+01 -0.1021542E+01 -0.4099033E-04 -0.3630248E+00 0.1000000E+01 0.6952261E-01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.3209631E+00 0.7058325E+00 0.1000000E+01 -0.2049007E+01 -0.8447003E-04 0.9135362E+00 0.1000000E+01 0.8397638E+00 0.5508352E+00 0.4489223E+00 0.2425203E-03 0.4052833E+00 -0.6727662E-01 -0.1570061E+00 -0.9747570E-01 -0.2506007E+00 -0.2802617E+00 0.1008491E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.2863602E-02 -0.2316259E-02 -0.1530890E-02 0.2500000E+01 0.1158780E+02 0.1000000E+01 -0.1101224E+01 -0.1364432E+01 -0.1218821E+01 -0.1210859E+01 -0.3462105E+02 0.6031359E+00 -0.5996384E+00 -0.1403392E+01 -0.1370386E+01 0.1000000E+01 0.1000000E+01 -0.1000000E+01 -0.1158780E+02 -0.1000000E+01 0.1000000E+01 -0.4052833E+00 0.1000000E+01 0.1000000E+01 -0.8593840E+00 -0.7733390E+00 -0.7951740E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1623659E+01 -0.3303278E-04 0.3572035E+01 0.1000000E+01 0.9243532E+00 -0.1171821E+01 -0.1277352E+01 -0.1250508E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.2460289E+01 -0.4105081E-04 -0.2178533E+01 0.1000000E+01 0.6509842E+00 -0.2328047E+01 -0.2416155E+01 -0.2512166E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.4753620E+01 -0.8453050E-04 0.6167140E+01 0.1000000E+01 0.3396691E+01 0.4373657E-01 0.5739646E+00 0.1583490E+00 0.1878125E+00 -0.4434413E-01 -0.5819378E+00 -0.1605487E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.6268090E+02 -0.1238900E+03 -0.4643555E+03 0.1000000E+01 -0.5164655E-01 -0.3241762E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1878125E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.9773875E+01 0.7760502E+00 0.7252831E+01 0.7804100E+00 -0.7868306E+00 0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.6069821E+00 0.7760502E+00 -0.2389508E+01 0.6849398E+00 -0.7868306E+00 0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1188564E-02 0.7760502E+00 0.1155883E+02 0.2202644E+01 -0.7868306E+00 -0.1705148E+00 -0.4342963E+00 -0.2667421E+00 -0.2609302E+01 0.1956447E+00 0.4983016E+00 0.3060537E+00 0.4223960E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1890756E-02 -0.1531140E-02 -0.1013726E-02 0.2500000E+01 0.1667241E+02 0.1000000E+01 -0.1500000E+01 -0.1000000E+01 -0.4621213E+00 -0.1234962E+00 -0.1000000E+01 -0.1667241E+02 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.2609302E+01 -0.4223960E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.5869762E+00 -0.5065155E+00 -0.5139918E+00 -0.1036685E+01 -0.3294841E-04 0.0000000E+00 -0.8715531E+00 -0.1000000E+01 0.1000000E+01 0.2639980E+01 0.5574207E+00 0.1000000E+01 -0.8001637E+00 -0.8364090E+00 -0.8081026E+00 -0.1637695E+01 -0.4099033E-04 0.0000000E+00 -0.8715531E+00 -0.1000000E+01 0.1000000E+01 -0.1773678E+01 0.4075422E+00 0.1000000E+01 -0.1589389E+01 -0.1581811E+01 -0.1623118E+01 -0.3205686E+01 -0.8447003E-04 0.0000000E+00 -0.8715531E+00 -0.1000000E+01 0.1000000E+01 0.4467609E+01 0.2247529E+01 -0.1000000E+01 -0.1000000E+01 -0.4042156E+00 -0.1818777E+00 -0.1563455E+00 -0.1545699E+00 -0.1521778E+00 -0.9190580E-01 -0.7870537E-02 -0.1000000E+01 -0.1000000E+01 -0.1809171E+01 -0.3189655E+01 -0.3349019E+01 -0.3358644E+01 -0.3308585E+01 -0.1967870E+01 -0.1133356E+00 -0.1000000E+01 -0.1000000E+01 -0.2456602E+01 -0.4101128E+01 -0.4290892E+01 -0.4302603E+01 -0.4254147E+01 -0.2952389E+01 -0.1157365E+01 -0.8121496E-02 -0.1689661E-01 -0.4538760E-02 -0.2170520E-02 -0.1874069E-02 -0.1853318E-02 -0.1824837E-02 -0.1106561E-02 -0.1054494E-03 -0.1674999E-01 -0.3484803E-01 -0.4189692E-01 -0.7850668E-01 -0.8279351E-01 -0.8305532E-01 -0.8182638E-01 -0.4886605E-01 -0.3131732E-02 -0.2887803E-01 -0.6008018E-01 -0.9808224E-01 -0.1740281E+00 -0.1828855E+00 -0.1834374E+00 -0.1813914E+00 -0.1263972E+00 -0.5513677E-01 -0.1000000E+01 -0.1000000E+01 -0.7636232E+00 -0.5413211E+00 -0.5290753E+00 -0.5283260E+00 -0.5296534E+00 -0.5990106E+00 -0.5746768E+00 -0.1000000E+01 -0.1000000E+01 -0.1467979E+01 -0.1289806E+01 -0.1279992E+01 -0.1279385E+01 -0.1280174E+01 -0.1360143E+01 -0.7149190E+00 -0.1000000E+01 -0.1000000E+01 -0.4370857E-02 -0.3954101E-02 -0.3931803E-02 -0.3947668E-02 -0.4749023E-02 -0.7245539E-01 -0.1602364E+01 -0.1122933E+00 -0.6727662E-01 -0.5460137E-01 -0.3887722E-01 -0.3800866E-01 -0.3795899E-01 -0.3820886E-01 -0.4808549E-01 -0.5817862E-01 -0.2620633E+00 -0.1570061E+00 -0.2449608E+00 -0.2161806E+00 -0.2145974E+00 -0.2145191E+00 -0.2155230E+00 -0.2548100E+00 -0.1689075E+00 -0.1626995E+00 -0.9747570E-01 -0.4528176E-03 -0.4114529E-03 -0.4092503E-03 -0.4109467E-03 -0.4963737E-03 -0.8427185E-02 -0.2350352E+00 -0.1000000E+01 -0.1000000E+01 -0.6970284E-01 -0.1924332E-01 -0.1583793E-01 -0.1561791E-01 -0.1558321E-01 -0.1471856E-01 -0.5759952E-02 -0.1000000E+01 -0.1000000E+01 -0.7417136E+00 -0.8023494E+00 -0.8065847E+00 -0.8068286E+00 -0.8055031E+00 -0.7492698E+00 -0.1971970E+00 -0.1000000E+01 -0.1000000E+01 -0.5127598E+00 -0.5252253E+00 -0.5261413E+00 -0.5262245E+00 -0.5273027E+00 -0.5723186E+00 -0.1025242E+01 -0.4657593E+00 -0.9690031E+00 -0.4488488E-01 -0.1317012E-01 -0.1088739E-01 -0.1073924E-01 -0.1071655E-01 -0.1016303E-01 -0.4425719E-02 -0.5744023E+00 -0.1195033E+01 -0.5890342E+00 -0.6772174E+00 -0.6838018E+00 -0.6842053E+00 -0.6831561E+00 -0.6380440E+00 -0.1868616E+00 -0.2292285E+00 -0.4769055E+00 -0.1625065E+00 -0.1769142E+00 -0.1780062E+00 -0.1780856E+00 -0.1784700E+00 -0.1944925E+00 -0.3877026E+00 -0.1000000E+01 -0.1000000E+01 -0.3427279E+00 -0.2911376E+00 -0.2876937E+00 -0.2874889E+00 -0.2882318E+00 -0.3026987E+00 -0.1750789E+00 -0.1000000E+01 -0.1000000E+01 -0.1062334E+01 -0.1118506E+01 -0.1122253E+01 -0.1122512E+01 -0.1123285E+01 -0.1108234E+01 -0.3511864E+00 -0.1000000E+01 -0.1000000E+01 -0.2399982E-02 -0.2601730E-02 -0.2615627E-02 -0.2628033E-02 -0.3161735E-02 -0.4479381E-01 -0.5972309E+00 -0.2018253E+01 -0.1209166E+01 -0.4404489E+00 -0.3758029E+00 -0.3714643E+00 -0.3712405E+00 -0.3737109E+00 -0.4367288E+00 -0.3185628E+00 -0.2562688E+01 -0.1535345E+01 -0.1733513E+01 -0.1833245E+01 -0.1839915E+01 -0.1840541E+01 -0.1849286E+01 -0.2030266E+01 -0.8113705E+00 -0.9255429E+00 -0.5545067E+00 -0.1414409E-02 -0.1540086E-02 -0.1548758E-02 -0.1556274E-02 -0.1879925E-02 -0.2963740E-01 -0.4983387E+00 -0.1433892E+01 -0.2157704E+01 -0.1523971E+01 -0.1530708E+01 -0.1531148E+01 -0.1531316E+01 -0.1537533E+01 -0.1710928E+01 -0.9432060E+00 -0.1419326E+01 -0.1002460E+01 -0.1006891E+01 -0.1007181E+01 -0.1007291E+01 -0.1011381E+01 -0.1125439E+01 -0.5964527E+00 -0.8975353E+00 -0.6339227E+00 -0.6367252E+00 -0.6369083E+00 -0.6369781E+00 -0.6395642E+00 -0.7116909E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.5508352E+00 -0.1000000E+01 0.1647495E+01 0.7395973E+00 -0.1000000E+01 0.8413516E+03 0.2040448E+00 -0.1000000E+01 0.1000000E+01 0.1956447E+00 -0.1000000E+01 0.1000000E+01 0.4983016E+00 -0.1000000E+01 0.3115622E+01 0.9535478E+00 0.6622492E+02 -0.1000000E+01 -0.3328257E-04 0.1150623E+03 -0.1000000E+01 -0.4122831E-04 0.2373387E+03 -0.1000000E+01 -0.8470690E-04 0.1332450E+03 0.2500000E+01 0.3328257E-04 0.2322639E+03 0.2500000E+01 0.4122831E-04 0.4801821E+03 0.2500000E+01 0.8470690E-04 -0.4733790E+00 0.1000000E+01 -0.2116876E+00 -0.5734317E+00 0.1000000E+01 -0.3166715E+00 -0.6092511E-03 0.1000000E+01 -0.3511874E-06 -0.4575004E+04 0.1007562E+01 -0.5508352E+00 -0.3681416E+04 0.1004324E+01 -0.4489223E+00 -0.1787818E+04 0.1002087E+01 -0.2425203E-03 -0.5260564E+00 -0.4259823E+00 0.1000000E+01 -0.4704884E+00 -0.5645987E-03 -0.4380098E+00 0.1000000E+01 -0.5049593E-03 -0.5859667E-03 -0.5613809E+00 0.1000000E+01 -0.6471876E-03 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.6144421E-01 0.2048140E-01 -0.1000000E+01 0.4124060E+04 0.4124060E+04 0.4124060E+04 0.1000000E+01 -0.3162200E+06 -0.2003424E+05 -0.1000000E+01 -0.2625657E+04 0.2221290E+03 0.1873727E+02 0.9448816E+00 0.1494367E+04 -0.1020780E+01 -0.9918601E+00 -0.1792234E+02 -0.1792234E+02 -0.1792234E+02 0.8628290E+00 0.1049719E+01 -0.7341495E+00 0.8139860E-02 -0.2221290E+03 0.8139860E-02 -0.2221290E+03 -0.1808099E+01 -0.1091328E+01 -0.1629397E+01 -0.1444853E+01 0.1000000E+01 0.4736406E-01 -0.2789814E-01 0.4538534E-02 0.7579240E+01 0.2526413E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1026646E+01 -0.1000000E+01 0.1073724E+01 -0.1000000E+01 0.1208147E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.9914973E+02 -0.1000000E+01 -0.3311398E-04 0.1726396E+03 -0.1000000E+01 -0.4110812E-04 0.3566398E+03 -0.1000000E+01 -0.8458718E-04 0.2000008E+03 0.2500000E+01 0.3311398E-04 0.3490033E+03 0.2500000E+01 0.4110812E-04 0.7220678E+03 0.2500000E+01 0.8458718E-04 -0.1148388E+00 0.1000000E+01 -0.1164592E-01 -0.4167839E+00 0.1000000E+01 -0.1700616E+00 -0.4967614E+00 0.1000000E+01 -0.2436893E+00 -0.5276862E+04 0.1005025E+01 -0.1956447E+00 -0.4241591E+04 0.1002874E+01 -0.4983016E+00 -0.2058294E+04 0.1001387E+01 -0.3060537E+00 -0.3987228E+00 -0.9909709E-01 0.1000000E+01 -0.8086976E-01 -0.4864384E+00 -0.1005598E+00 0.1000000E+01 -0.9866041E-01 -0.4841190E+00 -0.4026788E+00 0.1000000E+01 -0.3950730E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.3297623E+04 0.3297623E+04 0.3297623E+04 0.1000000E+01 -0.3162200E+06 -0.1896666E+05 -0.1000000E+01 0.2266987E+02 0.9548602E+00 0.2248706E+04 -0.1020655E+01 -0.9922951E+00 -0.2189857E+02 -0.2189857E+02 -0.2189857E+02 0.8900096E+00 0.1039205E+01 0.7704897E-02 -0.1461362E+03 0.7704897E-02 -0.6589052E+00 -0.1106497E+01 -0.1000909E+01 0.1000000E+01 0.6895657E-02 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.1022676E+01 -0.1000000E+01 0.1091418E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 -0.1996961E+00 -0.7859616E+00 -0.6412823E-03 0.4069041E+00 0.2024702E+00 0.7968796E+00 0.6501906E-03 -0.2166544E+01 -0.1000000E+01 -0.3000150E+00 -0.4074615E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.4069041E+00 -0.2166544E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.9862989E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.3501858E+01 0.1241884E+01 0.0000000E+00 -0.9862989E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.2149559E+01 0.9360239E+00 0.0000000E+00 -0.9862989E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.6025986E+01 0.4086838E+01 0.1195530E-01 0.6147503E+00 0.1605955E+00 0.5991810E+00 -0.1194968E-01 -0.6144612E+00 -0.1605200E+00 -0.1000000E+01 0.1000000E+01 -0.9335086E-01 -0.3468181E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.5991810E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1333342E+02 0.7873011E+00 0.1000000E+01 0.1212026E+02 0.7702509E+00 -0.7869309E+00 0.1020551E+01 0.7873011E+00 0.1000000E+01 -0.3984399E+01 0.6813420E+00 -0.7869309E+00 0.3187485E-02 0.7873011E+00 0.1000000E+01 0.1925216E+02 0.2236907E+01 -0.7869309E+00 -0.1700813E+00 -0.8296922E+00 -0.6970141E-03 0.2567363E+01 0.1700014E+00 0.8293020E+00 0.6966863E-03 -0.4284787E+01 -0.1000000E+01 -0.2554693E+00 -0.4122457E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.2567363E+01 -0.4284787E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.1000471E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.2955529E+01 0.1254414E+01 0.0000000E+00 -0.1000471E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1815969E+01 0.9452119E+00 0.0000000E+00 -0.1000471E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5084997E+01 0.4136479E+01 0.2024702E+00 -0.1000000E+01 0.7968796E+00 -0.1000000E+01 0.2039823E+00 -0.1000000E+01 0.9818081E-02 0.6166417E+00 0.9557944E+00 -0.9817569E-02 -0.6166096E+00 -0.1605148E+00 -0.1000000E+01 0.1000000E+01 -0.9821790E-01 -0.3485639E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.9557944E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1362671E+02 0.7869830E+00 0.1000000E+01 0.1268233E+02 0.7694287E+00 -0.7869420E+00 0.1058389E+01 0.7869830E+00 0.1000000E+01 -0.4168489E+01 0.6810285E+00 -0.7869420E+00 0.3415583E-02 0.7869830E+00 0.1000000E+01 0.2013996E+02 0.2239415E+01 -0.7869420E+00 -0.1678698E+00 -0.8314825E+00 -0.6999047E-03 0.4328993E+01 0.1678610E+00 0.8314391E+00 0.6998682E-03 -0.4529209E+01 -0.1000000E+01 -0.2530153E+00 -0.4125625E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.4328993E+01 -0.4529209E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.1000052E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.2925436E+01 0.1255249E+01 0.0000000E+00 -0.1000052E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1797593E+01 0.9458243E+00 0.0000000E+00 -0.1000052E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5033166E+01 0.4139783E+01 0.1700014E+00 -0.1000000E+01 0.8293020E+00 -0.1000000E+01 0.2039729E+00 -0.1000000E+01 0.9679850E-02 0.6167109E+00 0.1605181E+00 0.9972984E+00 -0.9680170E-02 -0.6167313E+00 -0.1605234E+00 -0.1000000E+01 0.1000000E+01 -0.9852872E-01 -0.3486710E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.9972984E+00 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1364601E+02 0.7869089E+00 0.1000000E+01 0.1271619E+02 0.7693586E+00 -0.7869349E+00 0.1060897E+01 0.7869089E+00 0.1000000E+01 -0.4179575E+01 0.6809936E+00 -0.7869349E+00 0.3430968E-02 0.7869089E+00 0.1000000E+01 0.2019341E+02 0.2239532E+01 -0.7869349E+00 -0.1677233E+00 -0.8315405E+00 -0.7031113E-03 0.4531911E+01 0.1677288E+00 0.8315680E+00 0.7031346E-03 -0.4544188E+01 -0.1000000E+01 -0.2528891E+00 -0.4126290E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.4531911E+01 -0.4544188E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.9999669E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.2923570E+01 0.1255294E+01 0.0000000E+00 -0.9999669E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1796490E+01 0.9458516E+00 0.0000000E+00 -0.9999669E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5029935E+01 0.4140140E+01 0.1678610E+00 -0.1000000E+01 0.8314391E+00 -0.1000000E+01 0.2039856E+00 -0.1000000E+01 0.9647350E-02 0.6149968E+00 0.1606638E+00 0.1012275E+01 -0.9663071E-02 -0.6159990E+00 -0.1609257E+00 -0.1000000E+01 0.1000000E+01 -0.9774015E-01 -0.3483890E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1012275E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1365337E+02 0.7853080E+00 0.1000000E+01 0.1253604E+02 0.7686138E+00 -0.7865877E+00 0.1061854E+01 0.7853080E+00 0.1000000E+01 -0.4120345E+01 0.6803446E+00 -0.7865877E+00 0.3436848E-02 0.7853080E+00 0.1000000E+01 0.1990720E+02 0.2237486E+01 -0.7865877E+00 -0.1676960E+00 -0.8298335E+00 -0.8435821E-03 0.4531913E+01 0.1679693E+00 0.8311858E+00 0.8449567E-03 -0.4476957E+01 -0.1000000E+01 -0.2542282E+00 -0.4146785E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.4531912E+01 -0.4476957E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.9983731E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.2925800E+01 0.1254871E+01 0.0000000E+00 -0.9983731E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1799474E+01 0.9452959E+00 0.0000000E+00 -0.9983731E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5032978E+01 0.4146532E+01 0.1677288E+00 -0.1000000E+01 0.8315680E+00 -0.1000000E+01 0.2045870E+00 -0.1000000E+01 0.8958003E-02 0.5623915E+00 0.1714316E+00 0.1534987E+01 -0.9368401E-02 -0.5881567E+00 -0.1792855E+00 -0.1000000E+01 0.1000000E+01 -0.7642457E-01 -0.3363070E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1534987E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1392770E+02 0.7427812E+00 0.1000000E+01 0.7712414E+01 0.7375405E+00 -0.7768106E+00 0.1097792E+01 0.7427812E+00 0.1000000E+01 -0.2534534E+01 0.6532080E+00 -0.7768106E+00 0.3661040E-02 0.7427812E+00 0.1000000E+01 0.1224449E+02 0.2151386E+01 -0.7768106E+00 -0.1672642E+00 -0.7775783E+00 -0.1135093E-01 0.3941971E+01 0.1749272E+00 0.8132019E+00 0.1187095E-01 -0.2568082E+01 -0.1000000E+01 -0.3113227E+00 -0.4557268E+00 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.3941971E+01 -0.2568082E+01 0.1000000E+01 0.1000000E+01 0.0000000E+00 -0.9561935E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.3149454E+01 0.1212998E+01 0.0000000E+00 -0.9561935E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1985919E+01 0.9070684E+00 0.0000000E+00 -0.9561935E+00 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.5393687E+01 0.4227463E+01 0.1679693E+00 -0.1000000E+01 0.8311858E+00 -0.1000000E+01 0.2307969E+00 -0.1000000E+01 0.4956003E-02 0.2092511E+00 0.4341566E+00 0.6177384E+01 -0.5686404E-02 -0.2400899E+00 -0.4981413E+00 -0.1000000E+01 0.1000000E+01 -0.5189959E-01 -0.2281993E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.6177384E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.2288466E+02 0.6483637E+00 0.1000000E+01 0.1043450E+01 0.4217586E+00 -0.7439176E+00 0.2519703E+01 0.6483637E+00 0.1000000E+01 -0.3414664E+00 0.3798898E+00 -0.7439176E+00 0.1772792E-01 0.6483637E+00 0.1000000E+01 0.1646052E+01 0.1305476E+01 -0.7439176E+00 0.1749272E+00 -0.1000000E+01 0.8132019E+00 -0.1000000E+01 0.6696190E+00 -0.1000000E+01 0.6318058E+01 0.1008121E+01 0.2101652E+01 0.9832500E+00 0.1021634E+02 0.9711220E+00 0.4771533E+01 0.1016897E+01 0.1544553E+01 0.9651520E+00 0.7403258E+01 0.9399198E+00 0.2767648E+03 0.8877067E+00 0.1921904E+03 0.1262063E+01 0.4652974E+03 0.8373005E+00 0.4026353E+03 0.9327234E+00 0.2439516E+03 0.1157006E+01 0.6944257E+03 0.9025243E+00 0.2147169E+01 0.7331041E+00 0.1830354E+01 0.7707069E+00 0.5419496E+01 0.9106797E+00 0.1593460E+01 0.4447283E+00 0.1519359E+01 0.5229601E+00 0.5927271E+01 0.8141707E+00 0.8601323E+01 0.5817151E+00 0.6197485E+01 0.5322072E+00 0.3767033E+02 0.1168330E+01 0.1095535E+02 0.7493993E+00 0.8286427E+01 0.7197383E+00 0.3509293E+02 0.1100849E+01 0.4338919E+00 0.2279713E+01 0.1137572E+00 0.6069821E+00 0.4035473E+00 0.8004989E-02 0.1157704E+01 0.4042228E+01 0.4193259E+00 0.2449611E+01 0.1024647E+00 0.3647518E+00 0.1725745E+03 0.1491761E+02 0.1615845E+03 0.1209380E+02 0.1453145E+03 0.5740096E+01 0.4501889E-02 0.9526359E+00 -0.1000000E+01 0.9448816E+00 0.1988206E+02 0.1599870E+02 0.7769499E+01 0.1008140E+01 0.9882898E+02 0.1475558E+03 0.1308437E+03 0.1000000E+01 0.1801198E+01 0.1000000E+01 0.2196221E+01 0.1000000E+01 0.2060738E+01 0.1988206E+02 0.9740453E+00 0.1599870E+02 0.9313378E+00 0.7769499E+01 0.8277140E+00 -0.1000000E+01 -0.1000000E+01 0.5635791E-01 0.5635791E-01 0.5635791E-01 -0.1000000E+01 -0.1000000E+01 0.7395973E+00 0.7395973E+00 0.7395973E+00 -0.1000000E+01 -0.1000000E+01 0.2040448E+00 0.2040448E+00 0.2040448E+00 0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.1945389E+02 0.1000000E+01 -0.9530421E-01 -0.2209031E+02 0.1000000E+01 -0.8819762E-01 -0.4956359E+02 0.1000000E+01 -0.1069042E-03 0.1797345E+03 -0.2595740E+01 0.1000000E+01 -0.9621652E-01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.9621652E-01 -0.8893728E-02 0.9308279E+00 0.9308279E+00 0.9308279E+00 -0.1138352E+01 0.9534178E-01 0.8176979E+00 -0.5508352E+00 0.4613478E-01 0.8176979E+00 -0.4489223E+00 0.3759915E-01 0.6806865E+01 -0.2018842E-02 0.1690866E-03 -0.6031359E+00 -0.1191426E+01 -0.2090101E+00 -0.2323664E+00 -0.1588199E+01 0.1000000E+01 -0.8960673E-01 -0.1789478E+01 0.1000000E+01 -0.8228325E-01 -0.4012804E+01 0.1000000E+01 -0.9968042E-04 0.1186874E+01 -0.8713432E+00 0.9918601E+00 -0.7341495E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.8978249E+00 -0.1024269E+00 0.2633025E+03 0.1671023E+02 0.2523125E+03 0.1509138E+02 0.2360425E+03 0.1144029E+02 0.6842933E-02 0.9622744E+00 -0.1000000E+01 0.9548602E+00 0.3504212E+02 0.2816719E+02 0.1366854E+02 0.1007705E+01 0.8584676E+02 0.1441621E+03 0.1304054E+03 0.1000000E+01 0.1658905E+01 0.1000000E+01 0.2106497E+01 0.1000000E+01 0.2000909E+01 0.3504212E+02 0.1000000E+01 0.2816719E+02 0.9778269E+00 0.1366854E+02 0.9162394E+00 -0.1000000E+01 -0.1000000E+01 0.3435190E-02 0.3435190E-02 0.3435190E-02 -0.1000000E+01 -0.1000000E+01 0.4301697E-01 0.4301697E-01 0.4301697E-01 -0.1000000E+01 -0.1000000E+01 0.9535478E+00 0.9535478E+00 0.9535478E+00 0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.1000000E+01 -0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 0.1000000E+01 -0.4761313E-01 0.1000000E+01 -0.2333470E-04 -0.5746435E-01 0.1000000E+01 -0.3526656E-03 -0.1295604E+00 0.1000000E+01 -0.1762542E-01 0.2704625E+03 -0.2800067E+01 0.1000000E+01 -0.1685693E+01 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1685693E+01 -0.1426674E+00 0.1214974E+00 0.1214974E+00 0.1214974E+00 -0.1138352E+01 0.2123052E-01 0.6055575E+00 -0.1949018E-01 0.3634963E-03 0.3357927E+00 -0.1353383E+00 0.2524090E-02 0.1067309E+00 -0.9535478E+00 0.1778388E-01 -0.9075922E+00 -0.5711822E+01 -0.9356841E+00 -0.1034655E+01 -0.4324093E-01 0.1000000E+01 -0.2595611E-04 -0.5217491E-01 0.1000000E+01 -0.3921890E-03 -0.1176314E+00 0.1000000E+01 -0.1960016E-01 0.5314078E+01 -0.1002184E+01 0.3448372E+00 -0.2647862E+00 -0.1000000E+01 -0.1000000E+01 -0.1000000E+01 0.1766971E+01 -0.1747406E+00 0.9914973E+02 -0.1000000E+01 -0.3311398E-04 0.1726396E+03 -0.1000000E+01 -0.4110812E-04 0.3566398E+03 -0.1000000E+01 -0.8458718E-04 0.2000008E+03 0.2500000E+01 0.3311398E-04 0.3490033E+03 0.2500000E+01 0.4110812E-04 0.7220678E+03 0.2500000E+01 0.8458718E-04 0.1000000E+01 -0.1448565E-05 0.1000000E+01 -0.5113292E-03 0.1000000E+01 -0.9543887E+00 0.1005025E+01 -0.3435190E-02 0.1002874E+01 -0.4301697E-01 0.1001387E+01 -0.9535478E+00 0.1000000E+01 -0.4945560E-04 0.1000000E+01 -0.2177557E-02 0.1000000E+01 -0.4287153E-01 0.1000000E+01 -0.1000000E+01 0.1500000E+01 0.5000000E+00 0.1000000E+01 -0.3162200E+06 -0.1213258E+05 -0.1000000E+01 -0.2045181E+05 0.9152751E+04 0.9146357E+01 0.3773492E-02 0.2248706E+04 -0.1250533E+00 0.6758838E-01 0.6508712E+02 -0.1885904E+00 -0.9152751E+04 0.7543943E+00 -0.9152751E+04 -0.6904783E+04 0.1000000E+01 0.1856929E+00 -0.5000000E+00 0.1916794E-03 0.2668452E+01 0.8894840E+00 0.5239710E+00 0.2590273E+01 0.1209036E+00 0.1000000E+01 0.3660773E+00 0.1832333E-01 0.5307083E+00 0.2612032E+01 0.1214381E+00 0.1000000E+01 0.3632748E+00 0.1939848E-01 0.5311485E+00 0.2613447E+01 0.1214731E+00 0.1000000E+01 0.3630917E+00 0.1947045E-01 0.5313162E+00 0.2613986E+01 0.1214864E+00 0.1000000E+01 0.3630219E+00 0.1949793E-01 0.5375334E+00 0.2633880E+01 0.1219796E+00 0.1000000E+01 0.3604358E+00 0.2053846E-01 0.7109283E+00 0.3130467E+01 0.1357358E+00 0.1000000E+01 0.2883091E+00 0.7148988E-01 SuiteSparse/RBio/Test/lap_25.pse0000444001170100242450000000145210531045064015312 0ustar davisfac1FINITE ELEMENT PROBLEM. LAPLACIAN ON A 5 BY 5 GRID. LAP 25 6 2 4 0 0 PSE 25 16 64 0 (16I5) (16I5) (16I5) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 1 2 6 7 6 7 11 12 11 12 16 17 16 17 21 22 2 3 7 8 7 8 12 13 12 13 17 18 17 18 22 23 3 4 8 9 8 9 13 14 13 14 18 19 18 19 23 24 4 5 9 10 9 10 14 15 14 15 19 20 19 20 24 25 SuiteSparse/RBio/Test/farm.rb0000644001170100242450000000107010527062631014773 0ustar davisfacMeszaros/farm; 2004; ; ed: C. Meszaros |1710 6 1 2 3 ira 7 17 41 0 (26I3) (40I2) (20I4) 1 2 3 4 5 6 9 13 15 18 21 24 28 32 36 40 41 42 1 2 3 6 7 1 2 3 1 2 3 4 1 2 1 2 4 1 2 5 1 2 4 1 2 3 6 1 2 4 6 1 2 3 7 1 2 4 7 3 4 1 1 1 1 1 4 1 20 4 1 15 40 2 1 2 1 35 1 1 1 1 1 50 250 2 30 1 250 2 15 1 125 1 20 1 125 1 10 1 1 1 SuiteSparse/RBio/Test/bcsstk01.rb0000644001170100242450000001305610524626645015517 0ustar davisfacHB/bcsstk01; 1982; J. Lewis; ed: I. Duff et al. |23 68 3 9 56 rsa 48 48 224 0 (20I4) (26I3) (4E20.12) 1 9 17 25 31 37 43 49 55 62 66 70 75 85 95 104 112 120 127 132 136 141 144 146 149 154 158 161 164 167 169 173 178 183 185 188 191 196 201 205 208 211 213 216 219 221 222 224 225 1 5 6 7 11 19 25 30 2 4 6 8 10 20 24 26 3 4 5 9 21 23 27 28 4 8 10 22 27 28 5 7 11 21 23 29 6 12 20 24 25 30 7 11 12 13 31 36 8 10 12 14 18 32 9 10 11 15 17 33 34 10 16 33 34 11 15 17 35 12 14 18 31 36 13 17 18 19 23 37 42 43 47 48 14 15 16 18 20 22 38 44 45 46 15 16 17 21 39 40 44 45 46 16 20 22 39 40 44 45 46 17 18 19 23 41 43 47 48 18 24 37 42 43 47 48 19 23 24 43 48 20 22 24 44 21 22 23 45 46 22 45 46 23 47 24 43 48 25 29 30 31 35 26 28 32 34 27 28 33 28 32 34 29 31 35 30 36 31 35 36 37 32 34 36 38 42 33 34 35 39 41 34 40 35 39 41 36 38 42 37 41 42 43 47 38 40 42 44 46 39 40 41 45 40 44 46 41 43 47 42 48 43 47 48 44 45 46 45 46 46 47 48 48 0.283226851852E+07 0.100000000000E+07 0.208333333333E+07 -0.333333333333E+04 0.100000000000E+07 -0.280000000000E+07 -0.289351851852E+05 0.208333333333E+07 0.163544753086E+07 -0.200000000000E+07 0.555555555555E+07 -0.666666666667E+04 -0.200000000000E+07 -0.308641975309E+05 0.555555555555E+07 -0.159791666667E+07 0.172436728395E+07 -0.208333333333E+07 -0.277777777778E+07 -0.168000000000E+07 -0.154320987654E+05 -0.277777777778E+07 -0.289351851852E+05 -0.208333333333E+07 0.100333333333E+10 0.200000000000E+07 0.400000000000E+09 -0.333333333333E+07 0.208333333333E+07 0.100000000000E+09 0.106750000000E+10 -0.100000000000E+07 0.200000000000E+09 0.277777777778E+07 0.333333333333E+09 -0.833333333333E+06 0.153533333333E+10 -0.200000000000E+07 -0.555555555555E+07 0.666666666667E+09 -0.208333333333E+07 0.100000000000E+09 0.283226851852E+07 -0.100000000000E+07 0.208333333333E+07 -0.280000000000E+07 -0.289351851852E+05 0.208333333333E+07 0.163544753086E+07 0.200000000000E+07 0.555555555555E+07 -0.308641975309E+05 0.555555555555E+07 -0.159791666667E+07 0.172436728395E+07 -0.208333333333E+07 -0.277777777778E+07 -0.154320987654E+05 -0.277777777778E+07 -0.289351851852E+05 -0.208333333333E+07 0.100333333333E+10 -0.333333333333E+07 0.208333333333E+07 0.100000000000E+09 0.106750000000E+10 0.277777777778E+07 0.333333333333E+09 -0.833333333333E+06 0.153533333333E+10 -0.555555555555E+07 0.666666666667E+09 -0.208333333333E+07 0.100000000000E+09 0.283609946950E+07 -0.214928529451E+07 0.235916180402E+07 -0.333333333333E+04 -0.100000000000E+07 -0.289351851852E+05 0.208333333333E+07 -0.383095098171E+04 -0.114928529451E+07 0.275828470683E+06 0.176741074446E+07 0.517922131816E+06 0.429857058902E+07 -0.555555555555E+07 -0.666666666667E+04 0.200000000000E+07 -0.159791666667E+07 -0.131963213599E+06 -0.517922131816E+06 0.229857058902E+07 0.389003806848E+07 -0.263499027470E+07 0.277777777778E+07 -0.168000000000E+07 -0.289351851852E+05 -0.208333333333E+07 -0.517922131816E+06 -0.216567078453E+07 -0.551656941367E+06 0.197572063531E+10 -0.200000000000E+07 0.400000000000E+09 0.208333333333E+07 0.100000000000E+09 -0.229857058902E+07 0.551656941366E+06 0.486193650990E+09 0.152734651547E+10 -0.109779731332E+09 0.100000000000E+07 0.200000000000E+09 -0.833333333333E+06 0.114928529451E+07 0.229724661236E+09 -0.557173510779E+08 0.156411143711E+10 -0.200000000000E+07 -0.208333333333E+07 0.100000000000E+09 -0.275828470683E+06 -0.557173510779E+08 0.109411960038E+08 0.283226851852E+07 0.100000000000E+07 0.208333333333E+07 -0.289351851852E+05 0.208333333333E+07 0.163544753086E+07 -0.200000000000E+07 -0.555555555555E+07 -0.159791666667E+07 0.172436728395E+07 -0.208333333333E+07 0.277777777778E+07 -0.289351851852E+05 -0.208333333333E+07 0.100333333333E+10 0.208333333333E+07 0.100000000000E+09 0.106750000000E+10 -0.833333333333E+06 0.153533333333E+10 -0.208333333333E+07 0.100000000000E+09 0.608796296296E+05 0.125000000000E+07 0.416666666667E+06 -0.416666666667E+04 0.125000000000E+07 0.337291666667E+07 -0.250000000000E+07 -0.833333333333E+04 -0.250000000000E+07 0.241171296296E+07 -0.416666666667E+06 -0.235500000000E+07 0.150000000000E+10 0.250000000000E+07 0.500000000000E+09 0.501833333333E+09 -0.125000000000E+07 0.250000000000E+09 0.502500000000E+09 -0.250000000000E+07 0.398587962963E+07 -0.125000000000E+07 0.416666666667E+06 -0.392500000000E+07 0.341149691358E+07 0.250000000000E+07 0.694444444444E+07 -0.385802469136E+05 0.694444444445E+07 0.243100308642E+07 -0.416666666667E+06 -0.347222222222E+07 -0.192901234568E+05 -0.347222222222E+07 0.150416666667E+10 -0.416666666667E+07 0.133516666667E+10 0.347222222222E+07 0.416666666667E+09 0.216916666667E+10 -0.694444444444E+07 0.833333333333E+09 0.398587962963E+07 -0.125000000000E+07 0.416666666667E+06 -0.416666666667E+04 -0.125000000000E+07 0.341149691358E+07 0.250000000000E+07 -0.694444444445E+07 -0.833333333333E+04 0.250000000000E+07 0.243100308642E+07 -0.416666666667E+06 0.347222222222E+07 -0.235500000000E+07 0.150416666667E+10 -0.250000000000E+07 0.500000000000E+09 0.133516666667E+10 0.125000000000E+07 0.250000000000E+09 0.216916666667E+10 -0.250000000000E+07 0.647105806113E+05 0.239928529451E+07 0.140838195984E+06 0.350487988027E+07 0.517922131816E+06 -0.479857058902E+07 0.457738374749E+07 0.134990274700E+06 0.247238730198E+10 0.961679848804E+09 -0.109779731332E+09 0.531278103775E+09 SuiteSparse/RBio/Test/west0479.rua0000644001170100242450000016204110531062724015544 0ustar davisfac1U 8 STAGE COLUMN SECTION, ALL SECTIONS RIGOROUS ( CHEM. ENG. ) WEST0479 717 48 191 478 0 RUA 479 479 1910 0 (10I8) (10I8) (4E20.12) 1 4 7 10 12 14 19 24 27 30 33 37 40 43 46 48 50 55 58 61 64 67 70 73 76 78 80 82 84 86 88 90 92 96 102 104 106 109 113 116 119 122 125 128 130 132 137 142 145 148 151 155 158 161 164 166 168 173 176 179 182 185 188 191 193 195 197 199 201 203 205 207 209 213 219 221 223 226 230 233 236 238 239 246 248 249 257 261 296 304 306 307 321 335 349 353 382 387 389 390 401 412 423 431 440 444 447 448 460 472 484 492 508 514 517 518 530 542 554 563 572 581 590 599 608 617 626 635 644 653 662 671 680 689 698 707 716 725 734 743 752 761 770 778 786 794 802 810 818 821 824 827 830 833 836 839 842 845 848 851 854 857 860 863 866 869 872 876 880 884 891 901 903 905 912 917 923 926 928 930 932 934 936 938 940 942 944 947 950 953 956 959 962 965 968 971 974 977 980 984 988 992 997 1005 1007 1009 1015 1018 1022 1023 1025 1027 1029 1031 1033 1035 1037 1039 1041 1049 1052 1055 1058 1059 1066 1073 1080 1088 1094 1095 1098 1099 1105 1111 1117 1125 1128 1131 1134 1135 1142 1149 1156 1158 1160 1162 1169 1175 1176 1179 1180 1186 1192 1198 1206 1209 1212 1215 1216 1223 1230 1237 1239 1241 1243 1251 1257 1258 1261 1262 1268 1274 1280 1288 1291 1294 1297 1298 1305 1312 1319 1321 1323 1325 1333 1339 1340 1343 1344 1350 1356 1362 1370 1373 1376 1379 1380 1387 1394 1401 1403 1405 1407 1415 1421 1422 1425 1426 1432 1438 1444 1452 1455 1458 1461 1462 1469 1476 1483 1485 1487 1489 1497 1503 1504 1507 1508 1514 1520 1526 1528 1530 1532 1534 1536 1538 1540 1542 1544 1546 1548 1550 1552 1554 1556 1558 1560 1562 1564 1566 1568 1570 1572 1574 1576 1578 1580 1582 1584 1586 1588 1590 1592 1594 1596 1598 1601 1605 1609 1611 1613 1615 1617 1619 1621 1626 1631 1636 1638 1640 1642 1644 1646 1648 1651 1654 1657 1659 1661 1666 1671 1674 1677 1680 1684 1687 1690 1693 1695 1697 1702 1704 1706 1708 1711 1715 1719 1721 1723 1725 1727 1729 1731 1736 1741 1746 1748 1750 1752 1754 1756 1758 1761 1764 1767 1769 1771 1776 1781 1784 1787 1790 1794 1797 1800 1803 1805 1807 1812 1815 1818 1821 1824 1827 1830 1832 1834 1836 1838 1840 1842 1844 1846 1848 1852 1858 1860 1862 1865 1869 1872 1875 1877 1879 1881 1883 1885 1887 1889 1891 1893 1895 1897 1899 1901 1903 1905 1907 1909 1911 25 31 87 26 31 88 27 31 89 28 29 29 30 30 31 87 88 89 32 43 111 112 113 33 43 111 34 43 112 35 43 113 36 37 38 39 37 43 111 38 43 112 39 43 113 40 42 41 42 42 43 111 112 113 2 8 11 3 9 12 4 10 13 5 8 11 6 9 12 7 10 13 8 17 27 9 17 10 17 11 18 12 18 13 18 14 17 15 17 16 17 17 19 30 42 18 20 23 24 30 41 19 21 20 21 21 22 30 22 24 40 41 23 30 42 24 30 42 68 74 99 69 74 100 70 74 101 71 72 72 73 73 74 99 100 101 75 86 123 124 125 76 86 123 77 86 124 78 86 125 79 80 81 82 80 86 123 81 86 124 82 86 125 83 85 84 85 85 86 123 124 125 45 51 54 46 52 55 47 53 56 48 51 54 49 52 55 50 53 56 51 60 52 60 53 60 54 61 55 61 56 61 57 60 58 60 59 60 60 62 73 85 61 63 66 67 73 84 62 64 63 64 64 65 73 65 67 83 84 66 73 85 67 73 85 31 244 43 1 17 18 31 35 43 243 74 388 86 44 60 61 74 78 86 384 387 385 386 387 388 96 97 98 120 121 122 141 142 143 185 186 187 389 438 439 440 441 442 443 450 451 452 455 456 458 459 461 462 463 464 472 473 474 475 476 182 183 184 391 455 456 458 468 388 467 479 203 204 205 209 210 211 382 385 437 453 454 467 469 479 203 204 205 209 210 211 383 386 437 453 454 467 470 479 203 204 205 209 210 211 384 387 437 453 454 467 471 479 241 242 243 244 108 109 110 132 133 134 245 395 396 397 398 399 400 407 408 409 412 413 415 416 418 419 420 421 429 430 431 432 433 246 412 413 415 425 244 424 436 160 161 162 238 241 394 410 411 424 426 436 160 161 162 239 242 394 410 411 424 427 436 160 161 162 240 243 394 410 411 424 428 436 241 242 243 244 253 254 255 256 135 136 137 151 152 153 245 248 249 148 149 150 247 244 248 256 249 147 169 170 171 175 176 177 238 241 248 249 253 147 169 170 171 175 176 177 239 242 248 249 254 147 169 170 171 175 176 177 240 243 248 249 255 363 364 365 366 385 386 387 388 215 216 217 218 219 220 227 228 229 232 233 235 236 389 392 393 232 233 235 368 369 390 366 388 392 393 181 194 195 196 230 231 360 363 382 385 392 393 181 194 195 196 230 231 361 364 383 386 392 393 181 194 195 196 230 231 362 365 384 387 392 393 93 96 248 262 284 306 328 350 372 94 97 248 262 284 306 328 350 372 95 98 248 262 284 306 328 350 372 93 96 248 262 284 306 328 350 372 94 97 248 262 284 306 328 350 372 95 98 248 262 284 306 328 350 372 105 108 264 286 308 330 352 374 392 106 109 264 286 308 330 352 374 392 107 110 264 286 308 330 352 374 392 105 108 264 286 308 330 352 374 392 106 109 264 286 308 330 352 374 392 107 110 264 286 308 330 352 374 392 117 120 249 263 285 307 329 351 373 118 121 249 263 285 307 329 351 373 119 122 249 263 285 307 329 351 373 117 120 249 263 285 307 329 351 373 118 121 249 263 285 307 329 351 373 119 122 249 263 285 307 329 351 373 129 132 265 287 309 331 353 375 393 130 133 265 287 309 331 353 375 393 131 134 265 287 309 331 353 375 393 129 132 265 287 309 331 353 375 393 130 133 265 287 309 331 353 375 393 131 134 265 287 309 331 353 375 393 135 141 266 288 310 332 354 376 136 142 267 289 311 333 355 377 137 143 268 290 312 334 356 378 135 141 266 288 310 332 354 376 136 142 267 289 311 333 355 377 137 143 268 290 312 334 356 378 138 148 238 139 149 239 140 150 240 144 182 382 145 183 383 146 184 384 395 401 404 396 402 405 397 403 406 398 401 404 399 402 405 400 403 406 160 401 410 161 402 410 162 403 410 163 404 411 164 405 411 165 406 411 160 161 407 410 160 162 408 410 161 162 409 410 163 164 165 410 412 423 435 157 163 164 165 411 413 416 417 423 434 412 414 413 414 158 163 164 165 414 415 423 157 415 417 433 434 163 164 165 416 423 435 417 423 435 148 178 149 179 150 180 148 166 149 167 150 168 148 154 149 155 150 156 215 221 224 216 222 225 217 223 226 218 221 224 219 222 225 220 223 226 194 221 230 195 222 230 196 223 230 197 224 231 198 225 231 199 226 231 194 195 227 230 194 196 228 230 195 196 229 230 197 198 199 230 232 191 197 198 199 231 233 236 237 232 234 233 234 192 197 198 199 234 235 191 235 237 197 198 199 236 237 182 212 183 213 184 214 182 200 183 201 184 202 182 188 183 189 184 190 241 242 243 244 253 254 255 256 257 264 265 246 247 258 244 256 264 265 238 241 250 253 261 264 265 239 242 251 254 261 264 265 240 243 252 255 261 264 265 253 254 255 256 275 276 277 278 257 262 263 266 267 268 259 256 262 278 263 250 253 260 262 263 275 251 254 260 262 263 276 252 255 260 262 263 277 253 254 255 256 275 276 277 278 279 286 287 258 259 280 256 278 286 287 250 253 272 275 283 286 287 251 254 273 276 283 286 287 252 255 274 277 283 286 287 250 269 251 270 252 271 275 276 278 297 298 299 300 279 284 285 288 289 290 281 278 284 300 285 272 275 282 284 285 297 273 276 282 284 285 298 274 277 282 284 285 299 275 276 277 278 297 298 299 300 301 308 309 280 281 302 278 300 308 309 272 275 294 297 305 308 309 273 276 295 298 305 308 309 274 277 296 299 305 308 309 272 291 273 292 274 293 297 298 299 300 319 320 321 322 301 306 307 310 311 312 303 300 306 322 307 294 297 304 306 307 319 295 298 304 306 307 320 296 299 304 306 307 321 297 298 299 300 319 320 321 322 323 330 331 302 303 324 300 322 330 331 294 297 316 319 327 330 331 295 298 317 320 327 330 331 296 299 318 321 327 330 331 294 313 295 314 296 315 319 320 321 322 341 342 343 344 323 328 329 332 333 334 325 322 328 344 329 316 319 326 328 329 341 317 320 326 328 329 342 318 321 326 328 329 343 319 320 321 322 341 342 343 344 345 352 353 324 325 346 322 344 352 353 316 319 338 341 349 352 353 317 320 339 342 349 352 353 318 321 340 343 349 352 353 316 335 317 336 318 337 341 342 343 344 363 364 365 366 345 350 351 354 355 356 347 344 350 366 351 338 341 348 350 351 363 339 342 348 350 351 364 340 343 348 350 351 365 341 342 343 344 363 364 365 366 367 374 375 346 347 368 344 366 374 375 338 341 360 363 371 374 375 339 342 361 364 371 374 375 340 343 362 365 371 374 375 338 357 339 358 340 359 363 364 365 366 385 386 387 388 367 372 373 376 377 378 369 366 372 388 373 360 363 370 372 373 385 361 364 370 372 373 386 362 365 370 372 373 387 360 379 361 380 362 381 87 93 88 94 89 95 90 96 91 97 92 98 99 105 100 106 101 107 102 108 103 109 104 110 111 117 112 118 113 119 114 120 115 121 116 122 123 129 124 130 125 131 126 132 127 133 128 134 135 138 136 139 137 140 141 144 142 145 143 146 151 154 152 155 153 156 157 158 159 158 163 164 165 159 163 164 165 160 163 161 164 162 165 163 166 164 167 165 168 169 172 175 176 177 170 173 175 176 177 171 174 175 176 177 172 175 173 176 174 177 175 178 176 179 177 180 102 418 424 103 419 424 104 420 424 421 422 422 423 102 103 104 423 424 126 127 128 425 436 126 426 436 127 427 436 128 428 436 429 430 431 432 126 430 436 127 431 436 128 432 436 433 435 434 435 126 127 128 435 436 185 188 186 189 187 190 191 192 193 192 197 198 199 193 197 198 199 194 197 195 198 196 199 197 200 198 201 199 202 203 206 209 210 211 204 207 209 210 211 205 208 209 210 211 206 209 207 210 208 211 209 212 210 213 211 214 90 461 467 91 462 467 92 463 467 464 465 465 466 90 91 92 466 467 114 115 116 468 479 114 469 479 115 470 479 116 471 479 472 473 474 475 114 473 479 115 474 479 116 475 479 476 478 477 478 114 115 116 478 479 438 444 447 439 445 448 440 446 449 441 444 447 442 445 448 443 446 449 444 453 445 453 446 453 447 454 448 454 449 454 450 453 451 453 452 453 453 455 466 478 454 456 459 460 466 477 455 457 456 457 457 458 466 458 460 476 477 459 466 478 460 466 478 266 269 267 270 268 271 288 291 289 292 290 293 310 313 311 314 312 315 332 335 333 336 334 337 354 357 355 358 356 359 376 379 377 380 378 381 .100000000000E+01 -.376481300000E-01 -.344239600000E+00 .100000000000E+01 -.245226200000E-01 -.373708600000E+00 .100000000000E+01 -.366130400000E-01 -.836937900000E+00 .130000000000E+03 -.243376700000E+01 .100000000000E+01 -.161409100000E+01 .161409100000E+01 -.218732100000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.113835200000E+01 .366942800000E-01 .993163600000E-01 .993163600000E-01 .993163600000E-01 -.500000000000E+00 .161172900000E-01 .872457600000E-01 -.361191800000E+00 .116428600000E-01 .105041500000E+00 -.321887600000E+00 .103759100000E-01 .140416600000E+00 -.436241600000E+00 -.768042500000E+00 -.143027900000E+00 -.159388600000E+00 .100000000000E+01 -.485608200000E-01 -.262868400000E+00 .100000000000E+01 -.309259500000E-01 -.279012800000E+00 .100000000000E+01 -.461235900000E-01 -.624188200000E+00 .528243600000E+01 -.612392100000E+00 .288682200000E+00 -.216381500000E+00 .132877400000E+01 -.369468600000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .481764700000E+02 -.100000000000E+01 -.334748400000E-04 .835000000000E+02 -.100000000000E+01 -.413653900000E-04 .171941200000E+03 -.100000000000E+01 -.848434500000E-04 .966513800000E+02 .250000000000E+01 .334748400000E-04 .168270600000E+03 .250000000000E+01 .413653900000E-04 .347587200000E+03 .250000000000E+01 .848434500000E-04 .100000000000E+01 -.110696700000E+00 .160523200000E+01 .100000000000E+01 -.898085200000E-01 .100000000000E+01 -.151736900000E+00 .101045500000E+01 -.500000000000E+00 .100597800000E+01 -.300000000000E+00 .100288500000E+01 -.200000000000E+00 .100000000000E+01 -.181185500000E+00 .100000000000E+01 -.240023900000E+00 .100000000000E+01 -.226548400000E+00 .100000000000E+01 -.100000000000E+01 .150000000000E+01 .500000000000E+00 .100000000000E+01 -.316220000000E+06 -.123236900000E+05 -.100000000000E+01 -.352268000000E+05 .184490200000E+05 .529833900000E+01 .245268700000E-02 .108085900000E+04 -.205021500000E+00 .144192000000E+00 .630598600000E+02 -.115929900000E+00 -.184490200000E+05 .845333900000E+00 -.184490200000E+05 -.155955800000E+05 .100000000000E+01 .202049300000E+00 -.885471000000E+00 .100023400000E-03 .244833900000E+01 .816113000000E+00 .100000000000E+01 -.227866900000E-03 -.262439500000E+00 .100000000000E+01 -.418876300000E-03 -.321619600000E+00 .100000000000E+01 -.157693300000E-02 -.726476100000E+00 .300000000000E+03 -.285189100000E+01 .100000000000E+01 -.287015900000E+00 .287015900000E+00 -.434132200000E-02 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.113835200000E+01 .420028600000E-01 .941480600000E+00 .941480600000E+00 .941480600000E+00 -.321887600000E+00 .118770000000E-01 .133109500000E+01 -.361191800000E+00 .133272400000E-01 .995752900000E+00 -.500000000000E+00 .184489800000E-01 .827056000000E+00 -.100000000000E+01 -.192400000000E+02 -.380300000000E+01 -.948100000000E+01 .100000000000E+01 -.887578400000E-03 -.994739200000E-01 .100000000000E+01 -.133136800000E-02 -.994739200000E-01 .100000000000E+01 -.221894600000E-02 -.994739200000E-01 .117761300000E+01 -.310896300000E+01 .991942500000E+00 -.264005600000E+01 .319211200000E+01 -.446136300000E-01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .109868800000E+03 -.100000000000E+01 -.330811000000E-04 .191384600000E+03 -.100000000000E+01 -.410846700000E-04 .395479600000E+03 -.100000000000E+01 -.845638300000E-04 .221733900000E+03 .250000000000E+01 .330811000000E-04 .387009200000E+03 .250000000000E+01 .410846700000E-04 .800816500000E+03 .250000000000E+01 .845638300000E-04 .100000000000E+01 -.917022900000E-02 .100000000000E+01 -.464411000000E-01 .100000000000E+01 -.489991900000E+00 .100453000000E+01 -.200000000000E+00 .100259100000E+01 -.300000000000E+00 .100125000000E+01 -.500000000000E+00 .100000000000E+01 -.375005300000E-01 .100000000000E+01 -.124143000000E+00 .100000000000E+01 -.292753200000E+00 .100000000000E+01 -.100000000000E+01 .185373300000E+00 .617910900000E-01 .100000000000E+01 -.316220000000E+06 -.163641900000E+05 -.100000000000E+01 -.469678200000E+04 .131854000000E+03 .221291300000E+02 .953752600000E+00 .249429000000E+04 -.102158700000E+01 .887828100000E+00 .104004200000E+01 -.264005600000E+01 -.131854000000E+03 .805747000000E-02 -.131854000000E+03 -.106240900000E+01 .100000000000E+01 .101642600000E+00 -.617910900000E-01 .764525700000E-02 .230989500000E+02 .769964900000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.385023100000E+01 -.845993500000E-04 .201591000000E+01 .100000000000E+01 .159617100000E+01 -.789751200000E+00 .100000000000E+01 .881756200000E+00 .100000000000E+01 .100000000000E+01 -.279376000000E+01 -.844582300000E-04 .201566500000E+01 .100000000000E+01 .159399400000E+01 0. -.961915000000E+00 .242466900000E-02 .303627800000E-01 .673045100000E+00 .145936000000E+01 .168966100000E-01 .348480300000E-01 -.600801800000E-01 -.555271700000E+00 -.477039800000E+00 -.185829300000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.551885700000E+02 -.956768600000E+02 -.215837700000E+03 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.189075600000E-02 -.153114000000E-02 -.101372600000E-02 .250000000000E+01 .260637000000E+02 .100000000000E+01 -.150000000000E+01 -.960318100000E+01 -.945418500000E+01 -.943768100000E+01 -.482957200000E+02 .907592200000E+00 -.437596700000E+01 -.899799200000E+01 -.888195800000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.100000000000E+01 -.260637000000E+02 -.100000000000E+01 .100000000000E+01 -.145936000000E+01 .100000000000E+01 .100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .569531000000E+02 .705832500000E+00 .100000000000E+01 -.649137200000E+00 -.329484100000E-04 .538074800000E+00 .100000000000E+01 .824711200000E-01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .115838400000E+02 .705832500000E+00 .100000000000E+01 -.102154200000E+01 -.409903300000E-04 -.363024800000E+00 .100000000000E+01 .695226100000E-01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .320963100000E+00 .705832500000E+00 .100000000000E+01 -.204900700000E+01 -.844700300000E-04 .913536200000E+00 .100000000000E+01 .839763800000E+00 .550835200000E+00 .448922300000E+00 .242520300000E-03 .405283300000E+00 -.672766200000E-01 -.157006100000E+00 -.974757000000E-01 -.250600700000E+00 -.280261700000E+00 .100849100000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.286360200000E-02 -.231625900000E-02 -.153089000000E-02 .250000000000E+01 .115878000000E+02 .100000000000E+01 -.110122400000E+01 -.136443200000E+01 -.121882100000E+01 -.121085900000E+01 -.346210500000E+02 .603135900000E+00 -.599638400000E+00 -.140339200000E+01 -.137038600000E+01 .100000000000E+01 .100000000000E+01 -.100000000000E+01 -.115878000000E+02 -.100000000000E+01 .100000000000E+01 -.405283300000E+00 .100000000000E+01 .100000000000E+01 -.859384000000E+00 -.773339000000E+00 -.795174000000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.162365900000E+01 -.330327800000E-04 .357203500000E+01 .100000000000E+01 .924353200000E+00 -.117182100000E+01 -.127735200000E+01 -.125050800000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.246028900000E+01 -.410508100000E-04 -.217853300000E+01 .100000000000E+01 .650984200000E+00 -.232804700000E+01 -.241615500000E+01 -.251216600000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.475362000000E+01 -.845305000000E-04 .616714000000E+01 .100000000000E+01 .339669100000E+01 .437365700000E-01 .573964600000E+00 .158349000000E+00 .187812500000E+00 -.443441300000E-01 -.581937800000E+00 -.160548700000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.626809000000E+02 -.123890000000E+03 -.464355500000E+03 .100000000000E+01 -.516465500000E-01 -.324176200000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.187812500000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .977387500000E+01 .776050200000E+00 .725283100000E+01 .780410000000E+00 -.786830600000E+00 .100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .606982100000E+00 .776050200000E+00 -.238950800000E+01 .684939800000E+00 -.786830600000E+00 .100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .118856400000E-02 .776050200000E+00 .115588300000E+02 .220264400000E+01 -.786830600000E+00 -.170514800000E+00 -.434296300000E+00 -.266742100000E+00 -.260930200000E+01 .195644700000E+00 .498301600000E+00 .306053700000E+00 .422396000000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.189075600000E-02 -.153114000000E-02 -.101372600000E-02 .250000000000E+01 .166724100000E+02 .100000000000E+01 -.150000000000E+01 -.100000000000E+01 -.462121300000E+00 -.123496200000E+00 -.100000000000E+01 -.166724100000E+02 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .260930200000E+01 -.422396000000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.586976200000E+00 -.506515500000E+00 -.513991800000E+00 -.103668500000E+01 -.329484100000E-04 0. -.871553100000E+00 -.100000000000E+01 .100000000000E+01 .263998000000E+01 .557420700000E+00 .100000000000E+01 -.800163700000E+00 -.836409000000E+00 -.808102600000E+00 -.163769500000E+01 -.409903300000E-04 0. -.871553100000E+00 -.100000000000E+01 .100000000000E+01 -.177367800000E+01 .407542200000E+00 .100000000000E+01 -.158938900000E+01 -.158181100000E+01 -.162311800000E+01 -.320568600000E+01 -.844700300000E-04 0. -.871553100000E+00 -.100000000000E+01 .100000000000E+01 .446760900000E+01 .224752900000E+01 -.100000000000E+01 -.100000000000E+01 -.404215600000E+00 -.181877700000E+00 -.156345500000E+00 -.154569900000E+00 -.152177800000E+00 -.919058000000E-01 -.787053700000E-02 -.100000000000E+01 -.100000000000E+01 -.180917100000E+01 -.318965500000E+01 -.334901900000E+01 -.335864400000E+01 -.330858500000E+01 -.196787000000E+01 -.113335600000E+00 -.100000000000E+01 -.100000000000E+01 -.245660200000E+01 -.410112800000E+01 -.429089200000E+01 -.430260300000E+01 -.425414700000E+01 -.295238900000E+01 -.115736500000E+01 -.812149600000E-02 -.168966100000E-01 -.453876000000E-02 -.217052000000E-02 -.187406900000E-02 -.185331800000E-02 -.182483700000E-02 -.110656100000E-02 -.105449400000E-03 -.167499900000E-01 -.348480300000E-01 -.418969200000E-01 -.785066800000E-01 -.827935100000E-01 -.830553200000E-01 -.818263800000E-01 -.488660500000E-01 -.313173200000E-02 -.288780300000E-01 -.600801800000E-01 -.980822400000E-01 -.174028100000E+00 -.182885500000E+00 -.183437400000E+00 -.181391400000E+00 -.126397200000E+00 -.551367700000E-01 -.100000000000E+01 -.100000000000E+01 -.763623200000E+00 -.541321100000E+00 -.529075300000E+00 -.528326000000E+00 -.529653400000E+00 -.599010600000E+00 -.574676800000E+00 -.100000000000E+01 -.100000000000E+01 -.146797900000E+01 -.128980600000E+01 -.127999200000E+01 -.127938500000E+01 -.128017400000E+01 -.136014300000E+01 -.714919000000E+00 -.100000000000E+01 -.100000000000E+01 -.437085700000E-02 -.395410100000E-02 -.393180300000E-02 -.394766800000E-02 -.474902300000E-02 -.724553900000E-01 -.160236400000E+01 -.112293300000E+00 -.672766200000E-01 -.546013700000E-01 -.388772200000E-01 -.380086600000E-01 -.379589900000E-01 -.382088600000E-01 -.480854900000E-01 -.581786200000E-01 -.262063300000E+00 -.157006100000E+00 -.244960800000E+00 -.216180600000E+00 -.214597400000E+00 -.214519100000E+00 -.215523000000E+00 -.254810000000E+00 -.168907500000E+00 -.162699500000E+00 -.974757000000E-01 -.452817600000E-03 -.411452900000E-03 -.409250300000E-03 -.410946700000E-03 -.496373700000E-03 -.842718500000E-02 -.235035200000E+00 -.100000000000E+01 -.100000000000E+01 -.697028400000E-01 -.192433200000E-01 -.158379300000E-01 -.156179100000E-01 -.155832100000E-01 -.147185600000E-01 -.575995200000E-02 -.100000000000E+01 -.100000000000E+01 -.741713600000E+00 -.802349400000E+00 -.806584700000E+00 -.806828600000E+00 -.805503100000E+00 -.749269800000E+00 -.197197000000E+00 -.100000000000E+01 -.100000000000E+01 -.512759800000E+00 -.525225300000E+00 -.526141300000E+00 -.526224500000E+00 -.527302700000E+00 -.572318600000E+00 -.102524200000E+01 -.465759300000E+00 -.969003100000E+00 -.448848800000E-01 -.131701200000E-01 -.108873900000E-01 -.107392400000E-01 -.107165500000E-01 -.101630300000E-01 -.442571900000E-02 -.574402300000E+00 -.119503300000E+01 -.589034200000E+00 -.677217400000E+00 -.683801800000E+00 -.684205300000E+00 -.683156100000E+00 -.638044000000E+00 -.186861600000E+00 -.229228500000E+00 -.476905500000E+00 -.162506500000E+00 -.176914200000E+00 -.178006200000E+00 -.178085600000E+00 -.178470000000E+00 -.194492500000E+00 -.387702600000E+00 -.100000000000E+01 -.100000000000E+01 -.342727900000E+00 -.291137600000E+00 -.287693700000E+00 -.287488900000E+00 -.288231800000E+00 -.302698700000E+00 -.175078900000E+00 -.100000000000E+01 -.100000000000E+01 -.106233400000E+01 -.111850600000E+01 -.112225300000E+01 -.112251200000E+01 -.112328500000E+01 -.110823400000E+01 -.351186400000E+00 -.100000000000E+01 -.100000000000E+01 -.239998200000E-02 -.260173000000E-02 -.261562700000E-02 -.262803300000E-02 -.316173500000E-02 -.447938100000E-01 -.597230900000E+00 -.201825300000E+01 -.120916600000E+01 -.440448900000E+00 -.375802900000E+00 -.371464300000E+00 -.371240500000E+00 -.373710900000E+00 -.436728800000E+00 -.318562800000E+00 -.256268800000E+01 -.153534500000E+01 -.173351300000E+01 -.183324500000E+01 -.183991500000E+01 -.184054100000E+01 -.184928600000E+01 -.203026600000E+01 -.811370500000E+00 -.925542900000E+00 -.554506700000E+00 -.141440900000E-02 -.154008600000E-02 -.154875800000E-02 -.155627400000E-02 -.187992500000E-02 -.296374000000E-01 -.498338700000E+00 -.143389200000E+01 -.215770400000E+01 -.152397100000E+01 -.153070800000E+01 -.153114800000E+01 -.153131600000E+01 -.153753300000E+01 -.171092800000E+01 -.943206000000E+00 -.141932600000E+01 -.100246000000E+01 -.100689100000E+01 -.100718100000E+01 -.100729100000E+01 -.101138100000E+01 -.112543900000E+01 -.596452700000E+00 -.897535300000E+00 -.633922700000E+00 -.636725200000E+00 -.636908300000E+00 -.636978100000E+00 -.639564200000E+00 -.711690900000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .550835200000E+00 -.100000000000E+01 .164749500000E+01 .739597300000E+00 -.100000000000E+01 .841351600000E+03 .204044800000E+00 -.100000000000E+01 .100000000000E+01 .195644700000E+00 -.100000000000E+01 .100000000000E+01 .498301600000E+00 -.100000000000E+01 .311562200000E+01 .953547800000E+00 .662249200000E+02 -.100000000000E+01 -.332825700000E-04 .115062300000E+03 -.100000000000E+01 -.412283100000E-04 .237338700000E+03 -.100000000000E+01 -.847069000000E-04 .133245000000E+03 .250000000000E+01 .332825700000E-04 .232263900000E+03 .250000000000E+01 .412283100000E-04 .480182100000E+03 .250000000000E+01 .847069000000E-04 -.473379000000E+00 .100000000000E+01 -.211687600000E+00 -.573431700000E+00 .100000000000E+01 -.316671500000E+00 -.609251100000E-03 .100000000000E+01 -.351187400000E-06 -.457500400000E+04 .100756200000E+01 -.550835200000E+00 -.368141600000E+04 .100432400000E+01 -.448922300000E+00 -.178781800000E+04 .100208700000E+01 -.242520300000E-03 -.526056400000E+00 -.425982300000E+00 .100000000000E+01 -.470488400000E+00 -.564598700000E-03 -.438009800000E+00 .100000000000E+01 -.504959300000E-03 -.585966700000E-03 -.561380900000E+00 .100000000000E+01 -.647187600000E-03 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .614442100000E-01 .204814000000E-01 -.100000000000E+01 .412406000000E+04 .412406000000E+04 .412406000000E+04 .100000000000E+01 -.316220000000E+06 -.200342400000E+05 -.100000000000E+01 -.262565700000E+04 .222129000000E+03 .187372700000E+02 .944881600000E+00 .149436700000E+04 -.102078000000E+01 -.991860100000E+00 -.179223400000E+02 -.179223400000E+02 -.179223400000E+02 .862829000000E+00 .104971900000E+01 -.734149500000E+00 .813986000000E-02 -.222129000000E+03 .813986000000E-02 -.222129000000E+03 -.180809900000E+01 -.109132800000E+01 -.162939700000E+01 -.144485300000E+01 .100000000000E+01 .473640600000E-01 -.278981400000E-01 .453853400000E-02 .757924000000E+01 .252641300000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .102664600000E+01 -.100000000000E+01 .107372400000E+01 -.100000000000E+01 .120814700000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .991497300000E+02 -.100000000000E+01 -.331139800000E-04 .172639600000E+03 -.100000000000E+01 -.411081200000E-04 .356639800000E+03 -.100000000000E+01 -.845871800000E-04 .200000800000E+03 .250000000000E+01 .331139800000E-04 .349003300000E+03 .250000000000E+01 .411081200000E-04 .722067800000E+03 .250000000000E+01 .845871800000E-04 -.114838800000E+00 .100000000000E+01 -.116459200000E-01 -.416783900000E+00 .100000000000E+01 -.170061600000E+00 -.496761400000E+00 .100000000000E+01 -.243689300000E+00 -.527686200000E+04 .100502500000E+01 -.195644700000E+00 -.424159100000E+04 .100287400000E+01 -.498301600000E+00 -.205829400000E+04 .100138700000E+01 -.306053700000E+00 -.398722800000E+00 -.990970900000E-01 .100000000000E+01 -.808697600000E-01 -.486438400000E+00 -.100559800000E+00 .100000000000E+01 -.986604100000E-01 -.484119000000E+00 -.402678800000E+00 .100000000000E+01 -.395073000000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 -.100000000000E+01 .329762300000E+04 .329762300000E+04 .329762300000E+04 .100000000000E+01 -.316220000000E+06 -.189666600000E+05 -.100000000000E+01 .226698700000E+02 .954860200000E+00 .224870600000E+04 -.102065500000E+01 -.992295100000E+00 -.218985700000E+02 -.218985700000E+02 -.218985700000E+02 .890009600000E+00 .103920500000E+01 .770489700000E-02 -.146136200000E+03 .770489700000E-02 -.658905200000E+00 -.110649700000E+01 -.100090900000E+01 .100000000000E+01 .689565700000E-02 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .102267600000E+01 -.100000000000E+01 .109141800000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 -.199696100000E+00 -.785961600000E+00 -.641282300000E-03 .406904100000E+00 .202470200000E+00 .796879600000E+00 .650190600000E-03 -.216654400000E+01 -.100000000000E+01 -.300015000000E+00 -.407461500000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .406904100000E+00 -.216654400000E+01 .100000000000E+01 .100000000000E+01 0. -.986298900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .350185800000E+01 .124188400000E+01 0. -.986298900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.214955900000E+01 .936023900000E+00 0. -.986298900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .602598600000E+01 .408683800000E+01 .119553000000E-01 .614750300000E+00 .160595500000E+00 .599181000000E+00 -.119496800000E-01 -.614461200000E+00 -.160520000000E+00 -.100000000000E+01 .100000000000E+01 -.933508600000E-01 -.346818100000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.599181000000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .133334200000E+02 .787301100000E+00 .100000000000E+01 .121202600000E+02 .770250900000E+00 -.786930900000E+00 .102055100000E+01 .787301100000E+00 .100000000000E+01 -.398439900000E+01 .681342000000E+00 -.786930900000E+00 .318748500000E-02 .787301100000E+00 .100000000000E+01 .192521600000E+02 .223690700000E+01 -.786930900000E+00 -.170081300000E+00 -.829692200000E+00 -.697014100000E-03 .256736300000E+01 .170001400000E+00 .829302000000E+00 .696686300000E-03 -.428478700000E+01 -.100000000000E+01 -.255469300000E+00 -.412245700000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .256736300000E+01 -.428478700000E+01 .100000000000E+01 .100000000000E+01 0. -.100047100000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .295552900000E+01 .125441400000E+01 0. -.100047100000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.181596900000E+01 .945211900000E+00 0. -.100047100000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .508499700000E+01 .413647900000E+01 .202470200000E+00 -.100000000000E+01 .796879600000E+00 -.100000000000E+01 .203982300000E+00 -.100000000000E+01 .981808100000E-02 .616641700000E+00 .955794400000E+00 -.981756900000E-02 -.616609600000E+00 -.160514800000E+00 -.100000000000E+01 .100000000000E+01 -.982179000000E-01 -.348563900000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.955794400000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .136267100000E+02 .786983000000E+00 .100000000000E+01 .126823300000E+02 .769428700000E+00 -.786942000000E+00 .105838900000E+01 .786983000000E+00 .100000000000E+01 -.416848900000E+01 .681028500000E+00 -.786942000000E+00 .341558300000E-02 .786983000000E+00 .100000000000E+01 .201399600000E+02 .223941500000E+01 -.786942000000E+00 -.167869800000E+00 -.831482500000E+00 -.699904700000E-03 .432899300000E+01 .167861000000E+00 .831439100000E+00 .699868200000E-03 -.452920900000E+01 -.100000000000E+01 -.253015300000E+00 -.412562500000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .432899300000E+01 -.452920900000E+01 .100000000000E+01 .100000000000E+01 0. -.100005200000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .292543600000E+01 .125524900000E+01 0. -.100005200000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.179759300000E+01 .945824300000E+00 0. -.100005200000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .503316600000E+01 .413978300000E+01 .170001400000E+00 -.100000000000E+01 .829302000000E+00 -.100000000000E+01 .203972900000E+00 -.100000000000E+01 .967985000000E-02 .616710900000E+00 .160518100000E+00 .997298400000E+00 -.968017000000E-02 -.616731300000E+00 -.160523400000E+00 -.100000000000E+01 .100000000000E+01 -.985287200000E-01 -.348671000000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.997298400000E+00 .100000000000E+01 .100000000000E+01 .100000000000E+01 .136460100000E+02 .786908900000E+00 .100000000000E+01 .127161900000E+02 .769358600000E+00 -.786934900000E+00 .106089700000E+01 .786908900000E+00 .100000000000E+01 -.417957500000E+01 .680993600000E+00 -.786934900000E+00 .343096800000E-02 .786908900000E+00 .100000000000E+01 .201934100000E+02 .223953200000E+01 -.786934900000E+00 -.167723300000E+00 -.831540500000E+00 -.703111300000E-03 .453191100000E+01 .167728800000E+00 .831568000000E+00 .703134600000E-03 -.454418800000E+01 -.100000000000E+01 -.252889100000E+00 -.412629000000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .453191100000E+01 -.454418800000E+01 .100000000000E+01 .100000000000E+01 0. -.999966900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .292357000000E+01 .125529400000E+01 0. -.999966900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.179649000000E+01 .945851600000E+00 0. -.999966900000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .502993500000E+01 .414014000000E+01 .167861000000E+00 -.100000000000E+01 .831439100000E+00 -.100000000000E+01 .203985600000E+00 -.100000000000E+01 .964735000000E-02 .614996800000E+00 .160663800000E+00 .101227500000E+01 -.966307100000E-02 -.615999000000E+00 -.160925700000E+00 -.100000000000E+01 .100000000000E+01 -.977401500000E-01 -.348389000000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.101227500000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .136533700000E+02 .785308000000E+00 .100000000000E+01 .125360400000E+02 .768613800000E+00 -.786587700000E+00 .106185400000E+01 .785308000000E+00 .100000000000E+01 -.412034500000E+01 .680344600000E+00 -.786587700000E+00 .343684800000E-02 .785308000000E+00 .100000000000E+01 .199072000000E+02 .223748600000E+01 -.786587700000E+00 -.167696000000E+00 -.829833500000E+00 -.843582100000E-03 .453191300000E+01 .167969300000E+00 .831185800000E+00 .844956700000E-03 -.447695700000E+01 -.100000000000E+01 -.254228200000E+00 -.414678500000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .453191200000E+01 -.447695700000E+01 .100000000000E+01 .100000000000E+01 0. -.998373100000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .292580000000E+01 .125487100000E+01 0. -.998373100000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.179947400000E+01 .945295900000E+00 0. -.998373100000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .503297800000E+01 .414653200000E+01 .167728800000E+00 -.100000000000E+01 .831568000000E+00 -.100000000000E+01 .204587000000E+00 -.100000000000E+01 .895800300000E-02 .562391500000E+00 .171431600000E+00 .153498700000E+01 -.936840100000E-02 -.588156700000E+00 -.179285500000E+00 -.100000000000E+01 .100000000000E+01 -.764245700000E-01 -.336307000000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.153498700000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .139277000000E+02 .742781200000E+00 .100000000000E+01 .771241400000E+01 .737540500000E+00 -.776810600000E+00 .109779200000E+01 .742781200000E+00 .100000000000E+01 -.253453400000E+01 .653208000000E+00 -.776810600000E+00 .366104000000E-02 .742781200000E+00 .100000000000E+01 .122444900000E+02 .215138600000E+01 -.776810600000E+00 -.167264200000E+00 -.777578300000E+00 -.113509300000E-01 .394197100000E+01 .174927200000E+00 .813201900000E+00 .118709500000E-01 -.256808200000E+01 -.100000000000E+01 -.311322700000E+00 -.455726800000E+00 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 .394197100000E+01 -.256808200000E+01 .100000000000E+01 .100000000000E+01 0. -.956193500000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .314945400000E+01 .121299800000E+01 0. -.956193500000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 -.198591900000E+01 .907068400000E+00 0. -.956193500000E+00 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .539368700000E+01 .422746300000E+01 .167969300000E+00 -.100000000000E+01 .831185800000E+00 -.100000000000E+01 .230796900000E+00 -.100000000000E+01 .495600300000E-02 .209251100000E+00 .434156600000E+00 .617738400000E+01 -.568640400000E-02 -.240089900000E+00 -.498141300000E+00 -.100000000000E+01 .100000000000E+01 -.518995900000E-01 -.228199300000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .100000000000E+01 -.617738400000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .228846600000E+02 .648363700000E+00 .100000000000E+01 .104345000000E+01 .421758600000E+00 -.743917600000E+00 .251970300000E+01 .648363700000E+00 .100000000000E+01 -.341466400000E+00 .379889800000E+00 -.743917600000E+00 .177279200000E-01 .648363700000E+00 .100000000000E+01 .164605200000E+01 .130547600000E+01 -.743917600000E+00 .174927200000E+00 -.100000000000E+01 .813201900000E+00 -.100000000000E+01 .669619000000E+00 -.100000000000E+01 .631805800000E+01 .100812100000E+01 .210165200000E+01 .983250000000E+00 .102163400000E+02 .971122000000E+00 .477153300000E+01 .101689700000E+01 .154455300000E+01 .965152000000E+00 .740325800000E+01 .939919800000E+00 .276764800000E+03 .887706700000E+00 .192190400000E+03 .126206300000E+01 .465297400000E+03 .837300500000E+00 .402635300000E+03 .932723400000E+00 .243951600000E+03 .115700600000E+01 .694425700000E+03 .902524300000E+00 .214716900000E+01 .733104100000E+00 .183035400000E+01 .770706900000E+00 .541949600000E+01 .910679700000E+00 .159346000000E+01 .444728300000E+00 .151935900000E+01 .522960100000E+00 .592727100000E+01 .814170700000E+00 .860132300000E+01 .581715100000E+00 .619748500000E+01 .532207200000E+00 .376703300000E+02 .116833000000E+01 .109553500000E+02 .749399300000E+00 .828642700000E+01 .719738300000E+00 .350929300000E+02 .110084900000E+01 .433891900000E+00 .227971300000E+01 .113757200000E+00 .606982100000E+00 .403547300000E+00 .800498900000E-02 .115770400000E+01 .404222800000E+01 .419325900000E+00 .244961100000E+01 .102464700000E+00 .364751800000E+00 .172574500000E+03 .149176100000E+02 .161584500000E+03 .120938000000E+02 .145314500000E+03 .574009600000E+01 .450188900000E-02 .952635900000E+00 -.100000000000E+01 .944881600000E+00 .198820600000E+02 .159987000000E+02 .776949900000E+01 .100814000000E+01 .988289800000E+02 .147555800000E+03 .130843700000E+03 .100000000000E+01 .180119800000E+01 .100000000000E+01 .219622100000E+01 .100000000000E+01 .206073800000E+01 .198820600000E+02 .974045300000E+00 .159987000000E+02 .931337800000E+00 .776949900000E+01 .827714000000E+00 -.100000000000E+01 -.100000000000E+01 .563579100000E-01 .563579100000E-01 .563579100000E-01 -.100000000000E+01 -.100000000000E+01 .739597300000E+00 .739597300000E+00 .739597300000E+00 -.100000000000E+01 -.100000000000E+01 .204044800000E+00 .204044800000E+00 .204044800000E+00 .100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.194538900000E+02 .100000000000E+01 -.953042100000E-01 -.220903100000E+02 .100000000000E+01 -.881976200000E-01 -.495635900000E+02 .100000000000E+01 -.106904200000E-03 .179734500000E+03 -.259574000000E+01 .100000000000E+01 -.962165200000E-01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .962165200000E-01 -.889372800000E-02 .930827900000E+00 .930827900000E+00 .930827900000E+00 -.113835200000E+01 .953417800000E-01 .817697900000E+00 -.550835200000E+00 .461347800000E-01 .817697900000E+00 -.448922300000E+00 .375991500000E-01 .680686500000E+01 -.201884200000E-02 .169086600000E-03 -.603135900000E+00 -.119142600000E+01 -.209010100000E+00 -.232366400000E+00 -.158819900000E+01 .100000000000E+01 -.896067300000E-01 -.178947800000E+01 .100000000000E+01 -.822832500000E-01 -.401280400000E+01 .100000000000E+01 -.996804200000E-04 .118687400000E+01 -.871343200000E+00 .991860100000E+00 -.734149500000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .897824900000E+00 -.102426900000E+00 .263302500000E+03 .167102300000E+02 .252312500000E+03 .150913800000E+02 .236042500000E+03 .114402900000E+02 .684293300000E-02 .962274400000E+00 -.100000000000E+01 .954860200000E+00 .350421200000E+02 .281671900000E+02 .136685400000E+02 .100770500000E+01 .858467600000E+02 .144162100000E+03 .130405400000E+03 .100000000000E+01 .165890500000E+01 .100000000000E+01 .210649700000E+01 .100000000000E+01 .200090900000E+01 .350421200000E+02 .100000000000E+01 .281671900000E+02 .977826900000E+00 .136685400000E+02 .916239400000E+00 -.100000000000E+01 -.100000000000E+01 .343519000000E-02 .343519000000E-02 .343519000000E-02 -.100000000000E+01 -.100000000000E+01 .430169700000E-01 .430169700000E-01 .430169700000E-01 -.100000000000E+01 -.100000000000E+01 .953547800000E+00 .953547800000E+00 .953547800000E+00 .100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .100000000000E+01 -.100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 .100000000000E+01 -.476131300000E-01 .100000000000E+01 -.233347000000E-04 -.574643500000E-01 .100000000000E+01 -.352665600000E-03 -.129560400000E+00 .100000000000E+01 -.176254200000E-01 .270462500000E+03 -.280006700000E+01 .100000000000E+01 -.168569300000E+01 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .168569300000E+01 -.142667400000E+00 .121497400000E+00 .121497400000E+00 .121497400000E+00 -.113835200000E+01 .212305200000E-01 .605557500000E+00 -.194901800000E-01 .363496300000E-03 .335792700000E+00 -.135338300000E+00 .252409000000E-02 .106730900000E+00 -.953547800000E+00 .177838800000E-01 -.907592200000E+00 -.571182200000E+01 -.935684100000E+00 -.103465500000E+01 -.432409300000E-01 .100000000000E+01 -.259561100000E-04 -.521749100000E-01 .100000000000E+01 -.392189000000E-03 -.117631400000E+00 .100000000000E+01 -.196001600000E-01 .531407800000E+01 -.100218400000E+01 .344837200000E+00 -.264786200000E+00 -.100000000000E+01 -.100000000000E+01 -.100000000000E+01 .176697100000E+01 -.174740600000E+00 .991497300000E+02 -.100000000000E+01 -.331139800000E-04 .172639600000E+03 -.100000000000E+01 -.411081200000E-04 .356639800000E+03 -.100000000000E+01 -.845871800000E-04 .200000800000E+03 .250000000000E+01 .331139800000E-04 .349003300000E+03 .250000000000E+01 .411081200000E-04 .722067800000E+03 .250000000000E+01 .845871800000E-04 .100000000000E+01 -.144856500000E-05 .100000000000E+01 -.511329200000E-03 .100000000000E+01 -.954388700000E+00 .100502500000E+01 -.343519000000E-02 .100287400000E+01 -.430169700000E-01 .100138700000E+01 -.953547800000E+00 .100000000000E+01 -.494556000000E-04 .100000000000E+01 -.217755700000E-02 .100000000000E+01 -.428715300000E-01 .100000000000E+01 -.100000000000E+01 .150000000000E+01 .500000000000E+00 .100000000000E+01 -.316220000000E+06 -.121325800000E+05 -.100000000000E+01 -.204518100000E+05 .915275100000E+04 .914635700000E+01 .377349200000E-02 .224870600000E+04 -.125053300000E+00 .675883800000E-01 .650871200000E+02 -.188590400000E+00 -.915275100000E+04 .754394300000E+00 -.915275100000E+04 -.690478300000E+04 .100000000000E+01 .185692900000E+00 -.500000000000E+00 .191679400000E-03 .266845200000E+01 .889484000000E+00 .523971000000E+00 .259027300000E+01 .120903600000E+00 .100000000000E+01 .366077300000E+00 .183233300000E-01 .530708300000E+00 .261203200000E+01 .121438100000E+00 .100000000000E+01 .363274800000E+00 .193984800000E-01 .531148500000E+00 .261344700000E+01 .121473100000E+00 .100000000000E+01 .363091700000E+00 .194704500000E-01 .531316200000E+00 .261398600000E+01 .121486400000E+00 .100000000000E+01 .363021900000E+00 .194979300000E-01 .537533400000E+00 .263388000000E+01 .121979600000E+00 .100000000000E+01 .360435800000E+00 .205384600000E-01 .710928300000E+00 .313046700000E+01 .135735800000E+00 .100000000000E+01 .288309100000E+00 .714898800000E-01 SuiteSparse/RBio/Test/testRB1.m0000644001170100242450000000264110620670320015162 0ustar davisfacfunction testRB1 %testRB1: test the RBio toolbox. % % Example: % testRB1 % % See also UFget, RBread, RBreade, testRB2. % Copyright 2006, Timothy A. Davis files = { 'bcsstk01.rb' 'farm.rb' 'lap_25.pse' 'lap_25.rb' 'west0479.rb' 'west0479.rua' } ; for k = 1:length(files) file = files {k} ; fprintf ('%s : ', file) ; if (file (end) == 'e') [A Z] = RBreade (file) ; else [A Z] = RBread (file) ; end fprintf ('%s\n', RBtype (A)) ; RBwrite ('temp.rb', A, Z) ; [A2 Z2] = RBread ('temp.rb') ; if (~isequal (A, A2)) fprintf ('test failed: %s (A differs)\n', file) ; error ('!') ; end if (~isequal (Z, Z2)) fprintf ('test failed: %s (Z differs)\n', file) ; error ('!') ; end end load west0479 C = west0479 ; RBwrite ('mywest', C, 'WEST0479 chemical eng. problem', 'west0479') ; A = RBread ('mywest') ; if (~isequal (A, C)) error ('test failed: west0479 (MATLAB version)') ; end fprintf ('west0479 (MATLAB matrix) : %s\n', RBtype (A)) ; if (~strcmp (RBtype (A), 'rua')) error ('test failed: RBtype(A)\n') ; end if (~strcmp (RBtype (spones (A)), 'pua')) error ('test failed: RBtype(spones(A))\n') ; end if (~strcmp (RBtype (2*spones (A)), 'iua')) error ('test failed: RBtype(2*spones(A))\n') ; end C = A+A' ; if (~strcmp (RBtype (C), 'rsa')) error ('test failed: RBtype(A+A'')\n') ; end delete ('mywest') ; delete ('temp.rb') ; fprintf ('testRB1: all tests passed\n') ; SuiteSparse/RBio/Test/testRB2.m0000644001170100242450000000273310617665762015211 0ustar davisfacfunction testRB2 %testRB2: test the RBio toolbox. UFget is required. % Note that UFget requires the Nov 25, 2006, revision of the UF_Index.mat file, % or later, to access all the Problems used by this test. % % Example: % testRB2 % % See also UFget, RBread, RBreade, testRB1. % Copyright 2006, Timothy A. Davis Problem = UFget ('Meszaros/farm') ; disp (Problem) ; A = RBread ('farm.rb') ; if (~isequal (A, Problem.A)) error ('test failure: farm.rb') ; end fprintf ('mtype: %s\n', RBtype (A)) ; Problem = UFget ('HB/bcsstk01') ; disp (Problem) ; A = RBread ('bcsstk01.rb') ; if (~isequal (A, Problem.A)) error ('test failure: bcsstk01.rb') ; end fprintf ('mtype: %s\n', RBtype (A)) ; Problem = UFget ('HB/lap_25') ; disp (Problem) ; A = RBread ('lap_25.rb') ; if (~isequal (A, Problem.A)) error ('test failure: lap_25.rb') ; end A = RBreade ('lap_25.pse') ; if (~isequal (A, Problem.A)) error ('test failure: lap_25.pse') ; end fprintf ('mtype: %s\n', RBtype (A)) ; Problem = UFget ('HB/west0479') ; disp (Problem) ; [A Z] = RBread ('west0479.rb') ; if (~isequal (A, Problem.A)) error ('test failure: west0479.rb') ; end if (~isequal (Z, Problem.Zeros)) error ('test failure: west0479.rb') ; end [A Z] = RBread ('west0479.rua') ; if (~isequal (A, Problem.A)) error ('test failure: west0479.rua') ; end if (~isequal (Z, Problem.Zeros)) error ('test failure: west0479.rua') ; end fprintf ('mtype: %s\n', RBtype (A)) ; fprintf ('testRB2: all tests passed\n') ; SuiteSparse/RBio/RBwrite_mex_32.f0000644001170100242450000002461710634267663015533 0ustar davisfacc======================================================================= c=== RBio/RBwrite_mex_32 =============================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBwrite mexFunction: write a sparse matrix to a Rutherford/Boeing file c----------------------------------------------------------------------- c c mtype = RBwrite (filename, A, Z, title, key) c c A: a sparse matrix (no explicit zero entries) c Z: binary pattern of explicit zero entries to include in the c Rutherford/Boeing file. This always has the same size as A, c and is always sparse. Not used if [ ], or if nnz(Z) is 0. c title: title of Rutherford/Boeing file, up to 72 characters c key: the name of the matrix, up to 8 characters c c Z is optional. RBwrite (filename, A) uses a default c title and key, and does not include any explicit zeros. c RBwrite (filname, A, 'title...', 'key') uses the given title and c key, with no Z matrix. c c A must be sparse. Z must be empty, or sparse. c c mtype is a 3-character string with the file-type used c mtype(1): r: 0 (real), p: 1 (pattern), c: 2 (complex), c i: 3 (ineger) c mtype(2): r: -1 (rectangular), u: 0 (unsymmetric), s: 1 symmetric, c h: 2 (Hermitian), z: 3 (skew symmetric) c mtype(3): a: assembled matrix c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*4 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName, $ mxIsClass, mxIsSparse, mxIsComplex integer*4 $ mxGetM, mxGetN, mxGetJc, mxGetIr, mxGetPr, mxGetPi, $ mxGetString, mxGetData, mxCreateNumericMatrix, $ mxCreateString c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*4 $ nrow, ncol, nnz, mkind, cp, info, zmin, zmax, $ skind, wmat, cpmat, ww, kmin, kmax, task, $ Ap, Ai, Ax, Az, Zp, Zi, Zx, Zz, znz, zrow, zcol, i, $ mzkind, szkind, totcrd, ptrcrd, indcrd, valcrd, nw, one, $ w, valn, valn2, indn, nnz2, ptrn, i1, ititle, vals integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*20, indfmt*20, $ valfmt*20, filename*1024, fmt2*20, ztype*3 double precision t logical doZ, l1, is_int c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .lt. 2 .or. nargin .gt. 5. .or. nargout .gt. 2 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('[m s] = RBwrite (filename, A, Z, title, key)') endif c ---------------------------------------------------------------- c get filename c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, err = 998) c ---------------------------------------------------------------- c get A c ---------------------------------------------------------------- if (mxIsClass (pargin (2), 'double') .ne. 1 .or. $ mxIsSparse (pargin (2)) .ne. 1) then call mexErrMsgTxt ('A must be sparse and double') endif cmplex = mxIsComplex (pargin (2)) Ap = mxGetJc (pargin (2)) Ai = mxGetIr (pargin (2)) Ax = mxGetPr (pargin (2)) Az = mxGetPi (pargin (2)) nrow = mxGetM (pargin (2)) ncol = mxGetN (pargin (2)) c ---------------------------------------------------------------- c get title and key c ---------------------------------------------------------------- do 5 i = 1, 72 title (i:i) = ' ' 5 continue key = ' ' ititle = 99 do 15 i = 3, nargin if (mxIsChar (pargin (i)) .eq. 1) then if (ititle .eq. 99) then c get the title, up to 72 characters long i1 = mxGetString (pargin (i), title, 72) ititle = i else c get the key, up to 8 characters long i1 = mxGetString (pargin (i), key, 8) endif endif 15 continue c place a marker in the title, so we know that the c Rutherford/Boeing file was generated by the RBwrite mexFunction. title (72:72) = '|' c ---------------------------------------------------------------- c get Z, if present c ---------------------------------------------------------------- if (nargin .ge. 3 .and. ititle .gt. 3) then zrow = mxGetM (pargin (3)) zcol = mxGetN (pargin (3)) if (zrow .eq. 0 .or. zcol .eq. 0) then c -------------------------------------------------------- c Z matrix is empty c -------------------------------------------------------- doZ = .false. else c -------------------------------------------------------- c get the Z matrix c -------------------------------------------------------- if (mxIsClass (pargin (3), 'double') .ne. 1 .or. $ mxIsSparse (pargin (3)) .ne. 1 .or. $ mxIsComplex (pargin (3)) .ne. 0 .or. $ zrow .ne. nrow .or. zcol .ne. ncol) then call mexErrMsgTxt $ ('Z must be sparse, double, real, and same size as A') endif Zp = mxGetJc (pargin (3)) Zi = mxGetIr (pargin (3)) Zx = mxGetPr (pargin (3)) Zz = mxGetPi (pargin (3)) doZ = .true. endif else c ------------------------------------------------------------ c no Z matrix is present c ------------------------------------------------------------ doZ = .false. endif c ---------------------------------------------------------------- c get workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int32') nw = max (nrow, ncol) + 1 one = 1 wcomplex = 0 wmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) cpmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) w = mxGetData (wmat) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c determine the matrix type (RSA, RUA, etc) c ---------------------------------------------------------------- c find the symmetry of A (mkind, skind), and nnz(A) call RBkind (nrow, ncol, %val(Ap), %val(Ai), %val(Ax), $ %val(Az), cmplex, mkind, skind, mtype, nnz, %val(cp), $ kmin, kmax) if (doZ) then c find the symmetry of Z and find nnz(Z) call RBkind (nrow, ncol, %val(Zp), %val(Zi), %val(Zx), $ %val(Zz), 0, mzkind, szkind, ztype, znz, %val(cp), $ zmin, zmax) if (znz .eq. 0) then c ignore the Z matrix doZ = .false. elseif (szkind .le. 0) then c if Z is unsymmetric, then A+Z is unsymmetric too skind = szkind endif endif pargout (1) = mxCreateString (mtype) c ---------------------------------------------------------------- c determine the required precision c ---------------------------------------------------------------- indfmt = ' ' valfmt = ' ' is_int = mkind .eq. 3 ww = 1 if (mkind .ne. 1) then call RBformat (nnz, %val (Ax), ww, valfmt, valn, is_int, $ kmin, kmax) if (cmplex .eq. 1) then call RBformat (nnz, %val (Az), ww, valfmt, valn, is_int, $ kmin, kmax) endif endif c ---------------------------------------------------------------- c determine the number of entries in the matrix A+Z c ---------------------------------------------------------------- task = 1 call RBwrite (task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) if (nnz2 .eq. 0) then call mexErrMsgTxt ('empty matrices not handled') endif c determine pointer format. ncol+1 integers, largest is nnz2+1 call RBiformat (1, nnz2+1, ptrfmt, ptrn, i) call RBcards (ncol+1, ptrn, ptrcrd) c determine row index format. nnz2 integers, largest is nrow call RBiformat (1, nrow, indfmt, indn, i) call RBcards (nnz2, indn, indcrd) c determine how many lines for the numerical values if (mkind .eq. 0 .or. mkind .eq. 3) then c real or integer vals = 1 elseif (mkind .eq. 1) then c pattern vals = 0 else c complex vals = 2 endif call RBcards (vals*nnz2, valn, valcrd) c ---------------------------------------------------------------- c determine total number of cards c ---------------------------------------------------------------- totcrd = ptrcrd + indcrd + valcrd c ---------------------------------------------------------------- c write the header c ---------------------------------------------------------------- write (unit = 7, fmt = 10, err = 999) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, $ mtype, nrow, ncol, nnz2, 0, $ ptrfmt, indfmt, valfmt 10 format (a72, a8 / 4i14 / a3, 11x, 4i14 / 2a16, a20) c ---------------------------------------------------------------- c write the pointers c ---------------------------------------------------------------- call RBiflush (ptrfmt, %val (cp), ncol+1) c ---------------------------------------------------------------- c write the row indices c ---------------------------------------------------------------- task = 2 call RBwrite (task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) c ---------------------------------------------------------------- c write the numerical values c ---------------------------------------------------------------- if (mkind .ne. 1) then task = 3 call RBwrite(task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) endif c ---------------------------------------------------------------- c free workspace and return c ---------------------------------------------------------------- close (unit = 7) call mxDestroyArray (%val (cpmat)) return 998 call mexErrMsgTxt ('error openning file') 999 call mexErrMsgTxt ('error writing file') end SuiteSparse/RBio/RBwrite_mex_64.f0000644001170100242450000002461710617641041015523 0ustar davisfacc======================================================================= c=== RBio/RBwrite_mex_64 =============================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBwrite mexFunction: write a sparse matrix to a Rutherford/Boeing file c----------------------------------------------------------------------- c c mtype = RBwrite (filename, A, Z, title, key) c c A: a sparse matrix (no explicit zero entries) c Z: binary pattern of explicit zero entries to include in the c Rutherford/Boeing file. This always has the same size as A, c and is always sparse. Not used if [ ], or if nnz(Z) is 0. c title: title of Rutherford/Boeing file, up to 72 characters c key: the name of the matrix, up to 8 characters c c Z is optional. RBwrite (filename, A) uses a default c title and key, and does not include any explicit zeros. c RBwrite (filname, A, 'title...', 'key') uses the given title and c key, with no Z matrix. c c A must be sparse. Z must be empty, or sparse. c c mtype is a 3-character string with the file-type used c mtype(1): r: 0 (real), p: 1 (pattern), c: 2 (complex), c i: 3 (ineger) c mtype(2): r: -1 (rectangular), u: 0 (unsymmetric), s: 1 symmetric, c h: 2 (Hermitian), z: 3 (skew symmetric) c mtype(3): a: assembled matrix c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*8 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName, $ mxIsClass, mxIsSparse, mxIsComplex integer*8 $ mxGetM, mxGetN, mxGetJc, mxGetIr, mxGetPr, mxGetPi, $ mxGetString, mxGetData, mxCreateNumericMatrix, $ mxCreateString c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*8 $ nrow, ncol, nnz, mkind, cp, info, zmin, zmax, $ skind, wmat, cpmat, ww, kmin, kmax, task, $ Ap, Ai, Ax, Az, Zp, Zi, Zx, Zz, znz, zrow, zcol, i, $ mzkind, szkind, totcrd, ptrcrd, indcrd, valcrd, nw, one, $ w, valn, valn2, indn, nnz2, ptrn, i1, ititle, vals integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*20, indfmt*20, $ valfmt*20, filename*1024, fmt2*20, ztype*3 double precision t logical doZ, l1, is_int c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .lt. 2 .or. nargin .gt. 5. .or. nargout .gt. 2 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('[m s] = RBwrite (filename, A, Z, title, key)') endif c ---------------------------------------------------------------- c get filename c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, err = 998) c ---------------------------------------------------------------- c get A c ---------------------------------------------------------------- if (mxIsClass (pargin (2), 'double') .ne. 1 .or. $ mxIsSparse (pargin (2)) .ne. 1) then call mexErrMsgTxt ('A must be sparse and double') endif cmplex = mxIsComplex (pargin (2)) Ap = mxGetJc (pargin (2)) Ai = mxGetIr (pargin (2)) Ax = mxGetPr (pargin (2)) Az = mxGetPi (pargin (2)) nrow = mxGetM (pargin (2)) ncol = mxGetN (pargin (2)) c ---------------------------------------------------------------- c get title and key c ---------------------------------------------------------------- do 5 i = 1, 72 title (i:i) = ' ' 5 continue key = ' ' ititle = 99 do 15 i = 3, nargin if (mxIsChar (pargin (i)) .eq. 1) then if (ititle .eq. 99) then c get the title, up to 72 characters long i1 = mxGetString (pargin (i), title, 72) ititle = i else c get the key, up to 8 characters long i1 = mxGetString (pargin (i), key, 8) endif endif 15 continue c place a marker in the title, so we know that the c Rutherford/Boeing file was generated by the RBwrite mexFunction. title (72:72) = '|' c ---------------------------------------------------------------- c get Z, if present c ---------------------------------------------------------------- if (nargin .ge. 3 .and. ititle .gt. 3) then zrow = mxGetM (pargin (3)) zcol = mxGetN (pargin (3)) if (zrow .eq. 0 .or. zcol .eq. 0) then c -------------------------------------------------------- c Z matrix is empty c -------------------------------------------------------- doZ = .false. else c -------------------------------------------------------- c get the Z matrix c -------------------------------------------------------- if (mxIsClass (pargin (3), 'double') .ne. 1 .or. $ mxIsSparse (pargin (3)) .ne. 1 .or. $ mxIsComplex (pargin (3)) .ne. 0 .or. $ zrow .ne. nrow .or. zcol .ne. ncol) then call mexErrMsgTxt $ ('Z must be sparse, double, real, and same size as A') endif Zp = mxGetJc (pargin (3)) Zi = mxGetIr (pargin (3)) Zx = mxGetPr (pargin (3)) Zz = mxGetPi (pargin (3)) doZ = .true. endif else c ------------------------------------------------------------ c no Z matrix is present c ------------------------------------------------------------ doZ = .false. endif c ---------------------------------------------------------------- c get workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int64') nw = max (nrow, ncol) + 1 one = 1 wcomplex = 0 wmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) cpmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) w = mxGetData (wmat) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c determine the matrix type (RSA, RUA, etc) c ---------------------------------------------------------------- c find the symmetry of A (mkind, skind), and nnz(A) call RBkind (nrow, ncol, %val(Ap), %val(Ai), %val(Ax), $ %val(Az), cmplex, mkind, skind, mtype, nnz, %val(cp), $ kmin, kmax) if (doZ) then c find the symmetry of Z and find nnz(Z) call RBkind (nrow, ncol, %val(Zp), %val(Zi), %val(Zx), $ %val(Zz), 0, mzkind, szkind, ztype, znz, %val(cp), $ zmin, zmax) if (znz .eq. 0) then c ignore the Z matrix doZ = .false. elseif (szkind .le. 0) then c if Z is unsymmetric, then A+Z is unsymmetric too skind = szkind endif endif pargout (1) = mxCreateString (mtype) c ---------------------------------------------------------------- c determine the required precision c ---------------------------------------------------------------- indfmt = ' ' valfmt = ' ' is_int = mkind .eq. 3 ww = 1 if (mkind .ne. 1) then call RBformat (nnz, %val (Ax), ww, valfmt, valn, is_int, $ kmin, kmax) if (cmplex .eq. 1) then call RBformat (nnz, %val (Az), ww, valfmt, valn, is_int, $ kmin, kmax) endif endif c ---------------------------------------------------------------- c determine the number of entries in the matrix A+Z c ---------------------------------------------------------------- task = 1 call RBwrite (task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) if (nnz2 .eq. 0) then call mexErrMsgTxt ('empty matrices not handled') endif c determine pointer format. ncol+1 integers, largest is nnz2+1 call RBiformat (1, nnz2+1, ptrfmt, ptrn, i) call RBcards (ncol+1, ptrn, ptrcrd) c determine row index format. nnz2 integers, largest is nrow call RBiformat (1, nrow, indfmt, indn, i) call RBcards (nnz2, indn, indcrd) c determine how many lines for the numerical values if (mkind .eq. 0 .or. mkind .eq. 3) then c real or integer vals = 1 elseif (mkind .eq. 1) then c pattern vals = 0 else c complex vals = 2 endif call RBcards (vals*nnz2, valn, valcrd) c ---------------------------------------------------------------- c determine total number of cards c ---------------------------------------------------------------- totcrd = ptrcrd + indcrd + valcrd c ---------------------------------------------------------------- c write the header c ---------------------------------------------------------------- write (unit = 7, fmt = 10, err = 999) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, $ mtype, nrow, ncol, nnz2, 0, $ ptrfmt, indfmt, valfmt 10 format (a72, a8 / 4i14 / a3, 11x, 4i14 / 2a16, a20) c ---------------------------------------------------------------- c write the pointers c ---------------------------------------------------------------- call RBiflush (ptrfmt, %val (cp), ncol+1) c ---------------------------------------------------------------- c write the row indices c ---------------------------------------------------------------- task = 2 call RBwrite (task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) c ---------------------------------------------------------------- c write the numerical values c ---------------------------------------------------------------- if (mkind .ne. 1) then task = 3 call RBwrite(task, nrow, ncol, skind, cmplex, doZ, %val(Ap), $ %val(Ai), %val(Ax), %val(Az), %val(Zp), %val(Zi), mkind, $ indfmt, indn, valfmt, valn, nnz2, %val(w), %val(cp)) endif c ---------------------------------------------------------------- c free workspace and return c ---------------------------------------------------------------- close (unit = 7) call mxDestroyArray (%val (cpmat)) return 998 call mexErrMsgTxt ('error openning file') 999 call mexErrMsgTxt ('error writing file') end SuiteSparse/RBio/Contents.m0000644001170100242450000000171710620377774014600 0ustar davisfac% RBio: MATLAB toolbox for reading/writing sparse matrices in the Rutherford/ % Boeing format, and for reading/writing problems in the UF Sparse Matrix % Collection from/to a set of files in a directory. % % RBread - read a sparse matrix from a Rutherford/Boeing file % RBreade - read a symmetric finite-element matrix from a R/B file % RBtype - determine the Rutherford/Boeing type of a sparse matrix % RBwrite - write a sparse matrix to a Rutherford/Boeing file % RBraw - read the raw contents of a Rutherford/Boeing file % RBfix - read a possibly corrupted matrix from a R/B file % RBinstall - install the RBio toolbox for use in MATLAB % RBmake - compile the RBio toolbox for use in MATLAB % % Example: % % load west0479 % C = west0479 ; % RBwrite ('mywest', C, 'WEST0479 chemical eng. problem', 'west0479') % A = RBread ('mywest') ; % norm (A-C,1) % % See also UFget, mread, mwrite. % Copyright 2007, Timothy A. Davis SuiteSparse/RBio/RBraw_mex_32.f0000644001170100242450000001531310617641067015156 0ustar davisfacc======================================================================= c=== RBio/RBraw_mex_32 ================================================= c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBraw mexFunction: read the raw contents of a Rutherford/Boeing file c----------------------------------------------------------------------- c c [mtype Ap Ai Ax title key nrow] = RBraw (filename) c c mtype: Rutherford/Boeing matrix type (psa, rua, rsa, rse, ...) c Ap: column pointers (1-based) c Ai: row indices (1-based) c Ax: numerical values (real, complex, or integer). Empty for p*a c matrices. A complex matrix is read in as a single double array c Ax, where the kth entry has real value Ax(2*k-1) and imaginary c value Ax(2*k). c title: a string containing the title from the first line of the file c key: a string containing the 8-char key, from 1st line of the file c nrow: number of rows in the matrix c c This function works for both assembled and unassembled (finite- c element) matrices. It is also useful for checking the contents of a c Rutherford/Boeing file in detail, in case the file has invalid column c pointers, unsorted columns, duplicate entries, entries in the upper c triangular part of the file for a symmetric matrix, etc. c c Example: c c load west0479 c RBwrite ('mywest', west0479, [ ], 'My west0479 file', 'west0479') ; c [mtype Ap Ai Ax title key nrow] = RBraw ('mywest') ; c c See also RBfix, RBread, RBreade. c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*4 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName integer*4 $ mxGetString, mxCreateString, mxCreateDoubleScalar, $ mxCreateNumericMatrix, mxGetData c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*4 $ nrow, ncol, nnz, mkind, info, skind, k, nelnz, one, zero integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, filename*1024 double precision x c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 7 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('Usage: [mtype Ap Ai Ax title key nrow] = RBraw (filename)') endif c ---------------------------------------------------------------- c get filename and open file c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, status = 'OLD', err = 998) c ---------------------------------------------------------------- c read the header and determine the matrix type c ---------------------------------------------------------------- call RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, $ mkind, cmplex, skind, nelnz, info) call RBerr (info) c ---------------------------------------------------------------- c return the matrix type to MATLAB c ---------------------------------------------------------------- pargout (1) = mxCreateString (mtype) c ---------------------------------------------------------------- c read in the column pointers c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int32') one = 1 zero = 0 wcmplex = 0 if (nargout .ge. 2) then pargout (2) = mxCreateNumericMatrix $ (ncol+1, one, iclass, wcmplex) call RBiread (ptrfmt, ncol+1, $ %val(mxGetData (pargout (2))), info) call RBerr (info) endif c ---------------------------------------------------------------- c read in the row indices c ---------------------------------------------------------------- if (nargout .ge. 3) then pargout (3) = mxCreateNumericMatrix $ (nnz, one, iclass, wcmplex) call RBiread (indfmt, nnz, $ %val(mxGetData (pargout (3))), info) if (info .lt. 0) then info = -93 endif call RBerr (info) endif c ---------------------------------------------------------------- c read in the numerical values c ---------------------------------------------------------------- if (nelnz .eq. 0) then k = nnz else k = nelnz endif if (nargout .ge. 4) then if (mkind .eq. 1) then c pattern-only: create an empty numerical array pargout (4) = mxCreateNumericMatrix (zero, zero, $ mxClassIDFromClassName ('double'), wcmplex) elseif (mkind .eq. 3) then c read in the numerical values (integer) pargout (4) = mxCreateNumericMatrix $ (k, one, iclass, wcmplex) call RBiread (valfmt, k, $ %val(mxGetData (pargout (4))), info) call RBerr (info) else c read in the numerical values (real or complex) if (cmplex .eq. 1) then k = 2*k endif pargout (4) = mxCreateNumericMatrix (k, one, $ mxClassIDFromClassName ('double'), wcmplex) call RBxread (valfmt, k, $ %val(mxGetData (pargout (4))), info) call RBerr (info) endif endif c ---------------------------------------------------------------- c return the title c ---------------------------------------------------------------- if (nargout .ge. 5) then pargout (5) = mxCreateString (title) endif c ---------------------------------------------------------------- c return the key c ---------------------------------------------------------------- if (nargout .ge. 6) then pargout (6) = mxCreateString (key) endif c ---------------------------------------------------------------- c return the number of rows c ---------------------------------------------------------------- if (nargout .ge. 7) then x = nrow pargout (7) = mxCreateDoubleScalar (x) endif c ---------------------------------------------------------------- c close file c ---------------------------------------------------------------- close (unit = 7) return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 998 call mexErrMsgTxt ('error opening file') end SuiteSparse/RBio/RBraw_mex_64.f0000644001170100242450000001531310617640747015167 0ustar davisfacc======================================================================= c=== RBio/RBraw_mex_64 ================================================= c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBraw mexFunction: read the raw contents of a Rutherford/Boeing file c----------------------------------------------------------------------- c c [mtype Ap Ai Ax title key nrow] = RBraw (filename) c c mtype: Rutherford/Boeing matrix type (psa, rua, rsa, rse, ...) c Ap: column pointers (1-based) c Ai: row indices (1-based) c Ax: numerical values (real, complex, or integer). Empty for p*a c matrices. A complex matrix is read in as a single double array c Ax, where the kth entry has real value Ax(2*k-1) and imaginary c value Ax(2*k). c title: a string containing the title from the first line of the file c key: a string containing the 8-char key, from 1st line of the file c nrow: number of rows in the matrix c c This function works for both assembled and unassembled (finite- c element) matrices. It is also useful for checking the contents of a c Rutherford/Boeing file in detail, in case the file has invalid column c pointers, unsorted columns, duplicate entries, entries in the upper c triangular part of the file for a symmetric matrix, etc. c c Example: c c load west0479 c RBwrite ('mywest', west0479, [ ], 'My west0479 file', 'west0479') ; c [mtype Ap Ai Ax title key nrow] = RBraw ('mywest') ; c c See also RBfix, RBread, RBreade. c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*8 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName integer*8 $ mxGetString, mxCreateString, mxCreateDoubleScalar, $ mxCreateNumericMatrix, mxGetData c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*8 $ nrow, ncol, nnz, mkind, info, skind, k, nelnz, one, zero integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, filename*1024 double precision x c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 7 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('Usage: [mtype Ap Ai Ax title key nrow] = RBraw (filename)') endif c ---------------------------------------------------------------- c get filename and open file c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, status = 'OLD', err = 998) c ---------------------------------------------------------------- c read the header and determine the matrix type c ---------------------------------------------------------------- call RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, $ mkind, cmplex, skind, nelnz, info) call RBerr (info) c ---------------------------------------------------------------- c return the matrix type to MATLAB c ---------------------------------------------------------------- pargout (1) = mxCreateString (mtype) c ---------------------------------------------------------------- c read in the column pointers c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int64') one = 1 zero = 0 wcmplex = 0 if (nargout .ge. 2) then pargout (2) = mxCreateNumericMatrix $ (ncol+1, one, iclass, wcmplex) call RBiread (ptrfmt, ncol+1, $ %val(mxGetData (pargout (2))), info) call RBerr (info) endif c ---------------------------------------------------------------- c read in the row indices c ---------------------------------------------------------------- if (nargout .ge. 3) then pargout (3) = mxCreateNumericMatrix $ (nnz, one, iclass, wcmplex) call RBiread (indfmt, nnz, $ %val(mxGetData (pargout (3))), info) if (info .lt. 0) then info = -93 endif call RBerr (info) endif c ---------------------------------------------------------------- c read in the numerical values c ---------------------------------------------------------------- if (nelnz .eq. 0) then k = nnz else k = nelnz endif if (nargout .ge. 4) then if (mkind .eq. 1) then c pattern-only: create an empty numerical array pargout (4) = mxCreateNumericMatrix (zero, zero, $ mxClassIDFromClassName ('double'), wcmplex) elseif (mkind .eq. 3) then c read in the numerical values (integer) pargout (4) = mxCreateNumericMatrix $ (k, one, iclass, wcmplex) call RBiread (valfmt, k, $ %val(mxGetData (pargout (4))), info) call RBerr (info) else c read in the numerical values (real or complex) if (cmplex .eq. 1) then k = 2*k endif pargout (4) = mxCreateNumericMatrix (k, one, $ mxClassIDFromClassName ('double'), wcmplex) call RBxread (valfmt, k, $ %val(mxGetData (pargout (4))), info) call RBerr (info) endif endif c ---------------------------------------------------------------- c return the title c ---------------------------------------------------------------- if (nargout .ge. 5) then pargout (5) = mxCreateString (title) endif c ---------------------------------------------------------------- c return the key c ---------------------------------------------------------------- if (nargout .ge. 6) then pargout (6) = mxCreateString (key) endif c ---------------------------------------------------------------- c return the number of rows c ---------------------------------------------------------------- if (nargout .ge. 7) then x = nrow pargout (7) = mxCreateDoubleScalar (x) endif c ---------------------------------------------------------------- c close file c ---------------------------------------------------------------- close (unit = 7) return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 998 call mexErrMsgTxt ('error opening file') end SuiteSparse/RBio/RBread_mex_32.f0000644001170100242450000001734710617641117015305 0ustar davisfacc======================================================================= c=== RBio/RBread_mex_32 ================================================ c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBread mexFunction: read a sparse matrix from a Rutherford/Boeing file c----------------------------------------------------------------------- c c [A Z title key mtype] = RBread (filename) c c A: a sparse matrix (no explicit zero entries) c Z: binary pattern of explicit zero entries in Rutherford/Boeing file. c This always has the same size as A, and is always sparse. c c title: the 72-character title string in the file c key: the 8-character matrix name in the file c mtype: see RBwrite.m for a description. c c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*4 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName integer*4 $ mxGetM, mxGetN, mxCreateSparse, mxGetJc, mxGetData, $ mxGetIr, mxGetPr, mxGetPi, mxGetString, mxCreateString, $ mxCreateNumericMatrix c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*4 $ nrow, ncol, nnz, mkind, w, cp, $ skind, wmat, cpmat, Zmat, nw, $ Ap, Ai, Ax, Az, Cmat, Cx, nzeros, info, Zp, Zi, Zx, i, $ nnz2, nnz1, nelnz, one integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, filename*1024 c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 5 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('Usage: [A Z title key mtype] = RBread (filename)') endif c ---------------------------------------------------------------- c get filename and open file c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, status = 'OLD', err = 998) rewind (unit = 7) c ---------------------------------------------------------------- c read the header and determine the matrix type c ---------------------------------------------------------------- call RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, mkind, cmplex, skind, nelnz, info) if (nelnz .ne. 0) then c finite-element matrices not supported info = -5 endif call RBerr (info) c ---------------------------------------------------------------- c allocate result A c ---------------------------------------------------------------- if (skind .gt. 0) then c allocate enough space for upper triangular part (S,H,Z) nnz1 = 2 * nnz else nnz1 = nnz endif nnz1 = max (nnz1, 1) pargout (1) = mxCreateSparse (nrow, ncol, nnz1, cmplex) Ap = mxGetJc (pargout (1)) Ai = mxGetIr (pargout (1)) Ax = mxGetPr (pargout (1)) Az = mxGetPi (pargout (1)) c ---------------------------------------------------------------- c allocate workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int32') nw = max (nrow,ncol) + 1 wcmplex = 0 one = 1 wmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) cpmat = mxCreateNumericMatrix (ncol+1, one, iclass, wcmplex) w = mxGetData (wmat) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c read in the sparse matrix c ---------------------------------------------------------------- if (mkind .eq. 2) then c complex matrices Cmat = mxCreateNumericMatrix (2 * nnz1, one, $ mxClassIDFromClassName ('double'), wcmplex) Cx = mxGetData (Cmat) call RBcread (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, %val (Ap), %val (Ai), %val (Cx), nzeros, $ %val (w), %val (cp), info, nw, nnz1) else c real, pattern, and integer matrices call RBrread (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, %val (Ap), %val (Ai), %val (Ax), nzeros, $ %val (w), %val (cp), info, nw, nnz1) endif call RBerr (info) close (unit = 7) c ---------------------------------------------------------------- c extract or discard explicit zero entries c ---------------------------------------------------------------- if (nargout .ge. 2) then c ------------------------------------------------------------ c extract explicit zeros from A and store them in Z c ------------------------------------------------------------ pargout (2) = mxCreateSparse $ (nrow, ncol, max (nzeros,1), wcmplex) Zp = mxGetJc (pargout (2)) Zi = mxGetIr (pargout (2)) Zx = mxGetPr (pargout (2)) if (mkind .eq. 2) then c complex matrices call RBczeros (nrow, ncol, %val (cp), $ %val (Ap), %val (Ai), %val (Cx), $ %val (Zp), %val (Zi), %val (Zx)) else c real, pattern-only, and integer matrices call RBrzeros (nrow, ncol, %val (cp), $ %val (Ap), %val (Ai), %val (Ax), $ %val (Zp), %val (Zi), %val (Zx)) endif c convert Z to zero-based call RBmangle (ncol, %val (Zp), %val (Zi), i) else c ------------------------------------------------------------ c discard explicit zero entries from A (do not keep them) c ------------------------------------------------------------ if (mkind .eq. 2) then c complex matrices call RBcprune (nrow, ncol, $ %val (Ap), %val (Ai), %val (Cx)) else c real, pattern-only, and integer matrices call RBrprune (nrow, ncol, $ %val (Ap), %val (Ai), %val (Ax)) endif endif c ---------------------------------------------------------------- c convert A to final MATLAB form (zero-based, split complex) c ---------------------------------------------------------------- call RBmangle (ncol, %val (Ap), %val (Ai), nnz2) if (mkind .eq. 2) then c convert Fortran-style complex values to MATLAB-style call RBcsplit (%val (Cx), %val (Ax), %val (Az), nnz2) call mxDestroyArray (%val (Cmat)) endif c ---------------------------------------------------------------- c return title c ---------------------------------------------------------------- if (nargout .ge. 3) then pargout (3) = mxCreateString (title) endif c ---------------------------------------------------------------- c return key c ---------------------------------------------------------------- if (nargout .ge. 4) then pargout (4) = mxCreateString (key) endif c ---------------------------------------------------------------- c return the matrix type to MATLAB c ---------------------------------------------------------------- if (nargout .ge. 5) then pargout (5) = mxCreateString (mtype) endif c ---------------------------------------------------------------- c free workspace and return c ---------------------------------------------------------------- call mxDestroyArray (%val (wmat)) call mxDestroyArray (%val (cpmat)) return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 998 call mexErrMsgTxt ('error opening file') end SuiteSparse/RBio/RBread_mex_64.f0000644001170100242450000001734710617640777015325 0ustar davisfacc======================================================================= c=== RBio/RBread_mex_64 ================================================ c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBread mexFunction: read a sparse matrix from a Rutherford/Boeing file c----------------------------------------------------------------------- c c [A Z title key mtype] = RBread (filename) c c A: a sparse matrix (no explicit zero entries) c Z: binary pattern of explicit zero entries in Rutherford/Boeing file. c This always has the same size as A, and is always sparse. c c title: the 72-character title string in the file c key: the 8-character matrix name in the file c mtype: see RBwrite.m for a description. c c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*8 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxIsChar, mxClassIDFromClassName integer*8 $ mxGetM, mxGetN, mxCreateSparse, mxGetJc, mxGetData, $ mxGetIr, mxGetPr, mxGetPi, mxGetString, mxCreateString, $ mxCreateNumericMatrix c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*8 $ nrow, ncol, nnz, mkind, w, cp, $ skind, wmat, cpmat, Zmat, nw, $ Ap, Ai, Ax, Az, Cmat, Cx, nzeros, info, Zp, Zi, Zx, i, $ nnz2, nnz1, nelnz, one integer*4 iclass, cmplex, wcmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, filename*1024 c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 5 .or. $ mxIsChar (pargin (1)) .ne. 1) then call mexErrMsgTxt $ ('Usage: [A Z title key mtype] = RBread (filename)') endif c ---------------------------------------------------------------- c get filename and open file c ---------------------------------------------------------------- if (mxGetString (pargin (1), filename, 1024) .ne. 0) then call mexErrMsgTxt ('filename too long') endif close (unit = 7) open (unit = 7, file = filename, status = 'OLD', err = 998) rewind (unit = 7) c ---------------------------------------------------------------- c read the header and determine the matrix type c ---------------------------------------------------------------- call RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, mkind, cmplex, skind, nelnz, info) if (nelnz .ne. 0) then c finite-element matrices not supported info = -5 endif call RBerr (info) c ---------------------------------------------------------------- c allocate result A c ---------------------------------------------------------------- if (skind .gt. 0) then c allocate enough space for upper triangular part (S,H,Z) nnz1 = 2 * nnz else nnz1 = nnz endif nnz1 = max (nnz1, 1) pargout (1) = mxCreateSparse (nrow, ncol, nnz1, cmplex) Ap = mxGetJc (pargout (1)) Ai = mxGetIr (pargout (1)) Ax = mxGetPr (pargout (1)) Az = mxGetPi (pargout (1)) c ---------------------------------------------------------------- c allocate workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int64') nw = max (nrow,ncol) + 1 wcmplex = 0 one = 1 wmat = mxCreateNumericMatrix (nw, one, iclass, wcmplex) cpmat = mxCreateNumericMatrix (ncol+1, one, iclass, wcmplex) w = mxGetData (wmat) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c read in the sparse matrix c ---------------------------------------------------------------- if (mkind .eq. 2) then c complex matrices Cmat = mxCreateNumericMatrix (2 * nnz1, one, $ mxClassIDFromClassName ('double'), wcmplex) Cx = mxGetData (Cmat) call RBcread (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, %val (Ap), %val (Ai), %val (Cx), nzeros, $ %val (w), %val (cp), info, nw, nnz1) else c real, pattern, and integer matrices call RBrread (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, %val (Ap), %val (Ai), %val (Ax), nzeros, $ %val (w), %val (cp), info, nw, nnz1) endif call RBerr (info) close (unit = 7) c ---------------------------------------------------------------- c extract or discard explicit zero entries c ---------------------------------------------------------------- if (nargout .ge. 2) then c ------------------------------------------------------------ c extract explicit zeros from A and store them in Z c ------------------------------------------------------------ pargout (2) = mxCreateSparse $ (nrow, ncol, max (nzeros,1), wcmplex) Zp = mxGetJc (pargout (2)) Zi = mxGetIr (pargout (2)) Zx = mxGetPr (pargout (2)) if (mkind .eq. 2) then c complex matrices call RBczeros (nrow, ncol, %val (cp), $ %val (Ap), %val (Ai), %val (Cx), $ %val (Zp), %val (Zi), %val (Zx)) else c real, pattern-only, and integer matrices call RBrzeros (nrow, ncol, %val (cp), $ %val (Ap), %val (Ai), %val (Ax), $ %val (Zp), %val (Zi), %val (Zx)) endif c convert Z to zero-based call RBmangle (ncol, %val (Zp), %val (Zi), i) else c ------------------------------------------------------------ c discard explicit zero entries from A (do not keep them) c ------------------------------------------------------------ if (mkind .eq. 2) then c complex matrices call RBcprune (nrow, ncol, $ %val (Ap), %val (Ai), %val (Cx)) else c real, pattern-only, and integer matrices call RBrprune (nrow, ncol, $ %val (Ap), %val (Ai), %val (Ax)) endif endif c ---------------------------------------------------------------- c convert A to final MATLAB form (zero-based, split complex) c ---------------------------------------------------------------- call RBmangle (ncol, %val (Ap), %val (Ai), nnz2) if (mkind .eq. 2) then c convert Fortran-style complex values to MATLAB-style call RBcsplit (%val (Cx), %val (Ax), %val (Az), nnz2) call mxDestroyArray (%val (Cmat)) endif c ---------------------------------------------------------------- c return title c ---------------------------------------------------------------- if (nargout .ge. 3) then pargout (3) = mxCreateString (title) endif c ---------------------------------------------------------------- c return key c ---------------------------------------------------------------- if (nargout .ge. 4) then pargout (4) = mxCreateString (key) endif c ---------------------------------------------------------------- c return the matrix type to MATLAB c ---------------------------------------------------------------- if (nargout .ge. 5) then pargout (5) = mxCreateString (mtype) endif c ---------------------------------------------------------------- c free workspace and return c ---------------------------------------------------------------- call mxDestroyArray (%val (wmat)) call mxDestroyArray (%val (cpmat)) return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 998 call mexErrMsgTxt ('error opening file') end SuiteSparse/RBio/RBread_32.f0000644001170100242450000003031310617641102014412 0ustar davisfacc======================================================================= c=== RBio/RBread_32 ==================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBheader: read Rutherford/Boeing header lines c----------------------------------------------------------------------- c c Rutherford/Boeing file type is a 3-character string: c c (1) R: real, C: complex, P: pattern only, I: integer c mkind: R: 0, P: 1, C: 2, I: 3 c c (2) S: symmetric, U: unsymmetric, H: Hermitian, Z: skew symmetric, c R: rectangular c skind: R: -1, U: 0, S: 1, H: 2, Z: 3 c c (3) A: assembled, E: element form c nelnz = 0 for A, number of elements for E c c pattern matrices are given numerical values of 1 (except PZA). c PZA matrices have +1 in the lower triangular part and -1 in c the upper triangular part. c c The matrix is nrow-by-ncol with nnz entries. c For symmetric matrices, Ai and Ax are of size 2*nnz (the upper c triangular part is constructed). To skip this construction, c pass skind = 0 to RBpattern. c----------------------------------------------------------------------- subroutine RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, mkind, cmplex, skind, nelnz, info) integer*4 $ nrow, ncol, nnz, totcrd, ptrcrd, nelnz, $ indcrd, valcrd, mkind, skind, info integer*4 cmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, rhstyp*3 logical fem c ---------------------------------------------------------------- c read header lines 1-4 c ---------------------------------------------------------------- read (7, 10, err = 91, end = 91) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, $ mtype, nrow, ncol, nnz, nelnz, $ ptrfmt, indfmt, valfmt 10 format (a72, a8 / 4i14 / a3, 11x, 4i14 / 2a16, a20) if (nrow .lt. 0 .or. ncol .lt. 0 .or. nnz .lt. 0) then c error: invalid matrix dimensions info = -6 return endif c ---------------------------------------------------------------- c skip the Harwell/Boeing header line 5, if present c ---------------------------------------------------------------- read (7, 20, err = 91, end = 91) rhstyp 20 format (a3) if ((rhstyp (1:1) .eq. 'F' .or. rhstyp (1:1) .eq. 'f' .or. $ rhstyp (1:1) .eq. 'M' .or. rhstyp (1:1) .eq. 'm')) then c This is the 5th line Harwell/Boeing format. Ignore it. call mexErrMsgTxt ('Harwell/Boeing RHS ignored') else c Backspace one record, since we just read in one row of c the column pointers. backspace (unit = 7) endif c ---------------------------------------------------------------- c determine if real, pattern, integer, or complex c ---------------------------------------------------------------- if (mtype (1:1) .eq. 'R' .or. mtype (1:1) .eq. 'r') then c real mkind = 0 cmplex = 0 elseif (mtype (1:1) .eq. 'P' .or. mtype (1:1) .eq. 'p') then c pattern mkind = 1 cmplex = 0 elseif (mtype (1:1) .eq. 'C' .or. mtype (1:1) .eq. 'c') then c complex mkind = 2 cmplex = 1 elseif (mtype (1:1) .eq. 'I' .or. mtype (1:1) .eq. 'i') then c integer mkind = 3 cmplex = 0 else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c determine if the upper part must be constructed c ---------------------------------------------------------------- if (mtype (2:2) .eq. 'R' .or. mtype (2:2) .eq. 'r') then c rectangular: RRA, PRA, IRA, and CRA matrices skind = -1 elseif (mtype (2:2) .eq. 'U' .or. mtype (2:2) .eq. 'u') then c unsymmetric: RUA, PUA, IUA, and CUA matrices skind = 0 elseif (mtype (2:2) .eq. 'S' .or. mtype (2:2) .eq. 's') then c symmetric: RSA, PSA, ISA, and CSA matrices skind = 1 elseif (mtype (2:2) .eq. 'H' .or. mtype (2:2) .eq. 'h') then c Hermitian: CHA (PHA, IHA, and RHA are valid, but atypical) skind = 2 elseif (mtype (2:2) .eq. 'Z' .or. mtype (2:2) .eq. 'z') then c skew symmetric: RZA, PZA, IZA, and CZA skind = 3 else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c assembled matrices or elemental matrices (**A, **E) c ---------------------------------------------------------------- if (mtype (3:3) .eq. 'A' .or. mtype (3:3) .eq. 'a') then c assembled - ignore nelnz fem = .false. nelnz = 0 elseif (mtype (3:3) .eq. 'E' .or. mtype (3:3) .eq. 'e') then c finite-element fem = .true. continue else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c assembled matrices must be square if skind is not R c ---------------------------------------------------------------- if (.not. fem .and. skind .ne. -1 .and. nrow .ne. ncol) then c error: invalid matrix dimensions info = -6 return endif c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error reading file c ---------------------------------------------------------------- 91 info = -91 return end c----------------------------------------------------------------------- c RBpattern: read the column pointers and row indices c----------------------------------------------------------------------- c w and cp are both of size ncol+1 (undefined on input). c c The matrix is contained in Ap, Ai, and Ax on output (undefined on c input). It has nzeros explicit zero entries. cp (1..ncol+1) are c the column pointers for the matrix Z that will contain all the c explicit zero entries. Ax is not read in (see RBrread and c RBcread). c c info is returned as: c 0 ok c -1 invalid column pointers c -2 row index out of range c -3 duplicate entry c -4 entries in upper triangular part of symmetric matrix c -5 invalid matrix type c -6 invalid dimensions c -7 matrix contains unsorted columns c -91 error reading file (header) c -92 error reading file (column pointers) c -93 error reading file (row indices) c -94 error reading file (numerical values: A, or sparse b) c----------------------------------------------------------------------- subroutine RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) integer*4 $ nrow, ncol, nnz, skind, info, Ap (ncol+1), Ai (nnz), $ nw, w (nw), cp (ncol+1) character ptrfmt*16, indfmt*16 integer*4 $ j, i, p, ilast c ---------------------------------------------------------------- c read the pointers and check them c ---------------------------------------------------------------- call RBiread (ptrfmt, ncol+1, Ap, info) if (info .lt. 0) then return endif if (Ap (1) .ne. 1 .or. Ap (ncol+1) - 1 .ne. nnz) then c error: invalid matrix (col pointers) info = -1 return endif do 10 j = 2, ncol+1 if (Ap (j) .lt. Ap (j-1)) then c error: invalid matrix (col pointers) info = -1 return endif 10 continue c ---------------------------------------------------------------- c read the row indices and check them c ---------------------------------------------------------------- call RBiread (indfmt, nnz, Ai, info) if (info .lt. 0) then info = -93 return endif do 20 i = 1, nrow w (i) = -1 20 continue do 40 j = 1, ncol ilast = 0 do 30 p = Ap (j), Ap (j+1) - 1 i = Ai (p) if (i .lt. 1 .or. i .gt. nrow) then c error: row index out of range c print *, 'column j, rows!', j, i, nrow info = -2 return endif if (w (i) .eq. j) then c error: duplicate entry in matrix c print *, 'column j, duplicate!', j, i info = -3 return endif w (i) = j if (i .lt. ilast) then c error: matrix contains unsorted columns c print *, 'column j, unsorted!', j, i, ilast info = -7 return endif ilast = i 30 continue 40 continue c ---------------------------------------------------------------- c construct new column pointers for symmetric matrices c ---------------------------------------------------------------- if (skind .gt. 0) then c ------------------------------------------------------------ c compute the column counts for the whole matrix c ------------------------------------------------------------ do 50 j = 1, ncol+1 w (j) = 0 50 continue do 70 j = 1, ncol do 60 p = Ap (j), Ap (j+1)-1 i = Ai (p) if (i .eq. j) then c diagonal entry, only appears as A(j,j) w (j) = w (j) + 1 elseif (i .gt. j) then c entry in lower triangular part, A(i,j) will be c duplicated as A(j,i), so count it in both cols w (i) = w (i) + 1 w (j) = w (j) + 1 else c error: entry in upper triangular part info = -4 return endif 60 continue 70 continue c ------------------------------------------------------------ c compute the new column pointers c ------------------------------------------------------------ cp (1) = 1 do 80 j = 2, ncol+1 cp (j) = cp (j-1) + w (j-1) 80 continue endif c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return end c----------------------------------------------------------------------- c RBmangle: convert 1-based matrix into 0-based c----------------------------------------------------------------------- subroutine RBmangle (ncol, Ap, Ai, nnz) integer*4 $ ncol, nnz, p, j, Ap (ncol+1), Ai (*) nnz = Ap (ncol + 1) - 1 do 10 j = 1, ncol+1 Ap (j) = Ap (j) - 1 10 continue do 20 p = 1, nnz Ai (p) = Ai (p) - 1 20 continue return end c----------------------------------------------------------------------- subroutine RBiread (ifmt, n, I, info) integer*4 $ n, I (n), info, p character ifmt*16 info = 0 read (7, ifmt, err = 92, end = 92) (I (p), p = 1, n) return 92 info = -92 return end c----------------------------------------------------------------------- subroutine RBxread (xfmt, n, X, info) integer*4 $ mkind, n, info, p double precision X (n) character xfmt*20 info = 0 read (7, xfmt, err = 94, end = 94) (X (p), p = 1, n) return 94 info = -94 return end c----------------------------------------------------------------------- c RBerr: report an error to MATLAB c----------------------------------------------------------------------- c c info = 0 is OK, info < 0 is a fatal error, info > 0 is a warning subroutine RBerr (info) integer*4 $ info if (info .eq. -7) then call mexErrMsgTxt ('matrix contains unsorted columns') elseif (info .eq. -1) then call mexErrMsgTxt ('invalid matrix (col pointers)') elseif (info .eq. -2) then call mexErrMsgTxt ('row index out of range)') elseif (info .eq. -3) then call mexErrMsgTxt ('duplicate entry in matrix') elseif (info .eq. -4) then call mexErrMsgTxt ('invalid symmetric matrix') elseif (info .eq. -5) then call mexErrMsgTxt ('invalid matrix type') elseif (info .eq. -6) then call mexErrMsgTxt ('invalid matrix dimensions') elseif (info .eq. -911) then call mexErrMsgTxt ('finite-element form not supported') elseif (info .eq. -91) then call mexErrMsgTxt ('error reading file (header)') elseif (info .eq. -92) then call mexErrMsgTxt ('error reading file (column pointers)') elseif (info .eq. -93) then call mexErrMsgTxt ('error reading file (row indices)') elseif (info .eq. -94) then call mexErrMsgTxt ('error reading file (numerical values)') elseif (info .eq. -95) then call mexErrMsgTxt ('error reading file (right-hand-side)') elseif (info .lt. 0) then print *, info call mexErrMsgTxt ('error (unspecified)') elseif (info .gt. 0) then print *, info call mexErrMsgTxt ('warning (unspecified)') endif return end SuiteSparse/RBio/RBread_64.f0000644001170100242450000003031310617640762014432 0ustar davisfacc======================================================================= c=== RBio/RBread_64 ==================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBheader: read Rutherford/Boeing header lines c----------------------------------------------------------------------- c c Rutherford/Boeing file type is a 3-character string: c c (1) R: real, C: complex, P: pattern only, I: integer c mkind: R: 0, P: 1, C: 2, I: 3 c c (2) S: symmetric, U: unsymmetric, H: Hermitian, Z: skew symmetric, c R: rectangular c skind: R: -1, U: 0, S: 1, H: 2, Z: 3 c c (3) A: assembled, E: element form c nelnz = 0 for A, number of elements for E c c pattern matrices are given numerical values of 1 (except PZA). c PZA matrices have +1 in the lower triangular part and -1 in c the upper triangular part. c c The matrix is nrow-by-ncol with nnz entries. c For symmetric matrices, Ai and Ax are of size 2*nnz (the upper c triangular part is constructed). To skip this construction, c pass skind = 0 to RBpattern. c----------------------------------------------------------------------- subroutine RBheader (title, key, mtype, nrow, ncol, nnz, $ ptrfmt, indfmt, valfmt, mkind, cmplex, skind, nelnz, info) integer*8 $ nrow, ncol, nnz, totcrd, ptrcrd, nelnz, $ indcrd, valcrd, mkind, skind, info integer*4 cmplex character title*72, key*8, mtype*3, ptrfmt*16, indfmt*16, $ valfmt*20, rhstyp*3 logical fem c ---------------------------------------------------------------- c read header lines 1-4 c ---------------------------------------------------------------- read (7, 10, err = 91, end = 91) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, $ mtype, nrow, ncol, nnz, nelnz, $ ptrfmt, indfmt, valfmt 10 format (a72, a8 / 4i14 / a3, 11x, 4i14 / 2a16, a20) if (nrow .lt. 0 .or. ncol .lt. 0 .or. nnz .lt. 0) then c error: invalid matrix dimensions info = -6 return endif c ---------------------------------------------------------------- c skip the Harwell/Boeing header line 5, if present c ---------------------------------------------------------------- read (7, 20, err = 91, end = 91) rhstyp 20 format (a3) if ((rhstyp (1:1) .eq. 'F' .or. rhstyp (1:1) .eq. 'f' .or. $ rhstyp (1:1) .eq. 'M' .or. rhstyp (1:1) .eq. 'm')) then c This is the 5th line Harwell/Boeing format. Ignore it. call mexErrMsgTxt ('Harwell/Boeing RHS ignored') else c Backspace one record, since we just read in one row of c the column pointers. backspace (unit = 7) endif c ---------------------------------------------------------------- c determine if real, pattern, integer, or complex c ---------------------------------------------------------------- if (mtype (1:1) .eq. 'R' .or. mtype (1:1) .eq. 'r') then c real mkind = 0 cmplex = 0 elseif (mtype (1:1) .eq. 'P' .or. mtype (1:1) .eq. 'p') then c pattern mkind = 1 cmplex = 0 elseif (mtype (1:1) .eq. 'C' .or. mtype (1:1) .eq. 'c') then c complex mkind = 2 cmplex = 1 elseif (mtype (1:1) .eq. 'I' .or. mtype (1:1) .eq. 'i') then c integer mkind = 3 cmplex = 0 else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c determine if the upper part must be constructed c ---------------------------------------------------------------- if (mtype (2:2) .eq. 'R' .or. mtype (2:2) .eq. 'r') then c rectangular: RRA, PRA, IRA, and CRA matrices skind = -1 elseif (mtype (2:2) .eq. 'U' .or. mtype (2:2) .eq. 'u') then c unsymmetric: RUA, PUA, IUA, and CUA matrices skind = 0 elseif (mtype (2:2) .eq. 'S' .or. mtype (2:2) .eq. 's') then c symmetric: RSA, PSA, ISA, and CSA matrices skind = 1 elseif (mtype (2:2) .eq. 'H' .or. mtype (2:2) .eq. 'h') then c Hermitian: CHA (PHA, IHA, and RHA are valid, but atypical) skind = 2 elseif (mtype (2:2) .eq. 'Z' .or. mtype (2:2) .eq. 'z') then c skew symmetric: RZA, PZA, IZA, and CZA skind = 3 else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c assembled matrices or elemental matrices (**A, **E) c ---------------------------------------------------------------- if (mtype (3:3) .eq. 'A' .or. mtype (3:3) .eq. 'a') then c assembled - ignore nelnz fem = .false. nelnz = 0 elseif (mtype (3:3) .eq. 'E' .or. mtype (3:3) .eq. 'e') then c finite-element fem = .true. continue else c error: invalid matrix type info = -5 return endif c ---------------------------------------------------------------- c assembled matrices must be square if skind is not R c ---------------------------------------------------------------- if (.not. fem .and. skind .ne. -1 .and. nrow .ne. ncol) then c error: invalid matrix dimensions info = -6 return endif c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error reading file c ---------------------------------------------------------------- 91 info = -91 return end c----------------------------------------------------------------------- c RBpattern: read the column pointers and row indices c----------------------------------------------------------------------- c w and cp are both of size ncol+1 (undefined on input). c c The matrix is contained in Ap, Ai, and Ax on output (undefined on c input). It has nzeros explicit zero entries. cp (1..ncol+1) are c the column pointers for the matrix Z that will contain all the c explicit zero entries. Ax is not read in (see RBrread and c RBcread). c c info is returned as: c 0 ok c -1 invalid column pointers c -2 row index out of range c -3 duplicate entry c -4 entries in upper triangular part of symmetric matrix c -5 invalid matrix type c -6 invalid dimensions c -7 matrix contains unsorted columns c -91 error reading file (header) c -92 error reading file (column pointers) c -93 error reading file (row indices) c -94 error reading file (numerical values: A, or sparse b) c----------------------------------------------------------------------- subroutine RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) integer*8 $ nrow, ncol, nnz, skind, info, Ap (ncol+1), Ai (nnz), $ nw, w (nw), cp (ncol+1) character ptrfmt*16, indfmt*16 integer*8 $ j, i, p, ilast c ---------------------------------------------------------------- c read the pointers and check them c ---------------------------------------------------------------- call RBiread (ptrfmt, ncol+1, Ap, info) if (info .lt. 0) then return endif if (Ap (1) .ne. 1 .or. Ap (ncol+1) - 1 .ne. nnz) then c error: invalid matrix (col pointers) info = -1 return endif do 10 j = 2, ncol+1 if (Ap (j) .lt. Ap (j-1)) then c error: invalid matrix (col pointers) info = -1 return endif 10 continue c ---------------------------------------------------------------- c read the row indices and check them c ---------------------------------------------------------------- call RBiread (indfmt, nnz, Ai, info) if (info .lt. 0) then info = -93 return endif do 20 i = 1, nrow w (i) = -1 20 continue do 40 j = 1, ncol ilast = 0 do 30 p = Ap (j), Ap (j+1) - 1 i = Ai (p) if (i .lt. 1 .or. i .gt. nrow) then c error: row index out of range c print *, 'column j, rows!', j, i, nrow info = -2 return endif if (w (i) .eq. j) then c error: duplicate entry in matrix c print *, 'column j, duplicate!', j, i info = -3 return endif w (i) = j if (i .lt. ilast) then c error: matrix contains unsorted columns c print *, 'column j, unsorted!', j, i, ilast info = -7 return endif ilast = i 30 continue 40 continue c ---------------------------------------------------------------- c construct new column pointers for symmetric matrices c ---------------------------------------------------------------- if (skind .gt. 0) then c ------------------------------------------------------------ c compute the column counts for the whole matrix c ------------------------------------------------------------ do 50 j = 1, ncol+1 w (j) = 0 50 continue do 70 j = 1, ncol do 60 p = Ap (j), Ap (j+1)-1 i = Ai (p) if (i .eq. j) then c diagonal entry, only appears as A(j,j) w (j) = w (j) + 1 elseif (i .gt. j) then c entry in lower triangular part, A(i,j) will be c duplicated as A(j,i), so count it in both cols w (i) = w (i) + 1 w (j) = w (j) + 1 else c error: entry in upper triangular part info = -4 return endif 60 continue 70 continue c ------------------------------------------------------------ c compute the new column pointers c ------------------------------------------------------------ cp (1) = 1 do 80 j = 2, ncol+1 cp (j) = cp (j-1) + w (j-1) 80 continue endif c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return end c----------------------------------------------------------------------- c RBmangle: convert 1-based matrix into 0-based c----------------------------------------------------------------------- subroutine RBmangle (ncol, Ap, Ai, nnz) integer*8 $ ncol, nnz, p, j, Ap (ncol+1), Ai (*) nnz = Ap (ncol + 1) - 1 do 10 j = 1, ncol+1 Ap (j) = Ap (j) - 1 10 continue do 20 p = 1, nnz Ai (p) = Ai (p) - 1 20 continue return end c----------------------------------------------------------------------- subroutine RBiread (ifmt, n, I, info) integer*8 $ n, I (n), info, p character ifmt*16 info = 0 read (7, ifmt, err = 92, end = 92) (I (p), p = 1, n) return 92 info = -92 return end c----------------------------------------------------------------------- subroutine RBxread (xfmt, n, X, info) integer*8 $ mkind, n, info, p double precision X (n) character xfmt*20 info = 0 read (7, xfmt, err = 94, end = 94) (X (p), p = 1, n) return 94 info = -94 return end c----------------------------------------------------------------------- c RBerr: report an error to MATLAB c----------------------------------------------------------------------- c c info = 0 is OK, info < 0 is a fatal error, info > 0 is a warning subroutine RBerr (info) integer*8 $ info if (info .eq. -7) then call mexErrMsgTxt ('matrix contains unsorted columns') elseif (info .eq. -1) then call mexErrMsgTxt ('invalid matrix (col pointers)') elseif (info .eq. -2) then call mexErrMsgTxt ('row index out of range)') elseif (info .eq. -3) then call mexErrMsgTxt ('duplicate entry in matrix') elseif (info .eq. -4) then call mexErrMsgTxt ('invalid symmetric matrix') elseif (info .eq. -5) then call mexErrMsgTxt ('invalid matrix type') elseif (info .eq. -6) then call mexErrMsgTxt ('invalid matrix dimensions') elseif (info .eq. -911) then call mexErrMsgTxt ('finite-element form not supported') elseif (info .eq. -91) then call mexErrMsgTxt ('error reading file (header)') elseif (info .eq. -92) then call mexErrMsgTxt ('error reading file (column pointers)') elseif (info .eq. -93) then call mexErrMsgTxt ('error reading file (row indices)') elseif (info .eq. -94) then call mexErrMsgTxt ('error reading file (numerical values)') elseif (info .eq. -95) then call mexErrMsgTxt ('error reading file (right-hand-side)') elseif (info .lt. 0) then print *, info call mexErrMsgTxt ('error (unspecified)') elseif (info .gt. 0) then print *, info call mexErrMsgTxt ('warning (unspecified)') endif return end SuiteSparse/RBio/RBinstall.m0000644001170100242450000000115310620377733014662 0ustar davisfac%RBINSTALL install the RBio toolbox for use in MATLAB % Compiles the Fortran mexFunctions RBread, RBwrite, RBtype, and RBraw, and % the C mexFunction UFfull_write, and adds the current directory to the MATLAB % path. % % Example: % % RBinstall % % See also RBread, RBwrite, RBtype, RBraw. % % Copyright 2007, Timothy A. Davis help RBio RBmake s = pwd ; addpath (s) ; cd Test testRB1 cd (s) fprintf ('\nRBio is ready to use. Your path has been modified for this\n') ; fprintf ('session, by adding the following path:\n') ; fprintf ('%s\n', s) ; fprintf ('Use the pathtool to modify your path permanently.\n') ; SuiteSparse/RBio/RBrread_32.f0000644001170100242450000001766110617641127014616 0ustar davisfacc======================================================================= c=== RBio/RBrread_32 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RB*read: read a Rutherford/Boeing matrix c----------------------------------------------------------------------- subroutine RBrread $ (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, Ap, Ai, Ax, nzeros, w, cp, info, nw, nnz1) integer*4 $ nrow, ncol, nnz, mkind, skind, p, j, i, alen, llen, k, $ ilast, nzeros, info, nw, nnz1 integer*4 $ Ap (ncol+1), Ai (nnz1), w (nw), cp (ncol+1) double precision Ax (nnz1), x character ptrfmt*16, indfmt*16, valfmt*20 character*4 s c ---------------------------------------------------------------- c read the column pointers and row indices c ---------------------------------------------------------------- call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid return endif c ---------------------------------------------------------------- c read the values c ---------------------------------------------------------------- if (mkind .eq. 1) then c pattern-only matrix, set all values to 1 do 10 i = 1, nnz Ax (i) = 1 10 continue elseif (mkind .eq. 3) then c Read in nnz integer values, then convert them to real. c use Ai as workspace. If the matrix is symmetric, Ai is c twice as big as nnz, so use Ai (nnz+1...2*nnz) as workspace. c Otherwise, for an iua matrix, use Ai (1..nnz) and then c rewind the file and read Ap and Ai back in again. if (skind .le. 0) then k = 0 else k = nnz endif read (7, valfmt, err = 94, end = 94) (Ai(p), p = k+1, k+nnz) do 5 p = 1, nnz Ax (p) = Ai (p+k) 5 continue if (skind .le. 0) then c now that Ai has been destroyed, rewind the file and read c in Ap and Ai again. Skip the 4-line header first. rewind (unit = 7) read (7, 15) (s (k:k), k = 1,4) 15 format (a1 / a1 / a1 / a1) call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid. This 'cannot' happen, c because the pattern was already read in above. return endif endif else c read nnz values read (7, valfmt, err = 94, end = 94) (Ax (p), p = 1, nnz) endif c ---------------------------------------------------------------- c construct upper triangular part for symmetric matrices c ---------------------------------------------------------------- c If skind is zero, then the upper part is not constructed. This c allows the caller to skip this part, and create the upper part c of a symmetric (S,H,Z) matrix. Just pass skind = 0. if (skind .gt. 0) then c ------------------------------------------------------------ c shift the matrix by adding gaps to the top of each column c ------------------------------------------------------------ do 30 j = ncol, 1, -1 c number of entries in lower tri. part (incl. diagonal) llen = Ap (j+1) - Ap (j) c number of entries in entire column alen = cp (j+1) - cp (j) c move the column from Ai (Ap(j) ... Ap(j+1)-1) c down to Ai (cp(j+1)-llen ... cp(j+1)-1), leaving a gap c at Ai (Ap(j) ... cp(j+1)-llen) do 20 k = 1, llen Ai (cp (j+1) - k) = Ai (Ap (j+1) - k) Ax (cp (j+1) - k) = Ax (Ap (j+1) - k) 20 continue 30 continue c ------------------------------------------------------------ c populate the upper triangular part c ------------------------------------------------------------ c create temporary column pointers to point to the gaps do 40 j = 1, ncol w (j) = cp (j) 40 continue do 60 j = 1, ncol c scan the entries in the lower tri. part, in c Ai (cp(j+1)-llen ... cp(j+1)-1) llen = Ap (j+1) - Ap (j) do 50 k = 1, llen c get the A(i,j) entry in the lower triangular part i = Ai (cp (j+1) - k) x = Ax (cp (j+1) - k) c add A(j,i) as the next entry in column i (excl diag) if (i .ne. j) then p = w (i) w (i) = w (i) + 1 Ai (p) = j if (skind .eq. 1) then c *SA matrix Ax (p) = x elseif (skind .eq. 2) then c *HA matrix Ax (p) = x else c *ZA matrix Ax (p) = -x endif endif 50 continue 60 continue c finalize the column pointers do 70 j = 1, ncol+1 Ap (j) = cp (j) 70 continue endif c ---------------------------------------------------------------- c count the number of explicit zeros c ---------------------------------------------------------------- nzeros = 0 do 90 j = 1, ncol cp (j) = nzeros + 1 do 80 p = Ap (j), Ap (j+1)-1 if (Ax (p) .eq. 0) then nzeros = nzeros + 1 endif 80 continue 90 continue cp (ncol+1) = nzeros + 1 c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 94 info = -94 return end c----------------------------------------------------------------------- c RB*zeros: extract explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A and Z c cp: column pointers of Z on input c Ap, Ai, Ax: matrix with zeros on input, pruned on output c Zp, Zi, Zx: empty matrix on input, pattern of zeros on output c c----------------------------------------------------------------------- subroutine RBrzeros $ (nrow, ncol, cp, Ap, Ai, Ax, Zp, Zi, Zx) integer*4 $ nrow, ncol, Ap (ncol+1), Ai (*), Zp (ncol+1), Zi (*), $ cp (*), i, j, p, pa, pz, p1 double precision Ax (*), x double precision Zx (*) c ---------------------------------------------------------------- c copy the column pointers if Z is being constructed c ---------------------------------------------------------------- do 10 j = 1, ncol+1 Zp (j) = cp (j) 10 continue c ---------------------------------------------------------------- c split the matrix c ---------------------------------------------------------------- pa = 1 pz = 1 do 30 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa pz = Zp (j) c split column j of A do 20 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .eq. 0) then c copy into Z Zi (pz) = i Zx (pz) = 1 pz = pz + 1 else c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 20 continue 30 continue Ap (ncol+1) = pa return end c----------------------------------------------------------------------- c RB*prune: discard explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A c Ap, Ai, Ax: matrix with zeros on input, pruned on output c c----------------------------------------------------------------------- subroutine RBrprune $ (nrow, ncol, Ap, Ai, Ax) integer*4 $ nrow, ncol, Ap (ncol+1), Ai (*), i, j, p, pa, pz, p1 double precision Ax (*), x c ---------------------------------------------------------------- c prune the matrix c ---------------------------------------------------------------- pa = 1 do 20 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa c prune column j of A do 10 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .ne. 0) then c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 10 continue 20 continue Ap (ncol+1) = pa return end SuiteSparse/RBio/RBrread_64.f0000644001170100242450000001766110617641006014617 0ustar davisfacc======================================================================= c=== RBio/RBrread_64 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RB*read: read a Rutherford/Boeing matrix c----------------------------------------------------------------------- subroutine RBrread $ (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, Ap, Ai, Ax, nzeros, w, cp, info, nw, nnz1) integer*8 $ nrow, ncol, nnz, mkind, skind, p, j, i, alen, llen, k, $ ilast, nzeros, info, nw, nnz1 integer*8 $ Ap (ncol+1), Ai (nnz1), w (nw), cp (ncol+1) double precision Ax (nnz1), x character ptrfmt*16, indfmt*16, valfmt*20 character*4 s c ---------------------------------------------------------------- c read the column pointers and row indices c ---------------------------------------------------------------- call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid return endif c ---------------------------------------------------------------- c read the values c ---------------------------------------------------------------- if (mkind .eq. 1) then c pattern-only matrix, set all values to 1 do 10 i = 1, nnz Ax (i) = 1 10 continue elseif (mkind .eq. 3) then c Read in nnz integer values, then convert them to real. c use Ai as workspace. If the matrix is symmetric, Ai is c twice as big as nnz, so use Ai (nnz+1...2*nnz) as workspace. c Otherwise, for an iua matrix, use Ai (1..nnz) and then c rewind the file and read Ap and Ai back in again. if (skind .le. 0) then k = 0 else k = nnz endif read (7, valfmt, err = 94, end = 94) (Ai(p), p = k+1, k+nnz) do 5 p = 1, nnz Ax (p) = Ai (p+k) 5 continue if (skind .le. 0) then c now that Ai has been destroyed, rewind the file and read c in Ap and Ai again. Skip the 4-line header first. rewind (unit = 7) read (7, 15) (s (k:k), k = 1,4) 15 format (a1 / a1 / a1 / a1) call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid. This 'cannot' happen, c because the pattern was already read in above. return endif endif else c read nnz values read (7, valfmt, err = 94, end = 94) (Ax (p), p = 1, nnz) endif c ---------------------------------------------------------------- c construct upper triangular part for symmetric matrices c ---------------------------------------------------------------- c If skind is zero, then the upper part is not constructed. This c allows the caller to skip this part, and create the upper part c of a symmetric (S,H,Z) matrix. Just pass skind = 0. if (skind .gt. 0) then c ------------------------------------------------------------ c shift the matrix by adding gaps to the top of each column c ------------------------------------------------------------ do 30 j = ncol, 1, -1 c number of entries in lower tri. part (incl. diagonal) llen = Ap (j+1) - Ap (j) c number of entries in entire column alen = cp (j+1) - cp (j) c move the column from Ai (Ap(j) ... Ap(j+1)-1) c down to Ai (cp(j+1)-llen ... cp(j+1)-1), leaving a gap c at Ai (Ap(j) ... cp(j+1)-llen) do 20 k = 1, llen Ai (cp (j+1) - k) = Ai (Ap (j+1) - k) Ax (cp (j+1) - k) = Ax (Ap (j+1) - k) 20 continue 30 continue c ------------------------------------------------------------ c populate the upper triangular part c ------------------------------------------------------------ c create temporary column pointers to point to the gaps do 40 j = 1, ncol w (j) = cp (j) 40 continue do 60 j = 1, ncol c scan the entries in the lower tri. part, in c Ai (cp(j+1)-llen ... cp(j+1)-1) llen = Ap (j+1) - Ap (j) do 50 k = 1, llen c get the A(i,j) entry in the lower triangular part i = Ai (cp (j+1) - k) x = Ax (cp (j+1) - k) c add A(j,i) as the next entry in column i (excl diag) if (i .ne. j) then p = w (i) w (i) = w (i) + 1 Ai (p) = j if (skind .eq. 1) then c *SA matrix Ax (p) = x elseif (skind .eq. 2) then c *HA matrix Ax (p) = x else c *ZA matrix Ax (p) = -x endif endif 50 continue 60 continue c finalize the column pointers do 70 j = 1, ncol+1 Ap (j) = cp (j) 70 continue endif c ---------------------------------------------------------------- c count the number of explicit zeros c ---------------------------------------------------------------- nzeros = 0 do 90 j = 1, ncol cp (j) = nzeros + 1 do 80 p = Ap (j), Ap (j+1)-1 if (Ax (p) .eq. 0) then nzeros = nzeros + 1 endif 80 continue 90 continue cp (ncol+1) = nzeros + 1 c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 94 info = -94 return end c----------------------------------------------------------------------- c RB*zeros: extract explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A and Z c cp: column pointers of Z on input c Ap, Ai, Ax: matrix with zeros on input, pruned on output c Zp, Zi, Zx: empty matrix on input, pattern of zeros on output c c----------------------------------------------------------------------- subroutine RBrzeros $ (nrow, ncol, cp, Ap, Ai, Ax, Zp, Zi, Zx) integer*8 $ nrow, ncol, Ap (ncol+1), Ai (*), Zp (ncol+1), Zi (*), $ cp (*), i, j, p, pa, pz, p1 double precision Ax (*), x double precision Zx (*) c ---------------------------------------------------------------- c copy the column pointers if Z is being constructed c ---------------------------------------------------------------- do 10 j = 1, ncol+1 Zp (j) = cp (j) 10 continue c ---------------------------------------------------------------- c split the matrix c ---------------------------------------------------------------- pa = 1 pz = 1 do 30 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa pz = Zp (j) c split column j of A do 20 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .eq. 0) then c copy into Z Zi (pz) = i Zx (pz) = 1 pz = pz + 1 else c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 20 continue 30 continue Ap (ncol+1) = pa return end c----------------------------------------------------------------------- c RB*prune: discard explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A c Ap, Ai, Ax: matrix with zeros on input, pruned on output c c----------------------------------------------------------------------- subroutine RBrprune $ (nrow, ncol, Ap, Ai, Ax) integer*8 $ nrow, ncol, Ap (ncol+1), Ai (*), i, j, p, pa, pz, p1 double precision Ax (*), x c ---------------------------------------------------------------- c prune the matrix c ---------------------------------------------------------------- pa = 1 do 20 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa c prune column j of A do 10 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .ne. 0) then c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 10 continue 20 continue Ap (ncol+1) = pa return end SuiteSparse/RBio/README.txt0000644001170100242450000000772210711427431014310 0ustar davisfacRBio: Version 1.1.1, Nov 1, 2007. A MATLAB Toolbox for reading/writing sparse matrices in Rutherford/Boeing format. To install, cd to the RBio directory and type "RBinstall" in the MATLAB command window. RBio is written in Fortran because the Rutherford/Boeing format can require Fortran I/O statements, depending on how the files are stored. Files created by RBio do not require the Fortran I/O library to read them, however. -------------------------------------------------------------------------------- MATLAB help for RBio: -------------------------------------------------------------------------------- RBio - MATLAB toolbox for reading/writing sparse matrices in the Rutherford/ Boeing format, and for reading/writing problems in the UF Sparse Matrix Collection from/to a set of files in a directory. RBread - read a sparse matrix from a Rutherford/Boeing file RBreade - read a symmetric finite-element matrix from a R/B file RBtype - determine the Rutherford/Boeing type of a sparse matrix RBwrite - write a sparse matrix to a Rutherford/Boeing file RBraw - read the raw contents of a Rutherford/Boeing file RBfix - read a possibly corrupted matrix from a R/B file RBinstall - install the RBio toolbox for use in MATLAB Example: load west0479 C = west0479 ; RBwrite ('mywest', C, 'WEST0479 chemical eng. problem', 'west0479') A = RBread ('mywest') ; norm (A-C,1) See also UFget, mread, mwrite. Copyright 2007, Timothy A. Davis -------------------------------------------------------------------------------- Files and directories: -------------------------------------------------------------------------------- README.txt this file Contents.m MATLAB help for the RBio toolbox RBfix.m read a possibly corrupted R/B file RBinstall.m compile and install RBio for use in MATLAB, and run tests RBmake.m compile RBio for use in MATLAB RBraw.m MATLAB help for RBraw RBreade.m read a finite-element sparse matrix RBread.m MATLAB help for RBread RBtype.m MATLAB help for RBtype RBwrite.m MATLAB help for RBwrite RBcread_32.f read a complex sparse matrix, compare with RBrread_*.f RBcread_64.f RBcsplit_32.f split a complex matrix into its real and imaginary parts RBcsplit_64.f RBraw_mex_32.f mexFunction to read the raw contents of a R/B file RBraw_mex_64.f RBread_32.f utility routines for either real or complex matrices RBread_64.f RBread_mex_32.f mexFunction to read a real or complex sparse matrix RBread_mex_64.f RBrread_32.f read a real sparse matrix, compare with RBcread_*.f RBrread_64.f RBtype_mex_32.f mexFunction to determine the Rutherford/Boeing type RBtype_mex_64.f RBwrite_32.f write a real or complex sparse matrix RBwrite_64.f RBwrite_mex_32.f mexFunction to write a real or complex sparse matrix RBwrite_mex_64.f ./Test: directory with test codes and matrices testRB1.m simple test script for RBio testRB2.m simple test script for RBio (requires UFget) bcsstk01.rb HB/bcsstk01 Problem.A from UF Sparse Matrix Collection farm.rb Meszaros/farm Problem.A from UF Sparse Matrix Collection lap_25.pse original Harwell/Boeing version of lap_25 (finite-element) lap_25.rb HB/lap_25 Problem.A from UF Sparse Matrix Collection west0479.rb sparse matrix west0479 from UF Sparse Matrix Collection west0479.rua original Harwell/Boeing version of west0479 Note that the west0479 matrix provided in the Test directory is the correct version. The MATLAB statement "load west0479" gives you a matrix that is slightly incorrect (as of MATLAB Version 7.3, R2006b). ./Doc: directory with additional documentation and license ChangeLog changes since first release dodiff compare 32-bit and 64-bit codes, real and complex gpl.txt GNU license License.txt license SuiteSparse/RBio/RBmake.m0000644001170100242450000000203510620377774014136 0ustar davisfac%RBMAKE compile the RBio toolbox for use in MATLAB % Compiles the Fortran mexFunctions RBread, RBwrite, RBtype, and RBraw. % % Example: % % RBmake % % See also RBread, RBwrite, RBtype, RBraw, RBinstall. % % Copyright 2007, Timothy A. Davis if (~isempty (strfind (computer, '64'))) fprintf ('Compiling 64-bit version of RBio.\n') ; mex -O -output RBread RBread_mex_64.f RBread_64.f RBrread_64.f ... RBcread_64.f RBcsplit_64.f mex -O -output RBtype RBtype_mex_64.f RBwrite_64.f mex -O -output RBwrite RBwrite_mex_64.f RBwrite_64.f mex -O -output RBraw RBraw_mex_64.f RBread_64.f else fprintf ('Compiling 32-bit version of RBio.\n') ; mex -O -output RBread RBread_mex_32.f RBread_32.f RBrread_32.f ... RBcread_32.f RBcsplit_32.f mex -O -output RBtype RBtype_mex_32.f RBwrite_32.f mex -O -output RBwrite RBwrite_mex_32.f RBwrite_32.f mex -O -output RBraw RBraw_mex_32.f RBread_32.f end fprintf ('Note: Fortran compiler is required; this will fail otherwise...\n') ; fprintf ('RBio successfully compiled.\n') ; SuiteSparse/RBio/RBcread_32.f0000644001170100242450000001542610617641056014575 0ustar davisfacc======================================================================= c=== RBio/RBcread_32 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RB*read: read a Rutherford/Boeing matrix c----------------------------------------------------------------------- subroutine RBcread $ (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, Ap, Ai, Ax, nzeros, w, cp, info, nw, nnz1) integer*4 $ nrow, ncol, nnz, mkind, skind, p, j, i, alen, llen, k, $ ilast, nzeros, info, nw, nnz1 integer*4 $ Ap (ncol+1), Ai (nnz1), w (nw), cp (ncol+1) complex*16 Ax (nnz1), x character ptrfmt*16, indfmt*16, valfmt*20 c ---------------------------------------------------------------- c read the column pointers and row indices c ---------------------------------------------------------------- call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid return endif c ---------------------------------------------------------------- c read the values c ---------------------------------------------------------------- c read nnz values read (7, valfmt, err = 94, end = 94) (Ax (p), p = 1, nnz) c ---------------------------------------------------------------- c construct upper triangular part for symmetric matrices c ---------------------------------------------------------------- c If skind is zero, then the upper part is not constructed. This c allows the caller to skip this part, and create the upper part c of a symmetric (S,H,Z) matrix. Just pass skind = 0. if (skind .gt. 0) then c ------------------------------------------------------------ c shift the matrix by adding gaps to the top of each column c ------------------------------------------------------------ do 30 j = ncol, 1, -1 c number of entries in lower tri. part (incl. diagonal) llen = Ap (j+1) - Ap (j) c number of entries in entire column alen = cp (j+1) - cp (j) c move the column from Ai (Ap(j) ... Ap(j+1)-1) c down to Ai (cp(j+1)-llen ... cp(j+1)-1), leaving a gap c at Ai (Ap(j) ... cp(j+1)-llen) do 20 k = 1, llen Ai (cp (j+1) - k) = Ai (Ap (j+1) - k) Ax (cp (j+1) - k) = Ax (Ap (j+1) - k) 20 continue 30 continue c ------------------------------------------------------------ c populate the upper triangular part c ------------------------------------------------------------ c create temporary column pointers to point to the gaps do 40 j = 1, ncol w (j) = cp (j) 40 continue do 60 j = 1, ncol c scan the entries in the lower tri. part, in c Ai (cp(j+1)-llen ... cp(j+1)-1) llen = Ap (j+1) - Ap (j) do 50 k = 1, llen c get the A(i,j) entry in the lower triangular part i = Ai (cp (j+1) - k) x = Ax (cp (j+1) - k) c add A(j,i) as the next entry in column i (excl diag) if (i .ne. j) then p = w (i) w (i) = w (i) + 1 Ai (p) = j if (skind .eq. 1) then c *SA matrix Ax (p) = x elseif (skind .eq. 2) then c *HA matrix Ax (p) = dconjg (x) else c *ZA matrix Ax (p) = -x endif endif 50 continue 60 continue c finalize the column pointers do 70 j = 1, ncol+1 Ap (j) = cp (j) 70 continue endif c ---------------------------------------------------------------- c count the number of explicit zeros c ---------------------------------------------------------------- nzeros = 0 do 90 j = 1, ncol cp (j) = nzeros + 1 do 80 p = Ap (j), Ap (j+1)-1 if (Ax (p) .eq. 0) then nzeros = nzeros + 1 endif 80 continue 90 continue cp (ncol+1) = nzeros + 1 c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 94 info = -94 return end c----------------------------------------------------------------------- c RB*zeros: extract explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A and Z c cp: column pointers of Z on input c Ap, Ai, Ax: matrix with zeros on input, pruned on output c Zp, Zi, Zx: empty matrix on input, pattern of zeros on output c c----------------------------------------------------------------------- subroutine RBczeros $ (nrow, ncol, cp, Ap, Ai, Ax, Zp, Zi, Zx) integer*4 $ nrow, ncol, Ap (ncol+1), Ai (*), Zp (ncol+1), Zi (*), $ cp (*), i, j, p, pa, pz, p1 complex*16 Ax (*), x double precision Zx (*) c ---------------------------------------------------------------- c copy the column pointers if Z is being constructed c ---------------------------------------------------------------- do 10 j = 1, ncol+1 Zp (j) = cp (j) 10 continue c ---------------------------------------------------------------- c split the matrix c ---------------------------------------------------------------- pa = 1 pz = 1 do 30 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa pz = Zp (j) c split column j of A do 20 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .eq. 0) then c copy into Z Zi (pz) = i Zx (pz) = 1 pz = pz + 1 else c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 20 continue 30 continue Ap (ncol+1) = pa return end c----------------------------------------------------------------------- c RB*prune: discard explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A c Ap, Ai, Ax: matrix with zeros on input, pruned on output c c----------------------------------------------------------------------- subroutine RBcprune $ (nrow, ncol, Ap, Ai, Ax) integer*4 $ nrow, ncol, Ap (ncol+1), Ai (*), i, j, p, pa, pz, p1 complex*16 Ax (*), x c ---------------------------------------------------------------- c prune the matrix c ---------------------------------------------------------------- pa = 1 do 20 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa c prune column j of A do 10 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .ne. 0) then c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 10 continue 20 continue Ap (ncol+1) = pa return end SuiteSparse/RBio/RBcread_64.f0000644001170100242450000001542610617640727014606 0ustar davisfacc======================================================================= c=== RBio/RBcread_64 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RB*read: read a Rutherford/Boeing matrix c----------------------------------------------------------------------- subroutine RBcread $ (nrow, ncol, nnz, ptrfmt, indfmt, valfmt, $ mkind, skind, Ap, Ai, Ax, nzeros, w, cp, info, nw, nnz1) integer*8 $ nrow, ncol, nnz, mkind, skind, p, j, i, alen, llen, k, $ ilast, nzeros, info, nw, nnz1 integer*8 $ Ap (ncol+1), Ai (nnz1), w (nw), cp (ncol+1) complex*16 Ax (nnz1), x character ptrfmt*16, indfmt*16, valfmt*20 c ---------------------------------------------------------------- c read the column pointers and row indices c ---------------------------------------------------------------- call RBpattern (ptrfmt, indfmt, nrow, ncol, nnz, skind, $ Ap, Ai, w, cp, info, nw) if (info .ne. 0) then c error: pattern is invalid return endif c ---------------------------------------------------------------- c read the values c ---------------------------------------------------------------- c read nnz values read (7, valfmt, err = 94, end = 94) (Ax (p), p = 1, nnz) c ---------------------------------------------------------------- c construct upper triangular part for symmetric matrices c ---------------------------------------------------------------- c If skind is zero, then the upper part is not constructed. This c allows the caller to skip this part, and create the upper part c of a symmetric (S,H,Z) matrix. Just pass skind = 0. if (skind .gt. 0) then c ------------------------------------------------------------ c shift the matrix by adding gaps to the top of each column c ------------------------------------------------------------ do 30 j = ncol, 1, -1 c number of entries in lower tri. part (incl. diagonal) llen = Ap (j+1) - Ap (j) c number of entries in entire column alen = cp (j+1) - cp (j) c move the column from Ai (Ap(j) ... Ap(j+1)-1) c down to Ai (cp(j+1)-llen ... cp(j+1)-1), leaving a gap c at Ai (Ap(j) ... cp(j+1)-llen) do 20 k = 1, llen Ai (cp (j+1) - k) = Ai (Ap (j+1) - k) Ax (cp (j+1) - k) = Ax (Ap (j+1) - k) 20 continue 30 continue c ------------------------------------------------------------ c populate the upper triangular part c ------------------------------------------------------------ c create temporary column pointers to point to the gaps do 40 j = 1, ncol w (j) = cp (j) 40 continue do 60 j = 1, ncol c scan the entries in the lower tri. part, in c Ai (cp(j+1)-llen ... cp(j+1)-1) llen = Ap (j+1) - Ap (j) do 50 k = 1, llen c get the A(i,j) entry in the lower triangular part i = Ai (cp (j+1) - k) x = Ax (cp (j+1) - k) c add A(j,i) as the next entry in column i (excl diag) if (i .ne. j) then p = w (i) w (i) = w (i) + 1 Ai (p) = j if (skind .eq. 1) then c *SA matrix Ax (p) = x elseif (skind .eq. 2) then c *HA matrix Ax (p) = dconjg (x) else c *ZA matrix Ax (p) = -x endif endif 50 continue 60 continue c finalize the column pointers do 70 j = 1, ncol+1 Ap (j) = cp (j) 70 continue endif c ---------------------------------------------------------------- c count the number of explicit zeros c ---------------------------------------------------------------- nzeros = 0 do 90 j = 1, ncol cp (j) = nzeros + 1 do 80 p = Ap (j), Ap (j+1)-1 if (Ax (p) .eq. 0) then nzeros = nzeros + 1 endif 80 continue 90 continue cp (ncol+1) = nzeros + 1 c ---------------------------------------------------------------- c matrix is valid c ---------------------------------------------------------------- info = 0 return c ---------------------------------------------------------------- c error return c ---------------------------------------------------------------- 94 info = -94 return end c----------------------------------------------------------------------- c RB*zeros: extract explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A and Z c cp: column pointers of Z on input c Ap, Ai, Ax: matrix with zeros on input, pruned on output c Zp, Zi, Zx: empty matrix on input, pattern of zeros on output c c----------------------------------------------------------------------- subroutine RBczeros $ (nrow, ncol, cp, Ap, Ai, Ax, Zp, Zi, Zx) integer*8 $ nrow, ncol, Ap (ncol+1), Ai (*), Zp (ncol+1), Zi (*), $ cp (*), i, j, p, pa, pz, p1 complex*16 Ax (*), x double precision Zx (*) c ---------------------------------------------------------------- c copy the column pointers if Z is being constructed c ---------------------------------------------------------------- do 10 j = 1, ncol+1 Zp (j) = cp (j) 10 continue c ---------------------------------------------------------------- c split the matrix c ---------------------------------------------------------------- pa = 1 pz = 1 do 30 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa pz = Zp (j) c split column j of A do 20 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .eq. 0) then c copy into Z Zi (pz) = i Zx (pz) = 1 pz = pz + 1 else c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 20 continue 30 continue Ap (ncol+1) = pa return end c----------------------------------------------------------------------- c RB*prune: discard explicit zero entries c----------------------------------------------------------------------- c c nrow-by-ncol: size of A c Ap, Ai, Ax: matrix with zeros on input, pruned on output c c----------------------------------------------------------------------- subroutine RBcprune $ (nrow, ncol, Ap, Ai, Ax) integer*8 $ nrow, ncol, Ap (ncol+1), Ai (*), i, j, p, pa, pz, p1 complex*16 Ax (*), x c ---------------------------------------------------------------- c prune the matrix c ---------------------------------------------------------------- pa = 1 do 20 j = 1, ncol c save the new start of column j of A p1 = Ap (j) Ap (j) = pa c prune column j of A do 10 p = p1, Ap (j+1)-1 i = Ai (p) x = Ax (p) if (x .ne. 0) then c copy into A Ai (pa) = i Ax (pa) = x pa = pa + 1 endif 10 continue 20 continue Ap (ncol+1) = pa return end SuiteSparse/RBio/RBread.m0000644001170100242450000000163410711661144014124 0ustar davisfacfunction [A, Z, title, key, mtype] = RBread (filename) %#ok %RBREAD read a sparse matrix from a Rutherford/Boeing file % Usage: % [A Z title key mtype] = RBread (filename) % % A: a sparse matrix (no explicit zero entries) % Z: binary pattern of explicit zero entries in Rutherford/Boeing file. % This always has the same size as A, and is always sparse. % title: the 72-character title string in the file % key: the 8-character matrix name in the file % mtype: the Rutherford/Boeing type (see RBwrite for a description). % This function does not support finite-element matrices (use RBreade % instead). % % Example: % load west0479 % C = west0479 ; % RBwrite ('mywest', C, 'WEST0479 chemical eng. problem', 'west0479') % A = RBread ('mywest') ; % norm (A-C,1) % % See also RBwrite, RBreade, RBtype. % Copyright 2007, Timothy A. Davis error ('RBread mexFunction not found') ; SuiteSparse/RBio/RBtype.m0000644001170100242450000000243210711661154014170 0ustar davisfacfunction [mtype, mkind, skind] = RBtype (A) %#ok %RBTYPE determine the Rutherford/Boeing type of a sparse matrix % Usage: % [mtype mkind skind] = RBtype (A) % % A must be a sparse matrix. RBtype determines the Rutherford/Boeing type of A. % Very little memory is used (just size(A,2) integer workspace), so this can % succeed where a test such as nnz(A-A')==0 will fail. % % mkind: R: (0), A is real, and not binary % P: (1), A is binary (all values or 0 or 1) % C: (2), A is complex % I: (3), A is integer % % skind: R: (-1), A is rectangular % U: (0), A is unsymmetric (not S, H, or Z) % S: (1), A is symmetric (nnz(A-A.') is 0) % H: (2), A is Hermitian (nnz(A-A') is 0) % Z: (3), A is skew symmetric (nnz(A+A.') is 0) % % mtype is a 3-character string, where mtype(1) is the mkind % ('R', 'P', or 'C'). mtype(2) is the skind ('R', 'U', 'S', 'H', or 'Z'), % and mtype(3) is 'A'. % % Example: % load west0479 % A = west0479 ; % RBtype (A) % RBtype (spones (A)) % RBtype (2*spones (A)) % C = A+A' ; % RBtype (C) % % See also RBread, RBwrite. % Copyright 2007, Timothy A. Davis, University of Florida error ('RBtype mexFunction not found') ; SuiteSparse/RBio/RBtype_mex_32.f0000644001170100242450000001022210634267512015336 0ustar davisfacc======================================================================= c=== RBio/RBtype_mex_32 ================================================ c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBtype mexFunction: c----------------------------------------------------------------------- c c [mtype mkind skind] = RBtype (A) c c A: a sparse matrix. Determines the Rutherford/Boeing type of the c matrix. Very little memory is used (just size(A,2) integer c workspace), so this can succeed where a test such as nnz(A-A')==0 c will fail. c c mkind: r: (0), A is real, and not binary c p: (1), A is binary c c: (2), A is complex c i: (3), A is integer c c skind: r: (-1), A is rectangular c u: (0), A is unsymmetric (not S, H, Z, below) c s: (1), A is symmetric (nnz(A-A.') is 0) c h: (2), A is Hermitian (nnz(A-A') is 0) c z: (3), A is skew symmetric (nnz(A+A.') is 0) c c mtype is a 3-character string, where mtype(1) is the mkind c ('r', 'p', 'c', or 'i'). mtype(2) is the skind ('r', 'u', 's', 'h', c or 'z'), and mtype(3) is always 'a'. c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*4 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxClassIDFromClassName, $ mxIsClass, mxIsSparse, mxIsComplex integer*4 $ mxGetM, mxGetN, mxGetJc, mxGetIr, mxGetPr, mxGetPi, $ mxGetData, mxCreateNumericMatrix, mxCreateDoubleScalar, $ mxCreateString c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*4 $ nrow, ncol, nnz, mkind, cp, skind, cpmat, $ Ap, Ai, Ax, Az, kmin, kmax, one integer*4 iclass, cmplex, wcmplex character mtype*3 double precision t c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 3) then call mexErrMsgTxt ('[mtype mkind skind] = RBtype (A)') endif c ---------------------------------------------------------------- c get A c ---------------------------------------------------------------- if (mxIsClass (pargin (1), 'double') .ne. 1 .or. $ mxIsSparse (pargin (1)) .ne. 1) then call mexErrMsgTxt ('A must be sparse and double') endif cmplex = mxIsComplex (pargin (1)) Ap = mxGetJc (pargin (1)) Ai = mxGetIr (pargin (1)) Ax = mxGetPr (pargin (1)) Az = mxGetPi (pargin (1)) nrow = mxGetM (pargin (1)) ncol = mxGetN (pargin (1)) c ---------------------------------------------------------------- c allocate workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int32') one = 1 wcmplex = 0 cpmat = mxCreateNumericMatrix (ncol+1, one, iclass, wcmplex) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c determine the mtype of A c ---------------------------------------------------------------- call RBkind (nrow, ncol, %val(Ap), %val(Ai), %val(Ax), $ %val(Az), cmplex, mkind, skind, mtype, nnz, %val(cp), $ kmin, kmax) c ---------------------------------------------------------------- c return the result c ---------------------------------------------------------------- pargout (1) = mxCreateString (mtype) if (nargout .ge. 2) then t = mkind pargout (2) = mxCreateDoubleScalar (t) endif if (nargout .ge. 3) then t = skind pargout (3) = mxCreateDoubleScalar (t) endif c ---------------------------------------------------------------- c free workspace c ---------------------------------------------------------------- call mxDestroyArray (%val (cpmat)) return end SuiteSparse/RBio/RBtype_mex_64.f0000644001170100242450000001022210634267540015344 0ustar davisfacc======================================================================= c=== RBio/RBtype_mex_64 ================================================ c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBtype mexFunction: c----------------------------------------------------------------------- c c [mtype mkind skind] = RBtype (A) c c A: a sparse matrix. Determines the Rutherford/Boeing type of the c matrix. Very little memory is used (just size(A,2) integer c workspace), so this can succeed where a test such as nnz(A-A')==0 c will fail. c c mkind: r: (0), A is real, and not binary c p: (1), A is binary c c: (2), A is complex c i: (3), A is integer c c skind: r: (-1), A is rectangular c u: (0), A is unsymmetric (not S, H, Z, below) c s: (1), A is symmetric (nnz(A-A.') is 0) c h: (2), A is Hermitian (nnz(A-A') is 0) c z: (3), A is skew symmetric (nnz(A+A.') is 0) c c mtype is a 3-character string, where mtype(1) is the mkind c ('r', 'p', 'c', or 'i'). mtype(2) is the skind ('r', 'u', 's', 'h', c or 'z'), and mtype(3) is always 'a'. c----------------------------------------------------------------------- subroutine mexfunction (nargout, pargout, nargin, pargin) integer*8 $ pargout (*), pargin (*) integer*4 nargout, nargin c ---------------------------------------------------------------- c MATLAB functions c ---------------------------------------------------------------- integer*4 mxClassIDFromClassName, $ mxIsClass, mxIsSparse, mxIsComplex integer*8 $ mxGetM, mxGetN, mxGetJc, mxGetIr, mxGetPr, mxGetPi, $ mxGetData, mxCreateNumericMatrix, mxCreateDoubleScalar, $ mxCreateString c ---------------------------------------------------------------- c local variables c ---------------------------------------------------------------- integer*8 $ nrow, ncol, nnz, mkind, cp, skind, cpmat, $ Ap, Ai, Ax, Az, kmin, kmax, one integer*4 iclass, cmplex, wcmplex character mtype*3 double precision t c ---------------------------------------------------------------- c check inputs c ---------------------------------------------------------------- if (nargin .ne. 1 .or. nargout .gt. 3) then call mexErrMsgTxt ('[mtype mkind skind] = RBtype (A)') endif c ---------------------------------------------------------------- c get A c ---------------------------------------------------------------- if (mxIsClass (pargin (1), 'double') .ne. 1 .or. $ mxIsSparse (pargin (1)) .ne. 1) then call mexErrMsgTxt ('A must be sparse and double') endif cmplex = mxIsComplex (pargin (1)) Ap = mxGetJc (pargin (1)) Ai = mxGetIr (pargin (1)) Ax = mxGetPr (pargin (1)) Az = mxGetPi (pargin (1)) nrow = mxGetM (pargin (1)) ncol = mxGetN (pargin (1)) c ---------------------------------------------------------------- c allocate workspace c ---------------------------------------------------------------- iclass = mxClassIDFromClassName ('int64') one = 1 wcmplex = 0 cpmat = mxCreateNumericMatrix (ncol+1, one, iclass, wcmplex) cp = mxGetData (cpmat) c ---------------------------------------------------------------- c determine the mtype of A c ---------------------------------------------------------------- call RBkind (nrow, ncol, %val(Ap), %val(Ai), %val(Ax), $ %val(Az), cmplex, mkind, skind, mtype, nnz, %val(cp), $ kmin, kmax) c ---------------------------------------------------------------- c return the result c ---------------------------------------------------------------- pargout (1) = mxCreateString (mtype) if (nargout .ge. 2) then t = mkind pargout (2) = mxCreateDoubleScalar (t) endif if (nargout .ge. 3) then t = skind pargout (3) = mxCreateDoubleScalar (t) endif c ---------------------------------------------------------------- c free workspace c ---------------------------------------------------------------- call mxDestroyArray (%val (cpmat)) return end SuiteSparse/RBio/RBcsplit_32.f0000644001170100242450000000145510617641061015006 0ustar davisfacc======================================================================= c=== RBio/RBcsplit_32 ================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBcsplit: split a complex matrix into its real and imaginary parts c----------------------------------------------------------------------- subroutine RBcsplit (Cx, Ax, Az, nnz) integer*4 $ nnz, i complex*16 Cx (*) double precision Ax (*), Az (*) do 10 i = 1, nnz Ax (i) = dreal (Cx (i)) Az (i) = dimag (Cx (i)) 10 continue return end SuiteSparse/RBio/RBcsplit_64.f0000644001170100242450000000145510617640735015022 0ustar davisfacc======================================================================= c=== RBio/RBcsplit_64 ================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBcsplit: split a complex matrix into its real and imaginary parts c----------------------------------------------------------------------- subroutine RBcsplit (Cx, Ax, Az, nnz) integer*8 $ nnz, i complex*16 Cx (*) double precision Ax (*), Az (*) do 10 i = 1, nnz Ax (i) = dreal (Cx (i)) Az (i) = dimag (Cx (i)) 10 continue return end SuiteSparse/RBio/RBwrite.m0000644001170100242450000000265710620377721014355 0ustar davisfacfunction mtype = RBwrite (filename, A, Z, title, key) %#ok %RBWRITE write a sparse matrix to a Rutherford/Boeing file % Usage: % mtype = RBwrite (filename, A, Z, title, key) % % filename: name of the file to create % A: a sparse matrix % Z: binary pattern of explicit zero entries to include in the % Rutherford/Boeing file. This always has the same size as A, and is % always sparse. Not used if empty ([ ]), or if nnz(Z) is 0. % title: title for 1st line of Rutherford/Boeing file, up to 72 characters % key: matrix key, up to 8 characters, for 1st line of the file % % Z is optional. RBwrite (filename, A) uses a default title and key, and does % not include any explicit zeros. RBwrite (filname, A, 'title...', 'key') uses % the given title and key. A must be sparse. Z must be empty, or sparse. % % mtype is a 3-character string with the Rutherford/Boeing type used: % mtype(1): r: real, p: pattern, c: complex, i: integer % mtype(2): r: rectangular, u: unsymmetric, s: symmetric, % h: Hermitian, Z: skew symmetric % mtype(3): a: assembled matrix, e: finite-element (not used by RBwrite) % % Example: % load west0479 % C = west0479 ; % RBwrite ('west0479', C, 'WEST0479 chemical eng. problem', 'west0479') % A = RBread ('west0479') ; % norm (A-C,1) % % See also RBread, RBtype. % Copyright 2007, Timothy A. Davis, University of Florida error ('RBwrite mexFunction not found') ; SuiteSparse/RBio/RBwrite_32.f0000644001170100242450000004326010634270234014641 0ustar davisfacc======================================================================= c=== RBio/RBwrite_32 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBkind: determine the type of a MATLAB matrix c----------------------------------------------------------------------- c c input: a zero-based MATLAB sparse matrix c c nrow number of rows of A c ncol number of columns of A c Ap size ncol+1, column pointers c Ai size nnz, row indices (nnz = Ap (ncol+1)) c Ax size nnz, real values c Az size nnz, imaginary values (not accessed if A is real) c cmplex 1 if A is complex, 0 otherwise c c output: c mkind: r: 0 (real), p: 1 (pattern), c: 2 (complex), c i: 3 (integer) c skind: r: -1 (rectangular), u: 0 (unsymmetric), s: 1 symmetric, c h: 2 (Hermitian), z: 3 (skew symmetric) c c workspace: c munch size ncol+1, not defined on input or output c c Note that the MATLAB matrix is zero-based (Ap and Ai). 1 must be c added whenever they are used (see "1+" in the code below). c c See also SuiteSparse/CHOLMOD/MatrixOps/cholmod_symmetry.c, which c also determines if the diagonal is positive. c----------------------------------------------------------------------- subroutine RBkind (nrow, ncol, Ap, Ai, Ax, Az, $ cmplex, mkind, skind, mtype, nnz, munch, kmin, kmax) integer*4 $ nrow, ncol, Ap (ncol+1), Ai (*), mkind, skind, $ munch (ncol+1), p, i, j, pt, nnz, k, kmin, kmax integer*4 cmplex double precision Ax (*), Az (*), x_r, x_i, xtr, xti logical is_p, is_s, is_h, is_z, is_int character mtype*3 c ---------------------------------------------------------------- c determine numeric type (I*A, R*A, P*A, C*A) c ---------------------------------------------------------------- c pattern: if real and all entries are 1. c integer: if real and all entries are integers. c complex: if cmplex is 1. c real: otherwise. nnz = 1+ (Ap (ncol+1) - 1) kmin = 0 kmax = 0 if (cmplex .eq. 1) then c complex matrix (C*A) mtype (1:1) = 'c' mkind = 2 else c select P** format if all entries are equal to 1 c select I** format if all entries are integer and c between -99,999,999 and +999,999,999 is_p = .true. is_int = .true. k = dint (Ax (1)) kmin = k kmax = k do 10 p = 1, nnz if (Ax (p) .ne. 1) then is_p = .false. endif k = dint (Ax (p)) kmin = min (kmin, k) kmax = max (kmax, k) if (k .ne. Ax (p)) then is_int = .false. endif if (k .le. -99999999 .or. k .ge. 999999999) then c use real format for really big integers is_int = .false. endif if (.not. is_int .and. .not. is_p) then goto 20 endif 10 continue 20 continue if (is_p) then c pattern-only matrix (P*A) mtype (1:1) = 'p' mkind = 1 elseif (is_int) then c integer matrix (I*A) mtype (1:1) = 'i' mkind = 3 else c real matrix (R*A) mtype (1:1) = 'r' mkind = 0 endif endif c only assembled matrices are handled mtype (3:3) = 'a' c ---------------------------------------------------------------- c determine symmetry (*RA, *UA, *SA, *HA, *ZA) c ---------------------------------------------------------------- c Note that A must have sorted columns for this method to work. c This is not checked, since all MATLAB matrices "should" have c sorted columns. Use spcheck(A) to check for this, if needed. if (nrow .ne. ncol) then c rectangular matrix (*RA), no need to check values or pattern mtype (2:2) = 'r' skind = -1 return endif c if complex, the matrix is Hermitian until proven otherwise is_h = (cmplex .eq. 1) c the matrix is symmetric until proven otherwise is_s = .true. c a non-pattern matrix is skew symmetric until proven otherwise is_z = (mkind .ne. 1) c if this method returns early, the matrix is unsymmetric mtype (2:2) = 'u' skind = 0 c initialize the munch pointers do 30 j = 1, ncol munch (j) = 1+ (Ap (j)) 30 continue do 50 j = 1, ncol c consider all entries not yet munched in column j do 40 p = munch (j), 1+ (Ap (j+1)-1) i = 1+ (Ai (p)) if (i .lt. j) then c entry A(i,j) is unmatched, matrix is unsymmetric return endif c get the A(j,i) entry, if it exists pt = munch (i) c munch the A(j,i) entry munch (i) = pt + 1 if (pt .ge. 1+ (Ap (i+1))) then c entry A(j,i) doesn't exist, matrix unsymmetric return endif if (1+ (Ai (pt)) .ne. j) then c entry A(j,i) doesn't exist, matrix unsymmetric return endif c A(j,i) exists; check its value with A(i,j) if (cmplex .eq. 1) then c get A(i,j) x_r = Ax (p) x_i = Az (p) c get A(j,i) xtr = Ax (pt) xti = Az (pt) if (x_r .ne. xtr .or. x_i .ne. xti) then c the matrix cannot be *SA is_s = .false. endif if (x_r .ne. -xtr .or. x_i .ne. -xti) then c the matrix cannot be *ZA is_z = .false. endif if (x_r .ne. xtr .or. x_i .ne. -xti) then c the matrix cannot be *HA is_h = .false. endif else c get A(i,j) x_r = Ax (p) c get A(j,i) xtr = Ax (pt) if (x_r .ne. xtr) then c the matrix cannot be *SA is_s = .false. endif if (x_r .ne. -xtr) then c the matrix cannot be *ZA is_z = .false. endif endif if (.not. (is_s .or. is_z .or. is_h)) then c matrix is unsymmetric; terminate the test return endif 40 continue 50 continue c ---------------------------------------------------------------- c return the symmetry c ---------------------------------------------------------------- if (is_h) then c Hermitian matrix (*HA) mtype (2:2) = 'h' skind = 2 elseif (is_s) then c symmetric matrix (*SA) mtype (2:2) = 's' skind = 1 elseif (is_z) then c skew symmetric matrix (*ZA) mtype (2:2) = 'z' skind = 3 endif return end c----------------------------------------------------------------------- c RBformat: determine the format required for an array of values c----------------------------------------------------------------------- c c This function ensures that a sufficiently wide format is used that c can accurately represent the data. It also ensures that when printed, c the numerical values all have at least one blank space between them. c This makes it trivial for a program written in C (say) to read in a c matrix generated by RBwrite. c ww, valfmt, valn, and is_int must be defined on input. They c are modified on output. c----------------------------------------------------------------------- subroutine RBformat (nnz, x, ww, valfmt, valn, is_int, $ kmin, kmax) integer*4 $ nnz, i, ww, k, nf (18), valn, nd (9), kmin, kmax double precision x (nnz), e, a, b logical is_int character*20 f (18), d (9), valfmt character*80 s c ---------------------------------------------------------------- c define all possible formats c ---------------------------------------------------------------- f (1) = '(8E9.1) ' f (2) = '(8E10.2) ' f (3) = '(7E11.3) ' f (4) = '(6E12.4) ' f (5) = '(6E13.5) ' f (6) = '(5E14.6) ' f (7) = '(5E15.7) ' f (8) = '(5E16.8) ' f (9) = '(4E17.9) ' f (10) = '(4E18.10) ' f (11) = '(4E19.11) ' f (12) = '(4E20.12) ' f (13) = '(3E21.13) ' f (14) = '(3E22.14) ' f (15) = '(3E23.15) ' f (16) = '(3E24.16) ' f (17) = '(3E25.17) ' f (18) = '(3E26.18) ' nf (1) = 8 nf (2) = 8 nf (3) = 7 nf (4) = 6 nf (5) = 6 nf (6) = 5 nf (7) = 5 nf (8) = 5 nf (9) = 4 nf (10) = 4 nf (11) = 4 nf (12) = 4 nf (13) = 3 nf (14) = 3 nf (15) = 3 nf (16) = 3 nf (17) = 3 nf (18) = 3 if (is_int) then c ------------------------------------------------------------ c use an integer format c ------------------------------------------------------------ call RBiformat (kmin, kmax, valfmt, valn, ww) else c ------------------------------------------------------------ c determine if the matrix has huge values or NaN's c ------------------------------------------------------------ do 10 i = 1, nnz a = abs (x (i)) if (a .ne. 0) then if (a .ne. a .or. a < 1d-90 .or. a > 1d90) then ww = 18 valfmt = '(2E30.18E3) ' valn = 2 return endif endif 10 continue c ------------------------------------------------------------ c find the required precision for a real or complex matrix c ------------------------------------------------------------ do 20 i = 1, nnz a = x (i) do 30 k = ww,18 c write the value to a string, read back in, and check write (unit = s, fmt = f(k)) a read (unit = s, fmt = f(k)) b if (a .eq. b) then ww = max (ww, k) goto 40 endif 30 continue 40 continue ww = max (ww, k) 20 continue c valn is the number of entries per line valfmt = f (ww) valn = nf (ww) endif return end c----------------------------------------------------------------------- c RBwrite: write portions of the matrix to the file c----------------------------------------------------------------------- c c task 0: just count the total number of entries in the matrix c task 1: do task 0, and also construct w and cp c task 2: write the row indices c task 3: write the numerical values c c Note that the MATLAB arrays A and Z are zero-based. "1+" is added c to each use of Ap, Ai, Zp, and Zi. c----------------------------------------------------------------------- subroutine RBwrite (task, nrow, ncol, skind, cmplex, doZ, Ap, $ Ai, Ax, Az, Zp, Zi, mkind, $ indfmt, indn, valfmt, valn, nnz, w, cp) integer*4 $ task, nrow, ncol, Ap (*), Ai (*), Zp (*), Zi (*), $ cp (*), w (*), nnz, znz, ibuf (80), j, i, nbuf, pa, pz, $ paend, pzend, ia, iz, skind, indn, valn, p, mkind integer*4 cmplex logical doZ double precision xbuf (80), xr, xi, Ax (*), Az (*) character valfmt*20, indfmt*20 c ---------------------------------------------------------------- c determine number of entries in Z c ---------------------------------------------------------------- if (doZ) then znz = 1+ (Zp (ncol+1) - 1) else znz = 0 endif c clear the nonzero counts nnz = 0 do 10 j = 1, ncol w (j) = 0 10 continue c start with an empty buffer nbuf = 0 if (znz .eq. 0) then c ------------------------------------------------------------ c no Z present c ------------------------------------------------------------ do 30 j = 1, ncol do 20 pa = 1+ (Ap (j)), 1+ (Ap (j+1) - 1) i = 1+ (Ai (pa)) xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif if (skind .le. 0 .or. i .ge. j) then c consider the (i,j) entry with value (xr,xi) nnz = nnz + 1 if (task .eq. 1) then c only determining nonzero counts w (j) = w (j) + 1 elseif (task .eq. 2) then c printing the row indices call RBiprint (indfmt, ibuf, nbuf, i, indn) elseif (task .eq. 3) then c printing the numerical values call RBxprint (valfmt, xbuf, nbuf, xr, $ valn, mkind) if (cmplex .eq. 1) then call RBxprint (valfmt, xbuf, nbuf, xi, $ valn, mkind) endif endif endif 20 continue 30 continue else c ------------------------------------------------------------ c symmetric, unsymmetric or rectangular matrix, with Z present c ------------------------------------------------------------ do 40 j = 1, ncol c find the set union of A (:,j) and Z (:,j) pa = 1+ (Ap (j)) pz = 1+ (Zp (j)) paend = 1+ (Ap (j+1) - 1) pzend = 1+ (Zp (j+1) - 1) c while entries appear in A or Z 70 continue c get the next entry from A(:,j) if (pa .le. paend) then ia = 1+ (Ai (pa)) else ia = 1+ nrow endif c get the next entry from Z(:,j) if (pz .le. pzend) then iz = 1+ (Zi (pz)) else iz = 1+ nrow endif c exit loop if neither entry is present if (ia .gt. nrow .and. iz .gt. nrow) goto 80 if (ia .lt. iz) then c get A (i,j) i = ia xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif pa = pa + 1 else if (iz .lt. ia) then c get Z (i,j) i = iz xr = 0 xi = 0 pz = pz + 1 else c get A (i,j), and delete its matched Z(i,j) i = ia xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif pa = pa + 1 pz = pz + 1 endif if (skind .le. 0 .or. i .ge. j) then c consider the (i,j) entry with value (xr,xi) nnz = nnz + 1 if (task .eq. 1) then c only determining nonzero counts w (j) = w (j) + 1 elseif (task .eq. 2) then c printing the row indices call RBiprint (indfmt, ibuf, nbuf, i, indn) elseif (task .eq. 3) then c printing the numerical values call RBxprint (valfmt, xbuf, nbuf, xr, $ valn, mkind) if (cmplex .eq. 1) then call RBxprint (valfmt, xbuf, nbuf, xi, $ valn, mkind) endif endif endif goto 70 c end of while loop 80 continue 40 continue endif c ---------------------------------------------------------------- c determine the new column pointers, or finish printing c ---------------------------------------------------------------- if (task .eq. 1) then cp (1) = 1 do 100 j = 2, ncol+1 cp (j) = cp (j-1) + w (j-1) 100 continue else if (task .eq. 2) then call RBiflush (indfmt, ibuf, nbuf) elseif (task .eq. 3) then call RBxflush (valfmt, xbuf, nbuf, mkind) endif return end c----------------------------------------------------------------------- c RBiprint: print a single integer to the file, flush buffer if needed c----------------------------------------------------------------------- subroutine RBiprint (indfmt, ibuf, nbuf, i, indn) character indfmt*20 integer*4 $ ibuf (80), nbuf, i, indn if (nbuf .ge. indn) then call RBiflush (indfmt, ibuf, nbuf) nbuf = 0 endif nbuf = nbuf + 1 ibuf (nbuf) = i return end c----------------------------------------------------------------------- c RBiflush: flush the integer buffer to the file c----------------------------------------------------------------------- subroutine RBiflush (indfmt, ibuf, nbuf) character indfmt*20 integer*4 $ ibuf (*), nbuf, k write (unit = 7, fmt = indfmt, err = 999) (ibuf (k), k = 1,nbuf) return 999 call mexErrMsgTxt ('error writing ints') return end c----------------------------------------------------------------------- c RBxprint: print a single real to the file, flush the buffer if needed c----------------------------------------------------------------------- subroutine RBxprint (valfmt, xbuf, nbuf, x, valn, mkind) character valfmt*20 integer*4 $ nbuf, valn, mkind double precision xbuf (80), x if (nbuf .ge. valn) then call RBxflush (valfmt, xbuf, nbuf, mkind) nbuf = 0 endif nbuf = nbuf + 1 xbuf (nbuf) = x return end c----------------------------------------------------------------------- c RBxflush: flush the real buffer to the file c----------------------------------------------------------------------- subroutine RBxflush (valfmt, xbuf, nbuf, mkind) character valfmt*20 integer*4 $ nbuf, k, ibuf (80), mkind double precision xbuf (80) if (mkind .eq. 3) then c convert to integer first; valfmt is (10I8), for example do 10 k = 1,nbuf ibuf (k) = dint (xbuf (k)) 10 continue write (unit = 7, fmt = valfmt, err = 999) $ (ibuf (k), k = 1,nbuf) else write (unit = 7, fmt = valfmt, err = 999) $ (xbuf (k), k = 1,nbuf) endif return 999 call mexErrMsgTxt ('error writing numerical values') return end c----------------------------------------------------------------------- c RBiformat: determine format for printing an integer c----------------------------------------------------------------------- subroutine RBiformat (kmin, kmax, indfmt, indn, ww) integer*4 $ n, indn, kmin, kmax, ww character*20 indfmt if (kmin .ge. 0. and. kmax .le. 9) then indfmt = '(40I2) ' ww = 2 indn = 40 elseif (kmin .ge. -9 .and. kmax .le. 99) then indfmt = '(26I3) ' ww = 3 indn = 26 elseif (kmin .ge. -99 .and. kmax .le. 999) then indfmt = '(20I4) ' ww = 4 indn = 20 elseif (kmin .ge. -999 .and. kmax .le. 9999) then indfmt = '(16I5) ' ww = 5 indn = 16 elseif (kmin .ge. -9999 .and. kmax .le. 99999) then indfmt = '(13I6) ' ww = 6 indn = 13 elseif (kmin .ge. -99999 .and. kmax .le. 999999) then indfmt = '(11I7) ' ww = 7 indn = 11 elseif (kmin .ge. -999999 .and. kmax .le. 9999999) then indfmt = '(10I8) ' ww = 8 indn = 10 elseif (kmin .ge. -9999999 .and. kmax .le. 99999999) then indfmt = '(8I9) ' ww = 9 indn = 8 elseif (kmin .ge. -99999999 .and. kmax .le. 999999999) then indfmt = '(8I10) ' ww = 10 indn = 8 else indfmt = '(5I15) ' ww = 15 indn = 5 endif return end c----------------------------------------------------------------------- c RBcards: determine number of cards required c----------------------------------------------------------------------- subroutine RBcards (nitems, nperline, ncards) integer*4 $ nitems, nperline, ncards if (nitems .eq. 0) then ncards = 0 else ncards = ((nitems-1) / nperline) + 1 endif return end SuiteSparse/RBio/RBwrite_64.f0000644001170100242450000004326010634270240014643 0ustar davisfacc======================================================================= c=== RBio/RBwrite_64 =================================================== c======================================================================= c RBio: a MATLAB toolbox for reading and writing sparse matrices in c Rutherford/Boeing format. c Copyright (c) 2007, Timothy A. Davis, Univ. of Florida c----------------------------------------------------------------------- c RBkind: determine the type of a MATLAB matrix c----------------------------------------------------------------------- c c input: a zero-based MATLAB sparse matrix c c nrow number of rows of A c ncol number of columns of A c Ap size ncol+1, column pointers c Ai size nnz, row indices (nnz = Ap (ncol+1)) c Ax size nnz, real values c Az size nnz, imaginary values (not accessed if A is real) c cmplex 1 if A is complex, 0 otherwise c c output: c mkind: r: 0 (real), p: 1 (pattern), c: 2 (complex), c i: 3 (integer) c skind: r: -1 (rectangular), u: 0 (unsymmetric), s: 1 symmetric, c h: 2 (Hermitian), z: 3 (skew symmetric) c c workspace: c munch size ncol+1, not defined on input or output c c Note that the MATLAB matrix is zero-based (Ap and Ai). 1 must be c added whenever they are used (see "1+" in the code below). c c See also SuiteSparse/CHOLMOD/MatrixOps/cholmod_symmetry.c, which c also determines if the diagonal is positive. c----------------------------------------------------------------------- subroutine RBkind (nrow, ncol, Ap, Ai, Ax, Az, $ cmplex, mkind, skind, mtype, nnz, munch, kmin, kmax) integer*8 $ nrow, ncol, Ap (ncol+1), Ai (*), mkind, skind, $ munch (ncol+1), p, i, j, pt, nnz, k, kmin, kmax integer*4 cmplex double precision Ax (*), Az (*), x_r, x_i, xtr, xti logical is_p, is_s, is_h, is_z, is_int character mtype*3 c ---------------------------------------------------------------- c determine numeric type (I*A, R*A, P*A, C*A) c ---------------------------------------------------------------- c pattern: if real and all entries are 1. c integer: if real and all entries are integers. c complex: if cmplex is 1. c real: otherwise. nnz = 1+ (Ap (ncol+1) - 1) kmin = 0 kmax = 0 if (cmplex .eq. 1) then c complex matrix (C*A) mtype (1:1) = 'c' mkind = 2 else c select P** format if all entries are equal to 1 c select I** format if all entries are integer and c between -99,999,999 and +999,999,999 is_p = .true. is_int = .true. k = dint (Ax (1)) kmin = k kmax = k do 10 p = 1, nnz if (Ax (p) .ne. 1) then is_p = .false. endif k = dint (Ax (p)) kmin = min (kmin, k) kmax = max (kmax, k) if (k .ne. Ax (p)) then is_int = .false. endif if (k .le. -99999999 .or. k .ge. 999999999) then c use real format for really big integers is_int = .false. endif if (.not. is_int .and. .not. is_p) then goto 20 endif 10 continue 20 continue if (is_p) then c pattern-only matrix (P*A) mtype (1:1) = 'p' mkind = 1 elseif (is_int) then c integer matrix (I*A) mtype (1:1) = 'i' mkind = 3 else c real matrix (R*A) mtype (1:1) = 'r' mkind = 0 endif endif c only assembled matrices are handled mtype (3:3) = 'a' c ---------------------------------------------------------------- c determine symmetry (*RA, *UA, *SA, *HA, *ZA) c ---------------------------------------------------------------- c Note that A must have sorted columns for this method to work. c This is not checked, since all MATLAB matrices "should" have c sorted columns. Use spcheck(A) to check for this, if needed. if (nrow .ne. ncol) then c rectangular matrix (*RA), no need to check values or pattern mtype (2:2) = 'r' skind = -1 return endif c if complex, the matrix is Hermitian until proven otherwise is_h = (cmplex .eq. 1) c the matrix is symmetric until proven otherwise is_s = .true. c a non-pattern matrix is skew symmetric until proven otherwise is_z = (mkind .ne. 1) c if this method returns early, the matrix is unsymmetric mtype (2:2) = 'u' skind = 0 c initialize the munch pointers do 30 j = 1, ncol munch (j) = 1+ (Ap (j)) 30 continue do 50 j = 1, ncol c consider all entries not yet munched in column j do 40 p = munch (j), 1+ (Ap (j+1)-1) i = 1+ (Ai (p)) if (i .lt. j) then c entry A(i,j) is unmatched, matrix is unsymmetric return endif c get the A(j,i) entry, if it exists pt = munch (i) c munch the A(j,i) entry munch (i) = pt + 1 if (pt .ge. 1+ (Ap (i+1))) then c entry A(j,i) doesn't exist, matrix unsymmetric return endif if (1+ (Ai (pt)) .ne. j) then c entry A(j,i) doesn't exist, matrix unsymmetric return endif c A(j,i) exists; check its value with A(i,j) if (cmplex .eq. 1) then c get A(i,j) x_r = Ax (p) x_i = Az (p) c get A(j,i) xtr = Ax (pt) xti = Az (pt) if (x_r .ne. xtr .or. x_i .ne. xti) then c the matrix cannot be *SA is_s = .false. endif if (x_r .ne. -xtr .or. x_i .ne. -xti) then c the matrix cannot be *ZA is_z = .false. endif if (x_r .ne. xtr .or. x_i .ne. -xti) then c the matrix cannot be *HA is_h = .false. endif else c get A(i,j) x_r = Ax (p) c get A(j,i) xtr = Ax (pt) if (x_r .ne. xtr) then c the matrix cannot be *SA is_s = .false. endif if (x_r .ne. -xtr) then c the matrix cannot be *ZA is_z = .false. endif endif if (.not. (is_s .or. is_z .or. is_h)) then c matrix is unsymmetric; terminate the test return endif 40 continue 50 continue c ---------------------------------------------------------------- c return the symmetry c ---------------------------------------------------------------- if (is_h) then c Hermitian matrix (*HA) mtype (2:2) = 'h' skind = 2 elseif (is_s) then c symmetric matrix (*SA) mtype (2:2) = 's' skind = 1 elseif (is_z) then c skew symmetric matrix (*ZA) mtype (2:2) = 'z' skind = 3 endif return end c----------------------------------------------------------------------- c RBformat: determine the format required for an array of values c----------------------------------------------------------------------- c c This function ensures that a sufficiently wide format is used that c can accurately represent the data. It also ensures that when printed, c the numerical values all have at least one blank space between them. c This makes it trivial for a program written in C (say) to read in a c matrix generated by RBwrite. c ww, valfmt, valn, and is_int must be defined on input. They c are modified on output. c----------------------------------------------------------------------- subroutine RBformat (nnz, x, ww, valfmt, valn, is_int, $ kmin, kmax) integer*8 $ nnz, i, ww, k, nf (18), valn, nd (9), kmin, kmax double precision x (nnz), e, a, b logical is_int character*20 f (18), d (9), valfmt character*80 s c ---------------------------------------------------------------- c define all possible formats c ---------------------------------------------------------------- f (1) = '(8E9.1) ' f (2) = '(8E10.2) ' f (3) = '(7E11.3) ' f (4) = '(6E12.4) ' f (5) = '(6E13.5) ' f (6) = '(5E14.6) ' f (7) = '(5E15.7) ' f (8) = '(5E16.8) ' f (9) = '(4E17.9) ' f (10) = '(4E18.10) ' f (11) = '(4E19.11) ' f (12) = '(4E20.12) ' f (13) = '(3E21.13) ' f (14) = '(3E22.14) ' f (15) = '(3E23.15) ' f (16) = '(3E24.16) ' f (17) = '(3E25.17) ' f (18) = '(3E26.18) ' nf (1) = 8 nf (2) = 8 nf (3) = 7 nf (4) = 6 nf (5) = 6 nf (6) = 5 nf (7) = 5 nf (8) = 5 nf (9) = 4 nf (10) = 4 nf (11) = 4 nf (12) = 4 nf (13) = 3 nf (14) = 3 nf (15) = 3 nf (16) = 3 nf (17) = 3 nf (18) = 3 if (is_int) then c ------------------------------------------------------------ c use an integer format c ------------------------------------------------------------ call RBiformat (kmin, kmax, valfmt, valn, ww) else c ------------------------------------------------------------ c determine if the matrix has huge values or NaN's c ------------------------------------------------------------ do 10 i = 1, nnz a = abs (x (i)) if (a .ne. 0) then if (a .ne. a .or. a < 1d-90 .or. a > 1d90) then ww = 18 valfmt = '(2E30.18E3) ' valn = 2 return endif endif 10 continue c ------------------------------------------------------------ c find the required precision for a real or complex matrix c ------------------------------------------------------------ do 20 i = 1, nnz a = x (i) do 30 k = ww,18 c write the value to a string, read back in, and check write (unit = s, fmt = f(k)) a read (unit = s, fmt = f(k)) b if (a .eq. b) then ww = max (ww, k) goto 40 endif 30 continue 40 continue ww = max (ww, k) 20 continue c valn is the number of entries per line valfmt = f (ww) valn = nf (ww) endif return end c----------------------------------------------------------------------- c RBwrite: write portions of the matrix to the file c----------------------------------------------------------------------- c c task 0: just count the total number of entries in the matrix c task 1: do task 0, and also construct w and cp c task 2: write the row indices c task 3: write the numerical values c c Note that the MATLAB arrays A and Z are zero-based. "1+" is added c to each use of Ap, Ai, Zp, and Zi. c----------------------------------------------------------------------- subroutine RBwrite (task, nrow, ncol, skind, cmplex, doZ, Ap, $ Ai, Ax, Az, Zp, Zi, mkind, $ indfmt, indn, valfmt, valn, nnz, w, cp) integer*8 $ task, nrow, ncol, Ap (*), Ai (*), Zp (*), Zi (*), $ cp (*), w (*), nnz, znz, ibuf (80), j, i, nbuf, pa, pz, $ paend, pzend, ia, iz, skind, indn, valn, p, mkind integer*4 cmplex logical doZ double precision xbuf (80), xr, xi, Ax (*), Az (*) character valfmt*20, indfmt*20 c ---------------------------------------------------------------- c determine number of entries in Z c ---------------------------------------------------------------- if (doZ) then znz = 1+ (Zp (ncol+1) - 1) else znz = 0 endif c clear the nonzero counts nnz = 0 do 10 j = 1, ncol w (j) = 0 10 continue c start with an empty buffer nbuf = 0 if (znz .eq. 0) then c ------------------------------------------------------------ c no Z present c ------------------------------------------------------------ do 30 j = 1, ncol do 20 pa = 1+ (Ap (j)), 1+ (Ap (j+1) - 1) i = 1+ (Ai (pa)) xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif if (skind .le. 0 .or. i .ge. j) then c consider the (i,j) entry with value (xr,xi) nnz = nnz + 1 if (task .eq. 1) then c only determining nonzero counts w (j) = w (j) + 1 elseif (task .eq. 2) then c printing the row indices call RBiprint (indfmt, ibuf, nbuf, i, indn) elseif (task .eq. 3) then c printing the numerical values call RBxprint (valfmt, xbuf, nbuf, xr, $ valn, mkind) if (cmplex .eq. 1) then call RBxprint (valfmt, xbuf, nbuf, xi, $ valn, mkind) endif endif endif 20 continue 30 continue else c ------------------------------------------------------------ c symmetric, unsymmetric or rectangular matrix, with Z present c ------------------------------------------------------------ do 40 j = 1, ncol c find the set union of A (:,j) and Z (:,j) pa = 1+ (Ap (j)) pz = 1+ (Zp (j)) paend = 1+ (Ap (j+1) - 1) pzend = 1+ (Zp (j+1) - 1) c while entries appear in A or Z 70 continue c get the next entry from A(:,j) if (pa .le. paend) then ia = 1+ (Ai (pa)) else ia = 1+ nrow endif c get the next entry from Z(:,j) if (pz .le. pzend) then iz = 1+ (Zi (pz)) else iz = 1+ nrow endif c exit loop if neither entry is present if (ia .gt. nrow .and. iz .gt. nrow) goto 80 if (ia .lt. iz) then c get A (i,j) i = ia xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif pa = pa + 1 else if (iz .lt. ia) then c get Z (i,j) i = iz xr = 0 xi = 0 pz = pz + 1 else c get A (i,j), and delete its matched Z(i,j) i = ia xr = Ax (pa) if (cmplex .eq. 1) then xi = Az (pa) endif pa = pa + 1 pz = pz + 1 endif if (skind .le. 0 .or. i .ge. j) then c consider the (i,j) entry with value (xr,xi) nnz = nnz + 1 if (task .eq. 1) then c only determining nonzero counts w (j) = w (j) + 1 elseif (task .eq. 2) then c printing the row indices call RBiprint (indfmt, ibuf, nbuf, i, indn) elseif (task .eq. 3) then c printing the numerical values call RBxprint (valfmt, xbuf, nbuf, xr, $ valn, mkind) if (cmplex .eq. 1) then call RBxprint (valfmt, xbuf, nbuf, xi, $ valn, mkind) endif endif endif goto 70 c end of while loop 80 continue 40 continue endif c ---------------------------------------------------------------- c determine the new column pointers, or finish printing c ---------------------------------------------------------------- if (task .eq. 1) then cp (1) = 1 do 100 j = 2, ncol+1 cp (j) = cp (j-1) + w (j-1) 100 continue else if (task .eq. 2) then call RBiflush (indfmt, ibuf, nbuf) elseif (task .eq. 3) then call RBxflush (valfmt, xbuf, nbuf, mkind) endif return end c----------------------------------------------------------------------- c RBiprint: print a single integer to the file, flush buffer if needed c----------------------------------------------------------------------- subroutine RBiprint (indfmt, ibuf, nbuf, i, indn) character indfmt*20 integer*8 $ ibuf (80), nbuf, i, indn if (nbuf .ge. indn) then call RBiflush (indfmt, ibuf, nbuf) nbuf = 0 endif nbuf = nbuf + 1 ibuf (nbuf) = i return end c----------------------------------------------------------------------- c RBiflush: flush the integer buffer to the file c----------------------------------------------------------------------- subroutine RBiflush (indfmt, ibuf, nbuf) character indfmt*20 integer*8 $ ibuf (*), nbuf, k write (unit = 7, fmt = indfmt, err = 999) (ibuf (k), k = 1,nbuf) return 999 call mexErrMsgTxt ('error writing ints') return end c----------------------------------------------------------------------- c RBxprint: print a single real to the file, flush the buffer if needed c----------------------------------------------------------------------- subroutine RBxprint (valfmt, xbuf, nbuf, x, valn, mkind) character valfmt*20 integer*8 $ nbuf, valn, mkind double precision xbuf (80), x if (nbuf .ge. valn) then call RBxflush (valfmt, xbuf, nbuf, mkind) nbuf = 0 endif nbuf = nbuf + 1 xbuf (nbuf) = x return end c----------------------------------------------------------------------- c RBxflush: flush the real buffer to the file c----------------------------------------------------------------------- subroutine RBxflush (valfmt, xbuf, nbuf, mkind) character valfmt*20 integer*8 $ nbuf, k, ibuf (80), mkind double precision xbuf (80) if (mkind .eq. 3) then c convert to integer first; valfmt is (10I8), for example do 10 k = 1,nbuf ibuf (k) = dint (xbuf (k)) 10 continue write (unit = 7, fmt = valfmt, err = 999) $ (ibuf (k), k = 1,nbuf) else write (unit = 7, fmt = valfmt, err = 999) $ (xbuf (k), k = 1,nbuf) endif return 999 call mexErrMsgTxt ('error writing numerical values') return end c----------------------------------------------------------------------- c RBiformat: determine format for printing an integer c----------------------------------------------------------------------- subroutine RBiformat (kmin, kmax, indfmt, indn, ww) integer*8 $ n, indn, kmin, kmax, ww character*20 indfmt if (kmin .ge. 0. and. kmax .le. 9) then indfmt = '(40I2) ' ww = 2 indn = 40 elseif (kmin .ge. -9 .and. kmax .le. 99) then indfmt = '(26I3) ' ww = 3 indn = 26 elseif (kmin .ge. -99 .and. kmax .le. 999) then indfmt = '(20I4) ' ww = 4 indn = 20 elseif (kmin .ge. -999 .and. kmax .le. 9999) then indfmt = '(16I5) ' ww = 5 indn = 16 elseif (kmin .ge. -9999 .and. kmax .le. 99999) then indfmt = '(13I6) ' ww = 6 indn = 13 elseif (kmin .ge. -99999 .and. kmax .le. 999999) then indfmt = '(11I7) ' ww = 7 indn = 11 elseif (kmin .ge. -999999 .and. kmax .le. 9999999) then indfmt = '(10I8) ' ww = 8 indn = 10 elseif (kmin .ge. -9999999 .and. kmax .le. 99999999) then indfmt = '(8I9) ' ww = 9 indn = 8 elseif (kmin .ge. -99999999 .and. kmax .le. 999999999) then indfmt = '(8I10) ' ww = 10 indn = 8 else indfmt = '(5I15) ' ww = 15 indn = 5 endif return end c----------------------------------------------------------------------- c RBcards: determine number of cards required c----------------------------------------------------------------------- subroutine RBcards (nitems, nperline, ncards) integer*8 $ nitems, nperline, ncards if (nitems .eq. 0) then ncards = 0 else ncards = ((nitems-1) / nperline) + 1 endif return end SuiteSparse/RBio/RBfix.m0000644001170100242450000001042710711661061013775 0ustar davisfacfunction [A, Z, title, key, mtype] = RBfix (filename) %RBFIX read a possibly corrupted matrix from a R/B file % (assembled format only). Usage: % % [A Z title key mtype] = RBfix (filename) % % The Rutherford/Boeing format stores a sparse matrix in a file in compressed- % column form, using 3 arrays: Ap, Ai, and Ax. The row indices of entries in % A(:,j) are in Ai(p1:p2) and the corresponding numerical values are Ax(p1:p2), % where p1 = Ap(j) and p2 = Ap(j+1)-1. The row indices ought to be sorted, and % no duplicates should appear, but this function ignores that requirement. % Duplicate entries are summed if they exist, and A is returned with sorted % columns. Symmetric matrices are stored with just their lower triangular % parts in the file. Normally, it is an error if entries are present in the % upper triangular part of a matrix that is declared in the file to be % symmetric. This function simply ignores those entries. % % If CHOLMOD is installed, this function is faster and uses less memory. % % Example: % % load west0479 % RBwrite ('mywest', west0479, [ ], 'My west0479 file', 'west0479') ; % [A Z title key mtype] = RBfix ('mywest') ; % isequal (A, west0479) % title, key, mtype % % See also mread, RBread, RBwrite, RBreade, sparse2. % Optionally uses the CHOLMOD sparse2 mexFunction. % Copyright 2007, Timothy A. Davis %------------------------------------------------------------------------------- % read in the raw contents of the Rutherford/Boeing file %------------------------------------------------------------------------------- [mtype Ap Ai Ax title key nrow] = RBraw (filename) ; mtype = lower (mtype) ; %------------------------------------------------------------------------------- % determine dimension, number of entries, and convert numerical entries %------------------------------------------------------------------------------- % number of columns ncol = length (Ap) - 1 ; % number of entries nz = length (Ai) ; % check column pointers if (any (Ap ~= sort (Ap)) | (Ap (1) ~= 1) | (Ap (ncol+1) - 1 ~= nz)) %#ok error ('invalid column pointers') ; end % check row indices if ((double (max (Ai)) > nrow) | double (min (Ai)) < 1) %#ok error ('invalid row indices') ; end % Ax can be empty, for a p*a matrix if (~isempty (Ax)) if (mtype (1) == 'c') % Ax is real, with real/imaginary parts interleaved if (2 * nz ~= length (Ax)) error ('invalid matrix') ; end Ax = Ax (1:2:end) + (1i * Ax (2:2:end)) ; elseif (mtype (1) == 'i') Ax = double (Ax) ; end % numerical values must be of the right size if (nz ~= length (Ax)) error ('invalid matrix') ; end end %------------------------------------------------------------------------------- % create the triplet form %------------------------------------------------------------------------------- % construct column indices Aj = zeros (nz,1) ; for j = 1:ncol p1 = Ap (j) ; p2 = Ap (j+1) - 1 ; Aj (p1:p2) = j ; end %------------------------------------------------------------------------------- % create the sparse matrix form %------------------------------------------------------------------------------- if (exist ('sparse2') == 3) %#ok % Use sparse2 in CHOLMOD. It's faster, allows integer Ai and Aj, and % returns the Z matrix as the 2nd output argument. if (isempty (Ax)) Ax = 1 ; end % numerical matrix [A Z] = sparse2 (Ai, Aj, Ax, nrow, ncol) ; else % stick with MATLAB, without CHOLMOD. This is slower and takes more memory. Ai = double (Ai) ; Aj = double (Aj) ; if (isempty (Ax)) % pattern-only matrix A = spones (sparse (Ai, Aj, 1, nrow, ncol)) ; Z = sparse (nrow, ncol) ; else % numerical matrix A = sparse (Ai, Aj, Ax, nrow, ncol) ; % determine the pattern of explicit zero entries S = spones (sparse (Ai, Aj, 1, nrow, ncol)) ; Z = S - spones (A) ; end end % check for entries in upper part if (any (mtype (2) == 'shz') & nnz (triu (A,1) > 0)) %#ok fprintf ('entries in upper triangular part of %s matrix ignored\n', mtype); end % add the upper triangular part if (mtype (2) == 's') A = A + tril (A,-1).' ; Z = Z + tril (Z,-1)' ; elseif (mtype (2) == 'h') A = A + tril (A,-1)' ; Z = Z + tril (Z,-1)' ; elseif (mtype (2) == 'z') A = A - tril (A,-1).' ; Z = Z + tril (Z,-1)' ; end SuiteSparse/RBio/RBreade.m0000644001170100242450000000731410711661132014267 0ustar davisfacfunction [A, Z, title, key, mtype] = RBreade (filename) %RBREADE read a symmetric finite-element matrix from a R/B file % Usage: % [A Z title key mtype] = RBreade (filename) % % The file must contain a Rutherford/Boeing matrix of type *se or *he, where * % can be r, p, i, or c. See RBread for a description of the outputs. % % If CHOLMOD is installed, this function is faster and uses less memory. % % Example: % % [A Z title key mtype] = RBreade ('lap_25.pse') ; % % See also RBread, RBraw, sparse2. % Optionally uses the CHOLMOD sparse2 mexFunction. % Copyright 2007, Timothy A. Davis %------------------------------------------------------------------------------- % read in the raw contents of the Rutherford/Boeing file %------------------------------------------------------------------------------- [mtype Ap Ai Ax title key n] = RBraw (filename) ; mtype = lower (mtype) ; if (~(mtype (2) == 's' | mtype (2) == 'h') | (mtype (3) ~= 'e')) %#ok error ('RBreade is only for symmetric unassembled finite-element matrices'); end %------------------------------------------------------------------------------- % determine dimension, number of elements, and convert numerical entries %------------------------------------------------------------------------------- Ap = double (Ap) ; Ai = double (Ai) ; % number of elements ne = length (Ap) - 1 ; % dimension. if (max (Ai) > n) error ('invalid dimension') ; end % determine number of numerical entries nz = 0 ; for e = 1:ne p1 = Ap (e) ; p2 = Ap (e+1) - 1 ; nu = p2 - p1 + 1 ; nz = nz + (nu * (nu+1)/2) ; end % Ax can be empty, for a pse matrix if (~isempty (Ax)) if (mtype (1) == 'c') % Ax is real, with real/imaginary parts interleaved if (2 * nz ~= length (Ax)) error ('invalid matrix (wrong number of complex values)') ; end Ax = Ax (1:2:end) + (1i * Ax (2:2:end)) ; elseif (mtype (1) == 'i') Ax = double (Ax) ; end % numerical values must be of the right size if (nz ~= length (Ax)) error ('invalid matrix (wrong number of values)') ; end end %------------------------------------------------------------------------------- % create triplet form %------------------------------------------------------------------------------- % row and column indices for triplet form of the matrix ii = zeros (nz, 1) ; jj = zeros (nz, 1) ; nx = 0 ; % create triplet row and column indices from finite-element pattern for e = 1:ne p1 = Ap (e) ; p2 = Ap (e+1) - 1 ; for p = p1:p2 j = Ai (p) ; for pp = p:p2 i = Ai (pp) ; nx = nx + 1 ; ii (nx) = max (i,j) ; jj (nx) = min (i,j) ; end end end %------------------------------------------------------------------------------- % create the sparse matrix form %------------------------------------------------------------------------------- if (exist ('sparse2') == 3) %#ok % Use sparse2 in CHOLMOD. It's faster, allows integer Ai and Aj, and % returns the Z matrix as the 2nd output argument. if (isempty (Ax)) Ax = 1 ; end % numerical matrix [A Z] = sparse2 (ii, jj, Ax, n, n) ; else % stick with MATLAB, without CHOLMOD. This is slower and takes more memory. if (isempty (Ax)) % pattern-only matrix A = spones (sparse (ii, jj, 1, n, n)) ; Z = sparse (n, n) ; else % numerical matrix A = sparse (ii, jj, Ax, n, n) ; % determine the pattern of explicit zero entries S = spones (sparse (ii, jj, 1, n, n)) ; Z = S - spones (A) ; end end % add the upper triangular part if (mtype (2) == 's') A = A + tril (A,-1).' ; elseif (mtype (2) == 'h') A = A + tril (A,-1)' ; end Z = Z + tril (Z,-1)' ; % remove duplicates created from triplet form for a pattern-only matrix if (mtype (1) == 'p') A = spones (A) ; end SuiteSparse/RBio/RBraw.m0000644001170100242450000000252010711661117013775 0ustar davisfacfunction [mtype, Ap, Ai, Ax, title, key, nrow] = RBraw (filename) %#ok %RBRAW read the raw contents of a Rutherford/Boeing file % % [mtype Ap Ai Ax title key nrow] = RBraw (filename) % % mtype: Rutherford/Boeing matrix type (psa, rua, rsa, rse, ...) % Ap: column pointers (1-based) % Ai: row indices (1-based) % Ax: numerical values (real, complex, or integer). Empty for p*a matrices. % A complex matrix is read in as a single double array Ax, where the kth % entry has real value Ax(2*k-1) and imaginary value Ax(2*k). % title: a string containing the title from the first line of the R/B file % key: a string containing the 8-character key, from the 1st line of the file % nrow: number of rows in the matrix % % This function works for both assembled and unassembled (finite-element) % matrices. It is also useful for checking the contents of a Rutherford/Boeing % file in detail, in case the file has invalid column pointers, unsorted % columns, duplicate entries, entries in the upper triangular part of the file % for a symmetric matrix, etc. % % Example: % % load west0479 % RBwrite ('mywest', west0479, [ ], 'My west0479 file', 'west0479') ; % [mtype Ap Ai Ax title key nrow] = RBraw ('mywest') ; % % See also RBfix, RBread, RBreade. % Copyright 2007, Timothy A. Davis error ('RBraw mexFunction not found') ; SuiteSparse/CSparse/0000755001170100242450000000000010711431371013305 5ustar davisfacSuiteSparse/CSparse/Doc/0000755001170100242450000000000010711427627014023 5ustar davisfacSuiteSparse/CSparse/Doc/License.txt0000644001170100242450000000160410357542363016150 0ustar davisfacCSparse: a Concise Sparse matrix package. Copyright (c) 2006, Timothy A. Davis. http://www.cise.ufl.edu/research/sparse/CSparse -------------------------------------------------------------------------------- CSparse is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. CSparse is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CSparse/Doc/ChangeLog0000644001170100242450000002072410711427621015574 0ustar davisfacNov 1, 2007, v2.2.1 * very minor change to Include/cs.h: Changed name of 2nd argument of cs_permute, to match the code. This has no affect on the code itself, since the type ("int *") is unchanged. It's just a documentation issue. * minor lint cleanup in mexFunctions Mar 31, 2007, v2.2.0 * few changes to primary Source/ files. Changes mostly affect MATLAB interface. * Source/cs_house.c: correction to comment * Souce/cs_updown.c: whitespace changed to reflect change in CXSparse, no impact at all on CSparse itself. * Doc/, Lib/ and Include/ directories created. * Source/cs.h moved to Include/cs.h, version number changed to 2.2.0. * modification to Makefiles, cs_make.m * correction to help comments in cs_dmperm.m, cs_qr.m, cs_scc2.m, cs_scc.m * if complex matrix passed to CSparse in MATLAB, error message suggests using CXSparse instead * minor performance fix to cs_sparse_mex.c * cs_randperm added to MATLAB/Makefile; already appeared in cs_make.m * minor improvements to MATLAB/ demos. Mar 1, 2007, v2.1.0 * Source/cs_add.c: added test for matrix dimensions * Source/cs_multiply.c: added test for matrix dimensions * correction to MATLAB demo3 (no error in C code version of the demo) * minor corrections to MATLAB m-file help comments. Dec 12, 2006, v2.0.7 * minor MATLAB cleanup Dec 6, 2006, v2.0.6 * Update to UFget. Now relies on the MATLAB urlwrite function instead of my own Java code. Nov 2006, v2.0.5 * Added UFgrep to UFget toolbox. * No changes to C Source code, except for version number and date. * Added two test matrices: ibm32a and ibm32b. ibm32a is the Harwell/ Boeing matrix ibm32, but with the last column removed. ibm32b is the transpose of ibm32a. With optimization enabled (-O), 2 lines in cs_maxtrans.c are not tested; these matrices correct that problem. * Fixed UFget. Earlier version could not download matrices larger than 32MB. * Modified UFget/UFweb, to reflect changes in the UF Sparse Matrix Collection. * Added ccspy.m and cs_scc2.m MATLAB functions * Added examples to help info in each *.m MATLAB file * modified cs_dmspy to speed up the plotting of large matrices with many singletons * minor change to cspy: now draws a box around the matrix. * minor changes to MATLAB demos and tests. Oct 13, 2006, v2.0.4 * minor modification to cs_updown.c. "n" was incorrectly declared "double". It should be "int". This was safe, just a little confusing (n was only used in an argument to cs_malloc, and is thus typecast). Sept 28, 2006, v2.0.3 * minor modifications to MATLAB interface, to allow CSparse to be used in MATLAB 6.5. * added examples to m-files, other minor m-file cleanup. * bug fix to cspy, to handle NaN's properly. Aug 23, 2006: v2.0.2 * change to cs_updown mexFunction, to handle multiple rank updates * symbolic links removed from Tcov/ directory in the distribution. They are now created by Tcov/Makefile as needed. This makes the zip files cleaner. Tcov/*test.c test files renamed. July 19, 2006: * minor fix to cs_must_compile.m and cs_make.m, to allow CSparse to be compiled in MATLAB 6.5 with cs_make. * minor fix to cspy for complex matrices (imaginary part was ignored). * no change to version number or date, since there are no changes that affect the appearance of CSparse in the book ("Direct Methods for Sparse Linear Systems", SIAM, 2006). June 24, 2006: * minor typos in comments corrected. No change in code itself, and no change in version number or date. May 27, 2006, v2.0.1: (this version is printed in the book) * minor bug fix. cs_util.c modified, so that cs_sprealloc (T,0) works properly for a triplet matrix T (setting T->nzmax equal to T->nz). The line in v2.0.0: nzmax = (nzmax <= 0) ? (A->p [A->n]) : nzmax ; changes to the following in v2.0.1: if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ; * minor typographical changes arising from the editting of the book. Apr 12, 2006, v2.0.0: * random permutation option added to cs_maxtrans and cs_dmperm, to help avoid rare cases where the O(|A|n) time complexity is reached in practice (GHS_indef/boyd2 in the UF sparse matrix collection, for example). New cs_randperm function added. Apr 10, 2006: * stylistic changes for the book (except for the bug fix): * "int order" parameter of cs_amd, cs_lusol, cs_cholsol, cs_qrsol, cs_sqr, cs_schol changed. Now 0 means no ordering, 1 is A+A', 2 is S*S', and 3 is A*A'. In v1.2 and earlier, "order" took on a value ranging from -1 to 2. "int n" parameter rearranged for cs_ipvec, cs_pvec, cs_post (int n moved to the end). cs_triplet renamed cs_compress. To ensure that these changes are propagated into user code that calls CSparse, the "order" parameter has been placed as the first parameter in all these routines. Your compiler will complain (gcc will halt) if you upgrade from v1.2 to v2.0 without changing your code. This is much better than a silent error in which you get the wrong ordering by mistake (with a huge penalty in run-time performance and no compiler warnings). New syntax (v2.0 and later): ---------------------------- order = 0: natural ordering order = 1: amd (A+A') order = 2: amd (S'*S), where S=A except dense rows dropped order = 3: amd (A'*A) int cs_cholsol (int order, const cs *A, double *b) ; int cs_lusol (int order, const cs *A, double *b, double tol) ; int cs_qrsol (int order, const cs *A, double *b) ; int *cs_amd (int order, const cs *A) ; css *cs_schol (int order, const cs *A) ; css *cs_sqr (int order, const cs *A, int qr) ; int *cs_post (const int *parent, int n) ; int cs_ipvec (const int *p, const double *b, double *x, int n) ; int cs_pvec (const int *p, const double *b, double *x, int n) ; cs *cs_compress (const cs *T) ; Old syntax (v1.2 and earlier): ------------------------------ order = -1: natural ordering order = 0: amd (A+A') order = 1: amd (S'*S), where S=A except dense rows dropped order = 2: amd (A'*A) int cs_cholsol (const cs *A, double *b, int order) ; int cs_lusol (const cs *A, double *b, int order, double tol) ; int cs_qrsol (const cs *A, double *b, int order) ; int *cs_amd (const cs *A, int order) ; css *cs_schol (const cs *A, int order) ; css *cs_sqr (const cs *A, int order, int qr) ; int *cs_post (int n, const int *parent) ; int cs_ipvec (int n, const int *p, const double *b, double *x) ; int cs_pvec (int n, const int *p, const double *b, double *x) ; cs *cs_triplet (const cs *T) ; * CS_OVERFLOW macro removed (removed from cs_malloc.c; not needed). * S->leftmost added to css (it was tacked onto S->pinv before). * P,Q,R,S components of csd struct changed to p,q,r,s. * Pinv and Q components of css struct changed to pinv and q. * CS_CSC and CS_TRIPLET macros added, to clarify which CSparse functions accept cs matrices in compressed column form, triplet form, or both. * check for negative row/column indices added to cs_entry. * cs_ereach and cs_leaf functions added. * call to cs_sprealloc added to cs_fkeep. * bug fixes in cs_counts and cs_amd (memory leak under rare out-of-memory conditions). Mar 15, 2006: * cs_scc modified so that the row and columns of each component are put in their natural order. cs_dmperm modified so that columns of each block (instead of rows) are placed in their natural order. * cs_splsolve renamed cs_spsolve, generalized to handle both Lx=b and Ux=b, and non-unit diagonal, and placed in its own file (cs_spsolve.c; it was a static function in cs_lu.c). cs_lsolve_mex.c and cs_splsolve_mex.c merged (the latter was removed). cs_spsolve.c file added * cs_dmspy changed, so that block borders line up better with the matrix. Mar 6, 2006: * Makefile modified so that the Tcov tests (which may not be portable) are not compiled and run by the default "make" in the CSparse directory. To compile everything, including the Tcov tests, use "make all". Trivial change to cs.h. Feb 27, 2006: * cs_reach, cs_dfs, cs_splsolve, cs_lu, and cs_scc changed to remove O(n) initialized workspace. * cs_reach and cs_splsolve now user-callable (were static in cs_lu.c). Feb 20, 2006: * various changes to simplify the construction of CXSparse Feb 7, 2006: * changed prototypes, adding "const" where appropriate. SuiteSparse/CSparse/Doc/lesser.txt0000644001170100242450000006350010346315140016053 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CSparse/Lib/0000755001170100242450000000000010711435727014024 5ustar davisfacSuiteSparse/CSparse/Lib/Makefile0000644001170100242450000000174210617166425015471 0ustar davisfac# Modify the "-O" optimization option for best performance (-O3 on Linux): CC = cc CFLAGS = -O -I../Include AR = ar cr RANLIB = ranlib all: libcsparse.a CS = cs_add.o cs_amd.o cs_chol.o cs_cholsol.o cs_counts.o cs_cumsum.o \ cs_droptol.o cs_dropzeros.o cs_dupl.o cs_entry.o \ cs_etree.o cs_fkeep.o cs_gaxpy.o cs_happly.o cs_house.o cs_ipvec.o \ cs_lsolve.o cs_ltsolve.o cs_lu.o cs_lusol.o cs_util.o cs_multiply.o \ cs_permute.o cs_pinv.o cs_post.o cs_pvec.o cs_qr.o cs_qrsol.o \ cs_scatter.o cs_schol.o cs_sqr.o cs_symperm.o cs_tdfs.o cs_malloc.o \ cs_transpose.o cs_compress.o cs_usolve.o cs_utsolve.o cs_scc.o \ cs_maxtrans.o cs_dmperm.o cs_updown.o cs_print.o cs_norm.o cs_load.o \ cs_dfs.o cs_reach.o cs_spsolve.o cs_ereach.o cs_leaf.o cs_randperm.o $(CS): ../Include/cs.h Makefile %.o: ../Source/%.c ../Include/cs.h $(CC) $(CFLAGS) -c $< libcsparse.a: $(CS) $(AR) libcsparse.a $(CS) $(RANLIB) libcsparse.a clean: rm -f *.o purge: distclean distclean: clean rm -f *.a SuiteSparse/CSparse/Demo/0000755001170100242450000000000010711435727014202 5ustar davisfacSuiteSparse/CSparse/Demo/Makefile0000644001170100242450000000163510617166127015647 0ustar davisfacCC = cc CFLAGS = -O I = -I../Include CS = ../Lib/libcsparse.a all: lib cs_demo1 cs_demo2 cs_demo3 - ./cs_demo1 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/ash219 - ./cs_demo2 < ../Matrix/bcsstk01 - ./cs_demo2 < ../Matrix/fs_183_1 - ./cs_demo2 < ../Matrix/mbeacxc - ./cs_demo2 < ../Matrix/west0067 - ./cs_demo2 < ../Matrix/lp_afiro - ./cs_demo2 < ../Matrix/bcsstk16 - ./cs_demo3 < ../Matrix/bcsstk01 - ./cs_demo3 < ../Matrix/bcsstk16 lib: ( cd ../Lib ; $(MAKE) ) cs_demo1: lib cs_demo1.c Makefile $(CC) $(CFLAGS) $(I) -o cs_demo1 cs_demo1.c $(CS) -lm cs_demo2: lib cs_demo2.c cs_demo.c cs_demo.h Makefile $(CC) $(CFLAGS) $(I) -o cs_demo2 cs_demo2.c cs_demo.c $(CS) -lm cs_demo3: lib cs_demo3.c cs_demo.c cs_demo.h Makefile $(CC) $(CFLAGS) $(I) -o cs_demo3 cs_demo3.c cs_demo.c $(CS) -lm clean: rm -f *.o purge: distclean distclean: clean rm -f cs_demo1 cs_demo2 cs_demo3 *.a SuiteSparse/CSparse/Demo/cs_demo1.c0000644001170100242450000000201110436111360016016 0ustar davisfac#include "cs.h" int main (void) { cs *T, *A, *Eye, *AT, *C, *D ; int i, m ; T = cs_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_print (T, 0) ; /* print T */ A = cs_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_print (A, 0) ; /* print A */ cs_spfree (T) ; /* clear T */ AT = cs_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_entry (T, i, i, 1) ; Eye = cs_compress (T) ; /* Eye = speye (m) */ cs_spfree (T) ; C = cs_multiply (A, AT) ; /* C = A*A' */ D = cs_add (C, Eye, 1, cs_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_print (D, 0) ; /* print D */ cs_spfree (A) ; /* clear A AT C D Eye */ cs_spfree (AT) ; cs_spfree (C) ; cs_spfree (D) ; cs_spfree (Eye) ; return (0) ; } SuiteSparse/CSparse/Demo/cs_demo2.c0000644001170100242450000000032010326434515016030 0ustar davisfac#include "cs_demo.h" /* cs_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CSparse/Demo/cs_demo3.c0000644001170100242450000000032410326434521016032 0ustar davisfac#include "cs_demo.h" /* cs_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CSparse/Demo/cs_demo.out0000644001170100242450000001240010711432563016334 0ustar davisfac./cs_demo1 < ../Matrix/t1 T: CSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 A: CSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 AT: CSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 7.7 col 0 : locations 0 to 1 0 : 4.5 2 : 3.2 col 1 : locations 2 to 4 0 : 3.1 1 : 2.9 3 : 0.9 col 2 : locations 5 to 6 1 : 1.7 2 : 3 col 3 : locations 7 to 9 0 : 3.5 1 : 0.4 3 : 1 D: CSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 139.58 col 0 : locations 0 to 3 1 : 13.95 3 : 15.75 0 : 100.28 2 : 9.6 col 1 : locations 4 to 7 1 : 88.62 3 : 12.91 0 : 13.95 2 : 4.93 col 2 : locations 8 to 11 1 : 4.93 3 : 0.68 2 : 81.68 0 : 9.6 col 3 : locations 12 to 15 1 : 12.91 3 : 83.2 0 : 15.75 2 : 0.68 ./cs_demo2 < ../Matrix/t1 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.11e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 3.06e-17 QR amd(A'*A) time: 0.00 resid: 3.06e-17 LU natural time: 0.00 resid: 1.53e-17 LU amd(A+A') time: 0.00 resid: 1.53e-17 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 1.53e-17 ./cs_demo2 < ../Matrix/ash219 --- Matrix: 219-by-85, nnz: 438 (sym: 0: nnz 0), norm: 9.00e+00 blocks: 1 singletons: 0 structural rank: 85 QR natural time: 0.00 resid: 1.61e-02 QR amd(A'*A) time: 0.00 resid: 1.61e-02 ./cs_demo2 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 blocks: 1 singletons: 0 structural rank: 48 QR natural time: 0.00 resid: 2.62e-19 QR amd(A'*A) time: 0.00 resid: 5.27e-19 LU natural time: 0.00 resid: 2.17e-19 LU amd(A+A') time: 0.00 resid: 1.87e-19 LU amd(S'*S) time: 0.00 resid: 2.38e-19 LU amd(A'*A) time: 0.00 resid: 2.38e-19 Chol natural time: 0.00 resid: 2.64e-19 Chol amd(A+A') time: 0.00 resid: 2.55e-19 ./cs_demo2 < ../Matrix/fs_183_1 --- Matrix: 183-by-183, nnz: 988 (sym: 0: nnz 0), norm: 1.70e+09 zero entries dropped: 71 tiny entries dropped: 10 blocks: 38 singletons: 37 structural rank: 183 QR natural time: 0.01 resid: 6.84e-28 QR amd(A'*A) time: 0.00 resid: 9.38e-28 LU natural time: 0.00 resid: 6.20e-28 LU amd(A+A') time: 0.00 resid: 1.55e-27 LU amd(S'*S) time: 0.01 resid: 6.98e-28 LU amd(A'*A) time: 0.00 resid: 6.98e-28 ./cs_demo2 < ../Matrix/mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.14 resid: nan QR amd(A'*A) time: 0.18 resid: nan ./cs_demo2 < ../Matrix/west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.14e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 7.14e-17 QR amd(A'*A) time: 0.00 resid: 3.10e-17 LU natural time: 0.00 resid: 3.89e-17 LU amd(A+A') time: 0.00 resid: 2.27e-17 LU amd(S'*S) time: 0.00 resid: 1.95e-17 LU amd(A'*A) time: 0.00 resid: 2.60e-17 ./cs_demo2 < ../Matrix/lp_afiro --- Matrix: 27-by-51, nnz: 102 (sym: 0: nnz 0), norm: 3.43e+00 blocks: 1 singletons: 0 structural rank: 27 QR natural time: 0.00 resid: 3.96e-16 QR amd(A'*A) time: 0.00 resid: 2.25e-16 ./cs_demo2 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 blocks: 75 singletons: 74 structural rank: 4884 QR amd(A'*A) time: 1.88 resid: 1.39e-22 LU amd(A+A') time: 1.16 resid: 1.10e-22 LU amd(S'*S) time: 1.15 resid: 1.28e-22 LU amd(A'*A) time: 1.20 resid: 1.78e-22 Chol amd(A+A') time: 0.37 resid: 1.19e-22 ./cs_demo3 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 2.55e-19 update: time: 0.00 update: time: 0.00 (incl solve) resid: 9.66e-19 rechol: time: 0.00 (incl solve) resid: 1.55e-18 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 3.74e-17 ./cs_demo3 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 chol then update/downdate amd(A+A') symbolic chol time 0.02 numeric chol time 0.34 solve chol time 0.00 original: resid: 1.19e-22 update: time: 0.00 update: time: 0.01 (incl solve) resid: 1.12e-23 rechol: time: 0.34 (incl solve) resid: 1.17e-23 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 4.09e-22 SuiteSparse/CSparse/Demo/cs_demo.c0000644001170100242450000002315210440110365015745 0ustar davisfac#include "cs_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static int is_sym (cs *A) { int is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static int dropdiag (int i, int j, double aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs *make_sym (cs *A) { cs *AT, *C ; AT = cs_transpose (A, 1) ; /* AT = A' */ cs_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_add (A, AT, 1, 1) ; /* C = A+AT */ cs_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (double *x, double *b, int m) { int i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (double *x, int n) { int i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, fabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (int ok, cs *A, double *x, double *b, double *resid) { int i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (int order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs *T, *A, *C ; int sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_compress (T) ; /* A = compressed-column form of T */ cs_spfree (T) ; /* clear T */ if (!cs_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ; Prob->b = cs_malloc (mn, sizeof (double)) ; Prob->x = cs_malloc (mn, sizeof (double)) ; Prob->resid = cs_malloc (mn, sizeof (double)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_spfree (Prob->A) ; if (Prob->sym) cs_spfree (Prob->C) ; cs_free (Prob->b) ; cs_free (Prob->x) ; cs_free (Prob->resid) ; return (cs_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ int demo2 (problem *Prob) { cs *A, *C ; double *b, *x, *resid, t, tol ; int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; csd *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %d singletons: %d structural rank: %d\n", nb, ns, sprank) ; cs_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static int done3 (int ok, css *S, csn *N, double *y, cs *W, cs *E, int *p) { cs_sfree (S) ; cs_nfree (N) ; cs_free (y) ; cs_spfree (W) ; cs_spfree (E) ; cs_free (p) ; return (ok) ; } /* Cholesky update/downdate */ int demo3 (problem *Prob) { cs *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, t1 ; css *S = NULL ; csn *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_malloc (n, sizeof (double)) ; t = tic () ; S = cs_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_pinv (S->pinv, n) ; W2 = cs_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_transpose (W2,1) ; WW = cs_multiply (W2, WT) ; cs_spfree (WT) ; cs_spfree (W2) ; E = cs_add (C, WW, 1, 1) ; cs_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_nfree (N) ; /* clear N */ t = tic () ; N = cs_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CSparse/Demo/cs_demo.h0000644001170100242450000000044410414325170015754 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs *A ; cs *C ; int sym ; double *x ; double *b ; double *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; int demo2 (problem *Prob) ; int demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CSparse/Demo/README.txt0000644001170100242450000000045310372176060015675 0ustar davisfacCSparse/Demo: to compile a run the demos, just type "make" in this directory. The printed residuals should all be small, except for the mbeacxc matrix (which is numerically and structurally singular), and ash219 (which is a least-squares problem). See cs_demo.out for the proper output of "make". SuiteSparse/CSparse/Tcov/0000755001170100242450000000000010711175720014223 5ustar davisfacSuiteSparse/CSparse/Tcov/nil0000644001170100242450000000000010325754634014726 0ustar davisfacSuiteSparse/CSparse/Tcov/covs0000755001170100242450000000033110336471716015127 0ustar davisfac#!/bin/csh echo '=================================================================' foreach file (*.?cov) echo $file grep "#####" $file echo '=================================================================' end SuiteSparse/CSparse/Tcov/zero0000644001170100242450000000000610375445021015121 0ustar davisfac0 0 0 SuiteSparse/CSparse/Tcov/cov.awk0000644001170100242450000000026610325730035015517 0ustar davisfac/cannot/ /function/ { f = $8 } /file/ { f = $8 } /lines/ { k = match ($1, "%") ; p = substr ($1, 1, k-1) ; if ((p+0) != 100) { printf "%8s %s\n", p, f } } SuiteSparse/CSparse/Tcov/Makefile0000644001170100242450000000572610617236571015704 0ustar davisfac# To run with valgrind: V = # V = valgrind -q # Linux test coverage CC = gcc CFLAGS = -O -g -fprofile-arcs -ftest-coverage \ -Wall -W -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization -ansi \ -Wno-unused-parameter -Werror -I../Include -I../Demo run: all run1 runbook run3 runtest ./covall all: cs_demo1 cs_demo2 cs_demo3 cstcov_test CS = cs_add.o cs_amd.o cs_chol.o cs_cholsol.o cs_counts.o cs_cumsum.o \ cs_droptol.o cs_dropzeros.o cs_dupl.o cs_entry.o \ cs_etree.o cs_fkeep.o cs_gaxpy.o cs_happly.o cs_house.o cs_ipvec.o \ cs_lsolve.o cs_ltsolve.o cs_lu.o cs_lusol.o cs_util.o cs_multiply.o \ cs_permute.o cs_pinv.o cs_post.o cs_pvec.o cs_qr.o cs_qrsol.o \ cs_scatter.o cs_schol.o cs_sqr.o cs_symperm.o cs_tdfs.o \ cs_transpose.o cs_compress.o cs_usolve.o cs_scc.o cs_maxtrans.o \ cs_dmperm.o cs_updown.o cs_print.o cs_norm.o cs_load.o cs_dfs.o \ cstcov_malloc_test.o cs_utsolve.o cs_reach.o cs_spsolve.o cs_ereach.o \ cs_leaf.o cs_randperm.o $(CS): ../Include/cs.h cstcov_malloc_test.h .PRECIOUS: cs_%.c cs_dem%.c cs_dem%.c: - ln -s ../Demo/$@ cs_%.c: - ln -s ../Source/$@ cs_demo1: $(CS) cs_demo1.c $(CC) $(CFLAGS) -o cs_demo1 cs_demo1.c $(CS) -lm cs_demo2: $(CS) cs_demo2.c cs_demo.c $(CC) $(CFLAGS) -o cs_demo2 cs_demo2.c cs_demo.c $(CS) -lm cs_demo3: $(CS) cs_demo3.c cs_demo.c $(CC) $(CFLAGS) -o cs_demo3 cs_demo3.c cs_demo.c $(CS) -lm cstcov_test: $(CS) cstcov_test.c cs_demo.c $(CC) $(CFLAGS) -o cstcov_test cstcov_test.c cs_demo.c $(CS) -lm # tiny tests run1: all - $(V) ./cs_demo1 < nil - $(V) ./cs_demo1 < zero - $(V) ./cs_demo2 < nil - $(V) ./cs_demo2 < zero - $(V) ./cs_demo3 < nil # test coverage for book: runbook: all - $(V) ./cs_demo1 < ../Matrix/t1 - $(V) ./cs_demo2 < ../Matrix/bcsstk01 - $(V) ./cs_demo2 < ../Matrix/fs_183_1 - $(V) ./cs_demo2 < ../Matrix/mbeacxc - $(V) ./cs_demo2 < ../Matrix/west0067 - $(V) ./cs_demo2 < ../Matrix/lp_afiro - $(V) ./cs_demo3 < ../Matrix/bcsstk16 # other tests run3: all - $(V) ./cs_demo2 < ../Matrix/t1 - $(V) ./cs_demo2 < ../Matrix/ash219 - $(V) ./cs_demo3 < ../Matrix/bcsstk01 - $(V) ./cs_demo2 < ../Matrix/bcsstk16 - $(V) ./cs_demo2 < ../Matrix/ibm32a - $(V) ./cs_demo2 < ../Matrix/ibm32b # exhaustive memory tests runtest: all - $(V) ./cstcov_test nil > test_nil.out - $(V) ./cstcov_test zero > test_zero.out - $(V) ./cstcov_test ../Matrix/t1 > test_t1.out - $(V) ./cstcov_test ../Matrix/bcsstk01 > test_k1.out - $(V) ./cstcov_test ../Matrix/fs_183_1 > test_fs.out - $(V) ./cstcov_test ../Matrix/west0067 > test_we.out - $(V) ./cstcov_test ../Matrix/ash219 > test_ash.out - $(V) ./cstcov_test ../Matrix/lp_afiro > test_afiro.out readhb: readhb.f f77 -o readhb readhb.f readhb.f: - ln -s readhb.f clean: rm -f *.o *.bbg *.da *.gcov *.gcda *.gcno purge: distclean # remove everything for distribution, including all symbolic links distclean: clean rm -f cs_demo1 cs_demo2 readhb *.out *.a cs_demo3 cstcov_test cov.sort rm -f cs_*.c SuiteSparse/CSparse/Tcov/covall.linux0000755001170100242450000000031110336471635016571 0ustar davisfac#!/bin/csh ./gcovs cs*.c |& awk -f cov.awk | sort -n > cov.out sort -n cov.out > cov.sort ./covs > covs.out echo -n "statments not yet tested: " grep "#####" *gcov | wc -l ./cover *v > cover.out SuiteSparse/CSparse/Tcov/cover0000755001170100242450000000050310325730035015262 0ustar davisfac#!/bin/csh # usage: cover files echo '=================================================================' foreach file ($argv[1-]) echo $file echo '=================================================================' grep "#####" -A5 -B5 $file echo '=================================================================' end SuiteSparse/CSparse/Tcov/gcovs0000755001170100242450000000032510325727753015304 0ustar davisfac# usage: gcovs files echo '=================================================================' foreach file ($argv[1-]) gcov -f $file echo '=================================================================' end SuiteSparse/CSparse/Tcov/cstcov_test.c0000644001170100242450000000144210473073175016736 0ustar davisfac#include "cs_demo.h" /* cs_test: read a matrix and run cs_demo2 and cs_demo3, using malloc tests. */ #include "cstcov_malloc_test.h" int main (int argc, char **argv) { FILE *f ; problem *Prob ; int trials, ok, demo ; if (argc < 2) return (-1) ; printf ("cs_test, file: %s\n", argv [1]) ; for (demo = 2 ; demo <= 3 ; demo++) { printf ("demo: %d\n", demo) ; for (trials = 0 ; trials < 4000 ; trials++) { malloc_count = trials ; f = fopen (argv [1], "r") ; if (!f) return (-1) ; Prob = get_problem (f, (demo == 2) ? 1e-14 : 0) ; fclose (f) ; if (Prob) ok = (demo == 2) ? demo2 (Prob) : demo3 (Prob) ; free_problem (Prob) ; if (malloc_count > 0) break ; } printf ("demo %d # trials: %d\n", demo, trials) ; } return (0) ; } SuiteSparse/CSparse/Tcov/covall0000755001170100242450000000031110325753446015434 0ustar davisfac#!/bin/csh ./gcovs cs*.c |& awk -f cov.awk | sort -n > cov.out sort -n cov.out > cov.sort ./covs > covs.out echo -n "statments not yet tested: " grep "#####" *gcov | wc -l ./cover *v > cover.out SuiteSparse/CSparse/Tcov/covall.sol0000755001170100242450000000020710336471673016235 0ustar davisfac#!/bin/csh tcov -x cm.profile cs*.c >& /dev/null echo -n "statments not yet tested: " ./covs > covs.out grep "#####" *tcov | wc -l SuiteSparse/CSparse/Tcov/README.txt0000644001170100242450000000131010375604036015717 0ustar davisfacCSparse/Tcov: comprehensive test coverage for CSparse. Requires Linux. Type "make" to compile, and then "make run" to run the tests. The test coverage is in cover.out. The test output is printed on stdout, except for cs_test (which prints its output in various *.out files). If the test is successful, the last line printed should be "statements not yet tested: 0", and all printed residuals should be small. Note that you will get warnings about unused parameters for some functions. These warnings can be safely ignored. They are parameters for functions that are passed to cs_fkeep, and all functions used in this manner must have the same calling sequence, even if some of the parameters are not used. SuiteSparse/CSparse/Tcov/cstcov_malloc_test.c0000644001170100242450000000167510473073167020276 0ustar davisfac#include "cstcov_malloc_test.h" int malloc_count = INT_MAX ; /* wrapper for malloc */ void *cs_malloc (int n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (malloc (CS_MAX (n,1) * size)) ; } /* wrapper for calloc */ void *cs_calloc (int n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (calloc (CS_MAX (n,1), size)) ; } /* wrapper for free */ void *cs_free (void *p) { if (p) free (p) ; /* free p if it is not already NULL */ return (NULL) ; /* return NULL to simplify the use of cs_free */ } /* wrapper for realloc */ void *cs_realloc (void *p, int n, size_t size, int *ok) { void *pnew ; *ok = 0 ; if (--malloc_count < 0) return (p) ; /* pretend to fail */ pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */ *ok = (pnew != NULL) ; return ((*ok) ? pnew : p) ; /* return original p if failure */ } SuiteSparse/CSparse/Tcov/cstcov_malloc_test.h0000644001170100242450000000012610425515205020260 0ustar davisfac#include "cs.h" #ifndef EXTERN #define EXTERN extern #endif EXTERN int malloc_count ; SuiteSparse/CSparse/Makefile0000644001170100242450000000067010710676627014766 0ustar davisfac# CSparse Makefile C: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) all: C cov library: ( cd Lib ; $(MAKE) ) cov: ( cd Tcov ; $(MAKE) ) mex: ( cd MATLAB ; $(MAKE) ) clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd Tcov ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd Tcov ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) distclean: purge SuiteSparse/CSparse/MATLAB/0000755001170100242450000000000010712370307014247 5ustar davisfacSuiteSparse/CSparse/MATLAB/Demo/0000755001170100242450000000000010621036611015127 5ustar davisfacSuiteSparse/CSparse/MATLAB/Demo/Contents.m0000644001170100242450000000053210620375215017107 0ustar davisfac% CSparse MATLAB demos. % % cs_demo - run all CSparse demos. % cs_demo1 - MATLAB version of the CSparse/Demo/cs_demo1.c program. % cs_demo2 - MATLAB version of the CSparse/Demo/cs_demo2.c program. % cs_demo3 - MATLAB version of the CSparse/Demo/cs_demo3.c program. % Example: % help cs_demo % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CSparse/MATLAB/Demo/cs_demo1.m0000644001170100242450000000342410621036577017015 0ustar davisfacfunction cs_demo1 (matrixpath) %CS_DEMO1 MATLAB version of the CSparse/Demo/cs_demo1.c program. % Uses both MATLAB functions and CSparse mexFunctions, and compares the two % results. This demo also plots the results, which the C version does not do. % % Example: % cs_demo1 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end t1 = load ([matrixpath '/t1']) ; T = t1 %#ok A = sparse (T(:,1)+1, T(:,2)+1, T(:,3)) %#ok A2 = cs_sparse (T(:,1)+1, T(:,2)+1, T(:,3)) %#ok fprintf ('A difference: %g\n', norm (A-A2,1)) ; % CSparse/Demo/cs_demo1.c also clears the triplet matrix T at this point: % clear T clf subplot (2,2,1) ; cspy (A) ; title ('A', 'FontSize', 16) ; AT = A' %#ok AT2 = cs_transpose (A) %#ok fprintf ('AT difference: %g\n', norm (AT-AT2,1)) ; subplot (2,2,2) ; cspy (AT) ; title ('A''', 'FontSize', 16) ; n = size (A,2) ; I = speye (n) ; C = A*AT ; C2 = cs_multiply (A, AT) %#ok fprintf ('C difference: %g\n', norm (C-C2,1)) ; subplot (2,2,3) ; cspy (C) ; title ('C=A*A''', 'FontSize', 16) ; cnorm = norm (C,1) ; D = C + I*cnorm %#ok D2 = cs_add (C, I, 1, cnorm) %#ok fprintf ('D difference: %g\n', norm (D-D2,1)) ; subplot (2,2,4) ; cspy (D) ; title ('D=C+I*norm(C,1)', 'FontSize', 16) ; % CSparse/Demo/cs_demo1.c clears all matrices at this point: % clear A AT C D I % clear A2 AT2 C2 D2 SuiteSparse/CSparse/MATLAB/Demo/cs_demo2.m0000644001170100242450000000205210620721047017002 0ustar davisfacfunction cs_demo2 (do_pause, matrixpath) %CS_DEMO2 MATLAB version of the CSparse/Demo/cs_demo2.c program. % Solves a linear system using Cholesky, LU, and QR, with various orderings. % % Example: % cs_demo2 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 2) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end matrices = { 't1', 'HB/fs_183_1', 'HB/west0067', 'LPnetlib/lp_afiro', ... 'HB/ash219', 'HB/mbeacxc', 'HB/bcsstk01', 'HB/bcsstk16' } ; if (nargin < 1) do_pause = 1 ; end for i = 1:length(matrices) name = matrices {i} ; [C sym] = get_problem (matrixpath, name, 1e-14) ; demo2 (C, sym, name) ; if (do_pause) input ('Hit enter to continue: ') ; end end SuiteSparse/CSparse/MATLAB/Demo/cs_demo3.m0000644001170100242450000000164110620721075017007 0ustar davisfacfunction cs_demo3 (do_pause, matrixpath) %CS_DEMO3 MATLAB version of the CSparse/Demo/cs_demo3.c program. % Cholesky update/downdate. % % Example: % cs_demo3 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 2) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end matrices = { 'HB/bcsstk01', 'HB/bcsstk16' } ; if (nargin < 1) do_pause = 1 ; end for i = 1:length(matrices) name = matrices {i} ; [C sym] = get_problem (matrixpath, name, 1e-14) ; demo3 (C, sym, name) ; if (do_pause) input ('Hit enter to continue: ') ; end end SuiteSparse/CSparse/MATLAB/Demo/cs_demo.m0000644001170100242450000000206210620723646016730 0ustar davisfacfunction cs_demo (do_pause, matrixpath) %CS_DEMO run all CSparse demos. % cs_demo(0) will run all demos without pausing. % % Example: % cs_demo % See also: cs_demo1, cs_demo2, cs_demo3 % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse help cs_demo if (nargin < 1) do_pause = 1 ; end if (nargin < 2) matrixpath = [] ; end figure (1) clf fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo1 ; cs_demo1 (matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo2 cs_demo2 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo3 cs_demo3 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help ex_1 ex_1 fprintf ('\n\n-------------------------------------------------------\n') ; help ex2 ex2 fprintf ('\n\n-------------------------------------------------------\n') ; help ex3 ex3 fprintf ('\nAll CSparse demos finished.\n') ; SuiteSparse/CSparse/MATLAB/Demo/README.txt0000644001170100242450000000010410364236410016623 0ustar davisfacDemo for MATLAB interface for CSparse. See Contents.m for details. SuiteSparse/CSparse/MATLAB/Demo/private/0000755001170100242450000000000010620730542016604 5ustar davisfacSuiteSparse/CSparse/MATLAB/Demo/private/demo2.m0000644001170100242450000000457310620671165020006 0ustar davisfacfunction demo2 (C, sym, name) %DEMO2: solve a linear system using Cholesky, LU, and QR, with various orderings % % Example: % demo2 (C, 1, 'name of system') % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf subplot (2,2,1) ; cspy (C) ; title (name, 'FontSize', 16, 'Interpreter', 'none') ; [m n] = size (C) ; [p,q,r,s,cc,rr] = cs_dmperm (C) ; subplot (2,2,3) ; cs_dmspy (C) ; subplot (2,2,2) ; ccspy (C) ; drawnow sprnk = rr (4) - 1 ; nb = length (r) - 1 ; ns = sum ((r (2:nb+1) == r (1:nb)+1) & (s (2:nb+1) == s (1:nb)+1)) ; fprintf ('blocks: %d singletons %d structural rank %d\n', nb, ns, sprnk) ; if (sprnk ~= sprank (C)) error ('sprank mismatch!') ; end if (sprnk < min (m,n)) return ; % return if structurally singular end % the following code is not in the C version of this demo: if (m == n) if (sym) try [L,p] = cs_chol (C) ; %#ok subplot (2,2,4) ; cspy (L+triu(L',1)) ; title ('L+L''') ; catch % tol = 0.001 ; [L,U,p,q] = cs_lu (C,0.001) ; %#ok subplot (2,2,4) ; cspy (L+U-speye(n)) ; title ('L+U') ; end else [L,U,p,q] = cs_lu (C) ; %#ok subplot (2,2,4) ; cspy (L+U-speye(n)) ; title ('L+U') ; end else if (m < n) [V,beta,p,R,q] = cs_qr (C') ; %#ok else [V,beta,p,R,q] = cs_qr (C) ; %#ok end subplot (2,2,4) ; cspy (V+R) ; title ('V+R') ; end drawnow % continue with the MATLAB equivalent of the C cs_demo2 program for order = [0 3] if (order == 0 & m > 1000) %#ok continue ; end fprintf ('QR ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_qrsol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end if (m ~= n) return ; end for order = 0:3 if (order == 0 & m > 1000) %#ok continue ; end fprintf ('LU ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_lusol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end if (sym == 0) return ; end for order = 0:1 if (order == 0 & m > 1000) %#ok continue ; end fprintf ('Chol ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_cholsol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end SuiteSparse/CSparse/MATLAB/Demo/private/demo3.m0000644001170100242450000000344310620671175020003 0ustar davisfacfunction demo3 (C, sym, name) %DEMO3: Cholesky update/downdate % % Example: % demo3 (C, 1, 'name of system') % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf subplot (2,2,1) ; cspy (C) ; title (name, 'FontSize', 16, 'Interpreter', 'none') ; drawnow [m n] = size (C) ; if (m ~= n | ~sym) %#ok return ; end b = rhs (n) ; fprintf ('chol then update/downdate ') ; print_order (0) ; tic ; [L,p] = cs_chol (C) ; t = toc ; fprintf ('\nchol time: %8.2f\n', t) ; subplot (2,2,2) ; cspy (L) ; title ('L') ; drawnow tic ; x = b (p) ; x = cs_lsolve (L,x) ; x = cs_ltsolve (L,x) ; x (p) = x ; t = toc ; fprintf ('solve time: %8.2f\n', t) ; fprintf ('original: ') ; print_resid (C, x, b) ; k = fix (n/2) ; w = L(k,k) * sprand (L (:,k)) ; parent = cs_etree (C (p,p)) ; tic ; L2 = cs_updown (L, w, parent, '+') ; t1 = toc ; fprintf ('update: time: %8.2f\n', t1) ; subplot (2,2,3) ; cspy (L2) ; title ('updated L') ; subplot (2,2,4) ; cspy (L-L2) ; title ('L - updated L') ; drawnow tic ; x = b (p) ; x = cs_lsolve (L2,x) ; x = cs_ltsolve (L2,x) ; x (p) = x ; t = toc ; w2 = sparse (n,1) ; w2 (p) = w ; % w2 = P'*w wt = cs_transpose (w2) ; ww = cs_multiply (w2,wt) ; E = cs_add (C, ww, 1, 1) ; % E = C + w2*w2' ; fprintf ('update: time: %8.2f (incl solve) ', t1+t) ; print_resid (E, x, b) ; tic [L,p2] = cs_chol (E) ; x = b (p2) ; x = cs_lsolve (L,x) ; x = cs_ltsolve (L,x) ; x (p2) = x ; t = toc ; fprintf ('rechol: time: %8.2f (incl solve) ', t) ; print_resid (E, x, b) ; tic ; L3 = cs_updown (L2, w, parent, '-') ; t1 = toc ; fprintf ('downdate: time: %8.2f\n', t1) ; tic ; x = b (p) ; x = cs_lsolve (L3,x) ; x = cs_ltsolve (L3,x) ; x (p) = x ; t = toc ; fprintf ('downdate: time: %8.2f (incl solve) ', t1+t) ; print_resid (C, x, b) ; SuiteSparse/CSparse/MATLAB/Demo/private/ex2.m0000644001170100242450000000370510620725624017472 0ustar davisfacfunction ex2 (n) %EX2: create an n-by-n 2D mesh, four different ways % Example: % ex2 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) n = 30 ; end subplot (1,2,1) ; % method 1: create an n-by-n 2D mesh for the 2nd difference operator tic ii = zeros (5*n^2, 1) ; jj = zeros (5*n^2, 1) ; xx = zeros (5*n^2, 1) ; k = 1 ; for j = 0:n-1 for i = 0:n-1 s = j*n+i + 1 ; ii (k:k+4) = [(j-1)*n+i j*n+(i-1) j*n+i j*n+(i+1) (j+1)*n+i ] + 1 ; jj (k:k+4) = [s s s s s] ; xx (k:k+4) = [-1 -1 4 -1 -1] ; k = k + 5 ; end end % remove entries beyond the boundary keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; ii = ii (keep) ; jj = jj (keep) ; xx = xx (keep) ; A = sparse (ii,jj,xx) ; t1 = toc ; disp (t1) ; % subplot (2,2,1) ; spy (A) title (sprintf ('%d-by-%d 2D mesh\n', n, n)) ; % method 2, using no for loops tic nn = 1:n^2 ; i2 = [nn-n ; nn-1 ; nn ; nn+1 ; nn+n] ; j2 = repmat (nn, 5, 1) ; x2 = repmat ([-1 -1 4 -1 -1]', 1, n^2) ; keep = find (i2 >= 1 & i2 <= n^2 & j2 >= 1 & j2 <= n^2) ; i2 = i2 (keep) ; j2 = j2 (keep) ; x2 = x2 (keep) ; C = sparse (i2,j2,x2) ; t2 = toc ; disp (t2) ; % subplot (2,2,2) ; plot (j2) ; % title ('2D fast j2') ; disp (A-C) ; any (ii-i2) any (jj-jj) % method 3: create an n-by-n-by-n 3D mesh for the 2nd difference operator tic [A, keep, ii, jj, xx] = mesh3d1 (n) ; ii = ii (keep) ; jj = jj (keep) ; xx = xx (keep) ; t3 = toc ; disp (t3) ; tic E = sparse (ii,jj,xx) ; t3b = toc ; disp (t3b) ; subplot (1,2,2) ; spy (E) ; title (sprintf ('%d-by-%d-by-%d 3D mesh\n', n, n, n)) ; % method 4, using no for loops tic nn = 1:n^3 ; i2 = [nn-n^2 ; nn-n ; nn-1 ; nn ; nn+1 ; nn+n ; nn+n^2] ; j2 = repmat (nn, 7, 1) ; x2 = repmat ([-1 -1 -1 6 -1 -1 -1]', 1, n^3) ; keep = find (i2 >= 1 & i2 <= n^3 & j2 >= 1 & j2 <= n^3) ; i2 = i2 (keep) ; j2 = j2 (keep) ; x2 = x2 (keep) ; t4 = toc ; disp (t4) ; tic F = sparse (i2,j2,x2) ; t4b = toc ; disp (t4b) ; disp (E-F) ; SuiteSparse/CSparse/MATLAB/Demo/private/ex3.m0000644001170100242450000000161410620372241017461 0ustar davisfacfunction ex3 %EX3: create 2D and 3D meshes using mesh2d1, mesh2d2, mesh3d1, mesh3d2. % Example: % ex3 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse t1 = zeros (50,1) ; t2 = zeros (50,1) ; t3 = zeros (50,1) ; t4 = zeros (50,1) ; fprintf ('run times for each method, given n:\n') ; for n = 2:50 tic ; A = mesh2d1 (n) ; t1 (n) = toc ; tic B = mesh2d2 (n) ; t2 (n) = toc ; tic C = mesh3d1 (n) ; t3 (n) = toc ; tic D = mesh3d2 (n) ; t4 (n) = toc ; fprintf ('%3d: %8.3f %8.3f %8.3f %8.3f\n', n, t1(n), t2(n), t3(n), t4(n)) ; subplot (2,2,1) ; spy (A) ; title ('2D mesh, method 1') ; subplot (2,2,2) ; spy (B) ; title ('2D mesh, method 2') ; subplot (2,2,3) ; spy (C) ; title ('3D mesh, method 1') ; subplot (2,2,4) ; spy (D) ; title ('3D mesh, method 2') ; drawnow end SuiteSparse/CSparse/MATLAB/Demo/private/rhs.m0000644001170100242450000000034710620372266017567 0ustar davisfacfunction b = rhs (m) % b = rhs (m), compute a right-hand-side % Example: % b = rhs (30) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse b = ones (m,1) + (0:m-1)'/m ; SuiteSparse/CSparse/MATLAB/Demo/private/print_order.m0000644001170100242450000000072110620372257021316 0ustar davisfacfunction print_order (order) % print_order(order) prints the ordering determined by the order parameter % Example: % print_order (0) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse switch (fix (order)) case 0 fprintf ('natural ') ; case 1 fprintf ('amd(A+A'') ') ; case 2 fprintf ('amd(S''*S) ') ; case 3 fprintf ('amd(A''*A) ') ; otherwise fprintf ('undefined ') ; end SuiteSparse/CSparse/MATLAB/Demo/private/get_problem.m0000644001170100242450000000254710620720547021275 0ustar davisfacfunction [C, sym] = get_problem (prefix, name, tol) % [C, sym] = get_problem(prefix, name,tol) % read a problem from a file, drop entries with abs value < tol % tol defaults to zero if not present % % Example: % [C, sym] = get_problem ('', 'west0067') ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('\n------------------- Matrix: %s\n', name) ; if (nargin < 2) tol = 0 ; end s = find (name == '/') ; if (isempty (s)) s = 0 ; end % f = sprintf ('%s..%s..%sMatrix%s%s', ... % prefix, filesep, filesep, filesep, name (s+1:end)) ; % load the triplet version of the matrix T = load ([ prefix '/' name(s+1:end) ]) ; % convert into a sparse matrix and compare with cs_sparse A = sparse (T (:,1)+1, T (:,2)+1, T (:,3)) ; A2 = cs_sparse (T (:,1)+1, T (:,2)+1, T (:,3)) ; err = norm (A-A2,1) ; if (err > 0) fprintf ('A difference: %g\n', err) ; end [m n] = size (A) ; nz2 = nnz (A) ; if (tol > 0) A = cs_droptol (A, tol) ; end % assume A is symmetric if it is upper or lower triangular sym = is_sym (A) ; if (sym) C = A + (A' - diag (diag (A))) ; else C = A ; end fprintf ('--- Matrix: %d-by-%d, nnz: %d (sym: %d nnz %d), norm: %8.2e\n', ... m, n, nnz(A), sym, abs(sym)*nnz(C), norm (C,1)) ; if (nz2 ~= nnz(A)) fprintf ('tiny entries dropped: %d\n', nz2 - nnz(A)) end SuiteSparse/CSparse/MATLAB/Demo/private/is_sym.m0000644001170100242450000000071510620372246020273 0ustar davisfacfunction sym = is_sym (A) % sym = is_sym(A) % 1 if A is square and upper tri., -1 if square and lower tri., 0 otherwise % % Example: % sym = is_sym (A) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; sym = 0 ; if (m == n) is_upper = nnz (tril (A,-1)) == 0 ; is_lower = nnz (triu (A,1)) == 0 ; if (is_upper) sym = 1 ; elseif (is_lower) sym = -1 ; end end SuiteSparse/CSparse/MATLAB/Demo/private/ex_1.m0000644001170100242450000000345010620372224017617 0ustar davisfacfunction ex_1 %EX_1: four methods for creating the same matrix. % (please wait, this can take a while...) % Example: % ex_1 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = 1000 ; nz = 1e5 ; tic % method 1: A(i,j) = ... rand ('state', 0) ; A = sparse (n,n) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix i = 1 + fix (n * rand (1)) ; j = 1 + fix (n * rand (1)) ; x = rand (1) ; A (i,j) = A (i,j) + x ; % VERY slow, esp. if A(i,j) not already nonzero! end fprintf ('Method 1: ') ; toc A1 = A ; tic % method 2: triplet form, one entry at a time rand ('state', 0) ; ii = zeros (nz, 1) ; % preallocate ii, jj, and xx jj = zeros (nz, 1) ; xx = zeros (nz, 1) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix ii (k) = 1 + fix (n * rand (1)) ; jj (k) = 1 + fix (n * rand (1)) ; xx (k) = rand (1) ; end A = sparse (ii,jj,xx) ; fprintf ('Method 2: ') ; toc A2 = A ; disp (A1-A2) ; tic % method 3: triplet form, one entry at a time, pretend nz is unknown rand ('state', 0) ; len = 16 ; ii = zeros (len, 1) ; jj = zeros (len, 1) ; xx = zeros (len, 1) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix if (k > len) % double the size of ii,jj,xx len = 2*len ; ii (len) = 0 ; jj (len) = 0 ; xx (len) = 0 ; end ii (k) = 1 + fix (n * rand (1)) ; jj (k) = 1 + fix (n * rand (1)) ; xx (k) = rand (1) ; end A = sparse (ii (1:k), jj (1:k), xx (1:k)) ; fprintf ('Method 3: ') ; toc A3 = A ; disp (A1-A3) ; tic % method 4: avoid the for loop rand ('state', 0) ; e = rand (3, nz) ; e (1,:) = 1 + fix (n * e (1,:)) ; e (2,:) = 1 + fix (n * e (2,:)) ; A = sparse (e (1,:), e (2,:), e (3,:)) ; fprintf ('Method 4: ') ; toc A4 = A ; disp (A1-A4) ; SuiteSparse/CSparse/MATLAB/Demo/private/frand.m0000644001170100242450000000133210620372243020053 0ustar davisfacfunction A = frand (n,nel,s) % A = frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel finite % elements, each of which are of size s-by-s with random symmetric nonzero % pattern, plus the identity matrix. % % Example: % A = frand (100, 100, 4) ; cspy (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ss = s^2 ; nz = nel*ss ; ii = zeros (nz,1) ; jj = zeros (nz,1) ; xx = zeros (nz,1) ; k = 1 ; for e = 1:nel i = 1 + fix (n * rand (s,1)) ; i = repmat (i, 1, s) ; j = i' ; x = rand (s,s) ; ii (k:k+ss-1) = i (:) ; jj (k:k+ss-1) = j (:) ; xx (k:k+ss-1) = x (:) ; k = k + ss ; end A = sparse (ii,jj,xx,n,n) + speye (n) ; SuiteSparse/CSparse/MATLAB/Demo/private/print_resid.m0000644001170100242450000000060310620372261021303 0ustar davisfacfunction print_resid (A, x, b) % print_resid (A, x, b), print the relative residual, % norm (A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) % Example: % print_resid (A, x, b) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('resid: %8.2e\n', ... norm (A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf))) ; SuiteSparse/CSparse/MATLAB/Demo/private/mesh2d1.m0000644001170100242450000000130010620372250020215 0ustar davisfacfunction A = mesh2d1 (n) % create an n-by-n 2D mesh for the 2nd difference operator % Example: % A = mesh2d1 (30) ; % a 30-by-30 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ii = zeros (5*n^2, 1) ; % preallocate ii, jj, and xx jj = zeros (5*n^2, 1) ; xx = zeros (5*n^2, 1) ; k = 1 ; for j = 0:n-1 for i = 0:n-1 s = j*n+i + 1 ; ii (k:k+4) = [(j-1)*n+i j*n+(i-1) j*n+i j*n+(i+1) (j+1)*n+i ] + 1 ; jj (k:k+4) = [s s s s s] ; xx (k:k+4) = [-1 -1 4 -1 -1] ; k = k + 5 ; end end % remove entries beyond the boundary keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CSparse/MATLAB/Demo/private/mesh2d2.m0000644001170100242450000000072610620372252020233 0ustar davisfacfunction A = mesh2d2 (n) % create an n-by-n 2D mesh for the 2nd difference operator % Example: % A = mesh2d2 (30) ; % a 30-by-30 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse nn = 1:n^2 ; ii = [nn-n ; nn-1 ; nn ; nn+1 ; nn+n] ; jj = repmat (nn, 5, 1) ; xx = repmat ([-1 -1 4 -1 -1]', 1, n^2) ; keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CSparse/MATLAB/Demo/private/mesh3d1.m0000644001170100242450000000151510620725647020242 0ustar davisfacfunction [A, keep, ii, jj, xx] = mesh3d1 (n) % create an n-by-n-by-n 3D mesh for the 2nd difference operator % Example: % A = mesh3d1 (10) ; % a 10-by-10-by-10 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ii = zeros (7*n^3, 1) ; jj = zeros (7*n^3, 1) ; xx = zeros (7*n^3, 1) ; t = 1 ; for k = 0:n-1 for j = 0:n-1 for i = 0:n-1 s = k*n^2 + j*n+i + 1 ; ii (t:t+6) = [ (k-1)*n^2 + j*n+i k*n^2 + (j-1)*n+i k*n^2 + j*n+(i-1) k*n^2 + j*n+i k*n^2 + j*n+(i+1) k*n^2 + (j+1)*n+i (k+1)*n^2 + j*n+i ]' + 1 ; jj (t:t+6) = [s s s s s s s] ; xx (t:t+6) = [-1 -1 -1 6 -1 -1 -1] ; t = t + 7 ; end end end keep = find (ii >= 1 & ii <= n^3 & jj >= 1 & jj <= n^3) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CSparse/MATLAB/Demo/private/mesh3d2.m0000644001170100242450000000077110620372255020237 0ustar davisfacfunction A = mesh3d2 (n) % create an n-by-n-by-n 3D mesh for the 2nd difference operator % Example: % A = mesh3d2 (10) ; % a 10-by-10-by-10 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse nn = 1:n^3 ; ii = [nn-n^2 ; nn-n ; nn-1 ; nn ; nn+1 ; nn+n ; nn+n^2] ; jj = repmat (nn, 7, 1) ; xx = repmat ([-1 -1 -1 6 -1 -1 -1]', 1, n^3) ; keep = find (ii >= 1 & ii <= n^3 & jj >= 1 & jj <= n^3) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CSparse/MATLAB/Test/0000755001170100242450000000000010711653403015166 5ustar davisfacSuiteSparse/CSparse/MATLAB/Test/hmake1.m0000644001170100242450000000127110620373127016514 0ustar davisfacfunction [v,beta,xnorm] = hmake1 (x) %HMAKE1 construct a Householder reflection % Example: % [v,beta,xnorm] = hmake1 (x) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = length (x) ; if (n == 1) v = 1 ; xnorm = norm (x) ; if (x (1) < 0) beta = 2 ; else beta = 0 ; end return end sigma = x (2:n)'*x(2:n) ; xnorm = sqrt (x (1)^2 + sigma) ; v = x ; if (sigma == 0) v (1) = 1 ; if (x (1) < 0) beta = 2 ; else beta = 0 ; end else if (x (1) <= 0) v (1) = x(1) - xnorm ; else v (1) = -sigma / (x(1) + xnorm) ; end beta = (2*v(1)^2) / (sigma + v(1)^2) ; v = v / v(1) ; end SuiteSparse/CSparse/MATLAB/Test/sqr_example.m0000644001170100242450000000101510620373174017664 0ustar davisfacfunction sqr_example %SQR_EXAMPLE test cs_sqr % Example: % sqr_example % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse Prob = UFget (706) ; A = Prob.A' ; q = colamd (A) ; A = A (:,q) ; A = sprandn (A) ; [m n] = size (A) ; [vnz, rnz, parent, c, leftmost, p] = cs_sqr(A) ; m2 = length (p) ; B = [A ; sparse(m2-m,n)] ; B = B (p,q) ; R1 = gqr3 (B) ; clf subplot (2,2,1) ; spy(A) subplot (2,2,3) ; spy (chol (A'*A + 100*speye(n))) ; subplot (2,2,4) ; spy (R1) ; SuiteSparse/CSparse/MATLAB/Test/cs_sparse2_mex.c0000644001170100242450000000172110415621446020253 0ustar davisfac#include "cs_mex.h" /* A = cs_sparse2 (i,j,x), removing duplicates and numerically zero entries, * and returning A sorted (test cs_entry) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double *Tx ; cs *A, *C, *T ; int k, m, n, nz, *Ti, *Tj ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse2(i,j,x)") ; } nz = mxGetM (pargin [0]) ; Ti = cs_mex_get_int (nz, pargin [0], &m, 1) ; Tj = cs_mex_get_int (nz, pargin [1], &n, 1) ; cs_mex_check (1, nz, 1, 0, 0, 1, pargin [2]) ; Tx = mxGetPr (pargin [2]) ; T = cs_spalloc (n, m, 1, 1, 1) ; for (k = 0 ; k < nz ; k++) { cs_entry (T, Tj [k], Ti [k], Tx [k]) ; } C = cs_compress (T) ; cs_spfree (T) ; cs_dupl (C) ; cs_dropzeros (C) ; A = cs_transpose (C, 1) ; cs_spfree (C) ; pargout [0] = cs_mex_put_sparse (&A) ; cs_free (Ti) ; cs_free (Tj) ; } SuiteSparse/CSparse/MATLAB/Test/cs_rowcnt_mex.c0000644001170100242450000000505110677526747020232 0ustar davisfac/* Compute the row counts of the Cholesky factor L of the matrix A. Uses * the lower triangular part of A. */ #include "cs_mex.h" static void firstdesc (int n, int *parent, int *post, int *first, int *level) { int len, i, k, r, s ; for (i = 0 ; i < n ; i++) first [i] = -1 ; for (k = 0 ; k < n ; k++) { i = post [k] ; /* node i of etree is kth postordered node */ len = 0 ; /* traverse from i towards the root */ for (r = i ; r != -1 && first [r] == -1 ; r = parent [r], len++) first [r] = k ; len += (r == -1) ? (-1) : level [r] ; /* root node or end of path */ for (s = i ; s != r ; s = parent [s]) level [s] = len-- ; } } static int *rowcnt (cs *A, int *parent, int *post) /* return rowcount [0..n-1] */ { int i, j, k, p, q, n, jleaf, *Ap, *Ai, *maxfirst, *ancestor, *prevleaf, *w, *first, *level, *rowcount ; n = A->n ; Ap = A->p ; Ai = A->i ; /* get A */ w = cs_malloc (5*n, sizeof (int)) ; /* get workspace */ ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; level = w+4*n ; rowcount = cs_malloc (n, sizeof (int)) ; /* allocate result */ firstdesc (n, parent, post, first, level) ; /* find first and level */ for (i = 0 ; i < n ; i++) { rowcount [i] = 1 ; /* count the diagonal of L */ prevleaf [i] = -1 ; /* no previous leaf of the ith row subtree */ maxfirst [i] = -1 ; /* max first[j] for node j in ith subtree */ ancestor [i] = i ; /* every node is in its own set, by itself */ } for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in the postordered etree */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf) ; if (jleaf) rowcount [i] += (level [j] - level [q]) ; } if (parent [j] != -1) ancestor [j] = parent [j] ; } cs_free (w) ; return (rowcount) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, Amatrix ; double *x ; int i, n, *parent, *post, *rowcount ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: r = rowcnt(A,parent,post)") ; } /* get inputs */ A = cs_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; n = A->n ; parent = cs_mex_get_int (n, pargin [1], &i, 0) ; post = cs_mex_get_int (n, pargin [2], &i, 1) ; rowcount = rowcnt (A, parent, post) ; pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = rowcount [i] ; cs_free (rowcount) ; } SuiteSparse/CSparse/MATLAB/Test/test_qrsol.m0000644001170100242450000000145610620373304017547 0ustar davisfacfunction test_qrsol %TEST_QRSOL test cs_qrsol % % Example: % test_qrsol % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; k = 0 ; rs1 = zeros (1,0) ; rs2 = zeros (1,0) ; for i = f Prob = UFget (i,index) ; A = Prob.A ; if (~isreal (A)) continue ; end [m n] = size (A) ; %#ok b = rand (m,1) ; x1 = A\b ; x2 = cs_qrsol (A,b) ; x1 (~isfinite (x1)) = 0 ; x2 (~isfinite (x2)) = 0 ; r1 = norm (A*x1-b) ; r2 = norm (A*x2-b) ; k = k + 1 ; rs1 (k) = r1 ; rs2 (k) = r2 ; fprintf ('%30s MATLAB: %6.2e CS: %6.2e\n', Prob.name, r1, r2) ; loglog (rs1, rs2, 'o') ; drawnow clear A b x1 x2 % pack end SuiteSparse/CSparse/MATLAB/Test/check_if_same.m0000644001170100242450000000063110620373016020102 0ustar davisfacfunction check_if_same (p1,p2) %CHECK_IF_SAME check if two inputs are identical or not % % Example: % check_if_same (1:5, 2:6) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (isempty (p1)) if (~isempty (p2)) p1 %#ok p2 %#ok error ('empty!') ; end elseif (any (p1 ~= p2)) p1 %#ok p2 %#ok error ('!') ; end SuiteSparse/CSparse/MATLAB/Test/qr_left.m0000644001170100242450000000113010620373162016773 0ustar davisfacfunction [V,Beta,R] = qr_left (A) %QR_LEFT left-looking Householder QR factorization. % Example: % [V,Beta,R] = qr_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; R = zeros (m,n) ; for k = 1:n x = A (:,k) ; for i = 1:k-1 v = V (i:m,i) ; beta = Beta (i) ; x (i:m) = x (i:m) - v * (beta * (v' * x (i:m))) ; end [v,beta,s] = gallery ('house', x (k:m), 2) ; V (k:m,k) = v ; Beta (k) = beta ; R (1:(k-1),k) = x (1:(k-1)) ; R (k,k) = s ; end SuiteSparse/CSparse/MATLAB/Test/test_qr1.m0000644001170100242450000000162410620373300017103 0ustar davisfacfunction test_qr1 %TEST_QR1 test QR factorizations % % Example: % test_qr1 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; for i = f Prob = UFget (i,index) ; A = Prob.A ; if (~isreal (A)) continue ; end [m n] = size (A) ; if (m < n) A = A' ; end t0 = 0 ; k0 = 0 ; while (t0 < 0.1) tic q = colamd (A, [-1 10]) ; % [Q,R] = qr (A (:,q)) ; R = qr (A (:,q)) ; %#ok t = toc ; t0 = t0 + t ; k0 = k0 + 1 ; end t0 = t0 / k0 ; t1 = 0 ; k1 = 0 ; while (t1 < 0.1) tic [V,beta, p, R,q] = cs_qr (A) ; %#ok t = toc ; t1 = t1 + t ; k1 = k1 + 1 ; end t1 = t1 / k1 ; fprintf (... '%25s MATLAB: %10.4f (%8d) CS: %10.4f (%8d) speedup: %8.2f\n', ... Prob.name, t0, k0, t1, k1, t0/t1) ; end SuiteSparse/CSparse/MATLAB/Test/test_sep.m0000644001170100242450000000350610620373310017171 0ustar davisfacfunction test_sep %TEST_SEP test cs_sep, and compare with Gilbert's meshpart vtxsep % (requires MESHPART). % % Example: % test_sep % % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; clf for k = 1:length(f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = spones (Prob.A) ; [m n] = size (A) ; if (m ~= n) A = A'*A ; end A = A|A' ; p = symrcm (A) ; n = size (A,1) ; n2 = fix (n/2) ; a = p (1:n2) ; b = p ((n2+1):n) ; clf subplot (2,3,1) ; spy (A) ; subplot (2,3,2) ; spy (A (p,p)) ; hold on plot ([.5 n2+.5 n2+.5 .5 .5], [.5 .5 n2+.5 n2+.5 .5], 'r', 'LineWidth', 2) ; hold off subplot (2,3,3) ; spy (A (a,b)) ; title ('edge sep') ; subplot (2,3,6) ; cs_dmspy (A (a,b)) ; title ('node sep') ; [s as bs] = vtxsep (A,a,b) ; %#ok [s2 a2 b2] = cs_sep (A,a,b) ; p2 = [a2 b2 s2] ; B = A (p2,p2) ; subplot (2,3,5) ; spy (B) ; hold on px = [s2 a2 b2] ; if (any (sort (px) ~= 1:n)) px %#ok n %#ok error ('!') ; end na = length (a2) ; nb = length (b2) ; ns = length (s2) ; %#ok nab = na + nb ; plot ([.5 na+.5 na+.5 .5 .5], [.5 .5 na+.5 na+.5 .5], 'r', 'LineWidth', 2) ; plot ([na nab nab na na]+0.5, [na na nab nab na]+0.5, 'r', 'LineWidth', 2) ; plot ([.5 nab+.5 nab+.5 .5 .5], [.5 .5 nab+.5 nab+.5 .5], 'g', 'LineWidth', 1) ; hold off nz1 = nnz (A (a2,b2)) ; if (nz1 ~= 0) nz1 %#ok error ('!') ; end nz2 = nnz (A (a2,b2)) ; if (nz2 ~= 0) nz2 %#ok error ('!') ; end if (length (s) ~= length (s2)) fprintf ('lengths differ: %d %d\n', length (s), length (s2)) ; end drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/Makefile0000644001170100242450000000225610620632165016634 0ustar davisfacMEX = mex -O AR = ar cr RANLIB = ranlib all: cs_sparse2.mexglx \ cs_ipvec.mexglx \ cs_pvec.mexglx \ cs_reach.mexglx \ cs_maxtransr.mexglx \ cs_reachr.mexglx \ cs_rowcnt.mexglx \ cs_frand.mexglx mexcsparse: ( cd ../CSparse ; make mexcsparse.a ) I = -I../../Include -I../CSparse cs_ipvec.mexglx: cs_ipvec_mex.c mexcsparse $(MEX) -output cs_ipvec $< $(I) ../CSparse/mexcsparse.a cs_pvec.mexglx: cs_pvec_mex.c mexcsparse $(MEX) -output cs_pvec $< $(I) ../CSparse/mexcsparse.a cs_reach.mexglx: cs_reach_mex.c mexcsparse $(MEX) -output cs_reach $< $(I) ../CSparse/mexcsparse.a cs_sparse2.mexglx: cs_sparse2_mex.c mexcsparse $(MEX) -output cs_sparse2 $< $(I) ../CSparse/mexcsparse.a cs_maxtransr.mexglx: cs_maxtransr_mex.c mexcsparse $(MEX) -output cs_maxtransr $< $(I) ../CSparse/mexcsparse.a cs_reachr.mexglx: cs_reachr_mex.c mexcsparse $(MEX) -output cs_reachr $< $(I) ../CSparse/mexcsparse.a cs_rowcnt.mexglx: cs_rowcnt_mex.c mexcsparse $(MEX) -output cs_rowcnt $< $(I) ../CSparse/mexcsparse.a cs_frand.mexglx: cs_frand_mex.c mexcsparse $(MEX) -output cs_frand $< $(I) ../CSparse/mexcsparse.a clean: rm -f *.o distclean: clean rm -f *.mex* *.dll *.a purge: distclean SuiteSparse/CSparse/MATLAB/Test/givens2.m0000644001170100242450000000061310620373121016714 0ustar davisfacfunction g = givens2(a,b) %GIVENS2 find a Givens rotation. % Example: % g = givens2(a,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (b == 0) c = 1 ; s = 0 ; elseif (abs (b) > abs (a)) tau = -a/b ; s = 1 / sqrt (1+tau^2) ; c = s*tau ; else tau = -b/a ; c = 1 / sqrt (1+tau^2) ; s = c*tau ; end g = [c -s ; s c] ; SuiteSparse/CSparse/MATLAB/Test/cs_q1.m0000644001170100242450000000061710620373075016361 0ustar davisfacfunction Q = cs_q1 (V, Beta, p) %CS_Q1 construct Q from Householder vectors % Example: % Q = cs_q1 (V, beta, p) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (V) ; Q = speye (m) ; if (nargin > 2) Q = Q (:,p) ; end for i = 1:m for k = 1:n Q (i,:) = Q (i,:) - ((Q(i,:) * V(:,k)) * Beta(k)) * V(:,k)' ; end end SuiteSparse/CSparse/MATLAB/Test/cspy_test.m0000644001170100242450000000155510620666207017374 0ustar davisfacfunction cspy_test %CSPY_TEST test cspy and cs_dmspy % Example % cspy_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; clf % f = f (523:end) ; % f = f ((find (f == 938)):end) ; for i = f Prob = UFget (i,index) ; disp (Prob) ; A = Prob.A ; try subplot (1,4,1) ; cspy (A) ; drawnow subplot (1,4,2) ; cspy (A,64) ; drawnow subplot (1,4,3) ; cs_dmspy (A) ; drawnow subplot (1,4,4) ; cs_dmspy (A,0) ; drawnow catch fprintf ('failed...\n') ; end [m n] = size (A) ; if (m == n & nnz (diag (A)) == n) %#ok p = cs_dmperm (A) ; if (any (p ~= 1:n)) error ('!') ; end [p q r s cc rr] = cs_dmperm (A) ; %#ok if (any (p ~= q)) error ('not sym!') ; end end drawnow end SuiteSparse/CSparse/MATLAB/Test/cs_maxtransr.m0000644001170100242450000000043710620373065020056 0ustar davisfacfunction p = cs_maxtransr(A) %#ok %CS_MAXTRANSR recursive maximum matching algorithm % Example: % p = cs_maxtransr(A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_maxtransr mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/qr2.m0000644001170100242450000000100510620373153016044 0ustar davisfacfunction [V,Beta,R] = qr2 (A) %QR2 QR factorization based on Householder reflections % % Example: % [V,beta,R] = qr2 (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; for k = 1:n % [v,beta,s] = gallery ('house', A (k:m,k), 2) ; [v,beta] = house (A (k:m,k)) ; V (k:m,k) = v ; Beta (k) = beta ; A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n))) ; end R = triu (A) ; SuiteSparse/CSparse/MATLAB/Test/cholupdown.m0000644001170100242450000000216410620373041017525 0ustar davisfacfunction L = cholupdown (Lold, sigma, w) %CHOLUPDOWN Cholesky update/downdate (Bischof, Pan, and Tang method) % Example: % L = cholupdown (Lold, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (Lold,1) ; L = Lold ; % x = weros (n,1) ; worig = w ; for k = 1:n alpha = w(k) / L(k,k) ; beta_new = sqrt (beta^2 + sigma*alpha^2) ; gamma = alpha / (beta_new * beta) ; if (sigma < 0) % downdate bratio = beta_new / beta ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k,k) = bratio * L (k,k) ; L (k+1:n,k) = bratio * L (k+1:n,k) - gamma*w(k+1:n) ; else % update bratio = beta / beta_new ; % wold = w (k+1:n) ; % w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; % L (k ,k) = bratio * L (k ,k) + gamma*w(k) ; % L (k+1:n,k) = bratio * L (k+1:n,k) + gamma*wold ; L (k,k) = bratio * L (k,k) + gamma*w(k) ; for i = k+1:n wold = w (i) ; w (i) = w (i) - alpha * L (i,k) ; L (i,k) = bratio * L (i,k) + gamma*wold ; end end w (k) = alpha ; beta = beta_new ; end norm (w-(Lold\worig)) SuiteSparse/CSparse/MATLAB/Test/cs_sparse2.m0000644001170100242450000000064010620373105017405 0ustar davisfacfunction A = cs_sparse2 (i,j,x) %#ok %CS_SPARSE2 same as cs_sparse, to test cs_entry function % A = cs_sparse2 (i,j,x), removing duplicates and numerically zero entries, % and returning A sorted (test cs_entry) % % Example: % A = cs_sparse2 (i,j,x) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sparse2 mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/chol_right.m0000644001170100242450000000063110620373032017462 0ustar davisfacfunction L = chol_right (A) %CHOL_RIGHT right-looking Cholesky factorization. % Example % L = chol_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; for k = 1:n L (k,k) = sqrt (A (k,k)) ; L (k+1:n,k) = A (k+1:n,k) / L (k,k) ; A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * L (k+1:n,k)' ; end SuiteSparse/CSparse/MATLAB/Test/signum.m0000644001170100242450000000046010620373167016653 0ustar davisfacfunction s = signum (x) %SIGNUM compute and display the sign of a column vector x % Example % s = signum(x) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse s = ones (length (x),1) ; s (find (x < 0)) = -1 ; %#ok disp ('s =') ; disp (s) ; SuiteSparse/CSparse/MATLAB/Test/dmperm_test.m0000644001170100242450000000430710620666271017701 0ustar davisfacfunction dmperm_test %DMPERM_TEST test cs_dmperm % % Example: % dmperm_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; f = find (index.nrows ~= index.ncols) ; [ignore i] = sort (index.nrows(f) ./ index.ncols(f)) ; f = [209:211 f(i)] ; nmat = length(f) ; tt1 = zeros (1,nmat) ; tt2 = zeros (1,nmat) ; tt3 = zeros (1,nmat) ; tt4 = zeros (1,nmat) ; mm = zeros (1,nmat) ; nn = zeros (1,nmat) ; ss = zeros (1,nmat) ; me = zeros (1,nmat) ; ne = zeros (1,nmat) ; p = cs_dmperm (sparse (1)) ; for k = 1:length(f) i = f(k) ; Prob = UFget (i) %#ok A = Prob.A ; [m n] = size (A) ; if (m > n) % make sure A is short and fat A = A' ; end % C is tall and thin C = A' ; [m n] = size (A) ; k1 = 0 ; t1 = 0 ; while (t1 < 1) tic p = cs_dmperm (A) ; t = toc ; t1 = t1 + t ; k1 = k1 + 1 ; end t1 = t1 / k1 ; s1 = sum (p > 0) ; k2 = 0 ; t2 = 0 ; while (t2 < 1) tic p = cs_dmperm (C) ; t = toc ; t2 = t2 + t ; k2 = k2 + 1 ; end t2 = t2 / k2 ; s2 = sum (p > 0) ; k3 = 0 ; t3 = 0 ; while (t3 < 1) tic p = cs_dmperm_orig (A) ; t = toc ; t3 = t3 + t ; k3 = k3 + 1 ; end t3 = t3 / k3 ; k4 = 0 ; t4 = 0 ; while (t4 < 1) tic p = cs_dmperm_orig (A') ; t = toc ; t4 = t4 + t ; k4 = k4 + 1 ; end t4 = t4 / k4 ; sprnk = sum (p > 0) ; nempty = full (sum (sum (spones (A)) == 0)) ; mempty = full (sum (sum (spones (C)) == 0)) ; fprintf ('[m %d:%d n %d:%d (%d)]:\n', m, mempty, n, nempty, sprnk) ; fprintf (' A: t1 %10.6f (%6d) C: t2 %10.6f (%6d) new\n', ... t1, k1, t2, k2) ; fprintf (' A: t3 %10.6f (%6d) C: t4 %10.6f (%6d) orig\n', ... t3, k3, t4, k4) ; if (s1 ~= sprnk | s2 ~= sprnk) %#ok s1 %#ok s2 %#ok sprnk %#ok error ('!') ; end tt1 (k) = t1 ; tt2 (k) = t2 ; tt3 (k) = t3 ; tt4 (k) = t4 ; mm (k) = m ; nn (k) = n ; ss (k) = sprnk ; me (k) = mempty ; ne (k) = nempty ; clear A C semilogy (ss(1:k) ./ nn(1:k), tt1(1:k) ./ tt3(1:k), 'o', ... [0 1], [1 1], 'r-') ; drawnow end SuiteSparse/CSparse/MATLAB/Test/cs_reachr_mex.c0000644001170100242450000000325410415621443020140 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower * triangular. b must be a real sparse vector. */ static void dfsr (int j, const cs *L, int *top, int *xi, int *w) { int p ; w [j] = 1 ; /* mark node j */ for (p = L->p [j] ; p < L->p [j+1] ; p++) /* for each i in L(:,j) */ { if (w [L->i [p]] != 1) /* if i is unmarked */ { dfsr (L->i [p], L, top, xi, w) ; /* start a dfs at i */ } } xi [--(*top)] = j ; /* push j onto the stack */ } /* w [0..n-1] == 0 on input, <= 1 on output. size n */ static int reachr (const cs *L, const cs *B, int *xi, int *w) { int p, n = L->n ; int top = n ; /* stack is empty */ for (p = B->p [0] ; p < B->p [1] ; p++) /* for each i in pattern of b */ { if (w [B->i [p]] != 1) /* if i is unmarked */ { dfsr (B->i [p], L, &top, xi, w) ; /* start a dfs at i */ } } return (top) ; /* return top of stack */ } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, Bmatrix, *L, *B ; double *x ; int i, j, top, *xi ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reachr(L,b)") ; } /* get inputs */ L = cs_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; xi = cs_calloc (2*L->n, sizeof (int)) ; top = reachr (L, B, xi, xi + L->n) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; } SuiteSparse/CSparse/MATLAB/Test/chol_left2.m0000644001170100242450000000073510620373026017371 0ustar davisfacfunction L = chol_left2 (A) %CHOL_LEFT2 left-looking Cholesky factorization, more details. % Example % L = chol_left2 (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = sparse (n,n) ; a = sparse (n,1) ; for k = 1:n a (k:n) = A (k:n,k) ; for j = find (L (k,:)) a (k:n) = a (k:n) - L (k:n,j) * L (k,j) ; end L (k,k) = sqrt (a (k)) ; L (k+1:n,k) = a (k+1:n) / L (k,k) ; end SuiteSparse/CSparse/MATLAB/Test/chol_up.m0000644001170100242450000000056110620373042016774 0ustar davisfacfunction L = chol_up (A) %CHOL_UP up-looking Cholesky factorization. % Example: % L = chol_up (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; for k = 1:n L (k,1:k-1) = (L (1:k-1,1:k-1) \ A (1:k-1,k))' ; L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)') ; end SuiteSparse/CSparse/MATLAB/Test/cs_ipvec.m0000644001170100242450000000037010620373063017137 0ustar davisfacfunction x = cs_ipvec (b,p) %#ok %CS_IPVEC x(p)=b % % Example: % x = cs_ipvec (b,p) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_ipvec mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/Contents.m0000644001170100242450000001165110620373052017143 0ustar davisfac% CSparse "textbook" MATLAB M-files and mexFunctions, related to CSparse but % not a part of CSparse itself. % % M-files: % % chol_downdate - downdate a Cholesky factorization. % chol_left - left-looking Cholesky factorization. % chol_left2 - left-looking Cholesky factorization, more details. % chol_right - right-looking Cholesky factorization. % chol_super - left-looking "supernodal" Cholesky factorization. % chol_up - up-looking Cholesky factorization. % chol_update - update a Cholesky factorization. % chol_updown - update or downdate a Cholesky factorization. % cond1est - 1-norm condition estimate. % cs_fiedler - the Fiedler vector of a connected graph. % givens2 - find a Givens rotation. % house - find a Householder reflection. % lu_left - left-looking LU factorization. % lu_right - right-looking LU factorization. % lu_rightp - right-looking LU factorization, with partial pivoting. % lu_rightpr - recursive right-looking LU, with partial pivoting. % lu_rightr - recursive right-looking LU. % norm1est - 1-norm estimate. % qr_givens - Givens-rotation QR factorization. % qr_givens_full - Givens-rotation QR factorization, for full matrices. % qr_left - left-looking Householder QR factorization. % qr_right - right-looking Householder QR factorization. % % mexFunctions: % % cs_frand - generate a random finite-element matrix % cs_ipvec - x(p)=b % cs_maxtransr - recursive maximum matching algorithm % cs_pvec - x=b(p) % cs_reach - non-recursive reach (interface to CSparse cs_reach) % cs_reachr - recursive reach (interface to CSparse cs_reachr) % cs_rowcnt - row counts for sparse Cholesky % cs_sparse2 - same as cs_sparse, to test cs_entry function % % Extensive test functions, not for normal usage: % % check_if_same - check if two inputs are identical or not % choldn - Cholesky downdate % cholup - Cholesky update, using Given's rotations % cholupdown - Cholesky update/downdate (Bischof, Pan, and Tang method) % cs_q1 - construct Q from Householder vectors % cs_test_make - compiles the CSparse, Demo, and Test mexFunctions. % dmperm_test - test cs_dmperm % chol_example - simple Cholesky factorization example % etree_sample - construct a sample etree and symbolic factorization % gqr3 - QR factorization, based on Givens rotations % happly - apply Householder reflection to a vector % hmake1 - construct a Householder reflection % mynormest1 - estimate norm(A,1), using LU factorization (L*U = P*A*Q). % myqr - QR factorization using Householder reflections % another_colormap - try another color map % cspy_test - test cspy and cs_dmspy % qr2 - QR factorization based on Householder reflections % sample_colormap - try a colormap for use in cspy % signum - compute and display the sign of a column vector x % sqr_example - test cs_sqr % dmspy_test - test cspy, cs_dmspy, and cs_dmperm % test_qr - test various QR factorization methods % test_randperms - test random permutations % testh - test Householder reflections % test_qr1 - test QR factorizations % test_qrsol - test cs_qrsol % test_sep - test cs_sep, and compare with Gilbert's meshpart vtxsep % testall - test all CSparse functions (run tests 1 to 28 below) % test1 - test cs_transpose % test2 - test cs_sparse % test3 - test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % test4 - test cs_multiply % test5 - test cs_add % test6 - test cs_reach, cs_reachr, cs_lsolve, cs_usolve % test7 - test cs_lu % test8 - test cs_cholsol, cs_lusol % test9 - test cs_qr % test10 - test cs_qr % test11 - test cs_rowcnt % test12 - test cs_qr and compare with svd % test13 - test cs_counts, cs_etree % test14 - test cs_droptol % test15 - test cs_amd % test16 - test cs_amd % test17 - test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % test18 - test iterative refinement after backslash % test19 - test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc % test20 - test cholupdown % test21 - test cs_updown % test22 - test cond1est % test23 - test cs_dmspy % test24 - test cs_fielder % test25 - test cs_nd % test26 - test cs_dmsol and cs_dmspy % test27 - test cs_qr, cs_utsolve, cs_qrsol % test28 - test cs_randperm, cs_dmperm % Example: % help chol_update % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CSparse/MATLAB/Test/test10.m0000644001170100242450000000354410620373175016476 0ustar davisfacfunction test10 %TEST10 test cs_qr % % Example: % test10 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; % f = 185 ; % f = 449 ; clf for trials = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; A = sprandn (m, n, d) ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sp < n) % continue ; % end Aorig = A ; % A = A (:, colamd (A)) ; tic ; R = qr (A) ; t1 = toc ; % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; %#ok rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; [H1,R1] = myqr (C) ; err1 = norm (R1-R2,1) / norm (R1) ; disp ('err1 = ') ; disp (err1) ; % [svd(A) svd(R1) svd(full(R2))] s1 = svd (full (A)) ; s2 = svd (full (R2)) ; if (n > 0) err2 = norm (s1 - s2) / s1 (1) ; disp ('err2 = ') ; disp (err2) ; else err2 = 0 ; end fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d vs %d\n', t1, t2, t1/t2, sp, n) ; % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr H') ; drawnow if (err2 > 1e-9) error ('!') ; end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end end SuiteSparse/CSparse/MATLAB/Test/test11.m0000644001170100242450000000153410710513051016461 0ustar davisfacfunction test11 %TEST11 test cs_rowcnt % % Example: % test11 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; for i = f Prob = UFget (i, index) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end A = spones (A) ; A = A+A' + speye(n) ; [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end try p = amd (A) ; catch p = symamd (A) ; end A = A (p,p) ; [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test12.m0000644001170100242450000000156710620666442016505 0ustar davisfacfunction test12 %TEST12 test cs_qr and compare with svd % % Example: % test12 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('test 12\n') ; rand ('state',0) ; % A = rand (3,4) for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (m,n,d) ; fprintf ('m %d n %d nnz %d\n', m, n, nnz(A)) ; if (m < n) continue ; end if (m == 0 | n == 0) %#ok continue ; end % save A A fprintf ('[ ') ; [V,Beta,p,R] = cs_qr (A) ; % [Q,R] = svd (full(A)) ; fprintf (']\n') ; s1 = svd (full (A)) ; s2 = svd (full (R)) ; s2 = s2 (1:length(s1)) ; err = norm (s1-s2) ; if (length (s1) > 1) err = err / s1 (1) ; end fprintf ('err %g\n', err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test13.m0000644001170100242450000000320110620373203016457 0ustar davisfacfunction test13 %TEST13 test cs_counts, cs_etree % % Example: % test13 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state',0) ; rand ('state',0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (n,n,d) ; C = sprandn (m,n,d) ; A = A+A' ; fprintf ('m %4d n %4d nnz(A) %6d nnz(C) %6d\n', m, n, nnz(A), nnz(C)) ; [p1,po1] = etree (A) ; [p2,po2] = cs_etree (A) ; [p3,po3] = cs_etree (A, 'sym') ; % po2 = cs_post (p2) ; check_if_same (p1,p2) ; check_if_same (po1,po2) ; check_if_same (p1,p3) ; check_if_same (po1,po3) ; c1 = symbfact (A) ; c2 = cs_counts (A) ; % A-A' check_if_same (c1,c2) ; c2 = cs_counts (triu (A)) ; check_if_same (c1,c2) ; % pause p0 = etree (A, 'col') ; % p1 = etree2 (A, 'col') ; % CHOLMOD p2 = cs_etree (A, 'col') ; if (~isempty (A)) check_if_same (p0,p2) ; end p0 = etree (C, 'col') ; % p1 = etree2 (C, 'col') ; % CHOLMOD p2 = cs_etree (C, 'col') ; if (~isempty (C)) check_if_same (p0,p2) ; end % find etree of A'A, and postorder it [m n] = size (A) ; %#ok % full (A) [cp0 cpo0] = etree (A, 'col') ; % [cp1 cpo1] = etree2 (A, 'col') ; % CHOLMOD [cp2 cpo2] = cs_etree (A, 'col') ; % cpo2 = cs_post (cp2) ; check_if_same (cp0, cp2) ; check_if_same (cpo0, cpo2) ; c0 = symbfact (A, 'col') ; % c1 = symbfact2 (A, 'col') ; % CHOLMOD c2 = cs_counts (A, 'col') ; check_if_same (c0, c2) ; end SuiteSparse/CSparse/MATLAB/Test/test14.m0000644001170100242450000000134510620373205016471 0ustar davisfacfunction test14 %TEST14 test cs_droptol % % Example: % test14 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1*rand (1) ; A = sprandn (m,n,d) ; [i j x] = find (A) ; A = sparse (i,j,2*x-1) ; fprintf ('test14 m %3d n %3d nz %d\n', m, n, nnz (A)) ; % using CSparse tol = 0.5 ; B = cs_droptol (A, tol) ; % using MATLAB A = A .* (abs (A) > tol) ; % [m n] = size (A) ; % s = abs (A) > tol ; % [i j] = find (s) ; % x = A (find (s)) ; % A = sparse (i, j, x, m, n) ; if (norm (A-B,1) > 0) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test15.m0000644001170100242450000000160310620373206016470 0ustar davisfacfunction test15 %TEST15 test cs_amd % % Example: % test15 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:100 n = fix (200 * rand (1)) ; d = 0.05 * rand (1) ; A = sprandn (n, n, d) ; % add a randomly placed dense column k = fix (n * rand (1)) ; k = max (1, k) ; k = min (n, k) ; A (:,k) = 1 ; try p0 = amd (A) ; catch p0 = symamd (A) ; end p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (1,3,1) ; spy (C) subplot (1,3,2) ; spy (C (p0,p0)) subplot (1,3,3) ; spy (C (p1,p1)) fprintf ('n %4d nz %6d lnz %6d %6d\n', n, nnz(A), lnz0, lnz1) ; drawnow end SuiteSparse/CSparse/MATLAB/Test/test16.m0000644001170100242450000000342410620373210016467 0ustar davisfacfunction test16 %TEST16 test cs_amd % % Example: % test16 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; skip = 811 ; % f = 719 for i = f if (any (i == skip)) continue end Prob = UFget (i) ; A = spones (Prob.A) ; Aorig = A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; if (m ~= n) A = A'*A ; end fprintf ('n %4d nz %d\n', n, nnz (A)) ; try p0 = amd (A) ; catch p0 = symamd (A) ; end fprintf ('symmetric case:\n') ; p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (2,3,1) ; spy (C) subplot (2,3,2) ; spy (C (p0,p0)) ; title ('amd') ; subplot (2,3,3) ; spy (C (p1,p1)) ; title ('csamd') ; drawnow if (lnz0 ~= lnz1) fprintf ('----------------- lnz %d %d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; end if (1) p0 = colamd (Aorig) ; [m n] = size (Aorig) ; fprintf ('m %d n %d\n', m, n) ; fprintf ('A''A case, no dense rows (for QR):\n') ; p1 = cs_amd (Aorig, 3) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end subplot (2,3,4) ; spy (Aorig) subplot (2,3,5) ; spy (Aorig (:,p0)) ; title ('colamd') ; subplot (2,3,6) ; spy (Aorig (:,p1)) ; title ('cs amd(A''A)') ; lnz0 = sum (symbfact (Aorig (:,p0), 'col')) ; lnz1 = sum (symbfact (Aorig (:,p1), 'col')) ; fprintf (' A''A: %7d %7d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; drawnow % pause end end SuiteSparse/CSparse/MATLAB/Test/test17.m0000644001170100242450000000407310620373213016474 0ustar davisfacfunction test17 %TEST17 test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % % Example: % test17 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions clf rand ('state', 0) ; randn ('state', 0) ; for trials = 1:100 m = 1 + fix (10 * rand (1)) ; n = 1 + fix (10 * rand (1)) ; d = rand (1) ; % n = m ; A = sprandn (m, n, d) ; if (m < n) A = A' ; end [m n] = size (A) ; subplot (3,4,1) ; spy (A) ; [V1, Beta1, p1, R1, q1] = cs_qr (A) ; Q1 = cs_qright (V1, Beta1, p1, speye (size (V1,1))) ; Q1b = cs_q1 (V1, Beta1, p1) ; err = norm (Q1-Q1b,1) ; disp ('err = ') ; disp (err) ; if (err > 1e-12) error ('!') ; end m2 = size (Q1,1) ; A1 = [A ; sparse(m2-m,n)] ; subplot (3,4,5) ; spy (A1 (p1,q1)) ; subplot (3,4,6) ; spy (V1) ; subplot (3,4,7) ; spy (R1) ; subplot (3,4,8) ; spy (Q1) ; [V3, Beta3, R3] = qr2 (A) ; % Q3 = cs_qmake (V3, Beta3) ; Q3 = cs_q1 (V3, Beta3) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (V3) ; subplot (3,4,11) ; spy (R3) ; subplot (3,4,12) ; spy (Q3) ; err1 = norm (Q1*R1 - A1(:,q1), 1) ; % err2 = norm (Q2*R2 - A (:,q2), 1) ; err3 = norm (Q3*R3 - A, 1) ; fprintf ('m %3d m2 %3d n %3d ::: %3d %6.2e %6.2e\n', ... m, m2, n, m2-m, err1, err3) ; if (err1 > 1e-12) error ('!') ; end % if (err2 > 1e-12) % error ('!') ; % end if (err3 > 1e-12) error ('!') ; end try b = rand (m,1) ; [Q,R] = qr (A (:,q1)) ; x = R\(Q'*b) ; x (q1) = x ; r1 = norm (A*x-b) ; x2 = cs_qrsol (A,b) ; r2 = norm (A*x2(1:n)-b) ; qt = cs_qleft (V1, Beta1, p1, speye(size(V1,1))) ; fprintf ('Q''*A-R: %6.2e\n', norm (qt*A1(:,q1)-R1,1)) ; qtb = cs_qleft (V1, Beta1, p1, b) ; % [V1, Beta1, p1, R1, q1] = cs_qr (A) ; x3 = R1 \ qtb ; r3 = norm (A(:,q1)*x3(1:n)-b) ; fprintf ('least sq: %6.2e %6.2e %6.2e diff %6.2e %6.2e\n', ... r1, r2, r3, r1-r2, r1-r3) ; catch end drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test18.m0000644001170100242450000000112110620666451016475 0ustar davisfacfunction test18 %TEST18 test iterative refinement after backslash % % Example: % test18 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end b = rand (n,1) ; x = A\b ; r = b - A*x ; x = x + A\r ; fprintf ('\n%6.2e to %6.2e\n', norm (r), norm (b-A*x)) ; end SuiteSparse/CSparse/MATLAB/Test/test19.m0000644001170100242450000000655710620666505016520 0ustar davisfacfunction test19 %TEST19 test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc % % Example: % test19 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:1000 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; S = sprandn (m,m,d) + speye (m) ; subplot (2,3,1) ; cspy (A) ; pp = dmperm (A) ; sprnk = sum (pp > 0) ; pp2 = cs_dmperm (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end pp2 = cs_maxtransr (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end [p,q,r,s] = dmperm (A) ; C = A (p,q) ; % r % s nk = length (r) - 1 ; fprintf ('sprnk: %d m %d n %d nb: %d\n', sprnk, m, n, nk) ; subplot (2,3,2) ; hold off spy (C) hold on for k = 1:nk r1 = r(k) ; r2 = r(k+1) ; c1 = s(k) ; c2 = s(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end [p2,q2,rr2,ss2,cp,rp] = cs_dmperm (A) ; if (min (m,n) > 0) if (length (rr2) ~= length (r)) error ('# fine blocks!') ; end end if (rp (4) - 1 ~= sprnk) rp %#ok sprnk %#ok error ('!') ; end if (any (sort (p2) ~= 1:m)) error ('p2!') ; end if (any (sort (q2) ~= 1:n)) error ('q2!') ; end if (cp (5) ~= n+1) error ('cp!') ; end if (rp (5) ~= m+1) error ('rp!') ; end C = A (p2,q2) ; subplot (2,3,3) ; cs_dmspy (A,0) ; % hold off % spy (C) ; % hold on % r1 = rp(1) ; % r2 = rp(2) ; % c1 = cp(1) ; % c2 = cp(2) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; r1 = rp(1) ; r2 = rp(2) ; c1 = cp(2) ; c2 = cp(3) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C1 diag!') ; end r1 = rp(2) ; r2 = rp(3) ; c1 = cp(3) ; c2 = cp(4) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'r') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C2 diag!') ; end r1 = rp(3) ; r2 = rp(4) ; c1 = cp(4) ; c2 = cp(5) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C3 diag!') ; end r1 = rp(4) ; %#ok r2 = rp(5) ; %#ok c1 = cp(4) ; %#ok c2 = cp(5) ; %#ok % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; if (~isempty (S)) [p1,q1,r0,s0] = dmperm (S) ; [p3,r3] = cs_scc (S) ; if (length (r3) ~= length (r0)) error ('scc size!') ; end if (any (sort (p3) ~= 1:m)) error ('scc perm!') ; end nk = length (r0)-1 ; subplot (2,3,4) ; hold off spy (S (p1,q1)) ; hold on for k = 1:nk r1 = r0(k) ; r2 = r0(k+1) ; c1 = s0(k) ; c2 = s0(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end subplot (2,3,5) ; hold off spy (S (p3,p3)) ; hold on for k = 1:nk r1 = r3(k) ; r2 = r3(k+1) ; c1 = r3(k) ; c2 = r3(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end end subplot (2,3,6) ; cs_dmspy (A) ; drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test20.m0000644001170100242450000000142010620373223016460 0ustar davisfacfunction test20 %TEST20 test cholupdown % % Example: % test20 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; for trials = 1:10 n = fix (100 * rand (1)) ; A = rand (n) ; A1 = A*A' + n*eye (n) ; try L1 = chol (A1)' ; catch continue ; end err1 = norm (L1*L1'-A1) ; w = rand (n,1) ; A2 = A1 + w*w' ; L2 = chol (A2)' ; err2 = norm (L2*L2'-A2) ; % try an update L2b = cholupdown (L1, +1, w) ; err2b = norm (L2b*L2b'-A2) ; % try a downdate L1b = cholupdown (L2, -1, w) ; %#ok err1b = norm (L2b*L2b'-A2) ; fprintf ('%3d: %6.2e %6.2e : %6.2e %6.2e\n', n, err1, err2, err2b, err1b) ; % pause end SuiteSparse/CSparse/MATLAB/Test/test21.m0000644001170100242450000000363610620666527016510 0ustar davisfacfunction test21 %TEST21 test cs_updown % % Example: % test21 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:10 if (trials <= 1) n = trials ; else n = 1+fix (100 * rand (1)) ; end fprintf ('n: %d\n', n) ; d = 0.1 * rand (1) ; A = sprandn (n,n,d) ; A = A+A' + 100 * speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end A = sparse (A (p,p)) ; try L = chol (A)' ; catch continue ; end parent = etree (A) ; subplot (1,3,1) ; spy (A) ; if (n > 0) subplot (1,3,2) ; treeplot (parent) ; end subplot (1,3,3) ; spy (L) ; drawnow for trials2 = 1:10 k = 1+fix (n * rand (1)) ; if (k <= 0 | k > n) %#ok k = 1 ; end w = sprandn (L (:,k)) ; Anew = A + w*w' ; % Lnew = cs_update (L, w, parent) ; % err1 = norm (Lnew*Lnew' - Anew, 1) ; Lnew = cs_updown (L, w, parent) ; err6 = norm (Lnew*Lnew' - Anew, 1) ; Lnew = cs_updown (L, w, parent, '+') ; err7 = norm (Lnew*Lnew' - Anew, 1) ; [Lnew, wnew] = chol_update (L, w) ; err2 = norm (Lnew*Lnew' - Anew, 1) ; err10 = norm (wnew - (L\w)) ; L3 = chol_updown (L, +1, w) ; err9 = norm (L3*L3' - Anew, 1) ; [L2, wnew] = chol_downdate (Lnew, w) ; err3 = norm (L2*L2' - A, 1) ; err11 = norm (wnew - (Lnew\w)) ; % L2 = cs_downdate (Lnew, w, parent) ; % err4 = norm (L2*L2' - A, 1) ; L2 = cs_updown (Lnew, w, parent, '-') ; err5 = norm (L2*L2' - A, 1) ; L2 = chol_updown (Lnew, -1, w) ; err8 = norm (L2*L2' - A, 1) ; err = max ([err2 err3 err5 err6 err7 err9 err8 err10 err11]) ; fprintf (' k %3d %6.2e\n', k, err) ; if (err > 1e-11) err2 %#ok err3 %#ok err5 %#ok err6 %#ok err7 %#ok err8 %#ok err9 %#ok err10 %#ok err11 %#ok pause end end % pause end SuiteSparse/CSparse/MATLAB/Test/test22.m0000644001170100242450000000211510620666541016474 0ustar davisfacfunction test22 %TEST22 test cond1est % % Example: % test22 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) nprob = length (f) ; C1 = zeros (nprob,1) ; C2 = zeros (nprob,1) ; C3 = zeros (nprob,1) ; for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end c1 = condest (A) ; c2 = cond1est (A) ; if (c1 == c2) err = 0 ; else err = (c1-c2)/max(1,c1) ; end c3 = cond (full (A), 1) ; fprintf ('%10.4e %10.4e (%10.4e) : %10.4e\n', c1, c2, c3, err) ; if (err ~= 0) % pause end C1 (k) = c1 ; C2 (k) = c2 ; C3 (k) = c3 ; subplot (1,2,1) ; loglog (C1, C2, 'x', [1 1e20], [1 1e20], 'r') ; subplot (1,2,2) ; loglog (C3, C2, 'x', [1 1e20], [1 1e20], 'r') ; drawnow % pause % if (c3 < c2) % c3 % c2 % c2-c3 % pause % end end SuiteSparse/CSparse/MATLAB/Test/test23.m0000644001170100242450000000101310620373232016461 0ustar davisfacfunction test23 %TEST23 test cs_dmspy % % Example: % test23 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:1000 % m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; m = n ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; cs_dmspy (A) ; drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test24.m0000644001170100242450000000153110620373234016471 0ustar davisfacfunction test24 %TEST24 test cs_fielder % % Example: % test24 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end tic p1 = symrcm (A) ; t1 = toc ; tic p2 = cs_fiedler (A) ; t2 = toc ; rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f fiedler %8.3f rel %8.2f\n', t1, t2, rel) ; A = A|A' ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test25.m0000644001170100242450000000174110620373241016473 0ustar davisfacfunction test25 %TEST25 test cs_nd % % Example: % test25 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end A = A|A' ; tic ; p1 = symrcm (A) ; t1 = toc ; tic ; p2 = cs_nd (sparse (1)) ; toc ; if (p2 ~= 1) error ('!') ; end tic ; p2 = cs_nd (A) ; t2 = toc ; if (any (sort (p2) ~= 1:n)) error ('!') ; end rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f nd %8.3f rel %8.2f\n', t1, t2, rel) ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test26.m0000644001170100242450000000237610620373243016503 0ustar davisfacfunction test26 %TEST26 test cs_dmsol and cs_dmspy % % Example: % test26 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf ntrials = 1000 ; e1 = zeros (ntrials,1) ; e2 = zeros (ntrials,1) ; for trials = 1:ntrials m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; subplot (1,3,2) ; spy (A) ; subplot (1,3,3) ; cs_dmspy (A) ; b = rand (m,1) ; x1 = A\b ; x2 = cs_dmsol (A,b) ; err1 = norm (A*x1-b) ; err2 = norm (A*x2-b) ; lerr1 = log10 (max (err1, eps)) ; lerr2 = log10 (max (err2, eps)) ; fprintf ('rank: %3d %3d err %6.2e %6.2e : %6.1f\n', ... sprank(A), rank(full(A)), err1, err2, lerr1 - lerr2) ; if (isnan (err1)) lerr1 = 10 ; end if (isnan (err2)) lerr2 = 10 ; end if (lerr2 > lerr1 + 5) % pause end e1 (trials) = lerr1 ; e2 (trials) = lerr2 ; subplot (1,3,1) ; plot (e1, e2, 'o', [-16 10], [-16 10], 'r') ; xlabel ('MATLAB error') ; ylabel ('dmsol error') ; drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test27.m0000644001170100242450000000116710620373245016503 0ustar davisfacfunction test27 %TEST27 test cs_qr, cs_utsolve, cs_qrsol % % Example: % test27 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; Prob = UFget ('HB/ibm32') ; A = Prob.A ; A = A (1:10,:) ; [m n] = size (A) ; [V,Beta,p,R,q] = cs_qr (A') ; b = rand (m,1) ; Rm = R (1:m,1:m) ; bq = b (q) ; rtbq = Rm' \ bq ; rt2 = cs_utsolve (Rm, bq) ; norm (rtbq - rt2) x = [rt2 ; zeros(n-m,1)] ; for k = m:-1:1 x = x - V(:,k) * (Beta (k) * (V (:,k)' * x)) ; end x (p) = x ; norm (A*x-b) x2 = cs_qrsol (A,b) ; norm (A*x2-b) norm (x-x2) SuiteSparse/CSparse/MATLAB/Test/test28.m0000644001170100242450000000420110620666743016504 0ustar davisfacfunction test28 %TEST28 test cs_randperm, cs_dmperm % % Example: % test28 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; for n = 1:100 for trials = 1:1000 p = cs_randperm (n, rand) ; if (any (sort (p) ~= 1:n)) n %#ok p %#ok error ('!') end end end index = UFget ; [ignore f] = sort (index.nnz) ; fprintf ('p=dmperm (std, rand, rev) [p,q,r,s]=dmperm (std, rand, rev)\n') ; nmat = min (100, length (f)) ; T1 = zeros (nmat,1) ; T2 = zeros (nmat,1) ; T3 = zeros (nmat,1) ; D1 = zeros (nmat,1) ; D2 = zeros (nmat,1) ; D3 = zeros (nmat,1) ; for k = 1:nmat i = f (k) ; Prob = UFget (i,index) ; A = Prob.A ; [m n] = size (A) ; fprintf ('%35s: ', Prob.name) ; tic p = cs_dmperm (A) ; t1 = toc ; sprank1 = sum (p > 0) ; fprintf (' %8.2f', t1) ; T1 (k) = t1 ; tic p = cs_dmperm (A,1) ; t2 = toc ; sprank2 = sum (p > 0) ; fprintf (' %8.2f', t2) ; T2 (k) = t2 ; tic p = cs_dmperm (A,-1) ; t3 = toc ; sprank3 = sum (p > 0) ; fprintf (' %8.2f', t3) ; T3 (k) = t3 ; if (sprank1 ~= sprank2 | sprank1 ~= sprank3) %#ok error ('!') ; end tic [p1,q1,r1,s1,cc1,rr1] = cs_dmperm (A) ; %#ok d1 = toc ; fprintf (' %8.2f', d1) ; D1 (k) = d1 ; tic [p2,q2,r2,s2,cc2,rr2] = cs_dmperm (A,1) ; %#ok d2 = toc ; fprintf (' %8.2f', d2) ; D2 (k) = d2 ; tic [p3,q3,r3,s3,cc3,rr3] = cs_dmperm (A,-1) ; %#ok d3 = toc ; fprintf (' %8.2f\n', d3) ; D3 (k) = d3 ; if (sprank1 == max (m,n)) nz1 = nnz (diag (A (p1,q1))) ; nz2 = nnz (diag (A (p2,q2))) ; nz3 = nnz (diag (A (p3,q3))) ; if (nz1 ~= sprank1 | nz2 ~= sprank2 | nz3 ~= sprank3) %#ok error ('!') end end subplot (1,2,1) loglog (T1 (1:k), T2 (1:k), 'x', ... T1 (1:k), T3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal subplot (1,2,2) loglog (D1 (1:k), D2 (1:k), 'x', ... D1 (1:k), D3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal drawnow end SuiteSparse/CSparse/MATLAB/Test/cs_frand_mex.c0000644001170100242450000000266710677527016020010 0ustar davisfac#include "cs_mex.h" /* A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel * finite elements, each of which are of size s-by-s with random symmetric * nonzero pattern, plus the identity matrix. * See also MATLAB/Demo/private/frand.m */ static cs *cs_frand (int n, int nel, int s) { int ss = s*s, nz = nel*ss, e, i, j, *P ; cs *A, *T = cs_spalloc (n, n, nz, 1, 1) ; if (!T) return (NULL) ; P = cs_malloc (s, sizeof (int)) ; if (!P) return (cs_spfree (T)) ; for (e = 0 ; e < nel ; e++) { for (i = 0 ; i < s ; i++) P [i] = rand () % n ; for (j = 0 ; j < s ; j++) { for (i = 0 ; i < s ; i++) { cs_entry (T, P [i], P [j], rand () / (double) RAND_MAX) ; } } } for (i = 0 ; i < n ; i++) cs_entry (T, i, i, 1) ; A = cs_compress (T) ; cs_spfree (T) ; return (cs_dupl (A) ? A : cs_spfree (A)) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { int n, nel, s ; cs *A, *AT ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_frand(n,nel,s)") ; } n = mxGetScalar (pargin [0]) ; nel = mxGetScalar (pargin [1]) ; s = mxGetScalar (pargin [2]) ; n = CS_MAX (1,n) ; nel = CS_MAX (1,nel) ; s = CS_MAX (1,s) ; AT = cs_frand (n, nel, s) ; A = cs_transpose (AT, 1) ; cs_spfree (AT) ; cs_dropzeros (A) ; pargout [0] = cs_mex_put_sparse (&A) ; } SuiteSparse/CSparse/MATLAB/Test/cond1est.m0000644001170100242450000000075410620666162017077 0ustar davisfacfunction c = cond1est (A) %COND1EST 1-norm condition estimate. % Example: % c = cond1est(A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; if (m ~= n | ~isreal (A)) %#ok error ('A must be square and real') ; end if isempty(A) c = 0 ; return ; end [L,U,P,Q] = lu (A) ; if (~isempty (find (abs (diag (U)) == 0))) %#ok c = Inf ; else c = norm (A,1) * norm1est (L,U,P,Q) ; end SuiteSparse/CSparse/MATLAB/Test/test1.m0000644001170100242450000000175210620373221016405 0ustar davisfacfunction test1 %TEST1 test cs_transpose % % Example: % test1 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; for ii = f Prob = UFget (ii) ; disp (Prob) ; A = Prob.A ; if (~isreal (A)) continue end B = A' ; C = cs_transpose (A) ; if (nnz (B-C) ~= 0) error ('!') end [m n] = size (A) ; % if (m == n) x = rand (n,1) ; y = rand (m,1) ; z = y+A*x ; q = cs_gaxpy (A,x,y) ; err = norm (z-q,1) / norm (z,1) ; disp (err) ; if (err > 1e-14) error ('!') end % end [i j x] = find (A) ; p = randperm (length (i)) ; i = i (p) ; j = j (p) ; x = x (p) ; D = sparse (i,j,x) ; E = cs_sparse (i,j,x) ; % [i j x] F = cs_sparse2 (i,j,x) ; if (nnz (D-E) ~= 0) error ('!') end if (nnz (F-E) ~= 0) error ('!') end clear A B C D E F % pause end SuiteSparse/CSparse/MATLAB/Test/test2.m0000644001170100242450000000326710620373251016414 0ustar davisfacfunction test2 %TEST2 test cs_sparse % % Example: % test2 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) % clf for trial = 1:100 m = fix (10 * rand (1)) ; n = fix (10 * rand (1)) ; nz = fix (100 * rand (1)) ; i = 1 + fix (m * rand (nz,1)) ; j = 1 + fix (n * rand (nz,1)) ; x = rand (nz,1) ; A = sparse (i,j,x) ; B = cs_sparse (i,j,x) ; D = cs_sparse2 (i,j,x) ; fprintf ('%3d %3d %6d : %6d %6d : %d\n', ... m, n, nz, nnz (A), nnz(B), nz-nnz(A)) ; err = norm (A-B,1) / norm (A,1) ; if (err > 0) disp ('err = ') ; disp (err) ; end if (err > 1e-14) error ('!') ; end if (nnz (B-D) > 0) error ('!') ; end if (nnz (A) ~= nnz (B)) error ('nz!') ; end if (max (1,nnz (B)) ~= max (1,nzmax (B))) nnz (B) nzmax (B) error ('nzmax!') ; end % pack [m n] = size (A) ; p = randperm (m) ; q = randperm (n) ; C1 = A (p,q) ; C2 = cs_permute (A,p,q) ; err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end % subplot (1,2,1) ; spy (A) % subplot (1,2,2) ; spy (C2) % drawnow x = rand (m,1) ; x1 = x (p) ; x2 = cs_pvec (x, p) ; err = norm (x1-x2,1) ; if (err > 0) error ('!') ; end x1 = zeros (m,1) ; x1 (p) = x ; %#ok x2 = cs_ipvec (x, p) ; %#ok n = min (m,n) ; B = A (1:n, 1:n) ; p = randperm (n) ; B = B+B' ; C1 = triu (B (p,p)) ; C2 = cs_symperm (B,p) ; try pp = amd (C2) ; %#ok catch pp = symamd (C2) ; %#ok end err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test3.m0000644001170100242450000000315610710513042016404 0ustar davisfacfunction test3 %TEST3 test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % % Example: % test3 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end A = A*A' + 2*n*speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end try L0 = chol (A)' ; catch continue end b = rand (n,1) ; C = A(p,p) ; c = condest (C) ; fprintf ('condest: %g\n', c) ; x1 = L0\b ; x2 = cs_lsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-12 * c) error ('!') ; end x1 = L0'\b ; x2 = cs_ltsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end U = L0' ; x1 = U\b ; x2 = cs_usolve (U,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end L2 = cs_chol (A) ; subplot (2,3,1) ; spy (L0) ; subplot (2,3,4) ; spy (L2) ; err = norm (L0-L2,1) ; if (err > 1e-8 * c) error ('!') ; end L1 = chol (C)' ; L2 = cs_chol (C) ; subplot (2,3,2) ; spy (L1) ; subplot (2,3,5) ; spy (L2) ; err = norm (L1-L2,1) ; if (err > 1e-8 * c) error ('!') ; end [L3,p] = cs_chol (A) ; C = A(p,p) ; L4 = chol (C)' ; subplot (2,3,3) ; spy (L4) ; subplot (2,3,6) ; spy (L3) ; err = norm (L4-L3,1) ; if (err > 1e-8 * c) error ('!') ; end drawnow end SuiteSparse/CSparse/MATLAB/Test/test4.m0000644001170100242450000000126710620373256016421 0ustar davisfacfunction test4 %TEST4 test cs_multiply % % Example: % test4 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; k = fix (100 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (n,k,d) ; C = A*B ; D = cs_multiply (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d k %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, k, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test5.m0000644001170100242450000000236510620373261016416 0ustar davisfacfunction test5 %TEST5 test cs_add % % Example: % test5 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (m,n,d) ; C = A+B ; D = cs_add (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end C = pi*A+B ; D = cs_add (A,B,pi) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end C = pi*A+3*B ; D = cs_add (A,B,pi,3) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CSparse/MATLAB/Test/test6.m0000644001170100242450000000265410620373263016422 0ustar davisfacfunction test6 %TEST6 test cs_reach, cs_reachr, cs_lsolve, cs_usolve % % Example: % test6 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) maxerr = 0 ; clf for trial = 1:201 n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; L = tril (sprandn (n,n,d),-1) + sprand (speye (n)) ; b = sprandn (n,1,d) ; for uplo = 0:1 if (uplo == 1) % solve Ux=b instead ; L = L' ; end x = L\b ; sr = 1 + cs_reachr (L,b) ; sz = 1 + cs_reachr (L,b) ; check_if_same (sr,sz) ; s2 = 1 + cs_reach (L,b) ; if (uplo == 0) x3 = cs_lsolve (L,b) ; else x3 = cs_usolve (L,b) ; end spy ([L b x x3]) drawnow s = sort (sr) ; [i j xx] = find (x) ; %#ok [i3 j3 xx3] = find (x3) ; %#ok if (isempty (i)) if (~isempty (s)) i %#ok s %#ok error ('!') ; end elseif (any (s ~= i)) i %#ok s %#ok error ('!') ; end if (isempty (i3)) if (~isempty (s)) i3 %#ok s %#ok error ('!') ; end elseif (any (s ~= sort (i3))) s %#ok i3 %#ok error ('!') ; end if (any (s2 ~= sr)) s2 %#ok sr %#ok error ('!') ; end err = norm (x-x3,1) ; if (err > 1e-12) x %#ok x3 %#ok uplo %#ok err %#ok error ('!') end maxerr = max (maxerr, err) ; end drawnow end fprintf ('maxerr = %g\n', maxerr) ; SuiteSparse/CSparse/MATLAB/Test/test7.m0000644001170100242450000000356510620373267016431 0ustar davisfacfunction test7 %TEST7 test cs_lu % % Example: % test7 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; if (~isreal (A)) continue end [m n] = size (A) ; if (m ~= n) continue end [L,U,P] = lu (A) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g\n', umin) ; if (umin > 1e-14) [L2,U2,p] = cs_lu (A) ; subplot (3,4,1) ; spy (A) ; subplot (3,4,2) ; spy (A(p,:)) ; subplot (3,4,3) ; spy (L2) ; subplot (3,4,4) ; spy (U2) ; err1 = norm (L*U-P*A,1) ; err2 = norm (L2*U2-A(p,:),1) ; fprintf ('err %g %g\n', err1, err2) ; end q = colamd (A) ; [L,U,P] = lu (A (:,q)) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A) ; subplot (3,4,5) ; spy (A) ; subplot (3,4,6) ; spy (A(p,q2)) ; subplot (3,4,7) ; spy (L2) ; subplot (3,4,8) ; spy (U2) ; err1 = norm (L*U-P*A(:,q),1) ; err2 = norm (L2*U2-A(p,q2),1) ; fprintf ('err %g %g\n', err1, err2) ; end try q = amd (A) ; catch q = symamd (A) ; end tol = 0.01 ; [L,U,P] = lu (A (q,q), tol) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with amd q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A,tol) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (A(p,q2)) ; subplot (3,4,11) ; spy (L2) ; subplot (3,4,12) ; spy (U2) ; err1 = norm (L*U-P*A(q,q),1) ; err2 = norm (L2*U2-A(p,q2),1) ; lbig = full (max (max (abs (L2)))) ; fprintf ('err %g %g lbig %g\n', err1, err2, lbig) ; if (lbig > 1/tol) error ('L!') ; end end drawnow % pause end SuiteSparse/CSparse/MATLAB/Test/test8.m0000644001170100242450000000264610620667025016427 0ustar davisfac%TEST8 test cs_cholsol, cs_lusol % % Example: % test8 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end spd = 0 ; if (m == n) if (nnz (A-A') == 0) try p = amd (A) ; catch p = symamd (A) ; end [R,p] = chol (A (p,p)) ; spd = (p == 0) ; end end if (spd) C = A ; else C = A*A' + n*speye (n) ; try p = amd (C) ; catch p = symamd (C) ; end try R = chol (C (p,p)) ; catch continue end end b = rand (n,1) ; x1 = C\b ; x2 = cs_cholsol (C,b) ; r1 = norm (C*x1-b,1) / norm (C,1) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g\n', err) ; if (err > 1e-10) error ('!') ; end x2 = cs_lusol (C,b, 1, 0.001) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g (lu with amd(A+A'')\n', err) ; if (err > 1e-10) error ('!') ; end if (m ~= n) continue ; end x1 = A\b ; r1 = norm (A*x1-b,1) / norm (A,1) ; if (r1 < 1e-6) x2 = cs_lusol (A,b) ; r2 = norm (A*x2-b,1) / norm (A,1) ; fprintf ('lu resid %g %g\n', r1, r2) ; end end SuiteSparse/CSparse/MATLAB/Test/test9.m0000644001170100242450000000456110620373272016424 0ustar davisfacfunction test9 %TEST9 test cs_qr % % Example: % test9 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = 185 ; % f = 449 ; % f = 186 for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sprank (A) < min (m,n)) % continue % end Aorig = A ; A = A (:, colamd (A)) ; s1 = svd (full (A)) ; tic ; R = qr (A) ; t1 = toc ; %#ok % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; %#ok v2 = full (V2) ; if (any (spones (v2) ~= spones (V2))) error ('got zeros!') ; end C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; % [H1,R1] = myqr (C) ; % err1 = norm (R1-R2,1) / norm (R1) % % [svd(A) svd(R1) svd(full(R2))] % s2 = svd (full (R2)) ; % err2 = norm (s1 - s2) / s1 (1) % fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d n %d\n', ... % t1, t2, t1/t2, sp, n) ; % err2 % left-looking: [V,Beta3,R3] = qr_left (C) ; %#ok s3 = svd (full (R2)) ; err3 = norm (s1 - s3) / s1 (1) ; disp ('err3 = ') ; disp (err3) ; if (err3 > 1e-12) error ('!') ; end % right-looking: [V,Beta4,R4] = qr_right (C) ; %#ok s4 = svd (full (R2)) ; err4 = norm (s1 - s4) / s1 (1) ; disp ('err4 = ') ; disp (err4) ; if (err4 > 1e-12) error ('!') ; end % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,3) ; treeplot (parent) ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr V') ; drawnow % if (err2 > 1e-9) % error ('!') ; % end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end % pause end SuiteSparse/CSparse/MATLAB/Test/testh.m0000644001170100242450000000315510620373276016505 0ustar davisfacfunction testh %TESTH test Householder reflections % % Example: % testh % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse format long e fprintf ('-------------------------------------------------\n') ; x = [-3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 eps]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = -pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 0 0]' ; disp (x) ; [v, beta, s] = house (x) ; %#ok x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; SuiteSparse/CSparse/MATLAB/Test/cs_reach.m0000644001170100242450000000063610620373077017125 0ustar davisfacfunction x = cs_reach(L,b) %#ok %CS_REACH non-recursive reach (interface to CSparse cs_reach) % find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower % triangular. b must be a real sparse vector. % % Example: % x = cs_reach(L,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_reach mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/cs_pvec_mex.c0000644001170100242450000000132110415506232017620 0ustar davisfac#include "cs_mex.h" /* x = b(p) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { int n, k, *p ; double *x, *b, *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_pvec(b,p)") ; } b = mxGetPr (pargin [0]) ; n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; xx = mxGetPr (pargin [1]) ; p = cs_malloc (n, sizeof (int)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; x = mxGetPr (pargout [0]) ; cs_pvec (p, b, x, n) ; cs_free (p) ; } SuiteSparse/CSparse/MATLAB/Test/cs_rowcnt.m0000644001170100242450000000062110620373103017337 0ustar davisfacfunction r = cs_rowcnt(A,parent,post) %#ok %CS_ROWCNT row counts for sparse Cholesky % Compute the row counts of the Cholesky factor L of the matrix A. Uses % the lower triangular part of A. % % Example: % r = cs_rowcnt(A,parent,post) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_rowcnt mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/happly.m0000644001170100242450000000047310620373125016644 0ustar davisfacfunction hx = happly (v, beta, x) %HAPPLY apply Householder reflection to a vector % Example: % hx = happly (v,beta,x) ; % computes hx = x - v * (beta * (v' *x)) ; % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse hx = x - v * (beta * (v' *x)) ; SuiteSparse/CSparse/MATLAB/Test/choldn.m0000644001170100242450000000137610620373020016613 0ustar davisfacfunction L = choldn (Lold,w) %CHOLDN Cholesky downdate % given Lold and w, compute L so that L*L' = Lold*Lold' - w*w' % % Example: % L = cholnd (Lold,w) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (Lold,1) ; L = Lold ; alpha = 1 ; beta = 1 ; wold = w ; wnew = zeros (n,1) ; for i = 1:n a = w (i) / L(i,i) ; alpha = alpha - a^2 ; if (alpha <= 0) error ('not pos def') ; end beta_new = sqrt (alpha) ; b = beta_new / beta ; c = (a / (beta*beta_new)) ; beta = beta_new ; % L (i,i) = b * L (i,i) ; wnew (i) = a ; for k = i:n w (k) = w (k) - a * L (k,i) ; L (k,i) = b * L (k,i) - c * w(k) ; end end % w % wnew disp (wnew - Lold\wold) SuiteSparse/CSparse/MATLAB/Test/cholup.m0000644001170100242450000000075010620373044016637 0ustar davisfacfunction L = cholup (Lold,w) %CHOLUP Cholesky update, using Given's rotations % given Lold and w, compute L so that L*L' = Lold*Lold' + w*w' % Example: % L = cholup (Lold,w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (Lold,1) ; L = [Lold w] ; for k = 1:n g = givens (L(k,k), L(k,n+1)) ; L (:, [k n+1]) = L (:, [k n+1]) * g' ; disp ('L:') ; disp (L) pause end L = L (:,1:n) ; disp (L) ; SuiteSparse/CSparse/MATLAB/Test/qr_right.m0000644001170100242450000000073610620373164017173 0ustar davisfacfunction [V,Beta,R] = qr_right (A) %QR_RIGHT right-looking Householder QR factorization. % Example: % [V,Beta,R] = qr_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; for k = 1:n [v,beta] = gallery ('house', A (k:m,k), 2) ; V (k:m,k) = v ; Beta (k) = beta ; A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n))) ; end R = A ; SuiteSparse/CSparse/MATLAB/Test/chol_super.m0000644001170100242450000000100110620373034017475 0ustar davisfacfunction L = chol_super (A,s) %CHOL_SUPER left-looking "supernodal" Cholesky factorization. % Example: % L = chol_super (A,s) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; ss = cumsum ([1 s]) ; for j = 1:length (s) k1 = ss (j) ; k2 = ss (j+1) ; k = k1:(k2-1) ; L (k,k) = chol (A (k,k) - L (k,1:k1-1) * L (k,1:k1-1)')' ; L (k2:n,k) = (A (k2:n,k) - L (k2:n,1:k1-1) * L (k,1:k1-1)') / L (k,k)' ; end SuiteSparse/CSparse/MATLAB/Test/cs_maxtransr_mex.c0000644001170100242450000000544410415621302020710 0ustar davisfac#include "cs_mex.h" /* find an augmenting path starting at column j and extend the match if found */ static int augment (int k, cs *A, int *jmatch, int *cheap, int *w, int j) { int found = 0, p, i = -1, *Ap = A->p, *Ai = A->i ; /* --- Start depth-first-search at node j ------------------------------- */ w [j] = k ; /* mark j as visited for kth path */ for (p = cheap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* try a cheap assignment (i,j) */ found = (jmatch [i] == -1) ; } cheap [j] = p ; /* start here next time for j */ /* --- Depth-first-search of neighbors of j ----------------------------- */ for (p = Ap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* consider row i */ if (w [jmatch [i]] == k) continue ; /* skip col jmatch [i] if marked */ found = augment (k, A, jmatch, cheap, w, jmatch [i]) ; } if (found) jmatch [i] = j ; /* augment jmatch if path found */ return (found) ; } /* find a maximum transveral */ static int *maxtrans (cs *A) /* returns jmatch [0..m-1] */ { int i, j, k, n, m, *Ap, *jmatch, *w, *cheap ; if (!A) return (NULL) ; /* check inputs */ n = A->n ; m = A->m ; Ap = A->p ; jmatch = cs_malloc (m, sizeof (int)) ; /* allocate result */ w = cs_malloc (2*n, sizeof (int)) ; /* allocate workspace */ if (!w || !jmatch) return (cs_idone (jmatch, NULL, w, 0)) ; cheap = w + n ; for (j = 0 ; j < n ; j++) cheap [j] = Ap [j] ; /* for cheap assignment */ for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */ for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* no rows matched yet */ for (k = 0 ; k < n ; k++) augment (k, A, jmatch, cheap, w, k) ; return (cs_idone (jmatch, NULL, w, 1)) ; } /* invert a maximum matching */ static int *invmatch (int *jmatch, int m, int n) { int i, j, *imatch ; if (!jmatch) return (NULL) ; imatch = cs_malloc (n, sizeof (int)) ; if (!imatch) return (NULL) ; for (j = 0 ; j < n ; j++) imatch [j] = -1 ; for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ; return (imatch) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, Amatrix ; double *x ; int i, m, n, *imatch, *jmatch ; if (nargout > 1 || nargin != 1) { mexErrMsgTxt ("Usage: p = cr_maxtransr(A)") ; } /* get inputs */ A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; m = A->m ; n = A->n ; jmatch = maxtrans (A) ; imatch = invmatch (jmatch, m, n) ; /* imatch = inverse of jmatch */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = imatch [i] + 1 ; cs_free (jmatch) ; cs_free (imatch) ; } SuiteSparse/CSparse/MATLAB/Test/lu_rightp.m0000644001170100242450000000120310620373140017331 0ustar davisfacfunction [L,U,P] = lu_rightp (A) %LU_RIGHTP right-looking LU factorization, with partial pivoting. % % Example: % [L,U,P] = lu_rightp (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; P = eye (n) ; for k = 1:n [x,i] = max (abs (A (k:n,k))) ; % partial pivoting i = i+k-1 ; P ([k i],:) = P ([i k], :) ; A ([k i],:) = A ([i k], :) ; % (6.10), (6.11) A (k+1:n,k) = A (k+1:n,k) / A (k,k) ; % (6.12) A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - A (k+1:n,k) * A (k,k+1:n) ; % (6.9) end L = tril (A,-1) + eye (n) ; U = triu (A) ; SuiteSparse/CSparse/MATLAB/Test/lu_rightr.m0000644001170100242450000000102710620373143017342 0ustar davisfacfunction [L,U] = lu_rightr (A) %LU_RIGHTR recursive right-looking LU. % Example: % [L,U] = lu_rightr (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) L = 1 ; U = A ; else u11 = A (1,1) ; % (6.4) u12 = A (1,2:n) ; % (6.5) l21 = A (2:n,1) / u11 ; % (6.6) [L22,U22] = lu_rightr (A (2:n,2:n) - l21*u12) ; % (6.7) L = [ 1 zeros(1,n-1) ; l21 L22 ] ; U = [ u11 u12 ; zeros(n-1,1) U22 ] ; end SuiteSparse/CSparse/MATLAB/Test/dmspy_test.m0000644001170100242450000000125310620373113017534 0ustar davisfacfunction dmspy_test %DMSPY_TEST test cspy, cs_dmspy, and cs_dmperm % Example: % dmspy_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; f = find (index.nblocks > 1) ; % f = find (index.nblocks > 1 & index.nrows == index.ncols & ... % index.nnzdiag == index.nrows) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; for i = f Prob = UFget (i,index) ; disp (Prob) ; clf subplot (2,2,1) ; cspy (Prob.A) ; subplot (2,2,2) ; cs_dmspy (Prob.A) ; [p,q,r,s,cc,rr] = cs_dmperm (Prob.A) ; %#ok subplot (2,2,3) ; plot (p) ; subplot (2,2,4) ; plot (q) ; drawnow end SuiteSparse/CSparse/MATLAB/Test/gqr3.m0000644001170100242450000000106610620373123016220 0ustar davisfacfunction R = gqr3 (A) %GQR3 QR factorization, based on Givens rotations % % Example: % R = gqr3 (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; % parent = cs_etree (sparse (A), 'col') ; for i = 2:m % i for k = 1:min(i-1,n) % k % Givens rotation to zero out A(i,k) using A(k,k) G = givens2 (A(k,k), A(i,k)) ; A ([k i],k:n) = G * A ([k i],k:n) ; A (i,k) = 0 ; % fprintf ('A(21,25)=%g\n', A(21,25)) ; % if (A(21,25) ~= 0) % pause % end end end R = A ; SuiteSparse/CSparse/MATLAB/Test/lu_rightpr.m0000644001170100242450000000143110620373141017517 0ustar davisfacfunction [L,U,P] = lu_rightpr (A) %LU_RIGHTPR recursive right-looking LU, with partial pivoting. % % Example: % [L,U,P] = lu_rightpr (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) P = 1 ; L = 1 ; U = A ; else [x,i] = max (abs (A (1:n,1))) ; % partial pivoting P1 = eye (n) ; P1 ([1 i],:) = P1 ([i 1], :) ; A = P1*A ; u11 = A (1,1) ; % (6.10) u12 = A (1,2:n) ; % (6.11) l21 = A (2:n,1) / u11 ; % (6.12) [L22,U22,P2] = lu_rightpr (A (2:n,2:n) - l21*u12) ; % (6.9) or (6.13) o = zeros(1,n-1) ; L = [ 1 o ; P2*l21 L22 ] ; % (6.14) U = [ u11 u12 ; o' U22 ] ; P = [ 1 o ; o' P2] * P1 ; end SuiteSparse/CSparse/MATLAB/Test/cs_ipvec_mex.c0000644001170100242450000000132310415506226017776 0ustar davisfac#include "cs_mex.h" /* x(p) = b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { int n, k, *p ; double *x, *b, *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ipvec(b,p)") ; } b = mxGetPr (pargin [0]) ; n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; xx = mxGetPr (pargin [1]) ; p = cs_malloc (n, sizeof (int)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; x = mxGetPr (pargout [0]) ; cs_ipvec (p, b, x, n) ; cs_free (p) ; } SuiteSparse/CSparse/MATLAB/Test/myqr.m0000644001170100242450000000202410620373147016335 0ustar davisfacfunction [H,R] = myqr (A) %MYQR QR factorization using Householder reflections % uses function [v,beta,xnorm] = hmake1 (x) % and function hx = happly (v, beta, x) % % Example % [H,R] = myqr (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; H = zeros (m,n) ; R = zeros (m,n) ; for k = 1:n % apply prior H's % fprintf ('\n-----------------init %d\n', k) ; x = A (:,k) ; for i = 1:k-1 v = H(((i+1):m),i) ; v = [1 ; v] ; %#ok beta = H (i,i) ; % n1 = norm (x (i:m)) ; x (i:m) = happly (v, beta, x (i:m)) ; % n2 = norm (x (i:m)) ; % fprintf ('=============== i %d %g %g\n', i, n1, n2) ; % beta % v' % X = x' % pause % i % x end % k % x % make Hk % fprintf ('x(k:m) = ') ; x (k:m) [v,beta,xnorm] = hmake1 (x (k:m)) ; H (k,k) = beta ; H (k+1:m, k) = v (2:end) ; R (1:(k-1),k) = x (1:(k-1)) ; R (k,k) = xnorm ; % full (R) % pause end % s2 = svd (full (R)) ; % [s1 s2 s1-s2] SuiteSparse/CSparse/MATLAB/Test/README.txt0000644001170100242450000000034710366510215016667 0ustar davisfacTest for MATLAB interface for CSparse. Type "testall" to run all the tests. Also includes "textbook" codes for the book "Direct Methods for Sparse Linear Systems", which are not part of CSparse proper, but are used in the tests. SuiteSparse/CSparse/MATLAB/Test/chol_example.m0000644001170100242450000000112010620373024017773 0ustar davisfacfunction chol_example %CHOL_EXAMPLE simple Cholesky factorization example % Example % chol_example % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse D = 10 ; X = 1 ; o = 0 ; A = sparse ([ D o X o o o o X o o o D o o X o o o o X X o D o o o X o o o o o o D o o o o X X o X o o D o o o X X o o o o o D X X o o o o X o o X D o o o X o o o o X o D X X o o o X X o o X D o o X o X X o o X o D ]) ; disp ('A = ') ; disp (A) ; L = chol(A)' ; disp ('L = ') ; disp (L) ; clf subplot (1,2,1) ; spy (A) ; subplot (1,2,2) ; spy (L+L') ; SuiteSparse/CSparse/MATLAB/Test/chol_left.m0000644001170100242450000000062210620373030017275 0ustar davisfacfunction L = chol_left (A) %CHOL_LEFT left-looking Cholesky factorization. % Example % L = chol_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = zeros (n) ; for k = 1:n L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)') ; L (k+1:n,k) = (A (k+1:n,k) - L (k+1:n,1:k-1) * L (k,1:k-1)') / L (k,k) ; end SuiteSparse/CSparse/MATLAB/Test/chol_update.m0000644001170100242450000000121610620373036017633 0ustar davisfacfunction [L, w] = chol_update (L, w) %CHOL_UPDATE update a Cholesky factorization. % Example: % [L, w] = chol_update (L, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; for j = 1:n alpha = w (j) / L (j,j) ; beta2 = sqrt (beta^2 + alpha^2) ; gamma = alpha / (beta2 * beta) ; delta = beta / beta2 ; L (j,j) = delta * L (j,j) + gamma * w (j) ; w (j) = alpha ; beta = beta2 ; if (j == n) return end w1 = w (j+1:n) ; w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ; L (j+1:n,j) = delta * L (j+1:n,j) + gamma * w1 ; end SuiteSparse/CSparse/MATLAB/Test/cs_pvec.m0000644001170100242450000000036410620373067016775 0ustar davisfacfunction x = cs_pvec (b,p) %#ok %CS_PVEC x=b(p) % % Example: % x = cs_pvec (b,p) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_pvec mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/chol_updown.m0000644001170100242450000000163210620373037017670 0ustar davisfacfunction [L, w] = chol_updown (L, sigma, w) %CHOL_UPDOWN update or downdate a Cholesky factorization. % Example: % [L, w] = chol_updown (L, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; if (n == 1) L = sqrt (L*L'+sigma*w*w') ; return ; end for k = 1:n alpha = w(k) / L(k,k) ; beta2 = sqrt (beta^2 + sigma*alpha^2) ; gamma = sigma * alpha / (beta2 * beta) ; if (sigma > 0) % update delta = beta / beta2 ; L (k,k) = delta * L (k,k) + gamma * w (k) ; w1 = w (k+1:n) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = delta * L (k+1:n,k) + gamma * w1 ; else % downdate delta = beta2 / beta ; L (k,k) = delta * L (k,k) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = delta * L (k+1:n,k) + gamma * w (k+1:n) ; end w (k) = alpha ; beta = beta2 ; end SuiteSparse/CSparse/MATLAB/Test/cs_test_make.m0000644001170100242450000000164510620666223020016 0ustar davisfacfunction cs_test_make (force) %CS_TEST_MAKE compiles the CSparse, Demo, and Test mexFunctions. % The current directory must be CSparse/MATLAB/Test to use this function. % % Example: % cs_test_make % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) force = 0 ; end cd ('../CSparse') ; [object_files timestamp] = cs_make ; cd ('../Test') ; mexfunc = { 'cs_ipvec', 'cs_pvec', 'cs_sparse2', ... 'cs_reach', 'cs_maxtransr', 'cs_reachr', 'cs_rowcnt', 'cs_frand' } ; for i = 1:length(mexfunc) [s t tobj] = cs_must_compile ('', mexfunc{i}, '_mex', ... ['.' mexext], 'cs_test_make.m', force) ; if (s | tobj < timestamp) %#ok cmd = ['mex -O -output ' mexfunc{i} ' ' mexfunc{i} '_mex.c -I..' ... filesep '..' filesep 'Include -I..' ... filesep 'CSparse ' object_files] ; fprintf ('%s\n', cmd) ; eval (cmd) ; end end SuiteSparse/CSparse/MATLAB/Test/cs_reachr.m0000644001170100242450000000063710620373100017273 0ustar davisfacfunction x = cs_reachr(L,b) %#ok %CS_REACHR recursive reach (interface to CSparse cs_reachr) % find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower % triangular. b must be a real sparse vector. % % Example: % x = cs_reachr(L,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_reach mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/etree_sample.m0000644001170100242450000000227010620373115020010 0ustar davisfacfunction etree_sample % ETREE_SAMPLE construct a sample etree and symbolic factorization % % Example % etree_sample % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf % desired etree: % 1 2 3 4 5 6 7 8 9 10 11 goal = [6 3 8 6 8 7 9 10 10 11 0] ; o = 0 ; X = 1 ; x = 0 ; A = [ 1 o o o o o o o o o o o 2 o o o o o o o o o o X 3 o o o o o o o o o o o 4 o o o o o o o o o o o 5 o o o o o o X o o X o 6 o o o o o X o o x o x 7 o o o o o X x o X o o 8 o o o x o o x o X x o 9 o o x x X X x X x X x 10 o x x X x X x X X x X 11 ] ; A = A + tril(A,-1)' ; disp ('A = ') ; disp (A) [count,h,parent,post,R] = symbfact (A) ; L = R' ; subplot (2,3,1) ; spy (A) title ('A') ; subplot (2,3,2) ; etreeplot (A) title ('etree') ; % [parent, post] = etree (A) ; subplot (2,3,3) ; spy (L) title ('L, not postordered') ; n = size (A,1) ; for k = 1:n fprintf ('parent (%d) = %d goal: %d ok: %d\n', ... k, parent (k), goal (k), goal (k) == parent(k)) ; end [count,h,parent2,post2,R] = symbfact (A (post,post)) ; L = R' ; subplot (2,3,5) ; spy (A (post,post)) title ('A postordered') ; subplot (2,3,6) ; spy (L) title ('L postordered') ; SuiteSparse/CSparse/MATLAB/Test/another_colormap.m0000644001170100242450000000102010620701546020672 0ustar davisfacfunction another_colormap %ANOTHER_COLORMAP try another color map % % Example: % another_colormap % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse j = jet (128) ; j = j (48:112, :) ; % jj = linspace (0,1,64)' ./ sum (jet,2) ; % j (:,1) = j (:,1) .* jj ; % j (:,2) = j (:,2) .* jj ; % j (:,3) = j (:,3) .* jj ; % white = [1 1 1] ; % gray = [.5 .5 .5] ; %#ok % j = [white ; purple ; j ] ; disp ('j = ') ; disp (j) image (1:size(j,1)) ; colormap (j) ; SuiteSparse/CSparse/MATLAB/Test/test_randperms.m0000644001170100242450000000161110620373306020375 0ustar davisfacfunction test_randperms %TEST_RANDPERMS test random permutations % Example: % test_randperms % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) for trial = 1:100 m = fix (30 * rand (1)) ; n = fix (30 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; if (m == 0) p = [] ; else p = randperm (m) ; end if (n == 0) q = [] ; else q = randperm (n) ; end C = A(p,q) ; Im = speye (m) ; In = speye (n) ; P = Im (p,:) ; Q = In (:,q) ; q2 = find (Q) ; if (any (q ~= q2')) error ('!') end p2 = find (P') ; if (any (p ~= p2')) error ('!') end E = P*A*Q ; if (norm (C-E,1) ~= 0) error ('!') end P = sparse (1:m, p, 1) ; Q = sparse (q, 1:n, 1) ; E = P*A*Q ; if (norm (C-E,1) ~= 0) error ('2!') end end SuiteSparse/CSparse/MATLAB/Test/sample_colormap.m0000644001170100242450000000157110620373165020530 0ustar davisfacfunction sample_colormap %SAMPLE_COLORMAP try a colormap for use in cspy % % Example: % sample_colormap % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse h = jet (64) ; h = h (64:-1:1,:) ; h = h (20:end,:) ; % h = h (17:128,:) ; % s = sum (jet,2) ; % h (:,1) = h (:,1) ./ s ; % h (:,2) = h (:,2) ./ s ; % h (:,3) = h (:,3) ./ s ; h (1,:) = [1 1 1] ; % white h (2,:) = [1 1 .8] ; % light yellow % h colormap (h) ; clf subplot (5,1,1) ; image (1:size(h,1)) ; h = rgb2hsv (h) ; % h (:,3) = linspace (1,0,64) ; % h= hsv2rgb (h) ; subplot (5,1,2) ; plot (h(:,1)) ; axis ([1 64 0 1]) ; ylabel ('red') ; subplot (5,1,3) ; plot (h(:,2)) ; axis ([1 64 0 1]) ; ylabel ('green') ; subplot (5,1,4) ; plot (h(:,3)) ; axis ([1 64 0 1]) ; ylabel ('blue') ; subplot (5,1,5) ; plot (sum(h,2)) ; axis ([1 64 0 3]) ; ylabel ('sum') ; SuiteSparse/CSparse/MATLAB/Test/house.m0000644001170100242450000000102710620373131016463 0ustar davisfacfunction [v,beta,s] = house (x) %HOUSE find a Householder reflection. % Example: % [v,beta,s] = house (x) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = length (x) ; if (n == 1) sigma = 0 ; else sigma = x (2:n)' * x (2:n) ; end v = x ; if (sigma == 0) s = x (1) ; v (1) = 0 ; beta = 0 ; else s = sqrt (x(1)^2 + sigma) ; if (x (1) <= 0) v (1) = x (1) - s ; else v (1) = -sigma / (x (1) + s) ; end beta = -1 / (s * v(1)) ; end SuiteSparse/CSparse/MATLAB/Test/cs_reach_mex.c0000644001170100242450000000176510415621440017760 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower * triangular. b must be a real sparse vector. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, Bmatrix, *L, *B ; double *x ; int k, i, j, top, *xi, *perm ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reach(L,b)") ; } /* get inputs */ L = cs_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; perm = cs_malloc (L->n, sizeof (int)) ; for (k = 0 ; k < L->n ; k++) perm [k] = k ; xi = cs_calloc (3*L->n, sizeof (int)) ; top = cs_reach (L, B, 0, xi, perm) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; cs_free (perm) ; } SuiteSparse/CSparse/MATLAB/Test/cs_fiedler.m0000644001170100242450000000157210620373057017453 0ustar davisfacfunction [p,v,d] = cs_fiedler (A) %CS_FIEDLER the Fiedler vector of a connected graph. % [p,v,d] = cs_fiedler(A) computes the Fiedler vector v (the eigenvector % corresponding to the 2nd smallest eigenvalue d of the Laplacian of the graph % of A+A'). p is the permutation obtained when v is sorted. A should be a % connected graph. % % Example: % [p,v,d] = cs_fiedler (A) ; % % See also CS_SCC, EIGS, SYMRCM, UNMESH. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n < 2) p = 1 ; v = 1 ; d = 0 ; return ; end opt.disp = 0 ; % turn off printing in eigs opt.tol = sqrt (eps) ; S = A | A' | speye (n) ; % compute the Laplacian of A S = diag (sum (S)) - S ; [v,d] = eigs (S, 2, 'SA', opt) ; % find the Fiedler vector v v = v (:,2) ; d = d (2,2) ; [ignore p] = sort (v) ; % sort it to get p SuiteSparse/CSparse/MATLAB/Test/chol_downdate.m0000644001170100242450000000127310620373022020154 0ustar davisfacfunction [L, w] = chol_downdate (L, w) %CHOL_DOWNDATE downdate a Cholesky factorization. % Example % [L, w] = chol_downdate (L, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; for j = 1:n alpha = w (j) / L (j,j) ; beta2 = sqrt (beta^2 - alpha^2) ; if (~isreal (beta2)) error ('not positive definite') ; end gamma = alpha / (beta2 * beta) ; delta = beta2 / beta ; L (j,j) = delta * L (j,j) ; w (j) = alpha ; beta = beta2 ; if (j == n) return end w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ; L (j+1:n,j) = delta * L (j+1:n,j) - gamma * w (j+1:n) ; end SuiteSparse/CSparse/MATLAB/Test/qr_givens.m0000644001170100242450000000105610620666403017346 0ustar davisfacfunction R = qr_givens (A) %QR_GIVENS Givens-rotation QR factorization. % Example: % R = qr_givens (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; parent = cs_etree (sparse (A), 'col') ; A = full (A) ; for i = 2:m k = min (find (A (i,:))) ; %#ok if (isempty (k)) continue ; end while (k > 0 & k <= min (i-1,n)) %#ok A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ; A (i,k) = 0 ; k = parent (k) ; end end R = sparse (A) ; SuiteSparse/CSparse/MATLAB/Test/cs_frand.m0000644001170100242450000000075010620373060017122 0ustar davisfacfunction A = cs_frand (n,nel,s) %#ok %CS_FRAND generate a random finite-element matrix % A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel % finite elements, each of which are of size s-by-s with random symmetric % nonzero pattern, plus the identity matrix. % % Example % A = cs_frand (100, 100, 3) ; % See also cs_demo. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_frand mexFunction not found') ; SuiteSparse/CSparse/MATLAB/Test/lu_right.m0000644001170100242450000000072310620373136017164 0ustar davisfacfunction [L,U] = lu_right (A) %LU_RIGHT right-looking LU factorization. % Example: % [L,U] = lu_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = eye (n) ; U = zeros (n) ; for k = 1:n U (k,k:n) = A (k,k:n) ; % (6.4) and (6.5) L (k+1:n,k) = A (k+1:n,k) / U (k,k) ; % (6.6) A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * U (k,k+1:n) ; % (6.7) end SuiteSparse/CSparse/MATLAB/Test/qr_givens_full.m0000644001170100242450000000061710620373155020371 0ustar davisfacfunction R = qr_givens_full (A) %QR_GIVENS_FULL Givens-rotation QR factorization, for full matrices. % Example: % R = qr_givens_full (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; for i = 2:m for k = 1:min(i-1,n) A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ; A (i,k) = 0 ; end end R = A ; SuiteSparse/CSparse/MATLAB/Test/lu_left.m0000644001170100242450000000134310620373133016775 0ustar davisfacfunction [L,U,P] = lu_left (A) %LU_LEFT left-looking LU factorization. % Example: % [L,U,P] = lu_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; P = eye (n) ; L = zeros (n) ; U = zeros (n) ; for k = 1:n x = [ L(:,1:k-1) [ zeros(k-1,n-k+1) ; eye(n-k+1) ]] \ (P * A (:,k)) ; U (1:k-1,k) = x (1:k-1) ; % the column of U [a i] = max (abs (x (k:n))) ; % find the pivot row i i = i + k - 1 ; L ([i k],:) = L ([k i], :) ; % swap rows i and k of L, P, and x P ([i k],:) = P ([k i], :) ; x ([i k]) = x ([k i]) ; U (k,k) = x (k) ; L (k,k) = 1 ; L (k+1:n,k) = x (k+1:n) / x (k) ; % divide the pivot column by U(k,k) end SuiteSparse/CSparse/MATLAB/Test/test_qr.m0000644001170100242450000000240210620667064017032 0ustar davisfacfunction test_qr %TEST_QR test various QR factorization methods % % Example: % test_qr % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows,index.ncols)) ; % f = 276 % f = 706 f = f (1:100) ; for i = f % Prob = UFget (i,index) Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; if (sprank (A) < n | ~isreal (A)) %#ok continue ; end [V,beta,p,R1,q] = cs_qr(A) ; A = A (p,q) ; parent = etree (A, 'col') ; %#ok R0 = qr (A) ; R2 = qr_givens (full (A)) ; R3 = qr_givens_full (full (A)) ; subplot (2,2,1) ; cspy (R0) ; title ('matlab') ; subplot (2,2,2) ; cspy (R3) ; title ('qr-full') ; subplot (2,2,3) ; cspy (R2) ; title ('qr-givens') ; subplot (2,2,4) ; cspy (R1) ; title ('cs-qr') ; e0 = norm (A'*A-R0'*R0,1) / norm (A,1) ; e1 = norm (A'*A-R1'*R1,1) / norm (A,1) ; e2 = norm (A'*A-R2'*R2,1) / norm (A,1) ; e3 = norm (A'*A-R3'*R3,1) / norm (A,1) ; fprintf ('error %6.2e %6.2e %6.2e %6.2e\n', e0, e1, e2, e3) ; drawnow if (e1 > e0*1e3 | e2 > e0*1e3) %#ok pause end end SuiteSparse/CSparse/MATLAB/Test/testall.m0000644001170100242450000000275210710513024017013 0ustar davisfacfunction testall %TESTALL test all CSparse functions (run tests 1 to 28 below) % % Example: % testall % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse h = waitbar (0, 'CSparse') ; cs_test_make % compile all CSparse, Demo, Text, and Test mexFunctions ntests = 28 ; testwait (1, ntests, h) ; test1 ; testwait (2, ntests, h) ; test2 ; testwait (3, ntests, h) ; test3 ; testwait (4, ntests, h) ; test4 ; testwait (5, ntests, h) ; test5 ; testwait (6, ntests, h) ; test6 ; testwait (7, ntests, h) ; test7 ; testwait (8, ntests, h) ; test8 ; testwait (9, ntests, h) ; test9 ; testwait (10, ntests, h) ; test10 ; testwait (11, ntests, h) ; test11 ; testwait (12, ntests, h) ; test12 ; testwait (13, ntests, h) ; test13 ; testwait (14, ntests, h) ; test14 ; testwait (15, ntests, h) ; test15 ; testwait (16, ntests, h) ; test16 ; testwait (17, ntests, h) ; test17 ; testwait (18, ntests, h) ; test18 ; testwait (19, ntests, h) ; test19 ; testwait (20, ntests, h) ; test20 ; testwait (21, ntests, h) ; test21 ; testwait (22, ntests, h) ; test22 ; testwait (23, ntests, h) ; test23 ; testwait (24, ntests, h) ; test24 ; testwait (25, ntests, h) ; test25 ; testwait (26, ntests, h) ; test26 ; testwait (27, ntests, h) ; test27 ; testwait (28, ntests, h) ; test28 ; close (h) function testwait (n,ntests,h) fprintf ('\n------------------------ test%d\n', n) ; waitbar (n/(ntests+1), h, sprintf ('CSparse test %d of %d\n', n, ntests)) ; SuiteSparse/CSparse/MATLAB/Test/norm1est.m0000644001170100242450000000126410620666374017131 0ustar davisfacfunction est = norm1est (L,U,P,Q) %NORM1EST 1-norm estimate. % Example: % est = norm1est (L,U,P,Q) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (L,1) ; for k = 1:5 if (k == 1) est = 0 ; x = ones (n,1) / n ; jold = -1 ; else j = min (find (abs (x) == norm (x,inf))) ; %#ok if (j == jold) break end ; x = zeros (n,1) ; x (j) = 1 ; jold = j ; end x = Q * (U \ (L \ (P*x))) ; est_old = est ; est = norm (x,1) ; if (k > 1 & est <= est_old) %#ok break end ; s = ones (n,1) ; s (find (x < 0)) = -1 ; %#ok x = P' * (L' \ (U' \ (Q'*s))) ; end SuiteSparse/CSparse/MATLAB/Test/mynormest1.m0000644001170100242450000000302410620666356017473 0ustar davisfacfunction est = mynormest1 (L, U, P, Q) %MYNORMEST1 estimate norm(A,1), using LU factorization (L*U = P*A*Q). % % Example: % est = mynormest1 (L, U, P, Q) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (L,1) ; est = 0 ; S = zeros (n,1) ; for k = 1:5 if k == 1 x = ones (n,1) / n ; else j = find (abs (x) == max (abs (x))) ; j = j (1) ; x = zeros (n,1) ; x (j) = 1 ; % fprintf ('eka: k %d j %d est %g\n', k, j, est) ; end % x=A\x, but use the existing P*A*Q=L*U factorization x = Q * (U \ (L \ (P*x))) ; est_old = est ; est = sum (abs (x)) ; unchanged = 1 ; for i = 1:n if (x (i) >= 0) s = 1 ; else s = -1 ; end if (s ~= S (i)) S (i) = s ; unchanged = 0 ; end end if (any (S ~= signum (x))) S' %#ok signum(x)' %#ok error ('Hey!') ; end if k > 1 & (est <= est_old | unchanged) %#ok break ; end x = S ; % x=A'\x, but use the existing P*A*Q=L*U factorization x = P' * (L' \ (U' \ (Q'*x))) ; if k > 1 jnew = find (abs (x) == max (abs (x))) ; if (jnew == j) break ; end end end for k = 1:n x (k) = power (-1, k+1) * (1 + ((k-1)/(n-1))) ; end % x=A\x, but use the existing P*A*Q=L*U factorization x = Q * (U \ (L \ (P*x))) ; est_new = 2 * sum (abs (x)) / (3 * n) ; if (est_new > est) est = est_new ; end function s = signum (x) %SIGNUM compute sign of x s = ones (length (x),1) ; s (find (x < 0)) = -1 ; %#ok SuiteSparse/CSparse/MATLAB/CSparse/0000755001170100242450000000000010711653403015607 5ustar davisfacSuiteSparse/CSparse/MATLAB/CSparse/cs_ltsolve.m0000644001170100242450000000110310620371640020134 0ustar davisfacfunction x = cs_ltsolve (L,b) %#ok %CS_LTSOLVE solve a sparse upper triangular system L'*x=b. % x = cs_ltsolve(L,b) computes x = L'\b, L must be lower triangular with a % zero-free diagonal. b must be a full vector. % % Example: % Prob = UFget ('HB/bcsstk01') ; L = cs_chol (Prob.A) ; n = size (L,1) ; % b = rand (n,1) ; x = cs_ltsolve (L,b) ; norm (L'*x-b) % % See also CS_LSOLVE, CS_USOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_ltsolve mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_cholsol.m0000644001170100242450000000135210620371612020114 0ustar davisfacfunction x = cs_cholsol (A,b,order) %#ok %CS_CHOLSOL solve A*x=b using a sparse Cholesky factorization. % x = cs_cholsol(A,b) computes x = A\b, where A sparse symmetric positive % definite, and b is a full vector. A 3rd input parameter allows the % ordering to be modified: 0: natural, 1:amd(A), 2: amd(S'*S) where S=A except % with no dense rows, 3:amd(A'*A). The default ordering option is 1. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; b = rand (size (A,1),1) ; % x = cs_cholsol (A,b) ; norm (A*x-b) % % See also CS_CHOL, CS_AMD, CS_LUSOL, CS_QRSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_cholsol mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/Makefile0000644001170100242450000001274710617167305017270 0ustar davisfacMEX = mex -O AR = ar cr RANLIB = ranlib I = -I../../Include all: mexcsparse.a cs_mex.h $(MEX) cs_thumb_mex.c $(I) mexcsparse.a -output cs_thumb $(MEX) cs_print_mex.c $(I) mexcsparse.a -output cs_print $(MEX) cs_updown_mex.c $(I) mexcsparse.a -output cs_updown $(MEX) cs_gaxpy_mex.c $(I) mexcsparse.a -output cs_gaxpy $(MEX) cs_transpose_mex.c $(I) mexcsparse.a -output cs_transpose $(MEX) cs_sparse_mex.c $(I) mexcsparse.a -output cs_sparse $(MEX) cs_multiply_mex.c $(I) mexcsparse.a -output cs_multiply $(MEX) cs_add_mex.c $(I) mexcsparse.a -output cs_add $(MEX) cs_permute_mex.c $(I) mexcsparse.a -output cs_permute $(MEX) cs_symperm_mex.c $(I) mexcsparse.a -output cs_symperm $(MEX) cs_lsolve_mex.c $(I) mexcsparse.a -output cs_lsolve $(MEX) cs_ltsolve_mex.c $(I) mexcsparse.a -output cs_ltsolve $(MEX) cs_usolve_mex.c $(I) mexcsparse.a -output cs_usolve $(MEX) cs_utsolve_mex.c $(I) mexcsparse.a -output cs_utsolve $(MEX) cs_chol_mex.c $(I) mexcsparse.a -output cs_chol $(MEX) cs_etree_mex.c $(I) mexcsparse.a -output cs_etree $(MEX) cs_counts_mex.c $(I) mexcsparse.a -output cs_counts $(MEX) cs_qr_mex.c $(I) mexcsparse.a -output cs_qr $(MEX) cs_amd_mex.c $(I) mexcsparse.a -output cs_amd $(MEX) cs_lu_mex.c $(I) mexcsparse.a -output cs_lu $(MEX) cs_cholsol_mex.c $(I) mexcsparse.a -output cs_cholsol $(MEX) cs_lusol_mex.c $(I) mexcsparse.a -output cs_lusol $(MEX) cs_droptol_mex.c $(I) mexcsparse.a -output cs_droptol $(MEX) cs_qrsol_mex.c $(I) mexcsparse.a -output cs_qrsol $(MEX) cs_dmperm_mex.c $(I) mexcsparse.a -output cs_dmperm $(MEX) cs_scc_mex.c $(I) mexcsparse.a -output cs_scc $(MEX) cs_sqr_mex.c $(I) mexcsparse.a -output cs_sqr $(MEX) cs_randperm_mex.c $(I) mexcsparse.a -output cs_randperm CS = cs_mex.o \ cs_amd.o \ cs_chol.o \ cs_counts.o \ cs_cumsum.o \ cs_fkeep.o \ cs_dfs.o \ cs_dmperm.o \ cs_droptol.o \ cs_dropzeros.o \ cs_dupl.o \ cs_entry.o \ cs_etree.o \ cs_gaxpy.o \ cs_ipvec.o \ cs_lsolve.o \ cs_ltsolve.o \ cs_lu.o \ cs_maxtrans.o \ cs_util.o \ cs_malloc.o \ cs_multiply.o \ cs_add.o \ cs_scatter.o \ cs_permute.o \ cs_pinv.o \ cs_post.o \ cs_tdfs.o \ cs_pvec.o \ cs_qr.o \ cs_happly.o \ cs_house.o \ cs_schol.o \ cs_scc.o \ cs_sqr.o \ cs_symperm.o \ cs_transpose.o \ cs_compress.o \ cs_usolve.o \ cs_utsolve.o \ cs_cholsol.o \ cs_lusol.o \ cs_qrsol.o \ cs_updown.o \ cs_norm.o \ cs_print.o \ cs_load.o \ cs_spsolve.o \ cs_reach.o \ cs_ereach.o \ cs_leaf.o \ cs_randperm.o mexcsparse.a: $(CS) $(AR) mexcsparse.a $(CS) $(RANLIB) mexcsparse.a $(CS): ../../Include/cs.h cs_mex.o: cs_mex.c cs_mex.h $(MEX) -c $(I) $< cs_amd.o: ../../Source/cs_amd.c $(MEX) -c $(I) $< cs_chol.o: ../../Source/cs_chol.c $(MEX) -c $(I) $< cs_ereach.o: ../../Source/cs_ereach.c $(MEX) -c $(I) $< cs_cholsol.o: ../../Source/cs_cholsol.c $(MEX) -c $(I) $< cs_lusol.o: ../../Source/cs_lusol.c $(MEX) -c $(I) $< cs_qrsol.o: ../../Source/cs_qrsol.c $(MEX) -c $(I) $< cs_counts.o: ../../Source/cs_counts.c $(MEX) -c $(I) $< cs_leaf.o: ../../Source/cs_leaf.c $(MEX) -c $(I) $< cs_cumsum.o: ../../Source/cs_cumsum.c $(MEX) -c $(I) $< cs_fkeep.o: ../../Source/cs_fkeep.c $(MEX) -c $(I) $< cs_dfs.o: ../../Source/cs_dfs.c $(MEX) -c $(I) $< cs_droptol.o: ../../Source/cs_droptol.c $(MEX) -c $(I) $< cs_dropzeros.o: ../../Source/cs_dropzeros.c $(MEX) -c $(I) $< cs_dupl.o: ../../Source/cs_dupl.c $(MEX) -c $(I) $< cs_entry.o: ../../Source/cs_entry.c $(MEX) -c $(I) $< cs_etree.o: ../../Source/cs_etree.c $(MEX) -c $(I) $< cs_gaxpy.o: ../../Source/cs_gaxpy.c $(MEX) -c $(I) $< cs_ipvec.o: ../../Source/cs_ipvec.c $(MEX) -c $(I) $< cs_lsolve.o: ../../Source/cs_lsolve.c $(MEX) -c $(I) $< cs_ltsolve.o: ../../Source/cs_ltsolve.c $(MEX) -c $(I) $< cs_lu.o: ../../Source/cs_lu.c $(MEX) -c $(I) $< cs_util.o: ../../Source/cs_util.c $(MEX) -c $(I) $< cs_malloc.o: ../../Source/cs_malloc.c $(MEX) -c $(I) $< cs_multiply.o: ../../Source/cs_multiply.c $(MEX) -c $(I) $< cs_add.o: ../../Source/cs_add.c $(MEX) -c $(I) $< cs_scatter.o: ../../Source/cs_scatter.c $(MEX) -c $(I) $< cs_permute.o: ../../Source/cs_permute.c $(MEX) -c $(I) $< cs_pinv.o: ../../Source/cs_pinv.c $(MEX) -c $(I) $< cs_post.o: ../../Source/cs_post.c $(MEX) -c $(I) $< cs_tdfs.o: ../../Source/cs_tdfs.c $(MEX) -c $(I) $< cs_pvec.o: ../../Source/cs_pvec.c $(MEX) -c $(I) $< cs_qr.o: ../../Source/cs_qr.c $(MEX) -c $(I) $< cs_happly.o: ../../Source/cs_happly.c $(MEX) -c $(I) $< cs_house.o: ../../Source/cs_house.c $(MEX) -c $(I) $< cs_schol.o: ../../Source/cs_schol.c $(MEX) -c $(I) $< cs_spsolve.o: ../../Source/cs_spsolve.c $(MEX) -c $(I) $< cs_reach.o: ../../Source/cs_reach.c $(MEX) -c $(I) $< cs_sqr.o: ../../Source/cs_sqr.c $(MEX) -c $(I) $< cs_symperm.o: ../../Source/cs_symperm.c $(MEX) -c $(I) $< cs_transpose.o: ../../Source/cs_transpose.c $(MEX) -c $(I) $< cs_compress.o: ../../Source/cs_compress.c $(MEX) -c $(I) $< cs_usolve.o: ../../Source/cs_usolve.c $(MEX) -c $(I) $< cs_utsolve.o: ../../Source/cs_utsolve.c $(MEX) -c $(I) $< cs_dmperm.o: ../../Source/cs_dmperm.c $(MEX) -c $(I) $< cs_randperm.o: ../../Source/cs_randperm.c $(MEX) -c $(I) $< cs_maxtrans.o: ../../Source/cs_maxtrans.c $(MEX) -c $(I) $< cs_scc.o: ../../Source/cs_scc.c $(MEX) -c $(I) $< cs_updown.o: ../../Source/cs_updown.c $(MEX) -c $(I) $< cs_print.o: ../../Source/cs_print.c $(MEX) -c $(I) $< cs_norm.o: ../../Source/cs_norm.c $(MEX) -c $(I) $< cs_load.o: ../../Source/cs_load.c $(MEX) -c $(I) $< clean: rm -f *.o distclean: clean rm -f *.mex* *.dll *.a purge: distclean SuiteSparse/CSparse/MATLAB/CSparse/cs_lu.m0000644001170100242450000000240310620371643017073 0ustar davisfacfunction [L,U,p,q] = cs_lu (A,tol) %#ok %CS_LU sparse LU factorization, with fill-reducing ordering. % [L,U,p] = cs_lu(A) factorizes A(p,:) into L*U using no fill-reducing % ordering. % % [L,U,p] = cs_lu(A,tol) factorizes A(p,:) into L*U using no fill-reducing % ordering. Entries on the diagonal are given preference in partial pivoting. % % [L,U,p,q] = cs_lu(A) factorizes A(p,q) into L*U using a fill-reducing % ordering q = cs_amd(A,2). Normal partial pivoting is used. % % [L,U,p,q] = cs_lu(A,tol) factorizes A(p,q) into L*U, using a fill-reducing % ordering q = cs_amd(A,1). Entries on the diagonal are given preference in % partial pivoting. With a pivot tolerance tol, the entries in L have % magnitude 1/tol or less. tol = 1 is normal partial pivoting (with % q = cs_amd(A)). tol = 0 ensures p = q. 0= tol * max(abs(A(:,k))). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [L,U,p,q] = cs_lu (A) ; % cspy (A (p,q)) ; cspy (L+U) ; % norm (L*U - A(p,q), 1) % % See also CS_AMD, LU, UMFPACK, AMD, COLAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lu mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_nd.m0000644001170100242450000000164310620371653017062 0ustar davisfacfunction p = cs_nd (A) %CS_ND generalized nested dissection ordering. % p = cs_nd(A) computes the nested dissection ordering of a matrix. Small % submatrices (order 500 or less) are ordered via cs_amd. A must be sparse % and symmetric (use p = cs_nd(A|A') if it is not symmetric). % % Example: % A = delsq (numgrid ('L', 300)) ; % matrix used in 'bench' % p = cs_nd (A) ; % cspy (A (p,p)) ; % % See also CS_AMD, CS_SEP, CS_ESEP, CS_NSEP, AMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) p = 1 ; elseif (n < 500) p = cs_amd (A) ; % use cs_amd on small graphs else [s a b] = cs_nsep (A) ; % find a node separator a = a (cs_nd (A (a,a))) ; % order A(a,a) recursively b = b (cs_nd (A (b,b))) ; % order A(b,b) recursively p = [a b s] ; % concatenate to obtain the final ordering end SuiteSparse/CSparse/MATLAB/CSparse/cs_qr.m0000644001170100242450000000266410620371667017114 0ustar davisfacfunction [V,beta,p,R,q] = cs_qr (A) %#ok %CS_QR sparse QR factorization (Householder-based). % [V,beta,p,R] = cs_qr(A) computes the QR factorization of A(p,:). % [V,beta,p,R,q] = cs_qr(A) computes the QR factorization of A(p,q). % The V, beta, and p terms represent the Householder vectors and coefficients. % The fill-reducing ordering q is found via q = cs_amd(A,3). % The orthogonal factor Q can be obtained via % Q = cs_qright(V,beta,p,speye(size(V,1))), in which case Q*R=A(:,q) is the % resulting factorization (the permutation p is folded into Q). A must be % m-by-n with m >= n. If A is structurally rank deficient, additional empty % rows may have been added to V and R. Note that V is typically much sparser % than Q. % % Example: % % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % [V,beta,p,R,q] = cs_qr (A) ; % QR factorization of A(p,q) % b1 = cs_qleft (V, beta, p, b) ; % x1 = R (1:n,1:n) \ b1 (1:n) ; % x1 (q) = x1 ; % x2 = A\b ; % norm (x1-x2) % Q = cs_qright(V,beta,p,speye(size(V,1))) ; % Note: p accounted for in Q % norm (Q*R-A(:,q),1) % fprintf ('nnz(R) %d, nnz(V) %d, nnz(Q) %d\n', nnz(R), nnz(V), nnz(Q)) ; % % See also CS_AMD, CS_QRIGHT, CS_QR, CS_DMPERM, QR, COLAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_qr mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_qright.m0000644001170100242450000000154710620371665017765 0ustar davisfacfunction X = cs_qright (V, Beta, p, Y) %CS_QRIGHT apply Householder vectors on the right. % X = cs_qright(V,Beta,p,Y) computes X = Y*P'*H1*H2*...*Hn = Y*Q where Q is % represented by the Householder vectors V, coefficients Beta, and % permutation p. p can be [], which denotes the identity permutation. % To obtain Q itself, use Q = cs_qright(V,Beta,p,speye(size(V,1))). % % Example: % load west0479 ; q = colamd (west0479) ; A = west0479 (:,q) ; % [Q,R] = qr (A) ; norm (Q*R-A, 1) % [V,beta,p,R2] = cs_qr (A) ; % Q2 = cs_qright (V, beta, p, speye(size(V,1))) ; norm (Q2*R2-A, 1) % % See also CS_QR, CS_QLEFT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (V) ; X = Y ; if (~isempty (p)) X = X (:,p) ; end for k = 1:n X = X - (X * (Beta (k) * V (:,k))) * V (:,k)' ; end SuiteSparse/CSparse/MATLAB/CSparse/cs_amd_mex.c0000644001170100242450000000124410416442526020057 0ustar davisfac#include "cs_mex.h" /* cs_amd: approximate minimum degree ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; int *P, order ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_amd(A,order)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ order = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; /* get ordering */ order = CS_MAX (order, 1) ; order = CS_MIN (order, 3) ; P = cs_amd (order, A) ; /* min. degree ordering */ pargout [0] = cs_mex_put_int (P, A->n, 1, 1) ; /* return P */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_updown.m0000644001170100242450000000221410620371716017770 0ustar davisfacfunction L = cs_updown (L, c, parent, sigma) %#ok %CS_UPDOWN rank-1 update/downdate of a sparse Cholesky factorization. % L = cs_updown(L,c,parent) computes the rank-1 update L = chol(L*L'+c*c')', % where parent is the elimination tree of L. c must be a sparse column % vector, and find(c) must be a subset of find(L(:,k)) where k = min(find(c)). % L = cs_updown(L,c,parent,'-') is the downdate L = chol(L*L'-c*c'). % L = cs_updown(L,c,parent,'+') is the update L = chol(L*L'+c*c'). % Updating/downdating is much faster than refactorizing the matrix with % cs_chol or chol. L must not have an entries dropped due to numerical % cancellation (use cs_chol(A,0)). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; n = size (A,1) ; % L = cs_chol (A,0) ; % parent = cs_etree (A) ; % c = sprand (L (:, floor(n/2))) ; % L1 = cs_updown (L, c, parent) ; % L2 = cs_chol (A + c*c', 0) ; % norm (L1-L2, 1) % % See also CS_ETREE, CS_CHOL, ETREE, CHOLUPDATE, CHOL. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_updown mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_counts_mex.c0000644001170100242450000000163210415556454020637 0ustar davisfac#include "cs_mex.h" /* cs_counts: column counts for sparse Cholesky factor L. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; int n, ata, *parent, *post, *c ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: c = cs_counts(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_etree (A, ata) ; /* compute etree */ post = cs_post (parent, n) ; /* postorder the etree*/ c = cs_counts (A, parent, post, ata) ; /* get column counts */ pargout [0] = cs_mex_put_int (c, n, 0, 1) ; /* return counts */ cs_free (parent) ; cs_free (post) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_permute.m0000644001170100242450000000073610620371657020150 0ustar davisfacfunction C = cs_permute (A,p,q) %#ok %CS_PERMUTE permute a sparse matrix. % C = cs_permute(A,p,q) computes C = A(p,q) % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [m n] = size (A) ; % p = randperm (m) ; q = randperm (n) ; % C = cs_permute (A,p,q) ; % C = A(p,q) % % See also CS_SYMPERM, SUBSREF. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_permute mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_symperm.m0000644001170100242450000000127010620371706020150 0ustar davisfacfunction C = cs_symperm (A,p) %#ok %CS_SYMPERM symmetric permutation of a symmetric matrix. % C = cs_symperm(A,p) computes C = A(p,p), but accesses only the % upper triangular part of A, and returns C upper triangular (A and C are % symmetric with just their upper triangular parts stored). A must be square. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % p = cs_amd (A) ; % C = cs_symperm (A, p) ; % cspy (A (p,p)) ; % cspy (C) ; % C - triu (A (p,p)) % % See also CS_PERMUTE, SUBSREF, TRIU. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_symperm mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_lsolve.m0000644001170100242450000000131510620371636017762 0ustar davisfacfunction x = cs_lsolve (L,b) %#ok %CS_LSOLVE solve a sparse lower triangular system L*x=b. % x = cs_lsolve(L,b) computes x = L\b, L must be lower triangular with a % zero-free diagonal. b must be a column vector. x is full if b is full. % If b is sparse, x is sparse but the nonzero pattern of x is NOT sorted (it % is returned in topological order). % % Example: % Prob = UFget ('HB/bcsstk01') ; L = cs_chol (Prob.A) ; n = size (L,1) ; % b = rand (n,1) ; x = cs_lsolve (L,b) ; norm (L*x-b) % % See also CS_LTSOLVE, CS_USOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lsolve mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_transpose_mex.c0000644001170100242450000000100210415514670021323 0ustar davisfac#include "cs_mex.h" /* C = cs_transpose (A), computes C=A', where A must be sparse and real */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A, *C ; if (nargout > 1 || nargin != 1) { mexErrMsgTxt ("Usage: C = cs_transpose(A)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_transpose (A, 1) ; /* C = A' */ pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_utsolve.m0000644001170100242450000000125110620371722020152 0ustar davisfacfunction x = cs_utsolve (U,b) %#ok %CS_UTSOLVE solve a sparse lower triangular system U'*x=b. % x = cs_utsolve(U,b) computes x = U'\b, U must be upper triangular with a % zero-free diagonal. b must be a full vector. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size (A,1) ; % b = rand (n,1); % [L U p q] = cs_lu (A) ; % x = cs_ltsolve (L, cs_utsolve (U, b(q))) ; % x = L' \ (U' \ b(q)) ; % x (p) = x ; % norm (A'*x-b) % % See also CS_LSOLVE, CS_LTSOLVE, CS_USOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_utsolve mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_permute_mex.c0000644001170100242450000000162610415514543021001 0ustar davisfac#include "cs_mex.h" /* cs_permute: permute a sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A, *C, *D ; int ignore, *P, *Q, *Pinv ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_permute(A,p,q)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ P = cs_mex_get_int (A->m, pargin [1], &ignore, 1) ; /* get P */ Q = cs_mex_get_int (A->n, pargin [2], &ignore, 1) ; /* get Q */ Pinv = cs_pinv (P, A->m) ; /* P = Pinv' */ C = cs_permute (A, Pinv, Q, 1) ; /* C = A(p,q) */ D = cs_transpose (C, 1) ; /* sort C via double transpose */ cs_spfree (C) ; C = cs_transpose (D, 1) ; cs_spfree (D) ; pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ cs_free (Pinv) ; cs_free (P) ; cs_free (Q) ; } SuiteSparse/CSparse/MATLAB/CSparse/Contents.m0000644001170100242450000000525710620371605017573 0ustar davisfac% CSparse: a Concise Sparse matrix Package. % % Matrices used in CSparse must in general be either sparse and real, % or dense vectors. Ordering methods can accept any sparse matrix. % % cs_add - sparse matrix addition. % cs_amd - approximate minimum degree ordering. % cs_chol - sparse Cholesky factorization. % cs_cholsol - solve A*x=b using a sparse Cholesky factorization. % cs_counts - column counts for sparse Cholesky factor L. % cs_dmperm - maximum matching or Dulmage-Mendelsohn permutation. % cs_dmsol - x=A\b using the coarse Dulmage-Mendelsohn decomposition. % cs_dmspy - plot the Dulmage-Mendelsohn decomposition of a matrix. % cs_droptol - remove small entries from a sparse matrix. % cs_esep - find an edge separator of a symmetric matrix A % cs_etree - elimination tree of A or A'*A. % cs_gaxpy - sparse matrix times vector. % cs_lsolve - solve a sparse lower triangular system L*x=b. % cs_ltsolve - solve a sparse upper triangular system L'*x=b. % cs_lu - sparse LU factorization, with fill-reducing ordering. % cs_lusol - solve Ax=b using LU factorization. % cs_make - compiles CSparse for use in MATLAB. % cs_multiply - sparse matrix multiply. % cs_nd - generalized nested dissection ordering. % cs_nsep - find a node separator of a symmetric matrix A. % cs_permute - permute a sparse matrix. % cs_print - print the contents of a sparse matrix. % cs_qr - sparse QR factorization. % cs_qleft - apply Householder vectors on the left. % cs_qright - apply Householder vectors on the right. % cs_qrsol - solve a sparse least-squares problem. % cs_randperm - random permutation. % cs_sep - convert an edge separator into a node separator. % cs_scc - strongly-connected components of a square sparse matrix. % cs_scc2 - cs_scc, or connected components of a bipartite graph. % cs_sparse - convert a triplet form into a sparse matrix. % cs_sqr - symbolic sparse QR factorization. % cs_symperm - symmetric permutation of a symmetric matrix. % cs_transpose - transpose a real sparse matrix. % cs_updown - rank-1 update/downdate of a sparse Cholesky factorization. % cs_usolve - solve a sparse upper triangular system U*x=b. % cs_utsolve - solve a sparse lower triangular system U'*x=b. % cspy - plot a matrix in color. % ccspy - plot the connected components of a matrix. % Example: % help cs_add % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse % helper function: % cs_must_compile - return 1 if source code f must be compiled, 0 otherwise SuiteSparse/CSparse/MATLAB/CSparse/cs_multiply_mex.c0000644001170100242450000000134510415514210021164 0ustar davisfac#include "cs_mex.h" /* cs_multiply: sparse matrix multiply */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, Bmatrix, *A, *B, *C, *D ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_multiply(A,B)") ; } A = cs_transpose (cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]), 1) ; B = cs_transpose (cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]), 1) ; D = cs_multiply (B,A) ; /* D = B'*A' */ cs_spfree (A) ; cs_spfree (B) ; cs_dropzeros (D) ; /* drop zeros from D */ C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */ cs_spfree (D) ; pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_gaxpy_mex.c0000644001170100242450000000120010415514433020432 0ustar davisfac#include "cs_mex.h" /* z = cs_gaxpy (A,x,y) computes z = A*x+y */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; double *x, *y, *z ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: z = cs_gaxpy(A,x,y)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ x = cs_mex_get_double (A->n, pargin [1]) ; /* get x */ y = cs_mex_get_double (A->m, pargin [2]) ; /* get y */ z = cs_mex_put_double (A->m, y, &(pargout [0])) ; /* z = y */ cs_gaxpy (A, x, z) ; /* z = z + A*x */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_print.m0000644001170100242450000000064710620371660017616 0ustar davisfacfunction cs_print (A,brief) %#ok %CS_PRINT print the contents of a sparse matrix. % cs_print(A) prints a sparse matrix. cs_print(A,1) prints just a few entries. % % Example: % Prob = UFget ('vanHeukelum/cage3') ; A = Prob.A % cs_print (A) ; % % See also: DISPLAY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_print mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_scc_mex.c0000644001170100242450000000211510415514623020061 0ustar davisfac#include "cs_mex.h" /* [p,r] = cs_scc (A) finds the strongly connected components of A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; csd *D ; int n, j, *Ap2 ; if (nargout > 2 || nargin != 1) { mexErrMsgTxt ("Usage: [p,r] = cs_scc(A)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; /* get A */ /* cs_scc modifies A->p and then restores it (in cs_dfs). Avoid the issue * of a mexFunction modifying its input (even temporarily) by making a copy * of A->p. This issue does not arise in cs_dmperm, because that function * applies cs_scc to a submatrix C, not to A directly. */ n = A->n ; Ap2 = cs_malloc (n+1, sizeof (int)) ; for (j = 0 ; j <= n ; j++) Ap2 [j] = A->p [j] ; A->p = Ap2 ; D = cs_scc (A) ; /* find conn. comp. */ pargout [0] = cs_mex_put_int (D->p, n, 1, 0) ; /* return p */ pargout [1] = cs_mex_put_int (D->r, D->nb+1, 1, 0) ; /* return r */ cs_dfree (D) ; cs_free (Ap2) ; /* free the copy of A->p */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_lu_mex.c0000644001170100242450000000325510677526575017762 0ustar davisfac#include "cs_mex.h" /* cs_lu: sparse LU factorization, with optional fill-reducing ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { css *S ; csn *N ; cs Amatrix, *A, *D ; int n, order, *p ; double tol ; if (nargout > 4 || nargin > 3 || nargin < 1) { mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; if (nargin == 2) /* determine tol and ordering */ { tol = mxGetScalar (pargin [1]) ; order = (nargout == 4) ? 1 : 0 ; /* amd (A+A'), or natural */ } else { tol = 1 ; order = (nargout == 4) ? 2 : 0 ; /* amd(S'*S) w/dense rows or I */ } S = cs_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_transpose (N->L, 1) ; cs_spfree (N->L) ; N->L = cs_transpose (D, 1) ; cs_spfree (D) ; cs_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_transpose (N->U, 1) ; cs_spfree (N->U) ; N->U = cs_transpose (D, 1) ; cs_spfree (D) ; p = cs_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_mex_put_int (S->q, n, 1, 0) ; cs_nfree (N) ; cs_sfree (S) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_chol_mex.c0000644001170100242450000000203110416442653020237 0ustar davisfac#include "cs_mex.h" /* cs_chol: sparse Cholesky factorization */ void mexFunction (int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ]) { cs Amatrix, *A ; int order, n, drop, *p ; css *S ; csn *N ; if (nargout > 2 || nargin < 1 || nargin > 2) mexErrMsgTxt ("Usage: [L,p] = cs_chol(A,drop)") ; A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; order = (nargout > 1) ? 1 : 0 ; /* determine ordering */ S = cs_schol (order, A) ; /* symbolic Cholesky */ N = cs_chol (A, S) ; /* numeric Cholesky */ if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ; drop = (nargin == 1) ? 1 : mxGetScalar (pargin [1]) ; if (drop) cs_dropzeros (N->L) ; /* drop zeros if requested*/ pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return L */ if (nargout > 1) { p = cs_pinv (S->pinv, n) ; /* p=pinv' */ pargout [1] = cs_mex_put_int (p, n, 1, 1) ; /* return p */ } cs_nfree (N) ; cs_sfree (S) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_counts.m0000644001170100242450000000135710620371614017773 0ustar davisfacfunction c = cs_counts (A,mode) %#ok %CS_COUNTS column counts for sparse Cholesky factor L. % c = cs_counts(A) returns a vector of the column counts of L, for the % Cholesky factorization L*L' = A. That is, c = sum(spones(chol(A)')), % except the Cholesky factorization is not computed. % c = cs_counts(A), returns counts for cs_chol(A). % c = cs_counts(A,'col'), returns counts for cs_chol(A'*A). % c = cs_counts(A,'sym'), same as cs_counts(A). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; c = cs_counts (A) % full (sum (spones (chol (A)'))) % % See also SYMBFACT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_counts mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_dmperm_mex.c0000644001170100242450000000232710567410710020602 0ustar davisfac#include "cs_mex.h" /* cs_dmperm: maximum matching or Dulmage-Mendelsohn permutation. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; cs *A, Amatrix ; csd *D ; int m, n, *jmatch, iseed ; if (nargin < 1 || nargin > 2 || nargout > 6) { mexErrMsgTxt ("Usage: [p,q,r,s,cc,rr] = cs_dmperm (A,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 0 ; /* get seed */ iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ n = A->n ; m = A->m ; if (nargout <= 1) { jmatch = cs_maxtrans (A, iseed) ; /* max. matching */ pargout [0] = cs_mex_put_int (jmatch+m, n, 1, 0) ; /* return imatch */ cs_free (jmatch) ; } else { D = cs_dmperm (A, iseed) ; /* Dulmage-Mendelsohn decomposition */ pargout [0] = cs_mex_put_int (D->p, m, 1, 0) ; pargout [1] = cs_mex_put_int (D->q, n, 1, 0) ; pargout [2] = cs_mex_put_int (D->r, D->nb+1, 1, 0) ; pargout [3] = cs_mex_put_int (D->s, D->nb+1, 1, 0) ; pargout [4] = cs_mex_put_int (D->cc, 5, 1, 0) ; pargout [5] = cs_mex_put_int (D->rr, 5, 1, 0) ; cs_dfree (D) ; } } SuiteSparse/CSparse/MATLAB/CSparse/cs_qleft.m0000644001170100242450000000174310620371664017577 0ustar davisfacfunction X = cs_qleft (V, Beta, p, Y) %CS_QLEFT apply Householder vectors on the left. % X = cs_qleft(V,Beta,p,Y) computes X = Hn*...*H2*H1*P*Y = Q'*Y where Q is % represented by the Householder vectors V, coefficients Beta, and % permutation p. p can be [], which denotes the identity permutation. % % Example: % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % [V,beta,p,R] = cs_qr (A) ; % QR factorization of A(p,:) % b1 = cs_qleft (V, beta, p, b) ; % x1 = R (1:n,1:n) \ b1 (1:n) ; % x2 = A\b ; % norm (x1-x2) % % See also CS_QR, CS_QRIGHT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m2 n] = size (V) ; [m ny] = size (Y) ; X = Y ; if (m2 > m) if (issparse (Y)) X = [X ; sparse(m2-m,ny)] ; else X = [X ; zeros(m2-m,ny)] ; end end if (~isempty (p)) X = X (p,:) ; end for k = 1:n X = X - V (:,k) * (Beta (k) * (V (:,k)' * X)) ; end SuiteSparse/CSparse/MATLAB/CSparse/cs_qrsol_mex.c0000644001170100242450000000165010416442477020464 0ustar davisfac#include "cs_mex.h" /* cs_qrsol: solve least squares or underdetermined problem */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, Amatrix ; double *x, *b ; int k, order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_qrsol(A,b,order)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ b = cs_mex_get_double (A->m, pargin [1]) ; /* get b */ x = cs_calloc (CS_MAX (A->m, A->n), sizeof (double)) ; /* x = b */ for (k = 0 ; k < A->m ; k++) x [k] = b [k] ; order = (nargin < 3) ? 3 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (!cs_qrsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("QR solve failed") ; } cs_mex_put_double (A->n, x, &(pargout [0])) ; /* return x */ cs_free (x) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_droptol_mex.c0000644001170100242450000000146110415514420020772 0ustar davisfac#include "cs_mex.h" /* cs_droptol: remove small entries from A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *C, *A ; int j, k ; double tol ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_droptol(A,tol)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ tol = mxGetScalar (pargin [1]) ; /* get tol */ C = cs_spalloc (A->m, A->n, A->nzmax, 1, 0) ; /* C = A */ for (j = 0 ; j <= A->n ; j++) C->p [j] = A->p [j] ; for (k = 0 ; k < A->nzmax ; k++) C->i [k] = A->i [k] ; for (k = 0 ; k < A->nzmax ; k++) C->x [k] = A->x [k] ; cs_droptol (C, tol) ; /* drop from C */ pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_lsolve_mex.c0000644001170100242450000000363210415514461020622 0ustar davisfac#include "cs_mex.h" /* cs_lsolve: x=L\b. L must be sparse, real, and lower triangular. b must be a * real full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on L and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, L, by modifying L->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of L->p * (see cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, Bmatrix, *L, *B, *X ; double *x, *b ; int top, nz, p, *xi ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_lsolve(L,b)") ; } L = cs_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ if (mxIsSparse (pargin [1])) { B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b */ cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; xi = cs_malloc (2*L->n, sizeof (int)) ; /* get workspace */ x = cs_malloc (L->n, sizeof (double)) ; top = cs_spsolve (L, B, 0, xi, x, NULL, 1) ; /* x = L\b */ X = cs_spalloc (L->n, 1, L->n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < L->n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else { b = cs_mex_get_double (L->n, pargin [1]) ; /* get full b */ x = cs_mex_put_double (L->n, b, &(pargout [0])) ; /* x = b */ cs_lsolve (L, x) ; /* x = L\x */ } } SuiteSparse/CSparse/MATLAB/CSparse/cspy.m0000644001170100242450000000477410620665733016767 0ustar davisfacfunction [s,M,H] = cspy (A,res) %CSPY plot a matrix in color. % cspy(A) plots a matrix, in color, with a default resolution of % 256-by-256. cspy(A,res) changes the resolution to res. Zero entries are % white. Entries with tiny absolute value are light orange. Entries with % large magnitude are black. Entries in the midrange (the median of the % log10 of the nonzero values, +/- one standard deviation) range from light % green to deep blue. With no inputs, the color legend of cspy is plotted. % [s,M,H] = cspy(A) returns the scale factor s, the image M, and colormap H. % % The matrix A can be full or sparse, and either numeric (double, single, % integer) or character type, and either complex or real. % % Example % A = delsq (numgrid ('L', 10)) ; % cspy (A) ; % % See also CS_DMSPY, SPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if nargin < 2 res = 256 ; end h = jet (64) ; h = h (64:-1:1,:) ; h = h (30:end,:) ; hmax = size (h,1) ; h (1,:) = [1 1 1] ; % white for zero h (2,:) = [1 .9 .5] ; % light orange for tiny entries h (hmax,:) = [0 0 0] ; % black for very large entries colormap (h) ; if (nargin == 0) image (1:hmax) ; title ('cspy color map') ; return end % convert complex, integers, and strings to real double if (~isreal (A) | ~isa (A, 'double') | ~issparse (A)) %#ok A = sparse (abs (double (A))) ; end [m1 n1] = size (A) ; if (m1 == 0 | n1 == 0) %#ok A (1,1) = 0 ; end [m1 n1] = size (A) ; S = cs_thumb (A,res) ; % get the thumbnail of the matrix [m n] = size (S) ; [i j x] = find (S) ; x = log10 (x) ; if (isempty (x)) S = zeros (size (S)) ; else med = median (x) ; sdev = std (x) ; big = med + sdev ; tiny = med - sdev ; imid = find (x > tiny & x < big) ; itiny = find (x <= tiny) ; ibig = find (x >= big) ; x (imid) = 1 + ceil ((hmax-2) * (x (imid) - tiny) / (big - tiny)) ; x (itiny) = 1 ; %#ok x (ibig) = hmax-1 ; %#ok S = full (1 + sparse (i,j,x,m,n)) ; % title (sprintf ('tiny: %-8.2g median: %-8.2g big: %-8.2g\n', ... % 10^tiny, 10^med, 10^big)) ; end % draw the matrix image (S) ; axis equal ; axis ([-1 n+1 -1 m+1]) ; axis off % draw a box around the whole matrix e = ceil (max (m1,n1) / max (m,n)) ; % scale factor hold on drawbox (1,m1+1,1,n1+1,'k',1,e) ; hold off % return results if (nargout > 0) s = e ; end if (nargout > 1) M = S ; % image end if (nargout > 2) H = h ; % colormap end SuiteSparse/CSparse/MATLAB/CSparse/cs_qrsol.m0000644001170100242450000000160310620371671017615 0ustar davisfacfunction x = cs_qrsol (A,b,order) %#ok %CS_QRSOL solve a sparse least-squares problem. % x = cs_qrsol(A,b) solves the over-determined least squares problem to % find x that minimizes norm(A*x-b), where b is a full vector and % A is m-by-n with m >= n. If m < n, it solves the underdetermined system % Ax=b. A 3rd input argument specifies the ordering method to use % (0: natural, 3: amd(A'*A)). The default ordering is 3. % % Example: % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % x1 = cs_qrsol (A,b) ; % x2 = A\b ; % norm (x1-x2) % % For this example, cs_qrsol is about 3 times faster than A\b in MATLAB 7.3. % % See also CS_QR, CS_AMD, CS_LUSOL, CS_CHOLSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_qrsol mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_chol.m0000644001170100242450000000141010620371611017370 0ustar davisfacfunction [L,p] = cs_chol (A,drop) %#ok %CS_CHOL sparse Cholesky factorization. % L = cs_chol(A) is the same as L = chol(A)', using triu(A). % [L,p] = cs_chol(A) first orders A with p=cs_amd(A), so that L*L' = A(p,p). % A second optional input argument controls whether or not numerically zero % entries are removed from L. cs_chol(A) and cs_chol(A,1) drop them; % cs_chol(A,0) keeps them. They must be kept for cs_updown to work properly. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; [L,p] = cs_chol (A) ; % cspy (A (p,p)) ; % cspy (L) ; % % See also CS_AMD, CS_UPDOWN, CHOL, AMD, SYMAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_chol mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_print_mex.c0000644001170100242450000000101710415514560020445 0ustar davisfac#include "cs_mex.h" /* cs_print: print the contents of a sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; int brief ; if (nargout > 0 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: cs_print(A,brief)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ brief = (nargin < 2) ? 0 : mxGetScalar (pargin [1]) ; /* get brief */ cs_print (A, brief) ; /* print A */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_dmsol.m0000644001170100242450000000220610620665615017577 0ustar davisfacfunction x = cs_dmsol (A,b) %CS_DMSOL x=A\b using the coarse Dulmage-Mendelsohn decomposition. % x = cs_dmsol(A,b) computes x=A\b where A may be rectangular and/or % structurally rank deficient, and b is a full vector. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; b = rand (size (A,1),1) ; % x = cs_dmsol (A,b) ; norm (A*x-b) % % See also CS_QRSOL, CS_LUSOL, CS_DMPERM, SPRANK, RANK. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; [p q r s cc rr] = cs_dmperm (A) ; C = A (p,q) ; b = b (p) ; x = zeros (n,1) ; if (rr(3) <= m & cc(4) <= n) %#ok x (cc(4):n) = cs_qrsol (C (rr(3):m, cc(4):n), b (rr(3):m)) ; b (1:rr(3)-1) = b (1:rr(3)-1) - C (1:rr(3)-1, cc(4):n) * x (cc(4):n) ; end if (rr(2) < rr (3) & cc(3) < cc(4)) %#ok x (cc(3):cc(4)-1) = ... cs_lusol (C (rr(2):rr(3)-1, cc(3):cc(4)-1), b (rr(2):rr(3)-1)) ; b (1:rr(2)-1) = ... b (1:rr(2)-1) - C (1:rr(2)-1, cc(3):cc(4)-1) * x (cc(3):cc(4)-1) ; end if (rr(2) > 1 & cc(3) > 1) %#ok x (1:cc(3)-1) = cs_qrsol (C (1:rr(2)-1, 1:cc(3)-1), b (1:rr(2)-1)) ; end x (q) = x ; SuiteSparse/CSparse/MATLAB/CSparse/cs_dmspy.m0000644001170100242450000000345410620371626017617 0ustar davisfacfunction [p,q,r,s,cc,rr] = cs_dmspy (A,res,seed) %CS_DMSPY plot the Dulmage-Mendelsohn decomposition of a matrix. % [p,q,r,s,cc,rr] = cs_dmspy(A) computes [p,q,r,s,cc,rr] = cs_dmperm(A), % does spy(A(p,q)), and then draws boxes around the coarse and fine % decompositions. A 2nd input argument (cs_dmspy(A,res)) changes the % resolution of the image to res-by-res (default resolution is 256). % If res is zero, spy is used instead of cspy. If the resolution is low, the % picture of the blocks in the figure can overlap. They do not actually % overlap in the matrix. With 3 arguments, cs_dmspy(A,res,seed), % cs_dmperm(A,seed) is used, where seed controls the randomized algorithm % used by cs_dmperm. % % Example: % Prob = UFget ('HB/arc130') ; cs_dmspy (Prob.A) ; % % See also CS_DMPERM, CS_DMSOL, DMPERM, SPRANK, SPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~issparse (A)) A = sparse (A) ; end if (nargin < 2) res = 256 ; end if (nargin < 3) seed = 0 ; end % Dulmage-Mendelsohn permutation [p1,q,r,s,cc,rr] = cs_dmperm (A,seed) ; if (nargout > 0) p = p1 ; end nb = length (r)-1 ; % plot the result S = A (p1,q) ; if (res == 0) spy (S) ; e = 1 ; else e = cspy (S,res) ; end hold on title (sprintf ( ... '%d-by-%d, sprank: %d, fine blocks: %d, coarse blocks: %d-by-%d\n', ... size (A), rr(4)-1, nb, length (find (diff (rr))), ... length (find (diff (cc))))) ; drawboxes (nb, e, r, s) ; [m n] = size (A) ; drawbox (1,m+1,1,n+1,'k',1,e) ; drawbox (rr(1), rr(2), cc(1), cc (2), 'r', 2, e) ; drawbox (rr(1), rr(2), cc(2), cc (3), 'r', 2, e) ; drawbox (rr(2), rr(3), cc(3), cc (4), 'k', 2, e) ; drawbox (rr(3), rr(4), cc(4), cc (5), 'r', 2, e) ; drawbox (rr(4), rr(5), cc(4), cc (5), 'r', 2, e) ; hold off SuiteSparse/CSparse/MATLAB/CSparse/cs_esep.m0000644001170100242450000000113110620371631017401 0ustar davisfacfunction [a,b] = cs_esep (A) %CS_ESEP find an edge separator of a symmetric matrix A % [a,b] = cs_esep(A) finds a edge separator s that splits the graph of A % into two parts a and b of roughly equal size. The edge separator is the % set of entries in A(a,b). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % [a,b] = cs_esep (A) ; % cspy (A (a,b)) ; % % See also CS_NSEP, CS_SEP, CS_ND, SYMRCM. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse p = symrcm (A) ; n2 = fix (size(A,1)/2) ; a = p (1:n2) ; b = p (n2+1:end) ; SuiteSparse/CSparse/MATLAB/CSparse/cs_thumb_mex.c0000644001170100242450000000275710507506511020443 0ustar davisfac#include "cs_mex.h" /* cs_thumb: convert a sparse matrix to a dense 2D thumbnail matrix of size * at most k-by-k. k defaults to 256. A helper mexFunction for cspy. */ #define INDEX(i,j,lda) ((i)+(j)*(lda)) #define ISNAN(x) ((x) != (x)) #ifdef DBL_MAX #define BIG_VALUE DBL_MAX #else #define BIG_VALUE 1.7e308 #endif void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; int m, n, mn, m2, n2, k, s, j, ij, sj, si, p, *Ap, *Ai ; double aij, *S, *Ax ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: S = cs_thumb(A,k)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; k = (nargin == 1) ? 256 : mxGetScalar (pargin [1]) ; /* get k */ /* s = size of each submatrix; A(1:s,1:s) maps to S(1,1) */ s = (mn < k) ? 1 : (int) ceil ((double) mn / (double) k) ; m2 = (int) ceil ((double) m / (double) s) ; n2 = (int) ceil ((double) n / (double) s) ; /* create S */ pargout [0] = mxCreateDoubleMatrix (m2, n2, mxREAL) ; S = mxGetPr (pargout [0]) ; Ap = A->p ; Ai = A->i ; Ax = A->x ; for (j = 0 ; j < n ; j++) { sj = j/s ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { si = Ai [p] / s ; ij = INDEX (si,sj,m2) ; aij = fabs (Ax [p]) ; if (ISNAN (aij)) aij = BIG_VALUE ; aij = CS_MIN (BIG_VALUE, aij) ; S [ij] = CS_MAX (S [ij], aij) ; } } } SuiteSparse/CSparse/MATLAB/CSparse/cs_updown_mex.c0000644001170100242450000000324210474320360020625 0ustar davisfac#include "cs_mex.h" /* cs_updown: sparse Cholesky update/downdate (rank-1 or multiple rank) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, *Lin, Cmatrix, *C, *L, Cvector, *Cvec ; int ignore, j, k, n, lnz, *parent, sigma = 1, cp [2] ; char sigma_string [20] ; if (nargout > 1 || nargin < 3 || nargin > 4) { mexErrMsgTxt ("Usage: L = cs_updown(L,C,parent,sigma)") ; } Lin = cs_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get input L */ n = Lin->n ; if (nargin > 3 && mxIsChar (pargin [3])) { mxGetString (pargin [3], sigma_string, 8) ; sigma = (sigma_string [0] == '-') ? (-1) : 1 ; } /* make a copy of L (this can take more work than updating L itself) */ lnz = Lin->p [n] ; L = cs_spalloc (n, n, lnz, 1, 0) ; for (j = 0 ; j <= n ; j++) L->p [j] = Lin->p [j] ; for (k = 0 ; k < lnz ; k++) L->i [k] = Lin->i [k] ; for (k = 0 ; k < lnz ; k++) L->x [k] = Lin->x [k] ; cs_mex_check (0, n, -1, 0, 1, 1, pargin [1]) ; /* get C */ C = cs_mex_get_sparse (&Cmatrix, 0, 1, pargin [1]) ; parent = cs_mex_get_int (n, pargin [2], &ignore, 0) ; /* get parent */ /* do the update one column at a time */ Cvec = &Cvector ; Cvec->m = n ; Cvec->n = 1 ; Cvec->p = cp ; Cvec->nz = -1 ; cp [0] = 0 ; for (k = 0 ; k < C->n ; k++) { /* extract C(:,k) */ cp [1] = C->p [k+1] - C->p [k] ; Cvec->nzmax = cp [1] ; Cvec->i = C->i + C->p [k] ; Cvec->x = C->x + C->p [k] ; cs_updown (L, sigma, Cvec, parent) ; /* update/downdate */ } pargout [0] = cs_mex_put_sparse (&L) ; /* return new L */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_make.m0000644001170100242450000001376410621052132017372 0ustar davisfacfunction [objfiles, timestamp_out] = cs_make (f) %CS_MAKE compiles CSparse for use in MATLAB. % Usage: % cs_make % [objfiles, timestamp] = cs_make (f) % % With no input arguments, or with f=0, only those files needing to be % compiled are compiled (like the Unix/Linux/GNU "make" command, but not % requiring "make"). If f is a nonzero number, all files are compiled. % If f is a string, only that mexFunction is compiled. For example, % cs_make ('cs_add') just compiles the cs_add mexFunction. This option is % useful when developing a single new mexFunction. This function can only be % used if the current directory is CSparse/MATLAB/CSparse. Returns a list of % the object files in CSparse, and the latest modification time of any source % codes. % % To add a new function and its MATLAB mexFunction to CSparse: % % (1) Create a source code file CSparse/Source/cs_mynewfunc.c. % (2) Create a help file, CSparse/MATLAB/CSparse/cs_mynewfunc.m. % This is very useful, but not strictly required. % (3) Add the prototype of cs_mynewfunc to CSparse/Include/cs.h. % (4) Create its MATLAB mexFunction, CSparse/MATLAB/cs_mynewfunc_mex.c. % (5) Edit cs_make.m, and add 'cs_mynewfunc' to the 'cs' and 'csm' lists. % (6) Type 'cs_make' in the CSparse/MATLAB/CSparse directory. % If all goes well, your new function is ready for use in MATLAB. % % (7) Optionally add 'cs_mynewfunc' to CSparse/Source/Makefile % and CSparse/MATLAB/CSparse/Makefile, if you want to use the % Unix/Linux/GNU make command instead of cs_make.m. See where % 'cs_add' and 'cs_add_mex' appear in those files, and add % 'cs_mynewfunc' accordingly. % (8) Optionally add 'cs_mynewfunc' to Tcov/Makefile, and add additional % test code to cs_test.c, and add MATLAB test code to MATLAB/Test/*. % % Example: % cs_make % compile everything % cs_make ('cs_chol') ; % just compile cs_chol mexFunction % % See also MEX. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('Compiling CSparse\n') ; % CSparse source files, in ../../Source, such as ../../Source/cs_add.c. % Note that not all CSparse source files have their own mexFunction. cs = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_cumsum', 'cs_dfs', 'cs_dmperm', 'cs_droptol', 'cs_dropzeros', ... 'cs_dupl', 'cs_entry', 'cs_etree', 'cs_fkeep', 'cs_gaxpy', 'cs_happly', ... 'cs_house', 'cs_ipvec', 'cs_load', 'cs_lsolve', 'cs_ltsolve', 'cs_lu', ... 'cs_lusol', 'cs_malloc', 'cs_maxtrans', 'cs_multiply', 'cs_norm', ... 'cs_permute', 'cs_pinv', 'cs_post', 'cs_print', 'cs_pvec', 'cs_qr', ... 'cs_qrsol', 'cs_scatter', 'cs_scc', 'cs_schol', 'cs_sqr', 'cs_symperm', ... 'cs_tdfs', 'cs_transpose', 'cs_compress', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_util', 'cs_reach', 'cs_spsolve', 'cs_ereach', ... 'cs_leaf', 'cs_randperm' } ; % add cs_mynewfunc to the above list details = 1 ; kk = 0 ; csm = { } ; if (nargin == 0) force = 0 ; elseif (ischar (f)) fprintf ('cs_make: compiling ../../Source files and %s_mex.c\n', f) ; force = 0 ; csm = {f} ; else force = f ; details = details | (force > 1) ; %#ok if (force & details) %#ok fprintf ('cs_make: re-compiling everything\n') ; end end if (force) fprintf ('Compiling CSparse\n') ; end if (isempty (csm)) % mexFunctions, of the form cs_add_mex.c, etc, in this directory csm = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_dmperm', 'cs_droptol', 'cs_etree', 'cs_gaxpy', 'cs_lsolve', ... 'cs_ltsolve', 'cs_lu', 'cs_lusol', 'cs_multiply', 'cs_permute', ... 'cs_print', 'cs_qr', 'cs_qrsol', 'cs_scc', 'cs_symperm', 'cs_thumb', ... 'cs_transpose', 'cs_sparse', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_randperm', 'cs_sqr' } ; % add cs_mynewfunc to the above list end try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) obj = '.obj' ; else obj = '.o' ; end srcdir = '../../Source/' ; hfile = '../../Include/cs.h' ; % compile each CSparse source file [anysrc timestamp kk] = compile_source ('', 'cs_mex', obj, hfile, force, ... kk, details) ; CS = ['cs_mex' obj] ; if (nargout > 0) objfiles = ['..' filesep 'CSparse' filesep 'cs_mex' obj] ; end for i = 1:length (cs) [s t kk] = compile_source (srcdir, cs {i}, obj, hfile, force, kk, details) ; timestamp = max (timestamp, t) ; anysrc = anysrc | s ; %#ok CS = [CS ' ' cs{i} obj] ; %#ok if (nargout > 0) objfiles = [objfiles ' ..' filesep 'CSparse' filesep cs{i} obj] ; %#ok end end % compile each CSparse mexFunction obj = ['.' mexext] ; for i = 1:length (csm) [s t] = cs_must_compile ('', csm{i}, '_mex', obj, hfile, force) ; timestamp = max (timestamp, t) ; if (anysrc | s) %#ok cmd = sprintf ('mex -O -I../../Include %s_mex.c %s -output %s', ... csm{i}, CS, csm{i}) ; kk = do_cmd (cmd, kk, details) ; end end fprintf ('\n') ; if (nargout > 1) timestamp_out = timestamp ; end if (force) fprintf ('CSparse successfully compiled.\n') ; end %------------------------------------------------------------------------------- function [s,t,kk] = compile_source (srcdir, f, obj, hfile, force, kk, details) % compile a source code file in ../../Source, leaving object file in % this directory. [s t] = cs_must_compile (srcdir, f, '', obj, hfile, force) ; if (s) cmd = sprintf ('mex -O -c -I../../Include %s%s.c', srcdir, f) ; kk = do_cmd (cmd, kk, details) ; end %------------------------------------------------------------------------------- function kk = do_cmd (s, kk, details) %DO_CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s\n', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; SuiteSparse/CSparse/MATLAB/CSparse/cs_dmperm.m0000644001170100242450000000621410620371623017741 0ustar davisfacfunction [p,q,r,s,cc,rr] = cs_dmperm (A,seed) %#ok %CS_DMPERM maximum matching or Dulmage-Mendelsohn permutation. % p = cs_dmperm(A) finds a maximum matching p such that p(j) = i if column j % is matched to row i, or 0 if column j is unmatched. If A is square and % full structural rank, p is a row permutation and A(p,:) has a zero-free % diagonal. The structural rank of A is sprank(A) = sum(p>0). % % [p,q,r,s,cc,rr] = cs_dmperm(A) finds the Dulmage-Mendelsohn decomposition % of A. p and q are permutation vectors. cc and rr are vectors of length 5. % C = A(p,q) is split into a 4-by-4 set of coarse blocks: % % A11 A12 A13 A14 % 0 0 A23 A24 % 0 0 0 A34 % 0 0 0 A44 % % where A12, A23, and A34 are square with zero-free diagonals. The columns of % A11 are the unmatched columns, and the rows of A44 are the unmatched rows. % Any of these blocks can be empty. In the "coarse" decomposition, the % (i,j)th block is C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1). In terms of a linear % system, [A11 A12] is the underdetermined part of the system (it is always % rectangular and with more columns and rows, or 0-by-0), A23 is the well- % determined part of the system (it is always square), and [A34 ; A44] is % the over-determined part of the system (it is always rectangular with more % rows than columns, or 0-by-0). % % The structural rank of A is sprank(A) = rr(4)-1, which is an upper bound on % the numerical rank of A. sprank(A) = rank(full(sprand(A))) with probability % 1 in exact arithmetic. % % The A23 submatrix is further subdivided into block upper triangular form % via the "fine" decomposition (the strongly-connected components of A23). % If A is square and structurally non-singular, A23 is the entire matrix. % % C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine % decomposition. The (1,1) block is the rectangular block [A11 A12], unless % this block is 0-by-0. The (b,b) block is the rectangular block [A34 ; A44], % unless this block is 0-by-0, where b = length(r)-1. All other blocks of the % form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are diagonal blocks of A23, and are % square with a zero-free diagonal. % % The matching algorithm used in cs_dmperm can take a very long time % in rare cases. This can be avoided by exploiting a randomized algorithm, % with cs_dmperm(A,seed). If seed=0, the non-randomized algorithm is used % (columns are considered in order 1:n). If seed=-1, columns are considered % in reverse order. Otherwise, the columns are considered in a random order, % using seed as the random number generator seed. Try cs_dmpmerm(A,1) or % cs_dmperm(A,rand), for a randomized order, for example. Seed defaults to 0. % % % Example: % Prob = UFget ('HB/west0479') ; A = Prob.A ; cspy (A) ; % p = cs_dmperm (A) ; % cspy (A (p,:)) ; % [p q r s cc rr] = cs_dmperm (A) ; % cspy (A (p,q)) ; % cs_dmspy (A) ; % % See also CS_DMSPY, CS_DMSOL, DMPERM, SPRANK, CS_RANDPERM, RAND % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_dmperm mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/README.txt0000644001170100242450000000007310364236357017316 0ustar davisfacMATLAB interface for CSparse. See Contents.m for details. SuiteSparse/CSparse/MATLAB/CSparse/cs_lusol_mex.c0000644001170100242450000000207410416442472020456 0ustar davisfac#include "cs_mex.h" /* cs_lusol: solve A*x=b using a sparse LU factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, Amatrix ; int order ; double *x, *b, tol ; if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: x = cs_lusol(A,b,order,tol)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ order = (nargin < 3) ? 2 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (nargin == 2) { tol = 1 ; /* normal partial pivoting */ } else if (nargin == 3) { tol = (order == 1) ? 0.001 : 1 ; /* tol = 0.001 for amd(A+A') */ } else { tol = mxGetScalar (pargin [3]) ; } if (!cs_lusol (order, A, x, tol)) /* x = A\x */ { mexErrMsgTxt ("LU factorization failed (singular or out of memory)") ; } } SuiteSparse/CSparse/MATLAB/CSparse/cs_randperm.m0000644001170100242450000000132010620371673020263 0ustar davisfacfunction p = cs_randperm (n, seed) %#ok %CS_RANDPERM random permutation. % p = cs_randperm (n) returns a repeatable random permutation of 1:n. % p = cs_randperm (n,seed) returns the random permutation using the given % seed for the random number generator (try cs_randperm (n,rand)), where % seed is not 0 or -1. Two special cases are not random permutations at all: % p=cs_randperm (n,0) is 1:n, and p=cs_randperm (n,-1) is n:-1:1. % This function does not change RAND's state. % % Example: % p = cs_randperm (10) % % See also CS_DMPERM, RAND, RANDPERM % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_randperm mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_nsep.m0000644001170100242450000000123110620371655017421 0ustar davisfacfunction [s,a,b] = cs_nsep (A) %CS_NSEP find a node separator of a symmetric matrix A. % [s,a,b] = cs_nsep(A) finds a node separator s that splits the graph of A % into two parts a and b of roughly equal size. If A is unsymmetric, use % cs_nsep(A|A'). The permutation p = [a b s] is a one-level dissection of A. % % Example: % A = delsq (numgrid ('L', 10)) ; % smaller version as used in 'bench' % [s a b] = cs_nsep (A) ; p = [a b s] ; % cspy (A (p,p)) ; % % See also CS_SEP, CS_ESEP, CS_ND. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [a b] = cs_esep (A) ; [s a b] = cs_sep (A, a, b) ; SuiteSparse/CSparse/MATLAB/CSparse/cs_etree_mex.c0000644001170100242450000000160610415514153020417 0ustar davisfac#include "cs_mex.h" /* cs_etree: elimination tree of A or A'*A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A ; int n, ata, *parent, *post ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [parent,post] = cs_etree(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_etree (A, ata) ; /* compute etree */ if (nargout > 1) { post = cs_post (parent, n) ; /* postorder the etree*/ pargout [1] = cs_mex_put_int (post, n, 1, 1) ; /* return post */ } pargout [0] = cs_mex_put_int (parent, n, 1, 1) ; /* return parent */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_scc2.m0000644001170100242450000000354710620666137017324 0ustar davisfacfunction [p, q, r, s] = cs_scc2 (A, bipartite) %CS_SCC2 cs_scc, or connected components of a bipartite graph. % [p,q,r,s] = cs_scc2(A) finds a permutation p so that A(p,q) is permuted into % block upper triangular form (if A is square). In this case, r=s, p=q and % the kth diagonal block is given by A (t,t) where t = r(k):r(k)+1. % The diagonal of A is ignored. Each block is one strongly connected % component of A. % % If A is not square (or for [p,q,r,s] = cs_scc2(A,1)), then the connected % components of the bipartite graph of A are found. A(p,q) is permuted into % block diagonal form, where the diagonal blocks are rectangular. The kth % block is given by A(r(k):r(k+1)-1,s(k):s(k+1)-1). A can be rectangular. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [p q r s] = cs_scc2 (A) ; % cspy (A (p,q)) ; % Prob = UFget ('HB/wm1') ; A = Prob.A ; [p q r s] = cs_scc2 (A) ; % cspy (A (p,q)) ; % % See also CS_DMPERM, DMPERM, CS_SCC, CCSPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; if (nargin < 2) bipartite = 0 ; end if (m ~= n | bipartite) %#ok % find the connected components of [I A ; A' 0] S = spaugment (A) ; [psym,rsym] = cs_scc (S) ; p = psym (find (psym <= m)) ; %#ok q = psym (find (psym > m)) - m ; %#ok nb = length (rsym) - 1 ; r = zeros (1,nb+1) ; s = zeros (1,nb+1) ; krow = 1 ; kcol = 1 ; for k = 1:nb % find the rows and columns in the kth component r (k) = krow ; s (k) = kcol ; ksym = psym (rsym (k):rsym (k+1)-1) ; krow = krow + length (find (ksym <= m)) ; kcol = kcol + length (find (ksym > m)) ; end r (nb+1) = m+1 ; s (nb+1) = n+1 ; else % find the strongly connected components of A [p,r] = cs_scc (A) ; q = p ; s = r ; end SuiteSparse/CSparse/MATLAB/CSparse/cs_sparse_mex.c0000644001170100242450000000173010571322634020612 0ustar davisfac#include "cs_mex.h" /* cs_sparse: convert triplet form into compress-column form sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, *C, *T, Tmatrix ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse(i,j,x)") ; } T = &Tmatrix ; /* get i,j,x and copy to triplet form */ T->nz = mxGetM (pargin [0]) ; T->p = cs_mex_get_int (T->nz, pargin [0], &(T->n), 1) ; T->i = cs_mex_get_int (T->nz, pargin [1], &(T->m), 1) ; cs_mex_check (1, T->nz, 1, 0, 0, 1, pargin [2]) ; T->x = mxGetPr (pargin [2]) ; T->nzmax = T->nz ; C = cs_compress (T) ; /* create sparse matrix C */ cs_dupl (C) ; /* remove duplicates from C */ cs_dropzeros (C) ; /* remove zeros from C */ A = cs_transpose (C, 1) ; /* A=C' */ cs_spfree (C) ; pargout [0] = cs_mex_put_sparse (&A) ; /* return A */ cs_free (T->p) ; cs_free (T->i) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_usolve.m0000644001170100242450000000145410620371721017772 0ustar davisfacfunction x = cs_usolve (U,b) %#ok %CS_USOLVE solve a sparse upper triangular system U*x=b. % x = cs_usolve(U,b) computes x = U\b, U must be lower triangular with a % zero-free diagonal. b must be a column vector. x is full if b is full. % If b is sparse, x is sparse but nonzero pattern of x is NOT sorted (it is % returned in topological order). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size (A,1) ; % b = rand (n,1); % [L U p q] = cs_lu (A) ; % x = cs_usolve (U, cs_lsolve (L, b(p))) ; % x = U \ (L \ b(p)) ; % x (q) = x ; % norm (A*x-b) % % See also CS_LSOLVE, CS_LTSOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_usolve mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_droptol.m0000644001170100242450000000104210620371627020136 0ustar davisfacfunction C = cs_droptol (A, tol) %#ok %CS_DROPTOL remove small entries from a sparse matrix. % C = cs_droptol(A,tol) removes entries from A of magnitude less than or % equal to tol. Same as A = A .* (abs (A) >= tol). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; % cspy (abs (A) >= 1e-10) ; % C = cs_droptol (A, 1e-10) ; % cspy (C) ; % % See also: RELOP, ABS % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_droptol mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_etree.m0000644001170100242450000000130610620371633017557 0ustar davisfacfunction [parent, post] = cs_etree (A, mode) %#ok %CS_ETREE elimination tree of A or A'*A. % parent = cs_etree (A) returns the elimination tree of A. % parent = cs_etree (A,'col') returns the elimination tree of A'*A. % parent = cs_etree (A,'sym') is the same as cs_etree(A). % For the symmetric case (cs_etree(A)), only triu(A) is used. % % [parent,post] = cs_etree(...) also returns a postorder of the tree. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % parent = cs_etree (A) ; treeplot (parent) ; % % See also ETREE, TREEPLOT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_etree mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_add_mex.c0000644001170100242450000000166610415514133020047 0ustar davisfac#include "cs_mex.h" /* cs_add: sparse matrix addition */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double alpha, beta ; cs Amatrix, Bmatrix, *A, *B, *C, *D ; if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: C = cs_add(A,B,alpha,beta)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; /* get B */ alpha = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; /* get alpha */ beta = (nargin < 4) ? 1 : mxGetScalar (pargin [3]) ; /* get beta */ C = cs_add (A,B,alpha,beta) ; /* C = alpha*A + beta *B */ cs_dropzeros (C) ; /* drop zeros */ D = cs_transpose (C, 1) ; /* sort result via double transpose */ cs_spfree (C) ; C = cs_transpose (D, 1) ; cs_spfree (D) ; pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_ltsolve_mex.c0000644001170100242450000000110510415514466021004 0ustar davisfac#include "cs_mex.h" /* cs_ltsolve: solve an upper triangular system L'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, *L ; double *x, *b ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ltsolve(L,b)") ; } L = cs_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ b = cs_mex_get_double (L->n, pargin [1]) ; /* get b */ x = cs_mex_put_double (L->n, b, &(pargout [0])) ; /* x = b */ cs_ltsolve (L, x) ; /* x = L'\x */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_must_compile.m0000644001170100242450000000121010620705276021151 0ustar davisfacfunction [s, t, tobj] = cs_must_compile (srcdir, f, suffix, obj, hfile, force) %CS_MUST_COMPILE return 1 if source code f must be compiled, 0 otherwise % Used by cs_make, and MATLAB/Test/cs_test_make.m. % % Example: % none, not meant for end users. % See also: CS_MAKE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse dobj = dir ([f obj]) ; if (force | isempty (dobj)) %#ok s = 1 ; t = Inf ; tobj = -1 ; return end dsrc = dir ([srcdir f suffix '.c']) ; dh = dir (hfile) ; t = max (datenum (dsrc.date), datenum (dh.date)) ; tobj = datenum (dobj.date) ; s = (tobj < t) ; SuiteSparse/CSparse/MATLAB/CSparse/cs_lusol.m0000644001170100242450000000165210620371644017617 0ustar davisfacfunction x = cs_lusol (A,b,order,tol) %#ok %CS_LUSOL solve Ax=b using LU factorization. % x = cs_lusol(A,b) computes x = A\b, where A is sparse and square, and b is a % full vector. The ordering cs_amd(A,2) is used. % % x = cs_lusol(A,b,1) also computes x = A\b, but uses the cs_amd(A) ordering % with diagonal preference (tol=0.001). % % x = cs_lusol(A,b,order,tol) allows both the ordering and tolerance to be % defined. The ordering defaults to 1, and tol defaults to 1. % ordering: 0: natural, 1: amd(A+A'), 2: amd(S'*S) where S=A except with no % dense rows, 3: amd(A'*A). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size(A,1) ; % b = rand (n,1) ; x = cs_lusol (A,b) ; norm (A*x-b) % % See also CS_LU, CS_AMD, CS_CHOLSOL, CS_QRSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lusol mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_gaxpy.m0000644001170100242450000000074410620371634017611 0ustar davisfacfunction z = cs_gaxpy (A,x,y) %#ok %CS_GAXPY sparse matrix times vector. % z = cs_gaxpy(A,x,y) computes z = A*x+y where x and y are full vectors. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [m n] = size (A) ; % x = rand (m,1) ; y = rand (n,1) ; % z = cs_gaxpy (A, x, y) ; % % See also PLUS, MTIMES. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_gaxpy mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_symperm_mex.c0000644001170100242450000000145010677526530021020 0ustar davisfac#include "cs_mex.h" /* cs_symperm: symmetric permutation of a symmetric sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Amatrix, *A, *C, *D ; int ignore, n, *P, *Pinv ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_symperm(A,p)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; n = A->n ; P = cs_mex_get_int (n, pargin [1], &ignore, 1) ; /* get P */ Pinv = cs_pinv (P, n) ; /* P=Pinv' */ C = cs_symperm (A, Pinv, 1) ; /* C = A(p,p) */ D = cs_transpose (C, 1) ; /* sort C */ cs_spfree (C) ; C = cs_transpose (D, 1) ; cs_spfree (D) ; pargout [0] = cs_mex_put_sparse (&C) ; /* return C */ cs_free (P) ; cs_free (Pinv) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_multiply.m0000644001170100242450000000100410620371650020324 0ustar davisfacfunction C = cs_multiply (A,B) %#ok %CS_MULTIPLY sparse matrix multiply. % C = cs_multiply(A,B) computes C = A*B. % % Example: % Prob1 = UFget ('HB/ibm32') ; A = Prob1.A ; % Prob2 = UFget ('Hamrle/Hamrle1') ; B = Prob2.A ; % C = cs_multiply (A,B) ; % D = A*B ; % same as C % % See also CS_GAXPY, CS_ADD, MTIMES. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_mult mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_add.m0000644001170100242450000000111710620371606017203 0ustar davisfacfunction C = cs_add (A,B,alpha,beta) %#ok %CS_ADD sparse matrix addition. % C = cs_add(A,B,alpha,beta) computes C = alpha*A+beta*B, % where alpha and beta default to 1 if not present. % % Example: % Prob1 = UFget ('HB/ibm32') ; A = Prob1.A ; % Prob2 = UFget ('Hamrle/Hamrle1') ; B = Prob2.A ; % C = cs_add (A,B) ; % D = A+B ; % same as C % % See also CS_MULTIPLY, CS_GAXPY, PLUS, MINUS. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_add mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_amd.m0000644001170100242450000000203010620371607017210 0ustar davisfacfunction p = cs_amd (A,order) %#ok %CS_AMD approximate minimum degree ordering. % p = cs_amd(A) finds a minimum degree ordering of A+A' % p = cs_amd(A,order): % order = 1: same as cs_amd(A) % order = 2: minimum degree ordering of S'*S where S = A except that % "dense" rows of A are removed from S (a dense row has % 10*sqrt(n) or more entries where n = size(A,2)). Similar % to p = colamd(A), except that colamd does not form A'*A % explicitly. % order = 3: minimum degree ordering of A'*A. Similar to colamd(A,[n m]) % where [m n] = size(A), except that colamd does not form A'*A % explicitly. % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % p = cs_amd (A) ; % nnz (chol (A)) % nnz (chol (A (p,p))) % % See also AMD, COLAMD, SYMAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_amd mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_mex.c0000644001170100242450000000666510620715616017252 0ustar davisfac#include "cs_mex.h" /* check MATLAB input argument */ void cs_mex_check (int nel, int m, int n, int square, int sparse, int values, const mxArray *A) { int nnel, mm = mxGetM (A), nn = mxGetN (A) ; if (values) { if (mxIsComplex (A)) { mexErrMsgTxt ("matrix must be real; try CXSparse instead") ; } } if (sparse && !mxIsSparse (A)) mexErrMsgTxt ("matrix must be sparse") ; if (!sparse) { if (mxIsSparse (A)) mexErrMsgTxt ("matrix must be full") ; if (values && !mxIsDouble (A)) mexErrMsgTxt ("matrix must be double") ; } if (nel) { /* check number of elements */ nnel = mxGetNumberOfElements (A) ; if (m >= 0 && n >= 0 && m*n != nnel) mexErrMsgTxt ("wrong length") ; } else { /* check row and/or column dimensions */ if (m >= 0 && m != mm) mexErrMsgTxt ("wrong dimension") ; if (n >= 0 && n != nn) mexErrMsgTxt ("wrong dimension") ; } if (square && mm != nn) mexErrMsgTxt ("matrix must be square") ; } /* get a MATLAB sparse matrix and convert to cs */ cs *cs_mex_get_sparse (cs *A, int square, int values, const mxArray *Amatlab) { cs_mex_check (0, -1, -1, square, 1, values, Amatlab) ; A->m = mxGetM (Amatlab) ; A->n = mxGetN (Amatlab) ; A->p = mxGetJc (Amatlab) ; A->i = mxGetIr (Amatlab) ; A->x = values ? mxGetPr (Amatlab) : NULL ; A->nzmax = mxGetNzmax (Amatlab) ; A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */ return (A) ; } /* return a sparse matrix to MATLAB */ mxArray *cs_mex_put_sparse (cs **Ahandle) { cs *A ; mxArray *Amatlab ; A = *Ahandle ; Amatlab = mxCreateSparse (0, 0, 0, mxREAL) ; mxSetM (Amatlab, A->m) ; mxSetN (Amatlab, A->n) ; mxSetNzmax (Amatlab, A->nzmax) ; cs_free (mxGetJc (Amatlab)) ; cs_free (mxGetIr (Amatlab)) ; cs_free (mxGetPr (Amatlab)) ; mxSetJc (Amatlab, A->p) ; /* assign A->p pointer to MATLAB A */ mxSetIr (Amatlab, A->i) ; mxSetPr (Amatlab, A->x) ; mexMakeMemoryPersistent (A->p) ; /* ensure MATLAB does not free A->p */ mexMakeMemoryPersistent (A->i) ; mexMakeMemoryPersistent (A->x) ; cs_free (A) ; /* frees A struct only, not A->p, etc */ *Ahandle = NULL ; return (Amatlab) ; } /* get a MATLAB dense column vector */ double *cs_mex_get_double (int n, const mxArray *X) { cs_mex_check (0, n, 1, 0, 0, 1, X) ; return (mxGetPr (X)) ; } /* return a double vector to MATLAB */ double *cs_mex_put_double (int n, const double *b, mxArray **X) { double *x ; int k ; *X = mxCreateDoubleMatrix (n, 1, mxREAL) ; /* create x */ x = mxGetPr (*X) ; for (k = 0 ; k < n ; k++) x [k] = b [k] ; /* copy x = b */ return (x) ; } /* get a MATLAB flint array and convert to int */ int *cs_mex_get_int (int n, const mxArray *Imatlab, int *imax, int lo) { double *p ; int i, k, *C = cs_malloc (n, sizeof (int)) ; cs_mex_check (1, n, 1, 0, 0, 1, Imatlab) ; p = mxGetPr (Imatlab) ; *imax = 0 ; for (k = 0 ; k < n ; k++) { i = p [k] ; C [k] = i - 1 ; if (i < lo) mexErrMsgTxt ("index out of bounds") ; *imax = CS_MAX (*imax, i) ; } return (C) ; } /* return an int array to MATLAB as a flint row vector */ mxArray *cs_mex_put_int (int *p, int n, int offset, int do_free) { mxArray *X = mxCreateDoubleMatrix (1, n, mxREAL) ; double *x = mxGetPr (X) ; int k ; for (k = 0 ; k < n ; k++) x [k] = (p ? p [k] : k) + offset ; if (do_free) cs_free (p) ; return (X) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_mex.h0000644001170100242450000000100110415513653017231 0ustar davisfac#include "cs.h" #include "mex.h" cs *cs_mex_get_sparse (cs *A, int square, int values, const mxArray *Amatlab) ; mxArray *cs_mex_put_sparse (cs **A) ; void cs_mex_check (int nel, int m, int n, int square, int sparse, int values, const mxArray *A) ; int *cs_mex_get_int (int n, const mxArray *Imatlab, int *imax, int lo) ; mxArray *cs_mex_put_int (int *p, int n, int offset, int do_free) ; double *cs_mex_get_double (int n, const mxArray *X) ; double *cs_mex_put_double (int n, const double *b, mxArray **X) ; SuiteSparse/CSparse/MATLAB/CSparse/cs_scc.m0000644001170100242450000000123410620371677017233 0ustar davisfacfunction [p,r] = cs_scc (A) %#ok %CS_SCC strongly-connected components of a square sparse matrix. % [p,r] = cs_scc(A) finds a permutation p so that A(p,p) is permuted into % block upper triangular form. The diagonal of A is ignored. The kth block % is given by A (s,s) where s = r(k):r(k+1)-1. A must be square. % For bipartite or rectangular graphs, use cs_scc2. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [p r] = cs_scc (A) ; % cspy (A (p,p)) ; % % See also CS_DMPERM, DMPERM, CS_SCC2. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_scc mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_sep.m0000644001170100242450000000147410620371701017244 0ustar davisfacfunction [s,as,bs] = cs_sep (A,a,b) %CS_SEP convert an edge separator into a node separator. % [s,as,bs] = cs_sep (A,a,b) converts an edge separator into a node separator. % [a b] is a partition of 1:n, thus the edges in A(a,b) are an edge separator % of A. s is the node separator, consisting of a node cover of the edges of % A(a,b). as and bs are the sets a and b with s removed. % % Example: % type cs_nsep ; % to see a simple example of use in cs_nsep.m % % See also CS_DMPERM, CS_NSEP, CS_ESEP, CS_ND. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [p q r s cc rr] = cs_dmperm (A (a,b)) ; s = [(a (p (1:rr(2)-1))) (b (q (cc(3):(cc(5)-1))))] ; w = ones (1, size (A,1)) ; w (s) = 0 ; as = a (find (w (a))) ; %#ok bs = b (find (w (b))) ; %#ok SuiteSparse/CSparse/MATLAB/CSparse/cs_sqr.m0000644001170100242450000000206710620371704017264 0ustar davisfacfunction [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr (A) %#ok %CS_SQR symbolic sparse QR factorization. % [vnz,rnz,parent,c,leftmost,p] = cs_sqr(A): symbolic QR of A(p,:). % [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A) computes the symbolic QR % factorization of A(p,q). The fill-reducing ordering q is found via % q = cs_amd(A,3). % % vnz is the number of entries in the matrix of Householder vectors, V. % rnz is the number of entries in R. parent is elimination tree. % c(i) is the number of entries in R(i,:). leftmost(i) = min(find(A(i,q))). % p is the row permutation used to ensure R has a symbolically zero-free % diagonal (it can be larger than m if A is structurally rank deficient). % q is the fill-reducing ordering, if requested. % % Example: % Prob = UFget ('HB/ibm32') ; A = Prob.A ; % [vnz, rnz, parent, c, leftmost, p, q] = cs_sqr (A) ; % cspy (A (p,q)) ; % % See also CS_AMD, CS_QR. % % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sqr mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/ccspy.m0000644001170100242450000000333710622674743017127 0ustar davisfacfunction [p, q, r, s] = ccspy (A, bipartite, res) %CCSPY plot the connected components of a matrix. % % Example: % [p, q, r, s] = ccspy (A, bipartite, res) % % If A is square, [p,q,r,s] = ccspy(A) finds a permutation p so that A(p,q) % is permuted into block upper triangular form. In this case, r=s, p=q and % the kth diagonal block is given by A (t,t) where t = r(k):r(k+1)-1. % The diagonal of A is ignored. % % If A is not square (or for [p,q,r,s] = ccspy(A,1)), then the connected % components of the bipartite graph of A are found. A(p,q) is permuted into % block diagonal form, where the diagonal blocks are rectangular. The kth % block is given by A(r(k):r(k+1)-1,s(k):s(k+1)-1). A can be rectangular. % % It then plots the result via cspy, drawing a greenbox around each component. % A 3rd input argument (res) controls the resolution (see cspy for a % description of the res parameter). % % See also CSPY, CS_DMPERM, DMPERM, CS_SCC, CS_SCC2, CS_DMSPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~issparse (A)) A = sparse (A) ; end [m n] = size (A) ; if (nargin < 3) res = 256 ; end if (nargin < 2) bipartite = [ ] ; end if (isempty (bipartite)) bipartite = (m ~= n) ; end % find the strongly connected components [p1 q r s] = cs_scc2 (A, bipartite) ; if (nargout > 0) p = p1 ; end nb = length (r)-1 ; % plot the result S = A (p1,q) ; if (res == 0) spy (S) ; e = 1 ; else e = cspy (S,res) ; end hold on title (sprintf ('%d-by-%d, strongly connected commponents: %d\n', m, n, nb)) ; if (~bipartite) plot ([.5 .5 n+.5 n+.5], [.5 .5 n+.5 n+.5], 'r') ; end drawboxes (nb, e, r, s) ; drawbox (1,m+1,1,n+1,'k',1,e) ; hold off SuiteSparse/CSparse/MATLAB/CSparse/cs_utsolve_mex.c0000644001170100242450000000110410415514715021011 0ustar davisfac#include "cs_mex.h" /* cs_utsolve: solve a lower triangular system U'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Umatrix, *U ; double *x, *b ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_utsolve(U,b)") ; } U = cs_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ b = cs_mex_get_double (U->n, pargin [1]) ; /* get b */ x = cs_mex_put_double (U->n, b, &(pargout [0])) ; /* x = b */ cs_utsolve (U, x) ; /* x = U'\x */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_randperm_mex.c0000644001170100242450000000164010417203251021115 0ustar davisfac#include "cs_mex.h" /* cs_randperm: random permutation. p=cs_randperm(n,0) is 1:n, * p=cs_randperm(n,-1) is n:-1:1. p = cs_randperm (n,seed) is a random * permutation using the given seed (where seed is not 0 or -1). * seed defaults to 1. A single seed always gives a repeatable permutation. * Use p = cs_randperm(n,rand) to get a permutation that varies with each use. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; int iseed, n, *p ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_randperm(n,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; n = mxGetScalar (pargin [0]) ; n = CS_MAX (n, 0) ; p = cs_randperm (n, iseed) ; pargout [0] = cs_mex_put_int (p, n, 1, 1) ; /* return p */ } SuiteSparse/CSparse/MATLAB/CSparse/cs_sparse.m0000644001170100242450000000105010620371702017741 0ustar davisfacfunction A = cs_sparse (i,j,x) %#ok %CS_SPARSE convert a triplet form into a sparse matrix. % A = cs_sparse(i,j,x) is identical to A = sparse(i,j,x), except that x must % be real, and the length of i, j, and x must be the same. % % Example: % Prob = UFget ('HB/arc130') ; S = Prob.A ; % [i j x] = find (S) ; % A = cs_sparse (i,j,x) ; % S-A % % See also FIND, SPARSE, SPCONVERT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sparse mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_usolve_mex.c0000644001170100242450000000363210415514336020634 0ustar davisfac#include "cs_mex.h" /* cs_usolve: x=U\b. U must be sparse, real, and upper triangular. b must be a * real full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on U and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, U, by modifying U->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of U->p (see * cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Umatrix, Bmatrix, *U, *B, *X ; double *x, *b ; int top, nz, p, *xi ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_usolve(U,b)") ; } U = cs_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ if (mxIsSparse (pargin [1])) { B = cs_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b */ cs_mex_check (0, U->n, 1, 0, 1, 1, pargin [1]) ; xi = cs_malloc (2*U->n, sizeof (int)) ; /* get workspace */ x = cs_malloc (U->n, sizeof (double)) ; top = cs_spsolve (U, B, 0, xi, x, NULL, 0) ; /* x = U\b */ X = cs_spalloc (U->n, 1, U->n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < U->n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else { b = cs_mex_get_double (U->n, pargin [1]) ; /* get full b */ x = cs_mex_put_double (U->n, b, &(pargout [0])) ; /* x = b */ cs_usolve (U, x) ; /* x = U\x */ } } SuiteSparse/CSparse/MATLAB/CSparse/cs_cholsol_mex.c0000644001170100242450000000145410416442465020766 0ustar davisfac#include "cs_mex.h" /* cs_cholsol: solve A*x=b using a sparse Cholesky factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs *A, Amatrix ; double *x, *b ; int order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_cholsol(A,b,order)") ; } A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ order = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (!cs_cholsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("A not positive definite") ; } } SuiteSparse/CSparse/MATLAB/CSparse/private/0000755001170100242450000000000010620671144017262 5ustar davisfacSuiteSparse/CSparse/MATLAB/CSparse/private/drawbox.m0000644001170100242450000000127710620671143021114 0ustar davisfacfunction drawbox (r1,r2,c1,c2,color,w,e) %DRAWBOX draw a box around a submatrix in the figure. % Used by cspy, cs_dmspy, and ccspy. % Example: % drawbox (r1,r2,c1,c2,color,w,e) % See also drawboxes, plot % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (r1 == r2 | c1 == c2) %#ok return end if (e == 1) r1 = r1 - .5 ; r2 = r2 - .5 ; c1 = c1 - .5 ; c2 = c2 - .5 ; else r1 = ceil (r1 / e) - .5 ; r2 = ceil ((r2 - 1) / e) + .5 ; c1 = ceil (c1 / e) - .5 ; c2 = ceil ((c2 - 1) / e) + .5 ; end if (c2 > c1 | r2 > r1) %#ok plot ([c1 c2 c2 c1 c1], [r1 r1 r2 r2 r1], color, 'LineWidth', w) ; end SuiteSparse/CSparse/MATLAB/CSparse/private/drawboxes.m0000644001170100242450000000136710620372107021442 0ustar davisfacfunction drawboxes (nb, e, r, s) %DRAWBOXES: helper function for cs_dmpsy and ccspy % Example: % drawboxes (nb, e, r, s) % See also drawbox, plot % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nb > 1) if (e == 1) r1 = r (1:nb) - .5 ; r2 = r (2:nb+1) - .5 ; c1 = s (1:nb) - .5 ; c2 = s (2:nb+1) - .5 ; else r1 = ceil (r (1:nb) / e) - .5 ; r2 = ceil ((r (2:nb+1) - 1) / e) + .5 ; c1 = ceil (s (1:nb) / e) - .5 ; c2 = ceil ((s (2:nb+1) - 1) / e) + .5 ; end kk = find (diff (c1) > 0 | diff (c2) > 0 | diff (r1) > 0 | diff (r2) > 0) ; kk = [1 kk+1] ; for k = kk plot ([c1(k) c2(k) c2(k) c1(k) c1(k)], ... [r1(k) r1(k) r2(k) r2(k) r1(k)], 'k', 'LineWidth', 1) ; end end SuiteSparse/CSparse/MATLAB/CSparse/cs_transpose.m0000644001170100242450000000070010620371714020466 0ustar davisfacfunction C = cs_transpose (A) %#ok %CS_TRANSPOSE transpose a real sparse matrix. % C = cs_transpose(A), computes C = A' where A must be sparse and real. % % Example: % Prob = UFget ('HB/ibm32') ; A = Prob.A ; % C = cs_transpose (A) ; % C-A' % % See also TRANSPOSE, CTRANSPOSE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_transpose mexFunction not found') ; SuiteSparse/CSparse/MATLAB/CSparse/cs_sqr_mex.c0000644001170100242450000000254710620706774020137 0ustar davisfac#include "cs_mex.h" /* cs_sqr: symbolic sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double s ; css *S ; cs Amatrix, *A ; int m, n, order, *p ; if (nargout > 7 || nargin != 1) { mexErrMsgTxt ("Usage: [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; order = (nargout == 7) ? 3 : 0 ; /* determine ordering */ S = cs_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ if (!S) mexErrMsgTxt ("cs_sqr failed") ; s = S->lnz ; cs_mex_put_double (1, &s, &(pargout [0])) ; /* return nnz(V) */ s = S->unz ; cs_mex_put_double (1, &s, &(pargout [1])) ; /* return nnz(R) */ pargout [2] = cs_mex_put_int (S->parent, n, 1, 0) ; /* return parent */ pargout [3] = cs_mex_put_int (S->cp, n, 0, 0) ; /* return c */ pargout [4] = cs_mex_put_int (S->leftmost, m, 1, 0) ; /* return leftmost*/ p = cs_pinv (S->pinv, S->m2) ; /* p = pinv' */ pargout [5] = cs_mex_put_int (p, S->m2, 1, 1) ; /* return p */ if (nargout > 6) { pargout [6] = cs_mex_put_int (S->q, n, 1, 0) ; /* return q */ } cs_sfree (S) ; } SuiteSparse/CSparse/MATLAB/CSparse/cs_qr_mex.c0000644001170100242450000000305410416442563017742 0ustar davisfac#include "cs_mex.h" /* cs_qr: sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { css *S ; csn *N ; cs Amatrix, *A, *D ; int m, n, order, *p ; if (nargout > 5 || nargin != 1) { mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ; } A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; order = (nargout == 5) ? 3 : 0 ; /* determine ordering */ S = cs_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_qr (A, S) ; /* numeric QR factorization */ if (!N) mexErrMsgTxt ("qr failed") ; cs_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_transpose (N->L, 1) ; cs_spfree (N->L) ; N->L = cs_transpose (D, 1) ; cs_spfree (D) ; cs_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_transpose (N->U, 1) ; cs_spfree (N->U) ; N->U = cs_transpose (D, 1) ; cs_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return V */ cs_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_nfree (N) ; cs_sfree (S) ; } SuiteSparse/CSparse/MATLAB/Makefile0000644001170100242450000000032310375340406015707 0ustar davisfacall: ( cd CSparse ; $(MAKE) ) ( cd Test ; $(MAKE) ) clean: ( cd CSparse ; $(MAKE) clean ) ( cd Test ; $(MAKE) clean ) purge: ( cd CSparse ; $(MAKE) purge ) ( cd Test ; $(MAKE) purge ) distclean: purge SuiteSparse/CSparse/MATLAB/UFget/0000755001170100242450000000000010711673300015257 5ustar davisfacSuiteSparse/CSparse/MATLAB/UFget/mat/0000755001170100242450000000000010620672242016043 5ustar davisfacSuiteSparse/CSparse/MATLAB/UFget/mat/UF_Index.mat0000644001170100242450000036260010677525546020236 0ustar davisfacMATLAB 5.0 MAT-file, Platform: GLNX86, Created on: Thu Sep 6 13:49:48 2007 IMxMN@_ n;?IbbXqlЙif HI'p5\}x/4&|ԓg#YXW-;ǗkTa7ωtl4 aV=RBQdpe<T&9&^tPD*.xbn4F!"nĮY]sɍX žnJ!gA`(^[OQ$hb(wikhQBi> Df/Cn$"C2E+?ذB|GxL< %WdLV?Y\x>eϴv{}躧Gnry?\v]"?ޜ)-?Ww#<#<#<#<#<#<#<˱ @DQTK.\0x eגjwKU qqqqqqqqqO 0GرMEwrL!e|d?^/sI3.U?F㧑i]]kGgf˄M󃇇)aazgI;~l%[߇ϥnZ 1 @EQӈIiia5$BpũҤJ3/.ņXkcU_绌|}-e}::::::::::::ܿtڏyOuyyyy 0%˺´a@iY}y W$ఝgpLgm.m^VNM~k3x<x<W#B||ƃ~]Sƴ ';nʞ"U7Íu!sꓮ9x<T_qQK0*?G eU{XXDvoj" ^B^W6 ~OyD,e+y˨쫦vMQfudfe\yɓGmL~0Igqy0H3nxfXU OIY~+w^!Kzq'n(r0ǵ:>:|KD!u):hRGPǻ죃:贡S\2gqy߹ixmˮT;tJٹ+B>[ 0E )]v RȂUFͨ$׷TJTĤW.L-h NgEM^^^U^J|ܳ#`nFʋ~Fs~Gqgˑf+xw]q8pS^Y>; p`c$2慡kGiylc;qp8p|9QBIN:`=ȼ{!w)89W]K0@+D>uEd8m\H?&mW iv[IM\jfdeqVtIVxޛSk^|مF<"wTG^$?."'0Ÿx?Xܞ?tސeb2% q y#b$|QY< c،߄5xӶ}t}ZX5F ^tH|`16ux.[4sQi{{?㯅TiΘ ?fg?>}Y6;i;/dvZZ7؏st]6t5OUBU/i_aՠ朎Re&!|x;F8<*Cj%F?}YJᄑeOY.J98EK/WB726ѓuöו(~&͠coǓxbl1M.Ew-&c>C,ܟ ?$57@A~)g}P#Yg=ҟH#Yg=ҟHG#?#?#?#?#?8`쏃q0`*e=U}m < %&_F)8|blm{Q>7=)]7|~zſ(4~ (l,ퟅ#0?Oip4555k>?pݏk( ΟFώy ^ǟ򧢿pp-)Xqy z zu!|[;\˻{ P+V˭_֊?zG+k݈/z[|!om ͟_~kl"l o8|&?/p k+;1տC;z`EϬ?G맸 (=8ΟKퟒxy=6~̿ 8/U;y}_WX ?7?n6K&ɋ񗖠/~<2#OOh#G~MݙO{{5;7ۯVմ-!5xM}o dx_o_灔R6\Vɳ~ GM˸?yqOn0`ګ64zM8 k\$QVB+.>`aYz/=f~_L[w͉^&KR7_ڎ*(4ZuUj.9?xYɤ;8)ȇ yw׉D`$4-/$9\Lo_ФuhU?ERտm8oٛm8֯_ߜ<t2X4a8qY|{_w|xΠFA'@'ANN;lN;qn\߽=g,I}C= ^jͩsO\yi%>~{x>ѹmgxv潛 u|sopW;fowͻO[wu^_1}ҏgo'?[fyO?SD,KM'_l8͛/|nZ0m\{b|$#Lͯ_U|KSc> -76/^}ca:=vϼ{`-Z1ąI0A+A]36>"x\V#^(~Q_b 1&5h|_LY5iO# D"zM񯜑 sn0L(m/2% Td$-!Fj!#v9ϲ!ZO}oz}Jl} yqdUe}ܤ~ueu:?\]o*:ů{+K`\c?2e8,/͸~[wx_S~] <6yb-SN;ᩦɧn%#}N {2~'y:~%kȟҤ{r\'?oQj%p^+'o-m8Ua'x1S.޿F/7zR_.xݝ=;ljěqԍqYdqxDovi7}azyfV~jj~|p {>, ]}h>/Jwϻ2z>/*z;y?M֟&O+ѓdi?!O~1z w.ۼh h=A'3s+@Wbu#`}p`̻y0=q+Ёu&` X/֋n_yI|.ikn]o0~hS؄g C4IPRH=F=k $w=T*5|Nv7-.^9nS'.qid_t]ۨ}).6hܳU;}QO=˓_&. < y-Y!oRgB~%U _ܾs_ípuQ*ch_ow|=޹,Cƿs<t_~xq=@@N9 rK@.gzFgzFgzFgzFgzFgzA4=ӠgLi3 zA4=c3=c3=c3=c3=c3=c3zf@ =3g̀3zf@ =ĝY3 zfA, 7f CNrsOy<'^~xj &7۪W;Oz;p^\mRoe9H"`a1crdY*89H+#z"yHSJڇ~NkV㤟q?H<)Gc#屑dn03iKVv)ow1ԉcSk~Eu UO^sbom?=7{.HJ'\^!s?PBc8;8 88~6H~6H~$? s5AgHL'uƶf?ù;}pRu>U|Z5'Nz:zN_闽}͙g@C.,yȵ4 ǠgȭḐgf<8PUO1G^;osz(I'ϹDJY#pJMpfd,dÏ\8;z=N~ sQ$.2F qA V_ ı⦒8^DZj#' /]$N>t;!>8lw|(|DC@8H)HɳM oz@tF#r:¿(8szi9tYN $8.ef_*t&GR8n<''ۃ߷W1ę'^SovЧzuRzx/([9g'^ʱgq"8/ʿGy g[/5'|;@}ԧ|4aC9(8S#ևI:wK6ӣCdr<'E eXI3ndl)xn0ٓFUkȐ fQ$3o_H hFB#/pu_??~OU4_&:u:*ɔtF::73Qmm=]!y&y+q;ӹu^Jt^m⸛w'Cl|Ƿ`!жKnrs@|ټ L]sm '>:Jrzd3 DgouG[tT"ij}X_\jc/O<y; A0#@?G#c?ؿG3G{RU.w_'yMx7ăs#[K烐jf̝S'bd)9rV^:/X][ H{r/4{f\ss*u<\dyxufɉn0PVM~ Ɛ&o_/!k;Il[dL"E#}E{~ /~P6BlyȈ~;UŌt{Xu=oG<Fg1g.e"P^ԯ IP='Dω>%?h( >~+CXFz =CJ8e^CWWe5Їڿ̭u%_`ܶ >!zN)ѣ 9C?O\q1 z皪ʵfHP{Fc{1n)+"~3o@{j?#iQz[о-b}wڟ۟( 7P }}H*h˶:W%X?&rmЇn e79h~/;QK';C{9w>W;t qt,T -m۽[5Z1! yJc8>o}ۍ'Y^(|#Z.s(>#?@<߷NzB^c)YV{ap]hD1t؋zݮe<}@U||yn^%/qn>wme z=c] Nr8Bq &]@F1aqUt Gۻ PRBB8}LȔHӎGxՌ7k}fk٨n͘tz'y ϼ3~HNDr*K⸄m)Q:7eyz#Ŝez]}ÛY*[;<'dB?xzv^.zkjWt=[;G?Cϵ0Εь̓˿= `ϝ{a<pG<O_7Ţj; wR 8ӶO<~rEy5O@>\js˖?x?Zne~7*lc۹Y.|sAHG< ȓ<s2Ax@=3P 3@=3P 3@=gL 3z&P@=gA=sPϨꙃz栞9gꙃz栞gYzgYzgYz%g Yz%g YzgYzVgYzVgZ'OLu8hx(j_~<Ϸz< N@BB{7h*E$A }~[( IM-_)rmY6Mm4*s+Mt^=׫_P'a:Au(1@=C,g< Y yȳ@,g<+Y! yVȳBg<+ y6ȳA lg< y:"[R硎<4:~^,}>>WNy?~/n\]i{](1LN usx@t !!!!yȳ@,g< Y yȳBg<+Y! yVȳBlg< y6ȳA lg<s<s<s<shy~:/ncJӏq.27h|ikwj_Yۜ]SgūN:'>2N4 o03~hTr୏{Cȉ ةm sZd>;|˲kdetzb~ߋ;᧱bcM,Kcig҂bb1|='Lr_Niܚͨ? ?p=݇a_I)/ ɗHBs$@K$̿92rxfU⏝#5uV~yYW3$/PBWc >WH*~VX''y7#˴{{OcYSiEغi ۢG;&k-+0Ϊr8% !G/ly{^VxӃyf=!ζA|޴PŎ3jp 5P9$~y혆KŜ^JCnwO#\g>!Qi'۱d2H/;᧱ {V.^C8Sp~T3w|H&QݺF\[x= ac%5ӭeGl_}5*oj|ꕿVtp~ZI-S|Ƽ= T.nxGri:n=Z6Hl@@kz:thQ_"yPl'q^2M/D5Jen(=3Ӎ{2 } 9};ϵy #q'Z;|)7ӋA [O7Ǎ٣ħhI=>2~Sp =_r *YX'G7n84EIيꤨls"7%1[n}#5-6 8$33$s8>Mhoзu&G'8~G ̀溑Ej5Ae~%J忕*,^WXJ)S*A_oܐ.g'В 9jp6dKмD$H^kF '~ƿ𶭫2}]JP6B댍s˅2+lܿxnLNyF<ہ:}?lO2<;8w^'?=1C]]a'?G̕(嫃'g1 =t<)XǕ'-1yOHMHL>_Ej)N8 ~s)Uph%XX+I=0f3tdH?^Vrzq<}J!qŽ z]B;y5F@oۊ:ɷal#yti_eߏ]pgyvT]GF8])wcZ+d[6W"9s<9σ&?|&{%M24]?D珁mg !є&y}@z]:Kڊ}k~uNݏ?VgN3Soxm税\5UOq*OCu\qmdU ~_H3k}mO03|<&yGG`C io"q[ ׮lCoMfA5wT ȑ~83n _9ʯί g,s>%}N3 :Thu:K:`dE+JbX?,ݞm4мge[6R _aDŽT:13jx'a _33L ~dG]=3(UpҺI; t잣%~9n>QԮo׽f|zH2~#>hem[sN[>Kɞ_o_J%C㟵]7%p3+賂.#Vuo|mYTtv:fH>zs5q鿉DP|?D"#?FƏ|@o:R'fN!_AL5PB>(A_@U]sVWt4Ɉg6:%dbg3DwٯyblL F#Ģy.u:rtG]%Dd,%f7NݾiԭI] 9S s~߇&FqO>7Lgh#x6y&-6 Uyd>ց;u@}<e>ց?tBsO!ki<~w0_\ |y@ !k& _|`~ %K/_`~ r_[o0M$1o{rBBrI-鿟M`[)QsR~>&t:h>͖/ob<:t$)N]s0_$0_$0_$0_$p%pppT?wΝh//f:\Gġ@qx8"PymISv* JŁ WH|G_&ޕu)QD/0q G18=^"G&>8CG$+)`ϐ#mqGyslrJ1\a?گyi0H o0E /Wn241H@x~1 ygB msi?/o=#Й[_x[Ѻ.Wa)8ϑժncgwϐ{mwH s>7ݗ9+O?i8~1u^ݼs7qv~t$sa }9/}o0˶}J6/yoߤrP!MO?CRez}.J;|5+]FϗXNd_+!_#;UKciaȋ7e+\MpQ@ w]rkҺ~8λ}>>84F?wz/#< vIS[~swxc"Ek-Wp~CJBR*נv+R(ONgG8׵U/NY1rfucc9r 5]A[}Ym$o'>f O|L~WL~MCu?[lX|i|nI=2[3RW[v/SB$\Sa~[!n7}U_ïytE\>,n7^f BP}F30ʇ}m]ݨJ=nc5*{wc=ww!.떨)nwp1][.x.x.x. t}[>9oo԰^<ú'LSg(?x#RRCt?l 觺[D'z}hg]7-x%_y!]JrPs~<>N0ɱ/o'ڒ`/:s|3;L<33t3;塉Α g?O_y1n|ǾnKgynfܼ'^Fyg\gzϣkC*7`2[hS5Z{QzY{pyyA$& IHbA£$B<6nVKA(/KĩJ)"--Vy8T@bJ:ws̲kjLif~s{ι{K+*=voR*!"Em3~sCskMEI2q##U며6S?oc^-(}ح)ze6Wob-6õco&;̜W;'}r{30au7z0_F{mUb'8;vt{nqݓ*g%gth(5&@_:˜U-Ś[W2RX،ZS3|BbƖ5La}vT;4sGS8 [p5kPvZ*V*w g:*\WBݶ:* +lÝPl[u2b@amsm5Npm,nnqz?T;.w?s'OϢ{dyyƼf:RG<8jLv4i8=vWU9iOk&;Vo;q~CcFsVYYuz<ՎQZSbgZ?u4y \s~+q8O?Gb|"nB*.-0OOГCPD#{7[ ]cv$ x9þ(sKr69Rg*b bcx1nD 6kTM|FJ D4KtP9 {7ܯDžG!I=E:MLop {#p.?`eTpF_P|BJר;?z%*V3ʟn-d1G&`O?[;ds^)볢dazo--JbrYPڈ )u[׵kw$v2N}>żZ S%\Ds ƍFg/y>{@I8䢱Qo/1=ݔ[9 >t>ERK)#9!Gkd>Gz{ 2c_0Zx ~Y3ޗa4cQ? g~<0%,.EY>2Ttچ}b aE4N)/G~ż,&FܤyO+%.?a_rw7mWo3gk.ńJ}ѝxx"]ɌkE}E;s2 uޫ\_2F91{?R} 7YMzhG*|ԓXl<։#vw2ceć_iSPG ݕbixs9]f}YqX:3 :[2!lO(5s޶d&io1,~xʽR(Ϭ}="4t,~7Y/t7끿XDt&u|n5o߹3)P- ZC}Ѣ2[sxPݐ+L~ m^v E$<.]}x9l`TݣO9o1ԧa  ׾}A3-~ƘoC<2N~5OD Yfs |%<Ɛ[~W^t9k36O:;ykߌYj[Z `](G6u}WgP#/֓xkFH&׆;Q{+&-eMe{^Z^^8ʺ:H\4"_'v,ͯL2TyC=G}Dbpo_CUm8y ٌQ݉/}-qt? 7 .$ 6Ё؏#;Yze<{T'kRxou9P7'jCmqa*#ֽe_"C!eXo_uZtܻ  ك &9Np㗕ħYjC}PF$}ȍE:iѨFq)}{?{|榡V7nSƪ|S&羸`033?e ;`;ftYgA)y;X&i#I"H澃gu;<1Wjg;}okI~JYT$)wLzJ}>Zu&] qAl ׃_܋Xn=0I'"R 2J,zd:\Z-IYNIU"Ju,CcY枹?J[κkdWӶ[ᖛL36l'a~[5U3ڧq?HOKһ/H K6(6 lᬾ0xI9I+^u Xф;%Kd%HlpC2Q|:ۧa6)F ~gTQvkdřϔ֥H]L5PuM ͑ݥS|z?S5i}fp4܈ ao0,"hih_Fuꞔi GԷ|E1(49>YqsVWLѾ;U 7d_݇vwg}*FV֬1{z@͘Ehsv Py_՝|zoУ҄Fn ާ+?WA7wBl'nEKVh:VZ3 ťIpl⛑cOQ=i ~䎫c 5:zؗjԑekWaQU"D>#{PқVRa+/"t,{+ , bBi&xCf?7j0_~Ow#;b͍ҏ.ɒ2b̷FۿV11 g)MFVѮC/_~6-=Ľ(ų/&㱶3q<ں- 1յTP@{h _M W0_V~J!}τ(O>%>JA^bGU)zy:2 @mJrL✊ Us Jy c#;hw):[سaj~ hEY!4GH!nTC..YZo;84}M#4E9h=lxCz"ͯĸ+WQwO+>o\~ſajl}#Rx0y};r(.Վ30a,nqŚTKg‚ V ęJܳ>52ͨ?~F ik3_ F&:lIevYڀ8ծ`?!^Kߐfei#B=2kNZ{ncGȰ` LrOYmn\ʯu89! o k,1)j4[ A/NB9Hd} =7D3kAk rIHCYw:/Aqpr߄=9kt˅:N[~ӱ%Eۙ8)/9Xr4uKSAcd>Hɢw'B"XS}mB] fD8Gc}sa7GӬuc l\߂==*v F9Wy:{ɹ۸[s~2s{ q䊜fq j^\l<,G:KPAm-$ξO[>E$}dȏGbvR|Xbl} ;- ADZ>|j>KSmD_ֶN&A%:.j_pX4brj:{n3?F %ĜEnȳV)Qw-sq #qM 3|rX߃ kz`q5ir Q}<'+[/}\N<ΣL/^i]380uk zz\2v@.))DiMiOɸ~۾qC]mmcTt;'(=?dYӛs/?I(ckCH#>:`cpp{33rDžŲ6-"lOK}l3-OyܻY-H "([Iof1)C$Ϊ`k J# 9~&V"r Vl1ȭaOfl_l8[4[Qu%g|qaw1CN,d)~¹&k(Ϟ8us)aϵ6f9lǩηXZ6pXܡ(!sC!E`a<1Tk'r/;okd3 : a[]\yUvnkZ)2 cq?` ?"FCKDZ_YˢJV!t@!%ՈsO"̈́BBCH< MpcY}kjݱt44k?9KEn=sEЫ\wÌ^nӽ\Ll>.Tt۩/j\ojq3AR48hL@9B6W9 nO33;½m )-ikQϜ3^ΞSâh#6"_CGwuX wXD7ƣFtVUS2ӱwFWC\pfC\9_-}"V) ;::LlM:h}Ub*wG?׃_l~cܙwtUնƿi)H!P1AJ+{*)!F&R.4ґ#E "r!ToZ{1>:k2,ߜ+j$mLt(A/_ԓTh[ҍ҅ґRQ3$uRgR^P&6^S/f/gFI nuii -VJ+Ku6TdJKi!*_TL5>9; u)uiLiIWg⁖4^M*ON0*3(54HA:nݦf:oh9\jQɷwFJiЌHA t@{u i@4Ճ_VCǻqCJ:UG8 ߖϗ_6}~L-.0QLPUC.W/1ϻR ۏYڲŐ3wi86TP?k(P}Wҥ}WwSkyRtkv{Cߓrгݿ^FYnvixEZNb\z} ?0~46^{83V_j衡b;"T4_lC#3Υ. ~"PGqrrZv.PaR׿I -"d{= AV}љ#{"҆ОJ-u"jsYjZ17n.rU\ '#%a e;Tu=qXem?I&wK[`"=7Ch16Pno~e. qM !^j*g eld4b ߴ4dD;އs9d,hx [|:(G,q;9QbA2>1 ô:X>{YstBUu8Fjv>AYnDUh]Ͼ]ݏՕ=m94{MF7(TyY;IsVS8G'OI^?"?chEﶝ )v Xv ?>{\ Ǟp|??C FЋX{G9pAxM*ֈ+nZQJywlKϗ Q0R֜u+C]WjxM}LP|USZW9Qދ|ݑ_]_A)z8K;rWqnFO|7^ZWvisŸΓ :zŏ'kp_OGX##k4Vf {ñr9Yۘ NĶkw6|J l)C,fRKlT| F[PbE<(]Uup.?|Ox\ೊV2x8{~5,ݘ w:.U<DF1Hz'e+s01 0t |SKz{vDy0&mTp lj+dn6rOG&Z2q3oC]SǧCm2]@-35xie( 6Dڒus@CglQ#FV 2]\ chTYÎln{=Et=ioOg_\J/l>`lDw9~7|oN`O[ Gm ,B'Ci9ԟnS-;;xaC_ߔ}Ԋ]0٣^M!D~fFZag,>ʨ;J+a @r=~U;mPͥda<λ >*ծ˝/S 6s뷣pzŷaktcחz {\@G_yT '¿[ `ٯhȼމg`.OmO  †16#9J?"ϰ=.k%6 ]aH[ߦ gM;p][ΫF>gE?s$8543>}|%"q7}~~y'|N[]؛'f#m|r|zɇc>H-Б=n8E;N8dfl]`쾖Ri/B]aֿi*W^uq.خ;tġTr\ӈIwhsq&"xS/[&ΦN:?sCovg'G3Fd}#֝m^+ڑq>Cu)=\:[ |Ӽk͕Cq ͱzj+.u)ߪt~\NwpW W%2S52ZZMpWvt%]IUGW5=ץ U}N/jG=pkT6tXSRJ{ o_fg C+jG2PhC7Y: ERlǏ}$xjdbd9ɏg~[%XzC8o_1ڲ:%oʦ} m4t+Zrtl2IL/ g!cRsbk 9ÚB0^/m_qKMnc%FV^X_(.KXp?d5\R@6:{y=42To*ewY}Q}E=FB V^=[]fOnM]A}~lc Ŧ |~ ƕ@?R(gQfagdY~|@~ܷ0ӏa-?ǸX#yn?7N¿Pj6K@ 'Ùst8yf-K);t8KMegrU1~=~5VaͧRF IbJ/}ʻs0^[#_vns!W8vN=uث <.rnEmfC:N!z[ҶHSuR?݃of͈ G7٧ qOs##y,J5t ]MumXK[Id fsi(̨:7H%N~cRGS(Wa3Oh@ra[?%2uC4#K<:״iՒuޡ;?V=~/ҁ-MLXOoVh ^\GIԼjcOGtbbܤU#I\+?{-[ձ[q-q}ǞEvvS ZQP}KF k*!,Z6j&}J߾6Wf8x<_A\+:j2$ff*]K{IPqe5KS@- ӁjY7^&jO|7*Bsu+vzKnWrn7sG5?.H{8Je)0o. tMs^MDHF CE 1G RmK'yWq5✋zZ2 xn`^hcAsÑĀ-J6yt lp腍,8It Ig7pSЩwlHyl,=/rTF4o\M-W,̐p*Ѳ=Z`Pjx7-\I&J U7t$$t!Ԛ&Ld[MΑ3$I;R#tFR/ · 2B1OƗK t'qH6 9,p2c[Lu|Z~2σT&f`B-^B7kGN,W}zo[`[!@D`t ;wa&p`%. d}D> @b,0L}i3O$A C؁2Z48XVFvFvXC$NFGkq'EQqkux&r@ (!ȨA{҄o^ޚo}Oz9k.qOFKL= tHzJ8lf0~kFx3S΅K§&aXwqL B41\nȥ/"0Dgpz?tYzc\$س9e̸SB=揵pQFڔ] CYd"En8,&Hw=q7"'i҇ьf s96|^k'#=RF۳236^dF`PA|%7 w 4|[fk0iY $DLq{{ /q < W /tUƾyn.3\yMc[+p`q68m/w8mq u"05ʣ0Hi5=،*iH߮##c2&SjJwJ d<޻jy,ܗ†t^1f?"f2;N3"K ]$pKU^B@8'' 1V݁Y}S.Ir4YG(\ $},/mVA:{v qAœ[aJSR/6mL+zE?̏@r;)jnY(As4o"I8 #py!vaWT{`B"aa9Ĭ ckL7hU8 '>qN` ;~Q޺Ru$ ێ/:cPhEnҜc1_VQ!]"e(YᦂNdWAZpB4㍕Q .U#AI!עL ʵQEu`4\Q8*kiEC;5v%>7(z稇X?CN2n{|^#&$?ԻU9 {{S.')xT{g4 O|\`GI(J޽mO2g+.?zi8GFۥjN)-E4^L w3*tA^ y!%".'Szl3򇿛=%!DMWB;}Goa++yWf~r'xx4ܔuY!XInl=wgW.w!I=-_@ 4YKsMHYUV/NsʫlIBHD&EҠB:Dz`F[SIӘ=s}A\ 'BJзP-_?ˋ4݆2^<`z !3U ۆ ('0BU!Z-Z dgïZ'X"AY>TF:0C|l&$GB.!%cTIRÿ#FY0IG'j`mr{2CE}Jv(S첗7FXonm|EoIr̉s i৕/qQ ";19NT4y€F}{Mk'gä~ ĵV*.uL /Չh\%s,!}|&[H"sw[lǫWPB,C}<Rs:ne<-|=[c_sd,gmjTw17rLK<(/&ux >M_$=ӛG.SBd]AO;zn 5:Jb_zRH=K_Quilh:f}mZ ]0GT HuΓy-^Ĭw{ݗgѳ7 \[`J)ꀀ4 i5{q[*U"=8BK )ޣ4m(vrXwhR>Q0'#u<.9{sǼJZld{5yۥ)RLPjc@i? oB!V@a 60Kd*ŕ:\0vPevz$ǜj2VSg>*JAܚyjwx&0(XA V(ၜQ[}zt2ޔ48މ$wc ^;8><='#;Q2NPO2Efk2~J5bHr P̬a}̃6\h zϩN볠Vk^+tKNj9oOlWIvQumsSP;fmvq~}D>vUUˆ6Kf>`;v߶Wi 2'v{1P#AxYa.efNvd(,[K HHeNP]wt]=WgX8 Ëʆ??X4h\S [Z["$iZLohTź/"Ć8,L ~Z^Gb*{Lnv/k`b;*UHZAdEn1~P 槖&.1{f8c26FժJ"煭sq¼wڎe^e4=ܓtfX/>\IO"Gqut8O|&K 4~TP{$殓7,$a&{a]XznLMꪯ豘+{ubG}+yFs;|>=!ip}efj?NQo*_Y׽>Ι|C#o 4Yǫri&%۔G",*Iɣ'TgW)ylSy<2wh(m1K]%"`m-q2,󽧆W_~ٚո\5v Ć&pHT 6_zu;kw@f LEpգ (76?Uˊ&qE[ P,&&3Y*9ԪT7GP8v5fajq'6tHJL ۓPZ)47\Bh1pP[ oBE@u{XD3Ε "BF`rZ.b|b|\,rYV_t*KXc5MlU5_0`xԒ u1`pBC=/|~{~ P~Ƙ4Hƺ(93e+TPlgkPHe~R|;ϟU9Zɝ}5״8 Z5g5F+ynWtA8܆6 u\hWjO:S|uFUh %Y{~=1ϢVPEI7$E_ERHnV2p-_=G{K޵)(G tH zYvo,|ڠA쾡nՠgIhs-~ut=`$){؍L9N#dL +OߜF.c&mWUcïz`u=9[r9dc)J9҇<~~hT 1E@~o[]|حQ^qi>g?bO9EQȉ>M ?~OJϤl5۽5;rZ~ik-lzin RfTPU+W~/iף٦3d~;D'Gc !"Iԁ/ԋd1gpxG4W 8Y7~)j")k"$=h-D.l.5vQ_BT2Qd˸L!f\r٧oR_ߧ={9?=7РL}< /ڻQa]NP?/"@CŋH6"&dXv(VX4PQvwQITg4ըAg.?k7PߛD*N\N\;[ihV$ʃufm sk7S{r[)tьP]*MPV_ B#|= `O]}i^E0uIYNkڽCj;?b5蝎Ӹ)CDl{")hė=o7N<>P2wC<ӶSLz| 0Μѽλ ZS/AQ%ɍ=eլX qQͰ~u ^4nILǠȲkMP?#|49oq,FT@礙ʫ2z2sP\~4kȈԹFҨLfB?3چo3t~3~YTPsu)־JѶsiwXkŪF>&Ki#1%=Eo9'a^k]ܕ/)a!jR$ KLXׄ8>O*VA;kI4:P;OZɷsDyn? XP켆=Շu〆~;K؀AǽSތ|kviЮ[X3hV[\$vɖmt Bk6}_W6F%.?,ɸo>kԽk_}b= (([њ}pqE%RGAgHc`Aem:ڊ hq F~tsm]6 $e|Sk[mJ2B)DZsu:s^>pW W՞u3#;&M+B#crñ&mv[Y"gG]>ؕe\R9Î?(xcn2HajaRHFJW]-U>)[Ԍ+ MpJk[(N0l5Wӌ9dd|'TԯQo #ߟULꥋeSgտDp-st|pՍN8P"Hid5G Z:vTªUेb+;j٨N\]06&mp&֭ZHIMl`IX1(uG5_؞2J&mg'8QTU8+ r.~׉DP`ܡw/xiBW| j[Aa,Y)OW^u!/!>V:o6+"!}?'W 8iBV:3D$*%:rT") c(gdJrR¦#ǹGx 6HjOތ1>nѰ[}P(}34 gDZlK#ѯRQ%~kravB_5@hc\6sEU҆4y\̭%ھx'e&D̠ݟ,TJs%n.іpdeP蠞G~ K!StDe<ifjVT8$^j8ݾEWQp)E/}m:`gXjxx$dA ЧMv},/r9~z!vMG@WDvC5g&ҕ=%5y[jXcvOܴR2pDb,9MǽΜn Gݰ&&-8Cm6GPRūSuƢÿmYBQeZ_Hgwȋ˺p$j;!f/8ӕ*)su8qV&cs+N|'= (\/ݸFV$@oQ V[0 Et? G y+ 쀇>9򰞔fi5~%,6dFb;Pvb1t4݂v>u@=k?}$2 ڼVbaS,K֣Zԭ^O:VOjfyf/+:@fLԣAat)Wu?&!-rGjQ˯=T:cT(g4"4[ 纎 L VZ/'glMJe0upg.?xQ-1k>Zϣ CbJtt8Y5 o,橎ePuMn1(I Z U|MLtr&:kL(X,ݏG@3sk;([2zވh2E[CHÖL ISF0B0Q ƼWFc?K o4fxˆe~v9t0KmoU/'JbF>eŢI =f"ӯwW[߽gOÏs p^@ӄ1 )E@5 3p#*6bS   J b%UJf0Xh!/q9rMj|wݳ眽r}bB;8y{Lab梋{][5#&Z7"1?]L~ C+Ԥb4,  #m >[q|ͩa Pֿ>.IsW;_jV5ɥl4>}CR:ܹؾFi!"'x ߊupo~|f@[oGv(I(y5JO2Tآ"1׊.M&#E>NeԯBƭ׈9Og!E7$$o~1 iZiXiwCօXFy=lc"wfiP̸ ϕ'_0H/\ 5:~d9cZ<#)?@ >' LYekuy"!O^Ac=aYzA' eґ/%UB sٖ3ohԇFZ =ewS9[3.2ݢzʑKVrz28W9QZZ)WVQuPV(X),ZLMTj+NQYr_Ԝ6RS)YfX(sz"R,o۸W) ޲jИIU?1.+FCnEgA z'kr[#Gr$H# T qm QOpT߃lžgb|Y {4p3kHed+z" <[$Ch6y5xlZc>ƅ_tvJ=e2l]%ʐ׵#T2N?ۂ&cw9Ȣ'0u 'KaC;O<~0W?PrrX.g=/qT>' Vn:kyS9s/m(c[?,Qe}=mM .kN`!a+E[-%vM Tּd#; wȲ (f#kw\,[VS+)1喎dDKb# |l?{i[,`^ B_ =ak[2y+ϕu[ehvFFO6߁OoD1=#YÑf!"#*ώg-Rig) "wo䣌9Il]Yý>{VΆ$O|t2Ŀ'߭2 _X_G6tx|yэߚ`.\ȫ\0aG~}qŅyg5RX tM6 QBH"`H 8HƜ|Ej"Eli !(ra D/OPDZQ&%Iz29}ܹ3sfm~. Wac-.L 2P39@Bch3@WG9b[<XZ(O(| s~:`ioLر έl0wMh5(ƶ'~}\hWJpN7 ʇ]Ż@Gs!m+9-O<X@Sm"o# [X GJ KaS"BHTo*mk%Vm~)K¬f ra? d(] [grt4gKB>" o{/ew8ڂ[r-5Uc?jP{ / nm1V\Vyv[yE%>d5+!3Ԝ˕VBp/])#5V;o>vif@Fӊ+'g5 ߰ywI^%*kc#Q}N&2kĥBE[ׂloκgԽXW+r. jtv_B [[ڳs-|-_$\BWGϔ;esSjI#V=A,{e"]KL)L);Hܨ谘w8^A_l,:d }-mcQ?dYmlD;\K6_,a"l.jS?)w4H1s ͟nO0=ԋ1S*=Վ'{w+f{/Q{x(g>GLU{4.'/'xvSzͱ?Ԏżq70UKLʾ؟矤4O$ޫqڕA̢Rb :-}1`jVst_KJ('dq̓V+fK_U1_7!9<**Wp?)OJo4($z2ŗ5'"G#Ꙥ4vRmtSp\AmGl^;ϻ Ļ=6r_]omyc>>i7/cX0G6%#~wRnky oSVk4?+9eG:X3X/ѷ3[Y?}mLwB/u۬S~E11{Z܁z.w2ۙh`:ݷ慏l:04nlR.zkg1j͜7Dẖrͬ[Z6糎LJ׉?^}zʸYqzVɾO>QpֽG[h>U7{XMǗ2)v!!)mN2[CRIn)!d&l2\b-2lgp2E;q)2e܎gus 'De[P c?#&93̽)xۻĨQcq5oǖG nD^G)=G 07v">'ȇ ($<<{K9(3}ߧ-F}OPyY&MGn&P}q 8~P>ŝQP?TMo*1 Z_ ;,zO\j1^+Y-ɲݯxOTwl]wTf09oj_5x(MNc%'ajGOjt?anH vF%`]۟Q-_졁K? D:gcߤ8ye!4~ +}EXCCs Z#.le#A#v(4/z=2╋/6YQA{ㄞ0 _ ޙ^N֣/9˃DrcjO97sW΁틈Xs wlWx-v{sh,(eZ}nd6 C\aGvnӞ9cdqlh/~f~@]>_rqfWRj=YϲM}X=R _P}vNr)ͩ=G>UJɘCjb\u:5U7 kWsz 8Έ KdaO: ~hK=aRrn}KOUMR_JeƥKz},,pQK;#RmKq!zL.%\J~\z|\iR'GRjWIIKf6%d}lnr:N6i8YTﺋ[3Wx˅RSL8fE䧌D78#%i9W/"j'?D('87&sY(Ú8ebk/uagG|}HsЋv^M:MקȰ}'Ч87sqlZ}I}0Q4g[h5]ĺ.Ӧ‘sBYubSx/g`Z螁vs*Ib?,4I!Kt}|cwx!iTVk6gm t~X=o>+@3ڑk{'8]v:>nmqfI1ᛐ$$aJgRchXoqׅM0٫\C!lP| K(گZִn;󿆿ttpu˨Mيc޾[:)'1օ ~fEM~> ѢC[+X *q>wM#xFtiŸ{;yϐv6Fe 7]@>t63L'|ftlY|c7`;х) hAn?lڏWCqVzJ]U Az=Sdۋockۘp,zQL {\#ʪz#9W{".sZIԦ_lVnSƆ~V( <7{a2?"jGR%7/车oe sIb>DlTHonMoT#[I;4E$rc"s~gf6(_*Y62|b p_4OYGo)C>}b;"ITB;qF1/q1_(]gr|U!îЋuf~["*[ޟѨ@m@nJ#F/1霊p@o>УMA"KNdn;_My{ ؟5IgvmaJLOJoG^5p>t,Gv}@ -liݏogyPT[(FGA7,!q4.EG"8 e$.T"Q#p`ȓATD+*".kRLK#U7o^N>\Ƙ1j#eߘŜ~u- NR2Bi騡v;t"LqЁȟǝz_K,naJD<%g&SGJ4?23-w)4ˈ/yrV.|8gBڋr R 2d[\<#HMU# =sU#s>z۟1-7S^lV 2P"}hJ<9C|iwfeVsYc$.lv .)vLwwԘG-GrDڅ6%WKu˙).k"lpy@G)\>]mS}^9<ȇ5*B3^]J9^v3Vujszu#3%'Qj}_r}@!M%q_Ģ~x=`\ҏ$_zηsC/~˥݁3\׻kn9x굜sϺTL2NJ]$]w-G-~*iy}!?y \<ǐg Qr!7 `إ-`d1I{yUEB^ }@h/k|P#ڳŠC --ϏVa|]<) hAʉh2K؍3Wbw& B~q^)?[=IvXy,1ηPn͡om&~GOQ/!"O>n2n%{ T`vSD?C //)Qr ?zym=t;_I8:CQ<Yӵq!!{NJ_0 RЗg&#Ģq?~[xcםBW?>{ܶBNX)a8uΩn'/t9x<=~5Dإi <~(b_L -:gBvp kryȄ%NxP([lTo\)З8G#{>6s9"Vz.B5ڀu>gy-C{Mww*$"הCyF)}O/Ja! 1tr%cL!y4Ng:۷OCo%2~Měr4ap.!#a"F qKi;0/KXogwsC4yX9T}[;羫˅ 7C q~Stz*;O!փ5]MTZ#_3%Uzi#d-Пèw!_xih3 K/KZ>L|^XZܴgVrtn5Ω#{or~iM=KWʛm\CNU"vTcݔ\^U)ƦU2ox=Ω%}sf|>C(qse$ě ~E=d2߲!F̧<Z8X?co/8SVgrUg@]<]F\9QD$KeQ7ܗl~{yܖIv@ 7Gqa}xbrʙծ#4MW7Bsr4wX}Kudfօ]\}G)yI/lކD̯ ЗL̋t{2s`?vA6s1`WZ.T#ņa?awc<0O \o%%Mpb}~"~\y2y\^o\U3YяwwNOQ 軄G缯9p߷VY#szNv1˴EоbɊ y?K]dGVqXV+ĽdJkae_JC~[[uJ'}LK| K ?acpV2r!n뵭*Zј냔u?He#37'w;/Z⻂cs:o*P'|7 SҎ9LqLqg7]D==^ik>Wny vs9Msgnge}ٴΆOs6~FE(kg9KOϧR#4-S9g i[[؍{'+;b}f32wreGfc78qv^Կ܀{9m~aWԟjQϛQ^Zv8w1G2a/S(?.M]zz%ft=&cJ) h5m"tNoßtOrٴ,olWJ=;_(e)T/'F8)@y\YO4%G\g]B4bJ"}rzCIz}xLN?w5%z6Jeݰ4?YsQ&&'y3W:g.R5=`s~Ow$D`K][ϧ_BҎNQH I^z۠=\}/y&KC\̦]E5QsvrLO,88UaGYr.}(OQay[b"m县_1e;7va~^T.r'~2XQ>9+ ʯʿSL~&qӎi87f.{Y=}Aؗ=B$-wd/iMQ>>AzrM)Dւ2̒rdOi7 ֖C-D؞ t(H ȭ99i}tORP1S6]qy྿N}_v p9xM9iPИ\,$SFaz_mGA{wRLgc|l^Oܜ醺~v;/%BP .dG#҄?S׉S3t>mߜ 9۞0E[kp)g>\Kq)|c̥zJ~U^rum=윆}ܲE|7*Z,mgTfA<=٠/}`}[C9äs/MB;tq:"w]-xtិ{|{O"X̪ 5$21 _o-ho޻̾BO$݇|NL|<ŧsE?1.k$|F3%V͙HL[T1U#;a'LMΎGͳ2A#ʬvB>"1t=Շޔըf>gN-{!햽ip吏oRKhOUř29>q^O_h~ĸ/)zdҍ1]Zg) D ivX{a .hxwēŜv 8}Cǵfo$jC ?MsWpUfOMsBp/yMe4 DךTԃnݻvB"ўu`G(?{ Vxܰ9WWx˵ U),b^*Ծ𞨷'i ힷZ~mEok|T~cn*u9{tckv^O@NMS)^geyʧ|ʧy<5ca0ȉWx¨zL迎%(eٍ˔sin!%by3sCW5Jɺăוs9F4qk}>sV9j.W}ނMˋ|t,K-"_,/2H NН;/VE>n7~.7#3i'0]у -K˟rcf:0P#= {$4=!+08k; ;v|@ JQ@}Zn^ # G!o M Jtȷ'J辳##*}~ 7Q/1󼮂6S< Ԁܣ1aYs"YȯFl=)w9Q[>CD^k/gLydb]_H_-H|">! lz>&Һs߷`N4dV"X E>';"A `,[|r#n<'(+Gc.l OLS`?l(飞ꦠ|e[;>d ^-'}VHA=W`?_rLUS'PD S4N Ȉ#Kv}hou0B?.|7qۼوch= 맞Q;`гcF#4ox3=PZK{Ɗˣ qda#q{9>W zнzw~?LO`oݜv] K4q^ x9`l`8} z[XiiVyKgڿ ?,2i4ϦxfqZ8ZzA ͣ}->V!y<~ vbYd4}i^kG>8&٬k9Z?}޻B9XO0g]:=oy_NG ~X;MvLE`,aODfH}ΛWknE3Z:?5{,S(?J!=RSI(eP|<${^!by2=՘gG3ZI%h-ޅB_t?;?n ^ ޳R;B>TɦIc7'w5Vu'l¹EY_[ D ? ~.;7­\aSXW8wu[dvkzsū |/B*DvK6 d+f7瑐-ck)_d!4~JPיִ m˒0o s8AH6`IOh4' yYڇxWqh U~_Y)Λ.I}1oߥm8wMAxw5<~ڃk+pe'Fw_)2ޥ}YH =y(K$EFe)ʅF'PH r/Π:&ʍSvf(=4{*>, z- 'A,wm9gKԒP^`/y%`]`"i]]q|.e57M|-e-ӄ~ < C[JZ7NfBI1|N2hlW=\1XGɒ/̫ Gc4<OMj?\M Rm3oO&mi@<] 9S ~ jl,=y=\umȞjAX7>,HE#lO8Fqk^N=A_qu4#]/M{~2plwp֭l_$'Ӈd LKI-E}s:"nxkPo7yNė לBϰu3Uʅ]A}Ug=*Yr띴a]N6C MXAunʵ6`s bgEt +6B{w oUqd\MK} [d)98-f#qX?iDl##ɡ\<+vcs츆X8v.ps#9nI[0y[{,"z~[Zzv:xu+ {{ǵ4IC!v>4wj2Owc~*>dO.t#5g&i]}=y^ӱ/^hֹV̰c!o?Rrm7i~9pߍSVpLpa:πH 1ji_KݫWw~?-]ۗSRV[^٧NSSʱ.1>8nkjsxα="v2ɲvHF> :ބ7c^5_y\sP/[G:Vo;GU'TӞu*ᄂ!LPmHDl;mUݬW$ӺmXq22ć햤;8x %͋c? ԅ#o.徎N;?m)6},WA2wLhW)=\UVe3@O ۸MڹXG~V= ,n;dn#l?\yq/1Q>ܯbӋ2W{V;#^^{|ZOb?D6^sj%Jw=XY'T/*>QAkӀ"c֜[&9't5!59i7 &$^pCFh!OqֱU9*Ot9V$RNhO!AYUoSvQ-XinVKI5~% eqO~yBMχq0A=7 ||H+6g4ާ+od|vT:3_b}=NfTp~j7 zgVR,8܆X7lS|Cyo;~x(ɧُ=𣔑v#%JO#~Hτ'aK0#o*Ch#P3>oCVaƣSCi%Q\Ͽ.N#pR(KUSP_gLyw{Tvnڒ[AsM~qhq)TbʤAa:s Cs>(?D} 1QKŹeyXM1,q)WOs8GuUS FxJz7%<\ԃoR '.2Gƭ^I^gc= [ ~)nX nt,chV ΩCSEJ M{G#L15 *i}+yX$xB:H`j2.u y,[{DM @^%W +3OF U7 WKf<槶y>\"# 9.msr^I`S}؟>!^=#,o̗+NumQ)t֭WWB~zNj{]iwIGbЂoNjE/c3y{x%y_ZI-y?kG 9HٮJ/|XomU`eM|h|PWܒ, x]D aZDM!kZIOub !<}>(p2VdΌaz{SȐdގyb>ZB)t[3$0/Ws=m{e~3s}uWBgvheZӅR}>z,j/SvOc:Og6ρu.|MTy]ej[v#+y|2yҨ5}Dr[әw9wL^;T)|q~}z-Þcv)gZ xW26;dxO4\aogIƋ9,[普hg1u"ʵ h ;!ZwEH+,z}ʪy>OXvq^{$n#2_sO=`o2Q_/!=*|q>5cQ3>UXY>T?uwfU(LU] tWo5"jX[ i-V!JT?D6rH ҈`D*uRm^"xR8y.hS\7'R{^I!U Kh>D.bк} 4#߱NTۖ'̗{/[1<-M'`?i,L<%߉H˰AD,̣yԞ8'hg1bjkP8I&~;(__&~)o]0Ej:k+#ϑnqwuc]i˫"ꖣ|?}߮3^L}`}(GJ/.۷LG+ÉG{\ًs}+70_M3;^ĭ_J$M27܋}wP} }վGrd_}Ij}@޶$p8Vچ2xj"O{LZߠem1oɣLITnLm;dGMj IFsD;n~opXGj.ywTПںyL(^9Sb4a$о3 u|5z̻ 5=1=8qNTCjK}`ת8%˽rK'K_})+thrx6] SI"Q_ $K( OlGs5)`vp(OA^lOa\ n-`猕^vw&*PP~B[ݨĕ߄?KQ^" TΞü/qS)οd%ƽIX)v4!{cG}$a{N!tO|S?`Me9VAw@UAhxv9/Ac/l%ʮQX8Dw I1Eߤek8OEToxn]ȟ>t7fO&~:r q5M:Dgj.g/KX(w؏ &7A\#&!NKb1ncX&烖MiźPǸۋ,cQ;ѝ 3qĕ3P/-v}' ʹ](vaoNs|4h= ?Q+W1|~l`߷>rwnK #j[.|uXd vt b-41qkkkסq VOAUWUhkX^]Jy`ž=XXףB;0OO*[`MC7ӈ0Ep@.;! kČ[;G}Kny[^ٮN}?V^I*ۿE8 ~w?z.q~fXN~~gWJ>A'3_1s x7+?d?v}t.E (w"NQC~Rpn>D)GL-Iҋ"%#c;%"' Bm70U{ZςI39 v.~7Eʇ*zmmBݛS);_9#[u/k-u~'3~LWz졼Ӗ`_r1i}ZzZao+b9Gy{4+GQڊobH=%d/~{WOCq@oG ݒaߤwx39Ћez+9K:(ߌ\ {`Kxa.hLOKdA\el m5$/ߟN^ ؎8/se# my6Yȿ#gOG9]C寠4]/4wfY9Sz[)ГVw9Z9E4m`!^r8vetWK ݋"խ %mi:S֬"?!ń:S~L}iTMqδ6ׅKku3K'9S|: {wL~3EљJ?q= ͑okT~‚ԅ-a3Y^Kg #=V= 9AR<6%F鈗g`ׅ}9>rĠܮXSY-?v񵜆# y_)r||buYO> drypQ7ʅ2bd a~~cٳ?汮C{z5_C8nC[>)teh=lvlzFQVOc>oDJr~WOcyNp0Qc}._r<*Dm8 {%v>Q󋆀&o~è}5% pgo-z|9Yb|dgϽur5Uj,ήdʃ[9CWq:/)\-O 9ΔQ>|ݑ^G}>;a1+q".#s߬}3(Ъ$I30!Ys9~^Ͻ5K7vq& N).G1C|5cOB\u)8pRO3JU^1d*$+ m~qj&vn ;P/'mOuoHnrqz8:Z~ykQ`mIt)F{OOvgo+[,>뭡9SbL(F]v1ݼ].!sY~G՞XH*V*ꤾX>׷[ߋΠ⚉^}Z o.zٌ|8}~q$O\_fm| }ׂ_eDa5뿂om-Dͦ^U;FPzȢʛĠ_B;waαPn!7=o%^83(kWO sm<VG̚nkxN'[;BJТ {؍[\-֙9 34:BG_a9| :$*_T̙)pjabV>"+gGaݎpH({Ñ|gQ[?Z#OD:R^г:fM\<-b|A΁^kة2nb^C)Imu6XI:^VMZ{Ͻ+S85o>]}%jb&уB{;S<fIs(o1ш?x.}Ud J(/[3sq99NĨ.%Fs0EOR8 d\WH o"L4ϳ& t|1]iKx&Tw 8n/}QdOkt~ɫ=D]q;1>k/4. SRi8C>6τ`s̶xxڟ&=I.P&hRfd[Ht3ry}s $DsuTyγ,|/<Ԣۛg<>B'ӽK؆w# fюmL[&kg<-١x?lO'[V wNpE4$L?gM+}a ؁HA^O{CstIIx5:G * =K;͟}-+¯XMz6Ln\}dvՠ#1 k%;S~U r9湏hCgm-oa] &pv7 Z>))s[:4.`|دnI29nq%b|-|)瑲ϓVI_W~%z|F/1h+ĭ^*+ FW"ZϰdkZdJr W"hVT۽v|A^ŸHǎ|DwUNH8*YThɗqJ$gAo/օS8zoq[Ti>f]@r˪L?UÃ$KhPR&C>B~lr߆y_er5*:Si=YCslW4ORj7e~CMM{ P=#skY25G1SkeeuU՟\߇aujWjRB}bz<;\ygU>>}(մ^[G󊖰ӑ!B3Ҹy|+L\Ҹ揢 !U.N5F_;X;_lg|#_Q޸QQ^LX\ׂI`{أK00XPZ=dnQrwE!?e?q1 /w7%9Gz8yDC8~΢_wՐ3R~YH//U~ V! F\R(];8 BzԁbzP3}˳YF ߔ=I8~uw YL ^F? nvxNfޏD{X8i4xߚ} } oE~rl/ M`ǻn0 B;' [)(-A|<؂lq*KA|ϓ׀W<^frpzn*JlO~7[ Ϳoa\\o&sq=ȍy΀C`i#Jٛ>+oh妅v%H~zo% !J֟ o.?yҹ<7ofǰLy<aYq+,l_xO~@fw-\5_qN jvz=GrKПeA S/䧁]o>ᚊ7~w}}iv^ӣ}e'v(`Gy_(!mH-+EmAᇊp͕Uk>1[hCځO K+ +o9/ɹlOSQz zxTZyzN=Xn8ʯŽ4)7:TSR\2ЏIGOy;GO-Wymw-$_:7Z{n䭕݈gB Gq/92  3Mp8њ c!i?Qq݌ ,݄)/x}s/%ˣy2Iq rړ]wg;5sS >#C'M_ss~ƆάgWSW// 3F@ncx6{o;'7`1؟t&ߑ$~Ug<9/߅~uO(wz9u!w@#GPlbΘVq.K% F|W2o(K!#(*AT;yт;m&^<J+k dޏx<_4Gj}{P[7wt&:4}D}gXޔv=Ѱ@}Vpg ?Z8ܐWjz v g;Fhv#Ğ >'mf@Cd]=Z{dܛ̈́t/M6=ڷJ e3 igoANO-؀xɁf8~Y=e;n=:őݜbiIoO91={*^{Sw3ޞ"5Ϸw`6|0{#}roSΞsQ"ƞJS)//M5}E>=N`?c/bPe<ů+_RraI)gZȹ*];$,SүZ?K}_8t~ c/OϜ+Lͪ&\z)~RQv#Z#ss3Y/g~pN. ܛ?0" *ŹEn9WCy||7`_o/j6<әJ,Z ufMT^L-?K ulK?V儉y T{ȕM^QD%rǤw5Tt߈')D&*7ס0*9I紼҃Q(/Yxʥyh; cRwj\Gk^Fagp'|oY9Lvuށ#XϨpTwTvqgDc= #/ 9jW!)saރ;mqGwTId꾘3&=IvR?@Qi˃h>Xv ™%yӼgSyY'B)_.v|Ui٧xd2uÜQ N7"i)c;}>G ;^BTā>=ʜh}KZ [6q[5^dIВ&?MqK5ٯ6_IzLz_շuzK#Fv2?_ :L_KA6A5͇_03B]#?cw B=EHHJMeaֆQ־GE%=iuqܸJ/QO8uR >G\=xY95 rT.UAx[H~߹iǸJI#_z+s\ g3t;#caJ|o<KkzP̯~T[.+bǑtۻ 1opT~!&r"=111߽M¿oѺ='RKк_ZnG9B⥘Pcs)w5}:='H{ux~&zWCL#>?o⴬-p<#xzz~ZM~\0ŗh洢yyn_}@zNv6X'ɥp2^ت<, YiߋъX8WjF L\AQ[ڮt1O'ǂòc_N8GRt+ eV奰K/p}&Ҭ]T>ȟA!z_$zΤyUw {`88{7HP,E}y +uWE4O-Q٠Vԫ\*k iёBhW Ȉ23ommŏ\=V]Q]xXomgg% y].3l1Zך/qX!adWAyJ)_qyfBvR@N]lݒ-*AoӚؾ~OԎ6݀!X?]3/^ ~̞BN,EqŠW:"41lsnxXÜG7xTV hϰ77!:!42 LqE_FW'|= Aҥ;0:#.#;wG:Q{j) E^lidw,]ȲJ:Lr3c`ol)Q#:(OD7b_fGRc} ]IϑoңKh_탞W qnj(>YwHع,}=V\Dy~ ek:ֱu8Wu4ESo9M? Matߏ֛=vzU'dxP!Sˤ{z Yk%-f]_w@VsPZZƩ[֏Ŧo=靑ׅ!OO9^Ҵ揢~Д4YoJ?-g~K-jSdd^}K2Zk\.-{6{y\.9G? ϗR_>|[OM;yf9//d3dP %>Kjv(6H&QUaBo+KR*QP}XJ"EIC3#D=#3H #u=M8RDz1}/dtSDp^4횹ϝ߳^X{އ(4M"@F9Mil'BK5lMjB+'O(ԖѲ A~ȍIGc] j9u7]!@g/)u6O]l';%a}(T@\Z1)Wd ~S x#j* $3EY.OT\X27Xu]3e?*ߌ㣇h@Z8X l4vt_OJ ꡞ-·Sԍe 'FUhY[2kv]l9g9y{hlsNC/g,+qx OmFUˢ?5~qҮsؾi|m}} ߅[z@ND9_/G=cKb\i/'}SPҫ8&ԙ܄'S3 T{Wuړwˎ^07aУ?*= }=밿mqlnp8?g S:@|cFd8([zb/"ڝ~9lXdf3ѿl}ǟ oDo{?|-ؙmYqFC !f|Z_VΑɠ.˜; uZ`?GdvvcT9Lpp*GzU;UG)7M: Pګ}G?1j:[@$u,G,+y*ϗ~'n&4*ǧn9y9؃=댲=XARTBh0,ȴ7vϗ(̣{%1N|Ju5HAܲZ67 dنiK ̀|&sXY@ڜA9㡇:oWf)mih?b<8%WCdZGUY<] GJjOo#% 4?f#붪?v⎝.K9JE鼀~Í&h doV>$dNXE<M<ڪ(^5~W] ͣЫ><*~̃w)B 3=#90Ow[U#2󩱰*LXYN% οŧzCf߁G<iy~wḬ 4B׷pŒϴie+9_&ܟ_#u9aV O²Fb^[Bؿ^3hW,u6b#g**o/Bc2 cĚ\t΄S y`+?B?—P.Yn A[X8 rC3S[a8lj_CJ5: @=gc PŠ7`?sCgk{)w$kpԙZ&#;)C>PSyC0_y,%58~glp WO]?4W:k2 sM2u06&Ie{?wRLS{» ܿw!ϣ'Me ]l^OF/pg%VnWxb0#3 p]-7s*vÆߑr!yP?GX59ON& 9{+I>(=<"Ga?LU! T:I CG*S[}1 ~/72>NzSR^ އ= ;7=qxS((}ЍGfBƺW.zrOE  ON擱;D֑qOJ6.wӛ5{~Hc*eSБhKZɹϗApdY}18o@w|?;™ɺӽñmHQ?nr *%^$^2\P[9[~d^dwlɘ^Z#J MMd^M# y?0gAw[aݎݝXJ:'<hOޛ6$\V %^[ɴ!']zTuq%4t.#iӸN/)zryZ7{I gP._A/ۍ#H|/_,D2Ke)#ս=f]G793t#/=m#R23eϿi?{\w t# !tI~B"01:Qȫ0"Dy5:a(2~ DGB+opZk9͝Z{k5?4y'[ >H@ݢq4$]ZAg2uWuä{puW_0Vk)S~ } fATB*/).͝=07uX-PLޕ \.΂Õ7cnB]o\TZupgR_e9*]Ƨ^|t<ک]lZƕ0r%.|>G@}Nk3q(hyr?L%US3>Bl֏B 4\OQ\3.6{Ɨ3p67$ߤtC#+9{|E>YT9YfK1{6$6rר\  ?v7h8' #7|TX>ص٩s\vqa6mw v|3/Owtv-SұX7m.Cf cNU%`k?Lᄁ)RJx0 \}Kn]/ۜ٠8Íaڽ };04AVEs@8hj 7- %_nc==^Kfl8 cHn2m=-3t4:d u{&&T^f9 v~$//nU_xs2ȂPC;K^A:cc6rmqa>5R%nxbmCO>KjR'ɎоxMJYֹH&T`|Y~3Yҵ,t{ϣ⴬}kL^|2Q.mh/uLeJ#ZU+ʗV3=XS/r;Jт|i\?Jݵᣘ^ޘx;]$̥׵6h4͝郠|E臆-Spmڣ4v ݏd1^]9}W|5~C>Cv ߋ|qGw#~)5q{傇9לC~o3w>sq5{}Už觱oIQ9y. f<1Ͽ\ev^l<5ƙn*{_.7)YJ3zG,[pYWG5A~36}rnցSg_yOn8lfq5a ϓsWssk ڰ9Ye o)mG+1NY#)o]! +z\?08,pƄ.:JwLmCfAa>Y%iWUOuD;MOmN͑-[ ui8WB9vi}Lڇ{5[ZXq(wod6mT78nK? Rد7uJf<4=_4.ރMlÁunxoMֿd [|hOd7' s4.תcowa|KR1ࠗ^’N}*,KucVC?mk1^Syz?M{N(G;ƢݮGc~/lo'gǡlT)zLcI-hʛlcq ԓ<@[P)_F# J)ӓ?އP^Ū48:CJLԿ[16's2>87l 7ë;?#?#[Csq|d9w{H ;ۮi֤/(?{ /N#5փ4 c yW&8XYb8eVk Pe^Ń!Omҡ?/zKD+L F}Jt^ Y06m' xW.o-Žꗕ2M[ 0V 1"X ق|B7b8=1a71ޝY^xaqhgюy]̏ "DOԮ%g!KI~=KS"+ĸSOԁ}~@bJ0ߡ;˽j?ܓ_-H(ZoAפM)v()ˍ9ϐny]^31^-WKEd## Q>'b s*BꞐ>Z^_aO,15GK~|N=[nQD>_q?CJt'!(,evAķpM:@\&-;ƿ0߳T>sF$78u`Dž5+E#)Nif"N "_/1Se z뒽X=b>4> S>rxG[|x8VHź%a".m+ݳy܇=IW=UK/]jWL'4$[!;sl+ûlE!'Mu~Ոޑ Rsw^ G(Qޒ+o ?cr/&L GG轋/|S!|ꏨJz2o+'WǗO C 'z'>)O[=$;||W,~"r]L.y-4ɊNʩJy_I|ԓ}C5ʛe/Ci مqoƛ<ȣA6v{TU $0hDW| vT|B5 F0ME Jv5T .jJ(pU4LiT"AAM QZiVf|>c}\i[,k S}K(yf"8 >Cdo|EcMn}-AOOw}o%j,Q#dOh!ǀ{} :n|^!0'~of5JN:svc7!u,LSW̃v=Ih!_#1QUq(`\h<#m>B3R쿃WAS~W{`:U~ӨCL,5 }KyPfmm"IvyЍXGvcvs \}>s/}t##~_1sjkܒ7 sK{]˾M  _Î$ێC;oɾ>% |87]U*MYzƯx݅۞X1"34 X{:Qo/û=쯨XޱA >}܋DcYIIUЇ57YOtgM?kar[\Ao}5}d0^Xox *|K)%mI?އ8ya_~>AApM~Ĭ[TzG\@S&(]D d(IAU(}1@#}9B @2il?*Xrغ>6u:X:l Zi@av=ص^ }jk29n 5GRulǤ>`sp `b2TIp/~,d-;-e&ߜ`_*\· '`;+E-zhynbZ;sx3k~gN"?KRZmY\vK_ૅfʩO9rg;(xQ}Vp^P79y#`r?9/';Y >p+d~oY3mɪŸ*mqߨP|?ssd DL8G/ ;|r:;;ǺE|kz[ළ`;W #^nC\fn~>@k0'rq*5CWC{Eׄ<,* Պ4qAطKŽ~OČ$ e.z->/8/-vr|x m('{".yJemPT&n/#Q<#ny(]%K a7U'8#qBQL_U/2S"ء?_B< ~2q͢K:+* 0/ t֗Xתİۛ/"zdϯXྼDPP}z hL=ؒO+⒢C)`~G8?S_~ǐA F`Aw`giLk?7@O-qϜzzOPz#7]󜒇xϧ4vGݓiT>7M*zeуuc7]QpH.Id՟-YUsE o^;ACC("?\fE>x>폡o2W箅 JиҜ\?ENƻ<ꗉX;Jlǁ0Gİ4ޔs_@<7n?? dž8(~Ўg't3Ksi6m@eye0=EW;TݤM,==Z(~ Mݯ>9=#y^v-;"ˬO՝?(WuW)"t.DOmp&OsF6 %"{>O zзXPlut)f'c{H4К ;ha8Ň GtPFFa⟤?w ~NӋΝqYAweUd*y /19U1Nkk\)OLs}4wIuJy~h}}/QA29DQ};mg[,zG>$aUO,cE/hU.klG~\5y `A*!%Ge>!TuRJLǘ7'&}F/$݃Sm'7b9߭_*&|D&;zKA[8G]<ȶAN!^G\]z;~둟$=3Imz!rW0Ԭ{G>u5f+G4^SaF#MҸ酈_8_j:Nm \g/fSC ʆj]̴䍢ai{sA0BZȱ{وgbd#C/o~g>{?^ !\nm~lUl]m-vxF4\#HޝQ׫Qx4ziB,Nso\J ]1Z(V~@94n۱iFwFiT*veQԻK~b9Һ~G4﵆zGѸ?H&7`ICs[z%?煡@+o }5>Կz=ˤѻA)+RuZ,|_~@.0Ёho=Nr|/3~3\uYS05W$ၠ?w]CIofl?˖ӳe_˶Ս=k+CE_%9ɧƐ8a NpWj~(sJ_]t%n{CU$jwrA֦q̡=bȌ)G|Ծ]ZLglp6+-˵ y;?voxH=0{5Y;Gw7hȶ3EFyr'9-F;yGg:t?2myN3Q蟧UIس-"KBw3?  .Dz?Q.!~N;l:yoC!1k3!,7CuOI+}6rWeFu]ir0ؗuO1.VsjQ.~O0~?W^ z/gV5xfxu =TBAha:7O}}WL-F=F=H?̱3!sDU~֟yv:F)ng2Ydq&?I#.(<031y\}d>vUKoLO&Y ?I}?a}^C_N܀d?g@#eEFĒǵaaXCOwJ^ 0כxZq ^@)s߫ HpgOsh4\Fz!^Z̰)iR\8ԛy[]_HpŔŵ|V#/AF7#Oҳ׃7L jV_fN{<ڻI̺W>uag|5敋zG? Ó<ǻ(Bd G =umd=Y/NK%ΣZ"9~-YNpb;sPً},:>a˃^caVkv'oпvgaոl7p~Ӹw8P~DpwȊXu`J o1\ط3ck7n:dӇ#N4]z&pg#_2?j|_U=Pg@o!hς]yr![dHc^e1م9>! [^xVo40oh+%~c s|݁p"GP(uEW-Ƿ,ϓlm~0(G?@11 TTObޢ ː=eֱ[.#~Z~؇U^6cYŽn9dmΗ 韛xxXɇ|o3P<Ӽq[c~ /9[] @=iF}}w8s0$[}L<[G8e?꜍~u@i$a-OsEm?#g)TknTYG}E`)>pm #_}E+OuַPuՃT76_Non=P2yb Ϣ G6y6zh8[\sC96#;? {tMƗו+B+)P Իq+ѦAKDp^%%**$R =!" mH Wxũrz5C;7Z5s5kǏJ < 9yA=skzqϻOn{݋Shv {YGtzS`jSɫ٣B@B=ʍ`:dei qK`0~/jt_>"ruZeCSMoP8!d|79 T nl+KPV@3 WxJ (Bi(y-L;T(vO9fѾMpȉ2Ei<ǝ<^XԕQoA[As7fV}&s߶8s\cIsϡz6;ޠ6ߎ]/h|qN{k#Aޯ¼bcHy2i7KvV:scl/H"fuO,u BEZcYj\SW8 ޷9j'3h^7e)l6qVMߴIг4r 1޶8 Qq5|usvS3V/_N ي]BoT?wIכPw)'dy 89M vW쐢t?hM^[;VGFORv}SoOSr"_X QG@2?>qKRٚ3,\_Q/k\41Ӻ1i~Dhz.>m/9*.^)1--X}y*'/ Y_}vI.Oۑ)~4ߢ7޿“ȣ 岳lw~C_j=Or7:VGσ_XYo"۝Xխ@~+f=d]Wy1)r.sJ!ឲ9҆~ !9ww9VvAn6I}L*KOC>#ĥosw^׀uڰC=7~yo(L:eB%]sA~WE*LorKNwn:՞#bhe-;CcꖷUU(ڎ>(lRaɆod,X~Z=v[/b`}s1Qȃ?<풖"=y3vKٟ#TcKk{S0^xwW!7n@~fo8 ]nzpgjVߊ!O][j edF+Hv\uϣ^*yP |)HVY˝')&> o֐h%?+M?%)t _ux߆#< ?6iz;zؑ \E?%Rcu=\>dA-oy-q[ghPv\MMXWgG]#zMjaܠƓ:'^,ߥ ơ_e8v[%r(3˼ha߳YQiV5̭B| {^L!ThpJҟfjeG#Gm^=sG.u2~Έ/9_T9? օU1/=q`~ݤg;Q8kUY)5g>Nol~F{&_bzqmκO>x*=Ac+en]~K ut]=<QJG xS>#y]ak/gW XU3SE@E" ڀ#A@cAZ_󁩄Dc [J(|=e5$6|`s4(~Ͻ=3Bs]ɔHbSVo$lG+_fI6dmH71 a9^ͲIWϞe0cq˩AYsSJ6 30K[RgkYF e"DrJa_ qN>lMZ SטYZ3+5:0'f=v;[՝y][cz1̓_S1ן CX30si<xkP>׊>CƆJN9S)w{/m{մq*8+w jPecWqPeP#l Y1u^۱~awu~tx&EZM8c]-uvϻؑQ5ux<ߴ?xSاPʁ_Fd. wd؍+Mƻ y8o3r ix}{E]lՏy}:a'!!ӞI{g?_]uͰ}EfkY:Ŧ\=&ꗔ]|?BĻp8u"R~fҝm=O\‹K#Sʔ sV 'Cm-AU$pkh[𰛳:C}:Aъx AiR"(P9EpQk*/П}\kpAٳ)X}6 hfwٓEjFD#,WS;p!I~}q$,S,e_coȸ #Ph?[h|q{k}c+@WF61E#mCxsğ2 m,VJE>"nKJC4ơ5yP0:V=>"w!V I1ЙܞIB9M6i]up+L YCpGr9 |mKPsK^+Wߦ9!?V.|{Y(E6'-Ai'ѓWZW+M'k}~*~k/)+5~.}#c':?qtL 'uYF> xʕ,Qf% |;#7 e|3i\j4$M.Ib-$H#PnP֪l!J iVRB*HVRYѪ3;3qj9߼{}}/"Iú*"MJ4 *+N;VP),,Ma?+DPyN"eReB!ϗi;F \lHCi⬍N_TLXW6gbI K_x.+z~ 1N>Xs|F{V._Ph v/4WW/AqsۙoXY*GN)uY7[r*^*r"{/7s/F0a!)Eү&J/_,\ފJ3Z$L,u L+|1J\!^tu:Qk-Frr?ac{ZQQ (w;6wNΨm@sI/Q-O( XۈVTAh+ۄ"tꗐ%~,#kUyyW>t s9qi@kX97H+ S}ە-]πi~qM'Z+PFs KԖ'ȫo7Et)z>W~9{RMDN "IƇSt!}({ԅ ϠX\t/JparfP0cS{ESKURi:9#p~KYڄvmңy̋R6GiYy%+Ǘu+΂yp{TN03^?l >KvN4z$IN?]˭ecfެ/\lBB2'2Gz/g߁AM .N炤y٣dx d<]Kd8I8eD;+}N6t߆qƱu8eSnVI|ipi񒑣~|eJ0b\_]2$E)?c?y|DF硺SMڪ~浒F/}@yc|m{ѹFN,t&,sa잚ލ;Lх\ƨQ۳&9'Y̭J3Ry؆m7 'm#*co5f5c4^i\vo-6oh^G_A:3;5ֻr*r8jvdБ@|]m/b)wxo=; ,3L ז05M1vl &|Yv.AUȻfMl3>N=fUօ}W3HX΢Ÿa f_SYNCIݒul`;➊ QJ8cL@vgnC٦HK!IB]g1{D썳Əխl!&L@6=JD >Ͼ1FTѷݼc@2E2V]j6-:sU߲$1pkMf cr2ɪuNIc!o:MR뻁3Bp3gN9y`SXNLy#od|mE0ߟ3a3wq6G! >̣`1ftʹ.mw XV%'$_/6o2>'O8c\}dQ,EsƳIdBK S'FrTڄ>%¤CwS(i2_`#b7jcGdMR=On8j␗ym1,2|ۇ<|ܴOwvoة6lJC/Vik;> d!IWGĂjG6.qkNraxl|˓ooqg(k>/a 6y-6c?C}ciO@p~O:H̚TkI[ނ:Nw9)d!yx\^ g3G'u tU|Dbw\ڌ_LRٞϝdjܙ tƿnBBI@P" `x? Fʫ(iyREj0ZhjE걈UovvɲnB9vΝ̝;wsgKAۙҨF2cIҲҁFf4%i IKzH[Wz(F3Ʃ6kԥlzԊ4 =^%I3>5#U]Αnʎ#]}GRsfey8F >єI*ޭӵѦ񺈳Li*]K Mb_zEdПuIñ>twZ{9F|o@Zгi`R }Ϫk%`f[UjÛ ǡtcE?B iQ\ВrHT1@<1PN^pl[M`oW~ŵs}J^ͦe({?86ݴ蕭 :vd]JsЄqٮ/` f~5ͭdZt>`{i ^BiA?QF1cWIM/CZrD? 7f,6 5f6>@GGlDck"6PoE}R>>zZzO}F{4]?]B\{_zm ITY>Վs2Up\<[p&9ܑ3աĶ~rX]! \rPJЋ_W28ݬi4(61MLA] ΰ Niu%r!sTCE=qFKFUh¼ž#hÜ@s eOEY{ sa(hAda[]v&űJ,ξy59cB|}<s|洱=n S70̷8ޝQq `1-n۞[vKQ [GlnOo<ψ7 _e!tУ*wK0\/m:jc Wuzտ9yd_b= :{S[ J4Uq["u INC O -m1WUXb=2ޝ[ mcߛw-{C\XmL[d־<^'q:Ub={s%0 ԍ/c)f `o֏ʱn a.iN(k.@)qQО x)Or2] 2x/N\/.%hӬ`XX۽}Mf~"eNQԊy#_m쉞F8@1G_Ĺfq͜ą1\)Ϳ~%@Þ8z?p-v{D,r2 "W"r5nxCr5 e,mh$f?f{nKm}!&~5,bS! ޞS0;m_|+(p >3RrI+'˻CD(qdXnhWQ$Z^ Sx$WjgxRRRwߙM)4s rw֙2t!qsUToNg !w cռY,>۵]_g$$wA8~?c2 6u}hN;9:Uv{\UU7 A#eeH*JI9'$DȇP99 jI |X |T CtpJsoя9|YkeL}`= >մX{JjzXhNAZg*!Xkp^nTFZOmGàY/k+8ȼ| ,; ]IdwF~ZLˌ8r)~nW+f?t4'{=kJoSqZMqy=D3yWyIRFFvRJhnςrϋ&΋7>\>WGGqfN-ڹS<6-~`u㢥}(Ȅ@y=TxȾa0Iր{WEi}4z9tᅣ6woO/|n/Ͱ.:9 bN2-ӓ?}&9GKę^5?W鑼}bal%ڡtcJ3~bOCzn|eҩ%QKf^&nA)küD_gjR9/zٛW7s&\X;-@^ G1ד`6#V/"":?ѽ=F[Y|Ůǫ2; AqGf?mW~Óx}q/ ⤘0Iۅj7n=`IQML&Ov2[;yMo2 د65g,kw#7Ly07 M &WZ|ԤcsN,SƟ,6i^f~#g+ ޓιh+޺At`3kW(oYMXeH9g.G>{n6Ƴm )Akv?m/ݢ|w>;;]a/3haCʟD{bYj/X(_ P;ᾒ|/<={>}B?6ACZ SS2w(55 F~sՔ'Tǫ)HTS?d.0z ?qϫ)M=ZMa@ ˅( LRS8'Npx?G|G||x|""?L*CdXF{"ל?Zzs9"bXgL)S]c8{)E><=6ݐ[DAϼ])ڐQv,ה'}X5N={ $q#[`ߝmN 7U-cI0OTqod7# TǷqcEhfrj CnjhP_13f>0MD&4Id%ERk1F#(Q"sFY׊c֜Kg콟ٟB3**JQN25,/oRzuԁQW*l]^D#Q>:|t8AuoK|PkzvC^b?P/CȦ%9bLy{  yS4In7@yISmkA_U6fe@|[#3x*M^ *w)AO[3Dz@X޹(?56nN*#\N}ToٮR}O}*.}7&}[ڀR-M|)قkG?@CESP@}hקT6~~vߒ$k ,Wo9x=uWs v|y{X{ $9 _c^ZEnWU!ޓD 8=8ph;0Ge~G//[Q;اo 8#UCy4L47O:9hom;J<i cz z}:8Iv|ؽi³xawg2滶fӞv(h =j{_4%ұtvf.?Ȟ;ˢd=%`Ûc{!*7)`Z؟ǰ^G6XJil;itFjr~k_MJX3ihWMQO駖/ƛ[-xӂ&)2juY: _Ԯx+܏8g~4o`'E;cZ}3mx+ƍ"u g{2-Cq ׺!)=W5 3g{Ql/s<Ӷk*S_ o<xlƿ_/MC]AuG}tz۷f\rw״(W Ы?Ra^3G:}pl=r1įro,(_}T73ָU|(aa>^LDkn/@7:"N+Am❱+rG-LVEMBR?i8ǁW#u"^9fӱlIⵃS1,M;*Zmb^? =D#Wc_a ɣ%2.uzFD' u7mj <*_aWVݛD~sB1w(neTZwX;=x:tϭr}8[xf~. ) P!lߜN->g,uƼ.NGpr;;/1= (/t$tug ^s&HJ>["ռ[zKWU8, ݎV615m&?TET">R6ҏc %D>Kj >uϡ^J؁*Q˽+U.凘O}77'57k>2я)=elU7q >du߳]~GLZHY_]w7n|`Qʾoyv_x2mE=Ry70>;~n"|75\D68{}oUi#yOo{`*w0ʭqέP< Ǿ;!qFuwJ.yyqǻ= b+ICQobl=s>R~YFE> h?PEo@]]qIr??Q>9cAkMKir ݂+'Md hU)NBܐx>l=]Zֲ?㯭0y|Mw^xi{KDzE('CbJM c5\1|#j:L% .[{"y}C>vkk+?Ӵ#Bu٘/xj7ZJǒl͉&?FMJ/C!%rm/Q?)ґ~z ɋ(%=WH6ȥY6ZOFifb}jc .Ɯ<(J+DB: Weʀ60y#!\S[$>"rZ8H{_=hYoD9*diD{yk㘊Ru!׹ 9[EcRe>gN}@HS+M~u =q1Rssg#3C̅N%)F\Ծ7O/NRvj1# #ȋKuױ5 0n78 yj~og]$I]``@m`r*of>sx| &0r yл`=UЯQ/_"W"oZ@no>S/KOk@P9z~.[ r)wR5OG< P`N-D~k]asq|-A\g q8 3WKl ?GY^~9 De`SaY'Ǐ]l9ȣˈh/SY߫psi7༽pGEg8ix#a2+(4@nWΧќ>BOc5xqٙh~W\S }pE*Koi < =Z2 !q^)/koe_ܝy2D/Y(?]؏LI4o#yvgrڔʁDCkM(\35WDk #쏢~bHO[j&cp>5}~ޜW.O5 a/盨WrnYXs{GĹ(Z"?(W\+WXoe9J[~[Pl93o_ҠܣΝn4h[^>7\v5Ga=4A r=T$Hg~[`WrZ#QVE4(d[=k/dOzY!Ԅ>u6C܄9XaY[v@G*V9pHD#9Rsj#MOͣTH|_Qp*-D>Uq*Fźy*^ݑҞގT~\O3AzG'#`/#0dy:yH/'Zbt}mwǠ s݉1GWc//nN &}ߵtDFJEEKW[>5?9Wj PQiGPp}y% `GE}U]ڢ~w=9͊}y[$/^{P3iXqBT+ M/ktZkF(6_(5̛}imsɁX}p S]einM6 9fa8ήzS0:t];"=ڻD}4)iܧxqd{'\ɑ ngv%A+vl\J8?qӞ~J> v8G(NY@#ޘE~Q`xG{8?|'b#,>V_N `o?ę,OaJcs: &O/q"xj7Y"E}BAtUVzxF}^-Vh 8 4ÐFvpp2oxMqYDxy qϠDP1uS Rȸkq]փNE׺3B)ʩ9t5ED뿾+ŭ6$=uPw3]#(&}5 Iq۳oup"o0!o 7=]FZn5#weocַouJ\ص1Imbc·^(ӟ:Ҵ7i]GH7; TG1b >1jp}#15FPQ#(ATbDPA0f+i hQ̪hTQ4jzNzR8ޙܙsZP]p%6C01z#gOQupm^w]9|!_;GPP+(Z5ՒO_8~j$ՒSk1}[Xkͪ(+3'?wc'?ruwm)1-S/]#58x$dѿ'^\zO\ wC~[CVFW21ReQ{lߟShIEGrmo|m*/0ةP:w9k9z"9CrʮSgcƺ8TuD4嶢~ޜ?fԒslX|Oڭ…oi`x(M*/\Cshg?RҝдLԍ&ʣx[ykZo_~./ex8hxm]5Ouy rAԏ޼jxi̪ wI3h(ejalN ;nD=~ '*I|7ǔ̠}7#Χ">>bC.I1*9юt~_"2Y!+ωrMa$'{[9G7>(9NLKD^3g#$$|5%}ArXasq(GZ^7J!yF?^X-|2GqӁ|ew ; b5}ϣ]s "#Jo\phQ7 #HB_Q㡆(pwG.|}rI}!bءs>tsEՈc&[U(c ߛ =,|8nF~1_=sk? YM\aQň_oy:!=t}Z,dE|f,0v2%+A9wC,a%uiR5~xd-8^9 h&iTdU4_,lE"׷H|i;$-qaKt=YzR_ڎz,)Onkp$0~r:oFFPy\ +Z8JĻiۯ@Ƀd}5lkߌSH|{!( ƹD7Efc"/wuKٵeUH~6G`ɇ1 2P4V߀&if5|"9wf$qLQܻV} [&aAxvJ~F=r.oרC vcҐꥏ/}i Goz'5 Ok-@^=}p[;|BKe<_ɏnue$7h;e)8{\y괗 ͞!w#WpAHvR|R/ܯup|f8_u׳w=/[}?3W B#X䦔G֌?2J?[R'za;֕;@,:oRSouC^C{&ܻ  *QPƇ}+"^I<yBKi/}'߮#2FDIV0@N@o(wtizZP/ {JE"U#ҁls90(`2=Y1X >o~B^vocg@z&1'yoO9r`O: ux>b?r<>RI !Ô &S"iS+Fr@rC*3j <"O֌c,ym4ۍJaʸ(,}xAo @?ɣ>d?,<`<}(КR7r|ncqưtuX?qӸ<,?m̊FR"4 Y,)F1 oP^)E?Pd6{s@OCץHRs<7r<]},ANhySs֕EPm<6d'!8MmN1>( W?qT9Er?zЎ҅yx2[xwZY+ QE z/bWlE=|3CZIN0ޗ}>iHZvbTc"g8[T h˨ۄez׮PyRb9og>g:쟡%a.P Qwq~׫g*f^arvԓ'zL Gv#ˀơ*~Q.O) 1x,2 UiFרϲ$M"1.jL5W ;/ AQ2WJEՔNf!*g:Ҹ0V˹Ȁ'1փ~+0}HۛO깪j_CMӗԀ^x3D/+ֿdͧNީsYSeJA1C+2`Q84y&yڋ聸e/-CT- zb y߈y #%gj.uə/ w|cHFy1,uy~{A2q7~eC6(1 =r\h7ql;V -,qoeRr,e ҟ ;@A)|9v%vS=vJ9x~Hh"_:18tmdLA>ɴ>HX;?!x(ȫha|&h;->xu =6'i%QVJO;}WVBr,c~${(킡]C^(8?ҋx c>08xړwMǘve\к (-'&;Hta Ft$sHøia<2>ڵ(c.~Vx{R3 ~e*a%lqY%Dtf0X//{.dH.%dup/91OR^5^?ګ yj{Bk]!M)к !0o𾕯PїQ%z˷'͇rs]3#!?d&@>+]S$_`D'CN*` `/Ν^{><[A |!%yo+{mX7ODfz0S Km0(8dX?{R [M8Ή8=aqMw"}J>O9_o1ECD%ۈ8(mUk-_ !"w6Wj޷_n ߜg*>WOlo9_M[yx.ص{{Յ$~lagjڦ yERǴ8 -tU.YK; }k2&NN],kԽA˥lQge8y/p3$!+6 F%}ȴ\瑝y"~zQR(Mh F1G*{-<.,4Oè}FӼ~ZDՕO|¶M_z ),e#}#|$'rCz~%V4Y5XhO3K`OZ礝/_d gwg>D$[YHPgqGC׬:~g ]UÕL|_H>`H^BK{hԞE ƏPE-朥+ٓ7sFvFMG aǥ3TOjy4sx҈t؏~Z7mYq嘝$X8Óp鹜R 䮌{HuxRԏ5̰'KKhb2&kD=s y4v;8+ܔHX){N' LZfz%S\dL"{OrNSge$iKyTG j@Ѩ͈cA|g+ӾDJ;U9r/n ʡ01E^B=;Hpv-36@MWAnl'/"wHe@3.r o=~$W&@{ul<`Xԧ d#I}{evE=al\>Bס%Vhn1Vb}$O?z̖Xꍧ$Rn[=<< W= r̪5_:5[XW=Z)\^͍uRyׂ w% ;0?2@O?L`IMK~.E;C`TׄAy'J]%:8H sDKNgRBG2,>ىk0lwE?H|r_#;|gHE#Pl1 1ŋw N|.|u9-HzHi>sLַ~eX|\,n=29%ᬯ_ Cu4򳺹ΘONTo̓qcVc> S7CyʵB7:|pZd`p=߼`_3I'WJɝ۰4CRݏ?UC\6+nB"mlݨI |5{ORlT~=SO+̿]#ߴqWN˙xCa*O?muqYqOj.بVZ~q S{lq>JCĚ>X=Ii}%Z:.v;[)juRyfv%i"aƜ|>T*3[BL:+Rl}@pT$q!4 ub}蟔/Ε?]8-` ԥ>hA(o_V4o)/w)'<$ͿpYT3cRcES'Go DjayBd9 w4o="(:py2wQ^K|tͥ|+9-x ܟ̌sOQ<O_,'8OTzQXIJ>`L9#ϔFDYH]pa^zJ{bOđ1D<4QN%gWS9D#ġ?)Ɵ ymw$qD{@Dq;1P#mǖgP=ˎGG0^D/@n̗ʅe|~<ދ13D~x3ԧZM7Y*;P$'wq>O7_;?pd-x"k'T uĴX?`7Žr8έll9Q9O)E KxJFe>Ӹ'۷ۓŅ#l:o :nwHuZf3x5|"fy*8y~}+ci}y$4f牑D6/pY[!\}!gT/! }&ALq#쌻؛C#v?-B*kw,q!Q":y.d֕(&xzϓޮN߯><~ޯa܌qrٚ!zf!4:XjZTgyu%|u-oL\1wkJw{jlCLi _˶P~RW"u{gOԳY+ ^6Z;~~d ޷4./Ϳ9}hӾ |ueYf Gs2_y|@{\bS\=R=o洄<ȼBmŎ6\DlRy\UǷEIj^(+WE%CDp JpTLE< U01!݂SyoZOt{ڗ)E%].X Z#`C`lLCVfLVEf c6)|>ƒTnԾkkK^~Ə|Ơݬ04trM|?̅#(9Ȭ @q&n0L>N֬ fBN.(!y QNB%G?<-{RWDypRw׈ f>H_S(;yRs^F/i{ y1cƱq]LqU]_0`׵hםwN~+ߝhցD<؍-#^oUw-1 &w\C|g7 O/T>xvܰܺi(,Ȯ0^De3?x {_YCؽeDӑ Q> ψyN8玐K[a틩/cݍm +.WVQ[{rK,y}x;Br@&rKF?]8}l>]/B}K_ }3!VO$te q'/1yƝ{ru*/gЯ(y\qX`4sAD{#NЧ(҄( @#w0Ϡq(]vS⣱^s'=>v}Gkv| {~2⥾r{ uk곏;={sb/x|1h^Nk$`9떤^W{r9C".ufwOKb2۾n[J`6&JMۂ!QO5*!-zvs(,У Cz|׋|RP+F?9a j-T3WM䡟qԐ l:p5{ѓd74{A~[S ٞNL&맦z`@ՔvΙoQ6TDXE|wyECp rwiz<VʇKu?yhq{=_% Qyȳ?I]$"N?4}t܉s7P~q1 >5Q߹7+U=wSxq(n6Ȕz^}~5 QhhƫhdIo(;3yxw/ q-o6&yz : uRA@gXce-K!v7D?aS;y"Wo!3D>+DJ+|qf9'i^y wuFfs{qI.+D?icTؗs~b"/HsBf}G~1V] 8noǼX)M9E)LT+:z)A!"5"N7Za WKa>l?-VN绰F)=NM~~l쩼&H{WD%O C]ڢ@oX?Dkhoυ>Gt4)Oa}v5'ag~*{ 딵 01%7r{/خx%Y',/KLuF֓)t lBssQߛ$[z).+4HTX2ۛ≜[W8/'{ZW Ā ?.SޣqyW~a$łQ^{E~BM8gSHbLQxC}Wt=E|엠Dߕ&U?Qj2vk +OB<{|\UuF6?}oTHA:MiX~0 Zq_Or+t8LR00CafqWڦ|bNh];2cP_֏F"îao/t"+;wT'uҧ#x^i ;Sf)W z%Z>ݸ`7?Jzliw杉;qu"ڶ#0Qm~yP Oω^i˧V="߳i{Λ:MgdEObM;6qE7U<0qZ= :_>BwɏC⽢fA ~R}Gi4dlՂYfZ?x8?GG4ț!؟̛9O kGq_qH< _̽,OZ"59.lx28p%ΆwUfY 9_Jv Gfق8p`O Sװt.ǞH3>vhex.}R;~Ӑ x2vgiL;(pE?Sꆈ7\)^7gQ]G| ˵s|*탣c[iQF%bW+ܑF$BFvQ#(qK?xȋ^y&>n.?K{fW()}o~{/ԙy|Wǯ5]2*b'֌-M)XX&K a%4Z#cUZVc{~7xS7Ous{9s1Av0Lwl 990D+hlJr+ـ;@ (Tjzs_L-^8g# zVyZ:S]1cLsfۻ>}ӄ[^(`84=zq-c.RxreE#֐VA[zz]ڴ')ږ~XO=[ ^~ƍ qIb>3mY2r_ނZɔ oԮ?~d/B%sO/ 6;`!)4{ۏ <$֯)YcIV=}jw]1s)Ghoi>O\yֵDe iIЮV9ɖn8#d4ٻEi 4Pn.ѡ>e<4w^DxG6֕cp=A I] CW\=MԅB>`FAϟ}:%iSG$<tv:9m,`7¢o<-&sq/EJn&oqx݈>^rZcOĔ8_sUdjDsJxdɬ.PڧFIa2n>Ht qL\s!3uaoD0g*8/fhAu1F6塶)5po-(oVڇ l*[-up)aoy(;/ 36vx-)4cEYߕ)w|ښî=]-u`u.|9fB/AۉH4U1䫏{۸ۉdjwp~﷤?9 @:V%.<z M0p+-h(-Dғb 'PS\']Pߨ}|o`g}AN]29/i=1f4~R~y֭iL}o] #Rj#ڭQ~Ont>߈} }~ϣ}LxLg1^)-g]FBЗ轘ށ4?Yn\RW?E}iOFa-ٞz/Y%NqмRo~o̼iuFp:W;_*u0kˋ *ɏ=G5sc:d?*R`R>֑| _Ϡ38/lYѡ6_ϋ}a+,z_qRX`<yAP ~y _*#@Po6 ny`/≒"rO·Gr>Y2hmsgM+Qr-etJ2!WZc?&xߙu+^Hta~k?-8? ?>V=kVq0iIz;m8G}]9!hW&Bw>2e=xVH'ct七'٩oq_ܡyף_{x}s`M-`ݝ^=F˼X^'32[`o e(x<3炦qD]-8,r1fd_i*ne?Kt\w'J?ɑ~(߻ #ݰڸ>i`~=܅8"տ"Y4JwD|gor7_O.dw/=={GA:)Zyu/YP8cEw;Pu~DZ>ZϹWJ 3"*\LLWe^7GϧE!ڋoIC&nzCA7l(cMhL۔Fy8Hv&Qcvn"cO{T'uO=\j)ԁ.dkE^P{k5tgZT>d:`f`mA!WAm>PhT(Lfr,SGp10 : m@SF7̇B80ى$kN!;nJl_9hqyK5LTHsTT>4Ƶ릠~r* :jE'WSFb>bvKv/WV =K@ephB/?8q K&Vիڼ]Hۖwe !ɪĔĒO0Al} ;%;s.؁EE{LRr8)_/77k%L-[BmjBOU*äc]e>`y^GΨu 'o}J6+MNR eHRJir>@JsS4LR/%9Rc}-%\-˘&л\2Y񛵽e|>RYҚ~&;<6]PoמPx rጷ~˨.= ?) w6H3ǩS("?hLl$gzl+K|4QA4&Xh@o;J5"W5ݝڕH P!UEOLQeoG'Imi*,$򣉪LJiکuDqr=cZƢ` +s|{Ou`W.vCE/Wnܧw133iՁAUs֏P4&kdpCp9zء_Һ?%c^D+) IXȉϤLu.eũ$WSNq&9wP}&A<3ht?ci|@.DG&)ľ +Ok&v>3{Mk{ {Ub{9 ?]7ɕIT#Td8uY{9٢Rk)5kj6} ?83_'h{i%zb΁6/p~Ƭ ~Ȱ7Źօ=]$ef8|k,xq\[؅`<͘qR&cl(/"Щ[+XnϜdo"G֢!rP>L'r_+_QEMM9ճȓWE扬'7iͿD!ऌU;כ*f|ي?^[Ws7s.1~l7쨰K(޼hgvzޡ8$g 7z- {Łgs6z mvgf8ȾK~>1]BG| o3ںUgޯ"]-}Lh4d n480u!ȏ+"j:1Ж'o{,eF2@ ěWE\fw ˴tƳ \Xep! ^U:V1/%3OkGv 3psj&yQt>CCi{hV'77㋲R0Α>v)|ea,ɼ&~G G[7/޵{p;ޏ5myD6zsqbrE. Y3ɩn&ʳ*j~Ya:i=Gf " #1숫ȓ#hm}e4ޏj`ܣ g[Q;l' Mx7FGKpnHi<ֺ =hɘw`]E>ha]9?6{\db&;ը-K nڇ,eʞ/:?&Yc?Spw-^9⬅}I91|d] 6ůx/I[1"KUpЪ6Ni=3z(oQ_WnVNfi0YM =w˝ZqM=Ѣw:-^Ef85@\w"q'onu vuu'cv)Ɋ1`cʦlܒ9FZ?n naߎĹIKyΗ⤋;>(7?:ϝNՂ54.OfchOV߅1:wH֧U`J h7-{ٹ҄2F|Rxr:r:kNR]|=]@7:g @]7܀|jU~6Y%c/٣xlMڮ<#+7| PTe@*Z>R|$ !,ER`1"yE|LɈoGI uAhH(!Dls޻/t)Ϩ?s+d_aq&MM6CN>gM~yރɼ6;/^U@fW-.=0% oo߮P݀'K+e`NOq} pz0лu!q%Ƌ|5^0: xbS2;/}`Ah,XWC(ѓ'ӀѓέI0Ή0l&p~xOϢ݅8.>ƦC&%Q%\r5%Cf1old֖o z,xw5M;Ø#ާQS]vh矏+D S=,N-~\&R/ "gaGPGJ3 =+Lµ P(DAhVu ;^fQ< Ӎ>1PzcIdWiz_=k%5׆.:g-k} ƺZ8@j5sOn.?aO6w?X ʎCNǸ.bc<;?>]ҋn#;JC;wq8ຯw>t})i$0VlK#ɗ:_w].o|oTA\<3Y4^u;0|WH/;p'BPg^1/9.$u'Ca犪2װOb޵4裉_,",9!( s'+:`|ݘ.{UB|=>:z΀qŃ:p@1k@[ߠA3ۅp.G»jfC^SNf@o͌$Ln;fa Ϝ.1Vj9$my|F8ofkoɤ;idC_hCMwL]S| g1_ {>Y0/6;9kߩW@8>).\Bu({PN8`+ab60ʆ M#)A4E5#%љ=l9.-Ҋ~ڂFP#駍Ьw`=B|46g=k.5~2diOIAc,ZH]M~]NQٔ% Ūw%44*u R0fR"&SVR1(H,QC֕8cpĂ7ZXKa%m~(5*bTO+Z*N'fTyćaJZX?u]t^L3Hfm ҌGmEF*\۪8KUOV","bBO4l!FRJ, +g9ysg}E|9w̝3g̽FhMCz.1@RҖ&)1Q=o EuPZP M\ˬj?9䐤P9EP-RfA=݂śW1bV&<)3eoWfJǫ7u ଣ5|jz@~ NsM/L|^-5"F3N4@[_>[LȝcUyNX.12!)pZ¯(Ikm2 "Ǒ M>rllM1Q6>`h˨[?+vֲ/K>*{ptUX2f2y>#:7>nBi3.j1s, L eYo{[!b+.7ջL1Y7g?Wߧ^7 .l}ĵ]T]O+(m-hE`f@Buב~wRU]6ם | {{w|aw IQ2 =SЇ'Yg}k8at[^So'Y'k!>1] 's1ITXtxYNW+D ?Ai !V|=_wvu{^Fq4ԏ** M6x"K:f#sQ1 1bRmk7ErH9dsx|<&{FKp#'6/Եr۹}&LCuo8ŬkٸF }iʚ" t~wLH5Yޑџi;bH]yCvF \numUKkAĄY"M`|D"*cy^j 0) if (id == 0) if (isempty (group)) % return stats about the whole collection stats.nmatrices = length (UF_Index.nrows) ; stats.LastRevisionDate = UF_Index.LastRevisionDate ; stats.DownloadTime = datestr (UF_Index.DownloadTimeStamp) ; else % return stats about one matrix group nmat = length (UF_Index.nrows) ; ngroup = 0 ; for i = 1:nmat if (strcmp (group, UF_Index.Group {i})) ngroup = ngroup + 1 ; end end stats.nmatrices = ngroup ; stats.LastRevisionDate = UF_Index.LastRevisionDate ; stats.DownloadTime = datestr (UF_Index.DownloadTimeStamp) ; end else % look up the matrix statistics stats.Group = group ; stats.Name = name ; stats.nrows = UF_Index.nrows (id) ; stats.ncols = UF_Index.ncols (id) ; stats.nnz = UF_Index.nnz (id) ; stats.nzero = UF_Index.nzero (id) ; stats.pattern_symmetry = UF_Index.pattern_symmetry (id) ; stats.numerical_symmetry = UF_Index.numerical_symmetry (id) ; stats.isBinary = UF_Index.isBinary (id) ; stats.isReal = UF_Index.isReal (id) ; stats.nnzdiag = UF_Index.nnzdiag (id) ; stats.posdef = UF_Index.posdef (id) ; stats.amd_lnz = UF_Index.amd_lnz (id) ; stats.amd_flops = UF_Index.amd_flops (id) ; stats.amd_vnz = UF_Index.amd_vnz (id) ; stats.amd_rnz = UF_Index.amd_rnz (id) ; stats.metis_lnz = UF_Index.metis_lnz (id) ; stats.metis_flops = UF_Index.metis_flops (id) ; stats.metis_vnz = UF_Index.metis_vnz (id) ; stats.metis_rnz = UF_Index.metis_rnz (id) ; stats.nblocks = UF_Index.nblocks (id) ; stats.sprank = UF_Index.sprank (id) ; stats.nzoff = UF_Index.nzoff (id) ; stats.dmperm_lnz = UF_Index.dmperm_lnz (id) ; stats.dmperm_unz = UF_Index.dmperm_unz (id) ; stats.dmperm_flops = UF_Index.dmperm_flops (id) ; stats.dmperm_vnz = UF_Index.dmperm_vnz (id) ; stats.dmperm_rnz = UF_Index.dmperm_rnz (id) ; stats.RBtype = UF_Index.RBtype (id,:) ; stats.cholcand = UF_Index.cholcand (id) ; stats.ncc = UF_Index.ncc (id) ; end end SuiteSparse/CSparse/MATLAB/UFget/README.txt0000644001170100242450000000404510620373550016763 0ustar davisfacUFget: a MATLAB interface to the UF sparse matrix collection. MATLAB 7.0 or later is required. Date: May 31, 2007. Copyright 2005-2007, Tim Davis, University of Florida. Authors: Tim Davis and Erich Mirable. Availability: http://www.cise.ufl.edu/research/sparse/mat/UFget See http://www.cise.ufl.edu/research/sparse/mat/UFget.tar.gz for a single archive file with all the files listed below. UFget/Contents.m help for UFget UFget/README.txt this file UFget/UFget_defaults.m default parameter settings for UFget UFget/UFget_example.m demo for UFget UFget/UFget_lookup.m get the group, name, and id of a matrix UFget/UFget.m primary user interface UFget/UFweb.m opens the URL for a matrix or collection UFget/mat default download directory (can be changed) UFget/mat/UF_Index.mat index to the UF sparse matrix collection To install the package, just add the path containing the UFget directory to your MATLAB path. Type "pathtool" in MATLAB for more details. For a simple example of use, type this command in MATLAB: UFget_example The MATLAB statement Problem = UFget ('HB/arc130') (for example), will download a sparse matrix called HB/arc130 (a laser simulation problem) and load it into MATLAB. You don't need to use your web browser to load the matrix. The statement Problem = UFget (6) will also load same the HB/arc130 matrix. Each matrix in the collection has a unique identifier, in the range 1 to the number of matrices. As new matrices are added, the id's of existing matrices will not change. To view an index of the entire collection, just type UFget in MATLAB. To modify your download directory, edit the UFget_defaults.m file. To open a URL of the entire collection, just type UFweb To open the URL of a group of matrices in the collection: UFweb ('HB') To open the web page for one matrix, use either of these formats: UFweb ('HB/arc130') UFweb (6) For more information on how the index entries were created, see http://www.cise.ufl.edu/research/sparse/SuiteSparse. SuiteSparse/CSparse/MATLAB/UFget/UFget_lookup.m0000644001170100242450000000403210711661566020052 0ustar davisfacfunction [group, name, id] = UFget_lookup (matrix, UF_Index) %UFGET_LOOKUP gets the group, name, and id of a matrix. % % Example: % [group name id] = UFget_lookup (matrix, UF_Index) % % See also UFget. % Copyright 2007, Tim Davis, University of Florida. if (isnumeric (matrix)) % make sure that the matrix parameter is only one integer value % this means that if we get an array, just use the first value id = fix (full (matrix (1))) ; % if the index is less than one or bigger than the length of the array, % then no particular matrix is accessed if (id > length (UF_Index.nrows) | id < 1) %#ok id = 0 ; group = '' ; name = '' ; else % assign the group and name for the given id group = UF_Index.Group {matrix} ; name = UF_Index.Name {matrix} ; end elseif (ischar (matrix)) % the group and matrix name are in the string as in GroupName\MatrixName % find the group index for the file separator % check both types of slashes, and a colon gi = find (matrix == '/') ; if (length (gi) == 0) %#ok gi = find (matrix == '\') ; end if (length (gi) == 0) %#ok gi = find (matrix == ':') ; end % if no name divider is in the string, a whole group is specified if (length (gi) == 0) %#ok id = 0 ; group = matrix ; name = '' ; else % group equals the first part of the string up to the character before % the last file separator group = matrix (1:gi(end)-1) ; % group equals the last section of the string after the last file % separator name = matrix (gi(end)+1:end) ; % validate the given name and group by checking the index for a match refName = strmatch (name, UF_Index.Name) ; refGroup = strmatch (group, UF_Index.Group) ; id = intersect (refName, refGroup) ; if (length (id) >= 1) id = id (1) ; else % the given group/matrix does not exist in the index file id = 0 ; end end else % there is an error in the argument types passed into the function error ('invalid input') ; end SuiteSparse/CSparse/MATLAB/UFget/UFgrep.m0000644001170100242450000000265710620373464016646 0ustar davisfacfunction list = UFgrep (expression, index) %UFGREP search for matrices in the UF Sparse Matrix Collection. % UFgrep returns a list of Problem id's whose Problem.name string matches an % expression. With no output arguments, the list is displayed. Otherwise, it % is returned as a list of integer id's. % % Example: % UFgrep ('HB') ; % all matrices in the HB group % UFgrep ('\= 7.0) addpath ([pwd filesep 'UFget']) ; else fprintf ('UFget not installed (MATLAB 7.0 or later required)\n') ; end cd ('CSparse') ; cs_make (1) ; cd ('../Demo') ; cs_demo (do_pause) %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/CSparse/Matrix/0000755001170100242450000000000010533354740014557 5ustar davisfacSuiteSparse/CSparse/Matrix/t10000644001170100242450000000012010323544611015012 0ustar davisfac2 2 3.0 1 0 3.1 3 3 1.0 0 2 3.2 1 1 2.9 3 0 3.5 3 1 0.4 1 3 0.9 0 0 4.5 2 1 1.7 SuiteSparse/CSparse/Matrix/west00670000644001170100242450000000753510326012123015775 0ustar davisfac44 55 -1.863354 54 61 -1.863354 29 37 -1.567398 44 56 -1.490683 54 62 -1.490683 9 12 -1.265823 29 38 -1.253918 44 57 -1.118012 54 63 -1.118012 15 31 -1.05 16 32 -1.05 17 33 -1.05 18 34 -1.05 19 35 -1.05 24 31 -1.05 25 32 -1.05 26 33 -1.05 27 34 -1.05 28 35 -1.05 9 13 -1.012658 10 20 -1 11 21 -1 12 22 -1 13 23 -1 14 24 -1 30 49 -0.9722222 31 50 -0.9722222 32 51 -0.9722222 33 52 -0.9722222 34 53 -0.9722222 39 49 -0.9722222 40 50 -0.9722222 41 51 -0.9722222 42 52 -0.9722222 43 53 -0.9722222 35 25 -0.9583187 36 26 -0.9583187 37 27 -0.9583187 38 28 -0.9583187 49 55 -0.9444444 50 56 -0.9444444 51 57 -0.9444444 52 58 -0.9444444 53 59 -0.9444444 29 39 -0.9404389 20 1 -0.9159533 21 2 -0.9159533 22 3 -0.9159533 23 4 -0.9159533 0 7 -0.8341818 1 8 -0.8341818 2 9 -0.8341818 3 10 -0.8341818 45 43 -0.8242248 46 44 -0.8242248 47 45 -0.8242248 48 46 -0.8242248 4 1 -0.8 5 2 -0.8 6 3 -0.8 7 4 -0.8 8 5 -0.8 9 14 -0.7594937 44 58 -0.7453416 54 64 -0.7453416 29 40 -0.6269592 9 15 -0.5063291 44 59 -0.3726708 54 65 -0.3726708 0 17 -0.3361556 29 41 -0.3134796 1 17 -0.2939196 20 42 -0.2788416 4 0 -0.2788416 21 42 -0.2680186 5 0 -0.2680186 52 54 -0.2667757 53 54 -0.2630706 48 66 -0.2541193 9 16 -0.2531646 37 60 -0.2475675 47 66 -0.2421498 33 48 -0.2362845 42 48 -0.2362845 36 60 -0.2356469 22 42 -0.2323717 6 0 -0.2323717 32 48 -0.2303917 41 48 -0.2303917 17 30 -0.2286264 26 30 -0.2286264 16 30 -0.2232997 25 30 -0.2232997 2 17 -0.2214815 12 19 -0.2144206 11 19 -0.2140392 51 54 -0.2122056 38 60 -0.2074873 10 19 -0.2071759 15 30 -0.2070986 24 30 -0.2070986 35 60 -0.2069954 18 30 -0.2024528 27 30 -0.2024528 13 19 -0.1986768 31 48 -0.1947711 40 48 -0.1947711 46 66 -0.1918557 34 48 -0.18039 43 48 -0.18039 14 19 -0.1656874 30 48 -0.1581626 39 48 -0.1581626 23 42 -0.1575082 7 0 -0.1575082 50 54 -0.1514908 45 66 -0.1443354 19 30 -0.1385226 28 30 -0.1385226 3 17 -0.118986 49 54 -0.1064573 8 0 -0.06325978 8 6 0.01178291 28 0 0.03162989 7 6 0.04759439 39 54 0.05322864 40 54 0.07574542 27 0 0.07875411 24 36 0.08147449 6 6 0.08859262 30 36 0.09052721 28 36 0.09241909 25 36 0.09789015 19 19 0.09941246 34 36 0.1026879 41 54 0.1061028 31 36 0.1087668 26 36 0.1131608 27 36 0.1150555 26 0 0.1161859 5 6 0.1175679 18 19 0.1192061 15 19 0.1243055 32 36 0.1257342 33 36 0.1278394 16 19 0.1284235 17 19 0.1286524 43 54 0.1315353 42 54 0.1333878 25 0 0.1340093 4 6 0.1344622 24 0 0.1394208 30 43 0.25 31 44 0.25 32 45 0.25 33 46 0.25 34 47 0.25 10 12 0.3333333 11 13 0.3333333 12 14 0.3333333 13 15 0.3333333 14 16 0.3333333 24 1 0.4 25 2 0.4 26 3 0.4 27 4 0.4 28 5 0.4 4 12 0.4 4 7 0.4 5 13 0.4 5 8 0.4 6 14 0.4 6 9 0.4 7 10 0.4 7 15 0.4 8 11 0.4 8 16 0.4 49 61 0.4444444 50 62 0.4444444 51 63 0.4444444 52 64 0.4444444 53 65 0.4444444 15 25 0.45 16 26 0.45 17 27 0.45 18 28 0.45 19 29 0.45 39 55 0.4722222 40 56 0.4722222 41 57 0.4722222 42 58 0.4722222 43 59 0.4722222 39 25 0.5 40 26 0.5 41 27 0.5 42 28 0.5 43 29 0.5 49 43 0.5 50 44 0.5 51 45 0.5 52 46 0.5 53 47 0.5 3 15 0.5063291 15 20 0.6 16 21 0.6 17 22 0.6 18 23 0.6 19 24 0.6 23 40 0.6269592 24 37 0.65 25 38 0.65 26 39 0.65 27 40 0.65 28 41 0.65 14 18 0.6666667 30 37 0.7222222 31 38 0.7222222 32 39 0.7222222 33 40 0.7222222 34 41 0.7222222 38 58 0.7453416 48 64 0.7453416 2 14 0.7594937 22 39 0.9404389 59 31 0.5 59 32 0.5 59 33 0.5 59 34 0.5 59 35 0.5 29 42 1 44 60 1 54 66 1 55 18 1 56 10 1 56 11 1 56 7 1 56 8 1 56 9 1 57 12 1 57 13 1 57 14 1 57 15 1 57 16 1 58 20 1 58 21 1 58 22 1 58 23 1 58 24 1 59 31 0.5 59 32 0.5 59 33 0.5 59 34 0.5 59 35 0.5 60 1 1 60 2 1 60 3 1 60 4 1 60 5 1 61 37 1 61 38 1 61 39 1 61 40 1 61 41 1 62 49 1 62 50 1 62 51 1 62 52 1 62 53 1 63 25 1 63 26 1 63 27 1 63 28 1 63 29 1 64 55 1 64 56 1 64 57 1 64 58 1 64 59 1 65 43 1 65 44 1 65 45 1 65 46 1 65 47 1 66 61 1 66 62 1 66 63 1 66 64 1 66 65 1 9 17 1 1 13 1.012658 37 57 1.118012 47 63 1.118012 21 38 1.253918 0 12 1.265823 36 56 1.490683 46 62 1.490683 20 37 1.567398 35 55 1.863354 45 61 1.863354 SuiteSparse/CSparse/Matrix/bcsstk010000644001170100242450000001157510326005665016144 0ustar davisfac0 0 2.83226851852e+06 4 0 1.0e+06 5 0 2.08333333333e+06 6 0 -3.33333333333e+03 10 0 1.0e+06 18 0 -2.8e+06 24 0 -2.89351851852e+04 29 0 2.08333333333e+06 1 1 1.63544753086e+06 3 1 -2.0e+06 5 1 5.55555555555e+06 7 1 -6.66666666667e+03 9 1 -2.0e+06 19 1 -3.08641975309e+04 23 1 5.55555555555e+06 25 1 -1.59791666667e+06 2 2 1.72436728395e+06 3 2 -2.08333333333e+06 4 2 -2.77777777778e+06 8 2 -1.68e+06 20 2 -1.54320987654e+04 22 2 -2.77777777778e+06 26 2 -2.89351851852e+04 27 2 -2.08333333333e+06 3 3 1.00333333333e+09 7 3 2.0e+06 9 3 4.0e+08 21 3 -3.33333333333e+06 26 3 2.08333333333e+06 27 3 1.0e+08 4 4 1.06750000000e+09 6 4 -1.0e+06 10 4 2.0e+08 20 4 2.77777777778e+06 22 4 3.33333333333e+08 28 4 -8.33333333333e+05 5 5 1.53533333333e+09 11 5 -2.0e+06 19 5 -5.55555555555e+06 23 5 6.66666666667e+08 24 5 -2.08333333333e+06 29 5 1.0e+08 6 6 2.83226851852e+06 10 6 -1.0e+06 11 6 2.08333333333e+06 12 6 -2.8e+06 30 6 -2.89351851852e+04 35 6 2.08333333333e+06 7 7 1.63544753086e+06 9 7 2.0e+06 11 7 5.55555555555e+06 13 7 -3.08641975309e+04 17 7 5.55555555555e+06 31 7 -1.59791666667e+06 8 8 1.72436728395e+06 9 8 -2.08333333333e+06 10 8 -2.77777777778e+06 14 8 -1.54320987654e+04 16 8 -2.77777777778e+06 32 8 -2.89351851852e+04 33 8 -2.08333333333e+06 9 9 1.00333333333e+09 15 9 -3.33333333333e+06 32 9 2.08333333333e+06 33 9 1.0e+08 10 10 1.06750000000e+09 14 10 2.77777777778e+06 16 10 3.33333333333e+08 34 10 -8.33333333333e+05 11 11 1.53533333333e+09 13 11 -5.55555555555e+06 17 11 6.66666666667e+08 30 11 -2.08333333333e+06 35 11 1.0e+08 12 12 2.83609946950e+06 16 12 -2.14928529451e+06 17 12 2.35916180402e+06 18 12 -3.33333333333e+03 22 12 -1.0e+06 36 12 -2.89351851852e+04 41 12 2.08333333333e+06 42 12 -3.83095098171e+03 46 12 -1.14928529451e+06 47 12 2.75828470683e+05 13 13 1.76741074446e+06 14 13 5.17922131816e+05 15 13 4.29857058902e+06 17 13 -5.55555555555e+06 19 13 -6.66666666667e+03 21 13 2.0e+06 37 13 -1.59791666667e+06 43 13 -1.31963213599e+05 44 13 -5.17922131816e+05 45 13 2.29857058902e+06 14 14 3.89003806848e+06 15 14 -2.63499027470e+06 16 14 2.77777777778e+06 20 14 -1.68e+06 38 14 -2.89351851852e+04 39 14 -2.08333333333e+06 43 14 -5.17922131816e+05 44 14 -2.16567078453e+06 45 14 -5.51656941367e+05 15 15 1.97572063531e+09 19 15 -2.0e+06 21 15 4.0e+08 38 15 2.08333333333e+06 39 15 1.0e+08 43 15 -2.29857058902e+06 44 15 5.51656941366e+05 45 15 4.86193650990e+08 16 16 1.52734651547e+09 17 16 -1.09779731332e+08 18 16 1.0e+06 22 16 2.0e+08 40 16 -8.33333333333e+05 42 16 1.14928529451e+06 46 16 2.29724661236e+08 47 16 -5.57173510779e+07 17 17 1.56411143711e+09 23 17 -2.0e+06 36 17 -2.08333333333e+06 41 17 1.0e+08 42 17 -2.75828470683e+05 46 17 -5.57173510779e+07 47 17 1.09411960038e+07 18 18 2.83226851852e+06 22 18 1.0e+06 23 18 2.08333333333e+06 42 18 -2.89351851852e+04 47 18 2.08333333333e+06 19 19 1.63544753086e+06 21 19 -2.0e+06 23 19 -5.55555555555e+06 43 19 -1.59791666667e+06 20 20 1.72436728395e+06 21 20 -2.08333333333e+06 22 20 2.77777777778e+06 44 20 -2.89351851852e+04 45 20 -2.08333333333e+06 21 21 1.00333333333e+09 44 21 2.08333333333e+06 45 21 1.0e+08 22 22 1.06750000000e+09 46 22 -8.33333333333e+05 23 23 1.53533333333e+09 42 23 -2.08333333333e+06 47 23 1.0e+08 24 24 6.08796296296e+04 28 24 1.25e+06 29 24 4.16666666667e+05 30 24 -4.16666666667e+03 34 24 1.25e+06 25 25 3.37291666667e+06 27 25 -2.5e+06 31 25 -8.33333333333e+03 33 25 -2.5e+06 26 26 2.41171296296e+06 27 26 -4.16666666667e+05 32 26 -2.35500000000e+06 27 27 1.5e+09 31 27 2.5e+06 33 27 5.0e+08 28 28 5.01833333333e+08 30 28 -1.25e+06 34 28 2.5e+08 29 29 5.02500000000e+08 35 29 -2.5e+06 30 30 3.98587962963e+06 34 30 -1.25e+06 35 30 4.16666666667e+05 36 30 -3.92500000000e+06 31 31 3.41149691358e+06 33 31 2.5e+06 35 31 6.94444444444e+06 37 31 -3.85802469136e+04 41 31 6.94444444445e+06 32 32 2.43100308642e+06 33 32 -4.16666666667e+05 34 32 -3.47222222222e+06 38 32 -1.92901234568e+04 40 32 -3.47222222222e+06 33 33 1.50416666667e+09 39 33 -4.16666666667e+06 34 34 1.33516666667e+09 38 34 3.47222222222e+06 40 34 4.16666666667e+08 35 35 2.16916666667e+09 37 35 -6.94444444444e+06 41 35 8.33333333333e+08 36 36 3.98587962963e+06 40 36 -1.25e+06 41 36 4.16666666667e+05 42 36 -4.16666666667e+03 46 36 -1.25e+06 37 37 3.41149691358e+06 39 37 2.5e+06 41 37 -6.94444444445e+06 43 37 -8.33333333333e+03 45 37 2.5e+06 38 38 2.43100308642e+06 39 38 -4.16666666667e+05 40 38 3.47222222222e+06 44 38 -2.35500000000e+06 39 39 1.50416666667e+09 43 39 -2.5e+06 45 39 5.0e+08 40 40 1.33516666667e+09 42 40 1.25e+06 46 40 2.5e+08 41 41 2.16916666667e+09 47 41 -2.5e+06 42 42 6.47105806113e+04 46 42 2.39928529451e+06 47 42 1.40838195984e+05 43 43 3.50487988027e+06 44 43 5.17922131816e+05 45 43 -4.79857058902e+06 44 44 4.57738374749e+06 45 44 1.34990274700e+05 45 45 2.47238730198e+09 46 46 9.61679848804e+08 47 46 -1.09779731332e+08 47 47 5.31278103775e+08 SuiteSparse/CSparse/Matrix/bcsstk160000644001170100242450001632470710326007427016163 0ustar davisfac0 0 285559874.9195 1 0 26666666.66228 3 0 -146456504.1625 4 0 -26666666.44895 6 0 9767101.054332 7 0 21333333.1165 111 0 45108925.89256 112 0 13333333.33771 113 0 13177222.19231 114 0 -107413106.5112 115 0 -13333333.23104 116 0 -65886110.96157 117 0 -9767101.054335 118 0 10666666.5635 119 0 -13177221.94221 1 1 245557954.5208 3 1 -26666666.34228 4 1 -21122150.29068 6 1 31999999.67474 7 1 9767101.054331 111 1 13333333.33771 112 1 25107965.68335 113 1 10541666.55379 114 1 -13333333.17771 115 1 -44745929.54446 116 1 -13177083.26329 117 1 15999999.84525 118 1 -9767101.054335 119 1 15812499.93082 2 2 1 3 3 494473574.2688 4 3 26666666.12895 6 3 15679616.33822 7 3 -26666666.44895 9 3 -99111631.13552 10 3 2.384185791016e-07 12 3 -37577772.88735 13 3 26666666.66229 111 3 -107413106.5112 112 3 -13333333.17771 113 3 65886110.96157 114 3 100730268.7541 115 3 13333333.07105 116 3 0.02774140238762 117 3 -26345045.89131 118 3 -13333333.23105 119 3 16471527.49884 120 3 -88624220.55292 121 3 2.235174179077e-07 122 3 -65886111.10029 123 3 -28555987.69793 124 3 13333333.33771 125 3 -16471527.78319 4 4 422470117.3622 6 4 -26666666.34229 7 4 -77653201.26574 9 4 1.490116119385e-07 10 4 18222339.27204 12 4 26666666.66229 13 4 -29577388.75645 111 4 -13333333.23104 112 4 -44745929.54447 113 4 13177083.28808 114 4 13333333.07105 115 4 64728540.28304 116 4 0.022192299366 117 4 -13333333.17771 118 4 -73011454.71628 119 4 52708333.03581 120 4 1.9371509552e-07 121 4 -29957235.32024 122 4 -3.8743019104e-07 123 4 13333333.33771 124 4 -24555795.63051 125 4 13177083.33766 5 5 1 6 6 285559874.9195 7 6 26666666.66228 9 6 -37577772.88735 10 6 -26666666.66229 12 6 -146456504.1625 13 6 -26666666.44895 15 6 9767101.054332 16 6 21333333.1165 111 6 -9767101.054335 112 6 15999999.84525 113 6 19765832.91331 114 6 -26345045.8913 115 6 -13333333.17771 116 6 -16471527.35667 117 6 45108925.89256 118 6 13333333.33771 119 6 13177222.19231 120 6 -28555987.69793 121 6 -13333333.33771 122 6 -16471527.78319 123 6 -107413106.5112 124 6 -13333333.23104 125 6 -65886110.96157 126 6 -9767101.054335 127 6 10666666.5635 128 6 -13177221.94221 7 7 245557954.5208 9 7 -26666666.66229 10 7 -29577388.75645 12 7 -26666666.34228 13 7 -21122150.29068 15 7 31999999.67474 16 7 9767101.054331 111 7 10666666.5635 112 7 -9767101.054336 113 7 -10541666.62055 114 7 -13333333.23105 115 7 -73011454.71627 116 7 -52708332.94687 117 7 13333333.33771 118 7 25107965.68335 119 7 10541666.55379 120 7 -13333333.33771 121 7 -24555795.63051 122 7 -13177083.33766 123 7 -13333333.17771 124 7 -44745929.54446 125 7 -13177083.26329 126 7 15999999.84525 127 7 -9767101.054335 128 7 15812499.93082 8 8 1 9 9 456895802.7167 10 9 3.695487976074e-06 12 9 63024490.39561 13 9 -1.102685928345e-06 18 9 -99111631.13552 19 9 2.384185791016e-07 21 9 -37577772.88735 22 9 26666666.66229 114 9 -88624220.55292 115 9 1.043081283569e-07 116 9 65886111.10029 117 9 -28555987.69793 118 9 -13333333.33771 119 9 16471527.78319 120 9 72174281.7049 121 9 1.728534698486e-06 122 9 1.221895217896e-06 123 9 -7556159.747413 124 9 -7.450580596924e-07 125 9 1.341104507446e-06 129 9 -88624220.55292 130 9 2.235174179077e-07 131 9 -65886111.10029 132 9 -28555987.69793 133 9 13333333.33771 134 9 -16471527.78319 10 10 392892729.701 12 10 -1.311302185059e-06 13 10 -38308711.76591 18 10 1.490116119385e-07 19 10 18222339.27204 21 10 26666666.66229 22 10 -29577388.75645 114 10 4.470348358154e-08 115 10 -29957235.32024 116 10 2.831220626831e-07 117 10 -13333333.33771 118 10 -24555795.63051 119 10 13177083.33766 120 10 1.728534698486e-06 121 10 40172745.1813 122 10 -5.960464477539e-08 123 10 -7.003545761108e-07 124 10 -58222760.85313 125 10 52708333.32467 129 10 1.9371509552e-07 130 10 -29957235.32024 131 10 -3.8743019104e-07 132 10 13333333.33771 133 10 -24555795.63051 134 10 13177083.33766 11 11 1 12 12 494473574.2688 13 12 26666666.12895 15 12 15679616.33822 16 12 -26666666.44895 18 12 -37577772.88735 19 12 -26666666.66229 21 12 -99111631.13552 22 12 2.384185791016e-07 24 12 -37577772.88735 25 12 26666666.66229 114 12 -28555987.69793 115 12 13333333.33771 116 12 16471527.78319 117 12 -107413106.5112 118 12 -13333333.17771 119 12 65886110.96157 120 12 -7556159.747413 121 12 -3.278255462646e-07 122 12 -1.206994056702e-06 123 12 100730268.7541 124 12 13333333.07105 125 12 0.02774140238762 126 12 -26345045.89131 127 12 -13333333.23105 128 12 16471527.49884 129 12 -28555987.69793 130 12 -13333333.33771 131 12 -16471527.78319 132 12 -88624220.55292 133 12 2.235174179077e-07 134 12 -65886111.10029 135 12 -28555987.69793 136 12 13333333.33771 137 12 -16471527.78319 13 13 422470117.3622 15 13 -26666666.34229 16 13 -77653201.26574 18 13 -26666666.66229 19 13 -29577388.75645 21 13 1.490116119385e-07 22 13 18222339.27204 24 13 26666666.66229 25 13 -29577388.75645 114 13 13333333.33771 115 13 -24555795.63051 116 13 -13177083.33766 117 13 -13333333.23104 118 13 -44745929.54447 119 13 13177083.28808 120 13 -2.98023223877e-07 121 13 -58222760.85313 122 13 -52708333.32467 123 13 13333333.07105 124 13 64728540.28304 125 13 0.022192299366 126 13 -13333333.17771 127 13 -73011454.71628 128 13 52708333.03581 129 13 -13333333.33771 130 13 -24555795.63051 131 13 -13177083.33766 132 13 1.9371509552e-07 133 13 -29957235.32024 134 13 -3.8743019104e-07 135 13 13333333.33771 136 13 -24555795.63051 137 13 13177083.33766 14 14 1 15 15 285559874.9195 16 15 26666666.66228 21 15 -37577772.88735 22 15 -26666666.66229 24 15 -146456504.1625 25 15 -26666666.44895 27 15 9767101.054332 28 15 21333333.1165 117 15 -9767101.054335 118 15 15999999.84525 119 15 19765832.91331 123 15 -26345045.8913 124 15 -13333333.17771 125 15 -16471527.35667 126 15 45108925.89256 127 15 13333333.33771 128 15 13177222.19231 132 15 -28555987.69793 133 15 -13333333.33771 134 15 -16471527.78319 135 15 -107413106.5112 136 15 -13333333.23104 137 15 -65886110.96157 138 15 -9767101.054335 139 15 10666666.5635 140 15 -13177221.94221 16 16 245557954.5208 21 16 -26666666.66229 22 16 -29577388.75645 24 16 -26666666.34228 25 16 -21122150.29068 27 16 31999999.67474 28 16 9767101.054331 117 16 10666666.5635 118 16 -9767101.054336 119 16 -10541666.62055 123 16 -13333333.23105 124 16 -73011454.71627 125 16 -52708332.94687 126 16 13333333.33771 127 16 25107965.68335 128 16 10541666.55379 132 16 -13333333.33771 133 16 -24555795.63051 134 16 -13177083.33766 135 16 -13333333.17771 136 16 -44745929.54446 137 16 -13177083.26329 138 16 15999999.84525 139 16 -9767101.054335 140 16 15812499.93082 17 17 1 18 18 456895802.7167 19 18 3.695487976074e-06 21 18 63024490.39561 22 18 -1.102685928345e-06 30 18 -99111631.13552 31 18 2.384185791016e-07 33 18 -37577772.88735 34 18 26666666.66229 120 18 -88624220.55292 121 18 1.043081283569e-07 122 18 65886111.10029 123 18 -28555987.69793 124 18 -13333333.33771 125 18 16471527.78319 129 18 72174281.7049 130 18 1.728534698486e-06 131 18 1.221895217896e-06 132 18 -7556159.747413 133 18 -7.450580596924e-07 134 18 1.341104507446e-06 141 18 -88624220.55292 142 18 2.235174179077e-07 143 18 -65886111.10029 144 18 -28555987.69793 145 18 13333333.33771 146 18 -16471527.78319 19 19 392892729.701 21 19 -1.311302185059e-06 22 19 -38308711.76591 30 19 1.490116119385e-07 31 19 18222339.27204 33 19 26666666.66229 34 19 -29577388.75645 120 19 4.470348358154e-08 121 19 -29957235.32024 122 19 2.831220626831e-07 123 19 -13333333.33771 124 19 -24555795.63051 125 19 13177083.33766 129 19 1.728534698486e-06 130 19 40172745.1813 131 19 -5.960464477539e-08 132 19 -7.003545761108e-07 133 19 -58222760.85313 134 19 52708333.32467 141 19 1.9371509552e-07 142 19 -29957235.32024 143 19 -3.8743019104e-07 144 19 13333333.33771 145 19 -24555795.63051 146 19 13177083.33766 20 20 1 21 21 456895802.7167 22 21 3.695487976074e-06 24 21 63024490.39561 25 21 -1.102685928345e-06 30 21 -37577772.88735 31 21 -26666666.66229 33 21 -99111631.13552 34 21 2.384185791016e-07 36 21 -37577772.88735 37 21 26666666.66229 120 21 -28555987.69793 121 21 13333333.33771 122 21 16471527.78319 123 21 -88624220.55292 124 21 1.043081283569e-07 125 21 65886111.10029 126 21 -28555987.69793 127 21 -13333333.33771 128 21 16471527.78319 129 21 -7556159.747413 130 21 -3.278255462646e-07 131 21 -1.206994056702e-06 132 21 72174281.7049 133 21 1.728534698486e-06 134 21 1.221895217896e-06 135 21 -7556159.747413 136 21 -7.450580596924e-07 137 21 1.341104507446e-06 141 21 -28555987.69793 142 21 -13333333.33771 143 21 -16471527.78319 144 21 -88624220.55292 145 21 2.235174179077e-07 146 21 -65886111.10029 147 21 -28555987.69793 148 21 13333333.33771 149 21 -16471527.78319 22 22 392892729.701 24 22 -1.311302185059e-06 25 22 -38308711.76591 30 22 -26666666.66229 31 22 -29577388.75645 33 22 1.490116119385e-07 34 22 18222339.27204 36 22 26666666.66229 37 22 -29577388.75645 120 22 13333333.33771 121 22 -24555795.63051 122 22 -13177083.33766 123 22 4.470348358154e-08 124 22 -29957235.32024 125 22 2.831220626831e-07 126 22 -13333333.33771 127 22 -24555795.63051 128 22 13177083.33766 129 22 -2.98023223877e-07 130 22 -58222760.85313 131 22 -52708333.32467 132 22 1.728534698486e-06 133 22 40172745.1813 134 22 -5.960464477539e-08 135 22 -7.003545761108e-07 136 22 -58222760.85313 137 22 52708333.32467 141 22 -13333333.33771 142 22 -24555795.63051 143 22 -13177083.33766 144 22 1.9371509552e-07 145 22 -29957235.32024 146 22 -3.8743019104e-07 147 22 13333333.33771 148 22 -24555795.63051 149 22 13177083.33766 23 23 1 24 24 494473574.2688 25 24 26666666.12895 27 24 15679616.33822 28 24 -26666666.44895 33 24 -37577772.88735 34 24 -26666666.66229 36 24 -99111631.13552 37 24 2.384185791016e-07 39 24 -37577772.88735 40 24 26666666.66229 123 24 -28555987.69793 124 24 13333333.33771 125 24 16471527.78319 126 24 -107413106.5112 127 24 -13333333.17771 128 24 65886110.96157 132 24 -7556159.747413 133 24 -3.278255462646e-07 134 24 -1.206994056702e-06 135 24 100730268.7541 136 24 13333333.07105 137 24 0.02774140238762 138 24 -26345045.89131 139 24 -13333333.23105 140 24 16471527.49884 144 24 -28555987.69793 145 24 -13333333.33771 146 24 -16471527.78319 147 24 -88624220.55292 148 24 2.235174179077e-07 149 24 -65886111.10029 150 24 -28555987.69793 151 24 13333333.33771 152 24 -16471527.78319 25 25 422470117.3622 27 25 -26666666.34229 28 25 -77653201.26574 33 25 -26666666.66229 34 25 -29577388.75645 36 25 1.490116119385e-07 37 25 18222339.27204 39 25 26666666.66229 40 25 -29577388.75645 123 25 13333333.33771 124 25 -24555795.63051 125 25 -13177083.33766 126 25 -13333333.23104 127 25 -44745929.54447 128 25 13177083.28808 132 25 -2.98023223877e-07 133 25 -58222760.85313 134 25 -52708333.32467 135 25 13333333.07105 136 25 64728540.28304 137 25 0.022192299366 138 25 -13333333.17771 139 25 -73011454.71628 140 25 52708333.03581 144 25 -13333333.33771 145 25 -24555795.63051 146 25 -13177083.33766 147 25 1.9371509552e-07 148 25 -29957235.32024 149 25 -3.8743019104e-07 150 25 13333333.33771 151 25 -24555795.63051 152 25 13177083.33766 26 26 1 27 27 285559874.9195 28 27 26666666.66228 36 27 -37577772.88735 37 27 -26666666.66229 39 27 -146456504.1625 40 27 -26666666.44895 42 27 9767101.054332 43 27 21333333.1165 126 27 -9767101.054335 127 27 15999999.84525 128 27 19765832.91331 135 27 -26345045.8913 136 27 -13333333.17771 137 27 -16471527.35667 138 27 45108925.89256 139 27 13333333.33771 140 27 13177222.19231 147 27 -28555987.69793 148 27 -13333333.33771 149 27 -16471527.78319 150 27 -107413106.5112 151 27 -13333333.23104 152 27 -65886110.96157 153 27 -9767101.054335 154 27 10666666.5635 155 27 -13177221.94221 28 28 245557954.5208 36 28 -26666666.66229 37 28 -29577388.75645 39 28 -26666666.34228 40 28 -21122150.29068 42 28 31999999.67474 43 28 9767101.054331 126 28 10666666.5635 127 28 -9767101.054336 128 28 -10541666.62055 135 28 -13333333.23105 136 28 -73011454.71627 137 28 -52708332.94687 138 28 13333333.33771 139 28 25107965.68335 140 28 10541666.55379 147 28 -13333333.33771 148 28 -24555795.63051 149 28 -13177083.33766 150 28 -13333333.17771 151 28 -44745929.54446 152 28 -13177083.26329 153 28 15999999.84525 154 28 -9767101.054335 155 28 15812499.93082 29 29 1 30 30 456895802.7167 31 30 3.695487976074e-06 33 30 63024490.39561 34 30 -1.102685928345e-06 45 30 -99111631.13552 46 30 2.384185791016e-07 48 30 -37577772.88735 49 30 26666666.66229 129 30 -88624220.55292 130 30 1.043081283569e-07 131 30 65886111.10029 132 30 -28555987.69793 133 30 -13333333.33771 134 30 16471527.78319 141 30 72174281.7049 142 30 1.728534698486e-06 143 30 1.221895217896e-06 144 30 -7556159.747413 145 30 -7.450580596924e-07 146 30 1.341104507446e-06 156 30 -88624220.55292 157 30 2.235174179077e-07 158 30 -65886111.10029 159 30 -28555987.69793 160 30 13333333.33771 161 30 -16471527.78319 31 31 392892729.701 33 31 -1.311302185059e-06 34 31 -38308711.76591 45 31 1.490116119385e-07 46 31 18222339.27204 48 31 26666666.66229 49 31 -29577388.75645 129 31 4.470348358154e-08 130 31 -29957235.32024 131 31 2.831220626831e-07 132 31 -13333333.33771 133 31 -24555795.63051 134 31 13177083.33766 141 31 1.728534698486e-06 142 31 40172745.1813 143 31 -5.960464477539e-08 144 31 -7.003545761108e-07 145 31 -58222760.85313 146 31 52708333.32467 156 31 1.9371509552e-07 157 31 -29957235.32024 158 31 -3.8743019104e-07 159 31 13333333.33771 160 31 -24555795.63051 161 31 13177083.33766 32 32 1 33 33 456895802.7167 34 33 3.695487976074e-06 36 33 63024490.39561 37 33 -1.102685928345e-06 45 33 -37577772.88735 46 33 -26666666.66229 48 33 -99111631.13552 49 33 2.384185791016e-07 51 33 -37577772.88735 52 33 26666666.66229 129 33 -28555987.69793 130 33 13333333.33771 131 33 16471527.78319 132 33 -88624220.55292 133 33 1.043081283569e-07 134 33 65886111.10029 135 33 -28555987.69793 136 33 -13333333.33771 137 33 16471527.78319 141 33 -7556159.747413 142 33 -3.278255462646e-07 143 33 -1.206994056702e-06 144 33 72174281.7049 145 33 1.728534698486e-06 146 33 1.221895217896e-06 147 33 -7556159.747413 148 33 -7.450580596924e-07 149 33 1.341104507446e-06 156 33 -28555987.69793 157 33 -13333333.33771 158 33 -16471527.78319 159 33 -88624220.55292 160 33 2.235174179077e-07 161 33 -65886111.10029 162 33 -28555987.69793 163 33 13333333.33771 164 33 -16471527.78319 34 34 392892729.701 36 34 -1.311302185059e-06 37 34 -38308711.76591 45 34 -26666666.66229 46 34 -29577388.75645 48 34 1.490116119385e-07 49 34 18222339.27204 51 34 26666666.66229 52 34 -29577388.75645 129 34 13333333.33771 130 34 -24555795.63051 131 34 -13177083.33766 132 34 4.470348358154e-08 133 34 -29957235.32024 134 34 2.831220626831e-07 135 34 -13333333.33771 136 34 -24555795.63051 137 34 13177083.33766 141 34 -2.98023223877e-07 142 34 -58222760.85313 143 34 -52708333.32467 144 34 1.728534698486e-06 145 34 40172745.1813 146 34 -5.960464477539e-08 147 34 -7.003545761108e-07 148 34 -58222760.85313 149 34 52708333.32467 156 34 -13333333.33771 157 34 -24555795.63051 158 34 -13177083.33766 159 34 1.9371509552e-07 160 34 -29957235.32024 161 34 -3.8743019104e-07 162 34 13333333.33771 163 34 -24555795.63051 164 34 13177083.33766 35 35 1 36 36 456895802.7167 37 36 3.695487976074e-06 39 36 63024490.39561 40 36 -1.102685928345e-06 48 36 -37577772.88735 49 36 -26666666.66229 51 36 -99111631.13552 52 36 2.384185791016e-07 54 36 -37577772.88735 55 36 26666666.66229 132 36 -28555987.69793 133 36 13333333.33771 134 36 16471527.78319 135 36 -88624220.55292 136 36 1.043081283569e-07 137 36 65886111.10029 138 36 -28555987.69793 139 36 -13333333.33771 140 36 16471527.78319 144 36 -7556159.747413 145 36 -3.278255462646e-07 146 36 -1.206994056702e-06 147 36 72174281.7049 148 36 1.728534698486e-06 149 36 1.221895217896e-06 150 36 -7556159.747413 151 36 -7.450580596924e-07 152 36 1.341104507446e-06 159 36 -28555987.69793 160 36 -13333333.33771 161 36 -16471527.78319 162 36 -88624220.55292 163 36 2.235174179077e-07 164 36 -65886111.10029 165 36 -28555987.69793 166 36 13333333.33771 167 36 -16471527.78319 37 37 392892729.701 39 37 -1.311302185059e-06 40 37 -38308711.76591 48 37 -26666666.66229 49 37 -29577388.75645 51 37 1.490116119385e-07 52 37 18222339.27204 54 37 26666666.66229 55 37 -29577388.75645 132 37 13333333.33771 133 37 -24555795.63051 134 37 -13177083.33766 135 37 4.470348358154e-08 136 37 -29957235.32024 137 37 2.831220626831e-07 138 37 -13333333.33771 139 37 -24555795.63051 140 37 13177083.33766 144 37 -2.98023223877e-07 145 37 -58222760.85313 146 37 -52708333.32467 147 37 1.728534698486e-06 148 37 40172745.1813 149 37 -5.960464477539e-08 150 37 -7.003545761108e-07 151 37 -58222760.85313 152 37 52708333.32467 159 37 -13333333.33771 160 37 -24555795.63051 161 37 -13177083.33766 162 37 1.9371509552e-07 163 37 -29957235.32024 164 37 -3.8743019104e-07 165 37 13333333.33771 166 37 -24555795.63051 167 37 13177083.33766 38 38 1 39 39 494473574.2688 40 39 26666666.12895 42 39 15679616.33822 43 39 -26666666.44895 51 39 -37577772.88735 52 39 -26666666.66229 54 39 -99111631.13552 55 39 2.384185791016e-07 57 39 -37577772.88735 58 39 26666666.66229 135 39 -28555987.69793 136 39 13333333.33771 137 39 16471527.78319 138 39 -107413106.5112 139 39 -13333333.17771 140 39 65886110.96157 147 39 -7556159.747413 148 39 -3.278255462646e-07 149 39 -1.206994056702e-06 150 39 100730268.7541 151 39 13333333.07105 152 39 0.02774140238762 153 39 -26345045.89131 154 39 -13333333.23105 155 39 16471527.49884 162 39 -28555987.69793 163 39 -13333333.33771 164 39 -16471527.78319 165 39 -88624220.55292 166 39 2.235174179077e-07 167 39 -65886111.10029 168 39 -28555987.69793 169 39 13333333.33771 170 39 -16471527.78319 40 40 422470117.3622 42 40 -26666666.34229 43 40 -77653201.26574 51 40 -26666666.66229 52 40 -29577388.75645 54 40 1.490116119385e-07 55 40 18222339.27204 57 40 26666666.66229 58 40 -29577388.75645 135 40 13333333.33771 136 40 -24555795.63051 137 40 -13177083.33766 138 40 -13333333.23104 139 40 -44745929.54447 140 40 13177083.28808 147 40 -2.98023223877e-07 148 40 -58222760.85313 149 40 -52708333.32467 150 40 13333333.07105 151 40 64728540.28304 152 40 0.022192299366 153 40 -13333333.17771 154 40 -73011454.71628 155 40 52708333.03581 162 40 -13333333.33771 163 40 -24555795.63051 164 40 -13177083.33766 165 40 1.9371509552e-07 166 40 -29957235.32024 167 40 -3.8743019104e-07 168 40 13333333.33771 169 40 -24555795.63051 170 40 13177083.33766 41 41 1 42 42 285559874.9195 43 42 26666666.66228 54 42 -37577772.88735 55 42 -26666666.66229 57 42 -146456504.1625 58 42 -26666666.44895 60 42 9767101.054332 61 42 21333333.1165 138 42 -9767101.054335 139 42 15999999.84525 140 42 19765832.91331 150 42 -26345045.8913 151 42 -13333333.17771 152 42 -16471527.35667 153 42 45108925.89256 154 42 13333333.33771 155 42 13177222.19231 165 42 -28555987.69793 166 42 -13333333.33771 167 42 -16471527.78319 168 42 -107413106.5112 169 42 -13333333.23104 170 42 -65886110.96157 171 42 -9767101.054335 172 42 10666666.5635 173 42 -13177221.94221 43 43 245557954.5208 54 43 -26666666.66229 55 43 -29577388.75645 57 43 -26666666.34228 58 43 -21122150.29068 60 43 31999999.67474 61 43 9767101.054331 138 43 10666666.5635 139 43 -9767101.054336 140 43 -10541666.62055 150 43 -13333333.23105 151 43 -73011454.71627 152 43 -52708332.94687 153 43 13333333.33771 154 43 25107965.68335 155 43 10541666.55379 165 43 -13333333.33771 166 43 -24555795.63051 167 43 -13177083.33766 168 43 -13333333.17771 169 43 -44745929.54446 170 43 -13177083.26329 171 43 15999999.84525 172 43 -9767101.054335 173 43 15812499.93082 44 44 1 45 45 456895802.7167 46 45 3.695487976074e-06 48 45 63024490.39561 49 45 -1.102685928345e-06 63 45 -99111631.13552 64 45 2.384185791016e-07 66 45 -37577772.88735 67 45 26666666.66229 141 45 -88624220.55292 142 45 1.043081283569e-07 143 45 65886111.10029 144 45 -28555987.69793 145 45 -13333333.33771 146 45 16471527.78319 156 45 72174281.7049 157 45 1.728534698486e-06 158 45 1.221895217896e-06 159 45 -7556159.747413 160 45 -7.450580596924e-07 161 45 1.341104507446e-06 174 45 -88624220.55292 175 45 2.235174179077e-07 176 45 -65886111.10029 177 45 -28555987.69793 178 45 13333333.33771 179 45 -16471527.78319 46 46 392892729.701 48 46 -1.311302185059e-06 49 46 -38308711.76591 63 46 1.490116119385e-07 64 46 18222339.27204 66 46 26666666.66229 67 46 -29577388.75645 141 46 4.470348358154e-08 142 46 -29957235.32024 143 46 2.831220626831e-07 144 46 -13333333.33771 145 46 -24555795.63051 146 46 13177083.33766 156 46 1.728534698486e-06 157 46 40172745.1813 158 46 -5.960464477539e-08 159 46 -7.003545761108e-07 160 46 -58222760.85313 161 46 52708333.32467 174 46 1.9371509552e-07 175 46 -29957235.32024 176 46 -3.8743019104e-07 177 46 13333333.33771 178 46 -24555795.63051 179 46 13177083.33766 47 47 1 48 48 456895802.7167 49 48 3.695487976074e-06 51 48 63024490.39561 52 48 -1.102685928345e-06 63 48 -37577772.88735 64 48 -26666666.66229 66 48 -99111631.13552 67 48 2.384185791016e-07 69 48 -37577772.88735 70 48 26666666.66229 141 48 -28555987.69793 142 48 13333333.33771 143 48 16471527.78319 144 48 -88624220.55292 145 48 1.043081283569e-07 146 48 65886111.10029 147 48 -28555987.69793 148 48 -13333333.33771 149 48 16471527.78319 156 48 -7556159.747413 157 48 -3.278255462646e-07 158 48 -1.206994056702e-06 159 48 72174281.7049 160 48 1.728534698486e-06 161 48 1.221895217896e-06 162 48 -7556159.747413 163 48 -7.450580596924e-07 164 48 1.341104507446e-06 174 48 -28555987.69793 175 48 -13333333.33771 176 48 -16471527.78319 177 48 -88624220.55292 178 48 2.235174179077e-07 179 48 -65886111.10029 180 48 -28555987.69793 181 48 13333333.33771 182 48 -16471527.78319 49 49 392892729.701 51 49 -1.311302185059e-06 52 49 -38308711.76591 63 49 -26666666.66229 64 49 -29577388.75645 66 49 1.490116119385e-07 67 49 18222339.27204 69 49 26666666.66229 70 49 -29577388.75645 141 49 13333333.33771 142 49 -24555795.63051 143 49 -13177083.33766 144 49 4.470348358154e-08 145 49 -29957235.32024 146 49 2.831220626831e-07 147 49 -13333333.33771 148 49 -24555795.63051 149 49 13177083.33766 156 49 -2.98023223877e-07 157 49 -58222760.85313 158 49 -52708333.32467 159 49 1.728534698486e-06 160 49 40172745.1813 161 49 -5.960464477539e-08 162 49 -7.003545761108e-07 163 49 -58222760.85313 164 49 52708333.32467 174 49 -13333333.33771 175 49 -24555795.63051 176 49 -13177083.33766 177 49 1.9371509552e-07 178 49 -29957235.32024 179 49 -3.8743019104e-07 180 49 13333333.33771 181 49 -24555795.63051 182 49 13177083.33766 50 50 1 51 51 456895802.7167 52 51 3.695487976074e-06 54 51 63024490.39561 55 51 -1.102685928345e-06 66 51 -37577772.88735 67 51 -26666666.66229 69 51 -99111631.13552 70 51 2.384185791016e-07 72 51 -37577772.88735 73 51 26666666.66229 144 51 -28555987.69793 145 51 13333333.33771 146 51 16471527.78319 147 51 -88624220.55292 148 51 1.043081283569e-07 149 51 65886111.10029 150 51 -28555987.69793 151 51 -13333333.33771 152 51 16471527.78319 159 51 -7556159.747413 160 51 -3.278255462646e-07 161 51 -1.206994056702e-06 162 51 72174281.7049 163 51 1.728534698486e-06 164 51 1.221895217896e-06 165 51 -7556159.747413 166 51 -7.450580596924e-07 167 51 1.341104507446e-06 177 51 -28555987.69793 178 51 -13333333.33771 179 51 -16471527.78319 180 51 -88624220.55292 181 51 2.235174179077e-07 182 51 -65886111.10029 183 51 -28555987.69793 184 51 13333333.33771 185 51 -16471527.78319 52 52 392892729.701 54 52 -1.311302185059e-06 55 52 -38308711.76591 66 52 -26666666.66229 67 52 -29577388.75645 69 52 1.490116119385e-07 70 52 18222339.27204 72 52 26666666.66229 73 52 -29577388.75645 144 52 13333333.33771 145 52 -24555795.63051 146 52 -13177083.33766 147 52 4.470348358154e-08 148 52 -29957235.32024 149 52 2.831220626831e-07 150 52 -13333333.33771 151 52 -24555795.63051 152 52 13177083.33766 159 52 -2.98023223877e-07 160 52 -58222760.85313 161 52 -52708333.32467 162 52 1.728534698486e-06 163 52 40172745.1813 164 52 -5.960464477539e-08 165 52 -7.003545761108e-07 166 52 -58222760.85313 167 52 52708333.32467 177 52 -13333333.33771 178 52 -24555795.63051 179 52 -13177083.33766 180 52 1.9371509552e-07 181 52 -29957235.32024 182 52 -3.8743019104e-07 183 52 13333333.33771 184 52 -24555795.63051 185 52 13177083.33766 53 53 1 54 54 456895802.7167 55 54 3.695487976074e-06 57 54 63024490.39561 58 54 -1.102685928345e-06 69 54 -37577772.88735 70 54 -26666666.66229 72 54 -99111631.13552 73 54 2.384185791016e-07 75 54 -37577772.88735 76 54 26666666.66229 147 54 -28555987.69793 148 54 13333333.33771 149 54 16471527.78319 150 54 -88624220.55292 151 54 1.043081283569e-07 152 54 65886111.10029 153 54 -28555987.69793 154 54 -13333333.33771 155 54 16471527.78319 162 54 -7556159.747413 163 54 -3.278255462646e-07 164 54 -1.206994056702e-06 165 54 72174281.7049 166 54 1.728534698486e-06 167 54 1.221895217896e-06 168 54 -7556159.747413 169 54 -7.450580596924e-07 170 54 1.341104507446e-06 180 54 -28555987.69793 181 54 -13333333.33771 182 54 -16471527.78319 183 54 -88624220.55292 184 54 2.235174179077e-07 185 54 -65886111.10029 186 54 -28555987.69793 187 54 13333333.33771 188 54 -16471527.78319 55 55 392892729.701 57 55 -1.311302185059e-06 58 55 -38308711.76591 69 55 -26666666.66229 70 55 -29577388.75645 72 55 1.490116119385e-07 73 55 18222339.27204 75 55 26666666.66229 76 55 -29577388.75645 147 55 13333333.33771 148 55 -24555795.63051 149 55 -13177083.33766 150 55 4.470348358154e-08 151 55 -29957235.32024 152 55 2.831220626831e-07 153 55 -13333333.33771 154 55 -24555795.63051 155 55 13177083.33766 162 55 -2.98023223877e-07 163 55 -58222760.85313 164 55 -52708333.32467 165 55 1.728534698486e-06 166 55 40172745.1813 167 55 -5.960464477539e-08 168 55 -7.003545761108e-07 169 55 -58222760.85313 170 55 52708333.32467 180 55 -13333333.33771 181 55 -24555795.63051 182 55 -13177083.33766 183 55 1.9371509552e-07 184 55 -29957235.32024 185 55 -3.8743019104e-07 186 55 13333333.33771 187 55 -24555795.63051 188 55 13177083.33766 56 56 1 57 57 494473574.2688 58 57 26666666.12895 60 57 15679616.33822 61 57 -26666666.44895 72 57 -37577772.88735 73 57 -26666666.66229 75 57 -99111631.13552 76 57 2.384185791016e-07 78 57 -37577772.88735 79 57 26666666.66229 150 57 -28555987.69793 151 57 13333333.33771 152 57 16471527.78319 153 57 -107413106.5112 154 57 -13333333.17771 155 57 65886110.96157 165 57 -7556159.747413 166 57 -3.278255462646e-07 167 57 -1.206994056702e-06 168 57 100730268.7541 169 57 13333333.07105 170 57 0.02774140238762 171 57 -26345045.89131 172 57 -13333333.23105 173 57 16471527.49884 183 57 -28555987.69793 184 57 -13333333.33771 185 57 -16471527.78319 186 57 -88624220.55292 187 57 2.235174179077e-07 188 57 -65886111.10029 189 57 -28555987.69793 190 57 13333333.33771 191 57 -16471527.78319 58 58 422470117.3622 60 58 -26666666.34229 61 58 -77653201.26574 72 58 -26666666.66229 73 58 -29577388.75645 75 58 1.490116119385e-07 76 58 18222339.27204 78 58 26666666.66229 79 58 -29577388.75645 150 58 13333333.33771 151 58 -24555795.63051 152 58 -13177083.33766 153 58 -13333333.23104 154 58 -44745929.54447 155 58 13177083.28808 165 58 -2.98023223877e-07 166 58 -58222760.85313 167 58 -52708333.32467 168 58 13333333.07105 169 58 64728540.28304 170 58 0.022192299366 171 58 -13333333.17771 172 58 -73011454.71628 173 58 52708333.03581 183 58 -13333333.33771 184 58 -24555795.63051 185 58 -13177083.33766 186 58 1.9371509552e-07 187 58 -29957235.32024 188 58 -3.8743019104e-07 189 58 13333333.33771 190 58 -24555795.63051 191 58 13177083.33766 59 59 1 60 60 254577284.4124 61 60 12542819.63852 75 60 -37577772.88735 76 60 -26666666.66229 78 60 -114012622.4679 79 60 -12542819.42519 81 60 -2041494.77529 82 60 21333333.1165 153 60 -9767101.054335 154 60 15999999.84525 155 60 19765832.91331 168 60 -26345045.8913 169 60 -13333333.17771 170 60 -16471527.35667 171 60 37378109.13818 172 60 6271409.822349 173 60 11432222.19995 186 60 -28555987.69793 187 60 -13333333.33771 188 60 -16471527.78319 189 60 -87310926.38278 190 60 -6271409.715683 191 60 -57161110.99975 192 60 -11791159.78617 193 60 10666666.5635 194 60 -9687222.01637 61 61 236302495.3909 75 61 -26666666.66229 76 61 -29577388.75645 78 61 -12542819.31852 79 61 4964216.203455 81 61 31999999.67474 82 61 -17411110.95215 153 61 10666666.5635 154 61 -9767101.054336 155 61 -10541666.62055 168 61 -13333333.23105 169 61 -73011454.71627 170 61 -52708332.94687 171 61 6271409.822349 172 61 28240714.62293 173 61 9145833.226567 186 61 -13333333.33771 187 61 -24555795.63051 188 61 -13177083.33766 189 61 -6271409.66235 190 61 -27822507.01778 191 61 -6197916.627156 192 61 15999999.84526 193 61 -19475967.87838 194 61 18604166.53816 62 62 1 63 63 456895802.7167 64 63 3.695487976074e-06 66 63 63024490.39561 67 63 -1.102685928345e-06 84 63 -99111631.13552 85 63 2.384185791016e-07 87 63 -37577772.88735 88 63 26666666.66229 156 63 -88624220.55292 157 63 1.043081283569e-07 158 63 65886111.10029 159 63 -28555987.69793 160 63 -13333333.33771 161 63 16471527.78319 174 63 72174281.7049 175 63 1.728534698486e-06 176 63 1.221895217896e-06 177 63 -7556159.747413 178 63 -7.450580596924e-07 179 63 1.341104507446e-06 195 63 -88624220.55292 196 63 2.235174179077e-07 197 63 -65886111.10029 198 63 -28555987.69793 199 63 13333333.33771 200 63 -16471527.78319 64 64 392892729.701 66 64 -1.311302185059e-06 67 64 -38308711.76591 84 64 1.490116119385e-07 85 64 18222339.27204 87 64 26666666.66229 88 64 -29577388.75645 156 64 4.470348358154e-08 157 64 -29957235.32024 158 64 2.831220626831e-07 159 64 -13333333.33771 160 64 -24555795.63051 161 64 13177083.33766 174 64 1.728534698486e-06 175 64 40172745.1813 176 64 -5.960464477539e-08 177 64 -7.003545761108e-07 178 64 -58222760.85313 179 64 52708333.32467 195 64 1.9371509552e-07 196 64 -29957235.32024 197 64 -3.8743019104e-07 198 64 13333333.33771 199 64 -24555795.63051 200 64 13177083.33766 65 65 1 66 66 456895802.7167 67 66 3.695487976074e-06 69 66 63024490.39561 70 66 -1.102685928345e-06 84 66 -37577772.88735 85 66 -26666666.66229 87 66 -99111631.13552 88 66 2.384185791016e-07 90 66 -37577772.88735 91 66 26666666.66229 156 66 -28555987.69793 157 66 13333333.33771 158 66 16471527.78319 159 66 -88624220.55292 160 66 1.043081283569e-07 161 66 65886111.10029 162 66 -28555987.69793 163 66 -13333333.33771 164 66 16471527.78319 174 66 -7556159.747413 175 66 -3.278255462646e-07 176 66 -1.206994056702e-06 177 66 72174281.7049 178 66 1.728534698486e-06 179 66 1.221895217896e-06 180 66 -7556159.747413 181 66 -7.450580596924e-07 182 66 1.341104507446e-06 195 66 -28555987.69793 196 66 -13333333.33771 197 66 -16471527.78319 198 66 -88624220.55292 199 66 2.235174179077e-07 200 66 -65886111.10029 201 66 -28555987.69793 202 66 13333333.33771 203 66 -16471527.78319 67 67 392892729.701 69 67 -1.311302185059e-06 70 67 -38308711.76591 84 67 -26666666.66229 85 67 -29577388.75645 87 67 1.490116119385e-07 88 67 18222339.27204 90 67 26666666.66229 91 67 -29577388.75645 156 67 13333333.33771 157 67 -24555795.63051 158 67 -13177083.33766 159 67 4.470348358154e-08 160 67 -29957235.32024 161 67 2.831220626831e-07 162 67 -13333333.33771 163 67 -24555795.63051 164 67 13177083.33766 174 67 -2.98023223877e-07 175 67 -58222760.85313 176 67 -52708333.32467 177 67 1.728534698486e-06 178 67 40172745.1813 179 67 -5.960464477539e-08 180 67 -7.003545761108e-07 181 67 -58222760.85313 182 67 52708333.32467 195 67 -13333333.33771 196 67 -24555795.63051 197 67 -13177083.33766 198 67 1.9371509552e-07 199 67 -29957235.32024 200 67 -3.8743019104e-07 201 67 13333333.33771 202 67 -24555795.63051 203 67 13177083.33766 68 68 1 69 69 456895802.7167 70 69 3.695487976074e-06 72 69 63024490.39561 73 69 -1.102685928345e-06 87 69 -37577772.88735 88 69 -26666666.66229 90 69 -99111631.13552 91 69 2.384185791016e-07 93 69 -37577772.88735 94 69 26666666.66229 159 69 -28555987.69793 160 69 13333333.33771 161 69 16471527.78319 162 69 -88624220.55292 163 69 1.043081283569e-07 164 69 65886111.10029 165 69 -28555987.69793 166 69 -13333333.33771 167 69 16471527.78319 177 69 -7556159.747413 178 69 -3.278255462646e-07 179 69 -1.206994056702e-06 180 69 72174281.7049 181 69 1.728534698486e-06 182 69 1.221895217896e-06 183 69 -7556159.747413 184 69 -7.450580596924e-07 185 69 1.341104507446e-06 198 69 -28555987.69793 199 69 -13333333.33771 200 69 -16471527.78319 201 69 -88624220.55292 202 69 2.235174179077e-07 203 69 -65886111.10029 204 69 -28555987.69793 205 69 13333333.33771 206 69 -16471527.78319 70 70 392892729.701 72 70 -1.311302185059e-06 73 70 -38308711.76591 87 70 -26666666.66229 88 70 -29577388.75645 90 70 1.490116119385e-07 91 70 18222339.27204 93 70 26666666.66229 94 70 -29577388.75645 159 70 13333333.33771 160 70 -24555795.63051 161 70 -13177083.33766 162 70 4.470348358154e-08 163 70 -29957235.32024 164 70 2.831220626831e-07 165 70 -13333333.33771 166 70 -24555795.63051 167 70 13177083.33766 177 70 -2.98023223877e-07 178 70 -58222760.85313 179 70 -52708333.32467 180 70 1.728534698486e-06 181 70 40172745.1813 182 70 -5.960464477539e-08 183 70 -7.003545761108e-07 184 70 -58222760.85313 185 70 52708333.32467 198 70 -13333333.33771 199 70 -24555795.63051 200 70 -13177083.33766 201 70 1.9371509552e-07 202 70 -29957235.32024 203 70 -3.8743019104e-07 204 70 13333333.33771 205 70 -24555795.63051 206 70 13177083.33766 71 71 1 72 72 456895802.7167 73 72 3.695487976074e-06 75 72 63024490.39561 76 72 -1.102685928345e-06 90 72 -37577772.88735 91 72 -26666666.66229 93 72 -99111631.13552 94 72 2.384185791016e-07 96 72 -37577772.88735 97 72 26666666.66229 162 72 -28555987.69793 163 72 13333333.33771 164 72 16471527.78319 165 72 -88624220.55292 166 72 1.043081283569e-07 167 72 65886111.10029 168 72 -28555987.69793 169 72 -13333333.33771 170 72 16471527.78319 180 72 -7556159.747413 181 72 -3.278255462646e-07 182 72 -1.206994056702e-06 183 72 72174281.7049 184 72 1.728534698486e-06 185 72 1.221895217896e-06 186 72 -7556159.747413 187 72 -7.450580596924e-07 188 72 1.341104507446e-06 201 72 -28555987.69793 202 72 -13333333.33771 203 72 -16471527.78319 204 72 -88624220.55292 205 72 2.235174179077e-07 206 72 -65886111.10029 207 72 -28555987.69793 208 72 13333333.33771 209 72 -16471527.78319 73 73 392892729.701 75 73 -1.311302185059e-06 76 73 -38308711.76591 90 73 -26666666.66229 91 73 -29577388.75645 93 73 1.490116119385e-07 94 73 18222339.27204 96 73 26666666.66229 97 73 -29577388.75645 162 73 13333333.33771 163 73 -24555795.63051 164 73 -13177083.33766 165 73 4.470348358154e-08 166 73 -29957235.32024 167 73 2.831220626831e-07 168 73 -13333333.33771 169 73 -24555795.63051 170 73 13177083.33766 180 73 -2.98023223877e-07 181 73 -58222760.85313 182 73 -52708333.32467 183 73 1.728534698486e-06 184 73 40172745.1813 185 73 -5.960464477539e-08 186 73 -7.003545761108e-07 187 73 -58222760.85313 188 73 52708333.32467 201 73 -13333333.33771 202 73 -24555795.63051 203 73 -13177083.33766 204 73 1.9371509552e-07 205 73 -29957235.32024 206 73 -3.8743019104e-07 207 73 13333333.33771 208 73 -24555795.63051 209 73 13177083.33766 74 74 1 75 75 456895802.7167 76 75 3.695487976074e-06 78 75 63024490.39561 79 75 -1.102685928345e-06 93 75 -37577772.88735 94 75 -26666666.66229 96 75 -99111631.13552 97 75 2.384185791016e-07 99 75 -37577772.88735 100 75 26666666.66229 165 75 -28555987.69793 166 75 13333333.33771 167 75 16471527.78319 168 75 -88624220.55292 169 75 1.043081283569e-07 170 75 65886111.10029 171 75 -28555987.69793 172 75 -13333333.33771 173 75 16471527.78319 183 75 -7556159.747413 184 75 -3.278255462646e-07 185 75 -1.206994056702e-06 186 75 72174281.7049 187 75 1.728534698486e-06 188 75 1.221895217896e-06 189 75 -7556159.747413 190 75 -7.450580596924e-07 191 75 1.341104507446e-06 204 75 -28555987.69793 205 75 -13333333.33771 206 75 -16471527.78319 207 75 -88624220.55292 208 75 2.235174179077e-07 209 75 -65886111.10029 210 75 -28555987.69793 211 75 13333333.33771 212 75 -16471527.78319 76 76 392892729.701 78 76 -1.311302185059e-06 79 76 -38308711.76591 93 76 -26666666.66229 94 76 -29577388.75645 96 76 1.490116119385e-07 97 76 18222339.27204 99 76 26666666.66229 100 76 -29577388.75645 165 76 13333333.33771 166 76 -24555795.63051 167 76 -13177083.33766 168 76 4.470348358154e-08 169 76 -29957235.32024 170 76 2.831220626831e-07 171 76 -13333333.33771 172 76 -24555795.63051 173 76 13177083.33766 183 76 -2.98023223877e-07 184 76 -58222760.85313 185 76 -52708333.32467 186 76 1.728534698486e-06 187 76 40172745.1813 188 76 -5.960464477539e-08 189 76 -7.003545761108e-07 190 76 -58222760.85313 191 76 52708333.32467 204 76 -13333333.33771 205 76 -24555795.63051 206 76 -13177083.33766 207 76 1.9371509552e-07 208 76 -29957235.32024 209 76 -3.8743019104e-07 210 76 13333333.33771 211 76 -24555795.63051 212 76 13177083.33766 77 77 1 78 78 443038053.544 79 78 14753289.29481 81 78 -7825052.860854 82 78 -33997652.77504 96 78 -37577772.88735 97 78 -26666666.66229 99 78 -84996673.21432 100 78 6792787.185364 102 78 -24718984.37946 103 78 24994395.61339 168 78 -28555987.69793 169 78 13333333.33771 170 78 16471527.78319 171 78 -87310926.38278 172 78 -6271409.66235 173 78 57161110.99975 186 78 -7556159.747413 187 78 -3.278255462646e-07 188 78 -1.206994056702e-06 189 78 87947441.63499 190 78 7376644.65104 191 78 0.02039501070976 192 78 -32923131.70809 193 78 -16998826.39589 194 78 16470833.12799 207 78 -28555987.69793 208 78 -13333333.33771 209 78 -16471527.78319 210 78 -80272721.40676 211 78 3396393.594356 212 78 -61522916.65699 213 78 -22126192.23639 214 78 12497197.81285 215 78 -12109027.78175 79 79 410708568.3999 81 79 -33997652.66837 82 79 -102930724.6535 96 79 -26666666.66229 97 79 -29577388.75645 99 79 6792787.185364 100 79 24210319.49286 102 79 24994395.61339 103 79 -40135224.92162 168 79 13333333.33771 169 79 -24555795.63051 170 79 -13177083.33766 171 79 -6271409.715683 172 79 -27822507.01778 173 79 6197916.651945 186 79 -2.98023223877e-07 187 79 -58222760.85313 188 79 -52708333.32467 189 79 7376644.65104 190 79 71782699.055 191 79 0.01631674170494 192 79 -16998826.34256 193 79 -80475967.62785 194 79 52708333.09468 207 79 -13333333.33771 208 79 -24555795.63051 209 79 -13177083.33766 210 79 3396393.594355 211 79 -25669225.02627 212 79 3489583.332416 213 79 12497197.81285 214 79 -29834312.51126 215 79 16666666.67214 80 80 1 81 81 265887547.5234 82 81 4251691.216096 99 81 -40185009.13188 100 81 -26453880.6983 102 81 -56727888.77942 103 81 9054179.643625 105 81 34241530.0939 106 81 -9372296.81691 108 81 -21164769.40107 109 81 24517959.64911 171 81 -11791159.78616 172 81 15999999.84526 173 81 14530833.02455 189 81 -32923131.7081 190 81 -16998826.34256 191 81 -16470833.02261 192 81 14669982.03611 193 81 2125845.609096 194 81 12968611.10898 210 81 -29859204.61641 211 81 -13226940.35567 212 81 -16470833.33874 213 81 -76387958.09069 214 81 4527089.824043 215 81 -64843055.54491 216 81 -11712307.86994 217 81 -4686148.410764 218 81 8424305.555742 219 81 -24181082.63358 220 81 12258979.8306 221 81 -15950694.44968 82 82 313462909.2146 99 82 -26453880.6983 100 82 -27436535.90625 102 82 9054179.643625 103 82 48935939.89062 105 82 1294369.848004 106 82 -17586593.12844 108 82 24517959.64911 109 82 -24849021.79609 171 82 10666666.5635 172 82 -19475967.87838 173 82 -14729166.53156 189 82 -16998826.39589 190 82 -80475967.62786 191 82 -52708333.03516 192 82 2125845.609096 193 82 38457662.89345 194 82 3874999.888226 210 82 -13226940.35567 211 82 -23484968.00046 212 82 -13177083.33766 213 82 4527089.824043 214 82 -23556043.72965 215 82 3489583.332417 216 82 647184.9243208 217 82 -37626369.49388 218 82 33333333.32786 219 82 12258979.8306 220 82 -26023208.832 221 82 16666666.67214 83 83 1 84 84 228447901.3583 85 84 2.026557922363e-06 87 84 31512245.19781 88 84 5333333.332457 174 84 -88624220.55292 175 84 1.043081283569e-07 176 84 65886111.10029 177 84 -28555987.69793 178 84 -13333333.33771 179 84 16471527.78319 195 84 36087140.85245 196 84 8.344650268555e-07 197 84 -13177222.22006 198 84 -3778079.873706 199 84 2666666.667542 200 84 -3294305.556637 85 85 196446364.8505 87 85 -5333333.332458 88 85 -19154355.88295 174 85 4.470348358154e-08 175 85 -29957235.32024 176 85 2.831220626831e-07 177 85 -13333333.33771 178 85 -24555795.63051 179 85 13177083.33766 195 85 8.940696716309e-07 196 85 20086372.59065 197 85 -2.98023223877e-08 198 85 -2666666.667543 199 85 -29111380.42657 200 85 26354166.66234 86 86 1 87 87 228447901.3583 88 87 2.026557922363e-06 90 87 31512245.19781 91 87 5333333.332457 174 87 -28555987.69793 175 87 13333333.33771 176 87 16471527.78319 177 87 -88624220.55292 178 87 1.043081283569e-07 179 87 65886111.10029 180 87 -28555987.69793 181 87 -13333333.33771 182 87 16471527.78319 195 87 -3778079.873706 196 87 -2666666.667542 197 87 -3294305.556638 198 87 36087140.85245 199 87 8.344650268555e-07 200 87 -13177222.22006 201 87 -3778079.873706 202 87 2666666.667542 203 87 -3294305.556637 88 88 196446364.8505 90 88 -5333333.332458 91 88 -19154355.88295 174 88 13333333.33771 175 88 -24555795.63051 176 88 -13177083.33766 177 88 4.470348358154e-08 178 88 -29957235.32024 179 88 2.831220626831e-07 180 88 -13333333.33771 181 88 -24555795.63051 182 88 13177083.33766 195 88 2666666.667542 196 88 -29111380.42657 197 88 -26354166.66234 198 88 8.940696716309e-07 199 88 20086372.59065 200 88 -2.98023223877e-08 201 88 -2666666.667543 202 88 -29111380.42657 203 88 26354166.66234 89 89 1 90 90 228447901.3583 91 90 2.026557922363e-06 93 90 31512245.19781 94 90 5333333.332457 177 90 -28555987.69793 178 90 13333333.33771 179 90 16471527.78319 180 90 -88624220.55292 181 90 1.043081283569e-07 182 90 65886111.10029 183 90 -28555987.69793 184 90 -13333333.33771 185 90 16471527.78319 198 90 -3778079.873706 199 90 -2666666.667542 200 90 -3294305.556638 201 90 36087140.85245 202 90 8.344650268555e-07 203 90 -13177222.22006 204 90 -3778079.873706 205 90 2666666.667542 206 90 -3294305.556637 91 91 196446364.8505 93 91 -5333333.332458 94 91 -19154355.88295 177 91 13333333.33771 178 91 -24555795.63051 179 91 -13177083.33766 180 91 4.470348358154e-08 181 91 -29957235.32024 182 91 2.831220626831e-07 183 91 -13333333.33771 184 91 -24555795.63051 185 91 13177083.33766 198 91 2666666.667542 199 91 -29111380.42657 200 91 -26354166.66234 201 91 8.940696716309e-07 202 91 20086372.59065 203 91 -2.98023223877e-08 204 91 -2666666.667543 205 91 -29111380.42657 206 91 26354166.66234 92 92 1 93 93 228447901.3583 94 93 2.026557922363e-06 96 93 31512245.19781 97 93 5333333.332457 180 93 -28555987.69793 181 93 13333333.33771 182 93 16471527.78319 183 93 -88624220.55292 184 93 1.043081283569e-07 185 93 65886111.10029 186 93 -28555987.69793 187 93 -13333333.33771 188 93 16471527.78319 201 93 -3778079.873706 202 93 -2666666.667542 203 93 -3294305.556638 204 93 36087140.85245 205 93 8.344650268555e-07 206 93 -13177222.22006 207 93 -3778079.873706 208 93 2666666.667542 209 93 -3294305.556637 94 94 196446364.8505 96 94 -5333333.332458 97 94 -19154355.88295 180 94 13333333.33771 181 94 -24555795.63051 182 94 -13177083.33766 183 94 4.470348358154e-08 184 94 -29957235.32024 185 94 2.831220626831e-07 186 94 -13333333.33771 187 94 -24555795.63051 188 94 13177083.33766 201 94 2666666.667542 202 94 -29111380.42657 203 94 -26354166.66234 204 94 8.940696716309e-07 205 94 20086372.59065 206 94 -2.98023223877e-08 207 94 -2666666.667543 208 94 -29111380.42657 209 94 26354166.66234 95 95 1 96 96 228447901.3583 97 96 2.026557922363e-06 99 96 31512245.19781 100 96 5333333.332457 183 96 -28555987.69793 184 96 13333333.33771 185 96 16471527.78319 186 96 -88624220.55292 187 96 1.043081283569e-07 188 96 65886111.10029 189 96 -28555987.69793 190 96 -13333333.33771 191 96 16471527.78319 204 96 -3778079.873706 205 96 -2666666.667542 206 96 -3294305.556638 207 96 36087140.85245 208 96 8.344650268555e-07 209 96 -13177222.22006 210 96 -3778079.873706 211 96 2666666.667542 212 96 -3294305.556637 97 97 196446364.8505 99 97 -5333333.332458 100 97 -19154355.88295 183 97 13333333.33771 184 97 -24555795.63051 185 97 -13177083.33766 186 97 4.470348358154e-08 187 97 -29957235.32024 188 97 2.831220626831e-07 189 97 -13333333.33771 190 97 -24555795.63051 191 97 13177083.33766 204 97 2666666.667542 205 97 -29111380.42657 206 97 -26354166.66234 207 97 8.940696716309e-07 208 97 20086372.59065 209 97 -2.98023223877e-08 210 97 -2666666.667543 211 97 -29111380.42657 212 97 26354166.66234 98 98 1 99 99 225836329.6274 100 99 212728.6534935 102 99 22613666.86668 103 99 -1884968.470388 186 99 -28555987.69793 187 99 13333333.33771 188 99 16471527.78319 189 99 -80272721.40676 190 99 3396393.594356 191 99 61522916.65613 192 99 -29859204.61641 193 99 -13226940.35567 194 99 16470833.33874 207 99 -3778079.873706 208 99 -2666666.667542 209 99 -3294305.556638 210 99 34782980.96289 211 99 106364.3267991 212 99 -13176944.44228 213 99 -9519773.826407 214 99 -942484.2356579 215 99 1067638.88752 100 100 198587519.4449 102 100 -12551635.1353 103 100 -29426771.93377 186 100 13333333.33771 187 100 -24555795.63051 188 100 -13177083.33766 189 100 3396393.594355 190 100 -25669225.02627 191 100 -3489583.333104 192 100 -13226940.35567 193 100 -23484968.00045 194 100 13177083.33766 207 100 2666666.667542 208 100 -29111380.42657 209 100 -26354166.66234 210 100 106364.3267991 211 100 21158575.86493 212 100 2.682209014893e-07 213 100 -6275817.570742 214 100 -35539993.23945 215 100 29843749.99544 101 101 1 102 102 222322244.5873 103 102 6540964.785291 105 102 -43497213.84184 106 102 -28815373.67546 108 102 22102059.00906 109 102 777468.7684572 189 102 -22126192.23639 190 102 12497197.81285 191 102 12109027.78176 192 102 -76387958.09069 193 102 4527089.824043 194 102 64843055.54491 210 102 -9519773.826409 211 102 -6275817.570743 212 102 -7655972.222158 213 102 15798034.7999 214 102 3270482.394257 215 102 -12968611.10898 216 102 -35347304.85947 217 102 -14407686.84483 218 102 20312500.00667 219 102 -14510689.24923 220 102 388734.3844201 221 102 1171666.664472 103 103 224877122.8958 105 103 -28815373.67546 106 103 -33223688.46138 108 103 -9889197.896457 109 103 -28933494.0074 189 103 12497197.81285 190 103 -29834312.51127 191 103 -16666666.67214 192 103 4527089.824043 193 103 -23556043.72965 194 103 -3489583.333103 210 103 -942484.2356579 211 103 -35539993.23945 212 103 -29843749.99475 213 103 3270482.394257 214 103 17075473.95481 215 103 9.536743164063e-07 216 103 -14407686.84483 217 103 -30210542.16671 218 103 16666666.67214 219 103 -4944598.950664 220 103 -40028465.77003 221 103 33333333.32786 104 104 1 105 105 127424615.7113 106 105 30705630.14674 108 105 -33305390.29881 109 105 -3184626.319285 192 105 -11712307.86995 193 105 647184.9243208 194 105 -299305.5539346 213 105 -35347304.85947 214 105 -14407686.84483 215 105 -20312500.00667 216 105 6046162.064774 217 105 15352815.08093 218 105 8124999.998666 219 105 -43850090.99987 220 105 -1592313.160427 221 105 -36263194.43806 106 106 114252738.9443 108 106 7482040.345629 109 106 21421084.31006 192 106 -4686148.410764 193 106 -37626369.49388 194 106 -33333333.32786 213 106 -14407686.84483 214 106 -30210542.16671 215 106 -16666666.67214 216 106 15352815.08093 217 106 -539776.3219635 218 106 6666666.665572 219 106 3741020.174657 220 106 -16486853.68196 221 106 3333333.334428 107 107 1 108 108 110688934.0263 109 108 -22110802.09829 192 108 -24181082.63358 193 108 12258979.8306 194 108 15950694.44968 213 108 -14510689.24923 214 108 -4944598.950664 215 108 -7551944.445206 216 108 -43850090.99987 217 108 3741020.174657 218 108 36263194.43892 219 108 4221029.5472 220 108 -11055401.05459 221 108 -6380277.77673 109 109 110682264.8289 192 109 12258979.8306 193 109 -26023208.832 194 109 -16666666.67214 213 109 388734.38442 214 109 -40028465.77003 215 109 -33333333.32786 216 109 -1592313.160427 217 109 -16486853.68196 218 109 3333333.334428 219 109 -11055401.05459 220 109 4217694.948508 221 109 6666666.665572 110 110 1 111 111 571119749.839 112 111 53333333.32457 113 111 -5.960464477539e-06 114 111 -292913008.3249 115 111 -53333332.8979 116 111 6.556510925293e-06 117 111 19534202.10867 118 111 42666666.23299 119 111 -1.490116119385e-06 222 111 45108925.89256 223 111 13333333.33771 224 111 13177222.19231 225 111 -107413106.5112 226 111 -13333333.23104 227 111 -65886110.96157 228 111 -9767101.054335 229 111 10666666.5635 230 111 -13177221.94221 112 112 491115909.0416 113 112 -2.855678641392e-06 114 112 -53333332.68457 115 112 -42244300.58137 116 112 2.145767211914e-06 117 112 63999999.34949 118 112 19534202.10866 119 112 -2.384185791016e-06 222 112 13333333.33771 223 112 25107965.68335 224 112 10541666.55379 225 112 -13333333.17771 226 112 -44745929.54446 227 112 -13177083.26329 228 112 15999999.84525 229 112 -9767101.054335 230 112 15812499.93082 113 113 565941879.2302 114 113 6.943941116333e-06 115 113 1.609325408936e-06 116 113 5277897.861165 117 113 -2.145767211914e-06 118 113 -1.54972076416e-06 119 113 52091205.62311 222 113 -13177222.19232 223 113 -10541666.5538 224 113 -118970561.1562 225 113 -65886110.96157 226 113 -13177083.28808 227 113 -89840137.25117 228 113 -19765832.91331 229 113 10541666.62055 230 113 -26045602.81156 114 114 988947148.5376 115 114 53333332.25791 116 114 -8.940696716309e-06 117 114 31359232.67644 118 114 -53333332.8979 119 114 1.251697540283e-06 120 114 -198223262.271 121 114 2.98023223877e-07 122 114 5.960464477539e-08 123 114 -75155545.7747 124 114 53333333.32457 125 114 -1.490116119385e-08 222 114 -107413106.5112 223 114 -13333333.17771 224 114 65886110.96157 225 114 100730268.7541 226 114 13333333.07105 227 114 0.02774140238762 228 114 -26345045.89131 229 114 -13333333.23105 230 114 16471527.49884 231 114 -88624220.55292 232 114 2.235174179077e-07 233 114 -65886111.10029 234 114 -28555987.69793 235 114 13333333.33771 236 114 -16471527.78319 115 115 844940234.7245 116 115 -7.867813110352e-06 117 115 -53333332.68457 118 115 -155306402.5315 119 115 5.394220352173e-06 120 115 3.576278686523e-07 121 115 36444678.54407 122 115 -4.172325134277e-07 123 115 53333333.32457 124 115 -59154777.5129 125 115 2.98023223877e-08 222 115 -13333333.23104 223 115 -44745929.54447 224 115 13177083.28808 225 115 13333333.07105 226 115 64728540.28304 227 115 0.022192299366 228 115 -13333333.17771 229 115 -73011454.71628 230 115 52708333.03581 231 115 1.9371509552e-07 232 115 -29957235.32024 233 115 -3.8743019104e-07 234 115 13333333.33771 235 115 -24555795.63051 236 115 13177083.33766 116 116 914512974.9691 117 116 1.728534698486e-06 118 116 4.559755325317e-06 119 116 62880662.12465 120 116 1.192092895508e-07 121 116 -4.768371582031e-07 122 116 66375066.93519 123 116 4.470348358154e-08 124 116 -4.470348358154e-08 125 116 -9005963.440553 222 116 65886110.96157 223 116 13177083.26329 224 116 -89840137.25118 225 116 -0.0277450978756 226 116 -0.02219566702843 227 116 -162055805.4842 228 116 16471527.35667 229 116 52708332.94687 230 116 -75439445.29918 231 116 -65886111.10029 232 116 -2.831220626831e-07 233 116 -87588646.48668 234 116 -16471527.78319 235 116 13177083.33766 236 116 -28297094.18124 117 117 571119749.839 118 117 53333333.32457 119 117 -6.198883056641e-06 120 117 -75155545.77471 121 117 -53333333.32457 122 117 5.066394805908e-07 123 117 -292913008.3249 124 117 -53333332.8979 125 117 6.556510925293e-06 126 117 19534202.10867 127 117 42666666.23299 128 117 -1.490116119385e-06 222 117 -9767101.054335 223 117 15999999.84525 224 117 19765832.91331 225 117 -26345045.8913 226 117 -13333333.17771 227 117 -16471527.35667 228 117 45108925.89256 229 117 13333333.33771 230 117 13177222.19231 231 117 -28555987.69793 232 117 -13333333.33771 233 117 -16471527.78319 234 117 -107413106.5112 235 117 -13333333.23104 236 117 -65886110.96157 237 117 -9767101.054335 238 117 10666666.5635 239 117 -13177221.94221 118 118 491115909.0416 119 118 -2.974887930942e-06 120 118 -53333333.32457 121 118 -59154777.5129 122 118 2.086162567139e-07 123 118 -53333332.68457 124 118 -42244300.58137 125 118 2.145767211914e-06 126 118 63999999.34949 127 118 19534202.10866 128 118 -2.384185791016e-06 222 118 10666666.5635 223 118 -9767101.054336 224 118 -10541666.62055 225 118 -13333333.23105 226 118 -73011454.71627 227 118 -52708332.94687 228 118 13333333.33771 229 118 25107965.68335 230 118 10541666.55379 231 118 -13333333.33771 232 118 -24555795.63051 233 118 -13177083.33766 234 118 -13333333.17771 235 118 -44745929.54446 236 118 -13177083.26329 237 118 15999999.84525 238 118 -9767101.054335 239 118 15812499.93082 119 119 565941879.2302 120 119 5.811452865601e-07 121 119 3.129243850708e-07 122 119 -9005963.440556 123 119 6.943941116333e-06 124 119 1.609325408936e-06 125 119 5277897.861165 126 119 -2.145767211914e-06 127 119 -1.54972076416e-06 128 119 52091205.62311 222 119 13177221.94221 223 119 -15812499.93082 224 119 -26045602.81156 225 119 -16471527.49884 226 119 -52708333.03581 227 119 -75439445.29917 228 119 -13177222.19232 229 119 -10541666.5538 230 119 -118970561.1562 231 119 -16471527.78319 232 119 -13177083.33766 233 119 -28297094.18124 234 119 -65886110.96157 235 119 -13177083.28808 236 119 -89840137.25117 237 119 -19765832.91331 238 119 10541666.62055 239 119 -26045602.81156 120 120 913791605.4334 121 120 7.748603820801e-06 122 120 -2.622604370117e-06 123 120 126048980.7912 124 120 -2.175569534302e-06 125 120 -1.490116119385e-06 129 120 -198223262.271 130 120 2.98023223877e-07 131 120 5.960464477539e-08 132 120 -75155545.7747 133 120 53333333.32457 134 120 -1.490116119385e-08 225 120 -88624220.55292 226 120 1.043081283569e-07 227 120 65886111.10029 228 120 -28555987.69793 229 120 -13333333.33771 230 120 16471527.78319 231 120 72174281.7049 232 120 1.728534698486e-06 233 120 1.221895217896e-06 234 120 -7556159.747413 235 120 -7.450580596924e-07 236 120 1.341104507446e-06 240 120 -88624220.55292 241 120 2.235174179077e-07 242 120 -65886111.10029 243 120 -28555987.69793 244 120 13333333.33771 245 120 -16471527.78319 121 121 785785459.402 122 121 -1.788139343262e-06 123 121 -2.086162567139e-06 124 121 -76617423.53181 125 121 5.066394805908e-07 129 121 3.576278686523e-07 130 121 36444678.54407 131 121 -4.172325134277e-07 132 121 53333333.32457 133 121 -59154777.5129 134 121 2.98023223877e-08 225 121 4.470348358154e-08 226 121 -29957235.32024 227 121 2.831220626831e-07 228 121 -13333333.33771 229 121 -24555795.63051 230 121 13177083.33766 231 121 1.728534698486e-06 232 121 40172745.1813 233 121 -5.960464477539e-08 234 121 -7.003545761108e-07 235 121 -58222760.85313 236 121 52708333.32467 240 121 1.9371509552e-07 241 121 -29957235.32024 242 121 -3.8743019104e-07 243 121 13333333.33771 244 121 -24555795.63051 245 121 13177083.33766 122 122 905507012.9075 123 122 -1.668930053711e-06 124 122 4.470348358154e-07 125 122 123977832.6588 129 122 1.192092895508e-07 130 122 -4.768371582031e-07 131 122 66375066.93519 132 122 4.470348358154e-08 133 122 -4.470348358154e-08 134 122 -9005963.440553 225 122 65886111.10029 226 122 3.8743019104e-07 227 122 -87588646.48668 228 122 16471527.78319 229 122 13177083.33766 230 122 -28297094.18124 231 122 8.642673492432e-07 232 122 1.788139343262e-07 233 122 -190352899.3709 234 122 1.475214958191e-06 235 122 52708333.32467 236 122 -73187955.0487 240 122 -65886111.10029 241 122 -2.831220626831e-07 242 122 -87588646.48668 243 122 -16471527.78319 244 122 13177083.33766 245 122 -28297094.18124 123 123 988947148.5376 124 123 53333332.25791 125 123 -9.298324584961e-06 126 123 31359232.67644 127 123 -53333332.8979 128 123 1.251697540283e-06 129 123 -75155545.77471 130 123 -53333333.32457 131 123 5.066394805908e-07 132 123 -198223262.271 133 123 2.98023223877e-07 134 123 5.960464477539e-08 135 123 -75155545.7747 136 123 53333333.32457 137 123 -1.490116119385e-08 225 123 -28555987.69793 226 123 13333333.33771 227 123 16471527.78319 228 123 -107413106.5112 229 123 -13333333.17771 230 123 65886110.96157 231 123 -7556159.747413 232 123 -3.278255462646e-07 233 123 -1.206994056702e-06 234 123 100730268.7541 235 123 13333333.07105 236 123 0.02774140238762 237 123 -26345045.89131 238 123 -13333333.23105 239 123 16471527.49884 240 123 -28555987.69793 241 123 -13333333.33771 242 123 -16471527.78319 243 123 -88624220.55292 244 123 2.235174179077e-07 245 123 -65886111.10029 246 123 -28555987.69793 247 123 13333333.33771 248 123 -16471527.78319 124 124 844940234.7245 125 124 -7.987022399902e-06 126 124 -53333332.68457 127 124 -155306402.5315 128 124 5.394220352173e-06 129 124 -53333333.32457 130 124 -59154777.5129 131 124 2.086162567139e-07 132 124 3.576278686523e-07 133 124 36444678.54407 134 124 -4.172325134277e-07 135 124 53333333.32457 136 124 -59154777.5129 137 124 2.98023223877e-08 225 124 13333333.33771 226 124 -24555795.63051 227 124 -13177083.33766 228 124 -13333333.23104 229 124 -44745929.54447 230 124 13177083.28808 231 124 -2.98023223877e-07 232 124 -58222760.85313 233 124 -52708333.32467 234 124 13333333.07105 235 124 64728540.28304 236 124 0.022192299366 237 124 -13333333.17771 238 124 -73011454.71628 239 124 52708333.03581 240 124 -13333333.33771 241 124 -24555795.63051 242 124 -13177083.33766 243 124 1.9371509552e-07 244 124 -29957235.32024 245 124 -3.8743019104e-07 246 124 13333333.33771 247 124 -24555795.63051 248 124 13177083.33766 125 125 914512974.9691 126 125 1.728534698486e-06 127 125 4.559755325317e-06 128 125 62880662.12465 129 125 5.811452865601e-07 130 125 3.129243850708e-07 131 125 -9005963.440556 132 125 1.192092895508e-07 133 125 -4.768371582031e-07 134 125 66375066.93519 135 125 4.470348358154e-08 136 125 -4.470348358154e-08 137 125 -9005963.440553 225 125 16471527.78319 226 125 -13177083.33766 227 125 -28297094.18124 228 125 65886110.96157 229 125 13177083.26329 230 125 -89840137.25118 231 125 -9.983777999878e-07 232 125 -52708333.32467 233 125 -73187955.04869 234 125 -0.0277450978756 235 125 -0.02219566702843 236 125 -162055805.4842 237 125 16471527.35667 238 125 52708332.94687 239 125 -75439445.29918 240 125 -16471527.78319 241 125 -13177083.33766 242 125 -28297094.18124 243 125 -65886111.10029 244 125 -2.831220626831e-07 245 125 -87588646.48668 246 125 -16471527.78319 247 125 13177083.33766 248 125 -28297094.18124 126 126 571119749.839 127 126 53333333.32457 128 126 -6.198883056641e-06 132 126 -75155545.77471 133 126 -53333333.32457 134 126 5.066394805908e-07 135 126 -292913008.3249 136 126 -53333332.8979 137 126 6.556510925293e-06 138 126 19534202.10867 139 126 42666666.23299 140 126 -1.490116119385e-06 228 126 -9767101.054335 229 126 15999999.84525 230 126 19765832.91331 234 126 -26345045.8913 235 126 -13333333.17771 236 126 -16471527.35667 237 126 45108925.89256 238 126 13333333.33771 239 126 13177222.19231 243 126 -28555987.69793 244 126 -13333333.33771 245 126 -16471527.78319 246 126 -107413106.5112 247 126 -13333333.23104 248 126 -65886110.96157 249 126 -9767101.054335 250 126 10666666.5635 251 126 -13177221.94221 127 127 491115909.0416 128 127 -2.974887930942e-06 132 127 -53333333.32457 133 127 -59154777.5129 134 127 2.086162567139e-07 135 127 -53333332.68457 136 127 -42244300.58137 137 127 2.145767211914e-06 138 127 63999999.34949 139 127 19534202.10866 140 127 -2.384185791016e-06 228 127 10666666.5635 229 127 -9767101.054336 230 127 -10541666.62055 234 127 -13333333.23105 235 127 -73011454.71627 236 127 -52708332.94687 237 127 13333333.33771 238 127 25107965.68335 239 127 10541666.55379 243 127 -13333333.33771 244 127 -24555795.63051 245 127 -13177083.33766 246 127 -13333333.17771 247 127 -44745929.54446 248 127 -13177083.26329 249 127 15999999.84525 250 127 -9767101.054335 251 127 15812499.93082 128 128 565941879.2302 132 128 5.811452865601e-07 133 128 3.129243850708e-07 134 128 -9005963.440556 135 128 6.943941116333e-06 136 128 1.609325408936e-06 137 128 5277897.861165 138 128 -2.145767211914e-06 139 128 -1.54972076416e-06 140 128 52091205.62311 228 128 13177221.94221 229 128 -15812499.93082 230 128 -26045602.81156 234 128 -16471527.49884 235 128 -52708333.03581 236 128 -75439445.29917 237 128 -13177222.19232 238 128 -10541666.5538 239 128 -118970561.1562 243 128 -16471527.78319 244 128 -13177083.33766 245 128 -28297094.18124 246 128 -65886110.96157 247 128 -13177083.28808 248 128 -89840137.25117 249 128 -19765832.91331 250 128 10541666.62055 251 128 -26045602.81156 129 129 913791605.4334 130 129 7.748603820801e-06 131 129 -2.622604370117e-06 132 129 126048980.7912 133 129 -2.175569534302e-06 134 129 -1.490116119385e-06 141 129 -198223262.271 142 129 2.98023223877e-07 143 129 5.960464477539e-08 144 129 -75155545.7747 145 129 53333333.32457 146 129 -1.490116119385e-08 231 129 -88624220.55292 232 129 1.043081283569e-07 233 129 65886111.10029 234 129 -28555987.69793 235 129 -13333333.33771 236 129 16471527.78319 240 129 72174281.7049 241 129 1.728534698486e-06 242 129 1.221895217896e-06 243 129 -7556159.747413 244 129 -7.450580596924e-07 245 129 1.341104507446e-06 252 129 -88624220.55292 253 129 2.235174179077e-07 254 129 -65886111.10029 255 129 -28555987.69793 256 129 13333333.33771 257 129 -16471527.78319 130 130 785785459.402 131 130 -1.788139343262e-06 132 130 -2.086162567139e-06 133 130 -76617423.53181 134 130 5.066394805908e-07 141 130 3.576278686523e-07 142 130 36444678.54407 143 130 -4.172325134277e-07 144 130 53333333.32457 145 130 -59154777.5129 146 130 2.98023223877e-08 231 130 4.470348358154e-08 232 130 -29957235.32024 233 130 2.831220626831e-07 234 130 -13333333.33771 235 130 -24555795.63051 236 130 13177083.33766 240 130 1.728534698486e-06 241 130 40172745.1813 242 130 -5.960464477539e-08 243 130 -7.003545761108e-07 244 130 -58222760.85313 245 130 52708333.32467 252 130 1.9371509552e-07 253 130 -29957235.32024 254 130 -3.8743019104e-07 255 130 13333333.33771 256 130 -24555795.63051 257 130 13177083.33766 131 131 905507012.9075 132 131 -1.668930053711e-06 133 131 4.470348358154e-07 134 131 123977832.6588 141 131 1.192092895508e-07 142 131 -4.768371582031e-07 143 131 66375066.93519 144 131 4.470348358154e-08 145 131 -4.470348358154e-08 146 131 -9005963.440553 231 131 65886111.10029 232 131 3.8743019104e-07 233 131 -87588646.48668 234 131 16471527.78319 235 131 13177083.33766 236 131 -28297094.18124 240 131 8.642673492432e-07 241 131 1.788139343262e-07 242 131 -190352899.3709 243 131 1.475214958191e-06 244 131 52708333.32467 245 131 -73187955.0487 252 131 -65886111.10029 253 131 -2.831220626831e-07 254 131 -87588646.48668 255 131 -16471527.78319 256 131 13177083.33766 257 131 -28297094.18124 132 132 913791605.4334 133 132 7.748603820801e-06 134 132 -2.622604370117e-06 135 132 126048980.7912 136 132 -2.175569534302e-06 137 132 -1.490116119385e-06 141 132 -75155545.77471 142 132 -53333333.32457 143 132 5.066394805908e-07 144 132 -198223262.271 145 132 2.98023223877e-07 146 132 5.960464477539e-08 147 132 -75155545.7747 148 132 53333333.32457 149 132 -1.490116119385e-08 231 132 -28555987.69793 232 132 13333333.33771 233 132 16471527.78319 234 132 -88624220.55292 235 132 1.043081283569e-07 236 132 65886111.10029 237 132 -28555987.69793 238 132 -13333333.33771 239 132 16471527.78319 240 132 -7556159.747413 241 132 -3.278255462646e-07 242 132 -1.206994056702e-06 243 132 72174281.7049 244 132 1.728534698486e-06 245 132 1.221895217896e-06 246 132 -7556159.747413 247 132 -7.450580596924e-07 248 132 1.341104507446e-06 252 132 -28555987.69793 253 132 -13333333.33771 254 132 -16471527.78319 255 132 -88624220.55292 256 132 2.235174179077e-07 257 132 -65886111.10029 258 132 -28555987.69793 259 132 13333333.33771 260 132 -16471527.78319 133 133 785785459.402 134 133 -1.788139343262e-06 135 133 -2.086162567139e-06 136 133 -76617423.53181 137 133 5.066394805908e-07 141 133 -53333333.32457 142 133 -59154777.5129 143 133 2.086162567139e-07 144 133 3.576278686523e-07 145 133 36444678.54407 146 133 -4.172325134277e-07 147 133 53333333.32457 148 133 -59154777.5129 149 133 2.98023223877e-08 231 133 13333333.33771 232 133 -24555795.63051 233 133 -13177083.33766 234 133 4.470348358154e-08 235 133 -29957235.32024 236 133 2.831220626831e-07 237 133 -13333333.33771 238 133 -24555795.63051 239 133 13177083.33766 240 133 -2.98023223877e-07 241 133 -58222760.85313 242 133 -52708333.32467 243 133 1.728534698486e-06 244 133 40172745.1813 245 133 -5.960464477539e-08 246 133 -7.003545761108e-07 247 133 -58222760.85313 248 133 52708333.32467 252 133 -13333333.33771 253 133 -24555795.63051 254 133 -13177083.33766 255 133 1.9371509552e-07 256 133 -29957235.32024 257 133 -3.8743019104e-07 258 133 13333333.33771 259 133 -24555795.63051 260 133 13177083.33766 134 134 905507012.9075 135 134 -1.668930053711e-06 136 134 4.470348358154e-07 137 134 123977832.6588 141 134 5.811452865601e-07 142 134 3.129243850708e-07 143 134 -9005963.440556 144 134 1.192092895508e-07 145 134 -4.768371582031e-07 146 134 66375066.93519 147 134 4.470348358154e-08 148 134 -4.470348358154e-08 149 134 -9005963.440553 231 134 16471527.78319 232 134 -13177083.33766 233 134 -28297094.18124 234 134 65886111.10029 235 134 3.8743019104e-07 236 134 -87588646.48668 237 134 16471527.78319 238 134 13177083.33766 239 134 -28297094.18124 240 134 -9.983777999878e-07 241 134 -52708333.32467 242 134 -73187955.04869 243 134 8.642673492432e-07 244 134 1.788139343262e-07 245 134 -190352899.3709 246 134 1.475214958191e-06 247 134 52708333.32467 248 134 -73187955.0487 252 134 -16471527.78319 253 134 -13177083.33766 254 134 -28297094.18124 255 134 -65886111.10029 256 134 -2.831220626831e-07 257 134 -87588646.48668 258 134 -16471527.78319 259 134 13177083.33766 260 134 -28297094.18124 135 135 988947148.5376 136 135 53333332.25791 137 135 -9.298324584961e-06 138 135 31359232.67644 139 135 -53333332.8979 140 135 1.251697540283e-06 144 135 -75155545.77471 145 135 -53333333.32457 146 135 5.066394805908e-07 147 135 -198223262.271 148 135 2.98023223877e-07 149 135 5.960464477539e-08 150 135 -75155545.7747 151 135 53333333.32457 152 135 -1.490116119385e-08 234 135 -28555987.69793 235 135 13333333.33771 236 135 16471527.78319 237 135 -107413106.5112 238 135 -13333333.17771 239 135 65886110.96157 243 135 -7556159.747413 244 135 -3.278255462646e-07 245 135 -1.206994056702e-06 246 135 100730268.7541 247 135 13333333.07105 248 135 0.02774140238762 249 135 -26345045.89131 250 135 -13333333.23105 251 135 16471527.49884 255 135 -28555987.69793 256 135 -13333333.33771 257 135 -16471527.78319 258 135 -88624220.55292 259 135 2.235174179077e-07 260 135 -65886111.10029 261 135 -28555987.69793 262 135 13333333.33771 263 135 -16471527.78319 136 136 844940234.7245 137 136 -7.987022399902e-06 138 136 -53333332.68457 139 136 -155306402.5315 140 136 5.394220352173e-06 144 136 -53333333.32457 145 136 -59154777.5129 146 136 2.086162567139e-07 147 136 3.576278686523e-07 148 136 36444678.54407 149 136 -4.172325134277e-07 150 136 53333333.32457 151 136 -59154777.5129 152 136 2.98023223877e-08 234 136 13333333.33771 235 136 -24555795.63051 236 136 -13177083.33766 237 136 -13333333.23104 238 136 -44745929.54447 239 136 13177083.28808 243 136 -2.98023223877e-07 244 136 -58222760.85313 245 136 -52708333.32467 246 136 13333333.07105 247 136 64728540.28304 248 136 0.022192299366 249 136 -13333333.17771 250 136 -73011454.71628 251 136 52708333.03581 255 136 -13333333.33771 256 136 -24555795.63051 257 136 -13177083.33766 258 136 1.9371509552e-07 259 136 -29957235.32024 260 136 -3.8743019104e-07 261 136 13333333.33771 262 136 -24555795.63051 263 136 13177083.33766 137 137 914512974.9691 138 137 1.728534698486e-06 139 137 4.559755325317e-06 140 137 62880662.12465 144 137 5.811452865601e-07 145 137 3.129243850708e-07 146 137 -9005963.440556 147 137 1.192092895508e-07 148 137 -4.768371582031e-07 149 137 66375066.93519 150 137 4.470348358154e-08 151 137 -4.470348358154e-08 152 137 -9005963.440553 234 137 16471527.78319 235 137 -13177083.33766 236 137 -28297094.18124 237 137 65886110.96157 238 137 13177083.26329 239 137 -89840137.25118 243 137 -9.983777999878e-07 244 137 -52708333.32467 245 137 -73187955.04869 246 137 -0.0277450978756 247 137 -0.02219566702843 248 137 -162055805.4842 249 137 16471527.35667 250 137 52708332.94687 251 137 -75439445.29918 255 137 -16471527.78319 256 137 -13177083.33766 257 137 -28297094.18124 258 137 -65886111.10029 259 137 -2.831220626831e-07 260 137 -87588646.48668 261 137 -16471527.78319 262 137 13177083.33766 263 137 -28297094.18124 138 138 571119749.839 139 138 53333333.32457 140 138 -6.198883056641e-06 147 138 -75155545.77471 148 138 -53333333.32457 149 138 5.066394805908e-07 150 138 -292913008.3249 151 138 -53333332.8979 152 138 6.556510925293e-06 153 138 19534202.10867 154 138 42666666.23299 155 138 -1.490116119385e-06 237 138 -9767101.054335 238 138 15999999.84525 239 138 19765832.91331 246 138 -26345045.8913 247 138 -13333333.17771 248 138 -16471527.35667 249 138 45108925.89256 250 138 13333333.33771 251 138 13177222.19231 258 138 -28555987.69793 259 138 -13333333.33771 260 138 -16471527.78319 261 138 -107413106.5112 262 138 -13333333.23104 263 138 -65886110.96157 264 138 -9767101.054335 265 138 10666666.5635 266 138 -13177221.94221 139 139 491115909.0416 140 139 -2.974887930942e-06 147 139 -53333333.32457 148 139 -59154777.5129 149 139 2.086162567139e-07 150 139 -53333332.68457 151 139 -42244300.58137 152 139 2.145767211914e-06 153 139 63999999.34949 154 139 19534202.10866 155 139 -2.384185791016e-06 237 139 10666666.5635 238 139 -9767101.054336 239 139 -10541666.62055 246 139 -13333333.23105 247 139 -73011454.71627 248 139 -52708332.94687 249 139 13333333.33771 250 139 25107965.68335 251 139 10541666.55379 258 139 -13333333.33771 259 139 -24555795.63051 260 139 -13177083.33766 261 139 -13333333.17771 262 139 -44745929.54446 263 139 -13177083.26329 264 139 15999999.84525 265 139 -9767101.054335 266 139 15812499.93082 140 140 565941879.2302 147 140 5.811452865601e-07 148 140 3.129243850708e-07 149 140 -9005963.440556 150 140 6.943941116333e-06 151 140 1.609325408936e-06 152 140 5277897.861165 153 140 -2.145767211914e-06 154 140 -1.54972076416e-06 155 140 52091205.62311 237 140 13177221.94221 238 140 -15812499.93082 239 140 -26045602.81156 246 140 -16471527.49884 247 140 -52708333.03581 248 140 -75439445.29917 249 140 -13177222.19232 250 140 -10541666.5538 251 140 -118970561.1562 258 140 -16471527.78319 259 140 -13177083.33766 260 140 -28297094.18124 261 140 -65886110.96157 262 140 -13177083.28808 263 140 -89840137.25117 264 140 -19765832.91331 265 140 10541666.62055 266 140 -26045602.81156 141 141 913791605.4334 142 141 7.748603820801e-06 143 141 -2.622604370117e-06 144 141 126048980.7912 145 141 -2.175569534302e-06 146 141 -1.490116119385e-06 156 141 -198223262.271 157 141 2.98023223877e-07 158 141 5.960464477539e-08 159 141 -75155545.7747 160 141 53333333.32457 161 141 -1.490116119385e-08 240 141 -88624220.55292 241 141 1.043081283569e-07 242 141 65886111.10029 243 141 -28555987.69793 244 141 -13333333.33771 245 141 16471527.78319 252 141 72174281.7049 253 141 1.728534698486e-06 254 141 1.221895217896e-06 255 141 -7556159.747413 256 141 -7.450580596924e-07 257 141 1.341104507446e-06 267 141 -88624220.55292 268 141 2.235174179077e-07 269 141 -65886111.10029 270 141 -28555987.69793 271 141 13333333.33771 272 141 -16471527.78319 142 142 785785459.402 143 142 -1.788139343262e-06 144 142 -2.086162567139e-06 145 142 -76617423.53181 146 142 5.066394805908e-07 156 142 3.576278686523e-07 157 142 36444678.54407 158 142 -4.172325134277e-07 159 142 53333333.32457 160 142 -59154777.5129 161 142 2.98023223877e-08 240 142 4.470348358154e-08 241 142 -29957235.32024 242 142 2.831220626831e-07 243 142 -13333333.33771 244 142 -24555795.63051 245 142 13177083.33766 252 142 1.728534698486e-06 253 142 40172745.1813 254 142 -5.960464477539e-08 255 142 -7.003545761108e-07 256 142 -58222760.85313 257 142 52708333.32467 267 142 1.9371509552e-07 268 142 -29957235.32024 269 142 -3.8743019104e-07 270 142 13333333.33771 271 142 -24555795.63051 272 142 13177083.33766 143 143 905507012.9075 144 143 -1.668930053711e-06 145 143 4.470348358154e-07 146 143 123977832.6588 156 143 1.192092895508e-07 157 143 -4.768371582031e-07 158 143 66375066.93519 159 143 4.470348358154e-08 160 143 -4.470348358154e-08 161 143 -9005963.440553 240 143 65886111.10029 241 143 3.8743019104e-07 242 143 -87588646.48668 243 143 16471527.78319 244 143 13177083.33766 245 143 -28297094.18124 252 143 8.642673492432e-07 253 143 1.788139343262e-07 254 143 -190352899.3709 255 143 1.475214958191e-06 256 143 52708333.32467 257 143 -73187955.0487 267 143 -65886111.10029 268 143 -2.831220626831e-07 269 143 -87588646.48668 270 143 -16471527.78319 271 143 13177083.33766 272 143 -28297094.18124 144 144 913791605.4334 145 144 7.748603820801e-06 146 144 -2.622604370117e-06 147 144 126048980.7912 148 144 -2.175569534302e-06 149 144 -1.490116119385e-06 156 144 -75155545.77471 157 144 -53333333.32457 158 144 5.066394805908e-07 159 144 -198223262.271 160 144 2.98023223877e-07 161 144 5.960464477539e-08 162 144 -75155545.7747 163 144 53333333.32457 164 144 -1.490116119385e-08 240 144 -28555987.69793 241 144 13333333.33771 242 144 16471527.78319 243 144 -88624220.55292 244 144 1.043081283569e-07 245 144 65886111.10029 246 144 -28555987.69793 247 144 -13333333.33771 248 144 16471527.78319 252 144 -7556159.747413 253 144 -3.278255462646e-07 254 144 -1.206994056702e-06 255 144 72174281.7049 256 144 1.728534698486e-06 257 144 1.221895217896e-06 258 144 -7556159.747413 259 144 -7.450580596924e-07 260 144 1.341104507446e-06 267 144 -28555987.69793 268 144 -13333333.33771 269 144 -16471527.78319 270 144 -88624220.55292 271 144 2.235174179077e-07 272 144 -65886111.10029 273 144 -28555987.69793 274 144 13333333.33771 275 144 -16471527.78319 145 145 785785459.402 146 145 -1.788139343262e-06 147 145 -2.086162567139e-06 148 145 -76617423.53181 149 145 5.066394805908e-07 156 145 -53333333.32457 157 145 -59154777.5129 158 145 2.086162567139e-07 159 145 3.576278686523e-07 160 145 36444678.54407 161 145 -4.172325134277e-07 162 145 53333333.32457 163 145 -59154777.5129 164 145 2.98023223877e-08 240 145 13333333.33771 241 145 -24555795.63051 242 145 -13177083.33766 243 145 4.470348358154e-08 244 145 -29957235.32024 245 145 2.831220626831e-07 246 145 -13333333.33771 247 145 -24555795.63051 248 145 13177083.33766 252 145 -2.98023223877e-07 253 145 -58222760.85313 254 145 -52708333.32467 255 145 1.728534698486e-06 256 145 40172745.1813 257 145 -5.960464477539e-08 258 145 -7.003545761108e-07 259 145 -58222760.85313 260 145 52708333.32467 267 145 -13333333.33771 268 145 -24555795.63051 269 145 -13177083.33766 270 145 1.9371509552e-07 271 145 -29957235.32024 272 145 -3.8743019104e-07 273 145 13333333.33771 274 145 -24555795.63051 275 145 13177083.33766 146 146 905507012.9075 147 146 -1.668930053711e-06 148 146 4.470348358154e-07 149 146 123977832.6588 156 146 5.811452865601e-07 157 146 3.129243850708e-07 158 146 -9005963.440556 159 146 1.192092895508e-07 160 146 -4.768371582031e-07 161 146 66375066.93519 162 146 4.470348358154e-08 163 146 -4.470348358154e-08 164 146 -9005963.440553 240 146 16471527.78319 241 146 -13177083.33766 242 146 -28297094.18124 243 146 65886111.10029 244 146 3.8743019104e-07 245 146 -87588646.48668 246 146 16471527.78319 247 146 13177083.33766 248 146 -28297094.18124 252 146 -9.983777999878e-07 253 146 -52708333.32467 254 146 -73187955.04869 255 146 8.642673492432e-07 256 146 1.788139343262e-07 257 146 -190352899.3709 258 146 1.475214958191e-06 259 146 52708333.32467 260 146 -73187955.0487 267 146 -16471527.78319 268 146 -13177083.33766 269 146 -28297094.18124 270 146 -65886111.10029 271 146 -2.831220626831e-07 272 146 -87588646.48668 273 146 -16471527.78319 274 146 13177083.33766 275 146 -28297094.18124 147 147 913791605.4334 148 147 7.748603820801e-06 149 147 -2.622604370117e-06 150 147 126048980.7912 151 147 -2.175569534302e-06 152 147 -1.490116119385e-06 159 147 -75155545.77471 160 147 -53333333.32457 161 147 5.066394805908e-07 162 147 -198223262.271 163 147 2.98023223877e-07 164 147 5.960464477539e-08 165 147 -75155545.7747 166 147 53333333.32457 167 147 -1.490116119385e-08 243 147 -28555987.69793 244 147 13333333.33771 245 147 16471527.78319 246 147 -88624220.55292 247 147 1.043081283569e-07 248 147 65886111.10029 249 147 -28555987.69793 250 147 -13333333.33771 251 147 16471527.78319 255 147 -7556159.747413 256 147 -3.278255462646e-07 257 147 -1.206994056702e-06 258 147 72174281.7049 259 147 1.728534698486e-06 260 147 1.221895217896e-06 261 147 -7556159.747413 262 147 -7.450580596924e-07 263 147 1.341104507446e-06 270 147 -28555987.69793 271 147 -13333333.33771 272 147 -16471527.78319 273 147 -88624220.55292 274 147 2.235174179077e-07 275 147 -65886111.10029 276 147 -28555987.69793 277 147 13333333.33771 278 147 -16471527.78319 148 148 785785459.402 149 148 -1.788139343262e-06 150 148 -2.086162567139e-06 151 148 -76617423.53181 152 148 5.066394805908e-07 159 148 -53333333.32457 160 148 -59154777.5129 161 148 2.086162567139e-07 162 148 3.576278686523e-07 163 148 36444678.54407 164 148 -4.172325134277e-07 165 148 53333333.32457 166 148 -59154777.5129 167 148 2.98023223877e-08 243 148 13333333.33771 244 148 -24555795.63051 245 148 -13177083.33766 246 148 4.470348358154e-08 247 148 -29957235.32024 248 148 2.831220626831e-07 249 148 -13333333.33771 250 148 -24555795.63051 251 148 13177083.33766 255 148 -2.98023223877e-07 256 148 -58222760.85313 257 148 -52708333.32467 258 148 1.728534698486e-06 259 148 40172745.1813 260 148 -5.960464477539e-08 261 148 -7.003545761108e-07 262 148 -58222760.85313 263 148 52708333.32467 270 148 -13333333.33771 271 148 -24555795.63051 272 148 -13177083.33766 273 148 1.9371509552e-07 274 148 -29957235.32024 275 148 -3.8743019104e-07 276 148 13333333.33771 277 148 -24555795.63051 278 148 13177083.33766 149 149 905507012.9075 150 149 -1.668930053711e-06 151 149 4.470348358154e-07 152 149 123977832.6588 159 149 5.811452865601e-07 160 149 3.129243850708e-07 161 149 -9005963.440556 162 149 1.192092895508e-07 163 149 -4.768371582031e-07 164 149 66375066.93519 165 149 4.470348358154e-08 166 149 -4.470348358154e-08 167 149 -9005963.440553 243 149 16471527.78319 244 149 -13177083.33766 245 149 -28297094.18124 246 149 65886111.10029 247 149 3.8743019104e-07 248 149 -87588646.48668 249 149 16471527.78319 250 149 13177083.33766 251 149 -28297094.18124 255 149 -9.983777999878e-07 256 149 -52708333.32467 257 149 -73187955.04869 258 149 8.642673492432e-07 259 149 1.788139343262e-07 260 149 -190352899.3709 261 149 1.475214958191e-06 262 149 52708333.32467 263 149 -73187955.0487 270 149 -16471527.78319 271 149 -13177083.33766 272 149 -28297094.18124 273 149 -65886111.10029 274 149 -2.831220626831e-07 275 149 -87588646.48668 276 149 -16471527.78319 277 149 13177083.33766 278 149 -28297094.18124 150 150 988947148.5376 151 150 53333332.25791 152 150 -9.298324584961e-06 153 150 31359232.67644 154 150 -53333332.8979 155 150 1.251697540283e-06 162 150 -75155545.77471 163 150 -53333333.32457 164 150 5.066394805908e-07 165 150 -198223262.271 166 150 2.98023223877e-07 167 150 5.960464477539e-08 168 150 -75155545.7747 169 150 53333333.32457 170 150 -1.490116119385e-08 246 150 -28555987.69793 247 150 13333333.33771 248 150 16471527.78319 249 150 -107413106.5112 250 150 -13333333.17771 251 150 65886110.96157 258 150 -7556159.747413 259 150 -3.278255462646e-07 260 150 -1.206994056702e-06 261 150 100730268.7541 262 150 13333333.07105 263 150 0.02774140238762 264 150 -26345045.89131 265 150 -13333333.23105 266 150 16471527.49884 273 150 -28555987.69793 274 150 -13333333.33771 275 150 -16471527.78319 276 150 -88624220.55292 277 150 2.235174179077e-07 278 150 -65886111.10029 279 150 -28555987.69793 280 150 13333333.33771 281 150 -16471527.78319 151 151 844940234.7245 152 151 -7.987022399902e-06 153 151 -53333332.68457 154 151 -155306402.5315 155 151 5.394220352173e-06 162 151 -53333333.32457 163 151 -59154777.5129 164 151 2.086162567139e-07 165 151 3.576278686523e-07 166 151 36444678.54407 167 151 -4.172325134277e-07 168 151 53333333.32457 169 151 -59154777.5129 170 151 2.98023223877e-08 246 151 13333333.33771 247 151 -24555795.63051 248 151 -13177083.33766 249 151 -13333333.23104 250 151 -44745929.54447 251 151 13177083.28808 258 151 -2.98023223877e-07 259 151 -58222760.85313 260 151 -52708333.32467 261 151 13333333.07105 262 151 64728540.28304 263 151 0.022192299366 264 151 -13333333.17771 265 151 -73011454.71628 266 151 52708333.03581 273 151 -13333333.33771 274 151 -24555795.63051 275 151 -13177083.33766 276 151 1.9371509552e-07 277 151 -29957235.32024 278 151 -3.8743019104e-07 279 151 13333333.33771 280 151 -24555795.63051 281 151 13177083.33766 152 152 914512974.9691 153 152 1.728534698486e-06 154 152 4.559755325317e-06 155 152 62880662.12465 162 152 5.811452865601e-07 163 152 3.129243850708e-07 164 152 -9005963.440556 165 152 1.192092895508e-07 166 152 -4.768371582031e-07 167 152 66375066.93519 168 152 4.470348358154e-08 169 152 -4.470348358154e-08 170 152 -9005963.440553 246 152 16471527.78319 247 152 -13177083.33766 248 152 -28297094.18124 249 152 65886110.96157 250 152 13177083.26329 251 152 -89840137.25118 258 152 -9.983777999878e-07 259 152 -52708333.32467 260 152 -73187955.04869 261 152 -0.0277450978756 262 152 -0.02219566702843 263 152 -162055805.4842 264 152 16471527.35667 265 152 52708332.94687 266 152 -75439445.29918 273 152 -16471527.78319 274 152 -13177083.33766 275 152 -28297094.18124 276 152 -65886111.10029 277 152 -2.831220626831e-07 278 152 -87588646.48668 279 152 -16471527.78319 280 152 13177083.33766 281 152 -28297094.18124 153 153 571119749.839 154 153 53333333.32457 155 153 -6.198883056641e-06 165 153 -75155545.77471 166 153 -53333333.32457 167 153 5.066394805908e-07 168 153 -292913008.3249 169 153 -53333332.8979 170 153 6.556510925293e-06 171 153 19534202.10867 172 153 42666666.23299 173 153 -1.490116119385e-06 249 153 -9767101.054335 250 153 15999999.84525 251 153 19765832.91331 261 153 -26345045.8913 262 153 -13333333.17771 263 153 -16471527.35667 264 153 45108925.89256 265 153 13333333.33771 266 153 13177222.19231 276 153 -28555987.69793 277 153 -13333333.33771 278 153 -16471527.78319 279 153 -107413106.5112 280 153 -13333333.23104 281 153 -65886110.96157 282 153 -9767101.054335 283 153 10666666.5635 284 153 -13177221.94221 154 154 491115909.0416 155 154 -2.974887930942e-06 165 154 -53333333.32457 166 154 -59154777.5129 167 154 2.086162567139e-07 168 154 -53333332.68457 169 154 -42244300.58137 170 154 2.145767211914e-06 171 154 63999999.34949 172 154 19534202.10866 173 154 -2.384185791016e-06 249 154 10666666.5635 250 154 -9767101.054336 251 154 -10541666.62055 261 154 -13333333.23105 262 154 -73011454.71627 263 154 -52708332.94687 264 154 13333333.33771 265 154 25107965.68335 266 154 10541666.55379 276 154 -13333333.33771 277 154 -24555795.63051 278 154 -13177083.33766 279 154 -13333333.17771 280 154 -44745929.54446 281 154 -13177083.26329 282 154 15999999.84525 283 154 -9767101.054335 284 154 15812499.93082 155 155 565941879.2302 165 155 5.811452865601e-07 166 155 3.129243850708e-07 167 155 -9005963.440556 168 155 6.943941116333e-06 169 155 1.609325408936e-06 170 155 5277897.861165 171 155 -2.145767211914e-06 172 155 -1.54972076416e-06 173 155 52091205.62311 249 155 13177221.94221 250 155 -15812499.93082 251 155 -26045602.81156 261 155 -16471527.49884 262 155 -52708333.03581 263 155 -75439445.29917 264 155 -13177222.19232 265 155 -10541666.5538 266 155 -118970561.1562 276 155 -16471527.78319 277 155 -13177083.33766 278 155 -28297094.18124 279 155 -65886110.96157 280 155 -13177083.28808 281 155 -89840137.25117 282 155 -19765832.91331 283 155 10541666.62055 284 155 -26045602.81156 156 156 913791605.4334 157 156 7.748603820801e-06 158 156 -2.622604370117e-06 159 156 126048980.7912 160 156 -2.175569534302e-06 161 156 -1.490116119385e-06 174 156 -198223262.271 175 156 2.98023223877e-07 176 156 5.960464477539e-08 177 156 -75155545.7747 178 156 53333333.32457 179 156 -1.490116119385e-08 252 156 -88624220.55292 253 156 1.043081283569e-07 254 156 65886111.10029 255 156 -28555987.69793 256 156 -13333333.33771 257 156 16471527.78319 267 156 72174281.7049 268 156 1.728534698486e-06 269 156 1.221895217896e-06 270 156 -7556159.747413 271 156 -7.450580596924e-07 272 156 1.341104507446e-06 285 156 -88624220.55292 286 156 2.235174179077e-07 287 156 -65886111.10029 288 156 -28555987.69793 289 156 13333333.33771 290 156 -16471527.78319 157 157 785785459.402 158 157 -1.788139343262e-06 159 157 -2.086162567139e-06 160 157 -76617423.53181 161 157 5.066394805908e-07 174 157 3.576278686523e-07 175 157 36444678.54407 176 157 -4.172325134277e-07 177 157 53333333.32457 178 157 -59154777.5129 179 157 2.98023223877e-08 252 157 4.470348358154e-08 253 157 -29957235.32024 254 157 2.831220626831e-07 255 157 -13333333.33771 256 157 -24555795.63051 257 157 13177083.33766 267 157 1.728534698486e-06 268 157 40172745.1813 269 157 -5.960464477539e-08 270 157 -7.003545761108e-07 271 157 -58222760.85313 272 157 52708333.32467 285 157 1.9371509552e-07 286 157 -29957235.32024 287 157 -3.8743019104e-07 288 157 13333333.33771 289 157 -24555795.63051 290 157 13177083.33766 158 158 905507012.9075 159 158 -1.668930053711e-06 160 158 4.470348358154e-07 161 158 123977832.6588 174 158 1.192092895508e-07 175 158 -4.768371582031e-07 176 158 66375066.93519 177 158 4.470348358154e-08 178 158 -4.470348358154e-08 179 158 -9005963.440553 252 158 65886111.10029 253 158 3.8743019104e-07 254 158 -87588646.48668 255 158 16471527.78319 256 158 13177083.33766 257 158 -28297094.18124 267 158 8.642673492432e-07 268 158 1.788139343262e-07 269 158 -190352899.3709 270 158 1.475214958191e-06 271 158 52708333.32467 272 158 -73187955.0487 285 158 -65886111.10029 286 158 -2.831220626831e-07 287 158 -87588646.48668 288 158 -16471527.78319 289 158 13177083.33766 290 158 -28297094.18124 159 159 913791605.4334 160 159 7.748603820801e-06 161 159 -2.622604370117e-06 162 159 126048980.7912 163 159 -2.175569534302e-06 164 159 -1.490116119385e-06 174 159 -75155545.77471 175 159 -53333333.32457 176 159 5.066394805908e-07 177 159 -198223262.271 178 159 2.98023223877e-07 179 159 5.960464477539e-08 180 159 -75155545.7747 181 159 53333333.32457 182 159 -1.490116119385e-08 252 159 -28555987.69793 253 159 13333333.33771 254 159 16471527.78319 255 159 -88624220.55292 256 159 1.043081283569e-07 257 159 65886111.10029 258 159 -28555987.69793 259 159 -13333333.33771 260 159 16471527.78319 267 159 -7556159.747413 268 159 -3.278255462646e-07 269 159 -1.206994056702e-06 270 159 72174281.7049 271 159 1.728534698486e-06 272 159 1.221895217896e-06 273 159 -7556159.747413 274 159 -7.450580596924e-07 275 159 1.341104507446e-06 285 159 -28555987.69793 286 159 -13333333.33771 287 159 -16471527.78319 288 159 -88624220.55292 289 159 2.235174179077e-07 290 159 -65886111.10029 291 159 -28555987.69793 292 159 13333333.33771 293 159 -16471527.78319 160 160 785785459.402 161 160 -1.788139343262e-06 162 160 -2.086162567139e-06 163 160 -76617423.53181 164 160 5.066394805908e-07 174 160 -53333333.32457 175 160 -59154777.5129 176 160 2.086162567139e-07 177 160 3.576278686523e-07 178 160 36444678.54407 179 160 -4.172325134277e-07 180 160 53333333.32457 181 160 -59154777.5129 182 160 2.98023223877e-08 252 160 13333333.33771 253 160 -24555795.63051 254 160 -13177083.33766 255 160 4.470348358154e-08 256 160 -29957235.32024 257 160 2.831220626831e-07 258 160 -13333333.33771 259 160 -24555795.63051 260 160 13177083.33766 267 160 -2.98023223877e-07 268 160 -58222760.85313 269 160 -52708333.32467 270 160 1.728534698486e-06 271 160 40172745.1813 272 160 -5.960464477539e-08 273 160 -7.003545761108e-07 274 160 -58222760.85313 275 160 52708333.32467 285 160 -13333333.33771 286 160 -24555795.63051 287 160 -13177083.33766 288 160 1.9371509552e-07 289 160 -29957235.32024 290 160 -3.8743019104e-07 291 160 13333333.33771 292 160 -24555795.63051 293 160 13177083.33766 161 161 905507012.9075 162 161 -1.668930053711e-06 163 161 4.470348358154e-07 164 161 123977832.6588 174 161 5.811452865601e-07 175 161 3.129243850708e-07 176 161 -9005963.440556 177 161 1.192092895508e-07 178 161 -4.768371582031e-07 179 161 66375066.93519 180 161 4.470348358154e-08 181 161 -4.470348358154e-08 182 161 -9005963.440553 252 161 16471527.78319 253 161 -13177083.33766 254 161 -28297094.18124 255 161 65886111.10029 256 161 3.8743019104e-07 257 161 -87588646.48668 258 161 16471527.78319 259 161 13177083.33766 260 161 -28297094.18124 267 161 -9.983777999878e-07 268 161 -52708333.32467 269 161 -73187955.04869 270 161 8.642673492432e-07 271 161 1.788139343262e-07 272 161 -190352899.3709 273 161 1.475214958191e-06 274 161 52708333.32467 275 161 -73187955.0487 285 161 -16471527.78319 286 161 -13177083.33766 287 161 -28297094.18124 288 161 -65886111.10029 289 161 -2.831220626831e-07 290 161 -87588646.48668 291 161 -16471527.78319 292 161 13177083.33766 293 161 -28297094.18124 162 162 913791605.4334 163 162 7.748603820801e-06 164 162 -2.622604370117e-06 165 162 126048980.7912 166 162 -2.175569534302e-06 167 162 -1.490116119385e-06 177 162 -75155545.77471 178 162 -53333333.32457 179 162 5.066394805908e-07 180 162 -198223262.271 181 162 2.98023223877e-07 182 162 5.960464477539e-08 183 162 -75155545.7747 184 162 53333333.32457 185 162 -1.490116119385e-08 255 162 -28555987.69793 256 162 13333333.33771 257 162 16471527.78319 258 162 -88624220.55292 259 162 1.043081283569e-07 260 162 65886111.10029 261 162 -28555987.69793 262 162 -13333333.33771 263 162 16471527.78319 270 162 -7556159.747413 271 162 -3.278255462646e-07 272 162 -1.206994056702e-06 273 162 72174281.7049 274 162 1.728534698486e-06 275 162 1.221895217896e-06 276 162 -7556159.747413 277 162 -7.450580596924e-07 278 162 1.341104507446e-06 288 162 -28555987.69793 289 162 -13333333.33771 290 162 -16471527.78319 291 162 -88624220.55292 292 162 2.235174179077e-07 293 162 -65886111.10029 294 162 -28555987.69793 295 162 13333333.33771 296 162 -16471527.78319 163 163 785785459.402 164 163 -1.788139343262e-06 165 163 -2.086162567139e-06 166 163 -76617423.53181 167 163 5.066394805908e-07 177 163 -53333333.32457 178 163 -59154777.5129 179 163 2.086162567139e-07 180 163 3.576278686523e-07 181 163 36444678.54407 182 163 -4.172325134277e-07 183 163 53333333.32457 184 163 -59154777.5129 185 163 2.98023223877e-08 255 163 13333333.33771 256 163 -24555795.63051 257 163 -13177083.33766 258 163 4.470348358154e-08 259 163 -29957235.32024 260 163 2.831220626831e-07 261 163 -13333333.33771 262 163 -24555795.63051 263 163 13177083.33766 270 163 -2.98023223877e-07 271 163 -58222760.85313 272 163 -52708333.32467 273 163 1.728534698486e-06 274 163 40172745.1813 275 163 -5.960464477539e-08 276 163 -7.003545761108e-07 277 163 -58222760.85313 278 163 52708333.32467 288 163 -13333333.33771 289 163 -24555795.63051 290 163 -13177083.33766 291 163 1.9371509552e-07 292 163 -29957235.32024 293 163 -3.8743019104e-07 294 163 13333333.33771 295 163 -24555795.63051 296 163 13177083.33766 164 164 905507012.9075 165 164 -1.668930053711e-06 166 164 4.470348358154e-07 167 164 123977832.6588 177 164 5.811452865601e-07 178 164 3.129243850708e-07 179 164 -9005963.440556 180 164 1.192092895508e-07 181 164 -4.768371582031e-07 182 164 66375066.93519 183 164 4.470348358154e-08 184 164 -4.470348358154e-08 185 164 -9005963.440553 255 164 16471527.78319 256 164 -13177083.33766 257 164 -28297094.18124 258 164 65886111.10029 259 164 3.8743019104e-07 260 164 -87588646.48668 261 164 16471527.78319 262 164 13177083.33766 263 164 -28297094.18124 270 164 -9.983777999878e-07 271 164 -52708333.32467 272 164 -73187955.04869 273 164 8.642673492432e-07 274 164 1.788139343262e-07 275 164 -190352899.3709 276 164 1.475214958191e-06 277 164 52708333.32467 278 164 -73187955.0487 288 164 -16471527.78319 289 164 -13177083.33766 290 164 -28297094.18124 291 164 -65886111.10029 292 164 -2.831220626831e-07 293 164 -87588646.48668 294 164 -16471527.78319 295 164 13177083.33766 296 164 -28297094.18124 165 165 913791605.4334 166 165 7.748603820801e-06 167 165 -2.622604370117e-06 168 165 126048980.7912 169 165 -2.175569534302e-06 170 165 -1.490116119385e-06 180 165 -75155545.77471 181 165 -53333333.32457 182 165 5.066394805908e-07 183 165 -198223262.271 184 165 2.98023223877e-07 185 165 5.960464477539e-08 186 165 -75155545.7747 187 165 53333333.32457 188 165 -1.490116119385e-08 258 165 -28555987.69793 259 165 13333333.33771 260 165 16471527.78319 261 165 -88624220.55292 262 165 1.043081283569e-07 263 165 65886111.10029 264 165 -28555987.69793 265 165 -13333333.33771 266 165 16471527.78319 273 165 -7556159.747413 274 165 -3.278255462646e-07 275 165 -1.206994056702e-06 276 165 72174281.7049 277 165 1.728534698486e-06 278 165 1.221895217896e-06 279 165 -7556159.747413 280 165 -7.450580596924e-07 281 165 1.341104507446e-06 291 165 -28555987.69793 292 165 -13333333.33771 293 165 -16471527.78319 294 165 -88624220.55292 295 165 2.235174179077e-07 296 165 -65886111.10029 297 165 -28555987.69793 298 165 13333333.33771 299 165 -16471527.78319 166 166 785785459.402 167 166 -1.788139343262e-06 168 166 -2.086162567139e-06 169 166 -76617423.53181 170 166 5.066394805908e-07 180 166 -53333333.32457 181 166 -59154777.5129 182 166 2.086162567139e-07 183 166 3.576278686523e-07 184 166 36444678.54407 185 166 -4.172325134277e-07 186 166 53333333.32457 187 166 -59154777.5129 188 166 2.98023223877e-08 258 166 13333333.33771 259 166 -24555795.63051 260 166 -13177083.33766 261 166 4.470348358154e-08 262 166 -29957235.32024 263 166 2.831220626831e-07 264 166 -13333333.33771 265 166 -24555795.63051 266 166 13177083.33766 273 166 -2.98023223877e-07 274 166 -58222760.85313 275 166 -52708333.32467 276 166 1.728534698486e-06 277 166 40172745.1813 278 166 -5.960464477539e-08 279 166 -7.003545761108e-07 280 166 -58222760.85313 281 166 52708333.32467 291 166 -13333333.33771 292 166 -24555795.63051 293 166 -13177083.33766 294 166 1.9371509552e-07 295 166 -29957235.32024 296 166 -3.8743019104e-07 297 166 13333333.33771 298 166 -24555795.63051 299 166 13177083.33766 167 167 905507012.9075 168 167 -1.668930053711e-06 169 167 4.470348358154e-07 170 167 123977832.6588 180 167 5.811452865601e-07 181 167 3.129243850708e-07 182 167 -9005963.440556 183 167 1.192092895508e-07 184 167 -4.768371582031e-07 185 167 66375066.93519 186 167 4.470348358154e-08 187 167 -4.470348358154e-08 188 167 -9005963.440553 258 167 16471527.78319 259 167 -13177083.33766 260 167 -28297094.18124 261 167 65886111.10029 262 167 3.8743019104e-07 263 167 -87588646.48668 264 167 16471527.78319 265 167 13177083.33766 266 167 -28297094.18124 273 167 -9.983777999878e-07 274 167 -52708333.32467 275 167 -73187955.04869 276 167 8.642673492432e-07 277 167 1.788139343262e-07 278 167 -190352899.3709 279 167 1.475214958191e-06 280 167 52708333.32467 281 167 -73187955.0487 291 167 -16471527.78319 292 167 -13177083.33766 293 167 -28297094.18124 294 167 -65886111.10029 295 167 -2.831220626831e-07 296 167 -87588646.48668 297 167 -16471527.78319 298 167 13177083.33766 299 167 -28297094.18124 168 168 988947148.5376 169 168 53333332.25791 170 168 -9.298324584961e-06 171 168 31359232.67644 172 168 -53333332.8979 173 168 1.251697540283e-06 183 168 -75155545.77471 184 168 -53333333.32457 185 168 5.066394805908e-07 186 168 -198223262.271 187 168 2.98023223877e-07 188 168 5.960464477539e-08 189 168 -75155545.7747 190 168 53333333.32457 191 168 -1.490116119385e-08 261 168 -28555987.69793 262 168 13333333.33771 263 168 16471527.78319 264 168 -107413106.5112 265 168 -13333333.17771 266 168 65886110.96157 276 168 -7556159.747413 277 168 -3.278255462646e-07 278 168 -1.206994056702e-06 279 168 100730268.7541 280 168 13333333.07105 281 168 0.02774140238762 282 168 -26345045.89131 283 168 -13333333.23105 284 168 16471527.49884 294 168 -28555987.69793 295 168 -13333333.33771 296 168 -16471527.78319 297 168 -88624220.55292 298 168 2.235174179077e-07 299 168 -65886111.10029 300 168 -28555987.69793 301 168 13333333.33771 302 168 -16471527.78319 169 169 844940234.7245 170 169 -7.987022399902e-06 171 169 -53333332.68457 172 169 -155306402.5315 173 169 5.394220352173e-06 183 169 -53333333.32457 184 169 -59154777.5129 185 169 2.086162567139e-07 186 169 3.576278686523e-07 187 169 36444678.54407 188 169 -4.172325134277e-07 189 169 53333333.32457 190 169 -59154777.5129 191 169 2.98023223877e-08 261 169 13333333.33771 262 169 -24555795.63051 263 169 -13177083.33766 264 169 -13333333.23104 265 169 -44745929.54447 266 169 13177083.28808 276 169 -2.98023223877e-07 277 169 -58222760.85313 278 169 -52708333.32467 279 169 13333333.07105 280 169 64728540.28304 281 169 0.022192299366 282 169 -13333333.17771 283 169 -73011454.71628 284 169 52708333.03581 294 169 -13333333.33771 295 169 -24555795.63051 296 169 -13177083.33766 297 169 1.9371509552e-07 298 169 -29957235.32024 299 169 -3.8743019104e-07 300 169 13333333.33771 301 169 -24555795.63051 302 169 13177083.33766 170 170 914512974.9691 171 170 1.728534698486e-06 172 170 4.559755325317e-06 173 170 62880662.12465 183 170 5.811452865601e-07 184 170 3.129243850708e-07 185 170 -9005963.440556 186 170 1.192092895508e-07 187 170 -4.768371582031e-07 188 170 66375066.93519 189 170 4.470348358154e-08 190 170 -4.470348358154e-08 191 170 -9005963.440553 261 170 16471527.78319 262 170 -13177083.33766 263 170 -28297094.18124 264 170 65886110.96157 265 170 13177083.26329 266 170 -89840137.25118 276 170 -9.983777999878e-07 277 170 -52708333.32467 278 170 -73187955.04869 279 170 -0.0277450978756 280 170 -0.02219566702843 281 170 -162055805.4842 282 170 16471527.35667 283 170 52708332.94687 284 170 -75439445.29918 294 170 -16471527.78319 295 170 -13177083.33766 296 170 -28297094.18124 297 170 -65886111.10029 298 170 -2.831220626831e-07 299 170 -87588646.48668 300 170 -16471527.78319 301 170 13177083.33766 302 170 -28297094.18124 171 171 509154568.8248 172 171 25085639.27704 173 171 -5.960464477539e-07 186 171 -75155545.77471 187 171 -53333333.32457 188 171 5.066394805908e-07 189 171 -228025244.9359 190 171 -25085638.85037 191 171 7.152557373047e-07 192 171 -4082989.550575 193 171 42666666.23299 194 171 -1.251697540283e-06 264 171 -9767101.054335 265 171 15999999.84525 266 171 19765832.91331 279 171 -26345045.8913 280 171 -13333333.17771 281 171 -16471527.35667 282 171 37378109.13818 283 171 6271409.822349 284 171 11432222.19995 297 171 -28555987.69793 298 171 -13333333.33771 299 171 -16471527.78319 300 171 -87310926.38278 301 171 -6271409.715683 302 171 -57161110.99975 303 171 -11791159.78617 304 171 10666666.5635 305 171 -9687222.01637 172 172 472604990.7818 173 172 -2.652406692505e-06 186 172 -53333333.32457 187 172 -59154777.5129 188 172 2.086162567139e-07 189 172 -25085638.63704 190 172 9928432.40691 191 172 2.384185791016e-07 192 172 63999999.34949 193 172 -34822221.9043 194 172 -1.788139343262e-07 264 172 10666666.5635 265 172 -9767101.054336 266 172 -10541666.62055 279 172 -13333333.23105 280 172 -73011454.71627 281 172 -52708332.94687 282 172 6271409.822349 283 172 28240714.62293 284 172 9145833.226567 297 172 -13333333.33771 298 172 -24555795.63051 299 172 -13177083.33766 300 172 -6271409.66235 301 172 -27822507.01778 302 172 -6197916.627156 303 172 15999999.84526 304 172 -19475967.87838 305 172 18604166.53816 173 173 522045024.059 186 173 5.811452865601e-07 187 173 3.129243850708e-07 188 173 -9005963.440556 189 173 7.450580596924e-07 190 173 2.384185791016e-07 191 173 26229073.67805 192 173 -1.490116119385e-06 193 173 2.384185791016e-07 194 173 19851260.21887 264 173 13177221.94221 265 173 -15812499.93082 266 173 -26045602.81156 279 173 -16471527.49884 280 173 -52708333.03581 281 173 -75439445.29917 282 173 -11432222.19995 283 173 -9145833.22657 284 173 -109250165.6029 297 173 -16471527.78319 298 173 -13177083.33766 299 173 -28297094.18124 300 173 -57161110.99975 301 173 -6197916.651946 302 173 -74255038.56586 303 173 -14530833.02455 304 173 14729166.53156 305 173 -23758284.67089 174 174 913791605.4334 175 174 7.748603820801e-06 176 174 -2.622604370117e-06 177 174 126048980.7912 178 174 -2.175569534302e-06 179 174 -1.490116119385e-06 195 174 -198223262.271 196 174 2.98023223877e-07 197 174 5.960464477539e-08 198 174 -75155545.7747 199 174 53333333.32457 200 174 -1.490116119385e-08 267 174 -88624220.55292 268 174 1.043081283569e-07 269 174 65886111.10029 270 174 -28555987.69793 271 174 -13333333.33771 272 174 16471527.78319 285 174 72174281.7049 286 174 1.728534698486e-06 287 174 1.221895217896e-06 288 174 -7556159.747413 289 174 -7.450580596924e-07 290 174 1.341104507446e-06 306 174 -88624220.55292 307 174 2.235174179077e-07 308 174 -65886111.10029 309 174 -28555987.69793 310 174 13333333.33771 311 174 -16471527.78319 175 175 785785459.402 176 175 -1.788139343262e-06 177 175 -2.086162567139e-06 178 175 -76617423.53181 179 175 5.066394805908e-07 195 175 3.576278686523e-07 196 175 36444678.54407 197 175 -4.172325134277e-07 198 175 53333333.32457 199 175 -59154777.5129 200 175 2.98023223877e-08 267 175 4.470348358154e-08 268 175 -29957235.32024 269 175 2.831220626831e-07 270 175 -13333333.33771 271 175 -24555795.63051 272 175 13177083.33766 285 175 1.728534698486e-06 286 175 40172745.1813 287 175 -5.960464477539e-08 288 175 -7.003545761108e-07 289 175 -58222760.85313 290 175 52708333.32467 306 175 1.9371509552e-07 307 175 -29957235.32024 308 175 -3.8743019104e-07 309 175 13333333.33771 310 175 -24555795.63051 311 175 13177083.33766 176 176 905507012.9075 177 176 -1.668930053711e-06 178 176 4.470348358154e-07 179 176 123977832.6588 195 176 1.192092895508e-07 196 176 -4.768371582031e-07 197 176 66375066.93519 198 176 4.470348358154e-08 199 176 -4.470348358154e-08 200 176 -9005963.440553 267 176 65886111.10029 268 176 3.8743019104e-07 269 176 -87588646.48668 270 176 16471527.78319 271 176 13177083.33766 272 176 -28297094.18124 285 176 8.642673492432e-07 286 176 1.788139343262e-07 287 176 -190352899.3709 288 176 1.475214958191e-06 289 176 52708333.32467 290 176 -73187955.0487 306 176 -65886111.10029 307 176 -2.831220626831e-07 308 176 -87588646.48668 309 176 -16471527.78319 310 176 13177083.33766 311 176 -28297094.18124 177 177 913791605.4334 178 177 7.748603820801e-06 179 177 -2.622604370117e-06 180 177 126048980.7912 181 177 -2.175569534302e-06 182 177 -1.490116119385e-06 195 177 -75155545.77471 196 177 -53333333.32457 197 177 5.066394805908e-07 198 177 -198223262.271 199 177 2.98023223877e-07 200 177 5.960464477539e-08 201 177 -75155545.7747 202 177 53333333.32457 203 177 -1.490116119385e-08 267 177 -28555987.69793 268 177 13333333.33771 269 177 16471527.78319 270 177 -88624220.55292 271 177 1.043081283569e-07 272 177 65886111.10029 273 177 -28555987.69793 274 177 -13333333.33771 275 177 16471527.78319 285 177 -7556159.747413 286 177 -3.278255462646e-07 287 177 -1.206994056702e-06 288 177 72174281.7049 289 177 1.728534698486e-06 290 177 1.221895217896e-06 291 177 -7556159.747413 292 177 -7.450580596924e-07 293 177 1.341104507446e-06 306 177 -28555987.69793 307 177 -13333333.33771 308 177 -16471527.78319 309 177 -88624220.55292 310 177 2.235174179077e-07 311 177 -65886111.10029 312 177 -28555987.69793 313 177 13333333.33771 314 177 -16471527.78319 178 178 785785459.402 179 178 -1.788139343262e-06 180 178 -2.086162567139e-06 181 178 -76617423.53181 182 178 5.066394805908e-07 195 178 -53333333.32457 196 178 -59154777.5129 197 178 2.086162567139e-07 198 178 3.576278686523e-07 199 178 36444678.54407 200 178 -4.172325134277e-07 201 178 53333333.32457 202 178 -59154777.5129 203 178 2.98023223877e-08 267 178 13333333.33771 268 178 -24555795.63051 269 178 -13177083.33766 270 178 4.470348358154e-08 271 178 -29957235.32024 272 178 2.831220626831e-07 273 178 -13333333.33771 274 178 -24555795.63051 275 178 13177083.33766 285 178 -2.98023223877e-07 286 178 -58222760.85313 287 178 -52708333.32467 288 178 1.728534698486e-06 289 178 40172745.1813 290 178 -5.960464477539e-08 291 178 -7.003545761108e-07 292 178 -58222760.85313 293 178 52708333.32467 306 178 -13333333.33771 307 178 -24555795.63051 308 178 -13177083.33766 309 178 1.9371509552e-07 310 178 -29957235.32024 311 178 -3.8743019104e-07 312 178 13333333.33771 313 178 -24555795.63051 314 178 13177083.33766 179 179 905507012.9075 180 179 -1.668930053711e-06 181 179 4.470348358154e-07 182 179 123977832.6588 195 179 5.811452865601e-07 196 179 3.129243850708e-07 197 179 -9005963.440556 198 179 1.192092895508e-07 199 179 -4.768371582031e-07 200 179 66375066.93519 201 179 4.470348358154e-08 202 179 -4.470348358154e-08 203 179 -9005963.440553 267 179 16471527.78319 268 179 -13177083.33766 269 179 -28297094.18124 270 179 65886111.10029 271 179 3.8743019104e-07 272 179 -87588646.48668 273 179 16471527.78319 274 179 13177083.33766 275 179 -28297094.18124 285 179 -9.983777999878e-07 286 179 -52708333.32467 287 179 -73187955.04869 288 179 8.642673492432e-07 289 179 1.788139343262e-07 290 179 -190352899.3709 291 179 1.475214958191e-06 292 179 52708333.32467 293 179 -73187955.0487 306 179 -16471527.78319 307 179 -13177083.33766 308 179 -28297094.18124 309 179 -65886111.10029 310 179 -2.831220626831e-07 311 179 -87588646.48668 312 179 -16471527.78319 313 179 13177083.33766 314 179 -28297094.18124 180 180 913791605.4334 181 180 7.748603820801e-06 182 180 -2.622604370117e-06 183 180 126048980.7912 184 180 -2.175569534302e-06 185 180 -1.490116119385e-06 198 180 -75155545.77471 199 180 -53333333.32457 200 180 5.066394805908e-07 201 180 -198223262.271 202 180 2.98023223877e-07 203 180 5.960464477539e-08 204 180 -75155545.7747 205 180 53333333.32457 206 180 -1.490116119385e-08 270 180 -28555987.69793 271 180 13333333.33771 272 180 16471527.78319 273 180 -88624220.55292 274 180 1.043081283569e-07 275 180 65886111.10029 276 180 -28555987.69793 277 180 -13333333.33771 278 180 16471527.78319 288 180 -7556159.747413 289 180 -3.278255462646e-07 290 180 -1.206994056702e-06 291 180 72174281.7049 292 180 1.728534698486e-06 293 180 1.221895217896e-06 294 180 -7556159.747413 295 180 -7.450580596924e-07 296 180 1.341104507446e-06 309 180 -28555987.69793 310 180 -13333333.33771 311 180 -16471527.78319 312 180 -88624220.55292 313 180 2.235174179077e-07 314 180 -65886111.10029 315 180 -28555987.69793 316 180 13333333.33771 317 180 -16471527.78319 181 181 785785459.402 182 181 -1.788139343262e-06 183 181 -2.086162567139e-06 184 181 -76617423.53181 185 181 5.066394805908e-07 198 181 -53333333.32457 199 181 -59154777.5129 200 181 2.086162567139e-07 201 181 3.576278686523e-07 202 181 36444678.54407 203 181 -4.172325134277e-07 204 181 53333333.32457 205 181 -59154777.5129 206 181 2.98023223877e-08 270 181 13333333.33771 271 181 -24555795.63051 272 181 -13177083.33766 273 181 4.470348358154e-08 274 181 -29957235.32024 275 181 2.831220626831e-07 276 181 -13333333.33771 277 181 -24555795.63051 278 181 13177083.33766 288 181 -2.98023223877e-07 289 181 -58222760.85313 290 181 -52708333.32467 291 181 1.728534698486e-06 292 181 40172745.1813 293 181 -5.960464477539e-08 294 181 -7.003545761108e-07 295 181 -58222760.85313 296 181 52708333.32467 309 181 -13333333.33771 310 181 -24555795.63051 311 181 -13177083.33766 312 181 1.9371509552e-07 313 181 -29957235.32024 314 181 -3.8743019104e-07 315 181 13333333.33771 316 181 -24555795.63051 317 181 13177083.33766 182 182 905507012.9075 183 182 -1.668930053711e-06 184 182 4.470348358154e-07 185 182 123977832.6588 198 182 5.811452865601e-07 199 182 3.129243850708e-07 200 182 -9005963.440556 201 182 1.192092895508e-07 202 182 -4.768371582031e-07 203 182 66375066.93519 204 182 4.470348358154e-08 205 182 -4.470348358154e-08 206 182 -9005963.440553 270 182 16471527.78319 271 182 -13177083.33766 272 182 -28297094.18124 273 182 65886111.10029 274 182 3.8743019104e-07 275 182 -87588646.48668 276 182 16471527.78319 277 182 13177083.33766 278 182 -28297094.18124 288 182 -9.983777999878e-07 289 182 -52708333.32467 290 182 -73187955.04869 291 182 8.642673492432e-07 292 182 1.788139343262e-07 293 182 -190352899.3709 294 182 1.475214958191e-06 295 182 52708333.32467 296 182 -73187955.0487 309 182 -16471527.78319 310 182 -13177083.33766 311 182 -28297094.18124 312 182 -65886111.10029 313 182 -2.831220626831e-07 314 182 -87588646.48668 315 182 -16471527.78319 316 182 13177083.33766 317 182 -28297094.18124 183 183 913791605.4334 184 183 7.748603820801e-06 185 183 -2.622604370117e-06 186 183 126048980.7912 187 183 -2.175569534302e-06 188 183 -1.490116119385e-06 201 183 -75155545.77471 202 183 -53333333.32457 203 183 5.066394805908e-07 204 183 -198223262.271 205 183 2.98023223877e-07 206 183 5.960464477539e-08 207 183 -75155545.7747 208 183 53333333.32457 209 183 -1.490116119385e-08 273 183 -28555987.69793 274 183 13333333.33771 275 183 16471527.78319 276 183 -88624220.55292 277 183 1.043081283569e-07 278 183 65886111.10029 279 183 -28555987.69793 280 183 -13333333.33771 281 183 16471527.78319 291 183 -7556159.747413 292 183 -3.278255462646e-07 293 183 -1.206994056702e-06 294 183 72174281.7049 295 183 1.728534698486e-06 296 183 1.221895217896e-06 297 183 -7556159.747413 298 183 -7.450580596924e-07 299 183 1.341104507446e-06 312 183 -28555987.69793 313 183 -13333333.33771 314 183 -16471527.78319 315 183 -88624220.55292 316 183 2.235174179077e-07 317 183 -65886111.10029 318 183 -28555987.69793 319 183 13333333.33771 320 183 -16471527.78319 184 184 785785459.402 185 184 -1.788139343262e-06 186 184 -2.086162567139e-06 187 184 -76617423.53181 188 184 5.066394805908e-07 201 184 -53333333.32457 202 184 -59154777.5129 203 184 2.086162567139e-07 204 184 3.576278686523e-07 205 184 36444678.54407 206 184 -4.172325134277e-07 207 184 53333333.32457 208 184 -59154777.5129 209 184 2.98023223877e-08 273 184 13333333.33771 274 184 -24555795.63051 275 184 -13177083.33766 276 184 4.470348358154e-08 277 184 -29957235.32024 278 184 2.831220626831e-07 279 184 -13333333.33771 280 184 -24555795.63051 281 184 13177083.33766 291 184 -2.98023223877e-07 292 184 -58222760.85313 293 184 -52708333.32467 294 184 1.728534698486e-06 295 184 40172745.1813 296 184 -5.960464477539e-08 297 184 -7.003545761108e-07 298 184 -58222760.85313 299 184 52708333.32467 312 184 -13333333.33771 313 184 -24555795.63051 314 184 -13177083.33766 315 184 1.9371509552e-07 316 184 -29957235.32024 317 184 -3.8743019104e-07 318 184 13333333.33771 319 184 -24555795.63051 320 184 13177083.33766 185 185 905507012.9075 186 185 -1.668930053711e-06 187 185 4.470348358154e-07 188 185 123977832.6588 201 185 5.811452865601e-07 202 185 3.129243850708e-07 203 185 -9005963.440556 204 185 1.192092895508e-07 205 185 -4.768371582031e-07 206 185 66375066.93519 207 185 4.470348358154e-08 208 185 -4.470348358154e-08 209 185 -9005963.440553 273 185 16471527.78319 274 185 -13177083.33766 275 185 -28297094.18124 276 185 65886111.10029 277 185 3.8743019104e-07 278 185 -87588646.48668 279 185 16471527.78319 280 185 13177083.33766 281 185 -28297094.18124 291 185 -9.983777999878e-07 292 185 -52708333.32467 293 185 -73187955.04869 294 185 8.642673492432e-07 295 185 1.788139343262e-07 296 185 -190352899.3709 297 185 1.475214958191e-06 298 185 52708333.32467 299 185 -73187955.0487 312 185 -16471527.78319 313 185 -13177083.33766 314 185 -28297094.18124 315 185 -65886111.10029 316 185 -2.831220626831e-07 317 185 -87588646.48668 318 185 -16471527.78319 319 185 13177083.33766 320 185 -28297094.18124 186 186 913791605.4334 187 186 7.748603820801e-06 188 186 -2.622604370117e-06 189 186 126048980.7912 190 186 -2.175569534302e-06 191 186 -1.490116119385e-06 204 186 -75155545.77471 205 186 -53333333.32457 206 186 5.066394805908e-07 207 186 -198223262.271 208 186 2.98023223877e-07 209 186 5.960464477539e-08 210 186 -75155545.7747 211 186 53333333.32457 212 186 -1.490116119385e-08 276 186 -28555987.69793 277 186 13333333.33771 278 186 16471527.78319 279 186 -88624220.55292 280 186 1.043081283569e-07 281 186 65886111.10029 282 186 -28555987.69793 283 186 -13333333.33771 284 186 16471527.78319 294 186 -7556159.747413 295 186 -3.278255462646e-07 296 186 -1.206994056702e-06 297 186 72174281.7049 298 186 1.728534698486e-06 299 186 1.221895217896e-06 300 186 -7556159.747413 301 186 -7.450580596924e-07 302 186 1.341104507446e-06 315 186 -28555987.69793 316 186 -13333333.33771 317 186 -16471527.78319 318 186 -88624220.55292 319 186 2.235174179077e-07 320 186 -65886111.10029 321 186 -28555987.69793 322 186 13333333.33771 323 186 -16471527.78319 187 187 785785459.402 188 187 -1.788139343262e-06 189 187 -2.086162567139e-06 190 187 -76617423.53181 191 187 5.066394805908e-07 204 187 -53333333.32457 205 187 -59154777.5129 206 187 2.086162567139e-07 207 187 3.576278686523e-07 208 187 36444678.54407 209 187 -4.172325134277e-07 210 187 53333333.32457 211 187 -59154777.5129 212 187 2.98023223877e-08 276 187 13333333.33771 277 187 -24555795.63051 278 187 -13177083.33766 279 187 4.470348358154e-08 280 187 -29957235.32024 281 187 2.831220626831e-07 282 187 -13333333.33771 283 187 -24555795.63051 284 187 13177083.33766 294 187 -2.98023223877e-07 295 187 -58222760.85313 296 187 -52708333.32467 297 187 1.728534698486e-06 298 187 40172745.1813 299 187 -5.960464477539e-08 300 187 -7.003545761108e-07 301 187 -58222760.85313 302 187 52708333.32467 315 187 -13333333.33771 316 187 -24555795.63051 317 187 -13177083.33766 318 187 1.9371509552e-07 319 187 -29957235.32024 320 187 -3.8743019104e-07 321 187 13333333.33771 322 187 -24555795.63051 323 187 13177083.33766 188 188 905507012.9075 189 188 -1.668930053711e-06 190 188 4.470348358154e-07 191 188 123977832.6588 204 188 5.811452865601e-07 205 188 3.129243850708e-07 206 188 -9005963.440556 207 188 1.192092895508e-07 208 188 -4.768371582031e-07 209 188 66375066.93519 210 188 4.470348358154e-08 211 188 -4.470348358154e-08 212 188 -9005963.440553 276 188 16471527.78319 277 188 -13177083.33766 278 188 -28297094.18124 279 188 65886111.10029 280 188 3.8743019104e-07 281 188 -87588646.48668 282 188 16471527.78319 283 188 13177083.33766 284 188 -28297094.18124 294 188 -9.983777999878e-07 295 188 -52708333.32467 296 188 -73187955.04869 297 188 8.642673492432e-07 298 188 1.788139343262e-07 299 188 -190352899.3709 300 188 1.475214958191e-06 301 188 52708333.32467 302 188 -73187955.0487 315 188 -16471527.78319 316 188 -13177083.33766 317 188 -28297094.18124 318 188 -65886111.10029 319 188 -2.831220626831e-07 320 188 -87588646.48668 321 188 -16471527.78319 322 188 13177083.33766 323 188 -28297094.18124 189 189 886076107.088 190 189 29506578.58962 191 189 -4.172325134277e-06 192 189 -15650105.72171 193 189 -67995305.55008 194 189 -1.788139343262e-06 207 189 -75155545.77471 208 189 -53333333.32457 209 189 5.066394805908e-07 210 189 -169993346.4286 211 189 13585574.37073 212 189 1.579523086548e-06 213 189 -49437968.75893 214 189 49988791.22677 215 189 2.637505531311e-06 279 189 -28555987.69793 280 189 13333333.33771 281 189 16471527.78319 282 189 -87310926.38278 283 189 -6271409.66235 284 189 57161110.99975 297 189 -7556159.747413 298 189 -3.278255462646e-07 299 189 -1.206994056702e-06 300 189 87947441.63499 301 189 7376644.65104 302 189 0.02039501070976 303 189 -32923131.70809 304 189 -16998826.39589 305 189 16470833.12799 318 189 -28555987.69793 319 189 -13333333.33771 320 189 -16471527.78319 321 189 -80272721.40676 322 189 3396393.594356 323 189 -61522916.65699 324 189 -22126192.23639 325 189 12497197.81285 326 189 -12109027.78175 190 190 821417136.7999 191 190 5.125999450684e-06 192 190 -67995305.33675 193 190 -205861449.307 194 190 -3.56137752533e-06 207 190 -53333333.32457 208 190 -59154777.5129 209 190 2.086162567139e-07 210 190 13585574.37073 211 190 48420638.98572 212 190 8.940696716309e-07 213 190 49988791.22677 214 190 -80270449.84323 215 190 -2.548098564148e-06 279 190 13333333.33771 280 190 -24555795.63051 281 190 -13177083.33766 282 190 -6271409.715683 283 190 -27822507.01778 284 190 6197916.651945 297 190 -2.98023223877e-07 298 190 -58222760.85313 299 190 -52708333.32467 300 190 7376644.65104 301 190 71782699.055 302 190 0.01631674170494 303 190 -16998826.34256 304 190 -80475967.62785 305 190 52708333.09468 318 190 -13333333.33771 319 190 -24555795.63051 320 190 -13177083.33766 321 190 3396393.594355 322 190 -25669225.02627 323 190 3489583.332416 324 190 12497197.81285 325 190 -29834312.51126 326 190 16666666.67214 191 191 843458196.4419 192 191 1.192092895508e-07 193 191 -3.039836883545e-06 194 191 21637954.44543 207 191 5.811452865601e-07 208 191 3.129243850708e-07 209 191 -9005963.440556 210 191 6.85453414917e-07 211 191 1.072883605957e-06 212 191 73680450.86193 213 191 1.996755599976e-06 214 191 -2.592802047729e-06 215 191 -7752033.245933 279 191 16471527.78319 280 191 -13177083.33766 281 191 -28297094.18124 282 191 57161110.99975 283 191 6197916.627155 284 191 -74255038.56586 297 191 -9.983777999878e-07 298 191 -52708333.32467 299 191 -73187955.04869 300 191 -0.02039638161659 301 191 -0.01631587743759 302 191 -145326344.7753 303 191 16470833.02261 304 191 52708333.03516 305 191 -71952125.45461 318 191 -16471527.78319 319 191 -13177083.33766 320 191 -28297094.18124 321 191 -61522916.65613 322 191 3489583.333104 323 191 -82311580.01855 324 191 -12109027.78175 325 191 16666666.67214 326 191 -27982541.75396 192 192 531775095.0468 193 192 8503382.432196 210 192 -80370018.26376 211 192 -52907761.3966 212 192 -1.847743988037e-06 213 192 -113455777.5588 214 192 18108359.28725 215 192 1.311302185059e-06 216 192 68483060.18779 217 192 -18744593.63382 218 192 5.960464477539e-07 219 192 -42329538.80213 220 192 49035919.29823 221 192 1.922249794006e-06 282 192 -11791159.78616 283 192 15999999.84526 284 192 14530833.02455 300 192 -32923131.7081 301 192 -16998826.34256 302 192 -16470833.02261 303 192 14669982.03611 304 192 2125845.609096 305 192 12968611.10898 321 192 -29859204.61641 322 192 -13226940.35567 323 192 -16470833.33874 324 192 -76387958.09069 325 192 4527089.824043 326 192 -64843055.54491 327 192 -11712307.86994 328 192 -4686148.410764 329 192 8424305.555742 330 192 -24181082.63358 331 192 12258979.8306 332 192 -15950694.44968 193 193 626925818.4292 194 193 3.933906555176e-06 210 193 -52907761.3966 211 193 -54873071.8125 212 193 -8.642673492432e-07 213 193 18108359.28725 214 193 97871879.78123 215 193 3.337860107422e-06 216 193 2588739.696008 217 193 -35173186.25688 218 193 -3.695487976074e-06 219 193 49035919.29823 220 193 -49698043.59219 221 193 -1.505017280579e-06 282 193 10666666.5635 283 193 -19475967.87838 284 193 -14729166.53156 300 193 -16998826.39589 301 193 -80475967.62786 302 193 -52708333.03516 303 193 2125845.609096 304 193 38457662.89345 305 193 3874999.888226 321 193 -13226940.35567 322 193 -23484968.00046 323 193 -13177083.33766 324 193 4527089.824043 325 193 -23556043.72965 326 193 3489583.332417 327 193 647184.9243208 328 193 -37626369.49388 329 193 33333333.32786 330 193 12258979.8306 331 193 -26023208.832 332 193 16666666.67214 194 194 650521074.3426 210 194 -1.788139343262e-06 211 194 -7.748603820801e-07 212 194 -9261489.102506 213 194 1.117587089539e-06 214 194 3.337860107422e-06 215 194 131575339.2945 216 194 1.54972076416e-06 217 194 -3.75509262085e-06 218 194 90632596.10001 219 194 2.279877662659e-06 220 194 -1.594424247742e-06 221 194 13362532.26789 282 194 9687222.01637 283 194 -18604166.53816 284 194 -23758284.67089 300 194 -16470833.12799 301 194 -52708333.09468 302 194 -71952125.45462 303 194 -12968611.10898 304 194 -3874999.888222 305 194 -152766509.4438 321 194 -16470833.33874 322 194 -13177083.33766 323 194 -28359905.71829 324 194 -64843055.54491 325 194 3489583.333105 326 194 -95170201.65885 327 194 299305.5539342 328 194 33333333.32786 329 194 -54230045.43137 330 194 -15950694.44968 331 194 16666666.67214 332 194 -32922561.4056 195 195 456895802.7167 196 195 3.933906555176e-06 197 195 -1.668930053711e-06 198 195 63024490.39562 199 195 10666666.66491 200 195 -1.013278961182e-06 285 195 -88624220.55292 286 195 1.043081283569e-07 287 195 65886111.10029 288 195 -28555987.69793 289 195 -13333333.33771 290 195 16471527.78319 306 195 36087140.85245 307 195 8.344650268555e-07 308 195 -13177222.22006 309 195 -3778079.873706 310 195 2666666.667542 311 195 -3294305.556637 196 196 392892729.701 197 196 -7.152557373047e-07 198 196 -10666666.66491 199 196 -38308711.7659 200 196 3.8743019104e-07 285 196 4.470348358154e-08 286 196 -29957235.32024 287 196 2.831220626831e-07 288 196 -13333333.33771 289 196 -24555795.63051 290 196 13177083.33766 306 196 8.940696716309e-07 307 196 20086372.59065 308 196 -2.98023223877e-08 309 196 -2666666.667543 310 196 -29111380.42657 311 196 26354166.66234 197 197 452753506.4538 198 197 -8.940696716309e-07 199 197 1.490116119385e-07 200 197 61988916.32938 285 197 65886111.10029 286 197 3.8743019104e-07 287 197 -87588646.48668 288 197 16471527.78319 289 197 13177083.33766 290 197 -28297094.18124 306 197 13177222.22006 307 197 1.490116119385e-07 308 197 -95176449.68545 309 197 3294305.556638 310 197 26354166.66234 311 197 -36593977.52435 198 198 456895802.7167 199 198 3.933906555176e-06 200 198 -1.668930053711e-06 201 198 63024490.39562 202 198 10666666.66491 203 198 -1.013278961182e-06 285 198 -28555987.69793 286 198 13333333.33771 287 198 16471527.78319 288 198 -88624220.55292 289 198 1.043081283569e-07 290 198 65886111.10029 291 198 -28555987.69793 292 198 -13333333.33771 293 198 16471527.78319 306 198 -3778079.873706 307 198 -2666666.667542 308 198 -3294305.556638 309 198 36087140.85245 310 198 8.344650268555e-07 311 198 -13177222.22006 312 198 -3778079.873706 313 198 2666666.667542 314 198 -3294305.556637 199 199 392892729.701 200 199 -7.152557373047e-07 201 199 -10666666.66491 202 199 -38308711.7659 203 199 3.8743019104e-07 285 199 13333333.33771 286 199 -24555795.63051 287 199 -13177083.33766 288 199 4.470348358154e-08 289 199 -29957235.32024 290 199 2.831220626831e-07 291 199 -13333333.33771 292 199 -24555795.63051 293 199 13177083.33766 306 199 2666666.667542 307 199 -29111380.42657 308 199 -26354166.66234 309 199 8.940696716309e-07 310 199 20086372.59065 311 199 -2.98023223877e-08 312 199 -2666666.667543 313 199 -29111380.42657 314 199 26354166.66234 200 200 452753506.4538 201 200 -8.940696716309e-07 202 200 1.490116119385e-07 203 200 61988916.32938 285 200 16471527.78319 286 200 -13177083.33766 287 200 -28297094.18124 288 200 65886111.10029 289 200 3.8743019104e-07 290 200 -87588646.48668 291 200 16471527.78319 292 200 13177083.33766 293 200 -28297094.18124 306 200 3294305.556637 307 200 -26354166.66234 308 200 -36593977.52435 309 200 13177222.22006 310 200 1.490116119385e-07 311 200 -95176449.68545 312 200 3294305.556638 313 200 26354166.66234 314 200 -36593977.52435 201 201 456895802.7167 202 201 3.933906555176e-06 203 201 -1.668930053711e-06 204 201 63024490.39562 205 201 10666666.66491 206 201 -1.013278961182e-06 288 201 -28555987.69793 289 201 13333333.33771 290 201 16471527.78319 291 201 -88624220.55292 292 201 1.043081283569e-07 293 201 65886111.10029 294 201 -28555987.69793 295 201 -13333333.33771 296 201 16471527.78319 309 201 -3778079.873706 310 201 -2666666.667542 311 201 -3294305.556638 312 201 36087140.85245 313 201 8.344650268555e-07 314 201 -13177222.22006 315 201 -3778079.873706 316 201 2666666.667542 317 201 -3294305.556637 202 202 392892729.701 203 202 -7.152557373047e-07 204 202 -10666666.66491 205 202 -38308711.7659 206 202 3.8743019104e-07 288 202 13333333.33771 289 202 -24555795.63051 290 202 -13177083.33766 291 202 4.470348358154e-08 292 202 -29957235.32024 293 202 2.831220626831e-07 294 202 -13333333.33771 295 202 -24555795.63051 296 202 13177083.33766 309 202 2666666.667542 310 202 -29111380.42657 311 202 -26354166.66234 312 202 8.940696716309e-07 313 202 20086372.59065 314 202 -2.98023223877e-08 315 202 -2666666.667543 316 202 -29111380.42657 317 202 26354166.66234 203 203 452753506.4538 204 203 -8.940696716309e-07 205 203 1.490116119385e-07 206 203 61988916.32938 288 203 16471527.78319 289 203 -13177083.33766 290 203 -28297094.18124 291 203 65886111.10029 292 203 3.8743019104e-07 293 203 -87588646.48668 294 203 16471527.78319 295 203 13177083.33766 296 203 -28297094.18124 309 203 3294305.556637 310 203 -26354166.66234 311 203 -36593977.52435 312 203 13177222.22006 313 203 1.490116119385e-07 314 203 -95176449.68545 315 203 3294305.556638 316 203 26354166.66234 317 203 -36593977.52435 204 204 456895802.7167 205 204 3.933906555176e-06 206 204 -1.668930053711e-06 207 204 63024490.39562 208 204 10666666.66491 209 204 -1.013278961182e-06 291 204 -28555987.69793 292 204 13333333.33771 293 204 16471527.78319 294 204 -88624220.55292 295 204 1.043081283569e-07 296 204 65886111.10029 297 204 -28555987.69793 298 204 -13333333.33771 299 204 16471527.78319 312 204 -3778079.873706 313 204 -2666666.667542 314 204 -3294305.556638 315 204 36087140.85245 316 204 8.344650268555e-07 317 204 -13177222.22006 318 204 -3778079.873706 319 204 2666666.667542 320 204 -3294305.556637 205 205 392892729.701 206 205 -7.152557373047e-07 207 205 -10666666.66491 208 205 -38308711.7659 209 205 3.8743019104e-07 291 205 13333333.33771 292 205 -24555795.63051 293 205 -13177083.33766 294 205 4.470348358154e-08 295 205 -29957235.32024 296 205 2.831220626831e-07 297 205 -13333333.33771 298 205 -24555795.63051 299 205 13177083.33766 312 205 2666666.667542 313 205 -29111380.42657 314 205 -26354166.66234 315 205 8.940696716309e-07 316 205 20086372.59065 317 205 -2.98023223877e-08 318 205 -2666666.667543 319 205 -29111380.42657 320 205 26354166.66234 206 206 452753506.4538 207 206 -8.940696716309e-07 208 206 1.490116119385e-07 209 206 61988916.32938 291 206 16471527.78319 292 206 -13177083.33766 293 206 -28297094.18124 294 206 65886111.10029 295 206 3.8743019104e-07 296 206 -87588646.48668 297 206 16471527.78319 298 206 13177083.33766 299 206 -28297094.18124 312 206 3294305.556637 313 206 -26354166.66234 314 206 -36593977.52435 315 206 13177222.22006 316 206 1.490116119385e-07 317 206 -95176449.68545 318 206 3294305.556638 319 206 26354166.66234 320 206 -36593977.52435 207 207 456895802.7167 208 207 3.933906555176e-06 209 207 -1.668930053711e-06 210 207 63024490.39562 211 207 10666666.66491 212 207 -1.013278961182e-06 294 207 -28555987.69793 295 207 13333333.33771 296 207 16471527.78319 297 207 -88624220.55292 298 207 1.043081283569e-07 299 207 65886111.10029 300 207 -28555987.69793 301 207 -13333333.33771 302 207 16471527.78319 315 207 -3778079.873706 316 207 -2666666.667542 317 207 -3294305.556638 318 207 36087140.85245 319 207 8.344650268555e-07 320 207 -13177222.22006 321 207 -3778079.873706 322 207 2666666.667542 323 207 -3294305.556637 208 208 392892729.701 209 208 -7.152557373047e-07 210 208 -10666666.66491 211 208 -38308711.7659 212 208 3.8743019104e-07 294 208 13333333.33771 295 208 -24555795.63051 296 208 -13177083.33766 297 208 4.470348358154e-08 298 208 -29957235.32024 299 208 2.831220626831e-07 300 208 -13333333.33771 301 208 -24555795.63051 302 208 13177083.33766 315 208 2666666.667542 316 208 -29111380.42657 317 208 -26354166.66234 318 208 8.940696716309e-07 319 208 20086372.59065 320 208 -2.98023223877e-08 321 208 -2666666.667543 322 208 -29111380.42657 323 208 26354166.66234 209 209 452753506.4538 210 209 -8.940696716309e-07 211 209 1.490116119385e-07 212 209 61988916.32938 294 209 16471527.78319 295 209 -13177083.33766 296 209 -28297094.18124 297 209 65886111.10029 298 209 3.8743019104e-07 299 209 -87588646.48668 300 209 16471527.78319 301 209 13177083.33766 302 209 -28297094.18124 315 209 3294305.556637 316 209 -26354166.66234 317 209 -36593977.52435 318 209 13177222.22006 319 209 1.490116119385e-07 320 209 -95176449.68545 321 209 3294305.556638 322 209 26354166.66234 323 209 -36593977.52435 210 210 451672659.2548 211 210 425457.3069872 213 210 45227333.73336 214 210 -3769936.940774 215 210 5.960464477539e-07 297 210 -28555987.69793 298 210 13333333.33771 299 210 16471527.78319 300 210 -80272721.40676 301 210 3396393.594356 302 210 61522916.65613 303 210 -29859204.61641 304 210 -13226940.35567 305 210 16470833.33874 318 210 -3778079.873706 319 210 -2666666.667542 320 210 -3294305.556638 321 210 34782980.96289 322 210 106364.3267991 323 210 -13176944.44228 324 210 -9519773.826407 325 210 -942484.2356579 326 210 1067638.88752 211 211 397175038.8898 212 211 1.072883605957e-06 213 211 -25103270.2706 214 211 -58853543.86754 215 211 -1.341104507446e-06 297 211 13333333.33771 298 211 -24555795.63051 299 211 -13177083.33766 300 211 3396393.594355 301 211 -25669225.02627 302 211 -3489583.333104 303 211 -13226940.35567 304 211 -23484968.00045 305 211 13177083.33766 318 211 2666666.667542 319 211 -29111380.42657 320 211 -26354166.66234 321 211 106364.3267991 322 211 21158575.86493 323 211 2.682209014893e-07 324 211 -6275817.570742 325 211 -35539993.23945 326 211 29843749.99544 212 212 452492316.5668 214 212 -1.490116119385e-06 215 212 55187296.56271 297 212 16471527.78319 298 212 -13177083.33766 299 212 -28297094.18124 300 212 61522916.65699 301 212 -3489583.332416 302 212 -82311580.01855 303 212 16470833.33874 304 212 13177083.33766 305 212 -28359905.71829 318 212 3294305.556637 319 212 -26354166.66234 320 212 -36593977.52435 321 212 13176944.44228 322 212 3.8743019104e-07 323 212 -95237411.21973 324 212 7655972.222158 325 212 29843749.99475 326 212 -41740795.2267 213 213 444644489.1745 214 213 13081929.57058 215 213 9.536743164063e-07 216 213 -86994427.68368 217 213 -57630747.35091 218 213 -2.384185791016e-06 219 213 44204118.01812 220 213 1554937.536914 221 213 -1.192092895508e-06 300 213 -22126192.23639 301 213 12497197.81285 302 213 12109027.78176 303 213 -76387958.09069 304 213 4527089.824043 305 213 64843055.54491 321 213 -9519773.826409 322 213 -6275817.570743 323 213 -7655972.222158 324 213 15798034.7999 325 213 3270482.394257 326 213 -12968611.10898 327 213 -35347304.85947 328 213 -14407686.84483 329 213 20312500.00667 330 213 -14510689.24923 331 213 388734.3844201 332 213 1171666.664472 214 214 449754245.7917 215 214 4.64916229248e-06 216 214 -57630747.35091 217 214 -66447376.92277 218 214 -1.296401023865e-06 219 214 -19778395.79291 220 214 -57866988.0148 221 214 -2.086162567139e-06 300 214 12497197.81285 301 214 -29834312.51127 302 214 -16666666.67214 303 214 4527089.824043 304 214 -23556043.72965 305 214 -3489583.333103 321 214 -942484.2356579 322 214 -35539993.23945 323 214 -29843749.99475 324 214 3270482.394257 325 214 17075473.95481 326 214 9.536743164063e-07 327 214 -14407686.84483 328 214 -30210542.16671 329 214 16666666.67214 330 214 -4944598.950664 331 214 -40028465.77003 332 214 33333333.32786 215 215 513640710.6392 216 215 -3.159046173096e-06 217 215 -1.370906829834e-06 218 215 -3386801.062691 219 215 -1.907348632813e-06 220 215 -2.235174179077e-06 221 215 68569532.94435 300 215 12109027.78176 301 215 -16666666.67214 302 215 -27982541.75396 303 215 64843055.54491 304 215 -3489583.332416 305 215 -95170201.65886 321 215 -1067638.887521 322 215 -29843749.99544 323 215 -41740795.22671 324 215 12968611.10898 325 215 1.013278961182e-06 326 215 -125891389.0729 327 215 20312500.00667 328 215 16666666.67214 329 215 -37109894.74031 330 215 7551944.445205 331 215 33333333.32786 332 215 -51022200.11333 216 216 254849231.4225 217 216 61411260.29348 218 216 3.814697265625e-06 219 216 -66610780.59762 220 216 -6369252.63857 221 216 -1.132488250732e-06 303 216 -11712307.86995 304 216 647184.9243208 305 216 -299305.5539346 324 216 -35347304.85947 325 216 -14407686.84483 326 216 -20312500.00667 327 216 6046162.064774 328 216 15352815.08093 329 216 8124999.998666 330 216 -43850090.99987 331 216 -1592313.160427 332 216 -36263194.43806 217 217 228505477.8886 218 217 4.172325134277e-06 219 217 14964080.69126 220 217 42842168.62011 221 217 1.728534698486e-06 303 217 -4686148.410764 304 217 -37626369.49388 305 217 -33333333.32786 324 217 -14407686.84483 325 217 -30210542.16671 326 217 -16666666.67214 327 217 15352815.08093 328 217 -539776.3219635 329 217 6666666.665572 330 217 3741020.174657 331 217 -16486853.68196 332 217 3333333.334428 218 218 294920181.6058 220 218 1.788139343262e-06 221 218 70439578.90092 303 218 -8424305.555743 304 218 -33333333.32786 305 218 -54230045.43139 324 218 -20312500.00667 325 218 -16666666.67214 326 218 -37109894.74031 327 218 -8124999.998665 328 218 -6666666.665571 329 218 -80046343.42155 330 218 -36263194.43892 331 218 -3333333.334428 332 218 -54916494.1788 219 219 221377868.0526 220 219 -44221604.19657 221 219 -1.311302185059e-06 303 219 -24181082.63358 304 219 12258979.8306 305 219 15950694.44968 324 219 -14510689.24923 325 219 -4944598.950664 326 219 -7551944.445206 327 219 -43850090.99987 328 219 3741020.174657 329 219 36263194.43892 330 219 4221029.5472 331 219 -11055401.05459 332 219 -6380277.77673 220 220 221364529.6578 221 220 2.861022949219e-06 303 220 12258979.8306 304 220 -26023208.832 305 220 -16666666.67214 324 220 388734.38442 325 220 -40028465.77003 326 220 -33333333.32786 327 220 -1592313.160427 328 220 -16486853.68196 329 220 3333333.334428 330 220 -11055401.05459 331 220 4217694.948508 332 220 6666666.665572 221 221 265339467.0094 303 221 15950694.44968 304 221 -16666666.67214 305 221 -32922561.4056 324 221 -1171666.664473 325 221 -33333333.32786 326 221 -51022200.11334 327 221 36263194.43806 328 221 -3333333.334428 329 221 -54916494.1788 330 221 6380277.77673 331 221 -6666666.665571 332 221 -69994299.86354 222 222 571119749.839 223 222 53333333.32457 224 222 -6.198883056641e-06 225 222 -292913008.3249 226 222 -53333332.8979 227 222 6.556510925293e-06 228 222 19534202.10867 229 222 42666666.23299 230 222 -1.490116119385e-06 333 222 45108925.89256 334 222 13333333.33771 335 222 13177222.19231 336 222 -107413106.5112 337 222 -13333333.23104 338 222 -65886110.96157 339 222 -9767101.054335 340 222 10666666.5635 341 222 -13177221.94221 223 223 491115909.0416 224 223 -3.094097220493e-06 225 223 -53333332.68457 226 223 -42244300.58137 227 223 2.145767211914e-06 228 223 63999999.34949 229 223 19534202.10866 230 223 -2.384185791016e-06 333 223 13333333.33771 334 223 25107965.68335 335 223 10541666.55379 336 223 -13333333.17771 337 223 -44745929.54446 338 223 -13177083.26329 339 223 15999999.84525 340 223 -9767101.054335 341 223 15812499.93082 224 224 565941879.2302 225 224 6.943941116333e-06 226 224 1.609325408936e-06 227 224 5277897.861165 228 224 -2.145767211914e-06 229 224 -1.54972076416e-06 230 224 52091205.62311 333 224 -13177222.19232 334 224 -10541666.5538 335 224 -118970561.1562 336 224 -65886110.96157 337 224 -13177083.28808 338 224 -89840137.25117 339 224 -19765832.91331 340 224 10541666.62055 341 224 -26045602.81156 225 225 988947148.5376 226 225 53333332.25791 227 225 -9.298324584961e-06 228 225 31359232.67644 229 225 -53333332.8979 230 225 1.251697540283e-06 231 225 -198223262.271 232 225 2.98023223877e-07 233 225 5.960464477539e-08 234 225 -75155545.7747 235 225 53333333.32457 236 225 -1.490116119385e-08 333 225 -107413106.5112 334 225 -13333333.17771 335 225 65886110.96157 336 225 100730268.7541 337 225 13333333.07105 338 225 0.02774140238762 339 225 -26345045.89131 340 225 -13333333.23105 341 225 16471527.49884 342 225 -88624220.55292 343 225 2.235174179077e-07 344 225 -65886111.10029 345 225 -28555987.69793 346 225 13333333.33771 347 225 -16471527.78319 226 226 844940234.7245 227 226 -7.987022399902e-06 228 226 -53333332.68457 229 226 -155306402.5315 230 226 5.394220352173e-06 231 226 3.576278686523e-07 232 226 36444678.54407 233 226 -4.172325134277e-07 234 226 53333333.32457 235 226 -59154777.5129 236 226 2.98023223877e-08 333 226 -13333333.23104 334 226 -44745929.54447 335 226 13177083.28808 336 226 13333333.07105 337 226 64728540.28304 338 226 0.022192299366 339 226 -13333333.17771 340 226 -73011454.71628 341 226 52708333.03581 342 226 1.9371509552e-07 343 226 -29957235.32024 344 226 -3.8743019104e-07 345 226 13333333.33771 346 226 -24555795.63051 347 226 13177083.33766 227 227 914512974.9691 228 227 1.728534698486e-06 229 227 4.559755325317e-06 230 227 62880662.12465 231 227 1.192092895508e-07 232 227 -4.768371582031e-07 233 227 66375066.93519 234 227 4.470348358154e-08 235 227 -4.470348358154e-08 236 227 -9005963.440553 333 227 65886110.96157 334 227 13177083.26329 335 227 -89840137.25118 336 227 -0.0277450978756 337 227 -0.02219566702843 338 227 -162055805.4842 339 227 16471527.35667 340 227 52708332.94687 341 227 -75439445.29918 342 227 -65886111.10029 343 227 -2.831220626831e-07 344 227 -87588646.48668 345 227 -16471527.78319 346 227 13177083.33766 347 227 -28297094.18124 228 228 571119749.839 229 228 53333333.32457 230 228 -6.198883056641e-06 231 228 -75155545.77471 232 228 -53333333.32457 233 228 5.066394805908e-07 234 228 -292913008.3249 235 228 -53333332.8979 236 228 6.556510925293e-06 237 228 19534202.10867 238 228 42666666.23299 239 228 -1.490116119385e-06 333 228 -9767101.054335 334 228 15999999.84525 335 228 19765832.91331 336 228 -26345045.8913 337 228 -13333333.17771 338 228 -16471527.35667 339 228 45108925.89256 340 228 13333333.33771 341 228 13177222.19231 342 228 -28555987.69793 343 228 -13333333.33771 344 228 -16471527.78319 345 228 -107413106.5112 346 228 -13333333.23104 347 228 -65886110.96157 348 228 -9767101.054335 349 228 10666666.5635 350 228 -13177221.94221 229 229 491115909.0416 230 229 -2.974887930942e-06 231 229 -53333333.32457 232 229 -59154777.5129 233 229 2.086162567139e-07 234 229 -53333332.68457 235 229 -42244300.58137 236 229 2.145767211914e-06 237 229 63999999.34949 238 229 19534202.10866 239 229 -2.384185791016e-06 333 229 10666666.5635 334 229 -9767101.054336 335 229 -10541666.62055 336 229 -13333333.23105 337 229 -73011454.71627 338 229 -52708332.94687 339 229 13333333.33771 340 229 25107965.68335 341 229 10541666.55379 342 229 -13333333.33771 343 229 -24555795.63051 344 229 -13177083.33766 345 229 -13333333.17771 346 229 -44745929.54446 347 229 -13177083.26329 348 229 15999999.84525 349 229 -9767101.054335 350 229 15812499.93082 230 230 565941879.2302 231 230 5.811452865601e-07 232 230 3.129243850708e-07 233 230 -9005963.440556 234 230 6.943941116333e-06 235 230 1.609325408936e-06 236 230 5277897.861165 237 230 -2.145767211914e-06 238 230 -1.54972076416e-06 239 230 52091205.62311 333 230 13177221.94221 334 230 -15812499.93082 335 230 -26045602.81156 336 230 -16471527.49884 337 230 -52708333.03581 338 230 -75439445.29917 339 230 -13177222.19232 340 230 -10541666.5538 341 230 -118970561.1562 342 230 -16471527.78319 343 230 -13177083.33766 344 230 -28297094.18124 345 230 -65886110.96157 346 230 -13177083.28808 347 230 -89840137.25117 348 230 -19765832.91331 349 230 10541666.62055 350 230 -26045602.81156 231 231 913791605.4334 232 231 7.748603820801e-06 233 231 -2.622604370117e-06 234 231 126048980.7912 235 231 -2.175569534302e-06 236 231 -1.490116119385e-06 240 231 -198223262.271 241 231 2.98023223877e-07 242 231 5.960464477539e-08 243 231 -75155545.7747 244 231 53333333.32457 245 231 -1.490116119385e-08 336 231 -88624220.55292 337 231 1.043081283569e-07 338 231 65886111.10029 339 231 -28555987.69793 340 231 -13333333.33771 341 231 16471527.78319 342 231 72174281.7049 343 231 1.728534698486e-06 344 231 1.221895217896e-06 345 231 -7556159.747413 346 231 -7.450580596924e-07 347 231 1.341104507446e-06 351 231 -88624220.55292 352 231 2.235174179077e-07 353 231 -65886111.10029 354 231 -28555987.69793 355 231 13333333.33771 356 231 -16471527.78319 232 232 785785459.402 233 232 -1.788139343262e-06 234 232 -2.086162567139e-06 235 232 -76617423.53181 236 232 5.066394805908e-07 240 232 3.576278686523e-07 241 232 36444678.54407 242 232 -4.172325134277e-07 243 232 53333333.32457 244 232 -59154777.5129 245 232 2.98023223877e-08 336 232 4.470348358154e-08 337 232 -29957235.32024 338 232 2.831220626831e-07 339 232 -13333333.33771 340 232 -24555795.63051 341 232 13177083.33766 342 232 1.728534698486e-06 343 232 40172745.1813 344 232 -5.960464477539e-08 345 232 -7.003545761108e-07 346 232 -58222760.85313 347 232 52708333.32467 351 232 1.9371509552e-07 352 232 -29957235.32024 353 232 -3.8743019104e-07 354 232 13333333.33771 355 232 -24555795.63051 356 232 13177083.33766 233 233 905507012.9075 234 233 -1.668930053711e-06 235 233 4.470348358154e-07 236 233 123977832.6588 240 233 1.192092895508e-07 241 233 -4.768371582031e-07 242 233 66375066.93519 243 233 4.470348358154e-08 244 233 -4.470348358154e-08 245 233 -9005963.440553 336 233 65886111.10029 337 233 3.8743019104e-07 338 233 -87588646.48668 339 233 16471527.78319 340 233 13177083.33766 341 233 -28297094.18124 342 233 8.642673492432e-07 343 233 1.788139343262e-07 344 233 -190352899.3709 345 233 1.475214958191e-06 346 233 52708333.32467 347 233 -73187955.0487 351 233 -65886111.10029 352 233 -2.831220626831e-07 353 233 -87588646.48668 354 233 -16471527.78319 355 233 13177083.33766 356 233 -28297094.18124 234 234 988947148.5376 235 234 53333332.25791 236 234 -9.298324584961e-06 237 234 31359232.67644 238 234 -53333332.8979 239 234 1.251697540283e-06 240 234 -75155545.77471 241 234 -53333333.32457 242 234 5.066394805908e-07 243 234 -198223262.271 244 234 2.98023223877e-07 245 234 5.960464477539e-08 246 234 -75155545.7747 247 234 53333333.32457 248 234 -1.490116119385e-08 336 234 -28555987.69793 337 234 13333333.33771 338 234 16471527.78319 339 234 -107413106.5112 340 234 -13333333.17771 341 234 65886110.96157 342 234 -7556159.747413 343 234 -3.278255462646e-07 344 234 -1.206994056702e-06 345 234 100730268.7541 346 234 13333333.07105 347 234 0.02774140238762 348 234 -26345045.89131 349 234 -13333333.23105 350 234 16471527.49884 351 234 -28555987.69793 352 234 -13333333.33771 353 234 -16471527.78319 354 234 -88624220.55292 355 234 2.235174179077e-07 356 234 -65886111.10029 357 234 -28555987.69793 358 234 13333333.33771 359 234 -16471527.78319 235 235 844940234.7245 236 235 -7.987022399902e-06 237 235 -53333332.68457 238 235 -155306402.5315 239 235 5.394220352173e-06 240 235 -53333333.32457 241 235 -59154777.5129 242 235 2.086162567139e-07 243 235 3.576278686523e-07 244 235 36444678.54407 245 235 -4.172325134277e-07 246 235 53333333.32457 247 235 -59154777.5129 248 235 2.98023223877e-08 336 235 13333333.33771 337 235 -24555795.63051 338 235 -13177083.33766 339 235 -13333333.23104 340 235 -44745929.54447 341 235 13177083.28808 342 235 -2.98023223877e-07 343 235 -58222760.85313 344 235 -52708333.32467 345 235 13333333.07105 346 235 64728540.28304 347 235 0.022192299366 348 235 -13333333.17771 349 235 -73011454.71628 350 235 52708333.03581 351 235 -13333333.33771 352 235 -24555795.63051 353 235 -13177083.33766 354 235 1.9371509552e-07 355 235 -29957235.32024 356 235 -3.8743019104e-07 357 235 13333333.33771 358 235 -24555795.63051 359 235 13177083.33766 236 236 914512974.9691 237 236 1.728534698486e-06 238 236 4.559755325317e-06 239 236 62880662.12465 240 236 5.811452865601e-07 241 236 3.129243850708e-07 242 236 -9005963.440556 243 236 1.192092895508e-07 244 236 -4.768371582031e-07 245 236 66375066.93519 246 236 4.470348358154e-08 247 236 -4.470348358154e-08 248 236 -9005963.440553 336 236 16471527.78319 337 236 -13177083.33766 338 236 -28297094.18124 339 236 65886110.96157 340 236 13177083.26329 341 236 -89840137.25118 342 236 -9.983777999878e-07 343 236 -52708333.32467 344 236 -73187955.04869 345 236 -0.0277450978756 346 236 -0.02219566702843 347 236 -162055805.4842 348 236 16471527.35667 349 236 52708332.94687 350 236 -75439445.29918 351 236 -16471527.78319 352 236 -13177083.33766 353 236 -28297094.18124 354 236 -65886111.10029 355 236 -2.831220626831e-07 356 236 -87588646.48668 357 236 -16471527.78319 358 236 13177083.33766 359 236 -28297094.18124 237 237 571119749.839 238 237 53333333.32457 239 237 -6.198883056641e-06 243 237 -75155545.77471 244 237 -53333333.32457 245 237 5.066394805908e-07 246 237 -292913008.3249 247 237 -53333332.8979 248 237 6.556510925293e-06 249 237 19534202.10867 250 237 42666666.23299 251 237 -1.490116119385e-06 339 237 -9767101.054335 340 237 15999999.84525 341 237 19765832.91331 345 237 -26345045.8913 346 237 -13333333.17771 347 237 -16471527.35667 348 237 45108925.89256 349 237 13333333.33771 350 237 13177222.19231 354 237 -28555987.69793 355 237 -13333333.33771 356 237 -16471527.78319 357 237 -107413106.5112 358 237 -13333333.23104 359 237 -65886110.96157 360 237 -9767101.054335 361 237 10666666.5635 362 237 -13177221.94221 238 238 491115909.0416 239 238 -2.974887930942e-06 243 238 -53333333.32457 244 238 -59154777.5129 245 238 2.086162567139e-07 246 238 -53333332.68457 247 238 -42244300.58137 248 238 2.145767211914e-06 249 238 63999999.34949 250 238 19534202.10866 251 238 -2.384185791016e-06 339 238 10666666.5635 340 238 -9767101.054336 341 238 -10541666.62055 345 238 -13333333.23105 346 238 -73011454.71627 347 238 -52708332.94687 348 238 13333333.33771 349 238 25107965.68335 350 238 10541666.55379 354 238 -13333333.33771 355 238 -24555795.63051 356 238 -13177083.33766 357 238 -13333333.17771 358 238 -44745929.54446 359 238 -13177083.26329 360 238 15999999.84525 361 238 -9767101.054335 362 238 15812499.93082 239 239 565941879.2302 243 239 5.811452865601e-07 244 239 3.129243850708e-07 245 239 -9005963.440556 246 239 6.943941116333e-06 247 239 1.609325408936e-06 248 239 5277897.861165 249 239 -2.145767211914e-06 250 239 -1.54972076416e-06 251 239 52091205.62311 339 239 13177221.94221 340 239 -15812499.93082 341 239 -26045602.81156 345 239 -16471527.49884 346 239 -52708333.03581 347 239 -75439445.29917 348 239 -13177222.19232 349 239 -10541666.5538 350 239 -118970561.1562 354 239 -16471527.78319 355 239 -13177083.33766 356 239 -28297094.18124 357 239 -65886110.96157 358 239 -13177083.28808 359 239 -89840137.25117 360 239 -19765832.91331 361 239 10541666.62055 362 239 -26045602.81156 240 240 913791605.4334 241 240 7.748603820801e-06 242 240 -2.622604370117e-06 243 240 126048980.7912 244 240 -2.175569534302e-06 245 240 -1.490116119385e-06 252 240 -198223262.271 253 240 2.98023223877e-07 254 240 5.960464477539e-08 255 240 -75155545.7747 256 240 53333333.32457 257 240 -1.490116119385e-08 342 240 -88624220.55292 343 240 1.043081283569e-07 344 240 65886111.10029 345 240 -28555987.69793 346 240 -13333333.33771 347 240 16471527.78319 351 240 72174281.7049 352 240 1.728534698486e-06 353 240 1.221895217896e-06 354 240 -7556159.747413 355 240 -7.450580596924e-07 356 240 1.341104507446e-06 363 240 -88624220.55292 364 240 2.235174179077e-07 365 240 -65886111.10029 366 240 -28555987.69793 367 240 13333333.33771 368 240 -16471527.78319 241 241 785785459.402 242 241 -1.788139343262e-06 243 241 -2.086162567139e-06 244 241 -76617423.53181 245 241 5.066394805908e-07 252 241 3.576278686523e-07 253 241 36444678.54407 254 241 -4.172325134277e-07 255 241 53333333.32457 256 241 -59154777.5129 257 241 2.98023223877e-08 342 241 4.470348358154e-08 343 241 -29957235.32024 344 241 2.831220626831e-07 345 241 -13333333.33771 346 241 -24555795.63051 347 241 13177083.33766 351 241 1.728534698486e-06 352 241 40172745.1813 353 241 -5.960464477539e-08 354 241 -7.003545761108e-07 355 241 -58222760.85313 356 241 52708333.32467 363 241 1.9371509552e-07 364 241 -29957235.32024 365 241 -3.8743019104e-07 366 241 13333333.33771 367 241 -24555795.63051 368 241 13177083.33766 242 242 905507012.9075 243 242 -1.668930053711e-06 244 242 4.470348358154e-07 245 242 123977832.6588 252 242 1.192092895508e-07 253 242 -4.768371582031e-07 254 242 66375066.93519 255 242 4.470348358154e-08 256 242 -4.470348358154e-08 257 242 -9005963.440553 342 242 65886111.10029 343 242 3.8743019104e-07 344 242 -87588646.48668 345 242 16471527.78319 346 242 13177083.33766 347 242 -28297094.18124 351 242 8.642673492432e-07 352 242 1.788139343262e-07 353 242 -190352899.3709 354 242 1.475214958191e-06 355 242 52708333.32467 356 242 -73187955.0487 363 242 -65886111.10029 364 242 -2.831220626831e-07 365 242 -87588646.48668 366 242 -16471527.78319 367 242 13177083.33766 368 242 -28297094.18124 243 243 913791605.4334 244 243 7.748603820801e-06 245 243 -2.622604370117e-06 246 243 126048980.7912 247 243 -2.175569534302e-06 248 243 -1.490116119385e-06 252 243 -75155545.77471 253 243 -53333333.32457 254 243 5.066394805908e-07 255 243 -198223262.271 256 243 2.98023223877e-07 257 243 5.960464477539e-08 258 243 -75155545.7747 259 243 53333333.32457 260 243 -1.490116119385e-08 342 243 -28555987.69793 343 243 13333333.33771 344 243 16471527.78319 345 243 -88624220.55292 346 243 1.043081283569e-07 347 243 65886111.10029 348 243 -28555987.69793 349 243 -13333333.33771 350 243 16471527.78319 351 243 -7556159.747413 352 243 -3.278255462646e-07 353 243 -1.206994056702e-06 354 243 72174281.7049 355 243 1.728534698486e-06 356 243 1.221895217896e-06 357 243 -7556159.747413 358 243 -7.450580596924e-07 359 243 1.341104507446e-06 363 243 -28555987.69793 364 243 -13333333.33771 365 243 -16471527.78319 366 243 -88624220.55292 367 243 2.235174179077e-07 368 243 -65886111.10029 369 243 -28555987.69793 370 243 13333333.33771 371 243 -16471527.78319 244 244 785785459.402 245 244 -1.788139343262e-06 246 244 -2.086162567139e-06 247 244 -76617423.53181 248 244 5.066394805908e-07 252 244 -53333333.32457 253 244 -59154777.5129 254 244 2.086162567139e-07 255 244 3.576278686523e-07 256 244 36444678.54407 257 244 -4.172325134277e-07 258 244 53333333.32457 259 244 -59154777.5129 260 244 2.98023223877e-08 342 244 13333333.33771 343 244 -24555795.63051 344 244 -13177083.33766 345 244 4.470348358154e-08 346 244 -29957235.32024 347 244 2.831220626831e-07 348 244 -13333333.33771 349 244 -24555795.63051 350 244 13177083.33766 351 244 -2.98023223877e-07 352 244 -58222760.85313 353 244 -52708333.32467 354 244 1.728534698486e-06 355 244 40172745.1813 356 244 -5.960464477539e-08 357 244 -7.003545761108e-07 358 244 -58222760.85313 359 244 52708333.32467 363 244 -13333333.33771 364 244 -24555795.63051 365 244 -13177083.33766 366 244 1.9371509552e-07 367 244 -29957235.32024 368 244 -3.8743019104e-07 369 244 13333333.33771 370 244 -24555795.63051 371 244 13177083.33766 245 245 905507012.9075 246 245 -1.668930053711e-06 247 245 4.470348358154e-07 248 245 123977832.6588 252 245 5.811452865601e-07 253 245 3.129243850708e-07 254 245 -9005963.440556 255 245 1.192092895508e-07 256 245 -4.768371582031e-07 257 245 66375066.93519 258 245 4.470348358154e-08 259 245 -4.470348358154e-08 260 245 -9005963.440553 342 245 16471527.78319 343 245 -13177083.33766 344 245 -28297094.18124 345 245 65886111.10029 346 245 3.8743019104e-07 347 245 -87588646.48668 348 245 16471527.78319 349 245 13177083.33766 350 245 -28297094.18124 351 245 -9.983777999878e-07 352 245 -52708333.32467 353 245 -73187955.04869 354 245 8.642673492432e-07 355 245 1.788139343262e-07 356 245 -190352899.3709 357 245 1.475214958191e-06 358 245 52708333.32467 359 245 -73187955.0487 363 245 -16471527.78319 364 245 -13177083.33766 365 245 -28297094.18124 366 245 -65886111.10029 367 245 -2.831220626831e-07 368 245 -87588646.48668 369 245 -16471527.78319 370 245 13177083.33766 371 245 -28297094.18124 246 246 988947148.5376 247 246 53333332.25791 248 246 -9.298324584961e-06 249 246 31359232.67644 250 246 -53333332.8979 251 246 1.251697540283e-06 255 246 -75155545.77471 256 246 -53333333.32457 257 246 5.066394805908e-07 258 246 -198223262.271 259 246 2.98023223877e-07 260 246 5.960464477539e-08 261 246 -75155545.7747 262 246 53333333.32457 263 246 -1.490116119385e-08 345 246 -28555987.69793 346 246 13333333.33771 347 246 16471527.78319 348 246 -107413106.5112 349 246 -13333333.17771 350 246 65886110.96157 354 246 -7556159.747413 355 246 -3.278255462646e-07 356 246 -1.206994056702e-06 357 246 100730268.7541 358 246 13333333.07105 359 246 0.02774140238762 360 246 -26345045.89131 361 246 -13333333.23105 362 246 16471527.49884 366 246 -28555987.69793 367 246 -13333333.33771 368 246 -16471527.78319 369 246 -88624220.55292 370 246 2.235174179077e-07 371 246 -65886111.10029 372 246 -28555987.69793 373 246 13333333.33771 374 246 -16471527.78319 247 247 844940234.7245 248 247 -7.987022399902e-06 249 247 -53333332.68457 250 247 -155306402.5315 251 247 5.394220352173e-06 255 247 -53333333.32457 256 247 -59154777.5129 257 247 2.086162567139e-07 258 247 3.576278686523e-07 259 247 36444678.54407 260 247 -4.172325134277e-07 261 247 53333333.32457 262 247 -59154777.5129 263 247 2.98023223877e-08 345 247 13333333.33771 346 247 -24555795.63051 347 247 -13177083.33766 348 247 -13333333.23104 349 247 -44745929.54447 350 247 13177083.28808 354 247 -2.98023223877e-07 355 247 -58222760.85313 356 247 -52708333.32467 357 247 13333333.07105 358 247 64728540.28304 359 247 0.022192299366 360 247 -13333333.17771 361 247 -73011454.71628 362 247 52708333.03581 366 247 -13333333.33771 367 247 -24555795.63051 368 247 -13177083.33766 369 247 1.9371509552e-07 370 247 -29957235.32024 371 247 -3.8743019104e-07 372 247 13333333.33771 373 247 -24555795.63051 374 247 13177083.33766 248 248 914512974.9691 249 248 1.728534698486e-06 250 248 4.559755325317e-06 251 248 62880662.12465 255 248 5.811452865601e-07 256 248 3.129243850708e-07 257 248 -9005963.440556 258 248 1.192092895508e-07 259 248 -4.768371582031e-07 260 248 66375066.93519 261 248 4.470348358154e-08 262 248 -4.470348358154e-08 263 248 -9005963.440553 345 248 16471527.78319 346 248 -13177083.33766 347 248 -28297094.18124 348 248 65886110.96157 349 248 13177083.26329 350 248 -89840137.25118 354 248 -9.983777999878e-07 355 248 -52708333.32467 356 248 -73187955.04869 357 248 -0.0277450978756 358 248 -0.02219566702843 359 248 -162055805.4842 360 248 16471527.35667 361 248 52708332.94687 362 248 -75439445.29918 366 248 -16471527.78319 367 248 -13177083.33766 368 248 -28297094.18124 369 248 -65886111.10029 370 248 -2.831220626831e-07 371 248 -87588646.48668 372 248 -16471527.78319 373 248 13177083.33766 374 248 -28297094.18124 249 249 571119749.839 250 249 53333333.32457 251 249 -6.198883056641e-06 258 249 -75155545.77471 259 249 -53333333.32457 260 249 5.066394805908e-07 261 249 -292913008.3249 262 249 -53333332.8979 263 249 6.556510925293e-06 264 249 19534202.10867 265 249 42666666.23299 266 249 -1.490116119385e-06 348 249 -9767101.054335 349 249 15999999.84525 350 249 19765832.91331 357 249 -26345045.8913 358 249 -13333333.17771 359 249 -16471527.35667 360 249 45108925.89256 361 249 13333333.33771 362 249 13177222.19231 369 249 -28555987.69793 370 249 -13333333.33771 371 249 -16471527.78319 372 249 -107413106.5112 373 249 -13333333.23104 374 249 -65886110.96157 375 249 -9767101.054335 376 249 10666666.5635 377 249 -13177221.94221 250 250 491115909.0416 251 250 -2.974887930942e-06 258 250 -53333333.32457 259 250 -59154777.5129 260 250 2.086162567139e-07 261 250 -53333332.68457 262 250 -42244300.58137 263 250 2.145767211914e-06 264 250 63999999.34949 265 250 19534202.10866 266 250 -2.384185791016e-06 348 250 10666666.5635 349 250 -9767101.054336 350 250 -10541666.62055 357 250 -13333333.23105 358 250 -73011454.71627 359 250 -52708332.94687 360 250 13333333.33771 361 250 25107965.68335 362 250 10541666.55379 369 250 -13333333.33771 370 250 -24555795.63051 371 250 -13177083.33766 372 250 -13333333.17771 373 250 -44745929.54446 374 250 -13177083.26329 375 250 15999999.84525 376 250 -9767101.054335 377 250 15812499.93082 251 251 565941879.2302 258 251 5.811452865601e-07 259 251 3.129243850708e-07 260 251 -9005963.440556 261 251 6.943941116333e-06 262 251 1.609325408936e-06 263 251 5277897.861165 264 251 -2.145767211914e-06 265 251 -1.54972076416e-06 266 251 52091205.62311 348 251 13177221.94221 349 251 -15812499.93082 350 251 -26045602.81156 357 251 -16471527.49884 358 251 -52708333.03581 359 251 -75439445.29917 360 251 -13177222.19232 361 251 -10541666.5538 362 251 -118970561.1562 369 251 -16471527.78319 370 251 -13177083.33766 371 251 -28297094.18124 372 251 -65886110.96157 373 251 -13177083.28808 374 251 -89840137.25117 375 251 -19765832.91331 376 251 10541666.62055 377 251 -26045602.81156 252 252 913791605.4334 253 252 7.748603820801e-06 254 252 -2.622604370117e-06 255 252 126048980.7912 256 252 -2.175569534302e-06 257 252 -1.490116119385e-06 267 252 -198223262.271 268 252 2.98023223877e-07 269 252 5.960464477539e-08 270 252 -75155545.7747 271 252 53333333.32457 272 252 -1.490116119385e-08 351 252 -88624220.55292 352 252 1.043081283569e-07 353 252 65886111.10029 354 252 -28555987.69793 355 252 -13333333.33771 356 252 16471527.78319 363 252 72174281.7049 364 252 1.728534698486e-06 365 252 1.221895217896e-06 366 252 -7556159.747413 367 252 -7.450580596924e-07 368 252 1.341104507446e-06 378 252 -88624220.55292 379 252 2.235174179077e-07 380 252 -65886111.10029 381 252 -28555987.69793 382 252 13333333.33771 383 252 -16471527.78319 253 253 785785459.402 254 253 -1.788139343262e-06 255 253 -2.086162567139e-06 256 253 -76617423.53181 257 253 5.066394805908e-07 267 253 3.576278686523e-07 268 253 36444678.54407 269 253 -4.172325134277e-07 270 253 53333333.32457 271 253 -59154777.5129 272 253 2.98023223877e-08 351 253 4.470348358154e-08 352 253 -29957235.32024 353 253 2.831220626831e-07 354 253 -13333333.33771 355 253 -24555795.63051 356 253 13177083.33766 363 253 1.728534698486e-06 364 253 40172745.1813 365 253 -5.960464477539e-08 366 253 -7.003545761108e-07 367 253 -58222760.85313 368 253 52708333.32467 378 253 1.9371509552e-07 379 253 -29957235.32024 380 253 -3.8743019104e-07 381 253 13333333.33771 382 253 -24555795.63051 383 253 13177083.33766 254 254 905507012.9075 255 254 -1.668930053711e-06 256 254 4.470348358154e-07 257 254 123977832.6588 267 254 1.192092895508e-07 268 254 -4.768371582031e-07 269 254 66375066.93519 270 254 4.470348358154e-08 271 254 -4.470348358154e-08 272 254 -9005963.440553 351 254 65886111.10029 352 254 3.8743019104e-07 353 254 -87588646.48668 354 254 16471527.78319 355 254 13177083.33766 356 254 -28297094.18124 363 254 8.642673492432e-07 364 254 1.788139343262e-07 365 254 -190352899.3709 366 254 1.475214958191e-06 367 254 52708333.32467 368 254 -73187955.0487 378 254 -65886111.10029 379 254 -2.831220626831e-07 380 254 -87588646.48668 381 254 -16471527.78319 382 254 13177083.33766 383 254 -28297094.18124 255 255 913791605.4334 256 255 7.748603820801e-06 257 255 -2.622604370117e-06 258 255 126048980.7912 259 255 -2.175569534302e-06 260 255 -1.490116119385e-06 267 255 -75155545.77471 268 255 -53333333.32457 269 255 5.066394805908e-07 270 255 -198223262.271 271 255 2.98023223877e-07 272 255 5.960464477539e-08 273 255 -75155545.7747 274 255 53333333.32457 275 255 -1.490116119385e-08 351 255 -28555987.69793 352 255 13333333.33771 353 255 16471527.78319 354 255 -88624220.55292 355 255 1.043081283569e-07 356 255 65886111.10029 357 255 -28555987.69793 358 255 -13333333.33771 359 255 16471527.78319 363 255 -7556159.747413 364 255 -3.278255462646e-07 365 255 -1.206994056702e-06 366 255 72174281.7049 367 255 1.728534698486e-06 368 255 1.221895217896e-06 369 255 -7556159.747413 370 255 -7.450580596924e-07 371 255 1.341104507446e-06 378 255 -28555987.69793 379 255 -13333333.33771 380 255 -16471527.78319 381 255 -88624220.55292 382 255 2.235174179077e-07 383 255 -65886111.10029 384 255 -28555987.69793 385 255 13333333.33771 386 255 -16471527.78319 256 256 785785459.402 257 256 -1.788139343262e-06 258 256 -2.086162567139e-06 259 256 -76617423.53181 260 256 5.066394805908e-07 267 256 -53333333.32457 268 256 -59154777.5129 269 256 2.086162567139e-07 270 256 3.576278686523e-07 271 256 36444678.54407 272 256 -4.172325134277e-07 273 256 53333333.32457 274 256 -59154777.5129 275 256 2.98023223877e-08 351 256 13333333.33771 352 256 -24555795.63051 353 256 -13177083.33766 354 256 4.470348358154e-08 355 256 -29957235.32024 356 256 2.831220626831e-07 357 256 -13333333.33771 358 256 -24555795.63051 359 256 13177083.33766 363 256 -2.98023223877e-07 364 256 -58222760.85313 365 256 -52708333.32467 366 256 1.728534698486e-06 367 256 40172745.1813 368 256 -5.960464477539e-08 369 256 -7.003545761108e-07 370 256 -58222760.85313 371 256 52708333.32467 378 256 -13333333.33771 379 256 -24555795.63051 380 256 -13177083.33766 381 256 1.9371509552e-07 382 256 -29957235.32024 383 256 -3.8743019104e-07 384 256 13333333.33771 385 256 -24555795.63051 386 256 13177083.33766 257 257 905507012.9075 258 257 -1.668930053711e-06 259 257 4.470348358154e-07 260 257 123977832.6588 267 257 5.811452865601e-07 268 257 3.129243850708e-07 269 257 -9005963.440556 270 257 1.192092895508e-07 271 257 -4.768371582031e-07 272 257 66375066.93519 273 257 4.470348358154e-08 274 257 -4.470348358154e-08 275 257 -9005963.440553 351 257 16471527.78319 352 257 -13177083.33766 353 257 -28297094.18124 354 257 65886111.10029 355 257 3.8743019104e-07 356 257 -87588646.48668 357 257 16471527.78319 358 257 13177083.33766 359 257 -28297094.18124 363 257 -9.983777999878e-07 364 257 -52708333.32467 365 257 -73187955.04869 366 257 8.642673492432e-07 367 257 1.788139343262e-07 368 257 -190352899.3709 369 257 1.475214958191e-06 370 257 52708333.32467 371 257 -73187955.0487 378 257 -16471527.78319 379 257 -13177083.33766 380 257 -28297094.18124 381 257 -65886111.10029 382 257 -2.831220626831e-07 383 257 -87588646.48668 384 257 -16471527.78319 385 257 13177083.33766 386 257 -28297094.18124 258 258 913791605.4334 259 258 7.748603820801e-06 260 258 -2.622604370117e-06 261 258 126048980.7912 262 258 -2.175569534302e-06 263 258 -1.490116119385e-06 270 258 -75155545.77471 271 258 -53333333.32457 272 258 5.066394805908e-07 273 258 -198223262.271 274 258 2.98023223877e-07 275 258 5.960464477539e-08 276 258 -75155545.7747 277 258 53333333.32457 278 258 -1.490116119385e-08 354 258 -28555987.69793 355 258 13333333.33771 356 258 16471527.78319 357 258 -88624220.55292 358 258 1.043081283569e-07 359 258 65886111.10029 360 258 -28555987.69793 361 258 -13333333.33771 362 258 16471527.78319 366 258 -7556159.747413 367 258 -3.278255462646e-07 368 258 -1.206994056702e-06 369 258 72174281.7049 370 258 1.728534698486e-06 371 258 1.221895217896e-06 372 258 -7556159.747413 373 258 -7.450580596924e-07 374 258 1.341104507446e-06 381 258 -28555987.69793 382 258 -13333333.33771 383 258 -16471527.78319 384 258 -88624220.55292 385 258 2.235174179077e-07 386 258 -65886111.10029 387 258 -28555987.69793 388 258 13333333.33771 389 258 -16471527.78319 259 259 785785459.402 260 259 -1.788139343262e-06 261 259 -2.086162567139e-06 262 259 -76617423.53181 263 259 5.066394805908e-07 270 259 -53333333.32457 271 259 -59154777.5129 272 259 2.086162567139e-07 273 259 3.576278686523e-07 274 259 36444678.54407 275 259 -4.172325134277e-07 276 259 53333333.32457 277 259 -59154777.5129 278 259 2.98023223877e-08 354 259 13333333.33771 355 259 -24555795.63051 356 259 -13177083.33766 357 259 4.470348358154e-08 358 259 -29957235.32024 359 259 2.831220626831e-07 360 259 -13333333.33771 361 259 -24555795.63051 362 259 13177083.33766 366 259 -2.98023223877e-07 367 259 -58222760.85313 368 259 -52708333.32467 369 259 1.728534698486e-06 370 259 40172745.1813 371 259 -5.960464477539e-08 372 259 -7.003545761108e-07 373 259 -58222760.85313 374 259 52708333.32467 381 259 -13333333.33771 382 259 -24555795.63051 383 259 -13177083.33766 384 259 1.9371509552e-07 385 259 -29957235.32024 386 259 -3.8743019104e-07 387 259 13333333.33771 388 259 -24555795.63051 389 259 13177083.33766 260 260 905507012.9075 261 260 -1.668930053711e-06 262 260 4.470348358154e-07 263 260 123977832.6588 270 260 5.811452865601e-07 271 260 3.129243850708e-07 272 260 -9005963.440556 273 260 1.192092895508e-07 274 260 -4.768371582031e-07 275 260 66375066.93519 276 260 4.470348358154e-08 277 260 -4.470348358154e-08 278 260 -9005963.440553 354 260 16471527.78319 355 260 -13177083.33766 356 260 -28297094.18124 357 260 65886111.10029 358 260 3.8743019104e-07 359 260 -87588646.48668 360 260 16471527.78319 361 260 13177083.33766 362 260 -28297094.18124 366 260 -9.983777999878e-07 367 260 -52708333.32467 368 260 -73187955.04869 369 260 8.642673492432e-07 370 260 1.788139343262e-07 371 260 -190352899.3709 372 260 1.475214958191e-06 373 260 52708333.32467 374 260 -73187955.0487 381 260 -16471527.78319 382 260 -13177083.33766 383 260 -28297094.18124 384 260 -65886111.10029 385 260 -2.831220626831e-07 386 260 -87588646.48668 387 260 -16471527.78319 388 260 13177083.33766 389 260 -28297094.18124 261 261 988947148.5376 262 261 53333332.25791 263 261 -9.298324584961e-06 264 261 31359232.67644 265 261 -53333332.8979 266 261 1.251697540283e-06 273 261 -75155545.77471 274 261 -53333333.32457 275 261 5.066394805908e-07 276 261 -198223262.271 277 261 2.98023223877e-07 278 261 5.960464477539e-08 279 261 -75155545.7747 280 261 53333333.32457 281 261 -1.490116119385e-08 357 261 -28555987.69793 358 261 13333333.33771 359 261 16471527.78319 360 261 -107413106.5112 361 261 -13333333.17771 362 261 65886110.96157 369 261 -7556159.747413 370 261 -3.278255462646e-07 371 261 -1.206994056702e-06 372 261 100730268.7541 373 261 13333333.07105 374 261 0.02774140238762 375 261 -26345045.89131 376 261 -13333333.23105 377 261 16471527.49884 384 261 -28555987.69793 385 261 -13333333.33771 386 261 -16471527.78319 387 261 -88624220.55292 388 261 2.235174179077e-07 389 261 -65886111.10029 390 261 -28555987.69793 391 261 13333333.33771 392 261 -16471527.78319 262 262 844940234.7245 263 262 -7.987022399902e-06 264 262 -53333332.68457 265 262 -155306402.5315 266 262 5.394220352173e-06 273 262 -53333333.32457 274 262 -59154777.5129 275 262 2.086162567139e-07 276 262 3.576278686523e-07 277 262 36444678.54407 278 262 -4.172325134277e-07 279 262 53333333.32457 280 262 -59154777.5129 281 262 2.98023223877e-08 357 262 13333333.33771 358 262 -24555795.63051 359 262 -13177083.33766 360 262 -13333333.23104 361 262 -44745929.54447 362 262 13177083.28808 369 262 -2.98023223877e-07 370 262 -58222760.85313 371 262 -52708333.32467 372 262 13333333.07105 373 262 64728540.28304 374 262 0.022192299366 375 262 -13333333.17771 376 262 -73011454.71628 377 262 52708333.03581 384 262 -13333333.33771 385 262 -24555795.63051 386 262 -13177083.33766 387 262 1.9371509552e-07 388 262 -29957235.32024 389 262 -3.8743019104e-07 390 262 13333333.33771 391 262 -24555795.63051 392 262 13177083.33766 263 263 914512974.9691 264 263 1.728534698486e-06 265 263 4.559755325317e-06 266 263 62880662.12465 273 263 5.811452865601e-07 274 263 3.129243850708e-07 275 263 -9005963.440556 276 263 1.192092895508e-07 277 263 -4.768371582031e-07 278 263 66375066.93519 279 263 4.470348358154e-08 280 263 -4.470348358154e-08 281 263 -9005963.440553 357 263 16471527.78319 358 263 -13177083.33766 359 263 -28297094.18124 360 263 65886110.96157 361 263 13177083.26329 362 263 -89840137.25118 369 263 -9.983777999878e-07 370 263 -52708333.32467 371 263 -73187955.04869 372 263 -0.0277450978756 373 263 -0.02219566702843 374 263 -162055805.4842 375 263 16471527.35667 376 263 52708332.94687 377 263 -75439445.29918 384 263 -16471527.78319 385 263 -13177083.33766 386 263 -28297094.18124 387 263 -65886111.10029 388 263 -2.831220626831e-07 389 263 -87588646.48668 390 263 -16471527.78319 391 263 13177083.33766 392 263 -28297094.18124 264 264 571119749.839 265 264 53333333.32457 266 264 -6.198883056641e-06 276 264 -75155545.77471 277 264 -53333333.32457 278 264 5.066394805908e-07 279 264 -292913008.3249 280 264 -53333332.8979 281 264 6.556510925293e-06 282 264 19534202.10867 283 264 42666666.23299 284 264 -1.490116119385e-06 360 264 -9767101.054335 361 264 15999999.84525 362 264 19765832.91331 372 264 -26345045.8913 373 264 -13333333.17771 374 264 -16471527.35667 375 264 45108925.89256 376 264 13333333.33771 377 264 13177222.19231 387 264 -28555987.69793 388 264 -13333333.33771 389 264 -16471527.78319 390 264 -107413106.5112 391 264 -13333333.23104 392 264 -65886110.96157 393 264 -9767101.054335 394 264 10666666.5635 395 264 -13177221.94221 265 265 491115909.0416 266 265 -2.974887930942e-06 276 265 -53333333.32457 277 265 -59154777.5129 278 265 2.086162567139e-07 279 265 -53333332.68457 280 265 -42244300.58137 281 265 2.145767211914e-06 282 265 63999999.34949 283 265 19534202.10866 284 265 -2.384185791016e-06 360 265 10666666.5635 361 265 -9767101.054336 362 265 -10541666.62055 372 265 -13333333.23105 373 265 -73011454.71627 374 265 -52708332.94687 375 265 13333333.33771 376 265 25107965.68335 377 265 10541666.55379 387 265 -13333333.33771 388 265 -24555795.63051 389 265 -13177083.33766 390 265 -13333333.17771 391 265 -44745929.54446 392 265 -13177083.26329 393 265 15999999.84525 394 265 -9767101.054335 395 265 15812499.93082 266 266 565941879.2302 276 266 5.811452865601e-07 277 266 3.129243850708e-07 278 266 -9005963.440556 279 266 6.943941116333e-06 280 266 1.609325408936e-06 281 266 5277897.861165 282 266 -2.145767211914e-06 283 266 -1.54972076416e-06 284 266 52091205.62311 360 266 13177221.94221 361 266 -15812499.93082 362 266 -26045602.81156 372 266 -16471527.49884 373 266 -52708333.03581 374 266 -75439445.29917 375 266 -13177222.19232 376 266 -10541666.5538 377 266 -118970561.1562 387 266 -16471527.78319 388 266 -13177083.33766 389 266 -28297094.18124 390 266 -65886110.96157 391 266 -13177083.28808 392 266 -89840137.25117 393 266 -19765832.91331 394 266 10541666.62055 395 266 -26045602.81156 267 267 913791605.4334 268 267 7.748603820801e-06 269 267 -2.622604370117e-06 270 267 126048980.7912 271 267 -2.175569534302e-06 272 267 -1.490116119385e-06 285 267 -198223262.271 286 267 2.98023223877e-07 287 267 5.960464477539e-08 288 267 -75155545.7747 289 267 53333333.32457 290 267 -1.490116119385e-08 363 267 -88624220.55292 364 267 1.043081283569e-07 365 267 65886111.10029 366 267 -28555987.69793 367 267 -13333333.33771 368 267 16471527.78319 378 267 72174281.7049 379 267 1.728534698486e-06 380 267 1.221895217896e-06 381 267 -7556159.747413 382 267 -7.450580596924e-07 383 267 1.341104507446e-06 396 267 -88624220.55292 397 267 2.235174179077e-07 398 267 -65886111.10029 399 267 -28555987.69793 400 267 13333333.33771 401 267 -16471527.78319 268 268 785785459.402 269 268 -1.788139343262e-06 270 268 -2.086162567139e-06 271 268 -76617423.53181 272 268 5.066394805908e-07 285 268 3.576278686523e-07 286 268 36444678.54407 287 268 -4.172325134277e-07 288 268 53333333.32457 289 268 -59154777.5129 290 268 2.98023223877e-08 363 268 4.470348358154e-08 364 268 -29957235.32024 365 268 2.831220626831e-07 366 268 -13333333.33771 367 268 -24555795.63051 368 268 13177083.33766 378 268 1.728534698486e-06 379 268 40172745.1813 380 268 -5.960464477539e-08 381 268 -7.003545761108e-07 382 268 -58222760.85313 383 268 52708333.32467 396 268 1.9371509552e-07 397 268 -29957235.32024 398 268 -3.8743019104e-07 399 268 13333333.33771 400 268 -24555795.63051 401 268 13177083.33766 269 269 905507012.9075 270 269 -1.668930053711e-06 271 269 4.470348358154e-07 272 269 123977832.6588 285 269 1.192092895508e-07 286 269 -4.768371582031e-07 287 269 66375066.93519 288 269 4.470348358154e-08 289 269 -4.470348358154e-08 290 269 -9005963.440553 363 269 65886111.10029 364 269 3.8743019104e-07 365 269 -87588646.48668 366 269 16471527.78319 367 269 13177083.33766 368 269 -28297094.18124 378 269 8.642673492432e-07 379 269 1.788139343262e-07 380 269 -190352899.3709 381 269 1.475214958191e-06 382 269 52708333.32467 383 269 -73187955.0487 396 269 -65886111.10029 397 269 -2.831220626831e-07 398 269 -87588646.48668 399 269 -16471527.78319 400 269 13177083.33766 401 269 -28297094.18124 270 270 913791605.4334 271 270 7.748603820801e-06 272 270 -2.622604370117e-06 273 270 126048980.7912 274 270 -2.175569534302e-06 275 270 -1.490116119385e-06 285 270 -75155545.77471 286 270 -53333333.32457 287 270 5.066394805908e-07 288 270 -198223262.271 289 270 2.98023223877e-07 290 270 5.960464477539e-08 291 270 -75155545.7747 292 270 53333333.32457 293 270 -1.490116119385e-08 363 270 -28555987.69793 364 270 13333333.33771 365 270 16471527.78319 366 270 -88624220.55292 367 270 1.043081283569e-07 368 270 65886111.10029 369 270 -28555987.69793 370 270 -13333333.33771 371 270 16471527.78319 378 270 -7556159.747413 379 270 -3.278255462646e-07 380 270 -1.206994056702e-06 381 270 72174281.7049 382 270 1.728534698486e-06 383 270 1.221895217896e-06 384 270 -7556159.747413 385 270 -7.450580596924e-07 386 270 1.341104507446e-06 396 270 -28555987.69793 397 270 -13333333.33771 398 270 -16471527.78319 399 270 -88624220.55292 400 270 2.235174179077e-07 401 270 -65886111.10029 402 270 -28555987.69793 403 270 13333333.33771 404 270 -16471527.78319 271 271 785785459.402 272 271 -1.788139343262e-06 273 271 -2.086162567139e-06 274 271 -76617423.53181 275 271 5.066394805908e-07 285 271 -53333333.32457 286 271 -59154777.5129 287 271 2.086162567139e-07 288 271 3.576278686523e-07 289 271 36444678.54407 290 271 -4.172325134277e-07 291 271 53333333.32457 292 271 -59154777.5129 293 271 2.98023223877e-08 363 271 13333333.33771 364 271 -24555795.63051 365 271 -13177083.33766 366 271 4.470348358154e-08 367 271 -29957235.32024 368 271 2.831220626831e-07 369 271 -13333333.33771 370 271 -24555795.63051 371 271 13177083.33766 378 271 -2.98023223877e-07 379 271 -58222760.85313 380 271 -52708333.32467 381 271 1.728534698486e-06 382 271 40172745.1813 383 271 -5.960464477539e-08 384 271 -7.003545761108e-07 385 271 -58222760.85313 386 271 52708333.32467 396 271 -13333333.33771 397 271 -24555795.63051 398 271 -13177083.33766 399 271 1.9371509552e-07 400 271 -29957235.32024 401 271 -3.8743019104e-07 402 271 13333333.33771 403 271 -24555795.63051 404 271 13177083.33766 272 272 905507012.9075 273 272 -1.668930053711e-06 274 272 4.470348358154e-07 275 272 123977832.6588 285 272 5.811452865601e-07 286 272 3.129243850708e-07 287 272 -9005963.440556 288 272 1.192092895508e-07 289 272 -4.768371582031e-07 290 272 66375066.93519 291 272 4.470348358154e-08 292 272 -4.470348358154e-08 293 272 -9005963.440553 363 272 16471527.78319 364 272 -13177083.33766 365 272 -28297094.18124 366 272 65886111.10029 367 272 3.8743019104e-07 368 272 -87588646.48668 369 272 16471527.78319 370 272 13177083.33766 371 272 -28297094.18124 378 272 -9.983777999878e-07 379 272 -52708333.32467 380 272 -73187955.04869 381 272 8.642673492432e-07 382 272 1.788139343262e-07 383 272 -190352899.3709 384 272 1.475214958191e-06 385 272 52708333.32467 386 272 -73187955.0487 396 272 -16471527.78319 397 272 -13177083.33766 398 272 -28297094.18124 399 272 -65886111.10029 400 272 -2.831220626831e-07 401 272 -87588646.48668 402 272 -16471527.78319 403 272 13177083.33766 404 272 -28297094.18124 273 273 913791605.4334 274 273 7.748603820801e-06 275 273 -2.622604370117e-06 276 273 126048980.7912 277 273 -2.175569534302e-06 278 273 -1.490116119385e-06 288 273 -75155545.77471 289 273 -53333333.32457 290 273 5.066394805908e-07 291 273 -198223262.271 292 273 2.98023223877e-07 293 273 5.960464477539e-08 294 273 -75155545.7747 295 273 53333333.32457 296 273 -1.490116119385e-08 366 273 -28555987.69793 367 273 13333333.33771 368 273 16471527.78319 369 273 -88624220.55292 370 273 1.043081283569e-07 371 273 65886111.10029 372 273 -28555987.69793 373 273 -13333333.33771 374 273 16471527.78319 381 273 -7556159.747413 382 273 -3.278255462646e-07 383 273 -1.206994056702e-06 384 273 72174281.7049 385 273 1.728534698486e-06 386 273 1.221895217896e-06 387 273 -7556159.747413 388 273 -7.450580596924e-07 389 273 1.341104507446e-06 399 273 -28555987.69793 400 273 -13333333.33771 401 273 -16471527.78319 402 273 -88624220.55292 403 273 2.235174179077e-07 404 273 -65886111.10029 405 273 -28555987.69793 406 273 13333333.33771 407 273 -16471527.78319 274 274 785785459.402 275 274 -1.788139343262e-06 276 274 -2.086162567139e-06 277 274 -76617423.53181 278 274 5.066394805908e-07 288 274 -53333333.32457 289 274 -59154777.5129 290 274 2.086162567139e-07 291 274 3.576278686523e-07 292 274 36444678.54407 293 274 -4.172325134277e-07 294 274 53333333.32457 295 274 -59154777.5129 296 274 2.98023223877e-08 366 274 13333333.33771 367 274 -24555795.63051 368 274 -13177083.33766 369 274 4.470348358154e-08 370 274 -29957235.32024 371 274 2.831220626831e-07 372 274 -13333333.33771 373 274 -24555795.63051 374 274 13177083.33766 381 274 -2.98023223877e-07 382 274 -58222760.85313 383 274 -52708333.32467 384 274 1.728534698486e-06 385 274 40172745.1813 386 274 -5.960464477539e-08 387 274 -7.003545761108e-07 388 274 -58222760.85313 389 274 52708333.32467 399 274 -13333333.33771 400 274 -24555795.63051 401 274 -13177083.33766 402 274 1.9371509552e-07 403 274 -29957235.32024 404 274 -3.8743019104e-07 405 274 13333333.33771 406 274 -24555795.63051 407 274 13177083.33766 275 275 905507012.9075 276 275 -1.668930053711e-06 277 275 4.470348358154e-07 278 275 123977832.6588 288 275 5.811452865601e-07 289 275 3.129243850708e-07 290 275 -9005963.440556 291 275 1.192092895508e-07 292 275 -4.768371582031e-07 293 275 66375066.93519 294 275 4.470348358154e-08 295 275 -4.470348358154e-08 296 275 -9005963.440553 366 275 16471527.78319 367 275 -13177083.33766 368 275 -28297094.18124 369 275 65886111.10029 370 275 3.8743019104e-07 371 275 -87588646.48668 372 275 16471527.78319 373 275 13177083.33766 374 275 -28297094.18124 381 275 -9.983777999878e-07 382 275 -52708333.32467 383 275 -73187955.04869 384 275 8.642673492432e-07 385 275 1.788139343262e-07 386 275 -190352899.3709 387 275 1.475214958191e-06 388 275 52708333.32467 389 275 -73187955.0487 399 275 -16471527.78319 400 275 -13177083.33766 401 275 -28297094.18124 402 275 -65886111.10029 403 275 -2.831220626831e-07 404 275 -87588646.48668 405 275 -16471527.78319 406 275 13177083.33766 407 275 -28297094.18124 276 276 913791605.4334 277 276 7.748603820801e-06 278 276 -2.622604370117e-06 279 276 126048980.7912 280 276 -2.175569534302e-06 281 276 -1.490116119385e-06 291 276 -75155545.77471 292 276 -53333333.32457 293 276 5.066394805908e-07 294 276 -198223262.271 295 276 2.98023223877e-07 296 276 5.960464477539e-08 297 276 -75155545.7747 298 276 53333333.32457 299 276 -1.490116119385e-08 369 276 -28555987.69793 370 276 13333333.33771 371 276 16471527.78319 372 276 -88624220.55292 373 276 1.043081283569e-07 374 276 65886111.10029 375 276 -28555987.69793 376 276 -13333333.33771 377 276 16471527.78319 384 276 -7556159.747413 385 276 -3.278255462646e-07 386 276 -1.206994056702e-06 387 276 72174281.7049 388 276 1.728534698486e-06 389 276 1.221895217896e-06 390 276 -7556159.747413 391 276 -7.450580596924e-07 392 276 1.341104507446e-06 402 276 -28555987.69793 403 276 -13333333.33771 404 276 -16471527.78319 405 276 -88624220.55292 406 276 2.235174179077e-07 407 276 -65886111.10029 408 276 -28555987.69793 409 276 13333333.33771 410 276 -16471527.78319 277 277 785785459.402 278 277 -1.788139343262e-06 279 277 -2.086162567139e-06 280 277 -76617423.53181 281 277 5.066394805908e-07 291 277 -53333333.32457 292 277 -59154777.5129 293 277 2.086162567139e-07 294 277 3.576278686523e-07 295 277 36444678.54407 296 277 -4.172325134277e-07 297 277 53333333.32457 298 277 -59154777.5129 299 277 2.98023223877e-08 369 277 13333333.33771 370 277 -24555795.63051 371 277 -13177083.33766 372 277 4.470348358154e-08 373 277 -29957235.32024 374 277 2.831220626831e-07 375 277 -13333333.33771 376 277 -24555795.63051 377 277 13177083.33766 384 277 -2.98023223877e-07 385 277 -58222760.85313 386 277 -52708333.32467 387 277 1.728534698486e-06 388 277 40172745.1813 389 277 -5.960464477539e-08 390 277 -7.003545761108e-07 391 277 -58222760.85313 392 277 52708333.32467 402 277 -13333333.33771 403 277 -24555795.63051 404 277 -13177083.33766 405 277 1.9371509552e-07 406 277 -29957235.32024 407 277 -3.8743019104e-07 408 277 13333333.33771 409 277 -24555795.63051 410 277 13177083.33766 278 278 905507012.9075 279 278 -1.668930053711e-06 280 278 4.470348358154e-07 281 278 123977832.6588 291 278 5.811452865601e-07 292 278 3.129243850708e-07 293 278 -9005963.440556 294 278 1.192092895508e-07 295 278 -4.768371582031e-07 296 278 66375066.93519 297 278 4.470348358154e-08 298 278 -4.470348358154e-08 299 278 -9005963.440553 369 278 16471527.78319 370 278 -13177083.33766 371 278 -28297094.18124 372 278 65886111.10029 373 278 3.8743019104e-07 374 278 -87588646.48668 375 278 16471527.78319 376 278 13177083.33766 377 278 -28297094.18124 384 278 -9.983777999878e-07 385 278 -52708333.32467 386 278 -73187955.04869 387 278 8.642673492432e-07 388 278 1.788139343262e-07 389 278 -190352899.3709 390 278 1.475214958191e-06 391 278 52708333.32467 392 278 -73187955.0487 402 278 -16471527.78319 403 278 -13177083.33766 404 278 -28297094.18124 405 278 -65886111.10029 406 278 -2.831220626831e-07 407 278 -87588646.48668 408 278 -16471527.78319 409 278 13177083.33766 410 278 -28297094.18124 279 279 988947148.5376 280 279 53333332.25791 281 279 -9.298324584961e-06 282 279 31359232.67644 283 279 -53333332.8979 284 279 1.251697540283e-06 294 279 -75155545.77471 295 279 -53333333.32457 296 279 5.066394805908e-07 297 279 -198223262.271 298 279 2.98023223877e-07 299 279 5.960464477539e-08 300 279 -75155545.7747 301 279 53333333.32457 302 279 -1.490116119385e-08 372 279 -28555987.69793 373 279 13333333.33771 374 279 16471527.78319 375 279 -107413106.5112 376 279 -13333333.17771 377 279 65886110.96157 387 279 -7556159.747413 388 279 -3.278255462646e-07 389 279 -1.206994056702e-06 390 279 100730268.7541 391 279 13333333.07105 392 279 0.02774140238762 393 279 -26345045.89131 394 279 -13333333.23105 395 279 16471527.49884 405 279 -28555987.69793 406 279 -13333333.33771 407 279 -16471527.78319 408 279 -88624220.55292 409 279 2.235174179077e-07 410 279 -65886111.10029 411 279 -28555987.69793 412 279 13333333.33771 413 279 -16471527.78319 280 280 844940234.7245 281 280 -7.987022399902e-06 282 280 -53333332.68457 283 280 -155306402.5315 284 280 5.394220352173e-06 294 280 -53333333.32457 295 280 -59154777.5129 296 280 2.086162567139e-07 297 280 3.576278686523e-07 298 280 36444678.54407 299 280 -4.172325134277e-07 300 280 53333333.32457 301 280 -59154777.5129 302 280 2.98023223877e-08 372 280 13333333.33771 373 280 -24555795.63051 374 280 -13177083.33766 375 280 -13333333.23104 376 280 -44745929.54447 377 280 13177083.28808 387 280 -2.98023223877e-07 388 280 -58222760.85313 389 280 -52708333.32467 390 280 13333333.07105 391 280 64728540.28304 392 280 0.022192299366 393 280 -13333333.17771 394 280 -73011454.71628 395 280 52708333.03581 405 280 -13333333.33771 406 280 -24555795.63051 407 280 -13177083.33766 408 280 1.9371509552e-07 409 280 -29957235.32024 410 280 -3.8743019104e-07 411 280 13333333.33771 412 280 -24555795.63051 413 280 13177083.33766 281 281 914512974.9691 282 281 1.728534698486e-06 283 281 4.559755325317e-06 284 281 62880662.12465 294 281 5.811452865601e-07 295 281 3.129243850708e-07 296 281 -9005963.440556 297 281 1.192092895508e-07 298 281 -4.768371582031e-07 299 281 66375066.93519 300 281 4.470348358154e-08 301 281 -4.470348358154e-08 302 281 -9005963.440553 372 281 16471527.78319 373 281 -13177083.33766 374 281 -28297094.18124 375 281 65886110.96157 376 281 13177083.26329 377 281 -89840137.25118 387 281 -9.983777999878e-07 388 281 -52708333.32467 389 281 -73187955.04869 390 281 -0.0277450978756 391 281 -0.02219566702843 392 281 -162055805.4842 393 281 16471527.35667 394 281 52708332.94687 395 281 -75439445.29918 405 281 -16471527.78319 406 281 -13177083.33766 407 281 -28297094.18124 408 281 -65886111.10029 409 281 -2.831220626831e-07 410 281 -87588646.48668 411 281 -16471527.78319 412 281 13177083.33766 413 281 -28297094.18124 282 282 509154568.8248 283 282 25085639.27704 284 282 -5.960464477539e-07 297 282 -75155545.77471 298 282 -53333333.32457 299 282 5.066394805908e-07 300 282 -228025244.9359 301 282 -25085638.85037 302 282 7.152557373047e-07 303 282 -4082989.550575 304 282 42666666.23299 305 282 -1.251697540283e-06 375 282 -9767101.054335 376 282 15999999.84525 377 282 19765832.91331 390 282 -26345045.8913 391 282 -13333333.17771 392 282 -16471527.35667 393 282 37378109.13818 394 282 6271409.822349 395 282 11432222.19995 408 282 -28555987.69793 409 282 -13333333.33771 410 282 -16471527.78319 411 282 -87310926.38278 412 282 -6271409.715683 413 282 -57161110.99975 414 282 -11791159.78617 415 282 10666666.5635 416 282 -9687222.01637 283 283 472604990.7818 284 283 -2.652406692505e-06 297 283 -53333333.32457 298 283 -59154777.5129 299 283 2.086162567139e-07 300 283 -25085638.63704 301 283 9928432.40691 302 283 2.384185791016e-07 303 283 63999999.34949 304 283 -34822221.9043 305 283 -1.788139343262e-07 375 283 10666666.5635 376 283 -9767101.054336 377 283 -10541666.62055 390 283 -13333333.23105 391 283 -73011454.71627 392 283 -52708332.94687 393 283 6271409.822349 394 283 28240714.62293 395 283 9145833.226567 408 283 -13333333.33771 409 283 -24555795.63051 410 283 -13177083.33766 411 283 -6271409.66235 412 283 -27822507.01778 413 283 -6197916.627156 414 283 15999999.84526 415 283 -19475967.87838 416 283 18604166.53816 284 284 522045024.059 297 284 5.811452865601e-07 298 284 3.129243850708e-07 299 284 -9005963.440556 300 284 7.450580596924e-07 301 284 2.384185791016e-07 302 284 26229073.67805 303 284 -1.490116119385e-06 304 284 2.384185791016e-07 305 284 19851260.21887 375 284 13177221.94221 376 284 -15812499.93082 377 284 -26045602.81156 390 284 -16471527.49884 391 284 -52708333.03581 392 284 -75439445.29917 393 284 -11432222.19995 394 284 -9145833.22657 395 284 -109250165.6029 408 284 -16471527.78319 409 284 -13177083.33766 410 284 -28297094.18124 411 284 -57161110.99975 412 284 -6197916.651946 413 284 -74255038.56586 414 284 -14530833.02455 415 284 14729166.53156 416 284 -23758284.67089 285 285 913791605.4334 286 285 7.748603820801e-06 287 285 -2.622604370117e-06 288 285 126048980.7912 289 285 -2.175569534302e-06 290 285 -1.490116119385e-06 306 285 -198223262.271 307 285 2.98023223877e-07 308 285 5.960464477539e-08 309 285 -75155545.7747 310 285 53333333.32457 311 285 -1.490116119385e-08 378 285 -88624220.55292 379 285 1.043081283569e-07 380 285 65886111.10029 381 285 -28555987.69793 382 285 -13333333.33771 383 285 16471527.78319 396 285 72174281.7049 397 285 1.728534698486e-06 398 285 1.221895217896e-06 399 285 -7556159.747413 400 285 -7.450580596924e-07 401 285 1.341104507446e-06 417 285 -88624220.55292 418 285 2.235174179077e-07 419 285 -65886111.10029 420 285 -28555987.69793 421 285 13333333.33771 422 285 -16471527.78319 286 286 785785459.402 287 286 -1.788139343262e-06 288 286 -2.086162567139e-06 289 286 -76617423.53181 290 286 5.066394805908e-07 306 286 3.576278686523e-07 307 286 36444678.54407 308 286 -4.172325134277e-07 309 286 53333333.32457 310 286 -59154777.5129 311 286 2.98023223877e-08 378 286 4.470348358154e-08 379 286 -29957235.32024 380 286 2.831220626831e-07 381 286 -13333333.33771 382 286 -24555795.63051 383 286 13177083.33766 396 286 1.728534698486e-06 397 286 40172745.1813 398 286 -5.960464477539e-08 399 286 -7.003545761108e-07 400 286 -58222760.85313 401 286 52708333.32467 417 286 1.9371509552e-07 418 286 -29957235.32024 419 286 -3.8743019104e-07 420 286 13333333.33771 421 286 -24555795.63051 422 286 13177083.33766 287 287 905507012.9075 288 287 -1.668930053711e-06 289 287 4.470348358154e-07 290 287 123977832.6588 306 287 1.192092895508e-07 307 287 -4.768371582031e-07 308 287 66375066.93519 309 287 4.470348358154e-08 310 287 -4.470348358154e-08 311 287 -9005963.440553 378 287 65886111.10029 379 287 3.8743019104e-07 380 287 -87588646.48668 381 287 16471527.78319 382 287 13177083.33766 383 287 -28297094.18124 396 287 8.642673492432e-07 397 287 1.788139343262e-07 398 287 -190352899.3709 399 287 1.475214958191e-06 400 287 52708333.32467 401 287 -73187955.0487 417 287 -65886111.10029 418 287 -2.831220626831e-07 419 287 -87588646.48668 420 287 -16471527.78319 421 287 13177083.33766 422 287 -28297094.18124 288 288 913791605.4334 289 288 7.748603820801e-06 290 288 -2.622604370117e-06 291 288 126048980.7912 292 288 -2.175569534302e-06 293 288 -1.490116119385e-06 306 288 -75155545.77471 307 288 -53333333.32457 308 288 5.066394805908e-07 309 288 -198223262.271 310 288 2.98023223877e-07 311 288 5.960464477539e-08 312 288 -75155545.7747 313 288 53333333.32457 314 288 -1.490116119385e-08 378 288 -28555987.69793 379 288 13333333.33771 380 288 16471527.78319 381 288 -88624220.55292 382 288 1.043081283569e-07 383 288 65886111.10029 384 288 -28555987.69793 385 288 -13333333.33771 386 288 16471527.78319 396 288 -7556159.747413 397 288 -3.278255462646e-07 398 288 -1.206994056702e-06 399 288 72174281.7049 400 288 1.728534698486e-06 401 288 1.221895217896e-06 402 288 -7556159.747413 403 288 -7.450580596924e-07 404 288 1.341104507446e-06 417 288 -28555987.69793 418 288 -13333333.33771 419 288 -16471527.78319 420 288 -88624220.55292 421 288 2.235174179077e-07 422 288 -65886111.10029 423 288 -28555987.69793 424 288 13333333.33771 425 288 -16471527.78319 289 289 785785459.402 290 289 -1.788139343262e-06 291 289 -2.086162567139e-06 292 289 -76617423.53181 293 289 5.066394805908e-07 306 289 -53333333.32457 307 289 -59154777.5129 308 289 2.086162567139e-07 309 289 3.576278686523e-07 310 289 36444678.54407 311 289 -4.172325134277e-07 312 289 53333333.32457 313 289 -59154777.5129 314 289 2.98023223877e-08 378 289 13333333.33771 379 289 -24555795.63051 380 289 -13177083.33766 381 289 4.470348358154e-08 382 289 -29957235.32024 383 289 2.831220626831e-07 384 289 -13333333.33771 385 289 -24555795.63051 386 289 13177083.33766 396 289 -2.98023223877e-07 397 289 -58222760.85313 398 289 -52708333.32467 399 289 1.728534698486e-06 400 289 40172745.1813 401 289 -5.960464477539e-08 402 289 -7.003545761108e-07 403 289 -58222760.85313 404 289 52708333.32467 417 289 -13333333.33771 418 289 -24555795.63051 419 289 -13177083.33766 420 289 1.9371509552e-07 421 289 -29957235.32024 422 289 -3.8743019104e-07 423 289 13333333.33771 424 289 -24555795.63051 425 289 13177083.33766 290 290 905507012.9075 291 290 -1.668930053711e-06 292 290 4.470348358154e-07 293 290 123977832.6588 306 290 5.811452865601e-07 307 290 3.129243850708e-07 308 290 -9005963.440556 309 290 1.192092895508e-07 310 290 -4.768371582031e-07 311 290 66375066.93519 312 290 4.470348358154e-08 313 290 -4.470348358154e-08 314 290 -9005963.440553 378 290 16471527.78319 379 290 -13177083.33766 380 290 -28297094.18124 381 290 65886111.10029 382 290 3.8743019104e-07 383 290 -87588646.48668 384 290 16471527.78319 385 290 13177083.33766 386 290 -28297094.18124 396 290 -9.983777999878e-07 397 290 -52708333.32467 398 290 -73187955.04869 399 290 8.642673492432e-07 400 290 1.788139343262e-07 401 290 -190352899.3709 402 290 1.475214958191e-06 403 290 52708333.32467 404 290 -73187955.0487 417 290 -16471527.78319 418 290 -13177083.33766 419 290 -28297094.18124 420 290 -65886111.10029 421 290 -2.831220626831e-07 422 290 -87588646.48668 423 290 -16471527.78319 424 290 13177083.33766 425 290 -28297094.18124 291 291 913791605.4334 292 291 7.748603820801e-06 293 291 -2.622604370117e-06 294 291 126048980.7912 295 291 -2.175569534302e-06 296 291 -1.490116119385e-06 309 291 -75155545.77471 310 291 -53333333.32457 311 291 5.066394805908e-07 312 291 -198223262.271 313 291 2.98023223877e-07 314 291 5.960464477539e-08 315 291 -75155545.7747 316 291 53333333.32457 317 291 -1.490116119385e-08 381 291 -28555987.69793 382 291 13333333.33771 383 291 16471527.78319 384 291 -88624220.55292 385 291 1.043081283569e-07 386 291 65886111.10029 387 291 -28555987.69793 388 291 -13333333.33771 389 291 16471527.78319 399 291 -7556159.747413 400 291 -3.278255462646e-07 401 291 -1.206994056702e-06 402 291 72174281.7049 403 291 1.728534698486e-06 404 291 1.221895217896e-06 405 291 -7556159.747413 406 291 -7.450580596924e-07 407 291 1.341104507446e-06 420 291 -28555987.69793 421 291 -13333333.33771 422 291 -16471527.78319 423 291 -88624220.55292 424 291 2.235174179077e-07 425 291 -65886111.10029 426 291 -28555987.69793 427 291 13333333.33771 428 291 -16471527.78319 292 292 785785459.402 293 292 -1.788139343262e-06 294 292 -2.086162567139e-06 295 292 -76617423.53181 296 292 5.066394805908e-07 309 292 -53333333.32457 310 292 -59154777.5129 311 292 2.086162567139e-07 312 292 3.576278686523e-07 313 292 36444678.54407 314 292 -4.172325134277e-07 315 292 53333333.32457 316 292 -59154777.5129 317 292 2.98023223877e-08 381 292 13333333.33771 382 292 -24555795.63051 383 292 -13177083.33766 384 292 4.470348358154e-08 385 292 -29957235.32024 386 292 2.831220626831e-07 387 292 -13333333.33771 388 292 -24555795.63051 389 292 13177083.33766 399 292 -2.98023223877e-07 400 292 -58222760.85313 401 292 -52708333.32467 402 292 1.728534698486e-06 403 292 40172745.1813 404 292 -5.960464477539e-08 405 292 -7.003545761108e-07 406 292 -58222760.85313 407 292 52708333.32467 420 292 -13333333.33771 421 292 -24555795.63051 422 292 -13177083.33766 423 292 1.9371509552e-07 424 292 -29957235.32024 425 292 -3.8743019104e-07 426 292 13333333.33771 427 292 -24555795.63051 428 292 13177083.33766 293 293 905507012.9075 294 293 -1.668930053711e-06 295 293 4.470348358154e-07 296 293 123977832.6588 309 293 5.811452865601e-07 310 293 3.129243850708e-07 311 293 -9005963.440556 312 293 1.192092895508e-07 313 293 -4.768371582031e-07 314 293 66375066.93519 315 293 4.470348358154e-08 316 293 -4.470348358154e-08 317 293 -9005963.440553 381 293 16471527.78319 382 293 -13177083.33766 383 293 -28297094.18124 384 293 65886111.10029 385 293 3.8743019104e-07 386 293 -87588646.48668 387 293 16471527.78319 388 293 13177083.33766 389 293 -28297094.18124 399 293 -9.983777999878e-07 400 293 -52708333.32467 401 293 -73187955.04869 402 293 8.642673492432e-07 403 293 1.788139343262e-07 404 293 -190352899.3709 405 293 1.475214958191e-06 406 293 52708333.32467 407 293 -73187955.0487 420 293 -16471527.78319 421 293 -13177083.33766 422 293 -28297094.18124 423 293 -65886111.10029 424 293 -2.831220626831e-07 425 293 -87588646.48668 426 293 -16471527.78319 427 293 13177083.33766 428 293 -28297094.18124 294 294 913791605.4334 295 294 7.748603820801e-06 296 294 -2.622604370117e-06 297 294 126048980.7912 298 294 -2.175569534302e-06 299 294 -1.490116119385e-06 312 294 -75155545.77471 313 294 -53333333.32457 314 294 5.066394805908e-07 315 294 -198223262.271 316 294 2.98023223877e-07 317 294 5.960464477539e-08 318 294 -75155545.7747 319 294 53333333.32457 320 294 -1.490116119385e-08 384 294 -28555987.69793 385 294 13333333.33771 386 294 16471527.78319 387 294 -88624220.55292 388 294 1.043081283569e-07 389 294 65886111.10029 390 294 -28555987.69793 391 294 -13333333.33771 392 294 16471527.78319 402 294 -7556159.747413 403 294 -3.278255462646e-07 404 294 -1.206994056702e-06 405 294 72174281.7049 406 294 1.728534698486e-06 407 294 1.221895217896e-06 408 294 -7556159.747413 409 294 -7.450580596924e-07 410 294 1.341104507446e-06 423 294 -28555987.69793 424 294 -13333333.33771 425 294 -16471527.78319 426 294 -88624220.55292 427 294 2.235174179077e-07 428 294 -65886111.10029 429 294 -28555987.69793 430 294 13333333.33771 431 294 -16471527.78319 295 295 785785459.402 296 295 -1.788139343262e-06 297 295 -2.086162567139e-06 298 295 -76617423.53181 299 295 5.066394805908e-07 312 295 -53333333.32457 313 295 -59154777.5129 314 295 2.086162567139e-07 315 295 3.576278686523e-07 316 295 36444678.54407 317 295 -4.172325134277e-07 318 295 53333333.32457 319 295 -59154777.5129 320 295 2.98023223877e-08 384 295 13333333.33771 385 295 -24555795.63051 386 295 -13177083.33766 387 295 4.470348358154e-08 388 295 -29957235.32024 389 295 2.831220626831e-07 390 295 -13333333.33771 391 295 -24555795.63051 392 295 13177083.33766 402 295 -2.98023223877e-07 403 295 -58222760.85313 404 295 -52708333.32467 405 295 1.728534698486e-06 406 295 40172745.1813 407 295 -5.960464477539e-08 408 295 -7.003545761108e-07 409 295 -58222760.85313 410 295 52708333.32467 423 295 -13333333.33771 424 295 -24555795.63051 425 295 -13177083.33766 426 295 1.9371509552e-07 427 295 -29957235.32024 428 295 -3.8743019104e-07 429 295 13333333.33771 430 295 -24555795.63051 431 295 13177083.33766 296 296 905507012.9075 297 296 -1.668930053711e-06 298 296 4.470348358154e-07 299 296 123977832.6588 312 296 5.811452865601e-07 313 296 3.129243850708e-07 314 296 -9005963.440556 315 296 1.192092895508e-07 316 296 -4.768371582031e-07 317 296 66375066.93519 318 296 4.470348358154e-08 319 296 -4.470348358154e-08 320 296 -9005963.440553 384 296 16471527.78319 385 296 -13177083.33766 386 296 -28297094.18124 387 296 65886111.10029 388 296 3.8743019104e-07 389 296 -87588646.48668 390 296 16471527.78319 391 296 13177083.33766 392 296 -28297094.18124 402 296 -9.983777999878e-07 403 296 -52708333.32467 404 296 -73187955.04869 405 296 8.642673492432e-07 406 296 1.788139343262e-07 407 296 -190352899.3709 408 296 1.475214958191e-06 409 296 52708333.32467 410 296 -73187955.0487 423 296 -16471527.78319 424 296 -13177083.33766 425 296 -28297094.18124 426 296 -65886111.10029 427 296 -2.831220626831e-07 428 296 -87588646.48668 429 296 -16471527.78319 430 296 13177083.33766 431 296 -28297094.18124 297 297 913791605.4334 298 297 7.748603820801e-06 299 297 -2.622604370117e-06 300 297 126048980.7912 301 297 -2.175569534302e-06 302 297 -1.490116119385e-06 315 297 -75155545.77471 316 297 -53333333.32457 317 297 5.066394805908e-07 318 297 -198223262.271 319 297 2.98023223877e-07 320 297 5.960464477539e-08 321 297 -75155545.7747 322 297 53333333.32457 323 297 -1.490116119385e-08 387 297 -28555987.69793 388 297 13333333.33771 389 297 16471527.78319 390 297 -88624220.55292 391 297 1.043081283569e-07 392 297 65886111.10029 393 297 -28555987.69793 394 297 -13333333.33771 395 297 16471527.78319 405 297 -7556159.747413 406 297 -3.278255462646e-07 407 297 -1.206994056702e-06 408 297 72174281.7049 409 297 1.728534698486e-06 410 297 1.221895217896e-06 411 297 -7556159.747413 412 297 -7.450580596924e-07 413 297 1.341104507446e-06 426 297 -28555987.69793 427 297 -13333333.33771 428 297 -16471527.78319 429 297 -88624220.55292 430 297 2.235174179077e-07 431 297 -65886111.10029 432 297 -28555987.69793 433 297 13333333.33771 434 297 -16471527.78319 298 298 785785459.402 299 298 -1.788139343262e-06 300 298 -2.086162567139e-06 301 298 -76617423.53181 302 298 5.066394805908e-07 315 298 -53333333.32457 316 298 -59154777.5129 317 298 2.086162567139e-07 318 298 3.576278686523e-07 319 298 36444678.54407 320 298 -4.172325134277e-07 321 298 53333333.32457 322 298 -59154777.5129 323 298 2.98023223877e-08 387 298 13333333.33771 388 298 -24555795.63051 389 298 -13177083.33766 390 298 4.470348358154e-08 391 298 -29957235.32024 392 298 2.831220626831e-07 393 298 -13333333.33771 394 298 -24555795.63051 395 298 13177083.33766 405 298 -2.98023223877e-07 406 298 -58222760.85313 407 298 -52708333.32467 408 298 1.728534698486e-06 409 298 40172745.1813 410 298 -5.960464477539e-08 411 298 -7.003545761108e-07 412 298 -58222760.85313 413 298 52708333.32467 426 298 -13333333.33771 427 298 -24555795.63051 428 298 -13177083.33766 429 298 1.9371509552e-07 430 298 -29957235.32024 431 298 -3.8743019104e-07 432 298 13333333.33771 433 298 -24555795.63051 434 298 13177083.33766 299 299 905507012.9075 300 299 -1.668930053711e-06 301 299 4.470348358154e-07 302 299 123977832.6588 315 299 5.811452865601e-07 316 299 3.129243850708e-07 317 299 -9005963.440556 318 299 1.192092895508e-07 319 299 -4.768371582031e-07 320 299 66375066.93519 321 299 4.470348358154e-08 322 299 -4.470348358154e-08 323 299 -9005963.440553 387 299 16471527.78319 388 299 -13177083.33766 389 299 -28297094.18124 390 299 65886111.10029 391 299 3.8743019104e-07 392 299 -87588646.48668 393 299 16471527.78319 394 299 13177083.33766 395 299 -28297094.18124 405 299 -9.983777999878e-07 406 299 -52708333.32467 407 299 -73187955.04869 408 299 8.642673492432e-07 409 299 1.788139343262e-07 410 299 -190352899.3709 411 299 1.475214958191e-06 412 299 52708333.32467 413 299 -73187955.0487 426 299 -16471527.78319 427 299 -13177083.33766 428 299 -28297094.18124 429 299 -65886111.10029 430 299 -2.831220626831e-07 431 299 -87588646.48668 432 299 -16471527.78319 433 299 13177083.33766 434 299 -28297094.18124 300 300 886076107.088 301 300 29506578.58962 302 300 -4.172325134277e-06 303 300 -15650105.72171 304 300 -67995305.55008 305 300 -1.788139343262e-06 318 300 -75155545.77471 319 300 -53333333.32457 320 300 5.066394805908e-07 321 300 -169993346.4286 322 300 13585574.37073 323 300 1.579523086548e-06 324 300 -49437968.75893 325 300 49988791.22677 326 300 2.637505531311e-06 390 300 -28555987.69793 391 300 13333333.33771 392 300 16471527.78319 393 300 -87310926.38278 394 300 -6271409.66235 395 300 57161110.99975 408 300 -7556159.747413 409 300 -3.278255462646e-07 410 300 -1.206994056702e-06 411 300 87947441.63499 412 300 7376644.65104 413 300 0.02039501070976 414 300 -32923131.70809 415 300 -16998826.39589 416 300 16470833.12799 429 300 -28555987.69793 430 300 -13333333.33771 431 300 -16471527.78319 432 300 -80272721.40676 433 300 3396393.594356 434 300 -61522916.65699 435 300 -22126192.23639 436 300 12497197.81285 437 300 -12109027.78175 301 301 821417136.7999 302 301 5.125999450684e-06 303 301 -67995305.33675 304 301 -205861449.307 305 301 -3.56137752533e-06 318 301 -53333333.32457 319 301 -59154777.5129 320 301 2.086162567139e-07 321 301 13585574.37073 322 301 48420638.98572 323 301 8.940696716309e-07 324 301 49988791.22677 325 301 -80270449.84323 326 301 -2.548098564148e-06 390 301 13333333.33771 391 301 -24555795.63051 392 301 -13177083.33766 393 301 -6271409.715683 394 301 -27822507.01778 395 301 6197916.651945 408 301 -2.98023223877e-07 409 301 -58222760.85313 410 301 -52708333.32467 411 301 7376644.65104 412 301 71782699.055 413 301 0.01631674170494 414 301 -16998826.34256 415 301 -80475967.62785 416 301 52708333.09468 429 301 -13333333.33771 430 301 -24555795.63051 431 301 -13177083.33766 432 301 3396393.594355 433 301 -25669225.02627 434 301 3489583.332416 435 301 12497197.81285 436 301 -29834312.51126 437 301 16666666.67214 302 302 843458196.4419 303 302 1.192092895508e-07 304 302 -3.039836883545e-06 305 302 21637954.44543 318 302 5.811452865601e-07 319 302 3.129243850708e-07 320 302 -9005963.440556 321 302 6.85453414917e-07 322 302 1.072883605957e-06 323 302 73680450.86193 324 302 1.996755599976e-06 325 302 -2.592802047729e-06 326 302 -7752033.245933 390 302 16471527.78319 391 302 -13177083.33766 392 302 -28297094.18124 393 302 57161110.99975 394 302 6197916.627155 395 302 -74255038.56586 408 302 -9.983777999878e-07 409 302 -52708333.32467 410 302 -73187955.04869 411 302 -0.02039638161659 412 302 -0.01631587743759 413 302 -145326344.7753 414 302 16470833.02261 415 302 52708333.03516 416 302 -71952125.45461 429 302 -16471527.78319 430 302 -13177083.33766 431 302 -28297094.18124 432 302 -61522916.65613 433 302 3489583.333104 434 302 -82311580.01855 435 302 -12109027.78175 436 302 16666666.67214 437 302 -27982541.75396 303 303 531775095.0468 304 303 8503382.432196 321 303 -80370018.26376 322 303 -52907761.3966 323 303 -1.847743988037e-06 324 303 -113455777.5588 325 303 18108359.28725 326 303 1.311302185059e-06 327 303 68483060.18779 328 303 -18744593.63382 329 303 5.960464477539e-07 330 303 -42329538.80213 331 303 49035919.29823 332 303 1.922249794006e-06 393 303 -11791159.78616 394 303 15999999.84526 395 303 14530833.02455 411 303 -32923131.7081 412 303 -16998826.34256 413 303 -16470833.02261 414 303 14669982.03611 415 303 2125845.609096 416 303 12968611.10898 432 303 -29859204.61641 433 303 -13226940.35567 434 303 -16470833.33874 435 303 -76387958.09069 436 303 4527089.824043 437 303 -64843055.54491 438 303 -11712307.86994 439 303 -4686148.410764 440 303 8424305.555742 441 303 -24181082.63358 442 303 12258979.8306 443 303 -15950694.44968 304 304 626925818.4292 305 304 3.933906555176e-06 321 304 -52907761.3966 322 304 -54873071.8125 323 304 -8.642673492432e-07 324 304 18108359.28725 325 304 97871879.78123 326 304 3.337860107422e-06 327 304 2588739.696008 328 304 -35173186.25688 329 304 -3.695487976074e-06 330 304 49035919.29823 331 304 -49698043.59219 332 304 -1.505017280579e-06 393 304 10666666.5635 394 304 -19475967.87838 395 304 -14729166.53156 411 304 -16998826.39589 412 304 -80475967.62786 413 304 -52708333.03516 414 304 2125845.609096 415 304 38457662.89345 416 304 3874999.888226 432 304 -13226940.35567 433 304 -23484968.00046 434 304 -13177083.33766 435 304 4527089.824043 436 304 -23556043.72965 437 304 3489583.332417 438 304 647184.9243208 439 304 -37626369.49388 440 304 33333333.32786 441 304 12258979.8306 442 304 -26023208.832 443 304 16666666.67214 305 305 650521074.3426 321 305 -1.788139343262e-06 322 305 -7.748603820801e-07 323 305 -9261489.102506 324 305 1.117587089539e-06 325 305 3.337860107422e-06 326 305 131575339.2945 327 305 1.54972076416e-06 328 305 -3.75509262085e-06 329 305 90632596.10001 330 305 2.279877662659e-06 331 305 -1.594424247742e-06 332 305 13362532.26789 393 305 9687222.01637 394 305 -18604166.53816 395 305 -23758284.67089 411 305 -16470833.12799 412 305 -52708333.09468 413 305 -71952125.45462 414 305 -12968611.10898 415 305 -3874999.888222 416 305 -152766509.4438 432 305 -16470833.33874 433 305 -13177083.33766 434 305 -28359905.71829 435 305 -64843055.54491 436 305 3489583.333105 437 305 -95170201.65885 438 305 299305.5539342 439 305 33333333.32786 440 305 -54230045.43137 441 305 -15950694.44968 442 305 16666666.67214 443 305 -32922561.4056 306 306 456895802.7167 307 306 3.933906555176e-06 308 306 -1.668930053711e-06 309 306 63024490.39562 310 306 10666666.66491 311 306 -1.013278961182e-06 396 306 -88624220.55292 397 306 1.043081283569e-07 398 306 65886111.10029 399 306 -28555987.69793 400 306 -13333333.33771 401 306 16471527.78319 417 306 36087140.85245 418 306 8.344650268555e-07 419 306 -13177222.22006 420 306 -3778079.873706 421 306 2666666.667542 422 306 -3294305.556637 307 307 392892729.701 308 307 -7.152557373047e-07 309 307 -10666666.66491 310 307 -38308711.7659 311 307 3.8743019104e-07 396 307 4.470348358154e-08 397 307 -29957235.32024 398 307 2.831220626831e-07 399 307 -13333333.33771 400 307 -24555795.63051 401 307 13177083.33766 417 307 8.940696716309e-07 418 307 20086372.59065 419 307 -2.98023223877e-08 420 307 -2666666.667543 421 307 -29111380.42657 422 307 26354166.66234 308 308 452753506.4538 309 308 -8.940696716309e-07 310 308 1.490116119385e-07 311 308 61988916.32938 396 308 65886111.10029 397 308 3.8743019104e-07 398 308 -87588646.48668 399 308 16471527.78319 400 308 13177083.33766 401 308 -28297094.18124 417 308 13177222.22006 418 308 1.490116119385e-07 419 308 -95176449.68545 420 308 3294305.556638 421 308 26354166.66234 422 308 -36593977.52435 309 309 456895802.7167 310 309 3.933906555176e-06 311 309 -1.668930053711e-06 312 309 63024490.39562 313 309 10666666.66491 314 309 -1.013278961182e-06 396 309 -28555987.69793 397 309 13333333.33771 398 309 16471527.78319 399 309 -88624220.55292 400 309 1.043081283569e-07 401 309 65886111.10029 402 309 -28555987.69793 403 309 -13333333.33771 404 309 16471527.78319 417 309 -3778079.873706 418 309 -2666666.667542 419 309 -3294305.556638 420 309 36087140.85245 421 309 8.344650268555e-07 422 309 -13177222.22006 423 309 -3778079.873706 424 309 2666666.667542 425 309 -3294305.556637 310 310 392892729.701 311 310 -7.152557373047e-07 312 310 -10666666.66491 313 310 -38308711.7659 314 310 3.8743019104e-07 396 310 13333333.33771 397 310 -24555795.63051 398 310 -13177083.33766 399 310 4.470348358154e-08 400 310 -29957235.32024 401 310 2.831220626831e-07 402 310 -13333333.33771 403 310 -24555795.63051 404 310 13177083.33766 417 310 2666666.667542 418 310 -29111380.42657 419 310 -26354166.66234 420 310 8.940696716309e-07 421 310 20086372.59065 422 310 -2.98023223877e-08 423 310 -2666666.667543 424 310 -29111380.42657 425 310 26354166.66234 311 311 452753506.4538 312 311 -8.940696716309e-07 313 311 1.490116119385e-07 314 311 61988916.32938 396 311 16471527.78319 397 311 -13177083.33766 398 311 -28297094.18124 399 311 65886111.10029 400 311 3.8743019104e-07 401 311 -87588646.48668 402 311 16471527.78319 403 311 13177083.33766 404 311 -28297094.18124 417 311 3294305.556637 418 311 -26354166.66234 419 311 -36593977.52435 420 311 13177222.22006 421 311 1.490116119385e-07 422 311 -95176449.68545 423 311 3294305.556638 424 311 26354166.66234 425 311 -36593977.52435 312 312 456895802.7167 313 312 3.933906555176e-06 314 312 -1.668930053711e-06 315 312 63024490.39562 316 312 10666666.66491 317 312 -1.013278961182e-06 399 312 -28555987.69793 400 312 13333333.33771 401 312 16471527.78319 402 312 -88624220.55292 403 312 1.043081283569e-07 404 312 65886111.10029 405 312 -28555987.69793 406 312 -13333333.33771 407 312 16471527.78319 420 312 -3778079.873706 421 312 -2666666.667542 422 312 -3294305.556638 423 312 36087140.85245 424 312 8.344650268555e-07 425 312 -13177222.22006 426 312 -3778079.873706 427 312 2666666.667542 428 312 -3294305.556637 313 313 392892729.701 314 313 -7.152557373047e-07 315 313 -10666666.66491 316 313 -38308711.7659 317 313 3.8743019104e-07 399 313 13333333.33771 400 313 -24555795.63051 401 313 -13177083.33766 402 313 4.470348358154e-08 403 313 -29957235.32024 404 313 2.831220626831e-07 405 313 -13333333.33771 406 313 -24555795.63051 407 313 13177083.33766 420 313 2666666.667542 421 313 -29111380.42657 422 313 -26354166.66234 423 313 8.940696716309e-07 424 313 20086372.59065 425 313 -2.98023223877e-08 426 313 -2666666.667543 427 313 -29111380.42657 428 313 26354166.66234 314 314 452753506.4538 315 314 -8.940696716309e-07 316 314 1.490116119385e-07 317 314 61988916.32938 399 314 16471527.78319 400 314 -13177083.33766 401 314 -28297094.18124 402 314 65886111.10029 403 314 3.8743019104e-07 404 314 -87588646.48668 405 314 16471527.78319 406 314 13177083.33766 407 314 -28297094.18124 420 314 3294305.556637 421 314 -26354166.66234 422 314 -36593977.52435 423 314 13177222.22006 424 314 1.490116119385e-07 425 314 -95176449.68545 426 314 3294305.556638 427 314 26354166.66234 428 314 -36593977.52435 315 315 456895802.7167 316 315 3.933906555176e-06 317 315 -1.668930053711e-06 318 315 63024490.39562 319 315 10666666.66491 320 315 -1.013278961182e-06 402 315 -28555987.69793 403 315 13333333.33771 404 315 16471527.78319 405 315 -88624220.55292 406 315 1.043081283569e-07 407 315 65886111.10029 408 315 -28555987.69793 409 315 -13333333.33771 410 315 16471527.78319 423 315 -3778079.873706 424 315 -2666666.667542 425 315 -3294305.556638 426 315 36087140.85245 427 315 8.344650268555e-07 428 315 -13177222.22006 429 315 -3778079.873706 430 315 2666666.667542 431 315 -3294305.556637 316 316 392892729.701 317 316 -7.152557373047e-07 318 316 -10666666.66491 319 316 -38308711.7659 320 316 3.8743019104e-07 402 316 13333333.33771 403 316 -24555795.63051 404 316 -13177083.33766 405 316 4.470348358154e-08 406 316 -29957235.32024 407 316 2.831220626831e-07 408 316 -13333333.33771 409 316 -24555795.63051 410 316 13177083.33766 423 316 2666666.667542 424 316 -29111380.42657 425 316 -26354166.66234 426 316 8.940696716309e-07 427 316 20086372.59065 428 316 -2.98023223877e-08 429 316 -2666666.667543 430 316 -29111380.42657 431 316 26354166.66234 317 317 452753506.4538 318 317 -8.940696716309e-07 319 317 1.490116119385e-07 320 317 61988916.32938 402 317 16471527.78319 403 317 -13177083.33766 404 317 -28297094.18124 405 317 65886111.10029 406 317 3.8743019104e-07 407 317 -87588646.48668 408 317 16471527.78319 409 317 13177083.33766 410 317 -28297094.18124 423 317 3294305.556637 424 317 -26354166.66234 425 317 -36593977.52435 426 317 13177222.22006 427 317 1.490116119385e-07 428 317 -95176449.68545 429 317 3294305.556638 430 317 26354166.66234 431 317 -36593977.52435 318 318 456895802.7167 319 318 3.933906555176e-06 320 318 -1.668930053711e-06 321 318 63024490.39562 322 318 10666666.66491 323 318 -1.013278961182e-06 405 318 -28555987.69793 406 318 13333333.33771 407 318 16471527.78319 408 318 -88624220.55292 409 318 1.043081283569e-07 410 318 65886111.10029 411 318 -28555987.69793 412 318 -13333333.33771 413 318 16471527.78319 426 318 -3778079.873706 427 318 -2666666.667542 428 318 -3294305.556638 429 318 36087140.85245 430 318 8.344650268555e-07 431 318 -13177222.22006 432 318 -3778079.873706 433 318 2666666.667542 434 318 -3294305.556637 319 319 392892729.701 320 319 -7.152557373047e-07 321 319 -10666666.66491 322 319 -38308711.7659 323 319 3.8743019104e-07 405 319 13333333.33771 406 319 -24555795.63051 407 319 -13177083.33766 408 319 4.470348358154e-08 409 319 -29957235.32024 410 319 2.831220626831e-07 411 319 -13333333.33771 412 319 -24555795.63051 413 319 13177083.33766 426 319 2666666.667542 427 319 -29111380.42657 428 319 -26354166.66234 429 319 8.940696716309e-07 430 319 20086372.59065 431 319 -2.98023223877e-08 432 319 -2666666.667543 433 319 -29111380.42657 434 319 26354166.66234 320 320 452753506.4538 321 320 -8.940696716309e-07 322 320 1.490116119385e-07 323 320 61988916.32938 405 320 16471527.78319 406 320 -13177083.33766 407 320 -28297094.18124 408 320 65886111.10029 409 320 3.8743019104e-07 410 320 -87588646.48668 411 320 16471527.78319 412 320 13177083.33766 413 320 -28297094.18124 426 320 3294305.556637 427 320 -26354166.66234 428 320 -36593977.52435 429 320 13177222.22006 430 320 1.490116119385e-07 431 320 -95176449.68545 432 320 3294305.556638 433 320 26354166.66234 434 320 -36593977.52435 321 321 451672659.2548 322 321 425457.3069872 324 321 45227333.73336 325 321 -3769936.940774 326 321 5.960464477539e-07 408 321 -28555987.69793 409 321 13333333.33771 410 321 16471527.78319 411 321 -80272721.40676 412 321 3396393.594356 413 321 61522916.65613 414 321 -29859204.61641 415 321 -13226940.35567 416 321 16470833.33874 429 321 -3778079.873706 430 321 -2666666.667542 431 321 -3294305.556638 432 321 34782980.96289 433 321 106364.3267991 434 321 -13176944.44228 435 321 -9519773.826407 436 321 -942484.2356579 437 321 1067638.88752 322 322 397175038.8898 323 322 1.072883605957e-06 324 322 -25103270.2706 325 322 -58853543.86754 326 322 -1.341104507446e-06 408 322 13333333.33771 409 322 -24555795.63051 410 322 -13177083.33766 411 322 3396393.594355 412 322 -25669225.02627 413 322 -3489583.333104 414 322 -13226940.35567 415 322 -23484968.00045 416 322 13177083.33766 429 322 2666666.667542 430 322 -29111380.42657 431 322 -26354166.66234 432 322 106364.3267991 433 322 21158575.86493 434 322 2.682209014893e-07 435 322 -6275817.570742 436 322 -35539993.23945 437 322 29843749.99544 323 323 452492316.5668 325 323 -1.490116119385e-06 326 323 55187296.56271 408 323 16471527.78319 409 323 -13177083.33766 410 323 -28297094.18124 411 323 61522916.65699 412 323 -3489583.332416 413 323 -82311580.01855 414 323 16470833.33874 415 323 13177083.33766 416 323 -28359905.71829 429 323 3294305.556637 430 323 -26354166.66234 431 323 -36593977.52435 432 323 13176944.44228 433 323 3.8743019104e-07 434 323 -95237411.21973 435 323 7655972.222158 436 323 29843749.99475 437 323 -41740795.2267 324 324 444644489.1745 325 324 13081929.57058 326 324 9.536743164063e-07 327 324 -86994427.68368 328 324 -57630747.35091 329 324 -2.384185791016e-06 330 324 44204118.01812 331 324 1554937.536914 332 324 -1.192092895508e-06 411 324 -22126192.23639 412 324 12497197.81285 413 324 12109027.78176 414 324 -76387958.09069 415 324 4527089.824043 416 324 64843055.54491 432 324 -9519773.826409 433 324 -6275817.570743 434 324 -7655972.222158 435 324 15798034.7999 436 324 3270482.394257 437 324 -12968611.10898 438 324 -35347304.85947 439 324 -14407686.84483 440 324 20312500.00667 441 324 -14510689.24923 442 324 388734.3844201 443 324 1171666.664472 325 325 449754245.7917 326 325 4.64916229248e-06 327 325 -57630747.35091 328 325 -66447376.92277 329 325 -1.296401023865e-06 330 325 -19778395.79291 331 325 -57866988.0148 332 325 -2.086162567139e-06 411 325 12497197.81285 412 325 -29834312.51127 413 325 -16666666.67214 414 325 4527089.824043 415 325 -23556043.72965 416 325 -3489583.333103 432 325 -942484.2356579 433 325 -35539993.23945 434 325 -29843749.99475 435 325 3270482.394257 436 325 17075473.95481 437 325 9.536743164063e-07 438 325 -14407686.84483 439 325 -30210542.16671 440 325 16666666.67214 441 325 -4944598.950664 442 325 -40028465.77003 443 325 33333333.32786 326 326 513640710.6392 327 326 -3.159046173096e-06 328 326 -1.370906829834e-06 329 326 -3386801.062691 330 326 -1.907348632813e-06 331 326 -2.235174179077e-06 332 326 68569532.94435 411 326 12109027.78176 412 326 -16666666.67214 413 326 -27982541.75396 414 326 64843055.54491 415 326 -3489583.332416 416 326 -95170201.65886 432 326 -1067638.887521 433 326 -29843749.99544 434 326 -41740795.22671 435 326 12968611.10898 436 326 1.013278961182e-06 437 326 -125891389.0729 438 326 20312500.00667 439 326 16666666.67214 440 326 -37109894.74031 441 326 7551944.445205 442 326 33333333.32786 443 326 -51022200.11333 327 327 254849231.4225 328 327 61411260.29348 329 327 3.814697265625e-06 330 327 -66610780.59762 331 327 -6369252.63857 332 327 -1.132488250732e-06 414 327 -11712307.86995 415 327 647184.9243208 416 327 -299305.5539346 435 327 -35347304.85947 436 327 -14407686.84483 437 327 -20312500.00667 438 327 6046162.064774 439 327 15352815.08093 440 327 8124999.998666 441 327 -43850090.99987 442 327 -1592313.160427 443 327 -36263194.43806 328 328 228505477.8886 329 328 4.172325134277e-06 330 328 14964080.69126 331 328 42842168.62011 332 328 1.728534698486e-06 414 328 -4686148.410764 415 328 -37626369.49388 416 328 -33333333.32786 435 328 -14407686.84483 436 328 -30210542.16671 437 328 -16666666.67214 438 328 15352815.08093 439 328 -539776.3219635 440 328 6666666.665572 441 328 3741020.174657 442 328 -16486853.68196 443 328 3333333.334428 329 329 294920181.6058 331 329 1.788139343262e-06 332 329 70439578.90092 414 329 -8424305.555743 415 329 -33333333.32786 416 329 -54230045.43139 435 329 -20312500.00667 436 329 -16666666.67214 437 329 -37109894.74031 438 329 -8124999.998665 439 329 -6666666.665571 440 329 -80046343.42155 441 329 -36263194.43892 442 329 -3333333.334428 443 329 -54916494.1788 330 330 221377868.0526 331 330 -44221604.19657 332 330 -1.311302185059e-06 414 330 -24181082.63358 415 330 12258979.8306 416 330 15950694.44968 435 330 -14510689.24923 436 330 -4944598.950664 437 330 -7551944.445206 438 330 -43850090.99987 439 330 3741020.174657 440 330 36263194.43892 441 330 4221029.5472 442 330 -11055401.05459 443 330 -6380277.77673 331 331 221364529.6578 332 331 2.861022949219e-06 414 331 12258979.8306 415 331 -26023208.832 416 331 -16666666.67214 435 331 388734.38442 436 331 -40028465.77003 437 331 -33333333.32786 438 331 -1592313.160427 439 331 -16486853.68196 440 331 3333333.334428 441 331 -11055401.05459 442 331 4217694.948508 443 331 6666666.665572 332 332 265339467.0094 414 332 15950694.44968 415 332 -16666666.67214 416 332 -32922561.4056 435 332 -1171666.664473 436 332 -33333333.32786 437 332 -51022200.11334 438 332 36263194.43806 439 332 -3333333.334428 440 332 -54916494.1788 441 332 6380277.77673 442 332 -6666666.665571 443 332 -69994299.86354 333 333 571119749.839 334 333 53333333.32457 335 333 -6.198883056641e-06 336 333 -292913008.3249 337 333 -53333332.8979 338 333 6.556510925293e-06 339 333 19534202.10867 340 333 42666666.23299 341 333 -1.490116119385e-06 444 333 45108925.89256 445 333 13333333.33771 446 333 13177222.19231 447 333 -107413106.5112 448 333 -13333333.23104 449 333 -65886110.96157 450 333 -9767101.054335 451 333 10666666.5635 452 333 -13177221.94221 334 334 491115909.0416 335 334 -3.094097220493e-06 336 334 -53333332.68457 337 334 -42244300.58137 338 334 2.145767211914e-06 339 334 63999999.34949 340 334 19534202.10866 341 334 -2.384185791016e-06 444 334 13333333.33771 445 334 25107965.68335 446 334 10541666.55379 447 334 -13333333.17771 448 334 -44745929.54446 449 334 -13177083.26329 450 334 15999999.84525 451 334 -9767101.054335 452 334 15812499.93082 335 335 565941879.2302 336 335 6.943941116333e-06 337 335 1.609325408936e-06 338 335 5277897.861165 339 335 -2.145767211914e-06 340 335 -1.54972076416e-06 341 335 52091205.62311 444 335 -13177222.19232 445 335 -10541666.5538 446 335 -118970561.1562 447 335 -65886110.96157 448 335 -13177083.28808 449 335 -89840137.25117 450 335 -19765832.91331 451 335 10541666.62055 452 335 -26045602.81156 336 336 988947148.5376 337 336 53333332.25791 338 336 -9.298324584961e-06 339 336 31359232.67644 340 336 -53333332.8979 341 336 1.251697540283e-06 342 336 -198223262.271 343 336 2.98023223877e-07 344 336 5.960464477539e-08 345 336 -75155545.7747 346 336 53333333.32457 347 336 -1.490116119385e-08 444 336 -107413106.5112 445 336 -13333333.17771 446 336 65886110.96157 447 336 100730268.7541 448 336 13333333.07105 449 336 0.02774140238762 450 336 -26345045.89131 451 336 -13333333.23105 452 336 16471527.49884 453 336 -88624220.55292 454 336 2.235174179077e-07 455 336 -65886111.10029 456 336 -28555987.69793 457 336 13333333.33771 458 336 -16471527.78319 337 337 844940234.7245 338 337 -7.987022399902e-06 339 337 -53333332.68457 340 337 -155306402.5315 341 337 5.394220352173e-06 342 337 3.576278686523e-07 343 337 36444678.54407 344 337 -4.172325134277e-07 345 337 53333333.32457 346 337 -59154777.5129 347 337 2.98023223877e-08 444 337 -13333333.23104 445 337 -44745929.54447 446 337 13177083.28808 447 337 13333333.07105 448 337 64728540.28304 449 337 0.022192299366 450 337 -13333333.17771 451 337 -73011454.71628 452 337 52708333.03581 453 337 1.9371509552e-07 454 337 -29957235.32024 455 337 -3.8743019104e-07 456 337 13333333.33771 457 337 -24555795.63051 458 337 13177083.33766 338 338 914512974.9691 339 338 1.728534698486e-06 340 338 4.559755325317e-06 341 338 62880662.12465 342 338 1.192092895508e-07 343 338 -4.768371582031e-07 344 338 66375066.93519 345 338 4.470348358154e-08 346 338 -4.470348358154e-08 347 338 -9005963.440553 444 338 65886110.96157 445 338 13177083.26329 446 338 -89840137.25118 447 338 -0.0277450978756 448 338 -0.02219566702843 449 338 -162055805.4842 450 338 16471527.35667 451 338 52708332.94687 452 338 -75439445.29918 453 338 -65886111.10029 454 338 -2.831220626831e-07 455 338 -87588646.48668 456 338 -16471527.78319 457 338 13177083.33766 458 338 -28297094.18124 339 339 571119749.839 340 339 53333333.32457 341 339 -6.198883056641e-06 342 339 -75155545.77471 343 339 -53333333.32457 344 339 5.066394805908e-07 345 339 -292913008.3249 346 339 -53333332.8979 347 339 6.556510925293e-06 348 339 19534202.10867 349 339 42666666.23299 350 339 -1.490116119385e-06 444 339 -9767101.054335 445 339 15999999.84525 446 339 19765832.91331 447 339 -26345045.8913 448 339 -13333333.17771 449 339 -16471527.35667 450 339 45108925.89256 451 339 13333333.33771 452 339 13177222.19231 453 339 -28555987.69793 454 339 -13333333.33771 455 339 -16471527.78319 456 339 -107413106.5112 457 339 -13333333.23104 458 339 -65886110.96157 459 339 -9767101.054335 460 339 10666666.5635 461 339 -13177221.94221 340 340 491115909.0416 341 340 -2.974887930942e-06 342 340 -53333333.32457 343 340 -59154777.5129 344 340 2.086162567139e-07 345 340 -53333332.68457 346 340 -42244300.58137 347 340 2.145767211914e-06 348 340 63999999.34949 349 340 19534202.10866 350 340 -2.384185791016e-06 444 340 10666666.5635 445 340 -9767101.054336 446 340 -10541666.62055 447 340 -13333333.23105 448 340 -73011454.71627 449 340 -52708332.94687 450 340 13333333.33771 451 340 25107965.68335 452 340 10541666.55379 453 340 -13333333.33771 454 340 -24555795.63051 455 340 -13177083.33766 456 340 -13333333.17771 457 340 -44745929.54446 458 340 -13177083.26329 459 340 15999999.84525 460 340 -9767101.054335 461 340 15812499.93082 341 341 565941879.2302 342 341 5.811452865601e-07 343 341 3.129243850708e-07 344 341 -9005963.440556 345 341 6.943941116333e-06 346 341 1.609325408936e-06 347 341 5277897.861165 348 341 -2.145767211914e-06 349 341 -1.54972076416e-06 350 341 52091205.62311 444 341 13177221.94221 445 341 -15812499.93082 446 341 -26045602.81156 447 341 -16471527.49884 448 341 -52708333.03581 449 341 -75439445.29917 450 341 -13177222.19232 451 341 -10541666.5538 452 341 -118970561.1562 453 341 -16471527.78319 454 341 -13177083.33766 455 341 -28297094.18124 456 341 -65886110.96157 457 341 -13177083.28808 458 341 -89840137.25117 459 341 -19765832.91331 460 341 10541666.62055 461 341 -26045602.81156 342 342 913791605.4334 343 342 7.748603820801e-06 344 342 -2.622604370117e-06 345 342 126048980.7912 346 342 -2.175569534302e-06 347 342 -1.490116119385e-06 351 342 -198223262.271 352 342 2.98023223877e-07 353 342 5.960464477539e-08 354 342 -75155545.7747 355 342 53333333.32457 356 342 -1.490116119385e-08 447 342 -88624220.55292 448 342 1.043081283569e-07 449 342 65886111.10029 450 342 -28555987.69793 451 342 -13333333.33771 452 342 16471527.78319 453 342 72174281.7049 454 342 1.728534698486e-06 455 342 1.221895217896e-06 456 342 -7556159.747413 457 342 -7.450580596924e-07 458 342 1.341104507446e-06 462 342 -88624220.55292 463 342 2.235174179077e-07 464 342 -65886111.10029 465 342 -28555987.69793 466 342 13333333.33771 467 342 -16471527.78319 343 343 785785459.402 344 343 -1.788139343262e-06 345 343 -2.086162567139e-06 346 343 -76617423.53181 347 343 5.066394805908e-07 351 343 3.576278686523e-07 352 343 36444678.54407 353 343 -4.172325134277e-07 354 343 53333333.32457 355 343 -59154777.5129 356 343 2.98023223877e-08 447 343 4.470348358154e-08 448 343 -29957235.32024 449 343 2.831220626831e-07 450 343 -13333333.33771 451 343 -24555795.63051 452 343 13177083.33766 453 343 1.728534698486e-06 454 343 40172745.1813 455 343 -5.960464477539e-08 456 343 -7.003545761108e-07 457 343 -58222760.85313 458 343 52708333.32467 462 343 1.9371509552e-07 463 343 -29957235.32024 464 343 -3.8743019104e-07 465 343 13333333.33771 466 343 -24555795.63051 467 343 13177083.33766 344 344 905507012.9075 345 344 -1.668930053711e-06 346 344 4.470348358154e-07 347 344 123977832.6588 351 344 1.192092895508e-07 352 344 -4.768371582031e-07 353 344 66375066.93519 354 344 4.470348358154e-08 355 344 -4.470348358154e-08 356 344 -9005963.440553 447 344 65886111.10029 448 344 3.8743019104e-07 449 344 -87588646.48668 450 344 16471527.78319 451 344 13177083.33766 452 344 -28297094.18124 453 344 8.642673492432e-07 454 344 1.788139343262e-07 455 344 -190352899.3709 456 344 1.475214958191e-06 457 344 52708333.32467 458 344 -73187955.0487 462 344 -65886111.10029 463 344 -2.831220626831e-07 464 344 -87588646.48668 465 344 -16471527.78319 466 344 13177083.33766 467 344 -28297094.18124 345 345 988947148.5376 346 345 53333332.25791 347 345 -9.298324584961e-06 348 345 31359232.67644 349 345 -53333332.8979 350 345 1.251697540283e-06 351 345 -75155545.77471 352 345 -53333333.32457 353 345 5.066394805908e-07 354 345 -198223262.271 355 345 2.98023223877e-07 356 345 5.960464477539e-08 357 345 -75155545.7747 358 345 53333333.32457 359 345 -1.490116119385e-08 447 345 -28555987.69793 448 345 13333333.33771 449 345 16471527.78319 450 345 -107413106.5112 451 345 -13333333.17771 452 345 65886110.96157 453 345 -7556159.747413 454 345 -3.278255462646e-07 455 345 -1.206994056702e-06 456 345 100730268.7541 457 345 13333333.07105 458 345 0.02774140238762 459 345 -26345045.89131 460 345 -13333333.23105 461 345 16471527.49884 462 345 -28555987.69793 463 345 -13333333.33771 464 345 -16471527.78319 465 345 -88624220.55292 466 345 2.235174179077e-07 467 345 -65886111.10029 468 345 -28555987.69793 469 345 13333333.33771 470 345 -16471527.78319 346 346 844940234.7245 347 346 -7.987022399902e-06 348 346 -53333332.68457 349 346 -155306402.5315 350 346 5.394220352173e-06 351 346 -53333333.32457 352 346 -59154777.5129 353 346 2.086162567139e-07 354 346 3.576278686523e-07 355 346 36444678.54407 356 346 -4.172325134277e-07 357 346 53333333.32457 358 346 -59154777.5129 359 346 2.98023223877e-08 447 346 13333333.33771 448 346 -24555795.63051 449 346 -13177083.33766 450 346 -13333333.23104 451 346 -44745929.54447 452 346 13177083.28808 453 346 -2.98023223877e-07 454 346 -58222760.85313 455 346 -52708333.32467 456 346 13333333.07105 457 346 64728540.28304 458 346 0.022192299366 459 346 -13333333.17771 460 346 -73011454.71628 461 346 52708333.03581 462 346 -13333333.33771 463 346 -24555795.63051 464 346 -13177083.33766 465 346 1.9371509552e-07 466 346 -29957235.32024 467 346 -3.8743019104e-07 468 346 13333333.33771 469 346 -24555795.63051 470 346 13177083.33766 347 347 914512974.9691 348 347 1.728534698486e-06 349 347 4.559755325317e-06 350 347 62880662.12465 351 347 5.811452865601e-07 352 347 3.129243850708e-07 353 347 -9005963.440556 354 347 1.192092895508e-07 355 347 -4.768371582031e-07 356 347 66375066.93519 357 347 4.470348358154e-08 358 347 -4.470348358154e-08 359 347 -9005963.440553 447 347 16471527.78319 448 347 -13177083.33766 449 347 -28297094.18124 450 347 65886110.96157 451 347 13177083.26329 452 347 -89840137.25118 453 347 -9.983777999878e-07 454 347 -52708333.32467 455 347 -73187955.04869 456 347 -0.0277450978756 457 347 -0.02219566702843 458 347 -162055805.4842 459 347 16471527.35667 460 347 52708332.94687 461 347 -75439445.29918 462 347 -16471527.78319 463 347 -13177083.33766 464 347 -28297094.18124 465 347 -65886111.10029 466 347 -2.831220626831e-07 467 347 -87588646.48668 468 347 -16471527.78319 469 347 13177083.33766 470 347 -28297094.18124 348 348 571119749.839 349 348 53333333.32457 350 348 -6.198883056641e-06 354 348 -75155545.77471 355 348 -53333333.32457 356 348 5.066394805908e-07 357 348 -292913008.3249 358 348 -53333332.8979 359 348 6.556510925293e-06 360 348 19534202.10867 361 348 42666666.23299 362 348 -1.490116119385e-06 450 348 -9767101.054335 451 348 15999999.84525 452 348 19765832.91331 456 348 -26345045.8913 457 348 -13333333.17771 458 348 -16471527.35667 459 348 45108925.89256 460 348 13333333.33771 461 348 13177222.19231 465 348 -28555987.69793 466 348 -13333333.33771 467 348 -16471527.78319 468 348 -107413106.5112 469 348 -13333333.23104 470 348 -65886110.96157 471 348 -9767101.054335 472 348 10666666.5635 473 348 -13177221.94221 349 349 491115909.0416 350 349 -2.974887930942e-06 354 349 -53333333.32457 355 349 -59154777.5129 356 349 2.086162567139e-07 357 349 -53333332.68457 358 349 -42244300.58137 359 349 2.145767211914e-06 360 349 63999999.34949 361 349 19534202.10866 362 349 -2.384185791016e-06 450 349 10666666.5635 451 349 -9767101.054336 452 349 -10541666.62055 456 349 -13333333.23105 457 349 -73011454.71627 458 349 -52708332.94687 459 349 13333333.33771 460 349 25107965.68335 461 349 10541666.55379 465 349 -13333333.33771 466 349 -24555795.63051 467 349 -13177083.33766 468 349 -13333333.17771 469 349 -44745929.54446 470 349 -13177083.26329 471 349 15999999.84525 472 349 -9767101.054335 473 349 15812499.93082 350 350 565941879.2302 354 350 5.811452865601e-07 355 350 3.129243850708e-07 356 350 -9005963.440556 357 350 6.943941116333e-06 358 350 1.609325408936e-06 359 350 5277897.861165 360 350 -2.145767211914e-06 361 350 -1.54972076416e-06 362 350 52091205.62311 450 350 13177221.94221 451 350 -15812499.93082 452 350 -26045602.81156 456 350 -16471527.49884 457 350 -52708333.03581 458 350 -75439445.29917 459 350 -13177222.19232 460 350 -10541666.5538 461 350 -118970561.1562 465 350 -16471527.78319 466 350 -13177083.33766 467 350 -28297094.18124 468 350 -65886110.96157 469 350 -13177083.28808 470 350 -89840137.25117 471 350 -19765832.91331 472 350 10541666.62055 473 350 -26045602.81156 351 351 913791605.4334 352 351 7.748603820801e-06 353 351 -2.622604370117e-06 354 351 126048980.7912 355 351 -2.175569534302e-06 356 351 -1.490116119385e-06 363 351 -198223262.271 364 351 2.98023223877e-07 365 351 5.960464477539e-08 366 351 -75155545.7747 367 351 53333333.32457 368 351 -1.490116119385e-08 453 351 -88624220.55292 454 351 1.043081283569e-07 455 351 65886111.10029 456 351 -28555987.69793 457 351 -13333333.33771 458 351 16471527.78319 462 351 72174281.7049 463 351 1.728534698486e-06 464 351 1.221895217896e-06 465 351 -7556159.747413 466 351 -7.450580596924e-07 467 351 1.341104507446e-06 474 351 -88624220.55292 475 351 2.235174179077e-07 476 351 -65886111.10029 477 351 -28555987.69793 478 351 13333333.33771 479 351 -16471527.78319 352 352 785785459.402 353 352 -1.788139343262e-06 354 352 -2.086162567139e-06 355 352 -76617423.53181 356 352 5.066394805908e-07 363 352 3.576278686523e-07 364 352 36444678.54407 365 352 -4.172325134277e-07 366 352 53333333.32457 367 352 -59154777.5129 368 352 2.98023223877e-08 453 352 4.470348358154e-08 454 352 -29957235.32024 455 352 2.831220626831e-07 456 352 -13333333.33771 457 352 -24555795.63051 458 352 13177083.33766 462 352 1.728534698486e-06 463 352 40172745.1813 464 352 -5.960464477539e-08 465 352 -7.003545761108e-07 466 352 -58222760.85313 467 352 52708333.32467 474 352 1.9371509552e-07 475 352 -29957235.32024 476 352 -3.8743019104e-07 477 352 13333333.33771 478 352 -24555795.63051 479 352 13177083.33766 353 353 905507012.9075 354 353 -1.668930053711e-06 355 353 4.470348358154e-07 356 353 123977832.6588 363 353 1.192092895508e-07 364 353 -4.768371582031e-07 365 353 66375066.93519 366 353 4.470348358154e-08 367 353 -4.470348358154e-08 368 353 -9005963.440553 453 353 65886111.10029 454 353 3.8743019104e-07 455 353 -87588646.48668 456 353 16471527.78319 457 353 13177083.33766 458 353 -28297094.18124 462 353 8.642673492432e-07 463 353 1.788139343262e-07 464 353 -190352899.3709 465 353 1.475214958191e-06 466 353 52708333.32467 467 353 -73187955.0487 474 353 -65886111.10029 475 353 -2.831220626831e-07 476 353 -87588646.48668 477 353 -16471527.78319 478 353 13177083.33766 479 353 -28297094.18124 354 354 913791605.4334 355 354 7.748603820801e-06 356 354 -2.622604370117e-06 357 354 126048980.7912 358 354 -2.175569534302e-06 359 354 -1.490116119385e-06 363 354 -75155545.77471 364 354 -53333333.32457 365 354 5.066394805908e-07 366 354 -198223262.271 367 354 2.98023223877e-07 368 354 5.960464477539e-08 369 354 -75155545.7747 370 354 53333333.32457 371 354 -1.490116119385e-08 453 354 -28555987.69793 454 354 13333333.33771 455 354 16471527.78319 456 354 -88624220.55292 457 354 1.043081283569e-07 458 354 65886111.10029 459 354 -28555987.69793 460 354 -13333333.33771 461 354 16471527.78319 462 354 -7556159.747413 463 354 -3.278255462646e-07 464 354 -1.206994056702e-06 465 354 72174281.7049 466 354 1.728534698486e-06 467 354 1.221895217896e-06 468 354 -7556159.747413 469 354 -7.450580596924e-07 470 354 1.341104507446e-06 474 354 -28555987.69793 475 354 -13333333.33771 476 354 -16471527.78319 477 354 -88624220.55292 478 354 2.235174179077e-07 479 354 -65886111.10029 480 354 -28555987.69793 481 354 13333333.33771 482 354 -16471527.78319 355 355 785785459.402 356 355 -1.788139343262e-06 357 355 -2.086162567139e-06 358 355 -76617423.53181 359 355 5.066394805908e-07 363 355 -53333333.32457 364 355 -59154777.5129 365 355 2.086162567139e-07 366 355 3.576278686523e-07 367 355 36444678.54407 368 355 -4.172325134277e-07 369 355 53333333.32457 370 355 -59154777.5129 371 355 2.98023223877e-08 453 355 13333333.33771 454 355 -24555795.63051 455 355 -13177083.33766 456 355 4.470348358154e-08 457 355 -29957235.32024 458 355 2.831220626831e-07 459 355 -13333333.33771 460 355 -24555795.63051 461 355 13177083.33766 462 355 -2.98023223877e-07 463 355 -58222760.85313 464 355 -52708333.32467 465 355 1.728534698486e-06 466 355 40172745.1813 467 355 -5.960464477539e-08 468 355 -7.003545761108e-07 469 355 -58222760.85313 470 355 52708333.32467 474 355 -13333333.33771 475 355 -24555795.63051 476 355 -13177083.33766 477 355 1.9371509552e-07 478 355 -29957235.32024 479 355 -3.8743019104e-07 480 355 13333333.33771 481 355 -24555795.63051 482 355 13177083.33766 356 356 905507012.9075 357 356 -1.668930053711e-06 358 356 4.470348358154e-07 359 356 123977832.6588 363 356 5.811452865601e-07 364 356 3.129243850708e-07 365 356 -9005963.440556 366 356 1.192092895508e-07 367 356 -4.768371582031e-07 368 356 66375066.93519 369 356 4.470348358154e-08 370 356 -4.470348358154e-08 371 356 -9005963.440553 453 356 16471527.78319 454 356 -13177083.33766 455 356 -28297094.18124 456 356 65886111.10029 457 356 3.8743019104e-07 458 356 -87588646.48668 459 356 16471527.78319 460 356 13177083.33766 461 356 -28297094.18124 462 356 -9.983777999878e-07 463 356 -52708333.32467 464 356 -73187955.04869 465 356 8.642673492432e-07 466 356 1.788139343262e-07 467 356 -190352899.3709 468 356 1.475214958191e-06 469 356 52708333.32467 470 356 -73187955.0487 474 356 -16471527.78319 475 356 -13177083.33766 476 356 -28297094.18124 477 356 -65886111.10029 478 356 -2.831220626831e-07 479 356 -87588646.48668 480 356 -16471527.78319 481 356 13177083.33766 482 356 -28297094.18124 357 357 988947148.5376 358 357 53333332.25791 359 357 -9.298324584961e-06 360 357 31359232.67644 361 357 -53333332.8979 362 357 1.251697540283e-06 366 357 -75155545.77471 367 357 -53333333.32457 368 357 5.066394805908e-07 369 357 -198223262.271 370 357 2.98023223877e-07 371 357 5.960464477539e-08 372 357 -75155545.7747 373 357 53333333.32457 374 357 -1.490116119385e-08 456 357 -28555987.69793 457 357 13333333.33771 458 357 16471527.78319 459 357 -107413106.5112 460 357 -13333333.17771 461 357 65886110.96157 465 357 -7556159.747413 466 357 -3.278255462646e-07 467 357 -1.206994056702e-06 468 357 100730268.7541 469 357 13333333.07105 470 357 0.02774140238762 471 357 -26345045.89131 472 357 -13333333.23105 473 357 16471527.49884 477 357 -28555987.69793 478 357 -13333333.33771 479 357 -16471527.78319 480 357 -88624220.55292 481 357 2.235174179077e-07 482 357 -65886111.10029 483 357 -28555987.69793 484 357 13333333.33771 485 357 -16471527.78319 358 358 844940234.7245 359 358 -7.987022399902e-06 360 358 -53333332.68457 361 358 -155306402.5315 362 358 5.394220352173e-06 366 358 -53333333.32457 367 358 -59154777.5129 368 358 2.086162567139e-07 369 358 3.576278686523e-07 370 358 36444678.54407 371 358 -4.172325134277e-07 372 358 53333333.32457 373 358 -59154777.5129 374 358 2.98023223877e-08 456 358 13333333.33771 457 358 -24555795.63051 458 358 -13177083.33766 459 358 -13333333.23104 460 358 -44745929.54447 461 358 13177083.28808 465 358 -2.98023223877e-07 466 358 -58222760.85313 467 358 -52708333.32467 468 358 13333333.07105 469 358 64728540.28304 470 358 0.022192299366 471 358 -13333333.17771 472 358 -73011454.71628 473 358 52708333.03581 477 358 -13333333.33771 478 358 -24555795.63051 479 358 -13177083.33766 480 358 1.9371509552e-07 481 358 -29957235.32024 482 358 -3.8743019104e-07 483 358 13333333.33771 484 358 -24555795.63051 485 358 13177083.33766 359 359 914512974.9691 360 359 1.728534698486e-06 361 359 4.559755325317e-06 362 359 62880662.12465 366 359 5.811452865601e-07 367 359 3.129243850708e-07 368 359 -9005963.440556 369 359 1.192092895508e-07 370 359 -4.768371582031e-07 371 359 66375066.93519 372 359 4.470348358154e-08 373 359 -4.470348358154e-08 374 359 -9005963.440553 456 359 16471527.78319 457 359 -13177083.33766 458 359 -28297094.18124 459 359 65886110.96157 460 359 13177083.26329 461 359 -89840137.25118 465 359 -9.983777999878e-07 466 359 -52708333.32467 467 359 -73187955.04869 468 359 -0.0277450978756 469 359 -0.02219566702843 470 359 -162055805.4842 471 359 16471527.35667 472 359 52708332.94687 473 359 -75439445.29918 477 359 -16471527.78319 478 359 -13177083.33766 479 359 -28297094.18124 480 359 -65886111.10029 481 359 -2.831220626831e-07 482 359 -87588646.48668 483 359 -16471527.78319 484 359 13177083.33766 485 359 -28297094.18124 360 360 571119749.839 361 360 53333333.32457 362 360 -6.198883056641e-06 369 360 -75155545.77471 370 360 -53333333.32457 371 360 5.066394805908e-07 372 360 -292913008.3249 373 360 -53333332.8979 374 360 6.556510925293e-06 375 360 19534202.10867 376 360 42666666.23299 377 360 -1.490116119385e-06 459 360 -9767101.054335 460 360 15999999.84525 461 360 19765832.91331 468 360 -26345045.8913 469 360 -13333333.17771 470 360 -16471527.35667 471 360 45108925.89256 472 360 13333333.33771 473 360 13177222.19231 480 360 -28555987.69793 481 360 -13333333.33771 482 360 -16471527.78319 483 360 -107413106.5112 484 360 -13333333.23104 485 360 -65886110.96157 486 360 -9767101.054335 487 360 10666666.5635 488 360 -13177221.94221 361 361 491115909.0416 362 361 -2.974887930942e-06 369 361 -53333333.32457 370 361 -59154777.5129 371 361 2.086162567139e-07 372 361 -53333332.68457 373 361 -42244300.58137 374 361 2.145767211914e-06 375 361 63999999.34949 376 361 19534202.10866 377 361 -2.384185791016e-06 459 361 10666666.5635 460 361 -9767101.054336 461 361 -10541666.62055 468 361 -13333333.23105 469 361 -73011454.71627 470 361 -52708332.94687 471 361 13333333.33771 472 361 25107965.68335 473 361 10541666.55379 480 361 -13333333.33771 481 361 -24555795.63051 482 361 -13177083.33766 483 361 -13333333.17771 484 361 -44745929.54446 485 361 -13177083.26329 486 361 15999999.84525 487 361 -9767101.054335 488 361 15812499.93082 362 362 565941879.2302 369 362 5.811452865601e-07 370 362 3.129243850708e-07 371 362 -9005963.440556 372 362 6.943941116333e-06 373 362 1.609325408936e-06 374 362 5277897.861165 375 362 -2.145767211914e-06 376 362 -1.54972076416e-06 377 362 52091205.62311 459 362 13177221.94221 460 362 -15812499.93082 461 362 -26045602.81156 468 362 -16471527.49884 469 362 -52708333.03581 470 362 -75439445.29917 471 362 -13177222.19232 472 362 -10541666.5538 473 362 -118970561.1562 480 362 -16471527.78319 481 362 -13177083.33766 482 362 -28297094.18124 483 362 -65886110.96157 484 362 -13177083.28808 485 362 -89840137.25117 486 362 -19765832.91331 487 362 10541666.62055 488 362 -26045602.81156 363 363 913791605.4334 364 363 7.748603820801e-06 365 363 -2.622604370117e-06 366 363 126048980.7912 367 363 -2.175569534302e-06 368 363 -1.490116119385e-06 378 363 -198223262.271 379 363 2.98023223877e-07 380 363 5.960464477539e-08 381 363 -75155545.7747 382 363 53333333.32457 383 363 -1.490116119385e-08 462 363 -88624220.55292 463 363 1.043081283569e-07 464 363 65886111.10029 465 363 -28555987.69793 466 363 -13333333.33771 467 363 16471527.78319 474 363 72174281.7049 475 363 1.728534698486e-06 476 363 1.221895217896e-06 477 363 -7556159.747413 478 363 -7.450580596924e-07 479 363 1.341104507446e-06 489 363 -88624220.55292 490 363 2.235174179077e-07 491 363 -65886111.10029 492 363 -28555987.69793 493 363 13333333.33771 494 363 -16471527.78319 364 364 785785459.402 365 364 -1.788139343262e-06 366 364 -2.086162567139e-06 367 364 -76617423.53181 368 364 5.066394805908e-07 378 364 3.576278686523e-07 379 364 36444678.54407 380 364 -4.172325134277e-07 381 364 53333333.32457 382 364 -59154777.5129 383 364 2.98023223877e-08 462 364 4.470348358154e-08 463 364 -29957235.32024 464 364 2.831220626831e-07 465 364 -13333333.33771 466 364 -24555795.63051 467 364 13177083.33766 474 364 1.728534698486e-06 475 364 40172745.1813 476 364 -5.960464477539e-08 477 364 -7.003545761108e-07 478 364 -58222760.85313 479 364 52708333.32467 489 364 1.9371509552e-07 490 364 -29957235.32024 491 364 -3.8743019104e-07 492 364 13333333.33771 493 364 -24555795.63051 494 364 13177083.33766 365 365 905507012.9075 366 365 -1.668930053711e-06 367 365 4.470348358154e-07 368 365 123977832.6588 378 365 1.192092895508e-07 379 365 -4.768371582031e-07 380 365 66375066.93519 381 365 4.470348358154e-08 382 365 -4.470348358154e-08 383 365 -9005963.440553 462 365 65886111.10029 463 365 3.8743019104e-07 464 365 -87588646.48668 465 365 16471527.78319 466 365 13177083.33766 467 365 -28297094.18124 474 365 8.642673492432e-07 475 365 1.788139343262e-07 476 365 -190352899.3709 477 365 1.475214958191e-06 478 365 52708333.32467 479 365 -73187955.0487 489 365 -65886111.10029 490 365 -2.831220626831e-07 491 365 -87588646.48668 492 365 -16471527.78319 493 365 13177083.33766 494 365 -28297094.18124 366 366 913791605.4334 367 366 7.748603820801e-06 368 366 -2.622604370117e-06 369 366 126048980.7912 370 366 -2.175569534302e-06 371 366 -1.490116119385e-06 378 366 -75155545.77471 379 366 -53333333.32457 380 366 5.066394805908e-07 381 366 -198223262.271 382 366 2.98023223877e-07 383 366 5.960464477539e-08 384 366 -75155545.7747 385 366 53333333.32457 386 366 -1.490116119385e-08 462 366 -28555987.69793 463 366 13333333.33771 464 366 16471527.78319 465 366 -88624220.55292 466 366 1.043081283569e-07 467 366 65886111.10029 468 366 -28555987.69793 469 366 -13333333.33771 470 366 16471527.78319 474 366 -7556159.747413 475 366 -3.278255462646e-07 476 366 -1.206994056702e-06 477 366 72174281.7049 478 366 1.728534698486e-06 479 366 1.221895217896e-06 480 366 -7556159.747413 481 366 -7.450580596924e-07 482 366 1.341104507446e-06 489 366 -28555987.69793 490 366 -13333333.33771 491 366 -16471527.78319 492 366 -88624220.55292 493 366 2.235174179077e-07 494 366 -65886111.10029 495 366 -28555987.69793 496 366 13333333.33771 497 366 -16471527.78319 367 367 785785459.402 368 367 -1.788139343262e-06 369 367 -2.086162567139e-06 370 367 -76617423.53181 371 367 5.066394805908e-07 378 367 -53333333.32457 379 367 -59154777.5129 380 367 2.086162567139e-07 381 367 3.576278686523e-07 382 367 36444678.54407 383 367 -4.172325134277e-07 384 367 53333333.32457 385 367 -59154777.5129 386 367 2.98023223877e-08 462 367 13333333.33771 463 367 -24555795.63051 464 367 -13177083.33766 465 367 4.470348358154e-08 466 367 -29957235.32024 467 367 2.831220626831e-07 468 367 -13333333.33771 469 367 -24555795.63051 470 367 13177083.33766 474 367 -2.98023223877e-07 475 367 -58222760.85313 476 367 -52708333.32467 477 367 1.728534698486e-06 478 367 40172745.1813 479 367 -5.960464477539e-08 480 367 -7.003545761108e-07 481 367 -58222760.85313 482 367 52708333.32467 489 367 -13333333.33771 490 367 -24555795.63051 491 367 -13177083.33766 492 367 1.9371509552e-07 493 367 -29957235.32024 494 367 -3.8743019104e-07 495 367 13333333.33771 496 367 -24555795.63051 497 367 13177083.33766 368 368 905507012.9075 369 368 -1.668930053711e-06 370 368 4.470348358154e-07 371 368 123977832.6588 378 368 5.811452865601e-07 379 368 3.129243850708e-07 380 368 -9005963.440556 381 368 1.192092895508e-07 382 368 -4.768371582031e-07 383 368 66375066.93519 384 368 4.470348358154e-08 385 368 -4.470348358154e-08 386 368 -9005963.440553 462 368 16471527.78319 463 368 -13177083.33766 464 368 -28297094.18124 465 368 65886111.10029 466 368 3.8743019104e-07 467 368 -87588646.48668 468 368 16471527.78319 469 368 13177083.33766 470 368 -28297094.18124 474 368 -9.983777999878e-07 475 368 -52708333.32467 476 368 -73187955.04869 477 368 8.642673492432e-07 478 368 1.788139343262e-07 479 368 -190352899.3709 480 368 1.475214958191e-06 481 368 52708333.32467 482 368 -73187955.0487 489 368 -16471527.78319 490 368 -13177083.33766 491 368 -28297094.18124 492 368 -65886111.10029 493 368 -2.831220626831e-07 494 368 -87588646.48668 495 368 -16471527.78319 496 368 13177083.33766 497 368 -28297094.18124 369 369 913791605.4334 370 369 7.748603820801e-06 371 369 -2.622604370117e-06 372 369 126048980.7912 373 369 -2.175569534302e-06 374 369 -1.490116119385e-06 381 369 -75155545.77471 382 369 -53333333.32457 383 369 5.066394805908e-07 384 369 -198223262.271 385 369 2.98023223877e-07 386 369 5.960464477539e-08 387 369 -75155545.7747 388 369 53333333.32457 389 369 -1.490116119385e-08 465 369 -28555987.69793 466 369 13333333.33771 467 369 16471527.78319 468 369 -88624220.55292 469 369 1.043081283569e-07 470 369 65886111.10029 471 369 -28555987.69793 472 369 -13333333.33771 473 369 16471527.78319 477 369 -7556159.747413 478 369 -3.278255462646e-07 479 369 -1.206994056702e-06 480 369 72174281.7049 481 369 1.728534698486e-06 482 369 1.221895217896e-06 483 369 -7556159.747413 484 369 -7.450580596924e-07 485 369 1.341104507446e-06 492 369 -28555987.69793 493 369 -13333333.33771 494 369 -16471527.78319 495 369 -88624220.55292 496 369 2.235174179077e-07 497 369 -65886111.10029 498 369 -28555987.69793 499 369 13333333.33771 500 369 -16471527.78319 370 370 785785459.402 371 370 -1.788139343262e-06 372 370 -2.086162567139e-06 373 370 -76617423.53181 374 370 5.066394805908e-07 381 370 -53333333.32457 382 370 -59154777.5129 383 370 2.086162567139e-07 384 370 3.576278686523e-07 385 370 36444678.54407 386 370 -4.172325134277e-07 387 370 53333333.32457 388 370 -59154777.5129 389 370 2.98023223877e-08 465 370 13333333.33771 466 370 -24555795.63051 467 370 -13177083.33766 468 370 4.470348358154e-08 469 370 -29957235.32024 470 370 2.831220626831e-07 471 370 -13333333.33771 472 370 -24555795.63051 473 370 13177083.33766 477 370 -2.98023223877e-07 478 370 -58222760.85313 479 370 -52708333.32467 480 370 1.728534698486e-06 481 370 40172745.1813 482 370 -5.960464477539e-08 483 370 -7.003545761108e-07 484 370 -58222760.85313 485 370 52708333.32467 492 370 -13333333.33771 493 370 -24555795.63051 494 370 -13177083.33766 495 370 1.9371509552e-07 496 370 -29957235.32024 497 370 -3.8743019104e-07 498 370 13333333.33771 499 370 -24555795.63051 500 370 13177083.33766 371 371 905507012.9075 372 371 -1.668930053711e-06 373 371 4.470348358154e-07 374 371 123977832.6588 381 371 5.811452865601e-07 382 371 3.129243850708e-07 383 371 -9005963.440556 384 371 1.192092895508e-07 385 371 -4.768371582031e-07 386 371 66375066.93519 387 371 4.470348358154e-08 388 371 -4.470348358154e-08 389 371 -9005963.440553 465 371 16471527.78319 466 371 -13177083.33766 467 371 -28297094.18124 468 371 65886111.10029 469 371 3.8743019104e-07 470 371 -87588646.48668 471 371 16471527.78319 472 371 13177083.33766 473 371 -28297094.18124 477 371 -9.983777999878e-07 478 371 -52708333.32467 479 371 -73187955.04869 480 371 8.642673492432e-07 481 371 1.788139343262e-07 482 371 -190352899.3709 483 371 1.475214958191e-06 484 371 52708333.32467 485 371 -73187955.0487 492 371 -16471527.78319 493 371 -13177083.33766 494 371 -28297094.18124 495 371 -65886111.10029 496 371 -2.831220626831e-07 497 371 -87588646.48668 498 371 -16471527.78319 499 371 13177083.33766 500 371 -28297094.18124 372 372 988947148.5376 373 372 53333332.25791 374 372 -9.298324584961e-06 375 372 31359232.67644 376 372 -53333332.8979 377 372 1.251697540283e-06 384 372 -75155545.77471 385 372 -53333333.32457 386 372 5.066394805908e-07 387 372 -198223262.271 388 372 2.98023223877e-07 389 372 5.960464477539e-08 390 372 -75155545.7747 391 372 53333333.32457 392 372 -1.490116119385e-08 468 372 -28555987.69793 469 372 13333333.33771 470 372 16471527.78319 471 372 -107413106.5112 472 372 -13333333.17771 473 372 65886110.96157 480 372 -7556159.747413 481 372 -3.278255462646e-07 482 372 -1.206994056702e-06 483 372 100730268.7541 484 372 13333333.07105 485 372 0.02774140238762 486 372 -26345045.89131 487 372 -13333333.23105 488 372 16471527.49884 495 372 -28555987.69793 496 372 -13333333.33771 497 372 -16471527.78319 498 372 -88624220.55292 499 372 2.235174179077e-07 500 372 -65886111.10029 501 372 -28555987.69793 502 372 13333333.33771 503 372 -16471527.78319 373 373 844940234.7245 374 373 -7.987022399902e-06 375 373 -53333332.68457 376 373 -155306402.5315 377 373 5.394220352173e-06 384 373 -53333333.32457 385 373 -59154777.5129 386 373 2.086162567139e-07 387 373 3.576278686523e-07 388 373 36444678.54407 389 373 -4.172325134277e-07 390 373 53333333.32457 391 373 -59154777.5129 392 373 2.98023223877e-08 468 373 13333333.33771 469 373 -24555795.63051 470 373 -13177083.33766 471 373 -13333333.23104 472 373 -44745929.54447 473 373 13177083.28808 480 373 -2.98023223877e-07 481 373 -58222760.85313 482 373 -52708333.32467 483 373 13333333.07105 484 373 64728540.28304 485 373 0.022192299366 486 373 -13333333.17771 487 373 -73011454.71628 488 373 52708333.03581 495 373 -13333333.33771 496 373 -24555795.63051 497 373 -13177083.33766 498 373 1.9371509552e-07 499 373 -29957235.32024 500 373 -3.8743019104e-07 501 373 13333333.33771 502 373 -24555795.63051 503 373 13177083.33766 374 374 914512974.9691 375 374 1.728534698486e-06 376 374 4.559755325317e-06 377 374 62880662.12465 384 374 5.811452865601e-07 385 374 3.129243850708e-07 386 374 -9005963.440556 387 374 1.192092895508e-07 388 374 -4.768371582031e-07 389 374 66375066.93519 390 374 4.470348358154e-08 391 374 -4.470348358154e-08 392 374 -9005963.440553 468 374 16471527.78319 469 374 -13177083.33766 470 374 -28297094.18124 471 374 65886110.96157 472 374 13177083.26329 473 374 -89840137.25118 480 374 -9.983777999878e-07 481 374 -52708333.32467 482 374 -73187955.04869 483 374 -0.0277450978756 484 374 -0.02219566702843 485 374 -162055805.4842 486 374 16471527.35667 487 374 52708332.94687 488 374 -75439445.29918 495 374 -16471527.78319 496 374 -13177083.33766 497 374 -28297094.18124 498 374 -65886111.10029 499 374 -2.831220626831e-07 500 374 -87588646.48668 501 374 -16471527.78319 502 374 13177083.33766 503 374 -28297094.18124 375 375 571119749.839 376 375 53333333.32457 377 375 -6.198883056641e-06 387 375 -75155545.77471 388 375 -53333333.32457 389 375 5.066394805908e-07 390 375 -292913008.3249 391 375 -53333332.8979 392 375 6.556510925293e-06 393 375 19534202.10867 394 375 42666666.23299 395 375 -1.490116119385e-06 471 375 -9767101.054335 472 375 15999999.84525 473 375 19765832.91331 483 375 -26345045.8913 484 375 -13333333.17771 485 375 -16471527.35667 486 375 45108925.89256 487 375 13333333.33771 488 375 13177222.19231 498 375 -28555987.69793 499 375 -13333333.33771 500 375 -16471527.78319 501 375 -107413106.5112 502 375 -13333333.23104 503 375 -65886110.96157 504 375 -9767101.054335 505 375 10666666.5635 506 375 -13177221.94221 376 376 491115909.0416 377 376 -2.974887930942e-06 387 376 -53333333.32457 388 376 -59154777.5129 389 376 2.086162567139e-07 390 376 -53333332.68457 391 376 -42244300.58137 392 376 2.145767211914e-06 393 376 63999999.34949 394 376 19534202.10866 395 376 -2.384185791016e-06 471 376 10666666.5635 472 376 -9767101.054336 473 376 -10541666.62055 483 376 -13333333.23105 484 376 -73011454.71627 485 376 -52708332.94687 486 376 13333333.33771 487 376 25107965.68335 488 376 10541666.55379 498 376 -13333333.33771 499 376 -24555795.63051 500 376 -13177083.33766 501 376 -13333333.17771 502 376 -44745929.54446 503 376 -13177083.26329 504 376 15999999.84525 505 376 -9767101.054335 506 376 15812499.93082 377 377 565941879.2302 387 377 5.811452865601e-07 388 377 3.129243850708e-07 389 377 -9005963.440556 390 377 6.943941116333e-06 391 377 1.609325408936e-06 392 377 5277897.861165 393 377 -2.145767211914e-06 394 377 -1.54972076416e-06 395 377 52091205.62311 471 377 13177221.94221 472 377 -15812499.93082 473 377 -26045602.81156 483 377 -16471527.49884 484 377 -52708333.03581 485 377 -75439445.29917 486 377 -13177222.19232 487 377 -10541666.5538 488 377 -118970561.1562 498 377 -16471527.78319 499 377 -13177083.33766 500 377 -28297094.18124 501 377 -65886110.96157 502 377 -13177083.28808 503 377 -89840137.25117 504 377 -19765832.91331 505 377 10541666.62055 506 377 -26045602.81156 378 378 913791605.4334 379 378 7.748603820801e-06 380 378 -2.622604370117e-06 381 378 126048980.7912 382 378 -2.175569534302e-06 383 378 -1.490116119385e-06 396 378 -198223262.271 397 378 2.98023223877e-07 398 378 5.960464477539e-08 399 378 -75155545.7747 400 378 53333333.32457 401 378 -1.490116119385e-08 474 378 -88624220.55292 475 378 1.043081283569e-07 476 378 65886111.10029 477 378 -28555987.69793 478 378 -13333333.33771 479 378 16471527.78319 489 378 72174281.7049 490 378 1.728534698486e-06 491 378 1.221895217896e-06 492 378 -7556159.747413 493 378 -7.450580596924e-07 494 378 1.341104507446e-06 507 378 -88624220.55292 508 378 2.235174179077e-07 509 378 -65886111.10029 510 378 -28555987.69793 511 378 13333333.33771 512 378 -16471527.78319 379 379 785785459.402 380 379 -1.788139343262e-06 381 379 -2.086162567139e-06 382 379 -76617423.53181 383 379 5.066394805908e-07 396 379 3.576278686523e-07 397 379 36444678.54407 398 379 -4.172325134277e-07 399 379 53333333.32457 400 379 -59154777.5129 401 379 2.98023223877e-08 474 379 4.470348358154e-08 475 379 -29957235.32024 476 379 2.831220626831e-07 477 379 -13333333.33771 478 379 -24555795.63051 479 379 13177083.33766 489 379 1.728534698486e-06 490 379 40172745.1813 491 379 -5.960464477539e-08 492 379 -7.003545761108e-07 493 379 -58222760.85313 494 379 52708333.32467 507 379 1.9371509552e-07 508 379 -29957235.32024 509 379 -3.8743019104e-07 510 379 13333333.33771 511 379 -24555795.63051 512 379 13177083.33766 380 380 905507012.9075 381 380 -1.668930053711e-06 382 380 4.470348358154e-07 383 380 123977832.6588 396 380 1.192092895508e-07 397 380 -4.768371582031e-07 398 380 66375066.93519 399 380 4.470348358154e-08 400 380 -4.470348358154e-08 401 380 -9005963.440553 474 380 65886111.10029 475 380 3.8743019104e-07 476 380 -87588646.48668 477 380 16471527.78319 478 380 13177083.33766 479 380 -28297094.18124 489 380 8.642673492432e-07 490 380 1.788139343262e-07 491 380 -190352899.3709 492 380 1.475214958191e-06 493 380 52708333.32467 494 380 -73187955.0487 507 380 -65886111.10029 508 380 -2.831220626831e-07 509 380 -87588646.48668 510 380 -16471527.78319 511 380 13177083.33766 512 380 -28297094.18124 381 381 913791605.4334 382 381 7.748603820801e-06 383 381 -2.622604370117e-06 384 381 126048980.7912 385 381 -2.175569534302e-06 386 381 -1.490116119385e-06 396 381 -75155545.77471 397 381 -53333333.32457 398 381 5.066394805908e-07 399 381 -198223262.271 400 381 2.98023223877e-07 401 381 5.960464477539e-08 402 381 -75155545.7747 403 381 53333333.32457 404 381 -1.490116119385e-08 474 381 -28555987.69793 475 381 13333333.33771 476 381 16471527.78319 477 381 -88624220.55292 478 381 1.043081283569e-07 479 381 65886111.10029 480 381 -28555987.69793 481 381 -13333333.33771 482 381 16471527.78319 489 381 -7556159.747413 490 381 -3.278255462646e-07 491 381 -1.206994056702e-06 492 381 72174281.7049 493 381 1.728534698486e-06 494 381 1.221895217896e-06 495 381 -7556159.747413 496 381 -7.450580596924e-07 497 381 1.341104507446e-06 507 381 -28555987.69793 508 381 -13333333.33771 509 381 -16471527.78319 510 381 -88624220.55292 511 381 2.235174179077e-07 512 381 -65886111.10029 513 381 -28555987.69793 514 381 13333333.33771 515 381 -16471527.78319 382 382 785785459.402 383 382 -1.788139343262e-06 384 382 -2.086162567139e-06 385 382 -76617423.53181 386 382 5.066394805908e-07 396 382 -53333333.32457 397 382 -59154777.5129 398 382 2.086162567139e-07 399 382 3.576278686523e-07 400 382 36444678.54407 401 382 -4.172325134277e-07 402 382 53333333.32457 403 382 -59154777.5129 404 382 2.98023223877e-08 474 382 13333333.33771 475 382 -24555795.63051 476 382 -13177083.33766 477 382 4.470348358154e-08 478 382 -29957235.32024 479 382 2.831220626831e-07 480 382 -13333333.33771 481 382 -24555795.63051 482 382 13177083.33766 489 382 -2.98023223877e-07 490 382 -58222760.85313 491 382 -52708333.32467 492 382 1.728534698486e-06 493 382 40172745.1813 494 382 -5.960464477539e-08 495 382 -7.003545761108e-07 496 382 -58222760.85313 497 382 52708333.32467 507 382 -13333333.33771 508 382 -24555795.63051 509 382 -13177083.33766 510 382 1.9371509552e-07 511 382 -29957235.32024 512 382 -3.8743019104e-07 513 382 13333333.33771 514 382 -24555795.63051 515 382 13177083.33766 383 383 905507012.9075 384 383 -1.668930053711e-06 385 383 4.470348358154e-07 386 383 123977832.6588 396 383 5.811452865601e-07 397 383 3.129243850708e-07 398 383 -9005963.440556 399 383 1.192092895508e-07 400 383 -4.768371582031e-07 401 383 66375066.93519 402 383 4.470348358154e-08 403 383 -4.470348358154e-08 404 383 -9005963.440553 474 383 16471527.78319 475 383 -13177083.33766 476 383 -28297094.18124 477 383 65886111.10029 478 383 3.8743019104e-07 479 383 -87588646.48668 480 383 16471527.78319 481 383 13177083.33766 482 383 -28297094.18124 489 383 -9.983777999878e-07 490 383 -52708333.32467 491 383 -73187955.04869 492 383 8.642673492432e-07 493 383 1.788139343262e-07 494 383 -190352899.3709 495 383 1.475214958191e-06 496 383 52708333.32467 497 383 -73187955.0487 507 383 -16471527.78319 508 383 -13177083.33766 509 383 -28297094.18124 510 383 -65886111.10029 511 383 -2.831220626831e-07 512 383 -87588646.48668 513 383 -16471527.78319 514 383 13177083.33766 515 383 -28297094.18124 384 384 913791605.4334 385 384 7.748603820801e-06 386 384 -2.622604370117e-06 387 384 126048980.7912 388 384 -2.175569534302e-06 389 384 -1.490116119385e-06 399 384 -75155545.77471 400 384 -53333333.32457 401 384 5.066394805908e-07 402 384 -198223262.271 403 384 2.98023223877e-07 404 384 5.960464477539e-08 405 384 -75155545.7747 406 384 53333333.32457 407 384 -1.490116119385e-08 477 384 -28555987.69793 478 384 13333333.33771 479 384 16471527.78319 480 384 -88624220.55292 481 384 1.043081283569e-07 482 384 65886111.10029 483 384 -28555987.69793 484 384 -13333333.33771 485 384 16471527.78319 492 384 -7556159.747413 493 384 -3.278255462646e-07 494 384 -1.206994056702e-06 495 384 72174281.7049 496 384 1.728534698486e-06 497 384 1.221895217896e-06 498 384 -7556159.747413 499 384 -7.450580596924e-07 500 384 1.341104507446e-06 510 384 -28555987.69793 511 384 -13333333.33771 512 384 -16471527.78319 513 384 -88624220.55292 514 384 2.235174179077e-07 515 384 -65886111.10029 516 384 -28555987.69793 517 384 13333333.33771 518 384 -16471527.78319 385 385 785785459.402 386 385 -1.788139343262e-06 387 385 -2.086162567139e-06 388 385 -76617423.53181 389 385 5.066394805908e-07 399 385 -53333333.32457 400 385 -59154777.5129 401 385 2.086162567139e-07 402 385 3.576278686523e-07 403 385 36444678.54407 404 385 -4.172325134277e-07 405 385 53333333.32457 406 385 -59154777.5129 407 385 2.98023223877e-08 477 385 13333333.33771 478 385 -24555795.63051 479 385 -13177083.33766 480 385 4.470348358154e-08 481 385 -29957235.32024 482 385 2.831220626831e-07 483 385 -13333333.33771 484 385 -24555795.63051 485 385 13177083.33766 492 385 -2.98023223877e-07 493 385 -58222760.85313 494 385 -52708333.32467 495 385 1.728534698486e-06 496 385 40172745.1813 497 385 -5.960464477539e-08 498 385 -7.003545761108e-07 499 385 -58222760.85313 500 385 52708333.32467 510 385 -13333333.33771 511 385 -24555795.63051 512 385 -13177083.33766 513 385 1.9371509552e-07 514 385 -29957235.32024 515 385 -3.8743019104e-07 516 385 13333333.33771 517 385 -24555795.63051 518 385 13177083.33766 386 386 905507012.9075 387 386 -1.668930053711e-06 388 386 4.470348358154e-07 389 386 123977832.6588 399 386 5.811452865601e-07 400 386 3.129243850708e-07 401 386 -9005963.440556 402 386 1.192092895508e-07 403 386 -4.768371582031e-07 404 386 66375066.93519 405 386 4.470348358154e-08 406 386 -4.470348358154e-08 407 386 -9005963.440553 477 386 16471527.78319 478 386 -13177083.33766 479 386 -28297094.18124 480 386 65886111.10029 481 386 3.8743019104e-07 482 386 -87588646.48668 483 386 16471527.78319 484 386 13177083.33766 485 386 -28297094.18124 492 386 -9.983777999878e-07 493 386 -52708333.32467 494 386 -73187955.04869 495 386 8.642673492432e-07 496 386 1.788139343262e-07 497 386 -190352899.3709 498 386 1.475214958191e-06 499 386 52708333.32467 500 386 -73187955.0487 510 386 -16471527.78319 511 386 -13177083.33766 512 386 -28297094.18124 513 386 -65886111.10029 514 386 -2.831220626831e-07 515 386 -87588646.48668 516 386 -16471527.78319 517 386 13177083.33766 518 386 -28297094.18124 387 387 913791605.4334 388 387 7.748603820801e-06 389 387 -2.622604370117e-06 390 387 126048980.7912 391 387 -2.175569534302e-06 392 387 -1.490116119385e-06 402 387 -75155545.77471 403 387 -53333333.32457 404 387 5.066394805908e-07 405 387 -198223262.271 406 387 2.98023223877e-07 407 387 5.960464477539e-08 408 387 -75155545.7747 409 387 53333333.32457 410 387 -1.490116119385e-08 480 387 -28555987.69793 481 387 13333333.33771 482 387 16471527.78319 483 387 -88624220.55292 484 387 1.043081283569e-07 485 387 65886111.10029 486 387 -28555987.69793 487 387 -13333333.33771 488 387 16471527.78319 495 387 -7556159.747413 496 387 -3.278255462646e-07 497 387 -1.206994056702e-06 498 387 72174281.7049 499 387 1.728534698486e-06 500 387 1.221895217896e-06 501 387 -7556159.747413 502 387 -7.450580596924e-07 503 387 1.341104507446e-06 513 387 -28555987.69793 514 387 -13333333.33771 515 387 -16471527.78319 516 387 -88624220.55292 517 387 2.235174179077e-07 518 387 -65886111.10029 519 387 -28555987.69793 520 387 13333333.33771 521 387 -16471527.78319 388 388 785785459.402 389 388 -1.788139343262e-06 390 388 -2.086162567139e-06 391 388 -76617423.53181 392 388 5.066394805908e-07 402 388 -53333333.32457 403 388 -59154777.5129 404 388 2.086162567139e-07 405 388 3.576278686523e-07 406 388 36444678.54407 407 388 -4.172325134277e-07 408 388 53333333.32457 409 388 -59154777.5129 410 388 2.98023223877e-08 480 388 13333333.33771 481 388 -24555795.63051 482 388 -13177083.33766 483 388 4.470348358154e-08 484 388 -29957235.32024 485 388 2.831220626831e-07 486 388 -13333333.33771 487 388 -24555795.63051 488 388 13177083.33766 495 388 -2.98023223877e-07 496 388 -58222760.85313 497 388 -52708333.32467 498 388 1.728534698486e-06 499 388 40172745.1813 500 388 -5.960464477539e-08 501 388 -7.003545761108e-07 502 388 -58222760.85313 503 388 52708333.32467 513 388 -13333333.33771 514 388 -24555795.63051 515 388 -13177083.33766 516 388 1.9371509552e-07 517 388 -29957235.32024 518 388 -3.8743019104e-07 519 388 13333333.33771 520 388 -24555795.63051 521 388 13177083.33766 389 389 905507012.9075 390 389 -1.668930053711e-06 391 389 4.470348358154e-07 392 389 123977832.6588 402 389 5.811452865601e-07 403 389 3.129243850708e-07 404 389 -9005963.440556 405 389 1.192092895508e-07 406 389 -4.768371582031e-07 407 389 66375066.93519 408 389 4.470348358154e-08 409 389 -4.470348358154e-08 410 389 -9005963.440553 480 389 16471527.78319 481 389 -13177083.33766 482 389 -28297094.18124 483 389 65886111.10029 484 389 3.8743019104e-07 485 389 -87588646.48668 486 389 16471527.78319 487 389 13177083.33766 488 389 -28297094.18124 495 389 -9.983777999878e-07 496 389 -52708333.32467 497 389 -73187955.04869 498 389 8.642673492432e-07 499 389 1.788139343262e-07 500 389 -190352899.3709 501 389 1.475214958191e-06 502 389 52708333.32467 503 389 -73187955.0487 513 389 -16471527.78319 514 389 -13177083.33766 515 389 -28297094.18124 516 389 -65886111.10029 517 389 -2.831220626831e-07 518 389 -87588646.48668 519 389 -16471527.78319 520 389 13177083.33766 521 389 -28297094.18124 390 390 988947148.5376 391 390 53333332.25791 392 390 -9.298324584961e-06 393 390 31359232.67644 394 390 -53333332.8979 395 390 1.251697540283e-06 405 390 -75155545.77471 406 390 -53333333.32457 407 390 5.066394805908e-07 408 390 -198223262.271 409 390 2.98023223877e-07 410 390 5.960464477539e-08 411 390 -75155545.7747 412 390 53333333.32457 413 390 -1.490116119385e-08 483 390 -28555987.69793 484 390 13333333.33771 485 390 16471527.78319 486 390 -107413106.5112 487 390 -13333333.17771 488 390 65886110.96157 498 390 -7556159.747413 499 390 -3.278255462646e-07 500 390 -1.206994056702e-06 501 390 100730268.7541 502 390 13333333.07105 503 390 0.02774140238762 504 390 -26345045.89131 505 390 -13333333.23105 506 390 16471527.49884 516 390 -28555987.69793 517 390 -13333333.33771 518 390 -16471527.78319 519 390 -88624220.55292 520 390 2.235174179077e-07 521 390 -65886111.10029 522 390 -28555987.69793 523 390 13333333.33771 524 390 -16471527.78319 391 391 844940234.7245 392 391 -7.987022399902e-06 393 391 -53333332.68457 394 391 -155306402.5315 395 391 5.394220352173e-06 405 391 -53333333.32457 406 391 -59154777.5129 407 391 2.086162567139e-07 408 391 3.576278686523e-07 409 391 36444678.54407 410 391 -4.172325134277e-07 411 391 53333333.32457 412 391 -59154777.5129 413 391 2.98023223877e-08 483 391 13333333.33771 484 391 -24555795.63051 485 391 -13177083.33766 486 391 -13333333.23104 487 391 -44745929.54447 488 391 13177083.28808 498 391 -2.98023223877e-07 499 391 -58222760.85313 500 391 -52708333.32467 501 391 13333333.07105 502 391 64728540.28304 503 391 0.022192299366 504 391 -13333333.17771 505 391 -73011454.71628 506 391 52708333.03581 516 391 -13333333.33771 517 391 -24555795.63051 518 391 -13177083.33766 519 391 1.9371509552e-07 520 391 -29957235.32024 521 391 -3.8743019104e-07 522 391 13333333.33771 523 391 -24555795.63051 524 391 13177083.33766 392 392 914512974.9691 393 392 1.728534698486e-06 394 392 4.559755325317e-06 395 392 62880662.12465 405 392 5.811452865601e-07 406 392 3.129243850708e-07 407 392 -9005963.440556 408 392 1.192092895508e-07 409 392 -4.768371582031e-07 410 392 66375066.93519 411 392 4.470348358154e-08 412 392 -4.470348358154e-08 413 392 -9005963.440553 483 392 16471527.78319 484 392 -13177083.33766 485 392 -28297094.18124 486 392 65886110.96157 487 392 13177083.26329 488 392 -89840137.25118 498 392 -9.983777999878e-07 499 392 -52708333.32467 500 392 -73187955.04869 501 392 -0.0277450978756 502 392 -0.02219566702843 503 392 -162055805.4842 504 392 16471527.35667 505 392 52708332.94687 506 392 -75439445.29918 516 392 -16471527.78319 517 392 -13177083.33766 518 392 -28297094.18124 519 392 -65886111.10029 520 392 -2.831220626831e-07 521 392 -87588646.48668 522 392 -16471527.78319 523 392 13177083.33766 524 392 -28297094.18124 393 393 509154568.8248 394 393 25085639.27704 395 393 -5.960464477539e-07 408 393 -75155545.77471 409 393 -53333333.32457 410 393 5.066394805908e-07 411 393 -228025244.9359 412 393 -25085638.85037 413 393 7.152557373047e-07 414 393 -4082989.550575 415 393 42666666.23299 416 393 -1.251697540283e-06 486 393 -9767101.054335 487 393 15999999.84525 488 393 19765832.91331 501 393 -26345045.8913 502 393 -13333333.17771 503 393 -16471527.35667 504 393 37378109.13818 505 393 6271409.822349 506 393 11432222.19995 519 393 -28555987.69793 520 393 -13333333.33771 521 393 -16471527.78319 522 393 -87310926.38278 523 393 -6271409.715683 524 393 -57161110.99975 525 393 -11791159.78617 526 393 10666666.5635 527 393 -9687222.01637 394 394 472604990.7818 395 394 -2.652406692505e-06 408 394 -53333333.32457 409 394 -59154777.5129 410 394 2.086162567139e-07 411 394 -25085638.63704 412 394 9928432.40691 413 394 2.384185791016e-07 414 394 63999999.34949 415 394 -34822221.9043 416 394 -1.788139343262e-07 486 394 10666666.5635 487 394 -9767101.054336 488 394 -10541666.62055 501 394 -13333333.23105 502 394 -73011454.71627 503 394 -52708332.94687 504 394 6271409.822349 505 394 28240714.62293 506 394 9145833.226567 519 394 -13333333.33771 520 394 -24555795.63051 521 394 -13177083.33766 522 394 -6271409.66235 523 394 -27822507.01778 524 394 -6197916.627156 525 394 15999999.84526 526 394 -19475967.87838 527 394 18604166.53816 395 395 522045024.059 408 395 5.811452865601e-07 409 395 3.129243850708e-07 410 395 -9005963.440556 411 395 7.450580596924e-07 412 395 2.384185791016e-07 413 395 26229073.67805 414 395 -1.490116119385e-06 415 395 2.384185791016e-07 416 395 19851260.21887 486 395 13177221.94221 487 395 -15812499.93082 488 395 -26045602.81156 501 395 -16471527.49884 502 395 -52708333.03581 503 395 -75439445.29917 504 395 -11432222.19995 505 395 -9145833.22657 506 395 -109250165.6029 519 395 -16471527.78319 520 395 -13177083.33766 521 395 -28297094.18124 522 395 -57161110.99975 523 395 -6197916.651946 524 395 -74255038.56586 525 395 -14530833.02455 526 395 14729166.53156 527 395 -23758284.67089 396 396 913791605.4334 397 396 7.748603820801e-06 398 396 -2.622604370117e-06 399 396 126048980.7912 400 396 -2.175569534302e-06 401 396 -1.490116119385e-06 417 396 -198223262.271 418 396 2.98023223877e-07 419 396 5.960464477539e-08 420 396 -75155545.7747 421 396 53333333.32457 422 396 -1.490116119385e-08 489 396 -88624220.55292 490 396 1.043081283569e-07 491 396 65886111.10029 492 396 -28555987.69793 493 396 -13333333.33771 494 396 16471527.78319 507 396 72174281.7049 508 396 1.728534698486e-06 509 396 1.221895217896e-06 510 396 -7556159.747413 511 396 -7.450580596924e-07 512 396 1.341104507446e-06 528 396 -88624220.55292 529 396 2.235174179077e-07 530 396 -65886111.10029 531 396 -28555987.69793 532 396 13333333.33771 533 396 -16471527.78319 397 397 785785459.402 398 397 -1.788139343262e-06 399 397 -2.086162567139e-06 400 397 -76617423.53181 401 397 5.066394805908e-07 417 397 3.576278686523e-07 418 397 36444678.54407 419 397 -4.172325134277e-07 420 397 53333333.32457 421 397 -59154777.5129 422 397 2.98023223877e-08 489 397 4.470348358154e-08 490 397 -29957235.32024 491 397 2.831220626831e-07 492 397 -13333333.33771 493 397 -24555795.63051 494 397 13177083.33766 507 397 1.728534698486e-06 508 397 40172745.1813 509 397 -5.960464477539e-08 510 397 -7.003545761108e-07 511 397 -58222760.85313 512 397 52708333.32467 528 397 1.9371509552e-07 529 397 -29957235.32024 530 397 -3.8743019104e-07 531 397 13333333.33771 532 397 -24555795.63051 533 397 13177083.33766 398 398 905507012.9075 399 398 -1.668930053711e-06 400 398 4.470348358154e-07 401 398 123977832.6588 417 398 1.192092895508e-07 418 398 -4.768371582031e-07 419 398 66375066.93519 420 398 4.470348358154e-08 421 398 -4.470348358154e-08 422 398 -9005963.440553 489 398 65886111.10029 490 398 3.8743019104e-07 491 398 -87588646.48668 492 398 16471527.78319 493 398 13177083.33766 494 398 -28297094.18124 507 398 8.642673492432e-07 508 398 1.788139343262e-07 509 398 -190352899.3709 510 398 1.475214958191e-06 511 398 52708333.32467 512 398 -73187955.0487 528 398 -65886111.10029 529 398 -2.831220626831e-07 530 398 -87588646.48668 531 398 -16471527.78319 532 398 13177083.33766 533 398 -28297094.18124 399 399 913791605.4334 400 399 7.748603820801e-06 401 399 -2.622604370117e-06 402 399 126048980.7912 403 399 -2.175569534302e-06 404 399 -1.490116119385e-06 417 399 -75155545.77471 418 399 -53333333.32457 419 399 5.066394805908e-07 420 399 -198223262.271 421 399 2.98023223877e-07 422 399 5.960464477539e-08 423 399 -75155545.7747 424 399 53333333.32457 425 399 -1.490116119385e-08 489 399 -28555987.69793 490 399 13333333.33771 491 399 16471527.78319 492 399 -88624220.55292 493 399 1.043081283569e-07 494 399 65886111.10029 495 399 -28555987.69793 496 399 -13333333.33771 497 399 16471527.78319 507 399 -7556159.747413 508 399 -3.278255462646e-07 509 399 -1.206994056702e-06 510 399 72174281.7049 511 399 1.728534698486e-06 512 399 1.221895217896e-06 513 399 -7556159.747413 514 399 -7.450580596924e-07 515 399 1.341104507446e-06 528 399 -28555987.69793 529 399 -13333333.33771 530 399 -16471527.78319 531 399 -88624220.55292 532 399 2.235174179077e-07 533 399 -65886111.10029 534 399 -28555987.69793 535 399 13333333.33771 536 399 -16471527.78319 400 400 785785459.402 401 400 -1.788139343262e-06 402 400 -2.086162567139e-06 403 400 -76617423.53181 404 400 5.066394805908e-07 417 400 -53333333.32457 418 400 -59154777.5129 419 400 2.086162567139e-07 420 400 3.576278686523e-07 421 400 36444678.54407 422 400 -4.172325134277e-07 423 400 53333333.32457 424 400 -59154777.5129 425 400 2.98023223877e-08 489 400 13333333.33771 490 400 -24555795.63051 491 400 -13177083.33766 492 400 4.470348358154e-08 493 400 -29957235.32024 494 400 2.831220626831e-07 495 400 -13333333.33771 496 400 -24555795.63051 497 400 13177083.33766 507 400 -2.98023223877e-07 508 400 -58222760.85313 509 400 -52708333.32467 510 400 1.728534698486e-06 511 400 40172745.1813 512 400 -5.960464477539e-08 513 400 -7.003545761108e-07 514 400 -58222760.85313 515 400 52708333.32467 528 400 -13333333.33771 529 400 -24555795.63051 530 400 -13177083.33766 531 400 1.9371509552e-07 532 400 -29957235.32024 533 400 -3.8743019104e-07 534 400 13333333.33771 535 400 -24555795.63051 536 400 13177083.33766 401 401 905507012.9075 402 401 -1.668930053711e-06 403 401 4.470348358154e-07 404 401 123977832.6588 417 401 5.811452865601e-07 418 401 3.129243850708e-07 419 401 -9005963.440556 420 401 1.192092895508e-07 421 401 -4.768371582031e-07 422 401 66375066.93519 423 401 4.470348358154e-08 424 401 -4.470348358154e-08 425 401 -9005963.440553 489 401 16471527.78319 490 401 -13177083.33766 491 401 -28297094.18124 492 401 65886111.10029 493 401 3.8743019104e-07 494 401 -87588646.48668 495 401 16471527.78319 496 401 13177083.33766 497 401 -28297094.18124 507 401 -9.983777999878e-07 508 401 -52708333.32467 509 401 -73187955.04869 510 401 8.642673492432e-07 511 401 1.788139343262e-07 512 401 -190352899.3709 513 401 1.475214958191e-06 514 401 52708333.32467 515 401 -73187955.0487 528 401 -16471527.78319 529 401 -13177083.33766 530 401 -28297094.18124 531 401 -65886111.10029 532 401 -2.831220626831e-07 533 401 -87588646.48668 534 401 -16471527.78319 535 401 13177083.33766 536 401 -28297094.18124 402 402 913791605.4334 403 402 7.748603820801e-06 404 402 -2.622604370117e-06 405 402 126048980.7912 406 402 -2.175569534302e-06 407 402 -1.490116119385e-06 420 402 -75155545.77471 421 402 -53333333.32457 422 402 5.066394805908e-07 423 402 -198223262.271 424 402 2.98023223877e-07 425 402 5.960464477539e-08 426 402 -75155545.7747 427 402 53333333.32457 428 402 -1.490116119385e-08 492 402 -28555987.69793 493 402 13333333.33771 494 402 16471527.78319 495 402 -88624220.55292 496 402 1.043081283569e-07 497 402 65886111.10029 498 402 -28555987.69793 499 402 -13333333.33771 500 402 16471527.78319 510 402 -7556159.747413 511 402 -3.278255462646e-07 512 402 -1.206994056702e-06 513 402 72174281.7049 514 402 1.728534698486e-06 515 402 1.221895217896e-06 516 402 -7556159.747413 517 402 -7.450580596924e-07 518 402 1.341104507446e-06 531 402 -28555987.69793 532 402 -13333333.33771 533 402 -16471527.78319 534 402 -88624220.55292 535 402 2.235174179077e-07 536 402 -65886111.10029 537 402 -28555987.69793 538 402 13333333.33771 539 402 -16471527.78319 403 403 785785459.402 404 403 -1.788139343262e-06 405 403 -2.086162567139e-06 406 403 -76617423.53181 407 403 5.066394805908e-07 420 403 -53333333.32457 421 403 -59154777.5129 422 403 2.086162567139e-07 423 403 3.576278686523e-07 424 403 36444678.54407 425 403 -4.172325134277e-07 426 403 53333333.32457 427 403 -59154777.5129 428 403 2.98023223877e-08 492 403 13333333.33771 493 403 -24555795.63051 494 403 -13177083.33766 495 403 4.470348358154e-08 496 403 -29957235.32024 497 403 2.831220626831e-07 498 403 -13333333.33771 499 403 -24555795.63051 500 403 13177083.33766 510 403 -2.98023223877e-07 511 403 -58222760.85313 512 403 -52708333.32467 513 403 1.728534698486e-06 514 403 40172745.1813 515 403 -5.960464477539e-08 516 403 -7.003545761108e-07 517 403 -58222760.85313 518 403 52708333.32467 531 403 -13333333.33771 532 403 -24555795.63051 533 403 -13177083.33766 534 403 1.9371509552e-07 535 403 -29957235.32024 536 403 -3.8743019104e-07 537 403 13333333.33771 538 403 -24555795.63051 539 403 13177083.33766 404 404 905507012.9075 405 404 -1.668930053711e-06 406 404 4.470348358154e-07 407 404 123977832.6588 420 404 5.811452865601e-07 421 404 3.129243850708e-07 422 404 -9005963.440556 423 404 1.192092895508e-07 424 404 -4.768371582031e-07 425 404 66375066.93519 426 404 4.470348358154e-08 427 404 -4.470348358154e-08 428 404 -9005963.440553 492 404 16471527.78319 493 404 -13177083.33766 494 404 -28297094.18124 495 404 65886111.10029 496 404 3.8743019104e-07 497 404 -87588646.48668 498 404 16471527.78319 499 404 13177083.33766 500 404 -28297094.18124 510 404 -9.983777999878e-07 511 404 -52708333.32467 512 404 -73187955.04869 513 404 8.642673492432e-07 514 404 1.788139343262e-07 515 404 -190352899.3709 516 404 1.475214958191e-06 517 404 52708333.32467 518 404 -73187955.0487 531 404 -16471527.78319 532 404 -13177083.33766 533 404 -28297094.18124 534 404 -65886111.10029 535 404 -2.831220626831e-07 536 404 -87588646.48668 537 404 -16471527.78319 538 404 13177083.33766 539 404 -28297094.18124 405 405 913791605.4334 406 405 7.748603820801e-06 407 405 -2.622604370117e-06 408 405 126048980.7912 409 405 -2.175569534302e-06 410 405 -1.490116119385e-06 423 405 -75155545.77471 424 405 -53333333.32457 425 405 5.066394805908e-07 426 405 -198223262.271 427 405 2.98023223877e-07 428 405 5.960464477539e-08 429 405 -75155545.7747 430 405 53333333.32457 431 405 -1.490116119385e-08 495 405 -28555987.69793 496 405 13333333.33771 497 405 16471527.78319 498 405 -88624220.55292 499 405 1.043081283569e-07 500 405 65886111.10029 501 405 -28555987.69793 502 405 -13333333.33771 503 405 16471527.78319 513 405 -7556159.747413 514 405 -3.278255462646e-07 515 405 -1.206994056702e-06 516 405 72174281.7049 517 405 1.728534698486e-06 518 405 1.221895217896e-06 519 405 -7556159.747413 520 405 -7.450580596924e-07 521 405 1.341104507446e-06 534 405 -28555987.69793 535 405 -13333333.33771 536 405 -16471527.78319 537 405 -88624220.55292 538 405 2.235174179077e-07 539 405 -65886111.10029 540 405 -28555987.69793 541 405 13333333.33771 542 405 -16471527.78319 406 406 785785459.402 407 406 -1.788139343262e-06 408 406 -2.086162567139e-06 409 406 -76617423.53181 410 406 5.066394805908e-07 423 406 -53333333.32457 424 406 -59154777.5129 425 406 2.086162567139e-07 426 406 3.576278686523e-07 427 406 36444678.54407 428 406 -4.172325134277e-07 429 406 53333333.32457 430 406 -59154777.5129 431 406 2.98023223877e-08 495 406 13333333.33771 496 406 -24555795.63051 497 406 -13177083.33766 498 406 4.470348358154e-08 499 406 -29957235.32024 500 406 2.831220626831e-07 501 406 -13333333.33771 502 406 -24555795.63051 503 406 13177083.33766 513 406 -2.98023223877e-07 514 406 -58222760.85313 515 406 -52708333.32467 516 406 1.728534698486e-06 517 406 40172745.1813 518 406 -5.960464477539e-08 519 406 -7.003545761108e-07 520 406 -58222760.85313 521 406 52708333.32467 534 406 -13333333.33771 535 406 -24555795.63051 536 406 -13177083.33766 537 406 1.9371509552e-07 538 406 -29957235.32024 539 406 -3.8743019104e-07 540 406 13333333.33771 541 406 -24555795.63051 542 406 13177083.33766 407 407 905507012.9075 408 407 -1.668930053711e-06 409 407 4.470348358154e-07 410 407 123977832.6588 423 407 5.811452865601e-07 424 407 3.129243850708e-07 425 407 -9005963.440556 426 407 1.192092895508e-07 427 407 -4.768371582031e-07 428 407 66375066.93519 429 407 4.470348358154e-08 430 407 -4.470348358154e-08 431 407 -9005963.440553 495 407 16471527.78319 496 407 -13177083.33766 497 407 -28297094.18124 498 407 65886111.10029 499 407 3.8743019104e-07 500 407 -87588646.48668 501 407 16471527.78319 502 407 13177083.33766 503 407 -28297094.18124 513 407 -9.983777999878e-07 514 407 -52708333.32467 515 407 -73187955.04869 516 407 8.642673492432e-07 517 407 1.788139343262e-07 518 407 -190352899.3709 519 407 1.475214958191e-06 520 407 52708333.32467 521 407 -73187955.0487 534 407 -16471527.78319 535 407 -13177083.33766 536 407 -28297094.18124 537 407 -65886111.10029 538 407 -2.831220626831e-07 539 407 -87588646.48668 540 407 -16471527.78319 541 407 13177083.33766 542 407 -28297094.18124 408 408 913791605.4334 409 408 7.748603820801e-06 410 408 -2.622604370117e-06 411 408 126048980.7912 412 408 -2.175569534302e-06 413 408 -1.490116119385e-06 426 408 -75155545.77471 427 408 -53333333.32457 428 408 5.066394805908e-07 429 408 -198223262.271 430 408 2.98023223877e-07 431 408 5.960464477539e-08 432 408 -75155545.7747 433 408 53333333.32457 434 408 -1.490116119385e-08 498 408 -28555987.69793 499 408 13333333.33771 500 408 16471527.78319 501 408 -88624220.55292 502 408 1.043081283569e-07 503 408 65886111.10029 504 408 -28555987.69793 505 408 -13333333.33771 506 408 16471527.78319 516 408 -7556159.747413 517 408 -3.278255462646e-07 518 408 -1.206994056702e-06 519 408 72174281.7049 520 408 1.728534698486e-06 521 408 1.221895217896e-06 522 408 -7556159.747413 523 408 -7.450580596924e-07 524 408 1.341104507446e-06 537 408 -28555987.69793 538 408 -13333333.33771 539 408 -16471527.78319 540 408 -88624220.55292 541 408 2.235174179077e-07 542 408 -65886111.10029 543 408 -28555987.69793 544 408 13333333.33771 545 408 -16471527.78319 409 409 785785459.402 410 409 -1.788139343262e-06 411 409 -2.086162567139e-06 412 409 -76617423.53181 413 409 5.066394805908e-07 426 409 -53333333.32457 427 409 -59154777.5129 428 409 2.086162567139e-07 429 409 3.576278686523e-07 430 409 36444678.54407 431 409 -4.172325134277e-07 432 409 53333333.32457 433 409 -59154777.5129 434 409 2.98023223877e-08 498 409 13333333.33771 499 409 -24555795.63051 500 409 -13177083.33766 501 409 4.470348358154e-08 502 409 -29957235.32024 503 409 2.831220626831e-07 504 409 -13333333.33771 505 409 -24555795.63051 506 409 13177083.33766 516 409 -2.98023223877e-07 517 409 -58222760.85313 518 409 -52708333.32467 519 409 1.728534698486e-06 520 409 40172745.1813 521 409 -5.960464477539e-08 522 409 -7.003545761108e-07 523 409 -58222760.85313 524 409 52708333.32467 537 409 -13333333.33771 538 409 -24555795.63051 539 409 -13177083.33766 540 409 1.9371509552e-07 541 409 -29957235.32024 542 409 -3.8743019104e-07 543 409 13333333.33771 544 409 -24555795.63051 545 409 13177083.33766 410 410 905507012.9075 411 410 -1.668930053711e-06 412 410 4.470348358154e-07 413 410 123977832.6588 426 410 5.811452865601e-07 427 410 3.129243850708e-07 428 410 -9005963.440556 429 410 1.192092895508e-07 430 410 -4.768371582031e-07 431 410 66375066.93519 432 410 4.470348358154e-08 433 410 -4.470348358154e-08 434 410 -9005963.440553 498 410 16471527.78319 499 410 -13177083.33766 500 410 -28297094.18124 501 410 65886111.10029 502 410 3.8743019104e-07 503 410 -87588646.48668 504 410 16471527.78319 505 410 13177083.33766 506 410 -28297094.18124 516 410 -9.983777999878e-07 517 410 -52708333.32467 518 410 -73187955.04869 519 410 8.642673492432e-07 520 410 1.788139343262e-07 521 410 -190352899.3709 522 410 1.475214958191e-06 523 410 52708333.32467 524 410 -73187955.0487 537 410 -16471527.78319 538 410 -13177083.33766 539 410 -28297094.18124 540 410 -65886111.10029 541 410 -2.831220626831e-07 542 410 -87588646.48668 543 410 -16471527.78319 544 410 13177083.33766 545 410 -28297094.18124 411 411 886076107.088 412 411 29506578.58962 413 411 -4.172325134277e-06 414 411 -15650105.72171 415 411 -67995305.55008 416 411 -1.788139343262e-06 429 411 -75155545.77471 430 411 -53333333.32457 431 411 5.066394805908e-07 432 411 -169993346.4286 433 411 13585574.37073 434 411 1.579523086548e-06 435 411 -49437968.75893 436 411 49988791.22677 437 411 2.637505531311e-06 501 411 -28555987.69793 502 411 13333333.33771 503 411 16471527.78319 504 411 -87310926.38278 505 411 -6271409.66235 506 411 57161110.99975 519 411 -7556159.747413 520 411 -3.278255462646e-07 521 411 -1.206994056702e-06 522 411 87947441.63499 523 411 7376644.65104 524 411 0.02039501070976 525 411 -32923131.70809 526 411 -16998826.39589 527 411 16470833.12799 540 411 -28555987.69793 541 411 -13333333.33771 542 411 -16471527.78319 543 411 -80272721.40676 544 411 3396393.594356 545 411 -61522916.65699 546 411 -22126192.23639 547 411 12497197.81285 548 411 -12109027.78175 412 412 821417136.7999 413 412 5.125999450684e-06 414 412 -67995305.33675 415 412 -205861449.307 416 412 -3.56137752533e-06 429 412 -53333333.32457 430 412 -59154777.5129 431 412 2.086162567139e-07 432 412 13585574.37073 433 412 48420638.98572 434 412 8.940696716309e-07 435 412 49988791.22677 436 412 -80270449.84323 437 412 -2.548098564148e-06 501 412 13333333.33771 502 412 -24555795.63051 503 412 -13177083.33766 504 412 -6271409.715683 505 412 -27822507.01778 506 412 6197916.651945 519 412 -2.98023223877e-07 520 412 -58222760.85313 521 412 -52708333.32467 522 412 7376644.65104 523 412 71782699.055 524 412 0.01631674170494 525 412 -16998826.34256 526 412 -80475967.62785 527 412 52708333.09468 540 412 -13333333.33771 541 412 -24555795.63051 542 412 -13177083.33766 543 412 3396393.594355 544 412 -25669225.02627 545 412 3489583.332416 546 412 12497197.81285 547 412 -29834312.51126 548 412 16666666.67214 413 413 843458196.4419 414 413 1.192092895508e-07 415 413 -3.039836883545e-06 416 413 21637954.44543 429 413 5.811452865601e-07 430 413 3.129243850708e-07 431 413 -9005963.440556 432 413 6.85453414917e-07 433 413 1.072883605957e-06 434 413 73680450.86193 435 413 1.996755599976e-06 436 413 -2.592802047729e-06 437 413 -7752033.245933 501 413 16471527.78319 502 413 -13177083.33766 503 413 -28297094.18124 504 413 57161110.99975 505 413 6197916.627155 506 413 -74255038.56586 519 413 -9.983777999878e-07 520 413 -52708333.32467 521 413 -73187955.04869 522 413 -0.02039638161659 523 413 -0.01631587743759 524 413 -145326344.7753 525 413 16470833.02261 526 413 52708333.03516 527 413 -71952125.45461 540 413 -16471527.78319 541 413 -13177083.33766 542 413 -28297094.18124 543 413 -61522916.65613 544 413 3489583.333104 545 413 -82311580.01855 546 413 -12109027.78175 547 413 16666666.67214 548 413 -27982541.75396 414 414 531775095.0468 415 414 8503382.432196 432 414 -80370018.26376 433 414 -52907761.3966 434 414 -1.847743988037e-06 435 414 -113455777.5588 436 414 18108359.28725 437 414 1.311302185059e-06 438 414 68483060.18779 439 414 -18744593.63382 440 414 5.960464477539e-07 441 414 -42329538.80213 442 414 49035919.29823 443 414 1.922249794006e-06 504 414 -11791159.78616 505 414 15999999.84526 506 414 14530833.02455 522 414 -32923131.7081 523 414 -16998826.34256 524 414 -16470833.02261 525 414 14669982.03611 526 414 2125845.609096 527 414 12968611.10898 543 414 -29859204.61641 544 414 -13226940.35567 545 414 -16470833.33874 546 414 -76387958.09069 547 414 4527089.824043 548 414 -64843055.54491 549 414 -11712307.86994 550 414 -4686148.410764 551 414 8424305.555742 552 414 -24181082.63358 553 414 12258979.8306 554 414 -15950694.44968 415 415 626925818.4292 416 415 3.933906555176e-06 432 415 -52907761.3966 433 415 -54873071.8125 434 415 -8.642673492432e-07 435 415 18108359.28725 436 415 97871879.78123 437 415 3.337860107422e-06 438 415 2588739.696008 439 415 -35173186.25688 440 415 -3.695487976074e-06 441 415 49035919.29823 442 415 -49698043.59219 443 415 -1.505017280579e-06 504 415 10666666.5635 505 415 -19475967.87838 506 415 -14729166.53156 522 415 -16998826.39589 523 415 -80475967.62786 524 415 -52708333.03516 525 415 2125845.609096 526 415 38457662.89345 527 415 3874999.888226 543 415 -13226940.35567 544 415 -23484968.00046 545 415 -13177083.33766 546 415 4527089.824043 547 415 -23556043.72965 548 415 3489583.332417 549 415 647184.9243208 550 415 -37626369.49388 551 415 33333333.32786 552 415 12258979.8306 553 415 -26023208.832 554 415 16666666.67214 416 416 650521074.3426 432 416 -1.788139343262e-06 433 416 -7.748603820801e-07 434 416 -9261489.102506 435 416 1.117587089539e-06 436 416 3.337860107422e-06 437 416 131575339.2945 438 416 1.54972076416e-06 439 416 -3.75509262085e-06 440 416 90632596.10001 441 416 2.279877662659e-06 442 416 -1.594424247742e-06 443 416 13362532.26789 504 416 9687222.01637 505 416 -18604166.53816 506 416 -23758284.67089 522 416 -16470833.12799 523 416 -52708333.09468 524 416 -71952125.45462 525 416 -12968611.10898 526 416 -3874999.888222 527 416 -152766509.4438 543 416 -16470833.33874 544 416 -13177083.33766 545 416 -28359905.71829 546 416 -64843055.54491 547 416 3489583.333105 548 416 -95170201.65885 549 416 299305.5539342 550 416 33333333.32786 551 416 -54230045.43137 552 416 -15950694.44968 553 416 16666666.67214 554 416 -32922561.4056 417 417 456895802.7167 418 417 3.933906555176e-06 419 417 -1.668930053711e-06 420 417 63024490.39562 421 417 10666666.66491 422 417 -1.013278961182e-06 507 417 -88624220.55292 508 417 1.043081283569e-07 509 417 65886111.10029 510 417 -28555987.69793 511 417 -13333333.33771 512 417 16471527.78319 528 417 36087140.85245 529 417 8.344650268555e-07 530 417 -13177222.22006 531 417 -3778079.873706 532 417 2666666.667542 533 417 -3294305.556637 418 418 392892729.701 419 418 -7.152557373047e-07 420 418 -10666666.66491 421 418 -38308711.7659 422 418 3.8743019104e-07 507 418 4.470348358154e-08 508 418 -29957235.32024 509 418 2.831220626831e-07 510 418 -13333333.33771 511 418 -24555795.63051 512 418 13177083.33766 528 418 8.940696716309e-07 529 418 20086372.59065 530 418 -2.98023223877e-08 531 418 -2666666.667543 532 418 -29111380.42657 533 418 26354166.66234 419 419 452753506.4538 420 419 -8.940696716309e-07 421 419 1.490116119385e-07 422 419 61988916.32938 507 419 65886111.10029 508 419 3.8743019104e-07 509 419 -87588646.48668 510 419 16471527.78319 511 419 13177083.33766 512 419 -28297094.18124 528 419 13177222.22006 529 419 1.490116119385e-07 530 419 -95176449.68545 531 419 3294305.556638 532 419 26354166.66234 533 419 -36593977.52435 420 420 456895802.7167 421 420 3.933906555176e-06 422 420 -1.668930053711e-06 423 420 63024490.39562 424 420 10666666.66491 425 420 -1.013278961182e-06 507 420 -28555987.69793 508 420 13333333.33771 509 420 16471527.78319 510 420 -88624220.55292 511 420 1.043081283569e-07 512 420 65886111.10029 513 420 -28555987.69793 514 420 -13333333.33771 515 420 16471527.78319 528 420 -3778079.873706 529 420 -2666666.667542 530 420 -3294305.556638 531 420 36087140.85245 532 420 8.344650268555e-07 533 420 -13177222.22006 534 420 -3778079.873706 535 420 2666666.667542 536 420 -3294305.556637 421 421 392892729.701 422 421 -7.152557373047e-07 423 421 -10666666.66491 424 421 -38308711.7659 425 421 3.8743019104e-07 507 421 13333333.33771 508 421 -24555795.63051 509 421 -13177083.33766 510 421 4.470348358154e-08 511 421 -29957235.32024 512 421 2.831220626831e-07 513 421 -13333333.33771 514 421 -24555795.63051 515 421 13177083.33766 528 421 2666666.667542 529 421 -29111380.42657 530 421 -26354166.66234 531 421 8.940696716309e-07 532 421 20086372.59065 533 421 -2.98023223877e-08 534 421 -2666666.667543 535 421 -29111380.42657 536 421 26354166.66234 422 422 452753506.4538 423 422 -8.940696716309e-07 424 422 1.490116119385e-07 425 422 61988916.32938 507 422 16471527.78319 508 422 -13177083.33766 509 422 -28297094.18124 510 422 65886111.10029 511 422 3.8743019104e-07 512 422 -87588646.48668 513 422 16471527.78319 514 422 13177083.33766 515 422 -28297094.18124 528 422 3294305.556637 529 422 -26354166.66234 530 422 -36593977.52435 531 422 13177222.22006 532 422 1.490116119385e-07 533 422 -95176449.68545 534 422 3294305.556638 535 422 26354166.66234 536 422 -36593977.52435 423 423 456895802.7167 424 423 3.933906555176e-06 425 423 -1.668930053711e-06 426 423 63024490.39562 427 423 10666666.66491 428 423 -1.013278961182e-06 510 423 -28555987.69793 511 423 13333333.33771 512 423 16471527.78319 513 423 -88624220.55292 514 423 1.043081283569e-07 515 423 65886111.10029 516 423 -28555987.69793 517 423 -13333333.33771 518 423 16471527.78319 531 423 -3778079.873706 532 423 -2666666.667542 533 423 -3294305.556638 534 423 36087140.85245 535 423 8.344650268555e-07 536 423 -13177222.22006 537 423 -3778079.873706 538 423 2666666.667542 539 423 -3294305.556637 424 424 392892729.701 425 424 -7.152557373047e-07 426 424 -10666666.66491 427 424 -38308711.7659 428 424 3.8743019104e-07 510 424 13333333.33771 511 424 -24555795.63051 512 424 -13177083.33766 513 424 4.470348358154e-08 514 424 -29957235.32024 515 424 2.831220626831e-07 516 424 -13333333.33771 517 424 -24555795.63051 518 424 13177083.33766 531 424 2666666.667542 532 424 -29111380.42657 533 424 -26354166.66234 534 424 8.940696716309e-07 535 424 20086372.59065 536 424 -2.98023223877e-08 537 424 -2666666.667543 538 424 -29111380.42657 539 424 26354166.66234 425 425 452753506.4538 426 425 -8.940696716309e-07 427 425 1.490116119385e-07 428 425 61988916.32938 510 425 16471527.78319 511 425 -13177083.33766 512 425 -28297094.18124 513 425 65886111.10029 514 425 3.8743019104e-07 515 425 -87588646.48668 516 425 16471527.78319 517 425 13177083.33766 518 425 -28297094.18124 531 425 3294305.556637 532 425 -26354166.66234 533 425 -36593977.52435 534 425 13177222.22006 535 425 1.490116119385e-07 536 425 -95176449.68545 537 425 3294305.556638 538 425 26354166.66234 539 425 -36593977.52435 426 426 456895802.7167 427 426 3.933906555176e-06 428 426 -1.668930053711e-06 429 426 63024490.39562 430 426 10666666.66491 431 426 -1.013278961182e-06 513 426 -28555987.69793 514 426 13333333.33771 515 426 16471527.78319 516 426 -88624220.55292 517 426 1.043081283569e-07 518 426 65886111.10029 519 426 -28555987.69793 520 426 -13333333.33771 521 426 16471527.78319 534 426 -3778079.873706 535 426 -2666666.667542 536 426 -3294305.556638 537 426 36087140.85245 538 426 8.344650268555e-07 539 426 -13177222.22006 540 426 -3778079.873706 541 426 2666666.667542 542 426 -3294305.556637 427 427 392892729.701 428 427 -7.152557373047e-07 429 427 -10666666.66491 430 427 -38308711.7659 431 427 3.8743019104e-07 513 427 13333333.33771 514 427 -24555795.63051 515 427 -13177083.33766 516 427 4.470348358154e-08 517 427 -29957235.32024 518 427 2.831220626831e-07 519 427 -13333333.33771 520 427 -24555795.63051 521 427 13177083.33766 534 427 2666666.667542 535 427 -29111380.42657 536 427 -26354166.66234 537 427 8.940696716309e-07 538 427 20086372.59065 539 427 -2.98023223877e-08 540 427 -2666666.667543 541 427 -29111380.42657 542 427 26354166.66234 428 428 452753506.4538 429 428 -8.940696716309e-07 430 428 1.490116119385e-07 431 428 61988916.32938 513 428 16471527.78319 514 428 -13177083.33766 515 428 -28297094.18124 516 428 65886111.10029 517 428 3.8743019104e-07 518 428 -87588646.48668 519 428 16471527.78319 520 428 13177083.33766 521 428 -28297094.18124 534 428 3294305.556637 535 428 -26354166.66234 536 428 -36593977.52435 537 428 13177222.22006 538 428 1.490116119385e-07 539 428 -95176449.68545 540 428 3294305.556638 541 428 26354166.66234 542 428 -36593977.52435 429 429 456895802.7167 430 429 3.933906555176e-06 431 429 -1.668930053711e-06 432 429 63024490.39562 433 429 10666666.66491 434 429 -1.013278961182e-06 516 429 -28555987.69793 517 429 13333333.33771 518 429 16471527.78319 519 429 -88624220.55292 520 429 1.043081283569e-07 521 429 65886111.10029 522 429 -28555987.69793 523 429 -13333333.33771 524 429 16471527.78319 537 429 -3778079.873706 538 429 -2666666.667542 539 429 -3294305.556638 540 429 36087140.85245 541 429 8.344650268555e-07 542 429 -13177222.22006 543 429 -3778079.873706 544 429 2666666.667542 545 429 -3294305.556637 430 430 392892729.701 431 430 -7.152557373047e-07 432 430 -10666666.66491 433 430 -38308711.7659 434 430 3.8743019104e-07 516 430 13333333.33771 517 430 -24555795.63051 518 430 -13177083.33766 519 430 4.470348358154e-08 520 430 -29957235.32024 521 430 2.831220626831e-07 522 430 -13333333.33771 523 430 -24555795.63051 524 430 13177083.33766 537 430 2666666.667542 538 430 -29111380.42657 539 430 -26354166.66234 540 430 8.940696716309e-07 541 430 20086372.59065 542 430 -2.98023223877e-08 543 430 -2666666.667543 544 430 -29111380.42657 545 430 26354166.66234 431 431 452753506.4538 432 431 -8.940696716309e-07 433 431 1.490116119385e-07 434 431 61988916.32938 516 431 16471527.78319 517 431 -13177083.33766 518 431 -28297094.18124 519 431 65886111.10029 520 431 3.8743019104e-07 521 431 -87588646.48668 522 431 16471527.78319 523 431 13177083.33766 524 431 -28297094.18124 537 431 3294305.556637 538 431 -26354166.66234 539 431 -36593977.52435 540 431 13177222.22006 541 431 1.490116119385e-07 542 431 -95176449.68545 543 431 3294305.556638 544 431 26354166.66234 545 431 -36593977.52435 432 432 451672659.2548 433 432 425457.3069872 435 432 45227333.73336 436 432 -3769936.940774 437 432 5.960464477539e-07 519 432 -28555987.69793 520 432 13333333.33771 521 432 16471527.78319 522 432 -80272721.40676 523 432 3396393.594356 524 432 61522916.65613 525 432 -29859204.61641 526 432 -13226940.35567 527 432 16470833.33874 540 432 -3778079.873706 541 432 -2666666.667542 542 432 -3294305.556638 543 432 34782980.96289 544 432 106364.3267991 545 432 -13176944.44228 546 432 -9519773.826407 547 432 -942484.2356579 548 432 1067638.88752 433 433 397175038.8898 434 433 1.072883605957e-06 435 433 -25103270.2706 436 433 -58853543.86754 437 433 -1.341104507446e-06 519 433 13333333.33771 520 433 -24555795.63051 521 433 -13177083.33766 522 433 3396393.594355 523 433 -25669225.02627 524 433 -3489583.333104 525 433 -13226940.35567 526 433 -23484968.00045 527 433 13177083.33766 540 433 2666666.667542 541 433 -29111380.42657 542 433 -26354166.66234 543 433 106364.3267991 544 433 21158575.86493 545 433 2.682209014893e-07 546 433 -6275817.570742 547 433 -35539993.23945 548 433 29843749.99544 434 434 452492316.5668 436 434 -1.490116119385e-06 437 434 55187296.56271 519 434 16471527.78319 520 434 -13177083.33766 521 434 -28297094.18124 522 434 61522916.65699 523 434 -3489583.332416 524 434 -82311580.01855 525 434 16470833.33874 526 434 13177083.33766 527 434 -28359905.71829 540 434 3294305.556637 541 434 -26354166.66234 542 434 -36593977.52435 543 434 13176944.44228 544 434 3.8743019104e-07 545 434 -95237411.21973 546 434 7655972.222158 547 434 29843749.99475 548 434 -41740795.2267 435 435 444644489.1745 436 435 13081929.57058 437 435 9.536743164063e-07 438 435 -86994427.68368 439 435 -57630747.35091 440 435 -2.384185791016e-06 441 435 44204118.01812 442 435 1554937.536914 443 435 -1.192092895508e-06 522 435 -22126192.23639 523 435 12497197.81285 524 435 12109027.78176 525 435 -76387958.09069 526 435 4527089.824043 527 435 64843055.54491 543 435 -9519773.826409 544 435 -6275817.570743 545 435 -7655972.222158 546 435 15798034.7999 547 435 3270482.394257 548 435 -12968611.10898 549 435 -35347304.85947 550 435 -14407686.84483 551 435 20312500.00667 552 435 -14510689.24923 553 435 388734.3844201 554 435 1171666.664472 436 436 449754245.7917 437 436 4.64916229248e-06 438 436 -57630747.35091 439 436 -66447376.92277 440 436 -1.296401023865e-06 441 436 -19778395.79291 442 436 -57866988.0148 443 436 -2.086162567139e-06 522 436 12497197.81285 523 436 -29834312.51127 524 436 -16666666.67214 525 436 4527089.824043 526 436 -23556043.72965 527 436 -3489583.333103 543 436 -942484.2356579 544 436 -35539993.23945 545 436 -29843749.99475 546 436 3270482.394257 547 436 17075473.95481 548 436 9.536743164063e-07 549 436 -14407686.84483 550 436 -30210542.16671 551 436 16666666.67214 552 436 -4944598.950664 553 436 -40028465.77003 554 436 33333333.32786 437 437 513640710.6392 438 437 -3.159046173096e-06 439 437 -1.370906829834e-06 440 437 -3386801.062691 441 437 -1.907348632813e-06 442 437 -2.235174179077e-06 443 437 68569532.94435 522 437 12109027.78176 523 437 -16666666.67214 524 437 -27982541.75396 525 437 64843055.54491 526 437 -3489583.332416 527 437 -95170201.65886 543 437 -1067638.887521 544 437 -29843749.99544 545 437 -41740795.22671 546 437 12968611.10898 547 437 1.013278961182e-06 548 437 -125891389.0729 549 437 20312500.00667 550 437 16666666.67214 551 437 -37109894.74031 552 437 7551944.445205 553 437 33333333.32786 554 437 -51022200.11333 438 438 254849231.4225 439 438 61411260.29348 440 438 3.814697265625e-06 441 438 -66610780.59762 442 438 -6369252.63857 443 438 -1.132488250732e-06 525 438 -11712307.86995 526 438 647184.9243208 527 438 -299305.5539346 546 438 -35347304.85947 547 438 -14407686.84483 548 438 -20312500.00667 549 438 6046162.064774 550 438 15352815.08093 551 438 8124999.998666 552 438 -43850090.99987 553 438 -1592313.160427 554 438 -36263194.43806 439 439 228505477.8886 440 439 4.172325134277e-06 441 439 14964080.69126 442 439 42842168.62011 443 439 1.728534698486e-06 525 439 -4686148.410764 526 439 -37626369.49388 527 439 -33333333.32786 546 439 -14407686.84483 547 439 -30210542.16671 548 439 -16666666.67214 549 439 15352815.08093 550 439 -539776.3219635 551 439 6666666.665572 552 439 3741020.174657 553 439 -16486853.68196 554 439 3333333.334428 440 440 294920181.6058 442 440 1.788139343262e-06 443 440 70439578.90092 525 440 -8424305.555743 526 440 -33333333.32786 527 440 -54230045.43139 546 440 -20312500.00667 547 440 -16666666.67214 548 440 -37109894.74031 549 440 -8124999.998665 550 440 -6666666.665571 551 440 -80046343.42155 552 440 -36263194.43892 553 440 -3333333.334428 554 440 -54916494.1788 441 441 221377868.0526 442 441 -44221604.19657 443 441 -1.311302185059e-06 525 441 -24181082.63358 526 441 12258979.8306 527 441 15950694.44968 546 441 -14510689.24923 547 441 -4944598.950664 548 441 -7551944.445206 549 441 -43850090.99987 550 441 3741020.174657 551 441 36263194.43892 552 441 4221029.5472 553 441 -11055401.05459 554 441 -6380277.77673 442 442 221364529.6578 443 442 2.861022949219e-06 525 442 12258979.8306 526 442 -26023208.832 527 442 -16666666.67214 546 442 388734.38442 547 442 -40028465.77003 548 442 -33333333.32786 549 442 -1592313.160427 550 442 -16486853.68196 551 442 3333333.334428 552 442 -11055401.05459 553 442 4217694.948508 554 442 6666666.665572 443 443 265339467.0094 525 443 15950694.44968 526 443 -16666666.67214 527 443 -32922561.4056 546 443 -1171666.664473 547 443 -33333333.32786 548 443 -51022200.11334 549 443 36263194.43806 550 443 -3333333.334428 551 443 -54916494.1788 552 443 6380277.77673 553 443 -6666666.665571 554 443 -69994299.86354 444 444 571119749.839 445 444 53333333.32457 446 444 -6.198883056641e-06 447 444 -292913008.3249 448 444 -53333332.8979 449 444 6.556510925293e-06 450 444 19534202.10867 451 444 42666666.23299 452 444 -1.490116119385e-06 555 444 45108925.89256 556 444 13333333.33771 557 444 13177222.19231 558 444 -107413106.5112 559 444 -13333333.23104 560 444 -65886110.96157 561 444 -9767101.054335 562 444 10666666.5635 563 444 -13177221.94221 445 445 491115909.0416 446 445 -3.094097220493e-06 447 445 -53333332.68457 448 445 -42244300.58137 449 445 2.145767211914e-06 450 445 63999999.34949 451 445 19534202.10866 452 445 -2.384185791016e-06 555 445 13333333.33771 556 445 25107965.68335 557 445 10541666.55379 558 445 -13333333.17771 559 445 -44745929.54446 560 445 -13177083.26329 561 445 15999999.84525 562 445 -9767101.054335 563 445 15812499.93082 446 446 565941879.2302 447 446 6.943941116333e-06 448 446 1.609325408936e-06 449 446 5277897.861165 450 446 -2.145767211914e-06 451 446 -1.54972076416e-06 452 446 52091205.62311 555 446 -13177222.19232 556 446 -10541666.5538 557 446 -118970561.1562 558 446 -65886110.96157 559 446 -13177083.28808 560 446 -89840137.25117 561 446 -19765832.91331 562 446 10541666.62055 563 446 -26045602.81156 447 447 988947148.5376 448 447 53333332.25791 449 447 -9.298324584961e-06 450 447 31359232.67644 451 447 -53333332.8979 452 447 1.251697540283e-06 453 447 -198223262.271 454 447 2.98023223877e-07 455 447 5.960464477539e-08 456 447 -75155545.7747 457 447 53333333.32457 458 447 -1.490116119385e-08 555 447 -107413106.5112 556 447 -13333333.17771 557 447 65886110.96157 558 447 100730268.7541 559 447 13333333.07105 560 447 0.02774140238762 561 447 -26345045.89131 562 447 -13333333.23105 563 447 16471527.49884 564 447 -88624220.55292 565 447 2.235174179077e-07 566 447 -65886111.10029 567 447 -28555987.69793 568 447 13333333.33771 569 447 -16471527.78319 448 448 844940234.7245 449 448 -7.987022399902e-06 450 448 -53333332.68457 451 448 -155306402.5315 452 448 5.394220352173e-06 453 448 3.576278686523e-07 454 448 36444678.54407 455 448 -4.172325134277e-07 456 448 53333333.32457 457 448 -59154777.5129 458 448 2.98023223877e-08 555 448 -13333333.23104 556 448 -44745929.54447 557 448 13177083.28808 558 448 13333333.07105 559 448 64728540.28304 560 448 0.022192299366 561 448 -13333333.17771 562 448 -73011454.71628 563 448 52708333.03581 564 448 1.9371509552e-07 565 448 -29957235.32024 566 448 -3.8743019104e-07 567 448 13333333.33771 568 448 -24555795.63051 569 448 13177083.33766 449 449 914512974.9691 450 449 1.728534698486e-06 451 449 4.559755325317e-06 452 449 62880662.12465 453 449 1.192092895508e-07 454 449 -4.768371582031e-07 455 449 66375066.93519 456 449 4.470348358154e-08 457 449 -4.470348358154e-08 458 449 -9005963.440553 555 449 65886110.96157 556 449 13177083.26329 557 449 -89840137.25118 558 449 -0.0277450978756 559 449 -0.02219566702843 560 449 -162055805.4842 561 449 16471527.35667 562 449 52708332.94687 563 449 -75439445.29918 564 449 -65886111.10029 565 449 -2.831220626831e-07 566 449 -87588646.48668 567 449 -16471527.78319 568 449 13177083.33766 569 449 -28297094.18124 450 450 571119749.839 451 450 53333333.32457 452 450 -6.198883056641e-06 453 450 -75155545.77471 454 450 -53333333.32457 455 450 5.066394805908e-07 456 450 -292913008.3249 457 450 -53333332.8979 458 450 6.556510925293e-06 459 450 19534202.10867 460 450 42666666.23299 461 450 -1.490116119385e-06 555 450 -9767101.054335 556 450 15999999.84525 557 450 19765832.91331 558 450 -26345045.8913 559 450 -13333333.17771 560 450 -16471527.35667 561 450 45108925.89256 562 450 13333333.33771 563 450 13177222.19231 564 450 -28555987.69793 565 450 -13333333.33771 566 450 -16471527.78319 567 450 -107413106.5112 568 450 -13333333.23104 569 450 -65886110.96157 570 450 -9767101.054335 571 450 10666666.5635 572 450 -13177221.94221 451 451 491115909.0416 452 451 -2.974887930942e-06 453 451 -53333333.32457 454 451 -59154777.5129 455 451 2.086162567139e-07 456 451 -53333332.68457 457 451 -42244300.58137 458 451 2.145767211914e-06 459 451 63999999.34949 460 451 19534202.10866 461 451 -2.384185791016e-06 555 451 10666666.5635 556 451 -9767101.054336 557 451 -10541666.62055 558 451 -13333333.23105 559 451 -73011454.71627 560 451 -52708332.94687 561 451 13333333.33771 562 451 25107965.68335 563 451 10541666.55379 564 451 -13333333.33771 565 451 -24555795.63051 566 451 -13177083.33766 567 451 -13333333.17771 568 451 -44745929.54446 569 451 -13177083.26329 570 451 15999999.84525 571 451 -9767101.054335 572 451 15812499.93082 452 452 565941879.2302 453 452 5.811452865601e-07 454 452 3.129243850708e-07 455 452 -9005963.440556 456 452 6.943941116333e-06 457 452 1.609325408936e-06 458 452 5277897.861165 459 452 -2.145767211914e-06 460 452 -1.54972076416e-06 461 452 52091205.62311 555 452 13177221.94221 556 452 -15812499.93082 557 452 -26045602.81156 558 452 -16471527.49884 559 452 -52708333.03581 560 452 -75439445.29917 561 452 -13177222.19232 562 452 -10541666.5538 563 452 -118970561.1562 564 452 -16471527.78319 565 452 -13177083.33766 566 452 -28297094.18124 567 452 -65886110.96157 568 452 -13177083.28808 569 452 -89840137.25117 570 452 -19765832.91331 571 452 10541666.62055 572 452 -26045602.81156 453 453 913791605.4334 454 453 7.748603820801e-06 455 453 -2.622604370117e-06 456 453 126048980.7912 457 453 -2.175569534302e-06 458 453 -1.490116119385e-06 462 453 -198223262.271 463 453 2.98023223877e-07 464 453 5.960464477539e-08 465 453 -75155545.7747 466 453 53333333.32457 467 453 -1.490116119385e-08 558 453 -88624220.55292 559 453 1.043081283569e-07 560 453 65886111.10029 561 453 -28555987.69793 562 453 -13333333.33771 563 453 16471527.78319 564 453 72174281.7049 565 453 1.728534698486e-06 566 453 1.221895217896e-06 567 453 -7556159.747413 568 453 -7.450580596924e-07 569 453 1.341104507446e-06 573 453 -88624220.55292 574 453 2.235174179077e-07 575 453 -65886111.10029 576 453 -28555987.69793 577 453 13333333.33771 578 453 -16471527.78319 454 454 785785459.402 455 454 -1.788139343262e-06 456 454 -2.086162567139e-06 457 454 -76617423.53181 458 454 5.066394805908e-07 462 454 3.576278686523e-07 463 454 36444678.54407 464 454 -4.172325134277e-07 465 454 53333333.32457 466 454 -59154777.5129 467 454 2.98023223877e-08 558 454 4.470348358154e-08 559 454 -29957235.32024 560 454 2.831220626831e-07 561 454 -13333333.33771 562 454 -24555795.63051 563 454 13177083.33766 564 454 1.728534698486e-06 565 454 40172745.1813 566 454 -5.960464477539e-08 567 454 -7.003545761108e-07 568 454 -58222760.85313 569 454 52708333.32467 573 454 1.9371509552e-07 574 454 -29957235.32024 575 454 -3.8743019104e-07 576 454 13333333.33771 577 454 -24555795.63051 578 454 13177083.33766 455 455 905507012.9075 456 455 -1.668930053711e-06 457 455 4.470348358154e-07 458 455 123977832.6588 462 455 1.192092895508e-07 463 455 -4.768371582031e-07 464 455 66375066.93519 465 455 4.470348358154e-08 466 455 -4.470348358154e-08 467 455 -9005963.440553 558 455 65886111.10029 559 455 3.8743019104e-07 560 455 -87588646.48668 561 455 16471527.78319 562 455 13177083.33766 563 455 -28297094.18124 564 455 8.642673492432e-07 565 455 1.788139343262e-07 566 455 -190352899.3709 567 455 1.475214958191e-06 568 455 52708333.32467 569 455 -73187955.0487 573 455 -65886111.10029 574 455 -2.831220626831e-07 575 455 -87588646.48668 576 455 -16471527.78319 577 455 13177083.33766 578 455 -28297094.18124 456 456 988947148.5376 457 456 53333332.25791 458 456 -9.298324584961e-06 459 456 31359232.67644 460 456 -53333332.8979 461 456 1.251697540283e-06 462 456 -75155545.77471 463 456 -53333333.32457 464 456 5.066394805908e-07 465 456 -198223262.271 466 456 2.98023223877e-07 467 456 5.960464477539e-08 468 456 -75155545.7747 469 456 53333333.32457 470 456 -1.490116119385e-08 558 456 -28555987.69793 559 456 13333333.33771 560 456 16471527.78319 561 456 -107413106.5112 562 456 -13333333.17771 563 456 65886110.96157 564 456 -7556159.747413 565 456 -3.278255462646e-07 566 456 -1.206994056702e-06 567 456 100730268.7541 568 456 13333333.07105 569 456 0.02774140238762 570 456 -26345045.89131 571 456 -13333333.23105 572 456 16471527.49884 573 456 -28555987.69793 574 456 -13333333.33771 575 456 -16471527.78319 576 456 -88624220.55292 577 456 2.235174179077e-07 578 456 -65886111.10029 579 456 -28555987.69793 580 456 13333333.33771 581 456 -16471527.78319 457 457 844940234.7245 458 457 -7.987022399902e-06 459 457 -53333332.68457 460 457 -155306402.5315 461 457 5.394220352173e-06 462 457 -53333333.32457 463 457 -59154777.5129 464 457 2.086162567139e-07 465 457 3.576278686523e-07 466 457 36444678.54407 467 457 -4.172325134277e-07 468 457 53333333.32457 469 457 -59154777.5129 470 457 2.98023223877e-08 558 457 13333333.33771 559 457 -24555795.63051 560 457 -13177083.33766 561 457 -13333333.23104 562 457 -44745929.54447 563 457 13177083.28808 564 457 -2.98023223877e-07 565 457 -58222760.85313 566 457 -52708333.32467 567 457 13333333.07105 568 457 64728540.28304 569 457 0.022192299366 570 457 -13333333.17771 571 457 -73011454.71628 572 457 52708333.03581 573 457 -13333333.33771 574 457 -24555795.63051 575 457 -13177083.33766 576 457 1.9371509552e-07 577 457 -29957235.32024 578 457 -3.8743019104e-07 579 457 13333333.33771 580 457 -24555795.63051 581 457 13177083.33766 458 458 914512974.9691 459 458 1.728534698486e-06 460 458 4.559755325317e-06 461 458 62880662.12465 462 458 5.811452865601e-07 463 458 3.129243850708e-07 464 458 -9005963.440556 465 458 1.192092895508e-07 466 458 -4.768371582031e-07 467 458 66375066.93519 468 458 4.470348358154e-08 469 458 -4.470348358154e-08 470 458 -9005963.440553 558 458 16471527.78319 559 458 -13177083.33766 560 458 -28297094.18124 561 458 65886110.96157 562 458 13177083.26329 563 458 -89840137.25118 564 458 -9.983777999878e-07 565 458 -52708333.32467 566 458 -73187955.04869 567 458 -0.0277450978756 568 458 -0.02219566702843 569 458 -162055805.4842 570 458 16471527.35667 571 458 52708332.94687 572 458 -75439445.29918 573 458 -16471527.78319 574 458 -13177083.33766 575 458 -28297094.18124 576 458 -65886111.10029 577 458 -2.831220626831e-07 578 458 -87588646.48668 579 458 -16471527.78319 580 458 13177083.33766 581 458 -28297094.18124 459 459 571119749.839 460 459 53333333.32457 461 459 -6.198883056641e-06 465 459 -75155545.77471 466 459 -53333333.32457 467 459 5.066394805908e-07 468 459 -292913008.3249 469 459 -53333332.8979 470 459 6.556510925293e-06 471 459 19534202.10867 472 459 42666666.23299 473 459 -1.490116119385e-06 561 459 -9767101.054335 562 459 15999999.84525 563 459 19765832.91331 567 459 -26345045.8913 568 459 -13333333.17771 569 459 -16471527.35667 570 459 45108925.89256 571 459 13333333.33771 572 459 13177222.19231 576 459 -28555987.69793 577 459 -13333333.33771 578 459 -16471527.78319 579 459 -107413106.5112 580 459 -13333333.23104 581 459 -65886110.96157 582 459 -9767101.054335 583 459 10666666.5635 584 459 -13177221.94221 460 460 491115909.0416 461 460 -2.974887930942e-06 465 460 -53333333.32457 466 460 -59154777.5129 467 460 2.086162567139e-07 468 460 -53333332.68457 469 460 -42244300.58137 470 460 2.145767211914e-06 471 460 63999999.34949 472 460 19534202.10866 473 460 -2.384185791016e-06 561 460 10666666.5635 562 460 -9767101.054336 563 460 -10541666.62055 567 460 -13333333.23105 568 460 -73011454.71627 569 460 -52708332.94687 570 460 13333333.33771 571 460 25107965.68335 572 460 10541666.55379 576 460 -13333333.33771 577 460 -24555795.63051 578 460 -13177083.33766 579 460 -13333333.17771 580 460 -44745929.54446 581 460 -13177083.26329 582 460 15999999.84525 583 460 -9767101.054335 584 460 15812499.93082 461 461 565941879.2302 465 461 5.811452865601e-07 466 461 3.129243850708e-07 467 461 -9005963.440556 468 461 6.943941116333e-06 469 461 1.609325408936e-06 470 461 5277897.861165 471 461 -2.145767211914e-06 472 461 -1.54972076416e-06 473 461 52091205.62311 561 461 13177221.94221 562 461 -15812499.93082 563 461 -26045602.81156 567 461 -16471527.49884 568 461 -52708333.03581 569 461 -75439445.29917 570 461 -13177222.19232 571 461 -10541666.5538 572 461 -118970561.1562 576 461 -16471527.78319 577 461 -13177083.33766 578 461 -28297094.18124 579 461 -65886110.96157 580 461 -13177083.28808 581 461 -89840137.25117 582 461 -19765832.91331 583 461 10541666.62055 584 461 -26045602.81156 462 462 913791605.4334 463 462 7.748603820801e-06 464 462 -2.622604370117e-06 465 462 126048980.7912 466 462 -2.175569534302e-06 467 462 -1.490116119385e-06 474 462 -198223262.271 475 462 2.98023223877e-07 476 462 5.960464477539e-08 477 462 -75155545.7747 478 462 53333333.32457 479 462 -1.490116119385e-08 564 462 -88624220.55292 565 462 1.043081283569e-07 566 462 65886111.10029 567 462 -28555987.69793 568 462 -13333333.33771 569 462 16471527.78319 573 462 72174281.7049 574 462 1.728534698486e-06 575 462 1.221895217896e-06 576 462 -7556159.747413 577 462 -7.450580596924e-07 578 462 1.341104507446e-06 585 462 -88624220.55292 586 462 2.235174179077e-07 587 462 -65886111.10029 588 462 -28555987.69793 589 462 13333333.33771 590 462 -16471527.78319 463 463 785785459.402 464 463 -1.788139343262e-06 465 463 -2.086162567139e-06 466 463 -76617423.53181 467 463 5.066394805908e-07 474 463 3.576278686523e-07 475 463 36444678.54407 476 463 -4.172325134277e-07 477 463 53333333.32457 478 463 -59154777.5129 479 463 2.98023223877e-08 564 463 4.470348358154e-08 565 463 -29957235.32024 566 463 2.831220626831e-07 567 463 -13333333.33771 568 463 -24555795.63051 569 463 13177083.33766 573 463 1.728534698486e-06 574 463 40172745.1813 575 463 -5.960464477539e-08 576 463 -7.003545761108e-07 577 463 -58222760.85313 578 463 52708333.32467 585 463 1.9371509552e-07 586 463 -29957235.32024 587 463 -3.8743019104e-07 588 463 13333333.33771 589 463 -24555795.63051 590 463 13177083.33766 464 464 905507012.9075 465 464 -1.668930053711e-06 466 464 4.470348358154e-07 467 464 123977832.6588 474 464 1.192092895508e-07 475 464 -4.768371582031e-07 476 464 66375066.93519 477 464 4.470348358154e-08 478 464 -4.470348358154e-08 479 464 -9005963.440553 564 464 65886111.10029 565 464 3.8743019104e-07 566 464 -87588646.48668 567 464 16471527.78319 568 464 13177083.33766 569 464 -28297094.18124 573 464 8.642673492432e-07 574 464 1.788139343262e-07 575 464 -190352899.3709 576 464 1.475214958191e-06 577 464 52708333.32467 578 464 -73187955.0487 585 464 -65886111.10029 586 464 -2.831220626831e-07 587 464 -87588646.48668 588 464 -16471527.78319 589 464 13177083.33766 590 464 -28297094.18124 465 465 913791605.4334 466 465 7.748603820801e-06 467 465 -2.622604370117e-06 468 465 126048980.7912 469 465 -2.175569534302e-06 470 465 -1.490116119385e-06 474 465 -75155545.77471 475 465 -53333333.32457 476 465 5.066394805908e-07 477 465 -198223262.271 478 465 2.98023223877e-07 479 465 5.960464477539e-08 480 465 -75155545.7747 481 465 53333333.32457 482 465 -1.490116119385e-08 564 465 -28555987.69793 565 465 13333333.33771 566 465 16471527.78319 567 465 -88624220.55292 568 465 1.043081283569e-07 569 465 65886111.10029 570 465 -28555987.69793 571 465 -13333333.33771 572 465 16471527.78319 573 465 -7556159.747413 574 465 -3.278255462646e-07 575 465 -1.206994056702e-06 576 465 72174281.7049 577 465 1.728534698486e-06 578 465 1.221895217896e-06 579 465 -7556159.747413 580 465 -7.450580596924e-07 581 465 1.341104507446e-06 585 465 -28555987.69793 586 465 -13333333.33771 587 465 -16471527.78319 588 465 -88624220.55292 589 465 2.235174179077e-07 590 465 -65886111.10029 591 465 -28555987.69793 592 465 13333333.33771 593 465 -16471527.78319 466 466 785785459.402 467 466 -1.788139343262e-06 468 466 -2.086162567139e-06 469 466 -76617423.53181 470 466 5.066394805908e-07 474 466 -53333333.32457 475 466 -59154777.5129 476 466 2.086162567139e-07 477 466 3.576278686523e-07 478 466 36444678.54407 479 466 -4.172325134277e-07 480 466 53333333.32457 481 466 -59154777.5129 482 466 2.98023223877e-08 564 466 13333333.33771 565 466 -24555795.63051 566 466 -13177083.33766 567 466 4.470348358154e-08 568 466 -29957235.32024 569 466 2.831220626831e-07 570 466 -13333333.33771 571 466 -24555795.63051 572 466 13177083.33766 573 466 -2.98023223877e-07 574 466 -58222760.85313 575 466 -52708333.32467 576 466 1.728534698486e-06 577 466 40172745.1813 578 466 -5.960464477539e-08 579 466 -7.003545761108e-07 580 466 -58222760.85313 581 466 52708333.32467 585 466 -13333333.33771 586 466 -24555795.63051 587 466 -13177083.33766 588 466 1.9371509552e-07 589 466 -29957235.32024 590 466 -3.8743019104e-07 591 466 13333333.33771 592 466 -24555795.63051 593 466 13177083.33766 467 467 905507012.9075 468 467 -1.668930053711e-06 469 467 4.470348358154e-07 470 467 123977832.6588 474 467 5.811452865601e-07 475 467 3.129243850708e-07 476 467 -9005963.440556 477 467 1.192092895508e-07 478 467 -4.768371582031e-07 479 467 66375066.93519 480 467 4.470348358154e-08 481 467 -4.470348358154e-08 482 467 -9005963.440553 564 467 16471527.78319 565 467 -13177083.33766 566 467 -28297094.18124 567 467 65886111.10029 568 467 3.8743019104e-07 569 467 -87588646.48668 570 467 16471527.78319 571 467 13177083.33766 572 467 -28297094.18124 573 467 -9.983777999878e-07 574 467 -52708333.32467 575 467 -73187955.04869 576 467 8.642673492432e-07 577 467 1.788139343262e-07 578 467 -190352899.3709 579 467 1.475214958191e-06 580 467 52708333.32467 581 467 -73187955.0487 585 467 -16471527.78319 586 467 -13177083.33766 587 467 -28297094.18124 588 467 -65886111.10029 589 467 -2.831220626831e-07 590 467 -87588646.48668 591 467 -16471527.78319 592 467 13177083.33766 593 467 -28297094.18124 468 468 988947148.5376 469 468 53333332.25791 470 468 -9.298324584961e-06 471 468 31359232.67644 472 468 -53333332.8979 473 468 1.251697540283e-06 477 468 -75155545.77471 478 468 -53333333.32457 479 468 5.066394805908e-07 480 468 -198223262.271 481 468 2.98023223877e-07 482 468 5.960464477539e-08 483 468 -75155545.7747 484 468 53333333.32457 485 468 -1.490116119385e-08 567 468 -28555987.69793 568 468 13333333.33771 569 468 16471527.78319 570 468 -107413106.5112 571 468 -13333333.17771 572 468 65886110.96157 576 468 -7556159.747413 577 468 -3.278255462646e-07 578 468 -1.206994056702e-06 579 468 100730268.7541 580 468 13333333.07105 581 468 0.02774140238762 582 468 -26345045.89131 583 468 -13333333.23105 584 468 16471527.49884 588 468 -28555987.69793 589 468 -13333333.33771 590 468 -16471527.78319 591 468 -88624220.55292 592 468 2.235174179077e-07 593 468 -65886111.10029 594 468 -28555987.69793 595 468 13333333.33771 596 468 -16471527.78319 469 469 844940234.7245 470 469 -7.987022399902e-06 471 469 -53333332.68457 472 469 -155306402.5315 473 469 5.394220352173e-06 477 469 -53333333.32457 478 469 -59154777.5129 479 469 2.086162567139e-07 480 469 3.576278686523e-07 481 469 36444678.54407 482 469 -4.172325134277e-07 483 469 53333333.32457 484 469 -59154777.5129 485 469 2.98023223877e-08 567 469 13333333.33771 568 469 -24555795.63051 569 469 -13177083.33766 570 469 -13333333.23104 571 469 -44745929.54447 572 469 13177083.28808 576 469 -2.98023223877e-07 577 469 -58222760.85313 578 469 -52708333.32467 579 469 13333333.07105 580 469 64728540.28304 581 469 0.022192299366 582 469 -13333333.17771 583 469 -73011454.71628 584 469 52708333.03581 588 469 -13333333.33771 589 469 -24555795.63051 590 469 -13177083.33766 591 469 1.9371509552e-07 592 469 -29957235.32024 593 469 -3.8743019104e-07 594 469 13333333.33771 595 469 -24555795.63051 596 469 13177083.33766 470 470 914512974.9691 471 470 1.728534698486e-06 472 470 4.559755325317e-06 473 470 62880662.12465 477 470 5.811452865601e-07 478 470 3.129243850708e-07 479 470 -9005963.440556 480 470 1.192092895508e-07 481 470 -4.768371582031e-07 482 470 66375066.93519 483 470 4.470348358154e-08 484 470 -4.470348358154e-08 485 470 -9005963.440553 567 470 16471527.78319 568 470 -13177083.33766 569 470 -28297094.18124 570 470 65886110.96157 571 470 13177083.26329 572 470 -89840137.25118 576 470 -9.983777999878e-07 577 470 -52708333.32467 578 470 -73187955.04869 579 470 -0.0277450978756 580 470 -0.02219566702843 581 470 -162055805.4842 582 470 16471527.35667 583 470 52708332.94687 584 470 -75439445.29918 588 470 -16471527.78319 589 470 -13177083.33766 590 470 -28297094.18124 591 470 -65886111.10029 592 470 -2.831220626831e-07 593 470 -87588646.48668 594 470 -16471527.78319 595 470 13177083.33766 596 470 -28297094.18124 471 471 571119749.839 472 471 53333333.32457 473 471 -6.198883056641e-06 480 471 -75155545.77471 481 471 -53333333.32457 482 471 5.066394805908e-07 483 471 -292913008.3249 484 471 -53333332.8979 485 471 6.556510925293e-06 486 471 19534202.10867 487 471 42666666.23299 488 471 -1.490116119385e-06 570 471 -9767101.054335 571 471 15999999.84525 572 471 19765832.91331 579 471 -26345045.8913 580 471 -13333333.17771 581 471 -16471527.35667 582 471 45108925.89256 583 471 13333333.33771 584 471 13177222.19231 591 471 -28555987.69793 592 471 -13333333.33771 593 471 -16471527.78319 594 471 -107413106.5112 595 471 -13333333.23104 596 471 -65886110.96157 597 471 -9767101.054335 598 471 10666666.5635 599 471 -13177221.94221 472 472 491115909.0416 473 472 -2.974887930942e-06 480 472 -53333333.32457 481 472 -59154777.5129 482 472 2.086162567139e-07 483 472 -53333332.68457 484 472 -42244300.58137 485 472 2.145767211914e-06 486 472 63999999.34949 487 472 19534202.10866 488 472 -2.384185791016e-06 570 472 10666666.5635 571 472 -9767101.054336 572 472 -10541666.62055 579 472 -13333333.23105 580 472 -73011454.71627 581 472 -52708332.94687 582 472 13333333.33771 583 472 25107965.68335 584 472 10541666.55379 591 472 -13333333.33771 592 472 -24555795.63051 593 472 -13177083.33766 594 472 -13333333.17771 595 472 -44745929.54446 596 472 -13177083.26329 597 472 15999999.84525 598 472 -9767101.054335 599 472 15812499.93082 473 473 565941879.2302 480 473 5.811452865601e-07 481 473 3.129243850708e-07 482 473 -9005963.440556 483 473 6.943941116333e-06 484 473 1.609325408936e-06 485 473 5277897.861165 486 473 -2.145767211914e-06 487 473 -1.54972076416e-06 488 473 52091205.62311 570 473 13177221.94221 571 473 -15812499.93082 572 473 -26045602.81156 579 473 -16471527.49884 580 473 -52708333.03581 581 473 -75439445.29917 582 473 -13177222.19232 583 473 -10541666.5538 584 473 -118970561.1562 591 473 -16471527.78319 592 473 -13177083.33766 593 473 -28297094.18124 594 473 -65886110.96157 595 473 -13177083.28808 596 473 -89840137.25117 597 473 -19765832.91331 598 473 10541666.62055 599 473 -26045602.81156 474 474 913791605.4334 475 474 7.748603820801e-06 476 474 -2.622604370117e-06 477 474 126048980.7912 478 474 -2.175569534302e-06 479 474 -1.490116119385e-06 489 474 -198223262.271 490 474 2.98023223877e-07 491 474 5.960464477539e-08 492 474 -75155545.7747 493 474 53333333.32457 494 474 -1.490116119385e-08 573 474 -88624220.55292 574 474 1.043081283569e-07 575 474 65886111.10029 576 474 -28555987.69793 577 474 -13333333.33771 578 474 16471527.78319 585 474 72174281.7049 586 474 1.728534698486e-06 587 474 1.221895217896e-06 588 474 -7556159.747413 589 474 -7.450580596924e-07 590 474 1.341104507446e-06 600 474 -88624220.55292 601 474 2.235174179077e-07 602 474 -65886111.10029 603 474 -28555987.69793 604 474 13333333.33771 605 474 -16471527.78319 475 475 785785459.402 476 475 -1.788139343262e-06 477 475 -2.086162567139e-06 478 475 -76617423.53181 479 475 5.066394805908e-07 489 475 3.576278686523e-07 490 475 36444678.54407 491 475 -4.172325134277e-07 492 475 53333333.32457 493 475 -59154777.5129 494 475 2.98023223877e-08 573 475 4.470348358154e-08 574 475 -29957235.32024 575 475 2.831220626831e-07 576 475 -13333333.33771 577 475 -24555795.63051 578 475 13177083.33766 585 475 1.728534698486e-06 586 475 40172745.1813 587 475 -5.960464477539e-08 588 475 -7.003545761108e-07 589 475 -58222760.85313 590 475 52708333.32467 600 475 1.9371509552e-07 601 475 -29957235.32024 602 475 -3.8743019104e-07 603 475 13333333.33771 604 475 -24555795.63051 605 475 13177083.33766 476 476 905507012.9075 477 476 -1.668930053711e-06 478 476 4.470348358154e-07 479 476 123977832.6588 489 476 1.192092895508e-07 490 476 -4.768371582031e-07 491 476 66375066.93519 492 476 4.470348358154e-08 493 476 -4.470348358154e-08 494 476 -9005963.440553 573 476 65886111.10029 574 476 3.8743019104e-07 575 476 -87588646.48668 576 476 16471527.78319 577 476 13177083.33766 578 476 -28297094.18124 585 476 8.642673492432e-07 586 476 1.788139343262e-07 587 476 -190352899.3709 588 476 1.475214958191e-06 589 476 52708333.32467 590 476 -73187955.0487 600 476 -65886111.10029 601 476 -2.831220626831e-07 602 476 -87588646.48668 603 476 -16471527.78319 604 476 13177083.33766 605 476 -28297094.18124 477 477 913791605.4334 478 477 7.748603820801e-06 479 477 -2.622604370117e-06 480 477 126048980.7912 481 477 -2.175569534302e-06 482 477 -1.490116119385e-06 489 477 -75155545.77471 490 477 -53333333.32457 491 477 5.066394805908e-07 492 477 -198223262.271 493 477 2.98023223877e-07 494 477 5.960464477539e-08 495 477 -75155545.7747 496 477 53333333.32457 497 477 -1.490116119385e-08 573 477 -28555987.69793 574 477 13333333.33771 575 477 16471527.78319 576 477 -88624220.55292 577 477 1.043081283569e-07 578 477 65886111.10029 579 477 -28555987.69793 580 477 -13333333.33771 581 477 16471527.78319 585 477 -7556159.747413 586 477 -3.278255462646e-07 587 477 -1.206994056702e-06 588 477 72174281.7049 589 477 1.728534698486e-06 590 477 1.221895217896e-06 591 477 -7556159.747413 592 477 -7.450580596924e-07 593 477 1.341104507446e-06 600 477 -28555987.69793 601 477 -13333333.33771 602 477 -16471527.78319 603 477 -88624220.55292 604 477 2.235174179077e-07 605 477 -65886111.10029 606 477 -28555987.69793 607 477 13333333.33771 608 477 -16471527.78319 478 478 785785459.402 479 478 -1.788139343262e-06 480 478 -2.086162567139e-06 481 478 -76617423.53181 482 478 5.066394805908e-07 489 478 -53333333.32457 490 478 -59154777.5129 491 478 2.086162567139e-07 492 478 3.576278686523e-07 493 478 36444678.54407 494 478 -4.172325134277e-07 495 478 53333333.32457 496 478 -59154777.5129 497 478 2.98023223877e-08 573 478 13333333.33771 574 478 -24555795.63051 575 478 -13177083.33766 576 478 4.470348358154e-08 577 478 -29957235.32024 578 478 2.831220626831e-07 579 478 -13333333.33771 580 478 -24555795.63051 581 478 13177083.33766 585 478 -2.98023223877e-07 586 478 -58222760.85313 587 478 -52708333.32467 588 478 1.728534698486e-06 589 478 40172745.1813 590 478 -5.960464477539e-08 591 478 -7.003545761108e-07 592 478 -58222760.85313 593 478 52708333.32467 600 478 -13333333.33771 601 478 -24555795.63051 602 478 -13177083.33766 603 478 1.9371509552e-07 604 478 -29957235.32024 605 478 -3.8743019104e-07 606 478 13333333.33771 607 478 -24555795.63051 608 478 13177083.33766 479 479 905507012.9075 480 479 -1.668930053711e-06 481 479 4.470348358154e-07 482 479 123977832.6588 489 479 5.811452865601e-07 490 479 3.129243850708e-07 491 479 -9005963.440556 492 479 1.192092895508e-07 493 479 -4.768371582031e-07 494 479 66375066.93519 495 479 4.470348358154e-08 496 479 -4.470348358154e-08 497 479 -9005963.440553 573 479 16471527.78319 574 479 -13177083.33766 575 479 -28297094.18124 576 479 65886111.10029 577 479 3.8743019104e-07 578 479 -87588646.48668 579 479 16471527.78319 580 479 13177083.33766 581 479 -28297094.18124 585 479 -9.983777999878e-07 586 479 -52708333.32467 587 479 -73187955.04869 588 479 8.642673492432e-07 589 479 1.788139343262e-07 590 479 -190352899.3709 591 479 1.475214958191e-06 592 479 52708333.32467 593 479 -73187955.0487 600 479 -16471527.78319 601 479 -13177083.33766 602 479 -28297094.18124 603 479 -65886111.10029 604 479 -2.831220626831e-07 605 479 -87588646.48668 606 479 -16471527.78319 607 479 13177083.33766 608 479 -28297094.18124 480 480 913791605.4334 481 480 7.748603820801e-06 482 480 -2.622604370117e-06 483 480 126048980.7912 484 480 -2.175569534302e-06 485 480 -1.490116119385e-06 492 480 -75155545.77471 493 480 -53333333.32457 494 480 5.066394805908e-07 495 480 -198223262.271 496 480 2.98023223877e-07 497 480 5.960464477539e-08 498 480 -75155545.7747 499 480 53333333.32457 500 480 -1.490116119385e-08 576 480 -28555987.69793 577 480 13333333.33771 578 480 16471527.78319 579 480 -88624220.55292 580 480 1.043081283569e-07 581 480 65886111.10029 582 480 -28555987.69793 583 480 -13333333.33771 584 480 16471527.78319 588 480 -7556159.747413 589 480 -3.278255462646e-07 590 480 -1.206994056702e-06 591 480 72174281.7049 592 480 1.728534698486e-06 593 480 1.221895217896e-06 594 480 -7556159.747413 595 480 -7.450580596924e-07 596 480 1.341104507446e-06 603 480 -28555987.69793 604 480 -13333333.33771 605 480 -16471527.78319 606 480 -88624220.55292 607 480 2.235174179077e-07 608 480 -65886111.10029 609 480 -28555987.69793 610 480 13333333.33771 611 480 -16471527.78319 481 481 785785459.402 482 481 -1.788139343262e-06 483 481 -2.086162567139e-06 484 481 -76617423.53181 485 481 5.066394805908e-07 492 481 -53333333.32457 493 481 -59154777.5129 494 481 2.086162567139e-07 495 481 3.576278686523e-07 496 481 36444678.54407 497 481 -4.172325134277e-07 498 481 53333333.32457 499 481 -59154777.5129 500 481 2.98023223877e-08 576 481 13333333.33771 577 481 -24555795.63051 578 481 -13177083.33766 579 481 4.470348358154e-08 580 481 -29957235.32024 581 481 2.831220626831e-07 582 481 -13333333.33771 583 481 -24555795.63051 584 481 13177083.33766 588 481 -2.98023223877e-07 589 481 -58222760.85313 590 481 -52708333.32467 591 481 1.728534698486e-06 592 481 40172745.1813 593 481 -5.960464477539e-08 594 481 -7.003545761108e-07 595 481 -58222760.85313 596 481 52708333.32467 603 481 -13333333.33771 604 481 -24555795.63051 605 481 -13177083.33766 606 481 1.9371509552e-07 607 481 -29957235.32024 608 481 -3.8743019104e-07 609 481 13333333.33771 610 481 -24555795.63051 611 481 13177083.33766 482 482 905507012.9075 483 482 -1.668930053711e-06 484 482 4.470348358154e-07 485 482 123977832.6588 492 482 5.811452865601e-07 493 482 3.129243850708e-07 494 482 -9005963.440556 495 482 1.192092895508e-07 496 482 -4.768371582031e-07 497 482 66375066.93519 498 482 4.470348358154e-08 499 482 -4.470348358154e-08 500 482 -9005963.440553 576 482 16471527.78319 577 482 -13177083.33766 578 482 -28297094.18124 579 482 65886111.10029 580 482 3.8743019104e-07 581 482 -87588646.48668 582 482 16471527.78319 583 482 13177083.33766 584 482 -28297094.18124 588 482 -9.983777999878e-07 589 482 -52708333.32467 590 482 -73187955.04869 591 482 8.642673492432e-07 592 482 1.788139343262e-07 593 482 -190352899.3709 594 482 1.475214958191e-06 595 482 52708333.32467 596 482 -73187955.0487 603 482 -16471527.78319 604 482 -13177083.33766 605 482 -28297094.18124 606 482 -65886111.10029 607 482 -2.831220626831e-07 608 482 -87588646.48668 609 482 -16471527.78319 610 482 13177083.33766 611 482 -28297094.18124 483 483 988947148.5376 484 483 53333332.25791 485 483 -9.298324584961e-06 486 483 31359232.67644 487 483 -53333332.8979 488 483 1.251697540283e-06 495 483 -75155545.77471 496 483 -53333333.32457 497 483 5.066394805908e-07 498 483 -198223262.271 499 483 2.98023223877e-07 500 483 5.960464477539e-08 501 483 -75155545.7747 502 483 53333333.32457 503 483 -1.490116119385e-08 579 483 -28555987.69793 580 483 13333333.33771 581 483 16471527.78319 582 483 -107413106.5112 583 483 -13333333.17771 584 483 65886110.96157 591 483 -7556159.747413 592 483 -3.278255462646e-07 593 483 -1.206994056702e-06 594 483 100730268.7541 595 483 13333333.07105 596 483 0.02774140238762 597 483 -26345045.89131 598 483 -13333333.23105 599 483 16471527.49884 606 483 -28555987.69793 607 483 -13333333.33771 608 483 -16471527.78319 609 483 -88624220.55292 610 483 2.235174179077e-07 611 483 -65886111.10029 612 483 -28555987.69793 613 483 13333333.33771 614 483 -16471527.78319 484 484 844940234.7245 485 484 -7.987022399902e-06 486 484 -53333332.68457 487 484 -155306402.5315 488 484 5.394220352173e-06 495 484 -53333333.32457 496 484 -59154777.5129 497 484 2.086162567139e-07 498 484 3.576278686523e-07 499 484 36444678.54407 500 484 -4.172325134277e-07 501 484 53333333.32457 502 484 -59154777.5129 503 484 2.98023223877e-08 579 484 13333333.33771 580 484 -24555795.63051 581 484 -13177083.33766 582 484 -13333333.23104 583 484 -44745929.54447 584 484 13177083.28808 591 484 -2.98023223877e-07 592 484 -58222760.85313 593 484 -52708333.32467 594 484 13333333.07105 595 484 64728540.28304 596 484 0.022192299366 597 484 -13333333.17771 598 484 -73011454.71628 599 484 52708333.03581 606 484 -13333333.33771 607 484 -24555795.63051 608 484 -13177083.33766 609 484 1.9371509552e-07 610 484 -29957235.32024 611 484 -3.8743019104e-07 612 484 13333333.33771 613 484 -24555795.63051 614 484 13177083.33766 485 485 914512974.9691 486 485 1.728534698486e-06 487 485 4.559755325317e-06 488 485 62880662.12465 495 485 5.811452865601e-07 496 485 3.129243850708e-07 497 485 -9005963.440556 498 485 1.192092895508e-07 499 485 -4.768371582031e-07 500 485 66375066.93519 501 485 4.470348358154e-08 502 485 -4.470348358154e-08 503 485 -9005963.440553 579 485 16471527.78319 580 485 -13177083.33766 581 485 -28297094.18124 582 485 65886110.96157 583 485 13177083.26329 584 485 -89840137.25118 591 485 -9.983777999878e-07 592 485 -52708333.32467 593 485 -73187955.04869 594 485 -0.0277450978756 595 485 -0.02219566702843 596 485 -162055805.4842 597 485 16471527.35667 598 485 52708332.94687 599 485 -75439445.29918 606 485 -16471527.78319 607 485 -13177083.33766 608 485 -28297094.18124 609 485 -65886111.10029 610 485 -2.831220626831e-07 611 485 -87588646.48668 612 485 -16471527.78319 613 485 13177083.33766 614 485 -28297094.18124 486 486 571119749.839 487 486 53333333.32457 488 486 -6.198883056641e-06 498 486 -75155545.77471 499 486 -53333333.32457 500 486 5.066394805908e-07 501 486 -292913008.3249 502 486 -53333332.8979 503 486 6.556510925293e-06 504 486 19534202.10867 505 486 42666666.23299 506 486 -1.490116119385e-06 582 486 -9767101.054335 583 486 15999999.84525 584 486 19765832.91331 594 486 -26345045.8913 595 486 -13333333.17771 596 486 -16471527.35667 597 486 45108925.89256 598 486 13333333.33771 599 486 13177222.19231 609 486 -28555987.69793 610 486 -13333333.33771 611 486 -16471527.78319 612 486 -107413106.5112 613 486 -13333333.23104 614 486 -65886110.96157 615 486 -9767101.054335 616 486 10666666.5635 617 486 -13177221.94221 487 487 491115909.0416 488 487 -2.974887930942e-06 498 487 -53333333.32457 499 487 -59154777.5129 500 487 2.086162567139e-07 501 487 -53333332.68457 502 487 -42244300.58137 503 487 2.145767211914e-06 504 487 63999999.34949 505 487 19534202.10866 506 487 -2.384185791016e-06 582 487 10666666.5635 583 487 -9767101.054336 584 487 -10541666.62055 594 487 -13333333.23105 595 487 -73011454.71627 596 487 -52708332.94687 597 487 13333333.33771 598 487 25107965.68335 599 487 10541666.55379 609 487 -13333333.33771 610 487 -24555795.63051 611 487 -13177083.33766 612 487 -13333333.17771 613 487 -44745929.54446 614 487 -13177083.26329 615 487 15999999.84525 616 487 -9767101.054335 617 487 15812499.93082 488 488 565941879.2302 498 488 5.811452865601e-07 499 488 3.129243850708e-07 500 488 -9005963.440556 501 488 6.943941116333e-06 502 488 1.609325408936e-06 503 488 5277897.861165 504 488 -2.145767211914e-06 505 488 -1.54972076416e-06 506 488 52091205.62311 582 488 13177221.94221 583 488 -15812499.93082 584 488 -26045602.81156 594 488 -16471527.49884 595 488 -52708333.03581 596 488 -75439445.29917 597 488 -13177222.19232 598 488 -10541666.5538 599 488 -118970561.1562 609 488 -16471527.78319 610 488 -13177083.33766 611 488 -28297094.18124 612 488 -65886110.96157 613 488 -13177083.28808 614 488 -89840137.25117 615 488 -19765832.91331 616 488 10541666.62055 617 488 -26045602.81156 489 489 913791605.4334 490 489 7.748603820801e-06 491 489 -2.622604370117e-06 492 489 126048980.7912 493 489 -2.175569534302e-06 494 489 -1.490116119385e-06 507 489 -198223262.271 508 489 2.98023223877e-07 509 489 5.960464477539e-08 510 489 -75155545.7747 511 489 53333333.32457 512 489 -1.490116119385e-08 585 489 -88624220.55292 586 489 1.043081283569e-07 587 489 65886111.10029 588 489 -28555987.69793 589 489 -13333333.33771 590 489 16471527.78319 600 489 72174281.7049 601 489 1.728534698486e-06 602 489 1.221895217896e-06 603 489 -7556159.747413 604 489 -7.450580596924e-07 605 489 1.341104507446e-06 618 489 -88624220.55292 619 489 2.235174179077e-07 620 489 -65886111.10029 621 489 -28555987.69793 622 489 13333333.33771 623 489 -16471527.78319 490 490 785785459.402 491 490 -1.788139343262e-06 492 490 -2.086162567139e-06 493 490 -76617423.53181 494 490 5.066394805908e-07 507 490 3.576278686523e-07 508 490 36444678.54407 509 490 -4.172325134277e-07 510 490 53333333.32457 511 490 -59154777.5129 512 490 2.98023223877e-08 585 490 4.470348358154e-08 586 490 -29957235.32024 587 490 2.831220626831e-07 588 490 -13333333.33771 589 490 -24555795.63051 590 490 13177083.33766 600 490 1.728534698486e-06 601 490 40172745.1813 602 490 -5.960464477539e-08 603 490 -7.003545761108e-07 604 490 -58222760.85313 605 490 52708333.32467 618 490 1.9371509552e-07 619 490 -29957235.32024 620 490 -3.8743019104e-07 621 490 13333333.33771 622 490 -24555795.63051 623 490 13177083.33766 491 491 905507012.9075 492 491 -1.668930053711e-06 493 491 4.470348358154e-07 494 491 123977832.6588 507 491 1.192092895508e-07 508 491 -4.768371582031e-07 509 491 66375066.93519 510 491 4.470348358154e-08 511 491 -4.470348358154e-08 512 491 -9005963.440553 585 491 65886111.10029 586 491 3.8743019104e-07 587 491 -87588646.48668 588 491 16471527.78319 589 491 13177083.33766 590 491 -28297094.18124 600 491 8.642673492432e-07 601 491 1.788139343262e-07 602 491 -190352899.3709 603 491 1.475214958191e-06 604 491 52708333.32467 605 491 -73187955.0487 618 491 -65886111.10029 619 491 -2.831220626831e-07 620 491 -87588646.48668 621 491 -16471527.78319 622 491 13177083.33766 623 491 -28297094.18124 492 492 913791605.4334 493 492 7.748603820801e-06 494 492 -2.622604370117e-06 495 492 126048980.7912 496 492 -2.175569534302e-06 497 492 -1.490116119385e-06 507 492 -75155545.77471 508 492 -53333333.32457 509 492 5.066394805908e-07 510 492 -198223262.271 511 492 2.98023223877e-07 512 492 5.960464477539e-08 513 492 -75155545.7747 514 492 53333333.32457 515 492 -1.490116119385e-08 585 492 -28555987.69793 586 492 13333333.33771 587 492 16471527.78319 588 492 -88624220.55292 589 492 1.043081283569e-07 590 492 65886111.10029 591 492 -28555987.69793 592 492 -13333333.33771 593 492 16471527.78319 600 492 -7556159.747413 601 492 -3.278255462646e-07 602 492 -1.206994056702e-06 603 492 72174281.7049 604 492 1.728534698486e-06 605 492 1.221895217896e-06 606 492 -7556159.747413 607 492 -7.450580596924e-07 608 492 1.341104507446e-06 618 492 -28555987.69793 619 492 -13333333.33771 620 492 -16471527.78319 621 492 -88624220.55292 622 492 2.235174179077e-07 623 492 -65886111.10029 624 492 -28555987.69793 625 492 13333333.33771 626 492 -16471527.78319 493 493 785785459.402 494 493 -1.788139343262e-06 495 493 -2.086162567139e-06 496 493 -76617423.53181 497 493 5.066394805908e-07 507 493 -53333333.32457 508 493 -59154777.5129 509 493 2.086162567139e-07 510 493 3.576278686523e-07 511 493 36444678.54407 512 493 -4.172325134277e-07 513 493 53333333.32457 514 493 -59154777.5129 515 493 2.98023223877e-08 585 493 13333333.33771 586 493 -24555795.63051 587 493 -13177083.33766 588 493 4.470348358154e-08 589 493 -29957235.32024 590 493 2.831220626831e-07 591 493 -13333333.33771 592 493 -24555795.63051 593 493 13177083.33766 600 493 -2.98023223877e-07 601 493 -58222760.85313 602 493 -52708333.32467 603 493 1.728534698486e-06 604 493 40172745.1813 605 493 -5.960464477539e-08 606 493 -7.003545761108e-07 607 493 -58222760.85313 608 493 52708333.32467 618 493 -13333333.33771 619 493 -24555795.63051 620 493 -13177083.33766 621 493 1.9371509552e-07 622 493 -29957235.32024 623 493 -3.8743019104e-07 624 493 13333333.33771 625 493 -24555795.63051 626 493 13177083.33766 494 494 905507012.9075 495 494 -1.668930053711e-06 496 494 4.470348358154e-07 497 494 123977832.6588 507 494 5.811452865601e-07 508 494 3.129243850708e-07 509 494 -9005963.440556 510 494 1.192092895508e-07 511 494 -4.768371582031e-07 512 494 66375066.93519 513 494 4.470348358154e-08 514 494 -4.470348358154e-08 515 494 -9005963.440553 585 494 16471527.78319 586 494 -13177083.33766 587 494 -28297094.18124 588 494 65886111.10029 589 494 3.8743019104e-07 590 494 -87588646.48668 591 494 16471527.78319 592 494 13177083.33766 593 494 -28297094.18124 600 494 -9.983777999878e-07 601 494 -52708333.32467 602 494 -73187955.04869 603 494 8.642673492432e-07 604 494 1.788139343262e-07 605 494 -190352899.3709 606 494 1.475214958191e-06 607 494 52708333.32467 608 494 -73187955.0487 618 494 -16471527.78319 619 494 -13177083.33766 620 494 -28297094.18124 621 494 -65886111.10029 622 494 -2.831220626831e-07 623 494 -87588646.48668 624 494 -16471527.78319 625 494 13177083.33766 626 494 -28297094.18124 495 495 913791605.4334 496 495 7.748603820801e-06 497 495 -2.622604370117e-06 498 495 126048980.7912 499 495 -2.175569534302e-06 500 495 -1.490116119385e-06 510 495 -75155545.77471 511 495 -53333333.32457 512 495 5.066394805908e-07 513 495 -198223262.271 514 495 2.98023223877e-07 515 495 5.960464477539e-08 516 495 -75155545.7747 517 495 53333333.32457 518 495 -1.490116119385e-08 588 495 -28555987.69793 589 495 13333333.33771 590 495 16471527.78319 591 495 -88624220.55292 592 495 1.043081283569e-07 593 495 65886111.10029 594 495 -28555987.69793 595 495 -13333333.33771 596 495 16471527.78319 603 495 -7556159.747413 604 495 -3.278255462646e-07 605 495 -1.206994056702e-06 606 495 72174281.7049 607 495 1.728534698486e-06 608 495 1.221895217896e-06 609 495 -7556159.747413 610 495 -7.450580596924e-07 611 495 1.341104507446e-06 621 495 -28555987.69793 622 495 -13333333.33771 623 495 -16471527.78319 624 495 -88624220.55292 625 495 2.235174179077e-07 626 495 -65886111.10029 627 495 -28555987.69793 628 495 13333333.33771 629 495 -16471527.78319 496 496 785785459.402 497 496 -1.788139343262e-06 498 496 -2.086162567139e-06 499 496 -76617423.53181 500 496 5.066394805908e-07 510 496 -53333333.32457 511 496 -59154777.5129 512 496 2.086162567139e-07 513 496 3.576278686523e-07 514 496 36444678.54407 515 496 -4.172325134277e-07 516 496 53333333.32457 517 496 -59154777.5129 518 496 2.98023223877e-08 588 496 13333333.33771 589 496 -24555795.63051 590 496 -13177083.33766 591 496 4.470348358154e-08 592 496 -29957235.32024 593 496 2.831220626831e-07 594 496 -13333333.33771 595 496 -24555795.63051 596 496 13177083.33766 603 496 -2.98023223877e-07 604 496 -58222760.85313 605 496 -52708333.32467 606 496 1.728534698486e-06 607 496 40172745.1813 608 496 -5.960464477539e-08 609 496 -7.003545761108e-07 610 496 -58222760.85313 611 496 52708333.32467 621 496 -13333333.33771 622 496 -24555795.63051 623 496 -13177083.33766 624 496 1.9371509552e-07 625 496 -29957235.32024 626 496 -3.8743019104e-07 627 496 13333333.33771 628 496 -24555795.63051 629 496 13177083.33766 497 497 905507012.9075 498 497 -1.668930053711e-06 499 497 4.470348358154e-07 500 497 123977832.6588 510 497 5.811452865601e-07 511 497 3.129243850708e-07 512 497 -9005963.440556 513 497 1.192092895508e-07 514 497 -4.768371582031e-07 515 497 66375066.93519 516 497 4.470348358154e-08 517 497 -4.470348358154e-08 518 497 -9005963.440553 588 497 16471527.78319 589 497 -13177083.33766 590 497 -28297094.18124 591 497 65886111.10029 592 497 3.8743019104e-07 593 497 -87588646.48668 594 497 16471527.78319 595 497 13177083.33766 596 497 -28297094.18124 603 497 -9.983777999878e-07 604 497 -52708333.32467 605 497 -73187955.04869 606 497 8.642673492432e-07 607 497 1.788139343262e-07 608 497 -190352899.3709 609 497 1.475214958191e-06 610 497 52708333.32467 611 497 -73187955.0487 621 497 -16471527.78319 622 497 -13177083.33766 623 497 -28297094.18124 624 497 -65886111.10029 625 497 -2.831220626831e-07 626 497 -87588646.48668 627 497 -16471527.78319 628 497 13177083.33766 629 497 -28297094.18124 498 498 913791605.4334 499 498 7.748603820801e-06 500 498 -2.622604370117e-06 501 498 126048980.7912 502 498 -2.175569534302e-06 503 498 -1.490116119385e-06 513 498 -75155545.77471 514 498 -53333333.32457 515 498 5.066394805908e-07 516 498 -198223262.271 517 498 2.98023223877e-07 518 498 5.960464477539e-08 519 498 -75155545.7747 520 498 53333333.32457 521 498 -1.490116119385e-08 591 498 -28555987.69793 592 498 13333333.33771 593 498 16471527.78319 594 498 -88624220.55292 595 498 1.043081283569e-07 596 498 65886111.10029 597 498 -28555987.69793 598 498 -13333333.33771 599 498 16471527.78319 606 498 -7556159.747413 607 498 -3.278255462646e-07 608 498 -1.206994056702e-06 609 498 72174281.7049 610 498 1.728534698486e-06 611 498 1.221895217896e-06 612 498 -7556159.747413 613 498 -7.450580596924e-07 614 498 1.341104507446e-06 624 498 -28555987.69793 625 498 -13333333.33771 626 498 -16471527.78319 627 498 -88624220.55292 628 498 2.235174179077e-07 629 498 -65886111.10029 630 498 -28555987.69793 631 498 13333333.33771 632 498 -16471527.78319 499 499 785785459.402 500 499 -1.788139343262e-06 501 499 -2.086162567139e-06 502 499 -76617423.53181 503 499 5.066394805908e-07 513 499 -53333333.32457 514 499 -59154777.5129 515 499 2.086162567139e-07 516 499 3.576278686523e-07 517 499 36444678.54407 518 499 -4.172325134277e-07 519 499 53333333.32457 520 499 -59154777.5129 521 499 2.98023223877e-08 591 499 13333333.33771 592 499 -24555795.63051 593 499 -13177083.33766 594 499 4.470348358154e-08 595 499 -29957235.32024 596 499 2.831220626831e-07 597 499 -13333333.33771 598 499 -24555795.63051 599 499 13177083.33766 606 499 -2.98023223877e-07 607 499 -58222760.85313 608 499 -52708333.32467 609 499 1.728534698486e-06 610 499 40172745.1813 611 499 -5.960464477539e-08 612 499 -7.003545761108e-07 613 499 -58222760.85313 614 499 52708333.32467 624 499 -13333333.33771 625 499 -24555795.63051 626 499 -13177083.33766 627 499 1.9371509552e-07 628 499 -29957235.32024 629 499 -3.8743019104e-07 630 499 13333333.33771 631 499 -24555795.63051 632 499 13177083.33766 500 500 905507012.9075 501 500 -1.668930053711e-06 502 500 4.470348358154e-07 503 500 123977832.6588 513 500 5.811452865601e-07 514 500 3.129243850708e-07 515 500 -9005963.440556 516 500 1.192092895508e-07 517 500 -4.768371582031e-07 518 500 66375066.93519 519 500 4.470348358154e-08 520 500 -4.470348358154e-08 521 500 -9005963.440553 591 500 16471527.78319 592 500 -13177083.33766 593 500 -28297094.18124 594 500 65886111.10029 595 500 3.8743019104e-07 596 500 -87588646.48668 597 500 16471527.78319 598 500 13177083.33766 599 500 -28297094.18124 606 500 -9.983777999878e-07 607 500 -52708333.32467 608 500 -73187955.04869 609 500 8.642673492432e-07 610 500 1.788139343262e-07 611 500 -190352899.3709 612 500 1.475214958191e-06 613 500 52708333.32467 614 500 -73187955.0487 624 500 -16471527.78319 625 500 -13177083.33766 626 500 -28297094.18124 627 500 -65886111.10029 628 500 -2.831220626831e-07 629 500 -87588646.48668 630 500 -16471527.78319 631 500 13177083.33766 632 500 -28297094.18124 501 501 988947148.5376 502 501 53333332.25791 503 501 -9.298324584961e-06 504 501 31359232.67644 505 501 -53333332.8979 506 501 1.251697540283e-06 516 501 -75155545.77471 517 501 -53333333.32457 518 501 5.066394805908e-07 519 501 -198223262.271 520 501 2.98023223877e-07 521 501 5.960464477539e-08 522 501 -75155545.7747 523 501 53333333.32457 524 501 -1.490116119385e-08 594 501 -28555987.69793 595 501 13333333.33771 596 501 16471527.78319 597 501 -107413106.5112 598 501 -13333333.17771 599 501 65886110.96157 609 501 -7556159.747413 610 501 -3.278255462646e-07 611 501 -1.206994056702e-06 612 501 100730268.7541 613 501 13333333.07105 614 501 0.02774140238762 615 501 -26345045.89131 616 501 -13333333.23105 617 501 16471527.49884 627 501 -28555987.69793 628 501 -13333333.33771 629 501 -16471527.78319 630 501 -88624220.55292 631 501 2.235174179077e-07 632 501 -65886111.10029 633 501 -28555987.69793 634 501 13333333.33771 635 501 -16471527.78319 502 502 844940234.7245 503 502 -7.987022399902e-06 504 502 -53333332.68457 505 502 -155306402.5315 506 502 5.394220352173e-06 516 502 -53333333.32457 517 502 -59154777.5129 518 502 2.086162567139e-07 519 502 3.576278686523e-07 520 502 36444678.54407 521 502 -4.172325134277e-07 522 502 53333333.32457 523 502 -59154777.5129 524 502 2.98023223877e-08 594 502 13333333.33771 595 502 -24555795.63051 596 502 -13177083.33766 597 502 -13333333.23104 598 502 -44745929.54447 599 502 13177083.28808 609 502 -2.98023223877e-07 610 502 -58222760.85313 611 502 -52708333.32467 612 502 13333333.07105 613 502 64728540.28304 614 502 0.022192299366 615 502 -13333333.17771 616 502 -73011454.71628 617 502 52708333.03581 627 502 -13333333.33771 628 502 -24555795.63051 629 502 -13177083.33766 630 502 1.9371509552e-07 631 502 -29957235.32024 632 502 -3.8743019104e-07 633 502 13333333.33771 634 502 -24555795.63051 635 502 13177083.33766 503 503 914512974.9691 504 503 1.728534698486e-06 505 503 4.559755325317e-06 506 503 62880662.12465 516 503 5.811452865601e-07 517 503 3.129243850708e-07 518 503 -9005963.440556 519 503 1.192092895508e-07 520 503 -4.768371582031e-07 521 503 66375066.93519 522 503 4.470348358154e-08 523 503 -4.470348358154e-08 524 503 -9005963.440553 594 503 16471527.78319 595 503 -13177083.33766 596 503 -28297094.18124 597 503 65886110.96157 598 503 13177083.26329 599 503 -89840137.25118 609 503 -9.983777999878e-07 610 503 -52708333.32467 611 503 -73187955.04869 612 503 -0.0277450978756 613 503 -0.02219566702843 614 503 -162055805.4842 615 503 16471527.35667 616 503 52708332.94687 617 503 -75439445.29918 627 503 -16471527.78319 628 503 -13177083.33766 629 503 -28297094.18124 630 503 -65886111.10029 631 503 -2.831220626831e-07 632 503 -87588646.48668 633 503 -16471527.78319 634 503 13177083.33766 635 503 -28297094.18124 504 504 509154568.8248 505 504 25085639.27704 506 504 -5.960464477539e-07 519 504 -75155545.77471 520 504 -53333333.32457 521 504 5.066394805908e-07 522 504 -228025244.9359 523 504 -25085638.85037 524 504 7.152557373047e-07 525 504 -4082989.550575 526 504 42666666.23299 527 504 -1.251697540283e-06 597 504 -9767101.054335 598 504 15999999.84525 599 504 19765832.91331 612 504 -26345045.8913 613 504 -13333333.17771 614 504 -16471527.35667 615 504 37378109.13818 616 504 6271409.822349 617 504 11432222.19995 630 504 -28555987.69793 631 504 -13333333.33771 632 504 -16471527.78319 633 504 -87310926.38278 634 504 -6271409.715683 635 504 -57161110.99975 636 504 -11791159.78617 637 504 10666666.5635 638 504 -9687222.01637 505 505 472604990.7818 506 505 -2.652406692505e-06 519 505 -53333333.32457 520 505 -59154777.5129 521 505 2.086162567139e-07 522 505 -25085638.63704 523 505 9928432.40691 524 505 2.384185791016e-07 525 505 63999999.34949 526 505 -34822221.9043 527 505 -1.788139343262e-07 597 505 10666666.5635 598 505 -9767101.054336 599 505 -10541666.62055 612 505 -13333333.23105 613 505 -73011454.71627 614 505 -52708332.94687 615 505 6271409.822349 616 505 28240714.62293 617 505 9145833.226567 630 505 -13333333.33771 631 505 -24555795.63051 632 505 -13177083.33766 633 505 -6271409.66235 634 505 -27822507.01778 635 505 -6197916.627156 636 505 15999999.84526 637 505 -19475967.87838 638 505 18604166.53816 506 506 522045024.059 519 506 5.811452865601e-07 520 506 3.129243850708e-07 521 506 -9005963.440556 522 506 7.450580596924e-07 523 506 2.384185791016e-07 524 506 26229073.67805 525 506 -1.490116119385e-06 526 506 2.384185791016e-07 527 506 19851260.21887 597 506 13177221.94221 598 506 -15812499.93082 599 506 -26045602.81156 612 506 -16471527.49884 613 506 -52708333.03581 614 506 -75439445.29917 615 506 -11432222.19995 616 506 -9145833.22657 617 506 -109250165.6029 630 506 -16471527.78319 631 506 -13177083.33766 632 506 -28297094.18124 633 506 -57161110.99975 634 506 -6197916.651946 635 506 -74255038.56586 636 506 -14530833.02455 637 506 14729166.53156 638 506 -23758284.67089 507 507 913791605.4334 508 507 7.748603820801e-06 509 507 -2.622604370117e-06 510 507 126048980.7912 511 507 -2.175569534302e-06 512 507 -1.490116119385e-06 528 507 -198223262.271 529 507 2.98023223877e-07 530 507 5.960464477539e-08 531 507 -75155545.7747 532 507 53333333.32457 533 507 -1.490116119385e-08 600 507 -88624220.55292 601 507 1.043081283569e-07 602 507 65886111.10029 603 507 -28555987.69793 604 507 -13333333.33771 605 507 16471527.78319 618 507 72174281.7049 619 507 1.728534698486e-06 620 507 1.221895217896e-06 621 507 -7556159.747413 622 507 -7.450580596924e-07 623 507 1.341104507446e-06 639 507 -88624220.55292 640 507 2.235174179077e-07 641 507 -65886111.10029 642 507 -28555987.69793 643 507 13333333.33771 644 507 -16471527.78319 508 508 785785459.402 509 508 -1.788139343262e-06 510 508 -2.086162567139e-06 511 508 -76617423.53181 512 508 5.066394805908e-07 528 508 3.576278686523e-07 529 508 36444678.54407 530 508 -4.172325134277e-07 531 508 53333333.32457 532 508 -59154777.5129 533 508 2.98023223877e-08 600 508 4.470348358154e-08 601 508 -29957235.32024 602 508 2.831220626831e-07 603 508 -13333333.33771 604 508 -24555795.63051 605 508 13177083.33766 618 508 1.728534698486e-06 619 508 40172745.1813 620 508 -5.960464477539e-08 621 508 -7.003545761108e-07 622 508 -58222760.85313 623 508 52708333.32467 639 508 1.9371509552e-07 640 508 -29957235.32024 641 508 -3.8743019104e-07 642 508 13333333.33771 643 508 -24555795.63051 644 508 13177083.33766 509 509 905507012.9075 510 509 -1.668930053711e-06 511 509 4.470348358154e-07 512 509 123977832.6588 528 509 1.192092895508e-07 529 509 -4.768371582031e-07 530 509 66375066.93519 531 509 4.470348358154e-08 532 509 -4.470348358154e-08 533 509 -9005963.440553 600 509 65886111.10029 601 509 3.8743019104e-07 602 509 -87588646.48668 603 509 16471527.78319 604 509 13177083.33766 605 509 -28297094.18124 618 509 8.642673492432e-07 619 509 1.788139343262e-07 620 509 -190352899.3709 621 509 1.475214958191e-06 622 509 52708333.32467 623 509 -73187955.0487 639 509 -65886111.10029 640 509 -2.831220626831e-07 641 509 -87588646.48668 642 509 -16471527.78319 643 509 13177083.33766 644 509 -28297094.18124 510 510 913791605.4334 511 510 7.748603820801e-06 512 510 -2.622604370117e-06 513 510 126048980.7912 514 510 -2.175569534302e-06 515 510 -1.490116119385e-06 528 510 -75155545.77471 529 510 -53333333.32457 530 510 5.066394805908e-07 531 510 -198223262.271 532 510 2.98023223877e-07 533 510 5.960464477539e-08 534 510 -75155545.7747 535 510 53333333.32457 536 510 -1.490116119385e-08 600 510 -28555987.69793 601 510 13333333.33771 602 510 16471527.78319 603 510 -88624220.55292 604 510 1.043081283569e-07 605 510 65886111.10029 606 510 -28555987.69793 607 510 -13333333.33771 608 510 16471527.78319 618 510 -7556159.747413 619 510 -3.278255462646e-07 620 510 -1.206994056702e-06 621 510 72174281.7049 622 510 1.728534698486e-06 623 510 1.221895217896e-06 624 510 -7556159.747413 625 510 -7.450580596924e-07 626 510 1.341104507446e-06 639 510 -28555987.69793 640 510 -13333333.33771 641 510 -16471527.78319 642 510 -88624220.55292 643 510 2.235174179077e-07 644 510 -65886111.10029 645 510 -28555987.69793 646 510 13333333.33771 647 510 -16471527.78319 511 511 785785459.402 512 511 -1.788139343262e-06 513 511 -2.086162567139e-06 514 511 -76617423.53181 515 511 5.066394805908e-07 528 511 -53333333.32457 529 511 -59154777.5129 530 511 2.086162567139e-07 531 511 3.576278686523e-07 532 511 36444678.54407 533 511 -4.172325134277e-07 534 511 53333333.32457 535 511 -59154777.5129 536 511 2.98023223877e-08 600 511 13333333.33771 601 511 -24555795.63051 602 511 -13177083.33766 603 511 4.470348358154e-08 604 511 -29957235.32024 605 511 2.831220626831e-07 606 511 -13333333.33771 607 511 -24555795.63051 608 511 13177083.33766 618 511 -2.98023223877e-07 619 511 -58222760.85313 620 511 -52708333.32467 621 511 1.728534698486e-06 622 511 40172745.1813 623 511 -5.960464477539e-08 624 511 -7.003545761108e-07 625 511 -58222760.85313 626 511 52708333.32467 639 511 -13333333.33771 640 511 -24555795.63051 641 511 -13177083.33766 642 511 1.9371509552e-07 643 511 -29957235.32024 644 511 -3.8743019104e-07 645 511 13333333.33771 646 511 -24555795.63051 647 511 13177083.33766 512 512 905507012.9075 513 512 -1.668930053711e-06 514 512 4.470348358154e-07 515 512 123977832.6588 528 512 5.811452865601e-07 529 512 3.129243850708e-07 530 512 -9005963.440556 531 512 1.192092895508e-07 532 512 -4.768371582031e-07 533 512 66375066.93519 534 512 4.470348358154e-08 535 512 -4.470348358154e-08 536 512 -9005963.440553 600 512 16471527.78319 601 512 -13177083.33766 602 512 -28297094.18124 603 512 65886111.10029 604 512 3.8743019104e-07 605 512 -87588646.48668 606 512 16471527.78319 607 512 13177083.33766 608 512 -28297094.18124 618 512 -9.983777999878e-07 619 512 -52708333.32467 620 512 -73187955.04869 621 512 8.642673492432e-07 622 512 1.788139343262e-07 623 512 -190352899.3709 624 512 1.475214958191e-06 625 512 52708333.32467 626 512 -73187955.0487 639 512 -16471527.78319 640 512 -13177083.33766 641 512 -28297094.18124 642 512 -65886111.10029 643 512 -2.831220626831e-07 644 512 -87588646.48668 645 512 -16471527.78319 646 512 13177083.33766 647 512 -28297094.18124 513 513 913791605.4334 514 513 7.748603820801e-06 515 513 -2.622604370117e-06 516 513 126048980.7912 517 513 -2.175569534302e-06 518 513 -1.490116119385e-06 531 513 -75155545.77471 532 513 -53333333.32457 533 513 5.066394805908e-07 534 513 -198223262.271 535 513 2.98023223877e-07 536 513 5.960464477539e-08 537 513 -75155545.7747 538 513 53333333.32457 539 513 -1.490116119385e-08 603 513 -28555987.69793 604 513 13333333.33771 605 513 16471527.78319 606 513 -88624220.55292 607 513 1.043081283569e-07 608 513 65886111.10029 609 513 -28555987.69793 610 513 -13333333.33771 611 513 16471527.78319 621 513 -7556159.747413 622 513 -3.278255462646e-07 623 513 -1.206994056702e-06 624 513 72174281.7049 625 513 1.728534698486e-06 626 513 1.221895217896e-06 627 513 -7556159.747413 628 513 -7.450580596924e-07 629 513 1.341104507446e-06 642 513 -28555987.69793 643 513 -13333333.33771 644 513 -16471527.78319 645 513 -88624220.55292 646 513 2.235174179077e-07 647 513 -65886111.10029 648 513 -28555987.69793 649 513 13333333.33771 650 513 -16471527.78319 514 514 785785459.402 515 514 -1.788139343262e-06 516 514 -2.086162567139e-06 517 514 -76617423.53181 518 514 5.066394805908e-07 531 514 -53333333.32457 532 514 -59154777.5129 533 514 2.086162567139e-07 534 514 3.576278686523e-07 535 514 36444678.54407 536 514 -4.172325134277e-07 537 514 53333333.32457 538 514 -59154777.5129 539 514 2.98023223877e-08 603 514 13333333.33771 604 514 -24555795.63051 605 514 -13177083.33766 606 514 4.470348358154e-08 607 514 -29957235.32024 608 514 2.831220626831e-07 609 514 -13333333.33771 610 514 -24555795.63051 611 514 13177083.33766 621 514 -2.98023223877e-07 622 514 -58222760.85313 623 514 -52708333.32467 624 514 1.728534698486e-06 625 514 40172745.1813 626 514 -5.960464477539e-08 627 514 -7.003545761108e-07 628 514 -58222760.85313 629 514 52708333.32467 642 514 -13333333.33771 643 514 -24555795.63051 644 514 -13177083.33766 645 514 1.9371509552e-07 646 514 -29957235.32024 647 514 -3.8743019104e-07 648 514 13333333.33771 649 514 -24555795.63051 650 514 13177083.33766 515 515 905507012.9075 516 515 -1.668930053711e-06 517 515 4.470348358154e-07 518 515 123977832.6588 531 515 5.811452865601e-07 532 515 3.129243850708e-07 533 515 -9005963.440556 534 515 1.192092895508e-07 535 515 -4.768371582031e-07 536 515 66375066.93519 537 515 4.470348358154e-08 538 515 -4.470348358154e-08 539 515 -9005963.440553 603 515 16471527.78319 604 515 -13177083.33766 605 515 -28297094.18124 606 515 65886111.10029 607 515 3.8743019104e-07 608 515 -87588646.48668 609 515 16471527.78319 610 515 13177083.33766 611 515 -28297094.18124 621 515 -9.983777999878e-07 622 515 -52708333.32467 623 515 -73187955.04869 624 515 8.642673492432e-07 625 515 1.788139343262e-07 626 515 -190352899.3709 627 515 1.475214958191e-06 628 515 52708333.32467 629 515 -73187955.0487 642 515 -16471527.78319 643 515 -13177083.33766 644 515 -28297094.18124 645 515 -65886111.10029 646 515 -2.831220626831e-07 647 515 -87588646.48668 648 515 -16471527.78319 649 515 13177083.33766 650 515 -28297094.18124 516 516 913791605.4334 517 516 7.748603820801e-06 518 516 -2.622604370117e-06 519 516 126048980.7912 520 516 -2.175569534302e-06 521 516 -1.490116119385e-06 534 516 -75155545.77471 535 516 -53333333.32457 536 516 5.066394805908e-07 537 516 -198223262.271 538 516 2.98023223877e-07 539 516 5.960464477539e-08 540 516 -75155545.7747 541 516 53333333.32457 542 516 -1.490116119385e-08 606 516 -28555987.69793 607 516 13333333.33771 608 516 16471527.78319 609 516 -88624220.55292 610 516 1.043081283569e-07 611 516 65886111.10029 612 516 -28555987.69793 613 516 -13333333.33771 614 516 16471527.78319 624 516 -7556159.747413 625 516 -3.278255462646e-07 626 516 -1.206994056702e-06 627 516 72174281.7049 628 516 1.728534698486e-06 629 516 1.221895217896e-06 630 516 -7556159.747413 631 516 -7.450580596924e-07 632 516 1.341104507446e-06 645 516 -28555987.69793 646 516 -13333333.33771 647 516 -16471527.78319 648 516 -88624220.55292 649 516 2.235174179077e-07 650 516 -65886111.10029 651 516 -28555987.69793 652 516 13333333.33771 653 516 -16471527.78319 517 517 785785459.402 518 517 -1.788139343262e-06 519 517 -2.086162567139e-06 520 517 -76617423.53181 521 517 5.066394805908e-07 534 517 -53333333.32457 535 517 -59154777.5129 536 517 2.086162567139e-07 537 517 3.576278686523e-07 538 517 36444678.54407 539 517 -4.172325134277e-07 540 517 53333333.32457 541 517 -59154777.5129 542 517 2.98023223877e-08 606 517 13333333.33771 607 517 -24555795.63051 608 517 -13177083.33766 609 517 4.470348358154e-08 610 517 -29957235.32024 611 517 2.831220626831e-07 612 517 -13333333.33771 613 517 -24555795.63051 614 517 13177083.33766 624 517 -2.98023223877e-07 625 517 -58222760.85313 626 517 -52708333.32467 627 517 1.728534698486e-06 628 517 40172745.1813 629 517 -5.960464477539e-08 630 517 -7.003545761108e-07 631 517 -58222760.85313 632 517 52708333.32467 645 517 -13333333.33771 646 517 -24555795.63051 647 517 -13177083.33766 648 517 1.9371509552e-07 649 517 -29957235.32024 650 517 -3.8743019104e-07 651 517 13333333.33771 652 517 -24555795.63051 653 517 13177083.33766 518 518 905507012.9075 519 518 -1.668930053711e-06 520 518 4.470348358154e-07 521 518 123977832.6588 534 518 5.811452865601e-07 535 518 3.129243850708e-07 536 518 -9005963.440556 537 518 1.192092895508e-07 538 518 -4.768371582031e-07 539 518 66375066.93519 540 518 4.470348358154e-08 541 518 -4.470348358154e-08 542 518 -9005963.440553 606 518 16471527.78319 607 518 -13177083.33766 608 518 -28297094.18124 609 518 65886111.10029 610 518 3.8743019104e-07 611 518 -87588646.48668 612 518 16471527.78319 613 518 13177083.33766 614 518 -28297094.18124 624 518 -9.983777999878e-07 625 518 -52708333.32467 626 518 -73187955.04869 627 518 8.642673492432e-07 628 518 1.788139343262e-07 629 518 -190352899.3709 630 518 1.475214958191e-06 631 518 52708333.32467 632 518 -73187955.0487 645 518 -16471527.78319 646 518 -13177083.33766 647 518 -28297094.18124 648 518 -65886111.10029 649 518 -2.831220626831e-07 650 518 -87588646.48668 651 518 -16471527.78319 652 518 13177083.33766 653 518 -28297094.18124 519 519 913791605.4334 520 519 7.748603820801e-06 521 519 -2.622604370117e-06 522 519 126048980.7912 523 519 -2.175569534302e-06 524 519 -1.490116119385e-06 537 519 -75155545.77471 538 519 -53333333.32457 539 519 5.066394805908e-07 540 519 -198223262.271 541 519 2.98023223877e-07 542 519 5.960464477539e-08 543 519 -75155545.7747 544 519 53333333.32457 545 519 -1.490116119385e-08 609 519 -28555987.69793 610 519 13333333.33771 611 519 16471527.78319 612 519 -88624220.55292 613 519 1.043081283569e-07 614 519 65886111.10029 615 519 -28555987.69793 616 519 -13333333.33771 617 519 16471527.78319 627 519 -7556159.747413 628 519 -3.278255462646e-07 629 519 -1.206994056702e-06 630 519 72174281.7049 631 519 1.728534698486e-06 632 519 1.221895217896e-06 633 519 -7556159.747413 634 519 -7.450580596924e-07 635 519 1.341104507446e-06 648 519 -28555987.69793 649 519 -13333333.33771 650 519 -16471527.78319 651 519 -88624220.55292 652 519 2.235174179077e-07 653 519 -65886111.10029 654 519 -28555987.69793 655 519 13333333.33771 656 519 -16471527.78319 520 520 785785459.402 521 520 -1.788139343262e-06 522 520 -2.086162567139e-06 523 520 -76617423.53181 524 520 5.066394805908e-07 537 520 -53333333.32457 538 520 -59154777.5129 539 520 2.086162567139e-07 540 520 3.576278686523e-07 541 520 36444678.54407 542 520 -4.172325134277e-07 543 520 53333333.32457 544 520 -59154777.5129 545 520 2.98023223877e-08 609 520 13333333.33771 610 520 -24555795.63051 611 520 -13177083.33766 612 520 4.470348358154e-08 613 520 -29957235.32024 614 520 2.831220626831e-07 615 520 -13333333.33771 616 520 -24555795.63051 617 520 13177083.33766 627 520 -2.98023223877e-07 628 520 -58222760.85313 629 520 -52708333.32467 630 520 1.728534698486e-06 631 520 40172745.1813 632 520 -5.960464477539e-08 633 520 -7.003545761108e-07 634 520 -58222760.85313 635 520 52708333.32467 648 520 -13333333.33771 649 520 -24555795.63051 650 520 -13177083.33766 651 520 1.9371509552e-07 652 520 -29957235.32024 653 520 -3.8743019104e-07 654 520 13333333.33771 655 520 -24555795.63051 656 520 13177083.33766 521 521 905507012.9075 522 521 -1.668930053711e-06 523 521 4.470348358154e-07 524 521 123977832.6588 537 521 5.811452865601e-07 538 521 3.129243850708e-07 539 521 -9005963.440556 540 521 1.192092895508e-07 541 521 -4.768371582031e-07 542 521 66375066.93519 543 521 4.470348358154e-08 544 521 -4.470348358154e-08 545 521 -9005963.440553 609 521 16471527.78319 610 521 -13177083.33766 611 521 -28297094.18124 612 521 65886111.10029 613 521 3.8743019104e-07 614 521 -87588646.48668 615 521 16471527.78319 616 521 13177083.33766 617 521 -28297094.18124 627 521 -9.983777999878e-07 628 521 -52708333.32467 629 521 -73187955.04869 630 521 8.642673492432e-07 631 521 1.788139343262e-07 632 521 -190352899.3709 633 521 1.475214958191e-06 634 521 52708333.32467 635 521 -73187955.0487 648 521 -16471527.78319 649 521 -13177083.33766 650 521 -28297094.18124 651 521 -65886111.10029 652 521 -2.831220626831e-07 653 521 -87588646.48668 654 521 -16471527.78319 655 521 13177083.33766 656 521 -28297094.18124 522 522 886076107.088 523 522 29506578.58962 524 522 -4.172325134277e-06 525 522 -15650105.72171 526 522 -67995305.55008 527 522 -1.788139343262e-06 540 522 -75155545.77471 541 522 -53333333.32457 542 522 5.066394805908e-07 543 522 -169993346.4286 544 522 13585574.37073 545 522 1.579523086548e-06 546 522 -49437968.75893 547 522 49988791.22677 548 522 2.637505531311e-06 612 522 -28555987.69793 613 522 13333333.33771 614 522 16471527.78319 615 522 -87310926.38278 616 522 -6271409.66235 617 522 57161110.99975 630 522 -7556159.747413 631 522 -3.278255462646e-07 632 522 -1.206994056702e-06 633 522 87947441.63499 634 522 7376644.65104 635 522 0.02039501070976 636 522 -32923131.70809 637 522 -16998826.39589 638 522 16470833.12799 651 522 -28555987.69793 652 522 -13333333.33771 653 522 -16471527.78319 654 522 -80272721.40676 655 522 3396393.594356 656 522 -61522916.65699 657 522 -22126192.23639 658 522 12497197.81285 659 522 -12109027.78175 523 523 821417136.7999 524 523 5.125999450684e-06 525 523 -67995305.33675 526 523 -205861449.307 527 523 -3.56137752533e-06 540 523 -53333333.32457 541 523 -59154777.5129 542 523 2.086162567139e-07 543 523 13585574.37073 544 523 48420638.98572 545 523 8.940696716309e-07 546 523 49988791.22677 547 523 -80270449.84323 548 523 -2.548098564148e-06 612 523 13333333.33771 613 523 -24555795.63051 614 523 -13177083.33766 615 523 -6271409.715683 616 523 -27822507.01778 617 523 6197916.651945 630 523 -2.98023223877e-07 631 523 -58222760.85313 632 523 -52708333.32467 633 523 7376644.65104 634 523 71782699.055 635 523 0.01631674170494 636 523 -16998826.34256 637 523 -80475967.62785 638 523 52708333.09468 651 523 -13333333.33771 652 523 -24555795.63051 653 523 -13177083.33766 654 523 3396393.594355 655 523 -25669225.02627 656 523 3489583.332416 657 523 12497197.81285 658 523 -29834312.51126 659 523 16666666.67214 524 524 843458196.4419 525 524 1.192092895508e-07 526 524 -3.039836883545e-06 527 524 21637954.44543 540 524 5.811452865601e-07 541 524 3.129243850708e-07 542 524 -9005963.440556 543 524 6.85453414917e-07 544 524 1.072883605957e-06 545 524 73680450.86193 546 524 1.996755599976e-06 547 524 -2.592802047729e-06 548 524 -7752033.245933 612 524 16471527.78319 613 524 -13177083.33766 614 524 -28297094.18124 615 524 57161110.99975 616 524 6197916.627155 617 524 -74255038.56586 630 524 -9.983777999878e-07 631 524 -52708333.32467 632 524 -73187955.04869 633 524 -0.02039638161659 634 524 -0.01631587743759 635 524 -145326344.7753 636 524 16470833.02261 637 524 52708333.03516 638 524 -71952125.45461 651 524 -16471527.78319 652 524 -13177083.33766 653 524 -28297094.18124 654 524 -61522916.65613 655 524 3489583.333104 656 524 -82311580.01855 657 524 -12109027.78175 658 524 16666666.67214 659 524 -27982541.75396 525 525 531775095.0468 526 525 8503382.432196 543 525 -80370018.26376 544 525 -52907761.3966 545 525 -1.847743988037e-06 546 525 -113455777.5588 547 525 18108359.28725 548 525 1.311302185059e-06 549 525 68483060.18779 550 525 -18744593.63382 551 525 5.960464477539e-07 552 525 -42329538.80213 553 525 49035919.29823 554 525 1.922249794006e-06 615 525 -11791159.78616 616 525 15999999.84526 617 525 14530833.02455 633 525 -32923131.7081 634 525 -16998826.34256 635 525 -16470833.02261 636 525 14669982.03611 637 525 2125845.609096 638 525 12968611.10898 654 525 -29859204.61641 655 525 -13226940.35567 656 525 -16470833.33874 657 525 -76387958.09069 658 525 4527089.824043 659 525 -64843055.54491 660 525 -11712307.86994 661 525 -4686148.410764 662 525 8424305.555742 663 525 -24181082.63358 664 525 12258979.8306 665 525 -15950694.44968 526 526 626925818.4292 527 526 3.933906555176e-06 543 526 -52907761.3966 544 526 -54873071.8125 545 526 -8.642673492432e-07 546 526 18108359.28725 547 526 97871879.78123 548 526 3.337860107422e-06 549 526 2588739.696008 550 526 -35173186.25688 551 526 -3.695487976074e-06 552 526 49035919.29823 553 526 -49698043.59219 554 526 -1.505017280579e-06 615 526 10666666.5635 616 526 -19475967.87838 617 526 -14729166.53156 633 526 -16998826.39589 634 526 -80475967.62786 635 526 -52708333.03516 636 526 2125845.609096 637 526 38457662.89345 638 526 3874999.888226 654 526 -13226940.35567 655 526 -23484968.00046 656 526 -13177083.33766 657 526 4527089.824043 658 526 -23556043.72965 659 526 3489583.332417 660 526 647184.9243208 661 526 -37626369.49388 662 526 33333333.32786 663 526 12258979.8306 664 526 -26023208.832 665 526 16666666.67214 527 527 650521074.3426 543 527 -1.788139343262e-06 544 527 -7.748603820801e-07 545 527 -9261489.102506 546 527 1.117587089539e-06 547 527 3.337860107422e-06 548 527 131575339.2945 549 527 1.54972076416e-06 550 527 -3.75509262085e-06 551 527 90632596.10001 552 527 2.279877662659e-06 553 527 -1.594424247742e-06 554 527 13362532.26789 615 527 9687222.01637 616 527 -18604166.53816 617 527 -23758284.67089 633 527 -16470833.12799 634 527 -52708333.09468 635 527 -71952125.45462 636 527 -12968611.10898 637 527 -3874999.888222 638 527 -152766509.4438 654 527 -16470833.33874 655 527 -13177083.33766 656 527 -28359905.71829 657 527 -64843055.54491 658 527 3489583.333105 659 527 -95170201.65885 660 527 299305.5539342 661 527 33333333.32786 662 527 -54230045.43137 663 527 -15950694.44968 664 527 16666666.67214 665 527 -32922561.4056 528 528 456895802.7167 529 528 3.933906555176e-06 530 528 -1.668930053711e-06 531 528 63024490.39562 532 528 10666666.66491 533 528 -1.013278961182e-06 618 528 -88624220.55292 619 528 1.043081283569e-07 620 528 65886111.10029 621 528 -28555987.69793 622 528 -13333333.33771 623 528 16471527.78319 639 528 36087140.85245 640 528 8.344650268555e-07 641 528 -13177222.22006 642 528 -3778079.873706 643 528 2666666.667542 644 528 -3294305.556637 529 529 392892729.701 530 529 -7.152557373047e-07 531 529 -10666666.66491 532 529 -38308711.7659 533 529 3.8743019104e-07 618 529 4.470348358154e-08 619 529 -29957235.32024 620 529 2.831220626831e-07 621 529 -13333333.33771 622 529 -24555795.63051 623 529 13177083.33766 639 529 8.940696716309e-07 640 529 20086372.59065 641 529 -2.98023223877e-08 642 529 -2666666.667543 643 529 -29111380.42657 644 529 26354166.66234 530 530 452753506.4538 531 530 -8.940696716309e-07 532 530 1.490116119385e-07 533 530 61988916.32938 618 530 65886111.10029 619 530 3.8743019104e-07 620 530 -87588646.48668 621 530 16471527.78319 622 530 13177083.33766 623 530 -28297094.18124 639 530 13177222.22006 640 530 1.490116119385e-07 641 530 -95176449.68545 642 530 3294305.556638 643 530 26354166.66234 644 530 -36593977.52435 531 531 456895802.7167 532 531 3.933906555176e-06 533 531 -1.668930053711e-06 534 531 63024490.39562 535 531 10666666.66491 536 531 -1.013278961182e-06 618 531 -28555987.69793 619 531 13333333.33771 620 531 16471527.78319 621 531 -88624220.55292 622 531 1.043081283569e-07 623 531 65886111.10029 624 531 -28555987.69793 625 531 -13333333.33771 626 531 16471527.78319 639 531 -3778079.873706 640 531 -2666666.667542 641 531 -3294305.556638 642 531 36087140.85245 643 531 8.344650268555e-07 644 531 -13177222.22006 645 531 -3778079.873706 646 531 2666666.667542 647 531 -3294305.556637 532 532 392892729.701 533 532 -7.152557373047e-07 534 532 -10666666.66491 535 532 -38308711.7659 536 532 3.8743019104e-07 618 532 13333333.33771 619 532 -24555795.63051 620 532 -13177083.33766 621 532 4.470348358154e-08 622 532 -29957235.32024 623 532 2.831220626831e-07 624 532 -13333333.33771 625 532 -24555795.63051 626 532 13177083.33766 639 532 2666666.667542 640 532 -29111380.42657 641 532 -26354166.66234 642 532 8.940696716309e-07 643 532 20086372.59065 644 532 -2.98023223877e-08 645 532 -2666666.667543 646 532 -29111380.42657 647 532 26354166.66234 533 533 452753506.4538 534 533 -8.940696716309e-07 535 533 1.490116119385e-07 536 533 61988916.32938 618 533 16471527.78319 619 533 -13177083.33766 620 533 -28297094.18124 621 533 65886111.10029 622 533 3.8743019104e-07 623 533 -87588646.48668 624 533 16471527.78319 625 533 13177083.33766 626 533 -28297094.18124 639 533 3294305.556637 640 533 -26354166.66234 641 533 -36593977.52435 642 533 13177222.22006 643 533 1.490116119385e-07 644 533 -95176449.68545 645 533 3294305.556638 646 533 26354166.66234 647 533 -36593977.52435 534 534 456895802.7167 535 534 3.933906555176e-06 536 534 -1.668930053711e-06 537 534 63024490.39562 538 534 10666666.66491 539 534 -1.013278961182e-06 621 534 -28555987.69793 622 534 13333333.33771 623 534 16471527.78319 624 534 -88624220.55292 625 534 1.043081283569e-07 626 534 65886111.10029 627 534 -28555987.69793 628 534 -13333333.33771 629 534 16471527.78319 642 534 -3778079.873706 643 534 -2666666.667542 644 534 -3294305.556638 645 534 36087140.85245 646 534 8.344650268555e-07 647 534 -13177222.22006 648 534 -3778079.873706 649 534 2666666.667542 650 534 -3294305.556637 535 535 392892729.701 536 535 -7.152557373047e-07 537 535 -10666666.66491 538 535 -38308711.7659 539 535 3.8743019104e-07 621 535 13333333.33771 622 535 -24555795.63051 623 535 -13177083.33766 624 535 4.470348358154e-08 625 535 -29957235.32024 626 535 2.831220626831e-07 627 535 -13333333.33771 628 535 -24555795.63051 629 535 13177083.33766 642 535 2666666.667542 643 535 -29111380.42657 644 535 -26354166.66234 645 535 8.940696716309e-07 646 535 20086372.59065 647 535 -2.98023223877e-08 648 535 -2666666.667543 649 535 -29111380.42657 650 535 26354166.66234 536 536 452753506.4538 537 536 -8.940696716309e-07 538 536 1.490116119385e-07 539 536 61988916.32938 621 536 16471527.78319 622 536 -13177083.33766 623 536 -28297094.18124 624 536 65886111.10029 625 536 3.8743019104e-07 626 536 -87588646.48668 627 536 16471527.78319 628 536 13177083.33766 629 536 -28297094.18124 642 536 3294305.556637 643 536 -26354166.66234 644 536 -36593977.52435 645 536 13177222.22006 646 536 1.490116119385e-07 647 536 -95176449.68545 648 536 3294305.556638 649 536 26354166.66234 650 536 -36593977.52435 537 537 456895802.7167 538 537 3.933906555176e-06 539 537 -1.668930053711e-06 540 537 63024490.39562 541 537 10666666.66491 542 537 -1.013278961182e-06 624 537 -28555987.69793 625 537 13333333.33771 626 537 16471527.78319 627 537 -88624220.55292 628 537 1.043081283569e-07 629 537 65886111.10029 630 537 -28555987.69793 631 537 -13333333.33771 632 537 16471527.78319 645 537 -3778079.873706 646 537 -2666666.667542 647 537 -3294305.556638 648 537 36087140.85245 649 537 8.344650268555e-07 650 537 -13177222.22006 651 537 -3778079.873706 652 537 2666666.667542 653 537 -3294305.556637 538 538 392892729.701 539 538 -7.152557373047e-07 540 538 -10666666.66491 541 538 -38308711.7659 542 538 3.8743019104e-07 624 538 13333333.33771 625 538 -24555795.63051 626 538 -13177083.33766 627 538 4.470348358154e-08 628 538 -29957235.32024 629 538 2.831220626831e-07 630 538 -13333333.33771 631 538 -24555795.63051 632 538 13177083.33766 645 538 2666666.667542 646 538 -29111380.42657 647 538 -26354166.66234 648 538 8.940696716309e-07 649 538 20086372.59065 650 538 -2.98023223877e-08 651 538 -2666666.667543 652 538 -29111380.42657 653 538 26354166.66234 539 539 452753506.4538 540 539 -8.940696716309e-07 541 539 1.490116119385e-07 542 539 61988916.32938 624 539 16471527.78319 625 539 -13177083.33766 626 539 -28297094.18124 627 539 65886111.10029 628 539 3.8743019104e-07 629 539 -87588646.48668 630 539 16471527.78319 631 539 13177083.33766 632 539 -28297094.18124 645 539 3294305.556637 646 539 -26354166.66234 647 539 -36593977.52435 648 539 13177222.22006 649 539 1.490116119385e-07 650 539 -95176449.68545 651 539 3294305.556638 652 539 26354166.66234 653 539 -36593977.52435 540 540 456895802.7167 541 540 3.933906555176e-06 542 540 -1.668930053711e-06 543 540 63024490.39562 544 540 10666666.66491 545 540 -1.013278961182e-06 627 540 -28555987.69793 628 540 13333333.33771 629 540 16471527.78319 630 540 -88624220.55292 631 540 1.043081283569e-07 632 540 65886111.10029 633 540 -28555987.69793 634 540 -13333333.33771 635 540 16471527.78319 648 540 -3778079.873706 649 540 -2666666.667542 650 540 -3294305.556638 651 540 36087140.85245 652 540 8.344650268555e-07 653 540 -13177222.22006 654 540 -3778079.873706 655 540 2666666.667542 656 540 -3294305.556637 541 541 392892729.701 542 541 -7.152557373047e-07 543 541 -10666666.66491 544 541 -38308711.7659 545 541 3.8743019104e-07 627 541 13333333.33771 628 541 -24555795.63051 629 541 -13177083.33766 630 541 4.470348358154e-08 631 541 -29957235.32024 632 541 2.831220626831e-07 633 541 -13333333.33771 634 541 -24555795.63051 635 541 13177083.33766 648 541 2666666.667542 649 541 -29111380.42657 650 541 -26354166.66234 651 541 8.940696716309e-07 652 541 20086372.59065 653 541 -2.98023223877e-08 654 541 -2666666.667543 655 541 -29111380.42657 656 541 26354166.66234 542 542 452753506.4538 543 542 -8.940696716309e-07 544 542 1.490116119385e-07 545 542 61988916.32938 627 542 16471527.78319 628 542 -13177083.33766 629 542 -28297094.18124 630 542 65886111.10029 631 542 3.8743019104e-07 632 542 -87588646.48668 633 542 16471527.78319 634 542 13177083.33766 635 542 -28297094.18124 648 542 3294305.556637 649 542 -26354166.66234 650 542 -36593977.52435 651 542 13177222.22006 652 542 1.490116119385e-07 653 542 -95176449.68545 654 542 3294305.556638 655 542 26354166.66234 656 542 -36593977.52435 543 543 451672659.2548 544 543 425457.3069872 546 543 45227333.73336 547 543 -3769936.940774 548 543 5.960464477539e-07 630 543 -28555987.69793 631 543 13333333.33771 632 543 16471527.78319 633 543 -80272721.40676 634 543 3396393.594356 635 543 61522916.65613 636 543 -29859204.61641 637 543 -13226940.35567 638 543 16470833.33874 651 543 -3778079.873706 652 543 -2666666.667542 653 543 -3294305.556638 654 543 34782980.96289 655 543 106364.3267991 656 543 -13176944.44228 657 543 -9519773.826407 658 543 -942484.2356579 659 543 1067638.88752 544 544 397175038.8898 545 544 1.072883605957e-06 546 544 -25103270.2706 547 544 -58853543.86754 548 544 -1.341104507446e-06 630 544 13333333.33771 631 544 -24555795.63051 632 544 -13177083.33766 633 544 3396393.594355 634 544 -25669225.02627 635 544 -3489583.333104 636 544 -13226940.35567 637 544 -23484968.00045 638 544 13177083.33766 651 544 2666666.667542 652 544 -29111380.42657 653 544 -26354166.66234 654 544 106364.3267991 655 544 21158575.86493 656 544 2.682209014893e-07 657 544 -6275817.570742 658 544 -35539993.23945 659 544 29843749.99544 545 545 452492316.5668 547 545 -1.490116119385e-06 548 545 55187296.56271 630 545 16471527.78319 631 545 -13177083.33766 632 545 -28297094.18124 633 545 61522916.65699 634 545 -3489583.332416 635 545 -82311580.01855 636 545 16470833.33874 637 545 13177083.33766 638 545 -28359905.71829 651 545 3294305.556637 652 545 -26354166.66234 653 545 -36593977.52435 654 545 13176944.44228 655 545 3.8743019104e-07 656 545 -95237411.21973 657 545 7655972.222158 658 545 29843749.99475 659 545 -41740795.2267 546 546 444644489.1745 547 546 13081929.57058 548 546 9.536743164063e-07 549 546 -86994427.68368 550 546 -57630747.35091 551 546 -2.384185791016e-06 552 546 44204118.01812 553 546 1554937.536914 554 546 -1.192092895508e-06 633 546 -22126192.23639 634 546 12497197.81285 635 546 12109027.78176 636 546 -76387958.09069 637 546 4527089.824043 638 546 64843055.54491 654 546 -9519773.826409 655 546 -6275817.570743 656 546 -7655972.222158 657 546 15798034.7999 658 546 3270482.394257 659 546 -12968611.10898 660 546 -35347304.85947 661 546 -14407686.84483 662 546 20312500.00667 663 546 -14510689.24923 664 546 388734.3844201 665 546 1171666.664472 547 547 449754245.7917 548 547 4.64916229248e-06 549 547 -57630747.35091 550 547 -66447376.92277 551 547 -1.296401023865e-06 552 547 -19778395.79291 553 547 -57866988.0148 554 547 -2.086162567139e-06 633 547 12497197.81285 634 547 -29834312.51127 635 547 -16666666.67214 636 547 4527089.824043 637 547 -23556043.72965 638 547 -3489583.333103 654 547 -942484.2356579 655 547 -35539993.23945 656 547 -29843749.99475 657 547 3270482.394257 658 547 17075473.95481 659 547 9.536743164063e-07 660 547 -14407686.84483 661 547 -30210542.16671 662 547 16666666.67214 663 547 -4944598.950664 664 547 -40028465.77003 665 547 33333333.32786 548 548 513640710.6392 549 548 -3.159046173096e-06 550 548 -1.370906829834e-06 551 548 -3386801.062691 552 548 -1.907348632813e-06 553 548 -2.235174179077e-06 554 548 68569532.94435 633 548 12109027.78176 634 548 -16666666.67214 635 548 -27982541.75396 636 548 64843055.54491 637 548 -3489583.332416 638 548 -95170201.65886 654 548 -1067638.887521 655 548 -29843749.99544 656 548 -41740795.22671 657 548 12968611.10898 658 548 1.013278961182e-06 659 548 -125891389.0729 660 548 20312500.00667 661 548 16666666.67214 662 548 -37109894.74031 663 548 7551944.445205 664 548 33333333.32786 665 548 -51022200.11333 549 549 254849231.4225 550 549 61411260.29348 551 549 3.814697265625e-06 552 549 -66610780.59762 553 549 -6369252.63857 554 549 -1.132488250732e-06 636 549 -11712307.86995 637 549 647184.9243208 638 549 -299305.5539346 657 549 -35347304.85947 658 549 -14407686.84483 659 549 -20312500.00667 660 549 6046162.064774 661 549 15352815.08093 662 549 8124999.998666 663 549 -43850090.99987 664 549 -1592313.160427 665 549 -36263194.43806 550 550 228505477.8886 551 550 4.172325134277e-06 552 550 14964080.69126 553 550 42842168.62011 554 550 1.728534698486e-06 636 550 -4686148.410764 637 550 -37626369.49388 638 550 -33333333.32786 657 550 -14407686.84483 658 550 -30210542.16671 659 550 -16666666.67214 660 550 15352815.08093 661 550 -539776.3219635 662 550 6666666.665572 663 550 3741020.174657 664 550 -16486853.68196 665 550 3333333.334428 551 551 294920181.6058 553 551 1.788139343262e-06 554 551 70439578.90092 636 551 -8424305.555743 637 551 -33333333.32786 638 551 -54230045.43139 657 551 -20312500.00667 658 551 -16666666.67214 659 551 -37109894.74031 660 551 -8124999.998665 661 551 -6666666.665571 662 551 -80046343.42155 663 551 -36263194.43892 664 551 -3333333.334428 665 551 -54916494.1788 552 552 221377868.0526 553 552 -44221604.19657 554 552 -1.311302185059e-06 636 552 -24181082.63358 637 552 12258979.8306 638 552 15950694.44968 657 552 -14510689.24923 658 552 -4944598.950664 659 552 -7551944.445206 660 552 -43850090.99987 661 552 3741020.174657 662 552 36263194.43892 663 552 4221029.5472 664 552 -11055401.05459 665 552 -6380277.77673 553 553 221364529.6578 554 553 2.861022949219e-06 636 553 12258979.8306 637 553 -26023208.832 638 553 -16666666.67214 657 553 388734.38442 658 553 -40028465.77003 659 553 -33333333.32786 660 553 -1592313.160427 661 553 -16486853.68196 662 553 3333333.334428 663 553 -11055401.05459 664 553 4217694.948508 665 553 6666666.665572 554 554 265339467.0094 636 554 15950694.44968 637 554 -16666666.67214 638 554 -32922561.4056 657 554 -1171666.664473 658 554 -33333333.32786 659 554 -51022200.11334 660 554 36263194.43806 661 554 -3333333.334428 662 554 -54916494.1788 663 554 6380277.77673 664 554 -6666666.665571 665 554 -69994299.86354 555 555 583376284.5667 556 555 43333333.32621 557 555 -18054493.30016 558 555 -212203317.245 559 555 -43342510.83425 560 555 16396980.83364 561 555 11333216.7726 562 555 34675844.16901 563 555 12517770.08628 666 555 -10929001.68405 667 555 8333333.33607 668 555 3726516.388097 669 555 -69036918.95254 670 555 -8338077.039497 671 555 -55624567.39871 672 555 7014515.850343 673 555 6671410.372285 674 555 -6514983.987003 556 556 518362818.9365 557 556 40035087.57113 558 556 -43347099.58827 559 556 -8506300.789178 560 556 23165903.31214 561 556 52013766.25352 562 556 11333216.7726 563 556 -14999325.89734 666 556 8333333.336069 667 556 -23434958.63979 668 556 30221022.26397 669 556 -8340448.891212 670 556 -29855098.36736 671 556 -1182917.166231 672 556 10007115.55843 673 556 7014515.850342 674 556 7818288.469344 557 557 777948189.0547 558 557 15568224.60039 559 557 18499461.34631 560 557 73162839.64451 561 557 18776655.12942 562 557 -9999550.598229 563 557 30221911.39361 666 557 -21803668.18463 667 557 9797097.079457 668 557 -178746028.6722 669 557 -56043408.3313 670 557 -3514321.011405 671 557 -61172289.98812 672 557 -9772475.980504 673 557 5212192.312896 674 557 18705375.60092 558 558 939476176.8883 559 558 43356277.09631 560 558 -18771852.99502 561 558 49283631.66647 562 558 -43342510.83425 563 558 -16337221.96865 564 558 -128333063.0188 565 558 1.341104507446e-07 566 558 3194474.194728 567 558 -60367995.80692 568 558 43333333.32622 569 558 16319451.87991 666 558 -99681629.70551 667 558 -8340448.891213 668 558 71607514.53236 669 558 -8298175.66356 670 558 8345192.594641 671 558 -9379478.645899 672 558 2423001.606932 673 558 -8338077.0395 674 558 7795396.873343 675 558 -69751628.43939 676 558 1.266598701477e-06 677 558 -62205540.42245 678 558 -11071939.81576 679 558 8333333.336071 680 558 -7790968.444033 559 559 822460198.9193 560 559 51648672.72297 561 559 -43347099.58827 562 559 -102400547.2501 563 559 -28003452.87548 564 559 -1.192092895508e-07 565 559 62334645.32605 566 559 16666488.1637 567 559 43333333.32622 568 559 -47367367.71582 569 559 -9166577.415131 666 559 -8338077.039499 667 559 -60499809.12032 668 559 22021029.70742 669 559 8345192.594641 670 559 -30804628.63791 671 559 25829490.35962 672 559 -8340448.891214 673 559 -26752986.0284 674 559 37056208.64825 675 559 7.376074790955e-07 676 559 -33084756.09483 677 559 8333242.6046 678 559 8333333.336071 679 559 -8571815.80988 680 559 8177128.701754 560 560 1105469191.389 561 560 -16346107.01282 562 560 -32013997.77403 563 560 114586890.8952 564 560 2361140.861532 565 560 16666488.1637 566 560 141192013.134 567 560 16319451.87971 568 560 -9166577.414967 569 560 -5461644.444274 666 560 72026355.46494 667 560 24359692.24116 668 560 -142891518.6627 669 560 -9370405.180087 670 560 25836749.05321 671 560 -291361037.6863 672 560 7797611.087997 673 560 35054390.19536 674 560 3229564.966024 675 560 -62622207.08884 676 560 8333242.6046 677 560 -93040173.76232 678 560 -7790968.444033 679 560 8177128.701754 680 560 382463.4398733 561 561 583376284.5667 562 561 43333333.32621 563 561 -18054493.30016 564 561 -58492995.80723 565 561 -43333333.32622 566 561 -14930548.11496 567 561 -212203317.245 568 561 -43342510.83425 569 561 16396980.83364 570 561 11333216.7726 571 561 34675844.16901 572 561 12517770.08628 666 561 -50448491.13742 667 561 10007115.55843 668 561 28536410.43085 669 561 -85645347.16108 670 561 -8340448.891212 671 561 -24130997.54348 672 561 -10929001.68405 673 561 8333333.33607 674 561 3726516.388097 675 561 -38845377.32488 676 561 -8333333.33607 677 561 -23415968.44916 678 561 -69036918.95254 679 561 -8338077.039497 680 561 -55624567.39871 681 561 7014515.850343 682 561 6671410.372285 683 561 -6514983.987003 562 562 518362818.9365 563 562 40035087.57113 564 562 -43333333.32622 565 562 -45492367.71613 566 562 -7499910.748575 567 562 -43347099.58827 568 562 -8506300.789178 569 562 23165903.31214 570 562 52013766.25352 571 562 11333216.7726 572 562 -14999325.89734 666 562 6671410.372285 667 562 -50448491.13742 668 562 -15218991.7376 669 562 -8338077.039498 670 562 -114821334.7964 671 562 -67065236.07198 672 562 8333333.336069 673 562 -23434958.63979 674 562 30221022.26397 675 562 -8333333.33607 676 562 -36345253.319 677 562 -16510371.30635 678 562 -8340448.891212 679 562 -29855098.36736 680 562 -1182917.166231 681 562 10007115.55843 682 562 7014515.850342 683 562 7818288.469344 563 563 777948189.0547 564 563 -14930548.11516 565 563 -7499910.748739 566 563 -461644.445098 567 563 15568224.60039 568 563 18499461.34631 569 563 73162839.64451 570 563 18776655.12942 571 563 -9999550.598229 572 563 30221911.39361 666 563 19024273.62057 667 563 -22828487.60639 668 563 -134529309.6998 669 563 -24124138.5141 670 563 -65063417.79147 671 563 -231619365.082 672 563 -21803668.18463 673 563 9797097.079457 674 563 -178746028.6722 675 563 -23415968.44916 676 563 -16510371.30635 677 563 -73680036.58444 678 563 -56043408.3313 679 563 -3514321.011405 680 563 -61172289.98812 681 563 -9772475.980504 682 563 5212192.312896 683 563 18705375.60092 564 564 866359460.9496 565 564 1.430511474609e-06 566 564 -5555615.056281 567 564 107138445.2518 568 564 -2.831220626831e-07 569 564 -1388903.764753 573 564 -128333063.0188 574 564 1.341104507446e-07 575 564 3194474.194728 576 564 -60367995.80692 577 564 43333333.32622 578 564 16319451.87991 669 564 -77407961.77148 670 564 -1.184642314911e-06 671 564 64983348.44575 672 564 -12048523.14942 673 564 -8333333.336071 674 564 8485420.4502 675 564 -27191273.16515 676 564 2.98023223877e-07 677 564 -2777808.023288 678 564 20509800.90325 679 564 -2.242624759674e-06 680 564 -694452.0061662 684 564 -69751628.43939 685 564 1.266598701477e-06 686 564 -62205540.42245 687 564 -11071939.81576 688 564 8333333.336071 689 564 -7790968.444033 565 565 762354436.272 566 565 66665952.62197 567 565 -6.556510925293e-07 568 565 -57528006.93644 569 565 -33666309.64427 573 565 -1.192092895508e-07 574 565 62334645.32605 575 565 16666488.1637 576 565 43333333.32622 577 565 -47367367.71582 578 565 -9166577.415131 669 565 -1.601874828339e-06 670 565 -40741089.4269 671 565 8333242.604601 672 565 -8333333.336071 673 565 -9548399.143536 674 565 9010462.03536 675 565 2.384185791016e-07 676 565 -47192265.20236 677 565 33332970.40198 678 565 -1.728534698486e-06 679 565 -11156823.43448 680 565 34208514.79074 684 565 7.376074790955e-07 685 565 -33084756.09483 686 565 8333242.6046 687 565 8333333.336071 688 565 -8571815.80988 689 565 8177128.701754 566 566 1066134474.818 567 566 -1388903.764753 568 566 -32999642.97771 569 566 113328361.2626 573 566 2361140.861532 574 566 16666488.1637 575 566 141192013.134 576 566 16319451.87971 577 566 -9166577.414967 578 566 -5461644.444274 669 566 65400015.11214 670 566 8333242.604601 671 566 -113457062.6479 672 566 8485420.4502 673 566 9010462.03536 674 566 -2221758.783205 675 566 -2777808.023289 676 566 33332970.40198 677 566 -311771151.9111 678 566 -694452.006166 679 566 34541848.12385 680 566 21543906.17081 684 566 -62622207.08884 685 566 8333242.6046 686 566 -93040173.76232 687 566 -7790968.444033 688 566 8177128.701754 689 566 382463.4398733 567 567 939476176.8883 568 567 43356277.09631 569 567 -18771852.99502 570 567 49283631.66647 571 567 -43342510.83425 572 567 -16337221.96865 573 567 -58492995.80723 574 567 -43333333.32622 575 567 -14930548.11496 576 567 -128333063.0188 577 567 1.341104507446e-07 578 567 3194474.194728 579 567 -60367995.80692 580 567 43333333.32622 581 567 16319451.87991 669 567 -41696960.65915 670 567 8333333.336071 671 567 24110420.45533 672 567 -99681629.70551 673 567 -8340448.891213 674 567 71607514.53236 675 567 -94333949.07787 676 567 1.773238182068e-06 677 567 -694452.0061627 678 567 -8298175.66356 679 567 8345192.594641 680 567 -9379478.645899 681 567 2423001.606932 682 567 -8338077.0395 683 567 7795396.873343 684 567 -38845377.32488 685 567 -8333333.33607 686 567 -23415968.44916 687 567 -69751628.43939 688 567 1.266598701477e-06 689 567 -62205540.42245 690 567 -11071939.81576 691 567 8333333.336071 692 567 -7790968.444033 568 568 822460198.9193 569 568 51648672.72297 570 568 -43347099.58827 571 568 -102400547.2501 572 568 -28003452.87548 573 568 -43333333.32622 574 568 -45492367.71613 575 568 -7499910.748575 576 568 -1.192092895508e-07 577 568 62334645.32605 578 568 16666488.1637 579 568 43333333.32622 580 568 -47367367.71582 581 568 -9166577.415131 669 568 8333333.336071 670 568 -39196836.65327 671 568 -17343704.63996 672 568 -8338077.039499 673 568 -60499809.12032 674 568 22021029.70742 675 568 2.175569534302e-06 676 568 -126000573.4156 677 568 -67541485.19271 678 568 8345192.594641 679 568 -30804628.63791 680 568 25829490.35962 681 568 -8340448.891214 682 568 -26752986.0284 683 568 37056208.64825 684 568 -8333333.33607 685 568 -36345253.319 686 568 -16510371.30635 687 568 7.376074790955e-07 688 568 -33084756.09483 689 568 8333242.6046 690 568 8333333.336071 691 568 -8571815.80988 692 568 8177128.701754 569 569 1105469191.389 570 569 -16346107.01282 571 569 -32013997.77403 572 569 114586890.8952 573 569 -14930548.11516 574 569 -7499910.748739 575 569 -461644.445098 576 569 2361140.861532 577 569 16666488.1637 578 569 141192013.134 579 569 16319451.87971 580 569 -9166577.414967 581 569 -5461644.444274 669 569 24110420.45533 670 569 -17343704.63996 671 569 -81284258.80916 672 569 72026355.46494 673 569 24359692.24116 674 569 -142891518.6627 675 569 -694452.0061623 676 569 -67874818.52582 677 569 -284706093.7789 678 569 -9370405.180087 679 569 25836749.05321 680 569 -291361037.6863 681 569 7797611.087997 682 569 35054390.19536 683 569 3229564.966024 684 569 -23415968.44916 685 569 -16510371.30635 686 569 -73680036.58444 687 569 -62622207.08884 688 569 8333242.6046 689 569 -93040173.76232 690 569 -7790968.444033 691 569 8177128.701754 692 569 382463.4398733 570 570 583376284.5667 571 570 43333333.32621 572 570 -18054493.30016 576 570 -58492995.80723 577 570 -43333333.32622 578 570 -14930548.11496 579 570 -212203317.245 580 570 -43342510.83425 581 570 16396980.83364 582 570 11333216.7726 583 570 34675844.16901 584 570 12517770.08628 672 570 -50448491.13742 673 570 10007115.55843 674 570 28536410.43085 678 570 -85645347.16108 679 570 -8340448.891212 680 570 -24130997.54348 681 570 -10929001.68405 682 570 8333333.33607 683 570 3726516.388097 687 570 -38845377.32488 688 570 -8333333.33607 689 570 -23415968.44916 690 570 -69036918.95254 691 570 -8338077.039497 692 570 -55624567.39871 693 570 7014515.850343 694 570 6671410.372285 695 570 -6514983.987003 571 571 518362818.9365 572 571 40035087.57113 576 571 -43333333.32622 577 571 -45492367.71613 578 571 -7499910.748575 579 571 -43347099.58827 580 571 -8506300.789178 581 571 23165903.31214 582 571 52013766.25352 583 571 11333216.7726 584 571 -14999325.89734 672 571 6671410.372285 673 571 -50448491.13742 674 571 -15218991.7376 678 571 -8338077.039498 679 571 -114821334.7964 680 571 -67065236.07198 681 571 8333333.336069 682 571 -23434958.63979 683 571 30221022.26397 687 571 -8333333.33607 688 571 -36345253.319 689 571 -16510371.30635 690 571 -8340448.891212 691 571 -29855098.36736 692 571 -1182917.166231 693 571 10007115.55843 694 571 7014515.850342 695 571 7818288.469344 572 572 777948189.0547 576 572 -14930548.11516 577 572 -7499910.748739 578 572 -461644.445098 579 572 15568224.60039 580 572 18499461.34631 581 572 73162839.64451 582 572 18776655.12942 583 572 -9999550.598229 584 572 30221911.39361 672 572 19024273.62057 673 572 -22828487.60639 674 572 -134529309.6998 678 572 -24124138.5141 679 572 -65063417.79147 680 572 -231619365.082 681 572 -21803668.18463 682 572 9797097.079457 683 572 -178746028.6722 687 572 -23415968.44916 688 572 -16510371.30635 689 572 -73680036.58444 690 572 -56043408.3313 691 572 -3514321.011405 692 572 -61172289.98812 693 572 -9772475.980504 694 572 5212192.312896 695 572 18705375.60092 573 573 866359460.9496 574 573 1.430511474609e-06 575 573 -5555615.056281 576 573 107138445.2518 577 573 -2.831220626831e-07 578 573 -1388903.764753 585 573 -128333063.0188 586 573 1.341104507446e-07 587 573 3194474.194728 588 573 -60367995.80692 589 573 43333333.32622 590 573 16319451.87991 675 573 -77407961.77148 676 573 -1.184642314911e-06 677 573 64983348.44575 678 573 -12048523.14942 679 573 -8333333.336071 680 573 8485420.4502 684 573 -27191273.16515 685 573 2.98023223877e-07 686 573 -2777808.023288 687 573 20509800.90325 688 573 -2.242624759674e-06 689 573 -694452.0061662 696 573 -69751628.43939 697 573 1.266598701477e-06 698 573 -62205540.42245 699 573 -11071939.81576 700 573 8333333.336071 701 573 -7790968.444033 574 574 762354436.272 575 574 66665952.62197 576 574 -6.556510925293e-07 577 574 -57528006.93644 578 574 -33666309.64427 585 574 -1.192092895508e-07 586 574 62334645.32605 587 574 16666488.1637 588 574 43333333.32622 589 574 -47367367.71582 590 574 -9166577.415131 675 574 -1.601874828339e-06 676 574 -40741089.4269 677 574 8333242.604601 678 574 -8333333.336071 679 574 -9548399.143536 680 574 9010462.03536 684 574 2.384185791016e-07 685 574 -47192265.20236 686 574 33332970.40198 687 574 -1.728534698486e-06 688 574 -11156823.43448 689 574 34208514.79074 696 574 7.376074790955e-07 697 574 -33084756.09483 698 574 8333242.6046 699 574 8333333.336071 700 574 -8571815.80988 701 574 8177128.701754 575 575 1066134474.818 576 575 -1388903.764753 577 575 -32999642.97771 578 575 113328361.2626 585 575 2361140.861532 586 575 16666488.1637 587 575 141192013.134 588 575 16319451.87971 589 575 -9166577.414967 590 575 -5461644.444274 675 575 65400015.11214 676 575 8333242.604601 677 575 -113457062.6479 678 575 8485420.4502 679 575 9010462.03536 680 575 -2221758.783205 684 575 -2777808.023289 685 575 33332970.40198 686 575 -311771151.9111 687 575 -694452.006166 688 575 34541848.12385 689 575 21543906.17081 696 575 -62622207.08884 697 575 8333242.6046 698 575 -93040173.76232 699 575 -7790968.444033 700 575 8177128.701754 701 575 382463.4398733 576 576 866359460.9496 577 576 1.430511474609e-06 578 576 -5555615.056281 579 576 107138445.2518 580 576 -2.831220626831e-07 581 576 -1388903.764753 585 576 -58492995.80723 586 576 -43333333.32622 587 576 -14930548.11496 588 576 -128333063.0188 589 576 1.341104507446e-07 590 576 3194474.194728 591 576 -60367995.80692 592 576 43333333.32622 593 576 16319451.87991 675 576 -41696960.65915 676 576 8333333.336071 677 576 24110420.45533 678 576 -77407961.77148 679 576 -1.184642314911e-06 680 576 64983348.44575 681 576 -12048523.14942 682 576 -8333333.336071 683 576 8485420.4502 684 576 -94333949.07787 685 576 1.773238182068e-06 686 576 -694452.0061627 687 576 -27191273.16515 688 576 2.98023223877e-07 689 576 -2777808.023288 690 576 20509800.90325 691 576 -2.242624759674e-06 692 576 -694452.0061662 696 576 -38845377.32488 697 576 -8333333.33607 698 576 -23415968.44916 699 576 -69751628.43939 700 576 1.266598701477e-06 701 576 -62205540.42245 702 576 -11071939.81576 703 576 8333333.336071 704 576 -7790968.444033 577 577 762354436.272 578 577 66665952.62197 579 577 -6.556510925293e-07 580 577 -57528006.93644 581 577 -33666309.64427 585 577 -43333333.32622 586 577 -45492367.71613 587 577 -7499910.748575 588 577 -1.192092895508e-07 589 577 62334645.32605 590 577 16666488.1637 591 577 43333333.32622 592 577 -47367367.71582 593 577 -9166577.415131 675 577 8333333.336071 676 577 -39196836.65327 677 577 -17343704.63996 678 577 -1.601874828339e-06 679 577 -40741089.4269 680 577 8333242.604601 681 577 -8333333.336071 682 577 -9548399.143536 683 577 9010462.03536 684 577 2.175569534302e-06 685 577 -126000573.4156 686 577 -67541485.19271 687 577 2.384185791016e-07 688 577 -47192265.20236 689 577 33332970.40198 690 577 -1.728534698486e-06 691 577 -11156823.43448 692 577 34208514.79074 696 577 -8333333.33607 697 577 -36345253.319 698 577 -16510371.30635 699 577 7.376074790955e-07 700 577 -33084756.09483 701 577 8333242.6046 702 577 8333333.336071 703 577 -8571815.80988 704 577 8177128.701754 578 578 1066134474.818 579 578 -1388903.764753 580 578 -32999642.97771 581 578 113328361.2626 585 578 -14930548.11516 586 578 -7499910.748739 587 578 -461644.445098 588 578 2361140.861532 589 578 16666488.1637 590 578 141192013.134 591 578 16319451.87971 592 578 -9166577.414967 593 578 -5461644.444274 675 578 24110420.45533 676 578 -17343704.63996 677 578 -81284258.80916 678 578 65400015.11214 679 578 8333242.604601 680 578 -113457062.6479 681 578 8485420.4502 682 578 9010462.03536 683 578 -2221758.783205 684 578 -694452.0061623 685 578 -67874818.52582 686 578 -284706093.7789 687 578 -2777808.023289 688 578 33332970.40198 689 578 -311771151.9111 690 578 -694452.006166 691 578 34541848.12385 692 578 21543906.17081 696 578 -23415968.44916 697 578 -16510371.30635 698 578 -73680036.58444 699 578 -62622207.08884 700 578 8333242.6046 701 578 -93040173.76232 702 578 -7790968.444033 703 578 8177128.701754 704 578 382463.4398733 579 579 939476176.8883 580 579 43356277.09631 581 579 -18771852.99502 582 579 49283631.66647 583 579 -43342510.83425 584 579 -16337221.96865 588 579 -58492995.80723 589 579 -43333333.32622 590 579 -14930548.11496 591 579 -128333063.0188 592 579 1.341104507446e-07 593 579 3194474.194728 594 579 -60367995.80692 595 579 43333333.32622 596 579 16319451.87991 678 579 -41696960.65915 679 579 8333333.336071 680 579 24110420.45533 681 579 -99681629.70551 682 579 -8340448.891213 683 579 71607514.53236 687 579 -94333949.07787 688 579 1.773238182068e-06 689 579 -694452.0061627 690 579 -8298175.66356 691 579 8345192.594641 692 579 -9379478.645899 693 579 2423001.606932 694 579 -8338077.0395 695 579 7795396.873343 699 579 -38845377.32488 700 579 -8333333.33607 701 579 -23415968.44916 702 579 -69751628.43939 703 579 1.266598701477e-06 704 579 -62205540.42245 705 579 -11071939.81576 706 579 8333333.336071 707 579 -7790968.444033 580 580 822460198.9193 581 580 51648672.72297 582 580 -43347099.58827 583 580 -102400547.2501 584 580 -28003452.87548 588 580 -43333333.32622 589 580 -45492367.71613 590 580 -7499910.748575 591 580 -1.192092895508e-07 592 580 62334645.32605 593 580 16666488.1637 594 580 43333333.32622 595 580 -47367367.71582 596 580 -9166577.415131 678 580 8333333.336071 679 580 -39196836.65327 680 580 -17343704.63996 681 580 -8338077.039499 682 580 -60499809.12032 683 580 22021029.70742 687 580 2.175569534302e-06 688 580 -126000573.4156 689 580 -67541485.19271 690 580 8345192.594641 691 580 -30804628.63791 692 580 25829490.35962 693 580 -8340448.891214 694 580 -26752986.0284 695 580 37056208.64825 699 580 -8333333.33607 700 580 -36345253.319 701 580 -16510371.30635 702 580 7.376074790955e-07 703 580 -33084756.09483 704 580 8333242.6046 705 580 8333333.336071 706 580 -8571815.80988 707 580 8177128.701754 581 581 1105469191.389 582 581 -16346107.01282 583 581 -32013997.77403 584 581 114586890.8952 588 581 -14930548.11516 589 581 -7499910.748739 590 581 -461644.445098 591 581 2361140.861532 592 581 16666488.1637 593 581 141192013.134 594 581 16319451.87971 595 581 -9166577.414967 596 581 -5461644.444274 678 581 24110420.45533 679 581 -17343704.63996 680 581 -81284258.80916 681 581 72026355.46494 682 581 24359692.24116 683 581 -142891518.6627 687 581 -694452.0061623 688 581 -67874818.52582 689 581 -284706093.7789 690 581 -9370405.180087 691 581 25836749.05321 692 581 -291361037.6863 693 581 7797611.087997 694 581 35054390.19536 695 581 3229564.966024 699 581 -23415968.44916 700 581 -16510371.30635 701 581 -73680036.58444 702 581 -62622207.08884 703 581 8333242.6046 704 581 -93040173.76232 705 581 -7790968.444033 706 581 8177128.701754 707 581 382463.4398733 582 582 583376284.5667 583 582 43333333.32621 584 582 -18054493.30016 591 582 -58492995.80723 592 582 -43333333.32622 593 582 -14930548.11496 594 582 -212203317.245 595 582 -43342510.83425 596 582 16396980.83364 597 582 11333216.7726 598 582 34675844.16901 599 582 12517770.08628 681 582 -50448491.13742 682 582 10007115.55843 683 582 28536410.43085 690 582 -85645347.16108 691 582 -8340448.891212 692 582 -24130997.54348 693 582 -10929001.68405 694 582 8333333.33607 695 582 3726516.388097 702 582 -38845377.32488 703 582 -8333333.33607 704 582 -23415968.44916 705 582 -69036918.95254 706 582 -8338077.039497 707 582 -55624567.39871 708 582 7014515.850343 709 582 6671410.372285 710 582 -6514983.987003 583 583 518362818.9365 584 583 40035087.57113 591 583 -43333333.32622 592 583 -45492367.71613 593 583 -7499910.748575 594 583 -43347099.58827 595 583 -8506300.789178 596 583 23165903.31214 597 583 52013766.25352 598 583 11333216.7726 599 583 -14999325.89734 681 583 6671410.372285 682 583 -50448491.13742 683 583 -15218991.7376 690 583 -8338077.039498 691 583 -114821334.7964 692 583 -67065236.07198 693 583 8333333.336069 694 583 -23434958.63979 695 583 30221022.26397 702 583 -8333333.33607 703 583 -36345253.319 704 583 -16510371.30635 705 583 -8340448.891212 706 583 -29855098.36736 707 583 -1182917.166231 708 583 10007115.55843 709 583 7014515.850342 710 583 7818288.469344 584 584 777948189.0547 591 584 -14930548.11516 592 584 -7499910.748739 593 584 -461644.445098 594 584 15568224.60039 595 584 18499461.34631 596 584 73162839.64451 597 584 18776655.12942 598 584 -9999550.598229 599 584 30221911.39361 681 584 19024273.62057 682 584 -22828487.60639 683 584 -134529309.6998 690 584 -24124138.5141 691 584 -65063417.79147 692 584 -231619365.082 693 584 -21803668.18463 694 584 9797097.079457 695 584 -178746028.6722 702 584 -23415968.44916 703 584 -16510371.30635 704 584 -73680036.58444 705 584 -56043408.3313 706 584 -3514321.011405 707 584 -61172289.98812 708 584 -9772475.980504 709 584 5212192.312896 710 584 18705375.60092 585 585 866359460.9496 586 585 1.430511474609e-06 587 585 -5555615.056281 588 585 107138445.2518 589 585 -2.831220626831e-07 590 585 -1388903.764753 600 585 -128333063.0188 601 585 1.341104507446e-07 602 585 3194474.194728 603 585 -60367995.80692 604 585 43333333.32622 605 585 16319451.87991 684 585 -77407961.77148 685 585 -1.184642314911e-06 686 585 64983348.44575 687 585 -12048523.14942 688 585 -8333333.336071 689 585 8485420.4502 696 585 -27191273.16515 697 585 2.98023223877e-07 698 585 -2777808.023288 699 585 20509800.90325 700 585 -2.242624759674e-06 701 585 -694452.0061662 711 585 -69751628.43939 712 585 1.266598701477e-06 713 585 -62205540.42245 714 585 -11071939.81576 715 585 8333333.336071 716 585 -7790968.444033 586 586 762354436.272 587 586 66665952.62197 588 586 -6.556510925293e-07 589 586 -57528006.93644 590 586 -33666309.64427 600 586 -1.192092895508e-07 601 586 62334645.32605 602 586 16666488.1637 603 586 43333333.32622 604 586 -47367367.71582 605 586 -9166577.415131 684 586 -1.601874828339e-06 685 586 -40741089.4269 686 586 8333242.604601 687 586 -8333333.336071 688 586 -9548399.143536 689 586 9010462.03536 696 586 2.384185791016e-07 697 586 -47192265.20236 698 586 33332970.40198 699 586 -1.728534698486e-06 700 586 -11156823.43448 701 586 34208514.79074 711 586 7.376074790955e-07 712 586 -33084756.09483 713 586 8333242.6046 714 586 8333333.336071 715 586 -8571815.80988 716 586 8177128.701754 587 587 1066134474.818 588 587 -1388903.764753 589 587 -32999642.97771 590 587 113328361.2626 600 587 2361140.861532 601 587 16666488.1637 602 587 141192013.134 603 587 16319451.87971 604 587 -9166577.414967 605 587 -5461644.444274 684 587 65400015.11214 685 587 8333242.604601 686 587 -113457062.6479 687 587 8485420.4502 688 587 9010462.03536 689 587 -2221758.783205 696 587 -2777808.023289 697 587 33332970.40198 698 587 -311771151.9111 699 587 -694452.006166 700 587 34541848.12385 701 587 21543906.17081 711 587 -62622207.08884 712 587 8333242.6046 713 587 -93040173.76232 714 587 -7790968.444033 715 587 8177128.701754 716 587 382463.4398733 588 588 866359460.9496 589 588 1.430511474609e-06 590 588 -5555615.056281 591 588 107138445.2518 592 588 -2.831220626831e-07 593 588 -1388903.764753 600 588 -58492995.80723 601 588 -43333333.32622 602 588 -14930548.11496 603 588 -128333063.0188 604 588 1.341104507446e-07 605 588 3194474.194728 606 588 -60367995.80692 607 588 43333333.32622 608 588 16319451.87991 684 588 -41696960.65915 685 588 8333333.336071 686 588 24110420.45533 687 588 -77407961.77148 688 588 -1.184642314911e-06 689 588 64983348.44575 690 588 -12048523.14942 691 588 -8333333.336071 692 588 8485420.4502 696 588 -94333949.07787 697 588 1.773238182068e-06 698 588 -694452.0061627 699 588 -27191273.16515 700 588 2.98023223877e-07 701 588 -2777808.023288 702 588 20509800.90325 703 588 -2.242624759674e-06 704 588 -694452.0061662 711 588 -38845377.32488 712 588 -8333333.33607 713 588 -23415968.44916 714 588 -69751628.43939 715 588 1.266598701477e-06 716 588 -62205540.42245 717 588 -11071939.81576 718 588 8333333.336071 719 588 -7790968.444033 589 589 762354436.272 590 589 66665952.62197 591 589 -6.556510925293e-07 592 589 -57528006.93644 593 589 -33666309.64427 600 589 -43333333.32622 601 589 -45492367.71613 602 589 -7499910.748575 603 589 -1.192092895508e-07 604 589 62334645.32605 605 589 16666488.1637 606 589 43333333.32622 607 589 -47367367.71582 608 589 -9166577.415131 684 589 8333333.336071 685 589 -39196836.65327 686 589 -17343704.63996 687 589 -1.601874828339e-06 688 589 -40741089.4269 689 589 8333242.604601 690 589 -8333333.336071 691 589 -9548399.143536 692 589 9010462.03536 696 589 2.175569534302e-06 697 589 -126000573.4156 698 589 -67541485.19271 699 589 2.384185791016e-07 700 589 -47192265.20236 701 589 33332970.40198 702 589 -1.728534698486e-06 703 589 -11156823.43448 704 589 34208514.79074 711 589 -8333333.33607 712 589 -36345253.319 713 589 -16510371.30635 714 589 7.376074790955e-07 715 589 -33084756.09483 716 589 8333242.6046 717 589 8333333.336071 718 589 -8571815.80988 719 589 8177128.701754 590 590 1066134474.818 591 590 -1388903.764753 592 590 -32999642.97771 593 590 113328361.2626 600 590 -14930548.11516 601 590 -7499910.748739 602 590 -461644.445098 603 590 2361140.861532 604 590 16666488.1637 605 590 141192013.134 606 590 16319451.87971 607 590 -9166577.414967 608 590 -5461644.444274 684 590 24110420.45533 685 590 -17343704.63996 686 590 -81284258.80916 687 590 65400015.11214 688 590 8333242.604601 689 590 -113457062.6479 690 590 8485420.4502 691 590 9010462.03536 692 590 -2221758.783205 696 590 -694452.0061623 697 590 -67874818.52582 698 590 -284706093.7789 699 590 -2777808.023289 700 590 33332970.40198 701 590 -311771151.9111 702 590 -694452.006166 703 590 34541848.12385 704 590 21543906.17081 711 590 -23415968.44916 712 590 -16510371.30635 713 590 -73680036.58444 714 590 -62622207.08884 715 590 8333242.6046 716 590 -93040173.76232 717 590 -7790968.444033 718 590 8177128.701754 719 590 382463.4398733 591 591 866359460.9496 592 591 1.430511474609e-06 593 591 -5555615.056281 594 591 107138445.2518 595 591 -2.831220626831e-07 596 591 -1388903.764753 603 591 -58492995.80723 604 591 -43333333.32622 605 591 -14930548.11496 606 591 -128333063.0188 607 591 1.341104507446e-07 608 591 3194474.194728 609 591 -60367995.80692 610 591 43333333.32622 611 591 16319451.87991 687 591 -41696960.65915 688 591 8333333.336071 689 591 24110420.45533 690 591 -77407961.77148 691 591 -1.184642314911e-06 692 591 64983348.44575 693 591 -12048523.14942 694 591 -8333333.336071 695 591 8485420.4502 699 591 -94333949.07787 700 591 1.773238182068e-06 701 591 -694452.0061627 702 591 -27191273.16515 703 591 2.98023223877e-07 704 591 -2777808.023288 705 591 20509800.90325 706 591 -2.242624759674e-06 707 591 -694452.0061662 714 591 -38845377.32488 715 591 -8333333.33607 716 591 -23415968.44916 717 591 -69751628.43939 718 591 1.266598701477e-06 719 591 -62205540.42245 720 591 -11071939.81576 721 591 8333333.336071 722 591 -7790968.444033 592 592 762354436.272 593 592 66665952.62197 594 592 -6.556510925293e-07 595 592 -57528006.93644 596 592 -33666309.64427 603 592 -43333333.32622 604 592 -45492367.71613 605 592 -7499910.748575 606 592 -1.192092895508e-07 607 592 62334645.32605 608 592 16666488.1637 609 592 43333333.32622 610 592 -47367367.71582 611 592 -9166577.415131 687 592 8333333.336071 688 592 -39196836.65327 689 592 -17343704.63996 690 592 -1.601874828339e-06 691 592 -40741089.4269 692 592 8333242.604601 693 592 -8333333.336071 694 592 -9548399.143536 695 592 9010462.03536 699 592 2.175569534302e-06 700 592 -126000573.4156 701 592 -67541485.19271 702 592 2.384185791016e-07 703 592 -47192265.20236 704 592 33332970.40198 705 592 -1.728534698486e-06 706 592 -11156823.43448 707 592 34208514.79074 714 592 -8333333.33607 715 592 -36345253.319 716 592 -16510371.30635 717 592 7.376074790955e-07 718 592 -33084756.09483 719 592 8333242.6046 720 592 8333333.336071 721 592 -8571815.80988 722 592 8177128.701754 593 593 1066134474.818 594 593 -1388903.764753 595 593 -32999642.97771 596 593 113328361.2626 603 593 -14930548.11516 604 593 -7499910.748739 605 593 -461644.445098 606 593 2361140.861532 607 593 16666488.1637 608 593 141192013.134 609 593 16319451.87971 610 593 -9166577.414967 611 593 -5461644.444274 687 593 24110420.45533 688 593 -17343704.63996 689 593 -81284258.80916 690 593 65400015.11214 691 593 8333242.604601 692 593 -113457062.6479 693 593 8485420.4502 694 593 9010462.03536 695 593 -2221758.783205 699 593 -694452.0061623 700 593 -67874818.52582 701 593 -284706093.7789 702 593 -2777808.023289 703 593 33332970.40198 704 593 -311771151.9111 705 593 -694452.006166 706 593 34541848.12385 707 593 21543906.17081 714 593 -23415968.44916 715 593 -16510371.30635 716 593 -73680036.58444 717 593 -62622207.08884 718 593 8333242.6046 719 593 -93040173.76232 720 593 -7790968.444033 721 593 8177128.701754 722 593 382463.4398733 594 594 939476176.8883 595 594 43356277.09631 596 594 -18771852.99502 597 594 49283631.66647 598 594 -43342510.83425 599 594 -16337221.96865 606 594 -58492995.80723 607 594 -43333333.32622 608 594 -14930548.11496 609 594 -128333063.0188 610 594 1.341104507446e-07 611 594 3194474.194728 612 594 -60367995.80692 613 594 43333333.32622 614 594 16319451.87991 690 594 -41696960.65915 691 594 8333333.336071 692 594 24110420.45533 693 594 -99681629.70551 694 594 -8340448.891213 695 594 71607514.53236 702 594 -94333949.07787 703 594 1.773238182068e-06 704 594 -694452.0061627 705 594 -8298175.66356 706 594 8345192.594641 707 594 -9379478.645899 708 594 2423001.606932 709 594 -8338077.0395 710 594 7795396.873343 717 594 -38845377.32488 718 594 -8333333.33607 719 594 -23415968.44916 720 594 -69751628.43939 721 594 1.266598701477e-06 722 594 -62205540.42245 723 594 -11071939.81576 724 594 8333333.336071 725 594 -7790968.444033 595 595 822460198.9193 596 595 51648672.72297 597 595 -43347099.58827 598 595 -102400547.2501 599 595 -28003452.87548 606 595 -43333333.32622 607 595 -45492367.71613 608 595 -7499910.748575 609 595 -1.192092895508e-07 610 595 62334645.32605 611 595 16666488.1637 612 595 43333333.32622 613 595 -47367367.71582 614 595 -9166577.415131 690 595 8333333.336071 691 595 -39196836.65327 692 595 -17343704.63996 693 595 -8338077.039499 694 595 -60499809.12032 695 595 22021029.70742 702 595 2.175569534302e-06 703 595 -126000573.4156 704 595 -67541485.19271 705 595 8345192.594641 706 595 -30804628.63791 707 595 25829490.35962 708 595 -8340448.891214 709 595 -26752986.0284 710 595 37056208.64825 717 595 -8333333.33607 718 595 -36345253.319 719 595 -16510371.30635 720 595 7.376074790955e-07 721 595 -33084756.09483 722 595 8333242.6046 723 595 8333333.336071 724 595 -8571815.80988 725 595 8177128.701754 596 596 1105469191.389 597 596 -16346107.01282 598 596 -32013997.77403 599 596 114586890.8952 606 596 -14930548.11516 607 596 -7499910.748739 608 596 -461644.445098 609 596 2361140.861532 610 596 16666488.1637 611 596 141192013.134 612 596 16319451.87971 613 596 -9166577.414967 614 596 -5461644.444274 690 596 24110420.45533 691 596 -17343704.63996 692 596 -81284258.80916 693 596 72026355.46494 694 596 24359692.24116 695 596 -142891518.6627 702 596 -694452.0061623 703 596 -67874818.52582 704 596 -284706093.7789 705 596 -9370405.180087 706 596 25836749.05321 707 596 -291361037.6863 708 596 7797611.087997 709 596 35054390.19536 710 596 3229564.966024 717 596 -23415968.44916 718 596 -16510371.30635 719 596 -73680036.58444 720 596 -62622207.08884 721 596 8333242.6046 722 596 -93040173.76232 723 596 -7790968.444033 724 596 8177128.701754 725 596 382463.4398733 597 597 583376284.5667 598 597 43333333.32621 599 597 -18054493.30016 609 597 -58492995.80723 610 597 -43333333.32622 611 597 -14930548.11496 612 597 -212203317.245 613 597 -43342510.83425 614 597 16396980.83364 615 597 11333216.7726 616 597 34675844.16901 617 597 12517770.08628 693 597 -50448491.13742 694 597 10007115.55843 695 597 28536410.43085 705 597 -85645347.16108 706 597 -8340448.891212 707 597 -24130997.54348 708 597 -10929001.68405 709 597 8333333.33607 710 597 3726516.388097 720 597 -38845377.32488 721 597 -8333333.33607 722 597 -23415968.44916 723 597 -69036918.95254 724 597 -8338077.039497 725 597 -55624567.39871 726 597 7014515.850343 727 597 6671410.372285 728 597 -6514983.987003 598 598 518362818.9365 599 598 40035087.57113 609 598 -43333333.32622 610 598 -45492367.71613 611 598 -7499910.748575 612 598 -43347099.58827 613 598 -8506300.789178 614 598 23165903.31214 615 598 52013766.25352 616 598 11333216.7726 617 598 -14999325.89734 693 598 6671410.372285 694 598 -50448491.13742 695 598 -15218991.7376 705 598 -8338077.039498 706 598 -114821334.7964 707 598 -67065236.07198 708 598 8333333.336069 709 598 -23434958.63979 710 598 30221022.26397 720 598 -8333333.33607 721 598 -36345253.319 722 598 -16510371.30635 723 598 -8340448.891212 724 598 -29855098.36736 725 598 -1182917.166231 726 598 10007115.55843 727 598 7014515.850342 728 598 7818288.469344 599 599 777948189.0547 609 599 -14930548.11516 610 599 -7499910.748739 611 599 -461644.445098 612 599 15568224.60039 613 599 18499461.34631 614 599 73162839.64451 615 599 18776655.12942 616 599 -9999550.598229 617 599 30221911.39361 693 599 19024273.62057 694 599 -22828487.60639 695 599 -134529309.6998 705 599 -24124138.5141 706 599 -65063417.79147 707 599 -231619365.082 708 599 -21803668.18463 709 599 9797097.079457 710 599 -178746028.6722 720 599 -23415968.44916 721 599 -16510371.30635 722 599 -73680036.58444 723 599 -56043408.3313 724 599 -3514321.011405 725 599 -61172289.98812 726 599 -9772475.980504 727 599 5212192.312896 728 599 18705375.60092 600 600 866359460.9496 601 600 1.430511474609e-06 602 600 -5555615.056281 603 600 107138445.2518 604 600 -2.831220626831e-07 605 600 -1388903.764753 618 600 -128333063.0188 619 600 1.341104507446e-07 620 600 3194474.194728 621 600 -60367995.80692 622 600 43333333.32622 623 600 16319451.87991 696 600 -77407961.77148 697 600 -1.184642314911e-06 698 600 64983348.44575 699 600 -12048523.14942 700 600 -8333333.336071 701 600 8485420.4502 711 600 -27191273.16515 712 600 2.98023223877e-07 713 600 -2777808.023288 714 600 20509800.90325 715 600 -2.242624759674e-06 716 600 -694452.0061662 729 600 -69751628.43939 730 600 1.266598701477e-06 731 600 -62205540.42245 732 600 -11071939.81576 733 600 8333333.336071 734 600 -7790968.444033 601 601 762354436.272 602 601 66665952.62197 603 601 -6.556510925293e-07 604 601 -57528006.93644 605 601 -33666309.64427 618 601 -1.192092895508e-07 619 601 62334645.32605 620 601 16666488.1637 621 601 43333333.32622 622 601 -47367367.71582 623 601 -9166577.415131 696 601 -1.601874828339e-06 697 601 -40741089.4269 698 601 8333242.604601 699 601 -8333333.336071 700 601 -9548399.143536 701 601 9010462.03536 711 601 2.384185791016e-07 712 601 -47192265.20236 713 601 33332970.40198 714 601 -1.728534698486e-06 715 601 -11156823.43448 716 601 34208514.79074 729 601 7.376074790955e-07 730 601 -33084756.09483 731 601 8333242.6046 732 601 8333333.336071 733 601 -8571815.80988 734 601 8177128.701754 602 602 1066134474.818 603 602 -1388903.764753 604 602 -32999642.97771 605 602 113328361.2626 618 602 2361140.861532 619 602 16666488.1637 620 602 141192013.134 621 602 16319451.87971 622 602 -9166577.414967 623 602 -5461644.444274 696 602 65400015.11214 697 602 8333242.604601 698 602 -113457062.6479 699 602 8485420.4502 700 602 9010462.03536 701 602 -2221758.783205 711 602 -2777808.023289 712 602 33332970.40198 713 602 -311771151.9111 714 602 -694452.006166 715 602 34541848.12385 716 602 21543906.17081 729 602 -62622207.08884 730 602 8333242.6046 731 602 -93040173.76232 732 602 -7790968.444033 733 602 8177128.701754 734 602 382463.4398733 603 603 866359460.9496 604 603 1.430511474609e-06 605 603 -5555615.056281 606 603 107138445.2518 607 603 -2.831220626831e-07 608 603 -1388903.764753 618 603 -58492995.80723 619 603 -43333333.32622 620 603 -14930548.11496 621 603 -128333063.0188 622 603 1.341104507446e-07 623 603 3194474.194728 624 603 -60367995.80692 625 603 43333333.32622 626 603 16319451.87991 696 603 -41696960.65915 697 603 8333333.336071 698 603 24110420.45533 699 603 -77407961.77148 700 603 -1.184642314911e-06 701 603 64983348.44575 702 603 -12048523.14942 703 603 -8333333.336071 704 603 8485420.4502 711 603 -94333949.07787 712 603 1.773238182068e-06 713 603 -694452.0061627 714 603 -27191273.16515 715 603 2.98023223877e-07 716 603 -2777808.023288 717 603 20509800.90325 718 603 -2.242624759674e-06 719 603 -694452.0061662 729 603 -38845377.32488 730 603 -8333333.33607 731 603 -23415968.44916 732 603 -69751628.43939 733 603 1.266598701477e-06 734 603 -62205540.42245 735 603 -11071939.81576 736 603 8333333.336071 737 603 -7790968.444033 604 604 762354436.272 605 604 66665952.62197 606 604 -6.556510925293e-07 607 604 -57528006.93644 608 604 -33666309.64427 618 604 -43333333.32622 619 604 -45492367.71613 620 604 -7499910.748575 621 604 -1.192092895508e-07 622 604 62334645.32605 623 604 16666488.1637 624 604 43333333.32622 625 604 -47367367.71582 626 604 -9166577.415131 696 604 8333333.336071 697 604 -39196836.65327 698 604 -17343704.63996 699 604 -1.601874828339e-06 700 604 -40741089.4269 701 604 8333242.604601 702 604 -8333333.336071 703 604 -9548399.143536 704 604 9010462.03536 711 604 2.175569534302e-06 712 604 -126000573.4156 713 604 -67541485.19271 714 604 2.384185791016e-07 715 604 -47192265.20236 716 604 33332970.40198 717 604 -1.728534698486e-06 718 604 -11156823.43448 719 604 34208514.79074 729 604 -8333333.33607 730 604 -36345253.319 731 604 -16510371.30635 732 604 7.376074790955e-07 733 604 -33084756.09483 734 604 8333242.6046 735 604 8333333.336071 736 604 -8571815.80988 737 604 8177128.701754 605 605 1066134474.818 606 605 -1388903.764753 607 605 -32999642.97771 608 605 113328361.2626 618 605 -14930548.11516 619 605 -7499910.748739 620 605 -461644.445098 621 605 2361140.861532 622 605 16666488.1637 623 605 141192013.134 624 605 16319451.87971 625 605 -9166577.414967 626 605 -5461644.444274 696 605 24110420.45533 697 605 -17343704.63996 698 605 -81284258.80916 699 605 65400015.11214 700 605 8333242.604601 701 605 -113457062.6479 702 605 8485420.4502 703 605 9010462.03536 704 605 -2221758.783205 711 605 -694452.0061623 712 605 -67874818.52582 713 605 -284706093.7789 714 605 -2777808.023289 715 605 33332970.40198 716 605 -311771151.9111 717 605 -694452.006166 718 605 34541848.12385 719 605 21543906.17081 729 605 -23415968.44916 730 605 -16510371.30635 731 605 -73680036.58444 732 605 -62622207.08884 733 605 8333242.6046 734 605 -93040173.76232 735 605 -7790968.444033 736 605 8177128.701754 737 605 382463.4398733 606 606 866359460.9496 607 606 1.430511474609e-06 608 606 -5555615.056281 609 606 107138445.2518 610 606 -2.831220626831e-07 611 606 -1388903.764753 621 606 -58492995.80723 622 606 -43333333.32622 623 606 -14930548.11496 624 606 -128333063.0188 625 606 1.341104507446e-07 626 606 3194474.194728 627 606 -60367995.80692 628 606 43333333.32622 629 606 16319451.87991 699 606 -41696960.65915 700 606 8333333.336071 701 606 24110420.45533 702 606 -77407961.77148 703 606 -1.184642314911e-06 704 606 64983348.44575 705 606 -12048523.14942 706 606 -8333333.336071 707 606 8485420.4502 714 606 -94333949.07787 715 606 1.773238182068e-06 716 606 -694452.0061627 717 606 -27191273.16515 718 606 2.98023223877e-07 719 606 -2777808.023288 720 606 20509800.90325 721 606 -2.242624759674e-06 722 606 -694452.0061662 732 606 -38845377.32488 733 606 -8333333.33607 734 606 -23415968.44916 735 606 -69751628.43939 736 606 1.266598701477e-06 737 606 -62205540.42245 738 606 -11071939.81576 739 606 8333333.336071 740 606 -7790968.444033 607 607 762354436.272 608 607 66665952.62197 609 607 -6.556510925293e-07 610 607 -57528006.93644 611 607 -33666309.64427 621 607 -43333333.32622 622 607 -45492367.71613 623 607 -7499910.748575 624 607 -1.192092895508e-07 625 607 62334645.32605 626 607 16666488.1637 627 607 43333333.32622 628 607 -47367367.71582 629 607 -9166577.415131 699 607 8333333.336071 700 607 -39196836.65327 701 607 -17343704.63996 702 607 -1.601874828339e-06 703 607 -40741089.4269 704 607 8333242.604601 705 607 -8333333.336071 706 607 -9548399.143536 707 607 9010462.03536 714 607 2.175569534302e-06 715 607 -126000573.4156 716 607 -67541485.19271 717 607 2.384185791016e-07 718 607 -47192265.20236 719 607 33332970.40198 720 607 -1.728534698486e-06 721 607 -11156823.43448 722 607 34208514.79074 732 607 -8333333.33607 733 607 -36345253.319 734 607 -16510371.30635 735 607 7.376074790955e-07 736 607 -33084756.09483 737 607 8333242.6046 738 607 8333333.336071 739 607 -8571815.80988 740 607 8177128.701754 608 608 1066134474.818 609 608 -1388903.764753 610 608 -32999642.97771 611 608 113328361.2626 621 608 -14930548.11516 622 608 -7499910.748739 623 608 -461644.445098 624 608 2361140.861532 625 608 16666488.1637 626 608 141192013.134 627 608 16319451.87971 628 608 -9166577.414967 629 608 -5461644.444274 699 608 24110420.45533 700 608 -17343704.63996 701 608 -81284258.80916 702 608 65400015.11214 703 608 8333242.604601 704 608 -113457062.6479 705 608 8485420.4502 706 608 9010462.03536 707 608 -2221758.783205 714 608 -694452.0061623 715 608 -67874818.52582 716 608 -284706093.7789 717 608 -2777808.023289 718 608 33332970.40198 719 608 -311771151.9111 720 608 -694452.006166 721 608 34541848.12385 722 608 21543906.17081 732 608 -23415968.44916 733 608 -16510371.30635 734 608 -73680036.58444 735 608 -62622207.08884 736 608 8333242.6046 737 608 -93040173.76232 738 608 -7790968.444033 739 608 8177128.701754 740 608 382463.4398733 609 609 866359460.9496 610 609 1.430511474609e-06 611 609 -5555615.056281 612 609 107138445.2518 613 609 -2.831220626831e-07 614 609 -1388903.764753 624 609 -58492995.80723 625 609 -43333333.32622 626 609 -14930548.11496 627 609 -128333063.0188 628 609 1.341104507446e-07 629 609 3194474.194728 630 609 -60367995.80692 631 609 43333333.32622 632 609 16319451.87991 702 609 -41696960.65915 703 609 8333333.336071 704 609 24110420.45533 705 609 -77407961.77148 706 609 -1.184642314911e-06 707 609 64983348.44575 708 609 -12048523.14942 709 609 -8333333.336071 710 609 8485420.4502 717 609 -94333949.07787 718 609 1.773238182068e-06 719 609 -694452.0061627 720 609 -27191273.16515 721 609 2.98023223877e-07 722 609 -2777808.023288 723 609 20509800.90325 724 609 -2.242624759674e-06 725 609 -694452.0061662 735 609 -38845377.32488 736 609 -8333333.33607 737 609 -23415968.44916 738 609 -69751628.43939 739 609 1.266598701477e-06 740 609 -62205540.42245 741 609 -11071939.81576 742 609 8333333.336071 743 609 -7790968.444033 610 610 762354436.272 611 610 66665952.62197 612 610 -6.556510925293e-07 613 610 -57528006.93644 614 610 -33666309.64427 624 610 -43333333.32622 625 610 -45492367.71613 626 610 -7499910.748575 627 610 -1.192092895508e-07 628 610 62334645.32605 629 610 16666488.1637 630 610 43333333.32622 631 610 -47367367.71582 632 610 -9166577.415131 702 610 8333333.336071 703 610 -39196836.65327 704 610 -17343704.63996 705 610 -1.601874828339e-06 706 610 -40741089.4269 707 610 8333242.604601 708 610 -8333333.336071 709 610 -9548399.143536 710 610 9010462.03536 717 610 2.175569534302e-06 718 610 -126000573.4156 719 610 -67541485.19271 720 610 2.384185791016e-07 721 610 -47192265.20236 722 610 33332970.40198 723 610 -1.728534698486e-06 724 610 -11156823.43448 725 610 34208514.79074 735 610 -8333333.33607 736 610 -36345253.319 737 610 -16510371.30635 738 610 7.376074790955e-07 739 610 -33084756.09483 740 610 8333242.6046 741 610 8333333.336071 742 610 -8571815.80988 743 610 8177128.701754 611 611 1066134474.818 612 611 -1388903.764753 613 611 -32999642.97771 614 611 113328361.2626 624 611 -14930548.11516 625 611 -7499910.748739 626 611 -461644.445098 627 611 2361140.861532 628 611 16666488.1637 629 611 141192013.134 630 611 16319451.87971 631 611 -9166577.414967 632 611 -5461644.444274 702 611 24110420.45533 703 611 -17343704.63996 704 611 -81284258.80916 705 611 65400015.11214 706 611 8333242.604601 707 611 -113457062.6479 708 611 8485420.4502 709 611 9010462.03536 710 611 -2221758.783205 717 611 -694452.0061623 718 611 -67874818.52582 719 611 -284706093.7789 720 611 -2777808.023289 721 611 33332970.40198 722 611 -311771151.9111 723 611 -694452.006166 724 611 34541848.12385 725 611 21543906.17081 735 611 -23415968.44916 736 611 -16510371.30635 737 611 -73680036.58444 738 611 -62622207.08884 739 611 8333242.6046 740 611 -93040173.76232 741 611 -7790968.444033 742 611 8177128.701754 743 611 382463.4398733 612 612 939476176.8883 613 612 43356277.09631 614 612 -18771852.99502 615 612 49283631.66647 616 612 -43342510.83425 617 612 -16337221.96865 627 612 -58492995.80723 628 612 -43333333.32622 629 612 -14930548.11496 630 612 -128333063.0188 631 612 1.341104507446e-07 632 612 3194474.194728 633 612 -60367995.80692 634 612 43333333.32622 635 612 16319451.87991 705 612 -41696960.65915 706 612 8333333.336071 707 612 24110420.45533 708 612 -99681629.70551 709 612 -8340448.891213 710 612 71607514.53236 720 612 -94333949.07787 721 612 1.773238182068e-06 722 612 -694452.0061627 723 612 -8298175.66356 724 612 8345192.594641 725 612 -9379478.645899 726 612 2423001.606932 727 612 -8338077.0395 728 612 7795396.873343 738 612 -38845377.32488 739 612 -8333333.33607 740 612 -23415968.44916 741 612 -69751628.43939 742 612 1.266598701477e-06 743 612 -62205540.42245 744 612 -11071939.81576 745 612 8333333.336071 746 612 -7790968.444033 613 613 822460198.9193 614 613 51648672.72297 615 613 -43347099.58827 616 613 -102400547.2501 617 613 -28003452.87548 627 613 -43333333.32622 628 613 -45492367.71613 629 613 -7499910.748575 630 613 -1.192092895508e-07 631 613 62334645.32605 632 613 16666488.1637 633 613 43333333.32622 634 613 -47367367.71582 635 613 -9166577.415131 705 613 8333333.336071 706 613 -39196836.65327 707 613 -17343704.63996 708 613 -8338077.039499 709 613 -60499809.12032 710 613 22021029.70742 720 613 2.175569534302e-06 721 613 -126000573.4156 722 613 -67541485.19271 723 613 8345192.594641 724 613 -30804628.63791 725 613 25829490.35962 726 613 -8340448.891214 727 613 -26752986.0284 728 613 37056208.64825 738 613 -8333333.33607 739 613 -36345253.319 740 613 -16510371.30635 741 613 7.376074790955e-07 742 613 -33084756.09483 743 613 8333242.6046 744 613 8333333.336071 745 613 -8571815.80988 746 613 8177128.701754 614 614 1105469191.389 615 614 -16346107.01282 616 614 -32013997.77403 617 614 114586890.8952 627 614 -14930548.11516 628 614 -7499910.748739 629 614 -461644.445098 630 614 2361140.861532 631 614 16666488.1637 632 614 141192013.134 633 614 16319451.87971 634 614 -9166577.414967 635 614 -5461644.444274 705 614 24110420.45533 706 614 -17343704.63996 707 614 -81284258.80916 708 614 72026355.46494 709 614 24359692.24116 710 614 -142891518.6627 720 614 -694452.0061623 721 614 -67874818.52582 722 614 -284706093.7789 723 614 -9370405.180087 724 614 25836749.05321 725 614 -291361037.6863 726 614 7797611.087997 727 614 35054390.19536 728 614 3229564.966024 738 614 -23415968.44916 739 614 -16510371.30635 740 614 -73680036.58444 741 614 -62622207.08884 742 614 8333242.6046 743 614 -93040173.76232 744 614 -7790968.444033 745 614 8177128.701754 746 614 382463.4398733 615 615 537237674.144 616 615 19682635.03509 617 615 7278853.935812 630 615 -58492995.80723 631 615 -43333333.32622 632 615 -14930548.11496 633 615 -149236272.2809 634 615 -19708334.49086 635 615 1086095.150343 636 615 2489297.126623 637 615 34692366.11674 638 615 1688899.488625 708 615 -50448491.13742 709 615 10007115.55843 710 615 28536410.43085 723 615 -85645347.16108 724 615 -8340448.891212 725 615 -24130997.54348 726 615 -17836755.62729 727 615 3212976.44109 728 615 14418636.61301 741 615 -38845377.32488 742 615 -8333333.33607 743 615 -23415968.44916 744 615 -63830259.57109 745 615 -3226694.96361 746 615 -53519044.21609 747 615 -9616209.125473 748 615 6680385.191377 749 615 -8036218.454271 616 616 508863262.8828 617 616 40926260.08717 630 616 -43333333.32622 631 616 -45492367.71613 632 616 -7499910.748575 633 616 -19721184.21874 634 616 43866664.97233 635 616 10904977.14742 636 616 52038549.1751 637 616 -23555678.03985 638 616 -4314117.219295 708 616 6671410.372285 709 616 -50448491.13742 710 616 -15218991.7376 723 616 -8338077.039498 724 616 -114821334.7964 725 616 -67065236.07198 726 616 3212976.44109 727 616 -22134058.05942 728 616 29194228.99637 741 616 -8333333.33607 742 616 -36345253.319 743 616 -16510371.30635 744 616 -3233554.224871 745 616 -26925105.42998 746 616 514296.7345483 747 616 10020577.78707 748 616 -15548197.20502 749 616 16207412.72304 617 617 756010396.5891 630 617 -14930548.11516 631 617 -7499910.748739 632 617 -461644.445098 633 617 5268569.693425 634 617 10241225.80364 635 617 113931482.3872 636 617 2533349.232938 637 617 -3659305.027546 638 617 32683100.83748 708 617 19024273.62057 709 617 -22828487.60639 710 617 -134529309.6998 723 617 -24124138.5141 724 617 -65063417.79147 725 617 -231619365.082 726 617 -7213954.829688 727 617 11901763.34317 728 617 -175634313.754 741 617 -23415968.44916 742 617 -16510371.30635 743 617 -73680036.58444 744 617 -51436656.57492 745 617 190595.229853 746 617 -74752245.15073 747 617 -12054327.68141 748 617 12991927.13824 749 617 -19711236.25505 618 618 866359460.9496 619 618 1.430511474609e-06 620 618 -5555615.056281 621 618 107138445.2518 622 618 -2.831220626831e-07 623 618 -1388903.764753 639 618 -128333063.0188 640 618 1.341104507446e-07 641 618 3194474.194728 642 618 -60367995.80692 643 618 43333333.32622 644 618 16319451.87991 711 618 -77407961.77148 712 618 -1.184642314911e-06 713 618 64983348.44575 714 618 -12048523.14942 715 618 -8333333.336071 716 618 8485420.4502 729 618 -27191273.16515 730 618 2.98023223877e-07 731 618 -2777808.023288 732 618 20509800.90325 733 618 -2.242624759674e-06 734 618 -694452.0061662 750 618 -69751628.43939 751 618 1.266598701477e-06 752 618 -62205540.42245 753 618 -11071939.81576 754 618 8333333.336071 755 618 -7790968.444033 619 619 762354436.272 620 619 66665952.62197 621 619 -6.556510925293e-07 622 619 -57528006.93644 623 619 -33666309.64427 639 619 -1.192092895508e-07 640 619 62334645.32605 641 619 16666488.1637 642 619 43333333.32622 643 619 -47367367.71582 644 619 -9166577.415131 711 619 -1.601874828339e-06 712 619 -40741089.4269 713 619 8333242.604601 714 619 -8333333.336071 715 619 -9548399.143536 716 619 9010462.03536 729 619 2.384185791016e-07 730 619 -47192265.20236 731 619 33332970.40198 732 619 -1.728534698486e-06 733 619 -11156823.43448 734 619 34208514.79074 750 619 7.376074790955e-07 751 619 -33084756.09483 752 619 8333242.6046 753 619 8333333.336071 754 619 -8571815.80988 755 619 8177128.701754 620 620 1066134474.818 621 620 -1388903.764753 622 620 -32999642.97771 623 620 113328361.2626 639 620 2361140.861532 640 620 16666488.1637 641 620 141192013.134 642 620 16319451.87971 643 620 -9166577.414967 644 620 -5461644.444274 711 620 65400015.11214 712 620 8333242.604601 713 620 -113457062.6479 714 620 8485420.4502 715 620 9010462.03536 716 620 -2221758.783205 729 620 -2777808.023289 730 620 33332970.40198 731 620 -311771151.9111 732 620 -694452.006166 733 620 34541848.12385 734 620 21543906.17081 750 620 -62622207.08884 751 620 8333242.6046 752 620 -93040173.76232 753 620 -7790968.444033 754 620 8177128.701754 755 620 382463.4398733 621 621 866359460.9496 622 621 1.430511474609e-06 623 621 -5555615.056281 624 621 107138445.2518 625 621 -2.831220626831e-07 626 621 -1388903.764753 639 621 -58492995.80723 640 621 -43333333.32622 641 621 -14930548.11496 642 621 -128333063.0188 643 621 1.341104507446e-07 644 621 3194474.194728 645 621 -60367995.80692 646 621 43333333.32622 647 621 16319451.87991 711 621 -41696960.65915 712 621 8333333.336071 713 621 24110420.45533 714 621 -77407961.77148 715 621 -1.184642314911e-06 716 621 64983348.44575 717 621 -12048523.14942 718 621 -8333333.336071 719 621 8485420.4502 729 621 -94333949.07787 730 621 1.773238182068e-06 731 621 -694452.0061627 732 621 -27191273.16515 733 621 2.98023223877e-07 734 621 -2777808.023288 735 621 20509800.90325 736 621 -2.242624759674e-06 737 621 -694452.0061662 750 621 -38845377.32488 751 621 -8333333.33607 752 621 -23415968.44916 753 621 -69751628.43939 754 621 1.266598701477e-06 755 621 -62205540.42245 756 621 -11071939.81576 757 621 8333333.336071 758 621 -7790968.444033 622 622 762354436.272 623 622 66665952.62197 624 622 -6.556510925293e-07 625 622 -57528006.93644 626 622 -33666309.64427 639 622 -43333333.32622 640 622 -45492367.71613 641 622 -7499910.748575 642 622 -1.192092895508e-07 643 622 62334645.32605 644 622 16666488.1637 645 622 43333333.32622 646 622 -47367367.71582 647 622 -9166577.415131 711 622 8333333.336071 712 622 -39196836.65327 713 622 -17343704.63996 714 622 -1.601874828339e-06 715 622 -40741089.4269 716 622 8333242.604601 717 622 -8333333.336071 718 622 -9548399.143536 719 622 9010462.03536 729 622 2.175569534302e-06 730 622 -126000573.4156 731 622 -67541485.19271 732 622 2.384185791016e-07 733 622 -47192265.20236 734 622 33332970.40198 735 622 -1.728534698486e-06 736 622 -11156823.43448 737 622 34208514.79074 750 622 -8333333.33607 751 622 -36345253.319 752 622 -16510371.30635 753 622 7.376074790955e-07 754 622 -33084756.09483 755 622 8333242.6046 756 622 8333333.336071 757 622 -8571815.80988 758 622 8177128.701754 623 623 1066134474.818 624 623 -1388903.764753 625 623 -32999642.97771 626 623 113328361.2626 639 623 -14930548.11516 640 623 -7499910.748739 641 623 -461644.445098 642 623 2361140.861532 643 623 16666488.1637 644 623 141192013.134 645 623 16319451.87971 646 623 -9166577.414967 647 623 -5461644.444274 711 623 24110420.45533 712 623 -17343704.63996 713 623 -81284258.80916 714 623 65400015.11214 715 623 8333242.604601 716 623 -113457062.6479 717 623 8485420.4502 718 623 9010462.03536 719 623 -2221758.783205 729 623 -694452.0061623 730 623 -67874818.52582 731 623 -284706093.7789 732 623 -2777808.023289 733 623 33332970.40198 734 623 -311771151.9111 735 623 -694452.006166 736 623 34541848.12385 737 623 21543906.17081 750 623 -23415968.44916 751 623 -16510371.30635 752 623 -73680036.58444 753 623 -62622207.08884 754 623 8333242.6046 755 623 -93040173.76232 756 623 -7790968.444033 757 623 8177128.701754 758 623 382463.4398733 624 624 866359460.9496 625 624 1.430511474609e-06 626 624 -5555615.056281 627 624 107138445.2518 628 624 -2.831220626831e-07 629 624 -1388903.764753 642 624 -58492995.80723 643 624 -43333333.32622 644 624 -14930548.11496 645 624 -128333063.0188 646 624 1.341104507446e-07 647 624 3194474.194728 648 624 -60367995.80692 649 624 43333333.32622 650 624 16319451.87991 714 624 -41696960.65915 715 624 8333333.336071 716 624 24110420.45533 717 624 -77407961.77148 718 624 -1.184642314911e-06 719 624 64983348.44575 720 624 -12048523.14942 721 624 -8333333.336071 722 624 8485420.4502 732 624 -94333949.07787 733 624 1.773238182068e-06 734 624 -694452.0061627 735 624 -27191273.16515 736 624 2.98023223877e-07 737 624 -2777808.023288 738 624 20509800.90325 739 624 -2.242624759674e-06 740 624 -694452.0061662 753 624 -38845377.32488 754 624 -8333333.33607 755 624 -23415968.44916 756 624 -69751628.43939 757 624 1.266598701477e-06 758 624 -62205540.42245 759 624 -11071939.81576 760 624 8333333.336071 761 624 -7790968.444033 625 625 762354436.272 626 625 66665952.62197 627 625 -6.556510925293e-07 628 625 -57528006.93644 629 625 -33666309.64427 642 625 -43333333.32622 643 625 -45492367.71613 644 625 -7499910.748575 645 625 -1.192092895508e-07 646 625 62334645.32605 647 625 16666488.1637 648 625 43333333.32622 649 625 -47367367.71582 650 625 -9166577.415131 714 625 8333333.336071 715 625 -39196836.65327 716 625 -17343704.63996 717 625 -1.601874828339e-06 718 625 -40741089.4269 719 625 8333242.604601 720 625 -8333333.336071 721 625 -9548399.143536 722 625 9010462.03536 732 625 2.175569534302e-06 733 625 -126000573.4156 734 625 -67541485.19271 735 625 2.384185791016e-07 736 625 -47192265.20236 737 625 33332970.40198 738 625 -1.728534698486e-06 739 625 -11156823.43448 740 625 34208514.79074 753 625 -8333333.33607 754 625 -36345253.319 755 625 -16510371.30635 756 625 7.376074790955e-07 757 625 -33084756.09483 758 625 8333242.6046 759 625 8333333.336071 760 625 -8571815.80988 761 625 8177128.701754 626 626 1066134474.818 627 626 -1388903.764753 628 626 -32999642.97771 629 626 113328361.2626 642 626 -14930548.11516 643 626 -7499910.748739 644 626 -461644.445098 645 626 2361140.861532 646 626 16666488.1637 647 626 141192013.134 648 626 16319451.87971 649 626 -9166577.414967 650 626 -5461644.444274 714 626 24110420.45533 715 626 -17343704.63996 716 626 -81284258.80916 717 626 65400015.11214 718 626 8333242.604601 719 626 -113457062.6479 720 626 8485420.4502 721 626 9010462.03536 722 626 -2221758.783205 732 626 -694452.0061623 733 626 -67874818.52582 734 626 -284706093.7789 735 626 -2777808.023289 736 626 33332970.40198 737 626 -311771151.9111 738 626 -694452.006166 739 626 34541848.12385 740 626 21543906.17081 753 626 -23415968.44916 754 626 -16510371.30635 755 626 -73680036.58444 756 626 -62622207.08884 757 626 8333242.6046 758 626 -93040173.76232 759 626 -7790968.444033 760 626 8177128.701754 761 626 382463.4398733 627 627 866359460.9496 628 627 1.430511474609e-06 629 627 -5555615.056281 630 627 107138445.2518 631 627 -2.831220626831e-07 632 627 -1388903.764753 645 627 -58492995.80723 646 627 -43333333.32622 647 627 -14930548.11496 648 627 -128333063.0188 649 627 1.341104507446e-07 650 627 3194474.194728 651 627 -60367995.80692 652 627 43333333.32622 653 627 16319451.87991 717 627 -41696960.65915 718 627 8333333.336071 719 627 24110420.45533 720 627 -77407961.77148 721 627 -1.184642314911e-06 722 627 64983348.44575 723 627 -12048523.14942 724 627 -8333333.336071 725 627 8485420.4502 735 627 -94333949.07787 736 627 1.773238182068e-06 737 627 -694452.0061627 738 627 -27191273.16515 739 627 2.98023223877e-07 740 627 -2777808.023288 741 627 20509800.90325 742 627 -2.242624759674e-06 743 627 -694452.0061662 756 627 -38845377.32488 757 627 -8333333.33607 758 627 -23415968.44916 759 627 -69751628.43939 760 627 1.266598701477e-06 761 627 -62205540.42245 762 627 -11071939.81576 763 627 8333333.336071 764 627 -7790968.444033 628 628 762354436.272 629 628 66665952.62197 630 628 -6.556510925293e-07 631 628 -57528006.93644 632 628 -33666309.64427 645 628 -43333333.32622 646 628 -45492367.71613 647 628 -7499910.748575 648 628 -1.192092895508e-07 649 628 62334645.32605 650 628 16666488.1637 651 628 43333333.32622 652 628 -47367367.71582 653 628 -9166577.415131 717 628 8333333.336071 718 628 -39196836.65327 719 628 -17343704.63996 720 628 -1.601874828339e-06 721 628 -40741089.4269 722 628 8333242.604601 723 628 -8333333.336071 724 628 -9548399.143536 725 628 9010462.03536 735 628 2.175569534302e-06 736 628 -126000573.4156 737 628 -67541485.19271 738 628 2.384185791016e-07 739 628 -47192265.20236 740 628 33332970.40198 741 628 -1.728534698486e-06 742 628 -11156823.43448 743 628 34208514.79074 756 628 -8333333.33607 757 628 -36345253.319 758 628 -16510371.30635 759 628 7.376074790955e-07 760 628 -33084756.09483 761 628 8333242.6046 762 628 8333333.336071 763 628 -8571815.80988 764 628 8177128.701754 629 629 1066134474.818 630 629 -1388903.764753 631 629 -32999642.97771 632 629 113328361.2626 645 629 -14930548.11516 646 629 -7499910.748739 647 629 -461644.445098 648 629 2361140.861532 649 629 16666488.1637 650 629 141192013.134 651 629 16319451.87971 652 629 -9166577.414967 653 629 -5461644.444274 717 629 24110420.45533 718 629 -17343704.63996 719 629 -81284258.80916 720 629 65400015.11214 721 629 8333242.604601 722 629 -113457062.6479 723 629 8485420.4502 724 629 9010462.03536 725 629 -2221758.783205 735 629 -694452.0061623 736 629 -67874818.52582 737 629 -284706093.7789 738 629 -2777808.023289 739 629 33332970.40198 740 629 -311771151.9111 741 629 -694452.006166 742 629 34541848.12385 743 629 21543906.17081 756 629 -23415968.44916 757 629 -16510371.30635 758 629 -73680036.58444 759 629 -62622207.08884 760 629 8333242.6046 761 629 -93040173.76232 762 629 -7790968.444033 763 629 8177128.701754 764 629 382463.4398733 630 630 866359460.9496 631 630 1.430511474609e-06 632 630 -5555615.056281 633 630 107138445.2518 634 630 -2.831220626831e-07 635 630 -1388903.764753 648 630 -58492995.80723 649 630 -43333333.32622 650 630 -14930548.11496 651 630 -128333063.0188 652 630 1.341104507446e-07 653 630 3194474.194728 654 630 -60367995.80692 655 630 43333333.32622 656 630 16319451.87991 720 630 -41696960.65915 721 630 8333333.336071 722 630 24110420.45533 723 630 -77407961.77148 724 630 -1.184642314911e-06 725 630 64983348.44575 726 630 -12048523.14942 727 630 -8333333.336071 728 630 8485420.4502 738 630 -94333949.07787 739 630 1.773238182068e-06 740 630 -694452.0061627 741 630 -27191273.16515 742 630 2.98023223877e-07 743 630 -2777808.023288 744 630 20509800.90325 745 630 -2.242624759674e-06 746 630 -694452.0061662 759 630 -38845377.32488 760 630 -8333333.33607 761 630 -23415968.44916 762 630 -69751628.43939 763 630 1.266598701477e-06 764 630 -62205540.42245 765 630 -11071939.81576 766 630 8333333.336071 767 630 -7790968.444033 631 631 762354436.272 632 631 66665952.62197 633 631 -6.556510925293e-07 634 631 -57528006.93644 635 631 -33666309.64427 648 631 -43333333.32622 649 631 -45492367.71613 650 631 -7499910.748575 651 631 -1.192092895508e-07 652 631 62334645.32605 653 631 16666488.1637 654 631 43333333.32622 655 631 -47367367.71582 656 631 -9166577.415131 720 631 8333333.336071 721 631 -39196836.65327 722 631 -17343704.63996 723 631 -1.601874828339e-06 724 631 -40741089.4269 725 631 8333242.604601 726 631 -8333333.336071 727 631 -9548399.143536 728 631 9010462.03536 738 631 2.175569534302e-06 739 631 -126000573.4156 740 631 -67541485.19271 741 631 2.384185791016e-07 742 631 -47192265.20236 743 631 33332970.40198 744 631 -1.728534698486e-06 745 631 -11156823.43448 746 631 34208514.79074 759 631 -8333333.33607 760 631 -36345253.319 761 631 -16510371.30635 762 631 7.376074790955e-07 763 631 -33084756.09483 764 631 8333242.6046 765 631 8333333.336071 766 631 -8571815.80988 767 631 8177128.701754 632 632 1066134474.818 633 632 -1388903.764753 634 632 -32999642.97771 635 632 113328361.2626 648 632 -14930548.11516 649 632 -7499910.748739 650 632 -461644.445098 651 632 2361140.861532 652 632 16666488.1637 653 632 141192013.134 654 632 16319451.87971 655 632 -9166577.414967 656 632 -5461644.444274 720 632 24110420.45533 721 632 -17343704.63996 722 632 -81284258.80916 723 632 65400015.11214 724 632 8333242.604601 725 632 -113457062.6479 726 632 8485420.4502 727 632 9010462.03536 728 632 -2221758.783205 738 632 -694452.0061623 739 632 -67874818.52582 740 632 -284706093.7789 741 632 -2777808.023289 742 632 33332970.40198 743 632 -311771151.9111 744 632 -694452.006166 745 632 34541848.12385 746 632 21543906.17081 759 632 -23415968.44916 760 632 -16510371.30635 761 632 -73680036.58444 762 632 -62622207.08884 763 632 8333242.6046 764 632 -93040173.76232 765 632 -7790968.444033 766 632 8177128.701754 767 632 382463.4398733 633 633 858993812.0537 634 633 23572935.22651 635 633 -5596605.68986 636 633 4618634.835751 637 633 -55643925.7906 638 633 -3070485.761489 651 633 -58492995.80723 652 633 -43333333.32622 653 633 -14930548.11496 654 633 -98216097.07436 655 633 11347340.27138 656 633 719973.8304573 657 633 -33795235.93693 658 633 40444834.51144 659 633 2624699.350195 723 633 -41696960.65915 724 633 8333333.336071 725 633 24110420.45533 726 633 -71415955.0593 727 633 -3233554.224872 728 633 56726300.63859 741 633 -94333949.07787 742 633 1.773238182068e-06 743 633 -694452.0061627 744 633 -13774447.66423 745 633 4191171.176221 746 633 -2780612.645988 747 633 -30223428.17772 748 633 -11020580.63135 749 633 14420581.05462 762 633 -38845377.32488 763 633 -8333333.33607 764 633 -23415968.44916 765 633 -64986646.84972 766 633 2436242.286385 767 633 -58542682.88204 768 633 -16011865.17978 769 633 7626721.393617 770 633 -9769737.878529 634 634 808466815.7419 635 634 38960608.67833 636 634 -55656775.51848 637 634 -150135338.7036 638 634 -6430096.965576 651 634 -43333333.32622 652 634 -45492367.71613 653 634 -7499910.748575 654 634 11347340.27138 655 634 78782999.63319 656 634 9628847.797338 657 634 40444834.51144 658 634 -59951104.04053 659 634 -2777534.348236 723 634 8333333.336071 724 634 -39196836.65327 725 634 -17343704.63996 726 634 -3226694.963612 727 634 -34510800.91818 728 634 10096086.08607 741 634 2.175569534302e-06 742 634 -126000573.4156 743 634 -67541485.19271 744 634 4191171.17622 745 634 -21799184.55042 746 634 19581709.58125 747 634 -11027439.89261 748 634 -60138740.99675 749 634 47821580.90675 762 634 -8333333.33607 763 634 -36345253.319 764 634 -16510371.30635 765 634 2436242.286385 766 634 -31339965.69435 767 634 8706676.127155 768 634 7626721.393617 769 634 -21957274.44509 770 634 15232588.38105 635 635 1060138391.827 636 635 -3081602.172603 637 635 -6448721.730348 638 635 65923719.58454 651 635 -14930548.11516 652 635 -7499910.748739 653 635 -461644.445098 654 635 4886640.496438 655 635 9628847.797338 656 635 164674627.3592 657 635 2624699.349784 658 635 -2777534.348236 659 635 9639493.762348 723 635 24110420.45533 724 635 -17343704.63996 725 635 -81284258.80916 726 635 54643912.99742 727 635 10440765.17629 728 635 -94980766.45259 741 635 -694452.0061623 742 635 -67874818.52582 743 635 -284706093.7789 744 635 -2762465.644181 745 635 19596227.63998 746 635 -269985712.4852 747 635 14428412.5018 748 635 47817257.06168 749 635 -68547849.10008 762 635 -23415968.44916 763 635 -16510371.30635 764 635 -73680036.58444 765 635 -56459349.54655 766 635 8706676.128006 767 635 -92583202.06042 768 635 -9769737.878529 769 635 15232588.38105 770 635 -24335094.043 636 636 509824422.991 637 636 7091706.43505 638 636 -233419.5339228 654 636 -59049926.58522 655 636 -42965317.60158 656 636 -2258246.676834 657 636 -59241455.91135 658 636 15132295.57647 659 636 798361.610166 660 636 74246775.76258 661 636 -15390441.52608 662 636 58526.0984211 663 636 -25108448.92089 664 636 39749983.45952 665 636 516364.7746233 726 636 -18540701.9006 727 636 10020577.78707 728 636 14561779.53718 744 636 -45939787.20181 745 636 -11027439.89261 746 636 -17526028.04609 747 636 -61800142.29096 748 636 1513948.569663 749 636 12440251.97284 765 636 -26368729.20533 766 636 -8242806.906906 767 636 -17075883.20919 768 636 -74906791.02692 769 636 3256684.855284 770 636 -62343936.77239 771 636 -25367014.53987 772 636 -3090096.028045 773 636 8972625.494148 774 636 -22671270.46426 775 636 7569131.615548 776 636 -15173808.97594 637 637 589020111.9775 638 637 7899561.014866 654 637 -42965317.60158 655 637 -38102021.6452 656 637 -637598.5609377 657 637 15132295.57647 658 637 112031420.9635 659 637 2220214.855314 660 637 1942891.804407 661 637 -9986366.234935 662 637 -309424.0944229 663 637 39749983.45952 664 637 -31492829.01886 665 637 -337101.3112045 726 637 6680385.191377 727 637 -24472689.98014 728 637 -16861073.14158 744 637 -11020580.63135 745 637 -75855100.02084 746 637 -54351585.25286 747 637 1513948.569662 748 637 -45007225.02585 749 637 7591760.11537 765 637 -8242806.906906 766 637 -22147088.59928 767 637 -13065785.2468 768 637 3256684.855284 769 637 -42318700.05597 770 637 5034943.242021 771 637 243237.3063829 772 637 -41573854.45411 773 637 33177819.90803 774 637 7569131.615548 775 637 -24219778.49355 776 637 16496295.54634 638 638 736638462.5419 654 638 -2258246.67704 655 638 -637598.5611018 656 638 9368572.827382 657 638 798361.6101658 658 638 2220214.855314 659 638 191399411.2569 660 638 58526.09842288 661 638 -309424.0944231 662 638 123526648.2913 663 638 516364.7744184 664 638 -337101.3112046 665 638 34538216.12317 726 638 9707853.024785 727 638 -20743439.00053 728 638 -43509883.65538 744 638 -17515712.64747 745 638 -54353721.05939 746 638 -110458139.831 747 638 -12663636.91192 748 638 487449.3652666 749 638 -284041735.68 765 638 -17075883.20919 766 638 -13065785.2468 767 638 -38056298.36311 768 638 -62343936.77198 769 638 5034943.242873 770 638 -135317416.4032 771 638 847625.4925454 772 638 33177819.90803 773 638 -81733152.47406 774 638 -15173808.97594 775 638 16496295.54634 776 638 -41801871.2726 639 639 437007897.1408 640 639 1.788139343262e-06 641 639 -694474.1951501 642 639 54557514.29287 643 639 8666666.665243 644 639 2430548.117623 729 639 -77407961.77148 730 639 -1.184642314911e-06 731 639 64983348.44575 732 639 -12048523.14942 733 639 -8333333.336071 734 639 8485420.4502 750 639 -13658136.58254 751 639 5.662441253662e-07 752 639 -13107792.89912 753 639 10254900.45163 754 639 1666666.667213 755 639 -1974864.892506 640 640 385005384.802 641 640 33332976.31099 642 640 -8666666.665243 643 640 -27775711.80126 644 640 -16666488.15549 729 640 -1.601874828339e-06 730 640 -40741089.4269 731 640 8333242.604601 732 640 -8333333.336071 733 640 -9548399.143536 734 640 9010462.03536 750 640 5.960464477539e-08 751 640 -23658632.60114 752 640 16666485.20099 753 640 -1666666.667215 754 640 -5578411.717238 755 640 17187590.72873 641 641 543275681.852 642 641 -3819451.88135 643 641 -16666488.15549 644 641 59299625.07651 729 641 65400015.11214 730 641 8333242.604601 731 641 -113457062.6479 732 641 8485420.4502 733 641 9010462.03536 734 641 -2221758.783205 750 641 12413318.2078 751 641 16666485.20099 752 641 -156052242.6221 753 641 1280412.88634 754 641 17187590.72856 755 641 10771953.08541 642 642 437007897.1408 643 642 1.788139343262e-06 644 642 -694474.1951501 645 642 54557514.29287 646 642 8666666.665243 647 642 2430548.117623 729 642 -41696960.65915 730 642 8333333.336071 731 642 24110420.45533 732 642 -77407961.77148 733 642 -1.184642314911e-06 734 642 64983348.44575 735 642 -12048523.14942 736 642 -8333333.336071 737 642 8485420.4502 750 642 -47166974.53894 751 642 -1666666.667213 752 642 -5099864.893531 753 642 -13658136.58254 754 642 5.662441253662e-07 755 642 -13107792.89912 756 642 10254900.45163 757 642 1666666.667213 758 642 -1974864.892506 643 643 385005384.802 644 643 33332976.31099 645 643 -8666666.665243 646 643 -27775711.80126 647 643 -16666488.15549 729 643 8333333.336071 730 643 -39196836.65327 731 643 -17343704.63996 732 643 -1.601874828339e-06 733 643 -40741089.4269 734 643 8333242.604601 735 643 -8333333.336071 736 643 -9548399.143536 737 643 9010462.03536 750 643 1666666.667215 751 643 -63000286.7078 752 643 -33854075.92972 753 643 5.960464477539e-08 754 643 -23658632.60114 755 643 16666485.20099 756 643 -1666666.667215 757 643 -5578411.717238 758 643 17187590.72873 644 644 543275681.852 645 644 -3819451.88135 646 644 -16666488.15549 647 644 59299625.07651 729 644 24110420.45533 730 644 -17343704.63996 731 644 -81284258.80916 732 644 65400015.11214 733 644 8333242.604601 734 644 -113457062.6479 735 644 8485420.4502 736 644 9010462.03536 737 644 -2221758.783205 750 644 4405412.887368 751 644 -33854075.92955 752 644 -142353046.8894 753 644 12413318.2078 754 644 16666485.20099 755 644 -156052242.6221 756 644 1280412.88634 757 644 17187590.72856 758 644 10771953.08541 645 645 437007897.1408 646 645 1.788139343262e-06 647 645 -694474.1951501 648 645 54557514.29287 649 645 8666666.665243 650 645 2430548.117623 732 645 -41696960.65915 733 645 8333333.336071 734 645 24110420.45533 735 645 -77407961.77148 736 645 -1.184642314911e-06 737 645 64983348.44575 738 645 -12048523.14942 739 645 -8333333.336071 740 645 8485420.4502 753 645 -47166974.53894 754 645 -1666666.667213 755 645 -5099864.893531 756 645 -13658136.58254 757 645 5.662441253662e-07 758 645 -13107792.89912 759 645 10254900.45163 760 645 1666666.667213 761 645 -1974864.892506 646 646 385005384.802 647 646 33332976.31099 648 646 -8666666.665243 649 646 -27775711.80126 650 646 -16666488.15549 732 646 8333333.336071 733 646 -39196836.65327 734 646 -17343704.63996 735 646 -1.601874828339e-06 736 646 -40741089.4269 737 646 8333242.604601 738 646 -8333333.336071 739 646 -9548399.143536 740 646 9010462.03536 753 646 1666666.667215 754 646 -63000286.7078 755 646 -33854075.92972 756 646 5.960464477539e-08 757 646 -23658632.60114 758 646 16666485.20099 759 646 -1666666.667215 760 646 -5578411.717238 761 646 17187590.72873 647 647 543275681.852 648 647 -3819451.88135 649 647 -16666488.15549 650 647 59299625.07651 732 647 24110420.45533 733 647 -17343704.63996 734 647 -81284258.80916 735 647 65400015.11214 736 647 8333242.604601 737 647 -113457062.6479 738 647 8485420.4502 739 647 9010462.03536 740 647 -2221758.783205 753 647 4405412.887368 754 647 -33854075.92955 755 647 -142353046.8894 756 647 12413318.2078 757 647 16666485.20099 758 647 -156052242.6221 759 647 1280412.88634 760 647 17187590.72856 761 647 10771953.08541 648 648 437007897.1408 649 648 1.788139343262e-06 650 648 -694474.1951501 651 648 54557514.29287 652 648 8666666.665243 653 648 2430548.117623 735 648 -41696960.65915 736 648 8333333.336071 737 648 24110420.45533 738 648 -77407961.77148 739 648 -1.184642314911e-06 740 648 64983348.44575 741 648 -12048523.14942 742 648 -8333333.336071 743 648 8485420.4502 756 648 -47166974.53894 757 648 -1666666.667213 758 648 -5099864.893531 759 648 -13658136.58254 760 648 5.662441253662e-07 761 648 -13107792.89912 762 648 10254900.45163 763 648 1666666.667213 764 648 -1974864.892506 649 649 385005384.802 650 649 33332976.31099 651 649 -8666666.665243 652 649 -27775711.80126 653 649 -16666488.15549 735 649 8333333.336071 736 649 -39196836.65327 737 649 -17343704.63996 738 649 -1.601874828339e-06 739 649 -40741089.4269 740 649 8333242.604601 741 649 -8333333.336071 742 649 -9548399.143536 743 649 9010462.03536 756 649 1666666.667215 757 649 -63000286.7078 758 649 -33854075.92972 759 649 5.960464477539e-08 760 649 -23658632.60114 761 649 16666485.20099 762 649 -1666666.667215 763 649 -5578411.717238 764 649 17187590.72873 650 650 543275681.852 651 650 -3819451.88135 652 650 -16666488.15549 653 650 59299625.07651 735 650 24110420.45533 736 650 -17343704.63996 737 650 -81284258.80916 738 650 65400015.11214 739 650 8333242.604601 740 650 -113457062.6479 741 650 8485420.4502 742 650 9010462.03536 743 650 -2221758.783205 756 650 4405412.887368 757 650 -33854075.92955 758 650 -142353046.8894 759 650 12413318.2078 760 650 16666485.20099 761 650 -156052242.6221 762 650 1280412.88634 763 650 17187590.72856 764 650 10771953.08541 651 651 437007897.1408 652 651 1.788139343262e-06 653 651 -694474.1951501 654 651 54557514.29287 655 651 8666666.665243 656 651 2430548.117623 738 651 -41696960.65915 739 651 8333333.336071 740 651 24110420.45533 741 651 -77407961.77148 742 651 -1.184642314911e-06 743 651 64983348.44575 744 651 -12048523.14942 745 651 -8333333.336071 746 651 8485420.4502 759 651 -47166974.53894 760 651 -1666666.667213 761 651 -5099864.893531 762 651 -13658136.58254 763 651 5.662441253662e-07 764 651 -13107792.89912 765 651 10254900.45163 766 651 1666666.667213 767 651 -1974864.892506 652 652 385005384.802 653 652 33332976.31099 654 652 -8666666.665243 655 652 -27775711.80126 656 652 -16666488.15549 738 652 8333333.336071 739 652 -39196836.65327 740 652 -17343704.63996 741 652 -1.601874828339e-06 742 652 -40741089.4269 743 652 8333242.604601 744 652 -8333333.336071 745 652 -9548399.143536 746 652 9010462.03536 759 652 1666666.667215 760 652 -63000286.7078 761 652 -33854075.92972 762 652 5.960464477539e-08 763 652 -23658632.60114 764 652 16666485.20099 765 652 -1666666.667215 766 652 -5578411.717238 767 652 17187590.72873 653 653 543275681.852 654 653 -3819451.88135 655 653 -16666488.15549 656 653 59299625.07651 738 653 24110420.45533 739 653 -17343704.63996 740 653 -81284258.80916 741 653 65400015.11214 742 653 8333242.604601 743 653 -113457062.6479 744 653 8485420.4502 745 653 9010462.03536 746 653 -2221758.783205 759 653 4405412.887368 760 653 -33854075.92955 761 653 -142353046.8894 762 653 12413318.2078 763 653 16666485.20099 764 653 -156052242.6221 765 653 1280412.88634 766 653 17187590.72856 767 653 10771953.08541 654 654 447412022.0987 655 654 367932.9627128 656 654 -13022116.19691 657 654 49415165.36624 658 654 -3416622.293492 659 654 -439610.9536436 741 654 -41696960.65915 742 654 8333333.336071 743 654 24110420.45533 744 654 -72955365.59794 745 654 2436242.286385 746 654 61378150.43314 747 654 -22540576.42629 748 654 -8242806.906905 749 654 14824116.80129 762 654 -47166974.53894 763 654 -1666666.667213 764 654 -5099864.893531 765 654 -19040600.32219 766 654 90519.34075832 767 654 -19268094.90535 768 654 -13147418.28847 769 654 -950621.3890942 770 654 1450272.108583 655 655 403364363.9692 656 655 20195692.56007 657 655 -20749955.62398 658 655 -35151580.14884 659 655 -3353876.225841 741 655 8333333.336071 742 655 -39196836.65327 743 655 -17343704.63996 744 655 2436242.286384 745 655 -39308684.44256 746 655 894176.12852 747 655 -8242806.906905 748 655 -18318935.82024 749 655 12455048.09491 762 655 1666666.667215 763 655 -63000286.7078 764 655 -33854075.92972 765 655 90519.34075797 766 655 -27318088.15734 767 655 10111276.76934 768 655 -4283954.723522 769 655 -29405064.05177 770 655 27737279.5769 656 656 582349612.129 657 656 -1689610.95344 658 656 -3353876.225841 659 656 79771026.4956 741 656 24110420.45533 742 656 -17343704.63996 743 656 -81284258.80916 744 656 59294817.09957 745 656 894176.1292076 746 656 -113833118.7223 747 656 14824116.80129 748 656 12455048.09491 749 656 -27847890.95234 762 656 4405412.887368 763 656 -33854075.92955 764 656 -142353046.8894 765 656 6252460.646014 766 656 10111276.76934 767 656 -168050028.8542 768 656 7205272.109613 769 656 27737279.57605 770 656 -44092711.32715 657 657 423348866.0204 658 657 11032466.66264 659 657 326585.5522151 660 657 -62232004.47076 661 657 -46916683.19291 662 657 -525301.8919845 663 657 51948761.9348 664 657 1057042.066345 665 657 131933.0004746 744 657 -22730594.34878 745 657 7626721.393617 746 657 12364984.35096 747 657 -76547391.72184 748 657 3256684.855286 749 657 63175507.65185 765 657 -24944296.75828 766 657 -4283954.723523 767 657 -8940005.667694 768 657 -48889704.10442 769 657 2464794.383752 770 657 -12359093.76876 771 657 -30483492.68905 772 657 -9097535.056593 773 657 20047718.8134 774 657 -23754733.9178 775 657 33289.14746143 776 657 1855888.619689 658 658 428928472.3575 659 658 5287278.179705 660 658 -46916683.19291 661 658 -45414162.35006 662 658 -337101.3112045 663 658 -16276291.26414 664 658 -30998949.77914 665 658 -1038981.149731 744 658 7626721.393617 745 658 -28676003.61409 746 658 -18100744.96323 747 658 3256684.855286 748 658 -43959300.75089 749 658 -2777556.756613 765 658 -950621.3890945 766 658 -41201942.52158 767 658 -31116887.08018 768 658 2464794.383752 769 658 -46644595.36138 770 658 2691531.008842 771 658 -9097535.056593 772 658 -27149361.82785 773 658 16496295.54634 774 658 -3300044.186967 775 658 -39719009.46437 776 658 32807362.24483 659 659 584145228.2337 660 659 -525301.8919851 661 659 -337101.3112046 662 659 20616882.79198 663 659 -284733.6661254 664 659 -1038981.149731 665 659 99612216.13263 744 659 12364984.35096 745 659 -18100744.96323 746 659 -42251705.16035 747 659 63175507.65144 748 659 -2777556.755926 749 659 -139692351.5897 765 659 -1935005.666458 766 659 -31116887.08087 767 659 -75551053.91331 768 659 12744795.11601 769 659 2691531.008842 770 659 -234152588.3109 771 659 20047718.8134 772 659 16496295.54634 773 659 -44731454.6069 774 659 7819499.733824 775 659 32807362.24483 776 659 -69888082.52598 660 660 244685203.3475 661 660 50057108.18705 662 660 288696.1236947 663 660 -36054766.3116 664 660 -5083316.798544 665 660 178079.6698694 747 660 -26617014.5403 748 660 243237.3063828 749 660 -792652.2819211 768 660 -31733492.68947 769 660 -9097535.056593 770 660 -20577281.19994 771 660 -33148818.76463 772 660 9756762.696902 773 660 8271124.504546 774 660 -44282340.66884 775 660 -902464.9466921 776 660 -35651191.02268 661 661 223293345.3624 662 661 309424.094425 663 661 12250016.53194 664 661 52752391.55036 665 661 337101.3112057 747 661 -3090096.028045 748 661 -42823854.45454 749 661 -33488846.74768 768 661 -9097535.056593 769 661 -28399361.82827 770 661 -16837037.79794 771 661 9756762.696902 772 661 -37254478.85706 773 661 6822180.085395 774 661 2430868.387736 775 661 -27303971.52336 776 661 3503704.460225 662 662 339666962.7326 663 662 178079.6698721 664 662 337101.3112057 665 662 104576728.3915 747 662 -8917652.283731 748 662 -33488846.74768 749 662 -85066485.80853 768 662 -20577281.19995 769 662 -16837037.79794 770 662 -48064787.94135 771 662 -7978875.492785 772 662 -6511153.245748 773 662 -148788236.3624 774 662 -35651191.02354 775 662 -3162962.208631 776 662 -80164934.32299 663 663 212848619.9699 664 663 -35723708.72732 665 663 423622.5554408 747 663 -23921270.46468 748 663 7569131.615548 749 663 15685913.25641 768 663 -27504733.91658 769 663 -3300044.186967 770 663 -8117722.489783 771 663 -44282340.66884 772 663 2430868.387737 773 663 35833531.18791 774 663 -29604988.28668 775 663 -6699955.816318 776 663 -5953388.621477 664 664 213373553.9199 665 664 1038981.149734 747 664 7569131.615548 748 664 -25469778.49398 749 664 -16837037.79794 768 664 33289.14746112 769 664 -43469009.46316 770 664 -33859304.41089 771 664 -902464.9466912 772 664 -27303971.52336 773 664 3503704.460225 774 664 -6699955.816318 775 664 -29070573.85628 776 664 7192637.7486 665 665 304297283.8121 747 665 15685913.25641 748 665 -16837037.79794 749 665 -45135204.60706 768 665 -1737444.709049 769 665 -33859304.41089 770 665 -79888082.52274 771 665 35833531.18684 772 665 -3162962.208631 773 665 -80164934.32299 774 665 6390500.265385 775 665 -6140695.582542 776 665 -128980667.4453 666 666 544597009.4256 667 666 33333333.32786 668 666 -31989118.31313 669 666 -132114372.9571 670 666 -33352308.14156 671 666 31970539.06385 672 666 1216456.507315 673 666 26685641.47599 674 666 25851320.01324 777 666 -10929001.68405 778 666 8333333.33607 779 666 3726516.388097 780 666 -69036918.95254 781 666 -8338077.039497 782 666 -55624567.39871 783 666 7014515.850343 784 666 6671410.372285 785 666 -6514983.987003 667 667 494573181.6273 668 667 83368386.85484 669 667 -33361795.54841 670 667 24612909.30639 671 667 46187594.51733 672 667 40028462.21399 673 667 1216456.507311 674 667 -29021109.31684 777 667 8333333.336069 778 667 -23434958.63979 779 667 30221022.26397 780 667 -8340448.891212 781 667 -29855098.36736 782 667 -1182917.166231 783 667 10007115.55843 784 667 7014515.850342 785 667 7818288.469344 668 668 853850595.3707 669 668 31961249.43922 670 668 37180558.07827 671 668 139399647.4134 672 668 38776980.01986 673 668 -19347406.21122 674 668 3243884.01951 777 668 -21803668.18463 778 668 9797097.079457 779 668 -178746028.6722 780 668 -56043408.3313 781 668 -3514321.011405 782 668 -61172289.98812 783 668 -9772475.980504 784 668 5212192.312896 785 668 18705375.60092 669 669 847901916.7151 670 669 33380770.36212 671 669 -37498286.23383 672 669 39751697.94156 673 669 -33352308.14156 674 669 -32448557.35788 675 669 -59718971.98211 676 669 -9.387731552124e-07 677 669 5555616.043855 678 669 -46856498.79532 679 669 33333333.32786 680 669 32430570.67332 777 669 -99681629.70551 778 669 -8340448.891213 779 669 71607514.53236 780 669 -8298175.66356 781 669 8345192.594641 782 669 -9379478.645899 783 669 2423001.606932 784 669 -8338077.0395 785 669 7795396.873343 786 669 -69751628.43939 787 669 1.266598701477e-06 788 669 -62205540.42245 789 669 -11071939.81576 790 669 8333333.336071 791 669 -7790968.444033 670 670 757876104.862 671 670 103333663.8687 672 670 -33361795.54842 673 670 -76952252.54226 674 670 -55347988.6005 675 670 -8.344650268555e-07 676 670 86948517.3239 677 670 33332970.40197 678 670 33333333.32786 679 670 -36856002.77671 680 670 -18166485.20082 777 670 -8338077.039499 778 670 -60499809.12032 779 670 22021029.70742 780 670 8345192.594641 781 670 -30804628.63791 782 670 25829490.35962 783 670 -8340448.891214 784 670 -26752986.0284 785 670 37056208.64825 786 670 7.376074790955e-07 787 670 -33084756.09483 788 670 8333242.6046 789 670 8333333.336071 790 670 -8571815.80988 791 670 8177128.701754 671 671 1184141501.437 672 671 -32874217.36655 673 671 -64688121.35194 674 671 93077437.24068 675 671 5555616.043855 676 671 33332970.40197 677 671 212606082.8355 678 671 32847237.33971 679 671 -18499818.53394 680 671 -5320118.38549 777 671 72026355.46494 778 671 24359692.24116 779 671 -142891518.6627 780 671 -9370405.180087 781 671 25836749.05321 782 671 -291361037.6863 783 671 7797611.087997 784 671 35054390.19536 785 671 3229564.966024 786 671 -62622207.08884 787 671 8333242.6046 788 671 -93040173.76232 789 671 -7790968.444033 790 671 8177128.701754 791 671 382463.4398733 672 672 544597009.4256 673 672 33333333.32786 674 672 -31989118.31313 675 672 -43106498.79594 676 672 -33333333.32786 677 672 -30069429.31642 678 672 -132114372.9571 679 672 -33352308.14156 680 672 31970539.06385 681 672 1216456.507315 682 672 26685641.47599 683 672 25851320.01324 777 672 -50448491.13742 778 672 10007115.55843 779 672 28536410.43085 780 672 -85645347.16108 781 672 -8340448.891212 782 672 -24130997.54348 783 672 -10929001.68405 784 672 8333333.33607 785 672 3726516.388097 786 672 -38845377.32488 787 672 -8333333.33607 788 672 -23415968.44916 789 672 -69036918.95254 790 672 -8338077.039497 791 672 -55624567.39871 792 672 7014515.850343 793 672 6671410.372285 794 672 -6514983.987003 673 673 494573181.6273 674 673 83368386.85484 675 673 -33333333.32786 676 673 -33106002.77733 677 673 -15166485.20115 678 673 -33361795.54841 679 673 24612909.30639 680 673 46187594.51733 681 673 40028462.21399 682 673 1216456.507311 683 673 -29021109.31684 777 673 6671410.372285 778 673 -50448491.13742 779 673 -15218991.7376 780 673 -8338077.039498 781 673 -114821334.7964 782 673 -67065236.07198 783 673 8333333.336069 784 673 -23434958.63979 785 673 30221022.26397 786 673 -8333333.33607 787 673 -36345253.319 788 673 -16510371.30635 789 673 -8340448.891212 790 673 -29855098.36736 791 673 -1182917.166231 792 673 10007115.55843 793 673 7014515.850342 794 673 7818288.469344 674 674 853850595.3707 675 674 -29652762.65002 676 674 -14833151.86804 677 674 4679881.612865 678 674 31961249.43922 679 674 37180558.07827 680 674 139399647.4134 681 674 38776980.01986 682 674 -19347406.21122 683 674 3243884.01951 777 674 19024273.62057 778 674 -22828487.60639 779 674 -134529309.6998 780 674 -24124138.5141 781 674 -65063417.79147 782 674 -231619365.082 783 674 -21803668.18463 784 674 9797097.079457 785 674 -178746028.6722 786 674 -23415968.44916 787 674 -16510371.30635 788 674 -73680036.58444 789 674 -56043408.3313 790 674 -3514321.011405 791 674 -61172289.98812 792 674 -9772475.980504 793 674 5212192.312896 794 674 18705375.60092 675 675 829135740.1102 676 675 1.847743988037e-06 677 675 -11111232.08774 678 675 86951912.01811 679 675 -3.8743019104e-07 680 675 -2777808.023304 684 675 -59718971.98211 685 675 -9.387731552124e-07 686 675 5555616.043855 687 675 -46856498.79532 688 675 33333333.32786 689 675 32430570.67332 780 675 -77407961.77148 781 675 -1.184642314911e-06 782 675 64983348.44575 783 675 -12048523.14942 784 675 -8333333.336071 785 675 8485420.4502 786 675 -27191273.16515 787 675 2.98023223877e-07 788 675 -2777808.023288 789 675 20509800.90325 790 675 -2.242624759674e-06 791 675 -694452.0061662 795 675 -69751628.43939 796 675 1.266598701477e-06 797 675 -62205540.42245 798 675 -11071939.81576 799 675 8333333.336071 800 675 -7790968.444033 676 676 749131772.0008 677 676 133331881.5422 678 676 -1.639127731323e-07 679 676 -39714585.27039 680 676 -66665940.77111 684 676 -8.344650268555e-07 685 676 86948517.3239 686 676 33332970.40197 687 676 33333333.32786 688 676 -36856002.77671 689 676 -18166485.20082 780 676 -1.601874828339e-06 781 676 -40741089.4269 782 676 8333242.604601 783 676 -8333333.336071 784 676 -9548399.143536 785 676 9010462.03536 786 676 2.384185791016e-07 787 676 -47192265.20236 788 676 33332970.40198 789 676 -1.728534698486e-06 790 676 -11156823.43448 791 676 34208514.79074 795 676 7.376074790955e-07 796 676 -33084756.09483 797 676 8333242.6046 798 676 8333333.336071 799 676 -8571815.80988 800 676 8177128.701754 677 677 1253984280.216 678 677 -2777808.023304 679 677 -66665940.77111 680 677 99276180.49554 684 677 5555616.043855 685 677 33332970.40197 686 677 212606082.8355 687 677 32847237.33971 688 677 -18499818.53394 689 677 -5320118.38549 780 677 65400015.11214 781 677 8333242.604601 782 677 -113457062.6479 783 677 8485420.4502 784 677 9010462.03536 785 677 -2221758.783205 786 677 -2777808.023289 787 677 33332970.40198 788 677 -311771151.9111 789 677 -694452.006166 790 677 34541848.12385 791 677 21543906.17081 795 677 -62622207.08884 796 677 8333242.6046 797 677 -93040173.76232 798 677 -7790968.444033 799 677 8177128.701754 800 677 382463.4398733 678 678 847901916.7151 679 678 33380770.36212 680 678 -37498286.23383 681 678 39751697.94156 682 678 -33352308.14156 683 678 -32448557.35788 684 678 -43106498.79594 685 678 -33333333.32786 686 678 -30069429.31642 687 678 -59718971.98211 688 678 -9.387731552124e-07 689 678 5555616.043855 690 678 -46856498.79532 691 678 33333333.32786 692 678 32430570.67332 780 678 -41696960.65915 781 678 8333333.336071 782 678 24110420.45533 783 678 -99681629.70551 784 678 -8340448.891213 785 678 71607514.53236 786 678 -94333949.07787 787 678 1.773238182068e-06 788 678 -694452.0061627 789 678 -8298175.66356 790 678 8345192.594641 791 678 -9379478.645899 792 678 2423001.606932 793 678 -8338077.0395 794 678 7795396.873343 795 678 -38845377.32488 796 678 -8333333.33607 797 678 -23415968.44916 798 678 -69751628.43939 799 678 1.266598701477e-06 800 678 -62205540.42245 801 678 -11071939.81576 802 678 8333333.336071 803 678 -7790968.444033 679 679 757876104.862 680 679 103333663.8687 681 679 -33361795.54842 682 679 -76952252.54226 683 679 -55347988.6005 684 679 -33333333.32786 685 679 -33106002.77733 686 679 -15166485.20115 687 679 -8.344650268555e-07 688 679 86948517.3239 689 679 33332970.40197 690 679 33333333.32786 691 679 -36856002.77671 692 679 -18166485.20082 780 679 8333333.336071 781 679 -39196836.65327 782 679 -17343704.63996 783 679 -8338077.039499 784 679 -60499809.12032 785 679 22021029.70742 786 679 2.175569534302e-06 787 679 -126000573.4156 788 679 -67541485.19271 789 679 8345192.594641 790 679 -30804628.63791 791 679 25829490.35962 792 679 -8340448.891214 793 679 -26752986.0284 794 679 37056208.64825 795 679 -8333333.33607 796 679 -36345253.319 797 679 -16510371.30635 798 679 7.376074790955e-07 799 679 -33084756.09483 800 679 8333242.6046 801 679 8333333.336071 802 679 -8571815.80988 803 679 8177128.701754 680 680 1184141501.437 681 680 -32874217.36655 682 680 -64688121.35194 683 680 93077437.24068 684 680 -29652762.65002 685 680 -14833151.86804 686 680 4679881.612865 687 680 5555616.043855 688 680 33332970.40197 689 680 212606082.8355 690 680 32847237.33971 691 680 -18499818.53394 692 680 -5320118.38549 780 680 24110420.45533 781 680 -17343704.63996 782 680 -81284258.80916 783 680 72026355.46494 784 680 24359692.24116 785 680 -142891518.6627 786 680 -694452.0061623 787 680 -67874818.52582 788 680 -284706093.7789 789 680 -9370405.180087 790 680 25836749.05321 791 680 -291361037.6863 792 680 7797611.087997 793 680 35054390.19536 794 680 3229564.966024 795 680 -23415968.44916 796 680 -16510371.30635 797 680 -73680036.58444 798 680 -62622207.08884 799 680 8333242.6046 800 680 -93040173.76232 801 680 -7790968.444033 802 680 8177128.701754 803 680 382463.4398733 681 681 544597009.4256 682 681 33333333.32786 683 681 -31989118.31313 687 681 -43106498.79594 688 681 -33333333.32786 689 681 -30069429.31642 690 681 -132114372.9571 691 681 -33352308.14156 692 681 31970539.06385 693 681 1216456.507315 694 681 26685641.47599 695 681 25851320.01324 783 681 -50448491.13742 784 681 10007115.55843 785 681 28536410.43085 789 681 -85645347.16108 790 681 -8340448.891212 791 681 -24130997.54348 792 681 -10929001.68405 793 681 8333333.33607 794 681 3726516.388097 798 681 -38845377.32488 799 681 -8333333.33607 800 681 -23415968.44916 801 681 -69036918.95254 802 681 -8338077.039497 803 681 -55624567.39871 804 681 7014515.850343 805 681 6671410.372285 806 681 -6514983.987003 682 682 494573181.6273 683 682 83368386.85484 687 682 -33333333.32786 688 682 -33106002.77733 689 682 -15166485.20115 690 682 -33361795.54841 691 682 24612909.30639 692 682 46187594.51733 693 682 40028462.21399 694 682 1216456.507311 695 682 -29021109.31684 783 682 6671410.372285 784 682 -50448491.13742 785 682 -15218991.7376 789 682 -8338077.039498 790 682 -114821334.7964 791 682 -67065236.07198 792 682 8333333.336069 793 682 -23434958.63979 794 682 30221022.26397 798 682 -8333333.33607 799 682 -36345253.319 800 682 -16510371.30635 801 682 -8340448.891212 802 682 -29855098.36736 803 682 -1182917.166231 804 682 10007115.55843 805 682 7014515.850342 806 682 7818288.469344 683 683 853850595.3707 687 683 -29652762.65002 688 683 -14833151.86804 689 683 4679881.612865 690 683 31961249.43922 691 683 37180558.07827 692 683 139399647.4134 693 683 38776980.01986 694 683 -19347406.21122 695 683 3243884.01951 783 683 19024273.62057 784 683 -22828487.60639 785 683 -134529309.6998 789 683 -24124138.5141 790 683 -65063417.79147 791 683 -231619365.082 792 683 -21803668.18463 793 683 9797097.079457 794 683 -178746028.6722 798 683 -23415968.44916 799 683 -16510371.30635 800 683 -73680036.58444 801 683 -56043408.3313 802 683 -3514321.011405 803 683 -61172289.98812 804 683 -9772475.980504 805 683 5212192.312896 806 683 18705375.60092 684 684 829135740.1102 685 684 1.847743988037e-06 686 684 -11111232.08774 687 684 86951912.01811 688 684 -3.8743019104e-07 689 684 -2777808.023304 696 684 -59718971.98211 697 684 -9.387731552124e-07 698 684 5555616.043855 699 684 -46856498.79532 700 684 33333333.32786 701 684 32430570.67332 786 684 -77407961.77148 787 684 -1.184642314911e-06 788 684 64983348.44575 789 684 -12048523.14942 790 684 -8333333.336071 791 684 8485420.4502 795 684 -27191273.16515 796 684 2.98023223877e-07 797 684 -2777808.023288 798 684 20509800.90325 799 684 -2.242624759674e-06 800 684 -694452.0061662 807 684 -69751628.43939 808 684 1.266598701477e-06 809 684 -62205540.42245 810 684 -11071939.81576 811 684 8333333.336071 812 684 -7790968.444033 685 685 749131772.0008 686 685 133331881.5422 687 685 -1.639127731323e-07 688 685 -39714585.27039 689 685 -66665940.77111 696 685 -8.344650268555e-07 697 685 86948517.3239 698 685 33332970.40197 699 685 33333333.32786 700 685 -36856002.77671 701 685 -18166485.20082 786 685 -1.601874828339e-06 787 685 -40741089.4269 788 685 8333242.604601 789 685 -8333333.336071 790 685 -9548399.143536 791 685 9010462.03536 795 685 2.384185791016e-07 796 685 -47192265.20236 797 685 33332970.40198 798 685 -1.728534698486e-06 799 685 -11156823.43448 800 685 34208514.79074 807 685 7.376074790955e-07 808 685 -33084756.09483 809 685 8333242.6046 810 685 8333333.336071 811 685 -8571815.80988 812 685 8177128.701754 686 686 1253984280.216 687 686 -2777808.023304 688 686 -66665940.77111 689 686 99276180.49554 696 686 5555616.043855 697 686 33332970.40197 698 686 212606082.8355 699 686 32847237.33971 700 686 -18499818.53394 701 686 -5320118.38549 786 686 65400015.11214 787 686 8333242.604601 788 686 -113457062.6479 789 686 8485420.4502 790 686 9010462.03536 791 686 -2221758.783205 795 686 -2777808.023289 796 686 33332970.40198 797 686 -311771151.9111 798 686 -694452.006166 799 686 34541848.12385 800 686 21543906.17081 807 686 -62622207.08884 808 686 8333242.6046 809 686 -93040173.76232 810 686 -7790968.444033 811 686 8177128.701754 812 686 382463.4398733 687 687 829135740.1102 688 687 1.847743988037e-06 689 687 -11111232.08774 690 687 86951912.01811 691 687 -3.8743019104e-07 692 687 -2777808.023304 696 687 -43106498.79594 697 687 -33333333.32786 698 687 -30069429.31642 699 687 -59718971.98211 700 687 -9.387731552124e-07 701 687 5555616.043855 702 687 -46856498.79532 703 687 33333333.32786 704 687 32430570.67332 786 687 -41696960.65915 787 687 8333333.336071 788 687 24110420.45533 789 687 -77407961.77148 790 687 -1.184642314911e-06 791 687 64983348.44575 792 687 -12048523.14942 793 687 -8333333.336071 794 687 8485420.4502 795 687 -94333949.07787 796 687 1.773238182068e-06 797 687 -694452.0061627 798 687 -27191273.16515 799 687 2.98023223877e-07 800 687 -2777808.023288 801 687 20509800.90325 802 687 -2.242624759674e-06 803 687 -694452.0061662 807 687 -38845377.32488 808 687 -8333333.33607 809 687 -23415968.44916 810 687 -69751628.43939 811 687 1.266598701477e-06 812 687 -62205540.42245 813 687 -11071939.81576 814 687 8333333.336071 815 687 -7790968.444033 688 688 749131772.0008 689 688 133331881.5422 690 688 -1.639127731323e-07 691 688 -39714585.27039 692 688 -66665940.77111 696 688 -33333333.32786 697 688 -33106002.77733 698 688 -15166485.20115 699 688 -8.344650268555e-07 700 688 86948517.3239 701 688 33332970.40197 702 688 33333333.32786 703 688 -36856002.77671 704 688 -18166485.20082 786 688 8333333.336071 787 688 -39196836.65327 788 688 -17343704.63996 789 688 -1.601874828339e-06 790 688 -40741089.4269 791 688 8333242.604601 792 688 -8333333.336071 793 688 -9548399.143536 794 688 9010462.03536 795 688 2.175569534302e-06 796 688 -126000573.4156 797 688 -67541485.19271 798 688 2.384185791016e-07 799 688 -47192265.20236 800 688 33332970.40198 801 688 -1.728534698486e-06 802 688 -11156823.43448 803 688 34208514.79074 807 688 -8333333.33607 808 688 -36345253.319 809 688 -16510371.30635 810 688 7.376074790955e-07 811 688 -33084756.09483 812 688 8333242.6046 813 688 8333333.336071 814 688 -8571815.80988 815 688 8177128.701754 689 689 1253984280.216 690 689 -2777808.023304 691 689 -66665940.77111 692 689 99276180.49554 696 689 -29652762.65002 697 689 -14833151.86804 698 689 4679881.612865 699 689 5555616.043855 700 689 33332970.40197 701 689 212606082.8355 702 689 32847237.33971 703 689 -18499818.53394 704 689 -5320118.38549 786 689 24110420.45533 787 689 -17343704.63996 788 689 -81284258.80916 789 689 65400015.11214 790 689 8333242.604601 791 689 -113457062.6479 792 689 8485420.4502 793 689 9010462.03536 794 689 -2221758.783205 795 689 -694452.0061623 796 689 -67874818.52582 797 689 -284706093.7789 798 689 -2777808.023289 799 689 33332970.40198 800 689 -311771151.9111 801 689 -694452.006166 802 689 34541848.12385 803 689 21543906.17081 807 689 -23415968.44916 808 689 -16510371.30635 809 689 -73680036.58444 810 689 -62622207.08884 811 689 8333242.6046 812 689 -93040173.76232 813 689 -7790968.444033 814 689 8177128.701754 815 689 382463.4398733 690 690 847901916.7151 691 690 33380770.36212 692 690 -37498286.23383 693 690 39751697.94156 694 690 -33352308.14156 695 690 -32448557.35788 699 690 -43106498.79594 700 690 -33333333.32786 701 690 -30069429.31642 702 690 -59718971.98211 703 690 -9.387731552124e-07 704 690 5555616.043855 705 690 -46856498.79532 706 690 33333333.32786 707 690 32430570.67332 789 690 -41696960.65915 790 690 8333333.336071 791 690 24110420.45533 792 690 -99681629.70551 793 690 -8340448.891213 794 690 71607514.53236 798 690 -94333949.07787 799 690 1.773238182068e-06 800 690 -694452.0061627 801 690 -8298175.66356 802 690 8345192.594641 803 690 -9379478.645899 804 690 2423001.606932 805 690 -8338077.0395 806 690 7795396.873343 810 690 -38845377.32488 811 690 -8333333.33607 812 690 -23415968.44916 813 690 -69751628.43939 814 690 1.266598701477e-06 815 690 -62205540.42245 816 690 -11071939.81576 817 690 8333333.336071 818 690 -7790968.444033 691 691 757876104.862 692 691 103333663.8687 693 691 -33361795.54842 694 691 -76952252.54226 695 691 -55347988.6005 699 691 -33333333.32786 700 691 -33106002.77733 701 691 -15166485.20115 702 691 -8.344650268555e-07 703 691 86948517.3239 704 691 33332970.40197 705 691 33333333.32786 706 691 -36856002.77671 707 691 -18166485.20082 789 691 8333333.336071 790 691 -39196836.65327 791 691 -17343704.63996 792 691 -8338077.039499 793 691 -60499809.12032 794 691 22021029.70742 798 691 2.175569534302e-06 799 691 -126000573.4156 800 691 -67541485.19271 801 691 8345192.594641 802 691 -30804628.63791 803 691 25829490.35962 804 691 -8340448.891214 805 691 -26752986.0284 806 691 37056208.64825 810 691 -8333333.33607 811 691 -36345253.319 812 691 -16510371.30635 813 691 7.376074790955e-07 814 691 -33084756.09483 815 691 8333242.6046 816 691 8333333.336071 817 691 -8571815.80988 818 691 8177128.701754 692 692 1184141501.437 693 692 -32874217.36655 694 692 -64688121.35194 695 692 93077437.24068 699 692 -29652762.65002 700 692 -14833151.86804 701 692 4679881.612865 702 692 5555616.043855 703 692 33332970.40197 704 692 212606082.8355 705 692 32847237.33971 706 692 -18499818.53394 707 692 -5320118.38549 789 692 24110420.45533 790 692 -17343704.63996 791 692 -81284258.80916 792 692 72026355.46494 793 692 24359692.24116 794 692 -142891518.6627 798 692 -694452.0061623 799 692 -67874818.52582 800 692 -284706093.7789 801 692 -9370405.180087 802 692 25836749.05321 803 692 -291361037.6863 804 692 7797611.087997 805 692 35054390.19536 806 692 3229564.966024 810 692 -23415968.44916 811 692 -16510371.30635 812 692 -73680036.58444 813 692 -62622207.08884 814 692 8333242.6046 815 692 -93040173.76232 816 692 -7790968.444033 817 692 8177128.701754 818 692 382463.4398733 693 693 544597009.4256 694 693 33333333.32786 695 693 -31989118.31313 702 693 -43106498.79594 703 693 -33333333.32786 704 693 -30069429.31642 705 693 -132114372.9571 706 693 -33352308.14156 707 693 31970539.06385 708 693 1216456.507315 709 693 26685641.47599 710 693 25851320.01324 792 693 -50448491.13742 793 693 10007115.55843 794 693 28536410.43085 801 693 -85645347.16108 802 693 -8340448.891212 803 693 -24130997.54348 804 693 -10929001.68405 805 693 8333333.33607 806 693 3726516.388097 813 693 -38845377.32488 814 693 -8333333.33607 815 693 -23415968.44916 816 693 -69036918.95254 817 693 -8338077.039497 818 693 -55624567.39871 819 693 7014515.850343 820 693 6671410.372285 821 693 -6514983.987003 694 694 494573181.6273 695 694 83368386.85484 702 694 -33333333.32786 703 694 -33106002.77733 704 694 -15166485.20115 705 694 -33361795.54841 706 694 24612909.30639 707 694 46187594.51733 708 694 40028462.21399 709 694 1216456.507311 710 694 -29021109.31684 792 694 6671410.372285 793 694 -50448491.13742 794 694 -15218991.7376 801 694 -8338077.039498 802 694 -114821334.7964 803 694 -67065236.07198 804 694 8333333.336069 805 694 -23434958.63979 806 694 30221022.26397 813 694 -8333333.33607 814 694 -36345253.319 815 694 -16510371.30635 816 694 -8340448.891212 817 694 -29855098.36736 818 694 -1182917.166231 819 694 10007115.55843 820 694 7014515.850342 821 694 7818288.469344 695 695 853850595.3707 702 695 -29652762.65002 703 695 -14833151.86804 704 695 4679881.612865 705 695 31961249.43922 706 695 37180558.07827 707 695 139399647.4134 708 695 38776980.01986 709 695 -19347406.21122 710 695 3243884.01951 792 695 19024273.62057 793 695 -22828487.60639 794 695 -134529309.6998 801 695 -24124138.5141 802 695 -65063417.79147 803 695 -231619365.082 804 695 -21803668.18463 805 695 9797097.079457 806 695 -178746028.6722 813 695 -23415968.44916 814 695 -16510371.30635 815 695 -73680036.58444 816 695 -56043408.3313 817 695 -3514321.011405 818 695 -61172289.98812 819 695 -9772475.980504 820 695 5212192.312896 821 695 18705375.60092 696 696 829135740.1102 697 696 1.847743988037e-06 698 696 -11111232.08774 699 696 86951912.01811 700 696 -3.8743019104e-07 701 696 -2777808.023304 711 696 -59718971.98211 712 696 -9.387731552124e-07 713 696 5555616.043855 714 696 -46856498.79532 715 696 33333333.32786 716 696 32430570.67332 795 696 -77407961.77148 796 696 -1.184642314911e-06 797 696 64983348.44575 798 696 -12048523.14942 799 696 -8333333.336071 800 696 8485420.4502 807 696 -27191273.16515 808 696 2.98023223877e-07 809 696 -2777808.023288 810 696 20509800.90325 811 696 -2.242624759674e-06 812 696 -694452.0061662 822 696 -69751628.43939 823 696 1.266598701477e-06 824 696 -62205540.42245 825 696 -11071939.81576 826 696 8333333.336071 827 696 -7790968.444033 697 697 749131772.0008 698 697 133331881.5422 699 697 -1.639127731323e-07 700 697 -39714585.27039 701 697 -66665940.77111 711 697 -8.344650268555e-07 712 697 86948517.3239 713 697 33332970.40197 714 697 33333333.32786 715 697 -36856002.77671 716 697 -18166485.20082 795 697 -1.601874828339e-06 796 697 -40741089.4269 797 697 8333242.604601 798 697 -8333333.336071 799 697 -9548399.143536 800 697 9010462.03536 807 697 2.384185791016e-07 808 697 -47192265.20236 809 697 33332970.40198 810 697 -1.728534698486e-06 811 697 -11156823.43448 812 697 34208514.79074 822 697 7.376074790955e-07 823 697 -33084756.09483 824 697 8333242.6046 825 697 8333333.336071 826 697 -8571815.80988 827 697 8177128.701754 698 698 1253984280.216 699 698 -2777808.023304 700 698 -66665940.77111 701 698 99276180.49554 711 698 5555616.043855 712 698 33332970.40197 713 698 212606082.8355 714 698 32847237.33971 715 698 -18499818.53394 716 698 -5320118.38549 795 698 65400015.11214 796 698 8333242.604601 797 698 -113457062.6479 798 698 8485420.4502 799 698 9010462.03536 800 698 -2221758.783205 807 698 -2777808.023289 808 698 33332970.40198 809 698 -311771151.9111 810 698 -694452.006166 811 698 34541848.12385 812 698 21543906.17081 822 698 -62622207.08884 823 698 8333242.6046 824 698 -93040173.76232 825 698 -7790968.444033 826 698 8177128.701754 827 698 382463.4398733 699 699 829135740.1102 700 699 1.847743988037e-06 701 699 -11111232.08774 702 699 86951912.01811 703 699 -3.8743019104e-07 704 699 -2777808.023304 711 699 -43106498.79594 712 699 -33333333.32786 713 699 -30069429.31642 714 699 -59718971.98211 715 699 -9.387731552124e-07 716 699 5555616.043855 717 699 -46856498.79532 718 699 33333333.32786 719 699 32430570.67332 795 699 -41696960.65915 796 699 8333333.336071 797 699 24110420.45533 798 699 -77407961.77148 799 699 -1.184642314911e-06 800 699 64983348.44575 801 699 -12048523.14942 802 699 -8333333.336071 803 699 8485420.4502 807 699 -94333949.07787 808 699 1.773238182068e-06 809 699 -694452.0061627 810 699 -27191273.16515 811 699 2.98023223877e-07 812 699 -2777808.023288 813 699 20509800.90325 814 699 -2.242624759674e-06 815 699 -694452.0061662 822 699 -38845377.32488 823 699 -8333333.33607 824 699 -23415968.44916 825 699 -69751628.43939 826 699 1.266598701477e-06 827 699 -62205540.42245 828 699 -11071939.81576 829 699 8333333.336071 830 699 -7790968.444033 700 700 749131772.0008 701 700 133331881.5422 702 700 -1.639127731323e-07 703 700 -39714585.27039 704 700 -66665940.77111 711 700 -33333333.32786 712 700 -33106002.77733 713 700 -15166485.20115 714 700 -8.344650268555e-07 715 700 86948517.3239 716 700 33332970.40197 717 700 33333333.32786 718 700 -36856002.77671 719 700 -18166485.20082 795 700 8333333.336071 796 700 -39196836.65327 797 700 -17343704.63996 798 700 -1.601874828339e-06 799 700 -40741089.4269 800 700 8333242.604601 801 700 -8333333.336071 802 700 -9548399.143536 803 700 9010462.03536 807 700 2.175569534302e-06 808 700 -126000573.4156 809 700 -67541485.19271 810 700 2.384185791016e-07 811 700 -47192265.20236 812 700 33332970.40198 813 700 -1.728534698486e-06 814 700 -11156823.43448 815 700 34208514.79074 822 700 -8333333.33607 823 700 -36345253.319 824 700 -16510371.30635 825 700 7.376074790955e-07 826 700 -33084756.09483 827 700 8333242.6046 828 700 8333333.336071 829 700 -8571815.80988 830 700 8177128.701754 701 701 1253984280.216 702 701 -2777808.023304 703 701 -66665940.77111 704 701 99276180.49554 711 701 -29652762.65002 712 701 -14833151.86804 713 701 4679881.612865 714 701 5555616.043855 715 701 33332970.40197 716 701 212606082.8355 717 701 32847237.33971 718 701 -18499818.53394 719 701 -5320118.38549 795 701 24110420.45533 796 701 -17343704.63996 797 701 -81284258.80916 798 701 65400015.11214 799 701 8333242.604601 800 701 -113457062.6479 801 701 8485420.4502 802 701 9010462.03536 803 701 -2221758.783205 807 701 -694452.0061623 808 701 -67874818.52582 809 701 -284706093.7789 810 701 -2777808.023289 811 701 33332970.40198 812 701 -311771151.9111 813 701 -694452.006166 814 701 34541848.12385 815 701 21543906.17081 822 701 -23415968.44916 823 701 -16510371.30635 824 701 -73680036.58444 825 701 -62622207.08884 826 701 8333242.6046 827 701 -93040173.76232 828 701 -7790968.444033 829 701 8177128.701754 830 701 382463.4398733 702 702 829135740.1102 703 702 1.847743988037e-06 704 702 -11111232.08774 705 702 86951912.01811 706 702 -3.8743019104e-07 707 702 -2777808.023304 714 702 -43106498.79594 715 702 -33333333.32786 716 702 -30069429.31642 717 702 -59718971.98211 718 702 -9.387731552124e-07 719 702 5555616.043855 720 702 -46856498.79532 721 702 33333333.32786 722 702 32430570.67332 798 702 -41696960.65915 799 702 8333333.336071 800 702 24110420.45533 801 702 -77407961.77148 802 702 -1.184642314911e-06 803 702 64983348.44575 804 702 -12048523.14942 805 702 -8333333.336071 806 702 8485420.4502 810 702 -94333949.07787 811 702 1.773238182068e-06 812 702 -694452.0061627 813 702 -27191273.16515 814 702 2.98023223877e-07 815 702 -2777808.023288 816 702 20509800.90325 817 702 -2.242624759674e-06 818 702 -694452.0061662 825 702 -38845377.32488 826 702 -8333333.33607 827 702 -23415968.44916 828 702 -69751628.43939 829 702 1.266598701477e-06 830 702 -62205540.42245 831 702 -11071939.81576 832 702 8333333.336071 833 702 -7790968.444033 703 703 749131772.0008 704 703 133331881.5422 705 703 -1.639127731323e-07 706 703 -39714585.27039 707 703 -66665940.77111 714 703 -33333333.32786 715 703 -33106002.77733 716 703 -15166485.20115 717 703 -8.344650268555e-07 718 703 86948517.3239 719 703 33332970.40197 720 703 33333333.32786 721 703 -36856002.77671 722 703 -18166485.20082 798 703 8333333.336071 799 703 -39196836.65327 800 703 -17343704.63996 801 703 -1.601874828339e-06 802 703 -40741089.4269 803 703 8333242.604601 804 703 -8333333.336071 805 703 -9548399.143536 806 703 9010462.03536 810 703 2.175569534302e-06 811 703 -126000573.4156 812 703 -67541485.19271 813 703 2.384185791016e-07 814 703 -47192265.20236 815 703 33332970.40198 816 703 -1.728534698486e-06 817 703 -11156823.43448 818 703 34208514.79074 825 703 -8333333.33607 826 703 -36345253.319 827 703 -16510371.30635 828 703 7.376074790955e-07 829 703 -33084756.09483 830 703 8333242.6046 831 703 8333333.336071 832 703 -8571815.80988 833 703 8177128.701754 704 704 1253984280.216 705 704 -2777808.023304 706 704 -66665940.77111 707 704 99276180.49554 714 704 -29652762.65002 715 704 -14833151.86804 716 704 4679881.612865 717 704 5555616.043855 718 704 33332970.40197 719 704 212606082.8355 720 704 32847237.33971 721 704 -18499818.53394 722 704 -5320118.38549 798 704 24110420.45533 799 704 -17343704.63996 800 704 -81284258.80916 801 704 65400015.11214 802 704 8333242.604601 803 704 -113457062.6479 804 704 8485420.4502 805 704 9010462.03536 806 704 -2221758.783205 810 704 -694452.0061623 811 704 -67874818.52582 812 704 -284706093.7789 813 704 -2777808.023289 814 704 33332970.40198 815 704 -311771151.9111 816 704 -694452.006166 817 704 34541848.12385 818 704 21543906.17081 825 704 -23415968.44916 826 704 -16510371.30635 827 704 -73680036.58444 828 704 -62622207.08884 829 704 8333242.6046 830 704 -93040173.76232 831 704 -7790968.444033 832 704 8177128.701754 833 704 382463.4398733 705 705 847901916.7151 706 705 33380770.36212 707 705 -37498286.23383 708 705 39751697.94156 709 705 -33352308.14156 710 705 -32448557.35788 717 705 -43106498.79594 718 705 -33333333.32786 719 705 -30069429.31642 720 705 -59718971.98211 721 705 -9.387731552124e-07 722 705 5555616.043855 723 705 -46856498.79532 724 705 33333333.32786 725 705 32430570.67332 801 705 -41696960.65915 802 705 8333333.336071 803 705 24110420.45533 804 705 -99681629.70551 805 705 -8340448.891213 806 705 71607514.53236 813 705 -94333949.07787 814 705 1.773238182068e-06 815 705 -694452.0061627 816 705 -8298175.66356 817 705 8345192.594641 818 705 -9379478.645899 819 705 2423001.606932 820 705 -8338077.0395 821 705 7795396.873343 828 705 -38845377.32488 829 705 -8333333.33607 830 705 -23415968.44916 831 705 -69751628.43939 832 705 1.266598701477e-06 833 705 -62205540.42245 834 705 -11071939.81576 835 705 8333333.336071 836 705 -7790968.444033 706 706 757876104.862 707 706 103333663.8687 708 706 -33361795.54842 709 706 -76952252.54226 710 706 -55347988.6005 717 706 -33333333.32786 718 706 -33106002.77733 719 706 -15166485.20115 720 706 -8.344650268555e-07 721 706 86948517.3239 722 706 33332970.40197 723 706 33333333.32786 724 706 -36856002.77671 725 706 -18166485.20082 801 706 8333333.336071 802 706 -39196836.65327 803 706 -17343704.63996 804 706 -8338077.039499 805 706 -60499809.12032 806 706 22021029.70742 813 706 2.175569534302e-06 814 706 -126000573.4156 815 706 -67541485.19271 816 706 8345192.594641 817 706 -30804628.63791 818 706 25829490.35962 819 706 -8340448.891214 820 706 -26752986.0284 821 706 37056208.64825 828 706 -8333333.33607 829 706 -36345253.319 830 706 -16510371.30635 831 706 7.376074790955e-07 832 706 -33084756.09483 833 706 8333242.6046 834 706 8333333.336071 835 706 -8571815.80988 836 706 8177128.701754 707 707 1184141501.437 708 707 -32874217.36655 709 707 -64688121.35194 710 707 93077437.24068 717 707 -29652762.65002 718 707 -14833151.86804 719 707 4679881.612865 720 707 5555616.043855 721 707 33332970.40197 722 707 212606082.8355 723 707 32847237.33971 724 707 -18499818.53394 725 707 -5320118.38549 801 707 24110420.45533 802 707 -17343704.63996 803 707 -81284258.80916 804 707 72026355.46494 805 707 24359692.24116 806 707 -142891518.6627 813 707 -694452.0061623 814 707 -67874818.52582 815 707 -284706093.7789 816 707 -9370405.180087 817 707 25836749.05321 818 707 -291361037.6863 819 707 7797611.087997 820 707 35054390.19536 821 707 3229564.966024 828 707 -23415968.44916 829 707 -16510371.30635 830 707 -73680036.58444 831 707 -62622207.08884 832 707 8333242.6046 833 707 -93040173.76232 834 707 -7790968.444033 835 707 8177128.701754 836 707 382463.4398733 708 708 544597009.4256 709 708 33333333.32786 710 708 -31989118.31313 720 708 -43106498.79594 721 708 -33333333.32786 722 708 -30069429.31642 723 708 -132114372.9571 724 708 -33352308.14156 725 708 31970539.06385 726 708 1216456.507315 727 708 26685641.47599 728 708 25851320.01324 804 708 -50448491.13742 805 708 10007115.55843 806 708 28536410.43085 816 708 -85645347.16108 817 708 -8340448.891212 818 708 -24130997.54348 819 708 -10929001.68405 820 708 8333333.33607 821 708 3726516.388097 831 708 -38845377.32488 832 708 -8333333.33607 833 708 -23415968.44916 834 708 -69036918.95254 835 708 -8338077.039497 836 708 -55624567.39871 837 708 7014515.850343 838 708 6671410.372285 839 708 -6514983.987003 709 709 494573181.6273 710 709 83368386.85484 720 709 -33333333.32786 721 709 -33106002.77733 722 709 -15166485.20115 723 709 -33361795.54841 724 709 24612909.30639 725 709 46187594.51733 726 709 40028462.21399 727 709 1216456.507311 728 709 -29021109.31684 804 709 6671410.372285 805 709 -50448491.13742 806 709 -15218991.7376 816 709 -8338077.039498 817 709 -114821334.7964 818 709 -67065236.07198 819 709 8333333.336069 820 709 -23434958.63979 821 709 30221022.26397 831 709 -8333333.33607 832 709 -36345253.319 833 709 -16510371.30635 834 709 -8340448.891212 835 709 -29855098.36736 836 709 -1182917.166231 837 709 10007115.55843 838 709 7014515.850342 839 709 7818288.469344 710 710 853850595.3707 720 710 -29652762.65002 721 710 -14833151.86804 722 710 4679881.612865 723 710 31961249.43922 724 710 37180558.07827 725 710 139399647.4134 726 710 38776980.01986 727 710 -19347406.21122 728 710 3243884.01951 804 710 19024273.62057 805 710 -22828487.60639 806 710 -134529309.6998 816 710 -24124138.5141 817 710 -65063417.79147 818 710 -231619365.082 819 710 -21803668.18463 820 710 9797097.079457 821 710 -178746028.6722 831 710 -23415968.44916 832 710 -16510371.30635 833 710 -73680036.58444 834 710 -56043408.3313 835 710 -3514321.011405 836 710 -61172289.98812 837 710 -9772475.980504 838 710 5212192.312896 839 710 18705375.60092 711 711 829135740.1102 712 711 1.847743988037e-06 713 711 -11111232.08774 714 711 86951912.01811 715 711 -3.8743019104e-07 716 711 -2777808.023304 729 711 -59718971.98211 730 711 -9.387731552124e-07 731 711 5555616.043855 732 711 -46856498.79532 733 711 33333333.32786 734 711 32430570.67332 807 711 -77407961.77148 808 711 -1.184642314911e-06 809 711 64983348.44575 810 711 -12048523.14942 811 711 -8333333.336071 812 711 8485420.4502 822 711 -27191273.16515 823 711 2.98023223877e-07 824 711 -2777808.023288 825 711 20509800.90325 826 711 -2.242624759674e-06 827 711 -694452.0061662 840 711 -69751628.43939 841 711 1.266598701477e-06 842 711 -62205540.42245 843 711 -11071939.81576 844 711 8333333.336071 845 711 -7790968.444033 712 712 749131772.0008 713 712 133331881.5422 714 712 -1.639127731323e-07 715 712 -39714585.27039 716 712 -66665940.77111 729 712 -8.344650268555e-07 730 712 86948517.3239 731 712 33332970.40197 732 712 33333333.32786 733 712 -36856002.77671 734 712 -18166485.20082 807 712 -1.601874828339e-06 808 712 -40741089.4269 809 712 8333242.604601 810 712 -8333333.336071 811 712 -9548399.143536 812 712 9010462.03536 822 712 2.384185791016e-07 823 712 -47192265.20236 824 712 33332970.40198 825 712 -1.728534698486e-06 826 712 -11156823.43448 827 712 34208514.79074 840 712 7.376074790955e-07 841 712 -33084756.09483 842 712 8333242.6046 843 712 8333333.336071 844 712 -8571815.80988 845 712 8177128.701754 713 713 1253984280.216 714 713 -2777808.023304 715 713 -66665940.77111 716 713 99276180.49554 729 713 5555616.043855 730 713 33332970.40197 731 713 212606082.8355 732 713 32847237.33971 733 713 -18499818.53394 734 713 -5320118.38549 807 713 65400015.11214 808 713 8333242.604601 809 713 -113457062.6479 810 713 8485420.4502 811 713 9010462.03536 812 713 -2221758.783205 822 713 -2777808.023289 823 713 33332970.40198 824 713 -311771151.9111 825 713 -694452.006166 826 713 34541848.12385 827 713 21543906.17081 840 713 -62622207.08884 841 713 8333242.6046 842 713 -93040173.76232 843 713 -7790968.444033 844 713 8177128.701754 845 713 382463.4398733 714 714 829135740.1102 715 714 1.847743988037e-06 716 714 -11111232.08774 717 714 86951912.01811 718 714 -3.8743019104e-07 719 714 -2777808.023304 729 714 -43106498.79594 730 714 -33333333.32786 731 714 -30069429.31642 732 714 -59718971.98211 733 714 -9.387731552124e-07 734 714 5555616.043855 735 714 -46856498.79532 736 714 33333333.32786 737 714 32430570.67332 807 714 -41696960.65915 808 714 8333333.336071 809 714 24110420.45533 810 714 -77407961.77148 811 714 -1.184642314911e-06 812 714 64983348.44575 813 714 -12048523.14942 814 714 -8333333.336071 815 714 8485420.4502 822 714 -94333949.07787 823 714 1.773238182068e-06 824 714 -694452.0061627 825 714 -27191273.16515 826 714 2.98023223877e-07 827 714 -2777808.023288 828 714 20509800.90325 829 714 -2.242624759674e-06 830 714 -694452.0061662 840 714 -38845377.32488 841 714 -8333333.33607 842 714 -23415968.44916 843 714 -69751628.43939 844 714 1.266598701477e-06 845 714 -62205540.42245 846 714 -11071939.81576 847 714 8333333.336071 848 714 -7790968.444033 715 715 749131772.0008 716 715 133331881.5422 717 715 -1.639127731323e-07 718 715 -39714585.27039 719 715 -66665940.77111 729 715 -33333333.32786 730 715 -33106002.77733 731 715 -15166485.20115 732 715 -8.344650268555e-07 733 715 86948517.3239 734 715 33332970.40197 735 715 33333333.32786 736 715 -36856002.77671 737 715 -18166485.20082 807 715 8333333.336071 808 715 -39196836.65327 809 715 -17343704.63996 810 715 -1.601874828339e-06 811 715 -40741089.4269 812 715 8333242.604601 813 715 -8333333.336071 814 715 -9548399.143536 815 715 9010462.03536 822 715 2.175569534302e-06 823 715 -126000573.4156 824 715 -67541485.19271 825 715 2.384185791016e-07 826 715 -47192265.20236 827 715 33332970.40198 828 715 -1.728534698486e-06 829 715 -11156823.43448 830 715 34208514.79074 840 715 -8333333.33607 841 715 -36345253.319 842 715 -16510371.30635 843 715 7.376074790955e-07 844 715 -33084756.09483 845 715 8333242.6046 846 715 8333333.336071 847 715 -8571815.80988 848 715 8177128.701754 716 716 1253984280.216 717 716 -2777808.023304 718 716 -66665940.77111 719 716 99276180.49554 729 716 -29652762.65002 730 716 -14833151.86804 731 716 4679881.612865 732 716 5555616.043855 733 716 33332970.40197 734 716 212606082.8355 735 716 32847237.33971 736 716 -18499818.53394 737 716 -5320118.38549 807 716 24110420.45533 808 716 -17343704.63996 809 716 -81284258.80916 810 716 65400015.11214 811 716 8333242.604601 812 716 -113457062.6479 813 716 8485420.4502 814 716 9010462.03536 815 716 -2221758.783205 822 716 -694452.0061623 823 716 -67874818.52582 824 716 -284706093.7789 825 716 -2777808.023289 826 716 33332970.40198 827 716 -311771151.9111 828 716 -694452.006166 829 716 34541848.12385 830 716 21543906.17081 840 716 -23415968.44916 841 716 -16510371.30635 842 716 -73680036.58444 843 716 -62622207.08884 844 716 8333242.6046 845 716 -93040173.76232 846 716 -7790968.444033 847 716 8177128.701754 848 716 382463.4398733 717 717 829135740.1102 718 717 1.847743988037e-06 719 717 -11111232.08774 720 717 86951912.01811 721 717 -3.8743019104e-07 722 717 -2777808.023304 732 717 -43106498.79594 733 717 -33333333.32786 734 717 -30069429.31642 735 717 -59718971.98211 736 717 -9.387731552124e-07 737 717 5555616.043855 738 717 -46856498.79532 739 717 33333333.32786 740 717 32430570.67332 810 717 -41696960.65915 811 717 8333333.336071 812 717 24110420.45533 813 717 -77407961.77148 814 717 -1.184642314911e-06 815 717 64983348.44575 816 717 -12048523.14942 817 717 -8333333.336071 818 717 8485420.4502 825 717 -94333949.07787 826 717 1.773238182068e-06 827 717 -694452.0061627 828 717 -27191273.16515 829 717 2.98023223877e-07 830 717 -2777808.023288 831 717 20509800.90325 832 717 -2.242624759674e-06 833 717 -694452.0061662 843 717 -38845377.32488 844 717 -8333333.33607 845 717 -23415968.44916 846 717 -69751628.43939 847 717 1.266598701477e-06 848 717 -62205540.42245 849 717 -11071939.81576 850 717 8333333.336071 851 717 -7790968.444033 718 718 749131772.0008 719 718 133331881.5422 720 718 -1.639127731323e-07 721 718 -39714585.27039 722 718 -66665940.77111 732 718 -33333333.32786 733 718 -33106002.77733 734 718 -15166485.20115 735 718 -8.344650268555e-07 736 718 86948517.3239 737 718 33332970.40197 738 718 33333333.32786 739 718 -36856002.77671 740 718 -18166485.20082 810 718 8333333.336071 811 718 -39196836.65327 812 718 -17343704.63996 813 718 -1.601874828339e-06 814 718 -40741089.4269 815 718 8333242.604601 816 718 -8333333.336071 817 718 -9548399.143536 818 718 9010462.03536 825 718 2.175569534302e-06 826 718 -126000573.4156 827 718 -67541485.19271 828 718 2.384185791016e-07 829 718 -47192265.20236 830 718 33332970.40198 831 718 -1.728534698486e-06 832 718 -11156823.43448 833 718 34208514.79074 843 718 -8333333.33607 844 718 -36345253.319 845 718 -16510371.30635 846 718 7.376074790955e-07 847 718 -33084756.09483 848 718 8333242.6046 849 718 8333333.336071 850 718 -8571815.80988 851 718 8177128.701754 719 719 1253984280.216 720 719 -2777808.023304 721 719 -66665940.77111 722 719 99276180.49554 732 719 -29652762.65002 733 719 -14833151.86804 734 719 4679881.612865 735 719 5555616.043855 736 719 33332970.40197 737 719 212606082.8355 738 719 32847237.33971 739 719 -18499818.53394 740 719 -5320118.38549 810 719 24110420.45533 811 719 -17343704.63996 812 719 -81284258.80916 813 719 65400015.11214 814 719 8333242.604601 815 719 -113457062.6479 816 719 8485420.4502 817 719 9010462.03536 818 719 -2221758.783205 825 719 -694452.0061623 826 719 -67874818.52582 827 719 -284706093.7789 828 719 -2777808.023289 829 719 33332970.40198 830 719 -311771151.9111 831 719 -694452.006166 832 719 34541848.12385 833 719 21543906.17081 843 719 -23415968.44916 844 719 -16510371.30635 845 719 -73680036.58444 846 719 -62622207.08884 847 719 8333242.6046 848 719 -93040173.76232 849 719 -7790968.444033 850 719 8177128.701754 851 719 382463.4398733 720 720 829135740.1102 721 720 1.847743988037e-06 722 720 -11111232.08774 723 720 86951912.01811 724 720 -3.8743019104e-07 725 720 -2777808.023304 735 720 -43106498.79594 736 720 -33333333.32786 737 720 -30069429.31642 738 720 -59718971.98211 739 720 -9.387731552124e-07 740 720 5555616.043855 741 720 -46856498.79532 742 720 33333333.32786 743 720 32430570.67332 813 720 -41696960.65915 814 720 8333333.336071 815 720 24110420.45533 816 720 -77407961.77148 817 720 -1.184642314911e-06 818 720 64983348.44575 819 720 -12048523.14942 820 720 -8333333.336071 821 720 8485420.4502 828 720 -94333949.07787 829 720 1.773238182068e-06 830 720 -694452.0061627 831 720 -27191273.16515 832 720 2.98023223877e-07 833 720 -2777808.023288 834 720 20509800.90325 835 720 -2.242624759674e-06 836 720 -694452.0061662 846 720 -38845377.32488 847 720 -8333333.33607 848 720 -23415968.44916 849 720 -69751628.43939 850 720 1.266598701477e-06 851 720 -62205540.42245 852 720 -11071939.81576 853 720 8333333.336071 854 720 -7790968.444033 721 721 749131772.0008 722 721 133331881.5422 723 721 -1.639127731323e-07 724 721 -39714585.27039 725 721 -66665940.77111 735 721 -33333333.32786 736 721 -33106002.77733 737 721 -15166485.20115 738 721 -8.344650268555e-07 739 721 86948517.3239 740 721 33332970.40197 741 721 33333333.32786 742 721 -36856002.77671 743 721 -18166485.20082 813 721 8333333.336071 814 721 -39196836.65327 815 721 -17343704.63996 816 721 -1.601874828339e-06 817 721 -40741089.4269 818 721 8333242.604601 819 721 -8333333.336071 820 721 -9548399.143536 821 721 9010462.03536 828 721 2.175569534302e-06 829 721 -126000573.4156 830 721 -67541485.19271 831 721 2.384185791016e-07 832 721 -47192265.20236 833 721 33332970.40198 834 721 -1.728534698486e-06 835 721 -11156823.43448 836 721 34208514.79074 846 721 -8333333.33607 847 721 -36345253.319 848 721 -16510371.30635 849 721 7.376074790955e-07 850 721 -33084756.09483 851 721 8333242.6046 852 721 8333333.336071 853 721 -8571815.80988 854 721 8177128.701754 722 722 1253984280.216 723 722 -2777808.023304 724 722 -66665940.77111 725 722 99276180.49554 735 722 -29652762.65002 736 722 -14833151.86804 737 722 4679881.612865 738 722 5555616.043855 739 722 33332970.40197 740 722 212606082.8355 741 722 32847237.33971 742 722 -18499818.53394 743 722 -5320118.38549 813 722 24110420.45533 814 722 -17343704.63996 815 722 -81284258.80916 816 722 65400015.11214 817 722 8333242.604601 818 722 -113457062.6479 819 722 8485420.4502 820 722 9010462.03536 821 722 -2221758.783205 828 722 -694452.0061623 829 722 -67874818.52582 830 722 -284706093.7789 831 722 -2777808.023289 832 722 33332970.40198 833 722 -311771151.9111 834 722 -694452.006166 835 722 34541848.12385 836 722 21543906.17081 846 722 -23415968.44916 847 722 -16510371.30635 848 722 -73680036.58444 849 722 -62622207.08884 850 722 8333242.6046 851 722 -93040173.76232 852 722 -7790968.444033 853 722 8177128.701754 854 722 382463.4398733 723 723 847901916.7151 724 723 33380770.36212 725 723 -37498286.23383 726 723 39751697.94156 727 723 -33352308.14156 728 723 -32448557.35788 738 723 -43106498.79594 739 723 -33333333.32786 740 723 -30069429.31642 741 723 -59718971.98211 742 723 -9.387731552124e-07 743 723 5555616.043855 744 723 -46856498.79532 745 723 33333333.32786 746 723 32430570.67332 816 723 -41696960.65915 817 723 8333333.336071 818 723 24110420.45533 819 723 -99681629.70551 820 723 -8340448.891213 821 723 71607514.53236 831 723 -94333949.07787 832 723 1.773238182068e-06 833 723 -694452.0061627 834 723 -8298175.66356 835 723 8345192.594641 836 723 -9379478.645899 837 723 2423001.606932 838 723 -8338077.0395 839 723 7795396.873343 849 723 -38845377.32488 850 723 -8333333.33607 851 723 -23415968.44916 852 723 -69751628.43939 853 723 1.266598701477e-06 854 723 -62205540.42245 855 723 -11071939.81576 856 723 8333333.336071 857 723 -7790968.444033 724 724 757876104.862 725 724 103333663.8687 726 724 -33361795.54842 727 724 -76952252.54226 728 724 -55347988.6005 738 724 -33333333.32786 739 724 -33106002.77733 740 724 -15166485.20115 741 724 -8.344650268555e-07 742 724 86948517.3239 743 724 33332970.40197 744 724 33333333.32786 745 724 -36856002.77671 746 724 -18166485.20082 816 724 8333333.336071 817 724 -39196836.65327 818 724 -17343704.63996 819 724 -8338077.039499 820 724 -60499809.12032 821 724 22021029.70742 831 724 2.175569534302e-06 832 724 -126000573.4156 833 724 -67541485.19271 834 724 8345192.594641 835 724 -30804628.63791 836 724 25829490.35962 837 724 -8340448.891214 838 724 -26752986.0284 839 724 37056208.64825 849 724 -8333333.33607 850 724 -36345253.319 851 724 -16510371.30635 852 724 7.376074790955e-07 853 724 -33084756.09483 854 724 8333242.6046 855 724 8333333.336071 856 724 -8571815.80988 857 724 8177128.701754 725 725 1184141501.437 726 725 -32874217.36655 727 725 -64688121.35194 728 725 93077437.24068 738 725 -29652762.65002 739 725 -14833151.86804 740 725 4679881.612865 741 725 5555616.043855 742 725 33332970.40197 743 725 212606082.8355 744 725 32847237.33971 745 725 -18499818.53394 746 725 -5320118.38549 816 725 24110420.45533 817 725 -17343704.63996 818 725 -81284258.80916 819 725 72026355.46494 820 725 24359692.24116 821 725 -142891518.6627 831 725 -694452.0061623 832 725 -67874818.52582 833 725 -284706093.7789 834 725 -9370405.180087 835 725 25836749.05321 836 725 -291361037.6863 837 725 7797611.087997 838 725 35054390.19536 839 725 3229564.966024 849 725 -23415968.44916 850 725 -16510371.30635 851 725 -73680036.58444 852 725 -62622207.08884 853 725 8333242.6046 854 725 -93040173.76232 855 725 -7790968.444033 856 725 8177128.701754 857 725 382463.4398733 726 726 464940542.775 727 726 12851905.75803 728 726 20656400.75291 741 726 -43106498.79594 742 726 -33333333.32786 743 726 -30069429.31642 744 726 -91182430.47 745 726 -12906779.84809 746 726 1000330.122879 747 726 5007090.268645 748 726 26721540.75234 749 726 5008750.65625 819 726 -50448491.13742 820 726 10007115.55843 821 726 28536410.43085 834 726 -85645347.16108 835 726 -8340448.891212 836 726 -24130997.54348 837 726 -17836755.62729 838 726 3212976.44109 839 726 14418636.61301 852 726 -38845377.32488 853 726 -8333333.33607 854 726 -23415968.44916 855 726 -63830259.57109 856 726 -3226694.96361 857 726 -53519044.21609 858 726 -9616209.125473 859 726 6680385.191377 860 726 -8036218.454271 727 727 447751333.0549 728 727 87198301.12591 741 727 -33333333.32786 742 727 -33106002.77733 743 727 -15166485.20115 744 727 -12934216.89311 745 727 56438186.02174 746 727 21414546.77539 747 727 40082311.12852 748 727 -18720862.03784 749 727 -7408308.537561 819 727 6671410.372285 820 727 -50448491.13742 821 727 -15218991.7376 834 727 -8338077.039498 835 727 -114821334.7964 836 727 -67065236.07198 837 727 3212976.44109 838 727 -22134058.05942 839 727 29194228.99637 852 727 -8333333.33607 853 727 -36345253.319 854 727 -16510371.30635 855 727 -3233554.224871 856 727 -26925105.42998 857 727 514296.7345483 858 727 10020577.78707 859 727 -15548197.20502 860 727 16207412.72304 728 728 727562919.3276 741 728 -29652762.65002 742 728 -14833151.86804 743 728 4679881.612865 744 728 11828695.56078 745 728 21078811.80228 746 728 138693973.3806 747 728 7513125.984376 748 728 -6071073.243682 749 728 37080193.02289 819 728 19024273.62057 820 728 -22828487.60639 821 728 -134529309.6998 834 728 -24124138.5141 835 728 -65063417.79147 836 728 -231619365.082 837 728 -7213954.829688 838 728 11901763.34317 839 728 -175634313.754 852 728 -23415968.44916 853 728 -16510371.30635 854 728 -73680036.58444 855 728 -51436656.57492 856 728 190595.229853 857 728 -74752245.15073 858 728 -12054327.68141 859 728 12991927.13824 860 728 -19711236.25505 729 729 829135740.1102 730 729 1.847743988037e-06 731 729 -11111232.08774 732 729 86951912.01811 733 729 -3.8743019104e-07 734 729 -2777808.023304 750 729 -59718971.98211 751 729 -9.387731552124e-07 752 729 5555616.043855 753 729 -46856498.79532 754 729 33333333.32786 755 729 32430570.67332 822 729 -77407961.77148 823 729 -1.184642314911e-06 824 729 64983348.44575 825 729 -12048523.14942 826 729 -8333333.336071 827 729 8485420.4502 840 729 -27191273.16515 841 729 2.98023223877e-07 842 729 -2777808.023288 843 729 20509800.90325 844 729 -2.242624759674e-06 845 729 -694452.0061662 861 729 -69751628.43939 862 729 1.266598701477e-06 863 729 -62205540.42245 864 729 -11071939.81576 865 729 8333333.336071 866 729 -7790968.444033 730 730 749131772.0008 731 730 133331881.5422 732 730 -1.639127731323e-07 733 730 -39714585.27039 734 730 -66665940.77111 750 730 -8.344650268555e-07 751 730 86948517.3239 752 730 33332970.40197 753 730 33333333.32786 754 730 -36856002.77671 755 730 -18166485.20082 822 730 -1.601874828339e-06 823 730 -40741089.4269 824 730 8333242.604601 825 730 -8333333.336071 826 730 -9548399.143536 827 730 9010462.03536 840 730 2.384185791016e-07 841 730 -47192265.20236 842 730 33332970.40198 843 730 -1.728534698486e-06 844 730 -11156823.43448 845 730 34208514.79074 861 730 7.376074790955e-07 862 730 -33084756.09483 863 730 8333242.6046 864 730 8333333.336071 865 730 -8571815.80988 866 730 8177128.701754 731 731 1253984280.216 732 731 -2777808.023304 733 731 -66665940.77111 734 731 99276180.49554 750 731 5555616.043855 751 731 33332970.40197 752 731 212606082.8355 753 731 32847237.33971 754 731 -18499818.53394 755 731 -5320118.38549 822 731 65400015.11214 823 731 8333242.604601 824 731 -113457062.6479 825 731 8485420.4502 826 731 9010462.03536 827 731 -2221758.783205 840 731 -2777808.023289 841 731 33332970.40198 842 731 -311771151.9111 843 731 -694452.006166 844 731 34541848.12385 845 731 21543906.17081 861 731 -62622207.08884 862 731 8333242.6046 863 731 -93040173.76232 864 731 -7790968.444033 865 731 8177128.701754 866 731 382463.4398733 732 732 829135740.1102 733 732 1.847743988037e-06 734 732 -11111232.08774 735 732 86951912.01811 736 732 -3.8743019104e-07 737 732 -2777808.023304 750 732 -43106498.79594 751 732 -33333333.32786 752 732 -30069429.31642 753 732 -59718971.98211 754 732 -9.387731552124e-07 755 732 5555616.043855 756 732 -46856498.79532 757 732 33333333.32786 758 732 32430570.67332 822 732 -41696960.65915 823 732 8333333.336071 824 732 24110420.45533 825 732 -77407961.77148 826 732 -1.184642314911e-06 827 732 64983348.44575 828 732 -12048523.14942 829 732 -8333333.336071 830 732 8485420.4502 840 732 -94333949.07787 841 732 1.773238182068e-06 842 732 -694452.0061627 843 732 -27191273.16515 844 732 2.98023223877e-07 845 732 -2777808.023288 846 732 20509800.90325 847 732 -2.242624759674e-06 848 732 -694452.0061662 861 732 -38845377.32488 862 732 -8333333.33607 863 732 -23415968.44916 864 732 -69751628.43939 865 732 1.266598701477e-06 866 732 -62205540.42245 867 732 -11071939.81576 868 732 8333333.336071 869 732 -7790968.444033 733 733 749131772.0008 734 733 133331881.5422 735 733 -1.639127731323e-07 736 733 -39714585.27039 737 733 -66665940.77111 750 733 -33333333.32786 751 733 -33106002.77733 752 733 -15166485.20115 753 733 -8.344650268555e-07 754 733 86948517.3239 755 733 33332970.40197 756 733 33333333.32786 757 733 -36856002.77671 758 733 -18166485.20082 822 733 8333333.336071 823 733 -39196836.65327 824 733 -17343704.63996 825 733 -1.601874828339e-06 826 733 -40741089.4269 827 733 8333242.604601 828 733 -8333333.336071 829 733 -9548399.143536 830 733 9010462.03536 840 733 2.175569534302e-06 841 733 -126000573.4156 842 733 -67541485.19271 843 733 2.384185791016e-07 844 733 -47192265.20236 845 733 33332970.40198 846 733 -1.728534698486e-06 847 733 -11156823.43448 848 733 34208514.79074 861 733 -8333333.33607 862 733 -36345253.319 863 733 -16510371.30635 864 733 7.376074790955e-07 865 733 -33084756.09483 866 733 8333242.6046 867 733 8333333.336071 868 733 -8571815.80988 869 733 8177128.701754 734 734 1253984280.216 735 734 -2777808.023304 736 734 -66665940.77111 737 734 99276180.49554 750 734 -29652762.65002 751 734 -14833151.86804 752 734 4679881.612865 753 734 5555616.043855 754 734 33332970.40197 755 734 212606082.8355 756 734 32847237.33971 757 734 -18499818.53394 758 734 -5320118.38549 822 734 24110420.45533 823 734 -17343704.63996 824 734 -81284258.80916 825 734 65400015.11214 826 734 8333242.604601 827 734 -113457062.6479 828 734 8485420.4502 829 734 9010462.03536 830 734 -2221758.783205 840 734 -694452.0061623 841 734 -67874818.52582 842 734 -284706093.7789 843 734 -2777808.023289 844 734 33332970.40198 845 734 -311771151.9111 846 734 -694452.006166 847 734 34541848.12385 848 734 21543906.17081 861 734 -23415968.44916 862 734 -16510371.30635 863 734 -73680036.58444 864 734 -62622207.08884 865 734 8333242.6046 866 734 -93040173.76232 867 734 -7790968.444033 868 734 8177128.701754 869 734 382463.4398733 735 735 829135740.1102 736 735 1.847743988037e-06 737 735 -11111232.08774 738 735 86951912.01811 739 735 -3.8743019104e-07 740 735 -2777808.023304 753 735 -43106498.79594 754 735 -33333333.32786 755 735 -30069429.31642 756 735 -59718971.98211 757 735 -9.387731552124e-07 758 735 5555616.043855 759 735 -46856498.79532 760 735 33333333.32786 761 735 32430570.67332 825 735 -41696960.65915 826 735 8333333.336071 827 735 24110420.45533 828 735 -77407961.77148 829 735 -1.184642314911e-06 830 735 64983348.44575 831 735 -12048523.14942 832 735 -8333333.336071 833 735 8485420.4502 843 735 -94333949.07787 844 735 1.773238182068e-06 845 735 -694452.0061627 846 735 -27191273.16515 847 735 2.98023223877e-07 848 735 -2777808.023288 849 735 20509800.90325 850 735 -2.242624759674e-06 851 735 -694452.0061662 864 735 -38845377.32488 865 735 -8333333.33607 866 735 -23415968.44916 867 735 -69751628.43939 868 735 1.266598701477e-06 869 735 -62205540.42245 870 735 -11071939.81576 871 735 8333333.336071 872 735 -7790968.444033 736 736 749131772.0008 737 736 133331881.5422 738 736 -1.639127731323e-07 739 736 -39714585.27039 740 736 -66665940.77111 753 736 -33333333.32786 754 736 -33106002.77733 755 736 -15166485.20115 756 736 -8.344650268555e-07 757 736 86948517.3239 758 736 33332970.40197 759 736 33333333.32786 760 736 -36856002.77671 761 736 -18166485.20082 825 736 8333333.336071 826 736 -39196836.65327 827 736 -17343704.63996 828 736 -1.601874828339e-06 829 736 -40741089.4269 830 736 8333242.604601 831 736 -8333333.336071 832 736 -9548399.143536 833 736 9010462.03536 843 736 2.175569534302e-06 844 736 -126000573.4156 845 736 -67541485.19271 846 736 2.384185791016e-07 847 736 -47192265.20236 848 736 33332970.40198 849 736 -1.728534698486e-06 850 736 -11156823.43448 851 736 34208514.79074 864 736 -8333333.33607 865 736 -36345253.319 866 736 -16510371.30635 867 736 7.376074790955e-07 868 736 -33084756.09483 869 736 8333242.6046 870 736 8333333.336071 871 736 -8571815.80988 872 736 8177128.701754 737 737 1253984280.216 738 737 -2777808.023304 739 737 -66665940.77111 740 737 99276180.49554 753 737 -29652762.65002 754 737 -14833151.86804 755 737 4679881.612865 756 737 5555616.043855 757 737 33332970.40197 758 737 212606082.8355 759 737 32847237.33971 760 737 -18499818.53394 761 737 -5320118.38549 825 737 24110420.45533 826 737 -17343704.63996 827 737 -81284258.80916 828 737 65400015.11214 829 737 8333242.604601 830 737 -113457062.6479 831 737 8485420.4502 832 737 9010462.03536 833 737 -2221758.783205 843 737 -694452.0061623 844 737 -67874818.52582 845 737 -284706093.7789 846 737 -2777808.023289 847 737 33332970.40198 848 737 -311771151.9111 849 737 -694452.006166 850 737 34541848.12385 851 737 21543906.17081 864 737 -23415968.44916 865 737 -16510371.30635 866 737 -73680036.58444 867 737 -62622207.08884 868 737 8333242.6046 869 737 -93040173.76232 870 737 -7790968.444033 871 737 8177128.701754 872 737 382463.4398733 738 738 829135740.1102 739 738 1.847743988037e-06 740 738 -11111232.08774 741 738 86951912.01811 742 738 -3.8743019104e-07 743 738 -2777808.023304 756 738 -43106498.79594 757 738 -33333333.32786 758 738 -30069429.31642 759 738 -59718971.98211 760 738 -9.387731552124e-07 761 738 5555616.043855 762 738 -46856498.79532 763 738 33333333.32786 764 738 32430570.67332 828 738 -41696960.65915 829 738 8333333.336071 830 738 24110420.45533 831 738 -77407961.77148 832 738 -1.184642314911e-06 833 738 64983348.44575 834 738 -12048523.14942 835 738 -8333333.336071 836 738 8485420.4502 846 738 -94333949.07787 847 738 1.773238182068e-06 848 738 -694452.0061627 849 738 -27191273.16515 850 738 2.98023223877e-07 851 738 -2777808.023288 852 738 20509800.90325 853 738 -2.242624759674e-06 854 738 -694452.0061662 867 738 -38845377.32488 868 738 -8333333.33607 869 738 -23415968.44916 870 738 -69751628.43939 871 738 1.266598701477e-06 872 738 -62205540.42245 873 738 -11071939.81576 874 738 8333333.336071 875 738 -7790968.444033 739 739 749131772.0008 740 739 133331881.5422 741 739 -1.639127731323e-07 742 739 -39714585.27039 743 739 -66665940.77111 756 739 -33333333.32786 757 739 -33106002.77733 758 739 -15166485.20115 759 739 -8.344650268555e-07 760 739 86948517.3239 761 739 33332970.40197 762 739 33333333.32786 763 739 -36856002.77671 764 739 -18166485.20082 828 739 8333333.336071 829 739 -39196836.65327 830 739 -17343704.63996 831 739 -1.601874828339e-06 832 739 -40741089.4269 833 739 8333242.604601 834 739 -8333333.336071 835 739 -9548399.143536 836 739 9010462.03536 846 739 2.175569534302e-06 847 739 -126000573.4156 848 739 -67541485.19271 849 739 2.384185791016e-07 850 739 -47192265.20236 851 739 33332970.40198 852 739 -1.728534698486e-06 853 739 -11156823.43448 854 739 34208514.79074 867 739 -8333333.33607 868 739 -36345253.319 869 739 -16510371.30635 870 739 7.376074790955e-07 871 739 -33084756.09483 872 739 8333242.6046 873 739 8333333.336071 874 739 -8571815.80988 875 739 8177128.701754 740 740 1253984280.216 741 740 -2777808.023304 742 740 -66665940.77111 743 740 99276180.49554 756 740 -29652762.65002 757 740 -14833151.86804 758 740 4679881.612865 759 740 5555616.043855 760 740 33332970.40197 761 740 212606082.8355 762 740 32847237.33971 763 740 -18499818.53394 764 740 -5320118.38549 828 740 24110420.45533 829 740 -17343704.63996 830 740 -81284258.80916 831 740 65400015.11214 832 740 8333242.604601 833 740 -113457062.6479 834 740 8485420.4502 835 740 9010462.03536 836 740 -2221758.783205 846 740 -694452.0061623 847 740 -67874818.52582 848 740 -284706093.7789 849 740 -2777808.023289 850 740 33332970.40198 851 740 -311771151.9111 852 740 -694452.006166 853 740 34541848.12385 854 740 21543906.17081 867 740 -23415968.44916 868 740 -16510371.30635 869 740 -73680036.58444 870 740 -62622207.08884 871 740 8333242.6046 872 740 -93040173.76232 873 740 -7790968.444033 874 740 8177128.701754 875 740 382463.4398733 741 741 829135740.1102 742 741 1.847743988037e-06 743 741 -11111232.08774 744 741 86951912.01811 745 741 -3.8743019104e-07 746 741 -2777808.023304 759 741 -43106498.79594 760 741 -33333333.32786 761 741 -30069429.31642 762 741 -59718971.98211 763 741 -9.387731552124e-07 764 741 5555616.043855 765 741 -46856498.79532 766 741 33333333.32786 767 741 32430570.67332 831 741 -41696960.65915 832 741 8333333.336071 833 741 24110420.45533 834 741 -77407961.77148 835 741 -1.184642314911e-06 836 741 64983348.44575 837 741 -12048523.14942 838 741 -8333333.336071 839 741 8485420.4502 849 741 -94333949.07787 850 741 1.773238182068e-06 851 741 -694452.0061627 852 741 -27191273.16515 853 741 2.98023223877e-07 854 741 -2777808.023288 855 741 20509800.90325 856 741 -2.242624759674e-06 857 741 -694452.0061662 870 741 -38845377.32488 871 741 -8333333.33607 872 741 -23415968.44916 873 741 -69751628.43939 874 741 1.266598701477e-06 875 741 -62205540.42245 876 741 -11071939.81576 877 741 8333333.336071 878 741 -7790968.444033 742 742 749131772.0008 743 742 133331881.5422 744 742 -1.639127731323e-07 745 742 -39714585.27039 746 742 -66665940.77111 759 742 -33333333.32786 760 742 -33106002.77733 761 742 -15166485.20115 762 742 -8.344650268555e-07 763 742 86948517.3239 764 742 33332970.40197 765 742 33333333.32786 766 742 -36856002.77671 767 742 -18166485.20082 831 742 8333333.336071 832 742 -39196836.65327 833 742 -17343704.63996 834 742 -1.601874828339e-06 835 742 -40741089.4269 836 742 8333242.604601 837 742 -8333333.336071 838 742 -9548399.143536 839 742 9010462.03536 849 742 2.175569534302e-06 850 742 -126000573.4156 851 742 -67541485.19271 852 742 2.384185791016e-07 853 742 -47192265.20236 854 742 33332970.40198 855 742 -1.728534698486e-06 856 742 -11156823.43448 857 742 34208514.79074 870 742 -8333333.33607 871 742 -36345253.319 872 742 -16510371.30635 873 742 7.376074790955e-07 874 742 -33084756.09483 875 742 8333242.6046 876 742 8333333.336071 877 742 -8571815.80988 878 742 8177128.701754 743 743 1253984280.216 744 743 -2777808.023304 745 743 -66665940.77111 746 743 99276180.49554 759 743 -29652762.65002 760 743 -14833151.86804 761 743 4679881.612865 762 743 5555616.043855 763 743 33332970.40197 764 743 212606082.8355 765 743 32847237.33971 766 743 -18499818.53394 767 743 -5320118.38549 831 743 24110420.45533 832 743 -17343704.63996 833 743 -81284258.80916 834 743 65400015.11214 835 743 8333242.604601 836 743 -113457062.6479 837 743 8485420.4502 838 743 9010462.03536 839 743 -2221758.783205 849 743 -694452.0061623 850 743 -67874818.52582 851 743 -284706093.7789 852 743 -2777808.023289 853 743 33332970.40198 854 743 -311771151.9111 855 743 -694452.006166 856 743 34541848.12385 857 743 21543906.17081 870 743 -23415968.44916 871 743 -16510371.30635 872 743 -73680036.58444 873 743 -62622207.08884 874 743 8333242.6046 875 743 -93040173.76232 876 743 -7790968.444033 877 743 8177128.701754 878 743 382463.4398733 744 744 738198115.7453 745 744 16764684.69662 746 744 -11083193.77549 747 744 17410783.23705 748 744 -44082322.50369 749 744 -5980744.701169 762 744 -43106498.79594 763 744 -33333333.32786 764 744 -30069429.31642 765 744 -49479493.54265 766 744 9744969.140738 767 744 462601.7693525 768 744 -18806142.95809 769 744 30506885.55944 770 744 4773826.27592 834 744 -41696960.65915 835 744 8333333.336071 836 744 24110420.45533 837 744 -71415955.0593 838 744 -3233554.224872 839 744 56726300.63859 852 744 -94333949.07787 853 744 1.773238182068e-06 854 744 -694452.0061627 855 744 -13774447.66423 856 744 4191171.176221 857 744 -2780612.645988 858 744 -30223428.17772 859 744 -11020580.63135 860 744 14420581.05462 873 744 -38845377.32488 874 744 -8333333.33607 875 744 -23415968.44916 876 744 -64986646.84972 877 744 2436242.286385 878 744 -58542682.88204 879 744 -16011865.17978 880 744 7626721.393617 881 744 -9769737.878529 745 745 706099168.2163 746 745 78358244.93297 747 745 -44109759.54871 748 745 -102250467.9801 749 745 -12402588.68539 762 745 -33333333.32786 763 745 -33106002.77733 764 745 -15166485.20115 765 745 9744969.140738 766 745 85107231.01254 767 745 19035037.8372 768 745 30506885.55944 769 745 -42587780.00762 770 745 -5736313.161515 834 745 8333333.336071 835 745 -39196836.65327 836 745 -17343704.63996 837 745 -3226694.963612 838 745 -34510800.91818 839 745 10096086.08607 852 745 2.175569534302e-06 853 745 -126000573.4156 854 745 -67541485.19271 855 745 4191171.17622 856 745 -21799184.55042 857 745 19581709.58125 858 745 -11027439.89261 859 745 -60138740.99675 860 745 47821580.90675 873 745 -8333333.33607 874 745 -36345253.319 875 745 -16510371.30635 876 745 2436242.286385 877 745 -31339965.69435 878 745 8706676.127155 879 745 7626721.393617 880 745 -21957274.44509 881 745 15232588.38105 746 746 1035512900.925 747 746 -6401786.696301 748 746 -13737849.54833 749 746 94620592.77045 762 746 -29652762.65002 763 746 -14833151.86804 764 746 4679881.612865 765 746 10879268.43431 766 746 19368371.17048 767 746 190912775.2159 768 746 5607159.608706 769 746 -5736313.161515 770 746 23303137.82117 834 746 24110420.45533 835 746 -17343704.63996 836 746 -81284258.80916 837 746 54643912.99742 838 746 10440765.17629 839 746 -94980766.45259 852 746 -694452.0061623 853 746 -67874818.52582 854 746 -284706093.7789 855 746 -2762465.644181 856 746 19596227.63998 857 746 -269985712.4852 858 746 14428412.5018 859 746 47817257.06168 860 746 -68547849.10008 873 746 -23415968.44916 874 746 -16510371.30635 875 746 -73680036.58444 876 746 -56459349.54655 877 746 8706676.128006 878 746 -92583202.06042 879 746 -9769737.878529 880 746 15232588.38105 881 746 -24335094.043 747 747 476719092.606 748 747 6055794.275668 749 747 3719896.783943 765 747 -39139835.15421 766 747 -32971227.61138 767 747 -4711866.146783 768 747 -5046854.985 769 747 13026739.41472 770 747 829808.4249002 771 747 79313608.52165 772 747 -12360384.10609 773 747 -98386.911798 774 747 -7403415.117131 775 747 30276526.44728 776 747 815875.2272372 837 747 -18540701.9006 838 747 10020577.78707 839 747 14561779.53718 855 747 -45939787.20181 856 747 -11027439.89261 857 747 -17526028.04609 858 747 -61800142.29096 859 747 1513948.569663 860 747 12440251.97284 876 747 -26368729.20533 877 747 -8242806.906906 878 747 -17075883.20919 879 747 -74906791.02692 880 747 3256684.855284 881 747 -62343936.77239 882 747 -25367014.53987 883 747 -3090096.028045 884 747 8972625.494148 885 747 -22671270.46426 886 747 7569131.615548 887 747 -15173808.97594 748 748 543890761.6333 749 748 19481880.11059 765 748 -32971227.61138 766 748 -22253272.73831 767 748 -1388140.969734 768 748 13026739.41472 769 748 125305508.8346 770 748 4348106.303911 771 748 972949.2250522 772 748 14486248.89663 773 748 -622053.6789891 774 748 30276526.44728 775 748 -13597447.23127 776 748 -681484.5028543 837 748 6680385.191377 838 748 -24472689.98014 839 748 -16861073.14158 855 748 -11020580.63135 856 748 -75855100.02084 857 748 -54351585.25286 858 748 1513948.569662 859 748 -45007225.02585 860 748 7591760.11537 876 748 -8242806.906906 877 748 -22147088.59928 878 748 -13065785.2468 879 748 3256684.855284 880 748 -42318700.05597 881 748 5034943.242021 882 748 243237.3063829 883 748 -41573854.45411 884 748 33177819.90803 885 748 7569131.615548 886 748 -24219778.49355 887 748 16496295.54634 749 749 794285488.9012 765 749 -4295199.48039 766 749 -1054807.636619 767 749 24668357.59631 768 749 2496475.091293 769 749 4681439.637189 770 749 244277825.254 771 749 318279.7548032 772 749 -622053.6789894 773 749 155151834.6146 774 749 1232541.89363 775 749 -681484.5028543 776 749 54876959.51256 837 749 9707853.024785 838 749 -20743439.00053 839 749 -43509883.65538 855 749 -17515712.64747 856 749 -54353721.05939 857 749 -110458139.831 858 749 -12663636.91192 859 749 487449.3652666 860 749 -284041735.68 876 749 -17075883.20919 877 749 -13065785.2468 878 749 -38056298.36311 879 749 -62343936.77198 880 749 5034943.242873 881 749 -135317416.4032 882 749 847625.4925454 883 749 33177819.90803 884 749 -81733152.47406 885 749 -15173808.97594 886 749 16496295.54634 887 749 -41801871.2726 750 750 414567870.0551 751 750 7.152557373047e-07 752 750 -5555616.043871 753 750 43538456.00902 754 750 6666666.665572 755 750 3819429.321339 840 750 -77407961.77148 841 750 -1.184642314911e-06 842 750 64983348.44575 843 750 -12048523.14942 844 750 -8333333.336071 845 750 8485420.4502 861 750 -13658136.58254 862 750 5.662441253662e-07 863 750 -13107792.89912 864 750 10254900.45163 865 750 1666666.667213 866 750 -1974864.892506 751 751 374565886.0004 752 751 66665940.77111 753 751 -6666666.665572 754 751 -19794792.63523 755 751 -32999637.05228 840 751 -1.601874828339e-06 841 751 -40741089.4269 842 751 8333242.604601 843 751 -8333333.336071 844 751 -9548399.143536 845 751 9010462.03536 861 751 5.960464477539e-08 862 751 -23658632.60114 863 751 16666485.20099 864 751 -1666666.667215 865 751 -5578411.717238 866 751 17187590.72873 752 752 626992140.1079 753 752 -8680570.676608 754 752 -33666303.71883 755 752 49804756.91433 840 752 65400015.11214 841 752 8333242.604601 842 752 -113457062.6479 843 752 8485420.4502 844 752 9010462.03536 845 752 -2221758.783205 861 752 12413318.2078 862 752 16666485.20099 863 752 -156052242.6221 864 752 1280412.88634 865 752 17187590.72856 866 752 10771953.08541 753 753 414567870.0551 754 753 7.152557373047e-07 755 753 -5555616.043871 756 753 43538456.00902 757 753 6666666.665572 758 753 3819429.321339 840 753 -41696960.65915 841 753 8333333.336071 842 753 24110420.45533 843 753 -77407961.77148 844 753 -1.184642314911e-06 845 753 64983348.44575 846 753 -12048523.14942 847 753 -8333333.336071 848 753 8485420.4502 861 753 -47166974.53894 862 753 -1666666.667213 863 753 -5099864.893531 864 753 -13658136.58254 865 753 5.662441253662e-07 866 753 -13107792.89912 867 753 10254900.45163 868 753 1666666.667213 869 753 -1974864.892506 754 754 374565886.0004 755 754 66665940.77111 756 754 -6666666.665572 757 754 -19794792.63523 758 754 -32999637.05228 840 754 8333333.336071 841 754 -39196836.65327 842 754 -17343704.63996 843 754 -1.601874828339e-06 844 754 -40741089.4269 845 754 8333242.604601 846 754 -8333333.336071 847 754 -9548399.143536 848 754 9010462.03536 861 754 1666666.667215 862 754 -63000286.7078 863 754 -33854075.92972 864 754 5.960464477539e-08 865 754 -23658632.60114 866 754 16666485.20099 867 754 -1666666.667215 868 754 -5578411.717238 869 754 17187590.72873 755 755 626992140.1079 756 755 -8680570.676608 757 755 -33666303.71883 758 755 49804756.91433 840 755 24110420.45533 841 755 -17343704.63996 842 755 -81284258.80916 843 755 65400015.11214 844 755 8333242.604601 845 755 -113457062.6479 846 755 8485420.4502 847 755 9010462.03536 848 755 -2221758.783205 861 755 4405412.887368 862 755 -33854075.92955 863 755 -142353046.8894 864 755 12413318.2078 865 755 16666485.20099 866 755 -156052242.6221 867 755 1280412.88634 868 755 17187590.72856 869 755 10771953.08541 756 756 414567870.0551 757 756 7.152557373047e-07 758 756 -5555616.043871 759 756 43538456.00902 760 756 6666666.665572 761 756 3819429.321339 843 756 -41696960.65915 844 756 8333333.336071 845 756 24110420.45533 846 756 -77407961.77148 847 756 -1.184642314911e-06 848 756 64983348.44575 849 756 -12048523.14942 850 756 -8333333.336071 851 756 8485420.4502 864 756 -47166974.53894 865 756 -1666666.667213 866 756 -5099864.893531 867 756 -13658136.58254 868 756 5.662441253662e-07 869 756 -13107792.89912 870 756 10254900.45163 871 756 1666666.667213 872 756 -1974864.892506 757 757 374565886.0004 758 757 66665940.77111 759 757 -6666666.665572 760 757 -19794792.63523 761 757 -32999637.05228 843 757 8333333.336071 844 757 -39196836.65327 845 757 -17343704.63996 846 757 -1.601874828339e-06 847 757 -40741089.4269 848 757 8333242.604601 849 757 -8333333.336071 850 757 -9548399.143536 851 757 9010462.03536 864 757 1666666.667215 865 757 -63000286.7078 866 757 -33854075.92972 867 757 5.960464477539e-08 868 757 -23658632.60114 869 757 16666485.20099 870 757 -1666666.667215 871 757 -5578411.717238 872 757 17187590.72873 758 758 626992140.1079 759 758 -8680570.676608 760 758 -33666303.71883 761 758 49804756.91433 843 758 24110420.45533 844 758 -17343704.63996 845 758 -81284258.80916 846 758 65400015.11214 847 758 8333242.604601 848 758 -113457062.6479 849 758 8485420.4502 850 758 9010462.03536 851 758 -2221758.783205 864 758 4405412.887368 865 758 -33854075.92955 866 758 -142353046.8894 867 758 12413318.2078 868 758 16666485.20099 869 758 -156052242.6221 870 758 1280412.88634 871 758 17187590.72856 872 758 10771953.08541 759 759 414567870.0551 760 759 7.152557373047e-07 761 759 -5555616.043871 762 759 43538456.00902 763 759 6666666.665572 764 759 3819429.321339 846 759 -41696960.65915 847 759 8333333.336071 848 759 24110420.45533 849 759 -77407961.77148 850 759 -1.184642314911e-06 851 759 64983348.44575 852 759 -12048523.14942 853 759 -8333333.336071 854 759 8485420.4502 867 759 -47166974.53894 868 759 -1666666.667213 869 759 -5099864.893531 870 759 -13658136.58254 871 759 5.662441253662e-07 872 759 -13107792.89912 873 759 10254900.45163 874 759 1666666.667213 875 759 -1974864.892506 760 760 374565886.0004 761 760 66665940.77111 762 760 -6666666.665572 763 760 -19794792.63523 764 760 -32999637.05228 846 760 8333333.336071 847 760 -39196836.65327 848 760 -17343704.63996 849 760 -1.601874828339e-06 850 760 -40741089.4269 851 760 8333242.604601 852 760 -8333333.336071 853 760 -9548399.143536 854 760 9010462.03536 867 760 1666666.667215 868 760 -63000286.7078 869 760 -33854075.92972 870 760 5.960464477539e-08 871 760 -23658632.60114 872 760 16666485.20099 873 760 -1666666.667215 874 760 -5578411.717238 875 760 17187590.72873 761 761 626992140.1079 762 761 -8680570.676608 763 761 -33666303.71883 764 761 49804756.91433 846 761 24110420.45533 847 761 -17343704.63996 848 761 -81284258.80916 849 761 65400015.11214 850 761 8333242.604601 851 761 -113457062.6479 852 761 8485420.4502 853 761 9010462.03536 854 761 -2221758.783205 867 761 4405412.887368 868 761 -33854075.92955 869 761 -142353046.8894 870 761 12413318.2078 871 761 16666485.20099 872 761 -156052242.6221 873 761 1280412.88634 874 761 17187590.72856 875 761 10771953.08541 762 762 414567870.0551 763 762 7.152557373047e-07 764 762 -5555616.043871 765 762 43538456.00902 766 762 6666666.665572 767 762 3819429.321339 849 762 -41696960.65915 850 762 8333333.336071 851 762 24110420.45533 852 762 -77407961.77148 853 762 -1.184642314911e-06 854 762 64983348.44575 855 762 -12048523.14942 856 762 -8333333.336071 857 762 8485420.4502 870 762 -47166974.53894 871 762 -1666666.667213 872 762 -5099864.893531 873 762 -13658136.58254 874 762 5.662441253662e-07 875 762 -13107792.89912 876 762 10254900.45163 877 762 1666666.667213 878 762 -1974864.892506 763 763 374565886.0004 764 763 66665940.77111 765 763 -6666666.665572 766 763 -19794792.63523 767 763 -32999637.05228 849 763 8333333.336071 850 763 -39196836.65327 851 763 -17343704.63996 852 763 -1.601874828339e-06 853 763 -40741089.4269 854 763 8333242.604601 855 763 -8333333.336071 856 763 -9548399.143536 857 763 9010462.03536 870 763 1666666.667215 871 763 -63000286.7078 872 763 -33854075.92972 873 763 5.960464477539e-08 874 763 -23658632.60114 875 763 16666485.20099 876 763 -1666666.667215 877 763 -5578411.717238 878 763 17187590.72873 764 764 626992140.1079 765 764 -8680570.676608 766 764 -33666303.71883 767 764 49804756.91433 849 764 24110420.45533 850 764 -17343704.63996 851 764 -81284258.80916 852 764 65400015.11214 853 764 8333242.604601 854 764 -113457062.6479 855 764 8485420.4502 856 764 9010462.03536 857 764 -2221758.783205 870 764 4405412.887368 871 764 -33854075.92955 872 764 -142353046.8894 873 764 12413318.2078 874 764 16666485.20099 875 764 -156052242.6221 876 764 1280412.88634 877 764 17187590.72856 878 764 10771953.08541 765 765 394527858.8554 766 765 362077.3628545 767 765 -30197935.16775 768 765 50114720.96038 769 765 -3802485.554504 770 765 -2219467.11486 852 765 -41696960.65915 853 765 8333333.336071 854 765 24110420.45533 855 765 -72955365.59794 856 765 2436242.286385 857 765 61378150.43314 858 765 -22540576.42629 859 765 -8242806.906905 860 765 14824116.80129 873 765 -47166974.53894 874 765 -1666666.667213 875 765 -5099864.893531 876 765 -19040600.32219 877 765 90519.34075832 878 765 -19268094.90535 879 765 -13147418.28847 880 765 -950621.3890942 881 765 1450272.108583 766 766 361417907.5311 767 766 40445107.05745 768 766 -17135818.88565 769 766 -14915862.06077 770 766 -6592548.338528 852 766 8333333.336071 853 766 -39196836.65327 854 766 -17343704.63996 855 766 2436242.286384 856 766 -39308684.44256 857 766 894176.12852 858 766 -8242806.906905 859 766 -18318935.82024 860 766 12455048.09491 873 766 1666666.667215 874 766 -63000286.7078 875 766 -33854075.92972 876 766 90519.34075797 877 766 -27318088.15734 878 766 10111276.76934 879 766 -4283954.723522 880 766 -29405064.05177 881 766 27737279.5769 767 767 582973911.8654 768 767 -4302800.447853 769 767 -6925881.671807 770 767 97507539.01388 852 767 24110420.45533 853 767 -17343704.63996 854 767 -81284258.80916 855 767 59294817.09957 856 767 894176.1292076 857 767 -113833118.7223 858 767 14824116.80129 859 767 12455048.09491 860 767 -27847890.95234 873 767 4405412.887368 874 767 -33854075.92955 875 767 -142353046.8894 876 767 6252460.646014 877 767 10111276.76934 878 767 -168050028.8542 879 767 7205272.109613 880 767 27737279.57605 881 767 -44092711.32715 768 768 394608735.3681 769 768 9859177.530151 770 768 -3395263.967743 771 768 -38652304.00089 772 768 -36390140.20844 773 768 -1059124.772573 774 768 57326064.36126 775 768 133156.5897796 776 768 -1013112.177398 855 768 -22730594.34878 856 768 7626721.393617 857 768 12364984.35096 858 768 -76547391.72184 859 768 3256684.855286 860 768 63175507.65185 876 768 -24944296.75828 877 768 -4283954.723523 878 768 -8940005.667694 879 768 -48889704.10442 880 768 2464794.383752 881 768 -12359093.76876 882 768 -30483492.68905 883 768 -9097535.056593 884 768 20047718.8134 885 768 -23754733.9178 886 768 33289.14746143 887 768 1855888.619689 769 769 403589170.3359 770 769 10766124.03009 771 769 -36390140.20844 772 769 -25315780.56268 773 769 -681484.5028545 774 769 -13200176.74136 775 769 -6531037.793588 776 769 -2103884.331085 855 769 7626721.393617 856 769 -28676003.61409 857 769 -18100744.96323 858 769 3256684.855286 859 769 -43959300.75089 860 769 -2777556.756613 876 769 -950621.3890945 877 769 -41201942.52158 878 769 -31116887.08018 879 769 2464794.383752 880 769 -46644595.36138 881 769 2691531.008842 882 769 -9097535.056593 883 769 -27149361.82785 884 769 16496295.54634 885 769 -3300044.186967 886 769 -39719009.46437 887 769 32807362.24483 770 770 637169785.0564 771 770 -1059124.772573 772 770 -681484.5028545 773 770 43158626.18115 774 770 -1429778.844 775 770 -2103884.331085 776 770 126701003.3288 855 770 12364984.35096 856 770 -18100744.96323 857 770 -42251705.16035 858 770 63175507.65144 859 770 -2777556.755926 860 770 -139692351.5897 876 770 -1935005.666458 877 770 -31116887.08087 878 770 -75551053.91331 879 770 12744795.11601 880 770 2691531.008842 881 770 -234152588.3109 882 770 20047718.8134 883 770 16496295.54634 884 770 -44731454.6069 885 770 7819499.733824 886 770 32807362.24483 887 770 -69888082.52598 771 771 233968058.0878 772 771 39027050.76838 773 771 584498.0232363 774 771 -5566029.282941 775 771 -3609859.784988 776 771 156346.9945345 858 771 -26617014.5403 859 771 243237.3063828 860 771 -792652.2819211 879 771 -31733492.68947 880 771 -9097535.056593 881 771 -20577281.19994 882 771 -33148818.76463 883 771 9756762.696902 884 771 8271124.504546 885 771 -44282340.66884 886 771 -902464.9466921 887 771 -35651191.02268 772 772 217545417.7261 773 772 622053.6789918 774 772 9723473.546155 775 772 62347447.26551 776 772 681484.5028564 858 772 -3090096.028045 859 772 -42823854.45454 860 772 -33488846.74768 879 772 -9097535.056593 880 772 -28399361.82827 881 772 -16837037.79794 882 772 9756762.696902 883 772 -37254478.85706 884 772 6822180.085395 885 772 2430868.387736 886 772 -27303971.52336 887 772 3503704.460225 773 773 382349276.3928 774 773 573013.6611362 775 773 681484.5028564 776 773 136842485.0131 858 773 -8917652.283731 859 773 -33488846.74768 860 773 -85066485.80853 879 773 -20577281.19995 880 773 -16837037.79794 881 773 -48064787.94135 882 773 -7978875.492785 883 773 -6511153.245748 884 773 -148788236.3624 885 773 -35651191.02354 886 773 -3162962.208631 887 773 -80164934.32299 774 774 201270046.7132 775 774 -26799823.25207 776 774 -1209110.043552 858 774 -23921270.46468 859 774 7569131.615548 860 774 15685913.25641 879 774 -27504733.91658 880 774 -3300044.186967 881 774 -8117722.489783 882 774 -44282340.66884 883 774 2430868.387737 884 774 35833531.18791 885 774 -29604988.28668 886 774 -6699955.816318 887 774 -5953388.621477 775 775 203407704.4337 776 775 2103884.331091 858 775 7569131.615548 859 775 -25469778.49398 860 775 -16837037.79794 879 775 33289.14746112 880 775 -43469009.46316 881 775 -33859304.41089 882 775 -902464.9466912 883 775 -27303971.52336 884 775 3503704.460225 885 775 -6699955.816318 886 775 -29070573.85628 887 775 7192637.7486 776 776 336583996.6104 858 776 15685913.25641 859 776 -16837037.79794 860 776 -45135204.60706 879 776 -1737444.709049 880 776 -33859304.41089 881 776 -79888082.52274 882 776 35833531.18684 883 776 -3162962.208631 884 776 -80164934.32299 885 776 6390500.265385 886 776 -6140695.582542 887 776 -128980667.4453 777 777 511307203.7006 778 777 31944444.4392 779 777 -38471552.3926 780 777 -129270221.6954 781 777 -31963408.23791 782 777 32202213.44983 783 777 -74245.33507569 784 777 25574519.35007 785 777 23212035.46926 888 777 -2535056.171221 889 777 7638888.891397 890 777 2916127.642058 891 777 -61266506.56961 892 777 -7643634.032713 893 777 -48493965.33591 894 777 6429332.410642 895 777 6115856.254433 896 777 -5472930.844082 778 778 463366668.0891 779 778 73645353.45811 780 778 -31972890.13727 781 778 20929276.84229 782 778 44576929.53758 783 778 38361779.02511 784 778 -74245.33508131 785 778 -29688226.0277 888 778 7638888.891396 889 778 -13999375.77193 890 778 27304194.09764 891 778 -7646006.603371 892 778 -25348555.65241 893 778 -585233.2815705 894 778 9173784.381649 895 778 6429332.410642 896 778 6567824.782935 779 779 790000669.0394 780 779 29067543.97844 781 779 35319743.0838 782 779 126505653.3816 783 779 34818053.20388 784 779 -19792150.68513 785 779 -197987.5602046 888 779 -19488671.82916 889 779 9380576.980452 890 779 -143900824.6786 891 779 -48878084.71163 892 779 -2722347.244235 893 779 -50690307.28013 894 779 -8209396.266123 895 779 4378549.855291 896 779 17144886.42838 780 780 798779840.2986 781 780 31991853.93598 782 780 -35934840.90099 783 780 33796428.38625 784 780 -31963408.23791 785 780 -31487513.88132 786 780 -60300895.02916 787 780 -1.370906829834e-06 788 780 6886635.866331 789 780 -45730271.10628 790 780 31944444.4392 791 780 31469922.85153 888 780 -88160408.62987 889 780 -7646006.603366 890 780 63145912.64445 891 780 3615653.321898 892 780 7650751.744684 893 780 -8598044.452827 894 780 3117023.124192 895 780 -7643634.032712 896 780 6521862.080229 897 780 -61096866.41184 898 780 -1.631677150726e-06 899 780 -54526141.60101 900 780 -10000259.54407 901 780 7638888.891397 902 780 -6517820.126831 781 781 712503944.5236 782 781 99028842.16786 783 781 -31972890.13727 784 781 -78046374.58557 785 781 -54292558.27614 787 781 80255500.90366 788 781 31944073.6884 789 781 31944444.4392 790 781 -36146431.06068 791 781 -17722036.84414 888 781 -7643634.032709 889 781 -52242457.71267 890 781 19687387.29713 891 781 7650751.744683 892 781 -17015851.08971 893 781 23676848.33746 894 781 -7646006.603369 895 781 -23628404.39615 896 781 31972114.21773 897 781 -1.691281795502e-06 898 781 -27485540.44924 899 781 7638794.112417 900 781 7638888.891397 901 781 -7708463.340222 902 781 6996575.169565 782 782 1098010379.249 783 782 -31114364.95125 784 782 -60743490.00346 785 782 77736775.05345 786 782 3761635.866845 787 782 31944073.6884 788 782 195560564.8714 789 782 31087978.40657 790 782 -17416481.28817 791 782 -7301392.713971 888 782 63530032.02016 889 782 21831451.86013 890 782 -122407379.4408 891 782 -8589356.089042 892 782 23683798.94222 893 782 -237160382.7964 894 782 6523883.056929 895 782 30136961.89646 896 782 5350330.44263 897 782 -54908086.04521 898 782 7638794.112417 899 782 -77707668.15051 900 782 -6517820.126831 901 782 6996575.169565 902 782 748003.7541653 783 783 511307203.7006 784 783 31944444.4392 785 783 -38471552.3926 786 783 -42136521.10687 787 783 -31944444.4392 788 783 -28425910.47196 789 783 -129270221.6954 790 783 -31963408.23791 791 783 32202213.44983 792 783 -74245.33507569 793 783 25574519.35007 794 783 23212035.46926 888 783 -44000691.65356 889 783 9173784.381649 890 783 25410834.91903 891 783 -74169151.35949 892 783 -7646006.603371 893 783 -21497320.34861 894 783 -2535056.171221 895 783 7638888.891397 896 783 2916127.642058 897 783 -34336197.05207 898 783 -7638888.891398 899 783 -20840736.7982 900 783 -61266506.56961 901 783 -7643634.032713 902 783 -48493965.33591 903 783 6429332.410642 904 783 6115856.254433 905 783 -5472930.844082 784 784 463366668.0891 785 784 73645353.45811 786 784 -31944444.4392 787 784 -32552681.06127 788 784 -14222036.84425 789 784 -31972890.13727 790 784 20929276.84229 791 784 44576929.53758 792 784 38361779.02511 793 784 -74245.33508131 794 784 -29688226.0277 888 784 6115856.254433 889 784 -44000691.65356 890 784 -13552018.01794 891 784 -7643634.032713 892 784 -100914578.8798 893 784 -59481123.99205 894 784 7638888.891396 895 784 -13999375.77193 896 784 27304194.09764 897 784 -7638888.891398 898 784 -32044400.84822 899 784 -14635369.28198 900 784 -7646006.603371 901 784 -25348555.65241 902 784 -585233.2815705 903 784 9173784.381649 904 784 6429332.410642 905 784 6567824.782935 785 785 790000669.0394 786 785 -28807854.91693 787 785 -14527592.40022 788 785 2281940.617786 789 785 29067543.97844 790 785 35319743.0838 791 785 126505653.3816 792 785 34818053.20388 793 785 -19792150.68513 794 785 -197987.5602046 888 785 16940556.61269 889 785 -20328027.02691 890 785 -117335177.7428 891 785 -21490653.15616 892 785 -57645971.82207 893 785 -200746134.8472 894 785 -19488671.82916 895 785 9380576.980452 896 785 -143900824.6786 897 785 -20840736.7982 898 785 -14635369.28198 899 785 -64147829.60048 900 785 -48878084.71163 901 785 -2722347.244235 902 785 -50690307.28013 903 785 -8209396.266123 904 785 4378549.855291 905 785 17144886.42838 786 786 783245798.6586 787 786 2.861022949219e-06 788 786 -10648271.7332 789 786 80258968.78408 790 786 -4.023313522339e-07 791 786 -2662067.934612 795 786 -60300895.02916 796 786 -1.370906829834e-06 797 786 6886635.866331 798 786 -45730271.10628 799 786 31944444.4392 800 786 31469922.85153 891 786 -67815699.74408 892 786 2.041459083557e-06 893 786 57072469.49195 894 786 -10820592.87768 895 786 -7638888.891398 896 786 7154402.099879 897 786 -12957512.05534 898 786 5.960464477539e-08 899 786 -2546327.890928 900 786 19546554.40623 901 786 -1.84029340744e-06 902 786 -636581.9730468 906 786 -61096866.41184 907 786 -1.631677150726e-06 908 786 -54526141.60101 909 786 -10000259.54407 910 786 7638888.891397 911 786 -6517820.126831 787 787 706575078.3316 788 787 127776294.6906 789 787 -1.341104507446e-07 790 787 -41129747.07642 791 787 -65138147.34512 796 787 80255500.90366 797 787 31944073.6884 798 787 31944444.4392 799 787 -36146431.06068 800 787 -17722036.84414 891 787 2.004206180573e-06 892 787 -34204373.78147 893 787 7638794.112417 894 787 -7638888.891398 895 787 -8528796.673826 896 787 7760464.058704 897 787 2.98023223877e-08 898 787 -31291881.67713 899 787 30555176.43461 900 787 -1.668930053711e-06 901 787 -9481179.15318 902 787 29361300.66432 906 787 -1.691281795502e-06 907 787 -27485540.44924 908 787 7638794.112417 909 787 7638888.891397 910 787 -7708463.340222 911 787 6996575.169565 788 788 1171487488.319 789 788 -2662067.934612 790 788 -62638147.34553 791 788 86952958.72131 795 788 3761635.866845 796 788 31944073.6884 797 788 195560564.8714 798 788 31087978.40657 799 788 -17416481.28817 800 788 -7301392.713971 891 788 57454413.93615 892 788 7638794.112417 893 788 -95624557.03646 894 788 7154402.099879 895 788 7760464.058704 896 788 -1439551.802109 897 788 -2546327.890927 898 788 30555176.43461 899 788 -253876265.6798 900 788 -636581.9730468 901 788 29666856.21968 902 788 21737561.15826 906 788 -54908086.04521 907 788 7638794.112417 908 788 -77707668.15051 909 788 -6517820.126831 910 788 6996575.169565 911 788 748003.7541653 789 789 798779840.2986 790 789 31991853.93598 791 789 -35934840.90099 792 789 33796428.38625 793 789 -31963408.23791 794 789 -31487513.88132 795 789 -42136521.10687 796 789 -31944444.4392 797 789 -28425910.47196 798 789 -60300895.02916 799 789 -1.370906829834e-06 800 789 6886635.866331 801 789 -45730271.10628 802 789 31944444.4392 803 789 31469922.85153 891 789 -36875280.38624 892 789 7638888.891399 893 789 21477318.77125 894 789 -88160408.62987 895 789 -7646006.603366 896 789 63145912.64445 897 789 -81234695.57722 898 789 1.624226570129e-06 899 789 -636581.9730444 900 789 3615653.321898 901 789 7650751.744684 902 789 -8598044.452827 903 789 3117023.124192 904 789 -7643634.032712 905 789 6521862.080229 906 789 -34336197.05207 907 789 -7638888.891398 908 789 -20840736.7982 909 789 -61096866.41184 910 789 -1.631677150726e-06 911 789 -54526141.60101 912 789 -10000259.54407 913 789 7638888.891397 914 789 -6517820.126831 790 790 712503944.5236 791 790 99028842.16786 792 790 -31972890.13727 793 790 -78046374.58557 794 790 -54292558.27614 795 790 -31944444.4392 796 790 -32552681.06127 797 790 -14222036.84425 799 790 80255500.90366 800 790 31944073.6884 801 790 31944444.4392 802 790 -36146431.06068 803 790 -17722036.84414 891 790 7638888.891399 892 790 -34583484.18238 893 790 -15399258.17112 894 790 -7643634.032709 895 790 -52242457.71267 896 790 19687387.29713 897 790 1.564621925354e-06 898 790 -110262429.1366 899 790 -59916477.09895 900 790 7650751.744683 901 790 -17015851.08971 902 790 23676848.33746 903 790 -7646006.603369 904 790 -23628404.39615 905 790 31972114.21773 906 790 -7638888.891398 907 790 -32044400.84822 908 790 -14635369.28198 909 790 -1.691281795502e-06 910 790 -27485540.44924 911 790 7638794.112417 912 790 7638888.891397 913 790 -7708463.340222 914 790 6996575.169565 791 791 1098010379.249 792 791 -31114364.95125 793 791 -60743490.00346 794 791 77736775.05345 795 791 -28807854.91693 796 791 -14527592.40022 797 791 2281940.617786 798 791 3761635.866845 799 791 31944073.6884 800 791 195560564.8714 801 791 31087978.40657 802 791 -17416481.28817 803 791 -7301392.713971 891 791 21477318.77125 892 791 -15399258.17112 893 791 -70918718.4916 894 791 63530032.02016 895 791 21831451.86013 896 791 -122407379.4408 897 791 -636581.9730439 898 791 -60222032.6543 899 791 -247012438.7976 900 791 -8589356.089042 901 791 23683798.94222 902 791 -237160382.7964 903 791 6523883.056929 904 791 30136961.89646 905 791 5350330.44263 906 791 -20840736.7982 907 791 -14635369.28198 908 791 -64147829.60048 909 791 -54908086.04521 910 791 7638794.112417 911 791 -77707668.15051 912 791 -6517820.126831 913 791 6996575.169565 914 791 748003.7541653 792 792 511307203.7006 793 792 31944444.4392 794 792 -38471552.3926 798 792 -42136521.10687 799 792 -31944444.4392 800 792 -28425910.47196 801 792 -129270221.6954 802 792 -31963408.23791 803 792 32202213.44983 804 792 -74245.33507569 805 792 25574519.35007 806 792 23212035.46926 894 792 -44000691.65356 895 792 9173784.381649 896 792 25410834.91903 900 792 -74169151.35949 901 792 -7646006.603371 902 792 -21497320.34861 903 792 -2535056.171221 904 792 7638888.891397 905 792 2916127.642058 909 792 -34336197.05207 910 792 -7638888.891398 911 792 -20840736.7982 912 792 -61266506.56961 913 792 -7643634.032713 914 792 -48493965.33591 915 792 6429332.410642 916 792 6115856.254433 917 792 -5472930.844082 793 793 463366668.0891 794 793 73645353.45811 798 793 -31944444.4392 799 793 -32552681.06127 800 793 -14222036.84425 801 793 -31972890.13727 802 793 20929276.84229 803 793 44576929.53758 804 793 38361779.02511 805 793 -74245.33508131 806 793 -29688226.0277 894 793 6115856.254433 895 793 -44000691.65356 896 793 -13552018.01794 900 793 -7643634.032713 901 793 -100914578.8798 902 793 -59481123.99205 903 793 7638888.891396 904 793 -13999375.77193 905 793 27304194.09764 909 793 -7638888.891398 910 793 -32044400.84822 911 793 -14635369.28198 912 793 -7646006.603371 913 793 -25348555.65241 914 793 -585233.2815705 915 793 9173784.381649 916 793 6429332.410642 917 793 6567824.782935 794 794 790000669.0394 798 794 -28807854.91693 799 794 -14527592.40022 800 794 2281940.617786 801 794 29067543.97844 802 794 35319743.0838 803 794 126505653.3816 804 794 34818053.20388 805 794 -19792150.68513 806 794 -197987.5602046 894 794 16940556.61269 895 794 -20328027.02691 896 794 -117335177.7428 900 794 -21490653.15616 901 794 -57645971.82207 902 794 -200746134.8472 903 794 -19488671.82916 904 794 9380576.980452 905 794 -143900824.6786 909 794 -20840736.7982 910 794 -14635369.28198 911 794 -64147829.60048 912 794 -48878084.71163 913 794 -2722347.244235 914 794 -50690307.28013 915 794 -8209396.266123 916 794 4378549.855291 917 794 17144886.42838 795 795 783245798.6586 796 795 2.861022949219e-06 797 795 -10648271.7332 798 795 80258968.78408 799 795 -4.023313522339e-07 800 795 -2662067.934612 807 795 -60300895.02916 808 795 -1.370906829834e-06 809 795 6886635.866331 810 795 -45730271.10628 811 795 31944444.4392 812 795 31469922.85153 897 795 -67815699.74408 898 795 2.041459083557e-06 899 795 57072469.49195 900 795 -10820592.87768 901 795 -7638888.891398 902 795 7154402.099879 906 795 -12957512.05534 907 795 5.960464477539e-08 908 795 -2546327.890928 909 795 19546554.40623 910 795 -1.84029340744e-06 911 795 -636581.9730468 918 795 -61096866.41184 919 795 -1.631677150726e-06 920 795 -54526141.60101 921 795 -10000259.54407 922 795 7638888.891397 923 795 -6517820.126831 796 796 706575078.3316 797 796 127776294.6906 798 796 -1.341104507446e-07 799 796 -41129747.07642 800 796 -65138147.34512 808 796 80255500.90366 809 796 31944073.6884 810 796 31944444.4392 811 796 -36146431.06068 812 796 -17722036.84414 897 796 2.004206180573e-06 898 796 -34204373.78147 899 796 7638794.112417 900 796 -7638888.891398 901 796 -8528796.673826 902 796 7760464.058704 906 796 2.98023223877e-08 907 796 -31291881.67713 908 796 30555176.43461 909 796 -1.668930053711e-06 910 796 -9481179.15318 911 796 29361300.66432 918 796 -1.691281795502e-06 919 796 -27485540.44924 920 796 7638794.112417 921 796 7638888.891397 922 796 -7708463.340222 923 796 6996575.169565 797 797 1171487488.319 798 797 -2662067.934612 799 797 -62638147.34553 800 797 86952958.72131 807 797 3761635.866845 808 797 31944073.6884 809 797 195560564.8714 810 797 31087978.40657 811 797 -17416481.28817 812 797 -7301392.713971 897 797 57454413.93615 898 797 7638794.112417 899 797 -95624557.03646 900 797 7154402.099879 901 797 7760464.058704 902 797 -1439551.802109 906 797 -2546327.890927 907 797 30555176.43461 908 797 -253876265.6798 909 797 -636581.9730468 910 797 29666856.21968 911 797 21737561.15826 918 797 -54908086.04521 919 797 7638794.112417 920 797 -77707668.15051 921 797 -6517820.126831 922 797 6996575.169565 923 797 748003.7541653 798 798 783245798.6586 799 798 2.861022949219e-06 800 798 -10648271.7332 801 798 80258968.78408 802 798 -4.023313522339e-07 803 798 -2662067.934612 807 798 -42136521.10687 808 798 -31944444.4392 809 798 -28425910.47196 810 798 -60300895.02916 811 798 -1.370906829834e-06 812 798 6886635.866331 813 798 -45730271.10628 814 798 31944444.4392 815 798 31469922.85153 897 798 -36875280.38624 898 798 7638888.891399 899 798 21477318.77125 900 798 -67815699.74408 901 798 2.041459083557e-06 902 798 57072469.49195 903 798 -10820592.87768 904 798 -7638888.891398 905 798 7154402.099879 906 798 -81234695.57722 907 798 1.624226570129e-06 908 798 -636581.9730444 909 798 -12957512.05534 910 798 5.960464477539e-08 911 798 -2546327.890928 912 798 19546554.40623 913 798 -1.84029340744e-06 914 798 -636581.9730468 918 798 -34336197.05207 919 798 -7638888.891398 920 798 -20840736.7982 921 798 -61096866.41184 922 798 -1.631677150726e-06 923 798 -54526141.60101 924 798 -10000259.54407 925 798 7638888.891397 926 798 -6517820.126831 799 799 706575078.3316 800 799 127776294.6906 801 799 -1.341104507446e-07 802 799 -41129747.07642 803 799 -65138147.34512 807 799 -31944444.4392 808 799 -32552681.06127 809 799 -14222036.84425 811 799 80255500.90366 812 799 31944073.6884 813 799 31944444.4392 814 799 -36146431.06068 815 799 -17722036.84414 897 799 7638888.891399 898 799 -34583484.18238 899 799 -15399258.17112 900 799 2.004206180573e-06 901 799 -34204373.78147 902 799 7638794.112417 903 799 -7638888.891398 904 799 -8528796.673826 905 799 7760464.058704 906 799 1.564621925354e-06 907 799 -110262429.1366 908 799 -59916477.09895 909 799 2.98023223877e-08 910 799 -31291881.67713 911 799 30555176.43461 912 799 -1.668930053711e-06 913 799 -9481179.15318 914 799 29361300.66432 918 799 -7638888.891398 919 799 -32044400.84822 920 799 -14635369.28198 921 799 -1.691281795502e-06 922 799 -27485540.44924 923 799 7638794.112417 924 799 7638888.891397 925 799 -7708463.340222 926 799 6996575.169565 800 800 1171487488.319 801 800 -2662067.934612 802 800 -62638147.34553 803 800 86952958.72131 807 800 -28807854.91693 808 800 -14527592.40022 809 800 2281940.617786 810 800 3761635.866845 811 800 31944073.6884 812 800 195560564.8714 813 800 31087978.40657 814 800 -17416481.28817 815 800 -7301392.713971 897 800 21477318.77125 898 800 -15399258.17112 899 800 -70918718.4916 900 800 57454413.93615 901 800 7638794.112417 902 800 -95624557.03646 903 800 7154402.099879 904 800 7760464.058704 905 800 -1439551.802109 906 800 -636581.9730439 907 800 -60222032.6543 908 800 -247012438.7976 909 800 -2546327.890927 910 800 30555176.43461 911 800 -253876265.6798 912 800 -636581.9730468 913 800 29666856.21968 914 800 21737561.15826 918 800 -20840736.7982 919 800 -14635369.28198 920 800 -64147829.60048 921 800 -54908086.04521 922 800 7638794.112417 923 800 -77707668.15051 924 800 -6517820.126831 925 800 6996575.169565 926 800 748003.7541653 801 801 798779840.2986 802 801 31991853.93598 803 801 -35934840.90099 804 801 33796428.38625 805 801 -31963408.23791 806 801 -31487513.88132 810 801 -42136521.10687 811 801 -31944444.4392 812 801 -28425910.47196 813 801 -60300895.02916 814 801 -1.370906829834e-06 815 801 6886635.866331 816 801 -45730271.10628 817 801 31944444.4392 818 801 31469922.85153 900 801 -36875280.38624 901 801 7638888.891399 902 801 21477318.77125 903 801 -88160408.62987 904 801 -7646006.603366 905 801 63145912.64445 909 801 -81234695.57722 910 801 1.624226570129e-06 911 801 -636581.9730444 912 801 3615653.321898 913 801 7650751.744684 914 801 -8598044.452827 915 801 3117023.124192 916 801 -7643634.032712 917 801 6521862.080229 921 801 -34336197.05207 922 801 -7638888.891398 923 801 -20840736.7982 924 801 -61096866.41184 925 801 -1.631677150726e-06 926 801 -54526141.60101 927 801 -10000259.54407 928 801 7638888.891397 929 801 -6517820.126831 802 802 712503944.5236 803 802 99028842.16786 804 802 -31972890.13727 805 802 -78046374.58557 806 802 -54292558.27614 810 802 -31944444.4392 811 802 -32552681.06127 812 802 -14222036.84425 814 802 80255500.90366 815 802 31944073.6884 816 802 31944444.4392 817 802 -36146431.06068 818 802 -17722036.84414 900 802 7638888.891399 901 802 -34583484.18238 902 802 -15399258.17112 903 802 -7643634.032709 904 802 -52242457.71267 905 802 19687387.29713 909 802 1.564621925354e-06 910 802 -110262429.1366 911 802 -59916477.09895 912 802 7650751.744683 913 802 -17015851.08971 914 802 23676848.33746 915 802 -7646006.603369 916 802 -23628404.39615 917 802 31972114.21773 921 802 -7638888.891398 922 802 -32044400.84822 923 802 -14635369.28198 924 802 -1.691281795502e-06 925 802 -27485540.44924 926 802 7638794.112417 927 802 7638888.891397 928 802 -7708463.340222 929 802 6996575.169565 803 803 1098010379.249 804 803 -31114364.95125 805 803 -60743490.00346 806 803 77736775.05345 810 803 -28807854.91693 811 803 -14527592.40022 812 803 2281940.617786 813 803 3761635.866845 814 803 31944073.6884 815 803 195560564.8714 816 803 31087978.40657 817 803 -17416481.28817 818 803 -7301392.713971 900 803 21477318.77125 901 803 -15399258.17112 902 803 -70918718.4916 903 803 63530032.02016 904 803 21831451.86013 905 803 -122407379.4408 909 803 -636581.9730439 910 803 -60222032.6543 911 803 -247012438.7976 912 803 -8589356.089042 913 803 23683798.94222 914 803 -237160382.7964 915 803 6523883.056929 916 803 30136961.89646 917 803 5350330.44263 921 803 -20840736.7982 922 803 -14635369.28198 923 803 -64147829.60048 924 803 -54908086.04521 925 803 7638794.112417 926 803 -77707668.15051 927 803 -6517820.126831 928 803 6996575.169565 929 803 748003.7541653 804 804 511307203.7006 805 804 31944444.4392 806 804 -38471552.3926 813 804 -42136521.10687 814 804 -31944444.4392 815 804 -28425910.47196 816 804 -129270221.6954 817 804 -31963408.23791 818 804 32202213.44983 819 804 -74245.33507569 820 804 25574519.35007 821 804 23212035.46926 903 804 -44000691.65356 904 804 9173784.381649 905 804 25410834.91903 912 804 -74169151.35949 913 804 -7646006.603371 914 804 -21497320.34861 915 804 -2535056.171221 916 804 7638888.891397 917 804 2916127.642058 924 804 -34336197.05207 925 804 -7638888.891398 926 804 -20840736.7982 927 804 -61266506.56961 928 804 -7643634.032713 929 804 -48493965.33591 930 804 6429332.410642 931 804 6115856.254433 932 804 -5472930.844082 805 805 463366668.0891 806 805 73645353.45811 813 805 -31944444.4392 814 805 -32552681.06127 815 805 -14222036.84425 816 805 -31972890.13727 817 805 20929276.84229 818 805 44576929.53758 819 805 38361779.02511 820 805 -74245.33508131 821 805 -29688226.0277 903 805 6115856.254433 904 805 -44000691.65356 905 805 -13552018.01794 912 805 -7643634.032713 913 805 -100914578.8798 914 805 -59481123.99205 915 805 7638888.891396 916 805 -13999375.77193 917 805 27304194.09764 924 805 -7638888.891398 925 805 -32044400.84822 926 805 -14635369.28198 927 805 -7646006.603371 928 805 -25348555.65241 929 805 -585233.2815705 930 805 9173784.381649 931 805 6429332.410642 932 805 6567824.782935 806 806 790000669.0394 813 806 -28807854.91693 814 806 -14527592.40022 815 806 2281940.617786 816 806 29067543.97844 817 806 35319743.0838 818 806 126505653.3816 819 806 34818053.20388 820 806 -19792150.68513 821 806 -197987.5602046 903 806 16940556.61269 904 806 -20328027.02691 905 806 -117335177.7428 912 806 -21490653.15616 913 806 -57645971.82207 914 806 -200746134.8472 915 806 -19488671.82916 916 806 9380576.980452 917 806 -143900824.6786 924 806 -20840736.7982 925 806 -14635369.28198 926 806 -64147829.60048 927 806 -48878084.71163 928 806 -2722347.244235 929 806 -50690307.28013 930 806 -8209396.266123 931 806 4378549.855291 932 806 17144886.42838 807 807 783245798.6586 808 807 2.861022949219e-06 809 807 -10648271.7332 810 807 80258968.78408 811 807 -4.023313522339e-07 812 807 -2662067.934612 822 807 -60300895.02916 823 807 -1.370906829834e-06 824 807 6886635.866331 825 807 -45730271.10628 826 807 31944444.4392 827 807 31469922.85153 906 807 -67815699.74408 907 807 2.041459083557e-06 908 807 57072469.49195 909 807 -10820592.87768 910 807 -7638888.891398 911 807 7154402.099879 918 807 -12957512.05534 919 807 5.960464477539e-08 920 807 -2546327.890928 921 807 19546554.40623 922 807 -1.84029340744e-06 923 807 -636581.9730468 933 807 -61096866.41184 934 807 -1.631677150726e-06 935 807 -54526141.60101 936 807 -10000259.54407 937 807 7638888.891397 938 807 -6517820.126831 808 808 706575078.3316 809 808 127776294.6906 810 808 -1.341104507446e-07 811 808 -41129747.07642 812 808 -65138147.34512 823 808 80255500.90366 824 808 31944073.6884 825 808 31944444.4392 826 808 -36146431.06068 827 808 -17722036.84414 906 808 2.004206180573e-06 907 808 -34204373.78147 908 808 7638794.112417 909 808 -7638888.891398 910 808 -8528796.673826 911 808 7760464.058704 918 808 2.98023223877e-08 919 808 -31291881.67713 920 808 30555176.43461 921 808 -1.668930053711e-06 922 808 -9481179.15318 923 808 29361300.66432 933 808 -1.691281795502e-06 934 808 -27485540.44924 935 808 7638794.112417 936 808 7638888.891397 937 808 -7708463.340222 938 808 6996575.169565 809 809 1171487488.319 810 809 -2662067.934612 811 809 -62638147.34553 812 809 86952958.72131 822 809 3761635.866845 823 809 31944073.6884 824 809 195560564.8714 825 809 31087978.40657 826 809 -17416481.28817 827 809 -7301392.713971 906 809 57454413.93615 907 809 7638794.112417 908 809 -95624557.03646 909 809 7154402.099879 910 809 7760464.058704 911 809 -1439551.802109 918 809 -2546327.890927 919 809 30555176.43461 920 809 -253876265.6798 921 809 -636581.9730468 922 809 29666856.21968 923 809 21737561.15826 933 809 -54908086.04521 934 809 7638794.112417 935 809 -77707668.15051 936 809 -6517820.126831 937 809 6996575.169565 938 809 748003.7541653 810 810 783245798.6586 811 810 2.861022949219e-06 812 810 -10648271.7332 813 810 80258968.78408 814 810 -4.023313522339e-07 815 810 -2662067.934612 822 810 -42136521.10687 823 810 -31944444.4392 824 810 -28425910.47196 825 810 -60300895.02916 826 810 -1.370906829834e-06 827 810 6886635.866331 828 810 -45730271.10628 829 810 31944444.4392 830 810 31469922.85153 906 810 -36875280.38624 907 810 7638888.891399 908 810 21477318.77125 909 810 -67815699.74408 910 810 2.041459083557e-06 911 810 57072469.49195 912 810 -10820592.87768 913 810 -7638888.891398 914 810 7154402.099879 918 810 -81234695.57722 919 810 1.624226570129e-06 920 810 -636581.9730444 921 810 -12957512.05534 922 810 5.960464477539e-08 923 810 -2546327.890928 924 810 19546554.40623 925 810 -1.84029340744e-06 926 810 -636581.9730468 933 810 -34336197.05207 934 810 -7638888.891398 935 810 -20840736.7982 936 810 -61096866.41184 937 810 -1.631677150726e-06 938 810 -54526141.60101 939 810 -10000259.54407 940 810 7638888.891397 941 810 -6517820.126831 811 811 706575078.3316 812 811 127776294.6906 813 811 -1.341104507446e-07 814 811 -41129747.07642 815 811 -65138147.34512 822 811 -31944444.4392 823 811 -32552681.06127 824 811 -14222036.84425 826 811 80255500.90366 827 811 31944073.6884 828 811 31944444.4392 829 811 -36146431.06068 830 811 -17722036.84414 906 811 7638888.891399 907 811 -34583484.18238 908 811 -15399258.17112 909 811 2.004206180573e-06 910 811 -34204373.78147 911 811 7638794.112417 912 811 -7638888.891398 913 811 -8528796.673826 914 811 7760464.058704 918 811 1.564621925354e-06 919 811 -110262429.1366 920 811 -59916477.09895 921 811 2.98023223877e-08 922 811 -31291881.67713 923 811 30555176.43461 924 811 -1.668930053711e-06 925 811 -9481179.15318 926 811 29361300.66432 933 811 -7638888.891398 934 811 -32044400.84822 935 811 -14635369.28198 936 811 -1.691281795502e-06 937 811 -27485540.44924 938 811 7638794.112417 939 811 7638888.891397 940 811 -7708463.340222 941 811 6996575.169565 812 812 1171487488.319 813 812 -2662067.934612 814 812 -62638147.34553 815 812 86952958.72131 822 812 -28807854.91693 823 812 -14527592.40022 824 812 2281940.617786 825 812 3761635.866845 826 812 31944073.6884 827 812 195560564.8714 828 812 31087978.40657 829 812 -17416481.28817 830 812 -7301392.713971 906 812 21477318.77125 907 812 -15399258.17112 908 812 -70918718.4916 909 812 57454413.93615 910 812 7638794.112417 911 812 -95624557.03646 912 812 7154402.099879 913 812 7760464.058704 914 812 -1439551.802109 918 812 -636581.9730439 919 812 -60222032.6543 920 812 -247012438.7976 921 812 -2546327.890927 922 812 30555176.43461 923 812 -253876265.6798 924 812 -636581.9730468 925 812 29666856.21968 926 812 21737561.15826 933 812 -20840736.7982 934 812 -14635369.28198 935 812 -64147829.60048 936 812 -54908086.04521 937 812 7638794.112417 938 812 -77707668.15051 939 812 -6517820.126831 940 812 6996575.169565 941 812 748003.7541653 813 813 783245798.6586 814 813 2.861022949219e-06 815 813 -10648271.7332 816 813 80258968.78408 817 813 -4.023313522339e-07 818 813 -2662067.934612 825 813 -42136521.10687 826 813 -31944444.4392 827 813 -28425910.47196 828 813 -60300895.02916 829 813 -1.370906829834e-06 830 813 6886635.866331 831 813 -45730271.10628 832 813 31944444.4392 833 813 31469922.85153 909 813 -36875280.38624 910 813 7638888.891399 911 813 21477318.77125 912 813 -67815699.74408 913 813 2.041459083557e-06 914 813 57072469.49195 915 813 -10820592.87768 916 813 -7638888.891398 917 813 7154402.099879 921 813 -81234695.57722 922 813 1.624226570129e-06 923 813 -636581.9730444 924 813 -12957512.05534 925 813 5.960464477539e-08 926 813 -2546327.890928 927 813 19546554.40623 928 813 -1.84029340744e-06 929 813 -636581.9730468 936 813 -34336197.05207 937 813 -7638888.891398 938 813 -20840736.7982 939 813 -61096866.41184 940 813 -1.631677150726e-06 941 813 -54526141.60101 942 813 -10000259.54407 943 813 7638888.891397 944 813 -6517820.126831 814 814 706575078.3316 815 814 127776294.6906 816 814 -1.341104507446e-07 817 814 -41129747.07642 818 814 -65138147.34512 825 814 -31944444.4392 826 814 -32552681.06127 827 814 -14222036.84425 829 814 80255500.90366 830 814 31944073.6884 831 814 31944444.4392 832 814 -36146431.06068 833 814 -17722036.84414 909 814 7638888.891399 910 814 -34583484.18238 911 814 -15399258.17112 912 814 2.004206180573e-06 913 814 -34204373.78147 914 814 7638794.112417 915 814 -7638888.891398 916 814 -8528796.673826 917 814 7760464.058704 921 814 1.564621925354e-06 922 814 -110262429.1366 923 814 -59916477.09895 924 814 2.98023223877e-08 925 814 -31291881.67713 926 814 30555176.43461 927 814 -1.668930053711e-06 928 814 -9481179.15318 929 814 29361300.66432 936 814 -7638888.891398 937 814 -32044400.84822 938 814 -14635369.28198 939 814 -1.691281795502e-06 940 814 -27485540.44924 941 814 7638794.112417 942 814 7638888.891397 943 814 -7708463.340222 944 814 6996575.169565 815 815 1171487488.319 816 815 -2662067.934612 817 815 -62638147.34553 818 815 86952958.72131 825 815 -28807854.91693 826 815 -14527592.40022 827 815 2281940.617786 828 815 3761635.866845 829 815 31944073.6884 830 815 195560564.8714 831 815 31087978.40657 832 815 -17416481.28817 833 815 -7301392.713971 909 815 21477318.77125 910 815 -15399258.17112 911 815 -70918718.4916 912 815 57454413.93615 913 815 7638794.112417 914 815 -95624557.03646 915 815 7154402.099879 916 815 7760464.058704 917 815 -1439551.802109 921 815 -636581.9730439 922 815 -60222032.6543 923 815 -247012438.7976 924 815 -2546327.890927 925 815 30555176.43461 926 815 -253876265.6798 927 815 -636581.9730468 928 815 29666856.21968 929 815 21737561.15826 936 815 -20840736.7982 937 815 -14635369.28198 938 815 -64147829.60048 939 815 -54908086.04521 940 815 7638794.112417 941 815 -77707668.15051 942 815 -6517820.126831 943 815 6996575.169565 944 815 748003.7541653 816 816 798779840.2986 817 816 31991853.93598 818 816 -35934840.90099 819 816 33796428.38625 820 816 -31963408.23791 821 816 -31487513.88132 828 816 -42136521.10687 829 816 -31944444.4392 830 816 -28425910.47196 831 816 -60300895.02916 832 816 -1.370906829834e-06 833 816 6886635.866331 834 816 -45730271.10628 835 816 31944444.4392 836 816 31469922.85153 912 816 -36875280.38624 913 816 7638888.891399 914 816 21477318.77125 915 816 -88160408.62987 916 816 -7646006.603366 917 816 63145912.64445 924 816 -81234695.57722 925 816 1.624226570129e-06 926 816 -636581.9730444 927 816 3615653.321898 928 816 7650751.744684 929 816 -8598044.452827 930 816 3117023.124192 931 816 -7643634.032712 932 816 6521862.080229 939 816 -34336197.05207 940 816 -7638888.891398 941 816 -20840736.7982 942 816 -61096866.41184 943 816 -1.631677150726e-06 944 816 -54526141.60101 945 816 -10000259.54407 946 816 7638888.891397 947 816 -6517820.126831 817 817 712503944.5236 818 817 99028842.16786 819 817 -31972890.13727 820 817 -78046374.58557 821 817 -54292558.27614 828 817 -31944444.4392 829 817 -32552681.06127 830 817 -14222036.84425 832 817 80255500.90366 833 817 31944073.6884 834 817 31944444.4392 835 817 -36146431.06068 836 817 -17722036.84414 912 817 7638888.891399 913 817 -34583484.18238 914 817 -15399258.17112 915 817 -7643634.032709 916 817 -52242457.71267 917 817 19687387.29713 924 817 1.564621925354e-06 925 817 -110262429.1366 926 817 -59916477.09895 927 817 7650751.744683 928 817 -17015851.08971 929 817 23676848.33746 930 817 -7646006.603369 931 817 -23628404.39615 932 817 31972114.21773 939 817 -7638888.891398 940 817 -32044400.84822 941 817 -14635369.28198 942 817 -1.691281795502e-06 943 817 -27485540.44924 944 817 7638794.112417 945 817 7638888.891397 946 817 -7708463.340222 947 817 6996575.169565 818 818 1098010379.249 819 818 -31114364.95125 820 818 -60743490.00346 821 818 77736775.05345 828 818 -28807854.91693 829 818 -14527592.40022 830 818 2281940.617786 831 818 3761635.866845 832 818 31944073.6884 833 818 195560564.8714 834 818 31087978.40657 835 818 -17416481.28817 836 818 -7301392.713971 912 818 21477318.77125 913 818 -15399258.17112 914 818 -70918718.4916 915 818 63530032.02016 916 818 21831451.86013 917 818 -122407379.4408 924 818 -636581.9730439 925 818 -60222032.6543 926 818 -247012438.7976 927 818 -8589356.089042 928 818 23683798.94222 929 818 -237160382.7964 930 818 6523883.056929 931 818 30136961.89646 932 818 5350330.44263 939 818 -20840736.7982 940 818 -14635369.28198 941 818 -64147829.60048 942 818 -54908086.04521 943 818 7638794.112417 944 818 -77707668.15051 945 818 -6517820.126831 946 818 6996575.169565 947 818 748003.7541653 819 819 511307203.7006 820 819 31944444.4392 821 819 -38471552.3926 831 819 -42136521.10687 832 819 -31944444.4392 833 819 -28425910.47196 834 819 -129270221.6954 835 819 -31963408.23791 836 819 32202213.44983 837 819 -74245.33507569 838 819 25574519.35007 839 819 23212035.46926 915 819 -44000691.65356 916 819 9173784.381649 917 819 25410834.91903 927 819 -74169151.35949 928 819 -7646006.603371 929 819 -21497320.34861 930 819 -2535056.171221 931 819 7638888.891397 932 819 2916127.642058 942 819 -34336197.05207 943 819 -7638888.891398 944 819 -20840736.7982 945 819 -61266506.56961 946 819 -7643634.032713 947 819 -48493965.33591 948 819 6429332.410642 949 819 6115856.254433 950 819 -5472930.844082 820 820 463366668.0891 821 820 73645353.45811 831 820 -31944444.4392 832 820 -32552681.06127 833 820 -14222036.84425 834 820 -31972890.13727 835 820 20929276.84229 836 820 44576929.53758 837 820 38361779.02511 838 820 -74245.33508131 839 820 -29688226.0277 915 820 6115856.254433 916 820 -44000691.65356 917 820 -13552018.01794 927 820 -7643634.032713 928 820 -100914578.8798 929 820 -59481123.99205 930 820 7638888.891396 931 820 -13999375.77193 932 820 27304194.09764 942 820 -7638888.891398 943 820 -32044400.84822 944 820 -14635369.28198 945 820 -7646006.603371 946 820 -25348555.65241 947 820 -585233.2815705 948 820 9173784.381649 949 820 6429332.410642 950 820 6567824.782935 821 821 790000669.0394 831 821 -28807854.91693 832 821 -14527592.40022 833 821 2281940.617786 834 821 29067543.97844 835 821 35319743.0838 836 821 126505653.3816 837 821 34818053.20388 838 821 -19792150.68513 839 821 -197987.5602046 915 821 16940556.61269 916 821 -20328027.02691 917 821 -117335177.7428 927 821 -21490653.15616 928 821 -57645971.82207 929 821 -200746134.8472 930 821 -19488671.82916 931 821 9380576.980452 932 821 -143900824.6786 942 821 -20840736.7982 943 821 -14635369.28198 944 821 -64147829.60048 945 821 -48878084.71163 946 821 -2722347.244235 947 821 -50690307.28013 948 821 -8209396.266123 949 821 4378549.855291 950 821 17144886.42838 822 822 783245798.6586 823 822 2.861022949219e-06 824 822 -10648271.7332 825 822 80258968.78408 826 822 -4.023313522339e-07 827 822 -2662067.934612 840 822 -60300895.02916 841 822 -1.370906829834e-06 842 822 6886635.866331 843 822 -45730271.10628 844 822 31944444.4392 845 822 31469922.85153 918 822 -67815699.74408 919 822 2.041459083557e-06 920 822 57072469.49195 921 822 -10820592.87768 922 822 -7638888.891398 923 822 7154402.099879 933 822 -12957512.05534 934 822 5.960464477539e-08 935 822 -2546327.890928 936 822 19546554.40623 937 822 -1.84029340744e-06 938 822 -636581.9730468 951 822 -61096866.41184 952 822 -1.631677150726e-06 953 822 -54526141.60101 954 822 -10000259.54407 955 822 7638888.891397 956 822 -6517820.126831 823 823 706575078.3316 824 823 127776294.6906 825 823 -1.341104507446e-07 826 823 -41129747.07642 827 823 -65138147.34512 841 823 80255500.90366 842 823 31944073.6884 843 823 31944444.4392 844 823 -36146431.06068 845 823 -17722036.84414 918 823 2.004206180573e-06 919 823 -34204373.78147 920 823 7638794.112417 921 823 -7638888.891398 922 823 -8528796.673826 923 823 7760464.058704 933 823 2.98023223877e-08 934 823 -31291881.67713 935 823 30555176.43461 936 823 -1.668930053711e-06 937 823 -9481179.15318 938 823 29361300.66432 951 823 -1.691281795502e-06 952 823 -27485540.44924 953 823 7638794.112417 954 823 7638888.891397 955 823 -7708463.340222 956 823 6996575.169565 824 824 1171487488.319 825 824 -2662067.934612 826 824 -62638147.34553 827 824 86952958.72131 840 824 3761635.866845 841 824 31944073.6884 842 824 195560564.8714 843 824 31087978.40657 844 824 -17416481.28817 845 824 -7301392.713971 918 824 57454413.93615 919 824 7638794.112417 920 824 -95624557.03646 921 824 7154402.099879 922 824 7760464.058704 923 824 -1439551.802109 933 824 -2546327.890927 934 824 30555176.43461 935 824 -253876265.6798 936 824 -636581.9730468 937 824 29666856.21968 938 824 21737561.15826 951 824 -54908086.04521 952 824 7638794.112417 953 824 -77707668.15051 954 824 -6517820.126831 955 824 6996575.169565 956 824 748003.7541653 825 825 783245798.6586 826 825 2.861022949219e-06 827 825 -10648271.7332 828 825 80258968.78408 829 825 -4.023313522339e-07 830 825 -2662067.934612 840 825 -42136521.10687 841 825 -31944444.4392 842 825 -28425910.47196 843 825 -60300895.02916 844 825 -1.370906829834e-06 845 825 6886635.866331 846 825 -45730271.10628 847 825 31944444.4392 848 825 31469922.85153 918 825 -36875280.38624 919 825 7638888.891399 920 825 21477318.77125 921 825 -67815699.74408 922 825 2.041459083557e-06 923 825 57072469.49195 924 825 -10820592.87768 925 825 -7638888.891398 926 825 7154402.099879 933 825 -81234695.57722 934 825 1.624226570129e-06 935 825 -636581.9730444 936 825 -12957512.05534 937 825 5.960464477539e-08 938 825 -2546327.890928 939 825 19546554.40623 940 825 -1.84029340744e-06 941 825 -636581.9730468 951 825 -34336197.05207 952 825 -7638888.891398 953 825 -20840736.7982 954 825 -61096866.41184 955 825 -1.631677150726e-06 956 825 -54526141.60101 957 825 -10000259.54407 958 825 7638888.891397 959 825 -6517820.126831 826 826 706575078.3316 827 826 127776294.6906 828 826 -1.341104507446e-07 829 826 -41129747.07642 830 826 -65138147.34512 840 826 -31944444.4392 841 826 -32552681.06127 842 826 -14222036.84425 844 826 80255500.90366 845 826 31944073.6884 846 826 31944444.4392 847 826 -36146431.06068 848 826 -17722036.84414 918 826 7638888.891399 919 826 -34583484.18238 920 826 -15399258.17112 921 826 2.004206180573e-06 922 826 -34204373.78147 923 826 7638794.112417 924 826 -7638888.891398 925 826 -8528796.673826 926 826 7760464.058704 933 826 1.564621925354e-06 934 826 -110262429.1366 935 826 -59916477.09895 936 826 2.98023223877e-08 937 826 -31291881.67713 938 826 30555176.43461 939 826 -1.668930053711e-06 940 826 -9481179.15318 941 826 29361300.66432 951 826 -7638888.891398 952 826 -32044400.84822 953 826 -14635369.28198 954 826 -1.691281795502e-06 955 826 -27485540.44924 956 826 7638794.112417 957 826 7638888.891397 958 826 -7708463.340222 959 826 6996575.169565 827 827 1171487488.319 828 827 -2662067.934612 829 827 -62638147.34553 830 827 86952958.72131 840 827 -28807854.91693 841 827 -14527592.40022 842 827 2281940.617786 843 827 3761635.866845 844 827 31944073.6884 845 827 195560564.8714 846 827 31087978.40657 847 827 -17416481.28817 848 827 -7301392.713971 918 827 21477318.77125 919 827 -15399258.17112 920 827 -70918718.4916 921 827 57454413.93615 922 827 7638794.112417 923 827 -95624557.03646 924 827 7154402.099879 925 827 7760464.058704 926 827 -1439551.802109 933 827 -636581.9730439 934 827 -60222032.6543 935 827 -247012438.7976 936 827 -2546327.890927 937 827 30555176.43461 938 827 -253876265.6798 939 827 -636581.9730468 940 827 29666856.21968 941 827 21737561.15826 951 827 -20840736.7982 952 827 -14635369.28198 953 827 -64147829.60048 954 827 -54908086.04521 955 827 7638794.112417 956 827 -77707668.15051 957 827 -6517820.126831 958 827 6996575.169565 959 827 748003.7541653 828 828 783245798.6586 829 828 2.861022949219e-06 830 828 -10648271.7332 831 828 80258968.78408 832 828 -4.023313522339e-07 833 828 -2662067.934612 843 828 -42136521.10687 844 828 -31944444.4392 845 828 -28425910.47196 846 828 -60300895.02916 847 828 -1.370906829834e-06 848 828 6886635.866331 849 828 -45730271.10628 850 828 31944444.4392 851 828 31469922.85153 921 828 -36875280.38624 922 828 7638888.891399 923 828 21477318.77125 924 828 -67815699.74408 925 828 2.041459083557e-06 926 828 57072469.49195 927 828 -10820592.87768 928 828 -7638888.891398 929 828 7154402.099879 936 828 -81234695.57722 937 828 1.624226570129e-06 938 828 -636581.9730444 939 828 -12957512.05534 940 828 5.960464477539e-08 941 828 -2546327.890928 942 828 19546554.40623 943 828 -1.84029340744e-06 944 828 -636581.9730468 954 828 -34336197.05207 955 828 -7638888.891398 956 828 -20840736.7982 957 828 -61096866.41184 958 828 -1.631677150726e-06 959 828 -54526141.60101 960 828 -10000259.54407 961 828 7638888.891397 962 828 -6517820.126831 829 829 706575078.3316 830 829 127776294.6906 831 829 -1.341104507446e-07 832 829 -41129747.07642 833 829 -65138147.34512 843 829 -31944444.4392 844 829 -32552681.06127 845 829 -14222036.84425 847 829 80255500.90366 848 829 31944073.6884 849 829 31944444.4392 850 829 -36146431.06068 851 829 -17722036.84414 921 829 7638888.891399 922 829 -34583484.18238 923 829 -15399258.17112 924 829 2.004206180573e-06 925 829 -34204373.78147 926 829 7638794.112417 927 829 -7638888.891398 928 829 -8528796.673826 929 829 7760464.058704 936 829 1.564621925354e-06 937 829 -110262429.1366 938 829 -59916477.09895 939 829 2.98023223877e-08 940 829 -31291881.67713 941 829 30555176.43461 942 829 -1.668930053711e-06 943 829 -9481179.15318 944 829 29361300.66432 954 829 -7638888.891398 955 829 -32044400.84822 956 829 -14635369.28198 957 829 -1.691281795502e-06 958 829 -27485540.44924 959 829 7638794.112417 960 829 7638888.891397 961 829 -7708463.340222 962 829 6996575.169565 830 830 1171487488.319 831 830 -2662067.934612 832 830 -62638147.34553 833 830 86952958.72131 843 830 -28807854.91693 844 830 -14527592.40022 845 830 2281940.617786 846 830 3761635.866845 847 830 31944073.6884 848 830 195560564.8714 849 830 31087978.40657 850 830 -17416481.28817 851 830 -7301392.713971 921 830 21477318.77125 922 830 -15399258.17112 923 830 -70918718.4916 924 830 57454413.93615 925 830 7638794.112417 926 830 -95624557.03646 927 830 7154402.099879 928 830 7760464.058704 929 830 -1439551.802109 936 830 -636581.9730439 937 830 -60222032.6543 938 830 -247012438.7976 939 830 -2546327.890927 940 830 30555176.43461 941 830 -253876265.6798 942 830 -636581.9730468 943 830 29666856.21968 944 830 21737561.15826 954 830 -20840736.7982 955 830 -14635369.28198 956 830 -64147829.60048 957 830 -54908086.04521 958 830 7638794.112417 959 830 -77707668.15051 960 830 -6517820.126831 961 830 6996575.169565 962 830 748003.7541653 831 831 783245798.6586 832 831 2.861022949219e-06 833 831 -10648271.7332 834 831 80258968.78408 835 831 -4.023313522339e-07 836 831 -2662067.934612 846 831 -42136521.10687 847 831 -31944444.4392 848 831 -28425910.47196 849 831 -60300895.02916 850 831 -1.370906829834e-06 851 831 6886635.866331 852 831 -45730271.10628 853 831 31944444.4392 854 831 31469922.85153 924 831 -36875280.38624 925 831 7638888.891399 926 831 21477318.77125 927 831 -67815699.74408 928 831 2.041459083557e-06 929 831 57072469.49195 930 831 -10820592.87768 931 831 -7638888.891398 932 831 7154402.099879 939 831 -81234695.57722 940 831 1.624226570129e-06 941 831 -636581.9730444 942 831 -12957512.05534 943 831 5.960464477539e-08 944 831 -2546327.890928 945 831 19546554.40623 946 831 -1.84029340744e-06 947 831 -636581.9730468 957 831 -34336197.05207 958 831 -7638888.891398 959 831 -20840736.7982 960 831 -61096866.41184 961 831 -1.631677150726e-06 962 831 -54526141.60101 963 831 -10000259.54407 964 831 7638888.891397 965 831 -6517820.126831 832 832 706575078.3316 833 832 127776294.6906 834 832 -1.341104507446e-07 835 832 -41129747.07642 836 832 -65138147.34512 846 832 -31944444.4392 847 832 -32552681.06127 848 832 -14222036.84425 850 832 80255500.90366 851 832 31944073.6884 852 832 31944444.4392 853 832 -36146431.06068 854 832 -17722036.84414 924 832 7638888.891399 925 832 -34583484.18238 926 832 -15399258.17112 927 832 2.004206180573e-06 928 832 -34204373.78147 929 832 7638794.112417 930 832 -7638888.891398 931 832 -8528796.673826 932 832 7760464.058704 939 832 1.564621925354e-06 940 832 -110262429.1366 941 832 -59916477.09895 942 832 2.98023223877e-08 943 832 -31291881.67713 944 832 30555176.43461 945 832 -1.668930053711e-06 946 832 -9481179.15318 947 832 29361300.66432 957 832 -7638888.891398 958 832 -32044400.84822 959 832 -14635369.28198 960 832 -1.691281795502e-06 961 832 -27485540.44924 962 832 7638794.112417 963 832 7638888.891397 964 832 -7708463.340222 965 832 6996575.169565 833 833 1171487488.319 834 833 -2662067.934612 835 833 -62638147.34553 836 833 86952958.72131 846 833 -28807854.91693 847 833 -14527592.40022 848 833 2281940.617786 849 833 3761635.866845 850 833 31944073.6884 851 833 195560564.8714 852 833 31087978.40657 853 833 -17416481.28817 854 833 -7301392.713971 924 833 21477318.77125 925 833 -15399258.17112 926 833 -70918718.4916 927 833 57454413.93615 928 833 7638794.112417 929 833 -95624557.03646 930 833 7154402.099879 931 833 7760464.058704 932 833 -1439551.802109 939 833 -636581.9730439 940 833 -60222032.6543 941 833 -247012438.7976 942 833 -2546327.890927 943 833 30555176.43461 944 833 -253876265.6798 945 833 -636581.9730468 946 833 29666856.21968 947 833 21737561.15826 957 833 -20840736.7982 958 833 -14635369.28198 959 833 -64147829.60048 960 833 -54908086.04521 961 833 7638794.112417 962 833 -77707668.15051 963 833 -6517820.126831 964 833 6996575.169565 965 833 748003.7541653 834 834 798779840.2986 835 834 31991853.93598 836 834 -35934840.90099 837 834 33796428.38625 838 834 -31963408.23791 839 834 -31487513.88132 849 834 -42136521.10687 850 834 -31944444.4392 851 834 -28425910.47196 852 834 -60300895.02916 853 834 -1.370906829834e-06 854 834 6886635.866331 855 834 -45730271.10628 856 834 31944444.4392 857 834 31469922.85153 927 834 -36875280.38624 928 834 7638888.891399 929 834 21477318.77125 930 834 -88160408.62987 931 834 -7646006.603366 932 834 63145912.64445 942 834 -81234695.57722 943 834 1.624226570129e-06 944 834 -636581.9730444 945 834 3615653.321898 946 834 7650751.744684 947 834 -8598044.452827 948 834 3117023.124192 949 834 -7643634.032712 950 834 6521862.080229 960 834 -34336197.05207 961 834 -7638888.891398 962 834 -20840736.7982 963 834 -61096866.41184 964 834 -1.631677150726e-06 965 834 -54526141.60101 966 834 -10000259.54407 967 834 7638888.891397 968 834 -6517820.126831 835 835 712503944.5236 836 835 99028842.16786 837 835 -31972890.13727 838 835 -78046374.58557 839 835 -54292558.27614 849 835 -31944444.4392 850 835 -32552681.06127 851 835 -14222036.84425 853 835 80255500.90366 854 835 31944073.6884 855 835 31944444.4392 856 835 -36146431.06068 857 835 -17722036.84414 927 835 7638888.891399 928 835 -34583484.18238 929 835 -15399258.17112 930 835 -7643634.032709 931 835 -52242457.71267 932 835 19687387.29713 942 835 1.564621925354e-06 943 835 -110262429.1366 944 835 -59916477.09895 945 835 7650751.744683 946 835 -17015851.08971 947 835 23676848.33746 948 835 -7646006.603369 949 835 -23628404.39615 950 835 31972114.21773 960 835 -7638888.891398 961 835 -32044400.84822 962 835 -14635369.28198 963 835 -1.691281795502e-06 964 835 -27485540.44924 965 835 7638794.112417 966 835 7638888.891397 967 835 -7708463.340222 968 835 6996575.169565 836 836 1098010379.249 837 836 -31114364.95125 838 836 -60743490.00346 839 836 77736775.05345 849 836 -28807854.91693 850 836 -14527592.40022 851 836 2281940.617786 852 836 3761635.866845 853 836 31944073.6884 854 836 195560564.8714 855 836 31087978.40657 856 836 -17416481.28817 857 836 -7301392.713971 927 836 21477318.77125 928 836 -15399258.17112 929 836 -70918718.4916 930 836 63530032.02016 931 836 21831451.86013 932 836 -122407379.4408 942 836 -636581.9730439 943 836 -60222032.6543 944 836 -247012438.7976 945 836 -8589356.089042 946 836 23683798.94222 947 836 -237160382.7964 948 836 6523883.056929 949 836 30136961.89646 950 836 5350330.44263 960 836 -20840736.7982 961 836 -14635369.28198 962 836 -64147829.60048 963 836 -54908086.04521 964 836 7638794.112417 965 836 -77707668.15051 966 836 -6517820.126831 967 836 6996575.169565 968 836 748003.7541653 837 837 421581687.6543 838 837 6785907.782109 839 837 7841193.266554 852 837 -42136521.10687 853 837 -31944444.4392 854 837 -28425910.47196 855 837 -79796686.86909 856 837 -6849309.631483 857 837 3534798.038794 858 837 -5594967.08466 859 837 25618957.40074 860 837 1676068.417707 930 837 -44000691.65356 931 837 9173784.381649 932 837 25410834.91903 945 837 -74169151.35949 946 837 -7646006.603371 947 837 -21497320.34861 948 837 -8042181.826519 949 837 145867.1889037 950 837 11655806.43098 963 837 -34336197.05207 964 837 -7638888.891398 965 837 -20840736.7982 966 837 -46993816.04493 967 837 -164542.081198 968 837 -41727721.81694 969 837 -9829239.428922 970 837 6129786.005412 971 837 -4979066.640203 838 838 419099416.1247 839 838 75912796.59245 852 838 -31944444.4392 853 838 -32552681.06127 854 838 -14222036.84425 855 838 -6881010.556171 856 838 59218360.02186 857 838 21640366.11732 858 838 38428436.1011 859 838 -39868779.51983 860 838 -12146433.61666 930 838 6115856.254433 931 838 -44000691.65356 932 838 -13552018.01794 945 838 -7643634.032713 946 838 -100914578.8798 947 838 -59481123.99205 948 838 145867.1889033 949 838 -4368145.660696 950 838 26571164.39647 963 838 -7638888.891398 964 838 -32044400.84822 965 838 -14635369.28198 966 838 -173879.5273452 967 838 -14404613.18541 968 838 4846854.379944 969 838 9194679.008118 970 838 -21638847.13778 971 838 14725306.89276 839 839 651397439.371 852 839 -28807854.91693 853 839 -14527592.40022 854 839 2281940.617786 855 839 9222793.691471 856 839 19439582.74236 857 839 123496454.0281 858 839 2514102.62656 859 839 -10870425.29035 860 839 19353900.20941 930 839 16940556.61269 931 839 -20328027.02691 932 839 -117335177.7428 945 839 -21490653.15616 946 839 -57645971.82207 947 839 -200746134.8472 948 839 -5288514.808431 949 839 13035968.8684 950 839 -130215372.7727 963 839 -20840736.7982 964 839 -14635369.28198 965 839 -64147829.60048 966 839 -39819358.2705 967 839 4553577.796946 968 839 -52810527.24323 969 839 -7468599.960305 970 839 12732043.03141 971 839 -14401697.43494 840 840 783245798.6586 841 840 2.861022949219e-06 842 840 -10648271.7332 843 840 80258968.78408 844 840 -4.023313522339e-07 845 840 -2662067.934612 861 840 -60300895.02916 862 840 -1.370906829834e-06 863 840 6886635.866331 864 840 -45730271.10628 865 840 31944444.4392 866 840 31469922.85153 933 840 -67815699.74408 934 840 2.041459083557e-06 935 840 57072469.49195 936 840 -10820592.87768 937 840 -7638888.891398 938 840 7154402.099879 951 840 -12957512.05534 952 840 5.960464477539e-08 953 840 -2546327.890928 954 840 19546554.40623 955 840 -1.84029340744e-06 956 840 -636581.9730468 972 840 -61096866.41184 973 840 -1.631677150726e-06 974 840 -54526141.60101 975 840 -10000259.54407 976 840 7638888.891397 977 840 -6517820.126831 841 841 706575078.3316 842 841 127776294.6906 843 841 -1.341104507446e-07 844 841 -41129747.07642 845 841 -65138147.34512 862 841 80255500.90366 863 841 31944073.6884 864 841 31944444.4392 865 841 -36146431.06068 866 841 -17722036.84414 933 841 2.004206180573e-06 934 841 -34204373.78147 935 841 7638794.112417 936 841 -7638888.891398 937 841 -8528796.673826 938 841 7760464.058704 951 841 2.98023223877e-08 952 841 -31291881.67713 953 841 30555176.43461 954 841 -1.668930053711e-06 955 841 -9481179.15318 956 841 29361300.66432 972 841 -1.691281795502e-06 973 841 -27485540.44924 974 841 7638794.112417 975 841 7638888.891397 976 841 -7708463.340222 977 841 6996575.169565 842 842 1171487488.319 843 842 -2662067.934612 844 842 -62638147.34553 845 842 86952958.72131 861 842 3761635.866845 862 842 31944073.6884 863 842 195560564.8714 864 842 31087978.40657 865 842 -17416481.28817 866 842 -7301392.713971 933 842 57454413.93615 934 842 7638794.112417 935 842 -95624557.03646 936 842 7154402.099879 937 842 7760464.058704 938 842 -1439551.802109 951 842 -2546327.890927 952 842 30555176.43461 953 842 -253876265.6798 954 842 -636581.9730468 955 842 29666856.21968 956 842 21737561.15826 972 842 -54908086.04521 973 842 7638794.112417 974 842 -77707668.15051 975 842 -6517820.126831 976 842 6996575.169565 977 842 748003.7541653 843 843 783245798.6586 844 843 2.861022949219e-06 845 843 -10648271.7332 846 843 80258968.78408 847 843 -4.023313522339e-07 848 843 -2662067.934612 861 843 -42136521.10687 862 843 -31944444.4392 863 843 -28425910.47196 864 843 -60300895.02916 865 843 -1.370906829834e-06 866 843 6886635.866331 867 843 -45730271.10628 868 843 31944444.4392 869 843 31469922.85153 933 843 -36875280.38624 934 843 7638888.891399 935 843 21477318.77125 936 843 -67815699.74408 937 843 2.041459083557e-06 938 843 57072469.49195 939 843 -10820592.87768 940 843 -7638888.891398 941 843 7154402.099879 951 843 -81234695.57722 952 843 1.624226570129e-06 953 843 -636581.9730444 954 843 -12957512.05534 955 843 5.960464477539e-08 956 843 -2546327.890928 957 843 19546554.40623 958 843 -1.84029340744e-06 959 843 -636581.9730468 972 843 -34336197.05207 973 843 -7638888.891398 974 843 -20840736.7982 975 843 -61096866.41184 976 843 -1.631677150726e-06 977 843 -54526141.60101 978 843 -10000259.54407 979 843 7638888.891397 980 843 -6517820.126831 844 844 706575078.3316 845 844 127776294.6906 846 844 -1.341104507446e-07 847 844 -41129747.07642 848 844 -65138147.34512 861 844 -31944444.4392 862 844 -32552681.06127 863 844 -14222036.84425 865 844 80255500.90366 866 844 31944073.6884 867 844 31944444.4392 868 844 -36146431.06068 869 844 -17722036.84414 933 844 7638888.891399 934 844 -34583484.18238 935 844 -15399258.17112 936 844 2.004206180573e-06 937 844 -34204373.78147 938 844 7638794.112417 939 844 -7638888.891398 940 844 -8528796.673826 941 844 7760464.058704 951 844 1.564621925354e-06 952 844 -110262429.1366 953 844 -59916477.09895 954 844 2.98023223877e-08 955 844 -31291881.67713 956 844 30555176.43461 957 844 -1.668930053711e-06 958 844 -9481179.15318 959 844 29361300.66432 972 844 -7638888.891398 973 844 -32044400.84822 974 844 -14635369.28198 975 844 -1.691281795502e-06 976 844 -27485540.44924 977 844 7638794.112417 978 844 7638888.891397 979 844 -7708463.340222 980 844 6996575.169565 845 845 1171487488.319 846 845 -2662067.934612 847 845 -62638147.34553 848 845 86952958.72131 861 845 -28807854.91693 862 845 -14527592.40022 863 845 2281940.617786 864 845 3761635.866845 865 845 31944073.6884 866 845 195560564.8714 867 845 31087978.40657 868 845 -17416481.28817 869 845 -7301392.713971 933 845 21477318.77125 934 845 -15399258.17112 935 845 -70918718.4916 936 845 57454413.93615 937 845 7638794.112417 938 845 -95624557.03646 939 845 7154402.099879 940 845 7760464.058704 941 845 -1439551.802109 951 845 -636581.9730439 952 845 -60222032.6543 953 845 -247012438.7976 954 845 -2546327.890927 955 845 30555176.43461 956 845 -253876265.6798 957 845 -636581.9730468 958 845 29666856.21968 959 845 21737561.15826 972 845 -20840736.7982 973 845 -14635369.28198 974 845 -64147829.60048 975 845 -54908086.04521 976 845 7638794.112417 977 845 -77707668.15051 978 845 -6517820.126831 979 845 6996575.169565 980 845 748003.7541653 846 846 783245798.6586 847 846 2.861022949219e-06 848 846 -10648271.7332 849 846 80258968.78408 850 846 -4.023313522339e-07 851 846 -2662067.934612 864 846 -42136521.10687 865 846 -31944444.4392 866 846 -28425910.47196 867 846 -60300895.02916 868 846 -1.370906829834e-06 869 846 6886635.866331 870 846 -45730271.10628 871 846 31944444.4392 872 846 31469922.85153 936 846 -36875280.38624 937 846 7638888.891399 938 846 21477318.77125 939 846 -67815699.74408 940 846 2.041459083557e-06 941 846 57072469.49195 942 846 -10820592.87768 943 846 -7638888.891398 944 846 7154402.099879 954 846 -81234695.57722 955 846 1.624226570129e-06 956 846 -636581.9730444 957 846 -12957512.05534 958 846 5.960464477539e-08 959 846 -2546327.890928 960 846 19546554.40623 961 846 -1.84029340744e-06 962 846 -636581.9730468 975 846 -34336197.05207 976 846 -7638888.891398 977 846 -20840736.7982 978 846 -61096866.41184 979 846 -1.631677150726e-06 980 846 -54526141.60101 981 846 -10000259.54407 982 846 7638888.891397 983 846 -6517820.126831 847 847 706575078.3316 848 847 127776294.6906 849 847 -1.341104507446e-07 850 847 -41129747.07642 851 847 -65138147.34512 864 847 -31944444.4392 865 847 -32552681.06127 866 847 -14222036.84425 868 847 80255500.90366 869 847 31944073.6884 870 847 31944444.4392 871 847 -36146431.06068 872 847 -17722036.84414 936 847 7638888.891399 937 847 -34583484.18238 938 847 -15399258.17112 939 847 2.004206180573e-06 940 847 -34204373.78147 941 847 7638794.112417 942 847 -7638888.891398 943 847 -8528796.673826 944 847 7760464.058704 954 847 1.564621925354e-06 955 847 -110262429.1366 956 847 -59916477.09895 957 847 2.98023223877e-08 958 847 -31291881.67713 959 847 30555176.43461 960 847 -1.668930053711e-06 961 847 -9481179.15318 962 847 29361300.66432 975 847 -7638888.891398 976 847 -32044400.84822 977 847 -14635369.28198 978 847 -1.691281795502e-06 979 847 -27485540.44924 980 847 7638794.112417 981 847 7638888.891397 982 847 -7708463.340222 983 847 6996575.169565 848 848 1171487488.319 849 848 -2662067.934612 850 848 -62638147.34553 851 848 86952958.72131 864 848 -28807854.91693 865 848 -14527592.40022 866 848 2281940.617786 867 848 3761635.866845 868 848 31944073.6884 869 848 195560564.8714 870 848 31087978.40657 871 848 -17416481.28817 872 848 -7301392.713971 936 848 21477318.77125 937 848 -15399258.17112 938 848 -70918718.4916 939 848 57454413.93615 940 848 7638794.112417 941 848 -95624557.03646 942 848 7154402.099879 943 848 7760464.058704 944 848 -1439551.802109 954 848 -636581.9730439 955 848 -60222032.6543 956 848 -247012438.7976 957 848 -2546327.890927 958 848 30555176.43461 959 848 -253876265.6798 960 848 -636581.9730468 961 848 29666856.21968 962 848 21737561.15826 975 848 -20840736.7982 976 848 -14635369.28198 977 848 -64147829.60048 978 848 -54908086.04521 979 848 7638794.112417 980 848 -77707668.15051 981 848 -6517820.126831 982 848 6996575.169565 983 848 748003.7541653 849 849 783245798.6586 850 849 2.861022949219e-06 851 849 -10648271.7332 852 849 80258968.78408 853 849 -4.023313522339e-07 854 849 -2662067.934612 867 849 -42136521.10687 868 849 -31944444.4392 869 849 -28425910.47196 870 849 -60300895.02916 871 849 -1.370906829834e-06 872 849 6886635.866331 873 849 -45730271.10628 874 849 31944444.4392 875 849 31469922.85153 939 849 -36875280.38624 940 849 7638888.891399 941 849 21477318.77125 942 849 -67815699.74408 943 849 2.041459083557e-06 944 849 57072469.49195 945 849 -10820592.87768 946 849 -7638888.891398 947 849 7154402.099879 957 849 -81234695.57722 958 849 1.624226570129e-06 959 849 -636581.9730444 960 849 -12957512.05534 961 849 5.960464477539e-08 962 849 -2546327.890928 963 849 19546554.40623 964 849 -1.84029340744e-06 965 849 -636581.9730468 978 849 -34336197.05207 979 849 -7638888.891398 980 849 -20840736.7982 981 849 -61096866.41184 982 849 -1.631677150726e-06 983 849 -54526141.60101 984 849 -10000259.54407 985 849 7638888.891397 986 849 -6517820.126831 850 850 706575078.3316 851 850 127776294.6906 852 850 -1.341104507446e-07 853 850 -41129747.07642 854 850 -65138147.34512 867 850 -31944444.4392 868 850 -32552681.06127 869 850 -14222036.84425 871 850 80255500.90366 872 850 31944073.6884 873 850 31944444.4392 874 850 -36146431.06068 875 850 -17722036.84414 939 850 7638888.891399 940 850 -34583484.18238 941 850 -15399258.17112 942 850 2.004206180573e-06 943 850 -34204373.78147 944 850 7638794.112417 945 850 -7638888.891398 946 850 -8528796.673826 947 850 7760464.058704 957 850 1.564621925354e-06 958 850 -110262429.1366 959 850 -59916477.09895 960 850 2.98023223877e-08 961 850 -31291881.67713 962 850 30555176.43461 963 850 -1.668930053711e-06 964 850 -9481179.15318 965 850 29361300.66432 978 850 -7638888.891398 979 850 -32044400.84822 980 850 -14635369.28198 981 850 -1.691281795502e-06 982 850 -27485540.44924 983 850 7638794.112417 984 850 7638888.891397 985 850 -7708463.340222 986 850 6996575.169565 851 851 1171487488.319 852 851 -2662067.934612 853 851 -62638147.34553 854 851 86952958.72131 867 851 -28807854.91693 868 851 -14527592.40022 869 851 2281940.617786 870 851 3761635.866845 871 851 31944073.6884 872 851 195560564.8714 873 851 31087978.40657 874 851 -17416481.28817 875 851 -7301392.713971 939 851 21477318.77125 940 851 -15399258.17112 941 851 -70918718.4916 942 851 57454413.93615 943 851 7638794.112417 944 851 -95624557.03646 945 851 7154402.099879 946 851 7760464.058704 947 851 -1439551.802109 957 851 -636581.9730439 958 851 -60222032.6543 959 851 -247012438.7976 960 851 -2546327.890927 961 851 30555176.43461 962 851 -253876265.6798 963 851 -636581.9730468 964 851 29666856.21968 965 851 21737561.15826 978 851 -20840736.7982 979 851 -14635369.28198 980 851 -64147829.60048 981 851 -54908086.04521 982 851 7638794.112417 983 851 -77707668.15051 984 851 -6517820.126831 985 851 6996575.169565 986 851 748003.7541653 852 852 783245798.6586 853 852 2.861022949219e-06 854 852 -10648271.7332 855 852 80258968.78408 856 852 -4.023313522339e-07 857 852 -2662067.934612 870 852 -42136521.10687 871 852 -31944444.4392 872 852 -28425910.47196 873 852 -60300895.02916 874 852 -1.370906829834e-06 875 852 6886635.866331 876 852 -45730271.10628 877 852 31944444.4392 878 852 31469922.85153 942 852 -36875280.38624 943 852 7638888.891399 944 852 21477318.77125 945 852 -67815699.74408 946 852 2.041459083557e-06 947 852 57072469.49195 948 852 -10820592.87768 949 852 -7638888.891398 950 852 7154402.099879 960 852 -81234695.57722 961 852 1.624226570129e-06 962 852 -636581.9730444 963 852 -12957512.05534 964 852 5.960464477539e-08 965 852 -2546327.890928 966 852 19546554.40623 967 852 -1.84029340744e-06 968 852 -636581.9730468 981 852 -34336197.05207 982 852 -7638888.891398 983 852 -20840736.7982 984 852 -61096866.41184 985 852 -1.631677150726e-06 986 852 -54526141.60101 987 852 -10000259.54407 988 852 7638888.891397 989 852 -6517820.126831 853 853 706575078.3316 854 853 127776294.6906 855 853 -1.341104507446e-07 856 853 -41129747.07642 857 853 -65138147.34512 870 853 -31944444.4392 871 853 -32552681.06127 872 853 -14222036.84425 874 853 80255500.90366 875 853 31944073.6884 876 853 31944444.4392 877 853 -36146431.06068 878 853 -17722036.84414 942 853 7638888.891399 943 853 -34583484.18238 944 853 -15399258.17112 945 853 2.004206180573e-06 946 853 -34204373.78147 947 853 7638794.112417 948 853 -7638888.891398 949 853 -8528796.673826 950 853 7760464.058704 960 853 1.564621925354e-06 961 853 -110262429.1366 962 853 -59916477.09895 963 853 2.98023223877e-08 964 853 -31291881.67713 965 853 30555176.43461 966 853 -1.668930053711e-06 967 853 -9481179.15318 968 853 29361300.66432 981 853 -7638888.891398 982 853 -32044400.84822 983 853 -14635369.28198 984 853 -1.691281795502e-06 985 853 -27485540.44924 986 853 7638794.112417 987 853 7638888.891397 988 853 -7708463.340222 989 853 6996575.169565 854 854 1171487488.319 855 854 -2662067.934612 856 854 -62638147.34553 857 854 86952958.72131 870 854 -28807854.91693 871 854 -14527592.40022 872 854 2281940.617786 873 854 3761635.866845 874 854 31944073.6884 875 854 195560564.8714 876 854 31087978.40657 877 854 -17416481.28817 878 854 -7301392.713971 942 854 21477318.77125 943 854 -15399258.17112 944 854 -70918718.4916 945 854 57454413.93615 946 854 7638794.112417 947 854 -95624557.03646 948 854 7154402.099879 949 854 7760464.058704 950 854 -1439551.802109 960 854 -636581.9730439 961 854 -60222032.6543 962 854 -247012438.7976 963 854 -2546327.890927 964 854 30555176.43461 965 854 -253876265.6798 966 854 -636581.9730468 967 854 29666856.21968 968 854 21737561.15826 981 854 -20840736.7982 982 854 -14635369.28198 983 854 -64147829.60048 984 854 -54908086.04521 985 854 7638794.112417 986 854 -77707668.15051 987 854 -6517820.126831 988 854 6996575.169565 989 854 748003.7541653 855 855 672093135.7221 856 855 13234981.24506 857 855 -10472451.03689 858 855 2713245.605375 859 855 -45406565.53451 860 855 -6467542.23253 873 855 -42136521.10687 874 855 -31944444.4392 875 855 -28425910.47196 876 855 -47252648.26046 877 855 11696243.19932 878 855 2625796.579181 879 855 -17427995.66092 880 855 27356351.64631 881 855 5094898.82678 945 855 -36875280.38624 946 855 7638888.891399 947 855 21477318.77125 948 855 -54114504.27018 949 855 -173879.5273432 950 855 44902247.92658 963 855 -81234695.57722 964 855 1.624226570129e-06 965 855 -636581.9730444 966 855 -876482.9019934 967 855 2519526.915563 968 855 -2460507.026248 969 855 -27045633.06006 970 855 -11723510.74027 971 855 12416379.47746 984 855 -34336197.05207 985 855 -7638888.891398 986 855 -20840736.7982 987 855 -53125239.25827 988 855 3404183.289858 989 855 -48696407.07857 990 855 -13272078.15617 991 855 5973680.062196 992 855 -6110175.711185 856 856 658656781.071 857 856 76687183.50347 858 856 -45438266.4592 859 856 -113708638.183 860 856 -13866021.06147 873 856 -31944444.4392 874 856 -32552681.06127 875 856 -14222036.84425 876 856 11696243.19932 877 856 77523891.37046 878 856 18276020.97343 879 856 27356351.64631 880 856 -49140307.97396 881 856 -6257304.511357 945 856 7638888.891399 946 856 -34583484.18238 947 856 -15399258.17112 948 856 -164542.0811964 949 856 -21525301.41066 950 856 5061950.597479 963 856 1.564621925354e-06 964 856 -110262429.1366 965 856 -59916477.09895 966 856 2519526.915562 967 856 673695.8703558 968 856 18791643.5427 969 856 -11732848.18642 970 856 -55420678.77829 971 856 41466871.49251 984 856 -7638888.891398 985 856 -32044400.84822 986 856 -14635369.28198 987 856 3404183.289858 988 856 -24476237.66492 989 856 9715809.309978 990 856 5973680.062196 991 856 -23241274.51146 992 856 14956061.60352 857 857 928696529.4313 858 857 -6090298.663802 859 857 -12648739.68516 860 857 70585514.17612 873 857 -28807854.91693 874 857 -14527592.40022 875 857 2281940.617786 876 857 8702185.467069 877 857 17970465.41792 878 857 170894335.6621 879 857 4331009.936854 880 857 -6257304.511357 881 857 18316932.36521 945 857 21477318.77125 946 857 -15399258.17112 947 857 -70918718.4916 948 857 42993884.38014 949 857 5382550.883186 950 857 -71799029.17722 963 857 -636581.9730439 964 857 -60222032.6543 965 857 -247012438.7976 966 857 -2443130.228498 967 857 18805545.65999 968 857 -201210190.2793 969 857 12423412.7955 970 857 41458540.64078 971 857 -52321022.26258 984 857 -20840736.7982 985 857 -14635369.28198 986 857 -64147829.60048 987 857 -46786684.85391 988 857 9715809.311131 989 857 -73933522.36379 990 857 -6110175.711185 991 857 14956061.60352 992 857 -21004210.79327 858 858 458048502.1176 859 858 7221161.637984 860 858 -4162749.187164 876 858 -38665742.94727 877 858 -31344098.53733 878 858 -4065866.490514 879 858 9293647.217087 880 858 15820050.87655 881 858 2615912.244499 882 858 79369122.72938 883 858 -13009632.81335 884 858 270546.9858633 885 858 -2386124.678085 886 858 28322349.19425 887 858 1140574.705732 948 858 -17822239.3706 949 858 9194679.008118 950 858 9770196.805889 966 858 -41046754.09296 967 858 -11732848.18642 968 858 -15622467.2995 969 858 -55034990.49984 970 858 2099749.686162 971 858 10931445.7583 987 858 -23479926.51996 988 858 -7417253.056677 989 858 -14997301.90306 990 858 -65005495.31362 991 858 4667669.592739 992 858 -54435157.05621 993 858 -28235802.42725 994 858 -3405845.891125 995 858 10910713.0034 996 858 -20886441.98794 997 858 6593848.847203 998 858 -13257984.86388 859 859 539593713.555 860 859 14603363.45522 876 859 -31344098.53733 877 859 -20535883.40964 878 859 -786872.1150392 879 859 15820050.87655 880 859 131165149.8624 881 859 4782395.446402 882 859 -231855.0376756 883 859 17238152.64816 884 859 -607975.0375446 885 859 28322349.19425 886 859 -11106031.9936 887 859 -680548.4017037 948 859 6129786.005412 949 859 -29631847.07945 950 859 -18404535.59174 966 859 -11723510.74027 967 859 -69421799.81119 968 859 -48221146.21121 969 859 2099749.686162 970 859 -30476016.89128 971 859 7201253.461998 987 859 -7417253.056677 988 859 -18611925.28141 989 859 -11356377.95096 990 859 4667669.592739 991 859 -36620614.93688 992 859 6659742.089658 993 859 -350290.3345659 994 859 -43084517.47741 995 859 33184890.09814 996 859 6593848.847203 997 859 -23664928.73455 998 859 16496735.37374 860 860 765181880.4553 876 860 -4447810.935477 877 860 -1092427.67101 878 860 21841944.23782 879 860 1088134.466972 880 860 4476839.890896 881 860 245902987.7379 882 860 -111397.4585147 883 860 -607975.0375448 884 860 160000503.5775 885 860 758630.2607686 886 860 -680548.4017037 887 860 57873757.49777 948 860 6513464.53726 949 860 -21008507.25432 950 860 -35716363.94607 966 860 -15612123.92226 967 860 -48226237.0269 968 860 -89657345.01698 969 860 -11047443.12698 970 860 2590596.573928 971 860 -256503983.8706 987 860 -14997301.90306 988 860 -11356377.95096 989 860 -32461726.1069 990 860 -54435157.05583 991 860 6659742.090811 992 860 -127235156.8213 993 860 2785713.002169 994 860 33184890.09814 995 860 -87010159.53147 996 860 -13257984.86388 997 860 16496735.37374 998 860 -42112998.60584 861 861 391154149.3294 862 861 -2.026557922363e-06 863 861 2488364.132116 864 861 40072192.7253 865 861 6388888.887839 866 861 5613410.477452 951 861 -67815699.74408 952 861 2.041459083557e-06 953 861 57072469.49195 954 861 -10820592.87768 955 861 -7638888.891398 956 861 7154402.099879 972 861 -6536047.694301 973 861 -2.086162567139e-07 974 861 -11516358.3887 975 861 9773277.203117 976 861 1527777.778279 977 861 -1685513.209194 862 862 352818789.1659 863 862 63888147.34533 864 862 -6388888.887841 865 862 -20622165.20495 866 862 -32249629.22817 951 862 2.004206180573e-06 952 862 -34204373.78147 953 862 7638794.112417 954 862 -7638888.891398 955 862 -8528796.673826 956 862 7760464.058704 972 862 4.768371582031e-07 973 862 -15703232.5052 974 862 15277588.21731 975 862 -1527777.77828 976 862 -4740589.576589 977 862 14757039.22107 863 863 584493744.1599 864 863 -6365756.187247 865 863 -31638518.11715 866 863 43323701.58267 951 863 57454413.93615 952 863 7638794.112417 953 863 -95624557.03646 954 863 7154402.099879 955 863 7760464.058704 956 863 -1439551.802109 972 863 10879752.71874 973 863 15277588.21731 974 863 -127090910.6176 975 863 1048931.236148 976 863 14757039.22092 977 863 10868780.57913 864 864 391154149.3294 865 864 -2.026557922363e-06 866 864 2488364.132116 867 864 40072192.7253 868 864 6388888.887839 869 864 5613410.477452 951 864 -36875280.38624 952 864 7638888.891399 953 864 21477318.77125 954 864 -67815699.74408 955 864 2.041459083557e-06 956 864 57072469.49195 957 864 -10820592.87768 958 864 -7638888.891398 959 864 7154402.099879 972 864 -40617347.78861 973 864 -1527777.778279 974 864 -4550096.543467 975 864 -6536047.694301 976 864 -2.086162567139e-07 977 864 -11516358.3887 978 864 9773277.203117 979 864 1527777.778279 980 864 -1685513.209194 865 865 352818789.1659 866 865 63888147.34533 867 865 -6388888.887841 868 865 -20622165.20495 869 865 -32249629.22817 951 865 7638888.891399 952 865 -34583484.18238 953 865 -15399258.17112 954 865 2.004206180573e-06 955 865 -34204373.78147 956 865 7638794.112417 957 865 -7638888.891398 958 865 -8528796.673826 959 865 7760464.058704 972 865 1527777.77828 973 865 -55131214.56832 974 865 -30034627.43839 975 865 4.768371582031e-07 976 865 -15703232.5052 977 865 15277588.21731 978 865 -1527777.77828 979 865 -4740589.576589 980 865 14757039.22107 866 866 584493744.1599 867 866 -6365756.187247 868 866 -31638518.11715 869 866 43323701.58267 951 866 21477318.77125 952 866 -15399258.17112 953 866 -70918718.4916 954 866 57454413.93615 955 866 7638794.112417 956 866 -95624557.03646 957 866 7154402.099879 958 866 7760464.058704 959 866 -1439551.802109 972 866 3913514.570423 973 866 -30034627.43824 974 866 -123506219.3988 975 866 10879752.71874 976 866 15277588.21731 977 866 -127090910.6176 978 866 1048931.236148 979 866 14757039.22092 980 866 10868780.57913 867 867 391154149.3294 868 867 -2.026557922363e-06 869 867 2488364.132116 870 867 40072192.7253 871 867 6388888.887839 872 867 5613410.477452 954 867 -36875280.38624 955 867 7638888.891399 956 867 21477318.77125 957 867 -67815699.74408 958 867 2.041459083557e-06 959 867 57072469.49195 960 867 -10820592.87768 961 867 -7638888.891398 962 867 7154402.099879 975 867 -40617347.78861 976 867 -1527777.778279 977 867 -4550096.543467 978 867 -6536047.694301 979 867 -2.086162567139e-07 980 867 -11516358.3887 981 867 9773277.203117 982 867 1527777.778279 983 867 -1685513.209194 868 868 352818789.1659 869 868 63888147.34533 870 868 -6388888.887841 871 868 -20622165.20495 872 868 -32249629.22817 954 868 7638888.891399 955 868 -34583484.18238 956 868 -15399258.17112 957 868 2.004206180573e-06 958 868 -34204373.78147 959 868 7638794.112417 960 868 -7638888.891398 961 868 -8528796.673826 962 868 7760464.058704 975 868 1527777.77828 976 868 -55131214.56832 977 868 -30034627.43839 978 868 4.768371582031e-07 979 868 -15703232.5052 980 868 15277588.21731 981 868 -1527777.77828 982 868 -4740589.576589 983 868 14757039.22107 869 869 584493744.1599 870 869 -6365756.187247 871 869 -31638518.11715 872 869 43323701.58267 954 869 21477318.77125 955 869 -15399258.17112 956 869 -70918718.4916 957 869 57454413.93615 958 869 7638794.112417 959 869 -95624557.03646 960 869 7154402.099879 961 869 7760464.058704 962 869 -1439551.802109 975 869 3913514.570423 976 869 -30034627.43824 977 869 -123506219.3988 978 869 10879752.71874 979 869 15277588.21731 980 869 -127090910.6176 981 869 1048931.236148 982 869 14757039.22092 983 869 10868780.57913 870 870 391154149.3294 871 870 -2.026557922363e-06 872 870 2488364.132116 873 870 40072192.7253 874 870 6388888.887839 875 870 5613410.477452 957 870 -36875280.38624 958 870 7638888.891399 959 870 21477318.77125 960 870 -67815699.74408 961 870 2.041459083557e-06 962 870 57072469.49195 963 870 -10820592.87768 964 870 -7638888.891398 965 870 7154402.099879 978 870 -40617347.78861 979 870 -1527777.778279 980 870 -4550096.543467 981 870 -6536047.694301 982 870 -2.086162567139e-07 983 870 -11516358.3887 984 870 9773277.203117 985 870 1527777.778279 986 870 -1685513.209194 871 871 352818789.1659 872 871 63888147.34533 873 871 -6388888.887841 874 871 -20622165.20495 875 871 -32249629.22817 957 871 7638888.891399 958 871 -34583484.18238 959 871 -15399258.17112 960 871 2.004206180573e-06 961 871 -34204373.78147 962 871 7638794.112417 963 871 -7638888.891398 964 871 -8528796.673826 965 871 7760464.058704 978 871 1527777.77828 979 871 -55131214.56832 980 871 -30034627.43839 981 871 4.768371582031e-07 982 871 -15703232.5052 983 871 15277588.21731 984 871 -1527777.77828 985 871 -4740589.576589 986 871 14757039.22107 872 872 584493744.1599 873 872 -6365756.187247 874 872 -31638518.11715 875 872 43323701.58267 957 872 21477318.77125 958 872 -15399258.17112 959 872 -70918718.4916 960 872 57454413.93615 961 872 7638794.112417 962 872 -95624557.03646 963 872 7154402.099879 964 872 7760464.058704 965 872 -1439551.802109 978 872 3913514.570423 979 872 -30034627.43824 980 872 -123506219.3988 981 872 10879752.71874 982 872 15277588.21731 983 872 -127090910.6176 984 872 1048931.236148 985 872 14757039.22092 986 872 10868780.57913 873 873 391154149.3294 874 873 -2.026557922363e-06 875 873 2488364.132116 876 873 40072192.7253 877 873 6388888.887839 878 873 5613410.477452 960 873 -36875280.38624 961 873 7638888.891399 962 873 21477318.77125 963 873 -67815699.74408 964 873 2.041459083557e-06 965 873 57072469.49195 966 873 -10820592.87768 967 873 -7638888.891398 968 873 7154402.099879 981 873 -40617347.78861 982 873 -1527777.778279 983 873 -4550096.543467 984 873 -6536047.694301 985 873 -2.086162567139e-07 986 873 -11516358.3887 987 873 9773277.203117 988 873 1527777.778279 989 873 -1685513.209194 874 874 352818789.1659 875 874 63888147.34533 876 874 -6388888.887841 877 874 -20622165.20495 878 874 -32249629.22817 960 874 7638888.891399 961 874 -34583484.18238 962 874 -15399258.17112 963 874 2.004206180573e-06 964 874 -34204373.78147 965 874 7638794.112417 966 874 -7638888.891398 967 874 -8528796.673826 968 874 7760464.058704 981 874 1527777.77828 982 874 -55131214.56832 983 874 -30034627.43839 984 874 4.768371582031e-07 985 874 -15703232.5052 986 874 15277588.21731 987 874 -1527777.77828 988 874 -4740589.576589 989 874 14757039.22107 875 875 584493744.1599 876 875 -6365756.187247 877 875 -31638518.11715 878 875 43323701.58267 960 875 21477318.77125 961 875 -15399258.17112 962 875 -70918718.4916 963 875 57454413.93615 964 875 7638794.112417 965 875 -95624557.03646 966 875 7154402.099879 967 875 7760464.058704 968 875 -1439551.802109 981 875 3913514.570423 982 875 -30034627.43824 983 875 -123506219.3988 984 875 10879752.71874 985 875 15277588.21731 986 875 -127090910.6176 987 875 1048931.236148 988 875 14757039.22092 989 875 10868780.57913 876 876 368805865.5583 877 876 600413.9845734 878 876 -21068127.21853 879 876 42393842.6661 880 876 -6508114.19792 881 876 -130691.7535722 963 876 -36875280.38624 964 876 7638888.891399 965 876 21477318.77125 966 876 -60781458.00658 967 876 3404183.289861 968 876 51519565.1286 969 876 -20120523.74107 970 876 -7417253.056677 971 876 12996448.10614 984 876 -40617347.78861 985 876 -1527777.778279 986 876 -4550096.543467 987 876 -11601369.55203 988 876 221678.9263838 989 876 -17131637.01904 990 876 -13469946.66151 991 876 -2319720.272684 992 876 3638957.111577 877 877 339022561.8246 878 877 38990819.562 879 877 -19285891.9736 880 877 -19618734.88413 881 877 -6813857.903571 963 877 7638888.891399 964 877 -34583484.18238 965 877 -15399258.17112 966 877 3404183.28986 967 877 -32132456.41324 968 877 -1221690.688151 969 877 -7417253.056677 970 877 -15252522.50252 971 877 11039455.38973 984 877 1527777.77828 985 877 -55131214.56832 986 877 -30034627.43839 987 877 221678.9263841 988 877 -18190823.38574 989 877 9390127.87436 990 877 -5375275.829243 991 877 -28175425.08385 992 877 26225993.03356 878 878 535213861.8177 879 878 -2908469.530896 880 878 -6508302.348066 881 878 88356185.77556 963 878 21477318.77125 964 878 -15399258.17112 965 878 -70918718.4916 966 878 49609842.90663 967 878 -1221690.687148 968 878 -94350105.69262 969 878 12996448.10614 970 878 11039455.38973 971 878 -23503318.69652 984 878 3913514.570423 985 878 -30034627.43824 986 878 -123506219.3988 987 878 5263918.532836 988 878 9390127.87436 989 878 -137859693.4611 990 878 8664790.445306 991 878 26225993.03241 992 878 -39104413.95542 879 879 380111399.5452 880 879 13154777.29419 881 879 5043109.696474 882 879 -38195245.0425 883 879 -35566539.68415 884 879 -1046925.294216 885 879 52825684.13076 886 879 -1478748.159299 887 879 1270918.503642 966 879 -19678307.32513 967 879 5973680.062196 968 879 8212046.515743 969 879 -66802346.00857 970 879 4667669.592741 971 879 55459287.37057 987 879 -24485575.13151 988 879 -5375275.829244 989 879 -10605487.33072 990 879 -49124876.9151 991 879 4192169.39349 992 879 -10562709.25846 993 879 -30912229.02827 994 879 -8683928.935591 995 879 20053820.70261 996 879 -25803993.24156 997 879 -774314.2835916 998 879 4143597.555308 880 880 399639718.9945 881 880 11083533.93817 882 880 -35566539.68415 883 880 -24534452.13025 884 880 -680548.401704 885 880 -14256525.93498 886 880 -8510041.012748 887 880 -2114218.56793 966 880 5973680.062196 967 880 -29647503.68042 968 880 -18377271.74076 969 880 4667669.59274 970 880 -38417465.63183 971 880 -4277757.90847 987 880 -2319720.272685 988 880 -39191053.55385 989 880 -29503173.62402 990 880 4192169.39349 991 880 -41616248.08588 992 880 2859416.535212 993 880 -8683928.935591 994 880 -27424598.87467 995 880 16496735.37374 996 880 -3829869.84015 997 880 -40510457.82348 998 880 32802051.3643 881 881 622335345.1548 882 881 -1046925.294216 883 881 -680548.4017041 884 881 44445337.36111 885 881 90362.94827753 886 881 -2114218.56793 887 881 124646765.8875 966 881 8212046.515743 967 881 -18377271.74076 968 881 -38087488.57717 969 881 55459287.37019 970 881 -4277757.907468 971 881 -132026758.6745 987 881 -4433820.663462 988 881 -29503173.62502 989 881 -68479423.20874 990 881 11416179.62681 991 881 2859416.535213 992 881 -223309439.3091 993 881 20053820.70261 994 881 16496735.37374 995 881 -45872668.74596 996 881 9343319.780678 997 881 32802051.3643 998 881 -70377095.21823 882 882 234270043.8785 883 882 38565188.36471 884 882 585934.4949026 885 882 735926.9097565 886 882 -2766793.642892 887 882 572388.2578264 969 882 -29485802.42768 970 882 -350290.3345662 971 882 -2760814.77204 990 882 -32162229.02869 991 882 -8683928.935592 992 882 -20571179.31073 993 882 -38762530.87567 994 882 9516957.004243 995 882 8271694.402195 996 882 -42487619.48068 997 882 -482737.734086 998 882 -33689700.31943 883 883 218536430.6391 884 883 607975.0375481 885 883 10010984.13279 886 883 64939717.31805 887 883 680548.401706 969 883 -3405845.891125 970 883 -44334517.47785 971 883 -33481776.55758 990 883 -8683928.935592 991 883 -28674598.8751 992 883 -16836597.97054 993 883 9516957.004243 994 883 -42533607.49829 995 883 6815109.89529 996 883 2572817.822473 997 883 -27355457.96149 998 883 3503264.632831 884 884 390867135.2015 885 884 190443.8134477 886 884 680548.401706 887 884 141166619.7936 969 884 -10885814.77346 970 884 -33481776.55758 971 884 -90343492.86596 990 884 -20571179.31073 991 884 -16836597.97054 992 884 -49206002.08042 993 884 -7978305.595135 994 884 -6518223.435853 995 884 -159924632.0765 996 884 -33689700.32068 997 884 -3163402.036025 998 884 -81587691.14437 885 885 195388756.0715 886 885 -24076807.39206 887 885 2849451.866921 969 885 -22136441.98836 970 885 6593848.847203 971 885 13695487.3672 990 885 -29553993.24035 991 885 -3829869.840151 992 885 -9718902.442414 993 885 -42487619.48068 994 885 2572817.822474 995 885 33888771.89179 996 885 -32072854.387 997 885 -5336796.829526 998 885 -5139245.705715 886 886 201240598.1223 887 886 2114218.567935 969 886 6593848.847203 970 886 -24914928.73497 971 886 -16836597.97054 990 886 -774314.283592 991 886 -44260457.82227 992 886 -33864615.29142 993 886 -482737.7340849 994 886 -27355457.96149 995 886 3503264.632831 996 886 -5336796.829526 997 886 -29720064.57765 998 886 7197948.62913 887 887 333817503.3118 969 887 13695487.3672 970 887 -16836597.97054 971 887 -45446331.9403 990 887 -4137235.77266 991 887 -33864615.29142 992 887 -80377095.215 993 887 33888771.89035 994 887 -3163402.036025 995 887 -81587691.14436 996 887 5642143.181403 997 887 -6135384.702013 998 887 -129257972.624 888 888 484267631.2317 889 888 30555555.55053 890 888 -29327125.67035 891 888 -126348953.9595 892 888 -30574536.11578 893 888 29308540.81618 894 888 -1130543.633331 895 888 24463425.00568 896 888 23698547.70003 999 888 -2535056.171221 1000 888 7638888.891397 1001 888 2916127.642058 1002 888 -61266506.56961 1003 888 -7643634.032713 1004 888 -48493965.33591 1005 888 6429332.410642 1006 888 6115856.254433 1007 888 -5472930.844082 889 889 438410352.8514 890 889 76423912.27372 891 889 -30584026.39841 892 889 17322849.63857 893 889 42340370.58254 894 889 36695137.50852 895 889 -1130543.633336 896 889 -26604449.03234 999 889 7638888.891396 1000 889 -13999375.77193 1001 889 27304194.09764 1002 889 -7646006.603371 1003 889 -25348555.65241 1004 889 -585233.2815705 1005 889 9173784.381649 1006 889 6429332.410642 1007 889 6567824.782935 890 890 742817650.6667 891 890 29299248.38909 892 890 34083332.0161 893 890 113817630.1747 894 890 35547821.55005 895 890 -17736299.3549 896 890 -3014783.022215 999 890 -19488671.82916 1000 890 9380576.980452 1001 890 -143900824.6786 1002 890 -48878084.71163 1003 890 -2722347.244235 1004 890 -50690307.28013 1005 890 -8209396.266123 1006 890 4378549.855291 1007 890 17144886.42838 891 891 754814074.6264 892 891 30603006.96366 893 891 -34373319.31429 894 891 31201368.0013 895 891 -30574536.11579 896 891 -29746017.20074 897 891 -60726571.61129 898 891 6.407499313354e-07 899 891 5092655.779359 900 891 -44447793.81348 901 891 30555555.55054 902 891 29728025.052 999 891 -88160408.62987 1000 891 -7646006.603366 1001 891 63145912.64445 1002 891 3615653.321898 1003 891 7650751.744684 1004 891 -8598044.452827 1005 891 3117023.124192 1006 891 -7643634.032712 1007 891 6521862.080229 1008 891 -61096866.41184 1009 891 -1.631677150726e-06 1010 891 -54526141.60101 1011 891 -10000259.54407 1012 891 7638888.891397 1013 891 -6517820.126831 892 892 672288057.0206 893 892 94722479.88535 894 892 -30584026.39841 895 892 -75780342.02739 896 892 -50736841.1372 897 892 8.642673492432e-07 898 892 73718732.1729 899 892 30555176.43462 900 892 30555555.55054 901 892 -35280609.00258 902 892 -16652588.21716 999 892 -7643634.032709 1000 892 -52242457.71267 1001 892 19687387.29713 1002 892 7650751.744683 1003 892 -17015851.08971 1004 892 23676848.33746 1005 892 -7646006.603369 1006 892 -23628404.39615 1007 892 31972114.21773 1008 892 -1.691281795502e-06 1009 892 -27485540.44924 1010 892 7638794.112417 1011 892 7638888.891397 1012 892 -7708463.340222 1013 892 6996575.169565 893 893 1025629032.871 894 893 -30136957.7193 895 893 -59299198.1827 896 893 71356723.1218 897 893 5092655.779359 898 893 30555176.43462 899 893 178931711.3263 900 893 30109969.49619 901 893 -16958143.77251 902 893 -8866000.069825 999 893 63530032.02016 1000 893 21831451.86013 1001 893 -122407379.4408 1002 893 -8589356.089042 1003 893 23683798.94222 1004 893 -237160382.7964 1005 893 6523883.056929 1006 893 30136961.89646 1007 893 5350330.44263 1008 893 -54908086.04521 1009 893 7638794.112417 1010 893 -77707668.15051 1011 893 -6517820.126831 1012 893 6996575.169565 1013 893 748003.7541653 894 894 484267631.2317 895 894 30555555.55053 896 894 -29327125.67035 897 894 -41010293.81404 898 894 -30555555.55054 899 894 -27563641.60526 900 894 -126348953.9595 901 894 -30574536.11578 902 894 29308540.81618 903 894 -1130543.633331 904 894 24463425.00568 905 894 23698547.70003 999 894 -44000691.65356 1000 894 9173784.381649 1001 894 25410834.91903 1002 894 -74169151.35949 1003 894 -7646006.603371 1004 894 -21497320.34861 1005 894 -2535056.171221 1006 894 7638888.891397 1007 894 2916127.642058 1008 894 -34336197.05207 1009 894 -7638888.891398 1010 894 -20840736.7982 1011 894 -61266506.56961 1012 894 -7643634.032713 1013 894 -48493965.33591 1014 894 6429332.410642 1015 894 6115856.254433 1016 894 -5472930.844082 895 895 438410352.8514 896 895 76423912.27372 897 895 -30555555.55054 898 895 -31843109.00315 899 895 -13902588.21746 900 895 -30584026.39841 901 895 17322849.63857 902 895 42340370.58254 903 895 36695137.50852 904 895 -1130543.633336 905 895 -26604449.03234 999 895 6115856.254433 1000 895 -44000691.65356 1001 895 -13552018.01794 1002 895 -7643634.032713 1003 895 -100914578.8798 1004 895 -59481123.99205 1005 895 7638888.891396 1006 895 -13999375.77193 1007 895 27304194.09764 1008 895 -7638888.891398 1009 895 -32044400.84822 1010 895 -14635369.28198 1011 895 -7646006.603371 1012 895 -25348555.65241 1013 895 -585233.2815705 1014 895 9173784.381649 1015 895 6429332.410642 1016 895 6567824.782935 896 896 742817650.6667 897 896 -27181697.16107 898 896 -13597032.66211 899 896 300666.5953339 900 896 29299248.38909 901 896 34083332.0161 902 896 113817630.1747 903 896 35547821.55005 904 896 -17736299.3549 905 896 -3014783.022215 999 896 16940556.61269 1000 896 -20328027.02691 1001 896 -117335177.7428 1002 896 -21490653.15616 1003 896 -57645971.82207 1004 896 -200746134.8472 1005 896 -19488671.82916 1006 896 9380576.980452 1007 896 -143900824.6786 1008 896 -20840736.7982 1009 896 -14635369.28198 1010 896 -64147829.60048 1011 896 -48878084.71163 1012 896 -2722347.244235 1013 896 -50690307.28013 1014 896 -8209396.266123 1015 896 4378549.855291 1016 896 17144886.42838 897 897 736105860.3775 898 897 -2.98023223877e-07 899 897 -10185311.55874 900 897 73722278.29235 901 897 -3.725290298462e-07 902 897 -2546327.890939 906 897 -60726571.61129 907 897 6.407499313354e-07 908 897 5092655.779359 909 897 -44447793.81348 910 897 30555555.55054 911 897 29728025.052 1002 897 -67815699.74408 1003 897 2.041459083557e-06 1004 897 57072469.49195 1005 897 -10820592.87768 1006 897 -7638888.891398 1007 897 7154402.099879 1008 897 -12957512.05534 1009 897 5.960464477539e-08 1010 897 -2546327.890928 1011 897 19546554.40623 1012 897 -1.84029340744e-06 1013 897 -636581.9730468 1017 897 -61096866.41184 1018 897 -1.631677150726e-06 1019 897 -54526141.60101 1020 897 -10000259.54407 1021 897 7638888.891397 1022 897 -6517820.126831 898 898 662768381.9265 899 898 122220705.6783 900 898 -2.682209014893e-07 901 898 -42388655.88811 902 898 -61110352.83913 906 898 8.642673492432e-07 907 898 73718732.1729 908 898 30555176.43462 909 898 30555555.55054 910 898 -35280609.00258 911 898 -16652588.21716 1002 898 2.004206180573e-06 1003 898 -34204373.78147 1004 898 7638794.112417 1005 898 -7638888.891398 1006 898 -8528796.673826 1007 898 7760464.058704 1008 898 2.98023223877e-08 1009 898 -31291881.67713 1010 898 30555176.43461 1011 898 -1.668930053711e-06 1012 898 -9481179.15318 1013 898 29361300.66432 1017 898 -1.691281795502e-06 1018 898 -27485540.44924 1019 898 7638794.112417 1020 898 7638888.891397 1021 898 -7708463.340222 1022 898 6996575.169565 899 899 1085657360.643 900 899 -2546327.890939 901 899 -61110352.83913 902 899 75046406.47269 906 899 5092655.779359 907 899 30555176.43462 908 899 178931711.3263 909 899 30109969.49619 910 899 -16958143.77251 911 899 -8866000.069825 1002 899 57454413.93615 1003 899 7638794.112417 1004 899 -95624557.03646 1005 899 7154402.099879 1006 899 7760464.058704 1007 899 -1439551.802109 1008 899 -2546327.890927 1009 899 30555176.43461 1010 899 -253876265.6798 1011 899 -636581.9730468 1012 899 29666856.21968 1013 899 21737561.15826 1017 899 -54908086.04521 1018 899 7638794.112417 1019 899 -77707668.15051 1020 899 -6517820.126831 1021 899 6996575.169565 1022 899 748003.7541653 900 900 754814074.6264 901 900 30603006.96366 902 900 -34373319.31429 903 900 31201368.0013 904 900 -30574536.11579 905 900 -29746017.20074 906 900 -41010293.81404 907 900 -30555555.55054 908 900 -27563641.60526 909 900 -60726571.61129 910 900 6.407499313354e-07 911 900 5092655.779359 912 900 -44447793.81348 913 900 30555555.55054 914 900 29728025.052 1002 900 -36875280.38624 1003 900 7638888.891399 1004 900 21477318.77125 1005 900 -88160408.62987 1006 900 -7646006.603366 1007 900 63145912.64445 1008 900 -81234695.57722 1009 900 1.624226570129e-06 1010 900 -636581.9730444 1011 900 3615653.321898 1012 900 7650751.744684 1013 900 -8598044.452827 1014 900 3117023.124192 1015 900 -7643634.032712 1016 900 6521862.080229 1017 900 -34336197.05207 1018 900 -7638888.891398 1019 900 -20840736.7982 1020 900 -61096866.41184 1021 900 -1.631677150726e-06 1022 900 -54526141.60101 1023 900 -10000259.54407 1024 900 7638888.891397 1025 900 -6517820.126831 901 901 672288057.0206 902 901 94722479.88535 903 901 -30584026.39841 904 901 -75780342.02739 905 901 -50736841.1372 906 901 -30555555.55054 907 901 -31843109.00315 908 901 -13902588.21746 909 901 8.642673492432e-07 910 901 73718732.1729 911 901 30555176.43462 912 901 30555555.55054 913 901 -35280609.00258 914 901 -16652588.21716 1002 901 7638888.891399 1003 901 -34583484.18238 1004 901 -15399258.17112 1005 901 -7643634.032709 1006 901 -52242457.71267 1007 901 19687387.29713 1008 901 1.564621925354e-06 1009 901 -110262429.1366 1010 901 -59916477.09895 1011 901 7650751.744683 1012 901 -17015851.08971 1013 901 23676848.33746 1014 901 -7646006.603369 1015 901 -23628404.39615 1016 901 31972114.21773 1017 901 -7638888.891398 1018 901 -32044400.84822 1019 901 -14635369.28198 1020 901 -1.691281795502e-06 1021 901 -27485540.44924 1022 901 7638794.112417 1023 901 7638888.891397 1024 901 -7708463.340222 1025 901 6996575.169565 902 902 1025629032.871 903 902 -30136957.7193 904 902 -59299198.1827 905 902 71356723.1218 906 902 -27181697.16107 907 902 -13597032.66211 908 902 300666.5953339 909 902 5092655.779359 910 902 30555176.43462 911 902 178931711.3263 912 902 30109969.49619 913 902 -16958143.77251 914 902 -8866000.069825 1002 902 21477318.77125 1003 902 -15399258.17112 1004 902 -70918718.4916 1005 902 63530032.02016 1006 902 21831451.86013 1007 902 -122407379.4408 1008 902 -636581.9730439 1009 902 -60222032.6543 1010 902 -247012438.7976 1011 902 -8589356.089042 1012 902 23683798.94222 1013 902 -237160382.7964 1014 902 6523883.056929 1015 902 30136961.89646 1016 902 5350330.44263 1017 902 -20840736.7982 1018 902 -14635369.28198 1019 902 -64147829.60048 1020 902 -54908086.04521 1021 902 7638794.112417 1022 902 -77707668.15051 1023 902 -6517820.126831 1024 902 6996575.169565 1025 902 748003.7541653 903 903 484267631.2317 904 903 30555555.55053 905 903 -29327125.67035 909 903 -41010293.81404 910 903 -30555555.55054 911 903 -27563641.60526 912 903 -126348953.9595 913 903 -30574536.11578 914 903 29308540.81618 915 903 -1130543.633331 916 903 24463425.00568 917 903 23698547.70003 1005 903 -44000691.65356 1006 903 9173784.381649 1007 903 25410834.91903 1011 903 -74169151.35949 1012 903 -7646006.603371 1013 903 -21497320.34861 1014 903 -2535056.171221 1015 903 7638888.891397 1016 903 2916127.642058 1020 903 -34336197.05207 1021 903 -7638888.891398 1022 903 -20840736.7982 1023 903 -61266506.56961 1024 903 -7643634.032713 1025 903 -48493965.33591 1026 903 6429332.410642 1027 903 6115856.254433 1028 903 -5472930.844082 904 904 438410352.8514 905 904 76423912.27372 909 904 -30555555.55054 910 904 -31843109.00315 911 904 -13902588.21746 912 904 -30584026.39841 913 904 17322849.63857 914 904 42340370.58254 915 904 36695137.50852 916 904 -1130543.633336 917 904 -26604449.03234 1005 904 6115856.254433 1006 904 -44000691.65356 1007 904 -13552018.01794 1011 904 -7643634.032713 1012 904 -100914578.8798 1013 904 -59481123.99205 1014 904 7638888.891396 1015 904 -13999375.77193 1016 904 27304194.09764 1020 904 -7638888.891398 1021 904 -32044400.84822 1022 904 -14635369.28198 1023 904 -7646006.603371 1024 904 -25348555.65241 1025 904 -585233.2815705 1026 904 9173784.381649 1027 904 6429332.410642 1028 904 6567824.782935 905 905 742817650.6667 909 905 -27181697.16107 910 905 -13597032.66211 911 905 300666.5953339 912 905 29299248.38909 913 905 34083332.0161 914 905 113817630.1747 915 905 35547821.55005 916 905 -17736299.3549 917 905 -3014783.022215 1005 905 16940556.61269 1006 905 -20328027.02691 1007 905 -117335177.7428 1011 905 -21490653.15616 1012 905 -57645971.82207 1013 905 -200746134.8472 1014 905 -19488671.82916 1015 905 9380576.980452 1016 905 -143900824.6786 1020 905 -20840736.7982 1021 905 -14635369.28198 1022 905 -64147829.60048 1023 905 -48878084.71163 1024 905 -2722347.244235 1025 905 -50690307.28013 1026 905 -8209396.266123 1027 905 4378549.855291 1028 905 17144886.42838 906 906 736105860.3775 907 906 -2.98023223877e-07 908 906 -10185311.55874 909 906 73722278.29235 910 906 -3.725290298462e-07 911 906 -2546327.890939 918 906 -60726571.61129 919 906 6.407499313354e-07 920 906 5092655.779359 921 906 -44447793.81348 922 906 30555555.55054 923 906 29728025.052 1008 906 -67815699.74408 1009 906 2.041459083557e-06 1010 906 57072469.49195 1011 906 -10820592.87768 1012 906 -7638888.891398 1013 906 7154402.099879 1017 906 -12957512.05534 1018 906 5.960464477539e-08 1019 906 -2546327.890928 1020 906 19546554.40623 1021 906 -1.84029340744e-06 1022 906 -636581.9730468 1029 906 -61096866.41184 1030 906 -1.631677150726e-06 1031 906 -54526141.60101 1032 906 -10000259.54407 1033 906 7638888.891397 1034 906 -6517820.126831 907 907 662768381.9265 908 907 122220705.6783 909 907 -2.682209014893e-07 910 907 -42388655.88811 911 907 -61110352.83913 918 907 8.642673492432e-07 919 907 73718732.1729 920 907 30555176.43462 921 907 30555555.55054 922 907 -35280609.00258 923 907 -16652588.21716 1008 907 2.004206180573e-06 1009 907 -34204373.78147 1010 907 7638794.112417 1011 907 -7638888.891398 1012 907 -8528796.673826 1013 907 7760464.058704 1017 907 2.98023223877e-08 1018 907 -31291881.67713 1019 907 30555176.43461 1020 907 -1.668930053711e-06 1021 907 -9481179.15318 1022 907 29361300.66432 1029 907 -1.691281795502e-06 1030 907 -27485540.44924 1031 907 7638794.112417 1032 907 7638888.891397 1033 907 -7708463.340222 1034 907 6996575.169565 908 908 1085657360.643 909 908 -2546327.890939 910 908 -61110352.83913 911 908 75046406.47269 918 908 5092655.779359 919 908 30555176.43462 920 908 178931711.3263 921 908 30109969.49619 922 908 -16958143.77251 923 908 -8866000.069825 1008 908 57454413.93615 1009 908 7638794.112417 1010 908 -95624557.03646 1011 908 7154402.099879 1012 908 7760464.058704 1013 908 -1439551.802109 1017 908 -2546327.890927 1018 908 30555176.43461 1019 908 -253876265.6798 1020 908 -636581.9730468 1021 908 29666856.21968 1022 908 21737561.15826 1029 908 -54908086.04521 1030 908 7638794.112417 1031 908 -77707668.15051 1032 908 -6517820.126831 1033 908 6996575.169565 1034 908 748003.7541653 909 909 736105860.3775 910 909 -2.98023223877e-07 911 909 -10185311.55874 912 909 73722278.29235 913 909 -3.725290298462e-07 914 909 -2546327.890939 918 909 -41010293.81404 919 909 -30555555.55054 920 909 -27563641.60526 921 909 -60726571.61129 922 909 6.407499313354e-07 923 909 5092655.779359 924 909 -44447793.81348 925 909 30555555.55054 926 909 29728025.052 1008 909 -36875280.38624 1009 909 7638888.891399 1010 909 21477318.77125 1011 909 -67815699.74408 1012 909 2.041459083557e-06 1013 909 57072469.49195 1014 909 -10820592.87768 1015 909 -7638888.891398 1016 909 7154402.099879 1017 909 -81234695.57722 1018 909 1.624226570129e-06 1019 909 -636581.9730444 1020 909 -12957512.05534 1021 909 5.960464477539e-08 1022 909 -2546327.890928 1023 909 19546554.40623 1024 909 -1.84029340744e-06 1025 909 -636581.9730468 1029 909 -34336197.05207 1030 909 -7638888.891398 1031 909 -20840736.7982 1032 909 -61096866.41184 1033 909 -1.631677150726e-06 1034 909 -54526141.60101 1035 909 -10000259.54407 1036 909 7638888.891397 1037 909 -6517820.126831 910 910 662768381.9265 911 910 122220705.6783 912 910 -2.682209014893e-07 913 910 -42388655.88811 914 910 -61110352.83913 918 910 -30555555.55054 919 910 -31843109.00315 920 910 -13902588.21746 921 910 8.642673492432e-07 922 910 73718732.1729 923 910 30555176.43462 924 910 30555555.55054 925 910 -35280609.00258 926 910 -16652588.21716 1008 910 7638888.891399 1009 910 -34583484.18238 1010 910 -15399258.17112 1011 910 2.004206180573e-06 1012 910 -34204373.78147 1013 910 7638794.112417 1014 910 -7638888.891398 1015 910 -8528796.673826 1016 910 7760464.058704 1017 910 1.564621925354e-06 1018 910 -110262429.1366 1019 910 -59916477.09895 1020 910 2.98023223877e-08 1021 910 -31291881.67713 1022 910 30555176.43461 1023 910 -1.668930053711e-06 1024 910 -9481179.15318 1025 910 29361300.66432 1029 910 -7638888.891398 1030 910 -32044400.84822 1031 910 -14635369.28198 1032 910 -1.691281795502e-06 1033 910 -27485540.44924 1034 910 7638794.112417 1035 910 7638888.891397 1036 910 -7708463.340222 1037 910 6996575.169565 911 911 1085657360.643 912 911 -2546327.890939 913 911 -61110352.83913 914 911 75046406.47269 918 911 -27181697.16107 919 911 -13597032.66211 920 911 300666.5953339 921 911 5092655.779359 922 911 30555176.43462 923 911 178931711.3263 924 911 30109969.49619 925 911 -16958143.77251 926 911 -8866000.069825 1008 911 21477318.77125 1009 911 -15399258.17112 1010 911 -70918718.4916 1011 911 57454413.93615 1012 911 7638794.112417 1013 911 -95624557.03646 1014 911 7154402.099879 1015 911 7760464.058704 1016 911 -1439551.802109 1017 911 -636581.9730439 1018 911 -60222032.6543 1019 911 -247012438.7976 1020 911 -2546327.890927 1021 911 30555176.43461 1022 911 -253876265.6798 1023 911 -636581.9730468 1024 911 29666856.21968 1025 911 21737561.15826 1029 911 -20840736.7982 1030 911 -14635369.28198 1031 911 -64147829.60048 1032 911 -54908086.04521 1033 911 7638794.112417 1034 911 -77707668.15051 1035 911 -6517820.126831 1036 911 6996575.169565 1037 911 748003.7541653 912 912 754814074.6264 913 912 30603006.96366 914 912 -34373319.31429 915 912 31201368.0013 916 912 -30574536.11579 917 912 -29746017.20074 921 912 -41010293.81404 922 912 -30555555.55054 923 912 -27563641.60526 924 912 -60726571.61129 925 912 6.407499313354e-07 926 912 5092655.779359 927 912 -44447793.81348 928 912 30555555.55054 929 912 29728025.052 1011 912 -36875280.38624 1012 912 7638888.891399 1013 912 21477318.77125 1014 912 -88160408.62987 1015 912 -7646006.603366 1016 912 63145912.64445 1020 912 -81234695.57722 1021 912 1.624226570129e-06 1022 912 -636581.9730444 1023 912 3615653.321898 1024 912 7650751.744684 1025 912 -8598044.452827 1026 912 3117023.124192 1027 912 -7643634.032712 1028 912 6521862.080229 1032 912 -34336197.05207 1033 912 -7638888.891398 1034 912 -20840736.7982 1035 912 -61096866.41184 1036 912 -1.631677150726e-06 1037 912 -54526141.60101 1038 912 -10000259.54407 1039 912 7638888.891397 1040 912 -6517820.126831 913 913 672288057.0206 914 913 94722479.88535 915 913 -30584026.39841 916 913 -75780342.02739 917 913 -50736841.1372 921 913 -30555555.55054 922 913 -31843109.00315 923 913 -13902588.21746 924 913 8.642673492432e-07 925 913 73718732.1729 926 913 30555176.43462 927 913 30555555.55054 928 913 -35280609.00258 929 913 -16652588.21716 1011 913 7638888.891399 1012 913 -34583484.18238 1013 913 -15399258.17112 1014 913 -7643634.032709 1015 913 -52242457.71267 1016 913 19687387.29713 1020 913 1.564621925354e-06 1021 913 -110262429.1366 1022 913 -59916477.09895 1023 913 7650751.744683 1024 913 -17015851.08971 1025 913 23676848.33746 1026 913 -7646006.603369 1027 913 -23628404.39615 1028 913 31972114.21773 1032 913 -7638888.891398 1033 913 -32044400.84822 1034 913 -14635369.28198 1035 913 -1.691281795502e-06 1036 913 -27485540.44924 1037 913 7638794.112417 1038 913 7638888.891397 1039 913 -7708463.340222 1040 913 6996575.169565 914 914 1025629032.871 915 914 -30136957.7193 916 914 -59299198.1827 917 914 71356723.1218 921 914 -27181697.16107 922 914 -13597032.66211 923 914 300666.5953339 924 914 5092655.779359 925 914 30555176.43462 926 914 178931711.3263 927 914 30109969.49619 928 914 -16958143.77251 929 914 -8866000.069825 1011 914 21477318.77125 1012 914 -15399258.17112 1013 914 -70918718.4916 1014 914 63530032.02016 1015 914 21831451.86013 1016 914 -122407379.4408 1020 914 -636581.9730439 1021 914 -60222032.6543 1022 914 -247012438.7976 1023 914 -8589356.089042 1024 914 23683798.94222 1025 914 -237160382.7964 1026 914 6523883.056929 1027 914 30136961.89646 1028 914 5350330.44263 1032 914 -20840736.7982 1033 914 -14635369.28198 1034 914 -64147829.60048 1035 914 -54908086.04521 1036 914 7638794.112417 1037 914 -77707668.15051 1038 914 -6517820.126831 1039 914 6996575.169565 1040 914 748003.7541653 915 915 484267631.2317 916 915 30555555.55053 917 915 -29327125.67035 924 915 -41010293.81404 925 915 -30555555.55054 926 915 -27563641.60526 927 915 -126348953.9595 928 915 -30574536.11578 929 915 29308540.81618 930 915 -1130543.633331 931 915 24463425.00568 932 915 23698547.70003 1014 915 -44000691.65356 1015 915 9173784.381649 1016 915 25410834.91903 1023 915 -74169151.35949 1024 915 -7646006.603371 1025 915 -21497320.34861 1026 915 -2535056.171221 1027 915 7638888.891397 1028 915 2916127.642058 1035 915 -34336197.05207 1036 915 -7638888.891398 1037 915 -20840736.7982 1038 915 -61266506.56961 1039 915 -7643634.032713 1040 915 -48493965.33591 1041 915 6429332.410642 1042 915 6115856.254433 1043 915 -5472930.844082 916 916 438410352.8514 917 916 76423912.27372 924 916 -30555555.55054 925 916 -31843109.00315 926 916 -13902588.21746 927 916 -30584026.39841 928 916 17322849.63857 929 916 42340370.58254 930 916 36695137.50852 931 916 -1130543.633336 932 916 -26604449.03234 1014 916 6115856.254433 1015 916 -44000691.65356 1016 916 -13552018.01794 1023 916 -7643634.032713 1024 916 -100914578.8798 1025 916 -59481123.99205 1026 916 7638888.891396 1027 916 -13999375.77193 1028 916 27304194.09764 1035 916 -7638888.891398 1036 916 -32044400.84822 1037 916 -14635369.28198 1038 916 -7646006.603371 1039 916 -25348555.65241 1040 916 -585233.2815705 1041 916 9173784.381649 1042 916 6429332.410642 1043 916 6567824.782935 917 917 742817650.6667 924 917 -27181697.16107 925 917 -13597032.66211 926 917 300666.5953339 927 917 29299248.38909 928 917 34083332.0161 929 917 113817630.1747 930 917 35547821.55005 931 917 -17736299.3549 932 917 -3014783.022215 1014 917 16940556.61269 1015 917 -20328027.02691 1016 917 -117335177.7428 1023 917 -21490653.15616 1024 917 -57645971.82207 1025 917 -200746134.8472 1026 917 -19488671.82916 1027 917 9380576.980452 1028 917 -143900824.6786 1035 917 -20840736.7982 1036 917 -14635369.28198 1037 917 -64147829.60048 1038 917 -48878084.71163 1039 917 -2722347.244235 1040 917 -50690307.28013 1041 917 -8209396.266123 1042 917 4378549.855291 1043 917 17144886.42838 918 918 736105860.3775 919 918 -2.98023223877e-07 920 918 -10185311.55874 921 918 73722278.29235 922 918 -3.725290298462e-07 923 918 -2546327.890939 933 918 -60726571.61129 934 918 6.407499313354e-07 935 918 5092655.779359 936 918 -44447793.81348 937 918 30555555.55054 938 918 29728025.052 1017 918 -67815699.74408 1018 918 2.041459083557e-06 1019 918 57072469.49195 1020 918 -10820592.87768 1021 918 -7638888.891398 1022 918 7154402.099879 1029 918 -12957512.05534 1030 918 5.960464477539e-08 1031 918 -2546327.890928 1032 918 19546554.40623 1033 918 -1.84029340744e-06 1034 918 -636581.9730468 1044 918 -61096866.41184 1045 918 -1.631677150726e-06 1046 918 -54526141.60101 1047 918 -10000259.54407 1048 918 7638888.891397 1049 918 -6517820.126831 919 919 662768381.9265 920 919 122220705.6783 921 919 -2.682209014893e-07 922 919 -42388655.88811 923 919 -61110352.83913 933 919 8.642673492432e-07 934 919 73718732.1729 935 919 30555176.43462 936 919 30555555.55054 937 919 -35280609.00258 938 919 -16652588.21716 1017 919 2.004206180573e-06 1018 919 -34204373.78147 1019 919 7638794.112417 1020 919 -7638888.891398 1021 919 -8528796.673826 1022 919 7760464.058704 1029 919 2.98023223877e-08 1030 919 -31291881.67713 1031 919 30555176.43461 1032 919 -1.668930053711e-06 1033 919 -9481179.15318 1034 919 29361300.66432 1044 919 -1.691281795502e-06 1045 919 -27485540.44924 1046 919 7638794.112417 1047 919 7638888.891397 1048 919 -7708463.340222 1049 919 6996575.169565 920 920 1085657360.643 921 920 -2546327.890939 922 920 -61110352.83913 923 920 75046406.47269 933 920 5092655.779359 934 920 30555176.43462 935 920 178931711.3263 936 920 30109969.49619 937 920 -16958143.77251 938 920 -8866000.069825 1017 920 57454413.93615 1018 920 7638794.112417 1019 920 -95624557.03646 1020 920 7154402.099879 1021 920 7760464.058704 1022 920 -1439551.802109 1029 920 -2546327.890927 1030 920 30555176.43461 1031 920 -253876265.6798 1032 920 -636581.9730468 1033 920 29666856.21968 1034 920 21737561.15826 1044 920 -54908086.04521 1045 920 7638794.112417 1046 920 -77707668.15051 1047 920 -6517820.126831 1048 920 6996575.169565 1049 920 748003.7541653 921 921 736105860.3775 922 921 -2.98023223877e-07 923 921 -10185311.55874 924 921 73722278.29235 925 921 -3.725290298462e-07 926 921 -2546327.890939 933 921 -41010293.81404 934 921 -30555555.55054 935 921 -27563641.60526 936 921 -60726571.61129 937 921 6.407499313354e-07 938 921 5092655.779359 939 921 -44447793.81348 940 921 30555555.55054 941 921 29728025.052 1017 921 -36875280.38624 1018 921 7638888.891399 1019 921 21477318.77125 1020 921 -67815699.74408 1021 921 2.041459083557e-06 1022 921 57072469.49195 1023 921 -10820592.87768 1024 921 -7638888.891398 1025 921 7154402.099879 1029 921 -81234695.57722 1030 921 1.624226570129e-06 1031 921 -636581.9730444 1032 921 -12957512.05534 1033 921 5.960464477539e-08 1034 921 -2546327.890928 1035 921 19546554.40623 1036 921 -1.84029340744e-06 1037 921 -636581.9730468 1044 921 -34336197.05207 1045 921 -7638888.891398 1046 921 -20840736.7982 1047 921 -61096866.41184 1048 921 -1.631677150726e-06 1049 921 -54526141.60101 1050 921 -10000259.54407 1051 921 7638888.891397 1052 921 -6517820.126831 922 922 662768381.9265 923 922 122220705.6783 924 922 -2.682209014893e-07 925 922 -42388655.88811 926 922 -61110352.83913 933 922 -30555555.55054 934 922 -31843109.00315 935 922 -13902588.21746 936 922 8.642673492432e-07 937 922 73718732.1729 938 922 30555176.43462 939 922 30555555.55054 940 922 -35280609.00258 941 922 -16652588.21716 1017 922 7638888.891399 1018 922 -34583484.18238 1019 922 -15399258.17112 1020 922 2.004206180573e-06 1021 922 -34204373.78147 1022 922 7638794.112417 1023 922 -7638888.891398 1024 922 -8528796.673826 1025 922 7760464.058704 1029 922 1.564621925354e-06 1030 922 -110262429.1366 1031 922 -59916477.09895 1032 922 2.98023223877e-08 1033 922 -31291881.67713 1034 922 30555176.43461 1035 922 -1.668930053711e-06 1036 922 -9481179.15318 1037 922 29361300.66432 1044 922 -7638888.891398 1045 922 -32044400.84822 1046 922 -14635369.28198 1047 922 -1.691281795502e-06 1048 922 -27485540.44924 1049 922 7638794.112417 1050 922 7638888.891397 1051 922 -7708463.340222 1052 922 6996575.169565 923 923 1085657360.643 924 923 -2546327.890939 925 923 -61110352.83913 926 923 75046406.47269 933 923 -27181697.16107 934 923 -13597032.66211 935 923 300666.5953339 936 923 5092655.779359 937 923 30555176.43462 938 923 178931711.3263 939 923 30109969.49619 940 923 -16958143.77251 941 923 -8866000.069825 1017 923 21477318.77125 1018 923 -15399258.17112 1019 923 -70918718.4916 1020 923 57454413.93615 1021 923 7638794.112417 1022 923 -95624557.03646 1023 923 7154402.099879 1024 923 7760464.058704 1025 923 -1439551.802109 1029 923 -636581.9730439 1030 923 -60222032.6543 1031 923 -247012438.7976 1032 923 -2546327.890927 1033 923 30555176.43461 1034 923 -253876265.6798 1035 923 -636581.9730468 1036 923 29666856.21968 1037 923 21737561.15826 1044 923 -20840736.7982 1045 923 -14635369.28198 1046 923 -64147829.60048 1047 923 -54908086.04521 1048 923 7638794.112417 1049 923 -77707668.15051 1050 923 -6517820.126831 1051 923 6996575.169565 1052 923 748003.7541653 924 924 736105860.3775 925 924 -2.98023223877e-07 926 924 -10185311.55874 927 924 73722278.29235 928 924 -3.725290298462e-07 929 924 -2546327.890939 936 924 -41010293.81404 937 924 -30555555.55054 938 924 -27563641.60526 939 924 -60726571.61129 940 924 6.407499313354e-07 941 924 5092655.779359 942 924 -44447793.81348 943 924 30555555.55054 944 924 29728025.052 1020 924 -36875280.38624 1021 924 7638888.891399 1022 924 21477318.77125 1023 924 -67815699.74408 1024 924 2.041459083557e-06 1025 924 57072469.49195 1026 924 -10820592.87768 1027 924 -7638888.891398 1028 924 7154402.099879 1032 924 -81234695.57722 1033 924 1.624226570129e-06 1034 924 -636581.9730444 1035 924 -12957512.05534 1036 924 5.960464477539e-08 1037 924 -2546327.890928 1038 924 19546554.40623 1039 924 -1.84029340744e-06 1040 924 -636581.9730468 1047 924 -34336197.05207 1048 924 -7638888.891398 1049 924 -20840736.7982 1050 924 -61096866.41184 1051 924 -1.631677150726e-06 1052 924 -54526141.60101 1053 924 -10000259.54407 1054 924 7638888.891397 1055 924 -6517820.126831 925 925 662768381.9265 926 925 122220705.6783 927 925 -2.682209014893e-07 928 925 -42388655.88811 929 925 -61110352.83913 936 925 -30555555.55054 937 925 -31843109.00315 938 925 -13902588.21746 939 925 8.642673492432e-07 940 925 73718732.1729 941 925 30555176.43462 942 925 30555555.55054 943 925 -35280609.00258 944 925 -16652588.21716 1020 925 7638888.891399 1021 925 -34583484.18238 1022 925 -15399258.17112 1023 925 2.004206180573e-06 1024 925 -34204373.78147 1025 925 7638794.112417 1026 925 -7638888.891398 1027 925 -8528796.673826 1028 925 7760464.058704 1032 925 1.564621925354e-06 1033 925 -110262429.1366 1034 925 -59916477.09895 1035 925 2.98023223877e-08 1036 925 -31291881.67713 1037 925 30555176.43461 1038 925 -1.668930053711e-06 1039 925 -9481179.15318 1040 925 29361300.66432 1047 925 -7638888.891398 1048 925 -32044400.84822 1049 925 -14635369.28198 1050 925 -1.691281795502e-06 1051 925 -27485540.44924 1052 925 7638794.112417 1053 925 7638888.891397 1054 925 -7708463.340222 1055 925 6996575.169565 926 926 1085657360.643 927 926 -2546327.890939 928 926 -61110352.83913 929 926 75046406.47269 936 926 -27181697.16107 937 926 -13597032.66211 938 926 300666.5953339 939 926 5092655.779359 940 926 30555176.43462 941 926 178931711.3263 942 926 30109969.49619 943 926 -16958143.77251 944 926 -8866000.069825 1020 926 21477318.77125 1021 926 -15399258.17112 1022 926 -70918718.4916 1023 926 57454413.93615 1024 926 7638794.112417 1025 926 -95624557.03646 1026 926 7154402.099879 1027 926 7760464.058704 1028 926 -1439551.802109 1032 926 -636581.9730439 1033 926 -60222032.6543 1034 926 -247012438.7976 1035 926 -2546327.890927 1036 926 30555176.43461 1037 926 -253876265.6798 1038 926 -636581.9730468 1039 926 29666856.21968 1040 926 21737561.15826 1047 926 -20840736.7982 1048 926 -14635369.28198 1049 926 -64147829.60048 1050 926 -54908086.04521 1051 926 7638794.112417 1052 926 -77707668.15051 1053 926 -6517820.126831 1054 926 6996575.169565 1055 926 748003.7541653 927 927 754814074.6264 928 927 30603006.96366 929 927 -34373319.31429 930 927 31201368.0013 931 927 -30574536.11579 932 927 -29746017.20074 939 927 -41010293.81404 940 927 -30555555.55054 941 927 -27563641.60526 942 927 -60726571.61129 943 927 6.407499313354e-07 944 927 5092655.779359 945 927 -44447793.81348 946 927 30555555.55054 947 927 29728025.052 1023 927 -36875280.38624 1024 927 7638888.891399 1025 927 21477318.77125 1026 927 -88160408.62987 1027 927 -7646006.603366 1028 927 63145912.64445 1035 927 -81234695.57722 1036 927 1.624226570129e-06 1037 927 -636581.9730444 1038 927 3615653.321898 1039 927 7650751.744684 1040 927 -8598044.452827 1041 927 3117023.124192 1042 927 -7643634.032712 1043 927 6521862.080229 1050 927 -34336197.05207 1051 927 -7638888.891398 1052 927 -20840736.7982 1053 927 -61096866.41184 1054 927 -1.631677150726e-06 1055 927 -54526141.60101 1056 927 -10000259.54407 1057 927 7638888.891397 1058 927 -6517820.126831 928 928 672288057.0206 929 928 94722479.88535 930 928 -30584026.39841 931 928 -75780342.02739 932 928 -50736841.1372 939 928 -30555555.55054 940 928 -31843109.00315 941 928 -13902588.21746 942 928 8.642673492432e-07 943 928 73718732.1729 944 928 30555176.43462 945 928 30555555.55054 946 928 -35280609.00258 947 928 -16652588.21716 1023 928 7638888.891399 1024 928 -34583484.18238 1025 928 -15399258.17112 1026 928 -7643634.032709 1027 928 -52242457.71267 1028 928 19687387.29713 1035 928 1.564621925354e-06 1036 928 -110262429.1366 1037 928 -59916477.09895 1038 928 7650751.744683 1039 928 -17015851.08971 1040 928 23676848.33746 1041 928 -7646006.603369 1042 928 -23628404.39615 1043 928 31972114.21773 1050 928 -7638888.891398 1051 928 -32044400.84822 1052 928 -14635369.28198 1053 928 -1.691281795502e-06 1054 928 -27485540.44924 1055 928 7638794.112417 1056 928 7638888.891397 1057 928 -7708463.340222 1058 928 6996575.169565 929 929 1025629032.871 930 929 -30136957.7193 931 929 -59299198.1827 932 929 71356723.1218 939 929 -27181697.16107 940 929 -13597032.66211 941 929 300666.5953339 942 929 5092655.779359 943 929 30555176.43462 944 929 178931711.3263 945 929 30109969.49619 946 929 -16958143.77251 947 929 -8866000.069825 1023 929 21477318.77125 1024 929 -15399258.17112 1025 929 -70918718.4916 1026 929 63530032.02016 1027 929 21831451.86013 1028 929 -122407379.4408 1035 929 -636581.9730439 1036 929 -60222032.6543 1037 929 -247012438.7976 1038 929 -8589356.089042 1039 929 23683798.94222 1040 929 -237160382.7964 1041 929 6523883.056929 1042 929 30136961.89646 1043 929 5350330.44263 1050 929 -20840736.7982 1051 929 -14635369.28198 1052 929 -64147829.60048 1053 929 -54908086.04521 1054 929 7638794.112417 1055 929 -77707668.15051 1056 929 -6517820.126831 1057 929 6996575.169565 1058 929 748003.7541653 930 930 484267631.2317 931 930 30555555.55053 932 930 -29327125.67035 942 930 -41010293.81404 943 930 -30555555.55054 944 930 -27563641.60526 945 930 -126348953.9595 946 930 -30574536.11578 947 930 29308540.81618 948 930 -1130543.633331 949 930 24463425.00568 950 930 23698547.70003 1026 930 -44000691.65356 1027 930 9173784.381649 1028 930 25410834.91903 1038 930 -74169151.35949 1039 930 -7646006.603371 1040 930 -21497320.34861 1041 930 -2535056.171221 1042 930 7638888.891397 1043 930 2916127.642058 1053 930 -34336197.05207 1054 930 -7638888.891398 1055 930 -20840736.7982 1056 930 -61266506.56961 1057 930 -7643634.032713 1058 930 -48493965.33591 1059 930 6429332.410642 1060 930 6115856.254433 1061 930 -5472930.844082 931 931 438410352.8514 932 931 76423912.27372 942 931 -30555555.55054 943 931 -31843109.00315 944 931 -13902588.21746 945 931 -30584026.39841 946 931 17322849.63857 947 931 42340370.58254 948 931 36695137.50852 949 931 -1130543.633336 950 931 -26604449.03234 1026 931 6115856.254433 1027 931 -44000691.65356 1028 931 -13552018.01794 1038 931 -7643634.032713 1039 931 -100914578.8798 1040 931 -59481123.99205 1041 931 7638888.891396 1042 931 -13999375.77193 1043 931 27304194.09764 1053 931 -7638888.891398 1054 931 -32044400.84822 1055 931 -14635369.28198 1056 931 -7646006.603371 1057 931 -25348555.65241 1058 931 -585233.2815705 1059 931 9173784.381649 1060 931 6429332.410642 1061 931 6567824.782935 932 932 742817650.6667 942 932 -27181697.16107 943 932 -13597032.66211 944 932 300666.5953339 945 932 29299248.38909 946 932 34083332.0161 947 932 113817630.1747 948 932 35547821.55005 949 932 -17736299.3549 950 932 -3014783.022215 1026 932 16940556.61269 1027 932 -20328027.02691 1028 932 -117335177.7428 1038 932 -21490653.15616 1039 932 -57645971.82207 1040 932 -200746134.8472 1041 932 -19488671.82916 1042 932 9380576.980452 1043 932 -143900824.6786 1053 932 -20840736.7982 1054 932 -14635369.28198 1055 932 -64147829.60048 1056 932 -48878084.71163 1057 932 -2722347.244235 1058 932 -50690307.28013 1059 932 -8209396.266123 1060 932 4378549.855291 1061 932 17144886.42838 933 933 736105860.3775 934 933 -2.98023223877e-07 935 933 -10185311.55874 936 933 73722278.29235 937 933 -3.725290298462e-07 938 933 -2546327.890939 951 933 -60726571.61129 952 933 6.407499313354e-07 953 933 5092655.779359 954 933 -44447793.81348 955 933 30555555.55054 956 933 29728025.052 1029 933 -67815699.74408 1030 933 2.041459083557e-06 1031 933 57072469.49195 1032 933 -10820592.87768 1033 933 -7638888.891398 1034 933 7154402.099879 1044 933 -12957512.05534 1045 933 5.960464477539e-08 1046 933 -2546327.890928 1047 933 19546554.40623 1048 933 -1.84029340744e-06 1049 933 -636581.9730468 1062 933 -61096866.41184 1063 933 -1.631677150726e-06 1064 933 -54526141.60101 1065 933 -10000259.54407 1066 933 7638888.891397 1067 933 -6517820.126831 934 934 662768381.9265 935 934 122220705.6783 936 934 -2.682209014893e-07 937 934 -42388655.88811 938 934 -61110352.83913 951 934 8.642673492432e-07 952 934 73718732.1729 953 934 30555176.43462 954 934 30555555.55054 955 934 -35280609.00258 956 934 -16652588.21716 1029 934 2.004206180573e-06 1030 934 -34204373.78147 1031 934 7638794.112417 1032 934 -7638888.891398 1033 934 -8528796.673826 1034 934 7760464.058704 1044 934 2.98023223877e-08 1045 934 -31291881.67713 1046 934 30555176.43461 1047 934 -1.668930053711e-06 1048 934 -9481179.15318 1049 934 29361300.66432 1062 934 -1.691281795502e-06 1063 934 -27485540.44924 1064 934 7638794.112417 1065 934 7638888.891397 1066 934 -7708463.340222 1067 934 6996575.169565 935 935 1085657360.643 936 935 -2546327.890939 937 935 -61110352.83913 938 935 75046406.47269 951 935 5092655.779359 952 935 30555176.43462 953 935 178931711.3263 954 935 30109969.49619 955 935 -16958143.77251 956 935 -8866000.069825 1029 935 57454413.93615 1030 935 7638794.112417 1031 935 -95624557.03646 1032 935 7154402.099879 1033 935 7760464.058704 1034 935 -1439551.802109 1044 935 -2546327.890927 1045 935 30555176.43461 1046 935 -253876265.6798 1047 935 -636581.9730468 1048 935 29666856.21968 1049 935 21737561.15826 1062 935 -54908086.04521 1063 935 7638794.112417 1064 935 -77707668.15051 1065 935 -6517820.126831 1066 935 6996575.169565 1067 935 748003.7541653 936 936 736105860.3775 937 936 -2.98023223877e-07 938 936 -10185311.55874 939 936 73722278.29235 940 936 -3.725290298462e-07 941 936 -2546327.890939 951 936 -41010293.81404 952 936 -30555555.55054 953 936 -27563641.60526 954 936 -60726571.61129 955 936 6.407499313354e-07 956 936 5092655.779359 957 936 -44447793.81348 958 936 30555555.55054 959 936 29728025.052 1029 936 -36875280.38624 1030 936 7638888.891399 1031 936 21477318.77125 1032 936 -67815699.74408 1033 936 2.041459083557e-06 1034 936 57072469.49195 1035 936 -10820592.87768 1036 936 -7638888.891398 1037 936 7154402.099879 1044 936 -81234695.57722 1045 936 1.624226570129e-06 1046 936 -636581.9730444 1047 936 -12957512.05534 1048 936 5.960464477539e-08 1049 936 -2546327.890928 1050 936 19546554.40623 1051 936 -1.84029340744e-06 1052 936 -636581.9730468 1062 936 -34336197.05207 1063 936 -7638888.891398 1064 936 -20840736.7982 1065 936 -61096866.41184 1066 936 -1.631677150726e-06 1067 936 -54526141.60101 1068 936 -10000259.54407 1069 936 7638888.891397 1070 936 -6517820.126831 937 937 662768381.9265 938 937 122220705.6783 939 937 -2.682209014893e-07 940 937 -42388655.88811 941 937 -61110352.83913 951 937 -30555555.55054 952 937 -31843109.00315 953 937 -13902588.21746 954 937 8.642673492432e-07 955 937 73718732.1729 956 937 30555176.43462 957 937 30555555.55054 958 937 -35280609.00258 959 937 -16652588.21716 1029 937 7638888.891399 1030 937 -34583484.18238 1031 937 -15399258.17112 1032 937 2.004206180573e-06 1033 937 -34204373.78147 1034 937 7638794.112417 1035 937 -7638888.891398 1036 937 -8528796.673826 1037 937 7760464.058704 1044 937 1.564621925354e-06 1045 937 -110262429.1366 1046 937 -59916477.09895 1047 937 2.98023223877e-08 1048 937 -31291881.67713 1049 937 30555176.43461 1050 937 -1.668930053711e-06 1051 937 -9481179.15318 1052 937 29361300.66432 1062 937 -7638888.891398 1063 937 -32044400.84822 1064 937 -14635369.28198 1065 937 -1.691281795502e-06 1066 937 -27485540.44924 1067 937 7638794.112417 1068 937 7638888.891397 1069 937 -7708463.340222 1070 937 6996575.169565 938 938 1085657360.643 939 938 -2546327.890939 940 938 -61110352.83913 941 938 75046406.47269 951 938 -27181697.16107 952 938 -13597032.66211 953 938 300666.5953339 954 938 5092655.779359 955 938 30555176.43462 956 938 178931711.3263 957 938 30109969.49619 958 938 -16958143.77251 959 938 -8866000.069825 1029 938 21477318.77125 1030 938 -15399258.17112 1031 938 -70918718.4916 1032 938 57454413.93615 1033 938 7638794.112417 1034 938 -95624557.03646 1035 938 7154402.099879 1036 938 7760464.058704 1037 938 -1439551.802109 1044 938 -636581.9730439 1045 938 -60222032.6543 1046 938 -247012438.7976 1047 938 -2546327.890927 1048 938 30555176.43461 1049 938 -253876265.6798 1050 938 -636581.9730468 1051 938 29666856.21968 1052 938 21737561.15826 1062 938 -20840736.7982 1063 938 -14635369.28198 1064 938 -64147829.60048 1065 938 -54908086.04521 1066 938 7638794.112417 1067 938 -77707668.15051 1068 938 -6517820.126831 1069 938 6996575.169565 1070 938 748003.7541653 939 939 736105860.3775 940 939 -2.98023223877e-07 941 939 -10185311.55874 942 939 73722278.29235 943 939 -3.725290298462e-07 944 939 -2546327.890939 954 939 -41010293.81404 955 939 -30555555.55054 956 939 -27563641.60526 957 939 -60726571.61129 958 939 6.407499313354e-07 959 939 5092655.779359 960 939 -44447793.81348 961 939 30555555.55054 962 939 29728025.052 1032 939 -36875280.38624 1033 939 7638888.891399 1034 939 21477318.77125 1035 939 -67815699.74408 1036 939 2.041459083557e-06 1037 939 57072469.49195 1038 939 -10820592.87768 1039 939 -7638888.891398 1040 939 7154402.099879 1047 939 -81234695.57722 1048 939 1.624226570129e-06 1049 939 -636581.9730444 1050 939 -12957512.05534 1051 939 5.960464477539e-08 1052 939 -2546327.890928 1053 939 19546554.40623 1054 939 -1.84029340744e-06 1055 939 -636581.9730468 1065 939 -34336197.05207 1066 939 -7638888.891398 1067 939 -20840736.7982 1068 939 -61096866.41184 1069 939 -1.631677150726e-06 1070 939 -54526141.60101 1071 939 -10000259.54407 1072 939 7638888.891397 1073 939 -6517820.126831 940 940 662768381.9265 941 940 122220705.6783 942 940 -2.682209014893e-07 943 940 -42388655.88811 944 940 -61110352.83913 954 940 -30555555.55054 955 940 -31843109.00315 956 940 -13902588.21746 957 940 8.642673492432e-07 958 940 73718732.1729 959 940 30555176.43462 960 940 30555555.55054 961 940 -35280609.00258 962 940 -16652588.21716 1032 940 7638888.891399 1033 940 -34583484.18238 1034 940 -15399258.17112 1035 940 2.004206180573e-06 1036 940 -34204373.78147 1037 940 7638794.112417 1038 940 -7638888.891398 1039 940 -8528796.673826 1040 940 7760464.058704 1047 940 1.564621925354e-06 1048 940 -110262429.1366 1049 940 -59916477.09895 1050 940 2.98023223877e-08 1051 940 -31291881.67713 1052 940 30555176.43461 1053 940 -1.668930053711e-06 1054 940 -9481179.15318 1055 940 29361300.66432 1065 940 -7638888.891398 1066 940 -32044400.84822 1067 940 -14635369.28198 1068 940 -1.691281795502e-06 1069 940 -27485540.44924 1070 940 7638794.112417 1071 940 7638888.891397 1072 940 -7708463.340222 1073 940 6996575.169565 941 941 1085657360.643 942 941 -2546327.890939 943 941 -61110352.83913 944 941 75046406.47269 954 941 -27181697.16107 955 941 -13597032.66211 956 941 300666.5953339 957 941 5092655.779359 958 941 30555176.43462 959 941 178931711.3263 960 941 30109969.49619 961 941 -16958143.77251 962 941 -8866000.069825 1032 941 21477318.77125 1033 941 -15399258.17112 1034 941 -70918718.4916 1035 941 57454413.93615 1036 941 7638794.112417 1037 941 -95624557.03646 1038 941 7154402.099879 1039 941 7760464.058704 1040 941 -1439551.802109 1047 941 -636581.9730439 1048 941 -60222032.6543 1049 941 -247012438.7976 1050 941 -2546327.890927 1051 941 30555176.43461 1052 941 -253876265.6798 1053 941 -636581.9730468 1054 941 29666856.21968 1055 941 21737561.15826 1065 941 -20840736.7982 1066 941 -14635369.28198 1067 941 -64147829.60048 1068 941 -54908086.04521 1069 941 7638794.112417 1070 941 -77707668.15051 1071 941 -6517820.126831 1072 941 6996575.169565 1073 941 748003.7541653 942 942 736105860.3775 943 942 -2.98023223877e-07 944 942 -10185311.55874 945 942 73722278.29235 946 942 -3.725290298462e-07 947 942 -2546327.890939 957 942 -41010293.81404 958 942 -30555555.55054 959 942 -27563641.60526 960 942 -60726571.61129 961 942 6.407499313354e-07 962 942 5092655.779359 963 942 -44447793.81348 964 942 30555555.55054 965 942 29728025.052 1035 942 -36875280.38624 1036 942 7638888.891399 1037 942 21477318.77125 1038 942 -67815699.74408 1039 942 2.041459083557e-06 1040 942 57072469.49195 1041 942 -10820592.87768 1042 942 -7638888.891398 1043 942 7154402.099879 1050 942 -81234695.57722 1051 942 1.624226570129e-06 1052 942 -636581.9730444 1053 942 -12957512.05534 1054 942 5.960464477539e-08 1055 942 -2546327.890928 1056 942 19546554.40623 1057 942 -1.84029340744e-06 1058 942 -636581.9730468 1068 942 -34336197.05207 1069 942 -7638888.891398 1070 942 -20840736.7982 1071 942 -61096866.41184 1072 942 -1.631677150726e-06 1073 942 -54526141.60101 1074 942 -10000259.54407 1075 942 7638888.891397 1076 942 -6517820.126831 943 943 662768381.9265 944 943 122220705.6783 945 943 -2.682209014893e-07 946 943 -42388655.88811 947 943 -61110352.83913 957 943 -30555555.55054 958 943 -31843109.00315 959 943 -13902588.21746 960 943 8.642673492432e-07 961 943 73718732.1729 962 943 30555176.43462 963 943 30555555.55054 964 943 -35280609.00258 965 943 -16652588.21716 1035 943 7638888.891399 1036 943 -34583484.18238 1037 943 -15399258.17112 1038 943 2.004206180573e-06 1039 943 -34204373.78147 1040 943 7638794.112417 1041 943 -7638888.891398 1042 943 -8528796.673826 1043 943 7760464.058704 1050 943 1.564621925354e-06 1051 943 -110262429.1366 1052 943 -59916477.09895 1053 943 2.98023223877e-08 1054 943 -31291881.67713 1055 943 30555176.43461 1056 943 -1.668930053711e-06 1057 943 -9481179.15318 1058 943 29361300.66432 1068 943 -7638888.891398 1069 943 -32044400.84822 1070 943 -14635369.28198 1071 943 -1.691281795502e-06 1072 943 -27485540.44924 1073 943 7638794.112417 1074 943 7638888.891397 1075 943 -7708463.340222 1076 943 6996575.169565 944 944 1085657360.643 945 944 -2546327.890939 946 944 -61110352.83913 947 944 75046406.47269 957 944 -27181697.16107 958 944 -13597032.66211 959 944 300666.5953339 960 944 5092655.779359 961 944 30555176.43462 962 944 178931711.3263 963 944 30109969.49619 964 944 -16958143.77251 965 944 -8866000.069825 1035 944 21477318.77125 1036 944 -15399258.17112 1037 944 -70918718.4916 1038 944 57454413.93615 1039 944 7638794.112417 1040 944 -95624557.03646 1041 944 7154402.099879 1042 944 7760464.058704 1043 944 -1439551.802109 1050 944 -636581.9730439 1051 944 -60222032.6543 1052 944 -247012438.7976 1053 944 -2546327.890927 1054 944 30555176.43461 1055 944 -253876265.6798 1056 944 -636581.9730468 1057 944 29666856.21968 1058 944 21737561.15826 1068 944 -20840736.7982 1069 944 -14635369.28198 1070 944 -64147829.60048 1071 944 -54908086.04521 1072 944 7638794.112417 1073 944 -77707668.15051 1074 944 -6517820.126831 1075 944 6996575.169565 1076 944 748003.7541653 945 945 754814074.6264 946 945 30603006.96366 947 945 -34373319.31429 948 945 31201368.0013 949 945 -30574536.11579 950 945 -29746017.20074 960 945 -41010293.81404 961 945 -30555555.55054 962 945 -27563641.60526 963 945 -60726571.61129 964 945 6.407499313354e-07 965 945 5092655.779359 966 945 -44447793.81348 967 945 30555555.55054 968 945 29728025.052 1038 945 -36875280.38624 1039 945 7638888.891399 1040 945 21477318.77125 1041 945 -88160408.62987 1042 945 -7646006.603366 1043 945 63145912.64445 1053 945 -81234695.57722 1054 945 1.624226570129e-06 1055 945 -636581.9730444 1056 945 3615653.321898 1057 945 7650751.744684 1058 945 -8598044.452827 1059 945 3117023.124192 1060 945 -7643634.032712 1061 945 6521862.080229 1071 945 -34336197.05207 1072 945 -7638888.891398 1073 945 -20840736.7982 1074 945 -61096866.41184 1075 945 -1.631677150726e-06 1076 945 -54526141.60101 1077 945 -10000259.54407 1078 945 7638888.891397 1079 945 -6517820.126831 946 946 672288057.0206 947 946 94722479.88535 948 946 -30584026.39841 949 946 -75780342.02739 950 946 -50736841.1372 960 946 -30555555.55054 961 946 -31843109.00315 962 946 -13902588.21746 963 946 8.642673492432e-07 964 946 73718732.1729 965 946 30555176.43462 966 946 30555555.55054 967 946 -35280609.00258 968 946 -16652588.21716 1038 946 7638888.891399 1039 946 -34583484.18238 1040 946 -15399258.17112 1041 946 -7643634.032709 1042 946 -52242457.71267 1043 946 19687387.29713 1053 946 1.564621925354e-06 1054 946 -110262429.1366 1055 946 -59916477.09895 1056 946 7650751.744683 1057 946 -17015851.08971 1058 946 23676848.33746 1059 946 -7646006.603369 1060 946 -23628404.39615 1061 946 31972114.21773 1071 946 -7638888.891398 1072 946 -32044400.84822 1073 946 -14635369.28198 1074 946 -1.691281795502e-06 1075 946 -27485540.44924 1076 946 7638794.112417 1077 946 7638888.891397 1078 946 -7708463.340222 1079 946 6996575.169565 947 947 1025629032.871 948 947 -30136957.7193 949 947 -59299198.1827 950 947 71356723.1218 960 947 -27181697.16107 961 947 -13597032.66211 962 947 300666.5953339 963 947 5092655.779359 964 947 30555176.43462 965 947 178931711.3263 966 947 30109969.49619 967 947 -16958143.77251 968 947 -8866000.069825 1038 947 21477318.77125 1039 947 -15399258.17112 1040 947 -70918718.4916 1041 947 63530032.02016 1042 947 21831451.86013 1043 947 -122407379.4408 1053 947 -636581.9730439 1054 947 -60222032.6543 1055 947 -247012438.7976 1056 947 -8589356.089042 1057 947 23683798.94222 1058 947 -237160382.7964 1059 947 6523883.056929 1060 947 30136961.89646 1061 947 5350330.44263 1071 947 -20840736.7982 1072 947 -14635369.28198 1073 947 -64147829.60048 1074 947 -54908086.04521 1075 947 7638794.112417 1076 947 -77707668.15051 1077 947 -6517820.126831 1078 947 6996575.169565 1079 947 748003.7541653 948 948 391747552.9943 949 948 583468.7553267 950 948 18460786.39383 963 948 -41010293.81404 964 948 -30555555.55054 965 948 -27563641.60526 966 948 -64957552.15474 967 948 -658168.3244648 968 948 1387084.494149 969 948 -17226091.21786 970 948 24519144.00957 971 948 4595388.140829 1041 948 -44000691.65356 1042 948 9173784.381649 1043 948 25410834.91903 1056 948 -74169151.35949 1057 948 -7646006.603371 1058 948 -21497320.34861 1059 948 -8042181.826519 1060 948 145867.1889037 1061 948 11655806.43098 1074 948 -34336197.05207 1075 948 -7638888.891398 1076 948 -20840736.7982 1077 948 -46993816.04493 1078 948 -164542.081198 1079 948 -41727721.81694 1080 948 -9829239.428922 1081 948 6129786.005412 1082 948 -4979066.640203 949 949 406443697.6504 950 949 83812259.76818 963 949 -30555555.55054 964 949 -31843109.00315 965 949 -13902588.21746 966 949 -695518.1090343 967 949 65399259.21915 968 949 20008238.14593 969 949 36778716.01435 970 949 -64464522.03 971 949 -11043214.84394 1041 949 6115856.254433 1042 949 -44000691.65356 1043 949 -13552018.01794 1056 949 -7643634.032713 1057 949 -100914578.8798 1058 949 -59481123.99205 1059 949 145867.1889033 1060 949 -4368145.660696 1061 949 26571164.39647 1074 949 -7638888.891398 1075 949 -32044400.84822 1076 949 -14635369.28198 1077 949 -173879.5273452 1078 949 -14404613.18541 1079 949 4846854.379944 1080 949 9194679.008118 1081 949 -21638847.13778 1082 949 14725306.89276 950 950 609581923.258 963 950 -27181697.16107 964 950 -13597032.66211 965 950 300666.5953339 966 950 11311019.93814 967 950 19699845.86993 968 950 116805122.9509 969 950 6893082.211243 970 950 -9814986.833818 971 950 1302187.56453 1041 950 16940556.61269 1042 950 -20328027.02691 1043 950 -117335177.7428 1056 950 -21490653.15616 1057 950 -57645971.82207 1058 950 -200746134.8472 1059 950 -5288514.808431 1060 950 13035968.8684 1061 950 -130215372.7727 1074 950 -20840736.7982 1075 950 -14635369.28198 1076 950 -64147829.60048 1077 950 -39819358.2705 1078 950 4553577.796946 1079 950 -52810527.24323 1080 950 -7468599.960305 1081 950 12732043.03141 1082 950 -14401697.43494 951 951 736105860.3775 952 951 -2.98023223877e-07 953 951 -10185311.55874 954 951 73722278.29235 955 951 -3.725290298462e-07 956 951 -2546327.890939 972 951 -60726571.61129 973 951 6.407499313354e-07 974 951 5092655.779359 975 951 -44447793.81348 976 951 30555555.55054 977 951 29728025.052 1044 951 -67815699.74408 1045 951 2.041459083557e-06 1046 951 57072469.49195 1047 951 -10820592.87768 1048 951 -7638888.891398 1049 951 7154402.099879 1062 951 -12957512.05534 1063 951 5.960464477539e-08 1064 951 -2546327.890928 1065 951 19546554.40623 1066 951 -1.84029340744e-06 1067 951 -636581.9730468 1083 951 -61096866.41184 1084 951 -1.631677150726e-06 1085 951 -54526141.60101 1086 951 -10000259.54407 1087 951 7638888.891397 1088 951 -6517820.126831 952 952 662768381.9265 953 952 122220705.6783 954 952 -2.682209014893e-07 955 952 -42388655.88811 956 952 -61110352.83913 972 952 8.642673492432e-07 973 952 73718732.1729 974 952 30555176.43462 975 952 30555555.55054 976 952 -35280609.00258 977 952 -16652588.21716 1044 952 2.004206180573e-06 1045 952 -34204373.78147 1046 952 7638794.112417 1047 952 -7638888.891398 1048 952 -8528796.673826 1049 952 7760464.058704 1062 952 2.98023223877e-08 1063 952 -31291881.67713 1064 952 30555176.43461 1065 952 -1.668930053711e-06 1066 952 -9481179.15318 1067 952 29361300.66432 1083 952 -1.691281795502e-06 1084 952 -27485540.44924 1085 952 7638794.112417 1086 952 7638888.891397 1087 952 -7708463.340222 1088 952 6996575.169565 953 953 1085657360.643 954 953 -2546327.890939 955 953 -61110352.83913 956 953 75046406.47269 972 953 5092655.779359 973 953 30555176.43462 974 953 178931711.3263 975 953 30109969.49619 976 953 -16958143.77251 977 953 -8866000.069825 1044 953 57454413.93615 1045 953 7638794.112417 1046 953 -95624557.03646 1047 953 7154402.099879 1048 953 7760464.058704 1049 953 -1439551.802109 1062 953 -2546327.890927 1063 953 30555176.43461 1064 953 -253876265.6798 1065 953 -636581.9730468 1066 953 29666856.21968 1067 953 21737561.15826 1083 953 -54908086.04521 1084 953 7638794.112417 1085 953 -77707668.15051 1086 953 -6517820.126831 1087 953 6996575.169565 1088 953 748003.7541653 954 954 736105860.3775 955 954 -2.98023223877e-07 956 954 -10185311.55874 957 954 73722278.29235 958 954 -3.725290298462e-07 959 954 -2546327.890939 972 954 -41010293.81404 973 954 -30555555.55054 974 954 -27563641.60526 975 954 -60726571.61129 976 954 6.407499313354e-07 977 954 5092655.779359 978 954 -44447793.81348 979 954 30555555.55054 980 954 29728025.052 1044 954 -36875280.38624 1045 954 7638888.891399 1046 954 21477318.77125 1047 954 -67815699.74408 1048 954 2.041459083557e-06 1049 954 57072469.49195 1050 954 -10820592.87768 1051 954 -7638888.891398 1052 954 7154402.099879 1062 954 -81234695.57722 1063 954 1.624226570129e-06 1064 954 -636581.9730444 1065 954 -12957512.05534 1066 954 5.960464477539e-08 1067 954 -2546327.890928 1068 954 19546554.40623 1069 954 -1.84029340744e-06 1070 954 -636581.9730468 1083 954 -34336197.05207 1084 954 -7638888.891398 1085 954 -20840736.7982 1086 954 -61096866.41184 1087 954 -1.631677150726e-06 1088 954 -54526141.60101 1089 954 -10000259.54407 1090 954 7638888.891397 1091 954 -6517820.126831 955 955 662768381.9265 956 955 122220705.6783 957 955 -2.682209014893e-07 958 955 -42388655.88811 959 955 -61110352.83913 972 955 -30555555.55054 973 955 -31843109.00315 974 955 -13902588.21746 975 955 8.642673492432e-07 976 955 73718732.1729 977 955 30555176.43462 978 955 30555555.55054 979 955 -35280609.00258 980 955 -16652588.21716 1044 955 7638888.891399 1045 955 -34583484.18238 1046 955 -15399258.17112 1047 955 2.004206180573e-06 1048 955 -34204373.78147 1049 955 7638794.112417 1050 955 -7638888.891398 1051 955 -8528796.673826 1052 955 7760464.058704 1062 955 1.564621925354e-06 1063 955 -110262429.1366 1064 955 -59916477.09895 1065 955 2.98023223877e-08 1066 955 -31291881.67713 1067 955 30555176.43461 1068 955 -1.668930053711e-06 1069 955 -9481179.15318 1070 955 29361300.66432 1083 955 -7638888.891398 1084 955 -32044400.84822 1085 955 -14635369.28198 1086 955 -1.691281795502e-06 1087 955 -27485540.44924 1088 955 7638794.112417 1089 955 7638888.891397 1090 955 -7708463.340222 1091 955 6996575.169565 956 956 1085657360.643 957 956 -2546327.890939 958 956 -61110352.83913 959 956 75046406.47269 972 956 -27181697.16107 973 956 -13597032.66211 974 956 300666.5953339 975 956 5092655.779359 976 956 30555176.43462 977 956 178931711.3263 978 956 30109969.49619 979 956 -16958143.77251 980 956 -8866000.069825 1044 956 21477318.77125 1045 956 -15399258.17112 1046 956 -70918718.4916 1047 956 57454413.93615 1048 956 7638794.112417 1049 956 -95624557.03646 1050 956 7154402.099879 1051 956 7760464.058704 1052 956 -1439551.802109 1062 956 -636581.9730439 1063 956 -60222032.6543 1064 956 -247012438.7976 1065 956 -2546327.890927 1066 956 30555176.43461 1067 956 -253876265.6798 1068 956 -636581.9730468 1069 956 29666856.21968 1070 956 21737561.15826 1083 956 -20840736.7982 1084 956 -14635369.28198 1085 956 -64147829.60048 1086 956 -54908086.04521 1087 956 7638794.112417 1088 956 -77707668.15051 1089 956 -6517820.126831 1090 956 6996575.169565 1091 956 748003.7541653 957 957 736105860.3775 958 957 -2.98023223877e-07 959 957 -10185311.55874 960 957 73722278.29235 961 957 -3.725290298462e-07 962 957 -2546327.890939 975 957 -41010293.81404 976 957 -30555555.55054 977 957 -27563641.60526 978 957 -60726571.61129 979 957 6.407499313354e-07 980 957 5092655.779359 981 957 -44447793.81348 982 957 30555555.55054 983 957 29728025.052 1047 957 -36875280.38624 1048 957 7638888.891399 1049 957 21477318.77125 1050 957 -67815699.74408 1051 957 2.041459083557e-06 1052 957 57072469.49195 1053 957 -10820592.87768 1054 957 -7638888.891398 1055 957 7154402.099879 1065 957 -81234695.57722 1066 957 1.624226570129e-06 1067 957 -636581.9730444 1068 957 -12957512.05534 1069 957 5.960464477539e-08 1070 957 -2546327.890928 1071 957 19546554.40623 1072 957 -1.84029340744e-06 1073 957 -636581.9730468 1086 957 -34336197.05207 1087 957 -7638888.891398 1088 957 -20840736.7982 1089 957 -61096866.41184 1090 957 -1.631677150726e-06 1091 957 -54526141.60101 1092 957 -10000259.54407 1093 957 7638888.891397 1094 957 -6517820.126831 958 958 662768381.9265 959 958 122220705.6783 960 958 -2.682209014893e-07 961 958 -42388655.88811 962 958 -61110352.83913 975 958 -30555555.55054 976 958 -31843109.00315 977 958 -13902588.21746 978 958 8.642673492432e-07 979 958 73718732.1729 980 958 30555176.43462 981 958 30555555.55054 982 958 -35280609.00258 983 958 -16652588.21716 1047 958 7638888.891399 1048 958 -34583484.18238 1049 958 -15399258.17112 1050 958 2.004206180573e-06 1051 958 -34204373.78147 1052 958 7638794.112417 1053 958 -7638888.891398 1054 958 -8528796.673826 1055 958 7760464.058704 1065 958 1.564621925354e-06 1066 958 -110262429.1366 1067 958 -59916477.09895 1068 958 2.98023223877e-08 1069 958 -31291881.67713 1070 958 30555176.43461 1071 958 -1.668930053711e-06 1072 958 -9481179.15318 1073 958 29361300.66432 1086 958 -7638888.891398 1087 958 -32044400.84822 1088 958 -14635369.28198 1089 958 -1.691281795502e-06 1090 958 -27485540.44924 1091 958 7638794.112417 1092 958 7638888.891397 1093 958 -7708463.340222 1094 958 6996575.169565 959 959 1085657360.643 960 959 -2546327.890939 961 959 -61110352.83913 962 959 75046406.47269 975 959 -27181697.16107 976 959 -13597032.66211 977 959 300666.5953339 978 959 5092655.779359 979 959 30555176.43462 980 959 178931711.3263 981 959 30109969.49619 982 959 -16958143.77251 983 959 -8866000.069825 1047 959 21477318.77125 1048 959 -15399258.17112 1049 959 -70918718.4916 1050 959 57454413.93615 1051 959 7638794.112417 1052 959 -95624557.03646 1053 959 7154402.099879 1054 959 7760464.058704 1055 959 -1439551.802109 1065 959 -636581.9730439 1066 959 -60222032.6543 1067 959 -247012438.7976 1068 959 -2546327.890927 1069 959 30555176.43461 1070 959 -253876265.6798 1071 959 -636581.9730468 1072 959 29666856.21968 1073 959 21737561.15826 1086 959 -20840736.7982 1087 959 -14635369.28198 1088 959 -64147829.60048 1089 959 -54908086.04521 1090 959 7638794.112417 1091 959 -77707668.15051 1092 959 -6517820.126831 1093 959 6996575.169565 1094 959 748003.7541653 960 960 736105860.3775 961 960 -2.98023223877e-07 962 960 -10185311.55874 963 960 73722278.29235 964 960 -3.725290298462e-07 965 960 -2546327.890939 978 960 -41010293.81404 979 960 -30555555.55054 980 960 -27563641.60526 981 960 -60726571.61129 982 960 6.407499313354e-07 983 960 5092655.779359 984 960 -44447793.81348 985 960 30555555.55054 986 960 29728025.052 1050 960 -36875280.38624 1051 960 7638888.891399 1052 960 21477318.77125 1053 960 -67815699.74408 1054 960 2.041459083557e-06 1055 960 57072469.49195 1056 960 -10820592.87768 1057 960 -7638888.891398 1058 960 7154402.099879 1068 960 -81234695.57722 1069 960 1.624226570129e-06 1070 960 -636581.9730444 1071 960 -12957512.05534 1072 960 5.960464477539e-08 1073 960 -2546327.890928 1074 960 19546554.40623 1075 960 -1.84029340744e-06 1076 960 -636581.9730468 1089 960 -34336197.05207 1090 960 -7638888.891398 1091 960 -20840736.7982 1092 960 -61096866.41184 1093 960 -1.631677150726e-06 1094 960 -54526141.60101 1095 960 -10000259.54407 1096 960 7638888.891397 1097 960 -6517820.126831 961 961 662768381.9265 962 961 122220705.6783 963 961 -2.682209014893e-07 964 961 -42388655.88811 965 961 -61110352.83913 978 961 -30555555.55054 979 961 -31843109.00315 980 961 -13902588.21746 981 961 8.642673492432e-07 982 961 73718732.1729 983 961 30555176.43462 984 961 30555555.55054 985 961 -35280609.00258 986 961 -16652588.21716 1050 961 7638888.891399 1051 961 -34583484.18238 1052 961 -15399258.17112 1053 961 2.004206180573e-06 1054 961 -34204373.78147 1055 961 7638794.112417 1056 961 -7638888.891398 1057 961 -8528796.673826 1058 961 7760464.058704 1068 961 1.564621925354e-06 1069 961 -110262429.1366 1070 961 -59916477.09895 1071 961 2.98023223877e-08 1072 961 -31291881.67713 1073 961 30555176.43461 1074 961 -1.668930053711e-06 1075 961 -9481179.15318 1076 961 29361300.66432 1089 961 -7638888.891398 1090 961 -32044400.84822 1091 961 -14635369.28198 1092 961 -1.691281795502e-06 1093 961 -27485540.44924 1094 961 7638794.112417 1095 961 7638888.891397 1096 961 -7708463.340222 1097 961 6996575.169565 962 962 1085657360.643 963 962 -2546327.890939 964 962 -61110352.83913 965 962 75046406.47269 978 962 -27181697.16107 979 962 -13597032.66211 980 962 300666.5953339 981 962 5092655.779359 982 962 30555176.43462 983 962 178931711.3263 984 962 30109969.49619 985 962 -16958143.77251 986 962 -8866000.069825 1050 962 21477318.77125 1051 962 -15399258.17112 1052 962 -70918718.4916 1053 962 57454413.93615 1054 962 7638794.112417 1055 962 -95624557.03646 1056 962 7154402.099879 1057 962 7760464.058704 1058 962 -1439551.802109 1068 962 -636581.9730439 1069 962 -60222032.6543 1070 962 -247012438.7976 1071 962 -2546327.890927 1072 962 30555176.43461 1073 962 -253876265.6798 1074 962 -636581.9730468 1075 962 29666856.21968 1076 962 21737561.15826 1089 962 -20840736.7982 1090 962 -14635369.28198 1091 962 -64147829.60048 1092 962 -54908086.04521 1093 962 7638794.112417 1094 962 -77707668.15051 1095 962 -6517820.126831 1096 962 6996575.169565 1097 962 748003.7541653 963 963 736105860.3775 964 963 -2.98023223877e-07 965 963 -10185311.55874 966 963 73722278.29235 967 963 -3.725290298462e-07 968 963 -2546327.890939 981 963 -41010293.81404 982 963 -30555555.55054 983 963 -27563641.60526 984 963 -60726571.61129 985 963 6.407499313354e-07 986 963 5092655.779359 987 963 -44447793.81348 988 963 30555555.55054 989 963 29728025.052 1053 963 -36875280.38624 1054 963 7638888.891399 1055 963 21477318.77125 1056 963 -67815699.74408 1057 963 2.041459083557e-06 1058 963 57072469.49195 1059 963 -10820592.87768 1060 963 -7638888.891398 1061 963 7154402.099879 1071 963 -81234695.57722 1072 963 1.624226570129e-06 1073 963 -636581.9730444 1074 963 -12957512.05534 1075 963 5.960464477539e-08 1076 963 -2546327.890928 1077 963 19546554.40623 1078 963 -1.84029340744e-06 1079 963 -636581.9730468 1092 963 -34336197.05207 1093 963 -7638888.891398 1094 963 -20840736.7982 1095 963 -61096866.41184 1096 963 -1.631677150726e-06 1097 963 -54526141.60101 1098 963 -10000259.54407 1099 963 7638888.891397 1100 963 -6517820.126831 964 964 662768381.9265 965 964 122220705.6783 966 964 -2.682209014893e-07 967 964 -42388655.88811 968 964 -61110352.83913 981 964 -30555555.55054 982 964 -31843109.00315 983 964 -13902588.21746 984 964 8.642673492432e-07 985 964 73718732.1729 986 964 30555176.43462 987 964 30555555.55054 988 964 -35280609.00258 989 964 -16652588.21716 1053 964 7638888.891399 1054 964 -34583484.18238 1055 964 -15399258.17112 1056 964 2.004206180573e-06 1057 964 -34204373.78147 1058 964 7638794.112417 1059 964 -7638888.891398 1060 964 -8528796.673826 1061 964 7760464.058704 1071 964 1.564621925354e-06 1072 964 -110262429.1366 1073 964 -59916477.09895 1074 964 2.98023223877e-08 1075 964 -31291881.67713 1076 964 30555176.43461 1077 964 -1.668930053711e-06 1078 964 -9481179.15318 1079 964 29361300.66432 1092 964 -7638888.891398 1093 964 -32044400.84822 1094 964 -14635369.28198 1095 964 -1.691281795502e-06 1096 964 -27485540.44924 1097 964 7638794.112417 1098 964 7638888.891397 1099 964 -7708463.340222 1100 964 6996575.169565 965 965 1085657360.643 966 965 -2546327.890939 967 965 -61110352.83913 968 965 75046406.47269 981 965 -27181697.16107 982 965 -13597032.66211 983 965 300666.5953339 984 965 5092655.779359 985 965 30555176.43462 986 965 178931711.3263 987 965 30109969.49619 988 965 -16958143.77251 989 965 -8866000.069825 1053 965 21477318.77125 1054 965 -15399258.17112 1055 965 -70918718.4916 1056 965 57454413.93615 1057 965 7638794.112417 1058 965 -95624557.03646 1059 965 7154402.099879 1060 965 7760464.058704 1061 965 -1439551.802109 1071 965 -636581.9730439 1072 965 -60222032.6543 1073 965 -247012438.7976 1074 965 -2546327.890927 1075 965 30555176.43461 1076 965 -253876265.6798 1077 965 -636581.9730468 1078 965 29666856.21968 1079 965 21737561.15826 1092 965 -20840736.7982 1093 965 -14635369.28198 1094 965 -64147829.60048 1095 965 -54908086.04521 1096 965 7638794.112417 1097 965 -77707668.15051 1098 965 -6517820.126831 1099 965 6996575.169565 1100 965 748003.7541653 966 966 618356973.1438 967 966 10078107.65728 968 966 -9804310.999607 969 966 -11503867.92228 970 966 -46894042.93799 971 966 -6199331.236185 984 966 -41010293.81404 985 966 -30555555.55054 986 966 -27563641.60526 987 966 -42028446.52583 988 966 13616733.15273 989 966 872010.5456597 990 966 -16600070.15644 991 966 23894720.23701 992 966 3821797.162853 1056 966 -36875280.38624 1057 966 7638888.891399 1058 966 21477318.77125 1059 966 -54114504.27018 1060 966 -173879.5273432 1061 966 44902247.92658 1074 966 -81234695.57722 1075 966 1.624226570129e-06 1076 966 -636581.9730444 1077 966 -876482.9019934 1078 966 2519526.915563 1079 966 -2460507.026248 1080 966 -27045633.06006 1081 966 -11723510.74027 1082 966 12416379.47746 1095 966 -34336197.05207 1096 966 -7638888.891398 1097 966 -20840736.7982 1098 966 -53125239.25827 1099 966 3404183.289858 1100 966 -48696407.07857 1101 966 -13272078.15617 1102 966 5973680.062196 1103 966 -6110175.711185 967 967 624557688.2301 968 967 75196749.74012 969 967 -46931392.72256 970 967 -125004050.7393 971 967 -12917601.41412 984 967 -30555555.55054 985 967 -31843109.00315 986 967 -13902588.21746 987 967 13616733.15273 988 967 72567559.79109 989 967 16835459.46007 990 967 23894720.23701 991 967 -56476855.55795 992 967 -6842420.271103 1056 967 7638888.891399 1057 967 -34583484.18238 1058 967 -15399258.17112 1059 967 -164542.0811964 1060 967 -21525301.41066 1061 967 5061950.597479 1074 967 1.564621925354e-06 1075 967 -110262429.1366 1076 967 -59916477.09895 1077 967 2519526.915562 1078 967 673695.8703558 1079 967 18791643.5427 1080 967 -11732848.18642 1081 967 -55420678.77829 1082 967 41466871.49251 1095 967 -7638888.891398 1096 967 -32044400.84822 1097 967 -14635369.28198 1098 967 3404183.289858 1099 967 -24476237.66492 1100 967 9715809.309978 1101 967 5973680.062196 1102 967 -23241274.51146 1103 967 14956061.60352 968 968 853460318.6126 969 968 -6587303.084687 970 968 -14142186.07844 971 968 48525682.42527 984 968 -27181697.16107 985 968 -13597032.66211 986 968 300666.5953339 987 968 10420621.6552 988 968 17141015.01558 989 968 158859271.764 990 968 4585686.05124 991 968 -6842420.271103 992 968 13285136.71385 1056 968 21477318.77125 1057 968 -15399258.17112 1058 968 -70918718.4916 1059 968 42993884.38014 1060 968 5382550.883186 1061 968 -71799029.17722 1074 968 -636581.9730439 1075 968 -60222032.6543 1076 968 -247012438.7976 1077 968 -2443130.228498 1078 968 18805545.65999 1079 968 -201210190.2793 1080 968 12423412.7955 1081 968 41458540.64078 1082 968 -52321022.26258 1095 968 -20840736.7982 1096 968 -14635369.28198 1097 968 -64147829.60048 1098 968 -46786684.85391 1099 968 9715809.311131 1100 968 -73933522.36379 1101 968 -6110175.711185 1102 968 14956061.60352 1103 968 -21004210.79327 969 969 442875011.6958 970 969 8398998.740506 971 969 3587449.702806 987 969 -37900199.70542 988 969 -29669012.21209 989 969 -4192679.813966 990 969 23914388.45506 991 969 18670678.36176 992 969 1284371.73895 993 969 79386790.30619 994 969 -13623383.55779 995 969 -141175.7616777 996 969 2420595.755201 997 969 26375395.37582 998 969 684032.7841115 1059 969 -17822239.3706 1060 969 9194679.008118 1061 969 9770196.805889 1077 969 -41046754.09296 1078 969 -11732848.18642 1079 969 -15622467.2995 1080 969 -55034990.49984 1081 969 2099749.686162 1082 969 10931445.7583 1098 969 -23479926.51996 1099 969 -7417253.056677 1100 969 -14997301.90306 1101 969 -65005495.31362 1102 969 4667669.592739 1103 969 -54435157.05621 1104 969 -28235802.42725 1105 969 -3405845.891125 1106 969 10910713.0034 1107 969 -20886441.98794 1108 969 6593848.847203 1109 969 -13257984.86388 970 970 541110906.0816 971 970 22621038.86925 987 970 -29669012.21209 988 970 -18428194.76081 989 970 -786622.899826 990 970 18670678.36176 991 970 137453909.9061 992 970 4611190.584816 993 970 -1401161.337575 994 970 19991930.1348 995 970 -593772.9185854 996 970 26375395.37582 997 970 -8693351.225763 998 970 -679725.193279 1059 970 6129786.005412 1060 970 -29631847.07945 1061 970 -18404535.59174 1077 970 -11723510.74027 1078 970 -69421799.81119 1079 970 -48221146.21121 1080 970 2099749.686162 1081 970 -30476016.89128 1082 970 7201253.461998 1098 970 -7417253.056677 1099 970 -18611925.28141 1100 970 -11356377.95096 1101 970 4667669.592739 1102 970 -36620614.93688 1103 970 6659742.089658 1104 970 -350290.3345659 1105 970 -43084517.47741 1106 970 33184890.09814 1107 970 6593848.847203 1108 970 -23664928.73455 1109 970 16496735.37374 971 971 742023994.5875 987 971 -3810735.369772 988 971 -481067.3444712 989 971 19538445.84481 990 971 2812149.516478 991 971 4916746.140321 992 971 248223025.1829 993 971 240768.6827077 994 971 -593772.9185855 995 971 164839361.9377 996 971 1065977.228305 997 971 -679725.193279 998 971 60791642.10178 1059 971 6513464.53726 1060 971 -21008507.25432 1061 971 -35716363.94607 1077 971 -15612123.92226 1078 971 -48226237.0269 1079 971 -89657345.01698 1080 971 -11047443.12698 1081 971 2590596.573928 1082 971 -256503983.8706 1098 971 -14997301.90306 1099 971 -11356377.95096 1100 971 -32461726.1069 1101 971 -54435157.05583 1102 971 6659742.090811 1103 971 -127235156.8213 1104 971 2785713.002169 1105 971 33184890.09814 1106 971 -87010159.53147 1107 971 -13257984.86388 1108 971 16496735.37374 1109 971 -42112998.60584 972 972 368052930.1888 973 972 -5.960464477539e-07 974 972 -5092655.779371 975 972 36918430.8128 976 972 6111111.110107 977 972 3501141.609773 1062 972 -67815699.74408 1063 972 2.041459083557e-06 1064 972 57072469.49195 1065 972 -10820592.87768 1066 972 -7638888.891398 1067 972 7154402.099879 1083 972 -6536047.694301 1084 972 -2.086162567139e-07 1085 972 -11516358.3887 1086 972 9773277.203117 1087 972 1527777.778279 1088 972 -1685513.209194 973 973 331384190.9633 974 973 61110352.83914 975 973 -6111111.110108 976 973 -21137036.27743 977 973 -30249620.86406 1062 973 2.004206180573e-06 1063 973 -34204373.78147 1064 973 7638794.112417 1065 973 -7638888.891398 1066 973 -8528796.673826 1067 973 7760464.058704 1083 973 4.768371582031e-07 1084 973 -15703232.5052 1085 973 15277588.21731 1086 973 -1527777.77828 1087 973 -4740589.576589 1088 973 14757039.22107 974 974 542828680.3217 975 974 -7957191.721679 976 974 -30860731.97507 977 974 37675981.01402 1062 974 57454413.93615 1063 974 7638794.112417 1064 974 -95624557.03646 1065 974 7154402.099879 1066 974 7760464.058704 1067 974 -1439551.802109 1083 974 10879752.71874 1084 974 15277588.21731 1085 974 -127090910.6176 1086 974 1048931.236148 1087 974 14757039.22092 1088 974 10868780.57913 975 975 368052930.1888 976 975 -5.960464477539e-07 977 975 -5092655.779371 978 975 36918430.8128 979 975 6111111.110107 980 975 3501141.609773 1062 975 -36875280.38624 1063 975 7638888.891399 1064 975 21477318.77125 1065 975 -67815699.74408 1066 975 2.041459083557e-06 1067 975 57072469.49195 1068 975 -10820592.87768 1069 975 -7638888.891398 1070 975 7154402.099879 1083 975 -40617347.78861 1084 975 -1527777.778279 1085 975 -4550096.543467 1086 975 -6536047.694301 1087 975 -2.086162567139e-07 1088 975 -11516358.3887 1089 975 9773277.203117 1090 975 1527777.778279 1091 975 -1685513.209194 976 976 331384190.9633 977 976 61110352.83914 978 976 -6111111.110108 979 976 -21137036.27743 980 976 -30249620.86406 1062 976 7638888.891399 1063 976 -34583484.18238 1064 976 -15399258.17112 1065 976 2.004206180573e-06 1066 976 -34204373.78147 1067 976 7638794.112417 1068 976 -7638888.891398 1069 976 -8528796.673826 1070 976 7760464.058704 1083 976 1527777.77828 1084 976 -55131214.56832 1085 976 -30034627.43839 1086 976 4.768371582031e-07 1087 976 -15703232.5052 1088 976 15277588.21731 1089 976 -1527777.77828 1090 976 -4740589.576589 1091 976 14757039.22107 977 977 542828680.3217 978 977 -7957191.721679 979 977 -30860731.97507 980 977 37675981.01402 1062 977 21477318.77125 1063 977 -15399258.17112 1064 977 -70918718.4916 1065 977 57454413.93615 1066 977 7638794.112417 1067 977 -95624557.03646 1068 977 7154402.099879 1069 977 7760464.058704 1070 977 -1439551.802109 1083 977 3913514.570423 1084 977 -30034627.43824 1085 977 -123506219.3988 1086 977 10879752.71874 1087 977 15277588.21731 1088 977 -127090910.6176 1089 977 1048931.236148 1090 977 14757039.22092 1091 977 10868780.57913 978 978 368052930.1888 979 978 -5.960464477539e-07 980 978 -5092655.779371 981 978 36918430.8128 982 978 6111111.110107 983 978 3501141.609773 1065 978 -36875280.38624 1066 978 7638888.891399 1067 978 21477318.77125 1068 978 -67815699.74408 1069 978 2.041459083557e-06 1070 978 57072469.49195 1071 978 -10820592.87768 1072 978 -7638888.891398 1073 978 7154402.099879 1086 978 -40617347.78861 1087 978 -1527777.778279 1088 978 -4550096.543467 1089 978 -6536047.694301 1090 978 -2.086162567139e-07 1091 978 -11516358.3887 1092 978 9773277.203117 1093 978 1527777.778279 1094 978 -1685513.209194 979 979 331384190.9633 980 979 61110352.83914 981 979 -6111111.110108 982 979 -21137036.27743 983 979 -30249620.86406 1065 979 7638888.891399 1066 979 -34583484.18238 1067 979 -15399258.17112 1068 979 2.004206180573e-06 1069 979 -34204373.78147 1070 979 7638794.112417 1071 979 -7638888.891398 1072 979 -8528796.673826 1073 979 7760464.058704 1086 979 1527777.77828 1087 979 -55131214.56832 1088 979 -30034627.43839 1089 979 4.768371582031e-07 1090 979 -15703232.5052 1091 979 15277588.21731 1092 979 -1527777.77828 1093 979 -4740589.576589 1094 979 14757039.22107 980 980 542828680.3217 981 980 -7957191.721679 982 980 -30860731.97507 983 980 37675981.01402 1065 980 21477318.77125 1066 980 -15399258.17112 1067 980 -70918718.4916 1068 980 57454413.93615 1069 980 7638794.112417 1070 980 -95624557.03646 1071 980 7154402.099879 1072 980 7760464.058704 1073 980 -1439551.802109 1086 980 3913514.570423 1087 980 -30034627.43824 1088 980 -123506219.3988 1089 980 10879752.71874 1090 980 15277588.21731 1091 980 -127090910.6176 1092 980 1048931.236148 1093 980 14757039.22092 1094 980 10868780.57913 981 981 368052930.1888 982 981 -5.960464477539e-07 983 981 -5092655.779371 984 981 36918430.8128 985 981 6111111.110107 986 981 3501141.609773 1068 981 -36875280.38624 1069 981 7638888.891399 1070 981 21477318.77125 1071 981 -67815699.74408 1072 981 2.041459083557e-06 1073 981 57072469.49195 1074 981 -10820592.87768 1075 981 -7638888.891398 1076 981 7154402.099879 1089 981 -40617347.78861 1090 981 -1527777.778279 1091 981 -4550096.543467 1092 981 -6536047.694301 1093 981 -2.086162567139e-07 1094 981 -11516358.3887 1095 981 9773277.203117 1096 981 1527777.778279 1097 981 -1685513.209194 982 982 331384190.9633 983 982 61110352.83914 984 982 -6111111.110108 985 982 -21137036.27743 986 982 -30249620.86406 1068 982 7638888.891399 1069 982 -34583484.18238 1070 982 -15399258.17112 1071 982 2.004206180573e-06 1072 982 -34204373.78147 1073 982 7638794.112417 1074 982 -7638888.891398 1075 982 -8528796.673826 1076 982 7760464.058704 1089 982 1527777.77828 1090 982 -55131214.56832 1091 982 -30034627.43839 1092 982 4.768371582031e-07 1093 982 -15703232.5052 1094 982 15277588.21731 1095 982 -1527777.77828 1096 982 -4740589.576589 1097 982 14757039.22107 983 983 542828680.3217 984 983 -7957191.721679 985 983 -30860731.97507 986 983 37675981.01402 1068 983 21477318.77125 1069 983 -15399258.17112 1070 983 -70918718.4916 1071 983 57454413.93615 1072 983 7638794.112417 1073 983 -95624557.03646 1074 983 7154402.099879 1075 983 7760464.058704 1076 983 -1439551.802109 1089 983 3913514.570423 1090 983 -30034627.43824 1091 983 -123506219.3988 1092 983 10879752.71874 1093 983 15277588.21731 1094 983 -127090910.6176 1095 983 1048931.236148 1096 983 14757039.22092 1097 983 10868780.57913 984 984 368052930.1888 985 984 -5.960464477539e-07 986 984 -5092655.779371 987 984 36918430.8128 988 984 6111111.110107 989 984 3501141.609773 1071 984 -36875280.38624 1072 984 7638888.891399 1073 984 21477318.77125 1074 984 -67815699.74408 1075 984 2.041459083557e-06 1076 984 57072469.49195 1077 984 -10820592.87768 1078 984 -7638888.891398 1079 984 7154402.099879 1092 984 -40617347.78861 1093 984 -1527777.778279 1094 984 -4550096.543467 1095 984 -6536047.694301 1096 984 -2.086162567139e-07 1097 984 -11516358.3887 1098 984 9773277.203117 1099 984 1527777.778279 1100 984 -1685513.209194 985 985 331384190.9633 986 985 61110352.83914 987 985 -6111111.110108 988 985 -21137036.27743 989 985 -30249620.86406 1071 985 7638888.891399 1072 985 -34583484.18238 1073 985 -15399258.17112 1074 985 2.004206180573e-06 1075 985 -34204373.78147 1076 985 7638794.112417 1077 985 -7638888.891398 1078 985 -8528796.673826 1079 985 7760464.058704 1092 985 1527777.77828 1093 985 -55131214.56832 1094 985 -30034627.43839 1095 985 4.768371582031e-07 1096 985 -15703232.5052 1097 985 15277588.21731 1098 985 -1527777.77828 1099 985 -4740589.576589 1100 985 14757039.22107 986 986 542828680.3217 987 986 -7957191.721679 988 986 -30860731.97507 989 986 37675981.01402 1071 986 21477318.77125 1072 986 -15399258.17112 1073 986 -70918718.4916 1074 986 57454413.93615 1075 986 7638794.112417 1076 986 -95624557.03646 1077 986 7154402.099879 1078 986 7760464.058704 1079 986 -1439551.802109 1092 986 3913514.570423 1093 986 -30034627.43824 1094 986 -123506219.3988 1095 986 10879752.71874 1096 986 15277588.21731 1097 986 -127090910.6176 1098 986 1048931.236148 1099 986 14757039.22092 1100 986 10868780.57913 987 987 349156585.9481 988 987 886715.7050995 989 987 -27554881.40078 990 987 34686442.2226 991 987 -9278881.086166 992 987 -2735560.435943 1074 987 -36875280.38624 1075 987 7638888.891399 1076 987 21477318.77125 1077 987 -60781458.00658 1078 987 3404183.289861 1079 987 51519565.1286 1080 987 -20120523.74107 1081 987 -7417253.056677 1082 987 12996448.10614 1095 987 -40617347.78861 1096 987 -1527777.778279 1097 987 -4550096.543467 1098 987 -11601369.55203 1099 987 221678.9263838 1100 987 -17131637.01904 1101 987 -13469946.66151 1102 987 -2319720.272684 1103 987 3638957.111577 988 988 322798770.6263 989 988 37560511.47895 990 988 -21501103.30638 991 988 -24135471.43778 992 988 -6401583.40246 1074 988 7638888.891399 1075 988 -34583484.18238 1076 988 -15399258.17112 1077 988 3404183.28986 1078 988 -32132456.41324 1079 988 -1221690.688151 1080 988 -7417253.056677 1081 988 -15252522.50252 1082 988 11039455.38973 1095 988 1527777.77828 1096 988 -55131214.56832 1097 988 -30034627.43839 1098 988 221678.9263841 1099 988 -18190823.38574 1100 988 9390127.87436 1101 988 -5375275.829243 1102 988 -28175425.08385 1103 988 26225993.03356 989 989 503393397.4494 990 989 -4645282.657855 991 989 -6707138.957965 992 989 79758954.50096 1074 989 21477318.77125 1075 989 -15399258.17112 1076 989 -70918718.4916 1077 989 49609842.90663 1078 989 -1221690.687148 1079 989 -94350105.69262 1080 989 12996448.10614 1081 989 11039455.38973 1082 989 -23503318.69652 1095 989 3913514.570423 1096 989 -30034627.43824 1097 989 -123506219.3988 1098 989 5263918.532836 1099 989 9390127.87436 1100 989 -137859693.4611 1101 989 8664790.445306 1102 989 26225993.03241 1103 989 -39104413.95542 990 990 366758257.2118 991 990 16768677.5657 992 990 -2112503.704189 993 990 -37682552.38635 994 990 -34735715.72525 995 990 -1034717.215718 996 990 48319481.61887 997 990 -3097257.132841 998 990 -1133109.766727 1077 990 -19678307.32513 1078 990 5973680.062196 1079 990 8212046.515743 1080 990 -66802346.00857 1081 990 4667669.592741 1082 990 55459287.37057 1098 990 -24485575.13151 1099 990 -5375275.829244 1100 990 -10605487.33072 1101 990 -49124876.9151 1102 990 4192169.39349 1103 990 -10562709.25846 1104 990 -30912229.02827 1105 990 -8683928.935591 1106 990 20053820.70261 1107 990 -25803993.24156 1108 990 -774314.2835916 1109 990 4143597.555308 991 991 396792772.5139 992 991 11437666.13523 993 991 -34735715.72525 994 991 -23732031.77885 995 991 -679725.1932795 996 991 -15319479.35305 997 991 -10506376.67983 998 991 -2125127.853192 1077 991 5973680.062196 1078 991 -29647503.68042 1079 991 -18377271.74076 1080 991 4667669.59274 1081 991 -38417465.63183 1082 991 -4277757.90847 1098 991 -2319720.272685 1099 991 -39191053.55385 1100 991 -29503173.62402 1101 991 4192169.39349 1102 991 -41616248.08588 1103 991 2859416.535212 1104 991 -8683928.935591 1105 991 -27424598.87467 1106 991 16496735.37374 1107 991 -3829869.84015 1108 991 -40510457.82348 1109 991 32802051.3643 992 992 608782949.2713 993 992 -1034717.215718 994 992 -679725.1932796 995 992 45752961.54869 996 992 -1515054.211112 997 992 -2125127.853192 998 992 122586164.6905 1077 992 8212046.515743 1078 992 -18377271.74076 1079 992 -38087488.57717 1080 992 55459287.37019 1081 992 -4277757.907468 1082 992 -132026758.6745 1098 992 -4433820.663462 1099 992 -29503173.62502 1100 992 -68479423.20874 1101 992 11416179.62681 1102 992 2859416.535213 1103 992 -223309439.3091 1104 992 20053820.70261 1105 992 16496735.37374 1106 992 -45872668.74596 1107 992 9343319.780678 1108 992 32802051.3643 1109 992 -70377095.21823 993 993 234609876.3001 994 993 38067827.99822 995 993 586777.6138301 996 993 6982249.404681 997 993 -1930950.93539 998 993 207170.9191803 1080 993 -29485802.42768 1081 993 -350290.3345662 1082 993 -2760814.77204 1101 993 -32162229.02869 1102 993 -8683928.935592 1103 993 -20571179.31073 1104 993 -38762530.87567 1105 993 9516957.004243 1106 993 8271694.402195 1107 993 -42487619.48068 1108 993 -482737.734086 1109 993 -33689700.31943 994 994 219525569.817 995 994 593772.9185901 996 994 10291271.28482 997 994 67510895.4516 998 994 679725.1932815 1080 994 -3405845.891125 1081 994 -44334517.47785 1082 994 -33481776.55758 1101 994 -8683928.935592 1102 994 -28674598.8751 1103 994 -16836597.97054 1104 994 9516957.004243 1105 994 -42533607.49829 1106 994 6815109.89529 1107 994 2572817.822473 1108 994 -27355457.96149 1109 994 3503264.632831 995 995 399394804.6128 996 995 589115.3635656 997 995 679725.1932814 998 995 145469841.5664 1080 995 -10885814.77346 1081 995 -33481776.55758 1082 995 -90343492.86596 1101 995 -20571179.31073 1102 995 -16836597.97054 1103 995 -49206002.08042 1104 995 -7978305.595135 1105 995 -6518223.435853 1106 995 -159924632.0765 1107 995 -33689700.32068 1108 995 -3163402.036025 1109 995 -81587691.14437 996 996 189779491.4148 997 996 -21347187.30759 998 996 -903927.2691454 1080 996 -22136441.98836 1081 996 6593848.847203 1082 996 13695487.3672 1101 996 -29553993.24035 1102 996 -3829869.840151 1103 996 -9718902.442414 1104 996 -42487619.48068 1105 996 2572817.822474 1106 996 33888771.89179 1107 996 -32072854.387 1108 996 -5336796.829526 1109 996 -5139245.705715 997 997 199190650.6476 998 997 2125127.853197 1080 997 6593848.847203 1081 997 -24914928.73497 1082 997 -16836597.97054 1101 997 -774314.283592 1102 997 -44260457.82227 1103 997 -33864615.29142 1104 997 -482737.7340849 1105 997 -27355457.96149 1106 997 3503264.632831 1107 997 -5336796.829526 1108 997 -29720064.57765 1109 997 7197948.62913 998 998 331157200.1575 1080 998 13695487.3672 1081 998 -16836597.97054 1082 998 -45446331.9403 1101 998 -4137235.77266 1102 998 -33864615.29142 1103 998 -80377095.215 1104 998 33888771.89035 1105 998 -3163402.036025 1106 998 -81587691.14436 1107 998 5642143.181403 1108 998 -6135384.702013 1109 998 -129257972.624 999 999 460369459.7115 1000 999 30555555.55053 1001 999 -36969735.5824 1002 999 -133707927.5673 1003 999 -30577597.78773 1004 999 30839786.14823 1005 999 -4378484.728122 1006 999 24466486.67763 1007 999 22175044.36675 1110 999 18346673.71113 1111 999 7638888.891398 1112 999 1385379.035684 1113 999 -55802716.54489 1114 999 -7645254.369757 1115 999 -40856339.07483 1116 999 6123446.608564 1117 999 6117476.591476 1118 999 -3944940.585509 1000 1000 414508539.3263 1001 1000 70321276.71584 1002 1000 -30588618.90633 1003 1000 9973548.859403 1004 1000 42647671.20218 1005 1000 36699730.01644 1006 1000 -4378484.728126 1007 1000 -28439541.86765 1110 1000 7638888.891397 1111 1000 6880428.6391 1112 1000 26085656.47845 1113 1000 -7648437.108936 1114 1000 -19879647.51159 1115 1000 942630.1669732 1116 1000 9176214.887214 1117 1000 6123446.608565 1118 1000 4734398.284357 1001 1001 679047623.5514 1002 1001 27774811.43114 1003 1001 33778935.02398 1004 1001 94229239.45832 1005 1001 33262566.55012 1006 1001 -18959694.57843 1007 1001 -11675959.27499 1110 1001 -17965238.89317 1111 1001 10605384.60401 1112 1001 -88238208.0348 1113 1001 -41241201.16555 1114 1001 -1194514.850572 1115 1001 -36101396.81649 1116 1001 -5917410.878264 1117 1001 3156265.522905 1118 1001 16329190.95617 1002 1002 721009953.5089 1003 1002 30610661.14353 1004 1002 -34376411.47656 1005 1002 22252951.07536 1006 1002 -30577597.78774 1007 1002 -30132237.29345 1008 1002 -69150427.22048 1009 1002 7.599592208862e-07 1010 1002 6620438.369471 1011 1002 -46611023.324 1012 1002 30555555.55054 1013 1002 30109970.69972 1110 1002 -79032837.45136 1111 1002 -7648437.10893 1112 1002 55511888.47871 1113 1002 34928101.59242 1114 1002 7654802.58729 1115 1002 -8598678.217522 1116 1002 5149787.278365 1117 1002 -7645254.369755 1118 1002 4611926.752539 1119 1002 -53208020.04453 1120 1002 -1.534819602966e-06 1121 1002 -46887250.21518 1122 1002 -9746784.424485 1123 1002 7638888.891396 1124 1002 -4608097.279433 1003 1003 638480136.047 1004 1003 94719923.44838 1005 1003 -30588618.90634 1006 1003 -84734829.23983 1007 1003 -51960954.36765 1008 1003 5.662441253662e-07 1009 1003 65294942.0157 1010 1003 30555147.55986 1011 1003 30555555.55054 1012 1003 -37443799.05029 1013 1003 -16958129.33543 1110 1003 -7645254.369751 1111 1003 -43109768.41806 1112 1003 18161862.49682 1113 1003 7654802.587289 1114 1003 14294589.76961 1115 1003 23676298.37333 1116 1003 -7648437.108933 1117 1003 -21598853.37172 1118 1003 25862479.31684 1119 1003 -1.318752765656e-06 1120 1003 -19596660.10607 1121 1003 7638779.123661 1122 1003 7638888.891396 1123 1003 -7454967.735663 1124 1003 5468804.885664 1004 1004 935442848.8393 1005 1004 -29761426.14538 1006 1004 -58081061.81704 1007 1004 47500235.97878 1008 1004 3564882.814418 1009 1004 30555147.55986 1010 1004 156468480.0912 1011 1004 29728026.25477 1012 1004 -16652573.77948 1013 1004 -14634539.26698 1110 1004 55896750.56943 1111 1004 20307057.29599 1112 1004 -98048385.90041 1113 1004 -8588615.841047 1114 1004 23684348.15878 1115 1004 -153682668.3423 1116 1004 4613841.489092 1117 1004 24026705.92618 1118 1004 10774189.69233 1119 1004 -47269194.65938 1120 1004 7638779.123661 1121 1004 -56670545.31551 1122 1004 -4608097.279433 1123 1004 5468804.885664 1124 1004 1423975.212606 1005 1005 460369459.7115 1006 1005 30555555.55053 1007 1005 -36969735.5824 1008 1005 -43173523.32456 1009 1005 -30555555.55054 1010 1005 -27181695.95754 1011 1005 -133707927.5673 1012 1005 -30577597.78773 1013 1005 30839786.14823 1014 1005 -4378484.728122 1015 1005 24466486.67763 1016 1005 22175044.36675 1110 1005 -37437760.48235 1111 1005 9176214.887214 1112 1005 23123609.08966 1113 1005 -61598018.00238 1114 1005 -7648437.108935 1115 1005 -19592039.58835 1116 1005 18346673.71113 1117 1005 7638888.891398 1118 1005 1385379.035684 1119 1005 -30645221.93135 1120 1005 -7638888.891397 1121 1005 -18931013.9508 1122 1005 -55802716.54489 1123 1005 -7645254.369757 1124 1005 -40856339.07483 1125 1005 6123446.608564 1126 1005 6117476.591476 1127 1005 -3944940.585509 1006 1006 414508539.3263 1007 1006 70321276.71584 1008 1006 -30555555.55054 1009 1006 -34006299.05085 1010 1006 -13597018.22442 1011 1006 -30588618.90633 1012 1006 9973548.859403 1013 1006 42647671.20218 1014 1006 36699730.01644 1015 1006 -4378484.728126 1016 1006 -28439541.86765 1110 1006 6117476.591476 1111 1006 -37437760.48236 1112 1006 -12332056.26767 1113 1006 -7645254.369756 1114 1006 -88346658.65246 1115 1006 -53374653.70739 1116 1006 7638888.891397 1117 1006 6880428.6391 1118 1006 26085656.47845 1119 1006 -7638888.891397 1120 1006 -28353405.24253 1121 1006 -13107584.00933 1122 1006 -7648437.108936 1123 1006 -19879647.51159 1124 1006 942630.1669732 1125 1006 9176214.887214 1126 1006 6123446.608565 1127 1006 4734398.284357 1007 1007 679047623.5514 1008 1007 -27563640.40249 1009 1007 -13902573.78038 1010 1007 -5467872.601825 1011 1007 27774811.43114 1012 1007 33778935.02398 1013 1007 94229239.45832 1014 1007 33262566.55012 1015 1007 -18959694.57843 1016 1007 -11675959.27499 1110 1007 15415739.3931 1111 1007 -18498084.4015 1112 1007 -99834027.95294 1113 1007 -19583892.11655 1114 1007 -51538880.44741 1115 1007 -167219957.723 1116 1007 -17965238.89317 1117 1007 10605384.60401 1118 1007 -88238208.0348 1119 1007 -18931013.9508 1120 1007 -13107584.00933 1121 1007 -54305191.47237 1122 1007 -41241201.16555 1123 1007 -1194514.850572 1124 1007 -36101396.81649 1125 1007 -5917410.878264 1126 1007 3156265.522905 1127 1007 16329190.95617 1008 1008 703328029.7947 1009 1008 3.576278686523e-07 1010 1008 -10185321.18392 1011 1008 65298758.21399 1012 1008 -4.023313522339e-07 1013 1008 -2546330.297233 1017 1008 -69150427.22048 1018 1008 7.599592208862e-07 1019 1008 6620438.369471 1020 1008 -46611023.324 1021 1008 30555555.55054 1022 1008 30109970.69972 1113 1008 -59010186.71026 1114 1008 1.542270183563e-06 1115 1008 49433583.10251 1116 1008 -10337951.09135 1117 1008 -7638888.891398 1118 1008 5244680.501577 1119 1008 20431686.98312 1120 1008 -9.238719940186e-07 1121 1008 -2546332.887312 1122 1008 21018908.28051 1123 1008 -2.346932888031e-06 1124 1008 -636583.222144 1128 1008 -53208020.04453 1129 1008 -1.534819602966e-06 1130 1008 -46887250.21518 1131 1008 -9746784.424485 1132 1008 7638888.891396 1133 1008 -4608097.279433 1009 1009 629990235.6412 1010 1009 122220590.1792 1011 1009 -5.662441253662e-07 1012 1009 -50812162.49284 1013 1009 -62332517.31162 1017 1009 5.662441253662e-07 1018 1009 65294942.0157 1019 1009 30555147.55986 1020 1009 30555555.55054 1021 1009 -37443799.05029 1022 1009 -16958129.33543 1113 1009 1.035630702972e-06 1114 1009 -25398826.77179 1115 1009 7638779.123661 1116 1009 -7638888.891398 1117 1009 -8046134.402525 1118 1009 6232693.774803 1119 1009 -9.536743164063e-07 1120 1009 2097153.481574 1121 1009 30555116.47959 1122 1009 -2.235174179077e-06 1123 1009 -8008818.28482 1124 1009 23250219.53173 1128 1009 -1.318752765656e-06 1129 1009 -19596660.10607 1130 1009 7638779.123661 1131 1009 7638888.891396 1132 1009 -7454967.735663 1133 1009 5468804.885664 1010 1010 998249229.7754 1011 1010 -2546330.297234 1012 1010 -59888072.86758 1013 1010 52583448.20272 1017 1010 3564882.814418 1018 1010 30555147.55986 1019 1010 156468480.0912 1020 1010 29728026.25477 1021 1010 -16652573.77948 1022 1010 -14634539.26698 1113 1010 49815527.5467 1114 1010 7638779.12366 1115 1010 -72142989.75742 1116 1010 5244680.501577 1117 1010 6232693.774804 1118 1010 -152469.232357 1119 1010 -2546332.887312 1120 1010 30555116.47959 1121 1010 -164838704.0269 1122 1010 -636583.2221438 1123 1010 23555775.08708 1124 1010 25663714.57989 1128 1010 -47269194.65938 1129 1010 7638779.123661 1130 1010 -56670545.31551 1131 1010 -4608097.279433 1132 1010 5468804.885664 1133 1010 1423975.212606 1011 1011 721009953.5089 1012 1011 30610661.14353 1013 1011 -34376411.47656 1014 1011 22252951.07536 1015 1011 -30577597.78774 1016 1011 -30132237.29345 1017 1011 -43173523.32456 1018 1011 -30555555.55054 1019 1011 -27181695.95754 1020 1011 -69150427.22048 1021 1011 7.599592208862e-07 1022 1011 6620438.369471 1023 1011 -46611023.324 1024 1011 30555555.55054 1025 1011 30109970.69972 1113 1011 -32955138.59878 1114 1011 7638888.891398 1115 1011 19567597.17295 1116 1011 -79032837.45136 1117 1011 -7648437.10893 1118 1011 55511888.47871 1119 1011 -66012341.70521 1120 1011 2.853572368622e-06 1121 1011 -636583.2221378 1122 1011 34928101.59242 1123 1011 7654802.58729 1124 1011 -8598678.217522 1125 1011 5149787.278365 1126 1011 -7645254.369755 1127 1011 4611926.752539 1128 1011 -30645221.93135 1129 1011 -7638888.891397 1130 1011 -18931013.9508 1131 1011 -53208020.04453 1132 1011 -1.534819602966e-06 1133 1011 -46887250.21518 1134 1011 -9746784.424485 1135 1011 7638888.891396 1136 1011 -4608097.279433 1012 1012 638480136.047 1013 1012 94719923.44838 1014 1012 -30588618.90634 1015 1012 -84734829.23983 1016 1012 -51960954.36765 1017 1012 -30555555.55054 1018 1012 -34006299.05085 1019 1012 -13597018.22442 1020 1012 5.662441253662e-07 1021 1012 65294942.0157 1022 1012 30555147.55986 1023 1012 30555555.55054 1024 1012 -37443799.05029 1025 1012 -16958129.33543 1113 1012 7638888.891398 1114 1012 -30663321.90996 1115 1012 -13871472.89847 1116 1012 -7645254.369751 1117 1012 -43109768.41806 1118 1012 18161862.49682 1119 1012 2.995133399963e-06 1120 1012 -95040068.27054 1121 1012 -53805336.01132 1122 1012 7654802.587289 1123 1012 14294589.76961 1124 1012 23676298.37333 1125 1012 -7648437.108933 1126 1012 -21598853.37172 1127 1012 25862479.31684 1128 1012 -7638888.891397 1129 1012 -28353405.24253 1130 1012 -13107584.00933 1131 1012 -1.318752765656e-06 1132 1012 -19596660.10607 1133 1012 7638779.123661 1134 1012 7638888.891396 1135 1012 -7454967.735663 1136 1012 5468804.885664 1013 1013 935442848.8393 1014 1013 -29761426.14538 1015 1013 -58081061.81704 1016 1013 47500235.97878 1017 1013 -27563640.40249 1018 1013 -13902573.78038 1019 1013 -5467872.601825 1020 1013 3564882.814418 1021 1013 30555147.55986 1022 1013 156468480.0912 1023 1013 29728026.25477 1024 1013 -16652573.77948 1025 1013 -14634539.26698 1113 1013 19567597.17295 1114 1013 -13871472.89847 1115 1013 -60464969.25217 1116 1013 55896750.56943 1117 1013 20307057.29599 1118 1013 -98048385.90041 1119 1013 -636583.2221379 1120 1013 -54110891.56668 1121 1013 -206419618.7154 1122 1013 -8588615.841047 1123 1013 23684348.15878 1124 1013 -153682668.3423 1125 1013 4613841.489092 1126 1013 24026705.92618 1127 1013 10774189.69233 1128 1013 -18931013.9508 1129 1013 -13107584.00933 1130 1013 -54305191.47237 1131 1013 -47269194.65938 1132 1013 7638779.123661 1133 1013 -56670545.31551 1134 1013 -4608097.279433 1135 1013 5468804.885664 1136 1013 1423975.212606 1014 1014 460369459.7115 1015 1014 30555555.55053 1016 1014 -36969735.5824 1020 1014 -43173523.32456 1021 1014 -30555555.55054 1022 1014 -27181695.95754 1023 1014 -133707927.5673 1024 1014 -30577597.78773 1025 1014 30839786.14823 1026 1014 -4378484.728122 1027 1014 24466486.67763 1028 1014 22175044.36675 1116 1014 -37437760.48235 1117 1014 9176214.887214 1118 1014 23123609.08966 1122 1014 -61598018.00238 1123 1014 -7648437.108935 1124 1014 -19592039.58835 1125 1014 18346673.71113 1126 1014 7638888.891398 1127 1014 1385379.035684 1131 1014 -30645221.93135 1132 1014 -7638888.891397 1133 1014 -18931013.9508 1134 1014 -55802716.54489 1135 1014 -7645254.369757 1136 1014 -40856339.07483 1137 1014 6123446.608564 1138 1014 6117476.591476 1139 1014 -3944940.585509 1015 1015 414508539.3263 1016 1015 70321276.71584 1020 1015 -30555555.55054 1021 1015 -34006299.05085 1022 1015 -13597018.22442 1023 1015 -30588618.90633 1024 1015 9973548.859403 1025 1015 42647671.20218 1026 1015 36699730.01644 1027 1015 -4378484.728126 1028 1015 -28439541.86765 1116 1015 6117476.591476 1117 1015 -37437760.48236 1118 1015 -12332056.26767 1122 1015 -7645254.369756 1123 1015 -88346658.65246 1124 1015 -53374653.70739 1125 1015 7638888.891397 1126 1015 6880428.6391 1127 1015 26085656.47845 1131 1015 -7638888.891397 1132 1015 -28353405.24253 1133 1015 -13107584.00933 1134 1015 -7648437.108936 1135 1015 -19879647.51159 1136 1015 942630.1669732 1137 1015 9176214.887214 1138 1015 6123446.608565 1139 1015 4734398.284357 1016 1016 679047623.5514 1020 1016 -27563640.40249 1021 1016 -13902573.78038 1022 1016 -5467872.601825 1023 1016 27774811.43114 1024 1016 33778935.02398 1025 1016 94229239.45832 1026 1016 33262566.55012 1027 1016 -18959694.57843 1028 1016 -11675959.27499 1116 1016 15415739.3931 1117 1016 -18498084.4015 1118 1016 -99834027.95294 1122 1016 -19583892.11655 1123 1016 -51538880.44741 1124 1016 -167219957.723 1125 1016 -17965238.89317 1126 1016 10605384.60401 1127 1016 -88238208.0348 1131 1016 -18931013.9508 1132 1016 -13107584.00933 1133 1016 -54305191.47237 1134 1016 -41241201.16555 1135 1016 -1194514.850572 1136 1016 -36101396.81649 1137 1016 -5917410.878264 1138 1016 3156265.522905 1139 1016 16329190.95617 1017 1017 703328029.7947 1018 1017 3.576278686523e-07 1019 1017 -10185321.18392 1020 1017 65298758.21399 1021 1017 -4.023313522339e-07 1022 1017 -2546330.297233 1029 1017 -69150427.22048 1030 1017 7.599592208862e-07 1031 1017 6620438.369471 1032 1017 -46611023.324 1033 1017 30555555.55054 1034 1017 30109970.69972 1119 1017 -59010186.71026 1120 1017 1.542270183563e-06 1121 1017 49433583.10251 1122 1017 -10337951.09135 1123 1017 -7638888.891398 1124 1017 5244680.501577 1128 1017 20431686.98312 1129 1017 -9.238719940186e-07 1130 1017 -2546332.887312 1131 1017 21018908.28051 1132 1017 -2.346932888031e-06 1133 1017 -636583.222144 1140 1017 -53208020.04453 1141 1017 -1.534819602966e-06 1142 1017 -46887250.21518 1143 1017 -9746784.424485 1144 1017 7638888.891396 1145 1017 -4608097.279433 1018 1018 629990235.6412 1019 1018 122220590.1792 1020 1018 -5.662441253662e-07 1021 1018 -50812162.49284 1022 1018 -62332517.31162 1029 1018 5.662441253662e-07 1030 1018 65294942.0157 1031 1018 30555147.55986 1032 1018 30555555.55054 1033 1018 -37443799.05029 1034 1018 -16958129.33543 1119 1018 1.035630702972e-06 1120 1018 -25398826.77179 1121 1018 7638779.123661 1122 1018 -7638888.891398 1123 1018 -8046134.402525 1124 1018 6232693.774803 1128 1018 -9.536743164063e-07 1129 1018 2097153.481574 1130 1018 30555116.47959 1131 1018 -2.235174179077e-06 1132 1018 -8008818.28482 1133 1018 23250219.53173 1140 1018 -1.318752765656e-06 1141 1018 -19596660.10607 1142 1018 7638779.123661 1143 1018 7638888.891396 1144 1018 -7454967.735663 1145 1018 5468804.885664 1019 1019 998249229.7754 1020 1019 -2546330.297234 1021 1019 -59888072.86758 1022 1019 52583448.20272 1029 1019 3564882.814418 1030 1019 30555147.55986 1031 1019 156468480.0912 1032 1019 29728026.25477 1033 1019 -16652573.77948 1034 1019 -14634539.26698 1119 1019 49815527.5467 1120 1019 7638779.12366 1121 1019 -72142989.75742 1122 1019 5244680.501577 1123 1019 6232693.774804 1124 1019 -152469.232357 1128 1019 -2546332.887312 1129 1019 30555116.47959 1130 1019 -164838704.0269 1131 1019 -636583.2221438 1132 1019 23555775.08708 1133 1019 25663714.57989 1140 1019 -47269194.65938 1141 1019 7638779.123661 1142 1019 -56670545.31551 1143 1019 -4608097.279433 1144 1019 5468804.885664 1145 1019 1423975.212606 1020 1020 703328029.7947 1021 1020 3.576278686523e-07 1022 1020 -10185321.18392 1023 1020 65298758.21399 1024 1020 -4.023313522339e-07 1025 1020 -2546330.297233 1029 1020 -43173523.32456 1030 1020 -30555555.55054 1031 1020 -27181695.95754 1032 1020 -69150427.22048 1033 1020 7.599592208862e-07 1034 1020 6620438.369471 1035 1020 -46611023.324 1036 1020 30555555.55054 1037 1020 30109970.69972 1119 1020 -32955138.59878 1120 1020 7638888.891398 1121 1020 19567597.17295 1122 1020 -59010186.71026 1123 1020 1.542270183563e-06 1124 1020 49433583.10251 1125 1020 -10337951.09135 1126 1020 -7638888.891398 1127 1020 5244680.501577 1128 1020 -66012341.70521 1129 1020 2.853572368622e-06 1130 1020 -636583.2221378 1131 1020 20431686.98312 1132 1020 -9.238719940186e-07 1133 1020 -2546332.887312 1134 1020 21018908.28051 1135 1020 -2.346932888031e-06 1136 1020 -636583.222144 1140 1020 -30645221.93135 1141 1020 -7638888.891397 1142 1020 -18931013.9508 1143 1020 -53208020.04453 1144 1020 -1.534819602966e-06 1145 1020 -46887250.21518 1146 1020 -9746784.424485 1147 1020 7638888.891396 1148 1020 -4608097.279433 1021 1021 629990235.6412 1022 1021 122220590.1792 1023 1021 -5.662441253662e-07 1024 1021 -50812162.49284 1025 1021 -62332517.31162 1029 1021 -30555555.55054 1030 1021 -34006299.05085 1031 1021 -13597018.22442 1032 1021 5.662441253662e-07 1033 1021 65294942.0157 1034 1021 30555147.55986 1035 1021 30555555.55054 1036 1021 -37443799.05029 1037 1021 -16958129.33543 1119 1021 7638888.891398 1120 1021 -30663321.90996 1121 1021 -13871472.89847 1122 1021 1.035630702972e-06 1123 1021 -25398826.77179 1124 1021 7638779.123661 1125 1021 -7638888.891398 1126 1021 -8046134.402525 1127 1021 6232693.774803 1128 1021 2.995133399963e-06 1129 1021 -95040068.27054 1130 1021 -53805336.01132 1131 1021 -9.536743164063e-07 1132 1021 2097153.481574 1133 1021 30555116.47959 1134 1021 -2.235174179077e-06 1135 1021 -8008818.28482 1136 1021 23250219.53173 1140 1021 -7638888.891397 1141 1021 -28353405.24253 1142 1021 -13107584.00933 1143 1021 -1.318752765656e-06 1144 1021 -19596660.10607 1145 1021 7638779.123661 1146 1021 7638888.891396 1147 1021 -7454967.735663 1148 1021 5468804.885664 1022 1022 998249229.7754 1023 1022 -2546330.297234 1024 1022 -59888072.86758 1025 1022 52583448.20272 1029 1022 -27563640.40249 1030 1022 -13902573.78038 1031 1022 -5467872.601825 1032 1022 3564882.814418 1033 1022 30555147.55986 1034 1022 156468480.0912 1035 1022 29728026.25477 1036 1022 -16652573.77948 1037 1022 -14634539.26698 1119 1022 19567597.17295 1120 1022 -13871472.89847 1121 1022 -60464969.25217 1122 1022 49815527.5467 1123 1022 7638779.12366 1124 1022 -72142989.75742 1125 1022 5244680.501577 1126 1022 6232693.774804 1127 1022 -152469.232357 1128 1022 -636583.2221379 1129 1022 -54110891.56668 1130 1022 -206419618.7154 1131 1022 -2546332.887312 1132 1022 30555116.47959 1133 1022 -164838704.0269 1134 1022 -636583.2221438 1135 1022 23555775.08708 1136 1022 25663714.57989 1140 1022 -18931013.9508 1141 1022 -13107584.00933 1142 1022 -54305191.47237 1143 1022 -47269194.65938 1144 1022 7638779.123661 1145 1022 -56670545.31551 1146 1022 -4608097.279433 1147 1022 5468804.885664 1148 1022 1423975.212606 1023 1023 721009953.5089 1024 1023 30610661.14353 1025 1023 -34376411.47656 1026 1023 22252951.07536 1027 1023 -30577597.78774 1028 1023 -30132237.29345 1032 1023 -43173523.32456 1033 1023 -30555555.55054 1034 1023 -27181695.95754 1035 1023 -69150427.22048 1036 1023 7.599592208862e-07 1037 1023 6620438.369471 1038 1023 -46611023.324 1039 1023 30555555.55054 1040 1023 30109970.69972 1122 1023 -32955138.59878 1123 1023 7638888.891398 1124 1023 19567597.17295 1125 1023 -79032837.45136 1126 1023 -7648437.10893 1127 1023 55511888.47871 1131 1023 -66012341.70521 1132 1023 2.853572368622e-06 1133 1023 -636583.2221378 1134 1023 34928101.59242 1135 1023 7654802.58729 1136 1023 -8598678.217522 1137 1023 5149787.278365 1138 1023 -7645254.369755 1139 1023 4611926.752539 1143 1023 -30645221.93135 1144 1023 -7638888.891397 1145 1023 -18931013.9508 1146 1023 -53208020.04453 1147 1023 -1.534819602966e-06 1148 1023 -46887250.21518 1149 1023 -9746784.424485 1150 1023 7638888.891396 1151 1023 -4608097.279433 1024 1024 638480136.047 1025 1024 94719923.44838 1026 1024 -30588618.90634 1027 1024 -84734829.23983 1028 1024 -51960954.36765 1032 1024 -30555555.55054 1033 1024 -34006299.05085 1034 1024 -13597018.22442 1035 1024 5.662441253662e-07 1036 1024 65294942.0157 1037 1024 30555147.55986 1038 1024 30555555.55054 1039 1024 -37443799.05029 1040 1024 -16958129.33543 1122 1024 7638888.891398 1123 1024 -30663321.90996 1124 1024 -13871472.89847 1125 1024 -7645254.369751 1126 1024 -43109768.41806 1127 1024 18161862.49682 1131 1024 2.995133399963e-06 1132 1024 -95040068.27054 1133 1024 -53805336.01132 1134 1024 7654802.587289 1135 1024 14294589.76961 1136 1024 23676298.37333 1137 1024 -7648437.108933 1138 1024 -21598853.37172 1139 1024 25862479.31684 1143 1024 -7638888.891397 1144 1024 -28353405.24253 1145 1024 -13107584.00933 1146 1024 -1.318752765656e-06 1147 1024 -19596660.10607 1148 1024 7638779.123661 1149 1024 7638888.891396 1150 1024 -7454967.735663 1151 1024 5468804.885664 1025 1025 935442848.8393 1026 1025 -29761426.14538 1027 1025 -58081061.81704 1028 1025 47500235.97878 1032 1025 -27563640.40249 1033 1025 -13902573.78038 1034 1025 -5467872.601825 1035 1025 3564882.814418 1036 1025 30555147.55986 1037 1025 156468480.0912 1038 1025 29728026.25477 1039 1025 -16652573.77948 1040 1025 -14634539.26698 1122 1025 19567597.17295 1123 1025 -13871472.89847 1124 1025 -60464969.25217 1125 1025 55896750.56943 1126 1025 20307057.29599 1127 1025 -98048385.90041 1131 1025 -636583.2221379 1132 1025 -54110891.56668 1133 1025 -206419618.7154 1134 1025 -8588615.841047 1135 1025 23684348.15878 1136 1025 -153682668.3423 1137 1025 4613841.489092 1138 1025 24026705.92618 1139 1025 10774189.69233 1143 1025 -18931013.9508 1144 1025 -13107584.00933 1145 1025 -54305191.47237 1146 1025 -47269194.65938 1147 1025 7638779.123661 1148 1025 -56670545.31551 1149 1025 -4608097.279433 1150 1025 5468804.885664 1151 1025 1423975.212606 1026 1026 460369459.7115 1027 1026 30555555.55053 1028 1026 -36969735.5824 1035 1026 -43173523.32456 1036 1026 -30555555.55054 1037 1026 -27181695.95754 1038 1026 -133707927.5673 1039 1026 -30577597.78773 1040 1026 30839786.14823 1041 1026 -4378484.728122 1042 1026 24466486.67763 1043 1026 22175044.36675 1125 1026 -37437760.48235 1126 1026 9176214.887214 1127 1026 23123609.08966 1134 1026 -61598018.00238 1135 1026 -7648437.108935 1136 1026 -19592039.58835 1137 1026 18346673.71113 1138 1026 7638888.891398 1139 1026 1385379.035684 1146 1026 -30645221.93135 1147 1026 -7638888.891397 1148 1026 -18931013.9508 1149 1026 -55802716.54489 1150 1026 -7645254.369757 1151 1026 -40856339.07483 1152 1026 6123446.608564 1153 1026 6117476.591476 1154 1026 -3944940.585509 1027 1027 414508539.3263 1028 1027 70321276.71584 1035 1027 -30555555.55054 1036 1027 -34006299.05085 1037 1027 -13597018.22442 1038 1027 -30588618.90633 1039 1027 9973548.859403 1040 1027 42647671.20218 1041 1027 36699730.01644 1042 1027 -4378484.728126 1043 1027 -28439541.86765 1125 1027 6117476.591476 1126 1027 -37437760.48236 1127 1027 -12332056.26767 1134 1027 -7645254.369756 1135 1027 -88346658.65246 1136 1027 -53374653.70739 1137 1027 7638888.891397 1138 1027 6880428.6391 1139 1027 26085656.47845 1146 1027 -7638888.891397 1147 1027 -28353405.24253 1148 1027 -13107584.00933 1149 1027 -7648437.108936 1150 1027 -19879647.51159 1151 1027 942630.1669732 1152 1027 9176214.887214 1153 1027 6123446.608565 1154 1027 4734398.284357 1028 1028 679047623.5514 1035 1028 -27563640.40249 1036 1028 -13902573.78038 1037 1028 -5467872.601825 1038 1028 27774811.43114 1039 1028 33778935.02398 1040 1028 94229239.45832 1041 1028 33262566.55012 1042 1028 -18959694.57843 1043 1028 -11675959.27499 1125 1028 15415739.3931 1126 1028 -18498084.4015 1127 1028 -99834027.95294 1134 1028 -19583892.11655 1135 1028 -51538880.44741 1136 1028 -167219957.723 1137 1028 -17965238.89317 1138 1028 10605384.60401 1139 1028 -88238208.0348 1146 1028 -18931013.9508 1147 1028 -13107584.00933 1148 1028 -54305191.47237 1149 1028 -41241201.16555 1150 1028 -1194514.850572 1151 1028 -36101396.81649 1152 1028 -5917410.878264 1153 1028 3156265.522905 1154 1028 16329190.95617 1029 1029 703328029.7947 1030 1029 3.576278686523e-07 1031 1029 -10185321.18392 1032 1029 65298758.21399 1033 1029 -4.023313522339e-07 1034 1029 -2546330.297233 1044 1029 -69150427.22048 1045 1029 7.599592208862e-07 1046 1029 6620438.369471 1047 1029 -46611023.324 1048 1029 30555555.55054 1049 1029 30109970.69972 1128 1029 -59010186.71026 1129 1029 1.542270183563e-06 1130 1029 49433583.10251 1131 1029 -10337951.09135 1132 1029 -7638888.891398 1133 1029 5244680.501577 1140 1029 20431686.98312 1141 1029 -9.238719940186e-07 1142 1029 -2546332.887312 1143 1029 21018908.28051 1144 1029 -2.346932888031e-06 1145 1029 -636583.222144 1155 1029 -53208020.04453 1156 1029 -1.534819602966e-06 1157 1029 -46887250.21518 1158 1029 -9746784.424485 1159 1029 7638888.891396 1160 1029 -4608097.279433 1030 1030 629990235.6412 1031 1030 122220590.1792 1032 1030 -5.662441253662e-07 1033 1030 -50812162.49284 1034 1030 -62332517.31162 1044 1030 5.662441253662e-07 1045 1030 65294942.0157 1046 1030 30555147.55986 1047 1030 30555555.55054 1048 1030 -37443799.05029 1049 1030 -16958129.33543 1128 1030 1.035630702972e-06 1129 1030 -25398826.77179 1130 1030 7638779.123661 1131 1030 -7638888.891398 1132 1030 -8046134.402525 1133 1030 6232693.774803 1140 1030 -9.536743164063e-07 1141 1030 2097153.481574 1142 1030 30555116.47959 1143 1030 -2.235174179077e-06 1144 1030 -8008818.28482 1145 1030 23250219.53173 1155 1030 -1.318752765656e-06 1156 1030 -19596660.10607 1157 1030 7638779.123661 1158 1030 7638888.891396 1159 1030 -7454967.735663 1160 1030 5468804.885664 1031 1031 998249229.7754 1032 1031 -2546330.297234 1033 1031 -59888072.86758 1034 1031 52583448.20272 1044 1031 3564882.814418 1045 1031 30555147.55986 1046 1031 156468480.0912 1047 1031 29728026.25477 1048 1031 -16652573.77948 1049 1031 -14634539.26698 1128 1031 49815527.5467 1129 1031 7638779.12366 1130 1031 -72142989.75742 1131 1031 5244680.501577 1132 1031 6232693.774804 1133 1031 -152469.232357 1140 1031 -2546332.887312 1141 1031 30555116.47959 1142 1031 -164838704.0269 1143 1031 -636583.2221438 1144 1031 23555775.08708 1145 1031 25663714.57989 1155 1031 -47269194.65938 1156 1031 7638779.123661 1157 1031 -56670545.31551 1158 1031 -4608097.279433 1159 1031 5468804.885664 1160 1031 1423975.212606 1032 1032 703328029.7947 1033 1032 3.576278686523e-07 1034 1032 -10185321.18392 1035 1032 65298758.21399 1036 1032 -4.023313522339e-07 1037 1032 -2546330.297233 1044 1032 -43173523.32456 1045 1032 -30555555.55054 1046 1032 -27181695.95754 1047 1032 -69150427.22048 1048 1032 7.599592208862e-07 1049 1032 6620438.369471 1050 1032 -46611023.324 1051 1032 30555555.55054 1052 1032 30109970.69972 1128 1032 -32955138.59878 1129 1032 7638888.891398 1130 1032 19567597.17295 1131 1032 -59010186.71026 1132 1032 1.542270183563e-06 1133 1032 49433583.10251 1134 1032 -10337951.09135 1135 1032 -7638888.891398 1136 1032 5244680.501577 1140 1032 -66012341.70521 1141 1032 2.853572368622e-06 1142 1032 -636583.2221378 1143 1032 20431686.98312 1144 1032 -9.238719940186e-07 1145 1032 -2546332.887312 1146 1032 21018908.28051 1147 1032 -2.346932888031e-06 1148 1032 -636583.222144 1155 1032 -30645221.93135 1156 1032 -7638888.891397 1157 1032 -18931013.9508 1158 1032 -53208020.04453 1159 1032 -1.534819602966e-06 1160 1032 -46887250.21518 1161 1032 -9746784.424485 1162 1032 7638888.891396 1163 1032 -4608097.279433 1033 1033 629990235.6412 1034 1033 122220590.1792 1035 1033 -5.662441253662e-07 1036 1033 -50812162.49284 1037 1033 -62332517.31162 1044 1033 -30555555.55054 1045 1033 -34006299.05085 1046 1033 -13597018.22442 1047 1033 5.662441253662e-07 1048 1033 65294942.0157 1049 1033 30555147.55986 1050 1033 30555555.55054 1051 1033 -37443799.05029 1052 1033 -16958129.33543 1128 1033 7638888.891398 1129 1033 -30663321.90996 1130 1033 -13871472.89847 1131 1033 1.035630702972e-06 1132 1033 -25398826.77179 1133 1033 7638779.123661 1134 1033 -7638888.891398 1135 1033 -8046134.402525 1136 1033 6232693.774803 1140 1033 2.995133399963e-06 1141 1033 -95040068.27054 1142 1033 -53805336.01132 1143 1033 -9.536743164063e-07 1144 1033 2097153.481574 1145 1033 30555116.47959 1146 1033 -2.235174179077e-06 1147 1033 -8008818.28482 1148 1033 23250219.53173 1155 1033 -7638888.891397 1156 1033 -28353405.24253 1157 1033 -13107584.00933 1158 1033 -1.318752765656e-06 1159 1033 -19596660.10607 1160 1033 7638779.123661 1161 1033 7638888.891396 1162 1033 -7454967.735663 1163 1033 5468804.885664 1034 1034 998249229.7754 1035 1034 -2546330.297234 1036 1034 -59888072.86758 1037 1034 52583448.20272 1044 1034 -27563640.40249 1045 1034 -13902573.78038 1046 1034 -5467872.601825 1047 1034 3564882.814418 1048 1034 30555147.55986 1049 1034 156468480.0912 1050 1034 29728026.25477 1051 1034 -16652573.77948 1052 1034 -14634539.26698 1128 1034 19567597.17295 1129 1034 -13871472.89847 1130 1034 -60464969.25217 1131 1034 49815527.5467 1132 1034 7638779.12366 1133 1034 -72142989.75742 1134 1034 5244680.501577 1135 1034 6232693.774804 1136 1034 -152469.232357 1140 1034 -636583.2221379 1141 1034 -54110891.56668 1142 1034 -206419618.7154 1143 1034 -2546332.887312 1144 1034 30555116.47959 1145 1034 -164838704.0269 1146 1034 -636583.2221438 1147 1034 23555775.08708 1148 1034 25663714.57989 1155 1034 -18931013.9508 1156 1034 -13107584.00933 1157 1034 -54305191.47237 1158 1034 -47269194.65938 1159 1034 7638779.123661 1160 1034 -56670545.31551 1161 1034 -4608097.279433 1162 1034 5468804.885664 1163 1034 1423975.212606 1035 1035 703328029.7947 1036 1035 3.576278686523e-07 1037 1035 -10185321.18392 1038 1035 65298758.21399 1039 1035 -4.023313522339e-07 1040 1035 -2546330.297233 1047 1035 -43173523.32456 1048 1035 -30555555.55054 1049 1035 -27181695.95754 1050 1035 -69150427.22048 1051 1035 7.599592208862e-07 1052 1035 6620438.369471 1053 1035 -46611023.324 1054 1035 30555555.55054 1055 1035 30109970.69972 1131 1035 -32955138.59878 1132 1035 7638888.891398 1133 1035 19567597.17295 1134 1035 -59010186.71026 1135 1035 1.542270183563e-06 1136 1035 49433583.10251 1137 1035 -10337951.09135 1138 1035 -7638888.891398 1139 1035 5244680.501577 1143 1035 -66012341.70521 1144 1035 2.853572368622e-06 1145 1035 -636583.2221378 1146 1035 20431686.98312 1147 1035 -9.238719940186e-07 1148 1035 -2546332.887312 1149 1035 21018908.28051 1150 1035 -2.346932888031e-06 1151 1035 -636583.222144 1158 1035 -30645221.93135 1159 1035 -7638888.891397 1160 1035 -18931013.9508 1161 1035 -53208020.04453 1162 1035 -1.534819602966e-06 1163 1035 -46887250.21518 1164 1035 -9746784.424485 1165 1035 7638888.891396 1166 1035 -4608097.279433 1036 1036 629990235.6412 1037 1036 122220590.1792 1038 1036 -5.662441253662e-07 1039 1036 -50812162.49284 1040 1036 -62332517.31162 1047 1036 -30555555.55054 1048 1036 -34006299.05085 1049 1036 -13597018.22442 1050 1036 5.662441253662e-07 1051 1036 65294942.0157 1052 1036 30555147.55986 1053 1036 30555555.55054 1054 1036 -37443799.05029 1055 1036 -16958129.33543 1131 1036 7638888.891398 1132 1036 -30663321.90996 1133 1036 -13871472.89847 1134 1036 1.035630702972e-06 1135 1036 -25398826.77179 1136 1036 7638779.123661 1137 1036 -7638888.891398 1138 1036 -8046134.402525 1139 1036 6232693.774803 1143 1036 2.995133399963e-06 1144 1036 -95040068.27054 1145 1036 -53805336.01132 1146 1036 -9.536743164063e-07 1147 1036 2097153.481574 1148 1036 30555116.47959 1149 1036 -2.235174179077e-06 1150 1036 -8008818.28482 1151 1036 23250219.53173 1158 1036 -7638888.891397 1159 1036 -28353405.24253 1160 1036 -13107584.00933 1161 1036 -1.318752765656e-06 1162 1036 -19596660.10607 1163 1036 7638779.123661 1164 1036 7638888.891396 1165 1036 -7454967.735663 1166 1036 5468804.885664 1037 1037 998249229.7754 1038 1037 -2546330.297234 1039 1037 -59888072.86758 1040 1037 52583448.20272 1047 1037 -27563640.40249 1048 1037 -13902573.78038 1049 1037 -5467872.601825 1050 1037 3564882.814418 1051 1037 30555147.55986 1052 1037 156468480.0912 1053 1037 29728026.25477 1054 1037 -16652573.77948 1055 1037 -14634539.26698 1131 1037 19567597.17295 1132 1037 -13871472.89847 1133 1037 -60464969.25217 1134 1037 49815527.5467 1135 1037 7638779.12366 1136 1037 -72142989.75742 1137 1037 5244680.501577 1138 1037 6232693.774804 1139 1037 -152469.232357 1143 1037 -636583.2221379 1144 1037 -54110891.56668 1145 1037 -206419618.7154 1146 1037 -2546332.887312 1147 1037 30555116.47959 1148 1037 -164838704.0269 1149 1037 -636583.2221438 1150 1037 23555775.08708 1151 1037 25663714.57989 1158 1037 -18931013.9508 1159 1037 -13107584.00933 1160 1037 -54305191.47237 1161 1037 -47269194.65938 1162 1037 7638779.123661 1163 1037 -56670545.31551 1164 1037 -4608097.279433 1165 1037 5468804.885664 1166 1037 1423975.212606 1038 1038 721009953.5089 1039 1038 30610661.14353 1040 1038 -34376411.47656 1041 1038 22252951.07536 1042 1038 -30577597.78774 1043 1038 -30132237.29345 1050 1038 -43173523.32456 1051 1038 -30555555.55054 1052 1038 -27181695.95754 1053 1038 -69150427.22048 1054 1038 7.599592208862e-07 1055 1038 6620438.369471 1056 1038 -46611023.324 1057 1038 30555555.55054 1058 1038 30109970.69972 1134 1038 -32955138.59878 1135 1038 7638888.891398 1136 1038 19567597.17295 1137 1038 -79032837.45136 1138 1038 -7648437.10893 1139 1038 55511888.47871 1146 1038 -66012341.70521 1147 1038 2.853572368622e-06 1148 1038 -636583.2221378 1149 1038 34928101.59242 1150 1038 7654802.58729 1151 1038 -8598678.217522 1152 1038 5149787.278365 1153 1038 -7645254.369755 1154 1038 4611926.752539 1161 1038 -30645221.93135 1162 1038 -7638888.891397 1163 1038 -18931013.9508 1164 1038 -53208020.04453 1165 1038 -1.534819602966e-06 1166 1038 -46887250.21518 1167 1038 -9746784.424485 1168 1038 7638888.891396 1169 1038 -4608097.279433 1039 1039 638480136.047 1040 1039 94719923.44838 1041 1039 -30588618.90634 1042 1039 -84734829.23983 1043 1039 -51960954.36765 1050 1039 -30555555.55054 1051 1039 -34006299.05085 1052 1039 -13597018.22442 1053 1039 5.662441253662e-07 1054 1039 65294942.0157 1055 1039 30555147.55986 1056 1039 30555555.55054 1057 1039 -37443799.05029 1058 1039 -16958129.33543 1134 1039 7638888.891398 1135 1039 -30663321.90996 1136 1039 -13871472.89847 1137 1039 -7645254.369751 1138 1039 -43109768.41806 1139 1039 18161862.49682 1146 1039 2.995133399963e-06 1147 1039 -95040068.27054 1148 1039 -53805336.01132 1149 1039 7654802.587289 1150 1039 14294589.76961 1151 1039 23676298.37333 1152 1039 -7648437.108933 1153 1039 -21598853.37172 1154 1039 25862479.31684 1161 1039 -7638888.891397 1162 1039 -28353405.24253 1163 1039 -13107584.00933 1164 1039 -1.318752765656e-06 1165 1039 -19596660.10607 1166 1039 7638779.123661 1167 1039 7638888.891396 1168 1039 -7454967.735663 1169 1039 5468804.885664 1040 1040 935442848.8393 1041 1040 -29761426.14538 1042 1040 -58081061.81704 1043 1040 47500235.97878 1050 1040 -27563640.40249 1051 1040 -13902573.78038 1052 1040 -5467872.601825 1053 1040 3564882.814418 1054 1040 30555147.55986 1055 1040 156468480.0912 1056 1040 29728026.25477 1057 1040 -16652573.77948 1058 1040 -14634539.26698 1134 1040 19567597.17295 1135 1040 -13871472.89847 1136 1040 -60464969.25217 1137 1040 55896750.56943 1138 1040 20307057.29599 1139 1040 -98048385.90041 1146 1040 -636583.2221379 1147 1040 -54110891.56668 1148 1040 -206419618.7154 1149 1040 -8588615.841047 1150 1040 23684348.15878 1151 1040 -153682668.3423 1152 1040 4613841.489092 1153 1040 24026705.92618 1154 1040 10774189.69233 1161 1040 -18931013.9508 1162 1040 -13107584.00933 1163 1040 -54305191.47237 1164 1040 -47269194.65938 1165 1040 7638779.123661 1166 1040 -56670545.31551 1167 1040 -4608097.279433 1168 1040 5468804.885664 1169 1040 1423975.212606 1041 1041 460369459.7115 1042 1041 30555555.55053 1043 1041 -36969735.5824 1053 1041 -43173523.32456 1054 1041 -30555555.55054 1055 1041 -27181695.95754 1056 1041 -133707927.5673 1057 1041 -30577597.78773 1058 1041 30839786.14823 1059 1041 -4378484.728122 1060 1041 24466486.67763 1061 1041 22175044.36675 1137 1041 -37437760.48235 1138 1041 9176214.887214 1139 1041 23123609.08966 1149 1041 -61598018.00238 1150 1041 -7648437.108935 1151 1041 -19592039.58835 1152 1041 18346673.71113 1153 1041 7638888.891398 1154 1041 1385379.035684 1164 1041 -30645221.93135 1165 1041 -7638888.891397 1166 1041 -18931013.9508 1167 1041 -55802716.54489 1168 1041 -7645254.369757 1169 1041 -40856339.07483 1170 1041 6123446.608564 1171 1041 6117476.591476 1172 1041 -3944940.585509 1042 1042 414508539.3263 1043 1042 70321276.71584 1053 1042 -30555555.55054 1054 1042 -34006299.05085 1055 1042 -13597018.22442 1056 1042 -30588618.90633 1057 1042 9973548.859403 1058 1042 42647671.20218 1059 1042 36699730.01644 1060 1042 -4378484.728126 1061 1042 -28439541.86765 1137 1042 6117476.591476 1138 1042 -37437760.48236 1139 1042 -12332056.26767 1149 1042 -7645254.369756 1150 1042 -88346658.65246 1151 1042 -53374653.70739 1152 1042 7638888.891397 1153 1042 6880428.6391 1154 1042 26085656.47845 1164 1042 -7638888.891397 1165 1042 -28353405.24253 1166 1042 -13107584.00933 1167 1042 -7648437.108936 1168 1042 -19879647.51159 1169 1042 942630.1669732 1170 1042 9176214.887214 1171 1042 6123446.608565 1172 1042 4734398.284357 1043 1043 679047623.5514 1053 1043 -27563640.40249 1054 1043 -13902573.78038 1055 1043 -5467872.601825 1056 1043 27774811.43114 1057 1043 33778935.02398 1058 1043 94229239.45832 1059 1043 33262566.55012 1060 1043 -18959694.57843 1061 1043 -11675959.27499 1137 1043 15415739.3931 1138 1043 -18498084.4015 1139 1043 -99834027.95294 1149 1043 -19583892.11655 1150 1043 -51538880.44741 1151 1043 -167219957.723 1152 1043 -17965238.89317 1153 1043 10605384.60401 1154 1043 -88238208.0348 1164 1043 -18931013.9508 1165 1043 -13107584.00933 1166 1043 -54305191.47237 1167 1043 -41241201.16555 1168 1043 -1194514.850572 1169 1043 -36101396.81649 1170 1043 -5917410.878264 1171 1043 3156265.522905 1172 1043 16329190.95617 1044 1044 703328029.7947 1045 1044 3.576278686523e-07 1046 1044 -10185321.18392 1047 1044 65298758.21399 1048 1044 -4.023313522339e-07 1049 1044 -2546330.297233 1062 1044 -69150427.22048 1063 1044 7.599592208862e-07 1064 1044 6620438.369471 1065 1044 -46611023.324 1066 1044 30555555.55054 1067 1044 30109970.69972 1140 1044 -59010186.71026 1141 1044 1.542270183563e-06 1142 1044 49433583.10251 1143 1044 -10337951.09135 1144 1044 -7638888.891398 1145 1044 5244680.501577 1155 1044 20431686.98312 1156 1044 -9.238719940186e-07 1157 1044 -2546332.887312 1158 1044 21018908.28051 1159 1044 -2.346932888031e-06 1160 1044 -636583.222144 1173 1044 -53208020.04453 1174 1044 -1.534819602966e-06 1175 1044 -46887250.21518 1176 1044 -9746784.424485 1177 1044 7638888.891396 1178 1044 -4608097.279433 1045 1045 629990235.6412 1046 1045 122220590.1792 1047 1045 -5.662441253662e-07 1048 1045 -50812162.49284 1049 1045 -62332517.31162 1062 1045 5.662441253662e-07 1063 1045 65294942.0157 1064 1045 30555147.55986 1065 1045 30555555.55054 1066 1045 -37443799.05029 1067 1045 -16958129.33543 1140 1045 1.035630702972e-06 1141 1045 -25398826.77179 1142 1045 7638779.123661 1143 1045 -7638888.891398 1144 1045 -8046134.402525 1145 1045 6232693.774803 1155 1045 -9.536743164063e-07 1156 1045 2097153.481574 1157 1045 30555116.47959 1158 1045 -2.235174179077e-06 1159 1045 -8008818.28482 1160 1045 23250219.53173 1173 1045 -1.318752765656e-06 1174 1045 -19596660.10607 1175 1045 7638779.123661 1176 1045 7638888.891396 1177 1045 -7454967.735663 1178 1045 5468804.885664 1046 1046 998249229.7754 1047 1046 -2546330.297234 1048 1046 -59888072.86758 1049 1046 52583448.20272 1062 1046 3564882.814418 1063 1046 30555147.55986 1064 1046 156468480.0912 1065 1046 29728026.25477 1066 1046 -16652573.77948 1067 1046 -14634539.26698 1140 1046 49815527.5467 1141 1046 7638779.12366 1142 1046 -72142989.75742 1143 1046 5244680.501577 1144 1046 6232693.774804 1145 1046 -152469.232357 1155 1046 -2546332.887312 1156 1046 30555116.47959 1157 1046 -164838704.0269 1158 1046 -636583.2221438 1159 1046 23555775.08708 1160 1046 25663714.57989 1173 1046 -47269194.65938 1174 1046 7638779.123661 1175 1046 -56670545.31551 1176 1046 -4608097.279433 1177 1046 5468804.885664 1178 1046 1423975.212606 1047 1047 703328029.7947 1048 1047 3.576278686523e-07 1049 1047 -10185321.18392 1050 1047 65298758.21399 1051 1047 -4.023313522339e-07 1052 1047 -2546330.297233 1062 1047 -43173523.32456 1063 1047 -30555555.55054 1064 1047 -27181695.95754 1065 1047 -69150427.22048 1066 1047 7.599592208862e-07 1067 1047 6620438.369471 1068 1047 -46611023.324 1069 1047 30555555.55054 1070 1047 30109970.69972 1140 1047 -32955138.59878 1141 1047 7638888.891398 1142 1047 19567597.17295 1143 1047 -59010186.71026 1144 1047 1.542270183563e-06 1145 1047 49433583.10251 1146 1047 -10337951.09135 1147 1047 -7638888.891398 1148 1047 5244680.501577 1155 1047 -66012341.70521 1156 1047 2.853572368622e-06 1157 1047 -636583.2221378 1158 1047 20431686.98312 1159 1047 -9.238719940186e-07 1160 1047 -2546332.887312 1161 1047 21018908.28051 1162 1047 -2.346932888031e-06 1163 1047 -636583.222144 1173 1047 -30645221.93135 1174 1047 -7638888.891397 1175 1047 -18931013.9508 1176 1047 -53208020.04453 1177 1047 -1.534819602966e-06 1178 1047 -46887250.21518 1179 1047 -9746784.424485 1180 1047 7638888.891396 1181 1047 -4608097.279433 1048 1048 629990235.6412 1049 1048 122220590.1792 1050 1048 -5.662441253662e-07 1051 1048 -50812162.49284 1052 1048 -62332517.31162 1062 1048 -30555555.55054 1063 1048 -34006299.05085 1064 1048 -13597018.22442 1065 1048 5.662441253662e-07 1066 1048 65294942.0157 1067 1048 30555147.55986 1068 1048 30555555.55054 1069 1048 -37443799.05029 1070 1048 -16958129.33543 1140 1048 7638888.891398 1141 1048 -30663321.90996 1142 1048 -13871472.89847 1143 1048 1.035630702972e-06 1144 1048 -25398826.77179 1145 1048 7638779.123661 1146 1048 -7638888.891398 1147 1048 -8046134.402525 1148 1048 6232693.774803 1155 1048 2.995133399963e-06 1156 1048 -95040068.27054 1157 1048 -53805336.01132 1158 1048 -9.536743164063e-07 1159 1048 2097153.481574 1160 1048 30555116.47959 1161 1048 -2.235174179077e-06 1162 1048 -8008818.28482 1163 1048 23250219.53173 1173 1048 -7638888.891397 1174 1048 -28353405.24253 1175 1048 -13107584.00933 1176 1048 -1.318752765656e-06 1177 1048 -19596660.10607 1178 1048 7638779.123661 1179 1048 7638888.891396 1180 1048 -7454967.735663 1181 1048 5468804.885664 1049 1049 998249229.7754 1050 1049 -2546330.297234 1051 1049 -59888072.86758 1052 1049 52583448.20272 1062 1049 -27563640.40249 1063 1049 -13902573.78038 1064 1049 -5467872.601825 1065 1049 3564882.814418 1066 1049 30555147.55986 1067 1049 156468480.0912 1068 1049 29728026.25477 1069 1049 -16652573.77948 1070 1049 -14634539.26698 1140 1049 19567597.17295 1141 1049 -13871472.89847 1142 1049 -60464969.25217 1143 1049 49815527.5467 1144 1049 7638779.12366 1145 1049 -72142989.75742 1146 1049 5244680.501577 1147 1049 6232693.774804 1148 1049 -152469.232357 1155 1049 -636583.2221379 1156 1049 -54110891.56668 1157 1049 -206419618.7154 1158 1049 -2546332.887312 1159 1049 30555116.47959 1160 1049 -164838704.0269 1161 1049 -636583.2221438 1162 1049 23555775.08708 1163 1049 25663714.57989 1173 1049 -18931013.9508 1174 1049 -13107584.00933 1175 1049 -54305191.47237 1176 1049 -47269194.65938 1177 1049 7638779.123661 1178 1049 -56670545.31551 1179 1049 -4608097.279433 1180 1049 5468804.885664 1181 1049 1423975.212606 1050 1050 703328029.7947 1051 1050 3.576278686523e-07 1052 1050 -10185321.18392 1053 1050 65298758.21399 1054 1050 -4.023313522339e-07 1055 1050 -2546330.297233 1065 1050 -43173523.32456 1066 1050 -30555555.55054 1067 1050 -27181695.95754 1068 1050 -69150427.22048 1069 1050 7.599592208862e-07 1070 1050 6620438.369471 1071 1050 -46611023.324 1072 1050 30555555.55054 1073 1050 30109970.69972 1143 1050 -32955138.59878 1144 1050 7638888.891398 1145 1050 19567597.17295 1146 1050 -59010186.71026 1147 1050 1.542270183563e-06 1148 1050 49433583.10251 1149 1050 -10337951.09135 1150 1050 -7638888.891398 1151 1050 5244680.501577 1158 1050 -66012341.70521 1159 1050 2.853572368622e-06 1160 1050 -636583.2221378 1161 1050 20431686.98312 1162 1050 -9.238719940186e-07 1163 1050 -2546332.887312 1164 1050 21018908.28051 1165 1050 -2.346932888031e-06 1166 1050 -636583.222144 1176 1050 -30645221.93135 1177 1050 -7638888.891397 1178 1050 -18931013.9508 1179 1050 -53208020.04453 1180 1050 -1.534819602966e-06 1181 1050 -46887250.21518 1182 1050 -9746784.424485 1183 1050 7638888.891396 1184 1050 -4608097.279433 1051 1051 629990235.6412 1052 1051 122220590.1792 1053 1051 -5.662441253662e-07 1054 1051 -50812162.49284 1055 1051 -62332517.31162 1065 1051 -30555555.55054 1066 1051 -34006299.05085 1067 1051 -13597018.22442 1068 1051 5.662441253662e-07 1069 1051 65294942.0157 1070 1051 30555147.55986 1071 1051 30555555.55054 1072 1051 -37443799.05029 1073 1051 -16958129.33543 1143 1051 7638888.891398 1144 1051 -30663321.90996 1145 1051 -13871472.89847 1146 1051 1.035630702972e-06 1147 1051 -25398826.77179 1148 1051 7638779.123661 1149 1051 -7638888.891398 1150 1051 -8046134.402525 1151 1051 6232693.774803 1158 1051 2.995133399963e-06 1159 1051 -95040068.27054 1160 1051 -53805336.01132 1161 1051 -9.536743164063e-07 1162 1051 2097153.481574 1163 1051 30555116.47959 1164 1051 -2.235174179077e-06 1165 1051 -8008818.28482 1166 1051 23250219.53173 1176 1051 -7638888.891397 1177 1051 -28353405.24253 1178 1051 -13107584.00933 1179 1051 -1.318752765656e-06 1180 1051 -19596660.10607 1181 1051 7638779.123661 1182 1051 7638888.891396 1183 1051 -7454967.735663 1184 1051 5468804.885664 1052 1052 998249229.7754 1053 1052 -2546330.297234 1054 1052 -59888072.86758 1055 1052 52583448.20272 1065 1052 -27563640.40249 1066 1052 -13902573.78038 1067 1052 -5467872.601825 1068 1052 3564882.814418 1069 1052 30555147.55986 1070 1052 156468480.0912 1071 1052 29728026.25477 1072 1052 -16652573.77948 1073 1052 -14634539.26698 1143 1052 19567597.17295 1144 1052 -13871472.89847 1145 1052 -60464969.25217 1146 1052 49815527.5467 1147 1052 7638779.12366 1148 1052 -72142989.75742 1149 1052 5244680.501577 1150 1052 6232693.774804 1151 1052 -152469.232357 1158 1052 -636583.2221379 1159 1052 -54110891.56668 1160 1052 -206419618.7154 1161 1052 -2546332.887312 1162 1052 30555116.47959 1163 1052 -164838704.0269 1164 1052 -636583.2221438 1165 1052 23555775.08708 1166 1052 25663714.57989 1176 1052 -18931013.9508 1177 1052 -13107584.00933 1178 1052 -54305191.47237 1179 1052 -47269194.65938 1180 1052 7638779.123661 1181 1052 -56670545.31551 1182 1052 -4608097.279433 1183 1052 5468804.885664 1184 1052 1423975.212606 1053 1053 703328029.7947 1054 1053 3.576278686523e-07 1055 1053 -10185321.18392 1056 1053 65298758.21399 1057 1053 -4.023313522339e-07 1058 1053 -2546330.297233 1068 1053 -43173523.32456 1069 1053 -30555555.55054 1070 1053 -27181695.95754 1071 1053 -69150427.22048 1072 1053 7.599592208862e-07 1073 1053 6620438.369471 1074 1053 -46611023.324 1075 1053 30555555.55054 1076 1053 30109970.69972 1146 1053 -32955138.59878 1147 1053 7638888.891398 1148 1053 19567597.17295 1149 1053 -59010186.71026 1150 1053 1.542270183563e-06 1151 1053 49433583.10251 1152 1053 -10337951.09135 1153 1053 -7638888.891398 1154 1053 5244680.501577 1161 1053 -66012341.70521 1162 1053 2.853572368622e-06 1163 1053 -636583.2221378 1164 1053 20431686.98312 1165 1053 -9.238719940186e-07 1166 1053 -2546332.887312 1167 1053 21018908.28051 1168 1053 -2.346932888031e-06 1169 1053 -636583.222144 1179 1053 -30645221.93135 1180 1053 -7638888.891397 1181 1053 -18931013.9508 1182 1053 -53208020.04453 1183 1053 -1.534819602966e-06 1184 1053 -46887250.21518 1185 1053 -9746784.424485 1186 1053 7638888.891396 1187 1053 -4608097.279433 1054 1054 629990235.6412 1055 1054 122220590.1792 1056 1054 -5.662441253662e-07 1057 1054 -50812162.49284 1058 1054 -62332517.31162 1068 1054 -30555555.55054 1069 1054 -34006299.05085 1070 1054 -13597018.22442 1071 1054 5.662441253662e-07 1072 1054 65294942.0157 1073 1054 30555147.55986 1074 1054 30555555.55054 1075 1054 -37443799.05029 1076 1054 -16958129.33543 1146 1054 7638888.891398 1147 1054 -30663321.90996 1148 1054 -13871472.89847 1149 1054 1.035630702972e-06 1150 1054 -25398826.77179 1151 1054 7638779.123661 1152 1054 -7638888.891398 1153 1054 -8046134.402525 1154 1054 6232693.774803 1161 1054 2.995133399963e-06 1162 1054 -95040068.27054 1163 1054 -53805336.01132 1164 1054 -9.536743164063e-07 1165 1054 2097153.481574 1166 1054 30555116.47959 1167 1054 -2.235174179077e-06 1168 1054 -8008818.28482 1169 1054 23250219.53173 1179 1054 -7638888.891397 1180 1054 -28353405.24253 1181 1054 -13107584.00933 1182 1054 -1.318752765656e-06 1183 1054 -19596660.10607 1184 1054 7638779.123661 1185 1054 7638888.891396 1186 1054 -7454967.735663 1187 1054 5468804.885664 1055 1055 998249229.7754 1056 1055 -2546330.297234 1057 1055 -59888072.86758 1058 1055 52583448.20272 1068 1055 -27563640.40249 1069 1055 -13902573.78038 1070 1055 -5467872.601825 1071 1055 3564882.814418 1072 1055 30555147.55986 1073 1055 156468480.0912 1074 1055 29728026.25477 1075 1055 -16652573.77948 1076 1055 -14634539.26698 1146 1055 19567597.17295 1147 1055 -13871472.89847 1148 1055 -60464969.25217 1149 1055 49815527.5467 1150 1055 7638779.12366 1151 1055 -72142989.75742 1152 1055 5244680.501577 1153 1055 6232693.774804 1154 1055 -152469.232357 1161 1055 -636583.2221379 1162 1055 -54110891.56668 1163 1055 -206419618.7154 1164 1055 -2546332.887312 1165 1055 30555116.47959 1166 1055 -164838704.0269 1167 1055 -636583.2221438 1168 1055 23555775.08708 1169 1055 25663714.57989 1179 1055 -18931013.9508 1180 1055 -13107584.00933 1181 1055 -54305191.47237 1182 1055 -47269194.65938 1183 1055 7638779.123661 1184 1055 -56670545.31551 1185 1055 -4608097.279433 1186 1055 5468804.885664 1187 1055 1423975.212606 1056 1056 721009953.5089 1057 1056 30610661.14353 1058 1056 -34376411.47656 1059 1056 22252951.07536 1060 1056 -30577597.78774 1061 1056 -30132237.29345 1071 1056 -43173523.32456 1072 1056 -30555555.55054 1073 1056 -27181695.95754 1074 1056 -69150427.22048 1075 1056 7.599592208862e-07 1076 1056 6620438.369471 1077 1056 -46611023.324 1078 1056 30555555.55054 1079 1056 30109970.69972 1149 1056 -32955138.59878 1150 1056 7638888.891398 1151 1056 19567597.17295 1152 1056 -79032837.45136 1153 1056 -7648437.10893 1154 1056 55511888.47871 1164 1056 -66012341.70521 1165 1056 2.853572368622e-06 1166 1056 -636583.2221378 1167 1056 34928101.59242 1168 1056 7654802.58729 1169 1056 -8598678.217522 1170 1056 5149787.278365 1171 1056 -7645254.369755 1172 1056 4611926.752539 1182 1056 -30645221.93135 1183 1056 -7638888.891397 1184 1056 -18931013.9508 1185 1056 -53208020.04453 1186 1056 -1.534819602966e-06 1187 1056 -46887250.21518 1188 1056 -9746784.424485 1189 1056 7638888.891396 1190 1056 -4608097.279433 1057 1057 638480136.047 1058 1057 94719923.44838 1059 1057 -30588618.90634 1060 1057 -84734829.23983 1061 1057 -51960954.36765 1071 1057 -30555555.55054 1072 1057 -34006299.05085 1073 1057 -13597018.22442 1074 1057 5.662441253662e-07 1075 1057 65294942.0157 1076 1057 30555147.55986 1077 1057 30555555.55054 1078 1057 -37443799.05029 1079 1057 -16958129.33543 1149 1057 7638888.891398 1150 1057 -30663321.90996 1151 1057 -13871472.89847 1152 1057 -7645254.369751 1153 1057 -43109768.41806 1154 1057 18161862.49682 1164 1057 2.995133399963e-06 1165 1057 -95040068.27054 1166 1057 -53805336.01132 1167 1057 7654802.587289 1168 1057 14294589.76961 1169 1057 23676298.37333 1170 1057 -7648437.108933 1171 1057 -21598853.37172 1172 1057 25862479.31684 1182 1057 -7638888.891397 1183 1057 -28353405.24253 1184 1057 -13107584.00933 1185 1057 -1.318752765656e-06 1186 1057 -19596660.10607 1187 1057 7638779.123661 1188 1057 7638888.891396 1189 1057 -7454967.735663 1190 1057 5468804.885664 1058 1058 935442848.8393 1059 1058 -29761426.14538 1060 1058 -58081061.81704 1061 1058 47500235.97878 1071 1058 -27563640.40249 1072 1058 -13902573.78038 1073 1058 -5467872.601825 1074 1058 3564882.814418 1075 1058 30555147.55986 1076 1058 156468480.0912 1077 1058 29728026.25477 1078 1058 -16652573.77948 1079 1058 -14634539.26698 1149 1058 19567597.17295 1150 1058 -13871472.89847 1151 1058 -60464969.25217 1152 1058 55896750.56943 1153 1058 20307057.29599 1154 1058 -98048385.90041 1164 1058 -636583.2221379 1165 1058 -54110891.56668 1166 1058 -206419618.7154 1167 1058 -8588615.841047 1168 1058 23684348.15878 1169 1058 -153682668.3423 1170 1058 4613841.489092 1171 1058 24026705.92618 1172 1058 10774189.69233 1182 1058 -18931013.9508 1183 1058 -13107584.00933 1184 1058 -54305191.47237 1185 1058 -47269194.65938 1186 1058 7638779.123661 1187 1058 -56670545.31551 1188 1058 -4608097.279433 1189 1058 5468804.885664 1190 1058 1423975.212606 1059 1059 367439587.8674 1060 1059 -6444670.14594 1061 1059 6702162.32163 1074 1059 -43173523.32456 1075 1059 -30555555.55054 1076 1059 -27181695.95754 1077 1059 -57214134.66201 1078 1059 6324640.430005 1079 1059 3976848.141463 1080 1059 -42286740.95386 1081 1059 24564474.15636 1082 1059 1550068.294194 1152 1059 -37437760.48235 1153 1059 9176214.887214 1154 1059 23123609.08966 1167 1059 -61598018.00238 1168 1059 -7648437.108935 1169 1059 -19592039.58835 1170 1059 18456352.87299 1171 1059 -3515413.057224 1172 1059 9204137.171611 1185 1059 -30645221.93135 1186 1059 -7638888.891397 1187 1059 -18931013.9508 1188 1059 -30340144.80161 1189 1059 3467943.693614 1190 1059 -30119546.23577 1191 1059 -19821700.11939 1192 1059 6158580.476729 1193 1059 -1921392.690481 1060 1060 419218508.677 1061 1060 80031030.37421 1074 1060 -30555555.55054 1075 1060 -34006299.05085 1076 1060 -13597018.22442 1077 1060 6264625.572038 1078 1060 70122596.35682 1079 1060 21137034.96597 1080 1060 36846711.23454 1081 1060 -123581836.7408 1082 1060 -19765521.80219 1152 1060 6117476.591476 1153 1060 -37437760.48236 1154 1060 -12332056.26767 1167 1060 -7645254.369756 1168 1060 -88346658.65246 1169 1060 -53374653.70739 1170 1060 -3515413.057224 1171 1060 45200470.13904 1172 1060 28178112.40107 1185 1060 -7638888.891397 1186 1060 -28353405.24253 1187 1060 -13107584.00933 1188 1060 3444209.011808 1189 1060 692072.0501018 1190 1060 9579154.834703 1191 1060 9237870.715094 1192 1060 -53141210.27589 1193 1060 10606269.5228 1061 1061 548014788.7711 1074 1061 -27563640.40249 1075 1061 -13902573.78038 1076 1061 -5467872.601825 1077 1061 9316353.373012 1078 1061 18981174.69952 1079 1061 100137434.615 1080 1061 2325102.441291 1081 1061 -18561981.68092 1082 1061 -31469546.75673 1152 1061 15415739.3931 1153 1061 -18498084.4015 1154 1061 -99834027.95294 1167 1061 -19583892.11655 1168 1061 -51538880.44741 1169 1061 -167219957.723 1170 1061 -3159598.760604 1171 1061 18338796.75477 1172 1061 -61684899.57103 1185 1061 -18931013.9508 1186 1061 -13107584.00933 1187 1061 -54305191.47237 1188 1061 -28213514.83563 1189 1061 9298506.145881 1190 1061 -27781546.3564 1191 1061 -2882089.035722 1192 1061 9831110.118881 1193 1061 -19538356.82854 1062 1062 703328029.7947 1063 1062 3.576278686523e-07 1064 1062 -10185321.18392 1065 1062 65298758.21399 1066 1062 -4.023313522339e-07 1067 1062 -2546330.297233 1083 1062 -69150427.22048 1084 1062 7.599592208862e-07 1085 1062 6620438.369471 1086 1062 -46611023.324 1087 1062 30555555.55054 1088 1062 30109970.69972 1155 1062 -59010186.71026 1156 1062 1.542270183563e-06 1157 1062 49433583.10251 1158 1062 -10337951.09135 1159 1062 -7638888.891398 1160 1062 5244680.501577 1173 1062 20431686.98312 1174 1062 -9.238719940186e-07 1175 1062 -2546332.887312 1176 1062 21018908.28051 1177 1062 -2.346932888031e-06 1178 1062 -636583.222144 1194 1062 -53208020.04453 1195 1062 -1.534819602966e-06 1196 1062 -46887250.21518 1197 1062 -9746784.424485 1198 1062 7638888.891396 1199 1062 -4608097.279433 1063 1063 629990235.6412 1064 1063 122220590.1792 1065 1063 -5.662441253662e-07 1066 1063 -50812162.49284 1067 1063 -62332517.31162 1083 1063 5.662441253662e-07 1084 1063 65294942.0157 1085 1063 30555147.55986 1086 1063 30555555.55054 1087 1063 -37443799.05029 1088 1063 -16958129.33543 1155 1063 1.035630702972e-06 1156 1063 -25398826.77179 1157 1063 7638779.123661 1158 1063 -7638888.891398 1159 1063 -8046134.402525 1160 1063 6232693.774803 1173 1063 -9.536743164063e-07 1174 1063 2097153.481574 1175 1063 30555116.47959 1176 1063 -2.235174179077e-06 1177 1063 -8008818.28482 1178 1063 23250219.53173 1194 1063 -1.318752765656e-06 1195 1063 -19596660.10607 1196 1063 7638779.123661 1197 1063 7638888.891396 1198 1063 -7454967.735663 1199 1063 5468804.885664 1064 1064 998249229.7754 1065 1064 -2546330.297234 1066 1064 -59888072.86758 1067 1064 52583448.20272 1083 1064 3564882.814418 1084 1064 30555147.55986 1085 1064 156468480.0912 1086 1064 29728026.25477 1087 1064 -16652573.77948 1088 1064 -14634539.26698 1155 1064 49815527.5467 1156 1064 7638779.12366 1157 1064 -72142989.75742 1158 1064 5244680.501577 1159 1064 6232693.774804 1160 1064 -152469.232357 1173 1064 -2546332.887312 1174 1064 30555116.47959 1175 1064 -164838704.0269 1176 1064 -636583.2221438 1177 1064 23555775.08708 1178 1064 25663714.57989 1194 1064 -47269194.65938 1195 1064 7638779.123661 1196 1064 -56670545.31551 1197 1064 -4608097.279433 1198 1064 5468804.885664 1199 1064 1423975.212606 1065 1065 703328029.7947 1066 1065 3.576278686523e-07 1067 1065 -10185321.18392 1068 1065 65298758.21399 1069 1065 -4.023313522339e-07 1070 1065 -2546330.297233 1083 1065 -43173523.32456 1084 1065 -30555555.55054 1085 1065 -27181695.95754 1086 1065 -69150427.22048 1087 1065 7.599592208862e-07 1088 1065 6620438.369471 1089 1065 -46611023.324 1090 1065 30555555.55054 1091 1065 30109970.69972 1155 1065 -32955138.59878 1156 1065 7638888.891398 1157 1065 19567597.17295 1158 1065 -59010186.71026 1159 1065 1.542270183563e-06 1160 1065 49433583.10251 1161 1065 -10337951.09135 1162 1065 -7638888.891398 1163 1065 5244680.501577 1173 1065 -66012341.70521 1174 1065 2.853572368622e-06 1175 1065 -636583.2221378 1176 1065 20431686.98312 1177 1065 -9.238719940186e-07 1178 1065 -2546332.887312 1179 1065 21018908.28051 1180 1065 -2.346932888031e-06 1181 1065 -636583.222144 1194 1065 -30645221.93135 1195 1065 -7638888.891397 1196 1065 -18931013.9508 1197 1065 -53208020.04453 1198 1065 -1.534819602966e-06 1199 1065 -46887250.21518 1200 1065 -9746784.424485 1201 1065 7638888.891396 1202 1065 -4608097.279433 1066 1066 629990235.6412 1067 1066 122220590.1792 1068 1066 -5.662441253662e-07 1069 1066 -50812162.49284 1070 1066 -62332517.31162 1083 1066 -30555555.55054 1084 1066 -34006299.05085 1085 1066 -13597018.22442 1086 1066 5.662441253662e-07 1087 1066 65294942.0157 1088 1066 30555147.55986 1089 1066 30555555.55054 1090 1066 -37443799.05029 1091 1066 -16958129.33543 1155 1066 7638888.891398 1156 1066 -30663321.90996 1157 1066 -13871472.89847 1158 1066 1.035630702972e-06 1159 1066 -25398826.77179 1160 1066 7638779.123661 1161 1066 -7638888.891398 1162 1066 -8046134.402525 1163 1066 6232693.774803 1173 1066 2.995133399963e-06 1174 1066 -95040068.27054 1175 1066 -53805336.01132 1176 1066 -9.536743164063e-07 1177 1066 2097153.481574 1178 1066 30555116.47959 1179 1066 -2.235174179077e-06 1180 1066 -8008818.28482 1181 1066 23250219.53173 1194 1066 -7638888.891397 1195 1066 -28353405.24253 1196 1066 -13107584.00933 1197 1066 -1.318752765656e-06 1198 1066 -19596660.10607 1199 1066 7638779.123661 1200 1066 7638888.891396 1201 1066 -7454967.735663 1202 1066 5468804.885664 1067 1067 998249229.7754 1068 1067 -2546330.297234 1069 1067 -59888072.86758 1070 1067 52583448.20272 1083 1067 -27563640.40249 1084 1067 -13902573.78038 1085 1067 -5467872.601825 1086 1067 3564882.814418 1087 1067 30555147.55986 1088 1067 156468480.0912 1089 1067 29728026.25477 1090 1067 -16652573.77948 1091 1067 -14634539.26698 1155 1067 19567597.17295 1156 1067 -13871472.89847 1157 1067 -60464969.25217 1158 1067 49815527.5467 1159 1067 7638779.12366 1160 1067 -72142989.75742 1161 1067 5244680.501577 1162 1067 6232693.774804 1163 1067 -152469.232357 1173 1067 -636583.2221379 1174 1067 -54110891.56668 1175 1067 -206419618.7154 1176 1067 -2546332.887312 1177 1067 30555116.47959 1178 1067 -164838704.0269 1179 1067 -636583.2221438 1180 1067 23555775.08708 1181 1067 25663714.57989 1194 1067 -18931013.9508 1195 1067 -13107584.00933 1196 1067 -54305191.47237 1197 1067 -47269194.65938 1198 1067 7638779.123661 1199 1067 -56670545.31551 1200 1067 -4608097.279433 1201 1067 5468804.885664 1202 1067 1423975.212606 1068 1068 703328029.7947 1069 1068 3.576278686523e-07 1070 1068 -10185321.18392 1071 1068 65298758.21399 1072 1068 -4.023313522339e-07 1073 1068 -2546330.297233 1086 1068 -43173523.32456 1087 1068 -30555555.55054 1088 1068 -27181695.95754 1089 1068 -69150427.22048 1090 1068 7.599592208862e-07 1091 1068 6620438.369471 1092 1068 -46611023.324 1093 1068 30555555.55054 1094 1068 30109970.69972 1158 1068 -32955138.59878 1159 1068 7638888.891398 1160 1068 19567597.17295 1161 1068 -59010186.71026 1162 1068 1.542270183563e-06 1163 1068 49433583.10251 1164 1068 -10337951.09135 1165 1068 -7638888.891398 1166 1068 5244680.501577 1176 1068 -66012341.70521 1177 1068 2.853572368622e-06 1178 1068 -636583.2221378 1179 1068 20431686.98312 1180 1068 -9.238719940186e-07 1181 1068 -2546332.887312 1182 1068 21018908.28051 1183 1068 -2.346932888031e-06 1184 1068 -636583.222144 1197 1068 -30645221.93135 1198 1068 -7638888.891397 1199 1068 -18931013.9508 1200 1068 -53208020.04453 1201 1068 -1.534819602966e-06 1202 1068 -46887250.21518 1203 1068 -9746784.424485 1204 1068 7638888.891396 1205 1068 -4608097.279433 1069 1069 629990235.6412 1070 1069 122220590.1792 1071 1069 -5.662441253662e-07 1072 1069 -50812162.49284 1073 1069 -62332517.31162 1086 1069 -30555555.55054 1087 1069 -34006299.05085 1088 1069 -13597018.22442 1089 1069 5.662441253662e-07 1090 1069 65294942.0157 1091 1069 30555147.55986 1092 1069 30555555.55054 1093 1069 -37443799.05029 1094 1069 -16958129.33543 1158 1069 7638888.891398 1159 1069 -30663321.90996 1160 1069 -13871472.89847 1161 1069 1.035630702972e-06 1162 1069 -25398826.77179 1163 1069 7638779.123661 1164 1069 -7638888.891398 1165 1069 -8046134.402525 1166 1069 6232693.774803 1176 1069 2.995133399963e-06 1177 1069 -95040068.27054 1178 1069 -53805336.01132 1179 1069 -9.536743164063e-07 1180 1069 2097153.481574 1181 1069 30555116.47959 1182 1069 -2.235174179077e-06 1183 1069 -8008818.28482 1184 1069 23250219.53173 1197 1069 -7638888.891397 1198 1069 -28353405.24253 1199 1069 -13107584.00933 1200 1069 -1.318752765656e-06 1201 1069 -19596660.10607 1202 1069 7638779.123661 1203 1069 7638888.891396 1204 1069 -7454967.735663 1205 1069 5468804.885664 1070 1070 998249229.7754 1071 1070 -2546330.297234 1072 1070 -59888072.86758 1073 1070 52583448.20272 1086 1070 -27563640.40249 1087 1070 -13902573.78038 1088 1070 -5467872.601825 1089 1070 3564882.814418 1090 1070 30555147.55986 1091 1070 156468480.0912 1092 1070 29728026.25477 1093 1070 -16652573.77948 1094 1070 -14634539.26698 1158 1070 19567597.17295 1159 1070 -13871472.89847 1160 1070 -60464969.25217 1161 1070 49815527.5467 1162 1070 7638779.12366 1163 1070 -72142989.75742 1164 1070 5244680.501577 1165 1070 6232693.774804 1166 1070 -152469.232357 1176 1070 -636583.2221379 1177 1070 -54110891.56668 1178 1070 -206419618.7154 1179 1070 -2546332.887312 1180 1070 30555116.47959 1181 1070 -164838704.0269 1182 1070 -636583.2221438 1183 1070 23555775.08708 1184 1070 25663714.57989 1197 1070 -18931013.9508 1198 1070 -13107584.00933 1199 1070 -54305191.47237 1200 1070 -47269194.65938 1201 1070 7638779.123661 1202 1070 -56670545.31551 1203 1070 -4608097.279433 1204 1070 5468804.885664 1205 1070 1423975.212606 1071 1071 703328029.7947 1072 1071 3.576278686523e-07 1073 1071 -10185321.18392 1074 1071 65298758.21399 1075 1071 -4.023313522339e-07 1076 1071 -2546330.297233 1089 1071 -43173523.32456 1090 1071 -30555555.55054 1091 1071 -27181695.95754 1092 1071 -69150427.22048 1093 1071 7.599592208862e-07 1094 1071 6620438.369471 1095 1071 -46611023.324 1096 1071 30555555.55054 1097 1071 30109970.69972 1161 1071 -32955138.59878 1162 1071 7638888.891398 1163 1071 19567597.17295 1164 1071 -59010186.71026 1165 1071 1.542270183563e-06 1166 1071 49433583.10251 1167 1071 -10337951.09135 1168 1071 -7638888.891398 1169 1071 5244680.501577 1179 1071 -66012341.70521 1180 1071 2.853572368622e-06 1181 1071 -636583.2221378 1182 1071 20431686.98312 1183 1071 -9.238719940186e-07 1184 1071 -2546332.887312 1185 1071 21018908.28051 1186 1071 -2.346932888031e-06 1187 1071 -636583.222144 1200 1071 -30645221.93135 1201 1071 -7638888.891397 1202 1071 -18931013.9508 1203 1071 -53208020.04453 1204 1071 -1.534819602966e-06 1205 1071 -46887250.21518 1206 1071 -9746784.424485 1207 1071 7638888.891396 1208 1071 -4608097.279433 1072 1072 629990235.6412 1073 1072 122220590.1792 1074 1072 -5.662441253662e-07 1075 1072 -50812162.49284 1076 1072 -62332517.31162 1089 1072 -30555555.55054 1090 1072 -34006299.05085 1091 1072 -13597018.22442 1092 1072 5.662441253662e-07 1093 1072 65294942.0157 1094 1072 30555147.55986 1095 1072 30555555.55054 1096 1072 -37443799.05029 1097 1072 -16958129.33543 1161 1072 7638888.891398 1162 1072 -30663321.90996 1163 1072 -13871472.89847 1164 1072 1.035630702972e-06 1165 1072 -25398826.77179 1166 1072 7638779.123661 1167 1072 -7638888.891398 1168 1072 -8046134.402525 1169 1072 6232693.774803 1179 1072 2.995133399963e-06 1180 1072 -95040068.27054 1181 1072 -53805336.01132 1182 1072 -9.536743164063e-07 1183 1072 2097153.481574 1184 1072 30555116.47959 1185 1072 -2.235174179077e-06 1186 1072 -8008818.28482 1187 1072 23250219.53173 1200 1072 -7638888.891397 1201 1072 -28353405.24253 1202 1072 -13107584.00933 1203 1072 -1.318752765656e-06 1204 1072 -19596660.10607 1205 1072 7638779.123661 1206 1072 7638888.891396 1207 1072 -7454967.735663 1208 1072 5468804.885664 1073 1073 998249229.7754 1074 1073 -2546330.297234 1075 1073 -59888072.86758 1076 1073 52583448.20272 1089 1073 -27563640.40249 1090 1073 -13902573.78038 1091 1073 -5467872.601825 1092 1073 3564882.814418 1093 1073 30555147.55986 1094 1073 156468480.0912 1095 1073 29728026.25477 1096 1073 -16652573.77948 1097 1073 -14634539.26698 1161 1073 19567597.17295 1162 1073 -13871472.89847 1163 1073 -60464969.25217 1164 1073 49815527.5467 1165 1073 7638779.12366 1166 1073 -72142989.75742 1167 1073 5244680.501577 1168 1073 6232693.774804 1169 1073 -152469.232357 1179 1073 -636583.2221379 1180 1073 -54110891.56668 1181 1073 -206419618.7154 1182 1073 -2546332.887312 1183 1073 30555116.47959 1184 1073 -164838704.0269 1185 1073 -636583.2221438 1186 1073 23555775.08708 1187 1073 25663714.57989 1200 1073 -18931013.9508 1201 1073 -13107584.00933 1202 1073 -54305191.47237 1203 1073 -47269194.65938 1204 1073 7638779.123661 1205 1073 -56670545.31551 1206 1073 -4608097.279433 1207 1073 5468804.885664 1208 1073 1423975.212606 1074 1074 703328029.7947 1075 1074 3.576278686523e-07 1076 1074 -10185321.18392 1077 1074 65298758.21399 1078 1074 -4.023313522339e-07 1079 1074 -2546330.297233 1092 1074 -43173523.32456 1093 1074 -30555555.55054 1094 1074 -27181695.95754 1095 1074 -69150427.22048 1096 1074 7.599592208862e-07 1097 1074 6620438.369471 1098 1074 -46611023.324 1099 1074 30555555.55054 1100 1074 30109970.69972 1164 1074 -32955138.59878 1165 1074 7638888.891398 1166 1074 19567597.17295 1167 1074 -59010186.71026 1168 1074 1.542270183563e-06 1169 1074 49433583.10251 1170 1074 -10337951.09135 1171 1074 -7638888.891398 1172 1074 5244680.501577 1182 1074 -66012341.70521 1183 1074 2.853572368622e-06 1184 1074 -636583.2221378 1185 1074 20431686.98312 1186 1074 -9.238719940186e-07 1187 1074 -2546332.887312 1188 1074 21018908.28051 1189 1074 -2.346932888031e-06 1190 1074 -636583.222144 1203 1074 -30645221.93135 1204 1074 -7638888.891397 1205 1074 -18931013.9508 1206 1074 -53208020.04453 1207 1074 -1.534819602966e-06 1208 1074 -46887250.21518 1209 1074 -9746784.424485 1210 1074 7638888.891396 1211 1074 -4608097.279433 1075 1075 629990235.6412 1076 1075 122220590.1792 1077 1075 -5.662441253662e-07 1078 1075 -50812162.49284 1079 1075 -62332517.31162 1092 1075 -30555555.55054 1093 1075 -34006299.05085 1094 1075 -13597018.22442 1095 1075 5.662441253662e-07 1096 1075 65294942.0157 1097 1075 30555147.55986 1098 1075 30555555.55054 1099 1075 -37443799.05029 1100 1075 -16958129.33543 1164 1075 7638888.891398 1165 1075 -30663321.90996 1166 1075 -13871472.89847 1167 1075 1.035630702972e-06 1168 1075 -25398826.77179 1169 1075 7638779.123661 1170 1075 -7638888.891398 1171 1075 -8046134.402525 1172 1075 6232693.774803 1182 1075 2.995133399963e-06 1183 1075 -95040068.27054 1184 1075 -53805336.01132 1185 1075 -9.536743164063e-07 1186 1075 2097153.481574 1187 1075 30555116.47959 1188 1075 -2.235174179077e-06 1189 1075 -8008818.28482 1190 1075 23250219.53173 1203 1075 -7638888.891397 1204 1075 -28353405.24253 1205 1075 -13107584.00933 1206 1075 -1.318752765656e-06 1207 1075 -19596660.10607 1208 1075 7638779.123661 1209 1075 7638888.891396 1210 1075 -7454967.735663 1211 1075 5468804.885664 1076 1076 998249229.7754 1077 1076 -2546330.297234 1078 1076 -59888072.86758 1079 1076 52583448.20272 1092 1076 -27563640.40249 1093 1076 -13902573.78038 1094 1076 -5467872.601825 1095 1076 3564882.814418 1096 1076 30555147.55986 1097 1076 156468480.0912 1098 1076 29728026.25477 1099 1076 -16652573.77948 1100 1076 -14634539.26698 1164 1076 19567597.17295 1165 1076 -13871472.89847 1166 1076 -60464969.25217 1167 1076 49815527.5467 1168 1076 7638779.12366 1169 1076 -72142989.75742 1170 1076 5244680.501577 1171 1076 6232693.774804 1172 1076 -152469.232357 1182 1076 -636583.2221379 1183 1076 -54110891.56668 1184 1076 -206419618.7154 1185 1076 -2546332.887312 1186 1076 30555116.47959 1187 1076 -164838704.0269 1188 1076 -636583.2221438 1189 1076 23555775.08708 1190 1076 25663714.57989 1203 1076 -18931013.9508 1204 1076 -13107584.00933 1205 1076 -54305191.47237 1206 1076 -47269194.65938 1207 1076 7638779.123661 1208 1076 -56670545.31551 1209 1076 -4608097.279433 1210 1076 5468804.885664 1211 1076 1423975.212606 1077 1077 570501723.1357 1078 1077 9079022.427935 1079 1077 -9274929.964965 1080 1077 -31839728.53513 1081 1077 -51458572.29585 1082 1077 -7127824.323312 1095 1077 -43173523.32456 1096 1077 -30555555.55054 1097 1077 -27181695.95754 1098 1077 -46568529.59302 1099 1077 16027965.13575 1100 1077 2967342.757803 1101 1077 -20904300.89722 1102 1077 20086959.16013 1103 1077 4112201.618113 1167 1077 -32955138.59878 1168 1077 7638888.891398 1169 1077 19567597.17295 1170 1077 -37020168.145 1171 1077 3444209.011809 1172 1077 33605164.82544 1185 1077 -66012341.70521 1186 1077 2.853572368622e-06 1187 1077 -636583.2221378 1188 1077 28568367.61238 1189 1077 2250538.971708 1190 1077 -2147300.291512 1191 1077 -25990848.25866 1192 1077 -14160162.85565 1193 1077 10214737.96898 1206 1077 -30645221.93135 1207 1077 -7638888.891397 1208 1077 -18931013.9508 1209 1077 -42000541.15558 1210 1077 4593894.893531 1211 1077 -39062848.24116 1212 1077 -12782232.44445 1213 1077 3871519.978604 1214 1077 -2550174.723511 1078 1078 602206739.2136 1079 1078 78107882.18832 1080 1078 -51518587.15382 1081 1078 -149270648.6277 1082 1078 -15352296.85928 1095 1078 -30555555.55054 1096 1078 -34006299.05085 1097 1078 -13597018.22442 1098 1078 16027965.13575 1099 1078 61070693.25451 1100 1078 16474762.21805 1101 1078 20086959.16013 1102 1078 -72377878.58954 1103 1078 -8079345.074944 1167 1078 7638888.891398 1168 1078 -30663321.90996 1169 1078 -13871472.89847 1170 1078 3467943.693615 1171 1078 -5987951.293276 1172 1078 553673.964687 1185 1078 2.995133399963e-06 1186 1078 -95040068.27054 1187 1078 -53805336.01132 1188 1078 2250538.971707 1189 1078 43780387.67943 1190 1078 20402730.74043 1191 1078 -14183897.53746 1192 1078 -56594197.06368 1193 1078 34727712.16061 1206 1078 -7638888.891397 1207 1078 -28353405.24253 1208 1078 -13107584.00933 1209 1078 4593894.893531 1210 1078 -17139975.40311 1211 1078 10863138.72183 1212 1078 3871519.978604 1213 1078 -28839593.123 1214 1078 14284805.5813 1079 1079 752156033.5716 1080 1079 -6757025.137261 1081 1079 -14149789.86418 1082 1079 17937302.5459 1095 1079 -27563640.40249 1096 1079 -13902573.78038 1097 1079 -5467872.601825 1098 1079 8696509.423527 1099 1079 16169206.66254 1100 1079 132992729.5666 1101 1079 3348312.728221 1102 1079 -8079345.074944 1103 1079 2933439.403798 1167 1079 19567597.17295 1168 1079 -13871472.89847 1169 1079 -60464969.25217 1170 1079 31699133.42531 1171 1079 894158.2412029 1172 1079 -45594941.93873 1185 1079 -636583.2221379 1186 1079 -54110891.56668 1187 1079 -206419618.7154 1188 1079 -2127175.46838 1189 1079 20418832.32509 1190 1079 -110189348.5657 1191 1079 10220712.09006 1192 1079 34700515.9782 1193 1079 -36988737.34261 1206 1079 -18931013.9508 1207 1079 -13107584.00933 1208 1079 -54305191.47237 1209 1079 -37153126.01612 1210 1079 10863138.72329 1211 1079 -51173139.66418 1212 1079 -2550174.723511 1213 1079 14284805.5813 1214 1079 -18432385.38669 1080 1080 441900073.546 1081 1080 10150442.22681 1082 1080 -3907142.848424 1098 1080 -39682007.72661 1099 1080 -29098948.8429 1100 1080 -3693457.663771 1101 1080 32090689.3218 1102 1080 22812216.28582 1103 1080 3150441.404939 1104 1080 77149508.19 1105 1080 -14804593.1609 1106 1080 213770.8266398 1107 1080 4228979.174319 1108 1080 25612759.41044 1109 1080 1029422.0867 1170 1080 -26928306.79151 1171 1080 9237870.715094 1172 1080 5198285.296003 1188 1080 -38329908.16593 1189 1080 -14183897.53746 1190 1080 -14013967.79219 1191 1080 -25957044.68394 1192 1080 3016827.972827 1193 1080 9482743.61017 1209 1080 -20891328.62495 1210 1080 -7095495.010489 1211 1080 -13022180.51333 1212 1080 -52119203.19171 1213 1080 6820581.445927 1214 1080 -46618553.49094 1215 1080 -28126911.39166 1216 1080 -4001073.446638 1217 1080 12806770.0787 1218 1080 -18753093.0123 1219 1080 6205185.860737 1220 1080 -11366986.07681 1081 1081 580486288.2643 1082 1081 22691862.99995 1098 1081 -29098948.8429 1099 1081 -17363440.96438 1100 1081 -73698.46132895 1101 1081 22812216.28582 1102 1081 142916154.0449 1103 1081 5377779.606667 1104 1081 -2582370.940681 1105 1081 17900862.83321 1106 1081 -606809.4308197 1107 1081 25612759.41044 1108 1081 -9526605.793109 1109 1081 -711679.6250324 1170 1081 6158580.476729 1171 1081 -60247816.94801 1172 1081 -22683651.68266 1188 1081 -14160162.85565 1189 1081 -68933256.97095 1190 1081 -42828570.94811 1191 1081 3016827.972827 1192 1081 23366674.83819 1193 1081 9832075.434784 1209 1081 -7095495.010489 1210 1081 -14494911.61067 1211 1081 -9604397.379856 1212 1081 6820581.445928 1213 1081 -25052049.96819 1214 1081 8435776.588031 1215 1081 -945517.8900795 1216 1081 -42892980.14588 1217 1081 33178246.2864 1218 1081 6205185.860737 1219 1081 -22851455.05649 1220 1081 16480334.95681 1082 1082 715157788.3498 1098 1082 -4075402.108717 1099 1082 -379254.0172859 1100 1082 14849046.76255 1101 1082 1622663.627413 1102 1082 5072224.051161 1103 1082 239843057.1136 1104 1082 -168173.6177378 1105 1082 -606809.4308198 1106 1082 161890430.9423 1107 1082 647477.6417536 1108 1082 -711679.6250324 1109 1082 59287315.75331 1170 1082 3465523.530669 1171 1082 -24063482.84713 1172 1082 -38489307.95421 1188 1082 -13999817.14035 1189 1082 -42845108.80891 1190 1082 -69892897.09532 1191 1082 -9440589.720055 1192 1082 7633351.086299 1193 1082 -195780653.0959 1209 1082 -13022180.51333 1210 1082 -9604397.379856 1211 1082 -25668168.01612 1212 1082 -46618553.49056 1213 1082 8435776.589485 1214 1082 -108413832.6808 1215 1082 4681770.077847 1216 1082 33178246.2864 1217 1082 -85160955.10089 1218 1082 -11366986.07681 1219 1082 16480334.95681 1220 1082 -39542975.02213 1083 1083 351205681.5641 1084 1083 7.748603820801e-07 1085 1083 2546228.295676 1086 1083 32592087.44026 1087 1083 6111111.110108 1088 1083 5410862.629475 1173 1083 -59010186.71026 1174 1083 1.542270183563e-06 1175 1083 49433583.10251 1176 1083 -10337951.09135 1177 1083 -7638888.891398 1178 1083 5244680.501577 1194 1083 10158551.82493 1195 1083 -1.639127731323e-06 1196 1083 -9988583.109361 1197 1083 10509454.14025 1198 1083 1527777.778278 1199 1083 -1303569.389173 1084 1084 314536784.4873 1085 1084 61110295.08961 1086 1084 -6111111.110107 1087 1084 -25463372.91316 1088 1084 -30860703.10031 1173 1084 1.035630702972e-06 1174 1084 -25398826.77179 1175 1084 7638779.123661 1176 1084 -7638888.891398 1177 1084 -8046134.402525 1178 1084 6232693.774803 1194 1084 -1.132488250732e-06 1195 1084 991285.0741574 1196 1084 15277558.23979 1197 1084 -1527777.77828 1198 1084 -4004409.142409 1199 1084 11701498.65478 1085 1085 497902392.6657 1086 1085 -6047470.701977 1087 1085 -30249591.9893 1088 1085 26138946.32338 1173 1085 49815527.5467 1174 1085 7638779.12366 1175 1085 -72142989.75742 1176 1085 5244680.501577 1177 1085 6232693.774804 1178 1085 -152469.232357 1194 1085 9351972.443016 1195 1085 15277558.23979 1196 1085 -82572129.79111 1197 1085 666986.1670292 1198 1085 11701498.65463 1199 1085 12831857.28995 1086 1086 351205681.5641 1087 1086 7.748603820801e-07 1088 1086 2546228.295676 1089 1086 32592087.44026 1090 1086 6111111.110108 1091 1086 5410862.629475 1173 1086 -32955138.59878 1174 1086 7638888.891398 1175 1086 19567597.17295 1176 1086 -59010186.71026 1177 1086 1.542270183563e-06 1178 1086 49433583.10251 1179 1086 -10337951.09135 1180 1086 -7638888.891398 1181 1086 5244680.501577 1194 1086 -33006170.85261 1195 1086 -1527777.778278 1196 1086 -4168152.723444 1197 1086 10158551.82493 1198 1086 -1.639127731323e-06 1199 1086 -9988583.109361 1200 1086 10509454.14025 1201 1086 1527777.778278 1202 1086 -1303569.389173 1087 1087 314536784.4873 1088 1087 61110295.08961 1089 1087 -6111111.110107 1090 1087 -25463372.91316 1091 1087 -30860703.10031 1173 1087 7638888.891398 1174 1087 -30663321.90996 1175 1087 -13871472.89847 1176 1087 1.035630702972e-06 1177 1087 -25398826.77179 1178 1087 7638779.123661 1179 1087 -7638888.891398 1180 1087 -8046134.402525 1181 1087 6232693.774803 1194 1087 1527777.778281 1195 1087 -47520034.13527 1196 1087 -26979056.89458 1197 1087 -1.132488250732e-06 1198 1087 991285.0741574 1199 1087 15277558.23979 1200 1087 -1527777.77828 1201 1087 -4004409.142409 1202 1087 11701498.65478 1088 1088 497902392.6657 1089 1088 -6047470.701977 1090 1088 -30249591.9893 1091 1088 26138946.32338 1173 1088 19567597.17295 1174 1088 -13871472.89847 1175 1088 -60464969.25217 1176 1088 49815527.5467 1177 1088 7638779.12366 1178 1088 -72142989.75742 1179 1088 5244680.501577 1180 1088 6232693.774804 1181 1088 -152469.232357 1194 1088 3531569.501306 1195 1088 -26979056.89443 1196 1088 -103209809.3577 1197 1088 9351972.443016 1198 1088 15277558.23979 1199 1088 -82572129.79111 1200 1088 666986.1670292 1201 1088 11701498.65463 1202 1088 12831857.28995 1089 1089 351205681.5641 1090 1089 7.748603820801e-07 1091 1089 2546228.295676 1092 1089 32592087.44026 1093 1089 6111111.110108 1094 1089 5410862.629475 1176 1089 -32955138.59878 1177 1089 7638888.891398 1178 1089 19567597.17295 1179 1089 -59010186.71026 1180 1089 1.542270183563e-06 1181 1089 49433583.10251 1182 1089 -10337951.09135 1183 1089 -7638888.891398 1184 1089 5244680.501577 1197 1089 -33006170.85261 1198 1089 -1527777.778278 1199 1089 -4168152.723444 1200 1089 10158551.82493 1201 1089 -1.639127731323e-06 1202 1089 -9988583.109361 1203 1089 10509454.14025 1204 1089 1527777.778278 1205 1089 -1303569.389173 1090 1090 314536784.4873 1091 1090 61110295.08961 1092 1090 -6111111.110107 1093 1090 -25463372.91316 1094 1090 -30860703.10031 1176 1090 7638888.891398 1177 1090 -30663321.90996 1178 1090 -13871472.89847 1179 1090 1.035630702972e-06 1180 1090 -25398826.77179 1181 1090 7638779.123661 1182 1090 -7638888.891398 1183 1090 -8046134.402525 1184 1090 6232693.774803 1197 1090 1527777.778281 1198 1090 -47520034.13527 1199 1090 -26979056.89458 1200 1090 -1.132488250732e-06 1201 1090 991285.0741574 1202 1090 15277558.23979 1203 1090 -1527777.77828 1204 1090 -4004409.142409 1205 1090 11701498.65478 1091 1091 497902392.6657 1092 1091 -6047470.701977 1093 1091 -30249591.9893 1094 1091 26138946.32338 1176 1091 19567597.17295 1177 1091 -13871472.89847 1178 1091 -60464969.25217 1179 1091 49815527.5467 1180 1091 7638779.12366 1181 1091 -72142989.75742 1182 1091 5244680.501577 1183 1091 6232693.774804 1184 1091 -152469.232357 1197 1091 3531569.501306 1198 1091 -26979056.89443 1199 1091 -103209809.3577 1200 1091 9351972.443016 1201 1091 15277558.23979 1202 1091 -82572129.79111 1203 1091 666986.1670292 1204 1091 11701498.65463 1205 1091 12831857.28995 1092 1092 351205681.5641 1093 1092 7.748603820801e-07 1094 1092 2546228.295676 1095 1092 32592087.44026 1096 1092 6111111.110108 1097 1092 5410862.629475 1179 1092 -32955138.59878 1180 1092 7638888.891398 1181 1092 19567597.17295 1182 1092 -59010186.71026 1183 1092 1.542270183563e-06 1184 1092 49433583.10251 1185 1092 -10337951.09135 1186 1092 -7638888.891398 1187 1092 5244680.501577 1200 1092 -33006170.85261 1201 1092 -1527777.778278 1202 1092 -4168152.723444 1203 1092 10158551.82493 1204 1092 -1.639127731323e-06 1205 1092 -9988583.109361 1206 1092 10509454.14025 1207 1092 1527777.778278 1208 1092 -1303569.389173 1093 1093 314536784.4873 1094 1093 61110295.08961 1095 1093 -6111111.110107 1096 1093 -25463372.91316 1097 1093 -30860703.10031 1179 1093 7638888.891398 1180 1093 -30663321.90996 1181 1093 -13871472.89847 1182 1093 1.035630702972e-06 1183 1093 -25398826.77179 1184 1093 7638779.123661 1185 1093 -7638888.891398 1186 1093 -8046134.402525 1187 1093 6232693.774803 1200 1093 1527777.778281 1201 1093 -47520034.13527 1202 1093 -26979056.89458 1203 1093 -1.132488250732e-06 1204 1093 991285.0741574 1205 1093 15277558.23979 1206 1093 -1527777.77828 1207 1093 -4004409.142409 1208 1093 11701498.65478 1094 1094 497902392.6657 1095 1094 -6047470.701977 1096 1094 -30249591.9893 1097 1094 26138946.32338 1179 1094 19567597.17295 1180 1094 -13871472.89847 1181 1094 -60464969.25217 1182 1094 49815527.5467 1183 1094 7638779.12366 1184 1094 -72142989.75742 1185 1094 5244680.501577 1186 1094 6232693.774804 1187 1094 -152469.232357 1200 1094 3531569.501306 1201 1094 -26979056.89443 1202 1094 -103209809.3577 1203 1094 9351972.443016 1204 1094 15277558.23979 1205 1094 -82572129.79111 1206 1094 666986.1670292 1207 1094 11701498.65463 1208 1094 12831857.28995 1095 1095 351205681.5641 1096 1095 7.748603820801e-07 1097 1095 2546228.295676 1098 1095 32592087.44026 1099 1095 6111111.110108 1100 1095 5410862.629475 1182 1095 -32955138.59878 1183 1095 7638888.891398 1184 1095 19567597.17295 1185 1095 -59010186.71026 1186 1095 1.542270183563e-06 1187 1095 49433583.10251 1188 1095 -10337951.09135 1189 1095 -7638888.891398 1190 1095 5244680.501577 1203 1095 -33006170.85261 1204 1095 -1527777.778278 1205 1095 -4168152.723444 1206 1095 10158551.82493 1207 1095 -1.639127731323e-06 1208 1095 -9988583.109361 1209 1095 10509454.14025 1210 1095 1527777.778278 1211 1095 -1303569.389173 1096 1096 314536784.4873 1097 1096 61110295.08961 1098 1096 -6111111.110107 1099 1096 -25463372.91316 1100 1096 -30860703.10031 1182 1096 7638888.891398 1183 1096 -30663321.90996 1184 1096 -13871472.89847 1185 1096 1.035630702972e-06 1186 1096 -25398826.77179 1187 1096 7638779.123661 1188 1096 -7638888.891398 1189 1096 -8046134.402525 1190 1096 6232693.774803 1203 1096 1527777.778281 1204 1096 -47520034.13527 1205 1096 -26979056.89458 1206 1096 -1.132488250732e-06 1207 1096 991285.0741574 1208 1096 15277558.23979 1209 1096 -1527777.77828 1210 1096 -4004409.142409 1211 1096 11701498.65478 1097 1097 497902392.6657 1098 1097 -6047470.701977 1099 1097 -30249591.9893 1100 1097 26138946.32338 1182 1097 19567597.17295 1183 1097 -13871472.89847 1184 1097 -60464969.25217 1185 1097 49815527.5467 1186 1097 7638779.12366 1187 1097 -72142989.75742 1188 1097 5244680.501577 1189 1097 6232693.774804 1190 1097 -152469.232357 1203 1097 3531569.501306 1204 1097 -26979056.89443 1205 1097 -103209809.3577 1206 1097 9351972.443016 1207 1097 15277558.23979 1208 1097 -82572129.79111 1209 1097 666986.1670292 1210 1097 11701498.65463 1211 1097 12831857.28995 1098 1098 329940847.3278 1099 1098 1456924.130812 1100 1098 -19798695.49209 1101 1098 24338728.1477 1102 1098 -12830384.86409 1103 1098 -864078.4856287 1185 1098 -32955138.59878 1186 1098 7638888.891398 1187 1098 19567597.17295 1188 1098 -49351204.34845 1189 1098 4593894.893533 1190 1098 42055901.74692 1191 1098 -17990259.17954 1192 1098 -7095495.010488 1193 1098 11152125.05017 1206 1098 -33006170.85261 1207 1098 -1527777.778278 1208 1098 -4168152.723444 1209 1098 5365690.855964 1210 1098 543513.6403558 1211 1098 -15538450.00238 1212 1098 -13153927.34598 1213 1098 -4153024.636518 1214 1098 5714867.644173 1099 1099 306429729.3792 1100 1099 37967868.48639 1101 1099 -25052607.08431 1102 1099 -33219707.43372 1103 1099 -6855655.362866 1185 1099 7638888.891398 1186 1099 -30663321.90996 1187 1099 -13871472.89847 1188 1099 4593894.893532 1189 1099 -24490638.59597 1190 1099 -3129916.831349 1191 1099 -7095495.010488 1192 1099 -11593842.16527 1193 1099 9735880.404272 1206 1099 1527777.778281 1207 1099 -47520034.13527 1208 1099 -26979056.89458 1209 1099 543513.6403558 1210 1099 304716.0104512 1211 1099 9614323.658581 1212 1099 -7208580.193077 1213 1099 -27127888.67338 1214 1099 24630242.56153 1100 1100 452213403.8995 1101 1100 -3537689.596304 1102 1100 -6550099.807361 1103 1100 65800685.44065 1185 1100 19567597.17295 1186 1100 -13871472.89847 1187 1100 -60464969.25217 1188 1100 40146179.52533 1189 1100 -3129916.830046 1190 1100 -70774908.17847 1191 1100 11152125.05017 1192 1100 9735880.404273 1193 1100 -17931982.82838 1206 1100 3531569.501306 1207 1100 -26979056.89443 1208 1100 -103209809.3577 1209 1100 3801549.994444 1210 1100 9614323.658581 1211 1100 -92723636.11364 1212 1100 9976812.088386 1213 1100 24630242.56008 1214 1100 -31137386.18803 1101 1101 356383026.0183 1102 1101 22618374.71874 1103 1101 6237540.301439 1104 1101 -41476020.81817 1105 1101 -35498351.69063 1106 1101 -1071272.357701 1107 1101 40984741.8607 1108 1101 -4966591.38975 1109 1101 1039334.186828 1188 1101 -18882906.05781 1189 1101 3871519.978604 1190 1101 4133158.612019 1191 1101 -54068831.66446 1192 1101 6820581.445929 1193 1101 47998113.16057 1209 1101 -23405666.92726 1210 1101 -7208580.193078 1211 1101 -12349021.24194 1212 1101 -35108767.53211 1213 1101 7322809.363781 1214 1101 -8657494.534025 1215 1101 -31579805.97947 1216 1101 -9072591.922057 1217 1101 20035097.26683 1218 1101 -25782266.15658 1219 1101 -1733738.673178 1220 1101 6374035.624927 1102 1102 398814687.378 1103 1102 12508809.5241 1104 1102 -35498351.69063 1105 1102 -26665980.79029 1106 1102 -711679.625033 1107 1102 -17188813.60996 1108 1102 -18050410.97621 1109 1102 -2239909.067908 1188 1102 3871519.978604 1189 1102 -34940266.73636 1190 1102 -19048527.76298 1191 1102 6820581.445929 1192 1102 -27001678.44094 1193 1102 -5557278.965151 1209 1102 -4153024.636519 1210 1102 -37379628.25466 1211 1102 -28043368.541 1212 1102 7322809.363781 1213 1102 -21246056.35551 1214 1102 3425746.803933 1215 1102 -9072591.922058 1216 1102 -27661472.41918 1217 1102 16480334.95681 1218 1102 -4789294.229737 1219 1102 -40599142.11104 1220 1102 32743093.50838 1103 1103 579837473.3427 1104 1103 -1071272.357701 1105 1103 -711679.6250329 1106 1103 42147940.75612 1107 1103 -106499.146321 1108 1103 -2239909.067908 1109 1103 113215706.9648 1188 1103 4133158.612019 1189 1103 -19048527.76298 1190 1103 -34700848.35564 1191 1103 47998113.16019 1192 1103 -5557278.963848 1193 1103 -113612841.9415 1209 1103 -6941243.464199 1210 1103 -28043368.5423 1211 1103 -58475358.40478 1212 1103 10265838.7962 1213 1103 3425746.803932 1214 1103 -187302696.7748 1215 1103 20035097.26683 1216 1103 16480334.95681 1217 1103 -44352992.38482 1218 1103 10809868.96153 1219 1103 32743093.50838 1220 1103 -65097246.98569 1104 1104 234347158.4154 1105 1104 39249037.60132 1106 1104 613775.4689543 1107 1104 8275717.835673 1108 1104 -1168314.970011 1109 1104 625670.506485 1191 1104 -29376911.3921 1192 1104 -945517.8900799 1193 1104 -4684202.140556 1212 1104 -32829805.9799 1213 1104 -9072591.922058 1214 1104 -20589902.74651 1215 1104 -36371421.91044 1216 1104 10112184.55976 1217 1104 8285359.548615 1218 1104 -39320042.52865 1219 1104 -94074.74761934 1220 1104 -31761254.66155 1105 1105 219116637.1178 1106 1105 606809.4308238 1107 1105 11053907.2502 1108 1105 67944844.46223 1109 1105 711679.6250347 1191 1105 -4001073.446639 1192 1105 -44142980.14633 1193 1105 -33488420.36932 1212 1105 -9072591.922058 1213 1105 -28911472.41961 1214 1105 -16852998.38747 1215 1105 10112184.55976 1216 1105 -40225144.82899 1217 1105 6821753.707027 1218 1105 2961480.80894 1219 1105 -24618584.41616 1220 1105 3519665.049753 1106 1106 395677068.9393 1107 1106 243726.0621074 1108 1106 711679.6250346 1109 1106 142408195.6901 1191 1106 -12809202.1416 1192 1106 -33488420.36932 1193 1106 -88494288.4354 1212 1106 -20589902.74651 1213 1106 -16852998.38747 1214 1106 -47686325.71928 1215 1106 -7964640.448716 1216 1106 -6511579.624115 1217 1106 -155107169.8382 1218 1106 -31761254.66318 1219 1106 -3147001.619103 1220 1106 -76440700.83665 1107 1107 184012379.3245 1108 1107 -19477853.05068 1109 1107 3034739.887406 1191 1107 -20003093.01273 1192 1107 6205185.860737 1193 1107 11767041.70857 1212 1107 -29532266.15537 1213 1107 -4789294.229737 1214 1107 -11307908.81661 1215 1107 -39320042.52865 1216 1107 2961480.80894 1217 1107 31997773.10585 1218 1107 -27395507.40129 1219 1107 -4377372.43994 1220 1107 -4314128.22028 1108 1108 197133990.5023 1109 1108 2239909.067913 1191 1108 6205185.860737 1192 1108 -24101455.05692 1193 1108 -16852998.38747 1212 1108 -1733738.673178 1213 1108 -44349142.10983 1214 1108 -33923573.14734 1215 1108 -94074.74761849 1216 1108 -24618584.41616 1217 1108 3519665.049753 1218 1108 -4377372.43994 1219 1108 -23181727.51512 1220 1108 7256906.485048 1109 1109 318426963.4457 1191 1109 11767041.70857 1192 1109 -16852998.38747 1193 1109 -42876308.35659 1212 1109 -6490131.035622 1213 1109 -33923573.14734 1214 1109 -75097246.98247 1215 1109 31997773.10404 1216 1109 -3147001.619103 1217 1109 -76440700.83665 1218 1109 4939482.889311 1219 1109 -6076426.846095 1220 1109 -115588168.0857 1110 1110 442585385.072 1111 1110 30555555.55053 1112 1110 -29342262.45851 1113 1110 -140989212.5199 1114 1110 -30581017.46395 1115 1110 29317331.52637 1116 1110 -7397842.697824 1117 1110 24469906.35385 1118 1110 23704691.59905 1221 1110 18346673.71113 1222 1110 7638888.891398 1223 1110 1385379.035684 1224 1110 -55802716.54489 1225 1110 -7645254.369757 1226 1110 -40856339.07483 1227 1110 6123446.608564 1228 1110 6117476.591476 1229 1110 -3944940.585509 1111 1111 396720404.8065 1112 1111 76436047.94083 1113 1111 -30593748.42066 1114 1111 2703063.542514 1115 1111 42347550.95634 1116 1111 36704859.53077 1117 1111 -7397842.697831 1118 1111 -26611659.38366 1221 1111 7638888.891397 1222 1111 6880428.6391 1223 1111 26085656.47845 1224 1111 -7648437.108936 1225 1111 -19879647.51159 1226 1111 942630.1669732 1227 1111 9176214.887214 1228 1111 6123446.608565 1229 1111 4734398.284357 1112 1112 631577008.7377 1113 1112 29304866.06029 1114 1112 34088108.93947 1115 1112 74852155.60434 1116 1112 35557037.39857 1117 1112 -17741106.25578 1118 1112 -19727580.52753 1221 1112 -17965238.89317 1222 1112 10605384.60401 1223 1112 -88238208.0348 1224 1112 -41241201.16555 1225 1112 -1194514.850572 1226 1112 -36101396.81649 1227 1112 -5917410.878264 1228 1112 3156265.522905 1229 1112 16329190.95617 1113 1113 692250148.1146 1114 1113 30619210.33408 1115 1113 -34372600.90029 1116 1113 16585727.58665 1117 1113 -30581017.46396 1118 1113 -29752163.59795 1119 1113 -77421519.48389 1120 1113 -5.513429641724e-07 1121 1113 5092665.772129 1122 1113 -48621476.67428 1123 1113 30555555.55054 1124 1113 29728027.55019 1221 1113 -79032837.45136 1222 1113 -7648437.10893 1223 1113 55511888.47871 1224 1113 34928101.59242 1225 1113 7654802.58729 1226 1113 -8598678.217522 1227 1113 5149787.278365 1228 1113 -7645254.369755 1229 1113 4611926.752539 1230 1113 -53208020.04453 1231 1113 -1.534819602966e-06 1232 1113 -46887250.21518 1233 1113 -9746784.424485 1234 1113 7638888.891396 1235 1113 -4608097.279433 1114 1114 609716100.864 1115 1114 94722882.73185 1116 1114 -30593748.42066 1117 1114 -90408834.961 1118 1114 -50742009.05798 1119 1114 -7.450580596924e-07 1120 1114 57023920.20371 1121 1114 30555116.4796 1122 1114 30555555.55054 1123 1114 -39454209.9235 1124 1114 -16652558.23965 1221 1114 -7645254.369751 1222 1114 -43109768.41806 1223 1114 18161862.49682 1224 1114 7654802.587289 1225 1114 14294589.76961 1226 1114 23676298.37333 1227 1114 -7648437.108933 1228 1114 -21598853.37172 1229 1114 25862479.31684 1230 1114 -1.318752765656e-06 1231 1114 -19596660.10607 1232 1114 7638779.123661 1233 1114 7638888.891396 1234 1114 -7454967.735663 1235 1114 5468804.885664 1115 1115 858703305.1038 1116 1115 -30146176.06602 1117 1115 -59306688.68559 1118 1115 32394301.37033 1119 1115 5092665.772129 1120 1115 30555116.4796 1121 1115 134412647.088 1122 1115 30109971.99439 1123 1115 -16958113.795 1124 1115 -19995669.80713 1221 1115 55896750.56943 1222 1115 20307057.29599 1223 1115 -98048385.90041 1224 1115 -8588615.841047 1225 1115 23684348.15878 1226 1115 -153682668.3423 1227 1115 4613841.489092 1228 1115 24026705.92618 1229 1115 10774189.69233 1230 1115 -47269194.65938 1231 1115 7638779.123661 1232 1115 -56670545.31551 1233 1115 -4608097.279433 1234 1115 5468804.885664 1235 1115 1423975.212606 1116 1116 442585385.072 1117 1116 30555555.55053 1118 1116 -29342262.45851 1119 1116 -45183976.67484 1120 1116 -30555555.55054 1121 1116 -27563639.10707 1122 1116 -140989212.5199 1123 1116 -30581017.46395 1124 1116 29317331.52637 1125 1116 -7397842.697824 1126 1116 24469906.35385 1127 1116 23704691.59905 1221 1116 -37437760.48235 1222 1116 9176214.887214 1223 1116 23123609.08966 1224 1116 -61598018.00238 1225 1116 -7648437.108935 1226 1116 -19592039.58835 1227 1116 18346673.71113 1228 1116 7638888.891398 1229 1116 1385379.035684 1230 1116 -30645221.93135 1231 1116 -7638888.891397 1232 1116 -18931013.9508 1233 1116 -55802716.54489 1234 1116 -7645254.369757 1235 1116 -40856339.07483 1236 1116 6123446.608564 1237 1116 6117476.591476 1238 1116 -3944940.585509 1117 1117 396720404.8065 1118 1117 76436047.94083 1119 1117 -30555555.55054 1120 1117 -36016709.92406 1121 1117 -13902558.23995 1122 1117 -30593748.42066 1123 1117 2703063.542514 1124 1117 42347550.95634 1125 1117 36704859.53077 1126 1117 -7397842.697831 1127 1117 -26611659.38366 1221 1117 6117476.591476 1222 1117 -37437760.48236 1223 1117 -12332056.26767 1224 1117 -7645254.369756 1225 1117 -88346658.65246 1226 1117 -53374653.70739 1227 1117 7638888.891397 1228 1117 6880428.6391 1229 1117 26085656.47845 1230 1117 -7638888.891397 1231 1117 -28353405.24253 1232 1117 -13107584.00933 1233 1117 -7648437.108936 1234 1117 -19879647.51159 1235 1117 942630.1669732 1236 1117 9176214.887214 1237 1117 6123446.608565 1238 1117 4734398.284357 1118 1118 631577008.7377 1119 1118 -27181694.66288 1120 1118 -13597002.68459 1121 1118 -10829003.14197 1122 1118 29304866.06029 1123 1118 34088108.93947 1124 1118 74852155.60434 1125 1118 35557037.39857 1126 1118 -17741106.25578 1127 1118 -19727580.52753 1221 1118 15415739.3931 1222 1118 -18498084.4015 1223 1118 -99834027.95294 1224 1118 -19583892.11655 1225 1118 -51538880.44741 1226 1118 -167219957.723 1227 1118 -17965238.89317 1228 1118 10605384.60401 1229 1118 -88238208.0348 1230 1118 -18931013.9508 1231 1118 -13107584.00933 1232 1118 -54305191.47237 1233 1118 -41241201.16555 1234 1118 -1194514.850572 1235 1118 -36101396.81649 1236 1118 -5917410.878264 1237 1118 3156265.522905 1238 1118 16329190.95617 1119 1119 669327989.9306 1120 1119 -1.430511474609e-06 1121 1119 -10185331.54429 1122 1119 57028027.11004 1123 1119 9.089708328247e-07 1124 1119 -2546332.887327 1128 1119 -77421519.48389 1129 1119 -5.513429641724e-07 1130 1119 5092665.772129 1131 1119 -48621476.67428 1132 1119 30555555.55054 1133 1119 29728027.55019 1224 1119 -59010186.71026 1225 1119 1.542270183563e-06 1226 1119 49433583.10251 1227 1119 -10337951.09135 1228 1119 -7638888.891398 1229 1119 5244680.501577 1230 1119 20431686.98312 1231 1119 -9.238719940186e-07 1232 1119 -2546332.887312 1233 1119 21018908.28051 1234 1119 -2.346932888031e-06 1235 1119 -636583.222144 1239 1119 -53208020.04453 1240 1119 -1.534819602966e-06 1241 1119 -46887250.21518 1242 1119 -9746784.424485 1243 1119 7638888.891396 1244 1119 -4608097.279433 1120 1120 595989855.9605 1121 1120 122220465.8582 1122 1120 1.132488250732e-06 1123 1120 -59082879.09408 1124 1120 -61110232.92908 1128 1120 -7.450580596924e-07 1129 1120 57023920.20371 1130 1120 30555116.4796 1131 1120 30555555.55054 1132 1120 -39454209.9235 1133 1120 -16652558.23965 1224 1120 1.035630702972e-06 1225 1120 -25398826.77179 1226 1120 7638779.123661 1227 1120 -7638888.891398 1228 1120 -8046134.402525 1229 1120 6232693.774803 1230 1120 -9.536743164063e-07 1231 1120 2097153.481574 1232 1120 30555116.47959 1233 1120 -2.235174179077e-06 1234 1120 -8008818.28482 1235 1120 23250219.53173 1239 1120 -1.318752765656e-06 1240 1120 -19596660.10607 1241 1120 7638779.123661 1242 1120 7638888.891396 1243 1120 -7454967.735663 1244 1120 5468804.885664 1121 1121 907581829.653 1122 1121 -2546332.887327 1123 1121 -61110232.92908 1124 1121 30527909.01414 1128 1121 5092665.772129 1129 1121 30555116.4796 1130 1121 134412647.088 1131 1121 30109971.99439 1132 1121 -16958113.795 1133 1121 -19995669.80713 1224 1121 49815527.5467 1225 1121 7638779.12366 1226 1121 -72142989.75742 1227 1121 5244680.501577 1228 1121 6232693.774804 1229 1121 -152469.232357 1230 1121 -2546332.887312 1231 1121 30555116.47959 1232 1121 -164838704.0269 1233 1121 -636583.2221438 1234 1121 23555775.08708 1235 1121 25663714.57989 1239 1121 -47269194.65938 1240 1121 7638779.123661 1241 1121 -56670545.31551 1242 1121 -4608097.279433 1243 1121 5468804.885664 1244 1121 1423975.212606 1122 1122 692250148.1146 1123 1122 30619210.33408 1124 1122 -34372600.90029 1125 1122 16585727.58665 1126 1122 -30581017.46396 1127 1122 -29752163.59795 1128 1122 -45183976.67484 1129 1122 -30555555.55054 1130 1122 -27563639.10707 1131 1122 -77421519.48389 1132 1122 -5.513429641724e-07 1133 1122 5092665.772129 1134 1122 -48621476.67428 1135 1122 30555555.55054 1136 1122 29728027.55019 1224 1122 -32955138.59878 1225 1122 7638888.891398 1226 1122 19567597.17295 1227 1122 -79032837.45136 1228 1122 -7648437.10893 1229 1122 55511888.47871 1230 1122 -66012341.70521 1231 1122 2.853572368622e-06 1232 1122 -636583.2221378 1233 1122 34928101.59242 1234 1122 7654802.58729 1235 1122 -8598678.217522 1236 1122 5149787.278365 1237 1122 -7645254.369755 1238 1122 4611926.752539 1239 1122 -30645221.93135 1240 1122 -7638888.891397 1241 1122 -18931013.9508 1242 1122 -53208020.04453 1243 1122 -1.534819602966e-06 1244 1122 -46887250.21518 1245 1122 -9746784.424485 1246 1122 7638888.891396 1247 1122 -4608097.279433 1123 1123 609716100.864 1124 1123 94722882.73185 1125 1123 -30593748.42066 1126 1123 -90408834.961 1127 1123 -50742009.05798 1128 1123 -30555555.55054 1129 1123 -36016709.92406 1130 1123 -13902558.23995 1131 1123 -7.450580596924e-07 1132 1123 57023920.20371 1133 1123 30555116.4796 1134 1123 30555555.55054 1135 1123 -39454209.9235 1136 1123 -16652558.23965 1224 1123 7638888.891398 1225 1123 -30663321.90996 1226 1123 -13871472.89847 1227 1123 -7645254.369751 1228 1123 -43109768.41806 1229 1123 18161862.49682 1230 1123 2.995133399963e-06 1231 1123 -95040068.27054 1232 1123 -53805336.01132 1233 1123 7654802.587289 1234 1123 14294589.76961 1235 1123 23676298.37333 1236 1123 -7648437.108933 1237 1123 -21598853.37172 1238 1123 25862479.31684 1239 1123 -7638888.891397 1240 1123 -28353405.24253 1241 1123 -13107584.00933 1242 1123 -1.318752765656e-06 1243 1123 -19596660.10607 1244 1123 7638779.123661 1245 1123 7638888.891396 1246 1123 -7454967.735663 1247 1123 5468804.885664 1124 1124 858703305.1038 1125 1124 -30146176.06602 1126 1124 -59306688.68559 1127 1124 32394301.37033 1128 1124 -27181694.66288 1129 1124 -13597002.68459 1130 1124 -10829003.14197 1131 1124 5092665.772129 1132 1124 30555116.4796 1133 1124 134412647.088 1134 1124 30109971.99439 1135 1124 -16958113.795 1136 1124 -19995669.80713 1224 1124 19567597.17295 1225 1124 -13871472.89847 1226 1124 -60464969.25217 1227 1124 55896750.56943 1228 1124 20307057.29599 1229 1124 -98048385.90041 1230 1124 -636583.2221379 1231 1124 -54110891.56668 1232 1124 -206419618.7154 1233 1124 -8588615.841047 1234 1124 23684348.15878 1235 1124 -153682668.3423 1236 1124 4613841.489092 1237 1124 24026705.92618 1238 1124 10774189.69233 1239 1124 -18931013.9508 1240 1124 -13107584.00933 1241 1124 -54305191.47237 1242 1124 -47269194.65938 1243 1124 7638779.123661 1244 1124 -56670545.31551 1245 1124 -4608097.279433 1246 1124 5468804.885664 1247 1124 1423975.212606 1125 1125 442585385.072 1126 1125 30555555.55053 1127 1125 -29342262.45851 1131 1125 -45183976.67484 1132 1125 -30555555.55054 1133 1125 -27563639.10707 1134 1125 -140989212.5199 1135 1125 -30581017.46395 1136 1125 29317331.52637 1137 1125 -7397842.697824 1138 1125 24469906.35385 1139 1125 23704691.59905 1227 1125 -37437760.48235 1228 1125 9176214.887214 1229 1125 23123609.08966 1233 1125 -61598018.00238 1234 1125 -7648437.108935 1235 1125 -19592039.58835 1236 1125 18346673.71113 1237 1125 7638888.891398 1238 1125 1385379.035684 1242 1125 -30645221.93135 1243 1125 -7638888.891397 1244 1125 -18931013.9508 1245 1125 -55802716.54489 1246 1125 -7645254.369757 1247 1125 -40856339.07483 1248 1125 6123446.608564 1249 1125 6117476.591476 1250 1125 -3944940.585509 1126 1126 396720404.8065 1127 1126 76436047.94083 1131 1126 -30555555.55054 1132 1126 -36016709.92406 1133 1126 -13902558.23995 1134 1126 -30593748.42066 1135 1126 2703063.542514 1136 1126 42347550.95634 1137 1126 36704859.53077 1138 1126 -7397842.697831 1139 1126 -26611659.38366 1227 1126 6117476.591476 1228 1126 -37437760.48236 1229 1126 -12332056.26767 1233 1126 -7645254.369756 1234 1126 -88346658.65246 1235 1126 -53374653.70739 1236 1126 7638888.891397 1237 1126 6880428.6391 1238 1126 26085656.47845 1242 1126 -7638888.891397 1243 1126 -28353405.24253 1244 1126 -13107584.00933 1245 1126 -7648437.108936 1246 1126 -19879647.51159 1247 1126 942630.1669732 1248 1126 9176214.887214 1249 1126 6123446.608565 1250 1126 4734398.284357 1127 1127 631577008.7377 1131 1127 -27181694.66288 1132 1127 -13597002.68459 1133 1127 -10829003.14197 1134 1127 29304866.06029 1135 1127 34088108.93947 1136 1127 74852155.60434 1137 1127 35557037.39857 1138 1127 -17741106.25578 1139 1127 -19727580.52753 1227 1127 15415739.3931 1228 1127 -18498084.4015 1229 1127 -99834027.95294 1233 1127 -19583892.11655 1234 1127 -51538880.44741 1235 1127 -167219957.723 1236 1127 -17965238.89317 1237 1127 10605384.60401 1238 1127 -88238208.0348 1242 1127 -18931013.9508 1243 1127 -13107584.00933 1244 1127 -54305191.47237 1245 1127 -41241201.16555 1246 1127 -1194514.850572 1247 1127 -36101396.81649 1248 1127 -5917410.878264 1249 1127 3156265.522905 1250 1127 16329190.95617 1128 1128 669327989.9306 1129 1128 -1.430511474609e-06 1130 1128 -10185331.54429 1131 1128 57028027.11004 1132 1128 9.089708328247e-07 1133 1128 -2546332.887327 1140 1128 -77421519.48389 1141 1128 -5.513429641724e-07 1142 1128 5092665.772129 1143 1128 -48621476.67428 1144 1128 30555555.55054 1145 1128 29728027.55019 1230 1128 -59010186.71026 1231 1128 1.542270183563e-06 1232 1128 49433583.10251 1233 1128 -10337951.09135 1234 1128 -7638888.891398 1235 1128 5244680.501577 1239 1128 20431686.98312 1240 1128 -9.238719940186e-07 1241 1128 -2546332.887312 1242 1128 21018908.28051 1243 1128 -2.346932888031e-06 1244 1128 -636583.222144 1251 1128 -53208020.04453 1252 1128 -1.534819602966e-06 1253 1128 -46887250.21518 1254 1128 -9746784.424485 1255 1128 7638888.891396 1256 1128 -4608097.279433 1129 1129 595989855.9605 1130 1129 122220465.8582 1131 1129 1.132488250732e-06 1132 1129 -59082879.09408 1133 1129 -61110232.92908 1140 1129 -7.450580596924e-07 1141 1129 57023920.20371 1142 1129 30555116.4796 1143 1129 30555555.55054 1144 1129 -39454209.9235 1145 1129 -16652558.23965 1230 1129 1.035630702972e-06 1231 1129 -25398826.77179 1232 1129 7638779.123661 1233 1129 -7638888.891398 1234 1129 -8046134.402525 1235 1129 6232693.774803 1239 1129 -9.536743164063e-07 1240 1129 2097153.481574 1241 1129 30555116.47959 1242 1129 -2.235174179077e-06 1243 1129 -8008818.28482 1244 1129 23250219.53173 1251 1129 -1.318752765656e-06 1252 1129 -19596660.10607 1253 1129 7638779.123661 1254 1129 7638888.891396 1255 1129 -7454967.735663 1256 1129 5468804.885664 1130 1130 907581829.653 1131 1130 -2546332.887327 1132 1130 -61110232.92908 1133 1130 30527909.01414 1140 1130 5092665.772129 1141 1130 30555116.4796 1142 1130 134412647.088 1143 1130 30109971.99439 1144 1130 -16958113.795 1145 1130 -19995669.80713 1230 1130 49815527.5467 1231 1130 7638779.12366 1232 1130 -72142989.75742 1233 1130 5244680.501577 1234 1130 6232693.774804 1235 1130 -152469.232357 1239 1130 -2546332.887312 1240 1130 30555116.47959 1241 1130 -164838704.0269 1242 1130 -636583.2221438 1243 1130 23555775.08708 1244 1130 25663714.57989 1251 1130 -47269194.65938 1252 1130 7638779.123661 1253 1130 -56670545.31551 1254 1130 -4608097.279433 1255 1130 5468804.885664 1256 1130 1423975.212606 1131 1131 669327989.9306 1132 1131 -1.430511474609e-06 1133 1131 -10185331.54429 1134 1131 57028027.11004 1135 1131 9.089708328247e-07 1136 1131 -2546332.887327 1140 1131 -45183976.67484 1141 1131 -30555555.55054 1142 1131 -27563639.10707 1143 1131 -77421519.48389 1144 1131 -5.513429641724e-07 1145 1131 5092665.772129 1146 1131 -48621476.67428 1147 1131 30555555.55054 1148 1131 29728027.55019 1230 1131 -32955138.59878 1231 1131 7638888.891398 1232 1131 19567597.17295 1233 1131 -59010186.71026 1234 1131 1.542270183563e-06 1235 1131 49433583.10251 1236 1131 -10337951.09135 1237 1131 -7638888.891398 1238 1131 5244680.501577 1239 1131 -66012341.70521 1240 1131 2.853572368622e-06 1241 1131 -636583.2221378 1242 1131 20431686.98312 1243 1131 -9.238719940186e-07 1244 1131 -2546332.887312 1245 1131 21018908.28051 1246 1131 -2.346932888031e-06 1247 1131 -636583.222144 1251 1131 -30645221.93135 1252 1131 -7638888.891397 1253 1131 -18931013.9508 1254 1131 -53208020.04453 1255 1131 -1.534819602966e-06 1256 1131 -46887250.21518 1257 1131 -9746784.424485 1258 1131 7638888.891396 1259 1131 -4608097.279433 1132 1132 595989855.9605 1133 1132 122220465.8582 1134 1132 1.132488250732e-06 1135 1132 -59082879.09408 1136 1132 -61110232.92908 1140 1132 -30555555.55054 1141 1132 -36016709.92406 1142 1132 -13902558.23995 1143 1132 -7.450580596924e-07 1144 1132 57023920.20371 1145 1132 30555116.4796 1146 1132 30555555.55054 1147 1132 -39454209.9235 1148 1132 -16652558.23965 1230 1132 7638888.891398 1231 1132 -30663321.90996 1232 1132 -13871472.89847 1233 1132 1.035630702972e-06 1234 1132 -25398826.77179 1235 1132 7638779.123661 1236 1132 -7638888.891398 1237 1132 -8046134.402525 1238 1132 6232693.774803 1239 1132 2.995133399963e-06 1240 1132 -95040068.27054 1241 1132 -53805336.01132 1242 1132 -9.536743164063e-07 1243 1132 2097153.481574 1244 1132 30555116.47959 1245 1132 -2.235174179077e-06 1246 1132 -8008818.28482 1247 1132 23250219.53173 1251 1132 -7638888.891397 1252 1132 -28353405.24253 1253 1132 -13107584.00933 1254 1132 -1.318752765656e-06 1255 1132 -19596660.10607 1256 1132 7638779.123661 1257 1132 7638888.891396 1258 1132 -7454967.735663 1259 1132 5468804.885664 1133 1133 907581829.653 1134 1133 -2546332.887327 1135 1133 -61110232.92908 1136 1133 30527909.01414 1140 1133 -27181694.66288 1141 1133 -13597002.68459 1142 1133 -10829003.14197 1143 1133 5092665.772129 1144 1133 30555116.4796 1145 1133 134412647.088 1146 1133 30109971.99439 1147 1133 -16958113.795 1148 1133 -19995669.80713 1230 1133 19567597.17295 1231 1133 -13871472.89847 1232 1133 -60464969.25217 1233 1133 49815527.5467 1234 1133 7638779.12366 1235 1133 -72142989.75742 1236 1133 5244680.501577 1237 1133 6232693.774804 1238 1133 -152469.232357 1239 1133 -636583.2221379 1240 1133 -54110891.56668 1241 1133 -206419618.7154 1242 1133 -2546332.887312 1243 1133 30555116.47959 1244 1133 -164838704.0269 1245 1133 -636583.2221438 1246 1133 23555775.08708 1247 1133 25663714.57989 1251 1133 -18931013.9508 1252 1133 -13107584.00933 1253 1133 -54305191.47237 1254 1133 -47269194.65938 1255 1133 7638779.123661 1256 1133 -56670545.31551 1257 1133 -4608097.279433 1258 1133 5468804.885664 1259 1133 1423975.212606 1134 1134 692250148.1146 1135 1134 30619210.33408 1136 1134 -34372600.90029 1137 1134 16585727.58665 1138 1134 -30581017.46396 1139 1134 -29752163.59795 1143 1134 -45183976.67484 1144 1134 -30555555.55054 1145 1134 -27563639.10707 1146 1134 -77421519.48389 1147 1134 -5.513429641724e-07 1148 1134 5092665.772129 1149 1134 -48621476.67428 1150 1134 30555555.55054 1151 1134 29728027.55019 1233 1134 -32955138.59878 1234 1134 7638888.891398 1235 1134 19567597.17295 1236 1134 -79032837.45136 1237 1134 -7648437.10893 1238 1134 55511888.47871 1242 1134 -66012341.70521 1243 1134 2.853572368622e-06 1244 1134 -636583.2221378 1245 1134 34928101.59242 1246 1134 7654802.58729 1247 1134 -8598678.217522 1248 1134 5149787.278365 1249 1134 -7645254.369755 1250 1134 4611926.752539 1254 1134 -30645221.93135 1255 1134 -7638888.891397 1256 1134 -18931013.9508 1257 1134 -53208020.04453 1258 1134 -1.534819602966e-06 1259 1134 -46887250.21518 1260 1134 -9746784.424485 1261 1134 7638888.891396 1262 1134 -4608097.279433 1135 1135 609716100.864 1136 1135 94722882.73185 1137 1135 -30593748.42066 1138 1135 -90408834.961 1139 1135 -50742009.05798 1143 1135 -30555555.55054 1144 1135 -36016709.92406 1145 1135 -13902558.23995 1146 1135 -7.450580596924e-07 1147 1135 57023920.20371 1148 1135 30555116.4796 1149 1135 30555555.55054 1150 1135 -39454209.9235 1151 1135 -16652558.23965 1233 1135 7638888.891398 1234 1135 -30663321.90996 1235 1135 -13871472.89847 1236 1135 -7645254.369751 1237 1135 -43109768.41806 1238 1135 18161862.49682 1242 1135 2.995133399963e-06 1243 1135 -95040068.27054 1244 1135 -53805336.01132 1245 1135 7654802.587289 1246 1135 14294589.76961 1247 1135 23676298.37333 1248 1135 -7648437.108933 1249 1135 -21598853.37172 1250 1135 25862479.31684 1254 1135 -7638888.891397 1255 1135 -28353405.24253 1256 1135 -13107584.00933 1257 1135 -1.318752765656e-06 1258 1135 -19596660.10607 1259 1135 7638779.123661 1260 1135 7638888.891396 1261 1135 -7454967.735663 1262 1135 5468804.885664 1136 1136 858703305.1038 1137 1136 -30146176.06602 1138 1136 -59306688.68559 1139 1136 32394301.37033 1143 1136 -27181694.66288 1144 1136 -13597002.68459 1145 1136 -10829003.14197 1146 1136 5092665.772129 1147 1136 30555116.4796 1148 1136 134412647.088 1149 1136 30109971.99439 1150 1136 -16958113.795 1151 1136 -19995669.80713 1233 1136 19567597.17295 1234 1136 -13871472.89847 1235 1136 -60464969.25217 1236 1136 55896750.56943 1237 1136 20307057.29599 1238 1136 -98048385.90041 1242 1136 -636583.2221379 1243 1136 -54110891.56668 1244 1136 -206419618.7154 1245 1136 -8588615.841047 1246 1136 23684348.15878 1247 1136 -153682668.3423 1248 1136 4613841.489092 1249 1136 24026705.92618 1250 1136 10774189.69233 1254 1136 -18931013.9508 1255 1136 -13107584.00933 1256 1136 -54305191.47237 1257 1136 -47269194.65938 1258 1136 7638779.123661 1259 1136 -56670545.31551 1260 1136 -4608097.279433 1261 1136 5468804.885664 1262 1136 1423975.212606 1137 1137 442585385.072 1138 1137 30555555.55053 1139 1137 -29342262.45851 1146 1137 -45183976.67484 1147 1137 -30555555.55054 1148 1137 -27563639.10707 1149 1137 -140989212.5199 1150 1137 -30581017.46395 1151 1137 29317331.52637 1152 1137 -7397842.697824 1153 1137 24469906.35385 1154 1137 23704691.59905 1236 1137 -37437760.48235 1237 1137 9176214.887214 1238 1137 23123609.08966 1245 1137 -61598018.00238 1246 1137 -7648437.108935 1247 1137 -19592039.58835 1248 1137 18346673.71113 1249 1137 7638888.891398 1250 1137 1385379.035684 1257 1137 -30645221.93135 1258 1137 -7638888.891397 1259 1137 -18931013.9508 1260 1137 -55802716.54489 1261 1137 -7645254.369757 1262 1137 -40856339.07483 1263 1137 6123446.608564 1264 1137 6117476.591476 1265 1137 -3944940.585509 1138 1138 396720404.8065 1139 1138 76436047.94083 1146 1138 -30555555.55054 1147 1138 -36016709.92406 1148 1138 -13902558.23995 1149 1138 -30593748.42066 1150 1138 2703063.542514 1151 1138 42347550.95634 1152 1138 36704859.53077 1153 1138 -7397842.697831 1154 1138 -26611659.38366 1236 1138 6117476.591476 1237 1138 -37437760.48236 1238 1138 -12332056.26767 1245 1138 -7645254.369756 1246 1138 -88346658.65246 1247 1138 -53374653.70739 1248 1138 7638888.891397 1249 1138 6880428.6391 1250 1138 26085656.47845 1257 1138 -7638888.891397 1258 1138 -28353405.24253 1259 1138 -13107584.00933 1260 1138 -7648437.108936 1261 1138 -19879647.51159 1262 1138 942630.1669732 1263 1138 9176214.887214 1264 1138 6123446.608565 1265 1138 4734398.284357 1139 1139 631577008.7377 1146 1139 -27181694.66288 1147 1139 -13597002.68459 1148 1139 -10829003.14197 1149 1139 29304866.06029 1150 1139 34088108.93947 1151 1139 74852155.60434 1152 1139 35557037.39857 1153 1139 -17741106.25578 1154 1139 -19727580.52753 1236 1139 15415739.3931 1237 1139 -18498084.4015 1238 1139 -99834027.95294 1245 1139 -19583892.11655 1246 1139 -51538880.44741 1247 1139 -167219957.723 1248 1139 -17965238.89317 1249 1139 10605384.60401 1250 1139 -88238208.0348 1257 1139 -18931013.9508 1258 1139 -13107584.00933 1259 1139 -54305191.47237 1260 1139 -41241201.16555 1261 1139 -1194514.850572 1262 1139 -36101396.81649 1263 1139 -5917410.878264 1264 1139 3156265.522905 1265 1139 16329190.95617 1140 1140 669327989.9306 1141 1140 -1.430511474609e-06 1142 1140 -10185331.54429 1143 1140 57028027.11004 1144 1140 9.089708328247e-07 1145 1140 -2546332.887327 1155 1140 -77421519.48389 1156 1140 -5.513429641724e-07 1157 1140 5092665.772129 1158 1140 -48621476.67428 1159 1140 30555555.55054 1160 1140 29728027.55019 1239 1140 -59010186.71026 1240 1140 1.542270183563e-06 1241 1140 49433583.10251 1242 1140 -10337951.09135 1243 1140 -7638888.891398 1244 1140 5244680.501577 1251 1140 20431686.98312 1252 1140 -9.238719940186e-07 1253 1140 -2546332.887312 1254 1140 21018908.28051 1255 1140 -2.346932888031e-06 1256 1140 -636583.222144 1266 1140 -53208020.04453 1267 1140 -1.534819602966e-06 1268 1140 -46887250.21518 1269 1140 -9746784.424485 1270 1140 7638888.891396 1271 1140 -4608097.279433 1141 1141 595989855.9605 1142 1141 122220465.8582 1143 1141 1.132488250732e-06 1144 1141 -59082879.09408 1145 1141 -61110232.92908 1155 1141 -7.450580596924e-07 1156 1141 57023920.20371 1157 1141 30555116.4796 1158 1141 30555555.55054 1159 1141 -39454209.9235 1160 1141 -16652558.23965 1239 1141 1.035630702972e-06 1240 1141 -25398826.77179 1241 1141 7638779.123661 1242 1141 -7638888.891398 1243 1141 -8046134.402525 1244 1141 6232693.774803 1251 1141 -9.536743164063e-07 1252 1141 2097153.481574 1253 1141 30555116.47959 1254 1141 -2.235174179077e-06 1255 1141 -8008818.28482 1256 1141 23250219.53173 1266 1141 -1.318752765656e-06 1267 1141 -19596660.10607 1268 1141 7638779.123661 1269 1141 7638888.891396 1270 1141 -7454967.735663 1271 1141 5468804.885664 1142 1142 907581829.653 1143 1142 -2546332.887327 1144 1142 -61110232.92908 1145 1142 30527909.01414 1155 1142 5092665.772129 1156 1142 30555116.4796 1157 1142 134412647.088 1158 1142 30109971.99439 1159 1142 -16958113.795 1160 1142 -19995669.80713 1239 1142 49815527.5467 1240 1142 7638779.12366 1241 1142 -72142989.75742 1242 1142 5244680.501577 1243 1142 6232693.774804 1244 1142 -152469.232357 1251 1142 -2546332.887312 1252 1142 30555116.47959 1253 1142 -164838704.0269 1254 1142 -636583.2221438 1255 1142 23555775.08708 1256 1142 25663714.57989 1266 1142 -47269194.65938 1267 1142 7638779.123661 1268 1142 -56670545.31551 1269 1142 -4608097.279433 1270 1142 5468804.885664 1271 1142 1423975.212606 1143 1143 669327989.9306 1144 1143 -1.430511474609e-06 1145 1143 -10185331.54429 1146 1143 57028027.11004 1147 1143 9.089708328247e-07 1148 1143 -2546332.887327 1155 1143 -45183976.67484 1156 1143 -30555555.55054 1157 1143 -27563639.10707 1158 1143 -77421519.48389 1159 1143 -5.513429641724e-07 1160 1143 5092665.772129 1161 1143 -48621476.67428 1162 1143 30555555.55054 1163 1143 29728027.55019 1239 1143 -32955138.59878 1240 1143 7638888.891398 1241 1143 19567597.17295 1242 1143 -59010186.71026 1243 1143 1.542270183563e-06 1244 1143 49433583.10251 1245 1143 -10337951.09135 1246 1143 -7638888.891398 1247 1143 5244680.501577 1251 1143 -66012341.70521 1252 1143 2.853572368622e-06 1253 1143 -636583.2221378 1254 1143 20431686.98312 1255 1143 -9.238719940186e-07 1256 1143 -2546332.887312 1257 1143 21018908.28051 1258 1143 -2.346932888031e-06 1259 1143 -636583.222144 1266 1143 -30645221.93135 1267 1143 -7638888.891397 1268 1143 -18931013.9508 1269 1143 -53208020.04453 1270 1143 -1.534819602966e-06 1271 1143 -46887250.21518 1272 1143 -9746784.424485 1273 1143 7638888.891396 1274 1143 -4608097.279433 1144 1144 595989855.9605 1145 1144 122220465.8582 1146 1144 1.132488250732e-06 1147 1144 -59082879.09408 1148 1144 -61110232.92908 1155 1144 -30555555.55054 1156 1144 -36016709.92406 1157 1144 -13902558.23995 1158 1144 -7.450580596924e-07 1159 1144 57023920.20371 1160 1144 30555116.4796 1161 1144 30555555.55054 1162 1144 -39454209.9235 1163 1144 -16652558.23965 1239 1144 7638888.891398 1240 1144 -30663321.90996 1241 1144 -13871472.89847 1242 1144 1.035630702972e-06 1243 1144 -25398826.77179 1244 1144 7638779.123661 1245 1144 -7638888.891398 1246 1144 -8046134.402525 1247 1144 6232693.774803 1251 1144 2.995133399963e-06 1252 1144 -95040068.27054 1253 1144 -53805336.01132 1254 1144 -9.536743164063e-07 1255 1144 2097153.481574 1256 1144 30555116.47959 1257 1144 -2.235174179077e-06 1258 1144 -8008818.28482 1259 1144 23250219.53173 1266 1144 -7638888.891397 1267 1144 -28353405.24253 1268 1144 -13107584.00933 1269 1144 -1.318752765656e-06 1270 1144 -19596660.10607 1271 1144 7638779.123661 1272 1144 7638888.891396 1273 1144 -7454967.735663 1274 1144 5468804.885664 1145 1145 907581829.653 1146 1145 -2546332.887327 1147 1145 -61110232.92908 1148 1145 30527909.01414 1155 1145 -27181694.66288 1156 1145 -13597002.68459 1157 1145 -10829003.14197 1158 1145 5092665.772129 1159 1145 30555116.4796 1160 1145 134412647.088 1161 1145 30109971.99439 1162 1145 -16958113.795 1163 1145 -19995669.80713 1239 1145 19567597.17295 1240 1145 -13871472.89847 1241 1145 -60464969.25217 1242 1145 49815527.5467 1243 1145 7638779.12366 1244 1145 -72142989.75742 1245 1145 5244680.501577 1246 1145 6232693.774804 1247 1145 -152469.232357 1251 1145 -636583.2221379 1252 1145 -54110891.56668 1253 1145 -206419618.7154 1254 1145 -2546332.887312 1255 1145 30555116.47959 1256 1145 -164838704.0269 1257 1145 -636583.2221438 1258 1145 23555775.08708 1259 1145 25663714.57989 1266 1145 -18931013.9508 1267 1145 -13107584.00933 1268 1145 -54305191.47237 1269 1145 -47269194.65938 1270 1145 7638779.123661 1271 1145 -56670545.31551 1272 1145 -4608097.279433 1273 1145 5468804.885664 1274 1145 1423975.212606 1146 1146 669327989.9306 1147 1146 -1.430511474609e-06 1148 1146 -10185331.54429 1149 1146 57028027.11004 1150 1146 9.089708328247e-07 1151 1146 -2546332.887327 1158 1146 -45183976.67484 1159 1146 -30555555.55054 1160 1146 -27563639.10707 1161 1146 -77421519.48389 1162 1146 -5.513429641724e-07 1163 1146 5092665.772129 1164 1146 -48621476.67428 1165 1146 30555555.55054 1166 1146 29728027.55019 1242 1146 -32955138.59878 1243 1146 7638888.891398 1244 1146 19567597.17295 1245 1146 -59010186.71026 1246 1146 1.542270183563e-06 1247 1146 49433583.10251 1248 1146 -10337951.09135 1249 1146 -7638888.891398 1250 1146 5244680.501577 1254 1146 -66012341.70521 1255 1146 2.853572368622e-06 1256 1146 -636583.2221378 1257 1146 20431686.98312 1258 1146 -9.238719940186e-07 1259 1146 -2546332.887312 1260 1146 21018908.28051 1261 1146 -2.346932888031e-06 1262 1146 -636583.222144 1269 1146 -30645221.93135 1270 1146 -7638888.891397 1271 1146 -18931013.9508 1272 1146 -53208020.04453 1273 1146 -1.534819602966e-06 1274 1146 -46887250.21518 1275 1146 -9746784.424485 1276 1146 7638888.891396 1277 1146 -4608097.279433 1147 1147 595989855.9605 1148 1147 122220465.8582 1149 1147 1.132488250732e-06 1150 1147 -59082879.09408 1151 1147 -61110232.92908 1158 1147 -30555555.55054 1159 1147 -36016709.92406 1160 1147 -13902558.23995 1161 1147 -7.450580596924e-07 1162 1147 57023920.20371 1163 1147 30555116.4796 1164 1147 30555555.55054 1165 1147 -39454209.9235 1166 1147 -16652558.23965 1242 1147 7638888.891398 1243 1147 -30663321.90996 1244 1147 -13871472.89847 1245 1147 1.035630702972e-06 1246 1147 -25398826.77179 1247 1147 7638779.123661 1248 1147 -7638888.891398 1249 1147 -8046134.402525 1250 1147 6232693.774803 1254 1147 2.995133399963e-06 1255 1147 -95040068.27054 1256 1147 -53805336.01132 1257 1147 -9.536743164063e-07 1258 1147 2097153.481574 1259 1147 30555116.47959 1260 1147 -2.235174179077e-06 1261 1147 -8008818.28482 1262 1147 23250219.53173 1269 1147 -7638888.891397 1270 1147 -28353405.24253 1271 1147 -13107584.00933 1272 1147 -1.318752765656e-06 1273 1147 -19596660.10607 1274 1147 7638779.123661 1275 1147 7638888.891396 1276 1147 -7454967.735663 1277 1147 5468804.885664 1148 1148 907581829.653 1149 1148 -2546332.887327 1150 1148 -61110232.92908 1151 1148 30527909.01414 1158 1148 -27181694.66288 1159 1148 -13597002.68459 1160 1148 -10829003.14197 1161 1148 5092665.772129 1162 1148 30555116.4796 1163 1148 134412647.088 1164 1148 30109971.99439 1165 1148 -16958113.795 1166 1148 -19995669.80713 1242 1148 19567597.17295 1243 1148 -13871472.89847 1244 1148 -60464969.25217 1245 1148 49815527.5467 1246 1148 7638779.12366 1247 1148 -72142989.75742 1248 1148 5244680.501577 1249 1148 6232693.774804 1250 1148 -152469.232357 1254 1148 -636583.2221379 1255 1148 -54110891.56668 1256 1148 -206419618.7154 1257 1148 -2546332.887312 1258 1148 30555116.47959 1259 1148 -164838704.0269 1260 1148 -636583.2221438 1261 1148 23555775.08708 1262 1148 25663714.57989 1269 1148 -18931013.9508 1270 1148 -13107584.00933 1271 1148 -54305191.47237 1272 1148 -47269194.65938 1273 1148 7638779.123661 1274 1148 -56670545.31551 1275 1148 -4608097.279433 1276 1148 5468804.885664 1277 1148 1423975.212606 1149 1149 692250148.1146 1150 1149 30619210.33408 1151 1149 -34372600.90029 1152 1149 16585727.58665 1153 1149 -30581017.46396 1154 1149 -29752163.59795 1161 1149 -45183976.67484 1162 1149 -30555555.55054 1163 1149 -27563639.10707 1164 1149 -77421519.48389 1165 1149 -5.513429641724e-07 1166 1149 5092665.772129 1167 1149 -48621476.67428 1168 1149 30555555.55054 1169 1149 29728027.55019 1245 1149 -32955138.59878 1246 1149 7638888.891398 1247 1149 19567597.17295 1248 1149 -79032837.45136 1249 1149 -7648437.10893 1250 1149 55511888.47871 1257 1149 -66012341.70521 1258 1149 2.853572368622e-06 1259 1149 -636583.2221378 1260 1149 34928101.59242 1261 1149 7654802.58729 1262 1149 -8598678.217522 1263 1149 5149787.278365 1264 1149 -7645254.369755 1265 1149 4611926.752539 1272 1149 -30645221.93135 1273 1149 -7638888.891397 1274 1149 -18931013.9508 1275 1149 -53208020.04453 1276 1149 -1.534819602966e-06 1277 1149 -46887250.21518 1278 1149 -9746784.424485 1279 1149 7638888.891396 1280 1149 -4608097.279433 1150 1150 609716100.864 1151 1150 94722882.73185 1152 1150 -30593748.42066 1153 1150 -90408834.961 1154 1150 -50742009.05798 1161 1150 -30555555.55054 1162 1150 -36016709.92406 1163 1150 -13902558.23995 1164 1150 -7.450580596924e-07 1165 1150 57023920.20371 1166 1150 30555116.4796 1167 1150 30555555.55054 1168 1150 -39454209.9235 1169 1150 -16652558.23965 1245 1150 7638888.891398 1246 1150 -30663321.90996 1247 1150 -13871472.89847 1248 1150 -7645254.369751 1249 1150 -43109768.41806 1250 1150 18161862.49682 1257 1150 2.995133399963e-06 1258 1150 -95040068.27054 1259 1150 -53805336.01132 1260 1150 7654802.587289 1261 1150 14294589.76961 1262 1150 23676298.37333 1263 1150 -7648437.108933 1264 1150 -21598853.37172 1265 1150 25862479.31684 1272 1150 -7638888.891397 1273 1150 -28353405.24253 1274 1150 -13107584.00933 1275 1150 -1.318752765656e-06 1276 1150 -19596660.10607 1277 1150 7638779.123661 1278 1150 7638888.891396 1279 1150 -7454967.735663 1280 1150 5468804.885664 1151 1151 858703305.1038 1152 1151 -30146176.06602 1153 1151 -59306688.68559 1154 1151 32394301.37033 1161 1151 -27181694.66288 1162 1151 -13597002.68459 1163 1151 -10829003.14197 1164 1151 5092665.772129 1165 1151 30555116.4796 1166 1151 134412647.088 1167 1151 30109971.99439 1168 1151 -16958113.795 1169 1151 -19995669.80713 1245 1151 19567597.17295 1246 1151 -13871472.89847 1247 1151 -60464969.25217 1248 1151 55896750.56943 1249 1151 20307057.29599 1250 1151 -98048385.90041 1257 1151 -636583.2221379 1258 1151 -54110891.56668 1259 1151 -206419618.7154 1260 1151 -8588615.841047 1261 1151 23684348.15878 1262 1151 -153682668.3423 1263 1151 4613841.489092 1264 1151 24026705.92618 1265 1151 10774189.69233 1272 1151 -18931013.9508 1273 1151 -13107584.00933 1274 1151 -54305191.47237 1275 1151 -47269194.65938 1276 1151 7638779.123661 1277 1151 -56670545.31551 1278 1151 -4608097.279433 1279 1151 5468804.885664 1280 1151 1423975.212606 1152 1152 442585385.072 1153 1152 30555555.55053 1154 1152 -29342262.45851 1164 1152 -45183976.67484 1165 1152 -30555555.55054 1166 1152 -27563639.10707 1167 1152 -140989212.5199 1168 1152 -30581017.46395 1169 1152 29317331.52637 1170 1152 -7397842.697824 1171 1152 24469906.35385 1172 1152 23704691.59905 1248 1152 -37437760.48235 1249 1152 9176214.887214 1250 1152 23123609.08966 1260 1152 -61598018.00238 1261 1152 -7648437.108935 1262 1152 -19592039.58835 1263 1152 18346673.71113 1264 1152 7638888.891398 1265 1152 1385379.035684 1275 1152 -30645221.93135 1276 1152 -7638888.891397 1277 1152 -18931013.9508 1278 1152 -55802716.54489 1279 1152 -7645254.369757 1280 1152 -40856339.07483 1281 1152 6123446.608564 1282 1152 6117476.591476 1283 1152 -3944940.585509 1153 1153 396720404.8065 1154 1153 76436047.94083 1164 1153 -30555555.55054 1165 1153 -36016709.92406 1166 1153 -13902558.23995 1167 1153 -30593748.42066 1168 1153 2703063.542514 1169 1153 42347550.95634 1170 1153 36704859.53077 1171 1153 -7397842.697831 1172 1153 -26611659.38366 1248 1153 6117476.591476 1249 1153 -37437760.48236 1250 1153 -12332056.26767 1260 1153 -7645254.369756 1261 1153 -88346658.65246 1262 1153 -53374653.70739 1263 1153 7638888.891397 1264 1153 6880428.6391 1265 1153 26085656.47845 1275 1153 -7638888.891397 1276 1153 -28353405.24253 1277 1153 -13107584.00933 1278 1153 -7648437.108936 1279 1153 -19879647.51159 1280 1153 942630.1669732 1281 1153 9176214.887214 1282 1153 6123446.608565 1283 1153 4734398.284357 1154 1154 631577008.7377 1164 1154 -27181694.66288 1165 1154 -13597002.68459 1166 1154 -10829003.14197 1167 1154 29304866.06029 1168 1154 34088108.93947 1169 1154 74852155.60434 1170 1154 35557037.39857 1171 1154 -17741106.25578 1172 1154 -19727580.52753 1248 1154 15415739.3931 1249 1154 -18498084.4015 1250 1154 -99834027.95294 1260 1154 -19583892.11655 1261 1154 -51538880.44741 1262 1154 -167219957.723 1263 1154 -17965238.89317 1264 1154 10605384.60401 1265 1154 -88238208.0348 1275 1154 -18931013.9508 1276 1154 -13107584.00933 1277 1154 -54305191.47237 1278 1154 -41241201.16555 1279 1154 -1194514.850572 1280 1154 -36101396.81649 1281 1154 -5917410.878264 1282 1154 3156265.522905 1283 1154 16329190.95617 1155 1155 669327989.9306 1156 1155 -1.430511474609e-06 1157 1155 -10185331.54429 1158 1155 57028027.11004 1159 1155 9.089708328247e-07 1160 1155 -2546332.887327 1173 1155 -77421519.48389 1174 1155 -5.513429641724e-07 1175 1155 5092665.772129 1176 1155 -48621476.67428 1177 1155 30555555.55054 1178 1155 29728027.55019 1251 1155 -59010186.71026 1252 1155 1.542270183563e-06 1253 1155 49433583.10251 1254 1155 -10337951.09135 1255 1155 -7638888.891398 1256 1155 5244680.501577 1266 1155 20431686.98312 1267 1155 -9.238719940186e-07 1268 1155 -2546332.887312 1269 1155 21018908.28051 1270 1155 -2.346932888031e-06 1271 1155 -636583.222144 1284 1155 -53208020.04453 1285 1155 -1.534819602966e-06 1286 1155 -46887250.21518 1287 1155 -9746784.424485 1288 1155 7638888.891396 1289 1155 -4608097.279433 1156 1156 595989855.9605 1157 1156 122220465.8582 1158 1156 1.132488250732e-06 1159 1156 -59082879.09408 1160 1156 -61110232.92908 1173 1156 -7.450580596924e-07 1174 1156 57023920.20371 1175 1156 30555116.4796 1176 1156 30555555.55054 1177 1156 -39454209.9235 1178 1156 -16652558.23965 1251 1156 1.035630702972e-06 1252 1156 -25398826.77179 1253 1156 7638779.123661 1254 1156 -7638888.891398 1255 1156 -8046134.402525 1256 1156 6232693.774803 1266 1156 -9.536743164063e-07 1267 1156 2097153.481574 1268 1156 30555116.47959 1269 1156 -2.235174179077e-06 1270 1156 -8008818.28482 1271 1156 23250219.53173 1284 1156 -1.318752765656e-06 1285 1156 -19596660.10607 1286 1156 7638779.123661 1287 1156 7638888.891396 1288 1156 -7454967.735663 1289 1156 5468804.885664 1157 1157 907581829.653 1158 1157 -2546332.887327 1159 1157 -61110232.92908 1160 1157 30527909.01414 1173 1157 5092665.772129 1174 1157 30555116.4796 1175 1157 134412647.088 1176 1157 30109971.99439 1177 1157 -16958113.795 1178 1157 -19995669.80713 1251 1157 49815527.5467 1252 1157 7638779.12366 1253 1157 -72142989.75742 1254 1157 5244680.501577 1255 1157 6232693.774804 1256 1157 -152469.232357 1266 1157 -2546332.887312 1267 1157 30555116.47959 1268 1157 -164838704.0269 1269 1157 -636583.2221438 1270 1157 23555775.08708 1271 1157 25663714.57989 1284 1157 -47269194.65938 1285 1157 7638779.123661 1286 1157 -56670545.31551 1287 1157 -4608097.279433 1288 1157 5468804.885664 1289 1157 1423975.212606 1158 1158 669327989.9306 1159 1158 -1.430511474609e-06 1160 1158 -10185331.54429 1161 1158 57028027.11004 1162 1158 9.089708328247e-07 1163 1158 -2546332.887327 1173 1158 -45183976.67484 1174 1158 -30555555.55054 1175 1158 -27563639.10707 1176 1158 -77421519.48389 1177 1158 -5.513429641724e-07 1178 1158 5092665.772129 1179 1158 -48621476.67428 1180 1158 30555555.55054 1181 1158 29728027.55019 1251 1158 -32955138.59878 1252 1158 7638888.891398 1253 1158 19567597.17295 1254 1158 -59010186.71026 1255 1158 1.542270183563e-06 1256 1158 49433583.10251 1257 1158 -10337951.09135 1258 1158 -7638888.891398 1259 1158 5244680.501577 1266 1158 -66012341.70521 1267 1158 2.853572368622e-06 1268 1158 -636583.2221378 1269 1158 20431686.98312 1270 1158 -9.238719940186e-07 1271 1158 -2546332.887312 1272 1158 21018908.28051 1273 1158 -2.346932888031e-06 1274 1158 -636583.222144 1284 1158 -30645221.93135 1285 1158 -7638888.891397 1286 1158 -18931013.9508 1287 1158 -53208020.04453 1288 1158 -1.534819602966e-06 1289 1158 -46887250.21518 1290 1158 -9746784.424485 1291 1158 7638888.891396 1292 1158 -4608097.279433 1159 1159 595989855.9605 1160 1159 122220465.8582 1161 1159 1.132488250732e-06 1162 1159 -59082879.09408 1163 1159 -61110232.92908 1173 1159 -30555555.55054 1174 1159 -36016709.92406 1175 1159 -13902558.23995 1176 1159 -7.450580596924e-07 1177 1159 57023920.20371 1178 1159 30555116.4796 1179 1159 30555555.55054 1180 1159 -39454209.9235 1181 1159 -16652558.23965 1251 1159 7638888.891398 1252 1159 -30663321.90996 1253 1159 -13871472.89847 1254 1159 1.035630702972e-06 1255 1159 -25398826.77179 1256 1159 7638779.123661 1257 1159 -7638888.891398 1258 1159 -8046134.402525 1259 1159 6232693.774803 1266 1159 2.995133399963e-06 1267 1159 -95040068.27054 1268 1159 -53805336.01132 1269 1159 -9.536743164063e-07 1270 1159 2097153.481574 1271 1159 30555116.47959 1272 1159 -2.235174179077e-06 1273 1159 -8008818.28482 1274 1159 23250219.53173 1284 1159 -7638888.891397 1285 1159 -28353405.24253 1286 1159 -13107584.00933 1287 1159 -1.318752765656e-06 1288 1159 -19596660.10607 1289 1159 7638779.123661 1290 1159 7638888.891396 1291 1159 -7454967.735663 1292 1159 5468804.885664 1160 1160 907581829.653 1161 1160 -2546332.887327 1162 1160 -61110232.92908 1163 1160 30527909.01414 1173 1160 -27181694.66288 1174 1160 -13597002.68459 1175 1160 -10829003.14197 1176 1160 5092665.772129 1177 1160 30555116.4796 1178 1160 134412647.088 1179 1160 30109971.99439 1180 1160 -16958113.795 1181 1160 -19995669.80713 1251 1160 19567597.17295 1252 1160 -13871472.89847 1253 1160 -60464969.25217 1254 1160 49815527.5467 1255 1160 7638779.12366 1256 1160 -72142989.75742 1257 1160 5244680.501577 1258 1160 6232693.774804 1259 1160 -152469.232357 1266 1160 -636583.2221379 1267 1160 -54110891.56668 1268 1160 -206419618.7154 1269 1160 -2546332.887312 1270 1160 30555116.47959 1271 1160 -164838704.0269 1272 1160 -636583.2221438 1273 1160 23555775.08708 1274 1160 25663714.57989 1284 1160 -18931013.9508 1285 1160 -13107584.00933 1286 1160 -54305191.47237 1287 1160 -47269194.65938 1288 1160 7638779.123661 1289 1160 -56670545.31551 1290 1160 -4608097.279433 1291 1160 5468804.885664 1292 1160 1423975.212606 1161 1161 669327989.9306 1162 1161 -1.430511474609e-06 1163 1161 -10185331.54429 1164 1161 57028027.11004 1165 1161 9.089708328247e-07 1166 1161 -2546332.887327 1176 1161 -45183976.67484 1177 1161 -30555555.55054 1178 1161 -27563639.10707 1179 1161 -77421519.48389 1180 1161 -5.513429641724e-07 1181 1161 5092665.772129 1182 1161 -48621476.67428 1183 1161 30555555.55054 1184 1161 29728027.55019 1254 1161 -32955138.59878 1255 1161 7638888.891398 1256 1161 19567597.17295 1257 1161 -59010186.71026 1258 1161 1.542270183563e-06 1259 1161 49433583.10251 1260 1161 -10337951.09135 1261 1161 -7638888.891398 1262 1161 5244680.501577 1269 1161 -66012341.70521 1270 1161 2.853572368622e-06 1271 1161 -636583.2221378 1272 1161 20431686.98312 1273 1161 -9.238719940186e-07 1274 1161 -2546332.887312 1275 1161 21018908.28051 1276 1161 -2.346932888031e-06 1277 1161 -636583.222144 1287 1161 -30645221.93135 1288 1161 -7638888.891397 1289 1161 -18931013.9508 1290 1161 -53208020.04453 1291 1161 -1.534819602966e-06 1292 1161 -46887250.21518 1293 1161 -9746784.424485 1294 1161 7638888.891396 1295 1161 -4608097.279433 1162 1162 595989855.9605 1163 1162 122220465.8582 1164 1162 1.132488250732e-06 1165 1162 -59082879.09408 1166 1162 -61110232.92908 1176 1162 -30555555.55054 1177 1162 -36016709.92406 1178 1162 -13902558.23995 1179 1162 -7.450580596924e-07 1180 1162 57023920.20371 1181 1162 30555116.4796 1182 1162 30555555.55054 1183 1162 -39454209.9235 1184 1162 -16652558.23965 1254 1162 7638888.891398 1255 1162 -30663321.90996 1256 1162 -13871472.89847 1257 1162 1.035630702972e-06 1258 1162 -25398826.77179 1259 1162 7638779.123661 1260 1162 -7638888.891398 1261 1162 -8046134.402525 1262 1162 6232693.774803 1269 1162 2.995133399963e-06 1270 1162 -95040068.27054 1271 1162 -53805336.01132 1272 1162 -9.536743164063e-07 1273 1162 2097153.481574 1274 1162 30555116.47959 1275 1162 -2.235174179077e-06 1276 1162 -8008818.28482 1277 1162 23250219.53173 1287 1162 -7638888.891397 1288 1162 -28353405.24253 1289 1162 -13107584.00933 1290 1162 -1.318752765656e-06 1291 1162 -19596660.10607 1292 1162 7638779.123661 1293 1162 7638888.891396 1294 1162 -7454967.735663 1295 1162 5468804.885664 1163 1163 907581829.653 1164 1163 -2546332.887327 1165 1163 -61110232.92908 1166 1163 30527909.01414 1176 1163 -27181694.66288 1177 1163 -13597002.68459 1178 1163 -10829003.14197 1179 1163 5092665.772129 1180 1163 30555116.4796 1181 1163 134412647.088 1182 1163 30109971.99439 1183 1163 -16958113.795 1184 1163 -19995669.80713 1254 1163 19567597.17295 1255 1163 -13871472.89847 1256 1163 -60464969.25217 1257 1163 49815527.5467 1258 1163 7638779.12366 1259 1163 -72142989.75742 1260 1163 5244680.501577 1261 1163 6232693.774804 1262 1163 -152469.232357 1269 1163 -636583.2221379 1270 1163 -54110891.56668 1271 1163 -206419618.7154 1272 1163 -2546332.887312 1273 1163 30555116.47959 1274 1163 -164838704.0269 1275 1163 -636583.2221438 1276 1163 23555775.08708 1277 1163 25663714.57989 1287 1163 -18931013.9508 1288 1163 -13107584.00933 1289 1163 -54305191.47237 1290 1163 -47269194.65938 1291 1163 7638779.123661 1292 1163 -56670545.31551 1293 1163 -4608097.279433 1294 1163 5468804.885664 1295 1163 1423975.212606 1164 1164 669327989.9306 1165 1164 -1.430511474609e-06 1166 1164 -10185331.54429 1167 1164 57028027.11004 1168 1164 9.089708328247e-07 1169 1164 -2546332.887327 1179 1164 -45183976.67484 1180 1164 -30555555.55054 1181 1164 -27563639.10707 1182 1164 -77421519.48389 1183 1164 -5.513429641724e-07 1184 1164 5092665.772129 1185 1164 -48621476.67428 1186 1164 30555555.55054 1187 1164 29728027.55019 1257 1164 -32955138.59878 1258 1164 7638888.891398 1259 1164 19567597.17295 1260 1164 -59010186.71026 1261 1164 1.542270183563e-06 1262 1164 49433583.10251 1263 1164 -10337951.09135 1264 1164 -7638888.891398 1265 1164 5244680.501577 1272 1164 -66012341.70521 1273 1164 2.853572368622e-06 1274 1164 -636583.2221378 1275 1164 20431686.98312 1276 1164 -9.238719940186e-07 1277 1164 -2546332.887312 1278 1164 21018908.28051 1279 1164 -2.346932888031e-06 1280 1164 -636583.222144 1290 1164 -30645221.93135 1291 1164 -7638888.891397 1292 1164 -18931013.9508 1293 1164 -53208020.04453 1294 1164 -1.534819602966e-06 1295 1164 -46887250.21518 1296 1164 -9746784.424485 1297 1164 7638888.891396 1298 1164 -4608097.279433 1165 1165 595989855.9605 1166 1165 122220465.8582 1167 1165 1.132488250732e-06 1168 1165 -59082879.09408 1169 1165 -61110232.92908 1179 1165 -30555555.55054 1180 1165 -36016709.92406 1181 1165 -13902558.23995 1182 1165 -7.450580596924e-07 1183 1165 57023920.20371 1184 1165 30555116.4796 1185 1165 30555555.55054 1186 1165 -39454209.9235 1187 1165 -16652558.23965 1257 1165 7638888.891398 1258 1165 -30663321.90996 1259 1165 -13871472.89847 1260 1165 1.035630702972e-06 1261 1165 -25398826.77179 1262 1165 7638779.123661 1263 1165 -7638888.891398 1264 1165 -8046134.402525 1265 1165 6232693.774803 1272 1165 2.995133399963e-06 1273 1165 -95040068.27054 1274 1165 -53805336.01132 1275 1165 -9.536743164063e-07 1276 1165 2097153.481574 1277 1165 30555116.47959 1278 1165 -2.235174179077e-06 1279 1165 -8008818.28482 1280 1165 23250219.53173 1290 1165 -7638888.891397 1291 1165 -28353405.24253 1292 1165 -13107584.00933 1293 1165 -1.318752765656e-06 1294 1165 -19596660.10607 1295 1165 7638779.123661 1296 1165 7638888.891396 1297 1165 -7454967.735663 1298 1165 5468804.885664 1166 1166 907581829.653 1167 1166 -2546332.887327 1168 1166 -61110232.92908 1169 1166 30527909.01414 1179 1166 -27181694.66288 1180 1166 -13597002.68459 1181 1166 -10829003.14197 1182 1166 5092665.772129 1183 1166 30555116.4796 1184 1166 134412647.088 1185 1166 30109971.99439 1186 1166 -16958113.795 1187 1166 -19995669.80713 1257 1166 19567597.17295 1258 1166 -13871472.89847 1259 1166 -60464969.25217 1260 1166 49815527.5467 1261 1166 7638779.12366 1262 1166 -72142989.75742 1263 1166 5244680.501577 1264 1166 6232693.774804 1265 1166 -152469.232357 1272 1166 -636583.2221379 1273 1166 -54110891.56668 1274 1166 -206419618.7154 1275 1166 -2546332.887312 1276 1166 30555116.47959 1277 1166 -164838704.0269 1278 1166 -636583.2221438 1279 1166 23555775.08708 1280 1166 25663714.57989 1290 1166 -18931013.9508 1291 1166 -13107584.00933 1292 1166 -54305191.47237 1293 1166 -47269194.65938 1294 1166 7638779.123661 1295 1166 -56670545.31551 1296 1166 -4608097.279433 1297 1166 5468804.885664 1298 1166 1423975.212606 1167 1167 692250148.1146 1168 1167 30619210.33408 1169 1167 -34372600.90029 1170 1167 16585727.58665 1171 1167 -30581017.46396 1172 1167 -29752163.59795 1182 1167 -45183976.67484 1183 1167 -30555555.55054 1184 1167 -27563639.10707 1185 1167 -77421519.48389 1186 1167 -5.513429641724e-07 1187 1167 5092665.772129 1188 1167 -48621476.67428 1189 1167 30555555.55054 1190 1167 29728027.55019 1260 1167 -32955138.59878 1261 1167 7638888.891398 1262 1167 19567597.17295 1263 1167 -79032837.45136 1264 1167 -7648437.10893 1265 1167 55511888.47871 1275 1167 -66012341.70521 1276 1167 2.853572368622e-06 1277 1167 -636583.2221378 1278 1167 34928101.59242 1279 1167 7654802.58729 1280 1167 -8598678.217522 1281 1167 5149787.278365 1282 1167 -7645254.369755 1283 1167 4611926.752539 1293 1167 -30645221.93135 1294 1167 -7638888.891397 1295 1167 -18931013.9508 1296 1167 -53208020.04453 1297 1167 -1.534819602966e-06 1298 1167 -46887250.21518 1299 1167 -9746784.424485 1300 1167 7638888.891396 1301 1167 -4608097.279433 1168 1168 609716100.864 1169 1168 94722882.73185 1170 1168 -30593748.42066 1171 1168 -90408834.961 1172 1168 -50742009.05798 1182 1168 -30555555.55054 1183 1168 -36016709.92406 1184 1168 -13902558.23995 1185 1168 -7.450580596924e-07 1186 1168 57023920.20371 1187 1168 30555116.4796 1188 1168 30555555.55054 1189 1168 -39454209.9235 1190 1168 -16652558.23965 1260 1168 7638888.891398 1261 1168 -30663321.90996 1262 1168 -13871472.89847 1263 1168 -7645254.369751 1264 1168 -43109768.41806 1265 1168 18161862.49682 1275 1168 2.995133399963e-06 1276 1168 -95040068.27054 1277 1168 -53805336.01132 1278 1168 7654802.587289 1279 1168 14294589.76961 1280 1168 23676298.37333 1281 1168 -7648437.108933 1282 1168 -21598853.37172 1283 1168 25862479.31684 1293 1168 -7638888.891397 1294 1168 -28353405.24253 1295 1168 -13107584.00933 1296 1168 -1.318752765656e-06 1297 1168 -19596660.10607 1298 1168 7638779.123661 1299 1168 7638888.891396 1300 1168 -7454967.735663 1301 1168 5468804.885664 1169 1169 858703305.1038 1170 1169 -30146176.06602 1171 1169 -59306688.68559 1172 1169 32394301.37033 1182 1169 -27181694.66288 1183 1169 -13597002.68459 1184 1169 -10829003.14197 1185 1169 5092665.772129 1186 1169 30555116.4796 1187 1169 134412647.088 1188 1169 30109971.99439 1189 1169 -16958113.795 1190 1169 -19995669.80713 1260 1169 19567597.17295 1261 1169 -13871472.89847 1262 1169 -60464969.25217 1263 1169 55896750.56943 1264 1169 20307057.29599 1265 1169 -98048385.90041 1275 1169 -636583.2221379 1276 1169 -54110891.56668 1277 1169 -206419618.7154 1278 1169 -8588615.841047 1279 1169 23684348.15878 1280 1169 -153682668.3423 1281 1169 4613841.489092 1282 1169 24026705.92618 1283 1169 10774189.69233 1293 1169 -18931013.9508 1294 1169 -13107584.00933 1295 1169 -54305191.47237 1296 1169 -47269194.65938 1297 1169 7638779.123661 1298 1169 -56670545.31551 1299 1169 -4608097.279433 1300 1169 5468804.885664 1301 1169 1423975.212606 1170 1170 364985426.4907 1171 1170 -14061652.22197 1172 1170 17814269.07624 1185 1170 -45183976.67484 1186 1170 -30555555.55054 1187 1170 -27563639.10707 1188 1170 -45058067.96334 1189 1170 13871774.76762 1190 1170 2014135.925476 1191 1170 -77987935.00936 1192 1170 24634321.89478 1193 1170 4614449.669165 1263 1170 -37437760.48235 1264 1170 9176214.887214 1265 1170 23123609.08966 1278 1170 -61598018.00238 1279 1170 -7648437.108935 1280 1170 -19592039.58835 1281 1170 18456352.87299 1282 1170 -3515413.057224 1283 1170 9204137.171611 1296 1170 -30645221.93135 1297 1170 -7638888.891397 1298 1170 -18931013.9508 1299 1170 -30340144.80161 1300 1170 3467943.693614 1301 1170 -30119546.23577 1302 1170 -19821700.11939 1303 1170 6158580.476729 1304 1170 -1921392.690481 1171 1171 471961895.5022 1172 1171 97697867.88863 1185 1171 -30555555.55054 1186 1171 -36016709.92406 1187 1171 -13902558.23995 1188 1171 13776836.04045 1189 1171 79070799.38238 1190 1171 20523124.61285 1191 1171 36951482.84217 1192 1171 -211265975.5697 1193 1171 -25405019.46708 1263 1171 6117476.591476 1264 1171 -37437760.48236 1265 1171 -12332056.26767 1278 1171 -7645254.369756 1279 1171 -88346658.65246 1280 1171 -53374653.70739 1281 1171 -3515413.057224 1282 1171 45200470.13904 1283 1171 28178112.40107 1296 1171 -7638888.891397 1297 1171 -28353405.24253 1298 1171 -13107584.00933 1299 1171 3444209.011808 1300 1171 692072.0501018 1301 1171 9579154.834703 1302 1171 9237870.715094 1303 1171 -53141210.27589 1304 1171 10606269.5228 1172 1172 529687108.5978 1185 1172 -27181694.66288 1186 1172 -13597002.68459 1187 1172 -10829003.14197 1188 1172 11928338.42634 1189 1172 20213350.09205 1190 1172 92347177.78475 1191 1172 6921674.503748 1192 1172 -24162117.07483 1193 1172 -74689786.13132 1263 1172 15415739.3931 1264 1172 -18498084.4015 1265 1172 -99834027.95294 1278 1172 -19583892.11655 1279 1172 -51538880.44741 1280 1172 -167219957.723 1281 1172 -3159598.760604 1282 1172 18338796.75477 1283 1172 -61684899.57103 1296 1172 -18931013.9508 1297 1172 -13107584.00933 1298 1172 -54305191.47237 1299 1172 -28213514.83563 1300 1172 9298506.145881 1301 1172 -27781546.3564 1302 1172 -2882089.035722 1303 1172 9831110.118881 1304 1172 -19538356.82854 1173 1173 669327989.9306 1174 1173 -1.430511474609e-06 1175 1173 -10185331.54429 1176 1173 57028027.11004 1177 1173 9.089708328247e-07 1178 1173 -2546332.887327 1194 1173 -77421519.48389 1195 1173 -5.513429641724e-07 1196 1173 5092665.772129 1197 1173 -48621476.67428 1198 1173 30555555.55054 1199 1173 29728027.55019 1266 1173 -59010186.71026 1267 1173 1.542270183563e-06 1268 1173 49433583.10251 1269 1173 -10337951.09135 1270 1173 -7638888.891398 1271 1173 5244680.501577 1284 1173 20431686.98312 1285 1173 -9.238719940186e-07 1286 1173 -2546332.887312 1287 1173 21018908.28051 1288 1173 -2.346932888031e-06 1289 1173 -636583.222144 1305 1173 -53208020.04453 1306 1173 -1.534819602966e-06 1307 1173 -46887250.21518 1308 1173 -9746784.424485 1309 1173 7638888.891396 1310 1173 -4608097.279433 1174 1174 595989855.9605 1175 1174 122220465.8582 1176 1174 1.132488250732e-06 1177 1174 -59082879.09408 1178 1174 -61110232.92908 1194 1174 -7.450580596924e-07 1195 1174 57023920.20371 1196 1174 30555116.4796 1197 1174 30555555.55054 1198 1174 -39454209.9235 1199 1174 -16652558.23965 1266 1174 1.035630702972e-06 1267 1174 -25398826.77179 1268 1174 7638779.123661 1269 1174 -7638888.891398 1270 1174 -8046134.402525 1271 1174 6232693.774803 1284 1174 -9.536743164063e-07 1285 1174 2097153.481574 1286 1174 30555116.47959 1287 1174 -2.235174179077e-06 1288 1174 -8008818.28482 1289 1174 23250219.53173 1305 1174 -1.318752765656e-06 1306 1174 -19596660.10607 1307 1174 7638779.123661 1308 1174 7638888.891396 1309 1174 -7454967.735663 1310 1174 5468804.885664 1175 1175 907581829.653 1176 1175 -2546332.887327 1177 1175 -61110232.92908 1178 1175 30527909.01414 1194 1175 5092665.772129 1195 1175 30555116.4796 1196 1175 134412647.088 1197 1175 30109971.99439 1198 1175 -16958113.795 1199 1175 -19995669.80713 1266 1175 49815527.5467 1267 1175 7638779.12366 1268 1175 -72142989.75742 1269 1175 5244680.501577 1270 1175 6232693.774804 1271 1175 -152469.232357 1284 1175 -2546332.887312 1285 1175 30555116.47959 1286 1175 -164838704.0269 1287 1175 -636583.2221438 1288 1175 23555775.08708 1289 1175 25663714.57989 1305 1175 -47269194.65938 1306 1175 7638779.123661 1307 1175 -56670545.31551 1308 1175 -4608097.279433 1309 1175 5468804.885664 1310 1175 1423975.212606 1176 1176 669327989.9306 1177 1176 -1.430511474609e-06 1178 1176 -10185331.54429 1179 1176 57028027.11004 1180 1176 9.089708328247e-07 1181 1176 -2546332.887327 1194 1176 -45183976.67484 1195 1176 -30555555.55054 1196 1176 -27563639.10707 1197 1176 -77421519.48389 1198 1176 -5.513429641724e-07 1199 1176 5092665.772129 1200 1176 -48621476.67428 1201 1176 30555555.55054 1202 1176 29728027.55019 1266 1176 -32955138.59878 1267 1176 7638888.891398 1268 1176 19567597.17295 1269 1176 -59010186.71026 1270 1176 1.542270183563e-06 1271 1176 49433583.10251 1272 1176 -10337951.09135 1273 1176 -7638888.891398 1274 1176 5244680.501577 1284 1176 -66012341.70521 1285 1176 2.853572368622e-06 1286 1176 -636583.2221378 1287 1176 20431686.98312 1288 1176 -9.238719940186e-07 1289 1176 -2546332.887312 1290 1176 21018908.28051 1291 1176 -2.346932888031e-06 1292 1176 -636583.222144 1305 1176 -30645221.93135 1306 1176 -7638888.891397 1307 1176 -18931013.9508 1308 1176 -53208020.04453 1309 1176 -1.534819602966e-06 1310 1176 -46887250.21518 1311 1176 -9746784.424485 1312 1176 7638888.891396 1313 1176 -4608097.279433 1177 1177 595989855.9605 1178 1177 122220465.8582 1179 1177 1.132488250732e-06 1180 1177 -59082879.09408 1181 1177 -61110232.92908 1194 1177 -30555555.55054 1195 1177 -36016709.92406 1196 1177 -13902558.23995 1197 1177 -7.450580596924e-07 1198 1177 57023920.20371 1199 1177 30555116.4796 1200 1177 30555555.55054 1201 1177 -39454209.9235 1202 1177 -16652558.23965 1266 1177 7638888.891398 1267 1177 -30663321.90996 1268 1177 -13871472.89847 1269 1177 1.035630702972e-06 1270 1177 -25398826.77179 1271 1177 7638779.123661 1272 1177 -7638888.891398 1273 1177 -8046134.402525 1274 1177 6232693.774803 1284 1177 2.995133399963e-06 1285 1177 -95040068.27054 1286 1177 -53805336.01132 1287 1177 -9.536743164063e-07 1288 1177 2097153.481574 1289 1177 30555116.47959 1290 1177 -2.235174179077e-06 1291 1177 -8008818.28482 1292 1177 23250219.53173 1305 1177 -7638888.891397 1306 1177 -28353405.24253 1307 1177 -13107584.00933 1308 1177 -1.318752765656e-06 1309 1177 -19596660.10607 1310 1177 7638779.123661 1311 1177 7638888.891396 1312 1177 -7454967.735663 1313 1177 5468804.885664 1178 1178 907581829.653 1179 1178 -2546332.887327 1180 1178 -61110232.92908 1181 1178 30527909.01414 1194 1178 -27181694.66288 1195 1178 -13597002.68459 1196 1178 -10829003.14197 1197 1178 5092665.772129 1198 1178 30555116.4796 1199 1178 134412647.088 1200 1178 30109971.99439 1201 1178 -16958113.795 1202 1178 -19995669.80713 1266 1178 19567597.17295 1267 1178 -13871472.89847 1268 1178 -60464969.25217 1269 1178 49815527.5467 1270 1178 7638779.12366 1271 1178 -72142989.75742 1272 1178 5244680.501577 1273 1178 6232693.774804 1274 1178 -152469.232357 1284 1178 -636583.2221379 1285 1178 -54110891.56668 1286 1178 -206419618.7154 1287 1178 -2546332.887312 1288 1178 30555116.47959 1289 1178 -164838704.0269 1290 1178 -636583.2221438 1291 1178 23555775.08708 1292 1178 25663714.57989 1305 1178 -18931013.9508 1306 1178 -13107584.00933 1307 1178 -54305191.47237 1308 1178 -47269194.65938 1309 1178 7638779.123661 1310 1178 -56670545.31551 1311 1178 -4608097.279433 1312 1178 5468804.885664 1313 1178 1423975.212606 1179 1179 669327989.9306 1180 1179 -1.430511474609e-06 1181 1179 -10185331.54429 1182 1179 57028027.11004 1183 1179 9.089708328247e-07 1184 1179 -2546332.887327 1197 1179 -45183976.67484 1198 1179 -30555555.55054 1199 1179 -27563639.10707 1200 1179 -77421519.48389 1201 1179 -5.513429641724e-07 1202 1179 5092665.772129 1203 1179 -48621476.67428 1204 1179 30555555.55054 1205 1179 29728027.55019 1269 1179 -32955138.59878 1270 1179 7638888.891398 1271 1179 19567597.17295 1272 1179 -59010186.71026 1273 1179 1.542270183563e-06 1274 1179 49433583.10251 1275 1179 -10337951.09135 1276 1179 -7638888.891398 1277 1179 5244680.501577 1287 1179 -66012341.70521 1288 1179 2.853572368622e-06 1289 1179 -636583.2221378 1290 1179 20431686.98312 1291 1179 -9.238719940186e-07 1292 1179 -2546332.887312 1293 1179 21018908.28051 1294 1179 -2.346932888031e-06 1295 1179 -636583.222144 1308 1179 -30645221.93135 1309 1179 -7638888.891397 1310 1179 -18931013.9508 1311 1179 -53208020.04453 1312 1179 -1.534819602966e-06 1313 1179 -46887250.21518 1314 1179 -9746784.424485 1315 1179 7638888.891396 1316 1179 -4608097.279433 1180 1180 595989855.9605 1181 1180 122220465.8582 1182 1180 1.132488250732e-06 1183 1180 -59082879.09408 1184 1180 -61110232.92908 1197 1180 -30555555.55054 1198 1180 -36016709.92406 1199 1180 -13902558.23995 1200 1180 -7.450580596924e-07 1201 1180 57023920.20371 1202 1180 30555116.4796 1203 1180 30555555.55054 1204 1180 -39454209.9235 1205 1180 -16652558.23965 1269 1180 7638888.891398 1270 1180 -30663321.90996 1271 1180 -13871472.89847 1272 1180 1.035630702972e-06 1273 1180 -25398826.77179 1274 1180 7638779.123661 1275 1180 -7638888.891398 1276 1180 -8046134.402525 1277 1180 6232693.774803 1287 1180 2.995133399963e-06 1288 1180 -95040068.27054 1289 1180 -53805336.01132 1290 1180 -9.536743164063e-07 1291 1180 2097153.481574 1292 1180 30555116.47959 1293 1180 -2.235174179077e-06 1294 1180 -8008818.28482 1295 1180 23250219.53173 1308 1180 -7638888.891397 1309 1180 -28353405.24253 1310 1180 -13107584.00933 1311 1180 -1.318752765656e-06 1312 1180 -19596660.10607 1313 1180 7638779.123661 1314 1180 7638888.891396 1315 1180 -7454967.735663 1316 1180 5468804.885664 1181 1181 907581829.653 1182 1181 -2546332.887327 1183 1181 -61110232.92908 1184 1181 30527909.01414 1197 1181 -27181694.66288 1198 1181 -13597002.68459 1199 1181 -10829003.14197 1200 1181 5092665.772129 1201 1181 30555116.4796 1202 1181 134412647.088 1203 1181 30109971.99439 1204 1181 -16958113.795 1205 1181 -19995669.80713 1269 1181 19567597.17295 1270 1181 -13871472.89847 1271 1181 -60464969.25217 1272 1181 49815527.5467 1273 1181 7638779.12366 1274 1181 -72142989.75742 1275 1181 5244680.501577 1276 1181 6232693.774804 1277 1181 -152469.232357 1287 1181 -636583.2221379 1288 1181 -54110891.56668 1289 1181 -206419618.7154 1290 1181 -2546332.887312 1291 1181 30555116.47959 1292 1181 -164838704.0269 1293 1181 -636583.2221438 1294 1181 23555775.08708 1295 1181 25663714.57989 1308 1181 -18931013.9508 1309 1181 -13107584.00933 1310 1181 -54305191.47237 1311 1181 -47269194.65938 1312 1181 7638779.123661 1313 1181 -56670545.31551 1314 1181 -4608097.279433 1315 1181 5468804.885664 1316 1181 1423975.212606 1182 1182 669327989.9306 1183 1182 -1.430511474609e-06 1184 1182 -10185331.54429 1185 1182 57028027.11004 1186 1182 9.089708328247e-07 1187 1182 -2546332.887327 1200 1182 -45183976.67484 1201 1182 -30555555.55054 1202 1182 -27563639.10707 1203 1182 -77421519.48389 1204 1182 -5.513429641724e-07 1205 1182 5092665.772129 1206 1182 -48621476.67428 1207 1182 30555555.55054 1208 1182 29728027.55019 1272 1182 -32955138.59878 1273 1182 7638888.891398 1274 1182 19567597.17295 1275 1182 -59010186.71026 1276 1182 1.542270183563e-06 1277 1182 49433583.10251 1278 1182 -10337951.09135 1279 1182 -7638888.891398 1280 1182 5244680.501577 1290 1182 -66012341.70521 1291 1182 2.853572368622e-06 1292 1182 -636583.2221378 1293 1182 20431686.98312 1294 1182 -9.238719940186e-07 1295 1182 -2546332.887312 1296 1182 21018908.28051 1297 1182 -2.346932888031e-06 1298 1182 -636583.222144 1311 1182 -30645221.93135 1312 1182 -7638888.891397 1313 1182 -18931013.9508 1314 1182 -53208020.04453 1315 1182 -1.534819602966e-06 1316 1182 -46887250.21518 1317 1182 -9746784.424485 1318 1182 7638888.891396 1319 1182 -4608097.279433 1183 1183 595989855.9605 1184 1183 122220465.8582 1185 1183 1.132488250732e-06 1186 1183 -59082879.09408 1187 1183 -61110232.92908 1200 1183 -30555555.55054 1201 1183 -36016709.92406 1202 1183 -13902558.23995 1203 1183 -7.450580596924e-07 1204 1183 57023920.20371 1205 1183 30555116.4796 1206 1183 30555555.55054 1207 1183 -39454209.9235 1208 1183 -16652558.23965 1272 1183 7638888.891398 1273 1183 -30663321.90996 1274 1183 -13871472.89847 1275 1183 1.035630702972e-06 1276 1183 -25398826.77179 1277 1183 7638779.123661 1278 1183 -7638888.891398 1279 1183 -8046134.402525 1280 1183 6232693.774803 1290 1183 2.995133399963e-06 1291 1183 -95040068.27054 1292 1183 -53805336.01132 1293 1183 -9.536743164063e-07 1294 1183 2097153.481574 1295 1183 30555116.47959 1296 1183 -2.235174179077e-06 1297 1183 -8008818.28482 1298 1183 23250219.53173 1311 1183 -7638888.891397 1312 1183 -28353405.24253 1313 1183 -13107584.00933 1314 1183 -1.318752765656e-06 1315 1183 -19596660.10607 1316 1183 7638779.123661 1317 1183 7638888.891396 1318 1183 -7454967.735663 1319 1183 5468804.885664 1184 1184 907581829.653 1185 1184 -2546332.887327 1186 1184 -61110232.92908 1187 1184 30527909.01414 1200 1184 -27181694.66288 1201 1184 -13597002.68459 1202 1184 -10829003.14197 1203 1184 5092665.772129 1204 1184 30555116.4796 1205 1184 134412647.088 1206 1184 30109971.99439 1207 1184 -16958113.795 1208 1184 -19995669.80713 1272 1184 19567597.17295 1273 1184 -13871472.89847 1274 1184 -60464969.25217 1275 1184 49815527.5467 1276 1184 7638779.12366 1277 1184 -72142989.75742 1278 1184 5244680.501577 1279 1184 6232693.774804 1280 1184 -152469.232357 1290 1184 -636583.2221379 1291 1184 -54110891.56668 1292 1184 -206419618.7154 1293 1184 -2546332.887312 1294 1184 30555116.47959 1295 1184 -164838704.0269 1296 1184 -636583.2221438 1297 1184 23555775.08708 1298 1184 25663714.57989 1311 1184 -18931013.9508 1312 1184 -13107584.00933 1313 1184 -54305191.47237 1314 1184 -47269194.65938 1315 1184 7638779.123661 1316 1184 -56670545.31551 1317 1184 -4608097.279433 1318 1184 5468804.885664 1319 1184 1423975.212606 1185 1185 669327989.9306 1186 1185 -1.430511474609e-06 1187 1185 -10185331.54429 1188 1185 57028027.11004 1189 1185 9.089708328247e-07 1190 1185 -2546332.887327 1203 1185 -45183976.67484 1204 1185 -30555555.55054 1205 1185 -27563639.10707 1206 1185 -77421519.48389 1207 1185 -5.513429641724e-07 1208 1185 5092665.772129 1209 1185 -48621476.67428 1210 1185 30555555.55054 1211 1185 29728027.55019 1275 1185 -32955138.59878 1276 1185 7638888.891398 1277 1185 19567597.17295 1278 1185 -59010186.71026 1279 1185 1.542270183563e-06 1280 1185 49433583.10251 1281 1185 -10337951.09135 1282 1185 -7638888.891398 1283 1185 5244680.501577 1293 1185 -66012341.70521 1294 1185 2.853572368622e-06 1295 1185 -636583.2221378 1296 1185 20431686.98312 1297 1185 -9.238719940186e-07 1298 1185 -2546332.887312 1299 1185 21018908.28051 1300 1185 -2.346932888031e-06 1301 1185 -636583.222144 1314 1185 -30645221.93135 1315 1185 -7638888.891397 1316 1185 -18931013.9508 1317 1185 -53208020.04453 1318 1185 -1.534819602966e-06 1319 1185 -46887250.21518 1320 1185 -9746784.424485 1321 1185 7638888.891396 1322 1185 -4608097.279433 1186 1186 595989855.9605 1187 1186 122220465.8582 1188 1186 1.132488250732e-06 1189 1186 -59082879.09408 1190 1186 -61110232.92908 1203 1186 -30555555.55054 1204 1186 -36016709.92406 1205 1186 -13902558.23995 1206 1186 -7.450580596924e-07 1207 1186 57023920.20371 1208 1186 30555116.4796 1209 1186 30555555.55054 1210 1186 -39454209.9235 1211 1186 -16652558.23965 1275 1186 7638888.891398 1276 1186 -30663321.90996 1277 1186 -13871472.89847 1278 1186 1.035630702972e-06 1279 1186 -25398826.77179 1280 1186 7638779.123661 1281 1186 -7638888.891398 1282 1186 -8046134.402525 1283 1186 6232693.774803 1293 1186 2.995133399963e-06 1294 1186 -95040068.27054 1295 1186 -53805336.01132 1296 1186 -9.536743164063e-07 1297 1186 2097153.481574 1298 1186 30555116.47959 1299 1186 -2.235174179077e-06 1300 1186 -8008818.28482 1301 1186 23250219.53173 1314 1186 -7638888.891397 1315 1186 -28353405.24253 1316 1186 -13107584.00933 1317 1186 -1.318752765656e-06 1318 1186 -19596660.10607 1319 1186 7638779.123661 1320 1186 7638888.891396 1321 1186 -7454967.735663 1322 1186 5468804.885664 1187 1187 907581829.653 1188 1187 -2546332.887327 1189 1187 -61110232.92908 1190 1187 30527909.01414 1203 1187 -27181694.66288 1204 1187 -13597002.68459 1205 1187 -10829003.14197 1206 1187 5092665.772129 1207 1187 30555116.4796 1208 1187 134412647.088 1209 1187 30109971.99439 1210 1187 -16958113.795 1211 1187 -19995669.80713 1275 1187 19567597.17295 1276 1187 -13871472.89847 1277 1187 -60464969.25217 1278 1187 49815527.5467 1279 1187 7638779.12366 1280 1187 -72142989.75742 1281 1187 5244680.501577 1282 1187 6232693.774804 1283 1187 -152469.232357 1293 1187 -636583.2221379 1294 1187 -54110891.56668 1295 1187 -206419618.7154 1296 1187 -2546332.887312 1297 1187 30555116.47959 1298 1187 -164838704.0269 1299 1187 -636583.2221438 1300 1187 23555775.08708 1301 1187 25663714.57989 1314 1187 -18931013.9508 1315 1187 -13107584.00933 1316 1187 -54305191.47237 1317 1187 -47269194.65938 1318 1187 7638779.123661 1319 1187 -56670545.31551 1320 1187 -4608097.279433 1321 1187 5468804.885664 1322 1187 1423975.212606 1188 1188 535720103.1431 1189 1188 9002155.882396 1190 1188 -8544977.115715 1191 1188 -52832367.09619 1192 1188 -56640651.3947 1193 1188 -7377596.330818 1206 1188 -45183976.67484 1207 1188 -30555555.55054 1208 1188 -27563639.10707 1209 1188 -48262168.01736 1210 1188 18375579.56507 1211 1188 1211801.457708 1212 1188 -26550326.20373 1213 1188 15486079.90679 1214 1188 2784023.331262 1278 1188 -32955138.59878 1279 1188 7638888.891398 1280 1188 19567597.17295 1281 1188 -37020168.145 1282 1188 3444209.011809 1283 1188 33605164.82544 1296 1188 -66012341.70521 1297 1188 2.853572368622e-06 1298 1188 -636583.2221378 1299 1188 28568367.61238 1300 1188 2250538.971708 1301 1188 -2147300.291512 1302 1188 -25990848.25866 1303 1188 -14160162.85565 1304 1188 10214737.96898 1317 1188 -30645221.93135 1318 1188 -7638888.891397 1319 1188 -18931013.9508 1320 1188 -42000541.15558 1321 1188 4593894.893531 1322 1188 -39062848.24116 1323 1188 -12782232.44445 1324 1188 3871519.978604 1325 1188 -2550174.723511 1189 1189 596568183.3813 1190 1189 81646308.40731 1191 1189 -56735590.12188 1192 1189 -175245762.256 1193 1189 -15673702.24174 1206 1189 -30555555.55054 1207 1189 -36016709.92406 1208 1189 -13902558.23995 1209 1189 18375579.56507 1210 1189 51180094.94358 1211 1189 15313665.99873 1212 1189 15486079.90679 1213 1189 -90779768.88629 1214 1189 -9527444.358657 1278 1189 7638888.891398 1279 1189 -30663321.90996 1280 1189 -13871472.89847 1281 1189 3467943.693615 1282 1189 -5987951.293276 1283 1189 553673.964687 1296 1189 2.995133399963e-06 1297 1189 -95040068.27054 1298 1189 -53805336.01132 1299 1189 2250538.971707 1300 1189 43780387.67943 1301 1189 20402730.74043 1302 1189 -14183897.53746 1303 1189 -56594197.06368 1304 1189 34727712.16061 1317 1189 -7638888.891397 1318 1189 -28353405.24253 1319 1189 -13107584.00933 1320 1189 4593894.893531 1321 1189 -17139975.40311 1322 1189 10863138.72183 1323 1189 3871519.978604 1324 1189 -28839593.123 1325 1189 14284805.5813 1190 1190 683100293.2876 1191 1190 -7775098.943489 1192 1190 -16899506.96192 1193 1190 -11605546.9316 1206 1190 -27181694.66288 1207 1190 -13597002.68459 1208 1190 -10829003.14197 1209 1190 10760412.56725 1210 1190 15619221.55424 1211 1190 114614098.8367 1212 1190 3547912.219649 1213 1190 -9527444.358657 1214 1190 -8186598.713413 1278 1190 19567597.17295 1279 1190 -13871472.89847 1280 1190 -60464969.25217 1281 1190 31699133.42531 1282 1190 894158.2412029 1283 1190 -45594941.93873 1296 1190 -636583.2221379 1297 1190 -54110891.56668 1298 1190 -206419618.7154 1299 1190 -2127175.46838 1300 1190 20418832.32509 1301 1190 -110189348.5657 1302 1190 10220712.09006 1303 1190 34700515.9782 1304 1190 -36988737.34261 1317 1190 -18931013.9508 1318 1190 -13107584.00933 1319 1190 -54305191.47237 1320 1190 -37153126.01612 1321 1190 10863138.72329 1322 1190 -51173139.66418 1323 1190 -2550174.723511 1324 1190 14284805.5813 1325 1190 -18432385.38669 1191 1191 451174699.773 1192 1191 12686634.78714 1193 1191 2008579.463539 1209 1191 -40983224.80108 1210 1191 -28381980.02797 1211 1191 -3931083.146571 1212 1191 42151750.35842 1213 1191 27710564.3627 1214 1191 1252478.644547 1215 1191 73565600.69527 1216 1191 -16623616.68045 1217 1191 -19413.59080505 1218 1191 6725960.251957 1219 1191 24392504.83829 1220 1191 778974.1791444 1281 1191 -26928306.79151 1282 1191 9237870.715094 1283 1191 5198285.296003 1299 1191 -38329908.16593 1300 1191 -14183897.53746 1301 1191 -14013967.79219 1302 1191 -26091846.39063 1303 1191 3329117.509553 1304 1191 9108174.376875 1320 1191 -20891328.62495 1321 1191 -7095495.010489 1322 1191 -13022180.51333 1323 1191 -50466960.84116 1324 1191 7039307.107296 1325 1191 -45843812.67481 1326 1191 -28142572.64797 1327 1191 -4313362.983367 1328 1191 13754255.97847 1329 1191 -17754872.39901 1330 1191 5986460.19937 1331 1191 -10422976.89274 1192 1192 650089192.2842 1193 1192 37908240.51927 1209 1192 -28381980.02797 1210 1192 -15397556.75659 1211 1192 110188.2710273 1212 1192 27710564.3627 1213 1192 149985457.4504 1214 1192 5622912.023309 1215 1192 -4401394.460237 1216 1192 14632289.89103 1217 1192 -627668.483343 1218 1192 24392504.83829 1219 1192 -10983160.87137 1220 1192 -764021.4159333 1281 1192 6158580.476729 1282 1192 -60247816.94801 1283 1192 -22683651.68266 1299 1192 -14160162.85565 1300 1192 -68933256.97095 1301 1192 -42828570.94811 1302 1192 3329117.509553 1303 1192 24036725.11853 1304 1192 9835814.33498 1320 1192 -7095495.010489 1321 1192 -14494911.61067 1322 1192 -9604397.379856 1323 1192 7039307.107296 1324 1192 -23617557.97339 1325 1192 8445393.906125 1326 1192 -1257807.426807 1327 1192 -42838204.03708 1328 1192 33174507.3862 1329 1192 5986460.19937 1330 1192 -22510773.43959 1331 1192 16470717.63872 1193 1193 701486591.9163 1209 1193 -3549138.702378 1210 1193 415743.8263821 1211 1193 10879567.07286 1212 1193 2398311.977692 1213 1193 5928467.578815 1214 1193 231150405.9677 1215 1193 -19413.59080088 1216 1193 -627668.4833433 1217 1193 157368763.5337 1218 1193 778974.1787681 1219 1193 -764021.4159333 1220 1193 56915295.69757 1281 1193 3465523.530669 1282 1193 -24063482.84713 1283 1193 -38489307.95421 1299 1193 -13999817.14035 1300 1193 -42845108.80891 1301 1193 -69892897.09532 1302 1193 -9051270.064587 1303 1193 7637089.986494 1304 1193 -193866763.3494 1320 1193 -13022180.51333 1321 1193 -9604397.379856 1322 1193 -25668168.01612 1323 1193 -45461868.23006 1324 1193 8445393.907579 1325 1193 -105803535.3494 1326 1193 5629255.977809 1327 1193 33174507.3862 1328 1193 -84266685.12418 1329 1193 -10422976.89274 1330 1193 16470717.63872 1331 1193 -38294765.40783 1194 1194 334663994.9653 1195 1194 -1.788139343262e-07 1196 1194 -5092665.772147 1197 1194 28571305.22165 1198 1194 6111111.110108 1199 1194 3501139.111579 1284 1194 -59010186.71026 1285 1194 1.542270183563e-06 1286 1194 49433583.10251 1287 1194 -10337951.09135 1288 1194 -7638888.891398 1289 1194 5244680.501577 1305 1194 10158551.82493 1306 1194 -1.639127731323e-06 1307 1194 -9988583.109361 1308 1194 10509454.14025 1309 1194 1527777.778278 1310 1194 -1303569.389173 1195 1195 297994927.9803 1196 1195 61110232.92908 1197 1195 -6111111.110106 1198 1195 -29484147.88041 1199 1195 -30249560.90903 1284 1195 1.035630702972e-06 1285 1195 -25398826.77179 1286 1195 7638779.123661 1287 1195 -7638888.891398 1288 1195 -8046134.402525 1289 1195 6232693.774803 1305 1195 -1.132488250732e-06 1306 1195 991285.0741574 1307 1195 15277558.23979 1308 1195 -1527777.77828 1309 1195 -4004409.142409 1310 1195 11701498.65478 1196 1196 453790914.8265 1197 1196 -7957194.219873 1198 1196 -30860672.02004 1199 1196 15416732.28475 1284 1196 49815527.5467 1285 1196 7638779.12366 1286 1196 -72142989.75742 1287 1196 5244680.501577 1288 1196 6232693.774804 1289 1196 -152469.232357 1305 1196 9351972.443016 1306 1196 15277558.23979 1307 1196 -82572129.79111 1308 1196 666986.1670292 1309 1196 11701498.65463 1310 1196 12831857.28995 1197 1197 334663994.9653 1198 1197 -1.788139343262e-07 1199 1197 -5092665.772147 1200 1197 28571305.22165 1201 1197 6111111.110108 1202 1197 3501139.111579 1284 1197 -32955138.59878 1285 1197 7638888.891398 1286 1197 19567597.17295 1287 1197 -59010186.71026 1288 1197 1.542270183563e-06 1289 1197 49433583.10251 1290 1197 -10337951.09135 1291 1197 -7638888.891398 1292 1197 5244680.501577 1305 1197 -33006170.85261 1306 1197 -1527777.778278 1307 1197 -4168152.723444 1308 1197 10158551.82493 1309 1197 -1.639127731323e-06 1310 1197 -9988583.109361 1311 1197 10509454.14025 1312 1197 1527777.778278 1313 1197 -1303569.389173 1198 1198 297994927.9803 1199 1198 61110232.92908 1200 1198 -6111111.110106 1201 1198 -29484147.88041 1202 1198 -30249560.90903 1284 1198 7638888.891398 1285 1198 -30663321.90996 1286 1198 -13871472.89847 1287 1198 1.035630702972e-06 1288 1198 -25398826.77179 1289 1198 7638779.123661 1290 1198 -7638888.891398 1291 1198 -8046134.402525 1292 1198 6232693.774803 1305 1198 1527777.778281 1306 1198 -47520034.13527 1307 1198 -26979056.89458 1308 1198 -1.132488250732e-06 1309 1198 991285.0741574 1310 1198 15277558.23979 1311 1198 -1527777.77828 1312 1198 -4004409.142409 1313 1198 11701498.65478 1199 1199 453790914.8265 1200 1199 -7957194.219873 1201 1199 -30860672.02004 1202 1199 15416732.28475 1284 1199 19567597.17295 1285 1199 -13871472.89847 1286 1199 -60464969.25217 1287 1199 49815527.5467 1288 1199 7638779.12366 1289 1199 -72142989.75742 1290 1199 5244680.501577 1291 1199 6232693.774804 1292 1199 -152469.232357 1305 1199 3531569.501306 1306 1199 -26979056.89443 1307 1199 -103209809.3577 1308 1199 9351972.443016 1309 1199 15277558.23979 1310 1199 -82572129.79111 1311 1199 666986.1670292 1312 1199 11701498.65463 1313 1199 12831857.28995 1200 1200 334663994.9653 1201 1200 -1.788139343262e-07 1202 1200 -5092665.772147 1203 1200 28571305.22165 1204 1200 6111111.110108 1205 1200 3501139.111579 1287 1200 -32955138.59878 1288 1200 7638888.891398 1289 1200 19567597.17295 1290 1200 -59010186.71026 1291 1200 1.542270183563e-06 1292 1200 49433583.10251 1293 1200 -10337951.09135 1294 1200 -7638888.891398 1295 1200 5244680.501577 1308 1200 -33006170.85261 1309 1200 -1527777.778278 1310 1200 -4168152.723444 1311 1200 10158551.82493 1312 1200 -1.639127731323e-06 1313 1200 -9988583.109361 1314 1200 10509454.14025 1315 1200 1527777.778278 1316 1200 -1303569.389173 1201 1201 297994927.9803 1202 1201 61110232.92908 1203 1201 -6111111.110106 1204 1201 -29484147.88041 1205 1201 -30249560.90903 1287 1201 7638888.891398 1288 1201 -30663321.90996 1289 1201 -13871472.89847 1290 1201 1.035630702972e-06 1291 1201 -25398826.77179 1292 1201 7638779.123661 1293 1201 -7638888.891398 1294 1201 -8046134.402525 1295 1201 6232693.774803 1308 1201 1527777.778281 1309 1201 -47520034.13527 1310 1201 -26979056.89458 1311 1201 -1.132488250732e-06 1312 1201 991285.0741574 1313 1201 15277558.23979 1314 1201 -1527777.77828 1315 1201 -4004409.142409 1316 1201 11701498.65478 1202 1202 453790914.8265 1203 1202 -7957194.219873 1204 1202 -30860672.02004 1205 1202 15416732.28475 1287 1202 19567597.17295 1288 1202 -13871472.89847 1289 1202 -60464969.25217 1290 1202 49815527.5467 1291 1202 7638779.12366 1292 1202 -72142989.75742 1293 1202 5244680.501577 1294 1202 6232693.774804 1295 1202 -152469.232357 1308 1202 3531569.501306 1309 1202 -26979056.89443 1310 1202 -103209809.3577 1311 1202 9351972.443016 1312 1202 15277558.23979 1313 1202 -82572129.79111 1314 1202 666986.1670292 1315 1202 11701498.65463 1316 1202 12831857.28995 1203 1203 334663994.9653 1204 1203 -1.788139343262e-07 1205 1203 -5092665.772147 1206 1203 28571305.22165 1207 1203 6111111.110108 1208 1203 3501139.111579 1290 1203 -32955138.59878 1291 1203 7638888.891398 1292 1203 19567597.17295 1293 1203 -59010186.71026 1294 1203 1.542270183563e-06 1295 1203 49433583.10251 1296 1203 -10337951.09135 1297 1203 -7638888.891398 1298 1203 5244680.501577 1311 1203 -33006170.85261 1312 1203 -1527777.778278 1313 1203 -4168152.723444 1314 1203 10158551.82493 1315 1203 -1.639127731323e-06 1316 1203 -9988583.109361 1317 1203 10509454.14025 1318 1203 1527777.778278 1319 1203 -1303569.389173 1204 1204 297994927.9803 1205 1204 61110232.92908 1206 1204 -6111111.110106 1207 1204 -29484147.88041 1208 1204 -30249560.90903 1290 1204 7638888.891398 1291 1204 -30663321.90996 1292 1204 -13871472.89847 1293 1204 1.035630702972e-06 1294 1204 -25398826.77179 1295 1204 7638779.123661 1296 1204 -7638888.891398 1297 1204 -8046134.402525 1298 1204 6232693.774803 1311 1204 1527777.778281 1312 1204 -47520034.13527 1313 1204 -26979056.89458 1314 1204 -1.132488250732e-06 1315 1204 991285.0741574 1316 1204 15277558.23979 1317 1204 -1527777.77828 1318 1204 -4004409.142409 1319 1204 11701498.65478 1205 1205 453790914.8265 1206 1205 -7957194.219873 1207 1205 -30860672.02004 1208 1205 15416732.28475 1290 1205 19567597.17295 1291 1205 -13871472.89847 1292 1205 -60464969.25217 1293 1205 49815527.5467 1294 1205 7638779.12366 1295 1205 -72142989.75742 1296 1205 5244680.501577 1297 1205 6232693.774804 1298 1205 -152469.232357 1311 1205 3531569.501306 1312 1205 -26979056.89443 1313 1205 -103209809.3577 1314 1205 9351972.443016 1315 1205 15277558.23979 1316 1205 -82572129.79111 1317 1205 666986.1670292 1318 1205 11701498.65463 1319 1205 12831857.28995 1206 1206 334663994.9653 1207 1206 -1.788139343262e-07 1208 1206 -5092665.772147 1209 1206 28571305.22165 1210 1206 6111111.110108 1211 1206 3501139.111579 1293 1206 -32955138.59878 1294 1206 7638888.891398 1295 1206 19567597.17295 1296 1206 -59010186.71026 1297 1206 1.542270183563e-06 1298 1206 49433583.10251 1299 1206 -10337951.09135 1300 1206 -7638888.891398 1301 1206 5244680.501577 1314 1206 -33006170.85261 1315 1206 -1527777.778278 1316 1206 -4168152.723444 1317 1206 10158551.82493 1318 1206 -1.639127731323e-06 1319 1206 -9988583.109361 1320 1206 10509454.14025 1321 1206 1527777.778278 1322 1206 -1303569.389173 1207 1207 297994927.9803 1208 1207 61110232.92908 1209 1207 -6111111.110106 1210 1207 -29484147.88041 1211 1207 -30249560.90903 1293 1207 7638888.891398 1294 1207 -30663321.90996 1295 1207 -13871472.89847 1296 1207 1.035630702972e-06 1297 1207 -25398826.77179 1298 1207 7638779.123661 1299 1207 -7638888.891398 1300 1207 -8046134.402525 1301 1207 6232693.774803 1314 1207 1527777.778281 1315 1207 -47520034.13527 1316 1207 -26979056.89458 1317 1207 -1.132488250732e-06 1318 1207 991285.0741574 1319 1207 15277558.23979 1320 1207 -1527777.77828 1321 1207 -4004409.142409 1322 1207 11701498.65478 1208 1208 453790914.8265 1209 1208 -7957194.219873 1210 1208 -30860672.02004 1211 1208 15416732.28475 1293 1208 19567597.17295 1294 1208 -13871472.89847 1295 1208 -60464969.25217 1296 1208 49815527.5467 1297 1208 7638779.12366 1298 1208 -72142989.75742 1299 1208 5244680.501577 1300 1208 6232693.774804 1301 1208 -152469.232357 1314 1208 3531569.501306 1315 1208 -26979056.89443 1316 1208 -103209809.3577 1317 1208 9351972.443016 1318 1208 15277558.23979 1319 1208 -82572129.79111 1320 1208 666986.1670292 1321 1208 11701498.65463 1322 1208 12831857.28995 1209 1209 316858494.2791 1210 1209 2174054.560357 1211 1209 -27293244.44437 1212 1209 13697255.5974 1213 1209 -16612098.53789 1214 1209 -3598584.9718 1296 1209 -32955138.59878 1297 1209 7638888.891398 1298 1209 19567597.17295 1299 1209 -49351204.34845 1300 1209 4593894.893533 1301 1209 42055901.74692 1302 1209 -17990259.17954 1303 1209 -7095495.010488 1304 1209 11152125.05017 1317 1209 -33006170.85261 1318 1209 -1527777.778278 1319 1209 -4168152.723444 1320 1209 5365690.855964 1321 1209 543513.6403558 1322 1209 -15538450.00238 1323 1209 -13153927.34598 1324 1209 -4153024.636518 1325 1209 5714867.644173 1210 1210 296614594.907 1211 1210 38457294.61539 1212 1210 -28834320.7581 1213 1210 -42198589.68467 1214 1210 -6673474.180954 1296 1210 7638888.891398 1297 1210 -30663321.90996 1298 1210 -13871472.89847 1299 1210 4593894.893532 1300 1210 -24490638.59597 1301 1210 -3129916.831349 1302 1210 -7095495.010488 1303 1210 -11593842.16527 1304 1210 9735880.404272 1317 1210 1527777.778281 1318 1210 -47520034.13527 1319 1210 -26979056.89458 1320 1210 543513.6403558 1321 1210 304716.0104512 1322 1210 9614323.658581 1323 1210 -7208580.193077 1324 1210 -27127888.67338 1325 1210 24630242.56153 1211 1211 416827404.7037 1212 1211 -5508307.193711 1213 1211 -6979029.73646 1214 1211 52285028.52362 1296 1211 19567597.17295 1297 1211 -13871472.89847 1298 1211 -60464969.25217 1299 1211 40146179.52533 1300 1211 -3129916.830046 1301 1211 -70774908.17847 1302 1211 11152125.05017 1303 1211 9735880.404273 1304 1211 -17931982.82838 1317 1211 3531569.501306 1318 1211 -26979056.89443 1319 1211 -103209809.3577 1320 1211 3801549.994444 1321 1211 9614323.658581 1322 1211 -92723636.11364 1323 1211 9976812.088386 1324 1211 24630242.56008 1325 1211 -31137386.18803 1212 1212 348089344.3927 1213 1212 30384868.90779 1214 1212 -532757.0458715 1215 1212 -47381817.51693 1216 1212 -36718606.26279 1217 1212 -1130748.042973 1218 1212 29348240.34016 1219 1212 -8028586.156387 1220 1212 -302189.6915584 1299 1212 -18882906.05781 1300 1212 3871519.978604 1301 1212 4133158.612019 1302 1212 -52416589.31391 1303 1212 7039307.107297 1304 1212 46863131.75478 1320 1212 -23405666.92726 1321 1212 -7208580.193078 1322 1212 -12349021.24194 1323 1212 -31165922.35193 1324 1212 7885422.472098 1325 1212 -8621462.035699 1326 1212 -31982048.32961 1327 1212 -9291317.583428 1328 1212 20024245.33947 1329 1212 -25975111.33797 1330 1212 -2296351.781493 1331 1212 7483836.459745 1213 1213 403682108.9628 1214 1213 13770445.11113 1215 1213 -36718606.26279 1216 1213 -31273577.53471 1217 1213 -764021.4159336 1218 1213 -20250808.3766 1219 1213 -30061183.33955 1220 1213 -2428417.178885 1299 1213 3871519.978604 1300 1213 -34940266.73636 1301 1213 -19048527.76298 1302 1213 7039307.107298 1303 1213 -25567186.44614 1304 1213 -5547661.647057 1320 1213 -4153024.636519 1321 1213 -37379628.25466 1322 1213 -28043368.541 1323 1213 7885422.472099 1324 1213 -17228485.8815 1325 1213 3460477.176094 1326 1213 -9291317.583428 1327 1213 -27845964.41357 1328 1213 16470717.63872 1329 1213 -5351907.338053 1330 1213 -40866712.58626 1331 1213 32708363.13622 1214 1214 547608641.2762 1215 1214 -1130748.042973 1216 1214 -764021.4159337 1217 1214 36624879.03423 1218 1214 -1066078.580326 1219 1214 -2428417.178885 1220 1214 98796169.1597 1299 1214 4133158.612019 1300 1214 -19048527.76298 1301 1214 -34700848.35564 1302 1214 47245076.19879 1303 1214 -5547661.645754 1304 1214 -111002544.6101 1320 1214 -6941243.464199 1321 1214 -28043368.5423 1322 1214 -58475358.40478 1323 1214 10301871.29453 1324 1214 3460477.176094 1325 1214 -179825744.4227 1326 1214 20024245.33947 1327 1214 16470717.63872 1328 1214 -43629956.38181 1329 1214 11537725.35197 1330 1214 32708363.13622 1331 1214 -62574199.34102 1215 1215 234181065.9089 1216 1215 41068061.12088 1217 1215 655987.6646829 1218 1215 10431514.53318 1219 1215 51939.60213825 1220 1215 494173.9690943 1302 1215 -29392572.6484 1303 1215 -1257807.426808 1304 1215 -5646438.46269 1323 1215 -33232048.33004 1324 1215 -9291317.583429 1325 1215 -20600754.67387 1326 1215 -35105760.6537 1327 1215 10424474.09649 1328 1215 8292734.7597 1329 1215 -37667800.1781 1330 1215 124650.9137491 1331 1215 -30795541.62314 1216 1216 218635210.0587 1217 1216 627668.4833469 1218 1216 12274161.82235 1219 1216 68802441.20539 1220 1216 764021.4159354 1302 1216 -4313362.983367 1303 1216 -44088204.03752 1304 1216 -33492159.26951 1323 1216 -9291317.583429 1324 1216 -29095964.41399 1325 1216 -16862615.70556 1326 1216 10424474.09649 1327 1216 -39029920.93737 1328 1216 6825492.607223 1329 1216 3180206.470309 1330 1216 -23184092.42136 1331 1216 3529282.367847 1217 1217 390198736.3446 1218 1217 494173.9690994 1219 1217 764021.4159352 1220 1217 137931257.4087 1302 1217 -13771438.46354 1303 1217 -33492159.26951 1304 1217 -87600018.45868 1323 1217 -20600754.67387 1324 1217 -16862615.70556 1325 1217 -46963289.71627 1326 1217 -7957265.237631 1327 1217 -6507840.72392 1328 1217 -152668106.4805 1329 1217 -30795541.62496 1330 1217 -3137384.301009 1331 1217 -73830403.50521 1218 1218 175996103.0724 1219 1218 -16415858.28404 1220 1218 1320708.210737 1302 1218 -19004872.39944 1303 1218 5986460.19937 1304 1218 10801328.66978 1323 1218 -29725111.33676 1324 1218 -5351907.338053 1325 1218 -12107830.2037 1326 1218 -37667800.1781 1327 1218 3180206.47031 1328 1218 31053763.92235 1329 1218 -24853125.18453 1330 1218 -3814759.331626 1331 1218 -3896151.277573 1219 1219 194743721.2032 1220 1219 2428417.178889 1302 1219 5986460.19937 1303 1219 -23760773.44002 1304 1219 -16862615.70556 1323 1219 -2296351.781494 1324 1219 -44616712.58506 1325 1219 -33958303.5195 1326 1219 124650.9137499 1327 1219 -23184092.42136 1328 1219 3529282.367847 1329 1219 -3814759.331626 1330 1219 -19689330.6524 1331 1219 7291636.857209 1220 1220 299695459.5944 1302 1220 10801328.66978 1303 1220 -16862615.70556 1304 1220 -41628098.7423 1323 1220 -7671996.867094 1324 1220 -33958303.5195 1325 1220 -72574199.3378 1326 1220 31053763.92035 1327 1220 -3137384.301009 1328 1220 -73830403.50521 1329 1220 4593570.943256 1330 1220 -6041696.473933 1331 1220 -108636389.3449 1221 1221 392409175.4658 1222 1221 33611111.10558 1223 1221 -18921677.97532 1224 1221 -173081388.0675 1225 1221 -33624506.06547 1226 1221 14444361.39273 1227 1221 1431297.732108 1228 1221 26902283.84436 1229 1221 9655347.358825 1332 1221 35932670.30059 1333 1221 9166666.669679 1334 1221 9311563.653784 1335 1221 -72925641.46158 1336 1221 -9166747.055676 1337 1221 -43478968.03166 1338 1221 -7497354.851903 1339 1221 7333413.72174 1340 1221 -9080099.689708 1222 1222 341973871.613 1223 1222 30282406.91647 1224 1222 -33631203.54542 1225 1222 -15065409.46899 1226 1222 19484896.97789 1227 1222 40353425.76654 1228 1222 1431297.732101 1229 1222 -13443330.95707 1332 1222 9166666.669678 1333 1222 22181563.40434 1334 1222 5180609.664774 1335 1222 -9166787.248676 1336 1222 -29841516.44517 1337 1222 -9524419.110191 1338 1222 11000120.58261 1339 1222 -7497354.8519 1340 1222 10895952.52268 1223 1223 443104893.4996 1224 1223 12205703.10143 1225 1223 15281564.4366 1226 1223 34188531.48329 1227 1223 14483021.03824 1228 1223 -8962220.638046 1229 1223 3816793.952288 1332 1223 -7806863.548506 1333 1223 -8513909.758068 1334 1223 -68673244.4318 1335 1223 -43444243.01831 1336 1223 -9329934.937092 1337 1223 -59307696.78438 1338 1223 -13620149.53456 1339 1223 7263968.348454 1340 1223 -19992946.27174 1224 1224 662031295.7794 1225 1224 33644598.50531 1226 1224 -15598790.43683 1227 1224 6223512.930091 1228 1224 -33624506.06548 1229 1224 -13793087.22804 1230 1224 -109230745.6082 1231 1224 1.281499862671e-06 1232 1224 3425959.474268 1233 1224 -51177807.60464 1234 1224 33611111.10559 1235 1224 13790517.64469 1332 1224 -71369389.94283 1333 1224 -9166787.24867 1334 1224 42147892.99313 1335 1224 76553135.92261 1336 1224 9166867.634673 1337 1224 781226.2244361 1338 1224 -18699525.19313 1339 1224 -9166747.055676 1340 1224 11379035.3452 1341 1224 -59172122.54065 1342 1224 4.395842552185e-07 1343 1224 -42928937.05631 1344 1224 -19947608.24497 1345 1224 9166666.669675 1346 1224 -11378935.65847 1225 1225 571259805.1183 1226 1225 43075945.84504 1227 1225 -33631203.54543 1228 1225 -111441208.5227 1229 1225 -23958771.83004 1230 1225 9.387731552124e-07 1231 1225 38659326.41933 1232 1225 13888687.59834 1233 1225 33611111.10559 1234 1225 -41093760.8976 1235 1225 -7791566.021395 1332 1225 -9166747.055672 1333 1225 -28285264.92641 1334 1225 7788270.809731 1335 1225 9166867.634673 1336 1225 51801215.86321 1337 1225 -2152764.494718 1338 1225 -9166787.248675 1339 1225 -50782746.60544 1340 1225 35402941.77273 1341 1225 4.619359970093e-07 1342 1225 -18838452.02672 1343 1225 -694433.1761459 1344 1225 9166666.669675 1345 1225 -17197404.95283 1346 1225 8940966.590895 1226 1226 679585775.4118 1227 1226 -13412427.57498 1228 1226 -26066650.19218 1229 1226 3548849.435559 1230 1226 1203737.252411 1231 1226 13888687.59834 1232 1226 83675565.4165 1233 1226 13408573.19995 1234 1226 -7486010.465602 1235 1226 -15846293.82194 1332 1226 42113167.97979 1333 1226 7593861.729456 1334 1226 -55157692.73435 1335 1226 781320.0962051 1336 1226 -2152689.398522 1337 1226 -91946096.11431 1338 1226 11379085.18856 1339 1226 35569610.71641 1340 1226 -53430905.74636 1341 1226 -42894214.83411 1342 1226 -694433.1761459 1343 1226 -55531090.78464 1344 1226 -11378935.65847 1345 1226 8940966.590895 1346 1226 -20295098.63508 1227 1227 392409175.4658 1228 1227 33611111.10558 1229 1227 -18921677.97532 1230 1227 -49447220.48372 1231 1227 -33611111.10559 1232 1227 -12251149.01771 1233 1227 -173081388.0675 1234 1227 -33624506.06547 1235 1227 14444361.39273 1236 1227 1431297.732108 1237 1227 26902283.84436 1238 1227 9655347.358825 1332 1227 -4579449.609996 1333 1227 11000120.58261 1334 1227 12057631.64322 1335 1227 -14225493.76444 1336 1227 -9166787.248675 1337 1227 -10019112.65448 1338 1227 35932670.30059 1339 1227 9166666.669679 1340 1227 9311563.653784 1341 1227 -18482764.4945 1342 1227 -9166666.669676 1343 1227 -10076852.32471 1344 1227 -72925641.46158 1345 1227 -9166747.055676 1346 1227 -43478968.03166 1347 1227 -7497354.851903 1348 1227 7333413.72174 1349 1227 -9080099.689708 1228 1228 341973871.613 1229 1228 30282406.91647 1230 1228 -33611111.10559 1231 1228 -39363173.77667 1232 1228 -6097121.576942 1233 1228 -33631203.54542 1234 1228 -15065409.46899 1235 1228 19484896.97789 1236 1228 40353425.76654 1237 1228 1431297.732101 1238 1228 -13443330.95707 1332 1228 7333413.72174 1333 1228 -4579449.61 1334 1228 -6430626.286135 1335 1228 -9166747.055675 1336 1228 -46308715.17675 1337 1228 -32902986.62891 1338 1228 9166666.669678 1339 1228 22181563.40434 1340 1228 5180609.664774 1341 1228 -9166666.669676 1342 1228 -15732561.20235 1343 1228 -8246533.414749 1344 1228 -9166787.248676 1345 1228 -29841516.44517 1346 1228 -9524419.110191 1347 1228 11000120.58261 1348 1228 -7497354.8519 1349 1228 10895952.52268 1229 1229 443104893.4996 1230 1229 -12633093.46245 1231 1229 -6402677.132734 1232 1229 -11231394.83281 1233 1229 12205703.10143 1234 1229 15281564.4366 1235 1229 34188531.48329 1236 1229 14483021.03824 1237 1229 -8962220.638046 1238 1229 3816793.952288 1332 1229 8038421.095477 1333 1229 -9645939.429201 1334 1229 -12211865.62666 1335 1229 -10019068.77473 1336 1229 -33069655.68813 1337 1229 -41500155.26984 1338 1229 -7806863.548506 1339 1229 -8513909.758068 1340 1229 -68673244.4318 1341 1229 -10076852.32471 1342 1229 -8246533.414749 1343 1229 -16388848.63381 1344 1229 -43444243.01831 1345 1229 -9329934.937092 1346 1229 -59307696.78438 1347 1229 -13620149.53456 1348 1229 7263968.348454 1349 1229 -19992946.27174 1230 1230 645455824.6572 1231 1230 3.814697265625e-06 1232 1230 -4629696.72672 1233 1230 69286959.53708 1234 1230 -2.101063728333e-06 1235 1230 -1157424.182251 1239 1230 -109230745.6082 1240 1230 1.281499862671e-06 1241 1230 3425959.474268 1242 1230 -51177807.60464 1243 1230 33611111.10559 1244 1230 13790517.64469 1335 1230 -58783069.51046 1336 1230 1.639127731323e-06 1337 1230 42697451.81849 1338 1230 -19844426.42677 1339 1230 -9166666.669679 1340 1230 11321064.34898 1341 1230 57430602.85087 1342 1230 3.8743019104e-06 1343 1230 231485.2378496 1344 1230 -6249019.844286 1345 1230 -7.443130016327e-06 1346 1230 57871.30949415 1350 1230 -59172122.54065 1351 1230 4.395842552185e-07 1352 1230 -42928937.05631 1353 1230 -19947608.24497 1354 1230 9166666.669675 1355 1230 -11378935.65847 1231 1231 564783451.0405 1232 1231 55554750.36598 1233 1231 -3.129243850708e-06 1234 1231 -58435019.09619 1235 1231 -28666264.07173 1239 1231 9.387731552124e-07 1240 1231 38659326.41933 1241 1231 13888687.59834 1242 1231 33611111.10559 1243 1231 -41093760.8976 1244 1231 -7791566.021395 1335 1231 6.034970283508e-07 1336 1231 -18449398.9965 1337 1231 -694433.1761458 1338 1231 -9166666.669679 1339 1231 -17094223.13462 1340 1231 8871522.146427 1341 1231 4.231929779053e-06 1342 1231 35428976.52455 1343 1231 -2777732.703215 1344 1231 -7.599592208862e-06 1345 1231 -41082283.77936 1346 1231 35638866.34597 1350 1231 4.619359970093e-07 1351 1231 -18838452.02672 1352 1231 -694433.1761459 1353 1231 9166666.669675 1354 1231 -17197404.95283 1355 1231 8940966.590895 1232 1232 756192654.5709 1233 1232 -1157424.182251 1234 1232 -26888486.29425 1235 1232 51063391.07047 1239 1232 1203737.252411 1240 1232 13888687.59834 1241 1232 83675565.4165 1242 1232 13408573.19995 1243 1232 -7486010.465602 1244 1232 -15846293.82194 1335 1232 42662729.59629 1336 1232 -694433.1761458 1337 1232 -54493616.03735 1338 1232 11321064.34898 1339 1232 8871522.146428 1340 1232 -20019947.11985 1341 1232 231485.2378493 1342 1232 -2777732.703215 1343 1232 -110039912.4136 1344 1232 57871.30949473 1345 1232 35611088.56821 1346 1232 -53128242.27036 1350 1232 -42894214.83411 1351 1232 -694433.1761459 1352 1232 -55531090.78464 1353 1232 -11378935.65847 1354 1232 8940966.590895 1355 1232 -20295098.63508 1233 1233 662031295.7794 1234 1233 33644598.50531 1235 1233 -15598790.43683 1236 1233 6223512.930091 1237 1233 -33624506.06548 1238 1233 -13793087.22804 1239 1233 -49447220.48372 1240 1233 -33611111.10559 1241 1233 -12251149.01771 1242 1233 -109230745.6082 1243 1233 1.281499862671e-06 1244 1233 3425959.474268 1245 1233 -51177807.60464 1246 1233 33611111.10559 1247 1233 13790517.64469 1335 1233 -18391419.7975 1336 1233 9166666.669678 1337 1233 10018981.01522 1338 1233 -71369389.94283 1339 1233 -9166787.24867 1340 1233 42147892.99313 1341 1233 -413319.0876746 1342 1233 3.017485141754e-06 1343 1233 57871.30948708 1344 1233 76553135.92261 1345 1233 9166867.634673 1346 1233 781226.2244361 1347 1233 -18699525.19313 1348 1233 -9166747.055676 1349 1233 11379035.3452 1350 1233 -18482764.4945 1351 1233 -9166666.669676 1352 1233 -10076852.32471 1353 1233 -59172122.54065 1354 1233 4.395842552185e-07 1355 1233 -42928937.05631 1356 1233 -19947608.24497 1357 1233 9166666.669675 1358 1233 -11378935.65847 1234 1234 571259805.1183 1235 1234 43075945.84504 1236 1234 -33631203.54543 1237 1234 -111441208.5227 1238 1234 -23958771.83004 1239 1234 -33611111.10559 1240 1234 -39363173.77667 1241 1234 -6097121.576942 1242 1234 9.387731552124e-07 1243 1234 38659326.41933 1244 1234 13888687.59834 1245 1234 33611111.10559 1246 1234 -41093760.8976 1247 1234 -7791566.021395 1335 1234 9166666.669678 1336 1234 -15641216.50536 1337 1234 -8177088.970282 1338 1234 -9166747.055672 1339 1234 -28285264.92641 1340 1234 7788270.809731 1341 1234 4.06801700592e-06 1342 1234 -35246583.02275 1343 1234 -32861133.64276 1344 1234 9166867.634673 1345 1234 51801215.86321 1346 1234 -2152764.494718 1347 1234 -9166787.248675 1348 1234 -50782746.60544 1349 1234 35402941.77273 1350 1234 -9166666.669676 1351 1234 -15732561.20235 1352 1234 -8246533.414749 1353 1234 4.619359970093e-07 1354 1234 -18838452.02672 1355 1234 -694433.1761459 1356 1234 9166666.669675 1357 1234 -17197404.95283 1358 1234 8940966.590895 1235 1235 679585775.4118 1236 1235 -13412427.57498 1237 1235 -26066650.19218 1238 1235 3548849.435559 1239 1235 -12633093.46245 1240 1235 -6402677.132734 1241 1235 -11231394.83281 1242 1235 1203737.252411 1243 1235 13888687.59834 1244 1235 83675565.4165 1245 1235 13408573.19995 1246 1235 -7486010.465602 1247 1235 -15846293.82194 1335 1235 10018981.01522 1336 1235 -8177088.970282 1337 1235 -16145262.77514 1338 1235 42113167.97979 1339 1235 7593861.729456 1340 1235 -55157692.73435 1341 1235 57871.30948763 1342 1235 -32833355.865 1343 1235 -37566373.58606 1344 1235 781320.0962051 1345 1235 -2152689.398522 1346 1235 -91946096.11431 1347 1235 11379085.18856 1348 1235 35569610.71641 1349 1235 -53430905.74636 1350 1235 -10076852.32471 1351 1235 -8246533.414749 1352 1235 -16388848.63381 1353 1235 -42894214.83411 1354 1235 -694433.1761459 1355 1235 -55531090.78464 1356 1235 -11378935.65847 1357 1235 8940966.590895 1358 1235 -20295098.63508 1236 1236 392409175.4658 1237 1236 33611111.10558 1238 1236 -18921677.97532 1242 1236 -49447220.48372 1243 1236 -33611111.10559 1244 1236 -12251149.01771 1245 1236 -173081388.0675 1246 1236 -33624506.06547 1247 1236 14444361.39273 1248 1236 1431297.732108 1249 1236 26902283.84436 1250 1236 9655347.358825 1338 1236 -4579449.609996 1339 1236 11000120.58261 1340 1236 12057631.64322 1344 1236 -14225493.76444 1345 1236 -9166787.248675 1346 1236 -10019112.65448 1347 1236 35932670.30059 1348 1236 9166666.669679 1349 1236 9311563.653784 1353 1236 -18482764.4945 1354 1236 -9166666.669676 1355 1236 -10076852.32471 1356 1236 -72925641.46158 1357 1236 -9166747.055676 1358 1236 -43478968.03166 1359 1236 -7497354.851903 1360 1236 7333413.72174 1361 1236 -9080099.689708 1237 1237 341973871.613 1238 1237 30282406.91647 1242 1237 -33611111.10559 1243 1237 -39363173.77667 1244 1237 -6097121.576942 1245 1237 -33631203.54542 1246 1237 -15065409.46899 1247 1237 19484896.97789 1248 1237 40353425.76654 1249 1237 1431297.732101 1250 1237 -13443330.95707 1338 1237 7333413.72174 1339 1237 -4579449.61 1340 1237 -6430626.286135 1344 1237 -9166747.055675 1345 1237 -46308715.17675 1346 1237 -32902986.62891 1347 1237 9166666.669678 1348 1237 22181563.40434 1349 1237 5180609.664774 1353 1237 -9166666.669676 1354 1237 -15732561.20235 1355 1237 -8246533.414749 1356 1237 -9166787.248676 1357 1237 -29841516.44517 1358 1237 -9524419.110191 1359 1237 11000120.58261 1360 1237 -7497354.8519 1361 1237 10895952.52268 1238 1238 443104893.4996 1242 1238 -12633093.46245 1243 1238 -6402677.132734 1244 1238 -11231394.83281 1245 1238 12205703.10143 1246 1238 15281564.4366 1247 1238 34188531.48329 1248 1238 14483021.03824 1249 1238 -8962220.638046 1250 1238 3816793.952288 1338 1238 8038421.095477 1339 1238 -9645939.429201 1340 1238 -12211865.62666 1344 1238 -10019068.77473 1345 1238 -33069655.68813 1346 1238 -41500155.26984 1347 1238 -7806863.548506 1348 1238 -8513909.758068 1349 1238 -68673244.4318 1353 1238 -10076852.32471 1354 1238 -8246533.414749 1355 1238 -16388848.63381 1356 1238 -43444243.01831 1357 1238 -9329934.937092 1358 1238 -59307696.78438 1359 1238 -13620149.53456 1360 1238 7263968.348454 1361 1238 -19992946.27174 1239 1239 645455824.6572 1240 1239 3.814697265625e-06 1241 1239 -4629696.72672 1242 1239 69286959.53708 1243 1239 -2.101063728333e-06 1244 1239 -1157424.182251 1251 1239 -109230745.6082 1252 1239 1.281499862671e-06 1253 1239 3425959.474268 1254 1239 -51177807.60464 1255 1239 33611111.10559 1256 1239 13790517.64469 1341 1239 -58783069.51046 1342 1239 1.639127731323e-06 1343 1239 42697451.81849 1344 1239 -19844426.42677 1345 1239 -9166666.669679 1346 1239 11321064.34898 1350 1239 57430602.85087 1351 1239 3.8743019104e-06 1352 1239 231485.2378496 1353 1239 -6249019.844286 1354 1239 -7.443130016327e-06 1355 1239 57871.30949415 1362 1239 -59172122.54065 1363 1239 4.395842552185e-07 1364 1239 -42928937.05631 1365 1239 -19947608.24497 1366 1239 9166666.669675 1367 1239 -11378935.65847 1240 1240 564783451.0405 1241 1240 55554750.36598 1242 1240 -3.129243850708e-06 1243 1240 -58435019.09619 1244 1240 -28666264.07173 1251 1240 9.387731552124e-07 1252 1240 38659326.41933 1253 1240 13888687.59834 1254 1240 33611111.10559 1255 1240 -41093760.8976 1256 1240 -7791566.021395 1341 1240 6.034970283508e-07 1342 1240 -18449398.9965 1343 1240 -694433.1761458 1344 1240 -9166666.669679 1345 1240 -17094223.13462 1346 1240 8871522.146427 1350 1240 4.231929779053e-06 1351 1240 35428976.52455 1352 1240 -2777732.703215 1353 1240 -7.599592208862e-06 1354 1240 -41082283.77936 1355 1240 35638866.34597 1362 1240 4.619359970093e-07 1363 1240 -18838452.02672 1364 1240 -694433.1761459 1365 1240 9166666.669675 1366 1240 -17197404.95283 1367 1240 8940966.590895 1241 1241 756192654.5709 1242 1241 -1157424.182251 1243 1241 -26888486.29425 1244 1241 51063391.07047 1251 1241 1203737.252411 1252 1241 13888687.59834 1253 1241 83675565.4165 1254 1241 13408573.19995 1255 1241 -7486010.465602 1256 1241 -15846293.82194 1341 1241 42662729.59629 1342 1241 -694433.1761458 1343 1241 -54493616.03735 1344 1241 11321064.34898 1345 1241 8871522.146428 1346 1241 -20019947.11985 1350 1241 231485.2378493 1351 1241 -2777732.703215 1352 1241 -110039912.4136 1353 1241 57871.30949473 1354 1241 35611088.56821 1355 1241 -53128242.27036 1362 1241 -42894214.83411 1363 1241 -694433.1761459 1364 1241 -55531090.78464 1365 1241 -11378935.65847 1366 1241 8940966.590895 1367 1241 -20295098.63508 1242 1242 645455824.6572 1243 1242 3.814697265625e-06 1244 1242 -4629696.72672 1245 1242 69286959.53708 1246 1242 -2.101063728333e-06 1247 1242 -1157424.182251 1251 1242 -49447220.48372 1252 1242 -33611111.10559 1253 1242 -12251149.01771 1254 1242 -109230745.6082 1255 1242 1.281499862671e-06 1256 1242 3425959.474268 1257 1242 -51177807.60464 1258 1242 33611111.10559 1259 1242 13790517.64469 1341 1242 -18391419.7975 1342 1242 9166666.669678 1343 1242 10018981.01522 1344 1242 -58783069.51046 1345 1242 1.639127731323e-06 1346 1242 42697451.81849 1347 1242 -19844426.42677 1348 1242 -9166666.669679 1349 1242 11321064.34898 1350 1242 -413319.0876746 1351 1242 3.017485141754e-06 1352 1242 57871.30948708 1353 1242 57430602.85087 1354 1242 3.8743019104e-06 1355 1242 231485.2378496 1356 1242 -6249019.844286 1357 1242 -7.443130016327e-06 1358 1242 57871.30949415 1362 1242 -18482764.4945 1363 1242 -9166666.669676 1364 1242 -10076852.32471 1365 1242 -59172122.54065 1366 1242 4.395842552185e-07 1367 1242 -42928937.05631 1368 1242 -19947608.24497 1369 1242 9166666.669675 1370 1242 -11378935.65847 1243 1243 564783451.0405 1244 1243 55554750.36598 1245 1243 -3.129243850708e-06 1246 1243 -58435019.09619 1247 1243 -28666264.07173 1251 1243 -33611111.10559 1252 1243 -39363173.77667 1253 1243 -6097121.576942 1254 1243 9.387731552124e-07 1255 1243 38659326.41933 1256 1243 13888687.59834 1257 1243 33611111.10559 1258 1243 -41093760.8976 1259 1243 -7791566.021395 1341 1243 9166666.669678 1342 1243 -15641216.50536 1343 1243 -8177088.970282 1344 1243 6.034970283508e-07 1345 1243 -18449398.9965 1346 1243 -694433.1761458 1347 1243 -9166666.669679 1348 1243 -17094223.13462 1349 1243 8871522.146427 1350 1243 4.06801700592e-06 1351 1243 -35246583.02275 1352 1243 -32861133.64276 1353 1243 4.231929779053e-06 1354 1243 35428976.52455 1355 1243 -2777732.703215 1356 1243 -7.599592208862e-06 1357 1243 -41082283.77936 1358 1243 35638866.34597 1362 1243 -9166666.669676 1363 1243 -15732561.20235 1364 1243 -8246533.414749 1365 1243 4.619359970093e-07 1366 1243 -18838452.02672 1367 1243 -694433.1761459 1368 1243 9166666.669675 1369 1243 -17197404.95283 1370 1243 8940966.590895 1244 1244 756192654.5709 1245 1244 -1157424.182251 1246 1244 -26888486.29425 1247 1244 51063391.07047 1251 1244 -12633093.46245 1252 1244 -6402677.132734 1253 1244 -11231394.83281 1254 1244 1203737.252411 1255 1244 13888687.59834 1256 1244 83675565.4165 1257 1244 13408573.19995 1258 1244 -7486010.465602 1259 1244 -15846293.82194 1341 1244 10018981.01522 1342 1244 -8177088.970282 1343 1244 -16145262.77514 1344 1244 42662729.59629 1345 1244 -694433.1761458 1346 1244 -54493616.03735 1347 1244 11321064.34898 1348 1244 8871522.146428 1349 1244 -20019947.11985 1350 1244 57871.30948763 1351 1244 -32833355.865 1352 1244 -37566373.58606 1353 1244 231485.2378493 1354 1244 -2777732.703215 1355 1244 -110039912.4136 1356 1244 57871.30949473 1357 1244 35611088.56821 1358 1244 -53128242.27036 1362 1244 -10076852.32471 1363 1244 -8246533.414749 1364 1244 -16388848.63381 1365 1244 -42894214.83411 1366 1244 -694433.1761459 1367 1244 -55531090.78464 1368 1244 -11378935.65847 1369 1244 8940966.590895 1370 1244 -20295098.63508 1245 1245 662031295.7794 1246 1245 33644598.50531 1247 1245 -15598790.43683 1248 1245 6223512.930091 1249 1245 -33624506.06548 1250 1245 -13793087.22804 1254 1245 -49447220.48372 1255 1245 -33611111.10559 1256 1245 -12251149.01771 1257 1245 -109230745.6082 1258 1245 1.281499862671e-06 1259 1245 3425959.474268 1260 1245 -51177807.60464 1261 1245 33611111.10559 1262 1245 13790517.64469 1344 1245 -18391419.7975 1345 1245 9166666.669678 1346 1245 10018981.01522 1347 1245 -71369389.94283 1348 1245 -9166787.24867 1349 1245 42147892.99313 1353 1245 -413319.0876746 1354 1245 3.017485141754e-06 1355 1245 57871.30948708 1356 1245 76553135.92261 1357 1245 9166867.634673 1358 1245 781226.2244361 1359 1245 -18699525.19313 1360 1245 -9166747.055676 1361 1245 11379035.3452 1365 1245 -18482764.4945 1366 1245 -9166666.669676 1367 1245 -10076852.32471 1368 1245 -59172122.54065 1369 1245 4.395842552185e-07 1370 1245 -42928937.05631 1371 1245 -19947608.24497 1372 1245 9166666.669675 1373 1245 -11378935.65847 1246 1246 571259805.1183 1247 1246 43075945.84504 1248 1246 -33631203.54543 1249 1246 -111441208.5227 1250 1246 -23958771.83004 1254 1246 -33611111.10559 1255 1246 -39363173.77667 1256 1246 -6097121.576942 1257 1246 9.387731552124e-07 1258 1246 38659326.41933 1259 1246 13888687.59834 1260 1246 33611111.10559 1261 1246 -41093760.8976 1262 1246 -7791566.021395 1344 1246 9166666.669678 1345 1246 -15641216.50536 1346 1246 -8177088.970282 1347 1246 -9166747.055672 1348 1246 -28285264.92641 1349 1246 7788270.809731 1353 1246 4.06801700592e-06 1354 1246 -35246583.02275 1355 1246 -32861133.64276 1356 1246 9166867.634673 1357 1246 51801215.86321 1358 1246 -2152764.494718 1359 1246 -9166787.248675 1360 1246 -50782746.60544 1361 1246 35402941.77273 1365 1246 -9166666.669676 1366 1246 -15732561.20235 1367 1246 -8246533.414749 1368 1246 4.619359970093e-07 1369 1246 -18838452.02672 1370 1246 -694433.1761459 1371 1246 9166666.669675 1372 1246 -17197404.95283 1373 1246 8940966.590895 1247 1247 679585775.4118 1248 1247 -13412427.57498 1249 1247 -26066650.19218 1250 1247 3548849.435559 1254 1247 -12633093.46245 1255 1247 -6402677.132734 1256 1247 -11231394.83281 1257 1247 1203737.252411 1258 1247 13888687.59834 1259 1247 83675565.4165 1260 1247 13408573.19995 1261 1247 -7486010.465602 1262 1247 -15846293.82194 1344 1247 10018981.01522 1345 1247 -8177088.970282 1346 1247 -16145262.77514 1347 1247 42113167.97979 1348 1247 7593861.729456 1349 1247 -55157692.73435 1353 1247 57871.30948763 1354 1247 -32833355.865 1355 1247 -37566373.58606 1356 1247 781320.0962051 1357 1247 -2152689.398522 1358 1247 -91946096.11431 1359 1247 11379085.18856 1360 1247 35569610.71641 1361 1247 -53430905.74636 1365 1247 -10076852.32471 1366 1247 -8246533.414749 1367 1247 -16388848.63381 1368 1247 -42894214.83411 1369 1247 -694433.1761459 1370 1247 -55531090.78464 1371 1247 -11378935.65847 1372 1247 8940966.590895 1373 1247 -20295098.63508 1248 1248 392409175.4658 1249 1248 33611111.10558 1250 1248 -18921677.97532 1257 1248 -49447220.48372 1258 1248 -33611111.10559 1259 1248 -12251149.01771 1260 1248 -173081388.0675 1261 1248 -33624506.06547 1262 1248 14444361.39273 1263 1248 1431297.732108 1264 1248 26902283.84436 1265 1248 9655347.358825 1347 1248 -4579449.609996 1348 1248 11000120.58261 1349 1248 12057631.64322 1356 1248 -14225493.76444 1357 1248 -9166787.248675 1358 1248 -10019112.65448 1359 1248 35932670.30059 1360 1248 9166666.669679 1361 1248 9311563.653784 1368 1248 -18482764.4945 1369 1248 -9166666.669676 1370 1248 -10076852.32471 1371 1248 -72925641.46158 1372 1248 -9166747.055676 1373 1248 -43478968.03166 1374 1248 -7497354.851903 1375 1248 7333413.72174 1376 1248 -9080099.689708 1249 1249 341973871.613 1250 1249 30282406.91647 1257 1249 -33611111.10559 1258 1249 -39363173.77667 1259 1249 -6097121.576942 1260 1249 -33631203.54542 1261 1249 -15065409.46899 1262 1249 19484896.97789 1263 1249 40353425.76654 1264 1249 1431297.732101 1265 1249 -13443330.95707 1347 1249 7333413.72174 1348 1249 -4579449.61 1349 1249 -6430626.286135 1356 1249 -9166747.055675 1357 1249 -46308715.17675 1358 1249 -32902986.62891 1359 1249 9166666.669678 1360 1249 22181563.40434 1361 1249 5180609.664774 1368 1249 -9166666.669676 1369 1249 -15732561.20235 1370 1249 -8246533.414749 1371 1249 -9166787.248676 1372 1249 -29841516.44517 1373 1249 -9524419.110191 1374 1249 11000120.58261 1375 1249 -7497354.8519 1376 1249 10895952.52268 1250 1250 443104893.4996 1257 1250 -12633093.46245 1258 1250 -6402677.132734 1259 1250 -11231394.83281 1260 1250 12205703.10143 1261 1250 15281564.4366 1262 1250 34188531.48329 1263 1250 14483021.03824 1264 1250 -8962220.638046 1265 1250 3816793.952288 1347 1250 8038421.095477 1348 1250 -9645939.429201 1349 1250 -12211865.62666 1356 1250 -10019068.77473 1357 1250 -33069655.68813 1358 1250 -41500155.26984 1359 1250 -7806863.548506 1360 1250 -8513909.758068 1361 1250 -68673244.4318 1368 1250 -10076852.32471 1369 1250 -8246533.414749 1370 1250 -16388848.63381 1371 1250 -43444243.01831 1372 1250 -9329934.937092 1373 1250 -59307696.78438 1374 1250 -13620149.53456 1375 1250 7263968.348454 1376 1250 -19992946.27174 1251 1251 645455824.6572 1252 1251 3.814697265625e-06 1253 1251 -4629696.72672 1254 1251 69286959.53708 1255 1251 -2.101063728333e-06 1256 1251 -1157424.182251 1266 1251 -109230745.6082 1267 1251 1.281499862671e-06 1268 1251 3425959.474268 1269 1251 -51177807.60464 1270 1251 33611111.10559 1271 1251 13790517.64469 1350 1251 -58783069.51046 1351 1251 1.639127731323e-06 1352 1251 42697451.81849 1353 1251 -19844426.42677 1354 1251 -9166666.669679 1355 1251 11321064.34898 1362 1251 57430602.85087 1363 1251 3.8743019104e-06 1364 1251 231485.2378496 1365 1251 -6249019.844286 1366 1251 -7.443130016327e-06 1367 1251 57871.30949415 1377 1251 -59172122.54065 1378 1251 4.395842552185e-07 1379 1251 -42928937.05631 1380 1251 -19947608.24497 1381 1251 9166666.669675 1382 1251 -11378935.65847 1252 1252 564783451.0405 1253 1252 55554750.36598 1254 1252 -3.129243850708e-06 1255 1252 -58435019.09619 1256 1252 -28666264.07173 1266 1252 9.387731552124e-07 1267 1252 38659326.41933 1268 1252 13888687.59834 1269 1252 33611111.10559 1270 1252 -41093760.8976 1271 1252 -7791566.021395 1350 1252 6.034970283508e-07 1351 1252 -18449398.9965 1352 1252 -694433.1761458 1353 1252 -9166666.669679 1354 1252 -17094223.13462 1355 1252 8871522.146427 1362 1252 4.231929779053e-06 1363 1252 35428976.52455 1364 1252 -2777732.703215 1365 1252 -7.599592208862e-06 1366 1252 -41082283.77936 1367 1252 35638866.34597 1377 1252 4.619359970093e-07 1378 1252 -18838452.02672 1379 1252 -694433.1761459 1380 1252 9166666.669675 1381 1252 -17197404.95283 1382 1252 8940966.590895 1253 1253 756192654.5709 1254 1253 -1157424.182251 1255 1253 -26888486.29425 1256 1253 51063391.07047 1266 1253 1203737.252411 1267 1253 13888687.59834 1268 1253 83675565.4165 1269 1253 13408573.19995 1270 1253 -7486010.465602 1271 1253 -15846293.82194 1350 1253 42662729.59629 1351 1253 -694433.1761458 1352 1253 -54493616.03735 1353 1253 11321064.34898 1354 1253 8871522.146428 1355 1253 -20019947.11985 1362 1253 231485.2378493 1363 1253 -2777732.703215 1364 1253 -110039912.4136 1365 1253 57871.30949473 1366 1253 35611088.56821 1367 1253 -53128242.27036 1377 1253 -42894214.83411 1378 1253 -694433.1761459 1379 1253 -55531090.78464 1380 1253 -11378935.65847 1381 1253 8940966.590895 1382 1253 -20295098.63508 1254 1254 645455824.6572 1255 1254 3.814697265625e-06 1256 1254 -4629696.72672 1257 1254 69286959.53708 1258 1254 -2.101063728333e-06 1259 1254 -1157424.182251 1266 1254 -49447220.48372 1267 1254 -33611111.10559 1268 1254 -12251149.01771 1269 1254 -109230745.6082 1270 1254 1.281499862671e-06 1271 1254 3425959.474268 1272 1254 -51177807.60464 1273 1254 33611111.10559 1274 1254 13790517.64469 1350 1254 -18391419.7975 1351 1254 9166666.669678 1352 1254 10018981.01522 1353 1254 -58783069.51046 1354 1254 1.639127731323e-06 1355 1254 42697451.81849 1356 1254 -19844426.42677 1357 1254 -9166666.669679 1358 1254 11321064.34898 1362 1254 -413319.0876746 1363 1254 3.017485141754e-06 1364 1254 57871.30948708 1365 1254 57430602.85087 1366 1254 3.8743019104e-06 1367 1254 231485.2378496 1368 1254 -6249019.844286 1369 1254 -7.443130016327e-06 1370 1254 57871.30949415 1377 1254 -18482764.4945 1378 1254 -9166666.669676 1379 1254 -10076852.32471 1380 1254 -59172122.54065 1381 1254 4.395842552185e-07 1382 1254 -42928937.05631 1383 1254 -19947608.24497 1384 1254 9166666.669675 1385 1254 -11378935.65847 1255 1255 564783451.0405 1256 1255 55554750.36598 1257 1255 -3.129243850708e-06 1258 1255 -58435019.09619 1259 1255 -28666264.07173 1266 1255 -33611111.10559 1267 1255 -39363173.77667 1268 1255 -6097121.576942 1269 1255 9.387731552124e-07 1270 1255 38659326.41933 1271 1255 13888687.59834 1272 1255 33611111.10559 1273 1255 -41093760.8976 1274 1255 -7791566.021395 1350 1255 9166666.669678 1351 1255 -15641216.50536 1352 1255 -8177088.970282 1353 1255 6.034970283508e-07 1354 1255 -18449398.9965 1355 1255 -694433.1761458 1356 1255 -9166666.669679 1357 1255 -17094223.13462 1358 1255 8871522.146427 1362 1255 4.06801700592e-06 1363 1255 -35246583.02275 1364 1255 -32861133.64276 1365 1255 4.231929779053e-06 1366 1255 35428976.52455 1367 1255 -2777732.703215 1368 1255 -7.599592208862e-06 1369 1255 -41082283.77936 1370 1255 35638866.34597 1377 1255 -9166666.669676 1378 1255 -15732561.20235 1379 1255 -8246533.414749 1380 1255 4.619359970093e-07 1381 1255 -18838452.02672 1382 1255 -694433.1761459 1383 1255 9166666.669675 1384 1255 -17197404.95283 1385 1255 8940966.590895 1256 1256 756192654.5709 1257 1256 -1157424.182251 1258 1256 -26888486.29425 1259 1256 51063391.07047 1266 1256 -12633093.46245 1267 1256 -6402677.132734 1268 1256 -11231394.83281 1269 1256 1203737.252411 1270 1256 13888687.59834 1271 1256 83675565.4165 1272 1256 13408573.19995 1273 1256 -7486010.465602 1274 1256 -15846293.82194 1350 1256 10018981.01522 1351 1256 -8177088.970282 1352 1256 -16145262.77514 1353 1256 42662729.59629 1354 1256 -694433.1761458 1355 1256 -54493616.03735 1356 1256 11321064.34898 1357 1256 8871522.146428 1358 1256 -20019947.11985 1362 1256 57871.30948763 1363 1256 -32833355.865 1364 1256 -37566373.58606 1365 1256 231485.2378493 1366 1256 -2777732.703215 1367 1256 -110039912.4136 1368 1256 57871.30949473 1369 1256 35611088.56821 1370 1256 -53128242.27036 1377 1256 -10076852.32471 1378 1256 -8246533.414749 1379 1256 -16388848.63381 1380 1256 -42894214.83411 1381 1256 -694433.1761459 1382 1256 -55531090.78464 1383 1256 -11378935.65847 1384 1256 8940966.590895 1385 1256 -20295098.63508 1257 1257 645455824.6572 1258 1257 3.814697265625e-06 1259 1257 -4629696.72672 1260 1257 69286959.53708 1261 1257 -2.101063728333e-06 1262 1257 -1157424.182251 1269 1257 -49447220.48372 1270 1257 -33611111.10559 1271 1257 -12251149.01771 1272 1257 -109230745.6082 1273 1257 1.281499862671e-06 1274 1257 3425959.474268 1275 1257 -51177807.60464 1276 1257 33611111.10559 1277 1257 13790517.64469 1353 1257 -18391419.7975 1354 1257 9166666.669678 1355 1257 10018981.01522 1356 1257 -58783069.51046 1357 1257 1.639127731323e-06 1358 1257 42697451.81849 1359 1257 -19844426.42677 1360 1257 -9166666.669679 1361 1257 11321064.34898 1365 1257 -413319.0876746 1366 1257 3.017485141754e-06 1367 1257 57871.30948708 1368 1257 57430602.85087 1369 1257 3.8743019104e-06 1370 1257 231485.2378496 1371 1257 -6249019.844286 1372 1257 -7.443130016327e-06 1373 1257 57871.30949415 1380 1257 -18482764.4945 1381 1257 -9166666.669676 1382 1257 -10076852.32471 1383 1257 -59172122.54065 1384 1257 4.395842552185e-07 1385 1257 -42928937.05631 1386 1257 -19947608.24497 1387 1257 9166666.669675 1388 1257 -11378935.65847 1258 1258 564783451.0405 1259 1258 55554750.36598 1260 1258 -3.129243850708e-06 1261 1258 -58435019.09619 1262 1258 -28666264.07173 1269 1258 -33611111.10559 1270 1258 -39363173.77667 1271 1258 -6097121.576942 1272 1258 9.387731552124e-07 1273 1258 38659326.41933 1274 1258 13888687.59834 1275 1258 33611111.10559 1276 1258 -41093760.8976 1277 1258 -7791566.021395 1353 1258 9166666.669678 1354 1258 -15641216.50536 1355 1258 -8177088.970282 1356 1258 6.034970283508e-07 1357 1258 -18449398.9965 1358 1258 -694433.1761458 1359 1258 -9166666.669679 1360 1258 -17094223.13462 1361 1258 8871522.146427 1365 1258 4.06801700592e-06 1366 1258 -35246583.02275 1367 1258 -32861133.64276 1368 1258 4.231929779053e-06 1369 1258 35428976.52455 1370 1258 -2777732.703215 1371 1258 -7.599592208862e-06 1372 1258 -41082283.77936 1373 1258 35638866.34597 1380 1258 -9166666.669676 1381 1258 -15732561.20235 1382 1258 -8246533.414749 1383 1258 4.619359970093e-07 1384 1258 -18838452.02672 1385 1258 -694433.1761459 1386 1258 9166666.669675 1387 1258 -17197404.95283 1388 1258 8940966.590895 1259 1259 756192654.5709 1260 1259 -1157424.182251 1261 1259 -26888486.29425 1262 1259 51063391.07047 1269 1259 -12633093.46245 1270 1259 -6402677.132734 1271 1259 -11231394.83281 1272 1259 1203737.252411 1273 1259 13888687.59834 1274 1259 83675565.4165 1275 1259 13408573.19995 1276 1259 -7486010.465602 1277 1259 -15846293.82194 1353 1259 10018981.01522 1354 1259 -8177088.970282 1355 1259 -16145262.77514 1356 1259 42662729.59629 1357 1259 -694433.1761458 1358 1259 -54493616.03735 1359 1259 11321064.34898 1360 1259 8871522.146428 1361 1259 -20019947.11985 1365 1259 57871.30948763 1366 1259 -32833355.865 1367 1259 -37566373.58606 1368 1259 231485.2378493 1369 1259 -2777732.703215 1370 1259 -110039912.4136 1371 1259 57871.30949473 1372 1259 35611088.56821 1373 1259 -53128242.27036 1380 1259 -10076852.32471 1381 1259 -8246533.414749 1382 1259 -16388848.63381 1383 1259 -42894214.83411 1384 1259 -694433.1761459 1385 1259 -55531090.78464 1386 1259 -11378935.65847 1387 1259 8940966.590895 1388 1259 -20295098.63508 1260 1260 662031295.7794 1261 1260 33644598.50531 1262 1260 -15598790.43683 1263 1260 6223512.930091 1264 1260 -33624506.06548 1265 1260 -13793087.22804 1272 1260 -49447220.48372 1273 1260 -33611111.10559 1274 1260 -12251149.01771 1275 1260 -109230745.6082 1276 1260 1.281499862671e-06 1277 1260 3425959.474268 1278 1260 -51177807.60464 1279 1260 33611111.10559 1280 1260 13790517.64469 1356 1260 -18391419.7975 1357 1260 9166666.669678 1358 1260 10018981.01522 1359 1260 -71369389.94283 1360 1260 -9166787.24867 1361 1260 42147892.99313 1368 1260 -413319.0876746 1369 1260 3.017485141754e-06 1370 1260 57871.30948708 1371 1260 76553135.92261 1372 1260 9166867.634673 1373 1260 781226.2244361 1374 1260 -18699525.19313 1375 1260 -9166747.055676 1376 1260 11379035.3452 1383 1260 -18482764.4945 1384 1260 -9166666.669676 1385 1260 -10076852.32471 1386 1260 -59172122.54065 1387 1260 4.395842552185e-07 1388 1260 -42928937.05631 1389 1260 -19947608.24497 1390 1260 9166666.669675 1391 1260 -11378935.65847 1261 1261 571259805.1183 1262 1261 43075945.84504 1263 1261 -33631203.54543 1264 1261 -111441208.5227 1265 1261 -23958771.83004 1272 1261 -33611111.10559 1273 1261 -39363173.77667 1274 1261 -6097121.576942 1275 1261 9.387731552124e-07 1276 1261 38659326.41933 1277 1261 13888687.59834 1278 1261 33611111.10559 1279 1261 -41093760.8976 1280 1261 -7791566.021395 1356 1261 9166666.669678 1357 1261 -15641216.50536 1358 1261 -8177088.970282 1359 1261 -9166747.055672 1360 1261 -28285264.92641 1361 1261 7788270.809731 1368 1261 4.06801700592e-06 1369 1261 -35246583.02275 1370 1261 -32861133.64276 1371 1261 9166867.634673 1372 1261 51801215.86321 1373 1261 -2152764.494718 1374 1261 -9166787.248675 1375 1261 -50782746.60544 1376 1261 35402941.77273 1383 1261 -9166666.669676 1384 1261 -15732561.20235 1385 1261 -8246533.414749 1386 1261 4.619359970093e-07 1387 1261 -18838452.02672 1388 1261 -694433.1761459 1389 1261 9166666.669675 1390 1261 -17197404.95283 1391 1261 8940966.590895 1262 1262 679585775.4118 1263 1262 -13412427.57498 1264 1262 -26066650.19218 1265 1262 3548849.435559 1272 1262 -12633093.46245 1273 1262 -6402677.132734 1274 1262 -11231394.83281 1275 1262 1203737.252411 1276 1262 13888687.59834 1277 1262 83675565.4165 1278 1262 13408573.19995 1279 1262 -7486010.465602 1280 1262 -15846293.82194 1356 1262 10018981.01522 1357 1262 -8177088.970282 1358 1262 -16145262.77514 1359 1262 42113167.97979 1360 1262 7593861.729456 1361 1262 -55157692.73435 1368 1262 57871.30948763 1369 1262 -32833355.865 1370 1262 -37566373.58606 1371 1262 781320.0962051 1372 1262 -2152689.398522 1373 1262 -91946096.11431 1374 1262 11379085.18856 1375 1262 35569610.71641 1376 1262 -53430905.74636 1383 1262 -10076852.32471 1384 1262 -8246533.414749 1385 1262 -16388848.63381 1386 1262 -42894214.83411 1387 1262 -694433.1761459 1388 1262 -55531090.78464 1389 1262 -11378935.65847 1390 1262 8940966.590895 1391 1262 -20295098.63508 1263 1263 392409175.4658 1264 1263 33611111.10558 1265 1263 -18921677.97532 1275 1263 -49447220.48372 1276 1263 -33611111.10559 1277 1263 -12251149.01771 1278 1263 -173081388.0675 1279 1263 -33624506.06547 1280 1263 14444361.39273 1281 1263 1431297.732108 1282 1263 26902283.84436 1283 1263 9655347.358825 1359 1263 -4579449.609996 1360 1263 11000120.58261 1361 1263 12057631.64322 1371 1263 -14225493.76444 1372 1263 -9166787.248675 1373 1263 -10019112.65448 1374 1263 35932670.30059 1375 1263 9166666.669679 1376 1263 9311563.653784 1386 1263 -18482764.4945 1387 1263 -9166666.669676 1388 1263 -10076852.32471 1389 1263 -72925641.46158 1390 1263 -9166747.055676 1391 1263 -43478968.03166 1392 1263 -7497354.851903 1393 1263 7333413.72174 1394 1263 -9080099.689708 1264 1264 341973871.613 1265 1264 30282406.91647 1275 1264 -33611111.10559 1276 1264 -39363173.77667 1277 1264 -6097121.576942 1278 1264 -33631203.54542 1279 1264 -15065409.46899 1280 1264 19484896.97789 1281 1264 40353425.76654 1282 1264 1431297.732101 1283 1264 -13443330.95707 1359 1264 7333413.72174 1360 1264 -4579449.61 1361 1264 -6430626.286135 1371 1264 -9166747.055675 1372 1264 -46308715.17675 1373 1264 -32902986.62891 1374 1264 9166666.669678 1375 1264 22181563.40434 1376 1264 5180609.664774 1386 1264 -9166666.669676 1387 1264 -15732561.20235 1388 1264 -8246533.414749 1389 1264 -9166787.248676 1390 1264 -29841516.44517 1391 1264 -9524419.110191 1392 1264 11000120.58261 1393 1264 -7497354.8519 1394 1264 10895952.52268 1265 1265 443104893.4996 1275 1265 -12633093.46245 1276 1265 -6402677.132734 1277 1265 -11231394.83281 1278 1265 12205703.10143 1279 1265 15281564.4366 1280 1265 34188531.48329 1281 1265 14483021.03824 1282 1265 -8962220.638046 1283 1265 3816793.952288 1359 1265 8038421.095477 1360 1265 -9645939.429201 1361 1265 -12211865.62666 1371 1265 -10019068.77473 1372 1265 -33069655.68813 1373 1265 -41500155.26984 1374 1265 -7806863.548506 1375 1265 -8513909.758068 1376 1265 -68673244.4318 1386 1265 -10076852.32471 1387 1265 -8246533.414749 1388 1265 -16388848.63381 1389 1265 -43444243.01831 1390 1265 -9329934.937092 1391 1265 -59307696.78438 1392 1265 -13620149.53456 1393 1265 7263968.348454 1394 1265 -19992946.27174 1266 1266 645455824.6572 1267 1266 3.814697265625e-06 1268 1266 -4629696.72672 1269 1266 69286959.53708 1270 1266 -2.101063728333e-06 1271 1266 -1157424.182251 1284 1266 -109230745.6082 1285 1266 1.281499862671e-06 1286 1266 3425959.474268 1287 1266 -51177807.60464 1288 1266 33611111.10559 1289 1266 13790517.64469 1362 1266 -58783069.51046 1363 1266 1.639127731323e-06 1364 1266 42697451.81849 1365 1266 -19844426.42677 1366 1266 -9166666.669679 1367 1266 11321064.34898 1377 1266 57430602.85087 1378 1266 3.8743019104e-06 1379 1266 231485.2378496 1380 1266 -6249019.844286 1381 1266 -7.443130016327e-06 1382 1266 57871.30949415 1395 1266 -59172122.54065 1396 1266 4.395842552185e-07 1397 1266 -42928937.05631 1398 1266 -19947608.24497 1399 1266 9166666.669675 1400 1266 -11378935.65847 1267 1267 564783451.0405 1268 1267 55554750.36598 1269 1267 -3.129243850708e-06 1270 1267 -58435019.09619 1271 1267 -28666264.07173 1284 1267 9.387731552124e-07 1285 1267 38659326.41933 1286 1267 13888687.59834 1287 1267 33611111.10559 1288 1267 -41093760.8976 1289 1267 -7791566.021395 1362 1267 6.034970283508e-07 1363 1267 -18449398.9965 1364 1267 -694433.1761458 1365 1267 -9166666.669679 1366 1267 -17094223.13462 1367 1267 8871522.146427 1377 1267 4.231929779053e-06 1378 1267 35428976.52455 1379 1267 -2777732.703215 1380 1267 -7.599592208862e-06 1381 1267 -41082283.77936 1382 1267 35638866.34597 1395 1267 4.619359970093e-07 1396 1267 -18838452.02672 1397 1267 -694433.1761459 1398 1267 9166666.669675 1399 1267 -17197404.95283 1400 1267 8940966.590895 1268 1268 756192654.5709 1269 1268 -1157424.182251 1270 1268 -26888486.29425 1271 1268 51063391.07047 1284 1268 1203737.252411 1285 1268 13888687.59834 1286 1268 83675565.4165 1287 1268 13408573.19995 1288 1268 -7486010.465602 1289 1268 -15846293.82194 1362 1268 42662729.59629 1363 1268 -694433.1761458 1364 1268 -54493616.03735 1365 1268 11321064.34898 1366 1268 8871522.146428 1367 1268 -20019947.11985 1377 1268 231485.2378493 1378 1268 -2777732.703215 1379 1268 -110039912.4136 1380 1268 57871.30949473 1381 1268 35611088.56821 1382 1268 -53128242.27036 1395 1268 -42894214.83411 1396 1268 -694433.1761459 1397 1268 -55531090.78464 1398 1268 -11378935.65847 1399 1268 8940966.590895 1400 1268 -20295098.63508 1269 1269 645455824.6572 1270 1269 3.814697265625e-06 1271 1269 -4629696.72672 1272 1269 69286959.53708 1273 1269 -2.101063728333e-06 1274 1269 -1157424.182251 1284 1269 -49447220.48372 1285 1269 -33611111.10559 1286 1269 -12251149.01771 1287 1269 -109230745.6082 1288 1269 1.281499862671e-06 1289 1269 3425959.474268 1290 1269 -51177807.60464 1291 1269 33611111.10559 1292 1269 13790517.64469 1362 1269 -18391419.7975 1363 1269 9166666.669678 1364 1269 10018981.01522 1365 1269 -58783069.51046 1366 1269 1.639127731323e-06 1367 1269 42697451.81849 1368 1269 -19844426.42677 1369 1269 -9166666.669679 1370 1269 11321064.34898 1377 1269 -413319.0876746 1378 1269 3.017485141754e-06 1379 1269 57871.30948708 1380 1269 57430602.85087 1381 1269 3.8743019104e-06 1382 1269 231485.2378496 1383 1269 -6249019.844286 1384 1269 -7.443130016327e-06 1385 1269 57871.30949415 1395 1269 -18482764.4945 1396 1269 -9166666.669676 1397 1269 -10076852.32471 1398 1269 -59172122.54065 1399 1269 4.395842552185e-07 1400 1269 -42928937.05631 1401 1269 -19947608.24497 1402 1269 9166666.669675 1403 1269 -11378935.65847 1270 1270 564783451.0405 1271 1270 55554750.36598 1272 1270 -3.129243850708e-06 1273 1270 -58435019.09619 1274 1270 -28666264.07173 1284 1270 -33611111.10559 1285 1270 -39363173.77667 1286 1270 -6097121.576942 1287 1270 9.387731552124e-07 1288 1270 38659326.41933 1289 1270 13888687.59834 1290 1270 33611111.10559 1291 1270 -41093760.8976 1292 1270 -7791566.021395 1362 1270 9166666.669678 1363 1270 -15641216.50536 1364 1270 -8177088.970282 1365 1270 6.034970283508e-07 1366 1270 -18449398.9965 1367 1270 -694433.1761458 1368 1270 -9166666.669679 1369 1270 -17094223.13462 1370 1270 8871522.146427 1377 1270 4.06801700592e-06 1378 1270 -35246583.02275 1379 1270 -32861133.64276 1380 1270 4.231929779053e-06 1381 1270 35428976.52455 1382 1270 -2777732.703215 1383 1270 -7.599592208862e-06 1384 1270 -41082283.77936 1385 1270 35638866.34597 1395 1270 -9166666.669676 1396 1270 -15732561.20235 1397 1270 -8246533.414749 1398 1270 4.619359970093e-07 1399 1270 -18838452.02672 1400 1270 -694433.1761459 1401 1270 9166666.669675 1402 1270 -17197404.95283 1403 1270 8940966.590895 1271 1271 756192654.5709 1272 1271 -1157424.182251 1273 1271 -26888486.29425 1274 1271 51063391.07047 1284 1271 -12633093.46245 1285 1271 -6402677.132734 1286 1271 -11231394.83281 1287 1271 1203737.252411 1288 1271 13888687.59834 1289 1271 83675565.4165 1290 1271 13408573.19995 1291 1271 -7486010.465602 1292 1271 -15846293.82194 1362 1271 10018981.01522 1363 1271 -8177088.970282 1364 1271 -16145262.77514 1365 1271 42662729.59629 1366 1271 -694433.1761458 1367 1271 -54493616.03735 1368 1271 11321064.34898 1369 1271 8871522.146428 1370 1271 -20019947.11985 1377 1271 57871.30948763 1378 1271 -32833355.865 1379 1271 -37566373.58606 1380 1271 231485.2378493 1381 1271 -2777732.703215 1382 1271 -110039912.4136 1383 1271 57871.30949473 1384 1271 35611088.56821 1385 1271 -53128242.27036 1395 1271 -10076852.32471 1396 1271 -8246533.414749 1397 1271 -16388848.63381 1398 1271 -42894214.83411 1399 1271 -694433.1761459 1400 1271 -55531090.78464 1401 1271 -11378935.65847 1402 1271 8940966.590895 1403 1271 -20295098.63508 1272 1272 645455824.6572 1273 1272 3.814697265625e-06 1274 1272 -4629696.72672 1275 1272 69286959.53708 1276 1272 -2.101063728333e-06 1277 1272 -1157424.182251 1287 1272 -49447220.48372 1288 1272 -33611111.10559 1289 1272 -12251149.01771 1290 1272 -109230745.6082 1291 1272 1.281499862671e-06 1292 1272 3425959.474268 1293 1272 -51177807.60464 1294 1272 33611111.10559 1295 1272 13790517.64469 1365 1272 -18391419.7975 1366 1272 9166666.669678 1367 1272 10018981.01522 1368 1272 -58783069.51046 1369 1272 1.639127731323e-06 1370 1272 42697451.81849 1371 1272 -19844426.42677 1372 1272 -9166666.669679 1373 1272 11321064.34898 1380 1272 -413319.0876746 1381 1272 3.017485141754e-06 1382 1272 57871.30948708 1383 1272 57430602.85087 1384 1272 3.8743019104e-06 1385 1272 231485.2378496 1386 1272 -6249019.844286 1387 1272 -7.443130016327e-06 1388 1272 57871.30949415 1398 1272 -18482764.4945 1399 1272 -9166666.669676 1400 1272 -10076852.32471 1401 1272 -59172122.54065 1402 1272 4.395842552185e-07 1403 1272 -42928937.05631 1404 1272 -19947608.24497 1405 1272 9166666.669675 1406 1272 -11378935.65847 1273 1273 564783451.0405 1274 1273 55554750.36598 1275 1273 -3.129243850708e-06 1276 1273 -58435019.09619 1277 1273 -28666264.07173 1287 1273 -33611111.10559 1288 1273 -39363173.77667 1289 1273 -6097121.576942 1290 1273 9.387731552124e-07 1291 1273 38659326.41933 1292 1273 13888687.59834 1293 1273 33611111.10559 1294 1273 -41093760.8976 1295 1273 -7791566.021395 1365 1273 9166666.669678 1366 1273 -15641216.50536 1367 1273 -8177088.970282 1368 1273 6.034970283508e-07 1369 1273 -18449398.9965 1370 1273 -694433.1761458 1371 1273 -9166666.669679 1372 1273 -17094223.13462 1373 1273 8871522.146427 1380 1273 4.06801700592e-06 1381 1273 -35246583.02275 1382 1273 -32861133.64276 1383 1273 4.231929779053e-06 1384 1273 35428976.52455 1385 1273 -2777732.703215 1386 1273 -7.599592208862e-06 1387 1273 -41082283.77936 1388 1273 35638866.34597 1398 1273 -9166666.669676 1399 1273 -15732561.20235 1400 1273 -8246533.414749 1401 1273 4.619359970093e-07 1402 1273 -18838452.02672 1403 1273 -694433.1761459 1404 1273 9166666.669675 1405 1273 -17197404.95283 1406 1273 8940966.590895 1274 1274 756192654.5709 1275 1274 -1157424.182251 1276 1274 -26888486.29425 1277 1274 51063391.07047 1287 1274 -12633093.46245 1288 1274 -6402677.132734 1289 1274 -11231394.83281 1290 1274 1203737.252411 1291 1274 13888687.59834 1292 1274 83675565.4165 1293 1274 13408573.19995 1294 1274 -7486010.465602 1295 1274 -15846293.82194 1365 1274 10018981.01522 1366 1274 -8177088.970282 1367 1274 -16145262.77514 1368 1274 42662729.59629 1369 1274 -694433.1761458 1370 1274 -54493616.03735 1371 1274 11321064.34898 1372 1274 8871522.146428 1373 1274 -20019947.11985 1380 1274 57871.30948763 1381 1274 -32833355.865 1382 1274 -37566373.58606 1383 1274 231485.2378493 1384 1274 -2777732.703215 1385 1274 -110039912.4136 1386 1274 57871.30949473 1387 1274 35611088.56821 1388 1274 -53128242.27036 1398 1274 -10076852.32471 1399 1274 -8246533.414749 1400 1274 -16388848.63381 1401 1274 -42894214.83411 1402 1274 -694433.1761459 1403 1274 -55531090.78464 1404 1274 -11378935.65847 1405 1274 8940966.590895 1406 1274 -20295098.63508 1275 1275 645455824.6572 1276 1275 3.814697265625e-06 1277 1275 -4629696.72672 1278 1275 69286959.53708 1279 1275 -2.101063728333e-06 1280 1275 -1157424.182251 1290 1275 -49447220.48372 1291 1275 -33611111.10559 1292 1275 -12251149.01771 1293 1275 -109230745.6082 1294 1275 1.281499862671e-06 1295 1275 3425959.474268 1296 1275 -51177807.60464 1297 1275 33611111.10559 1298 1275 13790517.64469 1368 1275 -18391419.7975 1369 1275 9166666.669678 1370 1275 10018981.01522 1371 1275 -58783069.51046 1372 1275 1.639127731323e-06 1373 1275 42697451.81849 1374 1275 -19844426.42677 1375 1275 -9166666.669679 1376 1275 11321064.34898 1383 1275 -413319.0876746 1384 1275 3.017485141754e-06 1385 1275 57871.30948708 1386 1275 57430602.85087 1387 1275 3.8743019104e-06 1388 1275 231485.2378496 1389 1275 -6249019.844286 1390 1275 -7.443130016327e-06 1391 1275 57871.30949415 1401 1275 -18482764.4945 1402 1275 -9166666.669676 1403 1275 -10076852.32471 1404 1275 -59172122.54065 1405 1275 4.395842552185e-07 1406 1275 -42928937.05631 1407 1275 -19947608.24497 1408 1275 9166666.669675 1409 1275 -11378935.65847 1276 1276 564783451.0405 1277 1276 55554750.36598 1278 1276 -3.129243850708e-06 1279 1276 -58435019.09619 1280 1276 -28666264.07173 1290 1276 -33611111.10559 1291 1276 -39363173.77667 1292 1276 -6097121.576942 1293 1276 9.387731552124e-07 1294 1276 38659326.41933 1295 1276 13888687.59834 1296 1276 33611111.10559 1297 1276 -41093760.8976 1298 1276 -7791566.021395 1368 1276 9166666.669678 1369 1276 -15641216.50536 1370 1276 -8177088.970282 1371 1276 6.034970283508e-07 1372 1276 -18449398.9965 1373 1276 -694433.1761458 1374 1276 -9166666.669679 1375 1276 -17094223.13462 1376 1276 8871522.146427 1383 1276 4.06801700592e-06 1384 1276 -35246583.02275 1385 1276 -32861133.64276 1386 1276 4.231929779053e-06 1387 1276 35428976.52455 1388 1276 -2777732.703215 1389 1276 -7.599592208862e-06 1390 1276 -41082283.77936 1391 1276 35638866.34597 1401 1276 -9166666.669676 1402 1276 -15732561.20235 1403 1276 -8246533.414749 1404 1276 4.619359970093e-07 1405 1276 -18838452.02672 1406 1276 -694433.1761459 1407 1276 9166666.669675 1408 1276 -17197404.95283 1409 1276 8940966.590895 1277 1277 756192654.5709 1278 1277 -1157424.182251 1279 1277 -26888486.29425 1280 1277 51063391.07047 1290 1277 -12633093.46245 1291 1277 -6402677.132734 1292 1277 -11231394.83281 1293 1277 1203737.252411 1294 1277 13888687.59834 1295 1277 83675565.4165 1296 1277 13408573.19995 1297 1277 -7486010.465602 1298 1277 -15846293.82194 1368 1277 10018981.01522 1369 1277 -8177088.970282 1370 1277 -16145262.77514 1371 1277 42662729.59629 1372 1277 -694433.1761458 1373 1277 -54493616.03735 1374 1277 11321064.34898 1375 1277 8871522.146428 1376 1277 -20019947.11985 1383 1277 57871.30948763 1384 1277 -32833355.865 1385 1277 -37566373.58606 1386 1277 231485.2378493 1387 1277 -2777732.703215 1388 1277 -110039912.4136 1389 1277 57871.30949473 1390 1277 35611088.56821 1391 1277 -53128242.27036 1401 1277 -10076852.32471 1402 1277 -8246533.414749 1403 1277 -16388848.63381 1404 1277 -42894214.83411 1405 1277 -694433.1761459 1406 1277 -55531090.78464 1407 1277 -11378935.65847 1408 1277 8940966.590895 1409 1277 -20295098.63508 1278 1278 662031295.7794 1279 1278 33644598.50531 1280 1278 -15598790.43683 1281 1278 6223512.930091 1282 1278 -33624506.06548 1283 1278 -13793087.22804 1293 1278 -49447220.48372 1294 1278 -33611111.10559 1295 1278 -12251149.01771 1296 1278 -109230745.6082 1297 1278 1.281499862671e-06 1298 1278 3425959.474268 1299 1278 -51177807.60464 1300 1278 33611111.10559 1301 1278 13790517.64469 1371 1278 -18391419.7975 1372 1278 9166666.669678 1373 1278 10018981.01522 1374 1278 -71369389.94283 1375 1278 -9166787.24867 1376 1278 42147892.99313 1386 1278 -413319.0876746 1387 1278 3.017485141754e-06 1388 1278 57871.30948708 1389 1278 76553135.92261 1390 1278 9166867.634673 1391 1278 781226.2244361 1392 1278 -18699525.19313 1393 1278 -9166747.055676 1394 1278 11379035.3452 1404 1278 -18482764.4945 1405 1278 -9166666.669676 1406 1278 -10076852.32471 1407 1278 -59172122.54065 1408 1278 4.395842552185e-07 1409 1278 -42928937.05631 1410 1278 -19947608.24497 1411 1278 9166666.669675 1412 1278 -11378935.65847 1279 1279 571259805.1183 1280 1279 43075945.84504 1281 1279 -33631203.54543 1282 1279 -111441208.5227 1283 1279 -23958771.83004 1293 1279 -33611111.10559 1294 1279 -39363173.77667 1295 1279 -6097121.576942 1296 1279 9.387731552124e-07 1297 1279 38659326.41933 1298 1279 13888687.59834 1299 1279 33611111.10559 1300 1279 -41093760.8976 1301 1279 -7791566.021395 1371 1279 9166666.669678 1372 1279 -15641216.50536 1373 1279 -8177088.970282 1374 1279 -9166747.055672 1375 1279 -28285264.92641 1376 1279 7788270.809731 1386 1279 4.06801700592e-06 1387 1279 -35246583.02275 1388 1279 -32861133.64276 1389 1279 9166867.634673 1390 1279 51801215.86321 1391 1279 -2152764.494718 1392 1279 -9166787.248675 1393 1279 -50782746.60544 1394 1279 35402941.77273 1404 1279 -9166666.669676 1405 1279 -15732561.20235 1406 1279 -8246533.414749 1407 1279 4.619359970093e-07 1408 1279 -18838452.02672 1409 1279 -694433.1761459 1410 1279 9166666.669675 1411 1279 -17197404.95283 1412 1279 8940966.590895 1280 1280 679585775.4118 1281 1280 -13412427.57498 1282 1280 -26066650.19218 1283 1280 3548849.435559 1293 1280 -12633093.46245 1294 1280 -6402677.132734 1295 1280 -11231394.83281 1296 1280 1203737.252411 1297 1280 13888687.59834 1298 1280 83675565.4165 1299 1280 13408573.19995 1300 1280 -7486010.465602 1301 1280 -15846293.82194 1371 1280 10018981.01522 1372 1280 -8177088.970282 1373 1280 -16145262.77514 1374 1280 42113167.97979 1375 1280 7593861.729456 1376 1280 -55157692.73435 1386 1280 57871.30948763 1387 1280 -32833355.865 1388 1280 -37566373.58606 1389 1280 781320.0962051 1390 1280 -2152689.398522 1391 1280 -91946096.11431 1392 1280 11379085.18856 1393 1280 35569610.71641 1394 1280 -53430905.74636 1404 1280 -10076852.32471 1405 1280 -8246533.414749 1406 1280 -16388848.63381 1407 1280 -42894214.83411 1408 1280 -694433.1761459 1409 1280 -55531090.78464 1410 1280 -11378935.65847 1411 1280 8940966.590895 1412 1280 -20295098.63508 1281 1281 585665704.3843 1282 1281 -24667941.68432 1283 1281 -312397.5657639 1296 1281 -49447220.48372 1297 1281 -33611111.10559 1298 1281 -12251149.01771 1299 1281 -51062855.9649 1300 1281 24550979.49731 1301 1281 2614802.455998 1302 1281 -390940047.3902 1303 1281 27005851.07148 1304 1281 -140787.7808927 1374 1281 -4579449.609996 1375 1281 11000120.58261 1376 1281 12057631.64322 1389 1281 -14225493.76444 1390 1281 -9166787.248675 1391 1281 -10019112.65448 1392 1281 163714858.8002 1393 1281 -8207285.558244 1394 1281 4241855.317219 1407 1281 -18482764.4945 1408 1281 -9166666.669676 1409 1281 -10076852.32471 1410 1281 -23632031.88637 1411 1281 8204207.520878 1412 1281 -22609970.36319 1413 1281 -160108670.9846 1414 1281 7336411.37311 1415 1281 -520782.4807296 1282 1282 1212925807.182 1283 1282 33470955.69176 1296 1282 -33611111.10559 1297 1282 -39363173.77667 1298 1282 -6097121.576942 1299 1282 24492498.40383 1300 1282 81068219.8035 1301 1282 10079426.66136 1302 1282 40508776.6072 1303 1282 -1042750551.21 1304 1282 -9476246.029013 1374 1282 7333413.72174 1375 1282 -4579449.61 1376 1282 -6430626.286135 1389 1282 -9166747.055675 1390 1282 -46308715.17675 1391 1282 -32902986.62891 1392 1282 -8207285.558244 1393 1282 423632934.9284 1394 1282 -1353225.115187 1407 1282 -9166666.669676 1408 1282 -15732561.20235 1409 1282 -8246533.414749 1410 1282 8202668.502206 1411 1282 11650696.80984 1412 1282 7172753.555873 1413 1282 11004617.05965 1414 1282 -425976457.6889 1415 1282 20227336.59943 1283 1283 619229339.1181 1296 1283 -12633093.46245 1297 1283 -6402677.132734 1298 1283 -11231394.83281 1299 1283 3766004.901116 1300 1283 8616807.386232 1301 1283 46987078.10111 1302 1283 -211181.6713378 1303 1283 -8860767.282742 1304 1283 -390696289.2204 1374 1283 8038421.095477 1375 1283 -9645939.429201 1376 1283 -12211865.62666 1389 1283 -10019068.77473 1390 1283 -33069655.68813 1391 1283 -41500155.26984 1392 1283 -4768610.272799 1393 1283 -8558910.345734 1394 1283 99719621.84851 1407 1283 -10076852.32471 1408 1283 -8246533.414749 1409 1283 -16388848.63381 1410 1283 -22783562.29616 1411 1283 7202053.220155 1412 1283 -21366221.56937 1413 1283 -781173.7210934 1414 1283 20019063.72315 1415 1283 -161088669.2548 1284 1284 645455824.6572 1285 1284 3.814697265625e-06 1286 1284 -4629696.72672 1287 1284 69286959.53708 1288 1284 -2.101063728333e-06 1289 1284 -1157424.182251 1305 1284 -109230745.6082 1306 1284 1.281499862671e-06 1307 1284 3425959.474268 1308 1284 -51177807.60464 1309 1284 33611111.10559 1310 1284 13790517.64469 1377 1284 -58783069.51046 1378 1284 1.639127731323e-06 1379 1284 42697451.81849 1380 1284 -19844426.42677 1381 1284 -9166666.669679 1382 1284 11321064.34898 1395 1284 57430602.85087 1396 1284 3.8743019104e-06 1397 1284 231485.2378496 1398 1284 -6249019.844286 1399 1284 -7.443130016327e-06 1400 1284 57871.30949415 1416 1284 -59172122.54065 1417 1284 4.395842552185e-07 1418 1284 -42928937.05631 1419 1284 -19947608.24497 1420 1284 9166666.669675 1421 1284 -11378935.65847 1285 1285 564783451.0405 1286 1285 55554750.36598 1287 1285 -3.129243850708e-06 1288 1285 -58435019.09619 1289 1285 -28666264.07173 1305 1285 9.387731552124e-07 1306 1285 38659326.41933 1307 1285 13888687.59834 1308 1285 33611111.10559 1309 1285 -41093760.8976 1310 1285 -7791566.021395 1377 1285 6.034970283508e-07 1378 1285 -18449398.9965 1379 1285 -694433.1761458 1380 1285 -9166666.669679 1381 1285 -17094223.13462 1382 1285 8871522.146427 1395 1285 4.231929779053e-06 1396 1285 35428976.52455 1397 1285 -2777732.703215 1398 1285 -7.599592208862e-06 1399 1285 -41082283.77936 1400 1285 35638866.34597 1416 1285 4.619359970093e-07 1417 1285 -18838452.02672 1418 1285 -694433.1761459 1419 1285 9166666.669675 1420 1285 -17197404.95283 1421 1285 8940966.590895 1286 1286 756192654.5709 1287 1286 -1157424.182251 1288 1286 -26888486.29425 1289 1286 51063391.07047 1305 1286 1203737.252411 1306 1286 13888687.59834 1307 1286 83675565.4165 1308 1286 13408573.19995 1309 1286 -7486010.465602 1310 1286 -15846293.82194 1377 1286 42662729.59629 1378 1286 -694433.1761458 1379 1286 -54493616.03735 1380 1286 11321064.34898 1381 1286 8871522.146428 1382 1286 -20019947.11985 1395 1286 231485.2378493 1396 1286 -2777732.703215 1397 1286 -110039912.4136 1398 1286 57871.30949473 1399 1286 35611088.56821 1400 1286 -53128242.27036 1416 1286 -42894214.83411 1417 1286 -694433.1761459 1418 1286 -55531090.78464 1419 1286 -11378935.65847 1420 1286 8940966.590895 1421 1286 -20295098.63508 1287 1287 645455824.6572 1288 1287 3.814697265625e-06 1289 1287 -4629696.72672 1290 1287 69286959.53708 1291 1287 -2.101063728333e-06 1292 1287 -1157424.182251 1305 1287 -49447220.48372 1306 1287 -33611111.10559 1307 1287 -12251149.01771 1308 1287 -109230745.6082 1309 1287 1.281499862671e-06 1310 1287 3425959.474268 1311 1287 -51177807.60464 1312 1287 33611111.10559 1313 1287 13790517.64469 1377 1287 -18391419.7975 1378 1287 9166666.669678 1379 1287 10018981.01522 1380 1287 -58783069.51046 1381 1287 1.639127731323e-06 1382 1287 42697451.81849 1383 1287 -19844426.42677 1384 1287 -9166666.669679 1385 1287 11321064.34898 1395 1287 -413319.0876746 1396 1287 3.017485141754e-06 1397 1287 57871.30948708 1398 1287 57430602.85087 1399 1287 3.8743019104e-06 1400 1287 231485.2378496 1401 1287 -6249019.844286 1402 1287 -7.443130016327e-06 1403 1287 57871.30949415 1416 1287 -18482764.4945 1417 1287 -9166666.669676 1418 1287 -10076852.32471 1419 1287 -59172122.54065 1420 1287 4.395842552185e-07 1421 1287 -42928937.05631 1422 1287 -19947608.24497 1423 1287 9166666.669675 1424 1287 -11378935.65847 1288 1288 564783451.0405 1289 1288 55554750.36598 1290 1288 -3.129243850708e-06 1291 1288 -58435019.09619 1292 1288 -28666264.07173 1305 1288 -33611111.10559 1306 1288 -39363173.77667 1307 1288 -6097121.576942 1308 1288 9.387731552124e-07 1309 1288 38659326.41933 1310 1288 13888687.59834 1311 1288 33611111.10559 1312 1288 -41093760.8976 1313 1288 -7791566.021395 1377 1288 9166666.669678 1378 1288 -15641216.50536 1379 1288 -8177088.970282 1380 1288 6.034970283508e-07 1381 1288 -18449398.9965 1382 1288 -694433.1761458 1383 1288 -9166666.669679 1384 1288 -17094223.13462 1385 1288 8871522.146427 1395 1288 4.06801700592e-06 1396 1288 -35246583.02275 1397 1288 -32861133.64276 1398 1288 4.231929779053e-06 1399 1288 35428976.52455 1400 1288 -2777732.703215 1401 1288 -7.599592208862e-06 1402 1288 -41082283.77936 1403 1288 35638866.34597 1416 1288 -9166666.669676 1417 1288 -15732561.20235 1418 1288 -8246533.414749 1419 1288 4.619359970093e-07 1420 1288 -18838452.02672 1421 1288 -694433.1761459 1422 1288 9166666.669675 1423 1288 -17197404.95283 1424 1288 8940966.590895 1289 1289 756192654.5709 1290 1289 -1157424.182251 1291 1289 -26888486.29425 1292 1289 51063391.07047 1305 1289 -12633093.46245 1306 1289 -6402677.132734 1307 1289 -11231394.83281 1308 1289 1203737.252411 1309 1289 13888687.59834 1310 1289 83675565.4165 1311 1289 13408573.19995 1312 1289 -7486010.465602 1313 1289 -15846293.82194 1377 1289 10018981.01522 1378 1289 -8177088.970282 1379 1289 -16145262.77514 1380 1289 42662729.59629 1381 1289 -694433.1761458 1382 1289 -54493616.03735 1383 1289 11321064.34898 1384 1289 8871522.146428 1385 1289 -20019947.11985 1395 1289 57871.30948763 1396 1289 -32833355.865 1397 1289 -37566373.58606 1398 1289 231485.2378493 1399 1289 -2777732.703215 1400 1289 -110039912.4136 1401 1289 57871.30949473 1402 1289 35611088.56821 1403 1289 -53128242.27036 1416 1289 -10076852.32471 1417 1289 -8246533.414749 1418 1289 -16388848.63381 1419 1289 -42894214.83411 1420 1289 -694433.1761459 1421 1289 -55531090.78464 1422 1289 -11378935.65847 1423 1289 8940966.590895 1424 1289 -20295098.63508 1290 1290 645455824.6572 1291 1290 3.814697265625e-06 1292 1290 -4629696.72672 1293 1290 69286959.53708 1294 1290 -2.101063728333e-06 1295 1290 -1157424.182251 1308 1290 -49447220.48372 1309 1290 -33611111.10559 1310 1290 -12251149.01771 1311 1290 -109230745.6082 1312 1290 1.281499862671e-06 1313 1290 3425959.474268 1314 1290 -51177807.60464 1315 1290 33611111.10559 1316 1290 13790517.64469 1380 1290 -18391419.7975 1381 1290 9166666.669678 1382 1290 10018981.01522 1383 1290 -58783069.51046 1384 1290 1.639127731323e-06 1385 1290 42697451.81849 1386 1290 -19844426.42677 1387 1290 -9166666.669679 1388 1290 11321064.34898 1398 1290 -413319.0876746 1399 1290 3.017485141754e-06 1400 1290 57871.30948708 1401 1290 57430602.85087 1402 1290 3.8743019104e-06 1403 1290 231485.2378496 1404 1290 -6249019.844286 1405 1290 -7.443130016327e-06 1406 1290 57871.30949415 1419 1290 -18482764.4945 1420 1290 -9166666.669676 1421 1290 -10076852.32471 1422 1290 -59172122.54065 1423 1290 4.395842552185e-07 1424 1290 -42928937.05631 1425 1290 -19947608.24497 1426 1290 9166666.669675 1427 1290 -11378935.65847 1291 1291 564783451.0405 1292 1291 55554750.36598 1293 1291 -3.129243850708e-06 1294 1291 -58435019.09619 1295 1291 -28666264.07173 1308 1291 -33611111.10559 1309 1291 -39363173.77667 1310 1291 -6097121.576942 1311 1291 9.387731552124e-07 1312 1291 38659326.41933 1313 1291 13888687.59834 1314 1291 33611111.10559 1315 1291 -41093760.8976 1316 1291 -7791566.021395 1380 1291 9166666.669678 1381 1291 -15641216.50536 1382 1291 -8177088.970282 1383 1291 6.034970283508e-07 1384 1291 -18449398.9965 1385 1291 -694433.1761458 1386 1291 -9166666.669679 1387 1291 -17094223.13462 1388 1291 8871522.146427 1398 1291 4.06801700592e-06 1399 1291 -35246583.02275 1400 1291 -32861133.64276 1401 1291 4.231929779053e-06 1402 1291 35428976.52455 1403 1291 -2777732.703215 1404 1291 -7.599592208862e-06 1405 1291 -41082283.77936 1406 1291 35638866.34597 1419 1291 -9166666.669676 1420 1291 -15732561.20235 1421 1291 -8246533.414749 1422 1291 4.619359970093e-07 1423 1291 -18838452.02672 1424 1291 -694433.1761459 1425 1291 9166666.669675 1426 1291 -17197404.95283 1427 1291 8940966.590895 1292 1292 756192654.5709 1293 1292 -1157424.182251 1294 1292 -26888486.29425 1295 1292 51063391.07047 1308 1292 -12633093.46245 1309 1292 -6402677.132734 1310 1292 -11231394.83281 1311 1292 1203737.252411 1312 1292 13888687.59834 1313 1292 83675565.4165 1314 1292 13408573.19995 1315 1292 -7486010.465602 1316 1292 -15846293.82194 1380 1292 10018981.01522 1381 1292 -8177088.970282 1382 1292 -16145262.77514 1383 1292 42662729.59629 1384 1292 -694433.1761458 1385 1292 -54493616.03735 1386 1292 11321064.34898 1387 1292 8871522.146428 1388 1292 -20019947.11985 1398 1292 57871.30948763 1399 1292 -32833355.865 1400 1292 -37566373.58606 1401 1292 231485.2378493 1402 1292 -2777732.703215 1403 1292 -110039912.4136 1404 1292 57871.30949473 1405 1292 35611088.56821 1406 1292 -53128242.27036 1419 1292 -10076852.32471 1420 1292 -8246533.414749 1421 1292 -16388848.63381 1422 1292 -42894214.83411 1423 1292 -694433.1761459 1424 1292 -55531090.78464 1425 1292 -11378935.65847 1426 1292 8940966.590895 1427 1292 -20295098.63508 1293 1293 645455824.6572 1294 1293 3.814697265625e-06 1295 1293 -4629696.72672 1296 1293 69286959.53708 1297 1293 -2.101063728333e-06 1298 1293 -1157424.182251 1311 1293 -49447220.48372 1312 1293 -33611111.10559 1313 1293 -12251149.01771 1314 1293 -109230745.6082 1315 1293 1.281499862671e-06 1316 1293 3425959.474268 1317 1293 -51177807.60464 1318 1293 33611111.10559 1319 1293 13790517.64469 1383 1293 -18391419.7975 1384 1293 9166666.669678 1385 1293 10018981.01522 1386 1293 -58783069.51046 1387 1293 1.639127731323e-06 1388 1293 42697451.81849 1389 1293 -19844426.42677 1390 1293 -9166666.669679 1391 1293 11321064.34898 1401 1293 -413319.0876746 1402 1293 3.017485141754e-06 1403 1293 57871.30948708 1404 1293 57430602.85087 1405 1293 3.8743019104e-06 1406 1293 231485.2378496 1407 1293 -6249019.844286 1408 1293 -7.443130016327e-06 1409 1293 57871.30949415 1422 1293 -18482764.4945 1423 1293 -9166666.669676 1424 1293 -10076852.32471 1425 1293 -59172122.54065 1426 1293 4.395842552185e-07 1427 1293 -42928937.05631 1428 1293 -19947608.24497 1429 1293 9166666.669675 1430 1293 -11378935.65847 1294 1294 564783451.0405 1295 1294 55554750.36598 1296 1294 -3.129243850708e-06 1297 1294 -58435019.09619 1298 1294 -28666264.07173 1311 1294 -33611111.10559 1312 1294 -39363173.77667 1313 1294 -6097121.576942 1314 1294 9.387731552124e-07 1315 1294 38659326.41933 1316 1294 13888687.59834 1317 1294 33611111.10559 1318 1294 -41093760.8976 1319 1294 -7791566.021395 1383 1294 9166666.669678 1384 1294 -15641216.50536 1385 1294 -8177088.970282 1386 1294 6.034970283508e-07 1387 1294 -18449398.9965 1388 1294 -694433.1761458 1389 1294 -9166666.669679 1390 1294 -17094223.13462 1391 1294 8871522.146427 1401 1294 4.06801700592e-06 1402 1294 -35246583.02275 1403 1294 -32861133.64276 1404 1294 4.231929779053e-06 1405 1294 35428976.52455 1406 1294 -2777732.703215 1407 1294 -7.599592208862e-06 1408 1294 -41082283.77936 1409 1294 35638866.34597 1422 1294 -9166666.669676 1423 1294 -15732561.20235 1424 1294 -8246533.414749 1425 1294 4.619359970093e-07 1426 1294 -18838452.02672 1427 1294 -694433.1761459 1428 1294 9166666.669675 1429 1294 -17197404.95283 1430 1294 8940966.590895 1295 1295 756192654.5709 1296 1295 -1157424.182251 1297 1295 -26888486.29425 1298 1295 51063391.07047 1311 1295 -12633093.46245 1312 1295 -6402677.132734 1313 1295 -11231394.83281 1314 1295 1203737.252411 1315 1295 13888687.59834 1316 1295 83675565.4165 1317 1295 13408573.19995 1318 1295 -7486010.465602 1319 1295 -15846293.82194 1383 1295 10018981.01522 1384 1295 -8177088.970282 1385 1295 -16145262.77514 1386 1295 42662729.59629 1387 1295 -694433.1761458 1388 1295 -54493616.03735 1389 1295 11321064.34898 1390 1295 8871522.146428 1391 1295 -20019947.11985 1401 1295 57871.30948763 1402 1295 -32833355.865 1403 1295 -37566373.58606 1404 1295 231485.2378493 1405 1295 -2777732.703215 1406 1295 -110039912.4136 1407 1295 57871.30949473 1408 1295 35611088.56821 1409 1295 -53128242.27036 1422 1295 -10076852.32471 1423 1295 -8246533.414749 1424 1295 -16388848.63381 1425 1295 -42894214.83411 1426 1295 -694433.1761459 1427 1295 -55531090.78464 1428 1295 -11378935.65847 1429 1295 8940966.590895 1430 1295 -20295098.63508 1296 1296 645455824.6572 1297 1296 3.814697265625e-06 1298 1296 -4629696.72672 1299 1296 69286959.53708 1300 1296 -2.101063728333e-06 1301 1296 -1157424.182251 1314 1296 -49447220.48372 1315 1296 -33611111.10559 1316 1296 -12251149.01771 1317 1296 -109230745.6082 1318 1296 1.281499862671e-06 1319 1296 3425959.474268 1320 1296 -51177807.60464 1321 1296 33611111.10559 1322 1296 13790517.64469 1386 1296 -18391419.7975 1387 1296 9166666.669678 1388 1296 10018981.01522 1389 1296 -58783069.51046 1390 1296 1.639127731323e-06 1391 1296 42697451.81849 1392 1296 -19844426.42677 1393 1296 -9166666.669679 1394 1296 11321064.34898 1404 1296 -413319.0876746 1405 1296 3.017485141754e-06 1406 1296 57871.30948708 1407 1296 57430602.85087 1408 1296 3.8743019104e-06 1409 1296 231485.2378496 1410 1296 -6249019.844286 1411 1296 -7.443130016327e-06 1412 1296 57871.30949415 1425 1296 -18482764.4945 1426 1296 -9166666.669676 1427 1296 -10076852.32471 1428 1296 -59172122.54065 1429 1296 4.395842552185e-07 1430 1296 -42928937.05631 1431 1296 -19947608.24497 1432 1296 9166666.669675 1433 1296 -11378935.65847 1297 1297 564783451.0405 1298 1297 55554750.36598 1299 1297 -3.129243850708e-06 1300 1297 -58435019.09619 1301 1297 -28666264.07173 1314 1297 -33611111.10559 1315 1297 -39363173.77667 1316 1297 -6097121.576942 1317 1297 9.387731552124e-07 1318 1297 38659326.41933 1319 1297 13888687.59834 1320 1297 33611111.10559 1321 1297 -41093760.8976 1322 1297 -7791566.021395 1386 1297 9166666.669678 1387 1297 -15641216.50536 1388 1297 -8177088.970282 1389 1297 6.034970283508e-07 1390 1297 -18449398.9965 1391 1297 -694433.1761458 1392 1297 -9166666.669679 1393 1297 -17094223.13462 1394 1297 8871522.146427 1404 1297 4.06801700592e-06 1405 1297 -35246583.02275 1406 1297 -32861133.64276 1407 1297 4.231929779053e-06 1408 1297 35428976.52455 1409 1297 -2777732.703215 1410 1297 -7.599592208862e-06 1411 1297 -41082283.77936 1412 1297 35638866.34597 1425 1297 -9166666.669676 1426 1297 -15732561.20235 1427 1297 -8246533.414749 1428 1297 4.619359970093e-07 1429 1297 -18838452.02672 1430 1297 -694433.1761459 1431 1297 9166666.669675 1432 1297 -17197404.95283 1433 1297 8940966.590895 1298 1298 756192654.5709 1299 1298 -1157424.182251 1300 1298 -26888486.29425 1301 1298 51063391.07047 1314 1298 -12633093.46245 1315 1298 -6402677.132734 1316 1298 -11231394.83281 1317 1298 1203737.252411 1318 1298 13888687.59834 1319 1298 83675565.4165 1320 1298 13408573.19995 1321 1298 -7486010.465602 1322 1298 -15846293.82194 1386 1298 10018981.01522 1387 1298 -8177088.970282 1388 1298 -16145262.77514 1389 1298 42662729.59629 1390 1298 -694433.1761458 1391 1298 -54493616.03735 1392 1298 11321064.34898 1393 1298 8871522.146428 1394 1298 -20019947.11985 1404 1298 57871.30948763 1405 1298 -32833355.865 1406 1298 -37566373.58606 1407 1298 231485.2378493 1408 1298 -2777732.703215 1409 1298 -110039912.4136 1410 1298 57871.30949473 1411 1298 35611088.56821 1412 1298 -53128242.27036 1425 1298 -10076852.32471 1426 1298 -8246533.414749 1427 1298 -16388848.63381 1428 1298 -42894214.83411 1429 1298 -694433.1761459 1430 1298 -55531090.78464 1431 1298 -11378935.65847 1432 1298 8940966.590895 1433 1298 -20295098.63508 1299 1299 491276950.9903 1300 1299 14806601.51898 1301 1299 -3818422.289607 1302 1299 -87383385.7527 1303 1299 -70035624.56997 1304 1299 -3641118.236221 1317 1299 -49447220.48372 1318 1299 -33611111.10559 1319 1299 -12251149.01771 1320 1299 -77292831.94718 1321 1299 21747857.93987 1322 1299 1956544.273544 1323 1299 -42699882.91731 1324 1299 8988666.707287 1325 1299 1797596.462234 1389 1299 -18391419.7975 1390 1299 9166666.669678 1391 1299 10018981.01522 1392 1299 -23153309.42759 1393 1299 8202668.502207 1394 1299 22268765.65392 1407 1299 -413319.0876746 1408 1299 3.017485141754e-06 1409 1299 57871.30948708 1410 1299 68265937.74305 1411 1299 4972552.434569 1412 1299 136620.1412261 1413 1299 -38378504.19399 1414 1299 -20393185.43893 1415 1299 10904728.81155 1428 1299 -18482764.4945 1429 1299 -9166666.669676 1430 1299 -10076852.32471 1431 1299 -43384348.52402 1432 1299 6143828.422977 1433 1299 -32706624.47957 1434 1299 -20160575.07792 1435 1299 1074136.079187 1436 1299 -602925.9311655 1300 1300 604598995.5615 1301 1300 37277012.53792 1302 1300 -70094105.66344 1303 1300 -231857593.3807 1304 1300 -8143757.767629 1317 1300 -33611111.10559 1318 1300 -39363173.77667 1319 1300 -6097121.576942 1320 1300 21747857.93987 1321 1300 17898117.69298 1322 1300 7160931.803441 1323 1300 8988666.707287 1324 1300 -131315860.0499 1325 1300 -4390886.091072 1389 1300 9166666.669678 1390 1300 -15641216.50536 1391 1300 -8177088.970282 1392 1300 8204207.520877 1393 1300 12129419.26863 1394 1300 -8118315.333891 1407 1300 4.06801700592e-06 1408 1300 -35246583.02275 1409 1300 -32861133.64276 1410 1300 4972552.434566 1411 1300 107051190.7071 1412 1300 -2079037.895958 1413 1300 -20394724.45761 1414 1300 -79470228.63097 1415 1300 34698117.36652 1428 1300 -9166666.669676 1429 1300 -15732561.20235 1430 1300 -8246533.414749 1431 1300 6143828.422977 1432 1300 -19857535.41586 1433 1300 7819016.563107 1434 1300 1074136.079187 1435 1300 -47330788.05857 1436 1300 16965426.97932 1301 1301 497207159.3263 1302 1301 -3258224.345824 1303 1301 -6887687.832126 1304 1301 -52377574.72795 1317 1301 -12633093.46245 1318 1301 -6402677.132734 1319 1301 -11231394.83281 1320 1301 3519044.273286 1321 1301 6855376.247936 1322 1301 49759463.96313 1323 1301 1033707.572752 1324 1301 -4390886.091072 1325 1301 -28228693.45994 1389 1301 10018981.01522 1390 1301 -8177088.970282 1391 1301 -16145262.77514 1392 1301 22442357.5869 1393 1301 -8144741.575046 1394 1301 -20089628.3459 1407 1301 57871.30948763 1408 1301 -32833355.865 1409 1301 -37566373.58606 1410 1301 136807.9549443 1411 1301 -2078887.551707 1412 1301 -39053108.69402 1413 1301 10904842.27205 1414 1301 34696841.30973 1415 1301 -46645425.83998 1428 1301 -10076852.32471 1429 1301 -8246533.414749 1430 1301 -16388848.63381 1431 1301 -32880235.58879 1432 1301 7819016.564698 1433 1301 -47680406.12059 1434 1301 -602925.9311654 1435 1301 16965426.97932 1436 1301 -27359753.63154 1302 1302 748427414.7551 1303 1302 16631311.86316 1304 1302 -1850042.970848 1320 1302 -46717612.54642 1321 1302 -29761853.78616 1322 1302 -1504257.272989 1323 1302 44119848.09802 1324 1302 36257674.87884 1325 1302 2822647.309645 1326 1302 66901986.07731 1327 1302 -19503336.17053 1328 1302 -18746.55804789 1329 1302 3782927.556693 1330 1302 25961532.27095 1331 1302 339249.9533962 1392 1302 -159624729.0253 1393 1302 11004617.05965 1394 1302 572723.0303333 1410 1302 -37538860.21074 1411 1302 -20394724.45761 1412 1302 -10492248.91842 1413 1302 145746193.545 1414 1302 4821174.303457 1415 1302 8338174.490712 1431 1302 -18861959.6269 1432 1302 -7862576.000248 1433 1302 -10622738.80081 1434 1302 -37300727.61412 1435 1302 10723804.48332 1436 1302 -41832926.99883 1437 1302 -23212197.68204 1438 1302 -5350103.986268 1439 1302 14197971.68996 1440 1302 -16690161.87378 1441 1302 7057808.597695 1442 1302 -10194843.38188 1303 1303 1480675841.238 1304 1303 8331896.126548 1320 1303 -29761853.78616 1321 1303 -13233472.25669 1322 1303 290066.0256773 1323 1303 36257674.87883 1324 1303 161203877.6836 1325 1303 2812011.040772 1326 1303 -6058891.728297 1327 1303 2376956.410093 1328 1303 -290381.0699252 1329 1303 25961532.27095 1330 1303 -18223927.68573 1331 1303 -360456.5943326 1392 1303 7336411.373109 1393 1303 -425492515.7295 1394 1303 -13147629.82044 1410 1303 -20393185.43894 1411 1303 -78630584.64773 1412 1303 -33781578.76871 1413 1303 4821174.303456 1414 1303 434483682.2102 1415 1303 -3492649.630975 1431 1303 -7862576.000248 1432 1303 -8819552.279667 1433 1303 -8595373.465755 1434 1303 10723804.48332 1435 1303 -5466319.193666 1436 1303 7947549.067445 1437 1303 -1683437.318397 1438 1303 -40801616.79024 1439 1303 33347935.147 1440 1303 7057808.597695 1441 1303 -22755536.05731 1442 1303 16684907.19053 1304 1304 944103154.1131 1320 1304 -1886201.717729 1321 1304 -15489.53011546 1322 1304 4179508.007112 1323 1304 1676813.9765 1324 1304 2506455.485267 1325 1304 209445391.5281 1326 1304 -18746.55804396 1327 1304 -290381.0699252 1328 1304 139488909.5392 1329 1304 339249.9532249 1330 1304 -360456.5943326 1331 1304 47699916.22173 1392 1304 381815.353556 1393 1304 -13300618.50896 1394 1304 -159798157.3631 1410 1304 -10492174.57703 1411 1304 -33783025.80027 1412 1304 -44406375.21794 1413 1304 -8362936.617657 1414 1304 -3856634.052932 1415 1304 13357391.99385 1431 1304 -10622738.80081 1432 1304 -8595373.465755 1433 1304 -15817835.62473 1434 1304 -41832926.99887 1435 1304 7947549.069036 1436 1304 -79830320.55011 1437 1304 6072971.68928 1438 1304 33347935.147 1439 1304 -72413820.75204 1440 1304 -10194843.38188 1441 1304 16684907.19053 1442 1304 -34377395.78682 1305 1305 319632302.4806 1306 1305 2.861022949219e-06 1307 1305 3240707.191283 1308 1305 33898420.42483 1309 1305 6722222.221118 1310 1305 2980315.686967 1395 1305 -58783069.51046 1396 1305 1.639127731323e-06 1397 1305 42697451.81849 1398 1305 -19844426.42677 1399 1305 -9166666.669679 1400 1305 11321064.34898 1416 1305 28714906.85473 1417 1305 5.364418029785e-07 1418 1305 -8530229.601834 1419 1305 -3124509.92214 1420 1305 1833333.333932 1421 1305 -2241064.345998 1306 1306 279296115.6723 1307 1306 27777375.18299 1308 1306 -6722222.221118 1309 1306 -29962568.8918 1310 1306 -14194243.147 1395 1306 6.034970283508e-07 1396 1306 -18449398.9965 1397 1306 -694433.1761458 1398 1306 -9166666.669679 1399 1306 -17094223.13462 1400 1306 8871522.146427 1416 1306 8.940696716309e-07 1417 1306 17714093.69157 1418 1306 -1388866.351609 1419 1306 -1833333.333939 1420 1306 -20541141.88968 1421 1306 17812488.72854 1307 1307 369841367.6909 1308 1307 -2228017.645512 1309 1307 -13583132.03599 1310 1307 23544870.61869 1395 1307 42662729.59629 1396 1307 -694433.1761458 1397 1307 -54493616.03735 1398 1307 11321064.34898 1399 1307 8871522.146428 1400 1307 -20019947.11985 1416 1307 8588103.728686 1417 1307 -1388866.351609 1418 1307 -55021008.39532 1419 1307 2298935.655493 1420 1307 17812488.72855 1421 1307 -26564121.13518 1308 1308 319632302.4806 1309 1308 2.861022949219e-06 1310 1308 3240707.191283 1311 1308 33898420.42483 1312 1308 6722222.221118 1313 1308 2980315.686967 1395 1308 -18391419.7975 1396 1308 9166666.669678 1397 1308 10018981.01522 1398 1308 -58783069.51046 1399 1308 1.639127731323e-06 1400 1308 42697451.81849 1401 1308 -19844426.42677 1402 1308 -9166666.669679 1403 1308 11321064.34898 1416 1308 -206659.5438359 1417 1308 -1833333.333934 1418 1308 -1980647.67925 1419 1308 28714906.85473 1420 1308 5.364418029785e-07 1421 1308 -8530229.601834 1422 1308 -3124509.92214 1423 1308 1833333.333932 1424 1308 -2241064.345998 1309 1309 279296115.6723 1310 1309 27777375.18299 1311 1309 -6722222.221118 1312 1309 -29962568.8918 1313 1309 -14194243.147 1395 1309 9166666.669678 1396 1309 -15641216.50536 1397 1309 -8177088.970282 1398 1309 6.034970283508e-07 1399 1309 -18449398.9965 1400 1309 -694433.1761458 1401 1309 -9166666.669679 1402 1309 -17094223.13462 1403 1309 8871522.146427 1416 1309 1833333.333937 1417 1309 -17623291.51138 1418 1309 -16423622.37693 1419 1309 8.940696716309e-07 1420 1309 17714093.69157 1421 1309 -1388866.351609 1422 1309 -1833333.333939 1423 1309 -20541141.88968 1424 1309 17812488.72854 1310 1310 369841367.6909 1311 1310 -2228017.645512 1312 1310 -13583132.03599 1313 1310 23544870.61869 1395 1310 10018981.01522 1396 1310 -8177088.970282 1397 1310 -16145262.77514 1398 1310 42662729.59629 1399 1310 -694433.1761458 1400 1310 -54493616.03735 1401 1310 11321064.34898 1402 1310 8871522.146428 1403 1310 -20019947.11985 1416 1310 2038518.988737 1417 1310 -16423622.37695 1418 1310 -18783186.79303 1419 1310 8588103.728686 1420 1310 -1388866.351609 1421 1310 -55021008.39532 1422 1310 2298935.655493 1423 1310 17812488.72855 1424 1310 -26564121.13518 1311 1311 319632302.4806 1312 1311 2.861022949219e-06 1313 1311 3240707.191283 1314 1311 33898420.42483 1315 1311 6722222.221118 1316 1311 2980315.686967 1398 1311 -18391419.7975 1399 1311 9166666.669678 1400 1311 10018981.01522 1401 1311 -58783069.51046 1402 1311 1.639127731323e-06 1403 1311 42697451.81849 1404 1311 -19844426.42677 1405 1311 -9166666.669679 1406 1311 11321064.34898 1419 1311 -206659.5438359 1420 1311 -1833333.333934 1421 1311 -1980647.67925 1422 1311 28714906.85473 1423 1311 5.364418029785e-07 1424 1311 -8530229.601834 1425 1311 -3124509.92214 1426 1311 1833333.333932 1427 1311 -2241064.345998 1312 1312 279296115.6723 1313 1312 27777375.18299 1314 1312 -6722222.221118 1315 1312 -29962568.8918 1316 1312 -14194243.147 1398 1312 9166666.669678 1399 1312 -15641216.50536 1400 1312 -8177088.970282 1401 1312 6.034970283508e-07 1402 1312 -18449398.9965 1403 1312 -694433.1761458 1404 1312 -9166666.669679 1405 1312 -17094223.13462 1406 1312 8871522.146427 1419 1312 1833333.333937 1420 1312 -17623291.51138 1421 1312 -16423622.37693 1422 1312 8.940696716309e-07 1423 1312 17714093.69157 1424 1312 -1388866.351609 1425 1312 -1833333.333939 1426 1312 -20541141.88968 1427 1312 17812488.72854 1313 1313 369841367.6909 1314 1313 -2228017.645512 1315 1313 -13583132.03599 1316 1313 23544870.61869 1398 1313 10018981.01522 1399 1313 -8177088.970282 1400 1313 -16145262.77514 1401 1313 42662729.59629 1402 1313 -694433.1761458 1403 1313 -54493616.03735 1404 1313 11321064.34898 1405 1313 8871522.146428 1406 1313 -20019947.11985 1419 1313 2038518.988737 1420 1313 -16423622.37695 1421 1313 -18783186.79303 1422 1313 8588103.728686 1423 1313 -1388866.351609 1424 1313 -55021008.39532 1425 1313 2298935.655493 1426 1313 17812488.72855 1427 1313 -26564121.13518 1314 1314 319632302.4806 1315 1314 2.861022949219e-06 1316 1314 3240707.191283 1317 1314 33898420.42483 1318 1314 6722222.221118 1319 1314 2980315.686967 1401 1314 -18391419.7975 1402 1314 9166666.669678 1403 1314 10018981.01522 1404 1314 -58783069.51046 1405 1314 1.639127731323e-06 1406 1314 42697451.81849 1407 1314 -19844426.42677 1408 1314 -9166666.669679 1409 1314 11321064.34898 1422 1314 -206659.5438359 1423 1314 -1833333.333934 1424 1314 -1980647.67925 1425 1314 28714906.85473 1426 1314 5.364418029785e-07 1427 1314 -8530229.601834 1428 1314 -3124509.92214 1429 1314 1833333.333932 1430 1314 -2241064.345998 1315 1315 279296115.6723 1316 1315 27777375.18299 1317 1315 -6722222.221118 1318 1315 -29962568.8918 1319 1315 -14194243.147 1401 1315 9166666.669678 1402 1315 -15641216.50536 1403 1315 -8177088.970282 1404 1315 6.034970283508e-07 1405 1315 -18449398.9965 1406 1315 -694433.1761458 1407 1315 -9166666.669679 1408 1315 -17094223.13462 1409 1315 8871522.146427 1422 1315 1833333.333937 1423 1315 -17623291.51138 1424 1315 -16423622.37693 1425 1315 8.940696716309e-07 1426 1315 17714093.69157 1427 1315 -1388866.351609 1428 1315 -1833333.333939 1429 1315 -20541141.88968 1430 1315 17812488.72854 1316 1316 369841367.6909 1317 1316 -2228017.645512 1318 1316 -13583132.03599 1319 1316 23544870.61869 1401 1316 10018981.01522 1402 1316 -8177088.970282 1403 1316 -16145262.77514 1404 1316 42662729.59629 1405 1316 -694433.1761458 1406 1316 -54493616.03735 1407 1316 11321064.34898 1408 1316 8871522.146428 1409 1316 -20019947.11985 1422 1316 2038518.988737 1423 1316 -16423622.37695 1424 1316 -18783186.79303 1425 1316 8588103.728686 1426 1316 -1388866.351609 1427 1316 -55021008.39532 1428 1316 2298935.655493 1429 1316 17812488.72855 1430 1316 -26564121.13518 1317 1317 319632302.4806 1318 1317 2.861022949219e-06 1319 1317 3240707.191283 1320 1317 33898420.42483 1321 1317 6722222.221118 1322 1317 2980315.686967 1404 1317 -18391419.7975 1405 1317 9166666.669678 1406 1317 10018981.01522 1407 1317 -58783069.51046 1408 1317 1.639127731323e-06 1409 1317 42697451.81849 1410 1317 -19844426.42677 1411 1317 -9166666.669679 1412 1317 11321064.34898 1425 1317 -206659.5438359 1426 1317 -1833333.333934 1427 1317 -1980647.67925 1428 1317 28714906.85473 1429 1317 5.364418029785e-07 1430 1317 -8530229.601834 1431 1317 -3124509.92214 1432 1317 1833333.333932 1433 1317 -2241064.345998 1318 1318 279296115.6723 1319 1318 27777375.18299 1320 1318 -6722222.221118 1321 1318 -29962568.8918 1322 1318 -14194243.147 1404 1318 9166666.669678 1405 1318 -15641216.50536 1406 1318 -8177088.970282 1407 1318 6.034970283508e-07 1408 1318 -18449398.9965 1409 1318 -694433.1761458 1410 1318 -9166666.669679 1411 1318 -17094223.13462 1412 1318 8871522.146427 1425 1318 1833333.333937 1426 1318 -17623291.51138 1427 1318 -16423622.37693 1428 1318 8.940696716309e-07 1429 1318 17714093.69157 1430 1318 -1388866.351609 1431 1318 -1833333.333939 1432 1318 -20541141.88968 1433 1318 17812488.72854 1319 1319 369841367.6909 1320 1319 -2228017.645512 1321 1319 -13583132.03599 1322 1319 23544870.61869 1404 1319 10018981.01522 1405 1319 -8177088.970282 1406 1319 -16145262.77514 1407 1319 42662729.59629 1408 1319 -694433.1761458 1409 1319 -54493616.03735 1410 1319 11321064.34898 1411 1319 8871522.146428 1412 1319 -20019947.11985 1425 1319 2038518.988737 1426 1319 -16423622.37695 1427 1319 -18783186.79303 1428 1319 8588103.728686 1429 1319 -1388866.351609 1430 1319 -55021008.39532 1431 1319 2298935.655493 1432 1319 17812488.72855 1433 1319 -26564121.13518 1320 1320 292706109.3267 1321 1320 3849993.374101 1322 1320 -6845642.411734 1323 1320 -1362952.211621 1324 1320 -22724886.41228 1325 1320 4466.524408698 1407 1320 -18391419.7975 1408 1320 9166666.669678 1409 1320 10018981.01522 1410 1320 -42844315.11718 1411 1320 6143828.42298 1412 1320 32439903.28737 1413 1320 -19056485.08992 1414 1320 -7862576.000246 1415 1320 10773788.984 1428 1320 -206659.5438359 1429 1320 -1833333.333934 1430 1320 -1980647.67925 1431 1320 28878510.79233 1432 1320 1304325.673737 1433 1320 -8034871.658814 1434 1320 -18263780.54944 1435 1320 -6918911.432209 1436 1320 8066734.94041 1321 1321 275777719.2542 1322 1321 17498346.56299 1323 1321 -36169330.85452 1324 1321 -59332709.45945 1325 1321 -3269090.779215 1407 1321 9166666.669678 1408 1321 -15641216.50536 1409 1321 -8177088.970282 1410 1321 6143828.422979 1411 1321 -19317502.00901 1412 1321 -8396261.212014 1413 1321 -7862576.000246 1414 1321 -9014077.742685 1415 1321 8522682.095422 1428 1321 1833333.333937 1429 1321 -17623291.51138 1430 1321 -16423622.37693 1431 1321 1304325.673737 1432 1321 25172041.03341 1433 1321 -904397.1795395 1434 1321 -10585578.10008 1435 1321 -33460102.57053 1436 1321 25378687.64334 1322 1322 306182737.1243 1323 1322 -1419144.586472 1324 1322 -2963535.22371 1325 1322 32321915.28632 1407 1322 10018981.01522 1408 1322 -8177088.970282 1409 1322 -16145262.77514 1410 1322 32613514.40058 1411 1322 -8396261.210409 1412 1322 -46240317.03562 1413 1322 10773788.984 1414 1322 8522682.095422 1415 1322 -16336570.1928 1428 1322 2038518.988737 1429 1322 -16423622.37695 1430 1322 -18783186.79303 1431 1322 9082906.116151 1432 1322 -904397.1795395 1433 1322 -52999059.66538 1434 1322 12398123.82872 1435 1322 25378687.64175 1436 1322 -35853335.01949 1323 1323 351474505.4045 1324 1323 43278658.3616 1325 1323 5396404.4899 1326 1323 -61121044.65449 1327 1323 -41260689.94024 1328 1323 -528805.6021204 1329 1323 15684474.19606 1330 1323 -11094979.15296 1331 1323 -186753.6278738 1410 1323 -19715237.85133 1411 1323 1074136.079186 1412 1323 524851.8469836 1413 1323 -37144610.97898 1414 1323 10723804.48332 1415 1323 41672628.54298 1431 1323 -17529221.15356 1432 1323 -10585578.10008 1433 1323 -12149931.72292 1434 1323 -1095063.644689 1435 1323 13148490.57674 1436 1323 -8461748.97526 1437 1323 -34526661.87963 1438 1323 -11275524.74166 1439 1323 20339184.40592 1440 1323 -25557949.75669 1441 1323 -3085328.297506 1442 1323 8108904.791231 1324 1324 428079692.8527 1325 1324 6359867.73056 1326 1324 -41260689.94024 1327 1324 -42562917.26492 1328 1324 -360456.5943327 1329 1324 -24539423.5952 1330 1324 -49977135.84681 1331 1324 -1151445.306695 1410 1324 1074136.079186 1411 1324 -46885450.83199 1412 1324 -16367906.36496 1413 1324 10723804.48332 1414 1324 -5310202.55853 1415 1324 -8267728.707675 1431 1324 -6918911.432211 1432 1324 -32725543.17465 1433 1324 -25072701.23725 1434 1324 13148490.57674 1435 1324 22270764.74516 1436 1324 -368264.4629124 1437 1324 -11275524.74166 1438 1324 -29444223.55951 1439 1324 16684907.19053 1440 1324 -6751994.965377 1441 1324 -43474089.88536 1442 1324 33391693.58226 1325 1325 502747367.9195 1326 1325 -528805.6021202 1327 1325 -360456.5943328 1328 1325 23360926.64254 1329 1325 -533975.8500424 1330 1325 -1151445.306695 1331 1325 76606286.52403 1410 1325 524851.8469835 1411 1325 -16367906.36496 1412 1325 -26172187.69396 1413 1325 41672628.54301 1414 1325 -8267728.706071 1415 1325 -79414009.52307 1431 1325 -7922709.501298 1432 1325 -25072701.23886 1433 1325 -33894509.96379 1434 1325 8239362.133108 1435 1325 -368264.4629123 1436 1325 -122620538.7512 1437 1325 20339184.40592 1438 1325 16684907.19053 1439 1325 -41066083.28901 1440 1325 12197515.90567 1441 1325 33391693.58226 1442 1325 -58349324.81867 1326 1326 234754680.5278 1327 1326 46392225.05501 1328 1326 308098.4098136 1329 1326 3111044.699987 1330 1326 927356.613524 1331 1326 239453.7503519 1413 1326 -23117500.71233 1414 1326 -1683437.318397 1415 1326 -6070778.306718 1434 1326 -34431964.90992 1435 1326 -11275524.74166 1436 1326 -20285815.60742 1437 1326 -18665832.59106 1438 1326 12683437.32201 1439 1326 8109435.714787 1440 1326 -34533186.62789 1441 1326 275524.7380462 1442 1326 -30502841.80065 1327 1327 217352626.8751 1328 1327 290381.0699289 1329 1327 14371801.05576 1330 1327 66480000.63031 1331 1327 360456.594335 1413 1327 -5350103.986268 1414 1327 -40706919.82054 1415 1327 -33318731.50871 1434 1327 -11275524.74166 1435 1327 -29349526.58979 1436 1327 -16648426.15375 1437 1327 12683437.32201 1438 1327 -23420163.4902 1439 1327 6652064.846425 1440 1327 3942191.405917 1441 1327 -17271874.94068 1442 1327 3315092.816032 1328 1328 364529562.5681 1329 1328 239453.750356 1330 1328 360456.5943349 1331 1328 122345045.6517 1413 1328 -14195778.30738 1414 1328 -33318731.50871 1415 1328 -72161295.49948 1434 1328 -20285815.60742 1435 1328 -16648426.15375 1436 1328 -40813558.03643 1437 1328 -8140564.282544 1438 1328 -6681268.484718 1439 1328 -121188010.0031 1440 1328 -30502841.80265 1441 1328 -3351573.852824 1442 1328 -61166429.37081 1329 1329 172214886.8966 1330 1329 -15793909.73151 1331 1329 649716.5911349 1413 1329 -16595464.90406 1414 1329 7057808.597695 1415 1329 10161406.6248 1434 1329 -25273858.84771 1435 1329 -6751994.965378 1436 1329 -12142484.09433 1437 1329 -34533186.62789 1438 1329 3942191.405919 1439 1329 30478408.18933 1440 1329 -12139913.87007 1441 1329 -4248005.038235 1442 1329 -4104552.942003 1330 1330 196514396.2516 1331 1330 1151445.306701 1413 1330 7057808.597695 1414 1330 -22660839.0876 1415 1330 -16648426.15375 1434 1330 -3085328.297507 1435 1330 -43189998.97639 1436 1330 -33274973.07346 1437 1330 275524.7380478 1438 1330 -17271874.94068 1439 1330 3315092.816032 1440 1330 -4248005.038235 1441 1330 -5419711.245076 1442 1330 6608306.41117 1331 1331 272797640.5341 1413 1331 10161406.6248 1414 1331 -16648426.15375 1415 1331 -34124870.53423 1434 1331 -8088595.202104 1435 1331 -33274973.07346 1436 1331 -57591749.06139 1437 1331 30478408.18734 1438 1331 -3351573.852824 1439 1331 -61166429.37081 1440 1331 4037947.05666 1441 1331 -6725026.919973 1442 1331 -83230082.36618 1332 1332 383498024.544 1333 1332 36666666.66064 1334 1332 2662179.892796 1335 1332 -204675200.5845 1336 1332 -36666988.20463 1337 1332 -2662156.039165 1338 1332 11810466.31493 1339 1332 29333654.8725 1340 1332 -2152800.8684 1443 1332 35932670.30059 1444 1332 9166666.669679 1445 1332 9311563.653784 1446 1332 -72925641.46158 1447 1332 -9166747.055676 1448 1332 -43478968.03166 1449 1332 -7497354.851903 1450 1332 7333413.72174 1451 1332 -9080099.689708 1333 1333 328493596.9861 1334 1333 -6944376.434009 1335 1333 -36667148.97662 1336 1333 -32338700.60373 1337 1333 -3847226.785359 1338 1333 44000482.30876 1339 1333 11810466.31493 1340 1333 2416693.76713 1443 1333 9166666.669678 1444 1333 22181563.40434 1445 1333 5180609.664774 1446 1333 -9166787.248676 1447 1333 -29841516.44517 1448 1333 -9524419.110191 1449 1333 11000120.58261 1450 1333 -7497354.8519 1451 1333 10895952.52268 1334 1334 364686604.8413 1335 1334 -2662144.112346 1336 1334 -3097217.751863 1337 1334 -5157813.372203 1338 1334 -3229201.302601 1339 1334 1611129.178087 1340 1334 31494576.83983 1443 1334 -7806863.548506 1444 1334 -8513909.758068 1445 1334 -68673244.4318 1446 1334 -43444243.01831 1447 1334 -9329934.937092 1448 1334 -59307696.78438 1449 1334 -13620149.53456 1450 1334 7263968.348454 1451 1334 -19992946.27174 1335 1335 665854880.679 1336 1335 36667470.52063 1337 1335 3125090.734117 1338 1335 18070347.2503 1339 1335 -36666988.20464 1340 1335 2702571.265064 1341 1335 -140008022.8906 1342 1335 2.577900886536e-06 1343 1335 -462970.4754454 1344 1335 -52702268.47617 1345 1335 36666666.66064 1346 1335 -2702548.174055 1443 1335 -71369389.94283 1444 1335 -9166787.24867 1445 1335 42147892.99313 1446 1335 76553135.92261 1447 1335 9166867.634673 1448 1335 781226.2244361 1449 1335 -18699525.19313 1450 1335 -9166747.055676 1451 1335 11379035.3452 1452 1335 -59172122.54065 1453 1335 4.395842552185e-07 1454 1335 -42928937.05631 1455 1335 -19947608.24497 1456 1335 9166666.669675 1457 1335 -11378935.65847 1336 1336 566847200.4901 1337 1336 -8610909.306622 1338 1336 -36667148.97663 1339 1336 -110262538.3357 1340 1336 4611016.915367 1341 1336 2.831220626831e-06 1342 1336 21326659.08566 1343 1336 -2777732.703214 1344 1336 36666666.66064 1345 1336 -41701455.31301 1346 1336 1513866.351594 1443 1336 -9166747.055672 1444 1336 -28285264.92641 1445 1336 7788270.809731 1446 1336 9166867.634673 1447 1336 51801215.86321 1448 1336 -2152764.494718 1449 1336 -9166787.248675 1450 1336 -50782746.60544 1451 1336 35402941.77273 1452 1336 4.619359970093e-07 1453 1336 -18838452.02672 1454 1336 -694433.1761459 1455 1336 9166666.669675 1456 1336 -17197404.95283 1457 1336 8940966.590895 1337 1337 591261848.0956 1338 1337 2737305.032771 1339 1337 5388803.421584 1340 1337 33925571.74906 1341 1337 -462970.4754449 1342 1337 -2777732.703214 1343 1337 35690216.05203 1344 1337 -2737270.396254 1345 1337 1541644.129353 1346 1337 -8945289.261872 1443 1337 42113167.97979 1444 1337 7593861.729456 1445 1337 -55157692.73435 1446 1337 781320.0962051 1447 1337 -2152689.398522 1448 1337 -91946096.11431 1449 1337 11379085.18856 1450 1337 35569610.71641 1451 1337 -53430905.74636 1452 1337 -42894214.83411 1453 1337 -694433.1761459 1454 1337 -55531090.78464 1455 1337 -11378935.65847 1456 1337 8940966.590895 1457 1337 -20295098.63508 1338 1338 383498024.544 1339 1338 36666666.66064 1340 1338 2662179.892796 1341 1338 -52678594.23377 1342 1338 -36666666.66064 1343 1338 2505785.158418 1344 1338 -204675200.5845 1345 1338 -36666988.20463 1346 1338 -2662156.039165 1347 1338 11810466.31493 1348 1338 29333654.8725 1349 1338 -2152800.8684 1443 1338 -4579449.609996 1444 1338 11000120.58261 1445 1338 12057631.64322 1446 1338 -14225493.76444 1447 1338 -9166787.248675 1448 1338 -10019112.65448 1449 1338 35932670.30059 1450 1338 9166666.669679 1451 1338 9311563.653784 1452 1338 -18482764.4945 1453 1338 -9166666.669676 1454 1338 -10076852.32471 1455 1338 -72925641.46158 1456 1338 -9166747.055676 1457 1338 -43478968.03166 1458 1338 -7497354.851903 1459 1338 7333413.72174 1460 1338 -9080099.689708 1339 1339 328493596.9861 1340 1339 -6944376.43401 1341 1339 -36666666.66065 1342 1339 -41677781.0706 1343 1339 1263866.351621 1344 1339 -36667148.97662 1345 1339 -32338700.60373 1346 1339 -3847226.785359 1347 1339 44000482.30876 1348 1339 11810466.31493 1349 1339 2416693.76713 1443 1339 7333413.72174 1444 1339 -4579449.61 1445 1339 -6430626.286135 1446 1339 -9166747.055675 1447 1339 -46308715.17675 1448 1339 -32902986.62891 1449 1339 9166666.669678 1450 1339 22181563.40434 1451 1339 5180609.664774 1452 1339 -9166666.669676 1453 1339 -15732561.20235 1454 1339 -8246533.414749 1455 1339 -9166787.248676 1456 1339 -29841516.44517 1457 1339 -9524419.110191 1458 1339 11000120.58261 1459 1339 -7497354.8519 1460 1339 10895952.52268 1340 1340 364686604.8413 1341 1340 2471062.936219 1342 1340 1236088.573861 1343 1340 -8882157.948759 1344 1340 -2662144.112346 1345 1340 -3097217.751863 1346 1340 -5157813.372203 1347 1340 -3229201.302601 1348 1340 1611129.178087 1349 1340 31494576.83983 1443 1340 8038421.095477 1444 1340 -9645939.429201 1445 1340 -12211865.62666 1446 1340 -10019068.77473 1447 1340 -33069655.68813 1448 1340 -41500155.26984 1449 1340 -7806863.548506 1450 1340 -8513909.758068 1451 1340 -68673244.4318 1452 1340 -10076852.32471 1453 1340 -8246533.414749 1454 1340 -16388848.63381 1455 1340 -43444243.01831 1456 1340 -9329934.937092 1457 1340 -59307696.78438 1458 1340 -13620149.53456 1459 1340 7263968.348454 1460 1340 -19992946.27174 1341 1341 613328698.917 1342 1341 1.621246337891e-05 1343 1341 925940.9508365 1344 1341 82577683.23799 1345 1341 -7.659196853638e-06 1346 1341 231485.2378237 1350 1341 -140008022.8906 1351 1341 2.577900886536e-06 1352 1341 -462970.4754454 1353 1341 -52702268.47617 1354 1341 36666666.66064 1355 1341 -2702548.174055 1446 1341 -58783069.51046 1447 1341 1.639127731323e-06 1448 1341 42697451.81849 1449 1341 -19844426.42677 1450 1341 -9166666.669679 1451 1341 11321064.34898 1452 1341 57430602.85087 1453 1341 3.8743019104e-06 1454 1341 231485.2378496 1455 1341 -6249019.844286 1456 1341 -7.443130016327e-06 1457 1341 57871.30949415 1461 1341 -59172122.54065 1462 1341 4.395842552185e-07 1463 1341 -42928937.05631 1464 1341 -19947608.24497 1465 1341 9166666.669675 1466 1341 -11378935.65847 1342 1342 525322193.6551 1343 1342 -11110930.80738 1344 1342 -7.525086402893e-06 1345 1342 -56755372.43366 1346 1342 5555465.403692 1350 1342 2.831220626831e-06 1351 1342 21326659.08566 1352 1342 -2777732.703214 1353 1342 36666666.66064 1354 1342 -41701455.31301 1355 1342 1513866.351594 1446 1342 6.034970283508e-07 1447 1342 -18449398.9965 1448 1342 -694433.1761458 1449 1342 -9166666.669679 1450 1342 -17094223.13462 1451 1342 8871522.146427 1452 1342 4.231929779053e-06 1453 1342 35428976.52455 1454 1342 -2777732.703215 1455 1342 -7.599592208862e-06 1456 1342 -41082283.77936 1457 1342 35638866.34597 1461 1342 4.619359970093e-07 1462 1342 -18838452.02672 1463 1342 -694433.1761459 1464 1342 9166666.669675 1465 1342 -17197404.95283 1466 1342 8940966.590895 1343 1343 582790450.9006 1344 1343 231485.2378239 1345 1343 5555465.403692 1346 1343 74350397.96411 1350 1343 -462970.4754449 1351 1343 -2777732.703214 1352 1343 35690216.05203 1353 1343 -2737270.396254 1354 1343 1541644.129353 1355 1343 -8945289.261872 1446 1343 42662729.59629 1447 1343 -694433.1761458 1448 1343 -54493616.03735 1449 1343 11321064.34898 1450 1343 8871522.146428 1451 1343 -20019947.11985 1452 1343 231485.2378493 1453 1343 -2777732.703215 1454 1343 -110039912.4136 1455 1343 57871.30949473 1456 1343 35611088.56821 1457 1343 -53128242.27036 1461 1343 -42894214.83411 1462 1343 -694433.1761459 1463 1343 -55531090.78464 1464 1343 -11378935.65847 1465 1343 8940966.590895 1466 1343 -20295098.63508 1344 1344 665854880.679 1345 1344 36667470.52063 1346 1344 3125090.734117 1347 1344 18070347.2503 1348 1344 -36666988.20464 1349 1344 2702571.265064 1350 1344 -52678594.23377 1351 1344 -36666666.66064 1352 1344 2505785.158418 1353 1344 -140008022.8906 1354 1344 2.577900886536e-06 1355 1344 -462970.4754454 1356 1344 -52702268.47617 1357 1344 36666666.66064 1358 1344 -2702548.174055 1446 1344 -18391419.7975 1447 1344 9166666.669678 1448 1344 10018981.01522 1449 1344 -71369389.94283 1450 1344 -9166787.24867 1451 1344 42147892.99313 1452 1344 -413319.0876746 1453 1344 3.017485141754e-06 1454 1344 57871.30948708 1455 1344 76553135.92261 1456 1344 9166867.634673 1457 1344 781226.2244361 1458 1344 -18699525.19313 1459 1344 -9166747.055676 1460 1344 11379035.3452 1461 1344 -18482764.4945 1462 1344 -9166666.669676 1463 1344 -10076852.32471 1464 1344 -59172122.54065 1465 1344 4.395842552185e-07 1466 1344 -42928937.05631 1467 1344 -19947608.24497 1468 1344 9166666.669675 1469 1344 -11378935.65847 1345 1345 566847200.4901 1346 1345 -8610909.306622 1347 1345 -36667148.97663 1348 1345 -110262538.3357 1349 1345 4611016.915367 1350 1345 -36666666.66065 1351 1345 -41677781.0706 1352 1345 1263866.351621 1353 1345 2.831220626831e-06 1354 1345 21326659.08566 1355 1345 -2777732.703214 1356 1345 36666666.66064 1357 1345 -41701455.31301 1358 1345 1513866.351594 1446 1345 9166666.669678 1447 1345 -15641216.50536 1448 1345 -8177088.970282 1449 1345 -9166747.055672 1450 1345 -28285264.92641 1451 1345 7788270.809731 1452 1345 4.06801700592e-06 1453 1345 -35246583.02275 1454 1345 -32861133.64276 1455 1345 9166867.634673 1456 1345 51801215.86321 1457 1345 -2152764.494718 1458 1345 -9166787.248675 1459 1345 -50782746.60544 1460 1345 35402941.77273 1461 1345 -9166666.669676 1462 1345 -15732561.20235 1463 1345 -8246533.414749 1464 1345 4.619359970093e-07 1465 1345 -18838452.02672 1466 1345 -694433.1761459 1467 1345 9166666.669675 1468 1345 -17197404.95283 1469 1345 8940966.590895 1346 1346 591261848.0956 1347 1346 2737305.032771 1348 1346 5388803.421584 1349 1346 33925571.74906 1350 1346 2471062.936219 1351 1346 1236088.573861 1352 1346 -8882157.948759 1353 1346 -462970.4754449 1354 1346 -2777732.703214 1355 1346 35690216.05203 1356 1346 -2737270.396254 1357 1346 1541644.129353 1358 1346 -8945289.261872 1446 1346 10018981.01522 1447 1346 -8177088.970282 1448 1346 -16145262.77514 1449 1346 42113167.97979 1450 1346 7593861.729456 1451 1346 -55157692.73435 1452 1346 57871.30948763 1453 1346 -32833355.865 1454 1346 -37566373.58606 1455 1346 781320.0962051 1456 1346 -2152689.398522 1457 1346 -91946096.11431 1458 1346 11379085.18856 1459 1346 35569610.71641 1460 1346 -53430905.74636 1461 1346 -10076852.32471 1462 1346 -8246533.414749 1463 1346 -16388848.63381 1464 1346 -42894214.83411 1465 1346 -694433.1761459 1466 1346 -55531090.78464 1467 1346 -11378935.65847 1468 1346 8940966.590895 1469 1346 -20295098.63508 1347 1347 383498024.544 1348 1347 36666666.66064 1349 1347 2662179.892796 1353 1347 -52678594.23377 1354 1347 -36666666.66064 1355 1347 2505785.158418 1356 1347 -204675200.5845 1357 1347 -36666988.20463 1358 1347 -2662156.039165 1359 1347 11810466.31493 1360 1347 29333654.8725 1361 1347 -2152800.8684 1449 1347 -4579449.609996 1450 1347 11000120.58261 1451 1347 12057631.64322 1455 1347 -14225493.76444 1456 1347 -9166787.248675 1457 1347 -10019112.65448 1458 1347 35932670.30059 1459 1347 9166666.669679 1460 1347 9311563.653784 1464 1347 -18482764.4945 1465 1347 -9166666.669676 1466 1347 -10076852.32471 1467 1347 -72925641.46158 1468 1347 -9166747.055676 1469 1347 -43478968.03166 1470 1347 -7497354.851903 1471 1347 7333413.72174 1472 1347 -9080099.689708 1348 1348 328493596.9861 1349 1348 -6944376.43401 1353 1348 -36666666.66065 1354 1348 -41677781.0706 1355 1348 1263866.351621 1356 1348 -36667148.97662 1357 1348 -32338700.60373 1358 1348 -3847226.785359 1359 1348 44000482.30876 1360 1348 11810466.31493 1361 1348 2416693.76713 1449 1348 7333413.72174 1450 1348 -4579449.61 1451 1348 -6430626.286135 1455 1348 -9166747.055675 1456 1348 -46308715.17675 1457 1348 -32902986.62891 1458 1348 9166666.669678 1459 1348 22181563.40434 1460 1348 5180609.664774 1464 1348 -9166666.669676 1465 1348 -15732561.20235 1466 1348 -8246533.414749 1467 1348 -9166787.248676 1468 1348 -29841516.44517 1469 1348 -9524419.110191 1470 1348 11000120.58261 1471 1348 -7497354.8519 1472 1348 10895952.52268 1349 1349 364686604.8413 1353 1349 2471062.936219 1354 1349 1236088.573861 1355 1349 -8882157.948759 1356 1349 -2662144.112346 1357 1349 -3097217.751863 1358 1349 -5157813.372203 1359 1349 -3229201.302601 1360 1349 1611129.178087 1361 1349 31494576.83983 1449 1349 8038421.095477 1450 1349 -9645939.429201 1451 1349 -12211865.62666 1455 1349 -10019068.77473 1456 1349 -33069655.68813 1457 1349 -41500155.26984 1458 1349 -7806863.548506 1459 1349 -8513909.758068 1460 1349 -68673244.4318 1464 1349 -10076852.32471 1465 1349 -8246533.414749 1466 1349 -16388848.63381 1467 1349 -43444243.01831 1468 1349 -9329934.937092 1469 1349 -59307696.78438 1470 1349 -13620149.53456 1471 1349 7263968.348454 1472 1349 -19992946.27174 1350 1350 613328698.917 1351 1350 1.621246337891e-05 1352 1350 925940.9508365 1353 1350 82577683.23799 1354 1350 -7.659196853638e-06 1355 1350 231485.2378237 1362 1350 -140008022.8906 1363 1350 2.577900886536e-06 1364 1350 -462970.4754454 1365 1350 -52702268.47617 1366 1350 36666666.66064 1367 1350 -2702548.174055 1452 1350 -58783069.51046 1453 1350 1.639127731323e-06 1454 1350 42697451.81849 1455 1350 -19844426.42677 1456 1350 -9166666.669679 1457 1350 11321064.34898 1461 1350 57430602.85087 1462 1350 3.8743019104e-06 1463 1350 231485.2378496 1464 1350 -6249019.844286 1465 1350 -7.443130016327e-06 1466 1350 57871.30949415 1473 1350 -59172122.54065 1474 1350 4.395842552185e-07 1475 1350 -42928937.05631 1476 1350 -19947608.24497 1477 1350 9166666.669675 1478 1350 -11378935.65847 1351 1351 525322193.6551 1352 1351 -11110930.80738 1353 1351 -7.525086402893e-06 1354 1351 -56755372.43366 1355 1351 5555465.403692 1362 1351 2.831220626831e-06 1363 1351 21326659.08566 1364 1351 -2777732.703214 1365 1351 36666666.66064 1366 1351 -41701455.31301 1367 1351 1513866.351594 1452 1351 6.034970283508e-07 1453 1351 -18449398.9965 1454 1351 -694433.1761458 1455 1351 -9166666.669679 1456 1351 -17094223.13462 1457 1351 8871522.146427 1461 1351 4.231929779053e-06 1462 1351 35428976.52455 1463 1351 -2777732.703215 1464 1351 -7.599592208862e-06 1465 1351 -41082283.77936 1466 1351 35638866.34597 1473 1351 4.619359970093e-07 1474 1351 -18838452.02672 1475 1351 -694433.1761459 1476 1351 9166666.669675 1477 1351 -17197404.95283 1478 1351 8940966.590895 1352 1352 582790450.9006 1353 1352 231485.2378239 1354 1352 5555465.403692 1355 1352 74350397.96411 1362 1352 -462970.4754449 1363 1352 -2777732.703214 1364 1352 35690216.05203 1365 1352 -2737270.396254 1366 1352 1541644.129353 1367 1352 -8945289.261872 1452 1352 42662729.59629 1453 1352 -694433.1761458 1454 1352 -54493616.03735 1455 1352 11321064.34898 1456 1352 8871522.146428 1457 1352 -20019947.11985 1461 1352 231485.2378493 1462 1352 -2777732.703215 1463 1352 -110039912.4136 1464 1352 57871.30949473 1465 1352 35611088.56821 1466 1352 -53128242.27036 1473 1352 -42894214.83411 1474 1352 -694433.1761459 1475 1352 -55531090.78464 1476 1352 -11378935.65847 1477 1352 8940966.590895 1478 1352 -20295098.63508 1353 1353 613328698.917 1354 1353 1.621246337891e-05 1355 1353 925940.9508365 1356 1353 82577683.23799 1357 1353 -7.659196853638e-06 1358 1353 231485.2378237 1362 1353 -52678594.23377 1363 1353 -36666666.66064 1364 1353 2505785.158418 1365 1353 -140008022.8906 1366 1353 2.577900886536e-06 1367 1353 -462970.4754454 1368 1353 -52702268.47617 1369 1353 36666666.66064 1370 1353 -2702548.174055 1452 1353 -18391419.7975 1453 1353 9166666.669678 1454 1353 10018981.01522 1455 1353 -58783069.51046 1456 1353 1.639127731323e-06 1457 1353 42697451.81849 1458 1353 -19844426.42677 1459 1353 -9166666.669679 1460 1353 11321064.34898 1461 1353 -413319.0876746 1462 1353 3.017485141754e-06 1463 1353 57871.30948708 1464 1353 57430602.85087 1465 1353 3.8743019104e-06 1466 1353 231485.2378496 1467 1353 -6249019.844286 1468 1353 -7.443130016327e-06 1469 1353 57871.30949415 1473 1353 -18482764.4945 1474 1353 -9166666.669676 1475 1353 -10076852.32471 1476 1353 -59172122.54065 1477 1353 4.395842552185e-07 1478 1353 -42928937.05631 1479 1353 -19947608.24497 1480 1353 9166666.669675 1481 1353 -11378935.65847 1354 1354 525322193.6551 1355 1354 -11110930.80738 1356 1354 -7.525086402893e-06 1357 1354 -56755372.43366 1358 1354 5555465.403692 1362 1354 -36666666.66065 1363 1354 -41677781.0706 1364 1354 1263866.351621 1365 1354 2.831220626831e-06 1366 1354 21326659.08566 1367 1354 -2777732.703214 1368 1354 36666666.66064 1369 1354 -41701455.31301 1370 1354 1513866.351594 1452 1354 9166666.669678 1453 1354 -15641216.50536 1454 1354 -8177088.970282 1455 1354 6.034970283508e-07 1456 1354 -18449398.9965 1457 1354 -694433.1761458 1458 1354 -9166666.669679 1459 1354 -17094223.13462 1460 1354 8871522.146427 1461 1354 4.06801700592e-06 1462 1354 -35246583.02275 1463 1354 -32861133.64276 1464 1354 4.231929779053e-06 1465 1354 35428976.52455 1466 1354 -2777732.703215 1467 1354 -7.599592208862e-06 1468 1354 -41082283.77936 1469 1354 35638866.34597 1473 1354 -9166666.669676 1474 1354 -15732561.20235 1475 1354 -8246533.414749 1476 1354 4.619359970093e-07 1477 1354 -18838452.02672 1478 1354 -694433.1761459 1479 1354 9166666.669675 1480 1354 -17197404.95283 1481 1354 8940966.590895 1355 1355 582790450.9006 1356 1355 231485.2378239 1357 1355 5555465.403692 1358 1355 74350397.96411 1362 1355 2471062.936219 1363 1355 1236088.573861 1364 1355 -8882157.948759 1365 1355 -462970.4754449 1366 1355 -2777732.703214 1367 1355 35690216.05203 1368 1355 -2737270.396254 1369 1355 1541644.129353 1370 1355 -8945289.261872 1452 1355 10018981.01522 1453 1355 -8177088.970282 1454 1355 -16145262.77514 1455 1355 42662729.59629 1456 1355 -694433.1761458 1457 1355 -54493616.03735 1458 1355 11321064.34898 1459 1355 8871522.146428 1460 1355 -20019947.11985 1461 1355 57871.30948763 1462 1355 -32833355.865 1463 1355 -37566373.58606 1464 1355 231485.2378493 1465 1355 -2777732.703215 1466 1355 -110039912.4136 1467 1355 57871.30949473 1468 1355 35611088.56821 1469 1355 -53128242.27036 1473 1355 -10076852.32471 1474 1355 -8246533.414749 1475 1355 -16388848.63381 1476 1355 -42894214.83411 1477 1355 -694433.1761459 1478 1355 -55531090.78464 1479 1355 -11378935.65847 1480 1355 8940966.590895 1481 1355 -20295098.63508 1356 1356 665854880.679 1357 1356 36667470.52063 1358 1356 3125090.734117 1359 1356 18070347.2503 1360 1356 -36666988.20464 1361 1356 2702571.265064 1365 1356 -52678594.23377 1366 1356 -36666666.66064 1367 1356 2505785.158418 1368 1356 -140008022.8906 1369 1356 2.577900886536e-06 1370 1356 -462970.4754454 1371 1356 -52702268.47617 1372 1356 36666666.66064 1373 1356 -2702548.174055 1455 1356 -18391419.7975 1456 1356 9166666.669678 1457 1356 10018981.01522 1458 1356 -71369389.94283 1459 1356 -9166787.24867 1460 1356 42147892.99313 1464 1356 -413319.0876746 1465 1356 3.017485141754e-06 1466 1356 57871.30948708 1467 1356 76553135.92261 1468 1356 9166867.634673 1469 1356 781226.2244361 1470 1356 -18699525.19313 1471 1356 -9166747.055676 1472 1356 11379035.3452 1476 1356 -18482764.4945 1477 1356 -9166666.669676 1478 1356 -10076852.32471 1479 1356 -59172122.54065 1480 1356 4.395842552185e-07 1481 1356 -42928937.05631 1482 1356 -19947608.24497 1483 1356 9166666.669675 1484 1356 -11378935.65847 1357 1357 566847200.4901 1358 1357 -8610909.306622 1359 1357 -36667148.97663 1360 1357 -110262538.3357 1361 1357 4611016.915367 1365 1357 -36666666.66065 1366 1357 -41677781.0706 1367 1357 1263866.351621 1368 1357 2.831220626831e-06 1369 1357 21326659.08566 1370 1357 -2777732.703214 1371 1357 36666666.66064 1372 1357 -41701455.31301 1373 1357 1513866.351594 1455 1357 9166666.669678 1456 1357 -15641216.50536 1457 1357 -8177088.970282 1458 1357 -9166747.055672 1459 1357 -28285264.92641 1460 1357 7788270.809731 1464 1357 4.06801700592e-06 1465 1357 -35246583.02275 1466 1357 -32861133.64276 1467 1357 9166867.634673 1468 1357 51801215.86321 1469 1357 -2152764.494718 1470 1357 -9166787.248675 1471 1357 -50782746.60544 1472 1357 35402941.77273 1476 1357 -9166666.669676 1477 1357 -15732561.20235 1478 1357 -8246533.414749 1479 1357 4.619359970093e-07 1480 1357 -18838452.02672 1481 1357 -694433.1761459 1482 1357 9166666.669675 1483 1357 -17197404.95283 1484 1357 8940966.590895 1358 1358 591261848.0956 1359 1358 2737305.032771 1360 1358 5388803.421584 1361 1358 33925571.74906 1365 1358 2471062.936219 1366 1358 1236088.573861 1367 1358 -8882157.948759 1368 1358 -462970.4754449 1369 1358 -2777732.703214 1370 1358 35690216.05203 1371 1358 -2737270.396254 1372 1358 1541644.129353 1373 1358 -8945289.261872 1455 1358 10018981.01522 1456 1358 -8177088.970282 1457 1358 -16145262.77514 1458 1358 42113167.97979 1459 1358 7593861.729456 1460 1358 -55157692.73435 1464 1358 57871.30948763 1465 1358 -32833355.865 1466 1358 -37566373.58606 1467 1358 781320.0962051 1468 1358 -2152689.398522 1469 1358 -91946096.11431 1470 1358 11379085.18856 1471 1358 35569610.71641 1472 1358 -53430905.74636 1476 1358 -10076852.32471 1477 1358 -8246533.414749 1478 1358 -16388848.63381 1479 1358 -42894214.83411 1480 1358 -694433.1761459 1481 1358 -55531090.78464 1482 1358 -11378935.65847 1483 1358 8940966.590895 1484 1358 -20295098.63508 1359 1359 383498024.544 1360 1359 36666666.66064 1361 1359 2662179.892796 1368 1359 -52678594.23377 1369 1359 -36666666.66064 1370 1359 2505785.158418 1371 1359 -204675200.5845 1372 1359 -36666988.20463 1373 1359 -2662156.039165 1374 1359 11810466.31493 1375 1359 29333654.8725 1376 1359 -2152800.8684 1458 1359 -4579449.609996 1459 1359 11000120.58261 1460 1359 12057631.64322 1467 1359 -14225493.76444 1468 1359 -9166787.248675 1469 1359 -10019112.65448 1470 1359 35932670.30059 1471 1359 9166666.669679 1472 1359 9311563.653784 1479 1359 -18482764.4945 1480 1359 -9166666.669676 1481 1359 -10076852.32471 1482 1359 -72925641.46158 1483 1359 -9166747.055676 1484 1359 -43478968.03166 1485 1359 -7497354.851903 1486 1359 7333413.72174 1487 1359 -9080099.689708 1360 1360 328493596.9861 1361 1360 -6944376.43401 1368 1360 -36666666.66065 1369 1360 -41677781.0706 1370 1360 1263866.351621 1371 1360 -36667148.97662 1372 1360 -32338700.60373 1373 1360 -3847226.785359 1374 1360 44000482.30876 1375 1360 11810466.31493 1376 1360 2416693.76713 1458 1360 7333413.72174 1459 1360 -4579449.61 1460 1360 -6430626.286135 1467 1360 -9166747.055675 1468 1360 -46308715.17675 1469 1360 -32902986.62891 1470 1360 9166666.669678 1471 1360 22181563.40434 1472 1360 5180609.664774 1479 1360 -9166666.669676 1480 1360 -15732561.20235 1481 1360 -8246533.414749 1482 1360 -9166787.248676 1483 1360 -29841516.44517 1484 1360 -9524419.110191 1485 1360 11000120.58261 1486 1360 -7497354.8519 1487 1360 10895952.52268 1361 1361 364686604.8413 1368 1361 2471062.936219 1369 1361 1236088.573861 1370 1361 -8882157.948759 1371 1361 -2662144.112346 1372 1361 -3097217.751863 1373 1361 -5157813.372203 1374 1361 -3229201.302601 1375 1361 1611129.178087 1376 1361 31494576.83983 1458 1361 8038421.095477 1459 1361 -9645939.429201 1460 1361 -12211865.62666 1467 1361 -10019068.77473 1468 1361 -33069655.68813 1469 1361 -41500155.26984 1470 1361 -7806863.548506 1471 1361 -8513909.758068 1472 1361 -68673244.4318 1479 1361 -10076852.32471 1480 1361 -8246533.414749 1481 1361 -16388848.63381 1482 1361 -43444243.01831 1483 1361 -9329934.937092 1484 1361 -59307696.78438 1485 1361 -13620149.53456 1486 1361 7263968.348454 1487 1361 -19992946.27174 1362 1362 613328698.917 1363 1362 1.621246337891e-05 1364 1362 925940.9508365 1365 1362 82577683.23799 1366 1362 -7.659196853638e-06 1367 1362 231485.2378237 1377 1362 -140008022.8906 1378 1362 2.577900886536e-06 1379 1362 -462970.4754454 1380 1362 -52702268.47617 1381 1362 36666666.66064 1382 1362 -2702548.174055 1461 1362 -58783069.51046 1462 1362 1.639127731323e-06 1463 1362 42697451.81849 1464 1362 -19844426.42677 1465 1362 -9166666.669679 1466 1362 11321064.34898 1473 1362 57430602.85087 1474 1362 3.8743019104e-06 1475 1362 231485.2378496 1476 1362 -6249019.844286 1477 1362 -7.443130016327e-06 1478 1362 57871.30949415 1488 1362 -59172122.54065 1489 1362 4.395842552185e-07 1490 1362 -42928937.05631 1491 1362 -19947608.24497 1492 1362 9166666.669675 1493 1362 -11378935.65847 1363 1363 525322193.6551 1364 1363 -11110930.80738 1365 1363 -7.525086402893e-06 1366 1363 -56755372.43366 1367 1363 5555465.403692 1377 1363 2.831220626831e-06 1378 1363 21326659.08566 1379 1363 -2777732.703214 1380 1363 36666666.66064 1381 1363 -41701455.31301 1382 1363 1513866.351594 1461 1363 6.034970283508e-07 1462 1363 -18449398.9965 1463 1363 -694433.1761458 1464 1363 -9166666.669679 1465 1363 -17094223.13462 1466 1363 8871522.146427 1473 1363 4.231929779053e-06 1474 1363 35428976.52455 1475 1363 -2777732.703215 1476 1363 -7.599592208862e-06 1477 1363 -41082283.77936 1478 1363 35638866.34597 1488 1363 4.619359970093e-07 1489 1363 -18838452.02672 1490 1363 -694433.1761459 1491 1363 9166666.669675 1492 1363 -17197404.95283 1493 1363 8940966.590895 1364 1364 582790450.9006 1365 1364 231485.2378239 1366 1364 5555465.403692 1367 1364 74350397.96411 1377 1364 -462970.4754449 1378 1364 -2777732.703214 1379 1364 35690216.05203 1380 1364 -2737270.396254 1381 1364 1541644.129353 1382 1364 -8945289.261872 1461 1364 42662729.59629 1462 1364 -694433.1761458 1463 1364 -54493616.03735 1464 1364 11321064.34898 1465 1364 8871522.146428 1466 1364 -20019947.11985 1473 1364 231485.2378493 1474 1364 -2777732.703215 1475 1364 -110039912.4136 1476 1364 57871.30949473 1477 1364 35611088.56821 1478 1364 -53128242.27036 1488 1364 -42894214.83411 1489 1364 -694433.1761459 1490 1364 -55531090.78464 1491 1364 -11378935.65847 1492 1364 8940966.590895 1493 1364 -20295098.63508 1365 1365 613328698.917 1366 1365 1.621246337891e-05 1367 1365 925940.9508365 1368 1365 82577683.23799 1369 1365 -7.659196853638e-06 1370 1365 231485.2378237 1377 1365 -52678594.23377 1378 1365 -36666666.66064 1379 1365 2505785.158418 1380 1365 -140008022.8906 1381 1365 2.577900886536e-06 1382 1365 -462970.4754454 1383 1365 -52702268.47617 1384 1365 36666666.66064 1385 1365 -2702548.174055 1461 1365 -18391419.7975 1462 1365 9166666.669678 1463 1365 10018981.01522 1464 1365 -58783069.51046 1465 1365 1.639127731323e-06 1466 1365 42697451.81849 1467 1365 -19844426.42677 1468 1365 -9166666.669679 1469 1365 11321064.34898 1473 1365 -413319.0876746 1474 1365 3.017485141754e-06 1475 1365 57871.30948708 1476 1365 57430602.85087 1477 1365 3.8743019104e-06 1478 1365 231485.2378496 1479 1365 -6249019.844286 1480 1365 -7.443130016327e-06 1481 1365 57871.30949415 1488 1365 -18482764.4945 1489 1365 -9166666.669676 1490 1365 -10076852.32471 1491 1365 -59172122.54065 1492 1365 4.395842552185e-07 1493 1365 -42928937.05631 1494 1365 -19947608.24497 1495 1365 9166666.669675 1496 1365 -11378935.65847 1366 1366 525322193.6551 1367 1366 -11110930.80738 1368 1366 -7.525086402893e-06 1369 1366 -56755372.43366 1370 1366 5555465.403692 1377 1366 -36666666.66065 1378 1366 -41677781.0706 1379 1366 1263866.351621 1380 1366 2.831220626831e-06 1381 1366 21326659.08566 1382 1366 -2777732.703214 1383 1366 36666666.66064 1384 1366 -41701455.31301 1385 1366 1513866.351594 1461 1366 9166666.669678 1462 1366 -15641216.50536 1463 1366 -8177088.970282 1464 1366 6.034970283508e-07 1465 1366 -18449398.9965 1466 1366 -694433.1761458 1467 1366 -9166666.669679 1468 1366 -17094223.13462 1469 1366 8871522.146427 1473 1366 4.06801700592e-06 1474 1366 -35246583.02275 1475 1366 -32861133.64276 1476 1366 4.231929779053e-06 1477 1366 35428976.52455 1478 1366 -2777732.703215 1479 1366 -7.599592208862e-06 1480 1366 -41082283.77936 1481 1366 35638866.34597 1488 1366 -9166666.669676 1489 1366 -15732561.20235 1490 1366 -8246533.414749 1491 1366 4.619359970093e-07 1492 1366 -18838452.02672 1493 1366 -694433.1761459 1494 1366 9166666.669675 1495 1366 -17197404.95283 1496 1366 8940966.590895 1367 1367 582790450.9006 1368 1367 231485.2378239 1369 1367 5555465.403692 1370 1367 74350397.96411 1377 1367 2471062.936219 1378 1367 1236088.573861 1379 1367 -8882157.948759 1380 1367 -462970.4754449 1381 1367 -2777732.703214 1382 1367 35690216.05203 1383 1367 -2737270.396254 1384 1367 1541644.129353 1385 1367 -8945289.261872 1461 1367 10018981.01522 1462 1367 -8177088.970282 1463 1367 -16145262.77514 1464 1367 42662729.59629 1465 1367 -694433.1761458 1466 1367 -54493616.03735 1467 1367 11321064.34898 1468 1367 8871522.146428 1469 1367 -20019947.11985 1473 1367 57871.30948763 1474 1367 -32833355.865 1475 1367 -37566373.58606 1476 1367 231485.2378493 1477 1367 -2777732.703215 1478 1367 -110039912.4136 1479 1367 57871.30949473 1480 1367 35611088.56821 1481 1367 -53128242.27036 1488 1367 -10076852.32471 1489 1367 -8246533.414749 1490 1367 -16388848.63381 1491 1367 -42894214.83411 1492 1367 -694433.1761459 1493 1367 -55531090.78464 1494 1367 -11378935.65847 1495 1367 8940966.590895 1496 1367 -20295098.63508 1368 1368 613328698.917 1369 1368 1.621246337891e-05 1370 1368 925940.9508365 1371 1368 82577683.23799 1372 1368 -7.659196853638e-06 1373 1368 231485.2378237 1380 1368 -52678594.23377 1381 1368 -36666666.66064 1382 1368 2505785.158418 1383 1368 -140008022.8906 1384 1368 2.577900886536e-06 1385 1368 -462970.4754454 1386 1368 -52702268.47617 1387 1368 36666666.66064 1388 1368 -2702548.174055 1464 1368 -18391419.7975 1465 1368 9166666.669678 1466 1368 10018981.01522 1467 1368 -58783069.51046 1468 1368 1.639127731323e-06 1469 1368 42697451.81849 1470 1368 -19844426.42677 1471 1368 -9166666.669679 1472 1368 11321064.34898 1476 1368 -413319.0876746 1477 1368 3.017485141754e-06 1478 1368 57871.30948708 1479 1368 57430602.85087 1480 1368 3.8743019104e-06 1481 1368 231485.2378496 1482 1368 -6249019.844286 1483 1368 -7.443130016327e-06 1484 1368 57871.30949415 1491 1368 -18482764.4945 1492 1368 -9166666.669676 1493 1368 -10076852.32471 1494 1368 -59172122.54065 1495 1368 4.395842552185e-07 1496 1368 -42928937.05631 1497 1368 -19947608.24497 1498 1368 9166666.669675 1499 1368 -11378935.65847 1369 1369 525322193.6551 1370 1369 -11110930.80738 1371 1369 -7.525086402893e-06 1372 1369 -56755372.43366 1373 1369 5555465.403692 1380 1369 -36666666.66065 1381 1369 -41677781.0706 1382 1369 1263866.351621 1383 1369 2.831220626831e-06 1384 1369 21326659.08566 1385 1369 -2777732.703214 1386 1369 36666666.66064 1387 1369 -41701455.31301 1388 1369 1513866.351594 1464 1369 9166666.669678 1465 1369 -15641216.50536 1466 1369 -8177088.970282 1467 1369 6.034970283508e-07 1468 1369 -18449398.9965 1469 1369 -694433.1761458 1470 1369 -9166666.669679 1471 1369 -17094223.13462 1472 1369 8871522.146427 1476 1369 4.06801700592e-06 1477 1369 -35246583.02275 1478 1369 -32861133.64276 1479 1369 4.231929779053e-06 1480 1369 35428976.52455 1481 1369 -2777732.703215 1482 1369 -7.599592208862e-06 1483 1369 -41082283.77936 1484 1369 35638866.34597 1491 1369 -9166666.669676 1492 1369 -15732561.20235 1493 1369 -8246533.414749 1494 1369 4.619359970093e-07 1495 1369 -18838452.02672 1496 1369 -694433.1761459 1497 1369 9166666.669675 1498 1369 -17197404.95283 1499 1369 8940966.590895 1370 1370 582790450.9006 1371 1370 231485.2378239 1372 1370 5555465.403692 1373 1370 74350397.96411 1380 1370 2471062.936219 1381 1370 1236088.573861 1382 1370 -8882157.948759 1383 1370 -462970.4754449 1384 1370 -2777732.703214 1385 1370 35690216.05203 1386 1370 -2737270.396254 1387 1370 1541644.129353 1388 1370 -8945289.261872 1464 1370 10018981.01522 1465 1370 -8177088.970282 1466 1370 -16145262.77514 1467 1370 42662729.59629 1468 1370 -694433.1761458 1469 1370 -54493616.03735 1470 1370 11321064.34898 1471 1370 8871522.146428 1472 1370 -20019947.11985 1476 1370 57871.30948763 1477 1370 -32833355.865 1478 1370 -37566373.58606 1479 1370 231485.2378493 1480 1370 -2777732.703215 1481 1370 -110039912.4136 1482 1370 57871.30949473 1483 1370 35611088.56821 1484 1370 -53128242.27036 1491 1370 -10076852.32471 1492 1370 -8246533.414749 1493 1370 -16388848.63381 1494 1370 -42894214.83411 1495 1370 -694433.1761459 1496 1370 -55531090.78464 1497 1370 -11378935.65847 1498 1370 8940966.590895 1499 1370 -20295098.63508 1371 1371 665854880.679 1372 1371 36667470.52063 1373 1371 3125090.734117 1374 1371 18070347.2503 1375 1371 -36666988.20464 1376 1371 2702571.265064 1383 1371 -52678594.23377 1384 1371 -36666666.66064 1385 1371 2505785.158418 1386 1371 -140008022.8906 1387 1371 2.577900886536e-06 1388 1371 -462970.4754454 1389 1371 -52702268.47617 1390 1371 36666666.66064 1391 1371 -2702548.174055 1467 1371 -18391419.7975 1468 1371 9166666.669678 1469 1371 10018981.01522 1470 1371 -71369389.94283 1471 1371 -9166787.24867 1472 1371 42147892.99313 1479 1371 -413319.0876746 1480 1371 3.017485141754e-06 1481 1371 57871.30948708 1482 1371 76553135.92261 1483 1371 9166867.634673 1484 1371 781226.2244361 1485 1371 -18699525.19313 1486 1371 -9166747.055676 1487 1371 11379035.3452 1494 1371 -18482764.4945 1495 1371 -9166666.669676 1496 1371 -10076852.32471 1497 1371 -59172122.54065 1498 1371 4.395842552185e-07 1499 1371 -42928937.05631 1500 1371 -19947608.24497 1501 1371 9166666.669675 1502 1371 -11378935.65847 1372 1372 566847200.4901 1373 1372 -8610909.306622 1374 1372 -36667148.97663 1375 1372 -110262538.3357 1376 1372 4611016.915367 1383 1372 -36666666.66065 1384 1372 -41677781.0706 1385 1372 1263866.351621 1386 1372 2.831220626831e-06 1387 1372 21326659.08566 1388 1372 -2777732.703214 1389 1372 36666666.66064 1390 1372 -41701455.31301 1391 1372 1513866.351594 1467 1372 9166666.669678 1468 1372 -15641216.50536 1469 1372 -8177088.970282 1470 1372 -9166747.055672 1471 1372 -28285264.92641 1472 1372 7788270.809731 1479 1372 4.06801700592e-06 1480 1372 -35246583.02275 1481 1372 -32861133.64276 1482 1372 9166867.634673 1483 1372 51801215.86321 1484 1372 -2152764.494718 1485 1372 -9166787.248675 1486 1372 -50782746.60544 1487 1372 35402941.77273 1494 1372 -9166666.669676 1495 1372 -15732561.20235 1496 1372 -8246533.414749 1497 1372 4.619359970093e-07 1498 1372 -18838452.02672 1499 1372 -694433.1761459 1500 1372 9166666.669675 1501 1372 -17197404.95283 1502 1372 8940966.590895 1373 1373 591261848.0956 1374 1373 2737305.032771 1375 1373 5388803.421584 1376 1373 33925571.74906 1383 1373 2471062.936219 1384 1373 1236088.573861 1385 1373 -8882157.948759 1386 1373 -462970.4754449 1387 1373 -2777732.703214 1388 1373 35690216.05203 1389 1373 -2737270.396254 1390 1373 1541644.129353 1391 1373 -8945289.261872 1467 1373 10018981.01522 1468 1373 -8177088.970282 1469 1373 -16145262.77514 1470 1373 42113167.97979 1471 1373 7593861.729456 1472 1373 -55157692.73435 1479 1373 57871.30948763 1480 1373 -32833355.865 1481 1373 -37566373.58606 1482 1373 781320.0962051 1483 1373 -2152689.398522 1484 1373 -91946096.11431 1485 1373 11379085.18856 1486 1373 35569610.71641 1487 1373 -53430905.74636 1494 1373 -10076852.32471 1495 1373 -8246533.414749 1496 1373 -16388848.63381 1497 1373 -42894214.83411 1498 1373 -694433.1761459 1499 1373 -55531090.78464 1500 1373 -11378935.65847 1501 1373 8940966.590895 1502 1373 -20295098.63508 1374 1374 383498024.544 1375 1374 36666666.66064 1376 1374 2662179.892796 1386 1374 -52678594.23377 1387 1374 -36666666.66064 1388 1374 2505785.158418 1389 1374 -204675200.5845 1390 1374 -36666988.20463 1391 1374 -2662156.039165 1392 1374 11810466.31493 1393 1374 29333654.8725 1394 1374 -2152800.8684 1470 1374 -4579449.609996 1471 1374 11000120.58261 1472 1374 12057631.64322 1482 1374 -14225493.76444 1483 1374 -9166787.248675 1484 1374 -10019112.65448 1485 1374 35932670.30059 1486 1374 9166666.669679 1487 1374 9311563.653784 1497 1374 -18482764.4945 1498 1374 -9166666.669676 1499 1374 -10076852.32471 1500 1374 -72925641.46158 1501 1374 -9166747.055676 1502 1374 -43478968.03166 1503 1374 -7497354.851903 1504 1374 7333413.72174 1505 1374 -9080099.689708 1375 1375 328493596.9861 1376 1375 -6944376.43401 1386 1375 -36666666.66065 1387 1375 -41677781.0706 1388 1375 1263866.351621 1389 1375 -36667148.97662 1390 1375 -32338700.60373 1391 1375 -3847226.785359 1392 1375 44000482.30876 1393 1375 11810466.31493 1394 1375 2416693.76713 1470 1375 7333413.72174 1471 1375 -4579449.61 1472 1375 -6430626.286135 1482 1375 -9166747.055675 1483 1375 -46308715.17675 1484 1375 -32902986.62891 1485 1375 9166666.669678 1486 1375 22181563.40434 1487 1375 5180609.664774 1497 1375 -9166666.669676 1498 1375 -15732561.20235 1499 1375 -8246533.414749 1500 1375 -9166787.248676 1501 1375 -29841516.44517 1502 1375 -9524419.110191 1503 1375 11000120.58261 1504 1375 -7497354.8519 1505 1375 10895952.52268 1376 1376 364686604.8413 1386 1376 2471062.936219 1387 1376 1236088.573861 1388 1376 -8882157.948759 1389 1376 -2662144.112346 1390 1376 -3097217.751863 1391 1376 -5157813.372203 1392 1376 -3229201.302601 1393 1376 1611129.178087 1394 1376 31494576.83983 1470 1376 8038421.095477 1471 1376 -9645939.429201 1472 1376 -12211865.62666 1482 1376 -10019068.77473 1483 1376 -33069655.68813 1484 1376 -41500155.26984 1485 1376 -7806863.548506 1486 1376 -8513909.758068 1487 1376 -68673244.4318 1497 1376 -10076852.32471 1498 1376 -8246533.414749 1499 1376 -16388848.63381 1500 1376 -43444243.01831 1501 1376 -9329934.937092 1502 1376 -59307696.78438 1503 1376 -13620149.53456 1504 1376 7263968.348454 1505 1376 -19992946.27174 1377 1377 613328698.917 1378 1377 1.621246337891e-05 1379 1377 925940.9508365 1380 1377 82577683.23799 1381 1377 -7.659196853638e-06 1382 1377 231485.2378237 1395 1377 -140008022.8906 1396 1377 2.577900886536e-06 1397 1377 -462970.4754454 1398 1377 -52702268.47617 1399 1377 36666666.66064 1400 1377 -2702548.174055 1473 1377 -58783069.51046 1474 1377 1.639127731323e-06 1475 1377 42697451.81849 1476 1377 -19844426.42677 1477 1377 -9166666.669679 1478 1377 11321064.34898 1488 1377 57430602.85087 1489 1377 3.8743019104e-06 1490 1377 231485.2378496 1491 1377 -6249019.844286 1492 1377 -7.443130016327e-06 1493 1377 57871.30949415 1506 1377 -59172122.54065 1507 1377 4.395842552185e-07 1508 1377 -42928937.05631 1509 1377 -19947608.24497 1510 1377 9166666.669675 1511 1377 -11378935.65847 1378 1378 525322193.6551 1379 1378 -11110930.80738 1380 1378 -7.525086402893e-06 1381 1378 -56755372.43366 1382 1378 5555465.403692 1395 1378 2.831220626831e-06 1396 1378 21326659.08566 1397 1378 -2777732.703214 1398 1378 36666666.66064 1399 1378 -41701455.31301 1400 1378 1513866.351594 1473 1378 6.034970283508e-07 1474 1378 -18449398.9965 1475 1378 -694433.1761458 1476 1378 -9166666.669679 1477 1378 -17094223.13462 1478 1378 8871522.146427 1488 1378 4.231929779053e-06 1489 1378 35428976.52455 1490 1378 -2777732.703215 1491 1378 -7.599592208862e-06 1492 1378 -41082283.77936 1493 1378 35638866.34597 1506 1378 4.619359970093e-07 1507 1378 -18838452.02672 1508 1378 -694433.1761459 1509 1378 9166666.669675 1510 1378 -17197404.95283 1511 1378 8940966.590895 1379 1379 582790450.9006 1380 1379 231485.2378239 1381 1379 5555465.403692 1382 1379 74350397.96411 1395 1379 -462970.4754449 1396 1379 -2777732.703214 1397 1379 35690216.05203 1398 1379 -2737270.396254 1399 1379 1541644.129353 1400 1379 -8945289.261872 1473 1379 42662729.59629 1474 1379 -694433.1761458 1475 1379 -54493616.03735 1476 1379 11321064.34898 1477 1379 8871522.146428 1478 1379 -20019947.11985 1488 1379 231485.2378493 1489 1379 -2777732.703215 1490 1379 -110039912.4136 1491 1379 57871.30949473 1492 1379 35611088.56821 1493 1379 -53128242.27036 1506 1379 -42894214.83411 1507 1379 -694433.1761459 1508 1379 -55531090.78464 1509 1379 -11378935.65847 1510 1379 8940966.590895 1511 1379 -20295098.63508 1380 1380 613328698.917 1381 1380 1.621246337891e-05 1382 1380 925940.9508365 1383 1380 82577683.23799 1384 1380 -7.659196853638e-06 1385 1380 231485.2378237 1395 1380 -52678594.23377 1396 1380 -36666666.66064 1397 1380 2505785.158418 1398 1380 -140008022.8906 1399 1380 2.577900886536e-06 1400 1380 -462970.4754454 1401 1380 -52702268.47617 1402 1380 36666666.66064 1403 1380 -2702548.174055 1473 1380 -18391419.7975 1474 1380 9166666.669678 1475 1380 10018981.01522 1476 1380 -58783069.51046 1477 1380 1.639127731323e-06 1478 1380 42697451.81849 1479 1380 -19844426.42677 1480 1380 -9166666.669679 1481 1380 11321064.34898 1488 1380 -413319.0876746 1489 1380 3.017485141754e-06 1490 1380 57871.30948708 1491 1380 57430602.85087 1492 1380 3.8743019104e-06 1493 1380 231485.2378496 1494 1380 -6249019.844286 1495 1380 -7.443130016327e-06 1496 1380 57871.30949415 1506 1380 -18482764.4945 1507 1380 -9166666.669676 1508 1380 -10076852.32471 1509 1380 -59172122.54065 1510 1380 4.395842552185e-07 1511 1380 -42928937.05631 1512 1380 -19947608.24497 1513 1380 9166666.669675 1514 1380 -11378935.65847 1381 1381 525322193.6551 1382 1381 -11110930.80738 1383 1381 -7.525086402893e-06 1384 1381 -56755372.43366 1385 1381 5555465.403692 1395 1381 -36666666.66065 1396 1381 -41677781.0706 1397 1381 1263866.351621 1398 1381 2.831220626831e-06 1399 1381 21326659.08566 1400 1381 -2777732.703214 1401 1381 36666666.66064 1402 1381 -41701455.31301 1403 1381 1513866.351594 1473 1381 9166666.669678 1474 1381 -15641216.50536 1475 1381 -8177088.970282 1476 1381 6.034970283508e-07 1477 1381 -18449398.9965 1478 1381 -694433.1761458 1479 1381 -9166666.669679 1480 1381 -17094223.13462 1481 1381 8871522.146427 1488 1381 4.06801700592e-06 1489 1381 -35246583.02275 1490 1381 -32861133.64276 1491 1381 4.231929779053e-06 1492 1381 35428976.52455 1493 1381 -2777732.703215 1494 1381 -7.599592208862e-06 1495 1381 -41082283.77936 1496 1381 35638866.34597 1506 1381 -9166666.669676 1507 1381 -15732561.20235 1508 1381 -8246533.414749 1509 1381 4.619359970093e-07 1510 1381 -18838452.02672 1511 1381 -694433.1761459 1512 1381 9166666.669675 1513 1381 -17197404.95283 1514 1381 8940966.590895 1382 1382 582790450.9006 1383 1382 231485.2378239 1384 1382 5555465.403692 1385 1382 74350397.96411 1395 1382 2471062.936219 1396 1382 1236088.573861 1397 1382 -8882157.948759 1398 1382 -462970.4754449 1399 1382 -2777732.703214 1400 1382 35690216.05203 1401 1382 -2737270.396254 1402 1382 1541644.129353 1403 1382 -8945289.261872 1473 1382 10018981.01522 1474 1382 -8177088.970282 1475 1382 -16145262.77514 1476 1382 42662729.59629 1477 1382 -694433.1761458 1478 1382 -54493616.03735 1479 1382 11321064.34898 1480 1382 8871522.146428 1481 1382 -20019947.11985 1488 1382 57871.30948763 1489 1382 -32833355.865 1490 1382 -37566373.58606 1491 1382 231485.2378493 1492 1382 -2777732.703215 1493 1382 -110039912.4136 1494 1382 57871.30949473 1495 1382 35611088.56821 1496 1382 -53128242.27036 1506 1382 -10076852.32471 1507 1382 -8246533.414749 1508 1382 -16388848.63381 1509 1382 -42894214.83411 1510 1382 -694433.1761459 1511 1382 -55531090.78464 1512 1382 -11378935.65847 1513 1382 8940966.590895 1514 1382 -20295098.63508 1383 1383 613328698.917 1384 1383 1.621246337891e-05 1385 1383 925940.9508365 1386 1383 82577683.23799 1387 1383 -7.659196853638e-06 1388 1383 231485.2378237 1398 1383 -52678594.23377 1399 1383 -36666666.66064 1400 1383 2505785.158418 1401 1383 -140008022.8906 1402 1383 2.577900886536e-06 1403 1383 -462970.4754454 1404 1383 -52702268.47617 1405 1383 36666666.66064 1406 1383 -2702548.174055 1476 1383 -18391419.7975 1477 1383 9166666.669678 1478 1383 10018981.01522 1479 1383 -58783069.51046 1480 1383 1.639127731323e-06 1481 1383 42697451.81849 1482 1383 -19844426.42677 1483 1383 -9166666.669679 1484 1383 11321064.34898 1491 1383 -413319.0876746 1492 1383 3.017485141754e-06 1493 1383 57871.30948708 1494 1383 57430602.85087 1495 1383 3.8743019104e-06 1496 1383 231485.2378496 1497 1383 -6249019.844286 1498 1383 -7.443130016327e-06 1499 1383 57871.30949415 1509 1383 -18482764.4945 1510 1383 -9166666.669676 1511 1383 -10076852.32471 1512 1383 -59172122.54065 1513 1383 4.395842552185e-07 1514 1383 -42928937.05631 1515 1383 -19947608.24497 1516 1383 9166666.669675 1517 1383 -11378935.65847 1384 1384 525322193.6551 1385 1384 -11110930.80738 1386 1384 -7.525086402893e-06 1387 1384 -56755372.43366 1388 1384 5555465.403692 1398 1384 -36666666.66065 1399 1384 -41677781.0706 1400 1384 1263866.351621 1401 1384 2.831220626831e-06 1402 1384 21326659.08566 1403 1384 -2777732.703214 1404 1384 36666666.66064 1405 1384 -41701455.31301 1406 1384 1513866.351594 1476 1384 9166666.669678 1477 1384 -15641216.50536 1478 1384 -8177088.970282 1479 1384 6.034970283508e-07 1480 1384 -18449398.9965 1481 1384 -694433.1761458 1482 1384 -9166666.669679 1483 1384 -17094223.13462 1484 1384 8871522.146427 1491 1384 4.06801700592e-06 1492 1384 -35246583.02275 1493 1384 -32861133.64276 1494 1384 4.231929779053e-06 1495 1384 35428976.52455 1496 1384 -2777732.703215 1497 1384 -7.599592208862e-06 1498 1384 -41082283.77936 1499 1384 35638866.34597 1509 1384 -9166666.669676 1510 1384 -15732561.20235 1511 1384 -8246533.414749 1512 1384 4.619359970093e-07 1513 1384 -18838452.02672 1514 1384 -694433.1761459 1515 1384 9166666.669675 1516 1384 -17197404.95283 1517 1384 8940966.590895 1385 1385 582790450.9006 1386 1385 231485.2378239 1387 1385 5555465.403692 1388 1385 74350397.96411 1398 1385 2471062.936219 1399 1385 1236088.573861 1400 1385 -8882157.948759 1401 1385 -462970.4754449 1402 1385 -2777732.703214 1403 1385 35690216.05203 1404 1385 -2737270.396254 1405 1385 1541644.129353 1406 1385 -8945289.261872 1476 1385 10018981.01522 1477 1385 -8177088.970282 1478 1385 -16145262.77514 1479 1385 42662729.59629 1480 1385 -694433.1761458 1481 1385 -54493616.03735 1482 1385 11321064.34898 1483 1385 8871522.146428 1484 1385 -20019947.11985 1491 1385 57871.30948763 1492 1385 -32833355.865 1493 1385 -37566373.58606 1494 1385 231485.2378493 1495 1385 -2777732.703215 1496 1385 -110039912.4136 1497 1385 57871.30949473 1498 1385 35611088.56821 1499 1385 -53128242.27036 1509 1385 -10076852.32471 1510 1385 -8246533.414749 1511 1385 -16388848.63381 1512 1385 -42894214.83411 1513 1385 -694433.1761459 1514 1385 -55531090.78464 1515 1385 -11378935.65847 1516 1385 8940966.590895 1517 1385 -20295098.63508 1386 1386 613328698.917 1387 1386 1.621246337891e-05 1388 1386 925940.9508365 1389 1386 82577683.23799 1390 1386 -7.659196853638e-06 1391 1386 231485.2378237 1401 1386 -52678594.23377 1402 1386 -36666666.66064 1403 1386 2505785.158418 1404 1386 -140008022.8906 1405 1386 2.577900886536e-06 1406 1386 -462970.4754454 1407 1386 -52702268.47617 1408 1386 36666666.66064 1409 1386 -2702548.174055 1479 1386 -18391419.7975 1480 1386 9166666.669678 1481 1386 10018981.01522 1482 1386 -58783069.51046 1483 1386 1.639127731323e-06 1484 1386 42697451.81849 1485 1386 -19844426.42677 1486 1386 -9166666.669679 1487 1386 11321064.34898 1494 1386 -413319.0876746 1495 1386 3.017485141754e-06 1496 1386 57871.30948708 1497 1386 57430602.85087 1498 1386 3.8743019104e-06 1499 1386 231485.2378496 1500 1386 -6249019.844286 1501 1386 -7.443130016327e-06 1502 1386 57871.30949415 1512 1386 -18482764.4945 1513 1386 -9166666.669676 1514 1386 -10076852.32471 1515 1386 -59172122.54065 1516 1386 4.395842552185e-07 1517 1386 -42928937.05631 1518 1386 -19947608.24497 1519 1386 9166666.669675 1520 1386 -11378935.65847 1387 1387 525322193.6551 1388 1387 -11110930.80738 1389 1387 -7.525086402893e-06 1390 1387 -56755372.43366 1391 1387 5555465.403692 1401 1387 -36666666.66065 1402 1387 -41677781.0706 1403 1387 1263866.351621 1404 1387 2.831220626831e-06 1405 1387 21326659.08566 1406 1387 -2777732.703214 1407 1387 36666666.66064 1408 1387 -41701455.31301 1409 1387 1513866.351594 1479 1387 9166666.669678 1480 1387 -15641216.50536 1481 1387 -8177088.970282 1482 1387 6.034970283508e-07 1483 1387 -18449398.9965 1484 1387 -694433.1761458 1485 1387 -9166666.669679 1486 1387 -17094223.13462 1487 1387 8871522.146427 1494 1387 4.06801700592e-06 1495 1387 -35246583.02275 1496 1387 -32861133.64276 1497 1387 4.231929779053e-06 1498 1387 35428976.52455 1499 1387 -2777732.703215 1500 1387 -7.599592208862e-06 1501 1387 -41082283.77936 1502 1387 35638866.34597 1512 1387 -9166666.669676 1513 1387 -15732561.20235 1514 1387 -8246533.414749 1515 1387 4.619359970093e-07 1516 1387 -18838452.02672 1517 1387 -694433.1761459 1518 1387 9166666.669675 1519 1387 -17197404.95283 1520 1387 8940966.590895 1388 1388 582790450.9006 1389 1388 231485.2378239 1390 1388 5555465.403692 1391 1388 74350397.96411 1401 1388 2471062.936219 1402 1388 1236088.573861 1403 1388 -8882157.948759 1404 1388 -462970.4754449 1405 1388 -2777732.703214 1406 1388 35690216.05203 1407 1388 -2737270.396254 1408 1388 1541644.129353 1409 1388 -8945289.261872 1479 1388 10018981.01522 1480 1388 -8177088.970282 1481 1388 -16145262.77514 1482 1388 42662729.59629 1483 1388 -694433.1761458 1484 1388 -54493616.03735 1485 1388 11321064.34898 1486 1388 8871522.146428 1487 1388 -20019947.11985 1494 1388 57871.30948763 1495 1388 -32833355.865 1496 1388 -37566373.58606 1497 1388 231485.2378493 1498 1388 -2777732.703215 1499 1388 -110039912.4136 1500 1388 57871.30949473 1501 1388 35611088.56821 1502 1388 -53128242.27036 1512 1388 -10076852.32471 1513 1388 -8246533.414749 1514 1388 -16388848.63381 1515 1388 -42894214.83411 1516 1388 -694433.1761459 1517 1388 -55531090.78464 1518 1388 -11378935.65847 1519 1388 8940966.590895 1520 1388 -20295098.63508 1389 1389 665854880.679 1390 1389 36667470.52063 1391 1389 3125090.734117 1392 1389 18070347.2503 1393 1389 -36666988.20464 1394 1389 2702571.265064 1404 1389 -52678594.23377 1405 1389 -36666666.66064 1406 1389 2505785.158418 1407 1389 -140008022.8906 1408 1389 2.577900886536e-06 1409 1389 -462970.4754454 1410 1389 -52702268.47617 1411 1389 36666666.66064 1412 1389 -2702548.174055 1482 1389 -18391419.7975 1483 1389 9166666.669678 1484 1389 10018981.01522 1485 1389 -71369389.94283 1486 1389 -9166787.24867 1487 1389 42147892.99313 1497 1389 -413319.0876746 1498 1389 3.017485141754e-06 1499 1389 57871.30948708 1500 1389 76553135.92261 1501 1389 9166867.634673 1502 1389 781226.2244361 1503 1389 -18699525.19313 1504 1389 -9166747.055676 1505 1389 11379035.3452 1515 1389 -18482764.4945 1516 1389 -9166666.669676 1517 1389 -10076852.32471 1518 1389 -59172122.54065 1519 1389 4.395842552185e-07 1520 1389 -42928937.05631 1521 1389 -19947608.24497 1522 1389 9166666.669675 1523 1389 -11378935.65847 1390 1390 566847200.4901 1391 1390 -8610909.306622 1392 1390 -36667148.97663 1393 1390 -110262538.3357 1394 1390 4611016.915367 1404 1390 -36666666.66065 1405 1390 -41677781.0706 1406 1390 1263866.351621 1407 1390 2.831220626831e-06 1408 1390 21326659.08566 1409 1390 -2777732.703214 1410 1390 36666666.66064 1411 1390 -41701455.31301 1412 1390 1513866.351594 1482 1390 9166666.669678 1483 1390 -15641216.50536 1484 1390 -8177088.970282 1485 1390 -9166747.055672 1486 1390 -28285264.92641 1487 1390 7788270.809731 1497 1390 4.06801700592e-06 1498 1390 -35246583.02275 1499 1390 -32861133.64276 1500 1390 9166867.634673 1501 1390 51801215.86321 1502 1390 -2152764.494718 1503 1390 -9166787.248675 1504 1390 -50782746.60544 1505 1390 35402941.77273 1515 1390 -9166666.669676 1516 1390 -15732561.20235 1517 1390 -8246533.414749 1518 1390 4.619359970093e-07 1519 1390 -18838452.02672 1520 1390 -694433.1761459 1521 1390 9166666.669675 1522 1390 -17197404.95283 1523 1390 8940966.590895 1391 1391 591261848.0956 1392 1391 2737305.032771 1393 1391 5388803.421584 1394 1391 33925571.74906 1404 1391 2471062.936219 1405 1391 1236088.573861 1406 1391 -8882157.948759 1407 1391 -462970.4754449 1408 1391 -2777732.703214 1409 1391 35690216.05203 1410 1391 -2737270.396254 1411 1391 1541644.129353 1412 1391 -8945289.261872 1482 1391 10018981.01522 1483 1391 -8177088.970282 1484 1391 -16145262.77514 1485 1391 42113167.97979 1486 1391 7593861.729456 1487 1391 -55157692.73435 1497 1391 57871.30948763 1498 1391 -32833355.865 1499 1391 -37566373.58606 1500 1391 781320.0962051 1501 1391 -2152689.398522 1502 1391 -91946096.11431 1503 1391 11379085.18856 1504 1391 35569610.71641 1505 1391 -53430905.74636 1515 1391 -10076852.32471 1516 1391 -8246533.414749 1517 1391 -16388848.63381 1518 1391 -42894214.83411 1519 1391 -694433.1761459 1520 1391 -55531090.78464 1521 1391 -11378935.65847 1522 1391 8940966.590895 1523 1391 -20295098.63508 1392 1392 826502950.7467 1393 1392 -32829142.2168 1394 1392 -1574339.432285 1407 1392 -52678594.23377 1408 1392 -36666666.66064 1409 1392 2505785.158418 1410 1392 -43717734.4447 1411 1392 32816830.06734 1412 1392 -231059.6481135 1413 1392 -637569397.5693 1414 1392 29345645.47798 1415 1392 -416821.6161519 1485 1392 -4579449.609996 1486 1392 11000120.58261 1487 1392 12057631.64322 1500 1392 -14225493.76444 1501 1392 -9166787.248675 1502 1392 -10019112.65448 1503 1392 163714858.8002 1504 1392 -8207285.558244 1505 1392 4241855.317219 1518 1392 -18482764.4945 1519 1392 -9166666.669676 1520 1392 -10076852.32471 1521 1392 -23632031.88637 1522 1392 8204207.520878 1523 1392 -22609970.36319 1524 1392 -160108670.9846 1525 1392 7336411.37311 1526 1392 -520782.4807296 1393 1393 1866175254.747 1394 1393 -20243144.64085 1407 1393 -36666666.66065 1408 1393 -41677781.0706 1409 1393 1263866.351621 1410 1393 32810673.99266 1411 1393 97413180.27061 1412 1393 -1903194.680072 1413 1393 44018468.21692 1414 1393 -1701040543.862 1415 1393 13714990.87775 1485 1393 7333413.72174 1486 1393 -4579449.61 1487 1393 -6430626.286135 1500 1393 -9166747.055675 1501 1393 -46308715.17675 1502 1393 -32902986.62891 1503 1393 -8207285.558244 1504 1393 423632934.9284 1505 1393 -1353225.115187 1518 1393 -9166666.669676 1519 1393 -15732561.20235 1520 1393 -8246533.414749 1521 1393 8202668.502206 1522 1393 11650696.80984 1523 1393 7172753.555873 1524 1393 11004617.05965 1525 1393 -425976457.6889 1526 1393 20227336.59943 1394 1394 856594529.5136 1407 1394 2471062.936219 1408 1394 1236088.573861 1409 1394 -8882157.948759 1410 1394 -1133759.188307 1411 1394 -1875517.295844 1412 1394 50029495.24259 1413 1394 -625232.4242272 1414 1394 13603538.44251 1415 1394 -636713913.8918 1485 1394 8038421.095477 1486 1394 -9645939.429201 1487 1394 -12211865.62666 1500 1394 -10019068.77473 1501 1394 -33069655.68813 1502 1394 -41500155.26984 1503 1394 -4768610.272799 1504 1394 -8558910.345734 1505 1394 99719621.84851 1518 1394 -10076852.32471 1519 1394 -8246533.414749 1520 1394 -16388848.63381 1521 1394 -22783562.29616 1522 1394 7202053.220155 1523 1394 -21366221.56937 1524 1394 -781173.7210934 1525 1394 20019063.72315 1526 1394 -161088669.2548 1395 1395 613328698.917 1396 1395 1.621246337891e-05 1397 1395 925940.9508365 1398 1395 82577683.23799 1399 1395 -7.659196853638e-06 1400 1395 231485.2378237 1416 1395 -140008022.8906 1417 1395 2.577900886536e-06 1418 1395 -462970.4754454 1419 1395 -52702268.47617 1420 1395 36666666.66064 1421 1395 -2702548.174055 1488 1395 -58783069.51046 1489 1395 1.639127731323e-06 1490 1395 42697451.81849 1491 1395 -19844426.42677 1492 1395 -9166666.669679 1493 1395 11321064.34898 1506 1395 57430602.85087 1507 1395 3.8743019104e-06 1508 1395 231485.2378496 1509 1395 -6249019.844286 1510 1395 -7.443130016327e-06 1511 1395 57871.30949415 1527 1395 -59172122.54065 1528 1395 4.395842552185e-07 1529 1395 -42928937.05631 1530 1395 -19947608.24497 1531 1395 9166666.669675 1532 1395 -11378935.65847 1396 1396 525322193.6551 1397 1396 -11110930.80738 1398 1396 -7.525086402893e-06 1399 1396 -56755372.43366 1400 1396 5555465.403692 1416 1396 2.831220626831e-06 1417 1396 21326659.08566 1418 1396 -2777732.703214 1419 1396 36666666.66064 1420 1396 -41701455.31301 1421 1396 1513866.351594 1488 1396 6.034970283508e-07 1489 1396 -18449398.9965 1490 1396 -694433.1761458 1491 1396 -9166666.669679 1492 1396 -17094223.13462 1493 1396 8871522.146427 1506 1396 4.231929779053e-06 1507 1396 35428976.52455 1508 1396 -2777732.703215 1509 1396 -7.599592208862e-06 1510 1396 -41082283.77936 1511 1396 35638866.34597 1527 1396 4.619359970093e-07 1528 1396 -18838452.02672 1529 1396 -694433.1761459 1530 1396 9166666.669675 1531 1396 -17197404.95283 1532 1396 8940966.590895 1397 1397 582790450.9006 1398 1397 231485.2378239 1399 1397 5555465.403692 1400 1397 74350397.96411 1416 1397 -462970.4754449 1417 1397 -2777732.703214 1418 1397 35690216.05203 1419 1397 -2737270.396254 1420 1397 1541644.129353 1421 1397 -8945289.261872 1488 1397 42662729.59629 1489 1397 -694433.1761458 1490 1397 -54493616.03735 1491 1397 11321064.34898 1492 1397 8871522.146428 1493 1397 -20019947.11985 1506 1397 231485.2378493 1507 1397 -2777732.703215 1508 1397 -110039912.4136 1509 1397 57871.30949473 1510 1397 35611088.56821 1511 1397 -53128242.27036 1527 1397 -42894214.83411 1528 1397 -694433.1761459 1529 1397 -55531090.78464 1530 1397 -11378935.65847 1531 1397 8940966.590895 1532 1397 -20295098.63508 1398 1398 613328698.917 1399 1398 1.621246337891e-05 1400 1398 925940.9508365 1401 1398 82577683.23799 1402 1398 -7.659196853638e-06 1403 1398 231485.2378237 1416 1398 -52678594.23377 1417 1398 -36666666.66064 1418 1398 2505785.158418 1419 1398 -140008022.8906 1420 1398 2.577900886536e-06 1421 1398 -462970.4754454 1422 1398 -52702268.47617 1423 1398 36666666.66064 1424 1398 -2702548.174055 1488 1398 -18391419.7975 1489 1398 9166666.669678 1490 1398 10018981.01522 1491 1398 -58783069.51046 1492 1398 1.639127731323e-06 1493 1398 42697451.81849 1494 1398 -19844426.42677 1495 1398 -9166666.669679 1496 1398 11321064.34898 1506 1398 -413319.0876746 1507 1398 3.017485141754e-06 1508 1398 57871.30948708 1509 1398 57430602.85087 1510 1398 3.8743019104e-06 1511 1398 231485.2378496 1512 1398 -6249019.844286 1513 1398 -7.443130016327e-06 1514 1398 57871.30949415 1527 1398 -18482764.4945 1528 1398 -9166666.669676 1529 1398 -10076852.32471 1530 1398 -59172122.54065 1531 1398 4.395842552185e-07 1532 1398 -42928937.05631 1533 1398 -19947608.24497 1534 1398 9166666.669675 1535 1398 -11378935.65847 1399 1399 525322193.6551 1400 1399 -11110930.80738 1401 1399 -7.525086402893e-06 1402 1399 -56755372.43366 1403 1399 5555465.403692 1416 1399 -36666666.66065 1417 1399 -41677781.0706 1418 1399 1263866.351621 1419 1399 2.831220626831e-06 1420 1399 21326659.08566 1421 1399 -2777732.703214 1422 1399 36666666.66064 1423 1399 -41701455.31301 1424 1399 1513866.351594 1488 1399 9166666.669678 1489 1399 -15641216.50536 1490 1399 -8177088.970282 1491 1399 6.034970283508e-07 1492 1399 -18449398.9965 1493 1399 -694433.1761458 1494 1399 -9166666.669679 1495 1399 -17094223.13462 1496 1399 8871522.146427 1506 1399 4.06801700592e-06 1507 1399 -35246583.02275 1508 1399 -32861133.64276 1509 1399 4.231929779053e-06 1510 1399 35428976.52455 1511 1399 -2777732.703215 1512 1399 -7.599592208862e-06 1513 1399 -41082283.77936 1514 1399 35638866.34597 1527 1399 -9166666.669676 1528 1399 -15732561.20235 1529 1399 -8246533.414749 1530 1399 4.619359970093e-07 1531 1399 -18838452.02672 1532 1399 -694433.1761459 1533 1399 9166666.669675 1534 1399 -17197404.95283 1535 1399 8940966.590895 1400 1400 582790450.9006 1401 1400 231485.2378239 1402 1400 5555465.403692 1403 1400 74350397.96411 1416 1400 2471062.936219 1417 1400 1236088.573861 1418 1400 -8882157.948759 1419 1400 -462970.4754449 1420 1400 -2777732.703214 1421 1400 35690216.05203 1422 1400 -2737270.396254 1423 1400 1541644.129353 1424 1400 -8945289.261872 1488 1400 10018981.01522 1489 1400 -8177088.970282 1490 1400 -16145262.77514 1491 1400 42662729.59629 1492 1400 -694433.1761458 1493 1400 -54493616.03735 1494 1400 11321064.34898 1495 1400 8871522.146428 1496 1400 -20019947.11985 1506 1400 57871.30948763 1507 1400 -32833355.865 1508 1400 -37566373.58606 1509 1400 231485.2378493 1510 1400 -2777732.703215 1511 1400 -110039912.4136 1512 1400 57871.30949473 1513 1400 35611088.56821 1514 1400 -53128242.27036 1527 1400 -10076852.32471 1528 1400 -8246533.414749 1529 1400 -16388848.63381 1530 1400 -42894214.83411 1531 1400 -694433.1761459 1532 1400 -55531090.78464 1533 1400 -11378935.65847 1534 1400 8940966.590895 1535 1400 -20295098.63508 1401 1401 613328698.917 1402 1401 1.621246337891e-05 1403 1401 925940.9508365 1404 1401 82577683.23799 1405 1401 -7.659196853638e-06 1406 1401 231485.2378237 1419 1401 -52678594.23377 1420 1401 -36666666.66064 1421 1401 2505785.158418 1422 1401 -140008022.8906 1423 1401 2.577900886536e-06 1424 1401 -462970.4754454 1425 1401 -52702268.47617 1426 1401 36666666.66064 1427 1401 -2702548.174055 1491 1401 -18391419.7975 1492 1401 9166666.669678 1493 1401 10018981.01522 1494 1401 -58783069.51046 1495 1401 1.639127731323e-06 1496 1401 42697451.81849 1497 1401 -19844426.42677 1498 1401 -9166666.669679 1499 1401 11321064.34898 1509 1401 -413319.0876746 1510 1401 3.017485141754e-06 1511 1401 57871.30948708 1512 1401 57430602.85087 1513 1401 3.8743019104e-06 1514 1401 231485.2378496 1515 1401 -6249019.844286 1516 1401 -7.443130016327e-06 1517 1401 57871.30949415 1530 1401 -18482764.4945 1531 1401 -9166666.669676 1532 1401 -10076852.32471 1533 1401 -59172122.54065 1534 1401 4.395842552185e-07 1535 1401 -42928937.05631 1536 1401 -19947608.24497 1537 1401 9166666.669675 1538 1401 -11378935.65847 1402 1402 525322193.6551 1403 1402 -11110930.80738 1404 1402 -7.525086402893e-06 1405 1402 -56755372.43366 1406 1402 5555465.403692 1419 1402 -36666666.66065 1420 1402 -41677781.0706 1421 1402 1263866.351621 1422 1402 2.831220626831e-06 1423 1402 21326659.08566 1424 1402 -2777732.703214 1425 1402 36666666.66064 1426 1402 -41701455.31301 1427 1402 1513866.351594 1491 1402 9166666.669678 1492 1402 -15641216.50536 1493 1402 -8177088.970282 1494 1402 6.034970283508e-07 1495 1402 -18449398.9965 1496 1402 -694433.1761458 1497 1402 -9166666.669679 1498 1402 -17094223.13462 1499 1402 8871522.146427 1509 1402 4.06801700592e-06 1510 1402 -35246583.02275 1511 1402 -32861133.64276 1512 1402 4.231929779053e-06 1513 1402 35428976.52455 1514 1402 -2777732.703215 1515 1402 -7.599592208862e-06 1516 1402 -41082283.77936 1517 1402 35638866.34597 1530 1402 -9166666.669676 1531 1402 -15732561.20235 1532 1402 -8246533.414749 1533 1402 4.619359970093e-07 1534 1402 -18838452.02672 1535 1402 -694433.1761459 1536 1402 9166666.669675 1537 1402 -17197404.95283 1538 1402 8940966.590895 1403 1403 582790450.9006 1404 1403 231485.2378239 1405 1403 5555465.403692 1406 1403 74350397.96411 1419 1403 2471062.936219 1420 1403 1236088.573861 1421 1403 -8882157.948759 1422 1403 -462970.4754449 1423 1403 -2777732.703214 1424 1403 35690216.05203 1425 1403 -2737270.396254 1426 1403 1541644.129353 1427 1403 -8945289.261872 1491 1403 10018981.01522 1492 1403 -8177088.970282 1493 1403 -16145262.77514 1494 1403 42662729.59629 1495 1403 -694433.1761458 1496 1403 -54493616.03735 1497 1403 11321064.34898 1498 1403 8871522.146428 1499 1403 -20019947.11985 1509 1403 57871.30948763 1510 1403 -32833355.865 1511 1403 -37566373.58606 1512 1403 231485.2378493 1513 1403 -2777732.703215 1514 1403 -110039912.4136 1515 1403 57871.30949473 1516 1403 35611088.56821 1517 1403 -53128242.27036 1530 1403 -10076852.32471 1531 1403 -8246533.414749 1532 1403 -16388848.63381 1533 1403 -42894214.83411 1534 1403 -694433.1761459 1535 1403 -55531090.78464 1536 1403 -11378935.65847 1537 1403 8940966.590895 1538 1403 -20295098.63508 1404 1404 613328698.917 1405 1404 1.621246337891e-05 1406 1404 925940.9508365 1407 1404 82577683.23799 1408 1404 -7.659196853638e-06 1409 1404 231485.2378237 1422 1404 -52678594.23377 1423 1404 -36666666.66064 1424 1404 2505785.158418 1425 1404 -140008022.8906 1426 1404 2.577900886536e-06 1427 1404 -462970.4754454 1428 1404 -52702268.47617 1429 1404 36666666.66064 1430 1404 -2702548.174055 1494 1404 -18391419.7975 1495 1404 9166666.669678 1496 1404 10018981.01522 1497 1404 -58783069.51046 1498 1404 1.639127731323e-06 1499 1404 42697451.81849 1500 1404 -19844426.42677 1501 1404 -9166666.669679 1502 1404 11321064.34898 1512 1404 -413319.0876746 1513 1404 3.017485141754e-06 1514 1404 57871.30948708 1515 1404 57430602.85087 1516 1404 3.8743019104e-06 1517 1404 231485.2378496 1518 1404 -6249019.844286 1519 1404 -7.443130016327e-06 1520 1404 57871.30949415 1533 1404 -18482764.4945 1534 1404 -9166666.669676 1535 1404 -10076852.32471 1536 1404 -59172122.54065 1537 1404 4.395842552185e-07 1538 1404 -42928937.05631 1539 1404 -19947608.24497 1540 1404 9166666.669675 1541 1404 -11378935.65847 1405 1405 525322193.6551 1406 1405 -11110930.80738 1407 1405 -7.525086402893e-06 1408 1405 -56755372.43366 1409 1405 5555465.403692 1422 1405 -36666666.66065 1423 1405 -41677781.0706 1424 1405 1263866.351621 1425 1405 2.831220626831e-06 1426 1405 21326659.08566 1427 1405 -2777732.703214 1428 1405 36666666.66064 1429 1405 -41701455.31301 1430 1405 1513866.351594 1494 1405 9166666.669678 1495 1405 -15641216.50536 1496 1405 -8177088.970282 1497 1405 6.034970283508e-07 1498 1405 -18449398.9965 1499 1405 -694433.1761458 1500 1405 -9166666.669679 1501 1405 -17094223.13462 1502 1405 8871522.146427 1512 1405 4.06801700592e-06 1513 1405 -35246583.02275 1514 1405 -32861133.64276 1515 1405 4.231929779053e-06 1516 1405 35428976.52455 1517 1405 -2777732.703215 1518 1405 -7.599592208862e-06 1519 1405 -41082283.77936 1520 1405 35638866.34597 1533 1405 -9166666.669676 1534 1405 -15732561.20235 1535 1405 -8246533.414749 1536 1405 4.619359970093e-07 1537 1405 -18838452.02672 1538 1405 -694433.1761459 1539 1405 9166666.669675 1540 1405 -17197404.95283 1541 1405 8940966.590895 1406 1406 582790450.9006 1407 1406 231485.2378239 1408 1406 5555465.403692 1409 1406 74350397.96411 1422 1406 2471062.936219 1423 1406 1236088.573861 1424 1406 -8882157.948759 1425 1406 -462970.4754449 1426 1406 -2777732.703214 1427 1406 35690216.05203 1428 1406 -2737270.396254 1429 1406 1541644.129353 1430 1406 -8945289.261872 1494 1406 10018981.01522 1495 1406 -8177088.970282 1496 1406 -16145262.77514 1497 1406 42662729.59629 1498 1406 -694433.1761458 1499 1406 -54493616.03735 1500 1406 11321064.34898 1501 1406 8871522.146428 1502 1406 -20019947.11985 1512 1406 57871.30948763 1513 1406 -32833355.865 1514 1406 -37566373.58606 1515 1406 231485.2378493 1516 1406 -2777732.703215 1517 1406 -110039912.4136 1518 1406 57871.30949473 1519 1406 35611088.56821 1520 1406 -53128242.27036 1533 1406 -10076852.32471 1534 1406 -8246533.414749 1535 1406 -16388848.63381 1536 1406 -42894214.83411 1537 1406 -694433.1761459 1538 1406 -55531090.78464 1539 1406 -11378935.65847 1540 1406 8940966.590895 1541 1406 -20295098.63508 1407 1407 613328698.917 1408 1407 1.621246337891e-05 1409 1407 925940.9508365 1410 1407 82577683.23799 1411 1407 -7.659196853638e-06 1412 1407 231485.2378237 1425 1407 -52678594.23377 1426 1407 -36666666.66064 1427 1407 2505785.158418 1428 1407 -140008022.8906 1429 1407 2.577900886536e-06 1430 1407 -462970.4754454 1431 1407 -52702268.47617 1432 1407 36666666.66064 1433 1407 -2702548.174055 1497 1407 -18391419.7975 1498 1407 9166666.669678 1499 1407 10018981.01522 1500 1407 -58783069.51046 1501 1407 1.639127731323e-06 1502 1407 42697451.81849 1503 1407 -19844426.42677 1504 1407 -9166666.669679 1505 1407 11321064.34898 1515 1407 -413319.0876746 1516 1407 3.017485141754e-06 1517 1407 57871.30948708 1518 1407 57430602.85087 1519 1407 3.8743019104e-06 1520 1407 231485.2378496 1521 1407 -6249019.844286 1522 1407 -7.443130016327e-06 1523 1407 57871.30949415 1536 1407 -18482764.4945 1537 1407 -9166666.669676 1538 1407 -10076852.32471 1539 1407 -59172122.54065 1540 1407 4.395842552185e-07 1541 1407 -42928937.05631 1542 1407 -19947608.24497 1543 1407 9166666.669675 1544 1407 -11378935.65847 1408 1408 525322193.6551 1409 1408 -11110930.80738 1410 1408 -7.525086402893e-06 1411 1408 -56755372.43366 1412 1408 5555465.403692 1425 1408 -36666666.66065 1426 1408 -41677781.0706 1427 1408 1263866.351621 1428 1408 2.831220626831e-06 1429 1408 21326659.08566 1430 1408 -2777732.703214 1431 1408 36666666.66064 1432 1408 -41701455.31301 1433 1408 1513866.351594 1497 1408 9166666.669678 1498 1408 -15641216.50536 1499 1408 -8177088.970282 1500 1408 6.034970283508e-07 1501 1408 -18449398.9965 1502 1408 -694433.1761458 1503 1408 -9166666.669679 1504 1408 -17094223.13462 1505 1408 8871522.146427 1515 1408 4.06801700592e-06 1516 1408 -35246583.02275 1517 1408 -32861133.64276 1518 1408 4.231929779053e-06 1519 1408 35428976.52455 1520 1408 -2777732.703215 1521 1408 -7.599592208862e-06 1522 1408 -41082283.77936 1523 1408 35638866.34597 1536 1408 -9166666.669676 1537 1408 -15732561.20235 1538 1408 -8246533.414749 1539 1408 4.619359970093e-07 1540 1408 -18838452.02672 1541 1408 -694433.1761459 1542 1408 9166666.669675 1543 1408 -17197404.95283 1544 1408 8940966.590895 1409 1409 582790450.9006 1410 1409 231485.2378239 1411 1409 5555465.403692 1412 1409 74350397.96411 1425 1409 2471062.936219 1426 1409 1236088.573861 1427 1409 -8882157.948759 1428 1409 -462970.4754449 1429 1409 -2777732.703214 1430 1409 35690216.05203 1431 1409 -2737270.396254 1432 1409 1541644.129353 1433 1409 -8945289.261872 1497 1409 10018981.01522 1498 1409 -8177088.970282 1499 1409 -16145262.77514 1500 1409 42662729.59629 1501 1409 -694433.1761458 1502 1409 -54493616.03735 1503 1409 11321064.34898 1504 1409 8871522.146428 1505 1409 -20019947.11985 1515 1409 57871.30948763 1516 1409 -32833355.865 1517 1409 -37566373.58606 1518 1409 231485.2378493 1519 1409 -2777732.703215 1520 1409 -110039912.4136 1521 1409 57871.30949473 1522 1409 35611088.56821 1523 1409 -53128242.27036 1536 1409 -10076852.32471 1537 1409 -8246533.414749 1538 1409 -16388848.63381 1539 1409 -42894214.83411 1540 1409 -694433.1761459 1541 1409 -55531090.78464 1542 1409 -11378935.65847 1543 1409 8940966.590895 1544 1409 -20295098.63508 1410 1410 519155644.6527 1411 1410 19890209.72848 1412 1410 546852.3808991 1413 1410 -113344502.1932 1414 1410 -81572741.71556 1415 1410 807745.8307167 1428 1410 -52678594.23377 1429 1410 -36666666.66064 1430 1410 2505785.158418 1431 1410 -87908611.13882 1432 1410 24575313.67981 1433 1410 -99414.6025005 1434 1410 -55777752.70527 1435 1410 4296544.314628 1436 1410 -121425.9460867 1500 1410 -18391419.7975 1501 1410 9166666.669678 1502 1410 10018981.01522 1503 1410 -23153309.42759 1504 1410 8202668.502207 1505 1410 22268765.65392 1518 1410 -413319.0876746 1519 1410 3.017485141754e-06 1520 1410 57871.30948708 1521 1410 68265937.74305 1522 1410 4972552.434569 1523 1410 136620.1412261 1524 1410 -38378504.19399 1525 1410 -20393185.43893 1526 1410 10904728.81155 1539 1410 -18482764.4945 1540 1410 -9166666.669676 1541 1410 -10076852.32471 1542 1410 -43384348.52402 1543 1410 6143828.422977 1544 1410 -32706624.47957 1545 1410 -20160575.07792 1546 1410 1074136.079187 1547 1410 -602925.9311655 1411 1411 674296656.4325 1412 1411 -8315854.013774 1413 1411 -81578897.79024 1414 1411 -277711399.8602 1415 1411 1775953.352355 1428 1411 -36666666.66065 1429 1411 -41677781.0706 1430 1411 1263866.351621 1431 1411 24575313.67981 1432 1411 6198641.247472 1433 1411 -1140600.40519 1434 1411 4296544.314628 1435 1411 -164458604.5744 1436 1411 1195041.228134 1500 1411 9166666.669678 1501 1411 -15641216.50536 1502 1411 -8177088.970282 1503 1411 8204207.520877 1504 1411 12129419.26863 1505 1411 -8118315.333891 1518 1411 4.06801700592e-06 1519 1411 -35246583.02275 1520 1411 -32861133.64276 1521 1411 4972552.434566 1522 1411 107051190.7071 1523 1411 -2079037.895958 1524 1411 -20394724.45761 1525 1411 -79470228.63097 1526 1411 34698117.36652 1539 1411 -9166666.669676 1540 1411 -15732561.20235 1541 1411 -8246533.414749 1542 1411 6143828.422977 1543 1411 -19857535.41586 1544 1411 7819016.563107 1545 1411 1074136.079187 1546 1411 -47330788.05857 1547 1411 16965426.97932 1412 1412 500032615.4741 1413 1412 842545.5277112 1414 1412 1886963.445041 1415 1412 -79462997.91567 1428 1412 2471062.936219 1429 1412 1236088.573861 1430 1412 -8882157.948759 1431 1412 -967470.1579145 1432 1412 -1168378.182963 1433 1412 37621796.60312 1434 1412 -190870.3904854 1435 1412 1195041.228134 1436 1412 -43133554.29443 1500 1412 10018981.01522 1501 1412 -8177088.970282 1502 1412 -16145262.77514 1503 1412 22442357.5869 1504 1412 -8144741.575046 1505 1412 -20089628.3459 1518 1412 57871.30948763 1519 1412 -32833355.865 1520 1412 -37566373.58606 1521 1412 136807.9549443 1522 1412 -2078887.551707 1523 1412 -39053108.69402 1524 1412 10904842.27205 1525 1412 34696841.30973 1526 1412 -46645425.83998 1539 1412 -10076852.32471 1540 1412 -8246533.414749 1541 1412 -16388848.63381 1542 1412 -32880235.58879 1543 1412 7819016.564698 1544 1412 -47680406.12059 1545 1412 -602925.9311654 1546 1412 16965426.97932 1547 1412 -27359753.63154 1413 1413 992997068.4552 1414 1413 19284697.20432 1415 1413 -396746.4756725 1431 1413 -51863016.28236 1432 1413 -31450303.98549 1433 1413 319461.4773361 1434 1413 43461620.04061 1435 1413 42895217.91215 1436 1413 -251152.4671109 1437 1413 62501966.85689 1438 1413 -21400415.93453 1439 1413 21747.87620521 1440 1413 -46253.50102974 1441 1413 28231234.37687 1442 1413 -49512.40302987 1503 1413 -159624729.0253 1504 1413 11004617.05965 1505 1413 572723.0303333 1521 1413 -37538860.21074 1522 1413 -20394724.45761 1523 1413 -10492248.91842 1524 1413 145746193.545 1525 1413 4821174.303457 1526 1413 8338174.490712 1542 1413 -18861959.6269 1543 1413 -7862576.000248 1544 1413 -10622738.80081 1545 1413 -37300727.61412 1546 1413 10723804.48332 1547 1413 -41832926.99883 1548 1413 -23212197.68204 1549 1413 -5350103.986268 1550 1413 14197971.68996 1551 1413 -16690161.87378 1552 1413 7057808.597695 1553 1413 -10194843.38188 1414 1414 2147947022.547 1415 1414 -14974133.4238 1431 1414 -31450303.98549 1432 1414 -11693386.9132 1433 1414 -131493.8517104 1434 1414 42895217.91215 1435 1414 170799253.6597 1436 1414 -626470.3880802 1437 1414 -6733749.270272 1438 1414 -7855709.541271 1439 1414 58407.27655116 1440 1414 28231234.37687 1441 1414 -24307750.22323 1442 1414 72962.07354513 1503 1414 7336411.373109 1504 1414 -425492515.7295 1505 1414 -13147629.82044 1521 1414 -20393185.43894 1522 1414 -78630584.64773 1523 1414 -33781578.76871 1524 1414 4821174.303456 1525 1414 434483682.2102 1526 1414 -3492649.630975 1542 1414 -7862576.000248 1543 1414 -8819552.279667 1544 1414 -8595373.465755 1545 1414 10723804.48332 1546 1414 -5466319.193666 1547 1414 7947549.067445 1548 1414 -1683437.318397 1549 1414 -40801616.79024 1550 1414 33347935.147 1551 1414 7057808.597695 1552 1414 -22755536.05731 1553 1414 16684907.19053 1415 1415 1146795686.782 1431 1415 284739.2551368 1432 1415 -159271.6294699 1433 1415 -378483.2995525 1434 1415 -390041.3559778 1435 1415 -654248.1658537 1436 1415 194450799.0864 1437 1415 -12974.3460083 1438 1415 58407.27655098 1439 1415 124613403.906 1440 1415 -84234.62522937 1441 1415 72962.07354511 1442 1415 40395467.48366 1503 1415 381815.353556 1504 1415 -13300618.50896 1505 1415 -159798157.3631 1521 1415 -10492174.57703 1522 1415 -33783025.80027 1523 1415 -44406375.21794 1524 1415 -8362936.617657 1525 1415 -3856634.052932 1526 1415 13357391.99385 1542 1415 -10622738.80081 1543 1415 -8595373.465755 1544 1415 -15817835.62473 1545 1415 -41832926.99887 1546 1415 7947549.069036 1547 1415 -79830320.55011 1548 1415 6072971.68928 1549 1415 33347935.147 1550 1415 -72413820.75204 1551 1415 -10194843.38188 1552 1415 16684907.19053 1553 1415 -34377395.78682 1416 1416 306664349.4585 1417 1416 7.62939453125e-06 1418 1416 462970.475417 1419 1416 41289236.1897 1420 1416 7333333.332126 1421 1416 -318285.1588368 1506 1416 -58783069.51046 1507 1416 1.639127731323e-06 1508 1416 42697451.81849 1509 1416 -19844426.42677 1510 1416 -9166666.669679 1511 1416 11321064.34898 1527 1416 28714906.85473 1528 1416 5.364418029785e-07 1529 1416 -8530229.601834 1530 1416 -3124509.92214 1531 1416 1833333.333932 1532 1416 -2241064.345998 1417 1417 262661096.8276 1418 1417 -5555465.403687 1419 1417 -7333333.332131 1420 1417 -28377291.64613 1421 1417 2749954.924074 1506 1417 6.034970283508e-07 1507 1417 -18449398.9965 1508 1417 -694433.1761458 1509 1417 -9166666.669679 1510 1417 -17094223.13462 1511 1417 8871522.146427 1527 1417 8.940696716309e-07 1528 1417 17714093.69157 1529 1417 -1388866.351609 1530 1417 -1833333.333939 1531 1417 -20541141.88968 1532 1417 17812488.72854 1418 1418 291395225.4503 1419 1418 723381.5076579 1420 1418 2805510.47962 1421 1418 37176251.17061 1506 1418 42662729.59629 1507 1418 -694433.1761458 1508 1418 -54493616.03735 1509 1418 11321064.34898 1510 1418 8871522.146428 1511 1418 -20019947.11985 1527 1418 8588103.728686 1528 1418 -1388866.351609 1529 1418 -55021008.39532 1530 1418 2298935.655493 1531 1418 17812488.72855 1532 1418 -26564121.13518 1419 1419 306664349.4585 1420 1419 7.62939453125e-06 1421 1419 462970.475417 1422 1419 41289236.1897 1423 1419 7333333.332126 1424 1419 -318285.1588368 1506 1419 -18391419.7975 1507 1419 9166666.669678 1508 1419 10018981.01522 1509 1419 -58783069.51046 1510 1419 1.639127731323e-06 1511 1419 42697451.81849 1512 1419 -19844426.42677 1513 1419 -9166666.669679 1514 1419 11321064.34898 1527 1419 -206659.5438359 1528 1419 -1833333.333934 1529 1419 -1980647.67925 1530 1419 28714906.85473 1531 1419 5.364418029785e-07 1532 1419 -8530229.601834 1533 1419 -3124509.92214 1534 1419 1833333.333932 1535 1419 -2241064.345998 1420 1420 262661096.8276 1421 1420 -5555465.403687 1422 1420 -7333333.332131 1423 1420 -28377291.64613 1424 1420 2749954.924074 1506 1420 9166666.669678 1507 1420 -15641216.50536 1508 1420 -8177088.970282 1509 1420 6.034970283508e-07 1510 1420 -18449398.9965 1511 1420 -694433.1761458 1512 1420 -9166666.669679 1513 1420 -17094223.13462 1514 1420 8871522.146427 1527 1420 1833333.333937 1528 1420 -17623291.51138 1529 1420 -16423622.37693 1530 1420 8.940696716309e-07 1531 1420 17714093.69157 1532 1420 -1388866.351609 1533 1420 -1833333.333939 1534 1420 -20541141.88968 1535 1420 17812488.72854 1421 1421 291395225.4503 1422 1421 723381.5076579 1423 1421 2805510.47962 1424 1421 37176251.17061 1506 1421 10018981.01522 1507 1421 -8177088.970282 1508 1421 -16145262.77514 1509 1421 42662729.59629 1510 1421 -694433.1761458 1511 1421 -54493616.03735 1512 1421 11321064.34898 1513 1421 8871522.146428 1514 1421 -20019947.11985 1527 1421 2038518.988737 1528 1421 -16423622.37695 1529 1421 -18783186.79303 1530 1421 8588103.728686 1531 1421 -1388866.351609 1532 1421 -55021008.39532 1533 1421 2298935.655493 1534 1421 17812488.72855 1535 1421 -26564121.13518 1422 1422 306664349.4585 1423 1422 7.62939453125e-06 1424 1422 462970.475417 1425 1422 41289236.1897 1426 1422 7333333.332126 1427 1422 -318285.1588368 1509 1422 -18391419.7975 1510 1422 9166666.669678 1511 1422 10018981.01522 1512 1422 -58783069.51046 1513 1422 1.639127731323e-06 1514 1422 42697451.81849 1515 1422 -19844426.42677 1516 1422 -9166666.669679 1517 1422 11321064.34898 1530 1422 -206659.5438359 1531 1422 -1833333.333934 1532 1422 -1980647.67925 1533 1422 28714906.85473 1534 1422 5.364418029785e-07 1535 1422 -8530229.601834 1536 1422 -3124509.92214 1537 1422 1833333.333932 1538 1422 -2241064.345998 1423 1423 262661096.8276 1424 1423 -5555465.403687 1425 1423 -7333333.332131 1426 1423 -28377291.64613 1427 1423 2749954.924074 1509 1423 9166666.669678 1510 1423 -15641216.50536 1511 1423 -8177088.970282 1512 1423 6.034970283508e-07 1513 1423 -18449398.9965 1514 1423 -694433.1761458 1515 1423 -9166666.669679 1516 1423 -17094223.13462 1517 1423 8871522.146427 1530 1423 1833333.333937 1531 1423 -17623291.51138 1532 1423 -16423622.37693 1533 1423 8.940696716309e-07 1534 1423 17714093.69157 1535 1423 -1388866.351609 1536 1423 -1833333.333939 1537 1423 -20541141.88968 1538 1423 17812488.72854 1424 1424 291395225.4503 1425 1424 723381.5076579 1426 1424 2805510.47962 1427 1424 37176251.17061 1509 1424 10018981.01522 1510 1424 -8177088.970282 1511 1424 -16145262.77514 1512 1424 42662729.59629 1513 1424 -694433.1761458 1514 1424 -54493616.03735 1515 1424 11321064.34898 1516 1424 8871522.146428 1517 1424 -20019947.11985 1530 1424 2038518.988737 1531 1424 -16423622.37695 1532 1424 -18783186.79303 1533 1424 8588103.728686 1534 1424 -1388866.351609 1535 1424 -55021008.39532 1536 1424 2298935.655493 1537 1424 17812488.72855 1538 1424 -26564121.13518 1425 1425 306664349.4585 1426 1425 7.62939453125e-06 1427 1425 462970.475417 1428 1425 41289236.1897 1429 1425 7333333.332126 1430 1425 -318285.1588368 1512 1425 -18391419.7975 1513 1425 9166666.669678 1514 1425 10018981.01522 1515 1425 -58783069.51046 1516 1425 1.639127731323e-06 1517 1425 42697451.81849 1518 1425 -19844426.42677 1519 1425 -9166666.669679 1520 1425 11321064.34898 1533 1425 -206659.5438359 1534 1425 -1833333.333934 1535 1425 -1980647.67925 1536 1425 28714906.85473 1537 1425 5.364418029785e-07 1538 1425 -8530229.601834 1539 1425 -3124509.92214 1540 1425 1833333.333932 1541 1425 -2241064.345998 1426 1426 262661096.8276 1427 1426 -5555465.403687 1428 1426 -7333333.332131 1429 1426 -28377291.64613 1430 1426 2749954.924074 1512 1426 9166666.669678 1513 1426 -15641216.50536 1514 1426 -8177088.970282 1515 1426 6.034970283508e-07 1516 1426 -18449398.9965 1517 1426 -694433.1761458 1518 1426 -9166666.669679 1519 1426 -17094223.13462 1520 1426 8871522.146427 1533 1426 1833333.333937 1534 1426 -17623291.51138 1535 1426 -16423622.37693 1536 1426 8.940696716309e-07 1537 1426 17714093.69157 1538 1426 -1388866.351609 1539 1426 -1833333.333939 1540 1426 -20541141.88968 1541 1426 17812488.72854 1427 1427 291395225.4503 1428 1427 723381.5076579 1429 1427 2805510.47962 1430 1427 37176251.17061 1512 1427 10018981.01522 1513 1427 -8177088.970282 1514 1427 -16145262.77514 1515 1427 42662729.59629 1516 1427 -694433.1761458 1517 1427 -54493616.03735 1518 1427 11321064.34898 1519 1427 8871522.146428 1520 1427 -20019947.11985 1533 1427 2038518.988737 1534 1427 -16423622.37695 1535 1427 -18783186.79303 1536 1427 8588103.728686 1537 1427 -1388866.351609 1538 1427 -55021008.39532 1539 1427 2298935.655493 1540 1427 17812488.72855 1541 1427 -26564121.13518 1428 1428 306664349.4585 1429 1428 7.62939453125e-06 1430 1428 462970.475417 1431 1428 41289236.1897 1432 1428 7333333.332126 1433 1428 -318285.1588368 1515 1428 -18391419.7975 1516 1428 9166666.669678 1517 1428 10018981.01522 1518 1428 -58783069.51046 1519 1428 1.639127731323e-06 1520 1428 42697451.81849 1521 1428 -19844426.42677 1522 1428 -9166666.669679 1523 1428 11321064.34898 1536 1428 -206659.5438359 1537 1428 -1833333.333934 1538 1428 -1980647.67925 1539 1428 28714906.85473 1540 1428 5.364418029785e-07 1541 1428 -8530229.601834 1542 1428 -3124509.92214 1543 1428 1833333.333932 1544 1428 -2241064.345998 1429 1429 262661096.8276 1430 1429 -5555465.403687 1431 1429 -7333333.332131 1432 1429 -28377291.64613 1433 1429 2749954.924074 1515 1429 9166666.669678 1516 1429 -15641216.50536 1517 1429 -8177088.970282 1518 1429 6.034970283508e-07 1519 1429 -18449398.9965 1520 1429 -694433.1761458 1521 1429 -9166666.669679 1522 1429 -17094223.13462 1523 1429 8871522.146427 1536 1429 1833333.333937 1537 1429 -17623291.51138 1538 1429 -16423622.37693 1539 1429 8.940696716309e-07 1540 1429 17714093.69157 1541 1429 -1388866.351609 1542 1429 -1833333.333939 1543 1429 -20541141.88968 1544 1429 17812488.72854 1430 1430 291395225.4503 1431 1430 723381.5076579 1432 1430 2805510.47962 1433 1430 37176251.17061 1515 1430 10018981.01522 1516 1430 -8177088.970282 1517 1430 -16145262.77514 1518 1430 42662729.59629 1519 1430 -694433.1761458 1520 1430 -54493616.03735 1521 1430 11321064.34898 1522 1430 8871522.146428 1523 1430 -20019947.11985 1536 1430 2038518.988737 1537 1430 -16423622.37695 1538 1430 -18783186.79303 1539 1430 8588103.728686 1540 1430 -1388866.351609 1541 1430 -55021008.39532 1542 1430 2298935.655493 1543 1430 17812488.72855 1544 1430 -26564121.13518 1431 1431 307321293.6177 1432 1431 5217302.692383 1433 1431 2443291.135431 1434 1431 -12283347.92522 1435 1431 -27675645.7152 1436 1431 392217.5447181 1518 1431 -18391419.7975 1519 1431 9166666.669678 1520 1431 10018981.01522 1521 1431 -42844315.11718 1522 1431 6143828.42298 1523 1431 32439903.28737 1524 1431 -19056485.08992 1525 1431 -7862576.000246 1526 1431 10773788.984 1539 1431 -206659.5438359 1540 1431 -1833333.333934 1541 1431 -1980647.67925 1542 1431 28878510.79233 1543 1431 1304325.673737 1544 1431 -8034871.658814 1545 1431 -18263780.54944 1546 1431 -6918911.432209 1547 1431 8066734.94041 1432 1432 292495414.5893 1433 1432 -3617588.716354 1434 1432 -42342312.37946 1435 1432 -73068635.97963 1436 1432 598083.9198294 1518 1432 9166666.669678 1519 1432 -15641216.50536 1520 1432 -8177088.970282 1521 1432 6143828.422979 1522 1432 -19317502.00901 1523 1432 -8396261.212014 1524 1432 -7862576.000246 1525 1432 -9014077.742685 1526 1432 8522682.095422 1539 1432 1833333.333937 1540 1432 -17623291.51138 1541 1432 -16423622.37693 1542 1432 1304325.673737 1543 1432 25172041.03341 1544 1432 -904397.1795395 1545 1432 -10585578.10008 1546 1432 -33460102.57053 1547 1432 25378687.64334 1433 1433 299489762.7903 1434 1433 565828.6557986 1435 1433 625861.6976026 1436 1433 18644724.62356 1518 1433 10018981.01522 1519 1433 -8177088.970282 1520 1433 -16145262.77514 1521 1433 32613514.40058 1522 1433 -8396261.210409 1523 1433 -46240317.03562 1524 1433 10773788.984 1525 1433 8522682.095422 1526 1433 -16336570.1928 1539 1433 2038518.988737 1540 1433 -16423622.37695 1541 1433 -18783186.79303 1542 1433 9082906.116151 1543 1433 -904397.1795395 1544 1433 -52999059.66538 1545 1433 12398123.82872 1546 1433 25378687.64175 1547 1433 -35853335.01949 1434 1434 358811430.7903 1435 1434 52593962.28105 1436 1434 -97551.46225023 1437 1434 -71392253.48931 1438 1434 -45102098.94442 1439 1434 106737.5969375 1440 1434 9275019.197588 1441 1434 -12341313.18395 1442 1434 144785.8447827 1521 1434 -19715237.85133 1522 1434 1074136.079186 1523 1434 524851.8469836 1524 1434 -37144610.97898 1525 1434 10723804.48332 1526 1434 41672628.54298 1542 1434 -17529221.15356 1543 1434 -10585578.10008 1544 1434 -12149931.72292 1545 1434 -1095063.644689 1546 1434 13148490.57674 1547 1434 -8461748.97526 1548 1434 -34526661.87963 1549 1434 -11275524.74166 1550 1434 20339184.40592 1551 1434 -25557949.75669 1552 1434 -3085328.297506 1553 1434 8108904.791231 1435 1435 452274744.3036 1436 1435 -1473057.85089 1437 1435 -45102098.94442 1438 1435 -51062500.21883 1439 1435 72962.07354495 1440 1435 -27007979.8482 1441 1435 -62389541.28179 1442 1435 233441.0174853 1521 1435 1074136.079186 1522 1435 -46885450.83199 1523 1435 -16367906.36496 1524 1435 10723804.48332 1525 1435 -5310202.55853 1526 1435 -8267728.707675 1542 1435 -6918911.432211 1543 1435 -32725543.17465 1544 1435 -25072701.23725 1545 1435 13148490.57674 1546 1435 22270764.74516 1547 1435 -368264.4629124 1548 1435 -11275524.74166 1549 1435 -29444223.55951 1550 1435 16684907.19053 1551 1435 -6751994.965377 1552 1435 -43474089.88536 1553 1435 33391693.58226 1436 1436 478029006.2153 1437 1436 106737.5969376 1438 1436 72962.07354495 1439 1436 13640717.48805 1440 1436 179508.0669963 1441 1436 233441.0174853 1442 1436 63954215.97093 1521 1436 524851.8469835 1522 1436 -16367906.36496 1523 1436 -26172187.69396 1524 1436 41672628.54301 1525 1436 -8267728.706071 1526 1436 -79414009.52307 1542 1436 -7922709.501298 1543 1436 -25072701.23886 1544 1436 -33894509.96379 1545 1436 8239362.133108 1546 1436 -368264.4629123 1547 1436 -122620538.7512 1548 1436 20339184.40592 1549 1436 16684907.19053 1550 1436 -41066083.28901 1551 1436 12197515.90567 1552 1436 33391693.58226 1553 1436 -58349324.81867 1437 1437 235659396.7196 1438 1437 50733749.26305 1439 1437 -62257.13548279 1440 1437 -5082746.465364 1441 1437 1102098.951645 1442 1437 -31506.11544451 1524 1437 -23117500.71233 1525 1437 -1683437.318397 1526 1437 -6070778.306718 1545 1437 -34431964.90992 1546 1437 -11275524.74166 1547 1437 -20285815.60742 1548 1437 -18665832.59106 1549 1437 12683437.32201 1550 1437 8109435.714787 1551 1437 -34533186.62789 1552 1437 275524.7380462 1553 1437 -30502841.80065 1438 1438 216642073.1324 1439 1438 -58407.27654648 1440 1438 15768765.6159 1441 1438 63962500.24948 1442 1438 -72962.07354212 1524 1438 -5350103.986268 1525 1438 -40706919.82054 1526 1438 -33318731.50871 1545 1438 -11275524.74166 1546 1438 -29349526.58979 1547 1438 -16648426.15375 1548 1438 12683437.32201 1549 1438 -23420163.4902 1550 1438 6652064.846425 1551 1438 3942191.405917 1552 1438 -17271874.94068 1553 1438 3315092.816032 1439 1439 342775232.3518 1440 1439 -66228.3376576 1441 1439 -72962.0735423 1442 1439 110134282.579 1524 1439 -14195778.30738 1525 1439 -33318731.50871 1526 1439 -72161295.49948 1545 1439 -20285815.60742 1546 1439 -16648426.15375 1547 1439 -40813558.03643 1548 1439 -8140564.282544 1549 1439 -6681268.484718 1550 1439 -121188010.0031 1551 1439 -30502841.80265 1552 1439 -3351573.852824 1553 1439 -61166429.37081 1440 1440 173317617.147 1441 1440 -16992020.14457 1442 1440 40399.34029067 1524 1440 -16595464.90406 1525 1440 7057808.597695 1526 1440 10161406.6248 1545 1440 -25273858.84771 1546 1440 -6751994.965378 1547 1440 -12142484.09433 1548 1440 -34533186.62789 1549 1440 3942191.405919 1550 1440 30478408.18933 1551 1440 -12139913.87007 1552 1440 -4248005.038235 1553 1440 -4104552.942003 1441 1441 200198427.6337 1442 1441 -233441.0174782 1524 1441 7057808.597695 1525 1441 -22660839.0876 1526 1441 -16648426.15375 1545 1441 -3085328.297507 1546 1441 -43189998.97639 1547 1441 -33274973.07346 1548 1441 275524.7380478 1549 1441 -17271874.94068 1550 1441 3315092.816032 1551 1441 -4248005.038235 1552 1441 -5419711.245076 1553 1441 6608306.41117 1442 1442 258752397.6415 1524 1442 10161406.6248 1525 1442 -16648426.15375 1526 1442 -34124870.53423 1545 1442 -8088595.202104 1546 1442 -33274973.07346 1547 1442 -57591749.06139 1548 1442 30478408.18734 1549 1442 -3351573.852824 1550 1442 -61166429.37081 1551 1442 4037947.05666 1552 1442 -6725026.919973 1553 1442 -83230082.36618 1443 1443 383498024.544 1444 1443 36666666.66064 1445 1443 2662179.892796 1446 1443 -204675200.5845 1447 1443 -36666988.20463 1448 1443 -2662156.039165 1449 1443 11810466.31493 1450 1443 29333654.8725 1451 1443 -2152800.8684 1554 1443 35932670.30059 1555 1443 9166666.669679 1556 1443 9311563.653784 1557 1443 -72925641.46158 1558 1443 -9166747.055676 1559 1443 -43478968.03166 1560 1443 -7497354.851903 1561 1443 7333413.72174 1562 1443 -9080099.689708 1444 1444 328493596.9861 1445 1444 -6944376.434009 1446 1444 -36667148.97662 1447 1444 -32338700.60373 1448 1444 -3847226.785359 1449 1444 44000482.30876 1450 1444 11810466.31493 1451 1444 2416693.76713 1554 1444 9166666.669678 1555 1444 22181563.40434 1556 1444 5180609.664774 1557 1444 -9166787.248676 1558 1444 -29841516.44517 1559 1444 -9524419.110191 1560 1444 11000120.58261 1561 1444 -7497354.8519 1562 1444 10895952.52268 1445 1445 364686604.8413 1446 1445 -2662144.112346 1447 1445 -3097217.751863 1448 1445 -5157813.372203 1449 1445 -3229201.302601 1450 1445 1611129.178087 1451 1445 31494576.83983 1554 1445 -7806863.548506 1555 1445 -8513909.758068 1556 1445 -68673244.4318 1557 1445 -43444243.01831 1558 1445 -9329934.937092 1559 1445 -59307696.78438 1560 1445 -13620149.53456 1561 1445 7263968.348454 1562 1445 -19992946.27174 1446 1446 665854880.679 1447 1446 36667470.52063 1448 1446 3125090.734117 1449 1446 18070347.2503 1450 1446 -36666988.20464 1451 1446 2702571.265064 1452 1446 -140008022.8906 1453 1446 2.577900886536e-06 1454 1446 -462970.4754454 1455 1446 -52702268.47617 1456 1446 36666666.66064 1457 1446 -2702548.174055 1554 1446 -71369389.94283 1555 1446 -9166787.24867 1556 1446 42147892.99313 1557 1446 76553135.92261 1558 1446 9166867.634673 1559 1446 781226.2244361 1560 1446 -18699525.19313 1561 1446 -9166747.055676 1562 1446 11379035.3452 1563 1446 -59172122.54065 1564 1446 4.395842552185e-07 1565 1446 -42928937.05631 1566 1446 -19947608.24497 1567 1446 9166666.669675 1568 1446 -11378935.65847 1447 1447 566847200.4901 1448 1447 -8610909.306622 1449 1447 -36667148.97663 1450 1447 -110262538.3357 1451 1447 4611016.915367 1452 1447 2.831220626831e-06 1453 1447 21326659.08566 1454 1447 -2777732.703214 1455 1447 36666666.66064 1456 1447 -41701455.31301 1457 1447 1513866.351594 1554 1447 -9166747.055672 1555 1447 -28285264.92641 1556 1447 7788270.809731 1557 1447 9166867.634673 1558 1447 51801215.86321 1559 1447 -2152764.494718 1560 1447 -9166787.248675 1561 1447 -50782746.60544 1562 1447 35402941.77273 1563 1447 4.619359970093e-07 1564 1447 -18838452.02672 1565 1447 -694433.1761459 1566 1447 9166666.669675 1567 1447 -17197404.95283 1568 1447 8940966.590895 1448 1448 591261848.0956 1449 1448 2737305.032771 1450 1448 5388803.421584 1451 1448 33925571.74906 1452 1448 -462970.4754449 1453 1448 -2777732.703214 1454 1448 35690216.05203 1455 1448 -2737270.396254 1456 1448 1541644.129353 1457 1448 -8945289.261872 1554 1448 42113167.97979 1555 1448 7593861.729456 1556 1448 -55157692.73435 1557 1448 781320.0962051 1558 1448 -2152689.398522 1559 1448 -91946096.11431 1560 1448 11379085.18856 1561 1448 35569610.71641 1562 1448 -53430905.74636 1563 1448 -42894214.83411 1564 1448 -694433.1761459 1565 1448 -55531090.78464 1566 1448 -11378935.65847 1567 1448 8940966.590895 1568 1448 -20295098.63508 1449 1449 383498024.544 1450 1449 36666666.66064 1451 1449 2662179.892796 1452 1449 -52678594.23377 1453 1449 -36666666.66064 1454 1449 2505785.158418 1455 1449 -204675200.5845 1456 1449 -36666988.20463 1457 1449 -2662156.039165 1458 1449 11810466.31493 1459 1449 29333654.8725 1460 1449 -2152800.8684 1554 1449 -4579449.609996 1555 1449 11000120.58261 1556 1449 12057631.64322 1557 1449 -14225493.76444 1558 1449 -9166787.248675 1559 1449 -10019112.65448 1560 1449 35932670.30059 1561 1449 9166666.669679 1562 1449 9311563.653784 1563 1449 -18482764.4945 1564 1449 -9166666.669676 1565 1449 -10076852.32471 1566 1449 -72925641.46158 1567 1449 -9166747.055676 1568 1449 -43478968.03166 1569 1449 -7497354.851903 1570 1449 7333413.72174 1571 1449 -9080099.689708 1450 1450 328493596.9861 1451 1450 -6944376.43401 1452 1450 -36666666.66065 1453 1450 -41677781.0706 1454 1450 1263866.351621 1455 1450 -36667148.97662 1456 1450 -32338700.60373 1457 1450 -3847226.785359 1458 1450 44000482.30876 1459 1450 11810466.31493 1460 1450 2416693.76713 1554 1450 7333413.72174 1555 1450 -4579449.61 1556 1450 -6430626.286135 1557 1450 -9166747.055675 1558 1450 -46308715.17675 1559 1450 -32902986.62891 1560 1450 9166666.669678 1561 1450 22181563.40434 1562 1450 5180609.664774 1563 1450 -9166666.669676 1564 1450 -15732561.20235 1565 1450 -8246533.414749 1566 1450 -9166787.248676 1567 1450 -29841516.44517 1568 1450 -9524419.110191 1569 1450 11000120.58261 1570 1450 -7497354.8519 1571 1450 10895952.52268 1451 1451 364686604.8413 1452 1451 2471062.936219 1453 1451 1236088.573861 1454 1451 -8882157.948759 1455 1451 -2662144.112346 1456 1451 -3097217.751863 1457 1451 -5157813.372203 1458 1451 -3229201.302601 1459 1451 1611129.178087 1460 1451 31494576.83983 1554 1451 8038421.095477 1555 1451 -9645939.429201 1556 1451 -12211865.62666 1557 1451 -10019068.77473 1558 1451 -33069655.68813 1559 1451 -41500155.26984 1560 1451 -7806863.548506 1561 1451 -8513909.758068 1562 1451 -68673244.4318 1563 1451 -10076852.32471 1564 1451 -8246533.414749 1565 1451 -16388848.63381 1566 1451 -43444243.01831 1567 1451 -9329934.937092 1568 1451 -59307696.78438 1569 1451 -13620149.53456 1570 1451 7263968.348454 1571 1451 -19992946.27174 1452 1452 613328698.917 1453 1452 1.621246337891e-05 1454 1452 925940.9508365 1455 1452 82577683.23799 1456 1452 -7.659196853638e-06 1457 1452 231485.2378237 1461 1452 -140008022.8906 1462 1452 2.577900886536e-06 1463 1452 -462970.4754454 1464 1452 -52702268.47617 1465 1452 36666666.66064 1466 1452 -2702548.174055 1557 1452 -58783069.51046 1558 1452 1.639127731323e-06 1559 1452 42697451.81849 1560 1452 -19844426.42677 1561 1452 -9166666.669679 1562 1452 11321064.34898 1563 1452 57430602.85087 1564 1452 3.8743019104e-06 1565 1452 231485.2378496 1566 1452 -6249019.844286 1567 1452 -7.443130016327e-06 1568 1452 57871.30949415 1572 1452 -59172122.54065 1573 1452 4.395842552185e-07 1574 1452 -42928937.05631 1575 1452 -19947608.24497 1576 1452 9166666.669675 1577 1452 -11378935.65847 1453 1453 525322193.6551 1454 1453 -11110930.80738 1455 1453 -7.525086402893e-06 1456 1453 -56755372.43366 1457 1453 5555465.403692 1461 1453 2.831220626831e-06 1462 1453 21326659.08566 1463 1453 -2777732.703214 1464 1453 36666666.66064 1465 1453 -41701455.31301 1466 1453 1513866.351594 1557 1453 6.034970283508e-07 1558 1453 -18449398.9965 1559 1453 -694433.1761458 1560 1453 -9166666.669679 1561 1453 -17094223.13462 1562 1453 8871522.146427 1563 1453 4.231929779053e-06 1564 1453 35428976.52455 1565 1453 -2777732.703215 1566 1453 -7.599592208862e-06 1567 1453 -41082283.77936 1568 1453 35638866.34597 1572 1453 4.619359970093e-07 1573 1453 -18838452.02672 1574 1453 -694433.1761459 1575 1453 9166666.669675 1576 1453 -17197404.95283 1577 1453 8940966.590895 1454 1454 582790450.9006 1455 1454 231485.2378239 1456 1454 5555465.403692 1457 1454 74350397.96411 1461 1454 -462970.4754449 1462 1454 -2777732.703214 1463 1454 35690216.05203 1464 1454 -2737270.396254 1465 1454 1541644.129353 1466 1454 -8945289.261872 1557 1454 42662729.59629 1558 1454 -694433.1761458 1559 1454 -54493616.03735 1560 1454 11321064.34898 1561 1454 8871522.146428 1562 1454 -20019947.11985 1563 1454 231485.2378493 1564 1454 -2777732.703215 1565 1454 -110039912.4136 1566 1454 57871.30949473 1567 1454 35611088.56821 1568 1454 -53128242.27036 1572 1454 -42894214.83411 1573 1454 -694433.1761459 1574 1454 -55531090.78464 1575 1454 -11378935.65847 1576 1454 8940966.590895 1577 1454 -20295098.63508 1455 1455 665854880.679 1456 1455 36667470.52063 1457 1455 3125090.734117 1458 1455 18070347.2503 1459 1455 -36666988.20464 1460 1455 2702571.265064 1461 1455 -52678594.23377 1462 1455 -36666666.66064 1463 1455 2505785.158418 1464 1455 -140008022.8906 1465 1455 2.577900886536e-06 1466 1455 -462970.4754454 1467 1455 -52702268.47617 1468 1455 36666666.66064 1469 1455 -2702548.174055 1557 1455 -18391419.7975 1558 1455 9166666.669678 1559 1455 10018981.01522 1560 1455 -71369389.94283 1561 1455 -9166787.24867 1562 1455 42147892.99313 1563 1455 -413319.0876746 1564 1455 3.017485141754e-06 1565 1455 57871.30948708 1566 1455 76553135.92261 1567 1455 9166867.634673 1568 1455 781226.2244361 1569 1455 -18699525.19313 1570 1455 -9166747.055676 1571 1455 11379035.3452 1572 1455 -18482764.4945 1573 1455 -9166666.669676 1574 1455 -10076852.32471 1575 1455 -59172122.54065 1576 1455 4.395842552185e-07 1577 1455 -42928937.05631 1578 1455 -19947608.24497 1579 1455 9166666.669675 1580 1455 -11378935.65847 1456 1456 566847200.4901 1457 1456 -8610909.306622 1458 1456 -36667148.97663 1459 1456 -110262538.3357 1460 1456 4611016.915367 1461 1456 -36666666.66065 1462 1456 -41677781.0706 1463 1456 1263866.351621 1464 1456 2.831220626831e-06 1465 1456 21326659.08566 1466 1456 -2777732.703214 1467 1456 36666666.66064 1468 1456 -41701455.31301 1469 1456 1513866.351594 1557 1456 9166666.669678 1558 1456 -15641216.50536 1559 1456 -8177088.970282 1560 1456 -9166747.055672 1561 1456 -28285264.92641 1562 1456 7788270.809731 1563 1456 4.06801700592e-06 1564 1456 -35246583.02275 1565 1456 -32861133.64276 1566 1456 9166867.634673 1567 1456 51801215.86321 1568 1456 -2152764.494718 1569 1456 -9166787.248675 1570 1456 -50782746.60544 1571 1456 35402941.77273 1572 1456 -9166666.669676 1573 1456 -15732561.20235 1574 1456 -8246533.414749 1575 1456 4.619359970093e-07 1576 1456 -18838452.02672 1577 1456 -694433.1761459 1578 1456 9166666.669675 1579 1456 -17197404.95283 1580 1456 8940966.590895 1457 1457 591261848.0956 1458 1457 2737305.032771 1459 1457 5388803.421584 1460 1457 33925571.74906 1461 1457 2471062.936219 1462 1457 1236088.573861 1463 1457 -8882157.948759 1464 1457 -462970.4754449 1465 1457 -2777732.703214 1466 1457 35690216.05203 1467 1457 -2737270.396254 1468 1457 1541644.129353 1469 1457 -8945289.261872 1557 1457 10018981.01522 1558 1457 -8177088.970282 1559 1457 -16145262.77514 1560 1457 42113167.97979 1561 1457 7593861.729456 1562 1457 -55157692.73435 1563 1457 57871.30948763 1564 1457 -32833355.865 1565 1457 -37566373.58606 1566 1457 781320.0962051 1567 1457 -2152689.398522 1568 1457 -91946096.11431 1569 1457 11379085.18856 1570 1457 35569610.71641 1571 1457 -53430905.74636 1572 1457 -10076852.32471 1573 1457 -8246533.414749 1574 1457 -16388848.63381 1575 1457 -42894214.83411 1576 1457 -694433.1761459 1577 1457 -55531090.78464 1578 1457 -11378935.65847 1579 1457 8940966.590895 1580 1457 -20295098.63508 1458 1458 383498024.544 1459 1458 36666666.66064 1460 1458 2662179.892796 1464 1458 -52678594.23377 1465 1458 -36666666.66064 1466 1458 2505785.158418 1467 1458 -204675200.5845 1468 1458 -36666988.20463 1469 1458 -2662156.039165 1470 1458 11810466.31493 1471 1458 29333654.8725 1472 1458 -2152800.8684 1560 1458 -4579449.609996 1561 1458 11000120.58261 1562 1458 12057631.64322 1566 1458 -14225493.76444 1567 1458 -9166787.248675 1568 1458 -10019112.65448 1569 1458 35932670.30059 1570 1458 9166666.669679 1571 1458 9311563.653784 1575 1458 -18482764.4945 1576 1458 -9166666.669676 1577 1458 -10076852.32471 1578 1458 -72925641.46158 1579 1458 -9166747.055676 1580 1458 -43478968.03166 1581 1458 -7497354.851903 1582 1458 7333413.72174 1583 1458 -9080099.689708 1459 1459 328493596.9861 1460 1459 -6944376.43401 1464 1459 -36666666.66065 1465 1459 -41677781.0706 1466 1459 1263866.351621 1467 1459 -36667148.97662 1468 1459 -32338700.60373 1469 1459 -3847226.785359 1470 1459 44000482.30876 1471 1459 11810466.31493 1472 1459 2416693.76713 1560 1459 7333413.72174 1561 1459 -4579449.61 1562 1459 -6430626.286135 1566 1459 -9166747.055675 1567 1459 -46308715.17675 1568 1459 -32902986.62891 1569 1459 9166666.669678 1570 1459 22181563.40434 1571 1459 5180609.664774 1575 1459 -9166666.669676 1576 1459 -15732561.20235 1577 1459 -8246533.414749 1578 1459 -9166787.248676 1579 1459 -29841516.44517 1580 1459 -9524419.110191 1581 1459 11000120.58261 1582 1459 -7497354.8519 1583 1459 10895952.52268 1460 1460 364686604.8413 1464 1460 2471062.936219 1465 1460 1236088.573861 1466 1460 -8882157.948759 1467 1460 -2662144.112346 1468 1460 -3097217.751863 1469 1460 -5157813.372203 1470 1460 -3229201.302601 1471 1460 1611129.178087 1472 1460 31494576.83983 1560 1460 8038421.095477 1561 1460 -9645939.429201 1562 1460 -12211865.62666 1566 1460 -10019068.77473 1567 1460 -33069655.68813 1568 1460 -41500155.26984 1569 1460 -7806863.548506 1570 1460 -8513909.758068 1571 1460 -68673244.4318 1575 1460 -10076852.32471 1576 1460 -8246533.414749 1577 1460 -16388848.63381 1578 1460 -43444243.01831 1579 1460 -9329934.937092 1580 1460 -59307696.78438 1581 1460 -13620149.53456 1582 1460 7263968.348454 1583 1460 -19992946.27174 1461 1461 613328698.917 1462 1461 1.621246337891e-05 1463 1461 925940.9508365 1464 1461 82577683.23799 1465 1461 -7.659196853638e-06 1466 1461 231485.2378237 1473 1461 -140008022.8906 1474 1461 2.577900886536e-06 1475 1461 -462970.4754454 1476 1461 -52702268.47617 1477 1461 36666666.66064 1478 1461 -2702548.174055 1563 1461 -58783069.51046 1564 1461 1.639127731323e-06 1565 1461 42697451.81849 1566 1461 -19844426.42677 1567 1461 -9166666.669679 1568 1461 11321064.34898 1572 1461 57430602.85087 1573 1461 3.8743019104e-06 1574 1461 231485.2378496 1575 1461 -6249019.844286 1576 1461 -7.443130016327e-06 1577 1461 57871.30949415 1584 1461 -59172122.54065 1585 1461 4.395842552185e-07 1586 1461 -42928937.05631 1587 1461 -19947608.24497 1588 1461 9166666.669675 1589 1461 -11378935.65847 1462 1462 525322193.6551 1463 1462 -11110930.80738 1464 1462 -7.525086402893e-06 1465 1462 -56755372.43366 1466 1462 5555465.403692 1473 1462 2.831220626831e-06 1474 1462 21326659.08566 1475 1462 -2777732.703214 1476 1462 36666666.66064 1477 1462 -41701455.31301 1478 1462 1513866.351594 1563 1462 6.034970283508e-07 1564 1462 -18449398.9965 1565 1462 -694433.1761458 1566 1462 -9166666.669679 1567 1462 -17094223.13462 1568 1462 8871522.146427 1572 1462 4.231929779053e-06 1573 1462 35428976.52455 1574 1462 -2777732.703215 1575 1462 -7.599592208862e-06 1576 1462 -41082283.77936 1577 1462 35638866.34597 1584 1462 4.619359970093e-07 1585 1462 -18838452.02672 1586 1462 -694433.1761459 1587 1462 9166666.669675 1588 1462 -17197404.95283 1589 1462 8940966.590895 1463 1463 582790450.9006 1464 1463 231485.2378239 1465 1463 5555465.403692 1466 1463 74350397.96411 1473 1463 -462970.4754449 1474 1463 -2777732.703214 1475 1463 35690216.05203 1476 1463 -2737270.396254 1477 1463 1541644.129353 1478 1463 -8945289.261872 1563 1463 42662729.59629 1564 1463 -694433.1761458 1565 1463 -54493616.03735 1566 1463 11321064.34898 1567 1463 8871522.146428 1568 1463 -20019947.11985 1572 1463 231485.2378493 1573 1463 -2777732.703215 1574 1463 -110039912.4136 1575 1463 57871.30949473 1576 1463 35611088.56821 1577 1463 -53128242.27036 1584 1463 -42894214.83411 1585 1463 -694433.1761459 1586 1463 -55531090.78464 1587 1463 -11378935.65847 1588 1463 8940966.590895 1589 1463 -20295098.63508 1464 1464 613328698.917 1465 1464 1.621246337891e-05 1466 1464 925940.9508365 1467 1464 82577683.23799 1468 1464 -7.659196853638e-06 1469 1464 231485.2378237 1473 1464 -52678594.23377 1474 1464 -36666666.66064 1475 1464 2505785.158418 1476 1464 -140008022.8906 1477 1464 2.577900886536e-06 1478 1464 -462970.4754454 1479 1464 -52702268.47617 1480 1464 36666666.66064 1481 1464 -2702548.174055 1563 1464 -18391419.7975 1564 1464 9166666.669678 1565 1464 10018981.01522 1566 1464 -58783069.51046 1567 1464 1.639127731323e-06 1568 1464 42697451.81849 1569 1464 -19844426.42677 1570 1464 -9166666.669679 1571 1464 11321064.34898 1572 1464 -413319.0876746 1573 1464 3.017485141754e-06 1574 1464 57871.30948708 1575 1464 57430602.85087 1576 1464 3.8743019104e-06 1577 1464 231485.2378496 1578 1464 -6249019.844286 1579 1464 -7.443130016327e-06 1580 1464 57871.30949415 1584 1464 -18482764.4945 1585 1464 -9166666.669676 1586 1464 -10076852.32471 1587 1464 -59172122.54065 1588 1464 4.395842552185e-07 1589 1464 -42928937.05631 1590 1464 -19947608.24497 1591 1464 9166666.669675 1592 1464 -11378935.65847 1465 1465 525322193.6551 1466 1465 -11110930.80738 1467 1465 -7.525086402893e-06 1468 1465 -56755372.43366 1469 1465 5555465.403692 1473 1465 -36666666.66065 1474 1465 -41677781.0706 1475 1465 1263866.351621 1476 1465 2.831220626831e-06 1477 1465 21326659.08566 1478 1465 -2777732.703214 1479 1465 36666666.66064 1480 1465 -41701455.31301 1481 1465 1513866.351594 1563 1465 9166666.669678 1564 1465 -15641216.50536 1565 1465 -8177088.970282 1566 1465 6.034970283508e-07 1567 1465 -18449398.9965 1568 1465 -694433.1761458 1569 1465 -9166666.669679 1570 1465 -17094223.13462 1571 1465 8871522.146427 1572 1465 4.06801700592e-06 1573 1465 -35246583.02275 1574 1465 -32861133.64276 1575 1465 4.231929779053e-06 1576 1465 35428976.52455 1577 1465 -2777732.703215 1578 1465 -7.599592208862e-06 1579 1465 -41082283.77936 1580 1465 35638866.34597 1584 1465 -9166666.669676 1585 1465 -15732561.20235 1586 1465 -8246533.414749 1587 1465 4.619359970093e-07 1588 1465 -18838452.02672 1589 1465 -694433.1761459 1590 1465 9166666.669675 1591 1465 -17197404.95283 1592 1465 8940966.590895 1466 1466 582790450.9006 1467 1466 231485.2378239 1468 1466 5555465.403692 1469 1466 74350397.96411 1473 1466 2471062.936219 1474 1466 1236088.573861 1475 1466 -8882157.948759 1476 1466 -462970.4754449 1477 1466 -2777732.703214 1478 1466 35690216.05203 1479 1466 -2737270.396254 1480 1466 1541644.129353 1481 1466 -8945289.261872 1563 1466 10018981.01522 1564 1466 -8177088.970282 1565 1466 -16145262.77514 1566 1466 42662729.59629 1567 1466 -694433.1761458 1568 1466 -54493616.03735 1569 1466 11321064.34898 1570 1466 8871522.146428 1571 1466 -20019947.11985 1572 1466 57871.30948763 1573 1466 -32833355.865 1574 1466 -37566373.58606 1575 1466 231485.2378493 1576 1466 -2777732.703215 1577 1466 -110039912.4136 1578 1466 57871.30949473 1579 1466 35611088.56821 1580 1466 -53128242.27036 1584 1466 -10076852.32471 1585 1466 -8246533.414749 1586 1466 -16388848.63381 1587 1466 -42894214.83411 1588 1466 -694433.1761459 1589 1466 -55531090.78464 1590 1466 -11378935.65847 1591 1466 8940966.590895 1592 1466 -20295098.63508 1467 1467 665854880.679 1468 1467 36667470.52063 1469 1467 3125090.734117 1470 1467 18070347.2503 1471 1467 -36666988.20464 1472 1467 2702571.265064 1476 1467 -52678594.23377 1477 1467 -36666666.66064 1478 1467 2505785.158418 1479 1467 -140008022.8906 1480 1467 2.577900886536e-06 1481 1467 -462970.4754454 1482 1467 -52702268.47617 1483 1467 36666666.66064 1484 1467 -2702548.174055 1566 1467 -18391419.7975 1567 1467 9166666.669678 1568 1467 10018981.01522 1569 1467 -71369389.94283 1570 1467 -9166787.24867 1571 1467 42147892.99313 1575 1467 -413319.0876746 1576 1467 3.017485141754e-06 1577 1467 57871.30948708 1578 1467 76553135.92261 1579 1467 9166867.634673 1580 1467 781226.2244361 1581 1467 -18699525.19313 1582 1467 -9166747.055676 1583 1467 11379035.3452 1587 1467 -18482764.4945 1588 1467 -9166666.669676 1589 1467 -10076852.32471 1590 1467 -59172122.54065 1591 1467 4.395842552185e-07 1592 1467 -42928937.05631 1593 1467 -19947608.24497 1594 1467 9166666.669675 1595 1467 -11378935.65847 1468 1468 566847200.4901 1469 1468 -8610909.306622 1470 1468 -36667148.97663 1471 1468 -110262538.3357 1472 1468 4611016.915367 1476 1468 -36666666.66065 1477 1468 -41677781.0706 1478 1468 1263866.351621 1479 1468 2.831220626831e-06 1480 1468 21326659.08566 1481 1468 -2777732.703214 1482 1468 36666666.66064 1483 1468 -41701455.31301 1484 1468 1513866.351594 1566 1468 9166666.669678 1567 1468 -15641216.50536 1568 1468 -8177088.970282 1569 1468 -9166747.055672 1570 1468 -28285264.92641 1571 1468 7788270.809731 1575 1468 4.06801700592e-06 1576 1468 -35246583.02275 1577 1468 -32861133.64276 1578 1468 9166867.634673 1579 1468 51801215.86321 1580 1468 -2152764.494718 1581 1468 -9166787.248675 1582 1468 -50782746.60544 1583 1468 35402941.77273 1587 1468 -9166666.669676 1588 1468 -15732561.20235 1589 1468 -8246533.414749 1590 1468 4.619359970093e-07 1591 1468 -18838452.02672 1592 1468 -694433.1761459 1593 1468 9166666.669675 1594 1468 -17197404.95283 1595 1468 8940966.590895 1469 1469 591261848.0956 1470 1469 2737305.032771 1471 1469 5388803.421584 1472 1469 33925571.74906 1476 1469 2471062.936219 1477 1469 1236088.573861 1478 1469 -8882157.948759 1479 1469 -462970.4754449 1480 1469 -2777732.703214 1481 1469 35690216.05203 1482 1469 -2737270.396254 1483 1469 1541644.129353 1484 1469 -8945289.261872 1566 1469 10018981.01522 1567 1469 -8177088.970282 1568 1469 -16145262.77514 1569 1469 42113167.97979 1570 1469 7593861.729456 1571 1469 -55157692.73435 1575 1469 57871.30948763 1576 1469 -32833355.865 1577 1469 -37566373.58606 1578 1469 781320.0962051 1579 1469 -2152689.398522 1580 1469 -91946096.11431 1581 1469 11379085.18856 1582 1469 35569610.71641 1583 1469 -53430905.74636 1587 1469 -10076852.32471 1588 1469 -8246533.414749 1589 1469 -16388848.63381 1590 1469 -42894214.83411 1591 1469 -694433.1761459 1592 1469 -55531090.78464 1593 1469 -11378935.65847 1594 1469 8940966.590895 1595 1469 -20295098.63508 1470 1470 383498024.544 1471 1470 36666666.66064 1472 1470 2662179.892796 1479 1470 -52678594.23377 1480 1470 -36666666.66064 1481 1470 2505785.158418 1482 1470 -204675200.5845 1483 1470 -36666988.20463 1484 1470 -2662156.039165 1485 1470 11810466.31493 1486 1470 29333654.8725 1487 1470 -2152800.8684 1569 1470 -4579449.609996 1570 1470 11000120.58261 1571 1470 12057631.64322 1578 1470 -14225493.76444 1579 1470 -9166787.248675 1580 1470 -10019112.65448 1581 1470 35932670.30059 1582 1470 9166666.669679 1583 1470 9311563.653784 1590 1470 -18482764.4945 1591 1470 -9166666.669676 1592 1470 -10076852.32471 1593 1470 -72925641.46158 1594 1470 -9166747.055676 1595 1470 -43478968.03166 1596 1470 -7497354.851903 1597 1470 7333413.72174 1598 1470 -9080099.689708 1471 1471 328493596.9861 1472 1471 -6944376.43401 1479 1471 -36666666.66065 1480 1471 -41677781.0706 1481 1471 1263866.351621 1482 1471 -36667148.97662 1483 1471 -32338700.60373 1484 1471 -3847226.785359 1485 1471 44000482.30876 1486 1471 11810466.31493 1487 1471 2416693.76713 1569 1471 7333413.72174 1570 1471 -4579449.61 1571 1471 -6430626.286135 1578 1471 -9166747.055675 1579 1471 -46308715.17675 1580 1471 -32902986.62891 1581 1471 9166666.669678 1582 1471 22181563.40434 1583 1471 5180609.664774 1590 1471 -9166666.669676 1591 1471 -15732561.20235 1592 1471 -8246533.414749 1593 1471 -9166787.248676 1594 1471 -29841516.44517 1595 1471 -9524419.110191 1596 1471 11000120.58261 1597 1471 -7497354.8519 1598 1471 10895952.52268 1472 1472 364686604.8413 1479 1472 2471062.936219 1480 1472 1236088.573861 1481 1472 -8882157.948759 1482 1472 -2662144.112346 1483 1472 -3097217.751863 1484 1472 -5157813.372203 1485 1472 -3229201.302601 1486 1472 1611129.178087 1487 1472 31494576.83983 1569 1472 8038421.095477 1570 1472 -9645939.429201 1571 1472 -12211865.62666 1578 1472 -10019068.77473 1579 1472 -33069655.68813 1580 1472 -41500155.26984 1581 1472 -7806863.548506 1582 1472 -8513909.758068 1583 1472 -68673244.4318 1590 1472 -10076852.32471 1591 1472 -8246533.414749 1592 1472 -16388848.63381 1593 1472 -43444243.01831 1594 1472 -9329934.937092 1595 1472 -59307696.78438 1596 1472 -13620149.53456 1597 1472 7263968.348454 1598 1472 -19992946.27174 1473 1473 613328698.917 1474 1473 1.621246337891e-05 1475 1473 925940.9508365 1476 1473 82577683.23799 1477 1473 -7.659196853638e-06 1478 1473 231485.2378237 1488 1473 -140008022.8906 1489 1473 2.577900886536e-06 1490 1473 -462970.4754454 1491 1473 -52702268.47617 1492 1473 36666666.66064 1493 1473 -2702548.174055 1572 1473 -58783069.51046 1573 1473 1.639127731323e-06 1574 1473 42697451.81849 1575 1473 -19844426.42677 1576 1473 -9166666.669679 1577 1473 11321064.34898 1584 1473 57430602.85087 1585 1473 3.8743019104e-06 1586 1473 231485.2378496 1587 1473 -6249019.844286 1588 1473 -7.443130016327e-06 1589 1473 57871.30949415 1599 1473 -59172122.54065 1600 1473 4.395842552185e-07 1601 1473 -42928937.05631 1602 1473 -19947608.24497 1603 1473 9166666.669675 1604 1473 -11378935.65847 1474 1474 525322193.6551 1475 1474 -11110930.80738 1476 1474 -7.525086402893e-06 1477 1474 -56755372.43366 1478 1474 5555465.403692 1488 1474 2.831220626831e-06 1489 1474 21326659.08566 1490 1474 -2777732.703214 1491 1474 36666666.66064 1492 1474 -41701455.31301 1493 1474 1513866.351594 1572 1474 6.034970283508e-07 1573 1474 -18449398.9965 1574 1474 -694433.1761458 1575 1474 -9166666.669679 1576 1474 -17094223.13462 1577 1474 8871522.146427 1584 1474 4.231929779053e-06 1585 1474 35428976.52455 1586 1474 -2777732.703215 1587 1474 -7.599592208862e-06 1588 1474 -41082283.77936 1589 1474 35638866.34597 1599 1474 4.619359970093e-07 1600 1474 -18838452.02672 1601 1474 -694433.1761459 1602 1474 9166666.669675 1603 1474 -17197404.95283 1604 1474 8940966.590895 1475 1475 582790450.9006 1476 1475 231485.2378239 1477 1475 5555465.403692 1478 1475 74350397.96411 1488 1475 -462970.4754449 1489 1475 -2777732.703214 1490 1475 35690216.05203 1491 1475 -2737270.396254 1492 1475 1541644.129353 1493 1475 -8945289.261872 1572 1475 42662729.59629 1573 1475 -694433.1761458 1574 1475 -54493616.03735 1575 1475 11321064.34898 1576 1475 8871522.146428 1577 1475 -20019947.11985 1584 1475 231485.2378493 1585 1475 -2777732.703215 1586 1475 -110039912.4136 1587 1475 57871.30949473 1588 1475 35611088.56821 1589 1475 -53128242.27036 1599 1475 -42894214.83411 1600 1475 -694433.1761459 1601 1475 -55531090.78464 1602 1475 -11378935.65847 1603 1475 8940966.590895 1604 1475 -20295098.63508 1476 1476 613328698.917 1477 1476 1.621246337891e-05 1478 1476 925940.9508365 1479 1476 82577683.23799 1480 1476 -7.659196853638e-06 1481 1476 231485.2378237 1488 1476 -52678594.23377 1489 1476 -36666666.66064 1490 1476 2505785.158418 1491 1476 -140008022.8906 1492 1476 2.577900886536e-06 1493 1476 -462970.4754454 1494 1476 -52702268.47617 1495 1476 36666666.66064 1496 1476 -2702548.174055 1572 1476 -18391419.7975 1573 1476 9166666.669678 1574 1476 10018981.01522 1575 1476 -58783069.51046 1576 1476 1.639127731323e-06 1577 1476 42697451.81849 1578 1476 -19844426.42677 1579 1476 -9166666.669679 1580 1476 11321064.34898 1584 1476 -413319.0876746 1585 1476 3.017485141754e-06 1586 1476 57871.30948708 1587 1476 57430602.85087 1588 1476 3.8743019104e-06 1589 1476 231485.2378496 1590 1476 -6249019.844286 1591 1476 -7.443130016327e-06 1592 1476 57871.30949415 1599 1476 -18482764.4945 1600 1476 -9166666.669676 1601 1476 -10076852.32471 1602 1476 -59172122.54065 1603 1476 4.395842552185e-07 1604 1476 -42928937.05631 1605 1476 -19947608.24497 1606 1476 9166666.669675 1607 1476 -11378935.65847 1477 1477 525322193.6551 1478 1477 -11110930.80738 1479 1477 -7.525086402893e-06 1480 1477 -56755372.43366 1481 1477 5555465.403692 1488 1477 -36666666.66065 1489 1477 -41677781.0706 1490 1477 1263866.351621 1491 1477 2.831220626831e-06 1492 1477 21326659.08566 1493 1477 -2777732.703214 1494 1477 36666666.66064 1495 1477 -41701455.31301 1496 1477 1513866.351594 1572 1477 9166666.669678 1573 1477 -15641216.50536 1574 1477 -8177088.970282 1575 1477 6.034970283508e-07 1576 1477 -18449398.9965 1577 1477 -694433.1761458 1578 1477 -9166666.669679 1579 1477 -17094223.13462 1580 1477 8871522.146427 1584 1477 4.06801700592e-06 1585 1477 -35246583.02275 1586 1477 -32861133.64276 1587 1477 4.231929779053e-06 1588 1477 35428976.52455 1589 1477 -2777732.703215 1590 1477 -7.599592208862e-06 1591 1477 -41082283.77936 1592 1477 35638866.34597 1599 1477 -9166666.669676 1600 1477 -15732561.20235 1601 1477 -8246533.414749 1602 1477 4.619359970093e-07 1603 1477 -18838452.02672 1604 1477 -694433.1761459 1605 1477 9166666.669675 1606 1477 -17197404.95283 1607 1477 8940966.590895 1478 1478 582790450.9006 1479 1478 231485.2378239 1480 1478 5555465.403692 1481 1478 74350397.96411 1488 1478 2471062.936219 1489 1478 1236088.573861 1490 1478 -8882157.948759 1491 1478 -462970.4754449 1492 1478 -2777732.703214 1493 1478 35690216.05203 1494 1478 -2737270.396254 1495 1478 1541644.129353 1496 1478 -8945289.261872 1572 1478 10018981.01522 1573 1478 -8177088.970282 1574 1478 -16145262.77514 1575 1478 42662729.59629 1576 1478 -694433.1761458 1577 1478 -54493616.03735 1578 1478 11321064.34898 1579 1478 8871522.146428 1580 1478 -20019947.11985 1584 1478 57871.30948763 1585 1478 -32833355.865 1586 1478 -37566373.58606 1587 1478 231485.2378493 1588 1478 -2777732.703215 1589 1478 -110039912.4136 1590 1478 57871.30949473 1591 1478 35611088.56821 1592 1478 -53128242.27036 1599 1478 -10076852.32471 1600 1478 -8246533.414749 1601 1478 -16388848.63381 1602 1478 -42894214.83411 1603 1478 -694433.1761459 1604 1478 -55531090.78464 1605 1478 -11378935.65847 1606 1478 8940966.590895 1607 1478 -20295098.63508 1479 1479 613328698.917 1480 1479 1.621246337891e-05 1481 1479 925940.9508365 1482 1479 82577683.23799 1483 1479 -7.659196853638e-06 1484 1479 231485.2378237 1491 1479 -52678594.23377 1492 1479 -36666666.66064 1493 1479 2505785.158418 1494 1479 -140008022.8906 1495 1479 2.577900886536e-06 1496 1479 -462970.4754454 1497 1479 -52702268.47617 1498 1479 36666666.66064 1499 1479 -2702548.174055 1575 1479 -18391419.7975 1576 1479 9166666.669678 1577 1479 10018981.01522 1578 1479 -58783069.51046 1579 1479 1.639127731323e-06 1580 1479 42697451.81849 1581 1479 -19844426.42677 1582 1479 -9166666.669679 1583 1479 11321064.34898 1587 1479 -413319.0876746 1588 1479 3.017485141754e-06 1589 1479 57871.30948708 1590 1479 57430602.85087 1591 1479 3.8743019104e-06 1592 1479 231485.2378496 1593 1479 -6249019.844286 1594 1479 -7.443130016327e-06 1595 1479 57871.30949415 1602 1479 -18482764.4945 1603 1479 -9166666.669676 1604 1479 -10076852.32471 1605 1479 -59172122.54065 1606 1479 4.395842552185e-07 1607 1479 -42928937.05631 1608 1479 -19947608.24497 1609 1479 9166666.669675 1610 1479 -11378935.65847 1480 1480 525322193.6551 1481 1480 -11110930.80738 1482 1480 -7.525086402893e-06 1483 1480 -56755372.43366 1484 1480 5555465.403692 1491 1480 -36666666.66065 1492 1480 -41677781.0706 1493 1480 1263866.351621 1494 1480 2.831220626831e-06 1495 1480 21326659.08566 1496 1480 -2777732.703214 1497 1480 36666666.66064 1498 1480 -41701455.31301 1499 1480 1513866.351594 1575 1480 9166666.669678 1576 1480 -15641216.50536 1577 1480 -8177088.970282 1578 1480 6.034970283508e-07 1579 1480 -18449398.9965 1580 1480 -694433.1761458 1581 1480 -9166666.669679 1582 1480 -17094223.13462 1583 1480 8871522.146427 1587 1480 4.06801700592e-06 1588 1480 -35246583.02275 1589 1480 -32861133.64276 1590 1480 4.231929779053e-06 1591 1480 35428976.52455 1592 1480 -2777732.703215 1593 1480 -7.599592208862e-06 1594 1480 -41082283.77936 1595 1480 35638866.34597 1602 1480 -9166666.669676 1603 1480 -15732561.20235 1604 1480 -8246533.414749 1605 1480 4.619359970093e-07 1606 1480 -18838452.02672 1607 1480 -694433.1761459 1608 1480 9166666.669675 1609 1480 -17197404.95283 1610 1480 8940966.590895 1481 1481 582790450.9006 1482 1481 231485.2378239 1483 1481 5555465.403692 1484 1481 74350397.96411 1491 1481 2471062.936219 1492 1481 1236088.573861 1493 1481 -8882157.948759 1494 1481 -462970.4754449 1495 1481 -2777732.703214 1496 1481 35690216.05203 1497 1481 -2737270.396254 1498 1481 1541644.129353 1499 1481 -8945289.261872 1575 1481 10018981.01522 1576 1481 -8177088.970282 1577 1481 -16145262.77514 1578 1481 42662729.59629 1579 1481 -694433.1761458 1580 1481 -54493616.03735 1581 1481 11321064.34898 1582 1481 8871522.146428 1583 1481 -20019947.11985 1587 1481 57871.30948763 1588 1481 -32833355.865 1589 1481 -37566373.58606 1590 1481 231485.2378493 1591 1481 -2777732.703215 1592 1481 -110039912.4136 1593 1481 57871.30949473 1594 1481 35611088.56821 1595 1481 -53128242.27036 1602 1481 -10076852.32471 1603 1481 -8246533.414749 1604 1481 -16388848.63381 1605 1481 -42894214.83411 1606 1481 -694433.1761459 1607 1481 -55531090.78464 1608 1481 -11378935.65847 1609 1481 8940966.590895 1610 1481 -20295098.63508 1482 1482 665854880.679 1483 1482 36667470.52063 1484 1482 3125090.734117 1485 1482 18070347.2503 1486 1482 -36666988.20464 1487 1482 2702571.265064 1494 1482 -52678594.23377 1495 1482 -36666666.66064 1496 1482 2505785.158418 1497 1482 -140008022.8906 1498 1482 2.577900886536e-06 1499 1482 -462970.4754454 1500 1482 -52702268.47617 1501 1482 36666666.66064 1502 1482 -2702548.174055 1578 1482 -18391419.7975 1579 1482 9166666.669678 1580 1482 10018981.01522 1581 1482 -71369389.94283 1582 1482 -9166787.24867 1583 1482 42147892.99313 1590 1482 -413319.0876746 1591 1482 3.017485141754e-06 1592 1482 57871.30948708 1593 1482 76553135.92261 1594 1482 9166867.634673 1595 1482 781226.2244361 1596 1482 -18699525.19313 1597 1482 -9166747.055676 1598 1482 11379035.3452 1605 1482 -18482764.4945 1606 1482 -9166666.669676 1607 1482 -10076852.32471 1608 1482 -59172122.54065 1609 1482 4.395842552185e-07 1610 1482 -42928937.05631 1611 1482 -19947608.24497 1612 1482 9166666.669675 1613 1482 -11378935.65847 1483 1483 566847200.4901 1484 1483 -8610909.306622 1485 1483 -36667148.97663 1486 1483 -110262538.3357 1487 1483 4611016.915367 1494 1483 -36666666.66065 1495 1483 -41677781.0706 1496 1483 1263866.351621 1497 1483 2.831220626831e-06 1498 1483 21326659.08566 1499 1483 -2777732.703214 1500 1483 36666666.66064 1501 1483 -41701455.31301 1502 1483 1513866.351594 1578 1483 9166666.669678 1579 1483 -15641216.50536 1580 1483 -8177088.970282 1581 1483 -9166747.055672 1582 1483 -28285264.92641 1583 1483 7788270.809731 1590 1483 4.06801700592e-06 1591 1483 -35246583.02275 1592 1483 -32861133.64276 1593 1483 9166867.634673 1594 1483 51801215.86321 1595 1483 -2152764.494718 1596 1483 -9166787.248675 1597 1483 -50782746.60544 1598 1483 35402941.77273 1605 1483 -9166666.669676 1606 1483 -15732561.20235 1607 1483 -8246533.414749 1608 1483 4.619359970093e-07 1609 1483 -18838452.02672 1610 1483 -694433.1761459 1611 1483 9166666.669675 1612 1483 -17197404.95283 1613 1483 8940966.590895 1484 1484 591261848.0956 1485 1484 2737305.032771 1486 1484 5388803.421584 1487 1484 33925571.74906 1494 1484 2471062.936219 1495 1484 1236088.573861 1496 1484 -8882157.948759 1497 1484 -462970.4754449 1498 1484 -2777732.703214 1499 1484 35690216.05203 1500 1484 -2737270.396254 1501 1484 1541644.129353 1502 1484 -8945289.261872 1578 1484 10018981.01522 1579 1484 -8177088.970282 1580 1484 -16145262.77514 1581 1484 42113167.97979 1582 1484 7593861.729456 1583 1484 -55157692.73435 1590 1484 57871.30948763 1591 1484 -32833355.865 1592 1484 -37566373.58606 1593 1484 781320.0962051 1594 1484 -2152689.398522 1595 1484 -91946096.11431 1596 1484 11379085.18856 1597 1484 35569610.71641 1598 1484 -53430905.74636 1605 1484 -10076852.32471 1606 1484 -8246533.414749 1607 1484 -16388848.63381 1608 1484 -42894214.83411 1609 1484 -694433.1761459 1610 1484 -55531090.78464 1611 1484 -11378935.65847 1612 1484 8940966.590895 1613 1484 -20295098.63508 1485 1485 383498024.544 1486 1485 36666666.66064 1487 1485 2662179.892796 1497 1485 -52678594.23377 1498 1485 -36666666.66064 1499 1485 2505785.158418 1500 1485 -204675200.5845 1501 1485 -36666988.20463 1502 1485 -2662156.039165 1503 1485 11810466.31493 1504 1485 29333654.8725 1505 1485 -2152800.8684 1581 1485 -4579449.609996 1582 1485 11000120.58261 1583 1485 12057631.64322 1593 1485 -14225493.76444 1594 1485 -9166787.248675 1595 1485 -10019112.65448 1596 1485 35932670.30059 1597 1485 9166666.669679 1598 1485 9311563.653784 1608 1485 -18482764.4945 1609 1485 -9166666.669676 1610 1485 -10076852.32471 1611 1485 -72925641.46158 1612 1485 -9166747.055676 1613 1485 -43478968.03166 1614 1485 -7497354.851903 1615 1485 7333413.72174 1616 1485 -9080099.689708 1486 1486 328493596.9861 1487 1486 -6944376.43401 1497 1486 -36666666.66065 1498 1486 -41677781.0706 1499 1486 1263866.351621 1500 1486 -36667148.97662 1501 1486 -32338700.60373 1502 1486 -3847226.785359 1503 1486 44000482.30876 1504 1486 11810466.31493 1505 1486 2416693.76713 1581 1486 7333413.72174 1582 1486 -4579449.61 1583 1486 -6430626.286135 1593 1486 -9166747.055675 1594 1486 -46308715.17675 1595 1486 -32902986.62891 1596 1486 9166666.669678 1597 1486 22181563.40434 1598 1486 5180609.664774 1608 1486 -9166666.669676 1609 1486 -15732561.20235 1610 1486 -8246533.414749 1611 1486 -9166787.248676 1612 1486 -29841516.44517 1613 1486 -9524419.110191 1614 1486 11000120.58261 1615 1486 -7497354.8519 1616 1486 10895952.52268 1487 1487 364686604.8413 1497 1487 2471062.936219 1498 1487 1236088.573861 1499 1487 -8882157.948759 1500 1487 -2662144.112346 1501 1487 -3097217.751863 1502 1487 -5157813.372203 1503 1487 -3229201.302601 1504 1487 1611129.178087 1505 1487 31494576.83983 1581 1487 8038421.095477 1582 1487 -9645939.429201 1583 1487 -12211865.62666 1593 1487 -10019068.77473 1594 1487 -33069655.68813 1595 1487 -41500155.26984 1596 1487 -7806863.548506 1597 1487 -8513909.758068 1598 1487 -68673244.4318 1608 1487 -10076852.32471 1609 1487 -8246533.414749 1610 1487 -16388848.63381 1611 1487 -43444243.01831 1612 1487 -9329934.937092 1613 1487 -59307696.78438 1614 1487 -13620149.53456 1615 1487 7263968.348454 1616 1487 -19992946.27174 1488 1488 613328698.917 1489 1488 1.621246337891e-05 1490 1488 925940.9508365 1491 1488 82577683.23799 1492 1488 -7.659196853638e-06 1493 1488 231485.2378237 1506 1488 -140008022.8906 1507 1488 2.577900886536e-06 1508 1488 -462970.4754454 1509 1488 -52702268.47617 1510 1488 36666666.66064 1511 1488 -2702548.174055 1584 1488 -58783069.51046 1585 1488 1.639127731323e-06 1586 1488 42697451.81849 1587 1488 -19844426.42677 1588 1488 -9166666.669679 1589 1488 11321064.34898 1599 1488 57430602.85087 1600 1488 3.8743019104e-06 1601 1488 231485.2378496 1602 1488 -6249019.844286 1603 1488 -7.443130016327e-06 1604 1488 57871.30949415 1617 1488 -59172122.54065 1618 1488 4.395842552185e-07 1619 1488 -42928937.05631 1620 1488 -19947608.24497 1621 1488 9166666.669675 1622 1488 -11378935.65847 1489 1489 525322193.6551 1490 1489 -11110930.80738 1491 1489 -7.525086402893e-06 1492 1489 -56755372.43366 1493 1489 5555465.403692 1506 1489 2.831220626831e-06 1507 1489 21326659.08566 1508 1489 -2777732.703214 1509 1489 36666666.66064 1510 1489 -41701455.31301 1511 1489 1513866.351594 1584 1489 6.034970283508e-07 1585 1489 -18449398.9965 1586 1489 -694433.1761458 1587 1489 -9166666.669679 1588 1489 -17094223.13462 1589 1489 8871522.146427 1599 1489 4.231929779053e-06 1600 1489 35428976.52455 1601 1489 -2777732.703215 1602 1489 -7.599592208862e-06 1603 1489 -41082283.77936 1604 1489 35638866.34597 1617 1489 4.619359970093e-07 1618 1489 -18838452.02672 1619 1489 -694433.1761459 1620 1489 9166666.669675 1621 1489 -17197404.95283 1622 1489 8940966.590895 1490 1490 582790450.9006 1491 1490 231485.2378239 1492 1490 5555465.403692 1493 1490 74350397.96411 1506 1490 -462970.4754449 1507 1490 -2777732.703214 1508 1490 35690216.05203 1509 1490 -2737270.396254 1510 1490 1541644.129353 1511 1490 -8945289.261872 1584 1490 42662729.59629 1585 1490 -694433.1761458 1586 1490 -54493616.03735 1587 1490 11321064.34898 1588 1490 8871522.146428 1589 1490 -20019947.11985 1599 1490 231485.2378493 1600 1490 -2777732.703215 1601 1490 -110039912.4136 1602 1490 57871.30949473 1603 1490 35611088.56821 1604 1490 -53128242.27036 1617 1490 -42894214.83411 1618 1490 -694433.1761459 1619 1490 -55531090.78464 1620 1490 -11378935.65847 1621 1490 8940966.590895 1622 1490 -20295098.63508 1491 1491 613328698.917 1492 1491 1.621246337891e-05 1493 1491 925940.9508365 1494 1491 82577683.23799 1495 1491 -7.659196853638e-06 1496 1491 231485.2378237 1506 1491 -52678594.23377 1507 1491 -36666666.66064 1508 1491 2505785.158418 1509 1491 -140008022.8906 1510 1491 2.577900886536e-06 1511 1491 -462970.4754454 1512 1491 -52702268.47617 1513 1491 36666666.66064 1514 1491 -2702548.174055 1584 1491 -18391419.7975 1585 1491 9166666.669678 1586 1491 10018981.01522 1587 1491 -58783069.51046 1588 1491 1.639127731323e-06 1589 1491 42697451.81849 1590 1491 -19844426.42677 1591 1491 -9166666.669679 1592 1491 11321064.34898 1599 1491 -413319.0876746 1600 1491 3.017485141754e-06 1601 1491 57871.30948708 1602 1491 57430602.85087 1603 1491 3.8743019104e-06 1604 1491 231485.2378496 1605 1491 -6249019.844286 1606 1491 -7.443130016327e-06 1607 1491 57871.30949415 1617 1491 -18482764.4945 1618 1491 -9166666.669676 1619 1491 -10076852.32471 1620 1491 -59172122.54065 1621 1491 4.395842552185e-07 1622 1491 -42928937.05631 1623 1491 -19947608.24497 1624 1491 9166666.669675 1625 1491 -11378935.65847 1492 1492 525322193.6551 1493 1492 -11110930.80738 1494 1492 -7.525086402893e-06 1495 1492 -56755372.43366 1496 1492 5555465.403692 1506 1492 -36666666.66065 1507 1492 -41677781.0706 1508 1492 1263866.351621 1509 1492 2.831220626831e-06 1510 1492 21326659.08566 1511 1492 -2777732.703214 1512 1492 36666666.66064 1513 1492 -41701455.31301 1514 1492 1513866.351594 1584 1492 9166666.669678 1585 1492 -15641216.50536 1586 1492 -8177088.970282 1587 1492 6.034970283508e-07 1588 1492 -18449398.9965 1589 1492 -694433.1761458 1590 1492 -9166666.669679 1591 1492 -17094223.13462 1592 1492 8871522.146427 1599 1492 4.06801700592e-06 1600 1492 -35246583.02275 1601 1492 -32861133.64276 1602 1492 4.231929779053e-06 1603 1492 35428976.52455 1604 1492 -2777732.703215 1605 1492 -7.599592208862e-06 1606 1492 -41082283.77936 1607 1492 35638866.34597 1617 1492 -9166666.669676 1618 1492 -15732561.20235 1619 1492 -8246533.414749 1620 1492 4.619359970093e-07 1621 1492 -18838452.02672 1622 1492 -694433.1761459 1623 1492 9166666.669675 1624 1492 -17197404.95283 1625 1492 8940966.590895 1493 1493 582790450.9006 1494 1493 231485.2378239 1495 1493 5555465.403692 1496 1493 74350397.96411 1506 1493 2471062.936219 1507 1493 1236088.573861 1508 1493 -8882157.948759 1509 1493 -462970.4754449 1510 1493 -2777732.703214 1511 1493 35690216.05203 1512 1493 -2737270.396254 1513 1493 1541644.129353 1514 1493 -8945289.261872 1584 1493 10018981.01522 1585 1493 -8177088.970282 1586 1493 -16145262.77514 1587 1493 42662729.59629 1588 1493 -694433.1761458 1589 1493 -54493616.03735 1590 1493 11321064.34898 1591 1493 8871522.146428 1592 1493 -20019947.11985 1599 1493 57871.30948763 1600 1493 -32833355.865 1601 1493 -37566373.58606 1602 1493 231485.2378493 1603 1493 -2777732.703215 1604 1493 -110039912.4136 1605 1493 57871.30949473 1606 1493 35611088.56821 1607 1493 -53128242.27036 1617 1493 -10076852.32471 1618 1493 -8246533.414749 1619 1493 -16388848.63381 1620 1493 -42894214.83411 1621 1493 -694433.1761459 1622 1493 -55531090.78464 1623 1493 -11378935.65847 1624 1493 8940966.590895 1625 1493 -20295098.63508 1494 1494 613328698.917 1495 1494 1.621246337891e-05 1496 1494 925940.9508365 1497 1494 82577683.23799 1498 1494 -7.659196853638e-06 1499 1494 231485.2378237 1509 1494 -52678594.23377 1510 1494 -36666666.66064 1511 1494 2505785.158418 1512 1494 -140008022.8906 1513 1494 2.577900886536e-06 1514 1494 -462970.4754454 1515 1494 -52702268.47617 1516 1494 36666666.66064 1517 1494 -2702548.174055 1587 1494 -18391419.7975 1588 1494 9166666.669678 1589 1494 10018981.01522 1590 1494 -58783069.51046 1591 1494 1.639127731323e-06 1592 1494 42697451.81849 1593 1494 -19844426.42677 1594 1494 -9166666.669679 1595 1494 11321064.34898 1602 1494 -413319.0876746 1603 1494 3.017485141754e-06 1604 1494 57871.30948708 1605 1494 57430602.85087 1606 1494 3.8743019104e-06 1607 1494 231485.2378496 1608 1494 -6249019.844286 1609 1494 -7.443130016327e-06 1610 1494 57871.30949415 1620 1494 -18482764.4945 1621 1494 -9166666.669676 1622 1494 -10076852.32471 1623 1494 -59172122.54065 1624 1494 4.395842552185e-07 1625 1494 -42928937.05631 1626 1494 -19947608.24497 1627 1494 9166666.669675 1628 1494 -11378935.65847 1495 1495 525322193.6551 1496 1495 -11110930.80738 1497 1495 -7.525086402893e-06 1498 1495 -56755372.43366 1499 1495 5555465.403692 1509 1495 -36666666.66065 1510 1495 -41677781.0706 1511 1495 1263866.351621 1512 1495 2.831220626831e-06 1513 1495 21326659.08566 1514 1495 -2777732.703214 1515 1495 36666666.66064 1516 1495 -41701455.31301 1517 1495 1513866.351594 1587 1495 9166666.669678 1588 1495 -15641216.50536 1589 1495 -8177088.970282 1590 1495 6.034970283508e-07 1591 1495 -18449398.9965 1592 1495 -694433.1761458 1593 1495 -9166666.669679 1594 1495 -17094223.13462 1595 1495 8871522.146427 1602 1495 4.06801700592e-06 1603 1495 -35246583.02275 1604 1495 -32861133.64276 1605 1495 4.231929779053e-06 1606 1495 35428976.52455 1607 1495 -2777732.703215 1608 1495 -7.599592208862e-06 1609 1495 -41082283.77936 1610 1495 35638866.34597 1620 1495 -9166666.669676 1621 1495 -15732561.20235 1622 1495 -8246533.414749 1623 1495 4.619359970093e-07 1624 1495 -18838452.02672 1625 1495 -694433.1761459 1626 1495 9166666.669675 1627 1495 -17197404.95283 1628 1495 8940966.590895 1496 1496 582790450.9006 1497 1496 231485.2378239 1498 1496 5555465.403692 1499 1496 74350397.96411 1509 1496 2471062.936219 1510 1496 1236088.573861 1511 1496 -8882157.948759 1512 1496 -462970.4754449 1513 1496 -2777732.703214 1514 1496 35690216.05203 1515 1496 -2737270.396254 1516 1496 1541644.129353 1517 1496 -8945289.261872 1587 1496 10018981.01522 1588 1496 -8177088.970282 1589 1496 -16145262.77514 1590 1496 42662729.59629 1591 1496 -694433.1761458 1592 1496 -54493616.03735 1593 1496 11321064.34898 1594 1496 8871522.146428 1595 1496 -20019947.11985 1602 1496 57871.30948763 1603 1496 -32833355.865 1604 1496 -37566373.58606 1605 1496 231485.2378493 1606 1496 -2777732.703215 1607 1496 -110039912.4136 1608 1496 57871.30949473 1609 1496 35611088.56821 1610 1496 -53128242.27036 1620 1496 -10076852.32471 1621 1496 -8246533.414749 1622 1496 -16388848.63381 1623 1496 -42894214.83411 1624 1496 -694433.1761459 1625 1496 -55531090.78464 1626 1496 -11378935.65847 1627 1496 8940966.590895 1628 1496 -20295098.63508 1497 1497 613328698.917 1498 1497 1.621246337891e-05 1499 1497 925940.9508365 1500 1497 82577683.23799 1501 1497 -7.659196853638e-06 1502 1497 231485.2378237 1512 1497 -52678594.23377 1513 1497 -36666666.66064 1514 1497 2505785.158418 1515 1497 -140008022.8906 1516 1497 2.577900886536e-06 1517 1497 -462970.4754454 1518 1497 -52702268.47617 1519 1497 36666666.66064 1520 1497 -2702548.174055 1590 1497 -18391419.7975 1591 1497 9166666.669678 1592 1497 10018981.01522 1593 1497 -58783069.51046 1594 1497 1.639127731323e-06 1595 1497 42697451.81849 1596 1497 -19844426.42677 1597 1497 -9166666.669679 1598 1497 11321064.34898 1605 1497 -413319.0876746 1606 1497 3.017485141754e-06 1607 1497 57871.30948708 1608 1497 57430602.85087 1609 1497 3.8743019104e-06 1610 1497 231485.2378496 1611 1497 -6249019.844286 1612 1497 -7.443130016327e-06 1613 1497 57871.30949415 1623 1497 -18482764.4945 1624 1497 -9166666.669676 1625 1497 -10076852.32471 1626 1497 -59172122.54065 1627 1497 4.395842552185e-07 1628 1497 -42928937.05631 1629 1497 -19947608.24497 1630 1497 9166666.669675 1631 1497 -11378935.65847 1498 1498 525322193.6551 1499 1498 -11110930.80738 1500 1498 -7.525086402893e-06 1501 1498 -56755372.43366 1502 1498 5555465.403692 1512 1498 -36666666.66065 1513 1498 -41677781.0706 1514 1498 1263866.351621 1515 1498 2.831220626831e-06 1516 1498 21326659.08566 1517 1498 -2777732.703214 1518 1498 36666666.66064 1519 1498 -41701455.31301 1520 1498 1513866.351594 1590 1498 9166666.669678 1591 1498 -15641216.50536 1592 1498 -8177088.970282 1593 1498 6.034970283508e-07 1594 1498 -18449398.9965 1595 1498 -694433.1761458 1596 1498 -9166666.669679 1597 1498 -17094223.13462 1598 1498 8871522.146427 1605 1498 4.06801700592e-06 1606 1498 -35246583.02275 1607 1498 -32861133.64276 1608 1498 4.231929779053e-06 1609 1498 35428976.52455 1610 1498 -2777732.703215 1611 1498 -7.599592208862e-06 1612 1498 -41082283.77936 1613 1498 35638866.34597 1623 1498 -9166666.669676 1624 1498 -15732561.20235 1625 1498 -8246533.414749 1626 1498 4.619359970093e-07 1627 1498 -18838452.02672 1628 1498 -694433.1761459 1629 1498 9166666.669675 1630 1498 -17197404.95283 1631 1498 8940966.590895 1499 1499 582790450.9006 1500 1499 231485.2378239 1501 1499 5555465.403692 1502 1499 74350397.96411 1512 1499 2471062.936219 1513 1499 1236088.573861 1514 1499 -8882157.948759 1515 1499 -462970.4754449 1516 1499 -2777732.703214 1517 1499 35690216.05203 1518 1499 -2737270.396254 1519 1499 1541644.129353 1520 1499 -8945289.261872 1590 1499 10018981.01522 1591 1499 -8177088.970282 1592 1499 -16145262.77514 1593 1499 42662729.59629 1594 1499 -694433.1761458 1595 1499 -54493616.03735 1596 1499 11321064.34898 1597 1499 8871522.146428 1598 1499 -20019947.11985 1605 1499 57871.30948763 1606 1499 -32833355.865 1607 1499 -37566373.58606 1608 1499 231485.2378493 1609 1499 -2777732.703215 1610 1499 -110039912.4136 1611 1499 57871.30949473 1612 1499 35611088.56821 1613 1499 -53128242.27036 1623 1499 -10076852.32471 1624 1499 -8246533.414749 1625 1499 -16388848.63381 1626 1499 -42894214.83411 1627 1499 -694433.1761459 1628 1499 -55531090.78464 1629 1499 -11378935.65847 1630 1499 8940966.590895 1631 1499 -20295098.63508 1500 1500 665854880.679 1501 1500 36667470.52063 1502 1500 3125090.734117 1503 1500 18070347.2503 1504 1500 -36666988.20464 1505 1500 2702571.265064 1515 1500 -52678594.23377 1516 1500 -36666666.66064 1517 1500 2505785.158418 1518 1500 -140008022.8906 1519 1500 2.577900886536e-06 1520 1500 -462970.4754454 1521 1500 -52702268.47617 1522 1500 36666666.66064 1523 1500 -2702548.174055 1593 1500 -18391419.7975 1594 1500 9166666.669678 1595 1500 10018981.01522 1596 1500 -71369389.94283 1597 1500 -9166787.24867 1598 1500 42147892.99313 1608 1500 -413319.0876746 1609 1500 3.017485141754e-06 1610 1500 57871.30948708 1611 1500 76553135.92261 1612 1500 9166867.634673 1613 1500 781226.2244361 1614 1500 -18699525.19313 1615 1500 -9166747.055676 1616 1500 11379035.3452 1626 1500 -18482764.4945 1627 1500 -9166666.669676 1628 1500 -10076852.32471 1629 1500 -59172122.54065 1630 1500 4.395842552185e-07 1631 1500 -42928937.05631 1632 1500 -19947608.24497 1633 1500 9166666.669675 1634 1500 -11378935.65847 1501 1501 566847200.4901 1502 1501 -8610909.306622 1503 1501 -36667148.97663 1504 1501 -110262538.3357 1505 1501 4611016.915367 1515 1501 -36666666.66065 1516 1501 -41677781.0706 1517 1501 1263866.351621 1518 1501 2.831220626831e-06 1519 1501 21326659.08566 1520 1501 -2777732.703214 1521 1501 36666666.66064 1522 1501 -41701455.31301 1523 1501 1513866.351594 1593 1501 9166666.669678 1594 1501 -15641216.50536 1595 1501 -8177088.970282 1596 1501 -9166747.055672 1597 1501 -28285264.92641 1598 1501 7788270.809731 1608 1501 4.06801700592e-06 1609 1501 -35246583.02275 1610 1501 -32861133.64276 1611 1501 9166867.634673 1612 1501 51801215.86321 1613 1501 -2152764.494718 1614 1501 -9166787.248675 1615 1501 -50782746.60544 1616 1501 35402941.77273 1626 1501 -9166666.669676 1627 1501 -15732561.20235 1628 1501 -8246533.414749 1629 1501 4.619359970093e-07 1630 1501 -18838452.02672 1631 1501 -694433.1761459 1632 1501 9166666.669675 1633 1501 -17197404.95283 1634 1501 8940966.590895 1502 1502 591261848.0956 1503 1502 2737305.032771 1504 1502 5388803.421584 1505 1502 33925571.74906 1515 1502 2471062.936219 1516 1502 1236088.573861 1517 1502 -8882157.948759 1518 1502 -462970.4754449 1519 1502 -2777732.703214 1520 1502 35690216.05203 1521 1502 -2737270.396254 1522 1502 1541644.129353 1523 1502 -8945289.261872 1593 1502 10018981.01522 1594 1502 -8177088.970282 1595 1502 -16145262.77514 1596 1502 42113167.97979 1597 1502 7593861.729456 1598 1502 -55157692.73435 1608 1502 57871.30948763 1609 1502 -32833355.865 1610 1502 -37566373.58606 1611 1502 781320.0962051 1612 1502 -2152689.398522 1613 1502 -91946096.11431 1614 1502 11379085.18856 1615 1502 35569610.71641 1616 1502 -53430905.74636 1626 1502 -10076852.32471 1627 1502 -8246533.414749 1628 1502 -16388848.63381 1629 1502 -42894214.83411 1630 1502 -694433.1761459 1631 1502 -55531090.78464 1632 1502 -11378935.65847 1633 1502 8940966.590895 1634 1502 -20295098.63508 1503 1503 826502950.7467 1504 1503 -32829142.2168 1505 1503 -1574339.432285 1518 1503 -52678594.23377 1519 1503 -36666666.66064 1520 1503 2505785.158418 1521 1503 -43717734.4447 1522 1503 32816830.06734 1523 1503 -231059.6481135 1524 1503 -637569397.5693 1525 1503 29345645.47798 1526 1503 -416821.6161519 1596 1503 -4579449.609996 1597 1503 11000120.58261 1598 1503 12057631.64322 1611 1503 -14225493.76444 1612 1503 -9166787.248675 1613 1503 -10019112.65448 1614 1503 163714858.8002 1615 1503 -8207285.558244 1616 1503 4241855.317219 1629 1503 -18482764.4945 1630 1503 -9166666.669676 1631 1503 -10076852.32471 1632 1503 -23632031.88637 1633 1503 8204207.520878 1634 1503 -22609970.36319 1635 1503 -160108670.9846 1636 1503 7336411.37311 1637 1503 -520782.4807296 1504 1504 1866175254.747 1505 1504 -20243144.64085 1518 1504 -36666666.66065 1519 1504 -41677781.0706 1520 1504 1263866.351621 1521 1504 32810673.99266 1522 1504 97413180.27061 1523 1504 -1903194.680072 1524 1504 44018468.21692 1525 1504 -1701040543.862 1526 1504 13714990.87775 1596 1504 7333413.72174 1597 1504 -4579449.61 1598 1504 -6430626.286135 1611 1504 -9166747.055675 1612 1504 -46308715.17675 1613 1504 -32902986.62891 1614 1504 -8207285.558244 1615 1504 423632934.9284 1616 1504 -1353225.115187 1629 1504 -9166666.669676 1630 1504 -15732561.20235 1631 1504 -8246533.414749 1632 1504 8202668.502206 1633 1504 11650696.80984 1634 1504 7172753.555873 1635 1504 11004617.05965 1636 1504 -425976457.6889 1637 1504 20227336.59943 1505 1505 856594529.5136 1518 1505 2471062.936219 1519 1505 1236088.573861 1520 1505 -8882157.948759 1521 1505 -1133759.188307 1522 1505 -1875517.295844 1523 1505 50029495.24259 1524 1505 -625232.4242272 1525 1505 13603538.44251 1526 1505 -636713913.8918 1596 1505 8038421.095477 1597 1505 -9645939.429201 1598 1505 -12211865.62666 1611 1505 -10019068.77473 1612 1505 -33069655.68813 1613 1505 -41500155.26984 1614 1505 -4768610.272799 1615 1505 -8558910.345734 1616 1505 99719621.84851 1629 1505 -10076852.32471 1630 1505 -8246533.414749 1631 1505 -16388848.63381 1632 1505 -22783562.29616 1633 1505 7202053.220155 1634 1505 -21366221.56937 1635 1505 -781173.7210934 1636 1505 20019063.72315 1637 1505 -161088669.2548 1506 1506 613328698.917 1507 1506 1.621246337891e-05 1508 1506 925940.9508365 1509 1506 82577683.23799 1510 1506 -7.659196853638e-06 1511 1506 231485.2378237 1527 1506 -140008022.8906 1528 1506 2.577900886536e-06 1529 1506 -462970.4754454 1530 1506 -52702268.47617 1531 1506 36666666.66064 1532 1506 -2702548.174055 1599 1506 -58783069.51046 1600 1506 1.639127731323e-06 1601 1506 42697451.81849 1602 1506 -19844426.42677 1603 1506 -9166666.669679 1604 1506 11321064.34898 1617 1506 57430602.85087 1618 1506 3.8743019104e-06 1619 1506 231485.2378496 1620 1506 -6249019.844286 1621 1506 -7.443130016327e-06 1622 1506 57871.30949415 1638 1506 -59172122.54065 1639 1506 4.395842552185e-07 1640 1506 -42928937.05631 1641 1506 -19947608.24497 1642 1506 9166666.669675 1643 1506 -11378935.65847 1507 1507 525322193.6551 1508 1507 -11110930.80738 1509 1507 -7.525086402893e-06 1510 1507 -56755372.43366 1511 1507 5555465.403692 1527 1507 2.831220626831e-06 1528 1507 21326659.08566 1529 1507 -2777732.703214 1530 1507 36666666.66064 1531 1507 -41701455.31301 1532 1507 1513866.351594 1599 1507 6.034970283508e-07 1600 1507 -18449398.9965 1601 1507 -694433.1761458 1602 1507 -9166666.669679 1603 1507 -17094223.13462 1604 1507 8871522.146427 1617 1507 4.231929779053e-06 1618 1507 35428976.52455 1619 1507 -2777732.703215 1620 1507 -7.599592208862e-06 1621 1507 -41082283.77936 1622 1507 35638866.34597 1638 1507 4.619359970093e-07 1639 1507 -18838452.02672 1640 1507 -694433.1761459 1641 1507 9166666.669675 1642 1507 -17197404.95283 1643 1507 8940966.590895 1508 1508 582790450.9006 1509 1508 231485.2378239 1510 1508 5555465.403692 1511 1508 74350397.96411 1527 1508 -462970.4754449 1528 1508 -2777732.703214 1529 1508 35690216.05203 1530 1508 -2737270.396254 1531 1508 1541644.129353 1532 1508 -8945289.261872 1599 1508 42662729.59629 1600 1508 -694433.1761458 1601 1508 -54493616.03735 1602 1508 11321064.34898 1603 1508 8871522.146428 1604 1508 -20019947.11985 1617 1508 231485.2378493 1618 1508 -2777732.703215 1619 1508 -110039912.4136 1620 1508 57871.30949473 1621 1508 35611088.56821 1622 1508 -53128242.27036 1638 1508 -42894214.83411 1639 1508 -694433.1761459 1640 1508 -55531090.78464 1641 1508 -11378935.65847 1642 1508 8940966.590895 1643 1508 -20295098.63508 1509 1509 613328698.917 1510 1509 1.621246337891e-05 1511 1509 925940.9508365 1512 1509 82577683.23799 1513 1509 -7.659196853638e-06 1514 1509 231485.2378237 1527 1509 -52678594.23377 1528 1509 -36666666.66064 1529 1509 2505785.158418 1530 1509 -140008022.8906 1531 1509 2.577900886536e-06 1532 1509 -462970.4754454 1533 1509 -52702268.47617 1534 1509 36666666.66064 1535 1509 -2702548.174055 1599 1509 -18391419.7975 1600 1509 9166666.669678 1601 1509 10018981.01522 1602 1509 -58783069.51046 1603 1509 1.639127731323e-06 1604 1509 42697451.81849 1605 1509 -19844426.42677 1606 1509 -9166666.669679 1607 1509 11321064.34898 1617 1509 -413319.0876746 1618 1509 3.017485141754e-06 1619 1509 57871.30948708 1620 1509 57430602.85087 1621 1509 3.8743019104e-06 1622 1509 231485.2378496 1623 1509 -6249019.844286 1624 1509 -7.443130016327e-06 1625 1509 57871.30949415 1638 1509 -18482764.4945 1639 1509 -9166666.669676 1640 1509 -10076852.32471 1641 1509 -59172122.54065 1642 1509 4.395842552185e-07 1643 1509 -42928937.05631 1644 1509 -19947608.24497 1645 1509 9166666.669675 1646 1509 -11378935.65847 1510 1510 525322193.6551 1511 1510 -11110930.80738 1512 1510 -7.525086402893e-06 1513 1510 -56755372.43366 1514 1510 5555465.403692 1527 1510 -36666666.66065 1528 1510 -41677781.0706 1529 1510 1263866.351621 1530 1510 2.831220626831e-06 1531 1510 21326659.08566 1532 1510 -2777732.703214 1533 1510 36666666.66064 1534 1510 -41701455.31301 1535 1510 1513866.351594 1599 1510 9166666.669678 1600 1510 -15641216.50536 1601 1510 -8177088.970282 1602 1510 6.034970283508e-07 1603 1510 -18449398.9965 1604 1510 -694433.1761458 1605 1510 -9166666.669679 1606 1510 -17094223.13462 1607 1510 8871522.146427 1617 1510 4.06801700592e-06 1618 1510 -35246583.02275 1619 1510 -32861133.64276 1620 1510 4.231929779053e-06 1621 1510 35428976.52455 1622 1510 -2777732.703215 1623 1510 -7.599592208862e-06 1624 1510 -41082283.77936 1625 1510 35638866.34597 1638 1510 -9166666.669676 1639 1510 -15732561.20235 1640 1510 -8246533.414749 1641 1510 4.619359970093e-07 1642 1510 -18838452.02672 1643 1510 -694433.1761459 1644 1510 9166666.669675 1645 1510 -17197404.95283 1646 1510 8940966.590895 1511 1511 582790450.9006 1512 1511 231485.2378239 1513 1511 5555465.403692 1514 1511 74350397.96411 1527 1511 2471062.936219 1528 1511 1236088.573861 1529 1511 -8882157.948759 1530 1511 -462970.4754449 1531 1511 -2777732.703214 1532 1511 35690216.05203 1533 1511 -2737270.396254 1534 1511 1541644.129353 1535 1511 -8945289.261872 1599 1511 10018981.01522 1600 1511 -8177088.970282 1601 1511 -16145262.77514 1602 1511 42662729.59629 1603 1511 -694433.1761458 1604 1511 -54493616.03735 1605 1511 11321064.34898 1606 1511 8871522.146428 1607 1511 -20019947.11985 1617 1511 57871.30948763 1618 1511 -32833355.865 1619 1511 -37566373.58606 1620 1511 231485.2378493 1621 1511 -2777732.703215 1622 1511 -110039912.4136 1623 1511 57871.30949473 1624 1511 35611088.56821 1625 1511 -53128242.27036 1638 1511 -10076852.32471 1639 1511 -8246533.414749 1640 1511 -16388848.63381 1641 1511 -42894214.83411 1642 1511 -694433.1761459 1643 1511 -55531090.78464 1644 1511 -11378935.65847 1645 1511 8940966.590895 1646 1511 -20295098.63508 1512 1512 613328698.917 1513 1512 1.621246337891e-05 1514 1512 925940.9508365 1515 1512 82577683.23799 1516 1512 -7.659196853638e-06 1517 1512 231485.2378237 1530 1512 -52678594.23377 1531 1512 -36666666.66064 1532 1512 2505785.158418 1533 1512 -140008022.8906 1534 1512 2.577900886536e-06 1535 1512 -462970.4754454 1536 1512 -52702268.47617 1537 1512 36666666.66064 1538 1512 -2702548.174055 1602 1512 -18391419.7975 1603 1512 9166666.669678 1604 1512 10018981.01522 1605 1512 -58783069.51046 1606 1512 1.639127731323e-06 1607 1512 42697451.81849 1608 1512 -19844426.42677 1609 1512 -9166666.669679 1610 1512 11321064.34898 1620 1512 -413319.0876746 1621 1512 3.017485141754e-06 1622 1512 57871.30948708 1623 1512 57430602.85087 1624 1512 3.8743019104e-06 1625 1512 231485.2378496 1626 1512 -6249019.844286 1627 1512 -7.443130016327e-06 1628 1512 57871.30949415 1641 1512 -18482764.4945 1642 1512 -9166666.669676 1643 1512 -10076852.32471 1644 1512 -59172122.54065 1645 1512 4.395842552185e-07 1646 1512 -42928937.05631 1647 1512 -19947608.24497 1648 1512 9166666.669675 1649 1512 -11378935.65847 1513 1513 525322193.6551 1514 1513 -11110930.80738 1515 1513 -7.525086402893e-06 1516 1513 -56755372.43366 1517 1513 5555465.403692 1530 1513 -36666666.66065 1531 1513 -41677781.0706 1532 1513 1263866.351621 1533 1513 2.831220626831e-06 1534 1513 21326659.08566 1535 1513 -2777732.703214 1536 1513 36666666.66064 1537 1513 -41701455.31301 1538 1513 1513866.351594 1602 1513 9166666.669678 1603 1513 -15641216.50536 1604 1513 -8177088.970282 1605 1513 6.034970283508e-07 1606 1513 -18449398.9965 1607 1513 -694433.1761458 1608 1513 -9166666.669679 1609 1513 -17094223.13462 1610 1513 8871522.146427 1620 1513 4.06801700592e-06 1621 1513 -35246583.02275 1622 1513 -32861133.64276 1623 1513 4.231929779053e-06 1624 1513 35428976.52455 1625 1513 -2777732.703215 1626 1513 -7.599592208862e-06 1627 1513 -41082283.77936 1628 1513 35638866.34597 1641 1513 -9166666.669676 1642 1513 -15732561.20235 1643 1513 -8246533.414749 1644 1513 4.619359970093e-07 1645 1513 -18838452.02672 1646 1513 -694433.1761459 1647 1513 9166666.669675 1648 1513 -17197404.95283 1649 1513 8940966.590895 1514 1514 582790450.9006 1515 1514 231485.2378239 1516 1514 5555465.403692 1517 1514 74350397.96411 1530 1514 2471062.936219 1531 1514 1236088.573861 1532 1514 -8882157.948759 1533 1514 -462970.4754449 1534 1514 -2777732.703214 1535 1514 35690216.05203 1536 1514 -2737270.396254 1537 1514 1541644.129353 1538 1514 -8945289.261872 1602 1514 10018981.01522 1603 1514 -8177088.970282 1604 1514 -16145262.77514 1605 1514 42662729.59629 1606 1514 -694433.1761458 1607 1514 -54493616.03735 1608 1514 11321064.34898 1609 1514 8871522.146428 1610 1514 -20019947.11985 1620 1514 57871.30948763 1621 1514 -32833355.865 1622 1514 -37566373.58606 1623 1514 231485.2378493 1624 1514 -2777732.703215 1625 1514 -110039912.4136 1626 1514 57871.30949473 1627 1514 35611088.56821 1628 1514 -53128242.27036 1641 1514 -10076852.32471 1642 1514 -8246533.414749 1643 1514 -16388848.63381 1644 1514 -42894214.83411 1645 1514 -694433.1761459 1646 1514 -55531090.78464 1647 1514 -11378935.65847 1648 1514 8940966.590895 1649 1514 -20295098.63508 1515 1515 613328698.917 1516 1515 1.621246337891e-05 1517 1515 925940.9508365 1518 1515 82577683.23799 1519 1515 -7.659196853638e-06 1520 1515 231485.2378237 1533 1515 -52678594.23377 1534 1515 -36666666.66064 1535 1515 2505785.158418 1536 1515 -140008022.8906 1537 1515 2.577900886536e-06 1538 1515 -462970.4754454 1539 1515 -52702268.47617 1540 1515 36666666.66064 1541 1515 -2702548.174055 1605 1515 -18391419.7975 1606 1515 9166666.669678 1607 1515 10018981.01522 1608 1515 -58783069.51046 1609 1515 1.639127731323e-06 1610 1515 42697451.81849 1611 1515 -19844426.42677 1612 1515 -9166666.669679 1613 1515 11321064.34898 1623 1515 -413319.0876746 1624 1515 3.017485141754e-06 1625 1515 57871.30948708 1626 1515 57430602.85087 1627 1515 3.8743019104e-06 1628 1515 231485.2378496 1629 1515 -6249019.844286 1630 1515 -7.443130016327e-06 1631 1515 57871.30949415 1644 1515 -18482764.4945 1645 1515 -9166666.669676 1646 1515 -10076852.32471 1647 1515 -59172122.54065 1648 1515 4.395842552185e-07 1649 1515 -42928937.05631 1650 1515 -19947608.24497 1651 1515 9166666.669675 1652 1515 -11378935.65847 1516 1516 525322193.6551 1517 1516 -11110930.80738 1518 1516 -7.525086402893e-06 1519 1516 -56755372.43366 1520 1516 5555465.403692 1533 1516 -36666666.66065 1534 1516 -41677781.0706 1535 1516 1263866.351621 1536 1516 2.831220626831e-06 1537 1516 21326659.08566 1538 1516 -2777732.703214 1539 1516 36666666.66064 1540 1516 -41701455.31301 1541 1516 1513866.351594 1605 1516 9166666.669678 1606 1516 -15641216.50536 1607 1516 -8177088.970282 1608 1516 6.034970283508e-07 1609 1516 -18449398.9965 1610 1516 -694433.1761458 1611 1516 -9166666.669679 1612 1516 -17094223.13462 1613 1516 8871522.146427 1623 1516 4.06801700592e-06 1624 1516 -35246583.02275 1625 1516 -32861133.64276 1626 1516 4.231929779053e-06 1627 1516 35428976.52455 1628 1516 -2777732.703215 1629 1516 -7.599592208862e-06 1630 1516 -41082283.77936 1631 1516 35638866.34597 1644 1516 -9166666.669676 1645 1516 -15732561.20235 1646 1516 -8246533.414749 1647 1516 4.619359970093e-07 1648 1516 -18838452.02672 1649 1516 -694433.1761459 1650 1516 9166666.669675 1651 1516 -17197404.95283 1652 1516 8940966.590895 1517 1517 582790450.9006 1518 1517 231485.2378239 1519 1517 5555465.403692 1520 1517 74350397.96411 1533 1517 2471062.936219 1534 1517 1236088.573861 1535 1517 -8882157.948759 1536 1517 -462970.4754449 1537 1517 -2777732.703214 1538 1517 35690216.05203 1539 1517 -2737270.396254 1540 1517 1541644.129353 1541 1517 -8945289.261872 1605 1517 10018981.01522 1606 1517 -8177088.970282 1607 1517 -16145262.77514 1608 1517 42662729.59629 1609 1517 -694433.1761458 1610 1517 -54493616.03735 1611 1517 11321064.34898 1612 1517 8871522.146428 1613 1517 -20019947.11985 1623 1517 57871.30948763 1624 1517 -32833355.865 1625 1517 -37566373.58606 1626 1517 231485.2378493 1627 1517 -2777732.703215 1628 1517 -110039912.4136 1629 1517 57871.30949473 1630 1517 35611088.56821 1631 1517 -53128242.27036 1644 1517 -10076852.32471 1645 1517 -8246533.414749 1646 1517 -16388848.63381 1647 1517 -42894214.83411 1648 1517 -694433.1761459 1649 1517 -55531090.78464 1650 1517 -11378935.65847 1651 1517 8940966.590895 1652 1517 -20295098.63508 1518 1518 613328698.917 1519 1518 1.621246337891e-05 1520 1518 925940.9508365 1521 1518 82577683.23799 1522 1518 -7.659196853638e-06 1523 1518 231485.2378237 1536 1518 -52678594.23377 1537 1518 -36666666.66064 1538 1518 2505785.158418 1539 1518 -140008022.8906 1540 1518 2.577900886536e-06 1541 1518 -462970.4754454 1542 1518 -52702268.47617 1543 1518 36666666.66064 1544 1518 -2702548.174055 1608 1518 -18391419.7975 1609 1518 9166666.669678 1610 1518 10018981.01522 1611 1518 -58783069.51046 1612 1518 1.639127731323e-06 1613 1518 42697451.81849 1614 1518 -19844426.42677 1615 1518 -9166666.669679 1616 1518 11321064.34898 1626 1518 -413319.0876746 1627 1518 3.017485141754e-06 1628 1518 57871.30948708 1629 1518 57430602.85087 1630 1518 3.8743019104e-06 1631 1518 231485.2378496 1632 1518 -6249019.844286 1633 1518 -7.443130016327e-06 1634 1518 57871.30949415 1647 1518 -18482764.4945 1648 1518 -9166666.669676 1649 1518 -10076852.32471 1650 1518 -59172122.54065 1651 1518 4.395842552185e-07 1652 1518 -42928937.05631 1653 1518 -19947608.24497 1654 1518 9166666.669675 1655 1518 -11378935.65847 1519 1519 525322193.6551 1520 1519 -11110930.80738 1521 1519 -7.525086402893e-06 1522 1519 -56755372.43366 1523 1519 5555465.403692 1536 1519 -36666666.66065 1537 1519 -41677781.0706 1538 1519 1263866.351621 1539 1519 2.831220626831e-06 1540 1519 21326659.08566 1541 1519 -2777732.703214 1542 1519 36666666.66064 1543 1519 -41701455.31301 1544 1519 1513866.351594 1608 1519 9166666.669678 1609 1519 -15641216.50536 1610 1519 -8177088.970282 1611 1519 6.034970283508e-07 1612 1519 -18449398.9965 1613 1519 -694433.1761458 1614 1519 -9166666.669679 1615 1519 -17094223.13462 1616 1519 8871522.146427 1626 1519 4.06801700592e-06 1627 1519 -35246583.02275 1628 1519 -32861133.64276 1629 1519 4.231929779053e-06 1630 1519 35428976.52455 1631 1519 -2777732.703215 1632 1519 -7.599592208862e-06 1633 1519 -41082283.77936 1634 1519 35638866.34597 1647 1519 -9166666.669676 1648 1519 -15732561.20235 1649 1519 -8246533.414749 1650 1519 4.619359970093e-07 1651 1519 -18838452.02672 1652 1519 -694433.1761459 1653 1519 9166666.669675 1654 1519 -17197404.95283 1655 1519 8940966.590895 1520 1520 582790450.9006 1521 1520 231485.2378239 1522 1520 5555465.403692 1523 1520 74350397.96411 1536 1520 2471062.936219 1537 1520 1236088.573861 1538 1520 -8882157.948759 1539 1520 -462970.4754449 1540 1520 -2777732.703214 1541 1520 35690216.05203 1542 1520 -2737270.396254 1543 1520 1541644.129353 1544 1520 -8945289.261872 1608 1520 10018981.01522 1609 1520 -8177088.970282 1610 1520 -16145262.77514 1611 1520 42662729.59629 1612 1520 -694433.1761458 1613 1520 -54493616.03735 1614 1520 11321064.34898 1615 1520 8871522.146428 1616 1520 -20019947.11985 1626 1520 57871.30948763 1627 1520 -32833355.865 1628 1520 -37566373.58606 1629 1520 231485.2378493 1630 1520 -2777732.703215 1631 1520 -110039912.4136 1632 1520 57871.30949473 1633 1520 35611088.56821 1634 1520 -53128242.27036 1647 1520 -10076852.32471 1648 1520 -8246533.414749 1649 1520 -16388848.63381 1650 1520 -42894214.83411 1651 1520 -694433.1761459 1652 1520 -55531090.78464 1653 1520 -11378935.65847 1654 1520 8940966.590895 1655 1520 -20295098.63508 1521 1521 519155644.6527 1522 1521 19890209.72848 1523 1521 546852.3808991 1524 1521 -113344502.1932 1525 1521 -81572741.71556 1526 1521 807745.8307167 1539 1521 -52678594.23377 1540 1521 -36666666.66064 1541 1521 2505785.158418 1542 1521 -87908611.13882 1543 1521 24575313.67981 1544 1521 -99414.6025005 1545 1521 -55777752.70527 1546 1521 4296544.314628 1547 1521 -121425.9460867 1611 1521 -18391419.7975 1612 1521 9166666.669678 1613 1521 10018981.01522 1614 1521 -23153309.42759 1615 1521 8202668.502207 1616 1521 22268765.65392 1629 1521 -413319.0876746 1630 1521 3.017485141754e-06 1631 1521 57871.30948708 1632 1521 68265937.74305 1633 1521 4972552.434569 1634 1521 136620.1412261 1635 1521 -38378504.19399 1636 1521 -20393185.43893 1637 1521 10904728.81155 1650 1521 -18482764.4945 1651 1521 -9166666.669676 1652 1521 -10076852.32471 1653 1521 -43384348.52402 1654 1521 6143828.422977 1655 1521 -32706624.47957 1656 1521 -20160575.07792 1657 1521 1074136.079187 1658 1521 -602925.9311655 1522 1522 674296656.4325 1523 1522 -8315854.013774 1524 1522 -81578897.79024 1525 1522 -277711399.8602 1526 1522 1775953.352355 1539 1522 -36666666.66065 1540 1522 -41677781.0706 1541 1522 1263866.351621 1542 1522 24575313.67981 1543 1522 6198641.247472 1544 1522 -1140600.40519 1545 1522 4296544.314628 1546 1522 -164458604.5744 1547 1522 1195041.228134 1611 1522 9166666.669678 1612 1522 -15641216.50536 1613 1522 -8177088.970282 1614 1522 8204207.520877 1615 1522 12129419.26863 1616 1522 -8118315.333891 1629 1522 4.06801700592e-06 1630 1522 -35246583.02275 1631 1522 -32861133.64276 1632 1522 4972552.434566 1633 1522 107051190.7071 1634 1522 -2079037.895958 1635 1522 -20394724.45761 1636 1522 -79470228.63097 1637 1522 34698117.36652 1650 1522 -9166666.669676 1651 1522 -15732561.20235 1652 1522 -8246533.414749 1653 1522 6143828.422977 1654 1522 -19857535.41586 1655 1522 7819016.563107 1656 1522 1074136.079187 1657 1522 -47330788.05857 1658 1522 16965426.97932 1523 1523 500032615.4741 1524 1523 842545.5277112 1525 1523 1886963.445041 1526 1523 -79462997.91567 1539 1523 2471062.936219 1540 1523 1236088.573861 1541 1523 -8882157.948759 1542 1523 -967470.1579145 1543 1523 -1168378.182963 1544 1523 37621796.60312 1545 1523 -190870.3904854 1546 1523 1195041.228134 1547 1523 -43133554.29443 1611 1523 10018981.01522 1612 1523 -8177088.970282 1613 1523 -16145262.77514 1614 1523 22442357.5869 1615 1523 -8144741.575046 1616 1523 -20089628.3459 1629 1523 57871.30948763 1630 1523 -32833355.865 1631 1523 -37566373.58606 1632 1523 136807.9549443 1633 1523 -2078887.551707 1634 1523 -39053108.69402 1635 1523 10904842.27205 1636 1523 34696841.30973 1637 1523 -46645425.83998 1650 1523 -10076852.32471 1651 1523 -8246533.414749 1652 1523 -16388848.63381 1653 1523 -32880235.58879 1654 1523 7819016.564698 1655 1523 -47680406.12059 1656 1523 -602925.9311654 1657 1523 16965426.97932 1658 1523 -27359753.63154 1524 1524 992997068.4552 1525 1524 19284697.20432 1526 1524 -396746.4756725 1542 1524 -51863016.28236 1543 1524 -31450303.98549 1544 1524 319461.4773361 1545 1524 43461620.04061 1546 1524 42895217.91215 1547 1524 -251152.4671109 1548 1524 62501966.85689 1549 1524 -21400415.93453 1550 1524 21747.87620521 1551 1524 -46253.50102974 1552 1524 28231234.37687 1553 1524 -49512.40302987 1614 1524 -159624729.0253 1615 1524 11004617.05965 1616 1524 572723.0303333 1632 1524 -37538860.21074 1633 1524 -20394724.45761 1634 1524 -10492248.91842 1635 1524 145746193.545 1636 1524 4821174.303457 1637 1524 8338174.490712 1653 1524 -18861959.6269 1654 1524 -7862576.000248 1655 1524 -10622738.80081 1656 1524 -37300727.61412 1657 1524 10723804.48332 1658 1524 -41832926.99883 1659 1524 -23212197.68204 1660 1524 -5350103.986268 1661 1524 14197971.68996 1662 1524 -16690161.87378 1663 1524 7057808.597695 1664 1524 -10194843.38188 1525 1525 2147947022.547 1526 1525 -14974133.4238 1542 1525 -31450303.98549 1543 1525 -11693386.9132 1544 1525 -131493.8517104 1545 1525 42895217.91215 1546 1525 170799253.6597 1547 1525 -626470.3880802 1548 1525 -6733749.270272 1549 1525 -7855709.541271 1550 1525 58407.27655116 1551 1525 28231234.37687 1552 1525 -24307750.22323 1553 1525 72962.07354513 1614 1525 7336411.373109 1615 1525 -425492515.7295 1616 1525 -13147629.82044 1632 1525 -20393185.43894 1633 1525 -78630584.64773 1634 1525 -33781578.76871 1635 1525 4821174.303456 1636 1525 434483682.2102 1637 1525 -3492649.630975 1653 1525 -7862576.000248 1654 1525 -8819552.279667 1655 1525 -8595373.465755 1656 1525 10723804.48332 1657 1525 -5466319.193666 1658 1525 7947549.067445 1659 1525 -1683437.318397 1660 1525 -40801616.79024 1661 1525 33347935.147 1662 1525 7057808.597695 1663 1525 -22755536.05731 1664 1525 16684907.19053 1526 1526 1146795686.782 1542 1526 284739.2551368 1543 1526 -159271.6294699 1544 1526 -378483.2995525 1545 1526 -390041.3559778 1546 1526 -654248.1658537 1547 1526 194450799.0864 1548 1526 -12974.3460083 1549 1526 58407.27655098 1550 1526 124613403.906 1551 1526 -84234.62522937 1552 1526 72962.07354511 1553 1526 40395467.48366 1614 1526 381815.353556 1615 1526 -13300618.50896 1616 1526 -159798157.3631 1632 1526 -10492174.57703 1633 1526 -33783025.80027 1634 1526 -44406375.21794 1635 1526 -8362936.617657 1636 1526 -3856634.052932 1637 1526 13357391.99385 1653 1526 -10622738.80081 1654 1526 -8595373.465755 1655 1526 -15817835.62473 1656 1526 -41832926.99887 1657 1526 7947549.069036 1658 1526 -79830320.55011 1659 1526 6072971.68928 1660 1526 33347935.147 1661 1526 -72413820.75204 1662 1526 -10194843.38188 1663 1526 16684907.19053 1664 1526 -34377395.78682 1527 1527 306664349.4585 1528 1527 7.62939453125e-06 1529 1527 462970.475417 1530 1527 41289236.1897 1531 1527 7333333.332126 1532 1527 -318285.1588368 1617 1527 -58783069.51046 1618 1527 1.639127731323e-06 1619 1527 42697451.81849 1620 1527 -19844426.42677 1621 1527 -9166666.669679 1622 1527 11321064.34898 1638 1527 28714906.85473 1639 1527 5.364418029785e-07 1640 1527 -8530229.601834 1641 1527 -3124509.92214 1642 1527 1833333.333932 1643 1527 -2241064.345998 1528 1528 262661096.8276 1529 1528 -5555465.403687 1530 1528 -7333333.332131 1531 1528 -28377291.64613 1532 1528 2749954.924074 1617 1528 6.034970283508e-07 1618 1528 -18449398.9965 1619 1528 -694433.1761458 1620 1528 -9166666.669679 1621 1528 -17094223.13462 1622 1528 8871522.146427 1638 1528 8.940696716309e-07 1639 1528 17714093.69157 1640 1528 -1388866.351609 1641 1528 -1833333.333939 1642 1528 -20541141.88968 1643 1528 17812488.72854 1529 1529 291395225.4503 1530 1529 723381.5076579 1531 1529 2805510.47962 1532 1529 37176251.17061 1617 1529 42662729.59629 1618 1529 -694433.1761458 1619 1529 -54493616.03735 1620 1529 11321064.34898 1621 1529 8871522.146428 1622 1529 -20019947.11985 1638 1529 8588103.728686 1639 1529 -1388866.351609 1640 1529 -55021008.39532 1641 1529 2298935.655493 1642 1529 17812488.72855 1643 1529 -26564121.13518 1530 1530 306664349.4585 1531 1530 7.62939453125e-06 1532 1530 462970.475417 1533 1530 41289236.1897 1534 1530 7333333.332126 1535 1530 -318285.1588368 1617 1530 -18391419.7975 1618 1530 9166666.669678 1619 1530 10018981.01522 1620 1530 -58783069.51046 1621 1530 1.639127731323e-06 1622 1530 42697451.81849 1623 1530 -19844426.42677 1624 1530 -9166666.669679 1625 1530 11321064.34898 1638 1530 -206659.5438359 1639 1530 -1833333.333934 1640 1530 -1980647.67925 1641 1530 28714906.85473 1642 1530 5.364418029785e-07 1643 1530 -8530229.601834 1644 1530 -3124509.92214 1645 1530 1833333.333932 1646 1530 -2241064.345998 1531 1531 262661096.8276 1532 1531 -5555465.403687 1533 1531 -7333333.332131 1534 1531 -28377291.64613 1535 1531 2749954.924074 1617 1531 9166666.669678 1618 1531 -15641216.50536 1619 1531 -8177088.970282 1620 1531 6.034970283508e-07 1621 1531 -18449398.9965 1622 1531 -694433.1761458 1623 1531 -9166666.669679 1624 1531 -17094223.13462 1625 1531 8871522.146427 1638 1531 1833333.333937 1639 1531 -17623291.51138 1640 1531 -16423622.37693 1641 1531 8.940696716309e-07 1642 1531 17714093.69157 1643 1531 -1388866.351609 1644 1531 -1833333.333939 1645 1531 -20541141.88968 1646 1531 17812488.72854 1532 1532 291395225.4503 1533 1532 723381.5076579 1534 1532 2805510.47962 1535 1532 37176251.17061 1617 1532 10018981.01522 1618 1532 -8177088.970282 1619 1532 -16145262.77514 1620 1532 42662729.59629 1621 1532 -694433.1761458 1622 1532 -54493616.03735 1623 1532 11321064.34898 1624 1532 8871522.146428 1625 1532 -20019947.11985 1638 1532 2038518.988737 1639 1532 -16423622.37695 1640 1532 -18783186.79303 1641 1532 8588103.728686 1642 1532 -1388866.351609 1643 1532 -55021008.39532 1644 1532 2298935.655493 1645 1532 17812488.72855 1646 1532 -26564121.13518 1533 1533 306664349.4585 1534 1533 7.62939453125e-06 1535 1533 462970.475417 1536 1533 41289236.1897 1537 1533 7333333.332126 1538 1533 -318285.1588368 1620 1533 -18391419.7975 1621 1533 9166666.669678 1622 1533 10018981.01522 1623 1533 -58783069.51046 1624 1533 1.639127731323e-06 1625 1533 42697451.81849 1626 1533 -19844426.42677 1627 1533 -9166666.669679 1628 1533 11321064.34898 1641 1533 -206659.5438359 1642 1533 -1833333.333934 1643 1533 -1980647.67925 1644 1533 28714906.85473 1645 1533 5.364418029785e-07 1646 1533 -8530229.601834 1647 1533 -3124509.92214 1648 1533 1833333.333932 1649 1533 -2241064.345998 1534 1534 262661096.8276 1535 1534 -5555465.403687 1536 1534 -7333333.332131 1537 1534 -28377291.64613 1538 1534 2749954.924074 1620 1534 9166666.669678 1621 1534 -15641216.50536 1622 1534 -8177088.970282 1623 1534 6.034970283508e-07 1624 1534 -18449398.9965 1625 1534 -694433.1761458 1626 1534 -9166666.669679 1627 1534 -17094223.13462 1628 1534 8871522.146427 1641 1534 1833333.333937 1642 1534 -17623291.51138 1643 1534 -16423622.37693 1644 1534 8.940696716309e-07 1645 1534 17714093.69157 1646 1534 -1388866.351609 1647 1534 -1833333.333939 1648 1534 -20541141.88968 1649 1534 17812488.72854 1535 1535 291395225.4503 1536 1535 723381.5076579 1537 1535 2805510.47962 1538 1535 37176251.17061 1620 1535 10018981.01522 1621 1535 -8177088.970282 1622 1535 -16145262.77514 1623 1535 42662729.59629 1624 1535 -694433.1761458 1625 1535 -54493616.03735 1626 1535 11321064.34898 1627 1535 8871522.146428 1628 1535 -20019947.11985 1641 1535 2038518.988737 1642 1535 -16423622.37695 1643 1535 -18783186.79303 1644 1535 8588103.728686 1645 1535 -1388866.351609 1646 1535 -55021008.39532 1647 1535 2298935.655493 1648 1535 17812488.72855 1649 1535 -26564121.13518 1536 1536 306664349.4585 1537 1536 7.62939453125e-06 1538 1536 462970.475417 1539 1536 41289236.1897 1540 1536 7333333.332126 1541 1536 -318285.1588368 1623 1536 -18391419.7975 1624 1536 9166666.669678 1625 1536 10018981.01522 1626 1536 -58783069.51046 1627 1536 1.639127731323e-06 1628 1536 42697451.81849 1629 1536 -19844426.42677 1630 1536 -9166666.669679 1631 1536 11321064.34898 1644 1536 -206659.5438359 1645 1536 -1833333.333934 1646 1536 -1980647.67925 1647 1536 28714906.85473 1648 1536 5.364418029785e-07 1649 1536 -8530229.601834 1650 1536 -3124509.92214 1651 1536 1833333.333932 1652 1536 -2241064.345998 1537 1537 262661096.8276 1538 1537 -5555465.403687 1539 1537 -7333333.332131 1540 1537 -28377291.64613 1541 1537 2749954.924074 1623 1537 9166666.669678 1624 1537 -15641216.50536 1625 1537 -8177088.970282 1626 1537 6.034970283508e-07 1627 1537 -18449398.9965 1628 1537 -694433.1761458 1629 1537 -9166666.669679 1630 1537 -17094223.13462 1631 1537 8871522.146427 1644 1537 1833333.333937 1645 1537 -17623291.51138 1646 1537 -16423622.37693 1647 1537 8.940696716309e-07 1648 1537 17714093.69157 1649 1537 -1388866.351609 1650 1537 -1833333.333939 1651 1537 -20541141.88968 1652 1537 17812488.72854 1538 1538 291395225.4503 1539 1538 723381.5076579 1540 1538 2805510.47962 1541 1538 37176251.17061 1623 1538 10018981.01522 1624 1538 -8177088.970282 1625 1538 -16145262.77514 1626 1538 42662729.59629 1627 1538 -694433.1761458 1628 1538 -54493616.03735 1629 1538 11321064.34898 1630 1538 8871522.146428 1631 1538 -20019947.11985 1644 1538 2038518.988737 1645 1538 -16423622.37695 1646 1538 -18783186.79303 1647 1538 8588103.728686 1648 1538 -1388866.351609 1649 1538 -55021008.39532 1650 1538 2298935.655493 1651 1538 17812488.72855 1652 1538 -26564121.13518 1539 1539 306664349.4585 1540 1539 7.62939453125e-06 1541 1539 462970.475417 1542 1539 41289236.1897 1543 1539 7333333.332126 1544 1539 -318285.1588368 1626 1539 -18391419.7975 1627 1539 9166666.669678 1628 1539 10018981.01522 1629 1539 -58783069.51046 1630 1539 1.639127731323e-06 1631 1539 42697451.81849 1632 1539 -19844426.42677 1633 1539 -9166666.669679 1634 1539 11321064.34898 1647 1539 -206659.5438359 1648 1539 -1833333.333934 1649 1539 -1980647.67925 1650 1539 28714906.85473 1651 1539 5.364418029785e-07 1652 1539 -8530229.601834 1653 1539 -3124509.92214 1654 1539 1833333.333932 1655 1539 -2241064.345998 1540 1540 262661096.8276 1541 1540 -5555465.403687 1542 1540 -7333333.332131 1543 1540 -28377291.64613 1544 1540 2749954.924074 1626 1540 9166666.669678 1627 1540 -15641216.50536 1628 1540 -8177088.970282 1629 1540 6.034970283508e-07 1630 1540 -18449398.9965 1631 1540 -694433.1761458 1632 1540 -9166666.669679 1633 1540 -17094223.13462 1634 1540 8871522.146427 1647 1540 1833333.333937 1648 1540 -17623291.51138 1649 1540 -16423622.37693 1650 1540 8.940696716309e-07 1651 1540 17714093.69157 1652 1540 -1388866.351609 1653 1540 -1833333.333939 1654 1540 -20541141.88968 1655 1540 17812488.72854 1541 1541 291395225.4503 1542 1541 723381.5076579 1543 1541 2805510.47962 1544 1541 37176251.17061 1626 1541 10018981.01522 1627 1541 -8177088.970282 1628 1541 -16145262.77514 1629 1541 42662729.59629 1630 1541 -694433.1761458 1631 1541 -54493616.03735 1632 1541 11321064.34898 1633 1541 8871522.146428 1634 1541 -20019947.11985 1647 1541 2038518.988737 1648 1541 -16423622.37695 1649 1541 -18783186.79303 1650 1541 8588103.728686 1651 1541 -1388866.351609 1652 1541 -55021008.39532 1653 1541 2298935.655493 1654 1541 17812488.72855 1655 1541 -26564121.13518 1542 1542 307321293.6177 1543 1542 5217302.692383 1544 1542 2443291.135431 1545 1542 -12283347.92522 1546 1542 -27675645.7152 1547 1542 392217.5447181 1629 1542 -18391419.7975 1630 1542 9166666.669678 1631 1542 10018981.01522 1632 1542 -42844315.11718 1633 1542 6143828.42298 1634 1542 32439903.28737 1635 1542 -19056485.08992 1636 1542 -7862576.000246 1637 1542 10773788.984 1650 1542 -206659.5438359 1651 1542 -1833333.333934 1652 1542 -1980647.67925 1653 1542 28878510.79233 1654 1542 1304325.673737 1655 1542 -8034871.658814 1656 1542 -18263780.54944 1657 1542 -6918911.432209 1658 1542 8066734.94041 1543 1543 292495414.5893 1544 1543 -3617588.716354 1545 1543 -42342312.37946 1546 1543 -73068635.97963 1547 1543 598083.9198294 1629 1543 9166666.669678 1630 1543 -15641216.50536 1631 1543 -8177088.970282 1632 1543 6143828.422979 1633 1543 -19317502.00901 1634 1543 -8396261.212014 1635 1543 -7862576.000246 1636 1543 -9014077.742685 1637 1543 8522682.095422 1650 1543 1833333.333937 1651 1543 -17623291.51138 1652 1543 -16423622.37693 1653 1543 1304325.673737 1654 1543 25172041.03341 1655 1543 -904397.1795395 1656 1543 -10585578.10008 1657 1543 -33460102.57053 1658 1543 25378687.64334 1544 1544 299489762.7903 1545 1544 565828.6557986 1546 1544 625861.6976026 1547 1544 18644724.62356 1629 1544 10018981.01522 1630 1544 -8177088.970282 1631 1544 -16145262.77514 1632 1544 32613514.40058 1633 1544 -8396261.210409 1634 1544 -46240317.03562 1635 1544 10773788.984 1636 1544 8522682.095422 1637 1544 -16336570.1928 1650 1544 2038518.988737 1651 1544 -16423622.37695 1652 1544 -18783186.79303 1653 1544 9082906.116151 1654 1544 -904397.1795395 1655 1544 -52999059.66538 1656 1544 12398123.82872 1657 1544 25378687.64175 1658 1544 -35853335.01949 1545 1545 358811430.7903 1546 1545 52593962.28105 1547 1545 -97551.46225023 1548 1545 -71392253.48931 1549 1545 -45102098.94442 1550 1545 106737.5969375 1551 1545 9275019.197588 1552 1545 -12341313.18395 1553 1545 144785.8447827 1632 1545 -19715237.85133 1633 1545 1074136.079186 1634 1545 524851.8469836 1635 1545 -37144610.97898 1636 1545 10723804.48332 1637 1545 41672628.54298 1653 1545 -17529221.15356 1654 1545 -10585578.10008 1655 1545 -12149931.72292 1656 1545 -1095063.644689 1657 1545 13148490.57674 1658 1545 -8461748.97526 1659 1545 -34526661.87963 1660 1545 -11275524.74166 1661 1545 20339184.40592 1662 1545 -25557949.75669 1663 1545 -3085328.297506 1664 1545 8108904.791231 1546 1546 452274744.3036 1547 1546 -1473057.85089 1548 1546 -45102098.94442 1549 1546 -51062500.21883 1550 1546 72962.07354495 1551 1546 -27007979.8482 1552 1546 -62389541.28179 1553 1546 233441.0174853 1632 1546 1074136.079186 1633 1546 -46885450.83199 1634 1546 -16367906.36496 1635 1546 10723804.48332 1636 1546 -5310202.55853 1637 1546 -8267728.707675 1653 1546 -6918911.432211 1654 1546 -32725543.17465 1655 1546 -25072701.23725 1656 1546 13148490.57674 1657 1546 22270764.74516 1658 1546 -368264.4629124 1659 1546 -11275524.74166 1660 1546 -29444223.55951 1661 1546 16684907.19053 1662 1546 -6751994.965377 1663 1546 -43474089.88536 1664 1546 33391693.58226 1547 1547 478029006.2153 1548 1547 106737.5969376 1549 1547 72962.07354495 1550 1547 13640717.48805 1551 1547 179508.0669963 1552 1547 233441.0174853 1553 1547 63954215.97093 1632 1547 524851.8469835 1633 1547 -16367906.36496 1634 1547 -26172187.69396 1635 1547 41672628.54301 1636 1547 -8267728.706071 1637 1547 -79414009.52307 1653 1547 -7922709.501298 1654 1547 -25072701.23886 1655 1547 -33894509.96379 1656 1547 8239362.133108 1657 1547 -368264.4629123 1658 1547 -122620538.7512 1659 1547 20339184.40592 1660 1547 16684907.19053 1661 1547 -41066083.28901 1662 1547 12197515.90567 1663 1547 33391693.58226 1664 1547 -58349324.81867 1548 1548 235659396.7196 1549 1548 50733749.26305 1550 1548 -62257.13548279 1551 1548 -5082746.465364 1552 1548 1102098.951645 1553 1548 -31506.11544451 1635 1548 -23117500.71233 1636 1548 -1683437.318397 1637 1548 -6070778.306718 1656 1548 -34431964.90992 1657 1548 -11275524.74166 1658 1548 -20285815.60742 1659 1548 -18665832.59106 1660 1548 12683437.32201 1661 1548 8109435.714787 1662 1548 -34533186.62789 1663 1548 275524.7380462 1664 1548 -30502841.80065 1549 1549 216642073.1324 1550 1549 -58407.27654648 1551 1549 15768765.6159 1552 1549 63962500.24948 1553 1549 -72962.07354212 1635 1549 -5350103.986268 1636 1549 -40706919.82054 1637 1549 -33318731.50871 1656 1549 -11275524.74166 1657 1549 -29349526.58979 1658 1549 -16648426.15375 1659 1549 12683437.32201 1660 1549 -23420163.4902 1661 1549 6652064.846425 1662 1549 3942191.405917 1663 1549 -17271874.94068 1664 1549 3315092.816032 1550 1550 342775232.3518 1551 1550 -66228.3376576 1552 1550 -72962.0735423 1553 1550 110134282.579 1635 1550 -14195778.30738 1636 1550 -33318731.50871 1637 1550 -72161295.49948 1656 1550 -20285815.60742 1657 1550 -16648426.15375 1658 1550 -40813558.03643 1659 1550 -8140564.282544 1660 1550 -6681268.484718 1661 1550 -121188010.0031 1662 1550 -30502841.80265 1663 1550 -3351573.852824 1664 1550 -61166429.37081 1551 1551 173317617.147 1552 1551 -16992020.14457 1553 1551 40399.34029067 1635 1551 -16595464.90406 1636 1551 7057808.597695 1637 1551 10161406.6248 1656 1551 -25273858.84771 1657 1551 -6751994.965378 1658 1551 -12142484.09433 1659 1551 -34533186.62789 1660 1551 3942191.405919 1661 1551 30478408.18933 1662 1551 -12139913.87007 1663 1551 -4248005.038235 1664 1551 -4104552.942003 1552 1552 200198427.6337 1553 1552 -233441.0174782 1635 1552 7057808.597695 1636 1552 -22660839.0876 1637 1552 -16648426.15375 1656 1552 -3085328.297507 1657 1552 -43189998.97639 1658 1552 -33274973.07346 1659 1552 275524.7380478 1660 1552 -17271874.94068 1661 1552 3315092.816032 1662 1552 -4248005.038235 1663 1552 -5419711.245076 1664 1552 6608306.41117 1553 1553 258752397.6415 1635 1553 10161406.6248 1636 1553 -16648426.15375 1637 1553 -34124870.53423 1656 1553 -8088595.202104 1657 1553 -33274973.07346 1658 1553 -57591749.06139 1659 1553 30478408.18734 1660 1553 -3351573.852824 1661 1553 -61166429.37081 1662 1553 4037947.05666 1663 1553 -6725026.919973 1664 1553 -83230082.36618 1554 1554 385435299.3209 1555 1554 36666666.66064 1556 1554 3703838.61297 1557 1554 -203986384.4368 1558 1554 -36666980.60238 1559 1554 -2870486.454752 1560 1554 12104621.19738 1561 1554 29333647.27025 1562 1554 -1944469.225024 1665 1554 33963705.33589 1666 1554 9166666.669679 1667 1554 9519894.71657 1668 1554 -73633660.33315 1669 1554 -9166743.277268 1670 1554 -44520628.22528 1671 1554 -7828204.348046 1672 1554 7333409.943332 1673 1554 -9288430.506837 1555 1555 330430928.8169 1556 1555 -6111047.842687 1557 1555 -36667137.57325 1558 1555 -31649934.0022 1559 1555 -3888890.401321 1560 1555 44000470.90538 1561 1555 12104621.19738 1562 1555 2666690.447648 1665 1555 9166666.669679 1666 1555 20212626.84424 1667 1555 5347275.319281 1668 1555 -9166781.581064 1669 1555 -30549559.96733 1670 1555 -9732749.59088 1671 1555 11000114.915 1672 1555 -7828204.348045 1673 1555 11145949.53617 1556 1556 369852862.7392 1557 1556 -2453810.375638 1558 1556 -3055549.140985 1559 1556 -3321169.645782 1560 1556 -2916703.837537 1561 1556 1777793.631766 1562 1556 32278989.8597 1665 1556 -8015196.919944 1666 1556 -8680575.648187 1667 1556 -73923722.2424 1668 1556 -44485903.34313 1669 1556 -9538266.413314 1670 1556 -61195846.2912 1671 1556 -13932645.76025 1672 1556 7430633.02411 1673 1556 -20875211.59479 1557 1557 668782112.6068 1558 1557 36667451.515 1559 1557 3125095.269694 1560 1557 18742492.4051 1561 1557 -36666980.60238 1562 1557 2754656.266036 1563 1557 -139221200.1674 1564 1557 1.877546310425e-06 1565 1557 -671303.7191255 1566 1557 -52506158.07532 1567 1557 36666666.66064 1568 1557 -2754631.485001 1665 1557 -72039530.38171 1666 1557 -9166781.581061 1667 1557 43189554.83944 1668 1557 73599694.87993 1669 1557 9166858.188655 1670 1557 781226.7976368 1671 1557 -19443104.86928 1672 1557 -9166743.27727 1673 1557 11639449.48452 1674 1557 -59964405.70834 1675 1557 7.525086402893e-07 1676 1557 -43970603.67818 1677 1557 -20163436.42398 1678 1557 9166666.669676 1679 1557 -11639352.31406 1558 1558 569774528.2723 1559 1558 -8610907.219653 1560 1558 -36667137.57325 1561 1558 -109590390.9887 1562 1558 4777683.581345 1563 1558 1.594424247742e-06 1564 1558 22113465.72052 1565 1558 -2777733.240903 1566 1558 36666666.66064 1567 1558 -41505354.61226 1568 1558 1555533.287118 1665 1558 -9166743.277267 1666 1558 -28955430.01587 1667 1558 7996602.428466 1668 1558 9166858.188655 1669 1558 48847822.54786 1670 1558 -2152764.803778 1671 1558 -9166781.581064 1672 1558 -51526325.20493 1673 1558 36236271.0855 1674 1558 3.725290298462e-07 1675 1558 -19630743.20649 1676 1558 -694433.4439167 1677 1558 9166666.669676 1678 1558 -17413237.96253 1679 1558 9149300.058182 1559 1559 599068063.3379 1560 1559 2685224.212055 1561 1559 5222138.335127 1562 1559 35717984.23851 1563 1559 -254637.0525279 1564 1559 -2777733.240903 1565 1559 37788315.6602 1566 1559 -2685187.040499 1567 1559 1499977.731517 1568 1559 -8422346.095089 1665 1559 43154829.95728 1666 1559 7802192.5578 1667 1559 -56944833.0873 1668 1559 781318.4370322 1669 1559 -2152691.493423 1670 1559 -99821807.80486 1671 1559 11639498.06975 1672 1559 36402939.91804 1673 1559 -55413772.21342 1674 1559 -43935881.45598 1675 1559 -694433.4439167 1676 1559 -57643892.87044 1677 1559 -11639352.31406 1678 1559 9149300.058182 1679 1559 -20870649.36111 1560 1560 385435299.3209 1561 1560 36666666.66064 1562 1560 3703838.61297 1563 1560 -52482483.83292 1564 1560 -36666666.66064 1565 1560 2453701.847473 1566 1560 -203986384.4368 1567 1560 -36666980.60238 1568 1560 -2870486.454752 1569 1560 12104621.19738 1570 1560 29333647.27025 1571 1560 -1944469.225024 1665 1560 -4839277.140465 1666 1560 11000114.915 1667 1560 12370128.70975 1668 1560 -14860172.33131 1669 1560 -9166781.581062 1670 1560 -10279526.39882 1671 1560 33963705.33589 1672 1560 9166666.669679 1673 1560 9519894.71657 1674 1560 -18663081.30986 1675 1560 -9166666.669677 1676 1560 -10337268.9803 1677 1560 -73633660.33315 1678 1560 -9166743.277268 1679 1560 -44520628.22528 1680 1560 -7828204.348046 1681 1560 7333409.943332 1682 1560 -9288430.506837 1561 1561 330430928.8169 1562 1561 -6111047.842687 1563 1561 -36666666.66065 1564 1561 -41481680.36985 1565 1561 1222199.953785 1566 1561 -36667137.57325 1567 1561 -31649934.0022 1568 1561 -3888890.401321 1569 1561 44000470.90538 1570 1561 12104621.19738 1571 1561 2666690.447648 1665 1561 7333409.943332 1666 1561 -4839277.140466 1667 1561 -6597291.372073 1668 1561 -9166743.277267 1669 1561 -46943392.66696 1670 1561 -33736315.15602 1671 1561 9166666.669679 1672 1561 20212626.84424 1673 1561 5347275.319281 1674 1561 -9166666.669677 1675 1561 -15912882.8484 1676 1561 -8454866.614265 1677 1561 -9166781.581064 1678 1561 -30549559.96733 1679 1561 -9732749.59088 1680 1561 11000114.915 1681 1561 -7828204.348045 1682 1561 11145949.53617 1562 1562 369852862.7392 1563 1562 2523146.291974 1564 1562 1277755.509386 1565 1562 -8359214.781975 1566 1562 -2453810.375638 1567 1562 -3055549.140985 1568 1562 -3321169.645782 1569 1562 -2916703.837537 1570 1562 1777793.631766 1571 1562 32278989.8597 1665 1562 8246752.473166 1666 1562 -9895937.05811 1667 1562 -12904739.04124 1668 1562 -10279483.49692 1669 1562 -33902984.10692 1670 1562 -43192618.77883 1671 1562 -8015196.919944 1672 1562 -8680575.648187 1673 1562 -73923722.2424 1674 1562 -10337268.9803 1675 1562 -8454866.614265 1676 1562 -16869702.39011 1677 1562 -44485903.34313 1678 1562 -9538266.413314 1679 1562 -61195846.2912 1680 1562 -13932645.76025 1681 1562 7430633.02411 1682 1562 -20875211.59479 1563 1563 616485232.3769 1564 1563 1.227855682373e-05 1565 1563 925940.7716047 1566 1563 83364435.48308 1567 1563 -6.437301635742e-06 1568 1563 231485.1930161 1572 1563 -139221200.1674 1573 1563 1.877546310425e-06 1574 1563 -671303.7191255 1575 1563 -52506158.07532 1576 1563 36666666.66064 1577 1563 -2754631.485001 1668 1563 -59565882.98117 1669 1563 4.91738319397e-07 1670 1563 43739118.52961 1671 1563 -20057887.18154 1672 1563 -9166666.669679 1673 1563 11581481.02689 1674 1563 54280296.46473 1675 1563 3.09944152832e-06 1676 1563 231485.1485852 1677 1563 -7107625.989141 1678 1563 -6.146728992462e-06 1679 1563 57871.2871768 1683 1563 -59964405.70834 1684 1563 7.525086402893e-07 1685 1563 -43970603.67818 1686 1563 -20163436.42398 1687 1563 9166666.669676 1688 1563 -11639352.31406 1564 1564 528478804.7157 1565 1564 -11110932.95814 1566 1564 -5.766749382019e-06 1567 1564 -55968623.50036 1568 1564 5722133.145708 1572 1564 1.594424247742e-06 1573 1564 22113465.72052 1574 1564 -2777733.240903 1575 1564 36666666.66064 1576 1564 -41505354.61226 1577 1564 1555533.287118 1668 1564 -5.811452865601e-07 1669 1564 -19232220.47929 1670 1564 -694433.4439163 1671 1564 -9166666.669679 1672 1564 -17307688.72007 1673 1564 9079855.613715 1674 1564 3.635883331299e-06 1675 1564 32278708.78388 1676 1564 -2777733.774297 1677 1564 -5.349516868591e-06 1678 1564 -41940891.5735 1679 1564 36472200.21471 1683 1564 3.725290298462e-07 1684 1564 -19630743.20649 1685 1564 -694433.4439167 1686 1564 9166666.669676 1687 1564 -17413237.96253 1688 1564 9149300.058182 1565 1565 591208016.6774 1566 1565 231485.1930168 1567 1565 5388799.81243 1568 1565 76448462.46728 1572 1565 -254637.0525279 1573 1565 -2777733.240903 1574 1565 37788315.6602 1575 1565 -2685187.040499 1576 1565 1499977.731517 1577 1565 -8422346.095089 1668 1565 43704396.30741 1669 1565 -694433.4439163 1670 1565 -56581165.5979 1671 1565 11581481.02689 1672 1565 9079855.613715 1673 1565 -20589184.71456 1674 1565 231485.148585 1675 1565 -2777733.774298 1676 1565 -118440658.1206 1677 1565 57871.28717716 1678 1565 36444422.43695 1679 1565 -55417829.51533 1683 1565 -43935881.45598 1684 1565 -694433.4439167 1685 1565 -57643892.87044 1686 1565 -11639352.31406 1687 1565 9149300.058182 1688 1565 -20870649.36111 1566 1566 668782112.6068 1567 1566 36667451.515 1568 1566 3125095.269694 1569 1566 18742492.4051 1570 1566 -36666980.60238 1571 1566 2754656.266036 1572 1566 -52482483.83292 1573 1566 -36666666.66064 1574 1566 2453701.847473 1575 1566 -139221200.1674 1576 1566 1.877546310425e-06 1577 1566 -671303.7191255 1578 1566 -52506158.07532 1579 1566 36666666.66064 1580 1566 -2754631.485001 1668 1566 -18569369.18862 1669 1566 9166666.669678 1670 1566 10279397.69313 1671 1566 -72039530.38171 1672 1566 -9166781.581061 1673 1566 43189554.83944 1674 1566 -1129879.778007 1675 1566 2.369284629822e-06 1676 1566 57871.28717239 1677 1566 73599694.87993 1678 1566 9166858.188655 1679 1566 781226.7976368 1680 1566 -19443104.86928 1681 1566 -9166743.27727 1682 1566 11639449.48452 1683 1566 -18663081.30986 1684 1566 -9166666.669677 1685 1566 -10337268.9803 1686 1566 -59964405.70834 1687 1566 7.525086402893e-07 1688 1566 -43970603.67818 1689 1566 -20163436.42398 1690 1566 9166666.669676 1691 1566 -11639352.31406 1567 1567 569774528.2723 1568 1567 -8610907.219653 1569 1567 -36667137.57325 1570 1567 -109590390.9887 1571 1567 4777683.581345 1572 1567 -36666666.66065 1573 1567 -41481680.36985 1574 1567 1222199.953785 1575 1567 1.594424247742e-06 1576 1567 22113465.72052 1577 1567 -2777733.240903 1578 1567 36666666.66064 1579 1567 -41505354.61226 1580 1567 1555533.287118 1668 1567 9166666.669678 1669 1567 -15819170.72716 1670 1567 -8385422.169798 1671 1567 -9166743.277267 1672 1567 -28955430.01587 1673 1567 7996602.428466 1674 1567 2.913177013397e-06 1675 1567 -35963145.36236 1676 1567 -33694466.44041 1677 1567 9166858.188655 1678 1567 48847822.54786 1679 1567 -2152764.803778 1680 1567 -9166781.581064 1681 1567 -51526325.20493 1682 1567 36236271.0855 1683 1567 -9166666.669677 1684 1567 -15912882.8484 1685 1567 -8454866.614265 1686 1567 3.725290298462e-07 1687 1567 -19630743.20649 1688 1567 -694433.4439167 1689 1567 9166666.669676 1690 1567 -17413237.96253 1691 1567 9149300.058182 1568 1568 599068063.3379 1569 1568 2685224.212055 1570 1568 5222138.335127 1571 1568 35717984.23851 1572 1568 2523146.291974 1573 1568 1277755.509386 1574 1568 -8359214.781975 1575 1568 -254637.0525279 1576 1568 -2777733.240903 1577 1568 37788315.6602 1578 1568 -2685187.040499 1579 1568 1499977.731517 1580 1568 -8422346.095089 1668 1568 10279397.69313 1669 1568 -8385422.169798 1670 1568 -16619803.40013 1671 1568 43154829.95728 1672 1568 7802192.5578 1673 1568 -56944833.0873 1674 1568 57871.28717278 1675 1568 -33666688.66265 1676 1568 -39477172.9523 1677 1568 781318.4370322 1678 1568 -2152691.493423 1679 1568 -99821807.80486 1680 1568 11639498.06975 1681 1568 36402939.91804 1682 1568 -55413772.21342 1683 1568 -10337268.9803 1684 1568 -8454866.614265 1685 1568 -16869702.39011 1686 1568 -43935881.45598 1687 1568 -694433.4439167 1688 1568 -57643892.87044 1689 1568 -11639352.31406 1690 1568 9149300.058182 1691 1568 -20870649.36111 1569 1569 385435299.3209 1570 1569 36666666.66064 1571 1569 3703838.61297 1575 1569 -52482483.83292 1576 1569 -36666666.66064 1577 1569 2453701.847473 1578 1569 -203986384.4368 1579 1569 -36666980.60238 1580 1569 -2870486.454752 1581 1569 12104621.19738 1582 1569 29333647.27025 1583 1569 -1944469.225024 1671 1569 -4839277.140465 1672 1569 11000114.915 1673 1569 12370128.70975 1677 1569 -14860172.33131 1678 1569 -9166781.581062 1679 1569 -10279526.39882 1680 1569 33963705.33589 1681 1569 9166666.669679 1682 1569 9519894.71657 1686 1569 -18663081.30986 1687 1569 -9166666.669677 1688 1569 -10337268.9803 1689 1569 -73633660.33315 1690 1569 -9166743.277268 1691 1569 -44520628.22528 1692 1569 -7828204.348046 1693 1569 7333409.943332 1694 1569 -9288430.506837 1570 1570 330430928.8169 1571 1570 -6111047.842687 1575 1570 -36666666.66065 1576 1570 -41481680.36985 1577 1570 1222199.953785 1578 1570 -36667137.57325 1579 1570 -31649934.0022 1580 1570 -3888890.401321 1581 1570 44000470.90538 1582 1570 12104621.19738 1583 1570 2666690.447648 1671 1570 7333409.943332 1672 1570 -4839277.140466 1673 1570 -6597291.372073 1677 1570 -9166743.277267 1678 1570 -46943392.66696 1679 1570 -33736315.15602 1680 1570 9166666.669679 1681 1570 20212626.84424 1682 1570 5347275.319281 1686 1570 -9166666.669677 1687 1570 -15912882.8484 1688 1570 -8454866.614265 1689 1570 -9166781.581064 1690 1570 -30549559.96733 1691 1570 -9732749.59088 1692 1570 11000114.915 1693 1570 -7828204.348045 1694 1570 11145949.53617 1571 1571 369852862.7392 1575 1571 2523146.291974 1576 1571 1277755.509386 1577 1571 -8359214.781975 1578 1571 -2453810.375638 1579 1571 -3055549.140985 1580 1571 -3321169.645782 1581 1571 -2916703.837537 1582 1571 1777793.631766 1583 1571 32278989.8597 1671 1571 8246752.473166 1672 1571 -9895937.05811 1673 1571 -12904739.04124 1677 1571 -10279483.49692 1678 1571 -33902984.10692 1679 1571 -43192618.77883 1680 1571 -8015196.919944 1681 1571 -8680575.648187 1682 1571 -73923722.2424 1686 1571 -10337268.9803 1687 1571 -8454866.614265 1688 1571 -16869702.39011 1689 1571 -44485903.34313 1690 1571 -9538266.413314 1691 1571 -61195846.2912 1692 1571 -13932645.76025 1693 1571 7430633.02411 1694 1571 -20875211.59479 1572 1572 616485232.3769 1573 1572 1.227855682373e-05 1574 1572 925940.7716047 1575 1572 83364435.48308 1576 1572 -6.437301635742e-06 1577 1572 231485.1930161 1584 1572 -139221200.1674 1585 1572 1.877546310425e-06 1586 1572 -671303.7191255 1587 1572 -52506158.07532 1588 1572 36666666.66064 1589 1572 -2754631.485001 1674 1572 -59565882.98117 1675 1572 4.91738319397e-07 1676 1572 43739118.52961 1677 1572 -20057887.18154 1678 1572 -9166666.669679 1679 1572 11581481.02689 1683 1572 54280296.46473 1684 1572 3.09944152832e-06 1685 1572 231485.1485852 1686 1572 -7107625.989141 1687 1572 -6.146728992462e-06 1688 1572 57871.2871768 1695 1572 -59964405.70834 1696 1572 7.525086402893e-07 1697 1572 -43970603.67818 1698 1572 -20163436.42398 1699 1572 9166666.669676 1700 1572 -11639352.31406 1573 1573 528478804.7157 1574 1573 -11110932.95814 1575 1573 -5.766749382019e-06 1576 1573 -55968623.50036 1577 1573 5722133.145708 1584 1573 1.594424247742e-06 1585 1573 22113465.72052 1586 1573 -2777733.240903 1587 1573 36666666.66064 1588 1573 -41505354.61226 1589 1573 1555533.287118 1674 1573 -5.811452865601e-07 1675 1573 -19232220.47929 1676 1573 -694433.4439163 1677 1573 -9166666.669679 1678 1573 -17307688.72007 1679 1573 9079855.613715 1683 1573 3.635883331299e-06 1684 1573 32278708.78388 1685 1573 -2777733.774297 1686 1573 -5.349516868591e-06 1687 1573 -41940891.5735 1688 1573 36472200.21471 1695 1573 3.725290298462e-07 1696 1573 -19630743.20649 1697 1573 -694433.4439167 1698 1573 9166666.669676 1699 1573 -17413237.96253 1700 1573 9149300.058182 1574 1574 591208016.6774 1575 1574 231485.1930168 1576 1574 5388799.81243 1577 1574 76448462.46728 1584 1574 -254637.0525279 1585 1574 -2777733.240903 1586 1574 37788315.6602 1587 1574 -2685187.040499 1588 1574 1499977.731517 1589 1574 -8422346.095089 1674 1574 43704396.30741 1675 1574 -694433.4439163 1676 1574 -56581165.5979 1677 1574 11581481.02689 1678 1574 9079855.613715 1679 1574 -20589184.71456 1683 1574 231485.148585 1684 1574 -2777733.774298 1685 1574 -118440658.1206 1686 1574 57871.28717716 1687 1574 36444422.43695 1688 1574 -55417829.51533 1695 1574 -43935881.45598 1696 1574 -694433.4439167 1697 1574 -57643892.87044 1698 1574 -11639352.31406 1699 1574 9149300.058182 1700 1574 -20870649.36111 1575 1575 616485232.3769 1576 1575 1.227855682373e-05 1577 1575 925940.7716047 1578 1575 83364435.48308 1579 1575 -6.437301635742e-06 1580 1575 231485.1930161 1584 1575 -52482483.83292 1585 1575 -36666666.66064 1586 1575 2453701.847473 1587 1575 -139221200.1674 1588 1575 1.877546310425e-06 1589 1575 -671303.7191255 1590 1575 -52506158.07532 1591 1575 36666666.66064 1592 1575 -2754631.485001 1674 1575 -18569369.18862 1675 1575 9166666.669678 1676 1575 10279397.69313 1677 1575 -59565882.98117 1678 1575 4.91738319397e-07 1679 1575 43739118.52961 1680 1575 -20057887.18154 1681 1575 -9166666.669679 1682 1575 11581481.02689 1683 1575 -1129879.778007 1684 1575 2.369284629822e-06 1685 1575 57871.28717239 1686 1575 54280296.46473 1687 1575 3.09944152832e-06 1688 1575 231485.1485852 1689 1575 -7107625.989141 1690 1575 -6.146728992462e-06 1691 1575 57871.2871768 1695 1575 -18663081.30986 1696 1575 -9166666.669677 1697 1575 -10337268.9803 1698 1575 -59964405.70834 1699 1575 7.525086402893e-07 1700 1575 -43970603.67818 1701 1575 -20163436.42398 1702 1575 9166666.669676 1703 1575 -11639352.31406 1576 1576 528478804.7157 1577 1576 -11110932.95814 1578 1576 -5.766749382019e-06 1579 1576 -55968623.50036 1580 1576 5722133.145708 1584 1576 -36666666.66065 1585 1576 -41481680.36985 1586 1576 1222199.953785 1587 1576 1.594424247742e-06 1588 1576 22113465.72052 1589 1576 -2777733.240903 1590 1576 36666666.66064 1591 1576 -41505354.61226 1592 1576 1555533.287118 1674 1576 9166666.669678 1675 1576 -15819170.72716 1676 1576 -8385422.169798 1677 1576 -5.811452865601e-07 1678 1576 -19232220.47929 1679 1576 -694433.4439163 1680 1576 -9166666.669679 1681 1576 -17307688.72007 1682 1576 9079855.613715 1683 1576 2.913177013397e-06 1684 1576 -35963145.36236 1685 1576 -33694466.44041 1686 1576 3.635883331299e-06 1687 1576 32278708.78388 1688 1576 -2777733.774297 1689 1576 -5.349516868591e-06 1690 1576 -41940891.5735 1691 1576 36472200.21471 1695 1576 -9166666.669677 1696 1576 -15912882.8484 1697 1576 -8454866.614265 1698 1576 3.725290298462e-07 1699 1576 -19630743.20649 1700 1576 -694433.4439167 1701 1576 9166666.669676 1702 1576 -17413237.96253 1703 1576 9149300.058182 1577 1577 591208016.6774 1578 1577 231485.1930168 1579 1577 5388799.81243 1580 1577 76448462.46728 1584 1577 2523146.291974 1585 1577 1277755.509386 1586 1577 -8359214.781975 1587 1577 -254637.0525279 1588 1577 -2777733.240903 1589 1577 37788315.6602 1590 1577 -2685187.040499 1591 1577 1499977.731517 1592 1577 -8422346.095089 1674 1577 10279397.69313 1675 1577 -8385422.169798 1676 1577 -16619803.40013 1677 1577 43704396.30741 1678 1577 -694433.4439163 1679 1577 -56581165.5979 1680 1577 11581481.02689 1681 1577 9079855.613715 1682 1577 -20589184.71456 1683 1577 57871.28717278 1684 1577 -33666688.66265 1685 1577 -39477172.9523 1686 1577 231485.148585 1687 1577 -2777733.774298 1688 1577 -118440658.1206 1689 1577 57871.28717716 1690 1577 36444422.43695 1691 1577 -55417829.51533 1695 1577 -10337268.9803 1696 1577 -8454866.614265 1697 1577 -16869702.39011 1698 1577 -43935881.45598 1699 1577 -694433.4439167 1700 1577 -57643892.87044 1701 1577 -11639352.31406 1702 1577 9149300.058182 1703 1577 -20870649.36111 1578 1578 668782112.6068 1579 1578 36667451.515 1580 1578 3125095.269694 1581 1578 18742492.4051 1582 1578 -36666980.60238 1583 1578 2754656.266036 1587 1578 -52482483.83292 1588 1578 -36666666.66064 1589 1578 2453701.847473 1590 1578 -139221200.1674 1591 1578 1.877546310425e-06 1592 1578 -671303.7191255 1593 1578 -52506158.07532 1594 1578 36666666.66064 1595 1578 -2754631.485001 1677 1578 -18569369.18862 1678 1578 9166666.669678 1679 1578 10279397.69313 1680 1578 -72039530.38171 1681 1578 -9166781.581061 1682 1578 43189554.83944 1686 1578 -1129879.778007 1687 1578 2.369284629822e-06 1688 1578 57871.28717239 1689 1578 73599694.87993 1690 1578 9166858.188655 1691 1578 781226.7976368 1692 1578 -19443104.86928 1693 1578 -9166743.27727 1694 1578 11639449.48452 1698 1578 -18663081.30986 1699 1578 -9166666.669677 1700 1578 -10337268.9803 1701 1578 -59964405.70834 1702 1578 7.525086402893e-07 1703 1578 -43970603.67818 1704 1578 -20163436.42398 1705 1578 9166666.669676 1706 1578 -11639352.31406 1579 1579 569774528.2723 1580 1579 -8610907.219653 1581 1579 -36667137.57325 1582 1579 -109590390.9887 1583 1579 4777683.581345 1587 1579 -36666666.66065 1588 1579 -41481680.36985 1589 1579 1222199.953785 1590 1579 1.594424247742e-06 1591 1579 22113465.72052 1592 1579 -2777733.240903 1593 1579 36666666.66064 1594 1579 -41505354.61226 1595 1579 1555533.287118 1677 1579 9166666.669678 1678 1579 -15819170.72716 1679 1579 -8385422.169798 1680 1579 -9166743.277267 1681 1579 -28955430.01587 1682 1579 7996602.428466 1686 1579 2.913177013397e-06 1687 1579 -35963145.36236 1688 1579 -33694466.44041 1689 1579 9166858.188655 1690 1579 48847822.54786 1691 1579 -2152764.803778 1692 1579 -9166781.581064 1693 1579 -51526325.20493 1694 1579 36236271.0855 1698 1579 -9166666.669677 1699 1579 -15912882.8484 1700 1579 -8454866.614265 1701 1579 3.725290298462e-07 1702 1579 -19630743.20649 1703 1579 -694433.4439167 1704 1579 9166666.669676 1705 1579 -17413237.96253 1706 1579 9149300.058182 1580 1580 599068063.3379 1581 1580 2685224.212055 1582 1580 5222138.335127 1583 1580 35717984.23851 1587 1580 2523146.291974 1588 1580 1277755.509386 1589 1580 -8359214.781975 1590 1580 -254637.0525279 1591 1580 -2777733.240903 1592 1580 37788315.6602 1593 1580 -2685187.040499 1594 1580 1499977.731517 1595 1580 -8422346.095089 1677 1580 10279397.69313 1678 1580 -8385422.169798 1679 1580 -16619803.40013 1680 1580 43154829.95728 1681 1580 7802192.5578 1682 1580 -56944833.0873 1686 1580 57871.28717278 1687 1580 -33666688.66265 1688 1580 -39477172.9523 1689 1580 781318.4370322 1690 1580 -2152691.493423 1691 1580 -99821807.80486 1692 1580 11639498.06975 1693 1580 36402939.91804 1694 1580 -55413772.21342 1698 1580 -10337268.9803 1699 1580 -8454866.614265 1700 1580 -16869702.39011 1701 1580 -43935881.45598 1702 1580 -694433.4439167 1703 1580 -57643892.87044 1704 1580 -11639352.31406 1705 1580 9149300.058182 1706 1580 -20870649.36111 1581 1581 385435299.3209 1582 1581 36666666.66064 1583 1581 3703838.61297 1590 1581 -52482483.83292 1591 1581 -36666666.66064 1592 1581 2453701.847473 1593 1581 -203986384.4368 1594 1581 -36666980.60238 1595 1581 -2870486.454752 1596 1581 12104621.19738 1597 1581 29333647.27025 1598 1581 -1944469.225024 1680 1581 -4839277.140465 1681 1581 11000114.915 1682 1581 12370128.70975 1689 1581 -14860172.33131 1690 1581 -9166781.581062 1691 1581 -10279526.39882 1692 1581 33963705.33589 1693 1581 9166666.669679 1694 1581 9519894.71657 1701 1581 -18663081.30986 1702 1581 -9166666.669677 1703 1581 -10337268.9803 1704 1581 -73633660.33315 1705 1581 -9166743.277268 1706 1581 -44520628.22528 1707 1581 -7828204.348046 1708 1581 7333409.943332 1709 1581 -9288430.506837 1582 1582 330430928.8169 1583 1582 -6111047.842687 1590 1582 -36666666.66065 1591 1582 -41481680.36985 1592 1582 1222199.953785 1593 1582 -36667137.57325 1594 1582 -31649934.0022 1595 1582 -3888890.401321 1596 1582 44000470.90538 1597 1582 12104621.19738 1598 1582 2666690.447648 1680 1582 7333409.943332 1681 1582 -4839277.140466 1682 1582 -6597291.372073 1689 1582 -9166743.277267 1690 1582 -46943392.66696 1691 1582 -33736315.15602 1692 1582 9166666.669679 1693 1582 20212626.84424 1694 1582 5347275.319281 1701 1582 -9166666.669677 1702 1582 -15912882.8484 1703 1582 -8454866.614265 1704 1582 -9166781.581064 1705 1582 -30549559.96733 1706 1582 -9732749.59088 1707 1582 11000114.915 1708 1582 -7828204.348045 1709 1582 11145949.53617 1583 1583 369852862.7392 1590 1583 2523146.291974 1591 1583 1277755.509386 1592 1583 -8359214.781975 1593 1583 -2453810.375638 1594 1583 -3055549.140985 1595 1583 -3321169.645782 1596 1583 -2916703.837537 1597 1583 1777793.631766 1598 1583 32278989.8597 1680 1583 8246752.473166 1681 1583 -9895937.05811 1682 1583 -12904739.04124 1689 1583 -10279483.49692 1690 1583 -33902984.10692 1691 1583 -43192618.77883 1692 1583 -8015196.919944 1693 1583 -8680575.648187 1694 1583 -73923722.2424 1701 1583 -10337268.9803 1702 1583 -8454866.614265 1703 1583 -16869702.39011 1704 1583 -44485903.34313 1705 1583 -9538266.413314 1706 1583 -61195846.2912 1707 1583 -13932645.76025 1708 1583 7430633.02411 1709 1583 -20875211.59479 1584 1584 616485232.3769 1585 1584 1.227855682373e-05 1586 1584 925940.7716047 1587 1584 83364435.48308 1588 1584 -6.437301635742e-06 1589 1584 231485.1930161 1599 1584 -139221200.1674 1600 1584 1.877546310425e-06 1601 1584 -671303.7191255 1602 1584 -52506158.07532 1603 1584 36666666.66064 1604 1584 -2754631.485001 1683 1584 -59565882.98117 1684 1584 4.91738319397e-07 1685 1584 43739118.52961 1686 1584 -20057887.18154 1687 1584 -9166666.669679 1688 1584 11581481.02689 1695 1584 54280296.46473 1696 1584 3.09944152832e-06 1697 1584 231485.1485852 1698 1584 -7107625.989141 1699 1584 -6.146728992462e-06 1700 1584 57871.2871768 1710 1584 -59964405.70834 1711 1584 7.525086402893e-07 1712 1584 -43970603.67818 1713 1584 -20163436.42398 1714 1584 9166666.669676 1715 1584 -11639352.31406 1585 1585 528478804.7157 1586 1585 -11110932.95814 1587 1585 -5.766749382019e-06 1588 1585 -55968623.50036 1589 1585 5722133.145708 1599 1585 1.594424247742e-06 1600 1585 22113465.72052 1601 1585 -2777733.240903 1602 1585 36666666.66064 1603 1585 -41505354.61226 1604 1585 1555533.287118 1683 1585 -5.811452865601e-07 1684 1585 -19232220.47929 1685 1585 -694433.4439163 1686 1585 -9166666.669679 1687 1585 -17307688.72007 1688 1585 9079855.613715 1695 1585 3.635883331299e-06 1696 1585 32278708.78388 1697 1585 -2777733.774297 1698 1585 -5.349516868591e-06 1699 1585 -41940891.5735 1700 1585 36472200.21471 1710 1585 3.725290298462e-07 1711 1585 -19630743.20649 1712 1585 -694433.4439167 1713 1585 9166666.669676 1714 1585 -17413237.96253 1715 1585 9149300.058182 1586 1586 591208016.6774 1587 1586 231485.1930168 1588 1586 5388799.81243 1589 1586 76448462.46728 1599 1586 -254637.0525279 1600 1586 -2777733.240903 1601 1586 37788315.6602 1602 1586 -2685187.040499 1603 1586 1499977.731517 1604 1586 -8422346.095089 1683 1586 43704396.30741 1684 1586 -694433.4439163 1685 1586 -56581165.5979 1686 1586 11581481.02689 1687 1586 9079855.613715 1688 1586 -20589184.71456 1695 1586 231485.148585 1696 1586 -2777733.774298 1697 1586 -118440658.1206 1698 1586 57871.28717716 1699 1586 36444422.43695 1700 1586 -55417829.51533 1710 1586 -43935881.45598 1711 1586 -694433.4439167 1712 1586 -57643892.87044 1713 1586 -11639352.31406 1714 1586 9149300.058182 1715 1586 -20870649.36111 1587 1587 616485232.3769 1588 1587 1.227855682373e-05 1589 1587 925940.7716047 1590 1587 83364435.48308 1591 1587 -6.437301635742e-06 1592 1587 231485.1930161 1599 1587 -52482483.83292 1600 1587 -36666666.66064 1601 1587 2453701.847473 1602 1587 -139221200.1674 1603 1587 1.877546310425e-06 1604 1587 -671303.7191255 1605 1587 -52506158.07532 1606 1587 36666666.66064 1607 1587 -2754631.485001 1683 1587 -18569369.18862 1684 1587 9166666.669678 1685 1587 10279397.69313 1686 1587 -59565882.98117 1687 1587 4.91738319397e-07 1688 1587 43739118.52961 1689 1587 -20057887.18154 1690 1587 -9166666.669679 1691 1587 11581481.02689 1695 1587 -1129879.778007 1696 1587 2.369284629822e-06 1697 1587 57871.28717239 1698 1587 54280296.46473 1699 1587 3.09944152832e-06 1700 1587 231485.1485852 1701 1587 -7107625.989141 1702 1587 -6.146728992462e-06 1703 1587 57871.2871768 1710 1587 -18663081.30986 1711 1587 -9166666.669677 1712 1587 -10337268.9803 1713 1587 -59964405.70834 1714 1587 7.525086402893e-07 1715 1587 -43970603.67818 1716 1587 -20163436.42398 1717 1587 9166666.669676 1718 1587 -11639352.31406 1588 1588 528478804.7157 1589 1588 -11110932.95814 1590 1588 -5.766749382019e-06 1591 1588 -55968623.50036 1592 1588 5722133.145708 1599 1588 -36666666.66065 1600 1588 -41481680.36985 1601 1588 1222199.953785 1602 1588 1.594424247742e-06 1603 1588 22113465.72052 1604 1588 -2777733.240903 1605 1588 36666666.66064 1606 1588 -41505354.61226 1607 1588 1555533.287118 1683 1588 9166666.669678 1684 1588 -15819170.72716 1685 1588 -8385422.169798 1686 1588 -5.811452865601e-07 1687 1588 -19232220.47929 1688 1588 -694433.4439163 1689 1588 -9166666.669679 1690 1588 -17307688.72007 1691 1588 9079855.613715 1695 1588 2.913177013397e-06 1696 1588 -35963145.36236 1697 1588 -33694466.44041 1698 1588 3.635883331299e-06 1699 1588 32278708.78388 1700 1588 -2777733.774297 1701 1588 -5.349516868591e-06 1702 1588 -41940891.5735 1703 1588 36472200.21471 1710 1588 -9166666.669677 1711 1588 -15912882.8484 1712 1588 -8454866.614265 1713 1588 3.725290298462e-07 1714 1588 -19630743.20649 1715 1588 -694433.4439167 1716 1588 9166666.669676 1717 1588 -17413237.96253 1718 1588 9149300.058182 1589 1589 591208016.6774 1590 1589 231485.1930168 1591 1589 5388799.81243 1592 1589 76448462.46728 1599 1589 2523146.291974 1600 1589 1277755.509386 1601 1589 -8359214.781975 1602 1589 -254637.0525279 1603 1589 -2777733.240903 1604 1589 37788315.6602 1605 1589 -2685187.040499 1606 1589 1499977.731517 1607 1589 -8422346.095089 1683 1589 10279397.69313 1684 1589 -8385422.169798 1685 1589 -16619803.40013 1686 1589 43704396.30741 1687 1589 -694433.4439163 1688 1589 -56581165.5979 1689 1589 11581481.02689 1690 1589 9079855.613715 1691 1589 -20589184.71456 1695 1589 57871.28717278 1696 1589 -33666688.66265 1697 1589 -39477172.9523 1698 1589 231485.148585 1699 1589 -2777733.774298 1700 1589 -118440658.1206 1701 1589 57871.28717716 1702 1589 36444422.43695 1703 1589 -55417829.51533 1710 1589 -10337268.9803 1711 1589 -8454866.614265 1712 1589 -16869702.39011 1713 1589 -43935881.45598 1714 1589 -694433.4439167 1715 1589 -57643892.87044 1716 1589 -11639352.31406 1717 1589 9149300.058182 1718 1589 -20870649.36111 1590 1590 616485232.3769 1591 1590 1.227855682373e-05 1592 1590 925940.7716047 1593 1590 83364435.48308 1594 1590 -6.437301635742e-06 1595 1590 231485.1930161 1602 1590 -52482483.83292 1603 1590 -36666666.66064 1604 1590 2453701.847473 1605 1590 -139221200.1674 1606 1590 1.877546310425e-06 1607 1590 -671303.7191255 1608 1590 -52506158.07532 1609 1590 36666666.66064 1610 1590 -2754631.485001 1686 1590 -18569369.18862 1687 1590 9166666.669678 1688 1590 10279397.69313 1689 1590 -59565882.98117 1690 1590 4.91738319397e-07 1691 1590 43739118.52961 1692 1590 -20057887.18154 1693 1590 -9166666.669679 1694 1590 11581481.02689 1698 1590 -1129879.778007 1699 1590 2.369284629822e-06 1700 1590 57871.28717239 1701 1590 54280296.46473 1702 1590 3.09944152832e-06 1703 1590 231485.1485852 1704 1590 -7107625.989141 1705 1590 -6.146728992462e-06 1706 1590 57871.2871768 1713 1590 -18663081.30986 1714 1590 -9166666.669677 1715 1590 -10337268.9803 1716 1590 -59964405.70834 1717 1590 7.525086402893e-07 1718 1590 -43970603.67818 1719 1590 -20163436.42398 1720 1590 9166666.669676 1721 1590 -11639352.31406 1591 1591 528478804.7157 1592 1591 -11110932.95814 1593 1591 -5.766749382019e-06 1594 1591 -55968623.50036 1595 1591 5722133.145708 1602 1591 -36666666.66065 1603 1591 -41481680.36985 1604 1591 1222199.953785 1605 1591 1.594424247742e-06 1606 1591 22113465.72052 1607 1591 -2777733.240903 1608 1591 36666666.66064 1609 1591 -41505354.61226 1610 1591 1555533.287118 1686 1591 9166666.669678 1687 1591 -15819170.72716 1688 1591 -8385422.169798 1689 1591 -5.811452865601e-07 1690 1591 -19232220.47929 1691 1591 -694433.4439163 1692 1591 -9166666.669679 1693 1591 -17307688.72007 1694 1591 9079855.613715 1698 1591 2.913177013397e-06 1699 1591 -35963145.36236 1700 1591 -33694466.44041 1701 1591 3.635883331299e-06 1702 1591 32278708.78388 1703 1591 -2777733.774297 1704 1591 -5.349516868591e-06 1705 1591 -41940891.5735 1706 1591 36472200.21471 1713 1591 -9166666.669677 1714 1591 -15912882.8484 1715 1591 -8454866.614265 1716 1591 3.725290298462e-07 1717 1591 -19630743.20649 1718 1591 -694433.4439167 1719 1591 9166666.669676 1720 1591 -17413237.96253 1721 1591 9149300.058182 1592 1592 591208016.6774 1593 1592 231485.1930168 1594 1592 5388799.81243 1595 1592 76448462.46728 1602 1592 2523146.291974 1603 1592 1277755.509386 1604 1592 -8359214.781975 1605 1592 -254637.0525279 1606 1592 -2777733.240903 1607 1592 37788315.6602 1608 1592 -2685187.040499 1609 1592 1499977.731517 1610 1592 -8422346.095089 1686 1592 10279397.69313 1687 1592 -8385422.169798 1688 1592 -16619803.40013 1689 1592 43704396.30741 1690 1592 -694433.4439163 1691 1592 -56581165.5979 1692 1592 11581481.02689 1693 1592 9079855.613715 1694 1592 -20589184.71456 1698 1592 57871.28717278 1699 1592 -33666688.66265 1700 1592 -39477172.9523 1701 1592 231485.148585 1702 1592 -2777733.774298 1703 1592 -118440658.1206 1704 1592 57871.28717716 1705 1592 36444422.43695 1706 1592 -55417829.51533 1713 1592 -10337268.9803 1714 1592 -8454866.614265 1715 1592 -16869702.39011 1716 1592 -43935881.45598 1717 1592 -694433.4439167 1718 1592 -57643892.87044 1719 1592 -11639352.31406 1720 1592 9149300.058182 1721 1592 -20870649.36111 1593 1593 668782112.6068 1594 1593 36667451.515 1595 1593 3125095.269694 1596 1593 18742492.4051 1597 1593 -36666980.60238 1598 1593 2754656.266036 1605 1593 -52482483.83292 1606 1593 -36666666.66064 1607 1593 2453701.847473 1608 1593 -139221200.1674 1609 1593 1.877546310425e-06 1610 1593 -671303.7191255 1611 1593 -52506158.07532 1612 1593 36666666.66064 1613 1593 -2754631.485001 1689 1593 -18569369.18862 1690 1593 9166666.669678 1691 1593 10279397.69313 1692 1593 -72039530.38171 1693 1593 -9166781.581061 1694 1593 43189554.83944 1701 1593 -1129879.778007 1702 1593 2.369284629822e-06 1703 1593 57871.28717239 1704 1593 73599694.87993 1705 1593 9166858.188655 1706 1593 781226.7976368 1707 1593 -19443104.86928 1708 1593 -9166743.27727 1709 1593 11639449.48452 1716 1593 -18663081.30986 1717 1593 -9166666.669677 1718 1593 -10337268.9803 1719 1593 -59964405.70834 1720 1593 7.525086402893e-07 1721 1593 -43970603.67818 1722 1593 -20163436.42398 1723 1593 9166666.669676 1724 1593 -11639352.31406 1594 1594 569774528.2723 1595 1594 -8610907.219653 1596 1594 -36667137.57325 1597 1594 -109590390.9887 1598 1594 4777683.581345 1605 1594 -36666666.66065 1606 1594 -41481680.36985 1607 1594 1222199.953785 1608 1594 1.594424247742e-06 1609 1594 22113465.72052 1610 1594 -2777733.240903 1611 1594 36666666.66064 1612 1594 -41505354.61226 1613 1594 1555533.287118 1689 1594 9166666.669678 1690 1594 -15819170.72716 1691 1594 -8385422.169798 1692 1594 -9166743.277267 1693 1594 -28955430.01587 1694 1594 7996602.428466 1701 1594 2.913177013397e-06 1702 1594 -35963145.36236 1703 1594 -33694466.44041 1704 1594 9166858.188655 1705 1594 48847822.54786 1706 1594 -2152764.803778 1707 1594 -9166781.581064 1708 1594 -51526325.20493 1709 1594 36236271.0855 1716 1594 -9166666.669677 1717 1594 -15912882.8484 1718 1594 -8454866.614265 1719 1594 3.725290298462e-07 1720 1594 -19630743.20649 1721 1594 -694433.4439167 1722 1594 9166666.669676 1723 1594 -17413237.96253 1724 1594 9149300.058182 1595 1595 599068063.3379 1596 1595 2685224.212055 1597 1595 5222138.335127 1598 1595 35717984.23851 1605 1595 2523146.291974 1606 1595 1277755.509386 1607 1595 -8359214.781975 1608 1595 -254637.0525279 1609 1595 -2777733.240903 1610 1595 37788315.6602 1611 1595 -2685187.040499 1612 1595 1499977.731517 1613 1595 -8422346.095089 1689 1595 10279397.69313 1690 1595 -8385422.169798 1691 1595 -16619803.40013 1692 1595 43154829.95728 1693 1595 7802192.5578 1694 1595 -56944833.0873 1701 1595 57871.28717278 1702 1595 -33666688.66265 1703 1595 -39477172.9523 1704 1595 781318.4370322 1705 1595 -2152691.493423 1706 1595 -99821807.80486 1707 1595 11639498.06975 1708 1595 36402939.91804 1709 1595 -55413772.21342 1716 1595 -10337268.9803 1717 1595 -8454866.614265 1718 1595 -16869702.39011 1719 1595 -43935881.45598 1720 1595 -694433.4439167 1721 1595 -57643892.87044 1722 1595 -11639352.31406 1723 1595 9149300.058182 1724 1595 -20870649.36111 1596 1596 385435299.3209 1597 1596 36666666.66064 1598 1596 3703838.61297 1608 1596 -52482483.83292 1609 1596 -36666666.66064 1610 1596 2453701.847473 1611 1596 -203986384.4368 1612 1596 -36666980.60238 1613 1596 -2870486.454752 1614 1596 12104621.19738 1615 1596 29333647.27025 1616 1596 -1944469.225024 1692 1596 -4839277.140465 1693 1596 11000114.915 1694 1596 12370128.70975 1704 1596 -14860172.33131 1705 1596 -9166781.581062 1706 1596 -10279526.39882 1707 1596 33963705.33589 1708 1596 9166666.669679 1709 1596 9519894.71657 1719 1596 -18663081.30986 1720 1596 -9166666.669677 1721 1596 -10337268.9803 1722 1596 -73633660.33315 1723 1596 -9166743.277268 1724 1596 -44520628.22528 1725 1596 -7828204.348046 1726 1596 7333409.943332 1727 1596 -9288430.506837 1597 1597 330430928.8169 1598 1597 -6111047.842687 1608 1597 -36666666.66065 1609 1597 -41481680.36985 1610 1597 1222199.953785 1611 1597 -36667137.57325 1612 1597 -31649934.0022 1613 1597 -3888890.401321 1614 1597 44000470.90538 1615 1597 12104621.19738 1616 1597 2666690.447648 1692 1597 7333409.943332 1693 1597 -4839277.140466 1694 1597 -6597291.372073 1704 1597 -9166743.277267 1705 1597 -46943392.66696 1706 1597 -33736315.15602 1707 1597 9166666.669679 1708 1597 20212626.84424 1709 1597 5347275.319281 1719 1597 -9166666.669677 1720 1597 -15912882.8484 1721 1597 -8454866.614265 1722 1597 -9166781.581064 1723 1597 -30549559.96733 1724 1597 -9732749.59088 1725 1597 11000114.915 1726 1597 -7828204.348045 1727 1597 11145949.53617 1598 1598 369852862.7392 1608 1598 2523146.291974 1609 1598 1277755.509386 1610 1598 -8359214.781975 1611 1598 -2453810.375638 1612 1598 -3055549.140985 1613 1598 -3321169.645782 1614 1598 -2916703.837537 1615 1598 1777793.631766 1616 1598 32278989.8597 1692 1598 8246752.473166 1693 1598 -9895937.05811 1694 1598 -12904739.04124 1704 1598 -10279483.49692 1705 1598 -33902984.10692 1706 1598 -43192618.77883 1707 1598 -8015196.919944 1708 1598 -8680575.648187 1709 1598 -73923722.2424 1719 1598 -10337268.9803 1720 1598 -8454866.614265 1721 1598 -16869702.39011 1722 1598 -44485903.34313 1723 1598 -9538266.413314 1724 1598 -61195846.2912 1725 1598 -13932645.76025 1726 1598 7430633.02411 1727 1598 -20875211.59479 1599 1599 616485232.3769 1600 1599 1.227855682373e-05 1601 1599 925940.7716047 1602 1599 83364435.48308 1603 1599 -6.437301635742e-06 1604 1599 231485.1930161 1617 1599 -139221200.1674 1618 1599 1.877546310425e-06 1619 1599 -671303.7191255 1620 1599 -52506158.07532 1621 1599 36666666.66064 1622 1599 -2754631.485001 1695 1599 -59565882.98117 1696 1599 4.91738319397e-07 1697 1599 43739118.52961 1698 1599 -20057887.18154 1699 1599 -9166666.669679 1700 1599 11581481.02689 1710 1599 54280296.46473 1711 1599 3.09944152832e-06 1712 1599 231485.1485852 1713 1599 -7107625.989141 1714 1599 -6.146728992462e-06 1715 1599 57871.2871768 1728 1599 -59964405.70834 1729 1599 7.525086402893e-07 1730 1599 -43970603.67818 1731 1599 -20163436.42398 1732 1599 9166666.669676 1733 1599 -11639352.31406 1600 1600 528478804.7157 1601 1600 -11110932.95814 1602 1600 -5.766749382019e-06 1603 1600 -55968623.50036 1604 1600 5722133.145708 1617 1600 1.594424247742e-06 1618 1600 22113465.72052 1619 1600 -2777733.240903 1620 1600 36666666.66064 1621 1600 -41505354.61226 1622 1600 1555533.287118 1695 1600 -5.811452865601e-07 1696 1600 -19232220.47929 1697 1600 -694433.4439163 1698 1600 -9166666.669679 1699 1600 -17307688.72007 1700 1600 9079855.613715 1710 1600 3.635883331299e-06 1711 1600 32278708.78388 1712 1600 -2777733.774297 1713 1600 -5.349516868591e-06 1714 1600 -41940891.5735 1715 1600 36472200.21471 1728 1600 3.725290298462e-07 1729 1600 -19630743.20649 1730 1600 -694433.4439167 1731 1600 9166666.669676 1732 1600 -17413237.96253 1733 1600 9149300.058182 1601 1601 591208016.6774 1602 1601 231485.1930168 1603 1601 5388799.81243 1604 1601 76448462.46728 1617 1601 -254637.0525279 1618 1601 -2777733.240903 1619 1601 37788315.6602 1620 1601 -2685187.040499 1621 1601 1499977.731517 1622 1601 -8422346.095089 1695 1601 43704396.30741 1696 1601 -694433.4439163 1697 1601 -56581165.5979 1698 1601 11581481.02689 1699 1601 9079855.613715 1700 1601 -20589184.71456 1710 1601 231485.148585 1711 1601 -2777733.774298 1712 1601 -118440658.1206 1713 1601 57871.28717716 1714 1601 36444422.43695 1715 1601 -55417829.51533 1728 1601 -43935881.45598 1729 1601 -694433.4439167 1730 1601 -57643892.87044 1731 1601 -11639352.31406 1732 1601 9149300.058182 1733 1601 -20870649.36111 1602 1602 616485232.3769 1603 1602 1.227855682373e-05 1604 1602 925940.7716047 1605 1602 83364435.48308 1606 1602 -6.437301635742e-06 1607 1602 231485.1930161 1617 1602 -52482483.83292 1618 1602 -36666666.66064 1619 1602 2453701.847473 1620 1602 -139221200.1674 1621 1602 1.877546310425e-06 1622 1602 -671303.7191255 1623 1602 -52506158.07532 1624 1602 36666666.66064 1625 1602 -2754631.485001 1695 1602 -18569369.18862 1696 1602 9166666.669678 1697 1602 10279397.69313 1698 1602 -59565882.98117 1699 1602 4.91738319397e-07 1700 1602 43739118.52961 1701 1602 -20057887.18154 1702 1602 -9166666.669679 1703 1602 11581481.02689 1710 1602 -1129879.778007 1711 1602 2.369284629822e-06 1712 1602 57871.28717239 1713 1602 54280296.46473 1714 1602 3.09944152832e-06 1715 1602 231485.1485852 1716 1602 -7107625.989141 1717 1602 -6.146728992462e-06 1718 1602 57871.2871768 1728 1602 -18663081.30986 1729 1602 -9166666.669677 1730 1602 -10337268.9803 1731 1602 -59964405.70834 1732 1602 7.525086402893e-07 1733 1602 -43970603.67818 1734 1602 -20163436.42398 1735 1602 9166666.669676 1736 1602 -11639352.31406 1603 1603 528478804.7157 1604 1603 -11110932.95814 1605 1603 -5.766749382019e-06 1606 1603 -55968623.50036 1607 1603 5722133.145708 1617 1603 -36666666.66065 1618 1603 -41481680.36985 1619 1603 1222199.953785 1620 1603 1.594424247742e-06 1621 1603 22113465.72052 1622 1603 -2777733.240903 1623 1603 36666666.66064 1624 1603 -41505354.61226 1625 1603 1555533.287118 1695 1603 9166666.669678 1696 1603 -15819170.72716 1697 1603 -8385422.169798 1698 1603 -5.811452865601e-07 1699 1603 -19232220.47929 1700 1603 -694433.4439163 1701 1603 -9166666.669679 1702 1603 -17307688.72007 1703 1603 9079855.613715 1710 1603 2.913177013397e-06 1711 1603 -35963145.36236 1712 1603 -33694466.44041 1713 1603 3.635883331299e-06 1714 1603 32278708.78388 1715 1603 -2777733.774297 1716 1603 -5.349516868591e-06 1717 1603 -41940891.5735 1718 1603 36472200.21471 1728 1603 -9166666.669677 1729 1603 -15912882.8484 1730 1603 -8454866.614265 1731 1603 3.725290298462e-07 1732 1603 -19630743.20649 1733 1603 -694433.4439167 1734 1603 9166666.669676 1735 1603 -17413237.96253 1736 1603 9149300.058182 1604 1604 591208016.6774 1605 1604 231485.1930168 1606 1604 5388799.81243 1607 1604 76448462.46728 1617 1604 2523146.291974 1618 1604 1277755.509386 1619 1604 -8359214.781975 1620 1604 -254637.0525279 1621 1604 -2777733.240903 1622 1604 37788315.6602 1623 1604 -2685187.040499 1624 1604 1499977.731517 1625 1604 -8422346.095089 1695 1604 10279397.69313 1696 1604 -8385422.169798 1697 1604 -16619803.40013 1698 1604 43704396.30741 1699 1604 -694433.4439163 1700 1604 -56581165.5979 1701 1604 11581481.02689 1702 1604 9079855.613715 1703 1604 -20589184.71456 1710 1604 57871.28717278 1711 1604 -33666688.66265 1712 1604 -39477172.9523 1713 1604 231485.148585 1714 1604 -2777733.774298 1715 1604 -118440658.1206 1716 1604 57871.28717716 1717 1604 36444422.43695 1718 1604 -55417829.51533 1728 1604 -10337268.9803 1729 1604 -8454866.614265 1730 1604 -16869702.39011 1731 1604 -43935881.45598 1732 1604 -694433.4439167 1733 1604 -57643892.87044 1734 1604 -11639352.31406 1735 1604 9149300.058182 1736 1604 -20870649.36111 1605 1605 616485232.3769 1606 1605 1.227855682373e-05 1607 1605 925940.7716047 1608 1605 83364435.48308 1609 1605 -6.437301635742e-06 1610 1605 231485.1930161 1620 1605 -52482483.83292 1621 1605 -36666666.66064 1622 1605 2453701.847473 1623 1605 -139221200.1674 1624 1605 1.877546310425e-06 1625 1605 -671303.7191255 1626 1605 -52506158.07532 1627 1605 36666666.66064 1628 1605 -2754631.485001 1698 1605 -18569369.18862 1699 1605 9166666.669678 1700 1605 10279397.69313 1701 1605 -59565882.98117 1702 1605 4.91738319397e-07 1703 1605 43739118.52961 1704 1605 -20057887.18154 1705 1605 -9166666.669679 1706 1605 11581481.02689 1713 1605 -1129879.778007 1714 1605 2.369284629822e-06 1715 1605 57871.28717239 1716 1605 54280296.46473 1717 1605 3.09944152832e-06 1718 1605 231485.1485852 1719 1605 -7107625.989141 1720 1605 -6.146728992462e-06 1721 1605 57871.2871768 1731 1605 -18663081.30986 1732 1605 -9166666.669677 1733 1605 -10337268.9803 1734 1605 -59964405.70834 1735 1605 7.525086402893e-07 1736 1605 -43970603.67818 1737 1605 -20163436.42398 1738 1605 9166666.669676 1739 1605 -11639352.31406 1606 1606 528478804.7157 1607 1606 -11110932.95814 1608 1606 -5.766749382019e-06 1609 1606 -55968623.50036 1610 1606 5722133.145708 1620 1606 -36666666.66065 1621 1606 -41481680.36985 1622 1606 1222199.953785 1623 1606 1.594424247742e-06 1624 1606 22113465.72052 1625 1606 -2777733.240903 1626 1606 36666666.66064 1627 1606 -41505354.61226 1628 1606 1555533.287118 1698 1606 9166666.669678 1699 1606 -15819170.72716 1700 1606 -8385422.169798 1701 1606 -5.811452865601e-07 1702 1606 -19232220.47929 1703 1606 -694433.4439163 1704 1606 -9166666.669679 1705 1606 -17307688.72007 1706 1606 9079855.613715 1713 1606 2.913177013397e-06 1714 1606 -35963145.36236 1715 1606 -33694466.44041 1716 1606 3.635883331299e-06 1717 1606 32278708.78388 1718 1606 -2777733.774297 1719 1606 -5.349516868591e-06 1720 1606 -41940891.5735 1721 1606 36472200.21471 1731 1606 -9166666.669677 1732 1606 -15912882.8484 1733 1606 -8454866.614265 1734 1606 3.725290298462e-07 1735 1606 -19630743.20649 1736 1606 -694433.4439167 1737 1606 9166666.669676 1738 1606 -17413237.96253 1739 1606 9149300.058182 1607 1607 591208016.6774 1608 1607 231485.1930168 1609 1607 5388799.81243 1610 1607 76448462.46728 1620 1607 2523146.291974 1621 1607 1277755.509386 1622 1607 -8359214.781975 1623 1607 -254637.0525279 1624 1607 -2777733.240903 1625 1607 37788315.6602 1626 1607 -2685187.040499 1627 1607 1499977.731517 1628 1607 -8422346.095089 1698 1607 10279397.69313 1699 1607 -8385422.169798 1700 1607 -16619803.40013 1701 1607 43704396.30741 1702 1607 -694433.4439163 1703 1607 -56581165.5979 1704 1607 11581481.02689 1705 1607 9079855.613715 1706 1607 -20589184.71456 1713 1607 57871.28717278 1714 1607 -33666688.66265 1715 1607 -39477172.9523 1716 1607 231485.148585 1717 1607 -2777733.774298 1718 1607 -118440658.1206 1719 1607 57871.28717716 1720 1607 36444422.43695 1721 1607 -55417829.51533 1731 1607 -10337268.9803 1732 1607 -8454866.614265 1733 1607 -16869702.39011 1734 1607 -43935881.45598 1735 1607 -694433.4439167 1736 1607 -57643892.87044 1737 1607 -11639352.31406 1738 1607 9149300.058182 1739 1607 -20870649.36111 1608 1608 616485232.3769 1609 1608 1.227855682373e-05 1610 1608 925940.7716047 1611 1608 83364435.48308 1612 1608 -6.437301635742e-06 1613 1608 231485.1930161 1623 1608 -52482483.83292 1624 1608 -36666666.66064 1625 1608 2453701.847473 1626 1608 -139221200.1674 1627 1608 1.877546310425e-06 1628 1608 -671303.7191255 1629 1608 -52506158.07532 1630 1608 36666666.66064 1631 1608 -2754631.485001 1701 1608 -18569369.18862 1702 1608 9166666.669678 1703 1608 10279397.69313 1704 1608 -59565882.98117 1705 1608 4.91738319397e-07 1706 1608 43739118.52961 1707 1608 -20057887.18154 1708 1608 -9166666.669679 1709 1608 11581481.02689 1716 1608 -1129879.778007 1717 1608 2.369284629822e-06 1718 1608 57871.28717239 1719 1608 54280296.46473 1720 1608 3.09944152832e-06 1721 1608 231485.1485852 1722 1608 -7107625.989141 1723 1608 -6.146728992462e-06 1724 1608 57871.2871768 1734 1608 -18663081.30986 1735 1608 -9166666.669677 1736 1608 -10337268.9803 1737 1608 -59964405.70834 1738 1608 7.525086402893e-07 1739 1608 -43970603.67818 1740 1608 -20163436.42398 1741 1608 9166666.669676 1742 1608 -11639352.31406 1609 1609 528478804.7157 1610 1609 -11110932.95814 1611 1609 -5.766749382019e-06 1612 1609 -55968623.50036 1613 1609 5722133.145708 1623 1609 -36666666.66065 1624 1609 -41481680.36985 1625 1609 1222199.953785 1626 1609 1.594424247742e-06 1627 1609 22113465.72052 1628 1609 -2777733.240903 1629 1609 36666666.66064 1630 1609 -41505354.61226 1631 1609 1555533.287118 1701 1609 9166666.669678 1702 1609 -15819170.72716 1703 1609 -8385422.169798 1704 1609 -5.811452865601e-07 1705 1609 -19232220.47929 1706 1609 -694433.4439163 1707 1609 -9166666.669679 1708 1609 -17307688.72007 1709 1609 9079855.613715 1716 1609 2.913177013397e-06 1717 1609 -35963145.36236 1718 1609 -33694466.44041 1719 1609 3.635883331299e-06 1720 1609 32278708.78388 1721 1609 -2777733.774297 1722 1609 -5.349516868591e-06 1723 1609 -41940891.5735 1724 1609 36472200.21471 1734 1609 -9166666.669677 1735 1609 -15912882.8484 1736 1609 -8454866.614265 1737 1609 3.725290298462e-07 1738 1609 -19630743.20649 1739 1609 -694433.4439167 1740 1609 9166666.669676 1741 1609 -17413237.96253 1742 1609 9149300.058182 1610 1610 591208016.6774 1611 1610 231485.1930168 1612 1610 5388799.81243 1613 1610 76448462.46728 1623 1610 2523146.291974 1624 1610 1277755.509386 1625 1610 -8359214.781975 1626 1610 -254637.0525279 1627 1610 -2777733.240903 1628 1610 37788315.6602 1629 1610 -2685187.040499 1630 1610 1499977.731517 1631 1610 -8422346.095089 1701 1610 10279397.69313 1702 1610 -8385422.169798 1703 1610 -16619803.40013 1704 1610 43704396.30741 1705 1610 -694433.4439163 1706 1610 -56581165.5979 1707 1610 11581481.02689 1708 1610 9079855.613715 1709 1610 -20589184.71456 1716 1610 57871.28717278 1717 1610 -33666688.66265 1718 1610 -39477172.9523 1719 1610 231485.148585 1720 1610 -2777733.774298 1721 1610 -118440658.1206 1722 1610 57871.28717716 1723 1610 36444422.43695 1724 1610 -55417829.51533 1734 1610 -10337268.9803 1735 1610 -8454866.614265 1736 1610 -16869702.39011 1737 1610 -43935881.45598 1738 1610 -694433.4439167 1739 1610 -57643892.87044 1740 1610 -11639352.31406 1741 1610 9149300.058182 1742 1610 -20870649.36111 1611 1611 668782112.6068 1612 1611 36667451.515 1613 1611 3125095.269694 1614 1611 18742492.4051 1615 1611 -36666980.60238 1616 1611 2754656.266036 1626 1611 -52482483.83292 1627 1611 -36666666.66064 1628 1611 2453701.847473 1629 1611 -139221200.1674 1630 1611 1.877546310425e-06 1631 1611 -671303.7191255 1632 1611 -52506158.07532 1633 1611 36666666.66064 1634 1611 -2754631.485001 1704 1611 -18569369.18862 1705 1611 9166666.669678 1706 1611 10279397.69313 1707 1611 -72039530.38171 1708 1611 -9166781.581061 1709 1611 43189554.83944 1719 1611 -1129879.778007 1720 1611 2.369284629822e-06 1721 1611 57871.28717239 1722 1611 73599694.87993 1723 1611 9166858.188655 1724 1611 781226.7976368 1725 1611 -19443104.86928 1726 1611 -9166743.27727 1727 1611 11639449.48452 1737 1611 -18663081.30986 1738 1611 -9166666.669677 1739 1611 -10337268.9803 1740 1611 -59964405.70834 1741 1611 7.525086402893e-07 1742 1611 -43970603.67818 1743 1611 -20163436.42398 1744 1611 9166666.669676 1745 1611 -11639352.31406 1612 1612 569774528.2723 1613 1612 -8610907.219653 1614 1612 -36667137.57325 1615 1612 -109590390.9887 1616 1612 4777683.581345 1626 1612 -36666666.66065 1627 1612 -41481680.36985 1628 1612 1222199.953785 1629 1612 1.594424247742e-06 1630 1612 22113465.72052 1631 1612 -2777733.240903 1632 1612 36666666.66064 1633 1612 -41505354.61226 1634 1612 1555533.287118 1704 1612 9166666.669678 1705 1612 -15819170.72716 1706 1612 -8385422.169798 1707 1612 -9166743.277267 1708 1612 -28955430.01587 1709 1612 7996602.428466 1719 1612 2.913177013397e-06 1720 1612 -35963145.36236 1721 1612 -33694466.44041 1722 1612 9166858.188655 1723 1612 48847822.54786 1724 1612 -2152764.803778 1725 1612 -9166781.581064 1726 1612 -51526325.20493 1727 1612 36236271.0855 1737 1612 -9166666.669677 1738 1612 -15912882.8484 1739 1612 -8454866.614265 1740 1612 3.725290298462e-07 1741 1612 -19630743.20649 1742 1612 -694433.4439167 1743 1612 9166666.669676 1744 1612 -17413237.96253 1745 1612 9149300.058182 1613 1613 599068063.3379 1614 1613 2685224.212055 1615 1613 5222138.335127 1616 1613 35717984.23851 1626 1613 2523146.291974 1627 1613 1277755.509386 1628 1613 -8359214.781975 1629 1613 -254637.0525279 1630 1613 -2777733.240903 1631 1613 37788315.6602 1632 1613 -2685187.040499 1633 1613 1499977.731517 1634 1613 -8422346.095089 1704 1613 10279397.69313 1705 1613 -8385422.169798 1706 1613 -16619803.40013 1707 1613 43154829.95728 1708 1613 7802192.5578 1709 1613 -56944833.0873 1719 1613 57871.28717278 1720 1613 -33666688.66265 1721 1613 -39477172.9523 1722 1613 781318.4370322 1723 1613 -2152691.493423 1724 1613 -99821807.80486 1725 1613 11639498.06975 1726 1613 36402939.91804 1727 1613 -55413772.21342 1737 1613 -10337268.9803 1738 1613 -8454866.614265 1739 1613 -16869702.39011 1740 1613 -43935881.45598 1741 1613 -694433.4439167 1742 1613 -57643892.87044 1743 1613 -11639352.31406 1744 1613 9149300.058182 1745 1613 -20870649.36111 1614 1614 655735355.2101 1615 1614 -31117212.66892 1616 1614 -17334.85400189 1629 1614 -52482483.83292 1630 1614 -36666666.66064 1631 1614 2453701.847473 1632 1614 -47267674.59853 1633 1614 31108306.68764 1634 1614 -538116.1871277 1635 1614 -460334096.3009 1636 1614 29342239.3098 1637 1614 -116.4260834567 1707 1614 -4839277.140465 1708 1614 11000114.915 1709 1614 12370128.70975 1722 1614 -14860172.33131 1723 1614 -9166781.581062 1724 1614 -10279526.39882 1725 1614 84600329.791 1726 1614 -7355166.008999 1727 1614 4551627.348748 1740 1614 -18663081.30986 1741 1614 -9166666.669677 1742 1614 -10337268.9803 1743 1614 -26443017.83902 1744 1614 7353613.14478 1745 1614 -24169752.6984 1746 1614 -81188509.12609 1747 1614 7334886.199962 1748 1614 -937425.4063848 1615 1615 1399825463.238 1616 1615 -15271235.38801 1629 1615 -36666666.66065 1630 1615 -41481680.36985 1631 1615 1222199.953785 1632 1615 31103853.69702 1633 1615 94613187.18359 1634 1615 -2022211.413523 1635 1615 44013358.96467 1636 1615 -1228972986.18 1637 1615 10408237.60212 1707 1615 7333409.943332 1708 1615 -4839277.140466 1709 1615 -6597291.372073 1722 1615 -9166743.277267 1723 1615 -46943392.66696 1724 1615 -33736315.15602 1725 1615 -7355166.008999 1726 1615 212115402.7313 1727 1615 562018.4294399 1740 1615 -9166666.669677 1741 1615 -15912882.8484 1742 1615 -8454866.614265 1743 1615 7352836.71267 1744 1615 9214022.79247 1745 1615 6548490.870986 1746 1615 11002329.29994 1747 1615 -215027600.8237 1748 1615 18640210.33911 1616 1616 686859776.2503 1629 1616 2523146.291974 1630 1616 1277755.509386 1631 1616 -8359214.781975 1632 1616 -815841.7076854 1633 1616 -1743802.481929 1634 1616 49749735.57039 1635 1616 -174.6391257197 1636 1616 10298292.41346 1637 1616 -458918700.2564 1707 1616 8246752.473166 1708 1616 -9895937.05811 1709 1616 -12904739.04124 1722 1616 -10279483.49692 1723 1616 -33902984.10692 1724 1616 -43192618.77883 1725 1616 -5083833.776419 1726 1616 -7145049.724392 1727 1616 16202036.69247 1740 1616 -10337268.9803 1741 1616 -8454866.614265 1742 1616 -16869702.39011 1743 1616 -24343354.24807 1744 1616 6577036.690483 1745 1616 -24287985.05901 1746 1616 -1406138.109577 1747 1616 18265170.55897 1748 1616 -82663599.30531 1617 1617 616485232.3769 1618 1617 1.227855682373e-05 1619 1617 925940.7716047 1620 1617 83364435.48308 1621 1617 -6.437301635742e-06 1622 1617 231485.1930161 1638 1617 -139221200.1674 1639 1617 1.877546310425e-06 1640 1617 -671303.7191255 1641 1617 -52506158.07532 1642 1617 36666666.66064 1643 1617 -2754631.485001 1710 1617 -59565882.98117 1711 1617 4.91738319397e-07 1712 1617 43739118.52961 1713 1617 -20057887.18154 1714 1617 -9166666.669679 1715 1617 11581481.02689 1728 1617 54280296.46473 1729 1617 3.09944152832e-06 1730 1617 231485.1485852 1731 1617 -7107625.989141 1732 1617 -6.146728992462e-06 1733 1617 57871.2871768 1749 1617 -59964405.70834 1750 1617 7.525086402893e-07 1751 1617 -43970603.67818 1752 1617 -20163436.42398 1753 1617 9166666.669676 1754 1617 -11639352.31406 1618 1618 528478804.7157 1619 1618 -11110932.95814 1620 1618 -5.766749382019e-06 1621 1618 -55968623.50036 1622 1618 5722133.145708 1638 1618 1.594424247742e-06 1639 1618 22113465.72052 1640 1618 -2777733.240903 1641 1618 36666666.66064 1642 1618 -41505354.61226 1643 1618 1555533.287118 1710 1618 -5.811452865601e-07 1711 1618 -19232220.47929 1712 1618 -694433.4439163 1713 1618 -9166666.669679 1714 1618 -17307688.72007 1715 1618 9079855.613715 1728 1618 3.635883331299e-06 1729 1618 32278708.78388 1730 1618 -2777733.774297 1731 1618 -5.349516868591e-06 1732 1618 -41940891.5735 1733 1618 36472200.21471 1749 1618 3.725290298462e-07 1750 1618 -19630743.20649 1751 1618 -694433.4439167 1752 1618 9166666.669676 1753 1618 -17413237.96253 1754 1618 9149300.058182 1619 1619 591208016.6774 1620 1619 231485.1930168 1621 1619 5388799.81243 1622 1619 76448462.46728 1638 1619 -254637.0525279 1639 1619 -2777733.240903 1640 1619 37788315.6602 1641 1619 -2685187.040499 1642 1619 1499977.731517 1643 1619 -8422346.095089 1710 1619 43704396.30741 1711 1619 -694433.4439163 1712 1619 -56581165.5979 1713 1619 11581481.02689 1714 1619 9079855.613715 1715 1619 -20589184.71456 1728 1619 231485.148585 1729 1619 -2777733.774298 1730 1619 -118440658.1206 1731 1619 57871.28717716 1732 1619 36444422.43695 1733 1619 -55417829.51533 1749 1619 -43935881.45598 1750 1619 -694433.4439167 1751 1619 -57643892.87044 1752 1619 -11639352.31406 1753 1619 9149300.058182 1754 1619 -20870649.36111 1620 1620 616485232.3769 1621 1620 1.227855682373e-05 1622 1620 925940.7716047 1623 1620 83364435.48308 1624 1620 -6.437301635742e-06 1625 1620 231485.1930161 1638 1620 -52482483.83292 1639 1620 -36666666.66064 1640 1620 2453701.847473 1641 1620 -139221200.1674 1642 1620 1.877546310425e-06 1643 1620 -671303.7191255 1644 1620 -52506158.07532 1645 1620 36666666.66064 1646 1620 -2754631.485001 1710 1620 -18569369.18862 1711 1620 9166666.669678 1712 1620 10279397.69313 1713 1620 -59565882.98117 1714 1620 4.91738319397e-07 1715 1620 43739118.52961 1716 1620 -20057887.18154 1717 1620 -9166666.669679 1718 1620 11581481.02689 1728 1620 -1129879.778007 1729 1620 2.369284629822e-06 1730 1620 57871.28717239 1731 1620 54280296.46473 1732 1620 3.09944152832e-06 1733 1620 231485.1485852 1734 1620 -7107625.989141 1735 1620 -6.146728992462e-06 1736 1620 57871.2871768 1749 1620 -18663081.30986 1750 1620 -9166666.669677 1751 1620 -10337268.9803 1752 1620 -59964405.70834 1753 1620 7.525086402893e-07 1754 1620 -43970603.67818 1755 1620 -20163436.42398 1756 1620 9166666.669676 1757 1620 -11639352.31406 1621 1621 528478804.7157 1622 1621 -11110932.95814 1623 1621 -5.766749382019e-06 1624 1621 -55968623.50036 1625 1621 5722133.145708 1638 1621 -36666666.66065 1639 1621 -41481680.36985 1640 1621 1222199.953785 1641 1621 1.594424247742e-06 1642 1621 22113465.72052 1643 1621 -2777733.240903 1644 1621 36666666.66064 1645 1621 -41505354.61226 1646 1621 1555533.287118 1710 1621 9166666.669678 1711 1621 -15819170.72716 1712 1621 -8385422.169798 1713 1621 -5.811452865601e-07 1714 1621 -19232220.47929 1715 1621 -694433.4439163 1716 1621 -9166666.669679 1717 1621 -17307688.72007 1718 1621 9079855.613715 1728 1621 2.913177013397e-06 1729 1621 -35963145.36236 1730 1621 -33694466.44041 1731 1621 3.635883331299e-06 1732 1621 32278708.78388 1733 1621 -2777733.774297 1734 1621 -5.349516868591e-06 1735 1621 -41940891.5735 1736 1621 36472200.21471 1749 1621 -9166666.669677 1750 1621 -15912882.8484 1751 1621 -8454866.614265 1752 1621 3.725290298462e-07 1753 1621 -19630743.20649 1754 1621 -694433.4439167 1755 1621 9166666.669676 1756 1621 -17413237.96253 1757 1621 9149300.058182 1622 1622 591208016.6774 1623 1622 231485.1930168 1624 1622 5388799.81243 1625 1622 76448462.46728 1638 1622 2523146.291974 1639 1622 1277755.509386 1640 1622 -8359214.781975 1641 1622 -254637.0525279 1642 1622 -2777733.240903 1643 1622 37788315.6602 1644 1622 -2685187.040499 1645 1622 1499977.731517 1646 1622 -8422346.095089 1710 1622 10279397.69313 1711 1622 -8385422.169798 1712 1622 -16619803.40013 1713 1622 43704396.30741 1714 1622 -694433.4439163 1715 1622 -56581165.5979 1716 1622 11581481.02689 1717 1622 9079855.613715 1718 1622 -20589184.71456 1728 1622 57871.28717278 1729 1622 -33666688.66265 1730 1622 -39477172.9523 1731 1622 231485.148585 1732 1622 -2777733.774298 1733 1622 -118440658.1206 1734 1622 57871.28717716 1735 1622 36444422.43695 1736 1622 -55417829.51533 1749 1622 -10337268.9803 1750 1622 -8454866.614265 1751 1622 -16869702.39011 1752 1622 -43935881.45598 1753 1622 -694433.4439167 1754 1622 -57643892.87044 1755 1622 -11639352.31406 1756 1622 9149300.058182 1757 1622 -20870649.36111 1623 1623 616485232.3769 1624 1623 1.227855682373e-05 1625 1623 925940.7716047 1626 1623 83364435.48308 1627 1623 -6.437301635742e-06 1628 1623 231485.1930161 1641 1623 -52482483.83292 1642 1623 -36666666.66064 1643 1623 2453701.847473 1644 1623 -139221200.1674 1645 1623 1.877546310425e-06 1646 1623 -671303.7191255 1647 1623 -52506158.07532 1648 1623 36666666.66064 1649 1623 -2754631.485001 1713 1623 -18569369.18862 1714 1623 9166666.669678 1715 1623 10279397.69313 1716 1623 -59565882.98117 1717 1623 4.91738319397e-07 1718 1623 43739118.52961 1719 1623 -20057887.18154 1720 1623 -9166666.669679 1721 1623 11581481.02689 1731 1623 -1129879.778007 1732 1623 2.369284629822e-06 1733 1623 57871.28717239 1734 1623 54280296.46473 1735 1623 3.09944152832e-06 1736 1623 231485.1485852 1737 1623 -7107625.989141 1738 1623 -6.146728992462e-06 1739 1623 57871.2871768 1752 1623 -18663081.30986 1753 1623 -9166666.669677 1754 1623 -10337268.9803 1755 1623 -59964405.70834 1756 1623 7.525086402893e-07 1757 1623 -43970603.67818 1758 1623 -20163436.42398 1759 1623 9166666.669676 1760 1623 -11639352.31406 1624 1624 528478804.7157 1625 1624 -11110932.95814 1626 1624 -5.766749382019e-06 1627 1624 -55968623.50036 1628 1624 5722133.145708 1641 1624 -36666666.66065 1642 1624 -41481680.36985 1643 1624 1222199.953785 1644 1624 1.594424247742e-06 1645 1624 22113465.72052 1646 1624 -2777733.240903 1647 1624 36666666.66064 1648 1624 -41505354.61226 1649 1624 1555533.287118 1713 1624 9166666.669678 1714 1624 -15819170.72716 1715 1624 -8385422.169798 1716 1624 -5.811452865601e-07 1717 1624 -19232220.47929 1718 1624 -694433.4439163 1719 1624 -9166666.669679 1720 1624 -17307688.72007 1721 1624 9079855.613715 1731 1624 2.913177013397e-06 1732 1624 -35963145.36236 1733 1624 -33694466.44041 1734 1624 3.635883331299e-06 1735 1624 32278708.78388 1736 1624 -2777733.774297 1737 1624 -5.349516868591e-06 1738 1624 -41940891.5735 1739 1624 36472200.21471 1752 1624 -9166666.669677 1753 1624 -15912882.8484 1754 1624 -8454866.614265 1755 1624 3.725290298462e-07 1756 1624 -19630743.20649 1757 1624 -694433.4439167 1758 1624 9166666.669676 1759 1624 -17413237.96253 1760 1624 9149300.058182 1625 1625 591208016.6774 1626 1625 231485.1930168 1627 1625 5388799.81243 1628 1625 76448462.46728 1641 1625 2523146.291974 1642 1625 1277755.509386 1643 1625 -8359214.781975 1644 1625 -254637.0525279 1645 1625 -2777733.240903 1646 1625 37788315.6602 1647 1625 -2685187.040499 1648 1625 1499977.731517 1649 1625 -8422346.095089 1713 1625 10279397.69313 1714 1625 -8385422.169798 1715 1625 -16619803.40013 1716 1625 43704396.30741 1717 1625 -694433.4439163 1718 1625 -56581165.5979 1719 1625 11581481.02689 1720 1625 9079855.613715 1721 1625 -20589184.71456 1731 1625 57871.28717278 1732 1625 -33666688.66265 1733 1625 -39477172.9523 1734 1625 231485.148585 1735 1625 -2777733.774298 1736 1625 -118440658.1206 1737 1625 57871.28717716 1738 1625 36444422.43695 1739 1625 -55417829.51533 1752 1625 -10337268.9803 1753 1625 -8454866.614265 1754 1625 -16869702.39011 1755 1625 -43935881.45598 1756 1625 -694433.4439167 1757 1625 -57643892.87044 1758 1625 -11639352.31406 1759 1625 9149300.058182 1760 1625 -20870649.36111 1626 1626 616485232.3769 1627 1626 1.227855682373e-05 1628 1626 925940.7716047 1629 1626 83364435.48308 1630 1626 -6.437301635742e-06 1631 1626 231485.1930161 1644 1626 -52482483.83292 1645 1626 -36666666.66064 1646 1626 2453701.847473 1647 1626 -139221200.1674 1648 1626 1.877546310425e-06 1649 1626 -671303.7191255 1650 1626 -52506158.07532 1651 1626 36666666.66064 1652 1626 -2754631.485001 1716 1626 -18569369.18862 1717 1626 9166666.669678 1718 1626 10279397.69313 1719 1626 -59565882.98117 1720 1626 4.91738319397e-07 1721 1626 43739118.52961 1722 1626 -20057887.18154 1723 1626 -9166666.669679 1724 1626 11581481.02689 1734 1626 -1129879.778007 1735 1626 2.369284629822e-06 1736 1626 57871.28717239 1737 1626 54280296.46473 1738 1626 3.09944152832e-06 1739 1626 231485.1485852 1740 1626 -7107625.989141 1741 1626 -6.146728992462e-06 1742 1626 57871.2871768 1755 1626 -18663081.30986 1756 1626 -9166666.669677 1757 1626 -10337268.9803 1758 1626 -59964405.70834 1759 1626 7.525086402893e-07 1760 1626 -43970603.67818 1761 1626 -20163436.42398 1762 1626 9166666.669676 1763 1626 -11639352.31406 1627 1627 528478804.7157 1628 1627 -11110932.95814 1629 1627 -5.766749382019e-06 1630 1627 -55968623.50036 1631 1627 5722133.145708 1644 1627 -36666666.66065 1645 1627 -41481680.36985 1646 1627 1222199.953785 1647 1627 1.594424247742e-06 1648 1627 22113465.72052 1649 1627 -2777733.240903 1650 1627 36666666.66064 1651 1627 -41505354.61226 1652 1627 1555533.287118 1716 1627 9166666.669678 1717 1627 -15819170.72716 1718 1627 -8385422.169798 1719 1627 -5.811452865601e-07 1720 1627 -19232220.47929 1721 1627 -694433.4439163 1722 1627 -9166666.669679 1723 1627 -17307688.72007 1724 1627 9079855.613715 1734 1627 2.913177013397e-06 1735 1627 -35963145.36236 1736 1627 -33694466.44041 1737 1627 3.635883331299e-06 1738 1627 32278708.78388 1739 1627 -2777733.774297 1740 1627 -5.349516868591e-06 1741 1627 -41940891.5735 1742 1627 36472200.21471 1755 1627 -9166666.669677 1756 1627 -15912882.8484 1757 1627 -8454866.614265 1758 1627 3.725290298462e-07 1759 1627 -19630743.20649 1760 1627 -694433.4439167 1761 1627 9166666.669676 1762 1627 -17413237.96253 1763 1627 9149300.058182 1628 1628 591208016.6774 1629 1628 231485.1930168 1630 1628 5388799.81243 1631 1628 76448462.46728 1644 1628 2523146.291974 1645 1628 1277755.509386 1646 1628 -8359214.781975 1647 1628 -254637.0525279 1648 1628 -2777733.240903 1649 1628 37788315.6602 1650 1628 -2685187.040499 1651 1628 1499977.731517 1652 1628 -8422346.095089 1716 1628 10279397.69313 1717 1628 -8385422.169798 1718 1628 -16619803.40013 1719 1628 43704396.30741 1720 1628 -694433.4439163 1721 1628 -56581165.5979 1722 1628 11581481.02689 1723 1628 9079855.613715 1724 1628 -20589184.71456 1734 1628 57871.28717278 1735 1628 -33666688.66265 1736 1628 -39477172.9523 1737 1628 231485.148585 1738 1628 -2777733.774298 1739 1628 -118440658.1206 1740 1628 57871.28717716 1741 1628 36444422.43695 1742 1628 -55417829.51533 1755 1628 -10337268.9803 1756 1628 -8454866.614265 1757 1628 -16869702.39011 1758 1628 -43935881.45598 1759 1628 -694433.4439167 1760 1628 -57643892.87044 1761 1628 -11639352.31406 1762 1628 9149300.058182 1763 1628 -20870649.36111 1629 1629 616485232.3769 1630 1629 1.227855682373e-05 1631 1629 925940.7716047 1632 1629 83364435.48308 1633 1629 -6.437301635742e-06 1634 1629 231485.1930161 1647 1629 -52482483.83292 1648 1629 -36666666.66064 1649 1629 2453701.847473 1650 1629 -139221200.1674 1651 1629 1.877546310425e-06 1652 1629 -671303.7191255 1653 1629 -52506158.07532 1654 1629 36666666.66064 1655 1629 -2754631.485001 1719 1629 -18569369.18862 1720 1629 9166666.669678 1721 1629 10279397.69313 1722 1629 -59565882.98117 1723 1629 4.91738319397e-07 1724 1629 43739118.52961 1725 1629 -20057887.18154 1726 1629 -9166666.669679 1727 1629 11581481.02689 1737 1629 -1129879.778007 1738 1629 2.369284629822e-06 1739 1629 57871.28717239 1740 1629 54280296.46473 1741 1629 3.09944152832e-06 1742 1629 231485.1485852 1743 1629 -7107625.989141 1744 1629 -6.146728992462e-06 1745 1629 57871.2871768 1758 1629 -18663081.30986 1759 1629 -9166666.669677 1760 1629 -10337268.9803 1761 1629 -59964405.70834 1762 1629 7.525086402893e-07 1763 1629 -43970603.67818 1764 1629 -20163436.42398 1765 1629 9166666.669676 1766 1629 -11639352.31406 1630 1630 528478804.7157 1631 1630 -11110932.95814 1632 1630 -5.766749382019e-06 1633 1630 -55968623.50036 1634 1630 5722133.145708 1647 1630 -36666666.66065 1648 1630 -41481680.36985 1649 1630 1222199.953785 1650 1630 1.594424247742e-06 1651 1630 22113465.72052 1652 1630 -2777733.240903 1653 1630 36666666.66064 1654 1630 -41505354.61226 1655 1630 1555533.287118 1719 1630 9166666.669678 1720 1630 -15819170.72716 1721 1630 -8385422.169798 1722 1630 -5.811452865601e-07 1723 1630 -19232220.47929 1724 1630 -694433.4439163 1725 1630 -9166666.669679 1726 1630 -17307688.72007 1727 1630 9079855.613715 1737 1630 2.913177013397e-06 1738 1630 -35963145.36236 1739 1630 -33694466.44041 1740 1630 3.635883331299e-06 1741 1630 32278708.78388 1742 1630 -2777733.774297 1743 1630 -5.349516868591e-06 1744 1630 -41940891.5735 1745 1630 36472200.21471 1758 1630 -9166666.669677 1759 1630 -15912882.8484 1760 1630 -8454866.614265 1761 1630 3.725290298462e-07 1762 1630 -19630743.20649 1763 1630 -694433.4439167 1764 1630 9166666.669676 1765 1630 -17413237.96253 1766 1630 9149300.058182 1631 1631 591208016.6774 1632 1631 231485.1930168 1633 1631 5388799.81243 1634 1631 76448462.46728 1647 1631 2523146.291974 1648 1631 1277755.509386 1649 1631 -8359214.781975 1650 1631 -254637.0525279 1651 1631 -2777733.240903 1652 1631 37788315.6602 1653 1631 -2685187.040499 1654 1631 1499977.731517 1655 1631 -8422346.095089 1719 1631 10279397.69313 1720 1631 -8385422.169798 1721 1631 -16619803.40013 1722 1631 43704396.30741 1723 1631 -694433.4439163 1724 1631 -56581165.5979 1725 1631 11581481.02689 1726 1631 9079855.613715 1727 1631 -20589184.71456 1737 1631 57871.28717278 1738 1631 -33666688.66265 1739 1631 -39477172.9523 1740 1631 231485.148585 1741 1631 -2777733.774298 1742 1631 -118440658.1206 1743 1631 57871.28717716 1744 1631 36444422.43695 1745 1631 -55417829.51533 1758 1631 -10337268.9803 1759 1631 -8454866.614265 1760 1631 -16869702.39011 1761 1631 -43935881.45598 1762 1631 -694433.4439167 1763 1631 -57643892.87044 1764 1631 -11639352.31406 1765 1631 9149300.058182 1766 1631 -20870649.36111 1632 1632 519928912.9843 1633 1632 18284601.12091 1634 1632 578761.350884 1635 1632 -108612258.8245 1636 1632 -79935938.68238 1637 1632 842556.2480698 1650 1632 -52482483.83292 1651 1632 -36666666.66064 1652 1632 2453701.847473 1653 1632 -87335209.48903 1654 1632 24505093.74398 1655 1632 -363621.4604582 1656 1632 -53017905.4468 1657 1632 6042390.120481 1658 1632 -241842.5188305 1722 1632 -18569369.18862 1723 1632 9166666.669678 1724 1632 10279397.69313 1725 1632 -25959619.6135 1726 1632 7352836.71267 1727 1632 23833951.37777 1740 1632 -1129879.778007 1741 1632 2.369284629822e-06 1742 1632 57871.28717239 1743 1632 64236492.00143 1744 1632 4188504.580192 1745 1632 152313.04164 1746 1632 -37094686.27921 1747 1632 -19583073.02575 1748 1632 11156605.99291 1761 1632 -18663081.30986 1762 1632 -9166666.669677 1763 1632 -10337268.9803 1764 1632 -44289186.74016 1765 1632 6104008.873161 1766 1632 -34010528.30258 1767 1632 -19096765.45373 1768 1632 1937722.859732 1769 1632 -1131791.351039 1633 1633 665160657.0974 1634 1633 -8200338.494416 1635 1633 -79940391.673 1636 1633 -270574059.2863 1637 1633 1895212.372046 1650 1633 -36666666.66065 1651 1633 -41481680.36985 1652 1633 1222199.953785 1653 1633 24505093.74398 1654 1633 9926729.013553 1655 1633 -1216504.30871 1656 1633 6042390.120481 1657 1633 -158099197.3255 1658 1633 1154465.064861 1722 1633 9166666.669678 1723 1633 -15819170.72716 1724 1633 -8385422.169798 1725 1633 7353613.144779 1726 1633 9697421.018002 1727 1633 -7489184.963696 1740 1633 2.913177013397e-06 1741 1633 -35963145.36236 1742 1633 -33694466.44041 1743 1633 4188504.58019 1744 1633 98121188.26052 1745 1633 -2022071.160098 1746 1633 -19583849.45786 1747 1633 -77002617.67255 1748 1633 35507242.60329 1761 1633 -9166666.669677 1762 1633 -15912882.8484 1763 1633 -8454866.614265 1764 1633 6104008.87316 1765 1633 -19204445.69136 1766 1633 7593833.975638 1767 1633 1937722.859732 1768 1633 -44482443.33833 1769 1633 16945375.52141 1634 1634 503970173.8716 1635 1634 773170.0166806 1636 1634 1673626.128399 1637 1634 -74740651.99144 1650 1634 2523146.291974 1651 1634 1277755.509386 1652 1634 -8359214.781975 1653 1634 -710843.6826246 1654 1634 -1160948.753164 1655 1634 40441461.7719 1656 1634 -102953.6298271 1657 1634 1154465.064861 1658 1634 -40229865.61205 1722 1634 10279397.69313 1723 1634 -8385422.169798 1724 1634 -16619803.40013 1725 1634 24007552.92743 1726 1634 -7516245.690184 1727 1634 -22998923.12425 1740 1634 57871.28717278 1741 1634 -33666688.66265 1742 1634 -39477172.9523 1743 1634 152496.3906114 1744 1634 -2021924.433862 1745 1634 -48932710.54889 1746 1634 11156707.58288 1747 1634 35506599.20027 1748 1634 -47133838.53141 1761 1634 -10337268.9803 1762 1634 -8454866.614265 1763 1634 -16869702.39011 1764 1634 -34184139.41185 1765 1634 7593833.977188 1766 1634 -49430632.70391 1767 1634 -1131791.351039 1768 1634 16945375.52141 1769 1634 -26713473.31342 1635 1635 817622030.6816 1636 1635 18728335.5089 1637 1635 650261.4885132 1653 1635 -52289155.99191 1654 1635 -31796218.63405 1655 1635 272335.4986461 1656 1635 40696773.02407 1657 1635 41799857.02722 1658 1635 -451578.6953159 1659 1635 62907192.10629 1660 1635 -21190039.75704 1661 1635 -30718.70653248 1662 1635 -302984.9272958 1663 1635 28385098.56329 1664 1635 -102183.8516526 1725 1635 -80695196.04604 1726 1635 11002329.29994 1727 1635 1197745.226308 1743 1635 -36237740.37331 1744 1635 -19583849.45786 1745 1635 -10761203.52545 1746 1635 64918240.7767 1747 1635 4545607.815533 1748 1635 8549143.250188 1764 1635 -19361814.47454 1765 1635 -8033003.905469 1766 1635 -10880711.7551 1767 1635 -39542928.89608 1768 1635 10179332.65207 1769 1635 -42870672.366 1770 1635 -23152016.19972 1771 1635 -5245000.469661 1772 1635 13937363.65238 1773 1635 -16961001.23544 1774 1635 7134584.065443 1775 1635 -10455553.37126 1636 1636 1676043355.975 1637 1636 -10405897.15394 1653 1636 -31796218.63405 1654 1636 -13283312.79656 1655 1636 -157557.8164433 1656 1636 41799857.02722 1657 1636 168116723.4543 1658 1636 -653824.0004528 1659 1636 -6523373.092781 1660 1636 -7507584.898842 1661 1636 58208.02223074 1662 1636 28385098.56329 1663 1636 -24134636.49954 1664 1636 72437.49368545 1725 1636 7334886.199962 1726 1636 -214534287.7436 1727 1636 -14727925.53035 1743 1636 -19583073.02575 1744 1636 -76145671.76667 1745 1636 -34635700.01357 1746 1636 4545607.815532 1747 1636 220786408.8697 1748 1636 -1651487.677043 1764 1636 -8033003.905469 1765 1636 -9894458.669336 1766 1636 -8796010.290028 1767 1636 10179332.65207 1768 1636 -7663163.946107 1769 1636 7746290.39215 1770 1636 -1578333.801791 1771 1636 -40769835.26372 1772 1636 33347835.72267 1773 1636 7134584.065443 1774 1636 -22811447.92863 1775 1636 16684645.6024 1637 1637 973553864.9319 1653 1637 341779.9431477 1654 1637 -102002.2608421 1655 1637 -512623.6482486 1656 1637 -173800.9175837 1657 1637 -598268.4449064 1658 1637 194191502.4522 1659 1637 38725.73790348 1660 1637 58208.02223065 1661 1637 125019736.2969 1662 1637 -32739.40715139 1663 1637 72437.49368545 1664 1637 40573538.2614 1725 1637 798496.8175386 1726 1637 -15047477.02744 1727 1637 -81348097.7585 1743 1637 -10761121.78541 1744 1637 -34636394.9925 1745 1637 -44848649.44901 1746 1637 -8568634.524779 1747 1637 -2347417.099454 1748 1637 -70370912.58102 1764 1637 -10880711.7551 1765 1637 -8796010.290028 1766 1637 -16660073.13599 1767 1637 -42870672.36604 1768 1637 7746290.393699 1769 1637 -82268491.96201 1770 1637 5812363.651645 1771 1637 33347835.72267 1772 1637 -72589611.80809 1773 1637 -10455553.37126 1774 1637 16684645.6024 1775 1637 -34667380.50116 1638 1638 308237881.34 1639 1638 6.914138793945e-06 1640 1638 -578696.2806914 1641 1638 41681428.60013 1642 1638 7333333.332127 1643 1638 -578701.847993 1728 1638 -59565882.98117 1729 1638 4.91738319397e-07 1730 1638 43739118.52961 1731 1638 -20057887.18154 1732 1638 -9166666.669679 1733 1638 11581481.02689 1749 1638 27139753.66166 1750 1638 8.344650268555e-07 1751 1638 -8738562.979764 1752 1638 -3553812.994569 1753 1638 1833333.333932 1754 1638 -2293147.690507 1639 1639 264234667.5094 1640 1639 -5555466.479065 1641 1639 -7333333.33213 1642 1639 -27985100.89159 1643 1639 2833288.795082 1728 1639 -5.811452865601e-07 1729 1639 -19232220.47929 1730 1639 -694433.4439163 1731 1639 -9166666.669679 1732 1639 -17307688.72007 1733 1639 9079855.613715 1749 1639 8.940696716309e-07 1750 1639 16138959.82123 1751 1639 -1388866.887151 1752 1639 -1833333.333938 1753 1639 -20970445.78675 1754 1639 18229155.66291 1640 1640 295591382.0761 1641 1640 462964.8185019 1642 1640 2722177.683989 1643 1640 38222126.85654 1728 1640 43704396.30741 1729 1640 -694433.4439163 1730 1640 -56581165.5979 1731 1640 11581481.02689 1732 1640 9079855.613715 1733 1640 -20589184.71456 1749 1640 8796437.017353 1750 1640 -1388866.887151 1751 1640 -59221381.24884 1752 1640 2351018.977684 1753 1640 18229155.66292 1754 1640 -27708914.75766 1641 1641 308237881.34 1642 1641 6.914138793945e-06 1643 1641 -578696.2806914 1644 1641 41681428.60013 1645 1641 7333333.332127 1646 1641 -578701.847993 1728 1641 -18569369.18862 1729 1641 9166666.669678 1730 1641 10279397.69313 1731 1641 -59565882.98117 1732 1641 4.91738319397e-07 1733 1641 43739118.52961 1734 1641 -20057887.18154 1735 1641 -9166666.669679 1736 1641 11581481.02689 1749 1641 -564939.8890041 1750 1641 -1833333.333934 1751 1641 -2032731.023757 1752 1641 27139753.66166 1753 1641 8.344650268555e-07 1754 1641 -8738562.979764 1755 1641 -3553812.994569 1756 1641 1833333.333932 1757 1641 -2293147.690507 1642 1642 264234667.5094 1643 1642 -5555466.479065 1644 1642 -7333333.33213 1645 1642 -27985100.89159 1646 1642 2833288.795082 1728 1642 9166666.669678 1729 1642 -15819170.72716 1730 1642 -8385422.169798 1731 1642 -5.811452865601e-07 1732 1642 -19232220.47929 1733 1642 -694433.4439163 1734 1642 -9166666.669679 1735 1642 -17307688.72007 1736 1642 9079855.613715 1749 1642 1833333.333937 1750 1642 -17981572.68118 1751 1642 -16840288.77576 1752 1642 8.940696716309e-07 1753 1642 16138959.82123 1754 1642 -1388866.887151 1755 1642 -1833333.333938 1756 1642 -20970445.78675 1757 1642 18229155.66291 1643 1643 295591382.0761 1644 1643 462964.8185019 1645 1643 2722177.683989 1646 1643 38222126.85654 1728 1643 10279397.69313 1729 1643 -8385422.169798 1730 1643 -16619803.40013 1731 1643 43704396.30741 1732 1643 -694433.4439163 1733 1643 -56581165.5979 1734 1643 11581481.02689 1735 1643 9079855.613715 1736 1643 -20589184.71456 1749 1643 2090602.31093 1750 1643 -16840288.77577 1751 1643 -19738586.47615 1752 1643 8796437.017353 1753 1643 -1388866.887151 1754 1643 -59221381.24884 1755 1643 2351018.977684 1756 1643 18229155.66292 1757 1643 -27708914.75766 1644 1644 308237881.34 1645 1644 6.914138793945e-06 1646 1644 -578696.2806914 1647 1644 41681428.60013 1648 1644 7333333.332127 1649 1644 -578701.847993 1731 1644 -18569369.18862 1732 1644 9166666.669678 1733 1644 10279397.69313 1734 1644 -59565882.98117 1735 1644 4.91738319397e-07 1736 1644 43739118.52961 1737 1644 -20057887.18154 1738 1644 -9166666.669679 1739 1644 11581481.02689 1752 1644 -564939.8890041 1753 1644 -1833333.333934 1754 1644 -2032731.023757 1755 1644 27139753.66166 1756 1644 8.344650268555e-07 1757 1644 -8738562.979764 1758 1644 -3553812.994569 1759 1644 1833333.333932 1760 1644 -2293147.690507 1645 1645 264234667.5094 1646 1645 -5555466.479065 1647 1645 -7333333.33213 1648 1645 -27985100.89159 1649 1645 2833288.795082 1731 1645 9166666.669678 1732 1645 -15819170.72716 1733 1645 -8385422.169798 1734 1645 -5.811452865601e-07 1735 1645 -19232220.47929 1736 1645 -694433.4439163 1737 1645 -9166666.669679 1738 1645 -17307688.72007 1739 1645 9079855.613715 1752 1645 1833333.333937 1753 1645 -17981572.68118 1754 1645 -16840288.77576 1755 1645 8.940696716309e-07 1756 1645 16138959.82123 1757 1645 -1388866.887151 1758 1645 -1833333.333938 1759 1645 -20970445.78675 1760 1645 18229155.66291 1646 1646 295591382.0761 1647 1646 462964.8185019 1648 1646 2722177.683989 1649 1646 38222126.85654 1731 1646 10279397.69313 1732 1646 -8385422.169798 1733 1646 -16619803.40013 1734 1646 43704396.30741 1735 1646 -694433.4439163 1736 1646 -56581165.5979 1737 1646 11581481.02689 1738 1646 9079855.613715 1739 1646 -20589184.71456 1752 1646 2090602.31093 1753 1646 -16840288.77577 1754 1646 -19738586.47615 1755 1646 8796437.017353 1756 1646 -1388866.887151 1757 1646 -59221381.24884 1758 1646 2351018.977684 1759 1646 18229155.66292 1760 1646 -27708914.75766 1647 1647 308237881.34 1648 1647 6.914138793945e-06 1649 1647 -578696.2806914 1650 1647 41681428.60013 1651 1647 7333333.332127 1652 1647 -578701.847993 1734 1647 -18569369.18862 1735 1647 9166666.669678 1736 1647 10279397.69313 1737 1647 -59565882.98117 1738 1647 4.91738319397e-07 1739 1647 43739118.52961 1740 1647 -20057887.18154 1741 1647 -9166666.669679 1742 1647 11581481.02689 1755 1647 -564939.8890041 1756 1647 -1833333.333934 1757 1647 -2032731.023757 1758 1647 27139753.66166 1759 1647 8.344650268555e-07 1760 1647 -8738562.979764 1761 1647 -3553812.994569 1762 1647 1833333.333932 1763 1647 -2293147.690507 1648 1648 264234667.5094 1649 1648 -5555466.479065 1650 1648 -7333333.33213 1651 1648 -27985100.89159 1652 1648 2833288.795082 1734 1648 9166666.669678 1735 1648 -15819170.72716 1736 1648 -8385422.169798 1737 1648 -5.811452865601e-07 1738 1648 -19232220.47929 1739 1648 -694433.4439163 1740 1648 -9166666.669679 1741 1648 -17307688.72007 1742 1648 9079855.613715 1755 1648 1833333.333937 1756 1648 -17981572.68118 1757 1648 -16840288.77576 1758 1648 8.940696716309e-07 1759 1648 16138959.82123 1760 1648 -1388866.887151 1761 1648 -1833333.333938 1762 1648 -20970445.78675 1763 1648 18229155.66291 1649 1649 295591382.0761 1650 1649 462964.8185019 1651 1649 2722177.683989 1652 1649 38222126.85654 1734 1649 10279397.69313 1735 1649 -8385422.169798 1736 1649 -16619803.40013 1737 1649 43704396.30741 1738 1649 -694433.4439163 1739 1649 -56581165.5979 1740 1649 11581481.02689 1741 1649 9079855.613715 1742 1649 -20589184.71456 1755 1649 2090602.31093 1756 1649 -16840288.77577 1757 1649 -19738586.47615 1758 1649 8796437.017353 1759 1649 -1388866.887151 1760 1649 -59221381.24884 1761 1649 2351018.977684 1762 1649 18229155.66292 1763 1649 -27708914.75766 1650 1650 308237881.34 1651 1650 6.914138793945e-06 1652 1650 -578696.2806914 1653 1650 41681428.60013 1654 1650 7333333.332127 1655 1650 -578701.847993 1737 1650 -18569369.18862 1738 1650 9166666.669678 1739 1650 10279397.69313 1740 1650 -59565882.98117 1741 1650 4.91738319397e-07 1742 1650 43739118.52961 1743 1650 -20057887.18154 1744 1650 -9166666.669679 1745 1650 11581481.02689 1758 1650 -564939.8890041 1759 1650 -1833333.333934 1760 1650 -2032731.023757 1761 1650 27139753.66166 1762 1650 8.344650268555e-07 1763 1650 -8738562.979764 1764 1650 -3553812.994569 1765 1650 1833333.333932 1766 1650 -2293147.690507 1651 1651 264234667.5094 1652 1651 -5555466.479065 1653 1651 -7333333.33213 1654 1651 -27985100.89159 1655 1651 2833288.795082 1737 1651 9166666.669678 1738 1651 -15819170.72716 1739 1651 -8385422.169798 1740 1651 -5.811452865601e-07 1741 1651 -19232220.47929 1742 1651 -694433.4439163 1743 1651 -9166666.669679 1744 1651 -17307688.72007 1745 1651 9079855.613715 1758 1651 1833333.333937 1759 1651 -17981572.68118 1760 1651 -16840288.77576 1761 1651 8.940696716309e-07 1762 1651 16138959.82123 1763 1651 -1388866.887151 1764 1651 -1833333.333938 1765 1651 -20970445.78675 1766 1651 18229155.66291 1652 1652 295591382.0761 1653 1652 462964.8185019 1654 1652 2722177.683989 1655 1652 38222126.85654 1737 1652 10279397.69313 1738 1652 -8385422.169798 1739 1652 -16619803.40013 1740 1652 43704396.30741 1741 1652 -694433.4439163 1742 1652 -56581165.5979 1743 1652 11581481.02689 1744 1652 9079855.613715 1745 1652 -20589184.71456 1758 1652 2090602.31093 1759 1652 -16840288.77577 1760 1652 -19738586.47615 1761 1652 8796437.017353 1762 1652 -1388866.887151 1763 1652 -59221381.24884 1764 1652 2351018.977684 1765 1652 18229155.66292 1766 1652 -27708914.75766 1653 1653 308244166.1959 1654 1653 4871351.472134 1655 1653 1406582.11241 1656 1653 -10447476.5428 1657 1653 -26913559.91057 1658 1653 73592.73784202 1740 1653 -18569369.18862 1741 1653 9166666.669678 1742 1653 10279397.69313 1743 1653 -43745996.76765 1744 1653 6104008.873162 1745 1653 33740166.13061 1746 1653 -19561074.78605 1747 1653 -8033003.905467 1748 1653 11036649.36321 1761 1653 -564939.8890041 1762 1653 -1833333.333934 1763 1653 -2032731.023757 1764 1653 26998047.5617 1765 1653 1133879.491557 1766 1653 -8240761.134482 1767 1653 -17935124.94805 1768 1653 -6538217.79499 1769 1653 7751167.860229 1654 1654 292254523.9123 1655 1654 -3601986.849327 1656 1654 -41580226.57483 1657 1654 -72059889.92846 1658 1654 642782.4478399 1740 1654 9166666.669678 1741 1654 -15819170.72716 1742 1654 -8385422.169798 1743 1654 6104008.873161 1744 1654 -18661255.71884 1745 1654 -8204777.132884 1746 1654 -8033003.905467 1747 1654 -10093718.98084 1748 1654 8738711.937952 1761 1654 1833333.333937 1762 1654 -17981572.68118 1763 1654 -16840288.77576 1764 1654 1133879.491557 1765 1654 22716537.18088 1766 1654 -896701.0799925 1767 1654 -10204884.46286 1768 1654 -33539277.09052 1769 1654 25588477.22048 1655 1655 302953037.7494 1656 1655 351370.5155727 1657 1655 587226.8922934 1658 1655 20245262.55732 1740 1655 10279397.69313 1741 1655 -8385422.169798 1742 1655 -16619803.40013 1743 1655 33913777.24376 1744 1655 -8204777.131321 1745 1655 -47982126.11052 1746 1655 11036649.36321 1747 1655 8738711.937952 1748 1655 -17191433.96669 1761 1655 2090602.31093 1762 1655 -16840288.77577 1763 1655 -19738586.47615 1764 1655 9293683.307081 1765 1655 -896701.0799924 1766 1655 -57522894.85793 1767 1655 12186723.41529 1768 1655 25588477.21893 1769 1655 -36621043.23569 1656 1656 357883920.7142 1657 1656 50622446.80118 1658 1656 -1122193.194315 1659 1656 -70732318.24906 1660 1656 -44948234.758 1661 1656 106149.4816659 1662 1656 10592868.24227 1663 1656 -11936232.61605 1664 1656 -169683.3667107 1743 1656 -18648271.66148 1744 1656 1937722.859731 1745 1656 1037653.094121 1746 1656 -39388390.54376 1747 1656 10179332.65207 1748 1656 42718216.5088 1764 1656 -17192674.13802 1765 1656 -10204884.46286 1766 1656 -11944665.46985 1767 1656 -3554898.16184 1768 1656 12169908.16824 1769 1656 -8661629.199202 1770 1656 -34339167.90781 1771 1656 -11198749.27391 1772 1656 20338891.08329 1773 1656 -25326488.68513 1774 1656 -2883329.94327 1775 1656 7795422.871771 1657 1657 448577823.0671 1658 1657 -1447402.958279 1659 1657 -44948234.758 1660 1657 -50545636.4952 1661 1657 72437.4936852 1662 1657 -26602899.28031 1663 1657 -61013961.03033 1664 1657 231541.9523678 1743 1657 1937722.859731 1744 1657 -44033949.54609 1745 1657 -16387957.82287 1746 1657 10179332.65207 1747 1657 -7508625.593797 1748 1657 -8052320.716373 1764 1657 -6538217.794992 1765 1657 -32796826.2805 1766 1657 -25279578.32671 1767 1657 12169908.16824 1768 1657 18431664.65015 1769 1657 -355535.3905276 1770 1657 -11198749.27391 1771 1657 -29328260.43077 1772 1657 16684645.6024 1773 1657 -6549996.611141 1774 1657 -43213893.89705 1775 1657 33390746.65407 1658 1658 479608110.2915 1659 1658 106149.481666 1660 1658 72437.49368523 1661 1658 14162538.26573 1662 1658 -30794.47784716 1663 1658 231541.9523679 1664 1658 65291416.69021 1743 1658 1037653.094121 1744 1658 -16387957.82287 1745 1658 -25517489.86743 1746 1658 42718216.50883 1747 1658 -8052320.714809 1748 1658 -81856389.68918 1764 1658 -7613276.581476 1765 1658 -25279578.32828 1766 1658 -34641174.40895 1767 1658 8456148.575766 1768 1658 -355535.3905277 1769 1658 -127182615.0065 1770 1658 20338891.08329 1771 1658 16684645.6024 1772 1658 -41184193.0033 1773 1658 11988200.65286 1774 1658 33390746.65407 1775 1658 -58817847.61943 1659 1659 235538262.3794 1660 1659 50523373.08556 1661 1659 -61873.88594103 1662 1659 -5458590.79643 1663 1659 948234.7652241 1664 1659 -83001.33362576 1746 1659 -23057319.23001 1747 1659 -1578333.801791 1748 1659 -5810553.011053 1767 1659 -34244470.9381 1768 1659 -11198749.27391 1769 1659 -20286108.93005 1770 1659 -19010104.98257 1771 1659 12578333.8054 1772 1659 8109627.085772 1773 1659 -35004771.5089 1774 1659 198749.2702979 1775 1659 -30762965.14467 1660 1660 216578039.3992 1661 1660 -58208.02222538 1662 1660 15614901.42948 1663 1660 63729727.43504 1664 1660 -72437.49368215 1746 1660 -5245000.469662 1747 1660 -40675138.29401 1748 1660 -33318830.93304 1767 1660 -11198749.27391 1768 1660 -29233563.46106 1769 1660 -16648687.74188 1770 1660 12578333.8054 1771 1660 -23736035.9259 1772 1660 6652164.270755 1773 1660 3865415.938169 1774 1660 -17671928.9786 1775 1660 3315354.404162 1661 1661 343126475.7188 1662 1661 -13556.88918927 1663 1661 -72437.49368227 1664 1661 110370037.5592 1746 1661 -13935553.01177 1747 1661 -33318830.93304 1748 1661 -72337086.55553 1767 1661 -20286108.93005 1768 1661 -16648687.74188 1769 1661 -40931667.75071 1770 1661 -8140372.91156 1771 1661 -6681169.060388 1772 1661 -121769794.7049 1773 1661 -30762965.14663 1774 1661 -3351312.264694 1775 1661 -61805895.41435 1662 1662 173768707.4958 1663 1662 -17397100.71246 1664 1662 -478464.7814124 1746 1662 -16866304.26572 1747 1662 7134584.065443 1748 1662 10421529.96893 1767 1662 -25042397.77615 1768 1662 -6549996.611143 1769 1662 -11935132.68054 1770 1662 -35004771.5089 1771 1662 3865415.938171 1772 1662 30739118.17856 1773 1662 -12765314.33514 1774 1662 -4450003.392471 1775 1662 -4207737.689143 1663 1663 200018870.1092 1664 1663 -231541.9523607 1746 1663 7134584.065443 1747 1663 -22716750.95892 1748 1663 -16648687.74188 1767 1663 -2883329.943272 1768 1663 -42929802.98808 1769 1663 -33275920.00165 1770 1663 198749.2702997 1771 1663 -17671928.9786 1772 1663 3315354.404162 1773 1663 -4450003.392471 1774 1663 -6360304.960321 1775 1663 6609253.339359 1664 1664 260031674.1941 1746 1664 10421529.96893 1747 1664 -16648687.74188 1748 1664 -34414855.24857 1767 1664 -7777077.121665 1768 1664 -33275920.00165 1769 1664 -58060271.86214 1770 1664 30739118.17662 1771 1664 -3351312.264694 1772 1664 -61805895.41435 1773 1664 4143095.64282 1774 1664 -6724079.991783 1775 1664 -84862411.83735 1665 1665 387435706.2613 1666 1665 36666666.66065 1667 1665 2662175.186034 1668 1665 -203296779.618 1669 1665 -36666973.09101 1670 1665 -2662152.453524 1671 1665 12401143.47877 1672 1665 29333639.75888 1673 1665 -2152799.783064 1776 1665 33963705.33589 1777 1665 9166666.669679 1778 1665 9519894.71657 1779 1665 -73633660.33315 1780 1665 -9166743.277268 1781 1665 -44520628.22528 1782 1665 -7828204.348046 1783 1665 7333409.943332 1784 1665 -9288430.506837 1666 1666 332431392.3218 1667 1666 -6944376.976808 1668 1666 -36667126.30619 1669 1666 -30960378.23954 1670 1666 -3847226.047119 1671 1666 44000459.63831 1672 1666 12401143.47877 1673 1666 2416692.493345 1776 1666 9166666.669679 1777 1666 20212626.84424 1778 1666 5347275.319281 1779 1666 -9166781.581064 1780 1666 -30549559.96733 1781 1666 -9732749.59088 1782 1666 11000114.915 1783 1666 -7828204.348045 1784 1666 11145949.53617 1667 1667 375187471.1352 1668 1667 -2662141.087263 1669 1667 -3097217.438217 1670 1667 -1482420.858694 1671 1667 -3229199.674597 1672 1667 1611128.328897 1673 1667 33069715.94339 1776 1667 -8015196.919944 1777 1667 -8680575.648187 1778 1667 -73923722.2424 1779 1667 -44485903.34313 1780 1667 -9538266.413314 1781 1667 -61195846.2912 1782 1667 -13932645.76025 1783 1667 7430633.02411 1784 1667 -20875211.59479 1668 1668 671761428.9985 1669 1668 36667432.73655 1670 1668 3125088.651632 1671 1668 19448570.31785 1672 1668 -36666973.09101 1673 1668 2702570.135099 1674 1668 -138432799.5 1675 1668 1.490116119385e-07 1676 1668 -462970.296923 1677 1668 -52308469.44899 1678 1668 36666666.66065 1679 1668 -2702548.129425 1776 1668 -72039530.38171 1777 1668 -9166781.581061 1778 1668 43189554.83944 1779 1668 73599694.87993 1780 1668 9166858.188655 1781 1668 781226.7976368 1782 1668 -19443104.86928 1783 1668 -9166743.27727 1784 1668 11639449.48452 1785 1668 -59964405.70834 1786 1668 7.525086402893e-07 1787 1668 -43970603.67818 1788 1668 -20163436.42398 1789 1668 9166666.669676 1790 1668 -11639352.31406 1669 1669 572753939.719 1670 1669 -8610914.043003 1671 1669 -36667126.30619 1672 1669 -108884310.9615 1673 1669 4611018.689007 1674 1669 -5.960464477539e-08 1675 1669 22901850.42796 1676 1669 -2777733.774299 1677 1669 36666666.66064 1678 1669 -41307675.60857 1679 1669 1513866.887135 1776 1669 -9166743.277267 1777 1669 -28955430.01587 1778 1669 7996602.428466 1779 1669 9166858.188655 1780 1669 48847822.54786 1781 1669 -2152764.803778 1782 1669 -9166781.581064 1783 1669 -51526325.20493 1784 1669 36236271.0855 1785 1669 3.725290298462e-07 1786 1669 -19630743.20649 1787 1669 -694433.4439167 1788 1669 9166666.669676 1789 1669 -17413237.96253 1790 1669 9149300.058182 1670 1670 607013167.9741 1671 1670 2737303.360137 1672 1670 5388804.78494 1673 1670 37600883.93994 1674 1670 -462970.2969232 1675 1670 -2777733.774298 1676 1670 39890623.87246 1677 1670 -2737270.351624 1678 1670 1541644.664895 1679 1670 -7895194.184061 1776 1670 43154829.95728 1777 1670 7802192.5578 1778 1670 -56944833.0873 1779 1670 781318.4370322 1780 1670 -2152691.493423 1781 1670 -99821807.80486 1782 1670 11639498.06975 1783 1670 36402939.91804 1784 1670 -55413772.21342 1785 1670 -43935881.45598 1786 1670 -694433.4439167 1787 1670 -57643892.87044 1788 1670 -11639352.31406 1789 1670 9149300.058182 1790 1670 -20870649.36111 1671 1671 387435706.2613 1672 1671 36666666.66065 1673 1671 2662175.186035 1674 1671 -52284795.20658 1675 1671 -36666666.66065 1676 1671 2505785.203048 1677 1671 -203296779.618 1678 1671 -36666973.09101 1679 1671 -2662152.453524 1680 1671 12401143.47877 1681 1671 29333639.75888 1682 1671 -2152799.783064 1776 1671 -4839277.140465 1777 1671 11000114.915 1778 1671 12370128.70975 1779 1671 -14860172.33131 1780 1671 -9166781.581062 1781 1671 -10279526.39882 1782 1671 33963705.33589 1783 1671 9166666.669679 1784 1671 9519894.71657 1785 1671 -18663081.30986 1786 1671 -9166666.669677 1787 1671 -10337268.9803 1788 1671 -73633660.33315 1789 1671 -9166743.277268 1790 1671 -44520628.22528 1791 1671 -7828204.348046 1792 1671 7333409.943332 1793 1671 -9288430.506837 1672 1672 332431392.3218 1673 1672 -6944376.976808 1674 1672 -36666666.66065 1675 1672 -41284001.36615 1676 1672 1263866.887163 1677 1672 -36667126.30619 1678 1672 -30960378.23954 1679 1672 -3847226.047119 1680 1672 44000459.63831 1681 1672 12401143.47877 1682 1672 2416692.493345 1776 1672 7333409.943332 1777 1672 -4839277.140466 1778 1672 -6597291.372073 1779 1672 -9166743.277267 1780 1672 -46943392.66696 1781 1672 -33736315.15602 1782 1672 9166666.669679 1783 1672 20212626.84424 1784 1672 5347275.319281 1785 1672 -9166666.669677 1786 1672 -15912882.8484 1787 1672 -8454866.614265 1788 1672 -9166781.581064 1789 1672 -30549559.96733 1790 1672 -9732749.59088 1791 1672 11000114.915 1792 1672 -7828204.348045 1793 1672 11145949.53617 1673 1673 375187471.1352 1674 1673 2471062.980849 1675 1673 1236089.109403 1676 1673 -7832062.870945 1677 1673 -2662141.087263 1678 1673 -3097217.438217 1679 1673 -1482420.858694 1680 1673 -3229199.674597 1681 1673 1611128.328897 1682 1673 33069715.94339 1776 1673 8246752.473166 1777 1673 -9895937.05811 1778 1673 -12904739.04124 1779 1673 -10279483.49692 1780 1673 -33902984.10692 1781 1673 -43192618.77883 1782 1673 -8015196.919944 1783 1673 -8680575.648187 1784 1673 -73923722.2424 1785 1673 -10337268.9803 1786 1673 -8454866.614265 1787 1673 -16869702.39011 1788 1673 -44485903.34313 1789 1673 -9538266.413314 1790 1673 -61195846.2912 1791 1673 -13932645.76025 1792 1673 7430633.02411 1793 1673 -20875211.59479 1674 1674 619629140.0329 1675 1674 1.168251037598e-05 1676 1674 925940.5938052 1677 1674 84152766.23505 1678 1674 -4.991888999939e-06 1679 1674 231485.148566 1683 1674 -138432799.5 1684 1674 1.490116119385e-07 1685 1674 -462970.296923 1686 1674 -52308469.44899 1687 1674 36666666.66065 1688 1674 -2702548.129425 1779 1674 -59565882.98117 1780 1674 4.91738319397e-07 1781 1674 43739118.52961 1782 1674 -20057887.18154 1783 1674 -9166666.669679 1784 1674 11581481.02689 1785 1674 54280296.46473 1786 1674 3.09944152832e-06 1787 1674 231485.1485852 1788 1674 -7107625.989141 1789 1674 -6.146728992462e-06 1790 1674 57871.2871768 1794 1674 -59964405.70834 1795 1674 7.525086402893e-07 1796 1674 -43970603.67818 1797 1674 -20163436.42398 1798 1674 9166666.669676 1799 1674 -11639352.31406 1675 1675 531622789.3528 1676 1675 -11110935.09172 1677 1675 -4.798173904419e-06 1678 1675 -55180296.03374 1679 1675 5555467.545859 1683 1675 -5.960464477539e-08 1684 1675 22901850.42796 1685 1675 -2777733.774299 1686 1675 36666666.66064 1687 1675 -41307675.60857 1688 1675 1513866.887135 1779 1675 -5.811452865601e-07 1780 1675 -19232220.47929 1781 1675 -694433.4439163 1782 1675 -9166666.669679 1783 1675 -17307688.72007 1784 1675 9079855.613715 1785 1675 3.635883331299e-06 1786 1675 32278708.78388 1787 1675 -2777733.774297 1788 1675 -5.349516868591e-06 1789 1675 -41940891.5735 1790 1675 36472200.21471 1794 1675 3.725290298462e-07 1795 1675 -19630743.20649 1796 1675 -694433.4439167 1797 1675 9166666.669676 1798 1675 -17413237.96253 1799 1675 9149300.058182 1676 1676 599591912.5003 1677 1676 231485.1485663 1678 1676 5555467.545859 1679 1676 78550735.85485 1683 1676 -462970.2969232 1684 1676 -2777733.774298 1685 1676 39890623.87246 1686 1676 -2737270.351624 1687 1676 1541644.664895 1688 1676 -7895194.184061 1779 1676 43704396.30741 1780 1676 -694433.4439163 1781 1676 -56581165.5979 1782 1676 11581481.02689 1783 1676 9079855.613715 1784 1676 -20589184.71456 1785 1676 231485.148585 1786 1676 -2777733.774298 1787 1676 -118440658.1206 1788 1676 57871.28717716 1789 1676 36444422.43695 1790 1676 -55417829.51533 1794 1676 -43935881.45598 1795 1676 -694433.4439167 1796 1676 -57643892.87044 1797 1676 -11639352.31406 1798 1676 9149300.058182 1799 1676 -20870649.36111 1677 1677 671761428.9985 1678 1677 36667432.73655 1679 1677 3125088.651632 1680 1677 19448570.31785 1681 1677 -36666973.09101 1682 1677 2702570.135099 1683 1677 -52284795.20658 1684 1677 -36666666.66065 1685 1677 2505785.203048 1686 1677 -138432799.5 1687 1677 1.490116119385e-07 1688 1677 -462970.296923 1689 1677 -52308469.44899 1690 1677 36666666.66065 1691 1677 -2702548.129425 1779 1677 -18569369.18862 1780 1677 9166666.669678 1781 1677 10279397.69313 1782 1677 -72039530.38171 1783 1677 -9166781.581061 1784 1677 43189554.83944 1785 1677 -1129879.778007 1786 1677 2.369284629822e-06 1787 1677 57871.28717239 1788 1677 73599694.87993 1789 1677 9166858.188655 1790 1677 781226.7976368 1791 1677 -19443104.86928 1792 1677 -9166743.27727 1793 1677 11639449.48452 1794 1677 -18663081.30986 1795 1677 -9166666.669677 1796 1677 -10337268.9803 1797 1677 -59964405.70834 1798 1677 7.525086402893e-07 1799 1677 -43970603.67818 1800 1677 -20163436.42398 1801 1677 9166666.669676 1802 1677 -11639352.31406 1678 1678 572753939.719 1679 1678 -8610914.043003 1680 1678 -36667126.30619 1681 1678 -108884310.9615 1682 1678 4611018.689007 1683 1678 -36666666.66065 1684 1678 -41284001.36615 1685 1678 1263866.887163 1686 1678 -5.960464477539e-08 1687 1678 22901850.42796 1688 1678 -2777733.774299 1689 1678 36666666.66064 1690 1678 -41307675.60857 1691 1678 1513866.887135 1779 1678 9166666.669678 1780 1678 -15819170.72716 1781 1678 -8385422.169798 1782 1678 -9166743.277267 1783 1678 -28955430.01587 1784 1678 7996602.428466 1785 1678 2.913177013397e-06 1786 1678 -35963145.36236 1787 1678 -33694466.44041 1788 1678 9166858.188655 1789 1678 48847822.54786 1790 1678 -2152764.803778 1791 1678 -9166781.581064 1792 1678 -51526325.20493 1793 1678 36236271.0855 1794 1678 -9166666.669677 1795 1678 -15912882.8484 1796 1678 -8454866.614265 1797 1678 3.725290298462e-07 1798 1678 -19630743.20649 1799 1678 -694433.4439167 1800 1678 9166666.669676 1801 1678 -17413237.96253 1802 1678 9149300.058182 1679 1679 607013167.9741 1680 1679 2737303.360137 1681 1679 5388804.78494 1682 1679 37600883.93994 1683 1679 2471062.980849 1684 1679 1236089.109403 1685 1679 -7832062.870945 1686 1679 -462970.2969232 1687 1679 -2777733.774298 1688 1679 39890623.87246 1689 1679 -2737270.351624 1690 1679 1541644.664895 1691 1679 -7895194.184061 1779 1679 10279397.69313 1780 1679 -8385422.169798 1781 1679 -16619803.40013 1782 1679 43154829.95728 1783 1679 7802192.5578 1784 1679 -56944833.0873 1785 1679 57871.28717278 1786 1679 -33666688.66265 1787 1679 -39477172.9523 1788 1679 781318.4370322 1789 1679 -2152691.493423 1790 1679 -99821807.80486 1791 1679 11639498.06975 1792 1679 36402939.91804 1793 1679 -55413772.21342 1794 1679 -10337268.9803 1795 1679 -8454866.614265 1796 1679 -16869702.39011 1797 1679 -43935881.45598 1798 1679 -694433.4439167 1799 1679 -57643892.87044 1800 1679 -11639352.31406 1801 1679 9149300.058182 1802 1679 -20870649.36111 1680 1680 387435706.2613 1681 1680 36666666.66065 1682 1680 2662175.186035 1686 1680 -52284795.20658 1687 1680 -36666666.66065 1688 1680 2505785.203048 1689 1680 -203296779.618 1690 1680 -36666973.09101 1691 1680 -2662152.453524 1692 1680 12401143.47877 1693 1680 29333639.75888 1694 1680 -2152799.783064 1782 1680 -4839277.140465 1783 1680 11000114.915 1784 1680 12370128.70975 1788 1680 -14860172.33131 1789 1680 -9166781.581062 1790 1680 -10279526.39882 1791 1680 33963705.33589 1792 1680 9166666.669679 1793 1680 9519894.71657 1797 1680 -18663081.30986 1798 1680 -9166666.669677 1799 1680 -10337268.9803 1800 1680 -73633660.33315 1801 1680 -9166743.277268 1802 1680 -44520628.22528 1803 1680 -7828204.348046 1804 1680 7333409.943332 1805 1680 -9288430.506837 1681 1681 332431392.3218 1682 1681 -6944376.976808 1686 1681 -36666666.66065 1687 1681 -41284001.36615 1688 1681 1263866.887163 1689 1681 -36667126.30619 1690 1681 -30960378.23954 1691 1681 -3847226.047119 1692 1681 44000459.63831 1693 1681 12401143.47877 1694 1681 2416692.493345 1782 1681 7333409.943332 1783 1681 -4839277.140466 1784 1681 -6597291.372073 1788 1681 -9166743.277267 1789 1681 -46943392.66696 1790 1681 -33736315.15602 1791 1681 9166666.669679 1792 1681 20212626.84424 1793 1681 5347275.319281 1797 1681 -9166666.669677 1798 1681 -15912882.8484 1799 1681 -8454866.614265 1800 1681 -9166781.581064 1801 1681 -30549559.96733 1802 1681 -9732749.59088 1803 1681 11000114.915 1804 1681 -7828204.348045 1805 1681 11145949.53617 1682 1682 375187471.1352 1686 1682 2471062.980849 1687 1682 1236089.109403 1688 1682 -7832062.870945 1689 1682 -2662141.087263 1690 1682 -3097217.438217 1691 1682 -1482420.858694 1692 1682 -3229199.674597 1693 1682 1611128.328897 1694 1682 33069715.94339 1782 1682 8246752.473166 1783 1682 -9895937.05811 1784 1682 -12904739.04124 1788 1682 -10279483.49692 1789 1682 -33902984.10692 1790 1682 -43192618.77883 1791 1682 -8015196.919944 1792 1682 -8680575.648187 1793 1682 -73923722.2424 1797 1682 -10337268.9803 1798 1682 -8454866.614265 1799 1682 -16869702.39011 1800 1682 -44485903.34313 1801 1682 -9538266.413314 1802 1682 -61195846.2912 1803 1682 -13932645.76025 1804 1682 7430633.02411 1805 1682 -20875211.59479 1683 1683 619629140.0329 1684 1683 1.168251037598e-05 1685 1683 925940.5938052 1686 1683 84152766.23505 1687 1683 -4.991888999939e-06 1688 1683 231485.148566 1695 1683 -138432799.5 1696 1683 1.490116119385e-07 1697 1683 -462970.296923 1698 1683 -52308469.44899 1699 1683 36666666.66065 1700 1683 -2702548.129425 1785 1683 -59565882.98117 1786 1683 4.91738319397e-07 1787 1683 43739118.52961 1788 1683 -20057887.18154 1789 1683 -9166666.669679 1790 1683 11581481.02689 1794 1683 54280296.46473 1795 1683 3.09944152832e-06 1796 1683 231485.1485852 1797 1683 -7107625.989141 1798 1683 -6.146728992462e-06 1799 1683 57871.2871768 1806 1683 -59964405.70834 1807 1683 7.525086402893e-07 1808 1683 -43970603.67818 1809 1683 -20163436.42398 1810 1683 9166666.669676 1811 1683 -11639352.31406 1684 1684 531622789.3528 1685 1684 -11110935.09172 1686 1684 -4.798173904419e-06 1687 1684 -55180296.03374 1688 1684 5555467.545859 1695 1684 -5.960464477539e-08 1696 1684 22901850.42796 1697 1684 -2777733.774299 1698 1684 36666666.66064 1699 1684 -41307675.60857 1700 1684 1513866.887135 1785 1684 -5.811452865601e-07 1786 1684 -19232220.47929 1787 1684 -694433.4439163 1788 1684 -9166666.669679 1789 1684 -17307688.72007 1790 1684 9079855.613715 1794 1684 3.635883331299e-06 1795 1684 32278708.78388 1796 1684 -2777733.774297 1797 1684 -5.349516868591e-06 1798 1684 -41940891.5735 1799 1684 36472200.21471 1806 1684 3.725290298462e-07 1807 1684 -19630743.20649 1808 1684 -694433.4439167 1809 1684 9166666.669676 1810 1684 -17413237.96253 1811 1684 9149300.058182 1685 1685 599591912.5003 1686 1685 231485.1485663 1687 1685 5555467.545859 1688 1685 78550735.85485 1695 1685 -462970.2969232 1696 1685 -2777733.774298 1697 1685 39890623.87246 1698 1685 -2737270.351624 1699 1685 1541644.664895 1700 1685 -7895194.184061 1785 1685 43704396.30741 1786 1685 -694433.4439163 1787 1685 -56581165.5979 1788 1685 11581481.02689 1789 1685 9079855.613715 1790 1685 -20589184.71456 1794 1685 231485.148585 1795 1685 -2777733.774298 1796 1685 -118440658.1206 1797 1685 57871.28717716 1798 1685 36444422.43695 1799 1685 -55417829.51533 1806 1685 -43935881.45598 1807 1685 -694433.4439167 1808 1685 -57643892.87044 1809 1685 -11639352.31406 1810 1685 9149300.058182 1811 1685 -20870649.36111 1686 1686 619629140.0329 1687 1686 1.168251037598e-05 1688 1686 925940.5938052 1689 1686 84152766.23505 1690 1686 -4.991888999939e-06 1691 1686 231485.148566 1695 1686 -52284795.20658 1696 1686 -36666666.66065 1697 1686 2505785.203048 1698 1686 -138432799.5 1699 1686 1.490116119385e-07 1700 1686 -462970.296923 1701 1686 -52308469.44899 1702 1686 36666666.66065 1703 1686 -2702548.129425 1785 1686 -18569369.18862 1786 1686 9166666.669678 1787 1686 10279397.69313 1788 1686 -59565882.98117 1789 1686 4.91738319397e-07 1790 1686 43739118.52961 1791 1686 -20057887.18154 1792 1686 -9166666.669679 1793 1686 11581481.02689 1794 1686 -1129879.778007 1795 1686 2.369284629822e-06 1796 1686 57871.28717239 1797 1686 54280296.46473 1798 1686 3.09944152832e-06 1799 1686 231485.1485852 1800 1686 -7107625.989141 1801 1686 -6.146728992462e-06 1802 1686 57871.2871768 1806 1686 -18663081.30986 1807 1686 -9166666.669677 1808 1686 -10337268.9803 1809 1686 -59964405.70834 1810 1686 7.525086402893e-07 1811 1686 -43970603.67818 1812 1686 -20163436.42398 1813 1686 9166666.669676 1814 1686 -11639352.31406 1687 1687 531622789.3528 1688 1687 -11110935.09172 1689 1687 -4.798173904419e-06 1690 1687 -55180296.03374 1691 1687 5555467.545859 1695 1687 -36666666.66065 1696 1687 -41284001.36615 1697 1687 1263866.887163 1698 1687 -5.960464477539e-08 1699 1687 22901850.42796 1700 1687 -2777733.774299 1701 1687 36666666.66064 1702 1687 -41307675.60857 1703 1687 1513866.887135 1785 1687 9166666.669678 1786 1687 -15819170.72716 1787 1687 -8385422.169798 1788 1687 -5.811452865601e-07 1789 1687 -19232220.47929 1790 1687 -694433.4439163 1791 1687 -9166666.669679 1792 1687 -17307688.72007 1793 1687 9079855.613715 1794 1687 2.913177013397e-06 1795 1687 -35963145.36236 1796 1687 -33694466.44041 1797 1687 3.635883331299e-06 1798 1687 32278708.78388 1799 1687 -2777733.774297 1800 1687 -5.349516868591e-06 1801 1687 -41940891.5735 1802 1687 36472200.21471 1806 1687 -9166666.669677 1807 1687 -15912882.8484 1808 1687 -8454866.614265 1809 1687 3.725290298462e-07 1810 1687 -19630743.20649 1811 1687 -694433.4439167 1812 1687 9166666.669676 1813 1687 -17413237.96253 1814 1687 9149300.058182 1688 1688 599591912.5003 1689 1688 231485.1485663 1690 1688 5555467.545859 1691 1688 78550735.85485 1695 1688 2471062.980849 1696 1688 1236089.109403 1697 1688 -7832062.870945 1698 1688 -462970.2969232 1699 1688 -2777733.774298 1700 1688 39890623.87246 1701 1688 -2737270.351624 1702 1688 1541644.664895 1703 1688 -7895194.184061 1785 1688 10279397.69313 1786 1688 -8385422.169798 1787 1688 -16619803.40013 1788 1688 43704396.30741 1789 1688 -694433.4439163 1790 1688 -56581165.5979 1791 1688 11581481.02689 1792 1688 9079855.613715 1793 1688 -20589184.71456 1794 1688 57871.28717278 1795 1688 -33666688.66265 1796 1688 -39477172.9523 1797 1688 231485.148585 1798 1688 -2777733.774298 1799 1688 -118440658.1206 1800 1688 57871.28717716 1801 1688 36444422.43695 1802 1688 -55417829.51533 1806 1688 -10337268.9803 1807 1688 -8454866.614265 1808 1688 -16869702.39011 1809 1688 -43935881.45598 1810 1688 -694433.4439167 1811 1688 -57643892.87044 1812 1688 -11639352.31406 1813 1688 9149300.058182 1814 1688 -20870649.36111 1689 1689 671761428.9985 1690 1689 36667432.73655 1691 1689 3125088.651632 1692 1689 19448570.31785 1693 1689 -36666973.09101 1694 1689 2702570.135099 1698 1689 -52284795.20658 1699 1689 -36666666.66065 1700 1689 2505785.203048 1701 1689 -138432799.5 1702 1689 1.490116119385e-07 1703 1689 -462970.296923 1704 1689 -52308469.44899 1705 1689 36666666.66065 1706 1689 -2702548.129425 1788 1689 -18569369.18862 1789 1689 9166666.669678 1790 1689 10279397.69313 1791 1689 -72039530.38171 1792 1689 -9166781.581061 1793 1689 43189554.83944 1797 1689 -1129879.778007 1798 1689 2.369284629822e-06 1799 1689 57871.28717239 1800 1689 73599694.87993 1801 1689 9166858.188655 1802 1689 781226.7976368 1803 1689 -19443104.86928 1804 1689 -9166743.27727 1805 1689 11639449.48452 1809 1689 -18663081.30986 1810 1689 -9166666.669677 1811 1689 -10337268.9803 1812 1689 -59964405.70834 1813 1689 7.525086402893e-07 1814 1689 -43970603.67818 1815 1689 -20163436.42398 1816 1689 9166666.669676 1817 1689 -11639352.31406 1690 1690 572753939.719 1691 1690 -8610914.043003 1692 1690 -36667126.30619 1693 1690 -108884310.9615 1694 1690 4611018.689007 1698 1690 -36666666.66065 1699 1690 -41284001.36615 1700 1690 1263866.887163 1701 1690 -5.960464477539e-08 1702 1690 22901850.42796 1703 1690 -2777733.774299 1704 1690 36666666.66064 1705 1690 -41307675.60857 1706 1690 1513866.887135 1788 1690 9166666.669678 1789 1690 -15819170.72716 1790 1690 -8385422.169798 1791 1690 -9166743.277267 1792 1690 -28955430.01587 1793 1690 7996602.428466 1797 1690 2.913177013397e-06 1798 1690 -35963145.36236 1799 1690 -33694466.44041 1800 1690 9166858.188655 1801 1690 48847822.54786 1802 1690 -2152764.803778 1803 1690 -9166781.581064 1804 1690 -51526325.20493 1805 1690 36236271.0855 1809 1690 -9166666.669677 1810 1690 -15912882.8484 1811 1690 -8454866.614265 1812 1690 3.725290298462e-07 1813 1690 -19630743.20649 1814 1690 -694433.4439167 1815 1690 9166666.669676 1816 1690 -17413237.96253 1817 1690 9149300.058182 1691 1691 607013167.9741 1692 1691 2737303.360137 1693 1691 5388804.78494 1694 1691 37600883.93994 1698 1691 2471062.980849 1699 1691 1236089.109403 1700 1691 -7832062.870945 1701 1691 -462970.2969232 1702 1691 -2777733.774298 1703 1691 39890623.87246 1704 1691 -2737270.351624 1705 1691 1541644.664895 1706 1691 -7895194.184061 1788 1691 10279397.69313 1789 1691 -8385422.169798 1790 1691 -16619803.40013 1791 1691 43154829.95728 1792 1691 7802192.5578 1793 1691 -56944833.0873 1797 1691 57871.28717278 1798 1691 -33666688.66265 1799 1691 -39477172.9523 1800 1691 781318.4370322 1801 1691 -2152691.493423 1802 1691 -99821807.80486 1803 1691 11639498.06975 1804 1691 36402939.91804 1805 1691 -55413772.21342 1809 1691 -10337268.9803 1810 1691 -8454866.614265 1811 1691 -16869702.39011 1812 1691 -43935881.45598 1813 1691 -694433.4439167 1814 1691 -57643892.87044 1815 1691 -11639352.31406 1816 1691 9149300.058182 1817 1691 -20870649.36111 1692 1692 387435706.2613 1693 1692 36666666.66065 1694 1692 2662175.186035 1701 1692 -52284795.20658 1702 1692 -36666666.66065 1703 1692 2505785.203048 1704 1692 -203296779.618 1705 1692 -36666973.09101 1706 1692 -2662152.453524 1707 1692 12401143.47877 1708 1692 29333639.75888 1709 1692 -2152799.783064 1791 1692 -4839277.140465 1792 1692 11000114.915 1793 1692 12370128.70975 1800 1692 -14860172.33131 1801 1692 -9166781.581062 1802 1692 -10279526.39882 1803 1692 33963705.33589 1804 1692 9166666.669679 1805 1692 9519894.71657 1812 1692 -18663081.30986 1813 1692 -9166666.669677 1814 1692 -10337268.9803 1815 1692 -73633660.33315 1816 1692 -9166743.277268 1817 1692 -44520628.22528 1818 1692 -7828204.348046 1819 1692 7333409.943332 1820 1692 -9288430.506837 1693 1693 332431392.3218 1694 1693 -6944376.976808 1701 1693 -36666666.66065 1702 1693 -41284001.36615 1703 1693 1263866.887163 1704 1693 -36667126.30619 1705 1693 -30960378.23954 1706 1693 -3847226.047119 1707 1693 44000459.63831 1708 1693 12401143.47877 1709 1693 2416692.493345 1791 1693 7333409.943332 1792 1693 -4839277.140466 1793 1693 -6597291.372073 1800 1693 -9166743.277267 1801 1693 -46943392.66696 1802 1693 -33736315.15602 1803 1693 9166666.669679 1804 1693 20212626.84424 1805 1693 5347275.319281 1812 1693 -9166666.669677 1813 1693 -15912882.8484 1814 1693 -8454866.614265 1815 1693 -9166781.581064 1816 1693 -30549559.96733 1817 1693 -9732749.59088 1818 1693 11000114.915 1819 1693 -7828204.348045 1820 1693 11145949.53617 1694 1694 375187471.1352 1701 1694 2471062.980849 1702 1694 1236089.109403 1703 1694 -7832062.870945 1704 1694 -2662141.087263 1705 1694 -3097217.438217 1706 1694 -1482420.858694 1707 1694 -3229199.674597 1708 1694 1611128.328897 1709 1694 33069715.94339 1791 1694 8246752.473166 1792 1694 -9895937.05811 1793 1694 -12904739.04124 1800 1694 -10279483.49692 1801 1694 -33902984.10692 1802 1694 -43192618.77883 1803 1694 -8015196.919944 1804 1694 -8680575.648187 1805 1694 -73923722.2424 1812 1694 -10337268.9803 1813 1694 -8454866.614265 1814 1694 -16869702.39011 1815 1694 -44485903.34313 1816 1694 -9538266.413314 1817 1694 -61195846.2912 1818 1694 -13932645.76025 1819 1694 7430633.02411 1820 1694 -20875211.59479 1695 1695 619629140.0329 1696 1695 1.168251037598e-05 1697 1695 925940.5938052 1698 1695 84152766.23505 1699 1695 -4.991888999939e-06 1700 1695 231485.148566 1710 1695 -138432799.5 1711 1695 1.490116119385e-07 1712 1695 -462970.296923 1713 1695 -52308469.44899 1714 1695 36666666.66065 1715 1695 -2702548.129425 1794 1695 -59565882.98117 1795 1695 4.91738319397e-07 1796 1695 43739118.52961 1797 1695 -20057887.18154 1798 1695 -9166666.669679 1799 1695 11581481.02689 1806 1695 54280296.46473 1807 1695 3.09944152832e-06 1808 1695 231485.1485852 1809 1695 -7107625.989141 1810 1695 -6.146728992462e-06 1811 1695 57871.2871768 1821 1695 -59964405.70834 1822 1695 7.525086402893e-07 1823 1695 -43970603.67818 1824 1695 -20163436.42398 1825 1695 9166666.669676 1826 1695 -11639352.31406 1696 1696 531622789.3528 1697 1696 -11110935.09172 1698 1696 -4.798173904419e-06 1699 1696 -55180296.03374 1700 1696 5555467.545859 1710 1696 -5.960464477539e-08 1711 1696 22901850.42796 1712 1696 -2777733.774299 1713 1696 36666666.66064 1714 1696 -41307675.60857 1715 1696 1513866.887135 1794 1696 -5.811452865601e-07 1795 1696 -19232220.47929 1796 1696 -694433.4439163 1797 1696 -9166666.669679 1798 1696 -17307688.72007 1799 1696 9079855.613715 1806 1696 3.635883331299e-06 1807 1696 32278708.78388 1808 1696 -2777733.774297 1809 1696 -5.349516868591e-06 1810 1696 -41940891.5735 1811 1696 36472200.21471 1821 1696 3.725290298462e-07 1822 1696 -19630743.20649 1823 1696 -694433.4439167 1824 1696 9166666.669676 1825 1696 -17413237.96253 1826 1696 9149300.058182 1697 1697 599591912.5003 1698 1697 231485.1485663 1699 1697 5555467.545859 1700 1697 78550735.85485 1710 1697 -462970.2969232 1711 1697 -2777733.774298 1712 1697 39890623.87246 1713 1697 -2737270.351624 1714 1697 1541644.664895 1715 1697 -7895194.184061 1794 1697 43704396.30741 1795 1697 -694433.4439163 1796 1697 -56581165.5979 1797 1697 11581481.02689 1798 1697 9079855.613715 1799 1697 -20589184.71456 1806 1697 231485.148585 1807 1697 -2777733.774298 1808 1697 -118440658.1206 1809 1697 57871.28717716 1810 1697 36444422.43695 1811 1697 -55417829.51533 1821 1697 -43935881.45598 1822 1697 -694433.4439167 1823 1697 -57643892.87044 1824 1697 -11639352.31406 1825 1697 9149300.058182 1826 1697 -20870649.36111 1698 1698 619629140.0329 1699 1698 1.168251037598e-05 1700 1698 925940.5938052 1701 1698 84152766.23505 1702 1698 -4.991888999939e-06 1703 1698 231485.148566 1710 1698 -52284795.20658 1711 1698 -36666666.66065 1712 1698 2505785.203048 1713 1698 -138432799.5 1714 1698 1.490116119385e-07 1715 1698 -462970.296923 1716 1698 -52308469.44899 1717 1698 36666666.66065 1718 1698 -2702548.129425 1794 1698 -18569369.18862 1795 1698 9166666.669678 1796 1698 10279397.69313 1797 1698 -59565882.98117 1798 1698 4.91738319397e-07 1799 1698 43739118.52961 1800 1698 -20057887.18154 1801 1698 -9166666.669679 1802 1698 11581481.02689 1806 1698 -1129879.778007 1807 1698 2.369284629822e-06 1808 1698 57871.28717239 1809 1698 54280296.46473 1810 1698 3.09944152832e-06 1811 1698 231485.1485852 1812 1698 -7107625.989141 1813 1698 -6.146728992462e-06 1814 1698 57871.2871768 1821 1698 -18663081.30986 1822 1698 -9166666.669677 1823 1698 -10337268.9803 1824 1698 -59964405.70834 1825 1698 7.525086402893e-07 1826 1698 -43970603.67818 1827 1698 -20163436.42398 1828 1698 9166666.669676 1829 1698 -11639352.31406 1699 1699 531622789.3528 1700 1699 -11110935.09172 1701 1699 -4.798173904419e-06 1702 1699 -55180296.03374 1703 1699 5555467.545859 1710 1699 -36666666.66065 1711 1699 -41284001.36615 1712 1699 1263866.887163 1713 1699 -5.960464477539e-08 1714 1699 22901850.42796 1715 1699 -2777733.774299 1716 1699 36666666.66064 1717 1699 -41307675.60857 1718 1699 1513866.887135 1794 1699 9166666.669678 1795 1699 -15819170.72716 1796 1699 -8385422.169798 1797 1699 -5.811452865601e-07 1798 1699 -19232220.47929 1799 1699 -694433.4439163 1800 1699 -9166666.669679 1801 1699 -17307688.72007 1802 1699 9079855.613715 1806 1699 2.913177013397e-06 1807 1699 -35963145.36236 1808 1699 -33694466.44041 1809 1699 3.635883331299e-06 1810 1699 32278708.78388 1811 1699 -2777733.774297 1812 1699 -5.349516868591e-06 1813 1699 -41940891.5735 1814 1699 36472200.21471 1821 1699 -9166666.669677 1822 1699 -15912882.8484 1823 1699 -8454866.614265 1824 1699 3.725290298462e-07 1825 1699 -19630743.20649 1826 1699 -694433.4439167 1827 1699 9166666.669676 1828 1699 -17413237.96253 1829 1699 9149300.058182 1700 1700 599591912.5003 1701 1700 231485.1485663 1702 1700 5555467.545859 1703 1700 78550735.85485 1710 1700 2471062.980849 1711 1700 1236089.109403 1712 1700 -7832062.870945 1713 1700 -462970.2969232 1714 1700 -2777733.774298 1715 1700 39890623.87246 1716 1700 -2737270.351624 1717 1700 1541644.664895 1718 1700 -7895194.184061 1794 1700 10279397.69313 1795 1700 -8385422.169798 1796 1700 -16619803.40013 1797 1700 43704396.30741 1798 1700 -694433.4439163 1799 1700 -56581165.5979 1800 1700 11581481.02689 1801 1700 9079855.613715 1802 1700 -20589184.71456 1806 1700 57871.28717278 1807 1700 -33666688.66265 1808 1700 -39477172.9523 1809 1700 231485.148585 1810 1700 -2777733.774298 1811 1700 -118440658.1206 1812 1700 57871.28717716 1813 1700 36444422.43695 1814 1700 -55417829.51533 1821 1700 -10337268.9803 1822 1700 -8454866.614265 1823 1700 -16869702.39011 1824 1700 -43935881.45598 1825 1700 -694433.4439167 1826 1700 -57643892.87044 1827 1700 -11639352.31406 1828 1700 9149300.058182 1829 1700 -20870649.36111 1701 1701 619629140.0329 1702 1701 1.168251037598e-05 1703 1701 925940.5938052 1704 1701 84152766.23505 1705 1701 -4.991888999939e-06 1706 1701 231485.148566 1713 1701 -52284795.20658 1714 1701 -36666666.66065 1715 1701 2505785.203048 1716 1701 -138432799.5 1717 1701 1.490116119385e-07 1718 1701 -462970.296923 1719 1701 -52308469.44899 1720 1701 36666666.66065 1721 1701 -2702548.129425 1797 1701 -18569369.18862 1798 1701 9166666.669678 1799 1701 10279397.69313 1800 1701 -59565882.98117 1801 1701 4.91738319397e-07 1802 1701 43739118.52961 1803 1701 -20057887.18154 1804 1701 -9166666.669679 1805 1701 11581481.02689 1809 1701 -1129879.778007 1810 1701 2.369284629822e-06 1811 1701 57871.28717239 1812 1701 54280296.46473 1813 1701 3.09944152832e-06 1814 1701 231485.1485852 1815 1701 -7107625.989141 1816 1701 -6.146728992462e-06 1817 1701 57871.2871768 1824 1701 -18663081.30986 1825 1701 -9166666.669677 1826 1701 -10337268.9803 1827 1701 -59964405.70834 1828 1701 7.525086402893e-07 1829 1701 -43970603.67818 1830 1701 -20163436.42398 1831 1701 9166666.669676 1832 1701 -11639352.31406 1702 1702 531622789.3528 1703 1702 -11110935.09172 1704 1702 -4.798173904419e-06 1705 1702 -55180296.03374 1706 1702 5555467.545859 1713 1702 -36666666.66065 1714 1702 -41284001.36615 1715 1702 1263866.887163 1716 1702 -5.960464477539e-08 1717 1702 22901850.42796 1718 1702 -2777733.774299 1719 1702 36666666.66064 1720 1702 -41307675.60857 1721 1702 1513866.887135 1797 1702 9166666.669678 1798 1702 -15819170.72716 1799 1702 -8385422.169798 1800 1702 -5.811452865601e-07 1801 1702 -19232220.47929 1802 1702 -694433.4439163 1803 1702 -9166666.669679 1804 1702 -17307688.72007 1805 1702 9079855.613715 1809 1702 2.913177013397e-06 1810 1702 -35963145.36236 1811 1702 -33694466.44041 1812 1702 3.635883331299e-06 1813 1702 32278708.78388 1814 1702 -2777733.774297 1815 1702 -5.349516868591e-06 1816 1702 -41940891.5735 1817 1702 36472200.21471 1824 1702 -9166666.669677 1825 1702 -15912882.8484 1826 1702 -8454866.614265 1827 1702 3.725290298462e-07 1828 1702 -19630743.20649 1829 1702 -694433.4439167 1830 1702 9166666.669676 1831 1702 -17413237.96253 1832 1702 9149300.058182 1703 1703 599591912.5003 1704 1703 231485.1485663 1705 1703 5555467.545859 1706 1703 78550735.85485 1713 1703 2471062.980849 1714 1703 1236089.109403 1715 1703 -7832062.870945 1716 1703 -462970.2969232 1717 1703 -2777733.774298 1718 1703 39890623.87246 1719 1703 -2737270.351624 1720 1703 1541644.664895 1721 1703 -7895194.184061 1797 1703 10279397.69313 1798 1703 -8385422.169798 1799 1703 -16619803.40013 1800 1703 43704396.30741 1801 1703 -694433.4439163 1802 1703 -56581165.5979 1803 1703 11581481.02689 1804 1703 9079855.613715 1805 1703 -20589184.71456 1809 1703 57871.28717278 1810 1703 -33666688.66265 1811 1703 -39477172.9523 1812 1703 231485.148585 1813 1703 -2777733.774298 1814 1703 -118440658.1206 1815 1703 57871.28717716 1816 1703 36444422.43695 1817 1703 -55417829.51533 1824 1703 -10337268.9803 1825 1703 -8454866.614265 1826 1703 -16869702.39011 1827 1703 -43935881.45598 1828 1703 -694433.4439167 1829 1703 -57643892.87044 1830 1703 -11639352.31406 1831 1703 9149300.058182 1832 1703 -20870649.36111 1704 1704 671761428.9985 1705 1704 36667432.73655 1706 1704 3125088.651632 1707 1704 19448570.31785 1708 1704 -36666973.09101 1709 1704 2702570.135099 1716 1704 -52284795.20658 1717 1704 -36666666.66065 1718 1704 2505785.203048 1719 1704 -138432799.5 1720 1704 1.490116119385e-07 1721 1704 -462970.296923 1722 1704 -52308469.44899 1723 1704 36666666.66065 1724 1704 -2702548.129425 1800 1704 -18569369.18862 1801 1704 9166666.669678 1802 1704 10279397.69313 1803 1704 -72039530.38171 1804 1704 -9166781.581061 1805 1704 43189554.83944 1812 1704 -1129879.778007 1813 1704 2.369284629822e-06 1814 1704 57871.28717239 1815 1704 73599694.87993 1816 1704 9166858.188655 1817 1704 781226.7976368 1818 1704 -19443104.86928 1819 1704 -9166743.27727 1820 1704 11639449.48452 1827 1704 -18663081.30986 1828 1704 -9166666.669677 1829 1704 -10337268.9803 1830 1704 -59964405.70834 1831 1704 7.525086402893e-07 1832 1704 -43970603.67818 1833 1704 -20163436.42398 1834 1704 9166666.669676 1835 1704 -11639352.31406 1705 1705 572753939.719 1706 1705 -8610914.043003 1707 1705 -36667126.30619 1708 1705 -108884310.9615 1709 1705 4611018.689007 1716 1705 -36666666.66065 1717 1705 -41284001.36615 1718 1705 1263866.887163 1719 1705 -5.960464477539e-08 1720 1705 22901850.42796 1721 1705 -2777733.774299 1722 1705 36666666.66064 1723 1705 -41307675.60857 1724 1705 1513866.887135 1800 1705 9166666.669678 1801 1705 -15819170.72716 1802 1705 -8385422.169798 1803 1705 -9166743.277267 1804 1705 -28955430.01587 1805 1705 7996602.428466 1812 1705 2.913177013397e-06 1813 1705 -35963145.36236 1814 1705 -33694466.44041 1815 1705 9166858.188655 1816 1705 48847822.54786 1817 1705 -2152764.803778 1818 1705 -9166781.581064 1819 1705 -51526325.20493 1820 1705 36236271.0855 1827 1705 -9166666.669677 1828 1705 -15912882.8484 1829 1705 -8454866.614265 1830 1705 3.725290298462e-07 1831 1705 -19630743.20649 1832 1705 -694433.4439167 1833 1705 9166666.669676 1834 1705 -17413237.96253 1835 1705 9149300.058182 1706 1706 607013167.9741 1707 1706 2737303.360137 1708 1706 5388804.78494 1709 1706 37600883.93994 1716 1706 2471062.980849 1717 1706 1236089.109403 1718 1706 -7832062.870945 1719 1706 -462970.2969232 1720 1706 -2777733.774298 1721 1706 39890623.87246 1722 1706 -2737270.351624 1723 1706 1541644.664895 1724 1706 -7895194.184061 1800 1706 10279397.69313 1801 1706 -8385422.169798 1802 1706 -16619803.40013 1803 1706 43154829.95728 1804 1706 7802192.5578 1805 1706 -56944833.0873 1812 1706 57871.28717278 1813 1706 -33666688.66265 1814 1706 -39477172.9523 1815 1706 781318.4370322 1816 1706 -2152691.493423 1817 1706 -99821807.80486 1818 1706 11639498.06975 1819 1706 36402939.91804 1820 1706 -55413772.21342 1827 1706 -10337268.9803 1828 1706 -8454866.614265 1829 1706 -16869702.39011 1830 1706 -43935881.45598 1831 1706 -694433.4439167 1832 1706 -57643892.87044 1833 1706 -11639352.31406 1834 1706 9149300.058182 1835 1706 -20870649.36111 1707 1707 387435706.2613 1708 1707 36666666.66065 1709 1707 2662175.186035 1719 1707 -52284795.20658 1720 1707 -36666666.66065 1721 1707 2505785.203048 1722 1707 -203296779.618 1723 1707 -36666973.09101 1724 1707 -2662152.453524 1725 1707 12401143.47877 1726 1707 29333639.75888 1727 1707 -2152799.783064 1803 1707 -4839277.140465 1804 1707 11000114.915 1805 1707 12370128.70975 1815 1707 -14860172.33131 1816 1707 -9166781.581062 1817 1707 -10279526.39882 1818 1707 33963705.33589 1819 1707 9166666.669679 1820 1707 9519894.71657 1830 1707 -18663081.30986 1831 1707 -9166666.669677 1832 1707 -10337268.9803 1833 1707 -73633660.33315 1834 1707 -9166743.277268 1835 1707 -44520628.22528 1836 1707 -7828204.348046 1837 1707 7333409.943332 1838 1707 -9288430.506837 1708 1708 332431392.3218 1709 1708 -6944376.976808 1719 1708 -36666666.66065 1720 1708 -41284001.36615 1721 1708 1263866.887163 1722 1708 -36667126.30619 1723 1708 -30960378.23954 1724 1708 -3847226.047119 1725 1708 44000459.63831 1726 1708 12401143.47877 1727 1708 2416692.493345 1803 1708 7333409.943332 1804 1708 -4839277.140466 1805 1708 -6597291.372073 1815 1708 -9166743.277267 1816 1708 -46943392.66696 1817 1708 -33736315.15602 1818 1708 9166666.669679 1819 1708 20212626.84424 1820 1708 5347275.319281 1830 1708 -9166666.669677 1831 1708 -15912882.8484 1832 1708 -8454866.614265 1833 1708 -9166781.581064 1834 1708 -30549559.96733 1835 1708 -9732749.59088 1836 1708 11000114.915 1837 1708 -7828204.348045 1838 1708 11145949.53617 1709 1709 375187471.1352 1719 1709 2471062.980849 1720 1709 1236089.109403 1721 1709 -7832062.870945 1722 1709 -2662141.087263 1723 1709 -3097217.438217 1724 1709 -1482420.858694 1725 1709 -3229199.674597 1726 1709 1611128.328897 1727 1709 33069715.94339 1803 1709 8246752.473166 1804 1709 -9895937.05811 1805 1709 -12904739.04124 1815 1709 -10279483.49692 1816 1709 -33902984.10692 1817 1709 -43192618.77883 1818 1709 -8015196.919944 1819 1709 -8680575.648187 1820 1709 -73923722.2424 1830 1709 -10337268.9803 1831 1709 -8454866.614265 1832 1709 -16869702.39011 1833 1709 -44485903.34313 1834 1709 -9538266.413314 1835 1709 -61195846.2912 1836 1709 -13932645.76025 1837 1709 7430633.02411 1838 1709 -20875211.59479 1710 1710 619629140.0329 1711 1710 1.168251037598e-05 1712 1710 925940.5938052 1713 1710 84152766.23505 1714 1710 -4.991888999939e-06 1715 1710 231485.148566 1728 1710 -138432799.5 1729 1710 1.490116119385e-07 1730 1710 -462970.296923 1731 1710 -52308469.44899 1732 1710 36666666.66065 1733 1710 -2702548.129425 1806 1710 -59565882.98117 1807 1710 4.91738319397e-07 1808 1710 43739118.52961 1809 1710 -20057887.18154 1810 1710 -9166666.669679 1811 1710 11581481.02689 1821 1710 54280296.46473 1822 1710 3.09944152832e-06 1823 1710 231485.1485852 1824 1710 -7107625.989141 1825 1710 -6.146728992462e-06 1826 1710 57871.2871768 1839 1710 -59964405.70834 1840 1710 7.525086402893e-07 1841 1710 -43970603.67818 1842 1710 -20163436.42398 1843 1710 9166666.669676 1844 1710 -11639352.31406 1711 1711 531622789.3528 1712 1711 -11110935.09172 1713 1711 -4.798173904419e-06 1714 1711 -55180296.03374 1715 1711 5555467.545859 1728 1711 -5.960464477539e-08 1729 1711 22901850.42796 1730 1711 -2777733.774299 1731 1711 36666666.66064 1732 1711 -41307675.60857 1733 1711 1513866.887135 1806 1711 -5.811452865601e-07 1807 1711 -19232220.47929 1808 1711 -694433.4439163 1809 1711 -9166666.669679 1810 1711 -17307688.72007 1811 1711 9079855.613715 1821 1711 3.635883331299e-06 1822 1711 32278708.78388 1823 1711 -2777733.774297 1824 1711 -5.349516868591e-06 1825 1711 -41940891.5735 1826 1711 36472200.21471 1839 1711 3.725290298462e-07 1840 1711 -19630743.20649 1841 1711 -694433.4439167 1842 1711 9166666.669676 1843 1711 -17413237.96253 1844 1711 9149300.058182 1712 1712 599591912.5003 1713 1712 231485.1485663 1714 1712 5555467.545859 1715 1712 78550735.85485 1728 1712 -462970.2969232 1729 1712 -2777733.774298 1730 1712 39890623.87246 1731 1712 -2737270.351624 1732 1712 1541644.664895 1733 1712 -7895194.184061 1806 1712 43704396.30741 1807 1712 -694433.4439163 1808 1712 -56581165.5979 1809 1712 11581481.02689 1810 1712 9079855.613715 1811 1712 -20589184.71456 1821 1712 231485.148585 1822 1712 -2777733.774298 1823 1712 -118440658.1206 1824 1712 57871.28717716 1825 1712 36444422.43695 1826 1712 -55417829.51533 1839 1712 -43935881.45598 1840 1712 -694433.4439167 1841 1712 -57643892.87044 1842 1712 -11639352.31406 1843 1712 9149300.058182 1844 1712 -20870649.36111 1713 1713 619629140.0329 1714 1713 1.168251037598e-05 1715 1713 925940.5938052 1716 1713 84152766.23505 1717 1713 -4.991888999939e-06 1718 1713 231485.148566 1728 1713 -52284795.20658 1729 1713 -36666666.66065 1730 1713 2505785.203048 1731 1713 -138432799.5 1732 1713 1.490116119385e-07 1733 1713 -462970.296923 1734 1713 -52308469.44899 1735 1713 36666666.66065 1736 1713 -2702548.129425 1806 1713 -18569369.18862 1807 1713 9166666.669678 1808 1713 10279397.69313 1809 1713 -59565882.98117 1810 1713 4.91738319397e-07 1811 1713 43739118.52961 1812 1713 -20057887.18154 1813 1713 -9166666.669679 1814 1713 11581481.02689 1821 1713 -1129879.778007 1822 1713 2.369284629822e-06 1823 1713 57871.28717239 1824 1713 54280296.46473 1825 1713 3.09944152832e-06 1826 1713 231485.1485852 1827 1713 -7107625.989141 1828 1713 -6.146728992462e-06 1829 1713 57871.2871768 1839 1713 -18663081.30986 1840 1713 -9166666.669677 1841 1713 -10337268.9803 1842 1713 -59964405.70834 1843 1713 7.525086402893e-07 1844 1713 -43970603.67818 1845 1713 -20163436.42398 1846 1713 9166666.669676 1847 1713 -11639352.31406 1714 1714 531622789.3528 1715 1714 -11110935.09172 1716 1714 -4.798173904419e-06 1717 1714 -55180296.03374 1718 1714 5555467.545859 1728 1714 -36666666.66065 1729 1714 -41284001.36615 1730 1714 1263866.887163 1731 1714 -5.960464477539e-08 1732 1714 22901850.42796 1733 1714 -2777733.774299 1734 1714 36666666.66064 1735 1714 -41307675.60857 1736 1714 1513866.887135 1806 1714 9166666.669678 1807 1714 -15819170.72716 1808 1714 -8385422.169798 1809 1714 -5.811452865601e-07 1810 1714 -19232220.47929 1811 1714 -694433.4439163 1812 1714 -9166666.669679 1813 1714 -17307688.72007 1814 1714 9079855.613715 1821 1714 2.913177013397e-06 1822 1714 -35963145.36236 1823 1714 -33694466.44041 1824 1714 3.635883331299e-06 1825 1714 32278708.78388 1826 1714 -2777733.774297 1827 1714 -5.349516868591e-06 1828 1714 -41940891.5735 1829 1714 36472200.21471 1839 1714 -9166666.669677 1840 1714 -15912882.8484 1841 1714 -8454866.614265 1842 1714 3.725290298462e-07 1843 1714 -19630743.20649 1844 1714 -694433.4439167 1845 1714 9166666.669676 1846 1714 -17413237.96253 1847 1714 9149300.058182 1715 1715 599591912.5003 1716 1715 231485.1485663 1717 1715 5555467.545859 1718 1715 78550735.85485 1728 1715 2471062.980849 1729 1715 1236089.109403 1730 1715 -7832062.870945 1731 1715 -462970.2969232 1732 1715 -2777733.774298 1733 1715 39890623.87246 1734 1715 -2737270.351624 1735 1715 1541644.664895 1736 1715 -7895194.184061 1806 1715 10279397.69313 1807 1715 -8385422.169798 1808 1715 -16619803.40013 1809 1715 43704396.30741 1810 1715 -694433.4439163 1811 1715 -56581165.5979 1812 1715 11581481.02689 1813 1715 9079855.613715 1814 1715 -20589184.71456 1821 1715 57871.28717278 1822 1715 -33666688.66265 1823 1715 -39477172.9523 1824 1715 231485.148585 1825 1715 -2777733.774298 1826 1715 -118440658.1206 1827 1715 57871.28717716 1828 1715 36444422.43695 1829 1715 -55417829.51533 1839 1715 -10337268.9803 1840 1715 -8454866.614265 1841 1715 -16869702.39011 1842 1715 -43935881.45598 1843 1715 -694433.4439167 1844 1715 -57643892.87044 1845 1715 -11639352.31406 1846 1715 9149300.058182 1847 1715 -20870649.36111 1716 1716 619629140.0329 1717 1716 1.168251037598e-05 1718 1716 925940.5938052 1719 1716 84152766.23505 1720 1716 -4.991888999939e-06 1721 1716 231485.148566 1731 1716 -52284795.20658 1732 1716 -36666666.66065 1733 1716 2505785.203048 1734 1716 -138432799.5 1735 1716 1.490116119385e-07 1736 1716 -462970.296923 1737 1716 -52308469.44899 1738 1716 36666666.66065 1739 1716 -2702548.129425 1809 1716 -18569369.18862 1810 1716 9166666.669678 1811 1716 10279397.69313 1812 1716 -59565882.98117 1813 1716 4.91738319397e-07 1814 1716 43739118.52961 1815 1716 -20057887.18154 1816 1716 -9166666.669679 1817 1716 11581481.02689 1824 1716 -1129879.778007 1825 1716 2.369284629822e-06 1826 1716 57871.28717239 1827 1716 54280296.46473 1828 1716 3.09944152832e-06 1829 1716 231485.1485852 1830 1716 -7107625.989141 1831 1716 -6.146728992462e-06 1832 1716 57871.2871768 1842 1716 -18663081.30986 1843 1716 -9166666.669677 1844 1716 -10337268.9803 1845 1716 -59964405.70834 1846 1716 7.525086402893e-07 1847 1716 -43970603.67818 1848 1716 -20163436.42398 1849 1716 9166666.669676 1850 1716 -11639352.31406 1717 1717 531622789.3528 1718 1717 -11110935.09172 1719 1717 -4.798173904419e-06 1720 1717 -55180296.03374 1721 1717 5555467.545859 1731 1717 -36666666.66065 1732 1717 -41284001.36615 1733 1717 1263866.887163 1734 1717 -5.960464477539e-08 1735 1717 22901850.42796 1736 1717 -2777733.774299 1737 1717 36666666.66064 1738 1717 -41307675.60857 1739 1717 1513866.887135 1809 1717 9166666.669678 1810 1717 -15819170.72716 1811 1717 -8385422.169798 1812 1717 -5.811452865601e-07 1813 1717 -19232220.47929 1814 1717 -694433.4439163 1815 1717 -9166666.669679 1816 1717 -17307688.72007 1817 1717 9079855.613715 1824 1717 2.913177013397e-06 1825 1717 -35963145.36236 1826 1717 -33694466.44041 1827 1717 3.635883331299e-06 1828 1717 32278708.78388 1829 1717 -2777733.774297 1830 1717 -5.349516868591e-06 1831 1717 -41940891.5735 1832 1717 36472200.21471 1842 1717 -9166666.669677 1843 1717 -15912882.8484 1844 1717 -8454866.614265 1845 1717 3.725290298462e-07 1846 1717 -19630743.20649 1847 1717 -694433.4439167 1848 1717 9166666.669676 1849 1717 -17413237.96253 1850 1717 9149300.058182 1718 1718 599591912.5003 1719 1718 231485.1485663 1720 1718 5555467.545859 1721 1718 78550735.85485 1731 1718 2471062.980849 1732 1718 1236089.109403 1733 1718 -7832062.870945 1734 1718 -462970.2969232 1735 1718 -2777733.774298 1736 1718 39890623.87246 1737 1718 -2737270.351624 1738 1718 1541644.664895 1739 1718 -7895194.184061 1809 1718 10279397.69313 1810 1718 -8385422.169798 1811 1718 -16619803.40013 1812 1718 43704396.30741 1813 1718 -694433.4439163 1814 1718 -56581165.5979 1815 1718 11581481.02689 1816 1718 9079855.613715 1817 1718 -20589184.71456 1824 1718 57871.28717278 1825 1718 -33666688.66265 1826 1718 -39477172.9523 1827 1718 231485.148585 1828 1718 -2777733.774298 1829 1718 -118440658.1206 1830 1718 57871.28717716 1831 1718 36444422.43695 1832 1718 -55417829.51533 1842 1718 -10337268.9803 1843 1718 -8454866.614265 1844 1718 -16869702.39011 1845 1718 -43935881.45598 1846 1718 -694433.4439167 1847 1718 -57643892.87044 1848 1718 -11639352.31406 1849 1718 9149300.058182 1850 1718 -20870649.36111 1719 1719 619629140.0329 1720 1719 1.168251037598e-05 1721 1719 925940.5938052 1722 1719 84152766.23505 1723 1719 -4.991888999939e-06 1724 1719 231485.148566 1734 1719 -52284795.20658 1735 1719 -36666666.66065 1736 1719 2505785.203048 1737 1719 -138432799.5 1738 1719 1.490116119385e-07 1739 1719 -462970.296923 1740 1719 -52308469.44899 1741 1719 36666666.66065 1742 1719 -2702548.129425 1812 1719 -18569369.18862 1813 1719 9166666.669678 1814 1719 10279397.69313 1815 1719 -59565882.98117 1816 1719 4.91738319397e-07 1817 1719 43739118.52961 1818 1719 -20057887.18154 1819 1719 -9166666.669679 1820 1719 11581481.02689 1827 1719 -1129879.778007 1828 1719 2.369284629822e-06 1829 1719 57871.28717239 1830 1719 54280296.46473 1831 1719 3.09944152832e-06 1832 1719 231485.1485852 1833 1719 -7107625.989141 1834 1719 -6.146728992462e-06 1835 1719 57871.2871768 1845 1719 -18663081.30986 1846 1719 -9166666.669677 1847 1719 -10337268.9803 1848 1719 -59964405.70834 1849 1719 7.525086402893e-07 1850 1719 -43970603.67818 1851 1719 -20163436.42398 1852 1719 9166666.669676 1853 1719 -11639352.31406 1720 1720 531622789.3528 1721 1720 -11110935.09172 1722 1720 -4.798173904419e-06 1723 1720 -55180296.03374 1724 1720 5555467.545859 1734 1720 -36666666.66065 1735 1720 -41284001.36615 1736 1720 1263866.887163 1737 1720 -5.960464477539e-08 1738 1720 22901850.42796 1739 1720 -2777733.774299 1740 1720 36666666.66064 1741 1720 -41307675.60857 1742 1720 1513866.887135 1812 1720 9166666.669678 1813 1720 -15819170.72716 1814 1720 -8385422.169798 1815 1720 -5.811452865601e-07 1816 1720 -19232220.47929 1817 1720 -694433.4439163 1818 1720 -9166666.669679 1819 1720 -17307688.72007 1820 1720 9079855.613715 1827 1720 2.913177013397e-06 1828 1720 -35963145.36236 1829 1720 -33694466.44041 1830 1720 3.635883331299e-06 1831 1720 32278708.78388 1832 1720 -2777733.774297 1833 1720 -5.349516868591e-06 1834 1720 -41940891.5735 1835 1720 36472200.21471 1845 1720 -9166666.669677 1846 1720 -15912882.8484 1847 1720 -8454866.614265 1848 1720 3.725290298462e-07 1849 1720 -19630743.20649 1850 1720 -694433.4439167 1851 1720 9166666.669676 1852 1720 -17413237.96253 1853 1720 9149300.058182 1721 1721 599591912.5003 1722 1721 231485.1485663 1723 1721 5555467.545859 1724 1721 78550735.85485 1734 1721 2471062.980849 1735 1721 1236089.109403 1736 1721 -7832062.870945 1737 1721 -462970.2969232 1738 1721 -2777733.774298 1739 1721 39890623.87246 1740 1721 -2737270.351624 1741 1721 1541644.664895 1742 1721 -7895194.184061 1812 1721 10279397.69313 1813 1721 -8385422.169798 1814 1721 -16619803.40013 1815 1721 43704396.30741 1816 1721 -694433.4439163 1817 1721 -56581165.5979 1818 1721 11581481.02689 1819 1721 9079855.613715 1820 1721 -20589184.71456 1827 1721 57871.28717278 1828 1721 -33666688.66265 1829 1721 -39477172.9523 1830 1721 231485.148585 1831 1721 -2777733.774298 1832 1721 -118440658.1206 1833 1721 57871.28717716 1834 1721 36444422.43695 1835 1721 -55417829.51533 1845 1721 -10337268.9803 1846 1721 -8454866.614265 1847 1721 -16869702.39011 1848 1721 -43935881.45598 1849 1721 -694433.4439167 1850 1721 -57643892.87044 1851 1721 -11639352.31406 1852 1721 9149300.058182 1853 1721 -20870649.36111 1722 1722 671761428.9985 1723 1722 36667432.73655 1724 1722 3125088.651632 1725 1722 19448570.31785 1726 1722 -36666973.09101 1727 1722 2702570.135099 1737 1722 -52284795.20658 1738 1722 -36666666.66065 1739 1722 2505785.203048 1740 1722 -138432799.5 1741 1722 1.490116119385e-07 1742 1722 -462970.296923 1743 1722 -52308469.44899 1744 1722 36666666.66065 1745 1722 -2702548.129425 1815 1722 -18569369.18862 1816 1722 9166666.669678 1817 1722 10279397.69313 1818 1722 -72039530.38171 1819 1722 -9166781.581061 1820 1722 43189554.83944 1830 1722 -1129879.778007 1831 1722 2.369284629822e-06 1832 1722 57871.28717239 1833 1722 73599694.87993 1834 1722 9166858.188655 1835 1722 781226.7976368 1836 1722 -19443104.86928 1837 1722 -9166743.27727 1838 1722 11639449.48452 1848 1722 -18663081.30986 1849 1722 -9166666.669677 1850 1722 -10337268.9803 1851 1722 -59964405.70834 1852 1722 7.525086402893e-07 1853 1722 -43970603.67818 1854 1722 -20163436.42398 1855 1722 9166666.669676 1856 1722 -11639352.31406 1723 1723 572753939.719 1724 1723 -8610914.043003 1725 1723 -36667126.30619 1726 1723 -108884310.9615 1727 1723 4611018.689007 1737 1723 -36666666.66065 1738 1723 -41284001.36615 1739 1723 1263866.887163 1740 1723 -5.960464477539e-08 1741 1723 22901850.42796 1742 1723 -2777733.774299 1743 1723 36666666.66064 1744 1723 -41307675.60857 1745 1723 1513866.887135 1815 1723 9166666.669678 1816 1723 -15819170.72716 1817 1723 -8385422.169798 1818 1723 -9166743.277267 1819 1723 -28955430.01587 1820 1723 7996602.428466 1830 1723 2.913177013397e-06 1831 1723 -35963145.36236 1832 1723 -33694466.44041 1833 1723 9166858.188655 1834 1723 48847822.54786 1835 1723 -2152764.803778 1836 1723 -9166781.581064 1837 1723 -51526325.20493 1838 1723 36236271.0855 1848 1723 -9166666.669677 1849 1723 -15912882.8484 1850 1723 -8454866.614265 1851 1723 3.725290298462e-07 1852 1723 -19630743.20649 1853 1723 -694433.4439167 1854 1723 9166666.669676 1855 1723 -17413237.96253 1856 1723 9149300.058182 1724 1724 607013167.9741 1725 1724 2737303.360137 1726 1724 5388804.78494 1727 1724 37600883.93994 1737 1724 2471062.980849 1738 1724 1236089.109403 1739 1724 -7832062.870945 1740 1724 -462970.2969232 1741 1724 -2777733.774298 1742 1724 39890623.87246 1743 1724 -2737270.351624 1744 1724 1541644.664895 1745 1724 -7895194.184061 1815 1724 10279397.69313 1816 1724 -8385422.169798 1817 1724 -16619803.40013 1818 1724 43154829.95728 1819 1724 7802192.5578 1820 1724 -56944833.0873 1830 1724 57871.28717278 1831 1724 -33666688.66265 1832 1724 -39477172.9523 1833 1724 781318.4370322 1834 1724 -2152691.493423 1835 1724 -99821807.80486 1836 1724 11639498.06975 1837 1724 36402939.91804 1838 1724 -55413772.21342 1848 1724 -10337268.9803 1849 1724 -8454866.614265 1850 1724 -16869702.39011 1851 1724 -43935881.45598 1852 1724 -694433.4439167 1853 1724 -57643892.87044 1854 1724 -11639352.31406 1855 1724 9149300.058182 1856 1724 -20870649.36111 1725 1725 498363702.219 1726 1725 -28869531.02742 1727 1725 -1239775.021335 1740 1725 -52284795.20658 1741 1725 -36666666.66065 1742 1725 2505785.203048 1743 1725 -52009283.16359 1744 1725 28863804.2588 1745 1725 -287932.3683392 1746 1725 -294718966.1837 1747 1725 29339060.09713 1748 1725 -277851.0500069 1818 1725 -4839277.140465 1819 1725 11000114.915 1820 1725 12370128.70975 1833 1725 -14860172.33131 1834 1725 -9166781.581062 1835 1725 -10279526.39882 1836 1725 73338606.72416 1837 1725 -7080721.947104 1838 1725 4620199.485418 1851 1725 -18663081.30986 1852 1725 -9166666.669677 1853 1725 -10337268.9803 1854 1725 -27228255.66332 1855 1725 7079394.610295 1856 1725 -24516102.56983 1857 1725 -69564509.4735 1858 1725 7334660.672553 1859 1725 -1076310.000064 1726 1726 966174720.2427 1727 1726 -12914947.41583 1740 1726 -36666666.66065 1741 1726 -41284001.36615 1742 1726 1263866.887163 1743 1726 28860940.8745 1744 1726 90863993.22883 1745 1726 -2003561.139996 1746 1726 44008590.1457 1747 1726 -788071173.1609 1748 1726 6655116.515009 1818 1726 7333409.943332 1819 1726 -4839277.140466 1820 1726 -6597291.372073 1833 1726 -9166743.277267 1834 1726 -46943392.66696 1835 1726 -33736315.15602 1836 1726 -7080721.947105 1837 1726 181183500.3014 1838 1726 835990.2504258 1851 1726 -9166666.669677 1852 1726 -15912882.8484 1853 1726 -8454866.614265 1854 1726 7078730.941889 1855 1726 8550937.821368 1856 1726 6326759.532925 1857 1726 11001991.00883 1858 1726 -183855574.6612 1859 1726 18420659.28497 1727 1727 530415847.6868 1740 1727 2471062.980849 1741 1727 1236089.109403 1742 1727 -7832062.870945 1743 1727 -1051786.06317 1744 1727 -1892360.826072 1745 1727 49178308.71143 1746 1727 -416776.5750104 1747 1727 6544119.890423 1748 1727 -292565036.1794 1818 1727 8246752.473166 1819 1727 -9895937.05811 1820 1727 -12904739.04124 1833 1727 -10279483.49692 1834 1727 -33902984.10692 1835 1727 -43192618.77883 1836 1727 -5154149.08713 1837 1727 -6926837.903859 1838 1727 4243293.054075 1851 1727 -10337268.9803 1852 1727 -8454866.614265 1853 1727 -16869702.39011 1854 1727 -24689705.53948 1855 1727 6382974.380012 1856 1727 -24906443.9538 1857 1727 -1614465.000096 1858 1727 17990055.19208 1859 1727 -71214293.40827 1728 1728 619629140.0329 1729 1728 1.168251037598e-05 1730 1728 925940.5938052 1731 1728 84152766.23505 1732 1728 -4.991888999939e-06 1733 1728 231485.148566 1749 1728 -138432799.5 1750 1728 1.490116119385e-07 1751 1728 -462970.296923 1752 1728 -52308469.44899 1753 1728 36666666.66065 1754 1728 -2702548.129425 1821 1728 -59565882.98117 1822 1728 4.91738319397e-07 1823 1728 43739118.52961 1824 1728 -20057887.18154 1825 1728 -9166666.669679 1826 1728 11581481.02689 1839 1728 54280296.46473 1840 1728 3.09944152832e-06 1841 1728 231485.1485852 1842 1728 -7107625.989141 1843 1728 -6.146728992462e-06 1844 1728 57871.2871768 1860 1728 -59964405.70834 1861 1728 7.525086402893e-07 1862 1728 -43970603.67818 1863 1728 -20163436.42398 1864 1728 9166666.669676 1865 1728 -11639352.31406 1729 1729 531622789.3528 1730 1729 -11110935.09172 1731 1729 -4.798173904419e-06 1732 1729 -55180296.03374 1733 1729 5555467.545859 1749 1729 -5.960464477539e-08 1750 1729 22901850.42796 1751 1729 -2777733.774299 1752 1729 36666666.66064 1753 1729 -41307675.60857 1754 1729 1513866.887135 1821 1729 -5.811452865601e-07 1822 1729 -19232220.47929 1823 1729 -694433.4439163 1824 1729 -9166666.669679 1825 1729 -17307688.72007 1826 1729 9079855.613715 1839 1729 3.635883331299e-06 1840 1729 32278708.78388 1841 1729 -2777733.774297 1842 1729 -5.349516868591e-06 1843 1729 -41940891.5735 1844 1729 36472200.21471 1860 1729 3.725290298462e-07 1861 1729 -19630743.20649 1862 1729 -694433.4439167 1863 1729 9166666.669676 1864 1729 -17413237.96253 1865 1729 9149300.058182 1730 1730 599591912.5003 1731 1730 231485.1485663 1732 1730 5555467.545859 1733 1730 78550735.85485 1749 1730 -462970.2969232 1750 1730 -2777733.774298 1751 1730 39890623.87246 1752 1730 -2737270.351624 1753 1730 1541644.664895 1754 1730 -7895194.184061 1821 1730 43704396.30741 1822 1730 -694433.4439163 1823 1730 -56581165.5979 1824 1730 11581481.02689 1825 1730 9079855.613715 1826 1730 -20589184.71456 1839 1730 231485.148585 1840 1730 -2777733.774298 1841 1730 -118440658.1206 1842 1730 57871.28717716 1843 1730 36444422.43695 1844 1730 -55417829.51533 1860 1730 -43935881.45598 1861 1730 -694433.4439167 1862 1730 -57643892.87044 1863 1730 -11639352.31406 1864 1730 9149300.058182 1865 1730 -20870649.36111 1731 1731 619629140.0329 1732 1731 1.168251037598e-05 1733 1731 925940.5938052 1734 1731 84152766.23505 1735 1731 -4.991888999939e-06 1736 1731 231485.148566 1749 1731 -52284795.20658 1750 1731 -36666666.66065 1751 1731 2505785.203048 1752 1731 -138432799.5 1753 1731 1.490116119385e-07 1754 1731 -462970.296923 1755 1731 -52308469.44899 1756 1731 36666666.66065 1757 1731 -2702548.129425 1821 1731 -18569369.18862 1822 1731 9166666.669678 1823 1731 10279397.69313 1824 1731 -59565882.98117 1825 1731 4.91738319397e-07 1826 1731 43739118.52961 1827 1731 -20057887.18154 1828 1731 -9166666.669679 1829 1731 11581481.02689 1839 1731 -1129879.778007 1840 1731 2.369284629822e-06 1841 1731 57871.28717239 1842 1731 54280296.46473 1843 1731 3.09944152832e-06 1844 1731 231485.1485852 1845 1731 -7107625.989141 1846 1731 -6.146728992462e-06 1847 1731 57871.2871768 1860 1731 -18663081.30986 1861 1731 -9166666.669677 1862 1731 -10337268.9803 1863 1731 -59964405.70834 1864 1731 7.525086402893e-07 1865 1731 -43970603.67818 1866 1731 -20163436.42398 1867 1731 9166666.669676 1868 1731 -11639352.31406 1732 1732 531622789.3528 1733 1732 -11110935.09172 1734 1732 -4.798173904419e-06 1735 1732 -55180296.03374 1736 1732 5555467.545859 1749 1732 -36666666.66065 1750 1732 -41284001.36615 1751 1732 1263866.887163 1752 1732 -5.960464477539e-08 1753 1732 22901850.42796 1754 1732 -2777733.774299 1755 1732 36666666.66064 1756 1732 -41307675.60857 1757 1732 1513866.887135 1821 1732 9166666.669678 1822 1732 -15819170.72716 1823 1732 -8385422.169798 1824 1732 -5.811452865601e-07 1825 1732 -19232220.47929 1826 1732 -694433.4439163 1827 1732 -9166666.669679 1828 1732 -17307688.72007 1829 1732 9079855.613715 1839 1732 2.913177013397e-06 1840 1732 -35963145.36236 1841 1732 -33694466.44041 1842 1732 3.635883331299e-06 1843 1732 32278708.78388 1844 1732 -2777733.774297 1845 1732 -5.349516868591e-06 1846 1732 -41940891.5735 1847 1732 36472200.21471 1860 1732 -9166666.669677 1861 1732 -15912882.8484 1862 1732 -8454866.614265 1863 1732 3.725290298462e-07 1864 1732 -19630743.20649 1865 1732 -694433.4439167 1866 1732 9166666.669676 1867 1732 -17413237.96253 1868 1732 9149300.058182 1733 1733 599591912.5003 1734 1733 231485.1485663 1735 1733 5555467.545859 1736 1733 78550735.85485 1749 1733 2471062.980849 1750 1733 1236089.109403 1751 1733 -7832062.870945 1752 1733 -462970.2969232 1753 1733 -2777733.774298 1754 1733 39890623.87246 1755 1733 -2737270.351624 1756 1733 1541644.664895 1757 1733 -7895194.184061 1821 1733 10279397.69313 1822 1733 -8385422.169798 1823 1733 -16619803.40013 1824 1733 43704396.30741 1825 1733 -694433.4439163 1826 1733 -56581165.5979 1827 1733 11581481.02689 1828 1733 9079855.613715 1829 1733 -20589184.71456 1839 1733 57871.28717278 1840 1733 -33666688.66265 1841 1733 -39477172.9523 1842 1733 231485.148585 1843 1733 -2777733.774298 1844 1733 -118440658.1206 1845 1733 57871.28717716 1846 1733 36444422.43695 1847 1733 -55417829.51533 1860 1733 -10337268.9803 1861 1733 -8454866.614265 1862 1733 -16869702.39011 1863 1733 -43935881.45598 1864 1733 -694433.4439167 1865 1733 -57643892.87044 1866 1733 -11639352.31406 1867 1733 9149300.058182 1868 1733 -20870649.36111 1734 1734 619629140.0329 1735 1734 1.168251037598e-05 1736 1734 925940.5938052 1737 1734 84152766.23505 1738 1734 -4.991888999939e-06 1739 1734 231485.148566 1752 1734 -52284795.20658 1753 1734 -36666666.66065 1754 1734 2505785.203048 1755 1734 -138432799.5 1756 1734 1.490116119385e-07 1757 1734 -462970.296923 1758 1734 -52308469.44899 1759 1734 36666666.66065 1760 1734 -2702548.129425 1824 1734 -18569369.18862 1825 1734 9166666.669678 1826 1734 10279397.69313 1827 1734 -59565882.98117 1828 1734 4.91738319397e-07 1829 1734 43739118.52961 1830 1734 -20057887.18154 1831 1734 -9166666.669679 1832 1734 11581481.02689 1842 1734 -1129879.778007 1843 1734 2.369284629822e-06 1844 1734 57871.28717239 1845 1734 54280296.46473 1846 1734 3.09944152832e-06 1847 1734 231485.1485852 1848 1734 -7107625.989141 1849 1734 -6.146728992462e-06 1850 1734 57871.2871768 1863 1734 -18663081.30986 1864 1734 -9166666.669677 1865 1734 -10337268.9803 1866 1734 -59964405.70834 1867 1734 7.525086402893e-07 1868 1734 -43970603.67818 1869 1734 -20163436.42398 1870 1734 9166666.669676 1871 1734 -11639352.31406 1735 1735 531622789.3528 1736 1735 -11110935.09172 1737 1735 -4.798173904419e-06 1738 1735 -55180296.03374 1739 1735 5555467.545859 1752 1735 -36666666.66065 1753 1735 -41284001.36615 1754 1735 1263866.887163 1755 1735 -5.960464477539e-08 1756 1735 22901850.42796 1757 1735 -2777733.774299 1758 1735 36666666.66064 1759 1735 -41307675.60857 1760 1735 1513866.887135 1824 1735 9166666.669678 1825 1735 -15819170.72716 1826 1735 -8385422.169798 1827 1735 -5.811452865601e-07 1828 1735 -19232220.47929 1829 1735 -694433.4439163 1830 1735 -9166666.669679 1831 1735 -17307688.72007 1832 1735 9079855.613715 1842 1735 2.913177013397e-06 1843 1735 -35963145.36236 1844 1735 -33694466.44041 1845 1735 3.635883331299e-06 1846 1735 32278708.78388 1847 1735 -2777733.774297 1848 1735 -5.349516868591e-06 1849 1735 -41940891.5735 1850 1735 36472200.21471 1863 1735 -9166666.669677 1864 1735 -15912882.8484 1865 1735 -8454866.614265 1866 1735 3.725290298462e-07 1867 1735 -19630743.20649 1868 1735 -694433.4439167 1869 1735 9166666.669676 1870 1735 -17413237.96253 1871 1735 9149300.058182 1736 1736 599591912.5003 1737 1736 231485.1485663 1738 1736 5555467.545859 1739 1736 78550735.85485 1752 1736 2471062.980849 1753 1736 1236089.109403 1754 1736 -7832062.870945 1755 1736 -462970.2969232 1756 1736 -2777733.774298 1757 1736 39890623.87246 1758 1736 -2737270.351624 1759 1736 1541644.664895 1760 1736 -7895194.184061 1824 1736 10279397.69313 1825 1736 -8385422.169798 1826 1736 -16619803.40013 1827 1736 43704396.30741 1828 1736 -694433.4439163 1829 1736 -56581165.5979 1830 1736 11581481.02689 1831 1736 9079855.613715 1832 1736 -20589184.71456 1842 1736 57871.28717278 1843 1736 -33666688.66265 1844 1736 -39477172.9523 1845 1736 231485.148585 1846 1736 -2777733.774298 1847 1736 -118440658.1206 1848 1736 57871.28717716 1849 1736 36444422.43695 1850 1736 -55417829.51533 1863 1736 -10337268.9803 1864 1736 -8454866.614265 1865 1736 -16869702.39011 1866 1736 -43935881.45598 1867 1736 -694433.4439167 1868 1736 -57643892.87044 1869 1736 -11639352.31406 1870 1736 9149300.058182 1871 1736 -20870649.36111 1737 1737 619629140.0329 1738 1737 1.168251037598e-05 1739 1737 925940.5938052 1740 1737 84152766.23505 1741 1737 -4.991888999939e-06 1742 1737 231485.148566 1755 1737 -52284795.20658 1756 1737 -36666666.66065 1757 1737 2505785.203048 1758 1737 -138432799.5 1759 1737 1.490116119385e-07 1760 1737 -462970.296923 1761 1737 -52308469.44899 1762 1737 36666666.66065 1763 1737 -2702548.129425 1827 1737 -18569369.18862 1828 1737 9166666.669678 1829 1737 10279397.69313 1830 1737 -59565882.98117 1831 1737 4.91738319397e-07 1832 1737 43739118.52961 1833 1737 -20057887.18154 1834 1737 -9166666.669679 1835 1737 11581481.02689 1845 1737 -1129879.778007 1846 1737 2.369284629822e-06 1847 1737 57871.28717239 1848 1737 54280296.46473 1849 1737 3.09944152832e-06 1850 1737 231485.1485852 1851 1737 -7107625.989141 1852 1737 -6.146728992462e-06 1853 1737 57871.2871768 1866 1737 -18663081.30986 1867 1737 -9166666.669677 1868 1737 -10337268.9803 1869 1737 -59964405.70834 1870 1737 7.525086402893e-07 1871 1737 -43970603.67818 1872 1737 -20163436.42398 1873 1737 9166666.669676 1874 1737 -11639352.31406 1738 1738 531622789.3528 1739 1738 -11110935.09172 1740 1738 -4.798173904419e-06 1741 1738 -55180296.03374 1742 1738 5555467.545859 1755 1738 -36666666.66065 1756 1738 -41284001.36615 1757 1738 1263866.887163 1758 1738 -5.960464477539e-08 1759 1738 22901850.42796 1760 1738 -2777733.774299 1761 1738 36666666.66064 1762 1738 -41307675.60857 1763 1738 1513866.887135 1827 1738 9166666.669678 1828 1738 -15819170.72716 1829 1738 -8385422.169798 1830 1738 -5.811452865601e-07 1831 1738 -19232220.47929 1832 1738 -694433.4439163 1833 1738 -9166666.669679 1834 1738 -17307688.72007 1835 1738 9079855.613715 1845 1738 2.913177013397e-06 1846 1738 -35963145.36236 1847 1738 -33694466.44041 1848 1738 3.635883331299e-06 1849 1738 32278708.78388 1850 1738 -2777733.774297 1851 1738 -5.349516868591e-06 1852 1738 -41940891.5735 1853 1738 36472200.21471 1866 1738 -9166666.669677 1867 1738 -15912882.8484 1868 1738 -8454866.614265 1869 1738 3.725290298462e-07 1870 1738 -19630743.20649 1871 1738 -694433.4439167 1872 1738 9166666.669676 1873 1738 -17413237.96253 1874 1738 9149300.058182 1739 1739 599591912.5003 1740 1739 231485.1485663 1741 1739 5555467.545859 1742 1739 78550735.85485 1755 1739 2471062.980849 1756 1739 1236089.109403 1757 1739 -7832062.870945 1758 1739 -462970.2969232 1759 1739 -2777733.774298 1760 1739 39890623.87246 1761 1739 -2737270.351624 1762 1739 1541644.664895 1763 1739 -7895194.184061 1827 1739 10279397.69313 1828 1739 -8385422.169798 1829 1739 -16619803.40013 1830 1739 43704396.30741 1831 1739 -694433.4439163 1832 1739 -56581165.5979 1833 1739 11581481.02689 1834 1739 9079855.613715 1835 1739 -20589184.71456 1845 1739 57871.28717278 1846 1739 -33666688.66265 1847 1739 -39477172.9523 1848 1739 231485.148585 1849 1739 -2777733.774298 1850 1739 -118440658.1206 1851 1739 57871.28717716 1852 1739 36444422.43695 1853 1739 -55417829.51533 1866 1739 -10337268.9803 1867 1739 -8454866.614265 1868 1739 -16869702.39011 1869 1739 -43935881.45598 1870 1739 -694433.4439167 1871 1739 -57643892.87044 1872 1739 -11639352.31406 1873 1739 9149300.058182 1874 1739 -20870649.36111 1740 1740 619629140.0329 1741 1740 1.168251037598e-05 1742 1740 925940.5938052 1743 1740 84152766.23505 1744 1740 -4.991888999939e-06 1745 1740 231485.148566 1758 1740 -52284795.20658 1759 1740 -36666666.66065 1760 1740 2505785.203048 1761 1740 -138432799.5 1762 1740 1.490116119385e-07 1763 1740 -462970.296923 1764 1740 -52308469.44899 1765 1740 36666666.66065 1766 1740 -2702548.129425 1830 1740 -18569369.18862 1831 1740 9166666.669678 1832 1740 10279397.69313 1833 1740 -59565882.98117 1834 1740 4.91738319397e-07 1835 1740 43739118.52961 1836 1740 -20057887.18154 1837 1740 -9166666.669679 1838 1740 11581481.02689 1848 1740 -1129879.778007 1849 1740 2.369284629822e-06 1850 1740 57871.28717239 1851 1740 54280296.46473 1852 1740 3.09944152832e-06 1853 1740 231485.1485852 1854 1740 -7107625.989141 1855 1740 -6.146728992462e-06 1856 1740 57871.2871768 1869 1740 -18663081.30986 1870 1740 -9166666.669677 1871 1740 -10337268.9803 1872 1740 -59964405.70834 1873 1740 7.525086402893e-07 1874 1740 -43970603.67818 1875 1740 -20163436.42398 1876 1740 9166666.669676 1877 1740 -11639352.31406 1741 1741 531622789.3528 1742 1741 -11110935.09172 1743 1741 -4.798173904419e-06 1744 1741 -55180296.03374 1745 1741 5555467.545859 1758 1741 -36666666.66065 1759 1741 -41284001.36615 1760 1741 1263866.887163 1761 1741 -5.960464477539e-08 1762 1741 22901850.42796 1763 1741 -2777733.774299 1764 1741 36666666.66064 1765 1741 -41307675.60857 1766 1741 1513866.887135 1830 1741 9166666.669678 1831 1741 -15819170.72716 1832 1741 -8385422.169798 1833 1741 -5.811452865601e-07 1834 1741 -19232220.47929 1835 1741 -694433.4439163 1836 1741 -9166666.669679 1837 1741 -17307688.72007 1838 1741 9079855.613715 1848 1741 2.913177013397e-06 1849 1741 -35963145.36236 1850 1741 -33694466.44041 1851 1741 3.635883331299e-06 1852 1741 32278708.78388 1853 1741 -2777733.774297 1854 1741 -5.349516868591e-06 1855 1741 -41940891.5735 1856 1741 36472200.21471 1869 1741 -9166666.669677 1870 1741 -15912882.8484 1871 1741 -8454866.614265 1872 1741 3.725290298462e-07 1873 1741 -19630743.20649 1874 1741 -694433.4439167 1875 1741 9166666.669676 1876 1741 -17413237.96253 1877 1741 9149300.058182 1742 1742 599591912.5003 1743 1742 231485.1485663 1744 1742 5555467.545859 1745 1742 78550735.85485 1758 1742 2471062.980849 1759 1742 1236089.109403 1760 1742 -7832062.870945 1761 1742 -462970.2969232 1762 1742 -2777733.774298 1763 1742 39890623.87246 1764 1742 -2737270.351624 1765 1742 1541644.664895 1766 1742 -7895194.184061 1830 1742 10279397.69313 1831 1742 -8385422.169798 1832 1742 -16619803.40013 1833 1742 43704396.30741 1834 1742 -694433.4439163 1835 1742 -56581165.5979 1836 1742 11581481.02689 1837 1742 9079855.613715 1838 1742 -20589184.71456 1848 1742 57871.28717278 1849 1742 -33666688.66265 1850 1742 -39477172.9523 1851 1742 231485.148585 1852 1742 -2777733.774298 1853 1742 -118440658.1206 1854 1742 57871.28717716 1855 1742 36444422.43695 1856 1742 -55417829.51533 1869 1742 -10337268.9803 1870 1742 -8454866.614265 1871 1742 -16869702.39011 1872 1742 -43935881.45598 1873 1742 -694433.4439167 1874 1742 -57643892.87044 1875 1742 -11639352.31406 1876 1742 9149300.058182 1877 1742 -20870649.36111 1743 1743 522558998.0903 1744 1743 17303939.58594 1745 1743 260660.847523 1746 1743 -103844000.8346 1747 1743 -78331807.37615 1748 1743 634712.287186 1761 1743 -52284795.20658 1762 1743 -36666666.66065 1763 1743 2505785.203048 1764 1743 -86773795.75742 1765 1743 24416035.48061 1766 1743 -106696.56214 1767 1743 -50334865.85163 1768 1743 7750891.435108 1769 1743 -153554.2915443 1833 1743 -18569369.18862 1834 1743 9166666.669678 1835 1743 10279397.69313 1836 1743 -26744866.17423 1837 1743 7078730.941889 1838 1743 24182037.32326 1851 1743 -1129879.778007 1852 1743 2.369284629822e-06 1853 1743 57871.28717239 1854 1743 64705026.32284 1855 1743 4462384.823563 1856 1743 82004.83090511 1857 1743 -37200947.50606 1858 1743 -19582847.49834 1859 1743 11295490.58659 1872 1743 -18663081.30986 1873 1743 -9166666.669677 1874 1743 -10337268.9803 1875 1743 -44289186.74016 1876 1743 6104008.873161 1877 1743 -34010528.30258 1878 1743 -19096765.45373 1879 1743 1937722.859732 1880 1743 -1131791.351039 1744 1744 657850299.5685 1745 1744 -8367157.575223 1746 1744 -78334670.76046 1747 1744 -263473356.7747 1748 1744 1658370.316677 1761 1744 -36666666.66065 1762 1744 -41284001.36615 1763 1744 1263866.887163 1764 1744 24416035.48061 1765 1744 13565168.38836 1766 1744 -1207997.421921 1767 1744 7750891.435108 1768 1744 -151877577.34 1769 1744 1114835.39655 1833 1744 9166666.669678 1834 1744 -15819170.72716 1835 1744 -8385422.169798 1836 1744 7079394.610294 1837 1744 9034327.310477 1838 1744 -7293747.370667 1851 1744 2.913177013397e-06 1852 1744 -35963145.36236 1853 1744 -33694466.44041 1854 1744 4462384.823561 1855 1744 98466467.05465 1856 1744 -2078317.714271 1857 1744 -19583511.16675 1858 1744 -77107776.22533 1859 1744 35701381.40565 1872 1744 -9166666.669677 1873 1744 -15912882.8484 1874 1744 -8454866.614265 1875 1744 6104008.87316 1876 1744 -19204445.69136 1877 1744 7593833.975638 1878 1744 1937722.859732 1879 1744 -44482443.33833 1880 1744 16945375.52141 1745 1745 509610127.4935 1746 1745 600026.7011092 1747 1745 1686238.457855 1748 1745 -69778405.6964 1761 1745 2471062.980849 1762 1745 1236089.109403 1763 1745 -7832062.870945 1764 1745 -974752.1175541 1765 1745 -1235775.199694 1766 1745 43298672.25768 1767 1745 -222998.7359433 1768 1745 1114835.39655 1769 1745 -37381370.73265 1833 1745 10279397.69313 1834 1745 -8385422.169798 1835 1745 -16619803.40013 1836 1745 24355640.29292 1837 1745 -7293127.174127 1838 1745 -23617405.31616 1851 1745 57871.28717278 1852 1745 -33666688.66265 1853 1745 -39477172.9523 1854 1745 221075.6272578 1855 1745 -1967061.036964 1856 1745 -49157691.6544 1857 1745 11365034.4734 1858 1745 35728612.04915 1859 1745 -47418304.47711 1872 1745 -10337268.9803 1873 1745 -8454866.614265 1874 1745 -16869702.39011 1875 1745 -34184139.41185 1876 1745 7593833.977188 1877 1745 -49430632.70391 1878 1745 -1131791.351039 1879 1745 16945375.52141 1880 1745 -26713473.31342 1746 1746 654493853.2633 1747 1746 18112754.50314 1748 1746 -212467.253144 1764 1746 -52690570.14122 1765 1746 -32132015.60604 1766 1746 329236.32717 1767 1746 37843199.73853 1768 1746 40666870.3651 1769 1746 -165830.6701221 1770 1746 63443900.22534 1771 1746 -20910325.11828 1772 1746 3494.874451399 1773 1746 -649271.3369567 1774 1746 28588796.47085 1775 1746 -68238.95990977 1836 1746 -69068054.42203 1837 1746 11001991.00883 1838 1746 1406080.670902 1854 1746 -36340853.80447 1855 1746 -19583511.16675 1856 1746 -10969538.97004 1857 1746 53015005.13881 1858 1746 4510797.120458 1859 1746 8583928.59339 1875 1746 -19361814.47454 1876 1746 -8033003.905469 1877 1746 -10880711.7551 1878 1746 -39698995.2683 1879 1746 10154153.16224 1880 1746 -42940020.97 1881 1746 -23132978.83525 1882 1746 -5210189.774588 1883 1746 13850494.97586 1884 1746 -17052409.61077 1885 1746 7159763.555271 1886 1746 -10542454.76729 1747 1747 1235787256.67 1748 1747 -7606192.875332 1764 1747 -32132015.60604 1765 1747 -14821146.93907 1766 1747 -100707.8152143 1767 1747 40666870.3651 1768 1747 165409922.2218 1769 1747 -598000.6034298 1770 1747 -6243658.454024 1771 1747 -7045608.663929 1772 1747 57944.23317599 1773 1747 28588796.47085 1774 1747 -23907748.62226 1775 1747 71744.56828891 1836 1747 7334660.672553 1837 1747 -183359119.6098 1838 1747 -14946460.79994 1854 1747 -19582847.49834 1855 1747 -76247682.52375 1856 1747 -34857716.91352 1857 1747 4510797.120457 1858 1747 189247624.3669 1859 1747 -1376922.17004 1875 1747 -8033003.905469 1876 1747 -9894458.669336 1877 1747 -8796010.290028 1878 1747 10154153.16224 1879 1747 -7795400.909588 1880 1747 7746375.742142 1881 1747 -1543523.106716 1882 1747 -40759864.32944 1883 1747 33347803.1152 1884 1747 7159763.555271 1885 1747 -22831199.60156 1886 1747 16684560.25241 1748 1748 812898545.1978 1764 1748 294514.104971 1765 1748 -128485.5929738 1766 1748 -622458.5944218 1767 1748 -269997.3367721 1768 1748 -625778.3812032 1769 1748 194040329.5774 1770 1748 3494.874454618 1771 1748 57944.23317578 1772 1748 125559935.8517 1773 1748 -68238.95987599 1774 1748 71744.56828886 1775 1748 40808809.12515 1836 1748 937387.1139347 1837 1748 -15321557.93441 1838 1748 -69890413.27102 1854 1748 -10900012.08181 1855 1748 -34830525.94038 1856 1748 -45124721.27286 1857 1748 -8603293.626011 1858 1748 -2128201.542135 1859 1748 -82804048.59254 1875 1748 -10880711.7551 1876 1748 -8796010.290028 1877 1748 -16660073.13599 1878 1748 -42974743.19225 1879 1748 7746375.743692 1880 1748 -82481035.57895 1881 1748 5725494.97511 1882 1748 33347803.1152 1883 1748 -72648657.74928 1884 1748 -10542454.76729 1885 1748 16684560.25241 1886 1748 -34764653.8035 1749 1749 309814570.0165 1750 1749 6.437301635742e-06 1751 1749 462970.2969034 1752 1749 42076777.68823 1753 1749 7333333.332127 1754 1749 -318285.203467 1839 1749 -59565882.98117 1840 1749 4.91738319397e-07 1841 1749 43739118.52961 1842 1749 -20057887.18154 1843 1749 -9166666.669679 1844 1749 11581481.02689 1860 1749 27139753.66166 1861 1749 8.344650268555e-07 1862 1749 -8738562.979764 1863 1749 -3553812.994569 1864 1749 1833333.333932 1865 1749 -2293147.690507 1750 1750 265811394.6764 1751 1750 -5555467.545855 1752 1750 -7333333.332131 1753 1750 -27589753.44616 1754 1750 2749955.995158 1839 1750 -5.811452865601e-07 1840 1750 -19232220.47929 1841 1750 -694433.4439163 1842 1750 -9166666.669679 1843 1750 -17307688.72007 1844 1750 9079855.613715 1860 1750 8.940696716309e-07 1861 1750 16138959.82123 1862 1750 -1388866.887151 1863 1750 -1833333.333938 1864 1750 -20970445.78675 1865 1750 18229155.66291 1751 1751 299795956.2502 1752 1751 723381.4630278 1753 1751 2805511.550704 1754 1751 39276420.11598 1839 1751 43704396.30741 1840 1751 -694433.4439163 1841 1751 -56581165.5979 1842 1751 11581481.02689 1843 1751 9079855.613715 1844 1751 -20589184.71456 1860 1751 8796437.017353 1861 1751 -1388866.887151 1862 1751 -59221381.24884 1863 1751 2351018.977684 1864 1751 18229155.66292 1865 1751 -27708914.75766 1752 1752 309814570.0165 1753 1752 6.437301635742e-06 1754 1752 462970.2969034 1755 1752 42076777.68823 1756 1752 7333333.332127 1757 1752 -318285.203467 1839 1752 -18569369.18862 1840 1752 9166666.669678 1841 1752 10279397.69313 1842 1752 -59565882.98117 1843 1752 4.91738319397e-07 1844 1752 43739118.52961 1845 1752 -20057887.18154 1846 1752 -9166666.669679 1847 1752 11581481.02689 1860 1752 -564939.8890041 1861 1752 -1833333.333934 1862 1752 -2032731.023757 1863 1752 27139753.66166 1864 1752 8.344650268555e-07 1865 1752 -8738562.979764 1866 1752 -3553812.994569 1867 1752 1833333.333932 1868 1752 -2293147.690507 1753 1753 265811394.6764 1754 1753 -5555467.545855 1755 1753 -7333333.332131 1756 1753 -27589753.44616 1757 1753 2749955.995158 1839 1753 9166666.669678 1840 1753 -15819170.72716 1841 1753 -8385422.169798 1842 1753 -5.811452865601e-07 1843 1753 -19232220.47929 1844 1753 -694433.4439163 1845 1753 -9166666.669679 1846 1753 -17307688.72007 1847 1753 9079855.613715 1860 1753 1833333.333937 1861 1753 -17981572.68118 1862 1753 -16840288.77576 1863 1753 8.940696716309e-07 1864 1753 16138959.82123 1865 1753 -1388866.887151 1866 1753 -1833333.333938 1867 1753 -20970445.78675 1868 1753 18229155.66291 1754 1754 299795956.2502 1755 1754 723381.4630278 1756 1754 2805511.550704 1757 1754 39276420.11598 1839 1754 10279397.69313 1840 1754 -8385422.169798 1841 1754 -16619803.40013 1842 1754 43704396.30741 1843 1754 -694433.4439163 1844 1754 -56581165.5979 1845 1754 11581481.02689 1846 1754 9079855.613715 1847 1754 -20589184.71456 1860 1754 2090602.31093 1861 1754 -16840288.77577 1862 1754 -19738586.47615 1863 1754 8796437.017353 1864 1754 -1388866.887151 1865 1754 -59221381.24884 1866 1754 2351018.977684 1867 1754 18229155.66292 1868 1754 -27708914.75766 1755 1755 309814570.0165 1756 1755 6.437301635742e-06 1757 1755 462970.2969034 1758 1755 42076777.68823 1759 1755 7333333.332127 1760 1755 -318285.203467 1842 1755 -18569369.18862 1843 1755 9166666.669678 1844 1755 10279397.69313 1845 1755 -59565882.98117 1846 1755 4.91738319397e-07 1847 1755 43739118.52961 1848 1755 -20057887.18154 1849 1755 -9166666.669679 1850 1755 11581481.02689 1863 1755 -564939.8890041 1864 1755 -1833333.333934 1865 1755 -2032731.023757 1866 1755 27139753.66166 1867 1755 8.344650268555e-07 1868 1755 -8738562.979764 1869 1755 -3553812.994569 1870 1755 1833333.333932 1871 1755 -2293147.690507 1756 1756 265811394.6764 1757 1756 -5555467.545855 1758 1756 -7333333.332131 1759 1756 -27589753.44616 1760 1756 2749955.995158 1842 1756 9166666.669678 1843 1756 -15819170.72716 1844 1756 -8385422.169798 1845 1756 -5.811452865601e-07 1846 1756 -19232220.47929 1847 1756 -694433.4439163 1848 1756 -9166666.669679 1849 1756 -17307688.72007 1850 1756 9079855.613715 1863 1756 1833333.333937 1864 1756 -17981572.68118 1865 1756 -16840288.77576 1866 1756 8.940696716309e-07 1867 1756 16138959.82123 1868 1756 -1388866.887151 1869 1756 -1833333.333938 1870 1756 -20970445.78675 1871 1756 18229155.66291 1757 1757 299795956.2502 1758 1757 723381.4630278 1759 1757 2805511.550704 1760 1757 39276420.11598 1842 1757 10279397.69313 1843 1757 -8385422.169798 1844 1757 -16619803.40013 1845 1757 43704396.30741 1846 1757 -694433.4439163 1847 1757 -56581165.5979 1848 1757 11581481.02689 1849 1757 9079855.613715 1850 1757 -20589184.71456 1863 1757 2090602.31093 1864 1757 -16840288.77577 1865 1757 -19738586.47615 1866 1757 8796437.017353 1867 1757 -1388866.887151 1868 1757 -59221381.24884 1869 1757 2351018.977684 1870 1757 18229155.66292 1871 1757 -27708914.75766 1758 1758 309814570.0165 1759 1758 6.437301635742e-06 1760 1758 462970.2969034 1761 1758 42076777.68823 1762 1758 7333333.332127 1763 1758 -318285.203467 1845 1758 -18569369.18862 1846 1758 9166666.669678 1847 1758 10279397.69313 1848 1758 -59565882.98117 1849 1758 4.91738319397e-07 1850 1758 43739118.52961 1851 1758 -20057887.18154 1852 1758 -9166666.669679 1853 1758 11581481.02689 1866 1758 -564939.8890041 1867 1758 -1833333.333934 1868 1758 -2032731.023757 1869 1758 27139753.66166 1870 1758 8.344650268555e-07 1871 1758 -8738562.979764 1872 1758 -3553812.994569 1873 1758 1833333.333932 1874 1758 -2293147.690507 1759 1759 265811394.6764 1760 1759 -5555467.545855 1761 1759 -7333333.332131 1762 1759 -27589753.44616 1763 1759 2749955.995158 1845 1759 9166666.669678 1846 1759 -15819170.72716 1847 1759 -8385422.169798 1848 1759 -5.811452865601e-07 1849 1759 -19232220.47929 1850 1759 -694433.4439163 1851 1759 -9166666.669679 1852 1759 -17307688.72007 1853 1759 9079855.613715 1866 1759 1833333.333937 1867 1759 -17981572.68118 1868 1759 -16840288.77576 1869 1759 8.940696716309e-07 1870 1759 16138959.82123 1871 1759 -1388866.887151 1872 1759 -1833333.333938 1873 1759 -20970445.78675 1874 1759 18229155.66291 1760 1760 299795956.2502 1761 1760 723381.4630278 1762 1760 2805511.550704 1763 1760 39276420.11598 1845 1760 10279397.69313 1846 1760 -8385422.169798 1847 1760 -16619803.40013 1848 1760 43704396.30741 1849 1760 -694433.4439163 1850 1760 -56581165.5979 1851 1760 11581481.02689 1852 1760 9079855.613715 1853 1760 -20589184.71456 1866 1760 2090602.31093 1867 1760 -16840288.77577 1868 1760 -19738586.47615 1869 1760 8796437.017353 1870 1760 -1388866.887151 1871 1760 -59221381.24884 1872 1760 2351018.977684 1873 1760 18229155.66292 1874 1760 -27708914.75766 1761 1761 309814570.0165 1762 1761 6.437301635742e-06 1763 1761 462970.2969034 1764 1761 42076777.68823 1765 1761 7333333.332127 1766 1761 -318285.203467 1848 1761 -18569369.18862 1849 1761 9166666.669678 1850 1761 10279397.69313 1851 1761 -59565882.98117 1852 1761 4.91738319397e-07 1853 1761 43739118.52961 1854 1761 -20057887.18154 1855 1761 -9166666.669679 1856 1761 11581481.02689 1869 1761 -564939.8890041 1870 1761 -1833333.333934 1871 1761 -2032731.023757 1872 1761 27139753.66166 1873 1761 8.344650268555e-07 1874 1761 -8738562.979764 1875 1761 -3553812.994569 1876 1761 1833333.333932 1877 1761 -2293147.690507 1762 1762 265811394.6764 1763 1762 -5555467.545855 1764 1762 -7333333.332131 1765 1762 -27589753.44616 1766 1762 2749955.995158 1848 1762 9166666.669678 1849 1762 -15819170.72716 1850 1762 -8385422.169798 1851 1762 -5.811452865601e-07 1852 1762 -19232220.47929 1853 1762 -694433.4439163 1854 1762 -9166666.669679 1855 1762 -17307688.72007 1856 1762 9079855.613715 1869 1762 1833333.333937 1870 1762 -17981572.68118 1871 1762 -16840288.77576 1872 1762 8.940696716309e-07 1873 1762 16138959.82123 1874 1762 -1388866.887151 1875 1762 -1833333.333938 1876 1762 -20970445.78675 1877 1762 18229155.66291 1763 1763 299795956.2502 1764 1763 723381.4630278 1765 1763 2805511.550704 1766 1763 39276420.11598 1848 1763 10279397.69313 1849 1763 -8385422.169798 1850 1763 -16619803.40013 1851 1763 43704396.30741 1852 1763 -694433.4439163 1853 1763 -56581165.5979 1854 1763 11581481.02689 1855 1763 9079855.613715 1856 1763 -20589184.71456 1869 1763 2090602.31093 1870 1763 -16840288.77577 1871 1763 -19738586.47615 1872 1763 8796437.017353 1873 1763 -1388866.887151 1874 1763 -59221381.24884 1875 1763 2351018.977684 1876 1763 18229155.66292 1877 1763 -27708914.75766 1764 1764 309250160.3896 1765 1764 4535517.963994 1766 1764 2453066.565954 1767 1764 -8612767.502989 1768 1764 -26152871.16708 1769 1764 379949.2240047 1851 1764 -18569369.18862 1852 1764 9166666.669678 1853 1764 10279397.69313 1854 1764 -43745996.76765 1855 1764 6104008.873162 1856 1764 33740166.13061 1857 1764 -19561074.78605 1858 1764 -8033003.905467 1859 1764 11036649.36321 1872 1764 -564939.8890041 1873 1764 -1833333.333934 1874 1764 -2032731.023757 1875 1764 26998047.5617 1876 1764 1133879.491557 1877 1764 -8240761.134482 1878 1764 -17935124.94805 1879 1764 -6538217.79499 1880 1764 7751167.860229 1765 1765 292124118.8748 1766 1765 -3586804.318186 1767 1765 -40819537.83134 1768 1765 -71029376.04212 1769 1765 603908.8952657 1851 1765 9166666.669678 1852 1765 -15819170.72716 1853 1765 -8385422.169798 1854 1765 6104008.873161 1855 1765 -18661255.71884 1856 1765 -8204777.132884 1857 1765 -8033003.905467 1858 1765 -10093718.98084 1859 1765 8738711.937952 1872 1765 1833333.333937 1873 1765 -17981572.68118 1874 1765 -16840288.77576 1875 1765 1133879.491557 1876 1765 22716537.18088 1877 1765 -896701.0799925 1878 1765 -10204884.46286 1879 1765 -33539277.09052 1880 1765 25588477.22048 1766 1766 306596341.2044 1767 1766 553560.3350853 1768 1766 631686.6730388 1769 1766 21856446.47305 1851 1766 10279397.69313 1852 1766 -8385422.169798 1853 1766 -16619803.40013 1854 1766 33913777.24376 1855 1766 -8204777.131321 1856 1766 -47982126.11052 1857 1766 11036649.36321 1858 1766 8738711.937952 1859 1766 -17191433.96669 1872 1766 2090602.31093 1873 1766 -16840288.77577 1874 1766 -19738586.47615 1875 1766 9293683.307081 1876 1766 -896701.0799924 1877 1766 -57522894.85793 1878 1766 12186723.41529 1879 1766 25588477.21893 1880 1766 -36621043.23569 1767 1767 356868400.0533 1768 1767 48547468.5066 1769 1767 -63096.8105123 1770 1767 -69856382.4367 1771 1767 -44744536.85045 1772 1767 105372.1511744 1773 1767 12337681.15014 1774 1767 -11401155.62501 1775 1767 36049.28577423 1854 1767 -18648271.66148 1855 1767 1937722.859731 1856 1767 1037653.094121 1857 1767 -39544456.91598 1858 1767 10154153.16225 1859 1767 42822479.01589 1875 1767 -17192674.13802 1876 1767 -10204884.46286 1877 1767 -11944665.46985 1878 1767 -3912651.53854 1879 1767 12104000.90406 1880 1767 -8661308.958427 1881 1767 -34277798.50532 1882 1767 -11173569.78409 1883 1767 20338795.24285 1884 1767 -25252826.21741 1885 1767 -2817422.679089 1886 1767 7690935.964348 1768 1768 444796097.3529 1769 1768 -1421522.296491 1770 1768 -44744536.85045 1771 1768 -49860415.28467 1772 1768 71744.56828867 1773 1768 -26067822.28927 1774 1768 -59193385.75724 1775 1768 229034.039838 1854 1768 1937722.859731 1855 1768 -44033949.54609 1856 1768 -16387957.82287 1857 1768 10154153.16225 1858 1768 -7640862.557279 1859 1768 -8052235.36638 1875 1768 -6538217.794992 1876 1768 -32796826.2805 1877 1768 -25279578.32671 1878 1768 12104000.90406 1879 1768 18064676.36711 1880 1768 -355226.5980296 1881 1768 -11173569.78409 1882 1768 -29290720.43702 1883 1768 16684560.25241 1884 1768 -6484089.34696 1885 1768 -43130996.523 1886 1768 33390437.86157 1769 1769 481548525.3653 1770 1769 105372.1511744 1771 1769 71744.56828868 1772 1769 14856142.46274 1773 1769 105493.7302044 1774 1769 229034.0398379 1775 1769 67067300.58928 1854 1769 1037653.094121 1855 1769 -16387957.82287 1856 1769 -25517489.86743 1857 1769 42787756.79371 1858 1769 -8052235.364817 1859 1769 -82068933.30612 1875 1769 -7613276.581476 1876 1769 -25279578.32828 1877 1769 -34641174.40895 1878 1769 8456468.81654 1879 1769 -355226.5980297 1880 1769 -127782018.4958 1881 1769 20338795.24285 1882 1769 16684560.25241 1883 1769 -41224174.63896 1884 1769 11918435.96766 1885 1769 33390437.86157 1886 1769 -58976019.88741 1770 1770 235380342.1393 1771 1770 50243658.4468 1772 1770 -61365.24479413 1773 1770 -5955738.729899 1774 1770 744536.8576738 1775 1770 -47501.78083324 1857 1770 -23038281.86555 1858 1770 -1543523.106717 1859 1770 -5723810.576489 1878 1770 -34183101.53561 1879 1770 -11173569.78409 1880 1770 -20286204.77049 1881 1770 -19123839.31674 1882 1770 12543523.11033 1883 1770 8109690.206757 1884 1770 -35160837.88112 1885 1770 173569.7804715 1886 1770 -30849674.85978 1771 1771 216494851.0432 1772 1771 -57944.23316944 1773 1771 15411203.52193 1774 1771 63423294.1034 1775 1771 -71744.56828511 1857 1771 -5210189.774589 1858 1771 -40665167.35974 1859 1771 -33318863.54052 1878 1771 -11173569.78409 1879 1771 -29196023.4673 1880 1771 -16648773.09187 1881 1771 12543523.11033 1882 1771 -23840703.82989 1883 1771 6652196.878227 1884 1771 3840236.448343 1885 1771 -17804165.94208 1886 1771 3315439.754154 1772 1772 343596377.1744 1773 1772 -47501.78082988 1774 1772 -71744.56828505 1775 1772 110686534.3726 1857 1772 -13848810.57722 1858 1772 -33318863.54052 1859 1772 -72396132.49673 1878 1772 -20286204.77049 1879 1772 -16648773.09187 1880 1772 -40971649.38638 1881 1772 -8140309.790574 1882 1772 -6681136.452916 1883 1772 -121963274.0163 1884 1772 -30849674.86172 1885 1772 -3351226.914701 1886 1772 -62018439.03128 1773 1773 174382480.4459 1774 1773 -17932177.70351 1775 1773 -128641.8784312 1857 1773 -16957712.64106 1858 1773 7159763.555271 1859 1773 10508239.68408 1878 1773 -24968735.30843 1879 1773 -6484089.346963 1880 1773 -11866008.47688 1881 1773 -35160837.88111 1882 1773 3840236.448346 1883 1773 30826019.57453 1884 1773 -12970289.93401 1885 1773 -4515910.656654 1886 1773 -4242139.670585 1774 1774 199792991.8053 1775 1774 -229034.0398293 1857 1774 7159763.555271 1858 1774 -22736502.63185 1859 1774 -16648773.09187 1878 1774 -2817422.679091 1879 1774 -42846905.61403 1880 1774 -33276228.79415 1881 1774 173569.7804737 1882 1774 -17804165.94208 1883 1774 3315439.754155 1884 1774 -4515910.656654 1885 1774 -6670001.576668 1886 1774 6609562.131857 1775 1775 261744426.6576 1857 1775 10508239.68408 1858 1775 -16648773.09187 1859 1775 -34512128.55092 1878 1775 -7673230.695789 1879 1775 -33276228.79415 1880 1775 -58218444.13013 1881 1775 30826019.57261 1882 1775 -3351226.914701 1883 1775 -62018439.03128 1884 1775 4178138.10581 1885 1775 -6723771.199285 1886 1775 -85404523.65996 1776 1776 387435706.2613 1777 1776 36666666.66065 1778 1776 2662175.186034 1779 1776 -203296779.618 1780 1776 -36666973.09101 1781 1776 -2662152.453524 1782 1776 12401143.47877 1783 1776 29333639.75888 1784 1776 -2152799.783064 1887 1776 33963705.33589 1888 1776 9166666.669679 1889 1776 9519894.71657 1890 1776 -73633660.33315 1891 1776 -9166743.277268 1892 1776 -44520628.22528 1893 1776 -7828204.348046 1894 1776 7333409.943332 1895 1776 -9288430.506837 1777 1777 332431392.3218 1778 1777 -6944376.976808 1779 1777 -36667126.30619 1780 1777 -30960378.23954 1781 1777 -3847226.047119 1782 1777 44000459.63831 1783 1777 12401143.47877 1784 1777 2416692.493345 1887 1777 9166666.669679 1888 1777 20212626.84424 1889 1777 5347275.319281 1890 1777 -9166781.581064 1891 1777 -30549559.96733 1892 1777 -9732749.59088 1893 1777 11000114.915 1894 1777 -7828204.348045 1895 1777 11145949.53617 1778 1778 375187471.1352 1779 1778 -2662141.087263 1780 1778 -3097217.438217 1781 1778 -1482420.858694 1782 1778 -3229199.674597 1783 1778 1611128.328897 1784 1778 33069715.94339 1887 1778 -8015196.919944 1888 1778 -8680575.648187 1889 1778 -73923722.2424 1890 1778 -44485903.34313 1891 1778 -9538266.413314 1892 1778 -61195846.2912 1893 1778 -13932645.76025 1894 1778 7430633.02411 1895 1778 -20875211.59479 1779 1779 671761428.9985 1780 1779 36667432.73655 1781 1779 3125088.651632 1782 1779 19448570.31785 1783 1779 -36666973.09101 1784 1779 2702570.135099 1785 1779 -138432799.5 1786 1779 1.490116119385e-07 1787 1779 -462970.296923 1788 1779 -52308469.44899 1789 1779 36666666.66065 1790 1779 -2702548.129425 1887 1779 -72039530.38171 1888 1779 -9166781.581061 1889 1779 43189554.83944 1890 1779 73599694.87993 1891 1779 9166858.188655 1892 1779 781226.7976368 1893 1779 -19443104.86928 1894 1779 -9166743.27727 1895 1779 11639449.48452 1896 1779 -59964405.70834 1897 1779 7.525086402893e-07 1898 1779 -43970603.67818 1899 1779 -20163436.42398 1900 1779 9166666.669676 1901 1779 -11639352.31406 1780 1780 572753939.719 1781 1780 -8610914.043003 1782 1780 -36667126.30619 1783 1780 -108884310.9615 1784 1780 4611018.689007 1785 1780 -5.960464477539e-08 1786 1780 22901850.42796 1787 1780 -2777733.774299 1788 1780 36666666.66064 1789 1780 -41307675.60857 1790 1780 1513866.887135 1887 1780 -9166743.277267 1888 1780 -28955430.01587 1889 1780 7996602.428466 1890 1780 9166858.188655 1891 1780 48847822.54786 1892 1780 -2152764.803778 1893 1780 -9166781.581064 1894 1780 -51526325.20493 1895 1780 36236271.0855 1896 1780 3.725290298462e-07 1897 1780 -19630743.20649 1898 1780 -694433.4439167 1899 1780 9166666.669676 1900 1780 -17413237.96253 1901 1780 9149300.058182 1781 1781 607013167.9741 1782 1781 2737303.360137 1783 1781 5388804.78494 1784 1781 37600883.93994 1785 1781 -462970.2969232 1786 1781 -2777733.774298 1787 1781 39890623.87246 1788 1781 -2737270.351624 1789 1781 1541644.664895 1790 1781 -7895194.184061 1887 1781 43154829.95728 1888 1781 7802192.5578 1889 1781 -56944833.0873 1890 1781 781318.4370322 1891 1781 -2152691.493423 1892 1781 -99821807.80486 1893 1781 11639498.06975 1894 1781 36402939.91804 1895 1781 -55413772.21342 1896 1781 -43935881.45598 1897 1781 -694433.4439167 1898 1781 -57643892.87044 1899 1781 -11639352.31406 1900 1781 9149300.058182 1901 1781 -20870649.36111 1782 1782 387435706.2613 1783 1782 36666666.66065 1784 1782 2662175.186035 1785 1782 -52284795.20658 1786 1782 -36666666.66065 1787 1782 2505785.203048 1788 1782 -203296779.618 1789 1782 -36666973.09101 1790 1782 -2662152.453524 1791 1782 12401143.47877 1792 1782 29333639.75888 1793 1782 -2152799.783064 1887 1782 -4839277.140465 1888 1782 11000114.915 1889 1782 12370128.70975 1890 1782 -14860172.33131 1891 1782 -9166781.581062 1892 1782 -10279526.39882 1893 1782 33963705.33589 1894 1782 9166666.669679 1895 1782 9519894.71657 1896 1782 -18663081.30986 1897 1782 -9166666.669677 1898 1782 -10337268.9803 1899 1782 -73633660.33315 1900 1782 -9166743.277268 1901 1782 -44520628.22528 1902 1782 -7828204.348046 1903 1782 7333409.943332 1904 1782 -9288430.506837 1783 1783 332431392.3218 1784 1783 -6944376.976808 1785 1783 -36666666.66065 1786 1783 -41284001.36615 1787 1783 1263866.887163 1788 1783 -36667126.30619 1789 1783 -30960378.23954 1790 1783 -3847226.047119 1791 1783 44000459.63831 1792 1783 12401143.47877 1793 1783 2416692.493345 1887 1783 7333409.943332 1888 1783 -4839277.140466 1889 1783 -6597291.372073 1890 1783 -9166743.277267 1891 1783 -46943392.66696 1892 1783 -33736315.15602 1893 1783 9166666.669679 1894 1783 20212626.84424 1895 1783 5347275.319281 1896 1783 -9166666.669677 1897 1783 -15912882.8484 1898 1783 -8454866.614265 1899 1783 -9166781.581064 1900 1783 -30549559.96733 1901 1783 -9732749.59088 1902 1783 11000114.915 1903 1783 -7828204.348045 1904 1783 11145949.53617 1784 1784 375187471.1352 1785 1784 2471062.980849 1786 1784 1236089.109403 1787 1784 -7832062.870945 1788 1784 -2662141.087263 1789 1784 -3097217.438217 1790 1784 -1482420.858694 1791 1784 -3229199.674597 1792 1784 1611128.328897 1793 1784 33069715.94339 1887 1784 8246752.473166 1888 1784 -9895937.05811 1889 1784 -12904739.04124 1890 1784 -10279483.49692 1891 1784 -33902984.10692 1892 1784 -43192618.77883 1893 1784 -8015196.919944 1894 1784 -8680575.648187 1895 1784 -73923722.2424 1896 1784 -10337268.9803 1897 1784 -8454866.614265 1898 1784 -16869702.39011 1899 1784 -44485903.34313 1900 1784 -9538266.413314 1901 1784 -61195846.2912 1902 1784 -13932645.76025 1903 1784 7430633.02411 1904 1784 -20875211.59479 1785 1785 619629140.0329 1786 1785 1.168251037598e-05 1787 1785 925940.5938052 1788 1785 84152766.23505 1789 1785 -4.991888999939e-06 1790 1785 231485.148566 1794 1785 -138432799.5 1795 1785 1.490116119385e-07 1796 1785 -462970.296923 1797 1785 -52308469.44899 1798 1785 36666666.66065 1799 1785 -2702548.129425 1890 1785 -59565882.98117 1891 1785 4.91738319397e-07 1892 1785 43739118.52961 1893 1785 -20057887.18154 1894 1785 -9166666.669679 1895 1785 11581481.02689 1896 1785 54280296.46473 1897 1785 3.09944152832e-06 1898 1785 231485.1485852 1899 1785 -7107625.989141 1900 1785 -6.146728992462e-06 1901 1785 57871.2871768 1905 1785 -59964405.70834 1906 1785 7.525086402893e-07 1907 1785 -43970603.67818 1908 1785 -20163436.42398 1909 1785 9166666.669676 1910 1785 -11639352.31406 1786 1786 531622789.3528 1787 1786 -11110935.09172 1788 1786 -4.798173904419e-06 1789 1786 -55180296.03374 1790 1786 5555467.545859 1794 1786 -5.960464477539e-08 1795 1786 22901850.42796 1796 1786 -2777733.774299 1797 1786 36666666.66064 1798 1786 -41307675.60857 1799 1786 1513866.887135 1890 1786 -5.811452865601e-07 1891 1786 -19232220.47929 1892 1786 -694433.4439163 1893 1786 -9166666.669679 1894 1786 -17307688.72007 1895 1786 9079855.613715 1896 1786 3.635883331299e-06 1897 1786 32278708.78388 1898 1786 -2777733.774297 1899 1786 -5.349516868591e-06 1900 1786 -41940891.5735 1901 1786 36472200.21471 1905 1786 3.725290298462e-07 1906 1786 -19630743.20649 1907 1786 -694433.4439167 1908 1786 9166666.669676 1909 1786 -17413237.96253 1910 1786 9149300.058182 1787 1787 599591912.5003 1788 1787 231485.1485663 1789 1787 5555467.545859 1790 1787 78550735.85485 1794 1787 -462970.2969232 1795 1787 -2777733.774298 1796 1787 39890623.87246 1797 1787 -2737270.351624 1798 1787 1541644.664895 1799 1787 -7895194.184061 1890 1787 43704396.30741 1891 1787 -694433.4439163 1892 1787 -56581165.5979 1893 1787 11581481.02689 1894 1787 9079855.613715 1895 1787 -20589184.71456 1896 1787 231485.148585 1897 1787 -2777733.774298 1898 1787 -118440658.1206 1899 1787 57871.28717716 1900 1787 36444422.43695 1901 1787 -55417829.51533 1905 1787 -43935881.45598 1906 1787 -694433.4439167 1907 1787 -57643892.87044 1908 1787 -11639352.31406 1909 1787 9149300.058182 1910 1787 -20870649.36111 1788 1788 671761428.9985 1789 1788 36667432.73655 1790 1788 3125088.651632 1791 1788 19448570.31785 1792 1788 -36666973.09101 1793 1788 2702570.135099 1794 1788 -52284795.20658 1795 1788 -36666666.66065 1796 1788 2505785.203048 1797 1788 -138432799.5 1798 1788 1.490116119385e-07 1799 1788 -462970.296923 1800 1788 -52308469.44899 1801 1788 36666666.66065 1802 1788 -2702548.129425 1890 1788 -18569369.18862 1891 1788 9166666.669678 1892 1788 10279397.69313 1893 1788 -72039530.38171 1894 1788 -9166781.581061 1895 1788 43189554.83944 1896 1788 -1129879.778007 1897 1788 2.369284629822e-06 1898 1788 57871.28717239 1899 1788 73599694.87993 1900 1788 9166858.188655 1901 1788 781226.7976368 1902 1788 -19443104.86928 1903 1788 -9166743.27727 1904 1788 11639449.48452 1905 1788 -18663081.30986 1906 1788 -9166666.669677 1907 1788 -10337268.9803 1908 1788 -59964405.70834 1909 1788 7.525086402893e-07 1910 1788 -43970603.67818 1911 1788 -20163436.42398 1912 1788 9166666.669676 1913 1788 -11639352.31406 1789 1789 572753939.719 1790 1789 -8610914.043003 1791 1789 -36667126.30619 1792 1789 -108884310.9615 1793 1789 4611018.689007 1794 1789 -36666666.66065 1795 1789 -41284001.36615 1796 1789 1263866.887163 1797 1789 -5.960464477539e-08 1798 1789 22901850.42796 1799 1789 -2777733.774299 1800 1789 36666666.66064 1801 1789 -41307675.60857 1802 1789 1513866.887135 1890 1789 9166666.669678 1891 1789 -15819170.72716 1892 1789 -8385422.169798 1893 1789 -9166743.277267 1894 1789 -28955430.01587 1895 1789 7996602.428466 1896 1789 2.913177013397e-06 1897 1789 -35963145.36236 1898 1789 -33694466.44041 1899 1789 9166858.188655 1900 1789 48847822.54786 1901 1789 -2152764.803778 1902 1789 -9166781.581064 1903 1789 -51526325.20493 1904 1789 36236271.0855 1905 1789 -9166666.669677 1906 1789 -15912882.8484 1907 1789 -8454866.614265 1908 1789 3.725290298462e-07 1909 1789 -19630743.20649 1910 1789 -694433.4439167 1911 1789 9166666.669676 1912 1789 -17413237.96253 1913 1789 9149300.058182 1790 1790 607013167.9741 1791 1790 2737303.360137 1792 1790 5388804.78494 1793 1790 37600883.93994 1794 1790 2471062.980849 1795 1790 1236089.109403 1796 1790 -7832062.870945 1797 1790 -462970.2969232 1798 1790 -2777733.774298 1799 1790 39890623.87246 1800 1790 -2737270.351624 1801 1790 1541644.664895 1802 1790 -7895194.184061 1890 1790 10279397.69313 1891 1790 -8385422.169798 1892 1790 -16619803.40013 1893 1790 43154829.95728 1894 1790 7802192.5578 1895 1790 -56944833.0873 1896 1790 57871.28717278 1897 1790 -33666688.66265 1898 1790 -39477172.9523 1899 1790 781318.4370322 1900 1790 -2152691.493423 1901 1790 -99821807.80486 1902 1790 11639498.06975 1903 1790 36402939.91804 1904 1790 -55413772.21342 1905 1790 -10337268.9803 1906 1790 -8454866.614265 1907 1790 -16869702.39011 1908 1790 -43935881.45598 1909 1790 -694433.4439167 1910 1790 -57643892.87044 1911 1790 -11639352.31406 1912 1790 9149300.058182 1913 1790 -20870649.36111 1791 1791 387435706.2613 1792 1791 36666666.66065 1793 1791 2662175.186035 1797 1791 -52284795.20658 1798 1791 -36666666.66065 1799 1791 2505785.203048 1800 1791 -203296779.618 1801 1791 -36666973.09101 1802 1791 -2662152.453524 1803 1791 12401143.47877 1804 1791 29333639.75888 1805 1791 -2152799.783064 1893 1791 -4839277.140465 1894 1791 11000114.915 1895 1791 12370128.70975 1899 1791 -14860172.33131 1900 1791 -9166781.581062 1901 1791 -10279526.39882 1902 1791 33963705.33589 1903 1791 9166666.669679 1904 1791 9519894.71657 1908 1791 -18663081.30986 1909 1791 -9166666.669677 1910 1791 -10337268.9803 1911 1791 -73633660.33315 1912 1791 -9166743.277268 1913 1791 -44520628.22528 1914 1791 -7828204.348046 1915 1791 7333409.943332 1916 1791 -9288430.506837 1792 1792 332431392.3218 1793 1792 -6944376.976808 1797 1792 -36666666.66065 1798 1792 -41284001.36615 1799 1792 1263866.887163 1800 1792 -36667126.30619 1801 1792 -30960378.23954 1802 1792 -3847226.047119 1803 1792 44000459.63831 1804 1792 12401143.47877 1805 1792 2416692.493345 1893 1792 7333409.943332 1894 1792 -4839277.140466 1895 1792 -6597291.372073 1899 1792 -9166743.277267 1900 1792 -46943392.66696 1901 1792 -33736315.15602 1902 1792 9166666.669679 1903 1792 20212626.84424 1904 1792 5347275.319281 1908 1792 -9166666.669677 1909 1792 -15912882.8484 1910 1792 -8454866.614265 1911 1792 -9166781.581064 1912 1792 -30549559.96733 1913 1792 -9732749.59088 1914 1792 11000114.915 1915 1792 -7828204.348045 1916 1792 11145949.53617 1793 1793 375187471.1352 1797 1793 2471062.980849 1798 1793 1236089.109403 1799 1793 -7832062.870945 1800 1793 -2662141.087263 1801 1793 -3097217.438217 1802 1793 -1482420.858694 1803 1793 -3229199.674597 1804 1793 1611128.328897 1805 1793 33069715.94339 1893 1793 8246752.473166 1894 1793 -9895937.05811 1895 1793 -12904739.04124 1899 1793 -10279483.49692 1900 1793 -33902984.10692 1901 1793 -43192618.77883 1902 1793 -8015196.919944 1903 1793 -8680575.648187 1904 1793 -73923722.2424 1908 1793 -10337268.9803 1909 1793 -8454866.614265 1910 1793 -16869702.39011 1911 1793 -44485903.34313 1912 1793 -9538266.413314 1913 1793 -61195846.2912 1914 1793 -13932645.76025 1915 1793 7430633.02411 1916 1793 -20875211.59479 1794 1794 619629140.0329 1795 1794 1.168251037598e-05 1796 1794 925940.5938052 1797 1794 84152766.23505 1798 1794 -4.991888999939e-06 1799 1794 231485.148566 1806 1794 -138432799.5 1807 1794 1.490116119385e-07 1808 1794 -462970.296923 1809 1794 -52308469.44899 1810 1794 36666666.66065 1811 1794 -2702548.129425 1896 1794 -59565882.98117 1897 1794 4.91738319397e-07 1898 1794 43739118.52961 1899 1794 -20057887.18154 1900 1794 -9166666.669679 1901 1794 11581481.02689 1905 1794 54280296.46473 1906 1794 3.09944152832e-06 1907 1794 231485.1485852 1908 1794 -7107625.989141 1909 1794 -6.146728992462e-06 1910 1794 57871.2871768 1917 1794 -59964405.70834 1918 1794 7.525086402893e-07 1919 1794 -43970603.67818 1920 1794 -20163436.42398 1921 1794 9166666.669676 1922 1794 -11639352.31406 1795 1795 531622789.3528 1796 1795 -11110935.09172 1797 1795 -4.798173904419e-06 1798 1795 -55180296.03374 1799 1795 5555467.545859 1806 1795 -5.960464477539e-08 1807 1795 22901850.42796 1808 1795 -2777733.774299 1809 1795 36666666.66064 1810 1795 -41307675.60857 1811 1795 1513866.887135 1896 1795 -5.811452865601e-07 1897 1795 -19232220.47929 1898 1795 -694433.4439163 1899 1795 -9166666.669679 1900 1795 -17307688.72007 1901 1795 9079855.613715 1905 1795 3.635883331299e-06 1906 1795 32278708.78388 1907 1795 -2777733.774297 1908 1795 -5.349516868591e-06 1909 1795 -41940891.5735 1910 1795 36472200.21471 1917 1795 3.725290298462e-07 1918 1795 -19630743.20649 1919 1795 -694433.4439167 1920 1795 9166666.669676 1921 1795 -17413237.96253 1922 1795 9149300.058182 1796 1796 599591912.5003 1797 1796 231485.1485663 1798 1796 5555467.545859 1799 1796 78550735.85485 1806 1796 -462970.2969232 1807 1796 -2777733.774298 1808 1796 39890623.87246 1809 1796 -2737270.351624 1810 1796 1541644.664895 1811 1796 -7895194.184061 1896 1796 43704396.30741 1897 1796 -694433.4439163 1898 1796 -56581165.5979 1899 1796 11581481.02689 1900 1796 9079855.613715 1901 1796 -20589184.71456 1905 1796 231485.148585 1906 1796 -2777733.774298 1907 1796 -118440658.1206 1908 1796 57871.28717716 1909 1796 36444422.43695 1910 1796 -55417829.51533 1917 1796 -43935881.45598 1918 1796 -694433.4439167 1919 1796 -57643892.87044 1920 1796 -11639352.31406 1921 1796 9149300.058182 1922 1796 -20870649.36111 1797 1797 619629140.0329 1798 1797 1.168251037598e-05 1799 1797 925940.5938052 1800 1797 84152766.23505 1801 1797 -4.991888999939e-06 1802 1797 231485.148566 1806 1797 -52284795.20658 1807 1797 -36666666.66065 1808 1797 2505785.203048 1809 1797 -138432799.5 1810 1797 1.490116119385e-07 1811 1797 -462970.296923 1812 1797 -52308469.44899 1813 1797 36666666.66065 1814 1797 -2702548.129425 1896 1797 -18569369.18862 1897 1797 9166666.669678 1898 1797 10279397.69313 1899 1797 -59565882.98117 1900 1797 4.91738319397e-07 1901 1797 43739118.52961 1902 1797 -20057887.18154 1903 1797 -9166666.669679 1904 1797 11581481.02689 1905 1797 -1129879.778007 1906 1797 2.369284629822e-06 1907 1797 57871.28717239 1908 1797 54280296.46473 1909 1797 3.09944152832e-06 1910 1797 231485.1485852 1911 1797 -7107625.989141 1912 1797 -6.146728992462e-06 1913 1797 57871.2871768 1917 1797 -18663081.30986 1918 1797 -9166666.669677 1919 1797 -10337268.9803 1920 1797 -59964405.70834 1921 1797 7.525086402893e-07 1922 1797 -43970603.67818 1923 1797 -20163436.42398 1924 1797 9166666.669676 1925 1797 -11639352.31406 1798 1798 531622789.3528 1799 1798 -11110935.09172 1800 1798 -4.798173904419e-06 1801 1798 -55180296.03374 1802 1798 5555467.545859 1806 1798 -36666666.66065 1807 1798 -41284001.36615 1808 1798 1263866.887163 1809 1798 -5.960464477539e-08 1810 1798 22901850.42796 1811 1798 -2777733.774299 1812 1798 36666666.66064 1813 1798 -41307675.60857 1814 1798 1513866.887135 1896 1798 9166666.669678 1897 1798 -15819170.72716 1898 1798 -8385422.169798 1899 1798 -5.811452865601e-07 1900 1798 -19232220.47929 1901 1798 -694433.4439163 1902 1798 -9166666.669679 1903 1798 -17307688.72007 1904 1798 9079855.613715 1905 1798 2.913177013397e-06 1906 1798 -35963145.36236 1907 1798 -33694466.44041 1908 1798 3.635883331299e-06 1909 1798 32278708.78388 1910 1798 -2777733.774297 1911 1798 -5.349516868591e-06 1912 1798 -41940891.5735 1913 1798 36472200.21471 1917 1798 -9166666.669677 1918 1798 -15912882.8484 1919 1798 -8454866.614265 1920 1798 3.725290298462e-07 1921 1798 -19630743.20649 1922 1798 -694433.4439167 1923 1798 9166666.669676 1924 1798 -17413237.96253 1925 1798 9149300.058182 1799 1799 599591912.5003 1800 1799 231485.1485663 1801 1799 5555467.545859 1802 1799 78550735.85485 1806 1799 2471062.980849 1807 1799 1236089.109403 1808 1799 -7832062.870945 1809 1799 -462970.2969232 1810 1799 -2777733.774298 1811 1799 39890623.87246 1812 1799 -2737270.351624 1813 1799 1541644.664895 1814 1799 -7895194.184061 1896 1799 10279397.69313 1897 1799 -8385422.169798 1898 1799 -16619803.40013 1899 1799 43704396.30741 1900 1799 -694433.4439163 1901 1799 -56581165.5979 1902 1799 11581481.02689 1903 1799 9079855.613715 1904 1799 -20589184.71456 1905 1799 57871.28717278 1906 1799 -33666688.66265 1907 1799 -39477172.9523 1908 1799 231485.148585 1909 1799 -2777733.774298 1910 1799 -118440658.1206 1911 1799 57871.28717716 1912 1799 36444422.43695 1913 1799 -55417829.51533 1917 1799 -10337268.9803 1918 1799 -8454866.614265 1919 1799 -16869702.39011 1920 1799 -43935881.45598 1921 1799 -694433.4439167 1922 1799 -57643892.87044 1923 1799 -11639352.31406 1924 1799 9149300.058182 1925 1799 -20870649.36111 1800 1800 671761428.9985 1801 1800 36667432.73655 1802 1800 3125088.651632 1803 1800 19448570.31785 1804 1800 -36666973.09101 1805 1800 2702570.135099 1809 1800 -52284795.20658 1810 1800 -36666666.66065 1811 1800 2505785.203048 1812 1800 -138432799.5 1813 1800 1.490116119385e-07 1814 1800 -462970.296923 1815 1800 -52308469.44899 1816 1800 36666666.66065 1817 1800 -2702548.129425 1899 1800 -18569369.18862 1900 1800 9166666.669678 1901 1800 10279397.69313 1902 1800 -72039530.38171 1903 1800 -9166781.581061 1904 1800 43189554.83944 1908 1800 -1129879.778007 1909 1800 2.369284629822e-06 1910 1800 57871.28717239 1911 1800 73599694.87993 1912 1800 9166858.188655 1913 1800 781226.7976368 1914 1800 -19443104.86928 1915 1800 -9166743.27727 1916 1800 11639449.48452 1920 1800 -18663081.30986 1921 1800 -9166666.669677 1922 1800 -10337268.9803 1923 1800 -59964405.70834 1924 1800 7.525086402893e-07 1925 1800 -43970603.67818 1926 1800 -20163436.42398 1927 1800 9166666.669676 1928 1800 -11639352.31406 1801 1801 572753939.719 1802 1801 -8610914.043003 1803 1801 -36667126.30619 1804 1801 -108884310.9615 1805 1801 4611018.689007 1809 1801 -36666666.66065 1810 1801 -41284001.36615 1811 1801 1263866.887163 1812 1801 -5.960464477539e-08 1813 1801 22901850.42796 1814 1801 -2777733.774299 1815 1801 36666666.66064 1816 1801 -41307675.60857 1817 1801 1513866.887135 1899 1801 9166666.669678 1900 1801 -15819170.72716 1901 1801 -8385422.169798 1902 1801 -9166743.277267 1903 1801 -28955430.01587 1904 1801 7996602.428466 1908 1801 2.913177013397e-06 1909 1801 -35963145.36236 1910 1801 -33694466.44041 1911 1801 9166858.188655 1912 1801 48847822.54786 1913 1801 -2152764.803778 1914 1801 -9166781.581064 1915 1801 -51526325.20493 1916 1801 36236271.0855 1920 1801 -9166666.669677 1921 1801 -15912882.8484 1922 1801 -8454866.614265 1923 1801 3.725290298462e-07 1924 1801 -19630743.20649 1925 1801 -694433.4439167 1926 1801 9166666.669676 1927 1801 -17413237.96253 1928 1801 9149300.058182 1802 1802 607013167.9741 1803 1802 2737303.360137 1804 1802 5388804.78494 1805 1802 37600883.93994 1809 1802 2471062.980849 1810 1802 1236089.109403 1811 1802 -7832062.870945 1812 1802 -462970.2969232 1813 1802 -2777733.774298 1814 1802 39890623.87246 1815 1802 -2737270.351624 1816 1802 1541644.664895 1817 1802 -7895194.184061 1899 1802 10279397.69313 1900 1802 -8385422.169798 1901 1802 -16619803.40013 1902 1802 43154829.95728 1903 1802 7802192.5578 1904 1802 -56944833.0873 1908 1802 57871.28717278 1909 1802 -33666688.66265 1910 1802 -39477172.9523 1911 1802 781318.4370322 1912 1802 -2152691.493423 1913 1802 -99821807.80486 1914 1802 11639498.06975 1915 1802 36402939.91804 1916 1802 -55413772.21342 1920 1802 -10337268.9803 1921 1802 -8454866.614265 1922 1802 -16869702.39011 1923 1802 -43935881.45598 1924 1802 -694433.4439167 1925 1802 -57643892.87044 1926 1802 -11639352.31406 1927 1802 9149300.058182 1928 1802 -20870649.36111 1803 1803 387435706.2613 1804 1803 36666666.66065 1805 1803 2662175.186035 1812 1803 -52284795.20658 1813 1803 -36666666.66065 1814 1803 2505785.203048 1815 1803 -203296779.618 1816 1803 -36666973.09101 1817 1803 -2662152.453524 1818 1803 12401143.47877 1819 1803 29333639.75888 1820 1803 -2152799.783064 1902 1803 -4839277.140465 1903 1803 11000114.915 1904 1803 12370128.70975 1911 1803 -14860172.33131 1912 1803 -9166781.581062 1913 1803 -10279526.39882 1914 1803 33963705.33589 1915 1803 9166666.669679 1916 1803 9519894.71657 1923 1803 -18663081.30986 1924 1803 -9166666.669677 1925 1803 -10337268.9803 1926 1803 -73633660.33315 1927 1803 -9166743.277268 1928 1803 -44520628.22528 1929 1803 -7828204.348046 1930 1803 7333409.943332 1931 1803 -9288430.506837 1804 1804 332431392.3218 1805 1804 -6944376.976808 1812 1804 -36666666.66065 1813 1804 -41284001.36615 1814 1804 1263866.887163 1815 1804 -36667126.30619 1816 1804 -30960378.23954 1817 1804 -3847226.047119 1818 1804 44000459.63831 1819 1804 12401143.47877 1820 1804 2416692.493345 1902 1804 7333409.943332 1903 1804 -4839277.140466 1904 1804 -6597291.372073 1911 1804 -9166743.277267 1912 1804 -46943392.66696 1913 1804 -33736315.15602 1914 1804 9166666.669679 1915 1804 20212626.84424 1916 1804 5347275.319281 1923 1804 -9166666.669677 1924 1804 -15912882.8484 1925 1804 -8454866.614265 1926 1804 -9166781.581064 1927 1804 -30549559.96733 1928 1804 -9732749.59088 1929 1804 11000114.915 1930 1804 -7828204.348045 1931 1804 11145949.53617 1805 1805 375187471.1352 1812 1805 2471062.980849 1813 1805 1236089.109403 1814 1805 -7832062.870945 1815 1805 -2662141.087263 1816 1805 -3097217.438217 1817 1805 -1482420.858694 1818 1805 -3229199.674597 1819 1805 1611128.328897 1820 1805 33069715.94339 1902 1805 8246752.473166 1903 1805 -9895937.05811 1904 1805 -12904739.04124 1911 1805 -10279483.49692 1912 1805 -33902984.10692 1913 1805 -43192618.77883 1914 1805 -8015196.919944 1915 1805 -8680575.648187 1916 1805 -73923722.2424 1923 1805 -10337268.9803 1924 1805 -8454866.614265 1925 1805 -16869702.39011 1926 1805 -44485903.34313 1927 1805 -9538266.413314 1928 1805 -61195846.2912 1929 1805 -13932645.76025 1930 1805 7430633.02411 1931 1805 -20875211.59479 1806 1806 619629140.0329 1807 1806 1.168251037598e-05 1808 1806 925940.5938052 1809 1806 84152766.23505 1810 1806 -4.991888999939e-06 1811 1806 231485.148566 1821 1806 -138432799.5 1822 1806 1.490116119385e-07 1823 1806 -462970.296923 1824 1806 -52308469.44899 1825 1806 36666666.66065 1826 1806 -2702548.129425 1905 1806 -59565882.98117 1906 1806 4.91738319397e-07 1907 1806 43739118.52961 1908 1806 -20057887.18154 1909 1806 -9166666.669679 1910 1806 11581481.02689 1917 1806 54280296.46473 1918 1806 3.09944152832e-06 1919 1806 231485.1485852 1920 1806 -7107625.989141 1921 1806 -6.146728992462e-06 1922 1806 57871.2871768 1932 1806 -59964405.70834 1933 1806 7.525086402893e-07 1934 1806 -43970603.67818 1935 1806 -20163436.42398 1936 1806 9166666.669676 1937 1806 -11639352.31406 1807 1807 531622789.3528 1808 1807 -11110935.09172 1809 1807 -4.798173904419e-06 1810 1807 -55180296.03374 1811 1807 5555467.545859 1821 1807 -5.960464477539e-08 1822 1807 22901850.42796 1823 1807 -2777733.774299 1824 1807 36666666.66064 1825 1807 -41307675.60857 1826 1807 1513866.887135 1905 1807 -5.811452865601e-07 1906 1807 -19232220.47929 1907 1807 -694433.4439163 1908 1807 -9166666.669679 1909 1807 -17307688.72007 1910 1807 9079855.613715 1917 1807 3.635883331299e-06 1918 1807 32278708.78388 1919 1807 -2777733.774297 1920 1807 -5.349516868591e-06 1921 1807 -41940891.5735 1922 1807 36472200.21471 1932 1807 3.725290298462e-07 1933 1807 -19630743.20649 1934 1807 -694433.4439167 1935 1807 9166666.669676 1936 1807 -17413237.96253 1937 1807 9149300.058182 1808 1808 599591912.5003 1809 1808 231485.1485663 1810 1808 5555467.545859 1811 1808 78550735.85485 1821 1808 -462970.2969232 1822 1808 -2777733.774298 1823 1808 39890623.87246 1824 1808 -2737270.351624 1825 1808 1541644.664895 1826 1808 -7895194.184061 1905 1808 43704396.30741 1906 1808 -694433.4439163 1907 1808 -56581165.5979 1908 1808 11581481.02689 1909 1808 9079855.613715 1910 1808 -20589184.71456 1917 1808 231485.148585 1918 1808 -2777733.774298 1919 1808 -118440658.1206 1920 1808 57871.28717716 1921 1808 36444422.43695 1922 1808 -55417829.51533 1932 1808 -43935881.45598 1933 1808 -694433.4439167 1934 1808 -57643892.87044 1935 1808 -11639352.31406 1936 1808 9149300.058182 1937 1808 -20870649.36111 1809 1809 619629140.0329 1810 1809 1.168251037598e-05 1811 1809 925940.5938052 1812 1809 84152766.23505 1813 1809 -4.991888999939e-06 1814 1809 231485.148566 1821 1809 -52284795.20658 1822 1809 -36666666.66065 1823 1809 2505785.203048 1824 1809 -138432799.5 1825 1809 1.490116119385e-07 1826 1809 -462970.296923 1827 1809 -52308469.44899 1828 1809 36666666.66065 1829 1809 -2702548.129425 1905 1809 -18569369.18862 1906 1809 9166666.669678 1907 1809 10279397.69313 1908 1809 -59565882.98117 1909 1809 4.91738319397e-07 1910 1809 43739118.52961 1911 1809 -20057887.18154 1912 1809 -9166666.669679 1913 1809 11581481.02689 1917 1809 -1129879.778007 1918 1809 2.369284629822e-06 1919 1809 57871.28717239 1920 1809 54280296.46473 1921 1809 3.09944152832e-06 1922 1809 231485.1485852 1923 1809 -7107625.989141 1924 1809 -6.146728992462e-06 1925 1809 57871.2871768 1932 1809 -18663081.30986 1933 1809 -9166666.669677 1934 1809 -10337268.9803 1935 1809 -59964405.70834 1936 1809 7.525086402893e-07 1937 1809 -43970603.67818 1938 1809 -20163436.42398 1939 1809 9166666.669676 1940 1809 -11639352.31406 1810 1810 531622789.3528 1811 1810 -11110935.09172 1812 1810 -4.798173904419e-06 1813 1810 -55180296.03374 1814 1810 5555467.545859 1821 1810 -36666666.66065 1822 1810 -41284001.36615 1823 1810 1263866.887163 1824 1810 -5.960464477539e-08 1825 1810 22901850.42796 1826 1810 -2777733.774299 1827 1810 36666666.66064 1828 1810 -41307675.60857 1829 1810 1513866.887135 1905 1810 9166666.669678 1906 1810 -15819170.72716 1907 1810 -8385422.169798 1908 1810 -5.811452865601e-07 1909 1810 -19232220.47929 1910 1810 -694433.4439163 1911 1810 -9166666.669679 1912 1810 -17307688.72007 1913 1810 9079855.613715 1917 1810 2.913177013397e-06 1918 1810 -35963145.36236 1919 1810 -33694466.44041 1920 1810 3.635883331299e-06 1921 1810 32278708.78388 1922 1810 -2777733.774297 1923 1810 -5.349516868591e-06 1924 1810 -41940891.5735 1925 1810 36472200.21471 1932 1810 -9166666.669677 1933 1810 -15912882.8484 1934 1810 -8454866.614265 1935 1810 3.725290298462e-07 1936 1810 -19630743.20649 1937 1810 -694433.4439167 1938 1810 9166666.669676 1939 1810 -17413237.96253 1940 1810 9149300.058182 1811 1811 599591912.5003 1812 1811 231485.1485663 1813 1811 5555467.545859 1814 1811 78550735.85485 1821 1811 2471062.980849 1822 1811 1236089.109403 1823 1811 -7832062.870945 1824 1811 -462970.2969232 1825 1811 -2777733.774298 1826 1811 39890623.87246 1827 1811 -2737270.351624 1828 1811 1541644.664895 1829 1811 -7895194.184061 1905 1811 10279397.69313 1906 1811 -8385422.169798 1907 1811 -16619803.40013 1908 1811 43704396.30741 1909 1811 -694433.4439163 1910 1811 -56581165.5979 1911 1811 11581481.02689 1912 1811 9079855.613715 1913 1811 -20589184.71456 1917 1811 57871.28717278 1918 1811 -33666688.66265 1919 1811 -39477172.9523 1920 1811 231485.148585 1921 1811 -2777733.774298 1922 1811 -118440658.1206 1923 1811 57871.28717716 1924 1811 36444422.43695 1925 1811 -55417829.51533 1932 1811 -10337268.9803 1933 1811 -8454866.614265 1934 1811 -16869702.39011 1935 1811 -43935881.45598 1936 1811 -694433.4439167 1937 1811 -57643892.87044 1938 1811 -11639352.31406 1939 1811 9149300.058182 1940 1811 -20870649.36111 1812 1812 619629140.0329 1813 1812 1.168251037598e-05 1814 1812 925940.5938052 1815 1812 84152766.23505 1816 1812 -4.991888999939e-06 1817 1812 231485.148566 1824 1812 -52284795.20658 1825 1812 -36666666.66065 1826 1812 2505785.203048 1827 1812 -138432799.5 1828 1812 1.490116119385e-07 1829 1812 -462970.296923 1830 1812 -52308469.44899 1831 1812 36666666.66065 1832 1812 -2702548.129425 1908 1812 -18569369.18862 1909 1812 9166666.669678 1910 1812 10279397.69313 1911 1812 -59565882.98117 1912 1812 4.91738319397e-07 1913 1812 43739118.52961 1914 1812 -20057887.18154 1915 1812 -9166666.669679 1916 1812 11581481.02689 1920 1812 -1129879.778007 1921 1812 2.369284629822e-06 1922 1812 57871.28717239 1923 1812 54280296.46473 1924 1812 3.09944152832e-06 1925 1812 231485.1485852 1926 1812 -7107625.989141 1927 1812 -6.146728992462e-06 1928 1812 57871.2871768 1935 1812 -18663081.30986 1936 1812 -9166666.669677 1937 1812 -10337268.9803 1938 1812 -59964405.70834 1939 1812 7.525086402893e-07 1940 1812 -43970603.67818 1941 1812 -20163436.42398 1942 1812 9166666.669676 1943 1812 -11639352.31406 1813 1813 531622789.3528 1814 1813 -11110935.09172 1815 1813 -4.798173904419e-06 1816 1813 -55180296.03374 1817 1813 5555467.545859 1824 1813 -36666666.66065 1825 1813 -41284001.36615 1826 1813 1263866.887163 1827 1813 -5.960464477539e-08 1828 1813 22901850.42796 1829 1813 -2777733.774299 1830 1813 36666666.66064 1831 1813 -41307675.60857 1832 1813 1513866.887135 1908 1813 9166666.669678 1909 1813 -15819170.72716 1910 1813 -8385422.169798 1911 1813 -5.811452865601e-07 1912 1813 -19232220.47929 1913 1813 -694433.4439163 1914 1813 -9166666.669679 1915 1813 -17307688.72007 1916 1813 9079855.613715 1920 1813 2.913177013397e-06 1921 1813 -35963145.36236 1922 1813 -33694466.44041 1923 1813 3.635883331299e-06 1924 1813 32278708.78388 1925 1813 -2777733.774297 1926 1813 -5.349516868591e-06 1927 1813 -41940891.5735 1928 1813 36472200.21471 1935 1813 -9166666.669677 1936 1813 -15912882.8484 1937 1813 -8454866.614265 1938 1813 3.725290298462e-07 1939 1813 -19630743.20649 1940 1813 -694433.4439167 1941 1813 9166666.669676 1942 1813 -17413237.96253 1943 1813 9149300.058182 1814 1814 599591912.5003 1815 1814 231485.1485663 1816 1814 5555467.545859 1817 1814 78550735.85485 1824 1814 2471062.980849 1825 1814 1236089.109403 1826 1814 -7832062.870945 1827 1814 -462970.2969232 1828 1814 -2777733.774298 1829 1814 39890623.87246 1830 1814 -2737270.351624 1831 1814 1541644.664895 1832 1814 -7895194.184061 1908 1814 10279397.69313 1909 1814 -8385422.169798 1910 1814 -16619803.40013 1911 1814 43704396.30741 1912 1814 -694433.4439163 1913 1814 -56581165.5979 1914 1814 11581481.02689 1915 1814 9079855.613715 1916 1814 -20589184.71456 1920 1814 57871.28717278 1921 1814 -33666688.66265 1922 1814 -39477172.9523 1923 1814 231485.148585 1924 1814 -2777733.774298 1925 1814 -118440658.1206 1926 1814 57871.28717716 1927 1814 36444422.43695 1928 1814 -55417829.51533 1935 1814 -10337268.9803 1936 1814 -8454866.614265 1937 1814 -16869702.39011 1938 1814 -43935881.45598 1939 1814 -694433.4439167 1940 1814 -57643892.87044 1941 1814 -11639352.31406 1942 1814 9149300.058182 1943 1814 -20870649.36111 1815 1815 671761428.9985 1816 1815 36667432.73655 1817 1815 3125088.651632 1818 1815 19448570.31785 1819 1815 -36666973.09101 1820 1815 2702570.135099 1827 1815 -52284795.20658 1828 1815 -36666666.66065 1829 1815 2505785.203048 1830 1815 -138432799.5 1831 1815 1.490116119385e-07 1832 1815 -462970.296923 1833 1815 -52308469.44899 1834 1815 36666666.66065 1835 1815 -2702548.129425 1911 1815 -18569369.18862 1912 1815 9166666.669678 1913 1815 10279397.69313 1914 1815 -72039530.38171 1915 1815 -9166781.581061 1916 1815 43189554.83944 1923 1815 -1129879.778007 1924 1815 2.369284629822e-06 1925 1815 57871.28717239 1926 1815 73599694.87993 1927 1815 9166858.188655 1928 1815 781226.7976368 1929 1815 -19443104.86928 1930 1815 -9166743.27727 1931 1815 11639449.48452 1938 1815 -18663081.30986 1939 1815 -9166666.669677 1940 1815 -10337268.9803 1941 1815 -59964405.70834 1942 1815 7.525086402893e-07 1943 1815 -43970603.67818 1944 1815 -20163436.42398 1945 1815 9166666.669676 1946 1815 -11639352.31406 1816 1816 572753939.719 1817 1816 -8610914.043003 1818 1816 -36667126.30619 1819 1816 -108884310.9615 1820 1816 4611018.689007 1827 1816 -36666666.66065 1828 1816 -41284001.36615 1829 1816 1263866.887163 1830 1816 -5.960464477539e-08 1831 1816 22901850.42796 1832 1816 -2777733.774299 1833 1816 36666666.66064 1834 1816 -41307675.60857 1835 1816 1513866.887135 1911 1816 9166666.669678 1912 1816 -15819170.72716 1913 1816 -8385422.169798 1914 1816 -9166743.277267 1915 1816 -28955430.01587 1916 1816 7996602.428466 1923 1816 2.913177013397e-06 1924 1816 -35963145.36236 1925 1816 -33694466.44041 1926 1816 9166858.188655 1927 1816 48847822.54786 1928 1816 -2152764.803778 1929 1816 -9166781.581064 1930 1816 -51526325.20493 1931 1816 36236271.0855 1938 1816 -9166666.669677 1939 1816 -15912882.8484 1940 1816 -8454866.614265 1941 1816 3.725290298462e-07 1942 1816 -19630743.20649 1943 1816 -694433.4439167 1944 1816 9166666.669676 1945 1816 -17413237.96253 1946 1816 9149300.058182 1817 1817 607013167.9741 1818 1817 2737303.360137 1819 1817 5388804.78494 1820 1817 37600883.93994 1827 1817 2471062.980849 1828 1817 1236089.109403 1829 1817 -7832062.870945 1830 1817 -462970.2969232 1831 1817 -2777733.774298 1832 1817 39890623.87246 1833 1817 -2737270.351624 1834 1817 1541644.664895 1835 1817 -7895194.184061 1911 1817 10279397.69313 1912 1817 -8385422.169798 1913 1817 -16619803.40013 1914 1817 43154829.95728 1915 1817 7802192.5578 1916 1817 -56944833.0873 1923 1817 57871.28717278 1924 1817 -33666688.66265 1925 1817 -39477172.9523 1926 1817 781318.4370322 1927 1817 -2152691.493423 1928 1817 -99821807.80486 1929 1817 11639498.06975 1930 1817 36402939.91804 1931 1817 -55413772.21342 1938 1817 -10337268.9803 1939 1817 -8454866.614265 1940 1817 -16869702.39011 1941 1817 -43935881.45598 1942 1817 -694433.4439167 1943 1817 -57643892.87044 1944 1817 -11639352.31406 1945 1817 9149300.058182 1946 1817 -20870649.36111 1818 1818 387435706.2613 1819 1818 36666666.66065 1820 1818 2662175.186035 1830 1818 -52284795.20658 1831 1818 -36666666.66065 1832 1818 2505785.203048 1833 1818 -203296779.618 1834 1818 -36666973.09101 1835 1818 -2662152.453524 1836 1818 12401143.47877 1837 1818 29333639.75888 1838 1818 -2152799.783064 1914 1818 -4839277.140465 1915 1818 11000114.915 1916 1818 12370128.70975 1926 1818 -14860172.33131 1927 1818 -9166781.581062 1928 1818 -10279526.39882 1929 1818 33963705.33589 1930 1818 9166666.669679 1931 1818 9519894.71657 1941 1818 -18663081.30986 1942 1818 -9166666.669677 1943 1818 -10337268.9803 1944 1818 -73633660.33315 1945 1818 -9166743.277268 1946 1818 -44520628.22528 1947 1818 -7828204.348046 1948 1818 7333409.943332 1949 1818 -9288430.506837 1819 1819 332431392.3218 1820 1819 -6944376.976808 1830 1819 -36666666.66065 1831 1819 -41284001.36615 1832 1819 1263866.887163 1833 1819 -36667126.30619 1834 1819 -30960378.23954 1835 1819 -3847226.047119 1836 1819 44000459.63831 1837 1819 12401143.47877 1838 1819 2416692.493345 1914 1819 7333409.943332 1915 1819 -4839277.140466 1916 1819 -6597291.372073 1926 1819 -9166743.277267 1927 1819 -46943392.66696 1928 1819 -33736315.15602 1929 1819 9166666.669679 1930 1819 20212626.84424 1931 1819 5347275.319281 1941 1819 -9166666.669677 1942 1819 -15912882.8484 1943 1819 -8454866.614265 1944 1819 -9166781.581064 1945 1819 -30549559.96733 1946 1819 -9732749.59088 1947 1819 11000114.915 1948 1819 -7828204.348045 1949 1819 11145949.53617 1820 1820 375187471.1352 1830 1820 2471062.980849 1831 1820 1236089.109403 1832 1820 -7832062.870945 1833 1820 -2662141.087263 1834 1820 -3097217.438217 1835 1820 -1482420.858694 1836 1820 -3229199.674597 1837 1820 1611128.328897 1838 1820 33069715.94339 1914 1820 8246752.473166 1915 1820 -9895937.05811 1916 1820 -12904739.04124 1926 1820 -10279483.49692 1927 1820 -33902984.10692 1928 1820 -43192618.77883 1929 1820 -8015196.919944 1930 1820 -8680575.648187 1931 1820 -73923722.2424 1941 1820 -10337268.9803 1942 1820 -8454866.614265 1943 1820 -16869702.39011 1944 1820 -44485903.34313 1945 1820 -9538266.413314 1946 1820 -61195846.2912 1947 1820 -13932645.76025 1948 1820 7430633.02411 1949 1820 -20875211.59479 1821 1821 619629140.0329 1822 1821 1.168251037598e-05 1823 1821 925940.5938052 1824 1821 84152766.23505 1825 1821 -4.991888999939e-06 1826 1821 231485.148566 1839 1821 -138432799.5 1840 1821 1.490116119385e-07 1841 1821 -462970.296923 1842 1821 -52308469.44899 1843 1821 36666666.66065 1844 1821 -2702548.129425 1917 1821 -59565882.98117 1918 1821 4.91738319397e-07 1919 1821 43739118.52961 1920 1821 -20057887.18154 1921 1821 -9166666.669679 1922 1821 11581481.02689 1932 1821 54280296.46473 1933 1821 3.09944152832e-06 1934 1821 231485.1485852 1935 1821 -7107625.989141 1936 1821 -6.146728992462e-06 1937 1821 57871.2871768 1950 1821 -59964405.70834 1951 1821 7.525086402893e-07 1952 1821 -43970603.67818 1953 1821 -20163436.42398 1954 1821 9166666.669676 1955 1821 -11639352.31406 1822 1822 531622789.3528 1823 1822 -11110935.09172 1824 1822 -4.798173904419e-06 1825 1822 -55180296.03374 1826 1822 5555467.545859 1839 1822 -5.960464477539e-08 1840 1822 22901850.42796 1841 1822 -2777733.774299 1842 1822 36666666.66064 1843 1822 -41307675.60857 1844 1822 1513866.887135 1917 1822 -5.811452865601e-07 1918 1822 -19232220.47929 1919 1822 -694433.4439163 1920 1822 -9166666.669679 1921 1822 -17307688.72007 1922 1822 9079855.613715 1932 1822 3.635883331299e-06 1933 1822 32278708.78388 1934 1822 -2777733.774297 1935 1822 -5.349516868591e-06 1936 1822 -41940891.5735 1937 1822 36472200.21471 1950 1822 3.725290298462e-07 1951 1822 -19630743.20649 1952 1822 -694433.4439167 1953 1822 9166666.669676 1954 1822 -17413237.96253 1955 1822 9149300.058182 1823 1823 599591912.5003 1824 1823 231485.1485663 1825 1823 5555467.545859 1826 1823 78550735.85485 1839 1823 -462970.2969232 1840 1823 -2777733.774298 1841 1823 39890623.87246 1842 1823 -2737270.351624 1843 1823 1541644.664895 1844 1823 -7895194.184061 1917 1823 43704396.30741 1918 1823 -694433.4439163 1919 1823 -56581165.5979 1920 1823 11581481.02689 1921 1823 9079855.613715 1922 1823 -20589184.71456 1932 1823 231485.148585 1933 1823 -2777733.774298 1934 1823 -118440658.1206 1935 1823 57871.28717716 1936 1823 36444422.43695 1937 1823 -55417829.51533 1950 1823 -43935881.45598 1951 1823 -694433.4439167 1952 1823 -57643892.87044 1953 1823 -11639352.31406 1954 1823 9149300.058182 1955 1823 -20870649.36111 1824 1824 619629140.0329 1825 1824 1.168251037598e-05 1826 1824 925940.5938052 1827 1824 84152766.23505 1828 1824 -4.991888999939e-06 1829 1824 231485.148566 1839 1824 -52284795.20658 1840 1824 -36666666.66065 1841 1824 2505785.203048 1842 1824 -138432799.5 1843 1824 1.490116119385e-07 1844 1824 -462970.296923 1845 1824 -52308469.44899 1846 1824 36666666.66065 1847 1824 -2702548.129425 1917 1824 -18569369.18862 1918 1824 9166666.669678 1919 1824 10279397.69313 1920 1824 -59565882.98117 1921 1824 4.91738319397e-07 1922 1824 43739118.52961 1923 1824 -20057887.18154 1924 1824 -9166666.669679 1925 1824 11581481.02689 1932 1824 -1129879.778007 1933 1824 2.369284629822e-06 1934 1824 57871.28717239 1935 1824 54280296.46473 1936 1824 3.09944152832e-06 1937 1824 231485.1485852 1938 1824 -7107625.989141 1939 1824 -6.146728992462e-06 1940 1824 57871.2871768 1950 1824 -18663081.30986 1951 1824 -9166666.669677 1952 1824 -10337268.9803 1953 1824 -59964405.70834 1954 1824 7.525086402893e-07 1955 1824 -43970603.67818 1956 1824 -20163436.42398 1957 1824 9166666.669676 1958 1824 -11639352.31406 1825 1825 531622789.3528 1826 1825 -11110935.09172 1827 1825 -4.798173904419e-06 1828 1825 -55180296.03374 1829 1825 5555467.545859 1839 1825 -36666666.66065 1840 1825 -41284001.36615 1841 1825 1263866.887163 1842 1825 -5.960464477539e-08 1843 1825 22901850.42796 1844 1825 -2777733.774299 1845 1825 36666666.66064 1846 1825 -41307675.60857 1847 1825 1513866.887135 1917 1825 9166666.669678 1918 1825 -15819170.72716 1919 1825 -8385422.169798 1920 1825 -5.811452865601e-07 1921 1825 -19232220.47929 1922 1825 -694433.4439163 1923 1825 -9166666.669679 1924 1825 -17307688.72007 1925 1825 9079855.613715 1932 1825 2.913177013397e-06 1933 1825 -35963145.36236 1934 1825 -33694466.44041 1935 1825 3.635883331299e-06 1936 1825 32278708.78388 1937 1825 -2777733.774297 1938 1825 -5.349516868591e-06 1939 1825 -41940891.5735 1940 1825 36472200.21471 1950 1825 -9166666.669677 1951 1825 -15912882.8484 1952 1825 -8454866.614265 1953 1825 3.725290298462e-07 1954 1825 -19630743.20649 1955 1825 -694433.4439167 1956 1825 9166666.669676 1957 1825 -17413237.96253 1958 1825 9149300.058182 1826 1826 599591912.5003 1827 1826 231485.1485663 1828 1826 5555467.545859 1829 1826 78550735.85485 1839 1826 2471062.980849 1840 1826 1236089.109403 1841 1826 -7832062.870945 1842 1826 -462970.2969232 1843 1826 -2777733.774298 1844 1826 39890623.87246 1845 1826 -2737270.351624 1846 1826 1541644.664895 1847 1826 -7895194.184061 1917 1826 10279397.69313 1918 1826 -8385422.169798 1919 1826 -16619803.40013 1920 1826 43704396.30741 1921 1826 -694433.4439163 1922 1826 -56581165.5979 1923 1826 11581481.02689 1924 1826 9079855.613715 1925 1826 -20589184.71456 1932 1826 57871.28717278 1933 1826 -33666688.66265 1934 1826 -39477172.9523 1935 1826 231485.148585 1936 1826 -2777733.774298 1937 1826 -118440658.1206 1938 1826 57871.28717716 1939 1826 36444422.43695 1940 1826 -55417829.51533 1950 1826 -10337268.9803 1951 1826 -8454866.614265 1952 1826 -16869702.39011 1953 1826 -43935881.45598 1954 1826 -694433.4439167 1955 1826 -57643892.87044 1956 1826 -11639352.31406 1957 1826 9149300.058182 1958 1826 -20870649.36111 1827 1827 619629140.0329 1828 1827 1.168251037598e-05 1829 1827 925940.5938052 1830 1827 84152766.23505 1831 1827 -4.991888999939e-06 1832 1827 231485.148566 1842 1827 -52284795.20658 1843 1827 -36666666.66065 1844 1827 2505785.203048 1845 1827 -138432799.5 1846 1827 1.490116119385e-07 1847 1827 -462970.296923 1848 1827 -52308469.44899 1849 1827 36666666.66065 1850 1827 -2702548.129425 1920 1827 -18569369.18862 1921 1827 9166666.669678 1922 1827 10279397.69313 1923 1827 -59565882.98117 1924 1827 4.91738319397e-07 1925 1827 43739118.52961 1926 1827 -20057887.18154 1927 1827 -9166666.669679 1928 1827 11581481.02689 1935 1827 -1129879.778007 1936 1827 2.369284629822e-06 1937 1827 57871.28717239 1938 1827 54280296.46473 1939 1827 3.09944152832e-06 1940 1827 231485.1485852 1941 1827 -7107625.989141 1942 1827 -6.146728992462e-06 1943 1827 57871.2871768 1953 1827 -18663081.30986 1954 1827 -9166666.669677 1955 1827 -10337268.9803 1956 1827 -59964405.70834 1957 1827 7.525086402893e-07 1958 1827 -43970603.67818 1959 1827 -20163436.42398 1960 1827 9166666.669676 1961 1827 -11639352.31406 1828 1828 531622789.3528 1829 1828 -11110935.09172 1830 1828 -4.798173904419e-06 1831 1828 -55180296.03374 1832 1828 5555467.545859 1842 1828 -36666666.66065 1843 1828 -41284001.36615 1844 1828 1263866.887163 1845 1828 -5.960464477539e-08 1846 1828 22901850.42796 1847 1828 -2777733.774299 1848 1828 36666666.66064 1849 1828 -41307675.60857 1850 1828 1513866.887135 1920 1828 9166666.669678 1921 1828 -15819170.72716 1922 1828 -8385422.169798 1923 1828 -5.811452865601e-07 1924 1828 -19232220.47929 1925 1828 -694433.4439163 1926 1828 -9166666.669679 1927 1828 -17307688.72007 1928 1828 9079855.613715 1935 1828 2.913177013397e-06 1936 1828 -35963145.36236 1937 1828 -33694466.44041 1938 1828 3.635883331299e-06 1939 1828 32278708.78388 1940 1828 -2777733.774297 1941 1828 -5.349516868591e-06 1942 1828 -41940891.5735 1943 1828 36472200.21471 1953 1828 -9166666.669677 1954 1828 -15912882.8484 1955 1828 -8454866.614265 1956 1828 3.725290298462e-07 1957 1828 -19630743.20649 1958 1828 -694433.4439167 1959 1828 9166666.669676 1960 1828 -17413237.96253 1961 1828 9149300.058182 1829 1829 599591912.5003 1830 1829 231485.1485663 1831 1829 5555467.545859 1832 1829 78550735.85485 1842 1829 2471062.980849 1843 1829 1236089.109403 1844 1829 -7832062.870945 1845 1829 -462970.2969232 1846 1829 -2777733.774298 1847 1829 39890623.87246 1848 1829 -2737270.351624 1849 1829 1541644.664895 1850 1829 -7895194.184061 1920 1829 10279397.69313 1921 1829 -8385422.169798 1922 1829 -16619803.40013 1923 1829 43704396.30741 1924 1829 -694433.4439163 1925 1829 -56581165.5979 1926 1829 11581481.02689 1927 1829 9079855.613715 1928 1829 -20589184.71456 1935 1829 57871.28717278 1936 1829 -33666688.66265 1937 1829 -39477172.9523 1938 1829 231485.148585 1939 1829 -2777733.774298 1940 1829 -118440658.1206 1941 1829 57871.28717716 1942 1829 36444422.43695 1943 1829 -55417829.51533 1953 1829 -10337268.9803 1954 1829 -8454866.614265 1955 1829 -16869702.39011 1956 1829 -43935881.45598 1957 1829 -694433.4439167 1958 1829 -57643892.87044 1959 1829 -11639352.31406 1960 1829 9149300.058182 1961 1829 -20870649.36111 1830 1830 619629140.0329 1831 1830 1.168251037598e-05 1832 1830 925940.5938052 1833 1830 84152766.23505 1834 1830 -4.991888999939e-06 1835 1830 231485.148566 1845 1830 -52284795.20658 1846 1830 -36666666.66065 1847 1830 2505785.203048 1848 1830 -138432799.5 1849 1830 1.490116119385e-07 1850 1830 -462970.296923 1851 1830 -52308469.44899 1852 1830 36666666.66065 1853 1830 -2702548.129425 1923 1830 -18569369.18862 1924 1830 9166666.669678 1925 1830 10279397.69313 1926 1830 -59565882.98117 1927 1830 4.91738319397e-07 1928 1830 43739118.52961 1929 1830 -20057887.18154 1930 1830 -9166666.669679 1931 1830 11581481.02689 1938 1830 -1129879.778007 1939 1830 2.369284629822e-06 1940 1830 57871.28717239 1941 1830 54280296.46473 1942 1830 3.09944152832e-06 1943 1830 231485.1485852 1944 1830 -7107625.989141 1945 1830 -6.146728992462e-06 1946 1830 57871.2871768 1956 1830 -18663081.30986 1957 1830 -9166666.669677 1958 1830 -10337268.9803 1959 1830 -59964405.70834 1960 1830 7.525086402893e-07 1961 1830 -43970603.67818 1962 1830 -20163436.42398 1963 1830 9166666.669676 1964 1830 -11639352.31406 1831 1831 531622789.3528 1832 1831 -11110935.09172 1833 1831 -4.798173904419e-06 1834 1831 -55180296.03374 1835 1831 5555467.545859 1845 1831 -36666666.66065 1846 1831 -41284001.36615 1847 1831 1263866.887163 1848 1831 -5.960464477539e-08 1849 1831 22901850.42796 1850 1831 -2777733.774299 1851 1831 36666666.66064 1852 1831 -41307675.60857 1853 1831 1513866.887135 1923 1831 9166666.669678 1924 1831 -15819170.72716 1925 1831 -8385422.169798 1926 1831 -5.811452865601e-07 1927 1831 -19232220.47929 1928 1831 -694433.4439163 1929 1831 -9166666.669679 1930 1831 -17307688.72007 1931 1831 9079855.613715 1938 1831 2.913177013397e-06 1939 1831 -35963145.36236 1940 1831 -33694466.44041 1941 1831 3.635883331299e-06 1942 1831 32278708.78388 1943 1831 -2777733.774297 1944 1831 -5.349516868591e-06 1945 1831 -41940891.5735 1946 1831 36472200.21471 1956 1831 -9166666.669677 1957 1831 -15912882.8484 1958 1831 -8454866.614265 1959 1831 3.725290298462e-07 1960 1831 -19630743.20649 1961 1831 -694433.4439167 1962 1831 9166666.669676 1963 1831 -17413237.96253 1964 1831 9149300.058182 1832 1832 599591912.5003 1833 1832 231485.1485663 1834 1832 5555467.545859 1835 1832 78550735.85485 1845 1832 2471062.980849 1846 1832 1236089.109403 1847 1832 -7832062.870945 1848 1832 -462970.2969232 1849 1832 -2777733.774298 1850 1832 39890623.87246 1851 1832 -2737270.351624 1852 1832 1541644.664895 1853 1832 -7895194.184061 1923 1832 10279397.69313 1924 1832 -8385422.169798 1925 1832 -16619803.40013 1926 1832 43704396.30741 1927 1832 -694433.4439163 1928 1832 -56581165.5979 1929 1832 11581481.02689 1930 1832 9079855.613715 1931 1832 -20589184.71456 1938 1832 57871.28717278 1939 1832 -33666688.66265 1940 1832 -39477172.9523 1941 1832 231485.148585 1942 1832 -2777733.774298 1943 1832 -118440658.1206 1944 1832 57871.28717716 1945 1832 36444422.43695 1946 1832 -55417829.51533 1956 1832 -10337268.9803 1957 1832 -8454866.614265 1958 1832 -16869702.39011 1959 1832 -43935881.45598 1960 1832 -694433.4439167 1961 1832 -57643892.87044 1962 1832 -11639352.31406 1963 1832 9149300.058182 1964 1832 -20870649.36111 1833 1833 671761428.9985 1834 1833 36667432.73655 1835 1833 3125088.651632 1836 1833 19448570.31785 1837 1833 -36666973.09101 1838 1833 2702570.135099 1848 1833 -52284795.20658 1849 1833 -36666666.66065 1850 1833 2505785.203048 1851 1833 -138432799.5 1852 1833 1.490116119385e-07 1853 1833 -462970.296923 1854 1833 -52308469.44899 1855 1833 36666666.66065 1856 1833 -2702548.129425 1926 1833 -18569369.18862 1927 1833 9166666.669678 1928 1833 10279397.69313 1929 1833 -72039530.38171 1930 1833 -9166781.581061 1931 1833 43189554.83944 1941 1833 -1129879.778007 1942 1833 2.369284629822e-06 1943 1833 57871.28717239 1944 1833 73599694.87993 1945 1833 9166858.188655 1946 1833 781226.7976368 1947 1833 -19443104.86928 1948 1833 -9166743.27727 1949 1833 11639449.48452 1959 1833 -18663081.30986 1960 1833 -9166666.669677 1961 1833 -10337268.9803 1962 1833 -59964405.70834 1963 1833 7.525086402893e-07 1964 1833 -43970603.67818 1965 1833 -20163436.42398 1966 1833 9166666.669676 1967 1833 -11639352.31406 1834 1834 572753939.719 1835 1834 -8610914.043003 1836 1834 -36667126.30619 1837 1834 -108884310.9615 1838 1834 4611018.689007 1848 1834 -36666666.66065 1849 1834 -41284001.36615 1850 1834 1263866.887163 1851 1834 -5.960464477539e-08 1852 1834 22901850.42796 1853 1834 -2777733.774299 1854 1834 36666666.66064 1855 1834 -41307675.60857 1856 1834 1513866.887135 1926 1834 9166666.669678 1927 1834 -15819170.72716 1928 1834 -8385422.169798 1929 1834 -9166743.277267 1930 1834 -28955430.01587 1931 1834 7996602.428466 1941 1834 2.913177013397e-06 1942 1834 -35963145.36236 1943 1834 -33694466.44041 1944 1834 9166858.188655 1945 1834 48847822.54786 1946 1834 -2152764.803778 1947 1834 -9166781.581064 1948 1834 -51526325.20493 1949 1834 36236271.0855 1959 1834 -9166666.669677 1960 1834 -15912882.8484 1961 1834 -8454866.614265 1962 1834 3.725290298462e-07 1963 1834 -19630743.20649 1964 1834 -694433.4439167 1965 1834 9166666.669676 1966 1834 -17413237.96253 1967 1834 9149300.058182 1835 1835 607013167.9741 1836 1835 2737303.360137 1837 1835 5388804.78494 1838 1835 37600883.93994 1848 1835 2471062.980849 1849 1835 1236089.109403 1850 1835 -7832062.870945 1851 1835 -462970.2969232 1852 1835 -2777733.774298 1853 1835 39890623.87246 1854 1835 -2737270.351624 1855 1835 1541644.664895 1856 1835 -7895194.184061 1926 1835 10279397.69313 1927 1835 -8385422.169798 1928 1835 -16619803.40013 1929 1835 43154829.95728 1930 1835 7802192.5578 1931 1835 -56944833.0873 1941 1835 57871.28717278 1942 1835 -33666688.66265 1943 1835 -39477172.9523 1944 1835 781318.4370322 1945 1835 -2152691.493423 1946 1835 -99821807.80486 1947 1835 11639498.06975 1948 1835 36402939.91804 1949 1835 -55413772.21342 1959 1835 -10337268.9803 1960 1835 -8454866.614265 1961 1835 -16869702.39011 1962 1835 -43935881.45598 1963 1835 -694433.4439167 1964 1835 -57643892.87044 1965 1835 -11639352.31406 1966 1835 9149300.058182 1967 1835 -20870649.36111 1836 1836 460873125.4361 1837 1836 -27780651.28176 1838 1836 -1243230.409633 1851 1836 -52284795.20658 1852 1836 -36666666.66065 1853 1836 2505785.203048 1854 1836 -54494915.13083 1855 1836 27775705.0022 1856 1836 -284486.8047392 1857 1836 -253893652.0179 1858 1836 29338279.60807 1859 1836 -277841.1803685 1929 1836 -4839277.140465 1930 1836 11000114.915 1931 1836 12370128.70975 1944 1836 -14860172.33131 1945 1836 -9166781.581062 1946 1836 -10279526.39882 1947 1836 64920055.70775 1948 1836 -6810686.593768 1949 1836 4688786.852337 1962 1836 -18663081.30986 1963 1836 -9166666.669677 1964 1836 -10337268.9803 1965 1836 -28004319.24308 1966 1836 6809529.72167 1967 1836 -24862467.02138 1968 1836 -60799172.28945 1969 1836 7334490.207843 1970 1836 -1215195.31154 1837 1837 860522545.6296 1838 1837 -12063310.05486 1851 1837 -36666666.66065 1852 1837 -41284001.36615 1853 1837 1263866.887163 1854 1837 27773231.86242 1855 1837 88863699.5249 1856 1837 -2000807.444541 1857 1837 44007419.41211 1858 1837 -679569599.4282 1859 1837 5800626.008788 1929 1837 7333409.943332 1930 1837 -4839277.140466 1931 1837 -6597291.372073 1944 1837 -9166743.277267 1945 1837 -46943392.66696 1946 1837 -33736315.15602 1947 1837 -6810686.593769 1948 1837 157857373.3892 1949 1837 1049845.884691 1962 1837 -9166666.669677 1963 1837 -15912882.8484 1964 1837 -8454866.614265 1965 1837 6808951.285619 1966 1837 7895373.789088 1967 1837 6105067.934335 1968 1837 11001735.31176 1969 1837 -160303161.1289 1970 1837 18261345.26948 1838 1838 492262051.6588 1851 1838 2471062.980849 1852 1838 1236089.109403 1853 1838 -7832062.870945 1854 1838 -1048345.411919 1855 1838 -1889626.655437 1856 1838 48405140.97272 1857 1838 -416761.7705528 1858 1838 5689599.184121 1859 1838 -251373791.3042 1929 1838 8246752.473166 1930 1838 -9895937.05811 1931 1838 -12904739.04124 1944 1838 -10279483.49692 1945 1838 -33902984.10692 1946 1838 -43192618.77883 1947 1838 -5224449.190063 1948 1838 -6768692.222871 1949 1838 -4871347.006253 1962 1838 -10337268.9803 1963 1838 -8454866.614265 1964 1838 -16869702.39011 1965 1838 -25036071.0635 1966 1838 6188978.792547 1967 1838 -25523699.80167 1968 1838 -1822792.96731 1969 1838 17775180.12884 1970 1838 -62627137.26573 1839 1839 619629140.0329 1840 1839 1.168251037598e-05 1841 1839 925940.5938052 1842 1839 84152766.23505 1843 1839 -4.991888999939e-06 1844 1839 231485.148566 1860 1839 -138432799.5 1861 1839 1.490116119385e-07 1862 1839 -462970.296923 1863 1839 -52308469.44899 1864 1839 36666666.66065 1865 1839 -2702548.129425 1932 1839 -59565882.98117 1933 1839 4.91738319397e-07 1934 1839 43739118.52961 1935 1839 -20057887.18154 1936 1839 -9166666.669679 1937 1839 11581481.02689 1950 1839 54280296.46473 1951 1839 3.09944152832e-06 1952 1839 231485.1485852 1953 1839 -7107625.989141 1954 1839 -6.146728992462e-06 1955 1839 57871.2871768 1971 1839 -59964405.70834 1972 1839 7.525086402893e-07 1973 1839 -43970603.67818 1974 1839 -20163436.42398 1975 1839 9166666.669676 1976 1839 -11639352.31406 1840 1840 531622789.3528 1841 1840 -11110935.09172 1842 1840 -4.798173904419e-06 1843 1840 -55180296.03374 1844 1840 5555467.545859 1860 1840 -5.960464477539e-08 1861 1840 22901850.42796 1862 1840 -2777733.774299 1863 1840 36666666.66064 1864 1840 -41307675.60857 1865 1840 1513866.887135 1932 1840 -5.811452865601e-07 1933 1840 -19232220.47929 1934 1840 -694433.4439163 1935 1840 -9166666.669679 1936 1840 -17307688.72007 1937 1840 9079855.613715 1950 1840 3.635883331299e-06 1951 1840 32278708.78388 1952 1840 -2777733.774297 1953 1840 -5.349516868591e-06 1954 1840 -41940891.5735 1955 1840 36472200.21471 1971 1840 3.725290298462e-07 1972 1840 -19630743.20649 1973 1840 -694433.4439167 1974 1840 9166666.669676 1975 1840 -17413237.96253 1976 1840 9149300.058182 1841 1841 599591912.5003 1842 1841 231485.1485663 1843 1841 5555467.545859 1844 1841 78550735.85485 1860 1841 -462970.2969232 1861 1841 -2777733.774298 1862 1841 39890623.87246 1863 1841 -2737270.351624 1864 1841 1541644.664895 1865 1841 -7895194.184061 1932 1841 43704396.30741 1933 1841 -694433.4439163 1934 1841 -56581165.5979 1935 1841 11581481.02689 1936 1841 9079855.613715 1937 1841 -20589184.71456 1950 1841 231485.148585 1951 1841 -2777733.774298 1952 1841 -118440658.1206 1953 1841 57871.28717716 1954 1841 36444422.43695 1955 1841 -55417829.51533 1971 1841 -43935881.45598 1972 1841 -694433.4439167 1973 1841 -57643892.87044 1974 1841 -11639352.31406 1975 1841 9149300.058182 1976 1841 -20870649.36111 1842 1842 619629140.0329 1843 1842 1.168251037598e-05 1844 1842 925940.5938052 1845 1842 84152766.23505 1846 1842 -4.991888999939e-06 1847 1842 231485.148566 1860 1842 -52284795.20658 1861 1842 -36666666.66065 1862 1842 2505785.203048 1863 1842 -138432799.5 1864 1842 1.490116119385e-07 1865 1842 -462970.296923 1866 1842 -52308469.44899 1867 1842 36666666.66065 1868 1842 -2702548.129425 1932 1842 -18569369.18862 1933 1842 9166666.669678 1934 1842 10279397.69313 1935 1842 -59565882.98117 1936 1842 4.91738319397e-07 1937 1842 43739118.52961 1938 1842 -20057887.18154 1939 1842 -9166666.669679 1940 1842 11581481.02689 1950 1842 -1129879.778007 1951 1842 2.369284629822e-06 1952 1842 57871.28717239 1953 1842 54280296.46473 1954 1842 3.09944152832e-06 1955 1842 231485.1485852 1956 1842 -7107625.989141 1957 1842 -6.146728992462e-06 1958 1842 57871.2871768 1971 1842 -18663081.30986 1972 1842 -9166666.669677 1973 1842 -10337268.9803 1974 1842 -59964405.70834 1975 1842 7.525086402893e-07 1976 1842 -43970603.67818 1977 1842 -20163436.42398 1978 1842 9166666.669676 1979 1842 -11639352.31406 1843 1843 531622789.3528 1844 1843 -11110935.09172 1845 1843 -4.798173904419e-06 1846 1843 -55180296.03374 1847 1843 5555467.545859 1860 1843 -36666666.66065 1861 1843 -41284001.36615 1862 1843 1263866.887163 1863 1843 -5.960464477539e-08 1864 1843 22901850.42796 1865 1843 -2777733.774299 1866 1843 36666666.66064 1867 1843 -41307675.60857 1868 1843 1513866.887135 1932 1843 9166666.669678 1933 1843 -15819170.72716 1934 1843 -8385422.169798 1935 1843 -5.811452865601e-07 1936 1843 -19232220.47929 1937 1843 -694433.4439163 1938 1843 -9166666.669679 1939 1843 -17307688.72007 1940 1843 9079855.613715 1950 1843 2.913177013397e-06 1951 1843 -35963145.36236 1952 1843 -33694466.44041 1953 1843 3.635883331299e-06 1954 1843 32278708.78388 1955 1843 -2777733.774297 1956 1843 -5.349516868591e-06 1957 1843 -41940891.5735 1958 1843 36472200.21471 1971 1843 -9166666.669677 1972 1843 -15912882.8484 1973 1843 -8454866.614265 1974 1843 3.725290298462e-07 1975 1843 -19630743.20649 1976 1843 -694433.4439167 1977 1843 9166666.669676 1978 1843 -17413237.96253 1979 1843 9149300.058182 1844 1844 599591912.5003 1845 1844 231485.1485663 1846 1844 5555467.545859 1847 1844 78550735.85485 1860 1844 2471062.980849 1861 1844 1236089.109403 1862 1844 -7832062.870945 1863 1844 -462970.2969232 1864 1844 -2777733.774298 1865 1844 39890623.87246 1866 1844 -2737270.351624 1867 1844 1541644.664895 1868 1844 -7895194.184061 1932 1844 10279397.69313 1933 1844 -8385422.169798 1934 1844 -16619803.40013 1935 1844 43704396.30741 1936 1844 -694433.4439163 1937 1844 -56581165.5979 1938 1844 11581481.02689 1939 1844 9079855.613715 1940 1844 -20589184.71456 1950 1844 57871.28717278 1951 1844 -33666688.66265 1952 1844 -39477172.9523 1953 1844 231485.148585 1954 1844 -2777733.774298 1955 1844 -118440658.1206 1956 1844 57871.28717716 1957 1844 36444422.43695 1958 1844 -55417829.51533 1971 1844 -10337268.9803 1972 1844 -8454866.614265 1973 1844 -16869702.39011 1974 1844 -43935881.45598 1975 1844 -694433.4439167 1976 1844 -57643892.87044 1977 1844 -11639352.31406 1978 1844 9149300.058182 1979 1844 -20870649.36111 1845 1845 619629140.0329 1846 1845 1.168251037598e-05 1847 1845 925940.5938052 1848 1845 84152766.23505 1849 1845 -4.991888999939e-06 1850 1845 231485.148566 1863 1845 -52284795.20658 1864 1845 -36666666.66065 1865 1845 2505785.203048 1866 1845 -138432799.5 1867 1845 1.490116119385e-07 1868 1845 -462970.296923 1869 1845 -52308469.44899 1870 1845 36666666.66065 1871 1845 -2702548.129425 1935 1845 -18569369.18862 1936 1845 9166666.669678 1937 1845 10279397.69313 1938 1845 -59565882.98117 1939 1845 4.91738319397e-07 1940 1845 43739118.52961 1941 1845 -20057887.18154 1942 1845 -9166666.669679 1943 1845 11581481.02689 1953 1845 -1129879.778007 1954 1845 2.369284629822e-06 1955 1845 57871.28717239 1956 1845 54280296.46473 1957 1845 3.09944152832e-06 1958 1845 231485.1485852 1959 1845 -7107625.989141 1960 1845 -6.146728992462e-06 1961 1845 57871.2871768 1974 1845 -18663081.30986 1975 1845 -9166666.669677 1976 1845 -10337268.9803 1977 1845 -59964405.70834 1978 1845 7.525086402893e-07 1979 1845 -43970603.67818 1980 1845 -20163436.42398 1981 1845 9166666.669676 1982 1845 -11639352.31406 1846 1846 531622789.3528 1847 1846 -11110935.09172 1848 1846 -4.798173904419e-06 1849 1846 -55180296.03374 1850 1846 5555467.545859 1863 1846 -36666666.66065 1864 1846 -41284001.36615 1865 1846 1263866.887163 1866 1846 -5.960464477539e-08 1867 1846 22901850.42796 1868 1846 -2777733.774299 1869 1846 36666666.66064 1870 1846 -41307675.60857 1871 1846 1513866.887135 1935 1846 9166666.669678 1936 1846 -15819170.72716 1937 1846 -8385422.169798 1938 1846 -5.811452865601e-07 1939 1846 -19232220.47929 1940 1846 -694433.4439163 1941 1846 -9166666.669679 1942 1846 -17307688.72007 1943 1846 9079855.613715 1953 1846 2.913177013397e-06 1954 1846 -35963145.36236 1955 1846 -33694466.44041 1956 1846 3.635883331299e-06 1957 1846 32278708.78388 1958 1846 -2777733.774297 1959 1846 -5.349516868591e-06 1960 1846 -41940891.5735 1961 1846 36472200.21471 1974 1846 -9166666.669677 1975 1846 -15912882.8484 1976 1846 -8454866.614265 1977 1846 3.725290298462e-07 1978 1846 -19630743.20649 1979 1846 -694433.4439167 1980 1846 9166666.669676 1981 1846 -17413237.96253 1982 1846 9149300.058182 1847 1847 599591912.5003 1848 1847 231485.1485663 1849 1847 5555467.545859 1850 1847 78550735.85485 1863 1847 2471062.980849 1864 1847 1236089.109403 1865 1847 -7832062.870945 1866 1847 -462970.2969232 1867 1847 -2777733.774298 1868 1847 39890623.87246 1869 1847 -2737270.351624 1870 1847 1541644.664895 1871 1847 -7895194.184061 1935 1847 10279397.69313 1936 1847 -8385422.169798 1937 1847 -16619803.40013 1938 1847 43704396.30741 1939 1847 -694433.4439163 1940 1847 -56581165.5979 1941 1847 11581481.02689 1942 1847 9079855.613715 1943 1847 -20589184.71456 1953 1847 57871.28717278 1954 1847 -33666688.66265 1955 1847 -39477172.9523 1956 1847 231485.148585 1957 1847 -2777733.774298 1958 1847 -118440658.1206 1959 1847 57871.28717716 1960 1847 36444422.43695 1961 1847 -55417829.51533 1974 1847 -10337268.9803 1975 1847 -8454866.614265 1976 1847 -16869702.39011 1977 1847 -43935881.45598 1978 1847 -694433.4439167 1979 1847 -57643892.87044 1980 1847 -11639352.31406 1981 1847 9149300.058182 1982 1847 -20870649.36111 1848 1848 619629140.0329 1849 1848 1.168251037598e-05 1850 1848 925940.5938052 1851 1848 84152766.23505 1852 1848 -4.991888999939e-06 1853 1848 231485.148566 1866 1848 -52284795.20658 1867 1848 -36666666.66065 1868 1848 2505785.203048 1869 1848 -138432799.5 1870 1848 1.490116119385e-07 1871 1848 -462970.296923 1872 1848 -52308469.44899 1873 1848 36666666.66065 1874 1848 -2702548.129425 1938 1848 -18569369.18862 1939 1848 9166666.669678 1940 1848 10279397.69313 1941 1848 -59565882.98117 1942 1848 4.91738319397e-07 1943 1848 43739118.52961 1944 1848 -20057887.18154 1945 1848 -9166666.669679 1946 1848 11581481.02689 1956 1848 -1129879.778007 1957 1848 2.369284629822e-06 1958 1848 57871.28717239 1959 1848 54280296.46473 1960 1848 3.09944152832e-06 1961 1848 231485.1485852 1962 1848 -7107625.989141 1963 1848 -6.146728992462e-06 1964 1848 57871.2871768 1977 1848 -18663081.30986 1978 1848 -9166666.669677 1979 1848 -10337268.9803 1980 1848 -59964405.70834 1981 1848 7.525086402893e-07 1982 1848 -43970603.67818 1983 1848 -20163436.42398 1984 1848 9166666.669676 1985 1848 -11639352.31406 1849 1849 531622789.3528 1850 1849 -11110935.09172 1851 1849 -4.798173904419e-06 1852 1849 -55180296.03374 1853 1849 5555467.545859 1866 1849 -36666666.66065 1867 1849 -41284001.36615 1868 1849 1263866.887163 1869 1849 -5.960464477539e-08 1870 1849 22901850.42796 1871 1849 -2777733.774299 1872 1849 36666666.66064 1873 1849 -41307675.60857 1874 1849 1513866.887135 1938 1849 9166666.669678 1939 1849 -15819170.72716 1940 1849 -8385422.169798 1941 1849 -5.811452865601e-07 1942 1849 -19232220.47929 1943 1849 -694433.4439163 1944 1849 -9166666.669679 1945 1849 -17307688.72007 1946 1849 9079855.613715 1956 1849 2.913177013397e-06 1957 1849 -35963145.36236 1958 1849 -33694466.44041 1959 1849 3.635883331299e-06 1960 1849 32278708.78388 1961 1849 -2777733.774297 1962 1849 -5.349516868591e-06 1963 1849 -41940891.5735 1964 1849 36472200.21471 1977 1849 -9166666.669677 1978 1849 -15912882.8484 1979 1849 -8454866.614265 1980 1849 3.725290298462e-07 1981 1849 -19630743.20649 1982 1849 -694433.4439167 1983 1849 9166666.669676 1984 1849 -17413237.96253 1985 1849 9149300.058182 1850 1850 599591912.5003 1851 1850 231485.1485663 1852 1850 5555467.545859 1853 1850 78550735.85485 1866 1850 2471062.980849 1867 1850 1236089.109403 1868 1850 -7832062.870945 1869 1850 -462970.2969232 1870 1850 -2777733.774298 1871 1850 39890623.87246 1872 1850 -2737270.351624 1873 1850 1541644.664895 1874 1850 -7895194.184061 1938 1850 10279397.69313 1939 1850 -8385422.169798 1940 1850 -16619803.40013 1941 1850 43704396.30741 1942 1850 -694433.4439163 1943 1850 -56581165.5979 1944 1850 11581481.02689 1945 1850 9079855.613715 1946 1850 -20589184.71456 1956 1850 57871.28717278 1957 1850 -33666688.66265 1958 1850 -39477172.9523 1959 1850 231485.148585 1960 1850 -2777733.774298 1961 1850 -118440658.1206 1962 1850 57871.28717716 1963 1850 36444422.43695 1964 1850 -55417829.51533 1977 1850 -10337268.9803 1978 1850 -8454866.614265 1979 1850 -16869702.39011 1980 1850 -43935881.45598 1981 1850 -694433.4439167 1982 1850 -57643892.87044 1983 1850 -11639352.31406 1984 1850 9149300.058182 1985 1850 -20870649.36111 1851 1851 619629140.0329 1852 1851 1.168251037598e-05 1853 1851 925940.5938052 1854 1851 84152766.23505 1855 1851 -4.991888999939e-06 1856 1851 231485.148566 1869 1851 -52284795.20658 1870 1851 -36666666.66065 1871 1851 2505785.203048 1872 1851 -138432799.5 1873 1851 1.490116119385e-07 1874 1851 -462970.296923 1875 1851 -52308469.44899 1876 1851 36666666.66065 1877 1851 -2702548.129425 1941 1851 -18569369.18862 1942 1851 9166666.669678 1943 1851 10279397.69313 1944 1851 -59565882.98117 1945 1851 4.91738319397e-07 1946 1851 43739118.52961 1947 1851 -20057887.18154 1948 1851 -9166666.669679 1949 1851 11581481.02689 1959 1851 -1129879.778007 1960 1851 2.369284629822e-06 1961 1851 57871.28717239 1962 1851 54280296.46473 1963 1851 3.09944152832e-06 1964 1851 231485.1485852 1965 1851 -7107625.989141 1966 1851 -6.146728992462e-06 1967 1851 57871.2871768 1980 1851 -18663081.30986 1981 1851 -9166666.669677 1982 1851 -10337268.9803 1983 1851 -59964405.70834 1984 1851 7.525086402893e-07 1985 1851 -43970603.67818 1986 1851 -20163436.42398 1987 1851 9166666.669676 1988 1851 -11639352.31406 1852 1852 531622789.3528 1853 1852 -11110935.09172 1854 1852 -4.798173904419e-06 1855 1852 -55180296.03374 1856 1852 5555467.545859 1869 1852 -36666666.66065 1870 1852 -41284001.36615 1871 1852 1263866.887163 1872 1852 -5.960464477539e-08 1873 1852 22901850.42796 1874 1852 -2777733.774299 1875 1852 36666666.66064 1876 1852 -41307675.60857 1877 1852 1513866.887135 1941 1852 9166666.669678 1942 1852 -15819170.72716 1943 1852 -8385422.169798 1944 1852 -5.811452865601e-07 1945 1852 -19232220.47929 1946 1852 -694433.4439163 1947 1852 -9166666.669679 1948 1852 -17307688.72007 1949 1852 9079855.613715 1959 1852 2.913177013397e-06 1960 1852 -35963145.36236 1961 1852 -33694466.44041 1962 1852 3.635883331299e-06 1963 1852 32278708.78388 1964 1852 -2777733.774297 1965 1852 -5.349516868591e-06 1966 1852 -41940891.5735 1967 1852 36472200.21471 1980 1852 -9166666.669677 1981 1852 -15912882.8484 1982 1852 -8454866.614265 1983 1852 3.725290298462e-07 1984 1852 -19630743.20649 1985 1852 -694433.4439167 1986 1852 9166666.669676 1987 1852 -17413237.96253 1988 1852 9149300.058182 1853 1853 599591912.5003 1854 1853 231485.1485663 1855 1853 5555467.545859 1856 1853 78550735.85485 1869 1853 2471062.980849 1870 1853 1236089.109403 1871 1853 -7832062.870945 1872 1853 -462970.2969232 1873 1853 -2777733.774298 1874 1853 39890623.87246 1875 1853 -2737270.351624 1876 1853 1541644.664895 1877 1853 -7895194.184061 1941 1853 10279397.69313 1942 1853 -8385422.169798 1943 1853 -16619803.40013 1944 1853 43704396.30741 1945 1853 -694433.4439163 1946 1853 -56581165.5979 1947 1853 11581481.02689 1948 1853 9079855.613715 1949 1853 -20589184.71456 1959 1853 57871.28717278 1960 1853 -33666688.66265 1961 1853 -39477172.9523 1962 1853 231485.148585 1963 1853 -2777733.774298 1964 1853 -118440658.1206 1965 1853 57871.28717716 1966 1853 36444422.43695 1967 1853 -55417829.51533 1980 1853 -10337268.9803 1981 1853 -8454866.614265 1982 1853 -16869702.39011 1983 1853 -43935881.45598 1984 1853 -694433.4439167 1985 1853 -57643892.87044 1986 1853 -11639352.31406 1987 1853 9149300.058182 1988 1853 -20870649.36111 1854 1854 525679167.9811 1855 1854 18390868.10895 1856 1854 257230.0209704 1857 1854 -103629435.2263 1858 1854 -78331026.88709 1859 1854 634702.4175476 1872 1854 -52284795.20658 1873 1854 -36666666.66065 1874 1854 2505785.203048 1875 1854 -86773795.75742 1876 1854 24416035.48061 1877 1854 -106696.56214 1878 1854 -50334865.85163 1879 1854 7750891.435108 1880 1854 -153554.2915443 1944 1854 -18569369.18862 1945 1854 9166666.669678 1946 1854 10279397.69313 1947 1854 -27520936.3574 1948 1854 6808951.285619 1949 1854 24530109.1485 1962 1854 -1129879.778007 1963 1854 2.369284629822e-06 1964 1854 57871.28717239 1965 1854 65159811.72745 1966 1854 4731994.015123 1967 1854 11710.09029299 1968 1854 -37308949.32533 1969 1854 -19582677.03363 1970 1854 11434375.89806 1983 1854 -18663081.30986 1984 1854 -9166666.669677 1985 1854 -10337268.9803 1986 1854 -44289186.74016 1987 1854 6104008.873161 1988 1854 -34010528.30258 1989 1854 -19096765.45373 1990 1854 1937722.859732 1991 1854 -1131791.351039 1855 1855 660481314.2789 1856 1855 -8369902.192371 1857 1855 -78333500.02687 1858 1855 -263254974.2493 1859 1855 1658380.723923 1872 1855 -36666666.66065 1873 1855 -41284001.36615 1874 1855 1263866.887163 1875 1855 24416035.48061 1876 1855 13565168.38836 1877 1855 -1207997.421921 1878 1855 7750891.435108 1879 1855 -151877577.34 1880 1855 1114835.39655 1944 1855 9166666.669678 1945 1855 -15819170.72716 1946 1855 -8385422.169798 1947 1855 6809529.721669 1948 1855 8378756.674785 1949 1855 -7098393.156867 1962 1855 2.913177013397e-06 1963 1855 -35963145.36236 1964 1855 -33694466.44041 1965 1855 4731994.015121 1966 1855 98799919.06592 1967 1855 -2134553.493147 1968 1855 -19583255.46968 1969 1855 -77214944.19873 1970 1855 35895592.87145 1983 1855 -9166666.669677 1984 1855 -15912882.8484 1985 1855 -8454866.614265 1986 1855 6104008.87316 1987 1855 -19204445.69136 1988 1855 7593833.975638 1989 1855 1937722.859732 1990 1855 -44482443.33833 1991 1855 16945375.52141 1856 1856 512079213.2787 1857 1856 600011.8966515 1858 1856 1686229.320647 1859 1856 -69210047.65795 1872 1856 2471062.980849 1873 1856 1236089.109403 1874 1856 -7832062.870945 1875 1856 -974752.1175541 1876 1856 -1235775.199694 1877 1856 43298672.25768 1878 1856 -222998.7359433 1879 1856 1114835.39655 1880 1856 -37381370.73265 1944 1856 10279397.69313 1945 1856 -8385422.169798 1946 1856 -16619803.40013 1947 1856 24703713.19063 1948 1856 -7070068.954014 1949 1856 -24234678.77313 1962 1856 57871.28717278 1963 1856 -33666688.66265 1964 1856 -39477172.9523 1965 1856 289668.3564975 1966 1856 -1912186.845125 1967 1856 -49396343.76105 1968 1856 11573362.44061 1969 1856 35950674.48827 1970 1856 -47707143.17434 1983 1856 -10337268.9803 1984 1856 -8454866.614265 1985 1856 -16869702.39011 1986 1856 -34184139.41185 1987 1856 7593833.977188 1988 1856 -49430632.70391 1989 1856 -1131791.351039 1990 1856 16945375.52141 1991 1856 -26713473.31342 1857 1857 614839050.8983 1858 1857 17973732.66542 1859 1857 -212215.4261644 1875 1857 -52690570.14122 1876 1857 -32132015.60604 1877 1857 329236.32717 1878 1857 37598828.59377 1879 1857 40566555.84207 1880 1857 -165449.1983437 1881 1857 63708429.49975 1882 1857 -20771303.28056 1883 1857 3243.047472715 1884 1857 -826617.3637437 1885 1857 28689110.99388 1886 1857 -68620.43168689 1947 1857 -60299571.71085 1948 1857 11001735.31176 1949 1857 1614415.106212 1965 1857 -36445705.69433 1966 1857 -19583255.46968 1967 1857 -11177873.40535 1968 1857 43966363.06476 1969 1857 4476096.649079 1970 1857 8618713.609176 1986 1857 -19361814.47454 1987 1857 -8033003.905469 1988 1857 -10880711.7551 1989 1857 -39854510.3119 1990 1857 10129174.62529 1991 1857 -43009370.51522 1992 1857 -23114447.75168 1993 1857 -5175489.303206 1994 1857 13763626.62675 1995 1857 -17144369.31473 1996 1857 7184742.092224 1997 1857 -10629355.22208 1858 1858 1128106300.08 1859 1858 -6751433.635311 1875 1858 -32132015.60604 1876 1858 -14821146.93907 1877 1858 -100707.8152143 1878 1858 40566555.84207 1879 1858 165260852.6832 1880 1858 -597661.00714 1881 1858 -6104636.616306 1882 1858 -6816946.093491 1883 1858 57814.32573971 1884 1858 28689110.99387 1885 1858 -23798451.81077 1886 1858 71404.97200041 1947 1858 7334490.207843 1948 1858 -159803560.5503 1949 1858 -15105006.04105 1965 1858 -19582677.03363 1966 1858 -76351700.56774 1967 1858 -35079784.41579 1968 1858 4476096.649078 1969 1858 165324453.0163 1970 1858 -1162457.000333 1986 1858 -8033003.905469 1987 1858 -9894458.669336 1988 1858 -8796010.290028 1989 1858 10129174.62529 1990 1858 -7927094.714724 1991 1858 7746460.193937 1992 1858 -1508822.635335 1993 1858 -40750200.27463 1994 1858 33347770.76796 1995 1858 7184742.092224 1996 1858 -22851494.43284 1997 1858 16684475.80062 1859 1859 773869008.0752 1875 1859 294514.104971 1876 1859 -128485.5929738 1877 1859 -622458.5944218 1878 1859 -269615.8649938 1879 1859 -625438.7849135 1880 1859 194200855.2863 1881 1859 3243.047475696 1882 1859 57814.32573968 1883 1859 125828358.2539 1884 1859 -68620.4316531 1885 1859 71404.97200043 1886 1859 40924167.25486 1947 1859 1076276.737474 1948 1859 -15535652.09754 1949 1859 -61294869.05612 1965 1859 -11038901.70535 1966 1859 -35024734.46458 1967 1859 -45405160.15834 1968 1859 -8637953.054657 1969 1859 -1969136.388931 1970 1859 -92387282.40012 1986 1859 -10880711.7551 1987 1859 -8796010.290028 1988 1859 -16660073.13599 1989 1859 -43078814.95968 1990 1859 7746460.195486 1991 1859 -82693280.69379 1992 1859 5638626.62599 1993 1859 33347770.76796 1994 1859 -72707925.46305 1995 1859 -10629355.22208 1996 1859 16684475.80062 1997 1859 -34862225.60797 1860 1860 309814570.0165 1861 1860 6.437301635742e-06 1862 1860 462970.2969034 1863 1860 42076777.68823 1864 1860 7333333.332127 1865 1860 -318285.203467 1950 1860 -59565882.98117 1951 1860 4.91738319397e-07 1952 1860 43739118.52961 1953 1860 -20057887.18154 1954 1860 -9166666.669679 1955 1860 11581481.02689 1971 1860 27139753.66166 1972 1860 8.344650268555e-07 1973 1860 -8738562.979764 1974 1860 -3553812.994569 1975 1860 1833333.333932 1976 1860 -2293147.690507 1861 1861 265811394.6764 1862 1861 -5555467.545855 1863 1861 -7333333.332131 1864 1861 -27589753.44616 1865 1861 2749955.995158 1950 1861 -5.811452865601e-07 1951 1861 -19232220.47929 1952 1861 -694433.4439163 1953 1861 -9166666.669679 1954 1861 -17307688.72007 1955 1861 9079855.613715 1971 1861 8.940696716309e-07 1972 1861 16138959.82123 1973 1861 -1388866.887151 1974 1861 -1833333.333938 1975 1861 -20970445.78675 1976 1861 18229155.66291 1862 1862 299795956.2502 1863 1862 723381.4630278 1864 1862 2805511.550704 1865 1862 39276420.11598 1950 1862 43704396.30741 1951 1862 -694433.4439163 1952 1862 -56581165.5979 1953 1862 11581481.02689 1954 1862 9079855.613715 1955 1862 -20589184.71456 1971 1862 8796437.017353 1972 1862 -1388866.887151 1973 1862 -59221381.24884 1974 1862 2351018.977684 1975 1862 18229155.66292 1976 1862 -27708914.75766 1863 1863 309814570.0165 1864 1863 6.437301635742e-06 1865 1863 462970.2969034 1866 1863 42076777.68823 1867 1863 7333333.332127 1868 1863 -318285.203467 1950 1863 -18569369.18862 1951 1863 9166666.669678 1952 1863 10279397.69313 1953 1863 -59565882.98117 1954 1863 4.91738319397e-07 1955 1863 43739118.52961 1956 1863 -20057887.18154 1957 1863 -9166666.669679 1958 1863 11581481.02689 1971 1863 -564939.8890041 1972 1863 -1833333.333934 1973 1863 -2032731.023757 1974 1863 27139753.66166 1975 1863 8.344650268555e-07 1976 1863 -8738562.979764 1977 1863 -3553812.994569 1978 1863 1833333.333932 1979 1863 -2293147.690507 1864 1864 265811394.6764 1865 1864 -5555467.545855 1866 1864 -7333333.332131 1867 1864 -27589753.44616 1868 1864 2749955.995158 1950 1864 9166666.669678 1951 1864 -15819170.72716 1952 1864 -8385422.169798 1953 1864 -5.811452865601e-07 1954 1864 -19232220.47929 1955 1864 -694433.4439163 1956 1864 -9166666.669679 1957 1864 -17307688.72007 1958 1864 9079855.613715 1971 1864 1833333.333937 1972 1864 -17981572.68118 1973 1864 -16840288.77576 1974 1864 8.940696716309e-07 1975 1864 16138959.82123 1976 1864 -1388866.887151 1977 1864 -1833333.333938 1978 1864 -20970445.78675 1979 1864 18229155.66291 1865 1865 299795956.2502 1866 1865 723381.4630278 1867 1865 2805511.550704 1868 1865 39276420.11598 1950 1865 10279397.69313 1951 1865 -8385422.169798 1952 1865 -16619803.40013 1953 1865 43704396.30741 1954 1865 -694433.4439163 1955 1865 -56581165.5979 1956 1865 11581481.02689 1957 1865 9079855.613715 1958 1865 -20589184.71456 1971 1865 2090602.31093 1972 1865 -16840288.77577 1973 1865 -19738586.47615 1974 1865 8796437.017353 1975 1865 -1388866.887151 1976 1865 -59221381.24884 1977 1865 2351018.977684 1978 1865 18229155.66292 1979 1865 -27708914.75766 1866 1866 309814570.0165 1867 1866 6.437301635742e-06 1868 1866 462970.2969034 1869 1866 42076777.68823 1870 1866 7333333.332127 1871 1866 -318285.203467 1953 1866 -18569369.18862 1954 1866 9166666.669678 1955 1866 10279397.69313 1956 1866 -59565882.98117 1957 1866 4.91738319397e-07 1958 1866 43739118.52961 1959 1866 -20057887.18154 1960 1866 -9166666.669679 1961 1866 11581481.02689 1974 1866 -564939.8890041 1975 1866 -1833333.333934 1976 1866 -2032731.023757 1977 1866 27139753.66166 1978 1866 8.344650268555e-07 1979 1866 -8738562.979764 1980 1866 -3553812.994569 1981 1866 1833333.333932 1982 1866 -2293147.690507 1867 1867 265811394.6764 1868 1867 -5555467.545855 1869 1867 -7333333.332131 1870 1867 -27589753.44616 1871 1867 2749955.995158 1953 1867 9166666.669678 1954 1867 -15819170.72716 1955 1867 -8385422.169798 1956 1867 -5.811452865601e-07 1957 1867 -19232220.47929 1958 1867 -694433.4439163 1959 1867 -9166666.669679 1960 1867 -17307688.72007 1961 1867 9079855.613715 1974 1867 1833333.333937 1975 1867 -17981572.68118 1976 1867 -16840288.77576 1977 1867 8.940696716309e-07 1978 1867 16138959.82123 1979 1867 -1388866.887151 1980 1867 -1833333.333938 1981 1867 -20970445.78675 1982 1867 18229155.66291 1868 1868 299795956.2502 1869 1868 723381.4630278 1870 1868 2805511.550704 1871 1868 39276420.11598 1953 1868 10279397.69313 1954 1868 -8385422.169798 1955 1868 -16619803.40013 1956 1868 43704396.30741 1957 1868 -694433.4439163 1958 1868 -56581165.5979 1959 1868 11581481.02689 1960 1868 9079855.613715 1961 1868 -20589184.71456 1974 1868 2090602.31093 1975 1868 -16840288.77577 1976 1868 -19738586.47615 1977 1868 8796437.017353 1978 1868 -1388866.887151 1979 1868 -59221381.24884 1980 1868 2351018.977684 1981 1868 18229155.66292 1982 1868 -27708914.75766 1869 1869 309814570.0165 1870 1869 6.437301635742e-06 1871 1869 462970.2969034 1872 1869 42076777.68823 1873 1869 7333333.332127 1874 1869 -318285.203467 1956 1869 -18569369.18862 1957 1869 9166666.669678 1958 1869 10279397.69313 1959 1869 -59565882.98117 1960 1869 4.91738319397e-07 1961 1869 43739118.52961 1962 1869 -20057887.18154 1963 1869 -9166666.669679 1964 1869 11581481.02689 1977 1869 -564939.8890041 1978 1869 -1833333.333934 1979 1869 -2032731.023757 1980 1869 27139753.66166 1981 1869 8.344650268555e-07 1982 1869 -8738562.979764 1983 1869 -3553812.994569 1984 1869 1833333.333932 1985 1869 -2293147.690507 1870 1870 265811394.6764 1871 1870 -5555467.545855 1872 1870 -7333333.332131 1873 1870 -27589753.44616 1874 1870 2749955.995158 1956 1870 9166666.669678 1957 1870 -15819170.72716 1958 1870 -8385422.169798 1959 1870 -5.811452865601e-07 1960 1870 -19232220.47929 1961 1870 -694433.4439163 1962 1870 -9166666.669679 1963 1870 -17307688.72007 1964 1870 9079855.613715 1977 1870 1833333.333937 1978 1870 -17981572.68118 1979 1870 -16840288.77576 1980 1870 8.940696716309e-07 1981 1870 16138959.82123 1982 1870 -1388866.887151 1983 1870 -1833333.333938 1984 1870 -20970445.78675 1985 1870 18229155.66291 1871 1871 299795956.2502 1872 1871 723381.4630278 1873 1871 2805511.550704 1874 1871 39276420.11598 1956 1871 10279397.69313 1957 1871 -8385422.169798 1958 1871 -16619803.40013 1959 1871 43704396.30741 1960 1871 -694433.4439163 1961 1871 -56581165.5979 1962 1871 11581481.02689 1963 1871 9079855.613715 1964 1871 -20589184.71456 1977 1871 2090602.31093 1978 1871 -16840288.77577 1979 1871 -19738586.47615 1980 1871 8796437.017353 1981 1871 -1388866.887151 1982 1871 -59221381.24884 1983 1871 2351018.977684 1984 1871 18229155.66292 1985 1871 -27708914.75766 1872 1872 309814570.0165 1873 1872 6.437301635742e-06 1874 1872 462970.2969034 1875 1872 42076777.68823 1876 1872 7333333.332127 1877 1872 -318285.203467 1959 1872 -18569369.18862 1960 1872 9166666.669678 1961 1872 10279397.69313 1962 1872 -59565882.98117 1963 1872 4.91738319397e-07 1964 1872 43739118.52961 1965 1872 -20057887.18154 1966 1872 -9166666.669679 1967 1872 11581481.02689 1980 1872 -564939.8890041 1981 1872 -1833333.333934 1982 1872 -2032731.023757 1983 1872 27139753.66166 1984 1872 8.344650268555e-07 1985 1872 -8738562.979764 1986 1872 -3553812.994569 1987 1872 1833333.333932 1988 1872 -2293147.690507 1873 1873 265811394.6764 1874 1873 -5555467.545855 1875 1873 -7333333.332131 1876 1873 -27589753.44616 1877 1873 2749955.995158 1959 1873 9166666.669678 1960 1873 -15819170.72716 1961 1873 -8385422.169798 1962 1873 -5.811452865601e-07 1963 1873 -19232220.47929 1964 1873 -694433.4439163 1965 1873 -9166666.669679 1966 1873 -17307688.72007 1967 1873 9079855.613715 1980 1873 1833333.333937 1981 1873 -17981572.68118 1982 1873 -16840288.77576 1983 1873 8.940696716309e-07 1984 1873 16138959.82123 1985 1873 -1388866.887151 1986 1873 -1833333.333938 1987 1873 -20970445.78675 1988 1873 18229155.66291 1874 1874 299795956.2502 1875 1874 723381.4630278 1876 1874 2805511.550704 1877 1874 39276420.11598 1959 1874 10279397.69313 1960 1874 -8385422.169798 1961 1874 -16619803.40013 1962 1874 43704396.30741 1963 1874 -694433.4439163 1964 1874 -56581165.5979 1965 1874 11581481.02689 1966 1874 9079855.613715 1967 1874 -20589184.71456 1980 1874 2090602.31093 1981 1874 -16840288.77577 1982 1874 -19738586.47615 1983 1874 8796437.017353 1984 1874 -1388866.887151 1985 1874 -59221381.24884 1986 1874 2351018.977684 1987 1874 18229155.66292 1988 1874 -27708914.75766 1875 1875 309250160.3896 1876 1875 4535517.963994 1877 1875 2453066.565954 1878 1875 -8612767.502989 1879 1875 -26152871.16708 1880 1875 379949.2240047 1962 1875 -18569369.18862 1963 1875 9166666.669678 1964 1875 10279397.69313 1965 1875 -43745996.76765 1966 1875 6104008.873162 1967 1875 33740166.13061 1968 1875 -19561074.78605 1969 1875 -8033003.905467 1970 1875 11036649.36321 1983 1875 -564939.8890041 1984 1875 -1833333.333934 1985 1875 -2032731.023757 1986 1875 26998047.5617 1987 1875 1133879.491557 1988 1875 -8240761.134482 1989 1875 -17935124.94805 1990 1875 -6538217.79499 1991 1875 7751167.860229 1876 1876 292124118.8748 1877 1876 -3586804.318186 1878 1876 -40819537.83134 1879 1876 -71029376.04212 1880 1876 603908.8952657 1962 1876 9166666.669678 1963 1876 -15819170.72716 1964 1876 -8385422.169798 1965 1876 6104008.873161 1966 1876 -18661255.71884 1967 1876 -8204777.132884 1968 1876 -8033003.905467 1969 1876 -10093718.98084 1970 1876 8738711.937952 1983 1876 1833333.333937 1984 1876 -17981572.68118 1985 1876 -16840288.77576 1986 1876 1133879.491557 1987 1876 22716537.18088 1988 1876 -896701.0799925 1989 1876 -10204884.46286 1990 1876 -33539277.09052 1991 1876 25588477.22048 1877 1877 306596341.2044 1878 1877 553560.3350853 1879 1877 631686.6730388 1880 1877 21856446.47305 1962 1877 10279397.69313 1963 1877 -8385422.169798 1964 1877 -16619803.40013 1965 1877 33913777.24376 1966 1877 -8204777.131321 1967 1877 -47982126.11052 1968 1877 11036649.36321 1969 1877 8738711.937952 1970 1877 -17191433.96669 1983 1877 2090602.31093 1984 1877 -16840288.77577 1985 1877 -19738586.47615 1986 1877 9293683.307081 1987 1877 -896701.0799924 1988 1877 -57522894.85793 1989 1877 12186723.41529 1990 1877 25588477.21893 1991 1877 -36621043.23569 1878 1878 356577161.9201 1879 1878 48285232.25239 1880 1878 -61822.7503829 1881 1878 -69422617.35248 1882 1878 -44644222.32742 1883 1878 104990.6793973 1884 1878 13197101.10136 1885 1878 -11138919.37081 1886 1878 34775.22564381 1965 1878 -18648271.66148 1966 1878 1937722.859731 1967 1878 1037653.094121 1968 1878 -39699971.95958 1969 1878 10129174.62529 1970 1878 42926740.58175 1986 1878 -17192674.13802 1987 1878 -10204884.46286 1988 1878 -11944665.46985 1989 1878 -4268705.881667 1990 1878 12038787.22767 1991 1878 -8660992.155141 1992 1878 -34216980.43145 1993 1878 -11148591.24713 1994 1878 20338700.34364 1995 1878 -25180862.7833 1996 1878 -2752209.002696 1997 1878 7586452.49441 1879 1879 444468254.4959 1880 1879 -1420293.818771 1881 1879 -44644222.32742 1882 1879 -49521951.80655 1883 1879 71404.97200023 1884 1879 -25805586.03507 1885 1879 -58297361.08229 1886 1879 227805.5621212 1965 1879 1937722.859731 1966 1879 -44033949.54609 1967 1879 -16387957.82287 1968 1879 10129174.62529 1969 1879 -7772556.362414 1970 1879 -8052150.914586 1986 1879 -6538217.794992 1987 1879 -32796826.2805 1988 1879 -25279578.32671 1989 1879 12038787.22767 1990 1879 17699553.83801 1991 1879 -354921.1380877 1992 1879 -11148591.24713 1993 1879 -29253723.60161 1994 1879 16684475.80062 1995 1879 -6418875.670566 1996 1879 -43049964.90291 1997 1879 33390132.40162 1880 1880 482183166.7639 1881 1880 104990.6793971 1882 1880 71404.97200023 1883 1880 15200667.25909 1884 1880 104219.6700739 1885 1880 227805.5621212 1886 1880 67947810.70532 1965 1880 1037653.094121 1966 1880 -16387957.82287 1967 1880 -25517489.86743 1968 1880 42857296.13735 1969 1880 -8052150.913023 1970 1880 -82281178.42096 1986 1880 -7613276.581476 1987 1880 -25279578.32828 1988 1880 -34641174.40895 1989 1880 8456785.619827 1990 1880 -354921.1380879 1991 1880 -128380449.7493 1992 1880 20338700.34364 1993 1880 16684475.80062 1994 1880 -41264454.77674 1995 1880 11848674.71994 1996 1880 33390132.40162 1997 1880 -59135164.39133 1881 1881 235305206.8043 1882 1881 50104636.60908 1883 1881 -61113.41781354 1884 1881 -6200109.874661 1885 1881 644222.3346426 1886 1881 -47120.30905524 1968 1881 -23019750.78198 1969 1881 -1508822.635337 1970 1881 -5637067.814509 1989 1881 -34122283.46173 1990 1881 -11148591.24713 1991 1881 -20286299.6697 1992 1881 -19237067.37006 1993 1881 12508822.63895 1994 1881 8109753.000327 1995 1881 -35316352.92472 1996 1881 148591.2435152 1997 1881 -30936385.51612 1882 1882 216455582.4122 1883 1882 -57814.32572985 1884 1882 15310888.9989 1885 1882 63274224.56474 1886 1882 -71404.97199523 1968 1882 -5175489.303208 1969 1882 -40655503.30493 1970 1882 -33318895.88775 1989 1882 -11148591.24713 1990 1882 -29159026.6319 1991 1882 -16648857.54366 1992 1882 12508822.63895 1993 1882 -23945064.85445 1994 1882 6652229.225463 1995 1882 3815257.911386 1996 1882 -17935859.74721 1997 1882 3315524.205949 1883 1883 343833005.2774 1884 1883 -47120.30905163 1885 1883 -71404.97199523 1886 1883 110847060.0814 1968 1883 -13762067.81526 1969 1883 -33318895.88775 1970 1883 -72455400.21049 1989 1883 -20286299.6697 1990 1883 -16648857.54366 1991 1883 -41011929.52416 1992 1883 -8140246.997005 1993 1883 -6681104.10568 1994 1883 -122156531.5552 1995 1883 -30936385.51804 1996 1883 -3351142.462907 1997 1883 -62230684.14613 1884 1884 174702353.4237 1885 1884 -18194413.95771 1886 1884 -127367.818301 1968 1884 -17049672.34501 1969 1884 7184742.092225 1970 1884 10594950.34044 1989 1884 -24896771.87432 1990 1884 -6418875.670569 1991 1884 -11796880.83574 1992 1884 -35316352.92472 1993 1884 3815257.911389 1994 1884 30912920.02928 1995 1884 -13173566.49931 1996 1884 -4581124.333045 1997 1884 -4276545.089515 1885 1885 199694315.615 1886 1885 -227805.5621098 1968 1885 7184742.092225 1969 1885 -22756797.46313 1970 1885 -16648857.54366 1989 1885 -2752209.002698 1990 1885 -42765873.99394 1991 1885 -33276534.25409 1992 1885 148591.2435185 1993 1885 -17935859.74721 1994 1885 3315524.205949 1995 1885 -4581124.333044 1996 1885 -6977832.439091 1997 1885 6609867.591799 1886 1886 262608234.7228 1968 1886 10594950.34044 1969 1886 -16648857.54366 1970 1886 -34609700.35539 1989 1886 -7569380.832428 1990 1886 -33276534.25409 1991 1886 -58377588.63405 1992 1886 30912920.02737 1993 1886 -3351142.462907 1994 1886 -62230684.14613 1995 1886 4213177.131314 1996 1886 -6723465.739343 1997 1886 -85945663.24674 1887 1887 389420334.4506 1888 1887 36666666.66065 1889 1887 3703834.305166 1890 1887 -202591396.4212 1891 1887 -36666966.01295 1892 1887 -2870483.022002 1893 1887 12702400.63006 1894 1887 29333632.68082 1895 1887 -1944468.073742 1998 1887 31947394.33292 1999 1887 9166666.669681 2000 1887 9728225.899101 2001 1887 -74358253.63036 2002 1887 -9166739.758898 2003 1887 -45562288.72778 2004 1887 -8166156.136015 2005 1887 7333406.424962 2006 1887 -9496761.446847 1888 1888 334416074.7194 1889 1888 -6111048.190243 1890 1888 -36667115.68909 1891 1888 -30255041.75127 1892 1888 -3888889.819054 1893 1888 44000449.02122 1894 1888 12702400.63006 1895 1888 2666689.342343 1998 1888 9166666.66968 1999 1888 18196342.83202 2000 1888 5513941.008134 2001 1888 -9166776.303507 2002 1888 -31274176.50627 2003 1888 -9941080.210835 2004 1888 11000109.63744 2005 1888 -8166156.136015 2006 1888 11395946.69513 1889 1889 380479993.5812 1890 1889 -2453807.380415 1891 1889 -3055548.927153 1892 1889 398412.8916247 1893 1889 -2916702.110613 1894 1889 1777792.894895 1895 1889 33873068.34682 1998 1889 -8223530.275229 1999 1889 -8847241.586827 2000 1889 -79300461.72417 2001 1889 -45527563.96779 2002 1889 -9746597.980308 2003 1889 -63128188.69225 2004 1889 -14245142.17027 2005 1889 7597297.796754 2006 1889 -21776416.36271 1890 1890 674759689.9124 1891 1890 36667415.0414 1892 1890 3125092.975185 1893 1890 20137287.77529 1894 1890 -36666966.01295 1895 1890 2754655.071165 1896 1890 -137627039.3558 1897 1890 -2.235174179077e-07 1898 1890 -671303.5447711 1899 1890 -52107624.53367 1900 1890 36666666.66065 1901 1890 -2754631.441411 1998 1890 -72726245.22972 1999 1890 -9166776.303506 2000 1890 44231216.90386 2001 1890 70575234.21716 2002 1890 9166849.392726 2003 1890 781227.3439141 2004 1890 -20203256.3538 2005 1890 -9166739.758899 2006 1890 11899863.74724 2007 1890 -60775629.25067 2008 1890 -1.214444637299e-06 2009 1890 -45012270.30212 2010 1890 -20383999.6175 2011 1890 9166666.669679 2012 1890 -11899768.97017 1891 1891 575752291.8369 1892 1891 -8610912.053949 1893 1891 -36667115.6891 1894 1891 -108195591.755 1895 1891 4777685.365654 1896 1891 4.470348358154e-07 1897 1891 23707595.23204 1898 1891 -2777734.286976 1899 1891 36666666.66065 1900 1891 -41106839.94217 1901 1891 1555533.810155 1998 1891 -9166739.758897 1999 1891 -29642168.10562 2000 1891 8204934.122165 2001 1891 9166849.392726 2002 1891 45823407.30156 2003 1891 -2152765.098743 2004 1891 -9166776.303508 2005 1891 -52286475.83204 2006 1891 37069600.58987 2007 1891 -1.445412635803e-06 2008 1891 -20441974.38895 2009 1891 -694433.6992576 2010 1891 9166666.669678 2011 1891 -17633805.76247 2012 1891 9357633.519253 1892 1892 615008779.2968 1893 1892 2685222.441543 1894 1892 5222139.640517 1895 1892 39437488.39575 1896 1892 -254636.8781728 1897 1892 -2777734.286976 1898 1892 42039227.65673 1899 1892 -2685186.996909 1900 1892 1499978.254554 1901 1892 -7359624.812662 1998 1892 44196492.14387 1999 1892 8010523.495484 2000 1892 -58776166.2905 2001 1892 781316.8545274 2002 1892 -2152693.49136 2003 1892 -107886912.3736 2004 1892 11899911.13577 2005 1892 37236269.31883 2006 1892 -57440830.58835 2007 1892 -44977548.07992 2008 1892 -694433.6992576 2009 1892 -59807200.44138 2010 1892 -11899768.97017 2011 1892 9357633.519253 2012 1892 -21458826.37861 1893 1893 389420334.4506 1894 1893 36666666.66065 1895 1893 3703834.305166 1896 1893 -52083950.29126 1897 1893 -36666666.66065 1898 1893 2453701.89106 1899 1893 -202591396.4212 1900 1893 -36666966.01295 1901 1893 -2870483.022002 1902 1893 12702400.63006 1903 1893 29333632.68082 1904 1893 -1944468.073742 1998 1893 -5106206.927443 1999 1893 11000109.63744 2000 1893 12682625.90274 2001 1893 -15511422.68773 2002 1893 -9166776.303506 2003 1893 -10539940.2691 2004 1893 31947394.33292 2005 1893 9166666.669681 2006 1893 9728225.899101 2007 1893 -18848133.13973 2008 1893 -9166666.66968 2009 1893 -10597685.63642 2010 1893 -74358253.63036 2011 1893 -9166739.758898 2012 1893 -45562288.72778 2013 1893 -8166156.136015 2014 1893 7333406.424962 2015 1893 -9496761.446847 1894 1894 334416074.7194 1895 1894 -6111048.190243 1896 1894 -36666666.66065 1897 1894 -41083165.69975 1898 1894 1222200.476822 1899 1894 -36667115.68909 1900 1894 -30255041.75127 1901 1894 -3888889.819054 1902 1894 44000449.02122 1903 1894 12702400.63006 1904 1894 2666689.342343 1998 1894 7333406.424962 1999 1894 -5106206.927443 2000 1894 -6763956.526763 2001 1894 -9166739.758897 2002 1894 -47594642.16596 2003 1894 -34569643.89832 2004 1894 9166666.66968 2005 1894 18196342.83202 2006 1894 5513941.008134 2007 1894 -9166666.669679 2008 1894 -16097939.2847 2009 1894 -8663199.819997 2010 1894 -9166776.303507 2011 1894 -31274176.50627 2012 1894 -9941080.210835 2013 1894 11000109.63744 2014 1894 -8166156.136015 2015 1894 11395946.69513 1895 1895 380479993.5812 1896 1895 2523146.335561 1897 1895 1277756.032423 1898 1895 -7296493.499545 1899 1895 -2453807.380415 1900 1895 -3055548.927153 1901 1895 398412.8916247 1902 1895 -2916702.110613 1903 1895 1777792.894895 1904 1895 33873068.34682 1998 1895 8455083.935158 1999 1895 -10145934.79014 2000 1895 -13616551.80652 2001 1895 -10539898.30291 2002 1895 -34736312.74845 2003 1895 -44929274.14549 2004 1895 -8223530.275229 2005 1895 -8847241.586827 2006 1895 -79300461.72417 2007 1895 -10597685.63642 2008 1895 -8663199.819997 2009 1895 -17363182.43788 2010 1895 -45527563.96779 2011 1895 -9746597.980308 2012 1895 -63128188.69225 2013 1895 -14245142.17027 2014 1895 7597297.796754 2015 1895 -21776416.36271 1896 1896 622861433.7406 1897 1896 1.120567321777e-05 1898 1896 925940.4229136 1899 1896 84958459.17911 1900 1896 -5.066394805908e-06 1901 1896 231485.1058435 1905 1896 -137627039.3558 1906 1896 -2.235174179077e-07 1907 1896 -671303.5447711 1908 1896 -52107624.53367 1909 1896 36666666.66065 1910 1896 -2754631.441411 2001 1896 -60367636.82651 2002 1896 1.877546310425e-06 2003 1896 44780785.23866 2004 1896 -20276082.95081 2005 1896 -9166666.66968 2006 1896 11841897.70428 2007 1896 51054233.83102 2008 1896 1.788139343262e-06 2009 1896 231485.0634618 2010 1896 -7985170.87927 2011 1896 -2.771615982056e-06 2012 1896 57871.2658952 2016 1896 -60775629.25067 2017 1896 -1.214444637299e-06 2018 1896 -45012270.30212 2019 1896 -20383999.6175 2020 1896 9166666.669679 2021 1896 -11899768.97017 1897 1897 534855157.0519 1898 1897 -11110937.14243 1899 1897 -3.457069396973e-06 1900 1897 -54374606.24745 1901 1897 5722135.237857 1905 1897 4.470348358154e-07 1906 1897 23707595.23204 1907 1897 -2777734.286976 1908 1897 36666666.66065 1909 1897 -41106839.94217 1910 1897 1555533.810155 2001 1897 1.169741153717e-06 2002 1897 -20033981.96478 2003 1897 -694433.6992575 2004 1897 -9166666.66968 2005 1897 -17525889.09577 2006 1897 9288189.074786 2007 1897 1.966953277588e-06 2008 1897 29052683.00161 2009 1897 -2777734.795662 2010 1897 -2.190470695496e-06 2011 1897 -42818438.03636 2012 1897 37305534.05859 2016 1897 -1.445412635803e-06 2017 1897 -20441974.38895 2018 1897 -694433.6992576 2019 1897 9166666.669678 2020 1897 -17633805.76247 2021 1897 9357633.519253 1898 1898 608211498.9432 1899 1898 231485.105844 1900 1898 5388801.904579 1901 1898 80699306.16691 1905 1898 -254636.8781728 1906 1898 -2777734.286976 1907 1898 42039227.65673 1908 1898 -2685186.996909 1909 1898 1499978.254554 1910 1898 -7359624.812662 2001 1898 44746063.01646 2002 1898 -694433.6992574 2003 1898 -58719220.64359 2004 1898 11841897.70428 2005 1898 9288189.074786 2006 1898 -21171048.60074 2007 1898 231485.0634617 2008 1898 -2777734.795662 2009 1898 -127043423.7988 2010 1898 57871.26589543 2011 1898 37277756.28083 2012 1898 -57757921.43384 2016 1898 -44977548.07992 2017 1898 -694433.6992576 2018 1898 -59807200.44138 2019 1898 -11899768.97017 2020 1898 9357633.519253 2021 1898 -21458826.37861 1899 1899 674759689.9124 1900 1899 36667415.0414 1901 1899 3125092.975185 1902 1899 20137287.77529 1903 1899 -36666966.01295 1904 1899 2754655.071165 1905 1899 -52083950.29126 1906 1899 -36666666.66065 1907 1899 2453701.89106 1908 1899 -137627039.3558 1909 1899 -2.235174179077e-07 1910 1899 -671303.5447711 1911 1899 -52107624.53367 1912 1899 36666666.66065 1913 1899 -2754631.441411 2001 1899 -18752053.59425 2002 1899 9166666.66968 2003 1899 10539814.37052 2004 1899 -72726245.22972 2005 1899 -9166776.303506 2006 1899 44231216.90386 2007 1899 -1865379.213624 2008 1899 8.79168510437e-07 2009 1899 57871.26589221 2010 1899 70575234.21716 2011 1899 9166849.392726 2012 1899 781227.3439141 2013 1899 -20203256.3538 2014 1899 -9166739.758899 2015 1899 11899863.74724 2016 1899 -18848133.13973 2017 1899 -9166666.66968 2018 1899 -10597685.63642 2019 1899 -60775629.25067 2020 1899 -1.214444637299e-06 2021 1899 -45012270.30212 2022 1899 -20383999.6175 2023 1899 9166666.669679 2024 1899 -11899768.97017 1900 1900 575752291.8369 1901 1900 -8610912.053949 1902 1900 -36667115.6891 1903 1900 -108195591.755 1904 1900 4777685.365654 1905 1900 -36666666.66065 1906 1900 -41083165.69975 1907 1900 1222200.476822 1908 1900 4.470348358154e-07 1909 1900 23707595.23204 1910 1900 -2777734.286976 1911 1900 36666666.66065 1912 1900 -41106839.94217 1913 1900 1555533.810155 2001 1900 9166666.66968 2002 1900 -16001859.73922 2003 1900 -8593755.37553 2004 1900 -9166739.758897 2005 1900 -29642168.10562 2006 1900 8204934.122165 2007 1900 1.229345798492e-06 2008 1900 -36698646.37071 2009 1900 -34527799.26293 2010 1900 9166849.392726 2011 1900 45823407.30156 2012 1900 -2152765.098743 2013 1900 -9166776.303508 2014 1900 -52286475.83204 2015 1900 37069600.58987 2016 1900 -9166666.669679 2017 1900 -16097939.2847 2018 1900 -8663199.819997 2019 1900 -1.445412635803e-06 2020 1900 -20441974.38895 2021 1900 -694433.6992576 2022 1900 9166666.669678 2023 1900 -17633805.76247 2024 1900 9357633.519253 1901 1901 615008779.2968 1902 1901 2685222.441543 1903 1901 5222139.640517 1904 1901 39437488.39575 1905 1901 2523146.335561 1906 1901 1277756.032423 1907 1901 -7296493.499545 1908 1901 -254636.8781728 1909 1901 -2777734.286976 1910 1901 42039227.65673 1911 1901 -2685186.996909 1912 1901 1499978.254554 1913 1901 -7359624.812662 2001 1901 10539814.37052 2002 1901 -8593755.37553 2003 1901 -17106970.31658 2004 1901 44196492.14387 2005 1901 8010523.495484 2006 1901 -58776166.2905 2007 1901 57871.26589252 2008 1901 -34500021.48517 2009 1901 -41438476.99211 2010 1901 781316.8545274 2011 1901 -2152693.49136 2012 1901 -107886912.3736 2013 1901 11899911.13577 2014 1901 37236269.31883 2015 1901 -57440830.58835 2016 1901 -10597685.63642 2017 1901 -8663199.819997 2018 1901 -17363182.43788 2019 1901 -44977548.07992 2020 1901 -694433.6992576 2021 1901 -59807200.44138 2022 1901 -11899768.97017 2023 1901 9357633.519253 2024 1901 -21458826.37861 1902 1902 389420334.4506 1903 1902 36666666.66065 1904 1902 3703834.305166 1908 1902 -52083950.29126 1909 1902 -36666666.66065 1910 1902 2453701.89106 1911 1902 -202591396.4212 1912 1902 -36666966.01295 1913 1902 -2870483.022002 1914 1902 12702400.63006 1915 1902 29333632.68082 1916 1902 -1944468.073742 2004 1902 -5106206.927443 2005 1902 11000109.63744 2006 1902 12682625.90274 2010 1902 -15511422.68773 2011 1902 -9166776.303506 2012 1902 -10539940.2691 2013 1902 31947394.33292 2014 1902 9166666.669681 2015 1902 9728225.899101 2019 1902 -18848133.13973 2020 1902 -9166666.66968 2021 1902 -10597685.63642 2022 1902 -74358253.63036 2023 1902 -9166739.758898 2024 1902 -45562288.72778 2025 1902 -8166156.136015 2026 1902 7333406.424962 2027 1902 -9496761.446847 1903 1903 334416074.7194 1904 1903 -6111048.190243 1908 1903 -36666666.66065 1909 1903 -41083165.69975 1910 1903 1222200.476822 1911 1903 -36667115.68909 1912 1903 -30255041.75127 1913 1903 -3888889.819054 1914 1903 44000449.02122 1915 1903 12702400.63006 1916 1903 2666689.342343 2004 1903 7333406.424962 2005 1903 -5106206.927443 2006 1903 -6763956.526763 2010 1903 -9166739.758897 2011 1903 -47594642.16596 2012 1903 -34569643.89832 2013 1903 9166666.66968 2014 1903 18196342.83202 2015 1903 5513941.008134 2019 1903 -9166666.669679 2020 1903 -16097939.2847 2021 1903 -8663199.819997 2022 1903 -9166776.303507 2023 1903 -31274176.50627 2024 1903 -9941080.210835 2025 1903 11000109.63744 2026 1903 -8166156.136015 2027 1903 11395946.69513 1904 1904 380479993.5812 1908 1904 2523146.335561 1909 1904 1277756.032423 1910 1904 -7296493.499545 1911 1904 -2453807.380415 1912 1904 -3055548.927153 1913 1904 398412.8916247 1914 1904 -2916702.110613 1915 1904 1777792.894895 1916 1904 33873068.34682 2004 1904 8455083.935158 2005 1904 -10145934.79014 2006 1904 -13616551.80652 2010 1904 -10539898.30291 2011 1904 -34736312.74845 2012 1904 -44929274.14549 2013 1904 -8223530.275229 2014 1904 -8847241.586827 2015 1904 -79300461.72417 2019 1904 -10597685.63642 2020 1904 -8663199.819997 2021 1904 -17363182.43788 2022 1904 -45527563.96779 2023 1904 -9746597.980308 2024 1904 -63128188.69225 2025 1904 -14245142.17027 2026 1904 7597297.796754 2027 1904 -21776416.36271 1905 1905 622861433.7406 1906 1905 1.120567321777e-05 1907 1905 925940.4229136 1908 1905 84958459.17911 1909 1905 -5.066394805908e-06 1910 1905 231485.1058435 1917 1905 -137627039.3558 1918 1905 -2.235174179077e-07 1919 1905 -671303.5447711 1920 1905 -52107624.53367 1921 1905 36666666.66065 1922 1905 -2754631.441411 2007 1905 -60367636.82651 2008 1905 1.877546310425e-06 2009 1905 44780785.23866 2010 1905 -20276082.95081 2011 1905 -9166666.66968 2012 1905 11841897.70428 2016 1905 51054233.83102 2017 1905 1.788139343262e-06 2018 1905 231485.0634618 2019 1905 -7985170.87927 2020 1905 -2.771615982056e-06 2021 1905 57871.2658952 2028 1905 -60775629.25067 2029 1905 -1.214444637299e-06 2030 1905 -45012270.30212 2031 1905 -20383999.6175 2032 1905 9166666.669679 2033 1905 -11899768.97017 1906 1906 534855157.0519 1907 1906 -11110937.14243 1908 1906 -3.457069396973e-06 1909 1906 -54374606.24745 1910 1906 5722135.237857 1917 1906 4.470348358154e-07 1918 1906 23707595.23204 1919 1906 -2777734.286976 1920 1906 36666666.66065 1921 1906 -41106839.94217 1922 1906 1555533.810155 2007 1906 1.169741153717e-06 2008 1906 -20033981.96478 2009 1906 -694433.6992575 2010 1906 -9166666.66968 2011 1906 -17525889.09577 2012 1906 9288189.074786 2016 1906 1.966953277588e-06 2017 1906 29052683.00161 2018 1906 -2777734.795662 2019 1906 -2.190470695496e-06 2020 1906 -42818438.03636 2021 1906 37305534.05859 2028 1906 -1.445412635803e-06 2029 1906 -20441974.38895 2030 1906 -694433.6992576 2031 1906 9166666.669678 2032 1906 -17633805.76247 2033 1906 9357633.519253 1907 1907 608211498.9432 1908 1907 231485.105844 1909 1907 5388801.904579 1910 1907 80699306.16691 1917 1907 -254636.8781728 1918 1907 -2777734.286976 1919 1907 42039227.65673 1920 1907 -2685186.996909 1921 1907 1499978.254554 1922 1907 -7359624.812662 2007 1907 44746063.01646 2008 1907 -694433.6992574 2009 1907 -58719220.64359 2010 1907 11841897.70428 2011 1907 9288189.074786 2012 1907 -21171048.60074 2016 1907 231485.0634617 2017 1907 -2777734.795662 2018 1907 -127043423.7988 2019 1907 57871.26589543 2020 1907 37277756.28083 2021 1907 -57757921.43384 2028 1907 -44977548.07992 2029 1907 -694433.6992576 2030 1907 -59807200.44138 2031 1907 -11899768.97017 2032 1907 9357633.519253 2033 1907 -21458826.37861 1908 1908 622861433.7406 1909 1908 1.120567321777e-05 1910 1908 925940.4229136 1911 1908 84958459.17911 1912 1908 -5.066394805908e-06 1913 1908 231485.1058435 1917 1908 -52083950.29126 1918 1908 -36666666.66065 1919 1908 2453701.89106 1920 1908 -137627039.3558 1921 1908 -2.235174179077e-07 1922 1908 -671303.5447711 1923 1908 -52107624.53367 1924 1908 36666666.66065 1925 1908 -2754631.441411 2007 1908 -18752053.59425 2008 1908 9166666.66968 2009 1908 10539814.37052 2010 1908 -60367636.82651 2011 1908 1.877546310425e-06 2012 1908 44780785.23866 2013 1908 -20276082.95081 2014 1908 -9166666.66968 2015 1908 11841897.70428 2016 1908 -1865379.213624 2017 1908 8.79168510437e-07 2018 1908 57871.26589221 2019 1908 51054233.83102 2020 1908 1.788139343262e-06 2021 1908 231485.0634618 2022 1908 -7985170.87927 2023 1908 -2.771615982056e-06 2024 1908 57871.2658952 2028 1908 -18848133.13973 2029 1908 -9166666.66968 2030 1908 -10597685.63642 2031 1908 -60775629.25067 2032 1908 -1.214444637299e-06 2033 1908 -45012270.30212 2034 1908 -20383999.6175 2035 1908 9166666.669679 2036 1908 -11899768.97017 1909 1909 534855157.0519 1910 1909 -11110937.14243 1911 1909 -3.457069396973e-06 1912 1909 -54374606.24745 1913 1909 5722135.237857 1917 1909 -36666666.66065 1918 1909 -41083165.69975 1919 1909 1222200.476822 1920 1909 4.470348358154e-07 1921 1909 23707595.23204 1922 1909 -2777734.286976 1923 1909 36666666.66065 1924 1909 -41106839.94217 1925 1909 1555533.810155 2007 1909 9166666.66968 2008 1909 -16001859.73922 2009 1909 -8593755.37553 2010 1909 1.169741153717e-06 2011 1909 -20033981.96478 2012 1909 -694433.6992575 2013 1909 -9166666.66968 2014 1909 -17525889.09577 2015 1909 9288189.074786 2016 1909 1.229345798492e-06 2017 1909 -36698646.37071 2018 1909 -34527799.26293 2019 1909 1.966953277588e-06 2020 1909 29052683.00161 2021 1909 -2777734.795662 2022 1909 -2.190470695496e-06 2023 1909 -42818438.03636 2024 1909 37305534.05859 2028 1909 -9166666.669679 2029 1909 -16097939.2847 2030 1909 -8663199.819997 2031 1909 -1.445412635803e-06 2032 1909 -20441974.38895 2033 1909 -694433.6992576 2034 1909 9166666.669678 2035 1909 -17633805.76247 2036 1909 9357633.519253 1910 1910 608211498.9432 1911 1910 231485.105844 1912 1910 5388801.904579 1913 1910 80699306.16691 1917 1910 2523146.335561 1918 1910 1277756.032423 1919 1910 -7296493.499545 1920 1910 -254636.8781728 1921 1910 -2777734.286976 1922 1910 42039227.65673 1923 1910 -2685186.996909 1924 1910 1499978.254554 1925 1910 -7359624.812662 2007 1910 10539814.37052 2008 1910 -8593755.37553 2009 1910 -17106970.31658 2010 1910 44746063.01646 2011 1910 -694433.6992574 2012 1910 -58719220.64359 2013 1910 11841897.70428 2014 1910 9288189.074786 2015 1910 -21171048.60074 2016 1910 57871.26589252 2017 1910 -34500021.48517 2018 1910 -41438476.99211 2019 1910 231485.0634617 2020 1910 -2777734.795662 2021 1910 -127043423.7988 2022 1910 57871.26589543 2023 1910 37277756.28083 2024 1910 -57757921.43384 2028 1910 -10597685.63642 2029 1910 -8663199.819997 2030 1910 -17363182.43788 2031 1910 -44977548.07992 2032 1910 -694433.6992576 2033 1910 -59807200.44138 2034 1910 -11899768.97017 2035 1910 9357633.519253 2036 1910 -21458826.37861 1911 1911 674759689.9124 1912 1911 36667415.0414 1913 1911 3125092.975185 1914 1911 20137287.77529 1915 1911 -36666966.01295 1916 1911 2754655.071165 1920 1911 -52083950.29126 1921 1911 -36666666.66065 1922 1911 2453701.89106 1923 1911 -137627039.3558 1924 1911 -2.235174179077e-07 1925 1911 -671303.5447711 1926 1911 -52107624.53367 1927 1911 36666666.66065 1928 1911 -2754631.441411 2010 1911 -18752053.59425 2011 1911 9166666.66968 2012 1911 10539814.37052 2013 1911 -72726245.22972 2014 1911 -9166776.303506 2015 1911 44231216.90386 2019 1911 -1865379.213624 2020 1911 8.79168510437e-07 2021 1911 57871.26589221 2022 1911 70575234.21716 2023 1911 9166849.392726 2024 1911 781227.3439141 2025 1911 -20203256.3538 2026 1911 -9166739.758899 2027 1911 11899863.74724 2031 1911 -18848133.13973 2032 1911 -9166666.66968 2033 1911 -10597685.63642 2034 1911 -60775629.25067 2035 1911 -1.214444637299e-06 2036 1911 -45012270.30212 2037 1911 -20383999.6175 2038 1911 9166666.669679 2039 1911 -11899768.97017 1912 1912 575752291.8369 1913 1912 -8610912.053949 1914 1912 -36667115.6891 1915 1912 -108195591.755 1916 1912 4777685.365654 1920 1912 -36666666.66065 1921 1912 -41083165.69975 1922 1912 1222200.476822 1923 1912 4.470348358154e-07 1924 1912 23707595.23204 1925 1912 -2777734.286976 1926 1912 36666666.66065 1927 1912 -41106839.94217 1928 1912 1555533.810155 2010 1912 9166666.66968 2011 1912 -16001859.73922 2012 1912 -8593755.37553 2013 1912 -9166739.758897 2014 1912 -29642168.10562 2015 1912 8204934.122165 2019 1912 1.229345798492e-06 2020 1912 -36698646.37071 2021 1912 -34527799.26293 2022 1912 9166849.392726 2023 1912 45823407.30156 2024 1912 -2152765.098743 2025 1912 -9166776.303508 2026 1912 -52286475.83204 2027 1912 37069600.58987 2031 1912 -9166666.669679 2032 1912 -16097939.2847 2033 1912 -8663199.819997 2034 1912 -1.445412635803e-06 2035 1912 -20441974.38895 2036 1912 -694433.6992576 2037 1912 9166666.669678 2038 1912 -17633805.76247 2039 1912 9357633.519253 1913 1913 615008779.2968 1914 1913 2685222.441543 1915 1913 5222139.640517 1916 1913 39437488.39575 1920 1913 2523146.335561 1921 1913 1277756.032423 1922 1913 -7296493.499545 1923 1913 -254636.8781728 1924 1913 -2777734.286976 1925 1913 42039227.65673 1926 1913 -2685186.996909 1927 1913 1499978.254554 1928 1913 -7359624.812662 2010 1913 10539814.37052 2011 1913 -8593755.37553 2012 1913 -17106970.31658 2013 1913 44196492.14387 2014 1913 8010523.495484 2015 1913 -58776166.2905 2019 1913 57871.26589252 2020 1913 -34500021.48517 2021 1913 -41438476.99211 2022 1913 781316.8545274 2023 1913 -2152693.49136 2024 1913 -107886912.3736 2025 1913 11899911.13577 2026 1913 37236269.31883 2027 1913 -57440830.58835 2031 1913 -10597685.63642 2032 1913 -8663199.819997 2033 1913 -17363182.43788 2034 1913 -44977548.07992 2035 1913 -694433.6992576 2036 1913 -59807200.44138 2037 1913 -11899768.97017 2038 1913 9357633.519253 2039 1913 -21458826.37861 1914 1914 389420334.4506 1915 1914 36666666.66065 1916 1914 3703834.305166 1923 1914 -52083950.29126 1924 1914 -36666666.66065 1925 1914 2453701.89106 1926 1914 -202591396.4212 1927 1914 -36666966.01295 1928 1914 -2870483.022002 1929 1914 12702400.63006 1930 1914 29333632.68082 1931 1914 -1944468.073742 2013 1914 -5106206.927443 2014 1914 11000109.63744 2015 1914 12682625.90274 2022 1914 -15511422.68773 2023 1914 -9166776.303506 2024 1914 -10539940.2691 2025 1914 31947394.33292 2026 1914 9166666.669681 2027 1914 9728225.899101 2034 1914 -18848133.13973 2035 1914 -9166666.66968 2036 1914 -10597685.63642 2037 1914 -74358253.63036 2038 1914 -9166739.758898 2039 1914 -45562288.72778 2040 1914 -8166156.136015 2041 1914 7333406.424962 2042 1914 -9496761.446847 1915 1915 334416074.7194 1916 1915 -6111048.190243 1923 1915 -36666666.66065 1924 1915 -41083165.69975 1925 1915 1222200.476822 1926 1915 -36667115.68909 1927 1915 -30255041.75127 1928 1915 -3888889.819054 1929 1915 44000449.02122 1930 1915 12702400.63006 1931 1915 2666689.342343 2013 1915 7333406.424962 2014 1915 -5106206.927443 2015 1915 -6763956.526763 2022 1915 -9166739.758897 2023 1915 -47594642.16596 2024 1915 -34569643.89832 2025 1915 9166666.66968 2026 1915 18196342.83202 2027 1915 5513941.008134 2034 1915 -9166666.669679 2035 1915 -16097939.2847 2036 1915 -8663199.819997 2037 1915 -9166776.303507 2038 1915 -31274176.50627 2039 1915 -9941080.210835 2040 1915 11000109.63744 2041 1915 -8166156.136015 2042 1915 11395946.69513 1916 1916 380479993.5812 1923 1916 2523146.335561 1924 1916 1277756.032423 1925 1916 -7296493.499545 1926 1916 -2453807.380415 1927 1916 -3055548.927153 1928 1916 398412.8916247 1929 1916 -2916702.110613 1930 1916 1777792.894895 1931 1916 33873068.34682 2013 1916 8455083.935158 2014 1916 -10145934.79014 2015 1916 -13616551.80652 2022 1916 -10539898.30291 2023 1916 -34736312.74845 2024 1916 -44929274.14549 2025 1916 -8223530.275229 2026 1916 -8847241.586827 2027 1916 -79300461.72417 2034 1916 -10597685.63642 2035 1916 -8663199.819997 2036 1916 -17363182.43788 2037 1916 -45527563.96779 2038 1916 -9746597.980308 2039 1916 -63128188.69225 2040 1916 -14245142.17027 2041 1916 7597297.796754 2042 1916 -21776416.36271 1917 1917 622861433.7406 1918 1917 1.120567321777e-05 1919 1917 925940.4229136 1920 1917 84958459.17911 1921 1917 -5.066394805908e-06 1922 1917 231485.1058435 1932 1917 -137627039.3558 1933 1917 -2.235174179077e-07 1934 1917 -671303.5447711 1935 1917 -52107624.53367 1936 1917 36666666.66065 1937 1917 -2754631.441411 2016 1917 -60367636.82651 2017 1917 1.877546310425e-06 2018 1917 44780785.23866 2019 1917 -20276082.95081 2020 1917 -9166666.66968 2021 1917 11841897.70428 2028 1917 51054233.83102 2029 1917 1.788139343262e-06 2030 1917 231485.0634618 2031 1917 -7985170.87927 2032 1917 -2.771615982056e-06 2033 1917 57871.2658952 2043 1917 -60775629.25067 2044 1917 -1.214444637299e-06 2045 1917 -45012270.30212 2046 1917 -20383999.6175 2047 1917 9166666.669679 2048 1917 -11899768.97017 1918 1918 534855157.0519 1919 1918 -11110937.14243 1920 1918 -3.457069396973e-06 1921 1918 -54374606.24745 1922 1918 5722135.237857 1932 1918 4.470348358154e-07 1933 1918 23707595.23204 1934 1918 -2777734.286976 1935 1918 36666666.66065 1936 1918 -41106839.94217 1937 1918 1555533.810155 2016 1918 1.169741153717e-06 2017 1918 -20033981.96478 2018 1918 -694433.6992575 2019 1918 -9166666.66968 2020 1918 -17525889.09577 2021 1918 9288189.074786 2028 1918 1.966953277588e-06 2029 1918 29052683.00161 2030 1918 -2777734.795662 2031 1918 -2.190470695496e-06 2032 1918 -42818438.03636 2033 1918 37305534.05859 2043 1918 -1.445412635803e-06 2044 1918 -20441974.38895 2045 1918 -694433.6992576 2046 1918 9166666.669678 2047 1918 -17633805.76247 2048 1918 9357633.519253 1919 1919 608211498.9432 1920 1919 231485.105844 1921 1919 5388801.904579 1922 1919 80699306.16691 1932 1919 -254636.8781728 1933 1919 -2777734.286976 1934 1919 42039227.65673 1935 1919 -2685186.996909 1936 1919 1499978.254554 1937 1919 -7359624.812662 2016 1919 44746063.01646 2017 1919 -694433.6992574 2018 1919 -58719220.64359 2019 1919 11841897.70428 2020 1919 9288189.074786 2021 1919 -21171048.60074 2028 1919 231485.0634617 2029 1919 -2777734.795662 2030 1919 -127043423.7988 2031 1919 57871.26589543 2032 1919 37277756.28083 2033 1919 -57757921.43384 2043 1919 -44977548.07992 2044 1919 -694433.6992576 2045 1919 -59807200.44138 2046 1919 -11899768.97017 2047 1919 9357633.519253 2048 1919 -21458826.37861 1920 1920 622861433.7406 1921 1920 1.120567321777e-05 1922 1920 925940.4229136 1923 1920 84958459.17911 1924 1920 -5.066394805908e-06 1925 1920 231485.1058435 1932 1920 -52083950.29126 1933 1920 -36666666.66065 1934 1920 2453701.89106 1935 1920 -137627039.3558 1936 1920 -2.235174179077e-07 1937 1920 -671303.5447711 1938 1920 -52107624.53367 1939 1920 36666666.66065 1940 1920 -2754631.441411 2016 1920 -18752053.59425 2017 1920 9166666.66968 2018 1920 10539814.37052 2019 1920 -60367636.82651 2020 1920 1.877546310425e-06 2021 1920 44780785.23866 2022 1920 -20276082.95081 2023 1920 -9166666.66968 2024 1920 11841897.70428 2028 1920 -1865379.213624 2029 1920 8.79168510437e-07 2030 1920 57871.26589221 2031 1920 51054233.83102 2032 1920 1.788139343262e-06 2033 1920 231485.0634618 2034 1920 -7985170.87927 2035 1920 -2.771615982056e-06 2036 1920 57871.2658952 2043 1920 -18848133.13973 2044 1920 -9166666.66968 2045 1920 -10597685.63642 2046 1920 -60775629.25067 2047 1920 -1.214444637299e-06 2048 1920 -45012270.30212 2049 1920 -20383999.6175 2050 1920 9166666.669679 2051 1920 -11899768.97017 1921 1921 534855157.0519 1922 1921 -11110937.14243 1923 1921 -3.457069396973e-06 1924 1921 -54374606.24745 1925 1921 5722135.237857 1932 1921 -36666666.66065 1933 1921 -41083165.69975 1934 1921 1222200.476822 1935 1921 4.470348358154e-07 1936 1921 23707595.23204 1937 1921 -2777734.286976 1938 1921 36666666.66065 1939 1921 -41106839.94217 1940 1921 1555533.810155 2016 1921 9166666.66968 2017 1921 -16001859.73922 2018 1921 -8593755.37553 2019 1921 1.169741153717e-06 2020 1921 -20033981.96478 2021 1921 -694433.6992575 2022 1921 -9166666.66968 2023 1921 -17525889.09577 2024 1921 9288189.074786 2028 1921 1.229345798492e-06 2029 1921 -36698646.37071 2030 1921 -34527799.26293 2031 1921 1.966953277588e-06 2032 1921 29052683.00161 2033 1921 -2777734.795662 2034 1921 -2.190470695496e-06 2035 1921 -42818438.03636 2036 1921 37305534.05859 2043 1921 -9166666.669679 2044 1921 -16097939.2847 2045 1921 -8663199.819997 2046 1921 -1.445412635803e-06 2047 1921 -20441974.38895 2048 1921 -694433.6992576 2049 1921 9166666.669678 2050 1921 -17633805.76247 2051 1921 9357633.519253 1922 1922 608211498.9432 1923 1922 231485.105844 1924 1922 5388801.904579 1925 1922 80699306.16691 1932 1922 2523146.335561 1933 1922 1277756.032423 1934 1922 -7296493.499545 1935 1922 -254636.8781728 1936 1922 -2777734.286976 1937 1922 42039227.65673 1938 1922 -2685186.996909 1939 1922 1499978.254554 1940 1922 -7359624.812662 2016 1922 10539814.37052 2017 1922 -8593755.37553 2018 1922 -17106970.31658 2019 1922 44746063.01646 2020 1922 -694433.6992574 2021 1922 -58719220.64359 2022 1922 11841897.70428 2023 1922 9288189.074786 2024 1922 -21171048.60074 2028 1922 57871.26589252 2029 1922 -34500021.48517 2030 1922 -41438476.99211 2031 1922 231485.0634617 2032 1922 -2777734.795662 2033 1922 -127043423.7988 2034 1922 57871.26589543 2035 1922 37277756.28083 2036 1922 -57757921.43384 2043 1922 -10597685.63642 2044 1922 -8663199.819997 2045 1922 -17363182.43788 2046 1922 -44977548.07992 2047 1922 -694433.6992576 2048 1922 -59807200.44138 2049 1922 -11899768.97017 2050 1922 9357633.519253 2051 1922 -21458826.37861 1923 1923 622861433.7406 1924 1923 1.120567321777e-05 1925 1923 925940.4229136 1926 1923 84958459.17911 1927 1923 -5.066394805908e-06 1928 1923 231485.1058435 1935 1923 -52083950.29126 1936 1923 -36666666.66065 1937 1923 2453701.89106 1938 1923 -137627039.3558 1939 1923 -2.235174179077e-07 1940 1923 -671303.5447711 1941 1923 -52107624.53367 1942 1923 36666666.66065 1943 1923 -2754631.441411 2019 1923 -18752053.59425 2020 1923 9166666.66968 2021 1923 10539814.37052 2022 1923 -60367636.82651 2023 1923 1.877546310425e-06 2024 1923 44780785.23866 2025 1923 -20276082.95081 2026 1923 -9166666.66968 2027 1923 11841897.70428 2031 1923 -1865379.213624 2032 1923 8.79168510437e-07 2033 1923 57871.26589221 2034 1923 51054233.83102 2035 1923 1.788139343262e-06 2036 1923 231485.0634618 2037 1923 -7985170.87927 2038 1923 -2.771615982056e-06 2039 1923 57871.2658952 2046 1923 -18848133.13973 2047 1923 -9166666.66968 2048 1923 -10597685.63642 2049 1923 -60775629.25067 2050 1923 -1.214444637299e-06 2051 1923 -45012270.30212 2052 1923 -20383999.6175 2053 1923 9166666.669679 2054 1923 -11899768.97017 1924 1924 534855157.0519 1925 1924 -11110937.14243 1926 1924 -3.457069396973e-06 1927 1924 -54374606.24745 1928 1924 5722135.237857 1935 1924 -36666666.66065 1936 1924 -41083165.69975 1937 1924 1222200.476822 1938 1924 4.470348358154e-07 1939 1924 23707595.23204 1940 1924 -2777734.286976 1941 1924 36666666.66065 1942 1924 -41106839.94217 1943 1924 1555533.810155 2019 1924 9166666.66968 2020 1924 -16001859.73922 2021 1924 -8593755.37553 2022 1924 1.169741153717e-06 2023 1924 -20033981.96478 2024 1924 -694433.6992575 2025 1924 -9166666.66968 2026 1924 -17525889.09577 2027 1924 9288189.074786 2031 1924 1.229345798492e-06 2032 1924 -36698646.37071 2033 1924 -34527799.26293 2034 1924 1.966953277588e-06 2035 1924 29052683.00161 2036 1924 -2777734.795662 2037 1924 -2.190470695496e-06 2038 1924 -42818438.03636 2039 1924 37305534.05859 2046 1924 -9166666.669679 2047 1924 -16097939.2847 2048 1924 -8663199.819997 2049 1924 -1.445412635803e-06 2050 1924 -20441974.38895 2051 1924 -694433.6992576 2052 1924 9166666.669678 2053 1924 -17633805.76247 2054 1924 9357633.519253 1925 1925 608211498.9432 1926 1925 231485.105844 1927 1925 5388801.904579 1928 1925 80699306.16691 1935 1925 2523146.335561 1936 1925 1277756.032423 1937 1925 -7296493.499545 1938 1925 -254636.8781728 1939 1925 -2777734.286976 1940 1925 42039227.65673 1941 1925 -2685186.996909 1942 1925 1499978.254554 1943 1925 -7359624.812662 2019 1925 10539814.37052 2020 1925 -8593755.37553 2021 1925 -17106970.31658 2022 1925 44746063.01646 2023 1925 -694433.6992574 2024 1925 -58719220.64359 2025 1925 11841897.70428 2026 1925 9288189.074786 2027 1925 -21171048.60074 2031 1925 57871.26589252 2032 1925 -34500021.48517 2033 1925 -41438476.99211 2034 1925 231485.0634617 2035 1925 -2777734.795662 2036 1925 -127043423.7988 2037 1925 57871.26589543 2038 1925 37277756.28083 2039 1925 -57757921.43384 2046 1925 -10597685.63642 2047 1925 -8663199.819997 2048 1925 -17363182.43788 2049 1925 -44977548.07992 2050 1925 -694433.6992576 2051 1925 -59807200.44138 2052 1925 -11899768.97017 2053 1925 9357633.519253 2054 1925 -21458826.37861 1926 1926 674759689.9124 1927 1926 36667415.0414 1928 1926 3125092.975185 1929 1926 20137287.77529 1930 1926 -36666966.01295 1931 1926 2754655.071165 1938 1926 -52083950.29126 1939 1926 -36666666.66065 1940 1926 2453701.89106 1941 1926 -137627039.3558 1942 1926 -2.235174179077e-07 1943 1926 -671303.5447711 1944 1926 -52107624.53367 1945 1926 36666666.66065 1946 1926 -2754631.441411 2022 1926 -18752053.59425 2023 1926 9166666.66968 2024 1926 10539814.37052 2025 1926 -72726245.22972 2026 1926 -9166776.303506 2027 1926 44231216.90386 2034 1926 -1865379.213624 2035 1926 8.79168510437e-07 2036 1926 57871.26589221 2037 1926 70575234.21716 2038 1926 9166849.392726 2039 1926 781227.3439141 2040 1926 -20203256.3538 2041 1926 -9166739.758899 2042 1926 11899863.74724 2049 1926 -18848133.13973 2050 1926 -9166666.66968 2051 1926 -10597685.63642 2052 1926 -60775629.25067 2053 1926 -1.214444637299e-06 2054 1926 -45012270.30212 2055 1926 -20383999.6175 2056 1926 9166666.669679 2057 1926 -11899768.97017 1927 1927 575752291.8369 1928 1927 -8610912.053949 1929 1927 -36667115.6891 1930 1927 -108195591.755 1931 1927 4777685.365654 1938 1927 -36666666.66065 1939 1927 -41083165.69975 1940 1927 1222200.476822 1941 1927 4.470348358154e-07 1942 1927 23707595.23204 1943 1927 -2777734.286976 1944 1927 36666666.66065 1945 1927 -41106839.94217 1946 1927 1555533.810155 2022 1927 9166666.66968 2023 1927 -16001859.73922 2024 1927 -8593755.37553 2025 1927 -9166739.758897 2026 1927 -29642168.10562 2027 1927 8204934.122165 2034 1927 1.229345798492e-06 2035 1927 -36698646.37071 2036 1927 -34527799.26293 2037 1927 9166849.392726 2038 1927 45823407.30156 2039 1927 -2152765.098743 2040 1927 -9166776.303508 2041 1927 -52286475.83204 2042 1927 37069600.58987 2049 1927 -9166666.669679 2050 1927 -16097939.2847 2051 1927 -8663199.819997 2052 1927 -1.445412635803e-06 2053 1927 -20441974.38895 2054 1927 -694433.6992576 2055 1927 9166666.669678 2056 1927 -17633805.76247 2057 1927 9357633.519253 1928 1928 615008779.2968 1929 1928 2685222.441543 1930 1928 5222139.640517 1931 1928 39437488.39575 1938 1928 2523146.335561 1939 1928 1277756.032423 1940 1928 -7296493.499545 1941 1928 -254636.8781728 1942 1928 -2777734.286976 1943 1928 42039227.65673 1944 1928 -2685186.996909 1945 1928 1499978.254554 1946 1928 -7359624.812662 2022 1928 10539814.37052 2023 1928 -8593755.37553 2024 1928 -17106970.31658 2025 1928 44196492.14387 2026 1928 8010523.495484 2027 1928 -58776166.2905 2034 1928 57871.26589252 2035 1928 -34500021.48517 2036 1928 -41438476.99211 2037 1928 781316.8545274 2038 1928 -2152693.49136 2039 1928 -107886912.3736 2040 1928 11899911.13577 2041 1928 37236269.31883 2042 1928 -57440830.58835 2049 1928 -10597685.63642 2050 1928 -8663199.819997 2051 1928 -17363182.43788 2052 1928 -44977548.07992 2053 1928 -694433.6992576 2054 1928 -59807200.44138 2055 1928 -11899768.97017 2056 1928 9357633.519253 2057 1928 -21458826.37861 1929 1929 389420334.4506 1930 1929 36666666.66065 1931 1929 3703834.305166 1941 1929 -52083950.29126 1942 1929 -36666666.66065 1943 1929 2453701.89106 1944 1929 -202591396.4212 1945 1929 -36666966.01295 1946 1929 -2870483.022002 1947 1929 12702400.63006 1948 1929 29333632.68082 1949 1929 -1944468.073742 2025 1929 -5106206.927443 2026 1929 11000109.63744 2027 1929 12682625.90274 2037 1929 -15511422.68773 2038 1929 -9166776.303506 2039 1929 -10539940.2691 2040 1929 31947394.33292 2041 1929 9166666.669681 2042 1929 9728225.899101 2052 1929 -18848133.13973 2053 1929 -9166666.66968 2054 1929 -10597685.63642 2055 1929 -74358253.63036 2056 1929 -9166739.758898 2057 1929 -45562288.72778 2058 1929 -8166156.136015 2059 1929 7333406.424962 2060 1929 -9496761.446847 1930 1930 334416074.7194 1931 1930 -6111048.190243 1941 1930 -36666666.66065 1942 1930 -41083165.69975 1943 1930 1222200.476822 1944 1930 -36667115.68909 1945 1930 -30255041.75127 1946 1930 -3888889.819054 1947 1930 44000449.02122 1948 1930 12702400.63006 1949 1930 2666689.342343 2025 1930 7333406.424962 2026 1930 -5106206.927443 2027 1930 -6763956.526763 2037 1930 -9166739.758897 2038 1930 -47594642.16596 2039 1930 -34569643.89832 2040 1930 9166666.66968 2041 1930 18196342.83202 2042 1930 5513941.008134 2052 1930 -9166666.669679 2053 1930 -16097939.2847 2054 1930 -8663199.819997 2055 1930 -9166776.303507 2056 1930 -31274176.50627 2057 1930 -9941080.210835 2058 1930 11000109.63744 2059 1930 -8166156.136015 2060 1930 11395946.69513 1931 1931 380479993.5812 1941 1931 2523146.335561 1942 1931 1277756.032423 1943 1931 -7296493.499545 1944 1931 -2453807.380415 1945 1931 -3055548.927153 1946 1931 398412.8916247 1947 1931 -2916702.110613 1948 1931 1777792.894895 1949 1931 33873068.34682 2025 1931 8455083.935158 2026 1931 -10145934.79014 2027 1931 -13616551.80652 2037 1931 -10539898.30291 2038 1931 -34736312.74845 2039 1931 -44929274.14549 2040 1931 -8223530.275229 2041 1931 -8847241.586827 2042 1931 -79300461.72417 2052 1931 -10597685.63642 2053 1931 -8663199.819997 2054 1931 -17363182.43788 2055 1931 -45527563.96779 2056 1931 -9746597.980308 2057 1931 -63128188.69225 2058 1931 -14245142.17027 2059 1931 7597297.796754 2060 1931 -21776416.36271 1932 1932 622861433.7406 1933 1932 1.120567321777e-05 1934 1932 925940.4229136 1935 1932 84958459.17911 1936 1932 -5.066394805908e-06 1937 1932 231485.1058435 1950 1932 -137627039.3558 1951 1932 -2.235174179077e-07 1952 1932 -671303.5447711 1953 1932 -52107624.53367 1954 1932 36666666.66065 1955 1932 -2754631.441411 2028 1932 -60367636.82651 2029 1932 1.877546310425e-06 2030 1932 44780785.23866 2031 1932 -20276082.95081 2032 1932 -9166666.66968 2033 1932 11841897.70428 2043 1932 51054233.83102 2044 1932 1.788139343262e-06 2045 1932 231485.0634618 2046 1932 -7985170.87927 2047 1932 -2.771615982056e-06 2048 1932 57871.2658952 2061 1932 -60775629.25067 2062 1932 -1.214444637299e-06 2063 1932 -45012270.30212 2064 1932 -20383999.6175 2065 1932 9166666.669679 2066 1932 -11899768.97017 1933 1933 534855157.0519 1934 1933 -11110937.14243 1935 1933 -3.457069396973e-06 1936 1933 -54374606.24745 1937 1933 5722135.237857 1950 1933 4.470348358154e-07 1951 1933 23707595.23204 1952 1933 -2777734.286976 1953 1933 36666666.66065 1954 1933 -41106839.94217 1955 1933 1555533.810155 2028 1933 1.169741153717e-06 2029 1933 -20033981.96478 2030 1933 -694433.6992575 2031 1933 -9166666.66968 2032 1933 -17525889.09577 2033 1933 9288189.074786 2043 1933 1.966953277588e-06 2044 1933 29052683.00161 2045 1933 -2777734.795662 2046 1933 -2.190470695496e-06 2047 1933 -42818438.03636 2048 1933 37305534.05859 2061 1933 -1.445412635803e-06 2062 1933 -20441974.38895 2063 1933 -694433.6992576 2064 1933 9166666.669678 2065 1933 -17633805.76247 2066 1933 9357633.519253 1934 1934 608211498.9432 1935 1934 231485.105844 1936 1934 5388801.904579 1937 1934 80699306.16691 1950 1934 -254636.8781728 1951 1934 -2777734.286976 1952 1934 42039227.65673 1953 1934 -2685186.996909 1954 1934 1499978.254554 1955 1934 -7359624.812662 2028 1934 44746063.01646 2029 1934 -694433.6992574 2030 1934 -58719220.64359 2031 1934 11841897.70428 2032 1934 9288189.074786 2033 1934 -21171048.60074 2043 1934 231485.0634617 2044 1934 -2777734.795662 2045 1934 -127043423.7988 2046 1934 57871.26589543 2047 1934 37277756.28083 2048 1934 -57757921.43384 2061 1934 -44977548.07992 2062 1934 -694433.6992576 2063 1934 -59807200.44138 2064 1934 -11899768.97017 2065 1934 9357633.519253 2066 1934 -21458826.37861 1935 1935 622861433.7406 1936 1935 1.120567321777e-05 1937 1935 925940.4229136 1938 1935 84958459.17911 1939 1935 -5.066394805908e-06 1940 1935 231485.1058435 1950 1935 -52083950.29126 1951 1935 -36666666.66065 1952 1935 2453701.89106 1953 1935 -137627039.3558 1954 1935 -2.235174179077e-07 1955 1935 -671303.5447711 1956 1935 -52107624.53367 1957 1935 36666666.66065 1958 1935 -2754631.441411 2028 1935 -18752053.59425 2029 1935 9166666.66968 2030 1935 10539814.37052 2031 1935 -60367636.82651 2032 1935 1.877546310425e-06 2033 1935 44780785.23866 2034 1935 -20276082.95081 2035 1935 -9166666.66968 2036 1935 11841897.70428 2043 1935 -1865379.213624 2044 1935 8.79168510437e-07 2045 1935 57871.26589221 2046 1935 51054233.83102 2047 1935 1.788139343262e-06 2048 1935 231485.0634618 2049 1935 -7985170.87927 2050 1935 -2.771615982056e-06 2051 1935 57871.2658952 2061 1935 -18848133.13973 2062 1935 -9166666.66968 2063 1935 -10597685.63642 2064 1935 -60775629.25067 2065 1935 -1.214444637299e-06 2066 1935 -45012270.30212 2067 1935 -20383999.6175 2068 1935 9166666.669679 2069 1935 -11899768.97017 1936 1936 534855157.0519 1937 1936 -11110937.14243 1938 1936 -3.457069396973e-06 1939 1936 -54374606.24745 1940 1936 5722135.237857 1950 1936 -36666666.66065 1951 1936 -41083165.69975 1952 1936 1222200.476822 1953 1936 4.470348358154e-07 1954 1936 23707595.23204 1955 1936 -2777734.286976 1956 1936 36666666.66065 1957 1936 -41106839.94217 1958 1936 1555533.810155 2028 1936 9166666.66968 2029 1936 -16001859.73922 2030 1936 -8593755.37553 2031 1936 1.169741153717e-06 2032 1936 -20033981.96478 2033 1936 -694433.6992575 2034 1936 -9166666.66968 2035 1936 -17525889.09577 2036 1936 9288189.074786 2043 1936 1.229345798492e-06 2044 1936 -36698646.37071 2045 1936 -34527799.26293 2046 1936 1.966953277588e-06 2047 1936 29052683.00161 2048 1936 -2777734.795662 2049 1936 -2.190470695496e-06 2050 1936 -42818438.03636 2051 1936 37305534.05859 2061 1936 -9166666.669679 2062 1936 -16097939.2847 2063 1936 -8663199.819997 2064 1936 -1.445412635803e-06 2065 1936 -20441974.38895 2066 1936 -694433.6992576 2067 1936 9166666.669678 2068 1936 -17633805.76247 2069 1936 9357633.519253 1937 1937 608211498.9432 1938 1937 231485.105844 1939 1937 5388801.904579 1940 1937 80699306.16691 1950 1937 2523146.335561 1951 1937 1277756.032423 1952 1937 -7296493.499545 1953 1937 -254636.8781728 1954 1937 -2777734.286976 1955 1937 42039227.65673 1956 1937 -2685186.996909 1957 1937 1499978.254554 1958 1937 -7359624.812662 2028 1937 10539814.37052 2029 1937 -8593755.37553 2030 1937 -17106970.31658 2031 1937 44746063.01646 2032 1937 -694433.6992574 2033 1937 -58719220.64359 2034 1937 11841897.70428 2035 1937 9288189.074786 2036 1937 -21171048.60074 2043 1937 57871.26589252 2044 1937 -34500021.48517 2045 1937 -41438476.99211 2046 1937 231485.0634617 2047 1937 -2777734.795662 2048 1937 -127043423.7988 2049 1937 57871.26589543 2050 1937 37277756.28083 2051 1937 -57757921.43384 2061 1937 -10597685.63642 2062 1937 -8663199.819997 2063 1937 -17363182.43788 2064 1937 -44977548.07992 2065 1937 -694433.6992576 2066 1937 -59807200.44138 2067 1937 -11899768.97017 2068 1937 9357633.519253 2069 1937 -21458826.37861 1938 1938 622861433.7406 1939 1938 1.120567321777e-05 1940 1938 925940.4229136 1941 1938 84958459.17911 1942 1938 -5.066394805908e-06 1943 1938 231485.1058435 1953 1938 -52083950.29126 1954 1938 -36666666.66065 1955 1938 2453701.89106 1956 1938 -137627039.3558 1957 1938 -2.235174179077e-07 1958 1938 -671303.5447711 1959 1938 -52107624.53367 1960 1938 36666666.66065 1961 1938 -2754631.441411 2031 1938 -18752053.59425 2032 1938 9166666.66968 2033 1938 10539814.37052 2034 1938 -60367636.82651 2035 1938 1.877546310425e-06 2036 1938 44780785.23866 2037 1938 -20276082.95081 2038 1938 -9166666.66968 2039 1938 11841897.70428 2046 1938 -1865379.213624 2047 1938 8.79168510437e-07 2048 1938 57871.26589221 2049 1938 51054233.83102 2050 1938 1.788139343262e-06 2051 1938 231485.0634618 2052 1938 -7985170.87927 2053 1938 -2.771615982056e-06 2054 1938 57871.2658952 2064 1938 -18848133.13973 2065 1938 -9166666.66968 2066 1938 -10597685.63642 2067 1938 -60775629.25067 2068 1938 -1.214444637299e-06 2069 1938 -45012270.30212 2070 1938 -20383999.6175 2071 1938 9166666.669679 2072 1938 -11899768.97017 1939 1939 534855157.0519 1940 1939 -11110937.14243 1941 1939 -3.457069396973e-06 1942 1939 -54374606.24745 1943 1939 5722135.237857 1953 1939 -36666666.66065 1954 1939 -41083165.69975 1955 1939 1222200.476822 1956 1939 4.470348358154e-07 1957 1939 23707595.23204 1958 1939 -2777734.286976 1959 1939 36666666.66065 1960 1939 -41106839.94217 1961 1939 1555533.810155 2031 1939 9166666.66968 2032 1939 -16001859.73922 2033 1939 -8593755.37553 2034 1939 1.169741153717e-06 2035 1939 -20033981.96478 2036 1939 -694433.6992575 2037 1939 -9166666.66968 2038 1939 -17525889.09577 2039 1939 9288189.074786 2046 1939 1.229345798492e-06 2047 1939 -36698646.37071 2048 1939 -34527799.26293 2049 1939 1.966953277588e-06 2050 1939 29052683.00161 2051 1939 -2777734.795662 2052 1939 -2.190470695496e-06 2053 1939 -42818438.03636 2054 1939 37305534.05859 2064 1939 -9166666.669679 2065 1939 -16097939.2847 2066 1939 -8663199.819997 2067 1939 -1.445412635803e-06 2068 1939 -20441974.38895 2069 1939 -694433.6992576 2070 1939 9166666.669678 2071 1939 -17633805.76247 2072 1939 9357633.519253 1940 1940 608211498.9432 1941 1940 231485.105844 1942 1940 5388801.904579 1943 1940 80699306.16691 1953 1940 2523146.335561 1954 1940 1277756.032423 1955 1940 -7296493.499545 1956 1940 -254636.8781728 1957 1940 -2777734.286976 1958 1940 42039227.65673 1959 1940 -2685186.996909 1960 1940 1499978.254554 1961 1940 -7359624.812662 2031 1940 10539814.37052 2032 1940 -8593755.37553 2033 1940 -17106970.31658 2034 1940 44746063.01646 2035 1940 -694433.6992574 2036 1940 -58719220.64359 2037 1940 11841897.70428 2038 1940 9288189.074786 2039 1940 -21171048.60074 2046 1940 57871.26589252 2047 1940 -34500021.48517 2048 1940 -41438476.99211 2049 1940 231485.0634617 2050 1940 -2777734.795662 2051 1940 -127043423.7988 2052 1940 57871.26589543 2053 1940 37277756.28083 2054 1940 -57757921.43384 2064 1940 -10597685.63642 2065 1940 -8663199.819997 2066 1940 -17363182.43788 2067 1940 -44977548.07992 2068 1940 -694433.6992576 2069 1940 -59807200.44138 2070 1940 -11899768.97017 2071 1940 9357633.519253 2072 1940 -21458826.37861 1941 1941 622861433.7406 1942 1941 1.120567321777e-05 1943 1941 925940.4229136 1944 1941 84958459.17911 1945 1941 -5.066394805908e-06 1946 1941 231485.1058435 1956 1941 -52083950.29126 1957 1941 -36666666.66065 1958 1941 2453701.89106 1959 1941 -137627039.3558 1960 1941 -2.235174179077e-07 1961 1941 -671303.5447711 1962 1941 -52107624.53367 1963 1941 36666666.66065 1964 1941 -2754631.441411 2034 1941 -18752053.59425 2035 1941 9166666.66968 2036 1941 10539814.37052 2037 1941 -60367636.82651 2038 1941 1.877546310425e-06 2039 1941 44780785.23866 2040 1941 -20276082.95081 2041 1941 -9166666.66968 2042 1941 11841897.70428 2049 1941 -1865379.213624 2050 1941 8.79168510437e-07 2051 1941 57871.26589221 2052 1941 51054233.83102 2053 1941 1.788139343262e-06 2054 1941 231485.0634618 2055 1941 -7985170.87927 2056 1941 -2.771615982056e-06 2057 1941 57871.2658952 2067 1941 -18848133.13973 2068 1941 -9166666.66968 2069 1941 -10597685.63642 2070 1941 -60775629.25067 2071 1941 -1.214444637299e-06 2072 1941 -45012270.30212 2073 1941 -20383999.6175 2074 1941 9166666.669679 2075 1941 -11899768.97017 1942 1942 534855157.0519 1943 1942 -11110937.14243 1944 1942 -3.457069396973e-06 1945 1942 -54374606.24745 1946 1942 5722135.237857 1956 1942 -36666666.66065 1957 1942 -41083165.69975 1958 1942 1222200.476822 1959 1942 4.470348358154e-07 1960 1942 23707595.23204 1961 1942 -2777734.286976 1962 1942 36666666.66065 1963 1942 -41106839.94217 1964 1942 1555533.810155 2034 1942 9166666.66968 2035 1942 -16001859.73922 2036 1942 -8593755.37553 2037 1942 1.169741153717e-06 2038 1942 -20033981.96478 2039 1942 -694433.6992575 2040 1942 -9166666.66968 2041 1942 -17525889.09577 2042 1942 9288189.074786 2049 1942 1.229345798492e-06 2050 1942 -36698646.37071 2051 1942 -34527799.26293 2052 1942 1.966953277588e-06 2053 1942 29052683.00161 2054 1942 -2777734.795662 2055 1942 -2.190470695496e-06 2056 1942 -42818438.03636 2057 1942 37305534.05859 2067 1942 -9166666.669679 2068 1942 -16097939.2847 2069 1942 -8663199.819997 2070 1942 -1.445412635803e-06 2071 1942 -20441974.38895 2072 1942 -694433.6992576 2073 1942 9166666.669678 2074 1942 -17633805.76247 2075 1942 9357633.519253 1943 1943 608211498.9432 1944 1943 231485.105844 1945 1943 5388801.904579 1946 1943 80699306.16691 1956 1943 2523146.335561 1957 1943 1277756.032423 1958 1943 -7296493.499545 1959 1943 -254636.8781728 1960 1943 -2777734.286976 1961 1943 42039227.65673 1962 1943 -2685186.996909 1963 1943 1499978.254554 1964 1943 -7359624.812662 2034 1943 10539814.37052 2035 1943 -8593755.37553 2036 1943 -17106970.31658 2037 1943 44746063.01646 2038 1943 -694433.6992574 2039 1943 -58719220.64359 2040 1943 11841897.70428 2041 1943 9288189.074786 2042 1943 -21171048.60074 2049 1943 57871.26589252 2050 1943 -34500021.48517 2051 1943 -41438476.99211 2052 1943 231485.0634617 2053 1943 -2777734.795662 2054 1943 -127043423.7988 2055 1943 57871.26589543 2056 1943 37277756.28083 2057 1943 -57757921.43384 2067 1943 -10597685.63642 2068 1943 -8663199.819997 2069 1943 -17363182.43788 2070 1943 -44977548.07992 2071 1943 -694433.6992576 2072 1943 -59807200.44138 2073 1943 -11899768.97017 2074 1943 9357633.519253 2075 1943 -21458826.37861 1944 1944 674759689.9124 1945 1944 36667415.0414 1946 1944 3125092.975185 1947 1944 20137287.77529 1948 1944 -36666966.01295 1949 1944 2754655.071165 1959 1944 -52083950.29126 1960 1944 -36666666.66065 1961 1944 2453701.89106 1962 1944 -137627039.3558 1963 1944 -2.235174179077e-07 1964 1944 -671303.5447711 1965 1944 -52107624.53367 1966 1944 36666666.66065 1967 1944 -2754631.441411 2037 1944 -18752053.59425 2038 1944 9166666.66968 2039 1944 10539814.37052 2040 1944 -72726245.22972 2041 1944 -9166776.303506 2042 1944 44231216.90386 2052 1944 -1865379.213624 2053 1944 8.79168510437e-07 2054 1944 57871.26589221 2055 1944 70575234.21716 2056 1944 9166849.392726 2057 1944 781227.3439141 2058 1944 -20203256.3538 2059 1944 -9166739.758899 2060 1944 11899863.74724 2070 1944 -18848133.13973 2071 1944 -9166666.66968 2072 1944 -10597685.63642 2073 1944 -60775629.25067 2074 1944 -1.214444637299e-06 2075 1944 -45012270.30212 2076 1944 -20383999.6175 2077 1944 9166666.669679 2078 1944 -11899768.97017 1945 1945 575752291.8369 1946 1945 -8610912.053949 1947 1945 -36667115.6891 1948 1945 -108195591.755 1949 1945 4777685.365654 1959 1945 -36666666.66065 1960 1945 -41083165.69975 1961 1945 1222200.476822 1962 1945 4.470348358154e-07 1963 1945 23707595.23204 1964 1945 -2777734.286976 1965 1945 36666666.66065 1966 1945 -41106839.94217 1967 1945 1555533.810155 2037 1945 9166666.66968 2038 1945 -16001859.73922 2039 1945 -8593755.37553 2040 1945 -9166739.758897 2041 1945 -29642168.10562 2042 1945 8204934.122165 2052 1945 1.229345798492e-06 2053 1945 -36698646.37071 2054 1945 -34527799.26293 2055 1945 9166849.392726 2056 1945 45823407.30156 2057 1945 -2152765.098743 2058 1945 -9166776.303508 2059 1945 -52286475.83204 2060 1945 37069600.58987 2070 1945 -9166666.669679 2071 1945 -16097939.2847 2072 1945 -8663199.819997 2073 1945 -1.445412635803e-06 2074 1945 -20441974.38895 2075 1945 -694433.6992576 2076 1945 9166666.669678 2077 1945 -17633805.76247 2078 1945 9357633.519253 1946 1946 615008779.2968 1947 1946 2685222.441543 1948 1946 5222139.640517 1949 1946 39437488.39575 1959 1946 2523146.335561 1960 1946 1277756.032423 1961 1946 -7296493.499545 1962 1946 -254636.8781728 1963 1946 -2777734.286976 1964 1946 42039227.65673 1965 1946 -2685186.996909 1966 1946 1499978.254554 1967 1946 -7359624.812662 2037 1946 10539814.37052 2038 1946 -8593755.37553 2039 1946 -17106970.31658 2040 1946 44196492.14387 2041 1946 8010523.495484 2042 1946 -58776166.2905 2052 1946 57871.26589252 2053 1946 -34500021.48517 2054 1946 -41438476.99211 2055 1946 781316.8545274 2056 1946 -2152693.49136 2057 1946 -107886912.3736 2058 1946 11899911.13577 2059 1946 37236269.31883 2060 1946 -57440830.58835 2070 1946 -10597685.63642 2071 1946 -8663199.819997 2072 1946 -17363182.43788 2073 1946 -44977548.07992 2074 1946 -694433.6992576 2075 1946 -59807200.44138 2076 1946 -11899768.97017 2077 1946 9357633.519253 2078 1946 -21458826.37861 1947 1947 434012491.322 1948 1947 -26709105.05296 1949 1947 -725793.543576 1962 1947 -52083950.29126 1963 1947 -36666666.66065 1964 1947 2453701.89106 1965 1947 -56549866.20531 1966 1947 26704759.61057 1967 1947 -385264.5612573 1968 1947 -222386913.2778 1969 1947 29337678.77091 1970 1947 -277833.5794091 2040 1947 -5106206.927443 2041 1947 11000109.63744 2042 1947 12682625.90274 2055 1947 -15511422.68773 2056 1947 -9166776.303506 2057 1947 -10539940.2691 2058 1947 57002220.2306 2059 1947 -6544915.940513 2060 1947 4861555.215121 2073 1947 -18848133.13973 2074 1947 -9166666.66968 2075 1947 -10597685.63642 2076 1947 -29177118.41547 2077 1947 6543892.420132 2078 1947 -25729678.71087 2079 1947 -53961140.25394 2080 1947 7334356.856125 2081 1947 -1354081.113647 1948 1948 781040484.4929 1949 1948 -10574395.88396 1962 1948 -36666666.66065 1963 1948 -41083165.69975 1964 1948 1222200.476822 1965 1948 26702586.88937 1966 1948 87287357.54424 1967 1948 -1789762.243781 1968 1948 44006518.15637 1969 1948 -595920035.2594 1970 1948 5142261.375664 2040 1948 7333406.424962 2041 1948 -5106206.927443 2042 1948 -6763956.526763 2055 1948 -9166739.758897 2056 1948 -47594642.16596 2057 1948 -34569643.89832 2058 1948 -6544915.940513 2059 1948 138242633.1703 2060 1948 1389850.346674 2073 1948 -9166666.669679 2074 1948 -16097939.2847 2075 1948 -8663199.819997 2076 1948 6543380.659941 2077 1948 6841374.023334 2078 1948 5925066.094897 2079 1948 11001535.28419 2080 1948 -141887020.0092 2081 1948 18142632.26191 1949 1949 467013145.2305 1962 1949 2523146.335561 1963 1949 1277756.032423 1964 1949 -7296493.499545 1965 1949 -940793.6136686 1966 1949 -1678594.911864 1967 1949 48688638.16036 1968 1949 -416750.3691136 1969 1949 5031214.44564 1970 1949 -219498646.7591 2040 1949 8455083.935158 2041 1949 -10145934.79014 2042 1949 -13616551.80652 2055 1949 -10539898.30291 2056 1949 -34736312.74845 2057 1949 -44929274.14549 2058 1949 -5398901.65238 2059 1949 -6817695.611917 2060 1949 -15837053.95701 2073 1949 -10597685.63642 2074 1949 -8663199.819997 2075 1949 -17363182.43788 2076 1949 -25903283.59124 2077 1949 5953357.675215 2078 1949 -27221579.91443 2079 1949 -2031121.67047 2080 1949 17600907.9829 2081 1949 -55970494.25524 1950 1950 622861433.7406 1951 1950 1.120567321777e-05 1952 1950 925940.4229136 1953 1950 84958459.17911 1954 1950 -5.066394805908e-06 1955 1950 231485.1058435 1971 1950 -137627039.3558 1972 1950 -2.235174179077e-07 1973 1950 -671303.5447711 1974 1950 -52107624.53367 1975 1950 36666666.66065 1976 1950 -2754631.441411 2043 1950 -60367636.82651 2044 1950 1.877546310425e-06 2045 1950 44780785.23866 2046 1950 -20276082.95081 2047 1950 -9166666.66968 2048 1950 11841897.70428 2061 1950 51054233.83102 2062 1950 1.788139343262e-06 2063 1950 231485.0634618 2064 1950 -7985170.87927 2065 1950 -2.771615982056e-06 2066 1950 57871.2658952 2082 1950 -60775629.25067 2083 1950 -1.214444637299e-06 2084 1950 -45012270.30212 2085 1950 -20383999.6175 2086 1950 9166666.669679 2087 1950 -11899768.97017 1951 1951 534855157.0519 1952 1951 -11110937.14243 1953 1951 -3.457069396973e-06 1954 1951 -54374606.24745 1955 1951 5722135.237857 1971 1951 4.470348358154e-07 1972 1951 23707595.23204 1973 1951 -2777734.286976 1974 1951 36666666.66065 1975 1951 -41106839.94217 1976 1951 1555533.810155 2043 1951 1.169741153717e-06 2044 1951 -20033981.96478 2045 1951 -694433.6992575 2046 1951 -9166666.66968 2047 1951 -17525889.09577 2048 1951 9288189.074786 2061 1951 1.966953277588e-06 2062 1951 29052683.00161 2063 1951 -2777734.795662 2064 1951 -2.190470695496e-06 2065 1951 -42818438.03636 2066 1951 37305534.05859 2082 1951 -1.445412635803e-06 2083 1951 -20441974.38895 2084 1951 -694433.6992576 2085 1951 9166666.669678 2086 1951 -17633805.76247 2087 1951 9357633.519253 1952 1952 608211498.9432 1953 1952 231485.105844 1954 1952 5388801.904579 1955 1952 80699306.16691 1971 1952 -254636.8781728 1972 1952 -2777734.286976 1973 1952 42039227.65673 1974 1952 -2685186.996909 1975 1952 1499978.254554 1976 1952 -7359624.812662 2043 1952 44746063.01646 2044 1952 -694433.6992574 2045 1952 -58719220.64359 2046 1952 11841897.70428 2047 1952 9288189.074786 2048 1952 -21171048.60074 2061 1952 231485.0634617 2062 1952 -2777734.795662 2063 1952 -127043423.7988 2064 1952 57871.26589543 2065 1952 37277756.28083 2066 1952 -57757921.43384 2082 1952 -44977548.07992 2083 1952 -694433.6992576 2084 1952 -59807200.44138 2085 1952 -11899768.97017 2086 1952 9357633.519253 2087 1952 -21458826.37861 1953 1953 622861433.7406 1954 1953 1.120567321777e-05 1955 1953 925940.4229136 1956 1953 84958459.17911 1957 1953 -5.066394805908e-06 1958 1953 231485.1058435 1971 1953 -52083950.29126 1972 1953 -36666666.66065 1973 1953 2453701.89106 1974 1953 -137627039.3558 1975 1953 -2.235174179077e-07 1976 1953 -671303.5447711 1977 1953 -52107624.53367 1978 1953 36666666.66065 1979 1953 -2754631.441411 2043 1953 -18752053.59425 2044 1953 9166666.66968 2045 1953 10539814.37052 2046 1953 -60367636.82651 2047 1953 1.877546310425e-06 2048 1953 44780785.23866 2049 1953 -20276082.95081 2050 1953 -9166666.66968 2051 1953 11841897.70428 2061 1953 -1865379.213624 2062 1953 8.79168510437e-07 2063 1953 57871.26589221 2064 1953 51054233.83102 2065 1953 1.788139343262e-06 2066 1953 231485.0634618 2067 1953 -7985170.87927 2068 1953 -2.771615982056e-06 2069 1953 57871.2658952 2082 1953 -18848133.13973 2083 1953 -9166666.66968 2084 1953 -10597685.63642 2085 1953 -60775629.25067 2086 1953 -1.214444637299e-06 2087 1953 -45012270.30212 2088 1953 -20383999.6175 2089 1953 9166666.669679 2090 1953 -11899768.97017 1954 1954 534855157.0519 1955 1954 -11110937.14243 1956 1954 -3.457069396973e-06 1957 1954 -54374606.24745 1958 1954 5722135.237857 1971 1954 -36666666.66065 1972 1954 -41083165.69975 1973 1954 1222200.476822 1974 1954 4.470348358154e-07 1975 1954 23707595.23204 1976 1954 -2777734.286976 1977 1954 36666666.66065 1978 1954 -41106839.94217 1979 1954 1555533.810155 2043 1954 9166666.66968 2044 1954 -16001859.73922 2045 1954 -8593755.37553 2046 1954 1.169741153717e-06 2047 1954 -20033981.96478 2048 1954 -694433.6992575 2049 1954 -9166666.66968 2050 1954 -17525889.09577 2051 1954 9288189.074786 2061 1954 1.229345798492e-06 2062 1954 -36698646.37071 2063 1954 -34527799.26293 2064 1954 1.966953277588e-06 2065 1954 29052683.00161 2066 1954 -2777734.795662 2067 1954 -2.190470695496e-06 2068 1954 -42818438.03636 2069 1954 37305534.05859 2082 1954 -9166666.669679 2083 1954 -16097939.2847 2084 1954 -8663199.819997 2085 1954 -1.445412635803e-06 2086 1954 -20441974.38895 2087 1954 -694433.6992576 2088 1954 9166666.669678 2089 1954 -17633805.76247 2090 1954 9357633.519253 1955 1955 608211498.9432 1956 1955 231485.105844 1957 1955 5388801.904579 1958 1955 80699306.16691 1971 1955 2523146.335561 1972 1955 1277756.032423 1973 1955 -7296493.499545 1974 1955 -254636.8781728 1975 1955 -2777734.286976 1976 1955 42039227.65673 1977 1955 -2685186.996909 1978 1955 1499978.254554 1979 1955 -7359624.812662 2043 1955 10539814.37052 2044 1955 -8593755.37553 2045 1955 -17106970.31658 2046 1955 44746063.01646 2047 1955 -694433.6992574 2048 1955 -58719220.64359 2049 1955 11841897.70428 2050 1955 9288189.074786 2051 1955 -21171048.60074 2061 1955 57871.26589252 2062 1955 -34500021.48517 2063 1955 -41438476.99211 2064 1955 231485.0634617 2065 1955 -2777734.795662 2066 1955 -127043423.7988 2067 1955 57871.26589543 2068 1955 37277756.28083 2069 1955 -57757921.43384 2082 1955 -10597685.63642 2083 1955 -8663199.819997 2084 1955 -17363182.43788 2085 1955 -44977548.07992 2086 1955 -694433.6992576 2087 1955 -59807200.44138 2088 1955 -11899768.97017 2089 1955 9357633.519253 2090 1955 -21458826.37861 1956 1956 622861433.7406 1957 1956 1.120567321777e-05 1958 1956 925940.4229136 1959 1956 84958459.17911 1960 1956 -5.066394805908e-06 1961 1956 231485.1058435 1974 1956 -52083950.29126 1975 1956 -36666666.66065 1976 1956 2453701.89106 1977 1956 -137627039.3558 1978 1956 -2.235174179077e-07 1979 1956 -671303.5447711 1980 1956 -52107624.53367 1981 1956 36666666.66065 1982 1956 -2754631.441411 2046 1956 -18752053.59425 2047 1956 9166666.66968 2048 1956 10539814.37052 2049 1956 -60367636.82651 2050 1956 1.877546310425e-06 2051 1956 44780785.23866 2052 1956 -20276082.95081 2053 1956 -9166666.66968 2054 1956 11841897.70428 2064 1956 -1865379.213624 2065 1956 8.79168510437e-07 2066 1956 57871.26589221 2067 1956 51054233.83102 2068 1956 1.788139343262e-06 2069 1956 231485.0634618 2070 1956 -7985170.87927 2071 1956 -2.771615982056e-06 2072 1956 57871.2658952 2085 1956 -18848133.13973 2086 1956 -9166666.66968 2087 1956 -10597685.63642 2088 1956 -60775629.25067 2089 1956 -1.214444637299e-06 2090 1956 -45012270.30212 2091 1956 -20383999.6175 2092 1956 9166666.669679 2093 1956 -11899768.97017 1957 1957 534855157.0519 1958 1957 -11110937.14243 1959 1957 -3.457069396973e-06 1960 1957 -54374606.24745 1961 1957 5722135.237857 1974 1957 -36666666.66065 1975 1957 -41083165.69975 1976 1957 1222200.476822 1977 1957 4.470348358154e-07 1978 1957 23707595.23204 1979 1957 -2777734.286976 1980 1957 36666666.66065 1981 1957 -41106839.94217 1982 1957 1555533.810155 2046 1957 9166666.66968 2047 1957 -16001859.73922 2048 1957 -8593755.37553 2049 1957 1.169741153717e-06 2050 1957 -20033981.96478 2051 1957 -694433.6992575 2052 1957 -9166666.66968 2053 1957 -17525889.09577 2054 1957 9288189.074786 2064 1957 1.229345798492e-06 2065 1957 -36698646.37071 2066 1957 -34527799.26293 2067 1957 1.966953277588e-06 2068 1957 29052683.00161 2069 1957 -2777734.795662 2070 1957 -2.190470695496e-06 2071 1957 -42818438.03636 2072 1957 37305534.05859 2085 1957 -9166666.669679 2086 1957 -16097939.2847 2087 1957 -8663199.819997 2088 1957 -1.445412635803e-06 2089 1957 -20441974.38895 2090 1957 -694433.6992576 2091 1957 9166666.669678 2092 1957 -17633805.76247 2093 1957 9357633.519253 1958 1958 608211498.9432 1959 1958 231485.105844 1960 1958 5388801.904579 1961 1958 80699306.16691 1974 1958 2523146.335561 1975 1958 1277756.032423 1976 1958 -7296493.499545 1977 1958 -254636.8781728 1978 1958 -2777734.286976 1979 1958 42039227.65673 1980 1958 -2685186.996909 1981 1958 1499978.254554 1982 1958 -7359624.812662 2046 1958 10539814.37052 2047 1958 -8593755.37553 2048 1958 -17106970.31658 2049 1958 44746063.01646 2050 1958 -694433.6992574 2051 1958 -58719220.64359 2052 1958 11841897.70428 2053 1958 9288189.074786 2054 1958 -21171048.60074 2064 1958 57871.26589252 2065 1958 -34500021.48517 2066 1958 -41438476.99211 2067 1958 231485.0634617 2068 1958 -2777734.795662 2069 1958 -127043423.7988 2070 1958 57871.26589543 2071 1958 37277756.28083 2072 1958 -57757921.43384 2085 1958 -10597685.63642 2086 1958 -8663199.819997 2087 1958 -17363182.43788 2088 1958 -44977548.07992 2089 1958 -694433.6992576 2090 1958 -59807200.44138 2091 1958 -11899768.97017 2092 1958 9357633.519253 2093 1958 -21458826.37861 1959 1959 622861433.7406 1960 1959 1.120567321777e-05 1961 1959 925940.4229136 1962 1959 84958459.17911 1963 1959 -5.066394805908e-06 1964 1959 231485.1058435 1977 1959 -52083950.29126 1978 1959 -36666666.66065 1979 1959 2453701.89106 1980 1959 -137627039.3558 1981 1959 -2.235174179077e-07 1982 1959 -671303.5447711 1983 1959 -52107624.53367 1984 1959 36666666.66065 1985 1959 -2754631.441411 2049 1959 -18752053.59425 2050 1959 9166666.66968 2051 1959 10539814.37052 2052 1959 -60367636.82651 2053 1959 1.877546310425e-06 2054 1959 44780785.23866 2055 1959 -20276082.95081 2056 1959 -9166666.66968 2057 1959 11841897.70428 2067 1959 -1865379.213624 2068 1959 8.79168510437e-07 2069 1959 57871.26589221 2070 1959 51054233.83102 2071 1959 1.788139343262e-06 2072 1959 231485.0634618 2073 1959 -7985170.87927 2074 1959 -2.771615982056e-06 2075 1959 57871.2658952 2088 1959 -18848133.13973 2089 1959 -9166666.66968 2090 1959 -10597685.63642 2091 1959 -60775629.25067 2092 1959 -1.214444637299e-06 2093 1959 -45012270.30212 2094 1959 -20383999.6175 2095 1959 9166666.669679 2096 1959 -11899768.97017 1960 1960 534855157.0519 1961 1960 -11110937.14243 1962 1960 -3.457069396973e-06 1963 1960 -54374606.24745 1964 1960 5722135.237857 1977 1960 -36666666.66065 1978 1960 -41083165.69975 1979 1960 1222200.476822 1980 1960 4.470348358154e-07 1981 1960 23707595.23204 1982 1960 -2777734.286976 1983 1960 36666666.66065 1984 1960 -41106839.94217 1985 1960 1555533.810155 2049 1960 9166666.66968 2050 1960 -16001859.73922 2051 1960 -8593755.37553 2052 1960 1.169741153717e-06 2053 1960 -20033981.96478 2054 1960 -694433.6992575 2055 1960 -9166666.66968 2056 1960 -17525889.09577 2057 1960 9288189.074786 2067 1960 1.229345798492e-06 2068 1960 -36698646.37071 2069 1960 -34527799.26293 2070 1960 1.966953277588e-06 2071 1960 29052683.00161 2072 1960 -2777734.795662 2073 1960 -2.190470695496e-06 2074 1960 -42818438.03636 2075 1960 37305534.05859 2088 1960 -9166666.669679 2089 1960 -16097939.2847 2090 1960 -8663199.819997 2091 1960 -1.445412635803e-06 2092 1960 -20441974.38895 2093 1960 -694433.6992576 2094 1960 9166666.669678 2095 1960 -17633805.76247 2096 1960 9357633.519253 1961 1961 608211498.9432 1962 1961 231485.105844 1963 1961 5388801.904579 1964 1961 80699306.16691 1977 1961 2523146.335561 1978 1961 1277756.032423 1979 1961 -7296493.499545 1980 1961 -254636.8781728 1981 1961 -2777734.286976 1982 1961 42039227.65673 1983 1961 -2685186.996909 1984 1961 1499978.254554 1985 1961 -7359624.812662 2049 1961 10539814.37052 2050 1961 -8593755.37553 2051 1961 -17106970.31658 2052 1961 44746063.01646 2053 1961 -694433.6992574 2054 1961 -58719220.64359 2055 1961 11841897.70428 2056 1961 9288189.074786 2057 1961 -21171048.60074 2067 1961 57871.26589252 2068 1961 -34500021.48517 2069 1961 -41438476.99211 2070 1961 231485.0634617 2071 1961 -2777734.795662 2072 1961 -127043423.7988 2073 1961 57871.26589543 2074 1961 37277756.28083 2075 1961 -57757921.43384 2088 1961 -10597685.63642 2089 1961 -8663199.819997 2090 1961 -17363182.43788 2091 1961 -44977548.07992 2092 1961 -694433.6992576 2093 1961 -59807200.44138 2094 1961 -11899768.97017 2095 1961 9357633.519253 2096 1961 -21458826.37861 1962 1962 622861433.7406 1963 1962 1.120567321777e-05 1964 1962 925940.4229136 1965 1962 84958459.17911 1966 1962 -5.066394805908e-06 1967 1962 231485.1058435 1980 1962 -52083950.29126 1981 1962 -36666666.66065 1982 1962 2453701.89106 1983 1962 -137627039.3558 1984 1962 -2.235174179077e-07 1985 1962 -671303.5447711 1986 1962 -52107624.53367 1987 1962 36666666.66065 1988 1962 -2754631.441411 2052 1962 -18752053.59425 2053 1962 9166666.66968 2054 1962 10539814.37052 2055 1962 -60367636.82651 2056 1962 1.877546310425e-06 2057 1962 44780785.23866 2058 1962 -20276082.95081 2059 1962 -9166666.66968 2060 1962 11841897.70428 2070 1962 -1865379.213624 2071 1962 8.79168510437e-07 2072 1962 57871.26589221 2073 1962 51054233.83102 2074 1962 1.788139343262e-06 2075 1962 231485.0634618 2076 1962 -7985170.87927 2077 1962 -2.771615982056e-06 2078 1962 57871.2658952 2091 1962 -18848133.13973 2092 1962 -9166666.66968 2093 1962 -10597685.63642 2094 1962 -60775629.25067 2095 1962 -1.214444637299e-06 2096 1962 -45012270.30212 2097 1962 -20383999.6175 2098 1962 9166666.669679 2099 1962 -11899768.97017 1963 1963 534855157.0519 1964 1963 -11110937.14243 1965 1963 -3.457069396973e-06 1966 1963 -54374606.24745 1967 1963 5722135.237857 1980 1963 -36666666.66065 1981 1963 -41083165.69975 1982 1963 1222200.476822 1983 1963 4.470348358154e-07 1984 1963 23707595.23204 1985 1963 -2777734.286976 1986 1963 36666666.66065 1987 1963 -41106839.94217 1988 1963 1555533.810155 2052 1963 9166666.66968 2053 1963 -16001859.73922 2054 1963 -8593755.37553 2055 1963 1.169741153717e-06 2056 1963 -20033981.96478 2057 1963 -694433.6992575 2058 1963 -9166666.66968 2059 1963 -17525889.09577 2060 1963 9288189.074786 2070 1963 1.229345798492e-06 2071 1963 -36698646.37071 2072 1963 -34527799.26293 2073 1963 1.966953277588e-06 2074 1963 29052683.00161 2075 1963 -2777734.795662 2076 1963 -2.190470695496e-06 2077 1963 -42818438.03636 2078 1963 37305534.05859 2091 1963 -9166666.669679 2092 1963 -16097939.2847 2093 1963 -8663199.819997 2094 1963 -1.445412635803e-06 2095 1963 -20441974.38895 2096 1963 -694433.6992576 2097 1963 9166666.669678 2098 1963 -17633805.76247 2099 1963 9357633.519253 1964 1964 608211498.9432 1965 1964 231485.105844 1966 1964 5388801.904579 1967 1964 80699306.16691 1980 1964 2523146.335561 1981 1964 1277756.032423 1982 1964 -7296493.499545 1983 1964 -254636.8781728 1984 1964 -2777734.286976 1985 1964 42039227.65673 1986 1964 -2685186.996909 1987 1964 1499978.254554 1988 1964 -7359624.812662 2052 1964 10539814.37052 2053 1964 -8593755.37553 2054 1964 -17106970.31658 2055 1964 44746063.01646 2056 1964 -694433.6992574 2057 1964 -58719220.64359 2058 1964 11841897.70428 2059 1964 9288189.074786 2060 1964 -21171048.60074 2070 1964 57871.26589252 2071 1964 -34500021.48517 2072 1964 -41438476.99211 2073 1964 231485.0634617 2074 1964 -2777734.795662 2075 1964 -127043423.7988 2076 1964 57871.26589543 2077 1964 37277756.28083 2078 1964 -57757921.43384 2091 1964 -10597685.63642 2092 1964 -8663199.819997 2093 1964 -17363182.43788 2094 1964 -44977548.07992 2095 1964 -694433.6992576 2096 1964 -59807200.44138 2097 1964 -11899768.97017 2098 1964 9357633.519253 2099 1964 -21458826.37861 1965 1965 525841223.8952 1966 1965 16637726.52648 1967 1965 1326933.388722 1968 1965 -99403447.86785 1969 1965 -76875437.99681 1970 1965 1088428.388042 1983 1965 -52083950.29126 1984 1965 -36666666.66065 1985 1965 2453701.89106 1986 1965 -86403605.12191 1987 1965 24246660.24538 1988 1965 -369310.9342484 1989 1965 -48005004.3171 1990 1965 9288464.335591 1991 1965 -271921.0998234 2055 1965 -18752053.59425 2056 1965 9166666.66968 2057 1965 10539814.37052 2058 1965 -28689005.84703 2059 1965 6543380.659943 2060 1965 25399000.74626 2073 1965 -1865379.213624 2074 1965 8.79168510437e-07 2075 1965 57871.26589221 2076 1965 60544850.76444 2077 1965 3603652.033654 2078 1965 165256.0848025 2079 1965 -36046786.41637 2080 1965 -18861624.24183 2081 1965 11409584.46838 2094 1965 -18848133.13973 2095 1965 -9166666.66968 2096 1965 -10597685.63642 2097 1965 -45324581.42976 2098 1965 6015914.059347 2099 1965 -35313654.50317 2100 1965 -18251664.62718 2101 1965 2698677.488894 2102 1965 -1659648.850827 1966 1966 652167491.1058 1967 1966 -7436833.74596 1968 1966 -76877610.71801 1969 1966 -257026253.9904 1970 1966 1869729.751142 1983 1966 -36666666.66065 1984 1966 -41083165.69975 1985 1966 1222200.476822 1986 1966 24246660.24538 1987 1966 16665770.31957 1988 1966 -1278060.764028 1989 1966 9288464.335591 1990 1966 -146283568.3526 1991 1966 1079447.946065 2055 1966 9166666.66968 2056 1966 -16001859.73922 2057 1966 -8593755.37553 2058 1966 6543892.420133 2059 1966 7329486.591774 2060 1966 -6861432.291434 2073 1966 1.229345798492e-06 2074 1966 -36698646.37071 2075 1966 -34527799.26293 2076 1966 3603652.033653 2077 1966 90110247.58946 2078 1966 -1973524.931692 2079 1966 -18862136.00203 2080 1966 -74966289.42761 2081 1966 36320757.18761 2094 1966 -9166666.669679 2095 1966 -16097939.2847 2096 1966 -8663199.819997 2097 1966 6015914.059347 2098 1966 -18890115.44135 2099 1966 7371512.847656 2100 1966 2698677.488894 2101 1966 -42017637.42113 2102 1966 16927872.0975 1967 1967 515818492.9784 1968 1967 1157900.733316 1969 1967 1814231.538681 1970 1967 -65036963.58215 1983 1967 2523146.335561 1984 1967 1277756.032423 1985 1967 -7296493.499545 1986 1967 -716533.1564142 1987 1967 -1222505.208481 1988 1967 45936875.78449 1989 1967 -133032.2108206 1990 1967 1079447.946065 1991 1967 -34793738.56316 2055 1967 10539814.37052 2056 1967 -8593755.37553 2057 1967 -17106970.31658 2058 1967 25572605.62664 2059 1967 -6888721.711543 2060 1967 -25919946.39859 2073 1967 57871.26589252 2074 1967 -34500021.48517 2075 1967 -41438476.99211 2076 1967 165435.1762095 2077 1967 -1973381.627549 2078 1967 -58670256.12405 2079 1967 11409680.57863 2080 1967 36320340.74991 2081 1967 -47859546.84135 2094 1967 -10597685.63642 2095 1967 -8663199.819997 2096 1967 -17363182.43788 2097 1967 -35487265.61249 2098 1967 7371512.849165 2099 1967 -51354101.90813 2100 1967 -1659648.850827 2101 1967 16927872.0975 2102 1967 -26241528.32399 1968 1968 584821571.4308 1969 1968 17544222.98078 1970 1968 313065.1993893 1986 1968 -52986235.77516 1987 1968 -32422879.68721 1988 1968 281349.1550519 1989 1968 35144313.475 1990 1968 39593841.83951 1991 1968 -575114.6272513 1992 1968 63970939.87151 1993 1968 -20632720.36621 1994 1968 2992.521678209 1995 1968 -1006153.553093 1996 1968 28788627.79476 1997 1968 -68998.16852388 2058 1968 -53458391.75147 2059 1968 11001535.28419 2060 1968 1822748.871423 2076 1968 -35172500.00353 2077 1968 -18862136.00203 2078 1968 -11029051.06911 2079 1968 35790640.60615 2080 1968 4298038.396794 2081 1968 8759735.736302 2097 1968 -19804774.09007 2098 1968 -8176439.889684 2099 1968 -11139057.95335 2100 1968 -41703527.98086 2101 1968 9670377.580278 2102 1968 -43908768.3245 2103 1968 -23096419.85021 2104 1968 -5140898.074326 2105 1968 13676758.60085 2106 1968 -17236872.81083 2107 1968 7209522.704775 2108 1968 -10716254.75056 1969 1969 1044581457.601 1970 1969 -5662855.094209 1986 1969 -32422879.68721 1987 1969 -16131420.91587 1988 1969 -129055.109933 1989 1969 39593841.83951 1990 1969 162931143.787 1991 1969 -626977.6637532 1992 1969 -5966053.701947 1993 1969 -6589505.676626 1994 1969 57685.45135477 1995 1969 28788627.79476 1996 1969 -23691311.24204 1997 1969 71068.93951069 2058 1969 7334356.856125 2059 1969 -141384271.5067 2060 1969 -15223117.05093 2076 1969 -18861624.24184 2077 1969 -74092003.01479 2078 1969 -35487648.98173 2079 1969 4298038.396793 2080 1969 144981214.6301 2081 1969 -898589.0163781 2097 1969 -8176439.889684 2098 1969 -10839297.49869 2099 1969 -8997766.816414 2100 1969 9670377.580277 2101 1969 -9734323.79071 2102 1969 7544152.626836 2103 1969 -1474231.406454 2104 1969 -40740840.42931 2105 1969 33347738.67704 2106 1969 7209522.704775 2107 1969 -22872324.27073 2108 1969 16684392.2326 1970 1970 745776634.0428 1986 1970 350793.5995534 1987 1970 -73499.55433191 1988 1970 -634662.7282902 1989 1970 -366781.293952 1990 1970 -571422.1082071 1991 1970 194003600.4649 1992 1970 2992.521681309 1993 1970 57685.45135468 1994 1970 126095896.7256 1995 1970 -68998.16849005 1996 1970 71068.9395107 1997 1970 41038339.97883 2058 1970 1215165.914282 2059 1970 -15709313.95751 2060 1970 -54629831.58199 2076 1970 -11028968.11405 2077 1970 -35488091.42098 2078 1970 -45528116.40711 2079 1970 -8774708.705263 2080 1970 -1927368.836544 2081 1970 -102472943.4706 2097 1970 -11139057.95335 2098 1970 -8997766.816414 2099 1970 -17461344.76991 2100 1970 -43908768.32454 2101 1970 7544152.628345 2102 1970 -84665181.10733 2103 1970 5551758.600068 2104 1970 33347738.67704 2105 1970 -72767413.37603 2106 1970 -10716254.75056 2107 1970 16684392.2326 2108 1970 -34960091.63584 1971 1971 311425982.0218 1972 1971 4.053115844727e-06 1973 1971 -578696.4550389 1974 1971 42478440.44814 1975 1971 7333333.332128 1976 1971 -578701.8915792 2061 1971 -60367636.82651 2062 1971 1.877546310425e-06 2063 1971 44780785.23866 2064 1971 -20276082.95081 2065 1971 -9166666.66968 2066 1971 11841897.70428 2082 1971 25526722.3448 2083 1971 -5.960464477539e-08 2084 1971 -8946896.355626 2085 1971 -3992585.439634 2086 1971 1833333.333934 2087 1971 -2345231.034498 1972 1972 267422843.6775 1973 1972 -5555468.571212 1974 1972 -7333333.332131 1975 1972 -27188092.26514 1976 1972 2833289.841157 2061 1972 1.169741153717e-06 2062 1972 -20033981.96478 2063 1972 -694433.6992575 2064 1972 -9166666.66968 2065 1972 -17525889.09577 2066 1972 9288189.074786 2082 1972 6.556510925293e-07 2083 1972 14525946.9301 2084 1972 -1388867.397833 2085 1972 -1833333.333937 2086 1972 -21409219.01818 2087 1972 18645822.58485 1973 1973 304093123.209 1974 1973 462964.7749153 1975 1973 2722178.730064 1976 1973 40347548.70635 2061 1973 44746063.01646 2062 1973 -694433.6992574 2063 1973 -58719220.64359 2064 1973 11841897.70428 2065 1973 9288189.074786 2066 1973 -21171048.60074 2082 1973 9004770.308089 2083 1973 -1388867.397833 2084 1973 -63522764.08798 2085 1973 2403102.300394 2086 1973 18645822.58486 2087 1973 -28878960.71692 1974 1974 311425982.0218 1975 1974 4.053115844727e-06 1976 1974 -578696.4550389 1977 1974 42478440.44814 1978 1974 7333333.332128 1979 1974 -578701.8915792 2061 1974 -18752053.59425 2062 1974 9166666.66968 2063 1974 10539814.37052 2064 1974 -60367636.82651 2065 1974 1.877546310425e-06 2066 1974 44780785.23866 2067 1974 -20276082.95081 2068 1974 -9166666.66968 2069 1974 11841897.70428 2082 1974 -932689.6068121 2083 1974 -1833333.333935 2084 1974 -2084814.367748 2085 1974 25526722.3448 2086 1974 -5.960464477539e-08 2087 1974 -8946896.355626 2088 1974 -3992585.439634 2089 1974 1833333.333934 2090 1974 -2345231.034498 1975 1975 267422843.6775 1976 1975 -5555468.571212 1977 1975 -7333333.332131 1978 1975 -27188092.26514 1979 1975 2833289.841157 2061 1975 9166666.66968 2062 1975 -16001859.73922 2063 1975 -8593755.37553 2064 1975 1.169741153717e-06 2065 1975 -20033981.96478 2066 1975 -694433.6992575 2067 1975 -9166666.66968 2068 1975 -17525889.09577 2069 1975 9288189.074786 2082 1975 1833333.333937 2083 1975 -18349323.18536 2084 1975 -17256955.18702 2085 1975 6.556510925293e-07 2086 1975 14525946.9301 2087 1975 -1388867.397833 2088 1975 -1833333.333937 2089 1975 -21409219.01818 2090 1975 18645822.58485 1976 1976 304093123.209 1977 1976 462964.7749153 1978 1976 2722178.730064 1979 1976 40347548.70635 2061 1976 10539814.37052 2062 1976 -8593755.37553 2063 1976 -17106970.31658 2064 1976 44746063.01646 2065 1976 -694433.6992574 2066 1976 -58719220.64359 2067 1976 11841897.70428 2068 1976 9288189.074786 2069 1976 -21171048.60074 2082 1976 2142685.63364 2083 1976 -17256955.18703 2084 1976 -20719238.49606 2085 1976 9004770.308089 2086 1976 -1388867.397833 2087 1976 -63522764.08798 2088 1976 2403102.300394 2089 1976 18645822.58486 2090 1976 -28878960.71692 1977 1977 311425982.0218 1978 1977 4.053115844727e-06 1979 1977 -578696.4550389 1980 1977 42478440.44814 1981 1977 7333333.332128 1982 1977 -578701.8915792 2064 1977 -18752053.59425 2065 1977 9166666.66968 2066 1977 10539814.37052 2067 1977 -60367636.82651 2068 1977 1.877546310425e-06 2069 1977 44780785.23866 2070 1977 -20276082.95081 2071 1977 -9166666.66968 2072 1977 11841897.70428 2085 1977 -932689.6068121 2086 1977 -1833333.333935 2087 1977 -2084814.367748 2088 1977 25526722.3448 2089 1977 -5.960464477539e-08 2090 1977 -8946896.355626 2091 1977 -3992585.439634 2092 1977 1833333.333934 2093 1977 -2345231.034498 1978 1978 267422843.6775 1979 1978 -5555468.571212 1980 1978 -7333333.332131 1981 1978 -27188092.26514 1982 1978 2833289.841157 2064 1978 9166666.66968 2065 1978 -16001859.73922 2066 1978 -8593755.37553 2067 1978 1.169741153717e-06 2068 1978 -20033981.96478 2069 1978 -694433.6992575 2070 1978 -9166666.66968 2071 1978 -17525889.09577 2072 1978 9288189.074786 2085 1978 1833333.333937 2086 1978 -18349323.18536 2087 1978 -17256955.18702 2088 1978 6.556510925293e-07 2089 1978 14525946.9301 2090 1978 -1388867.397833 2091 1978 -1833333.333937 2092 1978 -21409219.01818 2093 1978 18645822.58485 1979 1979 304093123.209 1980 1979 462964.7749153 1981 1979 2722178.730064 1982 1979 40347548.70635 2064 1979 10539814.37052 2065 1979 -8593755.37553 2066 1979 -17106970.31658 2067 1979 44746063.01646 2068 1979 -694433.6992574 2069 1979 -58719220.64359 2070 1979 11841897.70428 2071 1979 9288189.074786 2072 1979 -21171048.60074 2085 1979 2142685.63364 2086 1979 -17256955.18703 2087 1979 -20719238.49606 2088 1979 9004770.308089 2089 1979 -1388867.397833 2090 1979 -63522764.08798 2091 1979 2403102.300394 2092 1979 18645822.58486 2093 1979 -28878960.71692 1980 1980 311425982.0218 1981 1980 4.053115844727e-06 1982 1980 -578696.4550389 1983 1980 42478440.44814 1984 1980 7333333.332128 1985 1980 -578701.8915792 2067 1980 -18752053.59425 2068 1980 9166666.66968 2069 1980 10539814.37052 2070 1980 -60367636.82651 2071 1980 1.877546310425e-06 2072 1980 44780785.23866 2073 1980 -20276082.95081 2074 1980 -9166666.66968 2075 1980 11841897.70428 2088 1980 -932689.6068121 2089 1980 -1833333.333935 2090 1980 -2084814.367748 2091 1980 25526722.3448 2092 1980 -5.960464477539e-08 2093 1980 -8946896.355626 2094 1980 -3992585.439634 2095 1980 1833333.333934 2096 1980 -2345231.034498 1981 1981 267422843.6775 1982 1981 -5555468.571212 1983 1981 -7333333.332131 1984 1981 -27188092.26514 1985 1981 2833289.841157 2067 1981 9166666.66968 2068 1981 -16001859.73922 2069 1981 -8593755.37553 2070 1981 1.169741153717e-06 2071 1981 -20033981.96478 2072 1981 -694433.6992575 2073 1981 -9166666.66968 2074 1981 -17525889.09577 2075 1981 9288189.074786 2088 1981 1833333.333937 2089 1981 -18349323.18536 2090 1981 -17256955.18702 2091 1981 6.556510925293e-07 2092 1981 14525946.9301 2093 1981 -1388867.397833 2094 1981 -1833333.333937 2095 1981 -21409219.01818 2096 1981 18645822.58485 1982 1982 304093123.209 1983 1982 462964.7749153 1984 1982 2722178.730064 1985 1982 40347548.70635 2067 1982 10539814.37052 2068 1982 -8593755.37553 2069 1982 -17106970.31658 2070 1982 44746063.01646 2071 1982 -694433.6992574 2072 1982 -58719220.64359 2073 1982 11841897.70428 2074 1982 9288189.074786 2075 1982 -21171048.60074 2088 1982 2142685.63364 2089 1982 -17256955.18703 2090 1982 -20719238.49606 2091 1982 9004770.308089 2092 1982 -1388867.397833 2093 1982 -63522764.08798 2094 1982 2403102.300394 2095 1982 18645822.58486 2096 1982 -28878960.71692 1983 1983 311425982.0218 1984 1983 4.053115844727e-06 1985 1983 -578696.4550389 1986 1983 42478440.44814 1987 1983 7333333.332128 1988 1983 -578701.8915792 2070 1983 -18752053.59425 2071 1983 9166666.66968 2072 1983 10539814.37052 2073 1983 -60367636.82651 2074 1983 1.877546310425e-06 2075 1983 44780785.23866 2076 1983 -20276082.95081 2077 1983 -9166666.66968 2078 1983 11841897.70428 2091 1983 -932689.6068121 2092 1983 -1833333.333935 2093 1983 -2084814.367748 2094 1983 25526722.3448 2095 1983 -5.960464477539e-08 2096 1983 -8946896.355626 2097 1983 -3992585.439634 2098 1983 1833333.333934 2099 1983 -2345231.034498 1984 1984 267422843.6775 1985 1984 -5555468.571212 1986 1984 -7333333.332131 1987 1984 -27188092.26514 1988 1984 2833289.841157 2070 1984 9166666.66968 2071 1984 -16001859.73922 2072 1984 -8593755.37553 2073 1984 1.169741153717e-06 2074 1984 -20033981.96478 2075 1984 -694433.6992575 2076 1984 -9166666.66968 2077 1984 -17525889.09577 2078 1984 9288189.074786 2091 1984 1833333.333937 2092 1984 -18349323.18536 2093 1984 -17256955.18702 2094 1984 6.556510925293e-07 2095 1984 14525946.9301 2096 1984 -1388867.397833 2097 1984 -1833333.333937 2098 1984 -21409219.01818 2099 1984 18645822.58485 1985 1985 304093123.209 1986 1985 462964.7749153 1987 1985 2722178.730064 1988 1985 40347548.70635 2070 1985 10539814.37052 2071 1985 -8593755.37553 2072 1985 -17106970.31658 2073 1985 44746063.01646 2074 1985 -694433.6992574 2075 1985 -58719220.64359 2076 1985 11841897.70428 2077 1985 9288189.074786 2078 1985 -21171048.60074 2091 1985 2142685.63364 2092 1985 -17256955.18703 2093 1985 -20719238.49606 2094 1985 9004770.308089 2095 1985 -1388867.397833 2096 1985 -63522764.08798 2097 1985 2403102.300394 2098 1985 18645822.58486 2099 1985 -28878960.71692 1986 1986 310336649.2785 1987 1986 4244617.814256 1988 1986 1415596.36294 1989 1986 -6796753.083789 1990 1986 -25401731.70095 1991 1986 61254.30470198 2073 1986 -18752053.59425 2074 1986 9166666.66968 2075 1986 10539814.37052 2076 1986 -44778234.89159 2077 1986 6015914.059352 2078 1986 35041206.59625 2079 1986 -20008769.25006 2080 1986 -8176439.889681 2081 1986 11299136.49846 2094 1986 -932689.6068121 2095 1986 -1833333.333935 2096 1986 -2084814.367748 2097 1986 25141334.84086 2098 1986 990425.5084367 2099 1986 -8447023.847856 2100 1986 -17627581.50065 2101 1986 -6163233.013846 2102 1986 7435569.639298 1987 1987 292196010.7903 1988 1987 -3573485.612244 1989 1987 -40068398.3652 1990 1987 -69914556.7746 1991 1987 647333.3904552 2073 1987 9166666.66968 2074 1987 -16001859.73922 2075 1987 -8593755.37553 2076 1987 6015914.059351 2077 1987 -18343768.90317 2078 1987 -8010431.594268 2079 1987 -8176439.889681 2080 1987 -11043292.65868 2081 1987 8953622.07837 2094 1987 1833333.333937 2095 1987 -18349323.18536 2096 1987 -17256955.18702 2097 1987 990425.5084375 2098 1987 20357950.52274 2099 1987 -890124.6000073 2100 1987 -9829899.681717 2101 1987 -33577700.03881 2102 1987 25797644.67844 1988 1988 310269932.1323 1989 1988 339032.0824319 1990 1988 591777.8349088 1991 1988 23495587.48335 2073 1988 10539814.37052 2074 1988 -8593755.37553 2075 1988 -17106970.31658 2076 1988 35214817.70936 2077 1988 -8010431.592745 2078 1988 -49897177.80632 2079 1988 11299136.49846 2080 1988 8953622.07837 2081 1988 -18005331.86323 2094 1988 2142685.63364 2095 1988 -17256955.18703 2096 1988 -20719238.49606 2097 1988 9504087.260305 2098 1988 -890124.6000072 2099 1988 -62094149.98014 2100 1988 11975291.86111 2101 1988 25797644.67693 2102 1988 -37398448.87766 1989 1989 356132315.0052 1990 1989 46610232.79847 1991 1989 -1088457.435502 1992 1989 -68991042.43081 1993 1989 -44544705.52654 1994 1989 104612.942561 1995 1989 14049779.30499 1996 1989 -10879435.08183 1997 1989 33514.80409205 2076 1989 -17800014.26928 2077 1989 2698677.488893 2078 1989 1551462.261342 2079 1989 -41550567.91137 2080 1989 9670377.580283 2081 1989 43763453.88329 2097 1989 -16877239.2765 2098 1989 -9829899.681722 2099 1989 -11739430.35753 2100 1989 -5864347.079577 2101 1989 11272333.02856 2102 1989 -8862175.675498 2103 1989 -34156706.14972 2104 1989 -11123810.63458 2105 1989 20338606.37075 2106 1989 -25110571.33565 2107 1989 -2687677.781431 2108 1989 7481972.406576 1990 1990 441394973.0897 1991 1990 -1397462.91879 1992 1990 -44544705.52654 1993 1990 -49185644.57119 1994 1990 71068.93951051 1995 1990 -25546101.74609 1996 1990 -57408739.22477 1997 1990 226590.3065475 2076 1990 2698677.488893 2077 1990 -41565987.06324 2078 1990 -16405461.24678 2079 1990 9670377.580283 2080 1990 -9581363.721229 2081 1990 -7837791.815088 2097 1990 -6163233.01385 2098 1990 -32827357.81467 2099 1990 -25487077.53535 2100 1990 11272333.02856 2101 1990 14803293.44955 2102 1990 -343891.8558928 2103 1990 -11123810.63458 2104 1990 -29217261.77281 2105 1990 16684392.2326 2106 1990 -6354344.449302 2107 1990 -42970769.09971 2108 1990 33389830.22049 1991 1991 483682368.7122 1992 1991 104612.942561 1993 1991 71068.93951043 1994 1991 15544006.64969 1995 1991 102959.2485223 1996 1991 226590.3065475 1997 1991 68824463.12898 2076 1991 1551462.261342 2077 1991 -16405461.24678 2078 1991 -25037127.36958 2079 1991 43763453.88333 2080 1991 -7837791.813566 2081 1991 -84257287.58871 2097 1991 -7303874.802406 2098 1991 -25487077.53687 2099 1991 -35397536.2799 2100 1991 8672268.766067 2101 1991 -343891.8558926 2102 1991 -131666276.7598 2103 1991 20338606.37075 2104 1991 16684392.2326 2105 1991 -41305029.13792 2106 1991 11778916.85432 2107 1991 33389830.22049 2108 1991 -59295265.58963 1992 1992 235232090.372 1993 1992 49966053.69473 1994 1992 -60862.89202046 1995 1992 -6442290.85687 1996 1992 544705.5337606 1997 1992 -46742.57221824 2079 1992 -23001722.8805 2080 1992 -1474231.406455 2081 1992 -5550324.72933 2100 1992 -34062009.18001 2101 1992 -11123810.63458 2102 1992 -20286393.64259 2103 1992 -19349792.24124 2104 1992 12474231.41007 2105 1992 8109815.470699 2106 1992 -35471324.17617 2107 1992 123810.6309668 2108 1992 -31023097.09878 1993 1993 216417535.9348 1994 1993 -57685.45134497 1995 1993 15211372.19802 1996 1993 63127311.26884 1997 1993 -71068.9395045 2079 1993 -5140898.074327 2080 1993 -40646143.4596 2081 1993 -33318927.97868 2100 1993 -11123810.63458 2101 1993 -29122564.8031 2102 1993 -16648941.11168 2103 1993 12474231.41007 2104 1993 -24049121.66948 2105 1993 6652261.316389 2106 1993 3790477.298838 2107 1993 -18067018.54574 2108 1993 3315607.773964 1994 1994 344070517.3109 1995 1994 -46742.57221502 1996 1994 -71068.9395045 1997 1994 111008771.196 2079 1994 -13675324.7301 2080 1994 -33318927.97868 2081 1994 -72514888.12347 2100 1994 -20286393.64259 2101 1994 -16648941.11168 2102 1994 -41052503.88534 2103 1994 -8140184.526632 2104 1994 -6681072.014753 2105 1994 -122349568.8948 2106 1994 -31023097.10068 2107 1994 -3351058.894892 2108 1994 -62442635.03753 1995 1995 175028968.1491 1996 1995 -18453898.24669 1997 1995 -126107.3967482 2079 1995 -17142175.84111 2080 1995 7209522.704776 2081 1995 10681661.92314 2100 1995 -24826480.42668 2101 1995 -6354344.449306 2102 1995 -11727749.81249 2103 1995 -35471324.17617 2104 1995 3790477.298842 2105 1995 30999819.5577 2106 1995 -13375171.0781 2107 1995 -4645655.554312 2108 1995 -4310953.890546 1996 1996 199603042.2421 1997 1996 -226590.3065325 2079 1996 7209522.704776 2080 1996 -22777627.30101 2081 1996 -16648941.11168 2100 1996 -2687677.781434 2101 1996 -42686678.19075 2102 1996 -33276836.43523 2103 1996 123810.63097 2104 1996 -18067018.54574 2105 1996 3315607.773964 2106 1996 -4645655.554311 2107 1996 -7283827.484575 2108 1996 6610169.772934 1997 1997 263475900.4805 2079 1997 10681661.92314 2080 1997 -16648941.11168 2081 1997 -34707566.38326 2100 1997 -7465527.586963 2101 1997 -33276836.43523 2102 1997 -58537689.83235 2103 1997 30999819.55581 2104 1997 -3351058.894892 2105 1997 -62442635.03753 2106 1997 4248212.774715 2107 1997 -6723163.558209 2108 1997 -86485846.13902 1998 1998 391468094.7324 1999 1998 36666666.66066 2000 1998 2662170.757228 2001 1998 -201885224.5025 2002 1998 -36666959.01753 2003 1998 -2662149.068675 2004 1998 13006025.1815 2005 1998 29333625.68539 2006 1998 -2152798.772422 2109 1998 31947394.33292 2110 1998 9166666.669681 2111 1998 9728225.899101 2112 1998 -74358253.63036 2113 1998 -9166739.758898 2114 1998 -45562288.72778 2115 1998 -8166156.136015 2116 1998 7333406.424962 2117 1998 -9496761.446847 1999 1999 336463888.7559 2000 1999 -6944377.543016 2001 1999 -36667105.19596 2002 1999 -29548916.09098 2003 1999 -3847225.37168 2004 1999 44000438.52809 2005 1999 13006025.1815 2006 1999 2416691.307227 2109 1999 9166666.66968 2110 1999 18196342.83202 2111 1999 5513941.008134 2112 1999 -9166776.303507 2113 1999 -31274176.50627 2114 1999 -9941080.210835 2115 1999 11000109.63744 2116 1999 -8166156.136015 2117 1999 11395946.69513 2000 2000 385940866.4962 2001 2000 -2662138.224395 2002 2000 -3097217.158151 2003 2000 2281351.682023 2004 2000 -3229198.158633 2005 2000 1611127.538151 2006 2000 34682733.81733 2109 2000 -8223530.275229 2110 2000 -8847241.586827 2111 2000 -79300461.72417 2112 2000 -45527563.96779 2113 2000 -9746597.980308 2114 2000 -63128188.69225 2115 2000 -14245142.17027 2116 2000 7597297.796754 2117 2000 -21776416.36271 2001 2001 677810035.2011 2002 2001 36667397.55284 2003 2001 3125086.662505 2004 2001 20859938.00677 2005 2001 -36666959.01753 2006 2001 2702569.081896 2007 2001 -136819701.2443 2008 2001 9.089708328247e-07 2009 2001 -462970.1266867 2010 2001 -51905201.38891 2011 2001 36666666.66065 2012 2001 -2702548.086863 2109 2001 -72726245.22972 2110 2001 -9166776.303506 2111 2001 44231216.90386 2112 2001 70575234.21716 2113 2001 9166849.392726 2114 2001 781227.3439141 2115 2001 -20203256.3538 2116 2001 -9166739.758899 2117 2001 11899863.74724 2118 2001 -60775629.25067 2119 2001 -1.214444637299e-06 2120 2001 -45012270.30212 2121 2001 -20383999.6175 2122 2001 9166666.669679 2123 2001 -11899768.97017 2002 2002 578802727.5875 2003 2002 -8610918.562153 2004 2002 -36667105.19596 2005 2002 -107472939.8429 2006 2002 4611020.401354 2007 2002 9.685754776001e-07 2008 2002 24514918.12315 2009 2002 -2777734.795656 2010 2002 36666666.66065 2011 2002 -40904425.97421 2012 2002 1513867.397816 2109 2002 -9166739.758897 2110 2002 -29642168.10562 2111 2002 8204934.122165 2112 2002 9166849.392726 2113 2002 45823407.30156 2114 2002 -2152765.098743 2115 2002 -9166776.303508 2116 2002 -52286475.83204 2117 2002 37069600.58987 2118 2002 -1.445412635803e-06 2119 2002 -20441974.38895 2120 2002 -694433.6992576 2121 2002 9166666.669678 2122 2002 -17633805.76247 2123 2002 9357633.519253 2003 2003 623143279.9755 2004 2003 2737301.801614 2005 2003 5388806.115241 2006 2003 41364580.11227 2007 2003 -462970.1266864 2008 2003 -2777734.795656 2009 2003 44192040.0554 2010 2003 -2737270.309063 2011 2003 1541645.175575 2012 2003 -6819846.696327 2109 2003 44196492.14387 2110 2003 8010523.495484 2111 2003 -58776166.2905 2112 2003 781316.8545274 2113 2003 -2152693.49136 2114 2003 -107886912.3736 2115 2003 11899911.13577 2116 2003 37236269.31883 2117 2003 -57440830.58835 2118 2003 -44977548.07992 2119 2003 -694433.6992576 2120 2003 -59807200.44138 2121 2003 -11899768.97017 2122 2003 9357633.519253 2123 2003 -21458826.37861 2004 2004 391468094.7324 2005 2004 36666666.66066 2006 2004 2662170.757228 2007 2004 -51881527.1465 2008 2004 -36666666.66065 2009 2004 2505785.245605 2010 2004 -201885224.5025 2011 2004 -36666959.01753 2012 2004 -2662149.068675 2013 2004 13006025.1815 2014 2004 29333625.68539 2015 2004 -2152798.772422 2109 2004 -5106206.927443 2110 2004 11000109.63744 2111 2004 12682625.90274 2112 2004 -15511422.68773 2113 2004 -9166776.303506 2114 2004 -10539940.2691 2115 2004 31947394.33292 2116 2004 9166666.669681 2117 2004 9728225.899101 2118 2004 -18848133.13973 2119 2004 -9166666.66968 2120 2004 -10597685.63642 2121 2004 -74358253.63036 2122 2004 -9166739.758898 2123 2004 -45562288.72778 2124 2004 -8166156.136015 2125 2004 7333406.424962 2126 2004 -9496761.446847 2005 2005 336463888.7559 2006 2005 -6944377.543016 2007 2005 -36666666.66065 2008 2005 -40880751.7318 2009 2005 1263867.397843 2010 2005 -36667105.19596 2011 2005 -29548916.09098 2012 2005 -3847225.37168 2013 2005 44000438.52809 2014 2005 13006025.1815 2015 2005 2416691.307227 2109 2005 7333406.424962 2110 2005 -5106206.927443 2111 2005 -6763956.526763 2112 2005 -9166739.758897 2113 2005 -47594642.16596 2114 2005 -34569643.89832 2115 2005 9166666.66968 2116 2005 18196342.83202 2117 2005 5513941.008134 2118 2005 -9166666.669679 2119 2005 -16097939.2847 2120 2005 -8663199.819997 2121 2005 -9166776.303507 2122 2005 -31274176.50627 2123 2005 -9941080.210835 2124 2005 11000109.63744 2125 2005 -8166156.136015 2126 2005 11395946.69513 2006 2006 385940866.4962 2007 2006 2471063.023406 2008 2006 1236089.620084 2009 2006 -6756715.38321 2010 2006 -2662138.224395 2011 2006 -3097217.158151 2012 2006 2281351.682023 2013 2006 -3229198.158633 2014 2006 1611127.538151 2015 2006 34682733.81733 2109 2006 8455083.935158 2110 2006 -10145934.79014 2111 2006 -13616551.80652 2112 2006 -10539898.30291 2113 2006 -34736312.74845 2114 2006 -44929274.14549 2115 2006 -8223530.275229 2116 2006 -8847241.586827 2117 2006 -79300461.72417 2118 2006 -10597685.63642 2119 2006 -8663199.819997 2120 2006 -17363182.43788 2121 2006 -45527563.96779 2122 2006 -9746597.980308 2123 2006 -63128188.69225 2124 2006 -14245142.17027 2125 2006 7597297.796754 2126 2006 -21776416.36271 2007 2007 626081101.6128 2008 2007 7.033348083496e-06 2009 2007 925940.2533548 2010 2007 85765730.61463 2011 2007 -3.814697265625e-06 2012 2007 231485.0634534 2016 2007 -136819701.2443 2017 2007 9.089708328247e-07 2018 2007 -462970.1266867 2019 2007 -51905201.38891 2020 2007 36666666.66065 2021 2007 -2702548.086863 2112 2007 -60367636.82651 2113 2007 1.877546310425e-06 2114 2007 44780785.23866 2115 2007 -20276082.95081 2116 2007 -9166666.66968 2117 2007 11841897.70428 2118 2007 51054233.83102 2119 2007 1.788139343262e-06 2120 2007 231485.0634618 2121 2007 -7985170.87927 2122 2007 -2.771615982056e-06 2123 2007 57871.2658952 2127 2007 -60775629.25067 2128 2007 -1.214444637299e-06 2129 2007 -45012270.30212 2130 2007 -20383999.6175 2131 2007 9166666.669679 2132 2007 -11899768.97017 2008 2008 538074898.3386 2009 2008 -11110939.17715 2010 2008 -2.861022949219e-06 2011 2008 -53567337.94508 2012 2008 5555469.588581 2016 2008 9.685754776001e-07 2017 2008 24514918.12315 2018 2008 -2777734.795656 2019 2008 36666666.66065 2020 2008 -40904425.97421 2021 2008 1513867.397816 2112 2008 1.169741153717e-06 2113 2008 -20033981.96478 2114 2008 -694433.6992575 2115 2008 -9166666.66968 2116 2008 -17525889.09577 2117 2008 9288189.074786 2118 2008 1.966953277588e-06 2119 2008 29052683.00161 2120 2008 -2777734.795662 2121 2008 -2.190470695496e-06 2122 2008 -42818438.03636 2123 2008 37305534.05859 2127 2008 -1.445412635803e-06 2128 2008 -20441974.38895 2129 2008 -694433.6992576 2130 2008 9166666.669678 2131 2008 -17633805.76247 2132 2008 9357633.519253 2009 2009 616797415.4266 2010 2009 231485.0634536 2011 2009 5555469.588581 2012 2009 82852085.35441 2016 2009 -462970.1266864 2017 2009 -2777734.795656 2018 2009 44192040.0554 2019 2009 -2737270.309063 2020 2009 1541645.175575 2021 2009 -6819846.696327 2112 2009 44746063.01646 2113 2009 -694433.6992574 2114 2009 -58719220.64359 2115 2009 11841897.70428 2116 2009 9288189.074786 2117 2009 -21171048.60074 2118 2009 231485.0634617 2119 2009 -2777734.795662 2120 2009 -127043423.7988 2121 2009 57871.26589543 2122 2009 37277756.28083 2123 2009 -57757921.43384 2127 2009 -44977548.07992 2128 2009 -694433.6992576 2129 2009 -59807200.44138 2130 2009 -11899768.97017 2131 2009 9357633.519253 2132 2009 -21458826.37861 2010 2010 677810035.2011 2011 2010 36667397.55284 2012 2010 3125086.662505 2013 2010 20859938.00677 2014 2010 -36666959.01753 2015 2010 2702569.081896 2016 2010 -51881527.1465 2017 2010 -36666666.66065 2018 2010 2505785.245605 2019 2010 -136819701.2443 2020 2010 9.089708328247e-07 2021 2010 -462970.1266867 2022 2010 -51905201.38891 2023 2010 36666666.66065 2024 2010 -2702548.086863 2112 2010 -18752053.59425 2113 2010 9166666.66968 2114 2010 10539814.37052 2115 2010 -72726245.22972 2116 2010 -9166776.303506 2117 2010 44231216.90386 2118 2010 -1865379.213624 2119 2010 8.79168510437e-07 2120 2010 57871.26589221 2121 2010 70575234.21716 2122 2010 9166849.392726 2123 2010 781227.3439141 2124 2010 -20203256.3538 2125 2010 -9166739.758899 2126 2010 11899863.74724 2127 2010 -18848133.13973 2128 2010 -9166666.66968 2129 2010 -10597685.63642 2130 2010 -60775629.25067 2131 2010 -1.214444637299e-06 2132 2010 -45012270.30212 2133 2010 -20383999.6175 2134 2010 9166666.669679 2135 2010 -11899768.97017 2011 2011 578802727.5875 2012 2011 -8610918.562153 2013 2011 -36667105.19596 2014 2011 -107472939.8429 2015 2011 4611020.401354 2016 2011 -36666666.66065 2017 2011 -40880751.7318 2018 2011 1263867.397843 2019 2011 9.685754776001e-07 2020 2011 24514918.12315 2021 2011 -2777734.795656 2022 2011 36666666.66065 2023 2011 -40904425.97421 2024 2011 1513867.397816 2112 2011 9166666.66968 2113 2011 -16001859.73922 2114 2011 -8593755.37553 2115 2011 -9166739.758897 2116 2011 -29642168.10562 2117 2011 8204934.122165 2118 2011 1.229345798492e-06 2119 2011 -36698646.37071 2120 2011 -34527799.26293 2121 2011 9166849.392726 2122 2011 45823407.30156 2123 2011 -2152765.098743 2124 2011 -9166776.303508 2125 2011 -52286475.83204 2126 2011 37069600.58987 2127 2011 -9166666.669679 2128 2011 -16097939.2847 2129 2011 -8663199.819997 2130 2011 -1.445412635803e-06 2131 2011 -20441974.38895 2132 2011 -694433.6992576 2133 2011 9166666.669678 2134 2011 -17633805.76247 2135 2011 9357633.519253 2012 2012 623143279.9755 2013 2012 2737301.801614 2014 2012 5388806.115241 2015 2012 41364580.11227 2016 2012 2471063.023406 2017 2012 1236089.620084 2018 2012 -6756715.38321 2019 2012 -462970.1266864 2020 2012 -2777734.795656 2021 2012 44192040.0554 2022 2012 -2737270.309063 2023 2012 1541645.175575 2024 2012 -6819846.696327 2112 2012 10539814.37052 2113 2012 -8593755.37553 2114 2012 -17106970.31658 2115 2012 44196492.14387 2116 2012 8010523.495484 2117 2012 -58776166.2905 2118 2012 57871.26589252 2119 2012 -34500021.48517 2120 2012 -41438476.99211 2121 2012 781316.8545274 2122 2012 -2152693.49136 2123 2012 -107886912.3736 2124 2012 11899911.13577 2125 2012 37236269.31883 2126 2012 -57440830.58835 2127 2012 -10597685.63642 2128 2012 -8663199.819997 2129 2012 -17363182.43788 2130 2012 -44977548.07992 2131 2012 -694433.6992576 2132 2012 -59807200.44138 2133 2012 -11899768.97017 2134 2012 9357633.519253 2135 2012 -21458826.37861 2013 2013 391468094.7324 2014 2013 36666666.66066 2015 2013 2662170.757228 2019 2013 -51881527.1465 2020 2013 -36666666.66065 2021 2013 2505785.245605 2022 2013 -201885224.5025 2023 2013 -36666959.01753 2024 2013 -2662149.068675 2025 2013 13006025.1815 2026 2013 29333625.68539 2027 2013 -2152798.772422 2115 2013 -5106206.927443 2116 2013 11000109.63744 2117 2013 12682625.90274 2121 2013 -15511422.68773 2122 2013 -9166776.303506 2123 2013 -10539940.2691 2124 2013 31947394.33292 2125 2013 9166666.669681 2126 2013 9728225.899101 2130 2013 -18848133.13973 2131 2013 -9166666.66968 2132 2013 -10597685.63642 2133 2013 -74358253.63036 2134 2013 -9166739.758898 2135 2013 -45562288.72778 2136 2013 -8166156.136015 2137 2013 7333406.424962 2138 2013 -9496761.446847 2014 2014 336463888.7559 2015 2014 -6944377.543016 2019 2014 -36666666.66065 2020 2014 -40880751.7318 2021 2014 1263867.397843 2022 2014 -36667105.19596 2023 2014 -29548916.09098 2024 2014 -3847225.37168 2025 2014 44000438.52809 2026 2014 13006025.1815 2027 2014 2416691.307227 2115 2014 7333406.424962 2116 2014 -5106206.927443 2117 2014 -6763956.526763 2121 2014 -9166739.758897 2122 2014 -47594642.16596 2123 2014 -34569643.89832 2124 2014 9166666.66968 2125 2014 18196342.83202 2126 2014 5513941.008134 2130 2014 -9166666.669679 2131 2014 -16097939.2847 2132 2014 -8663199.819997 2133 2014 -9166776.303507 2134 2014 -31274176.50627 2135 2014 -9941080.210835 2136 2014 11000109.63744 2137 2014 -8166156.136015 2138 2014 11395946.69513 2015 2015 385940866.4962 2019 2015 2471063.023406 2020 2015 1236089.620084 2021 2015 -6756715.38321 2022 2015 -2662138.224395 2023 2015 -3097217.158151 2024 2015 2281351.682023 2025 2015 -3229198.158633 2026 2015 1611127.538151 2027 2015 34682733.81733 2115 2015 8455083.935158 2116 2015 -10145934.79014 2117 2015 -13616551.80652 2121 2015 -10539898.30291 2122 2015 -34736312.74845 2123 2015 -44929274.14549 2124 2015 -8223530.275229 2125 2015 -8847241.586827 2126 2015 -79300461.72417 2130 2015 -10597685.63642 2131 2015 -8663199.819997 2132 2015 -17363182.43788 2133 2015 -45527563.96779 2134 2015 -9746597.980308 2135 2015 -63128188.69225 2136 2015 -14245142.17027 2137 2015 7597297.796754 2138 2015 -21776416.36271 2016 2016 626081101.6128 2017 2016 7.033348083496e-06 2018 2016 925940.2533548 2019 2016 85765730.61463 2020 2016 -3.814697265625e-06 2021 2016 231485.0634534 2028 2016 -136819701.2443 2029 2016 9.089708328247e-07 2030 2016 -462970.1266867 2031 2016 -51905201.38891 2032 2016 36666666.66065 2033 2016 -2702548.086863 2118 2016 -60367636.82651 2119 2016 1.877546310425e-06 2120 2016 44780785.23866 2121 2016 -20276082.95081 2122 2016 -9166666.66968 2123 2016 11841897.70428 2127 2016 51054233.83102 2128 2016 1.788139343262e-06 2129 2016 231485.0634618 2130 2016 -7985170.87927 2131 2016 -2.771615982056e-06 2132 2016 57871.2658952 2139 2016 -60775629.25067 2140 2016 -1.214444637299e-06 2141 2016 -45012270.30212 2142 2016 -20383999.6175 2143 2016 9166666.669679 2144 2016 -11899768.97017 2017 2017 538074898.3386 2018 2017 -11110939.17715 2019 2017 -2.861022949219e-06 2020 2017 -53567337.94508 2021 2017 5555469.588581 2028 2017 9.685754776001e-07 2029 2017 24514918.12315 2030 2017 -2777734.795656 2031 2017 36666666.66065 2032 2017 -40904425.97421 2033 2017 1513867.397816 2118 2017 1.169741153717e-06 2119 2017 -20033981.96478 2120 2017 -694433.6992575 2121 2017 -9166666.66968 2122 2017 -17525889.09577 2123 2017 9288189.074786 2127 2017 1.966953277588e-06 2128 2017 29052683.00161 2129 2017 -2777734.795662 2130 2017 -2.190470695496e-06 2131 2017 -42818438.03636 2132 2017 37305534.05859 2139 2017 -1.445412635803e-06 2140 2017 -20441974.38895 2141 2017 -694433.6992576 2142 2017 9166666.669678 2143 2017 -17633805.76247 2144 2017 9357633.519253 2018 2018 616797415.4266 2019 2018 231485.0634536 2020 2018 5555469.588581 2021 2018 82852085.35441 2028 2018 -462970.1266864 2029 2018 -2777734.795656 2030 2018 44192040.0554 2031 2018 -2737270.309063 2032 2018 1541645.175575 2033 2018 -6819846.696327 2118 2018 44746063.01646 2119 2018 -694433.6992574 2120 2018 -58719220.64359 2121 2018 11841897.70428 2122 2018 9288189.074786 2123 2018 -21171048.60074 2127 2018 231485.0634617 2128 2018 -2777734.795662 2129 2018 -127043423.7988 2130 2018 57871.26589543 2131 2018 37277756.28083 2132 2018 -57757921.43384 2139 2018 -44977548.07992 2140 2018 -694433.6992576 2141 2018 -59807200.44138 2142 2018 -11899768.97017 2143 2018 9357633.519253 2144 2018 -21458826.37861 2019 2019 626081101.6128 2020 2019 7.033348083496e-06 2021 2019 925940.2533548 2022 2019 85765730.61463 2023 2019 -3.814697265625e-06 2024 2019 231485.0634534 2028 2019 -51881527.1465 2029 2019 -36666666.66065 2030 2019 2505785.245605 2031 2019 -136819701.2443 2032 2019 9.089708328247e-07 2033 2019 -462970.1266867 2034 2019 -51905201.38891 2035 2019 36666666.66065 2036 2019 -2702548.086863 2118 2019 -18752053.59425 2119 2019 9166666.66968 2120 2019 10539814.37052 2121 2019 -60367636.82651 2122 2019 1.877546310425e-06 2123 2019 44780785.23866 2124 2019 -20276082.95081 2125 2019 -9166666.66968 2126 2019 11841897.70428 2127 2019 -1865379.213624 2128 2019 8.79168510437e-07 2129 2019 57871.26589221 2130 2019 51054233.83102 2131 2019 1.788139343262e-06 2132 2019 231485.0634618 2133 2019 -7985170.87927 2134 2019 -2.771615982056e-06 2135 2019 57871.2658952 2139 2019 -18848133.13973 2140 2019 -9166666.66968 2141 2019 -10597685.63642 2142 2019 -60775629.25067 2143 2019 -1.214444637299e-06 2144 2019 -45012270.30212 2145 2019 -20383999.6175 2146 2019 9166666.669679 2147 2019 -11899768.97017 2020 2020 538074898.3386 2021 2020 -11110939.17715 2022 2020 -2.861022949219e-06 2023 2020 -53567337.94508 2024 2020 5555469.588581 2028 2020 -36666666.66065 2029 2020 -40880751.7318 2030 2020 1263867.397843 2031 2020 9.685754776001e-07 2032 2020 24514918.12315 2033 2020 -2777734.795656 2034 2020 36666666.66065 2035 2020 -40904425.97421 2036 2020 1513867.397816 2118 2020 9166666.66968 2119 2020 -16001859.73922 2120 2020 -8593755.37553 2121 2020 1.169741153717e-06 2122 2020 -20033981.96478 2123 2020 -694433.6992575 2124 2020 -9166666.66968 2125 2020 -17525889.09577 2126 2020 9288189.074786 2127 2020 1.229345798492e-06 2128 2020 -36698646.37071 2129 2020 -34527799.26293 2130 2020 1.966953277588e-06 2131 2020 29052683.00161 2132 2020 -2777734.795662 2133 2020 -2.190470695496e-06 2134 2020 -42818438.03636 2135 2020 37305534.05859 2139 2020 -9166666.669679 2140 2020 -16097939.2847 2141 2020 -8663199.819997 2142 2020 -1.445412635803e-06 2143 2020 -20441974.38895 2144 2020 -694433.6992576 2145 2020 9166666.669678 2146 2020 -17633805.76247 2147 2020 9357633.519253 2021 2021 616797415.4266 2022 2021 231485.0634536 2023 2021 5555469.588581 2024 2021 82852085.35441 2028 2021 2471063.023406 2029 2021 1236089.620084 2030 2021 -6756715.38321 2031 2021 -462970.1266864 2032 2021 -2777734.795656 2033 2021 44192040.0554 2034 2021 -2737270.309063 2035 2021 1541645.175575 2036 2021 -6819846.696327 2118 2021 10539814.37052 2119 2021 -8593755.37553 2120 2021 -17106970.31658 2121 2021 44746063.01646 2122 2021 -694433.6992574 2123 2021 -58719220.64359 2124 2021 11841897.70428 2125 2021 9288189.074786 2126 2021 -21171048.60074 2127 2021 57871.26589252 2128 2021 -34500021.48517 2129 2021 -41438476.99211 2130 2021 231485.0634617 2131 2021 -2777734.795662 2132 2021 -127043423.7988 2133 2021 57871.26589543 2134 2021 37277756.28083 2135 2021 -57757921.43384 2139 2021 -10597685.63642 2140 2021 -8663199.819997 2141 2021 -17363182.43788 2142 2021 -44977548.07992 2143 2021 -694433.6992576 2144 2021 -59807200.44138 2145 2021 -11899768.97017 2146 2021 9357633.519253 2147 2021 -21458826.37861 2022 2022 677810035.2011 2023 2022 36667397.55284 2024 2022 3125086.662505 2025 2022 20859938.00677 2026 2022 -36666959.01753 2027 2022 2702569.081896 2031 2022 -51881527.1465 2032 2022 -36666666.66065 2033 2022 2505785.245605 2034 2022 -136819701.2443 2035 2022 9.089708328247e-07 2036 2022 -462970.1266867 2037 2022 -51905201.38891 2038 2022 36666666.66065 2039 2022 -2702548.086863 2121 2022 -18752053.59425 2122 2022 9166666.66968 2123 2022 10539814.37052 2124 2022 -72726245.22972 2125 2022 -9166776.303506 2126 2022 44231216.90386 2130 2022 -1865379.213624 2131 2022 8.79168510437e-07 2132 2022 57871.26589221 2133 2022 70575234.21716 2134 2022 9166849.392726 2135 2022 781227.3439141 2136 2022 -20203256.3538 2137 2022 -9166739.758899 2138 2022 11899863.74724 2142 2022 -18848133.13973 2143 2022 -9166666.66968 2144 2022 -10597685.63642 2145 2022 -60775629.25067 2146 2022 -1.214444637299e-06 2147 2022 -45012270.30212 2148 2022 -20383999.6175 2149 2022 9166666.669679 2150 2022 -11899768.97017 2023 2023 578802727.5875 2024 2023 -8610918.562153 2025 2023 -36667105.19596 2026 2023 -107472939.8429 2027 2023 4611020.401354 2031 2023 -36666666.66065 2032 2023 -40880751.7318 2033 2023 1263867.397843 2034 2023 9.685754776001e-07 2035 2023 24514918.12315 2036 2023 -2777734.795656 2037 2023 36666666.66065 2038 2023 -40904425.97421 2039 2023 1513867.397816 2121 2023 9166666.66968 2122 2023 -16001859.73922 2123 2023 -8593755.37553 2124 2023 -9166739.758897 2125 2023 -29642168.10562 2126 2023 8204934.122165 2130 2023 1.229345798492e-06 2131 2023 -36698646.37071 2132 2023 -34527799.26293 2133 2023 9166849.392726 2134 2023 45823407.30156 2135 2023 -2152765.098743 2136 2023 -9166776.303508 2137 2023 -52286475.83204 2138 2023 37069600.58987 2142 2023 -9166666.669679 2143 2023 -16097939.2847 2144 2023 -8663199.819997 2145 2023 -1.445412635803e-06 2146 2023 -20441974.38895 2147 2023 -694433.6992576 2148 2023 9166666.669678 2149 2023 -17633805.76247 2150 2023 9357633.519253 2024 2024 623143279.9755 2025 2024 2737301.801614 2026 2024 5388806.115241 2027 2024 41364580.11227 2031 2024 2471063.023406 2032 2024 1236089.620084 2033 2024 -6756715.38321 2034 2024 -462970.1266864 2035 2024 -2777734.795656 2036 2024 44192040.0554 2037 2024 -2737270.309063 2038 2024 1541645.175575 2039 2024 -6819846.696327 2121 2024 10539814.37052 2122 2024 -8593755.37553 2123 2024 -17106970.31658 2124 2024 44196492.14387 2125 2024 8010523.495484 2126 2024 -58776166.2905 2130 2024 57871.26589252 2131 2024 -34500021.48517 2132 2024 -41438476.99211 2133 2024 781316.8545274 2134 2024 -2152693.49136 2135 2024 -107886912.3736 2136 2024 11899911.13577 2137 2024 37236269.31883 2138 2024 -57440830.58835 2142 2024 -10597685.63642 2143 2024 -8663199.819997 2144 2024 -17363182.43788 2145 2024 -44977548.07992 2146 2024 -694433.6992576 2147 2024 -59807200.44138 2148 2024 -11899768.97017 2149 2024 9357633.519253 2150 2024 -21458826.37861 2025 2025 391468094.7324 2026 2025 36666666.66066 2027 2025 2662170.757228 2034 2025 -51881527.1465 2035 2025 -36666666.66065 2036 2025 2505785.245605 2037 2025 -201885224.5025 2038 2025 -36666959.01753 2039 2025 -2662149.068675 2040 2025 13006025.1815 2041 2025 29333625.68539 2042 2025 -2152798.772422 2124 2025 -5106206.927443 2125 2025 11000109.63744 2126 2025 12682625.90274 2133 2025 -15511422.68773 2134 2025 -9166776.303506 2135 2025 -10539940.2691 2136 2025 31947394.33292 2137 2025 9166666.669681 2138 2025 9728225.899101 2145 2025 -18848133.13973 2146 2025 -9166666.66968 2147 2025 -10597685.63642 2148 2025 -74358253.63036 2149 2025 -9166739.758898 2150 2025 -45562288.72778 2151 2025 -8166156.136015 2152 2025 7333406.424962 2153 2025 -9496761.446847 2026 2026 336463888.7559 2027 2026 -6944377.543016 2034 2026 -36666666.66065 2035 2026 -40880751.7318 2036 2026 1263867.397843 2037 2026 -36667105.19596 2038 2026 -29548916.09098 2039 2026 -3847225.37168 2040 2026 44000438.52809 2041 2026 13006025.1815 2042 2026 2416691.307227 2124 2026 7333406.424962 2125 2026 -5106206.927443 2126 2026 -6763956.526763 2133 2026 -9166739.758897 2134 2026 -47594642.16596 2135 2026 -34569643.89832 2136 2026 9166666.66968 2137 2026 18196342.83202 2138 2026 5513941.008134 2145 2026 -9166666.669679 2146 2026 -16097939.2847 2147 2026 -8663199.819997 2148 2026 -9166776.303507 2149 2026 -31274176.50627 2150 2026 -9941080.210835 2151 2026 11000109.63744 2152 2026 -8166156.136015 2153 2026 11395946.69513 2027 2027 385940866.4962 2034 2027 2471063.023406 2035 2027 1236089.620084 2036 2027 -6756715.38321 2037 2027 -2662138.224395 2038 2027 -3097217.158151 2039 2027 2281351.682023 2040 2027 -3229198.158633 2041 2027 1611127.538151 2042 2027 34682733.81733 2124 2027 8455083.935158 2125 2027 -10145934.79014 2126 2027 -13616551.80652 2133 2027 -10539898.30291 2134 2027 -34736312.74845 2135 2027 -44929274.14549 2136 2027 -8223530.275229 2137 2027 -8847241.586827 2138 2027 -79300461.72417 2145 2027 -10597685.63642 2146 2027 -8663199.819997 2147 2027 -17363182.43788 2148 2027 -45527563.96779 2149 2027 -9746597.980308 2150 2027 -63128188.69225 2151 2027 -14245142.17027 2152 2027 7597297.796754 2153 2027 -21776416.36271 2028 2028 626081101.6128 2029 2028 7.033348083496e-06 2030 2028 925940.2533548 2031 2028 85765730.61463 2032 2028 -3.814697265625e-06 2033 2028 231485.0634534 2043 2028 -136819701.2443 2044 2028 9.089708328247e-07 2045 2028 -462970.1266867 2046 2028 -51905201.38891 2047 2028 36666666.66065 2048 2028 -2702548.086863 2127 2028 -60367636.82651 2128 2028 1.877546310425e-06 2129 2028 44780785.23866 2130 2028 -20276082.95081 2131 2028 -9166666.66968 2132 2028 11841897.70428 2139 2028 51054233.83102 2140 2028 1.788139343262e-06 2141 2028 231485.0634618 2142 2028 -7985170.87927 2143 2028 -2.771615982056e-06 2144 2028 57871.2658952 2154 2028 -60775629.25067 2155 2028 -1.214444637299e-06 2156 2028 -45012270.30212 2157 2028 -20383999.6175 2158 2028 9166666.669679 2159 2028 -11899768.97017 2029 2029 538074898.3386 2030 2029 -11110939.17715 2031 2029 -2.861022949219e-06 2032 2029 -53567337.94508 2033 2029 5555469.588581 2043 2029 9.685754776001e-07 2044 2029 24514918.12315 2045 2029 -2777734.795656 2046 2029 36666666.66065 2047 2029 -40904425.97421 2048 2029 1513867.397816 2127 2029 1.169741153717e-06 2128 2029 -20033981.96478 2129 2029 -694433.6992575 2130 2029 -9166666.66968 2131 2029 -17525889.09577 2132 2029 9288189.074786 2139 2029 1.966953277588e-06 2140 2029 29052683.00161 2141 2029 -2777734.795662 2142 2029 -2.190470695496e-06 2143 2029 -42818438.03636 2144 2029 37305534.05859 2154 2029 -1.445412635803e-06 2155 2029 -20441974.38895 2156 2029 -694433.6992576 2157 2029 9166666.669678 2158 2029 -17633805.76247 2159 2029 9357633.519253 2030 2030 616797415.4266 2031 2030 231485.0634536 2032 2030 5555469.588581 2033 2030 82852085.35441 2043 2030 -462970.1266864 2044 2030 -2777734.795656 2045 2030 44192040.0554 2046 2030 -2737270.309063 2047 2030 1541645.175575 2048 2030 -6819846.696327 2127 2030 44746063.01646 2128 2030 -694433.6992574 2129 2030 -58719220.64359 2130 2030 11841897.70428 2131 2030 9288189.074786 2132 2030 -21171048.60074 2139 2030 231485.0634617 2140 2030 -2777734.795662 2141 2030 -127043423.7988 2142 2030 57871.26589543 2143 2030 37277756.28083 2144 2030 -57757921.43384 2154 2030 -44977548.07992 2155 2030 -694433.6992576 2156 2030 -59807200.44138 2157 2030 -11899768.97017 2158 2030 9357633.519253 2159 2030 -21458826.37861 2031 2031 626081101.6128 2032 2031 7.033348083496e-06 2033 2031 925940.2533548 2034 2031 85765730.61463 2035 2031 -3.814697265625e-06 2036 2031 231485.0634534 2043 2031 -51881527.1465 2044 2031 -36666666.66065 2045 2031 2505785.245605 2046 2031 -136819701.2443 2047 2031 9.089708328247e-07 2048 2031 -462970.1266867 2049 2031 -51905201.38891 2050 2031 36666666.66065 2051 2031 -2702548.086863 2127 2031 -18752053.59425 2128 2031 9166666.66968 2129 2031 10539814.37052 2130 2031 -60367636.82651 2131 2031 1.877546310425e-06 2132 2031 44780785.23866 2133 2031 -20276082.95081 2134 2031 -9166666.66968 2135 2031 11841897.70428 2139 2031 -1865379.213624 2140 2031 8.79168510437e-07 2141 2031 57871.26589221 2142 2031 51054233.83102 2143 2031 1.788139343262e-06 2144 2031 231485.0634618 2145 2031 -7985170.87927 2146 2031 -2.771615982056e-06 2147 2031 57871.2658952 2154 2031 -18848133.13973 2155 2031 -9166666.66968 2156 2031 -10597685.63642 2157 2031 -60775629.25067 2158 2031 -1.214444637299e-06 2159 2031 -45012270.30212 2160 2031 -20383999.6175 2161 2031 9166666.669679 2162 2031 -11899768.97017 2032 2032 538074898.3386 2033 2032 -11110939.17715 2034 2032 -2.861022949219e-06 2035 2032 -53567337.94508 2036 2032 5555469.588581 2043 2032 -36666666.66065 2044 2032 -40880751.7318 2045 2032 1263867.397843 2046 2032 9.685754776001e-07 2047 2032 24514918.12315 2048 2032 -2777734.795656 2049 2032 36666666.66065 2050 2032 -40904425.97421 2051 2032 1513867.397816 2127 2032 9166666.66968 2128 2032 -16001859.73922 2129 2032 -8593755.37553 2130 2032 1.169741153717e-06 2131 2032 -20033981.96478 2132 2032 -694433.6992575 2133 2032 -9166666.66968 2134 2032 -17525889.09577 2135 2032 9288189.074786 2139 2032 1.229345798492e-06 2140 2032 -36698646.37071 2141 2032 -34527799.26293 2142 2032 1.966953277588e-06 2143 2032 29052683.00161 2144 2032 -2777734.795662 2145 2032 -2.190470695496e-06 2146 2032 -42818438.03636 2147 2032 37305534.05859 2154 2032 -9166666.669679 2155 2032 -16097939.2847 2156 2032 -8663199.819997 2157 2032 -1.445412635803e-06 2158 2032 -20441974.38895 2159 2032 -694433.6992576 2160 2032 9166666.669678 2161 2032 -17633805.76247 2162 2032 9357633.519253 2033 2033 616797415.4266 2034 2033 231485.0634536 2035 2033 5555469.588581 2036 2033 82852085.35441 2043 2033 2471063.023406 2044 2033 1236089.620084 2045 2033 -6756715.38321 2046 2033 -462970.1266864 2047 2033 -2777734.795656 2048 2033 44192040.0554 2049 2033 -2737270.309063 2050 2033 1541645.175575 2051 2033 -6819846.696327 2127 2033 10539814.37052 2128 2033 -8593755.37553 2129 2033 -17106970.31658 2130 2033 44746063.01646 2131 2033 -694433.6992574 2132 2033 -58719220.64359 2133 2033 11841897.70428 2134 2033 9288189.074786 2135 2033 -21171048.60074 2139 2033 57871.26589252 2140 2033 -34500021.48517 2141 2033 -41438476.99211 2142 2033 231485.0634617 2143 2033 -2777734.795662 2144 2033 -127043423.7988 2145 2033 57871.26589543 2146 2033 37277756.28083 2147 2033 -57757921.43384 2154 2033 -10597685.63642 2155 2033 -8663199.819997 2156 2033 -17363182.43788 2157 2033 -44977548.07992 2158 2033 -694433.6992576 2159 2033 -59807200.44138 2160 2033 -11899768.97017 2161 2033 9357633.519253 2162 2033 -21458826.37861 2034 2034 626081101.6128 2035 2034 7.033348083496e-06 2036 2034 925940.2533548 2037 2034 85765730.61463 2038 2034 -3.814697265625e-06 2039 2034 231485.0634534 2046 2034 -51881527.1465 2047 2034 -36666666.66065 2048 2034 2505785.245605 2049 2034 -136819701.2443 2050 2034 9.089708328247e-07 2051 2034 -462970.1266867 2052 2034 -51905201.38891 2053 2034 36666666.66065 2054 2034 -2702548.086863 2130 2034 -18752053.59425 2131 2034 9166666.66968 2132 2034 10539814.37052 2133 2034 -60367636.82651 2134 2034 1.877546310425e-06 2135 2034 44780785.23866 2136 2034 -20276082.95081 2137 2034 -9166666.66968 2138 2034 11841897.70428 2142 2034 -1865379.213624 2143 2034 8.79168510437e-07 2144 2034 57871.26589221 2145 2034 51054233.83102 2146 2034 1.788139343262e-06 2147 2034 231485.0634618 2148 2034 -7985170.87927 2149 2034 -2.771615982056e-06 2150 2034 57871.2658952 2157 2034 -18848133.13973 2158 2034 -9166666.66968 2159 2034 -10597685.63642 2160 2034 -60775629.25067 2161 2034 -1.214444637299e-06 2162 2034 -45012270.30212 2163 2034 -20383999.6175 2164 2034 9166666.669679 2165 2034 -11899768.97017 2035 2035 538074898.3386 2036 2035 -11110939.17715 2037 2035 -2.861022949219e-06 2038 2035 -53567337.94508 2039 2035 5555469.588581 2046 2035 -36666666.66065 2047 2035 -40880751.7318 2048 2035 1263867.397843 2049 2035 9.685754776001e-07 2050 2035 24514918.12315 2051 2035 -2777734.795656 2052 2035 36666666.66065 2053 2035 -40904425.97421 2054 2035 1513867.397816 2130 2035 9166666.66968 2131 2035 -16001859.73922 2132 2035 -8593755.37553 2133 2035 1.169741153717e-06 2134 2035 -20033981.96478 2135 2035 -694433.6992575 2136 2035 -9166666.66968 2137 2035 -17525889.09577 2138 2035 9288189.074786 2142 2035 1.229345798492e-06 2143 2035 -36698646.37071 2144 2035 -34527799.26293 2145 2035 1.966953277588e-06 2146 2035 29052683.00161 2147 2035 -2777734.795662 2148 2035 -2.190470695496e-06 2149 2035 -42818438.03636 2150 2035 37305534.05859 2157 2035 -9166666.669679 2158 2035 -16097939.2847 2159 2035 -8663199.819997 2160 2035 -1.445412635803e-06 2161 2035 -20441974.38895 2162 2035 -694433.6992576 2163 2035 9166666.669678 2164 2035 -17633805.76247 2165 2035 9357633.519253 2036 2036 616797415.4266 2037 2036 231485.0634536 2038 2036 5555469.588581 2039 2036 82852085.35441 2046 2036 2471063.023406 2047 2036 1236089.620084 2048 2036 -6756715.38321 2049 2036 -462970.1266864 2050 2036 -2777734.795656 2051 2036 44192040.0554 2052 2036 -2737270.309063 2053 2036 1541645.175575 2054 2036 -6819846.696327 2130 2036 10539814.37052 2131 2036 -8593755.37553 2132 2036 -17106970.31658 2133 2036 44746063.01646 2134 2036 -694433.6992574 2135 2036 -58719220.64359 2136 2036 11841897.70428 2137 2036 9288189.074786 2138 2036 -21171048.60074 2142 2036 57871.26589252 2143 2036 -34500021.48517 2144 2036 -41438476.99211 2145 2036 231485.0634617 2146 2036 -2777734.795662 2147 2036 -127043423.7988 2148 2036 57871.26589543 2149 2036 37277756.28083 2150 2036 -57757921.43384 2157 2036 -10597685.63642 2158 2036 -8663199.819997 2159 2036 -17363182.43788 2160 2036 -44977548.07992 2161 2036 -694433.6992576 2162 2036 -59807200.44138 2163 2036 -11899768.97017 2164 2036 9357633.519253 2165 2036 -21458826.37861 2037 2037 677810035.2011 2038 2037 36667397.55284 2039 2037 3125086.662505 2040 2037 20859938.00677 2041 2037 -36666959.01753 2042 2037 2702569.081896 2049 2037 -51881527.1465 2050 2037 -36666666.66065 2051 2037 2505785.245605 2052 2037 -136819701.2443 2053 2037 9.089708328247e-07 2054 2037 -462970.1266867 2055 2037 -51905201.38891 2056 2037 36666666.66065 2057 2037 -2702548.086863 2133 2037 -18752053.59425 2134 2037 9166666.66968 2135 2037 10539814.37052 2136 2037 -72726245.22972 2137 2037 -9166776.303506 2138 2037 44231216.90386 2145 2037 -1865379.213624 2146 2037 8.79168510437e-07 2147 2037 57871.26589221 2148 2037 70575234.21716 2149 2037 9166849.392726 2150 2037 781227.3439141 2151 2037 -20203256.3538 2152 2037 -9166739.758899 2153 2037 11899863.74724 2160 2037 -18848133.13973 2161 2037 -9166666.66968 2162 2037 -10597685.63642 2163 2037 -60775629.25067 2164 2037 -1.214444637299e-06 2165 2037 -45012270.30212 2166 2037 -20383999.6175 2167 2037 9166666.669679 2168 2037 -11899768.97017 2038 2038 578802727.5875 2039 2038 -8610918.562153 2040 2038 -36667105.19596 2041 2038 -107472939.8429 2042 2038 4611020.401354 2049 2038 -36666666.66065 2050 2038 -40880751.7318 2051 2038 1263867.397843 2052 2038 9.685754776001e-07 2053 2038 24514918.12315 2054 2038 -2777734.795656 2055 2038 36666666.66065 2056 2038 -40904425.97421 2057 2038 1513867.397816 2133 2038 9166666.66968 2134 2038 -16001859.73922 2135 2038 -8593755.37553 2136 2038 -9166739.758897 2137 2038 -29642168.10562 2138 2038 8204934.122165 2145 2038 1.229345798492e-06 2146 2038 -36698646.37071 2147 2038 -34527799.26293 2148 2038 9166849.392726 2149 2038 45823407.30156 2150 2038 -2152765.098743 2151 2038 -9166776.303508 2152 2038 -52286475.83204 2153 2038 37069600.58987 2160 2038 -9166666.669679 2161 2038 -16097939.2847 2162 2038 -8663199.819997 2163 2038 -1.445412635803e-06 2164 2038 -20441974.38895 2165 2038 -694433.6992576 2166 2038 9166666.669678 2167 2038 -17633805.76247 2168 2038 9357633.519253 2039 2039 623143279.9755 2040 2039 2737301.801614 2041 2039 5388806.115241 2042 2039 41364580.11227 2049 2039 2471063.023406 2050 2039 1236089.620084 2051 2039 -6756715.38321 2052 2039 -462970.1266864 2053 2039 -2777734.795656 2054 2039 44192040.0554 2055 2039 -2737270.309063 2056 2039 1541645.175575 2057 2039 -6819846.696327 2133 2039 10539814.37052 2134 2039 -8593755.37553 2135 2039 -17106970.31658 2136 2039 44196492.14387 2137 2039 8010523.495484 2138 2039 -58776166.2905 2145 2039 57871.26589252 2146 2039 -34500021.48517 2147 2039 -41438476.99211 2148 2039 781316.8545274 2149 2039 -2152693.49136 2150 2039 -107886912.3736 2151 2039 11899911.13577 2152 2039 37236269.31883 2153 2039 -57440830.58835 2160 2039 -10597685.63642 2161 2039 -8663199.819997 2162 2039 -17363182.43788 2163 2039 -44977548.07992 2164 2039 -694433.6992576 2165 2039 -59807200.44138 2166 2039 -11899768.97017 2167 2039 9357633.519253 2168 2039 -21458826.37861 2040 2040 391468094.7324 2041 2040 36666666.66066 2042 2040 2662170.757228 2052 2040 -51881527.1465 2053 2040 -36666666.66065 2054 2040 2505785.245605 2055 2040 -201885224.5025 2056 2040 -36666959.01753 2057 2040 -2662149.068675 2058 2040 13006025.1815 2059 2040 29333625.68539 2060 2040 -2152798.772422 2136 2040 -5106206.927443 2137 2040 11000109.63744 2138 2040 12682625.90274 2148 2040 -15511422.68773 2149 2040 -9166776.303506 2150 2040 -10539940.2691 2151 2040 31947394.33292 2152 2040 9166666.669681 2153 2040 9728225.899101 2163 2040 -18848133.13973 2164 2040 -9166666.66968 2165 2040 -10597685.63642 2166 2040 -74358253.63036 2167 2040 -9166739.758898 2168 2040 -45562288.72778 2169 2040 -8166156.136015 2170 2040 7333406.424962 2171 2040 -9496761.446847 2041 2041 336463888.7559 2042 2041 -6944377.543016 2052 2041 -36666666.66065 2053 2041 -40880751.7318 2054 2041 1263867.397843 2055 2041 -36667105.19596 2056 2041 -29548916.09098 2057 2041 -3847225.37168 2058 2041 44000438.52809 2059 2041 13006025.1815 2060 2041 2416691.307227 2136 2041 7333406.424962 2137 2041 -5106206.927443 2138 2041 -6763956.526763 2148 2041 -9166739.758897 2149 2041 -47594642.16596 2150 2041 -34569643.89832 2151 2041 9166666.66968 2152 2041 18196342.83202 2153 2041 5513941.008134 2163 2041 -9166666.669679 2164 2041 -16097939.2847 2165 2041 -8663199.819997 2166 2041 -9166776.303507 2167 2041 -31274176.50627 2168 2041 -9941080.210835 2169 2041 11000109.63744 2170 2041 -8166156.136015 2171 2041 11395946.69513 2042 2042 385940866.4962 2052 2042 2471063.023406 2053 2042 1236089.620084 2054 2042 -6756715.38321 2055 2042 -2662138.224395 2056 2042 -3097217.158151 2057 2042 2281351.682023 2058 2042 -3229198.158633 2059 2042 1611127.538151 2060 2042 34682733.81733 2136 2042 8455083.935158 2137 2042 -10145934.79014 2138 2042 -13616551.80652 2148 2042 -10539898.30291 2149 2042 -34736312.74845 2150 2042 -44929274.14549 2151 2042 -8223530.275229 2152 2042 -8847241.586827 2153 2042 -79300461.72417 2163 2042 -10597685.63642 2164 2042 -8663199.819997 2165 2042 -17363182.43788 2166 2042 -45527563.96779 2167 2042 -9746597.980308 2168 2042 -63128188.69225 2169 2042 -14245142.17027 2170 2042 7597297.796754 2171 2042 -21776416.36271 2043 2043 626081101.6128 2044 2043 7.033348083496e-06 2045 2043 925940.2533548 2046 2043 85765730.61463 2047 2043 -3.814697265625e-06 2048 2043 231485.0634534 2061 2043 -136819701.2443 2062 2043 9.089708328247e-07 2063 2043 -462970.1266867 2064 2043 -51905201.38891 2065 2043 36666666.66065 2066 2043 -2702548.086863 2139 2043 -60367636.82651 2140 2043 1.877546310425e-06 2141 2043 44780785.23866 2142 2043 -20276082.95081 2143 2043 -9166666.66968 2144 2043 11841897.70428 2154 2043 51054233.83102 2155 2043 1.788139343262e-06 2156 2043 231485.0634618 2157 2043 -7985170.87927 2158 2043 -2.771615982056e-06 2159 2043 57871.2658952 2172 2043 -60775629.25067 2173 2043 -1.214444637299e-06 2174 2043 -45012270.30212 2175 2043 -20383999.6175 2176 2043 9166666.669679 2177 2043 -11899768.97017 2044 2044 538074898.3386 2045 2044 -11110939.17715 2046 2044 -2.861022949219e-06 2047 2044 -53567337.94508 2048 2044 5555469.588581 2061 2044 9.685754776001e-07 2062 2044 24514918.12315 2063 2044 -2777734.795656 2064 2044 36666666.66065 2065 2044 -40904425.97421 2066 2044 1513867.397816 2139 2044 1.169741153717e-06 2140 2044 -20033981.96478 2141 2044 -694433.6992575 2142 2044 -9166666.66968 2143 2044 -17525889.09577 2144 2044 9288189.074786 2154 2044 1.966953277588e-06 2155 2044 29052683.00161 2156 2044 -2777734.795662 2157 2044 -2.190470695496e-06 2158 2044 -42818438.03636 2159 2044 37305534.05859 2172 2044 -1.445412635803e-06 2173 2044 -20441974.38895 2174 2044 -694433.6992576 2175 2044 9166666.669678 2176 2044 -17633805.76247 2177 2044 9357633.519253 2045 2045 616797415.4266 2046 2045 231485.0634536 2047 2045 5555469.588581 2048 2045 82852085.35441 2061 2045 -462970.1266864 2062 2045 -2777734.795656 2063 2045 44192040.0554 2064 2045 -2737270.309063 2065 2045 1541645.175575 2066 2045 -6819846.696327 2139 2045 44746063.01646 2140 2045 -694433.6992574 2141 2045 -58719220.64359 2142 2045 11841897.70428 2143 2045 9288189.074786 2144 2045 -21171048.60074 2154 2045 231485.0634617 2155 2045 -2777734.795662 2156 2045 -127043423.7988 2157 2045 57871.26589543 2158 2045 37277756.28083 2159 2045 -57757921.43384 2172 2045 -44977548.07992 2173 2045 -694433.6992576 2174 2045 -59807200.44138 2175 2045 -11899768.97017 2176 2045 9357633.519253 2177 2045 -21458826.37861 2046 2046 626081101.6128 2047 2046 7.033348083496e-06 2048 2046 925940.2533548 2049 2046 85765730.61463 2050 2046 -3.814697265625e-06 2051 2046 231485.0634534 2061 2046 -51881527.1465 2062 2046 -36666666.66065 2063 2046 2505785.245605 2064 2046 -136819701.2443 2065 2046 9.089708328247e-07 2066 2046 -462970.1266867 2067 2046 -51905201.38891 2068 2046 36666666.66065 2069 2046 -2702548.086863 2139 2046 -18752053.59425 2140 2046 9166666.66968 2141 2046 10539814.37052 2142 2046 -60367636.82651 2143 2046 1.877546310425e-06 2144 2046 44780785.23866 2145 2046 -20276082.95081 2146 2046 -9166666.66968 2147 2046 11841897.70428 2154 2046 -1865379.213624 2155 2046 8.79168510437e-07 2156 2046 57871.26589221 2157 2046 51054233.83102 2158 2046 1.788139343262e-06 2159 2046 231485.0634618 2160 2046 -7985170.87927 2161 2046 -2.771615982056e-06 2162 2046 57871.2658952 2172 2046 -18848133.13973 2173 2046 -9166666.66968 2174 2046 -10597685.63642 2175 2046 -60775629.25067 2176 2046 -1.214444637299e-06 2177 2046 -45012270.30212 2178 2046 -20383999.6175 2179 2046 9166666.669679 2180 2046 -11899768.97017 2047 2047 538074898.3386 2048 2047 -11110939.17715 2049 2047 -2.861022949219e-06 2050 2047 -53567337.94508 2051 2047 5555469.588581 2061 2047 -36666666.66065 2062 2047 -40880751.7318 2063 2047 1263867.397843 2064 2047 9.685754776001e-07 2065 2047 24514918.12315 2066 2047 -2777734.795656 2067 2047 36666666.66065 2068 2047 -40904425.97421 2069 2047 1513867.397816 2139 2047 9166666.66968 2140 2047 -16001859.73922 2141 2047 -8593755.37553 2142 2047 1.169741153717e-06 2143 2047 -20033981.96478 2144 2047 -694433.6992575 2145 2047 -9166666.66968 2146 2047 -17525889.09577 2147 2047 9288189.074786 2154 2047 1.229345798492e-06 2155 2047 -36698646.37071 2156 2047 -34527799.26293 2157 2047 1.966953277588e-06 2158 2047 29052683.00161 2159 2047 -2777734.795662 2160 2047 -2.190470695496e-06 2161 2047 -42818438.03636 2162 2047 37305534.05859 2172 2047 -9166666.669679 2173 2047 -16097939.2847 2174 2047 -8663199.819997 2175 2047 -1.445412635803e-06 2176 2047 -20441974.38895 2177 2047 -694433.6992576 2178 2047 9166666.669678 2179 2047 -17633805.76247 2180 2047 9357633.519253 2048 2048 616797415.4266 2049 2048 231485.0634536 2050 2048 5555469.588581 2051 2048 82852085.35441 2061 2048 2471063.023406 2062 2048 1236089.620084 2063 2048 -6756715.38321 2064 2048 -462970.1266864 2065 2048 -2777734.795656 2066 2048 44192040.0554 2067 2048 -2737270.309063 2068 2048 1541645.175575 2069 2048 -6819846.696327 2139 2048 10539814.37052 2140 2048 -8593755.37553 2141 2048 -17106970.31658 2142 2048 44746063.01646 2143 2048 -694433.6992574 2144 2048 -58719220.64359 2145 2048 11841897.70428 2146 2048 9288189.074786 2147 2048 -21171048.60074 2154 2048 57871.26589252 2155 2048 -34500021.48517 2156 2048 -41438476.99211 2157 2048 231485.0634617 2158 2048 -2777734.795662 2159 2048 -127043423.7988 2160 2048 57871.26589543 2161 2048 37277756.28083 2162 2048 -57757921.43384 2172 2048 -10597685.63642 2173 2048 -8663199.819997 2174 2048 -17363182.43788 2175 2048 -44977548.07992 2176 2048 -694433.6992576 2177 2048 -59807200.44138 2178 2048 -11899768.97017 2179 2048 9357633.519253 2180 2048 -21458826.37861 2049 2049 626081101.6128 2050 2049 7.033348083496e-06 2051 2049 925940.2533548 2052 2049 85765730.61463 2053 2049 -3.814697265625e-06 2054 2049 231485.0634534 2064 2049 -51881527.1465 2065 2049 -36666666.66065 2066 2049 2505785.245605 2067 2049 -136819701.2443 2068 2049 9.089708328247e-07 2069 2049 -462970.1266867 2070 2049 -51905201.38891 2071 2049 36666666.66065 2072 2049 -2702548.086863 2142 2049 -18752053.59425 2143 2049 9166666.66968 2144 2049 10539814.37052 2145 2049 -60367636.82651 2146 2049 1.877546310425e-06 2147 2049 44780785.23866 2148 2049 -20276082.95081 2149 2049 -9166666.66968 2150 2049 11841897.70428 2157 2049 -1865379.213624 2158 2049 8.79168510437e-07 2159 2049 57871.26589221 2160 2049 51054233.83102 2161 2049 1.788139343262e-06 2162 2049 231485.0634618 2163 2049 -7985170.87927 2164 2049 -2.771615982056e-06 2165 2049 57871.2658952 2175 2049 -18848133.13973 2176 2049 -9166666.66968 2177 2049 -10597685.63642 2178 2049 -60775629.25067 2179 2049 -1.214444637299e-06 2180 2049 -45012270.30212 2181 2049 -20383999.6175 2182 2049 9166666.669679 2183 2049 -11899768.97017 2050 2050 538074898.3386 2051 2050 -11110939.17715 2052 2050 -2.861022949219e-06 2053 2050 -53567337.94508 2054 2050 5555469.588581 2064 2050 -36666666.66065 2065 2050 -40880751.7318 2066 2050 1263867.397843 2067 2050 9.685754776001e-07 2068 2050 24514918.12315 2069 2050 -2777734.795656 2070 2050 36666666.66065 2071 2050 -40904425.97421 2072 2050 1513867.397816 2142 2050 9166666.66968 2143 2050 -16001859.73922 2144 2050 -8593755.37553 2145 2050 1.169741153717e-06 2146 2050 -20033981.96478 2147 2050 -694433.6992575 2148 2050 -9166666.66968 2149 2050 -17525889.09577 2150 2050 9288189.074786 2157 2050 1.229345798492e-06 2158 2050 -36698646.37071 2159 2050 -34527799.26293 2160 2050 1.966953277588e-06 2161 2050 29052683.00161 2162 2050 -2777734.795662 2163 2050 -2.190470695496e-06 2164 2050 -42818438.03636 2165 2050 37305534.05859 2175 2050 -9166666.669679 2176 2050 -16097939.2847 2177 2050 -8663199.819997 2178 2050 -1.445412635803e-06 2179 2050 -20441974.38895 2180 2050 -694433.6992576 2181 2050 9166666.669678 2182 2050 -17633805.76247 2183 2050 9357633.519253 2051 2051 616797415.4266 2052 2051 231485.0634536 2053 2051 5555469.588581 2054 2051 82852085.35441 2064 2051 2471063.023406 2065 2051 1236089.620084 2066 2051 -6756715.38321 2067 2051 -462970.1266864 2068 2051 -2777734.795656 2069 2051 44192040.0554 2070 2051 -2737270.309063 2071 2051 1541645.175575 2072 2051 -6819846.696327 2142 2051 10539814.37052 2143 2051 -8593755.37553 2144 2051 -17106970.31658 2145 2051 44746063.01646 2146 2051 -694433.6992574 2147 2051 -58719220.64359 2148 2051 11841897.70428 2149 2051 9288189.074786 2150 2051 -21171048.60074 2157 2051 57871.26589252 2158 2051 -34500021.48517 2159 2051 -41438476.99211 2160 2051 231485.0634617 2161 2051 -2777734.795662 2162 2051 -127043423.7988 2163 2051 57871.26589543 2164 2051 37277756.28083 2165 2051 -57757921.43384 2175 2051 -10597685.63642 2176 2051 -8663199.819997 2177 2051 -17363182.43788 2178 2051 -44977548.07992 2179 2051 -694433.6992576 2180 2051 -59807200.44138 2181 2051 -11899768.97017 2182 2051 9357633.519253 2183 2051 -21458826.37861 2052 2052 626081101.6128 2053 2052 7.033348083496e-06 2054 2052 925940.2533548 2055 2052 85765730.61463 2056 2052 -3.814697265625e-06 2057 2052 231485.0634534 2067 2052 -51881527.1465 2068 2052 -36666666.66065 2069 2052 2505785.245605 2070 2052 -136819701.2443 2071 2052 9.089708328247e-07 2072 2052 -462970.1266867 2073 2052 -51905201.38891 2074 2052 36666666.66065 2075 2052 -2702548.086863 2145 2052 -18752053.59425 2146 2052 9166666.66968 2147 2052 10539814.37052 2148 2052 -60367636.82651 2149 2052 1.877546310425e-06 2150 2052 44780785.23866 2151 2052 -20276082.95081 2152 2052 -9166666.66968 2153 2052 11841897.70428 2160 2052 -1865379.213624 2161 2052 8.79168510437e-07 2162 2052 57871.26589221 2163 2052 51054233.83102 2164 2052 1.788139343262e-06 2165 2052 231485.0634618 2166 2052 -7985170.87927 2167 2052 -2.771615982056e-06 2168 2052 57871.2658952 2178 2052 -18848133.13973 2179 2052 -9166666.66968 2180 2052 -10597685.63642 2181 2052 -60775629.25067 2182 2052 -1.214444637299e-06 2183 2052 -45012270.30212 2184 2052 -20383999.6175 2185 2052 9166666.669679 2186 2052 -11899768.97017 2053 2053 538074898.3386 2054 2053 -11110939.17715 2055 2053 -2.861022949219e-06 2056 2053 -53567337.94508 2057 2053 5555469.588581 2067 2053 -36666666.66065 2068 2053 -40880751.7318 2069 2053 1263867.397843 2070 2053 9.685754776001e-07 2071 2053 24514918.12315 2072 2053 -2777734.795656 2073 2053 36666666.66065 2074 2053 -40904425.97421 2075 2053 1513867.397816 2145 2053 9166666.66968 2146 2053 -16001859.73922 2147 2053 -8593755.37553 2148 2053 1.169741153717e-06 2149 2053 -20033981.96478 2150 2053 -694433.6992575 2151 2053 -9166666.66968 2152 2053 -17525889.09577 2153 2053 9288189.074786 2160 2053 1.229345798492e-06 2161 2053 -36698646.37071 2162 2053 -34527799.26293 2163 2053 1.966953277588e-06 2164 2053 29052683.00161 2165 2053 -2777734.795662 2166 2053 -2.190470695496e-06 2167 2053 -42818438.03636 2168 2053 37305534.05859 2178 2053 -9166666.669679 2179 2053 -16097939.2847 2180 2053 -8663199.819997 2181 2053 -1.445412635803e-06 2182 2053 -20441974.38895 2183 2053 -694433.6992576 2184 2053 9166666.669678 2185 2053 -17633805.76247 2186 2053 9357633.519253 2054 2054 616797415.4266 2055 2054 231485.0634536 2056 2054 5555469.588581 2057 2054 82852085.35441 2067 2054 2471063.023406 2068 2054 1236089.620084 2069 2054 -6756715.38321 2070 2054 -462970.1266864 2071 2054 -2777734.795656 2072 2054 44192040.0554 2073 2054 -2737270.309063 2074 2054 1541645.175575 2075 2054 -6819846.696327 2145 2054 10539814.37052 2146 2054 -8593755.37553 2147 2054 -17106970.31658 2148 2054 44746063.01646 2149 2054 -694433.6992574 2150 2054 -58719220.64359 2151 2054 11841897.70428 2152 2054 9288189.074786 2153 2054 -21171048.60074 2160 2054 57871.26589252 2161 2054 -34500021.48517 2162 2054 -41438476.99211 2163 2054 231485.0634617 2164 2054 -2777734.795662 2165 2054 -127043423.7988 2166 2054 57871.26589543 2167 2054 37277756.28083 2168 2054 -57757921.43384 2178 2054 -10597685.63642 2179 2054 -8663199.819997 2180 2054 -17363182.43788 2181 2054 -44977548.07992 2182 2054 -694433.6992576 2183 2054 -59807200.44138 2184 2054 -11899768.97017 2185 2054 9357633.519253 2186 2054 -21458826.37861 2055 2055 677810035.2011 2056 2055 36667397.55284 2057 2055 3125086.662505 2058 2055 20859938.00677 2059 2055 -36666959.01753 2060 2055 2702569.081896 2070 2055 -51881527.1465 2071 2055 -36666666.66065 2072 2055 2505785.245605 2073 2055 -136819701.2443 2074 2055 9.089708328247e-07 2075 2055 -462970.1266867 2076 2055 -51905201.38891 2077 2055 36666666.66065 2078 2055 -2702548.086863 2148 2055 -18752053.59425 2149 2055 9166666.66968 2150 2055 10539814.37052 2151 2055 -72726245.22972 2152 2055 -9166776.303506 2153 2055 44231216.90386 2163 2055 -1865379.213624 2164 2055 8.79168510437e-07 2165 2055 57871.26589221 2166 2055 70575234.21716 2167 2055 9166849.392726 2168 2055 781227.3439141 2169 2055 -20203256.3538 2170 2055 -9166739.758899 2171 2055 11899863.74724 2181 2055 -18848133.13973 2182 2055 -9166666.66968 2183 2055 -10597685.63642 2184 2055 -60775629.25067 2185 2055 -1.214444637299e-06 2186 2055 -45012270.30212 2187 2055 -20383999.6175 2188 2055 9166666.669679 2189 2055 -11899768.97017 2056 2056 578802727.5875 2057 2056 -8610918.562153 2058 2056 -36667105.19596 2059 2056 -107472939.8429 2060 2056 4611020.401354 2070 2056 -36666666.66065 2071 2056 -40880751.7318 2072 2056 1263867.397843 2073 2056 9.685754776001e-07 2074 2056 24514918.12315 2075 2056 -2777734.795656 2076 2056 36666666.66065 2077 2056 -40904425.97421 2078 2056 1513867.397816 2148 2056 9166666.66968 2149 2056 -16001859.73922 2150 2056 -8593755.37553 2151 2056 -9166739.758897 2152 2056 -29642168.10562 2153 2056 8204934.122165 2163 2056 1.229345798492e-06 2164 2056 -36698646.37071 2165 2056 -34527799.26293 2166 2056 9166849.392726 2167 2056 45823407.30156 2168 2056 -2152765.098743 2169 2056 -9166776.303508 2170 2056 -52286475.83204 2171 2056 37069600.58987 2181 2056 -9166666.669679 2182 2056 -16097939.2847 2183 2056 -8663199.819997 2184 2056 -1.445412635803e-06 2185 2056 -20441974.38895 2186 2056 -694433.6992576 2187 2056 9166666.669678 2188 2056 -17633805.76247 2189 2056 9357633.519253 2057 2057 623143279.9755 2058 2057 2737301.801614 2059 2057 5388806.115241 2060 2057 41364580.11227 2070 2057 2471063.023406 2071 2057 1236089.620084 2072 2057 -6756715.38321 2073 2057 -462970.1266864 2074 2057 -2777734.795656 2075 2057 44192040.0554 2076 2057 -2737270.309063 2077 2057 1541645.175575 2078 2057 -6819846.696327 2148 2057 10539814.37052 2149 2057 -8593755.37553 2150 2057 -17106970.31658 2151 2057 44196492.14387 2152 2057 8010523.495484 2153 2057 -58776166.2905 2163 2057 57871.26589252 2164 2057 -34500021.48517 2165 2057 -41438476.99211 2166 2057 781316.8545274 2167 2057 -2152693.49136 2168 2057 -107886912.3736 2169 2057 11899911.13577 2170 2057 37236269.31883 2171 2057 -57440830.58835 2181 2057 -10597685.63642 2182 2057 -8663199.819997 2183 2057 -17363182.43788 2184 2057 -44977548.07992 2185 2057 -694433.6992576 2186 2057 -59807200.44138 2187 2057 -11899768.97017 2188 2057 9357633.519253 2189 2057 -21458826.37861 2058 2058 413691226.2239 2059 2058 -25654363.10696 2060 2058 -1249967.365095 2073 2058 -51881527.1465 2074 2058 -36666666.66065 2075 2058 2505785.245605 2076 2058 -58524091.22636 2077 2058 25650494.38754 2078 2058 -277763.3969709 2079 2058 -197317189.9008 2080 2058 29337202.04795 2081 2058 -277827.545884 2151 2058 -5106206.927443 2152 2058 11000109.63744 2153 2058 12682625.90274 2166 2058 -15511422.68773 2167 2058 -9166776.303506 2168 2058 -10539940.2691 2169 2058 51842225.42953 2170 2058 -6283286.62687 2171 2058 4930170.635181 2184 2058 -18848133.13973 2185 2058 -9166666.66968 2186 2058 -10597685.63642 2187 2058 -29935699.6739 2188 2058 6282370.253291 2189 2058 -26076070.50321 2190 2058 -48484471.3307 2191 2058 7334249.709323 2192 2058 -1492967.268152 2059 2059 718836304.435 2060 2059 -10887577.70192 2073 2059 -36666666.66065 2074 2059 -40880751.7318 2075 2059 1263867.397843 2076 2059 25648560.02782 2077 2059 85784924.743 2078 2059 -1995425.504626 2079 2059 44005803.07192 2080 2059 -529439181.6462 2081 2059 4619396.074007 2151 2059 7333406.424962 2152 2059 -5106206.927443 2153 2059 -6763956.526763 2166 2059 -9166739.758897 2167 2059 -47594642.16596 2168 2059 -34569643.89832 2169 2059 -6283286.626871 2170 2059 123653332.6419 2171 2059 1534582.009726 2184 2059 -9166666.669679 2185 2059 -16097939.2847 2186 2059 -8663199.819997 2187 2059 6281912.066501 2188 2059 6199889.665017 2189 2059 5703411.089823 2190 2059 11001374.56398 2191 2059 -127098142.2588 2192 2059 18052588.31743 2060 2060 448560260.3527 2073 2060 2471063.023406 2074 2060 1236089.620084 2075 2060 -6756715.38321 2076 2060 -1041628.778 2077 2060 -1884267.879154 2078 2060 49098005.46007 2079 2060 -416741.3188259 2080 2060 4508335.130453 2081 2060 -194057181.3232 2151 2060 8455083.935158 2152 2060 -10145934.79014 2153 2060 -13616551.80652 2166 2060 -10539898.30291 2167 2060 -34736312.74845 2168 2060 -44929274.14549 2169 2060 -5469173.745564 2170 2060 -6728616.358724 2171 2060 -21692368.26691 2184 2060 -10597685.63642 2185 2060 -8663199.819997 2186 2060 -17363182.43788 2187 2060 -26249676.05648 2188 2060 5759429.388185 2189 2060 -27836926.26943 2190 2060 -2239450.902228 2191 2060 17455306.08699 2192 2060 -50678252.62041 2061 2061 626081101.6128 2062 2061 7.033348083496e-06 2063 2061 925940.2533548 2064 2061 85765730.61463 2065 2061 -3.814697265625e-06 2066 2061 231485.0634534 2082 2061 -136819701.2443 2083 2061 9.089708328247e-07 2084 2061 -462970.1266867 2085 2061 -51905201.38891 2086 2061 36666666.66065 2087 2061 -2702548.086863 2154 2061 -60367636.82651 2155 2061 1.877546310425e-06 2156 2061 44780785.23866 2157 2061 -20276082.95081 2158 2061 -9166666.66968 2159 2061 11841897.70428 2172 2061 51054233.83102 2173 2061 1.788139343262e-06 2174 2061 231485.0634618 2175 2061 -7985170.87927 2176 2061 -2.771615982056e-06 2177 2061 57871.2658952 2193 2061 -60775629.25067 2194 2061 -1.214444637299e-06 2195 2061 -45012270.30212 2196 2061 -20383999.6175 2197 2061 9166666.669679 2198 2061 -11899768.97017 2062 2062 538074898.3386 2063 2062 -11110939.17715 2064 2062 -2.861022949219e-06 2065 2062 -53567337.94508 2066 2062 5555469.588581 2082 2062 9.685754776001e-07 2083 2062 24514918.12315 2084 2062 -2777734.795656 2085 2062 36666666.66065 2086 2062 -40904425.97421 2087 2062 1513867.397816 2154 2062 1.169741153717e-06 2155 2062 -20033981.96478 2156 2062 -694433.6992575 2157 2062 -9166666.66968 2158 2062 -17525889.09577 2159 2062 9288189.074786 2172 2062 1.966953277588e-06 2173 2062 29052683.00161 2174 2062 -2777734.795662 2175 2062 -2.190470695496e-06 2176 2062 -42818438.03636 2177 2062 37305534.05859 2193 2062 -1.445412635803e-06 2194 2062 -20441974.38895 2195 2062 -694433.6992576 2196 2062 9166666.669678 2197 2062 -17633805.76247 2198 2062 9357633.519253 2063 2063 616797415.4266 2064 2063 231485.0634536 2065 2063 5555469.588581 2066 2063 82852085.35441 2082 2063 -462970.1266864 2083 2063 -2777734.795656 2084 2063 44192040.0554 2085 2063 -2737270.309063 2086 2063 1541645.175575 2087 2063 -6819846.696327 2154 2063 44746063.01646 2155 2063 -694433.6992574 2156 2063 -58719220.64359 2157 2063 11841897.70428 2158 2063 9288189.074786 2159 2063 -21171048.60074 2172 2063 231485.0634617 2173 2063 -2777734.795662 2174 2063 -127043423.7988 2175 2063 57871.26589543 2176 2063 37277756.28083 2177 2063 -57757921.43384 2193 2063 -44977548.07992 2194 2063 -694433.6992576 2195 2063 -59807200.44138 2196 2063 -11899768.97017 2197 2063 9357633.519253 2198 2063 -21458826.37861 2064 2064 626081101.6128 2065 2064 7.033348083496e-06 2066 2064 925940.2533548 2067 2064 85765730.61463 2068 2064 -3.814697265625e-06 2069 2064 231485.0634534 2082 2064 -51881527.1465 2083 2064 -36666666.66065 2084 2064 2505785.245605 2085 2064 -136819701.2443 2086 2064 9.089708328247e-07 2087 2064 -462970.1266867 2088 2064 -51905201.38891 2089 2064 36666666.66065 2090 2064 -2702548.086863 2154 2064 -18752053.59425 2155 2064 9166666.66968 2156 2064 10539814.37052 2157 2064 -60367636.82651 2158 2064 1.877546310425e-06 2159 2064 44780785.23866 2160 2064 -20276082.95081 2161 2064 -9166666.66968 2162 2064 11841897.70428 2172 2064 -1865379.213624 2173 2064 8.79168510437e-07 2174 2064 57871.26589221 2175 2064 51054233.83102 2176 2064 1.788139343262e-06 2177 2064 231485.0634618 2178 2064 -7985170.87927 2179 2064 -2.771615982056e-06 2180 2064 57871.2658952 2193 2064 -18848133.13973 2194 2064 -9166666.66968 2195 2064 -10597685.63642 2196 2064 -60775629.25067 2197 2064 -1.214444637299e-06 2198 2064 -45012270.30212 2199 2064 -20383999.6175 2200 2064 9166666.669679 2201 2064 -11899768.97017 2065 2065 538074898.3386 2066 2065 -11110939.17715 2067 2065 -2.861022949219e-06 2068 2065 -53567337.94508 2069 2065 5555469.588581 2082 2065 -36666666.66065 2083 2065 -40880751.7318 2084 2065 1263867.397843 2085 2065 9.685754776001e-07 2086 2065 24514918.12315 2087 2065 -2777734.795656 2088 2065 36666666.66065 2089 2065 -40904425.97421 2090 2065 1513867.397816 2154 2065 9166666.66968 2155 2065 -16001859.73922 2156 2065 -8593755.37553 2157 2065 1.169741153717e-06 2158 2065 -20033981.96478 2159 2065 -694433.6992575 2160 2065 -9166666.66968 2161 2065 -17525889.09577 2162 2065 9288189.074786 2172 2065 1.229345798492e-06 2173 2065 -36698646.37071 2174 2065 -34527799.26293 2175 2065 1.966953277588e-06 2176 2065 29052683.00161 2177 2065 -2777734.795662 2178 2065 -2.190470695496e-06 2179 2065 -42818438.03636 2180 2065 37305534.05859 2193 2065 -9166666.669679 2194 2065 -16097939.2847 2195 2065 -8663199.819997 2196 2065 -1.445412635803e-06 2197 2065 -20441974.38895 2198 2065 -694433.6992576 2199 2065 9166666.669678 2200 2065 -17633805.76247 2201 2065 9357633.519253 2066 2066 616797415.4266 2067 2066 231485.0634536 2068 2066 5555469.588581 2069 2066 82852085.35441 2082 2066 2471063.023406 2083 2066 1236089.620084 2084 2066 -6756715.38321 2085 2066 -462970.1266864 2086 2066 -2777734.795656 2087 2066 44192040.0554 2088 2066 -2737270.309063 2089 2066 1541645.175575 2090 2066 -6819846.696327 2154 2066 10539814.37052 2155 2066 -8593755.37553 2156 2066 -17106970.31658 2157 2066 44746063.01646 2158 2066 -694433.6992574 2159 2066 -58719220.64359 2160 2066 11841897.70428 2161 2066 9288189.074786 2162 2066 -21171048.60074 2172 2066 57871.26589252 2173 2066 -34500021.48517 2174 2066 -41438476.99211 2175 2066 231485.0634617 2176 2066 -2777734.795662 2177 2066 -127043423.7988 2178 2066 57871.26589543 2179 2066 37277756.28083 2180 2066 -57757921.43384 2193 2066 -10597685.63642 2194 2066 -8663199.819997 2195 2066 -17363182.43788 2196 2066 -44977548.07992 2197 2066 -694433.6992576 2198 2066 -59807200.44138 2199 2066 -11899768.97017 2200 2066 9357633.519253 2201 2066 -21458826.37861 2067 2067 626081101.6128 2068 2067 7.033348083496e-06 2069 2067 925940.2533548 2070 2067 85765730.61463 2071 2067 -3.814697265625e-06 2072 2067 231485.0634534 2085 2067 -51881527.1465 2086 2067 -36666666.66065 2087 2067 2505785.245605 2088 2067 -136819701.2443 2089 2067 9.089708328247e-07 2090 2067 -462970.1266867 2091 2067 -51905201.38891 2092 2067 36666666.66065 2093 2067 -2702548.086863 2157 2067 -18752053.59425 2158 2067 9166666.66968 2159 2067 10539814.37052 2160 2067 -60367636.82651 2161 2067 1.877546310425e-06 2162 2067 44780785.23866 2163 2067 -20276082.95081 2164 2067 -9166666.66968 2165 2067 11841897.70428 2175 2067 -1865379.213624 2176 2067 8.79168510437e-07 2177 2067 57871.26589221 2178 2067 51054233.83102 2179 2067 1.788139343262e-06 2180 2067 231485.0634618 2181 2067 -7985170.87927 2182 2067 -2.771615982056e-06 2183 2067 57871.2658952 2196 2067 -18848133.13973 2197 2067 -9166666.66968 2198 2067 -10597685.63642 2199 2067 -60775629.25067 2200 2067 -1.214444637299e-06 2201 2067 -45012270.30212 2202 2067 -20383999.6175 2203 2067 9166666.669679 2204 2067 -11899768.97017 2068 2068 538074898.3386 2069 2068 -11110939.17715 2070 2068 -2.861022949219e-06 2071 2068 -53567337.94508 2072 2068 5555469.588581 2085 2068 -36666666.66065 2086 2068 -40880751.7318 2087 2068 1263867.397843 2088 2068 9.685754776001e-07 2089 2068 24514918.12315 2090 2068 -2777734.795656 2091 2068 36666666.66065 2092 2068 -40904425.97421 2093 2068 1513867.397816 2157 2068 9166666.66968 2158 2068 -16001859.73922 2159 2068 -8593755.37553 2160 2068 1.169741153717e-06 2161 2068 -20033981.96478 2162 2068 -694433.6992575 2163 2068 -9166666.66968 2164 2068 -17525889.09577 2165 2068 9288189.074786 2175 2068 1.229345798492e-06 2176 2068 -36698646.37071 2177 2068 -34527799.26293 2178 2068 1.966953277588e-06 2179 2068 29052683.00161 2180 2068 -2777734.795662 2181 2068 -2.190470695496e-06 2182 2068 -42818438.03636 2183 2068 37305534.05859 2196 2068 -9166666.669679 2197 2068 -16097939.2847 2198 2068 -8663199.819997 2199 2068 -1.445412635803e-06 2200 2068 -20441974.38895 2201 2068 -694433.6992576 2202 2068 9166666.669678 2203 2068 -17633805.76247 2204 2068 9357633.519253 2069 2069 616797415.4266 2070 2069 231485.0634536 2071 2069 5555469.588581 2072 2069 82852085.35441 2085 2069 2471063.023406 2086 2069 1236089.620084 2087 2069 -6756715.38321 2088 2069 -462970.1266864 2089 2069 -2777734.795656 2090 2069 44192040.0554 2091 2069 -2737270.309063 2092 2069 1541645.175575 2093 2069 -6819846.696327 2157 2069 10539814.37052 2158 2069 -8593755.37553 2159 2069 -17106970.31658 2160 2069 44746063.01646 2161 2069 -694433.6992574 2162 2069 -58719220.64359 2163 2069 11841897.70428 2164 2069 9288189.074786 2165 2069 -21171048.60074 2175 2069 57871.26589252 2176 2069 -34500021.48517 2177 2069 -41438476.99211 2178 2069 231485.0634617 2179 2069 -2777734.795662 2180 2069 -127043423.7988 2181 2069 57871.26589543 2182 2069 37277756.28083 2183 2069 -57757921.43384 2196 2069 -10597685.63642 2197 2069 -8663199.819997 2198 2069 -17363182.43788 2199 2069 -44977548.07992 2200 2069 -694433.6992576 2201 2069 -59807200.44138 2202 2069 -11899768.97017 2203 2069 9357633.519253 2204 2069 -21458826.37861 2070 2070 626081101.6128 2071 2070 7.033348083496e-06 2072 2070 925940.2533548 2073 2070 85765730.61463 2074 2070 -3.814697265625e-06 2075 2070 231485.0634534 2088 2070 -51881527.1465 2089 2070 -36666666.66065 2090 2070 2505785.245605 2091 2070 -136819701.2443 2092 2070 9.089708328247e-07 2093 2070 -462970.1266867 2094 2070 -51905201.38891 2095 2070 36666666.66065 2096 2070 -2702548.086863 2160 2070 -18752053.59425 2161 2070 9166666.66968 2162 2070 10539814.37052 2163 2070 -60367636.82651 2164 2070 1.877546310425e-06 2165 2070 44780785.23866 2166 2070 -20276082.95081 2167 2070 -9166666.66968 2168 2070 11841897.70428 2178 2070 -1865379.213624 2179 2070 8.79168510437e-07 2180 2070 57871.26589221 2181 2070 51054233.83102 2182 2070 1.788139343262e-06 2183 2070 231485.0634618 2184 2070 -7985170.87927 2185 2070 -2.771615982056e-06 2186 2070 57871.2658952 2199 2070 -18848133.13973 2200 2070 -9166666.66968 2201 2070 -10597685.63642 2202 2070 -60775629.25067 2203 2070 -1.214444637299e-06 2204 2070 -45012270.30212 2205 2070 -20383999.6175 2206 2070 9166666.669679 2207 2070 -11899768.97017 2071 2071 538074898.3386 2072 2071 -11110939.17715 2073 2071 -2.861022949219e-06 2074 2071 -53567337.94508 2075 2071 5555469.588581 2088 2071 -36666666.66065 2089 2071 -40880751.7318 2090 2071 1263867.397843 2091 2071 9.685754776001e-07 2092 2071 24514918.12315 2093 2071 -2777734.795656 2094 2071 36666666.66065 2095 2071 -40904425.97421 2096 2071 1513867.397816 2160 2071 9166666.66968 2161 2071 -16001859.73922 2162 2071 -8593755.37553 2163 2071 1.169741153717e-06 2164 2071 -20033981.96478 2165 2071 -694433.6992575 2166 2071 -9166666.66968 2167 2071 -17525889.09577 2168 2071 9288189.074786 2178 2071 1.229345798492e-06 2179 2071 -36698646.37071 2180 2071 -34527799.26293 2181 2071 1.966953277588e-06 2182 2071 29052683.00161 2183 2071 -2777734.795662 2184 2071 -2.190470695496e-06 2185 2071 -42818438.03636 2186 2071 37305534.05859 2199 2071 -9166666.669679 2200 2071 -16097939.2847 2201 2071 -8663199.819997 2202 2071 -1.445412635803e-06 2203 2071 -20441974.38895 2204 2071 -694433.6992576 2205 2071 9166666.669678 2206 2071 -17633805.76247 2207 2071 9357633.519253 2072 2072 616797415.4266 2073 2072 231485.0634536 2074 2072 5555469.588581 2075 2072 82852085.35441 2088 2072 2471063.023406 2089 2072 1236089.620084 2090 2072 -6756715.38321 2091 2072 -462970.1266864 2092 2072 -2777734.795656 2093 2072 44192040.0554 2094 2072 -2737270.309063 2095 2072 1541645.175575 2096 2072 -6819846.696327 2160 2072 10539814.37052 2161 2072 -8593755.37553 2162 2072 -17106970.31658 2163 2072 44746063.01646 2164 2072 -694433.6992574 2165 2072 -58719220.64359 2166 2072 11841897.70428 2167 2072 9288189.074786 2168 2072 -21171048.60074 2178 2072 57871.26589252 2179 2072 -34500021.48517 2180 2072 -41438476.99211 2181 2072 231485.0634617 2182 2072 -2777734.795662 2183 2072 -127043423.7988 2184 2072 57871.26589543 2185 2072 37277756.28083 2186 2072 -57757921.43384 2199 2072 -10597685.63642 2200 2072 -8663199.819997 2201 2072 -17363182.43788 2202 2072 -44977548.07992 2203 2072 -694433.6992576 2204 2072 -59807200.44138 2205 2072 -11899768.97017 2206 2072 9357633.519253 2207 2072 -21458826.37861 2073 2073 626081101.6128 2074 2073 7.033348083496e-06 2075 2073 925940.2533548 2076 2073 85765730.61463 2077 2073 -3.814697265625e-06 2078 2073 231485.0634534 2091 2073 -51881527.1465 2092 2073 -36666666.66065 2093 2073 2505785.245605 2094 2073 -136819701.2443 2095 2073 9.089708328247e-07 2096 2073 -462970.1266867 2097 2073 -51905201.38891 2098 2073 36666666.66065 2099 2073 -2702548.086863 2163 2073 -18752053.59425 2164 2073 9166666.66968 2165 2073 10539814.37052 2166 2073 -60367636.82651 2167 2073 1.877546310425e-06 2168 2073 44780785.23866 2169 2073 -20276082.95081 2170 2073 -9166666.66968 2171 2073 11841897.70428 2181 2073 -1865379.213624 2182 2073 8.79168510437e-07 2183 2073 57871.26589221 2184 2073 51054233.83102 2185 2073 1.788139343262e-06 2186 2073 231485.0634618 2187 2073 -7985170.87927 2188 2073 -2.771615982056e-06 2189 2073 57871.2658952 2202 2073 -18848133.13973 2203 2073 -9166666.66968 2204 2073 -10597685.63642 2205 2073 -60775629.25067 2206 2073 -1.214444637299e-06 2207 2073 -45012270.30212 2208 2073 -20383999.6175 2209 2073 9166666.669679 2210 2073 -11899768.97017 2074 2074 538074898.3386 2075 2074 -11110939.17715 2076 2074 -2.861022949219e-06 2077 2074 -53567337.94508 2078 2074 5555469.588581 2091 2074 -36666666.66065 2092 2074 -40880751.7318 2093 2074 1263867.397843 2094 2074 9.685754776001e-07 2095 2074 24514918.12315 2096 2074 -2777734.795656 2097 2074 36666666.66065 2098 2074 -40904425.97421 2099 2074 1513867.397816 2163 2074 9166666.66968 2164 2074 -16001859.73922 2165 2074 -8593755.37553 2166 2074 1.169741153717e-06 2167 2074 -20033981.96478 2168 2074 -694433.6992575 2169 2074 -9166666.66968 2170 2074 -17525889.09577 2171 2074 9288189.074786 2181 2074 1.229345798492e-06 2182 2074 -36698646.37071 2183 2074 -34527799.26293 2184 2074 1.966953277588e-06 2185 2074 29052683.00161 2186 2074 -2777734.795662 2187 2074 -2.190470695496e-06 2188 2074 -42818438.03636 2189 2074 37305534.05859 2202 2074 -9166666.669679 2203 2074 -16097939.2847 2204 2074 -8663199.819997 2205 2074 -1.445412635803e-06 2206 2074 -20441974.38895 2207 2074 -694433.6992576 2208 2074 9166666.669678 2209 2074 -17633805.76247 2210 2074 9357633.519253 2075 2075 616797415.4266 2076 2075 231485.0634536 2077 2075 5555469.588581 2078 2075 82852085.35441 2091 2075 2471063.023406 2092 2075 1236089.620084 2093 2075 -6756715.38321 2094 2075 -462970.1266864 2095 2075 -2777734.795656 2096 2075 44192040.0554 2097 2075 -2737270.309063 2098 2075 1541645.175575 2099 2075 -6819846.696327 2163 2075 10539814.37052 2164 2075 -8593755.37553 2165 2075 -17106970.31658 2166 2075 44746063.01646 2167 2075 -694433.6992574 2168 2075 -58719220.64359 2169 2075 11841897.70428 2170 2075 9288189.074786 2171 2075 -21171048.60074 2181 2075 57871.26589252 2182 2075 -34500021.48517 2183 2075 -41438476.99211 2184 2075 231485.0634617 2185 2075 -2777734.795662 2186 2075 -127043423.7988 2187 2075 57871.26589543 2188 2075 37277756.28083 2189 2075 -57757921.43384 2202 2075 -10597685.63642 2203 2075 -8663199.819997 2204 2075 -17363182.43788 2205 2075 -44977548.07992 2206 2075 -694433.6992576 2207 2075 -59807200.44138 2208 2075 -11899768.97017 2209 2075 9357633.519253 2210 2075 -21458826.37861 2076 2076 526252665.2804 2077 2076 14939345.36446 2078 2076 312503.9972225 2079 2076 -95232869.048 2080 2076 -75446271.56808 2081 2076 604979.855709 2094 2076 -51881527.1465 2095 2076 -36666666.66065 2096 2076 2505785.245605 2097 2076 -86033365.36057 2098 2076 24063656.22554 2099 2076 -110868.0321211 2100 2076 -45738405.09723 2101 2076 10794709.95026 2102 2076 -181650.9566633 2166 2076 -18752053.59425 2167 2076 9166666.66968 2168 2076 10539814.37052 2169 2076 -29447591.25609 2170 2076 6281912.066503 2171 2076 25747045.84724 2184 2076 -1865379.213624 2185 2076 8.79168510437e-07 2186 2076 57871.26589221 2187 2076 60972868.35786 2188 2076 3865013.480293 2189 2076 94987.35611238 2190 2076 -36158131.46173 2191 2076 -18861517.09503 2192 2076 11548470.62288 2205 2076 -18848133.13973 2206 2076 -9166666.66968 2207 2076 -10597685.63642 2208 2076 -45324581.42976 2209 2076 6015914.059347 2210 2076 -35313654.50317 2211 2076 -18251664.62718 2212 2076 2698677.488894 2213 2076 -1659648.850827 2077 2077 644278102.7769 2078 2077 -8172915.912315 2079 2077 -75448205.92779 2080 2077 -250909777.5561 2081 2077 1581997.404667 2094 2077 -36666666.66065 2095 2077 -40880751.7318 2096 2077 1263867.397843 2097 2077 24063656.22554 2098 2077 19704498.54099 2099 2077 -1263948.6007 2100 2077 10794709.95026 2101 2077 -140802296.2262 2102 2077 1044821.700929 2166 2077 9166666.66968 2167 2077 -16001859.73922 2168 2077 -8593755.37553 2169 2077 6282370.253292 2170 2077 6687998.082834 2171 2077 -6666183.334191 2184 2077 1.229345798492e-06 2185 2077 -36698646.37071 2186 2077 -34527799.26293 2187 2077 3865013.480291 2188 2077 90420643.57345 2189 2077 -2029739.902148 2190 2077 -18861975.28182 2191 2077 -75077109.76366 2192 2077 36515053.21218 2205 2077 -9166666.669679 2206 2077 -16097939.2847 2207 2077 -8663199.819997 2208 2077 6015914.059347 2209 2077 -18890115.44135 2210 2077 7371512.847656 2211 2077 2698677.488894 2212 2077 -42017637.42113 2213 2077 16927872.0975 2078 2078 520022806.6022 2079 2078 570282.5175709 2080 2078 1609822.801136 2081 2078 -60894553.27404 2094 2078 2471063.023406 2095 2078 1236089.620084 2096 2078 -6756715.38321 2097 2078 -978923.5875342 2098 2078 -1291726.378473 2099 2078 48623486.51979 2100 2078 -251095.4010623 2101 2078 1044821.700929 2102 2078 -32250770.90951 2166 2078 10539814.37052 2167 2078 -8593755.37553 2168 2078 -17106970.31658 2169 2078 25920651.40051 2170 2078 -6665741.874855 2171 2078 -26535303.82191 2184 2078 57871.26589252 2185 2078 -34500021.48517 2186 2078 -41438476.99211 2187 2078 234053.9607636 2188 2078 -1918486.590656 2189 2078 -58935888.16644 2190 2078 11618009.81039 2191 2078 36542460.89336 2192 2078 -48156991.67162 2205 2078 -10597685.63642 2206 2078 -8663199.819997 2207 2078 -17363182.43788 2208 2078 -35487265.61249 2209 2078 7371512.849165 2210 2078 -51354101.90813 2211 2078 -1659648.850827 2212 2078 16927872.0975 2213 2078 -26241528.32399 2079 2079 561277452.4122 2080 2079 17123133.77783 2081 2079 -203432.5875025 2097 2079 -53262133.98087 2098 2079 -32705759.54262 2099 2079 337518.2011556 2100 2079 32720092.49217 2101 2079 38632242.24836 2102 2079 -151553.4188327 2103 2079 64231443.64297 2104 2079 -20494572.48629 2105 2079 2743.280364752 2106 2079 -1187850.072857 2107 2079 28887358.8586 2108 2079 -69372.22938187 2169 2079 -47978573.2119 2170 2079 11001374.56398 2171 2079 2031082.172367 2187 2079 -35280692.66549 2188 2079 -18861975.28183 2189 2079 -11237384.37005 2190 2079 30022383.98719 2191 2079 4263555.44703 2192 2079 8794520.109826 2208 2079 -19804774.09007 2209 2079 -8176439.889684 2210 2079 -11139057.95335 2211 2079 -41857962.82082 2212 2079 9645791.927615 2213 2079 -43978119.70779 2214 2079 -23078892.07815 2215 2079 -5106415.12456 2216 2079 13589890.89401 2217 2079 -17329912.71843 2218 2079 7234108.357436 2219 2079 -10803153.36729 2080 2080 978283183.6999 2081 2080 -5543467.713303 2097 2080 -32705759.54262 2098 2080 -17400227.63301 2099 2080 -74400.58715915 2100 2080 38632242.24836 2101 2080 160644520.1659 2102 2080 -573223.656266 2103 2080 -5827905.822031 2104 2080 -6363276.830221 2105 2080 57557.59449947 2106 2080 28887358.8586 2107 2080 -23586294.65532 2108 2080 70736.41377275 2169 2080 7334249.709323 2170 2080 -126592244.14 2171 2080 -15312676.91506 2187 2080 -18861517.09504 2188 2080 -74199670.96744 2189 2080 -35709774.04968 2190 2080 4263555.447029 2191 2080 129813207.8779 2192 2080 -753234.9707085 2208 2080 -8176439.889684 2209 2080 -10839297.49869 2210 2080 -8997766.816414 2211 2080 9645791.927616 2212 2080 -9864955.562426 2213 2080 7544235.325179 2214 2080 -1439748.456689 2215 2080 -40731782.17156 2216 2080 33347706.83858 2217 2080 7234108.357436 2218 2080 -22893681.13543 2219 2080 16684309.53426 2081 2081 724177116.0154 2097 2081 302795.9789559 2098 2081 -102178.3649187 2099 2081 -626812.8042064 2100 2081 -255720.0854817 2101 2081 -601001.4340393 2102 2081 193831384.4324 2103 2081 2743.280367732 2104 2081 57557.5944995 2105 2081 126362557.5082 2106 2081 -69372.22934835 2107 2081 70736.41377272 2108 2081 41151344.23183 2169 2081 1354054.781578 2170 2081 -15854425.87662 2171 2081 -49329190.9703 2187 2081 -11167856.98135 2188 2081 -35682388.19982 2189 2081 -45817154.88165 2190 2081 -8809368.776172 2191 2081 -1837472.387429 2192 2081 -108785896.0355 2208 2081 -11139057.95335 2209 2081 -8997766.816414 2210 2081 -17461344.76991 2211 2081 -44012841.93004 2212 2081 7544235.326688 2213 2081 -84876841.96464 2214 2081 5464890.893211 2215 2081 33347706.83858 2216 2081 -72827119.94061 2217 2081 -10803153.36729 2218 2081 16684309.53426 2219 2081 -35058247.69784 2082 2082 313040550.8064 2083 2082 3.218650817871e-06 2084 2082 462970.1266764 2085 2082 42883259.87802 2086 2082 7333333.332129 2087 2082 -318285.2460207 2172 2082 -60367636.82651 2173 2082 1.877546310425e-06 2174 2082 44780785.23866 2175 2082 -20276082.95081 2176 2082 -9166666.66968 2177 2082 11841897.70428 2193 2082 25526722.3448 2194 2082 -5.960464477539e-08 2195 2082 -8946896.355626 2196 2082 -3992585.439634 2197 2082 1833333.333934 2198 2082 -2345231.034498 2083 2083 269037449.1693 2084 2083 -5555469.588573 2085 2083 -7333333.332131 2086 2083 -26783274.40183 2087 2083 2749957.016519 2172 2083 1.169741153717e-06 2173 2083 -20033981.96478 2174 2083 -694433.6992575 2175 2083 -9166666.66968 2176 2083 -17525889.09577 2177 2083 9288189.074786 2193 2083 6.556510925293e-07 2194 2083 14525946.9301 2195 2083 -1388867.397833 2196 2083 -1833333.333937 2197 2083 -21409219.01818 2198 2083 18645822.58485 2084 2084 308398707.7133 2085 2084 723381.420473 2086 2084 2805512.572065 2087 2084 41427094.86576 2172 2084 44746063.01646 2173 2084 -694433.6992574 2174 2084 -58719220.64359 2175 2084 11841897.70428 2176 2084 9288189.074786 2177 2084 -21171048.60074 2193 2084 9004770.308089 2194 2084 -1388867.397833 2195 2084 -63522764.08798 2196 2084 2403102.300394 2197 2084 18645822.58486 2198 2084 -28878960.71692 2085 2085 313040550.8064 2086 2085 3.218650817871e-06 2087 2085 462970.1266764 2088 2085 42883259.87802 2089 2085 7333333.332129 2090 2085 -318285.2460207 2172 2085 -18752053.59425 2173 2085 9166666.66968 2174 2085 10539814.37052 2175 2085 -60367636.82651 2176 2085 1.877546310425e-06 2177 2085 44780785.23866 2178 2085 -20276082.95081 2179 2085 -9166666.66968 2180 2085 11841897.70428 2193 2085 -932689.6068121 2194 2085 -1833333.333935 2195 2085 -2084814.367748 2196 2085 25526722.3448 2197 2085 -5.960464477539e-08 2198 2085 -8946896.355626 2199 2085 -3992585.439634 2200 2085 1833333.333934 2201 2085 -2345231.034498 2086 2086 269037449.1693 2087 2086 -5555469.588573 2088 2086 -7333333.332131 2089 2086 -26783274.40183 2090 2086 2749957.016519 2172 2086 9166666.66968 2173 2086 -16001859.73922 2174 2086 -8593755.37553 2175 2086 1.169741153717e-06 2176 2086 -20033981.96478 2177 2086 -694433.6992575 2178 2086 -9166666.66968 2179 2086 -17525889.09577 2180 2086 9288189.074786 2193 2086 1833333.333937 2194 2086 -18349323.18536 2195 2086 -17256955.18702 2196 2086 6.556510925293e-07 2197 2086 14525946.9301 2198 2086 -1388867.397833 2199 2086 -1833333.333937 2200 2086 -21409219.01818 2201 2086 18645822.58485 2087 2087 308398707.7133 2088 2087 723381.420473 2089 2087 2805512.572065 2090 2087 41427094.86576 2172 2087 10539814.37052 2173 2087 -8593755.37553 2174 2087 -17106970.31658 2175 2087 44746063.01646 2176 2087 -694433.6992574 2177 2087 -58719220.64359 2178 2087 11841897.70428 2179 2087 9288189.074786 2180 2087 -21171048.60074 2193 2087 2142685.63364 2194 2087 -17256955.18703 2195 2087 -20719238.49606 2196 2087 9004770.308089 2197 2087 -1388867.397833 2198 2087 -63522764.08798 2199 2087 2403102.300394 2200 2087 18645822.58486 2201 2087 -28878960.71692 2088 2088 313040550.8064 2089 2088 3.218650817871e-06 2090 2088 462970.1266764 2091 2088 42883259.87802 2092 2088 7333333.332129 2093 2088 -318285.2460207 2175 2088 -18752053.59425 2176 2088 9166666.66968 2177 2088 10539814.37052 2178 2088 -60367636.82651 2179 2088 1.877546310425e-06 2180 2088 44780785.23866 2181 2088 -20276082.95081 2182 2088 -9166666.66968 2183 2088 11841897.70428 2196 2088 -932689.6068121 2197 2088 -1833333.333935 2198 2088 -2084814.367748 2199 2088 25526722.3448 2200 2088 -5.960464477539e-08 2201 2088 -8946896.355626 2202 2088 -3992585.439634 2203 2088 1833333.333934 2204 2088 -2345231.034498 2089 2089 269037449.1693 2090 2089 -5555469.588573 2091 2089 -7333333.332131 2092 2089 -26783274.40183 2093 2089 2749957.016519 2175 2089 9166666.66968 2176 2089 -16001859.73922 2177 2089 -8593755.37553 2178 2089 1.169741153717e-06 2179 2089 -20033981.96478 2180 2089 -694433.6992575 2181 2089 -9166666.66968 2182 2089 -17525889.09577 2183 2089 9288189.074786 2196 2089 1833333.333937 2197 2089 -18349323.18536 2198 2089 -17256955.18702 2199 2089 6.556510925293e-07 2200 2089 14525946.9301 2201 2089 -1388867.397833 2202 2089 -1833333.333937 2203 2089 -21409219.01818 2204 2089 18645822.58485 2090 2090 308398707.7133 2091 2090 723381.420473 2092 2090 2805512.572065 2093 2090 41427094.86576 2175 2090 10539814.37052 2176 2090 -8593755.37553 2177 2090 -17106970.31658 2178 2090 44746063.01646 2179 2090 -694433.6992574 2180 2090 -58719220.64359 2181 2090 11841897.70428 2182 2090 9288189.074786 2183 2090 -21171048.60074 2196 2090 2142685.63364 2197 2090 -17256955.18703 2198 2090 -20719238.49606 2199 2090 9004770.308089 2200 2090 -1388867.397833 2201 2090 -63522764.08798 2202 2090 2403102.300394 2203 2090 18645822.58486 2204 2090 -28878960.71692 2091 2091 313040550.8064 2092 2091 3.218650817871e-06 2093 2091 462970.1266764 2094 2091 42883259.87802 2095 2091 7333333.332129 2096 2091 -318285.2460207 2178 2091 -18752053.59425 2179 2091 9166666.66968 2180 2091 10539814.37052 2181 2091 -60367636.82651 2182 2091 1.877546310425e-06 2183 2091 44780785.23866 2184 2091 -20276082.95081 2185 2091 -9166666.66968 2186 2091 11841897.70428 2199 2091 -932689.6068121 2200 2091 -1833333.333935 2201 2091 -2084814.367748 2202 2091 25526722.3448 2203 2091 -5.960464477539e-08 2204 2091 -8946896.355626 2205 2091 -3992585.439634 2206 2091 1833333.333934 2207 2091 -2345231.034498 2092 2092 269037449.1693 2093 2092 -5555469.588573 2094 2092 -7333333.332131 2095 2092 -26783274.40183 2096 2092 2749957.016519 2178 2092 9166666.66968 2179 2092 -16001859.73922 2180 2092 -8593755.37553 2181 2092 1.169741153717e-06 2182 2092 -20033981.96478 2183 2092 -694433.6992575 2184 2092 -9166666.66968 2185 2092 -17525889.09577 2186 2092 9288189.074786 2199 2092 1833333.333937 2200 2092 -18349323.18536 2201 2092 -17256955.18702 2202 2092 6.556510925293e-07 2203 2092 14525946.9301 2204 2092 -1388867.397833 2205 2092 -1833333.333937 2206 2092 -21409219.01818 2207 2092 18645822.58485 2093 2093 308398707.7133 2094 2093 723381.420473 2095 2093 2805512.572065 2096 2093 41427094.86576 2178 2093 10539814.37052 2179 2093 -8593755.37553 2180 2093 -17106970.31658 2181 2093 44746063.01646 2182 2093 -694433.6992574 2183 2093 -58719220.64359 2184 2093 11841897.70428 2185 2093 9288189.074786 2186 2093 -21171048.60074 2199 2093 2142685.63364 2200 2093 -17256955.18703 2201 2093 -20719238.49606 2202 2093 9004770.308089 2203 2093 -1388867.397833 2204 2093 -63522764.08798 2205 2093 2403102.300394 2206 2093 18645822.58486 2207 2093 -28878960.71692 2094 2094 313040550.8064 2095 2094 3.218650817871e-06 2096 2094 462970.1266764 2097 2094 42883259.87802 2098 2094 7333333.332129 2099 2094 -318285.2460207 2181 2094 -18752053.59425 2182 2094 9166666.66968 2183 2094 10539814.37052 2184 2094 -60367636.82651 2185 2094 1.877546310425e-06 2186 2094 44780785.23866 2187 2094 -20276082.95081 2188 2094 -9166666.66968 2189 2094 11841897.70428 2202 2094 -932689.6068121 2203 2094 -1833333.333935 2204 2094 -2084814.367748 2205 2094 25526722.3448 2206 2094 -5.960464477539e-08 2207 2094 -8946896.355626 2208 2094 -3992585.439634 2209 2094 1833333.333934 2210 2094 -2345231.034498 2095 2095 269037449.1693 2096 2095 -5555469.588573 2097 2095 -7333333.332131 2098 2095 -26783274.40183 2099 2095 2749957.016519 2181 2095 9166666.66968 2182 2095 -16001859.73922 2183 2095 -8593755.37553 2184 2095 1.169741153717e-06 2185 2095 -20033981.96478 2186 2095 -694433.6992575 2187 2095 -9166666.66968 2188 2095 -17525889.09577 2189 2095 9288189.074786 2202 2095 1833333.333937 2203 2095 -18349323.18536 2204 2095 -17256955.18702 2205 2095 6.556510925293e-07 2206 2095 14525946.9301 2207 2095 -1388867.397833 2208 2095 -1833333.333937 2209 2095 -21409219.01818 2210 2095 18645822.58485 2096 2096 308398707.7133 2097 2096 723381.420473 2098 2096 2805512.572065 2099 2096 41427094.86576 2181 2096 10539814.37052 2182 2096 -8593755.37553 2183 2096 -17106970.31658 2184 2096 44746063.01646 2185 2096 -694433.6992574 2186 2096 -58719220.64359 2187 2096 11841897.70428 2188 2096 9288189.074786 2189 2096 -21171048.60074 2202 2096 2142685.63364 2203 2096 -17256955.18703 2204 2096 -20719238.49606 2205 2096 9004770.308089 2206 2096 -1388867.397833 2207 2096 -63522764.08798 2208 2096 2403102.300394 2209 2096 18645822.58486 2210 2096 -28878960.71692 2097 2097 311501301.9278 2098 2097 3961702.031803 2099 2097 2461349.04567 2100 2097 -4984022.060376 2101 2097 -24652932.04324 2102 2097 367556.3402904 2184 2097 -18752053.59425 2185 2097 9166666.66968 2186 2097 10539814.37052 2187 2097 -44778234.89159 2188 2097 6015914.059352 2189 2097 35041206.59625 2190 2097 -20008769.25006 2191 2097 -8176439.889681 2192 2097 11299136.49846 2205 2097 -932689.6068121 2206 2097 -1833333.333935 2207 2097 -2084814.367748 2208 2097 25141334.84086 2209 2097 990425.5084367 2210 2097 -8447023.847856 2211 2097 -17627581.50065 2212 2097 -6163233.013846 2213 2097 7435569.639298 2098 2098 292367764.6648 2099 2098 -3560498.398243 2100 2098 -39319598.70751 2101 2098 -68784496.1816 2102 2098 607245.3940165 2184 2098 9166666.66968 2185 2098 -16001859.73922 2186 2098 -8593755.37553 2187 2098 6015914.059351 2188 2098 -18343768.90317 2189 2098 -8010431.594268 2190 2098 -8176439.889681 2191 2098 -11043292.65868 2192 2098 8953622.07837 2205 2098 1833333.333937 2206 2098 -18349323.18536 2207 2098 -17256955.18702 2208 2098 990425.5084375 2209 2098 20357950.52274 2210 2098 -890124.6000073 2211 2098 -9829899.681717 2212 2098 -33577700.03881 2213 2098 25797644.67844 2099 2099 314119300.5055 2100 2099 541167.4513703 2101 2099 635023.1717897 2102 2099 25143014.98303 2184 2099 10539814.37052 2185 2099 -8593755.37553 2186 2099 -17106970.31658 2187 2099 35214817.70936 2188 2099 -8010431.592745 2189 2099 -49897177.80632 2190 2099 11299136.49846 2191 2099 8953622.07837 2192 2099 -18005331.86323 2205 2099 2142685.63364 2206 2099 -17256955.18703 2207 2099 -20719238.49606 2208 2099 9504087.260305 2209 2099 -890124.6000072 2210 2099 -62094149.98014 2211 2099 11975291.86111 2212 2099 25797644.67693 2213 2099 -37398448.87766 2100 2100 355741984.4135 2101 2100 44961279.6782 2102 2100 -31969.75969148 2103 2100 -68561627.83958 2104 2100 -44445974.46271 2105 2100 104238.8817037 2106 2100 14895822.78727 2107 2100 -10622658.7066 2108 2100 32267.80197597 2187 2100 -17800014.26928 2188 2100 2698677.488893 2189 2100 1551462.261342 2190 2100 -41705002.75133 2191 2100 9645791.927622 2192 2100 43867713.61109 2208 2100 -16877239.2765 2209 2100 -9829899.681722 2210 2100 -11739430.35753 2211 2100 -6217083.919647 2212 2100 11208473.36773 2213 2100 -8861865.582222 2214 2100 -34096968.27949 2215 2100 -11099224.98192 2216 2100 20338513.3096 2217 2100 -25041925.40459 2218 2100 -2623818.120598 2219 2100 7377495.646649 2101 2101 438394979.9803 2102 2101 -1374967.912862 2103 2101 -44445974.46271 2104 2101 -48851461.31784 2105 2101 70736.41377251 2106 2101 -25289325.37086 2107 2101 -56527401.72481 2108 2101 225388.0604518 2187 2101 2698677.488893 2188 2101 -41565987.06324 2189 2101 -16405461.24678 2190 2101 9645791.927621 2191 2101 -9711995.492945 2192 2101 -7837709.116745 2208 2101 -6163233.01385 2209 2101 -32827357.81467 2210 2101 -25487077.53535 2211 2101 11208473.36773 2212 2101 14441813.25705 2213 2101 -343592.9009723 2214 2101 -11099224.98192 2215 2101 -29181326.97082 2216 2101 16684309.53426 2217 2101 -6290484.78847 2218 2101 -42893379.81621 2219 2101 33389531.26557 2102 2102 485223127.0891 2103 2102 104238.8817039 2104 2102 70736.41377254 2105 2102 15886177.56931 2106 2102 101712.2464065 2107 2102 225388.0604519 2108 2102 69697319.35776 2187 2102 1551462.261342 2188 2102 -16405461.24678 2189 2102 -25037127.36958 2190 2102 43832991.38891 2191 2102 -7837709.115223 2192 2102 -84468948.44602 2208 2102 -7303874.802406 2209 2102 -25487077.53687 2210 2102 -35397536.2799 2211 2102 8672578.859343 2212 2102 -343592.9009723 2213 2102 -132262809.834 2214 2102 20338513.3096 2215 2102 16684309.53426 2216 2102 -41345893.53323 2217 2102 11709162.31661 2218 2102 33389531.26557 2219 2102 -59456308.27283 2103 2103 235160980.54 2104 2103 49827905.81482 2105 2103 -60613.6507082 2106 2103 -6682311.508679 2107 2103 445974.4699243 2108 2103 -46368.51136041 2190 2103 -22984195.10845 2191 2103 -1439748.456691 2192 2103 -5463581.325088 2211 2103 -34002271.30978 2212 2103 -11099224.98192 2213 2103 -20286486.70374 2214 2103 -19462016.98302 2215 2103 12439748.46031 2216 2103 8109877.622006 2217 2103 -35625759.01613 2218 2103 99224.97830465 2219 2103 -31109809.59318 2104 2104 216380701.0278 2105 2104 -57557.59448934 2106 2104 15112641.13419 2107 2104 62982521.95492 2108 2104 -70736.41376597 2190 2104 -5106415.124563 2191 2104 -40637085.20186 2192 2104 -33318959.81713 2211 2104 -11099224.98192 2212 2104 -29086630.00111 2213 2104 -16649023.81002 2214 2104 12439748.46031 2215 2104 -24152876.89695 2216 2104 6652293.15484 2217 2104 3765891.646176 2218 2104 -18197650.31745 2219 2104 3315690.472307 2105 2105 344308907.0334 2106 2105 -46368.51135737 2107 2105 -70736.41376615 2108 2105 111171650.7816 2190 2105 -13588581.32587 2191 2105 -33318959.81713 2192 2105 -72574594.68805 2211 2105 -20286486.70374 2212 2105 -16649023.81002 2213 2105 -41093368.28065 2214 2105 -8140122.375325 2215 2105 -6681040.176303 2216 2105 -122542387.5828 2217 2105 -31109809.59507 2218 2105 -3350976.196549 2219 2105 -62654295.89483 2106 2106 175362217.5958 2107 2106 -18710674.62192 2108 2106 -124860.3946307 2190 2106 -17235215.74871 2191 2106 7234108.357437 2192 2106 10768374.41758 2211 2106 -24757834.49561 2212 2106 -6290484.788473 2213 2106 -11658615.46133 2214 2106 -35625759.01613 2215 2106 3765891.64618 2216 2106 31086718.17438 2217 2106 -13575130.14034 2218 2106 -4709515.215144 2219 2106 -4345366.019486 2107 2107 199519053.2267 2108 2107 -225388.0604351 2190 2107 7234108.357437 2191 2107 -22798984.16571 2192 2107 -16649023.81002 2211 2107 -2623818.120601 2212 2107 -42609288.90724 2213 2107 -33277135.39015 2214 2107 99224.97830848 2215 2107 -18197650.31745 2216 2107 3315690.472307 2217 2107 -4709515.215143 2218 2107 -7588016.01039 2219 2107 6610468.727854 2108 2108 264347362.4329 2190 2108 10768374.41758 2191 2108 -16649023.81002 2192 2108 -34805722.44525 2211 2108 -7361671.013591 2212 2108 -33277135.39015 2213 2108 -58698732.51554 2214 2108 31086718.17251 2215 2108 -3350976.196549 2216 2108 -62654295.89483 2217 2108 4283245.090209 2218 2108 -6722864.603289 2219 2108 -87025087.54648 2109 2109 391468094.7324 2110 2109 36666666.66066 2111 2109 2662170.757228 2112 2109 -201885224.5025 2113 2109 -36666959.01753 2114 2109 -2662149.068675 2115 2109 13006025.1815 2116 2109 29333625.68539 2117 2109 -2152798.772422 2220 2109 31947394.33292 2221 2109 9166666.669681 2222 2109 9728225.899101 2223 2109 -74358253.63036 2224 2109 -9166739.758898 2225 2109 -45562288.72778 2226 2109 -8166156.136015 2227 2109 7333406.424962 2228 2109 -9496761.446847 2110 2110 336463888.7559 2111 2110 -6944377.543016 2112 2110 -36667105.19596 2113 2110 -29548916.09098 2114 2110 -3847225.37168 2115 2110 44000438.52809 2116 2110 13006025.1815 2117 2110 2416691.307227 2220 2110 9166666.66968 2221 2110 18196342.83202 2222 2110 5513941.008134 2223 2110 -9166776.303507 2224 2110 -31274176.50627 2225 2110 -9941080.210835 2226 2110 11000109.63744 2227 2110 -8166156.136015 2228 2110 11395946.69513 2111 2111 385940866.4962 2112 2111 -2662138.224395 2113 2111 -3097217.158151 2114 2111 2281351.682023 2115 2111 -3229198.158633 2116 2111 1611127.538151 2117 2111 34682733.81733 2220 2111 -8223530.275229 2221 2111 -8847241.586827 2222 2111 -79300461.72417 2223 2111 -45527563.96779 2224 2111 -9746597.980308 2225 2111 -63128188.69225 2226 2111 -14245142.17027 2227 2111 7597297.796754 2228 2111 -21776416.36271 2112 2112 677810035.2011 2113 2112 36667397.55284 2114 2112 3125086.662505 2115 2112 20859938.00677 2116 2112 -36666959.01753 2117 2112 2702569.081896 2118 2112 -136819701.2443 2119 2112 9.089708328247e-07 2120 2112 -462970.1266867 2121 2112 -51905201.38891 2122 2112 36666666.66065 2123 2112 -2702548.086863 2220 2112 -72726245.22972 2221 2112 -9166776.303506 2222 2112 44231216.90386 2223 2112 70575234.21716 2224 2112 9166849.392726 2225 2112 781227.3439141 2226 2112 -20203256.3538 2227 2112 -9166739.758899 2228 2112 11899863.74724 2229 2112 -60775629.25067 2230 2112 -1.214444637299e-06 2231 2112 -45012270.30212 2232 2112 -20383999.6175 2233 2112 9166666.669679 2234 2112 -11899768.97017 2113 2113 578802727.5875 2114 2113 -8610918.562153 2115 2113 -36667105.19596 2116 2113 -107472939.8429 2117 2113 4611020.401354 2118 2113 9.685754776001e-07 2119 2113 24514918.12315 2120 2113 -2777734.795656 2121 2113 36666666.66065 2122 2113 -40904425.97421 2123 2113 1513867.397816 2220 2113 -9166739.758897 2221 2113 -29642168.10562 2222 2113 8204934.122165 2223 2113 9166849.392726 2224 2113 45823407.30156 2225 2113 -2152765.098743 2226 2113 -9166776.303508 2227 2113 -52286475.83204 2228 2113 37069600.58987 2229 2113 -1.445412635803e-06 2230 2113 -20441974.38895 2231 2113 -694433.6992576 2232 2113 9166666.669678 2233 2113 -17633805.76247 2234 2113 9357633.519253 2114 2114 623143279.9755 2115 2114 2737301.801614 2116 2114 5388806.115241 2117 2114 41364580.11227 2118 2114 -462970.1266864 2119 2114 -2777734.795656 2120 2114 44192040.0554 2121 2114 -2737270.309063 2122 2114 1541645.175575 2123 2114 -6819846.696327 2220 2114 44196492.14387 2221 2114 8010523.495484 2222 2114 -58776166.2905 2223 2114 781316.8545274 2224 2114 -2152693.49136 2225 2114 -107886912.3736 2226 2114 11899911.13577 2227 2114 37236269.31883 2228 2114 -57440830.58835 2229 2114 -44977548.07992 2230 2114 -694433.6992576 2231 2114 -59807200.44138 2232 2114 -11899768.97017 2233 2114 9357633.519253 2234 2114 -21458826.37861 2115 2115 391468094.7324 2116 2115 36666666.66066 2117 2115 2662170.757228 2118 2115 -51881527.1465 2119 2115 -36666666.66065 2120 2115 2505785.245605 2121 2115 -201885224.5025 2122 2115 -36666959.01753 2123 2115 -2662149.068675 2124 2115 13006025.1815 2125 2115 29333625.68539 2126 2115 -2152798.772422 2220 2115 -5106206.927443 2221 2115 11000109.63744 2222 2115 12682625.90274 2223 2115 -15511422.68773 2224 2115 -9166776.303506 2225 2115 -10539940.2691 2226 2115 31947394.33292 2227 2115 9166666.669681 2228 2115 9728225.899101 2229 2115 -18848133.13973 2230 2115 -9166666.66968 2231 2115 -10597685.63642 2232 2115 -74358253.63036 2233 2115 -9166739.758898 2234 2115 -45562288.72778 2235 2115 -8166156.136015 2236 2115 7333406.424962 2237 2115 -9496761.446847 2116 2116 336463888.7559 2117 2116 -6944377.543016 2118 2116 -36666666.66065 2119 2116 -40880751.7318 2120 2116 1263867.397843 2121 2116 -36667105.19596 2122 2116 -29548916.09098 2123 2116 -3847225.37168 2124 2116 44000438.52809 2125 2116 13006025.1815 2126 2116 2416691.307227 2220 2116 7333406.424962 2221 2116 -5106206.927443 2222 2116 -6763956.526763 2223 2116 -9166739.758897 2224 2116 -47594642.16596 2225 2116 -34569643.89832 2226 2116 9166666.66968 2227 2116 18196342.83202 2228 2116 5513941.008134 2229 2116 -9166666.669679 2230 2116 -16097939.2847 2231 2116 -8663199.819997 2232 2116 -9166776.303507 2233 2116 -31274176.50627 2234 2116 -9941080.210835 2235 2116 11000109.63744 2236 2116 -8166156.136015 2237 2116 11395946.69513 2117 2117 385940866.4962 2118 2117 2471063.023406 2119 2117 1236089.620084 2120 2117 -6756715.38321 2121 2117 -2662138.224395 2122 2117 -3097217.158151 2123 2117 2281351.682023 2124 2117 -3229198.158633 2125 2117 1611127.538151 2126 2117 34682733.81733 2220 2117 8455083.935158 2221 2117 -10145934.79014 2222 2117 -13616551.80652 2223 2117 -10539898.30291 2224 2117 -34736312.74845 2225 2117 -44929274.14549 2226 2117 -8223530.275229 2227 2117 -8847241.586827 2228 2117 -79300461.72417 2229 2117 -10597685.63642 2230 2117 -8663199.819997 2231 2117 -17363182.43788 2232 2117 -45527563.96779 2233 2117 -9746597.980308 2234 2117 -63128188.69225 2235 2117 -14245142.17027 2236 2117 7597297.796754 2237 2117 -21776416.36271 2118 2118 626081101.6128 2119 2118 7.033348083496e-06 2120 2118 925940.2533548 2121 2118 85765730.61463 2122 2118 -3.814697265625e-06 2123 2118 231485.0634534 2127 2118 -136819701.2443 2128 2118 9.089708328247e-07 2129 2118 -462970.1266867 2130 2118 -51905201.38891 2131 2118 36666666.66065 2132 2118 -2702548.086863 2223 2118 -60367636.82651 2224 2118 1.877546310425e-06 2225 2118 44780785.23866 2226 2118 -20276082.95081 2227 2118 -9166666.66968 2228 2118 11841897.70428 2229 2118 51054233.83102 2230 2118 1.788139343262e-06 2231 2118 231485.0634618 2232 2118 -7985170.87927 2233 2118 -2.771615982056e-06 2234 2118 57871.2658952 2238 2118 -60775629.25067 2239 2118 -1.214444637299e-06 2240 2118 -45012270.30212 2241 2118 -20383999.6175 2242 2118 9166666.669679 2243 2118 -11899768.97017 2119 2119 538074898.3386 2120 2119 -11110939.17715 2121 2119 -2.861022949219e-06 2122 2119 -53567337.94508 2123 2119 5555469.588581 2127 2119 9.685754776001e-07 2128 2119 24514918.12315 2129 2119 -2777734.795656 2130 2119 36666666.66065 2131 2119 -40904425.97421 2132 2119 1513867.397816 2223 2119 1.169741153717e-06 2224 2119 -20033981.96478 2225 2119 -694433.6992575 2226 2119 -9166666.66968 2227 2119 -17525889.09577 2228 2119 9288189.074786 2229 2119 1.966953277588e-06 2230 2119 29052683.00161 2231 2119 -2777734.795662 2232 2119 -2.190470695496e-06 2233 2119 -42818438.03636 2234 2119 37305534.05859 2238 2119 -1.445412635803e-06 2239 2119 -20441974.38895 2240 2119 -694433.6992576 2241 2119 9166666.669678 2242 2119 -17633805.76247 2243 2119 9357633.519253 2120 2120 616797415.4266 2121 2120 231485.0634536 2122 2120 5555469.588581 2123 2120 82852085.35441 2127 2120 -462970.1266864 2128 2120 -2777734.795656 2129 2120 44192040.0554 2130 2120 -2737270.309063 2131 2120 1541645.175575 2132 2120 -6819846.696327 2223 2120 44746063.01646 2224 2120 -694433.6992574 2225 2120 -58719220.64359 2226 2120 11841897.70428 2227 2120 9288189.074786 2228 2120 -21171048.60074 2229 2120 231485.0634617 2230 2120 -2777734.795662 2231 2120 -127043423.7988 2232 2120 57871.26589543 2233 2120 37277756.28083 2234 2120 -57757921.43384 2238 2120 -44977548.07992 2239 2120 -694433.6992576 2240 2120 -59807200.44138 2241 2120 -11899768.97017 2242 2120 9357633.519253 2243 2120 -21458826.37861 2121 2121 677810035.2011 2122 2121 36667397.55284 2123 2121 3125086.662505 2124 2121 20859938.00677 2125 2121 -36666959.01753 2126 2121 2702569.081896 2127 2121 -51881527.1465 2128 2121 -36666666.66065 2129 2121 2505785.245605 2130 2121 -136819701.2443 2131 2121 9.089708328247e-07 2132 2121 -462970.1266867 2133 2121 -51905201.38891 2134 2121 36666666.66065 2135 2121 -2702548.086863 2223 2121 -18752053.59425 2224 2121 9166666.66968 2225 2121 10539814.37052 2226 2121 -72726245.22972 2227 2121 -9166776.303506 2228 2121 44231216.90386 2229 2121 -1865379.213624 2230 2121 8.79168510437e-07 2231 2121 57871.26589221 2232 2121 70575234.21716 2233 2121 9166849.392726 2234 2121 781227.3439141 2235 2121 -20203256.3538 2236 2121 -9166739.758899 2237 2121 11899863.74724 2238 2121 -18848133.13973 2239 2121 -9166666.66968 2240 2121 -10597685.63642 2241 2121 -60775629.25067 2242 2121 -1.214444637299e-06 2243 2121 -45012270.30212 2244 2121 -20383999.6175 2245 2121 9166666.669679 2246 2121 -11899768.97017 2122 2122 578802727.5875 2123 2122 -8610918.562153 2124 2122 -36667105.19596 2125 2122 -107472939.8429 2126 2122 4611020.401354 2127 2122 -36666666.66065 2128 2122 -40880751.7318 2129 2122 1263867.397843 2130 2122 9.685754776001e-07 2131 2122 24514918.12315 2132 2122 -2777734.795656 2133 2122 36666666.66065 2134 2122 -40904425.97421 2135 2122 1513867.397816 2223 2122 9166666.66968 2224 2122 -16001859.73922 2225 2122 -8593755.37553 2226 2122 -9166739.758897 2227 2122 -29642168.10562 2228 2122 8204934.122165 2229 2122 1.229345798492e-06 2230 2122 -36698646.37071 2231 2122 -34527799.26293 2232 2122 9166849.392726 2233 2122 45823407.30156 2234 2122 -2152765.098743 2235 2122 -9166776.303508 2236 2122 -52286475.83204 2237 2122 37069600.58987 2238 2122 -9166666.669679 2239 2122 -16097939.2847 2240 2122 -8663199.819997 2241 2122 -1.445412635803e-06 2242 2122 -20441974.38895 2243 2122 -694433.6992576 2244 2122 9166666.669678 2245 2122 -17633805.76247 2246 2122 9357633.519253 2123 2123 623143279.9755 2124 2123 2737301.801614 2125 2123 5388806.115241 2126 2123 41364580.11227 2127 2123 2471063.023406 2128 2123 1236089.620084 2129 2123 -6756715.38321 2130 2123 -462970.1266864 2131 2123 -2777734.795656 2132 2123 44192040.0554 2133 2123 -2737270.309063 2134 2123 1541645.175575 2135 2123 -6819846.696327 2223 2123 10539814.37052 2224 2123 -8593755.37553 2225 2123 -17106970.31658 2226 2123 44196492.14387 2227 2123 8010523.495484 2228 2123 -58776166.2905 2229 2123 57871.26589252 2230 2123 -34500021.48517 2231 2123 -41438476.99211 2232 2123 781316.8545274 2233 2123 -2152693.49136 2234 2123 -107886912.3736 2235 2123 11899911.13577 2236 2123 37236269.31883 2237 2123 -57440830.58835 2238 2123 -10597685.63642 2239 2123 -8663199.819997 2240 2123 -17363182.43788 2241 2123 -44977548.07992 2242 2123 -694433.6992576 2243 2123 -59807200.44138 2244 2123 -11899768.97017 2245 2123 9357633.519253 2246 2123 -21458826.37861 2124 2124 391468094.7324 2125 2124 36666666.66066 2126 2124 2662170.757228 2130 2124 -51881527.1465 2131 2124 -36666666.66065 2132 2124 2505785.245605 2133 2124 -201885224.5025 2134 2124 -36666959.01753 2135 2124 -2662149.068675 2136 2124 13006025.1815 2137 2124 29333625.68539 2138 2124 -2152798.772422 2226 2124 -5106206.927443 2227 2124 11000109.63744 2228 2124 12682625.90274 2232 2124 -15511422.68773 2233 2124 -9166776.303506 2234 2124 -10539940.2691 2235 2124 31947394.33292 2236 2124 9166666.669681 2237 2124 9728225.899101 2241 2124 -18848133.13973 2242 2124 -9166666.66968 2243 2124 -10597685.63642 2244 2124 -74358253.63036 2245 2124 -9166739.758898 2246 2124 -45562288.72778 2247 2124 -8166156.136015 2248 2124 7333406.424962 2249 2124 -9496761.446847 2125 2125 336463888.7559 2126 2125 -6944377.543016 2130 2125 -36666666.66065 2131 2125 -40880751.7318 2132 2125 1263867.397843 2133 2125 -36667105.19596 2134 2125 -29548916.09098 2135 2125 -3847225.37168 2136 2125 44000438.52809 2137 2125 13006025.1815 2138 2125 2416691.307227 2226 2125 7333406.424962 2227 2125 -5106206.927443 2228 2125 -6763956.526763 2232 2125 -9166739.758897 2233 2125 -47594642.16596 2234 2125 -34569643.89832 2235 2125 9166666.66968 2236 2125 18196342.83202 2237 2125 5513941.008134 2241 2125 -9166666.669679 2242 2125 -16097939.2847 2243 2125 -8663199.819997 2244 2125 -9166776.303507 2245 2125 -31274176.50627 2246 2125 -9941080.210835 2247 2125 11000109.63744 2248 2125 -8166156.136015 2249 2125 11395946.69513 2126 2126 385940866.4962 2130 2126 2471063.023406 2131 2126 1236089.620084 2132 2126 -6756715.38321 2133 2126 -2662138.224395 2134 2126 -3097217.158151 2135 2126 2281351.682023 2136 2126 -3229198.158633 2137 2126 1611127.538151 2138 2126 34682733.81733 2226 2126 8455083.935158 2227 2126 -10145934.79014 2228 2126 -13616551.80652 2232 2126 -10539898.30291 2233 2126 -34736312.74845 2234 2126 -44929274.14549 2235 2126 -8223530.275229 2236 2126 -8847241.586827 2237 2126 -79300461.72417 2241 2126 -10597685.63642 2242 2126 -8663199.819997 2243 2126 -17363182.43788 2244 2126 -45527563.96779 2245 2126 -9746597.980308 2246 2126 -63128188.69225 2247 2126 -14245142.17027 2248 2126 7597297.796754 2249 2126 -21776416.36271 2127 2127 626081101.6128 2128 2127 7.033348083496e-06 2129 2127 925940.2533548 2130 2127 85765730.61463 2131 2127 -3.814697265625e-06 2132 2127 231485.0634534 2139 2127 -136819701.2443 2140 2127 9.089708328247e-07 2141 2127 -462970.1266867 2142 2127 -51905201.38891 2143 2127 36666666.66065 2144 2127 -2702548.086863 2229 2127 -60367636.82651 2230 2127 1.877546310425e-06 2231 2127 44780785.23866 2232 2127 -20276082.95081 2233 2127 -9166666.66968 2234 2127 11841897.70428 2238 2127 51054233.83102 2239 2127 1.788139343262e-06 2240 2127 231485.0634618 2241 2127 -7985170.87927 2242 2127 -2.771615982056e-06 2243 2127 57871.2658952 2250 2127 -60775629.25067 2251 2127 -1.214444637299e-06 2252 2127 -45012270.30212 2253 2127 -20383999.6175 2254 2127 9166666.669679 2255 2127 -11899768.97017 2128 2128 538074898.3386 2129 2128 -11110939.17715 2130 2128 -2.861022949219e-06 2131 2128 -53567337.94508 2132 2128 5555469.588581 2139 2128 9.685754776001e-07 2140 2128 24514918.12315 2141 2128 -2777734.795656 2142 2128 36666666.66065 2143 2128 -40904425.97421 2144 2128 1513867.397816 2229 2128 1.169741153717e-06 2230 2128 -20033981.96478 2231 2128 -694433.6992575 2232 2128 -9166666.66968 2233 2128 -17525889.09577 2234 2128 9288189.074786 2238 2128 1.966953277588e-06 2239 2128 29052683.00161 2240 2128 -2777734.795662 2241 2128 -2.190470695496e-06 2242 2128 -42818438.03636 2243 2128 37305534.05859 2250 2128 -1.445412635803e-06 2251 2128 -20441974.38895 2252 2128 -694433.6992576 2253 2128 9166666.669678 2254 2128 -17633805.76247 2255 2128 9357633.519253 2129 2129 616797415.4266 2130 2129 231485.0634536 2131 2129 5555469.588581 2132 2129 82852085.35441 2139 2129 -462970.1266864 2140 2129 -2777734.795656 2141 2129 44192040.0554 2142 2129 -2737270.309063 2143 2129 1541645.175575 2144 2129 -6819846.696327 2229 2129 44746063.01646 2230 2129 -694433.6992574 2231 2129 -58719220.64359 2232 2129 11841897.70428 2233 2129 9288189.074786 2234 2129 -21171048.60074 2238 2129 231485.0634617 2239 2129 -2777734.795662 2240 2129 -127043423.7988 2241 2129 57871.26589543 2242 2129 37277756.28083 2243 2129 -57757921.43384 2250 2129 -44977548.07992 2251 2129 -694433.6992576 2252 2129 -59807200.44138 2253 2129 -11899768.97017 2254 2129 9357633.519253 2255 2129 -21458826.37861 2130 2130 626081101.6128 2131 2130 7.033348083496e-06 2132 2130 925940.2533548 2133 2130 85765730.61463 2134 2130 -3.814697265625e-06 2135 2130 231485.0634534 2139 2130 -51881527.1465 2140 2130 -36666666.66065 2141 2130 2505785.245605 2142 2130 -136819701.2443 2143 2130 9.089708328247e-07 2144 2130 -462970.1266867 2145 2130 -51905201.38891 2146 2130 36666666.66065 2147 2130 -2702548.086863 2229 2130 -18752053.59425 2230 2130 9166666.66968 2231 2130 10539814.37052 2232 2130 -60367636.82651 2233 2130 1.877546310425e-06 2234 2130 44780785.23866 2235 2130 -20276082.95081 2236 2130 -9166666.66968 2237 2130 11841897.70428 2238 2130 -1865379.213624 2239 2130 8.79168510437e-07 2240 2130 57871.26589221 2241 2130 51054233.83102 2242 2130 1.788139343262e-06 2243 2130 231485.0634618 2244 2130 -7985170.87927 2245 2130 -2.771615982056e-06 2246 2130 57871.2658952 2250 2130 -18848133.13973 2251 2130 -9166666.66968 2252 2130 -10597685.63642 2253 2130 -60775629.25067 2254 2130 -1.214444637299e-06 2255 2130 -45012270.30212 2256 2130 -20383999.6175 2257 2130 9166666.669679 2258 2130 -11899768.97017 2131 2131 538074898.3386 2132 2131 -11110939.17715 2133 2131 -2.861022949219e-06 2134 2131 -53567337.94508 2135 2131 5555469.588581 2139 2131 -36666666.66065 2140 2131 -40880751.7318 2141 2131 1263867.397843 2142 2131 9.685754776001e-07 2143 2131 24514918.12315 2144 2131 -2777734.795656 2145 2131 36666666.66065 2146 2131 -40904425.97421 2147 2131 1513867.397816 2229 2131 9166666.66968 2230 2131 -16001859.73922 2231 2131 -8593755.37553 2232 2131 1.169741153717e-06 2233 2131 -20033981.96478 2234 2131 -694433.6992575 2235 2131 -9166666.66968 2236 2131 -17525889.09577 2237 2131 9288189.074786 2238 2131 1.229345798492e-06 2239 2131 -36698646.37071 2240 2131 -34527799.26293 2241 2131 1.966953277588e-06 2242 2131 29052683.00161 2243 2131 -2777734.795662 2244 2131 -2.190470695496e-06 2245 2131 -42818438.03636 2246 2131 37305534.05859 2250 2131 -9166666.669679 2251 2131 -16097939.2847 2252 2131 -8663199.819997 2253 2131 -1.445412635803e-06 2254 2131 -20441974.38895 2255 2131 -694433.6992576 2256 2131 9166666.669678 2257 2131 -17633805.76247 2258 2131 9357633.519253 2132 2132 616797415.4266 2133 2132 231485.0634536 2134 2132 5555469.588581 2135 2132 82852085.35441 2139 2132 2471063.023406 2140 2132 1236089.620084 2141 2132 -6756715.38321 2142 2132 -462970.1266864 2143 2132 -2777734.795656 2144 2132 44192040.0554 2145 2132 -2737270.309063 2146 2132 1541645.175575 2147 2132 -6819846.696327 2229 2132 10539814.37052 2230 2132 -8593755.37553 2231 2132 -17106970.31658 2232 2132 44746063.01646 2233 2132 -694433.6992574 2234 2132 -58719220.64359 2235 2132 11841897.70428 2236 2132 9288189.074786 2237 2132 -21171048.60074 2238 2132 57871.26589252 2239 2132 -34500021.48517 2240 2132 -41438476.99211 2241 2132 231485.0634617 2242 2132 -2777734.795662 2243 2132 -127043423.7988 2244 2132 57871.26589543 2245 2132 37277756.28083 2246 2132 -57757921.43384 2250 2132 -10597685.63642 2251 2132 -8663199.819997 2252 2132 -17363182.43788 2253 2132 -44977548.07992 2254 2132 -694433.6992576 2255 2132 -59807200.44138 2256 2132 -11899768.97017 2257 2132 9357633.519253 2258 2132 -21458826.37861 2133 2133 677810035.2011 2134 2133 36667397.55284 2135 2133 3125086.662505 2136 2133 20859938.00677 2137 2133 -36666959.01753 2138 2133 2702569.081896 2142 2133 -51881527.1465 2143 2133 -36666666.66065 2144 2133 2505785.245605 2145 2133 -136819701.2443 2146 2133 9.089708328247e-07 2147 2133 -462970.1266867 2148 2133 -51905201.38891 2149 2133 36666666.66065 2150 2133 -2702548.086863 2232 2133 -18752053.59425 2233 2133 9166666.66968 2234 2133 10539814.37052 2235 2133 -72726245.22972 2236 2133 -9166776.303506 2237 2133 44231216.90386 2241 2133 -1865379.213624 2242 2133 8.79168510437e-07 2243 2133 57871.26589221 2244 2133 70575234.21716 2245 2133 9166849.392726 2246 2133 781227.3439141 2247 2133 -20203256.3538 2248 2133 -9166739.758899 2249 2133 11899863.74724 2253 2133 -18848133.13973 2254 2133 -9166666.66968 2255 2133 -10597685.63642 2256 2133 -60775629.25067 2257 2133 -1.214444637299e-06 2258 2133 -45012270.30212 2259 2133 -20383999.6175 2260 2133 9166666.669679 2261 2133 -11899768.97017 2134 2134 578802727.5875 2135 2134 -8610918.562153 2136 2134 -36667105.19596 2137 2134 -107472939.8429 2138 2134 4611020.401354 2142 2134 -36666666.66065 2143 2134 -40880751.7318 2144 2134 1263867.397843 2145 2134 9.685754776001e-07 2146 2134 24514918.12315 2147 2134 -2777734.795656 2148 2134 36666666.66065 2149 2134 -40904425.97421 2150 2134 1513867.397816 2232 2134 9166666.66968 2233 2134 -16001859.73922 2234 2134 -8593755.37553 2235 2134 -9166739.758897 2236 2134 -29642168.10562 2237 2134 8204934.122165 2241 2134 1.229345798492e-06 2242 2134 -36698646.37071 2243 2134 -34527799.26293 2244 2134 9166849.392726 2245 2134 45823407.30156 2246 2134 -2152765.098743 2247 2134 -9166776.303508 2248 2134 -52286475.83204 2249 2134 37069600.58987 2253 2134 -9166666.669679 2254 2134 -16097939.2847 2255 2134 -8663199.819997 2256 2134 -1.445412635803e-06 2257 2134 -20441974.38895 2258 2134 -694433.6992576 2259 2134 9166666.669678 2260 2134 -17633805.76247 2261 2134 9357633.519253 2135 2135 623143279.9755 2136 2135 2737301.801614 2137 2135 5388806.115241 2138 2135 41364580.11227 2142 2135 2471063.023406 2143 2135 1236089.620084 2144 2135 -6756715.38321 2145 2135 -462970.1266864 2146 2135 -2777734.795656 2147 2135 44192040.0554 2148 2135 -2737270.309063 2149 2135 1541645.175575 2150 2135 -6819846.696327 2232 2135 10539814.37052 2233 2135 -8593755.37553 2234 2135 -17106970.31658 2235 2135 44196492.14387 2236 2135 8010523.495484 2237 2135 -58776166.2905 2241 2135 57871.26589252 2242 2135 -34500021.48517 2243 2135 -41438476.99211 2244 2135 781316.8545274 2245 2135 -2152693.49136 2246 2135 -107886912.3736 2247 2135 11899911.13577 2248 2135 37236269.31883 2249 2135 -57440830.58835 2253 2135 -10597685.63642 2254 2135 -8663199.819997 2255 2135 -17363182.43788 2256 2135 -44977548.07992 2257 2135 -694433.6992576 2258 2135 -59807200.44138 2259 2135 -11899768.97017 2260 2135 9357633.519253 2261 2135 -21458826.37861 2136 2136 391468094.7324 2137 2136 36666666.66066 2138 2136 2662170.757228 2145 2136 -51881527.1465 2146 2136 -36666666.66065 2147 2136 2505785.245605 2148 2136 -201885224.5025 2149 2136 -36666959.01753 2150 2136 -2662149.068675 2151 2136 13006025.1815 2152 2136 29333625.68539 2153 2136 -2152798.772422 2235 2136 -5106206.927443 2236 2136 11000109.63744 2237 2136 12682625.90274 2244 2136 -15511422.68773 2245 2136 -9166776.303506 2246 2136 -10539940.2691 2247 2136 31947394.33292 2248 2136 9166666.669681 2249 2136 9728225.899101 2256 2136 -18848133.13973 2257 2136 -9166666.66968 2258 2136 -10597685.63642 2259 2136 -74358253.63036 2260 2136 -9166739.758898 2261 2136 -45562288.72778 2262 2136 -8166156.136015 2263 2136 7333406.424962 2264 2136 -9496761.446847 2137 2137 336463888.7559 2138 2137 -6944377.543016 2145 2137 -36666666.66065 2146 2137 -40880751.7318 2147 2137 1263867.397843 2148 2137 -36667105.19596 2149 2137 -29548916.09098 2150 2137 -3847225.37168 2151 2137 44000438.52809 2152 2137 13006025.1815 2153 2137 2416691.307227 2235 2137 7333406.424962 2236 2137 -5106206.927443 2237 2137 -6763956.526763 2244 2137 -9166739.758897 2245 2137 -47594642.16596 2246 2137 -34569643.89832 2247 2137 9166666.66968 2248 2137 18196342.83202 2249 2137 5513941.008134 2256 2137 -9166666.669679 2257 2137 -16097939.2847 2258 2137 -8663199.819997 2259 2137 -9166776.303507 2260 2137 -31274176.50627 2261 2137 -9941080.210835 2262 2137 11000109.63744 2263 2137 -8166156.136015 2264 2137 11395946.69513 2138 2138 385940866.4962 2145 2138 2471063.023406 2146 2138 1236089.620084 2147 2138 -6756715.38321 2148 2138 -2662138.224395 2149 2138 -3097217.158151 2150 2138 2281351.682023 2151 2138 -3229198.158633 2152 2138 1611127.538151 2153 2138 34682733.81733 2235 2138 8455083.935158 2236 2138 -10145934.79014 2237 2138 -13616551.80652 2244 2138 -10539898.30291 2245 2138 -34736312.74845 2246 2138 -44929274.14549 2247 2138 -8223530.275229 2248 2138 -8847241.586827 2249 2138 -79300461.72417 2256 2138 -10597685.63642 2257 2138 -8663199.819997 2258 2138 -17363182.43788 2259 2138 -45527563.96779 2260 2138 -9746597.980308 2261 2138 -63128188.69225 2262 2138 -14245142.17027 2263 2138 7597297.796754 2264 2138 -21776416.36271 2139 2139 626081101.6128 2140 2139 7.033348083496e-06 2141 2139 925940.2533548 2142 2139 85765730.61463 2143 2139 -3.814697265625e-06 2144 2139 231485.0634534 2154 2139 -136819701.2443 2155 2139 9.089708328247e-07 2156 2139 -462970.1266867 2157 2139 -51905201.38891 2158 2139 36666666.66065 2159 2139 -2702548.086863 2238 2139 -60367636.82651 2239 2139 1.877546310425e-06 2240 2139 44780785.23866 2241 2139 -20276082.95081 2242 2139 -9166666.66968 2243 2139 11841897.70428 2250 2139 51054233.83102 2251 2139 1.788139343262e-06 2252 2139 231485.0634618 2253 2139 -7985170.87927 2254 2139 -2.771615982056e-06 2255 2139 57871.2658952 2265 2139 -60775629.25067 2266 2139 -1.214444637299e-06 2267 2139 -45012270.30212 2268 2139 -20383999.6175 2269 2139 9166666.669679 2270 2139 -11899768.97017 2140 2140 538074898.3386 2141 2140 -11110939.17715 2142 2140 -2.861022949219e-06 2143 2140 -53567337.94508 2144 2140 5555469.588581 2154 2140 9.685754776001e-07 2155 2140 24514918.12315 2156 2140 -2777734.795656 2157 2140 36666666.66065 2158 2140 -40904425.97421 2159 2140 1513867.397816 2238 2140 1.169741153717e-06 2239 2140 -20033981.96478 2240 2140 -694433.6992575 2241 2140 -9166666.66968 2242 2140 -17525889.09577 2243 2140 9288189.074786 2250 2140 1.966953277588e-06 2251 2140 29052683.00161 2252 2140 -2777734.795662 2253 2140 -2.190470695496e-06 2254 2140 -42818438.03636 2255 2140 37305534.05859 2265 2140 -1.445412635803e-06 2266 2140 -20441974.38895 2267 2140 -694433.6992576 2268 2140 9166666.669678 2269 2140 -17633805.76247 2270 2140 9357633.519253 2141 2141 616797415.4266 2142 2141 231485.0634536 2143 2141 5555469.588581 2144 2141 82852085.35441 2154 2141 -462970.1266864 2155 2141 -2777734.795656 2156 2141 44192040.0554 2157 2141 -2737270.309063 2158 2141 1541645.175575 2159 2141 -6819846.696327 2238 2141 44746063.01646 2239 2141 -694433.6992574 2240 2141 -58719220.64359 2241 2141 11841897.70428 2242 2141 9288189.074786 2243 2141 -21171048.60074 2250 2141 231485.0634617 2251 2141 -2777734.795662 2252 2141 -127043423.7988 2253 2141 57871.26589543 2254 2141 37277756.28083 2255 2141 -57757921.43384 2265 2141 -44977548.07992 2266 2141 -694433.6992576 2267 2141 -59807200.44138 2268 2141 -11899768.97017 2269 2141 9357633.519253 2270 2141 -21458826.37861 2142 2142 626081101.6128 2143 2142 7.033348083496e-06 2144 2142 925940.2533548 2145 2142 85765730.61463 2146 2142 -3.814697265625e-06 2147 2142 231485.0634534 2154 2142 -51881527.1465 2155 2142 -36666666.66065 2156 2142 2505785.245605 2157 2142 -136819701.2443 2158 2142 9.089708328247e-07 2159 2142 -462970.1266867 2160 2142 -51905201.38891 2161 2142 36666666.66065 2162 2142 -2702548.086863 2238 2142 -18752053.59425 2239 2142 9166666.66968 2240 2142 10539814.37052 2241 2142 -60367636.82651 2242 2142 1.877546310425e-06 2243 2142 44780785.23866 2244 2142 -20276082.95081 2245 2142 -9166666.66968 2246 2142 11841897.70428 2250 2142 -1865379.213624 2251 2142 8.79168510437e-07 2252 2142 57871.26589221 2253 2142 51054233.83102 2254 2142 1.788139343262e-06 2255 2142 231485.0634618 2256 2142 -7985170.87927 2257 2142 -2.771615982056e-06 2258 2142 57871.2658952 2265 2142 -18848133.13973 2266 2142 -9166666.66968 2267 2142 -10597685.63642 2268 2142 -60775629.25067 2269 2142 -1.214444637299e-06 2270 2142 -45012270.30212 2271 2142 -20383999.6175 2272 2142 9166666.669679 2273 2142 -11899768.97017 2143 2143 538074898.3386 2144 2143 -11110939.17715 2145 2143 -2.861022949219e-06 2146 2143 -53567337.94508 2147 2143 5555469.588581 2154 2143 -36666666.66065 2155 2143 -40880751.7318 2156 2143 1263867.397843 2157 2143 9.685754776001e-07 2158 2143 24514918.12315 2159 2143 -2777734.795656 2160 2143 36666666.66065 2161 2143 -40904425.97421 2162 2143 1513867.397816 2238 2143 9166666.66968 2239 2143 -16001859.73922 2240 2143 -8593755.37553 2241 2143 1.169741153717e-06 2242 2143 -20033981.96478 2243 2143 -694433.6992575 2244 2143 -9166666.66968 2245 2143 -17525889.09577 2246 2143 9288189.074786 2250 2143 1.229345798492e-06 2251 2143 -36698646.37071 2252 2143 -34527799.26293 2253 2143 1.966953277588e-06 2254 2143 29052683.00161 2255 2143 -2777734.795662 2256 2143 -2.190470695496e-06 2257 2143 -42818438.03636 2258 2143 37305534.05859 2265 2143 -9166666.669679 2266 2143 -16097939.2847 2267 2143 -8663199.819997 2268 2143 -1.445412635803e-06 2269 2143 -20441974.38895 2270 2143 -694433.6992576 2271 2143 9166666.669678 2272 2143 -17633805.76247 2273 2143 9357633.519253 2144 2144 616797415.4266 2145 2144 231485.0634536 2146 2144 5555469.588581 2147 2144 82852085.35441 2154 2144 2471063.023406 2155 2144 1236089.620084 2156 2144 -6756715.38321 2157 2144 -462970.1266864 2158 2144 -2777734.795656 2159 2144 44192040.0554 2160 2144 -2737270.309063 2161 2144 1541645.175575 2162 2144 -6819846.696327 2238 2144 10539814.37052 2239 2144 -8593755.37553 2240 2144 -17106970.31658 2241 2144 44746063.01646 2242 2144 -694433.6992574 2243 2144 -58719220.64359 2244 2144 11841897.70428 2245 2144 9288189.074786 2246 2144 -21171048.60074 2250 2144 57871.26589252 2251 2144 -34500021.48517 2252 2144 -41438476.99211 2253 2144 231485.0634617 2254 2144 -2777734.795662 2255 2144 -127043423.7988 2256 2144 57871.26589543 2257 2144 37277756.28083 2258 2144 -57757921.43384 2265 2144 -10597685.63642 2266 2144 -8663199.819997 2267 2144 -17363182.43788 2268 2144 -44977548.07992 2269 2144 -694433.6992576 2270 2144 -59807200.44138 2271 2144 -11899768.97017 2272 2144 9357633.519253 2273 2144 -21458826.37861 2145 2145 626081101.6128 2146 2145 7.033348083496e-06 2147 2145 925940.2533548 2148 2145 85765730.61463 2149 2145 -3.814697265625e-06 2150 2145 231485.0634534 2157 2145 -51881527.1465 2158 2145 -36666666.66065 2159 2145 2505785.245605 2160 2145 -136819701.2443 2161 2145 9.089708328247e-07 2162 2145 -462970.1266867 2163 2145 -51905201.38891 2164 2145 36666666.66065 2165 2145 -2702548.086863 2241 2145 -18752053.59425 2242 2145 9166666.66968 2243 2145 10539814.37052 2244 2145 -60367636.82651 2245 2145 1.877546310425e-06 2246 2145 44780785.23866 2247 2145 -20276082.95081 2248 2145 -9166666.66968 2249 2145 11841897.70428 2253 2145 -1865379.213624 2254 2145 8.79168510437e-07 2255 2145 57871.26589221 2256 2145 51054233.83102 2257 2145 1.788139343262e-06 2258 2145 231485.0634618 2259 2145 -7985170.87927 2260 2145 -2.771615982056e-06 2261 2145 57871.2658952 2268 2145 -18848133.13973 2269 2145 -9166666.66968 2270 2145 -10597685.63642 2271 2145 -60775629.25067 2272 2145 -1.214444637299e-06 2273 2145 -45012270.30212 2274 2145 -20383999.6175 2275 2145 9166666.669679 2276 2145 -11899768.97017 2146 2146 538074898.3386 2147 2146 -11110939.17715 2148 2146 -2.861022949219e-06 2149 2146 -53567337.94508 2150 2146 5555469.588581 2157 2146 -36666666.66065 2158 2146 -40880751.7318 2159 2146 1263867.397843 2160 2146 9.685754776001e-07 2161 2146 24514918.12315 2162 2146 -2777734.795656 2163 2146 36666666.66065 2164 2146 -40904425.97421 2165 2146 1513867.397816 2241 2146 9166666.66968 2242 2146 -16001859.73922 2243 2146 -8593755.37553 2244 2146 1.169741153717e-06 2245 2146 -20033981.96478 2246 2146 -694433.6992575 2247 2146 -9166666.66968 2248 2146 -17525889.09577 2249 2146 9288189.074786 2253 2146 1.229345798492e-06 2254 2146 -36698646.37071 2255 2146 -34527799.26293 2256 2146 1.966953277588e-06 2257 2146 29052683.00161 2258 2146 -2777734.795662 2259 2146 -2.190470695496e-06 2260 2146 -42818438.03636 2261 2146 37305534.05859 2268 2146 -9166666.669679 2269 2146 -16097939.2847 2270 2146 -8663199.819997 2271 2146 -1.445412635803e-06 2272 2146 -20441974.38895 2273 2146 -694433.6992576 2274 2146 9166666.669678 2275 2146 -17633805.76247 2276 2146 9357633.519253 2147 2147 616797415.4266 2148 2147 231485.0634536 2149 2147 5555469.588581 2150 2147 82852085.35441 2157 2147 2471063.023406 2158 2147 1236089.620084 2159 2147 -6756715.38321 2160 2147 -462970.1266864 2161 2147 -2777734.795656 2162 2147 44192040.0554 2163 2147 -2737270.309063 2164 2147 1541645.175575 2165 2147 -6819846.696327 2241 2147 10539814.37052 2242 2147 -8593755.37553 2243 2147 -17106970.31658 2244 2147 44746063.01646 2245 2147 -694433.6992574 2246 2147 -58719220.64359 2247 2147 11841897.70428 2248 2147 9288189.074786 2249 2147 -21171048.60074 2253 2147 57871.26589252 2254 2147 -34500021.48517 2255 2147 -41438476.99211 2256 2147 231485.0634617 2257 2147 -2777734.795662 2258 2147 -127043423.7988 2259 2147 57871.26589543 2260 2147 37277756.28083 2261 2147 -57757921.43384 2268 2147 -10597685.63642 2269 2147 -8663199.819997 2270 2147 -17363182.43788 2271 2147 -44977548.07992 2272 2147 -694433.6992576 2273 2147 -59807200.44138 2274 2147 -11899768.97017 2275 2147 9357633.519253 2276 2147 -21458826.37861 2148 2148 677810035.2011 2149 2148 36667397.55284 2150 2148 3125086.662505 2151 2148 20859938.00677 2152 2148 -36666959.01753 2153 2148 2702569.081896 2160 2148 -51881527.1465 2161 2148 -36666666.66065 2162 2148 2505785.245605 2163 2148 -136819701.2443 2164 2148 9.089708328247e-07 2165 2148 -462970.1266867 2166 2148 -51905201.38891 2167 2148 36666666.66065 2168 2148 -2702548.086863 2244 2148 -18752053.59425 2245 2148 9166666.66968 2246 2148 10539814.37052 2247 2148 -72726245.22972 2248 2148 -9166776.303506 2249 2148 44231216.90386 2256 2148 -1865379.213624 2257 2148 8.79168510437e-07 2258 2148 57871.26589221 2259 2148 70575234.21716 2260 2148 9166849.392726 2261 2148 781227.3439141 2262 2148 -20203256.3538 2263 2148 -9166739.758899 2264 2148 11899863.74724 2271 2148 -18848133.13973 2272 2148 -9166666.66968 2273 2148 -10597685.63642 2274 2148 -60775629.25067 2275 2148 -1.214444637299e-06 2276 2148 -45012270.30212 2277 2148 -20383999.6175 2278 2148 9166666.669679 2279 2148 -11899768.97017 2149 2149 578802727.5875 2150 2149 -8610918.562153 2151 2149 -36667105.19596 2152 2149 -107472939.8429 2153 2149 4611020.401354 2160 2149 -36666666.66065 2161 2149 -40880751.7318 2162 2149 1263867.397843 2163 2149 9.685754776001e-07 2164 2149 24514918.12315 2165 2149 -2777734.795656 2166 2149 36666666.66065 2167 2149 -40904425.97421 2168 2149 1513867.397816 2244 2149 9166666.66968 2245 2149 -16001859.73922 2246 2149 -8593755.37553 2247 2149 -9166739.758897 2248 2149 -29642168.10562 2249 2149 8204934.122165 2256 2149 1.229345798492e-06 2257 2149 -36698646.37071 2258 2149 -34527799.26293 2259 2149 9166849.392726 2260 2149 45823407.30156 2261 2149 -2152765.098743 2262 2149 -9166776.303508 2263 2149 -52286475.83204 2264 2149 37069600.58987 2271 2149 -9166666.669679 2272 2149 -16097939.2847 2273 2149 -8663199.819997 2274 2149 -1.445412635803e-06 2275 2149 -20441974.38895 2276 2149 -694433.6992576 2277 2149 9166666.669678 2278 2149 -17633805.76247 2279 2149 9357633.519253 2150 2150 623143279.9755 2151 2150 2737301.801614 2152 2150 5388806.115241 2153 2150 41364580.11227 2160 2150 2471063.023406 2161 2150 1236089.620084 2162 2150 -6756715.38321 2163 2150 -462970.1266864 2164 2150 -2777734.795656 2165 2150 44192040.0554 2166 2150 -2737270.309063 2167 2150 1541645.175575 2168 2150 -6819846.696327 2244 2150 10539814.37052 2245 2150 -8593755.37553 2246 2150 -17106970.31658 2247 2150 44196492.14387 2248 2150 8010523.495484 2249 2150 -58776166.2905 2256 2150 57871.26589252 2257 2150 -34500021.48517 2258 2150 -41438476.99211 2259 2150 781316.8545274 2260 2150 -2152693.49136 2261 2150 -107886912.3736 2262 2150 11899911.13577 2263 2150 37236269.31883 2264 2150 -57440830.58835 2271 2150 -10597685.63642 2272 2150 -8663199.819997 2273 2150 -17363182.43788 2274 2150 -44977548.07992 2275 2150 -694433.6992576 2276 2150 -59807200.44138 2277 2150 -11899768.97017 2278 2150 9357633.519253 2279 2150 -21458826.37861 2151 2151 391468094.7324 2152 2151 36666666.66066 2153 2151 2662170.757228 2163 2151 -51881527.1465 2164 2151 -36666666.66065 2165 2151 2505785.245605 2166 2151 -201885224.5025 2167 2151 -36666959.01753 2168 2151 -2662149.068675 2169 2151 13006025.1815 2170 2151 29333625.68539 2171 2151 -2152798.772422 2247 2151 -5106206.927443 2248 2151 11000109.63744 2249 2151 12682625.90274 2259 2151 -15511422.68773 2260 2151 -9166776.303506 2261 2151 -10539940.2691 2262 2151 31947394.33292 2263 2151 9166666.669681 2264 2151 9728225.899101 2274 2151 -18848133.13973 2275 2151 -9166666.66968 2276 2151 -10597685.63642 2277 2151 -74358253.63036 2278 2151 -9166739.758898 2279 2151 -45562288.72778 2280 2151 -8166156.136015 2281 2151 7333406.424962 2282 2151 -9496761.446847 2152 2152 336463888.7559 2153 2152 -6944377.543016 2163 2152 -36666666.66065 2164 2152 -40880751.7318 2165 2152 1263867.397843 2166 2152 -36667105.19596 2167 2152 -29548916.09098 2168 2152 -3847225.37168 2169 2152 44000438.52809 2170 2152 13006025.1815 2171 2152 2416691.307227 2247 2152 7333406.424962 2248 2152 -5106206.927443 2249 2152 -6763956.526763 2259 2152 -9166739.758897 2260 2152 -47594642.16596 2261 2152 -34569643.89832 2262 2152 9166666.66968 2263 2152 18196342.83202 2264 2152 5513941.008134 2274 2152 -9166666.669679 2275 2152 -16097939.2847 2276 2152 -8663199.819997 2277 2152 -9166776.303507 2278 2152 -31274176.50627 2279 2152 -9941080.210835 2280 2152 11000109.63744 2281 2152 -8166156.136015 2282 2152 11395946.69513 2153 2153 385940866.4962 2163 2153 2471063.023406 2164 2153 1236089.620084 2165 2153 -6756715.38321 2166 2153 -2662138.224395 2167 2153 -3097217.158151 2168 2153 2281351.682023 2169 2153 -3229198.158633 2170 2153 1611127.538151 2171 2153 34682733.81733 2247 2153 8455083.935158 2248 2153 -10145934.79014 2249 2153 -13616551.80652 2259 2153 -10539898.30291 2260 2153 -34736312.74845 2261 2153 -44929274.14549 2262 2153 -8223530.275229 2263 2153 -8847241.586827 2264 2153 -79300461.72417 2274 2153 -10597685.63642 2275 2153 -8663199.819997 2276 2153 -17363182.43788 2277 2153 -45527563.96779 2278 2153 -9746597.980308 2279 2153 -63128188.69225 2280 2153 -14245142.17027 2281 2153 7597297.796754 2282 2153 -21776416.36271 2154 2154 626081101.6128 2155 2154 7.033348083496e-06 2156 2154 925940.2533548 2157 2154 85765730.61463 2158 2154 -3.814697265625e-06 2159 2154 231485.0634534 2172 2154 -136819701.2443 2173 2154 9.089708328247e-07 2174 2154 -462970.1266867 2175 2154 -51905201.38891 2176 2154 36666666.66065 2177 2154 -2702548.086863 2250 2154 -60367636.82651 2251 2154 1.877546310425e-06 2252 2154 44780785.23866 2253 2154 -20276082.95081 2254 2154 -9166666.66968 2255 2154 11841897.70428 2265 2154 51054233.83102 2266 2154 1.788139343262e-06 2267 2154 231485.0634618 2268 2154 -7985170.87927 2269 2154 -2.771615982056e-06 2270 2154 57871.2658952 2283 2154 -60775629.25067 2284 2154 -1.214444637299e-06 2285 2154 -45012270.30212 2286 2154 -20383999.6175 2287 2154 9166666.669679 2288 2154 -11899768.97017 2155 2155 538074898.3386 2156 2155 -11110939.17715 2157 2155 -2.861022949219e-06 2158 2155 -53567337.94508 2159 2155 5555469.588581 2172 2155 9.685754776001e-07 2173 2155 24514918.12315 2174 2155 -2777734.795656 2175 2155 36666666.66065 2176 2155 -40904425.97421 2177 2155 1513867.397816 2250 2155 1.169741153717e-06 2251 2155 -20033981.96478 2252 2155 -694433.6992575 2253 2155 -9166666.66968 2254 2155 -17525889.09577 2255 2155 9288189.074786 2265 2155 1.966953277588e-06 2266 2155 29052683.00161 2267 2155 -2777734.795662 2268 2155 -2.190470695496e-06 2269 2155 -42818438.03636 2270 2155 37305534.05859 2283 2155 -1.445412635803e-06 2284 2155 -20441974.38895 2285 2155 -694433.6992576 2286 2155 9166666.669678 2287 2155 -17633805.76247 2288 2155 9357633.519253 2156 2156 616797415.4266 2157 2156 231485.0634536 2158 2156 5555469.588581 2159 2156 82852085.35441 2172 2156 -462970.1266864 2173 2156 -2777734.795656 2174 2156 44192040.0554 2175 2156 -2737270.309063 2176 2156 1541645.175575 2177 2156 -6819846.696327 2250 2156 44746063.01646 2251 2156 -694433.6992574 2252 2156 -58719220.64359 2253 2156 11841897.70428 2254 2156 9288189.074786 2255 2156 -21171048.60074 2265 2156 231485.0634617 2266 2156 -2777734.795662 2267 2156 -127043423.7988 2268 2156 57871.26589543 2269 2156 37277756.28083 2270 2156 -57757921.43384 2283 2156 -44977548.07992 2284 2156 -694433.6992576 2285 2156 -59807200.44138 2286 2156 -11899768.97017 2287 2156 9357633.519253 2288 2156 -21458826.37861 2157 2157 626081101.6128 2158 2157 7.033348083496e-06 2159 2157 925940.2533548 2160 2157 85765730.61463 2161 2157 -3.814697265625e-06 2162 2157 231485.0634534 2172 2157 -51881527.1465 2173 2157 -36666666.66065 2174 2157 2505785.245605 2175 2157 -136819701.2443 2176 2157 9.089708328247e-07 2177 2157 -462970.1266867 2178 2157 -51905201.38891 2179 2157 36666666.66065 2180 2157 -2702548.086863 2250 2157 -18752053.59425 2251 2157 9166666.66968 2252 2157 10539814.37052 2253 2157 -60367636.82651 2254 2157 1.877546310425e-06 2255 2157 44780785.23866 2256 2157 -20276082.95081 2257 2157 -9166666.66968 2258 2157 11841897.70428 2265 2157 -1865379.213624 2266 2157 8.79168510437e-07 2267 2157 57871.26589221 2268 2157 51054233.83102 2269 2157 1.788139343262e-06 2270 2157 231485.0634618 2271 2157 -7985170.87927 2272 2157 -2.771615982056e-06 2273 2157 57871.2658952 2283 2157 -18848133.13973 2284 2157 -9166666.66968 2285 2157 -10597685.63642 2286 2157 -60775629.25067 2287 2157 -1.214444637299e-06 2288 2157 -45012270.30212 2289 2157 -20383999.6175 2290 2157 9166666.669679 2291 2157 -11899768.97017 2158 2158 538074898.3386 2159 2158 -11110939.17715 2160 2158 -2.861022949219e-06 2161 2158 -53567337.94508 2162 2158 5555469.588581 2172 2158 -36666666.66065 2173 2158 -40880751.7318 2174 2158 1263867.397843 2175 2158 9.685754776001e-07 2176 2158 24514918.12315 2177 2158 -2777734.795656 2178 2158 36666666.66065 2179 2158 -40904425.97421 2180 2158 1513867.397816 2250 2158 9166666.66968 2251 2158 -16001859.73922 2252 2158 -8593755.37553 2253 2158 1.169741153717e-06 2254 2158 -20033981.96478 2255 2158 -694433.6992575 2256 2158 -9166666.66968 2257 2158 -17525889.09577 2258 2158 9288189.074786 2265 2158 1.229345798492e-06 2266 2158 -36698646.37071 2267 2158 -34527799.26293 2268 2158 1.966953277588e-06 2269 2158 29052683.00161 2270 2158 -2777734.795662 2271 2158 -2.190470695496e-06 2272 2158 -42818438.03636 2273 2158 37305534.05859 2283 2158 -9166666.669679 2284 2158 -16097939.2847 2285 2158 -8663199.819997 2286 2158 -1.445412635803e-06 2287 2158 -20441974.38895 2288 2158 -694433.6992576 2289 2158 9166666.669678 2290 2158 -17633805.76247 2291 2158 9357633.519253 2159 2159 616797415.4266 2160 2159 231485.0634536 2161 2159 5555469.588581 2162 2159 82852085.35441 2172 2159 2471063.023406 2173 2159 1236089.620084 2174 2159 -6756715.38321 2175 2159 -462970.1266864 2176 2159 -2777734.795656 2177 2159 44192040.0554 2178 2159 -2737270.309063 2179 2159 1541645.175575 2180 2159 -6819846.696327 2250 2159 10539814.37052 2251 2159 -8593755.37553 2252 2159 -17106970.31658 2253 2159 44746063.01646 2254 2159 -694433.6992574 2255 2159 -58719220.64359 2256 2159 11841897.70428 2257 2159 9288189.074786 2258 2159 -21171048.60074 2265 2159 57871.26589252 2266 2159 -34500021.48517 2267 2159 -41438476.99211 2268 2159 231485.0634617 2269 2159 -2777734.795662 2270 2159 -127043423.7988 2271 2159 57871.26589543 2272 2159 37277756.28083 2273 2159 -57757921.43384 2283 2159 -10597685.63642 2284 2159 -8663199.819997 2285 2159 -17363182.43788 2286 2159 -44977548.07992 2287 2159 -694433.6992576 2288 2159 -59807200.44138 2289 2159 -11899768.97017 2290 2159 9357633.519253 2291 2159 -21458826.37861 2160 2160 626081101.6128 2161 2160 7.033348083496e-06 2162 2160 925940.2533548 2163 2160 85765730.61463 2164 2160 -3.814697265625e-06 2165 2160 231485.0634534 2175 2160 -51881527.1465 2176 2160 -36666666.66065 2177 2160 2505785.245605 2178 2160 -136819701.2443 2179 2160 9.089708328247e-07 2180 2160 -462970.1266867 2181 2160 -51905201.38891 2182 2160 36666666.66065 2183 2160 -2702548.086863 2253 2160 -18752053.59425 2254 2160 9166666.66968 2255 2160 10539814.37052 2256 2160 -60367636.82651 2257 2160 1.877546310425e-06 2258 2160 44780785.23866 2259 2160 -20276082.95081 2260 2160 -9166666.66968 2261 2160 11841897.70428 2268 2160 -1865379.213624 2269 2160 8.79168510437e-07 2270 2160 57871.26589221 2271 2160 51054233.83102 2272 2160 1.788139343262e-06 2273 2160 231485.0634618 2274 2160 -7985170.87927 2275 2160 -2.771615982056e-06 2276 2160 57871.2658952 2286 2160 -18848133.13973 2287 2160 -9166666.66968 2288 2160 -10597685.63642 2289 2160 -60775629.25067 2290 2160 -1.214444637299e-06 2291 2160 -45012270.30212 2292 2160 -20383999.6175 2293 2160 9166666.669679 2294 2160 -11899768.97017 2161 2161 538074898.3386 2162 2161 -11110939.17715 2163 2161 -2.861022949219e-06 2164 2161 -53567337.94508 2165 2161 5555469.588581 2175 2161 -36666666.66065 2176 2161 -40880751.7318 2177 2161 1263867.397843 2178 2161 9.685754776001e-07 2179 2161 24514918.12315 2180 2161 -2777734.795656 2181 2161 36666666.66065 2182 2161 -40904425.97421 2183 2161 1513867.397816 2253 2161 9166666.66968 2254 2161 -16001859.73922 2255 2161 -8593755.37553 2256 2161 1.169741153717e-06 2257 2161 -20033981.96478 2258 2161 -694433.6992575 2259 2161 -9166666.66968 2260 2161 -17525889.09577 2261 2161 9288189.074786 2268 2161 1.229345798492e-06 2269 2161 -36698646.37071 2270 2161 -34527799.26293 2271 2161 1.966953277588e-06 2272 2161 29052683.00161 2273 2161 -2777734.795662 2274 2161 -2.190470695496e-06 2275 2161 -42818438.03636 2276 2161 37305534.05859 2286 2161 -9166666.669679 2287 2161 -16097939.2847 2288 2161 -8663199.819997 2289 2161 -1.445412635803e-06 2290 2161 -20441974.38895 2291 2161 -694433.6992576 2292 2161 9166666.669678 2293 2161 -17633805.76247 2294 2161 9357633.519253 2162 2162 616797415.4266 2163 2162 231485.0634536 2164 2162 5555469.588581 2165 2162 82852085.35441 2175 2162 2471063.023406 2176 2162 1236089.620084 2177 2162 -6756715.38321 2178 2162 -462970.1266864 2179 2162 -2777734.795656 2180 2162 44192040.0554 2181 2162 -2737270.309063 2182 2162 1541645.175575 2183 2162 -6819846.696327 2253 2162 10539814.37052 2254 2162 -8593755.37553 2255 2162 -17106970.31658 2256 2162 44746063.01646 2257 2162 -694433.6992574 2258 2162 -58719220.64359 2259 2162 11841897.70428 2260 2162 9288189.074786 2261 2162 -21171048.60074 2268 2162 57871.26589252 2269 2162 -34500021.48517 2270 2162 -41438476.99211 2271 2162 231485.0634617 2272 2162 -2777734.795662 2273 2162 -127043423.7988 2274 2162 57871.26589543 2275 2162 37277756.28083 2276 2162 -57757921.43384 2286 2162 -10597685.63642 2287 2162 -8663199.819997 2288 2162 -17363182.43788 2289 2162 -44977548.07992 2290 2162 -694433.6992576 2291 2162 -59807200.44138 2292 2162 -11899768.97017 2293 2162 9357633.519253 2294 2162 -21458826.37861 2163 2163 626081101.6128 2164 2163 7.033348083496e-06 2165 2163 925940.2533548 2166 2163 85765730.61463 2167 2163 -3.814697265625e-06 2168 2163 231485.0634534 2178 2163 -51881527.1465 2179 2163 -36666666.66065 2180 2163 2505785.245605 2181 2163 -136819701.2443 2182 2163 9.089708328247e-07 2183 2163 -462970.1266867 2184 2163 -51905201.38891 2185 2163 36666666.66065 2186 2163 -2702548.086863 2256 2163 -18752053.59425 2257 2163 9166666.66968 2258 2163 10539814.37052 2259 2163 -60367636.82651 2260 2163 1.877546310425e-06 2261 2163 44780785.23866 2262 2163 -20276082.95081 2263 2163 -9166666.66968 2264 2163 11841897.70428 2271 2163 -1865379.213624 2272 2163 8.79168510437e-07 2273 2163 57871.26589221 2274 2163 51054233.83102 2275 2163 1.788139343262e-06 2276 2163 231485.0634618 2277 2163 -7985170.87927 2278 2163 -2.771615982056e-06 2279 2163 57871.2658952 2289 2163 -18848133.13973 2290 2163 -9166666.66968 2291 2163 -10597685.63642 2292 2163 -60775629.25067 2293 2163 -1.214444637299e-06 2294 2163 -45012270.30212 2295 2163 -20383999.6175 2296 2163 9166666.669679 2297 2163 -11899768.97017 2164 2164 538074898.3386 2165 2164 -11110939.17715 2166 2164 -2.861022949219e-06 2167 2164 -53567337.94508 2168 2164 5555469.588581 2178 2164 -36666666.66065 2179 2164 -40880751.7318 2180 2164 1263867.397843 2181 2164 9.685754776001e-07 2182 2164 24514918.12315 2183 2164 -2777734.795656 2184 2164 36666666.66065 2185 2164 -40904425.97421 2186 2164 1513867.397816 2256 2164 9166666.66968 2257 2164 -16001859.73922 2258 2164 -8593755.37553 2259 2164 1.169741153717e-06 2260 2164 -20033981.96478 2261 2164 -694433.6992575 2262 2164 -9166666.66968 2263 2164 -17525889.09577 2264 2164 9288189.074786 2271 2164 1.229345798492e-06 2272 2164 -36698646.37071 2273 2164 -34527799.26293 2274 2164 1.966953277588e-06 2275 2164 29052683.00161 2276 2164 -2777734.795662 2277 2164 -2.190470695496e-06 2278 2164 -42818438.03636 2279 2164 37305534.05859 2289 2164 -9166666.669679 2290 2164 -16097939.2847 2291 2164 -8663199.819997 2292 2164 -1.445412635803e-06 2293 2164 -20441974.38895 2294 2164 -694433.6992576 2295 2164 9166666.669678 2296 2164 -17633805.76247 2297 2164 9357633.519253 2165 2165 616797415.4266 2166 2165 231485.0634536 2167 2165 5555469.588581 2168 2165 82852085.35441 2178 2165 2471063.023406 2179 2165 1236089.620084 2180 2165 -6756715.38321 2181 2165 -462970.1266864 2182 2165 -2777734.795656 2183 2165 44192040.0554 2184 2165 -2737270.309063 2185 2165 1541645.175575 2186 2165 -6819846.696327 2256 2165 10539814.37052 2257 2165 -8593755.37553 2258 2165 -17106970.31658 2259 2165 44746063.01646 2260 2165 -694433.6992574 2261 2165 -58719220.64359 2262 2165 11841897.70428 2263 2165 9288189.074786 2264 2165 -21171048.60074 2271 2165 57871.26589252 2272 2165 -34500021.48517 2273 2165 -41438476.99211 2274 2165 231485.0634617 2275 2165 -2777734.795662 2276 2165 -127043423.7988 2277 2165 57871.26589543 2278 2165 37277756.28083 2279 2165 -57757921.43384 2289 2165 -10597685.63642 2290 2165 -8663199.819997 2291 2165 -17363182.43788 2292 2165 -44977548.07992 2293 2165 -694433.6992576 2294 2165 -59807200.44138 2295 2165 -11899768.97017 2296 2165 9357633.519253 2297 2165 -21458826.37861 2166 2166 677810035.2011 2167 2166 36667397.55284 2168 2166 3125086.662505 2169 2166 20859938.00677 2170 2166 -36666959.01753 2171 2166 2702569.081896 2181 2166 -51881527.1465 2182 2166 -36666666.66065 2183 2166 2505785.245605 2184 2166 -136819701.2443 2185 2166 9.089708328247e-07 2186 2166 -462970.1266867 2187 2166 -51905201.38891 2188 2166 36666666.66065 2189 2166 -2702548.086863 2259 2166 -18752053.59425 2260 2166 9166666.66968 2261 2166 10539814.37052 2262 2166 -72726245.22972 2263 2166 -9166776.303506 2264 2166 44231216.90386 2274 2166 -1865379.213624 2275 2166 8.79168510437e-07 2276 2166 57871.26589221 2277 2166 70575234.21716 2278 2166 9166849.392726 2279 2166 781227.3439141 2280 2166 -20203256.3538 2281 2166 -9166739.758899 2282 2166 11899863.74724 2292 2166 -18848133.13973 2293 2166 -9166666.66968 2294 2166 -10597685.63642 2295 2166 -60775629.25067 2296 2166 -1.214444637299e-06 2297 2166 -45012270.30212 2298 2166 -20383999.6175 2299 2166 9166666.669679 2300 2166 -11899768.97017 2167 2167 578802727.5875 2168 2167 -8610918.562153 2169 2167 -36667105.19596 2170 2167 -107472939.8429 2171 2167 4611020.401354 2181 2167 -36666666.66065 2182 2167 -40880751.7318 2183 2167 1263867.397843 2184 2167 9.685754776001e-07 2185 2167 24514918.12315 2186 2167 -2777734.795656 2187 2167 36666666.66065 2188 2167 -40904425.97421 2189 2167 1513867.397816 2259 2167 9166666.66968 2260 2167 -16001859.73922 2261 2167 -8593755.37553 2262 2167 -9166739.758897 2263 2167 -29642168.10562 2264 2167 8204934.122165 2274 2167 1.229345798492e-06 2275 2167 -36698646.37071 2276 2167 -34527799.26293 2277 2167 9166849.392726 2278 2167 45823407.30156 2279 2167 -2152765.098743 2280 2167 -9166776.303508 2281 2167 -52286475.83204 2282 2167 37069600.58987 2292 2167 -9166666.669679 2293 2167 -16097939.2847 2294 2167 -8663199.819997 2295 2167 -1.445412635803e-06 2296 2167 -20441974.38895 2297 2167 -694433.6992576 2298 2167 9166666.669678 2299 2167 -17633805.76247 2300 2167 9357633.519253 2168 2168 623143279.9755 2169 2168 2737301.801614 2170 2168 5388806.115241 2171 2168 41364580.11227 2181 2168 2471063.023406 2182 2168 1236089.620084 2183 2168 -6756715.38321 2184 2168 -462970.1266864 2185 2168 -2777734.795656 2186 2168 44192040.0554 2187 2168 -2737270.309063 2188 2168 1541645.175575 2189 2168 -6819846.696327 2259 2168 10539814.37052 2260 2168 -8593755.37553 2261 2168 -17106970.31658 2262 2168 44196492.14387 2263 2168 8010523.495484 2264 2168 -58776166.2905 2274 2168 57871.26589252 2275 2168 -34500021.48517 2276 2168 -41438476.99211 2277 2168 781316.8545274 2278 2168 -2152693.49136 2279 2168 -107886912.3736 2280 2168 11899911.13577 2281 2168 37236269.31883 2282 2168 -57440830.58835 2292 2168 -10597685.63642 2293 2168 -8663199.819997 2294 2168 -17363182.43788 2295 2168 -44977548.07992 2296 2168 -694433.6992576 2297 2168 -59807200.44138 2298 2168 -11899768.97017 2299 2168 9357633.519253 2300 2168 -21458826.37861 2169 2169 396493735.9168 2170 2169 -24615960.06481 2171 2169 -1253254.124483 2184 2169 -51881527.1465 2185 2169 -36666666.66065 2186 2169 2505785.245605 2187 2169 -60876355.65992 2188 2169 24612478.72648 2189 2169 -274481.5008204 2190 2169 -176880452.1819 2191 2169 29336814.66686 2192 2169 -277822.6407411 2262 2169 -5106206.927443 2263 2169 11000109.63744 2264 2169 12682625.90274 2277 2169 -15511422.68773 2278 2169 -9166776.303506 2279 2169 -10539940.2691 2280 2169 47665090.09198 2281 2169 -6025687.958198 2282 2169 4998799.242218 2295 2169 -18848133.13973 2296 2169 -9166666.66968 2297 2169 -10597685.63642 2298 2169 -30685926.23396 2299 2169 6024859.53953 2300 2169 -26422475.28228 2301 2169 -44005330.74077 2302 2169 7334161.754413 2303 2169 -1631853.686012 2170 2170 667488218.5831 2171 2170 -10464919.5182 2184 2170 -36666666.66065 2185 2170 -40880751.7318 2186 2170 1263867.397843 2187 2170 24610738.05731 2188 2170 83897643.7762 2189 2170 -1992796.476061 2190 2170 44005222.00029 2191 2170 -475316831.8494 2192 2170 4194074.09632 2262 2170 7333406.424962 2263 2170 -5106206.927443 2264 2170 -6763956.526763 2277 2170 -9166739.758897 2278 2170 -47594642.16596 2279 2170 -34569643.89832 2280 2170 -6025687.958199 2281 2170 111708208.2815 2282 2170 1658363.194039 2295 2170 -9166666.669679 2296 2170 -16097939.2847 2297 2170 -8663199.819997 2298 2170 6024445.330197 2299 2170 5565061.370466 2300 2170 5481763.258292 2301 2170 11001242.63162 2302 2170 -114966410.9115 2303 2170 17983542.55927 2171 2171 430799078.9239 2184 2171 2471063.023406 2185 2171 1236089.620084 2186 2171 -6756715.38321 2187 2171 -1038349.313469 2188 2171 -1881646.106394 2189 2171 48412119.65877 2190 2171 -416733.9611113 2191 2171 4083003.025873 2192 2171 -173244826.151 2262 2171 8455083.935158 2263 2171 -10145934.79014 2264 2171 -13616551.80652 2277 2171 -10539898.30291 2278 2171 -34736312.74845 2279 2171 -44929274.14549 2280 2171 -5539432.672724 2281 2171 -6660470.145771 2282 2171 -26564808.1013 2295 2171 -10597685.63642 2296 2171 -8663199.819997 2297 2171 -17363182.43788 2298 2171 -26596081.38737 2299 2171 5565517.502875 2300 2171 -28451527.40463 2301 2171 -2447780.529017 2302 2171 17330703.15128 2303 2171 -46386468.4713 2172 2172 626081101.6128 2173 2172 7.033348083496e-06 2174 2172 925940.2533548 2175 2172 85765730.61463 2176 2172 -3.814697265625e-06 2177 2172 231485.0634534 2193 2172 -136819701.2443 2194 2172 9.089708328247e-07 2195 2172 -462970.1266867 2196 2172 -51905201.38891 2197 2172 36666666.66065 2198 2172 -2702548.086863 2265 2172 -60367636.82651 2266 2172 1.877546310425e-06 2267 2172 44780785.23866 2268 2172 -20276082.95081 2269 2172 -9166666.66968 2270 2172 11841897.70428 2283 2172 51054233.83102 2284 2172 1.788139343262e-06 2285 2172 231485.0634618 2286 2172 -7985170.87927 2287 2172 -2.771615982056e-06 2288 2172 57871.2658952 2304 2172 -60775629.25067 2305 2172 -1.214444637299e-06 2306 2172 -45012270.30212 2307 2172 -20383999.6175 2308 2172 9166666.669679 2309 2172 -11899768.97017 2173 2173 538074898.3386 2174 2173 -11110939.17715 2175 2173 -2.861022949219e-06 2176 2173 -53567337.94508 2177 2173 5555469.588581 2193 2173 9.685754776001e-07 2194 2173 24514918.12315 2195 2173 -2777734.795656 2196 2173 36666666.66065 2197 2173 -40904425.97421 2198 2173 1513867.397816 2265 2173 1.169741153717e-06 2266 2173 -20033981.96478 2267 2173 -694433.6992575 2268 2173 -9166666.66968 2269 2173 -17525889.09577 2270 2173 9288189.074786 2283 2173 1.966953277588e-06 2284 2173 29052683.00161 2285 2173 -2777734.795662 2286 2173 -2.190470695496e-06 2287 2173 -42818438.03636 2288 2173 37305534.05859 2304 2173 -1.445412635803e-06 2305 2173 -20441974.38895 2306 2173 -694433.6992576 2307 2173 9166666.669678 2308 2173 -17633805.76247 2309 2173 9357633.519253 2174 2174 616797415.4266 2175 2174 231485.0634536 2176 2174 5555469.588581 2177 2174 82852085.35441 2193 2174 -462970.1266864 2194 2174 -2777734.795656 2195 2174 44192040.0554 2196 2174 -2737270.309063 2197 2174 1541645.175575 2198 2174 -6819846.696327 2265 2174 44746063.01646 2266 2174 -694433.6992574 2267 2174 -58719220.64359 2268 2174 11841897.70428 2269 2174 9288189.074786 2270 2174 -21171048.60074 2283 2174 231485.0634617 2284 2174 -2777734.795662 2285 2174 -127043423.7988 2286 2174 57871.26589543 2287 2174 37277756.28083 2288 2174 -57757921.43384 2304 2174 -44977548.07992 2305 2174 -694433.6992576 2306 2174 -59807200.44138 2307 2174 -11899768.97017 2308 2174 9357633.519253 2309 2174 -21458826.37861 2175 2175 626081101.6128 2176 2175 7.033348083496e-06 2177 2175 925940.2533548 2178 2175 85765730.61463 2179 2175 -3.814697265625e-06 2180 2175 231485.0634534 2193 2175 -51881527.1465 2194 2175 -36666666.66065 2195 2175 2505785.245605 2196 2175 -136819701.2443 2197 2175 9.089708328247e-07 2198 2175 -462970.1266867 2199 2175 -51905201.38891 2200 2175 36666666.66065 2201 2175 -2702548.086863 2265 2175 -18752053.59425 2266 2175 9166666.66968 2267 2175 10539814.37052 2268 2175 -60367636.82651 2269 2175 1.877546310425e-06 2270 2175 44780785.23866 2271 2175 -20276082.95081 2272 2175 -9166666.66968 2273 2175 11841897.70428 2283 2175 -1865379.213624 2284 2175 8.79168510437e-07 2285 2175 57871.26589221 2286 2175 51054233.83102 2287 2175 1.788139343262e-06 2288 2175 231485.0634618 2289 2175 -7985170.87927 2290 2175 -2.771615982056e-06 2291 2175 57871.2658952 2304 2175 -18848133.13973 2305 2175 -9166666.66968 2306 2175 -10597685.63642 2307 2175 -60775629.25067 2308 2175 -1.214444637299e-06 2309 2175 -45012270.30212 2310 2175 -20383999.6175 2311 2175 9166666.669679 2312 2175 -11899768.97017 2176 2176 538074898.3386 2177 2176 -11110939.17715 2178 2176 -2.861022949219e-06 2179 2176 -53567337.94508 2180 2176 5555469.588581 2193 2176 -36666666.66065 2194 2176 -40880751.7318 2195 2176 1263867.397843 2196 2176 9.685754776001e-07 2197 2176 24514918.12315 2198 2176 -2777734.795656 2199 2176 36666666.66065 2200 2176 -40904425.97421 2201 2176 1513867.397816 2265 2176 9166666.66968 2266 2176 -16001859.73922 2267 2176 -8593755.37553 2268 2176 1.169741153717e-06 2269 2176 -20033981.96478 2270 2176 -694433.6992575 2271 2176 -9166666.66968 2272 2176 -17525889.09577 2273 2176 9288189.074786 2283 2176 1.229345798492e-06 2284 2176 -36698646.37071 2285 2176 -34527799.26293 2286 2176 1.966953277588e-06 2287 2176 29052683.00161 2288 2176 -2777734.795662 2289 2176 -2.190470695496e-06 2290 2176 -42818438.03636 2291 2176 37305534.05859 2304 2176 -9166666.669679 2305 2176 -16097939.2847 2306 2176 -8663199.819997 2307 2176 -1.445412635803e-06 2308 2176 -20441974.38895 2309 2176 -694433.6992576 2310 2176 9166666.669678 2311 2176 -17633805.76247 2312 2176 9357633.519253 2177 2177 616797415.4266 2178 2177 231485.0634536 2179 2177 5555469.588581 2180 2177 82852085.35441 2193 2177 2471063.023406 2194 2177 1236089.620084 2195 2177 -6756715.38321 2196 2177 -462970.1266864 2197 2177 -2777734.795656 2198 2177 44192040.0554 2199 2177 -2737270.309063 2200 2177 1541645.175575 2201 2177 -6819846.696327 2265 2177 10539814.37052 2266 2177 -8593755.37553 2267 2177 -17106970.31658 2268 2177 44746063.01646 2269 2177 -694433.6992574 2270 2177 -58719220.64359 2271 2177 11841897.70428 2272 2177 9288189.074786 2273 2177 -21171048.60074 2283 2177 57871.26589252 2284 2177 -34500021.48517 2285 2177 -41438476.99211 2286 2177 231485.0634617 2287 2177 -2777734.795662 2288 2177 -127043423.7988 2289 2177 57871.26589543 2290 2177 37277756.28083 2291 2177 -57757921.43384 2304 2177 -10597685.63642 2305 2177 -8663199.819997 2306 2177 -17363182.43788 2307 2177 -44977548.07992 2308 2177 -694433.6992576 2309 2177 -59807200.44138 2310 2177 -11899768.97017 2311 2177 9357633.519253 2312 2177 -21458826.37861 2178 2178 626081101.6128 2179 2178 7.033348083496e-06 2180 2178 925940.2533548 2181 2178 85765730.61463 2182 2178 -3.814697265625e-06 2183 2178 231485.0634534 2196 2178 -51881527.1465 2197 2178 -36666666.66065 2198 2178 2505785.245605 2199 2178 -136819701.2443 2200 2178 9.089708328247e-07 2201 2178 -462970.1266867 2202 2178 -51905201.38891 2203 2178 36666666.66065 2204 2178 -2702548.086863 2268 2178 -18752053.59425 2269 2178 9166666.66968 2270 2178 10539814.37052 2271 2178 -60367636.82651 2272 2178 1.877546310425e-06 2273 2178 44780785.23866 2274 2178 -20276082.95081 2275 2178 -9166666.66968 2276 2178 11841897.70428 2286 2178 -1865379.213624 2287 2178 8.79168510437e-07 2288 2178 57871.26589221 2289 2178 51054233.83102 2290 2178 1.788139343262e-06 2291 2178 231485.0634618 2292 2178 -7985170.87927 2293 2178 -2.771615982056e-06 2294 2178 57871.2658952 2307 2178 -18848133.13973 2308 2178 -9166666.66968 2309 2178 -10597685.63642 2310 2178 -60775629.25067 2311 2178 -1.214444637299e-06 2312 2178 -45012270.30212 2313 2178 -20383999.6175 2314 2178 9166666.669679 2315 2178 -11899768.97017 2179 2179 538074898.3386 2180 2179 -11110939.17715 2181 2179 -2.861022949219e-06 2182 2179 -53567337.94508 2183 2179 5555469.588581 2196 2179 -36666666.66065 2197 2179 -40880751.7318 2198 2179 1263867.397843 2199 2179 9.685754776001e-07 2200 2179 24514918.12315 2201 2179 -2777734.795656 2202 2179 36666666.66065 2203 2179 -40904425.97421 2204 2179 1513867.397816 2268 2179 9166666.66968 2269 2179 -16001859.73922 2270 2179 -8593755.37553 2271 2179 1.169741153717e-06 2272 2179 -20033981.96478 2273 2179 -694433.6992575 2274 2179 -9166666.66968 2275 2179 -17525889.09577 2276 2179 9288189.074786 2286 2179 1.229345798492e-06 2287 2179 -36698646.37071 2288 2179 -34527799.26293 2289 2179 1.966953277588e-06 2290 2179 29052683.00161 2291 2179 -2777734.795662 2292 2179 -2.190470695496e-06 2293 2179 -42818438.03636 2294 2179 37305534.05859 2307 2179 -9166666.669679 2308 2179 -16097939.2847 2309 2179 -8663199.819997 2310 2179 -1.445412635803e-06 2311 2179 -20441974.38895 2312 2179 -694433.6992576 2313 2179 9166666.669678 2314 2179 -17633805.76247 2315 2179 9357633.519253 2180 2180 616797415.4266 2181 2180 231485.0634536 2182 2180 5555469.588581 2183 2180 82852085.35441 2196 2180 2471063.023406 2197 2180 1236089.620084 2198 2180 -6756715.38321 2199 2180 -462970.1266864 2200 2180 -2777734.795656 2201 2180 44192040.0554 2202 2180 -2737270.309063 2203 2180 1541645.175575 2204 2180 -6819846.696327 2268 2180 10539814.37052 2269 2180 -8593755.37553 2270 2180 -17106970.31658 2271 2180 44746063.01646 2272 2180 -694433.6992574 2273 2180 -58719220.64359 2274 2180 11841897.70428 2275 2180 9288189.074786 2276 2180 -21171048.60074 2286 2180 57871.26589252 2287 2180 -34500021.48517 2288 2180 -41438476.99211 2289 2180 231485.0634617 2290 2180 -2777734.795662 2291 2180 -127043423.7988 2292 2180 57871.26589543 2293 2180 37277756.28083 2294 2180 -57757921.43384 2307 2180 -10597685.63642 2308 2180 -8663199.819997 2309 2180 -17363182.43788 2310 2180 -44977548.07992 2311 2180 -694433.6992576 2312 2180 -59807200.44138 2313 2180 -11899768.97017 2314 2180 9357633.519253 2315 2180 -21458826.37861 2181 2181 626081101.6128 2182 2181 7.033348083496e-06 2183 2181 925940.2533548 2184 2181 85765730.61463 2185 2181 -3.814697265625e-06 2186 2181 231485.0634534 2199 2181 -51881527.1465 2200 2181 -36666666.66065 2201 2181 2505785.245605 2202 2181 -136819701.2443 2203 2181 9.089708328247e-07 2204 2181 -462970.1266867 2205 2181 -51905201.38891 2206 2181 36666666.66065 2207 2181 -2702548.086863 2271 2181 -18752053.59425 2272 2181 9166666.66968 2273 2181 10539814.37052 2274 2181 -60367636.82651 2275 2181 1.877546310425e-06 2276 2181 44780785.23866 2277 2181 -20276082.95081 2278 2181 -9166666.66968 2279 2181 11841897.70428 2289 2181 -1865379.213624 2290 2181 8.79168510437e-07 2291 2181 57871.26589221 2292 2181 51054233.83102 2293 2181 1.788139343262e-06 2294 2181 231485.0634618 2295 2181 -7985170.87927 2296 2181 -2.771615982056e-06 2297 2181 57871.2658952 2310 2181 -18848133.13973 2311 2181 -9166666.66968 2312 2181 -10597685.63642 2313 2181 -60775629.25067 2314 2181 -1.214444637299e-06 2315 2181 -45012270.30212 2316 2181 -20383999.6175 2317 2181 9166666.669679 2318 2181 -11899768.97017 2182 2182 538074898.3386 2183 2182 -11110939.17715 2184 2182 -2.861022949219e-06 2185 2182 -53567337.94508 2186 2182 5555469.588581 2199 2182 -36666666.66065 2200 2182 -40880751.7318 2201 2182 1263867.397843 2202 2182 9.685754776001e-07 2203 2182 24514918.12315 2204 2182 -2777734.795656 2205 2182 36666666.66065 2206 2182 -40904425.97421 2207 2182 1513867.397816 2271 2182 9166666.66968 2272 2182 -16001859.73922 2273 2182 -8593755.37553 2274 2182 1.169741153717e-06 2275 2182 -20033981.96478 2276 2182 -694433.6992575 2277 2182 -9166666.66968 2278 2182 -17525889.09577 2279 2182 9288189.074786 2289 2182 1.229345798492e-06 2290 2182 -36698646.37071 2291 2182 -34527799.26293 2292 2182 1.966953277588e-06 2293 2182 29052683.00161 2294 2182 -2777734.795662 2295 2182 -2.190470695496e-06 2296 2182 -42818438.03636 2297 2182 37305534.05859 2310 2182 -9166666.669679 2311 2182 -16097939.2847 2312 2182 -8663199.819997 2313 2182 -1.445412635803e-06 2314 2182 -20441974.38895 2315 2182 -694433.6992576 2316 2182 9166666.669678 2317 2182 -17633805.76247 2318 2182 9357633.519253 2183 2183 616797415.4266 2184 2183 231485.0634536 2185 2183 5555469.588581 2186 2183 82852085.35441 2199 2183 2471063.023406 2200 2183 1236089.620084 2201 2183 -6756715.38321 2202 2183 -462970.1266864 2203 2183 -2777734.795656 2204 2183 44192040.0554 2205 2183 -2737270.309063 2206 2183 1541645.175575 2207 2183 -6819846.696327 2271 2183 10539814.37052 2272 2183 -8593755.37553 2273 2183 -17106970.31658 2274 2183 44746063.01646 2275 2183 -694433.6992574 2276 2183 -58719220.64359 2277 2183 11841897.70428 2278 2183 9288189.074786 2279 2183 -21171048.60074 2289 2183 57871.26589252 2290 2183 -34500021.48517 2291 2183 -41438476.99211 2292 2183 231485.0634617 2293 2183 -2777734.795662 2294 2183 -127043423.7988 2295 2183 57871.26589543 2296 2183 37277756.28083 2297 2183 -57757921.43384 2310 2183 -10597685.63642 2311 2183 -8663199.819997 2312 2183 -17363182.43788 2313 2183 -44977548.07992 2314 2183 -694433.6992576 2315 2183 -59807200.44138 2316 2183 -11899768.97017 2317 2183 9357633.519253 2318 2183 -21458826.37861 2184 2184 626081101.6128 2185 2184 7.033348083496e-06 2186 2184 925940.2533548 2187 2184 85765730.61463 2188 2184 -3.814697265625e-06 2189 2184 231485.0634534 2202 2184 -51881527.1465 2203 2184 -36666666.66065 2204 2184 2505785.245605 2205 2184 -136819701.2443 2206 2184 9.089708328247e-07 2207 2184 -462970.1266867 2208 2184 -51905201.38891 2209 2184 36666666.66065 2210 2184 -2702548.086863 2274 2184 -18752053.59425 2275 2184 9166666.66968 2276 2184 10539814.37052 2277 2184 -60367636.82651 2278 2184 1.877546310425e-06 2279 2184 44780785.23866 2280 2184 -20276082.95081 2281 2184 -9166666.66968 2282 2184 11841897.70428 2292 2184 -1865379.213624 2293 2184 8.79168510437e-07 2294 2184 57871.26589221 2295 2184 51054233.83102 2296 2184 1.788139343262e-06 2297 2184 231485.0634618 2298 2184 -7985170.87927 2299 2184 -2.771615982056e-06 2300 2184 57871.2658952 2313 2184 -18848133.13973 2314 2184 -9166666.66968 2315 2184 -10597685.63642 2316 2184 -60775629.25067 2317 2184 -1.214444637299e-06 2318 2184 -45012270.30212 2319 2184 -20383999.6175 2320 2184 9166666.669679 2321 2184 -11899768.97017 2185 2185 538074898.3386 2186 2185 -11110939.17715 2187 2185 -2.861022949219e-06 2188 2185 -53567337.94508 2189 2185 5555469.588581 2202 2185 -36666666.66065 2203 2185 -40880751.7318 2204 2185 1263867.397843 2205 2185 9.685754776001e-07 2206 2185 24514918.12315 2207 2185 -2777734.795656 2208 2185 36666666.66065 2209 2185 -40904425.97421 2210 2185 1513867.397816 2274 2185 9166666.66968 2275 2185 -16001859.73922 2276 2185 -8593755.37553 2277 2185 1.169741153717e-06 2278 2185 -20033981.96478 2279 2185 -694433.6992575 2280 2185 -9166666.66968 2281 2185 -17525889.09577 2282 2185 9288189.074786 2292 2185 1.229345798492e-06 2293 2185 -36698646.37071 2294 2185 -34527799.26293 2295 2185 1.966953277588e-06 2296 2185 29052683.00161 2297 2185 -2777734.795662 2298 2185 -2.190470695496e-06 2299 2185 -42818438.03636 2300 2185 37305534.05859 2313 2185 -9166666.669679 2314 2185 -16097939.2847 2315 2185 -8663199.819997 2316 2185 -1.445412635803e-06 2317 2185 -20441974.38895 2318 2185 -694433.6992576 2319 2185 9166666.669678 2320 2185 -17633805.76247 2321 2185 9357633.519253 2186 2186 616797415.4266 2187 2186 231485.0634536 2188 2186 5555469.588581 2189 2186 82852085.35441 2202 2186 2471063.023406 2203 2186 1236089.620084 2204 2186 -6756715.38321 2205 2186 -462970.1266864 2206 2186 -2777734.795656 2207 2186 44192040.0554 2208 2186 -2737270.309063 2209 2186 1541645.175575 2210 2186 -6819846.696327 2274 2186 10539814.37052 2275 2186 -8593755.37553 2276 2186 -17106970.31658 2277 2186 44746063.01646 2278 2186 -694433.6992574 2279 2186 -58719220.64359 2280 2186 11841897.70428 2281 2186 9288189.074786 2282 2186 -21171048.60074 2292 2186 57871.26589252 2293 2186 -34500021.48517 2294 2186 -41438476.99211 2295 2186 231485.0634617 2296 2186 -2777734.795662 2297 2186 -127043423.7988 2298 2186 57871.26589543 2299 2186 37277756.28083 2300 2186 -57757921.43384 2313 2186 -10597685.63642 2314 2186 -8663199.819997 2315 2186 -17363182.43788 2316 2186 -44977548.07992 2317 2186 -694433.6992576 2318 2186 -59807200.44138 2319 2186 -11899768.97017 2320 2186 9357633.519253 2321 2186 -21458826.37861 2187 2187 529269027.9738 2188 2187 15976779.95389 2189 2187 309229.3959292 2190 2187 -95009984.98826 2191 2187 -75445884.18699 2192 2187 604974.9505656 2205 2187 -51881527.1465 2206 2187 -36666666.66065 2207 2187 2505785.245605 2208 2187 -86033365.36057 2209 2187 24063656.22554 2210 2187 -110868.0321211 2211 2187 -45738405.09723 2212 2187 10794709.95026 2213 2187 -181650.9566633 2277 2187 -18752053.59425 2278 2187 9166666.66968 2279 2187 10539814.37052 2280 2187 -30197821.22333 2281 2187 6024445.330198 2282 2187 26095078.18734 2295 2187 -1865379.213624 2296 2187 8.79168510437e-07 2297 2187 57871.26589221 2298 2187 61387852.24502 2299 2187 4122392.261682 2300 2187 24731.18804856 2301 2187 -36271111.37421 2302 2187 -18861429.14012 2303 2187 11687357.04074 2316 2187 -18848133.13973 2317 2187 -9166666.66968 2318 2187 -10597685.63642 2319 2187 -45324581.42976 2320 2187 6015914.059347 2321 2187 -35313654.50317 2322 2187 -18251664.62718 2323 2187 2698677.488894 2324 2187 -1659648.850827 2188 2188 646827584.356 2189 2188 -8175535.550103 2190 2188 -75447624.85616 2191 2188 -250684995.8489 2192 2188 1581995.23501 2205 2188 -36666666.66065 2206 2188 -40880751.7318 2207 2188 1263867.397843 2208 2188 24063656.22554 2209 2188 19704498.54099 2210 2188 -1263948.6007 2211 2188 10794709.95026 2212 2188 -140802296.2262 2213 2188 1044821.700929 2277 2188 9166666.66968 2278 2188 -16001859.73922 2279 2188 -8593755.37553 2280 2188 6024859.539531 2281 2188 6053166.381108 2282 2188 -6470970.256034 2295 2188 1.229345798492e-06 2296 2188 -36698646.37071 2297 2188 -34527799.26293 2298 2188 4122392.261681 2299 2188 90719798.19174 2300 2188 -2085944.824517 2301 2188 -18861843.34945 2302 2188 -75189658.67279 2303 2188 36709375.12006 2316 2188 -9166666.669679 2317 2188 -16097939.2847 2318 2188 -8663199.819997 2319 2188 6015914.059347 2320 2188 -18890115.44135 2321 2188 7371512.847656 2322 2188 2698677.488894 2323 2188 -42017637.42113 2324 2188 16927872.0975 2189 2189 522481518.7437 2190 2189 570275.1598561 2191 2189 1609813.358331 2192 2189 -60302093.42892 2205 2189 2471063.023406 2206 2189 1236089.620084 2207 2189 -6756715.38321 2208 2189 -978923.5875342 2209 2189 -1291726.378473 2210 2189 48623486.51979 2211 2189 -251095.4010623 2212 2189 1044821.700929 2213 2189 -32250770.90951 2277 2189 10539814.37052 2278 2189 -8593755.37553 2279 2189 -17106970.31658 2280 2189 26268684.29243 2281 2189 -6442789.689586 2282 2189 -27149914.04291 2295 2189 57871.26589252 2296 2189 -34500021.48517 2297 2189 -41438476.99211 2298 2189 302685.3268968 2299 2189 -1863581.488333 2300 2189 -59214836.48893 2301 2189 11826339.43718 2302 2189 36764598.70127 2303 2189 -48458702.44161 2316 2189 -10597685.63642 2317 2189 -8663199.819997 2318 2189 -17363182.43788 2319 2189 -35487265.61249 2320 2189 7371512.849165 2321 2189 -51354101.90813 2322 2189 -1659648.850827 2323 2189 16927872.0975 2324 2189 -26241528.32399 2190 2190 542046808.038 2191 2190 16985417.11376 2192 2190 -203184.6143076 2208 2190 -53262133.98087 2209 2190 -32705759.54262 2210 2190 337518.2011556 2211 2190 32482202.95367 2212 2190 38534285.18882 2213 2190 -151182.9762473 2214 2190 64489952.93444 2215 2190 -20356855.82223 2216 2190 2495.307171345 2217 2190 -1371677.705903 2218 2190 28985315.91813 2219 2190 -69742.67196767 2280 2190 -43496281.76604 2281 2190 11001242.63162 2282 2190 2239415.141139 2298 2190 -35390519.45059 2299 2190 -18861843.34945 2300 2190 -11445717.33882 2301 2190 25247473.61597 2302 2190 4229179.830355 2303 2190 8829304.168334 2319 2190 -19804774.09007 2320 2190 -8176439.889684 2321 2190 -11139057.95335 2322 2190 -42011868.47821 2323 2190 9621398.332572 2324 2190 -44047471.98855 2325 2190 -23061861.42779 2326 2190 -5072039.507889 2327 2190 13503023.50219 2328 2190 -17423481.8086 2329 2190 7258501.952479 2330 2190 -10890051.08655 2191 2191 925016566.7777 2192 2191 -5117964.511316 2208 2191 -32705759.54262 2209 2191 -17400227.63301 2210 2191 -74400.58715915 2211 2191 38534285.18882 2212 2191 160501823.252 2213 2191 -572894.5814486 2214 2191 -5690189.15797 2215 2191 -6138249.160739 2216 2191 57430.73998052 2217 2191 28985315.91813 2218 2191 -23483370.46853 2219 2191 70407.33895533 2280 2191 7334161.754413 2281 2191 -114457361.9368 2282 2191 -15381325.04617 2298 2191 -18861429.14012 2299 2191 -74309066.74917 2300 2191 -35931916.41689 2301 2191 4229179.830354 2302 2191 117298061.0399 2303 2191 -628830.5409434 2319 2191 -8176439.889684 2320 2191 -10839297.49869 2321 2191 -8997766.816414 2322 2191 9621398.332572 2323 2191 -9995068.119689 2324 2191 7544317.16766 2325 2191 -1405372.840019 2326 2191 -40723022.92627 2327 2191 33347675.24885 2328 2191 7258501.952479 2329 2191 -22915557.21458 2330 2191 16684227.69178 2192 2192 705606013.3235 2208 2192 302795.9789559 2209 2192 -102178.3649187 2210 2192 -626812.8042064 2211 2192 -255349.6428957 2212 2192 -600672.359222 2213 2192 193995415.907 2214 2192 2495.307174325 2215 2192 57430.73998049 2216 2192 126628346.7421 2217 2192 -69742.6719339 2218 2192 70407.33895537 2219 2192 41263196.59584 2280 2192 1492943.427426 2281 2192 -15978626.85393 2282 2192 -45029004.53869 2298 2192 -11306745.62719 2299 2192 -35876711.49758 2300 2192 -46110457.31193 2301 2192 -8844029.162097 2302 2192 -1768543.01006 2303 2192 -114110745.5777 2319 2192 -11139057.95335 2320 2192 -8997766.816414 2321 2192 -17461344.76991 2322 2192 -44116916.43301 2323 2192 7544317.169169 2324 2192 -85088216.89009 2325 2192 5378023.50137 2326 2192 33347675.24885 2327 2192 -72887043.63418 2328 2192 -10890051.08655 2329 2192 16684227.69178 2330 2192 -35156689.69169 2193 2193 313040550.8064 2194 2193 3.218650817871e-06 2195 2193 462970.1266764 2196 2193 42883259.87802 2197 2193 7333333.332129 2198 2193 -318285.2460207 2283 2193 -60367636.82651 2284 2193 1.877546310425e-06 2285 2193 44780785.23866 2286 2193 -20276082.95081 2287 2193 -9166666.66968 2288 2193 11841897.70428 2304 2193 25526722.3448 2305 2193 -5.960464477539e-08 2306 2193 -8946896.355626 2307 2193 -3992585.439634 2308 2193 1833333.333934 2309 2193 -2345231.034498 2194 2194 269037449.1693 2195 2194 -5555469.588573 2196 2194 -7333333.332131 2197 2194 -26783274.40183 2198 2194 2749957.016519 2283 2194 1.169741153717e-06 2284 2194 -20033981.96478 2285 2194 -694433.6992575 2286 2194 -9166666.66968 2287 2194 -17525889.09577 2288 2194 9288189.074786 2304 2194 6.556510925293e-07 2305 2194 14525946.9301 2306 2194 -1388867.397833 2307 2194 -1833333.333937 2308 2194 -21409219.01818 2309 2194 18645822.58485 2195 2195 308398707.7133 2196 2195 723381.420473 2197 2195 2805512.572065 2198 2195 41427094.86576 2283 2195 44746063.01646 2284 2195 -694433.6992574 2285 2195 -58719220.64359 2286 2195 11841897.70428 2287 2195 9288189.074786 2288 2195 -21171048.60074 2304 2195 9004770.308089 2305 2195 -1388867.397833 2306 2195 -63522764.08798 2307 2195 2403102.300394 2308 2195 18645822.58486 2309 2195 -28878960.71692 2196 2196 313040550.8064 2197 2196 3.218650817871e-06 2198 2196 462970.1266764 2199 2196 42883259.87802 2200 2196 7333333.332129 2201 2196 -318285.2460207 2283 2196 -18752053.59425 2284 2196 9166666.66968 2285 2196 10539814.37052 2286 2196 -60367636.82651 2287 2196 1.877546310425e-06 2288 2196 44780785.23866 2289 2196 -20276082.95081 2290 2196 -9166666.66968 2291 2196 11841897.70428 2304 2196 -932689.6068121 2305 2196 -1833333.333935 2306 2196 -2084814.367748 2307 2196 25526722.3448 2308 2196 -5.960464477539e-08 2309 2196 -8946896.355626 2310 2196 -3992585.439634 2311 2196 1833333.333934 2312 2196 -2345231.034498 2197 2197 269037449.1693 2198 2197 -5555469.588573 2199 2197 -7333333.332131 2200 2197 -26783274.40183 2201 2197 2749957.016519 2283 2197 9166666.66968 2284 2197 -16001859.73922 2285 2197 -8593755.37553 2286 2197 1.169741153717e-06 2287 2197 -20033981.96478 2288 2197 -694433.6992575 2289 2197 -9166666.66968 2290 2197 -17525889.09577 2291 2197 9288189.074786 2304 2197 1833333.333937 2305 2197 -18349323.18536 2306 2197 -17256955.18702 2307 2197 6.556510925293e-07 2308 2197 14525946.9301 2309 2197 -1388867.397833 2310 2197 -1833333.333937 2311 2197 -21409219.01818 2312 2197 18645822.58485 2198 2198 308398707.7133 2199 2198 723381.420473 2200 2198 2805512.572065 2201 2198 41427094.86576 2283 2198 10539814.37052 2284 2198 -8593755.37553 2285 2198 -17106970.31658 2286 2198 44746063.01646 2287 2198 -694433.6992574 2288 2198 -58719220.64359 2289 2198 11841897.70428 2290 2198 9288189.074786 2291 2198 -21171048.60074 2304 2198 2142685.63364 2305 2198 -17256955.18703 2306 2198 -20719238.49606 2307 2198 9004770.308089 2308 2198 -1388867.397833 2309 2198 -63522764.08798 2310 2198 2403102.300394 2311 2198 18645822.58486 2312 2198 -28878960.71692 2199 2199 313040550.8064 2200 2199 3.218650817871e-06 2201 2199 462970.1266764 2202 2199 42883259.87802 2203 2199 7333333.332129 2204 2199 -318285.2460207 2286 2199 -18752053.59425 2287 2199 9166666.66968 2288 2199 10539814.37052 2289 2199 -60367636.82651 2290 2199 1.877546310425e-06 2291 2199 44780785.23866 2292 2199 -20276082.95081 2293 2199 -9166666.66968 2294 2199 11841897.70428 2307 2199 -932689.6068121 2308 2199 -1833333.333935 2309 2199 -2084814.367748 2310 2199 25526722.3448 2311 2199 -5.960464477539e-08 2312 2199 -8946896.355626 2313 2199 -3992585.439634 2314 2199 1833333.333934 2315 2199 -2345231.034498 2200 2200 269037449.1693 2201 2200 -5555469.588573 2202 2200 -7333333.332131 2203 2200 -26783274.40183 2204 2200 2749957.016519 2286 2200 9166666.66968 2287 2200 -16001859.73922 2288 2200 -8593755.37553 2289 2200 1.169741153717e-06 2290 2200 -20033981.96478 2291 2200 -694433.6992575 2292 2200 -9166666.66968 2293 2200 -17525889.09577 2294 2200 9288189.074786 2307 2200 1833333.333937 2308 2200 -18349323.18536 2309 2200 -17256955.18702 2310 2200 6.556510925293e-07 2311 2200 14525946.9301 2312 2200 -1388867.397833 2313 2200 -1833333.333937 2314 2200 -21409219.01818 2315 2200 18645822.58485 2201 2201 308398707.7133 2202 2201 723381.420473 2203 2201 2805512.572065 2204 2201 41427094.86576 2286 2201 10539814.37052 2287 2201 -8593755.37553 2288 2201 -17106970.31658 2289 2201 44746063.01646 2290 2201 -694433.6992574 2291 2201 -58719220.64359 2292 2201 11841897.70428 2293 2201 9288189.074786 2294 2201 -21171048.60074 2307 2201 2142685.63364 2308 2201 -17256955.18703 2309 2201 -20719238.49606 2310 2201 9004770.308089 2311 2201 -1388867.397833 2312 2201 -63522764.08798 2313 2201 2403102.300394 2314 2201 18645822.58486 2315 2201 -28878960.71692 2202 2202 313040550.8064 2203 2202 3.218650817871e-06 2204 2202 462970.1266764 2205 2202 42883259.87802 2206 2202 7333333.332129 2207 2202 -318285.2460207 2289 2202 -18752053.59425 2290 2202 9166666.66968 2291 2202 10539814.37052 2292 2202 -60367636.82651 2293 2202 1.877546310425e-06 2294 2202 44780785.23866 2295 2202 -20276082.95081 2296 2202 -9166666.66968 2297 2202 11841897.70428 2310 2202 -932689.6068121 2311 2202 -1833333.333935 2312 2202 -2084814.367748 2313 2202 25526722.3448 2314 2202 -5.960464477539e-08 2315 2202 -8946896.355626 2316 2202 -3992585.439634 2317 2202 1833333.333934 2318 2202 -2345231.034498 2203 2203 269037449.1693 2204 2203 -5555469.588573 2205 2203 -7333333.332131 2206 2203 -26783274.40183 2207 2203 2749957.016519 2289 2203 9166666.66968 2290 2203 -16001859.73922 2291 2203 -8593755.37553 2292 2203 1.169741153717e-06 2293 2203 -20033981.96478 2294 2203 -694433.6992575 2295 2203 -9166666.66968 2296 2203 -17525889.09577 2297 2203 9288189.074786 2310 2203 1833333.333937 2311 2203 -18349323.18536 2312 2203 -17256955.18702 2313 2203 6.556510925293e-07 2314 2203 14525946.9301 2315 2203 -1388867.397833 2316 2203 -1833333.333937 2317 2203 -21409219.01818 2318 2203 18645822.58485 2204 2204 308398707.7133 2205 2204 723381.420473 2206 2204 2805512.572065 2207 2204 41427094.86576 2289 2204 10539814.37052 2290 2204 -8593755.37553 2291 2204 -17106970.31658 2292 2204 44746063.01646 2293 2204 -694433.6992574 2294 2204 -58719220.64359 2295 2204 11841897.70428 2296 2204 9288189.074786 2297 2204 -21171048.60074 2310 2204 2142685.63364 2311 2204 -17256955.18703 2312 2204 -20719238.49606 2313 2204 9004770.308089 2314 2204 -1388867.397833 2315 2204 -63522764.08798 2316 2204 2403102.300394 2317 2204 18645822.58486 2318 2204 -28878960.71692 2205 2205 313040550.8064 2206 2205 3.218650817871e-06 2207 2205 462970.1266764 2208 2205 42883259.87802 2209 2205 7333333.332129 2210 2205 -318285.2460207 2292 2205 -18752053.59425 2293 2205 9166666.66968 2294 2205 10539814.37052 2295 2205 -60367636.82651 2296 2205 1.877546310425e-06 2297 2205 44780785.23866 2298 2205 -20276082.95081 2299 2205 -9166666.66968 2300 2205 11841897.70428 2313 2205 -932689.6068121 2314 2205 -1833333.333935 2315 2205 -2084814.367748 2316 2205 25526722.3448 2317 2205 -5.960464477539e-08 2318 2205 -8946896.355626 2319 2205 -3992585.439634 2320 2205 1833333.333934 2321 2205 -2345231.034498 2206 2206 269037449.1693 2207 2206 -5555469.588573 2208 2206 -7333333.332131 2209 2206 -26783274.40183 2210 2206 2749957.016519 2292 2206 9166666.66968 2293 2206 -16001859.73922 2294 2206 -8593755.37553 2295 2206 1.169741153717e-06 2296 2206 -20033981.96478 2297 2206 -694433.6992575 2298 2206 -9166666.66968 2299 2206 -17525889.09577 2300 2206 9288189.074786 2313 2206 1833333.333937 2314 2206 -18349323.18536 2315 2206 -17256955.18702 2316 2206 6.556510925293e-07 2317 2206 14525946.9301 2318 2206 -1388867.397833 2319 2206 -1833333.333937 2320 2206 -21409219.01818 2321 2206 18645822.58485 2207 2207 308398707.7133 2208 2207 723381.420473 2209 2207 2805512.572065 2210 2207 41427094.86576 2292 2207 10539814.37052 2293 2207 -8593755.37553 2294 2207 -17106970.31658 2295 2207 44746063.01646 2296 2207 -694433.6992574 2297 2207 -58719220.64359 2298 2207 11841897.70428 2299 2207 9288189.074786 2300 2207 -21171048.60074 2313 2207 2142685.63364 2314 2207 -17256955.18703 2315 2207 -20719238.49606 2316 2207 9004770.308089 2317 2207 -1388867.397833 2318 2207 -63522764.08798 2319 2207 2403102.300394 2320 2207 18645822.58486 2321 2207 -28878960.71692 2208 2208 311501301.9278 2209 2208 3961702.031803 2210 2208 2461349.04567 2211 2208 -4984022.060376 2212 2208 -24652932.04324 2213 2208 367556.3402904 2295 2208 -18752053.59425 2296 2208 9166666.66968 2297 2208 10539814.37052 2298 2208 -44778234.89159 2299 2208 6015914.059352 2300 2208 35041206.59625 2301 2208 -20008769.25006 2302 2208 -8176439.889681 2303 2208 11299136.49846 2316 2208 -932689.6068121 2317 2208 -1833333.333935 2318 2208 -2084814.367748 2319 2208 25141334.84086 2320 2208 990425.5084367 2321 2208 -8447023.847856 2322 2208 -17627581.50065 2323 2208 -6163233.013846 2324 2208 7435569.639298 2209 2209 292367764.6648 2210 2209 -3560498.398243 2211 2209 -39319598.70751 2212 2209 -68784496.1816 2213 2209 607245.3940165 2295 2209 9166666.66968 2296 2209 -16001859.73922 2297 2209 -8593755.37553 2298 2209 6015914.059351 2299 2209 -18343768.90317 2300 2209 -8010431.594268 2301 2209 -8176439.889681 2302 2209 -11043292.65868 2303 2209 8953622.07837 2316 2209 1833333.333937 2317 2209 -18349323.18536 2318 2209 -17256955.18702 2319 2209 990425.5084375 2320 2209 20357950.52274 2321 2209 -890124.6000073 2322 2209 -9829899.681717 2323 2209 -33577700.03881 2324 2209 25797644.67844 2210 2210 314119300.5055 2211 2210 541167.4513703 2212 2210 635023.1717897 2213 2210 25143014.98303 2295 2210 10539814.37052 2296 2210 -8593755.37553 2297 2210 -17106970.31658 2298 2210 35214817.70936 2299 2210 -8010431.592745 2300 2210 -49897177.80632 2301 2210 11299136.49846 2302 2210 8953622.07837 2303 2210 -18005331.86323 2316 2210 2142685.63364 2317 2210 -17256955.18703 2318 2210 -20719238.49606 2319 2210 9504087.260305 2320 2210 -890124.6000072 2321 2210 -62094149.98014 2322 2210 11975291.86111 2323 2210 25797644.67693 2324 2210 -37398448.87766 2211 2211 355470652.7224 2212 2211 44707168.10431 2213 2211 -30735.96254444 2214 2211 -68134344.3616 2215 2211 -44348017.40317 2216 2211 103868.4391181 2217 2211 15735336.29641 2218 2211 -10368547.13271 2219 2211 31034.00482726 2298 2211 -17800014.26928 2299 2211 2698677.488893 2300 2211 1551462.261342 2301 2211 -41858908.40872 2302 2211 9621398.332578 2303 2211 43971972.44142 2319 2211 -16877239.2765 2320 2211 -9829899.681722 2321 2211 -11739430.35753 2322 2211 -6568201.151123 2323 2211 11145274.60427 2324 2211 -8861558.763805 2325 2211 -34037759.59183 2326 2211 -11074831.38688 2327 2211 20338421.14593 2328 2211 -24974899.08211 2329 2211 -2560619.357143 2330 2211 7273022.161583 2212 2212 438088992.7212 2213 2212 -1373778.468112 2214 2212 -44348017.40317 2215 2212 -48519370.46442 2216 2212 70407.33895519 2217 2212 -25035213.79697 2218 2212 -55653232.64768 2219 2212 224198.6157019 2298 2212 2698677.488893 2299 2212 -41565987.06324 2300 2212 -16405461.24678 2301 2212 9621398.332577 2302 2212 -9842108.050208 2303 2212 -7837627.274264 2319 2212 -6163233.01385 2320 2212 -32827357.81467 2321 2212 -25487077.53535 2322 2212 11145274.60427 2323 2212 14082110.90991 2324 2212 -343297.1207862 2325 2212 -11074831.38688 2326 2212 -29145911.38329 2327 2212 16684227.69178 2328 2212 -6227286.025014 2329 2212 -42817768.37808 2330 2212 33389235.48538 2213 2213 485869158.3822 2214 2213 103868.4391181 2215 2213 70407.33895515 2216 2213 16227196.59995 2217 2213 100478.4492579 2218 2213 224198.6157018 2219 2213 70566439.57932 2298 2213 1551462.261342 2299 2213 -16405461.24678 2300 2213 -25037127.36958 2301 2213 43902527.99702 2302 2213 -7837627.272742 2303 2213 -84680323.37147 2319 2213 -7303874.802406 2320 2213 -25487077.53687 2321 2213 -35397536.2799 2322 2213 8672885.677761 2323 2213 -343297.120786 2324 2213 -132858416.3097 2325 2213 20338421.14593 2326 2213 16684227.69178 2327 2213 -41387043.8604 2328 2213 11639411.05376 2329 2213 33389235.48538 2330 2213 -59618277.55449 2214 2214 235091865.188 2215 2214 49690189.15075 2216 2214 -60365.67751312 2217 2214 -6920201.047179 2218 2214 348017.4103893 2219 2214 -45998.06877485 2301 2214 -22967164.45808 2302 2214 -1405372.84002 2303 2214 -5376837.60583 2322 2214 -33943062.62212 2323 2214 -11074831.38688 2324 2214 -20286578.86741 2325 2214 -19573744.60313 2326 2214 12405372.84363 2327 2214 8109939.458298 2328 2214 -35779664.67352 2329 2214 74831.38326172 2330 2214 -31196522.98505 2215 2215 216345067.2978 2216 2215 -57430.73996973 2217 2215 15014684.07465 2218 2215 62839825.04097 2219 2215 -70407.33894855 2301 2215 -5072039.507891 2302 2215 -40628325.95656 2303 2215 -33318991.40687 2322 2215 -11074831.38688 2323 2215 -29051214.41358 2324 2215 -16649105.6525 2325 2215 12405372.84363 2326 2215 -24256333.11199 2327 2215 6652324.744578 2328 2215 3741498.051133 2329 2215 -18327762.87472 2330 2215 3315772.314788 2216 2216 344548168.3047 2217 2216 -45998.06877142 2218 2216 -70407.33894849 2219 2216 111335682.2562 2301 2216 -13501837.60663 2302 2216 -33318991.40687 2303 2216 -72634518.38162 2322 2216 -20286578.86741 2323 2216 -16649105.6525 2324 2216 -41134518.60782 2325 2216 -8140060.539033 2326 2216 -6681008.586565 2327 2216 -122734989.1419 2328 2216 -31196522.98692 2329 2216 -3350894.354068 2330 2216 -62865670.82029 2217 2217 175701997.0157 2218 2217 -18964786.19581 2219 2217 -123626.5974838 2301 2217 -17328784.83888 2302 2217 7258501.95248 2303 2217 10855087.80949 2322 2217 -24690808.17314 2323 2217 -6227286.025018 2324 2217 -11589477.83532 2325 2217 -35779664.67352 2326 2217 3741498.051137 2327 2217 31173615.89359 2328 2217 -13773469.59399 2329 2217 -4772713.978599 2330 2217 -4379781.423286 2218 2218 199442232.6343 2219 2218 -224198.6156853 2301 2218 7258501.95248 2302 2218 -22820860.24487 2303 2218 -16649105.6525 2322 2218 -2560619.357146 2323 2218 -42533677.46912 2324 2218 -33277431.17033 2325 2218 74831.38326509 2326 2218 -18327762.87471 2327 2218 3315772.314788 2328 2218 -4772713.978598 2329 2218 -7890426.690841 2330 2218 6610764.50804 2219 2219 265222560.3927 2301 2219 10855087.80949 2302 2219 -16649105.6525 2303 2219 -34904164.4391 2322 2219 -7257811.165357 2323 2219 -33277431.17033 2324 2219 -58860701.79721 2325 2219 31173615.89173 2326 2219 -3350894.354067 2327 2219 -62865670.82028 2328 2219 4318274.130842 2329 2219 -6722568.823102 2330 2219 -87563402.35548 2220 2220 391468094.7324 2221 2220 36666666.66066 2222 2220 2662170.757228 2223 2220 -201885224.5025 2224 2220 -36666959.01753 2225 2220 -2662149.068675 2226 2220 13006025.1815 2227 2220 29333625.68539 2228 2220 -2152798.772422 2331 2220 31947394.33292 2332 2220 9166666.669681 2333 2220 9728225.899101 2334 2220 -74358253.63036 2335 2220 -9166739.758898 2336 2220 -45562288.72778 2337 2220 -8166156.136015 2338 2220 7333406.424962 2339 2220 -9496761.446847 2221 2221 336463888.7559 2222 2221 -6944377.543016 2223 2221 -36667105.19596 2224 2221 -29548916.09098 2225 2221 -3847225.37168 2226 2221 44000438.52809 2227 2221 13006025.1815 2228 2221 2416691.307227 2331 2221 9166666.66968 2332 2221 18196342.83202 2333 2221 5513941.008134 2334 2221 -9166776.303507 2335 2221 -31274176.50627 2336 2221 -9941080.210835 2337 2221 11000109.63744 2338 2221 -8166156.136015 2339 2221 11395946.69513 2222 2222 385940866.4962 2223 2222 -2662138.224395 2224 2222 -3097217.158151 2225 2222 2281351.682023 2226 2222 -3229198.158633 2227 2222 1611127.538151 2228 2222 34682733.81733 2331 2222 -8223530.275229 2332 2222 -8847241.586827 2333 2222 -79300461.72417 2334 2222 -45527563.96779 2335 2222 -9746597.980308 2336 2222 -63128188.69225 2337 2222 -14245142.17027 2338 2222 7597297.796754 2339 2222 -21776416.36271 2223 2223 677810035.2011 2224 2223 36667397.55284 2225 2223 3125086.662505 2226 2223 20859938.00677 2227 2223 -36666959.01753 2228 2223 2702569.081896 2229 2223 -136819701.2443 2230 2223 9.089708328247e-07 2231 2223 -462970.1266867 2232 2223 -51905201.38891 2233 2223 36666666.66065 2234 2223 -2702548.086863 2331 2223 -72726245.22972 2332 2223 -9166776.303506 2333 2223 44231216.90386 2334 2223 70575234.21716 2335 2223 9166849.392726 2336 2223 781227.3439141 2337 2223 -20203256.3538 2338 2223 -9166739.758899 2339 2223 11899863.74724 2340 2223 -60775629.25067 2341 2223 -1.214444637299e-06 2342 2223 -45012270.30212 2343 2223 -20383999.6175 2344 2223 9166666.669679 2345 2223 -11899768.97017 2224 2224 578802727.5875 2225 2224 -8610918.562153 2226 2224 -36667105.19596 2227 2224 -107472939.8429 2228 2224 4611020.401354 2229 2224 9.685754776001e-07 2230 2224 24514918.12315 2231 2224 -2777734.795656 2232 2224 36666666.66065 2233 2224 -40904425.97421 2234 2224 1513867.397816 2331 2224 -9166739.758897 2332 2224 -29642168.10562 2333 2224 8204934.122165 2334 2224 9166849.392726 2335 2224 45823407.30156 2336 2224 -2152765.098743 2337 2224 -9166776.303508 2338 2224 -52286475.83204 2339 2224 37069600.58987 2340 2224 -1.445412635803e-06 2341 2224 -20441974.38895 2342 2224 -694433.6992576 2343 2224 9166666.669678 2344 2224 -17633805.76247 2345 2224 9357633.519253 2225 2225 623143279.9755 2226 2225 2737301.801614 2227 2225 5388806.115241 2228 2225 41364580.11227 2229 2225 -462970.1266864 2230 2225 -2777734.795656 2231 2225 44192040.0554 2232 2225 -2737270.309063 2233 2225 1541645.175575 2234 2225 -6819846.696327 2331 2225 44196492.14387 2332 2225 8010523.495484 2333 2225 -58776166.2905 2334 2225 781316.8545274 2335 2225 -2152693.49136 2336 2225 -107886912.3736 2337 2225 11899911.13577 2338 2225 37236269.31883 2339 2225 -57440830.58835 2340 2225 -44977548.07992 2341 2225 -694433.6992576 2342 2225 -59807200.44138 2343 2225 -11899768.97017 2344 2225 9357633.519253 2345 2225 -21458826.37861 2226 2226 391468094.7324 2227 2226 36666666.66066 2228 2226 2662170.757228 2229 2226 -51881527.1465 2230 2226 -36666666.66065 2231 2226 2505785.245605 2232 2226 -201885224.5025 2233 2226 -36666959.01753 2234 2226 -2662149.068675 2235 2226 13006025.1815 2236 2226 29333625.68539 2237 2226 -2152798.772422 2331 2226 -5106206.927443 2332 2226 11000109.63744 2333 2226 12682625.90274 2334 2226 -15511422.68773 2335 2226 -9166776.303506 2336 2226 -10539940.2691 2337 2226 31947394.33292 2338 2226 9166666.669681 2339 2226 9728225.899101 2340 2226 -18848133.13973 2341 2226 -9166666.66968 2342 2226 -10597685.63642 2343 2226 -74358253.63036 2344 2226 -9166739.758898 2345 2226 -45562288.72778 2346 2226 -8166156.136015 2347 2226 7333406.424962 2348 2226 -9496761.446847 2227 2227 336463888.7559 2228 2227 -6944377.543016 2229 2227 -36666666.66065 2230 2227 -40880751.7318 2231 2227 1263867.397843 2232 2227 -36667105.19596 2233 2227 -29548916.09098 2234 2227 -3847225.37168 2235 2227 44000438.52809 2236 2227 13006025.1815 2237 2227 2416691.307227 2331 2227 7333406.424962 2332 2227 -5106206.927443 2333 2227 -6763956.526763 2334 2227 -9166739.758897 2335 2227 -47594642.16596 2336 2227 -34569643.89832 2337 2227 9166666.66968 2338 2227 18196342.83202 2339 2227 5513941.008134 2340 2227 -9166666.669679 2341 2227 -16097939.2847 2342 2227 -8663199.819997 2343 2227 -9166776.303507 2344 2227 -31274176.50627 2345 2227 -9941080.210835 2346 2227 11000109.63744 2347 2227 -8166156.136015 2348 2227 11395946.69513 2228 2228 385940866.4962 2229 2228 2471063.023406 2230 2228 1236089.620084 2231 2228 -6756715.38321 2232 2228 -2662138.224395 2233 2228 -3097217.158151 2234 2228 2281351.682023 2235 2228 -3229198.158633 2236 2228 1611127.538151 2237 2228 34682733.81733 2331 2228 8455083.935158 2332 2228 -10145934.79014 2333 2228 -13616551.80652 2334 2228 -10539898.30291 2335 2228 -34736312.74845 2336 2228 -44929274.14549 2337 2228 -8223530.275229 2338 2228 -8847241.586827 2339 2228 -79300461.72417 2340 2228 -10597685.63642 2341 2228 -8663199.819997 2342 2228 -17363182.43788 2343 2228 -45527563.96779 2344 2228 -9746597.980308 2345 2228 -63128188.69225 2346 2228 -14245142.17027 2347 2228 7597297.796754 2348 2228 -21776416.36271 2229 2229 626081101.6128 2230 2229 7.033348083496e-06 2231 2229 925940.2533548 2232 2229 85765730.61463 2233 2229 -3.814697265625e-06 2234 2229 231485.0634534 2238 2229 -136819701.2443 2239 2229 9.089708328247e-07 2240 2229 -462970.1266867 2241 2229 -51905201.38891 2242 2229 36666666.66065 2243 2229 -2702548.086863 2334 2229 -60367636.82651 2335 2229 1.877546310425e-06 2336 2229 44780785.23866 2337 2229 -20276082.95081 2338 2229 -9166666.66968 2339 2229 11841897.70428 2340 2229 51054233.83102 2341 2229 1.788139343262e-06 2342 2229 231485.0634618 2343 2229 -7985170.87927 2344 2229 -2.771615982056e-06 2345 2229 57871.2658952 2349 2229 -60775629.25067 2350 2229 -1.214444637299e-06 2351 2229 -45012270.30212 2352 2229 -20383999.6175 2353 2229 9166666.669679 2354 2229 -11899768.97017 2230 2230 538074898.3386 2231 2230 -11110939.17715 2232 2230 -2.861022949219e-06 2233 2230 -53567337.94508 2234 2230 5555469.588581 2238 2230 9.685754776001e-07 2239 2230 24514918.12315 2240 2230 -2777734.795656 2241 2230 36666666.66065 2242 2230 -40904425.97421 2243 2230 1513867.397816 2334 2230 1.169741153717e-06 2335 2230 -20033981.96478 2336 2230 -694433.6992575 2337 2230 -9166666.66968 2338 2230 -17525889.09577 2339 2230 9288189.074786 2340 2230 1.966953277588e-06 2341 2230 29052683.00161 2342 2230 -2777734.795662 2343 2230 -2.190470695496e-06 2344 2230 -42818438.03636 2345 2230 37305534.05859 2349 2230 -1.445412635803e-06 2350 2230 -20441974.38895 2351 2230 -694433.6992576 2352 2230 9166666.669678 2353 2230 -17633805.76247 2354 2230 9357633.519253 2231 2231 616797415.4266 2232 2231 231485.0634536 2233 2231 5555469.588581 2234 2231 82852085.35441 2238 2231 -462970.1266864 2239 2231 -2777734.795656 2240 2231 44192040.0554 2241 2231 -2737270.309063 2242 2231 1541645.175575 2243 2231 -6819846.696327 2334 2231 44746063.01646 2335 2231 -694433.6992574 2336 2231 -58719220.64359 2337 2231 11841897.70428 2338 2231 9288189.074786 2339 2231 -21171048.60074 2340 2231 231485.0634617 2341 2231 -2777734.795662 2342 2231 -127043423.7988 2343 2231 57871.26589543 2344 2231 37277756.28083 2345 2231 -57757921.43384 2349 2231 -44977548.07992 2350 2231 -694433.6992576 2351 2231 -59807200.44138 2352 2231 -11899768.97017 2353 2231 9357633.519253 2354 2231 -21458826.37861 2232 2232 677810035.2011 2233 2232 36667397.55284 2234 2232 3125086.662505 2235 2232 20859938.00677 2236 2232 -36666959.01753 2237 2232 2702569.081896 2238 2232 -51881527.1465 2239 2232 -36666666.66065 2240 2232 2505785.245605 2241 2232 -136819701.2443 2242 2232 9.089708328247e-07 2243 2232 -462970.1266867 2244 2232 -51905201.38891 2245 2232 36666666.66065 2246 2232 -2702548.086863 2334 2232 -18752053.59425 2335 2232 9166666.66968 2336 2232 10539814.37052 2337 2232 -72726245.22972 2338 2232 -9166776.303506 2339 2232 44231216.90386 2340 2232 -1865379.213624 2341 2232 8.79168510437e-07 2342 2232 57871.26589221 2343 2232 70575234.21716 2344 2232 9166849.392726 2345 2232 781227.3439141 2346 2232 -20203256.3538 2347 2232 -9166739.758899 2348 2232 11899863.74724 2349 2232 -18848133.13973 2350 2232 -9166666.66968 2351 2232 -10597685.63642 2352 2232 -60775629.25067 2353 2232 -1.214444637299e-06 2354 2232 -45012270.30212 2355 2232 -20383999.6175 2356 2232 9166666.669679 2357 2232 -11899768.97017 2233 2233 578802727.5875 2234 2233 -8610918.562153 2235 2233 -36667105.19596 2236 2233 -107472939.8429 2237 2233 4611020.401354 2238 2233 -36666666.66065 2239 2233 -40880751.7318 2240 2233 1263867.397843 2241 2233 9.685754776001e-07 2242 2233 24514918.12315 2243 2233 -2777734.795656 2244 2233 36666666.66065 2245 2233 -40904425.97421 2246 2233 1513867.397816 2334 2233 9166666.66968 2335 2233 -16001859.73922 2336 2233 -8593755.37553 2337 2233 -9166739.758897 2338 2233 -29642168.10562 2339 2233 8204934.122165 2340 2233 1.229345798492e-06 2341 2233 -36698646.37071 2342 2233 -34527799.26293 2343 2233 9166849.392726 2344 2233 45823407.30156 2345 2233 -2152765.098743 2346 2233 -9166776.303508 2347 2233 -52286475.83204 2348 2233 37069600.58987 2349 2233 -9166666.669679 2350 2233 -16097939.2847 2351 2233 -8663199.819997 2352 2233 -1.445412635803e-06 2353 2233 -20441974.38895 2354 2233 -694433.6992576 2355 2233 9166666.669678 2356 2233 -17633805.76247 2357 2233 9357633.519253 2234 2234 623143279.9755 2235 2234 2737301.801614 2236 2234 5388806.115241 2237 2234 41364580.11227 2238 2234 2471063.023406 2239 2234 1236089.620084 2240 2234 -6756715.38321 2241 2234 -462970.1266864 2242 2234 -2777734.795656 2243 2234 44192040.0554 2244 2234 -2737270.309063 2245 2234 1541645.175575 2246 2234 -6819846.696327 2334 2234 10539814.37052 2335 2234 -8593755.37553 2336 2234 -17106970.31658 2337 2234 44196492.14387 2338 2234 8010523.495484 2339 2234 -58776166.2905 2340 2234 57871.26589252 2341 2234 -34500021.48517 2342 2234 -41438476.99211 2343 2234 781316.8545274 2344 2234 -2152693.49136 2345 2234 -107886912.3736 2346 2234 11899911.13577 2347 2234 37236269.31883 2348 2234 -57440830.58835 2349 2234 -10597685.63642 2350 2234 -8663199.819997 2351 2234 -17363182.43788 2352 2234 -44977548.07992 2353 2234 -694433.6992576 2354 2234 -59807200.44138 2355 2234 -11899768.97017 2356 2234 9357633.519253 2357 2234 -21458826.37861 2235 2235 391468094.7324 2236 2235 36666666.66066 2237 2235 2662170.757228 2241 2235 -51881527.1465 2242 2235 -36666666.66065 2243 2235 2505785.245605 2244 2235 -201885224.5025 2245 2235 -36666959.01753 2246 2235 -2662149.068675 2247 2235 13006025.1815 2248 2235 29333625.68539 2249 2235 -2152798.772422 2337 2235 -5106206.927443 2338 2235 11000109.63744 2339 2235 12682625.90274 2343 2235 -15511422.68773 2344 2235 -9166776.303506 2345 2235 -10539940.2691 2346 2235 31947394.33292 2347 2235 9166666.669681 2348 2235 9728225.899101 2352 2235 -18848133.13973 2353 2235 -9166666.66968 2354 2235 -10597685.63642 2355 2235 -74358253.63036 2356 2235 -9166739.758898 2357 2235 -45562288.72778 2358 2235 -8166156.136015 2359 2235 7333406.424962 2360 2235 -9496761.446847 2236 2236 336463888.7559 2237 2236 -6944377.543016 2241 2236 -36666666.66065 2242 2236 -40880751.7318 2243 2236 1263867.397843 2244 2236 -36667105.19596 2245 2236 -29548916.09098 2246 2236 -3847225.37168 2247 2236 44000438.52809 2248 2236 13006025.1815 2249 2236 2416691.307227 2337 2236 7333406.424962 2338 2236 -5106206.927443 2339 2236 -6763956.526763 2343 2236 -9166739.758897 2344 2236 -47594642.16596 2345 2236 -34569643.89832 2346 2236 9166666.66968 2347 2236 18196342.83202 2348 2236 5513941.008134 2352 2236 -9166666.669679 2353 2236 -16097939.2847 2354 2236 -8663199.819997 2355 2236 -9166776.303507 2356 2236 -31274176.50627 2357 2236 -9941080.210835 2358 2236 11000109.63744 2359 2236 -8166156.136015 2360 2236 11395946.69513 2237 2237 385940866.4962 2241 2237 2471063.023406 2242 2237 1236089.620084 2243 2237 -6756715.38321 2244 2237 -2662138.224395 2245 2237 -3097217.158151 2246 2237 2281351.682023 2247 2237 -3229198.158633 2248 2237 1611127.538151 2249 2237 34682733.81733 2337 2237 8455083.935158 2338 2237 -10145934.79014 2339 2237 -13616551.80652 2343 2237 -10539898.30291 2344 2237 -34736312.74845 2345 2237 -44929274.14549 2346 2237 -8223530.275229 2347 2237 -8847241.586827 2348 2237 -79300461.72417 2352 2237 -10597685.63642 2353 2237 -8663199.819997 2354 2237 -17363182.43788 2355 2237 -45527563.96779 2356 2237 -9746597.980308 2357 2237 -63128188.69225 2358 2237 -14245142.17027 2359 2237 7597297.796754 2360 2237 -21776416.36271 2238 2238 626081101.6128 2239 2238 7.033348083496e-06 2240 2238 925940.2533548 2241 2238 85765730.61463 2242 2238 -3.814697265625e-06 2243 2238 231485.0634534 2250 2238 -136819701.2443 2251 2238 9.089708328247e-07 2252 2238 -462970.1266867 2253 2238 -51905201.38891 2254 2238 36666666.66065 2255 2238 -2702548.086863 2340 2238 -60367636.82651 2341 2238 1.877546310425e-06 2342 2238 44780785.23866 2343 2238 -20276082.95081 2344 2238 -9166666.66968 2345 2238 11841897.70428 2349 2238 51054233.83102 2350 2238 1.788139343262e-06 2351 2238 231485.0634618 2352 2238 -7985170.87927 2353 2238 -2.771615982056e-06 2354 2238 57871.2658952 2361 2238 -60775629.25067 2362 2238 -1.214444637299e-06 2363 2238 -45012270.30212 2364 2238 -20383999.6175 2365 2238 9166666.669679 2366 2238 -11899768.97017 2239 2239 538074898.3386 2240 2239 -11110939.17715 2241 2239 -2.861022949219e-06 2242 2239 -53567337.94508 2243 2239 5555469.588581 2250 2239 9.685754776001e-07 2251 2239 24514918.12315 2252 2239 -2777734.795656 2253 2239 36666666.66065 2254 2239 -40904425.97421 2255 2239 1513867.397816 2340 2239 1.169741153717e-06 2341 2239 -20033981.96478 2342 2239 -694433.6992575 2343 2239 -9166666.66968 2344 2239 -17525889.09577 2345 2239 9288189.074786 2349 2239 1.966953277588e-06 2350 2239 29052683.00161 2351 2239 -2777734.795662 2352 2239 -2.190470695496e-06 2353 2239 -42818438.03636 2354 2239 37305534.05859 2361 2239 -1.445412635803e-06 2362 2239 -20441974.38895 2363 2239 -694433.6992576 2364 2239 9166666.669678 2365 2239 -17633805.76247 2366 2239 9357633.519253 2240 2240 616797415.4266 2241 2240 231485.0634536 2242 2240 5555469.588581 2243 2240 82852085.35441 2250 2240 -462970.1266864 2251 2240 -2777734.795656 2252 2240 44192040.0554 2253 2240 -2737270.309063 2254 2240 1541645.175575 2255 2240 -6819846.696327 2340 2240 44746063.01646 2341 2240 -694433.6992574 2342 2240 -58719220.64359 2343 2240 11841897.70428 2344 2240 9288189.074786 2345 2240 -21171048.60074 2349 2240 231485.0634617 2350 2240 -2777734.795662 2351 2240 -127043423.7988 2352 2240 57871.26589543 2353 2240 37277756.28083 2354 2240 -57757921.43384 2361 2240 -44977548.07992 2362 2240 -694433.6992576 2363 2240 -59807200.44138 2364 2240 -11899768.97017 2365 2240 9357633.519253 2366 2240 -21458826.37861 2241 2241 626081101.6128 2242 2241 7.033348083496e-06 2243 2241 925940.2533548 2244 2241 85765730.61463 2245 2241 -3.814697265625e-06 2246 2241 231485.0634534 2250 2241 -51881527.1465 2251 2241 -36666666.66065 2252 2241 2505785.245605 2253 2241 -136819701.2443 2254 2241 9.089708328247e-07 2255 2241 -462970.1266867 2256 2241 -51905201.38891 2257 2241 36666666.66065 2258 2241 -2702548.086863 2340 2241 -18752053.59425 2341 2241 9166666.66968 2342 2241 10539814.37052 2343 2241 -60367636.82651 2344 2241 1.877546310425e-06 2345 2241 44780785.23866 2346 2241 -20276082.95081 2347 2241 -9166666.66968 2348 2241 11841897.70428 2349 2241 -1865379.213624 2350 2241 8.79168510437e-07 2351 2241 57871.26589221 2352 2241 51054233.83102 2353 2241 1.788139343262e-06 2354 2241 231485.0634618 2355 2241 -7985170.87927 2356 2241 -2.771615982056e-06 2357 2241 57871.2658952 2361 2241 -18848133.13973 2362 2241 -9166666.66968 2363 2241 -10597685.63642 2364 2241 -60775629.25067 2365 2241 -1.214444637299e-06 2366 2241 -45012270.30212 2367 2241 -20383999.6175 2368 2241 9166666.669679 2369 2241 -11899768.97017 2242 2242 538074898.3386 2243 2242 -11110939.17715 2244 2242 -2.861022949219e-06 2245 2242 -53567337.94508 2246 2242 5555469.588581 2250 2242 -36666666.66065 2251 2242 -40880751.7318 2252 2242 1263867.397843 2253 2242 9.685754776001e-07 2254 2242 24514918.12315 2255 2242 -2777734.795656 2256 2242 36666666.66065 2257 2242 -40904425.97421 2258 2242 1513867.397816 2340 2242 9166666.66968 2341 2242 -16001859.73922 2342 2242 -8593755.37553 2343 2242 1.169741153717e-06 2344 2242 -20033981.96478 2345 2242 -694433.6992575 2346 2242 -9166666.66968 2347 2242 -17525889.09577 2348 2242 9288189.074786 2349 2242 1.229345798492e-06 2350 2242 -36698646.37071 2351 2242 -34527799.26293 2352 2242 1.966953277588e-06 2353 2242 29052683.00161 2354 2242 -2777734.795662 2355 2242 -2.190470695496e-06 2356 2242 -42818438.03636 2357 2242 37305534.05859 2361 2242 -9166666.669679 2362 2242 -16097939.2847 2363 2242 -8663199.819997 2364 2242 -1.445412635803e-06 2365 2242 -20441974.38895 2366 2242 -694433.6992576 2367 2242 9166666.669678 2368 2242 -17633805.76247 2369 2242 9357633.519253 2243 2243 616797415.4266 2244 2243 231485.0634536 2245 2243 5555469.588581 2246 2243 82852085.35441 2250 2243 2471063.023406 2251 2243 1236089.620084 2252 2243 -6756715.38321 2253 2243 -462970.1266864 2254 2243 -2777734.795656 2255 2243 44192040.0554 2256 2243 -2737270.309063 2257 2243 1541645.175575 2258 2243 -6819846.696327 2340 2243 10539814.37052 2341 2243 -8593755.37553 2342 2243 -17106970.31658 2343 2243 44746063.01646 2344 2243 -694433.6992574 2345 2243 -58719220.64359 2346 2243 11841897.70428 2347 2243 9288189.074786 2348 2243 -21171048.60074 2349 2243 57871.26589252 2350 2243 -34500021.48517 2351 2243 -41438476.99211 2352 2243 231485.0634617 2353 2243 -2777734.795662 2354 2243 -127043423.7988 2355 2243 57871.26589543 2356 2243 37277756.28083 2357 2243 -57757921.43384 2361 2243 -10597685.63642 2362 2243 -8663199.819997 2363 2243 -17363182.43788 2364 2243 -44977548.07992 2365 2243 -694433.6992576 2366 2243 -59807200.44138 2367 2243 -11899768.97017 2368 2243 9357633.519253 2369 2243 -21458826.37861 2244 2244 677810035.2011 2245 2244 36667397.55284 2246 2244 3125086.662505 2247 2244 20859938.00677 2248 2244 -36666959.01753 2249 2244 2702569.081896 2253 2244 -51881527.1465 2254 2244 -36666666.66065 2255 2244 2505785.245605 2256 2244 -136819701.2443 2257 2244 9.089708328247e-07 2258 2244 -462970.1266867 2259 2244 -51905201.38891 2260 2244 36666666.66065 2261 2244 -2702548.086863 2343 2244 -18752053.59425 2344 2244 9166666.66968 2345 2244 10539814.37052 2346 2244 -72726245.22972 2347 2244 -9166776.303506 2348 2244 44231216.90386 2352 2244 -1865379.213624 2353 2244 8.79168510437e-07 2354 2244 57871.26589221 2355 2244 70575234.21716 2356 2244 9166849.392726 2357 2244 781227.3439141 2358 2244 -20203256.3538 2359 2244 -9166739.758899 2360 2244 11899863.74724 2364 2244 -18848133.13973 2365 2244 -9166666.66968 2366 2244 -10597685.63642 2367 2244 -60775629.25067 2368 2244 -1.214444637299e-06 2369 2244 -45012270.30212 2370 2244 -20383999.6175 2371 2244 9166666.669679 2372 2244 -11899768.97017 2245 2245 578802727.5875 2246 2245 -8610918.562153 2247 2245 -36667105.19596 2248 2245 -107472939.8429 2249 2245 4611020.401354 2253 2245 -36666666.66065 2254 2245 -40880751.7318 2255 2245 1263867.397843 2256 2245 9.685754776001e-07 2257 2245 24514918.12315 2258 2245 -2777734.795656 2259 2245 36666666.66065 2260 2245 -40904425.97421 2261 2245 1513867.397816 2343 2245 9166666.66968 2344 2245 -16001859.73922 2345 2245 -8593755.37553 2346 2245 -9166739.758897 2347 2245 -29642168.10562 2348 2245 8204934.122165 2352 2245 1.229345798492e-06 2353 2245 -36698646.37071 2354 2245 -34527799.26293 2355 2245 9166849.392726 2356 2245 45823407.30156 2357 2245 -2152765.098743 2358 2245 -9166776.303508 2359 2245 -52286475.83204 2360 2245 37069600.58987 2364 2245 -9166666.669679 2365 2245 -16097939.2847 2366 2245 -8663199.819997 2367 2245 -1.445412635803e-06 2368 2245 -20441974.38895 2369 2245 -694433.6992576 2370 2245 9166666.669678 2371 2245 -17633805.76247 2372 2245 9357633.519253 2246 2246 623143279.9755 2247 2246 2737301.801614 2248 2246 5388806.115241 2249 2246 41364580.11227 2253 2246 2471063.023406 2254 2246 1236089.620084 2255 2246 -6756715.38321 2256 2246 -462970.1266864 2257 2246 -2777734.795656 2258 2246 44192040.0554 2259 2246 -2737270.309063 2260 2246 1541645.175575 2261 2246 -6819846.696327 2343 2246 10539814.37052 2344 2246 -8593755.37553 2345 2246 -17106970.31658 2346 2246 44196492.14387 2347 2246 8010523.495484 2348 2246 -58776166.2905 2352 2246 57871.26589252 2353 2246 -34500021.48517 2354 2246 -41438476.99211 2355 2246 781316.8545274 2356 2246 -2152693.49136 2357 2246 -107886912.3736 2358 2246 11899911.13577 2359 2246 37236269.31883 2360 2246 -57440830.58835 2364 2246 -10597685.63642 2365 2246 -8663199.819997 2366 2246 -17363182.43788 2367 2246 -44977548.07992 2368 2246 -694433.6992576 2369 2246 -59807200.44138 2370 2246 -11899768.97017 2371 2246 9357633.519253 2372 2246 -21458826.37861 2247 2247 391468094.7324 2248 2247 36666666.66066 2249 2247 2662170.757228 2256 2247 -51881527.1465 2257 2247 -36666666.66065 2258 2247 2505785.245605 2259 2247 -201885224.5025 2260 2247 -36666959.01753 2261 2247 -2662149.068675 2262 2247 13006025.1815 2263 2247 29333625.68539 2264 2247 -2152798.772422 2346 2247 -5106206.927443 2347 2247 11000109.63744 2348 2247 12682625.90274 2355 2247 -15511422.68773 2356 2247 -9166776.303506 2357 2247 -10539940.2691 2358 2247 31947394.33292 2359 2247 9166666.669681 2360 2247 9728225.899101 2367 2247 -18848133.13973 2368 2247 -9166666.66968 2369 2247 -10597685.63642 2370 2247 -74358253.63036 2371 2247 -9166739.758898 2372 2247 -45562288.72778 2373 2247 -8166156.136015 2374 2247 7333406.424962 2375 2247 -9496761.446847 2248 2248 336463888.7559 2249 2248 -6944377.543016 2256 2248 -36666666.66065 2257 2248 -40880751.7318 2258 2248 1263867.397843 2259 2248 -36667105.19596 2260 2248 -29548916.09098 2261 2248 -3847225.37168 2262 2248 44000438.52809 2263 2248 13006025.1815 2264 2248 2416691.307227 2346 2248 7333406.424962 2347 2248 -5106206.927443 2348 2248 -6763956.526763 2355 2248 -9166739.758897 2356 2248 -47594642.16596 2357 2248 -34569643.89832 2358 2248 9166666.66968 2359 2248 18196342.83202 2360 2248 5513941.008134 2367 2248 -9166666.669679 2368 2248 -16097939.2847 2369 2248 -8663199.819997 2370 2248 -9166776.303507 2371 2248 -31274176.50627 2372 2248 -9941080.210835 2373 2248 11000109.63744 2374 2248 -8166156.136015 2375 2248 11395946.69513 2249 2249 385940866.4962 2256 2249 2471063.023406 2257 2249 1236089.620084 2258 2249 -6756715.38321 2259 2249 -2662138.224395 2260 2249 -3097217.158151 2261 2249 2281351.682023 2262 2249 -3229198.158633 2263 2249 1611127.538151 2264 2249 34682733.81733 2346 2249 8455083.935158 2347 2249 -10145934.79014 2348 2249 -13616551.80652 2355 2249 -10539898.30291 2356 2249 -34736312.74845 2357 2249 -44929274.14549 2358 2249 -8223530.275229 2359 2249 -8847241.586827 2360 2249 -79300461.72417 2367 2249 -10597685.63642 2368 2249 -8663199.819997 2369 2249 -17363182.43788 2370 2249 -45527563.96779 2371 2249 -9746597.980308 2372 2249 -63128188.69225 2373 2249 -14245142.17027 2374 2249 7597297.796754 2375 2249 -21776416.36271 2250 2250 626081101.6128 2251 2250 7.033348083496e-06 2252 2250 925940.2533548 2253 2250 85765730.61463 2254 2250 -3.814697265625e-06 2255 2250 231485.0634534 2265 2250 -136819701.2443 2266 2250 9.089708328247e-07 2267 2250 -462970.1266867 2268 2250 -51905201.38891 2269 2250 36666666.66065 2270 2250 -2702548.086863 2349 2250 -60367636.82651 2350 2250 1.877546310425e-06 2351 2250 44780785.23866 2352 2250 -20276082.95081 2353 2250 -9166666.66968 2354 2250 11841897.70428 2361 2250 51054233.83102 2362 2250 1.788139343262e-06 2363 2250 231485.0634618 2364 2250 -7985170.87927 2365 2250 -2.771615982056e-06 2366 2250 57871.2658952 2376 2250 -60775629.25067 2377 2250 -1.214444637299e-06 2378 2250 -45012270.30212 2379 2250 -20383999.6175 2380 2250 9166666.669679 2381 2250 -11899768.97017 2251 2251 538074898.3386 2252 2251 -11110939.17715 2253 2251 -2.861022949219e-06 2254 2251 -53567337.94508 2255 2251 5555469.588581 2265 2251 9.685754776001e-07 2266 2251 24514918.12315 2267 2251 -2777734.795656 2268 2251 36666666.66065 2269 2251 -40904425.97421 2270 2251 1513867.397816 2349 2251 1.169741153717e-06 2350 2251 -20033981.96478 2351 2251 -694433.6992575 2352 2251 -9166666.66968 2353 2251 -17525889.09577 2354 2251 9288189.074786 2361 2251 1.966953277588e-06 2362 2251 29052683.00161 2363 2251 -2777734.795662 2364 2251 -2.190470695496e-06 2365 2251 -42818438.03636 2366 2251 37305534.05859 2376 2251 -1.445412635803e-06 2377 2251 -20441974.38895 2378 2251 -694433.6992576 2379 2251 9166666.669678 2380 2251 -17633805.76247 2381 2251 9357633.519253 2252 2252 616797415.4266 2253 2252 231485.0634536 2254 2252 5555469.588581 2255 2252 82852085.35441 2265 2252 -462970.1266864 2266 2252 -2777734.795656 2267 2252 44192040.0554 2268 2252 -2737270.309063 2269 2252 1541645.175575 2270 2252 -6819846.696327 2349 2252 44746063.01646 2350 2252 -694433.6992574 2351 2252 -58719220.64359 2352 2252 11841897.70428 2353 2252 9288189.074786 2354 2252 -21171048.60074 2361 2252 231485.0634617 2362 2252 -2777734.795662 2363 2252 -127043423.7988 2364 2252 57871.26589543 2365 2252 37277756.28083 2366 2252 -57757921.43384 2376 2252 -44977548.07992 2377 2252 -694433.6992576 2378 2252 -59807200.44138 2379 2252 -11899768.97017 2380 2252 9357633.519253 2381 2252 -21458826.37861 2253 2253 626081101.6128 2254 2253 7.033348083496e-06 2255 2253 925940.2533548 2256 2253 85765730.61463 2257 2253 -3.814697265625e-06 2258 2253 231485.0634534 2265 2253 -51881527.1465 2266 2253 -36666666.66065 2267 2253 2505785.245605 2268 2253 -136819701.2443 2269 2253 9.089708328247e-07 2270 2253 -462970.1266867 2271 2253 -51905201.38891 2272 2253 36666666.66065 2273 2253 -2702548.086863 2349 2253 -18752053.59425 2350 2253 9166666.66968 2351 2253 10539814.37052 2352 2253 -60367636.82651 2353 2253 1.877546310425e-06 2354 2253 44780785.23866 2355 2253 -20276082.95081 2356 2253 -9166666.66968 2357 2253 11841897.70428 2361 2253 -1865379.213624 2362 2253 8.79168510437e-07 2363 2253 57871.26589221 2364 2253 51054233.83102 2365 2253 1.788139343262e-06 2366 2253 231485.0634618 2367 2253 -7985170.87927 2368 2253 -2.771615982056e-06 2369 2253 57871.2658952 2376 2253 -18848133.13973 2377 2253 -9166666.66968 2378 2253 -10597685.63642 2379 2253 -60775629.25067 2380 2253 -1.214444637299e-06 2381 2253 -45012270.30212 2382 2253 -20383999.6175 2383 2253 9166666.669679 2384 2253 -11899768.97017 2254 2254 538074898.3386 2255 2254 -11110939.17715 2256 2254 -2.861022949219e-06 2257 2254 -53567337.94508 2258 2254 5555469.588581 2265 2254 -36666666.66065 2266 2254 -40880751.7318 2267 2254 1263867.397843 2268 2254 9.685754776001e-07 2269 2254 24514918.12315 2270 2254 -2777734.795656 2271 2254 36666666.66065 2272 2254 -40904425.97421 2273 2254 1513867.397816 2349 2254 9166666.66968 2350 2254 -16001859.73922 2351 2254 -8593755.37553 2352 2254 1.169741153717e-06 2353 2254 -20033981.96478 2354 2254 -694433.6992575 2355 2254 -9166666.66968 2356 2254 -17525889.09577 2357 2254 9288189.074786 2361 2254 1.229345798492e-06 2362 2254 -36698646.37071 2363 2254 -34527799.26293 2364 2254 1.966953277588e-06 2365 2254 29052683.00161 2366 2254 -2777734.795662 2367 2254 -2.190470695496e-06 2368 2254 -42818438.03636 2369 2254 37305534.05859 2376 2254 -9166666.669679 2377 2254 -16097939.2847 2378 2254 -8663199.819997 2379 2254 -1.445412635803e-06 2380 2254 -20441974.38895 2381 2254 -694433.6992576 2382 2254 9166666.669678 2383 2254 -17633805.76247 2384 2254 9357633.519253 2255 2255 616797415.4266 2256 2255 231485.0634536 2257 2255 5555469.588581 2258 2255 82852085.35441 2265 2255 2471063.023406 2266 2255 1236089.620084 2267 2255 -6756715.38321 2268 2255 -462970.1266864 2269 2255 -2777734.795656 2270 2255 44192040.0554 2271 2255 -2737270.309063 2272 2255 1541645.175575 2273 2255 -6819846.696327 2349 2255 10539814.37052 2350 2255 -8593755.37553 2351 2255 -17106970.31658 2352 2255 44746063.01646 2353 2255 -694433.6992574 2354 2255 -58719220.64359 2355 2255 11841897.70428 2356 2255 9288189.074786 2357 2255 -21171048.60074 2361 2255 57871.26589252 2362 2255 -34500021.48517 2363 2255 -41438476.99211 2364 2255 231485.0634617 2365 2255 -2777734.795662 2366 2255 -127043423.7988 2367 2255 57871.26589543 2368 2255 37277756.28083 2369 2255 -57757921.43384 2376 2255 -10597685.63642 2377 2255 -8663199.819997 2378 2255 -17363182.43788 2379 2255 -44977548.07992 2380 2255 -694433.6992576 2381 2255 -59807200.44138 2382 2255 -11899768.97017 2383 2255 9357633.519253 2384 2255 -21458826.37861 2256 2256 626081101.6128 2257 2256 7.033348083496e-06 2258 2256 925940.2533548 2259 2256 85765730.61463 2260 2256 -3.814697265625e-06 2261 2256 231485.0634534 2268 2256 -51881527.1465 2269 2256 -36666666.66065 2270 2256 2505785.245605 2271 2256 -136819701.2443 2272 2256 9.089708328247e-07 2273 2256 -462970.1266867 2274 2256 -51905201.38891 2275 2256 36666666.66065 2276 2256 -2702548.086863 2352 2256 -18752053.59425 2353 2256 9166666.66968 2354 2256 10539814.37052 2355 2256 -60367636.82651 2356 2256 1.877546310425e-06 2357 2256 44780785.23866 2358 2256 -20276082.95081 2359 2256 -9166666.66968 2360 2256 11841897.70428 2364 2256 -1865379.213624 2365 2256 8.79168510437e-07 2366 2256 57871.26589221 2367 2256 51054233.83102 2368 2256 1.788139343262e-06 2369 2256 231485.0634618 2370 2256 -7985170.87927 2371 2256 -2.771615982056e-06 2372 2256 57871.2658952 2379 2256 -18848133.13973 2380 2256 -9166666.66968 2381 2256 -10597685.63642 2382 2256 -60775629.25067 2383 2256 -1.214444637299e-06 2384 2256 -45012270.30212 2385 2256 -20383999.6175 2386 2256 9166666.669679 2387 2256 -11899768.97017 2257 2257 538074898.3386 2258 2257 -11110939.17715 2259 2257 -2.861022949219e-06 2260 2257 -53567337.94508 2261 2257 5555469.588581 2268 2257 -36666666.66065 2269 2257 -40880751.7318 2270 2257 1263867.397843 2271 2257 9.685754776001e-07 2272 2257 24514918.12315 2273 2257 -2777734.795656 2274 2257 36666666.66065 2275 2257 -40904425.97421 2276 2257 1513867.397816 2352 2257 9166666.66968 2353 2257 -16001859.73922 2354 2257 -8593755.37553 2355 2257 1.169741153717e-06 2356 2257 -20033981.96478 2357 2257 -694433.6992575 2358 2257 -9166666.66968 2359 2257 -17525889.09577 2360 2257 9288189.074786 2364 2257 1.229345798492e-06 2365 2257 -36698646.37071 2366 2257 -34527799.26293 2367 2257 1.966953277588e-06 2368 2257 29052683.00161 2369 2257 -2777734.795662 2370 2257 -2.190470695496e-06 2371 2257 -42818438.03636 2372 2257 37305534.05859 2379 2257 -9166666.669679 2380 2257 -16097939.2847 2381 2257 -8663199.819997 2382 2257 -1.445412635803e-06 2383 2257 -20441974.38895 2384 2257 -694433.6992576 2385 2257 9166666.669678 2386 2257 -17633805.76247 2387 2257 9357633.519253 2258 2258 616797415.4266 2259 2258 231485.0634536 2260 2258 5555469.588581 2261 2258 82852085.35441 2268 2258 2471063.023406 2269 2258 1236089.620084 2270 2258 -6756715.38321 2271 2258 -462970.1266864 2272 2258 -2777734.795656 2273 2258 44192040.0554 2274 2258 -2737270.309063 2275 2258 1541645.175575 2276 2258 -6819846.696327 2352 2258 10539814.37052 2353 2258 -8593755.37553 2354 2258 -17106970.31658 2355 2258 44746063.01646 2356 2258 -694433.6992574 2357 2258 -58719220.64359 2358 2258 11841897.70428 2359 2258 9288189.074786 2360 2258 -21171048.60074 2364 2258 57871.26589252 2365 2258 -34500021.48517 2366 2258 -41438476.99211 2367 2258 231485.0634617 2368 2258 -2777734.795662 2369 2258 -127043423.7988 2370 2258 57871.26589543 2371 2258 37277756.28083 2372 2258 -57757921.43384 2379 2258 -10597685.63642 2380 2258 -8663199.819997 2381 2258 -17363182.43788 2382 2258 -44977548.07992 2383 2258 -694433.6992576 2384 2258 -59807200.44138 2385 2258 -11899768.97017 2386 2258 9357633.519253 2387 2258 -21458826.37861 2259 2259 677810035.2011 2260 2259 36667397.55284 2261 2259 3125086.662505 2262 2259 20859938.00677 2263 2259 -36666959.01753 2264 2259 2702569.081896 2271 2259 -51881527.1465 2272 2259 -36666666.66065 2273 2259 2505785.245605 2274 2259 -136819701.2443 2275 2259 9.089708328247e-07 2276 2259 -462970.1266867 2277 2259 -51905201.38891 2278 2259 36666666.66065 2279 2259 -2702548.086863 2355 2259 -18752053.59425 2356 2259 9166666.66968 2357 2259 10539814.37052 2358 2259 -72726245.22972 2359 2259 -9166776.303506 2360 2259 44231216.90386 2367 2259 -1865379.213624 2368 2259 8.79168510437e-07 2369 2259 57871.26589221 2370 2259 70575234.21716 2371 2259 9166849.392726 2372 2259 781227.3439141 2373 2259 -20203256.3538 2374 2259 -9166739.758899 2375 2259 11899863.74724 2382 2259 -18848133.13973 2383 2259 -9166666.66968 2384 2259 -10597685.63642 2385 2259 -60775629.25067 2386 2259 -1.214444637299e-06 2387 2259 -45012270.30212 2388 2259 -20383999.6175 2389 2259 9166666.669679 2390 2259 -11899768.97017 2260 2260 578802727.5875 2261 2260 -8610918.562153 2262 2260 -36667105.19596 2263 2260 -107472939.8429 2264 2260 4611020.401354 2271 2260 -36666666.66065 2272 2260 -40880751.7318 2273 2260 1263867.397843 2274 2260 9.685754776001e-07 2275 2260 24514918.12315 2276 2260 -2777734.795656 2277 2260 36666666.66065 2278 2260 -40904425.97421 2279 2260 1513867.397816 2355 2260 9166666.66968 2356 2260 -16001859.73922 2357 2260 -8593755.37553 2358 2260 -9166739.758897 2359 2260 -29642168.10562 2360 2260 8204934.122165 2367 2260 1.229345798492e-06 2368 2260 -36698646.37071 2369 2260 -34527799.26293 2370 2260 9166849.392726 2371 2260 45823407.30156 2372 2260 -2152765.098743 2373 2260 -9166776.303508 2374 2260 -52286475.83204 2375 2260 37069600.58987 2382 2260 -9166666.669679 2383 2260 -16097939.2847 2384 2260 -8663199.819997 2385 2260 -1.445412635803e-06 2386 2260 -20441974.38895 2387 2260 -694433.6992576 2388 2260 9166666.669678 2389 2260 -17633805.76247 2390 2260 9357633.519253 2261 2261 623143279.9755 2262 2261 2737301.801614 2263 2261 5388806.115241 2264 2261 41364580.11227 2271 2261 2471063.023406 2272 2261 1236089.620084 2273 2261 -6756715.38321 2274 2261 -462970.1266864 2275 2261 -2777734.795656 2276 2261 44192040.0554 2277 2261 -2737270.309063 2278 2261 1541645.175575 2279 2261 -6819846.696327 2355 2261 10539814.37052 2356 2261 -8593755.37553 2357 2261 -17106970.31658 2358 2261 44196492.14387 2359 2261 8010523.495484 2360 2261 -58776166.2905 2367 2261 57871.26589252 2368 2261 -34500021.48517 2369 2261 -41438476.99211 2370 2261 781316.8545274 2371 2261 -2152693.49136 2372 2261 -107886912.3736 2373 2261 11899911.13577 2374 2261 37236269.31883 2375 2261 -57440830.58835 2382 2261 -10597685.63642 2383 2261 -8663199.819997 2384 2261 -17363182.43788 2385 2261 -44977548.07992 2386 2261 -694433.6992576 2387 2261 -59807200.44138 2388 2261 -11899768.97017 2389 2261 9357633.519253 2390 2261 -21458826.37861 2262 2262 391468094.7324 2263 2262 36666666.66066 2264 2262 2662170.757228 2274 2262 -51881527.1465 2275 2262 -36666666.66065 2276 2262 2505785.245605 2277 2262 -201885224.5025 2278 2262 -36666959.01753 2279 2262 -2662149.068675 2280 2262 13006025.1815 2281 2262 29333625.68539 2282 2262 -2152798.772422 2358 2262 -5106206.927443 2359 2262 11000109.63744 2360 2262 12682625.90274 2370 2262 -15511422.68773 2371 2262 -9166776.303506 2372 2262 -10539940.2691 2373 2262 31947394.33292 2374 2262 9166666.669681 2375 2262 9728225.899101 2385 2262 -18848133.13973 2386 2262 -9166666.66968 2387 2262 -10597685.63642 2388 2262 -74358253.63036 2389 2262 -9166739.758898 2390 2262 -45562288.72778 2391 2262 -8166156.136015 2392 2262 7333406.424962 2393 2262 -9496761.446847 2263 2263 336463888.7559 2264 2263 -6944377.543016 2274 2263 -36666666.66065 2275 2263 -40880751.7318 2276 2263 1263867.397843 2277 2263 -36667105.19596 2278 2263 -29548916.09098 2279 2263 -3847225.37168 2280 2263 44000438.52809 2281 2263 13006025.1815 2282 2263 2416691.307227 2358 2263 7333406.424962 2359 2263 -5106206.927443 2360 2263 -6763956.526763 2370 2263 -9166739.758897 2371 2263 -47594642.16596 2372 2263 -34569643.89832 2373 2263 9166666.66968 2374 2263 18196342.83202 2375 2263 5513941.008134 2385 2263 -9166666.669679 2386 2263 -16097939.2847 2387 2263 -8663199.819997 2388 2263 -9166776.303507 2389 2263 -31274176.50627 2390 2263 -9941080.210835 2391 2263 11000109.63744 2392 2263 -8166156.136015 2393 2263 11395946.69513 2264 2264 385940866.4962 2274 2264 2471063.023406 2275 2264 1236089.620084 2276 2264 -6756715.38321 2277 2264 -2662138.224395 2278 2264 -3097217.158151 2279 2264 2281351.682023 2280 2264 -3229198.158633 2281 2264 1611127.538151 2282 2264 34682733.81733 2358 2264 8455083.935158 2359 2264 -10145934.79014 2360 2264 -13616551.80652 2370 2264 -10539898.30291 2371 2264 -34736312.74845 2372 2264 -44929274.14549 2373 2264 -8223530.275229 2374 2264 -8847241.586827 2375 2264 -79300461.72417 2385 2264 -10597685.63642 2386 2264 -8663199.819997 2387 2264 -17363182.43788 2388 2264 -45527563.96779 2389 2264 -9746597.980308 2390 2264 -63128188.69225 2391 2264 -14245142.17027 2392 2264 7597297.796754 2393 2264 -21776416.36271 2265 2265 626081101.6128 2266 2265 7.033348083496e-06 2267 2265 925940.2533548 2268 2265 85765730.61463 2269 2265 -3.814697265625e-06 2270 2265 231485.0634534 2283 2265 -136819701.2443 2284 2265 9.089708328247e-07 2285 2265 -462970.1266867 2286 2265 -51905201.38891 2287 2265 36666666.66065 2288 2265 -2702548.086863 2361 2265 -60367636.82651 2362 2265 1.877546310425e-06 2363 2265 44780785.23866 2364 2265 -20276082.95081 2365 2265 -9166666.66968 2366 2265 11841897.70428 2376 2265 51054233.83102 2377 2265 1.788139343262e-06 2378 2265 231485.0634618 2379 2265 -7985170.87927 2380 2265 -2.771615982056e-06 2381 2265 57871.2658952 2394 2265 -60775629.25067 2395 2265 -1.214444637299e-06 2396 2265 -45012270.30212 2397 2265 -20383999.6175 2398 2265 9166666.669679 2399 2265 -11899768.97017 2266 2266 538074898.3386 2267 2266 -11110939.17715 2268 2266 -2.861022949219e-06 2269 2266 -53567337.94508 2270 2266 5555469.588581 2283 2266 9.685754776001e-07 2284 2266 24514918.12315 2285 2266 -2777734.795656 2286 2266 36666666.66065 2287 2266 -40904425.97421 2288 2266 1513867.397816 2361 2266 1.169741153717e-06 2362 2266 -20033981.96478 2363 2266 -694433.6992575 2364 2266 -9166666.66968 2365 2266 -17525889.09577 2366 2266 9288189.074786 2376 2266 1.966953277588e-06 2377 2266 29052683.00161 2378 2266 -2777734.795662 2379 2266 -2.190470695496e-06 2380 2266 -42818438.03636 2381 2266 37305534.05859 2394 2266 -1.445412635803e-06 2395 2266 -20441974.38895 2396 2266 -694433.6992576 2397 2266 9166666.669678 2398 2266 -17633805.76247 2399 2266 9357633.519253 2267 2267 616797415.4266 2268 2267 231485.0634536 2269 2267 5555469.588581 2270 2267 82852085.35441 2283 2267 -462970.1266864 2284 2267 -2777734.795656 2285 2267 44192040.0554 2286 2267 -2737270.309063 2287 2267 1541645.175575 2288 2267 -6819846.696327 2361 2267 44746063.01646 2362 2267 -694433.6992574 2363 2267 -58719220.64359 2364 2267 11841897.70428 2365 2267 9288189.074786 2366 2267 -21171048.60074 2376 2267 231485.0634617 2377 2267 -2777734.795662 2378 2267 -127043423.7988 2379 2267 57871.26589543 2380 2267 37277756.28083 2381 2267 -57757921.43384 2394 2267 -44977548.07992 2395 2267 -694433.6992576 2396 2267 -59807200.44138 2397 2267 -11899768.97017 2398 2267 9357633.519253 2399 2267 -21458826.37861 2268 2268 626081101.6128 2269 2268 7.033348083496e-06 2270 2268 925940.2533548 2271 2268 85765730.61463 2272 2268 -3.814697265625e-06 2273 2268 231485.0634534 2283 2268 -51881527.1465 2284 2268 -36666666.66065 2285 2268 2505785.245605 2286 2268 -136819701.2443 2287 2268 9.089708328247e-07 2288 2268 -462970.1266867 2289 2268 -51905201.38891 2290 2268 36666666.66065 2291 2268 -2702548.086863 2361 2268 -18752053.59425 2362 2268 9166666.66968 2363 2268 10539814.37052 2364 2268 -60367636.82651 2365 2268 1.877546310425e-06 2366 2268 44780785.23866 2367 2268 -20276082.95081 2368 2268 -9166666.66968 2369 2268 11841897.70428 2376 2268 -1865379.213624 2377 2268 8.79168510437e-07 2378 2268 57871.26589221 2379 2268 51054233.83102 2380 2268 1.788139343262e-06 2381 2268 231485.0634618 2382 2268 -7985170.87927 2383 2268 -2.771615982056e-06 2384 2268 57871.2658952 2394 2268 -18848133.13973 2395 2268 -9166666.66968 2396 2268 -10597685.63642 2397 2268 -60775629.25067 2398 2268 -1.214444637299e-06 2399 2268 -45012270.30212 2400 2268 -20383999.6175 2401 2268 9166666.669679 2402 2268 -11899768.97017 2269 2269 538074898.3386 2270 2269 -11110939.17715 2271 2269 -2.861022949219e-06 2272 2269 -53567337.94508 2273 2269 5555469.588581 2283 2269 -36666666.66065 2284 2269 -40880751.7318 2285 2269 1263867.397843 2286 2269 9.685754776001e-07 2287 2269 24514918.12315 2288 2269 -2777734.795656 2289 2269 36666666.66065 2290 2269 -40904425.97421 2291 2269 1513867.397816 2361 2269 9166666.66968 2362 2269 -16001859.73922 2363 2269 -8593755.37553 2364 2269 1.169741153717e-06 2365 2269 -20033981.96478 2366 2269 -694433.6992575 2367 2269 -9166666.66968 2368 2269 -17525889.09577 2369 2269 9288189.074786 2376 2269 1.229345798492e-06 2377 2269 -36698646.37071 2378 2269 -34527799.26293 2379 2269 1.966953277588e-06 2380 2269 29052683.00161 2381 2269 -2777734.795662 2382 2269 -2.190470695496e-06 2383 2269 -42818438.03636 2384 2269 37305534.05859 2394 2269 -9166666.669679 2395 2269 -16097939.2847 2396 2269 -8663199.819997 2397 2269 -1.445412635803e-06 2398 2269 -20441974.38895 2399 2269 -694433.6992576 2400 2269 9166666.669678 2401 2269 -17633805.76247 2402 2269 9357633.519253 2270 2270 616797415.4266 2271 2270 231485.0634536 2272 2270 5555469.588581 2273 2270 82852085.35441 2283 2270 2471063.023406 2284 2270 1236089.620084 2285 2270 -6756715.38321 2286 2270 -462970.1266864 2287 2270 -2777734.795656 2288 2270 44192040.0554 2289 2270 -2737270.309063 2290 2270 1541645.175575 2291 2270 -6819846.696327 2361 2270 10539814.37052 2362 2270 -8593755.37553 2363 2270 -17106970.31658 2364 2270 44746063.01646 2365 2270 -694433.6992574 2366 2270 -58719220.64359 2367 2270 11841897.70428 2368 2270 9288189.074786 2369 2270 -21171048.60074 2376 2270 57871.26589252 2377 2270 -34500021.48517 2378 2270 -41438476.99211 2379 2270 231485.0634617 2380 2270 -2777734.795662 2381 2270 -127043423.7988 2382 2270 57871.26589543 2383 2270 37277756.28083 2384 2270 -57757921.43384 2394 2270 -10597685.63642 2395 2270 -8663199.819997 2396 2270 -17363182.43788 2397 2270 -44977548.07992 2398 2270 -694433.6992576 2399 2270 -59807200.44138 2400 2270 -11899768.97017 2401 2270 9357633.519253 2402 2270 -21458826.37861 2271 2271 626081101.6128 2272 2271 7.033348083496e-06 2273 2271 925940.2533548 2274 2271 85765730.61463 2275 2271 -3.814697265625e-06 2276 2271 231485.0634534 2286 2271 -51881527.1465 2287 2271 -36666666.66065 2288 2271 2505785.245605 2289 2271 -136819701.2443 2290 2271 9.089708328247e-07 2291 2271 -462970.1266867 2292 2271 -51905201.38891 2293 2271 36666666.66065 2294 2271 -2702548.086863 2364 2271 -18752053.59425 2365 2271 9166666.66968 2366 2271 10539814.37052 2367 2271 -60367636.82651 2368 2271 1.877546310425e-06 2369 2271 44780785.23866 2370 2271 -20276082.95081 2371 2271 -9166666.66968 2372 2271 11841897.70428 2379 2271 -1865379.213624 2380 2271 8.79168510437e-07 2381 2271 57871.26589221 2382 2271 51054233.83102 2383 2271 1.788139343262e-06 2384 2271 231485.0634618 2385 2271 -7985170.87927 2386 2271 -2.771615982056e-06 2387 2271 57871.2658952 2397 2271 -18848133.13973 2398 2271 -9166666.66968 2399 2271 -10597685.63642 2400 2271 -60775629.25067 2401 2271 -1.214444637299e-06 2402 2271 -45012270.30212 2403 2271 -20383999.6175 2404 2271 9166666.669679 2405 2271 -11899768.97017 2272 2272 538074898.3386 2273 2272 -11110939.17715 2274 2272 -2.861022949219e-06 2275 2272 -53567337.94508 2276 2272 5555469.588581 2286 2272 -36666666.66065 2287 2272 -40880751.7318 2288 2272 1263867.397843 2289 2272 9.685754776001e-07 2290 2272 24514918.12315 2291 2272 -2777734.795656 2292 2272 36666666.66065 2293 2272 -40904425.97421 2294 2272 1513867.397816 2364 2272 9166666.66968 2365 2272 -16001859.73922 2366 2272 -8593755.37553 2367 2272 1.169741153717e-06 2368 2272 -20033981.96478 2369 2272 -694433.6992575 2370 2272 -9166666.66968 2371 2272 -17525889.09577 2372 2272 9288189.074786 2379 2272 1.229345798492e-06 2380 2272 -36698646.37071 2381 2272 -34527799.26293 2382 2272 1.966953277588e-06 2383 2272 29052683.00161 2384 2272 -2777734.795662 2385 2272 -2.190470695496e-06 2386 2272 -42818438.03636 2387 2272 37305534.05859 2397 2272 -9166666.669679 2398 2272 -16097939.2847 2399 2272 -8663199.819997 2400 2272 -1.445412635803e-06 2401 2272 -20441974.38895 2402 2272 -694433.6992576 2403 2272 9166666.669678 2404 2272 -17633805.76247 2405 2272 9357633.519253 2273 2273 616797415.4266 2274 2273 231485.0634536 2275 2273 5555469.588581 2276 2273 82852085.35441 2286 2273 2471063.023406 2287 2273 1236089.620084 2288 2273 -6756715.38321 2289 2273 -462970.1266864 2290 2273 -2777734.795656 2291 2273 44192040.0554 2292 2273 -2737270.309063 2293 2273 1541645.175575 2294 2273 -6819846.696327 2364 2273 10539814.37052 2365 2273 -8593755.37553 2366 2273 -17106970.31658 2367 2273 44746063.01646 2368 2273 -694433.6992574 2369 2273 -58719220.64359 2370 2273 11841897.70428 2371 2273 9288189.074786 2372 2273 -21171048.60074 2379 2273 57871.26589252 2380 2273 -34500021.48517 2381 2273 -41438476.99211 2382 2273 231485.0634617 2383 2273 -2777734.795662 2384 2273 -127043423.7988 2385 2273 57871.26589543 2386 2273 37277756.28083 2387 2273 -57757921.43384 2397 2273 -10597685.63642 2398 2273 -8663199.819997 2399 2273 -17363182.43788 2400 2273 -44977548.07992 2401 2273 -694433.6992576 2402 2273 -59807200.44138 2403 2273 -11899768.97017 2404 2273 9357633.519253 2405 2273 -21458826.37861 2274 2274 626081101.6128 2275 2274 7.033348083496e-06 2276 2274 925940.2533548 2277 2274 85765730.61463 2278 2274 -3.814697265625e-06 2279 2274 231485.0634534 2289 2274 -51881527.1465 2290 2274 -36666666.66065 2291 2274 2505785.245605 2292 2274 -136819701.2443 2293 2274 9.089708328247e-07 2294 2274 -462970.1266867 2295 2274 -51905201.38891 2296 2274 36666666.66065 2297 2274 -2702548.086863 2367 2274 -18752053.59425 2368 2274 9166666.66968 2369 2274 10539814.37052 2370 2274 -60367636.82651 2371 2274 1.877546310425e-06 2372 2274 44780785.23866 2373 2274 -20276082.95081 2374 2274 -9166666.66968 2375 2274 11841897.70428 2382 2274 -1865379.213624 2383 2274 8.79168510437e-07 2384 2274 57871.26589221 2385 2274 51054233.83102 2386 2274 1.788139343262e-06 2387 2274 231485.0634618 2388 2274 -7985170.87927 2389 2274 -2.771615982056e-06 2390 2274 57871.2658952 2400 2274 -18848133.13973 2401 2274 -9166666.66968 2402 2274 -10597685.63642 2403 2274 -60775629.25067 2404 2274 -1.214444637299e-06 2405 2274 -45012270.30212 2406 2274 -20383999.6175 2407 2274 9166666.669679 2408 2274 -11899768.97017 2275 2275 538074898.3386 2276 2275 -11110939.17715 2277 2275 -2.861022949219e-06 2278 2275 -53567337.94508 2279 2275 5555469.588581 2289 2275 -36666666.66065 2290 2275 -40880751.7318 2291 2275 1263867.397843 2292 2275 9.685754776001e-07 2293 2275 24514918.12315 2294 2275 -2777734.795656 2295 2275 36666666.66065 2296 2275 -40904425.97421 2297 2275 1513867.397816 2367 2275 9166666.66968 2368 2275 -16001859.73922 2369 2275 -8593755.37553 2370 2275 1.169741153717e-06 2371 2275 -20033981.96478 2372 2275 -694433.6992575 2373 2275 -9166666.66968 2374 2275 -17525889.09577 2375 2275 9288189.074786 2382 2275 1.229345798492e-06 2383 2275 -36698646.37071 2384 2275 -34527799.26293 2385 2275 1.966953277588e-06 2386 2275 29052683.00161 2387 2275 -2777734.795662 2388 2275 -2.190470695496e-06 2389 2275 -42818438.03636 2390 2275 37305534.05859 2400 2275 -9166666.669679 2401 2275 -16097939.2847 2402 2275 -8663199.819997 2403 2275 -1.445412635803e-06 2404 2275 -20441974.38895 2405 2275 -694433.6992576 2406 2275 9166666.669678 2407 2275 -17633805.76247 2408 2275 9357633.519253 2276 2276 616797415.4266 2277 2276 231485.0634536 2278 2276 5555469.588581 2279 2276 82852085.35441 2289 2276 2471063.023406 2290 2276 1236089.620084 2291 2276 -6756715.38321 2292 2276 -462970.1266864 2293 2276 -2777734.795656 2294 2276 44192040.0554 2295 2276 -2737270.309063 2296 2276 1541645.175575 2297 2276 -6819846.696327 2367 2276 10539814.37052 2368 2276 -8593755.37553 2369 2276 -17106970.31658 2370 2276 44746063.01646 2371 2276 -694433.6992574 2372 2276 -58719220.64359 2373 2276 11841897.70428 2374 2276 9288189.074786 2375 2276 -21171048.60074 2382 2276 57871.26589252 2383 2276 -34500021.48517 2384 2276 -41438476.99211 2385 2276 231485.0634617 2386 2276 -2777734.795662 2387 2276 -127043423.7988 2388 2276 57871.26589543 2389 2276 37277756.28083 2390 2276 -57757921.43384 2400 2276 -10597685.63642 2401 2276 -8663199.819997 2402 2276 -17363182.43788 2403 2276 -44977548.07992 2404 2276 -694433.6992576 2405 2276 -59807200.44138 2406 2276 -11899768.97017 2407 2276 9357633.519253 2408 2276 -21458826.37861 2277 2277 677810035.2011 2278 2277 36667397.55284 2279 2277 3125086.662505 2280 2277 20859938.00677 2281 2277 -36666959.01753 2282 2277 2702569.081896 2292 2277 -51881527.1465 2293 2277 -36666666.66065 2294 2277 2505785.245605 2295 2277 -136819701.2443 2296 2277 9.089708328247e-07 2297 2277 -462970.1266867 2298 2277 -51905201.38891 2299 2277 36666666.66065 2300 2277 -2702548.086863 2370 2277 -18752053.59425 2371 2277 9166666.66968 2372 2277 10539814.37052 2373 2277 -72726245.22972 2374 2277 -9166776.303506 2375 2277 44231216.90386 2385 2277 -1865379.213624 2386 2277 8.79168510437e-07 2387 2277 57871.26589221 2388 2277 70575234.21716 2389 2277 9166849.392726 2390 2277 781227.3439141 2391 2277 -20203256.3538 2392 2277 -9166739.758899 2393 2277 11899863.74724 2403 2277 -18848133.13973 2404 2277 -9166666.66968 2405 2277 -10597685.63642 2406 2277 -60775629.25067 2407 2277 -1.214444637299e-06 2408 2277 -45012270.30212 2409 2277 -20383999.6175 2410 2277 9166666.669679 2411 2277 -11899768.97017 2278 2278 578802727.5875 2279 2278 -8610918.562153 2280 2278 -36667105.19596 2281 2278 -107472939.8429 2282 2278 4611020.401354 2292 2278 -36666666.66065 2293 2278 -40880751.7318 2294 2278 1263867.397843 2295 2278 9.685754776001e-07 2296 2278 24514918.12315 2297 2278 -2777734.795656 2298 2278 36666666.66065 2299 2278 -40904425.97421 2300 2278 1513867.397816 2370 2278 9166666.66968 2371 2278 -16001859.73922 2372 2278 -8593755.37553 2373 2278 -9166739.758897 2374 2278 -29642168.10562 2375 2278 8204934.122165 2385 2278 1.229345798492e-06 2386 2278 -36698646.37071 2387 2278 -34527799.26293 2388 2278 9166849.392726 2389 2278 45823407.30156 2390 2278 -2152765.098743 2391 2278 -9166776.303508 2392 2278 -52286475.83204 2393 2278 37069600.58987 2403 2278 -9166666.669679 2404 2278 -16097939.2847 2405 2278 -8663199.819997 2406 2278 -1.445412635803e-06 2407 2278 -20441974.38895 2408 2278 -694433.6992576 2409 2278 9166666.669678 2410 2278 -17633805.76247 2411 2278 9357633.519253 2279 2279 623143279.9755 2280 2279 2737301.801614 2281 2279 5388806.115241 2282 2279 41364580.11227 2292 2279 2471063.023406 2293 2279 1236089.620084 2294 2279 -6756715.38321 2295 2279 -462970.1266864 2296 2279 -2777734.795656 2297 2279 44192040.0554 2298 2279 -2737270.309063 2299 2279 1541645.175575 2300 2279 -6819846.696327 2370 2279 10539814.37052 2371 2279 -8593755.37553 2372 2279 -17106970.31658 2373 2279 44196492.14387 2374 2279 8010523.495484 2375 2279 -58776166.2905 2385 2279 57871.26589252 2386 2279 -34500021.48517 2387 2279 -41438476.99211 2388 2279 781316.8545274 2389 2279 -2152693.49136 2390 2279 -107886912.3736 2391 2279 11899911.13577 2392 2279 37236269.31883 2393 2279 -57440830.58835 2403 2279 -10597685.63642 2404 2279 -8663199.819997 2405 2279 -17363182.43788 2406 2279 -44977548.07992 2407 2279 -694433.6992576 2408 2279 -59807200.44138 2409 2279 -11899768.97017 2410 2279 9357633.519253 2411 2279 -21458826.37861 2280 2280 407563929.055 2281 2280 -25145238.89341 2282 2280 -2293234.224282 2295 2280 -51881527.1465 2296 2280 -36666666.66065 2297 2280 2505785.245605 2298 2280 -59676961.47535 2299 2280 25141515.70066 2300 2280 -67823.50352038 2301 2280 -189595094.0897 2302 2280 29337056.52127 2303 2280 -694488.2655304 2373 2280 -5106206.927443 2374 2280 11000109.63744 2375 2280 12682625.90274 2388 2280 -15511422.68773 2389 2280 -9166776.303506 2390 2280 -10539940.2691 2391 2280 57002220.2306 2392 2280 -6544915.940513 2393 2280 4861555.215121 2406 2280 -18848133.13973 2407 2280 -9166666.66968 2408 2280 -10597685.63642 2409 2280 -29177118.41547 2410 2280 6543892.420132 2411 2280 -25729678.71087 2412 2280 -53961140.25394 2413 2280 7334356.856125 2414 2280 -1354081.113647 2281 2281 699802921.116 2282 2281 -11146138.11235 2295 2281 -36666666.66065 2296 2281 -40880751.7318 2297 2281 1263867.397843 2298 2281 25139654.10429 2299 2281 84860300.43415 2300 2281 -1661075.16402 2301 2281 44005584.78191 2302 2281 -509039245.6252 2303 2281 4042794.265653 2373 2281 7333406.424962 2374 2281 -5106206.927443 2375 2281 -6763956.526763 2388 2281 -9166739.758897 2389 2281 -47594642.16596 2390 2281 -34569643.89832 2391 2281 -6544915.940513 2392 2281 138242633.1703 2393 2281 1389850.346674 2406 2281 -9166666.669679 2407 2281 -16097939.2847 2408 2281 -8663199.819997 2409 2281 6543380.659941 2410 2281 6841374.023334 2411 2281 5925066.094897 2412 2281 11001535.28419 2413 2281 -141887020.0092 2414 2281 18142632.26191 2282 2282 442159068.8707 2295 2282 2471063.023406 2296 2282 1236089.620084 2297 2282 -6756715.38321 2298 2282 -1248352.367417 2299 2282 -1800051.757736 2300 2282 48763257.37113 2301 2282 -1041732.398296 2302 2282 3931461.602197 2303 2282 -186142766.0369 2373 2282 8455083.935158 2374 2282 -10145934.79014 2375 2282 -13616551.80652 2388 2282 -10539898.30291 2389 2282 -34736312.74845 2390 2282 -44929274.14549 2391 2282 -5398901.65238 2392 2282 -6817695.611917 2393 2282 -15837053.95701 2406 2282 -10597685.63642 2407 2282 -8663199.819997 2408 2282 -17363182.43788 2409 2282 -25903283.59124 2410 2282 5953357.675215 2411 2282 -27221579.91443 2412 2282 -2031121.67047 2413 2282 17600907.9829 2414 2282 -55970494.25524 2283 2283 626081101.6128 2284 2283 7.033348083496e-06 2285 2283 925940.2533548 2286 2283 85765730.61463 2287 2283 -3.814697265625e-06 2288 2283 231485.0634534 2304 2283 -136819701.2443 2305 2283 9.089708328247e-07 2306 2283 -462970.1266867 2307 2283 -51905201.38891 2308 2283 36666666.66065 2309 2283 -2702548.086863 2376 2283 -60367636.82651 2377 2283 1.877546310425e-06 2378 2283 44780785.23866 2379 2283 -20276082.95081 2380 2283 -9166666.66968 2381 2283 11841897.70428 2394 2283 51054233.83102 2395 2283 1.788139343262e-06 2396 2283 231485.0634618 2397 2283 -7985170.87927 2398 2283 -2.771615982056e-06 2399 2283 57871.2658952 2415 2283 -60775629.25067 2416 2283 -1.214444637299e-06 2417 2283 -45012270.30212 2418 2283 -20383999.6175 2419 2283 9166666.669679 2420 2283 -11899768.97017 2284 2284 538074898.3386 2285 2284 -11110939.17715 2286 2284 -2.861022949219e-06 2287 2284 -53567337.94508 2288 2284 5555469.588581 2304 2284 9.685754776001e-07 2305 2284 24514918.12315 2306 2284 -2777734.795656 2307 2284 36666666.66065 2308 2284 -40904425.97421 2309 2284 1513867.397816 2376 2284 1.169741153717e-06 2377 2284 -20033981.96478 2378 2284 -694433.6992575 2379 2284 -9166666.66968 2380 2284 -17525889.09577 2381 2284 9288189.074786 2394 2284 1.966953277588e-06 2395 2284 29052683.00161 2396 2284 -2777734.795662 2397 2284 -2.190470695496e-06 2398 2284 -42818438.03636 2399 2284 37305534.05859 2415 2284 -1.445412635803e-06 2416 2284 -20441974.38895 2417 2284 -694433.6992576 2418 2284 9166666.669678 2419 2284 -17633805.76247 2420 2284 9357633.519253 2285 2285 616797415.4266 2286 2285 231485.0634536 2287 2285 5555469.588581 2288 2285 82852085.35441 2304 2285 -462970.1266864 2305 2285 -2777734.795656 2306 2285 44192040.0554 2307 2285 -2737270.309063 2308 2285 1541645.175575 2309 2285 -6819846.696327 2376 2285 44746063.01646 2377 2285 -694433.6992574 2378 2285 -58719220.64359 2379 2285 11841897.70428 2380 2285 9288189.074786 2381 2285 -21171048.60074 2394 2285 231485.0634617 2395 2285 -2777734.795662 2396 2285 -127043423.7988 2397 2285 57871.26589543 2398 2285 37277756.28083 2399 2285 -57757921.43384 2415 2285 -44977548.07992 2416 2285 -694433.6992576 2417 2285 -59807200.44138 2418 2285 -11899768.97017 2419 2285 9357633.519253 2420 2285 -21458826.37861 2286 2286 626081101.6128 2287 2286 7.033348083496e-06 2288 2286 925940.2533548 2289 2286 85765730.61463 2290 2286 -3.814697265625e-06 2291 2286 231485.0634534 2304 2286 -51881527.1465 2305 2286 -36666666.66065 2306 2286 2505785.245605 2307 2286 -136819701.2443 2308 2286 9.089708328247e-07 2309 2286 -462970.1266867 2310 2286 -51905201.38891 2311 2286 36666666.66065 2312 2286 -2702548.086863 2376 2286 -18752053.59425 2377 2286 9166666.66968 2378 2286 10539814.37052 2379 2286 -60367636.82651 2380 2286 1.877546310425e-06 2381 2286 44780785.23866 2382 2286 -20276082.95081 2383 2286 -9166666.66968 2384 2286 11841897.70428 2394 2286 -1865379.213624 2395 2286 8.79168510437e-07 2396 2286 57871.26589221 2397 2286 51054233.83102 2398 2286 1.788139343262e-06 2399 2286 231485.0634618 2400 2286 -7985170.87927 2401 2286 -2.771615982056e-06 2402 2286 57871.2658952 2415 2286 -18848133.13973 2416 2286 -9166666.66968 2417 2286 -10597685.63642 2418 2286 -60775629.25067 2419 2286 -1.214444637299e-06 2420 2286 -45012270.30212 2421 2286 -20383999.6175 2422 2286 9166666.669679 2423 2286 -11899768.97017 2287 2287 538074898.3386 2288 2287 -11110939.17715 2289 2287 -2.861022949219e-06 2290 2287 -53567337.94508 2291 2287 5555469.588581 2304 2287 -36666666.66065 2305 2287 -40880751.7318 2306 2287 1263867.397843 2307 2287 9.685754776001e-07 2308 2287 24514918.12315 2309 2287 -2777734.795656 2310 2287 36666666.66065 2311 2287 -40904425.97421 2312 2287 1513867.397816 2376 2287 9166666.66968 2377 2287 -16001859.73922 2378 2287 -8593755.37553 2379 2287 1.169741153717e-06 2380 2287 -20033981.96478 2381 2287 -694433.6992575 2382 2287 -9166666.66968 2383 2287 -17525889.09577 2384 2287 9288189.074786 2394 2287 1.229345798492e-06 2395 2287 -36698646.37071 2396 2287 -34527799.26293 2397 2287 1.966953277588e-06 2398 2287 29052683.00161 2399 2287 -2777734.795662 2400 2287 -2.190470695496e-06 2401 2287 -42818438.03636 2402 2287 37305534.05859 2415 2287 -9166666.669679 2416 2287 -16097939.2847 2417 2287 -8663199.819997 2418 2287 -1.445412635803e-06 2419 2287 -20441974.38895 2420 2287 -694433.6992576 2421 2287 9166666.669678 2422 2287 -17633805.76247 2423 2287 9357633.519253 2288 2288 616797415.4266 2289 2288 231485.0634536 2290 2288 5555469.588581 2291 2288 82852085.35441 2304 2288 2471063.023406 2305 2288 1236089.620084 2306 2288 -6756715.38321 2307 2288 -462970.1266864 2308 2288 -2777734.795656 2309 2288 44192040.0554 2310 2288 -2737270.309063 2311 2288 1541645.175575 2312 2288 -6819846.696327 2376 2288 10539814.37052 2377 2288 -8593755.37553 2378 2288 -17106970.31658 2379 2288 44746063.01646 2380 2288 -694433.6992574 2381 2288 -58719220.64359 2382 2288 11841897.70428 2383 2288 9288189.074786 2384 2288 -21171048.60074 2394 2288 57871.26589252 2395 2288 -34500021.48517 2396 2288 -41438476.99211 2397 2288 231485.0634617 2398 2288 -2777734.795662 2399 2288 -127043423.7988 2400 2288 57871.26589543 2401 2288 37277756.28083 2402 2288 -57757921.43384 2415 2288 -10597685.63642 2416 2288 -8663199.819997 2417 2288 -17363182.43788 2418 2288 -44977548.07992 2419 2288 -694433.6992576 2420 2288 -59807200.44138 2421 2288 -11899768.97017 2422 2288 9357633.519253 2423 2288 -21458826.37861 2289 2289 626081101.6128 2290 2289 7.033348083496e-06 2291 2289 925940.2533548 2292 2289 85765730.61463 2293 2289 -3.814697265625e-06 2294 2289 231485.0634534 2307 2289 -51881527.1465 2308 2289 -36666666.66065 2309 2289 2505785.245605 2310 2289 -136819701.2443 2311 2289 9.089708328247e-07 2312 2289 -462970.1266867 2313 2289 -51905201.38891 2314 2289 36666666.66065 2315 2289 -2702548.086863 2379 2289 -18752053.59425 2380 2289 9166666.66968 2381 2289 10539814.37052 2382 2289 -60367636.82651 2383 2289 1.877546310425e-06 2384 2289 44780785.23866 2385 2289 -20276082.95081 2386 2289 -9166666.66968 2387 2289 11841897.70428 2397 2289 -1865379.213624 2398 2289 8.79168510437e-07 2399 2289 57871.26589221 2400 2289 51054233.83102 2401 2289 1.788139343262e-06 2402 2289 231485.0634618 2403 2289 -7985170.87927 2404 2289 -2.771615982056e-06 2405 2289 57871.2658952 2418 2289 -18848133.13973 2419 2289 -9166666.66968 2420 2289 -10597685.63642 2421 2289 -60775629.25067 2422 2289 -1.214444637299e-06 2423 2289 -45012270.30212 2424 2289 -20383999.6175 2425 2289 9166666.669679 2426 2289 -11899768.97017 2290 2290 538074898.3386 2291 2290 -11110939.17715 2292 2290 -2.861022949219e-06 2293 2290 -53567337.94508 2294 2290 5555469.588581 2307 2290 -36666666.66065 2308 2290 -40880751.7318 2309 2290 1263867.397843 2310 2290 9.685754776001e-07 2311 2290 24514918.12315 2312 2290 -2777734.795656 2313 2290 36666666.66065 2314 2290 -40904425.97421 2315 2290 1513867.397816 2379 2290 9166666.66968 2380 2290 -16001859.73922 2381 2290 -8593755.37553 2382 2290 1.169741153717e-06 2383 2290 -20033981.96478 2384 2290 -694433.6992575 2385 2290 -9166666.66968 2386 2290 -17525889.09577 2387 2290 9288189.074786 2397 2290 1.229345798492e-06 2398 2290 -36698646.37071 2399 2290 -34527799.26293 2400 2290 1.966953277588e-06 2401 2290 29052683.00161 2402 2290 -2777734.795662 2403 2290 -2.190470695496e-06 2404 2290 -42818438.03636 2405 2290 37305534.05859 2418 2290 -9166666.669679 2419 2290 -16097939.2847 2420 2290 -8663199.819997 2421 2290 -1.445412635803e-06 2422 2290 -20441974.38895 2423 2290 -694433.6992576 2424 2290 9166666.669678 2425 2290 -17633805.76247 2426 2290 9357633.519253 2291 2291 616797415.4266 2292 2291 231485.0634536 2293 2291 5555469.588581 2294 2291 82852085.35441 2307 2291 2471063.023406 2308 2291 1236089.620084 2309 2291 -6756715.38321 2310 2291 -462970.1266864 2311 2291 -2777734.795656 2312 2291 44192040.0554 2313 2291 -2737270.309063 2314 2291 1541645.175575 2315 2291 -6819846.696327 2379 2291 10539814.37052 2380 2291 -8593755.37553 2381 2291 -17106970.31658 2382 2291 44746063.01646 2383 2291 -694433.6992574 2384 2291 -58719220.64359 2385 2291 11841897.70428 2386 2291 9288189.074786 2387 2291 -21171048.60074 2397 2291 57871.26589252 2398 2291 -34500021.48517 2399 2291 -41438476.99211 2400 2291 231485.0634617 2401 2291 -2777734.795662 2402 2291 -127043423.7988 2403 2291 57871.26589543 2404 2291 37277756.28083 2405 2291 -57757921.43384 2418 2291 -10597685.63642 2419 2291 -8663199.819997 2420 2291 -17363182.43788 2421 2291 -44977548.07992 2422 2291 -694433.6992576 2423 2291 -59807200.44138 2424 2291 -11899768.97017 2425 2291 9357633.519253 2426 2291 -21458826.37861 2292 2292 626081101.6128 2293 2292 7.033348083496e-06 2294 2292 925940.2533548 2295 2292 85765730.61463 2296 2292 -3.814697265625e-06 2297 2292 231485.0634534 2310 2292 -51881527.1465 2311 2292 -36666666.66065 2312 2292 2505785.245605 2313 2292 -136819701.2443 2314 2292 9.089708328247e-07 2315 2292 -462970.1266867 2316 2292 -51905201.38891 2317 2292 36666666.66065 2318 2292 -2702548.086863 2382 2292 -18752053.59425 2383 2292 9166666.66968 2384 2292 10539814.37052 2385 2292 -60367636.82651 2386 2292 1.877546310425e-06 2387 2292 44780785.23866 2388 2292 -20276082.95081 2389 2292 -9166666.66968 2390 2292 11841897.70428 2400 2292 -1865379.213624 2401 2292 8.79168510437e-07 2402 2292 57871.26589221 2403 2292 51054233.83102 2404 2292 1.788139343262e-06 2405 2292 231485.0634618 2406 2292 -7985170.87927 2407 2292 -2.771615982056e-06 2408 2292 57871.2658952 2421 2292 -18848133.13973 2422 2292 -9166666.66968 2423 2292 -10597685.63642 2424 2292 -60775629.25067 2425 2292 -1.214444637299e-06 2426 2292 -45012270.30212 2427 2292 -20383999.6175 2428 2292 9166666.669679 2429 2292 -11899768.97017 2293 2293 538074898.3386 2294 2293 -11110939.17715 2295 2293 -2.861022949219e-06 2296 2293 -53567337.94508 2297 2293 5555469.588581 2310 2293 -36666666.66065 2311 2293 -40880751.7318 2312 2293 1263867.397843 2313 2293 9.685754776001e-07 2314 2293 24514918.12315 2315 2293 -2777734.795656 2316 2293 36666666.66065 2317 2293 -40904425.97421 2318 2293 1513867.397816 2382 2293 9166666.66968 2383 2293 -16001859.73922 2384 2293 -8593755.37553 2385 2293 1.169741153717e-06 2386 2293 -20033981.96478 2387 2293 -694433.6992575 2388 2293 -9166666.66968 2389 2293 -17525889.09577 2390 2293 9288189.074786 2400 2293 1.229345798492e-06 2401 2293 -36698646.37071 2402 2293 -34527799.26293 2403 2293 1.966953277588e-06 2404 2293 29052683.00161 2405 2293 -2777734.795662 2406 2293 -2.190470695496e-06 2407 2293 -42818438.03636 2408 2293 37305534.05859 2421 2293 -9166666.669679 2422 2293 -16097939.2847 2423 2293 -8663199.819997 2424 2293 -1.445412635803e-06 2425 2293 -20441974.38895 2426 2293 -694433.6992576 2427 2293 9166666.669678 2428 2293 -17633805.76247 2429 2293 9357633.519253 2294 2294 616797415.4266 2295 2294 231485.0634536 2296 2294 5555469.588581 2297 2294 82852085.35441 2310 2294 2471063.023406 2311 2294 1236089.620084 2312 2294 -6756715.38321 2313 2294 -462970.1266864 2314 2294 -2777734.795656 2315 2294 44192040.0554 2316 2294 -2737270.309063 2317 2294 1541645.175575 2318 2294 -6819846.696327 2382 2294 10539814.37052 2383 2294 -8593755.37553 2384 2294 -17106970.31658 2385 2294 44746063.01646 2386 2294 -694433.6992574 2387 2294 -58719220.64359 2388 2294 11841897.70428 2389 2294 9288189.074786 2390 2294 -21171048.60074 2400 2294 57871.26589252 2401 2294 -34500021.48517 2402 2294 -41438476.99211 2403 2294 231485.0634617 2404 2294 -2777734.795662 2405 2294 -127043423.7988 2406 2294 57871.26589543 2407 2294 37277756.28083 2408 2294 -57757921.43384 2421 2294 -10597685.63642 2422 2294 -8663199.819997 2423 2294 -17363182.43788 2424 2294 -44977548.07992 2425 2294 -694433.6992576 2426 2294 -59807200.44138 2427 2294 -11899768.97017 2428 2294 9357633.519253 2429 2294 -21458826.37861 2295 2295 626081101.6128 2296 2295 7.033348083496e-06 2297 2295 925940.2533548 2298 2295 85765730.61463 2299 2295 -3.814697265625e-06 2300 2295 231485.0634534 2313 2295 -51881527.1465 2314 2295 -36666666.66065 2315 2295 2505785.245605 2316 2295 -136819701.2443 2317 2295 9.089708328247e-07 2318 2295 -462970.1266867 2319 2295 -51905201.38891 2320 2295 36666666.66065 2321 2295 -2702548.086863 2385 2295 -18752053.59425 2386 2295 9166666.66968 2387 2295 10539814.37052 2388 2295 -60367636.82651 2389 2295 1.877546310425e-06 2390 2295 44780785.23866 2391 2295 -20276082.95081 2392 2295 -9166666.66968 2393 2295 11841897.70428 2403 2295 -1865379.213624 2404 2295 8.79168510437e-07 2405 2295 57871.26589221 2406 2295 51054233.83102 2407 2295 1.788139343262e-06 2408 2295 231485.0634618 2409 2295 -7985170.87927 2410 2295 -2.771615982056e-06 2411 2295 57871.2658952 2424 2295 -18848133.13973 2425 2295 -9166666.66968 2426 2295 -10597685.63642 2427 2295 -60775629.25067 2428 2295 -1.214444637299e-06 2429 2295 -45012270.30212 2430 2295 -20383999.6175 2431 2295 9166666.669679 2432 2295 -11899768.97017 2296 2296 538074898.3386 2297 2296 -11110939.17715 2298 2296 -2.861022949219e-06 2299 2296 -53567337.94508 2300 2296 5555469.588581 2313 2296 -36666666.66065 2314 2296 -40880751.7318 2315 2296 1263867.397843 2316 2296 9.685754776001e-07 2317 2296 24514918.12315 2318 2296 -2777734.795656 2319 2296 36666666.66065 2320 2296 -40904425.97421 2321 2296 1513867.397816 2385 2296 9166666.66968 2386 2296 -16001859.73922 2387 2296 -8593755.37553 2388 2296 1.169741153717e-06 2389 2296 -20033981.96478 2390 2296 -694433.6992575 2391 2296 -9166666.66968 2392 2296 -17525889.09577 2393 2296 9288189.074786 2403 2296 1.229345798492e-06 2404 2296 -36698646.37071 2405 2296 -34527799.26293 2406 2296 1.966953277588e-06 2407 2296 29052683.00161 2408 2296 -2777734.795662 2409 2296 -2.190470695496e-06 2410 2296 -42818438.03636 2411 2296 37305534.05859 2424 2296 -9166666.669679 2425 2296 -16097939.2847 2426 2296 -8663199.819997 2427 2296 -1.445412635803e-06 2428 2296 -20441974.38895 2429 2296 -694433.6992576 2430 2296 9166666.669678 2431 2296 -17633805.76247 2432 2296 9357633.519253 2297 2297 616797415.4266 2298 2297 231485.0634536 2299 2297 5555469.588581 2300 2297 82852085.35441 2313 2297 2471063.023406 2314 2297 1236089.620084 2315 2297 -6756715.38321 2316 2297 -462970.1266864 2317 2297 -2777734.795656 2318 2297 44192040.0554 2319 2297 -2737270.309063 2320 2297 1541645.175575 2321 2297 -6819846.696327 2385 2297 10539814.37052 2386 2297 -8593755.37553 2387 2297 -17106970.31658 2388 2297 44746063.01646 2389 2297 -694433.6992574 2390 2297 -58719220.64359 2391 2297 11841897.70428 2392 2297 9288189.074786 2393 2297 -21171048.60074 2403 2297 57871.26589252 2404 2297 -34500021.48517 2405 2297 -41438476.99211 2406 2297 231485.0634617 2407 2297 -2777734.795662 2408 2297 -127043423.7988 2409 2297 57871.26589543 2410 2297 37277756.28083 2411 2297 -57757921.43384 2424 2297 -10597685.63642 2425 2297 -8663199.819997 2426 2297 -17363182.43788 2427 2297 -44977548.07992 2428 2297 -694433.6992576 2429 2297 -59807200.44138 2430 2297 -11899768.97017 2431 2297 9357633.519253 2432 2297 -21458826.37861 2298 2298 527732996.6747 2299 2298 15448105.76131 2300 2298 1352554.552373 2301 2298 -95118417.26927 2302 2298 -75446126.04139 2303 2298 1021640.575356 2316 2298 -51881527.1465 2317 2298 -36666666.66065 2318 2298 2505785.245605 2319 2298 -86033365.36057 2320 2298 24063656.22554 2321 2298 -110868.0321211 2322 2298 -45738405.09723 2323 2298 10794709.95026 2324 2298 -181650.9566633 2388 2298 -18752053.59425 2389 2298 9166666.66968 2390 2298 10539814.37052 2391 2298 -28689005.84703 2392 2298 6543380.659943 2393 2298 25399000.74626 2406 2298 -1865379.213624 2407 2298 8.79168510437e-07 2408 2298 57871.26589221 2409 2298 60544850.76444 2410 2298 3603652.033654 2411 2298 165256.0848025 2412 2298 -36046786.41637 2413 2298 -18861624.24183 2414 2298 11409584.46838 2427 2298 -18848133.13973 2428 2298 -9166666.66968 2429 2298 -10597685.63642 2430 2298 -45324581.42976 2431 2298 6015914.059347 2432 2298 -35313654.50317 2433 2298 -18251664.62718 2434 2298 2698677.488894 2435 2298 -1659648.850827 2299 2299 645529474.5711 2300 2299 -7340875.469264 2301 2299 -75447987.63776 2302 2299 -250794612.1175 2303 2299 1665730.961277 2316 2299 -36666666.66065 2317 2299 -40880751.7318 2318 2299 1263867.397843 2319 2299 24063656.22554 2320 2299 19704498.54099 2321 2299 -1263948.6007 2322 2299 10794709.95026 2323 2299 -140802296.2262 2324 2299 1044821.700929 2388 2299 9166666.66968 2389 2299 -16001859.73922 2390 2299 -8593755.37553 2391 2299 6543892.420133 2392 2299 7329486.591774 2393 2299 -6861432.291434 2406 2299 1.229345798492e-06 2407 2299 -36698646.37071 2408 2299 -34527799.26293 2409 2299 3603652.033653 2410 2299 90110247.58946 2411 2299 -1973524.931692 2412 2299 -18862136.00203 2413 2299 -74966289.42761 2414 2299 36320757.18761 2427 2299 -9166666.669679 2428 2299 -16097939.2847 2429 2299 -8663199.819997 2430 2299 6015914.059347 2431 2299 -18890115.44135 2432 2299 7371512.847656 2433 2299 2698677.488894 2434 2299 -42017637.42113 2435 2299 16927872.0975 2300 2300 521231498.0717 2301 2300 1195273.597041 2302 2300 1943417.199096 2303 2300 -60590062.19069 2316 2300 2471063.023406 2317 2300 1236089.620084 2318 2300 -6756715.38321 2319 2300 -978923.5875342 2320 2300 -1291726.378473 2321 2300 48623486.51979 2322 2300 -251095.4010623 2323 2300 1044821.700929 2324 2300 -32250770.90951 2388 2300 10539814.37052 2389 2300 -8593755.37553 2390 2300 -17106970.31658 2391 2300 25572605.62664 2392 2300 -6888721.711543 2393 2300 -25919946.39859 2406 2300 57871.26589252 2407 2300 -34500021.48517 2408 2300 -41438476.99211 2409 2300 165435.1762095 2410 2300 -1973381.627549 2411 2300 -58670256.12405 2412 2300 11409680.57863 2413 2300 36320340.74991 2414 2300 -47859546.84135 2427 2300 -10597685.63642 2428 2300 -8663199.819997 2429 2300 -17363182.43788 2430 2300 -35487265.61249 2431 2300 7371512.849165 2432 2300 -51354101.90813 2433 2300 -1659648.850827 2434 2300 16927872.0975 2435 2300 -26241528.32399 2301 2301 554169247.361 2302 2301 17054543.77992 2303 2301 -724142.721697 2319 2301 -53262133.98087 2320 2301 -32705759.54262 2321 2301 337518.2011556 2322 2301 32602470.69165 2323 2301 38583743.86768 2324 2301 -359703.7745384 2325 2301 64359455.48084 2326 2301 -20425982.4884 2327 2301 54703.41451001 2328 2301 -1281086.858114 2329 2301 28935857.23927 2330 2301 -17471.873625 2391 2301 -53458391.75147 2392 2301 11001535.28419 2393 2301 1822748.871423 2409 2301 -35172500.00353 2410 2301 -18862136.00203 2411 2301 -11029051.06911 2412 2301 35790640.60615 2413 2301 4298038.396794 2414 2301 8759735.736302 2430 2301 -19804774.09007 2431 2301 -8176439.889684 2432 2301 -11139057.95335 2433 2301 -41703527.98086 2434 2301 9670377.580278 2435 2301 -43908768.3245 2436 2301 -23096419.85021 2437 2301 -5140898.074326 2438 2301 13676758.60085 2439 2301 -17236872.81083 2440 2301 7209522.704775 2441 2301 -10716254.75056 2302 2302 958321698.0947 2303 2302 -5799304.02044 2319 2302 -32705759.54262 2320 2302 -17400227.63301 2321 2302 -74400.58715915 2322 2302 38583743.86768 2323 2302 160574469.7587 2324 2302 -573061.2585385 2325 2302 -5759315.824143 2326 2302 -6251510.530391 2327 2302 57494.78903285 2328 2302 28935857.23927 2329 2302 -23536130.61164 2330 2302 70574.01604483 2391 2302 7334356.856125 2392 2302 -141384271.5067 2393 2302 -15223117.05093 2409 2302 -18861624.24184 2410 2302 -74092003.01479 2411 2302 -35487648.98173 2412 2302 4298038.396793 2413 2302 144981214.6301 2414 2302 -898589.0163781 2430 2302 -8176439.889684 2431 2302 -10839297.49869 2432 2302 -8997766.816414 2433 2302 9670377.580277 2434 2302 -9734323.79071 2435 2302 7544152.626836 2436 2302 -1474231.406454 2437 2302 -40740840.42931 2438 2302 33347738.67704 2439 2302 7209522.704775 2440 2302 -22872324.27073 2441 2302 16684392.2326 2303 2303 717409238.0425 2319 2303 302795.9789559 2320 2303 -102178.3649187 2321 2303 -626812.8042064 2322 2303 -568037.1078372 2323 2303 -600839.0363119 2324 2303 193914115.0064 2325 2303 -49463.25213635 2326 2303 57494.78903276 2327 2303 126494909.3007 2328 2303 -121638.5402918 2329 2303 70574.01604487 2330 2303 41206555.57713 2391 2303 1215165.914282 2392 2303 -15709313.95751 2393 2303 -54629831.58199 2409 2303 -11028968.11405 2410 2303 -35488091.42098 2411 2303 -45528116.40711 2412 2303 -8774708.705263 2413 2303 -1927368.836544 2414 2303 -102472943.4706 2430 2303 -11139057.95335 2431 2303 -8997766.816414 2432 2303 -17461344.76991 2433 2303 -43908768.32454 2434 2303 7544152.628345 2435 2303 -84665181.10733 2436 2303 5551758.600068 2437 2303 33347738.67704 2438 2303 -72767413.37603 2439 2303 -10716254.75056 2440 2303 16684392.2326 2441 2303 -34960091.63584 2304 2304 313040550.8064 2305 2304 3.218650817871e-06 2306 2304 462970.1266764 2307 2304 42883259.87802 2308 2304 7333333.332129 2309 2304 -318285.2460207 2394 2304 -60367636.82651 2395 2304 1.877546310425e-06 2396 2304 44780785.23866 2397 2304 -20276082.95081 2398 2304 -9166666.66968 2399 2304 11841897.70428 2415 2304 25526722.3448 2416 2304 -5.960464477539e-08 2417 2304 -8946896.355626 2418 2304 -3992585.439634 2419 2304 1833333.333934 2420 2304 -2345231.034498 2305 2305 269037449.1693 2306 2305 -5555469.588573 2307 2305 -7333333.332131 2308 2305 -26783274.40183 2309 2305 2749957.016519 2394 2305 1.169741153717e-06 2395 2305 -20033981.96478 2396 2305 -694433.6992575 2397 2305 -9166666.66968 2398 2305 -17525889.09577 2399 2305 9288189.074786 2415 2305 6.556510925293e-07 2416 2305 14525946.9301 2417 2305 -1388867.397833 2418 2305 -1833333.333937 2419 2305 -21409219.01818 2420 2305 18645822.58485 2306 2306 308398707.7133 2307 2306 723381.420473 2308 2306 2805512.572065 2309 2306 41427094.86576 2394 2306 44746063.01646 2395 2306 -694433.6992574 2396 2306 -58719220.64359 2397 2306 11841897.70428 2398 2306 9288189.074786 2399 2306 -21171048.60074 2415 2306 9004770.308089 2416 2306 -1388867.397833 2417 2306 -63522764.08798 2418 2306 2403102.300394 2419 2306 18645822.58486 2420 2306 -28878960.71692 2307 2307 313040550.8064 2308 2307 3.218650817871e-06 2309 2307 462970.1266764 2310 2307 42883259.87802 2311 2307 7333333.332129 2312 2307 -318285.2460207 2394 2307 -18752053.59425 2395 2307 9166666.66968 2396 2307 10539814.37052 2397 2307 -60367636.82651 2398 2307 1.877546310425e-06 2399 2307 44780785.23866 2400 2307 -20276082.95081 2401 2307 -9166666.66968 2402 2307 11841897.70428 2415 2307 -932689.6068121 2416 2307 -1833333.333935 2417 2307 -2084814.367748 2418 2307 25526722.3448 2419 2307 -5.960464477539e-08 2420 2307 -8946896.355626 2421 2307 -3992585.439634 2422 2307 1833333.333934 2423 2307 -2345231.034498 2308 2308 269037449.1693 2309 2308 -5555469.588573 2310 2308 -7333333.332131 2311 2308 -26783274.40183 2312 2308 2749957.016519 2394 2308 9166666.66968 2395 2308 -16001859.73922 2396 2308 -8593755.37553 2397 2308 1.169741153717e-06 2398 2308 -20033981.96478 2399 2308 -694433.6992575 2400 2308 -9166666.66968 2401 2308 -17525889.09577 2402 2308 9288189.074786 2415 2308 1833333.333937 2416 2308 -18349323.18536 2417 2308 -17256955.18702 2418 2308 6.556510925293e-07 2419 2308 14525946.9301 2420 2308 -1388867.397833 2421 2308 -1833333.333937 2422 2308 -21409219.01818 2423 2308 18645822.58485 2309 2309 308398707.7133 2310 2309 723381.420473 2311 2309 2805512.572065 2312 2309 41427094.86576 2394 2309 10539814.37052 2395 2309 -8593755.37553 2396 2309 -17106970.31658 2397 2309 44746063.01646 2398 2309 -694433.6992574 2399 2309 -58719220.64359 2400 2309 11841897.70428 2401 2309 9288189.074786 2402 2309 -21171048.60074 2415 2309 2142685.63364 2416 2309 -17256955.18703 2417 2309 -20719238.49606 2418 2309 9004770.308089 2419 2309 -1388867.397833 2420 2309 -63522764.08798 2421 2309 2403102.300394 2422 2309 18645822.58486 2423 2309 -28878960.71692 2310 2310 313040550.8064 2311 2310 3.218650817871e-06 2312 2310 462970.1266764 2313 2310 42883259.87802 2314 2310 7333333.332129 2315 2310 -318285.2460207 2397 2310 -18752053.59425 2398 2310 9166666.66968 2399 2310 10539814.37052 2400 2310 -60367636.82651 2401 2310 1.877546310425e-06 2402 2310 44780785.23866 2403 2310 -20276082.95081 2404 2310 -9166666.66968 2405 2310 11841897.70428 2418 2310 -932689.6068121 2419 2310 -1833333.333935 2420 2310 -2084814.367748 2421 2310 25526722.3448 2422 2310 -5.960464477539e-08 2423 2310 -8946896.355626 2424 2310 -3992585.439634 2425 2310 1833333.333934 2426 2310 -2345231.034498 2311 2311 269037449.1693 2312 2311 -5555469.588573 2313 2311 -7333333.332131 2314 2311 -26783274.40183 2315 2311 2749957.016519 2397 2311 9166666.66968 2398 2311 -16001859.73922 2399 2311 -8593755.37553 2400 2311 1.169741153717e-06 2401 2311 -20033981.96478 2402 2311 -694433.6992575 2403 2311 -9166666.66968 2404 2311 -17525889.09577 2405 2311 9288189.074786 2418 2311 1833333.333937 2419 2311 -18349323.18536 2420 2311 -17256955.18702 2421 2311 6.556510925293e-07 2422 2311 14525946.9301 2423 2311 -1388867.397833 2424 2311 -1833333.333937 2425 2311 -21409219.01818 2426 2311 18645822.58485 2312 2312 308398707.7133 2313 2312 723381.420473 2314 2312 2805512.572065 2315 2312 41427094.86576 2397 2312 10539814.37052 2398 2312 -8593755.37553 2399 2312 -17106970.31658 2400 2312 44746063.01646 2401 2312 -694433.6992574 2402 2312 -58719220.64359 2403 2312 11841897.70428 2404 2312 9288189.074786 2405 2312 -21171048.60074 2418 2312 2142685.63364 2419 2312 -17256955.18703 2420 2312 -20719238.49606 2421 2312 9004770.308089 2422 2312 -1388867.397833 2423 2312 -63522764.08798 2424 2312 2403102.300394 2425 2312 18645822.58486 2426 2312 -28878960.71692 2313 2313 313040550.8064 2314 2313 3.218650817871e-06 2315 2313 462970.1266764 2316 2313 42883259.87802 2317 2313 7333333.332129 2318 2313 -318285.2460207 2400 2313 -18752053.59425 2401 2313 9166666.66968 2402 2313 10539814.37052 2403 2313 -60367636.82651 2404 2313 1.877546310425e-06 2405 2313 44780785.23866 2406 2313 -20276082.95081 2407 2313 -9166666.66968 2408 2313 11841897.70428 2421 2313 -932689.6068121 2422 2313 -1833333.333935 2423 2313 -2084814.367748 2424 2313 25526722.3448 2425 2313 -5.960464477539e-08 2426 2313 -8946896.355626 2427 2313 -3992585.439634 2428 2313 1833333.333934 2429 2313 -2345231.034498 2314 2314 269037449.1693 2315 2314 -5555469.588573 2316 2314 -7333333.332131 2317 2314 -26783274.40183 2318 2314 2749957.016519 2400 2314 9166666.66968 2401 2314 -16001859.73922 2402 2314 -8593755.37553 2403 2314 1.169741153717e-06 2404 2314 -20033981.96478 2405 2314 -694433.6992575 2406 2314 -9166666.66968 2407 2314 -17525889.09577 2408 2314 9288189.074786 2421 2314 1833333.333937 2422 2314 -18349323.18536 2423 2314 -17256955.18702 2424 2314 6.556510925293e-07 2425 2314 14525946.9301 2426 2314 -1388867.397833 2427 2314 -1833333.333937 2428 2314 -21409219.01818 2429 2314 18645822.58485 2315 2315 308398707.7133 2316 2315 723381.420473 2317 2315 2805512.572065 2318 2315 41427094.86576 2400 2315 10539814.37052 2401 2315 -8593755.37553 2402 2315 -17106970.31658 2403 2315 44746063.01646 2404 2315 -694433.6992574 2405 2315 -58719220.64359 2406 2315 11841897.70428 2407 2315 9288189.074786 2408 2315 -21171048.60074 2421 2315 2142685.63364 2422 2315 -17256955.18703 2423 2315 -20719238.49606 2424 2315 9004770.308089 2425 2315 -1388867.397833 2426 2315 -63522764.08798 2427 2315 2403102.300394 2428 2315 18645822.58486 2429 2315 -28878960.71692 2316 2316 313040550.8064 2317 2316 3.218650817871e-06 2318 2316 462970.1266764 2319 2316 42883259.87802 2320 2316 7333333.332129 2321 2316 -318285.2460207 2403 2316 -18752053.59425 2404 2316 9166666.66968 2405 2316 10539814.37052 2406 2316 -60367636.82651 2407 2316 1.877546310425e-06 2408 2316 44780785.23866 2409 2316 -20276082.95081 2410 2316 -9166666.66968 2411 2316 11841897.70428 2424 2316 -932689.6068121 2425 2316 -1833333.333935 2426 2316 -2084814.367748 2427 2316 25526722.3448 2428 2316 -5.960464477539e-08 2429 2316 -8946896.355626 2430 2316 -3992585.439634 2431 2316 1833333.333934 2432 2316 -2345231.034498 2317 2317 269037449.1693 2318 2317 -5555469.588573 2319 2317 -7333333.332131 2320 2317 -26783274.40183 2321 2317 2749957.016519 2403 2317 9166666.66968 2404 2317 -16001859.73922 2405 2317 -8593755.37553 2406 2317 1.169741153717e-06 2407 2317 -20033981.96478 2408 2317 -694433.6992575 2409 2317 -9166666.66968 2410 2317 -17525889.09577 2411 2317 9288189.074786 2424 2317 1833333.333937 2425 2317 -18349323.18536 2426 2317 -17256955.18702 2427 2317 6.556510925293e-07 2428 2317 14525946.9301 2429 2317 -1388867.397833 2430 2317 -1833333.333937 2431 2317 -21409219.01818 2432 2317 18645822.58485 2318 2318 308398707.7133 2319 2318 723381.420473 2320 2318 2805512.572065 2321 2318 41427094.86576 2403 2318 10539814.37052 2404 2318 -8593755.37553 2405 2318 -17106970.31658 2406 2318 44746063.01646 2407 2318 -694433.6992574 2408 2318 -58719220.64359 2409 2318 11841897.70428 2410 2318 9288189.074786 2411 2318 -21171048.60074 2424 2318 2142685.63364 2425 2318 -17256955.18703 2426 2318 -20719238.49606 2427 2318 9004770.308089 2428 2318 -1388867.397833 2429 2318 -63522764.08798 2430 2318 2403102.300394 2431 2318 18645822.58486 2432 2318 -28878960.71692 2319 2319 311501301.9278 2320 2319 3961702.031803 2321 2319 2461349.04567 2322 2319 -4984022.060376 2323 2319 -24652932.04324 2324 2319 367556.3402904 2406 2319 -18752053.59425 2407 2319 9166666.66968 2408 2319 10539814.37052 2409 2319 -44778234.89159 2410 2319 6015914.059352 2411 2319 35041206.59625 2412 2319 -20008769.25006 2413 2319 -8176439.889681 2414 2319 11299136.49846 2427 2319 -932689.6068121 2428 2319 -1833333.333935 2429 2319 -2084814.367748 2430 2319 25141334.84086 2431 2319 990425.5084367 2432 2319 -8447023.847856 2433 2319 -17627581.50065 2434 2319 -6163233.013846 2435 2319 7435569.639298 2320 2320 292367764.6648 2321 2320 -3560498.398243 2322 2320 -39319598.70751 2323 2320 -68784496.1816 2324 2320 607245.3940165 2406 2320 9166666.66968 2407 2320 -16001859.73922 2408 2320 -8593755.37553 2409 2320 6015914.059351 2410 2320 -18343768.90317 2411 2320 -8010431.594268 2412 2320 -8176439.889681 2413 2320 -11043292.65868 2414 2320 8953622.07837 2427 2320 1833333.333937 2428 2320 -18349323.18536 2429 2320 -17256955.18702 2430 2320 990425.5084375 2431 2320 20357950.52274 2432 2320 -890124.6000073 2433 2320 -9829899.681717 2434 2320 -33577700.03881 2435 2320 25797644.67844 2321 2321 314119300.5055 2322 2321 541167.4513703 2323 2321 635023.1717897 2324 2321 25143014.98303 2406 2321 10539814.37052 2407 2321 -8593755.37553 2408 2321 -17106970.31658 2409 2321 35214817.70936 2410 2321 -8010431.592745 2411 2321 -49897177.80632 2412 2321 11299136.49846 2413 2321 8953622.07837 2414 2321 -18005331.86323 2427 2321 2142685.63364 2428 2321 -17256955.18703 2429 2321 -20719238.49606 2430 2321 9504087.260305 2431 2321 -890124.6000072 2432 2321 -62094149.98014 2433 2321 11975291.86111 2434 2321 25797644.67693 2435 2321 -37398448.87766 2322 2322 355610367.635 2323 2322 44835876.15348 2324 2322 -31361.04836392 2325 2322 -68349309.06932 2326 2322 -44397476.08203 2327 2322 104055.9041087 2328 2322 15311530.47477 2329 2322 -10497255.18188 2330 2322 344159.0905987 2409 2322 -17800014.26928 2410 2322 2698677.488893 2411 2322 1551462.261342 2412 2322 -41550567.91137 2413 2322 9670377.580283 2414 2322 43763453.88329 2430 2322 -16877239.2765 2431 2322 -9829899.681722 2432 2322 -11739430.35753 2433 2322 -5864347.079577 2434 2322 11272333.02856 2435 2322 -8862175.675498 2436 2322 -34156706.14972 2437 2322 -11123810.63458 2438 2322 20338606.37075 2439 2322 -25110571.33565 2440 2322 -2687677.781431 2441 2322 7481972.406576 2323 2323 438246431.0147 2324 2323 -1374381.127417 2325 2323 -44397476.08203 2326 2323 -48686713.94084 2327 2323 70574.01604466 2328 2323 -25163921.84615 2329 2323 -56094761.85019 2330 2323 224801.2750072 2409 2323 2698677.488893 2410 2323 -41565987.06324 2411 2323 -16405461.24678 2412 2323 9670377.580283 2413 2323 -9581363.721229 2414 2323 -7837791.815088 2430 2323 -6163233.01385 2431 2323 -32827357.81467 2432 2323 -25487077.53535 2433 2323 11272333.02856 2434 2323 14803293.44955 2435 2323 -343891.8558928 2436 2323 -11123810.63458 2437 2323 -29217261.77281 2438 2323 16684392.2326 2439 2323 -6354344.449302 2440 2323 -42970769.09971 2441 2323 33389830.22049 2324 2324 485548459.258 2325 2324 104055.9041089 2326 2324 70574.01604465 2327 2324 16055972.24793 2328 2324 309436.8683792 2329 2324 224801.2750072 2330 2324 70129562.94617 2409 2324 1551462.261342 2410 2324 -16405461.24678 2411 2324 -25037127.36958 2412 2324 43763453.88333 2413 2324 -7837791.813566 2414 2324 -84257287.58871 2430 2324 -7303874.802406 2431 2324 -25487077.53687 2432 2324 -35397536.2799 2433 2324 8672268.766067 2434 2324 -343891.8558926 2435 2324 -131666276.7598 2436 2324 20338606.37075 2437 2324 16684392.2326 2438 2324 -41305029.13792 2439 2324 11778916.85432 2440 2324 33389830.22049 2441 2324 -59295265.58963 2325 2325 235127665.6719 2326 2325 49759315.81692 2327 2325 -60490.45165706 2328 2325 -6799933.309191 2329 2325 397476.0892505 2330 2325 5897.799686611 2412 2325 -23001722.8805 2413 2325 -1474231.406455 2414 2325 -5550324.72933 2433 2325 -34062009.18001 2434 2325 -11123810.63458 2435 2325 -20286393.64259 2436 2325 -19349792.24124 2437 2325 12474231.41007 2438 2325 8109815.470699 2439 2325 -35471324.17617 2440 2325 123810.6309668 2441 2325 -31023097.09878 2326 2326 216363631.6977 2327 2326 -57494.78902459 2328 2326 15064142.75351 2329 2326 62912471.54766 2330 2326 -70574.01603854 2412 2326 -5140898.074327 2413 2326 -40646143.4596 2414 2326 -33318927.97868 2433 2326 -11123810.63458 2434 2326 -29122564.8031 2435 2326 -16648941.11168 2436 2326 12474231.41007 2437 2326 -24049121.66948 2438 2326 6652261.316389 2439 2326 3790477.298838 2440 2326 -18067018.54574 2441 2326 3315607.773964 2327 2327 344429080.4936 2328 2327 -98268.86695981 2329 2327 -70574.0160386 2330 2327 111254381.3556 2412 2327 -13675324.7301 2413 2327 -33318927.97868 2414 2327 -72514888.12347 2433 2327 -20286393.64259 2434 2327 -16648941.11168 2435 2327 -41052503.88534 2436 2327 -8140184.526632 2437 2327 -6681072.014753 2438 2327 -122349568.8948 2439 2327 -31023097.10068 2440 2327 -3351058.894892 2441 2327 -62442635.03753 2328 2328 175536156.3728 2329 2328 -18836078.14664 2330 2328 396581.649942 2412 2328 -17142175.84111 2413 2328 7209522.704776 2414 2328 10681661.92314 2433 2328 -24826480.42668 2434 2328 -6354344.449306 2435 2328 -11727749.81249 2436 2328 -35471324.17617 2437 2328 3790477.298842 2438 2328 30999819.5577 2439 2328 -13375171.0781 2440 2328 -4645655.554312 2441 2328 -4310953.890546 2329 2329 199485087.5944 2330 2329 -224801.2749909 2412 2329 7209522.704776 2413 2329 -22777627.30101 2414 2329 -16648941.11168 2433 2329 -2687677.781434 2434 2329 -42686678.19075 2435 2329 -33276836.43523 2436 2329 123810.63097 2437 2329 -18067018.54574 2438 2329 3315607.773964 2439 2329 -4645655.554311 2440 2329 -7283827.484575 2441 2329 6610169.772934 2330 2330 264787277.9352 2412 2330 10681661.92314 2413 2330 -16648941.11168 2414 2330 -34707566.38326 2433 2330 -7465527.586963 2434 2330 -33276836.43523 2435 2330 -58537689.83235 2436 2330 30999819.55581 2437 2330 -3351058.894892 2438 2330 -62442635.03753 2439 2330 4248212.774715 2440 2330 -6723163.558209 2441 2330 -86485846.13902 2331 2331 434188482.4496 2332 2331 42222222.21529 2333 2331 14004257.85694 2334 2331 -237961315.0134 2335 2331 -42232516.70149 2336 2331 -11962465.89917 2337 2331 7955780.401528 2338 2331 33788072.25843 2339 2331 -8749455.084514 2442 2331 66125098.41489 2443 2331 11944444.44837 2444 2331 15207852.8515 2445 2331 -93269248.17781 2446 2331 -11949381.52693 2447 2331 -52618980.4305 2448 2331 -17054654.84265 2449 2331 9560492.637254 2450 2331 -13448143.98712 2332 2332 370839207.457 2333 2332 -27831791.96622 2334 2332 -42237663.94459 2335 2332 -39482381.812 2336 2332 -16655123.83823 2337 2332 50682108.38765 2338 2332 7955780.401527 2339 2332 11010768.51444 2442 2332 11944444.44837 2443 2332 48201681.39244 2444 2332 -5082672.97723 2445 2332 -11951850.06621 2446 2332 -37114294.87206 2447 2332 -16826932.79813 2448 2332 14340738.95588 2449 2332 -17054654.84265 2450 2332 16137388.124 2333 2333 400035038.4858 2334 2333 -10941569.92029 2335 2333 -13223756.5556 2336 2333 -11892250.19807 2337 2333 -13124182.62677 2338 2333 7340512.342961 2339 2333 21215414.40408 2442 2333 -3762599.703372 2443 2333 -20258812.61341 2444 2333 -38071476.41094 2445 2333 -52354091.66514 2446 2333 -15346414.53585 2447 2333 -72544459.24024 2448 2333 -20172215.98068 2449 2333 10758258.74933 2450 2333 -45479079.58041 2334 2334 753320607.0872 2335 2334 42247958.4308 2336 2334 13425270.63193 2337 2334 10687201.53391 2338 2334 -42232516.7015 2339 2334 11747147.69675 2340 2334 -163051082.2809 2341 2334 4.857778549194e-06 2342 2334 -2497714.891996 2343 2334 -63439558.95712 2344 2334 42222222.21529 2345 2334 -11747692.6104 2442 2334 -83208406.42019 2443 2334 -11951850.06621 2444 2334 42498171.10922 2445 2334 125282026.2887 2446 2334 11956787.14478 2447 2334 5935098.98454 2448 2334 -32275376.32772 2449 2334 -11949381.52693 2450 2334 17028332.3953 2451 2334 -71083613.53293 2452 2334 2.801418304443e-06 2453 2334 -48425475.84218 2454 2334 -29334356.73017 2455 2334 11944444.44836 2456 2334 -17021299.52369 2335 2335 639301177.7705 2336 2335 -37037050.15144 2337 2335 -42237663.9446 2338 2335 -137109995.2621 2339 2335 20238494.1063 2340 2335 3.516674041748e-06 2341 2335 22728141.58569 2342 2335 -11944266.20381 2343 2335 42222222.21529 2344 2335 -50772020.36985 2345 2335 6611021.990771 2442 2335 -11949381.52693 2443 2335 -27053453.11441 2444 2335 3626698.329752 2445 2335 11956787.14477 2446 2335 93024319.31714 2447 2335 -16362810.24847 2448 2335 -11951850.06621 2449 2335 -74090485.10009 2450 2335 46808583.40323 2451 2335 2.488493919373e-06 2452 2335 -18527661.31289 2453 2335 -5277700.460655 2454 2335 11944444.44836 2455 2335 -25750784.24113 2456 2335 12385378.01131 2336 2336 644924144.2682 2337 2336 11642708.57308 2338 2336 22769593.39294 2339 2336 12096388.9117 2340 2336 -1483826.003273 2341 2336 -11944266.20381 2342 2336 36217937.62672 2343 2336 -11643525.94355 2344 2336 6527688.657292 2345 2336 -17639683.8315 2442 2336 42233282.34386 2443 2336 2150097.608279 2444 2336 -45715547.88649 2445 2336 5939995.986973 2446 2336 -16358892.70393 2447 2336 -51790570.05088 2448 2336 17031848.8311 2449 2336 48076086.23075 2450 2336 -90703859.27092 2451 2336 -48161586.95346 2452 2336 -5277700.460655 2453 2336 -56307063.72196 2454 2336 -17021299.52369 2455 2336 12385378.01131 2456 2336 -35357225.93349 2337 2337 434188482.4496 2338 2337 42222222.21529 2339 2337 14004257.85694 2340 2337 -62903012.53369 2341 2337 -42222222.21529 2342 2337 10648140.71925 2343 2337 -237961315.0134 2344 2337 -42232516.70149 2345 2337 -11962465.89917 2346 2337 7955780.401528 2347 2337 33788072.25843 2348 2337 -8749455.084514 2442 2337 1810230.00851 2443 2337 14340738.95588 2444 2337 8290807.874965 2445 2337 -3359294.569133 2446 2337 -11951850.06621 2447 2337 -6689786.134111 2448 2337 66125098.41489 2449 2337 11944444.44837 2450 2337 15207852.8515 2451 2337 -19644494.8084 2452 2337 -11944444.44837 2453 2337 -7125466.187114 2454 2337 -93269248.17781 2455 2337 -11949381.52693 2456 2337 -52618980.4305 2457 2337 -17054654.84265 2458 2337 9560492.637254 2459 2337 -13448143.98712 2338 2338 370839207.457 2339 2338 -27831791.96622 2340 2338 -42222222.21529 2341 2338 -50235473.94641 2342 2338 5333244.213044 2343 2338 -42237663.94459 2344 2338 -39482381.812 2345 2338 -16655123.83823 2346 2338 50682108.38765 2347 2338 7955780.401527 2348 2338 11010768.51444 2442 2338 9560492.637254 2443 2338 1810230.008509 2444 2338 -4421798.559475 2445 2338 -11949381.52693 2446 2338 -45174403.34149 2447 2338 -27804612.20634 2448 2338 11944444.44837 2449 2338 48201681.39244 2450 2338 -5082672.97723 2451 2338 -11944444.44836 2452 2338 -16060922.31935 2453 2338 -7107677.550651 2454 2338 -11951850.06621 2455 2338 -37114294.87206 2456 2338 -16826932.79813 2457 2338 14340738.95588 2458 2338 -17054654.84265 2459 2338 16137388.124 2339 2339 400035038.4858 2340 2339 10752307.38609 2341 2339 5416577.546522 2342 2339 -16208893.36898 2343 2339 -10941569.92029 2344 2339 -13223756.5556 2345 2339 -11892250.19807 2346 2339 -13124182.62677 2347 2339 7340512.342961 2348 2339 21215414.40408 2442 2339 5527205.249977 2443 2339 -6632697.839212 2444 2339 4827280.022694 2445 2339 -6688405.732252 2446 2339 -29072115.16194 2447 2339 -13594307.9147 2448 2339 -3762599.703372 2449 2339 -20258812.61341 2450 2339 -38071476.41094 2451 2339 -7125466.187114 2452 2339 -7107677.550651 2453 2339 -9517594.142065 2454 2339 -52354091.66514 2455 2339 -15346414.53585 2456 2339 -72544459.24024 2457 2339 -20172215.98068 2458 2339 10758258.74933 2459 2339 -45479079.58041 2340 2340 701224018.4261 2341 2340 1.215934753418e-05 2342 2340 3981540.895231 2343 2340 85654059.23587 2344 2340 -7.361173629761e-06 2345 2340 995385.2243004 2349 2340 -163051082.2809 2350 2340 4.857778549194e-06 2351 2340 -2497714.891996 2352 2340 -63439558.95712 2353 2340 42222222.21529 2354 2340 -11747692.6104 2445 2340 -68569574.7737 2446 2340 9.983777999878e-07 2447 2340 46666190.80873 2448 2340 -28443492.38882 2449 2340 -11944444.44837 2450 2340 16581478.26512 2451 2340 103049709.0446 2452 2340 8.106231689453e-06 2453 2340 1759285.033469 2454 2340 -19975421.90891 2455 2340 -1.013278961182e-05 2456 2340 439821.2585936 2460 2340 -71083613.53293 2461 2340 2.801418304443e-06 2462 2340 -48425475.84218 2463 2340 -29334356.73017 2464 2340 11944444.44836 2465 2340 -17021299.52369 2341 2341 599883709.7778 2342 2341 -47777064.79172 2343 2341 -8.612871170044e-06 2344 2341 -74790087.48109 2345 2341 24294087.95135 2349 2341 3.516674041748e-06 2350 2341 22728141.58569 2351 2341 -11944266.20381 2352 2341 42222222.21529 2353 2341 -50772020.36985 2354 2341 6611021.990771 2445 2341 -8.195638656616e-07 2446 2341 -16013622.55363 2447 2341 -5277700.460655 2448 2341 -11944444.44837 2449 2341 -24859919.89976 2450 2341 11857600.23336 2451 2341 7.987022399902e-06 2452 2341 74381129.14638 2453 2341 -21110801.83222 2454 2341 -9.581446647644e-06 2455 2341 -65364229.15794 2456 2341 48591512.02092 2460 2341 2.488493919373e-06 2461 2341 -18527661.31289 2462 2341 -5277700.460655 2463 2341 11944444.44836 2464 2341 -25750784.24113 2465 2341 12385378.01131 2342 2342 657670929.3001 2343 2342 995385.2243 2344 2342 23482976.84037 2345 2342 60454947.39636 2349 2342 -1483826.003273 2350 2342 -11944266.20381 2351 2342 36217937.62672 2352 2342 -11643525.94355 2353 2342 6527688.657292 2354 2342 -17639683.8315 2445 2342 46402301.92001 2446 2342 -5277700.460655 2447 2342 -49602960.36391 2448 2342 16581478.26512 2449 2342 11857600.23336 2450 2342 -32981587.68983 2451 2342 1759285.033468 2452 2342 -21110801.83222 2453 2342 -68142578.48796 2454 2342 439821.258594 2455 2342 48380400.90995 2456 2342 -100781580.1802 2460 2342 -48161586.95346 2461 2342 -5277700.460655 2462 2342 -56307063.72196 2463 2342 -17021299.52369 2464 2342 12385378.01131 2465 2342 -35357225.93349 2343 2343 753320607.0872 2344 2343 42247958.4308 2345 2343 13425270.63193 2346 2343 10687201.53391 2347 2343 -42232516.7015 2348 2343 11747147.69675 2349 2343 -62903012.53369 2350 2343 -42222222.21529 2351 2343 10648140.71925 2352 2343 -163051082.2809 2353 2343 4.857778549194e-06 2354 2343 -2497714.891996 2355 2343 -63439558.95712 2356 2343 42222222.21529 2357 2343 -11747692.6104 2445 2343 -19278339.76952 2446 2343 11944444.44837 2447 2343 6685644.928532 2448 2343 -83208406.42019 2449 2343 -11951850.06621 2450 2343 42498171.10922 2451 2343 17734607.15466 2452 2343 1.817941665649e-06 2453 2343 439821.2585785 2454 2343 125282026.2887 2455 2343 11956787.14478 2456 2343 5935098.98454 2457 2343 -32275376.32772 2458 2343 -11949381.52693 2459 2343 17028332.3953 2460 2343 -19644494.8084 2461 2343 -11944444.44837 2462 2343 -7125466.187114 2463 2343 -71083613.53293 2464 2343 2.801418304443e-06 2465 2343 -48425475.84218 2466 2343 -29334356.73017 2467 2343 11944444.44836 2468 2343 -17021299.52369 2344 2344 639301177.7705 2345 2344 -37037050.15144 2346 2344 -42237663.9446 2347 2344 -137109995.2621 2348 2344 20238494.1063 2349 2344 -42222222.21529 2350 2344 -50235473.94641 2351 2344 5333244.213044 2352 2344 3.516674041748e-06 2353 2344 22728141.58569 2354 2344 -11944266.20381 2355 2344 42222222.21529 2356 2344 -50772020.36985 2357 2344 6611021.990771 2445 2344 11944444.44837 2446 2344 -15694767.28047 2447 2344 -6579899.772699 2448 2344 -11949381.52693 2449 2344 -27053453.11441 2450 2344 3626698.329752 2451 2344 3.322958946228e-06 2452 2344 -27654200.09436 2453 2344 -27480710.1887 2454 2344 11956787.14477 2455 2344 93024319.31714 2456 2344 -16362810.24847 2457 2344 -11951850.06621 2458 2344 -74090485.10009 2459 2344 46808583.40323 2460 2344 -11944444.44836 2461 2344 -16060922.31935 2462 2344 -7107677.550651 2463 2344 2.488493919373e-06 2464 2344 -18527661.31289 2465 2344 -5277700.460655 2466 2344 11944444.44836 2467 2344 -25750784.24113 2468 2344 12385378.01131 2345 2345 644924144.2682 2346 2345 11642708.57308 2347 2345 22769593.39294 2348 2345 12096388.9117 2349 2345 10752307.38609 2350 2345 5416577.546522 2351 2345 -16208893.36898 2352 2345 -1483826.003273 2353 2345 -11944266.20381 2354 2345 36217937.62672 2355 2345 -11643525.94355 2356 2345 6527688.657292 2357 2345 -17639683.8315 2445 2345 6685644.928532 2446 2345 -6579899.772699 2447 2345 -8541180.705052 2448 2345 42233282.34386 2449 2345 2150097.608279 2450 2345 -45715547.88649 2451 2345 439821.2585788 2452 2345 -27269599.07773 2453 2345 -221502.6772963 2454 2345 5939995.986973 2455 2345 -16358892.70393 2456 2345 -51790570.05088 2457 2345 17031848.8311 2458 2345 48076086.23075 2459 2345 -90703859.27092 2460 2345 -7125466.187114 2461 2345 -7107677.550651 2462 2345 -9517594.142065 2463 2345 -48161586.95346 2464 2345 -5277700.460655 2465 2345 -56307063.72196 2466 2345 -17021299.52369 2467 2345 12385378.01131 2468 2345 -35357225.93349 2346 2346 434188482.4496 2347 2346 42222222.21529 2348 2346 14004257.85694 2352 2346 -62903012.53369 2353 2346 -42222222.21529 2354 2346 10648140.71925 2355 2346 -237961315.0134 2356 2346 -42232516.70149 2357 2346 -11962465.89917 2358 2346 7955780.401528 2359 2346 33788072.25843 2360 2346 -8749455.084514 2448 2346 1810230.00851 2449 2346 14340738.95588 2450 2346 8290807.874965 2454 2346 -3359294.569133 2455 2346 -11951850.06621 2456 2346 -6689786.134111 2457 2346 66125098.41489 2458 2346 11944444.44837 2459 2346 15207852.8515 2463 2346 -19644494.8084 2464 2346 -11944444.44837 2465 2346 -7125466.187114 2466 2346 -93269248.17781 2467 2346 -11949381.52693 2468 2346 -52618980.4305 2469 2346 -17054654.84265 2470 2346 9560492.637254 2471 2346 -13448143.98712 2347 2347 370839207.457 2348 2347 -27831791.96622 2352 2347 -42222222.21529 2353 2347 -50235473.94641 2354 2347 5333244.213044 2355 2347 -42237663.94459 2356 2347 -39482381.812 2357 2347 -16655123.83823 2358 2347 50682108.38765 2359 2347 7955780.401527 2360 2347 11010768.51444 2448 2347 9560492.637254 2449 2347 1810230.008509 2450 2347 -4421798.559475 2454 2347 -11949381.52693 2455 2347 -45174403.34149 2456 2347 -27804612.20634 2457 2347 11944444.44837 2458 2347 48201681.39244 2459 2347 -5082672.97723 2463 2347 -11944444.44836 2464 2347 -16060922.31935 2465 2347 -7107677.550651 2466 2347 -11951850.06621 2467 2347 -37114294.87206 2468 2347 -16826932.79813 2469 2347 14340738.95588 2470 2347 -17054654.84265 2471 2347 16137388.124 2348 2348 400035038.4858 2352 2348 10752307.38609 2353 2348 5416577.546522 2354 2348 -16208893.36898 2355 2348 -10941569.92029 2356 2348 -13223756.5556 2357 2348 -11892250.19807 2358 2348 -13124182.62677 2359 2348 7340512.342961 2360 2348 21215414.40408 2448 2348 5527205.249977 2449 2348 -6632697.839212 2450 2348 4827280.022694 2454 2348 -6688405.732252 2455 2348 -29072115.16194 2456 2348 -13594307.9147 2457 2348 -3762599.703372 2458 2348 -20258812.61341 2459 2348 -38071476.41094 2463 2348 -7125466.187114 2464 2348 -7107677.550651 2465 2348 -9517594.142065 2466 2348 -52354091.66514 2467 2348 -15346414.53585 2468 2348 -72544459.24024 2469 2348 -20172215.98068 2470 2348 10758258.74933 2471 2348 -45479079.58041 2349 2349 701224018.4261 2350 2349 1.215934753418e-05 2351 2349 3981540.895231 2352 2349 85654059.23587 2353 2349 -7.361173629761e-06 2354 2349 995385.2243004 2361 2349 -163051082.2809 2362 2349 4.857778549194e-06 2363 2349 -2497714.891996 2364 2349 -63439558.95712 2365 2349 42222222.21529 2366 2349 -11747692.6104 2451 2349 -68569574.7737 2452 2349 9.983777999878e-07 2453 2349 46666190.80873 2454 2349 -28443492.38882 2455 2349 -11944444.44837 2456 2349 16581478.26512 2460 2349 103049709.0446 2461 2349 8.106231689453e-06 2462 2349 1759285.033469 2463 2349 -19975421.90891 2464 2349 -1.013278961182e-05 2465 2349 439821.2585936 2472 2349 -71083613.53293 2473 2349 2.801418304443e-06 2474 2349 -48425475.84218 2475 2349 -29334356.73017 2476 2349 11944444.44836 2477 2349 -17021299.52369 2350 2350 599883709.7778 2351 2350 -47777064.79172 2352 2350 -8.612871170044e-06 2353 2350 -74790087.48109 2354 2350 24294087.95135 2361 2350 3.516674041748e-06 2362 2350 22728141.58569 2363 2350 -11944266.20381 2364 2350 42222222.21529 2365 2350 -50772020.36985 2366 2350 6611021.990771 2451 2350 -8.195638656616e-07 2452 2350 -16013622.55363 2453 2350 -5277700.460655 2454 2350 -11944444.44837 2455 2350 -24859919.89976 2456 2350 11857600.23336 2460 2350 7.987022399902e-06 2461 2350 74381129.14638 2462 2350 -21110801.83222 2463 2350 -9.581446647644e-06 2464 2350 -65364229.15794 2465 2350 48591512.02092 2472 2350 2.488493919373e-06 2473 2350 -18527661.31289 2474 2350 -5277700.460655 2475 2350 11944444.44836 2476 2350 -25750784.24113 2477 2350 12385378.01131 2351 2351 657670929.3001 2352 2351 995385.2243 2353 2351 23482976.84037 2354 2351 60454947.39636 2361 2351 -1483826.003273 2362 2351 -11944266.20381 2363 2351 36217937.62672 2364 2351 -11643525.94355 2365 2351 6527688.657292 2366 2351 -17639683.8315 2451 2351 46402301.92001 2452 2351 -5277700.460655 2453 2351 -49602960.36391 2454 2351 16581478.26512 2455 2351 11857600.23336 2456 2351 -32981587.68983 2460 2351 1759285.033468 2461 2351 -21110801.83222 2462 2351 -68142578.48796 2463 2351 439821.258594 2464 2351 48380400.90995 2465 2351 -100781580.1802 2472 2351 -48161586.95346 2473 2351 -5277700.460655 2474 2351 -56307063.72196 2475 2351 -17021299.52369 2476 2351 12385378.01131 2477 2351 -35357225.93349 2352 2352 701224018.4261 2353 2352 1.215934753418e-05 2354 2352 3981540.895231 2355 2352 85654059.23587 2356 2352 -7.361173629761e-06 2357 2352 995385.2243004 2361 2352 -62903012.53369 2362 2352 -42222222.21529 2363 2352 10648140.71925 2364 2352 -163051082.2809 2365 2352 4.857778549194e-06 2366 2352 -2497714.891996 2367 2352 -63439558.95712 2368 2352 42222222.21529 2369 2352 -11747692.6104 2451 2352 -19278339.76952 2452 2352 11944444.44837 2453 2352 6685644.928532 2454 2352 -68569574.7737 2455 2352 9.983777999878e-07 2456 2352 46666190.80873 2457 2352 -28443492.38882 2458 2352 -11944444.44837 2459 2352 16581478.26512 2460 2352 17734607.15466 2461 2352 1.817941665649e-06 2462 2352 439821.2585785 2463 2352 103049709.0446 2464 2352 8.106231689453e-06 2465 2352 1759285.033469 2466 2352 -19975421.90891 2467 2352 -1.013278961182e-05 2468 2352 439821.2585936 2472 2352 -19644494.8084 2473 2352 -11944444.44837 2474 2352 -7125466.187114 2475 2352 -71083613.53293 2476 2352 2.801418304443e-06 2477 2352 -48425475.84218 2478 2352 -29334356.73017 2479 2352 11944444.44836 2480 2352 -17021299.52369 2353 2353 599883709.7778 2354 2353 -47777064.79172 2355 2353 -8.612871170044e-06 2356 2353 -74790087.48109 2357 2353 24294087.95135 2361 2353 -42222222.21529 2362 2353 -50235473.94641 2363 2353 5333244.213044 2364 2353 3.516674041748e-06 2365 2353 22728141.58569 2366 2353 -11944266.20381 2367 2353 42222222.21529 2368 2353 -50772020.36985 2369 2353 6611021.990771 2451 2353 11944444.44837 2452 2353 -15694767.28047 2453 2353 -6579899.772699 2454 2353 -8.195638656616e-07 2455 2353 -16013622.55363 2456 2353 -5277700.460655 2457 2353 -11944444.44837 2458 2353 -24859919.89976 2459 2353 11857600.23336 2460 2353 3.322958946228e-06 2461 2353 -27654200.09436 2462 2353 -27480710.1887 2463 2353 7.987022399902e-06 2464 2353 74381129.14638 2465 2353 -21110801.83222 2466 2353 -9.581446647644e-06 2467 2353 -65364229.15794 2468 2353 48591512.02092 2472 2353 -11944444.44836 2473 2353 -16060922.31935 2474 2353 -7107677.550651 2475 2353 2.488493919373e-06 2476 2353 -18527661.31289 2477 2353 -5277700.460655 2478 2353 11944444.44836 2479 2353 -25750784.24113 2480 2353 12385378.01131 2354 2354 657670929.3001 2355 2354 995385.2243 2356 2354 23482976.84037 2357 2354 60454947.39636 2361 2354 10752307.38609 2362 2354 5416577.546522 2363 2354 -16208893.36898 2364 2354 -1483826.003273 2365 2354 -11944266.20381 2366 2354 36217937.62672 2367 2354 -11643525.94355 2368 2354 6527688.657292 2369 2354 -17639683.8315 2451 2354 6685644.928532 2452 2354 -6579899.772699 2453 2354 -8541180.705052 2454 2354 46402301.92001 2455 2354 -5277700.460655 2456 2354 -49602960.36391 2457 2354 16581478.26512 2458 2354 11857600.23336 2459 2354 -32981587.68983 2460 2354 439821.2585788 2461 2354 -27269599.07773 2462 2354 -221502.6772963 2463 2354 1759285.033468 2464 2354 -21110801.83222 2465 2354 -68142578.48796 2466 2354 439821.258594 2467 2354 48380400.90995 2468 2354 -100781580.1802 2472 2354 -7125466.187114 2473 2354 -7107677.550651 2474 2354 -9517594.142065 2475 2354 -48161586.95346 2476 2354 -5277700.460655 2477 2354 -56307063.72196 2478 2354 -17021299.52369 2479 2354 12385378.01131 2480 2354 -35357225.93349 2355 2355 753320607.0872 2356 2355 42247958.4308 2357 2355 13425270.63193 2358 2355 10687201.53391 2359 2355 -42232516.7015 2360 2355 11747147.69675 2364 2355 -62903012.53369 2365 2355 -42222222.21529 2366 2355 10648140.71925 2367 2355 -163051082.2809 2368 2355 4.857778549194e-06 2369 2355 -2497714.891996 2370 2355 -63439558.95712 2371 2355 42222222.21529 2372 2355 -11747692.6104 2454 2355 -19278339.76952 2455 2355 11944444.44837 2456 2355 6685644.928532 2457 2355 -83208406.42019 2458 2355 -11951850.06621 2459 2355 42498171.10922 2463 2355 17734607.15466 2464 2355 1.817941665649e-06 2465 2355 439821.2585785 2466 2355 125282026.2887 2467 2355 11956787.14478 2468 2355 5935098.98454 2469 2355 -32275376.32772 2470 2355 -11949381.52693 2471 2355 17028332.3953 2475 2355 -19644494.8084 2476 2355 -11944444.44837 2477 2355 -7125466.187114 2478 2355 -71083613.53293 2479 2355 2.801418304443e-06 2480 2355 -48425475.84218 2481 2355 -29334356.73017 2482 2355 11944444.44836 2483 2355 -17021299.52369 2356 2356 639301177.7705 2357 2356 -37037050.15144 2358 2356 -42237663.9446 2359 2356 -137109995.2621 2360 2356 20238494.1063 2364 2356 -42222222.21529 2365 2356 -50235473.94641 2366 2356 5333244.213044 2367 2356 3.516674041748e-06 2368 2356 22728141.58569 2369 2356 -11944266.20381 2370 2356 42222222.21529 2371 2356 -50772020.36985 2372 2356 6611021.990771 2454 2356 11944444.44837 2455 2356 -15694767.28047 2456 2356 -6579899.772699 2457 2356 -11949381.52693 2458 2356 -27053453.11441 2459 2356 3626698.329752 2463 2356 3.322958946228e-06 2464 2356 -27654200.09436 2465 2356 -27480710.1887 2466 2356 11956787.14477 2467 2356 93024319.31714 2468 2356 -16362810.24847 2469 2356 -11951850.06621 2470 2356 -74090485.10009 2471 2356 46808583.40323 2475 2356 -11944444.44836 2476 2356 -16060922.31935 2477 2356 -7107677.550651 2478 2356 2.488493919373e-06 2479 2356 -18527661.31289 2480 2356 -5277700.460655 2481 2356 11944444.44836 2482 2356 -25750784.24113 2483 2356 12385378.01131 2357 2357 644924144.2682 2358 2357 11642708.57308 2359 2357 22769593.39294 2360 2357 12096388.9117 2364 2357 10752307.38609 2365 2357 5416577.546522 2366 2357 -16208893.36898 2367 2357 -1483826.003273 2368 2357 -11944266.20381 2369 2357 36217937.62672 2370 2357 -11643525.94355 2371 2357 6527688.657292 2372 2357 -17639683.8315 2454 2357 6685644.928532 2455 2357 -6579899.772699 2456 2357 -8541180.705052 2457 2357 42233282.34386 2458 2357 2150097.608279 2459 2357 -45715547.88649 2463 2357 439821.2585788 2464 2357 -27269599.07773 2465 2357 -221502.6772963 2466 2357 5939995.986973 2467 2357 -16358892.70393 2468 2357 -51790570.05088 2469 2357 17031848.8311 2470 2357 48076086.23075 2471 2357 -90703859.27092 2475 2357 -7125466.187114 2476 2357 -7107677.550651 2477 2357 -9517594.142065 2478 2357 -48161586.95346 2479 2357 -5277700.460655 2480 2357 -56307063.72196 2481 2357 -17021299.52369 2482 2357 12385378.01131 2483 2357 -35357225.93349 2358 2358 434188482.4496 2359 2358 42222222.21529 2360 2358 14004257.85694 2367 2358 -62903012.53369 2368 2358 -42222222.21529 2369 2358 10648140.71925 2370 2358 -237961315.0134 2371 2358 -42232516.70149 2372 2358 -11962465.89917 2373 2358 7955780.401528 2374 2358 33788072.25843 2375 2358 -8749455.084514 2457 2358 1810230.00851 2458 2358 14340738.95588 2459 2358 8290807.874965 2466 2358 -3359294.569133 2467 2358 -11951850.06621 2468 2358 -6689786.134111 2469 2358 66125098.41489 2470 2358 11944444.44837 2471 2358 15207852.8515 2478 2358 -19644494.8084 2479 2358 -11944444.44837 2480 2358 -7125466.187114 2481 2358 -93269248.17781 2482 2358 -11949381.52693 2483 2358 -52618980.4305 2484 2358 -17054654.84265 2485 2358 9560492.637254 2486 2358 -13448143.98712 2359 2359 370839207.457 2360 2359 -27831791.96622 2367 2359 -42222222.21529 2368 2359 -50235473.94641 2369 2359 5333244.213044 2370 2359 -42237663.94459 2371 2359 -39482381.812 2372 2359 -16655123.83823 2373 2359 50682108.38765 2374 2359 7955780.401527 2375 2359 11010768.51444 2457 2359 9560492.637254 2458 2359 1810230.008509 2459 2359 -4421798.559475 2466 2359 -11949381.52693 2467 2359 -45174403.34149 2468 2359 -27804612.20634 2469 2359 11944444.44837 2470 2359 48201681.39244 2471 2359 -5082672.97723 2478 2359 -11944444.44836 2479 2359 -16060922.31935 2480 2359 -7107677.550651 2481 2359 -11951850.06621 2482 2359 -37114294.87206 2483 2359 -16826932.79813 2484 2359 14340738.95588 2485 2359 -17054654.84265 2486 2359 16137388.124 2360 2360 400035038.4858 2367 2360 10752307.38609 2368 2360 5416577.546522 2369 2360 -16208893.36898 2370 2360 -10941569.92029 2371 2360 -13223756.5556 2372 2360 -11892250.19807 2373 2360 -13124182.62677 2374 2360 7340512.342961 2375 2360 21215414.40408 2457 2360 5527205.249977 2458 2360 -6632697.839212 2459 2360 4827280.022694 2466 2360 -6688405.732252 2467 2360 -29072115.16194 2468 2360 -13594307.9147 2469 2360 -3762599.703372 2470 2360 -20258812.61341 2471 2360 -38071476.41094 2478 2360 -7125466.187114 2479 2360 -7107677.550651 2480 2360 -9517594.142065 2481 2360 -52354091.66514 2482 2360 -15346414.53585 2483 2360 -72544459.24024 2484 2360 -20172215.98068 2485 2360 10758258.74933 2486 2360 -45479079.58041 2361 2361 701224018.4261 2362 2361 1.215934753418e-05 2363 2361 3981540.895231 2364 2361 85654059.23587 2365 2361 -7.361173629761e-06 2366 2361 995385.2243004 2376 2361 -163051082.2809 2377 2361 4.857778549194e-06 2378 2361 -2497714.891996 2379 2361 -63439558.95712 2380 2361 42222222.21529 2381 2361 -11747692.6104 2460 2361 -68569574.7737 2461 2361 9.983777999878e-07 2462 2361 46666190.80873 2463 2361 -28443492.38882 2464 2361 -11944444.44837 2465 2361 16581478.26512 2472 2361 103049709.0446 2473 2361 8.106231689453e-06 2474 2361 1759285.033469 2475 2361 -19975421.90891 2476 2361 -1.013278961182e-05 2477 2361 439821.2585936 2487 2361 -71083613.53293 2488 2361 2.801418304443e-06 2489 2361 -48425475.84218 2490 2361 -29334356.73017 2491 2361 11944444.44836 2492 2361 -17021299.52369 2362 2362 599883709.7778 2363 2362 -47777064.79172 2364 2362 -8.612871170044e-06 2365 2362 -74790087.48109 2366 2362 24294087.95135 2376 2362 3.516674041748e-06 2377 2362 22728141.58569 2378 2362 -11944266.20381 2379 2362 42222222.21529 2380 2362 -50772020.36985 2381 2362 6611021.990771 2460 2362 -8.195638656616e-07 2461 2362 -16013622.55363 2462 2362 -5277700.460655 2463 2362 -11944444.44837 2464 2362 -24859919.89976 2465 2362 11857600.23336 2472 2362 7.987022399902e-06 2473 2362 74381129.14638 2474 2362 -21110801.83222 2475 2362 -9.581446647644e-06 2476 2362 -65364229.15794 2477 2362 48591512.02092 2487 2362 2.488493919373e-06 2488 2362 -18527661.31289 2489 2362 -5277700.460655 2490 2362 11944444.44836 2491 2362 -25750784.24113 2492 2362 12385378.01131 2363 2363 657670929.3001 2364 2363 995385.2243 2365 2363 23482976.84037 2366 2363 60454947.39636 2376 2363 -1483826.003273 2377 2363 -11944266.20381 2378 2363 36217937.62672 2379 2363 -11643525.94355 2380 2363 6527688.657292 2381 2363 -17639683.8315 2460 2363 46402301.92001 2461 2363 -5277700.460655 2462 2363 -49602960.36391 2463 2363 16581478.26512 2464 2363 11857600.23336 2465 2363 -32981587.68983 2472 2363 1759285.033468 2473 2363 -21110801.83222 2474 2363 -68142578.48796 2475 2363 439821.258594 2476 2363 48380400.90995 2477 2363 -100781580.1802 2487 2363 -48161586.95346 2488 2363 -5277700.460655 2489 2363 -56307063.72196 2490 2363 -17021299.52369 2491 2363 12385378.01131 2492 2363 -35357225.93349 2364 2364 701224018.4261 2365 2364 1.215934753418e-05 2366 2364 3981540.895231 2367 2364 85654059.23587 2368 2364 -7.361173629761e-06 2369 2364 995385.2243004 2376 2364 -62903012.53369 2377 2364 -42222222.21529 2378 2364 10648140.71925 2379 2364 -163051082.2809 2380 2364 4.857778549194e-06 2381 2364 -2497714.891996 2382 2364 -63439558.95712 2383 2364 42222222.21529 2384 2364 -11747692.6104 2460 2364 -19278339.76952 2461 2364 11944444.44837 2462 2364 6685644.928532 2463 2364 -68569574.7737 2464 2364 9.983777999878e-07 2465 2364 46666190.80873 2466 2364 -28443492.38882 2467 2364 -11944444.44837 2468 2364 16581478.26512 2472 2364 17734607.15466 2473 2364 1.817941665649e-06 2474 2364 439821.2585785 2475 2364 103049709.0446 2476 2364 8.106231689453e-06 2477 2364 1759285.033469 2478 2364 -19975421.90891 2479 2364 -1.013278961182e-05 2480 2364 439821.2585936 2487 2364 -19644494.8084 2488 2364 -11944444.44837 2489 2364 -7125466.187114 2490 2364 -71083613.53293 2491 2364 2.801418304443e-06 2492 2364 -48425475.84218 2493 2364 -29334356.73017 2494 2364 11944444.44836 2495 2364 -17021299.52369 2365 2365 599883709.7778 2366 2365 -47777064.79172 2367 2365 -8.612871170044e-06 2368 2365 -74790087.48109 2369 2365 24294087.95135 2376 2365 -42222222.21529 2377 2365 -50235473.94641 2378 2365 5333244.213044 2379 2365 3.516674041748e-06 2380 2365 22728141.58569 2381 2365 -11944266.20381 2382 2365 42222222.21529 2383 2365 -50772020.36985 2384 2365 6611021.990771 2460 2365 11944444.44837 2461 2365 -15694767.28047 2462 2365 -6579899.772699 2463 2365 -8.195638656616e-07 2464 2365 -16013622.55363 2465 2365 -5277700.460655 2466 2365 -11944444.44837 2467 2365 -24859919.89976 2468 2365 11857600.23336 2472 2365 3.322958946228e-06 2473 2365 -27654200.09436 2474 2365 -27480710.1887 2475 2365 7.987022399902e-06 2476 2365 74381129.14638 2477 2365 -21110801.83222 2478 2365 -9.581446647644e-06 2479 2365 -65364229.15794 2480 2365 48591512.02092 2487 2365 -11944444.44836 2488 2365 -16060922.31935 2489 2365 -7107677.550651 2490 2365 2.488493919373e-06 2491 2365 -18527661.31289 2492 2365 -5277700.460655 2493 2365 11944444.44836 2494 2365 -25750784.24113 2495 2365 12385378.01131 2366 2366 657670929.3001 2367 2366 995385.2243 2368 2366 23482976.84037 2369 2366 60454947.39636 2376 2366 10752307.38609 2377 2366 5416577.546522 2378 2366 -16208893.36898 2379 2366 -1483826.003273 2380 2366 -11944266.20381 2381 2366 36217937.62672 2382 2366 -11643525.94355 2383 2366 6527688.657292 2384 2366 -17639683.8315 2460 2366 6685644.928532 2461 2366 -6579899.772699 2462 2366 -8541180.705052 2463 2366 46402301.92001 2464 2366 -5277700.460655 2465 2366 -49602960.36391 2466 2366 16581478.26512 2467 2366 11857600.23336 2468 2366 -32981587.68983 2472 2366 439821.2585788 2473 2366 -27269599.07773 2474 2366 -221502.6772963 2475 2366 1759285.033468 2476 2366 -21110801.83222 2477 2366 -68142578.48796 2478 2366 439821.258594 2479 2366 48380400.90995 2480 2366 -100781580.1802 2487 2366 -7125466.187114 2488 2366 -7107677.550651 2489 2366 -9517594.142065 2490 2366 -48161586.95346 2491 2366 -5277700.460655 2492 2366 -56307063.72196 2493 2366 -17021299.52369 2494 2366 12385378.01131 2495 2366 -35357225.93349 2367 2367 701224018.4261 2368 2367 1.215934753418e-05 2369 2367 3981540.895231 2370 2367 85654059.23587 2371 2367 -7.361173629761e-06 2372 2367 995385.2243004 2379 2367 -62903012.53369 2380 2367 -42222222.21529 2381 2367 10648140.71925 2382 2367 -163051082.2809 2383 2367 4.857778549194e-06 2384 2367 -2497714.891996 2385 2367 -63439558.95712 2386 2367 42222222.21529 2387 2367 -11747692.6104 2463 2367 -19278339.76952 2464 2367 11944444.44837 2465 2367 6685644.928532 2466 2367 -68569574.7737 2467 2367 9.983777999878e-07 2468 2367 46666190.80873 2469 2367 -28443492.38882 2470 2367 -11944444.44837 2471 2367 16581478.26512 2475 2367 17734607.15466 2476 2367 1.817941665649e-06 2477 2367 439821.2585785 2478 2367 103049709.0446 2479 2367 8.106231689453e-06 2480 2367 1759285.033469 2481 2367 -19975421.90891 2482 2367 -1.013278961182e-05 2483 2367 439821.2585936 2490 2367 -19644494.8084 2491 2367 -11944444.44837 2492 2367 -7125466.187114 2493 2367 -71083613.53293 2494 2367 2.801418304443e-06 2495 2367 -48425475.84218 2496 2367 -29334356.73017 2497 2367 11944444.44836 2498 2367 -17021299.52369 2368 2368 599883709.7778 2369 2368 -47777064.79172 2370 2368 -8.612871170044e-06 2371 2368 -74790087.48109 2372 2368 24294087.95135 2379 2368 -42222222.21529 2380 2368 -50235473.94641 2381 2368 5333244.213044 2382 2368 3.516674041748e-06 2383 2368 22728141.58569 2384 2368 -11944266.20381 2385 2368 42222222.21529 2386 2368 -50772020.36985 2387 2368 6611021.990771 2463 2368 11944444.44837 2464 2368 -15694767.28047 2465 2368 -6579899.772699 2466 2368 -8.195638656616e-07 2467 2368 -16013622.55363 2468 2368 -5277700.460655 2469 2368 -11944444.44837 2470 2368 -24859919.89976 2471 2368 11857600.23336 2475 2368 3.322958946228e-06 2476 2368 -27654200.09436 2477 2368 -27480710.1887 2478 2368 7.987022399902e-06 2479 2368 74381129.14638 2480 2368 -21110801.83222 2481 2368 -9.581446647644e-06 2482 2368 -65364229.15794 2483 2368 48591512.02092 2490 2368 -11944444.44836 2491 2368 -16060922.31935 2492 2368 -7107677.550651 2493 2368 2.488493919373e-06 2494 2368 -18527661.31289 2495 2368 -5277700.460655 2496 2368 11944444.44836 2497 2368 -25750784.24113 2498 2368 12385378.01131 2369 2369 657670929.3001 2370 2369 995385.2243 2371 2369 23482976.84037 2372 2369 60454947.39636 2379 2369 10752307.38609 2380 2369 5416577.546522 2381 2369 -16208893.36898 2382 2369 -1483826.003273 2383 2369 -11944266.20381 2384 2369 36217937.62672 2385 2369 -11643525.94355 2386 2369 6527688.657292 2387 2369 -17639683.8315 2463 2369 6685644.928532 2464 2369 -6579899.772699 2465 2369 -8541180.705052 2466 2369 46402301.92001 2467 2369 -5277700.460655 2468 2369 -49602960.36391 2469 2369 16581478.26512 2470 2369 11857600.23336 2471 2369 -32981587.68983 2475 2369 439821.2585788 2476 2369 -27269599.07773 2477 2369 -221502.6772963 2478 2369 1759285.033468 2479 2369 -21110801.83222 2480 2369 -68142578.48796 2481 2369 439821.258594 2482 2369 48380400.90995 2483 2369 -100781580.1802 2490 2369 -7125466.187114 2491 2369 -7107677.550651 2492 2369 -9517594.142065 2493 2369 -48161586.95346 2494 2369 -5277700.460655 2495 2369 -56307063.72196 2496 2369 -17021299.52369 2497 2369 12385378.01131 2498 2369 -35357225.93349 2370 2370 753320607.0872 2371 2370 42247958.4308 2372 2370 13425270.63193 2373 2370 10687201.53391 2374 2370 -42232516.7015 2375 2370 11747147.69675 2382 2370 -62903012.53369 2383 2370 -42222222.21529 2384 2370 10648140.71925 2385 2370 -163051082.2809 2386 2370 4.857778549194e-06 2387 2370 -2497714.891996 2388 2370 -63439558.95712 2389 2370 42222222.21529 2390 2370 -11747692.6104 2466 2370 -19278339.76952 2467 2370 11944444.44837 2468 2370 6685644.928532 2469 2370 -83208406.42019 2470 2370 -11951850.06621 2471 2370 42498171.10922 2478 2370 17734607.15466 2479 2370 1.817941665649e-06 2480 2370 439821.2585785 2481 2370 125282026.2887 2482 2370 11956787.14478 2483 2370 5935098.98454 2484 2370 -32275376.32772 2485 2370 -11949381.52693 2486 2370 17028332.3953 2493 2370 -19644494.8084 2494 2370 -11944444.44837 2495 2370 -7125466.187114 2496 2370 -71083613.53293 2497 2370 2.801418304443e-06 2498 2370 -48425475.84218 2499 2370 -29334356.73017 2500 2370 11944444.44836 2501 2370 -17021299.52369 2371 2371 639301177.7705 2372 2371 -37037050.15144 2373 2371 -42237663.9446 2374 2371 -137109995.2621 2375 2371 20238494.1063 2382 2371 -42222222.21529 2383 2371 -50235473.94641 2384 2371 5333244.213044 2385 2371 3.516674041748e-06 2386 2371 22728141.58569 2387 2371 -11944266.20381 2388 2371 42222222.21529 2389 2371 -50772020.36985 2390 2371 6611021.990771 2466 2371 11944444.44837 2467 2371 -15694767.28047 2468 2371 -6579899.772699 2469 2371 -11949381.52693 2470 2371 -27053453.11441 2471 2371 3626698.329752 2478 2371 3.322958946228e-06 2479 2371 -27654200.09436 2480 2371 -27480710.1887 2481 2371 11956787.14477 2482 2371 93024319.31714 2483 2371 -16362810.24847 2484 2371 -11951850.06621 2485 2371 -74090485.10009 2486 2371 46808583.40323 2493 2371 -11944444.44836 2494 2371 -16060922.31935 2495 2371 -7107677.550651 2496 2371 2.488493919373e-06 2497 2371 -18527661.31289 2498 2371 -5277700.460655 2499 2371 11944444.44836 2500 2371 -25750784.24113 2501 2371 12385378.01131 2372 2372 644924144.2682 2373 2372 11642708.57308 2374 2372 22769593.39294 2375 2372 12096388.9117 2382 2372 10752307.38609 2383 2372 5416577.546522 2384 2372 -16208893.36898 2385 2372 -1483826.003273 2386 2372 -11944266.20381 2387 2372 36217937.62672 2388 2372 -11643525.94355 2389 2372 6527688.657292 2390 2372 -17639683.8315 2466 2372 6685644.928532 2467 2372 -6579899.772699 2468 2372 -8541180.705052 2469 2372 42233282.34386 2470 2372 2150097.608279 2471 2372 -45715547.88649 2478 2372 439821.2585788 2479 2372 -27269599.07773 2480 2372 -221502.6772963 2481 2372 5939995.986973 2482 2372 -16358892.70393 2483 2372 -51790570.05088 2484 2372 17031848.8311 2485 2372 48076086.23075 2486 2372 -90703859.27092 2493 2372 -7125466.187114 2494 2372 -7107677.550651 2495 2372 -9517594.142065 2496 2372 -48161586.95346 2497 2372 -5277700.460655 2498 2372 -56307063.72196 2499 2372 -17021299.52369 2500 2372 12385378.01131 2501 2372 -35357225.93349 2373 2373 434188482.4496 2374 2373 42222222.21529 2375 2373 14004257.85694 2385 2373 -62903012.53369 2386 2373 -42222222.21529 2387 2373 10648140.71925 2388 2373 -237961315.0134 2389 2373 -42232516.70149 2390 2373 -11962465.89917 2391 2373 7955780.401528 2392 2373 33788072.25843 2393 2373 -8749455.084514 2469 2373 1810230.00851 2470 2373 14340738.95588 2471 2373 8290807.874965 2481 2373 -3359294.569133 2482 2373 -11951850.06621 2483 2373 -6689786.134111 2484 2373 66125098.41489 2485 2373 11944444.44837 2486 2373 15207852.8515 2496 2373 -19644494.8084 2497 2373 -11944444.44837 2498 2373 -7125466.187114 2499 2373 -93269248.17781 2500 2373 -11949381.52693 2501 2373 -52618980.4305 2502 2373 -17054654.84265 2503 2373 9560492.637254 2504 2373 -13448143.98712 2374 2374 370839207.457 2375 2374 -27831791.96622 2385 2374 -42222222.21529 2386 2374 -50235473.94641 2387 2374 5333244.213044 2388 2374 -42237663.94459 2389 2374 -39482381.812 2390 2374 -16655123.83823 2391 2374 50682108.38765 2392 2374 7955780.401527 2393 2374 11010768.51444 2469 2374 9560492.637254 2470 2374 1810230.008509 2471 2374 -4421798.559475 2481 2374 -11949381.52693 2482 2374 -45174403.34149 2483 2374 -27804612.20634 2484 2374 11944444.44837 2485 2374 48201681.39244 2486 2374 -5082672.97723 2496 2374 -11944444.44836 2497 2374 -16060922.31935 2498 2374 -7107677.550651 2499 2374 -11951850.06621 2500 2374 -37114294.87206 2501 2374 -16826932.79813 2502 2374 14340738.95588 2503 2374 -17054654.84265 2504 2374 16137388.124 2375 2375 400035038.4858 2385 2375 10752307.38609 2386 2375 5416577.546522 2387 2375 -16208893.36898 2388 2375 -10941569.92029 2389 2375 -13223756.5556 2390 2375 -11892250.19807 2391 2375 -13124182.62677 2392 2375 7340512.342961 2393 2375 21215414.40408 2469 2375 5527205.249977 2470 2375 -6632697.839212 2471 2375 4827280.022694 2481 2375 -6688405.732252 2482 2375 -29072115.16194 2483 2375 -13594307.9147 2484 2375 -3762599.703372 2485 2375 -20258812.61341 2486 2375 -38071476.41094 2496 2375 -7125466.187114 2497 2375 -7107677.550651 2498 2375 -9517594.142065 2499 2375 -52354091.66514 2500 2375 -15346414.53585 2501 2375 -72544459.24024 2502 2375 -20172215.98068 2503 2375 10758258.74933 2504 2375 -45479079.58041 2376 2376 701224018.4261 2377 2376 1.215934753418e-05 2378 2376 3981540.895231 2379 2376 85654059.23587 2380 2376 -7.361173629761e-06 2381 2376 995385.2243004 2394 2376 -163051082.2809 2395 2376 4.857778549194e-06 2396 2376 -2497714.891996 2397 2376 -63439558.95712 2398 2376 42222222.21529 2399 2376 -11747692.6104 2472 2376 -68569574.7737 2473 2376 9.983777999878e-07 2474 2376 46666190.80873 2475 2376 -28443492.38882 2476 2376 -11944444.44837 2477 2376 16581478.26512 2487 2376 103049709.0446 2488 2376 8.106231689453e-06 2489 2376 1759285.033469 2490 2376 -19975421.90891 2491 2376 -1.013278961182e-05 2492 2376 439821.2585936 2505 2376 -71083613.53293 2506 2376 2.801418304443e-06 2507 2376 -48425475.84218 2508 2376 -29334356.73017 2509 2376 11944444.44836 2510 2376 -17021299.52369 2377 2377 599883709.7778 2378 2377 -47777064.79172 2379 2377 -8.612871170044e-06 2380 2377 -74790087.48109 2381 2377 24294087.95135 2394 2377 3.516674041748e-06 2395 2377 22728141.58569 2396 2377 -11944266.20381 2397 2377 42222222.21529 2398 2377 -50772020.36985 2399 2377 6611021.990771 2472 2377 -8.195638656616e-07 2473 2377 -16013622.55363 2474 2377 -5277700.460655 2475 2377 -11944444.44837 2476 2377 -24859919.89976 2477 2377 11857600.23336 2487 2377 7.987022399902e-06 2488 2377 74381129.14638 2489 2377 -21110801.83222 2490 2377 -9.581446647644e-06 2491 2377 -65364229.15794 2492 2377 48591512.02092 2505 2377 2.488493919373e-06 2506 2377 -18527661.31289 2507 2377 -5277700.460655 2508 2377 11944444.44836 2509 2377 -25750784.24113 2510 2377 12385378.01131 2378 2378 657670929.3001 2379 2378 995385.2243 2380 2378 23482976.84037 2381 2378 60454947.39636 2394 2378 -1483826.003273 2395 2378 -11944266.20381 2396 2378 36217937.62672 2397 2378 -11643525.94355 2398 2378 6527688.657292 2399 2378 -17639683.8315 2472 2378 46402301.92001 2473 2378 -5277700.460655 2474 2378 -49602960.36391 2475 2378 16581478.26512 2476 2378 11857600.23336 2477 2378 -32981587.68983 2487 2378 1759285.033468 2488 2378 -21110801.83222 2489 2378 -68142578.48796 2490 2378 439821.258594 2491 2378 48380400.90995 2492 2378 -100781580.1802 2505 2378 -48161586.95346 2506 2378 -5277700.460655 2507 2378 -56307063.72196 2508 2378 -17021299.52369 2509 2378 12385378.01131 2510 2378 -35357225.93349 2379 2379 701224018.4261 2380 2379 1.215934753418e-05 2381 2379 3981540.895231 2382 2379 85654059.23587 2383 2379 -7.361173629761e-06 2384 2379 995385.2243004 2394 2379 -62903012.53369 2395 2379 -42222222.21529 2396 2379 10648140.71925 2397 2379 -163051082.2809 2398 2379 4.857778549194e-06 2399 2379 -2497714.891996 2400 2379 -63439558.95712 2401 2379 42222222.21529 2402 2379 -11747692.6104 2472 2379 -19278339.76952 2473 2379 11944444.44837 2474 2379 6685644.928532 2475 2379 -68569574.7737 2476 2379 9.983777999878e-07 2477 2379 46666190.80873 2478 2379 -28443492.38882 2479 2379 -11944444.44837 2480 2379 16581478.26512 2487 2379 17734607.15466 2488 2379 1.817941665649e-06 2489 2379 439821.2585785 2490 2379 103049709.0446 2491 2379 8.106231689453e-06 2492 2379 1759285.033469 2493 2379 -19975421.90891 2494 2379 -1.013278961182e-05 2495 2379 439821.2585936 2505 2379 -19644494.8084 2506 2379 -11944444.44837 2507 2379 -7125466.187114 2508 2379 -71083613.53293 2509 2379 2.801418304443e-06 2510 2379 -48425475.84218 2511 2379 -29334356.73017 2512 2379 11944444.44836 2513 2379 -17021299.52369 2380 2380 599883709.7778 2381 2380 -47777064.79172 2382 2380 -8.612871170044e-06 2383 2380 -74790087.48109 2384 2380 24294087.95135 2394 2380 -42222222.21529 2395 2380 -50235473.94641 2396 2380 5333244.213044 2397 2380 3.516674041748e-06 2398 2380 22728141.58569 2399 2380 -11944266.20381 2400 2380 42222222.21529 2401 2380 -50772020.36985 2402 2380 6611021.990771 2472 2380 11944444.44837 2473 2380 -15694767.28047 2474 2380 -6579899.772699 2475 2380 -8.195638656616e-07 2476 2380 -16013622.55363 2477 2380 -5277700.460655 2478 2380 -11944444.44837 2479 2380 -24859919.89976 2480 2380 11857600.23336 2487 2380 3.322958946228e-06 2488 2380 -27654200.09436 2489 2380 -27480710.1887 2490 2380 7.987022399902e-06 2491 2380 74381129.14638 2492 2380 -21110801.83222 2493 2380 -9.581446647644e-06 2494 2380 -65364229.15794 2495 2380 48591512.02092 2505 2380 -11944444.44836 2506 2380 -16060922.31935 2507 2380 -7107677.550651 2508 2380 2.488493919373e-06 2509 2380 -18527661.31289 2510 2380 -5277700.460655 2511 2380 11944444.44836 2512 2380 -25750784.24113 2513 2380 12385378.01131 2381 2381 657670929.3001 2382 2381 995385.2243 2383 2381 23482976.84037 2384 2381 60454947.39636 2394 2381 10752307.38609 2395 2381 5416577.546522 2396 2381 -16208893.36898 2397 2381 -1483826.003273 2398 2381 -11944266.20381 2399 2381 36217937.62672 2400 2381 -11643525.94355 2401 2381 6527688.657292 2402 2381 -17639683.8315 2472 2381 6685644.928532 2473 2381 -6579899.772699 2474 2381 -8541180.705052 2475 2381 46402301.92001 2476 2381 -5277700.460655 2477 2381 -49602960.36391 2478 2381 16581478.26512 2479 2381 11857600.23336 2480 2381 -32981587.68983 2487 2381 439821.2585788 2488 2381 -27269599.07773 2489 2381 -221502.6772963 2490 2381 1759285.033468 2491 2381 -21110801.83222 2492 2381 -68142578.48796 2493 2381 439821.258594 2494 2381 48380400.90995 2495 2381 -100781580.1802 2505 2381 -7125466.187114 2506 2381 -7107677.550651 2507 2381 -9517594.142065 2508 2381 -48161586.95346 2509 2381 -5277700.460655 2510 2381 -56307063.72196 2511 2381 -17021299.52369 2512 2381 12385378.01131 2513 2381 -35357225.93349 2382 2382 701224018.4261 2383 2382 1.215934753418e-05 2384 2382 3981540.895231 2385 2382 85654059.23587 2386 2382 -7.361173629761e-06 2387 2382 995385.2243004 2397 2382 -62903012.53369 2398 2382 -42222222.21529 2399 2382 10648140.71925 2400 2382 -163051082.2809 2401 2382 4.857778549194e-06 2402 2382 -2497714.891996 2403 2382 -63439558.95712 2404 2382 42222222.21529 2405 2382 -11747692.6104 2475 2382 -19278339.76952 2476 2382 11944444.44837 2477 2382 6685644.928532 2478 2382 -68569574.7737 2479 2382 9.983777999878e-07 2480 2382 46666190.80873 2481 2382 -28443492.38882 2482 2382 -11944444.44837 2483 2382 16581478.26512 2490 2382 17734607.15466 2491 2382 1.817941665649e-06 2492 2382 439821.2585785 2493 2382 103049709.0446 2494 2382 8.106231689453e-06 2495 2382 1759285.033469 2496 2382 -19975421.90891 2497 2382 -1.013278961182e-05 2498 2382 439821.2585936 2508 2382 -19644494.8084 2509 2382 -11944444.44837 2510 2382 -7125466.187114 2511 2382 -71083613.53293 2512 2382 2.801418304443e-06 2513 2382 -48425475.84218 2514 2382 -29334356.73017 2515 2382 11944444.44836 2516 2382 -17021299.52369 2383 2383 599883709.7778 2384 2383 -47777064.79172 2385 2383 -8.612871170044e-06 2386 2383 -74790087.48109 2387 2383 24294087.95135 2397 2383 -42222222.21529 2398 2383 -50235473.94641 2399 2383 5333244.213044 2400 2383 3.516674041748e-06 2401 2383 22728141.58569 2402 2383 -11944266.20381 2403 2383 42222222.21529 2404 2383 -50772020.36985 2405 2383 6611021.990771 2475 2383 11944444.44837 2476 2383 -15694767.28047 2477 2383 -6579899.772699 2478 2383 -8.195638656616e-07 2479 2383 -16013622.55363 2480 2383 -5277700.460655 2481 2383 -11944444.44837 2482 2383 -24859919.89976 2483 2383 11857600.23336 2490 2383 3.322958946228e-06 2491 2383 -27654200.09436 2492 2383 -27480710.1887 2493 2383 7.987022399902e-06 2494 2383 74381129.14638 2495 2383 -21110801.83222 2496 2383 -9.581446647644e-06 2497 2383 -65364229.15794 2498 2383 48591512.02092 2508 2383 -11944444.44836 2509 2383 -16060922.31935 2510 2383 -7107677.550651 2511 2383 2.488493919373e-06 2512 2383 -18527661.31289 2513 2383 -5277700.460655 2514 2383 11944444.44836 2515 2383 -25750784.24113 2516 2383 12385378.01131 2384 2384 657670929.3001 2385 2384 995385.2243 2386 2384 23482976.84037 2387 2384 60454947.39636 2397 2384 10752307.38609 2398 2384 5416577.546522 2399 2384 -16208893.36898 2400 2384 -1483826.003273 2401 2384 -11944266.20381 2402 2384 36217937.62672 2403 2384 -11643525.94355 2404 2384 6527688.657292 2405 2384 -17639683.8315 2475 2384 6685644.928532 2476 2384 -6579899.772699 2477 2384 -8541180.705052 2478 2384 46402301.92001 2479 2384 -5277700.460655 2480 2384 -49602960.36391 2481 2384 16581478.26512 2482 2384 11857600.23336 2483 2384 -32981587.68983 2490 2384 439821.2585788 2491 2384 -27269599.07773 2492 2384 -221502.6772963 2493 2384 1759285.033468 2494 2384 -21110801.83222 2495 2384 -68142578.48796 2496 2384 439821.258594 2497 2384 48380400.90995 2498 2384 -100781580.1802 2508 2384 -7125466.187114 2509 2384 -7107677.550651 2510 2384 -9517594.142065 2511 2384 -48161586.95346 2512 2384 -5277700.460655 2513 2384 -56307063.72196 2514 2384 -17021299.52369 2515 2384 12385378.01131 2516 2384 -35357225.93349 2385 2385 701224018.4261 2386 2385 1.215934753418e-05 2387 2385 3981540.895231 2388 2385 85654059.23587 2389 2385 -7.361173629761e-06 2390 2385 995385.2243004 2400 2385 -62903012.53369 2401 2385 -42222222.21529 2402 2385 10648140.71925 2403 2385 -163051082.2809 2404 2385 4.857778549194e-06 2405 2385 -2497714.891996 2406 2385 -63439558.95712 2407 2385 42222222.21529 2408 2385 -11747692.6104 2478 2385 -19278339.76952 2479 2385 11944444.44837 2480 2385 6685644.928532 2481 2385 -68569574.7737 2482 2385 9.983777999878e-07 2483 2385 46666190.80873 2484 2385 -28443492.38882 2485 2385 -11944444.44837 2486 2385 16581478.26512 2493 2385 17734607.15466 2494 2385 1.817941665649e-06 2495 2385 439821.2585785 2496 2385 103049709.0446 2497 2385 8.106231689453e-06 2498 2385 1759285.033469 2499 2385 -19975421.90891 2500 2385 -1.013278961182e-05 2501 2385 439821.2585936 2511 2385 -19644494.8084 2512 2385 -11944444.44837 2513 2385 -7125466.187114 2514 2385 -71083613.53293 2515 2385 2.801418304443e-06 2516 2385 -48425475.84218 2517 2385 -29334356.73017 2518 2385 11944444.44836 2519 2385 -17021299.52369 2386 2386 599883709.7778 2387 2386 -47777064.79172 2388 2386 -8.612871170044e-06 2389 2386 -74790087.48109 2390 2386 24294087.95135 2400 2386 -42222222.21529 2401 2386 -50235473.94641 2402 2386 5333244.213044 2403 2386 3.516674041748e-06 2404 2386 22728141.58569 2405 2386 -11944266.20381 2406 2386 42222222.21529 2407 2386 -50772020.36985 2408 2386 6611021.990771 2478 2386 11944444.44837 2479 2386 -15694767.28047 2480 2386 -6579899.772699 2481 2386 -8.195638656616e-07 2482 2386 -16013622.55363 2483 2386 -5277700.460655 2484 2386 -11944444.44837 2485 2386 -24859919.89976 2486 2386 11857600.23336 2493 2386 3.322958946228e-06 2494 2386 -27654200.09436 2495 2386 -27480710.1887 2496 2386 7.987022399902e-06 2497 2386 74381129.14638 2498 2386 -21110801.83222 2499 2386 -9.581446647644e-06 2500 2386 -65364229.15794 2501 2386 48591512.02092 2511 2386 -11944444.44836 2512 2386 -16060922.31935 2513 2386 -7107677.550651 2514 2386 2.488493919373e-06 2515 2386 -18527661.31289 2516 2386 -5277700.460655 2517 2386 11944444.44836 2518 2386 -25750784.24113 2519 2386 12385378.01131 2387 2387 657670929.3001 2388 2387 995385.2243 2389 2387 23482976.84037 2390 2387 60454947.39636 2400 2387 10752307.38609 2401 2387 5416577.546522 2402 2387 -16208893.36898 2403 2387 -1483826.003273 2404 2387 -11944266.20381 2405 2387 36217937.62672 2406 2387 -11643525.94355 2407 2387 6527688.657292 2408 2387 -17639683.8315 2478 2387 6685644.928532 2479 2387 -6579899.772699 2480 2387 -8541180.705052 2481 2387 46402301.92001 2482 2387 -5277700.460655 2483 2387 -49602960.36391 2484 2387 16581478.26512 2485 2387 11857600.23336 2486 2387 -32981587.68983 2493 2387 439821.2585788 2494 2387 -27269599.07773 2495 2387 -221502.6772963 2496 2387 1759285.033468 2497 2387 -21110801.83222 2498 2387 -68142578.48796 2499 2387 439821.258594 2500 2387 48380400.90995 2501 2387 -100781580.1802 2511 2387 -7125466.187114 2512 2387 -7107677.550651 2513 2387 -9517594.142065 2514 2387 -48161586.95346 2515 2387 -5277700.460655 2516 2387 -56307063.72196 2517 2387 -17021299.52369 2518 2387 12385378.01131 2519 2387 -35357225.93349 2388 2388 753320607.0872 2389 2388 42247958.4308 2390 2388 13425270.63193 2391 2388 10687201.53391 2392 2388 -42232516.7015 2393 2388 11747147.69675 2403 2388 -62903012.53369 2404 2388 -42222222.21529 2405 2388 10648140.71925 2406 2388 -163051082.2809 2407 2388 4.857778549194e-06 2408 2388 -2497714.891996 2409 2388 -63439558.95712 2410 2388 42222222.21529 2411 2388 -11747692.6104 2481 2388 -19278339.76952 2482 2388 11944444.44837 2483 2388 6685644.928532 2484 2388 -83208406.42019 2485 2388 -11951850.06621 2486 2388 42498171.10922 2496 2388 17734607.15466 2497 2388 1.817941665649e-06 2498 2388 439821.2585785 2499 2388 125282026.2887 2500 2388 11956787.14478 2501 2388 5935098.98454 2502 2388 -32275376.32772 2503 2388 -11949381.52693 2504 2388 17028332.3953 2514 2388 -19644494.8084 2515 2388 -11944444.44837 2516 2388 -7125466.187114 2517 2388 -71083613.53293 2518 2388 2.801418304443e-06 2519 2388 -48425475.84218 2520 2388 -29334356.73017 2521 2388 11944444.44836 2522 2388 -17021299.52369 2389 2389 639301177.7705 2390 2389 -37037050.15144 2391 2389 -42237663.9446 2392 2389 -137109995.2621 2393 2389 20238494.1063 2403 2389 -42222222.21529 2404 2389 -50235473.94641 2405 2389 5333244.213044 2406 2389 3.516674041748e-06 2407 2389 22728141.58569 2408 2389 -11944266.20381 2409 2389 42222222.21529 2410 2389 -50772020.36985 2411 2389 6611021.990771 2481 2389 11944444.44837 2482 2389 -15694767.28047 2483 2389 -6579899.772699 2484 2389 -11949381.52693 2485 2389 -27053453.11441 2486 2389 3626698.329752 2496 2389 3.322958946228e-06 2497 2389 -27654200.09436 2498 2389 -27480710.1887 2499 2389 11956787.14477 2500 2389 93024319.31714 2501 2389 -16362810.24847 2502 2389 -11951850.06621 2503 2389 -74090485.10009 2504 2389 46808583.40323 2514 2389 -11944444.44836 2515 2389 -16060922.31935 2516 2389 -7107677.550651 2517 2389 2.488493919373e-06 2518 2389 -18527661.31289 2519 2389 -5277700.460655 2520 2389 11944444.44836 2521 2389 -25750784.24113 2522 2389 12385378.01131 2390 2390 644924144.2682 2391 2390 11642708.57308 2392 2390 22769593.39294 2393 2390 12096388.9117 2403 2390 10752307.38609 2404 2390 5416577.546522 2405 2390 -16208893.36898 2406 2390 -1483826.003273 2407 2390 -11944266.20381 2408 2390 36217937.62672 2409 2390 -11643525.94355 2410 2390 6527688.657292 2411 2390 -17639683.8315 2481 2390 6685644.928532 2482 2390 -6579899.772699 2483 2390 -8541180.705052 2484 2390 42233282.34386 2485 2390 2150097.608279 2486 2390 -45715547.88649 2496 2390 439821.2585788 2497 2390 -27269599.07773 2498 2390 -221502.6772963 2499 2390 5939995.986973 2500 2390 -16358892.70393 2501 2390 -51790570.05088 2502 2390 17031848.8311 2503 2390 48076086.23075 2504 2390 -90703859.27092 2514 2390 -7125466.187114 2515 2390 -7107677.550651 2516 2390 -9517594.142065 2517 2390 -48161586.95346 2518 2390 -5277700.460655 2519 2390 -56307063.72196 2520 2390 -17021299.52369 2521 2390 12385378.01131 2522 2390 -35357225.93349 2391 2391 420142253.8812 2392 2391 -26639487.106 2393 2391 -3084379.120139 2406 2391 -62903012.53369 2407 2391 -42222222.21529 2408 2391 10648140.71925 2409 2391 -80812305.28421 2410 2391 26543754.57092 2411 2391 -1611502.173259 2412 2391 -184325621.8369 2413 2391 33873510.30732 2414 2391 -775000.5169595 2484 2391 1810230.00851 2485 2391 14340738.95588 2486 2391 8290807.874965 2499 2391 -3359294.569133 2500 2391 -11951850.06621 2501 2391 -6689786.134111 2502 2391 64793825.45948 2503 2391 -6243722.738426 2504 2391 3816806.707693 2517 2391 -19644494.8084 2518 2391 -11944444.44837 2519 2391 -7125466.187114 2520 2391 -40605721.95413 2521 2391 6202186.078868 2522 2391 -30034628.76677 2523 2391 -39948167.4897 2524 2391 9597092.218255 2525 2391 -2839054.908176 2392 2392 697040023.4809 2393 2392 -38830126.79588 2406 2392 -42222222.21529 2407 2392 -50235473.94641 2408 2392 5333244.213044 2409 2392 26495888.30338 2410 2392 86950457.68356 2411 2392 -8406841.802013 2412 2392 50810265.46097 2413 2392 -493856496.1955 2414 2392 14658602.99375 2484 2392 9560492.637254 2485 2392 1810230.008509 2486 2392 -4421798.559475 2499 2392 -11949381.52693 2500 2392 -45174403.34149 2501 2392 -27804612.20634 2502 2392 -6243722.738427 2503 2392 116187740.7912 2504 2392 -12029230.86321 2517 2392 -11944444.44836 2518 2392 -16060922.31935 2519 2392 -7107677.550651 2520 2392 6181417.749088 2521 2392 7479412.380062 2522 2392 1270358.056493 2523 2392 14395638.32738 2524 2392 -101195680.8723 2525 2392 22521951.86899 2393 2393 422801090.7216 2406 2393 10752307.38609 2407 2393 5416577.546522 2408 2393 -16208893.36898 2409 2393 -3959442.819955 2410 2393 -7686435.131428 2411 2393 37418239.63636 2412 2393 -1162500.775438 2413 2393 14148198.27724 2414 2393 -182004117.2064 2484 2393 5527205.249977 2485 2393 -6632697.839212 2486 2393 4827280.022694 2499 2393 -6688405.732252 2500 2393 -29072115.16194 2501 2393 -13594307.9147 2502 2393 -7974098.476532 2503 2393 -21433087.28757 2504 2393 -5368828.40544 2517 2393 -7125466.187114 2518 2393 -7107677.550651 2519 2393 -9517594.142065 2520 2393 -31352634.6121 2521 2393 1500021.740722 2522 2393 -29608611.91299 2523 2393 -4258582.362264 2524 2393 21389042.21735 2525 2393 -45280933.25655 2394 2394 701224018.4261 2395 2394 1.215934753418e-05 2396 2394 3981540.895231 2397 2394 85654059.23587 2398 2394 -7.361173629761e-06 2399 2394 995385.2243004 2415 2394 -163051082.2809 2416 2394 4.857778549194e-06 2417 2394 -2497714.891996 2418 2394 -63439558.95712 2419 2394 42222222.21529 2420 2394 -11747692.6104 2487 2394 -68569574.7737 2488 2394 9.983777999878e-07 2489 2394 46666190.80873 2490 2394 -28443492.38882 2491 2394 -11944444.44837 2492 2394 16581478.26512 2505 2394 103049709.0446 2506 2394 8.106231689453e-06 2507 2394 1759285.033469 2508 2394 -19975421.90891 2509 2394 -1.013278961182e-05 2510 2394 439821.2585936 2526 2394 -71083613.53293 2527 2394 2.801418304443e-06 2528 2394 -48425475.84218 2529 2394 -29334356.73017 2530 2394 11944444.44836 2531 2394 -17021299.52369 2395 2395 599883709.7778 2396 2395 -47777064.79172 2397 2395 -8.612871170044e-06 2398 2395 -74790087.48109 2399 2395 24294087.95135 2415 2395 3.516674041748e-06 2416 2395 22728141.58569 2417 2395 -11944266.20381 2418 2395 42222222.21529 2419 2395 -50772020.36985 2420 2395 6611021.990771 2487 2395 -8.195638656616e-07 2488 2395 -16013622.55363 2489 2395 -5277700.460655 2490 2395 -11944444.44837 2491 2395 -24859919.89976 2492 2395 11857600.23336 2505 2395 7.987022399902e-06 2506 2395 74381129.14638 2507 2395 -21110801.83222 2508 2395 -9.581446647644e-06 2509 2395 -65364229.15794 2510 2395 48591512.02092 2526 2395 2.488493919373e-06 2527 2395 -18527661.31289 2528 2395 -5277700.460655 2529 2395 11944444.44836 2530 2395 -25750784.24113 2531 2395 12385378.01131 2396 2396 657670929.3001 2397 2396 995385.2243 2398 2396 23482976.84037 2399 2396 60454947.39636 2415 2396 -1483826.003273 2416 2396 -11944266.20381 2417 2396 36217937.62672 2418 2396 -11643525.94355 2419 2396 6527688.657292 2420 2396 -17639683.8315 2487 2396 46402301.92001 2488 2396 -5277700.460655 2489 2396 -49602960.36391 2490 2396 16581478.26512 2491 2396 11857600.23336 2492 2396 -32981587.68983 2505 2396 1759285.033468 2506 2396 -21110801.83222 2507 2396 -68142578.48796 2508 2396 439821.258594 2509 2396 48380400.90995 2510 2396 -100781580.1802 2526 2396 -48161586.95346 2527 2396 -5277700.460655 2528 2396 -56307063.72196 2529 2396 -17021299.52369 2530 2396 12385378.01131 2531 2396 -35357225.93349 2397 2397 701224018.4261 2398 2397 1.215934753418e-05 2399 2397 3981540.895231 2400 2397 85654059.23587 2401 2397 -7.361173629761e-06 2402 2397 995385.2243004 2415 2397 -62903012.53369 2416 2397 -42222222.21529 2417 2397 10648140.71925 2418 2397 -163051082.2809 2419 2397 4.857778549194e-06 2420 2397 -2497714.891996 2421 2397 -63439558.95712 2422 2397 42222222.21529 2423 2397 -11747692.6104 2487 2397 -19278339.76952 2488 2397 11944444.44837 2489 2397 6685644.928532 2490 2397 -68569574.7737 2491 2397 9.983777999878e-07 2492 2397 46666190.80873 2493 2397 -28443492.38882 2494 2397 -11944444.44837 2495 2397 16581478.26512 2505 2397 17734607.15466 2506 2397 1.817941665649e-06 2507 2397 439821.2585785 2508 2397 103049709.0446 2509 2397 8.106231689453e-06 2510 2397 1759285.033469 2511 2397 -19975421.90891 2512 2397 -1.013278961182e-05 2513 2397 439821.2585936 2526 2397 -19644494.8084 2527 2397 -11944444.44837 2528 2397 -7125466.187114 2529 2397 -71083613.53293 2530 2397 2.801418304443e-06 2531 2397 -48425475.84218 2532 2397 -29334356.73017 2533 2397 11944444.44836 2534 2397 -17021299.52369 2398 2398 599883709.7778 2399 2398 -47777064.79172 2400 2398 -8.612871170044e-06 2401 2398 -74790087.48109 2402 2398 24294087.95135 2415 2398 -42222222.21529 2416 2398 -50235473.94641 2417 2398 5333244.213044 2418 2398 3.516674041748e-06 2419 2398 22728141.58569 2420 2398 -11944266.20381 2421 2398 42222222.21529 2422 2398 -50772020.36985 2423 2398 6611021.990771 2487 2398 11944444.44837 2488 2398 -15694767.28047 2489 2398 -6579899.772699 2490 2398 -8.195638656616e-07 2491 2398 -16013622.55363 2492 2398 -5277700.460655 2493 2398 -11944444.44837 2494 2398 -24859919.89976 2495 2398 11857600.23336 2505 2398 3.322958946228e-06 2506 2398 -27654200.09436 2507 2398 -27480710.1887 2508 2398 7.987022399902e-06 2509 2398 74381129.14638 2510 2398 -21110801.83222 2511 2398 -9.581446647644e-06 2512 2398 -65364229.15794 2513 2398 48591512.02092 2526 2398 -11944444.44836 2527 2398 -16060922.31935 2528 2398 -7107677.550651 2529 2398 2.488493919373e-06 2530 2398 -18527661.31289 2531 2398 -5277700.460655 2532 2398 11944444.44836 2533 2398 -25750784.24113 2534 2398 12385378.01131 2399 2399 657670929.3001 2400 2399 995385.2243 2401 2399 23482976.84037 2402 2399 60454947.39636 2415 2399 10752307.38609 2416 2399 5416577.546522 2417 2399 -16208893.36898 2418 2399 -1483826.003273 2419 2399 -11944266.20381 2420 2399 36217937.62672 2421 2399 -11643525.94355 2422 2399 6527688.657292 2423 2399 -17639683.8315 2487 2399 6685644.928532 2488 2399 -6579899.772699 2489 2399 -8541180.705052 2490 2399 46402301.92001 2491 2399 -5277700.460655 2492 2399 -49602960.36391 2493 2399 16581478.26512 2494 2399 11857600.23336 2495 2399 -32981587.68983 2505 2399 439821.2585788 2506 2399 -27269599.07773 2507 2399 -221502.6772963 2508 2399 1759285.033468 2509 2399 -21110801.83222 2510 2399 -68142578.48796 2511 2399 439821.258594 2512 2399 48380400.90995 2513 2399 -100781580.1802 2526 2399 -7125466.187114 2527 2399 -7107677.550651 2528 2399 -9517594.142065 2529 2399 -48161586.95346 2530 2399 -5277700.460655 2531 2399 -56307063.72196 2532 2399 -17021299.52369 2533 2399 12385378.01131 2534 2399 -35357225.93349 2400 2400 701224018.4261 2401 2400 1.215934753418e-05 2402 2400 3981540.895231 2403 2400 85654059.23587 2404 2400 -7.361173629761e-06 2405 2400 995385.2243004 2418 2400 -62903012.53369 2419 2400 -42222222.21529 2420 2400 10648140.71925 2421 2400 -163051082.2809 2422 2400 4.857778549194e-06 2423 2400 -2497714.891996 2424 2400 -63439558.95712 2425 2400 42222222.21529 2426 2400 -11747692.6104 2490 2400 -19278339.76952 2491 2400 11944444.44837 2492 2400 6685644.928532 2493 2400 -68569574.7737 2494 2400 9.983777999878e-07 2495 2400 46666190.80873 2496 2400 -28443492.38882 2497 2400 -11944444.44837 2498 2400 16581478.26512 2508 2400 17734607.15466 2509 2400 1.817941665649e-06 2510 2400 439821.2585785 2511 2400 103049709.0446 2512 2400 8.106231689453e-06 2513 2400 1759285.033469 2514 2400 -19975421.90891 2515 2400 -1.013278961182e-05 2516 2400 439821.2585936 2529 2400 -19644494.8084 2530 2400 -11944444.44837 2531 2400 -7125466.187114 2532 2400 -71083613.53293 2533 2400 2.801418304443e-06 2534 2400 -48425475.84218 2535 2400 -29334356.73017 2536 2400 11944444.44836 2537 2400 -17021299.52369 2401 2401 599883709.7778 2402 2401 -47777064.79172 2403 2401 -8.612871170044e-06 2404 2401 -74790087.48109 2405 2401 24294087.95135 2418 2401 -42222222.21529 2419 2401 -50235473.94641 2420 2401 5333244.213044 2421 2401 3.516674041748e-06 2422 2401 22728141.58569 2423 2401 -11944266.20381 2424 2401 42222222.21529 2425 2401 -50772020.36985 2426 2401 6611021.990771 2490 2401 11944444.44837 2491 2401 -15694767.28047 2492 2401 -6579899.772699 2493 2401 -8.195638656616e-07 2494 2401 -16013622.55363 2495 2401 -5277700.460655 2496 2401 -11944444.44837 2497 2401 -24859919.89976 2498 2401 11857600.23336 2508 2401 3.322958946228e-06 2509 2401 -27654200.09436 2510 2401 -27480710.1887 2511 2401 7.987022399902e-06 2512 2401 74381129.14638 2513 2401 -21110801.83222 2514 2401 -9.581446647644e-06 2515 2401 -65364229.15794 2516 2401 48591512.02092 2529 2401 -11944444.44836 2530 2401 -16060922.31935 2531 2401 -7107677.550651 2532 2401 2.488493919373e-06 2533 2401 -18527661.31289 2534 2401 -5277700.460655 2535 2401 11944444.44836 2536 2401 -25750784.24113 2537 2401 12385378.01131 2402 2402 657670929.3001 2403 2402 995385.2243 2404 2402 23482976.84037 2405 2402 60454947.39636 2418 2402 10752307.38609 2419 2402 5416577.546522 2420 2402 -16208893.36898 2421 2402 -1483826.003273 2422 2402 -11944266.20381 2423 2402 36217937.62672 2424 2402 -11643525.94355 2425 2402 6527688.657292 2426 2402 -17639683.8315 2490 2402 6685644.928532 2491 2402 -6579899.772699 2492 2402 -8541180.705052 2493 2402 46402301.92001 2494 2402 -5277700.460655 2495 2402 -49602960.36391 2496 2402 16581478.26512 2497 2402 11857600.23336 2498 2402 -32981587.68983 2508 2402 439821.2585788 2509 2402 -27269599.07773 2510 2402 -221502.6772963 2511 2402 1759285.033468 2512 2402 -21110801.83222 2513 2402 -68142578.48796 2514 2402 439821.258594 2515 2402 48380400.90995 2516 2402 -100781580.1802 2529 2402 -7125466.187114 2530 2402 -7107677.550651 2531 2402 -9517594.142065 2532 2402 -48161586.95346 2533 2402 -5277700.460655 2534 2402 -56307063.72196 2535 2402 -17021299.52369 2536 2402 12385378.01131 2537 2402 -35357225.93349 2403 2403 701224018.4261 2404 2403 1.215934753418e-05 2405 2403 3981540.895231 2406 2403 85654059.23587 2407 2403 -7.361173629761e-06 2408 2403 995385.2243004 2421 2403 -62903012.53369 2422 2403 -42222222.21529 2423 2403 10648140.71925 2424 2403 -163051082.2809 2425 2403 4.857778549194e-06 2426 2403 -2497714.891996 2427 2403 -63439558.95712 2428 2403 42222222.21529 2429 2403 -11747692.6104 2493 2403 -19278339.76952 2494 2403 11944444.44837 2495 2403 6685644.928532 2496 2403 -68569574.7737 2497 2403 9.983777999878e-07 2498 2403 46666190.80873 2499 2403 -28443492.38882 2500 2403 -11944444.44837 2501 2403 16581478.26512 2511 2403 17734607.15466 2512 2403 1.817941665649e-06 2513 2403 439821.2585785 2514 2403 103049709.0446 2515 2403 8.106231689453e-06 2516 2403 1759285.033469 2517 2403 -19975421.90891 2518 2403 -1.013278961182e-05 2519 2403 439821.2585936 2532 2403 -19644494.8084 2533 2403 -11944444.44837 2534 2403 -7125466.187114 2535 2403 -71083613.53293 2536 2403 2.801418304443e-06 2537 2403 -48425475.84218 2538 2403 -29334356.73017 2539 2403 11944444.44836 2540 2403 -17021299.52369 2404 2404 599883709.7778 2405 2404 -47777064.79172 2406 2404 -8.612871170044e-06 2407 2404 -74790087.48109 2408 2404 24294087.95135 2421 2404 -42222222.21529 2422 2404 -50235473.94641 2423 2404 5333244.213044 2424 2404 3.516674041748e-06 2425 2404 22728141.58569 2426 2404 -11944266.20381 2427 2404 42222222.21529 2428 2404 -50772020.36985 2429 2404 6611021.990771 2493 2404 11944444.44837 2494 2404 -15694767.28047 2495 2404 -6579899.772699 2496 2404 -8.195638656616e-07 2497 2404 -16013622.55363 2498 2404 -5277700.460655 2499 2404 -11944444.44837 2500 2404 -24859919.89976 2501 2404 11857600.23336 2511 2404 3.322958946228e-06 2512 2404 -27654200.09436 2513 2404 -27480710.1887 2514 2404 7.987022399902e-06 2515 2404 74381129.14638 2516 2404 -21110801.83222 2517 2404 -9.581446647644e-06 2518 2404 -65364229.15794 2519 2404 48591512.02092 2532 2404 -11944444.44836 2533 2404 -16060922.31935 2534 2404 -7107677.550651 2535 2404 2.488493919373e-06 2536 2404 -18527661.31289 2537 2404 -5277700.460655 2538 2404 11944444.44836 2539 2404 -25750784.24113 2540 2404 12385378.01131 2405 2405 657670929.3001 2406 2405 995385.2243 2407 2405 23482976.84037 2408 2405 60454947.39636 2421 2405 10752307.38609 2422 2405 5416577.546522 2423 2405 -16208893.36898 2424 2405 -1483826.003273 2425 2405 -11944266.20381 2426 2405 36217937.62672 2427 2405 -11643525.94355 2428 2405 6527688.657292 2429 2405 -17639683.8315 2493 2405 6685644.928532 2494 2405 -6579899.772699 2495 2405 -8541180.705052 2496 2405 46402301.92001 2497 2405 -5277700.460655 2498 2405 -49602960.36391 2499 2405 16581478.26512 2500 2405 11857600.23336 2501 2405 -32981587.68983 2511 2405 439821.2585788 2512 2405 -27269599.07773 2513 2405 -221502.6772963 2514 2405 1759285.033468 2515 2405 -21110801.83222 2516 2405 -68142578.48796 2517 2405 439821.258594 2518 2405 48380400.90995 2519 2405 -100781580.1802 2532 2405 -7125466.187114 2533 2405 -7107677.550651 2534 2405 -9517594.142065 2535 2405 -48161586.95346 2536 2405 -5277700.460655 2537 2405 -56307063.72196 2538 2405 -17021299.52369 2539 2405 12385378.01131 2540 2405 -35357225.93349 2406 2406 701224018.4261 2407 2406 1.215934753418e-05 2408 2406 3981540.895231 2409 2406 85654059.23587 2410 2406 -7.361173629761e-06 2411 2406 995385.2243004 2424 2406 -62903012.53369 2425 2406 -42222222.21529 2426 2406 10648140.71925 2427 2406 -163051082.2809 2428 2406 4.857778549194e-06 2429 2406 -2497714.891996 2430 2406 -63439558.95712 2431 2406 42222222.21529 2432 2406 -11747692.6104 2496 2406 -19278339.76952 2497 2406 11944444.44837 2498 2406 6685644.928532 2499 2406 -68569574.7737 2500 2406 9.983777999878e-07 2501 2406 46666190.80873 2502 2406 -28443492.38882 2503 2406 -11944444.44837 2504 2406 16581478.26512 2514 2406 17734607.15466 2515 2406 1.817941665649e-06 2516 2406 439821.2585785 2517 2406 103049709.0446 2518 2406 8.106231689453e-06 2519 2406 1759285.033469 2520 2406 -19975421.90891 2521 2406 -1.013278961182e-05 2522 2406 439821.2585936 2535 2406 -19644494.8084 2536 2406 -11944444.44837 2537 2406 -7125466.187114 2538 2406 -71083613.53293 2539 2406 2.801418304443e-06 2540 2406 -48425475.84218 2541 2406 -29334356.73017 2542 2406 11944444.44836 2543 2406 -17021299.52369 2407 2407 599883709.7778 2408 2407 -47777064.79172 2409 2407 -8.612871170044e-06 2410 2407 -74790087.48109 2411 2407 24294087.95135 2424 2407 -42222222.21529 2425 2407 -50235473.94641 2426 2407 5333244.213044 2427 2407 3.516674041748e-06 2428 2407 22728141.58569 2429 2407 -11944266.20381 2430 2407 42222222.21529 2431 2407 -50772020.36985 2432 2407 6611021.990771 2496 2407 11944444.44837 2497 2407 -15694767.28047 2498 2407 -6579899.772699 2499 2407 -8.195638656616e-07 2500 2407 -16013622.55363 2501 2407 -5277700.460655 2502 2407 -11944444.44837 2503 2407 -24859919.89976 2504 2407 11857600.23336 2514 2407 3.322958946228e-06 2515 2407 -27654200.09436 2516 2407 -27480710.1887 2517 2407 7.987022399902e-06 2518 2407 74381129.14638 2519 2407 -21110801.83222 2520 2407 -9.581446647644e-06 2521 2407 -65364229.15794 2522 2407 48591512.02092 2535 2407 -11944444.44836 2536 2407 -16060922.31935 2537 2407 -7107677.550651 2538 2407 2.488493919373e-06 2539 2407 -18527661.31289 2540 2407 -5277700.460655 2541 2407 11944444.44836 2542 2407 -25750784.24113 2543 2407 12385378.01131 2408 2408 657670929.3001 2409 2408 995385.2243 2410 2408 23482976.84037 2411 2408 60454947.39636 2424 2408 10752307.38609 2425 2408 5416577.546522 2426 2408 -16208893.36898 2427 2408 -1483826.003273 2428 2408 -11944266.20381 2429 2408 36217937.62672 2430 2408 -11643525.94355 2431 2408 6527688.657292 2432 2408 -17639683.8315 2496 2408 6685644.928532 2497 2408 -6579899.772699 2498 2408 -8541180.705052 2499 2408 46402301.92001 2500 2408 -5277700.460655 2501 2408 -49602960.36391 2502 2408 16581478.26512 2503 2408 11857600.23336 2504 2408 -32981587.68983 2514 2408 439821.2585788 2515 2408 -27269599.07773 2516 2408 -221502.6772963 2517 2408 1759285.033468 2518 2408 -21110801.83222 2519 2408 -68142578.48796 2520 2408 439821.258594 2521 2408 48380400.90995 2522 2408 -100781580.1802 2535 2408 -7125466.187114 2536 2408 -7107677.550651 2537 2408 -9517594.142065 2538 2408 -48161586.95346 2539 2408 -5277700.460655 2540 2408 -56307063.72196 2541 2408 -17021299.52369 2542 2408 12385378.01131 2543 2408 -35357225.93349 2409 2409 577704024.4718 2410 2409 14809283.69956 2411 2409 3094500.267067 2412 2409 -105944549.6383 2413 2409 -83930476.14658 2414 2409 3150475.677939 2427 2409 -62903012.53369 2428 2409 -42222222.21529 2429 2409 10648140.71925 2430 2409 -109457388.1912 2431 2409 27063170.45869 2432 2409 -1117736.826287 2433 2409 -51031357.23621 2434 2409 15562133.68496 2435 2409 -1196914.486729 2499 2409 -19278339.76952 2500 2409 11944444.44837 2501 2409 6685644.928532 2502 2409 -37684606.37654 2503 2409 6181417.749088 2504 2409 27601891.30902 2517 2409 17734607.15466 2518 2409 1.817941665649e-06 2519 2409 439821.2585785 2520 2409 100394552.2472 2521 2409 3668856.730091 2522 2409 1425389.136151 2523 2409 -41726819.0919 2524 2409 -22707301.49767 2525 2409 13201184.57836 2538 2409 -19644494.8084 2539 2409 -11944444.44837 2540 2409 -7125466.187114 2541 2409 -53972480.23384 2542 2409 7388118.740806 2543 2409 -38810328.02163 2544 2409 -20564060.7256 2545 2409 5468908.277692 2546 2409 -3388482.255547 2410 2410 695909943.6538 2411 2410 -32875937.83832 2412 2410 -83978342.41412 2413 2410 -281568044.39 2414 2410 6945565.151227 2427 2410 -42222222.21529 2428 2410 -50235473.94641 2429 2410 5333244.213044 2430 2410 27063170.45869 2431 2410 17779793.06391 2432 2410 -5838198.671549 2433 2410 15562133.68496 2434 2410 -153504656.347 2435 2410 4087799.174187 2499 2410 11944444.44837 2500 2410 -15694767.28047 2501 2410 -6579899.772699 2502 2410 6202186.078866 2503 2410 10400527.95768 2504 2410 -8330322.108782 2517 2410 3.322958946228e-06 2518 2410 -27654200.09436 2519 2410 -27480710.1887 2520 2410 3668856.730088 2521 2410 127661417.7545 2522 2410 -14307167.86992 2523 2410 -22728069.82745 2524 2410 -90171091.60634 2525 2410 40873449.4208 2538 2410 -11944444.44836 2539 2410 -16060922.31935 2540 2410 -7107677.550651 2541 2410 7388118.740805 2542 2410 -16117915.41583 2543 2410 4565046.721977 2544 2410 5468908.277692 2545 2410 -47104690.59973 2546 2410 18391008.29112 2411 2411 523190943.6465 2412 2411 3044920.380945 2413 2411 6593211.907962 2414 2411 -75050515.58456 2427 2411 10752307.38609 2428 2411 5416577.546522 2429 2411 -16208893.36898 2430 2411 -3583014.60366 2431 2411 -5754865.33823 2432 2411 33100739.46664 2433 2411 -988581.1530332 2434 2411 4087799.174186 2435 2411 -39212679.04904 2499 2411 6685644.928532 2500 2411 -6579899.772699 2501 2411 -8541180.705052 2502 2411 28919897.15434 2503 2411 -8527088.580187 2504 2411 -21818970.37266 2517 2411 439821.2585788 2518 2411 -27269599.07773 2519 2411 -221502.6772963 2520 2411 1435183.211197 2521 2411 -14299331.64391 2522 2411 -21850651.32956 2523 2411 13207656.47459 2524 2411 40863132.02543 2525 2411 -57780083.98817 2538 2411 -7125466.187114 2539 2411 -7107677.550651 2540 2411 -9517594.142065 2541 2411 -40129772.46506 2542 2411 4565046.723341 2543 2411 -50119670.15696 2544 2411 -3388482.255547 2545 2411 18391008.29112 2546 2411 -29461390.90537 2412 2412 566952139.5686 2413 2412 18738912.23931 2414 2412 963971.4140308 2430 2412 -64315355.09417 2431 2412 -38220064.14765 2432 2412 1370583.552858 2433 2412 13585633.50306 2434 2412 42269697.51059 2435 2412 -1370603.487074 2436 2412 60660323.14971 2437 2412 -23180190.42236 2438 2412 -44826.00110793 2439 2412 -8118600.276353 2440 2412 33559721.77326 2441 2412 -357100.6393677 2502 2412 -36868564.84551 2503 2412 14395638.32738 2504 2412 2665799.7449 2520 2412 -36372847.98441 2521 2412 -22728069.82745 2522 2412 -10527281.18303 2523 2412 50575003.33921 2524 2412 4932035.917719 2525 2412 9249992.645587 2541 2412 -23862844.19582 2542 2412 -10997981.99709 2543 2412 -11215149.57021 2544 2412 -42543957.73714 2545 2412 11150657.82588 2546 2412 -46865917.20518 2547 2412 -16084851.82021 2548 2412 -6374221.316074 2549 2412 13044420.75426 2550 2412 -17415384.18459 2551 2412 9621941.06963 2552 2412 -11469087.40889 2413 2413 971271979.9936 2414 2413 -16529874.51391 2430 2413 -38220064.14765 2431 2413 -25081526.54831 2432 2413 -273324.5491264 2433 2413 42269697.51059 2434 2413 161486942.6946 2435 2413 -2422759.372724 2436 2413 -6291301.536248 2437 2413 -20728017.24709 2438 2413 245188.837259 2439 2413 33559721.77326 2440 2413 -33030868.93149 2441 2413 298208.6664563 2502 2413 9597092.218255 2503 2413 -98116078.22816 2504 2413 -11165823.77878 2520 2413 -22707301.49767 2521 2413 -84817120.49885 2522 2413 -35087282.09087 2523 2413 4932035.917718 2524 2413 137487222.3673 2525 2413 -5791200.564033 2541 2413 -10997981.99709 2542 2413 -13468644.62109 2543 2413 -9555687.152061 2544 2413 11150657.82588 2545 2413 -432390.2942711 2546 2413 6161256.991149 2547 2413 -1596443.536727 2548 2413 -39150114.66293 2549 2413 33441094.01512 2550 2413 9621941.06963 2551 2413 -24076321.49047 2552 2413 16796952.25561 2414 2414 693246339.4045 2430 2414 1474750.219706 2431 2414 -189991.215648 2432 2414 -7392450.986293 2433 2414 -953936.8204754 2434 2414 -2339426.039404 2435 2414 173827673.356 2436 2414 59340.66554439 2437 2414 245188.8372588 2438 2414 108763262.0371 2439 2414 -252933.9725203 2440 2414 298208.6664563 2441 2414 31260393.98142 2502 2414 1777199.829934 2503 2414 -11879639.33914 2504 2414 -37068659.53871 2520 2414 -10523959.04784 2521 2414 -35102025.71722 2522 2414 -43502827.70152 2523 2414 -9298340.6847 2524 2414 -7662986.54061 2525 2414 -71378006.24346 2541 2414 -11215149.57021 2542 2414 -9555687.152061 2543 2414 -16816432.49076 2544 2414 -46865917.20544 2545 2414 6161256.992512 2546 2414 -69024564.22655 2547 2414 4919420.753295 2548 2414 33441094.01512 2549 2414 -58433218.49776 2550 2414 -11469087.40889 2551 2414 16796952.25561 2552 2414 -30638817.77715 2415 2415 349558986.0455 2416 2415 9.059906005859e-06 2417 2415 -543951.774193 2418 2415 42572716.26631 2419 2415 8444444.443056 2420 2415 -2002307.387935 2505 2415 -68569574.7737 2506 2415 9.983777999878e-07 2507 2415 46666190.80873 2508 2415 -28443492.38882 2509 2415 -11944444.44837 2510 2415 16581478.26512 2526 2415 51507364.21225 2527 2415 2.384185791016e-06 2528 2415 -9262857.481274 2529 2415 -9987710.954453 2530 2415 2388888.889668 2531 2415 -3140367.149584 2416 2416 298888831.7214 2417 2416 -23888532.39585 2418 2416 -8444444.44306 2419 2416 -37649357.09217 2420 2416 12027599.53125 2505 2416 -8.195638656616e-07 2506 2416 -16013622.55363 2507 2416 -5277700.460655 2508 2416 -11944444.44837 2509 2416 -24859919.89976 2510 2416 11857600.23336 2526 2416 1.788139343262e-06 2527 2416 37173074.26313 2528 2416 -10555400.91611 2529 2416 -2388888.889678 2530 2416 -32682114.57897 2531 2416 24242978.23266 2417 2417 326027402.8699 2418 2417 2476859.277995 2419 2417 11860932.86461 2420 2417 29549304.7605 2505 2417 46402301.92001 2506 2417 -5277700.460655 2507 2417 -49602960.36391 2508 2417 16581478.26512 2509 2417 11857600.23336 2510 2417 -32981587.68983 2526 2417 9702698.071164 2527 2417 -10555400.91611 2528 2417 -34117930.07082 2529 2417 3580188.408178 2530 2417 24242978.23277 2531 2417 -50390790.09008 2418 2418 349558986.0455 2419 2418 9.059906005859e-06 2420 2418 -543951.774193 2421 2418 42572716.26631 2422 2418 8444444.443056 2423 2418 -2002307.387935 2505 2418 -19278339.76952 2506 2418 11944444.44837 2507 2418 6685644.928532 2508 2418 -68569574.7737 2509 2418 9.983777999878e-07 2510 2418 46666190.80873 2511 2418 -28443492.38882 2512 2418 -11944444.44837 2513 2418 16581478.26512 2526 2418 8867303.577332 2527 2418 -2388888.889672 2528 2418 -1161200.482275 2529 2418 51507364.21225 2530 2418 2.384185791016e-06 2531 2418 -9262857.481274 2532 2418 -9987710.954453 2533 2418 2388888.889668 2534 2418 -3140367.149584 2419 2419 298888831.7214 2420 2419 -23888532.39585 2421 2419 -8444444.44306 2422 2419 -37649357.09217 2423 2419 12027599.53125 2505 2419 11944444.44837 2506 2419 -15694767.28047 2507 2419 -6579899.772699 2508 2419 -8.195638656616e-07 2509 2419 -16013622.55363 2510 2419 -5277700.460655 2511 2419 -11944444.44837 2512 2419 -24859919.89976 2513 2419 11857600.23336 2526 2419 2388888.889675 2527 2419 -13827100.04718 2528 2419 -13687577.31655 2529 2419 1.788139343262e-06 2530 2419 37173074.26313 2531 2419 -10555400.91611 2532 2419 -2388888.889678 2533 2419 -32682114.57897 2534 2419 24242978.23266 2420 2420 326027402.8699 2421 2420 2476859.277995 2422 2420 11860932.86461 2423 2420 29549304.7605 2505 2420 6685644.928532 2506 2420 -6579899.772699 2507 2420 -8541180.705052 2508 2420 46402301.92001 2509 2420 -5277700.460655 2510 2420 -49602960.36391 2511 2420 16581478.26512 2512 2420 11857600.23336 2513 2420 -32981587.68983 2526 2420 1601021.740854 2527 2420 -13687577.31666 2528 2420 -110751.3386485 2529 2420 9702698.071164 2530 2420 -10555400.91611 2531 2420 -34117930.07082 2532 2420 3580188.408178 2533 2420 24242978.23277 2534 2420 -50390790.09008 2421 2421 349558986.0455 2422 2421 9.059906005859e-06 2423 2421 -543951.774193 2424 2421 42572716.26631 2425 2421 8444444.443056 2426 2421 -2002307.387935 2508 2421 -19278339.76952 2509 2421 11944444.44837 2510 2421 6685644.928532 2511 2421 -68569574.7737 2512 2421 9.983777999878e-07 2513 2421 46666190.80873 2514 2421 -28443492.38882 2515 2421 -11944444.44837 2516 2421 16581478.26512 2529 2421 8867303.577332 2530 2421 -2388888.889672 2531 2421 -1161200.482275 2532 2421 51507364.21225 2533 2421 2.384185791016e-06 2534 2421 -9262857.481274 2535 2421 -9987710.954453 2536 2421 2388888.889668 2537 2421 -3140367.149584 2422 2422 298888831.7214 2423 2422 -23888532.39585 2424 2422 -8444444.44306 2425 2422 -37649357.09217 2426 2422 12027599.53125 2508 2422 11944444.44837 2509 2422 -15694767.28047 2510 2422 -6579899.772699 2511 2422 -8.195638656616e-07 2512 2422 -16013622.55363 2513 2422 -5277700.460655 2514 2422 -11944444.44837 2515 2422 -24859919.89976 2516 2422 11857600.23336 2529 2422 2388888.889675 2530 2422 -13827100.04718 2531 2422 -13687577.31655 2532 2422 1.788139343262e-06 2533 2422 37173074.26313 2534 2422 -10555400.91611 2535 2422 -2388888.889678 2536 2422 -32682114.57897 2537 2422 24242978.23266 2423 2423 326027402.8699 2424 2423 2476859.277995 2425 2423 11860932.86461 2426 2423 29549304.7605 2508 2423 6685644.928532 2509 2423 -6579899.772699 2510 2423 -8541180.705052 2511 2423 46402301.92001 2512 2423 -5277700.460655 2513 2423 -49602960.36391 2514 2423 16581478.26512 2515 2423 11857600.23336 2516 2423 -32981587.68983 2529 2423 1601021.740854 2530 2423 -13687577.31666 2531 2423 -110751.3386485 2532 2423 9702698.071164 2533 2423 -10555400.91611 2534 2423 -34117930.07082 2535 2423 3580188.408178 2536 2423 24242978.23277 2537 2423 -50390790.09008 2424 2424 349558986.0455 2425 2424 9.059906005859e-06 2426 2424 -543951.774193 2427 2424 42572716.26631 2428 2424 8444444.443056 2429 2424 -2002307.387935 2511 2424 -19278339.76952 2512 2424 11944444.44837 2513 2424 6685644.928532 2514 2424 -68569574.7737 2515 2424 9.983777999878e-07 2516 2424 46666190.80873 2517 2424 -28443492.38882 2518 2424 -11944444.44837 2519 2424 16581478.26512 2532 2424 8867303.577332 2533 2424 -2388888.889672 2534 2424 -1161200.482275 2535 2424 51507364.21225 2536 2424 2.384185791016e-06 2537 2424 -9262857.481274 2538 2424 -9987710.954453 2539 2424 2388888.889668 2540 2424 -3140367.149584 2425 2425 298888831.7214 2426 2425 -23888532.39585 2427 2425 -8444444.44306 2428 2425 -37649357.09217 2429 2425 12027599.53125 2511 2425 11944444.44837 2512 2425 -15694767.28047 2513 2425 -6579899.772699 2514 2425 -8.195638656616e-07 2515 2425 -16013622.55363 2516 2425 -5277700.460655 2517 2425 -11944444.44837 2518 2425 -24859919.89976 2519 2425 11857600.23336 2532 2425 2388888.889675 2533 2425 -13827100.04718 2534 2425 -13687577.31655 2535 2425 1.788139343262e-06 2536 2425 37173074.26313 2537 2425 -10555400.91611 2538 2425 -2388888.889678 2539 2425 -32682114.57897 2540 2425 24242978.23266 2426 2426 326027402.8699 2427 2426 2476859.277995 2428 2426 11860932.86461 2429 2426 29549304.7605 2511 2426 6685644.928532 2512 2426 -6579899.772699 2513 2426 -8541180.705052 2514 2426 46402301.92001 2515 2426 -5277700.460655 2516 2426 -49602960.36391 2517 2426 16581478.26512 2518 2426 11857600.23336 2519 2426 -32981587.68983 2532 2426 1601021.740854 2533 2426 -13687577.31666 2534 2426 -110751.3386485 2535 2426 9702698.071164 2536 2426 -10555400.91611 2537 2426 -34117930.07082 2538 2426 3580188.408178 2539 2426 24242978.23277 2540 2426 -50390790.09008 2427 2427 349558986.0455 2428 2427 9.059906005859e-06 2429 2427 -543951.774193 2430 2427 42572716.26631 2431 2427 8444444.443056 2432 2427 -2002307.387935 2514 2427 -19278339.76952 2515 2427 11944444.44837 2516 2427 6685644.928532 2517 2427 -68569574.7737 2518 2427 9.983777999878e-07 2519 2427 46666190.80873 2520 2427 -28443492.38882 2521 2427 -11944444.44837 2522 2427 16581478.26512 2535 2427 8867303.577332 2536 2427 -2388888.889672 2537 2427 -1161200.482275 2538 2427 51507364.21225 2539 2427 2.384185791016e-06 2540 2427 -9262857.481274 2541 2427 -9987710.954453 2542 2427 2388888.889668 2543 2427 -3140367.149584 2428 2428 298888831.7214 2429 2428 -23888532.39585 2430 2428 -8444444.44306 2431 2428 -37649357.09217 2432 2428 12027599.53125 2514 2428 11944444.44837 2515 2428 -15694767.28047 2516 2428 -6579899.772699 2517 2428 -8.195638656616e-07 2518 2428 -16013622.55363 2519 2428 -5277700.460655 2520 2428 -11944444.44837 2521 2428 -24859919.89976 2522 2428 11857600.23336 2535 2428 2388888.889675 2536 2428 -13827100.04718 2537 2428 -13687577.31655 2538 2428 1.788139343262e-06 2539 2428 37173074.26313 2540 2428 -10555400.91611 2541 2428 -2388888.889678 2542 2428 -32682114.57897 2543 2428 24242978.23266 2429 2429 326027402.8699 2430 2429 2476859.277995 2431 2429 11860932.86461 2432 2429 29549304.7605 2514 2429 6685644.928532 2515 2429 -6579899.772699 2516 2429 -8541180.705052 2517 2429 46402301.92001 2518 2429 -5277700.460655 2519 2429 -49602960.36391 2520 2429 16581478.26512 2521 2429 11857600.23336 2522 2429 -32981587.68983 2535 2429 1601021.740854 2536 2429 -13687577.31666 2537 2429 -110751.3386485 2538 2429 9702698.071164 2539 2429 -10555400.91611 2540 2429 -34117930.07082 2541 2429 3580188.408178 2542 2429 24242978.23277 2543 2429 -50390790.09008 2430 2430 338387026.2375 2431 2430 4002989.89494 2432 2430 8095074.275888 2433 2430 -7811370.442606 2434 2430 -26623873.97821 2435 2430 735412.3287755 2517 2430 -19278339.76952 2518 2430 11944444.44837 2519 2430 6685644.928532 2520 2430 -50741082.54401 2521 2430 7388118.740808 2522 2430 36735505.29832 2523 2430 -25119857.43912 2524 2430 -10997981.99708 2525 2430 12490405.99313 2538 2430 8867303.577332 2539 2430 -2388888.889672 2540 2430 -1161200.482275 2541 2430 49274982.41504 2542 2430 946667.844034 2543 2430 -5436326.485142 2544 2430 -17697231.04585 2545 2430 -6892360.146446 2546 2430 7053192.97001 2431 2431 314292766.6033 2432 2431 -15162162.93871 2433 2431 -43512762.86433 2434 2431 -82633585.83811 2435 2431 2718397.970699 2517 2431 11944444.44837 2518 2431 -15694767.28047 2519 2431 -6579899.772699 2520 2431 7388118.740806 2521 2431 -12886517.72598 2522 2431 -9803008.83127 2523 2431 -10997981.99708 2524 2431 -14725657.86439 2525 2431 9409590.631944 2538 2431 2388888.889675 2539 2431 -13827100.04718 2540 2431 -13687577.31655 2541 2431 946667.8440332 2542 2431 41753994.66988 2543 2431 -6670249.398894 2544 2431 -11670137.92579 2545 2431 -39314176.55796 2546 2431 27331144.68747 2432 2432 308833935.2489 2433 2432 1735412.328609 2434 2432 2635064.637379 2435 2432 16044341.52492 2517 2432 6685644.928532 2518 2432 -6579899.772699 2519 2432 -8541180.705052 2520 2432 38054949.74529 2521 2432 -9803008.829802 2522 2432 -41502609.65066 2523 2432 12490405.99313 2524 2432 9409590.631944 2525 2432 -20168467.80624 2538 2432 1601021.740854 2539 2432 -13687577.31666 2540 2432 -110751.3386485 2541 2432 13528673.51174 2542 2432 -6670249.398894 2543 2432 -36116433.14522 2544 2432 12190137.41431 2545 2432 27331144.6861 2546 2432 -39411823.5038 2433 2433 373838541.6067 2434 2433 48035465.6548 2435 2433 -2482772.715053 2436 2433 -83825989.15247 2437 2433 -50884722.65732 2438 2433 441510.4716972 2439 2433 9076442.48639 2440 2433 -11469811.3287 2441 2433 -196076.5565655 2520 2433 -17884984.01273 2521 2433 5468908.277692 2522 2433 2357351.079676 2523 2433 -41674209.10964 2524 2433 11150657.82588 2525 2433 45875749.446 2541 2433 -13208817.04483 2542 2433 -11670137.9258 2543 2433 -10510695.91586 2544 2433 21472381.83449 2545 2433 12233311.84361 2546 2433 -9870324.609983 2547 2433 -38009199.00617 2548 2433 -14266947.8271 2549 2433 20505912.60161 2550 2433 -22191462.63102 2551 2433 -2915792.194291 2552 2433 6759229.62113 2434 2434 462970610.9071 2435 2434 -5629292.266559 2436 2434 -50884722.65732 2437 2434 -61421139.76003 2438 2434 298208.6664561 2439 2434 -28358700.21481 2440 2434 -73066270.8917 2441 2434 947645.8279781 2520 2434 5468908.277692 2521 2434 -44425613.88687 2522 2434 -14942325.05316 2523 2434 11150657.82588 2524 2434 437358.3332224 2525 2434 -8206798.562099 2541 2434 -6892360.14645 2542 2434 -34825762.55696 2543 2434 -24967466.415 2544 2434 12233311.84362 2545 2434 44502443.09594 2546 2434 -2427077.199588 2547 2434 -14266947.8271 2548 2434 -31799002.04856 2549 2434 16796952.25561 2550 2434 -7693569.973637 2551 2434 -45385712.90668 2552 2434 33746714.97422 2435 2435 468748108.3725 2436 2435 441510.4716972 2437 2435 298208.666456 2438 2435 2870123.152872 2439 2435 206701.2211432 2440 2435 947645.8279782 2441 2435 54607501.34905 2520 2435 2357351.079676 2521 2435 -14942325.05316 2522 2435 -22317186.33773 2523 2435 45875749.44626 2524 2435 -8206798.560631 2525 2435 -66705234.55323 2541 2435 -6165418.138362 2542 2435 -24967466.41647 2543 2435 -27442719.50107 2544 2435 8678008.720305 2545 2435 -2427077.199588 2546 2435 -90144206.98683 2547 2435 20505912.60161 2548 2435 16796952.25561 2549 2435 -38361498.33524 2550 2435 11424229.62437 2551 2435 33746714.97422 2552 2435 -52352594.20565 2436 2436 242431625.3468 2437 2436 56957968.1946 2438 2436 -256099.9245906 2439 2436 -20745205.30394 2440 2436 218055.9989742 2441 2436 -244751.2126476 2523 2436 -15532526.23864 2524 2436 -1596443.536728 2525 2436 -4915301.465078 2544 2436 -37456873.4246 2545 2436 -14266947.8271 2546 2436 -20119087.41174 2547 2436 1886789.833553 2548 2436 15929776.87477 2549 2436 8012986.650805 2550 2436 -35343901.79311 2551 2436 -66385.51093899 2552 2436 -31728597.77399 2437 2437 220903299.0939 2438 2437 -245188.8372518 2439 2437 17106944.88509 2440 2437 59766611.95339 2441 2437 -298208.6664508 2523 2437 -6374221.316075 2524 2437 -38597789.08137 2525 2437 -33225572.6406 2544 2437 -14266947.8271 2545 2437 -31246676.46699 2546 2437 -16536381.08867 2547 2437 15929776.87477 2548 2437 -4162530.666617 2549 2437 6558905.978311 2550 2437 4711392.268407 2551 2437 -12439515.40783 2552 2437 3203047.750956 2438 2438 322120822.9046 2439 2438 -140584.5459949 2440 2438 -298208.666451 2441 2438 95634469.34586 2523 2438 -13040301.46591 2524 2438 -33225572.6406 2525 2438 -56960350.28025 2544 2438 -20119087.41174 2545 2438 -16536381.08867 2546 2438 -36888630.11772 2547 2438 -8237013.346527 2548 2438 -6774427.352831 2549 2438 -86181752.3906 2550 2438 -31728597.77583 2551 2438 -3463618.9179 2552 2438 -50493298.20557 2439 2439 181839442.0347 2440 2439 -22307966.44354 2441 2439 -1035404.925042 2523 2439 -16863058.60302 2524 2439 9621941.069631 2525 2439 11196190.37633 2544 2439 -20534485.88739 2545 2439 -7693569.973641 2546 2439 -11068548.15372 2547 2439 -35343901.79311 2548 2439 4711392.268411 2549 2439 31561679.99333 2550 2439 1883306.743505 2551 2439 -6639763.364401 2552 2439 -4754877.771325 2440 2440 208382606.8106 2441 2440 -947645.8279632 2523 2440 9621941.069631 2524 2440 -23523995.9089 2525 2440 -16536381.08867 2544 2440 -2915792.194294 2545 2440 -43728736.16307 2546 2440 -32919951.68149 2547 2440 -66385.51093579 2548 2440 -12439515.40783 2549 2440 3203047.750956 2550 2440 -6639763.3644 2551 2440 8834107.939769 2552 2440 6253285.019201 2441 2441 250636512.4991 2523 2441 11196190.37633 2524 2441 -16536381.08867 2525 2441 -29165949.55963 2544 2441 -6667437.039326 2545 2441 -32919951.68149 2546 2441 -47933989.55597 2547 2441 31561679.99162 2548 2441 -3463618.9179 2549 2441 -50493298.20557 2550 2441 4311233.338298 2551 2441 -7080048.311942 2552 2441 -61361801.45222 2442 2442 490945057.4196 2443 2442 47777777.76993 2444 2442 20252298.79464 2445 2442 -273863949.3497 2446 2442 -47797526.08415 2447 2442 -20243754.66502 2448 2442 3432365.726058 2449 2442 38241970.53018 2450 2442 -16369382.67653 2553 2442 66125098.41489 2554 2442 11944444.44837 2555 2442 15207852.8515 2556 2442 -93269248.17781 2557 2442 -11949381.52693 2558 2442 -52618980.4305 2559 2442 -17054654.84265 2560 2442 9560492.637254 2561 2442 -13448143.98712 2443 2443 419251389.3651 2444 2443 -52793537.14673 2445 2443 -47807400.24127 2446 2443 -49244136.23734 2447 2443 -29248441.87035 2448 2443 57362955.79526 2449 2443 3432365.726057 2450 2443 18376374.28788 2553 2443 11944444.44837 2554 2443 48201681.39244 2555 2443 -5082672.97723 2556 2443 -11951850.06621 2557 2443 -37114294.87206 2558 2443 -16826932.79813 2559 2443 14340738.95588 2560 2443 -17054654.84265 2561 2443 16137388.124 2444 2444 451566531.4722 2445 2444 -20239482.6002 2446 2444 -23545205.99654 2447 2444 -25609721.67724 2448 2444 -24554074.0148 2449 2444 12250916.19192 2450 2444 9152975.269492 2553 2444 -3762599.703372 2554 2444 -20258812.61341 2555 2444 -38071476.41094 2556 2444 -52354091.66514 2557 2444 -15346414.53585 2558 2444 -72544459.24024 2559 2444 -20172215.98068 2560 2444 10758258.74933 2561 2444 -45479079.58041 2445 2445 840410334.4004 2446 2445 47827148.55553 2447 2445 23749508.53569 2448 2445 8066610.522678 2449 2445 -47797526.08417 2450 2445 20547636.30415 2451 2445 -188931397.8084 2452 2445 6.824731826782e-06 2453 2445 -3518570.065188 2454 2445 -74622903.1185 2455 2445 47777777.76992 2456 2445 -20539364.73579 2553 2445 -83208406.42019 2554 2445 -11951850.06621 2555 2445 42498171.10922 2556 2445 125282026.2887 2557 2445 11956787.14478 2558 2445 5935098.98454 2559 2445 -32275376.32772 2560 2445 -11949381.52693 2561 2445 17028332.3953 2562 2445 -71083613.53293 2563 2445 2.801418304443e-06 2564 2445 -48425475.84218 2565 2445 -29334356.73017 2566 2445 11944444.44836 2567 2445 -17021299.52369 2446 2446 711379506.5777 2447 2446 -65443950.97306 2448 2446 -47807400.24129 2449 2446 -159193824.4844 2450 2446 35050823.25634 2451 2446 6.347894668579e-06 2452 2446 21292410.96829 2453 2446 -21110801.83222 2454 2446 47777777.76992 2455 2446 -60288613.16939 2456 2446 11505400.91601 2553 2446 -11949381.52693 2554 2446 -27053453.11441 2555 2446 3626698.329752 2556 2446 11956787.14477 2557 2446 93024319.31714 2558 2446 -16362810.24847 2559 2446 -11951850.06621 2560 2446 -74090485.10009 2561 2446 46808583.40323 2562 2446 2.488493919373e-06 2563 2446 -18527661.31289 2564 2446 -5277700.460655 2565 2446 11944444.44836 2566 2446 -25750784.24113 2567 2446 12385378.01131 2447 2447 697590331.8784 2448 2447 20815660.97705 2449 2447 40965061.2198 2450 2447 2966205.148247 2451 2447 -3518570.065188 2452 2447 -21110801.83222 2453 2447 29179895.04537 2454 2447 -20803253.6245 2455 2447 11716512.02698 2456 2447 -27523507.01255 2553 2447 42233282.34386 2554 2447 2150097.608279 2555 2447 -45715547.88649 2556 2447 5939995.986973 2557 2447 -16358892.70393 2558 2447 -51790570.05088 2559 2447 17031848.8311 2560 2447 48076086.23075 2561 2447 -90703859.27092 2562 2447 -48161586.95346 2563 2447 -5277700.460655 2564 2447 -56307063.72196 2565 2447 -17021299.52369 2566 2447 12385378.01131 2567 2447 -35357225.93349 2448 2448 490945057.4196 2449 2448 47777777.76993 2450 2448 20252298.79464 2451 2448 -73573484.51406 2452 2448 -47777777.76993 2453 2448 19043968.59104 2454 2448 -273863949.3497 2455 2448 -47797526.08415 2456 2448 -20243754.66502 2457 2448 3432365.726058 2458 2448 38241970.53018 2459 2448 -16369382.67653 2553 2448 1810230.00851 2554 2448 14340738.95588 2555 2448 8290807.874965 2556 2448 -3359294.569133 2557 2448 -11951850.06621 2558 2448 -6689786.134111 2559 2448 66125098.41489 2560 2448 11944444.44837 2561 2448 15207852.8515 2562 2448 -19644494.8084 2563 2448 -11944444.44837 2564 2448 -7125466.187114 2565 2448 -93269248.17781 2566 2448 -11949381.52693 2567 2448 -52618980.4305 2568 2448 -17054654.84265 2569 2448 9560492.637254 2570 2448 -13448143.98712 2449 2449 419251389.3651 2450 2449 -52793537.14673 2451 2449 -47777777.76993 2452 2449 -59239194.56492 2453 2449 9605400.916215 2454 2449 -47807400.24127 2455 2449 -49244136.23734 2456 2449 -29248441.87035 2457 2449 57362955.79526 2458 2449 3432365.726057 2459 2449 18376374.28788 2553 2449 9560492.637254 2554 2449 1810230.008509 2555 2449 -4421798.559475 2556 2449 -11949381.52693 2557 2449 -45174403.34149 2558 2449 -27804612.20634 2559 2449 11944444.44837 2560 2449 48201681.39244 2561 2449 -5082672.97723 2562 2449 -11944444.44836 2563 2449 -16060922.31935 2564 2449 -7107677.550651 2565 2449 -11951850.06621 2566 2449 -37114294.87206 2567 2449 -16826932.79813 2568 2449 14340738.95588 2569 2449 -17054654.84265 2570 2449 16137388.124 2450 2450 451566531.4722 2451 2450 18780079.70233 2452 2450 9394289.805242 2453 2450 -24725057.40063 2454 2450 -20239482.6002 2455 2450 -23545205.99654 2456 2450 -25609721.67724 2457 2450 -24554074.0148 2458 2450 12250916.19192 2459 2450 9152975.269492 2553 2450 5527205.249977 2554 2450 -6632697.839212 2555 2450 4827280.022694 2556 2450 -6688405.732252 2557 2450 -29072115.16194 2558 2450 -13594307.9147 2559 2450 -3762599.703372 2560 2450 -20258812.61341 2561 2450 -38071476.41094 2562 2450 -7125466.187114 2563 2450 -7107677.550651 2564 2450 -9517594.142065 2565 2450 -52354091.66514 2566 2450 -15346414.53585 2567 2450 -72544459.24024 2568 2450 -20172215.98068 2569 2450 10758258.74933 2570 2450 -45479079.58041 2451 2451 773558827.9862 2452 2451 2.658367156982e-05 2453 2451 7037140.130311 2454 2451 85893349.16099 2455 2451 -1.427531242371e-05 2456 2451 1759285.033452 2460 2451 -188931397.8084 2461 2451 6.824731826782e-06 2462 2451 -3518570.065188 2463 2451 -74622903.1185 2464 2451 47777777.76992 2465 2451 -20539364.73579 2556 2451 -68569574.7737 2557 2451 9.983777999878e-07 2558 2451 46666190.80873 2559 2451 -28443492.38882 2560 2451 -11944444.44837 2561 2451 16581478.26512 2562 2451 103049709.0446 2563 2451 8.106231689453e-06 2564 2451 1759285.033469 2565 2451 -19975421.90891 2566 2451 -1.013278961182e-05 2567 2451 439821.2585936 2571 2451 -71083613.53293 2572 2451 2.801418304443e-06 2573 2451 -48425475.84218 2574 2451 -29334356.73017 2575 2451 11944444.44836 2576 2451 -17021299.52369 2452 2452 658884508.4497 2453 2452 -84443207.28729 2454 2452 -1.427531242371e-05 2455 2452 -95661879.74567 2456 2452 42221603.64364 2460 2452 6.347894668579e-06 2461 2452 21292410.96829 2462 2452 -21110801.83222 2463 2452 47777777.76992 2464 2452 -60288613.16939 2465 2452 11505400.91601 2556 2452 -8.195638656616e-07 2557 2452 -16013622.55363 2558 2452 -5277700.460655 2559 2452 -11944444.44837 2560 2452 -24859919.89976 2561 2452 11857600.23336 2562 2452 7.987022399902e-06 2563 2452 74381129.14638 2564 2452 -21110801.83222 2565 2452 -9.581446647644e-06 2566 2452 -65364229.15794 2567 2452 48591512.02092 2571 2452 2.488493919373e-06 2572 2452 -18527661.31289 2573 2452 -5277700.460655 2574 2452 11944444.44836 2575 2452 -25750784.24113 2576 2452 12385378.01131 2453 2453 691056331.5443 2454 2453 1759285.033452 2455 2453 42221603.64364 2456 2453 38993777.49737 2460 2453 -3518570.065188 2461 2453 -21110801.83222 2462 2453 29179895.04537 2463 2453 -20803253.6245 2464 2453 11716512.02698 2465 2453 -27523507.01255 2556 2453 46402301.92001 2557 2453 -5277700.460655 2558 2453 -49602960.36391 2559 2453 16581478.26512 2560 2453 11857600.23336 2561 2453 -32981587.68983 2562 2453 1759285.033468 2563 2453 -21110801.83222 2564 2453 -68142578.48796 2565 2453 439821.258594 2566 2453 48380400.90995 2567 2453 -100781580.1802 2571 2453 -48161586.95346 2572 2453 -5277700.460655 2573 2453 -56307063.72196 2574 2453 -17021299.52369 2575 2453 12385378.01131 2576 2453 -35357225.93349 2454 2454 840410334.4004 2455 2454 47827148.55553 2456 2454 23749508.53569 2457 2454 8066610.522678 2458 2454 -47797526.08417 2459 2454 20547636.30415 2460 2454 -73573484.51406 2461 2454 -47777777.76993 2462 2454 19043968.59104 2463 2454 -188931397.8084 2464 2454 6.824731826782e-06 2465 2454 -3518570.065188 2466 2454 -74622903.1185 2467 2454 47777777.76992 2468 2454 -20539364.73579 2556 2454 -19278339.76952 2557 2454 11944444.44837 2558 2454 6685644.928532 2559 2454 -83208406.42019 2560 2454 -11951850.06621 2561 2454 42498171.10922 2562 2454 17734607.15466 2563 2454 1.817941665649e-06 2564 2454 439821.2585785 2565 2454 125282026.2887 2566 2454 11956787.14478 2567 2454 5935098.98454 2568 2454 -32275376.32772 2569 2454 -11949381.52693 2570 2454 17028332.3953 2571 2454 -19644494.8084 2572 2454 -11944444.44837 2573 2454 -7125466.187114 2574 2454 -71083613.53293 2575 2454 2.801418304443e-06 2576 2454 -48425475.84218 2577 2454 -29334356.73017 2578 2454 11944444.44836 2579 2454 -17021299.52369 2455 2455 711379506.5777 2456 2455 -65443950.97306 2457 2455 -47807400.24129 2458 2455 -159193824.4844 2459 2455 35050823.25634 2460 2455 -47777777.76993 2461 2455 -59239194.56492 2462 2455 9605400.916215 2463 2455 6.347894668579e-06 2464 2455 21292410.96829 2465 2455 -21110801.83222 2466 2455 47777777.76992 2467 2455 -60288613.16939 2468 2455 11505400.91601 2556 2455 11944444.44837 2557 2455 -15694767.28047 2558 2455 -6579899.772699 2559 2455 -11949381.52693 2560 2455 -27053453.11441 2561 2455 3626698.329752 2562 2455 3.322958946228e-06 2563 2455 -27654200.09436 2564 2455 -27480710.1887 2565 2455 11956787.14477 2566 2455 93024319.31714 2567 2455 -16362810.24847 2568 2455 -11951850.06621 2569 2455 -74090485.10009 2570 2455 46808583.40323 2571 2455 -11944444.44836 2572 2455 -16060922.31935 2573 2455 -7107677.550651 2574 2455 2.488493919373e-06 2575 2455 -18527661.31289 2576 2455 -5277700.460655 2577 2455 11944444.44836 2578 2455 -25750784.24113 2579 2455 12385378.01131 2456 2456 697590331.8784 2457 2456 20815660.97705 2458 2456 40965061.2198 2459 2456 2966205.148247 2460 2456 18780079.70233 2461 2456 9394289.805242 2462 2456 -24725057.40063 2463 2456 -3518570.065188 2464 2456 -21110801.83222 2465 2456 29179895.04537 2466 2456 -20803253.6245 2467 2456 11716512.02698 2468 2456 -27523507.01255 2556 2456 6685644.928532 2557 2456 -6579899.772699 2558 2456 -8541180.705052 2559 2456 42233282.34386 2560 2456 2150097.608279 2561 2456 -45715547.88649 2562 2456 439821.2585788 2563 2456 -27269599.07773 2564 2456 -221502.6772963 2565 2456 5939995.986973 2566 2456 -16358892.70393 2567 2456 -51790570.05088 2568 2456 17031848.8311 2569 2456 48076086.23075 2570 2456 -90703859.27092 2571 2456 -7125466.187114 2572 2456 -7107677.550651 2573 2456 -9517594.142065 2574 2456 -48161586.95346 2575 2456 -5277700.460655 2576 2456 -56307063.72196 2577 2456 -17021299.52369 2578 2456 12385378.01131 2579 2456 -35357225.93349 2457 2457 490945057.4196 2458 2457 47777777.76993 2459 2457 20252298.79464 2463 2457 -73573484.51406 2464 2457 -47777777.76993 2465 2457 19043968.59104 2466 2457 -273863949.3497 2467 2457 -47797526.08415 2468 2457 -20243754.66502 2469 2457 3432365.726058 2470 2457 38241970.53018 2471 2457 -16369382.67653 2559 2457 1810230.00851 2560 2457 14340738.95588 2561 2457 8290807.874965 2565 2457 -3359294.569133 2566 2457 -11951850.06621 2567 2457 -6689786.134111 2568 2457 66125098.41489 2569 2457 11944444.44837 2570 2457 15207852.8515 2574 2457 -19644494.8084 2575 2457 -11944444.44837 2576 2457 -7125466.187114 2577 2457 -93269248.17781 2578 2457 -11949381.52693 2579 2457 -52618980.4305 2580 2457 -17054654.84265 2581 2457 9560492.637254 2582 2457 -13448143.98712 2458 2458 419251389.3651 2459 2458 -52793537.14673 2463 2458 -47777777.76993 2464 2458 -59239194.56492 2465 2458 9605400.916215 2466 2458 -47807400.24127 2467 2458 -49244136.23734 2468 2458 -29248441.87035 2469 2458 57362955.79526 2470 2458 3432365.726057 2471 2458 18376374.28788 2559 2458 9560492.637254 2560 2458 1810230.008509 2561 2458 -4421798.559475 2565 2458 -11949381.52693 2566 2458 -45174403.34149 2567 2458 -27804612.20634 2568 2458 11944444.44837 2569 2458 48201681.39244 2570 2458 -5082672.97723 2574 2458 -11944444.44836 2575 2458 -16060922.31935 2576 2458 -7107677.550651 2577 2458 -11951850.06621 2578 2458 -37114294.87206 2579 2458 -16826932.79813 2580 2458 14340738.95588 2581 2458 -17054654.84265 2582 2458 16137388.124 2459 2459 451566531.4722 2463 2459 18780079.70233 2464 2459 9394289.805242 2465 2459 -24725057.40063 2466 2459 -20239482.6002 2467 2459 -23545205.99654 2468 2459 -25609721.67724 2469 2459 -24554074.0148 2470 2459 12250916.19192 2471 2459 9152975.269492 2559 2459 5527205.249977 2560 2459 -6632697.839212 2561 2459 4827280.022694 2565 2459 -6688405.732252 2566 2459 -29072115.16194 2567 2459 -13594307.9147 2568 2459 -3762599.703372 2569 2459 -20258812.61341 2570 2459 -38071476.41094 2574 2459 -7125466.187114 2575 2459 -7107677.550651 2576 2459 -9517594.142065 2577 2459 -52354091.66514 2578 2459 -15346414.53585 2579 2459 -72544459.24024 2580 2459 -20172215.98068 2581 2459 10758258.74933 2582 2459 -45479079.58041 2460 2460 773558827.9862 2461 2460 2.658367156982e-05 2462 2460 7037140.130311 2463 2460 85893349.16099 2464 2460 -1.427531242371e-05 2465 2460 1759285.033452 2472 2460 -188931397.8084 2473 2460 6.824731826782e-06 2474 2460 -3518570.065188 2475 2460 -74622903.1185 2476 2460 47777777.76992 2477 2460 -20539364.73579 2562 2460 -68569574.7737 2563 2460 9.983777999878e-07 2564 2460 46666190.80873 2565 2460 -28443492.38882 2566 2460 -11944444.44837 2567 2460 16581478.26512 2571 2460 103049709.0446 2572 2460 8.106231689453e-06 2573 2460 1759285.033469 2574 2460 -19975421.90891 2575 2460 -1.013278961182e-05 2576 2460 439821.2585936 2583 2460 -71083613.53293 2584 2460 2.801418304443e-06 2585 2460 -48425475.84218 2586 2460 -29334356.73017 2587 2460 11944444.44836 2588 2460 -17021299.52369 2461 2461 658884508.4497 2462 2461 -84443207.28729 2463 2461 -1.427531242371e-05 2464 2461 -95661879.74567 2465 2461 42221603.64364 2472 2461 6.347894668579e-06 2473 2461 21292410.96829 2474 2461 -21110801.83222 2475 2461 47777777.76992 2476 2461 -60288613.16939 2477 2461 11505400.91601 2562 2461 -8.195638656616e-07 2563 2461 -16013622.55363 2564 2461 -5277700.460655 2565 2461 -11944444.44837 2566 2461 -24859919.89976 2567 2461 11857600.23336 2571 2461 7.987022399902e-06 2572 2461 74381129.14638 2573 2461 -21110801.83222 2574 2461 -9.581446647644e-06 2575 2461 -65364229.15794 2576 2461 48591512.02092 2583 2461 2.488493919373e-06 2584 2461 -18527661.31289 2585 2461 -5277700.460655 2586 2461 11944444.44836 2587 2461 -25750784.24113 2588 2461 12385378.01131 2462 2462 691056331.5443 2463 2462 1759285.033452 2464 2462 42221603.64364 2465 2462 38993777.49737 2472 2462 -3518570.065188 2473 2462 -21110801.83222 2474 2462 29179895.04537 2475 2462 -20803253.6245 2476 2462 11716512.02698 2477 2462 -27523507.01255 2562 2462 46402301.92001 2563 2462 -5277700.460655 2564 2462 -49602960.36391 2565 2462 16581478.26512 2566 2462 11857600.23336 2567 2462 -32981587.68983 2571 2462 1759285.033468 2572 2462 -21110801.83222 2573 2462 -68142578.48796 2574 2462 439821.258594 2575 2462 48380400.90995 2576 2462 -100781580.1802 2583 2462 -48161586.95346 2584 2462 -5277700.460655 2585 2462 -56307063.72196 2586 2462 -17021299.52369 2587 2462 12385378.01131 2588 2462 -35357225.93349 2463 2463 773558827.9862 2464 2463 2.658367156982e-05 2465 2463 7037140.130311 2466 2463 85893349.16099 2467 2463 -1.427531242371e-05 2468 2463 1759285.033452 2472 2463 -73573484.51406 2473 2463 -47777777.76993 2474 2463 19043968.59104 2475 2463 -188931397.8084 2476 2463 6.824731826782e-06 2477 2463 -3518570.065188 2478 2463 -74622903.1185 2479 2463 47777777.76992 2480 2463 -20539364.73579 2562 2463 -19278339.76952 2563 2463 11944444.44837 2564 2463 6685644.928532 2565 2463 -68569574.7737 2566 2463 9.983777999878e-07 2567 2463 46666190.80873 2568 2463 -28443492.38882 2569 2463 -11944444.44837 2570 2463 16581478.26512 2571 2463 17734607.15466 2572 2463 1.817941665649e-06 2573 2463 439821.2585785 2574 2463 103049709.0446 2575 2463 8.106231689453e-06 2576 2463 1759285.033469 2577 2463 -19975421.90891 2578 2463 -1.013278961182e-05 2579 2463 439821.2585936 2583 2463 -19644494.8084 2584 2463 -11944444.44837 2585 2463 -7125466.187114 2586 2463 -71083613.53293 2587 2463 2.801418304443e-06 2588 2463 -48425475.84218 2589 2463 -29334356.73017 2590 2463 11944444.44836 2591 2463 -17021299.52369 2464 2464 658884508.4497 2465 2464 -84443207.28729 2466 2464 -1.427531242371e-05 2467 2464 -95661879.74567 2468 2464 42221603.64364 2472 2464 -47777777.76993 2473 2464 -59239194.56492 2474 2464 9605400.916215 2475 2464 6.347894668579e-06 2476 2464 21292410.96829 2477 2464 -21110801.83222 2478 2464 47777777.76992 2479 2464 -60288613.16939 2480 2464 11505400.91601 2562 2464 11944444.44837 2563 2464 -15694767.28047 2564 2464 -6579899.772699 2565 2464 -8.195638656616e-07 2566 2464 -16013622.55363 2567 2464 -5277700.460655 2568 2464 -11944444.44837 2569 2464 -24859919.89976 2570 2464 11857600.23336 2571 2464 3.322958946228e-06 2572 2464 -27654200.09436 2573 2464 -27480710.1887 2574 2464 7.987022399902e-06 2575 2464 74381129.14638 2576 2464 -21110801.83222 2577 2464 -9.581446647644e-06 2578 2464 -65364229.15794 2579 2464 48591512.02092 2583 2464 -11944444.44836 2584 2464 -16060922.31935 2585 2464 -7107677.550651 2586 2464 2.488493919373e-06 2587 2464 -18527661.31289 2588 2464 -5277700.460655 2589 2464 11944444.44836 2590 2464 -25750784.24113 2591 2464 12385378.01131 2465 2465 691056331.5443 2466 2465 1759285.033452 2467 2465 42221603.64364 2468 2465 38993777.49737 2472 2465 18780079.70233 2473 2465 9394289.805242 2474 2465 -24725057.40063 2475 2465 -3518570.065188 2476 2465 -21110801.83222 2477 2465 29179895.04537 2478 2465 -20803253.6245 2479 2465 11716512.02698 2480 2465 -27523507.01255 2562 2465 6685644.928532 2563 2465 -6579899.772699 2564 2465 -8541180.705052 2565 2465 46402301.92001 2566 2465 -5277700.460655 2567 2465 -49602960.36391 2568 2465 16581478.26512 2569 2465 11857600.23336 2570 2465 -32981587.68983 2571 2465 439821.2585788 2572 2465 -27269599.07773 2573 2465 -221502.6772963 2574 2465 1759285.033468 2575 2465 -21110801.83222 2576 2465 -68142578.48796 2577 2465 439821.258594 2578 2465 48380400.90995 2579 2465 -100781580.1802 2583 2465 -7125466.187114 2584 2465 -7107677.550651 2585 2465 -9517594.142065 2586 2465 -48161586.95346 2587 2465 -5277700.460655 2588 2465 -56307063.72196 2589 2465 -17021299.52369 2590 2465 12385378.01131 2591 2465 -35357225.93349 2466 2466 840410334.4004 2467 2466 47827148.55553 2468 2466 23749508.53569 2469 2466 8066610.522678 2470 2466 -47797526.08417 2471 2466 20547636.30415 2475 2466 -73573484.51406 2476 2466 -47777777.76993 2477 2466 19043968.59104 2478 2466 -188931397.8084 2479 2466 6.824731826782e-06 2480 2466 -3518570.065188 2481 2466 -74622903.1185 2482 2466 47777777.76992 2483 2466 -20539364.73579 2565 2466 -19278339.76952 2566 2466 11944444.44837 2567 2466 6685644.928532 2568 2466 -83208406.42019 2569 2466 -11951850.06621 2570 2466 42498171.10922 2574 2466 17734607.15466 2575 2466 1.817941665649e-06 2576 2466 439821.2585785 2577 2466 125282026.2887 2578 2466 11956787.14478 2579 2466 5935098.98454 2580 2466 -32275376.32772 2581 2466 -11949381.52693 2582 2466 17028332.3953 2586 2466 -19644494.8084 2587 2466 -11944444.44837 2588 2466 -7125466.187114 2589 2466 -71083613.53293 2590 2466 2.801418304443e-06 2591 2466 -48425475.84218 2592 2466 -29334356.73017 2593 2466 11944444.44836 2594 2466 -17021299.52369 2467 2467 711379506.5777 2468 2467 -65443950.97306 2469 2467 -47807400.24129 2470 2467 -159193824.4844 2471 2467 35050823.25634 2475 2467 -47777777.76993 2476 2467 -59239194.56492 2477 2467 9605400.916215 2478 2467 6.347894668579e-06 2479 2467 21292410.96829 2480 2467 -21110801.83222 2481 2467 47777777.76992 2482 2467 -60288613.16939 2483 2467 11505400.91601 2565 2467 11944444.44837 2566 2467 -15694767.28047 2567 2467 -6579899.772699 2568 2467 -11949381.52693 2569 2467 -27053453.11441 2570 2467 3626698.329752 2574 2467 3.322958946228e-06 2575 2467 -27654200.09436 2576 2467 -27480710.1887 2577 2467 11956787.14477 2578 2467 93024319.31714 2579 2467 -16362810.24847 2580 2467 -11951850.06621 2581 2467 -74090485.10009 2582 2467 46808583.40323 2586 2467 -11944444.44836 2587 2467 -16060922.31935 2588 2467 -7107677.550651 2589 2467 2.488493919373e-06 2590 2467 -18527661.31289 2591 2467 -5277700.460655 2592 2467 11944444.44836 2593 2467 -25750784.24113 2594 2467 12385378.01131 2468 2468 697590331.8784 2469 2468 20815660.97705 2470 2468 40965061.2198 2471 2468 2966205.148247 2475 2468 18780079.70233 2476 2468 9394289.805242 2477 2468 -24725057.40063 2478 2468 -3518570.065188 2479 2468 -21110801.83222 2480 2468 29179895.04537 2481 2468 -20803253.6245 2482 2468 11716512.02698 2483 2468 -27523507.01255 2565 2468 6685644.928532 2566 2468 -6579899.772699 2567 2468 -8541180.705052 2568 2468 42233282.34386 2569 2468 2150097.608279 2570 2468 -45715547.88649 2574 2468 439821.2585788 2575 2468 -27269599.07773 2576 2468 -221502.6772963 2577 2468 5939995.986973 2578 2468 -16358892.70393 2579 2468 -51790570.05088 2580 2468 17031848.8311 2581 2468 48076086.23075 2582 2468 -90703859.27092 2586 2468 -7125466.187114 2587 2468 -7107677.550651 2588 2468 -9517594.142065 2589 2468 -48161586.95346 2590 2468 -5277700.460655 2591 2468 -56307063.72196 2592 2468 -17021299.52369 2593 2468 12385378.01131 2594 2468 -35357225.93349 2469 2469 490945057.4196 2470 2469 47777777.76993 2471 2469 20252298.79464 2478 2469 -73573484.51406 2479 2469 -47777777.76993 2480 2469 19043968.59104 2481 2469 -273863949.3497 2482 2469 -47797526.08415 2483 2469 -20243754.66502 2484 2469 3432365.726058 2485 2469 38241970.53018 2486 2469 -16369382.67653 2568 2469 1810230.00851 2569 2469 14340738.95588 2570 2469 8290807.874965 2577 2469 -3359294.569133 2578 2469 -11951850.06621 2579 2469 -6689786.134111 2580 2469 66125098.41489 2581 2469 11944444.44837 2582 2469 15207852.8515 2589 2469 -19644494.8084 2590 2469 -11944444.44837 2591 2469 -7125466.187114 2592 2469 -93269248.17781 2593 2469 -11949381.52693 2594 2469 -52618980.4305 2595 2469 -17054654.84265 2596 2469 9560492.637254 2597 2469 -13448143.98712 2470 2470 419251389.3651 2471 2470 -52793537.14673 2478 2470 -47777777.76993 2479 2470 -59239194.56492 2480 2470 9605400.916215 2481 2470 -47807400.24127 2482 2470 -49244136.23734 2483 2470 -29248441.87035 2484 2470 57362955.79526 2485 2470 3432365.726057 2486 2470 18376374.28788 2568 2470 9560492.637254 2569 2470 1810230.008509 2570 2470 -4421798.559475 2577 2470 -11949381.52693 2578 2470 -45174403.34149 2579 2470 -27804612.20634 2580 2470 11944444.44837 2581 2470 48201681.39244 2582 2470 -5082672.97723 2589 2470 -11944444.44836 2590 2470 -16060922.31935 2591 2470 -7107677.550651 2592 2470 -11951850.06621 2593 2470 -37114294.87206 2594 2470 -16826932.79813 2595 2470 14340738.95588 2596 2470 -17054654.84265 2597 2470 16137388.124 2471 2471 451566531.4722 2478 2471 18780079.70233 2479 2471 9394289.805242 2480 2471 -24725057.40063 2481 2471 -20239482.6002 2482 2471 -23545205.99654 2483 2471 -25609721.67724 2484 2471 -24554074.0148 2485 2471 12250916.19192 2486 2471 9152975.269492 2568 2471 5527205.249977 2569 2471 -6632697.839212 2570 2471 4827280.022694 2577 2471 -6688405.732252 2578 2471 -29072115.16194 2579 2471 -13594307.9147 2580 2471 -3762599.703372 2581 2471 -20258812.61341 2582 2471 -38071476.41094 2589 2471 -7125466.187114 2590 2471 -7107677.550651 2591 2471 -9517594.142065 2592 2471 -52354091.66514 2593 2471 -15346414.53585 2594 2471 -72544459.24024 2595 2471 -20172215.98068 2596 2471 10758258.74933 2597 2471 -45479079.58041 2472 2472 773558827.9862 2473 2472 2.658367156982e-05 2474 2472 7037140.130311 2475 2472 85893349.16099 2476 2472 -1.427531242371e-05 2477 2472 1759285.033452 2487 2472 -188931397.8084 2488 2472 6.824731826782e-06 2489 2472 -3518570.065188 2490 2472 -74622903.1185 2491 2472 47777777.76992 2492 2472 -20539364.73579 2571 2472 -68569574.7737 2572 2472 9.983777999878e-07 2573 2472 46666190.80873 2574 2472 -28443492.38882 2575 2472 -11944444.44837 2576 2472 16581478.26512 2583 2472 103049709.0446 2584 2472 8.106231689453e-06 2585 2472 1759285.033469 2586 2472 -19975421.90891 2587 2472 -1.013278961182e-05 2588 2472 439821.2585936 2598 2472 -71083613.53293 2599 2472 2.801418304443e-06 2600 2472 -48425475.84218 2601 2472 -29334356.73017 2602 2472 11944444.44836 2603 2472 -17021299.52369 2473 2473 658884508.4497 2474 2473 -84443207.28729 2475 2473 -1.427531242371e-05 2476 2473 -95661879.74567 2477 2473 42221603.64364 2487 2473 6.347894668579e-06 2488 2473 21292410.96829 2489 2473 -21110801.83222 2490 2473 47777777.76992 2491 2473 -60288613.16939 2492 2473 11505400.91601 2571 2473 -8.195638656616e-07 2572 2473 -16013622.55363 2573 2473 -5277700.460655 2574 2473 -11944444.44837 2575 2473 -24859919.89976 2576 2473 11857600.23336 2583 2473 7.987022399902e-06 2584 2473 74381129.14638 2585 2473 -21110801.83222 2586 2473 -9.581446647644e-06 2587 2473 -65364229.15794 2588 2473 48591512.02092 2598 2473 2.488493919373e-06 2599 2473 -18527661.31289 2600 2473 -5277700.460655 2601 2473 11944444.44836 2602 2473 -25750784.24113 2603 2473 12385378.01131 2474 2474 691056331.5443 2475 2474 1759285.033452 2476 2474 42221603.64364 2477 2474 38993777.49737 2487 2474 -3518570.065188 2488 2474 -21110801.83222 2489 2474 29179895.04537 2490 2474 -20803253.6245 2491 2474 11716512.02698 2492 2474 -27523507.01255 2571 2474 46402301.92001 2572 2474 -5277700.460655 2573 2474 -49602960.36391 2574 2474 16581478.26512 2575 2474 11857600.23336 2576 2474 -32981587.68983 2583 2474 1759285.033468 2584 2474 -21110801.83222 2585 2474 -68142578.48796 2586 2474 439821.258594 2587 2474 48380400.90995 2588 2474 -100781580.1802 2598 2474 -48161586.95346 2599 2474 -5277700.460655 2600 2474 -56307063.72196 2601 2474 -17021299.52369 2602 2474 12385378.01131 2603 2474 -35357225.93349 2475 2475 773558827.9862 2476 2475 2.658367156982e-05 2477 2475 7037140.130311 2478 2475 85893349.16099 2479 2475 -1.427531242371e-05 2480 2475 1759285.033452 2487 2475 -73573484.51406 2488 2475 -47777777.76993 2489 2475 19043968.59104 2490 2475 -188931397.8084 2491 2475 6.824731826782e-06 2492 2475 -3518570.065188 2493 2475 -74622903.1185 2494 2475 47777777.76992 2495 2475 -20539364.73579 2571 2475 -19278339.76952 2572 2475 11944444.44837 2573 2475 6685644.928532 2574 2475 -68569574.7737 2575 2475 9.983777999878e-07 2576 2475 46666190.80873 2577 2475 -28443492.38882 2578 2475 -11944444.44837 2579 2475 16581478.26512 2583 2475 17734607.15466 2584 2475 1.817941665649e-06 2585 2475 439821.2585785 2586 2475 103049709.0446 2587 2475 8.106231689453e-06 2588 2475 1759285.033469 2589 2475 -19975421.90891 2590 2475 -1.013278961182e-05 2591 2475 439821.2585936 2598 2475 -19644494.8084 2599 2475 -11944444.44837 2600 2475 -7125466.187114 2601 2475 -71083613.53293 2602 2475 2.801418304443e-06 2603 2475 -48425475.84218 2604 2475 -29334356.73017 2605 2475 11944444.44836 2606 2475 -17021299.52369 2476 2476 658884508.4497 2477 2476 -84443207.28729 2478 2476 -1.427531242371e-05 2479 2476 -95661879.74567 2480 2476 42221603.64364 2487 2476 -47777777.76993 2488 2476 -59239194.56492 2489 2476 9605400.916215 2490 2476 6.347894668579e-06 2491 2476 21292410.96829 2492 2476 -21110801.83222 2493 2476 47777777.76992 2494 2476 -60288613.16939 2495 2476 11505400.91601 2571 2476 11944444.44837 2572 2476 -15694767.28047 2573 2476 -6579899.772699 2574 2476 -8.195638656616e-07 2575 2476 -16013622.55363 2576 2476 -5277700.460655 2577 2476 -11944444.44837 2578 2476 -24859919.89976 2579 2476 11857600.23336 2583 2476 3.322958946228e-06 2584 2476 -27654200.09436 2585 2476 -27480710.1887 2586 2476 7.987022399902e-06 2587 2476 74381129.14638 2588 2476 -21110801.83222 2589 2476 -9.581446647644e-06 2590 2476 -65364229.15794 2591 2476 48591512.02092 2598 2476 -11944444.44836 2599 2476 -16060922.31935 2600 2476 -7107677.550651 2601 2476 2.488493919373e-06 2602 2476 -18527661.31289 2603 2476 -5277700.460655 2604 2476 11944444.44836 2605 2476 -25750784.24113 2606 2476 12385378.01131 2477 2477 691056331.5443 2478 2477 1759285.033452 2479 2477 42221603.64364 2480 2477 38993777.49737 2487 2477 18780079.70233 2488 2477 9394289.805242 2489 2477 -24725057.40063 2490 2477 -3518570.065188 2491 2477 -21110801.83222 2492 2477 29179895.04537 2493 2477 -20803253.6245 2494 2477 11716512.02698 2495 2477 -27523507.01255 2571 2477 6685644.928532 2572 2477 -6579899.772699 2573 2477 -8541180.705052 2574 2477 46402301.92001 2575 2477 -5277700.460655 2576 2477 -49602960.36391 2577 2477 16581478.26512 2578 2477 11857600.23336 2579 2477 -32981587.68983 2583 2477 439821.2585788 2584 2477 -27269599.07773 2585 2477 -221502.6772963 2586 2477 1759285.033468 2587 2477 -21110801.83222 2588 2477 -68142578.48796 2589 2477 439821.258594 2590 2477 48380400.90995 2591 2477 -100781580.1802 2598 2477 -7125466.187114 2599 2477 -7107677.550651 2600 2477 -9517594.142065 2601 2477 -48161586.95346 2602 2477 -5277700.460655 2603 2477 -56307063.72196 2604 2477 -17021299.52369 2605 2477 12385378.01131 2606 2477 -35357225.93349 2478 2478 773558827.9862 2479 2478 2.658367156982e-05 2480 2478 7037140.130311 2481 2478 85893349.16099 2482 2478 -1.427531242371e-05 2483 2478 1759285.033452 2490 2478 -73573484.51406 2491 2478 -47777777.76993 2492 2478 19043968.59104 2493 2478 -188931397.8084 2494 2478 6.824731826782e-06 2495 2478 -3518570.065188 2496 2478 -74622903.1185 2497 2478 47777777.76992 2498 2478 -20539364.73579 2574 2478 -19278339.76952 2575 2478 11944444.44837 2576 2478 6685644.928532 2577 2478 -68569574.7737 2578 2478 9.983777999878e-07 2579 2478 46666190.80873 2580 2478 -28443492.38882 2581 2478 -11944444.44837 2582 2478 16581478.26512 2586 2478 17734607.15466 2587 2478 1.817941665649e-06 2588 2478 439821.2585785 2589 2478 103049709.0446 2590 2478 8.106231689453e-06 2591 2478 1759285.033469 2592 2478 -19975421.90891 2593 2478 -1.013278961182e-05 2594 2478 439821.2585936 2601 2478 -19644494.8084 2602 2478 -11944444.44837 2603 2478 -7125466.187114 2604 2478 -71083613.53293 2605 2478 2.801418304443e-06 2606 2478 -48425475.84218 2607 2478 -29334356.73017 2608 2478 11944444.44836 2609 2478 -17021299.52369 2479 2479 658884508.4497 2480 2479 -84443207.28729 2481 2479 -1.427531242371e-05 2482 2479 -95661879.74567 2483 2479 42221603.64364 2490 2479 -47777777.76993 2491 2479 -59239194.56492 2492 2479 9605400.916215 2493 2479 6.347894668579e-06 2494 2479 21292410.96829 2495 2479 -21110801.83222 2496 2479 47777777.76992 2497 2479 -60288613.16939 2498 2479 11505400.91601 2574 2479 11944444.44837 2575 2479 -15694767.28047 2576 2479 -6579899.772699 2577 2479 -8.195638656616e-07 2578 2479 -16013622.55363 2579 2479 -5277700.460655 2580 2479 -11944444.44837 2581 2479 -24859919.89976 2582 2479 11857600.23336 2586 2479 3.322958946228e-06 2587 2479 -27654200.09436 2588 2479 -27480710.1887 2589 2479 7.987022399902e-06 2590 2479 74381129.14638 2591 2479 -21110801.83222 2592 2479 -9.581446647644e-06 2593 2479 -65364229.15794 2594 2479 48591512.02092 2601 2479 -11944444.44836 2602 2479 -16060922.31935 2603 2479 -7107677.550651 2604 2479 2.488493919373e-06 2605 2479 -18527661.31289 2606 2479 -5277700.460655 2607 2479 11944444.44836 2608 2479 -25750784.24113 2609 2479 12385378.01131 2480 2480 691056331.5443 2481 2480 1759285.033452 2482 2480 42221603.64364 2483 2480 38993777.49737 2490 2480 18780079.70233 2491 2480 9394289.805242 2492 2480 -24725057.40063 2493 2480 -3518570.065188 2494 2480 -21110801.83222 2495 2480 29179895.04537 2496 2480 -20803253.6245 2497 2480 11716512.02698 2498 2480 -27523507.01255 2574 2480 6685644.928532 2575 2480 -6579899.772699 2576 2480 -8541180.705052 2577 2480 46402301.92001 2578 2480 -5277700.460655 2579 2480 -49602960.36391 2580 2480 16581478.26512 2581 2480 11857600.23336 2582 2480 -32981587.68983 2586 2480 439821.2585788 2587 2480 -27269599.07773 2588 2480 -221502.6772963 2589 2480 1759285.033468 2590 2480 -21110801.83222 2591 2480 -68142578.48796 2592 2480 439821.258594 2593 2480 48380400.90995 2594 2480 -100781580.1802 2601 2480 -7125466.187114 2602 2480 -7107677.550651 2603 2480 -9517594.142065 2604 2480 -48161586.95346 2605 2480 -5277700.460655 2606 2480 -56307063.72196 2607 2480 -17021299.52369 2608 2480 12385378.01131 2609 2480 -35357225.93349 2481 2481 840410334.4004 2482 2481 47827148.55553 2483 2481 23749508.53569 2484 2481 8066610.522678 2485 2481 -47797526.08417 2486 2481 20547636.30415 2493 2481 -73573484.51406 2494 2481 -47777777.76993 2495 2481 19043968.59104 2496 2481 -188931397.8084 2497 2481 6.824731826782e-06 2498 2481 -3518570.065188 2499 2481 -74622903.1185 2500 2481 47777777.76992 2501 2481 -20539364.73579 2577 2481 -19278339.76952 2578 2481 11944444.44837 2579 2481 6685644.928532 2580 2481 -83208406.42019 2581 2481 -11951850.06621 2582 2481 42498171.10922 2589 2481 17734607.15466 2590 2481 1.817941665649e-06 2591 2481 439821.2585785 2592 2481 125282026.2887 2593 2481 11956787.14478 2594 2481 5935098.98454 2595 2481 -32275376.32772 2596 2481 -11949381.52693 2597 2481 17028332.3953 2604 2481 -19644494.8084 2605 2481 -11944444.44837 2606 2481 -7125466.187114 2607 2481 -71083613.53293 2608 2481 2.801418304443e-06 2609 2481 -48425475.84218 2610 2481 -29334356.73017 2611 2481 11944444.44836 2612 2481 -17021299.52369 2482 2482 711379506.5777 2483 2482 -65443950.97306 2484 2482 -47807400.24129 2485 2482 -159193824.4844 2486 2482 35050823.25634 2493 2482 -47777777.76993 2494 2482 -59239194.56492 2495 2482 9605400.916215 2496 2482 6.347894668579e-06 2497 2482 21292410.96829 2498 2482 -21110801.83222 2499 2482 47777777.76992 2500 2482 -60288613.16939 2501 2482 11505400.91601 2577 2482 11944444.44837 2578 2482 -15694767.28047 2579 2482 -6579899.772699 2580 2482 -11949381.52693 2581 2482 -27053453.11441 2582 2482 3626698.329752 2589 2482 3.322958946228e-06 2590 2482 -27654200.09436 2591 2482 -27480710.1887 2592 2482 11956787.14477 2593 2482 93024319.31714 2594 2482 -16362810.24847 2595 2482 -11951850.06621 2596 2482 -74090485.10009 2597 2482 46808583.40323 2604 2482 -11944444.44836 2605 2482 -16060922.31935 2606 2482 -7107677.550651 2607 2482 2.488493919373e-06 2608 2482 -18527661.31289 2609 2482 -5277700.460655 2610 2482 11944444.44836 2611 2482 -25750784.24113 2612 2482 12385378.01131 2483 2483 697590331.8784 2484 2483 20815660.97705 2485 2483 40965061.2198 2486 2483 2966205.148247 2493 2483 18780079.70233 2494 2483 9394289.805242 2495 2483 -24725057.40063 2496 2483 -3518570.065188 2497 2483 -21110801.83222 2498 2483 29179895.04537 2499 2483 -20803253.6245 2500 2483 11716512.02698 2501 2483 -27523507.01255 2577 2483 6685644.928532 2578 2483 -6579899.772699 2579 2483 -8541180.705052 2580 2483 42233282.34386 2581 2483 2150097.608279 2582 2483 -45715547.88649 2589 2483 439821.2585788 2590 2483 -27269599.07773 2591 2483 -221502.6772963 2592 2483 5939995.986973 2593 2483 -16358892.70393 2594 2483 -51790570.05088 2595 2483 17031848.8311 2596 2483 48076086.23075 2597 2483 -90703859.27092 2604 2483 -7125466.187114 2605 2483 -7107677.550651 2606 2483 -9517594.142065 2607 2483 -48161586.95346 2608 2483 -5277700.460655 2609 2483 -56307063.72196 2610 2483 -17021299.52369 2611 2483 12385378.01131 2612 2483 -35357225.93349 2484 2484 490945057.4196 2485 2484 47777777.76993 2486 2484 20252298.79464 2496 2484 -73573484.51406 2497 2484 -47777777.76993 2498 2484 19043968.59104 2499 2484 -273863949.3497 2500 2484 -47797526.08415 2501 2484 -20243754.66502 2502 2484 3432365.726058 2503 2484 38241970.53018 2504 2484 -16369382.67653 2580 2484 1810230.00851 2581 2484 14340738.95588 2582 2484 8290807.874965 2592 2484 -3359294.569133 2593 2484 -11951850.06621 2594 2484 -6689786.134111 2595 2484 66125098.41489 2596 2484 11944444.44837 2597 2484 15207852.8515 2607 2484 -19644494.8084 2608 2484 -11944444.44837 2609 2484 -7125466.187114 2610 2484 -93269248.17781 2611 2484 -11949381.52693 2612 2484 -52618980.4305 2613 2484 -17054654.84265 2614 2484 9560492.637254 2615 2484 -13448143.98712 2485 2485 419251389.3651 2486 2485 -52793537.14673 2496 2485 -47777777.76993 2497 2485 -59239194.56492 2498 2485 9605400.916215 2499 2485 -47807400.24127 2500 2485 -49244136.23734 2501 2485 -29248441.87035 2502 2485 57362955.79526 2503 2485 3432365.726057 2504 2485 18376374.28788 2580 2485 9560492.637254 2581 2485 1810230.008509 2582 2485 -4421798.559475 2592 2485 -11949381.52693 2593 2485 -45174403.34149 2594 2485 -27804612.20634 2595 2485 11944444.44837 2596 2485 48201681.39244 2597 2485 -5082672.97723 2607 2485 -11944444.44836 2608 2485 -16060922.31935 2609 2485 -7107677.550651 2610 2485 -11951850.06621 2611 2485 -37114294.87206 2612 2485 -16826932.79813 2613 2485 14340738.95588 2614 2485 -17054654.84265 2615 2485 16137388.124 2486 2486 451566531.4722 2496 2486 18780079.70233 2497 2486 9394289.805242 2498 2486 -24725057.40063 2499 2486 -20239482.6002 2500 2486 -23545205.99654 2501 2486 -25609721.67724 2502 2486 -24554074.0148 2503 2486 12250916.19192 2504 2486 9152975.269492 2580 2486 5527205.249977 2581 2486 -6632697.839212 2582 2486 4827280.022694 2592 2486 -6688405.732252 2593 2486 -29072115.16194 2594 2486 -13594307.9147 2595 2486 -3762599.703372 2596 2486 -20258812.61341 2597 2486 -38071476.41094 2607 2486 -7125466.187114 2608 2486 -7107677.550651 2609 2486 -9517594.142065 2610 2486 -52354091.66514 2611 2486 -15346414.53585 2612 2486 -72544459.24024 2613 2486 -20172215.98068 2614 2486 10758258.74933 2615 2486 -45479079.58041 2487 2487 773558827.9862 2488 2487 2.658367156982e-05 2489 2487 7037140.130311 2490 2487 85893349.16099 2491 2487 -1.427531242371e-05 2492 2487 1759285.033452 2505 2487 -188931397.8084 2506 2487 6.824731826782e-06 2507 2487 -3518570.065188 2508 2487 -74622903.1185 2509 2487 47777777.76992 2510 2487 -20539364.73579 2583 2487 -68569574.7737 2584 2487 9.983777999878e-07 2585 2487 46666190.80873 2586 2487 -28443492.38882 2587 2487 -11944444.44837 2588 2487 16581478.26512 2598 2487 103049709.0446 2599 2487 8.106231689453e-06 2600 2487 1759285.033469 2601 2487 -19975421.90891 2602 2487 -1.013278961182e-05 2603 2487 439821.2585936 2616 2487 -71083613.53293 2617 2487 2.801418304443e-06 2618 2487 -48425475.84218 2619 2487 -29334356.73017 2620 2487 11944444.44836 2621 2487 -17021299.52369 2488 2488 658884508.4497 2489 2488 -84443207.28729 2490 2488 -1.427531242371e-05 2491 2488 -95661879.74567 2492 2488 42221603.64364 2505 2488 6.347894668579e-06 2506 2488 21292410.96829 2507 2488 -21110801.83222 2508 2488 47777777.76992 2509 2488 -60288613.16939 2510 2488 11505400.91601 2583 2488 -8.195638656616e-07 2584 2488 -16013622.55363 2585 2488 -5277700.460655 2586 2488 -11944444.44837 2587 2488 -24859919.89976 2588 2488 11857600.23336 2598 2488 7.987022399902e-06 2599 2488 74381129.14638 2600 2488 -21110801.83222 2601 2488 -9.581446647644e-06 2602 2488 -65364229.15794 2603 2488 48591512.02092 2616 2488 2.488493919373e-06 2617 2488 -18527661.31289 2618 2488 -5277700.460655 2619 2488 11944444.44836 2620 2488 -25750784.24113 2621 2488 12385378.01131 2489 2489 691056331.5443 2490 2489 1759285.033452 2491 2489 42221603.64364 2492 2489 38993777.49737 2505 2489 -3518570.065188 2506 2489 -21110801.83222 2507 2489 29179895.04537 2508 2489 -20803253.6245 2509 2489 11716512.02698 2510 2489 -27523507.01255 2583 2489 46402301.92001 2584 2489 -5277700.460655 2585 2489 -49602960.36391 2586 2489 16581478.26512 2587 2489 11857600.23336 2588 2489 -32981587.68983 2598 2489 1759285.033468 2599 2489 -21110801.83222 2600 2489 -68142578.48796 2601 2489 439821.258594 2602 2489 48380400.90995 2603 2489 -100781580.1802 2616 2489 -48161586.95346 2617 2489 -5277700.460655 2618 2489 -56307063.72196 2619 2489 -17021299.52369 2620 2489 12385378.01131 2621 2489 -35357225.93349 2490 2490 773558827.9862 2491 2490 2.658367156982e-05 2492 2490 7037140.130311 2493 2490 85893349.16099 2494 2490 -1.427531242371e-05 2495 2490 1759285.033452 2505 2490 -73573484.51406 2506 2490 -47777777.76993 2507 2490 19043968.59104 2508 2490 -188931397.8084 2509 2490 6.824731826782e-06 2510 2490 -3518570.065188 2511 2490 -74622903.1185 2512 2490 47777777.76992 2513 2490 -20539364.73579 2583 2490 -19278339.76952 2584 2490 11944444.44837 2585 2490 6685644.928532 2586 2490 -68569574.7737 2587 2490 9.983777999878e-07 2588 2490 46666190.80873 2589 2490 -28443492.38882 2590 2490 -11944444.44837 2591 2490 16581478.26512 2598 2490 17734607.15466 2599 2490 1.817941665649e-06 2600 2490 439821.2585785 2601 2490 103049709.0446 2602 2490 8.106231689453e-06 2603 2490 1759285.033469 2604 2490 -19975421.90891 2605 2490 -1.013278961182e-05 2606 2490 439821.2585936 2616 2490 -19644494.8084 2617 2490 -11944444.44837 2618 2490 -7125466.187114 2619 2490 -71083613.53293 2620 2490 2.801418304443e-06 2621 2490 -48425475.84218 2622 2490 -29334356.73017 2623 2490 11944444.44836 2624 2490 -17021299.52369 2491 2491 658884508.4497 2492 2491 -84443207.28729 2493 2491 -1.427531242371e-05 2494 2491 -95661879.74567 2495 2491 42221603.64364 2505 2491 -47777777.76993 2506 2491 -59239194.56492 2507 2491 9605400.916215 2508 2491 6.347894668579e-06 2509 2491 21292410.96829 2510 2491 -21110801.83222 2511 2491 47777777.76992 2512 2491 -60288613.16939 2513 2491 11505400.91601 2583 2491 11944444.44837 2584 2491 -15694767.28047 2585 2491 -6579899.772699 2586 2491 -8.195638656616e-07 2587 2491 -16013622.55363 2588 2491 -5277700.460655 2589 2491 -11944444.44837 2590 2491 -24859919.89976 2591 2491 11857600.23336 2598 2491 3.322958946228e-06 2599 2491 -27654200.09436 2600 2491 -27480710.1887 2601 2491 7.987022399902e-06 2602 2491 74381129.14638 2603 2491 -21110801.83222 2604 2491 -9.581446647644e-06 2605 2491 -65364229.15794 2606 2491 48591512.02092 2616 2491 -11944444.44836 2617 2491 -16060922.31935 2618 2491 -7107677.550651 2619 2491 2.488493919373e-06 2620 2491 -18527661.31289 2621 2491 -5277700.460655 2622 2491 11944444.44836 2623 2491 -25750784.24113 2624 2491 12385378.01131 2492 2492 691056331.5443 2493 2492 1759285.033452 2494 2492 42221603.64364 2495 2492 38993777.49737 2505 2492 18780079.70233 2506 2492 9394289.805242 2507 2492 -24725057.40063 2508 2492 -3518570.065188 2509 2492 -21110801.83222 2510 2492 29179895.04537 2511 2492 -20803253.6245 2512 2492 11716512.02698 2513 2492 -27523507.01255 2583 2492 6685644.928532 2584 2492 -6579899.772699 2585 2492 -8541180.705052 2586 2492 46402301.92001 2587 2492 -5277700.460655 2588 2492 -49602960.36391 2589 2492 16581478.26512 2590 2492 11857600.23336 2591 2492 -32981587.68983 2598 2492 439821.2585788 2599 2492 -27269599.07773 2600 2492 -221502.6772963 2601 2492 1759285.033468 2602 2492 -21110801.83222 2603 2492 -68142578.48796 2604 2492 439821.258594 2605 2492 48380400.90995 2606 2492 -100781580.1802 2616 2492 -7125466.187114 2617 2492 -7107677.550651 2618 2492 -9517594.142065 2619 2492 -48161586.95346 2620 2492 -5277700.460655 2621 2492 -56307063.72196 2622 2492 -17021299.52369 2623 2492 12385378.01131 2624 2492 -35357225.93349 2493 2493 773558827.9862 2494 2493 2.658367156982e-05 2495 2493 7037140.130311 2496 2493 85893349.16099 2497 2493 -1.427531242371e-05 2498 2493 1759285.033452 2508 2493 -73573484.51406 2509 2493 -47777777.76993 2510 2493 19043968.59104 2511 2493 -188931397.8084 2512 2493 6.824731826782e-06 2513 2493 -3518570.065188 2514 2493 -74622903.1185 2515 2493 47777777.76992 2516 2493 -20539364.73579 2586 2493 -19278339.76952 2587 2493 11944444.44837 2588 2493 6685644.928532 2589 2493 -68569574.7737 2590 2493 9.983777999878e-07 2591 2493 46666190.80873 2592 2493 -28443492.38882 2593 2493 -11944444.44837 2594 2493 16581478.26512 2601 2493 17734607.15466 2602 2493 1.817941665649e-06 2603 2493 439821.2585785 2604 2493 103049709.0446 2605 2493 8.106231689453e-06 2606 2493 1759285.033469 2607 2493 -19975421.90891 2608 2493 -1.013278961182e-05 2609 2493 439821.2585936 2619 2493 -19644494.8084 2620 2493 -11944444.44837 2621 2493 -7125466.187114 2622 2493 -71083613.53293 2623 2493 2.801418304443e-06 2624 2493 -48425475.84218 2625 2493 -29334356.73017 2626 2493 11944444.44836 2627 2493 -17021299.52369 2494 2494 658884508.4497 2495 2494 -84443207.28729 2496 2494 -1.427531242371e-05 2497 2494 -95661879.74567 2498 2494 42221603.64364 2508 2494 -47777777.76993 2509 2494 -59239194.56492 2510 2494 9605400.916215 2511 2494 6.347894668579e-06 2512 2494 21292410.96829 2513 2494 -21110801.83222 2514 2494 47777777.76992 2515 2494 -60288613.16939 2516 2494 11505400.91601 2586 2494 11944444.44837 2587 2494 -15694767.28047 2588 2494 -6579899.772699 2589 2494 -8.195638656616e-07 2590 2494 -16013622.55363 2591 2494 -5277700.460655 2592 2494 -11944444.44837 2593 2494 -24859919.89976 2594 2494 11857600.23336 2601 2494 3.322958946228e-06 2602 2494 -27654200.09436 2603 2494 -27480710.1887 2604 2494 7.987022399902e-06 2605 2494 74381129.14638 2606 2494 -21110801.83222 2607 2494 -9.581446647644e-06 2608 2494 -65364229.15794 2609 2494 48591512.02092 2619 2494 -11944444.44836 2620 2494 -16060922.31935 2621 2494 -7107677.550651 2622 2494 2.488493919373e-06 2623 2494 -18527661.31289 2624 2494 -5277700.460655 2625 2494 11944444.44836 2626 2494 -25750784.24113 2627 2494 12385378.01131 2495 2495 691056331.5443 2496 2495 1759285.033452 2497 2495 42221603.64364 2498 2495 38993777.49737 2508 2495 18780079.70233 2509 2495 9394289.805242 2510 2495 -24725057.40063 2511 2495 -3518570.065188 2512 2495 -21110801.83222 2513 2495 29179895.04537 2514 2495 -20803253.6245 2515 2495 11716512.02698 2516 2495 -27523507.01255 2586 2495 6685644.928532 2587 2495 -6579899.772699 2588 2495 -8541180.705052 2589 2495 46402301.92001 2590 2495 -5277700.460655 2591 2495 -49602960.36391 2592 2495 16581478.26512 2593 2495 11857600.23336 2594 2495 -32981587.68983 2601 2495 439821.2585788 2602 2495 -27269599.07773 2603 2495 -221502.6772963 2604 2495 1759285.033468 2605 2495 -21110801.83222 2606 2495 -68142578.48796 2607 2495 439821.258594 2608 2495 48380400.90995 2609 2495 -100781580.1802 2619 2495 -7125466.187114 2620 2495 -7107677.550651 2621 2495 -9517594.142065 2622 2495 -48161586.95346 2623 2495 -5277700.460655 2624 2495 -56307063.72196 2625 2495 -17021299.52369 2626 2495 12385378.01131 2627 2495 -35357225.93349 2496 2496 773558827.9862 2497 2496 2.658367156982e-05 2498 2496 7037140.130311 2499 2496 85893349.16099 2500 2496 -1.427531242371e-05 2501 2496 1759285.033452 2511 2496 -73573484.51406 2512 2496 -47777777.76993 2513 2496 19043968.59104 2514 2496 -188931397.8084 2515 2496 6.824731826782e-06 2516 2496 -3518570.065188 2517 2496 -74622903.1185 2518 2496 47777777.76992 2519 2496 -20539364.73579 2589 2496 -19278339.76952 2590 2496 11944444.44837 2591 2496 6685644.928532 2592 2496 -68569574.7737 2593 2496 9.983777999878e-07 2594 2496 46666190.80873 2595 2496 -28443492.38882 2596 2496 -11944444.44837 2597 2496 16581478.26512 2604 2496 17734607.15466 2605 2496 1.817941665649e-06 2606 2496 439821.2585785 2607 2496 103049709.0446 2608 2496 8.106231689453e-06 2609 2496 1759285.033469 2610 2496 -19975421.90891 2611 2496 -1.013278961182e-05 2612 2496 439821.2585936 2622 2496 -19644494.8084 2623 2496 -11944444.44837 2624 2496 -7125466.187114 2625 2496 -71083613.53293 2626 2496 2.801418304443e-06 2627 2496 -48425475.84218 2628 2496 -29334356.73017 2629 2496 11944444.44836 2630 2496 -17021299.52369 2497 2497 658884508.4497 2498 2497 -84443207.28729 2499 2497 -1.427531242371e-05 2500 2497 -95661879.74567 2501 2497 42221603.64364 2511 2497 -47777777.76993 2512 2497 -59239194.56492 2513 2497 9605400.916215 2514 2497 6.347894668579e-06 2515 2497 21292410.96829 2516 2497 -21110801.83222 2517 2497 47777777.76992 2518 2497 -60288613.16939 2519 2497 11505400.91601 2589 2497 11944444.44837 2590 2497 -15694767.28047 2591 2497 -6579899.772699 2592 2497 -8.195638656616e-07 2593 2497 -16013622.55363 2594 2497 -5277700.460655 2595 2497 -11944444.44837 2596 2497 -24859919.89976 2597 2497 11857600.23336 2604 2497 3.322958946228e-06 2605 2497 -27654200.09436 2606 2497 -27480710.1887 2607 2497 7.987022399902e-06 2608 2497 74381129.14638 2609 2497 -21110801.83222 2610 2497 -9.581446647644e-06 2611 2497 -65364229.15794 2612 2497 48591512.02092 2622 2497 -11944444.44836 2623 2497 -16060922.31935 2624 2497 -7107677.550651 2625 2497 2.488493919373e-06 2626 2497 -18527661.31289 2627 2497 -5277700.460655 2628 2497 11944444.44836 2629 2497 -25750784.24113 2630 2497 12385378.01131 2498 2498 691056331.5443 2499 2498 1759285.033452 2500 2498 42221603.64364 2501 2498 38993777.49737 2511 2498 18780079.70233 2512 2498 9394289.805242 2513 2498 -24725057.40063 2514 2498 -3518570.065188 2515 2498 -21110801.83222 2516 2498 29179895.04537 2517 2498 -20803253.6245 2518 2498 11716512.02698 2519 2498 -27523507.01255 2589 2498 6685644.928532 2590 2498 -6579899.772699 2591 2498 -8541180.705052 2592 2498 46402301.92001 2593 2498 -5277700.460655 2594 2498 -49602960.36391 2595 2498 16581478.26512 2596 2498 11857600.23336 2597 2498 -32981587.68983 2604 2498 439821.2585788 2605 2498 -27269599.07773 2606 2498 -221502.6772963 2607 2498 1759285.033468 2608 2498 -21110801.83222 2609 2498 -68142578.48796 2610 2498 439821.258594 2611 2498 48380400.90995 2612 2498 -100781580.1802 2622 2498 -7125466.187114 2623 2498 -7107677.550651 2624 2498 -9517594.142065 2625 2498 -48161586.95346 2626 2498 -5277700.460655 2627 2498 -56307063.72196 2628 2498 -17021299.52369 2629 2498 12385378.01131 2630 2498 -35357225.93349 2499 2499 840410334.4004 2500 2499 47827148.55553 2501 2499 23749508.53569 2502 2499 8066610.522678 2503 2499 -47797526.08417 2504 2499 20547636.30415 2514 2499 -73573484.51406 2515 2499 -47777777.76993 2516 2499 19043968.59104 2517 2499 -188931397.8084 2518 2499 6.824731826782e-06 2519 2499 -3518570.065188 2520 2499 -74622903.1185 2521 2499 47777777.76992 2522 2499 -20539364.73579 2592 2499 -19278339.76952 2593 2499 11944444.44837 2594 2499 6685644.928532 2595 2499 -83208406.42019 2596 2499 -11951850.06621 2597 2499 42498171.10922 2607 2499 17734607.15466 2608 2499 1.817941665649e-06 2609 2499 439821.2585785 2610 2499 125282026.2887 2611 2499 11956787.14478 2612 2499 5935098.98454 2613 2499 -32275376.32772 2614 2499 -11949381.52693 2615 2499 17028332.3953 2625 2499 -19644494.8084 2626 2499 -11944444.44837 2627 2499 -7125466.187114 2628 2499 -71083613.53293 2629 2499 2.801418304443e-06 2630 2499 -48425475.84218 2631 2499 -29334356.73017 2632 2499 11944444.44836 2633 2499 -17021299.52369 2500 2500 711379506.5777 2501 2500 -65443950.97306 2502 2500 -47807400.24129 2503 2500 -159193824.4844 2504 2500 35050823.25634 2514 2500 -47777777.76993 2515 2500 -59239194.56492 2516 2500 9605400.916215 2517 2500 6.347894668579e-06 2518 2500 21292410.96829 2519 2500 -21110801.83222 2520 2500 47777777.76992 2521 2500 -60288613.16939 2522 2500 11505400.91601 2592 2500 11944444.44837 2593 2500 -15694767.28047 2594 2500 -6579899.772699 2595 2500 -11949381.52693 2596 2500 -27053453.11441 2597 2500 3626698.329752 2607 2500 3.322958946228e-06 2608 2500 -27654200.09436 2609 2500 -27480710.1887 2610 2500 11956787.14477 2611 2500 93024319.31714 2612 2500 -16362810.24847 2613 2500 -11951850.06621 2614 2500 -74090485.10009 2615 2500 46808583.40323 2625 2500 -11944444.44836 2626 2500 -16060922.31935 2627 2500 -7107677.550651 2628 2500 2.488493919373e-06 2629 2500 -18527661.31289 2630 2500 -5277700.460655 2631 2500 11944444.44836 2632 2500 -25750784.24113 2633 2500 12385378.01131 2501 2501 697590331.8784 2502 2501 20815660.97705 2503 2501 40965061.2198 2504 2501 2966205.148247 2514 2501 18780079.70233 2515 2501 9394289.805242 2516 2501 -24725057.40063 2517 2501 -3518570.065188 2518 2501 -21110801.83222 2519 2501 29179895.04537 2520 2501 -20803253.6245 2521 2501 11716512.02698 2522 2501 -27523507.01255 2592 2501 6685644.928532 2593 2501 -6579899.772699 2594 2501 -8541180.705052 2595 2501 42233282.34386 2596 2501 2150097.608279 2597 2501 -45715547.88649 2607 2501 439821.2585788 2608 2501 -27269599.07773 2609 2501 -221502.6772963 2610 2501 5939995.986973 2611 2501 -16358892.70393 2612 2501 -51790570.05088 2613 2501 17031848.8311 2614 2501 48076086.23075 2615 2501 -90703859.27092 2625 2501 -7125466.187114 2626 2501 -7107677.550651 2627 2501 -9517594.142065 2628 2501 -48161586.95346 2629 2501 -5277700.460655 2630 2501 -56307063.72196 2631 2501 -17021299.52369 2632 2501 12385378.01131 2633 2501 -35357225.93349 2502 2502 414827357.504 2503 2502 -20340871.50549 2504 2502 -9724189.681112 2517 2502 -73573484.51406 2518 2502 -47777777.76993 2519 2502 19043968.59104 2520 2502 -113444843.5246 2521 2502 20210194.63973 2522 2502 -1877986.414888 2523 2502 -111796877.2832 2524 2502 38352899.08171 2525 2502 -2121078.875016 2595 2502 1810230.00851 2596 2502 14340738.95588 2597 2502 8290807.874965 2610 2502 -3359294.569133 2611 2502 -11951850.06621 2612 2502 -6689786.134111 2613 2502 55048606.88105 2614 2502 -3993837.276312 2615 2502 4300879.130003 2628 2502 -19644494.8084 2629 2502 -11944444.44837 2630 2502 -7125466.187114 2631 2502 -46850477.23879 2632 2502 3967148.114668 2633 2502 -32629853.81604 2634 2502 -26982829.38238 2635 2502 9582244.720342 2636 2502 -3892991.07326 2503 2503 564039483.2591 2504 2503 -65106018.41226 2517 2503 -47777777.76993 2518 2503 -59239194.56492 2519 2503 9605400.916215 2520 2503 20144856.20685 2521 2503 80868506.6064 2522 2503 -14973710.12356 2523 2503 57529348.62257 2524 2503 -302396208.1114 2525 2503 17278369.45958 2595 2503 9560492.637254 2596 2503 1810230.008509 2597 2503 -4421798.559475 2610 2503 -11949381.52693 2611 2503 -45174403.34149 2612 2503 -27804612.20634 2613 2503 -3993837.276313 2614 2503 82661789.79505 2615 2503 -10169382.16459 2628 2503 -11944444.44836 2629 2503 -16060922.31935 2630 2503 -7107677.550651 2631 2503 3953803.533843 2632 2503 2200024.266784 2633 2503 -395237.0216989 2634 2503 14373367.08051 2635 2503 -65414977.51864 2636 2503 21026558.24452 2504 2504 423445398.9633 2517 2504 18780079.70233 2518 2504 9394289.805242 2519 2504 -24725057.40063 2520 2504 -7679074.462877 2521 2504 -14123216.23606 2522 2504 36715829.09565 2523 2504 -3181618.312524 2524 2504 16437776.1764 2525 2504 -107525675.2604 2595 2504 5527205.249977 2596 2504 -6632697.839212 2597 2504 4827280.022694 2610 2504 -6688405.732252 2611 2504 -29072115.16194 2612 2504 -13594307.9147 2613 2504 -8545064.987078 2614 2504 -20005612.70897 2615 2504 -20483373.72889 2628 2504 -7125466.187114 2629 2504 -7107677.550651 2630 2504 -9517594.142065 2631 2504 -33948397.04199 2632 2504 39261.12256241 2633 2504 -34318631.6447 2634 2504 -5839486.60989 2635 2504 19470618.25085 2636 2504 -33522063.55007 2505 2505 773558827.9862 2506 2505 2.658367156982e-05 2507 2505 7037140.130311 2508 2505 85893349.16099 2509 2505 -1.427531242371e-05 2510 2505 1759285.033452 2526 2505 -188931397.8084 2527 2505 6.824731826782e-06 2528 2505 -3518570.065188 2529 2505 -74622903.1185 2530 2505 47777777.76992 2531 2505 -20539364.73579 2598 2505 -68569574.7737 2599 2505 9.983777999878e-07 2600 2505 46666190.80873 2601 2505 -28443492.38882 2602 2505 -11944444.44837 2603 2505 16581478.26512 2616 2505 103049709.0446 2617 2505 8.106231689453e-06 2618 2505 1759285.033469 2619 2505 -19975421.90891 2620 2505 -1.013278961182e-05 2621 2505 439821.2585936 2637 2505 -71083613.53293 2638 2505 2.801418304443e-06 2639 2505 -48425475.84218 2640 2505 -29334356.73017 2641 2505 11944444.44836 2642 2505 -17021299.52369 2506 2506 658884508.4497 2507 2506 -84443207.28729 2508 2506 -1.427531242371e-05 2509 2506 -95661879.74567 2510 2506 42221603.64364 2526 2506 6.347894668579e-06 2527 2506 21292410.96829 2528 2506 -21110801.83222 2529 2506 47777777.76992 2530 2506 -60288613.16939 2531 2506 11505400.91601 2598 2506 -8.195638656616e-07 2599 2506 -16013622.55363 2600 2506 -5277700.460655 2601 2506 -11944444.44837 2602 2506 -24859919.89976 2603 2506 11857600.23336 2616 2506 7.987022399902e-06 2617 2506 74381129.14638 2618 2506 -21110801.83222 2619 2506 -9.581446647644e-06 2620 2506 -65364229.15794 2621 2506 48591512.02092 2637 2506 2.488493919373e-06 2638 2506 -18527661.31289 2639 2506 -5277700.460655 2640 2506 11944444.44836 2641 2506 -25750784.24113 2642 2506 12385378.01131 2507 2507 691056331.5443 2508 2507 1759285.033452 2509 2507 42221603.64364 2510 2507 38993777.49737 2526 2507 -3518570.065188 2527 2507 -21110801.83222 2528 2507 29179895.04537 2529 2507 -20803253.6245 2530 2507 11716512.02698 2531 2507 -27523507.01255 2598 2507 46402301.92001 2599 2507 -5277700.460655 2600 2507 -49602960.36391 2601 2507 16581478.26512 2602 2507 11857600.23336 2603 2507 -32981587.68983 2616 2507 1759285.033468 2617 2507 -21110801.83222 2618 2507 -68142578.48796 2619 2507 439821.258594 2620 2507 48380400.90995 2621 2507 -100781580.1802 2637 2507 -48161586.95346 2638 2507 -5277700.460655 2639 2507 -56307063.72196 2640 2507 -17021299.52369 2641 2507 12385378.01131 2642 2507 -35357225.93349 2508 2508 773558827.9862 2509 2508 2.658367156982e-05 2510 2508 7037140.130311 2511 2508 85893349.16099 2512 2508 -1.427531242371e-05 2513 2508 1759285.033452 2526 2508 -73573484.51406 2527 2508 -47777777.76993 2528 2508 19043968.59104 2529 2508 -188931397.8084 2530 2508 6.824731826782e-06 2531 2508 -3518570.065188 2532 2508 -74622903.1185 2533 2508 47777777.76992 2534 2508 -20539364.73579 2598 2508 -19278339.76952 2599 2508 11944444.44837 2600 2508 6685644.928532 2601 2508 -68569574.7737 2602 2508 9.983777999878e-07 2603 2508 46666190.80873 2604 2508 -28443492.38882 2605 2508 -11944444.44837 2606 2508 16581478.26512 2616 2508 17734607.15466 2617 2508 1.817941665649e-06 2618 2508 439821.2585785 2619 2508 103049709.0446 2620 2508 8.106231689453e-06 2621 2508 1759285.033469 2622 2508 -19975421.90891 2623 2508 -1.013278961182e-05 2624 2508 439821.2585936 2637 2508 -19644494.8084 2638 2508 -11944444.44837 2639 2508 -7125466.187114 2640 2508 -71083613.53293 2641 2508 2.801418304443e-06 2642 2508 -48425475.84218 2643 2508 -29334356.73017 2644 2508 11944444.44836 2645 2508 -17021299.52369 2509 2509 658884508.4497 2510 2509 -84443207.28729 2511 2509 -1.427531242371e-05 2512 2509 -95661879.74567 2513 2509 42221603.64364 2526 2509 -47777777.76993 2527 2509 -59239194.56492 2528 2509 9605400.916215 2529 2509 6.347894668579e-06 2530 2509 21292410.96829 2531 2509 -21110801.83222 2532 2509 47777777.76992 2533 2509 -60288613.16939 2534 2509 11505400.91601 2598 2509 11944444.44837 2599 2509 -15694767.28047 2600 2509 -6579899.772699 2601 2509 -8.195638656616e-07 2602 2509 -16013622.55363 2603 2509 -5277700.460655 2604 2509 -11944444.44837 2605 2509 -24859919.89976 2606 2509 11857600.23336 2616 2509 3.322958946228e-06 2617 2509 -27654200.09436 2618 2509 -27480710.1887 2619 2509 7.987022399902e-06 2620 2509 74381129.14638 2621 2509 -21110801.83222 2622 2509 -9.581446647644e-06 2623 2509 -65364229.15794 2624 2509 48591512.02092 2637 2509 -11944444.44836 2638 2509 -16060922.31935 2639 2509 -7107677.550651 2640 2509 2.488493919373e-06 2641 2509 -18527661.31289 2642 2509 -5277700.460655 2643 2509 11944444.44836 2644 2509 -25750784.24113 2645 2509 12385378.01131 2510 2510 691056331.5443 2511 2510 1759285.033452 2512 2510 42221603.64364 2513 2510 38993777.49737 2526 2510 18780079.70233 2527 2510 9394289.805242 2528 2510 -24725057.40063 2529 2510 -3518570.065188 2530 2510 -21110801.83222 2531 2510 29179895.04537 2532 2510 -20803253.6245 2533 2510 11716512.02698 2534 2510 -27523507.01255 2598 2510 6685644.928532 2599 2510 -6579899.772699 2600 2510 -8541180.705052 2601 2510 46402301.92001 2602 2510 -5277700.460655 2603 2510 -49602960.36391 2604 2510 16581478.26512 2605 2510 11857600.23336 2606 2510 -32981587.68983 2616 2510 439821.2585788 2617 2510 -27269599.07773 2618 2510 -221502.6772963 2619 2510 1759285.033468 2620 2510 -21110801.83222 2621 2510 -68142578.48796 2622 2510 439821.258594 2623 2510 48380400.90995 2624 2510 -100781580.1802 2637 2510 -7125466.187114 2638 2510 -7107677.550651 2639 2510 -9517594.142065 2640 2510 -48161586.95346 2641 2510 -5277700.460655 2642 2510 -56307063.72196 2643 2510 -17021299.52369 2644 2510 12385378.01131 2645 2510 -35357225.93349 2511 2511 773558827.9862 2512 2511 2.658367156982e-05 2513 2511 7037140.130311 2514 2511 85893349.16099 2515 2511 -1.427531242371e-05 2516 2511 1759285.033452 2529 2511 -73573484.51406 2530 2511 -47777777.76993 2531 2511 19043968.59104 2532 2511 -188931397.8084 2533 2511 6.824731826782e-06 2534 2511 -3518570.065188 2535 2511 -74622903.1185 2536 2511 47777777.76992 2537 2511 -20539364.73579 2601 2511 -19278339.76952 2602 2511 11944444.44837 2603 2511 6685644.928532 2604 2511 -68569574.7737 2605 2511 9.983777999878e-07 2606 2511 46666190.80873 2607 2511 -28443492.38882 2608 2511 -11944444.44837 2609 2511 16581478.26512 2619 2511 17734607.15466 2620 2511 1.817941665649e-06 2621 2511 439821.2585785 2622 2511 103049709.0446 2623 2511 8.106231689453e-06 2624 2511 1759285.033469 2625 2511 -19975421.90891 2626 2511 -1.013278961182e-05 2627 2511 439821.2585936 2640 2511 -19644494.8084 2641 2511 -11944444.44837 2642 2511 -7125466.187114 2643 2511 -71083613.53293 2644 2511 2.801418304443e-06 2645 2511 -48425475.84218 2646 2511 -29334356.73017 2647 2511 11944444.44836 2648 2511 -17021299.52369 2512 2512 658884508.4497 2513 2512 -84443207.28729 2514 2512 -1.427531242371e-05 2515 2512 -95661879.74567 2516 2512 42221603.64364 2529 2512 -47777777.76993 2530 2512 -59239194.56492 2531 2512 9605400.916215 2532 2512 6.347894668579e-06 2533 2512 21292410.96829 2534 2512 -21110801.83222 2535 2512 47777777.76992 2536 2512 -60288613.16939 2537 2512 11505400.91601 2601 2512 11944444.44837 2602 2512 -15694767.28047 2603 2512 -6579899.772699 2604 2512 -8.195638656616e-07 2605 2512 -16013622.55363 2606 2512 -5277700.460655 2607 2512 -11944444.44837 2608 2512 -24859919.89976 2609 2512 11857600.23336 2619 2512 3.322958946228e-06 2620 2512 -27654200.09436 2621 2512 -27480710.1887 2622 2512 7.987022399902e-06 2623 2512 74381129.14638 2624 2512 -21110801.83222 2625 2512 -9.581446647644e-06 2626 2512 -65364229.15794 2627 2512 48591512.02092 2640 2512 -11944444.44836 2641 2512 -16060922.31935 2642 2512 -7107677.550651 2643 2512 2.488493919373e-06 2644 2512 -18527661.31289 2645 2512 -5277700.460655 2646 2512 11944444.44836 2647 2512 -25750784.24113 2648 2512 12385378.01131 2513 2513 691056331.5443 2514 2513 1759285.033452 2515 2513 42221603.64364 2516 2513 38993777.49737 2529 2513 18780079.70233 2530 2513 9394289.805242 2531 2513 -24725057.40063 2532 2513 -3518570.065188 2533 2513 -21110801.83222 2534 2513 29179895.04537 2535 2513 -20803253.6245 2536 2513 11716512.02698 2537 2513 -27523507.01255 2601 2513 6685644.928532 2602 2513 -6579899.772699 2603 2513 -8541180.705052 2604 2513 46402301.92001 2605 2513 -5277700.460655 2606 2513 -49602960.36391 2607 2513 16581478.26512 2608 2513 11857600.23336 2609 2513 -32981587.68983 2619 2513 439821.2585788 2620 2513 -27269599.07773 2621 2513 -221502.6772963 2622 2513 1759285.033468 2623 2513 -21110801.83222 2624 2513 -68142578.48796 2625 2513 439821.258594 2626 2513 48380400.90995 2627 2513 -100781580.1802 2640 2513 -7125466.187114 2641 2513 -7107677.550651 2642 2513 -9517594.142065 2643 2513 -48161586.95346 2644 2513 -5277700.460655 2645 2513 -56307063.72196 2646 2513 -17021299.52369 2647 2513 12385378.01131 2648 2513 -35357225.93349 2514 2514 773558827.9862 2515 2514 2.658367156982e-05 2516 2514 7037140.130311 2517 2514 85893349.16099 2518 2514 -1.427531242371e-05 2519 2514 1759285.033452 2532 2514 -73573484.51406 2533 2514 -47777777.76993 2534 2514 19043968.59104 2535 2514 -188931397.8084 2536 2514 6.824731826782e-06 2537 2514 -3518570.065188 2538 2514 -74622903.1185 2539 2514 47777777.76992 2540 2514 -20539364.73579 2604 2514 -19278339.76952 2605 2514 11944444.44837 2606 2514 6685644.928532 2607 2514 -68569574.7737 2608 2514 9.983777999878e-07 2609 2514 46666190.80873 2610 2514 -28443492.38882 2611 2514 -11944444.44837 2612 2514 16581478.26512 2622 2514 17734607.15466 2623 2514 1.817941665649e-06 2624 2514 439821.2585785 2625 2514 103049709.0446 2626 2514 8.106231689453e-06 2627 2514 1759285.033469 2628 2514 -19975421.90891 2629 2514 -1.013278961182e-05 2630 2514 439821.2585936 2643 2514 -19644494.8084 2644 2514 -11944444.44837 2645 2514 -7125466.187114 2646 2514 -71083613.53293 2647 2514 2.801418304443e-06 2648 2514 -48425475.84218 2649 2514 -29334356.73017 2650 2514 11944444.44836 2651 2514 -17021299.52369 2515 2515 658884508.4497 2516 2515 -84443207.28729 2517 2515 -1.427531242371e-05 2518 2515 -95661879.74567 2519 2515 42221603.64364 2532 2515 -47777777.76993 2533 2515 -59239194.56492 2534 2515 9605400.916215 2535 2515 6.347894668579e-06 2536 2515 21292410.96829 2537 2515 -21110801.83222 2538 2515 47777777.76992 2539 2515 -60288613.16939 2540 2515 11505400.91601 2604 2515 11944444.44837 2605 2515 -15694767.28047 2606 2515 -6579899.772699 2607 2515 -8.195638656616e-07 2608 2515 -16013622.55363 2609 2515 -5277700.460655 2610 2515 -11944444.44837 2611 2515 -24859919.89976 2612 2515 11857600.23336 2622 2515 3.322958946228e-06 2623 2515 -27654200.09436 2624 2515 -27480710.1887 2625 2515 7.987022399902e-06 2626 2515 74381129.14638 2627 2515 -21110801.83222 2628 2515 -9.581446647644e-06 2629 2515 -65364229.15794 2630 2515 48591512.02092 2643 2515 -11944444.44836 2644 2515 -16060922.31935 2645 2515 -7107677.550651 2646 2515 2.488493919373e-06 2647 2515 -18527661.31289 2648 2515 -5277700.460655 2649 2515 11944444.44836 2650 2515 -25750784.24113 2651 2515 12385378.01131 2516 2516 691056331.5443 2517 2516 1759285.033452 2518 2516 42221603.64364 2519 2516 38993777.49737 2532 2516 18780079.70233 2533 2516 9394289.805242 2534 2516 -24725057.40063 2535 2516 -3518570.065188 2536 2516 -21110801.83222 2537 2516 29179895.04537 2538 2516 -20803253.6245 2539 2516 11716512.02698 2540 2516 -27523507.01255 2604 2516 6685644.928532 2605 2516 -6579899.772699 2606 2516 -8541180.705052 2607 2516 46402301.92001 2608 2516 -5277700.460655 2609 2516 -49602960.36391 2610 2516 16581478.26512 2611 2516 11857600.23336 2612 2516 -32981587.68983 2622 2516 439821.2585788 2623 2516 -27269599.07773 2624 2516 -221502.6772963 2625 2516 1759285.033468 2626 2516 -21110801.83222 2627 2516 -68142578.48796 2628 2516 439821.258594 2629 2516 48380400.90995 2630 2516 -100781580.1802 2643 2516 -7125466.187114 2644 2516 -7107677.550651 2645 2516 -9517594.142065 2646 2516 -48161586.95346 2647 2516 -5277700.460655 2648 2516 -56307063.72196 2649 2516 -17021299.52369 2650 2516 12385378.01131 2651 2516 -35357225.93349 2517 2517 773558827.9862 2518 2517 2.658367156982e-05 2519 2517 7037140.130311 2520 2517 85893349.16099 2521 2517 -1.427531242371e-05 2522 2517 1759285.033452 2535 2517 -73573484.51406 2536 2517 -47777777.76993 2537 2517 19043968.59104 2538 2517 -188931397.8084 2539 2517 6.824731826782e-06 2540 2517 -3518570.065188 2541 2517 -74622903.1185 2542 2517 47777777.76992 2543 2517 -20539364.73579 2607 2517 -19278339.76952 2608 2517 11944444.44837 2609 2517 6685644.928532 2610 2517 -68569574.7737 2611 2517 9.983777999878e-07 2612 2517 46666190.80873 2613 2517 -28443492.38882 2614 2517 -11944444.44837 2615 2517 16581478.26512 2625 2517 17734607.15466 2626 2517 1.817941665649e-06 2627 2517 439821.2585785 2628 2517 103049709.0446 2629 2517 8.106231689453e-06 2630 2517 1759285.033469 2631 2517 -19975421.90891 2632 2517 -1.013278961182e-05 2633 2517 439821.2585936 2646 2517 -19644494.8084 2647 2517 -11944444.44837 2648 2517 -7125466.187114 2649 2517 -71083613.53293 2650 2517 2.801418304443e-06 2651 2517 -48425475.84218 2652 2517 -29334356.73017 2653 2517 11944444.44836 2654 2517 -17021299.52369 2518 2518 658884508.4497 2519 2518 -84443207.28729 2520 2518 -1.427531242371e-05 2521 2518 -95661879.74567 2522 2518 42221603.64364 2535 2518 -47777777.76993 2536 2518 -59239194.56492 2537 2518 9605400.916215 2538 2518 6.347894668579e-06 2539 2518 21292410.96829 2540 2518 -21110801.83222 2541 2518 47777777.76992 2542 2518 -60288613.16939 2543 2518 11505400.91601 2607 2518 11944444.44837 2608 2518 -15694767.28047 2609 2518 -6579899.772699 2610 2518 -8.195638656616e-07 2611 2518 -16013622.55363 2612 2518 -5277700.460655 2613 2518 -11944444.44837 2614 2518 -24859919.89976 2615 2518 11857600.23336 2625 2518 3.322958946228e-06 2626 2518 -27654200.09436 2627 2518 -27480710.1887 2628 2518 7.987022399902e-06 2629 2518 74381129.14638 2630 2518 -21110801.83222 2631 2518 -9.581446647644e-06 2632 2518 -65364229.15794 2633 2518 48591512.02092 2646 2518 -11944444.44836 2647 2518 -16060922.31935 2648 2518 -7107677.550651 2649 2518 2.488493919373e-06 2650 2518 -18527661.31289 2651 2518 -5277700.460655 2652 2518 11944444.44836 2653 2518 -25750784.24113 2654 2518 12385378.01131 2519 2519 691056331.5443 2520 2519 1759285.033452 2521 2519 42221603.64364 2522 2519 38993777.49737 2535 2519 18780079.70233 2536 2519 9394289.805242 2537 2519 -24725057.40063 2538 2519 -3518570.065188 2539 2519 -21110801.83222 2540 2519 29179895.04537 2541 2519 -20803253.6245 2542 2519 11716512.02698 2543 2519 -27523507.01255 2607 2519 6685644.928532 2608 2519 -6579899.772699 2609 2519 -8541180.705052 2610 2519 46402301.92001 2611 2519 -5277700.460655 2612 2519 -49602960.36391 2613 2519 16581478.26512 2614 2519 11857600.23336 2615 2519 -32981587.68983 2625 2519 439821.2585788 2626 2519 -27269599.07773 2627 2519 -221502.6772963 2628 2519 1759285.033468 2629 2519 -21110801.83222 2630 2519 -68142578.48796 2631 2519 439821.258594 2632 2519 48380400.90995 2633 2519 -100781580.1802 2646 2519 -7125466.187114 2647 2519 -7107677.550651 2648 2519 -9517594.142065 2649 2519 -48161586.95346 2650 2519 -5277700.460655 2651 2519 -56307063.72196 2652 2519 -17021299.52369 2653 2519 12385378.01131 2654 2519 -35357225.93349 2520 2520 661143350.3463 2521 2520 13618540.72033 2522 2520 5989102.104141 2523 2520 -101035987.8533 2524 2520 -87387069.812 2525 2520 5160549.700649 2538 2520 -73573484.51406 2539 2520 -47777777.76993 2540 2520 19043968.59104 2541 2520 -129151830.3037 2542 2520 28408228.69302 2543 2520 -1228671.263296 2544 2520 -50340940.25329 2545 2520 25215444.19182 2546 2520 -2240873.326595 2610 2520 -19278339.76952 2611 2520 11944444.44837 2612 2520 6685644.928532 2613 2520 -43931936.15608 2614 2520 3953803.533843 2615 2520 30281323.54341 2628 2520 17734607.15466 2629 2520 1.817941665649e-06 2630 2520 439821.2585785 2631 2520 98285811.20611 2632 2520 3290506.566172 2633 2520 1546926.362953 2634 2520 -39364297.46372 2635 2520 -21070750.36619 2636 2520 13769148.13469 2649 2520 -19644494.8084 2650 2520 -11944444.44837 2651 2520 -7125466.187114 2652 2520 -56246818.4596 2653 2520 6794385.619339 2654 2520 -40777663.34128 2655 2520 -19457886.36742 2656 2520 7032054.646846 2657 2520 -4791657.828043 2521 2521 750451146.4559 2522 2521 -58171951.50429 2523 2521 -87452408.24488 2524 2521 -290974733.7609 2525 2521 11075712.80635 2538 2521 -47777777.76993 2539 2521 -59239194.56492 2540 2521 9605400.916215 2541 2521 28408228.69302 2542 2521 28079220.69954 2543 2521 -11305000.42828 2544 2521 25215444.19182 2545 2521 -148367742.5811 2546 2521 6448432.317586 2610 2521 11944444.44837 2611 2521 -15694767.28047 2612 2521 -6579899.772699 2613 2521 3967148.114666 2614 2521 5118565.349512 2615 2521 -6805898.764872 2628 2521 3.322958946228e-06 2629 2521 -27654200.09436 2630 2521 -27480710.1887 2631 2521 3290506.566169 2632 2521 116187098.4075 2633 2521 -14193581.10448 2634 2521 -21084094.94702 2635 2521 -86047416.47364 2636 2521 42749757.90501 2649 2521 -11944444.44836 2650 2521 -16060922.31935 2651 2521 -7107677.550651 2652 2521 6794385.619338 2653 2521 -15664941.07429 2654 2521 3794011.966557 2655 2521 7032054.646846 2656 2521 -42086771.17886 2657 2521 18179794.31644 2522 2522 595375909.2707 2523 2522 5165533.582777 2524 2522 11082175.68687 2525 2522 -72701184.11614 2538 2522 18780079.70233 2539 2522 9394289.805242 2540 2522 -24725057.40063 2541 2522 -7034226.817899 2542 2522 -11305000.42828 2543 2522 38156861.57885 2544 2522 -2240873.326075 2545 2522 6448432.317585 2546 2522 -37981402.40673 2610 2522 6685644.928532 2611 2522 -6579899.772699 2612 2522 -8541180.705052 2613 2522 31599866.76936 2614 2522 -6795843.015341 2615 2522 -26535855.42407 2628 2522 439821.2585788 2629 2522 -27269599.07773 2630 2522 -221502.6772963 2631 2522 1556203.815474 2632 2522 -13341714.07747 2633 2522 -32667374.4372 2634 2522 13774810.33564 2635 2522 42743511.30837 2636 2522 -59721377.20001 2649 2522 -7125466.187114 2650 2522 -7107677.550651 2651 2522 -9517594.142065 2652 2522 -42097107.78484 2653 2522 4005123.078997 2654 2522 -52469144.20003 2655 2522 -4791657.828043 2656 2522 18179794.31644 2657 2522 -28734916.98485 2523 2523 523303156.7564 2524 2523 18508164.24143 2525 2523 -41775.96088886 2541 2523 -75675730.3705 2542 2523 -44546650.89538 2543 2523 2598546.349347 2544 2523 -16392499.20861 2545 2523 41849759.38176 2546 2523 -1875236.03192 2547 2523 58848606.59511 2548 2523 -24831769.03377 2549 2523 1359.619889617 2550 2523 -16689329.37432 2551 2523 38943555.92827 2552 2523 -555698.1348699 2613 2523 -23767663.79374 2614 2523 14373367.08051 2615 2523 4250012.242433 2631 2523 -33756445.01475 2632 2523 -21084094.94702 2633 2523 -11278021.84509 2634 2523 33974829.94332 2635 2523 4345910.00941 2636 2523 9803417.164491 2652 2523 -24574481.29388 2653 2523 -11253340.76984 2654 2523 -11852637.55666 2655 2523 -48054442.14957 2656 2523 9814966.021255 2657 2523 -49454271.31342 2658 2523 -15833393.4173 2659 2523 -6043520.287572 2660 2523 12381289.62259 2661 2523 -18260108.90285 2662 2523 9846712.893254 2663 2523 -12133677.20358 2524 2524 812493800.1257 2525 2524 -22728114.4994 2541 2524 -44546650.89538 2542 2524 -36336145.54889 2543 2524 -134262.3811041 2544 2524 41849759.38176 2545 2524 153232218.2128 2546 2524 -3929309.634979 2547 2524 -5720657.925795 2548 2524 -33546371.83474 2549 2524 427600.0767067 2550 2524 38943555.92827 2551 2524 -41911219.82108 2552 2524 512395.3812619 2613 2524 9582244.720342 2614 2524 -62199811.93 2615 2524 -12610438.76902 2631 2524 -21070750.3662 2632 2524 -80439564.02468 2633 2524 -37406752.97443 2634 2524 4345910.009409 2635 2524 96101627.0792 2636 2524 -3613158.842714 2652 2524 -11253340.76984 2653 2524 -15237473.62937 2654 2524 -10009880.35657 2655 2524 9814966.021255 2656 2524 -5324672.171355 2657 2524 5709888.680204 2658 2524 -1265742.508225 2659 2524 -38961976.03075 2660 2524 33439396.27524 2661 2524 9846712.893254 2662 2524 -24209833.92182 2663 2524 16792659.13732 2525 2525 620870306.405 2541 2525 2598546.349607 2542 2525 -134262.380896 2543 2525 -13607944.83238 2544 2525 -1875236.03192 2545 2525 -3929309.634979 2546 2525 153090382.0159 2547 2525 1359.619892359 2548 2525 427600.0767067 2549 2525 92846755.87184 2550 2525 -555698.1346104 2551 2525 512395.381262 2552 2525 21857597.94702 2613 2525 2833341.494955 2614 2525 -13745254.78106 2615 2525 -24948288.64704 2631 2525 -11274406.6552 2632 2525 -37415415.51588 2633 2525 -44767104.00273 2634 2525 -9800471.721178 2635 2525 -6318823.715466 2636 2525 -94950833.35383 2652 2525 -11852637.55666 2653 2525 -10009880.35657 2654 2525 -18339788.46327 2655 2525 -49454271.31368 2656 2525 5709888.681464 2657 2525 -74385394.46558 2658 2525 4256289.621493 2659 2525 33439396.27524 2660 2525 -58703814.84431 2661 2525 -12133677.20358 2662 2525 16792659.13732 2663 2525 -31295988.5666 2526 2526 386779413.9931 2527 2526 1.430511474609e-05 2528 2526 3518570.065155 2529 2526 42964164.89056 2530 2526 9555555.55398 2531 2526 -2418968.594168 2616 2526 -68569574.7737 2617 2526 9.983777999878e-07 2618 2526 46666190.80873 2619 2526 -28443492.38882 2620 2526 -11944444.44837 2621 2526 16581478.26512 2637 2526 51507364.21225 2638 2526 2.384185791016e-06 2639 2526 -9262857.481274 2640 2526 -9987710.954453 2641 2526 2388888.889668 2642 2526 -3140367.149584 2527 2527 329442254.2248 2528 2527 -42221603.64364 2529 2527 -9555555.55399 2530 2527 -47813449.56276 2531 2527 20899690.71075 2616 2527 -8.195638656616e-07 2617 2527 -16013622.55363 2618 2527 -5277700.460655 2619 2527 -11944444.44837 2620 2527 -24859919.89976 2621 2527 11857600.23336 2637 2527 1.788139343262e-06 2638 2527 37173074.26313 2639 2527 -10555400.91611 2640 2527 -2388888.889678 2641 2527 -32682114.57897 2642 2527 24242978.23266 2528 2528 345528165.7722 2529 2528 5497698.071198 2530 2528 21321912.9329 2531 2528 19543529.57553 2616 2528 46402301.92001 2617 2528 -5277700.460655 2618 2528 -49602960.36391 2619 2528 16581478.26512 2620 2528 11857600.23336 2621 2528 -32981587.68983 2637 2528 9702698.071164 2638 2528 -10555400.91611 2639 2528 -34117930.07082 2640 2528 3580188.408178 2641 2528 24242978.23277 2642 2528 -50390790.09008 2529 2529 386779413.9931 2530 2529 1.430511474609e-05 2531 2529 3518570.065155 2532 2529 42964164.89056 2533 2529 9555555.55398 2534 2529 -2418968.594168 2616 2529 -19278339.76952 2617 2529 11944444.44837 2618 2529 6685644.928532 2619 2529 -68569574.7737 2620 2529 9.983777999878e-07 2621 2529 46666190.80873 2622 2529 -28443492.38882 2623 2529 -11944444.44837 2624 2529 16581478.26512 2637 2529 8867303.577332 2638 2529 -2388888.889672 2639 2529 -1161200.482275 2640 2529 51507364.21225 2641 2529 2.384185791016e-06 2642 2529 -9262857.481274 2643 2529 -9987710.954453 2644 2529 2388888.889668 2645 2529 -3140367.149584 2530 2530 329442254.2248 2531 2530 -42221603.64364 2532 2530 -9555555.55399 2533 2530 -47813449.56276 2534 2530 20899690.71075 2616 2530 11944444.44837 2617 2530 -15694767.28047 2618 2530 -6579899.772699 2619 2530 -8.195638656616e-07 2620 2530 -16013622.55363 2621 2530 -5277700.460655 2622 2530 -11944444.44837 2623 2530 -24859919.89976 2624 2530 11857600.23336 2637 2530 2388888.889675 2638 2530 -13827100.04718 2639 2530 -13687577.31655 2640 2530 1.788139343262e-06 2641 2530 37173074.26313 2642 2530 -10555400.91611 2643 2530 -2388888.889678 2644 2530 -32682114.57897 2645 2530 24242978.23266 2531 2531 345528165.7722 2532 2531 5497698.071198 2533 2531 21321912.9329 2534 2531 19543529.57553 2616 2531 6685644.928532 2617 2531 -6579899.772699 2618 2531 -8541180.705052 2619 2531 46402301.92001 2620 2531 -5277700.460655 2621 2531 -49602960.36391 2622 2531 16581478.26512 2623 2531 11857600.23336 2624 2531 -32981587.68983 2637 2531 1601021.740854 2638 2531 -13687577.31666 2639 2531 -110751.3386485 2640 2531 9702698.071164 2641 2531 -10555400.91611 2642 2531 -34117930.07082 2643 2531 3580188.408178 2644 2531 24242978.23277 2645 2531 -50390790.09008 2532 2532 386779413.9931 2533 2532 1.430511474609e-05 2534 2532 3518570.065155 2535 2532 42964164.89056 2536 2532 9555555.55398 2537 2532 -2418968.594168 2619 2532 -19278339.76952 2620 2532 11944444.44837 2621 2532 6685644.928532 2622 2532 -68569574.7737 2623 2532 9.983777999878e-07 2624 2532 46666190.80873 2625 2532 -28443492.38882 2626 2532 -11944444.44837 2627 2532 16581478.26512 2640 2532 8867303.577332 2641 2532 -2388888.889672 2642 2532 -1161200.482275 2643 2532 51507364.21225 2644 2532 2.384185791016e-06 2645 2532 -9262857.481274 2646 2532 -9987710.954453 2647 2532 2388888.889668 2648 2532 -3140367.149584 2533 2533 329442254.2248 2534 2533 -42221603.64364 2535 2533 -9555555.55399 2536 2533 -47813449.56276 2537 2533 20899690.71075 2619 2533 11944444.44837 2620 2533 -15694767.28047 2621 2533 -6579899.772699 2622 2533 -8.195638656616e-07 2623 2533 -16013622.55363 2624 2533 -5277700.460655 2625 2533 -11944444.44837 2626 2533 -24859919.89976 2627 2533 11857600.23336 2640 2533 2388888.889675 2641 2533 -13827100.04718 2642 2533 -13687577.31655 2643 2533 1.788139343262e-06 2644 2533 37173074.26313 2645 2533 -10555400.91611 2646 2533 -2388888.889678 2647 2533 -32682114.57897 2648 2533 24242978.23266 2534 2534 345528165.7722 2535 2534 5497698.071198 2536 2534 21321912.9329 2537 2534 19543529.57553 2619 2534 6685644.928532 2620 2534 -6579899.772699 2621 2534 -8541180.705052 2622 2534 46402301.92001 2623 2534 -5277700.460655 2624 2534 -49602960.36391 2625 2534 16581478.26512 2626 2534 11857600.23336 2627 2534 -32981587.68983 2640 2534 1601021.740854 2641 2534 -13687577.31666 2642 2534 -110751.3386485 2643 2534 9702698.071164 2644 2534 -10555400.91611 2645 2534 -34117930.07082 2646 2534 3580188.408178 2647 2534 24242978.23277 2648 2534 -50390790.09008 2535 2535 386779413.9931 2536 2535 1.430511474609e-05 2537 2535 3518570.065155 2538 2535 42964164.89056 2539 2535 9555555.55398 2540 2535 -2418968.594168 2622 2535 -19278339.76952 2623 2535 11944444.44837 2624 2535 6685644.928532 2625 2535 -68569574.7737 2626 2535 9.983777999878e-07 2627 2535 46666190.80873 2628 2535 -28443492.38882 2629 2535 -11944444.44837 2630 2535 16581478.26512 2643 2535 8867303.577332 2644 2535 -2388888.889672 2645 2535 -1161200.482275 2646 2535 51507364.21225 2647 2535 2.384185791016e-06 2648 2535 -9262857.481274 2649 2535 -9987710.954453 2650 2535 2388888.889668 2651 2535 -3140367.149584 2536 2536 329442254.2248 2537 2536 -42221603.64364 2538 2536 -9555555.55399 2539 2536 -47813449.56276 2540 2536 20899690.71075 2622 2536 11944444.44837 2623 2536 -15694767.28047 2624 2536 -6579899.772699 2625 2536 -8.195638656616e-07 2626 2536 -16013622.55363 2627 2536 -5277700.460655 2628 2536 -11944444.44837 2629 2536 -24859919.89976 2630 2536 11857600.23336 2643 2536 2388888.889675 2644 2536 -13827100.04718 2645 2536 -13687577.31655 2646 2536 1.788139343262e-06 2647 2536 37173074.26313 2648 2536 -10555400.91611 2649 2536 -2388888.889678 2650 2536 -32682114.57897 2651 2536 24242978.23266 2537 2537 345528165.7722 2538 2537 5497698.071198 2539 2537 21321912.9329 2540 2537 19543529.57553 2622 2537 6685644.928532 2623 2537 -6579899.772699 2624 2537 -8541180.705052 2625 2537 46402301.92001 2626 2537 -5277700.460655 2627 2537 -49602960.36391 2628 2537 16581478.26512 2629 2537 11857600.23336 2630 2537 -32981587.68983 2643 2537 1601021.740854 2644 2537 -13687577.31666 2645 2537 -110751.3386485 2646 2537 9702698.071164 2647 2537 -10555400.91611 2648 2537 -34117930.07082 2649 2537 3580188.408178 2650 2537 24242978.23277 2651 2537 -50390790.09008 2538 2538 386779413.9931 2539 2538 1.430511474609e-05 2540 2538 3518570.065155 2541 2538 42964164.89056 2542 2538 9555555.55398 2543 2538 -2418968.594168 2625 2538 -19278339.76952 2626 2538 11944444.44837 2627 2538 6685644.928532 2628 2538 -68569574.7737 2629 2538 9.983777999878e-07 2630 2538 46666190.80873 2631 2538 -28443492.38882 2632 2538 -11944444.44837 2633 2538 16581478.26512 2646 2538 8867303.577332 2647 2538 -2388888.889672 2648 2538 -1161200.482275 2649 2538 51507364.21225 2650 2538 2.384185791016e-06 2651 2538 -9262857.481274 2652 2538 -9987710.954453 2653 2538 2388888.889668 2654 2538 -3140367.149584 2539 2539 329442254.2248 2540 2539 -42221603.64364 2541 2539 -9555555.55399 2542 2539 -47813449.56276 2543 2539 20899690.71075 2625 2539 11944444.44837 2626 2539 -15694767.28047 2627 2539 -6579899.772699 2628 2539 -8.195638656616e-07 2629 2539 -16013622.55363 2630 2539 -5277700.460655 2631 2539 -11944444.44837 2632 2539 -24859919.89976 2633 2539 11857600.23336 2646 2539 2388888.889675 2647 2539 -13827100.04718 2648 2539 -13687577.31655 2649 2539 1.788139343262e-06 2650 2539 37173074.26313 2651 2539 -10555400.91611 2652 2539 -2388888.889678 2653 2539 -32682114.57897 2654 2539 24242978.23266 2540 2540 345528165.7722 2541 2540 5497698.071198 2542 2540 21321912.9329 2543 2540 19543529.57553 2625 2540 6685644.928532 2626 2540 -6579899.772699 2627 2540 -8541180.705052 2628 2540 46402301.92001 2629 2540 -5277700.460655 2630 2540 -49602960.36391 2631 2540 16581478.26512 2632 2540 11857600.23336 2633 2540 -32981587.68983 2646 2540 1601021.740854 2647 2540 -13687577.31666 2648 2540 -110751.3386485 2649 2540 9702698.071164 2650 2540 -10555400.91611 2651 2540 -34117930.07082 2652 2540 3580188.408178 2653 2540 24242978.23277 2654 2540 -50390790.09008 2541 2541 379349533.0635 2542 2541 3231845.600422 2543 2541 17552178.32146 2544 2541 -3096942.010396 2545 2541 -25315645.61399 2546 2541 1661279.921644 2628 2541 -19278339.76952 2629 2541 11944444.44837 2630 2541 6685644.928532 2631 2541 -53038741.18321 2632 2541 6794385.61934 2633 2541 38726503.31135 2634 2541 -25901455.77751 2635 2541 -11253340.76984 2636 2541 13172362.45156 2649 2541 8867303.577332 2650 2541 -2388888.889672 2651 2541 -1161200.482275 2652 2541 47236392.63317 2653 2541 691259.3258688 2654 2541 -5677978.041664 2655 2541 -16560224.88716 2656 2541 -5787859.734054 2657 2541 6205223.388404 2542 2542 347028277.7135 2543 2542 -27578620.27532 2544 2542 -44426756.72196 2545 2542 -90902997.98104 2546 2542 4712791.457968 2628 2542 11944444.44837 2629 2542 -15694767.28047 2630 2542 -6579899.772699 2631 2542 6794385.619339 2632 2542 -12456863.79788 2633 2542 -9518488.031308 2634 2542 -11253340.76984 2635 2542 -16564448.113 2636 2542 10010952.98333 2649 2542 2388888.889675 2650 2542 -13827100.04718 2651 2542 -13687577.31655 2652 2542 691259.3258679 2653 2542 38658164.66062 2654 2542 -6807774.623089 2655 2542 -10565637.5134 2656 2542 -38790050.82896 2657 2542 27849453.42698 2543 2543 342455969.0481 2544 2543 3244613.254716 2545 2543 4712791.457968 2546 2543 13685204.04501 2628 2543 6685644.928532 2629 2543 -6579899.772699 2630 2543 -8541180.705052 2631 2543 40045947.75819 2632 2543 -9307376.918764 2633 2543 -43914271.4629 2634 2543 13172362.45156 2635 2543 10010952.98333 2636 2543 -21878387.08629 2649 2543 1601021.740854 2650 2543 -13687577.31666 2651 2543 -110751.3386485 2652 2543 13814799.73291 2653 2543 -6385552.400936 2654 2543 -41178317.44134 2655 2543 11606056.72181 2656 2543 27849453.42572 2657 2543 -40843933.05076 2544 2544 391504755.4749 2545 2544 44478671.07544 2546 2544 -2154209.15787 2547 2544 -96038662.69461 2548 2544 -56611999.61159 2549 2544 763746.3094749 2550 2544 9012742.663298 2551 2544 -10505118.31547 2552 2544 150847.8398809 2631 2544 -16732168.82767 2632 2544 7032054.646846 2633 2544 3593064.396935 2634 2544 -47208013.93552 2635 2544 9814966.02126 2636 2544 48565173.11467 2652 2544 -11955208.81899 2653 2544 -10565637.5134 2654 2544 -10039221.05324 2655 2544 17195056.37436 2656 2544 10108198.77753 2657 2544 -10287674.1737 2658 2544 -37340960.76096 2659 2544 -14042176.00348 2660 2544 20501045.02935 2661 2544 -21282931.01638 2662 2544 -2347405.92875 2663 2544 5951501.575213 2545 2545 475970703.4827 2546 2545 -9366290.969137 2547 2545 -56611999.61159 2548 2545 -71667219.81619 2549 2545 512395.3812617 2550 2545 -29616229.42344 2551 2545 -83616507.34594 2552 2545 1621981.447331 2631 2545 7032054.646846 2632 2545 -39361053.63912 2633 2545 -15153539.02783 2634 2545 9814966.02126 2635 2545 -4478243.957304 2636 2545 -7602611.317661 2652 2545 -5787859.734057 2653 2545 -34185034.7608 2654 2545 -25504713.23087 2655 2545 10108198.77753 2656 2545 36471076.67132 2657 2545 -2263035.801925 2658 2545 -14042176.00348 2659 2545 -31365153.36861 2660 2545 16792659.13732 2661 2545 -7125183.708097 2662 2545 -44405817.93066 2663 2545 33731240.24096 2546 2546 459767793.0897 2547 2546 763746.3094749 2548 2546 512395.3812617 2549 2546 -7898402.048094 2550 2546 678625.6175699 2551 2546 1621981.447331 2552 2546 45065635.89419 2631 2546 3593064.396935 2632 2546 -15153539.02783 2633 2546 -21466336.87887 2634 2546 48565173.11493 2635 2546 -7602611.316297 2636 2546 -72128252.56145 2652 2546 -5430054.386635 2653 2546 -25504713.23224 2654 2546 -28563890.20229 2655 2546 9316214.711972 2656 2546 -2263035.801925 2657 2546 -99246219.9555 2658 2546 20501045.02935 2659 2546 16792659.13732 2660 2546 -38451308.0134 2661 2546 10880390.46729 2662 2546 33731240.24096 2663 2546 -53008597.68228 2547 2547 249047517.3782 2548 2547 63053991.24971 2549 2547 -441174.4345524 2550 2547 -36755135.70683 2551 2547 -721333.7123261 2552 2547 -323931.4948134 2634 2547 -15281067.83574 2635 2547 -1265742.508225 2636 2547 -4258988.152521 2655 2547 -36788635.1794 2656 2547 -14042176.00348 2657 2547 -20123954.98399 2658 2547 1083005.849087 2659 2547 15599075.84627 2660 2547 8016395.560427 2661 2547 -36564465.6199 2662 2547 -291157.3345608 2663 2547 -32383452.42392 2548 2548 224984162.4938 2549 2548 -427600.076701 2550 2548 18389777.39565 2551 2548 55331754.72896 2552 2548 -512395.3812575 2634 2548 -6043520.287573 2635 2548 -38409650.44919 2636 2548 -33227270.38047 2655 2548 -14042176.00348 2656 2548 -30812827.78704 2657 2548 -16540674.20696 2658 2548 15599075.84627 2659 2548 -4902994.880355 2660 2548 6560603.718184 2661 2548 4486620.444786 2662 2548 -13425689.66935 2663 2548 3207340.869242 2549 2549 301195685.9049 2550 2549 -323931.4948108 2551 2549 -512395.3812577 2552 2549 80795495.12971 2634 2549 -12383988.15349 2635 2549 -33227270.38047 2636 2549 -57230946.62681 2655 2549 -20123954.98399 2656 2549 -16540674.20696 2657 2549 -36978439.79588 2658 2549 -8233604.436904 2659 2549 -6772729.612959 2660 2549 -87384024.26155 2661 2549 -32383452.42562 2662 2549 -3459325.799613 2663 2549 -51876356.74494 2550 2550 190566606.1483 2551 2550 -27717103.90048 2552 2550 -854551.5440485 2634 2550 -17707783.32128 2635 2550 9846712.893254 2636 2550 11851045.02652 2655 2550 -19625954.27276 2656 2550 -7125183.708099 2657 2550 -10556831.75541 2658 2550 -36564465.6199 2659 2550 4486620.444789 2660 2550 32226269.78763 2661 2550 830761.3487039 2662 2550 -7208149.629944 2663 2550 -5002705.280788 2551 2551 216330856.1685 2552 2551 -1621981.44732 2634 2551 9846712.893254 2635 2551 -23657508.34025 2636 2551 -16540674.20696 2655 2551 -2347405.928752 2656 2551 -42748841.18704 2657 2551 -32935426.41476 2658 2551 -291157.3345582 2659 2551 -13425689.66935 2660 2551 3207340.869243 2661 2551 -7208149.629943 2662 2551 6764597.331406 2663 2551 6268759.752466 2552 2552 241974294.3103 2634 2552 11851045.02652 2635 2552 -16540674.20696 2636 2552 -29823120.34908 2655 2552 -5891831.75217 2656 2552 -32935426.41476 2657 2552 -48589993.03259 2658 2552 32226269.78606 2659 2552 -3459325.799613 2660 2552 -51876356.74494 2661 2552 4591183.606526 2662 2552 -7064573.578677 2663 2552 -64557041.51398 2553 2553 498845612.8338 2554 2553 47777777.76994 2555 2553 25526818.17494 2556 2553 -270769575.0497 2557 2553 -47795571.28618 2558 2553 -21297878.33857 2559 2553 4724775.55691 2560 2553 38240015.7322 2561 2553 -15313498.75867 2664 2553 57272319.20769 2665 2553 11944444.44837 2666 2553 16262217.83282 2667 2553 -96920154.16551 2668 2553 -11948441.41665 2669 2553 -57894966.96635 2670 2553 -19430363.65776 2671 2553 9559552.526969 2672 2553 -14502802.0572 2554 2554 427154390.1247 2555 2554 -48570698.50186 2556 2554 -47804468.04431 2557 2554 -46156001.60459 2558 2554 -29458011.57407 2559 2554 57360023.5983 2560 2554 4724775.556911 2561 2554 19641491.59463 2664 2554 11944444.44837 2665 2554 39350079.73598 2666 2554 -4237631.002181 2667 2554 -11950439.90079 2668 2554 -40768202.4791 2669 2554 -17881456.80322 2670 2554 14339328.79045 2671 2554 -19430363.65775 2672 2554 17403019.36621 2555 2555 472661441.9387 2556 2555 -19183408.42037 2557 2555 -23333069.93135 2558 2555 -17381025.25039 2559 2555 -22970248.13801 2560 2555 13094327.72975 2561 2555 12599401.48509 2664 2555 -4818855.100867 2665 2555 -21102266.9381 2666 2555 -61666013.98076 2667 2555 -57630268.59944 2668 2555 -16401283.68257 2669 2555 -82291258.12151 2670 2555 -21754203.08579 2671 2555 11602012.9108 2672 2555 -51814303.08735 2556 2556 852898004.744 2557 2556 47822261.56058 2558 2556 23750813.775 2559 2556 10663984.89933 2560 2556 -47795571.28619 2561 2556 20811196.16841 2562 2556 -185415908.7468 2563 2556 4.678964614868e-06 2564 2556 -4574122.969536 2565 2556 -73761541.41083 2566 2556 47777777.76992 2567 2556 -20803252.962 2664 2556 -85740387.93072 2665 2556 -11950439.90077 2666 2556 47775096.06898 2667 2556 112006329.4708 2668 2556 11954436.86906 2669 2556 5935349.843305 2670 2556 -36979414.9719 2671 2556 -11948441.41664 2672 2556 18346879.03149 2673 2556 -74762019.75572 2674 2556 2.533197402954e-07 2675 2556 -53703252.3277 2676 2556 -30778677.45218 2677 2556 11944444.44836 2678 2556 -18340743.64572 2557 2557 723869819.0551 2558 2557 -65442952.40696 2559 2557 -47804468.04432 2560 2557 -156592606.5887 2561 2557 35894402.90473 2562 2557 5.662441253662e-06 2563 2557 24807818.43265 2564 2557 -21110817.73799 2565 2557 47777777.76992 2566 2557 -59427300.65882 2567 2557 11716519.98007 2664 2557 -11948441.41664 2665 2557 -29588436.2443 2666 2557 4682155.144749 2667 2557 11954436.86906 2668 2557 79749895.91067 2669 2557 -16362631.77783 2670 2557 -11950439.90078 2671 2557 -78792675.71048 2672 2557 51029508.03613 2673 2557 -8.195638656616e-07 2674 2557 -22206107.28377 2675 2557 -5277708.20877 2676 2557 11944444.44836 2677 2557 -27195128.92833 2678 2557 13440937.44126 2558 2558 730917912.008 2559 2558 20551278.88239 2560 2558 40119834.77044 2561 2558 9888833.293587 2562 2558 -2463011.858771 2563 2558 -21110817.73799 2564 2558 38554054.16679 2565 2558 -20539364.07277 2566 2558 11505408.86868 2567 2558 -25226633.25495 2664 2558 47510397.70207 2665 2558 3205506.989851 2666 2558 -52478548.16204 2667 2558 5939756.113784 2668 2558 -16359106.80793 2669 2558 -87179377.66603 2670 2558 18349946.72438 2671 2558 52296851.6274 2672 2558 -103249742.1615 2673 2558 -53439363.43899 2674 2558 -5277708.20877 2675 2558 -66116380.01208 2676 2558 -18340743.64572 2677 2558 13440937.44126 2678 2558 -39208792.08802 2559 2559 498845612.8338 2560 2559 47777777.76994 2561 2559 25526818.17494 2562 2559 -72712122.80639 2563 2559 -47777777.76993 2564 2559 18780080.36483 2565 2559 -270769575.0497 2566 2559 -47795571.28618 2567 2559 -21297878.33857 2568 2559 4724775.55691 2569 2559 38240015.7322 2570 2559 -15313498.75867 2664 2559 1532382.642161 2665 2559 14339328.79045 2666 2559 9874015.186731 2667 2559 -4845636.536104 2668 2559 -11950439.90078 2669 2559 -8009104.879749 2670 2559 57272319.20769 2671 2559 11944444.44837 2672 2559 16262217.83282 2673 2559 -20039396.92541 2674 2559 -11944444.44837 2675 2559 -8444910.309145 2676 2559 -96920154.16551 2677 2559 -11948441.41665 2678 2559 -57894966.96635 2679 2559 -19430363.65776 2680 2559 9559552.526969 2681 2559 -14502802.0572 2560 2560 427154390.1247 2561 2560 -48570698.50186 2562 2560 -47777777.76993 2563 2560 -58377882.05435 2564 2560 9394297.757917 2565 2560 -47804468.04431 2566 2560 -46156001.60459 2567 2560 -29458011.57407 2568 2560 57360023.5983 2569 2560 4724775.556911 2570 2560 19641491.59463 2664 2560 9559552.526969 2665 2560 1532382.642157 2666 2560 -5266148.137347 2667 2560 -11948441.41664 2668 2560 -46658897.27468 2669 2560 -32026328.33686 2670 2560 11944444.44837 2671 2560 39350079.73598 2672 2560 -4237631.002181 2673 2560 -11944444.44837 2674 2560 -16455848.40155 2675 2560 -8163229.232496 2676 2560 -11950439.90079 2677 2560 -40768202.4791 2678 2560 -17881456.80322 2679 2560 14339328.79045 2680 2560 -19430363.65775 2681 2560 17403019.36621 2561 2561 472661441.9387 2562 2561 19043969.25406 2563 2561 9605408.869306 2564 2561 -22428183.64302 2565 2561 -19183408.42037 2566 2561 -23333069.93135 2567 2561 -17381025.25039 2568 2561 -22970248.13801 2569 2561 13094327.72975 2570 2561 12599401.48509 2664 2561 6582676.791154 2665 2561 -7899222.206021 2666 2561 4086353.712421 2667 2561 -8007766.485252 2668 2561 -33293672.07046 2669 2561 -17559666.33271 2670 2561 -4818855.100867 2671 2561 -21102266.9381 2672 2561 -61666013.98076 2673 2561 -8444910.309145 2674 2561 -8163229.232496 2675 2561 -10570710.68328 2676 2561 -57630268.59944 2677 2561 -16401283.68257 2678 2561 -82291258.12151 2679 2561 -21754203.08579 2680 2561 11602012.9108 2681 2561 -51814303.08735 2562 2562 787899476.9604 2563 2562 2.861022949219e-05 2564 2562 7037134.828232 2565 2562 89408469.17376 2566 2562 -1.275539398193e-05 2567 2562 1759283.707933 2571 2562 -185415908.7468 2572 2562 4.678964614868e-06 2573 2562 -4574122.969536 2574 2562 -73761541.41083 2575 2562 47777777.76992 2576 2562 -20803252.962 2667 2562 -71968136.03531 2668 2562 4.157423973083e-06 2669 2562 51943969.87703 2670 2562 -29817851.87049 2671 2562 -11944444.44837 2672 2562 17900923.03284 2673 2562 88895212.80375 2674 2562 4.112720489502e-06 2675 2562 1759282.450699 2676 2562 -25612922.63328 2677 2562 -1.080334186554e-05 2678 2562 439820.6129002 2682 2562 -74762019.75572 2683 2562 2.533197402954e-07 2684 2562 -53703252.3277 2685 2562 -30778677.45218 2686 2562 11944444.44836 2687 2562 -18340743.64572 2563 2563 673225551.0007 2564 2563 -84443270.91034 2565 2563 -1.353025436401e-05 2566 2563 -92146776.52992 2567 2563 43066079.89948 2571 2563 5.662441253662e-06 2572 2563 24807818.43265 2573 2563 -21110817.73799 2574 2563 47777777.76992 2575 2563 -59427300.65882 2576 2563 11716519.98007 2667 2563 3.337860107422e-06 2668 2563 -19412223.56332 2669 2563 -5277708.208769 2670 2563 -11944444.44837 2671 2563 -26234303.34662 2672 2563 12913159.66331 2673 2563 4.351139068604e-06 2674 2563 60226824.62697 2675 2563 -21110832.82468 2676 2563 -9.95397567749e-06 2677 2563 -71001738.06458 2678 2563 52813749.73867 2682 2563 -8.195638656616e-07 2683 2563 -22206107.28377 2684 2563 -5277708.20877 2685 2563 11944444.44836 2686 2563 -27195128.92833 2687 2563 13440937.44126 2564 2564 729298788.5117 2565 2564 1759283.707934 2566 2564 41377191.01087 2567 2564 48367727.64837 2571 2564 -2463011.858771 2572 2564 -21110817.73799 2573 2564 38554054.16679 2574 2564 -20539364.07277 2575 2564 11505408.86868 2576 2564 -25226633.25495 2667 2564 51680080.98832 2668 2564 -5277708.208769 2669 2564 -58666023.42418 2670 2564 17900923.03284 2671 2564 12913159.66331 2672 2564 -36646590.5368 2673 2564 1759282.450699 2674 2564 -21110832.82468 2675 2564 -105887547.9636 2676 2564 439820.6129005 2677 2564 52602638.6277 2678 2564 -115814770.8741 2682 2564 -53439363.43899 2683 2564 -5277708.20877 2684 2564 -66116380.01208 2685 2564 -18340743.64572 2686 2564 13440937.44126 2687 2564 -39208792.08802 2565 2565 852898004.744 2566 2565 47822261.56058 2567 2565 23750813.775 2568 2565 10663984.89933 2569 2565 -47795571.28619 2570 2565 20811196.16841 2571 2565 -72712122.80639 2572 2565 -47777777.76993 2573 2565 18780080.36483 2574 2565 -185415908.7468 2575 2565 4.678964614868e-06 2576 2565 -4574122.969536 2577 2565 -73761541.41083 2578 2565 47777777.76992 2579 2565 -20803252.962 2667 2565 -19603280.6462 2668 2565 11944444.44837 2669 2565 8005089.696258 2670 2565 -85740387.93072 2671 2565 -11950439.90077 2672 2565 47775096.06898 2673 2565 16294780.8482 2674 2565 4.217028617859e-06 2675 2565 439820.6128852 2676 2565 112006329.4708 2677 2565 11954436.86906 2678 2565 5935349.843305 2679 2565 -36979414.9719 2680 2565 -11948441.41664 2681 2565 18346879.03149 2682 2565 -20039396.92541 2683 2565 -11944444.44837 2684 2565 -8444910.309145 2685 2565 -74762019.75572 2686 2565 2.533197402954e-07 2687 2565 -53703252.3277 2688 2565 -30778677.45218 2689 2565 11944444.44836 2690 2565 -18340743.64572 2566 2566 723869819.0551 2567 2566 -65442952.40696 2568 2566 -47804468.04432 2569 2566 -156592606.5887 2570 2566 35894402.90473 2571 2566 -47777777.76993 2572 2566 -58377882.05435 2573 2566 9394297.757917 2574 2566 5.662441253662e-06 2575 2566 24807818.43265 2576 2566 -21110817.73799 2577 2566 47777777.76992 2578 2566 -59427300.65882 2579 2566 11716519.98007 2667 2566 11944444.44837 2668 2566 -16019732.12234 2669 2566 -7635451.454545 2670 2566 -11948441.41664 2671 2566 -29588436.2443 2672 2566 4682155.144749 2673 2566 5.125999450684e-06 2674 2566 -29094034.58311 2675 2566 -31702916.914 2676 2566 11954436.86906 2677 2566 79749895.91067 2678 2566 -16362631.77783 2679 2566 -11950439.90078 2680 2566 -78792675.71048 2681 2566 51029508.03613 2682 2566 -11944444.44837 2683 2566 -16455848.40155 2684 2566 -8163229.232496 2685 2566 -8.195638656616e-07 2686 2566 -22206107.28377 2687 2566 -5277708.20877 2688 2566 11944444.44836 2689 2566 -27195128.92833 2690 2566 13440937.44126 2567 2567 730917912.008 2568 2567 20551278.88239 2569 2567 40119834.77044 2570 2567 9888833.293587 2571 2567 19043969.25406 2572 2567 9605408.869306 2573 2567 -22428183.64302 2574 2567 -2463011.858771 2575 2567 -21110817.73799 2576 2567 38554054.16679 2577 2567 -20539364.07277 2578 2567 11505408.86868 2579 2567 -25226633.25495 2667 2567 8005089.696258 2668 2567 -7635451.454545 2669 2567 -9407733.938713 2670 2567 47510397.70207 2671 2567 3205506.989851 2672 2567 -52478548.16204 2673 2567 439820.6128855 2674 2567 -31491805.80303 2675 2567 -4060894.923526 2676 2567 5939756.113784 2677 2567 -16359106.80793 2678 2567 -87179377.66603 2679 2567 18349946.72438 2680 2567 52296851.6274 2681 2567 -103249742.1615 2682 2567 -8444910.309145 2683 2567 -8163229.232496 2684 2567 -10570710.68328 2685 2567 -53439363.43899 2686 2567 -5277708.20877 2687 2567 -66116380.01208 2688 2567 -18340743.64572 2689 2567 13440937.44126 2690 2567 -39208792.08802 2568 2568 498845612.8338 2569 2568 47777777.76994 2570 2568 25526818.17494 2574 2568 -72712122.80639 2575 2568 -47777777.76993 2576 2568 18780080.36483 2577 2568 -270769575.0497 2578 2568 -47795571.28618 2579 2568 -21297878.33857 2580 2568 4724775.55691 2581 2568 38240015.7322 2582 2568 -15313498.75867 2670 2568 1532382.642161 2671 2568 14339328.79045 2672 2568 9874015.186731 2676 2568 -4845636.536104 2677 2568 -11950439.90078 2678 2568 -8009104.879749 2679 2568 57272319.20769 2680 2568 11944444.44837 2681 2568 16262217.83282 2685 2568 -20039396.92541 2686 2568 -11944444.44837 2687 2568 -8444910.309145 2688 2568 -96920154.16551 2689 2568 -11948441.41665 2690 2568 -57894966.96635 2691 2568 -19430363.65776 2692 2568 9559552.526969 2693 2568 -14502802.0572 2569 2569 427154390.1247 2570 2569 -48570698.50186 2574 2569 -47777777.76993 2575 2569 -58377882.05435 2576 2569 9394297.757917 2577 2569 -47804468.04431 2578 2569 -46156001.60459 2579 2569 -29458011.57407 2580 2569 57360023.5983 2581 2569 4724775.556911 2582 2569 19641491.59463 2670 2569 9559552.526969 2671 2569 1532382.642157 2672 2569 -5266148.137347 2676 2569 -11948441.41664 2677 2569 -46658897.27468 2678 2569 -32026328.33686 2679 2569 11944444.44837 2680 2569 39350079.73598 2681 2569 -4237631.002181 2685 2569 -11944444.44837 2686 2569 -16455848.40155 2687 2569 -8163229.232496 2688 2569 -11950439.90079 2689 2569 -40768202.4791 2690 2569 -17881456.80322 2691 2569 14339328.79045 2692 2569 -19430363.65775 2693 2569 17403019.36621 2570 2570 472661441.9387 2574 2570 19043969.25406 2575 2570 9605408.869306 2576 2570 -22428183.64302 2577 2570 -19183408.42037 2578 2570 -23333069.93135 2579 2570 -17381025.25039 2580 2570 -22970248.13801 2581 2570 13094327.72975 2582 2570 12599401.48509 2670 2570 6582676.791154 2671 2570 -7899222.206021 2672 2570 4086353.712421 2676 2570 -8007766.485252 2677 2570 -33293672.07046 2678 2570 -17559666.33271 2679 2570 -4818855.100867 2680 2570 -21102266.9381 2681 2570 -61666013.98076 2685 2570 -8444910.309145 2686 2570 -8163229.232496 2687 2570 -10570710.68328 2688 2570 -57630268.59944 2689 2570 -16401283.68257 2690 2570 -82291258.12151 2691 2570 -21754203.08579 2692 2570 11602012.9108 2693 2570 -51814303.08735 2571 2571 787899476.9604 2572 2571 2.861022949219e-05 2573 2571 7037134.828232 2574 2571 89408469.17376 2575 2571 -1.275539398193e-05 2576 2571 1759283.707933 2583 2571 -185415908.7468 2584 2571 4.678964614868e-06 2585 2571 -4574122.969536 2586 2571 -73761541.41083 2587 2571 47777777.76992 2588 2571 -20803252.962 2673 2571 -71968136.03531 2674 2571 4.157423973083e-06 2675 2571 51943969.87703 2676 2571 -29817851.87049 2677 2571 -11944444.44837 2678 2571 17900923.03284 2682 2571 88895212.80375 2683 2571 4.112720489502e-06 2684 2571 1759282.450699 2685 2571 -25612922.63328 2686 2571 -1.080334186554e-05 2687 2571 439820.6129002 2694 2571 -74762019.75572 2695 2571 2.533197402954e-07 2696 2571 -53703252.3277 2697 2571 -30778677.45218 2698 2571 11944444.44836 2699 2571 -18340743.64572 2572 2572 673225551.0007 2573 2572 -84443270.91034 2574 2572 -1.353025436401e-05 2575 2572 -92146776.52992 2576 2572 43066079.89948 2583 2572 5.662441253662e-06 2584 2572 24807818.43265 2585 2572 -21110817.73799 2586 2572 47777777.76992 2587 2572 -59427300.65882 2588 2572 11716519.98007 2673 2572 3.337860107422e-06 2674 2572 -19412223.56332 2675 2572 -5277708.208769 2676 2572 -11944444.44837 2677 2572 -26234303.34662 2678 2572 12913159.66331 2682 2572 4.351139068604e-06 2683 2572 60226824.62697 2684 2572 -21110832.82468 2685 2572 -9.95397567749e-06 2686 2572 -71001738.06458 2687 2572 52813749.73867 2694 2572 -8.195638656616e-07 2695 2572 -22206107.28377 2696 2572 -5277708.20877 2697 2572 11944444.44836 2698 2572 -27195128.92833 2699 2572 13440937.44126 2573 2573 729298788.5117 2574 2573 1759283.707934 2575 2573 41377191.01087 2576 2573 48367727.64837 2583 2573 -2463011.858771 2584 2573 -21110817.73799 2585 2573 38554054.16679 2586 2573 -20539364.07277 2587 2573 11505408.86868 2588 2573 -25226633.25495 2673 2573 51680080.98832 2674 2573 -5277708.208769 2675 2573 -58666023.42418 2676 2573 17900923.03284 2677 2573 12913159.66331 2678 2573 -36646590.5368 2682 2573 1759282.450699 2683 2573 -21110832.82468 2684 2573 -105887547.9636 2685 2573 439820.6129005 2686 2573 52602638.6277 2687 2573 -115814770.8741 2694 2573 -53439363.43899 2695 2573 -5277708.20877 2696 2573 -66116380.01208 2697 2573 -18340743.64572 2698 2573 13440937.44126 2699 2573 -39208792.08802 2574 2574 787899476.9604 2575 2574 2.861022949219e-05 2576 2574 7037134.828232 2577 2574 89408469.17376 2578 2574 -1.275539398193e-05 2579 2574 1759283.707933 2583 2574 -72712122.80639 2584 2574 -47777777.76993 2585 2574 18780080.36483 2586 2574 -185415908.7468 2587 2574 4.678964614868e-06 2588 2574 -4574122.969536 2589 2574 -73761541.41083 2590 2574 47777777.76992 2591 2574 -20803252.962 2673 2574 -19603280.6462 2674 2574 11944444.44837 2675 2574 8005089.696258 2676 2574 -71968136.03531 2677 2574 4.157423973083e-06 2678 2574 51943969.87703 2679 2574 -29817851.87049 2680 2574 -11944444.44837 2681 2574 17900923.03284 2682 2574 16294780.8482 2683 2574 4.217028617859e-06 2684 2574 439820.6128852 2685 2574 88895212.80375 2686 2574 4.112720489502e-06 2687 2574 1759282.450699 2688 2574 -25612922.63328 2689 2574 -1.080334186554e-05 2690 2574 439820.6129002 2694 2574 -20039396.92541 2695 2574 -11944444.44837 2696 2574 -8444910.309145 2697 2574 -74762019.75572 2698 2574 2.533197402954e-07 2699 2574 -53703252.3277 2700 2574 -30778677.45218 2701 2574 11944444.44836 2702 2574 -18340743.64572 2575 2575 673225551.0007 2576 2575 -84443270.91034 2577 2575 -1.353025436401e-05 2578 2575 -92146776.52992 2579 2575 43066079.89948 2583 2575 -47777777.76993 2584 2575 -58377882.05435 2585 2575 9394297.757917 2586 2575 5.662441253662e-06 2587 2575 24807818.43265 2588 2575 -21110817.73799 2589 2575 47777777.76992 2590 2575 -59427300.65882 2591 2575 11716519.98007 2673 2575 11944444.44837 2674 2575 -16019732.12234 2675 2575 -7635451.454545 2676 2575 3.337860107422e-06 2677 2575 -19412223.56332 2678 2575 -5277708.208769 2679 2575 -11944444.44837 2680 2575 -26234303.34662 2681 2575 12913159.66331 2682 2575 5.125999450684e-06 2683 2575 -29094034.58311 2684 2575 -31702916.914 2685 2575 4.351139068604e-06 2686 2575 60226824.62697 2687 2575 -21110832.82468 2688 2575 -9.95397567749e-06 2689 2575 -71001738.06458 2690 2575 52813749.73867 2694 2575 -11944444.44837 2695 2575 -16455848.40155 2696 2575 -8163229.232496 2697 2575 -8.195638656616e-07 2698 2575 -22206107.28377 2699 2575 -5277708.20877 2700 2575 11944444.44836 2701 2575 -27195128.92833 2702 2575 13440937.44126 2576 2576 729298788.5117 2577 2576 1759283.707934 2578 2576 41377191.01087 2579 2576 48367727.64837 2583 2576 19043969.25406 2584 2576 9605408.869306 2585 2576 -22428183.64302 2586 2576 -2463011.858771 2587 2576 -21110817.73799 2588 2576 38554054.16679 2589 2576 -20539364.07277 2590 2576 11505408.86868 2591 2576 -25226633.25495 2673 2576 8005089.696258 2674 2576 -7635451.454545 2675 2576 -9407733.938713 2676 2576 51680080.98832 2677 2576 -5277708.208769 2678 2576 -58666023.42418 2679 2576 17900923.03284 2680 2576 12913159.66331 2681 2576 -36646590.5368 2682 2576 439820.6128855 2683 2576 -31491805.80303 2684 2576 -4060894.923526 2685 2576 1759282.450699 2686 2576 -21110832.82468 2687 2576 -105887547.9636 2688 2576 439820.6129005 2689 2576 52602638.6277 2690 2576 -115814770.8741 2694 2576 -8444910.309145 2695 2576 -8163229.232496 2696 2576 -10570710.68328 2697 2576 -53439363.43899 2698 2576 -5277708.20877 2699 2576 -66116380.01208 2700 2576 -18340743.64572 2701 2576 13440937.44126 2702 2576 -39208792.08802 2577 2577 852898004.744 2578 2577 47822261.56058 2579 2577 23750813.775 2580 2577 10663984.89933 2581 2577 -47795571.28619 2582 2577 20811196.16841 2586 2577 -72712122.80639 2587 2577 -47777777.76993 2588 2577 18780080.36483 2589 2577 -185415908.7468 2590 2577 4.678964614868e-06 2591 2577 -4574122.969536 2592 2577 -73761541.41083 2593 2577 47777777.76992 2594 2577 -20803252.962 2676 2577 -19603280.6462 2677 2577 11944444.44837 2678 2577 8005089.696258 2679 2577 -85740387.93072 2680 2577 -11950439.90077 2681 2577 47775096.06898 2685 2577 16294780.8482 2686 2577 4.217028617859e-06 2687 2577 439820.6128852 2688 2577 112006329.4708 2689 2577 11954436.86906 2690 2577 5935349.843305 2691 2577 -36979414.9719 2692 2577 -11948441.41664 2693 2577 18346879.03149 2697 2577 -20039396.92541 2698 2577 -11944444.44837 2699 2577 -8444910.309145 2700 2577 -74762019.75572 2701 2577 2.533197402954e-07 2702 2577 -53703252.3277 2703 2577 -30778677.45218 2704 2577 11944444.44836 2705 2577 -18340743.64572 2578 2578 723869819.0551 2579 2578 -65442952.40696 2580 2578 -47804468.04432 2581 2578 -156592606.5887 2582 2578 35894402.90473 2586 2578 -47777777.76993 2587 2578 -58377882.05435 2588 2578 9394297.757917 2589 2578 5.662441253662e-06 2590 2578 24807818.43265 2591 2578 -21110817.73799 2592 2578 47777777.76992 2593 2578 -59427300.65882 2594 2578 11716519.98007 2676 2578 11944444.44837 2677 2578 -16019732.12234 2678 2578 -7635451.454545 2679 2578 -11948441.41664 2680 2578 -29588436.2443 2681 2578 4682155.144749 2685 2578 5.125999450684e-06 2686 2578 -29094034.58311 2687 2578 -31702916.914 2688 2578 11954436.86906 2689 2578 79749895.91067 2690 2578 -16362631.77783 2691 2578 -11950439.90078 2692 2578 -78792675.71048 2693 2578 51029508.03613 2697 2578 -11944444.44837 2698 2578 -16455848.40155 2699 2578 -8163229.232496 2700 2578 -8.195638656616e-07 2701 2578 -22206107.28377 2702 2578 -5277708.20877 2703 2578 11944444.44836 2704 2578 -27195128.92833 2705 2578 13440937.44126 2579 2579 730917912.008 2580 2579 20551278.88239 2581 2579 40119834.77044 2582 2579 9888833.293587 2586 2579 19043969.25406 2587 2579 9605408.869306 2588 2579 -22428183.64302 2589 2579 -2463011.858771 2590 2579 -21110817.73799 2591 2579 38554054.16679 2592 2579 -20539364.07277 2593 2579 11505408.86868 2594 2579 -25226633.25495 2676 2579 8005089.696258 2677 2579 -7635451.454545 2678 2579 -9407733.938713 2679 2579 47510397.70207 2680 2579 3205506.989851 2681 2579 -52478548.16204 2685 2579 439820.6128855 2686 2579 -31491805.80303 2687 2579 -4060894.923526 2688 2579 5939756.113784 2689 2579 -16359106.80793 2690 2579 -87179377.66603 2691 2579 18349946.72438 2692 2579 52296851.6274 2693 2579 -103249742.1615 2697 2579 -8444910.309145 2698 2579 -8163229.232496 2699 2579 -10570710.68328 2700 2579 -53439363.43899 2701 2579 -5277708.20877 2702 2579 -66116380.01208 2703 2579 -18340743.64572 2704 2579 13440937.44126 2705 2579 -39208792.08802 2580 2580 498845612.8338 2581 2580 47777777.76994 2582 2580 25526818.17494 2589 2580 -72712122.80639 2590 2580 -47777777.76993 2591 2580 18780080.36483 2592 2580 -270769575.0497 2593 2580 -47795571.28618 2594 2580 -21297878.33857 2595 2580 4724775.55691 2596 2580 38240015.7322 2597 2580 -15313498.75867 2679 2580 1532382.642161 2680 2580 14339328.79045 2681 2580 9874015.186731 2688 2580 -4845636.536104 2689 2580 -11950439.90078 2690 2580 -8009104.879749 2691 2580 57272319.20769 2692 2580 11944444.44837 2693 2580 16262217.83282 2700 2580 -20039396.92541 2701 2580 -11944444.44837 2702 2580 -8444910.309145 2703 2580 -96920154.16551 2704 2580 -11948441.41665 2705 2580 -57894966.96635 2706 2580 -19430363.65776 2707 2580 9559552.526969 2708 2580 -14502802.0572 2581 2581 427154390.1247 2582 2581 -48570698.50186 2589 2581 -47777777.76993 2590 2581 -58377882.05435 2591 2581 9394297.757917 2592 2581 -47804468.04431 2593 2581 -46156001.60459 2594 2581 -29458011.57407 2595 2581 57360023.5983 2596 2581 4724775.556911 2597 2581 19641491.59463 2679 2581 9559552.526969 2680 2581 1532382.642157 2681 2581 -5266148.137347 2688 2581 -11948441.41664 2689 2581 -46658897.27468 2690 2581 -32026328.33686 2691 2581 11944444.44837 2692 2581 39350079.73598 2693 2581 -4237631.002181 2700 2581 -11944444.44837 2701 2581 -16455848.40155 2702 2581 -8163229.232496 2703 2581 -11950439.90079 2704 2581 -40768202.4791 2705 2581 -17881456.80322 2706 2581 14339328.79045 2707 2581 -19430363.65775 2708 2581 17403019.36621 2582 2582 472661441.9387 2589 2582 19043969.25406 2590 2582 9605408.869306 2591 2582 -22428183.64302 2592 2582 -19183408.42037 2593 2582 -23333069.93135 2594 2582 -17381025.25039 2595 2582 -22970248.13801 2596 2582 13094327.72975 2597 2582 12599401.48509 2679 2582 6582676.791154 2680 2582 -7899222.206021 2681 2582 4086353.712421 2688 2582 -8007766.485252 2689 2582 -33293672.07046 2690 2582 -17559666.33271 2691 2582 -4818855.100867 2692 2582 -21102266.9381 2693 2582 -61666013.98076 2700 2582 -8444910.309145 2701 2582 -8163229.232496 2702 2582 -10570710.68328 2703 2582 -57630268.59944 2704 2582 -16401283.68257 2705 2582 -82291258.12151 2706 2582 -21754203.08579 2707 2582 11602012.9108 2708 2582 -51814303.08735 2583 2583 787899476.9604 2584 2583 2.861022949219e-05 2585 2583 7037134.828232 2586 2583 89408469.17376 2587 2583 -1.275539398193e-05 2588 2583 1759283.707933 2598 2583 -185415908.7468 2599 2583 4.678964614868e-06 2600 2583 -4574122.969536 2601 2583 -73761541.41083 2602 2583 47777777.76992 2603 2583 -20803252.962 2682 2583 -71968136.03531 2683 2583 4.157423973083e-06 2684 2583 51943969.87703 2685 2583 -29817851.87049 2686 2583 -11944444.44837 2687 2583 17900923.03284 2694 2583 88895212.80375 2695 2583 4.112720489502e-06 2696 2583 1759282.450699 2697 2583 -25612922.63328 2698 2583 -1.080334186554e-05 2699 2583 439820.6129002 2709 2583 -74762019.75572 2710 2583 2.533197402954e-07 2711 2583 -53703252.3277 2712 2583 -30778677.45218 2713 2583 11944444.44836 2714 2583 -18340743.64572 2584 2584 673225551.0007 2585 2584 -84443270.91034 2586 2584 -1.353025436401e-05 2587 2584 -92146776.52992 2588 2584 43066079.89948 2598 2584 5.662441253662e-06 2599 2584 24807818.43265 2600 2584 -21110817.73799 2601 2584 47777777.76992 2602 2584 -59427300.65882 2603 2584 11716519.98007 2682 2584 3.337860107422e-06 2683 2584 -19412223.56332 2684 2584 -5277708.208769 2685 2584 -11944444.44837 2686 2584 -26234303.34662 2687 2584 12913159.66331 2694 2584 4.351139068604e-06 2695 2584 60226824.62697 2696 2584 -21110832.82468 2697 2584 -9.95397567749e-06 2698 2584 -71001738.06458 2699 2584 52813749.73867 2709 2584 -8.195638656616e-07 2710 2584 -22206107.28377 2711 2584 -5277708.20877 2712 2584 11944444.44836 2713 2584 -27195128.92833 2714 2584 13440937.44126 2585 2585 729298788.5117 2586 2585 1759283.707934 2587 2585 41377191.01087 2588 2585 48367727.64837 2598 2585 -2463011.858771 2599 2585 -21110817.73799 2600 2585 38554054.16679 2601 2585 -20539364.07277 2602 2585 11505408.86868 2603 2585 -25226633.25495 2682 2585 51680080.98832 2683 2585 -5277708.208769 2684 2585 -58666023.42418 2685 2585 17900923.03284 2686 2585 12913159.66331 2687 2585 -36646590.5368 2694 2585 1759282.450699 2695 2585 -21110832.82468 2696 2585 -105887547.9636 2697 2585 439820.6129005 2698 2585 52602638.6277 2699 2585 -115814770.8741 2709 2585 -53439363.43899 2710 2585 -5277708.20877 2711 2585 -66116380.01208 2712 2585 -18340743.64572 2713 2585 13440937.44126 2714 2585 -39208792.08802 2586 2586 787899476.9604 2587 2586 2.861022949219e-05 2588 2586 7037134.828232 2589 2586 89408469.17376 2590 2586 -1.275539398193e-05 2591 2586 1759283.707933 2598 2586 -72712122.80639 2599 2586 -47777777.76993 2600 2586 18780080.36483 2601 2586 -185415908.7468 2602 2586 4.678964614868e-06 2603 2586 -4574122.969536 2604 2586 -73761541.41083 2605 2586 47777777.76992 2606 2586 -20803252.962 2682 2586 -19603280.6462 2683 2586 11944444.44837 2684 2586 8005089.696258 2685 2586 -71968136.03531 2686 2586 4.157423973083e-06 2687 2586 51943969.87703 2688 2586 -29817851.87049 2689 2586 -11944444.44837 2690 2586 17900923.03284 2694 2586 16294780.8482 2695 2586 4.217028617859e-06 2696 2586 439820.6128852 2697 2586 88895212.80375 2698 2586 4.112720489502e-06 2699 2586 1759282.450699 2700 2586 -25612922.63328 2701 2586 -1.080334186554e-05 2702 2586 439820.6129002 2709 2586 -20039396.92541 2710 2586 -11944444.44837 2711 2586 -8444910.309145 2712 2586 -74762019.75572 2713 2586 2.533197402954e-07 2714 2586 -53703252.3277 2715 2586 -30778677.45218 2716 2586 11944444.44836 2717 2586 -18340743.64572 2587 2587 673225551.0007 2588 2587 -84443270.91034 2589 2587 -1.353025436401e-05 2590 2587 -92146776.52992 2591 2587 43066079.89948 2598 2587 -47777777.76993 2599 2587 -58377882.05435 2600 2587 9394297.757917 2601 2587 5.662441253662e-06 2602 2587 24807818.43265 2603 2587 -21110817.73799 2604 2587 47777777.76992 2605 2587 -59427300.65882 2606 2587 11716519.98007 2682 2587 11944444.44837 2683 2587 -16019732.12234 2684 2587 -7635451.454545 2685 2587 3.337860107422e-06 2686 2587 -19412223.56332 2687 2587 -5277708.208769 2688 2587 -11944444.44837 2689 2587 -26234303.34662 2690 2587 12913159.66331 2694 2587 5.125999450684e-06 2695 2587 -29094034.58311 2696 2587 -31702916.914 2697 2587 4.351139068604e-06 2698 2587 60226824.62697 2699 2587 -21110832.82468 2700 2587 -9.95397567749e-06 2701 2587 -71001738.06458 2702 2587 52813749.73867 2709 2587 -11944444.44837 2710 2587 -16455848.40155 2711 2587 -8163229.232496 2712 2587 -8.195638656616e-07 2713 2587 -22206107.28377 2714 2587 -5277708.20877 2715 2587 11944444.44836 2716 2587 -27195128.92833 2717 2587 13440937.44126 2588 2588 729298788.5117 2589 2588 1759283.707934 2590 2588 41377191.01087 2591 2588 48367727.64837 2598 2588 19043969.25406 2599 2588 9605408.869306 2600 2588 -22428183.64302 2601 2588 -2463011.858771 2602 2588 -21110817.73799 2603 2588 38554054.16679 2604 2588 -20539364.07277 2605 2588 11505408.86868 2606 2588 -25226633.25495 2682 2588 8005089.696258 2683 2588 -7635451.454545 2684 2588 -9407733.938713 2685 2588 51680080.98832 2686 2588 -5277708.208769 2687 2588 -58666023.42418 2688 2588 17900923.03284 2689 2588 12913159.66331 2690 2588 -36646590.5368 2694 2588 439820.6128855 2695 2588 -31491805.80303 2696 2588 -4060894.923526 2697 2588 1759282.450699 2698 2588 -21110832.82468 2699 2588 -105887547.9636 2700 2588 439820.6129005 2701 2588 52602638.6277 2702 2588 -115814770.8741 2709 2588 -8444910.309145 2710 2588 -8163229.232496 2711 2588 -10570710.68328 2712 2588 -53439363.43899 2713 2588 -5277708.20877 2714 2588 -66116380.01208 2715 2588 -18340743.64572 2716 2588 13440937.44126 2717 2588 -39208792.08802 2589 2589 787899476.9604 2590 2589 2.861022949219e-05 2591 2589 7037134.828232 2592 2589 89408469.17376 2593 2589 -1.275539398193e-05 2594 2589 1759283.707933 2601 2589 -72712122.80639 2602 2589 -47777777.76993 2603 2589 18780080.36483 2604 2589 -185415908.7468 2605 2589 4.678964614868e-06 2606 2589 -4574122.969536 2607 2589 -73761541.41083 2608 2589 47777777.76992 2609 2589 -20803252.962 2685 2589 -19603280.6462 2686 2589 11944444.44837 2687 2589 8005089.696258 2688 2589 -71968136.03531 2689 2589 4.157423973083e-06 2690 2589 51943969.87703 2691 2589 -29817851.87049 2692 2589 -11944444.44837 2693 2589 17900923.03284 2697 2589 16294780.8482 2698 2589 4.217028617859e-06 2699 2589 439820.6128852 2700 2589 88895212.80375 2701 2589 4.112720489502e-06 2702 2589 1759282.450699 2703 2589 -25612922.63328 2704 2589 -1.080334186554e-05 2705 2589 439820.6129002 2712 2589 -20039396.92541 2713 2589 -11944444.44837 2714 2589 -8444910.309145 2715 2589 -74762019.75572 2716 2589 2.533197402954e-07 2717 2589 -53703252.3277 2718 2589 -30778677.45218 2719 2589 11944444.44836 2720 2589 -18340743.64572 2590 2590 673225551.0007 2591 2590 -84443270.91034 2592 2590 -1.353025436401e-05 2593 2590 -92146776.52992 2594 2590 43066079.89948 2601 2590 -47777777.76993 2602 2590 -58377882.05435 2603 2590 9394297.757917 2604 2590 5.662441253662e-06 2605 2590 24807818.43265 2606 2590 -21110817.73799 2607 2590 47777777.76992 2608 2590 -59427300.65882 2609 2590 11716519.98007 2685 2590 11944444.44837 2686 2590 -16019732.12234 2687 2590 -7635451.454545 2688 2590 3.337860107422e-06 2689 2590 -19412223.56332 2690 2590 -5277708.208769 2691 2590 -11944444.44837 2692 2590 -26234303.34662 2693 2590 12913159.66331 2697 2590 5.125999450684e-06 2698 2590 -29094034.58311 2699 2590 -31702916.914 2700 2590 4.351139068604e-06 2701 2590 60226824.62697 2702 2590 -21110832.82468 2703 2590 -9.95397567749e-06 2704 2590 -71001738.06458 2705 2590 52813749.73867 2712 2590 -11944444.44837 2713 2590 -16455848.40155 2714 2590 -8163229.232496 2715 2590 -8.195638656616e-07 2716 2590 -22206107.28377 2717 2590 -5277708.20877 2718 2590 11944444.44836 2719 2590 -27195128.92833 2720 2590 13440937.44126 2591 2591 729298788.5117 2592 2591 1759283.707934 2593 2591 41377191.01087 2594 2591 48367727.64837 2601 2591 19043969.25406 2602 2591 9605408.869306 2603 2591 -22428183.64302 2604 2591 -2463011.858771 2605 2591 -21110817.73799 2606 2591 38554054.16679 2607 2591 -20539364.07277 2608 2591 11505408.86868 2609 2591 -25226633.25495 2685 2591 8005089.696258 2686 2591 -7635451.454545 2687 2591 -9407733.938713 2688 2591 51680080.98832 2689 2591 -5277708.208769 2690 2591 -58666023.42418 2691 2591 17900923.03284 2692 2591 12913159.66331 2693 2591 -36646590.5368 2697 2591 439820.6128855 2698 2591 -31491805.80303 2699 2591 -4060894.923526 2700 2591 1759282.450699 2701 2591 -21110832.82468 2702 2591 -105887547.9636 2703 2591 439820.6129005 2704 2591 52602638.6277 2705 2591 -115814770.8741 2712 2591 -8444910.309145 2713 2591 -8163229.232496 2714 2591 -10570710.68328 2715 2591 -53439363.43899 2716 2591 -5277708.20877 2717 2591 -66116380.01208 2718 2591 -18340743.64572 2719 2591 13440937.44126 2720 2591 -39208792.08802 2592 2592 852898004.744 2593 2592 47822261.56058 2594 2592 23750813.775 2595 2592 10663984.89933 2596 2592 -47795571.28619 2597 2592 20811196.16841 2604 2592 -72712122.80639 2605 2592 -47777777.76993 2606 2592 18780080.36483 2607 2592 -185415908.7468 2608 2592 4.678964614868e-06 2609 2592 -4574122.969536 2610 2592 -73761541.41083 2611 2592 47777777.76992 2612 2592 -20803252.962 2688 2592 -19603280.6462 2689 2592 11944444.44837 2690 2592 8005089.696258 2691 2592 -85740387.93072 2692 2592 -11950439.90077 2693 2592 47775096.06898 2700 2592 16294780.8482 2701 2592 4.217028617859e-06 2702 2592 439820.6128852 2703 2592 112006329.4708 2704 2592 11954436.86906 2705 2592 5935349.843305 2706 2592 -36979414.9719 2707 2592 -11948441.41664 2708 2592 18346879.03149 2715 2592 -20039396.92541 2716 2592 -11944444.44837 2717 2592 -8444910.309145 2718 2592 -74762019.75572 2719 2592 2.533197402954e-07 2720 2592 -53703252.3277 2721 2592 -30778677.45218 2722 2592 11944444.44836 2723 2592 -18340743.64572 2593 2593 723869819.0551 2594 2593 -65442952.40696 2595 2593 -47804468.04432 2596 2593 -156592606.5887 2597 2593 35894402.90473 2604 2593 -47777777.76993 2605 2593 -58377882.05435 2606 2593 9394297.757917 2607 2593 5.662441253662e-06 2608 2593 24807818.43265 2609 2593 -21110817.73799 2610 2593 47777777.76992 2611 2593 -59427300.65882 2612 2593 11716519.98007 2688 2593 11944444.44837 2689 2593 -16019732.12234 2690 2593 -7635451.454545 2691 2593 -11948441.41664 2692 2593 -29588436.2443 2693 2593 4682155.144749 2700 2593 5.125999450684e-06 2701 2593 -29094034.58311 2702 2593 -31702916.914 2703 2593 11954436.86906 2704 2593 79749895.91067 2705 2593 -16362631.77783 2706 2593 -11950439.90078 2707 2593 -78792675.71048 2708 2593 51029508.03613 2715 2593 -11944444.44837 2716 2593 -16455848.40155 2717 2593 -8163229.232496 2718 2593 -8.195638656616e-07 2719 2593 -22206107.28377 2720 2593 -5277708.20877 2721 2593 11944444.44836 2722 2593 -27195128.92833 2723 2593 13440937.44126 2594 2594 730917912.008 2595 2594 20551278.88239 2596 2594 40119834.77044 2597 2594 9888833.293587 2604 2594 19043969.25406 2605 2594 9605408.869306 2606 2594 -22428183.64302 2607 2594 -2463011.858771 2608 2594 -21110817.73799 2609 2594 38554054.16679 2610 2594 -20539364.07277 2611 2594 11505408.86868 2612 2594 -25226633.25495 2688 2594 8005089.696258 2689 2594 -7635451.454545 2690 2594 -9407733.938713 2691 2594 47510397.70207 2692 2594 3205506.989851 2693 2594 -52478548.16204 2700 2594 439820.6128855 2701 2594 -31491805.80303 2702 2594 -4060894.923526 2703 2594 5939756.113784 2704 2594 -16359106.80793 2705 2594 -87179377.66603 2706 2594 18349946.72438 2707 2594 52296851.6274 2708 2594 -103249742.1615 2715 2594 -8444910.309145 2716 2594 -8163229.232496 2717 2594 -10570710.68328 2718 2594 -53439363.43899 2719 2594 -5277708.20877 2720 2594 -66116380.01208 2721 2594 -18340743.64572 2722 2594 13440937.44126 2723 2594 -39208792.08802 2595 2595 498845612.8338 2596 2595 47777777.76994 2597 2595 25526818.17494 2607 2595 -72712122.80639 2608 2595 -47777777.76993 2609 2595 18780080.36483 2610 2595 -270769575.0497 2611 2595 -47795571.28618 2612 2595 -21297878.33857 2613 2595 4724775.55691 2614 2595 38240015.7322 2615 2595 -15313498.75867 2691 2595 1532382.642161 2692 2595 14339328.79045 2693 2595 9874015.186731 2703 2595 -4845636.536104 2704 2595 -11950439.90078 2705 2595 -8009104.879749 2706 2595 57272319.20769 2707 2595 11944444.44837 2708 2595 16262217.83282 2718 2595 -20039396.92541 2719 2595 -11944444.44837 2720 2595 -8444910.309145 2721 2595 -96920154.16551 2722 2595 -11948441.41665 2723 2595 -57894966.96635 2724 2595 -19430363.65776 2725 2595 9559552.526969 2726 2595 -14502802.0572 2596 2596 427154390.1247 2597 2596 -48570698.50186 2607 2596 -47777777.76993 2608 2596 -58377882.05435 2609 2596 9394297.757917 2610 2596 -47804468.04431 2611 2596 -46156001.60459 2612 2596 -29458011.57407 2613 2596 57360023.5983 2614 2596 4724775.556911 2615 2596 19641491.59463 2691 2596 9559552.526969 2692 2596 1532382.642157 2693 2596 -5266148.137347 2703 2596 -11948441.41664 2704 2596 -46658897.27468 2705 2596 -32026328.33686 2706 2596 11944444.44837 2707 2596 39350079.73598 2708 2596 -4237631.002181 2718 2596 -11944444.44837 2719 2596 -16455848.40155 2720 2596 -8163229.232496 2721 2596 -11950439.90079 2722 2596 -40768202.4791 2723 2596 -17881456.80322 2724 2596 14339328.79045 2725 2596 -19430363.65775 2726 2596 17403019.36621 2597 2597 472661441.9387 2607 2597 19043969.25406 2608 2597 9605408.869306 2609 2597 -22428183.64302 2610 2597 -19183408.42037 2611 2597 -23333069.93135 2612 2597 -17381025.25039 2613 2597 -22970248.13801 2614 2597 13094327.72975 2615 2597 12599401.48509 2691 2597 6582676.791154 2692 2597 -7899222.206021 2693 2597 4086353.712421 2703 2597 -8007766.485252 2704 2597 -33293672.07046 2705 2597 -17559666.33271 2706 2597 -4818855.100867 2707 2597 -21102266.9381 2708 2597 -61666013.98076 2718 2597 -8444910.309145 2719 2597 -8163229.232496 2720 2597 -10570710.68328 2721 2597 -57630268.59944 2722 2597 -16401283.68257 2723 2597 -82291258.12151 2724 2597 -21754203.08579 2725 2597 11602012.9108 2726 2597 -51814303.08735 2598 2598 787899476.9604 2599 2598 2.861022949219e-05 2600 2598 7037134.828232 2601 2598 89408469.17376 2602 2598 -1.275539398193e-05 2603 2598 1759283.707933 2616 2598 -185415908.7468 2617 2598 4.678964614868e-06 2618 2598 -4574122.969536 2619 2598 -73761541.41083 2620 2598 47777777.76992 2621 2598 -20803252.962 2694 2598 -71968136.03531 2695 2598 4.157423973083e-06 2696 2598 51943969.87703 2697 2598 -29817851.87049 2698 2598 -11944444.44837 2699 2598 17900923.03284 2709 2598 88895212.80375 2710 2598 4.112720489502e-06 2711 2598 1759282.450699 2712 2598 -25612922.63328 2713 2598 -1.080334186554e-05 2714 2598 439820.6129002 2727 2598 -74762019.75572 2728 2598 2.533197402954e-07 2729 2598 -53703252.3277 2730 2598 -30778677.45218 2731 2598 11944444.44836 2732 2598 -18340743.64572 2599 2599 673225551.0007 2600 2599 -84443270.91034 2601 2599 -1.353025436401e-05 2602 2599 -92146776.52992 2603 2599 43066079.89948 2616 2599 5.662441253662e-06 2617 2599 24807818.43265 2618 2599 -21110817.73799 2619 2599 47777777.76992 2620 2599 -59427300.65882 2621 2599 11716519.98007 2694 2599 3.337860107422e-06 2695 2599 -19412223.56332 2696 2599 -5277708.208769 2697 2599 -11944444.44837 2698 2599 -26234303.34662 2699 2599 12913159.66331 2709 2599 4.351139068604e-06 2710 2599 60226824.62697 2711 2599 -21110832.82468 2712 2599 -9.95397567749e-06 2713 2599 -71001738.06458 2714 2599 52813749.73867 2727 2599 -8.195638656616e-07 2728 2599 -22206107.28377 2729 2599 -5277708.20877 2730 2599 11944444.44836 2731 2599 -27195128.92833 2732 2599 13440937.44126 2600 2600 729298788.5117 2601 2600 1759283.707934 2602 2600 41377191.01087 2603 2600 48367727.64837 2616 2600 -2463011.858771 2617 2600 -21110817.73799 2618 2600 38554054.16679 2619 2600 -20539364.07277 2620 2600 11505408.86868 2621 2600 -25226633.25495 2694 2600 51680080.98832 2695 2600 -5277708.208769 2696 2600 -58666023.42418 2697 2600 17900923.03284 2698 2600 12913159.66331 2699 2600 -36646590.5368 2709 2600 1759282.450699 2710 2600 -21110832.82468 2711 2600 -105887547.9636 2712 2600 439820.6129005 2713 2600 52602638.6277 2714 2600 -115814770.8741 2727 2600 -53439363.43899 2728 2600 -5277708.20877 2729 2600 -66116380.01208 2730 2600 -18340743.64572 2731 2600 13440937.44126 2732 2600 -39208792.08802 2601 2601 787899476.9604 2602 2601 2.861022949219e-05 2603 2601 7037134.828232 2604 2601 89408469.17376 2605 2601 -1.275539398193e-05 2606 2601 1759283.707933 2616 2601 -72712122.80639 2617 2601 -47777777.76993 2618 2601 18780080.36483 2619 2601 -185415908.7468 2620 2601 4.678964614868e-06 2621 2601 -4574122.969536 2622 2601 -73761541.41083 2623 2601 47777777.76992 2624 2601 -20803252.962 2694 2601 -19603280.6462 2695 2601 11944444.44837 2696 2601 8005089.696258 2697 2601 -71968136.03531 2698 2601 4.157423973083e-06 2699 2601 51943969.87703 2700 2601 -29817851.87049 2701 2601 -11944444.44837 2702 2601 17900923.03284 2709 2601 16294780.8482 2710 2601 4.217028617859e-06 2711 2601 439820.6128852 2712 2601 88895212.80375 2713 2601 4.112720489502e-06 2714 2601 1759282.450699 2715 2601 -25612922.63328 2716 2601 -1.080334186554e-05 2717 2601 439820.6129002 2727 2601 -20039396.92541 2728 2601 -11944444.44837 2729 2601 -8444910.309145 2730 2601 -74762019.75572 2731 2601 2.533197402954e-07 2732 2601 -53703252.3277 2733 2601 -30778677.45218 2734 2601 11944444.44836 2735 2601 -18340743.64572 2602 2602 673225551.0007 2603 2602 -84443270.91034 2604 2602 -1.353025436401e-05 2605 2602 -92146776.52992 2606 2602 43066079.89948 2616 2602 -47777777.76993 2617 2602 -58377882.05435 2618 2602 9394297.757917 2619 2602 5.662441253662e-06 2620 2602 24807818.43265 2621 2602 -21110817.73799 2622 2602 47777777.76992 2623 2602 -59427300.65882 2624 2602 11716519.98007 2694 2602 11944444.44837 2695 2602 -16019732.12234 2696 2602 -7635451.454545 2697 2602 3.337860107422e-06 2698 2602 -19412223.56332 2699 2602 -5277708.208769 2700 2602 -11944444.44837 2701 2602 -26234303.34662 2702 2602 12913159.66331 2709 2602 5.125999450684e-06 2710 2602 -29094034.58311 2711 2602 -31702916.914 2712 2602 4.351139068604e-06 2713 2602 60226824.62697 2714 2602 -21110832.82468 2715 2602 -9.95397567749e-06 2716 2602 -71001738.06458 2717 2602 52813749.73867 2727 2602 -11944444.44837 2728 2602 -16455848.40155 2729 2602 -8163229.232496 2730 2602 -8.195638656616e-07 2731 2602 -22206107.28377 2732 2602 -5277708.20877 2733 2602 11944444.44836 2734 2602 -27195128.92833 2735 2602 13440937.44126 2603 2603 729298788.5117 2604 2603 1759283.707934 2605 2603 41377191.01087 2606 2603 48367727.64837 2616 2603 19043969.25406 2617 2603 9605408.869306 2618 2603 -22428183.64302 2619 2603 -2463011.858771 2620 2603 -21110817.73799 2621 2603 38554054.16679 2622 2603 -20539364.07277 2623 2603 11505408.86868 2624 2603 -25226633.25495 2694 2603 8005089.696258 2695 2603 -7635451.454545 2696 2603 -9407733.938713 2697 2603 51680080.98832 2698 2603 -5277708.208769 2699 2603 -58666023.42418 2700 2603 17900923.03284 2701 2603 12913159.66331 2702 2603 -36646590.5368 2709 2603 439820.6128855 2710 2603 -31491805.80303 2711 2603 -4060894.923526 2712 2603 1759282.450699 2713 2603 -21110832.82468 2714 2603 -105887547.9636 2715 2603 439820.6129005 2716 2603 52602638.6277 2717 2603 -115814770.8741 2727 2603 -8444910.309145 2728 2603 -8163229.232496 2729 2603 -10570710.68328 2730 2603 -53439363.43899 2731 2603 -5277708.20877 2732 2603 -66116380.01208 2733 2603 -18340743.64572 2734 2603 13440937.44126 2735 2603 -39208792.08802 2604 2604 787899476.9604 2605 2604 2.861022949219e-05 2606 2604 7037134.828232 2607 2604 89408469.17376 2608 2604 -1.275539398193e-05 2609 2604 1759283.707933 2619 2604 -72712122.80639 2620 2604 -47777777.76993 2621 2604 18780080.36483 2622 2604 -185415908.7468 2623 2604 4.678964614868e-06 2624 2604 -4574122.969536 2625 2604 -73761541.41083 2626 2604 47777777.76992 2627 2604 -20803252.962 2697 2604 -19603280.6462 2698 2604 11944444.44837 2699 2604 8005089.696258 2700 2604 -71968136.03531 2701 2604 4.157423973083e-06 2702 2604 51943969.87703 2703 2604 -29817851.87049 2704 2604 -11944444.44837 2705 2604 17900923.03284 2712 2604 16294780.8482 2713 2604 4.217028617859e-06 2714 2604 439820.6128852 2715 2604 88895212.80375 2716 2604 4.112720489502e-06 2717 2604 1759282.450699 2718 2604 -25612922.63328 2719 2604 -1.080334186554e-05 2720 2604 439820.6129002 2730 2604 -20039396.92541 2731 2604 -11944444.44837 2732 2604 -8444910.309145 2733 2604 -74762019.75572 2734 2604 2.533197402954e-07 2735 2604 -53703252.3277 2736 2604 -30778677.45218 2737 2604 11944444.44836 2738 2604 -18340743.64572 2605 2605 673225551.0007 2606 2605 -84443270.91034 2607 2605 -1.353025436401e-05 2608 2605 -92146776.52992 2609 2605 43066079.89948 2619 2605 -47777777.76993 2620 2605 -58377882.05435 2621 2605 9394297.757917 2622 2605 5.662441253662e-06 2623 2605 24807818.43265 2624 2605 -21110817.73799 2625 2605 47777777.76992 2626 2605 -59427300.65882 2627 2605 11716519.98007 2697 2605 11944444.44837 2698 2605 -16019732.12234 2699 2605 -7635451.454545 2700 2605 3.337860107422e-06 2701 2605 -19412223.56332 2702 2605 -5277708.208769 2703 2605 -11944444.44837 2704 2605 -26234303.34662 2705 2605 12913159.66331 2712 2605 5.125999450684e-06 2713 2605 -29094034.58311 2714 2605 -31702916.914 2715 2605 4.351139068604e-06 2716 2605 60226824.62697 2717 2605 -21110832.82468 2718 2605 -9.95397567749e-06 2719 2605 -71001738.06458 2720 2605 52813749.73867 2730 2605 -11944444.44837 2731 2605 -16455848.40155 2732 2605 -8163229.232496 2733 2605 -8.195638656616e-07 2734 2605 -22206107.28377 2735 2605 -5277708.20877 2736 2605 11944444.44836 2737 2605 -27195128.92833 2738 2605 13440937.44126 2606 2606 729298788.5117 2607 2606 1759283.707934 2608 2606 41377191.01087 2609 2606 48367727.64837 2619 2606 19043969.25406 2620 2606 9605408.869306 2621 2606 -22428183.64302 2622 2606 -2463011.858771 2623 2606 -21110817.73799 2624 2606 38554054.16679 2625 2606 -20539364.07277 2626 2606 11505408.86868 2627 2606 -25226633.25495 2697 2606 8005089.696258 2698 2606 -7635451.454545 2699 2606 -9407733.938713 2700 2606 51680080.98832 2701 2606 -5277708.208769 2702 2606 -58666023.42418 2703 2606 17900923.03284 2704 2606 12913159.66331 2705 2606 -36646590.5368 2712 2606 439820.6128855 2713 2606 -31491805.80303 2714 2606 -4060894.923526 2715 2606 1759282.450699 2716 2606 -21110832.82468 2717 2606 -105887547.9636 2718 2606 439820.6129005 2719 2606 52602638.6277 2720 2606 -115814770.8741 2730 2606 -8444910.309145 2731 2606 -8163229.232496 2732 2606 -10570710.68328 2733 2606 -53439363.43899 2734 2606 -5277708.20877 2735 2606 -66116380.01208 2736 2606 -18340743.64572 2737 2606 13440937.44126 2738 2606 -39208792.08802 2607 2607 787899476.9604 2608 2607 2.861022949219e-05 2609 2607 7037134.828232 2610 2607 89408469.17376 2611 2607 -1.275539398193e-05 2612 2607 1759283.707933 2622 2607 -72712122.80639 2623 2607 -47777777.76993 2624 2607 18780080.36483 2625 2607 -185415908.7468 2626 2607 4.678964614868e-06 2627 2607 -4574122.969536 2628 2607 -73761541.41083 2629 2607 47777777.76992 2630 2607 -20803252.962 2700 2607 -19603280.6462 2701 2607 11944444.44837 2702 2607 8005089.696258 2703 2607 -71968136.03531 2704 2607 4.157423973083e-06 2705 2607 51943969.87703 2706 2607 -29817851.87049 2707 2607 -11944444.44837 2708 2607 17900923.03284 2715 2607 16294780.8482 2716 2607 4.217028617859e-06 2717 2607 439820.6128852 2718 2607 88895212.80375 2719 2607 4.112720489502e-06 2720 2607 1759282.450699 2721 2607 -25612922.63328 2722 2607 -1.080334186554e-05 2723 2607 439820.6129002 2733 2607 -20039396.92541 2734 2607 -11944444.44837 2735 2607 -8444910.309145 2736 2607 -74762019.75572 2737 2607 2.533197402954e-07 2738 2607 -53703252.3277 2739 2607 -30778677.45218 2740 2607 11944444.44836 2741 2607 -18340743.64572 2608 2608 673225551.0007 2609 2608 -84443270.91034 2610 2608 -1.353025436401e-05 2611 2608 -92146776.52992 2612 2608 43066079.89948 2622 2608 -47777777.76993 2623 2608 -58377882.05435 2624 2608 9394297.757917 2625 2608 5.662441253662e-06 2626 2608 24807818.43265 2627 2608 -21110817.73799 2628 2608 47777777.76992 2629 2608 -59427300.65882 2630 2608 11716519.98007 2700 2608 11944444.44837 2701 2608 -16019732.12234 2702 2608 -7635451.454545 2703 2608 3.337860107422e-06 2704 2608 -19412223.56332 2705 2608 -5277708.208769 2706 2608 -11944444.44837 2707 2608 -26234303.34662 2708 2608 12913159.66331 2715 2608 5.125999450684e-06 2716 2608 -29094034.58311 2717 2608 -31702916.914 2718 2608 4.351139068604e-06 2719 2608 60226824.62697 2720 2608 -21110832.82468 2721 2608 -9.95397567749e-06 2722 2608 -71001738.06458 2723 2608 52813749.73867 2733 2608 -11944444.44837 2734 2608 -16455848.40155 2735 2608 -8163229.232496 2736 2608 -8.195638656616e-07 2737 2608 -22206107.28377 2738 2608 -5277708.20877 2739 2608 11944444.44836 2740 2608 -27195128.92833 2741 2608 13440937.44126 2609 2609 729298788.5117 2610 2609 1759283.707934 2611 2609 41377191.01087 2612 2609 48367727.64837 2622 2609 19043969.25406 2623 2609 9605408.869306 2624 2609 -22428183.64302 2625 2609 -2463011.858771 2626 2609 -21110817.73799 2627 2609 38554054.16679 2628 2609 -20539364.07277 2629 2609 11505408.86868 2630 2609 -25226633.25495 2700 2609 8005089.696258 2701 2609 -7635451.454545 2702 2609 -9407733.938713 2703 2609 51680080.98832 2704 2609 -5277708.208769 2705 2609 -58666023.42418 2706 2609 17900923.03284 2707 2609 12913159.66331 2708 2609 -36646590.5368 2715 2609 439820.6128855 2716 2609 -31491805.80303 2717 2609 -4060894.923526 2718 2609 1759282.450699 2719 2609 -21110832.82468 2720 2609 -105887547.9636 2721 2609 439820.6129005 2722 2609 52602638.6277 2723 2609 -115814770.8741 2733 2609 -8444910.309145 2734 2609 -8163229.232496 2735 2609 -10570710.68328 2736 2609 -53439363.43899 2737 2609 -5277708.20877 2738 2609 -66116380.01208 2739 2609 -18340743.64572 2740 2609 13440937.44126 2741 2609 -39208792.08802 2610 2610 852898004.744 2611 2610 47822261.56058 2612 2610 23750813.775 2613 2610 10663984.89933 2614 2610 -47795571.28619 2615 2610 20811196.16841 2625 2610 -72712122.80639 2626 2610 -47777777.76993 2627 2610 18780080.36483 2628 2610 -185415908.7468 2629 2610 4.678964614868e-06 2630 2610 -4574122.969536 2631 2610 -73761541.41083 2632 2610 47777777.76992 2633 2610 -20803252.962 2703 2610 -19603280.6462 2704 2610 11944444.44837 2705 2610 8005089.696258 2706 2610 -85740387.93072 2707 2610 -11950439.90077 2708 2610 47775096.06898 2718 2610 16294780.8482 2719 2610 4.217028617859e-06 2720 2610 439820.6128852 2721 2610 112006329.4708 2722 2610 11954436.86906 2723 2610 5935349.843305 2724 2610 -36979414.9719 2725 2610 -11948441.41664 2726 2610 18346879.03149 2736 2610 -20039396.92541 2737 2610 -11944444.44837 2738 2610 -8444910.309145 2739 2610 -74762019.75572 2740 2610 2.533197402954e-07 2741 2610 -53703252.3277 2742 2610 -30778677.45218 2743 2610 11944444.44836 2744 2610 -18340743.64572 2611 2611 723869819.0551 2612 2611 -65442952.40696 2613 2611 -47804468.04432 2614 2611 -156592606.5887 2615 2611 35894402.90473 2625 2611 -47777777.76993 2626 2611 -58377882.05435 2627 2611 9394297.757917 2628 2611 5.662441253662e-06 2629 2611 24807818.43265 2630 2611 -21110817.73799 2631 2611 47777777.76992 2632 2611 -59427300.65882 2633 2611 11716519.98007 2703 2611 11944444.44837 2704 2611 -16019732.12234 2705 2611 -7635451.454545 2706 2611 -11948441.41664 2707 2611 -29588436.2443 2708 2611 4682155.144749 2718 2611 5.125999450684e-06 2719 2611 -29094034.58311 2720 2611 -31702916.914 2721 2611 11954436.86906 2722 2611 79749895.91067 2723 2611 -16362631.77783 2724 2611 -11950439.90078 2725 2611 -78792675.71048 2726 2611 51029508.03613 2736 2611 -11944444.44837 2737 2611 -16455848.40155 2738 2611 -8163229.232496 2739 2611 -8.195638656616e-07 2740 2611 -22206107.28377 2741 2611 -5277708.20877 2742 2611 11944444.44836 2743 2611 -27195128.92833 2744 2611 13440937.44126 2612 2612 730917912.008 2613 2612 20551278.88239 2614 2612 40119834.77044 2615 2612 9888833.293587 2625 2612 19043969.25406 2626 2612 9605408.869306 2627 2612 -22428183.64302 2628 2612 -2463011.858771 2629 2612 -21110817.73799 2630 2612 38554054.16679 2631 2612 -20539364.07277 2632 2612 11505408.86868 2633 2612 -25226633.25495 2703 2612 8005089.696258 2704 2612 -7635451.454545 2705 2612 -9407733.938713 2706 2612 47510397.70207 2707 2612 3205506.989851 2708 2612 -52478548.16204 2718 2612 439820.6128855 2719 2612 -31491805.80303 2720 2612 -4060894.923526 2721 2612 5939756.113784 2722 2612 -16359106.80793 2723 2612 -87179377.66603 2724 2612 18349946.72438 2725 2612 52296851.6274 2726 2612 -103249742.1615 2736 2612 -8444910.309145 2737 2612 -8163229.232496 2738 2612 -10570710.68328 2739 2612 -53439363.43899 2740 2612 -5277708.20877 2741 2612 -66116380.01208 2742 2612 -18340743.64572 2743 2612 13440937.44126 2744 2612 -39208792.08802 2613 2613 404739861.6568 2614 2613 -11848182.92845 2615 2613 -7247227.153557 2628 2613 -72712122.80639 2629 2613 -47777777.76993 2630 2613 18780080.36483 2631 2613 -131522618.6576 2632 2613 11758507.45862 2633 2613 -2246788.336919 2634 2613 -71992455.07851 2635 2613 38311897.68579 2636 2613 -2118024.903648 2706 2613 1532382.642161 2707 2613 14339328.79045 2708 2613 9874015.186731 2721 2613 -4845636.536104 2722 2613 -11950439.90078 2723 2613 -8009104.879749 2724 2613 45154799.16275 2725 2613 -1984038.076042 2726 2613 5318188.302819 2739 2613 -20039396.92541 2740 2613 -11944444.44837 2741 2613 -8444910.309145 2742 2613 -54446261.20618 2743 2613 1964829.816336 2744 2613 -37868990.52104 2745 2613 -20832796.07979 2746 2613 9574763.8184 2747 2613 -4947522.887458 2614 2614 486884655.0059 2615 2614 -56349720.67878 2628 2614 -47777777.76993 2629 2614 -58377882.05435 2630 2614 9394297.757917 2631 2614 11713669.72369 2632 2614 66482451.11392 2633 2614 -13793542.99022 2634 2614 57467846.52868 2635 2614 -199219967.4632 2636 2614 12610421.48169 2706 2614 9559552.526969 2707 2614 1532382.642157 2708 2614 -5266148.137347 2721 2614 -11948441.41664 2722 2614 -46658897.27468 2723 2614 -32026328.33686 2724 2614 -1984038.076043 2725 2614 60242385.44579 2726 2614 -8284128.881153 2739 2614 -11944444.44837 2740 2614 -16455848.40155 2741 2614 -8163229.232496 2742 2614 1955225.686481 2743 2614 -4515066.791966 2744 2614 -1847868.948734 2745 2614 14362145.7276 2746 2614 -47621864.56235 2747 2614 20366850.75772 2615 2615 414669440.4442 2628 2615 19043969.25406 2629 2615 9605408.869306 2630 2615 -22428183.64302 2631 2615 -6993796.082146 2632 2615 -12945585.99015 2633 2615 33760011.09959 2634 2615 -3177037.355472 2635 2615 11767430.40646 2636 2615 -64752367.82467 2706 2615 6582676.791154 2707 2615 -7899222.206021 2708 2615 4086353.712421 2721 2615 -8007766.485252 2722 2615 -33293672.07046 2723 2615 -17559666.33271 2724 2615 -9638402.083643 2725 2615 -20236111.15782 2726 2615 -45956057.35504 2739 2615 -8444910.309145 2740 2615 -8163229.232496 2741 2615 -10570710.68328 2742 2615 -39187801.2437 2743 2615 -1627591.468903 2744 2615 -43839955.45809 2745 2615 -7421284.331187 2746 2615 18388546.96739 2747 2615 -28765054.39688 2616 2616 787899476.9604 2617 2616 2.861022949219e-05 2618 2616 7037134.828232 2619 2616 89408469.17376 2620 2616 -1.275539398193e-05 2621 2616 1759283.707933 2637 2616 -185415908.7468 2638 2616 4.678964614868e-06 2639 2616 -4574122.969536 2640 2616 -73761541.41083 2641 2616 47777777.76992 2642 2616 -20803252.962 2709 2616 -71968136.03531 2710 2616 4.157423973083e-06 2711 2616 51943969.87703 2712 2616 -29817851.87049 2713 2616 -11944444.44837 2714 2616 17900923.03284 2727 2616 88895212.80375 2728 2616 4.112720489502e-06 2729 2616 1759282.450699 2730 2616 -25612922.63328 2731 2616 -1.080334186554e-05 2732 2616 439820.6129002 2748 2616 -74762019.75572 2749 2616 2.533197402954e-07 2750 2616 -53703252.3277 2751 2616 -30778677.45218 2752 2616 11944444.44836 2753 2616 -18340743.64572 2617 2617 673225551.0007 2618 2617 -84443270.91034 2619 2617 -1.353025436401e-05 2620 2617 -92146776.52992 2621 2617 43066079.89948 2637 2617 5.662441253662e-06 2638 2617 24807818.43265 2639 2617 -21110817.73799 2640 2617 47777777.76992 2641 2617 -59427300.65882 2642 2617 11716519.98007 2709 2617 3.337860107422e-06 2710 2617 -19412223.56332 2711 2617 -5277708.208769 2712 2617 -11944444.44837 2713 2617 -26234303.34662 2714 2617 12913159.66331 2727 2617 4.351139068604e-06 2728 2617 60226824.62697 2729 2617 -21110832.82468 2730 2617 -9.95397567749e-06 2731 2617 -71001738.06458 2732 2617 52813749.73867 2748 2617 -8.195638656616e-07 2749 2617 -22206107.28377 2750 2617 -5277708.20877 2751 2617 11944444.44836 2752 2617 -27195128.92833 2753 2617 13440937.44126 2618 2618 729298788.5117 2619 2618 1759283.707934 2620 2618 41377191.01087 2621 2618 48367727.64837 2637 2618 -2463011.858771 2638 2618 -21110817.73799 2639 2618 38554054.16679 2640 2618 -20539364.07277 2641 2618 11505408.86868 2642 2618 -25226633.25495 2709 2618 51680080.98832 2710 2618 -5277708.208769 2711 2618 -58666023.42418 2712 2618 17900923.03284 2713 2618 12913159.66331 2714 2618 -36646590.5368 2727 2618 1759282.450699 2728 2618 -21110832.82468 2729 2618 -105887547.9636 2730 2618 439820.6129005 2731 2618 52602638.6277 2732 2618 -115814770.8741 2748 2618 -53439363.43899 2749 2618 -5277708.20877 2750 2618 -66116380.01208 2751 2618 -18340743.64572 2752 2618 13440937.44126 2753 2618 -39208792.08802 2619 2619 787899476.9604 2620 2619 2.861022949219e-05 2621 2619 7037134.828232 2622 2619 89408469.17376 2623 2619 -1.275539398193e-05 2624 2619 1759283.707933 2637 2619 -72712122.80639 2638 2619 -47777777.76993 2639 2619 18780080.36483 2640 2619 -185415908.7468 2641 2619 4.678964614868e-06 2642 2619 -4574122.969536 2643 2619 -73761541.41083 2644 2619 47777777.76992 2645 2619 -20803252.962 2709 2619 -19603280.6462 2710 2619 11944444.44837 2711 2619 8005089.696258 2712 2619 -71968136.03531 2713 2619 4.157423973083e-06 2714 2619 51943969.87703 2715 2619 -29817851.87049 2716 2619 -11944444.44837 2717 2619 17900923.03284 2727 2619 16294780.8482 2728 2619 4.217028617859e-06 2729 2619 439820.6128852 2730 2619 88895212.80375 2731 2619 4.112720489502e-06 2732 2619 1759282.450699 2733 2619 -25612922.63328 2734 2619 -1.080334186554e-05 2735 2619 439820.6129002 2748 2619 -20039396.92541 2749 2619 -11944444.44837 2750 2619 -8444910.309145 2751 2619 -74762019.75572 2752 2619 2.533197402954e-07 2753 2619 -53703252.3277 2754 2619 -30778677.45218 2755 2619 11944444.44836 2756 2619 -18340743.64572 2620 2620 673225551.0007 2621 2620 -84443270.91034 2622 2620 -1.353025436401e-05 2623 2620 -92146776.52992 2624 2620 43066079.89948 2637 2620 -47777777.76993 2638 2620 -58377882.05435 2639 2620 9394297.757917 2640 2620 5.662441253662e-06 2641 2620 24807818.43265 2642 2620 -21110817.73799 2643 2620 47777777.76992 2644 2620 -59427300.65882 2645 2620 11716519.98007 2709 2620 11944444.44837 2710 2620 -16019732.12234 2711 2620 -7635451.454545 2712 2620 3.337860107422e-06 2713 2620 -19412223.56332 2714 2620 -5277708.208769 2715 2620 -11944444.44837 2716 2620 -26234303.34662 2717 2620 12913159.66331 2727 2620 5.125999450684e-06 2728 2620 -29094034.58311 2729 2620 -31702916.914 2730 2620 4.351139068604e-06 2731 2620 60226824.62697 2732 2620 -21110832.82468 2733 2620 -9.95397567749e-06 2734 2620 -71001738.06458 2735 2620 52813749.73867 2748 2620 -11944444.44837 2749 2620 -16455848.40155 2750 2620 -8163229.232496 2751 2620 -8.195638656616e-07 2752 2620 -22206107.28377 2753 2620 -5277708.20877 2754 2620 11944444.44836 2755 2620 -27195128.92833 2756 2620 13440937.44126 2621 2621 729298788.5117 2622 2621 1759283.707934 2623 2621 41377191.01087 2624 2621 48367727.64837 2637 2621 19043969.25406 2638 2621 9605408.869306 2639 2621 -22428183.64302 2640 2621 -2463011.858771 2641 2621 -21110817.73799 2642 2621 38554054.16679 2643 2621 -20539364.07277 2644 2621 11505408.86868 2645 2621 -25226633.25495 2709 2621 8005089.696258 2710 2621 -7635451.454545 2711 2621 -9407733.938713 2712 2621 51680080.98832 2713 2621 -5277708.208769 2714 2621 -58666023.42418 2715 2621 17900923.03284 2716 2621 12913159.66331 2717 2621 -36646590.5368 2727 2621 439820.6128855 2728 2621 -31491805.80303 2729 2621 -4060894.923526 2730 2621 1759282.450699 2731 2621 -21110832.82468 2732 2621 -105887547.9636 2733 2621 439820.6129005 2734 2621 52602638.6277 2735 2621 -115814770.8741 2748 2621 -8444910.309145 2749 2621 -8163229.232496 2750 2621 -10570710.68328 2751 2621 -53439363.43899 2752 2621 -5277708.20877 2753 2621 -66116380.01208 2754 2621 -18340743.64572 2755 2621 13440937.44126 2756 2621 -39208792.08802 2622 2622 787899476.9604 2623 2622 2.861022949219e-05 2624 2622 7037134.828232 2625 2622 89408469.17376 2626 2622 -1.275539398193e-05 2627 2622 1759283.707933 2640 2622 -72712122.80639 2641 2622 -47777777.76993 2642 2622 18780080.36483 2643 2622 -185415908.7468 2644 2622 4.678964614868e-06 2645 2622 -4574122.969536 2646 2622 -73761541.41083 2647 2622 47777777.76992 2648 2622 -20803252.962 2712 2622 -19603280.6462 2713 2622 11944444.44837 2714 2622 8005089.696258 2715 2622 -71968136.03531 2716 2622 4.157423973083e-06 2717 2622 51943969.87703 2718 2622 -29817851.87049 2719 2622 -11944444.44837 2720 2622 17900923.03284 2730 2622 16294780.8482 2731 2622 4.217028617859e-06 2732 2622 439820.6128852 2733 2622 88895212.80375 2734 2622 4.112720489502e-06 2735 2622 1759282.450699 2736 2622 -25612922.63328 2737 2622 -1.080334186554e-05 2738 2622 439820.6129002 2751 2622 -20039396.92541 2752 2622 -11944444.44837 2753 2622 -8444910.309145 2754 2622 -74762019.75572 2755 2622 2.533197402954e-07 2756 2622 -53703252.3277 2757 2622 -30778677.45218 2758 2622 11944444.44836 2759 2622 -18340743.64572 2623 2623 673225551.0007 2624 2623 -84443270.91034 2625 2623 -1.353025436401e-05 2626 2623 -92146776.52992 2627 2623 43066079.89948 2640 2623 -47777777.76993 2641 2623 -58377882.05435 2642 2623 9394297.757917 2643 2623 5.662441253662e-06 2644 2623 24807818.43265 2645 2623 -21110817.73799 2646 2623 47777777.76992 2647 2623 -59427300.65882 2648 2623 11716519.98007 2712 2623 11944444.44837 2713 2623 -16019732.12234 2714 2623 -7635451.454545 2715 2623 3.337860107422e-06 2716 2623 -19412223.56332 2717 2623 -5277708.208769 2718 2623 -11944444.44837 2719 2623 -26234303.34662 2720 2623 12913159.66331 2730 2623 5.125999450684e-06 2731 2623 -29094034.58311 2732 2623 -31702916.914 2733 2623 4.351139068604e-06 2734 2623 60226824.62697 2735 2623 -21110832.82468 2736 2623 -9.95397567749e-06 2737 2623 -71001738.06458 2738 2623 52813749.73867 2751 2623 -11944444.44837 2752 2623 -16455848.40155 2753 2623 -8163229.232496 2754 2623 -8.195638656616e-07 2755 2623 -22206107.28377 2756 2623 -5277708.20877 2757 2623 11944444.44836 2758 2623 -27195128.92833 2759 2623 13440937.44126 2624 2624 729298788.5117 2625 2624 1759283.707934 2626 2624 41377191.01087 2627 2624 48367727.64837 2640 2624 19043969.25406 2641 2624 9605408.869306 2642 2624 -22428183.64302 2643 2624 -2463011.858771 2644 2624 -21110817.73799 2645 2624 38554054.16679 2646 2624 -20539364.07277 2647 2624 11505408.86868 2648 2624 -25226633.25495 2712 2624 8005089.696258 2713 2624 -7635451.454545 2714 2624 -9407733.938713 2715 2624 51680080.98832 2716 2624 -5277708.208769 2717 2624 -58666023.42418 2718 2624 17900923.03284 2719 2624 12913159.66331 2720 2624 -36646590.5368 2730 2624 439820.6128855 2731 2624 -31491805.80303 2732 2624 -4060894.923526 2733 2624 1759282.450699 2734 2624 -21110832.82468 2735 2624 -105887547.9636 2736 2624 439820.6129005 2737 2624 52602638.6277 2738 2624 -115814770.8741 2751 2624 -8444910.309145 2752 2624 -8163229.232496 2753 2624 -10570710.68328 2754 2624 -53439363.43899 2755 2624 -5277708.20877 2756 2624 -66116380.01208 2757 2624 -18340743.64572 2758 2624 13440937.44126 2759 2624 -39208792.08802 2625 2625 787899476.9604 2626 2625 2.861022949219e-05 2627 2625 7037134.828232 2628 2625 89408469.17376 2629 2625 -1.275539398193e-05 2630 2625 1759283.707933 2643 2625 -72712122.80639 2644 2625 -47777777.76993 2645 2625 18780080.36483 2646 2625 -185415908.7468 2647 2625 4.678964614868e-06 2648 2625 -4574122.969536 2649 2625 -73761541.41083 2650 2625 47777777.76992 2651 2625 -20803252.962 2715 2625 -19603280.6462 2716 2625 11944444.44837 2717 2625 8005089.696258 2718 2625 -71968136.03531 2719 2625 4.157423973083e-06 2720 2625 51943969.87703 2721 2625 -29817851.87049 2722 2625 -11944444.44837 2723 2625 17900923.03284 2733 2625 16294780.8482 2734 2625 4.217028617859e-06 2735 2625 439820.6128852 2736 2625 88895212.80375 2737 2625 4.112720489502e-06 2738 2625 1759282.450699 2739 2625 -25612922.63328 2740 2625 -1.080334186554e-05 2741 2625 439820.6129002 2754 2625 -20039396.92541 2755 2625 -11944444.44837 2756 2625 -8444910.309145 2757 2625 -74762019.75572 2758 2625 2.533197402954e-07 2759 2625 -53703252.3277 2760 2625 -30778677.45218 2761 2625 11944444.44836 2762 2625 -18340743.64572 2626 2626 673225551.0007 2627 2626 -84443270.91034 2628 2626 -1.353025436401e-05 2629 2626 -92146776.52992 2630 2626 43066079.89948 2643 2626 -47777777.76993 2644 2626 -58377882.05435 2645 2626 9394297.757917 2646 2626 5.662441253662e-06 2647 2626 24807818.43265 2648 2626 -21110817.73799 2649 2626 47777777.76992 2650 2626 -59427300.65882 2651 2626 11716519.98007 2715 2626 11944444.44837 2716 2626 -16019732.12234 2717 2626 -7635451.454545 2718 2626 3.337860107422e-06 2719 2626 -19412223.56332 2720 2626 -5277708.208769 2721 2626 -11944444.44837 2722 2626 -26234303.34662 2723 2626 12913159.66331 2733 2626 5.125999450684e-06 2734 2626 -29094034.58311 2735 2626 -31702916.914 2736 2626 4.351139068604e-06 2737 2626 60226824.62697 2738 2626 -21110832.82468 2739 2626 -9.95397567749e-06 2740 2626 -71001738.06458 2741 2626 52813749.73867 2754 2626 -11944444.44837 2755 2626 -16455848.40155 2756 2626 -8163229.232496 2757 2626 -8.195638656616e-07 2758 2626 -22206107.28377 2759 2626 -5277708.20877 2760 2626 11944444.44836 2761 2626 -27195128.92833 2762 2626 13440937.44126 2627 2627 729298788.5117 2628 2627 1759283.707934 2629 2627 41377191.01087 2630 2627 48367727.64837 2643 2627 19043969.25406 2644 2627 9605408.869306 2645 2627 -22428183.64302 2646 2627 -2463011.858771 2647 2627 -21110817.73799 2648 2627 38554054.16679 2649 2627 -20539364.07277 2650 2627 11505408.86868 2651 2627 -25226633.25495 2715 2627 8005089.696258 2716 2627 -7635451.454545 2717 2627 -9407733.938713 2718 2627 51680080.98832 2719 2627 -5277708.208769 2720 2627 -58666023.42418 2721 2627 17900923.03284 2722 2627 12913159.66331 2723 2627 -36646590.5368 2733 2627 439820.6128855 2734 2627 -31491805.80303 2735 2627 -4060894.923526 2736 2627 1759282.450699 2737 2627 -21110832.82468 2738 2627 -105887547.9636 2739 2627 439820.6129005 2740 2627 52602638.6277 2741 2627 -115814770.8741 2754 2627 -8444910.309145 2755 2627 -8163229.232496 2756 2627 -10570710.68328 2757 2627 -53439363.43899 2758 2627 -5277708.20877 2759 2627 -66116380.01208 2760 2627 -18340743.64572 2761 2627 13440937.44126 2762 2627 -39208792.08802 2628 2628 787899476.9604 2629 2628 2.861022949219e-05 2630 2628 7037134.828232 2631 2628 89408469.17376 2632 2628 -1.275539398193e-05 2633 2628 1759283.707933 2646 2628 -72712122.80639 2647 2628 -47777777.76993 2648 2628 18780080.36483 2649 2628 -185415908.7468 2650 2628 4.678964614868e-06 2651 2628 -4574122.969536 2652 2628 -73761541.41083 2653 2628 47777777.76992 2654 2628 -20803252.962 2718 2628 -19603280.6462 2719 2628 11944444.44837 2720 2628 8005089.696258 2721 2628 -71968136.03531 2722 2628 4.157423973083e-06 2723 2628 51943969.87703 2724 2628 -29817851.87049 2725 2628 -11944444.44837 2726 2628 17900923.03284 2736 2628 16294780.8482 2737 2628 4.217028617859e-06 2738 2628 439820.6128852 2739 2628 88895212.80375 2740 2628 4.112720489502e-06 2741 2628 1759282.450699 2742 2628 -25612922.63328 2743 2628 -1.080334186554e-05 2744 2628 439820.6129002 2757 2628 -20039396.92541 2758 2628 -11944444.44837 2759 2628 -8444910.309145 2760 2628 -74762019.75572 2761 2628 2.533197402954e-07 2762 2628 -53703252.3277 2763 2628 -30778677.45218 2764 2628 11944444.44836 2765 2628 -18340743.64572 2629 2629 673225551.0007 2630 2629 -84443270.91034 2631 2629 -1.353025436401e-05 2632 2629 -92146776.52992 2633 2629 43066079.89948 2646 2629 -47777777.76993 2647 2629 -58377882.05435 2648 2629 9394297.757917 2649 2629 5.662441253662e-06 2650 2629 24807818.43265 2651 2629 -21110817.73799 2652 2629 47777777.76992 2653 2629 -59427300.65882 2654 2629 11716519.98007 2718 2629 11944444.44837 2719 2629 -16019732.12234 2720 2629 -7635451.454545 2721 2629 3.337860107422e-06 2722 2629 -19412223.56332 2723 2629 -5277708.208769 2724 2629 -11944444.44837 2725 2629 -26234303.34662 2726 2629 12913159.66331 2736 2629 5.125999450684e-06 2737 2629 -29094034.58311 2738 2629 -31702916.914 2739 2629 4.351139068604e-06 2740 2629 60226824.62697 2741 2629 -21110832.82468 2742 2629 -9.95397567749e-06 2743 2629 -71001738.06458 2744 2629 52813749.73867 2757 2629 -11944444.44837 2758 2629 -16455848.40155 2759 2629 -8163229.232496 2760 2629 -8.195638656616e-07 2761 2629 -22206107.28377 2762 2629 -5277708.20877 2763 2629 11944444.44836 2764 2629 -27195128.92833 2765 2629 13440937.44126 2630 2630 729298788.5117 2631 2630 1759283.707934 2632 2630 41377191.01087 2633 2630 48367727.64837 2646 2630 19043969.25406 2647 2630 9605408.869306 2648 2630 -22428183.64302 2649 2630 -2463011.858771 2650 2630 -21110817.73799 2651 2630 38554054.16679 2652 2630 -20539364.07277 2653 2630 11505408.86868 2654 2630 -25226633.25495 2718 2630 8005089.696258 2719 2630 -7635451.454545 2720 2630 -9407733.938713 2721 2630 51680080.98832 2722 2630 -5277708.208769 2723 2630 -58666023.42418 2724 2630 17900923.03284 2725 2630 12913159.66331 2726 2630 -36646590.5368 2736 2630 439820.6128855 2737 2630 -31491805.80303 2738 2630 -4060894.923526 2739 2630 1759282.450699 2740 2630 -21110832.82468 2741 2630 -105887547.9636 2742 2630 439820.6129005 2743 2630 52602638.6277 2744 2630 -115814770.8741 2757 2630 -8444910.309145 2758 2630 -8163229.232496 2759 2630 -10570710.68328 2760 2630 -53439363.43899 2761 2630 -5277708.20877 2762 2630 -66116380.01208 2763 2630 -18340743.64572 2764 2630 13440937.44126 2765 2630 -39208792.08802 2631 2631 680142840.8764 2632 2631 13175247.2066 2633 2631 6382789.174558 2634 2631 -82619272.09145 2635 2631 -81460003.59595 2636 2631 4837026.623929 2649 2631 -72712122.80639 2650 2631 -47777777.76993 2651 2631 18780080.36483 2652 2631 -131943732.0842 2653 2631 25894289.31629 2654 2631 -1690287.649399 2655 2631 -44746568.51674 2656 2631 30676797.34938 2657 2631 -2534802.781049 2721 2631 -19603280.6462 2722 2631 11944444.44837 2723 2631 8005089.696258 2724 2631 -51389094.80041 2725 2631 1955225.686484 2726 2631 35595150.68861 2739 2631 16294780.8482 2740 2631 4.217028617859e-06 2741 2631 439820.6128852 2742 2631 89751427.48146 2743 2631 3388998.455101 2744 2631 1627256.23664 2745 2631 -37804191.87041 2746 2631 -19718417.92848 2747 2631 14356015.6679 2760 2631 -20039396.92541 2761 2631 -11944444.44837 2762 2631 -8444910.309145 2763 2631 -60532186.86274 2764 2631 6145877.671103 2765 2631 -45375800.4239 2766 2631 -19078219.62127 2767 2631 8228316.115794 2768 2631 -6175963.728574 2632 2632 735751686.9788 2633 2632 -52100622.42778 2634 2632 -81504841.33087 2635 2632 -266648531.6403 2636 2632 10310073.83947 2649 2632 -47777777.76993 2650 2632 -58377882.05435 2651 2632 9394297.757917 2652 2632 25894289.31629 2653 2632 34891492.87158 2654 2632 -10707202.07691 2655 2632 30676797.34938 2656 2632 -128279685.5979 2657 2632 5700516.123451 2721 2632 11944444.44837 2722 2632 -16019732.12234 2723 2632 -7635451.454545 2724 2632 1964829.816337 2725 2632 -1457900.386174 2726 2632 -5080618.041869 2739 2632 5.125999450684e-06 2740 2632 -29094034.58311 2741 2632 -31702916.914 2742 2632 3388998.455098 2743 2632 100011639.1232 2744 2632 -13368588.23948 2745 2632 -19728022.05833 2746 2632 -83236811.85808 2747 2632 44683227.92718 2760 2632 -11944444.44837 2761 2632 -16455848.40155 2762 2632 -8163229.232496 2763 2632 6145877.671102 2764 2632 -17818422.88929 2765 2632 3275933.400212 2766 2632 8228316.115794 2767 2632 -38329051.2794 2768 2632 18012970.71223 2633 2633 621822217.5976 2634 2633 4840483.520374 2635 2633 10313958.28093 2636 2633 -53773245.36454 2649 2633 19043969.25406 2650 2633 9605408.869306 2651 2633 -22428183.64302 2652 2633 -6440287.64862 2653 2633 -10707202.07691 2654 2633 45832031.608 2655 2633 -2534802.780529 2656 2633 5700516.123451 2657 2633 -29032713.73637 2721 2633 8005089.696258 2722 2633 -7635451.454545 2723 2633 -9407733.938713 2724 2633 36913961.41127 2725 2633 -5283969.107957 2726 2633 -35687511.70929 2739 2633 439820.6128855 2740 2633 -31491805.80303 2741 2633 -4060894.923526 2742 2633 1636068.847779 2743 2633 -13361537.70386 2744 2633 -62110956.49564 2745 2633 14361165.99813 2746 2633 44679081.42414 2747 2633 -62517889.38316 2760 2633 -8444910.309145 2761 2633 -8163229.232496 2762 2633 -10570710.68328 2763 2633 -46695244.86759 2764 2633 3275933.401367 2765 2633 -60107504.48815 2766 2633 -6175963.728574 2767 2633 18012970.71223 2768 2633 -28603898.10301 2634 2634 495839808.9306 2635 2634 16337513.03765 2636 2634 47664.71513438 2652 2634 -75700660.41266 2653 2634 -45408902.36255 2654 2634 2674577.975484 2655 2634 -30456445.17167 2656 2634 36813695.54339 2657 2634 -1688029.935787 2658 2634 60889192.4204 2659 2634 -23523603.93206 2660 2634 -12036.74060798 2661 2634 -19031852.31565 2662 2634 39818292.51576 2663 2634 -574511.0673158 2724 2634 -17479931.67357 2725 2634 14362145.7276 2726 2634 5833486.609719 2742 2634 -31941173.76503 2743 2634 -19728022.05833 2744 2634 -12009716.04913 2745 2634 24089286.29196 2746 2634 3839092.775206 2747 2634 10350875.53811 2763 2634 -25149760.01167 2764 2634 -11436618.24716 2765 2634 -12495973.82755 2766 2634 -53221395.58403 2767 2634 8623814.868827 2768 2634 -52049556.20671 2769 2634 -15616531.23755 2770 2634 -5720032.851413 2771 2634 11718275.57488 2772 2634 -19138192.52839 2773 2634 10059619.78527 2774 2634 -12797947.19522 2635 2635 714233526.3379 2636 2635 -17784727.63113 2652 2635 -45408902.36255 2653 2635 -40143456.5852 2654 2635 121080.7303977 2655 2635 36813695.54338 2656 2635 141843299.2925 2657 2635 -3656369.598247 2658 2635 -4412492.824084 2659 2635 -31730042.91106 2660 2635 420993.0422516 2661 2635 39818292.51576 2662 2635 -41406510.74943 2663 2635 495848.037314 2724 2635 9574763.8184 2725 2635 -44269000.15613 2726 2635 -13244377.7058 2742 2635 -19718417.92848 2743 2635 -77373793.75269 2744 2635 -39681478.38126 2745 2635 3839092.775206 2746 2635 72806765.35626 2747 2635 -2276323.108396 2763 2635 -11436618.24716 2764 2635 -16666806.57997 2765 2635 -10481763.82233 2766 2635 8623814.868826 2767 2635 -9785420.099232 2768 2635 5243568.66829 2769 2635 -942255.0720671 2770 2635 -38793986.71761 2771 2635 33437788.15322 2772 2635 10059619.78527 2773 2635 -24375456.5589 2774 2635 16788670.00494 2636 2636 601702510.7098 2652 2636 2674577.975744 2653 2636 121080.7306057 2654 2636 -12802814.23482 2655 2636 -1688029.935786 2656 2636 -3656369.598247 2657 2636 151283500.6691 2658 2636 -12036.74060512 2659 2636 420993.0422515 2660 2636 94679889.0428 2661 2636 -574511.067056 2662 2636 495848.037314 2663 2636 22138037.08526 2724 2636 3888991.073146 2725 2636 -14800902.31119 2726 2636 -19824082.64697 2742 2636 -12006053.84798 2743 2636 -39687207.82015 2744 2636 -46883174.43545 2745 2636 -10308568.90294 2746 2636 -5821027.16094 2747 2636 -112164251.0942 2763 2636 -12495973.82755 2764 2636 -10481763.82233 2765 2636 -19781022.96801 2766 2636 -52049556.20697 2767 2636 5243568.669446 2768 2636 -79607627.60272 2769 2636 3593275.573656 2770 2636 33437788.15322 2771 2636 -58989344.86761 2772 2636 -12797947.19522 2773 2636 16788670.00494 2774 2636 -31971025.74039 2637 2637 393809815.9996 2638 2637 1.168251037598e-05 2639 2637 -1759210.362797 2640 2637 44686744.27678 2641 2637 9555555.553978 2642 2637 -3738413.701805 2727 2637 -71968136.03531 2728 2637 4.157423973083e-06 2729 2637 51943969.87703 2730 2637 -29817851.87049 2731 2637 -11944444.44837 2732 2637 17900923.03284 2748 2637 44430116.09181 2749 2637 1.907348632813e-06 2750 2637 -10318414.32804 2751 2637 -12806461.31664 2752 2637 2388888.889668 2753 2637 -3404256.361406 2638 2638 336472853.0197 2639 2638 -42221635.45517 2640 2638 -9555555.553992 2641 2638 -46090878.57506 2642 2638 21321928.83866 2727 2638 3.337860107422e-06 2728 2638 -19412223.56332 2729 2638 -5277708.208769 2730 2638 -11944444.44837 2731 2638 -26234303.34662 2732 2638 12913159.66331 2748 2638 2.861022949219e-06 2749 2638 30095922.00342 2750 2638 -10555416.41234 2751 2638 -2388888.889678 2752 2638 -35500869.03229 2753 2638 26354097.09154 2639 2639 364276267.6409 2640 2639 4178252.963561 2641 2639 20899706.61651 2642 2639 24137222.99725 2727 2639 51680080.98832 2728 2639 -5277708.208769 2729 2639 -58666023.42418 2730 2639 17900923.03284 2731 2639 12913159.66331 2732 2639 -36646590.5368 2748 2639 10758252.33516 2749 2639 -10555416.41234 2750 2639 -52990414.80866 2751 2639 3844076.974307 2752 2639 26354097.09164 2753 2639 -57907385.43707 2640 2640 393809815.9996 2641 2640 1.168251037598e-05 2642 2640 -1759210.362797 2643 2640 44686744.27678 2644 2640 9555555.553978 2645 2640 -3738413.701805 2727 2640 -19603280.6462 2728 2640 11944444.44837 2729 2640 8005089.696258 2730 2640 -71968136.03531 2731 2640 4.157423973083e-06 2732 2640 51943969.87703 2733 2640 -29817851.87049 2734 2640 -11944444.44837 2735 2640 17900923.03284 2748 2640 8147390.424101 2749 2640 -2388888.889671 2750 2640 -1425089.694098 2751 2640 44430116.09181 2752 2640 1.907348632813e-06 2753 2640 -10318414.32804 2754 2640 -12806461.31664 2755 2640 2388888.889668 2756 2640 -3404256.361406 2641 2641 336472853.0197 2642 2641 -42221635.45517 2643 2641 -9555555.553992 2644 2641 -46090878.57506 2645 2641 21321928.83866 2727 2641 11944444.44837 2728 2641 -16019732.12234 2729 2641 -7635451.454545 2730 2641 3.337860107422e-06 2731 2641 -19412223.56332 2732 2641 -5277708.208769 2733 2641 -11944444.44837 2734 2641 -26234303.34662 2735 2641 12913159.66331 2748 2641 2388888.889676 2749 2641 -14547017.29156 2750 2641 -15798680.67921 2751 2641 2.861022949219e-06 2752 2641 30095922.00342 2753 2641 -10555416.41234 2754 2641 -2388888.889678 2755 2641 -35500869.03229 2756 2641 26354097.09154 2642 2642 364276267.6409 2643 2642 4178252.963561 2644 2642 20899706.61651 2645 2642 24137222.99725 2727 2642 8005089.696258 2728 2642 -7635451.454545 2729 2642 -9407733.938713 2730 2642 51680080.98832 2731 2642 -5277708.208769 2732 2642 -58666023.42418 2733 2642 17900923.03284 2734 2642 12913159.66331 2735 2642 -36646590.5368 2748 2642 1864910.306983 2749 2642 -15798680.67931 2750 2642 -2030447.461764 2751 2642 10758252.33516 2752 2642 -10555416.41234 2753 2642 -52990414.80866 2754 2642 3844076.974307 2755 2642 26354097.09164 2756 2642 -57907385.43707 2643 2643 393809815.9996 2644 2643 1.168251037598e-05 2645 2643 -1759210.362797 2646 2643 44686744.27678 2647 2643 9555555.553978 2648 2643 -3738413.701805 2730 2643 -19603280.6462 2731 2643 11944444.44837 2732 2643 8005089.696258 2733 2643 -71968136.03531 2734 2643 4.157423973083e-06 2735 2643 51943969.87703 2736 2643 -29817851.87049 2737 2643 -11944444.44837 2738 2643 17900923.03284 2751 2643 8147390.424101 2752 2643 -2388888.889671 2753 2643 -1425089.694098 2754 2643 44430116.09181 2755 2643 1.907348632813e-06 2756 2643 -10318414.32804 2757 2643 -12806461.31664 2758 2643 2388888.889668 2759 2643 -3404256.361406 2644 2644 336472853.0197 2645 2644 -42221635.45517 2646 2644 -9555555.553992 2647 2644 -46090878.57506 2648 2644 21321928.83866 2730 2644 11944444.44837 2731 2644 -16019732.12234 2732 2644 -7635451.454545 2733 2644 3.337860107422e-06 2734 2644 -19412223.56332 2735 2644 -5277708.208769 2736 2644 -11944444.44837 2737 2644 -26234303.34662 2738 2644 12913159.66331 2751 2644 2388888.889676 2752 2644 -14547017.29156 2753 2644 -15798680.67921 2754 2644 2.861022949219e-06 2755 2644 30095922.00342 2756 2644 -10555416.41234 2757 2644 -2388888.889678 2758 2644 -35500869.03229 2759 2644 26354097.09154 2645 2645 364276267.6409 2646 2645 4178252.963561 2647 2645 20899706.61651 2648 2645 24137222.99725 2730 2645 8005089.696258 2731 2645 -7635451.454545 2732 2645 -9407733.938713 2733 2645 51680080.98832 2734 2645 -5277708.208769 2735 2645 -58666023.42418 2736 2645 17900923.03284 2737 2645 12913159.66331 2738 2645 -36646590.5368 2751 2645 1864910.306983 2752 2645 -15798680.67931 2753 2645 -2030447.461764 2754 2645 10758252.33516 2755 2645 -10555416.41234 2756 2645 -52990414.80866 2757 2645 3844076.974307 2758 2645 26354097.09164 2759 2645 -57907385.43707 2646 2646 393809815.9996 2647 2646 1.168251037598e-05 2648 2646 -1759210.362797 2649 2646 44686744.27678 2650 2646 9555555.553978 2651 2646 -3738413.701805 2733 2646 -19603280.6462 2734 2646 11944444.44837 2735 2646 8005089.696258 2736 2646 -71968136.03531 2737 2646 4.157423973083e-06 2738 2646 51943969.87703 2739 2646 -29817851.87049 2740 2646 -11944444.44837 2741 2646 17900923.03284 2754 2646 8147390.424101 2755 2646 -2388888.889671 2756 2646 -1425089.694098 2757 2646 44430116.09181 2758 2646 1.907348632813e-06 2759 2646 -10318414.32804 2760 2646 -12806461.31664 2761 2646 2388888.889668 2762 2646 -3404256.361406 2647 2647 336472853.0197 2648 2647 -42221635.45517 2649 2647 -9555555.553992 2650 2647 -46090878.57506 2651 2647 21321928.83866 2733 2647 11944444.44837 2734 2647 -16019732.12234 2735 2647 -7635451.454545 2736 2647 3.337860107422e-06 2737 2647 -19412223.56332 2738 2647 -5277708.208769 2739 2647 -11944444.44837 2740 2647 -26234303.34662 2741 2647 12913159.66331 2754 2647 2388888.889676 2755 2647 -14547017.29156 2756 2647 -15798680.67921 2757 2647 2.861022949219e-06 2758 2647 30095922.00342 2759 2647 -10555416.41234 2760 2647 -2388888.889678 2761 2647 -35500869.03229 2762 2647 26354097.09154 2648 2648 364276267.6409 2649 2648 4178252.963561 2650 2648 20899706.61651 2651 2648 24137222.99725 2733 2648 8005089.696258 2734 2648 -7635451.454545 2735 2648 -9407733.938713 2736 2648 51680080.98832 2737 2648 -5277708.208769 2738 2648 -58666023.42418 2739 2648 17900923.03284 2740 2648 12913159.66331 2741 2648 -36646590.5368 2754 2648 1864910.306983 2755 2648 -15798680.67931 2756 2648 -2030447.461764 2757 2648 10758252.33516 2758 2648 -10555416.41234 2759 2648 -52990414.80866 2760 2648 3844076.974307 2761 2648 26354097.09164 2762 2648 -57907385.43707 2649 2649 393809815.9996 2650 2649 1.168251037598e-05 2651 2649 -1759210.362797 2652 2649 44686744.27678 2653 2649 9555555.553978 2654 2649 -3738413.701805 2736 2649 -19603280.6462 2737 2649 11944444.44837 2738 2649 8005089.696258 2739 2649 -71968136.03531 2740 2649 4.157423973083e-06 2741 2649 51943969.87703 2742 2649 -29817851.87049 2743 2649 -11944444.44837 2744 2649 17900923.03284 2757 2649 8147390.424101 2758 2649 -2388888.889671 2759 2649 -1425089.694098 2760 2649 44430116.09181 2761 2649 1.907348632813e-06 2762 2649 -10318414.32804 2763 2649 -12806461.31664 2764 2649 2388888.889668 2765 2649 -3404256.361406 2650 2650 336472853.0197 2651 2650 -42221635.45517 2652 2650 -9555555.553992 2653 2650 -46090878.57506 2654 2650 21321928.83866 2736 2650 11944444.44837 2737 2650 -16019732.12234 2738 2650 -7635451.454545 2739 2650 3.337860107422e-06 2740 2650 -19412223.56332 2741 2650 -5277708.208769 2742 2650 -11944444.44837 2743 2650 -26234303.34662 2744 2650 12913159.66331 2757 2650 2388888.889676 2758 2650 -14547017.29156 2759 2650 -15798680.67921 2760 2650 2.861022949219e-06 2761 2650 30095922.00342 2762 2650 -10555416.41234 2763 2650 -2388888.889678 2764 2650 -35500869.03229 2765 2650 26354097.09154 2651 2651 364276267.6409 2652 2651 4178252.963561 2653 2651 20899706.61651 2654 2651 24137222.99725 2736 2651 8005089.696258 2737 2651 -7635451.454545 2738 2651 -9407733.938713 2739 2651 51680080.98832 2740 2651 -5277708.208769 2741 2651 -58666023.42418 2742 2651 17900923.03284 2743 2651 12913159.66331 2744 2651 -36646590.5368 2757 2651 1864910.306983 2758 2651 -15798680.67931 2759 2651 -2030447.461764 2760 2651 10758252.33516 2761 2651 -10555416.41234 2762 2651 -52990414.80866 2763 2651 3844076.974307 2764 2651 26354097.09164 2765 2651 -57907385.43707 2652 2652 384444228.8383 2653 2652 2369408.517209 2654 2652 14989331.54212 2655 2652 6285692.86603 2656 2652 -21077017.68688 2657 2652 1443044.794795 2739 2652 -19603280.6462 2740 2652 11944444.44837 2741 2652 8005089.696258 2742 2652 -57207507.5192 2743 2652 6145877.671107 2744 2652 43364477.33833 2745 2652 -26546695.73564 2746 2652 -11436618.24716 2747 2652 13848470.62555 2760 2652 8147390.424101 2761 2652 -2388888.889671 2762 2652 -1425089.694098 2763 2652 41725581.05413 2764 2652 507938.7214912 2765 2652 -6453256.604583 2766 2652 -15664036.02673 2767 2652 -4772753.704127 2768 2652 5360864.194452 2653 2653 348340478.4061 2654 2653 -25212175.28334 2655 2653 -40188128.79485 2656 2653 -83559603.38511 2657 2653 4659847.811131 2739 2653 11944444.44837 2740 2653 -16019732.12234 2741 2653 -7635451.454545 2742 2653 6145877.671106 2743 2653 -14493743.54572 2744 2653 -8981011.042271 2745 2653 -11436618.24716 2746 2653 -18063742.30393 2747 2653 10594625.07348 2760 2653 2388888.889676 2761 2653 -14547017.29156 2762 2653 -15798680.67921 2763 2653 507938.7214905 2764 2653 32293290.44228 2765 2653 -6540775.042003 2766 2653 -9550531.483474 2767 2653 -38317603.62825 2768 2653 28361293.14454 2654 2654 356913639.2484 2655 2654 3026378.127865 2656 2654 4659847.811131 2657 2654 21841839.16531 2739 2654 8005089.696258 2740 2654 -7635451.454545 2741 2654 -9407733.938713 2742 2654 44683921.78504 2743 2654 -8981011.041011 2744 2654 -51241692.90527 2745 2654 13848470.62555 2746 2654 10594625.07348 2747 2654 -23506184.8986 2760 2654 1864910.306983 2761 2654 -15798680.67931 2762 2654 -2030447.461764 2763 2654 14622854.50307 2764 2654 -6540775.042003 2765 2654 -55780885.41815 2766 2654 11025586.41696 2767 2654 28361293.14339 2768 2654 -42429184.57622 2655 2655 392073206.9466 2656 2655 36749235.99511 2657 2655 -1748582.371002 2658 2655 -92329333.78509 2659 2655 -55737263.0241 2660 2655 744933.3770267 2661 2655 15757620.62389 2662 2655 -8314337.068925 2663 2655 88992.47062683 2742 2655 -16305861.25464 2743 2655 8228316.115794 2744 2655 4847647.38616 2745 2655 -52398287.78342 2746 2655 8623814.868829 2747 2655 51247665.9983 2763 2655 -10942417.8914 2764 2655 -9550531.483475 2765 2655 -9564135.802965 2766 2655 13533800.67906 2767 2655 8346935.407593 2768 2655 -10722054.94328 2769 2655 -36706081.42304 2770 2655 -13829269.11147 2771 2655 20496497.26015 2772 2655 -20473238.80768 2773 2655 -1819265.797273 2774 2655 5144935.657537 2656 2656 462078895.6081 2657 2656 -8762241.479656 2658 2656 -55737263.0241 2659 2656 -68893066.30047 2660 2656 495848.0373137 2661 2656 -27425448.1769 2662 2656 -76605666.65403 2663 2656 1562399.106027 2742 2656 8228316.115794 2743 2656 -35556692.91277 2744 2656 -15320362.63205 2745 2656 8623814.868829 2746 2656 -8962312.29862 2747 2656 -7013375.774193 2763 2656 -4772753.704129 2764 2656 -33595985.49293 2765 2656 -26048429.06869 2766 2656 8346935.407594 2767 2656 29320533.57608 2768 2656 -2123394.363487 2769 2656 -13829269.11147 2770 2656 -30963414.8944 2771 2656 16788670.00494 2772 2656 -6597043.576619 2773 2656 -43534214.45849 2774 2656 33716891.83347 2657 2657 467651094.3303 2658 2657 744933.3770265 2659 2657 495848.0373138 2660 2657 -5348518.465777 2661 2657 616770.2483149 2662 2657 1562399.106027 2663 2657 51162592.60563 2742 2657 4847647.38616 2743 2657 -15320362.63205 2744 2657 -21210942.45867 2745 2657 51247665.99856 2746 2657 -7013375.772933 2747 2657 -77412673.46776 2763 2657 -4691080.247253 2764 2657 -26048429.06995 2765 2657 -29838202.88199 2766 2657 9937389.497775 2767 2657 -2123394.363487 2768 2657 -108036961.3792 2769 2657 20496497.26015 2770 2657 16788670.00494 2771 2657 -38558984.07588 2772 2657 10337713.43846 2773 2657 33716891.83347 2774 2657 -53721133.01946 2658 2658 248111582.7161 2659 2658 61745826.148 2660 2658 -427778.0740535 2661 2658 -39359813.45319 2662 2658 -1596070.29982 2663 2658 -305118.5623656 2745 2658 -15064205.65599 2746 2658 -942255.0720674 2747 2658 -3602557.756001 2766 2658 -36153755.84147 2767 2658 -13829269.11147 2768 2658 -20128502.75319 2769 2658 313818.0877385 2770 2658 15275588.41011 2771 2658 8019687.386086 2772 2658 -37751670.53939 2773 2658 -504064.2265737 2774 2658 -33038626.87689 2659 2659 224272484.7333 2660 2659 -420993.0422466 2661 2659 17515040.80815 2662 2659 53662252.3764 2663 2659 -495848.0373107 2745 2659 -5720032.851414 2746 2659 -38241661.13605 2747 2659 -33228878.5025 2766 2659 -13829269.11147 2767 2659 -30411089.31283 2768 2659 -16544663.33934 2769 2659 15275588.41011 2770 2659 -5623309.775096 2771 2659 6562211.840209 2772 2659 4273713.552772 2773 2659 -14379753.72514 2774 2659 3211330.001623 2660 2660 302308289.169 2661 2660 -305118.5623623 2662 2660 -495848.0373107 2663 2660 81191347.98248 2745 2660 -11727557.7571 2746 2660 -33228878.5025 2747 2660 -57516476.65011 2766 2660 -20128502.75319 2767 2660 -16544663.33934 2768 2660 -37086115.85837 2769 2660 -8230312.611246 2770 2660 -6771121.490934 2771 2660 -88571362.45583 2772 2660 -33038626.87847 2773 2660 -3455336.667233 2774 2660 -53241548.9 2661 2661 193187533.5258 2662 2661 -29907885.14702 2663 2661 -792696.1747975 2745 2661 -18585866.94682 2746 2661 10059619.78527 2747 2661 12506219.47975 2766 2661 -18816262.06405 2767 2661 -6597043.57662 2768 2661 -10043953.22886 2769 2661 -37751670.53939 2770 2661 4273713.552774 2771 2661 32890539.77888 2772 2661 -122944.6401992 2773 2661 -7736289.761419 2774 2661 -5251694.918494 2662 2662 214903413.4079 2663 2662 -1562399.106019 2745 2662 10059619.78527 2746 2662 -23823130.97733 2747 2662 -16544663.33934 2766 2662 -1819265.797274 2767 2662 -41877237.71487 2768 2662 -32949774.82225 2769 2662 -504064.2265722 2770 2662 -14379753.72514 2771 2662 3211330.001623 2772 2662 -7736289.761419 2773 2662 4803378.226877 2774 2662 6283108.159956 2663 2663 246983991.3423 2745 2663 12506219.47975 2746 2663 -16544663.33934 2747 2663 -30498157.52287 2766 2663 -5115064.336773 2767 2663 -32949774.82225 2768 2663 -49302528.36979 2769 2663 32890539.77744 2770 2663 -3455336.667232 2771 2663 -53241548.9 2772 2663 4869971.746511 2773 2663 -7050225.171186 2774 2663 -67695749.71523 2664 2664 508612796.7711 2665 2664 47777777.76993 2666 2664 20248388.26907 2667 2664 -267652150.2947 2668 2664 -47793765.64302 2669 2664 -20241471.08164 2670 2664 6087083.420696 2671 2664 38238210.08904 2672 2664 -16367807.61161 2775 2664 57272319.20769 2776 2664 11944444.44837 2777 2664 16262217.83282 2778 2664 -96920154.16551 2779 2664 -11948441.41665 2780 2664 -57894966.96635 2781 2664 -19430363.65776 2782 2664 9559552.526969 2783 2664 -14502802.0572 2665 2665 436923838.9196 2666 2665 -52790465.59624 2667 2665 -47801759.57957 2668 2665 -43044343.65972 2669 2665 -29246608.86722 2670 2665 57357315.13355 2671 2665 6087083.420705 2672 2665 18374525.78853 2775 2665 11944444.44837 2776 2665 39350079.73598 2777 2665 -4237631.002181 2778 2665 -11950439.90079 2779 2665 -40768202.4791 2780 2665 -17881456.80322 2781 2665 14339328.79045 2782 2665 -19430363.65775 2783 2665 17403019.36621 2666 2666 498731997.6738 2667 2666 -20238012.48793 2668 2666 -23543989.15986 2669 2666 -9089122.520285 2670 2666 -24551711.41742 2671 2666 12249683.85902 2672 2666 16232222.45521 2775 2666 -4818855.100867 2776 2666 -21102266.9381 2777 2666 -61666013.98076 2778 2666 -57630268.59944 2779 2666 -16401283.68257 2780 2666 -82291258.12151 2781 2666 -21754203.08579 2782 2666 11602012.9108 2783 2666 -51814303.08735 2667 2667 866925828.5346 2668 2667 47817747.45269 2669 2667 23749660.20008 2670 2667 14263474.74723 2671 2667 -47793765.64302 2672 2667 20546059.94785 2673 2667 -181853790.138 2674 2667 3.248453140259e-06 2675 2667 -3518564.899638 2676 2667 -72853540.65349 2677 2667 47777777.76992 2678 2667 -20539363.4444 2775 2667 -85740387.93072 2776 2667 -11950439.90077 2777 2667 47775096.06898 2778 2667 112006329.4708 2779 2667 11954436.86906 2780 2667 5935349.843305 2781 2667 -36979414.9719 2782 2667 -11948441.41664 2783 2667 18346879.03149 2784 2667 -74762019.75572 2785 2667 2.533197402954e-07 2786 2667 -53703252.3277 2787 2667 -30778677.45218 2788 2667 11944444.44836 2789 2667 -18340743.64572 2668 2668 737900094.3577 2669 2668 -65443918.48946 2670 2668 -47801759.57957 2671 2668 -152989568.1247 2672 2668 35049537.95506 2673 2668 3.069639205933e-06 2674 2668 28369859.6463 2675 2668 -21110832.82467 2676 2668 47777777.76992 2677 2668 -58519346.56511 2678 2668 11505416.41223 2775 2668 -11948441.41664 2776 2668 -29588436.2443 2777 2668 4682155.144749 2778 2668 11954436.86906 2779 2668 79749895.91067 2780 2668 -16362631.77783 2781 2668 -11950439.90078 2782 2668 -78792675.71048 2783 2668 51029508.03613 2784 2668 -8.195638656616e-07 2785 2668 -22206107.28377 2786 2668 -5277708.20877 2787 2668 11944444.44836 2788 2668 -27195128.92833 2789 2668 13440937.44126 2669 2669 768350518.5004 2670 2669 20813297.08829 2671 2669 40963180.50213 2672 2669 19484057.05595 2673 2669 -3518564.899638 2674 2669 -21110832.82467 2675 2669 48052583.38233 2676 2669 -20803252.33311 2677 2669 11716527.5232 2678 2669 -22805384.02253 2775 2669 47510397.70207 2776 2669 3205506.989851 2777 2669 -52478548.16204 2778 2669 5939756.113784 2779 2669 -16359106.80793 2780 2669 -87179377.66603 2781 2669 18349946.72438 2782 2669 52296851.6274 2783 2669 -103249742.1615 2784 2669 -53439363.43899 2785 2669 -5277708.20877 2786 2669 -66116380.01208 2787 2669 -18340743.64572 2788 2669 13440937.44126 2789 2669 -39208792.08802 2670 2670 508612796.7711 2671 2670 47777777.76993 2672 2670 20248388.26907 2673 2670 -71804122.04904 2674 2670 -47777777.76993 2675 2670 19043969.88243 2676 2670 -267652150.2947 2677 2670 -47793765.64302 2678 2670 -20241471.08164 2679 2670 6087083.420696 2680 2670 38238210.08904 2681 2670 -16367807.61161 2775 2670 1532382.642161 2776 2670 14339328.79045 2777 2670 9874015.186731 2778 2670 -4845636.536104 2779 2670 -11950439.90078 2780 2670 -8009104.879749 2781 2670 57272319.20769 2782 2670 11944444.44837 2783 2670 16262217.83282 2784 2670 -20039396.92541 2785 2670 -11944444.44837 2786 2670 -8444910.309145 2787 2670 -96920154.16551 2788 2670 -11948441.41665 2789 2670 -57894966.96635 2790 2670 -19430363.65776 2791 2670 9559552.526969 2792 2670 -14502802.0572 2671 2671 436923838.9196 2672 2671 -52790465.59624 2673 2671 -47777777.76993 2674 2671 -57469927.96065 2675 2671 9605416.412441 2676 2671 -47801759.57957 2677 2671 -43044343.65972 2678 2671 -29246608.86722 2679 2671 57357315.13355 2680 2671 6087083.420705 2681 2671 18374525.78853 2775 2671 9559552.526969 2776 2671 1532382.642157 2777 2671 -5266148.137347 2778 2671 -11948441.41664 2779 2671 -46658897.27468 2780 2671 -32026328.33686 2781 2671 11944444.44837 2782 2671 39350079.73598 2783 2671 -4237631.002181 2784 2671 -11944444.44837 2785 2671 -16455848.40155 2786 2671 -8163229.232496 2787 2671 -11950439.90079 2788 2671 -40768202.4791 2789 2671 -17881456.80322 2790 2671 14339328.79045 2791 2671 -19430363.65775 2792 2671 17403019.36621 2672 2672 498731997.6738 2673 2672 18780080.99371 2674 2672 9394305.301468 2675 2672 -20006934.4106 2676 2672 -20238012.48793 2677 2672 -23543989.15986 2678 2672 -9089122.520285 2679 2672 -24551711.41742 2680 2672 12249683.85902 2681 2672 16232222.45521 2775 2672 6582676.791154 2776 2672 -7899222.206021 2777 2672 4086353.712421 2778 2672 -8007766.485252 2779 2672 -33293672.07046 2780 2672 -17559666.33271 2781 2672 -4818855.100867 2782 2672 -21102266.9381 2783 2672 -61666013.98076 2784 2672 -8444910.309145 2785 2672 -8163229.232496 2786 2672 -10570710.68328 2787 2672 -57630268.59944 2788 2672 -16401283.68257 2789 2672 -82291258.12151 2790 2672 -21754203.08579 2791 2672 11602012.9108 2792 2672 -51814303.08735 2673 2673 801867013.5374 2674 2673 2.598762512207e-05 2675 2673 7037129.799195 2676 2673 92970237.73849 2677 2673 -1.010298728943e-05 2678 2673 1759282.450673 2682 2673 -181853790.138 2683 2673 3.248453140259e-06 2684 2673 -3518564.899638 2685 2673 -72853540.65349 2686 2673 47777777.76992 2687 2673 -20539363.4444 2778 2673 -71968136.03531 2779 2673 4.157423973083e-06 2780 2673 51943969.87703 2781 2673 -29817851.87049 2782 2673 -11944444.44837 2783 2673 17900923.03284 2784 2673 88895212.80375 2785 2673 4.112720489502e-06 2786 2673 1759282.450699 2787 2673 -25612922.63328 2788 2673 -1.080334186554e-05 2789 2673 439820.6129002 2793 2673 -74762019.75572 2794 2673 2.533197402954e-07 2795 2673 -53703252.3277 2796 2673 -30778677.45218 2797 2673 11944444.44836 2798 2673 -18340743.64572 2674 2674 687193460.8868 2675 2674 -84443331.25708 2676 2674 -1.019239425659e-05 2677 2674 -88585023.89729 2678 2674 42221665.62855 2682 2674 3.069639205933e-06 2683 2674 28369859.6463 2684 2674 -21110832.82467 2685 2674 47777777.76992 2686 2674 -58519346.56511 2687 2674 11505416.41223 2778 2674 3.337860107422e-06 2779 2674 -19412223.56332 2780 2674 -5277708.208769 2781 2674 -11944444.44837 2782 2674 -26234303.34662 2783 2674 12913159.66331 2784 2674 4.351139068604e-06 2785 2674 60226824.62697 2786 2674 -21110832.82468 2787 2674 -9.95397567749e-06 2788 2674 -71001738.06458 2789 2674 52813749.73867 2793 2674 -8.195638656616e-07 2794 2674 -22206107.28377 2795 2674 -5277708.20877 2796 2674 11944444.44836 2797 2674 -27195128.92833 2798 2674 13440937.44126 2675 2675 766546241.681 2676 2675 1759282.450673 2677 2675 42221665.62855 2678 2675 57866058.65466 2682 2675 -3518564.899638 2683 2675 -21110832.82467 2684 2675 48052583.38233 2685 2675 -20803252.33311 2686 2675 11716527.5232 2687 2675 -22805384.02253 2778 2675 51680080.98832 2779 2675 -5277708.208769 2780 2675 -58666023.42418 2781 2675 17900923.03284 2782 2675 12913159.66331 2783 2675 -36646590.5368 2784 2675 1759282.450699 2785 2675 -21110832.82468 2786 2675 -105887547.9636 2787 2675 439820.6129005 2788 2675 52602638.6277 2789 2675 -115814770.8741 2793 2675 -53439363.43899 2794 2675 -5277708.20877 2795 2675 -66116380.01208 2796 2675 -18340743.64572 2797 2675 13440937.44126 2798 2675 -39208792.08802 2676 2676 866925828.5346 2677 2676 47817747.45269 2678 2676 23749660.20008 2679 2676 14263474.74723 2680 2676 -47793765.64302 2681 2676 20546059.94785 2682 2676 -71804122.04904 2683 2676 -47777777.76993 2684 2676 19043969.88243 2685 2676 -181853790.138 2686 2676 3.248453140259e-06 2687 2676 -3518564.899638 2688 2676 -72853540.65349 2689 2676 47777777.76992 2690 2676 -20539363.4444 2778 2676 -19603280.6462 2779 2676 11944444.44837 2780 2676 8005089.696258 2781 2676 -85740387.93072 2782 2676 -11950439.90077 2783 2676 47775096.06898 2784 2676 16294780.8482 2785 2676 4.217028617859e-06 2786 2676 439820.6128852 2787 2676 112006329.4708 2788 2676 11954436.86906 2789 2676 5935349.843305 2790 2676 -36979414.9719 2791 2676 -11948441.41664 2792 2676 18346879.03149 2793 2676 -20039396.92541 2794 2676 -11944444.44837 2795 2676 -8444910.309145 2796 2676 -74762019.75572 2797 2676 2.533197402954e-07 2798 2676 -53703252.3277 2799 2676 -30778677.45218 2800 2676 11944444.44836 2801 2676 -18340743.64572 2677 2677 737900094.3577 2678 2677 -65443918.48946 2679 2677 -47801759.57957 2680 2677 -152989568.1247 2681 2677 35049537.95506 2682 2677 -47777777.76993 2683 2677 -57469927.96065 2684 2677 9605416.412441 2685 2677 3.069639205933e-06 2686 2677 28369859.6463 2687 2677 -21110832.82467 2688 2677 47777777.76992 2689 2677 -58519346.56511 2690 2677 11505416.41223 2778 2677 11944444.44837 2779 2677 -16019732.12234 2780 2677 -7635451.454545 2781 2677 -11948441.41664 2782 2677 -29588436.2443 2783 2677 4682155.144749 2784 2677 5.125999450684e-06 2785 2677 -29094034.58311 2786 2677 -31702916.914 2787 2677 11954436.86906 2788 2677 79749895.91067 2789 2677 -16362631.77783 2790 2677 -11950439.90078 2791 2677 -78792675.71048 2792 2677 51029508.03613 2793 2677 -11944444.44837 2794 2677 -16455848.40155 2795 2677 -8163229.232496 2796 2677 -8.195638656616e-07 2797 2677 -22206107.28377 2798 2677 -5277708.20877 2799 2677 11944444.44836 2800 2677 -27195128.92833 2801 2677 13440937.44126 2678 2678 768350518.5004 2679 2678 20813297.08829 2680 2678 40963180.50213 2681 2678 19484057.05595 2682 2678 18780080.99371 2683 2678 9394305.301468 2684 2678 -20006934.4106 2685 2678 -3518564.899638 2686 2678 -21110832.82467 2687 2678 48052583.38233 2688 2678 -20803252.33311 2689 2678 11716527.5232 2690 2678 -22805384.02253 2778 2678 8005089.696258 2779 2678 -7635451.454545 2780 2678 -9407733.938713 2781 2678 47510397.70207 2782 2678 3205506.989851 2783 2678 -52478548.16204 2784 2678 439820.6128855 2785 2678 -31491805.80303 2786 2678 -4060894.923526 2787 2678 5939756.113784 2788 2678 -16359106.80793 2789 2678 -87179377.66603 2790 2678 18349946.72438 2791 2678 52296851.6274 2792 2678 -103249742.1615 2793 2678 -8444910.309145 2794 2678 -8163229.232496 2795 2678 -10570710.68328 2796 2678 -53439363.43899 2797 2678 -5277708.20877 2798 2678 -66116380.01208 2799 2678 -18340743.64572 2800 2678 13440937.44126 2801 2678 -39208792.08802 2679 2679 508612796.7711 2680 2679 47777777.76993 2681 2679 20248388.26907 2685 2679 -71804122.04904 2686 2679 -47777777.76993 2687 2679 19043969.88243 2688 2679 -267652150.2947 2689 2679 -47793765.64302 2690 2679 -20241471.08164 2691 2679 6087083.420696 2692 2679 38238210.08904 2693 2679 -16367807.61161 2781 2679 1532382.642161 2782 2679 14339328.79045 2783 2679 9874015.186731 2787 2679 -4845636.536104 2788 2679 -11950439.90078 2789 2679 -8009104.879749 2790 2679 57272319.20769 2791 2679 11944444.44837 2792 2679 16262217.83282 2796 2679 -20039396.92541 2797 2679 -11944444.44837 2798 2679 -8444910.309145 2799 2679 -96920154.16551 2800 2679 -11948441.41665 2801 2679 -57894966.96635 2802 2679 -19430363.65776 2803 2679 9559552.526969 2804 2679 -14502802.0572 2680 2680 436923838.9196 2681 2680 -52790465.59624 2685 2680 -47777777.76993 2686 2680 -57469927.96065 2687 2680 9605416.412441 2688 2680 -47801759.57957 2689 2680 -43044343.65972 2690 2680 -29246608.86722 2691 2680 57357315.13355 2692 2680 6087083.420705 2693 2680 18374525.78853 2781 2680 9559552.526969 2782 2680 1532382.642157 2783 2680 -5266148.137347 2787 2680 -11948441.41664 2788 2680 -46658897.27468 2789 2680 -32026328.33686 2790 2680 11944444.44837 2791 2680 39350079.73598 2792 2680 -4237631.002181 2796 2680 -11944444.44837 2797 2680 -16455848.40155 2798 2680 -8163229.232496 2799 2680 -11950439.90079 2800 2680 -40768202.4791 2801 2680 -17881456.80322 2802 2680 14339328.79045 2803 2680 -19430363.65775 2804 2680 17403019.36621 2681 2681 498731997.6738 2685 2681 18780080.99371 2686 2681 9394305.301468 2687 2681 -20006934.4106 2688 2681 -20238012.48793 2689 2681 -23543989.15986 2690 2681 -9089122.520285 2691 2681 -24551711.41742 2692 2681 12249683.85902 2693 2681 16232222.45521 2781 2681 6582676.791154 2782 2681 -7899222.206021 2783 2681 4086353.712421 2787 2681 -8007766.485252 2788 2681 -33293672.07046 2789 2681 -17559666.33271 2790 2681 -4818855.100867 2791 2681 -21102266.9381 2792 2681 -61666013.98076 2796 2681 -8444910.309145 2797 2681 -8163229.232496 2798 2681 -10570710.68328 2799 2681 -57630268.59944 2800 2681 -16401283.68257 2801 2681 -82291258.12151 2802 2681 -21754203.08579 2803 2681 11602012.9108 2804 2681 -51814303.08735 2682 2682 801867013.5374 2683 2682 2.598762512207e-05 2684 2682 7037129.799195 2685 2682 92970237.73849 2686 2682 -1.010298728943e-05 2687 2682 1759282.450673 2694 2682 -181853790.138 2695 2682 3.248453140259e-06 2696 2682 -3518564.899638 2697 2682 -72853540.65349 2698 2682 47777777.76992 2699 2682 -20539363.4444 2784 2682 -71968136.03531 2785 2682 4.157423973083e-06 2786 2682 51943969.87703 2787 2682 -29817851.87049 2788 2682 -11944444.44837 2789 2682 17900923.03284 2793 2682 88895212.80375 2794 2682 4.112720489502e-06 2795 2682 1759282.450699 2796 2682 -25612922.63328 2797 2682 -1.080334186554e-05 2798 2682 439820.6129002 2805 2682 -74762019.75572 2806 2682 2.533197402954e-07 2807 2682 -53703252.3277 2808 2682 -30778677.45218 2809 2682 11944444.44836 2810 2682 -18340743.64572 2683 2683 687193460.8868 2684 2683 -84443331.25708 2685 2683 -1.019239425659e-05 2686 2683 -88585023.89729 2687 2683 42221665.62855 2694 2683 3.069639205933e-06 2695 2683 28369859.6463 2696 2683 -21110832.82467 2697 2683 47777777.76992 2698 2683 -58519346.56511 2699 2683 11505416.41223 2784 2683 3.337860107422e-06 2785 2683 -19412223.56332 2786 2683 -5277708.208769 2787 2683 -11944444.44837 2788 2683 -26234303.34662 2789 2683 12913159.66331 2793 2683 4.351139068604e-06 2794 2683 60226824.62697 2795 2683 -21110832.82468 2796 2683 -9.95397567749e-06 2797 2683 -71001738.06458 2798 2683 52813749.73867 2805 2683 -8.195638656616e-07 2806 2683 -22206107.28377 2807 2683 -5277708.20877 2808 2683 11944444.44836 2809 2683 -27195128.92833 2810 2683 13440937.44126 2684 2684 766546241.681 2685 2684 1759282.450673 2686 2684 42221665.62855 2687 2684 57866058.65466 2694 2684 -3518564.899638 2695 2684 -21110832.82467 2696 2684 48052583.38233 2697 2684 -20803252.33311 2698 2684 11716527.5232 2699 2684 -22805384.02253 2784 2684 51680080.98832 2785 2684 -5277708.208769 2786 2684 -58666023.42418 2787 2684 17900923.03284 2788 2684 12913159.66331 2789 2684 -36646590.5368 2793 2684 1759282.450699 2794 2684 -21110832.82468 2795 2684 -105887547.9636 2796 2684 439820.6129005 2797 2684 52602638.6277 2798 2684 -115814770.8741 2805 2684 -53439363.43899 2806 2684 -5277708.20877 2807 2684 -66116380.01208 2808 2684 -18340743.64572 2809 2684 13440937.44126 2810 2684 -39208792.08802 2685 2685 801867013.5374 2686 2685 2.598762512207e-05 2687 2685 7037129.799195 2688 2685 92970237.73849 2689 2685 -1.010298728943e-05 2690 2685 1759282.450673 2694 2685 -71804122.04904 2695 2685 -47777777.76993 2696 2685 19043969.88243 2697 2685 -181853790.138 2698 2685 3.248453140259e-06 2699 2685 -3518564.899638 2700 2685 -72853540.65349 2701 2685 47777777.76992 2702 2685 -20539363.4444 2784 2685 -19603280.6462 2785 2685 11944444.44837 2786 2685 8005089.696258 2787 2685 -71968136.03531 2788 2685 4.157423973083e-06 2789 2685 51943969.87703 2790 2685 -29817851.87049 2791 2685 -11944444.44837 2792 2685 17900923.03284 2793 2685 16294780.8482 2794 2685 4.217028617859e-06 2795 2685 439820.6128852 2796 2685 88895212.80375 2797 2685 4.112720489502e-06 2798 2685 1759282.450699 2799 2685 -25612922.63328 2800 2685 -1.080334186554e-05 2801 2685 439820.6129002 2805 2685 -20039396.92541 2806 2685 -11944444.44837 2807 2685 -8444910.309145 2808 2685 -74762019.75572 2809 2685 2.533197402954e-07 2810 2685 -53703252.3277 2811 2685 -30778677.45218 2812 2685 11944444.44836 2813 2685 -18340743.64572 2686 2686 687193460.8868 2687 2686 -84443331.25708 2688 2686 -1.019239425659e-05 2689 2686 -88585023.89729 2690 2686 42221665.62855 2694 2686 -47777777.76993 2695 2686 -57469927.96065 2696 2686 9605416.412441 2697 2686 3.069639205933e-06 2698 2686 28369859.6463 2699 2686 -21110832.82467 2700 2686 47777777.76992 2701 2686 -58519346.56511 2702 2686 11505416.41223 2784 2686 11944444.44837 2785 2686 -16019732.12234 2786 2686 -7635451.454545 2787 2686 3.337860107422e-06 2788 2686 -19412223.56332 2789 2686 -5277708.208769 2790 2686 -11944444.44837 2791 2686 -26234303.34662 2792 2686 12913159.66331 2793 2686 5.125999450684e-06 2794 2686 -29094034.58311 2795 2686 -31702916.914 2796 2686 4.351139068604e-06 2797 2686 60226824.62697 2798 2686 -21110832.82468 2799 2686 -9.95397567749e-06 2800 2686 -71001738.06458 2801 2686 52813749.73867 2805 2686 -11944444.44837 2806 2686 -16455848.40155 2807 2686 -8163229.232496 2808 2686 -8.195638656616e-07 2809 2686 -22206107.28377 2810 2686 -5277708.20877 2811 2686 11944444.44836 2812 2686 -27195128.92833 2813 2686 13440937.44126 2687 2687 766546241.681 2688 2687 1759282.450673 2689 2687 42221665.62855 2690 2687 57866058.65466 2694 2687 18780080.99371 2695 2687 9394305.301468 2696 2687 -20006934.4106 2697 2687 -3518564.899638 2698 2687 -21110832.82467 2699 2687 48052583.38233 2700 2687 -20803252.33311 2701 2687 11716527.5232 2702 2687 -22805384.02253 2784 2687 8005089.696258 2785 2687 -7635451.454545 2786 2687 -9407733.938713 2787 2687 51680080.98832 2788 2687 -5277708.208769 2789 2687 -58666023.42418 2790 2687 17900923.03284 2791 2687 12913159.66331 2792 2687 -36646590.5368 2793 2687 439820.6128855 2794 2687 -31491805.80303 2795 2687 -4060894.923526 2796 2687 1759282.450699 2797 2687 -21110832.82468 2798 2687 -105887547.9636 2799 2687 439820.6129005 2800 2687 52602638.6277 2801 2687 -115814770.8741 2805 2687 -8444910.309145 2806 2687 -8163229.232496 2807 2687 -10570710.68328 2808 2687 -53439363.43899 2809 2687 -5277708.20877 2810 2687 -66116380.01208 2811 2687 -18340743.64572 2812 2687 13440937.44126 2813 2687 -39208792.08802 2688 2688 866925828.5346 2689 2688 47817747.45269 2690 2688 23749660.20008 2691 2688 14263474.74723 2692 2688 -47793765.64302 2693 2688 20546059.94785 2697 2688 -71804122.04904 2698 2688 -47777777.76993 2699 2688 19043969.88243 2700 2688 -181853790.138 2701 2688 3.248453140259e-06 2702 2688 -3518564.899638 2703 2688 -72853540.65349 2704 2688 47777777.76992 2705 2688 -20539363.4444 2787 2688 -19603280.6462 2788 2688 11944444.44837 2789 2688 8005089.696258 2790 2688 -85740387.93072 2791 2688 -11950439.90077 2792 2688 47775096.06898 2796 2688 16294780.8482 2797 2688 4.217028617859e-06 2798 2688 439820.6128852 2799 2688 112006329.4708 2800 2688 11954436.86906 2801 2688 5935349.843305 2802 2688 -36979414.9719 2803 2688 -11948441.41664 2804 2688 18346879.03149 2808 2688 -20039396.92541 2809 2688 -11944444.44837 2810 2688 -8444910.309145 2811 2688 -74762019.75572 2812 2688 2.533197402954e-07 2813 2688 -53703252.3277 2814 2688 -30778677.45218 2815 2688 11944444.44836 2816 2688 -18340743.64572 2689 2689 737900094.3577 2690 2689 -65443918.48946 2691 2689 -47801759.57957 2692 2689 -152989568.1247 2693 2689 35049537.95506 2697 2689 -47777777.76993 2698 2689 -57469927.96065 2699 2689 9605416.412441 2700 2689 3.069639205933e-06 2701 2689 28369859.6463 2702 2689 -21110832.82467 2703 2689 47777777.76992 2704 2689 -58519346.56511 2705 2689 11505416.41223 2787 2689 11944444.44837 2788 2689 -16019732.12234 2789 2689 -7635451.454545 2790 2689 -11948441.41664 2791 2689 -29588436.2443 2792 2689 4682155.144749 2796 2689 5.125999450684e-06 2797 2689 -29094034.58311 2798 2689 -31702916.914 2799 2689 11954436.86906 2800 2689 79749895.91067 2801 2689 -16362631.77783 2802 2689 -11950439.90078 2803 2689 -78792675.71048 2804 2689 51029508.03613 2808 2689 -11944444.44837 2809 2689 -16455848.40155 2810 2689 -8163229.232496 2811 2689 -8.195638656616e-07 2812 2689 -22206107.28377 2813 2689 -5277708.20877 2814 2689 11944444.44836 2815 2689 -27195128.92833 2816 2689 13440937.44126 2690 2690 768350518.5004 2691 2690 20813297.08829 2692 2690 40963180.50213 2693 2690 19484057.05595 2697 2690 18780080.99371 2698 2690 9394305.301468 2699 2690 -20006934.4106 2700 2690 -3518564.899638 2701 2690 -21110832.82467 2702 2690 48052583.38233 2703 2690 -20803252.33311 2704 2690 11716527.5232 2705 2690 -22805384.02253 2787 2690 8005089.696258 2788 2690 -7635451.454545 2789 2690 -9407733.938713 2790 2690 47510397.70207 2791 2690 3205506.989851 2792 2690 -52478548.16204 2796 2690 439820.6128855 2797 2690 -31491805.80303 2798 2690 -4060894.923526 2799 2690 5939756.113784 2800 2690 -16359106.80793 2801 2690 -87179377.66603 2802 2690 18349946.72438 2803 2690 52296851.6274 2804 2690 -103249742.1615 2808 2690 -8444910.309145 2809 2690 -8163229.232496 2810 2690 -10570710.68328 2811 2690 -53439363.43899 2812 2690 -5277708.20877 2813 2690 -66116380.01208 2814 2690 -18340743.64572 2815 2690 13440937.44126 2816 2690 -39208792.08802 2691 2691 508612796.7711 2692 2691 47777777.76993 2693 2691 20248388.26907 2700 2691 -71804122.04904 2701 2691 -47777777.76993 2702 2691 19043969.88243 2703 2691 -267652150.2947 2704 2691 -47793765.64302 2705 2691 -20241471.08164 2706 2691 6087083.420696 2707 2691 38238210.08904 2708 2691 -16367807.61161 2790 2691 1532382.642161 2791 2691 14339328.79045 2792 2691 9874015.186731 2799 2691 -4845636.536104 2800 2691 -11950439.90078 2801 2691 -8009104.879749 2802 2691 57272319.20769 2803 2691 11944444.44837 2804 2691 16262217.83282 2811 2691 -20039396.92541 2812 2691 -11944444.44837 2813 2691 -8444910.309145 2814 2691 -96920154.16551 2815 2691 -11948441.41665 2816 2691 -57894966.96635 2817 2691 -19430363.65776 2818 2691 9559552.526969 2819 2691 -14502802.0572 2692 2692 436923838.9196 2693 2692 -52790465.59624 2700 2692 -47777777.76993 2701 2692 -57469927.96065 2702 2692 9605416.412441 2703 2692 -47801759.57957 2704 2692 -43044343.65972 2705 2692 -29246608.86722 2706 2692 57357315.13355 2707 2692 6087083.420705 2708 2692 18374525.78853 2790 2692 9559552.526969 2791 2692 1532382.642157 2792 2692 -5266148.137347 2799 2692 -11948441.41664 2800 2692 -46658897.27468 2801 2692 -32026328.33686 2802 2692 11944444.44837 2803 2692 39350079.73598 2804 2692 -4237631.002181 2811 2692 -11944444.44837 2812 2692 -16455848.40155 2813 2692 -8163229.232496 2814 2692 -11950439.90079 2815 2692 -40768202.4791 2816 2692 -17881456.80322 2817 2692 14339328.79045 2818 2692 -19430363.65775 2819 2692 17403019.36621 2693 2693 498731997.6738 2700 2693 18780080.99371 2701 2693 9394305.301468 2702 2693 -20006934.4106 2703 2693 -20238012.48793 2704 2693 -23543989.15986 2705 2693 -9089122.520285 2706 2693 -24551711.41742 2707 2693 12249683.85902 2708 2693 16232222.45521 2790 2693 6582676.791154 2791 2693 -7899222.206021 2792 2693 4086353.712421 2799 2693 -8007766.485252 2800 2693 -33293672.07046 2801 2693 -17559666.33271 2802 2693 -4818855.100867 2803 2693 -21102266.9381 2804 2693 -61666013.98076 2811 2693 -8444910.309145 2812 2693 -8163229.232496 2813 2693 -10570710.68328 2814 2693 -57630268.59944 2815 2693 -16401283.68257 2816 2693 -82291258.12151 2817 2693 -21754203.08579 2818 2693 11602012.9108 2819 2693 -51814303.08735 2694 2694 801867013.5374 2695 2694 2.598762512207e-05 2696 2694 7037129.799195 2697 2694 92970237.73849 2698 2694 -1.010298728943e-05 2699 2694 1759282.450673 2709 2694 -181853790.138 2710 2694 3.248453140259e-06 2711 2694 -3518564.899638 2712 2694 -72853540.65349 2713 2694 47777777.76992 2714 2694 -20539363.4444 2793 2694 -71968136.03531 2794 2694 4.157423973083e-06 2795 2694 51943969.87703 2796 2694 -29817851.87049 2797 2694 -11944444.44837 2798 2694 17900923.03284 2805 2694 88895212.80375 2806 2694 4.112720489502e-06 2807 2694 1759282.450699 2808 2694 -25612922.63328 2809 2694 -1.080334186554e-05 2810 2694 439820.6129002 2820 2694 -74762019.75572 2821 2694 2.533197402954e-07 2822 2694 -53703252.3277 2823 2694 -30778677.45218 2824 2694 11944444.44836 2825 2694 -18340743.64572 2695 2695 687193460.8868 2696 2695 -84443331.25708 2697 2695 -1.019239425659e-05 2698 2695 -88585023.89729 2699 2695 42221665.62855 2709 2695 3.069639205933e-06 2710 2695 28369859.6463 2711 2695 -21110832.82467 2712 2695 47777777.76992 2713 2695 -58519346.56511 2714 2695 11505416.41223 2793 2695 3.337860107422e-06 2794 2695 -19412223.56332 2795 2695 -5277708.208769 2796 2695 -11944444.44837 2797 2695 -26234303.34662 2798 2695 12913159.66331 2805 2695 4.351139068604e-06 2806 2695 60226824.62697 2807 2695 -21110832.82468 2808 2695 -9.95397567749e-06 2809 2695 -71001738.06458 2810 2695 52813749.73867 2820 2695 -8.195638656616e-07 2821 2695 -22206107.28377 2822 2695 -5277708.20877 2823 2695 11944444.44836 2824 2695 -27195128.92833 2825 2695 13440937.44126 2696 2696 766546241.681 2697 2696 1759282.450673 2698 2696 42221665.62855 2699 2696 57866058.65466 2709 2696 -3518564.899638 2710 2696 -21110832.82467 2711 2696 48052583.38233 2712 2696 -20803252.33311 2713 2696 11716527.5232 2714 2696 -22805384.02253 2793 2696 51680080.98832 2794 2696 -5277708.208769 2795 2696 -58666023.42418 2796 2696 17900923.03284 2797 2696 12913159.66331 2798 2696 -36646590.5368 2805 2696 1759282.450699 2806 2696 -21110832.82468 2807 2696 -105887547.9636 2808 2696 439820.6129005 2809 2696 52602638.6277 2810 2696 -115814770.8741 2820 2696 -53439363.43899 2821 2696 -5277708.20877 2822 2696 -66116380.01208 2823 2696 -18340743.64572 2824 2696 13440937.44126 2825 2696 -39208792.08802 2697 2697 801867013.5374 2698 2697 2.598762512207e-05 2699 2697 7037129.799195 2700 2697 92970237.73849 2701 2697 -1.010298728943e-05 2702 2697 1759282.450673 2709 2697 -71804122.04904 2710 2697 -47777777.76993 2711 2697 19043969.88243 2712 2697 -181853790.138 2713 2697 3.248453140259e-06 2714 2697 -3518564.899638 2715 2697 -72853540.65349 2716 2697 47777777.76992 2717 2697 -20539363.4444 2793 2697 -19603280.6462 2794 2697 11944444.44837 2795 2697 8005089.696258 2796 2697 -71968136.03531 2797 2697 4.157423973083e-06 2798 2697 51943969.87703 2799 2697 -29817851.87049 2800 2697 -11944444.44837 2801 2697 17900923.03284 2805 2697 16294780.8482 2806 2697 4.217028617859e-06 2807 2697 439820.6128852 2808 2697 88895212.80375 2809 2697 4.112720489502e-06 2810 2697 1759282.450699 2811 2697 -25612922.63328 2812 2697 -1.080334186554e-05 2813 2697 439820.6129002 2820 2697 -20039396.92541 2821 2697 -11944444.44837 2822 2697 -8444910.309145 2823 2697 -74762019.75572 2824 2697 2.533197402954e-07 2825 2697 -53703252.3277 2826 2697 -30778677.45218 2827 2697 11944444.44836 2828 2697 -18340743.64572 2698 2698 687193460.8868 2699 2698 -84443331.25708 2700 2698 -1.019239425659e-05 2701 2698 -88585023.89729 2702 2698 42221665.62855 2709 2698 -47777777.76993 2710 2698 -57469927.96065 2711 2698 9605416.412441 2712 2698 3.069639205933e-06 2713 2698 28369859.6463 2714 2698 -21110832.82467 2715 2698 47777777.76992 2716 2698 -58519346.56511 2717 2698 11505416.41223 2793 2698 11944444.44837 2794 2698 -16019732.12234 2795 2698 -7635451.454545 2796 2698 3.337860107422e-06 2797 2698 -19412223.56332 2798 2698 -5277708.208769 2799 2698 -11944444.44837 2800 2698 -26234303.34662 2801 2698 12913159.66331 2805 2698 5.125999450684e-06 2806 2698 -29094034.58311 2807 2698 -31702916.914 2808 2698 4.351139068604e-06 2809 2698 60226824.62697 2810 2698 -21110832.82468 2811 2698 -9.95397567749e-06 2812 2698 -71001738.06458 2813 2698 52813749.73867 2820 2698 -11944444.44837 2821 2698 -16455848.40155 2822 2698 -8163229.232496 2823 2698 -8.195638656616e-07 2824 2698 -22206107.28377 2825 2698 -5277708.20877 2826 2698 11944444.44836 2827 2698 -27195128.92833 2828 2698 13440937.44126 2699 2699 766546241.681 2700 2699 1759282.450673 2701 2699 42221665.62855 2702 2699 57866058.65466 2709 2699 18780080.99371 2710 2699 9394305.301468 2711 2699 -20006934.4106 2712 2699 -3518564.899638 2713 2699 -21110832.82467 2714 2699 48052583.38233 2715 2699 -20803252.33311 2716 2699 11716527.5232 2717 2699 -22805384.02253 2793 2699 8005089.696258 2794 2699 -7635451.454545 2795 2699 -9407733.938713 2796 2699 51680080.98832 2797 2699 -5277708.208769 2798 2699 -58666023.42418 2799 2699 17900923.03284 2800 2699 12913159.66331 2801 2699 -36646590.5368 2805 2699 439820.6128855 2806 2699 -31491805.80303 2807 2699 -4060894.923526 2808 2699 1759282.450699 2809 2699 -21110832.82468 2810 2699 -105887547.9636 2811 2699 439820.6129005 2812 2699 52602638.6277 2813 2699 -115814770.8741 2820 2699 -8444910.309145 2821 2699 -8163229.232496 2822 2699 -10570710.68328 2823 2699 -53439363.43899 2824 2699 -5277708.20877 2825 2699 -66116380.01208 2826 2699 -18340743.64572 2827 2699 13440937.44126 2828 2699 -39208792.08802 2700 2700 801867013.5374 2701 2700 2.598762512207e-05 2702 2700 7037129.799195 2703 2700 92970237.73849 2704 2700 -1.010298728943e-05 2705 2700 1759282.450673 2712 2700 -71804122.04904 2713 2700 -47777777.76993 2714 2700 19043969.88243 2715 2700 -181853790.138 2716 2700 3.248453140259e-06 2717 2700 -3518564.899638 2718 2700 -72853540.65349 2719 2700 47777777.76992 2720 2700 -20539363.4444 2796 2700 -19603280.6462 2797 2700 11944444.44837 2798 2700 8005089.696258 2799 2700 -71968136.03531 2800 2700 4.157423973083e-06 2801 2700 51943969.87703 2802 2700 -29817851.87049 2803 2700 -11944444.44837 2804 2700 17900923.03284 2808 2700 16294780.8482 2809 2700 4.217028617859e-06 2810 2700 439820.6128852 2811 2700 88895212.80375 2812 2700 4.112720489502e-06 2813 2700 1759282.450699 2814 2700 -25612922.63328 2815 2700 -1.080334186554e-05 2816 2700 439820.6129002 2823 2700 -20039396.92541 2824 2700 -11944444.44837 2825 2700 -8444910.309145 2826 2700 -74762019.75572 2827 2700 2.533197402954e-07 2828 2700 -53703252.3277 2829 2700 -30778677.45218 2830 2700 11944444.44836 2831 2700 -18340743.64572 2701 2701 687193460.8868 2702 2701 -84443331.25708 2703 2701 -1.019239425659e-05 2704 2701 -88585023.89729 2705 2701 42221665.62855 2712 2701 -47777777.76993 2713 2701 -57469927.96065 2714 2701 9605416.412441 2715 2701 3.069639205933e-06 2716 2701 28369859.6463 2717 2701 -21110832.82467 2718 2701 47777777.76992 2719 2701 -58519346.56511 2720 2701 11505416.41223 2796 2701 11944444.44837 2797 2701 -16019732.12234 2798 2701 -7635451.454545 2799 2701 3.337860107422e-06 2800 2701 -19412223.56332 2801 2701 -5277708.208769 2802 2701 -11944444.44837 2803 2701 -26234303.34662 2804 2701 12913159.66331 2808 2701 5.125999450684e-06 2809 2701 -29094034.58311 2810 2701 -31702916.914 2811 2701 4.351139068604e-06 2812 2701 60226824.62697 2813 2701 -21110832.82468 2814 2701 -9.95397567749e-06 2815 2701 -71001738.06458 2816 2701 52813749.73867 2823 2701 -11944444.44837 2824 2701 -16455848.40155 2825 2701 -8163229.232496 2826 2701 -8.195638656616e-07 2827 2701 -22206107.28377 2828 2701 -5277708.20877 2829 2701 11944444.44836 2830 2701 -27195128.92833 2831 2701 13440937.44126 2702 2702 766546241.681 2703 2702 1759282.450673 2704 2702 42221665.62855 2705 2702 57866058.65466 2712 2702 18780080.99371 2713 2702 9394305.301468 2714 2702 -20006934.4106 2715 2702 -3518564.899638 2716 2702 -21110832.82467 2717 2702 48052583.38233 2718 2702 -20803252.33311 2719 2702 11716527.5232 2720 2702 -22805384.02253 2796 2702 8005089.696258 2797 2702 -7635451.454545 2798 2702 -9407733.938713 2799 2702 51680080.98832 2800 2702 -5277708.208769 2801 2702 -58666023.42418 2802 2702 17900923.03284 2803 2702 12913159.66331 2804 2702 -36646590.5368 2808 2702 439820.6128855 2809 2702 -31491805.80303 2810 2702 -4060894.923526 2811 2702 1759282.450699 2812 2702 -21110832.82468 2813 2702 -105887547.9636 2814 2702 439820.6129005 2815 2702 52602638.6277 2816 2702 -115814770.8741 2823 2702 -8444910.309145 2824 2702 -8163229.232496 2825 2702 -10570710.68328 2826 2702 -53439363.43899 2827 2702 -5277708.20877 2828 2702 -66116380.01208 2829 2702 -18340743.64572 2830 2702 13440937.44126 2831 2702 -39208792.08802 2703 2703 866925828.5346 2704 2703 47817747.45269 2705 2703 23749660.20008 2706 2703 14263474.74723 2707 2703 -47793765.64302 2708 2703 20546059.94785 2715 2703 -71804122.04904 2716 2703 -47777777.76993 2717 2703 19043969.88243 2718 2703 -181853790.138 2719 2703 3.248453140259e-06 2720 2703 -3518564.899638 2721 2703 -72853540.65349 2722 2703 47777777.76992 2723 2703 -20539363.4444 2799 2703 -19603280.6462 2800 2703 11944444.44837 2801 2703 8005089.696258 2802 2703 -85740387.93072 2803 2703 -11950439.90077 2804 2703 47775096.06898 2811 2703 16294780.8482 2812 2703 4.217028617859e-06 2813 2703 439820.6128852 2814 2703 112006329.4708 2815 2703 11954436.86906 2816 2703 5935349.843305 2817 2703 -36979414.9719 2818 2703 -11948441.41664 2819 2703 18346879.03149 2826 2703 -20039396.92541 2827 2703 -11944444.44837 2828 2703 -8444910.309145 2829 2703 -74762019.75572 2830 2703 2.533197402954e-07 2831 2703 -53703252.3277 2832 2703 -30778677.45218 2833 2703 11944444.44836 2834 2703 -18340743.64572 2704 2704 737900094.3577 2705 2704 -65443918.48946 2706 2704 -47801759.57957 2707 2704 -152989568.1247 2708 2704 35049537.95506 2715 2704 -47777777.76993 2716 2704 -57469927.96065 2717 2704 9605416.412441 2718 2704 3.069639205933e-06 2719 2704 28369859.6463 2720 2704 -21110832.82467 2721 2704 47777777.76992 2722 2704 -58519346.56511 2723 2704 11505416.41223 2799 2704 11944444.44837 2800 2704 -16019732.12234 2801 2704 -7635451.454545 2802 2704 -11948441.41664 2803 2704 -29588436.2443 2804 2704 4682155.144749 2811 2704 5.125999450684e-06 2812 2704 -29094034.58311 2813 2704 -31702916.914 2814 2704 11954436.86906 2815 2704 79749895.91067 2816 2704 -16362631.77783 2817 2704 -11950439.90078 2818 2704 -78792675.71048 2819 2704 51029508.03613 2826 2704 -11944444.44837 2827 2704 -16455848.40155 2828 2704 -8163229.232496 2829 2704 -8.195638656616e-07 2830 2704 -22206107.28377 2831 2704 -5277708.20877 2832 2704 11944444.44836 2833 2704 -27195128.92833 2834 2704 13440937.44126 2705 2705 768350518.5004 2706 2705 20813297.08829 2707 2705 40963180.50213 2708 2705 19484057.05595 2715 2705 18780080.99371 2716 2705 9394305.301468 2717 2705 -20006934.4106 2718 2705 -3518564.899638 2719 2705 -21110832.82467 2720 2705 48052583.38233 2721 2705 -20803252.33311 2722 2705 11716527.5232 2723 2705 -22805384.02253 2799 2705 8005089.696258 2800 2705 -7635451.454545 2801 2705 -9407733.938713 2802 2705 47510397.70207 2803 2705 3205506.989851 2804 2705 -52478548.16204 2811 2705 439820.6128855 2812 2705 -31491805.80303 2813 2705 -4060894.923526 2814 2705 5939756.113784 2815 2705 -16359106.80793 2816 2705 -87179377.66603 2817 2705 18349946.72438 2818 2705 52296851.6274 2819 2705 -103249742.1615 2826 2705 -8444910.309145 2827 2705 -8163229.232496 2828 2705 -10570710.68328 2829 2705 -53439363.43899 2830 2705 -5277708.20877 2831 2705 -66116380.01208 2832 2705 -18340743.64572 2833 2705 13440937.44126 2834 2705 -39208792.08802 2706 2706 508612796.7711 2707 2706 47777777.76993 2708 2706 20248388.26907 2718 2706 -71804122.04904 2719 2706 -47777777.76993 2720 2706 19043969.88243 2721 2706 -267652150.2947 2722 2706 -47793765.64302 2723 2706 -20241471.08164 2724 2706 6087083.420696 2725 2706 38238210.08904 2726 2706 -16367807.61161 2802 2706 1532382.642161 2803 2706 14339328.79045 2804 2706 9874015.186731 2814 2706 -4845636.536104 2815 2706 -11950439.90078 2816 2706 -8009104.879749 2817 2706 57272319.20769 2818 2706 11944444.44837 2819 2706 16262217.83282 2829 2706 -20039396.92541 2830 2706 -11944444.44837 2831 2706 -8444910.309145 2832 2706 -96920154.16551 2833 2706 -11948441.41665 2834 2706 -57894966.96635 2835 2706 -19430363.65776 2836 2706 9559552.526969 2837 2706 -14502802.0572 2707 2707 436923838.9196 2708 2707 -52790465.59624 2718 2707 -47777777.76993 2719 2707 -57469927.96065 2720 2707 9605416.412441 2721 2707 -47801759.57957 2722 2707 -43044343.65972 2723 2707 -29246608.86722 2724 2707 57357315.13355 2725 2707 6087083.420705 2726 2707 18374525.78853 2802 2707 9559552.526969 2803 2707 1532382.642157 2804 2707 -5266148.137347 2814 2707 -11948441.41664 2815 2707 -46658897.27468 2816 2707 -32026328.33686 2817 2707 11944444.44837 2818 2707 39350079.73598 2819 2707 -4237631.002181 2829 2707 -11944444.44837 2830 2707 -16455848.40155 2831 2707 -8163229.232496 2832 2707 -11950439.90079 2833 2707 -40768202.4791 2834 2707 -17881456.80322 2835 2707 14339328.79045 2836 2707 -19430363.65775 2837 2707 17403019.36621 2708 2708 498731997.6738 2718 2708 18780080.99371 2719 2708 9394305.301468 2720 2708 -20006934.4106 2721 2708 -20238012.48793 2722 2708 -23543989.15986 2723 2708 -9089122.520285 2724 2708 -24551711.41742 2725 2708 12249683.85902 2726 2708 16232222.45521 2802 2708 6582676.791154 2803 2708 -7899222.206021 2804 2708 4086353.712421 2814 2708 -8007766.485252 2815 2708 -33293672.07046 2816 2708 -17559666.33271 2817 2708 -4818855.100867 2818 2708 -21102266.9381 2819 2708 -61666013.98076 2829 2708 -8444910.309145 2830 2708 -8163229.232496 2831 2708 -10570710.68328 2832 2708 -57630268.59944 2833 2708 -16401283.68257 2834 2708 -82291258.12151 2835 2708 -21754203.08579 2836 2708 11602012.9108 2837 2708 -51814303.08735 2709 2709 801867013.5374 2710 2709 2.598762512207e-05 2711 2709 7037129.799195 2712 2709 92970237.73849 2713 2709 -1.010298728943e-05 2714 2709 1759282.450673 2727 2709 -181853790.138 2728 2709 3.248453140259e-06 2729 2709 -3518564.899638 2730 2709 -72853540.65349 2731 2709 47777777.76992 2732 2709 -20539363.4444 2805 2709 -71968136.03531 2806 2709 4.157423973083e-06 2807 2709 51943969.87703 2808 2709 -29817851.87049 2809 2709 -11944444.44837 2810 2709 17900923.03284 2820 2709 88895212.80375 2821 2709 4.112720489502e-06 2822 2709 1759282.450699 2823 2709 -25612922.63328 2824 2709 -1.080334186554e-05 2825 2709 439820.6129002 2838 2709 -74762019.75572 2839 2709 2.533197402954e-07 2840 2709 -53703252.3277 2841 2709 -30778677.45218 2842 2709 11944444.44836 2843 2709 -18340743.64572 2710 2710 687193460.8868 2711 2710 -84443331.25708 2712 2710 -1.019239425659e-05 2713 2710 -88585023.89729 2714 2710 42221665.62855 2727 2710 3.069639205933e-06 2728 2710 28369859.6463 2729 2710 -21110832.82467 2730 2710 47777777.76992 2731 2710 -58519346.56511 2732 2710 11505416.41223 2805 2710 3.337860107422e-06 2806 2710 -19412223.56332 2807 2710 -5277708.208769 2808 2710 -11944444.44837 2809 2710 -26234303.34662 2810 2710 12913159.66331 2820 2710 4.351139068604e-06 2821 2710 60226824.62697 2822 2710 -21110832.82468 2823 2710 -9.95397567749e-06 2824 2710 -71001738.06458 2825 2710 52813749.73867 2838 2710 -8.195638656616e-07 2839 2710 -22206107.28377 2840 2710 -5277708.20877 2841 2710 11944444.44836 2842 2710 -27195128.92833 2843 2710 13440937.44126 2711 2711 766546241.681 2712 2711 1759282.450673 2713 2711 42221665.62855 2714 2711 57866058.65466 2727 2711 -3518564.899638 2728 2711 -21110832.82467 2729 2711 48052583.38233 2730 2711 -20803252.33311 2731 2711 11716527.5232 2732 2711 -22805384.02253 2805 2711 51680080.98832 2806 2711 -5277708.208769 2807 2711 -58666023.42418 2808 2711 17900923.03284 2809 2711 12913159.66331 2810 2711 -36646590.5368 2820 2711 1759282.450699 2821 2711 -21110832.82468 2822 2711 -105887547.9636 2823 2711 439820.6129005 2824 2711 52602638.6277 2825 2711 -115814770.8741 2838 2711 -53439363.43899 2839 2711 -5277708.20877 2840 2711 -66116380.01208 2841 2711 -18340743.64572 2842 2711 13440937.44126 2843 2711 -39208792.08802 2712 2712 801867013.5374 2713 2712 2.598762512207e-05 2714 2712 7037129.799195 2715 2712 92970237.73849 2716 2712 -1.010298728943e-05 2717 2712 1759282.450673 2727 2712 -71804122.04904 2728 2712 -47777777.76993 2729 2712 19043969.88243 2730 2712 -181853790.138 2731 2712 3.248453140259e-06 2732 2712 -3518564.899638 2733 2712 -72853540.65349 2734 2712 47777777.76992 2735 2712 -20539363.4444 2805 2712 -19603280.6462 2806 2712 11944444.44837 2807 2712 8005089.696258 2808 2712 -71968136.03531 2809 2712 4.157423973083e-06 2810 2712 51943969.87703 2811 2712 -29817851.87049 2812 2712 -11944444.44837 2813 2712 17900923.03284 2820 2712 16294780.8482 2821 2712 4.217028617859e-06 2822 2712 439820.6128852 2823 2712 88895212.80375 2824 2712 4.112720489502e-06 2825 2712 1759282.450699 2826 2712 -25612922.63328 2827 2712 -1.080334186554e-05 2828 2712 439820.6129002 2838 2712 -20039396.92541 2839 2712 -11944444.44837 2840 2712 -8444910.309145 2841 2712 -74762019.75572 2842 2712 2.533197402954e-07 2843 2712 -53703252.3277 2844 2712 -30778677.45218 2845 2712 11944444.44836 2846 2712 -18340743.64572 2713 2713 687193460.8868 2714 2713 -84443331.25708 2715 2713 -1.019239425659e-05 2716 2713 -88585023.89729 2717 2713 42221665.62855 2727 2713 -47777777.76993 2728 2713 -57469927.96065 2729 2713 9605416.412441 2730 2713 3.069639205933e-06 2731 2713 28369859.6463 2732 2713 -21110832.82467 2733 2713 47777777.76992 2734 2713 -58519346.56511 2735 2713 11505416.41223 2805 2713 11944444.44837 2806 2713 -16019732.12234 2807 2713 -7635451.454545 2808 2713 3.337860107422e-06 2809 2713 -19412223.56332 2810 2713 -5277708.208769 2811 2713 -11944444.44837 2812 2713 -26234303.34662 2813 2713 12913159.66331 2820 2713 5.125999450684e-06 2821 2713 -29094034.58311 2822 2713 -31702916.914 2823 2713 4.351139068604e-06 2824 2713 60226824.62697 2825 2713 -21110832.82468 2826 2713 -9.95397567749e-06 2827 2713 -71001738.06458 2828 2713 52813749.73867 2838 2713 -11944444.44837 2839 2713 -16455848.40155 2840 2713 -8163229.232496 2841 2713 -8.195638656616e-07 2842 2713 -22206107.28377 2843 2713 -5277708.20877 2844 2713 11944444.44836 2845 2713 -27195128.92833 2846 2713 13440937.44126 2714 2714 766546241.681 2715 2714 1759282.450673 2716 2714 42221665.62855 2717 2714 57866058.65466 2727 2714 18780080.99371 2728 2714 9394305.301468 2729 2714 -20006934.4106 2730 2714 -3518564.899638 2731 2714 -21110832.82467 2732 2714 48052583.38233 2733 2714 -20803252.33311 2734 2714 11716527.5232 2735 2714 -22805384.02253 2805 2714 8005089.696258 2806 2714 -7635451.454545 2807 2714 -9407733.938713 2808 2714 51680080.98832 2809 2714 -5277708.208769 2810 2714 -58666023.42418 2811 2714 17900923.03284 2812 2714 12913159.66331 2813 2714 -36646590.5368 2820 2714 439820.6128855 2821 2714 -31491805.80303 2822 2714 -4060894.923526 2823 2714 1759282.450699 2824 2714 -21110832.82468 2825 2714 -105887547.9636 2826 2714 439820.6129005 2827 2714 52602638.6277 2828 2714 -115814770.8741 2838 2714 -8444910.309145 2839 2714 -8163229.232496 2840 2714 -10570710.68328 2841 2714 -53439363.43899 2842 2714 -5277708.20877 2843 2714 -66116380.01208 2844 2714 -18340743.64572 2845 2714 13440937.44126 2846 2714 -39208792.08802 2715 2715 801867013.5374 2716 2715 2.598762512207e-05 2717 2715 7037129.799195 2718 2715 92970237.73849 2719 2715 -1.010298728943e-05 2720 2715 1759282.450673 2730 2715 -71804122.04904 2731 2715 -47777777.76993 2732 2715 19043969.88243 2733 2715 -181853790.138 2734 2715 3.248453140259e-06 2735 2715 -3518564.899638 2736 2715 -72853540.65349 2737 2715 47777777.76992 2738 2715 -20539363.4444 2808 2715 -19603280.6462 2809 2715 11944444.44837 2810 2715 8005089.696258 2811 2715 -71968136.03531 2812 2715 4.157423973083e-06 2813 2715 51943969.87703 2814 2715 -29817851.87049 2815 2715 -11944444.44837 2816 2715 17900923.03284 2823 2715 16294780.8482 2824 2715 4.217028617859e-06 2825 2715 439820.6128852 2826 2715 88895212.80375 2827 2715 4.112720489502e-06 2828 2715 1759282.450699 2829 2715 -25612922.63328 2830 2715 -1.080334186554e-05 2831 2715 439820.6129002 2841 2715 -20039396.92541 2842 2715 -11944444.44837 2843 2715 -8444910.309145 2844 2715 -74762019.75572 2845 2715 2.533197402954e-07 2846 2715 -53703252.3277 2847 2715 -30778677.45218 2848 2715 11944444.44836 2849 2715 -18340743.64572 2716 2716 687193460.8868 2717 2716 -84443331.25708 2718 2716 -1.019239425659e-05 2719 2716 -88585023.89729 2720 2716 42221665.62855 2730 2716 -47777777.76993 2731 2716 -57469927.96065 2732 2716 9605416.412441 2733 2716 3.069639205933e-06 2734 2716 28369859.6463 2735 2716 -21110832.82467 2736 2716 47777777.76992 2737 2716 -58519346.56511 2738 2716 11505416.41223 2808 2716 11944444.44837 2809 2716 -16019732.12234 2810 2716 -7635451.454545 2811 2716 3.337860107422e-06 2812 2716 -19412223.56332 2813 2716 -5277708.208769 2814 2716 -11944444.44837 2815 2716 -26234303.34662 2816 2716 12913159.66331 2823 2716 5.125999450684e-06 2824 2716 -29094034.58311 2825 2716 -31702916.914 2826 2716 4.351139068604e-06 2827 2716 60226824.62697 2828 2716 -21110832.82468 2829 2716 -9.95397567749e-06 2830 2716 -71001738.06458 2831 2716 52813749.73867 2841 2716 -11944444.44837 2842 2716 -16455848.40155 2843 2716 -8163229.232496 2844 2716 -8.195638656616e-07 2845 2716 -22206107.28377 2846 2716 -5277708.20877 2847 2716 11944444.44836 2848 2716 -27195128.92833 2849 2716 13440937.44126 2717 2717 766546241.681 2718 2717 1759282.450673 2719 2717 42221665.62855 2720 2717 57866058.65466 2730 2717 18780080.99371 2731 2717 9394305.301468 2732 2717 -20006934.4106 2733 2717 -3518564.899638 2734 2717 -21110832.82467 2735 2717 48052583.38233 2736 2717 -20803252.33311 2737 2717 11716527.5232 2738 2717 -22805384.02253 2808 2717 8005089.696258 2809 2717 -7635451.454545 2810 2717 -9407733.938713 2811 2717 51680080.98832 2812 2717 -5277708.208769 2813 2717 -58666023.42418 2814 2717 17900923.03284 2815 2717 12913159.66331 2816 2717 -36646590.5368 2823 2717 439820.6128855 2824 2717 -31491805.80303 2825 2717 -4060894.923526 2826 2717 1759282.450699 2827 2717 -21110832.82468 2828 2717 -105887547.9636 2829 2717 439820.6129005 2830 2717 52602638.6277 2831 2717 -115814770.8741 2841 2717 -8444910.309145 2842 2717 -8163229.232496 2843 2717 -10570710.68328 2844 2717 -53439363.43899 2845 2717 -5277708.20877 2846 2717 -66116380.01208 2847 2717 -18340743.64572 2848 2717 13440937.44126 2849 2717 -39208792.08802 2718 2718 801867013.5374 2719 2718 2.598762512207e-05 2720 2718 7037129.799195 2721 2718 92970237.73849 2722 2718 -1.010298728943e-05 2723 2718 1759282.450673 2733 2718 -71804122.04904 2734 2718 -47777777.76993 2735 2718 19043969.88243 2736 2718 -181853790.138 2737 2718 3.248453140259e-06 2738 2718 -3518564.899638 2739 2718 -72853540.65349 2740 2718 47777777.76992 2741 2718 -20539363.4444 2811 2718 -19603280.6462 2812 2718 11944444.44837 2813 2718 8005089.696258 2814 2718 -71968136.03531 2815 2718 4.157423973083e-06 2816 2718 51943969.87703 2817 2718 -29817851.87049 2818 2718 -11944444.44837 2819 2718 17900923.03284 2826 2718 16294780.8482 2827 2718 4.217028617859e-06 2828 2718 439820.6128852 2829 2718 88895212.80375 2830 2718 4.112720489502e-06 2831 2718 1759282.450699 2832 2718 -25612922.63328 2833 2718 -1.080334186554e-05 2834 2718 439820.6129002 2844 2718 -20039396.92541 2845 2718 -11944444.44837 2846 2718 -8444910.309145 2847 2718 -74762019.75572 2848 2718 2.533197402954e-07 2849 2718 -53703252.3277 2850 2718 -30778677.45218 2851 2718 11944444.44836 2852 2718 -18340743.64572 2719 2719 687193460.8868 2720 2719 -84443331.25708 2721 2719 -1.019239425659e-05 2722 2719 -88585023.89729 2723 2719 42221665.62855 2733 2719 -47777777.76993 2734 2719 -57469927.96065 2735 2719 9605416.412441 2736 2719 3.069639205933e-06 2737 2719 28369859.6463 2738 2719 -21110832.82467 2739 2719 47777777.76992 2740 2719 -58519346.56511 2741 2719 11505416.41223 2811 2719 11944444.44837 2812 2719 -16019732.12234 2813 2719 -7635451.454545 2814 2719 3.337860107422e-06 2815 2719 -19412223.56332 2816 2719 -5277708.208769 2817 2719 -11944444.44837 2818 2719 -26234303.34662 2819 2719 12913159.66331 2826 2719 5.125999450684e-06 2827 2719 -29094034.58311 2828 2719 -31702916.914 2829 2719 4.351139068604e-06 2830 2719 60226824.62697 2831 2719 -21110832.82468 2832 2719 -9.95397567749e-06 2833 2719 -71001738.06458 2834 2719 52813749.73867 2844 2719 -11944444.44837 2845 2719 -16455848.40155 2846 2719 -8163229.232496 2847 2719 -8.195638656616e-07 2848 2719 -22206107.28377 2849 2719 -5277708.20877 2850 2719 11944444.44836 2851 2719 -27195128.92833 2852 2719 13440937.44126 2720 2720 766546241.681 2721 2720 1759282.450673 2722 2720 42221665.62855 2723 2720 57866058.65466 2733 2720 18780080.99371 2734 2720 9394305.301468 2735 2720 -20006934.4106 2736 2720 -3518564.899638 2737 2720 -21110832.82467 2738 2720 48052583.38233 2739 2720 -20803252.33311 2740 2720 11716527.5232 2741 2720 -22805384.02253 2811 2720 8005089.696258 2812 2720 -7635451.454545 2813 2720 -9407733.938713 2814 2720 51680080.98832 2815 2720 -5277708.208769 2816 2720 -58666023.42418 2817 2720 17900923.03284 2818 2720 12913159.66331 2819 2720 -36646590.5368 2826 2720 439820.6128855 2827 2720 -31491805.80303 2828 2720 -4060894.923526 2829 2720 1759282.450699 2830 2720 -21110832.82468 2831 2720 -105887547.9636 2832 2720 439820.6129005 2833 2720 52602638.6277 2834 2720 -115814770.8741 2844 2720 -8444910.309145 2845 2720 -8163229.232496 2846 2720 -10570710.68328 2847 2720 -53439363.43899 2848 2720 -5277708.20877 2849 2720 -66116380.01208 2850 2720 -18340743.64572 2851 2720 13440937.44126 2852 2720 -39208792.08802 2721 2721 866925828.5346 2722 2721 47817747.45269 2723 2721 23749660.20008 2724 2721 14263474.74723 2725 2721 -47793765.64302 2726 2721 20546059.94785 2736 2721 -71804122.04904 2737 2721 -47777777.76993 2738 2721 19043969.88243 2739 2721 -181853790.138 2740 2721 3.248453140259e-06 2741 2721 -3518564.899638 2742 2721 -72853540.65349 2743 2721 47777777.76992 2744 2721 -20539363.4444 2814 2721 -19603280.6462 2815 2721 11944444.44837 2816 2721 8005089.696258 2817 2721 -85740387.93072 2818 2721 -11950439.90077 2819 2721 47775096.06898 2829 2721 16294780.8482 2830 2721 4.217028617859e-06 2831 2721 439820.6128852 2832 2721 112006329.4708 2833 2721 11954436.86906 2834 2721 5935349.843305 2835 2721 -36979414.9719 2836 2721 -11948441.41664 2837 2721 18346879.03149 2847 2721 -20039396.92541 2848 2721 -11944444.44837 2849 2721 -8444910.309145 2850 2721 -74762019.75572 2851 2721 2.533197402954e-07 2852 2721 -53703252.3277 2853 2721 -30778677.45218 2854 2721 11944444.44836 2855 2721 -18340743.64572 2722 2722 737900094.3577 2723 2722 -65443918.48946 2724 2722 -47801759.57957 2725 2722 -152989568.1247 2726 2722 35049537.95506 2736 2722 -47777777.76993 2737 2722 -57469927.96065 2738 2722 9605416.412441 2739 2722 3.069639205933e-06 2740 2722 28369859.6463 2741 2722 -21110832.82467 2742 2722 47777777.76992 2743 2722 -58519346.56511 2744 2722 11505416.41223 2814 2722 11944444.44837 2815 2722 -16019732.12234 2816 2722 -7635451.454545 2817 2722 -11948441.41664 2818 2722 -29588436.2443 2819 2722 4682155.144749 2829 2722 5.125999450684e-06 2830 2722 -29094034.58311 2831 2722 -31702916.914 2832 2722 11954436.86906 2833 2722 79749895.91067 2834 2722 -16362631.77783 2835 2722 -11950439.90078 2836 2722 -78792675.71048 2837 2722 51029508.03613 2847 2722 -11944444.44837 2848 2722 -16455848.40155 2849 2722 -8163229.232496 2850 2722 -8.195638656616e-07 2851 2722 -22206107.28377 2852 2722 -5277708.20877 2853 2722 11944444.44836 2854 2722 -27195128.92833 2855 2722 13440937.44126 2723 2723 768350518.5004 2724 2723 20813297.08829 2725 2723 40963180.50213 2726 2723 19484057.05595 2736 2723 18780080.99371 2737 2723 9394305.301468 2738 2723 -20006934.4106 2739 2723 -3518564.899638 2740 2723 -21110832.82467 2741 2723 48052583.38233 2742 2723 -20803252.33311 2743 2723 11716527.5232 2744 2723 -22805384.02253 2814 2723 8005089.696258 2815 2723 -7635451.454545 2816 2723 -9407733.938713 2817 2723 47510397.70207 2818 2723 3205506.989851 2819 2723 -52478548.16204 2829 2723 439820.6128855 2830 2723 -31491805.80303 2831 2723 -4060894.923526 2832 2723 5939756.113784 2833 2723 -16359106.80793 2834 2723 -87179377.66603 2835 2723 18349946.72438 2836 2723 52296851.6274 2837 2723 -103249742.1615 2847 2723 -8444910.309145 2848 2723 -8163229.232496 2849 2723 -10570710.68328 2850 2723 -53439363.43899 2851 2723 -5277708.20877 2852 2723 -66116380.01208 2853 2723 -18340743.64572 2854 2723 13440937.44126 2855 2723 -39208792.08802 2724 2724 411984836.6329 2725 2724 -7936152.30026 2726 2724 -12597657.48158 2739 2724 -71804122.04904 2740 2724 -47777777.76993 2741 2724 19043969.88243 2742 2724 -138080718.2873 2743 2724 7859319.261471 2744 2724 -1118612.233799 2745 2724 -59031787.7105 2746 2724 38299055.25473 2747 2724 -3172177.802272 2817 2724 1532382.642161 2818 2724 14339328.79045 2819 2724 9874015.186731 2832 2724 -4845636.536104 2833 2724 -11950439.90078 2834 2724 -8009104.879749 2835 2724 45154799.16275 2836 2724 -1984038.076042 2837 2724 5318188.302819 2850 2724 -20039396.92541 2851 2724 -11944444.44837 2852 2724 -8444910.309145 2853 2724 -54446261.20618 2854 2724 1964829.816336 2855 2724 -37868990.52104 2856 2724 -20832796.07979 2857 2724 9574763.8184 2858 2724 -4947522.887458 2725 2725 472335181.7353 2726 2725 -60215952.15695 2739 2725 -47777777.76993 2740 2725 -57469927.96065 2741 2725 9605416.412441 2742 2725 7820902.742076 2743 2725 61644059.27118 2744 2725 -13951237.99313 2745 2725 57448582.8821 2746 2725 -166188061.588 2747 2725 10078720.53082 2817 2725 9559552.526969 2818 2725 1532382.642157 2819 2725 -5266148.137347 2832 2725 -11948441.41664 2833 2725 -46658897.27468 2834 2725 -32026328.33686 2835 2725 -1984038.076043 2836 2725 60242385.44579 2837 2725 -8284128.881153 2850 2725 -11944444.44837 2851 2725 -16455848.40155 2852 2725 -8163229.232496 2853 2725 1955225.686481 2854 2725 -4515066.791966 2855 2725 -1847868.948734 2856 2725 14362145.7276 2857 2725 -47621864.56235 2858 2725 20366850.75772 2726 2726 433150810.8594 2739 2726 18780080.99371 2740 2726 9394305.301468 2741 2726 -20006934.4106 2742 2726 -7976747.091482 2743 2726 -13738986.98741 2744 2726 37185048.73447 2745 2726 -4758266.703408 2746 2726 9231286.830788 2747 2726 -50261826.68389 2817 2726 6582676.791154 2818 2726 -7899222.206021 2819 2726 4086353.712421 2832 2726 -8007766.485252 2833 2726 -33293672.07046 2834 2726 -17559666.33271 2835 2726 -9638402.083643 2836 2726 -20236111.15782 2837 2726 -45956057.35504 2850 2726 -8444910.309145 2851 2726 -8163229.232496 2852 2726 -10570710.68328 2853 2726 -39187801.2437 2854 2726 -1627591.468903 2855 2726 -43839955.45809 2856 2726 -7421284.331187 2857 2726 18388546.96739 2858 2726 -28765054.39688 2727 2727 801867013.5374 2728 2727 2.598762512207e-05 2729 2727 7037129.799195 2730 2727 92970237.73849 2731 2727 -1.010298728943e-05 2732 2727 1759282.450673 2748 2727 -181853790.138 2749 2727 3.248453140259e-06 2750 2727 -3518564.899638 2751 2727 -72853540.65349 2752 2727 47777777.76992 2753 2727 -20539363.4444 2820 2727 -71968136.03531 2821 2727 4.157423973083e-06 2822 2727 51943969.87703 2823 2727 -29817851.87049 2824 2727 -11944444.44837 2825 2727 17900923.03284 2838 2727 88895212.80375 2839 2727 4.112720489502e-06 2840 2727 1759282.450699 2841 2727 -25612922.63328 2842 2727 -1.080334186554e-05 2843 2727 439820.6129002 2859 2727 -74762019.75572 2860 2727 2.533197402954e-07 2861 2727 -53703252.3277 2862 2727 -30778677.45218 2863 2727 11944444.44836 2864 2727 -18340743.64572 2728 2728 687193460.8868 2729 2728 -84443331.25708 2730 2728 -1.019239425659e-05 2731 2728 -88585023.89729 2732 2728 42221665.62855 2748 2728 3.069639205933e-06 2749 2728 28369859.6463 2750 2728 -21110832.82467 2751 2728 47777777.76992 2752 2728 -58519346.56511 2753 2728 11505416.41223 2820 2728 3.337860107422e-06 2821 2728 -19412223.56332 2822 2728 -5277708.208769 2823 2728 -11944444.44837 2824 2728 -26234303.34662 2825 2728 12913159.66331 2838 2728 4.351139068604e-06 2839 2728 60226824.62697 2840 2728 -21110832.82468 2841 2728 -9.95397567749e-06 2842 2728 -71001738.06458 2843 2728 52813749.73867 2859 2728 -8.195638656616e-07 2860 2728 -22206107.28377 2861 2728 -5277708.20877 2862 2728 11944444.44836 2863 2728 -27195128.92833 2864 2728 13440937.44126 2729 2729 766546241.681 2730 2729 1759282.450673 2731 2729 42221665.62855 2732 2729 57866058.65466 2748 2729 -3518564.899638 2749 2729 -21110832.82467 2750 2729 48052583.38233 2751 2729 -20803252.33311 2752 2729 11716527.5232 2753 2729 -22805384.02253 2820 2729 51680080.98832 2821 2729 -5277708.208769 2822 2729 -58666023.42418 2823 2729 17900923.03284 2824 2729 12913159.66331 2825 2729 -36646590.5368 2838 2729 1759282.450699 2839 2729 -21110832.82468 2840 2729 -105887547.9636 2841 2729 439820.6129005 2842 2729 52602638.6277 2843 2729 -115814770.8741 2859 2729 -53439363.43899 2860 2729 -5277708.20877 2861 2729 -66116380.01208 2862 2729 -18340743.64572 2863 2729 13440937.44126 2864 2729 -39208792.08802 2730 2730 801867013.5374 2731 2730 2.598762512207e-05 2732 2730 7037129.799195 2733 2730 92970237.73849 2734 2730 -1.010298728943e-05 2735 2730 1759282.450673 2748 2730 -71804122.04904 2749 2730 -47777777.76993 2750 2730 19043969.88243 2751 2730 -181853790.138 2752 2730 3.248453140259e-06 2753 2730 -3518564.899638 2754 2730 -72853540.65349 2755 2730 47777777.76992 2756 2730 -20539363.4444 2820 2730 -19603280.6462 2821 2730 11944444.44837 2822 2730 8005089.696258 2823 2730 -71968136.03531 2824 2730 4.157423973083e-06 2825 2730 51943969.87703 2826 2730 -29817851.87049 2827 2730 -11944444.44837 2828 2730 17900923.03284 2838 2730 16294780.8482 2839 2730 4.217028617859e-06 2840 2730 439820.6128852 2841 2730 88895212.80375 2842 2730 4.112720489502e-06 2843 2730 1759282.450699 2844 2730 -25612922.63328 2845 2730 -1.080334186554e-05 2846 2730 439820.6129002 2859 2730 -20039396.92541 2860 2730 -11944444.44837 2861 2730 -8444910.309145 2862 2730 -74762019.75572 2863 2730 2.533197402954e-07 2864 2730 -53703252.3277 2865 2730 -30778677.45218 2866 2730 11944444.44836 2867 2730 -18340743.64572 2731 2731 687193460.8868 2732 2731 -84443331.25708 2733 2731 -1.019239425659e-05 2734 2731 -88585023.89729 2735 2731 42221665.62855 2748 2731 -47777777.76993 2749 2731 -57469927.96065 2750 2731 9605416.412441 2751 2731 3.069639205933e-06 2752 2731 28369859.6463 2753 2731 -21110832.82467 2754 2731 47777777.76992 2755 2731 -58519346.56511 2756 2731 11505416.41223 2820 2731 11944444.44837 2821 2731 -16019732.12234 2822 2731 -7635451.454545 2823 2731 3.337860107422e-06 2824 2731 -19412223.56332 2825 2731 -5277708.208769 2826 2731 -11944444.44837 2827 2731 -26234303.34662 2828 2731 12913159.66331 2838 2731 5.125999450684e-06 2839 2731 -29094034.58311 2840 2731 -31702916.914 2841 2731 4.351139068604e-06 2842 2731 60226824.62697 2843 2731 -21110832.82468 2844 2731 -9.95397567749e-06 2845 2731 -71001738.06458 2846 2731 52813749.73867 2859 2731 -11944444.44837 2860 2731 -16455848.40155 2861 2731 -8163229.232496 2862 2731 -8.195638656616e-07 2863 2731 -22206107.28377 2864 2731 -5277708.20877 2865 2731 11944444.44836 2866 2731 -27195128.92833 2867 2731 13440937.44126 2732 2732 766546241.681 2733 2732 1759282.450673 2734 2732 42221665.62855 2735 2732 57866058.65466 2748 2732 18780080.99371 2749 2732 9394305.301468 2750 2732 -20006934.4106 2751 2732 -3518564.899638 2752 2732 -21110832.82467 2753 2732 48052583.38233 2754 2732 -20803252.33311 2755 2732 11716527.5232 2756 2732 -22805384.02253 2820 2732 8005089.696258 2821 2732 -7635451.454545 2822 2732 -9407733.938713 2823 2732 51680080.98832 2824 2732 -5277708.208769 2825 2732 -58666023.42418 2826 2732 17900923.03284 2827 2732 12913159.66331 2828 2732 -36646590.5368 2838 2732 439820.6128855 2839 2732 -31491805.80303 2840 2732 -4060894.923526 2841 2732 1759282.450699 2842 2732 -21110832.82468 2843 2732 -105887547.9636 2844 2732 439820.6129005 2845 2732 52602638.6277 2846 2732 -115814770.8741 2859 2732 -8444910.309145 2860 2732 -8163229.232496 2861 2732 -10570710.68328 2862 2732 -53439363.43899 2863 2732 -5277708.20877 2864 2732 -66116380.01208 2865 2732 -18340743.64572 2866 2732 13440937.44126 2867 2732 -39208792.08802 2733 2733 801867013.5374 2734 2733 2.598762512207e-05 2735 2733 7037129.799195 2736 2733 92970237.73849 2737 2733 -1.010298728943e-05 2738 2733 1759282.450673 2751 2733 -71804122.04904 2752 2733 -47777777.76993 2753 2733 19043969.88243 2754 2733 -181853790.138 2755 2733 3.248453140259e-06 2756 2733 -3518564.899638 2757 2733 -72853540.65349 2758 2733 47777777.76992 2759 2733 -20539363.4444 2823 2733 -19603280.6462 2824 2733 11944444.44837 2825 2733 8005089.696258 2826 2733 -71968136.03531 2827 2733 4.157423973083e-06 2828 2733 51943969.87703 2829 2733 -29817851.87049 2830 2733 -11944444.44837 2831 2733 17900923.03284 2841 2733 16294780.8482 2842 2733 4.217028617859e-06 2843 2733 439820.6128852 2844 2733 88895212.80375 2845 2733 4.112720489502e-06 2846 2733 1759282.450699 2847 2733 -25612922.63328 2848 2733 -1.080334186554e-05 2849 2733 439820.6129002 2862 2733 -20039396.92541 2863 2733 -11944444.44837 2864 2733 -8444910.309145 2865 2733 -74762019.75572 2866 2733 2.533197402954e-07 2867 2733 -53703252.3277 2868 2733 -30778677.45218 2869 2733 11944444.44836 2870 2733 -18340743.64572 2734 2734 687193460.8868 2735 2734 -84443331.25708 2736 2734 -1.019239425659e-05 2737 2734 -88585023.89729 2738 2734 42221665.62855 2751 2734 -47777777.76993 2752 2734 -57469927.96065 2753 2734 9605416.412441 2754 2734 3.069639205933e-06 2755 2734 28369859.6463 2756 2734 -21110832.82467 2757 2734 47777777.76992 2758 2734 -58519346.56511 2759 2734 11505416.41223 2823 2734 11944444.44837 2824 2734 -16019732.12234 2825 2734 -7635451.454545 2826 2734 3.337860107422e-06 2827 2734 -19412223.56332 2828 2734 -5277708.208769 2829 2734 -11944444.44837 2830 2734 -26234303.34662 2831 2734 12913159.66331 2841 2734 5.125999450684e-06 2842 2734 -29094034.58311 2843 2734 -31702916.914 2844 2734 4.351139068604e-06 2845 2734 60226824.62697 2846 2734 -21110832.82468 2847 2734 -9.95397567749e-06 2848 2734 -71001738.06458 2849 2734 52813749.73867 2862 2734 -11944444.44837 2863 2734 -16455848.40155 2864 2734 -8163229.232496 2865 2734 -8.195638656616e-07 2866 2734 -22206107.28377 2867 2734 -5277708.20877 2868 2734 11944444.44836 2869 2734 -27195128.92833 2870 2734 13440937.44126 2735 2735 766546241.681 2736 2735 1759282.450673 2737 2735 42221665.62855 2738 2735 57866058.65466 2751 2735 18780080.99371 2752 2735 9394305.301468 2753 2735 -20006934.4106 2754 2735 -3518564.899638 2755 2735 -21110832.82467 2756 2735 48052583.38233 2757 2735 -20803252.33311 2758 2735 11716527.5232 2759 2735 -22805384.02253 2823 2735 8005089.696258 2824 2735 -7635451.454545 2825 2735 -9407733.938713 2826 2735 51680080.98832 2827 2735 -5277708.208769 2828 2735 -58666023.42418 2829 2735 17900923.03284 2830 2735 12913159.66331 2831 2735 -36646590.5368 2841 2735 439820.6128855 2842 2735 -31491805.80303 2843 2735 -4060894.923526 2844 2735 1759282.450699 2845 2735 -21110832.82468 2846 2735 -105887547.9636 2847 2735 439820.6129005 2848 2735 52602638.6277 2849 2735 -115814770.8741 2862 2735 -8444910.309145 2863 2735 -8163229.232496 2864 2735 -10570710.68328 2865 2735 -53439363.43899 2866 2735 -5277708.20877 2867 2735 -66116380.01208 2868 2735 -18340743.64572 2869 2735 13440937.44126 2870 2735 -39208792.08802 2736 2736 801867013.5374 2737 2736 2.598762512207e-05 2738 2736 7037129.799195 2739 2736 92970237.73849 2740 2736 -1.010298728943e-05 2741 2736 1759282.450673 2754 2736 -71804122.04904 2755 2736 -47777777.76993 2756 2736 19043969.88243 2757 2736 -181853790.138 2758 2736 3.248453140259e-06 2759 2736 -3518564.899638 2760 2736 -72853540.65349 2761 2736 47777777.76992 2762 2736 -20539363.4444 2826 2736 -19603280.6462 2827 2736 11944444.44837 2828 2736 8005089.696258 2829 2736 -71968136.03531 2830 2736 4.157423973083e-06 2831 2736 51943969.87703 2832 2736 -29817851.87049 2833 2736 -11944444.44837 2834 2736 17900923.03284 2844 2736 16294780.8482 2845 2736 4.217028617859e-06 2846 2736 439820.6128852 2847 2736 88895212.80375 2848 2736 4.112720489502e-06 2849 2736 1759282.450699 2850 2736 -25612922.63328 2851 2736 -1.080334186554e-05 2852 2736 439820.6129002 2865 2736 -20039396.92541 2866 2736 -11944444.44837 2867 2736 -8444910.309145 2868 2736 -74762019.75572 2869 2736 2.533197402954e-07 2870 2736 -53703252.3277 2871 2736 -30778677.45218 2872 2736 11944444.44836 2873 2736 -18340743.64572 2737 2737 687193460.8868 2738 2737 -84443331.25708 2739 2737 -1.019239425659e-05 2740 2737 -88585023.89729 2741 2737 42221665.62855 2754 2737 -47777777.76993 2755 2737 -57469927.96065 2756 2737 9605416.412441 2757 2737 3.069639205933e-06 2758 2737 28369859.6463 2759 2737 -21110832.82467 2760 2737 47777777.76992 2761 2737 -58519346.56511 2762 2737 11505416.41223 2826 2737 11944444.44837 2827 2737 -16019732.12234 2828 2737 -7635451.454545 2829 2737 3.337860107422e-06 2830 2737 -19412223.56332 2831 2737 -5277708.208769 2832 2737 -11944444.44837 2833 2737 -26234303.34662 2834 2737 12913159.66331 2844 2737 5.125999450684e-06 2845 2737 -29094034.58311 2846 2737 -31702916.914 2847 2737 4.351139068604e-06 2848 2737 60226824.62697 2849 2737 -21110832.82468 2850 2737 -9.95397567749e-06 2851 2737 -71001738.06458 2852 2737 52813749.73867 2865 2737 -11944444.44837 2866 2737 -16455848.40155 2867 2737 -8163229.232496 2868 2737 -8.195638656616e-07 2869 2737 -22206107.28377 2870 2737 -5277708.20877 2871 2737 11944444.44836 2872 2737 -27195128.92833 2873 2737 13440937.44126 2738 2738 766546241.681 2739 2738 1759282.450673 2740 2738 42221665.62855 2741 2738 57866058.65466 2754 2738 18780080.99371 2755 2738 9394305.301468 2756 2738 -20006934.4106 2757 2738 -3518564.899638 2758 2738 -21110832.82467 2759 2738 48052583.38233 2760 2738 -20803252.33311 2761 2738 11716527.5232 2762 2738 -22805384.02253 2826 2738 8005089.696258 2827 2738 -7635451.454545 2828 2738 -9407733.938713 2829 2738 51680080.98832 2830 2738 -5277708.208769 2831 2738 -58666023.42418 2832 2738 17900923.03284 2833 2738 12913159.66331 2834 2738 -36646590.5368 2844 2738 439820.6128855 2845 2738 -31491805.80303 2846 2738 -4060894.923526 2847 2738 1759282.450699 2848 2738 -21110832.82468 2849 2738 -105887547.9636 2850 2738 439820.6129005 2851 2738 52602638.6277 2852 2738 -115814770.8741 2865 2738 -8444910.309145 2866 2738 -8163229.232496 2867 2738 -10570710.68328 2868 2738 -53439363.43899 2869 2738 -5277708.20877 2870 2738 -66116380.01208 2871 2738 -18340743.64572 2872 2738 13440937.44126 2873 2738 -39208792.08802 2739 2739 801867013.5374 2740 2739 2.598762512207e-05 2741 2739 7037129.799195 2742 2739 92970237.73849 2743 2739 -1.010298728943e-05 2744 2739 1759282.450673 2757 2739 -71804122.04904 2758 2739 -47777777.76993 2759 2739 19043969.88243 2760 2739 -181853790.138 2761 2739 3.248453140259e-06 2762 2739 -3518564.899638 2763 2739 -72853540.65349 2764 2739 47777777.76992 2765 2739 -20539363.4444 2829 2739 -19603280.6462 2830 2739 11944444.44837 2831 2739 8005089.696258 2832 2739 -71968136.03531 2833 2739 4.157423973083e-06 2834 2739 51943969.87703 2835 2739 -29817851.87049 2836 2739 -11944444.44837 2837 2739 17900923.03284 2847 2739 16294780.8482 2848 2739 4.217028617859e-06 2849 2739 439820.6128852 2850 2739 88895212.80375 2851 2739 4.112720489502e-06 2852 2739 1759282.450699 2853 2739 -25612922.63328 2854 2739 -1.080334186554e-05 2855 2739 439820.6129002 2868 2739 -20039396.92541 2869 2739 -11944444.44837 2870 2739 -8444910.309145 2871 2739 -74762019.75572 2872 2739 2.533197402954e-07 2873 2739 -53703252.3277 2874 2739 -30778677.45218 2875 2739 11944444.44836 2876 2739 -18340743.64572 2740 2740 687193460.8868 2741 2740 -84443331.25708 2742 2740 -1.019239425659e-05 2743 2740 -88585023.89729 2744 2740 42221665.62855 2757 2740 -47777777.76993 2758 2740 -57469927.96065 2759 2740 9605416.412441 2760 2740 3.069639205933e-06 2761 2740 28369859.6463 2762 2740 -21110832.82467 2763 2740 47777777.76992 2764 2740 -58519346.56511 2765 2740 11505416.41223 2829 2740 11944444.44837 2830 2740 -16019732.12234 2831 2740 -7635451.454545 2832 2740 3.337860107422e-06 2833 2740 -19412223.56332 2834 2740 -5277708.208769 2835 2740 -11944444.44837 2836 2740 -26234303.34662 2837 2740 12913159.66331 2847 2740 5.125999450684e-06 2848 2740 -29094034.58311 2849 2740 -31702916.914 2850 2740 4.351139068604e-06 2851 2740 60226824.62697 2852 2740 -21110832.82468 2853 2740 -9.95397567749e-06 2854 2740 -71001738.06458 2855 2740 52813749.73867 2868 2740 -11944444.44837 2869 2740 -16455848.40155 2870 2740 -8163229.232496 2871 2740 -8.195638656616e-07 2872 2740 -22206107.28377 2873 2740 -5277708.20877 2874 2740 11944444.44836 2875 2740 -27195128.92833 2876 2740 13440937.44126 2741 2741 766546241.681 2742 2741 1759282.450673 2743 2741 42221665.62855 2744 2741 57866058.65466 2757 2741 18780080.99371 2758 2741 9394305.301468 2759 2741 -20006934.4106 2760 2741 -3518564.899638 2761 2741 -21110832.82467 2762 2741 48052583.38233 2763 2741 -20803252.33311 2764 2741 11716527.5232 2765 2741 -22805384.02253 2829 2741 8005089.696258 2830 2741 -7635451.454545 2831 2741 -9407733.938713 2832 2741 51680080.98832 2833 2741 -5277708.208769 2834 2741 -58666023.42418 2835 2741 17900923.03284 2836 2741 12913159.66331 2837 2741 -36646590.5368 2847 2741 439820.6128855 2848 2741 -31491805.80303 2849 2741 -4060894.923526 2850 2741 1759282.450699 2851 2741 -21110832.82468 2852 2741 -105887547.9636 2853 2741 439820.6129005 2854 2741 52602638.6277 2855 2741 -115814770.8741 2868 2741 -8444910.309145 2869 2741 -8163229.232496 2870 2741 -10570710.68328 2871 2741 -53439363.43899 2872 2741 -5277708.20877 2873 2741 -66116380.01208 2874 2741 -18340743.64572 2875 2741 13440937.44126 2876 2741 -39208792.08802 2742 2742 697335433.5606 2743 2742 13555993.81372 2744 2742 6525546.760922 2745 2742 -74181346.4655 2746 2742 -78873671.67505 2747 2742 4567537.813263 2760 2742 -71804122.04904 2761 2742 -47777777.76993 2762 2742 19043969.88243 2763 2742 -131767559.6882 2764 2742 24583510.6723 2765 2742 -724035.0559039 2766 2742 -42859393.5392 2767 2742 32913264.44696 2768 2742 -2392743.794803 2832 2742 -19603280.6462 2833 2742 11944444.44837 2834 2742 8005089.696258 2835 2742 -51389094.80041 2836 2742 1955225.686484 2837 2742 35595150.68861 2850 2742 16294780.8482 2851 2742 4.217028617859e-06 2852 2742 439820.6128852 2853 2742 89751427.48146 2854 2742 3388998.455101 2855 2742 1627256.23664 2856 2742 -37804191.87041 2857 2742 -19718417.92848 2858 2742 14356015.6679 2871 2742 -20039396.92541 2872 2742 -11944444.44837 2873 2742 -8444910.309145 2874 2742 -60532186.86274 2875 2742 6145877.671103 2876 2742 -45375800.4239 2877 2742 -19078219.62127 2878 2742 8228316.115794 2879 2742 -6175963.728574 2743 2743 738376280.1071 2744 2743 -53461134.90695 2745 2743 -78912088.19445 2746 2743 -255911826.3266 2747 2743 9575542.669736 2760 2743 -47777777.76993 2761 2743 -57469927.96065 2762 2743 9605416.412441 2763 2743 24583510.6723 2764 2743 39087496.12151 2765 2743 -11304599.7208 2766 2743 32913264.44696 2767 2743 -119862720.1338 2768 2743 5385216.157707 2832 2743 11944444.44837 2833 2743 -16019732.12234 2834 2743 -7635451.454545 2835 2743 1964829.816337 2836 2743 -1457900.386174 2837 2743 -5080618.041869 2850 2743 5.125999450684e-06 2851 2743 -29094034.58311 2852 2743 -31702916.914 2853 2743 3388998.455098 2854 2743 100011639.1232 2855 2743 -13368588.23948 2856 2743 -19728022.05833 2857 2743 -83236811.85808 2858 2743 44683227.92718 2871 2743 -11944444.44837 2872 2743 -16455848.40155 2873 2743 -8163229.232496 2874 2743 6145877.671102 2875 2743 -17818422.88929 2876 2743 3275933.400212 2877 2743 8228316.115794 2878 2743 -38329051.2794 2879 2743 18012970.71223 2744 2744 653768770.9707 2745 2744 4834182.270174 2746 2744 10420950.39671 2747 2744 -44643768.23168 2760 2744 18780080.99371 2761 2744 9394305.301468 2762 2744 -20006934.4106 2763 2744 -7321257.277044 2764 2744 -11515710.83187 2765 2744 53866482.54874 2766 2744 -2920521.572234 2767 2744 5385216.157707 2768 2744 -25206299.26693 2832 2744 8005089.696258 2833 2744 -7635451.454545 2834 2744 -9407733.938713 2835 2744 36913961.41127 2836 2744 -5283969.107957 2837 2744 -35687511.70929 2850 2744 439820.6128855 2851 2744 -31491805.80303 2852 2744 -4060894.923526 2853 2744 1636068.847779 2854 2744 -13361537.70386 2855 2744 -62110956.49564 2856 2744 14361165.99813 2857 2744 44679081.42414 2858 2744 -62517889.38316 2871 2744 -8444910.309145 2872 2744 -8163229.232496 2873 2744 -10570710.68328 2874 2744 -46695244.86759 2875 2744 3275933.401367 2876 2744 -60107504.48815 2877 2744 -6175963.728574 2878 2744 18012970.71223 2879 2744 -28603898.10301 2745 2745 489618492.9753 2746 2745 15356371.09326 2747 2745 -2554275.615559 2763 2745 -75484143.26592 2764 2745 -45746472.96609 2765 2745 2836938.039019 2766 2745 -36927445.63632 2767 2745 34495259.45832 2768 2745 -1076002.638337 2769 2745 61858293.65847 2770 2745 -22880131.39438 2771 2745 113380.0795472 2772 2745 -20251607.2672 2773 2745 40238479.12124 2774 2745 -451510.9862942 2835 2745 -17479931.67357 2836 2745 14362145.7276 2837 2745 5833486.609719 2853 2745 -31941173.76503 2854 2745 -19728022.05833 2855 2745 -12009716.04913 2856 2745 24089286.29196 2857 2745 3839092.775206 2858 2745 10350875.53811 2874 2745 -25149760.01167 2875 2745 -11436618.24716 2876 2745 -12495973.82755 2877 2745 -53221395.58403 2878 2745 8623814.868827 2879 2745 -52049556.20671 2880 2745 -15616531.23755 2881 2745 -5720032.851413 2882 2745 11718275.57488 2883 2745 -19138192.52839 2884 2745 10059619.78527 2885 2745 -12797947.19522 2746 2746 684488409.1365 2747 2746 -18295681.76298 2763 2746 -45746472.96609 2764 2746 -41552329.55583 2765 2746 331278.0576664 2766 2746 34495259.45832 2767 2746 136816456.2173 2768 2746 -3434058.65236 2769 2746 -3769020.286411 2770 2746 -30851528.21609 2771 2746 417819.3012418 2772 2746 40238479.12124 2773 2746 -41200663.37894 2774 2746 488013.3309756 2835 2746 9574763.8184 2836 2746 -44269000.15613 2837 2746 -13244377.7058 2853 2746 -19718417.92848 2854 2746 -77373793.75269 2855 2746 -39681478.38126 2856 2746 3839092.775206 2857 2746 72806765.35626 2858 2746 -2276323.108396 2874 2746 -11436618.24716 2875 2746 -16666806.57997 2876 2746 -10481763.82233 2877 2746 8623814.868826 2878 2746 -9785420.099232 2879 2746 5243568.66829 2880 2746 -942255.0720671 2881 2746 -38793986.71761 2882 2746 33437788.15322 2883 2746 10059619.78527 2884 2746 -24375456.5589 2885 2746 16788670.00494 2747 2747 600039923.4573 2763 2747 2573049.150303 2764 2747 120166.946694 2765 2747 -12151033.88324 2766 2747 -2131558.193719 2767 2747 -3645169.763436 2768 2747 150791187.3325 2769 2747 -150508.8092947 2770 2747 417819.3012417 2771 2747 95574403.5202 2772 2747 -715399.8750098 2773 2747 488013.3309756 2774 2747 22252331.25781 2835 2747 3888991.073146 2836 2747 -14800902.31119 2837 2747 -19824082.64697 2853 2747 -12006053.84798 2854 2747 -39687207.82015 2855 2747 -46883174.43545 2856 2747 -10308568.90294 2857 2747 -5821027.16094 2858 2747 -112164251.0942 2874 2747 -12495973.82755 2875 2747 -10481763.82233 2876 2747 -19781022.96801 2877 2747 -52049556.20697 2878 2747 5243568.669446 2879 2747 -79607627.60272 2880 2747 3593275.573656 2881 2747 33437788.15322 2882 2747 -58989344.86761 2883 2747 -12797947.19522 2884 2747 16788670.00494 2885 2747 -31971025.74039 2748 2748 400933506.7687 2749 2748 1.347064971924e-05 2750 2748 3518564.899597 2751 2748 46502609.17931 2752 2748 9555555.553979 2753 2748 -2418969.885557 2838 2748 -71968136.03531 2839 2748 4.157423973083e-06 2840 2748 51943969.87703 2841 2748 -29817851.87049 2842 2748 -11944444.44837 2843 2748 17900923.03284 2859 2748 44430116.09181 2860 2748 1.907348632813e-06 2861 2748 -10318414.32804 2862 2748 -12806461.31664 2863 2748 2388888.889668 2864 2748 -3404256.361406 2749 2749 343596730.4434 2750 2749 -42221665.62853 2751 2749 -9555555.55399 2752 2749 -44275021.63857 2753 2749 20899721.7032 2838 2749 3.337860107422e-06 2839 2749 -19412223.56332 2840 2749 -5277708.208769 2841 2749 -11944444.44837 2842 2749 -26234303.34662 2843 2749 12913159.66331 2859 2749 2.861022949219e-06 2860 2749 30095922.00342 2861 2749 -10555416.41234 2862 2749 -2388888.889678 2863 2749 -35500869.03229 2864 2749 26354097.09154 2750 2750 383273120.8405 2751 2750 5497696.779808 2752 2750 21321943.92535 2753 2750 28979670.15418 2838 2750 51680080.98832 2839 2750 -5277708.208769 2840 2750 -58666023.42418 2841 2750 17900923.03284 2842 2750 12913159.66331 2843 2750 -36646590.5368 2859 2750 10758252.33516 2860 2750 -10555416.41234 2861 2750 -52990414.80866 2862 2750 3844076.974307 2863 2750 26354097.09164 2864 2750 -57907385.43707 2751 2751 400933506.7687 2752 2751 1.347064971924e-05 2753 2751 3518564.899597 2754 2751 46502609.17931 2755 2751 9555555.553979 2756 2751 -2418969.885557 2838 2751 -19603280.6462 2839 2751 11944444.44837 2840 2751 8005089.696258 2841 2751 -71968136.03531 2842 2751 4.157423973083e-06 2843 2751 51943969.87703 2844 2751 -29817851.87049 2845 2751 -11944444.44837 2846 2751 17900923.03284 2859 2751 8147390.424101 2860 2751 -2388888.889671 2861 2751 -1425089.694098 2862 2751 44430116.09181 2863 2751 1.907348632813e-06 2864 2751 -10318414.32804 2865 2751 -12806461.31664 2866 2751 2388888.889668 2867 2751 -3404256.361406 2752 2752 343596730.4434 2753 2752 -42221665.62853 2754 2752 -9555555.55399 2755 2752 -44275021.63857 2756 2752 20899721.7032 2838 2752 11944444.44837 2839 2752 -16019732.12234 2840 2752 -7635451.454545 2841 2752 3.337860107422e-06 2842 2752 -19412223.56332 2843 2752 -5277708.208769 2844 2752 -11944444.44837 2845 2752 -26234303.34662 2846 2752 12913159.66331 2859 2752 2388888.889676 2860 2752 -14547017.29156 2861 2752 -15798680.67921 2862 2752 2.861022949219e-06 2863 2752 30095922.00342 2864 2752 -10555416.41234 2865 2752 -2388888.889678 2866 2752 -35500869.03229 2867 2752 26354097.09154 2753 2753 383273120.8405 2754 2753 5497696.779808 2755 2753 21321943.92535 2756 2753 28979670.15418 2838 2753 8005089.696258 2839 2753 -7635451.454545 2840 2753 -9407733.938713 2841 2753 51680080.98832 2842 2753 -5277708.208769 2843 2753 -58666023.42418 2844 2753 17900923.03284 2845 2753 12913159.66331 2846 2753 -36646590.5368 2859 2753 1864910.306983 2860 2753 -15798680.67931 2861 2753 -2030447.461764 2862 2753 10758252.33516 2863 2753 -10555416.41234 2864 2753 -52990414.80866 2865 2753 3844076.974307 2866 2753 26354097.09164 2867 2753 -57907385.43707 2754 2754 400933506.7687 2755 2754 1.347064971924e-05 2756 2754 3518564.899597 2757 2754 46502609.17931 2758 2754 9555555.553979 2759 2754 -2418969.885557 2841 2754 -19603280.6462 2842 2754 11944444.44837 2843 2754 8005089.696258 2844 2754 -71968136.03531 2845 2754 4.157423973083e-06 2846 2754 51943969.87703 2847 2754 -29817851.87049 2848 2754 -11944444.44837 2849 2754 17900923.03284 2862 2754 8147390.424101 2863 2754 -2388888.889671 2864 2754 -1425089.694098 2865 2754 44430116.09181 2866 2754 1.907348632813e-06 2867 2754 -10318414.32804 2868 2754 -12806461.31664 2869 2754 2388888.889668 2870 2754 -3404256.361406 2755 2755 343596730.4434 2756 2755 -42221665.62853 2757 2755 -9555555.55399 2758 2755 -44275021.63857 2759 2755 20899721.7032 2841 2755 11944444.44837 2842 2755 -16019732.12234 2843 2755 -7635451.454545 2844 2755 3.337860107422e-06 2845 2755 -19412223.56332 2846 2755 -5277708.208769 2847 2755 -11944444.44837 2848 2755 -26234303.34662 2849 2755 12913159.66331 2862 2755 2388888.889676 2863 2755 -14547017.29156 2864 2755 -15798680.67921 2865 2755 2.861022949219e-06 2866 2755 30095922.00342 2867 2755 -10555416.41234 2868 2755 -2388888.889678 2869 2755 -35500869.03229 2870 2755 26354097.09154 2756 2756 383273120.8405 2757 2756 5497696.779808 2758 2756 21321943.92535 2759 2756 28979670.15418 2841 2756 8005089.696258 2842 2756 -7635451.454545 2843 2756 -9407733.938713 2844 2756 51680080.98832 2845 2756 -5277708.208769 2846 2756 -58666023.42418 2847 2756 17900923.03284 2848 2756 12913159.66331 2849 2756 -36646590.5368 2862 2756 1864910.306983 2863 2756 -15798680.67931 2864 2756 -2030447.461764 2865 2756 10758252.33516 2866 2756 -10555416.41234 2867 2756 -52990414.80866 2868 2756 3844076.974307 2869 2756 26354097.09164 2870 2756 -57907385.43707 2757 2757 400933506.7687 2758 2757 1.347064971924e-05 2759 2757 3518564.899597 2760 2757 46502609.17931 2761 2757 9555555.553979 2762 2757 -2418969.885557 2844 2757 -19603280.6462 2845 2757 11944444.44837 2846 2757 8005089.696258 2847 2757 -71968136.03531 2848 2757 4.157423973083e-06 2849 2757 51943969.87703 2850 2757 -29817851.87049 2851 2757 -11944444.44837 2852 2757 17900923.03284 2865 2757 8147390.424101 2866 2757 -2388888.889671 2867 2757 -1425089.694098 2868 2757 44430116.09181 2869 2757 1.907348632813e-06 2870 2757 -10318414.32804 2871 2757 -12806461.31664 2872 2757 2388888.889668 2873 2757 -3404256.361406 2758 2758 343596730.4434 2759 2758 -42221665.62853 2760 2758 -9555555.55399 2761 2758 -44275021.63857 2762 2758 20899721.7032 2844 2758 11944444.44837 2845 2758 -16019732.12234 2846 2758 -7635451.454545 2847 2758 3.337860107422e-06 2848 2758 -19412223.56332 2849 2758 -5277708.208769 2850 2758 -11944444.44837 2851 2758 -26234303.34662 2852 2758 12913159.66331 2865 2758 2388888.889676 2866 2758 -14547017.29156 2867 2758 -15798680.67921 2868 2758 2.861022949219e-06 2869 2758 30095922.00342 2870 2758 -10555416.41234 2871 2758 -2388888.889678 2872 2758 -35500869.03229 2873 2758 26354097.09154 2759 2759 383273120.8405 2760 2759 5497696.779808 2761 2759 21321943.92535 2762 2759 28979670.15418 2844 2759 8005089.696258 2845 2759 -7635451.454545 2846 2759 -9407733.938713 2847 2759 51680080.98832 2848 2759 -5277708.208769 2849 2759 -58666023.42418 2850 2759 17900923.03284 2851 2759 12913159.66331 2852 2759 -36646590.5368 2865 2759 1864910.306983 2866 2759 -15798680.67931 2867 2759 -2030447.461764 2868 2759 10758252.33516 2869 2759 -10555416.41234 2870 2759 -52990414.80866 2871 2759 3844076.974307 2872 2759 26354097.09164 2873 2759 -57907385.43707 2760 2760 400933506.7687 2761 2760 1.347064971924e-05 2762 2760 3518564.899597 2763 2760 46502609.17931 2764 2760 9555555.553979 2765 2760 -2418969.885557 2847 2760 -19603280.6462 2848 2760 11944444.44837 2849 2760 8005089.696258 2850 2760 -71968136.03531 2851 2760 4.157423973083e-06 2852 2760 51943969.87703 2853 2760 -29817851.87049 2854 2760 -11944444.44837 2855 2760 17900923.03284 2868 2760 8147390.424101 2869 2760 -2388888.889671 2870 2760 -1425089.694098 2871 2760 44430116.09181 2872 2760 1.907348632813e-06 2873 2760 -10318414.32804 2874 2760 -12806461.31664 2875 2760 2388888.889668 2876 2760 -3404256.361406 2761 2761 343596730.4434 2762 2761 -42221665.62853 2763 2761 -9555555.55399 2764 2761 -44275021.63857 2765 2761 20899721.7032 2847 2761 11944444.44837 2848 2761 -16019732.12234 2849 2761 -7635451.454545 2850 2761 3.337860107422e-06 2851 2761 -19412223.56332 2852 2761 -5277708.208769 2853 2761 -11944444.44837 2854 2761 -26234303.34662 2855 2761 12913159.66331 2868 2761 2388888.889676 2869 2761 -14547017.29156 2870 2761 -15798680.67921 2871 2761 2.861022949219e-06 2872 2761 30095922.00342 2873 2761 -10555416.41234 2874 2761 -2388888.889678 2875 2761 -35500869.03229 2876 2761 26354097.09154 2762 2762 383273120.8405 2763 2762 5497696.779808 2764 2762 21321943.92535 2765 2762 28979670.15418 2847 2762 8005089.696258 2848 2762 -7635451.454545 2849 2762 -9407733.938713 2850 2762 51680080.98832 2851 2762 -5277708.208769 2852 2762 -58666023.42418 2853 2762 17900923.03284 2854 2762 12913159.66331 2855 2762 -36646590.5368 2868 2762 1864910.306983 2869 2762 -15798680.67931 2870 2762 -2030447.461764 2871 2762 10758252.33516 2872 2762 -10555416.41234 2873 2762 -52990414.80866 2874 2762 3844076.974307 2875 2762 26354097.09164 2876 2762 -57907385.43707 2763 2763 390528978.5414 2764 2763 2031754.88496 2765 2763 18978084.67473 2766 2763 10706126.81689 2767 2763 -19091014.80711 2768 2763 2131234.560147 2850 2763 -19603280.6462 2851 2763 11944444.44837 2852 2763 8005089.696258 2853 2763 -57207507.5192 2854 2763 6145877.671107 2855 2763 43364477.33833 2856 2763 -26546695.73564 2857 2763 -11436618.24716 2858 2763 13848470.62555 2871 2763 8147390.424101 2872 2763 -2388888.889671 2873 2763 -1425089.694098 2874 2763 41725581.05413 2875 2763 507938.7214912 2876 2763 -6453256.604583 2877 2763 -15664036.02673 2878 2763 -4772753.704127 2879 2763 5360864.194452 2764 2764 352799816.1126 2765 2764 -26163100.1551 2766 2764 -38202125.91508 2767 2764 -79908143.54456 2768 2764 4520172.591737 2850 2764 11944444.44837 2851 2764 -16019732.12234 2852 2764 -7635451.454545 2853 2764 6145877.671106 2854 2764 -14493743.54572 2855 2764 -8981011.042271 2856 2764 -11436618.24716 2857 2764 -18063742.30393 2858 2764 10594625.07348 2871 2764 2388888.889676 2872 2764 -14547017.29156 2873 2764 -15798680.67921 2874 2764 507938.7214905 2875 2764 32293290.44228 2876 2764 -6540775.042003 2877 2764 -9550531.483474 2878 2764 -38317603.62825 2879 2764 28361293.14454 2765 2765 373214203.523 2766 2765 3450679.004372 2767 2765 4731283.702813 2768 2765 25915984.15995 2850 2765 8005089.696258 2851 2765 -7635451.454545 2852 2765 -9407733.938713 2853 2765 44683921.78504 2854 2765 -8981011.041011 2855 2765 -51241692.90527 2856 2765 13848470.62555 2857 2765 10594625.07348 2858 2765 -23506184.8986 2871 2765 1864910.306983 2872 2765 -15798680.67931 2873 2765 -2030447.461764 2874 2765 14622854.50307 2875 2765 -6540775.042003 2876 2765 -55780885.41815 2877 2765 11025586.41696 2878 2765 28361293.14339 2879 2765 -42429184.57622 2766 2766 393308552.7541 2767 2766 33387741.61392 2768 2766 1069557.995636 2769 2766 -90523162.8112 2770 2766 -55317076.41861 2771 2766 735989.013558 2772 2766 18987277.35532 2773 2766 -7277063.18551 2774 2766 851409.3072543 2853 2766 -16305861.25464 2854 2766 8228316.115794 2855 2766 4847647.38616 2856 2766 -52398287.78342 2857 2766 8623814.868829 2858 2766 51247665.9983 2874 2766 -10942417.8914 2875 2766 -9550531.483475 2876 2766 -9564135.802965 2877 2766 13533800.67906 2878 2766 8346935.407593 2879 2766 -10722054.94328 2880 2766 -36706081.42304 2881 2766 -13829269.11147 2882 2766 20496497.26015 2883 2766 -20473238.80768 2884 2766 -1819265.797273 2885 2766 5144935.657537 2767 2767 456455484.3111 2768 2767 -8493577.449744 2769 2767 -55317076.41861 2770 2767 -67552496.70794 2771 2767 488013.3309754 2772 2767 -26388174.29348 2773 2767 -73256625.20248 2774 2767 1534234.021698 2853 2767 8228316.115794 2854 2767 -35556692.91277 2855 2767 -15320362.63205 2856 2767 8623814.868829 2857 2767 -8962312.29862 2858 2767 -7013375.774193 2874 2767 -4772753.704129 2875 2767 -33595985.49293 2876 2767 -26048429.06869 2877 2767 8346935.407594 2878 2767 29320533.57608 2879 2767 -2123394.363487 2880 2767 -13829269.11147 2881 2767 -30963414.8944 2882 2767 16788670.00494 2883 2767 -6597043.576619 2884 2767 -43534214.45849 2885 2767 33716891.83347 2768 2768 472314421.5349 2769 2768 735989.0135581 2770 2768 488013.3309754 2771 2768 -4099502.071191 2772 2768 1115298.196096 2773 2768 1534234.021698 2774 2768 54129421.48319 2853 2768 4847647.38616 2854 2768 -15320362.63205 2855 2768 -21210942.45867 2856 2768 51247665.99856 2857 2768 -7013375.772933 2858 2768 -77412673.46776 2874 2768 -4691080.247253 2875 2768 -26048429.06995 2876 2768 -29838202.88199 2877 2768 9937389.497775 2878 2768 -2123394.363487 2879 2768 -108036961.3792 2880 2768 20496497.26015 2881 2768 16788670.00494 2882 2768 -38558984.07588 2883 2768 10337713.43846 2884 2768 33716891.83347 2885 2768 -53721133.01946 2769 2769 247694807.0596 2770 2769 61102353.61032 2771 2769 -421250.4501109 2772 2769 -40613658.84548 2773 2769 -2016256.905298 2774 2769 -164229.7541515 2856 2769 -15064205.65599 2857 2769 -942255.0720674 2858 2769 -3602557.756001 2877 2769 -36153755.84147 2878 2769 -13829269.11147 2879 2769 -20128502.75319 2880 2769 313818.0877385 2881 2769 15275588.41011 2882 2769 8019687.386086 2883 2769 -37751670.53939 2884 2769 -504064.2265737 2885 2769 -33038626.87689 2770 2770 223946295.6199 2771 2770 -417819.3012383 2772 2770 17094854.20267 2773 2770 52874008.36546 2774 2770 -488013.3309731 2856 2770 -5720032.851414 2857 2770 -38241661.13605 2858 2770 -33228878.5025 2877 2770 -13829269.11147 2878 2770 -30411089.31283 2879 2770 -16544663.33934 2880 2770 15275588.41011 2881 2770 -5623309.775096 2882 2770 6562211.840209 2883 2770 4273713.552772 2884 2770 -14379753.72514 2885 2770 3211330.001623 2771 2771 302886642.9092 2772 2771 -428118.6429929 2773 2771 -488013.3309731 2774 2771 81415199.80545 2856 2771 -11727557.7571 2857 2771 -33228878.5025 2858 2771 -57516476.65011 2877 2771 -20128502.75319 2878 2771 -16544663.33934 2879 2771 -37086115.85837 2880 2771 -8230312.611246 2881 2771 -6771121.490934 2882 2771 -88571362.45583 2883 2771 -33038626.87847 2884 2771 -3455336.667233 2885 2771 -53241548.9 2772 2772 194640779.4635 2773 2772 -30945159.03043 2774 2772 555998.0993371 2856 2772 -18585866.94682 2857 2772 10059619.78527 2858 2772 12506219.47975 2877 2772 -18816262.06405 2878 2772 -6597043.57662 2879 2772 -10043953.22886 2880 2772 -37751670.53939 2881 2772 4273713.552774 2882 2772 32890539.77888 2883 2772 -122944.6401992 2884 2772 -7736289.761419 2885 2772 -5251694.918494 2773 2773 214346070.9221 2774 2773 -1534234.021693 2856 2773 10059619.78527 2857 2773 -23823130.97733 2858 2773 -16544663.33934 2877 2773 -1819265.797274 2878 2773 -41877237.71487 2879 2773 -32949774.82225 2880 2773 -504064.2265722 2881 2773 -14379753.72514 2882 2773 3211330.001623 2883 2773 -7736289.761419 2884 2773 4803378.226877 2885 2773 6283108.159956 2774 2774 249570489.3365 2856 2774 12506219.47975 2857 2774 -16544663.33934 2858 2774 -30498157.52287 2877 2774 -5115064.336773 2878 2774 -32949774.82225 2879 2774 -49302528.36979 2880 2774 32890539.77744 2881 2774 -3455336.667232 2882 2774 -53241548.9 2883 2774 4869971.746511 2884 2774 -7050225.171186 2885 2774 -67695749.71523 2775 2775 508612796.7711 2776 2775 47777777.76993 2777 2775 20248388.26907 2778 2775 -267652150.2947 2779 2775 -47793765.64302 2780 2775 -20241471.08164 2781 2775 6087083.420696 2782 2775 38238210.08904 2783 2775 -16367807.61161 2886 2775 57272319.20769 2887 2775 11944444.44837 2888 2775 16262217.83282 2889 2775 -96920154.16551 2890 2775 -11948441.41665 2891 2775 -57894966.96635 2892 2775 -19430363.65776 2893 2775 9559552.526969 2894 2775 -14502802.0572 2776 2776 436923838.9196 2777 2776 -52790465.59624 2778 2776 -47801759.57957 2779 2776 -43044343.65972 2780 2776 -29246608.86722 2781 2776 57357315.13355 2782 2776 6087083.420705 2783 2776 18374525.78853 2886 2776 11944444.44837 2887 2776 39350079.73598 2888 2776 -4237631.002181 2889 2776 -11950439.90079 2890 2776 -40768202.4791 2891 2776 -17881456.80322 2892 2776 14339328.79045 2893 2776 -19430363.65775 2894 2776 17403019.36621 2777 2777 498731997.6738 2778 2777 -20238012.48793 2779 2777 -23543989.15986 2780 2777 -9089122.520285 2781 2777 -24551711.41742 2782 2777 12249683.85902 2783 2777 16232222.45521 2886 2777 -4818855.100867 2887 2777 -21102266.9381 2888 2777 -61666013.98076 2889 2777 -57630268.59944 2890 2777 -16401283.68257 2891 2777 -82291258.12151 2892 2777 -21754203.08579 2893 2777 11602012.9108 2894 2777 -51814303.08735 2778 2778 866925828.5346 2779 2778 47817747.45269 2780 2778 23749660.20008 2781 2778 14263474.74723 2782 2778 -47793765.64302 2783 2778 20546059.94785 2784 2778 -181853790.138 2785 2778 3.248453140259e-06 2786 2778 -3518564.899638 2787 2778 -72853540.65349 2788 2778 47777777.76992 2789 2778 -20539363.4444 2886 2778 -85740387.93072 2887 2778 -11950439.90077 2888 2778 47775096.06898 2889 2778 112006329.4708 2890 2778 11954436.86906 2891 2778 5935349.843305 2892 2778 -36979414.9719 2893 2778 -11948441.41664 2894 2778 18346879.03149 2895 2778 -74762019.75572 2896 2778 2.533197402954e-07 2897 2778 -53703252.3277 2898 2778 -30778677.45218 2899 2778 11944444.44836 2900 2778 -18340743.64572 2779 2779 737900094.3577 2780 2779 -65443918.48946 2781 2779 -47801759.57957 2782 2779 -152989568.1247 2783 2779 35049537.95506 2784 2779 3.069639205933e-06 2785 2779 28369859.6463 2786 2779 -21110832.82467 2787 2779 47777777.76992 2788 2779 -58519346.56511 2789 2779 11505416.41223 2886 2779 -11948441.41664 2887 2779 -29588436.2443 2888 2779 4682155.144749 2889 2779 11954436.86906 2890 2779 79749895.91067 2891 2779 -16362631.77783 2892 2779 -11950439.90078 2893 2779 -78792675.71048 2894 2779 51029508.03613 2895 2779 -8.195638656616e-07 2896 2779 -22206107.28377 2897 2779 -5277708.20877 2898 2779 11944444.44836 2899 2779 -27195128.92833 2900 2779 13440937.44126 2780 2780 768350518.5004 2781 2780 20813297.08829 2782 2780 40963180.50213 2783 2780 19484057.05595 2784 2780 -3518564.899638 2785 2780 -21110832.82467 2786 2780 48052583.38233 2787 2780 -20803252.33311 2788 2780 11716527.5232 2789 2780 -22805384.02253 2886 2780 47510397.70207 2887 2780 3205506.989851 2888 2780 -52478548.16204 2889 2780 5939756.113784 2890 2780 -16359106.80793 2891 2780 -87179377.66603 2892 2780 18349946.72438 2893 2780 52296851.6274 2894 2780 -103249742.1615 2895 2780 -53439363.43899 2896 2780 -5277708.20877 2897 2780 -66116380.01208 2898 2780 -18340743.64572 2899 2780 13440937.44126 2900 2780 -39208792.08802 2781 2781 508612796.7711 2782 2781 47777777.76993 2783 2781 20248388.26907 2784 2781 -71804122.04904 2785 2781 -47777777.76993 2786 2781 19043969.88243 2787 2781 -267652150.2947 2788 2781 -47793765.64302 2789 2781 -20241471.08164 2790 2781 6087083.420696 2791 2781 38238210.08904 2792 2781 -16367807.61161 2886 2781 1532382.642161 2887 2781 14339328.79045 2888 2781 9874015.186731 2889 2781 -4845636.536104 2890 2781 -11950439.90078 2891 2781 -8009104.879749 2892 2781 57272319.20769 2893 2781 11944444.44837 2894 2781 16262217.83282 2895 2781 -20039396.92541 2896 2781 -11944444.44837 2897 2781 -8444910.309145 2898 2781 -96920154.16551 2899 2781 -11948441.41665 2900 2781 -57894966.96635 2901 2781 -19430363.65776 2902 2781 9559552.526969 2903 2781 -14502802.0572 2782 2782 436923838.9196 2783 2782 -52790465.59624 2784 2782 -47777777.76993 2785 2782 -57469927.96065 2786 2782 9605416.412441 2787 2782 -47801759.57957 2788 2782 -43044343.65972 2789 2782 -29246608.86722 2790 2782 57357315.13355 2791 2782 6087083.420705 2792 2782 18374525.78853 2886 2782 9559552.526969 2887 2782 1532382.642157 2888 2782 -5266148.137347 2889 2782 -11948441.41664 2890 2782 -46658897.27468 2891 2782 -32026328.33686 2892 2782 11944444.44837 2893 2782 39350079.73598 2894 2782 -4237631.002181 2895 2782 -11944444.44837 2896 2782 -16455848.40155 2897 2782 -8163229.232496 2898 2782 -11950439.90079 2899 2782 -40768202.4791 2900 2782 -17881456.80322 2901 2782 14339328.79045 2902 2782 -19430363.65775 2903 2782 17403019.36621 2783 2783 498731997.6738 2784 2783 18780080.99371 2785 2783 9394305.301468 2786 2783 -20006934.4106 2787 2783 -20238012.48793 2788 2783 -23543989.15986 2789 2783 -9089122.520285 2790 2783 -24551711.41742 2791 2783 12249683.85902 2792 2783 16232222.45521 2886 2783 6582676.791154 2887 2783 -7899222.206021 2888 2783 4086353.712421 2889 2783 -8007766.485252 2890 2783 -33293672.07046 2891 2783 -17559666.33271 2892 2783 -4818855.100867 2893 2783 -21102266.9381 2894 2783 -61666013.98076 2895 2783 -8444910.309145 2896 2783 -8163229.232496 2897 2783 -10570710.68328 2898 2783 -57630268.59944 2899 2783 -16401283.68257 2900 2783 -82291258.12151 2901 2783 -21754203.08579 2902 2783 11602012.9108 2903 2783 -51814303.08735 2784 2784 801867013.5374 2785 2784 2.598762512207e-05 2786 2784 7037129.799195 2787 2784 92970237.73849 2788 2784 -1.010298728943e-05 2789 2784 1759282.450673 2793 2784 -181853790.138 2794 2784 3.248453140259e-06 2795 2784 -3518564.899638 2796 2784 -72853540.65349 2797 2784 47777777.76992 2798 2784 -20539363.4444 2889 2784 -71968136.03531 2890 2784 4.157423973083e-06 2891 2784 51943969.87703 2892 2784 -29817851.87049 2893 2784 -11944444.44837 2894 2784 17900923.03284 2895 2784 88895212.80375 2896 2784 4.112720489502e-06 2897 2784 1759282.450699 2898 2784 -25612922.63328 2899 2784 -1.080334186554e-05 2900 2784 439820.6129002 2904 2784 -74762019.75572 2905 2784 2.533197402954e-07 2906 2784 -53703252.3277 2907 2784 -30778677.45218 2908 2784 11944444.44836 2909 2784 -18340743.64572 2785 2785 687193460.8868 2786 2785 -84443331.25708 2787 2785 -1.019239425659e-05 2788 2785 -88585023.89729 2789 2785 42221665.62855 2793 2785 3.069639205933e-06 2794 2785 28369859.6463 2795 2785 -21110832.82467 2796 2785 47777777.76992 2797 2785 -58519346.56511 2798 2785 11505416.41223 2889 2785 3.337860107422e-06 2890 2785 -19412223.56332 2891 2785 -5277708.208769 2892 2785 -11944444.44837 2893 2785 -26234303.34662 2894 2785 12913159.66331 2895 2785 4.351139068604e-06 2896 2785 60226824.62697 2897 2785 -21110832.82468 2898 2785 -9.95397567749e-06 2899 2785 -71001738.06458 2900 2785 52813749.73867 2904 2785 -8.195638656616e-07 2905 2785 -22206107.28377 2906 2785 -5277708.20877 2907 2785 11944444.44836 2908 2785 -27195128.92833 2909 2785 13440937.44126 2786 2786 766546241.681 2787 2786 1759282.450673 2788 2786 42221665.62855 2789 2786 57866058.65466 2793 2786 -3518564.899638 2794 2786 -21110832.82467 2795 2786 48052583.38233 2796 2786 -20803252.33311 2797 2786 11716527.5232 2798 2786 -22805384.02253 2889 2786 51680080.98832 2890 2786 -5277708.208769 2891 2786 -58666023.42418 2892 2786 17900923.03284 2893 2786 12913159.66331 2894 2786 -36646590.5368 2895 2786 1759282.450699 2896 2786 -21110832.82468 2897 2786 -105887547.9636 2898 2786 439820.6129005 2899 2786 52602638.6277 2900 2786 -115814770.8741 2904 2786 -53439363.43899 2905 2786 -5277708.20877 2906 2786 -66116380.01208 2907 2786 -18340743.64572 2908 2786 13440937.44126 2909 2786 -39208792.08802 2787 2787 866925828.5346 2788 2787 47817747.45269 2789 2787 23749660.20008 2790 2787 14263474.74723 2791 2787 -47793765.64302 2792 2787 20546059.94785 2793 2787 -71804122.04904 2794 2787 -47777777.76993 2795 2787 19043969.88243 2796 2787 -181853790.138 2797 2787 3.248453140259e-06 2798 2787 -3518564.899638 2799 2787 -72853540.65349 2800 2787 47777777.76992 2801 2787 -20539363.4444 2889 2787 -19603280.6462 2890 2787 11944444.44837 2891 2787 8005089.696258 2892 2787 -85740387.93072 2893 2787 -11950439.90077 2894 2787 47775096.06898 2895 2787 16294780.8482 2896 2787 4.217028617859e-06 2897 2787 439820.6128852 2898 2787 112006329.4708 2899 2787 11954436.86906 2900 2787 5935349.843305 2901 2787 -36979414.9719 2902 2787 -11948441.41664 2903 2787 18346879.03149 2904 2787 -20039396.92541 2905 2787 -11944444.44837 2906 2787 -8444910.309145 2907 2787 -74762019.75572 2908 2787 2.533197402954e-07 2909 2787 -53703252.3277 2910 2787 -30778677.45218 2911 2787 11944444.44836 2912 2787 -18340743.64572 2788 2788 737900094.3577 2789 2788 -65443918.48946 2790 2788 -47801759.57957 2791 2788 -152989568.1247 2792 2788 35049537.95506 2793 2788 -47777777.76993 2794 2788 -57469927.96065 2795 2788 9605416.412441 2796 2788 3.069639205933e-06 2797 2788 28369859.6463 2798 2788 -21110832.82467 2799 2788 47777777.76992 2800 2788 -58519346.56511 2801 2788 11505416.41223 2889 2788 11944444.44837 2890 2788 -16019732.12234 2891 2788 -7635451.454545 2892 2788 -11948441.41664 2893 2788 -29588436.2443 2894 2788 4682155.144749 2895 2788 5.125999450684e-06 2896 2788 -29094034.58311 2897 2788 -31702916.914 2898 2788 11954436.86906 2899 2788 79749895.91067 2900 2788 -16362631.77783 2901 2788 -11950439.90078 2902 2788 -78792675.71048 2903 2788 51029508.03613 2904 2788 -11944444.44837 2905 2788 -16455848.40155 2906 2788 -8163229.232496 2907 2788 -8.195638656616e-07 2908 2788 -22206107.28377 2909 2788 -5277708.20877 2910 2788 11944444.44836 2911 2788 -27195128.92833 2912 2788 13440937.44126 2789 2789 768350518.5004 2790 2789 20813297.08829 2791 2789 40963180.50213 2792 2789 19484057.05595 2793 2789 18780080.99371 2794 2789 9394305.301468 2795 2789 -20006934.4106 2796 2789 -3518564.899638 2797 2789 -21110832.82467 2798 2789 48052583.38233 2799 2789 -20803252.33311 2800 2789 11716527.5232 2801 2789 -22805384.02253 2889 2789 8005089.696258 2890 2789 -7635451.454545 2891 2789 -9407733.938713 2892 2789 47510397.70207 2893 2789 3205506.989851 2894 2789 -52478548.16204 2895 2789 439820.6128855 2896 2789 -31491805.80303 2897 2789 -4060894.923526 2898 2789 5939756.113784 2899 2789 -16359106.80793 2900 2789 -87179377.66603 2901 2789 18349946.72438 2902 2789 52296851.6274 2903 2789 -103249742.1615 2904 2789 -8444910.309145 2905 2789 -8163229.232496 2906 2789 -10570710.68328 2907 2789 -53439363.43899 2908 2789 -5277708.20877 2909 2789 -66116380.01208 2910 2789 -18340743.64572 2911 2789 13440937.44126 2912 2789 -39208792.08802 2790 2790 508612796.7711 2791 2790 47777777.76993 2792 2790 20248388.26907 2796 2790 -71804122.04904 2797 2790 -47777777.76993 2798 2790 19043969.88243 2799 2790 -267652150.2947 2800 2790 -47793765.64302 2801 2790 -20241471.08164 2802 2790 6087083.420696 2803 2790 38238210.08904 2804 2790 -16367807.61161 2892 2790 1532382.642161 2893 2790 14339328.79045 2894 2790 9874015.186731 2898 2790 -4845636.536104 2899 2790 -11950439.90078 2900 2790 -8009104.879749 2901 2790 57272319.20769 2902 2790 11944444.44837 2903 2790 16262217.83282 2907 2790 -20039396.92541 2908 2790 -11944444.44837 2909 2790 -8444910.309145 2910 2790 -96920154.16551 2911 2790 -11948441.41665 2912 2790 -57894966.96635 2913 2790 -19430363.65776 2914 2790 9559552.526969 2915 2790 -14502802.0572 2791 2791 436923838.9196 2792 2791 -52790465.59624 2796 2791 -47777777.76993 2797 2791 -57469927.96065 2798 2791 9605416.412441 2799 2791 -47801759.57957 2800 2791 -43044343.65972 2801 2791 -29246608.86722 2802 2791 57357315.13355 2803 2791 6087083.420705 2804 2791 18374525.78853 2892 2791 9559552.526969 2893 2791 1532382.642157 2894 2791 -5266148.137347 2898 2791 -11948441.41664 2899 2791 -46658897.27468 2900 2791 -32026328.33686 2901 2791 11944444.44837 2902 2791 39350079.73598 2903 2791 -4237631.002181 2907 2791 -11944444.44837 2908 2791 -16455848.40155 2909 2791 -8163229.232496 2910 2791 -11950439.90079 2911 2791 -40768202.4791 2912 2791 -17881456.80322 2913 2791 14339328.79045 2914 2791 -19430363.65775 2915 2791 17403019.36621 2792 2792 498731997.6738 2796 2792 18780080.99371 2797 2792 9394305.301468 2798 2792 -20006934.4106 2799 2792 -20238012.48793 2800 2792 -23543989.15986 2801 2792 -9089122.520285 2802 2792 -24551711.41742 2803 2792 12249683.85902 2804 2792 16232222.45521 2892 2792 6582676.791154 2893 2792 -7899222.206021 2894 2792 4086353.712421 2898 2792 -8007766.485252 2899 2792 -33293672.07046 2900 2792 -17559666.33271 2901 2792 -4818855.100867 2902 2792 -21102266.9381 2903 2792 -61666013.98076 2907 2792 -8444910.309145 2908 2792 -8163229.232496 2909 2792 -10570710.68328 2910 2792 -57630268.59944 2911 2792 -16401283.68257 2912 2792 -82291258.12151 2913 2792 -21754203.08579 2914 2792 11602012.9108 2915 2792 -51814303.08735 2793 2793 801867013.5374 2794 2793 2.598762512207e-05 2795 2793 7037129.799195 2796 2793 92970237.73849 2797 2793 -1.010298728943e-05 2798 2793 1759282.450673 2805 2793 -181853790.138 2806 2793 3.248453140259e-06 2807 2793 -3518564.899638 2808 2793 -72853540.65349 2809 2793 47777777.76992 2810 2793 -20539363.4444 2895 2793 -71968136.03531 2896 2793 4.157423973083e-06 2897 2793 51943969.87703 2898 2793 -29817851.87049 2899 2793 -11944444.44837 2900 2793 17900923.03284 2904 2793 88895212.80375 2905 2793 4.112720489502e-06 2906 2793 1759282.450699 2907 2793 -25612922.63328 2908 2793 -1.080334186554e-05 2909 2793 439820.6129002 2916 2793 -74762019.75572 2917 2793 2.533197402954e-07 2918 2793 -53703252.3277 2919 2793 -30778677.45218 2920 2793 11944444.44836 2921 2793 -18340743.64572 2794 2794 687193460.8868 2795 2794 -84443331.25708 2796 2794 -1.019239425659e-05 2797 2794 -88585023.89729 2798 2794 42221665.62855 2805 2794 3.069639205933e-06 2806 2794 28369859.6463 2807 2794 -21110832.82467 2808 2794 47777777.76992 2809 2794 -58519346.56511 2810 2794 11505416.41223 2895 2794 3.337860107422e-06 2896 2794 -19412223.56332 2897 2794 -5277708.208769 2898 2794 -11944444.44837 2899 2794 -26234303.34662 2900 2794 12913159.66331 2904 2794 4.351139068604e-06 2905 2794 60226824.62697 2906 2794 -21110832.82468 2907 2794 -9.95397567749e-06 2908 2794 -71001738.06458 2909 2794 52813749.73867 2916 2794 -8.195638656616e-07 2917 2794 -22206107.28377 2918 2794 -5277708.20877 2919 2794 11944444.44836 2920 2794 -27195128.92833 2921 2794 13440937.44126 2795 2795 766546241.681 2796 2795 1759282.450673 2797 2795 42221665.62855 2798 2795 57866058.65466 2805 2795 -3518564.899638 2806 2795 -21110832.82467 2807 2795 48052583.38233 2808 2795 -20803252.33311 2809 2795 11716527.5232 2810 2795 -22805384.02253 2895 2795 51680080.98832 2896 2795 -5277708.208769 2897 2795 -58666023.42418 2898 2795 17900923.03284 2899 2795 12913159.66331 2900 2795 -36646590.5368 2904 2795 1759282.450699 2905 2795 -21110832.82468 2906 2795 -105887547.9636 2907 2795 439820.6129005 2908 2795 52602638.6277 2909 2795 -115814770.8741 2916 2795 -53439363.43899 2917 2795 -5277708.20877 2918 2795 -66116380.01208 2919 2795 -18340743.64572 2920 2795 13440937.44126 2921 2795 -39208792.08802 2796 2796 801867013.5374 2797 2796 2.598762512207e-05 2798 2796 7037129.799195 2799 2796 92970237.73849 2800 2796 -1.010298728943e-05 2801 2796 1759282.450673 2805 2796 -71804122.04904 2806 2796 -47777777.76993 2807 2796 19043969.88243 2808 2796 -181853790.138 2809 2796 3.248453140259e-06 2810 2796 -3518564.899638 2811 2796 -72853540.65349 2812 2796 47777777.76992 2813 2796 -20539363.4444 2895 2796 -19603280.6462 2896 2796 11944444.44837 2897 2796 8005089.696258 2898 2796 -71968136.03531 2899 2796 4.157423973083e-06 2900 2796 51943969.87703 2901 2796 -29817851.87049 2902 2796 -11944444.44837 2903 2796 17900923.03284 2904 2796 16294780.8482 2905 2796 4.217028617859e-06 2906 2796 439820.6128852 2907 2796 88895212.80375 2908 2796 4.112720489502e-06 2909 2796 1759282.450699 2910 2796 -25612922.63328 2911 2796 -1.080334186554e-05 2912 2796 439820.6129002 2916 2796 -20039396.92541 2917 2796 -11944444.44837 2918 2796 -8444910.309145 2919 2796 -74762019.75572 2920 2796 2.533197402954e-07 2921 2796 -53703252.3277 2922 2796 -30778677.45218 2923 2796 11944444.44836 2924 2796 -18340743.64572 2797 2797 687193460.8868 2798 2797 -84443331.25708 2799 2797 -1.019239425659e-05 2800 2797 -88585023.89729 2801 2797 42221665.62855 2805 2797 -47777777.76993 2806 2797 -57469927.96065 2807 2797 9605416.412441 2808 2797 3.069639205933e-06 2809 2797 28369859.6463 2810 2797 -21110832.82467 2811 2797 47777777.76992 2812 2797 -58519346.56511 2813 2797 11505416.41223 2895 2797 11944444.44837 2896 2797 -16019732.12234 2897 2797 -7635451.454545 2898 2797 3.337860107422e-06 2899 2797 -19412223.56332 2900 2797 -5277708.208769 2901 2797 -11944444.44837 2902 2797 -26234303.34662 2903 2797 12913159.66331 2904 2797 5.125999450684e-06 2905 2797 -29094034.58311 2906 2797 -31702916.914 2907 2797 4.351139068604e-06 2908 2797 60226824.62697 2909 2797 -21110832.82468 2910 2797 -9.95397567749e-06 2911 2797 -71001738.06458 2912 2797 52813749.73867 2916 2797 -11944444.44837 2917 2797 -16455848.40155 2918 2797 -8163229.232496 2919 2797 -8.195638656616e-07 2920 2797 -22206107.28377 2921 2797 -5277708.20877 2922 2797 11944444.44836 2923 2797 -27195128.92833 2924 2797 13440937.44126 2798 2798 766546241.681 2799 2798 1759282.450673 2800 2798 42221665.62855 2801 2798 57866058.65466 2805 2798 18780080.99371 2806 2798 9394305.301468 2807 2798 -20006934.4106 2808 2798 -3518564.899638 2809 2798 -21110832.82467 2810 2798 48052583.38233 2811 2798 -20803252.33311 2812 2798 11716527.5232 2813 2798 -22805384.02253 2895 2798 8005089.696258 2896 2798 -7635451.454545 2897 2798 -9407733.938713 2898 2798 51680080.98832 2899 2798 -5277708.208769 2900 2798 -58666023.42418 2901 2798 17900923.03284 2902 2798 12913159.66331 2903 2798 -36646590.5368 2904 2798 439820.6128855 2905 2798 -31491805.80303 2906 2798 -4060894.923526 2907 2798 1759282.450699 2908 2798 -21110832.82468 2909 2798 -105887547.9636 2910 2798 439820.6129005 2911 2798 52602638.6277 2912 2798 -115814770.8741 2916 2798 -8444910.309145 2917 2798 -8163229.232496 2918 2798 -10570710.68328 2919 2798 -53439363.43899 2920 2798 -5277708.20877 2921 2798 -66116380.01208 2922 2798 -18340743.64572 2923 2798 13440937.44126 2924 2798 -39208792.08802 2799 2799 866925828.5346 2800 2799 47817747.45269 2801 2799 23749660.20008 2802 2799 14263474.74723 2803 2799 -47793765.64302 2804 2799 20546059.94785 2808 2799 -71804122.04904 2809 2799 -47777777.76993 2810 2799 19043969.88243 2811 2799 -181853790.138 2812 2799 3.248453140259e-06 2813 2799 -3518564.899638 2814 2799 -72853540.65349 2815 2799 47777777.76992 2816 2799 -20539363.4444 2898 2799 -19603280.6462 2899 2799 11944444.44837 2900 2799 8005089.696258 2901 2799 -85740387.93072 2902 2799 -11950439.90077 2903 2799 47775096.06898 2907 2799 16294780.8482 2908 2799 4.217028617859e-06 2909 2799 439820.6128852 2910 2799 112006329.4708 2911 2799 11954436.86906 2912 2799 5935349.843305 2913 2799 -36979414.9719 2914 2799 -11948441.41664 2915 2799 18346879.03149 2919 2799 -20039396.92541 2920 2799 -11944444.44837 2921 2799 -8444910.309145 2922 2799 -74762019.75572 2923 2799 2.533197402954e-07 2924 2799 -53703252.3277 2925 2799 -30778677.45218 2926 2799 11944444.44836 2927 2799 -18340743.64572 2800 2800 737900094.3577 2801 2800 -65443918.48946 2802 2800 -47801759.57957 2803 2800 -152989568.1247 2804 2800 35049537.95506 2808 2800 -47777777.76993 2809 2800 -57469927.96065 2810 2800 9605416.412441 2811 2800 3.069639205933e-06 2812 2800 28369859.6463 2813 2800 -21110832.82467 2814 2800 47777777.76992 2815 2800 -58519346.56511 2816 2800 11505416.41223 2898 2800 11944444.44837 2899 2800 -16019732.12234 2900 2800 -7635451.454545 2901 2800 -11948441.41664 2902 2800 -29588436.2443 2903 2800 4682155.144749 2907 2800 5.125999450684e-06 2908 2800 -29094034.58311 2909 2800 -31702916.914 2910 2800 11954436.86906 2911 2800 79749895.91067 2912 2800 -16362631.77783 2913 2800 -11950439.90078 2914 2800 -78792675.71048 2915 2800 51029508.03613 2919 2800 -11944444.44837 2920 2800 -16455848.40155 2921 2800 -8163229.232496 2922 2800 -8.195638656616e-07 2923 2800 -22206107.28377 2924 2800 -5277708.20877 2925 2800 11944444.44836 2926 2800 -27195128.92833 2927 2800 13440937.44126 2801 2801 768350518.5004 2802 2801 20813297.08829 2803 2801 40963180.50213 2804 2801 19484057.05595 2808 2801 18780080.99371 2809 2801 9394305.301468 2810 2801 -20006934.4106 2811 2801 -3518564.899638 2812 2801 -21110832.82467 2813 2801 48052583.38233 2814 2801 -20803252.33311 2815 2801 11716527.5232 2816 2801 -22805384.02253 2898 2801 8005089.696258 2899 2801 -7635451.454545 2900 2801 -9407733.938713 2901 2801 47510397.70207 2902 2801 3205506.989851 2903 2801 -52478548.16204 2907 2801 439820.6128855 2908 2801 -31491805.80303 2909 2801 -4060894.923526 2910 2801 5939756.113784 2911 2801 -16359106.80793 2912 2801 -87179377.66603 2913 2801 18349946.72438 2914 2801 52296851.6274 2915 2801 -103249742.1615 2919 2801 -8444910.309145 2920 2801 -8163229.232496 2921 2801 -10570710.68328 2922 2801 -53439363.43899 2923 2801 -5277708.20877 2924 2801 -66116380.01208 2925 2801 -18340743.64572 2926 2801 13440937.44126 2927 2801 -39208792.08802 2802 2802 508612796.7711 2803 2802 47777777.76993 2804 2802 20248388.26907 2811 2802 -71804122.04904 2812 2802 -47777777.76993 2813 2802 19043969.88243 2814 2802 -267652150.2947 2815 2802 -47793765.64302 2816 2802 -20241471.08164 2817 2802 6087083.420696 2818 2802 38238210.08904 2819 2802 -16367807.61161 2901 2802 1532382.642161 2902 2802 14339328.79045 2903 2802 9874015.186731 2910 2802 -4845636.536104 2911 2802 -11950439.90078 2912 2802 -8009104.879749 2913 2802 57272319.20769 2914 2802 11944444.44837 2915 2802 16262217.83282 2922 2802 -20039396.92541 2923 2802 -11944444.44837 2924 2802 -8444910.309145 2925 2802 -96920154.16551 2926 2802 -11948441.41665 2927 2802 -57894966.96635 2928 2802 -19430363.65776 2929 2802 9559552.526969 2930 2802 -14502802.0572 2803 2803 436923838.9196 2804 2803 -52790465.59624 2811 2803 -47777777.76993 2812 2803 -57469927.96065 2813 2803 9605416.412441 2814 2803 -47801759.57957 2815 2803 -43044343.65972 2816 2803 -29246608.86722 2817 2803 57357315.13355 2818 2803 6087083.420705 2819 2803 18374525.78853 2901 2803 9559552.526969 2902 2803 1532382.642157 2903 2803 -5266148.137347 2910 2803 -11948441.41664 2911 2803 -46658897.27468 2912 2803 -32026328.33686 2913 2803 11944444.44837 2914 2803 39350079.73598 2915 2803 -4237631.002181 2922 2803 -11944444.44837 2923 2803 -16455848.40155 2924 2803 -8163229.232496 2925 2803 -11950439.90079 2926 2803 -40768202.4791 2927 2803 -17881456.80322 2928 2803 14339328.79045 2929 2803 -19430363.65775 2930 2803 17403019.36621 2804 2804 498731997.6738 2811 2804 18780080.99371 2812 2804 9394305.301468 2813 2804 -20006934.4106 2814 2804 -20238012.48793 2815 2804 -23543989.15986 2816 2804 -9089122.520285 2817 2804 -24551711.41742 2818 2804 12249683.85902 2819 2804 16232222.45521 2901 2804 6582676.791154 2902 2804 -7899222.206021 2903 2804 4086353.712421 2910 2804 -8007766.485252 2911 2804 -33293672.07046 2912 2804 -17559666.33271 2913 2804 -4818855.100867 2914 2804 -21102266.9381 2915 2804 -61666013.98076 2922 2804 -8444910.309145 2923 2804 -8163229.232496 2924 2804 -10570710.68328 2925 2804 -57630268.59944 2926 2804 -16401283.68257 2927 2804 -82291258.12151 2928 2804 -21754203.08579 2929 2804 11602012.9108 2930 2804 -51814303.08735 2805 2805 801867013.5374 2806 2805 2.598762512207e-05 2807 2805 7037129.799195 2808 2805 92970237.73849 2809 2805 -1.010298728943e-05 2810 2805 1759282.450673 2820 2805 -181853790.138 2821 2805 3.248453140259e-06 2822 2805 -3518564.899638 2823 2805 -72853540.65349 2824 2805 47777777.76992 2825 2805 -20539363.4444 2904 2805 -71968136.03531 2905 2805 4.157423973083e-06 2906 2805 51943969.87703 2907 2805 -29817851.87049 2908 2805 -11944444.44837 2909 2805 17900923.03284 2916 2805 88895212.80375 2917 2805 4.112720489502e-06 2918 2805 1759282.450699 2919 2805 -25612922.63328 2920 2805 -1.080334186554e-05 2921 2805 439820.6129002 2931 2805 -74762019.75572 2932 2805 2.533197402954e-07 2933 2805 -53703252.3277 2934 2805 -30778677.45218 2935 2805 11944444.44836 2936 2805 -18340743.64572 2806 2806 687193460.8868 2807 2806 -84443331.25708 2808 2806 -1.019239425659e-05 2809 2806 -88585023.89729 2810 2806 42221665.62855 2820 2806 3.069639205933e-06 2821 2806 28369859.6463 2822 2806 -21110832.82467 2823 2806 47777777.76992 2824 2806 -58519346.56511 2825 2806 11505416.41223 2904 2806 3.337860107422e-06 2905 2806 -19412223.56332 2906 2806 -5277708.208769 2907 2806 -11944444.44837 2908 2806 -26234303.34662 2909 2806 12913159.66331 2916 2806 4.351139068604e-06 2917 2806 60226824.62697 2918 2806 -21110832.82468 2919 2806 -9.95397567749e-06 2920 2806 -71001738.06458 2921 2806 52813749.73867 2931 2806 -8.195638656616e-07 2932 2806 -22206107.28377 2933 2806 -5277708.20877 2934 2806 11944444.44836 2935 2806 -27195128.92833 2936 2806 13440937.44126 2807 2807 766546241.681 2808 2807 1759282.450673 2809 2807 42221665.62855 2810 2807 57866058.65466 2820 2807 -3518564.899638 2821 2807 -21110832.82467 2822 2807 48052583.38233 2823 2807 -20803252.33311 2824 2807 11716527.5232 2825 2807 -22805384.02253 2904 2807 51680080.98832 2905 2807 -5277708.208769 2906 2807 -58666023.42418 2907 2807 17900923.03284 2908 2807 12913159.66331 2909 2807 -36646590.5368 2916 2807 1759282.450699 2917 2807 -21110832.82468 2918 2807 -105887547.9636 2919 2807 439820.6129005 2920 2807 52602638.6277 2921 2807 -115814770.8741 2931 2807 -53439363.43899 2932 2807 -5277708.20877 2933 2807 -66116380.01208 2934 2807 -18340743.64572 2935 2807 13440937.44126 2936 2807 -39208792.08802 2808 2808 801867013.5374 2809 2808 2.598762512207e-05 2810 2808 7037129.799195 2811 2808 92970237.73849 2812 2808 -1.010298728943e-05 2813 2808 1759282.450673 2820 2808 -71804122.04904 2821 2808 -47777777.76993 2822 2808 19043969.88243 2823 2808 -181853790.138 2824 2808 3.248453140259e-06 2825 2808 -3518564.899638 2826 2808 -72853540.65349 2827 2808 47777777.76992 2828 2808 -20539363.4444 2904 2808 -19603280.6462 2905 2808 11944444.44837 2906 2808 8005089.696258 2907 2808 -71968136.03531 2908 2808 4.157423973083e-06 2909 2808 51943969.87703 2910 2808 -29817851.87049 2911 2808 -11944444.44837 2912 2808 17900923.03284 2916 2808 16294780.8482 2917 2808 4.217028617859e-06 2918 2808 439820.6128852 2919 2808 88895212.80375 2920 2808 4.112720489502e-06 2921 2808 1759282.450699 2922 2808 -25612922.63328 2923 2808 -1.080334186554e-05 2924 2808 439820.6129002 2931 2808 -20039396.92541 2932 2808 -11944444.44837 2933 2808 -8444910.309145 2934 2808 -74762019.75572 2935 2808 2.533197402954e-07 2936 2808 -53703252.3277 2937 2808 -30778677.45218 2938 2808 11944444.44836 2939 2808 -18340743.64572 2809 2809 687193460.8868 2810 2809 -84443331.25708 2811 2809 -1.019239425659e-05 2812 2809 -88585023.89729 2813 2809 42221665.62855 2820 2809 -47777777.76993 2821 2809 -57469927.96065 2822 2809 9605416.412441 2823 2809 3.069639205933e-06 2824 2809 28369859.6463 2825 2809 -21110832.82467 2826 2809 47777777.76992 2827 2809 -58519346.56511 2828 2809 11505416.41223 2904 2809 11944444.44837 2905 2809 -16019732.12234 2906 2809 -7635451.454545 2907 2809 3.337860107422e-06 2908 2809 -19412223.56332 2909 2809 -5277708.208769 2910 2809 -11944444.44837 2911 2809 -26234303.34662 2912 2809 12913159.66331 2916 2809 5.125999450684e-06 2917 2809 -29094034.58311 2918 2809 -31702916.914 2919 2809 4.351139068604e-06 2920 2809 60226824.62697 2921 2809 -21110832.82468 2922 2809 -9.95397567749e-06 2923 2809 -71001738.06458 2924 2809 52813749.73867 2931 2809 -11944444.44837 2932 2809 -16455848.40155 2933 2809 -8163229.232496 2934 2809 -8.195638656616e-07 2935 2809 -22206107.28377 2936 2809 -5277708.20877 2937 2809 11944444.44836 2938 2809 -27195128.92833 2939 2809 13440937.44126 2810 2810 766546241.681 2811 2810 1759282.450673 2812 2810 42221665.62855 2813 2810 57866058.65466 2820 2810 18780080.99371 2821 2810 9394305.301468 2822 2810 -20006934.4106 2823 2810 -3518564.899638 2824 2810 -21110832.82467 2825 2810 48052583.38233 2826 2810 -20803252.33311 2827 2810 11716527.5232 2828 2810 -22805384.02253 2904 2810 8005089.696258 2905 2810 -7635451.454545 2906 2810 -9407733.938713 2907 2810 51680080.98832 2908 2810 -5277708.208769 2909 2810 -58666023.42418 2910 2810 17900923.03284 2911 2810 12913159.66331 2912 2810 -36646590.5368 2916 2810 439820.6128855 2917 2810 -31491805.80303 2918 2810 -4060894.923526 2919 2810 1759282.450699 2920 2810 -21110832.82468 2921 2810 -105887547.9636 2922 2810 439820.6129005 2923 2810 52602638.6277 2924 2810 -115814770.8741 2931 2810 -8444910.309145 2932 2810 -8163229.232496 2933 2810 -10570710.68328 2934 2810 -53439363.43899 2935 2810 -5277708.20877 2936 2810 -66116380.01208 2937 2810 -18340743.64572 2938 2810 13440937.44126 2939 2810 -39208792.08802 2811 2811 801867013.5374 2812 2811 2.598762512207e-05 2813 2811 7037129.799195 2814 2811 92970237.73849 2815 2811 -1.010298728943e-05 2816 2811 1759282.450673 2823 2811 -71804122.04904 2824 2811 -47777777.76993 2825 2811 19043969.88243 2826 2811 -181853790.138 2827 2811 3.248453140259e-06 2828 2811 -3518564.899638 2829 2811 -72853540.65349 2830 2811 47777777.76992 2831 2811 -20539363.4444 2907 2811 -19603280.6462 2908 2811 11944444.44837 2909 2811 8005089.696258 2910 2811 -71968136.03531 2911 2811 4.157423973083e-06 2912 2811 51943969.87703 2913 2811 -29817851.87049 2914 2811 -11944444.44837 2915 2811 17900923.03284 2919 2811 16294780.8482 2920 2811 4.217028617859e-06 2921 2811 439820.6128852 2922 2811 88895212.80375 2923 2811 4.112720489502e-06 2924 2811 1759282.450699 2925 2811 -25612922.63328 2926 2811 -1.080334186554e-05 2927 2811 439820.6129002 2934 2811 -20039396.92541 2935 2811 -11944444.44837 2936 2811 -8444910.309145 2937 2811 -74762019.75572 2938 2811 2.533197402954e-07 2939 2811 -53703252.3277 2940 2811 -30778677.45218 2941 2811 11944444.44836 2942 2811 -18340743.64572 2812 2812 687193460.8868 2813 2812 -84443331.25708 2814 2812 -1.019239425659e-05 2815 2812 -88585023.89729 2816 2812 42221665.62855 2823 2812 -47777777.76993 2824 2812 -57469927.96065 2825 2812 9605416.412441 2826 2812 3.069639205933e-06 2827 2812 28369859.6463 2828 2812 -21110832.82467 2829 2812 47777777.76992 2830 2812 -58519346.56511 2831 2812 11505416.41223 2907 2812 11944444.44837 2908 2812 -16019732.12234 2909 2812 -7635451.454545 2910 2812 3.337860107422e-06 2911 2812 -19412223.56332 2912 2812 -5277708.208769 2913 2812 -11944444.44837 2914 2812 -26234303.34662 2915 2812 12913159.66331 2919 2812 5.125999450684e-06 2920 2812 -29094034.58311 2921 2812 -31702916.914 2922 2812 4.351139068604e-06 2923 2812 60226824.62697 2924 2812 -21110832.82468 2925 2812 -9.95397567749e-06 2926 2812 -71001738.06458 2927 2812 52813749.73867 2934 2812 -11944444.44837 2935 2812 -16455848.40155 2936 2812 -8163229.232496 2937 2812 -8.195638656616e-07 2938 2812 -22206107.28377 2939 2812 -5277708.20877 2940 2812 11944444.44836 2941 2812 -27195128.92833 2942 2812 13440937.44126 2813 2813 766546241.681 2814 2813 1759282.450673 2815 2813 42221665.62855 2816 2813 57866058.65466 2823 2813 18780080.99371 2824 2813 9394305.301468 2825 2813 -20006934.4106 2826 2813 -3518564.899638 2827 2813 -21110832.82467 2828 2813 48052583.38233 2829 2813 -20803252.33311 2830 2813 11716527.5232 2831 2813 -22805384.02253 2907 2813 8005089.696258 2908 2813 -7635451.454545 2909 2813 -9407733.938713 2910 2813 51680080.98832 2911 2813 -5277708.208769 2912 2813 -58666023.42418 2913 2813 17900923.03284 2914 2813 12913159.66331 2915 2813 -36646590.5368 2919 2813 439820.6128855 2920 2813 -31491805.80303 2921 2813 -4060894.923526 2922 2813 1759282.450699 2923 2813 -21110832.82468 2924 2813 -105887547.9636 2925 2813 439820.6129005 2926 2813 52602638.6277 2927 2813 -115814770.8741 2934 2813 -8444910.309145 2935 2813 -8163229.232496 2936 2813 -10570710.68328 2937 2813 -53439363.43899 2938 2813 -5277708.20877 2939 2813 -66116380.01208 2940 2813 -18340743.64572 2941 2813 13440937.44126 2942 2813 -39208792.08802 2814 2814 866925828.5346 2815 2814 47817747.45269 2816 2814 23749660.20008 2817 2814 14263474.74723 2818 2814 -47793765.64302 2819 2814 20546059.94785 2826 2814 -71804122.04904 2827 2814 -47777777.76993 2828 2814 19043969.88243 2829 2814 -181853790.138 2830 2814 3.248453140259e-06 2831 2814 -3518564.899638 2832 2814 -72853540.65349 2833 2814 47777777.76992 2834 2814 -20539363.4444 2910 2814 -19603280.6462 2911 2814 11944444.44837 2912 2814 8005089.696258 2913 2814 -85740387.93072 2914 2814 -11950439.90077 2915 2814 47775096.06898 2922 2814 16294780.8482 2923 2814 4.217028617859e-06 2924 2814 439820.6128852 2925 2814 112006329.4708 2926 2814 11954436.86906 2927 2814 5935349.843305 2928 2814 -36979414.9719 2929 2814 -11948441.41664 2930 2814 18346879.03149 2937 2814 -20039396.92541 2938 2814 -11944444.44837 2939 2814 -8444910.309145 2940 2814 -74762019.75572 2941 2814 2.533197402954e-07 2942 2814 -53703252.3277 2943 2814 -30778677.45218 2944 2814 11944444.44836 2945 2814 -18340743.64572 2815 2815 737900094.3577 2816 2815 -65443918.48946 2817 2815 -47801759.57957 2818 2815 -152989568.1247 2819 2815 35049537.95506 2826 2815 -47777777.76993 2827 2815 -57469927.96065 2828 2815 9605416.412441 2829 2815 3.069639205933e-06 2830 2815 28369859.6463 2831 2815 -21110832.82467 2832 2815 47777777.76992 2833 2815 -58519346.56511 2834 2815 11505416.41223 2910 2815 11944444.44837 2911 2815 -16019732.12234 2912 2815 -7635451.454545 2913 2815 -11948441.41664 2914 2815 -29588436.2443 2915 2815 4682155.144749 2922 2815 5.125999450684e-06 2923 2815 -29094034.58311 2924 2815 -31702916.914 2925 2815 11954436.86906 2926 2815 79749895.91067 2927 2815 -16362631.77783 2928 2815 -11950439.90078 2929 2815 -78792675.71048 2930 2815 51029508.03613 2937 2815 -11944444.44837 2938 2815 -16455848.40155 2939 2815 -8163229.232496 2940 2815 -8.195638656616e-07 2941 2815 -22206107.28377 2942 2815 -5277708.20877 2943 2815 11944444.44836 2944 2815 -27195128.92833 2945 2815 13440937.44126 2816 2816 768350518.5004 2817 2816 20813297.08829 2818 2816 40963180.50213 2819 2816 19484057.05595 2826 2816 18780080.99371 2827 2816 9394305.301468 2828 2816 -20006934.4106 2829 2816 -3518564.899638 2830 2816 -21110832.82467 2831 2816 48052583.38233 2832 2816 -20803252.33311 2833 2816 11716527.5232 2834 2816 -22805384.02253 2910 2816 8005089.696258 2911 2816 -7635451.454545 2912 2816 -9407733.938713 2913 2816 47510397.70207 2914 2816 3205506.989851 2915 2816 -52478548.16204 2922 2816 439820.6128855 2923 2816 -31491805.80303 2924 2816 -4060894.923526 2925 2816 5939756.113784 2926 2816 -16359106.80793 2927 2816 -87179377.66603 2928 2816 18349946.72438 2929 2816 52296851.6274 2930 2816 -103249742.1615 2937 2816 -8444910.309145 2938 2816 -8163229.232496 2939 2816 -10570710.68328 2940 2816 -53439363.43899 2941 2816 -5277708.20877 2942 2816 -66116380.01208 2943 2816 -18340743.64572 2944 2816 13440937.44126 2945 2816 -39208792.08802 2817 2817 508612796.7711 2818 2817 47777777.76993 2819 2817 20248388.26907 2829 2817 -71804122.04904 2830 2817 -47777777.76993 2831 2817 19043969.88243 2832 2817 -267652150.2947 2833 2817 -47793765.64302 2834 2817 -20241471.08164 2835 2817 6087083.420696 2836 2817 38238210.08904 2837 2817 -16367807.61161 2913 2817 1532382.642161 2914 2817 14339328.79045 2915 2817 9874015.186731 2925 2817 -4845636.536104 2926 2817 -11950439.90078 2927 2817 -8009104.879749 2928 2817 57272319.20769 2929 2817 11944444.44837 2930 2817 16262217.83282 2940 2817 -20039396.92541 2941 2817 -11944444.44837 2942 2817 -8444910.309145 2943 2817 -96920154.16551 2944 2817 -11948441.41665 2945 2817 -57894966.96635 2946 2817 -19430363.65776 2947 2817 9559552.526969 2948 2817 -14502802.0572 2818 2818 436923838.9196 2819 2818 -52790465.59624 2829 2818 -47777777.76993 2830 2818 -57469927.96065 2831 2818 9605416.412441 2832 2818 -47801759.57957 2833 2818 -43044343.65972 2834 2818 -29246608.86722 2835 2818 57357315.13355 2836 2818 6087083.420705 2837 2818 18374525.78853 2913 2818 9559552.526969 2914 2818 1532382.642157 2915 2818 -5266148.137347 2925 2818 -11948441.41664 2926 2818 -46658897.27468 2927 2818 -32026328.33686 2928 2818 11944444.44837 2929 2818 39350079.73598 2930 2818 -4237631.002181 2940 2818 -11944444.44837 2941 2818 -16455848.40155 2942 2818 -8163229.232496 2943 2818 -11950439.90079 2944 2818 -40768202.4791 2945 2818 -17881456.80322 2946 2818 14339328.79045 2947 2818 -19430363.65775 2948 2818 17403019.36621 2819 2819 498731997.6738 2829 2819 18780080.99371 2830 2819 9394305.301468 2831 2819 -20006934.4106 2832 2819 -20238012.48793 2833 2819 -23543989.15986 2834 2819 -9089122.520285 2835 2819 -24551711.41742 2836 2819 12249683.85902 2837 2819 16232222.45521 2913 2819 6582676.791154 2914 2819 -7899222.206021 2915 2819 4086353.712421 2925 2819 -8007766.485252 2926 2819 -33293672.07046 2927 2819 -17559666.33271 2928 2819 -4818855.100867 2929 2819 -21102266.9381 2930 2819 -61666013.98076 2940 2819 -8444910.309145 2941 2819 -8163229.232496 2942 2819 -10570710.68328 2943 2819 -57630268.59944 2944 2819 -16401283.68257 2945 2819 -82291258.12151 2946 2819 -21754203.08579 2947 2819 11602012.9108 2948 2819 -51814303.08735 2820 2820 801867013.5374 2821 2820 2.598762512207e-05 2822 2820 7037129.799195 2823 2820 92970237.73849 2824 2820 -1.010298728943e-05 2825 2820 1759282.450673 2838 2820 -181853790.138 2839 2820 3.248453140259e-06 2840 2820 -3518564.899638 2841 2820 -72853540.65349 2842 2820 47777777.76992 2843 2820 -20539363.4444 2916 2820 -71968136.03531 2917 2820 4.157423973083e-06 2918 2820 51943969.87703 2919 2820 -29817851.87049 2920 2820 -11944444.44837 2921 2820 17900923.03284 2931 2820 88895212.80375 2932 2820 4.112720489502e-06 2933 2820 1759282.450699 2934 2820 -25612922.63328 2935 2820 -1.080334186554e-05 2936 2820 439820.6129002 2949 2820 -74762019.75572 2950 2820 2.533197402954e-07 2951 2820 -53703252.3277 2952 2820 -30778677.45218 2953 2820 11944444.44836 2954 2820 -18340743.64572 2821 2821 687193460.8868 2822 2821 -84443331.25708 2823 2821 -1.019239425659e-05 2824 2821 -88585023.89729 2825 2821 42221665.62855 2838 2821 3.069639205933e-06 2839 2821 28369859.6463 2840 2821 -21110832.82467 2841 2821 47777777.76992 2842 2821 -58519346.56511 2843 2821 11505416.41223 2916 2821 3.337860107422e-06 2917 2821 -19412223.56332 2918 2821 -5277708.208769 2919 2821 -11944444.44837 2920 2821 -26234303.34662 2921 2821 12913159.66331 2931 2821 4.351139068604e-06 2932 2821 60226824.62697 2933 2821 -21110832.82468 2934 2821 -9.95397567749e-06 2935 2821 -71001738.06458 2936 2821 52813749.73867 2949 2821 -8.195638656616e-07 2950 2821 -22206107.28377 2951 2821 -5277708.20877 2952 2821 11944444.44836 2953 2821 -27195128.92833 2954 2821 13440937.44126 2822 2822 766546241.681 2823 2822 1759282.450673 2824 2822 42221665.62855 2825 2822 57866058.65466 2838 2822 -3518564.899638 2839 2822 -21110832.82467 2840 2822 48052583.38233 2841 2822 -20803252.33311 2842 2822 11716527.5232 2843 2822 -22805384.02253 2916 2822 51680080.98832 2917 2822 -5277708.208769 2918 2822 -58666023.42418 2919 2822 17900923.03284 2920 2822 12913159.66331 2921 2822 -36646590.5368 2931 2822 1759282.450699 2932 2822 -21110832.82468 2933 2822 -105887547.9636 2934 2822 439820.6129005 2935 2822 52602638.6277 2936 2822 -115814770.8741 2949 2822 -53439363.43899 2950 2822 -5277708.20877 2951 2822 -66116380.01208 2952 2822 -18340743.64572 2953 2822 13440937.44126 2954 2822 -39208792.08802 2823 2823 801867013.5374 2824 2823 2.598762512207e-05 2825 2823 7037129.799195 2826 2823 92970237.73849 2827 2823 -1.010298728943e-05 2828 2823 1759282.450673 2838 2823 -71804122.04904 2839 2823 -47777777.76993 2840 2823 19043969.88243 2841 2823 -181853790.138 2842 2823 3.248453140259e-06 2843 2823 -3518564.899638 2844 2823 -72853540.65349 2845 2823 47777777.76992 2846 2823 -20539363.4444 2916 2823 -19603280.6462 2917 2823 11944444.44837 2918 2823 8005089.696258 2919 2823 -71968136.03531 2920 2823 4.157423973083e-06 2921 2823 51943969.87703 2922 2823 -29817851.87049 2923 2823 -11944444.44837 2924 2823 17900923.03284 2931 2823 16294780.8482 2932 2823 4.217028617859e-06 2933 2823 439820.6128852 2934 2823 88895212.80375 2935 2823 4.112720489502e-06 2936 2823 1759282.450699 2937 2823 -25612922.63328 2938 2823 -1.080334186554e-05 2939 2823 439820.6129002 2949 2823 -20039396.92541 2950 2823 -11944444.44837 2951 2823 -8444910.309145 2952 2823 -74762019.75572 2953 2823 2.533197402954e-07 2954 2823 -53703252.3277 2955 2823 -30778677.45218 2956 2823 11944444.44836 2957 2823 -18340743.64572 2824 2824 687193460.8868 2825 2824 -84443331.25708 2826 2824 -1.019239425659e-05 2827 2824 -88585023.89729 2828 2824 42221665.62855 2838 2824 -47777777.76993 2839 2824 -57469927.96065 2840 2824 9605416.412441 2841 2824 3.069639205933e-06 2842 2824 28369859.6463 2843 2824 -21110832.82467 2844 2824 47777777.76992 2845 2824 -58519346.56511 2846 2824 11505416.41223 2916 2824 11944444.44837 2917 2824 -16019732.12234 2918 2824 -7635451.454545 2919 2824 3.337860107422e-06 2920 2824 -19412223.56332 2921 2824 -5277708.208769 2922 2824 -11944444.44837 2923 2824 -26234303.34662 2924 2824 12913159.66331 2931 2824 5.125999450684e-06 2932 2824 -29094034.58311 2933 2824 -31702916.914 2934 2824 4.351139068604e-06 2935 2824 60226824.62697 2936 2824 -21110832.82468 2937 2824 -9.95397567749e-06 2938 2824 -71001738.06458 2939 2824 52813749.73867 2949 2824 -11944444.44837 2950 2824 -16455848.40155 2951 2824 -8163229.232496 2952 2824 -8.195638656616e-07 2953 2824 -22206107.28377 2954 2824 -5277708.20877 2955 2824 11944444.44836 2956 2824 -27195128.92833 2957 2824 13440937.44126 2825 2825 766546241.681 2826 2825 1759282.450673 2827 2825 42221665.62855 2828 2825 57866058.65466 2838 2825 18780080.99371 2839 2825 9394305.301468 2840 2825 -20006934.4106 2841 2825 -3518564.899638 2842 2825 -21110832.82467 2843 2825 48052583.38233 2844 2825 -20803252.33311 2845 2825 11716527.5232 2846 2825 -22805384.02253 2916 2825 8005089.696258 2917 2825 -7635451.454545 2918 2825 -9407733.938713 2919 2825 51680080.98832 2920 2825 -5277708.208769 2921 2825 -58666023.42418 2922 2825 17900923.03284 2923 2825 12913159.66331 2924 2825 -36646590.5368 2931 2825 439820.6128855 2932 2825 -31491805.80303 2933 2825 -4060894.923526 2934 2825 1759282.450699 2935 2825 -21110832.82468 2936 2825 -105887547.9636 2937 2825 439820.6129005 2938 2825 52602638.6277 2939 2825 -115814770.8741 2949 2825 -8444910.309145 2950 2825 -8163229.232496 2951 2825 -10570710.68328 2952 2825 -53439363.43899 2953 2825 -5277708.20877 2954 2825 -66116380.01208 2955 2825 -18340743.64572 2956 2825 13440937.44126 2957 2825 -39208792.08802 2826 2826 801867013.5374 2827 2826 2.598762512207e-05 2828 2826 7037129.799195 2829 2826 92970237.73849 2830 2826 -1.010298728943e-05 2831 2826 1759282.450673 2841 2826 -71804122.04904 2842 2826 -47777777.76993 2843 2826 19043969.88243 2844 2826 -181853790.138 2845 2826 3.248453140259e-06 2846 2826 -3518564.899638 2847 2826 -72853540.65349 2848 2826 47777777.76992 2849 2826 -20539363.4444 2919 2826 -19603280.6462 2920 2826 11944444.44837 2921 2826 8005089.696258 2922 2826 -71968136.03531 2923 2826 4.157423973083e-06 2924 2826 51943969.87703 2925 2826 -29817851.87049 2926 2826 -11944444.44837 2927 2826 17900923.03284 2934 2826 16294780.8482 2935 2826 4.217028617859e-06 2936 2826 439820.6128852 2937 2826 88895212.80375 2938 2826 4.112720489502e-06 2939 2826 1759282.450699 2940 2826 -25612922.63328 2941 2826 -1.080334186554e-05 2942 2826 439820.6129002 2952 2826 -20039396.92541 2953 2826 -11944444.44837 2954 2826 -8444910.309145 2955 2826 -74762019.75572 2956 2826 2.533197402954e-07 2957 2826 -53703252.3277 2958 2826 -30778677.45218 2959 2826 11944444.44836 2960 2826 -18340743.64572 2827 2827 687193460.8868 2828 2827 -84443331.25708 2829 2827 -1.019239425659e-05 2830 2827 -88585023.89729 2831 2827 42221665.62855 2841 2827 -47777777.76993 2842 2827 -57469927.96065 2843 2827 9605416.412441 2844 2827 3.069639205933e-06 2845 2827 28369859.6463 2846 2827 -21110832.82467 2847 2827 47777777.76992 2848 2827 -58519346.56511 2849 2827 11505416.41223 2919 2827 11944444.44837 2920 2827 -16019732.12234 2921 2827 -7635451.454545 2922 2827 3.337860107422e-06 2923 2827 -19412223.56332 2924 2827 -5277708.208769 2925 2827 -11944444.44837 2926 2827 -26234303.34662 2927 2827 12913159.66331 2934 2827 5.125999450684e-06 2935 2827 -29094034.58311 2936 2827 -31702916.914 2937 2827 4.351139068604e-06 2938 2827 60226824.62697 2939 2827 -21110832.82468 2940 2827 -9.95397567749e-06 2941 2827 -71001738.06458 2942 2827 52813749.73867 2952 2827 -11944444.44837 2953 2827 -16455848.40155 2954 2827 -8163229.232496 2955 2827 -8.195638656616e-07 2956 2827 -22206107.28377 2957 2827 -5277708.20877 2958 2827 11944444.44836 2959 2827 -27195128.92833 2960 2827 13440937.44126 2828 2828 766546241.681 2829 2828 1759282.450673 2830 2828 42221665.62855 2831 2828 57866058.65466 2841 2828 18780080.99371 2842 2828 9394305.301468 2843 2828 -20006934.4106 2844 2828 -3518564.899638 2845 2828 -21110832.82467 2846 2828 48052583.38233 2847 2828 -20803252.33311 2848 2828 11716527.5232 2849 2828 -22805384.02253 2919 2828 8005089.696258 2920 2828 -7635451.454545 2921 2828 -9407733.938713 2922 2828 51680080.98832 2923 2828 -5277708.208769 2924 2828 -58666023.42418 2925 2828 17900923.03284 2926 2828 12913159.66331 2927 2828 -36646590.5368 2934 2828 439820.6128855 2935 2828 -31491805.80303 2936 2828 -4060894.923526 2937 2828 1759282.450699 2938 2828 -21110832.82468 2939 2828 -105887547.9636 2940 2828 439820.6129005 2941 2828 52602638.6277 2942 2828 -115814770.8741 2952 2828 -8444910.309145 2953 2828 -8163229.232496 2954 2828 -10570710.68328 2955 2828 -53439363.43899 2956 2828 -5277708.20877 2957 2828 -66116380.01208 2958 2828 -18340743.64572 2959 2828 13440937.44126 2960 2828 -39208792.08802 2829 2829 801867013.5374 2830 2829 2.598762512207e-05 2831 2829 7037129.799195 2832 2829 92970237.73849 2833 2829 -1.010298728943e-05 2834 2829 1759282.450673 2844 2829 -71804122.04904 2845 2829 -47777777.76993 2846 2829 19043969.88243 2847 2829 -181853790.138 2848 2829 3.248453140259e-06 2849 2829 -3518564.899638 2850 2829 -72853540.65349 2851 2829 47777777.76992 2852 2829 -20539363.4444 2922 2829 -19603280.6462 2923 2829 11944444.44837 2924 2829 8005089.696258 2925 2829 -71968136.03531 2926 2829 4.157423973083e-06 2927 2829 51943969.87703 2928 2829 -29817851.87049 2929 2829 -11944444.44837 2930 2829 17900923.03284 2937 2829 16294780.8482 2938 2829 4.217028617859e-06 2939 2829 439820.6128852 2940 2829 88895212.80375 2941 2829 4.112720489502e-06 2942 2829 1759282.450699 2943 2829 -25612922.63328 2944 2829 -1.080334186554e-05 2945 2829 439820.6129002 2955 2829 -20039396.92541 2956 2829 -11944444.44837 2957 2829 -8444910.309145 2958 2829 -74762019.75572 2959 2829 2.533197402954e-07 2960 2829 -53703252.3277 2961 2829 -30778677.45218 2962 2829 11944444.44836 2963 2829 -18340743.64572 2830 2830 687193460.8868 2831 2830 -84443331.25708 2832 2830 -1.019239425659e-05 2833 2830 -88585023.89729 2834 2830 42221665.62855 2844 2830 -47777777.76993 2845 2830 -57469927.96065 2846 2830 9605416.412441 2847 2830 3.069639205933e-06 2848 2830 28369859.6463 2849 2830 -21110832.82467 2850 2830 47777777.76992 2851 2830 -58519346.56511 2852 2830 11505416.41223 2922 2830 11944444.44837 2923 2830 -16019732.12234 2924 2830 -7635451.454545 2925 2830 3.337860107422e-06 2926 2830 -19412223.56332 2927 2830 -5277708.208769 2928 2830 -11944444.44837 2929 2830 -26234303.34662 2930 2830 12913159.66331 2937 2830 5.125999450684e-06 2938 2830 -29094034.58311 2939 2830 -31702916.914 2940 2830 4.351139068604e-06 2941 2830 60226824.62697 2942 2830 -21110832.82468 2943 2830 -9.95397567749e-06 2944 2830 -71001738.06458 2945 2830 52813749.73867 2955 2830 -11944444.44837 2956 2830 -16455848.40155 2957 2830 -8163229.232496 2958 2830 -8.195638656616e-07 2959 2830 -22206107.28377 2960 2830 -5277708.20877 2961 2830 11944444.44836 2962 2830 -27195128.92833 2963 2830 13440937.44126 2831 2831 766546241.681 2832 2831 1759282.450673 2833 2831 42221665.62855 2834 2831 57866058.65466 2844 2831 18780080.99371 2845 2831 9394305.301468 2846 2831 -20006934.4106 2847 2831 -3518564.899638 2848 2831 -21110832.82467 2849 2831 48052583.38233 2850 2831 -20803252.33311 2851 2831 11716527.5232 2852 2831 -22805384.02253 2922 2831 8005089.696258 2923 2831 -7635451.454545 2924 2831 -9407733.938713 2925 2831 51680080.98832 2926 2831 -5277708.208769 2927 2831 -58666023.42418 2928 2831 17900923.03284 2929 2831 12913159.66331 2930 2831 -36646590.5368 2937 2831 439820.6128855 2938 2831 -31491805.80303 2939 2831 -4060894.923526 2940 2831 1759282.450699 2941 2831 -21110832.82468 2942 2831 -105887547.9636 2943 2831 439820.6129005 2944 2831 52602638.6277 2945 2831 -115814770.8741 2955 2831 -8444910.309145 2956 2831 -8163229.232496 2957 2831 -10570710.68328 2958 2831 -53439363.43899 2959 2831 -5277708.20877 2960 2831 -66116380.01208 2961 2831 -18340743.64572 2962 2831 13440937.44126 2963 2831 -39208792.08802 2832 2832 866925828.5346 2833 2832 47817747.45269 2834 2832 23749660.20008 2835 2832 14263474.74723 2836 2832 -47793765.64302 2837 2832 20546059.94785 2847 2832 -71804122.04904 2848 2832 -47777777.76993 2849 2832 19043969.88243 2850 2832 -181853790.138 2851 2832 3.248453140259e-06 2852 2832 -3518564.899638 2853 2832 -72853540.65349 2854 2832 47777777.76992 2855 2832 -20539363.4444 2925 2832 -19603280.6462 2926 2832 11944444.44837 2927 2832 8005089.696258 2928 2832 -85740387.93072 2929 2832 -11950439.90077 2930 2832 47775096.06898 2940 2832 16294780.8482 2941 2832 4.217028617859e-06 2942 2832 439820.6128852 2943 2832 112006329.4708 2944 2832 11954436.86906 2945 2832 5935349.843305 2946 2832 -36979414.9719 2947 2832 -11948441.41664 2948 2832 18346879.03149 2958 2832 -20039396.92541 2959 2832 -11944444.44837 2960 2832 -8444910.309145 2961 2832 -74762019.75572 2962 2832 2.533197402954e-07 2963 2832 -53703252.3277 2964 2832 -30778677.45218 2965 2832 11944444.44836 2966 2832 -18340743.64572 2833 2833 737900094.3577 2834 2833 -65443918.48946 2835 2833 -47801759.57957 2836 2833 -152989568.1247 2837 2833 35049537.95506 2847 2833 -47777777.76993 2848 2833 -57469927.96065 2849 2833 9605416.412441 2850 2833 3.069639205933e-06 2851 2833 28369859.6463 2852 2833 -21110832.82467 2853 2833 47777777.76992 2854 2833 -58519346.56511 2855 2833 11505416.41223 2925 2833 11944444.44837 2926 2833 -16019732.12234 2927 2833 -7635451.454545 2928 2833 -11948441.41664 2929 2833 -29588436.2443 2930 2833 4682155.144749 2940 2833 5.125999450684e-06 2941 2833 -29094034.58311 2942 2833 -31702916.914 2943 2833 11954436.86906 2944 2833 79749895.91067 2945 2833 -16362631.77783 2946 2833 -11950439.90078 2947 2833 -78792675.71048 2948 2833 51029508.03613 2958 2833 -11944444.44837 2959 2833 -16455848.40155 2960 2833 -8163229.232496 2961 2833 -8.195638656616e-07 2962 2833 -22206107.28377 2963 2833 -5277708.20877 2964 2833 11944444.44836 2965 2833 -27195128.92833 2966 2833 13440937.44126 2834 2834 768350518.5004 2835 2834 20813297.08829 2836 2834 40963180.50213 2837 2834 19484057.05595 2847 2834 18780080.99371 2848 2834 9394305.301468 2849 2834 -20006934.4106 2850 2834 -3518564.899638 2851 2834 -21110832.82467 2852 2834 48052583.38233 2853 2834 -20803252.33311 2854 2834 11716527.5232 2855 2834 -22805384.02253 2925 2834 8005089.696258 2926 2834 -7635451.454545 2927 2834 -9407733.938713 2928 2834 47510397.70207 2929 2834 3205506.989851 2930 2834 -52478548.16204 2940 2834 439820.6128855 2941 2834 -31491805.80303 2942 2834 -4060894.923526 2943 2834 5939756.113784 2944 2834 -16359106.80793 2945 2834 -87179377.66603 2946 2834 18349946.72438 2947 2834 52296851.6274 2948 2834 -103249742.1615 2958 2834 -8444910.309145 2959 2834 -8163229.232496 2960 2834 -10570710.68328 2961 2834 -53439363.43899 2962 2834 -5277708.20877 2963 2834 -66116380.01208 2964 2834 -18340743.64572 2965 2834 13440937.44126 2966 2834 -39208792.08802 2835 2835 411984836.6329 2836 2835 -7936152.30026 2837 2835 -12597657.48158 2850 2835 -71804122.04904 2851 2835 -47777777.76993 2852 2835 19043969.88243 2853 2835 -138080718.2873 2854 2835 7859319.261471 2855 2835 -1118612.233799 2856 2835 -59031787.7105 2857 2835 38299055.25473 2858 2835 -3172177.802272 2928 2835 1532382.642161 2929 2835 14339328.79045 2930 2835 9874015.186731 2943 2835 -4845636.536104 2944 2835 -11950439.90078 2945 2835 -8009104.879749 2946 2835 45154799.16275 2947 2835 -1984038.076042 2948 2835 5318188.302819 2961 2835 -20039396.92541 2962 2835 -11944444.44837 2963 2835 -8444910.309145 2964 2835 -54446261.20618 2965 2835 1964829.816336 2966 2835 -37868990.52104 2967 2835 -20832796.07979 2968 2835 9574763.8184 2969 2835 -4947522.887458 2836 2836 472335181.7353 2837 2836 -60215952.15695 2850 2836 -47777777.76993 2851 2836 -57469927.96065 2852 2836 9605416.412441 2853 2836 7820902.742076 2854 2836 61644059.27118 2855 2836 -13951237.99313 2856 2836 57448582.8821 2857 2836 -166188061.588 2858 2836 10078720.53082 2928 2836 9559552.526969 2929 2836 1532382.642157 2930 2836 -5266148.137347 2943 2836 -11948441.41664 2944 2836 -46658897.27468 2945 2836 -32026328.33686 2946 2836 -1984038.076043 2947 2836 60242385.44579 2948 2836 -8284128.881153 2961 2836 -11944444.44837 2962 2836 -16455848.40155 2963 2836 -8163229.232496 2964 2836 1955225.686481 2965 2836 -4515066.791966 2966 2836 -1847868.948734 2967 2836 14362145.7276 2968 2836 -47621864.56235 2969 2836 20366850.75772 2837 2837 433150810.8594 2850 2837 18780080.99371 2851 2837 9394305.301468 2852 2837 -20006934.4106 2853 2837 -7976747.091482 2854 2837 -13738986.98741 2855 2837 37185048.73447 2856 2837 -4758266.703408 2857 2837 9231286.830788 2858 2837 -50261826.68389 2928 2837 6582676.791154 2929 2837 -7899222.206021 2930 2837 4086353.712421 2943 2837 -8007766.485252 2944 2837 -33293672.07046 2945 2837 -17559666.33271 2946 2837 -9638402.083643 2947 2837 -20236111.15782 2948 2837 -45956057.35504 2961 2837 -8444910.309145 2962 2837 -8163229.232496 2963 2837 -10570710.68328 2964 2837 -39187801.2437 2965 2837 -1627591.468903 2966 2837 -43839955.45809 2967 2837 -7421284.331187 2968 2837 18388546.96739 2969 2837 -28765054.39688 2838 2838 801867013.5374 2839 2838 2.598762512207e-05 2840 2838 7037129.799195 2841 2838 92970237.73849 2842 2838 -1.010298728943e-05 2843 2838 1759282.450673 2859 2838 -181853790.138 2860 2838 3.248453140259e-06 2861 2838 -3518564.899638 2862 2838 -72853540.65349 2863 2838 47777777.76992 2864 2838 -20539363.4444 2931 2838 -71968136.03531 2932 2838 4.157423973083e-06 2933 2838 51943969.87703 2934 2838 -29817851.87049 2935 2838 -11944444.44837 2936 2838 17900923.03284 2949 2838 88895212.80375 2950 2838 4.112720489502e-06 2951 2838 1759282.450699 2952 2838 -25612922.63328 2953 2838 -1.080334186554e-05 2954 2838 439820.6129002 2970 2838 -74762019.75572 2971 2838 2.533197402954e-07 2972 2838 -53703252.3277 2973 2838 -30778677.45218 2974 2838 11944444.44836 2975 2838 -18340743.64572 2839 2839 687193460.8868 2840 2839 -84443331.25708 2841 2839 -1.019239425659e-05 2842 2839 -88585023.89729 2843 2839 42221665.62855 2859 2839 3.069639205933e-06 2860 2839 28369859.6463 2861 2839 -21110832.82467 2862 2839 47777777.76992 2863 2839 -58519346.56511 2864 2839 11505416.41223 2931 2839 3.337860107422e-06 2932 2839 -19412223.56332 2933 2839 -5277708.208769 2934 2839 -11944444.44837 2935 2839 -26234303.34662 2936 2839 12913159.66331 2949 2839 4.351139068604e-06 2950 2839 60226824.62697 2951 2839 -21110832.82468 2952 2839 -9.95397567749e-06 2953 2839 -71001738.06458 2954 2839 52813749.73867 2970 2839 -8.195638656616e-07 2971 2839 -22206107.28377 2972 2839 -5277708.20877 2973 2839 11944444.44836 2974 2839 -27195128.92833 2975 2839 13440937.44126 2840 2840 766546241.681 2841 2840 1759282.450673 2842 2840 42221665.62855 2843 2840 57866058.65466 2859 2840 -3518564.899638 2860 2840 -21110832.82467 2861 2840 48052583.38233 2862 2840 -20803252.33311 2863 2840 11716527.5232 2864 2840 -22805384.02253 2931 2840 51680080.98832 2932 2840 -5277708.208769 2933 2840 -58666023.42418 2934 2840 17900923.03284 2935 2840 12913159.66331 2936 2840 -36646590.5368 2949 2840 1759282.450699 2950 2840 -21110832.82468 2951 2840 -105887547.9636 2952 2840 439820.6129005 2953 2840 52602638.6277 2954 2840 -115814770.8741 2970 2840 -53439363.43899 2971 2840 -5277708.20877 2972 2840 -66116380.01208 2973 2840 -18340743.64572 2974 2840 13440937.44126 2975 2840 -39208792.08802 2841 2841 801867013.5374 2842 2841 2.598762512207e-05 2843 2841 7037129.799195 2844 2841 92970237.73849 2845 2841 -1.010298728943e-05 2846 2841 1759282.450673 2859 2841 -71804122.04904 2860 2841 -47777777.76993 2861 2841 19043969.88243 2862 2841 -181853790.138 2863 2841 3.248453140259e-06 2864 2841 -3518564.899638 2865 2841 -72853540.65349 2866 2841 47777777.76992 2867 2841 -20539363.4444 2931 2841 -19603280.6462 2932 2841 11944444.44837 2933 2841 8005089.696258 2934 2841 -71968136.03531 2935 2841 4.157423973083e-06 2936 2841 51943969.87703 2937 2841 -29817851.87049 2938 2841 -11944444.44837 2939 2841 17900923.03284 2949 2841 16294780.8482 2950 2841 4.217028617859e-06 2951 2841 439820.6128852 2952 2841 88895212.80375 2953 2841 4.112720489502e-06 2954 2841 1759282.450699 2955 2841 -25612922.63328 2956 2841 -1.080334186554e-05 2957 2841 439820.6129002 2970 2841 -20039396.92541 2971 2841 -11944444.44837 2972 2841 -8444910.309145 2973 2841 -74762019.75572 2974 2841 2.533197402954e-07 2975 2841 -53703252.3277 2976 2841 -30778677.45218 2977 2841 11944444.44836 2978 2841 -18340743.64572 2842 2842 687193460.8868 2843 2842 -84443331.25708 2844 2842 -1.019239425659e-05 2845 2842 -88585023.89729 2846 2842 42221665.62855 2859 2842 -47777777.76993 2860 2842 -57469927.96065 2861 2842 9605416.412441 2862 2842 3.069639205933e-06 2863 2842 28369859.6463 2864 2842 -21110832.82467 2865 2842 47777777.76992 2866 2842 -58519346.56511 2867 2842 11505416.41223 2931 2842 11944444.44837 2932 2842 -16019732.12234 2933 2842 -7635451.454545 2934 2842 3.337860107422e-06 2935 2842 -19412223.56332 2936 2842 -5277708.208769 2937 2842 -11944444.44837 2938 2842 -26234303.34662 2939 2842 12913159.66331 2949 2842 5.125999450684e-06 2950 2842 -29094034.58311 2951 2842 -31702916.914 2952 2842 4.351139068604e-06 2953 2842 60226824.62697 2954 2842 -21110832.82468 2955 2842 -9.95397567749e-06 2956 2842 -71001738.06458 2957 2842 52813749.73867 2970 2842 -11944444.44837 2971 2842 -16455848.40155 2972 2842 -8163229.232496 2973 2842 -8.195638656616e-07 2974 2842 -22206107.28377 2975 2842 -5277708.20877 2976 2842 11944444.44836 2977 2842 -27195128.92833 2978 2842 13440937.44126 2843 2843 766546241.681 2844 2843 1759282.450673 2845 2843 42221665.62855 2846 2843 57866058.65466 2859 2843 18780080.99371 2860 2843 9394305.301468 2861 2843 -20006934.4106 2862 2843 -3518564.899638 2863 2843 -21110832.82467 2864 2843 48052583.38233 2865 2843 -20803252.33311 2866 2843 11716527.5232 2867 2843 -22805384.02253 2931 2843 8005089.696258 2932 2843 -7635451.454545 2933 2843 -9407733.938713 2934 2843 51680080.98832 2935 2843 -5277708.208769 2936 2843 -58666023.42418 2937 2843 17900923.03284 2938 2843 12913159.66331 2939 2843 -36646590.5368 2949 2843 439820.6128855 2950 2843 -31491805.80303 2951 2843 -4060894.923526 2952 2843 1759282.450699 2953 2843 -21110832.82468 2954 2843 -105887547.9636 2955 2843 439820.6129005 2956 2843 52602638.6277 2957 2843 -115814770.8741 2970 2843 -8444910.309145 2971 2843 -8163229.232496 2972 2843 -10570710.68328 2973 2843 -53439363.43899 2974 2843 -5277708.20877 2975 2843 -66116380.01208 2976 2843 -18340743.64572 2977 2843 13440937.44126 2978 2843 -39208792.08802 2844 2844 801867013.5374 2845 2844 2.598762512207e-05 2846 2844 7037129.799195 2847 2844 92970237.73849 2848 2844 -1.010298728943e-05 2849 2844 1759282.450673 2862 2844 -71804122.04904 2863 2844 -47777777.76993 2864 2844 19043969.88243 2865 2844 -181853790.138 2866 2844 3.248453140259e-06 2867 2844 -3518564.899638 2868 2844 -72853540.65349 2869 2844 47777777.76992 2870 2844 -20539363.4444 2934 2844 -19603280.6462 2935 2844 11944444.44837 2936 2844 8005089.696258 2937 2844 -71968136.03531 2938 2844 4.157423973083e-06 2939 2844 51943969.87703 2940 2844 -29817851.87049 2941 2844 -11944444.44837 2942 2844 17900923.03284 2952 2844 16294780.8482 2953 2844 4.217028617859e-06 2954 2844 439820.6128852 2955 2844 88895212.80375 2956 2844 4.112720489502e-06 2957 2844 1759282.450699 2958 2844 -25612922.63328 2959 2844 -1.080334186554e-05 2960 2844 439820.6129002 2973 2844 -20039396.92541 2974 2844 -11944444.44837 2975 2844 -8444910.309145 2976 2844 -74762019.75572 2977 2844 2.533197402954e-07 2978 2844 -53703252.3277 2979 2844 -30778677.45218 2980 2844 11944444.44836 2981 2844 -18340743.64572 2845 2845 687193460.8868 2846 2845 -84443331.25708 2847 2845 -1.019239425659e-05 2848 2845 -88585023.89729 2849 2845 42221665.62855 2862 2845 -47777777.76993 2863 2845 -57469927.96065 2864 2845 9605416.412441 2865 2845 3.069639205933e-06 2866 2845 28369859.6463 2867 2845 -21110832.82467 2868 2845 47777777.76992 2869 2845 -58519346.56511 2870 2845 11505416.41223 2934 2845 11944444.44837 2935 2845 -16019732.12234 2936 2845 -7635451.454545 2937 2845 3.337860107422e-06 2938 2845 -19412223.56332 2939 2845 -5277708.208769 2940 2845 -11944444.44837 2941 2845 -26234303.34662 2942 2845 12913159.66331 2952 2845 5.125999450684e-06 2953 2845 -29094034.58311 2954 2845 -31702916.914 2955 2845 4.351139068604e-06 2956 2845 60226824.62697 2957 2845 -21110832.82468 2958 2845 -9.95397567749e-06 2959 2845 -71001738.06458 2960 2845 52813749.73867 2973 2845 -11944444.44837 2974 2845 -16455848.40155 2975 2845 -8163229.232496 2976 2845 -8.195638656616e-07 2977 2845 -22206107.28377 2978 2845 -5277708.20877 2979 2845 11944444.44836 2980 2845 -27195128.92833 2981 2845 13440937.44126 2846 2846 766546241.681 2847 2846 1759282.450673 2848 2846 42221665.62855 2849 2846 57866058.65466 2862 2846 18780080.99371 2863 2846 9394305.301468 2864 2846 -20006934.4106 2865 2846 -3518564.899638 2866 2846 -21110832.82467 2867 2846 48052583.38233 2868 2846 -20803252.33311 2869 2846 11716527.5232 2870 2846 -22805384.02253 2934 2846 8005089.696258 2935 2846 -7635451.454545 2936 2846 -9407733.938713 2937 2846 51680080.98832 2938 2846 -5277708.208769 2939 2846 -58666023.42418 2940 2846 17900923.03284 2941 2846 12913159.66331 2942 2846 -36646590.5368 2952 2846 439820.6128855 2953 2846 -31491805.80303 2954 2846 -4060894.923526 2955 2846 1759282.450699 2956 2846 -21110832.82468 2957 2846 -105887547.9636 2958 2846 439820.6129005 2959 2846 52602638.6277 2960 2846 -115814770.8741 2973 2846 -8444910.309145 2974 2846 -8163229.232496 2975 2846 -10570710.68328 2976 2846 -53439363.43899 2977 2846 -5277708.20877 2978 2846 -66116380.01208 2979 2846 -18340743.64572 2980 2846 13440937.44126 2981 2846 -39208792.08802 2847 2847 801867013.5374 2848 2847 2.598762512207e-05 2849 2847 7037129.799195 2850 2847 92970237.73849 2851 2847 -1.010298728943e-05 2852 2847 1759282.450673 2865 2847 -71804122.04904 2866 2847 -47777777.76993 2867 2847 19043969.88243 2868 2847 -181853790.138 2869 2847 3.248453140259e-06 2870 2847 -3518564.899638 2871 2847 -72853540.65349 2872 2847 47777777.76992 2873 2847 -20539363.4444 2937 2847 -19603280.6462 2938 2847 11944444.44837 2939 2847 8005089.696258 2940 2847 -71968136.03531 2941 2847 4.157423973083e-06 2942 2847 51943969.87703 2943 2847 -29817851.87049 2944 2847 -11944444.44837 2945 2847 17900923.03284 2955 2847 16294780.8482 2956 2847 4.217028617859e-06 2957 2847 439820.6128852 2958 2847 88895212.80375 2959 2847 4.112720489502e-06 2960 2847 1759282.450699 2961 2847 -25612922.63328 2962 2847 -1.080334186554e-05 2963 2847 439820.6129002 2976 2847 -20039396.92541 2977 2847 -11944444.44837 2978 2847 -8444910.309145 2979 2847 -74762019.75572 2980 2847 2.533197402954e-07 2981 2847 -53703252.3277 2982 2847 -30778677.45218 2983 2847 11944444.44836 2984 2847 -18340743.64572 2848 2848 687193460.8868 2849 2848 -84443331.25708 2850 2848 -1.019239425659e-05 2851 2848 -88585023.89729 2852 2848 42221665.62855 2865 2848 -47777777.76993 2866 2848 -57469927.96065 2867 2848 9605416.412441 2868 2848 3.069639205933e-06 2869 2848 28369859.6463 2870 2848 -21110832.82467 2871 2848 47777777.76992 2872 2848 -58519346.56511 2873 2848 11505416.41223 2937 2848 11944444.44837 2938 2848 -16019732.12234 2939 2848 -7635451.454545 2940 2848 3.337860107422e-06 2941 2848 -19412223.56332 2942 2848 -5277708.208769 2943 2848 -11944444.44837 2944 2848 -26234303.34662 2945 2848 12913159.66331 2955 2848 5.125999450684e-06 2956 2848 -29094034.58311 2957 2848 -31702916.914 2958 2848 4.351139068604e-06 2959 2848 60226824.62697 2960 2848 -21110832.82468 2961 2848 -9.95397567749e-06 2962 2848 -71001738.06458 2963 2848 52813749.73867 2976 2848 -11944444.44837 2977 2848 -16455848.40155 2978 2848 -8163229.232496 2979 2848 -8.195638656616e-07 2980 2848 -22206107.28377 2981 2848 -5277708.20877 2982 2848 11944444.44836 2983 2848 -27195128.92833 2984 2848 13440937.44126 2849 2849 766546241.681 2850 2849 1759282.450673 2851 2849 42221665.62855 2852 2849 57866058.65466 2865 2849 18780080.99371 2866 2849 9394305.301468 2867 2849 -20006934.4106 2868 2849 -3518564.899638 2869 2849 -21110832.82467 2870 2849 48052583.38233 2871 2849 -20803252.33311 2872 2849 11716527.5232 2873 2849 -22805384.02253 2937 2849 8005089.696258 2938 2849 -7635451.454545 2939 2849 -9407733.938713 2940 2849 51680080.98832 2941 2849 -5277708.208769 2942 2849 -58666023.42418 2943 2849 17900923.03284 2944 2849 12913159.66331 2945 2849 -36646590.5368 2955 2849 439820.6128855 2956 2849 -31491805.80303 2957 2849 -4060894.923526 2958 2849 1759282.450699 2959 2849 -21110832.82468 2960 2849 -105887547.9636 2961 2849 439820.6129005 2962 2849 52602638.6277 2963 2849 -115814770.8741 2976 2849 -8444910.309145 2977 2849 -8163229.232496 2978 2849 -10570710.68328 2979 2849 -53439363.43899 2980 2849 -5277708.20877 2981 2849 -66116380.01208 2982 2849 -18340743.64572 2983 2849 13440937.44126 2984 2849 -39208792.08802 2850 2850 801867013.5374 2851 2850 2.598762512207e-05 2852 2850 7037129.799195 2853 2850 92970237.73849 2854 2850 -1.010298728943e-05 2855 2850 1759282.450673 2868 2850 -71804122.04904 2869 2850 -47777777.76993 2870 2850 19043969.88243 2871 2850 -181853790.138 2872 2850 3.248453140259e-06 2873 2850 -3518564.899638 2874 2850 -72853540.65349 2875 2850 47777777.76992 2876 2850 -20539363.4444 2940 2850 -19603280.6462 2941 2850 11944444.44837 2942 2850 8005089.696258 2943 2850 -71968136.03531 2944 2850 4.157423973083e-06 2945 2850 51943969.87703 2946 2850 -29817851.87049 2947 2850 -11944444.44837 2948 2850 17900923.03284 2958 2850 16294780.8482 2959 2850 4.217028617859e-06 2960 2850 439820.6128852 2961 2850 88895212.80375 2962 2850 4.112720489502e-06 2963 2850 1759282.450699 2964 2850 -25612922.63328 2965 2850 -1.080334186554e-05 2966 2850 439820.6129002 2979 2850 -20039396.92541 2980 2850 -11944444.44837 2981 2850 -8444910.309145 2982 2850 -74762019.75572 2983 2850 2.533197402954e-07 2984 2850 -53703252.3277 2985 2850 -30778677.45218 2986 2850 11944444.44836 2987 2850 -18340743.64572 2851 2851 687193460.8868 2852 2851 -84443331.25708 2853 2851 -1.019239425659e-05 2854 2851 -88585023.89729 2855 2851 42221665.62855 2868 2851 -47777777.76993 2869 2851 -57469927.96065 2870 2851 9605416.412441 2871 2851 3.069639205933e-06 2872 2851 28369859.6463 2873 2851 -21110832.82467 2874 2851 47777777.76992 2875 2851 -58519346.56511 2876 2851 11505416.41223 2940 2851 11944444.44837 2941 2851 -16019732.12234 2942 2851 -7635451.454545 2943 2851 3.337860107422e-06 2944 2851 -19412223.56332 2945 2851 -5277708.208769 2946 2851 -11944444.44837 2947 2851 -26234303.34662 2948 2851 12913159.66331 2958 2851 5.125999450684e-06 2959 2851 -29094034.58311 2960 2851 -31702916.914 2961 2851 4.351139068604e-06 2962 2851 60226824.62697 2963 2851 -21110832.82468 2964 2851 -9.95397567749e-06 2965 2851 -71001738.06458 2966 2851 52813749.73867 2979 2851 -11944444.44837 2980 2851 -16455848.40155 2981 2851 -8163229.232496 2982 2851 -8.195638656616e-07 2983 2851 -22206107.28377 2984 2851 -5277708.20877 2985 2851 11944444.44836 2986 2851 -27195128.92833 2987 2851 13440937.44126 2852 2852 766546241.681 2853 2852 1759282.450673 2854 2852 42221665.62855 2855 2852 57866058.65466 2868 2852 18780080.99371 2869 2852 9394305.301468 2870 2852 -20006934.4106 2871 2852 -3518564.899638 2872 2852 -21110832.82467 2873 2852 48052583.38233 2874 2852 -20803252.33311 2875 2852 11716527.5232 2876 2852 -22805384.02253 2940 2852 8005089.696258 2941 2852 -7635451.454545 2942 2852 -9407733.938713 2943 2852 51680080.98832 2944 2852 -5277708.208769 2945 2852 -58666023.42418 2946 2852 17900923.03284 2947 2852 12913159.66331 2948 2852 -36646590.5368 2958 2852 439820.6128855 2959 2852 -31491805.80303 2960 2852 -4060894.923526 2961 2852 1759282.450699 2962 2852 -21110832.82468 2963 2852 -105887547.9636 2964 2852 439820.6129005 2965 2852 52602638.6277 2966 2852 -115814770.8741 2979 2852 -8444910.309145 2980 2852 -8163229.232496 2981 2852 -10570710.68328 2982 2852 -53439363.43899 2983 2852 -5277708.20877 2984 2852 -66116380.01208 2985 2852 -18340743.64572 2986 2852 13440937.44126 2987 2852 -39208792.08802 2853 2853 697335433.5606 2854 2853 13555993.81372 2855 2853 6525546.760922 2856 2853 -74181346.4655 2857 2853 -78873671.67505 2858 2853 4567537.813263 2871 2853 -71804122.04904 2872 2853 -47777777.76993 2873 2853 19043969.88243 2874 2853 -131767559.6882 2875 2853 24583510.6723 2876 2853 -724035.0559039 2877 2853 -42859393.5392 2878 2853 32913264.44696 2879 2853 -2392743.794803 2943 2853 -19603280.6462 2944 2853 11944444.44837 2945 2853 8005089.696258 2946 2853 -51389094.80041 2947 2853 1955225.686484 2948 2853 35595150.68861 2961 2853 16294780.8482 2962 2853 4.217028617859e-06 2963 2853 439820.6128852 2964 2853 89751427.48146 2965 2853 3388998.455101 2966 2853 1627256.23664 2967 2853 -37804191.87041 2968 2853 -19718417.92848 2969 2853 14356015.6679 2982 2853 -20039396.92541 2983 2853 -11944444.44837 2984 2853 -8444910.309145 2985 2853 -60532186.86274 2986 2853 6145877.671103 2987 2853 -45375800.4239 2988 2853 -19078219.62127 2989 2853 8228316.115794 2990 2853 -6175963.728574 2854 2854 738376280.1071 2855 2854 -53461134.90695 2856 2854 -78912088.19445 2857 2854 -255911826.3266 2858 2854 9575542.669736 2871 2854 -47777777.76993 2872 2854 -57469927.96065 2873 2854 9605416.412441 2874 2854 24583510.6723 2875 2854 39087496.12151 2876 2854 -11304599.7208 2877 2854 32913264.44696 2878 2854 -119862720.1338 2879 2854 5385216.157707 2943 2854 11944444.44837 2944 2854 -16019732.12234 2945 2854 -7635451.454545 2946 2854 1964829.816337 2947 2854 -1457900.386174 2948 2854 -5080618.041869 2961 2854 5.125999450684e-06 2962 2854 -29094034.58311 2963 2854 -31702916.914 2964 2854 3388998.455098 2965 2854 100011639.1232 2966 2854 -13368588.23948 2967 2854 -19728022.05833 2968 2854 -83236811.85808 2969 2854 44683227.92718 2982 2854 -11944444.44837 2983 2854 -16455848.40155 2984 2854 -8163229.232496 2985 2854 6145877.671102 2986 2854 -17818422.88929 2987 2854 3275933.400212 2988 2854 8228316.115794 2989 2854 -38329051.2794 2990 2854 18012970.71223 2855 2855 653768770.9707 2856 2855 4834182.270174 2857 2855 10420950.39671 2858 2855 -44643768.23168 2871 2855 18780080.99371 2872 2855 9394305.301468 2873 2855 -20006934.4106 2874 2855 -7321257.277044 2875 2855 -11515710.83187 2876 2855 53866482.54874 2877 2855 -2920521.572234 2878 2855 5385216.157707 2879 2855 -25206299.26693 2943 2855 8005089.696258 2944 2855 -7635451.454545 2945 2855 -9407733.938713 2946 2855 36913961.41127 2947 2855 -5283969.107957 2948 2855 -35687511.70929 2961 2855 439820.6128855 2962 2855 -31491805.80303 2963 2855 -4060894.923526 2964 2855 1636068.847779 2965 2855 -13361537.70386 2966 2855 -62110956.49564 2967 2855 14361165.99813 2968 2855 44679081.42414 2969 2855 -62517889.38316 2982 2855 -8444910.309145 2983 2855 -8163229.232496 2984 2855 -10570710.68328 2985 2855 -46695244.86759 2986 2855 3275933.401367 2987 2855 -60107504.48815 2988 2855 -6175963.728574 2989 2855 18012970.71223 2990 2855 -28603898.10301 2856 2856 489618492.9753 2857 2856 15356371.09326 2858 2856 -2554275.615559 2874 2856 -75484143.26592 2875 2856 -45746472.96609 2876 2856 2836938.039019 2877 2856 -36927445.63632 2878 2856 34495259.45832 2879 2856 -1076002.638337 2880 2856 61858293.65847 2881 2856 -22880131.39438 2882 2856 113380.0795472 2883 2856 -20251607.2672 2884 2856 40238479.12124 2885 2856 -451510.9862942 2946 2856 -17479931.67357 2947 2856 14362145.7276 2948 2856 5833486.609719 2964 2856 -31941173.76503 2965 2856 -19728022.05833 2966 2856 -12009716.04913 2967 2856 24089286.29196 2968 2856 3839092.775206 2969 2856 10350875.53811 2985 2856 -25149760.01167 2986 2856 -11436618.24716 2987 2856 -12495973.82755 2988 2856 -53221395.58403 2989 2856 8623814.868827 2990 2856 -52049556.20671 2991 2856 -15616531.23755 2992 2856 -5720032.851413 2993 2856 11718275.57488 2994 2856 -19138192.52839 2995 2856 10059619.78527 2996 2856 -12797947.19522 2857 2857 684488409.1365 2858 2857 -18295681.76298 2874 2857 -45746472.96609 2875 2857 -41552329.55583 2876 2857 331278.0576664 2877 2857 34495259.45832 2878 2857 136816456.2173 2879 2857 -3434058.65236 2880 2857 -3769020.286411 2881 2857 -30851528.21609 2882 2857 417819.3012418 2883 2857 40238479.12124 2884 2857 -41200663.37894 2885 2857 488013.3309756 2946 2857 9574763.8184 2947 2857 -44269000.15613 2948 2857 -13244377.7058 2964 2857 -19718417.92848 2965 2857 -77373793.75269 2966 2857 -39681478.38126 2967 2857 3839092.775206 2968 2857 72806765.35626 2969 2857 -2276323.108396 2985 2857 -11436618.24716 2986 2857 -16666806.57997 2987 2857 -10481763.82233 2988 2857 8623814.868826 2989 2857 -9785420.099232 2990 2857 5243568.66829 2991 2857 -942255.0720671 2992 2857 -38793986.71761 2993 2857 33437788.15322 2994 2857 10059619.78527 2995 2857 -24375456.5589 2996 2857 16788670.00494 2858 2858 600039923.4573 2874 2858 2573049.150303 2875 2858 120166.946694 2876 2858 -12151033.88324 2877 2858 -2131558.193719 2878 2858 -3645169.763436 2879 2858 150791187.3325 2880 2858 -150508.8092947 2881 2858 417819.3012417 2882 2858 95574403.5202 2883 2858 -715399.8750098 2884 2858 488013.3309756 2885 2858 22252331.25781 2946 2858 3888991.073146 2947 2858 -14800902.31119 2948 2858 -19824082.64697 2964 2858 -12006053.84798 2965 2858 -39687207.82015 2966 2858 -46883174.43545 2967 2858 -10308568.90294 2968 2858 -5821027.16094 2969 2858 -112164251.0942 2985 2858 -12495973.82755 2986 2858 -10481763.82233 2987 2858 -19781022.96801 2988 2858 -52049556.20697 2989 2858 5243568.669446 2990 2858 -79607627.60272 2991 2858 3593275.573656 2992 2858 33437788.15322 2993 2858 -58989344.86761 2994 2858 -12797947.19522 2995 2858 16788670.00494 2996 2858 -31971025.74039 2859 2859 400933506.7687 2860 2859 1.347064971924e-05 2861 2859 3518564.899597 2862 2859 46502609.17931 2863 2859 9555555.553979 2864 2859 -2418969.885557 2949 2859 -71968136.03531 2950 2859 4.157423973083e-06 2951 2859 51943969.87703 2952 2859 -29817851.87049 2953 2859 -11944444.44837 2954 2859 17900923.03284 2970 2859 44430116.09181 2971 2859 1.907348632813e-06 2972 2859 -10318414.32804 2973 2859 -12806461.31664 2974 2859 2388888.889668 2975 2859 -3404256.361406 2860 2860 343596730.4434 2861 2860 -42221665.62853 2862 2860 -9555555.55399 2863 2860 -44275021.63857 2864 2860 20899721.7032 2949 2860 3.337860107422e-06 2950 2860 -19412223.56332 2951 2860 -5277708.208769 2952 2860 -11944444.44837 2953 2860 -26234303.34662 2954 2860 12913159.66331 2970 2860 2.861022949219e-06 2971 2860 30095922.00342 2972 2860 -10555416.41234 2973 2860 -2388888.889678 2974 2860 -35500869.03229 2975 2860 26354097.09154 2861 2861 383273120.8405 2862 2861 5497696.779808 2863 2861 21321943.92535 2864 2861 28979670.15418 2949 2861 51680080.98832 2950 2861 -5277708.208769 2951 2861 -58666023.42418 2952 2861 17900923.03284 2953 2861 12913159.66331 2954 2861 -36646590.5368 2970 2861 10758252.33516 2971 2861 -10555416.41234 2972 2861 -52990414.80866 2973 2861 3844076.974307 2974 2861 26354097.09164 2975 2861 -57907385.43707 2862 2862 400933506.7687 2863 2862 1.347064971924e-05 2864 2862 3518564.899597 2865 2862 46502609.17931 2866 2862 9555555.553979 2867 2862 -2418969.885557 2949 2862 -19603280.6462 2950 2862 11944444.44837 2951 2862 8005089.696258 2952 2862 -71968136.03531 2953 2862 4.157423973083e-06 2954 2862 51943969.87703 2955 2862 -29817851.87049 2956 2862 -11944444.44837 2957 2862 17900923.03284 2970 2862 8147390.424101 2971 2862 -2388888.889671 2972 2862 -1425089.694098 2973 2862 44430116.09181 2974 2862 1.907348632813e-06 2975 2862 -10318414.32804 2976 2862 -12806461.31664 2977 2862 2388888.889668 2978 2862 -3404256.361406 2863 2863 343596730.4434 2864 2863 -42221665.62853 2865 2863 -9555555.55399 2866 2863 -44275021.63857 2867 2863 20899721.7032 2949 2863 11944444.44837 2950 2863 -16019732.12234 2951 2863 -7635451.454545 2952 2863 3.337860107422e-06 2953 2863 -19412223.56332 2954 2863 -5277708.208769 2955 2863 -11944444.44837 2956 2863 -26234303.34662 2957 2863 12913159.66331 2970 2863 2388888.889676 2971 2863 -14547017.29156 2972 2863 -15798680.67921 2973 2863 2.861022949219e-06 2974 2863 30095922.00342 2975 2863 -10555416.41234 2976 2863 -2388888.889678 2977 2863 -35500869.03229 2978 2863 26354097.09154 2864 2864 383273120.8405 2865 2864 5497696.779808 2866 2864 21321943.92535 2867 2864 28979670.15418 2949 2864 8005089.696258 2950 2864 -7635451.454545 2951 2864 -9407733.938713 2952 2864 51680080.98832 2953 2864 -5277708.208769 2954 2864 -58666023.42418 2955 2864 17900923.03284 2956 2864 12913159.66331 2957 2864 -36646590.5368 2970 2864 1864910.306983 2971 2864 -15798680.67931 2972 2864 -2030447.461764 2973 2864 10758252.33516 2974 2864 -10555416.41234 2975 2864 -52990414.80866 2976 2864 3844076.974307 2977 2864 26354097.09164 2978 2864 -57907385.43707 2865 2865 400933506.7687 2866 2865 1.347064971924e-05 2867 2865 3518564.899597 2868 2865 46502609.17931 2869 2865 9555555.553979 2870 2865 -2418969.885557 2952 2865 -19603280.6462 2953 2865 11944444.44837 2954 2865 8005089.696258 2955 2865 -71968136.03531 2956 2865 4.157423973083e-06 2957 2865 51943969.87703 2958 2865 -29817851.87049 2959 2865 -11944444.44837 2960 2865 17900923.03284 2973 2865 8147390.424101 2974 2865 -2388888.889671 2975 2865 -1425089.694098 2976 2865 44430116.09181 2977 2865 1.907348632813e-06 2978 2865 -10318414.32804 2979 2865 -12806461.31664 2980 2865 2388888.889668 2981 2865 -3404256.361406 2866 2866 343596730.4434 2867 2866 -42221665.62853 2868 2866 -9555555.55399 2869 2866 -44275021.63857 2870 2866 20899721.7032 2952 2866 11944444.44837 2953 2866 -16019732.12234 2954 2866 -7635451.454545 2955 2866 3.337860107422e-06 2956 2866 -19412223.56332 2957 2866 -5277708.208769 2958 2866 -11944444.44837 2959 2866 -26234303.34662 2960 2866 12913159.66331 2973 2866 2388888.889676 2974 2866 -14547017.29156 2975 2866 -15798680.67921 2976 2866 2.861022949219e-06 2977 2866 30095922.00342 2978 2866 -10555416.41234 2979 2866 -2388888.889678 2980 2866 -35500869.03229 2981 2866 26354097.09154 2867 2867 383273120.8405 2868 2867 5497696.779808 2869 2867 21321943.92535 2870 2867 28979670.15418 2952 2867 8005089.696258 2953 2867 -7635451.454545 2954 2867 -9407733.938713 2955 2867 51680080.98832 2956 2867 -5277708.208769 2957 2867 -58666023.42418 2958 2867 17900923.03284 2959 2867 12913159.66331 2960 2867 -36646590.5368 2973 2867 1864910.306983 2974 2867 -15798680.67931 2975 2867 -2030447.461764 2976 2867 10758252.33516 2977 2867 -10555416.41234 2978 2867 -52990414.80866 2979 2867 3844076.974307 2980 2867 26354097.09164 2981 2867 -57907385.43707 2868 2868 400933506.7687 2869 2868 1.347064971924e-05 2870 2868 3518564.899597 2871 2868 46502609.17931 2872 2868 9555555.553979 2873 2868 -2418969.885557 2955 2868 -19603280.6462 2956 2868 11944444.44837 2957 2868 8005089.696258 2958 2868 -71968136.03531 2959 2868 4.157423973083e-06 2960 2868 51943969.87703 2961 2868 -29817851.87049 2962 2868 -11944444.44837 2963 2868 17900923.03284 2976 2868 8147390.424101 2977 2868 -2388888.889671 2978 2868 -1425089.694098 2979 2868 44430116.09181 2980 2868 1.907348632813e-06 2981 2868 -10318414.32804 2982 2868 -12806461.31664 2983 2868 2388888.889668 2984 2868 -3404256.361406 2869 2869 343596730.4434 2870 2869 -42221665.62853 2871 2869 -9555555.55399 2872 2869 -44275021.63857 2873 2869 20899721.7032 2955 2869 11944444.44837 2956 2869 -16019732.12234 2957 2869 -7635451.454545 2958 2869 3.337860107422e-06 2959 2869 -19412223.56332 2960 2869 -5277708.208769 2961 2869 -11944444.44837 2962 2869 -26234303.34662 2963 2869 12913159.66331 2976 2869 2388888.889676 2977 2869 -14547017.29156 2978 2869 -15798680.67921 2979 2869 2.861022949219e-06 2980 2869 30095922.00342 2981 2869 -10555416.41234 2982 2869 -2388888.889678 2983 2869 -35500869.03229 2984 2869 26354097.09154 2870 2870 383273120.8405 2871 2870 5497696.779808 2872 2870 21321943.92535 2873 2870 28979670.15418 2955 2870 8005089.696258 2956 2870 -7635451.454545 2957 2870 -9407733.938713 2958 2870 51680080.98832 2959 2870 -5277708.208769 2960 2870 -58666023.42418 2961 2870 17900923.03284 2962 2870 12913159.66331 2963 2870 -36646590.5368 2976 2870 1864910.306983 2977 2870 -15798680.67931 2978 2870 -2030447.461764 2979 2870 10758252.33516 2980 2870 -10555416.41234 2981 2870 -52990414.80866 2982 2870 3844076.974307 2983 2870 26354097.09164 2984 2870 -57907385.43707 2871 2871 400933506.7687 2872 2871 1.347064971924e-05 2873 2871 3518564.899597 2874 2871 46502609.17931 2875 2871 9555555.553979 2876 2871 -2418969.885557 2958 2871 -19603280.6462 2959 2871 11944444.44837 2960 2871 8005089.696258 2961 2871 -71968136.03531 2962 2871 4.157423973083e-06 2963 2871 51943969.87703 2964 2871 -29817851.87049 2965 2871 -11944444.44837 2966 2871 17900923.03284 2979 2871 8147390.424101 2980 2871 -2388888.889671 2981 2871 -1425089.694098 2982 2871 44430116.09181 2983 2871 1.907348632813e-06 2984 2871 -10318414.32804 2985 2871 -12806461.31664 2986 2871 2388888.889668 2987 2871 -3404256.361406 2872 2872 343596730.4434 2873 2872 -42221665.62853 2874 2872 -9555555.55399 2875 2872 -44275021.63857 2876 2872 20899721.7032 2958 2872 11944444.44837 2959 2872 -16019732.12234 2960 2872 -7635451.454545 2961 2872 3.337860107422e-06 2962 2872 -19412223.56332 2963 2872 -5277708.208769 2964 2872 -11944444.44837 2965 2872 -26234303.34662 2966 2872 12913159.66331 2979 2872 2388888.889676 2980 2872 -14547017.29156 2981 2872 -15798680.67921 2982 2872 2.861022949219e-06 2983 2872 30095922.00342 2984 2872 -10555416.41234 2985 2872 -2388888.889678 2986 2872 -35500869.03229 2987 2872 26354097.09154 2873 2873 383273120.8405 2874 2873 5497696.779808 2875 2873 21321943.92535 2876 2873 28979670.15418 2958 2873 8005089.696258 2959 2873 -7635451.454545 2960 2873 -9407733.938713 2961 2873 51680080.98832 2962 2873 -5277708.208769 2963 2873 -58666023.42418 2964 2873 17900923.03284 2965 2873 12913159.66331 2966 2873 -36646590.5368 2979 2873 1864910.306983 2980 2873 -15798680.67931 2981 2873 -2030447.461764 2982 2873 10758252.33516 2983 2873 -10555416.41234 2984 2873 -52990414.80866 2985 2873 3844076.974307 2986 2873 26354097.09164 2987 2873 -57907385.43707 2874 2874 390528978.5414 2875 2874 2031754.88496 2876 2874 18978084.67473 2877 2874 10706126.81689 2878 2874 -19091014.80711 2879 2874 2131234.560147 2961 2874 -19603280.6462 2962 2874 11944444.44837 2963 2874 8005089.696258 2964 2874 -57207507.5192 2965 2874 6145877.671107 2966 2874 43364477.33833 2967 2874 -26546695.73564 2968 2874 -11436618.24716 2969 2874 13848470.62555 2982 2874 8147390.424101 2983 2874 -2388888.889671 2984 2874 -1425089.694098 2985 2874 41725581.05413 2986 2874 507938.7214912 2987 2874 -6453256.604583 2988 2874 -15664036.02673 2989 2874 -4772753.704127 2990 2874 5360864.194452 2875 2875 352799816.1126 2876 2875 -26163100.1551 2877 2875 -38202125.91508 2878 2875 -79908143.54456 2879 2875 4520172.591737 2961 2875 11944444.44837 2962 2875 -16019732.12234 2963 2875 -7635451.454545 2964 2875 6145877.671106 2965 2875 -14493743.54572 2966 2875 -8981011.042271 2967 2875 -11436618.24716 2968 2875 -18063742.30393 2969 2875 10594625.07348 2982 2875 2388888.889676 2983 2875 -14547017.29156 2984 2875 -15798680.67921 2985 2875 507938.7214905 2986 2875 32293290.44228 2987 2875 -6540775.042003 2988 2875 -9550531.483474 2989 2875 -38317603.62825 2990 2875 28361293.14454 2876 2876 373214203.523 2877 2876 3450679.004372 2878 2876 4731283.702813 2879 2876 25915984.15995 2961 2876 8005089.696258 2962 2876 -7635451.454545 2963 2876 -9407733.938713 2964 2876 44683921.78504 2965 2876 -8981011.041011 2966 2876 -51241692.90527 2967 2876 13848470.62555 2968 2876 10594625.07348 2969 2876 -23506184.8986 2982 2876 1864910.306983 2983 2876 -15798680.67931 2984 2876 -2030447.461764 2985 2876 14622854.50307 2986 2876 -6540775.042003 2987 2876 -55780885.41815 2988 2876 11025586.41696 2989 2876 28361293.14339 2990 2876 -42429184.57622 2877 2877 393308552.7541 2878 2877 33387741.61392 2879 2877 1069557.995636 2880 2877 -90523162.8112 2881 2877 -55317076.41861 2882 2877 735989.013558 2883 2877 18987277.35532 2884 2877 -7277063.18551 2885 2877 851409.3072543 2964 2877 -16305861.25464 2965 2877 8228316.115794 2966 2877 4847647.38616 2967 2877 -52398287.78342 2968 2877 8623814.868829 2969 2877 51247665.9983 2985 2877 -10942417.8914 2986 2877 -9550531.483475 2987 2877 -9564135.802965 2988 2877 13533800.67906 2989 2877 8346935.407593 2990 2877 -10722054.94328 2991 2877 -36706081.42304 2992 2877 -13829269.11147 2993 2877 20496497.26015 2994 2877 -20473238.80768 2995 2877 -1819265.797273 2996 2877 5144935.657537 2878 2878 456455484.3111 2879 2878 -8493577.449744 2880 2878 -55317076.41861 2881 2878 -67552496.70794 2882 2878 488013.3309754 2883 2878 -26388174.29348 2884 2878 -73256625.20248 2885 2878 1534234.021698 2964 2878 8228316.115794 2965 2878 -35556692.91277 2966 2878 -15320362.63205 2967 2878 8623814.868829 2968 2878 -8962312.29862 2969 2878 -7013375.774193 2985 2878 -4772753.704129 2986 2878 -33595985.49293 2987 2878 -26048429.06869 2988 2878 8346935.407594 2989 2878 29320533.57608 2990 2878 -2123394.363487 2991 2878 -13829269.11147 2992 2878 -30963414.8944 2993 2878 16788670.00494 2994 2878 -6597043.576619 2995 2878 -43534214.45849 2996 2878 33716891.83347 2879 2879 472314421.5349 2880 2879 735989.0135581 2881 2879 488013.3309754 2882 2879 -4099502.071191 2883 2879 1115298.196096 2884 2879 1534234.021698 2885 2879 54129421.48319 2964 2879 4847647.38616 2965 2879 -15320362.63205 2966 2879 -21210942.45867 2967 2879 51247665.99856 2968 2879 -7013375.772933 2969 2879 -77412673.46776 2985 2879 -4691080.247253 2986 2879 -26048429.06995 2987 2879 -29838202.88199 2988 2879 9937389.497775 2989 2879 -2123394.363487 2990 2879 -108036961.3792 2991 2879 20496497.26015 2992 2879 16788670.00494 2993 2879 -38558984.07588 2994 2879 10337713.43846 2995 2879 33716891.83347 2996 2879 -53721133.01946 2880 2880 247694807.0596 2881 2880 61102353.61032 2882 2880 -421250.4501109 2883 2880 -40613658.84548 2884 2880 -2016256.905298 2885 2880 -164229.7541515 2967 2880 -15064205.65599 2968 2880 -942255.0720674 2969 2880 -3602557.756001 2988 2880 -36153755.84147 2989 2880 -13829269.11147 2990 2880 -20128502.75319 2991 2880 313818.0877385 2992 2880 15275588.41011 2993 2880 8019687.386086 2994 2880 -37751670.53939 2995 2880 -504064.2265737 2996 2880 -33038626.87689 2881 2881 223946295.6199 2882 2881 -417819.3012383 2883 2881 17094854.20267 2884 2881 52874008.36546 2885 2881 -488013.3309731 2967 2881 -5720032.851414 2968 2881 -38241661.13605 2969 2881 -33228878.5025 2988 2881 -13829269.11147 2989 2881 -30411089.31283 2990 2881 -16544663.33934 2991 2881 15275588.41011 2992 2881 -5623309.775096 2993 2881 6562211.840209 2994 2881 4273713.552772 2995 2881 -14379753.72514 2996 2881 3211330.001623 2882 2882 302886642.9092 2883 2882 -428118.6429929 2884 2882 -488013.3309731 2885 2882 81415199.80545 2967 2882 -11727557.7571 2968 2882 -33228878.5025 2969 2882 -57516476.65011 2988 2882 -20128502.75319 2989 2882 -16544663.33934 2990 2882 -37086115.85837 2991 2882 -8230312.611246 2992 2882 -6771121.490934 2993 2882 -88571362.45583 2994 2882 -33038626.87847 2995 2882 -3455336.667233 2996 2882 -53241548.9 2883 2883 194640779.4635 2884 2883 -30945159.03043 2885 2883 555998.0993371 2967 2883 -18585866.94682 2968 2883 10059619.78527 2969 2883 12506219.47975 2988 2883 -18816262.06405 2989 2883 -6597043.57662 2990 2883 -10043953.22886 2991 2883 -37751670.53939 2992 2883 4273713.552774 2993 2883 32890539.77888 2994 2883 -122944.6401992 2995 2883 -7736289.761419 2996 2883 -5251694.918494 2884 2884 214346070.9221 2885 2884 -1534234.021693 2967 2884 10059619.78527 2968 2884 -23823130.97733 2969 2884 -16544663.33934 2988 2884 -1819265.797274 2989 2884 -41877237.71487 2990 2884 -32949774.82225 2991 2884 -504064.2265722 2992 2884 -14379753.72514 2993 2884 3211330.001623 2994 2884 -7736289.761419 2995 2884 4803378.226877 2996 2884 6283108.159956 2885 2885 249570489.3365 2967 2885 12506219.47975 2968 2885 -16544663.33934 2969 2885 -30498157.52287 2988 2885 -5115064.336773 2989 2885 -32949774.82225 2990 2885 -49302528.36979 2991 2885 32890539.77744 2992 2885 -3455336.667232 2993 2885 -53241548.9 2994 2885 4869971.746511 2995 2885 -7050225.171186 2996 2885 -67695749.71523 2886 2886 572236993.7195 2887 2886 55138888.87983 2888 2886 31598553.4075 2889 2886 -313559939.9103 2890 2886 -55160226.61988 2891 2886 -24936017.84334 2892 2886 5063871.676501 2893 2886 44132448.84391 2894 2886 -17154449.80687 2997 2886 88021012.11513 2998 2886 15625000.00514 2999 2886 19639605.71133 3000 2886 -121308672.7549 3001 2886 -15631586.90535 3002 2886 -67766682.33182 3003 2886 -21749648.26534 3004 2886 12506586.90433 3005 2886 -17353145.19621 2887 2887 489500063.4635 2888 2887 -54040789.03059 2889 2887 -55170895.4899 2890 2887 -54338040.03216 2891 2887 -33960288.27187 2892 2887 66198673.26587 2893 2887 5063871.676508 2894 2887 23123283.37764 2997 2887 15625000.00514 2998 2887 64574885.68388 2999 2887 -6700809.891648 3000 2887 -15634880.35547 3001 2887 -47849941.99273 3002 2887 -21743418.55177 3003 2887 18759880.3565 3004 2887 -21749648.26534 3005 2887 20823318.70445 2888 2888 536232943.3 2889 2888 -21604750.06126 2890 2888 -26737943.81257 2891 2888 -22912436.09768 2892 2888 -25731674.71031 2893 2888 15415522.25176 2894 2888 13503657.80403 2997 2888 -4768139.577623 2998 2888 -26226783.67725 2999 2888 -45750138.7209 3000 2888 -67422475.35311 3001 2888 -19819673.42971 3002 2888 -93029560.64943 3003 2888 -26029717.79432 3004 2888 13882212.46963 3005 2888 -57999062.0409 2889 2889 979444958.5446 2890 2889 55192233.22997 2891 2889 27299034.62316 2892 2889 11141309.24956 2893 2889 -55160226.61988 2894 2889 24035972.54801 2895 2889 -215223928.4788 2896 2889 5.930662155151e-06 2897 2889 -5707514.57167 2898 2889 -85403197.39141 2899 2889 55138888.87983 2900 2889 -24029092.18165 2997 2889 -108451246.8934 2998 2889 -15634880.35547 2999 2889 54616251.09168 3000 2889 166227659.6012 3001 2889 15641467.2557 3002 2889 7711642.939084 3003 2889 -41196855.08124 3004 2889 -15631586.90536 3005 2889 21974855.62738 3006 2889 -92328809.14057 3007 2889 5.915760993958e-06 3008 2889 -62317692.40268 3009 2889 -38047023.33633 3010 2889 15625000.00513 3011 2889 -21965599.32574 2890 2890 830537689.1138 2891 2890 -75243257.69584 2892 2890 -55170895.48991 2893 2890 -181886245.1745 2894 2890 41627208.49512 2895 2890 2.861022949219e-06 2896 2890 27388705.35396 2897 2890 -24270537.56804 2898 2890 55138888.87983 2899 2890 -68860612.58955 2900 2890 13559921.56178 2997 2890 -15631586.90536 2998 2890 -34992516.13117 2999 2890 4591649.47589 3000 2890 15641467.2557 3001 2890 124030560.5447 3002 2890 -21261017.33538 3003 2890 -15634880.35547 3004 2890 -95897202.5708 3005 2890 60337907.00837 3006 2890 4.619359970093e-06 3007 2890 -23578405.83475 3008 2890 -6857560.807395 3009 2890 15625000.00513 3010 2890 -33359280.17771 3011 2890 15972183.1856 2891 2891 830564689.2359 2892 2891 23511634.95294 2893 2891 45765068.67361 2894 2891 8306087.457417 2895 2891 -2382861.794439 2896 2891 -24270537.56804 2897 2891 41183389.66318 2898 2891 -23501314.4034 2899 2891 13137699.33918 2900 2891 -29852819.54686 2997 2891 54272044.11297 2998 2891 2673044.969291 2999 2891 -58743091.68526 3000 2891 7718068.787606 3001 2891 -21255876.71511 3002 2891 -61506429.36468 3003 2891 21979483.77819 3004 2891 61984848.42173 3005 2891 -115922513.565 3006 2891 -61974810.45846 3007 2891 -6857560.807395 3008 2891 -71902237.78217 3009 2891 -21965599.32574 3010 2891 15972183.1856 3011 2891 -45381891.21762 2892 2892 572236993.7195 2893 2892 55138888.87983 2894 2892 31598553.4075 2895 2892 -84201296.24904 2896 2892 -55138888.87984 2897 2892 21478720.31087 2898 2892 -313559939.9103 2899 2892 -55160226.61988 2900 2892 -24936017.84334 2901 2892 5063871.676501 2902 2892 44132448.84391 2903 2892 -17154449.80687 2997 2892 2359203.743841 2998 2892 18759880.3565 2999 2892 10591538.29392 3000 2892 -4242975.331225 3001 2892 -15634880.35547 3002 2892 -8541442.446936 3003 2892 88021012.11513 3004 2892 15625000.00514 3005 2892 19639605.71133 3006 2892 -25660413.08922 3007 2892 -15625000.00513 3008 2892 -9107526.404853 3009 2892 -121308672.7549 3010 2892 -15631586.90535 3011 2892 -67766682.33182 3012 2892 -21749648.26534 3013 2892 12506586.90433 3014 2892 -17353145.19621 2893 2893 489500063.4635 2894 2893 -54040789.03059 2895 2893 -55138888.87984 2896 2893 -67658711.44716 2897 2893 10710616.00625 2898 2893 -55170895.4899 2899 2893 -54338040.03216 2900 2893 -33960288.27187 2901 2893 66198673.26587 2902 2893 5063871.676508 2903 2893 23123283.37764 2997 2893 12506586.90433 2998 2893 2359203.743842 2999 2893 -5648902.101029 3000 2893 -15631586.90535 3001 2893 -58943322.82077 3002 2893 -35645020.83586 3003 2893 15625000.00514 3004 2893 64574885.68388 3005 2893 -6700809.891648 3006 2893 -15625000.00513 3007 2893 -20972669.93059 3008 2893 -9114622.378198 3009 2893 -15634880.35547 3010 2893 -47849941.99273 3011 2893 -21743418.55177 3012 2893 18759880.3565 3013 2893 -21749648.26534 3014 2893 20823318.70445 2894 2894 536232943.3 2895 2894 22006498.08912 2896 2894 11132838.22885 2897 2894 -26647749.83379 2898 2894 -21604750.06126 2899 2894 -26737943.81257 2900 2894 -22912436.09768 2901 2894 -25731674.71031 2902 2894 15415522.25176 2903 2894 13503657.80403 2997 2894 7061025.529277 2998 2894 -8473353.151544 2999 2894 6291209.983575 3000 2894 -8539644.961234 3001 2894 -37291962.41402 3002 2894 -17378834.23163 3003 2894 -4768139.577623 3004 2894 -26226783.67725 3005 2894 -45750138.7209 3006 2894 -9107526.404853 3007 2894 -9114622.378198 3008 2894 -12350930.55863 3009 2894 -67422475.35311 3010 2894 -19819673.42971 3011 2894 -93029560.64943 3012 2894 -26029717.79432 3013 2894 13882212.46963 3014 2894 -57999062.0409 2895 2895 904416532.1423 2896 2895 2.086162567139e-05 2897 2895 8090376.36604 2898 2895 102079011.1406 2899 2895 -1.040101051331e-05 2900 2895 2022594.092512 2904 2895 -215223928.4788 2905 2895 5.930662155151e-06 2906 2895 -5707514.57167 2907 2895 -85403197.39141 2908 2895 55138888.87983 2909 2895 -24029092.18165 3000 2895 -89115968.74764 3001 2895 -2.875924110413e-06 3002 2895 60031786.74372 3003 2895 -36905217.31746 3004 2895 -15625000.00514 3005 2895 21394122.91072 3006 2895 137281674.8977 3007 2895 7.092952728271e-06 3008 2895 2285905.658981 3009 2895 -24872960.07894 3010 2895 -1.01625919342e-05 3011 2895 571476.4150351 3015 2895 -92328809.14057 3016 2895 5.915760993958e-06 3017 2895 -62317692.40268 3018 2895 -38047023.33633 3019 2895 15625000.00513 3020 2895 -21965599.32574 2896 2896 772075853.7925 2897 2896 -97082150.22431 2898 2896 -1.037120819092e-05 2899 2896 -107448453.121 2900 2896 49870936.22305 2904 2896 2.861022949219e-06 2905 2896 27388705.35396 2906 2896 -24270537.56804 2907 2896 55138888.87983 2908 2896 -68860612.58955 2909 2896 13559921.56178 3000 2896 -4.589557647705e-06 3001 2896 -20365565.44178 3002 2896 -6857560.807395 3003 2896 -15625000.00514 3004 2896 -32217474.15883 3005 2896 15286419.29648 3006 2896 6.973743438721e-06 3007 2896 99779729.64718 3008 2896 -27430243.21607 3009 2896 -8.568167686462e-06 3010 2896 -84247877.07676 3011 2896 62654357.71105 3015 2896 4.619359970093e-06 3016 2896 -23578405.83475 3017 2896 -6857560.807395 3018 2896 15625000.00513 3019 2896 -33359280.17771 3020 2896 15972183.1856 2897 2897 828665098.5173 2898 2897 2022594.092512 2899 2897 47211214.00126 2900 2897 52874910.70561 2904 2897 -2382861.794439 2905 2897 -24270537.56804 2906 2897 41183389.66318 2907 2897 -23501314.4034 2908 2897 13137699.33918 2909 2897 -29852819.54686 3000 2897 59688904.7995 3001 2897 -6857560.807395 3002 2897 -63334663.40088 3003 2897 21394122.91072 3004 2897 15286419.29648 3005 2897 -42337075.16724 3006 2897 2285905.658981 3007 2897 -27430243.21607 3008 2897 -82530234.81935 3009 2897 571476.4150354 3010 2897 62380052.15567 3011 2897 -128482138.2218 3015 2897 -61974810.45846 3016 2897 -6857560.807395 3017 2897 -71902237.78217 3018 2897 -21965599.32574 3019 2897 15972183.1856 3020 2897 -45381891.21762 2898 2898 979444958.5446 2899 2898 55192233.22997 2900 2898 27299034.62316 2901 2898 11141309.24956 2902 2898 -55160226.61988 2903 2898 24035972.54801 2904 2898 -84201296.24904 2905 2898 -55138888.87984 2906 2898 21478720.31087 2907 2898 -215223928.4788 2908 2898 5.930662155151e-06 2909 2898 -5707514.57167 2910 2898 -85403197.39141 2911 2898 55138888.87983 2912 2898 -24029092.18165 3000 2898 -25195798.91083 3001 2898 15625000.00513 3002 2898 8536049.989829 3003 2898 -108451246.8934 3004 2898 -15634880.35547 3005 2898 54616251.09168 3006 2898 23319097.20481 3007 2898 3.09944152832e-06 3008 2898 571476.4150216 3009 2898 166227659.6012 3010 2898 15641467.2557 3011 2898 7711642.939084 3012 2898 -41196855.08124 3013 2898 -15631586.90536 3014 2898 21974855.62738 3015 2898 -25660413.08922 3016 2898 -15625000.00513 3017 2898 -9107526.404853 3018 2898 -92328809.14057 3019 2898 5.915760993958e-06 3020 2898 -62317692.40268 3021 2898 -38047023.33633 3022 2898 15625000.00513 3023 2898 -21965599.32574 2899 2899 830537689.1138 2900 2899 -75243257.69584 2901 2899 -55170895.48991 2902 2899 -181886245.1745 2903 2899 41627208.49512 2904 2899 -55138888.87984 2905 2899 -67658711.44716 2906 2899 10710616.00625 2907 2899 2.861022949219e-06 2908 2899 27388705.35396 2909 2899 -24270537.56804 2910 2899 55138888.87983 2911 2899 -68860612.58955 2912 2899 13559921.56178 3000 2899 15625000.00513 3001 2899 -20508055.7522 3002 2899 -8428858.489084 3003 2899 -15631586.90536 3004 2899 -34992516.13117 3005 2899 4591649.47589 3006 2899 4.559755325317e-06 3007 2899 -36055819.793 3008 2899 -35224114.49497 3009 2899 15641467.2557 3010 2899 124030560.5447 3011 2899 -21261017.33538 3012 2899 -15634880.35547 3013 2899 -95897202.5708 3014 2899 60337907.00837 3015 2899 -15625000.00513 3016 2899 -20972669.93059 3017 2899 -9114622.378198 3018 2899 4.619359970093e-06 3019 2899 -23578405.83475 3020 2899 -6857560.807395 3021 2899 15625000.00513 3022 2899 -33359280.17771 3023 2899 15972183.1856 2900 2900 830564689.2359 2901 2900 23511634.95294 2902 2900 45765068.67361 2903 2900 8306087.457417 2904 2900 22006498.08912 2905 2900 11132838.22885 2906 2900 -26647749.83379 2907 2900 -2382861.794439 2908 2900 -24270537.56804 2909 2900 41183389.66318 2910 2900 -23501314.4034 2911 2900 13137699.33918 2912 2900 -29852819.54686 3000 2900 8536049.989829 3001 2900 -8428858.489084 3002 2900 -11111959.41625 3003 2900 54272044.11297 3004 2900 2673044.969291 3005 2900 -58743091.68526 3006 2900 571476.4150219 3007 2900 -34949808.93959 3008 2900 30014.53480115 3009 2900 7718068.787606 3010 2900 -21255876.71511 3011 2900 -61506429.36468 3012 2900 21979483.77819 3013 2900 61984848.42173 3014 2900 -115922513.565 3015 2900 -9107526.404853 3016 2900 -9114622.378198 3017 2900 -12350930.55863 3018 2900 -61974810.45846 3019 2900 -6857560.807395 3020 2900 -71902237.78217 3021 2900 -21965599.32574 3022 2900 15972183.1856 3023 2900 -45381891.21762 2901 2901 572236993.7195 2902 2901 55138888.87983 2903 2901 31598553.4075 2907 2901 -84201296.24904 2908 2901 -55138888.87984 2909 2901 21478720.31087 2910 2901 -313559939.9103 2911 2901 -55160226.61988 2912 2901 -24936017.84334 2913 2901 5063871.676501 2914 2901 44132448.84391 2915 2901 -17154449.80687 3003 2901 2359203.743841 3004 2901 18759880.3565 3005 2901 10591538.29392 3009 2901 -4242975.331225 3010 2901 -15634880.35547 3011 2901 -8541442.446936 3012 2901 88021012.11513 3013 2901 15625000.00514 3014 2901 19639605.71133 3018 2901 -25660413.08922 3019 2901 -15625000.00513 3020 2901 -9107526.404853 3021 2901 -121308672.7549 3022 2901 -15631586.90535 3023 2901 -67766682.33182 3024 2901 -21749648.26534 3025 2901 12506586.90433 3026 2901 -17353145.19621 2902 2902 489500063.4635 2903 2902 -54040789.03059 2907 2902 -55138888.87984 2908 2902 -67658711.44716 2909 2902 10710616.00625 2910 2902 -55170895.4899 2911 2902 -54338040.03216 2912 2902 -33960288.27187 2913 2902 66198673.26587 2914 2902 5063871.676508 2915 2902 23123283.37764 3003 2902 12506586.90433 3004 2902 2359203.743842 3005 2902 -5648902.101029 3009 2902 -15631586.90535 3010 2902 -58943322.82077 3011 2902 -35645020.83586 3012 2902 15625000.00514 3013 2902 64574885.68388 3014 2902 -6700809.891648 3018 2902 -15625000.00513 3019 2902 -20972669.93059 3020 2902 -9114622.378198 3021 2902 -15634880.35547 3022 2902 -47849941.99273 3023 2902 -21743418.55177 3024 2902 18759880.3565 3025 2902 -21749648.26534 3026 2902 20823318.70445 2903 2903 536232943.3 2907 2903 22006498.08912 2908 2903 11132838.22885 2909 2903 -26647749.83379 2910 2903 -21604750.06126 2911 2903 -26737943.81257 2912 2903 -22912436.09768 2913 2903 -25731674.71031 2914 2903 15415522.25176 2915 2903 13503657.80403 3003 2903 7061025.529277 3004 2903 -8473353.151544 3005 2903 6291209.983575 3009 2903 -8539644.961234 3010 2903 -37291962.41402 3011 2903 -17378834.23163 3012 2903 -4768139.577623 3013 2903 -26226783.67725 3014 2903 -45750138.7209 3018 2903 -9107526.404853 3019 2903 -9114622.378198 3020 2903 -12350930.55863 3021 2903 -67422475.35311 3022 2903 -19819673.42971 3023 2903 -93029560.64943 3024 2903 -26029717.79432 3025 2903 13882212.46963 3026 2903 -57999062.0409 2904 2904 904416532.1423 2905 2904 2.086162567139e-05 2906 2904 8090376.36604 2907 2904 102079011.1406 2908 2904 -1.040101051331e-05 2909 2904 2022594.092512 2916 2904 -215223928.4788 2917 2904 5.930662155151e-06 2918 2904 -5707514.57167 2919 2904 -85403197.39141 2920 2904 55138888.87983 2921 2904 -24029092.18165 3006 2904 -89115968.74764 3007 2904 -2.875924110413e-06 3008 2904 60031786.74372 3009 2904 -36905217.31746 3010 2904 -15625000.00514 3011 2904 21394122.91072 3015 2904 137281674.8977 3016 2904 7.092952728271e-06 3017 2904 2285905.658981 3018 2904 -24872960.07894 3019 2904 -1.01625919342e-05 3020 2904 571476.4150351 3027 2904 -92328809.14057 3028 2904 5.915760993958e-06 3029 2904 -62317692.40268 3030 2904 -38047023.33633 3031 2904 15625000.00513 3032 2904 -21965599.32574 2905 2905 772075853.7925 2906 2905 -97082150.22431 2907 2905 -1.037120819092e-05 2908 2905 -107448453.121 2909 2905 49870936.22305 2916 2905 2.861022949219e-06 2917 2905 27388705.35396 2918 2905 -24270537.56804 2919 2905 55138888.87983 2920 2905 -68860612.58955 2921 2905 13559921.56178 3006 2905 -4.589557647705e-06 3007 2905 -20365565.44178 3008 2905 -6857560.807395 3009 2905 -15625000.00514 3010 2905 -32217474.15883 3011 2905 15286419.29648 3015 2905 6.973743438721e-06 3016 2905 99779729.64718 3017 2905 -27430243.21607 3018 2905 -8.568167686462e-06 3019 2905 -84247877.07676 3020 2905 62654357.71105 3027 2905 4.619359970093e-06 3028 2905 -23578405.83475 3029 2905 -6857560.807395 3030 2905 15625000.00513 3031 2905 -33359280.17771 3032 2905 15972183.1856 2906 2906 828665098.5173 2907 2906 2022594.092512 2908 2906 47211214.00126 2909 2906 52874910.70561 2916 2906 -2382861.794439 2917 2906 -24270537.56804 2918 2906 41183389.66318 2919 2906 -23501314.4034 2920 2906 13137699.33918 2921 2906 -29852819.54686 3006 2906 59688904.7995 3007 2906 -6857560.807395 3008 2906 -63334663.40088 3009 2906 21394122.91072 3010 2906 15286419.29648 3011 2906 -42337075.16724 3015 2906 2285905.658981 3016 2906 -27430243.21607 3017 2906 -82530234.81935 3018 2906 571476.4150354 3019 2906 62380052.15567 3020 2906 -128482138.2218 3027 2906 -61974810.45846 3028 2906 -6857560.807395 3029 2906 -71902237.78217 3030 2906 -21965599.32574 3031 2906 15972183.1856 3032 2906 -45381891.21762 2907 2907 904416532.1423 2908 2907 2.086162567139e-05 2909 2907 8090376.36604 2910 2907 102079011.1406 2911 2907 -1.040101051331e-05 2912 2907 2022594.092512 2916 2907 -84201296.24904 2917 2907 -55138888.87984 2918 2907 21478720.31087 2919 2907 -215223928.4788 2920 2907 5.930662155151e-06 2921 2907 -5707514.57167 2922 2907 -85403197.39141 2923 2907 55138888.87983 2924 2907 -24029092.18165 3006 2907 -25195798.91083 3007 2907 15625000.00513 3008 2907 8536049.989829 3009 2907 -89115968.74764 3010 2907 -2.875924110413e-06 3011 2907 60031786.74372 3012 2907 -36905217.31746 3013 2907 -15625000.00514 3014 2907 21394122.91072 3015 2907 23319097.20481 3016 2907 3.09944152832e-06 3017 2907 571476.4150216 3018 2907 137281674.8977 3019 2907 7.092952728271e-06 3020 2907 2285905.658981 3021 2907 -24872960.07894 3022 2907 -1.01625919342e-05 3023 2907 571476.4150351 3027 2907 -25660413.08922 3028 2907 -15625000.00513 3029 2907 -9107526.404853 3030 2907 -92328809.14057 3031 2907 5.915760993958e-06 3032 2907 -62317692.40268 3033 2907 -38047023.33633 3034 2907 15625000.00513 3035 2907 -21965599.32574 2908 2908 772075853.7925 2909 2908 -97082150.22431 2910 2908 -1.037120819092e-05 2911 2908 -107448453.121 2912 2908 49870936.22305 2916 2908 -55138888.87984 2917 2908 -67658711.44716 2918 2908 10710616.00625 2919 2908 2.861022949219e-06 2920 2908 27388705.35396 2921 2908 -24270537.56804 2922 2908 55138888.87983 2923 2908 -68860612.58955 2924 2908 13559921.56178 3006 2908 15625000.00513 3007 2908 -20508055.7522 3008 2908 -8428858.489084 3009 2908 -4.589557647705e-06 3010 2908 -20365565.44178 3011 2908 -6857560.807395 3012 2908 -15625000.00514 3013 2908 -32217474.15883 3014 2908 15286419.29648 3015 2908 4.559755325317e-06 3016 2908 -36055819.793 3017 2908 -35224114.49497 3018 2908 6.973743438721e-06 3019 2908 99779729.64718 3020 2908 -27430243.21607 3021 2908 -8.568167686462e-06 3022 2908 -84247877.07676 3023 2908 62654357.71105 3027 2908 -15625000.00513 3028 2908 -20972669.93059 3029 2908 -9114622.378198 3030 2908 4.619359970093e-06 3031 2908 -23578405.83475 3032 2908 -6857560.807395 3033 2908 15625000.00513 3034 2908 -33359280.17771 3035 2908 15972183.1856 2909 2909 828665098.5173 2910 2909 2022594.092512 2911 2909 47211214.00126 2912 2909 52874910.70561 2916 2909 22006498.08912 2917 2909 11132838.22885 2918 2909 -26647749.83379 2919 2909 -2382861.794439 2920 2909 -24270537.56804 2921 2909 41183389.66318 2922 2909 -23501314.4034 2923 2909 13137699.33918 2924 2909 -29852819.54686 3006 2909 8536049.989829 3007 2909 -8428858.489084 3008 2909 -11111959.41625 3009 2909 59688904.7995 3010 2909 -6857560.807395 3011 2909 -63334663.40088 3012 2909 21394122.91072 3013 2909 15286419.29648 3014 2909 -42337075.16724 3015 2909 571476.4150219 3016 2909 -34949808.93959 3017 2909 30014.53480115 3018 2909 2285905.658981 3019 2909 -27430243.21607 3020 2909 -82530234.81935 3021 2909 571476.4150354 3022 2909 62380052.15567 3023 2909 -128482138.2218 3027 2909 -9107526.404853 3028 2909 -9114622.378198 3029 2909 -12350930.55863 3030 2909 -61974810.45846 3031 2909 -6857560.807395 3032 2909 -71902237.78217 3033 2909 -21965599.32574 3034 2909 15972183.1856 3035 2909 -45381891.21762 2910 2910 979444958.5446 2911 2910 55192233.22997 2912 2910 27299034.62316 2913 2910 11141309.24956 2914 2910 -55160226.61988 2915 2910 24035972.54801 2919 2910 -84201296.24904 2920 2910 -55138888.87984 2921 2910 21478720.31087 2922 2910 -215223928.4788 2923 2910 5.930662155151e-06 2924 2910 -5707514.57167 2925 2910 -85403197.39141 2926 2910 55138888.87983 2927 2910 -24029092.18165 3009 2910 -25195798.91083 3010 2910 15625000.00513 3011 2910 8536049.989829 3012 2910 -108451246.8934 3013 2910 -15634880.35547 3014 2910 54616251.09168 3018 2910 23319097.20481 3019 2910 3.09944152832e-06 3020 2910 571476.4150216 3021 2910 166227659.6012 3022 2910 15641467.2557 3023 2910 7711642.939084 3024 2910 -41196855.08124 3025 2910 -15631586.90536 3026 2910 21974855.62738 3030 2910 -25660413.08922 3031 2910 -15625000.00513 3032 2910 -9107526.404853 3033 2910 -92328809.14057 3034 2910 5.915760993958e-06 3035 2910 -62317692.40268 3036 2910 -38047023.33633 3037 2910 15625000.00513 3038 2910 -21965599.32574 2911 2911 830537689.1138 2912 2911 -75243257.69584 2913 2911 -55170895.48991 2914 2911 -181886245.1745 2915 2911 41627208.49512 2919 2911 -55138888.87984 2920 2911 -67658711.44716 2921 2911 10710616.00625 2922 2911 2.861022949219e-06 2923 2911 27388705.35396 2924 2911 -24270537.56804 2925 2911 55138888.87983 2926 2911 -68860612.58955 2927 2911 13559921.56178 3009 2911 15625000.00513 3010 2911 -20508055.7522 3011 2911 -8428858.489084 3012 2911 -15631586.90536 3013 2911 -34992516.13117 3014 2911 4591649.47589 3018 2911 4.559755325317e-06 3019 2911 -36055819.793 3020 2911 -35224114.49497 3021 2911 15641467.2557 3022 2911 124030560.5447 3023 2911 -21261017.33538 3024 2911 -15634880.35547 3025 2911 -95897202.5708 3026 2911 60337907.00837 3030 2911 -15625000.00513 3031 2911 -20972669.93059 3032 2911 -9114622.378198 3033 2911 4.619359970093e-06 3034 2911 -23578405.83475 3035 2911 -6857560.807395 3036 2911 15625000.00513 3037 2911 -33359280.17771 3038 2911 15972183.1856 2912 2912 830564689.2359 2913 2912 23511634.95294 2914 2912 45765068.67361 2915 2912 8306087.457417 2919 2912 22006498.08912 2920 2912 11132838.22885 2921 2912 -26647749.83379 2922 2912 -2382861.794439 2923 2912 -24270537.56804 2924 2912 41183389.66318 2925 2912 -23501314.4034 2926 2912 13137699.33918 2927 2912 -29852819.54686 3009 2912 8536049.989829 3010 2912 -8428858.489084 3011 2912 -11111959.41625 3012 2912 54272044.11297 3013 2912 2673044.969291 3014 2912 -58743091.68526 3018 2912 571476.4150219 3019 2912 -34949808.93959 3020 2912 30014.53480115 3021 2912 7718068.787606 3022 2912 -21255876.71511 3023 2912 -61506429.36468 3024 2912 21979483.77819 3025 2912 61984848.42173 3026 2912 -115922513.565 3030 2912 -9107526.404853 3031 2912 -9114622.378198 3032 2912 -12350930.55863 3033 2912 -61974810.45846 3034 2912 -6857560.807395 3035 2912 -71902237.78217 3036 2912 -21965599.32574 3037 2912 15972183.1856 3038 2912 -45381891.21762 2913 2913 572236993.7195 2914 2913 55138888.87983 2915 2913 31598553.4075 2922 2913 -84201296.24904 2923 2913 -55138888.87984 2924 2913 21478720.31087 2925 2913 -313559939.9103 2926 2913 -55160226.61988 2927 2913 -24936017.84334 2928 2913 5063871.676501 2929 2913 44132448.84391 2930 2913 -17154449.80687 3012 2913 2359203.743841 3013 2913 18759880.3565 3014 2913 10591538.29392 3021 2913 -4242975.331225 3022 2913 -15634880.35547 3023 2913 -8541442.446936 3024 2913 88021012.11513 3025 2913 15625000.00514 3026 2913 19639605.71133 3033 2913 -25660413.08922 3034 2913 -15625000.00513 3035 2913 -9107526.404853 3036 2913 -121308672.7549 3037 2913 -15631586.90535 3038 2913 -67766682.33182 3039 2913 -21749648.26534 3040 2913 12506586.90433 3041 2913 -17353145.19621 2914 2914 489500063.4635 2915 2914 -54040789.03059 2922 2914 -55138888.87984 2923 2914 -67658711.44716 2924 2914 10710616.00625 2925 2914 -55170895.4899 2926 2914 -54338040.03216 2927 2914 -33960288.27187 2928 2914 66198673.26587 2929 2914 5063871.676508 2930 2914 23123283.37764 3012 2914 12506586.90433 3013 2914 2359203.743842 3014 2914 -5648902.101029 3021 2914 -15631586.90535 3022 2914 -58943322.82077 3023 2914 -35645020.83586 3024 2914 15625000.00514 3025 2914 64574885.68388 3026 2914 -6700809.891648 3033 2914 -15625000.00513 3034 2914 -20972669.93059 3035 2914 -9114622.378198 3036 2914 -15634880.35547 3037 2914 -47849941.99273 3038 2914 -21743418.55177 3039 2914 18759880.3565 3040 2914 -21749648.26534 3041 2914 20823318.70445 2915 2915 536232943.3 2922 2915 22006498.08912 2923 2915 11132838.22885 2924 2915 -26647749.83379 2925 2915 -21604750.06126 2926 2915 -26737943.81257 2927 2915 -22912436.09768 2928 2915 -25731674.71031 2929 2915 15415522.25176 2930 2915 13503657.80403 3012 2915 7061025.529277 3013 2915 -8473353.151544 3014 2915 6291209.983575 3021 2915 -8539644.961234 3022 2915 -37291962.41402 3023 2915 -17378834.23163 3024 2915 -4768139.577623 3025 2915 -26226783.67725 3026 2915 -45750138.7209 3033 2915 -9107526.404853 3034 2915 -9114622.378198 3035 2915 -12350930.55863 3036 2915 -67422475.35311 3037 2915 -19819673.42971 3038 2915 -93029560.64943 3039 2915 -26029717.79432 3040 2915 13882212.46963 3041 2915 -57999062.0409 2916 2916 904416532.1423 2917 2916 2.086162567139e-05 2918 2916 8090376.36604 2919 2916 102079011.1406 2920 2916 -1.040101051331e-05 2921 2916 2022594.092512 2931 2916 -215223928.4788 2932 2916 5.930662155151e-06 2933 2916 -5707514.57167 2934 2916 -85403197.39141 2935 2916 55138888.87983 2936 2916 -24029092.18165 3015 2916 -89115968.74764 3016 2916 -2.875924110413e-06 3017 2916 60031786.74372 3018 2916 -36905217.31746 3019 2916 -15625000.00514 3020 2916 21394122.91072 3027 2916 137281674.8977 3028 2916 7.092952728271e-06 3029 2916 2285905.658981 3030 2916 -24872960.07894 3031 2916 -1.01625919342e-05 3032 2916 571476.4150351 3042 2916 -92328809.14057 3043 2916 5.915760993958e-06 3044 2916 -62317692.40268 3045 2916 -38047023.33633 3046 2916 15625000.00513 3047 2916 -21965599.32574 2917 2917 772075853.7925 2918 2917 -97082150.22431 2919 2917 -1.037120819092e-05 2920 2917 -107448453.121 2921 2917 49870936.22305 2931 2917 2.861022949219e-06 2932 2917 27388705.35396 2933 2917 -24270537.56804 2934 2917 55138888.87983 2935 2917 -68860612.58955 2936 2917 13559921.56178 3015 2917 -4.589557647705e-06 3016 2917 -20365565.44178 3017 2917 -6857560.807395 3018 2917 -15625000.00514 3019 2917 -32217474.15883 3020 2917 15286419.29648 3027 2917 6.973743438721e-06 3028 2917 99779729.64718 3029 2917 -27430243.21607 3030 2917 -8.568167686462e-06 3031 2917 -84247877.07676 3032 2917 62654357.71105 3042 2917 4.619359970093e-06 3043 2917 -23578405.83475 3044 2917 -6857560.807395 3045 2917 15625000.00513 3046 2917 -33359280.17771 3047 2917 15972183.1856 2918 2918 828665098.5173 2919 2918 2022594.092512 2920 2918 47211214.00126 2921 2918 52874910.70561 2931 2918 -2382861.794439 2932 2918 -24270537.56804 2933 2918 41183389.66318 2934 2918 -23501314.4034 2935 2918 13137699.33918 2936 2918 -29852819.54686 3015 2918 59688904.7995 3016 2918 -6857560.807395 3017 2918 -63334663.40088 3018 2918 21394122.91072 3019 2918 15286419.29648 3020 2918 -42337075.16724 3027 2918 2285905.658981 3028 2918 -27430243.21607 3029 2918 -82530234.81935 3030 2918 571476.4150354 3031 2918 62380052.15567 3032 2918 -128482138.2218 3042 2918 -61974810.45846 3043 2918 -6857560.807395 3044 2918 -71902237.78217 3045 2918 -21965599.32574 3046 2918 15972183.1856 3047 2918 -45381891.21762 2919 2919 904416532.1423 2920 2919 2.086162567139e-05 2921 2919 8090376.36604 2922 2919 102079011.1406 2923 2919 -1.040101051331e-05 2924 2919 2022594.092512 2931 2919 -84201296.24904 2932 2919 -55138888.87984 2933 2919 21478720.31087 2934 2919 -215223928.4788 2935 2919 5.930662155151e-06 2936 2919 -5707514.57167 2937 2919 -85403197.39141 2938 2919 55138888.87983 2939 2919 -24029092.18165 3015 2919 -25195798.91083 3016 2919 15625000.00513 3017 2919 8536049.989829 3018 2919 -89115968.74764 3019 2919 -2.875924110413e-06 3020 2919 60031786.74372 3021 2919 -36905217.31746 3022 2919 -15625000.00514 3023 2919 21394122.91072 3027 2919 23319097.20481 3028 2919 3.09944152832e-06 3029 2919 571476.4150216 3030 2919 137281674.8977 3031 2919 7.092952728271e-06 3032 2919 2285905.658981 3033 2919 -24872960.07894 3034 2919 -1.01625919342e-05 3035 2919 571476.4150351 3042 2919 -25660413.08922 3043 2919 -15625000.00513 3044 2919 -9107526.404853 3045 2919 -92328809.14057 3046 2919 5.915760993958e-06 3047 2919 -62317692.40268 3048 2919 -38047023.33633 3049 2919 15625000.00513 3050 2919 -21965599.32574 2920 2920 772075853.7925 2921 2920 -97082150.22431 2922 2920 -1.037120819092e-05 2923 2920 -107448453.121 2924 2920 49870936.22305 2931 2920 -55138888.87984 2932 2920 -67658711.44716 2933 2920 10710616.00625 2934 2920 2.861022949219e-06 2935 2920 27388705.35396 2936 2920 -24270537.56804 2937 2920 55138888.87983 2938 2920 -68860612.58955 2939 2920 13559921.56178 3015 2920 15625000.00513 3016 2920 -20508055.7522 3017 2920 -8428858.489084 3018 2920 -4.589557647705e-06 3019 2920 -20365565.44178 3020 2920 -6857560.807395 3021 2920 -15625000.00514 3022 2920 -32217474.15883 3023 2920 15286419.29648 3027 2920 4.559755325317e-06 3028 2920 -36055819.793 3029 2920 -35224114.49497 3030 2920 6.973743438721e-06 3031 2920 99779729.64718 3032 2920 -27430243.21607 3033 2920 -8.568167686462e-06 3034 2920 -84247877.07676 3035 2920 62654357.71105 3042 2920 -15625000.00513 3043 2920 -20972669.93059 3044 2920 -9114622.378198 3045 2920 4.619359970093e-06 3046 2920 -23578405.83475 3047 2920 -6857560.807395 3048 2920 15625000.00513 3049 2920 -33359280.17771 3050 2920 15972183.1856 2921 2921 828665098.5173 2922 2921 2022594.092512 2923 2921 47211214.00126 2924 2921 52874910.70561 2931 2921 22006498.08912 2932 2921 11132838.22885 2933 2921 -26647749.83379 2934 2921 -2382861.794439 2935 2921 -24270537.56804 2936 2921 41183389.66318 2937 2921 -23501314.4034 2938 2921 13137699.33918 2939 2921 -29852819.54686 3015 2921 8536049.989829 3016 2921 -8428858.489084 3017 2921 -11111959.41625 3018 2921 59688904.7995 3019 2921 -6857560.807395 3020 2921 -63334663.40088 3021 2921 21394122.91072 3022 2921 15286419.29648 3023 2921 -42337075.16724 3027 2921 571476.4150219 3028 2921 -34949808.93959 3029 2921 30014.53480115 3030 2921 2285905.658981 3031 2921 -27430243.21607 3032 2921 -82530234.81935 3033 2921 571476.4150354 3034 2921 62380052.15567 3035 2921 -128482138.2218 3042 2921 -9107526.404853 3043 2921 -9114622.378198 3044 2921 -12350930.55863 3045 2921 -61974810.45846 3046 2921 -6857560.807395 3047 2921 -71902237.78217 3048 2921 -21965599.32574 3049 2921 15972183.1856 3050 2921 -45381891.21762 2922 2922 904416532.1423 2923 2922 2.086162567139e-05 2924 2922 8090376.36604 2925 2922 102079011.1406 2926 2922 -1.040101051331e-05 2927 2922 2022594.092512 2934 2922 -84201296.24904 2935 2922 -55138888.87984 2936 2922 21478720.31087 2937 2922 -215223928.4788 2938 2922 5.930662155151e-06 2939 2922 -5707514.57167 2940 2922 -85403197.39141 2941 2922 55138888.87983 2942 2922 -24029092.18165 3018 2922 -25195798.91083 3019 2922 15625000.00513 3020 2922 8536049.989829 3021 2922 -89115968.74764 3022 2922 -2.875924110413e-06 3023 2922 60031786.74372 3024 2922 -36905217.31746 3025 2922 -15625000.00514 3026 2922 21394122.91072 3030 2922 23319097.20481 3031 2922 3.09944152832e-06 3032 2922 571476.4150216 3033 2922 137281674.8977 3034 2922 7.092952728271e-06 3035 2922 2285905.658981 3036 2922 -24872960.07894 3037 2922 -1.01625919342e-05 3038 2922 571476.4150351 3045 2922 -25660413.08922 3046 2922 -15625000.00513 3047 2922 -9107526.404853 3048 2922 -92328809.14057 3049 2922 5.915760993958e-06 3050 2922 -62317692.40268 3051 2922 -38047023.33633 3052 2922 15625000.00513 3053 2922 -21965599.32574 2923 2923 772075853.7925 2924 2923 -97082150.22431 2925 2923 -1.037120819092e-05 2926 2923 -107448453.121 2927 2923 49870936.22305 2934 2923 -55138888.87984 2935 2923 -67658711.44716 2936 2923 10710616.00625 2937 2923 2.861022949219e-06 2938 2923 27388705.35396 2939 2923 -24270537.56804 2940 2923 55138888.87983 2941 2923 -68860612.58955 2942 2923 13559921.56178 3018 2923 15625000.00513 3019 2923 -20508055.7522 3020 2923 -8428858.489084 3021 2923 -4.589557647705e-06 3022 2923 -20365565.44178 3023 2923 -6857560.807395 3024 2923 -15625000.00514 3025 2923 -32217474.15883 3026 2923 15286419.29648 3030 2923 4.559755325317e-06 3031 2923 -36055819.793 3032 2923 -35224114.49497 3033 2923 6.973743438721e-06 3034 2923 99779729.64718 3035 2923 -27430243.21607 3036 2923 -8.568167686462e-06 3037 2923 -84247877.07676 3038 2923 62654357.71105 3045 2923 -15625000.00513 3046 2923 -20972669.93059 3047 2923 -9114622.378198 3048 2923 4.619359970093e-06 3049 2923 -23578405.83475 3050 2923 -6857560.807395 3051 2923 15625000.00513 3052 2923 -33359280.17771 3053 2923 15972183.1856 2924 2924 828665098.5173 2925 2924 2022594.092512 2926 2924 47211214.00126 2927 2924 52874910.70561 2934 2924 22006498.08912 2935 2924 11132838.22885 2936 2924 -26647749.83379 2937 2924 -2382861.794439 2938 2924 -24270537.56804 2939 2924 41183389.66318 2940 2924 -23501314.4034 2941 2924 13137699.33918 2942 2924 -29852819.54686 3018 2924 8536049.989829 3019 2924 -8428858.489084 3020 2924 -11111959.41625 3021 2924 59688904.7995 3022 2924 -6857560.807395 3023 2924 -63334663.40088 3024 2924 21394122.91072 3025 2924 15286419.29648 3026 2924 -42337075.16724 3030 2924 571476.4150219 3031 2924 -34949808.93959 3032 2924 30014.53480115 3033 2924 2285905.658981 3034 2924 -27430243.21607 3035 2924 -82530234.81935 3036 2924 571476.4150354 3037 2924 62380052.15567 3038 2924 -128482138.2218 3045 2924 -9107526.404853 3046 2924 -9114622.378198 3047 2924 -12350930.55863 3048 2924 -61974810.45846 3049 2924 -6857560.807395 3050 2924 -71902237.78217 3051 2924 -21965599.32574 3052 2924 15972183.1856 3053 2924 -45381891.21762 2925 2925 979444958.5446 2926 2925 55192233.22997 2927 2925 27299034.62316 2928 2925 11141309.24956 2929 2925 -55160226.61988 2930 2925 24035972.54801 2937 2925 -84201296.24904 2938 2925 -55138888.87984 2939 2925 21478720.31087 2940 2925 -215223928.4788 2941 2925 5.930662155151e-06 2942 2925 -5707514.57167 2943 2925 -85403197.39141 2944 2925 55138888.87983 2945 2925 -24029092.18165 3021 2925 -25195798.91083 3022 2925 15625000.00513 3023 2925 8536049.989829 3024 2925 -108451246.8934 3025 2925 -15634880.35547 3026 2925 54616251.09168 3033 2925 23319097.20481 3034 2925 3.09944152832e-06 3035 2925 571476.4150216 3036 2925 166227659.6012 3037 2925 15641467.2557 3038 2925 7711642.939084 3039 2925 -41196855.08124 3040 2925 -15631586.90536 3041 2925 21974855.62738 3048 2925 -25660413.08922 3049 2925 -15625000.00513 3050 2925 -9107526.404853 3051 2925 -92328809.14057 3052 2925 5.915760993958e-06 3053 2925 -62317692.40268 3054 2925 -38047023.33633 3055 2925 15625000.00513 3056 2925 -21965599.32574 2926 2926 830537689.1138 2927 2926 -75243257.69584 2928 2926 -55170895.48991 2929 2926 -181886245.1745 2930 2926 41627208.49512 2937 2926 -55138888.87984 2938 2926 -67658711.44716 2939 2926 10710616.00625 2940 2926 2.861022949219e-06 2941 2926 27388705.35396 2942 2926 -24270537.56804 2943 2926 55138888.87983 2944 2926 -68860612.58955 2945 2926 13559921.56178 3021 2926 15625000.00513 3022 2926 -20508055.7522 3023 2926 -8428858.489084 3024 2926 -15631586.90536 3025 2926 -34992516.13117 3026 2926 4591649.47589 3033 2926 4.559755325317e-06 3034 2926 -36055819.793 3035 2926 -35224114.49497 3036 2926 15641467.2557 3037 2926 124030560.5447 3038 2926 -21261017.33538 3039 2926 -15634880.35547 3040 2926 -95897202.5708 3041 2926 60337907.00837 3048 2926 -15625000.00513 3049 2926 -20972669.93059 3050 2926 -9114622.378198 3051 2926 4.619359970093e-06 3052 2926 -23578405.83475 3053 2926 -6857560.807395 3054 2926 15625000.00513 3055 2926 -33359280.17771 3056 2926 15972183.1856 2927 2927 830564689.2359 2928 2927 23511634.95294 2929 2927 45765068.67361 2930 2927 8306087.457417 2937 2927 22006498.08912 2938 2927 11132838.22885 2939 2927 -26647749.83379 2940 2927 -2382861.794439 2941 2927 -24270537.56804 2942 2927 41183389.66318 2943 2927 -23501314.4034 2944 2927 13137699.33918 2945 2927 -29852819.54686 3021 2927 8536049.989829 3022 2927 -8428858.489084 3023 2927 -11111959.41625 3024 2927 54272044.11297 3025 2927 2673044.969291 3026 2927 -58743091.68526 3033 2927 571476.4150219 3034 2927 -34949808.93959 3035 2927 30014.53480115 3036 2927 7718068.787606 3037 2927 -21255876.71511 3038 2927 -61506429.36468 3039 2927 21979483.77819 3040 2927 61984848.42173 3041 2927 -115922513.565 3048 2927 -9107526.404853 3049 2927 -9114622.378198 3050 2927 -12350930.55863 3051 2927 -61974810.45846 3052 2927 -6857560.807395 3053 2927 -71902237.78217 3054 2927 -21965599.32574 3055 2927 15972183.1856 3056 2927 -45381891.21762 2928 2928 572236993.7195 2929 2928 55138888.87983 2930 2928 31598553.4075 2940 2928 -84201296.24904 2941 2928 -55138888.87984 2942 2928 21478720.31087 2943 2928 -313559939.9103 2944 2928 -55160226.61988 2945 2928 -24936017.84334 2946 2928 5063871.676501 2947 2928 44132448.84391 2948 2928 -17154449.80687 3024 2928 2359203.743841 3025 2928 18759880.3565 3026 2928 10591538.29392 3036 2928 -4242975.331225 3037 2928 -15634880.35547 3038 2928 -8541442.446936 3039 2928 88021012.11513 3040 2928 15625000.00514 3041 2928 19639605.71133 3051 2928 -25660413.08922 3052 2928 -15625000.00513 3053 2928 -9107526.404853 3054 2928 -121308672.7549 3055 2928 -15631586.90535 3056 2928 -67766682.33182 3057 2928 -21749648.26534 3058 2928 12506586.90433 3059 2928 -17353145.19621 2929 2929 489500063.4635 2930 2929 -54040789.03059 2940 2929 -55138888.87984 2941 2929 -67658711.44716 2942 2929 10710616.00625 2943 2929 -55170895.4899 2944 2929 -54338040.03216 2945 2929 -33960288.27187 2946 2929 66198673.26587 2947 2929 5063871.676508 2948 2929 23123283.37764 3024 2929 12506586.90433 3025 2929 2359203.743842 3026 2929 -5648902.101029 3036 2929 -15631586.90535 3037 2929 -58943322.82077 3038 2929 -35645020.83586 3039 2929 15625000.00514 3040 2929 64574885.68388 3041 2929 -6700809.891648 3051 2929 -15625000.00513 3052 2929 -20972669.93059 3053 2929 -9114622.378198 3054 2929 -15634880.35547 3055 2929 -47849941.99273 3056 2929 -21743418.55177 3057 2929 18759880.3565 3058 2929 -21749648.26534 3059 2929 20823318.70445 2930 2930 536232943.3 2940 2930 22006498.08912 2941 2930 11132838.22885 2942 2930 -26647749.83379 2943 2930 -21604750.06126 2944 2930 -26737943.81257 2945 2930 -22912436.09768 2946 2930 -25731674.71031 2947 2930 15415522.25176 2948 2930 13503657.80403 3024 2930 7061025.529277 3025 2930 -8473353.151544 3026 2930 6291209.983575 3036 2930 -8539644.961234 3037 2930 -37291962.41402 3038 2930 -17378834.23163 3039 2930 -4768139.577623 3040 2930 -26226783.67725 3041 2930 -45750138.7209 3051 2930 -9107526.404853 3052 2930 -9114622.378198 3053 2930 -12350930.55863 3054 2930 -67422475.35311 3055 2930 -19819673.42971 3056 2930 -93029560.64943 3057 2930 -26029717.79432 3058 2930 13882212.46963 3059 2930 -57999062.0409 2931 2931 904416532.1423 2932 2931 2.086162567139e-05 2933 2931 8090376.36604 2934 2931 102079011.1406 2935 2931 -1.040101051331e-05 2936 2931 2022594.092512 2949 2931 -215223928.4788 2950 2931 5.930662155151e-06 2951 2931 -5707514.57167 2952 2931 -85403197.39141 2953 2931 55138888.87983 2954 2931 -24029092.18165 3027 2931 -89115968.74764 3028 2931 -2.875924110413e-06 3029 2931 60031786.74372 3030 2931 -36905217.31746 3031 2931 -15625000.00514 3032 2931 21394122.91072 3042 2931 137281674.8977 3043 2931 7.092952728271e-06 3044 2931 2285905.658981 3045 2931 -24872960.07894 3046 2931 -1.01625919342e-05 3047 2931 571476.4150351 3060 2931 -92328809.14057 3061 2931 5.915760993958e-06 3062 2931 -62317692.40268 3063 2931 -38047023.33633 3064 2931 15625000.00513 3065 2931 -21965599.32574 2932 2932 772075853.7925 2933 2932 -97082150.22431 2934 2932 -1.037120819092e-05 2935 2932 -107448453.121 2936 2932 49870936.22305 2949 2932 2.861022949219e-06 2950 2932 27388705.35396 2951 2932 -24270537.56804 2952 2932 55138888.87983 2953 2932 -68860612.58955 2954 2932 13559921.56178 3027 2932 -4.589557647705e-06 3028 2932 -20365565.44178 3029 2932 -6857560.807395 3030 2932 -15625000.00514 3031 2932 -32217474.15883 3032 2932 15286419.29648 3042 2932 6.973743438721e-06 3043 2932 99779729.64718 3044 2932 -27430243.21607 3045 2932 -8.568167686462e-06 3046 2932 -84247877.07676 3047 2932 62654357.71105 3060 2932 4.619359970093e-06 3061 2932 -23578405.83475 3062 2932 -6857560.807395 3063 2932 15625000.00513 3064 2932 -33359280.17771 3065 2932 15972183.1856 2933 2933 828665098.5173 2934 2933 2022594.092512 2935 2933 47211214.00126 2936 2933 52874910.70561 2949 2933 -2382861.794439 2950 2933 -24270537.56804 2951 2933 41183389.66318 2952 2933 -23501314.4034 2953 2933 13137699.33918 2954 2933 -29852819.54686 3027 2933 59688904.7995 3028 2933 -6857560.807395 3029 2933 -63334663.40088 3030 2933 21394122.91072 3031 2933 15286419.29648 3032 2933 -42337075.16724 3042 2933 2285905.658981 3043 2933 -27430243.21607 3044 2933 -82530234.81935 3045 2933 571476.4150354 3046 2933 62380052.15567 3047 2933 -128482138.2218 3060 2933 -61974810.45846 3061 2933 -6857560.807395 3062 2933 -71902237.78217 3063 2933 -21965599.32574 3064 2933 15972183.1856 3065 2933 -45381891.21762 2934 2934 904416532.1423 2935 2934 2.086162567139e-05 2936 2934 8090376.36604 2937 2934 102079011.1406 2938 2934 -1.040101051331e-05 2939 2934 2022594.092512 2949 2934 -84201296.24904 2950 2934 -55138888.87984 2951 2934 21478720.31087 2952 2934 -215223928.4788 2953 2934 5.930662155151e-06 2954 2934 -5707514.57167 2955 2934 -85403197.39141 2956 2934 55138888.87983 2957 2934 -24029092.18165 3027 2934 -25195798.91083 3028 2934 15625000.00513 3029 2934 8536049.989829 3030 2934 -89115968.74764 3031 2934 -2.875924110413e-06 3032 2934 60031786.74372 3033 2934 -36905217.31746 3034 2934 -15625000.00514 3035 2934 21394122.91072 3042 2934 23319097.20481 3043 2934 3.09944152832e-06 3044 2934 571476.4150216 3045 2934 137281674.8977 3046 2934 7.092952728271e-06 3047 2934 2285905.658981 3048 2934 -24872960.07894 3049 2934 -1.01625919342e-05 3050 2934 571476.4150351 3060 2934 -25660413.08922 3061 2934 -15625000.00513 3062 2934 -9107526.404853 3063 2934 -92328809.14057 3064 2934 5.915760993958e-06 3065 2934 -62317692.40268 3066 2934 -38047023.33633 3067 2934 15625000.00513 3068 2934 -21965599.32574 2935 2935 772075853.7925 2936 2935 -97082150.22431 2937 2935 -1.037120819092e-05 2938 2935 -107448453.121 2939 2935 49870936.22305 2949 2935 -55138888.87984 2950 2935 -67658711.44716 2951 2935 10710616.00625 2952 2935 2.861022949219e-06 2953 2935 27388705.35396 2954 2935 -24270537.56804 2955 2935 55138888.87983 2956 2935 -68860612.58955 2957 2935 13559921.56178 3027 2935 15625000.00513 3028 2935 -20508055.7522 3029 2935 -8428858.489084 3030 2935 -4.589557647705e-06 3031 2935 -20365565.44178 3032 2935 -6857560.807395 3033 2935 -15625000.00514 3034 2935 -32217474.15883 3035 2935 15286419.29648 3042 2935 4.559755325317e-06 3043 2935 -36055819.793 3044 2935 -35224114.49497 3045 2935 6.973743438721e-06 3046 2935 99779729.64718 3047 2935 -27430243.21607 3048 2935 -8.568167686462e-06 3049 2935 -84247877.07676 3050 2935 62654357.71105 3060 2935 -15625000.00513 3061 2935 -20972669.93059 3062 2935 -9114622.378198 3063 2935 4.619359970093e-06 3064 2935 -23578405.83475 3065 2935 -6857560.807395 3066 2935 15625000.00513 3067 2935 -33359280.17771 3068 2935 15972183.1856 2936 2936 828665098.5173 2937 2936 2022594.092512 2938 2936 47211214.00126 2939 2936 52874910.70561 2949 2936 22006498.08912 2950 2936 11132838.22885 2951 2936 -26647749.83379 2952 2936 -2382861.794439 2953 2936 -24270537.56804 2954 2936 41183389.66318 2955 2936 -23501314.4034 2956 2936 13137699.33918 2957 2936 -29852819.54686 3027 2936 8536049.989829 3028 2936 -8428858.489084 3029 2936 -11111959.41625 3030 2936 59688904.7995 3031 2936 -6857560.807395 3032 2936 -63334663.40088 3033 2936 21394122.91072 3034 2936 15286419.29648 3035 2936 -42337075.16724 3042 2936 571476.4150219 3043 2936 -34949808.93959 3044 2936 30014.53480115 3045 2936 2285905.658981 3046 2936 -27430243.21607 3047 2936 -82530234.81935 3048 2936 571476.4150354 3049 2936 62380052.15567 3050 2936 -128482138.2218 3060 2936 -9107526.404853 3061 2936 -9114622.378198 3062 2936 -12350930.55863 3063 2936 -61974810.45846 3064 2936 -6857560.807395 3065 2936 -71902237.78217 3066 2936 -21965599.32574 3067 2936 15972183.1856 3068 2936 -45381891.21762 2937 2937 904416532.1423 2938 2937 2.086162567139e-05 2939 2937 8090376.36604 2940 2937 102079011.1406 2941 2937 -1.040101051331e-05 2942 2937 2022594.092512 2952 2937 -84201296.24904 2953 2937 -55138888.87984 2954 2937 21478720.31087 2955 2937 -215223928.4788 2956 2937 5.930662155151e-06 2957 2937 -5707514.57167 2958 2937 -85403197.39141 2959 2937 55138888.87983 2960 2937 -24029092.18165 3030 2937 -25195798.91083 3031 2937 15625000.00513 3032 2937 8536049.989829 3033 2937 -89115968.74764 3034 2937 -2.875924110413e-06 3035 2937 60031786.74372 3036 2937 -36905217.31746 3037 2937 -15625000.00514 3038 2937 21394122.91072 3045 2937 23319097.20481 3046 2937 3.09944152832e-06 3047 2937 571476.4150216 3048 2937 137281674.8977 3049 2937 7.092952728271e-06 3050 2937 2285905.658981 3051 2937 -24872960.07894 3052 2937 -1.01625919342e-05 3053 2937 571476.4150351 3063 2937 -25660413.08922 3064 2937 -15625000.00513 3065 2937 -9107526.404853 3066 2937 -92328809.14057 3067 2937 5.915760993958e-06 3068 2937 -62317692.40268 3069 2937 -38047023.33633 3070 2937 15625000.00513 3071 2937 -21965599.32574 2938 2938 772075853.7925 2939 2938 -97082150.22431 2940 2938 -1.037120819092e-05 2941 2938 -107448453.121 2942 2938 49870936.22305 2952 2938 -55138888.87984 2953 2938 -67658711.44716 2954 2938 10710616.00625 2955 2938 2.861022949219e-06 2956 2938 27388705.35396 2957 2938 -24270537.56804 2958 2938 55138888.87983 2959 2938 -68860612.58955 2960 2938 13559921.56178 3030 2938 15625000.00513 3031 2938 -20508055.7522 3032 2938 -8428858.489084 3033 2938 -4.589557647705e-06 3034 2938 -20365565.44178 3035 2938 -6857560.807395 3036 2938 -15625000.00514 3037 2938 -32217474.15883 3038 2938 15286419.29648 3045 2938 4.559755325317e-06 3046 2938 -36055819.793 3047 2938 -35224114.49497 3048 2938 6.973743438721e-06 3049 2938 99779729.64718 3050 2938 -27430243.21607 3051 2938 -8.568167686462e-06 3052 2938 -84247877.07676 3053 2938 62654357.71105 3063 2938 -15625000.00513 3064 2938 -20972669.93059 3065 2938 -9114622.378198 3066 2938 4.619359970093e-06 3067 2938 -23578405.83475 3068 2938 -6857560.807395 3069 2938 15625000.00513 3070 2938 -33359280.17771 3071 2938 15972183.1856 2939 2939 828665098.5173 2940 2939 2022594.092512 2941 2939 47211214.00126 2942 2939 52874910.70561 2952 2939 22006498.08912 2953 2939 11132838.22885 2954 2939 -26647749.83379 2955 2939 -2382861.794439 2956 2939 -24270537.56804 2957 2939 41183389.66318 2958 2939 -23501314.4034 2959 2939 13137699.33918 2960 2939 -29852819.54686 3030 2939 8536049.989829 3031 2939 -8428858.489084 3032 2939 -11111959.41625 3033 2939 59688904.7995 3034 2939 -6857560.807395 3035 2939 -63334663.40088 3036 2939 21394122.91072 3037 2939 15286419.29648 3038 2939 -42337075.16724 3045 2939 571476.4150219 3046 2939 -34949808.93959 3047 2939 30014.53480115 3048 2939 2285905.658981 3049 2939 -27430243.21607 3050 2939 -82530234.81935 3051 2939 571476.4150354 3052 2939 62380052.15567 3053 2939 -128482138.2218 3063 2939 -9107526.404853 3064 2939 -9114622.378198 3065 2939 -12350930.55863 3066 2939 -61974810.45846 3067 2939 -6857560.807395 3068 2939 -71902237.78217 3069 2939 -21965599.32574 3070 2939 15972183.1856 3071 2939 -45381891.21762 2940 2940 904416532.1423 2941 2940 2.086162567139e-05 2942 2940 8090376.36604 2943 2940 102079011.1406 2944 2940 -1.040101051331e-05 2945 2940 2022594.092512 2955 2940 -84201296.24904 2956 2940 -55138888.87984 2957 2940 21478720.31087 2958 2940 -215223928.4788 2959 2940 5.930662155151e-06 2960 2940 -5707514.57167 2961 2940 -85403197.39141 2962 2940 55138888.87983 2963 2940 -24029092.18165 3033 2940 -25195798.91083 3034 2940 15625000.00513 3035 2940 8536049.989829 3036 2940 -89115968.74764 3037 2940 -2.875924110413e-06 3038 2940 60031786.74372 3039 2940 -36905217.31746 3040 2940 -15625000.00514 3041 2940 21394122.91072 3048 2940 23319097.20481 3049 2940 3.09944152832e-06 3050 2940 571476.4150216 3051 2940 137281674.8977 3052 2940 7.092952728271e-06 3053 2940 2285905.658981 3054 2940 -24872960.07894 3055 2940 -1.01625919342e-05 3056 2940 571476.4150351 3066 2940 -25660413.08922 3067 2940 -15625000.00513 3068 2940 -9107526.404853 3069 2940 -92328809.14057 3070 2940 5.915760993958e-06 3071 2940 -62317692.40268 3072 2940 -38047023.33633 3073 2940 15625000.00513 3074 2940 -21965599.32574 2941 2941 772075853.7925 2942 2941 -97082150.22431 2943 2941 -1.037120819092e-05 2944 2941 -107448453.121 2945 2941 49870936.22305 2955 2941 -55138888.87984 2956 2941 -67658711.44716 2957 2941 10710616.00625 2958 2941 2.861022949219e-06 2959 2941 27388705.35396 2960 2941 -24270537.56804 2961 2941 55138888.87983 2962 2941 -68860612.58955 2963 2941 13559921.56178 3033 2941 15625000.00513 3034 2941 -20508055.7522 3035 2941 -8428858.489084 3036 2941 -4.589557647705e-06 3037 2941 -20365565.44178 3038 2941 -6857560.807395 3039 2941 -15625000.00514 3040 2941 -32217474.15883 3041 2941 15286419.29648 3048 2941 4.559755325317e-06 3049 2941 -36055819.793 3050 2941 -35224114.49497 3051 2941 6.973743438721e-06 3052 2941 99779729.64718 3053 2941 -27430243.21607 3054 2941 -8.568167686462e-06 3055 2941 -84247877.07676 3056 2941 62654357.71105 3066 2941 -15625000.00513 3067 2941 -20972669.93059 3068 2941 -9114622.378198 3069 2941 4.619359970093e-06 3070 2941 -23578405.83475 3071 2941 -6857560.807395 3072 2941 15625000.00513 3073 2941 -33359280.17771 3074 2941 15972183.1856 2942 2942 828665098.5173 2943 2942 2022594.092512 2944 2942 47211214.00126 2945 2942 52874910.70561 2955 2942 22006498.08912 2956 2942 11132838.22885 2957 2942 -26647749.83379 2958 2942 -2382861.794439 2959 2942 -24270537.56804 2960 2942 41183389.66318 2961 2942 -23501314.4034 2962 2942 13137699.33918 2963 2942 -29852819.54686 3033 2942 8536049.989829 3034 2942 -8428858.489084 3035 2942 -11111959.41625 3036 2942 59688904.7995 3037 2942 -6857560.807395 3038 2942 -63334663.40088 3039 2942 21394122.91072 3040 2942 15286419.29648 3041 2942 -42337075.16724 3048 2942 571476.4150219 3049 2942 -34949808.93959 3050 2942 30014.53480115 3051 2942 2285905.658981 3052 2942 -27430243.21607 3053 2942 -82530234.81935 3054 2942 571476.4150354 3055 2942 62380052.15567 3056 2942 -128482138.2218 3066 2942 -9107526.404853 3067 2942 -9114622.378198 3068 2942 -12350930.55863 3069 2942 -61974810.45846 3070 2942 -6857560.807395 3071 2942 -71902237.78217 3072 2942 -21965599.32574 3073 2942 15972183.1856 3074 2942 -45381891.21762 2943 2943 979444958.5446 2944 2943 55192233.22997 2945 2943 27299034.62316 2946 2943 11141309.24956 2947 2943 -55160226.61988 2948 2943 24035972.54801 2958 2943 -84201296.24904 2959 2943 -55138888.87984 2960 2943 21478720.31087 2961 2943 -215223928.4788 2962 2943 5.930662155151e-06 2963 2943 -5707514.57167 2964 2943 -85403197.39141 2965 2943 55138888.87983 2966 2943 -24029092.18165 3036 2943 -25195798.91083 3037 2943 15625000.00513 3038 2943 8536049.989829 3039 2943 -108451246.8934 3040 2943 -15634880.35547 3041 2943 54616251.09168 3051 2943 23319097.20481 3052 2943 3.09944152832e-06 3053 2943 571476.4150216 3054 2943 166227659.6012 3055 2943 15641467.2557 3056 2943 7711642.939084 3057 2943 -41196855.08124 3058 2943 -15631586.90536 3059 2943 21974855.62738 3069 2943 -25660413.08922 3070 2943 -15625000.00513 3071 2943 -9107526.404853 3072 2943 -92328809.14057 3073 2943 5.915760993958e-06 3074 2943 -62317692.40268 3075 2943 -38047023.33633 3076 2943 15625000.00513 3077 2943 -21965599.32574 2944 2944 830537689.1138 2945 2944 -75243257.69584 2946 2944 -55170895.48991 2947 2944 -181886245.1745 2948 2944 41627208.49512 2958 2944 -55138888.87984 2959 2944 -67658711.44716 2960 2944 10710616.00625 2961 2944 2.861022949219e-06 2962 2944 27388705.35396 2963 2944 -24270537.56804 2964 2944 55138888.87983 2965 2944 -68860612.58955 2966 2944 13559921.56178 3036 2944 15625000.00513 3037 2944 -20508055.7522 3038 2944 -8428858.489084 3039 2944 -15631586.90536 3040 2944 -34992516.13117 3041 2944 4591649.47589 3051 2944 4.559755325317e-06 3052 2944 -36055819.793 3053 2944 -35224114.49497 3054 2944 15641467.2557 3055 2944 124030560.5447 3056 2944 -21261017.33538 3057 2944 -15634880.35547 3058 2944 -95897202.5708 3059 2944 60337907.00837 3069 2944 -15625000.00513 3070 2944 -20972669.93059 3071 2944 -9114622.378198 3072 2944 4.619359970093e-06 3073 2944 -23578405.83475 3074 2944 -6857560.807395 3075 2944 15625000.00513 3076 2944 -33359280.17771 3077 2944 15972183.1856 2945 2945 830564689.2359 2946 2945 23511634.95294 2947 2945 45765068.67361 2948 2945 8306087.457417 2958 2945 22006498.08912 2959 2945 11132838.22885 2960 2945 -26647749.83379 2961 2945 -2382861.794439 2962 2945 -24270537.56804 2963 2945 41183389.66318 2964 2945 -23501314.4034 2965 2945 13137699.33918 2966 2945 -29852819.54686 3036 2945 8536049.989829 3037 2945 -8428858.489084 3038 2945 -11111959.41625 3039 2945 54272044.11297 3040 2945 2673044.969291 3041 2945 -58743091.68526 3051 2945 571476.4150219 3052 2945 -34949808.93959 3053 2945 30014.53480115 3054 2945 7718068.787606 3055 2945 -21255876.71511 3056 2945 -61506429.36468 3057 2945 21979483.77819 3058 2945 61984848.42173 3059 2945 -115922513.565 3069 2945 -9107526.404853 3070 2945 -9114622.378198 3071 2945 -12350930.55863 3072 2945 -61974810.45846 3073 2945 -6857560.807395 3074 2945 -71902237.78217 3075 2945 -21965599.32574 3076 2945 15972183.1856 3077 2945 -45381891.21762 2946 2946 471649908.3269 2947 2946 4090177.427809 2948 2946 -2249173.036816 2961 2946 -84201296.24904 2962 2946 -55138888.87984 2963 2946 21478720.31087 2964 2946 -194821525.5646 2965 2946 -4169934.661672 2966 2946 -3538592.307103 2967 2946 -41570569.89579 2968 2946 44190868.33773 2969 2946 -317590.9217181 3039 2946 2359203.743841 3040 2946 18759880.3565 3041 2946 10591538.29392 3054 2946 -4242975.331225 3055 2946 -15634880.35547 3056 2946 -8541442.446936 3057 2946 71156841.17391 3058 2946 4155152.359052 3059 2946 7042994.495851 3072 2946 -25660413.08922 3073 2946 -15625000.00513 3074 2946 -9107526.404853 3075 2946 -85661283.17682 3076 2946 -4175995.441555 3077 2946 -50365747.51323 3078 2946 -15271213.05259 3079 2946 12520843.08662 3080 2946 -8434357.784819 2947 2947 492388135.1167 2948 2947 -56289934.73763 2961 2947 -55138888.87984 2962 2947 -67658711.44716 2963 2947 10710616.00625 2964 2947 -4209813.278604 2965 2947 41607978.37358 2966 2947 -16842698.76085 2967 2947 66286302.50659 2968 2947 -122253331.0016 2969 2947 11767705.63164 3039 2947 12506586.90433 3040 2947 2359203.743842 3041 2947 -5648902.101029 3054 2947 -15631586.90535 3055 2947 -58943322.82077 3056 2947 -35645020.83586 3057 2947 4155152.359051 3058 2947 67360267.87028 3059 2947 -9155848.283368 3072 2947 -15625000.00513 3073 2947 -20972669.93059 3074 2947 -9114622.378198 3075 2947 -4186416.982811 3076 2947 -17320437.94929 3077 2947 -7812334.815313 3078 2947 18781264.62992 3079 2947 -29802880.64558 3080 2947 20359407.72444 2948 2948 461481303.1457 2961 2948 22006498.08912 2962 2948 11132838.22885 2963 2948 -26647749.83379 2964 2948 -6432474.979055 2965 2948 -14600300.1054 2966 2948 19559986.82562 2967 2948 -476386.3825763 2968 2948 10796323.33859 2969 2948 -30172091.94962 3039 2948 7061025.529277 3040 2948 -8473353.151544 3041 2948 6291209.983575 3054 2948 -8539644.961234 3055 2948 -37291962.41402 3056 2948 -17378834.23163 3057 2948 -12904614.21255 3058 2948 -25102929.94573 3059 2948 -43665037.20838 3072 2948 -9107526.404853 3073 2948 -9114622.378198 3074 2948 -12350930.55863 3075 2948 -52079515.31352 3076 2948 -7529299.332116 3077 2948 -59557746.72338 3078 2948 -12651536.67723 3079 2948 16986186.18761 3080 2948 -26191567.2139 2949 2949 904416532.1423 2950 2949 2.086162567139e-05 2951 2949 8090376.36604 2952 2949 102079011.1406 2953 2949 -1.040101051331e-05 2954 2949 2022594.092512 2970 2949 -215223928.4788 2971 2949 5.930662155151e-06 2972 2949 -5707514.57167 2973 2949 -85403197.39141 2974 2949 55138888.87983 2975 2949 -24029092.18165 3042 2949 -89115968.74764 3043 2949 -2.875924110413e-06 3044 2949 60031786.74372 3045 2949 -36905217.31746 3046 2949 -15625000.00514 3047 2949 21394122.91072 3060 2949 137281674.8977 3061 2949 7.092952728271e-06 3062 2949 2285905.658981 3063 2949 -24872960.07894 3064 2949 -1.01625919342e-05 3065 2949 571476.4150351 3081 2949 -92328809.14057 3082 2949 5.915760993958e-06 3083 2949 -62317692.40268 3084 2949 -38047023.33633 3085 2949 15625000.00513 3086 2949 -21965599.32574 2950 2950 772075853.7925 2951 2950 -97082150.22431 2952 2950 -1.037120819092e-05 2953 2950 -107448453.121 2954 2950 49870936.22305 2970 2950 2.861022949219e-06 2971 2950 27388705.35396 2972 2950 -24270537.56804 2973 2950 55138888.87983 2974 2950 -68860612.58955 2975 2950 13559921.56178 3042 2950 -4.589557647705e-06 3043 2950 -20365565.44178 3044 2950 -6857560.807395 3045 2950 -15625000.00514 3046 2950 -32217474.15883 3047 2950 15286419.29648 3060 2950 6.973743438721e-06 3061 2950 99779729.64718 3062 2950 -27430243.21607 3063 2950 -8.568167686462e-06 3064 2950 -84247877.07676 3065 2950 62654357.71105 3081 2950 4.619359970093e-06 3082 2950 -23578405.83475 3083 2950 -6857560.807395 3084 2950 15625000.00513 3085 2950 -33359280.17771 3086 2950 15972183.1856 2951 2951 828665098.5173 2952 2951 2022594.092512 2953 2951 47211214.00126 2954 2951 52874910.70561 2970 2951 -2382861.794439 2971 2951 -24270537.56804 2972 2951 41183389.66318 2973 2951 -23501314.4034 2974 2951 13137699.33918 2975 2951 -29852819.54686 3042 2951 59688904.7995 3043 2951 -6857560.807395 3044 2951 -63334663.40088 3045 2951 21394122.91072 3046 2951 15286419.29648 3047 2951 -42337075.16724 3060 2951 2285905.658981 3061 2951 -27430243.21607 3062 2951 -82530234.81935 3063 2951 571476.4150354 3064 2951 62380052.15567 3065 2951 -128482138.2218 3081 2951 -61974810.45846 3082 2951 -6857560.807395 3083 2951 -71902237.78217 3084 2951 -21965599.32574 3085 2951 15972183.1856 3086 2951 -45381891.21762 2952 2952 904416532.1423 2953 2952 2.086162567139e-05 2954 2952 8090376.36604 2955 2952 102079011.1406 2956 2952 -1.040101051331e-05 2957 2952 2022594.092512 2970 2952 -84201296.24904 2971 2952 -55138888.87984 2972 2952 21478720.31087 2973 2952 -215223928.4788 2974 2952 5.930662155151e-06 2975 2952 -5707514.57167 2976 2952 -85403197.39141 2977 2952 55138888.87983 2978 2952 -24029092.18165 3042 2952 -25195798.91083 3043 2952 15625000.00513 3044 2952 8536049.989829 3045 2952 -89115968.74764 3046 2952 -2.875924110413e-06 3047 2952 60031786.74372 3048 2952 -36905217.31746 3049 2952 -15625000.00514 3050 2952 21394122.91072 3060 2952 23319097.20481 3061 2952 3.09944152832e-06 3062 2952 571476.4150216 3063 2952 137281674.8977 3064 2952 7.092952728271e-06 3065 2952 2285905.658981 3066 2952 -24872960.07894 3067 2952 -1.01625919342e-05 3068 2952 571476.4150351 3081 2952 -25660413.08922 3082 2952 -15625000.00513 3083 2952 -9107526.404853 3084 2952 -92328809.14057 3085 2952 5.915760993958e-06 3086 2952 -62317692.40268 3087 2952 -38047023.33633 3088 2952 15625000.00513 3089 2952 -21965599.32574 2953 2953 772075853.7925 2954 2953 -97082150.22431 2955 2953 -1.037120819092e-05 2956 2953 -107448453.121 2957 2953 49870936.22305 2970 2953 -55138888.87984 2971 2953 -67658711.44716 2972 2953 10710616.00625 2973 2953 2.861022949219e-06 2974 2953 27388705.35396 2975 2953 -24270537.56804 2976 2953 55138888.87983 2977 2953 -68860612.58955 2978 2953 13559921.56178 3042 2953 15625000.00513 3043 2953 -20508055.7522 3044 2953 -8428858.489084 3045 2953 -4.589557647705e-06 3046 2953 -20365565.44178 3047 2953 -6857560.807395 3048 2953 -15625000.00514 3049 2953 -32217474.15883 3050 2953 15286419.29648 3060 2953 4.559755325317e-06 3061 2953 -36055819.793 3062 2953 -35224114.49497 3063 2953 6.973743438721e-06 3064 2953 99779729.64718 3065 2953 -27430243.21607 3066 2953 -8.568167686462e-06 3067 2953 -84247877.07676 3068 2953 62654357.71105 3081 2953 -15625000.00513 3082 2953 -20972669.93059 3083 2953 -9114622.378198 3084 2953 4.619359970093e-06 3085 2953 -23578405.83475 3086 2953 -6857560.807395 3087 2953 15625000.00513 3088 2953 -33359280.17771 3089 2953 15972183.1856 2954 2954 828665098.5173 2955 2954 2022594.092512 2956 2954 47211214.00126 2957 2954 52874910.70561 2970 2954 22006498.08912 2971 2954 11132838.22885 2972 2954 -26647749.83379 2973 2954 -2382861.794439 2974 2954 -24270537.56804 2975 2954 41183389.66318 2976 2954 -23501314.4034 2977 2954 13137699.33918 2978 2954 -29852819.54686 3042 2954 8536049.989829 3043 2954 -8428858.489084 3044 2954 -11111959.41625 3045 2954 59688904.7995 3046 2954 -6857560.807395 3047 2954 -63334663.40088 3048 2954 21394122.91072 3049 2954 15286419.29648 3050 2954 -42337075.16724 3060 2954 571476.4150219 3061 2954 -34949808.93959 3062 2954 30014.53480115 3063 2954 2285905.658981 3064 2954 -27430243.21607 3065 2954 -82530234.81935 3066 2954 571476.4150354 3067 2954 62380052.15567 3068 2954 -128482138.2218 3081 2954 -9107526.404853 3082 2954 -9114622.378198 3083 2954 -12350930.55863 3084 2954 -61974810.45846 3085 2954 -6857560.807395 3086 2954 -71902237.78217 3087 2954 -21965599.32574 3088 2954 15972183.1856 3089 2954 -45381891.21762 2955 2955 904416532.1423 2956 2955 2.086162567139e-05 2957 2955 8090376.36604 2958 2955 102079011.1406 2959 2955 -1.040101051331e-05 2960 2955 2022594.092512 2973 2955 -84201296.24904 2974 2955 -55138888.87984 2975 2955 21478720.31087 2976 2955 -215223928.4788 2977 2955 5.930662155151e-06 2978 2955 -5707514.57167 2979 2955 -85403197.39141 2980 2955 55138888.87983 2981 2955 -24029092.18165 3045 2955 -25195798.91083 3046 2955 15625000.00513 3047 2955 8536049.989829 3048 2955 -89115968.74764 3049 2955 -2.875924110413e-06 3050 2955 60031786.74372 3051 2955 -36905217.31746 3052 2955 -15625000.00514 3053 2955 21394122.91072 3063 2955 23319097.20481 3064 2955 3.09944152832e-06 3065 2955 571476.4150216 3066 2955 137281674.8977 3067 2955 7.092952728271e-06 3068 2955 2285905.658981 3069 2955 -24872960.07894 3070 2955 -1.01625919342e-05 3071 2955 571476.4150351 3084 2955 -25660413.08922 3085 2955 -15625000.00513 3086 2955 -9107526.404853 3087 2955 -92328809.14057 3088 2955 5.915760993958e-06 3089 2955 -62317692.40268 3090 2955 -38047023.33633 3091 2955 15625000.00513 3092 2955 -21965599.32574 2956 2956 772075853.7925 2957 2956 -97082150.22431 2958 2956 -1.037120819092e-05 2959 2956 -107448453.121 2960 2956 49870936.22305 2973 2956 -55138888.87984 2974 2956 -67658711.44716 2975 2956 10710616.00625 2976 2956 2.861022949219e-06 2977 2956 27388705.35396 2978 2956 -24270537.56804 2979 2956 55138888.87983 2980 2956 -68860612.58955 2981 2956 13559921.56178 3045 2956 15625000.00513 3046 2956 -20508055.7522 3047 2956 -8428858.489084 3048 2956 -4.589557647705e-06 3049 2956 -20365565.44178 3050 2956 -6857560.807395 3051 2956 -15625000.00514 3052 2956 -32217474.15883 3053 2956 15286419.29648 3063 2956 4.559755325317e-06 3064 2956 -36055819.793 3065 2956 -35224114.49497 3066 2956 6.973743438721e-06 3067 2956 99779729.64718 3068 2956 -27430243.21607 3069 2956 -8.568167686462e-06 3070 2956 -84247877.07676 3071 2956 62654357.71105 3084 2956 -15625000.00513 3085 2956 -20972669.93059 3086 2956 -9114622.378198 3087 2956 4.619359970093e-06 3088 2956 -23578405.83475 3089 2956 -6857560.807395 3090 2956 15625000.00513 3091 2956 -33359280.17771 3092 2956 15972183.1856 2957 2957 828665098.5173 2958 2957 2022594.092512 2959 2957 47211214.00126 2960 2957 52874910.70561 2973 2957 22006498.08912 2974 2957 11132838.22885 2975 2957 -26647749.83379 2976 2957 -2382861.794439 2977 2957 -24270537.56804 2978 2957 41183389.66318 2979 2957 -23501314.4034 2980 2957 13137699.33918 2981 2957 -29852819.54686 3045 2957 8536049.989829 3046 2957 -8428858.489084 3047 2957 -11111959.41625 3048 2957 59688904.7995 3049 2957 -6857560.807395 3050 2957 -63334663.40088 3051 2957 21394122.91072 3052 2957 15286419.29648 3053 2957 -42337075.16724 3063 2957 571476.4150219 3064 2957 -34949808.93959 3065 2957 30014.53480115 3066 2957 2285905.658981 3067 2957 -27430243.21607 3068 2957 -82530234.81935 3069 2957 571476.4150354 3070 2957 62380052.15567 3071 2957 -128482138.2218 3084 2957 -9107526.404853 3085 2957 -9114622.378198 3086 2957 -12350930.55863 3087 2957 -61974810.45846 3088 2957 -6857560.807395 3089 2957 -71902237.78217 3090 2957 -21965599.32574 3091 2957 15972183.1856 3092 2957 -45381891.21762 2958 2958 904416532.1423 2959 2958 2.086162567139e-05 2960 2958 8090376.36604 2961 2958 102079011.1406 2962 2958 -1.040101051331e-05 2963 2958 2022594.092512 2976 2958 -84201296.24904 2977 2958 -55138888.87984 2978 2958 21478720.31087 2979 2958 -215223928.4788 2980 2958 5.930662155151e-06 2981 2958 -5707514.57167 2982 2958 -85403197.39141 2983 2958 55138888.87983 2984 2958 -24029092.18165 3048 2958 -25195798.91083 3049 2958 15625000.00513 3050 2958 8536049.989829 3051 2958 -89115968.74764 3052 2958 -2.875924110413e-06 3053 2958 60031786.74372 3054 2958 -36905217.31746 3055 2958 -15625000.00514 3056 2958 21394122.91072 3066 2958 23319097.20481 3067 2958 3.09944152832e-06 3068 2958 571476.4150216 3069 2958 137281674.8977 3070 2958 7.092952728271e-06 3071 2958 2285905.658981 3072 2958 -24872960.07894 3073 2958 -1.01625919342e-05 3074 2958 571476.4150351 3087 2958 -25660413.08922 3088 2958 -15625000.00513 3089 2958 -9107526.404853 3090 2958 -92328809.14057 3091 2958 5.915760993958e-06 3092 2958 -62317692.40268 3093 2958 -38047023.33633 3094 2958 15625000.00513 3095 2958 -21965599.32574 2959 2959 772075853.7925 2960 2959 -97082150.22431 2961 2959 -1.037120819092e-05 2962 2959 -107448453.121 2963 2959 49870936.22305 2976 2959 -55138888.87984 2977 2959 -67658711.44716 2978 2959 10710616.00625 2979 2959 2.861022949219e-06 2980 2959 27388705.35396 2981 2959 -24270537.56804 2982 2959 55138888.87983 2983 2959 -68860612.58955 2984 2959 13559921.56178 3048 2959 15625000.00513 3049 2959 -20508055.7522 3050 2959 -8428858.489084 3051 2959 -4.589557647705e-06 3052 2959 -20365565.44178 3053 2959 -6857560.807395 3054 2959 -15625000.00514 3055 2959 -32217474.15883 3056 2959 15286419.29648 3066 2959 4.559755325317e-06 3067 2959 -36055819.793 3068 2959 -35224114.49497 3069 2959 6.973743438721e-06 3070 2959 99779729.64718 3071 2959 -27430243.21607 3072 2959 -8.568167686462e-06 3073 2959 -84247877.07676 3074 2959 62654357.71105 3087 2959 -15625000.00513 3088 2959 -20972669.93059 3089 2959 -9114622.378198 3090 2959 4.619359970093e-06 3091 2959 -23578405.83475 3092 2959 -6857560.807395 3093 2959 15625000.00513 3094 2959 -33359280.17771 3095 2959 15972183.1856 2960 2960 828665098.5173 2961 2960 2022594.092512 2962 2960 47211214.00126 2963 2960 52874910.70561 2976 2960 22006498.08912 2977 2960 11132838.22885 2978 2960 -26647749.83379 2979 2960 -2382861.794439 2980 2960 -24270537.56804 2981 2960 41183389.66318 2982 2960 -23501314.4034 2983 2960 13137699.33918 2984 2960 -29852819.54686 3048 2960 8536049.989829 3049 2960 -8428858.489084 3050 2960 -11111959.41625 3051 2960 59688904.7995 3052 2960 -6857560.807395 3053 2960 -63334663.40088 3054 2960 21394122.91072 3055 2960 15286419.29648 3056 2960 -42337075.16724 3066 2960 571476.4150219 3067 2960 -34949808.93959 3068 2960 30014.53480115 3069 2960 2285905.658981 3070 2960 -27430243.21607 3071 2960 -82530234.81935 3072 2960 571476.4150354 3073 2960 62380052.15567 3074 2960 -128482138.2218 3087 2960 -9107526.404853 3088 2960 -9114622.378198 3089 2960 -12350930.55863 3090 2960 -61974810.45846 3091 2960 -6857560.807395 3092 2960 -71902237.78217 3093 2960 -21965599.32574 3094 2960 15972183.1856 3095 2960 -45381891.21762 2961 2961 904416532.1423 2962 2961 2.086162567139e-05 2963 2961 8090376.36604 2964 2961 102079011.1406 2965 2961 -1.040101051331e-05 2966 2961 2022594.092512 2979 2961 -84201296.24904 2980 2961 -55138888.87984 2981 2961 21478720.31087 2982 2961 -215223928.4788 2983 2961 5.930662155151e-06 2984 2961 -5707514.57167 2985 2961 -85403197.39141 2986 2961 55138888.87983 2987 2961 -24029092.18165 3051 2961 -25195798.91083 3052 2961 15625000.00513 3053 2961 8536049.989829 3054 2961 -89115968.74764 3055 2961 -2.875924110413e-06 3056 2961 60031786.74372 3057 2961 -36905217.31746 3058 2961 -15625000.00514 3059 2961 21394122.91072 3069 2961 23319097.20481 3070 2961 3.09944152832e-06 3071 2961 571476.4150216 3072 2961 137281674.8977 3073 2961 7.092952728271e-06 3074 2961 2285905.658981 3075 2961 -24872960.07894 3076 2961 -1.01625919342e-05 3077 2961 571476.4150351 3090 2961 -25660413.08922 3091 2961 -15625000.00513 3092 2961 -9107526.404853 3093 2961 -92328809.14057 3094 2961 5.915760993958e-06 3095 2961 -62317692.40268 3096 2961 -38047023.33633 3097 2961 15625000.00513 3098 2961 -21965599.32574 2962 2962 772075853.7925 2963 2962 -97082150.22431 2964 2962 -1.037120819092e-05 2965 2962 -107448453.121 2966 2962 49870936.22305 2979 2962 -55138888.87984 2980 2962 -67658711.44716 2981 2962 10710616.00625 2982 2962 2.861022949219e-06 2983 2962 27388705.35396 2984 2962 -24270537.56804 2985 2962 55138888.87983 2986 2962 -68860612.58955 2987 2962 13559921.56178 3051 2962 15625000.00513 3052 2962 -20508055.7522 3053 2962 -8428858.489084 3054 2962 -4.589557647705e-06 3055 2962 -20365565.44178 3056 2962 -6857560.807395 3057 2962 -15625000.00514 3058 2962 -32217474.15883 3059 2962 15286419.29648 3069 2962 4.559755325317e-06 3070 2962 -36055819.793 3071 2962 -35224114.49497 3072 2962 6.973743438721e-06 3073 2962 99779729.64718 3074 2962 -27430243.21607 3075 2962 -8.568167686462e-06 3076 2962 -84247877.07676 3077 2962 62654357.71105 3090 2962 -15625000.00513 3091 2962 -20972669.93059 3092 2962 -9114622.378198 3093 2962 4.619359970093e-06 3094 2962 -23578405.83475 3095 2962 -6857560.807395 3096 2962 15625000.00513 3097 2962 -33359280.17771 3098 2962 15972183.1856 2963 2963 828665098.5173 2964 2963 2022594.092512 2965 2963 47211214.00126 2966 2963 52874910.70561 2979 2963 22006498.08912 2980 2963 11132838.22885 2981 2963 -26647749.83379 2982 2963 -2382861.794439 2983 2963 -24270537.56804 2984 2963 41183389.66318 2985 2963 -23501314.4034 2986 2963 13137699.33918 2987 2963 -29852819.54686 3051 2963 8536049.989829 3052 2963 -8428858.489084 3053 2963 -11111959.41625 3054 2963 59688904.7995 3055 2963 -6857560.807395 3056 2963 -63334663.40088 3057 2963 21394122.91072 3058 2963 15286419.29648 3059 2963 -42337075.16724 3069 2963 571476.4150219 3070 2963 -34949808.93959 3071 2963 30014.53480115 3072 2963 2285905.658981 3073 2963 -27430243.21607 3074 2963 -82530234.81935 3075 2963 571476.4150354 3076 2963 62380052.15567 3077 2963 -128482138.2218 3090 2963 -9107526.404853 3091 2963 -9114622.378198 3092 2963 -12350930.55863 3093 2963 -61974810.45846 3094 2963 -6857560.807395 3095 2963 -71902237.78217 3096 2963 -21965599.32574 3097 2963 15972183.1856 3098 2963 -45381891.21762 2964 2964 814075637.7522 2965 2964 19826669.68419 2966 2964 7801715.663611 2967 2964 -65761289.34655 2968 2964 -82916487.90402 2969 2964 5254868.213648 2982 2964 -84201296.24904 2983 2964 -55138888.87984 2984 2964 21478720.31087 2985 2964 -168878204.1951 2986 2964 23258599.89119 2987 2964 -2713120.011329 2988 2964 -50129008.36995 2989 2964 44041031.60725 2990 2964 -3923688.173615 3054 2964 -25195798.91083 3055 2964 15625000.00513 3056 2964 8536049.989829 3057 2964 -82406367.71958 3058 2964 -4186416.982814 3059 2964 47658528.22846 3072 2964 23319097.20481 3073 2964 3.09944152832e-06 3074 2964 571476.4150216 3075 2964 140289807.8107 3076 2964 6772533.290107 3077 2964 2258936.462364 3078 2964 -37259112.25684 3079 2964 -21706836.85395 3080 2964 16585652.20803 3093 2964 -25660413.08922 3094 2964 -15625000.00513 3095 2964 -9107526.404853 3096 2964 -80438815.71638 3097 2964 5389707.749941 3098 2964 -55764807.73549 3099 2964 -23249696.87928 3100 2964 13731012.79672 3101 2964 -10699392.80394 2965 2965 816271924.2702 2966 2965 -59395775.03478 2967 2965 -82956366.52095 2968 2965 -269665196.5266 2969 2965 11419191.28908 2982 2965 -55138888.87984 2983 2965 -67658711.44716 2984 2965 10710616.00625 2985 2965 23258599.89119 2986 2965 40051295.91808 2987 2965 -13759219.77655 2988 2965 44041031.60725 2989 2965 -117338097.1014 2990 2965 5266414.972266 3054 2965 15625000.00513 3055 2965 -20508055.7522 3056 2965 -8428858.489084 3057 2965 -4175995.441561 3058 2965 -14065522.49202 3059 2965 -990203.8002845 3072 2965 4.559755325317e-06 3073 2965 -36055819.793 3074 2965 -35224114.49497 3075 2965 6772533.290104 3076 2965 130991394.7564 3077 2965 -16346341.23076 3078 2965 -21717258.3952 3079 2965 -93858000.46159 3080 2965 51628535.64867 3093 2965 -15625000.00513 3094 2965 -20972669.93059 3095 2965 -9114622.378198 3096 2965 5389707.74994 3097 2965 -18709904.78939 3098 2965 551807.7684063 3099 2965 13731012.79672 3100 2965 -37422721.09417 3101 2965 17954931.21862 2966 2966 718413885.6964 2967 2966 4727899.785733 2968 2966 9730121.401043 2969 2966 -41602774.38176 2982 2966 22006498.08912 2983 2966 11132838.22885 2984 2966 -26647749.83379 2985 2966 -6141939.455212 2986 2966 -13336997.5544 2987 2966 45476816.52765 2988 2966 -2868132.617115 2989 2966 5266414.972266 2990 2966 -26328581.92312 3054 2966 8536049.989829 3055 2966 -8428858.489084 3056 2966 -11111959.41625 3057 2966 49372296.02875 3058 2966 -1256982.046803 3059 2966 -50877972.17063 3072 2966 571476.4150219 3073 2966 -34949808.93959 3074 2966 30014.53480115 3075 2966 2271788.22959 3076 2966 -16336059.44644 3077 2966 -52248020.85153 3078 2966 16592900.54232 3079 2966 51626293.67586 3080 2966 -71025741.42099 3093 2966 -9107526.404853 3094 2966 -9114622.378198 3095 2966 -12350930.55863 3096 2966 -57479217.4576 3097 2966 551807.7692189 3098 2966 -67478321.27656 3099 2966 -10699392.80394 3100 2966 17954931.21862 3101 2966 -29873867.65783 2967 2967 522699975.3476 2968 2967 14401653.43661 2969 2967 5480581.188058 2985 2967 -88453382.41505 2986 2967 -53657199.77512 2987 2967 2927126.633331 2988 2967 -82446521.24533 2989 2967 31900352.3773 2990 2967 -2622745.842299 2991 2967 63364875.38512 2992 2967 -23947462.52149 2993 2967 -309579.7647879 2994 2967 -33820950.3989 2995 2967 47972720.49706 2996 2967 -966478.9499935 3057 2967 -11503559.48192 3058 2967 18781264.62992 3059 2967 10589309.89512 3075 2967 -30633021.82547 3076 2967 -21717258.3952 3077 2967 -13945914.77582 3078 2967 49344074.06461 3079 2967 3326270.339925 3080 2967 12071955.85504 3096 2967 -31620669.8148 3097 2967 -15379874.43217 3098 2967 -14331642.3119 3099 2967 -70715365.81126 3100 2967 7245060.881563 3101 2967 -60340756.14738 3102 2967 -8245159.844818 3103 2967 -6206126.610077 3104 2967 9626373.964429 3105 2967 -23495676.93737 3106 2967 13950663.58603 3107 2967 -14935854.25772 2968 2968 692282026.6453 2969 2968 -10934150.66836 2985 2968 -53657199.77512 2986 2968 -54325438.18194 2987 2968 342360.8843877 2988 2968 31900352.3773 2989 2968 124141079.4718 2990 2968 -3927122.654523 2991 2968 -1891906.969555 2992 2968 -43813315.28894 2993 2968 468835.5341619 2994 2968 47972720.49706 2995 2968 -52353687.68695 2996 2968 533425.4164016 3057 2968 12520843.08662 3058 2968 -26035227.07491 3059 2968 -13303837.81403 3075 2968 -21706836.85395 3076 2968 -87231910.03023 3077 2968 -46041232.49696 3078 2968 3326270.339925 3079 2968 86203793.01102 3080 2968 -505092.831848 3096 2968 -15379874.43217 3097 2968 -23056649.34309 3098 2968 -11981607.60917 3099 2968 7245060.881562 3100 2968 -10705979.44983 3101 2968 3493527.891282 3102 2968 43873.39197527 3103 2968 -38645654.17828 3104 2968 33463119.42263 3105 2968 13950663.58603 3106 2968 -27397752.58572 3107 2968 16811021.49711 2969 2969 599530521.1754 2985 2969 3454904.411581 2986 2969 764583.1069877 2987 2969 -19025929.82132 2988 2969 -511634.7315344 2989 2969 -3504900.43237 2990 2969 126985993.5352 2991 2969 218198.0129062 2992 2969 468835.534162 2993 2969 83129752.20461 2994 2969 -438701.1717439 2995 2969 533425.4164016 2996 2969 11853562.38723 3057 2969 7059539.930081 3058 2969 -16128398.1209 3059 2969 -16144491.02544 3075 2969 -13940311.47962 3076 2969 -46044966.08591 3077 2969 -53356166.93734 3078 2969 -11912141.36324 3079 2969 -6708849.907338 3080 2969 -90858994.86437 3096 2969 -14331642.3119 3097 2969 -11981607.60917 3098 2969 -23323530.90453 3099 2969 -60340756.14772 3100 2969 3493527.892095 3101 2969 -76697228.99476 3102 2969 1501373.962777 3103 2969 33463119.42263 3104 2969 -47613841.53847 3105 2969 -14935854.25772 3106 2969 16811021.49711 3107 2969 -30324091.47117 2970 2970 451998787.7349 2971 2970 1.800060272217e-05 2972 2970 -4266443.760058 2973 2970 51007167.67192 2974 2970 11027777.77596 2975 2970 -4858928.64862 3060 2970 -89115968.74764 3061 2970 -2.875924110413e-06 3062 2970 60031786.74372 3063 2970 -36905217.31746 3064 2970 -15625000.00514 3065 2970 21394122.91072 3081 2970 68618264.38753 3082 2970 3.814697265625e-06 3083 2970 -11914911.75127 3084 2970 -12436480.03947 3085 2970 3125000.001022 3086 2970 -4050234.016128 2971 2971 385828448.56 2972 2971 -48541075.11215 2973 2971 -11027777.77597 2974 2971 -53756564.45888 2975 2971 24692759.77823 3060 2971 -4.589557647705e-06 3061 2971 -20365565.44178 3062 2971 -6857560.807395 3063 2971 -15625000.00514 3064 2971 -32217474.15883 3065 2971 15286419.29648 3081 2971 2.026557922363e-06 3082 2971 49867291.76226 3083 2971 -13715121.60804 3084 2971 -3125000.001031 3085 2971 -42123938.53837 3086 2971 31258602.46661 2972 2972 413773940.3619 2973 2972 4242633.849883 2974 2972 23848315.33392 2975 2972 26351220.95709 3060 2972 59688904.7995 3061 2972 -6857560.807395 3062 2972 -63334663.40088 3063 2972 21394122.91072 3064 2972 15286419.29648 3065 2972 -42337075.16724 3081 2972 12486407.68916 3082 2972 -13715121.60804 3083 2972 -41325312.23988 3084 2972 4621710.431164 3085 2972 31258602.46674 3086 2972 -64241069.11092 2973 2973 451998787.7349 2974 2973 1.800060272217e-05 2975 2973 -4266443.760058 2976 2973 51007167.67192 2977 2973 11027777.77596 2978 2973 -4858928.64862 3060 2973 -25195798.91083 3061 2973 15625000.00513 3062 2973 8536049.989829 3063 2973 -89115968.74764 3064 2973 -2.875924110413e-06 3065 2973 60031786.74372 3066 2973 -36905217.31746 3067 2973 -15625000.00514 3068 2973 21394122.91072 3081 2973 11659548.6024 3082 2973 -3125000.001025 3083 2973 -1478619.431957 3084 2973 68618264.38753 3085 2973 3.814697265625e-06 3086 2973 -11914911.75127 3087 2973 -12436480.03947 3088 2973 3125000.001022 3089 2973 -4050234.016128 2974 2974 385828448.56 2975 2974 -48541075.11215 2976 2974 -11027777.77597 2977 2974 -53756564.45888 2978 2974 24692759.77823 3060 2974 15625000.00513 3061 2974 -20508055.7522 3062 2974 -8428858.489084 3063 2974 -4.589557647705e-06 3064 2974 -20365565.44178 3065 2974 -6857560.807395 3066 2974 -15625000.00514 3067 2974 -32217474.15883 3068 2974 15286419.29648 3081 2974 3125000.001029 3082 2974 -18027909.8965 3083 2974 -17543480.85857 3084 2974 2.026557922363e-06 3085 2974 49867291.76226 3086 2974 -13715121.60804 3087 2974 -3125000.001031 3088 2974 -42123938.53837 3089 2974 31258602.46661 2975 2975 413773940.3619 2976 2975 4242633.849883 2977 2975 23848315.33392 2978 2975 26351220.95709 3060 2975 8536049.989829 3061 2975 -8428858.489084 3062 2975 -11111959.41625 3063 2975 59688904.7995 3064 2975 -6857560.807395 3065 2975 -63334663.40088 3066 2975 21394122.91072 3067 2975 15286419.29648 3068 2975 -42337075.16724 3081 2975 2050095.846979 3082 2975 -17543480.85871 3083 2975 15007.26739907 3084 2975 12486407.68916 3085 2975 -13715121.60804 3086 2975 -41325312.23988 3087 2975 4621710.431164 3088 2975 31258602.46674 3089 2975 -64241069.11092 2976 2976 451998787.7349 2977 2976 1.800060272217e-05 2978 2976 -4266443.760058 2979 2976 51007167.67192 2980 2976 11027777.77596 2981 2976 -4858928.64862 3063 2976 -25195798.91083 3064 2976 15625000.00513 3065 2976 8536049.989829 3066 2976 -89115968.74764 3067 2976 -2.875924110413e-06 3068 2976 60031786.74372 3069 2976 -36905217.31746 3070 2976 -15625000.00514 3071 2976 21394122.91072 3084 2976 11659548.6024 3085 2976 -3125000.001025 3086 2976 -1478619.431957 3087 2976 68618264.38753 3088 2976 3.814697265625e-06 3089 2976 -11914911.75127 3090 2976 -12436480.03947 3091 2976 3125000.001022 3092 2976 -4050234.016128 2977 2977 385828448.56 2978 2977 -48541075.11215 2979 2977 -11027777.77597 2980 2977 -53756564.45888 2981 2977 24692759.77823 3063 2977 15625000.00513 3064 2977 -20508055.7522 3065 2977 -8428858.489084 3066 2977 -4.589557647705e-06 3067 2977 -20365565.44178 3068 2977 -6857560.807395 3069 2977 -15625000.00514 3070 2977 -32217474.15883 3071 2977 15286419.29648 3084 2977 3125000.001029 3085 2977 -18027909.8965 3086 2977 -17543480.85857 3087 2977 2.026557922363e-06 3088 2977 49867291.76226 3089 2977 -13715121.60804 3090 2977 -3125000.001031 3091 2977 -42123938.53837 3092 2977 31258602.46661 2978 2978 413773940.3619 2979 2978 4242633.849883 2980 2978 23848315.33392 2981 2978 26351220.95709 3063 2978 8536049.989829 3064 2978 -8428858.489084 3065 2978 -11111959.41625 3066 2978 59688904.7995 3067 2978 -6857560.807395 3068 2978 -63334663.40088 3069 2978 21394122.91072 3070 2978 15286419.29648 3071 2978 -42337075.16724 3084 2978 2050095.846979 3085 2978 -17543480.85871 3086 2978 15007.26739907 3087 2978 12486407.68916 3088 2978 -13715121.60804 3089 2978 -41325312.23988 3090 2978 4621710.431164 3091 2978 31258602.46674 3092 2978 -64241069.11092 2979 2979 451998787.7349 2980 2979 1.800060272217e-05 2981 2979 -4266443.760058 2982 2979 51007167.67192 2983 2979 11027777.77596 2984 2979 -4858928.64862 3066 2979 -25195798.91083 3067 2979 15625000.00513 3068 2979 8536049.989829 3069 2979 -89115968.74764 3070 2979 -2.875924110413e-06 3071 2979 60031786.74372 3072 2979 -36905217.31746 3073 2979 -15625000.00514 3074 2979 21394122.91072 3087 2979 11659548.6024 3088 2979 -3125000.001025 3089 2979 -1478619.431957 3090 2979 68618264.38753 3091 2979 3.814697265625e-06 3092 2979 -11914911.75127 3093 2979 -12436480.03947 3094 2979 3125000.001022 3095 2979 -4050234.016128 2980 2980 385828448.56 2981 2980 -48541075.11215 2982 2980 -11027777.77597 2983 2980 -53756564.45888 2984 2980 24692759.77823 3066 2980 15625000.00513 3067 2980 -20508055.7522 3068 2980 -8428858.489084 3069 2980 -4.589557647705e-06 3070 2980 -20365565.44178 3071 2980 -6857560.807395 3072 2980 -15625000.00514 3073 2980 -32217474.15883 3074 2980 15286419.29648 3087 2980 3125000.001029 3088 2980 -18027909.8965 3089 2980 -17543480.85857 3090 2980 2.026557922363e-06 3091 2980 49867291.76226 3092 2980 -13715121.60804 3093 2980 -3125000.001031 3094 2980 -42123938.53837 3095 2980 31258602.46661 2981 2981 413773940.3619 2982 2981 4242633.849883 2983 2981 23848315.33392 2984 2981 26351220.95709 3066 2981 8536049.989829 3067 2981 -8428858.489084 3068 2981 -11111959.41625 3069 2981 59688904.7995 3070 2981 -6857560.807395 3071 2981 -63334663.40088 3072 2981 21394122.91072 3073 2981 15286419.29648 3074 2981 -42337075.16724 3087 2981 2050095.846979 3088 2981 -17543480.85871 3089 2981 15007.26739907 3090 2981 12486407.68916 3091 2981 -13715121.60804 3092 2981 -41325312.23988 3093 2981 4621710.431164 3094 2981 31258602.46674 3095 2981 -64241069.11092 2982 2982 451998787.7349 2983 2982 1.800060272217e-05 2984 2982 -4266443.760058 2985 2982 51007167.67192 2986 2982 11027777.77596 2987 2982 -4858928.64862 3069 2982 -25195798.91083 3070 2982 15625000.00513 3071 2982 8536049.989829 3072 2982 -89115968.74764 3073 2982 -2.875924110413e-06 3074 2982 60031786.74372 3075 2982 -36905217.31746 3076 2982 -15625000.00514 3077 2982 21394122.91072 3090 2982 11659548.6024 3091 2982 -3125000.001025 3092 2982 -1478619.431957 3093 2982 68618264.38753 3094 2982 3.814697265625e-06 3095 2982 -11914911.75127 3096 2982 -12436480.03947 3097 2982 3125000.001022 3098 2982 -4050234.016128 2983 2983 385828448.56 2984 2983 -48541075.11215 2985 2983 -11027777.77597 2986 2983 -53756564.45888 2987 2983 24692759.77823 3069 2983 15625000.00513 3070 2983 -20508055.7522 3071 2983 -8428858.489084 3072 2983 -4.589557647705e-06 3073 2983 -20365565.44178 3074 2983 -6857560.807395 3075 2983 -15625000.00514 3076 2983 -32217474.15883 3077 2983 15286419.29648 3090 2983 3125000.001029 3091 2983 -18027909.8965 3092 2983 -17543480.85857 3093 2983 2.026557922363e-06 3094 2983 49867291.76226 3095 2983 -13715121.60804 3096 2983 -3125000.001031 3097 2983 -42123938.53837 3098 2983 31258602.46661 2984 2984 413773940.3619 2985 2984 4242633.849883 2986 2984 23848315.33392 2987 2984 26351220.95709 3069 2984 8536049.989829 3070 2984 -8428858.489084 3071 2984 -11111959.41625 3072 2984 59688904.7995 3073 2984 -6857560.807395 3074 2984 -63334663.40088 3075 2984 21394122.91072 3076 2984 15286419.29648 3077 2984 -42337075.16724 3090 2984 2050095.846979 3091 2984 -17543480.85871 3092 2984 15007.26739907 3093 2984 12486407.68916 3094 2984 -13715121.60804 3095 2984 -41325312.23988 3096 2984 4621710.431164 3097 2984 31258602.46674 3098 2984 -64241069.11092 2985 2985 438788681.6926 2986 2985 1481949.882174 2987 2985 13588100.97986 2988 2985 20474398.84195 2989 2985 -15194461.1021 2990 2985 -402802.0502076 3072 2985 -25195798.91083 3073 2985 15625000.00513 3074 2985 8536049.989829 3075 2985 -76990580.01118 3076 2985 5389707.749938 3077 2985 53359584.60642 3078 2985 -33227083.91641 3079 2985 -15379874.43216 3080 2985 16168618.11479 3093 2985 11659548.6024 3094 2985 -3125000.001025 3095 2985 -1478619.431957 3096 2985 65173303.32689 3097 2985 245143.1226898 3098 2985 -6853012.901018 3099 2985 -10470930.81531 3100 2985 -2754976.444567 3101 2985 2783907.400167 2986 2986 390214539.491 2987 2986 -29785000.64378 2988 2986 -37250016.65403 2989 2986 -85787755.97384 2990 2986 5371400.418087 3072 2986 15625000.00513 3073 2986 -20508055.7522 3074 2986 -8428858.489084 3075 2986 5389707.749936 3076 2986 -15261669.08416 3077 2986 -8380483.89686 3078 2986 -15379874.43216 3079 2986 -24663063.44469 3080 2986 12419434.06551 3093 2986 3125000.001029 3094 2986 -18027909.8965 3095 2986 -17543480.85857 3096 2986 245143.1226879 3097 2986 50301515.94588 3098 2986 -8353117.277099 3099 2986 -9004976.44662 3100 2986 -40892359.49273 3101 2986 30286506.45611 2987 2987 397526973.6383 2988 2987 1945288.227182 2989 2987 4949178.195934 2990 2987 26284976.12498 3072 2987 8536049.989829 3073 2987 -8428858.489084 3074 2987 -11111959.41625 3075 2987 55073994.33073 3076 2987 -8380483.895913 3077 2987 -58283026.06258 3078 2987 16168618.11479 3079 2987 12419434.06551 3080 2987 -27607301.84214 3093 2987 2050095.846979 3094 2987 -17543480.85871 3095 2987 15007.26739907 3096 2987 17547750.98386 3097 2987 -8353117.277099 3098 2987 -45585142.3045 3099 2987 9398282.401154 3100 2987 30286506.4553 3101 2987 -41565022.24035 2988 2988 429105935.2957 2989 2988 28330900.92755 2990 2988 -6522740.616906 2991 2988 -102981106.0586 2992 2988 -62305057.2626 2993 2988 814337.0222015 2994 2988 23954189.43775 2995 2988 -4717210.995471 2996 2988 -1617533.951288 3075 2988 -20350067.7116 3076 2988 13731012.79672 3077 2988 8635850.257965 3078 2988 -69970751.18914 3079 2988 7245060.881565 3080 2988 59579729.9437 3096 2988 -5416277.961415 3097 2988 -9004976.44662 3098 2988 -7866787.042358 3099 2988 41507406.34697 3100 2988 5819458.255594 3101 2988 -12220682.65679 3102 2988 -40243202.98454 3103 2988 -17299336.42423 3104 2988 20535239.50393 3105 2988 -14105125.94333 3106 2988 -491219.0630247 3107 2988 2603177.771788 2989 2989 477376768.0381 2990 2989 -8908984.282613 2991 2989 -62305057.2626 2992 2989 -78288746.05932 2993 2989 533425.4164013 2994 2989 -26772766.5474 2995 2989 -82125360.47375 2996 2989 1664866.130393 3075 2989 13731012.79672 3076 2989 -34523091.92649 3077 2989 -15378402.12566 3078 2989 7245060.881565 3079 2989 -9961364.827704 3080 2989 -5438763.773985 3096 2989 -2754976.444568 3097 2989 -35837706.63884 3098 2989 -27447868.53434 3099 2989 5819458.255594 3100 2989 49505416.69587 3101 2989 -2326953.595817 3102 2989 -17299336.42423 3103 2989 -33678074.85341 3104 2989 16811021.49711 3105 2989 -6741219.065077 3106 2989 -44083197.89248 3107 2989 33780966.53269 2990 2990 473986237.116 2991 2990 814337.0222015 2992 2990 533425.4164014 2993 2990 -14081495.98514 2994 2990 -482985.3403653 2995 2990 1664866.130393 2996 2990 47760572.2029 3075 2990 8635850.257965 3076 2990 -15378402.12566 3077 2990 -22141523.21068 3078 2990 59579729.94404 3079 2990 -5438763.773037 3080 2990 -74711590.00242 3096 2990 -2281057.874872 3097 2990 -27447868.53529 3098 2990 -28085947.96329 3099 2990 11763414.56149 3100 2990 -2326953.595817 3101 2990 -81177544.1979 3102 2990 20535239.50393 3103 2990 16811021.49711 3104 2990 -36604413.73886 3105 2990 8666615.274795 3106 2990 33780966.53269 3107 2990 -46820366.06832 2991 2991 261715726.6238 2992 2991 68058573.62535 2993 2991 -459951.4843445 2994 2991 -62033253.06281 2995 2991 -3861609.393196 2996 2991 -572583.5507624 3078 2991 -7696548.733537 3079 2991 43873.39197519 3080 2991 -1538643.39493 3099 2991 -39694591.87325 3100 2991 -17299336.42423 3101 2991 -20089760.50942 3102 2991 20481159.87447 3103 2991 18706126.61418 3104 2991 8000767.237826 3105 2991 -43395797.04293 3106 2991 -1450663.581926 3107 2991 -35122363.33348 2992 2992 234492875.6532 2993 2992 -468835.5341598 2994 2992 18193946.15874 2995 2992 47675428.58254 2996 2992 -533425.4163997 3078 2992 -6206126.610078 3079 2992 -38097043.067 3080 2992 -33203547.23309 3099 2992 -17299336.42423 3100 2992 -33129463.74212 3101 2992 -16522311.84717 3102 2992 18706126.61418 3103 2992 12795716.69541 3104 2992 6536880.5708 3105 2992 4799336.420126 3106 2992 -11874987.66155 3107 2992 3188978.509455 2993 2993 290948033.7889 2994 2993 -44805.77306801 2995 2993 -533425.4163998 2996 2993 66847024.35831 3078 2993 -9663643.396415 3079 2993 -33203547.23309 3080 2993 -46150878.57506 3099 2993 -20089760.50942 3100 2993 -16522311.84717 3101 2993 -35141450.77543 3102 2993 -8249232.759505 3103 2993 -6796452.760343 3104 2993 -59405262.59501 3105 2993 -35122363.33466 3106 2993 -3477688.1594 3107 2993 -46784482.12185 2994 2994 211997616.0977 2995 2994 -39393900.1084 2996 2994 -3413716.048555 3078 2994 -22947065.82609 3079 2994 13950663.58603 3080 2994 14524128.39085 3099 2994 -12459292.61054 3100 2994 -6741219.065078 3101 2994 -8390398.615294 3102 2994 -43395797.04293 3103 2994 4799336.420127 3104 2994 34962619.29382 3105 2994 16190599.92148 3106 2994 -12008780.94108 3107 2994 -6087251.846918 2995 2995 226901221.6519 2996 2995 -1664866.130388 3078 2995 13950663.58603 3079 2995 -26849141.47444 3080 2995 -16522311.84717 3099 2995 -491219.0630252 3100 2995 -42437364.5597 3101 2995 -32885700.12302 3102 2995 -1450663.581925 3103 2995 -11874987.66155 3104 2995 3188978.509455 3105 2995 -12008780.94108 3106 2995 18549938.1376 3107 2995 6219033.460737 2996 2996 247132446.5815 3078 2996 14524128.39085 3079 2996 -16522311.84717 3080 2996 -28861128.50774 3099 2996 -2669843.056674 3100 2996 -32885700.12303 3101 2996 -42431477.18089 3102 2996 34962619.2928 3103 2996 -3477688.1594 3104 2996 -46784482.12185 3105 2996 5696741.206702 3106 2996 -7114299.870405 3107 2996 -48887060.34441 2997 2997 638651984.0764 2998 2997 62499999.98975 2999 2997 26315015.78297 3000 2997 -359433069.0472 3001 2997 -62526347.59063 3002 2997 -26303693.13048 3003 2997 4145599.03273 3004 2997 50026347.59267 3005 2997 -21269642.01197 3108 2997 88021012.11513 3109 2997 15625000.00514 3110 2997 19639605.71133 3111 2997 -121308672.7549 3112 2997 -15631586.90535 3113 2997 -67766682.33182 3114 2997 -21749648.26534 3115 2997 12506586.90433 3116 2997 -17353145.19621 2998 2998 544867478.3976 2999 2998 -68597520.2745 3000 2998 -62539521.39107 3001 2998 -65598146.14324 3002 2998 -38004027.78497 3003 2998 75039521.38901 3004 2998 4145599.032734 3005 2998 23877447.844 3108 2998 15625000.00514 3109 2998 64574885.68388 3110 2998 -6700809.891648 3111 2998 -15634880.35547 3112 2998 -47849941.99273 3113 2998 -21743418.55177 3114 2998 18759880.3565 3115 2998 -21749648.26534 3116 2998 20823318.70445 2999 2999 581180607.3115 3000 2999 -26298031.80422 3001 2999 -30593489.61466 3002 2999 -36647251.12535 3003 2999 -31904463.01796 3004 2999 15918298.56266 3005 2999 11054930.75394 3108 2999 -4768139.577623 3109 2999 -26226783.67725 3110 2999 -45750138.7209 3111 2999 -67422475.35311 3112 2999 -19819673.42971 3113 2999 -93029560.64943 3114 2999 -26029717.79432 3115 2999 13882212.46963 3116 2999 -57999062.0409 3000 3000 1094265961.25 3001 3000 62565868.99196 3002 3000 30858520.46735 3003 3000 9522774.467089 3004 3000 -62526347.59063 3005 3000 26698619.14673 3006 3000 -248524227.8966 3007 3000 5.185604095459e-06 3008 3000 -4571811.315691 3009 3000 -97883025.962 3010 3000 62499999.98974 3011 3000 -26687657.68648 3108 3000 -108451246.8934 3109 3000 -15634880.35547 3110 3000 54616251.09168 3111 3000 166227659.6012 3112 3000 15641467.2557 3113 3000 7711642.939084 3114 3000 -41196855.08124 3115 3000 -15631586.90536 3116 3000 21974855.62738 3117 3000 -92328809.14057 3118 3000 5.915760993958e-06 3119 3000 -62317692.40268 3120 3000 -38047023.33633 3121 3000 15625000.00513 3122 3000 -21965599.32574 3001 3001 925477565.1068 3002 3001 -85034510.41928 3003 3001 -62539521.39107 3004 3001 -209278615.3833 3005 3001 45543422.51828 3006 3001 4.678964614868e-06 3007 3001 26477385.19127 3008 3001 -27430243.21608 3009 3001 62499999.98974 3010 3001 -79132053.33673 3011 3001 14949496.6079 3108 3001 -15631586.90536 3109 3001 -34992516.13117 3110 3001 4591649.47589 3111 3001 15641467.2557 3112 3001 124030560.5447 3113 3001 -21261017.33538 3114 3001 -15634880.35547 3115 3001 -95897202.5708 3116 3001 60337907.00837 3117 3001 4.619359970093e-06 3118 3001 -23578405.83475 3119 3001 -6857560.807395 3120 3001 15625000.00513 3121 3001 -33359280.17771 3122 3001 15972183.1856 3002 3002 898921811.1224 3003 3002 27046981.82107 3004 3002 53228121.77035 3005 3002 1137131.864082 3006 3002 -4571811.315691 3007 3002 -27430243.21608 3008 3002 34500404.96993 3009 3002 -27030539.6307 3010 3002 15223802.16328 3011 3002 -36714051.95871 3108 3002 54272044.11297 3109 3002 2673044.969291 3110 3002 -58743091.68526 3111 3002 7718068.787606 3112 3002 -21255876.71511 3113 3002 -61506429.36468 3114 3002 21979483.77819 3115 3002 61984848.42173 3116 3002 -115922513.565 3117 3002 -61974810.45846 3118 3002 -6857560.807395 3119 3002 -71902237.78217 3120 3002 -21965599.32574 3121 3002 15972183.1856 3122 3002 -45381891.21762 3003 3003 638651984.0764 3004 3003 62499999.98975 3005 3003 26315015.78297 3006 3003 -96528642.2817 3007 3003 -62499999.98975 3008 3003 24744633.97173 3009 3003 -359433069.0472 3010 3003 -62526347.59063 3011 3003 -26303693.13048 3012 3003 4145599.03273 3013 3003 50026347.59267 3014 3003 -21269642.01197 3108 3003 2359203.743841 3109 3003 18759880.3565 3110 3003 10591538.29392 3111 3003 -4242975.331225 3112 3003 -15634880.35547 3113 3003 -8541442.446936 3114 3003 88021012.11513 3115 3003 15625000.00514 3116 3003 19639605.71133 3117 3003 -25660413.08922 3118 3003 -15625000.00513 3119 3003 -9107526.404853 3120 3003 -121308672.7549 3121 3003 -15631586.90535 3122 3003 -67766682.33182 3123 3003 -21749648.26534 3124 3003 12506586.90433 3125 3003 -17353145.19621 3004 3004 544867478.3976 3005 3004 -68597520.2745 3006 3004 -62499999.98975 3007 3004 -77777669.65641 3008 3004 12480746.60817 3009 3004 -62539521.39107 3010 3004 -65598146.14324 3011 3004 -38004027.78497 3012 3004 75039521.38901 3013 3004 4145599.032734 3014 3004 23877447.844 3108 3004 12506586.90433 3109 3004 2359203.743842 3110 3004 -5648902.101029 3111 3004 -15631586.90535 3112 3004 -58943322.82077 3113 3004 -35645020.83586 3114 3004 15625000.00514 3115 3004 64574885.68388 3116 3004 -6700809.891648 3117 3004 -15625000.00513 3118 3004 -20972669.93059 3119 3004 -9114622.378198 3120 3004 -15634880.35547 3121 3004 -47849941.99273 3122 3004 -21743418.55177 3123 3004 18759880.3565 3124 3004 -21749648.26534 3125 3004 20823318.70445 3005 3005 581180607.3115 3006 3005 24401752.02751 3007 3005 12206441.0528 3008 3005 -33102362.14451 3009 3005 -26298031.80422 3010 3005 -30593489.61466 3011 3005 -36647251.12535 3012 3005 -31904463.01796 3013 3005 15918298.56266 3014 3005 11054930.75394 3108 3005 7061025.529277 3109 3005 -8473353.151544 3110 3005 6291209.983575 3111 3005 -8539644.961234 3112 3005 -37291962.41402 3113 3005 -17378834.23163 3114 3005 -4768139.577623 3115 3005 -26226783.67725 3116 3005 -45750138.7209 3117 3005 -9107526.404853 3118 3005 -9114622.378198 3119 3005 -12350930.55863 3120 3005 -67422475.35311 3121 3005 -19819673.42971 3122 3005 -93029560.64943 3123 3005 -26029717.79432 3124 3005 13882212.46963 3125 3005 -57999062.0409 3006 3006 1006407425.409 3007 3006 2.30073928833e-05 3008 3006 9143622.631317 3009 3006 111257601.9543 3010 3006 -1.153349876404e-05 3011 3006 2285905.658962 3015 3006 -248524227.8966 3016 3006 5.185604095459e-06 3017 3006 -4571811.315691 3018 3006 -97883025.962 3019 3006 62499999.98974 3020 3006 -26687657.68648 3111 3006 -89115968.74764 3112 3006 -2.875924110413e-06 3113 3006 60031786.74372 3114 3006 -36905217.31746 3115 3006 -15625000.00514 3116 3006 21394122.91072 3117 3006 137281674.8977 3118 3006 7.092952728271e-06 3119 3006 2285905.658981 3120 3006 -24872960.07894 3121 3006 -1.01625919342e-05 3122 3006 571476.4150351 3126 3006 -92328809.14057 3127 3006 5.915760993958e-06 3128 3006 -62317692.40268 3129 3006 -38047023.33633 3130 3006 15625000.00513 3131 3006 -21965599.32574 3007 3007 856399644.4805 3008 3007 -109720972.8103 3009 3007 -1.239776611328e-05 3010 3007 -126242065.9199 3011 3007 54860486.40512 3015 3007 4.678964614868e-06 3016 3007 26477385.19127 3017 3007 -27430243.21608 3018 3007 62499999.98974 3019 3007 -79132053.33673 3020 3007 14949496.6079 3111 3007 -4.589557647705e-06 3112 3007 -20365565.44178 3113 3007 -6857560.807395 3114 3007 -15625000.00514 3115 3007 -32217474.15883 3116 3007 15286419.29648 3117 3007 6.973743438721e-06 3118 3007 99779729.64718 3119 3007 -27430243.21607 3120 3007 -8.568167686462e-06 3121 3007 -84247877.07676 3122 3007 62654357.71105 3126 3007 4.619359970093e-06 3127 3007 -23578405.83475 3128 3007 -6857560.807395 3129 3007 15625000.00513 3130 3007 -33359280.17771 3131 3007 15972183.1856 3008 3008 889294330.4544 3009 3008 2285905.658962 3010 3008 54860486.40512 3011 3008 48069959.95526 3015 3008 -4571811.315691 3016 3008 -27430243.21608 3017 3008 34500404.96993 3018 3008 -27030539.6307 3019 3008 15223802.16328 3020 3008 -36714051.95871 3111 3008 59688904.7995 3112 3008 -6857560.807395 3113 3008 -63334663.40088 3114 3008 21394122.91072 3115 3008 15286419.29648 3116 3008 -42337075.16724 3117 3008 2285905.658981 3118 3008 -27430243.21607 3119 3008 -82530234.81935 3120 3008 571476.4150354 3121 3008 62380052.15567 3122 3008 -128482138.2218 3126 3008 -61974810.45846 3127 3008 -6857560.807395 3128 3008 -71902237.78217 3129 3008 -21965599.32574 3130 3008 15972183.1856 3131 3008 -45381891.21762 3009 3009 1094265961.25 3010 3009 62565868.99196 3011 3009 30858520.46735 3012 3009 9522774.467089 3013 3009 -62526347.59063 3014 3009 26698619.14673 3015 3009 -96528642.2817 3016 3009 -62499999.98975 3017 3009 24744633.97173 3018 3009 -248524227.8966 3019 3009 5.185604095459e-06 3020 3009 -4571811.315691 3021 3009 -97883025.962 3022 3009 62499999.98974 3023 3009 -26687657.68648 3111 3009 -25195798.91083 3112 3009 15625000.00513 3113 3009 8536049.989829 3114 3009 -108451246.8934 3115 3009 -15634880.35547 3116 3009 54616251.09168 3117 3009 23319097.20481 3118 3009 3.09944152832e-06 3119 3009 571476.4150216 3120 3009 166227659.6012 3121 3009 15641467.2557 3122 3009 7711642.939084 3123 3009 -41196855.08124 3124 3009 -15631586.90536 3125 3009 21974855.62738 3126 3009 -25660413.08922 3127 3009 -15625000.00513 3128 3009 -9107526.404853 3129 3009 -92328809.14057 3130 3009 5.915760993958e-06 3131 3009 -62317692.40268 3132 3009 -38047023.33633 3133 3009 15625000.00513 3134 3009 -21965599.32574 3010 3010 925477565.1068 3011 3010 -85034510.41928 3012 3010 -62539521.39107 3013 3010 -209278615.3833 3014 3010 45543422.51828 3015 3010 -62499999.98975 3016 3010 -77777669.65641 3017 3010 12480746.60817 3018 3010 4.678964614868e-06 3019 3010 26477385.19127 3020 3010 -27430243.21608 3021 3010 62499999.98974 3022 3010 -79132053.33673 3023 3010 14949496.6079 3111 3010 15625000.00513 3112 3010 -20508055.7522 3113 3010 -8428858.489084 3114 3010 -15631586.90536 3115 3010 -34992516.13117 3116 3010 4591649.47589 3117 3010 4.559755325317e-06 3118 3010 -36055819.793 3119 3010 -35224114.49497 3120 3010 15641467.2557 3121 3010 124030560.5447 3122 3010 -21261017.33538 3123 3010 -15634880.35547 3124 3010 -95897202.5708 3125 3010 60337907.00837 3126 3010 -15625000.00513 3127 3010 -20972669.93059 3128 3010 -9114622.378198 3129 3010 4.619359970093e-06 3130 3010 -23578405.83475 3131 3010 -6857560.807395 3132 3010 15625000.00513 3133 3010 -33359280.17771 3134 3010 15972183.1856 3011 3011 898921811.1224 3012 3011 27046981.82107 3013 3011 53228121.77035 3014 3011 1137131.864082 3015 3011 24401752.02751 3016 3011 12206441.0528 3017 3011 -33102362.14451 3018 3011 -4571811.315691 3019 3011 -27430243.21608 3020 3011 34500404.96993 3021 3011 -27030539.6307 3022 3011 15223802.16328 3023 3011 -36714051.95871 3111 3011 8536049.989829 3112 3011 -8428858.489084 3113 3011 -11111959.41625 3114 3011 54272044.11297 3115 3011 2673044.969291 3116 3011 -58743091.68526 3117 3011 571476.4150219 3118 3011 -34949808.93959 3119 3011 30014.53480115 3120 3011 7718068.787606 3121 3011 -21255876.71511 3122 3011 -61506429.36468 3123 3011 21979483.77819 3124 3011 61984848.42173 3125 3011 -115922513.565 3126 3011 -9107526.404853 3127 3011 -9114622.378198 3128 3011 -12350930.55863 3129 3011 -61974810.45846 3130 3011 -6857560.807395 3131 3011 -71902237.78217 3132 3011 -21965599.32574 3133 3011 15972183.1856 3134 3011 -45381891.21762 3012 3012 638651984.0764 3013 3012 62499999.98975 3014 3012 26315015.78297 3018 3012 -96528642.2817 3019 3012 -62499999.98975 3020 3012 24744633.97173 3021 3012 -359433069.0472 3022 3012 -62526347.59063 3023 3012 -26303693.13048 3024 3012 4145599.03273 3025 3012 50026347.59267 3026 3012 -21269642.01197 3114 3012 2359203.743841 3115 3012 18759880.3565 3116 3012 10591538.29392 3120 3012 -4242975.331225 3121 3012 -15634880.35547 3122 3012 -8541442.446936 3123 3012 88021012.11513 3124 3012 15625000.00514 3125 3012 19639605.71133 3129 3012 -25660413.08922 3130 3012 -15625000.00513 3131 3012 -9107526.404853 3132 3012 -121308672.7549 3133 3012 -15631586.90535 3134 3012 -67766682.33182 3135 3012 -21749648.26534 3136 3012 12506586.90433 3137 3012 -17353145.19621 3013 3013 544867478.3976 3014 3013 -68597520.2745 3018 3013 -62499999.98975 3019 3013 -77777669.65641 3020 3013 12480746.60817 3021 3013 -62539521.39107 3022 3013 -65598146.14324 3023 3013 -38004027.78497 3024 3013 75039521.38901 3025 3013 4145599.032734 3026 3013 23877447.844 3114 3013 12506586.90433 3115 3013 2359203.743842 3116 3013 -5648902.101029 3120 3013 -15631586.90535 3121 3013 -58943322.82077 3122 3013 -35645020.83586 3123 3013 15625000.00514 3124 3013 64574885.68388 3125 3013 -6700809.891648 3129 3013 -15625000.00513 3130 3013 -20972669.93059 3131 3013 -9114622.378198 3132 3013 -15634880.35547 3133 3013 -47849941.99273 3134 3013 -21743418.55177 3135 3013 18759880.3565 3136 3013 -21749648.26534 3137 3013 20823318.70445 3014 3014 581180607.3115 3018 3014 24401752.02751 3019 3014 12206441.0528 3020 3014 -33102362.14451 3021 3014 -26298031.80422 3022 3014 -30593489.61466 3023 3014 -36647251.12535 3024 3014 -31904463.01796 3025 3014 15918298.56266 3026 3014 11054930.75394 3114 3014 7061025.529277 3115 3014 -8473353.151544 3116 3014 6291209.983575 3120 3014 -8539644.961234 3121 3014 -37291962.41402 3122 3014 -17378834.23163 3123 3014 -4768139.577623 3124 3014 -26226783.67725 3125 3014 -45750138.7209 3129 3014 -9107526.404853 3130 3014 -9114622.378198 3131 3014 -12350930.55863 3132 3014 -67422475.35311 3133 3014 -19819673.42971 3134 3014 -93029560.64943 3135 3014 -26029717.79432 3136 3014 13882212.46963 3137 3014 -57999062.0409 3015 3015 1006407425.409 3016 3015 2.30073928833e-05 3017 3015 9143622.631317 3018 3015 111257601.9543 3019 3015 -1.153349876404e-05 3020 3015 2285905.658962 3027 3015 -248524227.8966 3028 3015 5.185604095459e-06 3029 3015 -4571811.315691 3030 3015 -97883025.962 3031 3015 62499999.98974 3032 3015 -26687657.68648 3117 3015 -89115968.74764 3118 3015 -2.875924110413e-06 3119 3015 60031786.74372 3120 3015 -36905217.31746 3121 3015 -15625000.00514 3122 3015 21394122.91072 3126 3015 137281674.8977 3127 3015 7.092952728271e-06 3128 3015 2285905.658981 3129 3015 -24872960.07894 3130 3015 -1.01625919342e-05 3131 3015 571476.4150351 3138 3015 -92328809.14057 3139 3015 5.915760993958e-06 3140 3015 -62317692.40268 3141 3015 -38047023.33633 3142 3015 15625000.00513 3143 3015 -21965599.32574 3016 3016 856399644.4805 3017 3016 -109720972.8103 3018 3016 -1.239776611328e-05 3019 3016 -126242065.9199 3020 3016 54860486.40512 3027 3016 4.678964614868e-06 3028 3016 26477385.19127 3029 3016 -27430243.21608 3030 3016 62499999.98974 3031 3016 -79132053.33673 3032 3016 14949496.6079 3117 3016 -4.589557647705e-06 3118 3016 -20365565.44178 3119 3016 -6857560.807395 3120 3016 -15625000.00514 3121 3016 -32217474.15883 3122 3016 15286419.29648 3126 3016 6.973743438721e-06 3127 3016 99779729.64718 3128 3016 -27430243.21607 3129 3016 -8.568167686462e-06 3130 3016 -84247877.07676 3131 3016 62654357.71105 3138 3016 4.619359970093e-06 3139 3016 -23578405.83475 3140 3016 -6857560.807395 3141 3016 15625000.00513 3142 3016 -33359280.17771 3143 3016 15972183.1856 3017 3017 889294330.4544 3018 3017 2285905.658962 3019 3017 54860486.40512 3020 3017 48069959.95526 3027 3017 -4571811.315691 3028 3017 -27430243.21608 3029 3017 34500404.96993 3030 3017 -27030539.6307 3031 3017 15223802.16328 3032 3017 -36714051.95871 3117 3017 59688904.7995 3118 3017 -6857560.807395 3119 3017 -63334663.40088 3120 3017 21394122.91072 3121 3017 15286419.29648 3122 3017 -42337075.16724 3126 3017 2285905.658981 3127 3017 -27430243.21607 3128 3017 -82530234.81935 3129 3017 571476.4150354 3130 3017 62380052.15567 3131 3017 -128482138.2218 3138 3017 -61974810.45846 3139 3017 -6857560.807395 3140 3017 -71902237.78217 3141 3017 -21965599.32574 3142 3017 15972183.1856 3143 3017 -45381891.21762 3018 3018 1006407425.409 3019 3018 2.30073928833e-05 3020 3018 9143622.631317 3021 3018 111257601.9543 3022 3018 -1.153349876404e-05 3023 3018 2285905.658962 3027 3018 -96528642.2817 3028 3018 -62499999.98975 3029 3018 24744633.97173 3030 3018 -248524227.8966 3031 3018 5.185604095459e-06 3032 3018 -4571811.315691 3033 3018 -97883025.962 3034 3018 62499999.98974 3035 3018 -26687657.68648 3117 3018 -25195798.91083 3118 3018 15625000.00513 3119 3018 8536049.989829 3120 3018 -89115968.74764 3121 3018 -2.875924110413e-06 3122 3018 60031786.74372 3123 3018 -36905217.31746 3124 3018 -15625000.00514 3125 3018 21394122.91072 3126 3018 23319097.20481 3127 3018 3.09944152832e-06 3128 3018 571476.4150216 3129 3018 137281674.8977 3130 3018 7.092952728271e-06 3131 3018 2285905.658981 3132 3018 -24872960.07894 3133 3018 -1.01625919342e-05 3134 3018 571476.4150351 3138 3018 -25660413.08922 3139 3018 -15625000.00513 3140 3018 -9107526.404853 3141 3018 -92328809.14057 3142 3018 5.915760993958e-06 3143 3018 -62317692.40268 3144 3018 -38047023.33633 3145 3018 15625000.00513 3146 3018 -21965599.32574 3019 3019 856399644.4805 3020 3019 -109720972.8103 3021 3019 -1.239776611328e-05 3022 3019 -126242065.9199 3023 3019 54860486.40512 3027 3019 -62499999.98975 3028 3019 -77777669.65641 3029 3019 12480746.60817 3030 3019 4.678964614868e-06 3031 3019 26477385.19127 3032 3019 -27430243.21608 3033 3019 62499999.98974 3034 3019 -79132053.33673 3035 3019 14949496.6079 3117 3019 15625000.00513 3118 3019 -20508055.7522 3119 3019 -8428858.489084 3120 3019 -4.589557647705e-06 3121 3019 -20365565.44178 3122 3019 -6857560.807395 3123 3019 -15625000.00514 3124 3019 -32217474.15883 3125 3019 15286419.29648 3126 3019 4.559755325317e-06 3127 3019 -36055819.793 3128 3019 -35224114.49497 3129 3019 6.973743438721e-06 3130 3019 99779729.64718 3131 3019 -27430243.21607 3132 3019 -8.568167686462e-06 3133 3019 -84247877.07676 3134 3019 62654357.71105 3138 3019 -15625000.00513 3139 3019 -20972669.93059 3140 3019 -9114622.378198 3141 3019 4.619359970093e-06 3142 3019 -23578405.83475 3143 3019 -6857560.807395 3144 3019 15625000.00513 3145 3019 -33359280.17771 3146 3019 15972183.1856 3020 3020 889294330.4544 3021 3020 2285905.658962 3022 3020 54860486.40512 3023 3020 48069959.95526 3027 3020 24401752.02751 3028 3020 12206441.0528 3029 3020 -33102362.14451 3030 3020 -4571811.315691 3031 3020 -27430243.21608 3032 3020 34500404.96993 3033 3020 -27030539.6307 3034 3020 15223802.16328 3035 3020 -36714051.95871 3117 3020 8536049.989829 3118 3020 -8428858.489084 3119 3020 -11111959.41625 3120 3020 59688904.7995 3121 3020 -6857560.807395 3122 3020 -63334663.40088 3123 3020 21394122.91072 3124 3020 15286419.29648 3125 3020 -42337075.16724 3126 3020 571476.4150219 3127 3020 -34949808.93959 3128 3020 30014.53480115 3129 3020 2285905.658981 3130 3020 -27430243.21607 3131 3020 -82530234.81935 3132 3020 571476.4150354 3133 3020 62380052.15567 3134 3020 -128482138.2218 3138 3020 -9107526.404853 3139 3020 -9114622.378198 3140 3020 -12350930.55863 3141 3020 -61974810.45846 3142 3020 -6857560.807395 3143 3020 -71902237.78217 3144 3020 -21965599.32574 3145 3020 15972183.1856 3146 3020 -45381891.21762 3021 3021 1094265961.25 3022 3021 62565868.99196 3023 3021 30858520.46735 3024 3021 9522774.467089 3025 3021 -62526347.59063 3026 3021 26698619.14673 3030 3021 -96528642.2817 3031 3021 -62499999.98975 3032 3021 24744633.97173 3033 3021 -248524227.8966 3034 3021 5.185604095459e-06 3035 3021 -4571811.315691 3036 3021 -97883025.962 3037 3021 62499999.98974 3038 3021 -26687657.68648 3120 3021 -25195798.91083 3121 3021 15625000.00513 3122 3021 8536049.989829 3123 3021 -108451246.8934 3124 3021 -15634880.35547 3125 3021 54616251.09168 3129 3021 23319097.20481 3130 3021 3.09944152832e-06 3131 3021 571476.4150216 3132 3021 166227659.6012 3133 3021 15641467.2557 3134 3021 7711642.939084 3135 3021 -41196855.08124 3136 3021 -15631586.90536 3137 3021 21974855.62738 3141 3021 -25660413.08922 3142 3021 -15625000.00513 3143 3021 -9107526.404853 3144 3021 -92328809.14057 3145 3021 5.915760993958e-06 3146 3021 -62317692.40268 3147 3021 -38047023.33633 3148 3021 15625000.00513 3149 3021 -21965599.32574 3022 3022 925477565.1068 3023 3022 -85034510.41928 3024 3022 -62539521.39107 3025 3022 -209278615.3833 3026 3022 45543422.51828 3030 3022 -62499999.98975 3031 3022 -77777669.65641 3032 3022 12480746.60817 3033 3022 4.678964614868e-06 3034 3022 26477385.19127 3035 3022 -27430243.21608 3036 3022 62499999.98974 3037 3022 -79132053.33673 3038 3022 14949496.6079 3120 3022 15625000.00513 3121 3022 -20508055.7522 3122 3022 -8428858.489084 3123 3022 -15631586.90536 3124 3022 -34992516.13117 3125 3022 4591649.47589 3129 3022 4.559755325317e-06 3130 3022 -36055819.793 3131 3022 -35224114.49497 3132 3022 15641467.2557 3133 3022 124030560.5447 3134 3022 -21261017.33538 3135 3022 -15634880.35547 3136 3022 -95897202.5708 3137 3022 60337907.00837 3141 3022 -15625000.00513 3142 3022 -20972669.93059 3143 3022 -9114622.378198 3144 3022 4.619359970093e-06 3145 3022 -23578405.83475 3146 3022 -6857560.807395 3147 3022 15625000.00513 3148 3022 -33359280.17771 3149 3022 15972183.1856 3023 3023 898921811.1224 3024 3023 27046981.82107 3025 3023 53228121.77035 3026 3023 1137131.864082 3030 3023 24401752.02751 3031 3023 12206441.0528 3032 3023 -33102362.14451 3033 3023 -4571811.315691 3034 3023 -27430243.21608 3035 3023 34500404.96993 3036 3023 -27030539.6307 3037 3023 15223802.16328 3038 3023 -36714051.95871 3120 3023 8536049.989829 3121 3023 -8428858.489084 3122 3023 -11111959.41625 3123 3023 54272044.11297 3124 3023 2673044.969291 3125 3023 -58743091.68526 3129 3023 571476.4150219 3130 3023 -34949808.93959 3131 3023 30014.53480115 3132 3023 7718068.787606 3133 3023 -21255876.71511 3134 3023 -61506429.36468 3135 3023 21979483.77819 3136 3023 61984848.42173 3137 3023 -115922513.565 3141 3023 -9107526.404853 3142 3023 -9114622.378198 3143 3023 -12350930.55863 3144 3023 -61974810.45846 3145 3023 -6857560.807395 3146 3023 -71902237.78217 3147 3023 -21965599.32574 3148 3023 15972183.1856 3149 3023 -45381891.21762 3024 3024 638651984.0764 3025 3024 62499999.98975 3026 3024 26315015.78297 3033 3024 -96528642.2817 3034 3024 -62499999.98975 3035 3024 24744633.97173 3036 3024 -359433069.0472 3037 3024 -62526347.59063 3038 3024 -26303693.13048 3039 3024 4145599.03273 3040 3024 50026347.59267 3041 3024 -21269642.01197 3123 3024 2359203.743841 3124 3024 18759880.3565 3125 3024 10591538.29392 3132 3024 -4242975.331225 3133 3024 -15634880.35547 3134 3024 -8541442.446936 3135 3024 88021012.11513 3136 3024 15625000.00514 3137 3024 19639605.71133 3144 3024 -25660413.08922 3145 3024 -15625000.00513 3146 3024 -9107526.404853 3147 3024 -121308672.7549 3148 3024 -15631586.90535 3149 3024 -67766682.33182 3150 3024 -21749648.26534 3151 3024 12506586.90433 3152 3024 -17353145.19621 3025 3025 544867478.3976 3026 3025 -68597520.2745 3033 3025 -62499999.98975 3034 3025 -77777669.65641 3035 3025 12480746.60817 3036 3025 -62539521.39107 3037 3025 -65598146.14324 3038 3025 -38004027.78497 3039 3025 75039521.38901 3040 3025 4145599.032734 3041 3025 23877447.844 3123 3025 12506586.90433 3124 3025 2359203.743842 3125 3025 -5648902.101029 3132 3025 -15631586.90535 3133 3025 -58943322.82077 3134 3025 -35645020.83586 3135 3025 15625000.00514 3136 3025 64574885.68388 3137 3025 -6700809.891648 3144 3025 -15625000.00513 3145 3025 -20972669.93059 3146 3025 -9114622.378198 3147 3025 -15634880.35547 3148 3025 -47849941.99273 3149 3025 -21743418.55177 3150 3025 18759880.3565 3151 3025 -21749648.26534 3152 3025 20823318.70445 3026 3026 581180607.3115 3033 3026 24401752.02751 3034 3026 12206441.0528 3035 3026 -33102362.14451 3036 3026 -26298031.80422 3037 3026 -30593489.61466 3038 3026 -36647251.12535 3039 3026 -31904463.01796 3040 3026 15918298.56266 3041 3026 11054930.75394 3123 3026 7061025.529277 3124 3026 -8473353.151544 3125 3026 6291209.983575 3132 3026 -8539644.961234 3133 3026 -37291962.41402 3134 3026 -17378834.23163 3135 3026 -4768139.577623 3136 3026 -26226783.67725 3137 3026 -45750138.7209 3144 3026 -9107526.404853 3145 3026 -9114622.378198 3146 3026 -12350930.55863 3147 3026 -67422475.35311 3148 3026 -19819673.42971 3149 3026 -93029560.64943 3150 3026 -26029717.79432 3151 3026 13882212.46963 3152 3026 -57999062.0409 3027 3027 1006407425.409 3028 3027 2.30073928833e-05 3029 3027 9143622.631317 3030 3027 111257601.9543 3031 3027 -1.153349876404e-05 3032 3027 2285905.658962 3042 3027 -248524227.8966 3043 3027 5.185604095459e-06 3044 3027 -4571811.315691 3045 3027 -97883025.962 3046 3027 62499999.98974 3047 3027 -26687657.68648 3126 3027 -89115968.74764 3127 3027 -2.875924110413e-06 3128 3027 60031786.74372 3129 3027 -36905217.31746 3130 3027 -15625000.00514 3131 3027 21394122.91072 3138 3027 137281674.8977 3139 3027 7.092952728271e-06 3140 3027 2285905.658981 3141 3027 -24872960.07894 3142 3027 -1.01625919342e-05 3143 3027 571476.4150351 3153 3027 -92328809.14057 3154 3027 5.915760993958e-06 3155 3027 -62317692.40268 3156 3027 -38047023.33633 3157 3027 15625000.00513 3158 3027 -21965599.32574 3028 3028 856399644.4805 3029 3028 -109720972.8103 3030 3028 -1.239776611328e-05 3031 3028 -126242065.9199 3032 3028 54860486.40512 3042 3028 4.678964614868e-06 3043 3028 26477385.19127 3044 3028 -27430243.21608 3045 3028 62499999.98974 3046 3028 -79132053.33673 3047 3028 14949496.6079 3126 3028 -4.589557647705e-06 3127 3028 -20365565.44178 3128 3028 -6857560.807395 3129 3028 -15625000.00514 3130 3028 -32217474.15883 3131 3028 15286419.29648 3138 3028 6.973743438721e-06 3139 3028 99779729.64718 3140 3028 -27430243.21607 3141 3028 -8.568167686462e-06 3142 3028 -84247877.07676 3143 3028 62654357.71105 3153 3028 4.619359970093e-06 3154 3028 -23578405.83475 3155 3028 -6857560.807395 3156 3028 15625000.00513 3157 3028 -33359280.17771 3158 3028 15972183.1856 3029 3029 889294330.4544 3030 3029 2285905.658962 3031 3029 54860486.40512 3032 3029 48069959.95526 3042 3029 -4571811.315691 3043 3029 -27430243.21608 3044 3029 34500404.96993 3045 3029 -27030539.6307 3046 3029 15223802.16328 3047 3029 -36714051.95871 3126 3029 59688904.7995 3127 3029 -6857560.807395 3128 3029 -63334663.40088 3129 3029 21394122.91072 3130 3029 15286419.29648 3131 3029 -42337075.16724 3138 3029 2285905.658981 3139 3029 -27430243.21607 3140 3029 -82530234.81935 3141 3029 571476.4150354 3142 3029 62380052.15567 3143 3029 -128482138.2218 3153 3029 -61974810.45846 3154 3029 -6857560.807395 3155 3029 -71902237.78217 3156 3029 -21965599.32574 3157 3029 15972183.1856 3158 3029 -45381891.21762 3030 3030 1006407425.409 3031 3030 2.30073928833e-05 3032 3030 9143622.631317 3033 3030 111257601.9543 3034 3030 -1.153349876404e-05 3035 3030 2285905.658962 3042 3030 -96528642.2817 3043 3030 -62499999.98975 3044 3030 24744633.97173 3045 3030 -248524227.8966 3046 3030 5.185604095459e-06 3047 3030 -4571811.315691 3048 3030 -97883025.962 3049 3030 62499999.98974 3050 3030 -26687657.68648 3126 3030 -25195798.91083 3127 3030 15625000.00513 3128 3030 8536049.989829 3129 3030 -89115968.74764 3130 3030 -2.875924110413e-06 3131 3030 60031786.74372 3132 3030 -36905217.31746 3133 3030 -15625000.00514 3134 3030 21394122.91072 3138 3030 23319097.20481 3139 3030 3.09944152832e-06 3140 3030 571476.4150216 3141 3030 137281674.8977 3142 3030 7.092952728271e-06 3143 3030 2285905.658981 3144 3030 -24872960.07894 3145 3030 -1.01625919342e-05 3146 3030 571476.4150351 3153 3030 -25660413.08922 3154 3030 -15625000.00513 3155 3030 -9107526.404853 3156 3030 -92328809.14057 3157 3030 5.915760993958e-06 3158 3030 -62317692.40268 3159 3030 -38047023.33633 3160 3030 15625000.00513 3161 3030 -21965599.32574 3031 3031 856399644.4805 3032 3031 -109720972.8103 3033 3031 -1.239776611328e-05 3034 3031 -126242065.9199 3035 3031 54860486.40512 3042 3031 -62499999.98975 3043 3031 -77777669.65641 3044 3031 12480746.60817 3045 3031 4.678964614868e-06 3046 3031 26477385.19127 3047 3031 -27430243.21608 3048 3031 62499999.98974 3049 3031 -79132053.33673 3050 3031 14949496.6079 3126 3031 15625000.00513 3127 3031 -20508055.7522 3128 3031 -8428858.489084 3129 3031 -4.589557647705e-06 3130 3031 -20365565.44178 3131 3031 -6857560.807395 3132 3031 -15625000.00514 3133 3031 -32217474.15883 3134 3031 15286419.29648 3138 3031 4.559755325317e-06 3139 3031 -36055819.793 3140 3031 -35224114.49497 3141 3031 6.973743438721e-06 3142 3031 99779729.64718 3143 3031 -27430243.21607 3144 3031 -8.568167686462e-06 3145 3031 -84247877.07676 3146 3031 62654357.71105 3153 3031 -15625000.00513 3154 3031 -20972669.93059 3155 3031 -9114622.378198 3156 3031 4.619359970093e-06 3157 3031 -23578405.83475 3158 3031 -6857560.807395 3159 3031 15625000.00513 3160 3031 -33359280.17771 3161 3031 15972183.1856 3032 3032 889294330.4544 3033 3032 2285905.658962 3034 3032 54860486.40512 3035 3032 48069959.95526 3042 3032 24401752.02751 3043 3032 12206441.0528 3044 3032 -33102362.14451 3045 3032 -4571811.315691 3046 3032 -27430243.21608 3047 3032 34500404.96993 3048 3032 -27030539.6307 3049 3032 15223802.16328 3050 3032 -36714051.95871 3126 3032 8536049.989829 3127 3032 -8428858.489084 3128 3032 -11111959.41625 3129 3032 59688904.7995 3130 3032 -6857560.807395 3131 3032 -63334663.40088 3132 3032 21394122.91072 3133 3032 15286419.29648 3134 3032 -42337075.16724 3138 3032 571476.4150219 3139 3032 -34949808.93959 3140 3032 30014.53480115 3141 3032 2285905.658981 3142 3032 -27430243.21607 3143 3032 -82530234.81935 3144 3032 571476.4150354 3145 3032 62380052.15567 3146 3032 -128482138.2218 3153 3032 -9107526.404853 3154 3032 -9114622.378198 3155 3032 -12350930.55863 3156 3032 -61974810.45846 3157 3032 -6857560.807395 3158 3032 -71902237.78217 3159 3032 -21965599.32574 3160 3032 15972183.1856 3161 3032 -45381891.21762 3033 3033 1006407425.409 3034 3033 2.30073928833e-05 3035 3033 9143622.631317 3036 3033 111257601.9543 3037 3033 -1.153349876404e-05 3038 3033 2285905.658962 3045 3033 -96528642.2817 3046 3033 -62499999.98975 3047 3033 24744633.97173 3048 3033 -248524227.8966 3049 3033 5.185604095459e-06 3050 3033 -4571811.315691 3051 3033 -97883025.962 3052 3033 62499999.98974 3053 3033 -26687657.68648 3129 3033 -25195798.91083 3130 3033 15625000.00513 3131 3033 8536049.989829 3132 3033 -89115968.74764 3133 3033 -2.875924110413e-06 3134 3033 60031786.74372 3135 3033 -36905217.31746 3136 3033 -15625000.00514 3137 3033 21394122.91072 3141 3033 23319097.20481 3142 3033 3.09944152832e-06 3143 3033 571476.4150216 3144 3033 137281674.8977 3145 3033 7.092952728271e-06 3146 3033 2285905.658981 3147 3033 -24872960.07894 3148 3033 -1.01625919342e-05 3149 3033 571476.4150351 3156 3033 -25660413.08922 3157 3033 -15625000.00513 3158 3033 -9107526.404853 3159 3033 -92328809.14057 3160 3033 5.915760993958e-06 3161 3033 -62317692.40268 3162 3033 -38047023.33633 3163 3033 15625000.00513 3164 3033 -21965599.32574 3034 3034 856399644.4805 3035 3034 -109720972.8103 3036 3034 -1.239776611328e-05 3037 3034 -126242065.9199 3038 3034 54860486.40512 3045 3034 -62499999.98975 3046 3034 -77777669.65641 3047 3034 12480746.60817 3048 3034 4.678964614868e-06 3049 3034 26477385.19127 3050 3034 -27430243.21608 3051 3034 62499999.98974 3052 3034 -79132053.33673 3053 3034 14949496.6079 3129 3034 15625000.00513 3130 3034 -20508055.7522 3131 3034 -8428858.489084 3132 3034 -4.589557647705e-06 3133 3034 -20365565.44178 3134 3034 -6857560.807395 3135 3034 -15625000.00514 3136 3034 -32217474.15883 3137 3034 15286419.29648 3141 3034 4.559755325317e-06 3142 3034 -36055819.793 3143 3034 -35224114.49497 3144 3034 6.973743438721e-06 3145 3034 99779729.64718 3146 3034 -27430243.21607 3147 3034 -8.568167686462e-06 3148 3034 -84247877.07676 3149 3034 62654357.71105 3156 3034 -15625000.00513 3157 3034 -20972669.93059 3158 3034 -9114622.378198 3159 3034 4.619359970093e-06 3160 3034 -23578405.83475 3161 3034 -6857560.807395 3162 3034 15625000.00513 3163 3034 -33359280.17771 3164 3034 15972183.1856 3035 3035 889294330.4544 3036 3035 2285905.658962 3037 3035 54860486.40512 3038 3035 48069959.95526 3045 3035 24401752.02751 3046 3035 12206441.0528 3047 3035 -33102362.14451 3048 3035 -4571811.315691 3049 3035 -27430243.21608 3050 3035 34500404.96993 3051 3035 -27030539.6307 3052 3035 15223802.16328 3053 3035 -36714051.95871 3129 3035 8536049.989829 3130 3035 -8428858.489084 3131 3035 -11111959.41625 3132 3035 59688904.7995 3133 3035 -6857560.807395 3134 3035 -63334663.40088 3135 3035 21394122.91072 3136 3035 15286419.29648 3137 3035 -42337075.16724 3141 3035 571476.4150219 3142 3035 -34949808.93959 3143 3035 30014.53480115 3144 3035 2285905.658981 3145 3035 -27430243.21607 3146 3035 -82530234.81935 3147 3035 571476.4150354 3148 3035 62380052.15567 3149 3035 -128482138.2218 3156 3035 -9107526.404853 3157 3035 -9114622.378198 3158 3035 -12350930.55863 3159 3035 -61974810.45846 3160 3035 -6857560.807395 3161 3035 -71902237.78217 3162 3035 -21965599.32574 3163 3035 15972183.1856 3164 3035 -45381891.21762 3036 3036 1094265961.25 3037 3036 62565868.99196 3038 3036 30858520.46735 3039 3036 9522774.467089 3040 3036 -62526347.59063 3041 3036 26698619.14673 3048 3036 -96528642.2817 3049 3036 -62499999.98975 3050 3036 24744633.97173 3051 3036 -248524227.8966 3052 3036 5.185604095459e-06 3053 3036 -4571811.315691 3054 3036 -97883025.962 3055 3036 62499999.98974 3056 3036 -26687657.68648 3132 3036 -25195798.91083 3133 3036 15625000.00513 3134 3036 8536049.989829 3135 3036 -108451246.8934 3136 3036 -15634880.35547 3137 3036 54616251.09168 3144 3036 23319097.20481 3145 3036 3.09944152832e-06 3146 3036 571476.4150216 3147 3036 166227659.6012 3148 3036 15641467.2557 3149 3036 7711642.939084 3150 3036 -41196855.08124 3151 3036 -15631586.90536 3152 3036 21974855.62738 3159 3036 -25660413.08922 3160 3036 -15625000.00513 3161 3036 -9107526.404853 3162 3036 -92328809.14057 3163 3036 5.915760993958e-06 3164 3036 -62317692.40268 3165 3036 -38047023.33633 3166 3036 15625000.00513 3167 3036 -21965599.32574 3037 3037 925477565.1068 3038 3037 -85034510.41928 3039 3037 -62539521.39107 3040 3037 -209278615.3833 3041 3037 45543422.51828 3048 3037 -62499999.98975 3049 3037 -77777669.65641 3050 3037 12480746.60817 3051 3037 4.678964614868e-06 3052 3037 26477385.19127 3053 3037 -27430243.21608 3054 3037 62499999.98974 3055 3037 -79132053.33673 3056 3037 14949496.6079 3132 3037 15625000.00513 3133 3037 -20508055.7522 3134 3037 -8428858.489084 3135 3037 -15631586.90536 3136 3037 -34992516.13117 3137 3037 4591649.47589 3144 3037 4.559755325317e-06 3145 3037 -36055819.793 3146 3037 -35224114.49497 3147 3037 15641467.2557 3148 3037 124030560.5447 3149 3037 -21261017.33538 3150 3037 -15634880.35547 3151 3037 -95897202.5708 3152 3037 60337907.00837 3159 3037 -15625000.00513 3160 3037 -20972669.93059 3161 3037 -9114622.378198 3162 3037 4.619359970093e-06 3163 3037 -23578405.83475 3164 3037 -6857560.807395 3165 3037 15625000.00513 3166 3037 -33359280.17771 3167 3037 15972183.1856 3038 3038 898921811.1224 3039 3038 27046981.82107 3040 3038 53228121.77035 3041 3038 1137131.864082 3048 3038 24401752.02751 3049 3038 12206441.0528 3050 3038 -33102362.14451 3051 3038 -4571811.315691 3052 3038 -27430243.21608 3053 3038 34500404.96993 3054 3038 -27030539.6307 3055 3038 15223802.16328 3056 3038 -36714051.95871 3132 3038 8536049.989829 3133 3038 -8428858.489084 3134 3038 -11111959.41625 3135 3038 54272044.11297 3136 3038 2673044.969291 3137 3038 -58743091.68526 3144 3038 571476.4150219 3145 3038 -34949808.93959 3146 3038 30014.53480115 3147 3038 7718068.787606 3148 3038 -21255876.71511 3149 3038 -61506429.36468 3150 3038 21979483.77819 3151 3038 61984848.42173 3152 3038 -115922513.565 3159 3038 -9107526.404853 3160 3038 -9114622.378198 3161 3038 -12350930.55863 3162 3038 -61974810.45846 3163 3038 -6857560.807395 3164 3038 -71902237.78217 3165 3038 -21965599.32574 3166 3038 15972183.1856 3167 3038 -45381891.21762 3039 3039 638651984.0764 3040 3039 62499999.98975 3041 3039 26315015.78297 3051 3039 -96528642.2817 3052 3039 -62499999.98975 3053 3039 24744633.97173 3054 3039 -359433069.0472 3055 3039 -62526347.59063 3056 3039 -26303693.13048 3057 3039 4145599.03273 3058 3039 50026347.59267 3059 3039 -21269642.01197 3135 3039 2359203.743841 3136 3039 18759880.3565 3137 3039 10591538.29392 3147 3039 -4242975.331225 3148 3039 -15634880.35547 3149 3039 -8541442.446936 3150 3039 88021012.11513 3151 3039 15625000.00514 3152 3039 19639605.71133 3162 3039 -25660413.08922 3163 3039 -15625000.00513 3164 3039 -9107526.404853 3165 3039 -121308672.7549 3166 3039 -15631586.90535 3167 3039 -67766682.33182 3168 3039 -21749648.26534 3169 3039 12506586.90433 3170 3039 -17353145.19621 3040 3040 544867478.3976 3041 3040 -68597520.2745 3051 3040 -62499999.98975 3052 3040 -77777669.65641 3053 3040 12480746.60817 3054 3040 -62539521.39107 3055 3040 -65598146.14324 3056 3040 -38004027.78497 3057 3040 75039521.38901 3058 3040 4145599.032734 3059 3040 23877447.844 3135 3040 12506586.90433 3136 3040 2359203.743842 3137 3040 -5648902.101029 3147 3040 -15631586.90535 3148 3040 -58943322.82077 3149 3040 -35645020.83586 3150 3040 15625000.00514 3151 3040 64574885.68388 3152 3040 -6700809.891648 3162 3040 -15625000.00513 3163 3040 -20972669.93059 3164 3040 -9114622.378198 3165 3040 -15634880.35547 3166 3040 -47849941.99273 3167 3040 -21743418.55177 3168 3040 18759880.3565 3169 3040 -21749648.26534 3170 3040 20823318.70445 3041 3041 581180607.3115 3051 3041 24401752.02751 3052 3041 12206441.0528 3053 3041 -33102362.14451 3054 3041 -26298031.80422 3055 3041 -30593489.61466 3056 3041 -36647251.12535 3057 3041 -31904463.01796 3058 3041 15918298.56266 3059 3041 11054930.75394 3135 3041 7061025.529277 3136 3041 -8473353.151544 3137 3041 6291209.983575 3147 3041 -8539644.961234 3148 3041 -37291962.41402 3149 3041 -17378834.23163 3150 3041 -4768139.577623 3151 3041 -26226783.67725 3152 3041 -45750138.7209 3162 3041 -9107526.404853 3163 3041 -9114622.378198 3164 3041 -12350930.55863 3165 3041 -67422475.35311 3166 3041 -19819673.42971 3167 3041 -93029560.64943 3168 3041 -26029717.79432 3169 3041 13882212.46963 3170 3041 -57999062.0409 3042 3042 1006407425.409 3043 3042 2.30073928833e-05 3044 3042 9143622.631317 3045 3042 111257601.9543 3046 3042 -1.153349876404e-05 3047 3042 2285905.658962 3060 3042 -248524227.8966 3061 3042 5.185604095459e-06 3062 3042 -4571811.315691 3063 3042 -97883025.962 3064 3042 62499999.98974 3065 3042 -26687657.68648 3138 3042 -89115968.74764 3139 3042 -2.875924110413e-06 3140 3042 60031786.74372 3141 3042 -36905217.31746 3142 3042 -15625000.00514 3143 3042 21394122.91072 3153 3042 137281674.8977 3154 3042 7.092952728271e-06 3155 3042 2285905.658981 3156 3042 -24872960.07894 3157 3042 -1.01625919342e-05 3158 3042 571476.4150351 3171 3042 -92328809.14057 3172 3042 5.915760993958e-06 3173 3042 -62317692.40268 3174 3042 -38047023.33633 3175 3042 15625000.00513 3176 3042 -21965599.32574 3043 3043 856399644.4805 3044 3043 -109720972.8103 3045 3043 -1.239776611328e-05 3046 3043 -126242065.9199 3047 3043 54860486.40512 3060 3043 4.678964614868e-06 3061 3043 26477385.19127 3062 3043 -27430243.21608 3063 3043 62499999.98974 3064 3043 -79132053.33673 3065 3043 14949496.6079 3138 3043 -4.589557647705e-06 3139 3043 -20365565.44178 3140 3043 -6857560.807395 3141 3043 -15625000.00514 3142 3043 -32217474.15883 3143 3043 15286419.29648 3153 3043 6.973743438721e-06 3154 3043 99779729.64718 3155 3043 -27430243.21607 3156 3043 -8.568167686462e-06 3157 3043 -84247877.07676 3158 3043 62654357.71105 3171 3043 4.619359970093e-06 3172 3043 -23578405.83475 3173 3043 -6857560.807395 3174 3043 15625000.00513 3175 3043 -33359280.17771 3176 3043 15972183.1856 3044 3044 889294330.4544 3045 3044 2285905.658962 3046 3044 54860486.40512 3047 3044 48069959.95526 3060 3044 -4571811.315691 3061 3044 -27430243.21608 3062 3044 34500404.96993 3063 3044 -27030539.6307 3064 3044 15223802.16328 3065 3044 -36714051.95871 3138 3044 59688904.7995 3139 3044 -6857560.807395 3140 3044 -63334663.40088 3141 3044 21394122.91072 3142 3044 15286419.29648 3143 3044 -42337075.16724 3153 3044 2285905.658981 3154 3044 -27430243.21607 3155 3044 -82530234.81935 3156 3044 571476.4150354 3157 3044 62380052.15567 3158 3044 -128482138.2218 3171 3044 -61974810.45846 3172 3044 -6857560.807395 3173 3044 -71902237.78217 3174 3044 -21965599.32574 3175 3044 15972183.1856 3176 3044 -45381891.21762 3045 3045 1006407425.409 3046 3045 2.30073928833e-05 3047 3045 9143622.631317 3048 3045 111257601.9543 3049 3045 -1.153349876404e-05 3050 3045 2285905.658962 3060 3045 -96528642.2817 3061 3045 -62499999.98975 3062 3045 24744633.97173 3063 3045 -248524227.8966 3064 3045 5.185604095459e-06 3065 3045 -4571811.315691 3066 3045 -97883025.962 3067 3045 62499999.98974 3068 3045 -26687657.68648 3138 3045 -25195798.91083 3139 3045 15625000.00513 3140 3045 8536049.989829 3141 3045 -89115968.74764 3142 3045 -2.875924110413e-06 3143 3045 60031786.74372 3144 3045 -36905217.31746 3145 3045 -15625000.00514 3146 3045 21394122.91072 3153 3045 23319097.20481 3154 3045 3.09944152832e-06 3155 3045 571476.4150216 3156 3045 137281674.8977 3157 3045 7.092952728271e-06 3158 3045 2285905.658981 3159 3045 -24872960.07894 3160 3045 -1.01625919342e-05 3161 3045 571476.4150351 3171 3045 -25660413.08922 3172 3045 -15625000.00513 3173 3045 -9107526.404853 3174 3045 -92328809.14057 3175 3045 5.915760993958e-06 3176 3045 -62317692.40268 3177 3045 -38047023.33633 3178 3045 15625000.00513 3179 3045 -21965599.32574 3046 3046 856399644.4805 3047 3046 -109720972.8103 3048 3046 -1.239776611328e-05 3049 3046 -126242065.9199 3050 3046 54860486.40512 3060 3046 -62499999.98975 3061 3046 -77777669.65641 3062 3046 12480746.60817 3063 3046 4.678964614868e-06 3064 3046 26477385.19127 3065 3046 -27430243.21608 3066 3046 62499999.98974 3067 3046 -79132053.33673 3068 3046 14949496.6079 3138 3046 15625000.00513 3139 3046 -20508055.7522 3140 3046 -8428858.489084 3141 3046 -4.589557647705e-06 3142 3046 -20365565.44178 3143 3046 -6857560.807395 3144 3046 -15625000.00514 3145 3046 -32217474.15883 3146 3046 15286419.29648 3153 3046 4.559755325317e-06 3154 3046 -36055819.793 3155 3046 -35224114.49497 3156 3046 6.973743438721e-06 3157 3046 99779729.64718 3158 3046 -27430243.21607 3159 3046 -8.568167686462e-06 3160 3046 -84247877.07676 3161 3046 62654357.71105 3171 3046 -15625000.00513 3172 3046 -20972669.93059 3173 3046 -9114622.378198 3174 3046 4.619359970093e-06 3175 3046 -23578405.83475 3176 3046 -6857560.807395 3177 3046 15625000.00513 3178 3046 -33359280.17771 3179 3046 15972183.1856 3047 3047 889294330.4544 3048 3047 2285905.658962 3049 3047 54860486.40512 3050 3047 48069959.95526 3060 3047 24401752.02751 3061 3047 12206441.0528 3062 3047 -33102362.14451 3063 3047 -4571811.315691 3064 3047 -27430243.21608 3065 3047 34500404.96993 3066 3047 -27030539.6307 3067 3047 15223802.16328 3068 3047 -36714051.95871 3138 3047 8536049.989829 3139 3047 -8428858.489084 3140 3047 -11111959.41625 3141 3047 59688904.7995 3142 3047 -6857560.807395 3143 3047 -63334663.40088 3144 3047 21394122.91072 3145 3047 15286419.29648 3146 3047 -42337075.16724 3153 3047 571476.4150219 3154 3047 -34949808.93959 3155 3047 30014.53480115 3156 3047 2285905.658981 3157 3047 -27430243.21607 3158 3047 -82530234.81935 3159 3047 571476.4150354 3160 3047 62380052.15567 3161 3047 -128482138.2218 3171 3047 -9107526.404853 3172 3047 -9114622.378198 3173 3047 -12350930.55863 3174 3047 -61974810.45846 3175 3047 -6857560.807395 3176 3047 -71902237.78217 3177 3047 -21965599.32574 3178 3047 15972183.1856 3179 3047 -45381891.21762 3048 3048 1006407425.409 3049 3048 2.30073928833e-05 3050 3048 9143622.631317 3051 3048 111257601.9543 3052 3048 -1.153349876404e-05 3053 3048 2285905.658962 3063 3048 -96528642.2817 3064 3048 -62499999.98975 3065 3048 24744633.97173 3066 3048 -248524227.8966 3067 3048 5.185604095459e-06 3068 3048 -4571811.315691 3069 3048 -97883025.962 3070 3048 62499999.98974 3071 3048 -26687657.68648 3141 3048 -25195798.91083 3142 3048 15625000.00513 3143 3048 8536049.989829 3144 3048 -89115968.74764 3145 3048 -2.875924110413e-06 3146 3048 60031786.74372 3147 3048 -36905217.31746 3148 3048 -15625000.00514 3149 3048 21394122.91072 3156 3048 23319097.20481 3157 3048 3.09944152832e-06 3158 3048 571476.4150216 3159 3048 137281674.8977 3160 3048 7.092952728271e-06 3161 3048 2285905.658981 3162 3048 -24872960.07894 3163 3048 -1.01625919342e-05 3164 3048 571476.4150351 3174 3048 -25660413.08922 3175 3048 -15625000.00513 3176 3048 -9107526.404853 3177 3048 -92328809.14057 3178 3048 5.915760993958e-06 3179 3048 -62317692.40268 3180 3048 -38047023.33633 3181 3048 15625000.00513 3182 3048 -21965599.32574 3049 3049 856399644.4805 3050 3049 -109720972.8103 3051 3049 -1.239776611328e-05 3052 3049 -126242065.9199 3053 3049 54860486.40512 3063 3049 -62499999.98975 3064 3049 -77777669.65641 3065 3049 12480746.60817 3066 3049 4.678964614868e-06 3067 3049 26477385.19127 3068 3049 -27430243.21608 3069 3049 62499999.98974 3070 3049 -79132053.33673 3071 3049 14949496.6079 3141 3049 15625000.00513 3142 3049 -20508055.7522 3143 3049 -8428858.489084 3144 3049 -4.589557647705e-06 3145 3049 -20365565.44178 3146 3049 -6857560.807395 3147 3049 -15625000.00514 3148 3049 -32217474.15883 3149 3049 15286419.29648 3156 3049 4.559755325317e-06 3157 3049 -36055819.793 3158 3049 -35224114.49497 3159 3049 6.973743438721e-06 3160 3049 99779729.64718 3161 3049 -27430243.21607 3162 3049 -8.568167686462e-06 3163 3049 -84247877.07676 3164 3049 62654357.71105 3174 3049 -15625000.00513 3175 3049 -20972669.93059 3176 3049 -9114622.378198 3177 3049 4.619359970093e-06 3178 3049 -23578405.83475 3179 3049 -6857560.807395 3180 3049 15625000.00513 3181 3049 -33359280.17771 3182 3049 15972183.1856 3050 3050 889294330.4544 3051 3050 2285905.658962 3052 3050 54860486.40512 3053 3050 48069959.95526 3063 3050 24401752.02751 3064 3050 12206441.0528 3065 3050 -33102362.14451 3066 3050 -4571811.315691 3067 3050 -27430243.21608 3068 3050 34500404.96993 3069 3050 -27030539.6307 3070 3050 15223802.16328 3071 3050 -36714051.95871 3141 3050 8536049.989829 3142 3050 -8428858.489084 3143 3050 -11111959.41625 3144 3050 59688904.7995 3145 3050 -6857560.807395 3146 3050 -63334663.40088 3147 3050 21394122.91072 3148 3050 15286419.29648 3149 3050 -42337075.16724 3156 3050 571476.4150219 3157 3050 -34949808.93959 3158 3050 30014.53480115 3159 3050 2285905.658981 3160 3050 -27430243.21607 3161 3050 -82530234.81935 3162 3050 571476.4150354 3163 3050 62380052.15567 3164 3050 -128482138.2218 3174 3050 -9107526.404853 3175 3050 -9114622.378198 3176 3050 -12350930.55863 3177 3050 -61974810.45846 3178 3050 -6857560.807395 3179 3050 -71902237.78217 3180 3050 -21965599.32574 3181 3050 15972183.1856 3182 3050 -45381891.21762 3051 3051 1006407425.409 3052 3051 2.30073928833e-05 3053 3051 9143622.631317 3054 3051 111257601.9543 3055 3051 -1.153349876404e-05 3056 3051 2285905.658962 3066 3051 -96528642.2817 3067 3051 -62499999.98975 3068 3051 24744633.97173 3069 3051 -248524227.8966 3070 3051 5.185604095459e-06 3071 3051 -4571811.315691 3072 3051 -97883025.962 3073 3051 62499999.98974 3074 3051 -26687657.68648 3144 3051 -25195798.91083 3145 3051 15625000.00513 3146 3051 8536049.989829 3147 3051 -89115968.74764 3148 3051 -2.875924110413e-06 3149 3051 60031786.74372 3150 3051 -36905217.31746 3151 3051 -15625000.00514 3152 3051 21394122.91072 3159 3051 23319097.20481 3160 3051 3.09944152832e-06 3161 3051 571476.4150216 3162 3051 137281674.8977 3163 3051 7.092952728271e-06 3164 3051 2285905.658981 3165 3051 -24872960.07894 3166 3051 -1.01625919342e-05 3167 3051 571476.4150351 3177 3051 -25660413.08922 3178 3051 -15625000.00513 3179 3051 -9107526.404853 3180 3051 -92328809.14057 3181 3051 5.915760993958e-06 3182 3051 -62317692.40268 3183 3051 -38047023.33633 3184 3051 15625000.00513 3185 3051 -21965599.32574 3052 3052 856399644.4805 3053 3052 -109720972.8103 3054 3052 -1.239776611328e-05 3055 3052 -126242065.9199 3056 3052 54860486.40512 3066 3052 -62499999.98975 3067 3052 -77777669.65641 3068 3052 12480746.60817 3069 3052 4.678964614868e-06 3070 3052 26477385.19127 3071 3052 -27430243.21608 3072 3052 62499999.98974 3073 3052 -79132053.33673 3074 3052 14949496.6079 3144 3052 15625000.00513 3145 3052 -20508055.7522 3146 3052 -8428858.489084 3147 3052 -4.589557647705e-06 3148 3052 -20365565.44178 3149 3052 -6857560.807395 3150 3052 -15625000.00514 3151 3052 -32217474.15883 3152 3052 15286419.29648 3159 3052 4.559755325317e-06 3160 3052 -36055819.793 3161 3052 -35224114.49497 3162 3052 6.973743438721e-06 3163 3052 99779729.64718 3164 3052 -27430243.21607 3165 3052 -8.568167686462e-06 3166 3052 -84247877.07676 3167 3052 62654357.71105 3177 3052 -15625000.00513 3178 3052 -20972669.93059 3179 3052 -9114622.378198 3180 3052 4.619359970093e-06 3181 3052 -23578405.83475 3182 3052 -6857560.807395 3183 3052 15625000.00513 3184 3052 -33359280.17771 3185 3052 15972183.1856 3053 3053 889294330.4544 3054 3053 2285905.658962 3055 3053 54860486.40512 3056 3053 48069959.95526 3066 3053 24401752.02751 3067 3053 12206441.0528 3068 3053 -33102362.14451 3069 3053 -4571811.315691 3070 3053 -27430243.21608 3071 3053 34500404.96993 3072 3053 -27030539.6307 3073 3053 15223802.16328 3074 3053 -36714051.95871 3144 3053 8536049.989829 3145 3053 -8428858.489084 3146 3053 -11111959.41625 3147 3053 59688904.7995 3148 3053 -6857560.807395 3149 3053 -63334663.40088 3150 3053 21394122.91072 3151 3053 15286419.29648 3152 3053 -42337075.16724 3159 3053 571476.4150219 3160 3053 -34949808.93959 3161 3053 30014.53480115 3162 3053 2285905.658981 3163 3053 -27430243.21607 3164 3053 -82530234.81935 3165 3053 571476.4150354 3166 3053 62380052.15567 3167 3053 -128482138.2218 3177 3053 -9107526.404853 3178 3053 -9114622.378198 3179 3053 -12350930.55863 3180 3053 -61974810.45846 3181 3053 -6857560.807395 3182 3053 -71902237.78217 3183 3053 -21965599.32574 3184 3053 15972183.1856 3185 3053 -45381891.21762 3054 3054 1094265961.25 3055 3054 62565868.99196 3056 3054 30858520.46735 3057 3054 9522774.467089 3058 3054 -62526347.59063 3059 3054 26698619.14673 3069 3054 -96528642.2817 3070 3054 -62499999.98975 3071 3054 24744633.97173 3072 3054 -248524227.8966 3073 3054 5.185604095459e-06 3074 3054 -4571811.315691 3075 3054 -97883025.962 3076 3054 62499999.98974 3077 3054 -26687657.68648 3147 3054 -25195798.91083 3148 3054 15625000.00513 3149 3054 8536049.989829 3150 3054 -108451246.8934 3151 3054 -15634880.35547 3152 3054 54616251.09168 3162 3054 23319097.20481 3163 3054 3.09944152832e-06 3164 3054 571476.4150216 3165 3054 166227659.6012 3166 3054 15641467.2557 3167 3054 7711642.939084 3168 3054 -41196855.08124 3169 3054 -15631586.90536 3170 3054 21974855.62738 3180 3054 -25660413.08922 3181 3054 -15625000.00513 3182 3054 -9107526.404853 3183 3054 -92328809.14057 3184 3054 5.915760993958e-06 3185 3054 -62317692.40268 3186 3054 -38047023.33633 3187 3054 15625000.00513 3188 3054 -21965599.32574 3055 3055 925477565.1068 3056 3055 -85034510.41928 3057 3055 -62539521.39107 3058 3055 -209278615.3833 3059 3055 45543422.51828 3069 3055 -62499999.98975 3070 3055 -77777669.65641 3071 3055 12480746.60817 3072 3055 4.678964614868e-06 3073 3055 26477385.19127 3074 3055 -27430243.21608 3075 3055 62499999.98974 3076 3055 -79132053.33673 3077 3055 14949496.6079 3147 3055 15625000.00513 3148 3055 -20508055.7522 3149 3055 -8428858.489084 3150 3055 -15631586.90536 3151 3055 -34992516.13117 3152 3055 4591649.47589 3162 3055 4.559755325317e-06 3163 3055 -36055819.793 3164 3055 -35224114.49497 3165 3055 15641467.2557 3166 3055 124030560.5447 3167 3055 -21261017.33538 3168 3055 -15634880.35547 3169 3055 -95897202.5708 3170 3055 60337907.00837 3180 3055 -15625000.00513 3181 3055 -20972669.93059 3182 3055 -9114622.378198 3183 3055 4.619359970093e-06 3184 3055 -23578405.83475 3185 3055 -6857560.807395 3186 3055 15625000.00513 3187 3055 -33359280.17771 3188 3055 15972183.1856 3056 3056 898921811.1224 3057 3056 27046981.82107 3058 3056 53228121.77035 3059 3056 1137131.864082 3069 3056 24401752.02751 3070 3056 12206441.0528 3071 3056 -33102362.14451 3072 3056 -4571811.315691 3073 3056 -27430243.21608 3074 3056 34500404.96993 3075 3056 -27030539.6307 3076 3056 15223802.16328 3077 3056 -36714051.95871 3147 3056 8536049.989829 3148 3056 -8428858.489084 3149 3056 -11111959.41625 3150 3056 54272044.11297 3151 3056 2673044.969291 3152 3056 -58743091.68526 3162 3056 571476.4150219 3163 3056 -34949808.93959 3164 3056 30014.53480115 3165 3056 7718068.787606 3166 3056 -21255876.71511 3167 3056 -61506429.36468 3168 3056 21979483.77819 3169 3056 61984848.42173 3170 3056 -115922513.565 3180 3056 -9107526.404853 3181 3056 -9114622.378198 3182 3056 -12350930.55863 3183 3056 -61974810.45846 3184 3056 -6857560.807395 3185 3056 -71902237.78217 3186 3056 -21965599.32574 3187 3056 15972183.1856 3188 3056 -45381891.21762 3057 3057 548987475.0633 3058 3057 21307129.89102 3059 3057 -13524506.77974 3072 3057 -96528642.2817 3073 3057 -62499999.98975 3074 3057 24744633.97173 3075 3057 -261847081.0713 3076 3057 -21381581.86031 3077 3057 -1557764.62904 3078 3057 -19854283.06572 3079 3057 50074451.96109 3080 3057 -2748957.564787 3150 3057 2359203.743841 3151 3057 18759880.3565 3152 3057 10591538.29392 3165 3057 -4242975.331225 3166 3057 -15634880.35547 3167 3057 -8541442.446936 3168 3057 72114571.47739 3169 3057 6435466.693849 3170 3057 7686187.419515 3183 3057 -25660413.08922 3184 3057 -15625000.00513 3185 3057 -9107526.404853 3186 3057 -92399313.58557 3187 3057 -6452212.714836 3188 3057 -53750902.19951 3189 3057 -13992108.66804 3190 3057 12516746.0251 3191 3057 -9804889.104296 3058 3058 522858774.3376 3059 3058 -70680941.34799 3072 3058 -62499999.98975 3073 3058 -77777669.65641 3074 3058 12480746.60817 3075 3058 -21418807.84496 3076 3058 13597222.99385 3077 3058 -18755531.55843 3078 3058 75111677.94164 3079 3058 -69119469.18 3080 3058 7813396.322461 3150 3058 12506586.90433 3151 3058 2359203.743842 3152 3058 -5648902.101029 3165 3058 -15631586.90535 3166 3058 -58943322.82077 3167 3058 -35645020.83586 3168 3058 6435466.693849 3169 3058 63209679.55498 3170 3058 -8614720.744595 3183 3058 -15625000.00513 3184 3058 -20972669.93059 3185 3058 -9114622.378198 3186 3058 -6460585.725333 3187 3058 -23045188.60001 3188 3058 -9974370.842673 3189 3058 18775119.03765 3190 3058 -24428737.40027 3191 3058 20328376.47072 3059 3059 514034148.2162 3072 3059 24401752.02751 3073 3059 12206441.0528 3074 3059 -33102362.14451 3075 3059 -9098900.333417 3076 3059 -17656224.35797 3077 3059 2357965.756388 3078 3059 -4123436.347181 3079 3059 6715989.826741 3080 3059 -3679568.727652 3150 3059 7061025.529277 3151 3059 -8473353.151544 3152 3059 6291209.983575 3165 3059 -8539644.961234 3166 3059 -37291962.41402 3167 3059 -17378834.23163 3168 3059 -13632264.79997 3169 3059 -25112324.87446 3170 3059 -49245078.61255 3183 3059 -9107526.404853 3184 3059 -9114622.378198 3185 3059 -12350930.55863 3186 3059 -55464807.37002 3187 3059 -9418406.19857 3188 3059 -65296800.07247 3189 3059 -14707333.65644 3190 3059 16406778.36934 3191 3059 -26875661.04919 3060 3060 1006407425.409 3061 3060 2.30073928833e-05 3062 3060 9143622.631317 3063 3060 111257601.9543 3064 3060 -1.153349876404e-05 3065 3060 2285905.658962 3081 3060 -248524227.8966 3082 3060 5.185604095459e-06 3083 3060 -4571811.315691 3084 3060 -97883025.962 3085 3060 62499999.98974 3086 3060 -26687657.68648 3153 3060 -89115968.74764 3154 3060 -2.875924110413e-06 3155 3060 60031786.74372 3156 3060 -36905217.31746 3157 3060 -15625000.00514 3158 3060 21394122.91072 3171 3060 137281674.8977 3172 3060 7.092952728271e-06 3173 3060 2285905.658981 3174 3060 -24872960.07894 3175 3060 -1.01625919342e-05 3176 3060 571476.4150351 3192 3060 -92328809.14057 3193 3060 5.915760993958e-06 3194 3060 -62317692.40268 3195 3060 -38047023.33633 3196 3060 15625000.00513 3197 3060 -21965599.32574 3061 3061 856399644.4805 3062 3061 -109720972.8103 3063 3061 -1.239776611328e-05 3064 3061 -126242065.9199 3065 3061 54860486.40512 3081 3061 4.678964614868e-06 3082 3061 26477385.19127 3083 3061 -27430243.21608 3084 3061 62499999.98974 3085 3061 -79132053.33673 3086 3061 14949496.6079 3153 3061 -4.589557647705e-06 3154 3061 -20365565.44178 3155 3061 -6857560.807395 3156 3061 -15625000.00514 3157 3061 -32217474.15883 3158 3061 15286419.29648 3171 3061 6.973743438721e-06 3172 3061 99779729.64718 3173 3061 -27430243.21607 3174 3061 -8.568167686462e-06 3175 3061 -84247877.07676 3176 3061 62654357.71105 3192 3061 4.619359970093e-06 3193 3061 -23578405.83475 3194 3061 -6857560.807395 3195 3061 15625000.00513 3196 3061 -33359280.17771 3197 3061 15972183.1856 3062 3062 889294330.4544 3063 3062 2285905.658962 3064 3062 54860486.40512 3065 3062 48069959.95526 3081 3062 -4571811.315691 3082 3062 -27430243.21608 3083 3062 34500404.96993 3084 3062 -27030539.6307 3085 3062 15223802.16328 3086 3062 -36714051.95871 3153 3062 59688904.7995 3154 3062 -6857560.807395 3155 3062 -63334663.40088 3156 3062 21394122.91072 3157 3062 15286419.29648 3158 3062 -42337075.16724 3171 3062 2285905.658981 3172 3062 -27430243.21607 3173 3062 -82530234.81935 3174 3062 571476.4150354 3175 3062 62380052.15567 3176 3062 -128482138.2218 3192 3062 -61974810.45846 3193 3062 -6857560.807395 3194 3062 -71902237.78217 3195 3062 -21965599.32574 3196 3062 15972183.1856 3197 3062 -45381891.21762 3063 3063 1006407425.409 3064 3063 2.30073928833e-05 3065 3063 9143622.631317 3066 3063 111257601.9543 3067 3063 -1.153349876404e-05 3068 3063 2285905.658962 3081 3063 -96528642.2817 3082 3063 -62499999.98975 3083 3063 24744633.97173 3084 3063 -248524227.8966 3085 3063 5.185604095459e-06 3086 3063 -4571811.315691 3087 3063 -97883025.962 3088 3063 62499999.98974 3089 3063 -26687657.68648 3153 3063 -25195798.91083 3154 3063 15625000.00513 3155 3063 8536049.989829 3156 3063 -89115968.74764 3157 3063 -2.875924110413e-06 3158 3063 60031786.74372 3159 3063 -36905217.31746 3160 3063 -15625000.00514 3161 3063 21394122.91072 3171 3063 23319097.20481 3172 3063 3.09944152832e-06 3173 3063 571476.4150216 3174 3063 137281674.8977 3175 3063 7.092952728271e-06 3176 3063 2285905.658981 3177 3063 -24872960.07894 3178 3063 -1.01625919342e-05 3179 3063 571476.4150351 3192 3063 -25660413.08922 3193 3063 -15625000.00513 3194 3063 -9107526.404853 3195 3063 -92328809.14057 3196 3063 5.915760993958e-06 3197 3063 -62317692.40268 3198 3063 -38047023.33633 3199 3063 15625000.00513 3200 3063 -21965599.32574 3064 3064 856399644.4805 3065 3064 -109720972.8103 3066 3064 -1.239776611328e-05 3067 3064 -126242065.9199 3068 3064 54860486.40512 3081 3064 -62499999.98975 3082 3064 -77777669.65641 3083 3064 12480746.60817 3084 3064 4.678964614868e-06 3085 3064 26477385.19127 3086 3064 -27430243.21608 3087 3064 62499999.98974 3088 3064 -79132053.33673 3089 3064 14949496.6079 3153 3064 15625000.00513 3154 3064 -20508055.7522 3155 3064 -8428858.489084 3156 3064 -4.589557647705e-06 3157 3064 -20365565.44178 3158 3064 -6857560.807395 3159 3064 -15625000.00514 3160 3064 -32217474.15883 3161 3064 15286419.29648 3171 3064 4.559755325317e-06 3172 3064 -36055819.793 3173 3064 -35224114.49497 3174 3064 6.973743438721e-06 3175 3064 99779729.64718 3176 3064 -27430243.21607 3177 3064 -8.568167686462e-06 3178 3064 -84247877.07676 3179 3064 62654357.71105 3192 3064 -15625000.00513 3193 3064 -20972669.93059 3194 3064 -9114622.378198 3195 3064 4.619359970093e-06 3196 3064 -23578405.83475 3197 3064 -6857560.807395 3198 3064 15625000.00513 3199 3064 -33359280.17771 3200 3064 15972183.1856 3065 3065 889294330.4544 3066 3065 2285905.658962 3067 3065 54860486.40512 3068 3065 48069959.95526 3081 3065 24401752.02751 3082 3065 12206441.0528 3083 3065 -33102362.14451 3084 3065 -4571811.315691 3085 3065 -27430243.21608 3086 3065 34500404.96993 3087 3065 -27030539.6307 3088 3065 15223802.16328 3089 3065 -36714051.95871 3153 3065 8536049.989829 3154 3065 -8428858.489084 3155 3065 -11111959.41625 3156 3065 59688904.7995 3157 3065 -6857560.807395 3158 3065 -63334663.40088 3159 3065 21394122.91072 3160 3065 15286419.29648 3161 3065 -42337075.16724 3171 3065 571476.4150219 3172 3065 -34949808.93959 3173 3065 30014.53480115 3174 3065 2285905.658981 3175 3065 -27430243.21607 3176 3065 -82530234.81935 3177 3065 571476.4150354 3178 3065 62380052.15567 3179 3065 -128482138.2218 3192 3065 -9107526.404853 3193 3065 -9114622.378198 3194 3065 -12350930.55863 3195 3065 -61974810.45846 3196 3065 -6857560.807395 3197 3065 -71902237.78217 3198 3065 -21965599.32574 3199 3065 15972183.1856 3200 3065 -45381891.21762 3066 3066 1006407425.409 3067 3066 2.30073928833e-05 3068 3066 9143622.631317 3069 3066 111257601.9543 3070 3066 -1.153349876404e-05 3071 3066 2285905.658962 3084 3066 -96528642.2817 3085 3066 -62499999.98975 3086 3066 24744633.97173 3087 3066 -248524227.8966 3088 3066 5.185604095459e-06 3089 3066 -4571811.315691 3090 3066 -97883025.962 3091 3066 62499999.98974 3092 3066 -26687657.68648 3156 3066 -25195798.91083 3157 3066 15625000.00513 3158 3066 8536049.989829 3159 3066 -89115968.74764 3160 3066 -2.875924110413e-06 3161 3066 60031786.74372 3162 3066 -36905217.31746 3163 3066 -15625000.00514 3164 3066 21394122.91072 3174 3066 23319097.20481 3175 3066 3.09944152832e-06 3176 3066 571476.4150216 3177 3066 137281674.8977 3178 3066 7.092952728271e-06 3179 3066 2285905.658981 3180 3066 -24872960.07894 3181 3066 -1.01625919342e-05 3182 3066 571476.4150351 3195 3066 -25660413.08922 3196 3066 -15625000.00513 3197 3066 -9107526.404853 3198 3066 -92328809.14057 3199 3066 5.915760993958e-06 3200 3066 -62317692.40268 3201 3066 -38047023.33633 3202 3066 15625000.00513 3203 3066 -21965599.32574 3067 3067 856399644.4805 3068 3067 -109720972.8103 3069 3067 -1.239776611328e-05 3070 3067 -126242065.9199 3071 3067 54860486.40512 3084 3067 -62499999.98975 3085 3067 -77777669.65641 3086 3067 12480746.60817 3087 3067 4.678964614868e-06 3088 3067 26477385.19127 3089 3067 -27430243.21608 3090 3067 62499999.98974 3091 3067 -79132053.33673 3092 3067 14949496.6079 3156 3067 15625000.00513 3157 3067 -20508055.7522 3158 3067 -8428858.489084 3159 3067 -4.589557647705e-06 3160 3067 -20365565.44178 3161 3067 -6857560.807395 3162 3067 -15625000.00514 3163 3067 -32217474.15883 3164 3067 15286419.29648 3174 3067 4.559755325317e-06 3175 3067 -36055819.793 3176 3067 -35224114.49497 3177 3067 6.973743438721e-06 3178 3067 99779729.64718 3179 3067 -27430243.21607 3180 3067 -8.568167686462e-06 3181 3067 -84247877.07676 3182 3067 62654357.71105 3195 3067 -15625000.00513 3196 3067 -20972669.93059 3197 3067 -9114622.378198 3198 3067 4.619359970093e-06 3199 3067 -23578405.83475 3200 3067 -6857560.807395 3201 3067 15625000.00513 3202 3067 -33359280.17771 3203 3067 15972183.1856 3068 3068 889294330.4544 3069 3068 2285905.658962 3070 3068 54860486.40512 3071 3068 48069959.95526 3084 3068 24401752.02751 3085 3068 12206441.0528 3086 3068 -33102362.14451 3087 3068 -4571811.315691 3088 3068 -27430243.21608 3089 3068 34500404.96993 3090 3068 -27030539.6307 3091 3068 15223802.16328 3092 3068 -36714051.95871 3156 3068 8536049.989829 3157 3068 -8428858.489084 3158 3068 -11111959.41625 3159 3068 59688904.7995 3160 3068 -6857560.807395 3161 3068 -63334663.40088 3162 3068 21394122.91072 3163 3068 15286419.29648 3164 3068 -42337075.16724 3174 3068 571476.4150219 3175 3068 -34949808.93959 3176 3068 30014.53480115 3177 3068 2285905.658981 3178 3068 -27430243.21607 3179 3068 -82530234.81935 3180 3068 571476.4150354 3181 3068 62380052.15567 3182 3068 -128482138.2218 3195 3068 -9107526.404853 3196 3068 -9114622.378198 3197 3068 -12350930.55863 3198 3068 -61974810.45846 3199 3068 -6857560.807395 3200 3068 -71902237.78217 3201 3068 -21965599.32574 3202 3068 15972183.1856 3203 3068 -45381891.21762 3069 3069 1006407425.409 3070 3069 2.30073928833e-05 3071 3069 9143622.631317 3072 3069 111257601.9543 3073 3069 -1.153349876404e-05 3074 3069 2285905.658962 3087 3069 -96528642.2817 3088 3069 -62499999.98975 3089 3069 24744633.97173 3090 3069 -248524227.8966 3091 3069 5.185604095459e-06 3092 3069 -4571811.315691 3093 3069 -97883025.962 3094 3069 62499999.98974 3095 3069 -26687657.68648 3159 3069 -25195798.91083 3160 3069 15625000.00513 3161 3069 8536049.989829 3162 3069 -89115968.74764 3163 3069 -2.875924110413e-06 3164 3069 60031786.74372 3165 3069 -36905217.31746 3166 3069 -15625000.00514 3167 3069 21394122.91072 3177 3069 23319097.20481 3178 3069 3.09944152832e-06 3179 3069 571476.4150216 3180 3069 137281674.8977 3181 3069 7.092952728271e-06 3182 3069 2285905.658981 3183 3069 -24872960.07894 3184 3069 -1.01625919342e-05 3185 3069 571476.4150351 3198 3069 -25660413.08922 3199 3069 -15625000.00513 3200 3069 -9107526.404853 3201 3069 -92328809.14057 3202 3069 5.915760993958e-06 3203 3069 -62317692.40268 3204 3069 -38047023.33633 3205 3069 15625000.00513 3206 3069 -21965599.32574 3070 3070 856399644.4805 3071 3070 -109720972.8103 3072 3070 -1.239776611328e-05 3073 3070 -126242065.9199 3074 3070 54860486.40512 3087 3070 -62499999.98975 3088 3070 -77777669.65641 3089 3070 12480746.60817 3090 3070 4.678964614868e-06 3091 3070 26477385.19127 3092 3070 -27430243.21608 3093 3070 62499999.98974 3094 3070 -79132053.33673 3095 3070 14949496.6079 3159 3070 15625000.00513 3160 3070 -20508055.7522 3161 3070 -8428858.489084 3162 3070 -4.589557647705e-06 3163 3070 -20365565.44178 3164 3070 -6857560.807395 3165 3070 -15625000.00514 3166 3070 -32217474.15883 3167 3070 15286419.29648 3177 3070 4.559755325317e-06 3178 3070 -36055819.793 3179 3070 -35224114.49497 3180 3070 6.973743438721e-06 3181 3070 99779729.64718 3182 3070 -27430243.21607 3183 3070 -8.568167686462e-06 3184 3070 -84247877.07676 3185 3070 62654357.71105 3198 3070 -15625000.00513 3199 3070 -20972669.93059 3200 3070 -9114622.378198 3201 3070 4.619359970093e-06 3202 3070 -23578405.83475 3203 3070 -6857560.807395 3204 3070 15625000.00513 3205 3070 -33359280.17771 3206 3070 15972183.1856 3071 3071 889294330.4544 3072 3071 2285905.658962 3073 3071 54860486.40512 3074 3071 48069959.95526 3087 3071 24401752.02751 3088 3071 12206441.0528 3089 3071 -33102362.14451 3090 3071 -4571811.315691 3091 3071 -27430243.21608 3092 3071 34500404.96993 3093 3071 -27030539.6307 3094 3071 15223802.16328 3095 3071 -36714051.95871 3159 3071 8536049.989829 3160 3071 -8428858.489084 3161 3071 -11111959.41625 3162 3071 59688904.7995 3163 3071 -6857560.807395 3164 3071 -63334663.40088 3165 3071 21394122.91072 3166 3071 15286419.29648 3167 3071 -42337075.16724 3177 3071 571476.4150219 3178 3071 -34949808.93959 3179 3071 30014.53480115 3180 3071 2285905.658981 3181 3071 -27430243.21607 3182 3071 -82530234.81935 3183 3071 571476.4150354 3184 3071 62380052.15567 3185 3071 -128482138.2218 3198 3071 -9107526.404853 3199 3071 -9114622.378198 3200 3071 -12350930.55863 3201 3071 -61974810.45846 3202 3071 -6857560.807395 3203 3071 -71902237.78217 3204 3071 -21965599.32574 3205 3071 15972183.1856 3206 3071 -45381891.21762 3072 3072 1006407425.409 3073 3072 2.30073928833e-05 3074 3072 9143622.631317 3075 3072 111257601.9543 3076 3072 -1.153349876404e-05 3077 3072 2285905.658962 3090 3072 -96528642.2817 3091 3072 -62499999.98975 3092 3072 24744633.97173 3093 3072 -248524227.8966 3094 3072 5.185604095459e-06 3095 3072 -4571811.315691 3096 3072 -97883025.962 3097 3072 62499999.98974 3098 3072 -26687657.68648 3162 3072 -25195798.91083 3163 3072 15625000.00513 3164 3072 8536049.989829 3165 3072 -89115968.74764 3166 3072 -2.875924110413e-06 3167 3072 60031786.74372 3168 3072 -36905217.31746 3169 3072 -15625000.00514 3170 3072 21394122.91072 3180 3072 23319097.20481 3181 3072 3.09944152832e-06 3182 3072 571476.4150216 3183 3072 137281674.8977 3184 3072 7.092952728271e-06 3185 3072 2285905.658981 3186 3072 -24872960.07894 3187 3072 -1.01625919342e-05 3188 3072 571476.4150351 3201 3072 -25660413.08922 3202 3072 -15625000.00513 3203 3072 -9107526.404853 3204 3072 -92328809.14057 3205 3072 5.915760993958e-06 3206 3072 -62317692.40268 3207 3072 -38047023.33633 3208 3072 15625000.00513 3209 3072 -21965599.32574 3073 3073 856399644.4805 3074 3073 -109720972.8103 3075 3073 -1.239776611328e-05 3076 3073 -126242065.9199 3077 3073 54860486.40512 3090 3073 -62499999.98975 3091 3073 -77777669.65641 3092 3073 12480746.60817 3093 3073 4.678964614868e-06 3094 3073 26477385.19127 3095 3073 -27430243.21608 3096 3073 62499999.98974 3097 3073 -79132053.33673 3098 3073 14949496.6079 3162 3073 15625000.00513 3163 3073 -20508055.7522 3164 3073 -8428858.489084 3165 3073 -4.589557647705e-06 3166 3073 -20365565.44178 3167 3073 -6857560.807395 3168 3073 -15625000.00514 3169 3073 -32217474.15883 3170 3073 15286419.29648 3180 3073 4.559755325317e-06 3181 3073 -36055819.793 3182 3073 -35224114.49497 3183 3073 6.973743438721e-06 3184 3073 99779729.64718 3185 3073 -27430243.21607 3186 3073 -8.568167686462e-06 3187 3073 -84247877.07676 3188 3073 62654357.71105 3201 3073 -15625000.00513 3202 3073 -20972669.93059 3203 3073 -9114622.378198 3204 3073 4.619359970093e-06 3205 3073 -23578405.83475 3206 3073 -6857560.807395 3207 3073 15625000.00513 3208 3073 -33359280.17771 3209 3073 15972183.1856 3074 3074 889294330.4544 3075 3074 2285905.658962 3076 3074 54860486.40512 3077 3074 48069959.95526 3090 3074 24401752.02751 3091 3074 12206441.0528 3092 3074 -33102362.14451 3093 3074 -4571811.315691 3094 3074 -27430243.21608 3095 3074 34500404.96993 3096 3074 -27030539.6307 3097 3074 15223802.16328 3098 3074 -36714051.95871 3162 3074 8536049.989829 3163 3074 -8428858.489084 3164 3074 -11111959.41625 3165 3074 59688904.7995 3166 3074 -6857560.807395 3167 3074 -63334663.40088 3168 3074 21394122.91072 3169 3074 15286419.29648 3170 3074 -42337075.16724 3180 3074 571476.4150219 3181 3074 -34949808.93959 3182 3074 30014.53480115 3183 3074 2285905.658981 3184 3074 -27430243.21607 3185 3074 -82530234.81935 3186 3074 571476.4150354 3187 3074 62380052.15567 3188 3074 -128482138.2218 3201 3074 -9107526.404853 3202 3074 -9114622.378198 3203 3074 -12350930.55863 3204 3074 -61974810.45846 3205 3074 -6857560.807395 3206 3074 -71902237.78217 3207 3074 -21965599.32574 3208 3074 15972183.1856 3209 3074 -45381891.21762 3075 3075 954625585.2576 3076 3075 29678719.75277 3077 3075 9105132.755896 3078 3075 -47307070.82524 3079 3075 -84184102.99752 3080 3075 5164900.375931 3093 3075 -96528642.2817 3094 3075 -62499999.98975 3095 3075 24744633.97173 3096 3075 -208808375.5906 3097 3075 19521715.15921 3098 3075 -950281.2899645 3099 3075 -59636163.25621 3100 3075 56402475.93051 3101 3075 -4219483.641776 3165 3075 -25195798.91083 3166 3075 15625000.00513 3167 3075 8536049.989829 3168 3075 -89144937.54779 3169 3075 -6460585.725337 3170 3075 51127453.72743 3183 3075 23319097.20481 3184 3075 3.09944152832e-06 3185 3075 571476.4150216 3186 3075 140900154.1745 3187 3075 8091534.898148 3188 3075 2277246.826934 3189 3075 -36337710.48924 3190 3075 -20431230.61693 3191 3075 17381850.39246 3204 3075 -25660413.08922 3205 3075 -15625000.00513 3206 3075 -9107526.404853 3207 3075 -83880342.47951 3208 3075 4387679.506918 3209 3075 -58292492.12322 3210 3075 -24702531.44058 3211 3075 14412601.93721 3212 3075 -12457232.71543 3076 3076 902985704.5719 3077 3076 -67543036.76971 3078 3076 -84221328.98217 3079 3076 -272339828.8601 3080 3076 10901872.41377 3093 3076 -62499999.98975 3094 3076 -77777669.65641 3095 3076 12480746.60817 3096 3076 19521715.15921 3097 3076 41553709.10479 3098 3076 -16437185.11221 3099 3076 56402475.93051 3100 3076 -108772190.6724 3101 3076 4878966.421197 3165 3076 15625000.00513 3166 3076 -20508055.7522 3167 3076 -8428858.489084 3168 3076 -6452212.714842 3169 3076 -19790812.56221 3170 3076 965606.207854 3183 3076 4.559755325317e-06 3184 3076 -36055819.793 3185 3076 -35224114.49497 3186 3076 8091534.898145 3187 3076 124639359.3474 3188 3076 -16627910.42329 3189 3076 -20439603.62743 3190 3076 -92308791.06968 3191 3076 54241007.71012 3204 3076 -15625000.00513 3205 3076 -20972669.93059 3206 3076 -9114622.378198 3207 3076 4387679.506917 3208 3076 -20509034.904 3209 3076 -314146.4441922 3210 3076 14412601.93721 3211 3076 -35196657.91355 3212 3076 17824166.7884 3077 3077 813405107.3031 3078 3077 5167851.380775 3079 3077 10904504.6108 3080 3077 -27259503.15959 3093 3077 24401752.02751 3094 3077 12206441.0528 3095 3077 -33102362.14451 3096 3077 -8493684.066505 3097 3077 -16437185.1122 3098 3077 42009619.57762 3099 3077 -4219483.641101 3100 3077 4878966.421197 3101 3077 -25105860.06319 3165 3077 8536049.989829 3166 3077 -8428858.489084 3167 3077 -11111959.41625 3168 3077 52841358.89794 3169 3077 972051.0689625 3170 3077 -56618463.97163 3183 3077 571476.4150219 3184 3077 -34949808.93959 3185 3077 30014.53480115 3186 3077 2289414.3277 3187 3077 -15520953.90292 3188 3077 -63976344.06463 3189 3077 17388600.49754 3190 3077 54239559.45527 3191 3077 -75561570.76464 3204 3077 -9107526.404853 3205 3077 -9114622.378198 3206 3077 -12350930.55863 3207 3077 -60006901.8455 3208 3077 -39840.88786912 3209 3077 -71401065.72684 3210 3077 -12457232.71543 3211 3077 17824166.7884 3212 3077 -30882966.90637 3078 3078 563895329.5604 3079 3078 12094082.46684 3080 3078 350095.2308891 3096 3078 -100199889.2755 3097 3078 -61716139.93398 3098 3078 3694588.2501 3099 3078 -138007703.9904 3100 3078 26141729.8893 3101 3078 -1426197.341684 3102 3078 66091143.81331 3103 3078 -23810230.64342 3104 3078 -84364.06685483 3105 3078 -50572046.81022 3106 3078 56400209.26179 3107 3078 -835481.5495841 3168 3078 -10044859.78212 3169 3078 18775119.03765 3170 3078 12646043.37978 3186 3078 -29381178.05408 3187 3078 -20439603.62743 3188 3078 -14862571.67359 3189 3078 44407129.00917 3190 3078 2732061.517723 3191 3078 12772232.20442 3207 3078 -31931434.66587 3208 3078 -15470023.5297 3209 3078 -15179205.07113 3210 3078 -77039196.05297 3211 3078 5859266.438322 3212 3078 -63722944.41981 3213 3078 -7975427.310119 3214 3078 -5702105.11695 3215 3078 8764300.831026 3216 3078 -25052811.64063 3217 3078 14245285.28038 3218 3078 -15798966.36227 3079 3079 697591530.9292 3080 3079 -13690717.22567 3096 3079 -61716139.93398 3097 3079 -67571752.73443 3098 3079 958073.8792971 3099 3079 26141729.8893 3100 3079 104711137.1152 3101 3079 -3780060.244209 3102 3079 1189769.352479 3103 3079 -55490454.62227 3104 3079 514661.2980421 3105 3079 56400209.26179 3106 3079 -63735683.24105 3107 3079 567096.4529157 3168 3079 12516746.0251 3169 3079 -20481488.51436 3170 3079 -13323982.79472 3186 3079 -20431230.61693 3187 3079 -85352258.63453 3188 3079 -48907517.62925 3189 3079 2732061.517722 3190 3079 74751645.69339 3191 3079 384085.0688729 3207 3079 -15470023.5297 3208 3079 -24154401.16993 3209 3079 -12628280.16189 3210 3079 5859266.438323 3211 3079 -15691362.14432 3212 3079 2860835.284096 3213 3079 547894.8851028 3214 3079 -38358437.39327 3215 3079 33460909.06044 3216 3079 14245285.28038 3217 3079 -27731476.33361 3218 3079 16805961.40619 3080 3080 611810183.1273 3096 3080 3694588.250438 3097 3080 958073.8795674 3098 3080 -24420311.97772 3099 3080 -1426197.341683 3100 3080 -3780060.244208 3101 3080 101673342.4859 3102 3080 -84364.06685185 3103 3080 514661.2980419 3104 3080 71753512.71717 3105 3080 -835481.5492466 3106 3080 567096.4529157 3107 3080 910290.6188606 3168 3080 8430695.586522 3169 3080 -16696841.26379 3170 3080 -16349664.0201 3186 3080 -14857154.43812 3187 3080 -48910133.59817 3188 3080 -57010817.60422 3189 3080 -12583392.79142 3190 3080 -6914435.376953 3191 3080 -105490238.163 3207 3080 -15179205.07113 3208 3080 -12628280.16189 3209 3080 -24783666.57282 3210 3080 -63722944.42014 3211 3080 2860835.284773 3212 3080 -82669051.73675 3213 3080 639300.8292051 3214 3080 33460909.06044 3215 3080 -47849796.71078 3216 3080 -15798966.36227 3217 3080 16805961.40619 3218 3080 -31227507.85006 3081 3081 503203712.7044 3082 3081 1.287460327148e-05 3083 3081 4571811.315658 3084 3081 55651374.03849 3085 3081 12499999.99794 3086 3081 -3143071.475793 3171 3081 -89115968.74764 3172 3081 -2.875924110413e-06 3173 3081 60031786.74372 3174 3081 -36905217.31746 3175 3081 -15625000.00514 3176 3081 21394122.91072 3192 3081 68618264.38753 3193 3081 3.814697265625e-06 3194 3081 -11914911.75127 3195 3081 -12436480.03947 3196 3081 3125000.001022 3197 3081 -4050234.016128 3082 3082 428199822.2403 3083 3082 -54860486.40512 3084 3082 -12499999.99795 3085 3082 -63098459.89864 3086 3082 27155937.64705 3171 3082 -4.589557647705e-06 3172 3082 -20365565.44178 3173 3082 -6857560.807395 3174 3082 -15625000.00514 3175 3082 -32217474.15883 3176 3082 15286419.29648 3192 3082 2.026557922363e-06 3193 3082 49867291.76226 3194 3082 -13715121.60804 3195 3082 -3125000.001031 3196 3082 -42123938.53837 3197 3082 31258602.46661 3083 3083 444647165.2272 3084 3083 7143386.85585 3085 3083 27704548.75807 3086 3083 24095174.80784 3171 3083 59688904.7995 3172 3083 -6857560.807395 3173 3083 -63334663.40088 3174 3083 21394122.91072 3175 3083 15286419.29648 3176 3083 -42337075.16724 3192 3083 12486407.68916 3193 3083 -13715121.60804 3194 3083 -41325312.23988 3195 3083 4621710.431164 3196 3083 31258602.46674 3197 3083 -64241069.11092 3084 3084 503203712.7044 3085 3084 1.287460327148e-05 3086 3084 4571811.315658 3087 3084 55651374.03849 3088 3084 12499999.99794 3089 3084 -3143071.475793 3171 3084 -25195798.91083 3172 3084 15625000.00513 3173 3084 8536049.989829 3174 3084 -89115968.74764 3175 3084 -2.875924110413e-06 3176 3084 60031786.74372 3177 3084 -36905217.31746 3178 3084 -15625000.00514 3179 3084 21394122.91072 3192 3084 11659548.6024 3193 3084 -3125000.001025 3194 3084 -1478619.431957 3195 3084 68618264.38753 3196 3084 3.814697265625e-06 3197 3084 -11914911.75127 3198 3084 -12436480.03947 3199 3084 3125000.001022 3200 3084 -4050234.016128 3085 3085 428199822.2403 3086 3085 -54860486.40512 3087 3085 -12499999.99795 3088 3085 -63098459.89864 3089 3085 27155937.64705 3171 3085 15625000.00513 3172 3085 -20508055.7522 3173 3085 -8428858.489084 3174 3085 -4.589557647705e-06 3175 3085 -20365565.44178 3176 3085 -6857560.807395 3177 3085 -15625000.00514 3178 3085 -32217474.15883 3179 3085 15286419.29648 3192 3085 3125000.001029 3193 3085 -18027909.8965 3194 3085 -17543480.85857 3195 3085 2.026557922363e-06 3196 3085 49867291.76226 3197 3085 -13715121.60804 3198 3085 -3125000.001031 3199 3085 -42123938.53837 3200 3085 31258602.46661 3086 3086 444647165.2272 3087 3086 7143386.85585 3088 3086 27704548.75807 3089 3086 24095174.80784 3171 3086 8536049.989829 3172 3086 -8428858.489084 3173 3086 -11111959.41625 3174 3086 59688904.7995 3175 3086 -6857560.807395 3176 3086 -63334663.40088 3177 3086 21394122.91072 3178 3086 15286419.29648 3179 3086 -42337075.16724 3192 3086 2050095.846979 3193 3086 -17543480.85871 3194 3086 15007.26739907 3195 3086 12486407.68916 3196 3086 -13715121.60804 3197 3086 -41325312.23988 3198 3086 4621710.431164 3199 3086 31258602.46674 3200 3086 -64241069.11092 3087 3087 503203712.7044 3088 3087 1.287460327148e-05 3089 3087 4571811.315658 3090 3087 55651374.03849 3091 3087 12499999.99794 3092 3087 -3143071.475793 3174 3087 -25195798.91083 3175 3087 15625000.00513 3176 3087 8536049.989829 3177 3087 -89115968.74764 3178 3087 -2.875924110413e-06 3179 3087 60031786.74372 3180 3087 -36905217.31746 3181 3087 -15625000.00514 3182 3087 21394122.91072 3195 3087 11659548.6024 3196 3087 -3125000.001025 3197 3087 -1478619.431957 3198 3087 68618264.38753 3199 3087 3.814697265625e-06 3200 3087 -11914911.75127 3201 3087 -12436480.03947 3202 3087 3125000.001022 3203 3087 -4050234.016128 3088 3088 428199822.2403 3089 3088 -54860486.40512 3090 3088 -12499999.99795 3091 3088 -63098459.89864 3092 3088 27155937.64705 3174 3088 15625000.00513 3175 3088 -20508055.7522 3176 3088 -8428858.489084 3177 3088 -4.589557647705e-06 3178 3088 -20365565.44178 3179 3088 -6857560.807395 3180 3088 -15625000.00514 3181 3088 -32217474.15883 3182 3088 15286419.29648 3195 3088 3125000.001029 3196 3088 -18027909.8965 3197 3088 -17543480.85857 3198 3088 2.026557922363e-06 3199 3088 49867291.76226 3200 3088 -13715121.60804 3201 3088 -3125000.001031 3202 3088 -42123938.53837 3203 3088 31258602.46661 3089 3089 444647165.2272 3090 3089 7143386.85585 3091 3089 27704548.75807 3092 3089 24095174.80784 3174 3089 8536049.989829 3175 3089 -8428858.489084 3176 3089 -11111959.41625 3177 3089 59688904.7995 3178 3089 -6857560.807395 3179 3089 -63334663.40088 3180 3089 21394122.91072 3181 3089 15286419.29648 3182 3089 -42337075.16724 3195 3089 2050095.846979 3196 3089 -17543480.85871 3197 3089 15007.26739907 3198 3089 12486407.68916 3199 3089 -13715121.60804 3200 3089 -41325312.23988 3201 3089 4621710.431164 3202 3089 31258602.46674 3203 3089 -64241069.11092 3090 3090 503203712.7044 3091 3090 1.287460327148e-05 3092 3090 4571811.315658 3093 3090 55651374.03849 3094 3090 12499999.99794 3095 3090 -3143071.475793 3177 3090 -25195798.91083 3178 3090 15625000.00513 3179 3090 8536049.989829 3180 3090 -89115968.74764 3181 3090 -2.875924110413e-06 3182 3090 60031786.74372 3183 3090 -36905217.31746 3184 3090 -15625000.00514 3185 3090 21394122.91072 3198 3090 11659548.6024 3199 3090 -3125000.001025 3200 3090 -1478619.431957 3201 3090 68618264.38753 3202 3090 3.814697265625e-06 3203 3090 -11914911.75127 3204 3090 -12436480.03947 3205 3090 3125000.001022 3206 3090 -4050234.016128 3091 3091 428199822.2403 3092 3091 -54860486.40512 3093 3091 -12499999.99795 3094 3091 -63098459.89864 3095 3091 27155937.64705 3177 3091 15625000.00513 3178 3091 -20508055.7522 3179 3091 -8428858.489084 3180 3091 -4.589557647705e-06 3181 3091 -20365565.44178 3182 3091 -6857560.807395 3183 3091 -15625000.00514 3184 3091 -32217474.15883 3185 3091 15286419.29648 3198 3091 3125000.001029 3199 3091 -18027909.8965 3200 3091 -17543480.85857 3201 3091 2.026557922363e-06 3202 3091 49867291.76226 3203 3091 -13715121.60804 3204 3091 -3125000.001031 3205 3091 -42123938.53837 3206 3091 31258602.46661 3092 3092 444647165.2272 3093 3092 7143386.85585 3094 3092 27704548.75807 3095 3092 24095174.80784 3177 3092 8536049.989829 3178 3092 -8428858.489084 3179 3092 -11111959.41625 3180 3092 59688904.7995 3181 3092 -6857560.807395 3182 3092 -63334663.40088 3183 3092 21394122.91072 3184 3092 15286419.29648 3185 3092 -42337075.16724 3198 3092 2050095.846979 3199 3092 -17543480.85871 3200 3092 15007.26739907 3201 3092 12486407.68916 3202 3092 -13715121.60804 3203 3092 -41325312.23988 3204 3092 4621710.431164 3205 3092 31258602.46674 3206 3092 -64241069.11092 3093 3093 503203712.7044 3094 3093 1.287460327148e-05 3095 3093 4571811.315658 3096 3093 55651374.03849 3097 3093 12499999.99794 3098 3093 -3143071.475793 3180 3093 -25195798.91083 3181 3093 15625000.00513 3182 3093 8536049.989829 3183 3093 -89115968.74764 3184 3093 -2.875924110413e-06 3185 3093 60031786.74372 3186 3093 -36905217.31746 3187 3093 -15625000.00514 3188 3093 21394122.91072 3201 3093 11659548.6024 3202 3093 -3125000.001025 3203 3093 -1478619.431957 3204 3093 68618264.38753 3205 3093 3.814697265625e-06 3206 3093 -11914911.75127 3207 3093 -12436480.03947 3208 3093 3125000.001022 3209 3093 -4050234.016128 3094 3094 428199822.2403 3095 3094 -54860486.40512 3096 3094 -12499999.99795 3097 3094 -63098459.89864 3098 3094 27155937.64705 3180 3094 15625000.00513 3181 3094 -20508055.7522 3182 3094 -8428858.489084 3183 3094 -4.589557647705e-06 3184 3094 -20365565.44178 3185 3094 -6857560.807395 3186 3094 -15625000.00514 3187 3094 -32217474.15883 3188 3094 15286419.29648 3201 3094 3125000.001029 3202 3094 -18027909.8965 3203 3094 -17543480.85857 3204 3094 2.026557922363e-06 3205 3094 49867291.76226 3206 3094 -13715121.60804 3207 3094 -3125000.001031 3208 3094 -42123938.53837 3209 3094 31258602.46661 3095 3095 444647165.2272 3096 3095 7143386.85585 3097 3095 27704548.75807 3098 3095 24095174.80784 3180 3095 8536049.989829 3181 3095 -8428858.489084 3182 3095 -11111959.41625 3183 3095 59688904.7995 3184 3095 -6857560.807395 3185 3095 -63334663.40088 3186 3095 21394122.91072 3187 3095 15286419.29648 3188 3095 -42337075.16724 3201 3095 2050095.846979 3202 3095 -17543480.85871 3203 3095 15007.26739907 3204 3095 12486407.68916 3205 3095 -13715121.60804 3206 3095 -41325312.23988 3207 3095 4621710.431164 3208 3095 31258602.46674 3209 3095 -64241069.11092 3096 3096 492641702.9103 3097 3096 783851.8819454 3098 3096 23124528.25251 3099 3096 35525755.89285 3100 3096 -8589427.098965 3101 3096 875956.4485927 3183 3096 -25195798.91083 3184 3096 15625000.00513 3185 3096 8536049.989829 3186 3096 -80462204.18944 3187 3096 4387679.506916 3188 3096 55975129.38452 3189 3096 -33628141.01288 3190 3096 -15470023.52969 3191 3096 17035465.07834 3204 3096 11659548.6024 3205 3096 -3125000.001025 3206 3096 -1478619.431957 3207 3096 63165885.37219 3208 3096 154956.7695463 3209 3096 -7186249.992212 3210 3096 -9680868.333559 3211 3096 -1572612.750872 3212 3096 1692044.416381 3097 3097 431526412.2217 3098 3097 -34701568.81617 3099 3097 -33589427.09486 3100 3097 -86350313.34311 3101 3097 5606495.794132 3183 3097 15625000.00513 3184 3097 -20508055.7522 3185 3097 -8428858.489084 3186 3097 4387679.506913 3187 3097 -17090896.6139 3188 3097 -7874910.331907 3189 3097 -15470023.52969 3190 3097 -25851107.51693 3191 3097 13144289.29101 3204 3097 3125000.001029 3205 3097 -18027909.8965 3206 3097 -17543480.85857 3207 3097 154956.7695445 3208 3097 47507014.2381 3209 3097 -8588328.009523 3210 3097 -7822612.752924 3211 3097 -40170622.93066 3212 3097 30937121.7314 3098 3098 434974977.4793 3099 3098 2933248.114919 3100 3098 5606495.794132 3101 3098 31861370.7746 3183 3098 8536049.989829 3184 3098 -8428858.489084 3185 3098 -11111959.41625 3186 3098 57689539.10866 3187 3098 -7600604.775448 3188 3098 -62286030.28655 3189 3098 17035465.07834 3190 3098 13144289.29101 3191 3098 -29308216.83149 3204 3098 2050095.846979 3205 3098 -17543480.85871 3206 3098 15007.26739907 3207 3098 17900277.78144 3208 3098 -8039716.898502 3209 3098 -51569754.72927 3210 3098 8649301.362094 3211 3098 30937121.73073 3212 3098 -43449921.92941 3099 3099 471121932.3818 3100 3099 20233944.24908 3101 3099 -737926.2288754 3102 3099 -112418921.8 3103 3099 -68599790.71768 3104 3099 878928.1725117 3105 3099 33580044.0569 3106 3099 -588932.2563479 3107 3099 -171624.632228 3186 3099 -21742707.44264 3187 3099 14412601.93721 3188 3099 10306829.79205 3189 3099 -76324678.84597 3190 3099 5859266.438326 3191 3099 63055180.55904 3207 3099 -4475728.404087 3208 3099 -7822612.752925 3209 3099 -7244240.304203 3210 3099 39577919.69218 3211 3099 4372212.886619 3212 3099 -12821762.43463 3213 3099 -39228723.10362 3214 3099 -17004714.72989 3215 3099 20529332.26077 3216 3099 -12888553.538 3217 3099 183246.2206558 3218 3099 1555771.238536 3100 3100 493722084.1344 3101 3100 -9026222.936527 3102 3100 -68599790.71768 3103 3100 -86928261.36223 3104 3100 567096.4529154 3105 3100 -25588932.25224 3106 3100 -86217512.58703 3107 3100 1753724.512503 3186 3100 14412601.93721 3187 3100 -32236833.91562 3188 3100 -15509166.55588 3189 3100 5859266.438325 3190 3100 -14976844.93733 3191 3100 -4699928.603619 3207 3100 -1572612.750872 3208 3100 -34965483.00119 3209 3100 -28168781.0366 3210 3100 4372212.88662 3211 3100 42956376.60637 3212 3100 -2191021.741286 3213 3100 -17004714.72988 3214 3100 -33047443.13223 3215 3100 16805961.40619 3216 3100 -6066753.781397 3217 3100 -42812243.26214 3218 3100 33762936.53119 3101 3101 482504201.0121 3102 3101 878928.1725112 3103 3101 567096.4529154 3104 3101 -22282287.50233 3105 3101 514139.256546 3106 3101 1753724.512503 3107 3101 45122415.38576 3186 3101 10306829.79205 3187 3101 -15509166.55588 3188 3101 -22990102.91187 3189 3101 63055180.55938 3190 3101 -4699928.602806 3191 3101 -80763672.5181 3207 3101 -1315629.191991 3208 3101 -28168781.03741 3209 3101 -29569548.78415 3210 3101 12533862.5612 3211 3101 -2191021.741286 3212 3101 -89714782.17938 3213 3101 20529332.26077 3214 3101 16805961.40619 3215 3101 -36543474.64868 3216 3101 7962090.685931 3217 3101 33762936.53119 3218 3101 -47305010.00354 3102 3102 275061856.1274 3103 3102 73810230.63521 3104 3102 -487105.8403563 3105 3102 -85928078.14503 3106 3102 -6400209.270002 3107 3102 -307458.2653014 3189 3102 -7426816.19884 3190 3102 547894.8851027 3191 3102 -686306.8063924 3210 3102 -38680111.99234 3211 3102 -17004714.72989 3212 3102 -20095667.75257 3213 3102 19662816.22848 3214 3102 18202105.12106 3215 3102 8005635.510344 3216 3102 -44958888.03514 3217 3102 -1745285.276274 3218 3102 -35973660.95138 3103 3103 244299704.588 3104 3103 -514661.2980397 3105 3103 18599790.72589 3106 3103 40925011.39215 3107 3103 -567096.4529139 3189 3103 -5702105.11695 3190 3103 -37809826.28199 3191 3103 -33205757.59528 3210 3103 -17004714.72989 3211 3103 -32498832.02095 3212 3103 -16527371.93809 3213 3103 18202105.12106 3214 3103 11959888.79912 3215 3103 6539090.93299 3216 3103 4504714.725779 3217 3103 -13054230.49401 3218 3103 3194038.600379 3104 3104 279394070.5498 3105 3104 -307458.2652981 3106 3104 -567096.4529139 3107 3104 51950704.22376 3189 3104 -8811306.808046 3190 3104 -33205757.59528 3191 3104 -46386833.74737 3210 3104 -20095667.75257 3211 3104 -16527371.93809 3212 3104 -35080511.68526 3213 3104 -8244364.486988 3214 3104 -6794242.398153 3215 3104 -60632270.38613 3216 3104 -35973660.9524 3217 3104 -3472628.068476 3218 3104 -48308384.17547 3105 3105 232532080.9027 3106 3105 -49411067.73544 3107 3105 -742727.2202297 3189 3105 -24504200.52935 3190 3105 14245285.28038 3191 3105 15375426.00908 3210 3105 -11242720.20522 3211 3105 -6066753.781398 3212 3105 -7723395.426606 3213 3105 -44958888.03514 3214 3105 4504714.725781 3215 3105 35825731.39786 3216 3105 15899808.76754 3217 3105 -12683246.22476 3218 3105 -6411373.091219 3106 3106 238640184.4403 3107 3106 -1753724.512498 3189 3106 14245285.28038 3190 3106 -27182865.22233 3191 3106 -16527371.93809 3210 3106 183246.2206552 3211 3106 -41166409.92937 3212 3106 -32903730.12452 3213 3106 -1745285.276272 3214 3106 -13054230.49401 3215 3106 3194038.60038 3216 3106 -12683246.22476 3217 3106 16597505.64354 3218 3106 6237063.462234 3107 3107 247648589.7832 3189 3107 15375426.00909 3190 3107 -16527371.93809 3191 3107 -29764544.88664 3210 3107 -1659957.923597 3211 3107 -32903730.12452 3212 3107 -42916121.11612 3213 3107 35825731.39701 3214 3107 -3472628.068476 3215 3107 -48308384.17547 3216 3107 6058383.851178 3217 3107 -7096269.868909 3218 3107 -51826949.82756 3108 3108 648741877.3649 3109 3108 62499999.98976 3110 3108 33168324.30835 3111 3108 -355476071.9436 3112 3108 -62523716.6258 3113 3108 -27673319.58105 3114 3108 5797712.423909 3115 3108 50023716.62785 3116 3108 -19897668.89224 3219 3108 76701211.16396 3220 3108 15625000.00514 3221 3108 21009550.22758 3222 3108 -125983237.2565 3223 3108 -15630322.06463 3224 3108 -74621947.50591 3225 3108 -24799837.07904 3226 3108 12505322.06361 3227 3108 -18723479.73292 3109 3109 554960584.1326 3110 3109 -63110559.55319 3111 3109 -62535574.94383 3112 3109 -61649505.13883 3113 3109 -38276277.82281 3114 3109 75035574.94178 3115 3109 5797712.423912 3116 3109 25521217.55499 3219 3109 15625000.00514 3220 3109 53256630.69937 3221 3109 -5602780.460976 3222 3109 -15632983.09438 3223 3109 -52528524.54163 3224 3109 -23113573.91808 3225 3109 18757983.09541 3226 3109 -24799837.07904 3227 3109 22467775.67917 3110 3110 608122864.0228 3111 3110 -24925817.21738 3112 3110 -30317816.4155 3113 3110 -26125989.8053 3114 3110 -29846503.33835 3115 3110 17014145.03666 3116 3110 15460566.46375 3219 3110 -6140600.947398 3220 3110 -27322678.94813 3221 3110 -75919024.90121 3222 3110 -74277994.97009 3223 3110 -21190287.58241 3224 3110 -105509843.5958 3225 3110 -28085219.59939 3226 3110 14978517.11945 3227 3110 -66132898.87745 3111 3111 1110223097.916 3112 3111 62559291.5799 3113 3111 30860259.9917 3114 3111 12838043.85587 3115 3111 -62523716.6258 3116 3111 27041055.07434 3117 3111 -244029558.4996 3118 3111 2.473592758179e-06 3119 3111 -5943336.391493 3120 3111 -96781952.40796 3121 3111 62499999.98974 3122 3111 -27030538.9556 3219 3111 -111681734.2619 3220 3111 -15632983.09438 3221 3111 61472760.90482 3222 3111 149252626.5636 3223 3111 15638305.15389 3224 3111 7711980.245565 3225 3111 -47230742.81426 3226 3111 -15630322.06464 3227 3111 23688071.7797 3228 3111 -97033826.33989 3229 3111 1.400709152222e-06 3230 3111 -69175329.97466 3231 3111 -39900479.57507 3232 3111 15625000.00513 3233 3111 -23680008.71958 3112 3112 941438116.1313 3113 3112 -85033165.29872 3114 3112 -62535574.94383 3115 3112 -205958151.8641 3116 3112 46639478.37137 3117 3112 4.053115844727e-06 3118 3112 30971970.86735 3119 3112 -27430259.42623 3120 3112 62499999.98974 3121 3112 -78031030.26054 3122 3112 15223810.26862 3219 3112 -15630322.06464 3220 3112 -38227021.54706 3221 3112 5963051.430523 3222 3112 15638305.15389 3223 3112 107057171.8061 3224 3112 -21260770.12636 3225 3112 -15632983.09439 3226 3112 -101928593.64 3227 3112 65822290.07648 3228 3112 7.450580596924e-07 3229 3112 -28283463.80681 3230 3112 -6857568.701869 3231 3112 15625000.00513 3232 3112 -35212760.99956 3233 3112 17343714.91106 3113 3113 941510422.8134 3114 3113 26703431.18881 3115 3113 52129838.76531 3116 3113 9972799.741074 3117 3113 -3200280.836388 3118 3113 -27430259.42623 3119 3113 46485699.20007 3120 3113 -26687657.01071 3121 3113 14949504.71271 3122 3113 -33777948.97413 3219 3113 61128808.369 3220 3113 4044385.985747 3221 3113 -67372502.27695 3222 3113 7717756.425008 3223 3113 -21256149.23011 3224 3113 -106755752.9646 3225 3113 23692103.30976 3226 3113 67469018.6918 3227 3113 -132015307.5643 3228 3113 -68832448.03044 3229 3113 -6857568.701869 3230 3113 -84449189.35104 3231 3113 -23680008.71958 3232 3113 17343714.91106 3233 3113 -50324486.557 3114 3114 648741877.3649 3115 3114 62499999.98976 3116 3114 33168324.30835 3117 3114 -95427568.72765 3118 3114 -62499999.98975 3119 3114 24401752.70261 3120 3114 -355476071.9436 3121 3114 -62523716.6258 3122 3114 -27673319.58105 3123 3114 5797712.423909 3124 3114 50023716.62785 3125 3114 -19897668.89224 3219 3114 2016499.187392 3220 3114 18757983.09541 3221 3114 12648670.74487 3222 3114 -6124104.06778 3223 3114 -15632983.09438 3224 3114 -10255693.28227 3225 3114 76701211.16396 3226 3114 15625000.00514 3227 3114 21009550.22758 3228 3114 -26159485.64696 3229 3114 -15625000.00513 3230 3114 -10821935.79869 3231 3114 -125983237.2565 3232 3114 -15630322.06463 3233 3114 -74621947.50591 3234 3114 -24799837.07904 3235 3114 12505322.06361 3236 3114 -18723479.73292 3115 3115 554960584.1326 3116 3115 -63110559.55319 3117 3115 -62499999.98975 3118 3115 -76676646.58022 3119 3115 12206449.1576 3120 3115 -62535574.94383 3121 3115 -61649505.13883 3122 3115 -38276277.82281 3123 3115 75035574.94178 3124 3115 5797712.423912 3125 3115 25521217.55499 3219 3115 12505322.06361 3220 3115 2016499.187392 3221 3115 -6746002.447256 3222 3115 -15630322.06463 3223 3115 -60821954.89356 3224 3115 -41130474.11058 3225 3115 15625000.00514 3226 3115 53256630.69937 3227 3115 -5602780.460976 3228 3115 -15625000.00513 3229 3115 -21471767.07144 3230 3115 -10486146.20919 3231 3115 -15632983.09438 3232 3115 -52528524.54163 3233 3115 -23113573.91808 3234 3115 18757983.09541 3235 3115 -24799837.07904 3236 3115 22467775.67917 3116 3116 608122864.0228 3117 3116 24744634.64751 3118 3116 12480754.71352 3119 3116 -30166259.15992 3120 3116 -24925817.21738 3121 3116 -30317816.4155 3122 3116 -26125989.8053 3123 3116 -29846503.33835 3124 3116 17014145.03666 3125 3116 15460566.46375 3219 3116 8432447.163244 3220 3116 -10119003.67088 3221 3116 5377331.166378 3222 3116 -10253948.8687 3223 3116 -42777202.9092 3224 3116 -22397604.24035 3225 3116 -6140600.947398 3226 3116 -27322678.94813 3227 3116 -75919024.90121 3228 3116 -10821935.79869 3229 3116 -10486146.20919 3230 3116 -13681836.08202 3231 3116 -74277994.97009 3232 3116 -21190287.58241 3233 3116 -105509843.5958 3234 3116 -28085219.59939 3235 3116 14978517.11945 3236 3116 -66132898.87745 3117 3117 1024746089.754 3118 3117 2.086162567139e-05 3119 3117 9143617.227815 3120 3117 115751892.8599 3121 3117 -9.417533874512e-06 3122 3117 2285904.308086 3126 3117 -244029558.4996 3127 3117 2.473592758179e-06 3128 3117 -5943336.391493 3129 3117 -96781952.40796 3130 3117 62499999.98974 3131 3117 -27030538.9556 3222 3117 -93459816.96553 3223 3117 1.579523086548e-06 3224 3117 66889426.94725 3225 3117 -38668381.31079 3226 3117 -15625000.00514 3227 3117 23108532.96245 3228 3117 119183368.3243 3229 3117 4.112720489502e-06 3230 3117 2285903.027438 3231 3117 -32106344.47651 3232 3117 -9.387731552124e-06 3233 3117 571475.757148 3237 3117 -97033826.33989 3238 3117 1.400709152222e-06 3239 3117 -69175329.97466 3240 3117 -39900479.57507 3241 3117 15625000.00513 3242 3117 -23680008.71958 3118 3118 874738712.6486 3119 3118 -109721037.6509 3120 3118 -1.046061515808e-05 3121 3118 -121747792.2491 3122 3118 55957741.04746 3126 3118 4.053115844727e-06 3127 3118 30971970.86735 3128 3118 -27430259.42623 3129 3118 62499999.98974 3130 3118 -78031030.26054 3131 3118 15223810.26862 3222 3118 -6.705522537231e-07 3223 3118 -24709454.43242 3224 3118 -6857568.701869 3225 3118 -15625000.00514 3226 3118 -33980662.73527 3227 3118 16657951.02195 3228 3118 4.053115844727e-06 3229 3118 81681619.73861 3230 3118 -27430274.79396 3231 3118 -8.40425491333e-06 3232 3118 -91481269.86781 3233 3118 68140484.61019 3237 3118 7.450580596924e-07 3238 3118 -28283463.80681 3239 3118 -6857568.701869 3240 3118 15625000.00513 3241 3118 -35212760.99956 3242 3118 17343714.91106 3119 3119 938198180.6514 3120 3119 2285904.308086 3121 3119 53763296.60338 3122 3119 60055040.21296 3126 3119 -3200280.836388 3127 3119 -27430259.42623 3128 3119 46485699.20007 3129 3119 -26687657.01071 3130 3119 14949504.71271 3131 3119 -33777948.97413 3222 3119 66546545.00303 3223 3119 -6857568.701869 3224 3119 -74918497.68596 3225 3119 23108532.96245 3226 3119 16657951.02195 3227 3119 -47038891.18556 3228 3119 2285903.027438 3229 3119 -27430274.79396 3230 3119 -130792022.7266 3231 3119 571475.7571481 3232 3119 67866179.05482 3233 3119 -147771014.9835 3237 3119 -68832448.03044 3238 3119 -6857568.701869 3239 3119 -84449189.35104 3240 3119 -23680008.71958 3241 3119 17343714.91106 3242 3119 -50324486.557 3120 3120 1110223097.916 3121 3120 62559291.5799 3122 3120 30860259.9917 3123 3120 12838043.85587 3124 3120 -62523716.6258 3125 3120 27041055.07434 3126 3120 -95427568.72765 3127 3120 -62499999.98975 3128 3120 24401752.70261 3129 3120 -244029558.4996 3130 3120 2.473592758179e-06 3131 3120 -5943336.391493 3132 3120 -96781952.40796 3133 3120 62499999.98974 3134 3120 -27030538.9556 3222 3120 -25604579.22317 3223 3120 15625000.00514 3224 3120 10250460.04156 3225 3120 -111681734.2619 3226 3120 -15632983.09438 3227 3120 61472760.90482 3228 3120 21503247.52855 3229 3120 3.844499588013e-06 3230 3120 571475.7571353 3231 3120 149252626.5636 3232 3120 15638305.15389 3233 3120 7711980.245565 3234 3120 -47230742.81426 3235 3120 -15630322.06464 3236 3120 23688071.7797 3237 3120 -26159485.64696 3238 3120 -15625000.00513 3239 3120 -10821935.79869 3240 3120 -97033826.33989 3241 3120 1.400709152222e-06 3242 3120 -69175329.97466 3243 3120 -39900479.57507 3244 3120 15625000.00513 3245 3120 -23680008.71958 3121 3121 941438116.1313 3122 3121 -85033165.29872 3123 3121 -62535574.94383 3124 3121 -205958151.8641 3125 3121 46639478.37137 3126 3121 -62499999.98975 3127 3121 -76676646.58022 3128 3121 12206449.1576 3129 3121 4.053115844727e-06 3130 3121 30971970.86735 3131 3121 -27430259.42623 3132 3121 62499999.98974 3133 3121 -78031030.26054 3134 3121 15223810.26862 3222 3121 15625000.00514 3223 3121 -20916860.64765 3224 3121 -9800382.320076 3225 3121 -15630322.06464 3226 3121 -38227021.54706 3227 3121 5963051.430523 3228 3121 5.88595867157e-06 3229 3121 -37871677.86274 3230 3121 -40710209.81623 3231 3121 15638305.15389 3232 3121 107057171.8061 3233 3121 -21260770.12636 3234 3121 -15632983.09439 3235 3121 -101928593.64 3236 3121 65822290.07648 3237 3121 -15625000.00513 3238 3121 -21471767.07144 3239 3121 -10486146.20919 3240 3121 7.450580596924e-07 3241 3121 -28283463.80681 3242 3121 -6857568.701869 3243 3121 15625000.00513 3244 3121 -35212760.99956 3245 3121 17343714.91106 3122 3122 941510422.8134 3123 3122 26703431.18881 3124 3122 52129838.76531 3125 3122 9972799.741074 3126 3122 24744634.64751 3127 3122 12480754.71352 3128 3122 -30166259.15992 3129 3122 -3200280.836388 3130 3122 -27430259.42623 3131 3122 46485699.20007 3132 3122 -26687657.01071 3133 3122 14949504.71271 3134 3122 -33777948.97413 3222 3122 10250460.04156 3223 3122 -9800382.320076 3224 3122 -12202085.61857 3225 3122 61128808.369 3226 3122 4044385.985747 3227 3122 -67372502.27695 3228 3122 571475.7571355 3229 3122 -40435904.26086 3230 3122 -4812102.970013 3231 3122 7717756.425008 3232 3122 -21256149.23011 3233 3122 -106755752.9646 3234 3122 23692103.30976 3235 3122 67469018.6918 3236 3122 -132015307.5643 3237 3122 -10821935.79869 3238 3122 -10486146.20919 3239 3122 -13681836.08202 3240 3122 -68832448.03044 3241 3122 -6857568.701869 3242 3122 -84449189.35104 3243 3122 -23680008.71958 3244 3122 17343714.91106 3245 3122 -50324486.557 3123 3123 648741877.3649 3124 3123 62499999.98976 3125 3123 33168324.30835 3129 3123 -95427568.72765 3130 3123 -62499999.98975 3131 3123 24401752.70261 3132 3123 -355476071.9436 3133 3123 -62523716.6258 3134 3123 -27673319.58105 3135 3123 5797712.423909 3136 3123 50023716.62785 3137 3123 -19897668.89224 3225 3123 2016499.187392 3226 3123 18757983.09541 3227 3123 12648670.74487 3231 3123 -6124104.06778 3232 3123 -15632983.09438 3233 3123 -10255693.28227 3234 3123 76701211.16396 3235 3123 15625000.00514 3236 3123 21009550.22758 3240 3123 -26159485.64696 3241 3123 -15625000.00513 3242 3123 -10821935.79869 3243 3123 -125983237.2565 3244 3123 -15630322.06463 3245 3123 -74621947.50591 3246 3123 -24799837.07904 3247 3123 12505322.06361 3248 3123 -18723479.73292 3124 3124 554960584.1326 3125 3124 -63110559.55319 3129 3124 -62499999.98975 3130 3124 -76676646.58022 3131 3124 12206449.1576 3132 3124 -62535574.94383 3133 3124 -61649505.13883 3134 3124 -38276277.82281 3135 3124 75035574.94178 3136 3124 5797712.423912 3137 3124 25521217.55499 3225 3124 12505322.06361 3226 3124 2016499.187392 3227 3124 -6746002.447256 3231 3124 -15630322.06463 3232 3124 -60821954.89356 3233 3124 -41130474.11058 3234 3124 15625000.00514 3235 3124 53256630.69937 3236 3124 -5602780.460976 3240 3124 -15625000.00513 3241 3124 -21471767.07144 3242 3124 -10486146.20919 3243 3124 -15632983.09438 3244 3124 -52528524.54163 3245 3124 -23113573.91808 3246 3124 18757983.09541 3247 3124 -24799837.07904 3248 3124 22467775.67917 3125 3125 608122864.0228 3129 3125 24744634.64751 3130 3125 12480754.71352 3131 3125 -30166259.15992 3132 3125 -24925817.21738 3133 3125 -30317816.4155 3134 3125 -26125989.8053 3135 3125 -29846503.33835 3136 3125 17014145.03666 3137 3125 15460566.46375 3225 3125 8432447.163244 3226 3125 -10119003.67088 3227 3125 5377331.166378 3231 3125 -10253948.8687 3232 3125 -42777202.9092 3233 3125 -22397604.24035 3234 3125 -6140600.947398 3235 3125 -27322678.94813 3236 3125 -75919024.90121 3240 3125 -10821935.79869 3241 3125 -10486146.20919 3242 3125 -13681836.08202 3243 3125 -74277994.97009 3244 3125 -21190287.58241 3245 3125 -105509843.5958 3246 3125 -28085219.59939 3247 3125 14978517.11945 3248 3125 -66132898.87745 3126 3126 1024746089.754 3127 3126 2.086162567139e-05 3128 3126 9143617.227815 3129 3126 115751892.8599 3130 3126 -9.417533874512e-06 3131 3126 2285904.308086 3138 3126 -244029558.4996 3139 3126 2.473592758179e-06 3140 3126 -5943336.391493 3141 3126 -96781952.40796 3142 3126 62499999.98974 3143 3126 -27030538.9556 3228 3126 -93459816.96553 3229 3126 1.579523086548e-06 3230 3126 66889426.94725 3231 3126 -38668381.31079 3232 3126 -15625000.00514 3233 3126 23108532.96245 3237 3126 119183368.3243 3238 3126 4.112720489502e-06 3239 3126 2285903.027438 3240 3126 -32106344.47651 3241 3126 -9.387731552124e-06 3242 3126 571475.757148 3249 3126 -97033826.33989 3250 3126 1.400709152222e-06 3251 3126 -69175329.97466 3252 3126 -39900479.57507 3253 3126 15625000.00513 3254 3126 -23680008.71958 3127 3127 874738712.6486 3128 3127 -109721037.6509 3129 3127 -1.046061515808e-05 3130 3127 -121747792.2491 3131 3127 55957741.04746 3138 3127 4.053115844727e-06 3139 3127 30971970.86735 3140 3127 -27430259.42623 3141 3127 62499999.98974 3142 3127 -78031030.26054 3143 3127 15223810.26862 3228 3127 -6.705522537231e-07 3229 3127 -24709454.43242 3230 3127 -6857568.701869 3231 3127 -15625000.00514 3232 3127 -33980662.73527 3233 3127 16657951.02195 3237 3127 4.053115844727e-06 3238 3127 81681619.73861 3239 3127 -27430274.79396 3240 3127 -8.40425491333e-06 3241 3127 -91481269.86781 3242 3127 68140484.61019 3249 3127 7.450580596924e-07 3250 3127 -28283463.80681 3251 3127 -6857568.701869 3252 3127 15625000.00513 3253 3127 -35212760.99956 3254 3127 17343714.91106 3128 3128 938198180.6514 3129 3128 2285904.308086 3130 3128 53763296.60338 3131 3128 60055040.21296 3138 3128 -3200280.836388 3139 3128 -27430259.42623 3140 3128 46485699.20007 3141 3128 -26687657.01071 3142 3128 14949504.71271 3143 3128 -33777948.97413 3228 3128 66546545.00303 3229 3128 -6857568.701869 3230 3128 -74918497.68596 3231 3128 23108532.96245 3232 3128 16657951.02195 3233 3128 -47038891.18556 3237 3128 2285903.027438 3238 3128 -27430274.79396 3239 3128 -130792022.7266 3240 3128 571475.7571481 3241 3128 67866179.05482 3242 3128 -147771014.9835 3249 3128 -68832448.03044 3250 3128 -6857568.701869 3251 3128 -84449189.35104 3252 3128 -23680008.71958 3253 3128 17343714.91106 3254 3128 -50324486.557 3129 3129 1024746089.754 3130 3129 2.086162567139e-05 3131 3129 9143617.227815 3132 3129 115751892.8599 3133 3129 -9.417533874512e-06 3134 3129 2285904.308086 3138 3129 -95427568.72765 3139 3129 -62499999.98975 3140 3129 24401752.70261 3141 3129 -244029558.4996 3142 3129 2.473592758179e-06 3143 3129 -5943336.391493 3144 3129 -96781952.40796 3145 3129 62499999.98974 3146 3129 -27030538.9556 3228 3129 -25604579.22317 3229 3129 15625000.00514 3230 3129 10250460.04156 3231 3129 -93459816.96553 3232 3129 1.579523086548e-06 3233 3129 66889426.94725 3234 3129 -38668381.31079 3235 3129 -15625000.00514 3236 3129 23108532.96245 3237 3129 21503247.52855 3238 3129 3.844499588013e-06 3239 3129 571475.7571353 3240 3129 119183368.3243 3241 3129 4.112720489502e-06 3242 3129 2285903.027438 3243 3129 -32106344.47651 3244 3129 -9.387731552124e-06 3245 3129 571475.757148 3249 3129 -26159485.64696 3250 3129 -15625000.00513 3251 3129 -10821935.79869 3252 3129 -97033826.33989 3253 3129 1.400709152222e-06 3254 3129 -69175329.97466 3255 3129 -39900479.57507 3256 3129 15625000.00513 3257 3129 -23680008.71958 3130 3130 874738712.6486 3131 3130 -109721037.6509 3132 3130 -1.046061515808e-05 3133 3130 -121747792.2491 3134 3130 55957741.04746 3138 3130 -62499999.98975 3139 3130 -76676646.58022 3140 3130 12206449.1576 3141 3130 4.053115844727e-06 3142 3130 30971970.86735 3143 3130 -27430259.42623 3144 3130 62499999.98974 3145 3130 -78031030.26054 3146 3130 15223810.26862 3228 3130 15625000.00514 3229 3130 -20916860.64765 3230 3130 -9800382.320076 3231 3130 -6.705522537231e-07 3232 3130 -24709454.43242 3233 3130 -6857568.701869 3234 3130 -15625000.00514 3235 3130 -33980662.73527 3236 3130 16657951.02195 3237 3130 5.88595867157e-06 3238 3130 -37871677.86274 3239 3130 -40710209.81623 3240 3130 4.053115844727e-06 3241 3130 81681619.73861 3242 3130 -27430274.79396 3243 3130 -8.40425491333e-06 3244 3130 -91481269.86781 3245 3130 68140484.61019 3249 3130 -15625000.00513 3250 3130 -21471767.07144 3251 3130 -10486146.20919 3252 3130 7.450580596924e-07 3253 3130 -28283463.80681 3254 3130 -6857568.701869 3255 3130 15625000.00513 3256 3130 -35212760.99956 3257 3130 17343714.91106 3131 3131 938198180.6514 3132 3131 2285904.308086 3133 3131 53763296.60338 3134 3131 60055040.21296 3138 3131 24744634.64751 3139 3131 12480754.71352 3140 3131 -30166259.15992 3141 3131 -3200280.836388 3142 3131 -27430259.42623 3143 3131 46485699.20007 3144 3131 -26687657.01071 3145 3131 14949504.71271 3146 3131 -33777948.97413 3228 3131 10250460.04156 3229 3131 -9800382.320076 3230 3131 -12202085.61857 3231 3131 66546545.00303 3232 3131 -6857568.701869 3233 3131 -74918497.68596 3234 3131 23108532.96245 3235 3131 16657951.02195 3236 3131 -47038891.18556 3237 3131 571475.7571355 3238 3131 -40435904.26086 3239 3131 -4812102.970013 3240 3131 2285903.027438 3241 3131 -27430274.79396 3242 3131 -130792022.7266 3243 3131 571475.7571481 3244 3131 67866179.05482 3245 3131 -147771014.9835 3249 3131 -10821935.79869 3250 3131 -10486146.20919 3251 3131 -13681836.08202 3252 3131 -68832448.03044 3253 3131 -6857568.701869 3254 3131 -84449189.35104 3255 3131 -23680008.71958 3256 3131 17343714.91106 3257 3131 -50324486.557 3132 3132 1110223097.916 3133 3132 62559291.5799 3134 3132 30860259.9917 3135 3132 12838043.85587 3136 3132 -62523716.6258 3137 3132 27041055.07434 3141 3132 -95427568.72765 3142 3132 -62499999.98975 3143 3132 24401752.70261 3144 3132 -244029558.4996 3145 3132 2.473592758179e-06 3146 3132 -5943336.391493 3147 3132 -96781952.40796 3148 3132 62499999.98974 3149 3132 -27030538.9556 3231 3132 -25604579.22317 3232 3132 15625000.00514 3233 3132 10250460.04156 3234 3132 -111681734.2619 3235 3132 -15632983.09438 3236 3132 61472760.90482 3240 3132 21503247.52855 3241 3132 3.844499588013e-06 3242 3132 571475.7571353 3243 3132 149252626.5636 3244 3132 15638305.15389 3245 3132 7711980.245565 3246 3132 -47230742.81426 3247 3132 -15630322.06464 3248 3132 23688071.7797 3252 3132 -26159485.64696 3253 3132 -15625000.00513 3254 3132 -10821935.79869 3255 3132 -97033826.33989 3256 3132 1.400709152222e-06 3257 3132 -69175329.97466 3258 3132 -39900479.57507 3259 3132 15625000.00513 3260 3132 -23680008.71958 3133 3133 941438116.1313 3134 3133 -85033165.29872 3135 3133 -62535574.94383 3136 3133 -205958151.8641 3137 3133 46639478.37137 3141 3133 -62499999.98975 3142 3133 -76676646.58022 3143 3133 12206449.1576 3144 3133 4.053115844727e-06 3145 3133 30971970.86735 3146 3133 -27430259.42623 3147 3133 62499999.98974 3148 3133 -78031030.26054 3149 3133 15223810.26862 3231 3133 15625000.00514 3232 3133 -20916860.64765 3233 3133 -9800382.320076 3234 3133 -15630322.06464 3235 3133 -38227021.54706 3236 3133 5963051.430523 3240 3133 5.88595867157e-06 3241 3133 -37871677.86274 3242 3133 -40710209.81623 3243 3133 15638305.15389 3244 3133 107057171.8061 3245 3133 -21260770.12636 3246 3133 -15632983.09439 3247 3133 -101928593.64 3248 3133 65822290.07648 3252 3133 -15625000.00513 3253 3133 -21471767.07144 3254 3133 -10486146.20919 3255 3133 7.450580596924e-07 3256 3133 -28283463.80681 3257 3133 -6857568.701869 3258 3133 15625000.00513 3259 3133 -35212760.99956 3260 3133 17343714.91106 3134 3134 941510422.8134 3135 3134 26703431.18881 3136 3134 52129838.76531 3137 3134 9972799.741074 3141 3134 24744634.64751 3142 3134 12480754.71352 3143 3134 -30166259.15992 3144 3134 -3200280.836388 3145 3134 -27430259.42623 3146 3134 46485699.20007 3147 3134 -26687657.01071 3148 3134 14949504.71271 3149 3134 -33777948.97413 3231 3134 10250460.04156 3232 3134 -9800382.320076 3233 3134 -12202085.61857 3234 3134 61128808.369 3235 3134 4044385.985747 3236 3134 -67372502.27695 3240 3134 571475.7571355 3241 3134 -40435904.26086 3242 3134 -4812102.970013 3243 3134 7717756.425008 3244 3134 -21256149.23011 3245 3134 -106755752.9646 3246 3134 23692103.30976 3247 3134 67469018.6918 3248 3134 -132015307.5643 3252 3134 -10821935.79869 3253 3134 -10486146.20919 3254 3134 -13681836.08202 3255 3134 -68832448.03044 3256 3134 -6857568.701869 3257 3134 -84449189.35104 3258 3134 -23680008.71958 3259 3134 17343714.91106 3260 3134 -50324486.557 3135 3135 648741877.3649 3136 3135 62499999.98976 3137 3135 33168324.30835 3144 3135 -95427568.72765 3145 3135 -62499999.98975 3146 3135 24401752.70261 3147 3135 -355476071.9436 3148 3135 -62523716.6258 3149 3135 -27673319.58105 3150 3135 5797712.423909 3151 3135 50023716.62785 3152 3135 -19897668.89224 3234 3135 2016499.187392 3235 3135 18757983.09541 3236 3135 12648670.74487 3243 3135 -6124104.06778 3244 3135 -15632983.09438 3245 3135 -10255693.28227 3246 3135 76701211.16396 3247 3135 15625000.00514 3248 3135 21009550.22758 3255 3135 -26159485.64696 3256 3135 -15625000.00513 3257 3135 -10821935.79869 3258 3135 -125983237.2565 3259 3135 -15630322.06463 3260 3135 -74621947.50591 3261 3135 -24799837.07904 3262 3135 12505322.06361 3263 3135 -18723479.73292 3136 3136 554960584.1326 3137 3136 -63110559.55319 3144 3136 -62499999.98975 3145 3136 -76676646.58022 3146 3136 12206449.1576 3147 3136 -62535574.94383 3148 3136 -61649505.13883 3149 3136 -38276277.82281 3150 3136 75035574.94178 3151 3136 5797712.423912 3152 3136 25521217.55499 3234 3136 12505322.06361 3235 3136 2016499.187392 3236 3136 -6746002.447256 3243 3136 -15630322.06463 3244 3136 -60821954.89356 3245 3136 -41130474.11058 3246 3136 15625000.00514 3247 3136 53256630.69937 3248 3136 -5602780.460976 3255 3136 -15625000.00513 3256 3136 -21471767.07144 3257 3136 -10486146.20919 3258 3136 -15632983.09438 3259 3136 -52528524.54163 3260 3136 -23113573.91808 3261 3136 18757983.09541 3262 3136 -24799837.07904 3263 3136 22467775.67917 3137 3137 608122864.0228 3144 3137 24744634.64751 3145 3137 12480754.71352 3146 3137 -30166259.15992 3147 3137 -24925817.21738 3148 3137 -30317816.4155 3149 3137 -26125989.8053 3150 3137 -29846503.33835 3151 3137 17014145.03666 3152 3137 15460566.46375 3234 3137 8432447.163244 3235 3137 -10119003.67088 3236 3137 5377331.166378 3243 3137 -10253948.8687 3244 3137 -42777202.9092 3245 3137 -22397604.24035 3246 3137 -6140600.947398 3247 3137 -27322678.94813 3248 3137 -75919024.90121 3255 3137 -10821935.79869 3256 3137 -10486146.20919 3257 3137 -13681836.08202 3258 3137 -74277994.97009 3259 3137 -21190287.58241 3260 3137 -105509843.5958 3261 3137 -28085219.59939 3262 3137 14978517.11945 3263 3137 -66132898.87745 3138 3138 1024746089.754 3139 3138 2.086162567139e-05 3140 3138 9143617.227815 3141 3138 115751892.8599 3142 3138 -9.417533874512e-06 3143 3138 2285904.308086 3153 3138 -244029558.4996 3154 3138 2.473592758179e-06 3155 3138 -5943336.391493 3156 3138 -96781952.40796 3157 3138 62499999.98974 3158 3138 -27030538.9556 3237 3138 -93459816.96553 3238 3138 1.579523086548e-06 3239 3138 66889426.94725 3240 3138 -38668381.31079 3241 3138 -15625000.00514 3242 3138 23108532.96245 3249 3138 119183368.3243 3250 3138 4.112720489502e-06 3251 3138 2285903.027438 3252 3138 -32106344.47651 3253 3138 -9.387731552124e-06 3254 3138 571475.757148 3264 3138 -97033826.33989 3265 3138 1.400709152222e-06 3266 3138 -69175329.97466 3267 3138 -39900479.57507 3268 3138 15625000.00513 3269 3138 -23680008.71958 3139 3139 874738712.6486 3140 3139 -109721037.6509 3141 3139 -1.046061515808e-05 3142 3139 -121747792.2491 3143 3139 55957741.04746 3153 3139 4.053115844727e-06 3154 3139 30971970.86735 3155 3139 -27430259.42623 3156 3139 62499999.98974 3157 3139 -78031030.26054 3158 3139 15223810.26862 3237 3139 -6.705522537231e-07 3238 3139 -24709454.43242 3239 3139 -6857568.701869 3240 3139 -15625000.00514 3241 3139 -33980662.73527 3242 3139 16657951.02195 3249 3139 4.053115844727e-06 3250 3139 81681619.73861 3251 3139 -27430274.79396 3252 3139 -8.40425491333e-06 3253 3139 -91481269.86781 3254 3139 68140484.61019 3264 3139 7.450580596924e-07 3265 3139 -28283463.80681 3266 3139 -6857568.701869 3267 3139 15625000.00513 3268 3139 -35212760.99956 3269 3139 17343714.91106 3140 3140 938198180.6514 3141 3140 2285904.308086 3142 3140 53763296.60338 3143 3140 60055040.21296 3153 3140 -3200280.836388 3154 3140 -27430259.42623 3155 3140 46485699.20007 3156 3140 -26687657.01071 3157 3140 14949504.71271 3158 3140 -33777948.97413 3237 3140 66546545.00303 3238 3140 -6857568.701869 3239 3140 -74918497.68596 3240 3140 23108532.96245 3241 3140 16657951.02195 3242 3140 -47038891.18556 3249 3140 2285903.027438 3250 3140 -27430274.79396 3251 3140 -130792022.7266 3252 3140 571475.7571481 3253 3140 67866179.05482 3254 3140 -147771014.9835 3264 3140 -68832448.03044 3265 3140 -6857568.701869 3266 3140 -84449189.35104 3267 3140 -23680008.71958 3268 3140 17343714.91106 3269 3140 -50324486.557 3141 3141 1024746089.754 3142 3141 2.086162567139e-05 3143 3141 9143617.227815 3144 3141 115751892.8599 3145 3141 -9.417533874512e-06 3146 3141 2285904.308086 3153 3141 -95427568.72765 3154 3141 -62499999.98975 3155 3141 24401752.70261 3156 3141 -244029558.4996 3157 3141 2.473592758179e-06 3158 3141 -5943336.391493 3159 3141 -96781952.40796 3160 3141 62499999.98974 3161 3141 -27030538.9556 3237 3141 -25604579.22317 3238 3141 15625000.00514 3239 3141 10250460.04156 3240 3141 -93459816.96553 3241 3141 1.579523086548e-06 3242 3141 66889426.94725 3243 3141 -38668381.31079 3244 3141 -15625000.00514 3245 3141 23108532.96245 3249 3141 21503247.52855 3250 3141 3.844499588013e-06 3251 3141 571475.7571353 3252 3141 119183368.3243 3253 3141 4.112720489502e-06 3254 3141 2285903.027438 3255 3141 -32106344.47651 3256 3141 -9.387731552124e-06 3257 3141 571475.757148 3264 3141 -26159485.64696 3265 3141 -15625000.00513 3266 3141 -10821935.79869 3267 3141 -97033826.33989 3268 3141 1.400709152222e-06 3269 3141 -69175329.97466 3270 3141 -39900479.57507 3271 3141 15625000.00513 3272 3141 -23680008.71958 3142 3142 874738712.6486 3143 3142 -109721037.6509 3144 3142 -1.046061515808e-05 3145 3142 -121747792.2491 3146 3142 55957741.04746 3153 3142 -62499999.98975 3154 3142 -76676646.58022 3155 3142 12206449.1576 3156 3142 4.053115844727e-06 3157 3142 30971970.86735 3158 3142 -27430259.42623 3159 3142 62499999.98974 3160 3142 -78031030.26054 3161 3142 15223810.26862 3237 3142 15625000.00514 3238 3142 -20916860.64765 3239 3142 -9800382.320076 3240 3142 -6.705522537231e-07 3241 3142 -24709454.43242 3242 3142 -6857568.701869 3243 3142 -15625000.00514 3244 3142 -33980662.73527 3245 3142 16657951.02195 3249 3142 5.88595867157e-06 3250 3142 -37871677.86274 3251 3142 -40710209.81623 3252 3142 4.053115844727e-06 3253 3142 81681619.73861 3254 3142 -27430274.79396 3255 3142 -8.40425491333e-06 3256 3142 -91481269.86781 3257 3142 68140484.61019 3264 3142 -15625000.00513 3265 3142 -21471767.07144 3266 3142 -10486146.20919 3267 3142 7.450580596924e-07 3268 3142 -28283463.80681 3269 3142 -6857568.701869 3270 3142 15625000.00513 3271 3142 -35212760.99956 3272 3142 17343714.91106 3143 3143 938198180.6514 3144 3143 2285904.308086 3145 3143 53763296.60338 3146 3143 60055040.21296 3153 3143 24744634.64751 3154 3143 12480754.71352 3155 3143 -30166259.15992 3156 3143 -3200280.836388 3157 3143 -27430259.42623 3158 3143 46485699.20007 3159 3143 -26687657.01071 3160 3143 14949504.71271 3161 3143 -33777948.97413 3237 3143 10250460.04156 3238 3143 -9800382.320076 3239 3143 -12202085.61857 3240 3143 66546545.00303 3241 3143 -6857568.701869 3242 3143 -74918497.68596 3243 3143 23108532.96245 3244 3143 16657951.02195 3245 3143 -47038891.18556 3249 3143 571475.7571355 3250 3143 -40435904.26086 3251 3143 -4812102.970013 3252 3143 2285903.027438 3253 3143 -27430274.79396 3254 3143 -130792022.7266 3255 3143 571475.7571481 3256 3143 67866179.05482 3257 3143 -147771014.9835 3264 3143 -10821935.79869 3265 3143 -10486146.20919 3266 3143 -13681836.08202 3267 3143 -68832448.03044 3268 3143 -6857568.701869 3269 3143 -84449189.35104 3270 3143 -23680008.71958 3271 3143 17343714.91106 3272 3143 -50324486.557 3144 3144 1024746089.754 3145 3144 2.086162567139e-05 3146 3144 9143617.227815 3147 3144 115751892.8599 3148 3144 -9.417533874512e-06 3149 3144 2285904.308086 3156 3144 -95427568.72765 3157 3144 -62499999.98975 3158 3144 24401752.70261 3159 3144 -244029558.4996 3160 3144 2.473592758179e-06 3161 3144 -5943336.391493 3162 3144 -96781952.40796 3163 3144 62499999.98974 3164 3144 -27030538.9556 3240 3144 -25604579.22317 3241 3144 15625000.00514 3242 3144 10250460.04156 3243 3144 -93459816.96553 3244 3144 1.579523086548e-06 3245 3144 66889426.94725 3246 3144 -38668381.31079 3247 3144 -15625000.00514 3248 3144 23108532.96245 3252 3144 21503247.52855 3253 3144 3.844499588013e-06 3254 3144 571475.7571353 3255 3144 119183368.3243 3256 3144 4.112720489502e-06 3257 3144 2285903.027438 3258 3144 -32106344.47651 3259 3144 -9.387731552124e-06 3260 3144 571475.757148 3267 3144 -26159485.64696 3268 3144 -15625000.00513 3269 3144 -10821935.79869 3270 3144 -97033826.33989 3271 3144 1.400709152222e-06 3272 3144 -69175329.97466 3273 3144 -39900479.57507 3274 3144 15625000.00513 3275 3144 -23680008.71958 3145 3145 874738712.6486 3146 3145 -109721037.6509 3147 3145 -1.046061515808e-05 3148 3145 -121747792.2491 3149 3145 55957741.04746 3156 3145 -62499999.98975 3157 3145 -76676646.58022 3158 3145 12206449.1576 3159 3145 4.053115844727e-06 3160 3145 30971970.86735 3161 3145 -27430259.42623 3162 3145 62499999.98974 3163 3145 -78031030.26054 3164 3145 15223810.26862 3240 3145 15625000.00514 3241 3145 -20916860.64765 3242 3145 -9800382.320076 3243 3145 -6.705522537231e-07 3244 3145 -24709454.43242 3245 3145 -6857568.701869 3246 3145 -15625000.00514 3247 3145 -33980662.73527 3248 3145 16657951.02195 3252 3145 5.88595867157e-06 3253 3145 -37871677.86274 3254 3145 -40710209.81623 3255 3145 4.053115844727e-06 3256 3145 81681619.73861 3257 3145 -27430274.79396 3258 3145 -8.40425491333e-06 3259 3145 -91481269.86781 3260 3145 68140484.61019 3267 3145 -15625000.00513 3268 3145 -21471767.07144 3269 3145 -10486146.20919 3270 3145 7.450580596924e-07 3271 3145 -28283463.80681 3272 3145 -6857568.701869 3273 3145 15625000.00513 3274 3145 -35212760.99956 3275 3145 17343714.91106 3146 3146 938198180.6514 3147 3146 2285904.308086 3148 3146 53763296.60338 3149 3146 60055040.21296 3156 3146 24744634.64751 3157 3146 12480754.71352 3158 3146 -30166259.15992 3159 3146 -3200280.836388 3160 3146 -27430259.42623 3161 3146 46485699.20007 3162 3146 -26687657.01071 3163 3146 14949504.71271 3164 3146 -33777948.97413 3240 3146 10250460.04156 3241 3146 -9800382.320076 3242 3146 -12202085.61857 3243 3146 66546545.00303 3244 3146 -6857568.701869 3245 3146 -74918497.68596 3246 3146 23108532.96245 3247 3146 16657951.02195 3248 3146 -47038891.18556 3252 3146 571475.7571355 3253 3146 -40435904.26086 3254 3146 -4812102.970013 3255 3146 2285903.027438 3256 3146 -27430274.79396 3257 3146 -130792022.7266 3258 3146 571475.7571481 3259 3146 67866179.05482 3260 3146 -147771014.9835 3267 3146 -10821935.79869 3268 3146 -10486146.20919 3269 3146 -13681836.08202 3270 3146 -68832448.03044 3271 3146 -6857568.701869 3272 3146 -84449189.35104 3273 3146 -23680008.71958 3274 3146 17343714.91106 3275 3146 -50324486.557 3147 3147 1110223097.916 3148 3147 62559291.5799 3149 3147 30860259.9917 3150 3147 12838043.85587 3151 3147 -62523716.6258 3152 3147 27041055.07434 3159 3147 -95427568.72765 3160 3147 -62499999.98975 3161 3147 24401752.70261 3162 3147 -244029558.4996 3163 3147 2.473592758179e-06 3164 3147 -5943336.391493 3165 3147 -96781952.40796 3166 3147 62499999.98974 3167 3147 -27030538.9556 3243 3147 -25604579.22317 3244 3147 15625000.00514 3245 3147 10250460.04156 3246 3147 -111681734.2619 3247 3147 -15632983.09438 3248 3147 61472760.90482 3255 3147 21503247.52855 3256 3147 3.844499588013e-06 3257 3147 571475.7571353 3258 3147 149252626.5636 3259 3147 15638305.15389 3260 3147 7711980.245565 3261 3147 -47230742.81426 3262 3147 -15630322.06464 3263 3147 23688071.7797 3270 3147 -26159485.64696 3271 3147 -15625000.00513 3272 3147 -10821935.79869 3273 3147 -97033826.33989 3274 3147 1.400709152222e-06 3275 3147 -69175329.97466 3276 3147 -39900479.57507 3277 3147 15625000.00513 3278 3147 -23680008.71958 3148 3148 941438116.1313 3149 3148 -85033165.29872 3150 3148 -62535574.94383 3151 3148 -205958151.8641 3152 3148 46639478.37137 3159 3148 -62499999.98975 3160 3148 -76676646.58022 3161 3148 12206449.1576 3162 3148 4.053115844727e-06 3163 3148 30971970.86735 3164 3148 -27430259.42623 3165 3148 62499999.98974 3166 3148 -78031030.26054 3167 3148 15223810.26862 3243 3148 15625000.00514 3244 3148 -20916860.64765 3245 3148 -9800382.320076 3246 3148 -15630322.06464 3247 3148 -38227021.54706 3248 3148 5963051.430523 3255 3148 5.88595867157e-06 3256 3148 -37871677.86274 3257 3148 -40710209.81623 3258 3148 15638305.15389 3259 3148 107057171.8061 3260 3148 -21260770.12636 3261 3148 -15632983.09439 3262 3148 -101928593.64 3263 3148 65822290.07648 3270 3148 -15625000.00513 3271 3148 -21471767.07144 3272 3148 -10486146.20919 3273 3148 7.450580596924e-07 3274 3148 -28283463.80681 3275 3148 -6857568.701869 3276 3148 15625000.00513 3277 3148 -35212760.99956 3278 3148 17343714.91106 3149 3149 941510422.8134 3150 3149 26703431.18881 3151 3149 52129838.76531 3152 3149 9972799.741074 3159 3149 24744634.64751 3160 3149 12480754.71352 3161 3149 -30166259.15992 3162 3149 -3200280.836388 3163 3149 -27430259.42623 3164 3149 46485699.20007 3165 3149 -26687657.01071 3166 3149 14949504.71271 3167 3149 -33777948.97413 3243 3149 10250460.04156 3244 3149 -9800382.320076 3245 3149 -12202085.61857 3246 3149 61128808.369 3247 3149 4044385.985747 3248 3149 -67372502.27695 3255 3149 571475.7571355 3256 3149 -40435904.26086 3257 3149 -4812102.970013 3258 3149 7717756.425008 3259 3149 -21256149.23011 3260 3149 -106755752.9646 3261 3149 23692103.30976 3262 3149 67469018.6918 3263 3149 -132015307.5643 3270 3149 -10821935.79869 3271 3149 -10486146.20919 3272 3149 -13681836.08202 3273 3149 -68832448.03044 3274 3149 -6857568.701869 3275 3149 -84449189.35104 3276 3149 -23680008.71958 3277 3149 17343714.91106 3278 3149 -50324486.557 3150 3150 648741877.3649 3151 3150 62499999.98976 3152 3150 33168324.30835 3162 3150 -95427568.72765 3163 3150 -62499999.98975 3164 3150 24401752.70261 3165 3150 -355476071.9436 3166 3150 -62523716.6258 3167 3150 -27673319.58105 3168 3150 5797712.423909 3169 3150 50023716.62785 3170 3150 -19897668.89224 3246 3150 2016499.187392 3247 3150 18757983.09541 3248 3150 12648670.74487 3258 3150 -6124104.06778 3259 3150 -15632983.09438 3260 3150 -10255693.28227 3261 3150 76701211.16396 3262 3150 15625000.00514 3263 3150 21009550.22758 3273 3150 -26159485.64696 3274 3150 -15625000.00513 3275 3150 -10821935.79869 3276 3150 -125983237.2565 3277 3150 -15630322.06463 3278 3150 -74621947.50591 3279 3150 -24799837.07904 3280 3150 12505322.06361 3281 3150 -18723479.73292 3151 3151 554960584.1326 3152 3151 -63110559.55319 3162 3151 -62499999.98975 3163 3151 -76676646.58022 3164 3151 12206449.1576 3165 3151 -62535574.94383 3166 3151 -61649505.13883 3167 3151 -38276277.82281 3168 3151 75035574.94178 3169 3151 5797712.423912 3170 3151 25521217.55499 3246 3151 12505322.06361 3247 3151 2016499.187392 3248 3151 -6746002.447256 3258 3151 -15630322.06463 3259 3151 -60821954.89356 3260 3151 -41130474.11058 3261 3151 15625000.00514 3262 3151 53256630.69937 3263 3151 -5602780.460976 3273 3151 -15625000.00513 3274 3151 -21471767.07144 3275 3151 -10486146.20919 3276 3151 -15632983.09438 3277 3151 -52528524.54163 3278 3151 -23113573.91808 3279 3151 18757983.09541 3280 3151 -24799837.07904 3281 3151 22467775.67917 3152 3152 608122864.0228 3162 3152 24744634.64751 3163 3152 12480754.71352 3164 3152 -30166259.15992 3165 3152 -24925817.21738 3166 3152 -30317816.4155 3167 3152 -26125989.8053 3168 3152 -29846503.33835 3169 3152 17014145.03666 3170 3152 15460566.46375 3246 3152 8432447.163244 3247 3152 -10119003.67088 3248 3152 5377331.166378 3258 3152 -10253948.8687 3259 3152 -42777202.9092 3260 3152 -22397604.24035 3261 3152 -6140600.947398 3262 3152 -27322678.94813 3263 3152 -75919024.90121 3273 3152 -10821935.79869 3274 3152 -10486146.20919 3275 3152 -13681836.08202 3276 3152 -74277994.97009 3277 3152 -21190287.58241 3278 3152 -105509843.5958 3279 3152 -28085219.59939 3280 3152 14978517.11945 3281 3152 -66132898.87745 3153 3153 1024746089.754 3154 3153 2.086162567139e-05 3155 3153 9143617.227815 3156 3153 115751892.8599 3157 3153 -9.417533874512e-06 3158 3153 2285904.308086 3171 3153 -244029558.4996 3172 3153 2.473592758179e-06 3173 3153 -5943336.391493 3174 3153 -96781952.40796 3175 3153 62499999.98974 3176 3153 -27030538.9556 3249 3153 -93459816.96553 3250 3153 1.579523086548e-06 3251 3153 66889426.94725 3252 3153 -38668381.31079 3253 3153 -15625000.00514 3254 3153 23108532.96245 3264 3153 119183368.3243 3265 3153 4.112720489502e-06 3266 3153 2285903.027438 3267 3153 -32106344.47651 3268 3153 -9.387731552124e-06 3269 3153 571475.757148 3282 3153 -97033826.33989 3283 3153 1.400709152222e-06 3284 3153 -69175329.97466 3285 3153 -39900479.57507 3286 3153 15625000.00513 3287 3153 -23680008.71958 3154 3154 874738712.6486 3155 3154 -109721037.6509 3156 3154 -1.046061515808e-05 3157 3154 -121747792.2491 3158 3154 55957741.04746 3171 3154 4.053115844727e-06 3172 3154 30971970.86735 3173 3154 -27430259.42623 3174 3154 62499999.98974 3175 3154 -78031030.26054 3176 3154 15223810.26862 3249 3154 -6.705522537231e-07 3250 3154 -24709454.43242 3251 3154 -6857568.701869 3252 3154 -15625000.00514 3253 3154 -33980662.73527 3254 3154 16657951.02195 3264 3154 4.053115844727e-06 3265 3154 81681619.73861 3266 3154 -27430274.79396 3267 3154 -8.40425491333e-06 3268 3154 -91481269.86781 3269 3154 68140484.61019 3282 3154 7.450580596924e-07 3283 3154 -28283463.80681 3284 3154 -6857568.701869 3285 3154 15625000.00513 3286 3154 -35212760.99956 3287 3154 17343714.91106 3155 3155 938198180.6514 3156 3155 2285904.308086 3157 3155 53763296.60338 3158 3155 60055040.21296 3171 3155 -3200280.836388 3172 3155 -27430259.42623 3173 3155 46485699.20007 3174 3155 -26687657.01071 3175 3155 14949504.71271 3176 3155 -33777948.97413 3249 3155 66546545.00303 3250 3155 -6857568.701869 3251 3155 -74918497.68596 3252 3155 23108532.96245 3253 3155 16657951.02195 3254 3155 -47038891.18556 3264 3155 2285903.027438 3265 3155 -27430274.79396 3266 3155 -130792022.7266 3267 3155 571475.7571481 3268 3155 67866179.05482 3269 3155 -147771014.9835 3282 3155 -68832448.03044 3283 3155 -6857568.701869 3284 3155 -84449189.35104 3285 3155 -23680008.71958 3286 3155 17343714.91106 3287 3155 -50324486.557 3156 3156 1024746089.754 3157 3156 2.086162567139e-05 3158 3156 9143617.227815 3159 3156 115751892.8599 3160 3156 -9.417533874512e-06 3161 3156 2285904.308086 3171 3156 -95427568.72765 3172 3156 -62499999.98975 3173 3156 24401752.70261 3174 3156 -244029558.4996 3175 3156 2.473592758179e-06 3176 3156 -5943336.391493 3177 3156 -96781952.40796 3178 3156 62499999.98974 3179 3156 -27030538.9556 3249 3156 -25604579.22317 3250 3156 15625000.00514 3251 3156 10250460.04156 3252 3156 -93459816.96553 3253 3156 1.579523086548e-06 3254 3156 66889426.94725 3255 3156 -38668381.31079 3256 3156 -15625000.00514 3257 3156 23108532.96245 3264 3156 21503247.52855 3265 3156 3.844499588013e-06 3266 3156 571475.7571353 3267 3156 119183368.3243 3268 3156 4.112720489502e-06 3269 3156 2285903.027438 3270 3156 -32106344.47651 3271 3156 -9.387731552124e-06 3272 3156 571475.757148 3282 3156 -26159485.64696 3283 3156 -15625000.00513 3284 3156 -10821935.79869 3285 3156 -97033826.33989 3286 3156 1.400709152222e-06 3287 3156 -69175329.97466 3288 3156 -39900479.57507 3289 3156 15625000.00513 3290 3156 -23680008.71958 3157 3157 874738712.6486 3158 3157 -109721037.6509 3159 3157 -1.046061515808e-05 3160 3157 -121747792.2491 3161 3157 55957741.04746 3171 3157 -62499999.98975 3172 3157 -76676646.58022 3173 3157 12206449.1576 3174 3157 4.053115844727e-06 3175 3157 30971970.86735 3176 3157 -27430259.42623 3177 3157 62499999.98974 3178 3157 -78031030.26054 3179 3157 15223810.26862 3249 3157 15625000.00514 3250 3157 -20916860.64765 3251 3157 -9800382.320076 3252 3157 -6.705522537231e-07 3253 3157 -24709454.43242 3254 3157 -6857568.701869 3255 3157 -15625000.00514 3256 3157 -33980662.73527 3257 3157 16657951.02195 3264 3157 5.88595867157e-06 3265 3157 -37871677.86274 3266 3157 -40710209.81623 3267 3157 4.053115844727e-06 3268 3157 81681619.73861 3269 3157 -27430274.79396 3270 3157 -8.40425491333e-06 3271 3157 -91481269.86781 3272 3157 68140484.61019 3282 3157 -15625000.00513 3283 3157 -21471767.07144 3284 3157 -10486146.20919 3285 3157 7.450580596924e-07 3286 3157 -28283463.80681 3287 3157 -6857568.701869 3288 3157 15625000.00513 3289 3157 -35212760.99956 3290 3157 17343714.91106 3158 3158 938198180.6514 3159 3158 2285904.308086 3160 3158 53763296.60338 3161 3158 60055040.21296 3171 3158 24744634.64751 3172 3158 12480754.71352 3173 3158 -30166259.15992 3174 3158 -3200280.836388 3175 3158 -27430259.42623 3176 3158 46485699.20007 3177 3158 -26687657.01071 3178 3158 14949504.71271 3179 3158 -33777948.97413 3249 3158 10250460.04156 3250 3158 -9800382.320076 3251 3158 -12202085.61857 3252 3158 66546545.00303 3253 3158 -6857568.701869 3254 3158 -74918497.68596 3255 3158 23108532.96245 3256 3158 16657951.02195 3257 3158 -47038891.18556 3264 3158 571475.7571355 3265 3158 -40435904.26086 3266 3158 -4812102.970013 3267 3158 2285903.027438 3268 3158 -27430274.79396 3269 3158 -130792022.7266 3270 3158 571475.7571481 3271 3158 67866179.05482 3272 3158 -147771014.9835 3282 3158 -10821935.79869 3283 3158 -10486146.20919 3284 3158 -13681836.08202 3285 3158 -68832448.03044 3286 3158 -6857568.701869 3287 3158 -84449189.35104 3288 3158 -23680008.71958 3289 3158 17343714.91106 3290 3158 -50324486.557 3159 3159 1024746089.754 3160 3159 2.086162567139e-05 3161 3159 9143617.227815 3162 3159 115751892.8599 3163 3159 -9.417533874512e-06 3164 3159 2285904.308086 3174 3159 -95427568.72765 3175 3159 -62499999.98975 3176 3159 24401752.70261 3177 3159 -244029558.4996 3178 3159 2.473592758179e-06 3179 3159 -5943336.391493 3180 3159 -96781952.40796 3181 3159 62499999.98974 3182 3159 -27030538.9556 3252 3159 -25604579.22317 3253 3159 15625000.00514 3254 3159 10250460.04156 3255 3159 -93459816.96553 3256 3159 1.579523086548e-06 3257 3159 66889426.94725 3258 3159 -38668381.31079 3259 3159 -15625000.00514 3260 3159 23108532.96245 3267 3159 21503247.52855 3268 3159 3.844499588013e-06 3269 3159 571475.7571353 3270 3159 119183368.3243 3271 3159 4.112720489502e-06 3272 3159 2285903.027438 3273 3159 -32106344.47651 3274 3159 -9.387731552124e-06 3275 3159 571475.757148 3285 3159 -26159485.64696 3286 3159 -15625000.00513 3287 3159 -10821935.79869 3288 3159 -97033826.33989 3289 3159 1.400709152222e-06 3290 3159 -69175329.97466 3291 3159 -39900479.57507 3292 3159 15625000.00513 3293 3159 -23680008.71958 3160 3160 874738712.6486 3161 3160 -109721037.6509 3162 3160 -1.046061515808e-05 3163 3160 -121747792.2491 3164 3160 55957741.04746 3174 3160 -62499999.98975 3175 3160 -76676646.58022 3176 3160 12206449.1576 3177 3160 4.053115844727e-06 3178 3160 30971970.86735 3179 3160 -27430259.42623 3180 3160 62499999.98974 3181 3160 -78031030.26054 3182 3160 15223810.26862 3252 3160 15625000.00514 3253 3160 -20916860.64765 3254 3160 -9800382.320076 3255 3160 -6.705522537231e-07 3256 3160 -24709454.43242 3257 3160 -6857568.701869 3258 3160 -15625000.00514 3259 3160 -33980662.73527 3260 3160 16657951.02195 3267 3160 5.88595867157e-06 3268 3160 -37871677.86274 3269 3160 -40710209.81623 3270 3160 4.053115844727e-06 3271 3160 81681619.73861 3272 3160 -27430274.79396 3273 3160 -8.40425491333e-06 3274 3160 -91481269.86781 3275 3160 68140484.61019 3285 3160 -15625000.00513 3286 3160 -21471767.07144 3287 3160 -10486146.20919 3288 3160 7.450580596924e-07 3289 3160 -28283463.80681 3290 3160 -6857568.701869 3291 3160 15625000.00513 3292 3160 -35212760.99956 3293 3160 17343714.91106 3161 3161 938198180.6514 3162 3161 2285904.308086 3163 3161 53763296.60338 3164 3161 60055040.21296 3174 3161 24744634.64751 3175 3161 12480754.71352 3176 3161 -30166259.15992 3177 3161 -3200280.836388 3178 3161 -27430259.42623 3179 3161 46485699.20007 3180 3161 -26687657.01071 3181 3161 14949504.71271 3182 3161 -33777948.97413 3252 3161 10250460.04156 3253 3161 -9800382.320076 3254 3161 -12202085.61857 3255 3161 66546545.00303 3256 3161 -6857568.701869 3257 3161 -74918497.68596 3258 3161 23108532.96245 3259 3161 16657951.02195 3260 3161 -47038891.18556 3267 3161 571475.7571355 3268 3161 -40435904.26086 3269 3161 -4812102.970013 3270 3161 2285903.027438 3271 3161 -27430274.79396 3272 3161 -130792022.7266 3273 3161 571475.7571481 3274 3161 67866179.05482 3275 3161 -147771014.9835 3285 3161 -10821935.79869 3286 3161 -10486146.20919 3287 3161 -13681836.08202 3288 3161 -68832448.03044 3289 3161 -6857568.701869 3290 3161 -84449189.35104 3291 3161 -23680008.71958 3292 3161 17343714.91106 3293 3161 -50324486.557 3162 3162 1024746089.754 3163 3162 2.086162567139e-05 3164 3162 9143617.227815 3165 3162 115751892.8599 3166 3162 -9.417533874512e-06 3167 3162 2285904.308086 3177 3162 -95427568.72765 3178 3162 -62499999.98975 3179 3162 24401752.70261 3180 3162 -244029558.4996 3181 3162 2.473592758179e-06 3182 3162 -5943336.391493 3183 3162 -96781952.40796 3184 3162 62499999.98974 3185 3162 -27030538.9556 3255 3162 -25604579.22317 3256 3162 15625000.00514 3257 3162 10250460.04156 3258 3162 -93459816.96553 3259 3162 1.579523086548e-06 3260 3162 66889426.94725 3261 3162 -38668381.31079 3262 3162 -15625000.00514 3263 3162 23108532.96245 3270 3162 21503247.52855 3271 3162 3.844499588013e-06 3272 3162 571475.7571353 3273 3162 119183368.3243 3274 3162 4.112720489502e-06 3275 3162 2285903.027438 3276 3162 -32106344.47651 3277 3162 -9.387731552124e-06 3278 3162 571475.757148 3288 3162 -26159485.64696 3289 3162 -15625000.00513 3290 3162 -10821935.79869 3291 3162 -97033826.33989 3292 3162 1.400709152222e-06 3293 3162 -69175329.97466 3294 3162 -39900479.57507 3295 3162 15625000.00513 3296 3162 -23680008.71958 3163 3163 874738712.6486 3164 3163 -109721037.6509 3165 3163 -1.046061515808e-05 3166 3163 -121747792.2491 3167 3163 55957741.04746 3177 3163 -62499999.98975 3178 3163 -76676646.58022 3179 3163 12206449.1576 3180 3163 4.053115844727e-06 3181 3163 30971970.86735 3182 3163 -27430259.42623 3183 3163 62499999.98974 3184 3163 -78031030.26054 3185 3163 15223810.26862 3255 3163 15625000.00514 3256 3163 -20916860.64765 3257 3163 -9800382.320076 3258 3163 -6.705522537231e-07 3259 3163 -24709454.43242 3260 3163 -6857568.701869 3261 3163 -15625000.00514 3262 3163 -33980662.73527 3263 3163 16657951.02195 3270 3163 5.88595867157e-06 3271 3163 -37871677.86274 3272 3163 -40710209.81623 3273 3163 4.053115844727e-06 3274 3163 81681619.73861 3275 3163 -27430274.79396 3276 3163 -8.40425491333e-06 3277 3163 -91481269.86781 3278 3163 68140484.61019 3288 3163 -15625000.00513 3289 3163 -21471767.07144 3290 3163 -10486146.20919 3291 3163 7.450580596924e-07 3292 3163 -28283463.80681 3293 3163 -6857568.701869 3294 3163 15625000.00513 3295 3163 -35212760.99956 3296 3163 17343714.91106 3164 3164 938198180.6514 3165 3164 2285904.308086 3166 3164 53763296.60338 3167 3164 60055040.21296 3177 3164 24744634.64751 3178 3164 12480754.71352 3179 3164 -30166259.15992 3180 3164 -3200280.836388 3181 3164 -27430259.42623 3182 3164 46485699.20007 3183 3164 -26687657.01071 3184 3164 14949504.71271 3185 3164 -33777948.97413 3255 3164 10250460.04156 3256 3164 -9800382.320076 3257 3164 -12202085.61857 3258 3164 66546545.00303 3259 3164 -6857568.701869 3260 3164 -74918497.68596 3261 3164 23108532.96245 3262 3164 16657951.02195 3263 3164 -47038891.18556 3270 3164 571475.7571355 3271 3164 -40435904.26086 3272 3164 -4812102.970013 3273 3164 2285903.027438 3274 3164 -27430274.79396 3275 3164 -130792022.7266 3276 3164 571475.7571481 3277 3164 67866179.05482 3278 3164 -147771014.9835 3288 3164 -10821935.79869 3289 3164 -10486146.20919 3290 3164 -13681836.08202 3291 3164 -68832448.03044 3292 3164 -6857568.701869 3293 3164 -84449189.35104 3294 3164 -23680008.71958 3295 3164 17343714.91106 3296 3164 -50324486.557 3165 3165 1110223097.916 3166 3165 62559291.5799 3167 3165 30860259.9917 3168 3165 12838043.85587 3169 3165 -62523716.6258 3170 3165 27041055.07434 3180 3165 -95427568.72765 3181 3165 -62499999.98975 3182 3165 24401752.70261 3183 3165 -244029558.4996 3184 3165 2.473592758179e-06 3185 3165 -5943336.391493 3186 3165 -96781952.40796 3187 3165 62499999.98974 3188 3165 -27030538.9556 3258 3165 -25604579.22317 3259 3165 15625000.00514 3260 3165 10250460.04156 3261 3165 -111681734.2619 3262 3165 -15632983.09438 3263 3165 61472760.90482 3273 3165 21503247.52855 3274 3165 3.844499588013e-06 3275 3165 571475.7571353 3276 3165 149252626.5636 3277 3165 15638305.15389 3278 3165 7711980.245565 3279 3165 -47230742.81426 3280 3165 -15630322.06464 3281 3165 23688071.7797 3291 3165 -26159485.64696 3292 3165 -15625000.00513 3293 3165 -10821935.79869 3294 3165 -97033826.33989 3295 3165 1.400709152222e-06 3296 3165 -69175329.97466 3297 3165 -39900479.57507 3298 3165 15625000.00513 3299 3165 -23680008.71958 3166 3166 941438116.1313 3167 3166 -85033165.29872 3168 3166 -62535574.94383 3169 3166 -205958151.8641 3170 3166 46639478.37137 3180 3166 -62499999.98975 3181 3166 -76676646.58022 3182 3166 12206449.1576 3183 3166 4.053115844727e-06 3184 3166 30971970.86735 3185 3166 -27430259.42623 3186 3166 62499999.98974 3187 3166 -78031030.26054 3188 3166 15223810.26862 3258 3166 15625000.00514 3259 3166 -20916860.64765 3260 3166 -9800382.320076 3261 3166 -15630322.06464 3262 3166 -38227021.54706 3263 3166 5963051.430523 3273 3166 5.88595867157e-06 3274 3166 -37871677.86274 3275 3166 -40710209.81623 3276 3166 15638305.15389 3277 3166 107057171.8061 3278 3166 -21260770.12636 3279 3166 -15632983.09439 3280 3166 -101928593.64 3281 3166 65822290.07648 3291 3166 -15625000.00513 3292 3166 -21471767.07144 3293 3166 -10486146.20919 3294 3166 7.450580596924e-07 3295 3166 -28283463.80681 3296 3166 -6857568.701869 3297 3166 15625000.00513 3298 3166 -35212760.99956 3299 3166 17343714.91106 3167 3167 941510422.8134 3168 3167 26703431.18881 3169 3167 52129838.76531 3170 3167 9972799.741074 3180 3167 24744634.64751 3181 3167 12480754.71352 3182 3167 -30166259.15992 3183 3167 -3200280.836388 3184 3167 -27430259.42623 3185 3167 46485699.20007 3186 3167 -26687657.01071 3187 3167 14949504.71271 3188 3167 -33777948.97413 3258 3167 10250460.04156 3259 3167 -9800382.320076 3260 3167 -12202085.61857 3261 3167 61128808.369 3262 3167 4044385.985747 3263 3167 -67372502.27695 3273 3167 571475.7571355 3274 3167 -40435904.26086 3275 3167 -4812102.970013 3276 3167 7717756.425008 3277 3167 -21256149.23011 3278 3167 -106755752.9646 3279 3167 23692103.30976 3280 3167 67469018.6918 3281 3167 -132015307.5643 3291 3167 -10821935.79869 3292 3167 -10486146.20919 3293 3167 -13681836.08202 3294 3167 -68832448.03044 3295 3167 -6857568.701869 3296 3167 -84449189.35104 3297 3167 -23680008.71958 3298 3167 17343714.91106 3299 3167 -50324486.557 3168 3168 571856074.9736 3169 3168 29944782.78006 3170 3168 -10255414.39245 3183 3168 -95427568.72765 3184 3168 -62499999.98975 3185 3168 24401752.70261 3186 3168 -279335748.997 3187 3168 -30005441.58063 3188 3168 -2084718.233583 3189 3168 -9122767.138634 3190 3168 50060658.79238 3191 3168 -2747902.533834 3261 3168 2016499.187392 3262 3168 18757983.09541 3263 3168 12648670.74487 3276 3168 -6124104.06778 3277 3168 -15632983.09438 3278 3168 -10255693.28227 3279 3168 65053034.9571 3280 3168 8483480.368784 3281 3168 9019580.696071 3294 3168 -26159485.64696 3295 3168 -15625000.00513 3296 3168 -10821935.79869 3297 3168 -101009842.5111 3298 3168 -8497290.497413 3299 3168 -60569369.93287 3300 3168 -13454901.79217 3301 3168 12513810.13274 3302 3168 -11175576.39938 3169 3169 527903869.9296 3170 3169 -64299123.93581 3183 3169 -62499999.98975 3184 3169 -76676646.58022 3185 3169 12206449.1576 3186 3169 -30035770.98092 3187 3169 -47816.62481159 3188 3169 -17257158.96419 3189 3169 75090988.18857 3190 3169 -44413220.89433 3191 3169 6790513.35647 3261 3169 12505322.06361 3262 3169 2016499.187392 3263 3169 -6746002.447256 3276 3169 -15630322.06463 3277 3169 -60821954.89356 3278 3169 -41130474.11058 3279 3169 8483480.368782 3280 3169 52217536.42934 3281 3169 -7051287.02931 3294 3169 -15625000.00513 3295 3169 -21471767.07144 3296 3169 -10486146.20919 3297 3169 -8504195.561731 3298 3169 -30743336.81906 3299 3169 -11865024.08222 3300 3169 18770715.19911 3301 3169 -20875776.70625 3302 3169 20377905.34396 3170 3170 542654871.6366 3183 3170 24744634.64751 3184 3170 12480754.71352 3185 3170 -30166259.15992 3186 3170 -8254784.546585 3187 3170 -16158331.56487 3188 3170 2063603.639451 3189 3170 -4121853.80075 3190 3170 5692999.984857 3191 3170 10963074.71934 3261 3170 8432447.163244 3262 3170 -10119003.67088 3263 3170 5377331.166378 3276 3170 -10253948.8687 3277 3170 -42777202.9092 3278 3170 -22397604.24035 3279 3170 -15041312.00682 3280 3170 -26292746.72624 3281 3170 -76049227.32249 3294 3170 -10821935.79869 3295 3170 -10486146.20919 3296 3170 -13681836.08202 3297 3170 -62283371.84839 3298 3170 -11584369.2819 3299 3170 -77266599.98603 3300 3170 -16763364.59907 3301 3170 15907925.99552 3302 3170 -28458863.19837 3171 3171 1024746089.754 3172 3171 2.086162567139e-05 3173 3171 9143617.227815 3174 3171 115751892.8599 3175 3171 -9.417533874512e-06 3176 3171 2285904.308086 3192 3171 -244029558.4996 3193 3171 2.473592758179e-06 3194 3171 -5943336.391493 3195 3171 -96781952.40796 3196 3171 62499999.98974 3197 3171 -27030538.9556 3264 3171 -93459816.96553 3265 3171 1.579523086548e-06 3266 3171 66889426.94725 3267 3171 -38668381.31079 3268 3171 -15625000.00514 3269 3171 23108532.96245 3282 3171 119183368.3243 3283 3171 4.112720489502e-06 3284 3171 2285903.027438 3285 3171 -32106344.47651 3286 3171 -9.387731552124e-06 3287 3171 571475.757148 3303 3171 -97033826.33989 3304 3171 1.400709152222e-06 3305 3171 -69175329.97466 3306 3171 -39900479.57507 3307 3171 15625000.00513 3308 3171 -23680008.71958 3172 3172 874738712.6486 3173 3172 -109721037.6509 3174 3172 -1.046061515808e-05 3175 3172 -121747792.2491 3176 3172 55957741.04746 3192 3172 4.053115844727e-06 3193 3172 30971970.86735 3194 3172 -27430259.42623 3195 3172 62499999.98974 3196 3172 -78031030.26054 3197 3172 15223810.26862 3264 3172 -6.705522537231e-07 3265 3172 -24709454.43242 3266 3172 -6857568.701869 3267 3172 -15625000.00514 3268 3172 -33980662.73527 3269 3172 16657951.02195 3282 3172 4.053115844727e-06 3283 3172 81681619.73861 3284 3172 -27430274.79396 3285 3172 -8.40425491333e-06 3286 3172 -91481269.86781 3287 3172 68140484.61019 3303 3172 7.450580596924e-07 3304 3172 -28283463.80681 3305 3172 -6857568.701869 3306 3172 15625000.00513 3307 3172 -35212760.99956 3308 3172 17343714.91106 3173 3173 938198180.6514 3174 3173 2285904.308086 3175 3173 53763296.60338 3176 3173 60055040.21296 3192 3173 -3200280.836388 3193 3173 -27430259.42623 3194 3173 46485699.20007 3195 3173 -26687657.01071 3196 3173 14949504.71271 3197 3173 -33777948.97413 3264 3173 66546545.00303 3265 3173 -6857568.701869 3266 3173 -74918497.68596 3267 3173 23108532.96245 3268 3173 16657951.02195 3269 3173 -47038891.18556 3282 3173 2285903.027438 3283 3173 -27430274.79396 3284 3173 -130792022.7266 3285 3173 571475.7571481 3286 3173 67866179.05482 3287 3173 -147771014.9835 3303 3173 -68832448.03044 3304 3173 -6857568.701869 3305 3173 -84449189.35104 3306 3173 -23680008.71958 3307 3173 17343714.91106 3308 3173 -50324486.557 3174 3174 1024746089.754 3175 3174 2.086162567139e-05 3176 3174 9143617.227815 3177 3174 115751892.8599 3178 3174 -9.417533874512e-06 3179 3174 2285904.308086 3192 3174 -95427568.72765 3193 3174 -62499999.98975 3194 3174 24401752.70261 3195 3174 -244029558.4996 3196 3174 2.473592758179e-06 3197 3174 -5943336.391493 3198 3174 -96781952.40796 3199 3174 62499999.98974 3200 3174 -27030538.9556 3264 3174 -25604579.22317 3265 3174 15625000.00514 3266 3174 10250460.04156 3267 3174 -93459816.96553 3268 3174 1.579523086548e-06 3269 3174 66889426.94725 3270 3174 -38668381.31079 3271 3174 -15625000.00514 3272 3174 23108532.96245 3282 3174 21503247.52855 3283 3174 3.844499588013e-06 3284 3174 571475.7571353 3285 3174 119183368.3243 3286 3174 4.112720489502e-06 3287 3174 2285903.027438 3288 3174 -32106344.47651 3289 3174 -9.387731552124e-06 3290 3174 571475.757148 3303 3174 -26159485.64696 3304 3174 -15625000.00513 3305 3174 -10821935.79869 3306 3174 -97033826.33989 3307 3174 1.400709152222e-06 3308 3174 -69175329.97466 3309 3174 -39900479.57507 3310 3174 15625000.00513 3311 3174 -23680008.71958 3175 3175 874738712.6486 3176 3175 -109721037.6509 3177 3175 -1.046061515808e-05 3178 3175 -121747792.2491 3179 3175 55957741.04746 3192 3175 -62499999.98975 3193 3175 -76676646.58022 3194 3175 12206449.1576 3195 3175 4.053115844727e-06 3196 3175 30971970.86735 3197 3175 -27430259.42623 3198 3175 62499999.98974 3199 3175 -78031030.26054 3200 3175 15223810.26862 3264 3175 15625000.00514 3265 3175 -20916860.64765 3266 3175 -9800382.320076 3267 3175 -6.705522537231e-07 3268 3175 -24709454.43242 3269 3175 -6857568.701869 3270 3175 -15625000.00514 3271 3175 -33980662.73527 3272 3175 16657951.02195 3282 3175 5.88595867157e-06 3283 3175 -37871677.86274 3284 3175 -40710209.81623 3285 3175 4.053115844727e-06 3286 3175 81681619.73861 3287 3175 -27430274.79396 3288 3175 -8.40425491333e-06 3289 3175 -91481269.86781 3290 3175 68140484.61019 3303 3175 -15625000.00513 3304 3175 -21471767.07144 3305 3175 -10486146.20919 3306 3175 7.450580596924e-07 3307 3175 -28283463.80681 3308 3175 -6857568.701869 3309 3175 15625000.00513 3310 3175 -35212760.99956 3311 3175 17343714.91106 3176 3176 938198180.6514 3177 3176 2285904.308086 3178 3176 53763296.60338 3179 3176 60055040.21296 3192 3176 24744634.64751 3193 3176 12480754.71352 3194 3176 -30166259.15992 3195 3176 -3200280.836388 3196 3176 -27430259.42623 3197 3176 46485699.20007 3198 3176 -26687657.01071 3199 3176 14949504.71271 3200 3176 -33777948.97413 3264 3176 10250460.04156 3265 3176 -9800382.320076 3266 3176 -12202085.61857 3267 3176 66546545.00303 3268 3176 -6857568.701869 3269 3176 -74918497.68596 3270 3176 23108532.96245 3271 3176 16657951.02195 3272 3176 -47038891.18556 3282 3176 571475.7571355 3283 3176 -40435904.26086 3284 3176 -4812102.970013 3285 3176 2285903.027438 3286 3176 -27430274.79396 3287 3176 -130792022.7266 3288 3176 571475.7571481 3289 3176 67866179.05482 3290 3176 -147771014.9835 3303 3176 -10821935.79869 3304 3176 -10486146.20919 3305 3176 -13681836.08202 3306 3176 -68832448.03044 3307 3176 -6857568.701869 3308 3176 -84449189.35104 3309 3176 -23680008.71958 3310 3176 17343714.91106 3311 3176 -50324486.557 3177 3177 1024746089.754 3178 3177 2.086162567139e-05 3179 3177 9143617.227815 3180 3177 115751892.8599 3181 3177 -9.417533874512e-06 3182 3177 2285904.308086 3195 3177 -95427568.72765 3196 3177 -62499999.98975 3197 3177 24401752.70261 3198 3177 -244029558.4996 3199 3177 2.473592758179e-06 3200 3177 -5943336.391493 3201 3177 -96781952.40796 3202 3177 62499999.98974 3203 3177 -27030538.9556 3267 3177 -25604579.22317 3268 3177 15625000.00514 3269 3177 10250460.04156 3270 3177 -93459816.96553 3271 3177 1.579523086548e-06 3272 3177 66889426.94725 3273 3177 -38668381.31079 3274 3177 -15625000.00514 3275 3177 23108532.96245 3285 3177 21503247.52855 3286 3177 3.844499588013e-06 3287 3177 571475.7571353 3288 3177 119183368.3243 3289 3177 4.112720489502e-06 3290 3177 2285903.027438 3291 3177 -32106344.47651 3292 3177 -9.387731552124e-06 3293 3177 571475.757148 3306 3177 -26159485.64696 3307 3177 -15625000.00513 3308 3177 -10821935.79869 3309 3177 -97033826.33989 3310 3177 1.400709152222e-06 3311 3177 -69175329.97466 3312 3177 -39900479.57507 3313 3177 15625000.00513 3314 3177 -23680008.71958 3178 3178 874738712.6486 3179 3178 -109721037.6509 3180 3178 -1.046061515808e-05 3181 3178 -121747792.2491 3182 3178 55957741.04746 3195 3178 -62499999.98975 3196 3178 -76676646.58022 3197 3178 12206449.1576 3198 3178 4.053115844727e-06 3199 3178 30971970.86735 3200 3178 -27430259.42623 3201 3178 62499999.98974 3202 3178 -78031030.26054 3203 3178 15223810.26862 3267 3178 15625000.00514 3268 3178 -20916860.64765 3269 3178 -9800382.320076 3270 3178 -6.705522537231e-07 3271 3178 -24709454.43242 3272 3178 -6857568.701869 3273 3178 -15625000.00514 3274 3178 -33980662.73527 3275 3178 16657951.02195 3285 3178 5.88595867157e-06 3286 3178 -37871677.86274 3287 3178 -40710209.81623 3288 3178 4.053115844727e-06 3289 3178 81681619.73861 3290 3178 -27430274.79396 3291 3178 -8.40425491333e-06 3292 3178 -91481269.86781 3293 3178 68140484.61019 3306 3178 -15625000.00513 3307 3178 -21471767.07144 3308 3178 -10486146.20919 3309 3178 7.450580596924e-07 3310 3178 -28283463.80681 3311 3178 -6857568.701869 3312 3178 15625000.00513 3313 3178 -35212760.99956 3314 3178 17343714.91106 3179 3179 938198180.6514 3180 3179 2285904.308086 3181 3179 53763296.60338 3182 3179 60055040.21296 3195 3179 24744634.64751 3196 3179 12480754.71352 3197 3179 -30166259.15992 3198 3179 -3200280.836388 3199 3179 -27430259.42623 3200 3179 46485699.20007 3201 3179 -26687657.01071 3202 3179 14949504.71271 3203 3179 -33777948.97413 3267 3179 10250460.04156 3268 3179 -9800382.320076 3269 3179 -12202085.61857 3270 3179 66546545.00303 3271 3179 -6857568.701869 3272 3179 -74918497.68596 3273 3179 23108532.96245 3274 3179 16657951.02195 3275 3179 -47038891.18556 3285 3179 571475.7571355 3286 3179 -40435904.26086 3287 3179 -4812102.970013 3288 3179 2285903.027438 3289 3179 -27430274.79396 3290 3179 -130792022.7266 3291 3179 571475.7571481 3292 3179 67866179.05482 3293 3179 -147771014.9835 3306 3179 -10821935.79869 3307 3179 -10486146.20919 3308 3179 -13681836.08202 3309 3179 -68832448.03044 3310 3179 -6857568.701869 3311 3179 -84449189.35104 3312 3179 -23680008.71958 3313 3179 17343714.91106 3314 3179 -50324486.557 3180 3180 1024746089.754 3181 3180 2.086162567139e-05 3182 3180 9143617.227815 3183 3180 115751892.8599 3184 3180 -9.417533874512e-06 3185 3180 2285904.308086 3198 3180 -95427568.72765 3199 3180 -62499999.98975 3200 3180 24401752.70261 3201 3180 -244029558.4996 3202 3180 2.473592758179e-06 3203 3180 -5943336.391493 3204 3180 -96781952.40796 3205 3180 62499999.98974 3206 3180 -27030538.9556 3270 3180 -25604579.22317 3271 3180 15625000.00514 3272 3180 10250460.04156 3273 3180 -93459816.96553 3274 3180 1.579523086548e-06 3275 3180 66889426.94725 3276 3180 -38668381.31079 3277 3180 -15625000.00514 3278 3180 23108532.96245 3288 3180 21503247.52855 3289 3180 3.844499588013e-06 3290 3180 571475.7571353 3291 3180 119183368.3243 3292 3180 4.112720489502e-06 3293 3180 2285903.027438 3294 3180 -32106344.47651 3295 3180 -9.387731552124e-06 3296 3180 571475.757148 3309 3180 -26159485.64696 3310 3180 -15625000.00513 3311 3180 -10821935.79869 3312 3180 -97033826.33989 3313 3180 1.400709152222e-06 3314 3180 -69175329.97466 3315 3180 -39900479.57507 3316 3180 15625000.00513 3317 3180 -23680008.71958 3181 3181 874738712.6486 3182 3181 -109721037.6509 3183 3181 -1.046061515808e-05 3184 3181 -121747792.2491 3185 3181 55957741.04746 3198 3181 -62499999.98975 3199 3181 -76676646.58022 3200 3181 12206449.1576 3201 3181 4.053115844727e-06 3202 3181 30971970.86735 3203 3181 -27430259.42623 3204 3181 62499999.98974 3205 3181 -78031030.26054 3206 3181 15223810.26862 3270 3181 15625000.00514 3271 3181 -20916860.64765 3272 3181 -9800382.320076 3273 3181 -6.705522537231e-07 3274 3181 -24709454.43242 3275 3181 -6857568.701869 3276 3181 -15625000.00514 3277 3181 -33980662.73527 3278 3181 16657951.02195 3288 3181 5.88595867157e-06 3289 3181 -37871677.86274 3290 3181 -40710209.81623 3291 3181 4.053115844727e-06 3292 3181 81681619.73861 3293 3181 -27430274.79396 3294 3181 -8.40425491333e-06 3295 3181 -91481269.86781 3296 3181 68140484.61019 3309 3181 -15625000.00513 3310 3181 -21471767.07144 3311 3181 -10486146.20919 3312 3181 7.450580596924e-07 3313 3181 -28283463.80681 3314 3181 -6857568.701869 3315 3181 15625000.00513 3316 3181 -35212760.99956 3317 3181 17343714.91106 3182 3182 938198180.6514 3183 3182 2285904.308086 3184 3182 53763296.60338 3185 3182 60055040.21296 3198 3182 24744634.64751 3199 3182 12480754.71352 3200 3182 -30166259.15992 3201 3182 -3200280.836388 3202 3182 -27430259.42623 3203 3182 46485699.20007 3204 3182 -26687657.01071 3205 3182 14949504.71271 3206 3182 -33777948.97413 3270 3182 10250460.04156 3271 3182 -9800382.320076 3272 3182 -12202085.61857 3273 3182 66546545.00303 3274 3182 -6857568.701869 3275 3182 -74918497.68596 3276 3182 23108532.96245 3277 3182 16657951.02195 3278 3182 -47038891.18556 3288 3182 571475.7571355 3289 3182 -40435904.26086 3290 3182 -4812102.970013 3291 3182 2285903.027438 3292 3182 -27430274.79396 3293 3182 -130792022.7266 3294 3182 571475.7571481 3295 3182 67866179.05482 3296 3182 -147771014.9835 3309 3182 -10821935.79869 3310 3182 -10486146.20919 3311 3182 -13681836.08202 3312 3182 -68832448.03044 3313 3182 -6857568.701869 3314 3182 -84449189.35104 3315 3182 -23680008.71958 3316 3182 17343714.91106 3317 3182 -50324486.557 3183 3183 1024746089.754 3184 3183 2.086162567139e-05 3185 3183 9143617.227815 3186 3183 115751892.8599 3187 3183 -9.417533874512e-06 3188 3183 2285904.308086 3201 3183 -95427568.72765 3202 3183 -62499999.98975 3203 3183 24401752.70261 3204 3183 -244029558.4996 3205 3183 2.473592758179e-06 3206 3183 -5943336.391493 3207 3183 -96781952.40796 3208 3183 62499999.98974 3209 3183 -27030538.9556 3273 3183 -25604579.22317 3274 3183 15625000.00514 3275 3183 10250460.04156 3276 3183 -93459816.96553 3277 3183 1.579523086548e-06 3278 3183 66889426.94725 3279 3183 -38668381.31079 3280 3183 -15625000.00514 3281 3183 23108532.96245 3291 3183 21503247.52855 3292 3183 3.844499588013e-06 3293 3183 571475.7571353 3294 3183 119183368.3243 3295 3183 4.112720489502e-06 3296 3183 2285903.027438 3297 3183 -32106344.47651 3298 3183 -9.387731552124e-06 3299 3183 571475.757148 3312 3183 -26159485.64696 3313 3183 -15625000.00513 3314 3183 -10821935.79869 3315 3183 -97033826.33989 3316 3183 1.400709152222e-06 3317 3183 -69175329.97466 3318 3183 -39900479.57507 3319 3183 15625000.00513 3320 3183 -23680008.71958 3184 3184 874738712.6486 3185 3184 -109721037.6509 3186 3184 -1.046061515808e-05 3187 3184 -121747792.2491 3188 3184 55957741.04746 3201 3184 -62499999.98975 3202 3184 -76676646.58022 3203 3184 12206449.1576 3204 3184 4.053115844727e-06 3205 3184 30971970.86735 3206 3184 -27430259.42623 3207 3184 62499999.98974 3208 3184 -78031030.26054 3209 3184 15223810.26862 3273 3184 15625000.00514 3274 3184 -20916860.64765 3275 3184 -9800382.320076 3276 3184 -6.705522537231e-07 3277 3184 -24709454.43242 3278 3184 -6857568.701869 3279 3184 -15625000.00514 3280 3184 -33980662.73527 3281 3184 16657951.02195 3291 3184 5.88595867157e-06 3292 3184 -37871677.86274 3293 3184 -40710209.81623 3294 3184 4.053115844727e-06 3295 3184 81681619.73861 3296 3184 -27430274.79396 3297 3184 -8.40425491333e-06 3298 3184 -91481269.86781 3299 3184 68140484.61019 3312 3184 -15625000.00513 3313 3184 -21471767.07144 3314 3184 -10486146.20919 3315 3184 7.450580596924e-07 3316 3184 -28283463.80681 3317 3184 -6857568.701869 3318 3184 15625000.00513 3319 3184 -35212760.99956 3320 3184 17343714.91106 3185 3185 938198180.6514 3186 3185 2285904.308086 3187 3185 53763296.60338 3188 3185 60055040.21296 3201 3185 24744634.64751 3202 3185 12480754.71352 3203 3185 -30166259.15992 3204 3185 -3200280.836388 3205 3185 -27430259.42623 3206 3185 46485699.20007 3207 3185 -26687657.01071 3208 3185 14949504.71271 3209 3185 -33777948.97413 3273 3185 10250460.04156 3274 3185 -9800382.320076 3275 3185 -12202085.61857 3276 3185 66546545.00303 3277 3185 -6857568.701869 3278 3185 -74918497.68596 3279 3185 23108532.96245 3280 3185 16657951.02195 3281 3185 -47038891.18556 3291 3185 571475.7571355 3292 3185 -40435904.26086 3293 3185 -4812102.970013 3294 3185 2285903.027438 3295 3185 -27430274.79396 3296 3185 -130792022.7266 3297 3185 571475.7571481 3298 3185 67866179.05482 3299 3185 -147771014.9835 3312 3185 -10821935.79869 3313 3185 -10486146.20919 3314 3185 -13681836.08202 3315 3185 -68832448.03044 3316 3185 -6857568.701869 3317 3185 -84449189.35104 3318 3185 -23680008.71958 3319 3185 17343714.91106 3320 3185 -50324486.557 3186 3186 992511389.303 3187 3186 35119063.81891 3188 3186 9148842.328762 3189 3186 -29871813.60808 3190 3186 -79429052.75312 3191 3186 4942840.519856 3204 3186 -95427568.72765 3205 3186 -62499999.98975 3206 3186 24401752.70261 3207 3186 -213493975.2883 3208 3186 15647034.81436 3209 3186 -1463149.762763 3210 3186 -62618476.51791 3211 3186 58698725.1008 3212 3186 -4372518.931206 3276 3186 -25604579.22317 3277 3186 15625000.00514 3278 3186 10250460.04156 3279 3186 -97575268.52249 3280 3186 -8504195.56173 3281 3186 58021091.66608 3294 3186 21503247.52855 3295 3186 3.844499588013e-06 3296 3186 571475.7571353 3297 3186 132051494.7157 3298 3186 9477689.141959 3299 3186 2282727.085888 3300 3186 -35986362.149 3301 3186 -19319676.5803 3302 3186 18187125.68919 3315 3186 -26159485.64696 3316 3186 -15625000.00513 3317 3186 -10821935.79869 3318 3186 -89582178.40493 3319 3186 3452677.552407 3320 3186 -64250585.4472 3321 3186 -26470165.08373 3322 3186 14893505.44766 3323 3186 -14205410.0223 3187 3187 914984829.2003 3188 3187 -61105818.0354 3189 3187 -79459382.15342 3190 3187 -252787576.3809 3191 3187 10443239.78177 3204 3187 -62499999.98975 3205 3187 -76676646.58022 3206 3187 12206449.1576 3207 3187 15647034.81436 3208 3187 42833571.97188 3209 3187 -15208606.30983 3210 3187 58698725.1008 3211 3187 -97793792.46068 3212 3187 4402916.111798 3276 3187 15625000.00514 3277 3187 -20916860.64765 3278 3187 -9800382.320076 3279 3187 -8497290.497415 3280 3187 -27308762.83038 3281 3187 3191507.057319 3294 3187 5.88595867157e-06 3295 3187 -37871677.86274 3296 3187 -40710209.81623 3297 3187 9477689.141955 3298 3187 109752727.6785 3299 3187 -15866049.47295 3300 3187 -19326581.64461 3301 3187 -91511011.65031 3302 3187 56876286.44125 3315 3187 -15625000.00513 3316 3187 -21471767.07144 3317 3187 -10486146.20919 3318 3187 3452677.552406 3319 3187 -24850939.14401 3320 3187 -892452.6419469 3321 3187 14893505.44766 3322 3187 -33645005.25799 3323 3187 17715406.89793 3188 3188 861646857.7911 3189 3188 4945264.009223 3190 3188 10445336.85376 3191 3188 -7035870.455932 3204 3188 24744634.64751 3205 3188 12480754.71352 3206 3188 -30166259.15992 3207 3188 -7635024.761751 3208 3188 -15208606.30983 3209 3188 49654690.13772 3210 3188 -4372518.93053 3211 3188 4402916.111798 3212 3188 -20483455.54872 3276 3188 10250460.04156 3277 3188 -9800382.320076 3278 3188 -12202085.61857 3279 3188 59735093.58159 3280 3188 2922838.786602 3281 3188 -68107736.01619 3294 3188 571475.7571355 3295 3188 -40435904.26086 3296 3188 -4812102.970013 3297 3188 2294279.514953 3298 3188 -15856807.28418 3299 3188 -100567669.0549 3300 3188 18193455.55287 3301 3188 56875386.93533 3302 3188 -80811222.28552 3315 3188 -10821935.79869 3316 3188 -10486146.20919 3317 3188 -13681836.08202 3318 3188 -65964995.16965 3319 3188 -892452.6414047 3320 3188 -81785163.2726 3321 3188 -14205410.0223 3322 3188 17715406.89793 3323 3188 -32227642.79622 3189 3189 574782817.0468 3190 3189 9802196.101842 3191 3189 402791.3222623 3207 3189 -98180257.21191 3208 3189 -62016385.48823 3209 3189 3728150.838127 3210 3189 -154343775.7057 3211 3189 20854973.3041 3212 3189 -1249532.660522 3213 3189 68140235.52204 3214 3189 -21818726.25984 3215 3189 -103490.0609071 3216 3189 -55799918.28419 3217 3189 57546336.30698 3218 3189 -858274.0909733 3279 3189 -9327793.667405 3280 3189 18770715.19911 3281 3189 14702750.48531 3297 3189 -28699225.70619 3298 3189 -19326581.64462 3299 3189 -15770281.05553 3300 3189 39934892.99282 3301 3189 2177854.19997 3302 3189 13470020.49524 3318 3189 -32222410.0076 3319 3189 -15532299.34722 3320 3189 -16029085.59877 3321 3189 -83057758.80047 3322 3189 4596360.426188 3323 3189 -67109824.10549 3324 3189 -7768576.502317 3325 3189 -5210204.11628 3326 3189 7902397.597512 3327 3189 -26657122.19396 3328 3189 14524155.28285 3329 3189 -16661672.26316 3190 3190 684972887.8256 3191 3190 -12516121.50345 3207 3190 -62016385.48823 3208 3190 -68498112.25618 3209 3190 1098703.593309 3210 3190 20854973.30411 3211 3190 93705147.04257 3212 3190 -3583791.720977 3213 3190 3181273.736054 3214 3190 -53313429.18758 3215 3190 506062.6241023 3216 3190 57546336.30698 3217 3190 -64061175.52891 3218 3190 547642.7682184 3279 3190 12513810.13274 3280 3190 -16748668.58149 3281 3190 -13266641.09381 3297 3190 -19319676.5803 3298 3190 -84223875.20751 3299 3190 -51752701.14713 3300 3190 2177854.199968 3301 3190 64911621.45824 3302 3190 1186914.700328 3318 3190 -15532299.34722 3319 3190 -25137786.72497 3320 3190 -13282262.11058 3321 3190 4596360.426188 3322 3190 -20386045.03311 3323 3190 2220623.492421 3324 3190 1039795.885773 3325 3190 -38105284.24576 3326 3190 33458816.87333 3327 3190 14524155.28285 3328 3190 -28107955.55054 3329 3190 16801283.08314 3191 3191 632106309.024 3207 3191 3728150.838465 3208 3191 1098703.59358 3209 3191 -21737210.67115 3210 3191 -1249532.660522 3211 3191 -3583791.720977 3212 3191 100128059.1202 3213 3191 -103490.0609037 3214 3191 506062.624102 3215 3191 73682121.44694 3216 3191 -858274.0906357 3217 3191 547642.7682184 3218 3191 172238.4706765 3279 3191 9801833.656871 3280 3191 -17187848.41903 3281 3191 -17453241.53233 3297 3191 -15765058.67383 3298 3191 -51754546.12901 3299 3191 -61378858.43802 3300 3191 -13257132.27814 3301 3191 -7207016.094271 3302 3191 -120184450.9424 3318 3191 -16029085.59877 3319 3191 -13282262.11058 3320 3191 -26270313.32675 3321 3191 -67109824.10583 3322 3191 2220623.492963 3323 3191 -88573459.20302 3324 3191 -222602.4044776 3325 3191 33458816.87333 3326 3191 -48112195.40656 3327 3191 -16661672.26316 3328 3191 16801283.08314 3329 3191 -32155464.84456 3192 3192 512192460.3863 3193 3192 7.033348083496e-06 3194 3192 -2285830.273855 3195 3192 57853373.36857 3196 3192 12499999.99794 3197 3192 -4857481.874016 3282 3192 -93459816.96553 3283 3192 1.579523086548e-06 3284 3192 66889426.94725 3285 3192 -38668381.31079 3286 3192 -15625000.00514 3287 3192 23108532.96245 3303 3192 59569111.10081 3304 3192 1.192092895508e-07 3305 3192 -13286440.8446 3306 3192 -16053172.23825 3307 3192 3125000.001022 3308 3192 -4393116.289629 3193 3193 437188771.8336 3194 3193 -54860518.82542 3195 3193 -12499999.99795 3196 3193 -60896469.18594 3197 3193 27704564.96822 3282 3193 -6.705522537231e-07 3283 3193 -24709454.43242 3284 3193 -6857568.701869 3285 3193 -15625000.00514 3286 3193 -33980662.73527 3287 3193 16657951.02195 3303 3193 -5.960464477539e-08 3304 3193 40818236.80798 3305 3193 -13715137.39698 3306 3193 -3125000.001031 3307 3193 -45740634.9339 3308 3193 34001665.91618 3194 3194 468617531.6838 3195 3194 5428976.457627 3196 3194 27155953.8572 3197 3194 29967325.27615 3282 3194 66546545.00303 3283 3194 -6857568.701869 3284 3194 -74918497.68596 3285 3194 23108532.96245 3286 3194 16657951.02195 3287 3194 -47038891.18556 3303 3194 13857934.15094 3304 3194 -13715137.39698 3305 3194 -65456206.19348 3306 3194 4964592.046777 3307 3194 34001665.91632 3308 3194 -73885507.49175 3195 3195 512192460.3863 3196 3195 7.033348083496e-06 3197 3195 -2285830.273855 3198 3195 57853373.36857 3199 3195 12499999.99794 3200 3195 -4857481.874016 3282 3195 -25604579.22317 3283 3195 15625000.00514 3284 3195 10250460.04156 3285 3195 -93459816.96553 3286 3195 1.579523086548e-06 3287 3195 66889426.94725 3288 3195 -38668381.31079 3289 3195 -15625000.00514 3290 3195 23108532.96245 3303 3195 10751623.76428 3304 3195 -3125000.001025 3305 3195 -1821501.705457 3306 3195 59569111.10081 3307 3195 1.192092895508e-07 3308 3195 -13286440.8446 3309 3195 -16053172.23825 3310 3195 3125000.001022 3311 3195 -4393116.289629 3196 3196 437188771.8336 3197 3196 -54860518.82542 3198 3196 -12499999.99795 3199 3196 -60896469.18594 3200 3196 27704564.96822 3282 3196 15625000.00514 3283 3196 -20916860.64765 3284 3196 -9800382.320076 3285 3196 -6.705522537231e-07 3286 3196 -24709454.43242 3287 3196 -6857568.701869 3288 3196 -15625000.00514 3289 3196 -33980662.73527 3290 3196 16657951.02195 3303 3196 3125000.00103 3304 3196 -18935838.93137 3305 3196 -20286528.5192 3306 3196 -5.960464477539e-08 3307 3196 40818236.80798 3308 3196 -13715137.39698 3309 3196 -3125000.001031 3310 3196 -45740634.9339 3311 3196 34001665.91618 3197 3197 468617531.6838 3198 3197 5428976.457627 3199 3197 27155953.8572 3200 3197 29967325.27615 3282 3197 10250460.04156 3283 3197 -9800382.320076 3284 3197 -12202085.61857 3285 3197 66546545.00303 3286 3197 -6857568.701869 3287 3197 -74918497.68596 3288 3197 23108532.96245 3289 3197 16657951.02195 3290 3197 -47038891.18556 3303 3197 2392977.462593 3304 3197 -20286528.51934 3305 3197 -2406051.485007 3306 3197 13857934.15094 3307 3197 -13715137.39698 3308 3197 -65456206.19348 3309 3197 4964592.046777 3310 3197 34001665.91632 3311 3197 -73885507.49175 3198 3198 512192460.3863 3199 3198 7.033348083496e-06 3200 3198 -2285830.273855 3201 3198 57853373.36857 3202 3198 12499999.99794 3203 3198 -4857481.874016 3285 3198 -25604579.22317 3286 3198 15625000.00514 3287 3198 10250460.04156 3288 3198 -93459816.96553 3289 3198 1.579523086548e-06 3290 3198 66889426.94725 3291 3198 -38668381.31079 3292 3198 -15625000.00514 3293 3198 23108532.96245 3306 3198 10751623.76428 3307 3198 -3125000.001025 3308 3198 -1821501.705457 3309 3198 59569111.10081 3310 3198 1.192092895508e-07 3311 3198 -13286440.8446 3312 3198 -16053172.23825 3313 3198 3125000.001022 3314 3198 -4393116.289629 3199 3199 437188771.8336 3200 3199 -54860518.82542 3201 3199 -12499999.99795 3202 3199 -60896469.18594 3203 3199 27704564.96822 3285 3199 15625000.00514 3286 3199 -20916860.64765 3287 3199 -9800382.320076 3288 3199 -6.705522537231e-07 3289 3199 -24709454.43242 3290 3199 -6857568.701869 3291 3199 -15625000.00514 3292 3199 -33980662.73527 3293 3199 16657951.02195 3306 3199 3125000.00103 3307 3199 -18935838.93137 3308 3199 -20286528.5192 3309 3199 -5.960464477539e-08 3310 3199 40818236.80798 3311 3199 -13715137.39698 3312 3199 -3125000.001031 3313 3199 -45740634.9339 3314 3199 34001665.91618 3200 3200 468617531.6838 3201 3200 5428976.457627 3202 3200 27155953.8572 3203 3200 29967325.27615 3285 3200 10250460.04156 3286 3200 -9800382.320076 3287 3200 -12202085.61857 3288 3200 66546545.00303 3289 3200 -6857568.701869 3290 3200 -74918497.68596 3291 3200 23108532.96245 3292 3200 16657951.02195 3293 3200 -47038891.18556 3306 3200 2392977.462593 3307 3200 -20286528.51934 3308 3200 -2406051.485007 3309 3200 13857934.15094 3310 3200 -13715137.39698 3311 3200 -65456206.19348 3312 3200 4964592.046777 3313 3200 34001665.91632 3314 3200 -73885507.49175 3201 3201 512192460.3863 3202 3201 7.033348083496e-06 3203 3201 -2285830.273855 3204 3201 57853373.36857 3205 3201 12499999.99794 3206 3201 -4857481.874016 3288 3201 -25604579.22317 3289 3201 15625000.00514 3290 3201 10250460.04156 3291 3201 -93459816.96553 3292 3201 1.579523086548e-06 3293 3201 66889426.94725 3294 3201 -38668381.31079 3295 3201 -15625000.00514 3296 3201 23108532.96245 3309 3201 10751623.76428 3310 3201 -3125000.001025 3311 3201 -1821501.705457 3312 3201 59569111.10081 3313 3201 1.192092895508e-07 3314 3201 -13286440.8446 3315 3201 -16053172.23825 3316 3201 3125000.001022 3317 3201 -4393116.289629 3202 3202 437188771.8336 3203 3202 -54860518.82542 3204 3202 -12499999.99795 3205 3202 -60896469.18594 3206 3202 27704564.96822 3288 3202 15625000.00514 3289 3202 -20916860.64765 3290 3202 -9800382.320076 3291 3202 -6.705522537231e-07 3292 3202 -24709454.43242 3293 3202 -6857568.701869 3294 3202 -15625000.00514 3295 3202 -33980662.73527 3296 3202 16657951.02195 3309 3202 3125000.00103 3310 3202 -18935838.93137 3311 3202 -20286528.5192 3312 3202 -5.960464477539e-08 3313 3202 40818236.80798 3314 3202 -13715137.39698 3315 3202 -3125000.001031 3316 3202 -45740634.9339 3317 3202 34001665.91618 3203 3203 468617531.6838 3204 3203 5428976.457627 3205 3203 27155953.8572 3206 3203 29967325.27615 3288 3203 10250460.04156 3289 3203 -9800382.320076 3290 3203 -12202085.61857 3291 3203 66546545.00303 3292 3203 -6857568.701869 3293 3203 -74918497.68596 3294 3203 23108532.96245 3295 3203 16657951.02195 3296 3203 -47038891.18556 3309 3203 2392977.462593 3310 3203 -20286528.51934 3311 3203 -2406051.485007 3312 3203 13857934.15094 3313 3203 -13715137.39698 3314 3203 -65456206.19348 3315 3203 4964592.046777 3316 3203 34001665.91632 3317 3203 -73885507.49175 3204 3204 512192460.3863 3205 3204 7.033348083496e-06 3206 3204 -2285830.273855 3207 3204 57853373.36857 3208 3204 12499999.99794 3209 3204 -4857481.874016 3291 3204 -25604579.22317 3292 3204 15625000.00514 3293 3204 10250460.04156 3294 3204 -93459816.96553 3295 3204 1.579523086548e-06 3296 3204 66889426.94725 3297 3204 -38668381.31079 3298 3204 -15625000.00514 3299 3204 23108532.96245 3312 3204 10751623.76428 3313 3204 -3125000.001025 3314 3204 -1821501.705457 3315 3204 59569111.10081 3316 3204 1.192092895508e-07 3317 3204 -13286440.8446 3318 3204 -16053172.23825 3319 3204 3125000.001022 3320 3204 -4393116.289629 3205 3205 437188771.8336 3206 3205 -54860518.82542 3207 3205 -12499999.99795 3208 3205 -60896469.18594 3209 3205 27704564.96822 3291 3205 15625000.00514 3292 3205 -20916860.64765 3293 3205 -9800382.320076 3294 3205 -6.705522537231e-07 3295 3205 -24709454.43242 3296 3205 -6857568.701869 3297 3205 -15625000.00514 3298 3205 -33980662.73527 3299 3205 16657951.02195 3312 3205 3125000.00103 3313 3205 -18935838.93137 3314 3205 -20286528.5192 3315 3205 -5.960464477539e-08 3316 3205 40818236.80798 3317 3205 -13715137.39698 3318 3205 -3125000.001031 3319 3205 -45740634.9339 3320 3205 34001665.91618 3206 3206 468617531.6838 3207 3206 5428976.457627 3208 3206 27155953.8572 3209 3206 29967325.27615 3291 3206 10250460.04156 3292 3206 -9800382.320076 3293 3206 -12202085.61857 3294 3206 66546545.00303 3295 3206 -6857568.701869 3296 3206 -74918497.68596 3297 3206 23108532.96245 3298 3206 16657951.02195 3299 3206 -47038891.18556 3312 3206 2392977.462593 3313 3206 -20286528.51934 3314 3206 -2406051.485007 3315 3206 13857934.15094 3316 3206 -13715137.39698 3317 3206 -65456206.19348 3318 3206 4964592.046777 3319 3206 34001665.91632 3320 3206 -73885507.49175 3207 3207 501194760.8906 3208 3207 483471.9809724 3209 3207 19729280.16759 3210 3207 44528872.06075 3211 3207 -4114121.29889 3212 3207 635927.0856277 3294 3207 -25604579.22317 3295 3207 15625000.00514 3296 3207 10250460.04156 3297 3207 -86013553.03927 3298 3207 3452677.552412 3299 3207 62017904.11412 3300 3207 -34009408.60001 3301 3207 -15532299.34722 3302 3207 17899994.27348 3315 3207 10751623.76428 3316 3207 -3125000.001025 3317 3207 -1821501.705457 3318 3207 56563393.23584 3319 3207 92650.6663835 3320 3207 -8207569.820517 3321 3207 -9203173.996336 3322 3207 -513028.8756769 3323 3207 606407.5417179 3208 3208 437133202.0984 3209 3208 -31817886.27979 3210 3208 -29114121.29479 3211 3208 -77420340.95587 3212 3208 5468163.759479 3294 3208 15625000.00514 3295 3208 -20916860.64765 3296 3208 -9800382.320076 3297 3208 3452677.55241 3298 3208 -21282313.77832 3299 3208 -7081688.752109 3300 3208 -15532299.34722 3301 3208 -26924785.31737 3302 3208 13861835.12055 3315 3208 3125000.00103 3316 3208 -18935838.93137 3317 3208 -20286528.5192 3318 3208 92650.66638345 3319 3208 40212069.25493 3320 3208 -8282245.163074 3321 3208 -6763028.87773 3322 3208 -39667968.43887 3323 3208 31589009.6339 3209 3209 455080439.0651 3210 3209 2693218.751954 3211 3209 5468163.759479 3212 3209 41134895.59769 3294 3209 10250460.04156 3295 3209 -9800382.320076 3296 3209 -12202085.61857 3297 3209 63732313.83809 3298 3209 -7081688.751431 3299 3209 -72268828.96409 3300 3209 17899994.27348 3301 3209 13861835.12055 3302 3209 -31035642.9065 3315 3209 2392977.462593 3316 3209 -20286528.51934 3317 3209 -2406051.485007 3318 3209 18936249.61947 3319 3209 -8282245.163075 3320 3209 -69887100.3344 3321 3209 7906546.432157 3322 3209 31589009.63336 3323 3209 -45575484.98117 3210 3210 481849890.3224 3211 3210 15010015.02383 3212 3210 -426689.5447848 3213 3210 -107360334.9424 3214 3210 -67453663.6725 3215 3210 856135.6311209 3216 3210 41478841.44736 3217 3210 2004071.538552 3218 3210 -243668.8036907 3297 3210 -23450146.25553 3298 3210 14893505.44767 3299 3210 11987471.93075 3300 3210 -82373339.0086 3301 3210 4596360.426198 3302 3210 66525939.76111 3318 3210 -3847546.99128 3319 3210 -6763028.877732 3320 3210 -6615467.456925 3321 3210 37962745.80211 3322 3210 3192182.501996 3323 3210 -13435900.63133 3324 3210 -38261419.07277 3325 3210 -16725844.72742 3326 3210 20523831.22127 3327 3210 -11797802.80594 3328 3210 806825.2292982 3329 3210 509819.6200195 3211 3211 486564576.3674 3212 3211 -8519439.366185 3213 3211 -67453663.6725 3214 3211 -83396331.77573 3215 3211 547642.7682181 3216 3211 -22995928.45734 3217 3211 -78124241.55322 3218 3211 1684508.447692 3297 3211 14893505.44767 3298 3211 -30624986.4298 3299 3211 -15617926.44635 3300 3211 4596360.426197 3301 3211 -19701625.24124 3302 3211 -3968612.617741 3318 3211 -513028.8756778 3319 3211 -34312341.43383 3320 3211 -28888420.91165 3321 3211 3192182.501998 3322 3211 37009258.52328 3323 3211 -2072638.533522 3324 3211 -16725844.72742 3325 3211 -32459566.88009 3326 3211 16801283.08314 3327 3211 -5443174.772755 3328 3211 -41678246.87034 3329 3211 33746315.42611 3212 3212 495996266.0283 3213 3212 856135.6311208 3214 3212 547642.7682181 3215 3212 -19162917.77615 3216 3212 442095.0850828 3217 3212 1684508.447692 3218 3212 51813863.68401 3297 3212 11987471.93075 3298 3212 -15617926.44635 3299 3212 -24174259.25437 3300 3212 66525939.76145 3301 3212 -3968612.617063 3302 3212 -86748339.75803 3318 3212 -343974.3999875 3319 3212 -28888420.91233 3320 3212 -31293812.96768 3321 3212 13291252.14205 3322 3212 -2072638.533522 3323 3212 -98128494.52017 3324 3212 20523831.22127 3325 3212 16801283.08314 3326 3212 -36507076.17412 3327 3212 7259021.011803 3328 3212 33746315.42611 3329 3212 -47861372.87769 3213 3213 274109986.6413 3214 3213 71818726.25164 3215 3213 -467979.8463044 3216 3213 -89889442.78013 3217 3213 -7546336.315187 3218 3213 -284665.7239107 3300 3213 -7219965.39104 3301 3213 1039795.885773 3302 3213 166199.6820345 3321 3213 -37712807.96149 3322 3213 -16725844.72742 3323 3213 -20101168.79207 3324 3213 18907354.30941 3325 3213 17710204.12039 3326 3213 8010333.882971 3327 3213 -46474803.17729 3328 3213 -2024155.278742 3329 3213 -36825364.77294 3214 3214 243219901.3759 3215 3214 -506062.6240954 3216 3214 17453663.68071 3217 3214 38490304.02822 3218 3214 -547642.7682143 3300 3214 -5210204.116281 3301 3214 -37556673.13449 3302 3214 -33207849.78238 3321 3214 -16725844.72742 3322 3214 -31910955.76881 3323 3214 -16532050.26114 3324 3214 17710204.12039 3325 3214 11158124.54034 3326 3214 6541183.120091 3327 3214 4225844.723312 3328 3214 -14190717.85745 3329 3214 3198716.923426 3215 3215 280391387.7469 3216 3215 -284665.7239074 3217 3215 -547642.7682146 3218 3215 51757260.42444 3300 3215 -7958800.319788 3301 3215 -33207849.78238 3302 3215 -46649232.44314 3321 3215 -20101168.79207 3322 3215 -16532050.26114 3323 3215 -35044113.21069 3324 3215 -8239666.11436 3325 3215 -6792150.211052 3326 3215 -61832834.65378 3327 3215 -36825364.77378 3328 3215 -3467949.74543 3329 3215 -49807745.61347 3216 3216 238211408.5094 3217 3216 -52004071.53035 3218 3216 -670683.0487667 3300 3216 -26108511.08268 3301 3216 14524155.28285 3302 3216 16227129.83098 3321 3216 -10151969.47316 3322 3216 -5443174.772757 3323 3216 -7054937.323181 3324 3216 -46474803.17728 3325 3216 4225844.723317 3326 3216 36688437.29824 3327 3216 15734839.28688 3328 3216 -13306825.23341 3329 3216 -6736949.250256 3217 3217 237696001.9464 3218 3217 -1684508.447682 3300 3217 14524155.28285 3301 3217 -27559344.43926 3302 3217 -16532050.26114 3321 3217 806825.2292974 3322 3217 -40032413.53758 3323 3217 -32920351.2296 3324 3217 -2024155.278737 3325 3217 -14190717.85745 3326 3217 3198716.923426 3327 3217 -13306825.2334 3328 3217 14782031.38802 3329 3217 6253684.567311 3218 3218 253592341.1342 3300 3218 16227129.83098 3301 3218 -16532050.26114 3302 3218 -30692501.88114 3321 3218 -648617.8757846 3322 3218 -32920351.2296 3323 3218 -43472483.99027 3324 3218 36688437.29756 3325 3218 -3467949.745429 3326 3218 -49807745.61347 3327 3218 6418571.580917 3328 3218 -7079648.763832 3329 3218 -54695120.37178 3219 3219 661240911.694 3220 3219 62499999.98975 3221 3219 26309808.76172 3222 3219 -351489360.7944 3223 3219 -62521288.22773 3224 3219 -26300660.30375 3225 3219 7540034.174547 3226 3219 50021288.22979 3227 3219 -21267537.14313 3330 3219 76701211.16396 3331 3219 15625000.00514 3332 3219 21009550.22758 3333 3219 -125983237.2565 3334 3219 -15630322.06463 3335 3219 -74621947.50591 3336 3219 -24799837.07904 3337 3219 12505322.06361 3338 3219 -18723479.73292 3220 3220 567462589.8818 3221 3220 -68593390.60176 3222 3220 -62531932.34673 3223 3220 -57670510.07978 3224 3220 -38001573.29657 3225 3220 75031932.34468 3226 3220 7540034.174547 3227 3220 23874977.56666 3330 3220 15625000.00514 3331 3220 53256630.69937 3332 3220 -5602780.460976 3333 3220 -15632983.09438 3334 3220 -52528524.54163 3335 3220 -23113573.91808 3336 3220 18757983.09541 3337 3220 -24799837.07904 3338 3220 22467775.67917 3221 3221 641486746.383 3222 3221 -26296086.07475 3223 3221 -30591858.55204 3224 3221 -15523139.55333 3225 3221 -31901305.7147 3226 3221 15916651.71111 3227 3221 20106757.79879 3330 3221 -6140600.947398 3331 3221 -27322678.94813 3332 3221 -75919024.90121 3333 3221 -74277994.97009 3334 3221 -21190287.58241 3335 3221 -105509843.5958 3336 3221 -28085219.59939 3337 3221 14978517.11945 3338 3221 -66132898.87745 3222 3222 1128168022.401 3223 3222 62553220.58474 3224 3222 30858743.66929 3225 3222 17446621.74987 3226 3222 -62521288.22774 3227 3222 26696512.96211 3228 3222 -239474705.9488 3229 3222 2.950429916382e-06 3230 3222 -4571806.052598 3231 3222 -95620685.86526 3232 3222 62499999.98975 3233 3222 -26687656.37071 3330 3222 -111681734.2619 3331 3222 -15632983.09438 3332 3222 61472760.90482 3333 3222 149252626.5636 3334 3222 15638305.15389 3335 3222 7711980.245565 3336 3222 -47230742.81426 3337 3222 -15630322.06464 3338 3222 23688071.7797 3339 3222 -97033826.33989 3340 3222 1.400709152222e-06 3341 3222 -69175329.97466 3342 3222 -39900479.57507 3343 3222 15625000.00513 3344 3222 -23680008.71958 3223 3223 959386203.4543 3224 3223 -85034422.38434 3225 3223 -62531932.34674 3226 3223 -201344781.4455 3227 3223 45541679.93477 3228 3223 2.920627593994e-06 3229 3223 35526744.0481 3230 3223 -27430274.79396 3231 3223 62499999.98974 3232 3223 -76869811.57243 3233 3223 14949512.39685 3330 3223 -15630322.06464 3331 3223 -38227021.54706 3332 3223 5963051.430523 3333 3223 15638305.15389 3334 3223 107057171.8061 3335 3223 -21260770.12636 3336 3223 -15632983.09439 3337 3223 -101928593.64 3338 3223 65822290.07648 3339 3223 7.450580596924e-07 3340 3223 -28283463.80681 3341 3223 -6857568.701869 3342 3223 15625000.00513 3343 3223 -35212760.99956 3344 3223 17343714.91106 3224 3224 989397032.1941 3225 3224 27043823.20204 3226 3224 53225583.49043 3227 3224 22257684.43985 3228 3224 -4571806.052597 3229 3224 -27430274.79396 3230 3224 58631507.34796 3231 3224 -27030538.31493 3232 3224 15223817.95222 3233 3224 -30681326.51173 3330 3224 61128808.369 3331 3224 4044385.985747 3332 3224 -67372502.27695 3333 3224 7717756.425008 3334 3224 -21256149.23011 3335 3224 -106755752.9646 3336 3224 23692103.30976 3337 3224 67469018.6918 3338 3224 -132015307.5643 3339 3224 -68832448.03044 3340 3224 -6857568.701869 3341 3224 -84449189.35104 3342 3224 -23680008.71958 3343 3224 17343714.91106 3344 3224 -50324486.557 3225 3225 661240911.694 3226 3225 62499999.98975 3227 3225 26309808.76172 3228 3225 -94266302.18495 3229 3225 -62499999.98975 3230 3225 24744635.2875 3231 3225 -351489360.7944 3232 3225 -62521288.22773 3233 3225 -26300660.30375 3234 3225 7540034.174547 3235 3225 50021288.22979 3236 3225 -21267537.14313 3330 3225 2016499.187392 3331 3225 18757983.09541 3332 3225 12648670.74487 3333 3225 -6124104.06778 3334 3225 -15632983.09438 3335 3225 -10255693.28227 3336 3225 76701211.16396 3337 3225 15625000.00514 3338 3225 21009550.22758 3339 3225 -26159485.64696 3340 3225 -15625000.00513 3341 3225 -10821935.79869 3342 3225 -125983237.2565 3343 3225 -15630322.06463 3344 3225 -74621947.50591 3345 3225 -24799837.07904 3346 3225 12505322.06361 3347 3225 -18723479.73292 3226 3226 567462589.8818 3227 3226 -68593390.60176 3228 3226 -62499999.98975 3229 3226 -75515427.89211 3230 3226 12480762.39712 3231 3226 -62531932.34673 3232 3226 -57670510.07978 3233 3226 -38001573.29657 3234 3226 75031932.34468 3235 3226 7540034.174547 3236 3226 23874977.56666 3330 3226 12505322.06361 3331 3226 2016499.187392 3332 3226 -6746002.447256 3333 3226 -15630322.06463 3334 3226 -60821954.89356 3335 3226 -41130474.11058 3336 3226 15625000.00514 3337 3226 53256630.69937 3338 3226 -5602780.460976 3339 3226 -15625000.00513 3340 3226 -21471767.07144 3341 3226 -10486146.20919 3342 3226 -15632983.09438 3343 3226 -52528524.54163 3344 3226 -23113573.91808 3345 3226 18757983.09541 3346 3226 -24799837.07904 3347 3226 22467775.67917 3227 3227 641486746.383 3228 3227 24401753.34329 3229 3227 12206456.84174 3230 3227 -27069636.69752 3231 3227 -26296086.07475 3232 3227 -30591858.55204 3233 3227 -15523139.55333 3234 3227 -31901305.7147 3235 3227 15916651.71111 3236 3227 20106757.79879 3330 3227 8432447.163244 3331 3227 -10119003.67088 3332 3227 5377331.166378 3333 3227 -10253948.8687 3334 3227 -42777202.9092 3335 3227 -22397604.24035 3336 3227 -6140600.947398 3337 3227 -27322678.94813 3338 3227 -75919024.90121 3339 3227 -10821935.79869 3340 3227 -10486146.20919 3341 3227 -13681836.08202 3342 3227 -74277994.97009 3343 3227 -21190287.58241 3344 3227 -105509843.5958 3345 3227 -28085219.59939 3346 3227 14978517.11945 3347 3227 -66132898.87745 3228 3228 1042603210.19 3229 3228 2.193450927734e-05 3230 3228 9143612.105123 3231 3228 120306386.5889 3232 3228 -9.268522262573e-06 3233 3228 2285903.027413 3237 3228 -239474705.9488 3238 3228 2.950429916382e-06 3239 3228 -4571806.052598 3240 3228 -95620685.86526 3241 3228 62499999.98975 3242 3228 -26687656.37071 3333 3228 -93459816.96553 3334 3228 1.579523086548e-06 3335 3228 66889426.94725 3336 3228 -38668381.31079 3337 3228 -15625000.00514 3338 3228 23108532.96245 3339 3228 119183368.3243 3340 3228 4.112720489502e-06 3341 3228 2285903.027438 3342 3228 -32106344.47651 3343 3228 -9.387731552124e-06 3344 3228 571475.757148 3348 3228 -97033826.33989 3349 3228 1.400709152222e-06 3350 3228 -69175329.97466 3351 3228 -39900479.57507 3352 3228 15625000.00513 3353 3228 -23680008.71958 3229 3229 892596215.9216 3230 3229 -109721099.1218 3231 3229 -9.95397567749e-06 3232 3229 -117193314.8593 3233 3229 54860549.56089 3237 3229 2.920627593994e-06 3238 3229 35526744.0481 3239 3229 -27430274.79396 3240 3229 62499999.98974 3241 3229 -76869811.57243 3242 3229 14949512.39685 3333 3229 -6.705522537231e-07 3334 3229 -24709454.43242 3335 3229 -6857568.701869 3336 3229 -15625000.00514 3337 3229 -33980662.73527 3338 3229 16657951.02195 3339 3229 4.053115844727e-06 3340 3229 81681619.73861 3341 3229 -27430274.79396 3342 3229 -8.40425491333e-06 3343 3229 -91481269.86781 3344 3229 68140484.61019 3348 3229 7.450580596924e-07 3349 3229 -28283463.80681 3350 3229 -6857568.701869 3351 3229 15625000.00513 3352 3229 -35212760.99956 3353 3229 17343714.91106 3230 3230 985817875.0266 3231 3230 2285903.027413 3232 3230 54860549.56089 3233 3230 72200645.50821 3237 3230 -4571806.052597 3238 3230 -27430274.79396 3239 3230 58631507.34796 3240 3230 -27030538.31493 3241 3230 15223817.95222 3242 3230 -30681326.51173 3333 3230 66546545.00303 3334 3230 -6857568.701869 3335 3230 -74918497.68596 3336 3230 23108532.96245 3337 3230 16657951.02195 3338 3230 -47038891.18556 3339 3230 2285903.027438 3340 3230 -27430274.79396 3341 3230 -130792022.7266 3342 3230 571475.7571481 3343 3230 67866179.05482 3344 3230 -147771014.9835 3348 3230 -68832448.03044 3349 3230 -6857568.701869 3350 3230 -84449189.35104 3351 3230 -23680008.71958 3352 3230 17343714.91106 3353 3230 -50324486.557 3231 3231 1128168022.401 3232 3231 62553220.58474 3233 3231 30858743.66929 3234 3231 17446621.74987 3235 3231 -62521288.22774 3236 3231 26696512.96211 3237 3231 -94266302.18495 3238 3231 -62499999.98975 3239 3231 24744635.2875 3240 3231 -239474705.9488 3241 3231 2.950429916382e-06 3242 3231 -4571806.052598 3243 3231 -95620685.86526 3244 3231 62499999.98975 3245 3231 -26687656.37071 3333 3231 -25604579.22317 3334 3231 15625000.00514 3335 3231 10250460.04156 3336 3231 -111681734.2619 3337 3231 -15632983.09438 3338 3231 61472760.90482 3339 3231 21503247.52855 3340 3231 3.844499588013e-06 3341 3231 571475.7571353 3342 3231 149252626.5636 3343 3231 15638305.15389 3344 3231 7711980.245565 3345 3231 -47230742.81426 3346 3231 -15630322.06464 3347 3231 23688071.7797 3348 3231 -26159485.64696 3349 3231 -15625000.00513 3350 3231 -10821935.79869 3351 3231 -97033826.33989 3352 3231 1.400709152222e-06 3353 3231 -69175329.97466 3354 3231 -39900479.57507 3355 3231 15625000.00513 3356 3231 -23680008.71958 3232 3232 959386203.4543 3233 3232 -85034422.38434 3234 3232 -62531932.34674 3235 3232 -201344781.4455 3236 3232 45541679.93477 3237 3232 -62499999.98975 3238 3232 -75515427.89211 3239 3232 12480762.39712 3240 3232 2.920627593994e-06 3241 3232 35526744.0481 3242 3232 -27430274.79396 3243 3232 62499999.98974 3244 3232 -76869811.57243 3245 3232 14949512.39685 3333 3232 15625000.00514 3334 3232 -20916860.64765 3335 3232 -9800382.320076 3336 3232 -15630322.06464 3337 3232 -38227021.54706 3338 3232 5963051.430523 3339 3232 5.88595867157e-06 3340 3232 -37871677.86274 3341 3232 -40710209.81623 3342 3232 15638305.15389 3343 3232 107057171.8061 3344 3232 -21260770.12636 3345 3232 -15632983.09439 3346 3232 -101928593.64 3347 3232 65822290.07648 3348 3232 -15625000.00513 3349 3232 -21471767.07144 3350 3232 -10486146.20919 3351 3232 7.450580596924e-07 3352 3232 -28283463.80681 3353 3232 -6857568.701869 3354 3232 15625000.00513 3355 3232 -35212760.99956 3356 3232 17343714.91106 3233 3233 989397032.1941 3234 3233 27043823.20204 3235 3233 53225583.49043 3236 3233 22257684.43985 3237 3233 24401753.34329 3238 3233 12206456.84174 3239 3233 -27069636.69752 3240 3233 -4571806.052597 3241 3233 -27430274.79396 3242 3233 58631507.34796 3243 3233 -27030538.31493 3244 3233 15223817.95222 3245 3233 -30681326.51173 3333 3233 10250460.04156 3334 3233 -9800382.320076 3335 3233 -12202085.61857 3336 3233 61128808.369 3337 3233 4044385.985747 3338 3233 -67372502.27695 3339 3233 571475.7571355 3340 3233 -40435904.26086 3341 3233 -4812102.970013 3342 3233 7717756.425008 3343 3233 -21256149.23011 3344 3233 -106755752.9646 3345 3233 23692103.30976 3346 3233 67469018.6918 3347 3233 -132015307.5643 3348 3233 -10821935.79869 3349 3233 -10486146.20919 3350 3233 -13681836.08202 3351 3233 -68832448.03044 3352 3233 -6857568.701869 3353 3233 -84449189.35104 3354 3233 -23680008.71958 3355 3233 17343714.91106 3356 3233 -50324486.557 3234 3234 661240911.694 3235 3234 62499999.98975 3236 3234 26309808.76172 3240 3234 -94266302.18495 3241 3234 -62499999.98975 3242 3234 24744635.2875 3243 3234 -351489360.7944 3244 3234 -62521288.22773 3245 3234 -26300660.30375 3246 3234 7540034.174547 3247 3234 50021288.22979 3248 3234 -21267537.14313 3336 3234 2016499.187392 3337 3234 18757983.09541 3338 3234 12648670.74487 3342 3234 -6124104.06778 3343 3234 -15632983.09438 3344 3234 -10255693.28227 3345 3234 76701211.16396 3346 3234 15625000.00514 3347 3234 21009550.22758 3351 3234 -26159485.64696 3352 3234 -15625000.00513 3353 3234 -10821935.79869 3354 3234 -125983237.2565 3355 3234 -15630322.06463 3356 3234 -74621947.50591 3357 3234 -24799837.07904 3358 3234 12505322.06361 3359 3234 -18723479.73292 3235 3235 567462589.8818 3236 3235 -68593390.60176 3240 3235 -62499999.98975 3241 3235 -75515427.89211 3242 3235 12480762.39712 3243 3235 -62531932.34673 3244 3235 -57670510.07978 3245 3235 -38001573.29657 3246 3235 75031932.34468 3247 3235 7540034.174547 3248 3235 23874977.56666 3336 3235 12505322.06361 3337 3235 2016499.187392 3338 3235 -6746002.447256 3342 3235 -15630322.06463 3343 3235 -60821954.89356 3344 3235 -41130474.11058 3345 3235 15625000.00514 3346 3235 53256630.69937 3347 3235 -5602780.460976 3351 3235 -15625000.00513 3352 3235 -21471767.07144 3353 3235 -10486146.20919 3354 3235 -15632983.09438 3355 3235 -52528524.54163 3356 3235 -23113573.91808 3357 3235 18757983.09541 3358 3235 -24799837.07904 3359 3235 22467775.67917 3236 3236 641486746.383 3240 3236 24401753.34329 3241 3236 12206456.84174 3242 3236 -27069636.69752 3243 3236 -26296086.07475 3244 3236 -30591858.55204 3245 3236 -15523139.55333 3246 3236 -31901305.7147 3247 3236 15916651.71111 3248 3236 20106757.79879 3336 3236 8432447.163244 3337 3236 -10119003.67088 3338 3236 5377331.166378 3342 3236 -10253948.8687 3343 3236 -42777202.9092 3344 3236 -22397604.24035 3345 3236 -6140600.947398 3346 3236 -27322678.94813 3347 3236 -75919024.90121 3351 3236 -10821935.79869 3352 3236 -10486146.20919 3353 3236 -13681836.08202 3354 3236 -74277994.97009 3355 3236 -21190287.58241 3356 3236 -105509843.5958 3357 3236 -28085219.59939 3358 3236 14978517.11945 3359 3236 -66132898.87745 3237 3237 1042603210.19 3238 3237 2.193450927734e-05 3239 3237 9143612.105123 3240 3237 120306386.5889 3241 3237 -9.268522262573e-06 3242 3237 2285903.027413 3249 3237 -239474705.9488 3250 3237 2.950429916382e-06 3251 3237 -4571806.052598 3252 3237 -95620685.86526 3253 3237 62499999.98975 3254 3237 -26687656.37071 3339 3237 -93459816.96553 3340 3237 1.579523086548e-06 3341 3237 66889426.94725 3342 3237 -38668381.31079 3343 3237 -15625000.00514 3344 3237 23108532.96245 3348 3237 119183368.3243 3349 3237 4.112720489502e-06 3350 3237 2285903.027438 3351 3237 -32106344.47651 3352 3237 -9.387731552124e-06 3353 3237 571475.757148 3360 3237 -97033826.33989 3361 3237 1.400709152222e-06 3362 3237 -69175329.97466 3363 3237 -39900479.57507 3364 3237 15625000.00513 3365 3237 -23680008.71958 3238 3238 892596215.9216 3239 3238 -109721099.1218 3240 3238 -9.95397567749e-06 3241 3238 -117193314.8593 3242 3238 54860549.56089 3249 3238 2.920627593994e-06 3250 3238 35526744.0481 3251 3238 -27430274.79396 3252 3238 62499999.98974 3253 3238 -76869811.57243 3254 3238 14949512.39685 3339 3238 -6.705522537231e-07 3340 3238 -24709454.43242 3341 3238 -6857568.701869 3342 3238 -15625000.00514 3343 3238 -33980662.73527 3344 3238 16657951.02195 3348 3238 4.053115844727e-06 3349 3238 81681619.73861 3350 3238 -27430274.79396 3351 3238 -8.40425491333e-06 3352 3238 -91481269.86781 3353 3238 68140484.61019 3360 3238 7.450580596924e-07 3361 3238 -28283463.80681 3362 3238 -6857568.701869 3363 3238 15625000.00513 3364 3238 -35212760.99956 3365 3238 17343714.91106 3239 3239 985817875.0266 3240 3239 2285903.027413 3241 3239 54860549.56089 3242 3239 72200645.50821 3249 3239 -4571806.052597 3250 3239 -27430274.79396 3251 3239 58631507.34796 3252 3239 -27030538.31493 3253 3239 15223817.95222 3254 3239 -30681326.51173 3339 3239 66546545.00303 3340 3239 -6857568.701869 3341 3239 -74918497.68596 3342 3239 23108532.96245 3343 3239 16657951.02195 3344 3239 -47038891.18556 3348 3239 2285903.027438 3349 3239 -27430274.79396 3350 3239 -130792022.7266 3351 3239 571475.7571481 3352 3239 67866179.05482 3353 3239 -147771014.9835 3360 3239 -68832448.03044 3361 3239 -6857568.701869 3362 3239 -84449189.35104 3363 3239 -23680008.71958 3364 3239 17343714.91106 3365 3239 -50324486.557 3240 3240 1042603210.19 3241 3240 2.193450927734e-05 3242 3240 9143612.105123 3243 3240 120306386.5889 3244 3240 -9.268522262573e-06 3245 3240 2285903.027413 3249 3240 -94266302.18495 3250 3240 -62499999.98975 3251 3240 24744635.2875 3252 3240 -239474705.9488 3253 3240 2.950429916382e-06 3254 3240 -4571806.052598 3255 3240 -95620685.86526 3256 3240 62499999.98975 3257 3240 -26687656.37071 3339 3240 -25604579.22317 3340 3240 15625000.00514 3341 3240 10250460.04156 3342 3240 -93459816.96553 3343 3240 1.579523086548e-06 3344 3240 66889426.94725 3345 3240 -38668381.31079 3346 3240 -15625000.00514 3347 3240 23108532.96245 3348 3240 21503247.52855 3349 3240 3.844499588013e-06 3350 3240 571475.7571353 3351 3240 119183368.3243 3352 3240 4.112720489502e-06 3353 3240 2285903.027438 3354 3240 -32106344.47651 3355 3240 -9.387731552124e-06 3356 3240 571475.757148 3360 3240 -26159485.64696 3361 3240 -15625000.00513 3362 3240 -10821935.79869 3363 3240 -97033826.33989 3364 3240 1.400709152222e-06 3365 3240 -69175329.97466 3366 3240 -39900479.57507 3367 3240 15625000.00513 3368 3240 -23680008.71958 3241 3241 892596215.9216 3242 3241 -109721099.1218 3243 3241 -9.95397567749e-06 3244 3241 -117193314.8593 3245 3241 54860549.56089 3249 3241 -62499999.98975 3250 3241 -75515427.89211 3251 3241 12480762.39712 3252 3241 2.920627593994e-06 3253 3241 35526744.0481 3254 3241 -27430274.79396 3255 3241 62499999.98974 3256 3241 -76869811.57243 3257 3241 14949512.39685 3339 3241 15625000.00514 3340 3241 -20916860.64765 3341 3241 -9800382.320076 3342 3241 -6.705522537231e-07 3343 3241 -24709454.43242 3344 3241 -6857568.701869 3345 3241 -15625000.00514 3346 3241 -33980662.73527 3347 3241 16657951.02195 3348 3241 5.88595867157e-06 3349 3241 -37871677.86274 3350 3241 -40710209.81623 3351 3241 4.053115844727e-06 3352 3241 81681619.73861 3353 3241 -27430274.79396 3354 3241 -8.40425491333e-06 3355 3241 -91481269.86781 3356 3241 68140484.61019 3360 3241 -15625000.00513 3361 3241 -21471767.07144 3362 3241 -10486146.20919 3363 3241 7.450580596924e-07 3364 3241 -28283463.80681 3365 3241 -6857568.701869 3366 3241 15625000.00513 3367 3241 -35212760.99956 3368 3241 17343714.91106 3242 3242 985817875.0266 3243 3242 2285903.027413 3244 3242 54860549.56089 3245 3242 72200645.50821 3249 3242 24401753.34329 3250 3242 12206456.84174 3251 3242 -27069636.69752 3252 3242 -4571806.052597 3253 3242 -27430274.79396 3254 3242 58631507.34796 3255 3242 -27030538.31493 3256 3242 15223817.95222 3257 3242 -30681326.51173 3339 3242 10250460.04156 3340 3242 -9800382.320076 3341 3242 -12202085.61857 3342 3242 66546545.00303 3343 3242 -6857568.701869 3344 3242 -74918497.68596 3345 3242 23108532.96245 3346 3242 16657951.02195 3347 3242 -47038891.18556 3348 3242 571475.7571355 3349 3242 -40435904.26086 3350 3242 -4812102.970013 3351 3242 2285903.027438 3352 3242 -27430274.79396 3353 3242 -130792022.7266 3354 3242 571475.7571481 3355 3242 67866179.05482 3356 3242 -147771014.9835 3360 3242 -10821935.79869 3361 3242 -10486146.20919 3362 3242 -13681836.08202 3363 3242 -68832448.03044 3364 3242 -6857568.701869 3365 3242 -84449189.35104 3366 3242 -23680008.71958 3367 3242 17343714.91106 3368 3242 -50324486.557 3243 3243 1128168022.401 3244 3243 62553220.58474 3245 3243 30858743.66929 3246 3243 17446621.74987 3247 3243 -62521288.22774 3248 3243 26696512.96211 3252 3243 -94266302.18495 3253 3243 -62499999.98975 3254 3243 24744635.2875 3255 3243 -239474705.9488 3256 3243 2.950429916382e-06 3257 3243 -4571806.052598 3258 3243 -95620685.86526 3259 3243 62499999.98975 3260 3243 -26687656.37071 3342 3243 -25604579.22317 3343 3243 15625000.00514 3344 3243 10250460.04156 3345 3243 -111681734.2619 3346 3243 -15632983.09438 3347 3243 61472760.90482 3351 3243 21503247.52855 3352 3243 3.844499588013e-06 3353 3243 571475.7571353 3354 3243 149252626.5636 3355 3243 15638305.15389 3356 3243 7711980.245565 3357 3243 -47230742.81426 3358 3243 -15630322.06464 3359 3243 23688071.7797 3363 3243 -26159485.64696 3364 3243 -15625000.00513 3365 3243 -10821935.79869 3366 3243 -97033826.33989 3367 3243 1.400709152222e-06 3368 3243 -69175329.97466 3369 3243 -39900479.57507 3370 3243 15625000.00513 3371 3243 -23680008.71958 3244 3244 959386203.4543 3245 3244 -85034422.38434 3246 3244 -62531932.34674 3247 3244 -201344781.4455 3248 3244 45541679.93477 3252 3244 -62499999.98975 3253 3244 -75515427.89211 3254 3244 12480762.39712 3255 3244 2.920627593994e-06 3256 3244 35526744.0481 3257 3244 -27430274.79396 3258 3244 62499999.98974 3259 3244 -76869811.57243 3260 3244 14949512.39685 3342 3244 15625000.00514 3343 3244 -20916860.64765 3344 3244 -9800382.320076 3345 3244 -15630322.06464 3346 3244 -38227021.54706 3347 3244 5963051.430523 3351 3244 5.88595867157e-06 3352 3244 -37871677.86274 3353 3244 -40710209.81623 3354 3244 15638305.15389 3355 3244 107057171.8061 3356 3244 -21260770.12636 3357 3244 -15632983.09439 3358 3244 -101928593.64 3359 3244 65822290.07648 3363 3244 -15625000.00513 3364 3244 -21471767.07144 3365 3244 -10486146.20919 3366 3244 7.450580596924e-07 3367 3244 -28283463.80681 3368 3244 -6857568.701869 3369 3244 15625000.00513 3370 3244 -35212760.99956 3371 3244 17343714.91106 3245 3245 989397032.1941 3246 3245 27043823.20204 3247 3245 53225583.49043 3248 3245 22257684.43985 3252 3245 24401753.34329 3253 3245 12206456.84174 3254 3245 -27069636.69752 3255 3245 -4571806.052597 3256 3245 -27430274.79396 3257 3245 58631507.34796 3258 3245 -27030538.31493 3259 3245 15223817.95222 3260 3245 -30681326.51173 3342 3245 10250460.04156 3343 3245 -9800382.320076 3344 3245 -12202085.61857 3345 3245 61128808.369 3346 3245 4044385.985747 3347 3245 -67372502.27695 3351 3245 571475.7571355 3352 3245 -40435904.26086 3353 3245 -4812102.970013 3354 3245 7717756.425008 3355 3245 -21256149.23011 3356 3245 -106755752.9646 3357 3245 23692103.30976 3358 3245 67469018.6918 3359 3245 -132015307.5643 3363 3245 -10821935.79869 3364 3245 -10486146.20919 3365 3245 -13681836.08202 3366 3245 -68832448.03044 3367 3245 -6857568.701869 3368 3245 -84449189.35104 3369 3245 -23680008.71958 3370 3245 17343714.91106 3371 3245 -50324486.557 3246 3246 661240911.694 3247 3246 62499999.98975 3248 3246 26309808.76172 3255 3246 -94266302.18495 3256 3246 -62499999.98975 3257 3246 24744635.2875 3258 3246 -351489360.7944 3259 3246 -62521288.22773 3260 3246 -26300660.30375 3261 3246 7540034.174547 3262 3246 50021288.22979 3263 3246 -21267537.14313 3345 3246 2016499.187392 3346 3246 18757983.09541 3347 3246 12648670.74487 3354 3246 -6124104.06778 3355 3246 -15632983.09438 3356 3246 -10255693.28227 3357 3246 76701211.16396 3358 3246 15625000.00514 3359 3246 21009550.22758 3366 3246 -26159485.64696 3367 3246 -15625000.00513 3368 3246 -10821935.79869 3369 3246 -125983237.2565 3370 3246 -15630322.06463 3371 3246 -74621947.50591 3372 3246 -24799837.07904 3373 3246 12505322.06361 3374 3246 -18723479.73292 3247 3247 567462589.8818 3248 3247 -68593390.60176 3255 3247 -62499999.98975 3256 3247 -75515427.89211 3257 3247 12480762.39712 3258 3247 -62531932.34673 3259 3247 -57670510.07978 3260 3247 -38001573.29657 3261 3247 75031932.34468 3262 3247 7540034.174547 3263 3247 23874977.56666 3345 3247 12505322.06361 3346 3247 2016499.187392 3347 3247 -6746002.447256 3354 3247 -15630322.06463 3355 3247 -60821954.89356 3356 3247 -41130474.11058 3357 3247 15625000.00514 3358 3247 53256630.69937 3359 3247 -5602780.460976 3366 3247 -15625000.00513 3367 3247 -21471767.07144 3368 3247 -10486146.20919 3369 3247 -15632983.09438 3370 3247 -52528524.54163 3371 3247 -23113573.91808 3372 3247 18757983.09541 3373 3247 -24799837.07904 3374 3247 22467775.67917 3248 3248 641486746.383 3255 3248 24401753.34329 3256 3248 12206456.84174 3257 3248 -27069636.69752 3258 3248 -26296086.07475 3259 3248 -30591858.55204 3260 3248 -15523139.55333 3261 3248 -31901305.7147 3262 3248 15916651.71111 3263 3248 20106757.79879 3345 3248 8432447.163244 3346 3248 -10119003.67088 3347 3248 5377331.166378 3354 3248 -10253948.8687 3355 3248 -42777202.9092 3356 3248 -22397604.24035 3357 3248 -6140600.947398 3358 3248 -27322678.94813 3359 3248 -75919024.90121 3366 3248 -10821935.79869 3367 3248 -10486146.20919 3368 3248 -13681836.08202 3369 3248 -74277994.97009 3370 3248 -21190287.58241 3371 3248 -105509843.5958 3372 3248 -28085219.59939 3373 3248 14978517.11945 3374 3248 -66132898.87745 3249 3249 1042603210.19 3250 3249 2.193450927734e-05 3251 3249 9143612.105123 3252 3249 120306386.5889 3253 3249 -9.268522262573e-06 3254 3249 2285903.027413 3264 3249 -239474705.9488 3265 3249 2.950429916382e-06 3266 3249 -4571806.052598 3267 3249 -95620685.86526 3268 3249 62499999.98975 3269 3249 -26687656.37071 3348 3249 -93459816.96553 3349 3249 1.579523086548e-06 3350 3249 66889426.94725 3351 3249 -38668381.31079 3352 3249 -15625000.00514 3353 3249 23108532.96245 3360 3249 119183368.3243 3361 3249 4.112720489502e-06 3362 3249 2285903.027438 3363 3249 -32106344.47651 3364 3249 -9.387731552124e-06 3365 3249 571475.757148 3375 3249 -97033826.33989 3376 3249 1.400709152222e-06 3377 3249 -69175329.97466 3378 3249 -39900479.57507 3379 3249 15625000.00513 3380 3249 -23680008.71958 3250 3250 892596215.9216 3251 3250 -109721099.1218 3252 3250 -9.95397567749e-06 3253 3250 -117193314.8593 3254 3250 54860549.56089 3264 3250 2.920627593994e-06 3265 3250 35526744.0481 3266 3250 -27430274.79396 3267 3250 62499999.98974 3268 3250 -76869811.57243 3269 3250 14949512.39685 3348 3250 -6.705522537231e-07 3349 3250 -24709454.43242 3350 3250 -6857568.701869 3351 3250 -15625000.00514 3352 3250 -33980662.73527 3353 3250 16657951.02195 3360 3250 4.053115844727e-06 3361 3250 81681619.73861 3362 3250 -27430274.79396 3363 3250 -8.40425491333e-06 3364 3250 -91481269.86781 3365 3250 68140484.61019 3375 3250 7.450580596924e-07 3376 3250 -28283463.80681 3377 3250 -6857568.701869 3378 3250 15625000.00513 3379 3250 -35212760.99956 3380 3250 17343714.91106 3251 3251 985817875.0266 3252 3251 2285903.027413 3253 3251 54860549.56089 3254 3251 72200645.50821 3264 3251 -4571806.052597 3265 3251 -27430274.79396 3266 3251 58631507.34796 3267 3251 -27030538.31493 3268 3251 15223817.95222 3269 3251 -30681326.51173 3348 3251 66546545.00303 3349 3251 -6857568.701869 3350 3251 -74918497.68596 3351 3251 23108532.96245 3352 3251 16657951.02195 3353 3251 -47038891.18556 3360 3251 2285903.027438 3361 3251 -27430274.79396 3362 3251 -130792022.7266 3363 3251 571475.7571481 3364 3251 67866179.05482 3365 3251 -147771014.9835 3375 3251 -68832448.03044 3376 3251 -6857568.701869 3377 3251 -84449189.35104 3378 3251 -23680008.71958 3379 3251 17343714.91106 3380 3251 -50324486.557 3252 3252 1042603210.19 3253 3252 2.193450927734e-05 3254 3252 9143612.105123 3255 3252 120306386.5889 3256 3252 -9.268522262573e-06 3257 3252 2285903.027413 3264 3252 -94266302.18495 3265 3252 -62499999.98975 3266 3252 24744635.2875 3267 3252 -239474705.9488 3268 3252 2.950429916382e-06 3269 3252 -4571806.052598 3270 3252 -95620685.86526 3271 3252 62499999.98975 3272 3252 -26687656.37071 3348 3252 -25604579.22317 3349 3252 15625000.00514 3350 3252 10250460.04156 3351 3252 -93459816.96553 3352 3252 1.579523086548e-06 3353 3252 66889426.94725 3354 3252 -38668381.31079 3355 3252 -15625000.00514 3356 3252 23108532.96245 3360 3252 21503247.52855 3361 3252 3.844499588013e-06 3362 3252 571475.7571353 3363 3252 119183368.3243 3364 3252 4.112720489502e-06 3365 3252 2285903.027438 3366 3252 -32106344.47651 3367 3252 -9.387731552124e-06 3368 3252 571475.757148 3375 3252 -26159485.64696 3376 3252 -15625000.00513 3377 3252 -10821935.79869 3378 3252 -97033826.33989 3379 3252 1.400709152222e-06 3380 3252 -69175329.97466 3381 3252 -39900479.57507 3382 3252 15625000.00513 3383 3252 -23680008.71958 3253 3253 892596215.9216 3254 3253 -109721099.1218 3255 3253 -9.95397567749e-06 3256 3253 -117193314.8593 3257 3253 54860549.56089 3264 3253 -62499999.98975 3265 3253 -75515427.89211 3266 3253 12480762.39712 3267 3253 2.920627593994e-06 3268 3253 35526744.0481 3269 3253 -27430274.79396 3270 3253 62499999.98974 3271 3253 -76869811.57243 3272 3253 14949512.39685 3348 3253 15625000.00514 3349 3253 -20916860.64765 3350 3253 -9800382.320076 3351 3253 -6.705522537231e-07 3352 3253 -24709454.43242 3353 3253 -6857568.701869 3354 3253 -15625000.00514 3355 3253 -33980662.73527 3356 3253 16657951.02195 3360 3253 5.88595867157e-06 3361 3253 -37871677.86274 3362 3253 -40710209.81623 3363 3253 4.053115844727e-06 3364 3253 81681619.73861 3365 3253 -27430274.79396 3366 3253 -8.40425491333e-06 3367 3253 -91481269.86781 3368 3253 68140484.61019 3375 3253 -15625000.00513 3376 3253 -21471767.07144 3377 3253 -10486146.20919 3378 3253 7.450580596924e-07 3379 3253 -28283463.80681 3380 3253 -6857568.701869 3381 3253 15625000.00513 3382 3253 -35212760.99956 3383 3253 17343714.91106 3254 3254 985817875.0266 3255 3254 2285903.027413 3256 3254 54860549.56089 3257 3254 72200645.50821 3264 3254 24401753.34329 3265 3254 12206456.84174 3266 3254 -27069636.69752 3267 3254 -4571806.052597 3268 3254 -27430274.79396 3269 3254 58631507.34796 3270 3254 -27030538.31493 3271 3254 15223817.95222 3272 3254 -30681326.51173 3348 3254 10250460.04156 3349 3254 -9800382.320076 3350 3254 -12202085.61857 3351 3254 66546545.00303 3352 3254 -6857568.701869 3353 3254 -74918497.68596 3354 3254 23108532.96245 3355 3254 16657951.02195 3356 3254 -47038891.18556 3360 3254 571475.7571355 3361 3254 -40435904.26086 3362 3254 -4812102.970013 3363 3254 2285903.027438 3364 3254 -27430274.79396 3365 3254 -130792022.7266 3366 3254 571475.7571481 3367 3254 67866179.05482 3368 3254 -147771014.9835 3375 3254 -10821935.79869 3376 3254 -10486146.20919 3377 3254 -13681836.08202 3378 3254 -68832448.03044 3379 3254 -6857568.701869 3380 3254 -84449189.35104 3381 3254 -23680008.71958 3382 3254 17343714.91106 3383 3254 -50324486.557 3255 3255 1042603210.19 3256 3255 2.193450927734e-05 3257 3255 9143612.105123 3258 3255 120306386.5889 3259 3255 -9.268522262573e-06 3260 3255 2285903.027413 3267 3255 -94266302.18495 3268 3255 -62499999.98975 3269 3255 24744635.2875 3270 3255 -239474705.9488 3271 3255 2.950429916382e-06 3272 3255 -4571806.052598 3273 3255 -95620685.86526 3274 3255 62499999.98975 3275 3255 -26687656.37071 3351 3255 -25604579.22317 3352 3255 15625000.00514 3353 3255 10250460.04156 3354 3255 -93459816.96553 3355 3255 1.579523086548e-06 3356 3255 66889426.94725 3357 3255 -38668381.31079 3358 3255 -15625000.00514 3359 3255 23108532.96245 3363 3255 21503247.52855 3364 3255 3.844499588013e-06 3365 3255 571475.7571353 3366 3255 119183368.3243 3367 3255 4.112720489502e-06 3368 3255 2285903.027438 3369 3255 -32106344.47651 3370 3255 -9.387731552124e-06 3371 3255 571475.757148 3378 3255 -26159485.64696 3379 3255 -15625000.00513 3380 3255 -10821935.79869 3381 3255 -97033826.33989 3382 3255 1.400709152222e-06 3383 3255 -69175329.97466 3384 3255 -39900479.57507 3385 3255 15625000.00513 3386 3255 -23680008.71958 3256 3256 892596215.9216 3257 3256 -109721099.1218 3258 3256 -9.95397567749e-06 3259 3256 -117193314.8593 3260 3256 54860549.56089 3267 3256 -62499999.98975 3268 3256 -75515427.89211 3269 3256 12480762.39712 3270 3256 2.920627593994e-06 3271 3256 35526744.0481 3272 3256 -27430274.79396 3273 3256 62499999.98974 3274 3256 -76869811.57243 3275 3256 14949512.39685 3351 3256 15625000.00514 3352 3256 -20916860.64765 3353 3256 -9800382.320076 3354 3256 -6.705522537231e-07 3355 3256 -24709454.43242 3356 3256 -6857568.701869 3357 3256 -15625000.00514 3358 3256 -33980662.73527 3359 3256 16657951.02195 3363 3256 5.88595867157e-06 3364 3256 -37871677.86274 3365 3256 -40710209.81623 3366 3256 4.053115844727e-06 3367 3256 81681619.73861 3368 3256 -27430274.79396 3369 3256 -8.40425491333e-06 3370 3256 -91481269.86781 3371 3256 68140484.61019 3378 3256 -15625000.00513 3379 3256 -21471767.07144 3380 3256 -10486146.20919 3381 3256 7.450580596924e-07 3382 3256 -28283463.80681 3383 3256 -6857568.701869 3384 3256 15625000.00513 3385 3256 -35212760.99956 3386 3256 17343714.91106 3257 3257 985817875.0266 3258 3257 2285903.027413 3259 3257 54860549.56089 3260 3257 72200645.50821 3267 3257 24401753.34329 3268 3257 12206456.84174 3269 3257 -27069636.69752 3270 3257 -4571806.052597 3271 3257 -27430274.79396 3272 3257 58631507.34796 3273 3257 -27030538.31493 3274 3257 15223817.95222 3275 3257 -30681326.51173 3351 3257 10250460.04156 3352 3257 -9800382.320076 3353 3257 -12202085.61857 3354 3257 66546545.00303 3355 3257 -6857568.701869 3356 3257 -74918497.68596 3357 3257 23108532.96245 3358 3257 16657951.02195 3359 3257 -47038891.18556 3363 3257 571475.7571355 3364 3257 -40435904.26086 3365 3257 -4812102.970013 3366 3257 2285903.027438 3367 3257 -27430274.79396 3368 3257 -130792022.7266 3369 3257 571475.7571481 3370 3257 67866179.05482 3371 3257 -147771014.9835 3378 3257 -10821935.79869 3379 3257 -10486146.20919 3380 3257 -13681836.08202 3381 3257 -68832448.03044 3382 3257 -6857568.701869 3383 3257 -84449189.35104 3384 3257 -23680008.71958 3385 3257 17343714.91106 3386 3257 -50324486.557 3258 3258 1128168022.401 3259 3258 62553220.58474 3260 3258 30858743.66929 3261 3258 17446621.74987 3262 3258 -62521288.22774 3263 3258 26696512.96211 3270 3258 -94266302.18495 3271 3258 -62499999.98975 3272 3258 24744635.2875 3273 3258 -239474705.9488 3274 3258 2.950429916382e-06 3275 3258 -4571806.052598 3276 3258 -95620685.86526 3277 3258 62499999.98975 3278 3258 -26687656.37071 3354 3258 -25604579.22317 3355 3258 15625000.00514 3356 3258 10250460.04156 3357 3258 -111681734.2619 3358 3258 -15632983.09438 3359 3258 61472760.90482 3366 3258 21503247.52855 3367 3258 3.844499588013e-06 3368 3258 571475.7571353 3369 3258 149252626.5636 3370 3258 15638305.15389 3371 3258 7711980.245565 3372 3258 -47230742.81426 3373 3258 -15630322.06464 3374 3258 23688071.7797 3381 3258 -26159485.64696 3382 3258 -15625000.00513 3383 3258 -10821935.79869 3384 3258 -97033826.33989 3385 3258 1.400709152222e-06 3386 3258 -69175329.97466 3387 3258 -39900479.57507 3388 3258 15625000.00513 3389 3258 -23680008.71958 3259 3259 959386203.4543 3260 3259 -85034422.38434 3261 3259 -62531932.34674 3262 3259 -201344781.4455 3263 3259 45541679.93477 3270 3259 -62499999.98975 3271 3259 -75515427.89211 3272 3259 12480762.39712 3273 3259 2.920627593994e-06 3274 3259 35526744.0481 3275 3259 -27430274.79396 3276 3259 62499999.98974 3277 3259 -76869811.57243 3278 3259 14949512.39685 3354 3259 15625000.00514 3355 3259 -20916860.64765 3356 3259 -9800382.320076 3357 3259 -15630322.06464 3358 3259 -38227021.54706 3359 3259 5963051.430523 3366 3259 5.88595867157e-06 3367 3259 -37871677.86274 3368 3259 -40710209.81623 3369 3259 15638305.15389 3370 3259 107057171.8061 3371 3259 -21260770.12636 3372 3259 -15632983.09439 3373 3259 -101928593.64 3374 3259 65822290.07648 3381 3259 -15625000.00513 3382 3259 -21471767.07144 3383 3259 -10486146.20919 3384 3259 7.450580596924e-07 3385 3259 -28283463.80681 3386 3259 -6857568.701869 3387 3259 15625000.00513 3388 3259 -35212760.99956 3389 3259 17343714.91106 3260 3260 989397032.1941 3261 3260 27043823.20204 3262 3260 53225583.49043 3263 3260 22257684.43985 3270 3260 24401753.34329 3271 3260 12206456.84174 3272 3260 -27069636.69752 3273 3260 -4571806.052597 3274 3260 -27430274.79396 3275 3260 58631507.34796 3276 3260 -27030538.31493 3277 3260 15223817.95222 3278 3260 -30681326.51173 3354 3260 10250460.04156 3355 3260 -9800382.320076 3356 3260 -12202085.61857 3357 3260 61128808.369 3358 3260 4044385.985747 3359 3260 -67372502.27695 3366 3260 571475.7571355 3367 3260 -40435904.26086 3368 3260 -4812102.970013 3369 3260 7717756.425008 3370 3260 -21256149.23011 3371 3260 -106755752.9646 3372 3260 23692103.30976 3373 3260 67469018.6918 3374 3260 -132015307.5643 3381 3260 -10821935.79869 3382 3260 -10486146.20919 3383 3260 -13681836.08202 3384 3260 -68832448.03044 3385 3260 -6857568.701869 3386 3260 -84449189.35104 3387 3260 -23680008.71958 3388 3260 17343714.91106 3389 3260 -50324486.557 3261 3261 661240911.694 3262 3261 62499999.98975 3263 3261 26309808.76172 3273 3261 -94266302.18495 3274 3261 -62499999.98975 3275 3261 24744635.2875 3276 3261 -351489360.7944 3277 3261 -62521288.22773 3278 3261 -26300660.30375 3279 3261 7540034.174547 3280 3261 50021288.22979 3281 3261 -21267537.14313 3357 3261 2016499.187392 3358 3261 18757983.09541 3359 3261 12648670.74487 3369 3261 -6124104.06778 3370 3261 -15632983.09438 3371 3261 -10255693.28227 3372 3261 76701211.16396 3373 3261 15625000.00514 3374 3261 21009550.22758 3384 3261 -26159485.64696 3385 3261 -15625000.00513 3386 3261 -10821935.79869 3387 3261 -125983237.2565 3388 3261 -15630322.06463 3389 3261 -74621947.50591 3390 3261 -24799837.07904 3391 3261 12505322.06361 3392 3261 -18723479.73292 3262 3262 567462589.8818 3263 3262 -68593390.60176 3273 3262 -62499999.98975 3274 3262 -75515427.89211 3275 3262 12480762.39712 3276 3262 -62531932.34673 3277 3262 -57670510.07978 3278 3262 -38001573.29657 3279 3262 75031932.34468 3280 3262 7540034.174547 3281 3262 23874977.56666 3357 3262 12505322.06361 3358 3262 2016499.187392 3359 3262 -6746002.447256 3369 3262 -15630322.06463 3370 3262 -60821954.89356 3371 3262 -41130474.11058 3372 3262 15625000.00514 3373 3262 53256630.69937 3374 3262 -5602780.460976 3384 3262 -15625000.00513 3385 3262 -21471767.07144 3386 3262 -10486146.20919 3387 3262 -15632983.09438 3388 3262 -52528524.54163 3389 3262 -23113573.91808 3390 3262 18757983.09541 3391 3262 -24799837.07904 3392 3262 22467775.67917 3263 3263 641486746.383 3273 3263 24401753.34329 3274 3263 12206456.84174 3275 3263 -27069636.69752 3276 3263 -26296086.07475 3277 3263 -30591858.55204 3278 3263 -15523139.55333 3279 3263 -31901305.7147 3280 3263 15916651.71111 3281 3263 20106757.79879 3357 3263 8432447.163244 3358 3263 -10119003.67088 3359 3263 5377331.166378 3369 3263 -10253948.8687 3370 3263 -42777202.9092 3371 3263 -22397604.24035 3372 3263 -6140600.947398 3373 3263 -27322678.94813 3374 3263 -75919024.90121 3384 3263 -10821935.79869 3385 3263 -10486146.20919 3386 3263 -13681836.08202 3387 3263 -74277994.97009 3388 3263 -21190287.58241 3389 3263 -105509843.5958 3390 3263 -28085219.59939 3391 3263 14978517.11945 3392 3263 -66132898.87745 3264 3264 1042603210.19 3265 3264 2.193450927734e-05 3266 3264 9143612.105123 3267 3264 120306386.5889 3268 3264 -9.268522262573e-06 3269 3264 2285903.027413 3282 3264 -239474705.9488 3283 3264 2.950429916382e-06 3284 3264 -4571806.052598 3285 3264 -95620685.86526 3286 3264 62499999.98975 3287 3264 -26687656.37071 3360 3264 -93459816.96553 3361 3264 1.579523086548e-06 3362 3264 66889426.94725 3363 3264 -38668381.31079 3364 3264 -15625000.00514 3365 3264 23108532.96245 3375 3264 119183368.3243 3376 3264 4.112720489502e-06 3377 3264 2285903.027438 3378 3264 -32106344.47651 3379 3264 -9.387731552124e-06 3380 3264 571475.757148 3393 3264 -97033826.33989 3394 3264 1.400709152222e-06 3395 3264 -69175329.97466 3396 3264 -39900479.57507 3397 3264 15625000.00513 3398 3264 -23680008.71958 3265 3265 892596215.9216 3266 3265 -109721099.1218 3267 3265 -9.95397567749e-06 3268 3265 -117193314.8593 3269 3265 54860549.56089 3282 3265 2.920627593994e-06 3283 3265 35526744.0481 3284 3265 -27430274.79396 3285 3265 62499999.98974 3286 3265 -76869811.57243 3287 3265 14949512.39685 3360 3265 -6.705522537231e-07 3361 3265 -24709454.43242 3362 3265 -6857568.701869 3363 3265 -15625000.00514 3364 3265 -33980662.73527 3365 3265 16657951.02195 3375 3265 4.053115844727e-06 3376 3265 81681619.73861 3377 3265 -27430274.79396 3378 3265 -8.40425491333e-06 3379 3265 -91481269.86781 3380 3265 68140484.61019 3393 3265 7.450580596924e-07 3394 3265 -28283463.80681 3395 3265 -6857568.701869 3396 3265 15625000.00513 3397 3265 -35212760.99956 3398 3265 17343714.91106 3266 3266 985817875.0266 3267 3266 2285903.027413 3268 3266 54860549.56089 3269 3266 72200645.50821 3282 3266 -4571806.052597 3283 3266 -27430274.79396 3284 3266 58631507.34796 3285 3266 -27030538.31493 3286 3266 15223817.95222 3287 3266 -30681326.51173 3360 3266 66546545.00303 3361 3266 -6857568.701869 3362 3266 -74918497.68596 3363 3266 23108532.96245 3364 3266 16657951.02195 3365 3266 -47038891.18556 3375 3266 2285903.027438 3376 3266 -27430274.79396 3377 3266 -130792022.7266 3378 3266 571475.7571481 3379 3266 67866179.05482 3380 3266 -147771014.9835 3393 3266 -68832448.03044 3394 3266 -6857568.701869 3395 3266 -84449189.35104 3396 3266 -23680008.71958 3397 3266 17343714.91106 3398 3266 -50324486.557 3267 3267 1042603210.19 3268 3267 2.193450927734e-05 3269 3267 9143612.105123 3270 3267 120306386.5889 3271 3267 -9.268522262573e-06 3272 3267 2285903.027413 3282 3267 -94266302.18495 3283 3267 -62499999.98975 3284 3267 24744635.2875 3285 3267 -239474705.9488 3286 3267 2.950429916382e-06 3287 3267 -4571806.052598 3288 3267 -95620685.86526 3289 3267 62499999.98975 3290 3267 -26687656.37071 3360 3267 -25604579.22317 3361 3267 15625000.00514 3362 3267 10250460.04156 3363 3267 -93459816.96553 3364 3267 1.579523086548e-06 3365 3267 66889426.94725 3366 3267 -38668381.31079 3367 3267 -15625000.00514 3368 3267 23108532.96245 3375 3267 21503247.52855 3376 3267 3.844499588013e-06 3377 3267 571475.7571353 3378 3267 119183368.3243 3379 3267 4.112720489502e-06 3380 3267 2285903.027438 3381 3267 -32106344.47651 3382 3267 -9.387731552124e-06 3383 3267 571475.757148 3393 3267 -26159485.64696 3394 3267 -15625000.00513 3395 3267 -10821935.79869 3396 3267 -97033826.33989 3397 3267 1.400709152222e-06 3398 3267 -69175329.97466 3399 3267 -39900479.57507 3400 3267 15625000.00513 3401 3267 -23680008.71958 3268 3268 892596215.9216 3269 3268 -109721099.1218 3270 3268 -9.95397567749e-06 3271 3268 -117193314.8593 3272 3268 54860549.56089 3282 3268 -62499999.98975 3283 3268 -75515427.89211 3284 3268 12480762.39712 3285 3268 2.920627593994e-06 3286 3268 35526744.0481 3287 3268 -27430274.79396 3288 3268 62499999.98974 3289 3268 -76869811.57243 3290 3268 14949512.39685 3360 3268 15625000.00514 3361 3268 -20916860.64765 3362 3268 -9800382.320076 3363 3268 -6.705522537231e-07 3364 3268 -24709454.43242 3365 3268 -6857568.701869 3366 3268 -15625000.00514 3367 3268 -33980662.73527 3368 3268 16657951.02195 3375 3268 5.88595867157e-06 3376 3268 -37871677.86274 3377 3268 -40710209.81623 3378 3268 4.053115844727e-06 3379 3268 81681619.73861 3380 3268 -27430274.79396 3381 3268 -8.40425491333e-06 3382 3268 -91481269.86781 3383 3268 68140484.61019 3393 3268 -15625000.00513 3394 3268 -21471767.07144 3395 3268 -10486146.20919 3396 3268 7.450580596924e-07 3397 3268 -28283463.80681 3398 3268 -6857568.701869 3399 3268 15625000.00513 3400 3268 -35212760.99956 3401 3268 17343714.91106 3269 3269 985817875.0266 3270 3269 2285903.027413 3271 3269 54860549.56089 3272 3269 72200645.50821 3282 3269 24401753.34329 3283 3269 12206456.84174 3284 3269 -27069636.69752 3285 3269 -4571806.052597 3286 3269 -27430274.79396 3287 3269 58631507.34796 3288 3269 -27030538.31493 3289 3269 15223817.95222 3290 3269 -30681326.51173 3360 3269 10250460.04156 3361 3269 -9800382.320076 3362 3269 -12202085.61857 3363 3269 66546545.00303 3364 3269 -6857568.701869 3365 3269 -74918497.68596 3366 3269 23108532.96245 3367 3269 16657951.02195 3368 3269 -47038891.18556 3375 3269 571475.7571355 3376 3269 -40435904.26086 3377 3269 -4812102.970013 3378 3269 2285903.027438 3379 3269 -27430274.79396 3380 3269 -130792022.7266 3381 3269 571475.7571481 3382 3269 67866179.05482 3383 3269 -147771014.9835 3393 3269 -10821935.79869 3394 3269 -10486146.20919 3395 3269 -13681836.08202 3396 3269 -68832448.03044 3397 3269 -6857568.701869 3398 3269 -84449189.35104 3399 3269 -23680008.71958 3400 3269 17343714.91106 3401 3269 -50324486.557 3270 3270 1042603210.19 3271 3270 2.193450927734e-05 3272 3270 9143612.105123 3273 3270 120306386.5889 3274 3270 -9.268522262573e-06 3275 3270 2285903.027413 3285 3270 -94266302.18495 3286 3270 -62499999.98975 3287 3270 24744635.2875 3288 3270 -239474705.9488 3289 3270 2.950429916382e-06 3290 3270 -4571806.052598 3291 3270 -95620685.86526 3292 3270 62499999.98975 3293 3270 -26687656.37071 3363 3270 -25604579.22317 3364 3270 15625000.00514 3365 3270 10250460.04156 3366 3270 -93459816.96553 3367 3270 1.579523086548e-06 3368 3270 66889426.94725 3369 3270 -38668381.31079 3370 3270 -15625000.00514 3371 3270 23108532.96245 3378 3270 21503247.52855 3379 3270 3.844499588013e-06 3380 3270 571475.7571353 3381 3270 119183368.3243 3382 3270 4.112720489502e-06 3383 3270 2285903.027438 3384 3270 -32106344.47651 3385 3270 -9.387731552124e-06 3386 3270 571475.757148 3396 3270 -26159485.64696 3397 3270 -15625000.00513 3398 3270 -10821935.79869 3399 3270 -97033826.33989 3400 3270 1.400709152222e-06 3401 3270 -69175329.97466 3402 3270 -39900479.57507 3403 3270 15625000.00513 3404 3270 -23680008.71958 3271 3271 892596215.9216 3272 3271 -109721099.1218 3273 3271 -9.95397567749e-06 3274 3271 -117193314.8593 3275 3271 54860549.56089 3285 3271 -62499999.98975 3286 3271 -75515427.89211 3287 3271 12480762.39712 3288 3271 2.920627593994e-06 3289 3271 35526744.0481 3290 3271 -27430274.79396 3291 3271 62499999.98974 3292 3271 -76869811.57243 3293 3271 14949512.39685 3363 3271 15625000.00514 3364 3271 -20916860.64765 3365 3271 -9800382.320076 3366 3271 -6.705522537231e-07 3367 3271 -24709454.43242 3368 3271 -6857568.701869 3369 3271 -15625000.00514 3370 3271 -33980662.73527 3371 3271 16657951.02195 3378 3271 5.88595867157e-06 3379 3271 -37871677.86274 3380 3271 -40710209.81623 3381 3271 4.053115844727e-06 3382 3271 81681619.73861 3383 3271 -27430274.79396 3384 3271 -8.40425491333e-06 3385 3271 -91481269.86781 3386 3271 68140484.61019 3396 3271 -15625000.00513 3397 3271 -21471767.07144 3398 3271 -10486146.20919 3399 3271 7.450580596924e-07 3400 3271 -28283463.80681 3401 3271 -6857568.701869 3402 3271 15625000.00513 3403 3271 -35212760.99956 3404 3271 17343714.91106 3272 3272 985817875.0266 3273 3272 2285903.027413 3274 3272 54860549.56089 3275 3272 72200645.50821 3285 3272 24401753.34329 3286 3272 12206456.84174 3287 3272 -27069636.69752 3288 3272 -4571806.052597 3289 3272 -27430274.79396 3290 3272 58631507.34796 3291 3272 -27030538.31493 3292 3272 15223817.95222 3293 3272 -30681326.51173 3363 3272 10250460.04156 3364 3272 -9800382.320076 3365 3272 -12202085.61857 3366 3272 66546545.00303 3367 3272 -6857568.701869 3368 3272 -74918497.68596 3369 3272 23108532.96245 3370 3272 16657951.02195 3371 3272 -47038891.18556 3378 3272 571475.7571355 3379 3272 -40435904.26086 3380 3272 -4812102.970013 3381 3272 2285903.027438 3382 3272 -27430274.79396 3383 3272 -130792022.7266 3384 3272 571475.7571481 3385 3272 67866179.05482 3386 3272 -147771014.9835 3396 3272 -10821935.79869 3397 3272 -10486146.20919 3398 3272 -13681836.08202 3399 3272 -68832448.03044 3400 3272 -6857568.701869 3401 3272 -84449189.35104 3402 3272 -23680008.71958 3403 3272 17343714.91106 3404 3272 -50324486.557 3273 3273 1042603210.19 3274 3273 2.193450927734e-05 3275 3273 9143612.105123 3276 3273 120306386.5889 3277 3273 -9.268522262573e-06 3278 3273 2285903.027413 3288 3273 -94266302.18495 3289 3273 -62499999.98975 3290 3273 24744635.2875 3291 3273 -239474705.9488 3292 3273 2.950429916382e-06 3293 3273 -4571806.052598 3294 3273 -95620685.86526 3295 3273 62499999.98975 3296 3273 -26687656.37071 3366 3273 -25604579.22317 3367 3273 15625000.00514 3368 3273 10250460.04156 3369 3273 -93459816.96553 3370 3273 1.579523086548e-06 3371 3273 66889426.94725 3372 3273 -38668381.31079 3373 3273 -15625000.00514 3374 3273 23108532.96245 3381 3273 21503247.52855 3382 3273 3.844499588013e-06 3383 3273 571475.7571353 3384 3273 119183368.3243 3385 3273 4.112720489502e-06 3386 3273 2285903.027438 3387 3273 -32106344.47651 3388 3273 -9.387731552124e-06 3389 3273 571475.757148 3399 3273 -26159485.64696 3400 3273 -15625000.00513 3401 3273 -10821935.79869 3402 3273 -97033826.33989 3403 3273 1.400709152222e-06 3404 3273 -69175329.97466 3405 3273 -39900479.57507 3406 3273 15625000.00513 3407 3273 -23680008.71958 3274 3274 892596215.9216 3275 3274 -109721099.1218 3276 3274 -9.95397567749e-06 3277 3274 -117193314.8593 3278 3274 54860549.56089 3288 3274 -62499999.98975 3289 3274 -75515427.89211 3290 3274 12480762.39712 3291 3274 2.920627593994e-06 3292 3274 35526744.0481 3293 3274 -27430274.79396 3294 3274 62499999.98974 3295 3274 -76869811.57243 3296 3274 14949512.39685 3366 3274 15625000.00514 3367 3274 -20916860.64765 3368 3274 -9800382.320076 3369 3274 -6.705522537231e-07 3370 3274 -24709454.43242 3371 3274 -6857568.701869 3372 3274 -15625000.00514 3373 3274 -33980662.73527 3374 3274 16657951.02195 3381 3274 5.88595867157e-06 3382 3274 -37871677.86274 3383 3274 -40710209.81623 3384 3274 4.053115844727e-06 3385 3274 81681619.73861 3386 3274 -27430274.79396 3387 3274 -8.40425491333e-06 3388 3274 -91481269.86781 3389 3274 68140484.61019 3399 3274 -15625000.00513 3400 3274 -21471767.07144 3401 3274 -10486146.20919 3402 3274 7.450580596924e-07 3403 3274 -28283463.80681 3404 3274 -6857568.701869 3405 3274 15625000.00513 3406 3274 -35212760.99956 3407 3274 17343714.91106 3275 3275 985817875.0266 3276 3275 2285903.027413 3277 3275 54860549.56089 3278 3275 72200645.50821 3288 3275 24401753.34329 3289 3275 12206456.84174 3290 3275 -27069636.69752 3291 3275 -4571806.052597 3292 3275 -27430274.79396 3293 3275 58631507.34796 3294 3275 -27030538.31493 3295 3275 15223817.95222 3296 3275 -30681326.51173 3366 3275 10250460.04156 3367 3275 -9800382.320076 3368 3275 -12202085.61857 3369 3275 66546545.00303 3370 3275 -6857568.701869 3371 3275 -74918497.68596 3372 3275 23108532.96245 3373 3275 16657951.02195 3374 3275 -47038891.18556 3381 3275 571475.7571355 3382 3275 -40435904.26086 3383 3275 -4812102.970013 3384 3275 2285903.027438 3385 3275 -27430274.79396 3386 3275 -130792022.7266 3387 3275 571475.7571481 3388 3275 67866179.05482 3389 3275 -147771014.9835 3399 3275 -10821935.79869 3400 3275 -10486146.20919 3401 3275 -13681836.08202 3402 3275 -68832448.03044 3403 3275 -6857568.701869 3404 3275 -84449189.35104 3405 3275 -23680008.71958 3406 3275 17343714.91106 3407 3275 -50324486.557 3276 3276 1128168022.401 3277 3276 62553220.58474 3278 3276 30858743.66929 3279 3276 17446621.74987 3280 3276 -62521288.22774 3281 3276 26696512.96211 3291 3276 -94266302.18495 3292 3276 -62499999.98975 3293 3276 24744635.2875 3294 3276 -239474705.9488 3295 3276 2.950429916382e-06 3296 3276 -4571806.052598 3297 3276 -95620685.86526 3298 3276 62499999.98975 3299 3276 -26687656.37071 3369 3276 -25604579.22317 3370 3276 15625000.00514 3371 3276 10250460.04156 3372 3276 -111681734.2619 3373 3276 -15632983.09438 3374 3276 61472760.90482 3384 3276 21503247.52855 3385 3276 3.844499588013e-06 3386 3276 571475.7571353 3387 3276 149252626.5636 3388 3276 15638305.15389 3389 3276 7711980.245565 3390 3276 -47230742.81426 3391 3276 -15630322.06464 3392 3276 23688071.7797 3402 3276 -26159485.64696 3403 3276 -15625000.00513 3404 3276 -10821935.79869 3405 3276 -97033826.33989 3406 3276 1.400709152222e-06 3407 3276 -69175329.97466 3408 3276 -39900479.57507 3409 3276 15625000.00513 3410 3276 -23680008.71958 3277 3277 959386203.4543 3278 3277 -85034422.38434 3279 3277 -62531932.34674 3280 3277 -201344781.4455 3281 3277 45541679.93477 3291 3277 -62499999.98975 3292 3277 -75515427.89211 3293 3277 12480762.39712 3294 3277 2.920627593994e-06 3295 3277 35526744.0481 3296 3277 -27430274.79396 3297 3277 62499999.98974 3298 3277 -76869811.57243 3299 3277 14949512.39685 3369 3277 15625000.00514 3370 3277 -20916860.64765 3371 3277 -9800382.320076 3372 3277 -15630322.06464 3373 3277 -38227021.54706 3374 3277 5963051.430523 3384 3277 5.88595867157e-06 3385 3277 -37871677.86274 3386 3277 -40710209.81623 3387 3277 15638305.15389 3388 3277 107057171.8061 3389 3277 -21260770.12636 3390 3277 -15632983.09439 3391 3277 -101928593.64 3392 3277 65822290.07648 3402 3277 -15625000.00513 3403 3277 -21471767.07144 3404 3277 -10486146.20919 3405 3277 7.450580596924e-07 3406 3277 -28283463.80681 3407 3277 -6857568.701869 3408 3277 15625000.00513 3409 3277 -35212760.99956 3410 3277 17343714.91106 3278 3278 989397032.1941 3279 3278 27043823.20204 3280 3278 53225583.49043 3281 3278 22257684.43985 3291 3278 24401753.34329 3292 3278 12206456.84174 3293 3278 -27069636.69752 3294 3278 -4571806.052597 3295 3278 -27430274.79396 3296 3278 58631507.34796 3297 3278 -27030538.31493 3298 3278 15223817.95222 3299 3278 -30681326.51173 3369 3278 10250460.04156 3370 3278 -9800382.320076 3371 3278 -12202085.61857 3372 3278 61128808.369 3373 3278 4044385.985747 3374 3278 -67372502.27695 3384 3278 571475.7571355 3385 3278 -40435904.26086 3386 3278 -4812102.970013 3387 3278 7717756.425008 3388 3278 -21256149.23011 3389 3278 -106755752.9646 3390 3278 23692103.30976 3391 3278 67469018.6918 3392 3278 -132015307.5643 3402 3278 -10821935.79869 3403 3278 -10486146.20919 3404 3278 -13681836.08202 3405 3278 -68832448.03044 3406 3278 -6857568.701869 3407 3278 -84449189.35104 3408 3278 -23680008.71958 3409 3278 17343714.91106 3410 3278 -50324486.557 3279 3279 600178947.3725 3280 3279 37725262.55381 3281 3279 -13827796.63441 3294 3279 -94266302.18495 3295 3279 -62499999.98975 3296 3279 24744635.2875 3297 3279 -293151746.8795 3298 3279 -37775820.80688 3299 3279 -1256051.514156 3300 3279 -295864.016185 3301 3279 50050558.24487 3302 3279 -2747124.263025 3372 3279 2016499.187392 3373 3279 18757983.09541 3374 3279 12648670.74487 3387 3279 -6124104.06778 3388 3279 -15632983.09438 3389 3279 -10255693.28227 3390 3279 65666544.26174 3391 3279 10333339.53909 3392 3279 9670962.265862 3405 3279 -26159485.64696 3406 3279 -15625000.00513 3407 3279 -10821935.79869 3408 3279 -106870441.9849 3409 3279 -10344958.86108 3410 3279 -63962837.30182 3411 3279 -13431713.52885 3412 3279 12511619.32611 3413 3279 -12546378.89565 3280 3280 542232249.1086 3281 3280 -69126882.73255 3294 3280 -62499999.98975 3295 3280 -75515427.89211 3296 3280 12480762.39712 3297 3280 -37801099.93342 3298 3280 -10394286.81598 3299 3280 -18514480.73787 3300 3280 75075837.36731 3301 3280 -25066096.91336 3302 3280 6020484.825208 3372 3280 12505322.06361 3373 3280 2016499.187392 3374 3280 -6746002.447256 3387 3280 -15630322.06463 3388 3280 -60821954.89356 3389 3280 -41130474.11058 3390 3280 10333339.53908 3391 3280 49691553.75032 3392 3280 -6634440.888398 3405 3280 -15625000.00513 3406 3280 -21471767.07144 3407 3280 -10486146.20919 3408 3280 -10350768.52208 3409 3280 -35778359.74888 3410 3280 -14032597.42536 3411 3280 18767428.98916 3412 3280 -18538673.00316 3413 3280 20479811.65281 3281 3281 586937705.6795 3294 3281 24401753.34329 3295 3281 12206456.84174 3296 3281 -27069636.69752 3297 3281 -8797975.588425 3298 3281 -17415982.97645 3299 3281 6990733.835282 3300 3281 -4120686.394537 3301 3281 4922929.795991 3302 3281 23981262.18735 3372 3281 8432447.163244 3373 3281 -10119003.67088 3374 3281 5377331.166378 3387 3281 -10253948.8687 3388 3281 -42777202.9092 3389 3281 -22397604.24035 3390 3281 -15760902.34505 3391 3281 -26425457.75927 3392 3281 -82032786.80308 3405 3281 -10821935.79869 3406 3281 -10486146.20919 3407 3281 -13681836.08202 3408 3281 -65676910.20889 3409 3281 -13478401.78615 3410 3281 -82961365.51657 3411 3281 -18819568.34348 3412 3281 15461438.19274 3413 3281 -30710943.26928 3282 3282 1042603210.19 3283 3282 2.193450927734e-05 3284 3282 9143612.105123 3285 3282 120306386.5889 3286 3282 -9.268522262573e-06 3287 3282 2285903.027413 3303 3282 -239474705.9488 3304 3282 2.950429916382e-06 3305 3282 -4571806.052598 3306 3282 -95620685.86526 3307 3282 62499999.98975 3308 3282 -26687656.37071 3375 3282 -93459816.96553 3376 3282 1.579523086548e-06 3377 3282 66889426.94725 3378 3282 -38668381.31079 3379 3282 -15625000.00514 3380 3282 23108532.96245 3393 3282 119183368.3243 3394 3282 4.112720489502e-06 3395 3282 2285903.027438 3396 3282 -32106344.47651 3397 3282 -9.387731552124e-06 3398 3282 571475.757148 3414 3282 -97033826.33989 3415 3282 1.400709152222e-06 3416 3282 -69175329.97466 3417 3282 -39900479.57507 3418 3282 15625000.00513 3419 3282 -23680008.71958 3283 3283 892596215.9216 3284 3283 -109721099.1218 3285 3283 -9.95397567749e-06 3286 3283 -117193314.8593 3287 3283 54860549.56089 3303 3283 2.920627593994e-06 3304 3283 35526744.0481 3305 3283 -27430274.79396 3306 3283 62499999.98974 3307 3283 -76869811.57243 3308 3283 14949512.39685 3375 3283 -6.705522537231e-07 3376 3283 -24709454.43242 3377 3283 -6857568.701869 3378 3283 -15625000.00514 3379 3283 -33980662.73527 3380 3283 16657951.02195 3393 3283 4.053115844727e-06 3394 3283 81681619.73861 3395 3283 -27430274.79396 3396 3283 -8.40425491333e-06 3397 3283 -91481269.86781 3398 3283 68140484.61019 3414 3283 7.450580596924e-07 3415 3283 -28283463.80681 3416 3283 -6857568.701869 3417 3283 15625000.00513 3418 3283 -35212760.99956 3419 3283 17343714.91106 3284 3284 985817875.0266 3285 3284 2285903.027413 3286 3284 54860549.56089 3287 3284 72200645.50821 3303 3284 -4571806.052597 3304 3284 -27430274.79396 3305 3284 58631507.34796 3306 3284 -27030538.31493 3307 3284 15223817.95222 3308 3284 -30681326.51173 3375 3284 66546545.00303 3376 3284 -6857568.701869 3377 3284 -74918497.68596 3378 3284 23108532.96245 3379 3284 16657951.02195 3380 3284 -47038891.18556 3393 3284 2285903.027438 3394 3284 -27430274.79396 3395 3284 -130792022.7266 3396 3284 571475.7571481 3397 3284 67866179.05482 3398 3284 -147771014.9835 3414 3284 -68832448.03044 3415 3284 -6857568.701869 3416 3284 -84449189.35104 3417 3284 -23680008.71958 3418 3284 17343714.91106 3419 3284 -50324486.557 3285 3285 1042603210.19 3286 3285 2.193450927734e-05 3287 3285 9143612.105123 3288 3285 120306386.5889 3289 3285 -9.268522262573e-06 3290 3285 2285903.027413 3303 3285 -94266302.18495 3304 3285 -62499999.98975 3305 3285 24744635.2875 3306 3285 -239474705.9488 3307 3285 2.950429916382e-06 3308 3285 -4571806.052598 3309 3285 -95620685.86526 3310 3285 62499999.98975 3311 3285 -26687656.37071 3375 3285 -25604579.22317 3376 3285 15625000.00514 3377 3285 10250460.04156 3378 3285 -93459816.96553 3379 3285 1.579523086548e-06 3380 3285 66889426.94725 3381 3285 -38668381.31079 3382 3285 -15625000.00514 3383 3285 23108532.96245 3393 3285 21503247.52855 3394 3285 3.844499588013e-06 3395 3285 571475.7571353 3396 3285 119183368.3243 3397 3285 4.112720489502e-06 3398 3285 2285903.027438 3399 3285 -32106344.47651 3400 3285 -9.387731552124e-06 3401 3285 571475.757148 3414 3285 -26159485.64696 3415 3285 -15625000.00513 3416 3285 -10821935.79869 3417 3285 -97033826.33989 3418 3285 1.400709152222e-06 3419 3285 -69175329.97466 3420 3285 -39900479.57507 3421 3285 15625000.00513 3422 3285 -23680008.71958 3286 3286 892596215.9216 3287 3286 -109721099.1218 3288 3286 -9.95397567749e-06 3289 3286 -117193314.8593 3290 3286 54860549.56089 3303 3286 -62499999.98975 3304 3286 -75515427.89211 3305 3286 12480762.39712 3306 3286 2.920627593994e-06 3307 3286 35526744.0481 3308 3286 -27430274.79396 3309 3286 62499999.98974 3310 3286 -76869811.57243 3311 3286 14949512.39685 3375 3286 15625000.00514 3376 3286 -20916860.64765 3377 3286 -9800382.320076 3378 3286 -6.705522537231e-07 3379 3286 -24709454.43242 3380 3286 -6857568.701869 3381 3286 -15625000.00514 3382 3286 -33980662.73527 3383 3286 16657951.02195 3393 3286 5.88595867157e-06 3394 3286 -37871677.86274 3395 3286 -40710209.81623 3396 3286 4.053115844727e-06 3397 3286 81681619.73861 3398 3286 -27430274.79396 3399 3286 -8.40425491333e-06 3400 3286 -91481269.86781 3401 3286 68140484.61019 3414 3286 -15625000.00513 3415 3286 -21471767.07144 3416 3286 -10486146.20919 3417 3286 7.450580596924e-07 3418 3286 -28283463.80681 3419 3286 -6857568.701869 3420 3286 15625000.00513 3421 3286 -35212760.99956 3422 3286 17343714.91106 3287 3287 985817875.0266 3288 3287 2285903.027413 3289 3287 54860549.56089 3290 3287 72200645.50821 3303 3287 24401753.34329 3304 3287 12206456.84174 3305 3287 -27069636.69752 3306 3287 -4571806.052597 3307 3287 -27430274.79396 3308 3287 58631507.34796 3309 3287 -27030538.31493 3310 3287 15223817.95222 3311 3287 -30681326.51173 3375 3287 10250460.04156 3376 3287 -9800382.320076 3377 3287 -12202085.61857 3378 3287 66546545.00303 3379 3287 -6857568.701869 3380 3287 -74918497.68596 3381 3287 23108532.96245 3382 3287 16657951.02195 3383 3287 -47038891.18556 3393 3287 571475.7571355 3394 3287 -40435904.26086 3395 3287 -4812102.970013 3396 3287 2285903.027438 3397 3287 -27430274.79396 3398 3287 -130792022.7266 3399 3287 571475.7571481 3400 3287 67866179.05482 3401 3287 -147771014.9835 3414 3287 -10821935.79869 3415 3287 -10486146.20919 3416 3287 -13681836.08202 3417 3287 -68832448.03044 3418 3287 -6857568.701869 3419 3287 -84449189.35104 3420 3287 -23680008.71958 3421 3287 17343714.91106 3422 3287 -50324486.557 3288 3288 1042603210.19 3289 3288 2.193450927734e-05 3290 3288 9143612.105123 3291 3288 120306386.5889 3292 3288 -9.268522262573e-06 3293 3288 2285903.027413 3306 3288 -94266302.18495 3307 3288 -62499999.98975 3308 3288 24744635.2875 3309 3288 -239474705.9488 3310 3288 2.950429916382e-06 3311 3288 -4571806.052598 3312 3288 -95620685.86526 3313 3288 62499999.98975 3314 3288 -26687656.37071 3378 3288 -25604579.22317 3379 3288 15625000.00514 3380 3288 10250460.04156 3381 3288 -93459816.96553 3382 3288 1.579523086548e-06 3383 3288 66889426.94725 3384 3288 -38668381.31079 3385 3288 -15625000.00514 3386 3288 23108532.96245 3396 3288 21503247.52855 3397 3288 3.844499588013e-06 3398 3288 571475.7571353 3399 3288 119183368.3243 3400 3288 4.112720489502e-06 3401 3288 2285903.027438 3402 3288 -32106344.47651 3403 3288 -9.387731552124e-06 3404 3288 571475.757148 3417 3288 -26159485.64696 3418 3288 -15625000.00513 3419 3288 -10821935.79869 3420 3288 -97033826.33989 3421 3288 1.400709152222e-06 3422 3288 -69175329.97466 3423 3288 -39900479.57507 3424 3288 15625000.00513 3425 3288 -23680008.71958 3289 3289 892596215.9216 3290 3289 -109721099.1218 3291 3289 -9.95397567749e-06 3292 3289 -117193314.8593 3293 3289 54860549.56089 3306 3289 -62499999.98975 3307 3289 -75515427.89211 3308 3289 12480762.39712 3309 3289 2.920627593994e-06 3310 3289 35526744.0481 3311 3289 -27430274.79396 3312 3289 62499999.98974 3313 3289 -76869811.57243 3314 3289 14949512.39685 3378 3289 15625000.00514 3379 3289 -20916860.64765 3380 3289 -9800382.320076 3381 3289 -6.705522537231e-07 3382 3289 -24709454.43242 3383 3289 -6857568.701869 3384 3289 -15625000.00514 3385 3289 -33980662.73527 3386 3289 16657951.02195 3396 3289 5.88595867157e-06 3397 3289 -37871677.86274 3398 3289 -40710209.81623 3399 3289 4.053115844727e-06 3400 3289 81681619.73861 3401 3289 -27430274.79396 3402 3289 -8.40425491333e-06 3403 3289 -91481269.86781 3404 3289 68140484.61019 3417 3289 -15625000.00513 3418 3289 -21471767.07144 3419 3289 -10486146.20919 3420 3289 7.450580596924e-07 3421 3289 -28283463.80681 3422 3289 -6857568.701869 3423 3289 15625000.00513 3424 3289 -35212760.99956 3425 3289 17343714.91106 3290 3290 985817875.0266 3291 3290 2285903.027413 3292 3290 54860549.56089 3293 3290 72200645.50821 3306 3290 24401753.34329 3307 3290 12206456.84174 3308 3290 -27069636.69752 3309 3290 -4571806.052597 3310 3290 -27430274.79396 3311 3290 58631507.34796 3312 3290 -27030538.31493 3313 3290 15223817.95222 3314 3290 -30681326.51173 3378 3290 10250460.04156 3379 3290 -9800382.320076 3380 3290 -12202085.61857 3381 3290 66546545.00303 3382 3290 -6857568.701869 3383 3290 -74918497.68596 3384 3290 23108532.96245 3385 3290 16657951.02195 3386 3290 -47038891.18556 3396 3290 571475.7571355 3397 3290 -40435904.26086 3398 3290 -4812102.970013 3399 3290 2285903.027438 3400 3290 -27430274.79396 3401 3290 -130792022.7266 3402 3290 571475.7571481 3403 3290 67866179.05482 3404 3290 -147771014.9835 3417 3290 -10821935.79869 3418 3290 -10486146.20919 3419 3290 -13681836.08202 3420 3290 -68832448.03044 3421 3290 -6857568.701869 3422 3290 -84449189.35104 3423 3290 -23680008.71958 3424 3290 17343714.91106 3425 3290 -50324486.557 3291 3291 1042603210.19 3292 3291 2.193450927734e-05 3293 3291 9143612.105123 3294 3291 120306386.5889 3295 3291 -9.268522262573e-06 3296 3291 2285903.027413 3309 3291 -94266302.18495 3310 3291 -62499999.98975 3311 3291 24744635.2875 3312 3291 -239474705.9488 3313 3291 2.950429916382e-06 3314 3291 -4571806.052598 3315 3291 -95620685.86526 3316 3291 62499999.98975 3317 3291 -26687656.37071 3381 3291 -25604579.22317 3382 3291 15625000.00514 3383 3291 10250460.04156 3384 3291 -93459816.96553 3385 3291 1.579523086548e-06 3386 3291 66889426.94725 3387 3291 -38668381.31079 3388 3291 -15625000.00514 3389 3291 23108532.96245 3399 3291 21503247.52855 3400 3291 3.844499588013e-06 3401 3291 571475.7571353 3402 3291 119183368.3243 3403 3291 4.112720489502e-06 3404 3291 2285903.027438 3405 3291 -32106344.47651 3406 3291 -9.387731552124e-06 3407 3291 571475.757148 3420 3291 -26159485.64696 3421 3291 -15625000.00513 3422 3291 -10821935.79869 3423 3291 -97033826.33989 3424 3291 1.400709152222e-06 3425 3291 -69175329.97466 3426 3291 -39900479.57507 3427 3291 15625000.00513 3428 3291 -23680008.71958 3292 3292 892596215.9216 3293 3292 -109721099.1218 3294 3292 -9.95397567749e-06 3295 3292 -117193314.8593 3296 3292 54860549.56089 3309 3292 -62499999.98975 3310 3292 -75515427.89211 3311 3292 12480762.39712 3312 3292 2.920627593994e-06 3313 3292 35526744.0481 3314 3292 -27430274.79396 3315 3292 62499999.98974 3316 3292 -76869811.57243 3317 3292 14949512.39685 3381 3292 15625000.00514 3382 3292 -20916860.64765 3383 3292 -9800382.320076 3384 3292 -6.705522537231e-07 3385 3292 -24709454.43242 3386 3292 -6857568.701869 3387 3292 -15625000.00514 3388 3292 -33980662.73527 3389 3292 16657951.02195 3399 3292 5.88595867157e-06 3400 3292 -37871677.86274 3401 3292 -40710209.81623 3402 3292 4.053115844727e-06 3403 3292 81681619.73861 3404 3292 -27430274.79396 3405 3292 -8.40425491333e-06 3406 3292 -91481269.86781 3407 3292 68140484.61019 3420 3292 -15625000.00513 3421 3292 -21471767.07144 3422 3292 -10486146.20919 3423 3292 7.450580596924e-07 3424 3292 -28283463.80681 3425 3292 -6857568.701869 3426 3292 15625000.00513 3427 3292 -35212760.99956 3428 3292 17343714.91106 3293 3293 985817875.0266 3294 3293 2285903.027413 3295 3293 54860549.56089 3296 3293 72200645.50821 3309 3293 24401753.34329 3310 3293 12206456.84174 3311 3293 -27069636.69752 3312 3293 -4571806.052597 3313 3293 -27430274.79396 3314 3293 58631507.34796 3315 3293 -27030538.31493 3316 3293 15223817.95222 3317 3293 -30681326.51173 3381 3293 10250460.04156 3382 3293 -9800382.320076 3383 3293 -12202085.61857 3384 3293 66546545.00303 3385 3293 -6857568.701869 3386 3293 -74918497.68596 3387 3293 23108532.96245 3388 3293 16657951.02195 3389 3293 -47038891.18556 3399 3293 571475.7571355 3400 3293 -40435904.26086 3401 3293 -4812102.970013 3402 3293 2285903.027438 3403 3293 -27430274.79396 3404 3293 -130792022.7266 3405 3293 571475.7571481 3406 3293 67866179.05482 3407 3293 -147771014.9835 3420 3293 -10821935.79869 3421 3293 -10486146.20919 3422 3293 -13681836.08202 3423 3293 -68832448.03044 3424 3293 -6857568.701869 3425 3293 -84449189.35104 3426 3293 -23680008.71958 3427 3293 17343714.91106 3428 3293 -50324486.557 3294 3294 1042603210.19 3295 3294 2.193450927734e-05 3296 3294 9143612.105123 3297 3294 120306386.5889 3298 3294 -9.268522262573e-06 3299 3294 2285903.027413 3312 3294 -94266302.18495 3313 3294 -62499999.98975 3314 3294 24744635.2875 3315 3294 -239474705.9488 3316 3294 2.950429916382e-06 3317 3294 -4571806.052598 3318 3294 -95620685.86526 3319 3294 62499999.98975 3320 3294 -26687656.37071 3384 3294 -25604579.22317 3385 3294 15625000.00514 3386 3294 10250460.04156 3387 3294 -93459816.96553 3388 3294 1.579523086548e-06 3389 3294 66889426.94725 3390 3294 -38668381.31079 3391 3294 -15625000.00514 3392 3294 23108532.96245 3402 3294 21503247.52855 3403 3294 3.844499588013e-06 3404 3294 571475.7571353 3405 3294 119183368.3243 3406 3294 4.112720489502e-06 3407 3294 2285903.027438 3408 3294 -32106344.47651 3409 3294 -9.387731552124e-06 3410 3294 571475.757148 3423 3294 -26159485.64696 3424 3294 -15625000.00513 3425 3294 -10821935.79869 3426 3294 -97033826.33989 3427 3294 1.400709152222e-06 3428 3294 -69175329.97466 3429 3294 -39900479.57507 3430 3294 15625000.00513 3431 3294 -23680008.71958 3295 3295 892596215.9216 3296 3295 -109721099.1218 3297 3295 -9.95397567749e-06 3298 3295 -117193314.8593 3299 3295 54860549.56089 3312 3295 -62499999.98975 3313 3295 -75515427.89211 3314 3295 12480762.39712 3315 3295 2.920627593994e-06 3316 3295 35526744.0481 3317 3295 -27430274.79396 3318 3295 62499999.98974 3319 3295 -76869811.57243 3320 3295 14949512.39685 3384 3295 15625000.00514 3385 3295 -20916860.64765 3386 3295 -9800382.320076 3387 3295 -6.705522537231e-07 3388 3295 -24709454.43242 3389 3295 -6857568.701869 3390 3295 -15625000.00514 3391 3295 -33980662.73527 3392 3295 16657951.02195 3402 3295 5.88595867157e-06 3403 3295 -37871677.86274 3404 3295 -40710209.81623 3405 3295 4.053115844727e-06 3406 3295 81681619.73861 3407 3295 -27430274.79396 3408 3295 -8.40425491333e-06 3409 3295 -91481269.86781 3410 3295 68140484.61019 3423 3295 -15625000.00513 3424 3295 -21471767.07144 3425 3295 -10486146.20919 3426 3295 7.450580596924e-07 3427 3295 -28283463.80681 3428 3295 -6857568.701869 3429 3295 15625000.00513 3430 3295 -35212760.99956 3431 3295 17343714.91106 3296 3296 985817875.0266 3297 3296 2285903.027413 3298 3296 54860549.56089 3299 3296 72200645.50821 3312 3296 24401753.34329 3313 3296 12206456.84174 3314 3296 -27069636.69752 3315 3296 -4571806.052597 3316 3296 -27430274.79396 3317 3296 58631507.34796 3318 3296 -27030538.31493 3319 3296 15223817.95222 3320 3296 -30681326.51173 3384 3296 10250460.04156 3385 3296 -9800382.320076 3386 3296 -12202085.61857 3387 3296 66546545.00303 3388 3296 -6857568.701869 3389 3296 -74918497.68596 3390 3296 23108532.96245 3391 3296 16657951.02195 3392 3296 -47038891.18556 3402 3296 571475.7571355 3403 3296 -40435904.26086 3404 3296 -4812102.970013 3405 3296 2285903.027438 3406 3296 -27430274.79396 3407 3296 -130792022.7266 3408 3296 571475.7571481 3409 3296 67866179.05482 3410 3296 -147771014.9835 3423 3296 -10821935.79869 3424 3296 -10486146.20919 3425 3296 -13681836.08202 3426 3296 -68832448.03044 3427 3296 -6857568.701869 3428 3296 -84449189.35104 3429 3296 -23680008.71958 3430 3296 17343714.91106 3431 3296 -50324486.557 3297 3297 1035907821.889 3298 3297 40720864.10725 3299 3297 9150670.592108 3300 3297 -13553326.64045 3301 3297 -75259059.17135 3302 3297 4752365.253985 3315 3297 -94266302.18495 3316 3297 -62499999.98975 3317 3297 24744635.2875 3318 3297 -215979427.1388 3319 3297 12040799.05848 3320 3297 -612033.9502044 3321 3297 -66477077.19527 3322 3297 60298495.93906 3323 3297 -4491915.002784 3387 3297 -25604579.22317 3388 3297 15625000.00514 3389 3297 10250460.04156 3390 3297 -103436156.438 3391 3297 -10350768.52208 3392 3297 61482412.84568 3405 3297 21503247.52855 3406 3297 3.844499588013e-06 3407 3297 571475.7571353 3408 3297 131757605.1285 3409 3297 10883246.74728 3410 3297 2279585.359685 3411 3297 -36126426.97389 3412 3297 -18339298.48663 3413 3297 18999429.52286 3426 3297 -26159485.64696 3427 3297 -15625000.00513 3428 3297 -10821935.79869 3429 3297 -92843586.12443 3430 3297 2583957.046466 3431 3297 -66781939.86803 3432 3297 -28459782.66519 3433 3297 15222863.21497 3434 3297 -15946233.92645 3298 3298 935772345.0432 3299 3298 -65825099.27941 3300 3298 -75284338.29789 3301 3298 -234963497.7551 3302 3298 10060083.50378 3315 3298 -62499999.98975 3316 3298 -75515427.89211 3317 3298 12480762.39712 3318 3298 12040799.05849 3319 3298 45327393.94003 3320 3298 -16678780.64226 3321 3298 60298495.93905 3322 3298 -88997757.51486 3323 3298 4003871.938917 3387 3298 15625000.00514 3388 3298 -20916860.64765 3389 3298 -9800382.320076 3390 3298 -10344958.86108 3391 3298 -32344074.20199 3392 3298 5139701.049837 3405 3298 5.88595867157e-06 3406 3298 -37871677.86274 3407 3298 -40710209.81623 3408 3298 10883246.74728 3409 3298 104151967.825 3410 3298 -16241176.13329 3411 3298 -18345108.14763 3412 3298 -91334291.07195 3413 3298 59528706.98488 3426 3298 -15625000.00513 3427 3298 -21471767.07144 3428 3298 -10486146.20919 3429 3298 2583957.046465 3430 3298 -26969019.99144 3431 3298 -1735814.665134 3432 3298 15222863.21497 3433 3298 -32613441.3924 3434 3298 17623591.55946 3299 3299 926320393.7883 3300 3299 4754399.607948 3301 3299 10061803.60335 3302 3299 13106850.14392 3315 3299 24401753.34329 3316 3299 12206456.84174 3317 3299 -27069636.69752 3318 3299 -8155436.726743 3319 3299 -16678780.64226 3320 3299 61481729.40711 3321 3299 -4491915.002108 3322 3299 4003871.938917 3323 3299 -16574342.61114 3387 3299 10250460.04156 3388 3299 -9800382.320076 3389 3299 -12202085.61857 3390 3299 63196485.75275 3391 3299 5144712.253762 3392 3299 -73803270.72483 3405 3299 571475.7571355 3406 3299 -40435904.26086 3407 3299 -4812102.970013 3408 3299 2290581.919219 3409 3299 -15135156.45706 3410 3299 -113860390.812 3411 3299 19005396.74573 3412 3299 59528200.21841 3413 3299 -86717110.56998 3426 3299 -10821935.79869 3427 3299 -10486146.20919 3428 3299 -13681836.08202 3429 3299 -68496349.59065 3430 3299 -1461509.109081 3431 3299 -86067604.18011 3432 3299 -15946233.92645 3433 3299 17623591.55946 3434 3299 -33840037.48144 3300 3300 588770587.9403 3301 3300 7652236.866376 3302 3300 446911.4688625 3318 3300 -95938327.17325 3319 3300 -62221889.125 3320 3300 3753790.277217 3321 3300 -169290249.2095 3322 3300 16019779.71915 3323 3300 -1089860.549835 3324 3300 69942878.16334 3325 3300 -19874379.98696 3326 3300 -121964.6218983 3327 3300 -61207996.79291 3328 3300 58632753.45702 3329 3300 -879534.2312962 3390 3300 -9124574.864806 3391 3300 18767428.98916 3392 3300 16759462.39556 3408 3300 -28508580.62171 3409 3300 -18345108.14763 3410 3300 -16671081.90644 3411 3300 35679552.15368 3412 3300 1655379.388776 3413 3300 14165948.25441 3429 3300 -32510576.07318 3430 3300 -15574325.71153 3431 3300 -16880670.05429 3432 3300 -88819293.76525 3433 3300 3437545.20277 3434 3300 -70500570.73188 3435 3300 -7622122.072972 3436 3300 -4729780.206454 3437 3300 7040650.668737 3438 3300 -28304511.99637 3439 3300 14788860.4849 3440 3300 -17524016.40433 3301 3301 679134303.0822 3302 3301 -11620757.79788 3318 3301 -62221889.125 3319 3301 -68870616.90601 3320 3301 1214164.49255 3321 3301 16019779.71915 3322 3301 84011428.11482 3323 3301 -3414009.299908 3324 3301 5125620.008936 3325 3301 -51269016.14184 3326 3301 497911.9161388 3327 3301 58632753.45702 3328 3301 -64548801.20942 3329 3301 529627.1496301 3390 3301 12511619.32611 3391 3301 -14231534.33912 3392 3301 -13158898.02962 3408 3301 -18339298.48663 3409 3301 -83716444.71977 3410 3301 -54581883.12002 3411 3301 1655379.388774 3412 3301 56036966.87791 3413 3301 1932874.632548 3429 3301 -15574325.71153 3430 3301 -26045146.46973 3431 3301 -13941698.99809 3432 3301 3437545.202769 3433 3301 -24846613.1138 3434 3301 1574541.669722 3435 3301 1520219.795599 3436 3301 -37884423.86236 3437 3301 33456830.95586 3438 3301 14788860.4849 3439 3301 -28522911.61373 3440 3301 16796943.73319 3302 3302 656403085.8504 3318 3302 3753790.277555 3319 3302 1214164.49282 3320 3302 -18712183.00421 3321 3302 -1089860.549835 3322 3302 -3414009.299908 3323 3302 99513420.62195 3324 3302 -121964.6218953 3325 3302 497911.9161386 3326 3302 75507335.14742 3327 3302 -879534.2309586 3328 3302 529627.1496301 3329 3302 -659231.5568017 3390 3302 11172974.93037 3391 3302 -17628488.72141 3392 3302 -19225240.16517 3408 3302 -16666052.77693 3409 3302 -54583174.79693 3410 3302 -66402853.6308 3411 3302 -13932732.29653 3412 3302 -7556887.577361 3413 3302 -135188700.698 3429 3302 -16880670.05429 3430 3302 -13941698.99809 3431 3302 -27798747.1414 3432 3302 -70500570.73222 3433 3302 1574541.670129 3434 3302 -94439191.19081 3435 3302 -1084349.333422 3436 3302 33456830.95586 3437 3302 -48399876.41365 3438 3302 -17524016.40433 3439 3302 16796943.73319 3440 3302 -33105676.73507 3303 3303 521301605.0952 3304 3303 1.144409179688e-05 3305 3303 4571806.05256 3306 3303 60175766.35577 3307 3303 12499999.99795 3308 3303 -3143072.791566 3393 3303 -93459816.96553 3394 3303 1.579523086548e-06 3395 3303 66889426.94725 3396 3303 -38668381.31079 3397 3303 -15625000.00514 3398 3303 23108532.96245 3414 3303 59569111.10081 3415 3303 1.192092895508e-07 3416 3303 -13286440.8446 3417 3303 -16053172.23825 3418 3303 3125000.001022 3419 3303 -4393116.289629 3304 3304 446298107.9608 3305 3304 -54860549.56088 3306 3304 -12499999.99795 3307 3304 -58574084.36832 3308 3304 27155969.22494 3393 3304 -6.705522537231e-07 3394 3304 -24709454.43242 3395 3304 -6857568.701869 3396 3304 -15625000.00514 3397 3304 -33980662.73527 3398 3304 16657951.02195 3414 3304 -5.960464477539e-08 3415 3304 40818236.80798 3416 3304 -13715137.39698 3417 3304 -3125000.001031 3418 3304 -45740634.9339 3419 3304 34001665.91618 3305 3305 492908937.5133 3306 3305 7143385.540075 3307 3305 27704580.33596 3308 3305 36160517.58431 3393 3305 66546545.00303 3394 3305 -6857568.701869 3395 3305 -74918497.68596 3396 3305 23108532.96245 3397 3305 16657951.02195 3398 3305 -47038891.18556 3414 3305 13857934.15094 3415 3305 -13715137.39698 3416 3305 -65456206.19348 3417 3305 4964592.046777 3418 3305 34001665.91632 3419 3305 -73885507.49175 3306 3306 521301605.0952 3307 3306 1.144409179688e-05 3308 3306 4571806.05256 3309 3306 60175766.35577 3310 3306 12499999.99795 3311 3306 -3143072.791566 3393 3306 -25604579.22317 3394 3306 15625000.00514 3395 3306 10250460.04156 3396 3306 -93459816.96553 3397 3306 1.579523086548e-06 3398 3306 66889426.94725 3399 3306 -38668381.31079 3400 3306 -15625000.00514 3401 3306 23108532.96245 3414 3306 10751623.76428 3415 3306 -3125000.001025 3416 3306 -1821501.705457 3417 3306 59569111.10081 3418 3306 1.192092895508e-07 3419 3306 -13286440.8446 3420 3306 -16053172.23825 3421 3306 3125000.001022 3422 3306 -4393116.289629 3307 3307 446298107.9608 3308 3307 -54860549.56088 3309 3307 -12499999.99795 3310 3307 -58574084.36832 3311 3307 27155969.22494 3393 3307 15625000.00514 3394 3307 -20916860.64765 3395 3307 -9800382.320076 3396 3307 -6.705522537231e-07 3397 3307 -24709454.43242 3398 3307 -6857568.701869 3399 3307 -15625000.00514 3400 3307 -33980662.73527 3401 3307 16657951.02195 3414 3307 3125000.00103 3415 3307 -18935838.93137 3416 3307 -20286528.5192 3417 3307 -5.960464477539e-08 3418 3307 40818236.80798 3419 3307 -13715137.39698 3420 3307 -3125000.001031 3421 3307 -45740634.9339 3422 3307 34001665.91618 3308 3308 492908937.5133 3309 3308 7143385.540075 3310 3308 27704580.33596 3311 3308 36160517.58431 3393 3308 10250460.04156 3394 3308 -9800382.320076 3395 3308 -12202085.61857 3396 3308 66546545.00303 3397 3308 -6857568.701869 3398 3308 -74918497.68596 3399 3308 23108532.96245 3400 3308 16657951.02195 3401 3308 -47038891.18556 3414 3308 2392977.462593 3415 3308 -20286528.51934 3416 3308 -2406051.485007 3417 3308 13857934.15094 3418 3308 -13715137.39698 3419 3308 -65456206.19348 3420 3308 4964592.046777 3421 3308 34001665.91632 3422 3308 -73885507.49175 3309 3309 521301605.0952 3310 3309 1.144409179688e-05 3311 3309 4571806.05256 3312 3309 60175766.35577 3313 3309 12499999.99795 3314 3309 -3143072.791566 3396 3309 -25604579.22317 3397 3309 15625000.00514 3398 3309 10250460.04156 3399 3309 -93459816.96553 3400 3309 1.579523086548e-06 3401 3309 66889426.94725 3402 3309 -38668381.31079 3403 3309 -15625000.00514 3404 3309 23108532.96245 3417 3309 10751623.76428 3418 3309 -3125000.001025 3419 3309 -1821501.705457 3420 3309 59569111.10081 3421 3309 1.192092895508e-07 3422 3309 -13286440.8446 3423 3309 -16053172.23825 3424 3309 3125000.001022 3425 3309 -4393116.289629 3310 3310 446298107.9608 3311 3310 -54860549.56088 3312 3310 -12499999.99795 3313 3310 -58574084.36832 3314 3310 27155969.22494 3396 3310 15625000.00514 3397 3310 -20916860.64765 3398 3310 -9800382.320076 3399 3310 -6.705522537231e-07 3400 3310 -24709454.43242 3401 3310 -6857568.701869 3402 3310 -15625000.00514 3403 3310 -33980662.73527 3404 3310 16657951.02195 3417 3310 3125000.00103 3418 3310 -18935838.93137 3419 3310 -20286528.5192 3420 3310 -5.960464477539e-08 3421 3310 40818236.80798 3422 3310 -13715137.39698 3423 3310 -3125000.001031 3424 3310 -45740634.9339 3425 3310 34001665.91618 3311 3311 492908937.5133 3312 3311 7143385.540075 3313 3311 27704580.33596 3314 3311 36160517.58431 3396 3311 10250460.04156 3397 3311 -9800382.320076 3398 3311 -12202085.61857 3399 3311 66546545.00303 3400 3311 -6857568.701869 3401 3311 -74918497.68596 3402 3311 23108532.96245 3403 3311 16657951.02195 3404 3311 -47038891.18556 3417 3311 2392977.462593 3418 3311 -20286528.51934 3419 3311 -2406051.485007 3420 3311 13857934.15094 3421 3311 -13715137.39698 3422 3311 -65456206.19348 3423 3311 4964592.046777 3424 3311 34001665.91632 3425 3311 -73885507.49175 3312 3312 521301605.0952 3313 3312 1.144409179688e-05 3314 3312 4571806.05256 3315 3312 60175766.35577 3316 3312 12499999.99795 3317 3312 -3143072.791566 3399 3312 -25604579.22317 3400 3312 15625000.00514 3401 3312 10250460.04156 3402 3312 -93459816.96553 3403 3312 1.579523086548e-06 3404 3312 66889426.94725 3405 3312 -38668381.31079 3406 3312 -15625000.00514 3407 3312 23108532.96245 3420 3312 10751623.76428 3421 3312 -3125000.001025 3422 3312 -1821501.705457 3423 3312 59569111.10081 3424 3312 1.192092895508e-07 3425 3312 -13286440.8446 3426 3312 -16053172.23825 3427 3312 3125000.001022 3428 3312 -4393116.289629 3313 3313 446298107.9608 3314 3313 -54860549.56088 3315 3313 -12499999.99795 3316 3313 -58574084.36832 3317 3313 27155969.22494 3399 3313 15625000.00514 3400 3313 -20916860.64765 3401 3313 -9800382.320076 3402 3313 -6.705522537231e-07 3403 3313 -24709454.43242 3404 3313 -6857568.701869 3405 3313 -15625000.00514 3406 3313 -33980662.73527 3407 3313 16657951.02195 3420 3313 3125000.00103 3421 3313 -18935838.93137 3422 3313 -20286528.5192 3423 3313 -5.960464477539e-08 3424 3313 40818236.80798 3425 3313 -13715137.39698 3426 3313 -3125000.001031 3427 3313 -45740634.9339 3428 3313 34001665.91618 3314 3314 492908937.5133 3315 3314 7143385.540075 3316 3314 27704580.33596 3317 3314 36160517.58431 3399 3314 10250460.04156 3400 3314 -9800382.320076 3401 3314 -12202085.61857 3402 3314 66546545.00303 3403 3314 -6857568.701869 3404 3314 -74918497.68596 3405 3314 23108532.96245 3406 3314 16657951.02195 3407 3314 -47038891.18556 3420 3314 2392977.462593 3421 3314 -20286528.51934 3422 3314 -2406051.485007 3423 3314 13857934.15094 3424 3314 -13715137.39698 3425 3314 -65456206.19348 3426 3314 4964592.046777 3427 3314 34001665.91632 3428 3314 -73885507.49175 3315 3315 521301605.0952 3316 3315 1.144409179688e-05 3317 3315 4571806.05256 3318 3315 60175766.35577 3319 3315 12499999.99795 3320 3315 -3143072.791566 3402 3315 -25604579.22317 3403 3315 15625000.00514 3404 3315 10250460.04156 3405 3315 -93459816.96553 3406 3315 1.579523086548e-06 3407 3315 66889426.94725 3408 3315 -38668381.31079 3409 3315 -15625000.00514 3410 3315 23108532.96245 3423 3315 10751623.76428 3424 3315 -3125000.001025 3425 3315 -1821501.705457 3426 3315 59569111.10081 3427 3315 1.192092895508e-07 3428 3315 -13286440.8446 3429 3315 -16053172.23825 3430 3315 3125000.001022 3431 3315 -4393116.289629 3316 3316 446298107.9608 3317 3316 -54860549.56088 3318 3316 -12499999.99795 3319 3316 -58574084.36832 3320 3316 27155969.22494 3402 3316 15625000.00514 3403 3316 -20916860.64765 3404 3316 -9800382.320076 3405 3316 -6.705522537231e-07 3406 3316 -24709454.43242 3407 3316 -6857568.701869 3408 3316 -15625000.00514 3409 3316 -33980662.73527 3410 3316 16657951.02195 3423 3316 3125000.00103 3424 3316 -18935838.93137 3425 3316 -20286528.5192 3426 3316 -5.960464477539e-08 3427 3316 40818236.80798 3428 3316 -13715137.39698 3429 3316 -3125000.001031 3430 3316 -45740634.9339 3431 3316 34001665.91618 3317 3317 492908937.5133 3318 3317 7143385.540075 3319 3317 27704580.33596 3320 3317 36160517.58431 3402 3317 10250460.04156 3403 3317 -9800382.320076 3404 3317 -12202085.61857 3405 3317 66546545.00303 3406 3317 -6857568.701869 3407 3317 -74918497.68596 3408 3317 23108532.96245 3409 3317 16657951.02195 3410 3317 -47038891.18556 3423 3317 2392977.462593 3424 3317 -20286528.51934 3425 3317 -2406051.485007 3426 3317 13857934.15094 3427 3317 -13715137.39698 3428 3317 -65456206.19348 3429 3317 4964592.046777 3430 3317 34001665.91632 3431 3317 -73885507.49175 3318 3318 512919684.7442 3319 3318 277859.0827601 3320 3318 23183746.35062 3321 3318 52632871.13715 3322 3318 -96769.00803724 3323 3318 419288.9836029 3405 3318 -25604579.22317 3406 3318 15625000.00514 3407 3318 10250460.04156 3408 3318 -89305058.1739 3409 3318 2583957.046472 3410 3318 64629778.85911 3411 3318 -34387866.91098 3412 3318 -15574325.71152 3413 3318 18762819.54075 3426 3318 10751623.76428 3427 3318 -3125000.001025 3428 3318 -1821501.705457 3429 3318 54397998.43316 3430 3318 50599.66069502 3431 3318 -8544829.381506 3432 3318 -8999605.967961 3433 3318 439769.0002548 3434 3318 -473741.2428953 3319 3319 446243430.4062 3320 3319 -34445483.83251 3321 3319 -25096769.00393 3322 3319 -69066429.4396 3323 3319 5335868.360457 3405 3319 15625000.00514 3406 3319 -20916860.64765 3407 3319 -9800382.320076 3408 3319 2583957.04647 3409 3319 -23430492.04089 3410 3319 -6553522.997743 3411 3319 -15574325.71152 3412 3319 -27922437.30753 3413 3319 14573926.01127 3426 3319 3125000.00103 3427 3319 -18935838.93137 3428 3319 -20286528.5192 3429 3319 50599.66069496 3430 3319 37427394.32585 3431 3319 -8530220.726501 3432 3319 -5810231.001798 3433 3319 -39369253.47696 3434 3319 32242561.88557 3320 3320 483393300.2846 3321 3320 2476580.649929 3322 3320 5335868.360457 3323 3320 50197647.73292 3405 3320 10250460.04156 3406 3320 -9800382.320076 3407 3320 -12202085.61857 3408 3320 66344188.58291 3409 3320 -6279217.441555 3410 3320 -76631529.64527 3411 3320 18762819.54075 3412 3320 14573926.01127 3413 3320 -32804856.04221 3426 3320 2392977.462593 3427 3320 -20286528.51934 3428 3320 -2406051.485007 3429 3320 19284753.94725 3430 3320 -7981609.61548 3431 3320 -76421561.87405 3432 3320 7169279.592269 3433 3320 32242561.88517 3434 3320 -47927216.87771 3321 3321 493979409.6462 3322 3321 10740346.00452 3323 3321 -162501.3412886 3324 3321 -102481955.1195 3325 3321 -66367246.52247 3326 3321 834875.4907987 3327 3321 48903259.76668 3328 3321 4405393.863676 3329 3321 -310234.8039477 3408 3321 -25379569.00674 3409 3321 15222863.21497 3410 3321 13675467.47217 3411 3321 -88164971.38851 3412 3321 3437545.202782 3413 3321 69992832.02249 3429 3321 -3493491.887329 3430 3321 -5810231.0018 3431 3321 -5981206.519598 3432 3321 36561069.75252 3433 3321 2225739.982271 3434 3321 -14060665.87398 3435 3321 -37337194.291 3436 3321 -16461139.52537 3437 3321 20518691.9415 3438 3321 -10818972.69166 3439 3321 1385222.127153 3440 3321 -534841.2643511 3322 3322 481892445.1481 3323 3322 -8075954.830394 3324 3322 -66367246.52247 3325 3322 -80026535.58188 3326 3322 529627.1496299 3327 3322 -20594606.13222 3328 3322 -70546891.70076 3329 3322 1620596.681338 3408 3322 15222863.21497 3409 3322 -29533227.73396 3410 3322 -15709741.78482 3411 3322 3437545.202781 3412 3322 -24192290.73706 3413 3322 -3243166.662888 3429 3322 439769.0002542 3430 3322 -33863139.39634 3431 3322 -29606396.43753 3432 3322 2225739.982274 3433 3322 31531560.9283 3434 3322 -1968582.791773 3435 3322 -16461139.52537 3436 3322 -31910167.47421 3437 3322 16796943.73319 3438 3322 -4864777.874899 3439 3322 -40665865.09945 3440 3322 33730943.9438 3323 3323 510808562.0931 3324 3323 834875.4907988 3325 3323 529627.1496299 3326 3323 -16136965.92926 3327 3323 375529.0848255 3328 3323 1620596.681338 3329 3323 58235035.49457 3408 3323 13675467.47217 3409 3323 -15709741.78482 3410 3323 -25626134.39224 3411 3323 69992832.02282 3412 3323 -3243166.662346 3413 3323 -92694331.5195 3429 3323 633168.4820659 3430 3323 -29606396.43807 3431 3323 -33244245.99602 3432 3323 14038014.67696 3433 3323 -1968582.791773 3434 3323 -106482561.1728 3435 3323 20518691.9415 3436 3323 16796943.73319 3437 3323 -36492932.59555 3438 3323 6557242.07182 3439 3323 33730943.9438 3440 3323 -48481473.02449 3324 3324 273404566.2226 3325 3324 69874379.97876 3326 3324 -449505.2853138 3327 3324 -93670600.38049 3328 3324 -8632753.465224 3329 3324 -263405.5835879 3411 3324 -7073510.961695 3412 3324 1520219.795598 3413 3324 1018862.4752 3432 3324 -36788583.17971 3433 3324 -16461139.52537 3434 3324 -20106308.07184 3435 3324 18212288.76877 3436 3324 17229780.21056 3437 3324 8014875.950861 3438 3324 -47947639.07035 3439 3324 -2288860.480793 3440 3324 -37677430.35422 3325 3325 242272710.5527 3326 3325 -497911.9161291 3327 3325 16367246.53067 3328 3325 36217730.05694 3329 3325 -529627.1496239 3411 3325 -4729780.206456 3412 3325 -37335812.75109 3413 3325 -33209835.69985 3432 3325 -16461139.52537 3433 3325 -31361556.36294 3434 3325 -16536389.61109 3435 3325 17229780.21056 3436 3325 10388653.04564 3437 3325 6543169.037562 3438 3325 3961139.521261 3439 3325 -15288728.37461 3440 3325 3203056.273373 3326 3326 281492099.9733 3327 3326 -263405.5835847 3328 3326 -529627.149624 3329 3326 51657234.50443 3411 3326 -7106137.526792 3412 3326 -33209835.69985 3413 3326 -46936913.45023 3432 3326 -20106308.07184 3433 3326 -16536389.61109 3434 3326 -35029969.63213 3435 3326 -8235124.04647 3436 3326 -6790164.293581 3437 3326 -63008116.61013 3438 3326 -37677430.35489 3439 3326 -3463610.395482 3440 3326 -51284852.15548 3327 3327 244365115.1874 3328 3327 -54405393.85547 3329 3327 -604117.0485091 3411 3327 -27755900.88508 3412 3327 14788860.4849 3413 3327 17079195.4126 3432 3327 -9173139.358883 3433 3327 -4864777.874901 3434 3327 -6385188.485611 3435 3327 -47947639.07035 3436 3327 3961139.521267 3437 3327 37550781.4389 3438 3327 15681790.42398 3439 3327 -13885222.13126 3440 3327 -7063816.143437 3328 3328 237267740.6339 3329 3328 -1620596.681323 3411 3328 14788860.4849 3412 3328 -27974300.50245 3413 3328 -16536389.61109 3432 3328 1385222.127153 3433 3328 -39020031.76669 3434 3328 -32935722.71191 3435 3328 -2288860.480787 3436 3328 -15288728.37461 3437 3328 3203056.273374 3438 3328 -13885222.13126 3439 3328 13088171.7534 3440 3328 6269056.04962 3329 3329 259806368.9729 3411 3329 17079195.4126 3412 3329 -16536389.61109 3413 3329 -31642713.77164 3432 3329 364012.9061733 3433 3329 -32935722.71191 3434 3329 -44092584.13708 3435 3329 37550781.43839 3436 3329 -3463610.395482 3437 3329 -51284852.15548 3438 3329 6777468.576512 3439 3329 -7064277.281522 3440 3329 -57499553.64335 3330 3330 672539349.2322 3331 3330 62499999.98975 3332 3330 33164131.31328 3333 3330 -347114474.3686 3334 3330 -62519355.57327 3335 3330 -27670762.35809 3336 3330 9372586.160465 3337 3330 50019355.57532 3338 3330 -19895735.37814 3441 3330 64179725.07093 3442 3330 15625000.00514 3443 3330 22379883.77153 3444 3330 -131080904.1793 3445 3330 -15629389.46552 3446 3330 -81477706.67803 3447 3330 -28030795.60664 3448 3330 12504389.4645 3449 3330 -20094076.36695 3331 3331 578763407.3196 3332 3331 -63106764.95873 3333 3331 -62529033.36503 3334 3331 -53301772.56443 3335 3331 -38274305.78037 3336 3331 75029033.36299 3337 3331 9372586.160465 3338 3331 25519231.22886 3441 3331 15625000.00513 3442 3331 40736294.19042 3443 3331 -4504985.17355 3444 3331 -15631584.19572 3445 3331 -57629159.23151 3446 3331 -24484028.50059 3447 3331 18756584.19674 3448 3331 -28030795.60664 3449 3331 24112532.59506 3332 3332 671642303.0214 3333 3332 -24924077.88049 3334 3332 -30316506.48178 3335 3332 -3879396.610056 3336 3332 -29843603.06721 3337 3332 17012820.81924 3338 3332 24993563.09457 3441 3332 -7512792.611826 3442 3332 -28418903.81719 3443 3332 -109296917.9411 3444 3332 -81133941.74793 3445 3332 -22561100.97091 3446 3332 -119114540.4154 3447 3332 -30141114.55043 3448 3332 16075021.73004 3449 3332 -74748788.28438 3333 3333 1145935402.266 3334 3333 62548388.94858 3335 3333 30860151.66558 3336 3333 21182372.10022 3337 3333 -62519355.57328 3338 3333 27039120.36991 3339 3333 -234498519.637 3340 3333 3.576278686523e-06 3341 3333 -5943331.630163 3342 3333 -94399229.23175 3343 3333 62499999.98975 3344 3333 -27030537.76527 3441 3333 -115335214.0726 3442 3333 -15631584.19572 3443 3333 68329440.16886 3444 3333 130473837.5578 3445 3333 15635973.65611 3446 3333 7712253.313144 3447 3333 -53686446.86531 3448 3333 -15629389.46553 3449 3333 25401550.08976 3450 3333 -102220422.2785 3451 3333 1.013278961182e-06 3452 3333 -76032967.78832 3453 3333 -41874328.64406 3454 3333 15625000.00513 3455 3333 -25394418.17384 3334 3334 977156127.6318 3335 3334 -85033333.84819 3336 3334 -62529033.36504 3337 3334 -197605220.9809 3338 3334 46638027.38239 3339 3334 4.14252281189e-06 3340 3334 40502862.18745 3341 3334 -27430287.99363 3342 3334 62499999.98975 3343 3334 -75648396.04218 3344 3334 15223824.55232 3441 3334 -15629389.46552 3442 3334 -41883469.12474 3443 3334 7334445.059211 3444 3334 15635973.65611 3445 3334 88279612.65644 3446 3334 -21260570.15053 3447 3334 -15631584.19572 3448 3334 -108382459.4402 3449 3334 71307025.97358 3450 3334 -7.748603820801e-07 3451 3334 -33470093.0295 3452 3334 -6857575.146393 3453 3334 15625000.00513 3454 3334 -37186630.13654 3455 3334 18715245.91155 3335 3335 1036803405.136 3336 3335 26700529.72734 3337 3335 52127606.5745 3338 3335 32215992.22129 3339 3335 -3200276.075057 3340 3335 -27430287.99363 3341 3335 71900937.83954 3342 3335 -26687655.82037 3343 3335 14949518.99641 3344 3335 -27424184.68052 3441 3335 67985675.23876 3442 3335 5415714.150796 3443 3335 -77126033.46393 3444 3335 7717499.145858 3445 3335 -21256373.52338 3446 3335 -156819638.9591 3447 3335 25405116.04772 3448 3335 72953597.68388 3449 3335 -149232299.5136 3450 3335 -75690085.8441 3451 3335 -6857575.146393 3452 3335 -98280306.98791 3453 3335 -25394418.17384 3454 3335 18715245.91155 3455 3335 -55588121.11081 3336 3336 672539349.2322 3337 3336 62499999.98975 3338 3336 33164131.31328 3339 3336 -93044845.55145 3340 3336 -62499999.98975 3341 3336 24401753.89294 3342 3336 -347114474.3686 3343 3336 -62519355.57327 3344 3336 -27670762.35809 3345 3336 9372586.160465 3346 3336 50019355.57532 3347 3336 -19895735.37814 3441 3336 1493260.574915 3442 3336 18756584.19674 3443 3336 14705768.01689 3444 3336 -8426923.443562 3445 3336 -15631584.19572 3446 3336 -11969908.87826 3447 3336 64179725.07093 3448 3336 15625000.00514 3449 3336 22379883.77153 3450 3336 -26778951.03495 3451 3336 -15625000.00513 3452 3336 -12536345.25295 3453 3336 -131080904.1793 3454 3336 -15629389.46552 3455 3336 -81477706.67803 3456 3336 -28030795.60664 3457 3336 12504389.4645 3458 3336 -20094076.36695 3337 3337 578763407.3196 3338 3337 -63106764.95873 3339 3337 -62499999.98975 3340 3337 -74294012.36186 3341 3337 12206463.4413 3342 3337 -62529033.36503 3343 3337 -53301772.56443 3344 3337 -38274305.78037 3345 3337 75029033.36299 3346 3337 9372586.160465 3347 3337 25519231.22886 3441 3337 12504389.4645 3442 3337 1493260.574915 3443 3337 -7843093.74256 3444 3337 -15629389.46552 3445 3337 -63122936.0184 3446 3337 -46615995.93793 3447 3337 15625000.00513 3448 3337 40736294.19042 3449 3337 -4504985.17355 3450 3337 -15625000.00513 3451 3337 -22091252.52743 3452 3337 -11857670.76516 3453 3337 -15631584.19572 3454 3337 -57629159.23151 3455 3337 -24484028.50059 3456 3337 18756584.19674 3457 3337 -28030795.60664 3458 3337 24112532.59506 3338 3338 671642303.0214 3339 3338 24744635.83784 3340 3338 12480768.99722 3341 3338 -23812494.86631 3342 3338 -24924077.88049 3343 3338 -30316506.48178 3344 3338 -3879396.610056 3345 3338 -29843603.06721 3346 3338 17012820.81924 3347 3338 24993563.09457 3441 3338 9803845.344592 3442 3338 -11764640.61384 3443 3338 3982028.199772 3444 3338 -11968229.26313 3445 3338 -48262567.85004 3446 3338 -28540237.05556 3447 3338 -7512792.611826 3448 3338 -28418903.81719 3449 3338 -109296917.9411 3450 3338 -12536345.25295 3451 3338 -11857670.76516 3452 3338 -15333780.81983 3453 3338 -81133941.74793 3454 3338 -22561100.97091 3455 3338 -119114540.4154 3456 3338 -30141114.55043 3457 3338 16075021.73004 3458 3338 -74748788.28438 3339 3339 1062868161.752 3340 3339 1.955032348633e-05 3341 3339 9143607.705144 3342 3339 125282264.7016 3343 3339 -9.357929229736e-06 3344 3339 2285901.927418 3348 3339 -234498519.637 3349 3339 3.576278686523e-06 3350 3339 -5943331.630163 3351 3339 -94399229.23175 3352 3339 62499999.98975 3353 3339 -27030537.76527 3444 3339 -98285243.92273 3445 3339 1.072883605957e-06 3446 3339 73747066.90912 3447 3339 -40551938.13439 3448 3339 -15625000.00514 3449 3339 24822942.95376 3450 3339 99158852.54101 3451 3339 3.457069396973e-06 3452 3339 2285900.879224 3453 3339 -39821273.75826 3454 3339 -8.895993232727e-06 3455 3339 571475.2200941 3459 3339 -102220422.2785 3460 3339 1.013278961182e-06 3461 3339 -76032967.78832 3462 3339 -41874328.64406 3463 3339 15625000.00513 3464 3339 -25394418.17384 3340 3340 912861496.3092 3341 3340 -109721151.9205 3342 3340 -9.924173355103e-06 3343 3340 -112217450.7807 3344 3340 55957798.18227 3348 3340 4.14252281189e-06 3349 3340 40502862.18745 3350 3340 -27430287.99363 3351 3340 62499999.98975 3352 3340 -75648396.04218 3353 3340 15223824.55232 3444 3340 -4.172325134277e-07 3445 3340 -29534914.67368 3446 3340 -6857575.146393 3447 3340 -15625000.00514 3448 3340 -35864239.62686 3449 3340 18029482.02244 3450 3340 3.814697265625e-06 3451 3340 61657264.49931 3452 3340 -27430300.57206 3453 3340 -7.718801498413e-06 3454 3340 -99196206.00148 3455 3340 73626608.60945 3459 3340 -7.748603820801e-07 3460 3340 -33470093.0295 3461 3340 -6857575.146393 3462 3340 15625000.00513 3463 3340 -37186630.13654 3464 3340 18715245.91155 3341 3341 1039858352.722 3342 3341 2285901.927418 3343 3341 53763353.73819 3344 3341 85469901.76562 3348 3341 -3200276.075057 3349 3341 -27430287.99363 3350 3341 71900937.83954 3351 3341 -26687655.82037 3352 3341 14949518.99641 3353 3341 -27424184.68052 3444 3341 73404184.96491 3445 3341 -6857575.146392 3446 3341 -87786498.03904 3447 3341 24822942.95376 3448 3341 18029482.02244 3449 3341 -52061746.4183 3450 3341 2285900.879224 3451 3341 -27430300.57206 3452 3341 -184190435.19 3453 3341 571475.2200943 3454 3341 73352303.05408 3455 3341 -168344038.6739 3459 3341 -75690085.8441 3460 3341 -6857575.146393 3461 3341 -98280306.98791 3462 3341 -25394418.17384 3463 3341 18715245.91155 3464 3341 -55588121.11081 3342 3342 1145935402.266 3343 3342 62548388.94858 3344 3342 30860151.66558 3345 3342 21182372.10022 3346 3342 -62519355.57328 3347 3342 27039120.36991 3348 3342 -93044845.55145 3349 3342 -62499999.98975 3350 3342 24401753.89294 3351 3342 -234498519.637 3352 3342 3.576278686523e-06 3353 3342 -5943331.630163 3354 3342 -94399229.23175 3355 3342 62499999.98975 3356 3342 -27030537.76527 3444 3342 -26133752.36576 3445 3342 15625000.00514 3446 3342 11964870.03287 3447 3342 -115335214.0726 3448 3342 -15631584.19572 3449 3342 68329440.16886 3450 3342 19205852.96814 3451 3342 4.768371582031e-06 3452 3342 571475.220082 3453 3342 130473837.5578 3454 3342 15635973.65611 3455 3342 7712253.313144 3456 3342 -53686446.86531 3457 3342 -15629389.46553 3458 3342 25401550.08976 3459 3342 -26778951.03495 3460 3342 -15625000.00513 3461 3342 -12536345.25295 3462 3342 -102220422.2785 3463 3342 1.013278961182e-06 3464 3342 -76032967.78832 3465 3342 -41874328.64406 3466 3342 15625000.00513 3467 3342 -25394418.17384 3343 3343 977156127.6318 3344 3343 -85033333.84819 3345 3343 -62529033.36504 3346 3343 -197605220.9809 3347 3343 46638027.38239 3348 3343 -62499999.98975 3349 3343 -74294012.36186 3350 3343 12206463.4413 3351 3343 4.14252281189e-06 3352 3343 40502862.18745 3353 3343 -27430287.99363 3354 3343 62499999.98975 3355 3343 -75648396.04218 3356 3343 15223824.55232 3444 3343 15625000.00514 3445 3343 -21446053.85824 3446 3343 -11171906.87604 3447 3343 -15629389.46552 3448 3343 -41883469.12474 3449 3343 7334445.059211 3450 3343 6.780028343201e-06 3451 3343 -40169079.27509 3452 3343 -46196308.03739 3453 3343 15635973.65611 3454 3343 88279612.65644 3455 3343 -21260570.15053 3456 3343 -15631584.19572 3457 3343 -108382459.4402 3458 3343 71307025.97358 3459 3343 -15625000.00513 3460 3343 -22091252.52743 3461 3343 -11857670.76516 3462 3343 -7.748603820801e-07 3463 3343 -33470093.0295 3464 3343 -6857575.146393 3465 3343 15625000.00513 3466 3343 -37186630.13654 3467 3343 18715245.91155 3344 3344 1036803405.136 3345 3344 26700529.72734 3346 3344 52127606.5745 3347 3344 32215992.22129 3348 3344 24744635.83784 3349 3344 12480768.99722 3350 3344 -23812494.86631 3351 3344 -3200276.075057 3352 3344 -27430287.99363 3353 3344 71900937.83954 3354 3344 -26687655.82037 3355 3344 14949518.99641 3356 3344 -27424184.68052 3444 3344 11964870.03287 3445 3344 -11171906.87604 3446 3344 -13613251.03531 3447 3344 67985675.23876 3448 3344 5415714.150796 3449 3344 -77126033.46393 3450 3344 571475.2200821 3451 3344 -45922002.48202 3452 3344 -10938367.40355 3453 3344 7717499.145858 3454 3344 -21256373.52338 3455 3344 -156819638.9591 3456 3344 25405116.04772 3457 3344 72953597.68388 3458 3344 -149232299.5136 3459 3344 -12536345.25295 3460 3344 -11857670.76516 3461 3344 -15333780.81983 3462 3344 -75690085.8441 3463 3344 -6857575.146393 3464 3344 -98280306.98791 3465 3344 -25394418.17384 3466 3344 18715245.91155 3467 3344 -55588121.11081 3345 3345 672539349.2322 3346 3345 62499999.98975 3347 3345 33164131.31328 3351 3345 -93044845.55145 3352 3345 -62499999.98975 3353 3345 24401753.89294 3354 3345 -347114474.3686 3355 3345 -62519355.57327 3356 3345 -27670762.35809 3357 3345 9372586.160465 3358 3345 50019355.57532 3359 3345 -19895735.37814 3447 3345 1493260.574915 3448 3345 18756584.19674 3449 3345 14705768.01689 3453 3345 -8426923.443562 3454 3345 -15631584.19572 3455 3345 -11969908.87826 3456 3345 64179725.07093 3457 3345 15625000.00514 3458 3345 22379883.77153 3462 3345 -26778951.03495 3463 3345 -15625000.00513 3464 3345 -12536345.25295 3465 3345 -131080904.1793 3466 3345 -15629389.46552 3467 3345 -81477706.67803 3468 3345 -28030795.60664 3469 3345 12504389.4645 3470 3345 -20094076.36695 3346 3346 578763407.3196 3347 3346 -63106764.95873 3351 3346 -62499999.98975 3352 3346 -74294012.36186 3353 3346 12206463.4413 3354 3346 -62529033.36503 3355 3346 -53301772.56443 3356 3346 -38274305.78037 3357 3346 75029033.36299 3358 3346 9372586.160465 3359 3346 25519231.22886 3447 3346 12504389.4645 3448 3346 1493260.574915 3449 3346 -7843093.74256 3453 3346 -15629389.46552 3454 3346 -63122936.0184 3455 3346 -46615995.93793 3456 3346 15625000.00513 3457 3346 40736294.19042 3458 3346 -4504985.17355 3462 3346 -15625000.00513 3463 3346 -22091252.52743 3464 3346 -11857670.76516 3465 3346 -15631584.19572 3466 3346 -57629159.23151 3467 3346 -24484028.50059 3468 3346 18756584.19674 3469 3346 -28030795.60664 3470 3346 24112532.59506 3347 3347 671642303.0214 3351 3347 24744635.83784 3352 3347 12480768.99722 3353 3347 -23812494.86631 3354 3347 -24924077.88049 3355 3347 -30316506.48178 3356 3347 -3879396.610056 3357 3347 -29843603.06721 3358 3347 17012820.81924 3359 3347 24993563.09457 3447 3347 9803845.344592 3448 3347 -11764640.61384 3449 3347 3982028.199772 3453 3347 -11968229.26313 3454 3347 -48262567.85004 3455 3347 -28540237.05556 3456 3347 -7512792.611826 3457 3347 -28418903.81719 3458 3347 -109296917.9411 3462 3347 -12536345.25295 3463 3347 -11857670.76516 3464 3347 -15333780.81983 3465 3347 -81133941.74793 3466 3347 -22561100.97091 3467 3347 -119114540.4154 3468 3347 -30141114.55043 3469 3347 16075021.73004 3470 3347 -74748788.28438 3348 3348 1062868161.752 3349 3348 1.955032348633e-05 3350 3348 9143607.705144 3351 3348 125282264.7016 3352 3348 -9.357929229736e-06 3353 3348 2285901.927418 3360 3348 -234498519.637 3361 3348 3.576278686523e-06 3362 3348 -5943331.630163 3363 3348 -94399229.23175 3364 3348 62499999.98975 3365 3348 -27030537.76527 3450 3348 -98285243.92273 3451 3348 1.072883605957e-06 3452 3348 73747066.90912 3453 3348 -40551938.13439 3454 3348 -15625000.00514 3455 3348 24822942.95376 3459 3348 99158852.54101 3460 3348 3.457069396973e-06 3461 3348 2285900.879224 3462 3348 -39821273.75826 3463 3348 -8.895993232727e-06 3464 3348 571475.2200941 3471 3348 -102220422.2785 3472 3348 1.013278961182e-06 3473 3348 -76032967.78832 3474 3348 -41874328.64406 3475 3348 15625000.00513 3476 3348 -25394418.17384 3349 3349 912861496.3092 3350 3349 -109721151.9205 3351 3349 -9.924173355103e-06 3352 3349 -112217450.7807 3353 3349 55957798.18227 3360 3349 4.14252281189e-06 3361 3349 40502862.18745 3362 3349 -27430287.99363 3363 3349 62499999.98975 3364 3349 -75648396.04218 3365 3349 15223824.55232 3450 3349 -4.172325134277e-07 3451 3349 -29534914.67368 3452 3349 -6857575.146393 3453 3349 -15625000.00514 3454 3349 -35864239.62686 3455 3349 18029482.02244 3459 3349 3.814697265625e-06 3460 3349 61657264.49931 3461 3349 -27430300.57206 3462 3349 -7.718801498413e-06 3463 3349 -99196206.00148 3464 3349 73626608.60945 3471 3349 -7.748603820801e-07 3472 3349 -33470093.0295 3473 3349 -6857575.146393 3474 3349 15625000.00513 3475 3349 -37186630.13654 3476 3349 18715245.91155 3350 3350 1039858352.722 3351 3350 2285901.927418 3352 3350 53763353.73819 3353 3350 85469901.76562 3360 3350 -3200276.075057 3361 3350 -27430287.99363 3362 3350 71900937.83954 3363 3350 -26687655.82037 3364 3350 14949518.99641 3365 3350 -27424184.68052 3450 3350 73404184.96491 3451 3350 -6857575.146392 3452 3350 -87786498.03904 3453 3350 24822942.95376 3454 3350 18029482.02244 3455 3350 -52061746.4183 3459 3350 2285900.879224 3460 3350 -27430300.57206 3461 3350 -184190435.19 3462 3350 571475.2200943 3463 3350 73352303.05408 3464 3350 -168344038.6739 3471 3350 -75690085.8441 3472 3350 -6857575.146393 3473 3350 -98280306.98791 3474 3350 -25394418.17384 3475 3350 18715245.91155 3476 3350 -55588121.11081 3351 3351 1062868161.752 3352 3351 1.955032348633e-05 3353 3351 9143607.705144 3354 3351 125282264.7016 3355 3351 -9.357929229736e-06 3356 3351 2285901.927418 3360 3351 -93044845.55145 3361 3351 -62499999.98975 3362 3351 24401753.89294 3363 3351 -234498519.637 3364 3351 3.576278686523e-06 3365 3351 -5943331.630163 3366 3351 -94399229.23175 3367 3351 62499999.98975 3368 3351 -27030537.76527 3450 3351 -26133752.36576 3451 3351 15625000.00514 3452 3351 11964870.03287 3453 3351 -98285243.92273 3454 3351 1.072883605957e-06 3455 3351 73747066.90912 3456 3351 -40551938.13439 3457 3351 -15625000.00514 3458 3351 24822942.95376 3459 3351 19205852.96814 3460 3351 4.768371582031e-06 3461 3351 571475.220082 3462 3351 99158852.54101 3463 3351 3.457069396973e-06 3464 3351 2285900.879224 3465 3351 -39821273.75826 3466 3351 -8.895993232727e-06 3467 3351 571475.2200941 3471 3351 -26778951.03495 3472 3351 -15625000.00513 3473 3351 -12536345.25295 3474 3351 -102220422.2785 3475 3351 1.013278961182e-06 3476 3351 -76032967.78832 3477 3351 -41874328.64406 3478 3351 15625000.00513 3479 3351 -25394418.17384 3352 3352 912861496.3092 3353 3352 -109721151.9205 3354 3352 -9.924173355103e-06 3355 3352 -112217450.7807 3356 3352 55957798.18227 3360 3352 -62499999.98975 3361 3352 -74294012.36186 3362 3352 12206463.4413 3363 3352 4.14252281189e-06 3364 3352 40502862.18745 3365 3352 -27430287.99363 3366 3352 62499999.98975 3367 3352 -75648396.04218 3368 3352 15223824.55232 3450 3352 15625000.00514 3451 3352 -21446053.85824 3452 3352 -11171906.87604 3453 3352 -4.172325134277e-07 3454 3352 -29534914.67368 3455 3352 -6857575.146393 3456 3352 -15625000.00514 3457 3352 -35864239.62686 3458 3352 18029482.02244 3459 3352 6.780028343201e-06 3460 3352 -40169079.27509 3461 3352 -46196308.03739 3462 3352 3.814697265625e-06 3463 3352 61657264.49931 3464 3352 -27430300.57206 3465 3352 -7.718801498413e-06 3466 3352 -99196206.00148 3467 3352 73626608.60945 3471 3352 -15625000.00513 3472 3352 -22091252.52743 3473 3352 -11857670.76516 3474 3352 -7.748603820801e-07 3475 3352 -33470093.0295 3476 3352 -6857575.146393 3477 3352 15625000.00513 3478 3352 -37186630.13654 3479 3352 18715245.91155 3353 3353 1039858352.722 3354 3353 2285901.927418 3355 3353 53763353.73819 3356 3353 85469901.76562 3360 3353 24744635.83784 3361 3353 12480768.99722 3362 3353 -23812494.86631 3363 3353 -3200276.075057 3364 3353 -27430287.99363 3365 3353 71900937.83954 3366 3353 -26687655.82037 3367 3353 14949518.99641 3368 3353 -27424184.68052 3450 3353 11964870.03287 3451 3353 -11171906.87604 3452 3353 -13613251.03531 3453 3353 73404184.96491 3454 3353 -6857575.146392 3455 3353 -87786498.03904 3456 3353 24822942.95376 3457 3353 18029482.02244 3458 3353 -52061746.4183 3459 3353 571475.2200821 3460 3353 -45922002.48202 3461 3353 -10938367.40355 3462 3353 2285900.879224 3463 3353 -27430300.57206 3464 3353 -184190435.19 3465 3353 571475.2200943 3466 3353 73352303.05408 3467 3353 -168344038.6739 3471 3353 -12536345.25295 3472 3353 -11857670.76516 3473 3353 -15333780.81983 3474 3353 -75690085.8441 3475 3353 -6857575.146393 3476 3353 -98280306.98791 3477 3353 -25394418.17384 3478 3353 18715245.91155 3479 3353 -55588121.11081 3354 3354 1145935402.266 3355 3354 62548388.94858 3356 3354 30860151.66558 3357 3354 21182372.10022 3358 3354 -62519355.57328 3359 3354 27039120.36991 3363 3354 -93044845.55145 3364 3354 -62499999.98975 3365 3354 24401753.89294 3366 3354 -234498519.637 3367 3354 3.576278686523e-06 3368 3354 -5943331.630163 3369 3354 -94399229.23175 3370 3354 62499999.98975 3371 3354 -27030537.76527 3453 3354 -26133752.36576 3454 3354 15625000.00514 3455 3354 11964870.03287 3456 3354 -115335214.0726 3457 3354 -15631584.19572 3458 3354 68329440.16886 3462 3354 19205852.96814 3463 3354 4.768371582031e-06 3464 3354 571475.220082 3465 3354 130473837.5578 3466 3354 15635973.65611 3467 3354 7712253.313144 3468 3354 -53686446.86531 3469 3354 -15629389.46553 3470 3354 25401550.08976 3474 3354 -26778951.03495 3475 3354 -15625000.00513 3476 3354 -12536345.25295 3477 3354 -102220422.2785 3478 3354 1.013278961182e-06 3479 3354 -76032967.78832 3480 3354 -41874328.64406 3481 3354 15625000.00513 3482 3354 -25394418.17384 3355 3355 977156127.6318 3356 3355 -85033333.84819 3357 3355 -62529033.36504 3358 3355 -197605220.9809 3359 3355 46638027.38239 3363 3355 -62499999.98975 3364 3355 -74294012.36186 3365 3355 12206463.4413 3366 3355 4.14252281189e-06 3367 3355 40502862.18745 3368 3355 -27430287.99363 3369 3355 62499999.98975 3370 3355 -75648396.04218 3371 3355 15223824.55232 3453 3355 15625000.00514 3454 3355 -21446053.85824 3455 3355 -11171906.87604 3456 3355 -15629389.46552 3457 3355 -41883469.12474 3458 3355 7334445.059211 3462 3355 6.780028343201e-06 3463 3355 -40169079.27509 3464 3355 -46196308.03739 3465 3355 15635973.65611 3466 3355 88279612.65644 3467 3355 -21260570.15053 3468 3355 -15631584.19572 3469 3355 -108382459.4402 3470 3355 71307025.97358 3474 3355 -15625000.00513 3475 3355 -22091252.52743 3476 3355 -11857670.76516 3477 3355 -7.748603820801e-07 3478 3355 -33470093.0295 3479 3355 -6857575.146393 3480 3355 15625000.00513 3481 3355 -37186630.13654 3482 3355 18715245.91155 3356 3356 1036803405.136 3357 3356 26700529.72734 3358 3356 52127606.5745 3359 3356 32215992.22129 3363 3356 24744635.83784 3364 3356 12480768.99722 3365 3356 -23812494.86631 3366 3356 -3200276.075057 3367 3356 -27430287.99363 3368 3356 71900937.83954 3369 3356 -26687655.82037 3370 3356 14949518.99641 3371 3356 -27424184.68052 3453 3356 11964870.03287 3454 3356 -11171906.87604 3455 3356 -13613251.03531 3456 3356 67985675.23876 3457 3356 5415714.150796 3458 3356 -77126033.46393 3462 3356 571475.2200821 3463 3356 -45922002.48202 3464 3356 -10938367.40355 3465 3356 7717499.145858 3466 3356 -21256373.52338 3467 3356 -156819638.9591 3468 3356 25405116.04772 3469 3356 72953597.68388 3470 3356 -149232299.5136 3474 3356 -12536345.25295 3475 3356 -11857670.76516 3476 3356 -15333780.81983 3477 3356 -75690085.8441 3478 3356 -6857575.146393 3479 3356 -98280306.98791 3480 3356 -25394418.17384 3481 3356 18715245.91155 3482 3356 -55588121.11081 3357 3357 672539349.2322 3358 3357 62499999.98975 3359 3357 33164131.31328 3366 3357 -93044845.55145 3367 3357 -62499999.98975 3368 3357 24401753.89294 3369 3357 -347114474.3686 3370 3357 -62519355.57327 3371 3357 -27670762.35809 3372 3357 9372586.160465 3373 3357 50019355.57532 3374 3357 -19895735.37814 3456 3357 1493260.574915 3457 3357 18756584.19674 3458 3357 14705768.01689 3465 3357 -8426923.443562 3466 3357 -15631584.19572 3467 3357 -11969908.87826 3468 3357 64179725.07093 3469 3357 15625000.00514 3470 3357 22379883.77153 3477 3357 -26778951.03495 3478 3357 -15625000.00513 3479 3357 -12536345.25295 3480 3357 -131080904.1793 3481 3357 -15629389.46552 3482 3357 -81477706.67803 3483 3357 -28030795.60664 3484 3357 12504389.4645 3485 3357 -20094076.36695 3358 3358 578763407.3196 3359 3358 -63106764.95873 3366 3358 -62499999.98975 3367 3358 -74294012.36186 3368 3358 12206463.4413 3369 3358 -62529033.36503 3370 3358 -53301772.56443 3371 3358 -38274305.78037 3372 3358 75029033.36299 3373 3358 9372586.160465 3374 3358 25519231.22886 3456 3358 12504389.4645 3457 3358 1493260.574915 3458 3358 -7843093.74256 3465 3358 -15629389.46552 3466 3358 -63122936.0184 3467 3358 -46615995.93793 3468 3358 15625000.00513 3469 3358 40736294.19042 3470 3358 -4504985.17355 3477 3358 -15625000.00513 3478 3358 -22091252.52743 3479 3358 -11857670.76516 3480 3358 -15631584.19572 3481 3358 -57629159.23151 3482 3358 -24484028.50059 3483 3358 18756584.19674 3484 3358 -28030795.60664 3485 3358 24112532.59506 3359 3359 671642303.0214 3366 3359 24744635.83784 3367 3359 12480768.99722 3368 3359 -23812494.86631 3369 3359 -24924077.88049 3370 3359 -30316506.48178 3371 3359 -3879396.610056 3372 3359 -29843603.06721 3373 3359 17012820.81924 3374 3359 24993563.09457 3456 3359 9803845.344592 3457 3359 -11764640.61384 3458 3359 3982028.199772 3465 3359 -11968229.26313 3466 3359 -48262567.85004 3467 3359 -28540237.05556 3468 3359 -7512792.611826 3469 3359 -28418903.81719 3470 3359 -109296917.9411 3477 3359 -12536345.25295 3478 3359 -11857670.76516 3479 3359 -15333780.81983 3480 3359 -81133941.74793 3481 3359 -22561100.97091 3482 3359 -119114540.4154 3483 3359 -30141114.55043 3484 3359 16075021.73004 3485 3359 -74748788.28438 3360 3360 1062868161.752 3361 3360 1.955032348633e-05 3362 3360 9143607.705144 3363 3360 125282264.7016 3364 3360 -9.357929229736e-06 3365 3360 2285901.927418 3375 3360 -234498519.637 3376 3360 3.576278686523e-06 3377 3360 -5943331.630163 3378 3360 -94399229.23175 3379 3360 62499999.98975 3380 3360 -27030537.76527 3459 3360 -98285243.92273 3460 3360 1.072883605957e-06 3461 3360 73747066.90912 3462 3360 -40551938.13439 3463 3360 -15625000.00514 3464 3360 24822942.95376 3471 3360 99158852.54101 3472 3360 3.457069396973e-06 3473 3360 2285900.879224 3474 3360 -39821273.75826 3475 3360 -8.895993232727e-06 3476 3360 571475.2200941 3486 3360 -102220422.2785 3487 3360 1.013278961182e-06 3488 3360 -76032967.78832 3489 3360 -41874328.64406 3490 3360 15625000.00513 3491 3360 -25394418.17384 3361 3361 912861496.3092 3362 3361 -109721151.9205 3363 3361 -9.924173355103e-06 3364 3361 -112217450.7807 3365 3361 55957798.18227 3375 3361 4.14252281189e-06 3376 3361 40502862.18745 3377 3361 -27430287.99363 3378 3361 62499999.98975 3379 3361 -75648396.04218 3380 3361 15223824.55232 3459 3361 -4.172325134277e-07 3460 3361 -29534914.67368 3461 3361 -6857575.146393 3462 3361 -15625000.00514 3463 3361 -35864239.62686 3464 3361 18029482.02244 3471 3361 3.814697265625e-06 3472 3361 61657264.49931 3473 3361 -27430300.57206 3474 3361 -7.718801498413e-06 3475 3361 -99196206.00148 3476 3361 73626608.60945 3486 3361 -7.748603820801e-07 3487 3361 -33470093.0295 3488 3361 -6857575.146393 3489 3361 15625000.00513 3490 3361 -37186630.13654 3491 3361 18715245.91155 3362 3362 1039858352.722 3363 3362 2285901.927418 3364 3362 53763353.73819 3365 3362 85469901.76562 3375 3362 -3200276.075057 3376 3362 -27430287.99363 3377 3362 71900937.83954 3378 3362 -26687655.82037 3379 3362 14949518.99641 3380 3362 -27424184.68052 3459 3362 73404184.96491 3460 3362 -6857575.146392 3461 3362 -87786498.03904 3462 3362 24822942.95376 3463 3362 18029482.02244 3464 3362 -52061746.4183 3471 3362 2285900.879224 3472 3362 -27430300.57206 3473 3362 -184190435.19 3474 3362 571475.2200943 3475 3362 73352303.05408 3476 3362 -168344038.6739 3486 3362 -75690085.8441 3487 3362 -6857575.146393 3488 3362 -98280306.98791 3489 3362 -25394418.17384 3490 3362 18715245.91155 3491 3362 -55588121.11081 3363 3363 1062868161.752 3364 3363 1.955032348633e-05 3365 3363 9143607.705144 3366 3363 125282264.7016 3367 3363 -9.357929229736e-06 3368 3363 2285901.927418 3375 3363 -93044845.55145 3376 3363 -62499999.98975 3377 3363 24401753.89294 3378 3363 -234498519.637 3379 3363 3.576278686523e-06 3380 3363 -5943331.630163 3381 3363 -94399229.23175 3382 3363 62499999.98975 3383 3363 -27030537.76527 3459 3363 -26133752.36576 3460 3363 15625000.00514 3461 3363 11964870.03287 3462 3363 -98285243.92273 3463 3363 1.072883605957e-06 3464 3363 73747066.90912 3465 3363 -40551938.13439 3466 3363 -15625000.00514 3467 3363 24822942.95376 3471 3363 19205852.96814 3472 3363 4.768371582031e-06 3473 3363 571475.220082 3474 3363 99158852.54101 3475 3363 3.457069396973e-06 3476 3363 2285900.879224 3477 3363 -39821273.75826 3478 3363 -8.895993232727e-06 3479 3363 571475.2200941 3486 3363 -26778951.03495 3487 3363 -15625000.00513 3488 3363 -12536345.25295 3489 3363 -102220422.2785 3490 3363 1.013278961182e-06 3491 3363 -76032967.78832 3492 3363 -41874328.64406 3493 3363 15625000.00513 3494 3363 -25394418.17384 3364 3364 912861496.3092 3365 3364 -109721151.9205 3366 3364 -9.924173355103e-06 3367 3364 -112217450.7807 3368 3364 55957798.18227 3375 3364 -62499999.98975 3376 3364 -74294012.36186 3377 3364 12206463.4413 3378 3364 4.14252281189e-06 3379 3364 40502862.18745 3380 3364 -27430287.99363 3381 3364 62499999.98975 3382 3364 -75648396.04218 3383 3364 15223824.55232 3459 3364 15625000.00514 3460 3364 -21446053.85824 3461 3364 -11171906.87604 3462 3364 -4.172325134277e-07 3463 3364 -29534914.67368 3464 3364 -6857575.146393 3465 3364 -15625000.00514 3466 3364 -35864239.62686 3467 3364 18029482.02244 3471 3364 6.780028343201e-06 3472 3364 -40169079.27509 3473 3364 -46196308.03739 3474 3364 3.814697265625e-06 3475 3364 61657264.49931 3476 3364 -27430300.57206 3477 3364 -7.718801498413e-06 3478 3364 -99196206.00148 3479 3364 73626608.60945 3486 3364 -15625000.00513 3487 3364 -22091252.52743 3488 3364 -11857670.76516 3489 3364 -7.748603820801e-07 3490 3364 -33470093.0295 3491 3364 -6857575.146393 3492 3364 15625000.00513 3493 3364 -37186630.13654 3494 3364 18715245.91155 3365 3365 1039858352.722 3366 3365 2285901.927418 3367 3365 53763353.73819 3368 3365 85469901.76562 3375 3365 24744635.83784 3376 3365 12480768.99722 3377 3365 -23812494.86631 3378 3365 -3200276.075057 3379 3365 -27430287.99363 3380 3365 71900937.83954 3381 3365 -26687655.82037 3382 3365 14949518.99641 3383 3365 -27424184.68052 3459 3365 11964870.03287 3460 3365 -11171906.87604 3461 3365 -13613251.03531 3462 3365 73404184.96491 3463 3365 -6857575.146392 3464 3365 -87786498.03904 3465 3365 24822942.95376 3466 3365 18029482.02244 3467 3365 -52061746.4183 3471 3365 571475.2200821 3472 3365 -45922002.48202 3473 3365 -10938367.40355 3474 3365 2285900.879224 3475 3365 -27430300.57206 3476 3365 -184190435.19 3477 3365 571475.2200943 3478 3365 73352303.05408 3479 3365 -168344038.6739 3486 3365 -12536345.25295 3487 3365 -11857670.76516 3488 3365 -15333780.81983 3489 3365 -75690085.8441 3490 3365 -6857575.146393 3491 3365 -98280306.98791 3492 3365 -25394418.17384 3493 3365 18715245.91155 3494 3365 -55588121.11081 3366 3366 1062868161.752 3367 3366 1.955032348633e-05 3368 3366 9143607.705144 3369 3366 125282264.7016 3370 3366 -9.357929229736e-06 3371 3366 2285901.927418 3378 3366 -93044845.55145 3379 3366 -62499999.98975 3380 3366 24401753.89294 3381 3366 -234498519.637 3382 3366 3.576278686523e-06 3383 3366 -5943331.630163 3384 3366 -94399229.23175 3385 3366 62499999.98975 3386 3366 -27030537.76527 3462 3366 -26133752.36576 3463 3366 15625000.00514 3464 3366 11964870.03287 3465 3366 -98285243.92273 3466 3366 1.072883605957e-06 3467 3366 73747066.90912 3468 3366 -40551938.13439 3469 3366 -15625000.00514 3470 3366 24822942.95376 3474 3366 19205852.96814 3475 3366 4.768371582031e-06 3476 3366 571475.220082 3477 3366 99158852.54101 3478 3366 3.457069396973e-06 3479 3366 2285900.879224 3480 3366 -39821273.75826 3481 3366 -8.895993232727e-06 3482 3366 571475.2200941 3489 3366 -26778951.03495 3490 3366 -15625000.00513 3491 3366 -12536345.25295 3492 3366 -102220422.2785 3493 3366 1.013278961182e-06 3494 3366 -76032967.78832 3495 3366 -41874328.64406 3496 3366 15625000.00513 3497 3366 -25394418.17384 3367 3367 912861496.3092 3368 3367 -109721151.9205 3369 3367 -9.924173355103e-06 3370 3367 -112217450.7807 3371 3367 55957798.18227 3378 3367 -62499999.98975 3379 3367 -74294012.36186 3380 3367 12206463.4413 3381 3367 4.14252281189e-06 3382 3367 40502862.18745 3383 3367 -27430287.99363 3384 3367 62499999.98975 3385 3367 -75648396.04218 3386 3367 15223824.55232 3462 3367 15625000.00514 3463 3367 -21446053.85824 3464 3367 -11171906.87604 3465 3367 -4.172325134277e-07 3466 3367 -29534914.67368 3467 3367 -6857575.146393 3468 3367 -15625000.00514 3469 3367 -35864239.62686 3470 3367 18029482.02244 3474 3367 6.780028343201e-06 3475 3367 -40169079.27509 3476 3367 -46196308.03739 3477 3367 3.814697265625e-06 3478 3367 61657264.49931 3479 3367 -27430300.57206 3480 3367 -7.718801498413e-06 3481 3367 -99196206.00148 3482 3367 73626608.60945 3489 3367 -15625000.00513 3490 3367 -22091252.52743 3491 3367 -11857670.76516 3492 3367 -7.748603820801e-07 3493 3367 -33470093.0295 3494 3367 -6857575.146393 3495 3367 15625000.00513 3496 3367 -37186630.13654 3497 3367 18715245.91155 3368 3368 1039858352.722 3369 3368 2285901.927418 3370 3368 53763353.73819 3371 3368 85469901.76562 3378 3368 24744635.83784 3379 3368 12480768.99722 3380 3368 -23812494.86631 3381 3368 -3200276.075057 3382 3368 -27430287.99363 3383 3368 71900937.83954 3384 3368 -26687655.82037 3385 3368 14949518.99641 3386 3368 -27424184.68052 3462 3368 11964870.03287 3463 3368 -11171906.87604 3464 3368 -13613251.03531 3465 3368 73404184.96491 3466 3368 -6857575.146392 3467 3368 -87786498.03904 3468 3368 24822942.95376 3469 3368 18029482.02244 3470 3368 -52061746.4183 3474 3368 571475.2200821 3475 3368 -45922002.48202 3476 3368 -10938367.40355 3477 3368 2285900.879224 3478 3368 -27430300.57206 3479 3368 -184190435.19 3480 3368 571475.2200943 3481 3368 73352303.05408 3482 3368 -168344038.6739 3489 3368 -12536345.25295 3490 3368 -11857670.76516 3491 3368 -15333780.81983 3492 3368 -75690085.8441 3493 3368 -6857575.146393 3494 3368 -98280306.98791 3495 3368 -25394418.17384 3496 3368 18715245.91155 3497 3368 -55588121.11081 3369 3369 1145935402.266 3370 3369 62548388.94858 3371 3369 30860151.66558 3372 3369 21182372.10022 3373 3369 -62519355.57328 3374 3369 27039120.36991 3381 3369 -93044845.55145 3382 3369 -62499999.98975 3383 3369 24401753.89294 3384 3369 -234498519.637 3385 3369 3.576278686523e-06 3386 3369 -5943331.630163 3387 3369 -94399229.23175 3388 3369 62499999.98975 3389 3369 -27030537.76527 3465 3369 -26133752.36576 3466 3369 15625000.00514 3467 3369 11964870.03287 3468 3369 -115335214.0726 3469 3369 -15631584.19572 3470 3369 68329440.16886 3477 3369 19205852.96814 3478 3369 4.768371582031e-06 3479 3369 571475.220082 3480 3369 130473837.5578 3481 3369 15635973.65611 3482 3369 7712253.313144 3483 3369 -53686446.86531 3484 3369 -15629389.46553 3485 3369 25401550.08976 3492 3369 -26778951.03495 3493 3369 -15625000.00513 3494 3369 -12536345.25295 3495 3369 -102220422.2785 3496 3369 1.013278961182e-06 3497 3369 -76032967.78832 3498 3369 -41874328.64406 3499 3369 15625000.00513 3500 3369 -25394418.17384 3370 3370 977156127.6318 3371 3370 -85033333.84819 3372 3370 -62529033.36504 3373 3370 -197605220.9809 3374 3370 46638027.38239 3381 3370 -62499999.98975 3382 3370 -74294012.36186 3383 3370 12206463.4413 3384 3370 4.14252281189e-06 3385 3370 40502862.18745 3386 3370 -27430287.99363 3387 3370 62499999.98975 3388 3370 -75648396.04218 3389 3370 15223824.55232 3465 3370 15625000.00514 3466 3370 -21446053.85824 3467 3370 -11171906.87604 3468 3370 -15629389.46552 3469 3370 -41883469.12474 3470 3370 7334445.059211 3477 3370 6.780028343201e-06 3478 3370 -40169079.27509 3479 3370 -46196308.03739 3480 3370 15635973.65611 3481 3370 88279612.65644 3482 3370 -21260570.15053 3483 3370 -15631584.19572 3484 3370 -108382459.4402 3485 3370 71307025.97358 3492 3370 -15625000.00513 3493 3370 -22091252.52743 3494 3370 -11857670.76516 3495 3370 -7.748603820801e-07 3496 3370 -33470093.0295 3497 3370 -6857575.146393 3498 3370 15625000.00513 3499 3370 -37186630.13654 3500 3370 18715245.91155 3371 3371 1036803405.136 3372 3371 26700529.72734 3373 3371 52127606.5745 3374 3371 32215992.22129 3381 3371 24744635.83784 3382 3371 12480768.99722 3383 3371 -23812494.86631 3384 3371 -3200276.075057 3385 3371 -27430287.99363 3386 3371 71900937.83954 3387 3371 -26687655.82037 3388 3371 14949518.99641 3389 3371 -27424184.68052 3465 3371 11964870.03287 3466 3371 -11171906.87604 3467 3371 -13613251.03531 3468 3371 67985675.23876 3469 3371 5415714.150796 3470 3371 -77126033.46393 3477 3371 571475.2200821 3478 3371 -45922002.48202 3479 3371 -10938367.40355 3480 3371 7717499.145858 3481 3371 -21256373.52338 3482 3371 -156819638.9591 3483 3371 25405116.04772 3484 3371 72953597.68388 3485 3371 -149232299.5136 3492 3371 -12536345.25295 3493 3371 -11857670.76516 3494 3371 -15333780.81983 3495 3371 -75690085.8441 3496 3371 -6857575.146393 3497 3371 -98280306.98791 3498 3371 -25394418.17384 3499 3371 18715245.91155 3500 3371 -55588121.11081 3372 3372 672539349.2322 3373 3372 62499999.98975 3374 3372 33164131.31328 3384 3372 -93044845.55145 3385 3372 -62499999.98975 3386 3372 24401753.89294 3387 3372 -347114474.3686 3388 3372 -62519355.57327 3389 3372 -27670762.35809 3390 3372 9372586.160465 3391 3372 50019355.57532 3392 3372 -19895735.37814 3468 3372 1493260.574915 3469 3372 18756584.19674 3470 3372 14705768.01689 3480 3372 -8426923.443562 3481 3372 -15631584.19572 3482 3372 -11969908.87826 3483 3372 64179725.07093 3484 3372 15625000.00514 3485 3372 22379883.77153 3495 3372 -26778951.03495 3496 3372 -15625000.00513 3497 3372 -12536345.25295 3498 3372 -131080904.1793 3499 3372 -15629389.46552 3500 3372 -81477706.67803 3501 3372 -28030795.60664 3502 3372 12504389.4645 3503 3372 -20094076.36695 3373 3373 578763407.3196 3374 3373 -63106764.95873 3384 3373 -62499999.98975 3385 3373 -74294012.36186 3386 3373 12206463.4413 3387 3373 -62529033.36503 3388 3373 -53301772.56443 3389 3373 -38274305.78037 3390 3373 75029033.36299 3391 3373 9372586.160465 3392 3373 25519231.22886 3468 3373 12504389.4645 3469 3373 1493260.574915 3470 3373 -7843093.74256 3480 3373 -15629389.46552 3481 3373 -63122936.0184 3482 3373 -46615995.93793 3483 3373 15625000.00513 3484 3373 40736294.19042 3485 3373 -4504985.17355 3495 3373 -15625000.00513 3496 3373 -22091252.52743 3497 3373 -11857670.76516 3498 3373 -15631584.19572 3499 3373 -57629159.23151 3500 3373 -24484028.50059 3501 3373 18756584.19674 3502 3373 -28030795.60664 3503 3373 24112532.59506 3374 3374 671642303.0214 3384 3374 24744635.83784 3385 3374 12480768.99722 3386 3374 -23812494.86631 3387 3374 -24924077.88049 3388 3374 -30316506.48178 3389 3374 -3879396.610056 3390 3374 -29843603.06721 3391 3374 17012820.81924 3392 3374 24993563.09457 3468 3374 9803845.344592 3469 3374 -11764640.61384 3470 3374 3982028.199772 3480 3374 -11968229.26313 3481 3374 -48262567.85004 3482 3374 -28540237.05556 3483 3374 -7512792.611826 3484 3374 -28418903.81719 3485 3374 -109296917.9411 3495 3374 -12536345.25295 3496 3374 -11857670.76516 3497 3374 -15333780.81983 3498 3374 -81133941.74793 3499 3374 -22561100.97091 3500 3374 -119114540.4154 3501 3374 -30141114.55043 3502 3374 16075021.73004 3503 3374 -74748788.28438 3375 3375 1062868161.752 3376 3375 1.955032348633e-05 3377 3375 9143607.705144 3378 3375 125282264.7016 3379 3375 -9.357929229736e-06 3380 3375 2285901.927418 3393 3375 -234498519.637 3394 3375 3.576278686523e-06 3395 3375 -5943331.630163 3396 3375 -94399229.23175 3397 3375 62499999.98975 3398 3375 -27030537.76527 3471 3375 -98285243.92273 3472 3375 1.072883605957e-06 3473 3375 73747066.90912 3474 3375 -40551938.13439 3475 3375 -15625000.00514 3476 3375 24822942.95376 3486 3375 99158852.54101 3487 3375 3.457069396973e-06 3488 3375 2285900.879224 3489 3375 -39821273.75826 3490 3375 -8.895993232727e-06 3491 3375 571475.2200941 3504 3375 -102220422.2785 3505 3375 1.013278961182e-06 3506 3375 -76032967.78832 3507 3375 -41874328.64406 3508 3375 15625000.00513 3509 3375 -25394418.17384 3376 3376 912861496.3092 3377 3376 -109721151.9205 3378 3376 -9.924173355103e-06 3379 3376 -112217450.7807 3380 3376 55957798.18227 3393 3376 4.14252281189e-06 3394 3376 40502862.18745 3395 3376 -27430287.99363 3396 3376 62499999.98975 3397 3376 -75648396.04218 3398 3376 15223824.55232 3471 3376 -4.172325134277e-07 3472 3376 -29534914.67368 3473 3376 -6857575.146393 3474 3376 -15625000.00514 3475 3376 -35864239.62686 3476 3376 18029482.02244 3486 3376 3.814697265625e-06 3487 3376 61657264.49931 3488 3376 -27430300.57206 3489 3376 -7.718801498413e-06 3490 3376 -99196206.00148 3491 3376 73626608.60945 3504 3376 -7.748603820801e-07 3505 3376 -33470093.0295 3506 3376 -6857575.146393 3507 3376 15625000.00513 3508 3376 -37186630.13654 3509 3376 18715245.91155 3377 3377 1039858352.722 3378 3377 2285901.927418 3379 3377 53763353.73819 3380 3377 85469901.76562 3393 3377 -3200276.075057 3394 3377 -27430287.99363 3395 3377 71900937.83954 3396 3377 -26687655.82037 3397 3377 14949518.99641 3398 3377 -27424184.68052 3471 3377 73404184.96491 3472 3377 -6857575.146392 3473 3377 -87786498.03904 3474 3377 24822942.95376 3475 3377 18029482.02244 3476 3377 -52061746.4183 3486 3377 2285900.879224 3487 3377 -27430300.57206 3488 3377 -184190435.19 3489 3377 571475.2200943 3490 3377 73352303.05408 3491 3377 -168344038.6739 3504 3377 -75690085.8441 3505 3377 -6857575.146393 3506 3377 -98280306.98791 3507 3377 -25394418.17384 3508 3377 18715245.91155 3509 3377 -55588121.11081 3378 3378 1062868161.752 3379 3378 1.955032348633e-05 3380 3378 9143607.705144 3381 3378 125282264.7016 3382 3378 -9.357929229736e-06 3383 3378 2285901.927418 3393 3378 -93044845.55145 3394 3378 -62499999.98975 3395 3378 24401753.89294 3396 3378 -234498519.637 3397 3378 3.576278686523e-06 3398 3378 -5943331.630163 3399 3378 -94399229.23175 3400 3378 62499999.98975 3401 3378 -27030537.76527 3471 3378 -26133752.36576 3472 3378 15625000.00514 3473 3378 11964870.03287 3474 3378 -98285243.92273 3475 3378 1.072883605957e-06 3476 3378 73747066.90912 3477 3378 -40551938.13439 3478 3378 -15625000.00514 3479 3378 24822942.95376 3486 3378 19205852.96814 3487 3378 4.768371582031e-06 3488 3378 571475.220082 3489 3378 99158852.54101 3490 3378 3.457069396973e-06 3491 3378 2285900.879224 3492 3378 -39821273.75826 3493 3378 -8.895993232727e-06 3494 3378 571475.2200941 3504 3378 -26778951.03495 3505 3378 -15625000.00513 3506 3378 -12536345.25295 3507 3378 -102220422.2785 3508 3378 1.013278961182e-06 3509 3378 -76032967.78832 3510 3378 -41874328.64406 3511 3378 15625000.00513 3512 3378 -25394418.17384 3379 3379 912861496.3092 3380 3379 -109721151.9205 3381 3379 -9.924173355103e-06 3382 3379 -112217450.7807 3383 3379 55957798.18227 3393 3379 -62499999.98975 3394 3379 -74294012.36186 3395 3379 12206463.4413 3396 3379 4.14252281189e-06 3397 3379 40502862.18745 3398 3379 -27430287.99363 3399 3379 62499999.98975 3400 3379 -75648396.04218 3401 3379 15223824.55232 3471 3379 15625000.00514 3472 3379 -21446053.85824 3473 3379 -11171906.87604 3474 3379 -4.172325134277e-07 3475 3379 -29534914.67368 3476 3379 -6857575.146393 3477 3379 -15625000.00514 3478 3379 -35864239.62686 3479 3379 18029482.02244 3486 3379 6.780028343201e-06 3487 3379 -40169079.27509 3488 3379 -46196308.03739 3489 3379 3.814697265625e-06 3490 3379 61657264.49931 3491 3379 -27430300.57206 3492 3379 -7.718801498413e-06 3493 3379 -99196206.00148 3494 3379 73626608.60945 3504 3379 -15625000.00513 3505 3379 -22091252.52743 3506 3379 -11857670.76516 3507 3379 -7.748603820801e-07 3508 3379 -33470093.0295 3509 3379 -6857575.146393 3510 3379 15625000.00513 3511 3379 -37186630.13654 3512 3379 18715245.91155 3380 3380 1039858352.722 3381 3380 2285901.927418 3382 3380 53763353.73819 3383 3380 85469901.76562 3393 3380 24744635.83784 3394 3380 12480768.99722 3395 3380 -23812494.86631 3396 3380 -3200276.075057 3397 3380 -27430287.99363 3398 3380 71900937.83954 3399 3380 -26687655.82037 3400 3380 14949518.99641 3401 3380 -27424184.68052 3471 3380 11964870.03287 3472 3380 -11171906.87604 3473 3380 -13613251.03531 3474 3380 73404184.96491 3475 3380 -6857575.146392 3476 3380 -87786498.03904 3477 3380 24822942.95376 3478 3380 18029482.02244 3479 3380 -52061746.4183 3486 3380 571475.2200821 3487 3380 -45922002.48202 3488 3380 -10938367.40355 3489 3380 2285900.879224 3490 3380 -27430300.57206 3491 3380 -184190435.19 3492 3380 571475.2200943 3493 3380 73352303.05408 3494 3380 -168344038.6739 3504 3380 -12536345.25295 3505 3380 -11857670.76516 3506 3380 -15333780.81983 3507 3380 -75690085.8441 3508 3380 -6857575.146393 3509 3380 -98280306.98791 3510 3380 -25394418.17384 3511 3380 18715245.91155 3512 3380 -55588121.11081 3381 3381 1062868161.752 3382 3381 1.955032348633e-05 3383 3381 9143607.705144 3384 3381 125282264.7016 3385 3381 -9.357929229736e-06 3386 3381 2285901.927418 3396 3381 -93044845.55145 3397 3381 -62499999.98975 3398 3381 24401753.89294 3399 3381 -234498519.637 3400 3381 3.576278686523e-06 3401 3381 -5943331.630163 3402 3381 -94399229.23175 3403 3381 62499999.98975 3404 3381 -27030537.76527 3474 3381 -26133752.36576 3475 3381 15625000.00514 3476 3381 11964870.03287 3477 3381 -98285243.92273 3478 3381 1.072883605957e-06 3479 3381 73747066.90912 3480 3381 -40551938.13439 3481 3381 -15625000.00514 3482 3381 24822942.95376 3489 3381 19205852.96814 3490 3381 4.768371582031e-06 3491 3381 571475.220082 3492 3381 99158852.54101 3493 3381 3.457069396973e-06 3494 3381 2285900.879224 3495 3381 -39821273.75826 3496 3381 -8.895993232727e-06 3497 3381 571475.2200941 3507 3381 -26778951.03495 3508 3381 -15625000.00513 3509 3381 -12536345.25295 3510 3381 -102220422.2785 3511 3381 1.013278961182e-06 3512 3381 -76032967.78832 3513 3381 -41874328.64406 3514 3381 15625000.00513 3515 3381 -25394418.17384 3382 3382 912861496.3092 3383 3382 -109721151.9205 3384 3382 -9.924173355103e-06 3385 3382 -112217450.7807 3386 3382 55957798.18227 3396 3382 -62499999.98975 3397 3382 -74294012.36186 3398 3382 12206463.4413 3399 3382 4.14252281189e-06 3400 3382 40502862.18745 3401 3382 -27430287.99363 3402 3382 62499999.98975 3403 3382 -75648396.04218 3404 3382 15223824.55232 3474 3382 15625000.00514 3475 3382 -21446053.85824 3476 3382 -11171906.87604 3477 3382 -4.172325134277e-07 3478 3382 -29534914.67368 3479 3382 -6857575.146393 3480 3382 -15625000.00514 3481 3382 -35864239.62686 3482 3382 18029482.02244 3489 3382 6.780028343201e-06 3490 3382 -40169079.27509 3491 3382 -46196308.03739 3492 3382 3.814697265625e-06 3493 3382 61657264.49931 3494 3382 -27430300.57206 3495 3382 -7.718801498413e-06 3496 3382 -99196206.00148 3497 3382 73626608.60945 3507 3382 -15625000.00513 3508 3382 -22091252.52743 3509 3382 -11857670.76516 3510 3382 -7.748603820801e-07 3511 3382 -33470093.0295 3512 3382 -6857575.146393 3513 3382 15625000.00513 3514 3382 -37186630.13654 3515 3382 18715245.91155 3383 3383 1039858352.722 3384 3383 2285901.927418 3385 3383 53763353.73819 3386 3383 85469901.76562 3396 3383 24744635.83784 3397 3383 12480768.99722 3398 3383 -23812494.86631 3399 3383 -3200276.075057 3400 3383 -27430287.99363 3401 3383 71900937.83954 3402 3383 -26687655.82037 3403 3383 14949518.99641 3404 3383 -27424184.68052 3474 3383 11964870.03287 3475 3383 -11171906.87604 3476 3383 -13613251.03531 3477 3383 73404184.96491 3478 3383 -6857575.146392 3479 3383 -87786498.03904 3480 3383 24822942.95376 3481 3383 18029482.02244 3482 3383 -52061746.4183 3489 3383 571475.2200821 3490 3383 -45922002.48202 3491 3383 -10938367.40355 3492 3383 2285900.879224 3493 3383 -27430300.57206 3494 3383 -184190435.19 3495 3383 571475.2200943 3496 3383 73352303.05408 3497 3383 -168344038.6739 3507 3383 -12536345.25295 3508 3383 -11857670.76516 3509 3383 -15333780.81983 3510 3383 -75690085.8441 3511 3383 -6857575.146393 3512 3383 -98280306.98791 3513 3383 -25394418.17384 3514 3383 18715245.91155 3515 3383 -55588121.11081 3384 3384 1062868161.752 3385 3384 1.955032348633e-05 3386 3384 9143607.705144 3387 3384 125282264.7016 3388 3384 -9.357929229736e-06 3389 3384 2285901.927418 3399 3384 -93044845.55145 3400 3384 -62499999.98975 3401 3384 24401753.89294 3402 3384 -234498519.637 3403 3384 3.576278686523e-06 3404 3384 -5943331.630163 3405 3384 -94399229.23175 3406 3384 62499999.98975 3407 3384 -27030537.76527 3477 3384 -26133752.36576 3478 3384 15625000.00514 3479 3384 11964870.03287 3480 3384 -98285243.92273 3481 3384 1.072883605957e-06 3482 3384 73747066.90912 3483 3384 -40551938.13439 3484 3384 -15625000.00514 3485 3384 24822942.95376 3492 3384 19205852.96814 3493 3384 4.768371582031e-06 3494 3384 571475.220082 3495 3384 99158852.54101 3496 3384 3.457069396973e-06 3497 3384 2285900.879224 3498 3384 -39821273.75826 3499 3384 -8.895993232727e-06 3500 3384 571475.2200941 3510 3384 -26778951.03495 3511 3384 -15625000.00513 3512 3384 -12536345.25295 3513 3384 -102220422.2785 3514 3384 1.013278961182e-06 3515 3384 -76032967.78832 3516 3384 -41874328.64406 3517 3384 15625000.00513 3518 3384 -25394418.17384 3385 3385 912861496.3092 3386 3385 -109721151.9205 3387 3385 -9.924173355103e-06 3388 3385 -112217450.7807 3389 3385 55957798.18227 3399 3385 -62499999.98975 3400 3385 -74294012.36186 3401 3385 12206463.4413 3402 3385 4.14252281189e-06 3403 3385 40502862.18745 3404 3385 -27430287.99363 3405 3385 62499999.98975 3406 3385 -75648396.04218 3407 3385 15223824.55232 3477 3385 15625000.00514 3478 3385 -21446053.85824 3479 3385 -11171906.87604 3480 3385 -4.172325134277e-07 3481 3385 -29534914.67368 3482 3385 -6857575.146393 3483 3385 -15625000.00514 3484 3385 -35864239.62686 3485 3385 18029482.02244 3492 3385 6.780028343201e-06 3493 3385 -40169079.27509 3494 3385 -46196308.03739 3495 3385 3.814697265625e-06 3496 3385 61657264.49931 3497 3385 -27430300.57206 3498 3385 -7.718801498413e-06 3499 3385 -99196206.00148 3500 3385 73626608.60945 3510 3385 -15625000.00513 3511 3385 -22091252.52743 3512 3385 -11857670.76516 3513 3385 -7.748603820801e-07 3514 3385 -33470093.0295 3515 3385 -6857575.146393 3516 3385 15625000.00513 3517 3385 -37186630.13654 3518 3385 18715245.91155 3386 3386 1039858352.722 3387 3386 2285901.927418 3388 3386 53763353.73819 3389 3386 85469901.76562 3399 3386 24744635.83784 3400 3386 12480768.99722 3401 3386 -23812494.86631 3402 3386 -3200276.075057 3403 3386 -27430287.99363 3404 3386 71900937.83954 3405 3386 -26687655.82037 3406 3386 14949518.99641 3407 3386 -27424184.68052 3477 3386 11964870.03287 3478 3386 -11171906.87604 3479 3386 -13613251.03531 3480 3386 73404184.96491 3481 3386 -6857575.146392 3482 3386 -87786498.03904 3483 3386 24822942.95376 3484 3386 18029482.02244 3485 3386 -52061746.4183 3492 3386 571475.2200821 3493 3386 -45922002.48202 3494 3386 -10938367.40355 3495 3386 2285900.879224 3496 3386 -27430300.57206 3497 3386 -184190435.19 3498 3386 571475.2200943 3499 3386 73352303.05408 3500 3386 -168344038.6739 3510 3386 -12536345.25295 3511 3386 -11857670.76516 3512 3386 -15333780.81983 3513 3386 -75690085.8441 3514 3386 -6857575.146393 3515 3386 -98280306.98791 3516 3386 -25394418.17384 3517 3386 18715245.91155 3518 3386 -55588121.11081 3387 3387 1145935402.266 3388 3387 62548388.94858 3389 3387 30860151.66558 3390 3387 21182372.10022 3391 3387 -62519355.57328 3392 3387 27039120.36991 3402 3387 -93044845.55145 3403 3387 -62499999.98975 3404 3387 24401753.89294 3405 3387 -234498519.637 3406 3387 3.576278686523e-06 3407 3387 -5943331.630163 3408 3387 -94399229.23175 3409 3387 62499999.98975 3410 3387 -27030537.76527 3480 3387 -26133752.36576 3481 3387 15625000.00514 3482 3387 11964870.03287 3483 3387 -115335214.0726 3484 3387 -15631584.19572 3485 3387 68329440.16886 3495 3387 19205852.96814 3496 3387 4.768371582031e-06 3497 3387 571475.220082 3498 3387 130473837.5578 3499 3387 15635973.65611 3500 3387 7712253.313144 3501 3387 -53686446.86531 3502 3387 -15629389.46553 3503 3387 25401550.08976 3513 3387 -26778951.03495 3514 3387 -15625000.00513 3515 3387 -12536345.25295 3516 3387 -102220422.2785 3517 3387 1.013278961182e-06 3518 3387 -76032967.78832 3519 3387 -41874328.64406 3520 3387 15625000.00513 3521 3387 -25394418.17384 3388 3388 977156127.6318 3389 3388 -85033333.84819 3390 3388 -62529033.36504 3391 3388 -197605220.9809 3392 3388 46638027.38239 3402 3388 -62499999.98975 3403 3388 -74294012.36186 3404 3388 12206463.4413 3405 3388 4.14252281189e-06 3406 3388 40502862.18745 3407 3388 -27430287.99363 3408 3388 62499999.98975 3409 3388 -75648396.04218 3410 3388 15223824.55232 3480 3388 15625000.00514 3481 3388 -21446053.85824 3482 3388 -11171906.87604 3483 3388 -15629389.46552 3484 3388 -41883469.12474 3485 3388 7334445.059211 3495 3388 6.780028343201e-06 3496 3388 -40169079.27509 3497 3388 -46196308.03739 3498 3388 15635973.65611 3499 3388 88279612.65644 3500 3388 -21260570.15053 3501 3388 -15631584.19572 3502 3388 -108382459.4402 3503 3388 71307025.97358 3513 3388 -15625000.00513 3514 3388 -22091252.52743 3515 3388 -11857670.76516 3516 3388 -7.748603820801e-07 3517 3388 -33470093.0295 3518 3388 -6857575.146393 3519 3388 15625000.00513 3520 3388 -37186630.13654 3521 3388 18715245.91155 3389 3389 1036803405.136 3390 3389 26700529.72734 3391 3389 52127606.5745 3392 3389 32215992.22129 3402 3389 24744635.83784 3403 3389 12480768.99722 3404 3389 -23812494.86631 3405 3389 -3200276.075057 3406 3389 -27430287.99363 3407 3389 71900937.83954 3408 3389 -26687655.82037 3409 3389 14949518.99641 3410 3389 -27424184.68052 3480 3389 11964870.03287 3481 3389 -11171906.87604 3482 3389 -13613251.03531 3483 3389 67985675.23876 3484 3389 5415714.150796 3485 3389 -77126033.46393 3495 3389 571475.2200821 3496 3389 -45922002.48202 3497 3389 -10938367.40355 3498 3389 7717499.145858 3499 3389 -21256373.52338 3500 3389 -156819638.9591 3501 3389 25405116.04772 3502 3389 72953597.68388 3503 3389 -149232299.5136 3513 3389 -12536345.25295 3514 3389 -11857670.76516 3515 3389 -15333780.81983 3516 3389 -75690085.8441 3517 3389 -6857575.146393 3518 3389 -98280306.98791 3519 3389 -25394418.17384 3520 3389 18715245.91155 3521 3389 -55588121.11081 3390 3390 624177588.0977 3391 3390 44771201.06216 3392 3390 -10528787.07099 3405 3390 -93044845.55145 3406 3390 -62499999.98975 3407 3390 24401753.89294 3408 3390 -306121171.2699 3409 3390 -44814096.9728 3410 3390 -1812498.000401 3411 3390 7315323.621087 3412 3390 50042895.90245 3413 3390 -2746529.772747 3483 3390 1493260.574915 3484 3390 18756584.19674 3485 3390 14705768.01689 3498 3390 -8426923.443562 3499 3390 -15631584.19572 3500 3390 -11969908.87826 3501 3390 57208053.40963 3502 3390 12012672.80452 3503 3390 11011317.07793 3516 3390 -26778951.03495 3517 3390 -15625000.00513 3518 3390 -12536345.25295 3519 3390 -114994229.098 3520 3390 -12022605.74552 3521 3390 -70788401.11925 3522 3390 -13789915.32092 3523 3390 12509932.94511 3524 3390 -13917270.56417 3391 3391 554873465.2641 3392 3391 -63143435.45857 3405 3391 -62499999.98975 3406 3391 -74294012.36186 3407 3391 12206463.4413 3408 3391 -44835544.92813 3409 3391 -20217050.21208 3410 3391 -17039568.2124 3411 3391 75064343.85367 3412 3391 -9247914.711671 3413 3391 5419777.187231 3483 3391 12504389.4645 3484 3391 1493260.574915 3485 3391 -7843093.74256 3498 3391 -15629389.46552 3499 3391 -63122936.0184 3500 3391 -46615995.93793 3501 3391 12012672.80452 3502 3391 38649078.93965 3503 3391 -5152657.419769 3516 3391 -15625000.00513 3517 3391 -22091252.52743 3518 3391 -11857670.76516 3519 3391 -12027572.21602 3520 3391 -43151737.0681 3521 3391 -15928192.70217 3522 3391 18764899.41767 3523 3391 -17065118.81357 3524 3391 20617693.61 3392 3392 621301487.0834 3405 3392 24744635.83784 3406 3392 12480768.99722 3407 3392 -23812494.86631 3408 3392 -7983140.536079 3409 3392 -15941307.43553 3410 3392 10248959.56633 3411 3392 -4119794.65912 3412 3392 4322211.812592 3413 3392 36070767.98899 3483 3392 9803845.344592 3484 3392 -11764640.61384 3485 3392 3982028.199772 3498 3392 -11968229.26313 3499 3392 -48262567.85004 3500 3392 -28540237.05556 3501 3392 -17163098.26417 3502 3392 -27687003.01679 3503 3392 -111776345.5784 3516 3392 -12536345.25295 3517 3392 -11857670.76516 3518 3392 -15333780.81983 3519 3392 -72502527.79782 3520 3392 -15648904.09818 3521 3392 -95603640.48409 3522 3392 -20875905.84626 3523 3392 15050910.90763 3524 3392 -33497904.02979 3393 3393 1062868161.752 3394 3393 1.955032348633e-05 3395 3393 9143607.705144 3396 3393 125282264.7016 3397 3393 -9.357929229736e-06 3398 3393 2285901.927418 3414 3393 -234498519.637 3415 3393 3.576278686523e-06 3416 3393 -5943331.630163 3417 3393 -94399229.23175 3418 3393 62499999.98975 3419 3393 -27030537.76527 3486 3393 -98285243.92273 3487 3393 1.072883605957e-06 3488 3393 73747066.90912 3489 3393 -40551938.13439 3490 3393 -15625000.00514 3491 3393 24822942.95376 3504 3393 99158852.54101 3505 3393 3.457069396973e-06 3506 3393 2285900.879224 3507 3393 -39821273.75826 3508 3393 -8.895993232727e-06 3509 3393 571475.2200941 3525 3393 -102220422.2785 3526 3393 1.013278961182e-06 3527 3393 -76032967.78832 3528 3393 -41874328.64406 3529 3393 15625000.00513 3530 3393 -25394418.17384 3394 3394 912861496.3092 3395 3394 -109721151.9205 3396 3394 -9.924173355103e-06 3397 3394 -112217450.7807 3398 3394 55957798.18227 3414 3394 4.14252281189e-06 3415 3394 40502862.18745 3416 3394 -27430287.99363 3417 3394 62499999.98975 3418 3394 -75648396.04218 3419 3394 15223824.55232 3486 3394 -4.172325134277e-07 3487 3394 -29534914.67368 3488 3394 -6857575.146393 3489 3394 -15625000.00514 3490 3394 -35864239.62686 3491 3394 18029482.02244 3504 3394 3.814697265625e-06 3505 3394 61657264.49931 3506 3394 -27430300.57206 3507 3394 -7.718801498413e-06 3508 3394 -99196206.00148 3509 3394 73626608.60945 3525 3394 -7.748603820801e-07 3526 3394 -33470093.0295 3527 3394 -6857575.146393 3528 3394 15625000.00513 3529 3394 -37186630.13654 3530 3394 18715245.91155 3395 3395 1039858352.722 3396 3395 2285901.927418 3397 3395 53763353.73819 3398 3395 85469901.76562 3414 3395 -3200276.075057 3415 3395 -27430287.99363 3416 3395 71900937.83954 3417 3395 -26687655.82037 3418 3395 14949518.99641 3419 3395 -27424184.68052 3486 3395 73404184.96491 3487 3395 -6857575.146392 3488 3395 -87786498.03904 3489 3395 24822942.95376 3490 3395 18029482.02244 3491 3395 -52061746.4183 3504 3395 2285900.879224 3505 3395 -27430300.57206 3506 3395 -184190435.19 3507 3395 571475.2200943 3508 3395 73352303.05408 3509 3395 -168344038.6739 3525 3395 -75690085.8441 3526 3395 -6857575.146393 3527 3395 -98280306.98791 3528 3395 -25394418.17384 3529 3395 18715245.91155 3530 3395 -55588121.11081 3396 3396 1062868161.752 3397 3396 1.955032348633e-05 3398 3396 9143607.705144 3399 3396 125282264.7016 3400 3396 -9.357929229736e-06 3401 3396 2285901.927418 3414 3396 -93044845.55145 3415 3396 -62499999.98975 3416 3396 24401753.89294 3417 3396 -234498519.637 3418 3396 3.576278686523e-06 3419 3396 -5943331.630163 3420 3396 -94399229.23175 3421 3396 62499999.98975 3422 3396 -27030537.76527 3486 3396 -26133752.36576 3487 3396 15625000.00514 3488 3396 11964870.03287 3489 3396 -98285243.92273 3490 3396 1.072883605957e-06 3491 3396 73747066.90912 3492 3396 -40551938.13439 3493 3396 -15625000.00514 3494 3396 24822942.95376 3504 3396 19205852.96814 3505 3396 4.768371582031e-06 3506 3396 571475.220082 3507 3396 99158852.54101 3508 3396 3.457069396973e-06 3509 3396 2285900.879224 3510 3396 -39821273.75826 3511 3396 -8.895993232727e-06 3512 3396 571475.2200941 3525 3396 -26778951.03495 3526 3396 -15625000.00513 3527 3396 -12536345.25295 3528 3396 -102220422.2785 3529 3396 1.013278961182e-06 3530 3396 -76032967.78832 3531 3396 -41874328.64406 3532 3396 15625000.00513 3533 3396 -25394418.17384 3397 3397 912861496.3092 3398 3397 -109721151.9205 3399 3397 -9.924173355103e-06 3400 3397 -112217450.7807 3401 3397 55957798.18227 3414 3397 -62499999.98975 3415 3397 -74294012.36186 3416 3397 12206463.4413 3417 3397 4.14252281189e-06 3418 3397 40502862.18745 3419 3397 -27430287.99363 3420 3397 62499999.98975 3421 3397 -75648396.04218 3422 3397 15223824.55232 3486 3397 15625000.00514 3487 3397 -21446053.85824 3488 3397 -11171906.87604 3489 3397 -4.172325134277e-07 3490 3397 -29534914.67368 3491 3397 -6857575.146393 3492 3397 -15625000.00514 3493 3397 -35864239.62686 3494 3397 18029482.02244 3504 3397 6.780028343201e-06 3505 3397 -40169079.27509 3506 3397 -46196308.03739 3507 3397 3.814697265625e-06 3508 3397 61657264.49931 3509 3397 -27430300.57206 3510 3397 -7.718801498413e-06 3511 3397 -99196206.00148 3512 3397 73626608.60945 3525 3397 -15625000.00513 3526 3397 -22091252.52743 3527 3397 -11857670.76516 3528 3397 -7.748603820801e-07 3529 3397 -33470093.0295 3530 3397 -6857575.146393 3531 3397 15625000.00513 3532 3397 -37186630.13654 3533 3397 18715245.91155 3398 3398 1039858352.722 3399 3398 2285901.927418 3400 3398 53763353.73819 3401 3398 85469901.76562 3414 3398 24744635.83784 3415 3398 12480768.99722 3416 3398 -23812494.86631 3417 3398 -3200276.075057 3418 3398 -27430287.99363 3419 3398 71900937.83954 3420 3398 -26687655.82037 3421 3398 14949518.99641 3422 3398 -27424184.68052 3486 3398 11964870.03287 3487 3398 -11171906.87604 3488 3398 -13613251.03531 3489 3398 73404184.96491 3490 3398 -6857575.146392 3491 3398 -87786498.03904 3492 3398 24822942.95376 3493 3398 18029482.02244 3494 3398 -52061746.4183 3504 3398 571475.2200821 3505 3398 -45922002.48202 3506 3398 -10938367.40355 3507 3398 2285900.879224 3508 3398 -27430300.57206 3509 3398 -184190435.19 3510 3398 571475.2200943 3511 3398 73352303.05408 3512 3398 -168344038.6739 3525 3398 -12536345.25295 3526 3398 -11857670.76516 3527 3398 -15333780.81983 3528 3398 -75690085.8441 3529 3398 -6857575.146393 3530 3398 -98280306.98791 3531 3398 -25394418.17384 3532 3398 18715245.91155 3533 3398 -55588121.11081 3399 3399 1062868161.752 3400 3399 1.955032348633e-05 3401 3399 9143607.705144 3402 3399 125282264.7016 3403 3399 -9.357929229736e-06 3404 3399 2285901.927418 3417 3399 -93044845.55145 3418 3399 -62499999.98975 3419 3399 24401753.89294 3420 3399 -234498519.637 3421 3399 3.576278686523e-06 3422 3399 -5943331.630163 3423 3399 -94399229.23175 3424 3399 62499999.98975 3425 3399 -27030537.76527 3489 3399 -26133752.36576 3490 3399 15625000.00514 3491 3399 11964870.03287 3492 3399 -98285243.92273 3493 3399 1.072883605957e-06 3494 3399 73747066.90912 3495 3399 -40551938.13439 3496 3399 -15625000.00514 3497 3399 24822942.95376 3507 3399 19205852.96814 3508 3399 4.768371582031e-06 3509 3399 571475.220082 3510 3399 99158852.54101 3511 3399 3.457069396973e-06 3512 3399 2285900.879224 3513 3399 -39821273.75826 3514 3399 -8.895993232727e-06 3515 3399 571475.2200941 3528 3399 -26778951.03495 3529 3399 -15625000.00513 3530 3399 -12536345.25295 3531 3399 -102220422.2785 3532 3399 1.013278961182e-06 3533 3399 -76032967.78832 3534 3399 -41874328.64406 3535 3399 15625000.00513 3536 3399 -25394418.17384 3400 3400 912861496.3092 3401 3400 -109721151.9205 3402 3400 -9.924173355103e-06 3403 3400 -112217450.7807 3404 3400 55957798.18227 3417 3400 -62499999.98975 3418 3400 -74294012.36186 3419 3400 12206463.4413 3420 3400 4.14252281189e-06 3421 3400 40502862.18745 3422 3400 -27430287.99363 3423 3400 62499999.98975 3424 3400 -75648396.04218 3425 3400 15223824.55232 3489 3400 15625000.00514 3490 3400 -21446053.85824 3491 3400 -11171906.87604 3492 3400 -4.172325134277e-07 3493 3400 -29534914.67368 3494 3400 -6857575.146393 3495 3400 -15625000.00514 3496 3400 -35864239.62686 3497 3400 18029482.02244 3507 3400 6.780028343201e-06 3508 3400 -40169079.27509 3509 3400 -46196308.03739 3510 3400 3.814697265625e-06 3511 3400 61657264.49931 3512 3400 -27430300.57206 3513 3400 -7.718801498413e-06 3514 3400 -99196206.00148 3515 3400 73626608.60945 3528 3400 -15625000.00513 3529 3400 -22091252.52743 3530 3400 -11857670.76516 3531 3400 -7.748603820801e-07 3532 3400 -33470093.0295 3533 3400 -6857575.146393 3534 3400 15625000.00513 3535 3400 -37186630.13654 3536 3400 18715245.91155 3401 3401 1039858352.722 3402 3401 2285901.927418 3403 3401 53763353.73819 3404 3401 85469901.76562 3417 3401 24744635.83784 3418 3401 12480768.99722 3419 3401 -23812494.86631 3420 3401 -3200276.075057 3421 3401 -27430287.99363 3422 3401 71900937.83954 3423 3401 -26687655.82037 3424 3401 14949518.99641 3425 3401 -27424184.68052 3489 3401 11964870.03287 3490 3401 -11171906.87604 3491 3401 -13613251.03531 3492 3401 73404184.96491 3493 3401 -6857575.146392 3494 3401 -87786498.03904 3495 3401 24822942.95376 3496 3401 18029482.02244 3497 3401 -52061746.4183 3507 3401 571475.2200821 3508 3401 -45922002.48202 3509 3401 -10938367.40355 3510 3401 2285900.879224 3511 3401 -27430300.57206 3512 3401 -184190435.19 3513 3401 571475.2200943 3514 3401 73352303.05408 3515 3401 -168344038.6739 3528 3401 -12536345.25295 3529 3401 -11857670.76516 3530 3401 -15333780.81983 3531 3401 -75690085.8441 3532 3401 -6857575.146393 3533 3401 -98280306.98791 3534 3401 -25394418.17384 3535 3401 18715245.91155 3536 3401 -55588121.11081 3402 3402 1062868161.752 3403 3402 1.955032348633e-05 3404 3402 9143607.705144 3405 3402 125282264.7016 3406 3402 -9.357929229736e-06 3407 3402 2285901.927418 3420 3402 -93044845.55145 3421 3402 -62499999.98975 3422 3402 24401753.89294 3423 3402 -234498519.637 3424 3402 3.576278686523e-06 3425 3402 -5943331.630163 3426 3402 -94399229.23175 3427 3402 62499999.98975 3428 3402 -27030537.76527 3492 3402 -26133752.36576 3493 3402 15625000.00514 3494 3402 11964870.03287 3495 3402 -98285243.92273 3496 3402 1.072883605957e-06 3497 3402 73747066.90912 3498 3402 -40551938.13439 3499 3402 -15625000.00514 3500 3402 24822942.95376 3510 3402 19205852.96814 3511 3402 4.768371582031e-06 3512 3402 571475.220082 3513 3402 99158852.54101 3514 3402 3.457069396973e-06 3515 3402 2285900.879224 3516 3402 -39821273.75826 3517 3402 -8.895993232727e-06 3518 3402 571475.2200941 3531 3402 -26778951.03495 3532 3402 -15625000.00513 3533 3402 -12536345.25295 3534 3402 -102220422.2785 3535 3402 1.013278961182e-06 3536 3402 -76032967.78832 3537 3402 -41874328.64406 3538 3402 15625000.00513 3539 3402 -25394418.17384 3403 3403 912861496.3092 3404 3403 -109721151.9205 3405 3403 -9.924173355103e-06 3406 3403 -112217450.7807 3407 3403 55957798.18227 3420 3403 -62499999.98975 3421 3403 -74294012.36186 3422 3403 12206463.4413 3423 3403 4.14252281189e-06 3424 3403 40502862.18745 3425 3403 -27430287.99363 3426 3403 62499999.98975 3427 3403 -75648396.04218 3428 3403 15223824.55232 3492 3403 15625000.00514 3493 3403 -21446053.85824 3494 3403 -11171906.87604 3495 3403 -4.172325134277e-07 3496 3403 -29534914.67368 3497 3403 -6857575.146393 3498 3403 -15625000.00514 3499 3403 -35864239.62686 3500 3403 18029482.02244 3510 3403 6.780028343201e-06 3511 3403 -40169079.27509 3512 3403 -46196308.03739 3513 3403 3.814697265625e-06 3514 3403 61657264.49931 3515 3403 -27430300.57206 3516 3403 -7.718801498413e-06 3517 3403 -99196206.00148 3518 3403 73626608.60945 3531 3403 -15625000.00513 3532 3403 -22091252.52743 3533 3403 -11857670.76516 3534 3403 -7.748603820801e-07 3535 3403 -33470093.0295 3536 3403 -6857575.146393 3537 3403 15625000.00513 3538 3403 -37186630.13654 3539 3403 18715245.91155 3404 3404 1039858352.722 3405 3404 2285901.927418 3406 3404 53763353.73819 3407 3404 85469901.76562 3420 3404 24744635.83784 3421 3404 12480768.99722 3422 3404 -23812494.86631 3423 3404 -3200276.075057 3424 3404 -27430287.99363 3425 3404 71900937.83954 3426 3404 -26687655.82037 3427 3404 14949518.99641 3428 3404 -27424184.68052 3492 3404 11964870.03287 3493 3404 -11171906.87604 3494 3404 -13613251.03531 3495 3404 73404184.96491 3496 3404 -6857575.146392 3497 3404 -87786498.03904 3498 3404 24822942.95376 3499 3404 18029482.02244 3500 3404 -52061746.4183 3510 3404 571475.2200821 3511 3404 -45922002.48202 3512 3404 -10938367.40355 3513 3404 2285900.879224 3514 3404 -27430300.57206 3515 3404 -184190435.19 3516 3404 571475.2200943 3517 3404 73352303.05408 3518 3404 -168344038.6739 3531 3404 -12536345.25295 3532 3404 -11857670.76516 3533 3404 -15333780.81983 3534 3404 -75690085.8441 3535 3404 -6857575.146393 3536 3404 -98280306.98791 3537 3404 -25394418.17384 3538 3404 18715245.91155 3539 3404 -55588121.11081 3405 3405 1062868161.752 3406 3405 1.955032348633e-05 3407 3405 9143607.705144 3408 3405 125282264.7016 3409 3405 -9.357929229736e-06 3410 3405 2285901.927418 3423 3405 -93044845.55145 3424 3405 -62499999.98975 3425 3405 24401753.89294 3426 3405 -234498519.637 3427 3405 3.576278686523e-06 3428 3405 -5943331.630163 3429 3405 -94399229.23175 3430 3405 62499999.98975 3431 3405 -27030537.76527 3495 3405 -26133752.36576 3496 3405 15625000.00514 3497 3405 11964870.03287 3498 3405 -98285243.92273 3499 3405 1.072883605957e-06 3500 3405 73747066.90912 3501 3405 -40551938.13439 3502 3405 -15625000.00514 3503 3405 24822942.95376 3513 3405 19205852.96814 3514 3405 4.768371582031e-06 3515 3405 571475.220082 3516 3405 99158852.54101 3517 3405 3.457069396973e-06 3518 3405 2285900.879224 3519 3405 -39821273.75826 3520 3405 -8.895993232727e-06 3521 3405 571475.2200941 3534 3405 -26778951.03495 3535 3405 -15625000.00513 3536 3405 -12536345.25295 3537 3405 -102220422.2785 3538 3405 1.013278961182e-06 3539 3405 -76032967.78832 3540 3405 -41874328.64406 3541 3405 15625000.00513 3542 3405 -25394418.17384 3406 3406 912861496.3092 3407 3406 -109721151.9205 3408 3406 -9.924173355103e-06 3409 3406 -112217450.7807 3410 3406 55957798.18227 3423 3406 -62499999.98975 3424 3406 -74294012.36186 3425 3406 12206463.4413 3426 3406 4.14252281189e-06 3427 3406 40502862.18745 3428 3406 -27430287.99363 3429 3406 62499999.98975 3430 3406 -75648396.04218 3431 3406 15223824.55232 3495 3406 15625000.00514 3496 3406 -21446053.85824 3497 3406 -11171906.87604 3498 3406 -4.172325134277e-07 3499 3406 -29534914.67368 3500 3406 -6857575.146393 3501 3406 -15625000.00514 3502 3406 -35864239.62686 3503 3406 18029482.02244 3513 3406 6.780028343201e-06 3514 3406 -40169079.27509 3515 3406 -46196308.03739 3516 3406 3.814697265625e-06 3517 3406 61657264.49931 3518 3406 -27430300.57206 3519 3406 -7.718801498413e-06 3520 3406 -99196206.00148 3521 3406 73626608.60945 3534 3406 -15625000.00513 3535 3406 -22091252.52743 3536 3406 -11857670.76516 3537 3406 -7.748603820801e-07 3538 3406 -33470093.0295 3539 3406 -6857575.146393 3540 3406 15625000.00513 3541 3406 -37186630.13654 3542 3406 18715245.91155 3407 3407 1039858352.722 3408 3407 2285901.927418 3409 3407 53763353.73819 3410 3407 85469901.76562 3423 3407 24744635.83784 3424 3407 12480768.99722 3425 3407 -23812494.86631 3426 3407 -3200276.075057 3427 3407 -27430287.99363 3428 3407 71900937.83954 3429 3407 -26687655.82037 3430 3407 14949518.99641 3431 3407 -27424184.68052 3495 3407 11964870.03287 3496 3407 -11171906.87604 3497 3407 -13613251.03531 3498 3407 73404184.96491 3499 3407 -6857575.146392 3500 3407 -87786498.03904 3501 3407 24822942.95376 3502 3407 18029482.02244 3503 3407 -52061746.4183 3513 3407 571475.2200821 3514 3407 -45922002.48202 3515 3407 -10938367.40355 3516 3407 2285900.879224 3517 3407 -27430300.57206 3518 3407 -184190435.19 3519 3407 571475.2200943 3520 3407 73352303.05408 3521 3407 -168344038.6739 3534 3407 -12536345.25295 3535 3407 -11857670.76516 3536 3407 -15333780.81983 3537 3407 -75690085.8441 3538 3407 -6857575.146393 3539 3407 -98280306.98791 3540 3407 -25394418.17384 3541 3407 18715245.91155 3542 3407 -55588121.11081 3408 3408 1075173652.846 3409 3408 46334615.81186 3410 3408 9124226.612516 3411 3408 1916926.255678 3412 3408 -71562144.11825 3413 3408 4586649.454248 3426 3408 -93044845.55145 3427 3408 -62499999.98975 3428 3408 24401753.89294 3429 3408 -218823261.2053 3430 3408 8693888.23577 3431 3408 -1141242.668708 3432 3408 -70901410.64439 3433 3408 61369184.99877 3434 3408 -4585483.569651 3498 3408 -26133752.36576 3499 3408 15625000.00514 3500 3408 11964870.03287 3501 3408 -111379581.0895 3502 3408 -12027572.21602 3503 3408 68369548.91265 3516 3408 19205852.96814 3517 3408 4.768371582031e-06 3518 3408 571475.220082 3519 3408 120911111.2073 3520 3408 12278922.06453 3521 3408 2270598.06335 3522 3408 -36700079.12217 3523 3408 -17466056.76703 3524 3408 19817312.72048 3537 3408 -26778951.03495 3538 3408 -15625000.00513 3539 3408 -12536345.25295 3540 3408 -98620103.2208 3541 3408 1778213.472963 3542 3408 -72744377.11155 3543 3408 -30606173.22176 3544 3408 15436493.44556 3545 3408 -17681366.86574 3409 3409 955054398.0361 3410 3409 -59710257.41375 3411 3409 -71583592.07358 3412 3409 -218430104.7672 3413 3409 9734746.878626 3426 3409 -62499999.98975 3427 3409 -74294012.36186 3428 3409 12206463.4413 3429 3409 8693888.235771 3430 3409 46696952.88892 3431 3409 -15374856.65955 3432 3409 61369184.99877 3433 3409 -81861410.86036 3434 3409 3664812.614708 3498 3409 15625000.00514 3499 3409 -21446053.85824 3500 3409 -11171906.87604 3501 3409 -12022605.74552 3502 3409 -39537089.05956 3503 3409 7359372.223937 3516 3409 6.780028343201e-06 3517 3409 -40169079.27509 3518 3409 -46196308.03739 3519 3409 12278922.06453 3520 3409 88590814.60077 3521 3409 -15549265.97361 3522 3409 -17471023.23754 3523 3409 -91686021.10489 3524 3409 62194368.75178 3537 3409 -15625000.00513 3538 3409 -22091252.52743 3539 3409 -11857670.76516 3540 3409 1778213.472961 3541 3409 -31772368.13475 3542 3409 -2298329.894473 3543 3409 15436493.44556 3544 3409 -31990626.5204 3545 3409 17545113.68925 3410 3410 982065205.3903 3411 3410 4588386.563072 3412 3410 9736189.179777 3413 3410 33362944.22637 3426 3410 24744635.83784 3427 3410 12480768.99722 3428 3410 -23812494.86631 3429 3410 -7313117.667695 3430 3410 -15374856.65955 3431 3410 70793885.3786 3432 3410 -4585483.568976 3433 3410 3664812.614708 3434 3410 -13149747.71181 3498 3410 11964870.03287 3499 3410 -11171906.87604 3500 3410 -13613251.03531 3501 3410 70083675.59122 3502 3410 7089578.00376 3503 3410 -85964579.12796 3516 3410 571475.2200821 3517 3410 -45922002.48202 3518 3410 -10938367.40355 3519 3410 2281089.798958 3520 3410 -15540872.40854 3521 3410 -154748576.3714 3522 3410 19822961.88866 3523 3410 62194150.41038 3524 3410 -93237810.97087 3537 3410 -12536345.25295 3538 3410 -11857670.76516 3539 3410 -15333780.81983 3540 3410 -74458786.83433 3541 3410 -2298329.894201 3542 3410 -97429758.39169 3543 3410 -17681366.86574 3544 3410 17545113.68925 3545 3410 -35671678.22496 3411 3411 605103202.4825 3412 3411 5616654.661039 3413 3411 484531.4385712 3429 3411 -93529557.10328 3430 3411 -62357763.20029 3431 3411 3773531.373596 3432 3411 -183018439.214 3433 3411 11569778.02511 3434 3411 -944334.4519733 3435 3411 71508600.70521 3436 3411 -17974760.11169 3437 3411 -139838.4039876 3438 3411 -66781052.77063 3439 3411 59665338.84574 3440 3411 -899426.3036951 3501 3411 -9302628.702825 3502 3411 18764899.41767 3503 3411 18816193.68425 3519 3411 -28751449.72098 3520 3411 -17471023.23754 3521 3411 -17566411.9441 3522 3411 31494515.43557 3523 3411 1158847.128799 3524 3411 14860448.35881 3540 3411 -32807336.98145 3541 3411 -15601315.81942 3542 3411 -17733537.44274 3543 3411 -94362051.98175 3544 3411 2368086.475652 3545 3411 -73894565.1737 3546 3411 -7533777.190493 3547 3411 -4260257.921041 3548 3411 6179048.228008 3549 3411 -29991436.33932 3550 3411 15040763.95587 3551 3411 -18386036.82208 3412 3412 678108327.2261 3413 3412 -10914628.25135 3429 3412 -62357763.20029 3430 3412 -68815724.21444 3431 3412 1310585.605053 3432 3412 11569778.02511 3433 3412 75433646.11065 3434 3412 -3265168.713637 3435 3412 7025239.884211 3436 3412 -49350516.58907 3437 3412 490165.0741894 3438 3412 59665338.84574 3439 3412 -65182709.07778 3440 3412 512891.4409334 3501 3412 12509932.94511 3502 3412 -12577832.19548 3503 3412 -13016519.16007 3519 3412 -17466056.76704 3520 3412 -83737391.70371 3521 3412 -57398629.61985 3522 3412 1158847.128796 3523 3412 47746735.68824 3524 3412 2639318.658195 3540 3412 -15601315.81942 3541 3412 -26902770.57574 3542 3412 -14605313.75058 3543 3412 2368086.475653 3544 3412 -29115968.9013 3545 3412 923765.0025147 3546 3412 1989742.081013 3547 3412 -37694269.5522 3548 3412 33454941.08177 3549 3412 15040763.95587 3550 3412 -28972668.24107 3551 3412 16792906.76868 3413 3413 683948498.04 3429 3413 3773531.373933 3430 3413 1310585.605323 3431 3413 -15395465.36467 3432 3413 -944334.451972 3433 3413 -3265168.713637 3434 3413 99728654.97492 3435 3413 -139838.403985 3436 3413 490165.0741892 3437 3413 77233581.16884 3438 3413 -899426.3033575 3439 3413 512891.4409334 3440 3413 -1575637.096933 3501 3413 12544129.12283 3502 3413 -18034518.9332 3503 3413 -21531806.38154 3519 3413 -17561569.6073 3520 3413 -57399512.28169 3521 3413 -72041465.90101 3522 3413 -14609759.96969 3523 3413 -7946564.416753 3524 3413 -150648682.0086 3540 3413 -17733537.44274 3541 3413 -14605313.75058 3542 3413 -29379378.11343 3543 3413 -73894565.17404 3544 3413 923765.0027867 3545 3413 -100288486.4379 3546 3413 -1945951.77432 3547 3413 33454941.08177 3548 3413 -48711782.95365 3549 3413 -18386036.82208 3550 3413 16792906.76868 3551 3413 -34076172.82057 3414 3414 531253496.3852 3415 3414 8.702278137207e-06 3416 3414 -2285835.035192 3417 3414 62618559.28942 3418 3414 12499999.99795 3419 3414 -4857483.06435 3504 3414 -98285243.92273 3505 3414 1.072883605957e-06 3506 3414 73747066.90912 3507 3414 -40551938.13439 3508 3414 -15625000.00514 3509 3414 24822942.95376 3525 3414 49556853.20918 3526 3414 2.026557922363e-06 3527 3414 -14657969.69626 3528 3414 -19910636.87912 3529 3414 3125000.001023 3530 3414 -4735998.502713 3415 3415 456250163.6639 3416 3415 -54860575.96022 3417 3415 -12499999.99795 3418 3415 -56131298.45172 3419 3415 27704593.53563 3504 3415 -4.172325134277e-07 3505 3415 -29534914.67368 3506 3415 -6857575.146393 3507 3415 -15625000.00514 3508 3415 -35864239.62686 3509 3415 18029482.02244 3525 3415 2.264976501465e-06 3526 3415 30806059.18833 3527 3415 -13715150.28603 3528 3415 -3125000.00103 3529 3415 -49598103.00073 3530 3415 36744727.91581 3416 3416 519447617.7192 3417 3416 5428975.267292 3418 3416 27155982.42461 3419 3416 42674756.05248 3504 3416 73404184.96491 3505 3416 -6857575.146392 3506 3416 -87786498.03904 3507 3416 24822942.95376 3508 3416 18029482.02244 3509 3416 -52061746.4183 3525 3416 15229460.85439 3526 3416 -13715150.28603 3527 3416 -92155412.4252 3528 3416 5307473.722807 3529 3416 36744727.91595 3530 3416 -84172019.33696 3417 3417 531253496.3852 3418 3417 8.702278137207e-06 3419 3417 -2285835.035192 3420 3417 62618559.28942 3421 3417 12499999.99795 3422 3417 -4857483.06435 3504 3417 -26133752.36576 3505 3417 15625000.00514 3506 3417 11964870.03287 3507 3417 -98285243.92273 3508 3417 1.072883605957e-06 3509 3417 73747066.90912 3510 3417 -40551938.13439 3511 3417 -15625000.00514 3512 3417 24822942.95376 3525 3417 9602926.484067 3526 3417 -3125000.001024 3527 3417 -2164383.918541 3528 3417 49556853.20918 3529 3417 2.026557922363e-06 3530 3417 -14657969.69626 3531 3417 -19910636.87912 3532 3417 3125000.001023 3533 3417 -4735998.502713 3418 3418 456250163.6639 3419 3418 -54860575.96022 3420 3418 -12499999.99795 3421 3418 -56131298.45172 3422 3418 27704593.53563 3504 3418 15625000.00514 3505 3418 -21446053.85824 3506 3418 -11171906.87604 3507 3418 -4.172325134277e-07 3508 3418 -29534914.67368 3509 3418 -6857575.146393 3510 3418 -15625000.00514 3511 3418 -35864239.62686 3512 3418 18029482.02244 3525 3418 3125000.001031 3526 3418 -20084539.63755 3527 3418 -23029577.62979 3528 3418 2.264976501465e-06 3529 3418 30806059.18833 3530 3418 -13715150.28603 3531 3418 -3125000.00103 3532 3418 -49598103.00073 3533 3418 36744727.91581 3419 3419 519447617.7192 3420 3419 5428975.267292 3421 3419 27155982.42461 3422 3419 42674756.05248 3504 3419 11964870.03287 3505 3419 -11171906.87604 3506 3419 -13613251.03531 3507 3419 73404184.96491 3508 3419 -6857575.146392 3509 3419 -87786498.03904 3510 3419 24822942.95376 3511 3419 18029482.02244 3512 3419 -52061746.4183 3525 3419 2735859.138623 3526 3419 -23029577.62992 3527 3419 -5469183.701778 3528 3419 15229460.85439 3529 3419 -13715150.28603 3530 3419 -92155412.4252 3531 3419 5307473.722807 3532 3419 36744727.91595 3533 3419 -84172019.33696 3420 3420 531253496.3852 3421 3420 8.702278137207e-06 3422 3420 -2285835.035192 3423 3420 62618559.28942 3424 3420 12499999.99795 3425 3420 -4857483.06435 3507 3420 -26133752.36576 3508 3420 15625000.00514 3509 3420 11964870.03287 3510 3420 -98285243.92273 3511 3420 1.072883605957e-06 3512 3420 73747066.90912 3513 3420 -40551938.13439 3514 3420 -15625000.00514 3515 3420 24822942.95376 3528 3420 9602926.484067 3529 3420 -3125000.001024 3530 3420 -2164383.918541 3531 3420 49556853.20918 3532 3420 2.026557922363e-06 3533 3420 -14657969.69626 3534 3420 -19910636.87912 3535 3420 3125000.001023 3536 3420 -4735998.502713 3421 3421 456250163.6639 3422 3421 -54860575.96022 3423 3421 -12499999.99795 3424 3421 -56131298.45172 3425 3421 27704593.53563 3507 3421 15625000.00514 3508 3421 -21446053.85824 3509 3421 -11171906.87604 3510 3421 -4.172325134277e-07 3511 3421 -29534914.67368 3512 3421 -6857575.146393 3513 3421 -15625000.00514 3514 3421 -35864239.62686 3515 3421 18029482.02244 3528 3421 3125000.001031 3529 3421 -20084539.63755 3530 3421 -23029577.62979 3531 3421 2.264976501465e-06 3532 3421 30806059.18833 3533 3421 -13715150.28603 3534 3421 -3125000.00103 3535 3421 -49598103.00073 3536 3421 36744727.91581 3422 3422 519447617.7192 3423 3422 5428975.267292 3424 3422 27155982.42461 3425 3422 42674756.05248 3507 3422 11964870.03287 3508 3422 -11171906.87604 3509 3422 -13613251.03531 3510 3422 73404184.96491 3511 3422 -6857575.146392 3512 3422 -87786498.03904 3513 3422 24822942.95376 3514 3422 18029482.02244 3515 3422 -52061746.4183 3528 3422 2735859.138623 3529 3422 -23029577.62992 3530 3422 -5469183.701778 3531 3422 15229460.85439 3532 3422 -13715150.28603 3533 3422 -92155412.4252 3534 3422 5307473.722807 3535 3422 36744727.91595 3536 3422 -84172019.33696 3423 3423 531253496.3852 3424 3423 8.702278137207e-06 3425 3423 -2285835.035192 3426 3423 62618559.28942 3427 3423 12499999.99795 3428 3423 -4857483.06435 3510 3423 -26133752.36576 3511 3423 15625000.00514 3512 3423 11964870.03287 3513 3423 -98285243.92273 3514 3423 1.072883605957e-06 3515 3423 73747066.90912 3516 3423 -40551938.13439 3517 3423 -15625000.00514 3518 3423 24822942.95376 3531 3423 9602926.484067 3532 3423 -3125000.001024 3533 3423 -2164383.918541 3534 3423 49556853.20918 3535 3423 2.026557922363e-06 3536 3423 -14657969.69626 3537 3423 -19910636.87912 3538 3423 3125000.001023 3539 3423 -4735998.502713 3424 3424 456250163.6639 3425 3424 -54860575.96022 3426 3424 -12499999.99795 3427 3424 -56131298.45172 3428 3424 27704593.53563 3510 3424 15625000.00514 3511 3424 -21446053.85824 3512 3424 -11171906.87604 3513 3424 -4.172325134277e-07 3514 3424 -29534914.67368 3515 3424 -6857575.146393 3516 3424 -15625000.00514 3517 3424 -35864239.62686 3518 3424 18029482.02244 3531 3424 3125000.001031 3532 3424 -20084539.63755 3533 3424 -23029577.62979 3534 3424 2.264976501465e-06 3535 3424 30806059.18833 3536 3424 -13715150.28603 3537 3424 -3125000.00103 3538 3424 -49598103.00073 3539 3424 36744727.91581 3425 3425 519447617.7192 3426 3425 5428975.267292 3427 3425 27155982.42461 3428 3425 42674756.05248 3510 3425 11964870.03287 3511 3425 -11171906.87604 3512 3425 -13613251.03531 3513 3425 73404184.96491 3514 3425 -6857575.146392 3515 3425 -87786498.03904 3516 3425 24822942.95376 3517 3425 18029482.02244 3518 3425 -52061746.4183 3531 3425 2735859.138623 3532 3425 -23029577.62992 3533 3425 -5469183.701778 3534 3425 15229460.85439 3535 3425 -13715150.28603 3536 3425 -92155412.4252 3537 3425 5307473.722807 3538 3425 36744727.91595 3539 3425 -84172019.33696 3426 3426 531253496.3852 3427 3426 8.702278137207e-06 3428 3426 -2285835.035192 3429 3426 62618559.28942 3430 3426 12499999.99795 3431 3426 -4857483.06435 3513 3426 -26133752.36576 3514 3426 15625000.00514 3515 3426 11964870.03287 3516 3426 -98285243.92273 3517 3426 1.072883605957e-06 3518 3426 73747066.90912 3519 3426 -40551938.13439 3520 3426 -15625000.00514 3521 3426 24822942.95376 3534 3426 9602926.484067 3535 3426 -3125000.001024 3536 3426 -2164383.918541 3537 3426 49556853.20918 3538 3426 2.026557922363e-06 3539 3426 -14657969.69626 3540 3426 -19910636.87912 3541 3426 3125000.001023 3542 3426 -4735998.502713 3427 3427 456250163.6639 3428 3427 -54860575.96022 3429 3427 -12499999.99795 3430 3427 -56131298.45172 3431 3427 27704593.53563 3513 3427 15625000.00514 3514 3427 -21446053.85824 3515 3427 -11171906.87604 3516 3427 -4.172325134277e-07 3517 3427 -29534914.67368 3518 3427 -6857575.146393 3519 3427 -15625000.00514 3520 3427 -35864239.62686 3521 3427 18029482.02244 3534 3427 3125000.001031 3535 3427 -20084539.63755 3536 3427 -23029577.62979 3537 3427 2.264976501465e-06 3538 3427 30806059.18833 3539 3427 -13715150.28603 3540 3427 -3125000.00103 3541 3427 -49598103.00073 3542 3427 36744727.91581 3428 3428 519447617.7192 3429 3428 5428975.267292 3430 3428 27155982.42461 3431 3428 42674756.05248 3513 3428 11964870.03287 3514 3428 -11171906.87604 3515 3428 -13613251.03531 3516 3428 73404184.96491 3517 3428 -6857575.146392 3518 3428 -87786498.03904 3519 3428 24822942.95376 3520 3428 18029482.02244 3521 3428 -52061746.4183 3534 3428 2735859.138623 3535 3428 -23029577.62992 3536 3428 -5469183.701778 3537 3428 15229460.85439 3538 3428 -13715150.28603 3539 3428 -92155412.4252 3540 3428 5307473.722807 3541 3428 36744727.91595 3542 3428 -84172019.33696 3429 3429 522704651.1313 3430 3429 141896.0766639 3431 3429 19774674.20139 3432 3429 59979012.46658 3433 3429 3521978.896065 3434 3429 223245.4222929 3516 3429 -26133752.36576 3517 3429 15625000.00514 3518 3429 11964870.03287 3519 3429 -94931088.19469 3520 3429 1778213.472971 3521 3429 70668209.66918 3522 3429 -34774920.06465 3523 3429 -15601315.81941 3524 3429 19624361.87508 3537 3429 9602926.484067 3538 3429 -3125000.001024 3539 3429 -2164383.918541 3540 3429 47127590.05582 3541 3429 23589.49173892 3542 3429 -9569136.5938 3543 3429 -9037623.796586 3544 3429 1299512.850601 3545 3429 -1549059.953223 3430 3430 453674266.6075 3431 3430 -31606008.9039 3432 3430 -21478021.09983 3433 3430 -61225625.4412 3434 3430 5210611.870475 3516 3430 15625000.00514 3517 3430 -21446053.85824 3518 3430 -11171906.87604 3519 3430 1778213.472969 3520 3430 -28083353.10861 3521 3430 -5744510.44953 3522 3430 -15601315.81941 3523 3430 -28870353.65893 3524 3430 15281839.03701 3537 3430 3125000.001031 3538 3430 -20084539.63755 3539 3430 -23029577.62979 3540 3430 23589.49173927 3541 3430 29596081.79884 3542 3430 -8233769.735779 3543 3430 -4950487.151452 3544 3430 -39258649.4173 3545 3430 32897925.65411 3431 3431 506379680.2075 3432 3431 2280537.088619 3433 3431 5210611.870475 3434 3431 59105129.33173 3516 3431 11964870.03287 3517 3431 -11171906.87604 3518 3431 -13613251.03531 3519 3431 72382619.39281 3520 3431 -5744510.449122 3521 3431 -87592384.98863 3522 3431 19624361.87508 3523 3431 15281839.03701 3524 3431 -34626266.33531 3537 3431 2735859.138623 3538 3431 -23029577.62992 3539 3431 -5469183.701778 3540 3431 20317738.40129 3541 3431 -8233769.735779 3542 3431 -96598600.18896 3543 3431 6436842.826668 3544 3431 32897925.65384 3545 3431 -50491961.43478 3432 3432 507163372.2162 3433 3432 7237603.668449 3434 3432 63171.26888609 3435 3432 -97768552.76553 3436 3432 -65334661.13375 3437 3432 814983.4184016 3438 3432 55904688.30974 3439 3432 6636115.541256 3440 3432 -371929.3114105 3519 3432 -27465764.73306 3520 3432 15436493.44557 3521 3432 15369153.97845 3522 3432 -93737827.02013 3523 3432 2368086.475668 3524 3432 73456476.46843 3540 3432 -3381022.64037 3541 3432 -4950487.151454 3542 3432 -5342115.507985 3543 3432 35297954.45178 3544 3432 1431829.559498 3545 3432 -14694178.46936 3546 3432 -36452504.04978 3547 3432 -16209236.0544 3548 3432 20513876.38514 3549 3432 -9940171.192638 3550 3432 1923313.725128 3551 3432 -1578351.743113 3433 3433 479243839.2419 3434 3433 -7684547.900964 3435 3433 -65334661.13375 3436 3433 -76803021.57588 3437 3433 512891.4409333 3438 3433 -18363884.45464 3439 3433 -63428757.10643 3440 3433 1561400.688534 3519 3433 15436493.44557 3520 3433 -28850218.03171 3521 3433 -15788219.65503 3522 3433 2368086.475667 3523 3433 -28491743.93969 3524 3433 -2522415.552542 3540 3433 1299512.850601 3541 3433 -33602048.2611 3542 3433 -30322560.44655 3543 3433 1431829.559502 3544 3433 26422223.1926 3545 3433 -1876397.074467 3546 3433 -16209236.0544 3547 3433 -31395568.63249 3548 3433 16792906.76868 3549 3433 -4326686.276925 3550 3433 -39761979.51182 3551 3433 33716685.95988 3434 3434 526719601.0496 3435 3434 814983.4184014 3436 3434 512891.4409332 3437 3434 -13195949.59502 3438 3434 313834.5773636 3439 3434 1561400.688533 3440 3434 64415432.93373 3519 3434 15369153.97845 3520 3434 -15788219.65503 3521 3434 -27297255.58841 3522 3434 73456476.46876 3523 3434 -2522415.552135 3524 3434 -98623886.54024 3540 3434 1615141.438405 3541 3434 -30322560.44696 3542 3434 -35407691.68486 3543 3434 14776029.85913 3544 3434 -1876397.074467 3545 3434 -114825169.0474 3546 3434 20513876.38514 3547 3434 16792906.76868 3548 3434 -36499073.21199 3549 3434 5856613.537447 3550 3434 33716685.95988 3551 3434 -49158484.41831 3435 3435 272936065.9033 3436 3435 67974760.10349 3437 3435 -431631.5032227 3438 3435 -97286780.51185 3439 3435 -9665338.853946 3440 3435 -243513.5111909 3522 3435 -6985166.079218 3523 3435 1989742.081013 3524 3435 1871669.756412 3543 3435 -35903892.93849 3544 3435 -16209236.0544 3545 3435 -20111123.62821 3546 3435 17575332.77501 3547 3435 16760257.92515 3548 3435 8019273.530703 3549 3435 -49380940.42286 3550 3435 -2540763.951765 3551 3435 -38529819.65891 3436 3436 241451433.2226 3437 3436 -490165.0741773 3438 3436 15334661.14195 3439 3436 34091438.27351 3440 3436 -512891.4409258 3522 3436 -4260257.921042 3523 3436 -37145658.44093 3524 3436 -33211725.57395 3543 3436 -16209236.0544 3544 3436 -30846957.52121 3545 3436 -16540426.57559 3546 3436 16760257.92515 3547 3436 9649887.624199 3548 3436 6545058.911655 3549 3436 3709236.050289 3550 3436 -16351938.32763 3551 3436 3207093.237879 3437 3437 282691779.8788 3438 3437 -243513.5111878 3439 3437 -512891.440926 3440 3437 51642144.09707 3522 3437 -6253330.245749 3523 3437 -33211725.57395 3524 3437 -47248819.99024 3543 3437 -20111123.62821 3544 3437 -16540426.57559 3545 3437 -35036110.24856 3546 3437 -8230726.466628 3547 3437 -6788274.419488 3548 3437 -64159173.03356 3549 3437 -38529819.65942 3550 3437 -3459573.430977 3551 3437 -52741674.50249 3438 3438 250941811.6415 3439 3438 -56636115.53305 3440 3438 -542422.5410457 3522 3438 -29442825.22804 3523 3438 15040763.95587 3524 3438 17931584.71763 3543 3438 -8294337.85986 3544 3438 -4326686.276927 3545 3438 -5714289.242432 3546 3438 -49380940.42286 3547 3438 3709236.050297 3548 3438 38412801.85615 3549 3438 15728770.17635 3550 3438 -14423313.72924 3551 3438 -7391833.442228 3439 3439 237298694.5795 3440 3439 -1561400.688515 3522 3439 15040763.95587 3523 3439 -28424057.12979 3524 3439 -16540426.57559 3543 3439 1923313.725128 3544 3439 -38116146.17906 3545 3439 -32949980.69584 3546 3439 -2540763.951758 3547 3439 -16351938.32763 3548 3439 3207093.237879 3549 3439 -14423313.72924 3550 3439 11502808.30206 3551 3439 6283314.033542 3440 3440 266261171.1829 3522 3440 17931584.71763 3523 3440 -16540426.57559 3524 3440 -32613209.85713 3543 3440 1377794.09374 3544 3440 -32949980.69584 3545 3440 -44769595.53089 3546 3440 38412801.85581 3547 3440 -3459573.430977 3548 3440 -52741674.50249 3549 3440 7135215.166498 3550 3440 -7050019.297601 3551 3440 -60247075.66791 3441 3441 686246478.3192 3442 3441 62499999.98975 3443 3441 26305964.70958 3444 3441 -342709650.4072 3445 3441 -62517557.83129 3446 3441 -26298419.34625 3447 3441 11295368.10194 3448 3441 50017557.83334 3449 3441 -21265985.17297 3552 3441 64179725.07093 3553 3441 15625000.00514 3554 3441 22379883.77153 3555 3441 -131080904.1793 3556 3441 -15629389.46552 3557 3441 -81477706.67803 3558 3441 -28030795.60664 3559 3441 12504389.4645 3560 3441 -20094076.36695 3442 3442 592472754.8433 3443 3442 -68590352.01097 3444 3442 -62526336.75206 3445 3442 -48902670.76065 3446 3442 -37999764.78392 3447 3442 75026336.75001 3448 3442 11295368.10194 3449 3442 23873156.16496 3552 3442 15625000.00513 3553 3442 40736294.19042 3554 3442 -4504985.17355 3555 3442 -15631584.19572 3556 3442 -57629159.23151 3557 3442 -24484028.50059 3558 3442 18756584.19674 3559 3442 -28030795.60664 3560 3442 24112532.59506 3443 3443 708219203.5496 3444 3443 -26294646.66457 3445 3443 -30590657.17329 3446 3443 7845748.044902 3447 3443 -31898977.75945 3448 3443 15915437.44331 3449 3443 30120981.60519 3552 3443 -7512792.611826 3553 3443 -28418903.81719 3554 3443 -109296917.9411 3555 3443 -81133941.74793 3556 3443 -22561100.97091 3557 3443 -119114540.4154 3558 3443 -30141114.55043 3559 3443 16075021.73004 3560 3443 -74748788.28438 3444 3444 1165690130.316 3445 3444 62543894.59362 3446 3444 30858903.05731 3447 3444 26211628.98162 3448 3444 -62517557.8313 3449 3444 26694959.91784 3450 3444 -229462147.1059 3451 3444 3.129243850708e-06 3452 3444 -4571801.756165 3453 3444 -93117579.12609 3454 3444 62499999.98975 3455 3444 -26687655.2966 3552 3444 -115335214.0726 3553 3444 -15631584.19572 3554 3444 68329440.16886 3555 3444 130473837.5578 3556 3444 15635973.65611 3557 3444 7712253.313144 3558 3444 -53686446.86531 3559 3444 -15629389.46553 3560 3444 25401550.08976 3561 3444 -102220422.2785 3562 3444 1.013278961182e-06 3563 3444 -76032967.78832 3564 3444 -41874328.64406 3565 3444 15625000.00513 3566 3444 -25394418.17384 3445 3445 996913230.7936 3446 3445 -85034368.77329 3447 3445 -62526336.75207 3448 3445 -192572421.21 3449 3445 45540401.39811 3450 3445 3.904104232788e-06 3451 3445 45539169.75475 3452 3445 -27430300.57206 3453 3445 62499999.98975 3454 3445 -74366785.10525 3455 3445 14949525.28589 3552 3445 -15629389.46552 3553 3445 -41883469.12474 3554 3445 7334445.059211 3555 3445 15635973.65611 3556 3445 88279612.65644 3557 3445 -21260570.15053 3558 3445 -15631584.19572 3559 3445 -108382459.4402 3560 3445 71307025.97358 3561 3445 -7.748603820801e-07 3562 3445 -33470093.0295 3563 3445 -6857575.146393 3564 3445 15625000.00513 3565 3445 -37186630.13654 3566 3445 18715245.91155 3446 3446 1089507525.384 3447 3446 27041494.17268 3448 3446 53223718.26906 3449 3446 45623912.47205 3450 3446 -4571801.756165 3451 3446 -27430300.57206 3452 3446 85330883.72684 3453 3446 -27030537.24082 3454 3446 15223830.84127 3455 3446 -24006523.35327 3552 3446 67985675.23876 3553 3446 5415714.150796 3554 3446 -77126033.46393 3555 3446 7717499.145858 3556 3446 -21256373.52338 3557 3446 -156819638.9591 3558 3446 25405116.04772 3559 3446 72953597.68388 3560 3446 -149232299.5136 3561 3446 -75690085.8441 3562 3446 -6857575.146393 3563 3446 -98280306.98791 3564 3446 -25394418.17384 3565 3446 18715245.91155 3566 3446 -55588121.11081 3447 3447 686246478.3192 3448 3447 62499999.98975 3449 3447 26305964.70958 3450 3447 -91763195.44578 3451 3447 -62499999.98975 3452 3447 24744636.36161 3453 3447 -342709650.4072 3454 3447 -62517557.83129 3455 3447 -26298419.34625 3456 3447 11295368.10194 3457 3447 50017557.83334 3458 3447 -21265985.17297 3552 3447 1493260.574915 3553 3447 18756584.19674 3554 3447 14705768.01689 3555 3447 -8426923.443562 3556 3447 -15631584.19572 3557 3447 -11969908.87826 3558 3447 64179725.07093 3559 3447 15625000.00514 3560 3447 22379883.77153 3561 3447 -26778951.03495 3562 3447 -15625000.00513 3563 3447 -12536345.25295 3564 3447 -131080904.1793 3565 3447 -15629389.46552 3566 3447 -81477706.67803 3567 3447 -28030795.60664 3568 3447 12504389.4645 3569 3447 -20094076.36695 3448 3448 592472754.8433 3449 3448 -68590352.01097 3450 3448 -62499999.98975 3451 3448 -73012401.42493 3452 3448 12480775.28616 3453 3448 -62526336.75206 3454 3448 -48902670.76065 3455 3448 -37999764.78392 3456 3448 75026336.75001 3457 3448 11295368.10194 3458 3448 23873156.16496 3552 3448 12504389.4645 3553 3448 1493260.574915 3554 3448 -7843093.74256 3555 3448 -15629389.46552 3556 3448 -63122936.0184 3557 3448 -46615995.93793 3558 3448 15625000.00513 3559 3448 40736294.19042 3560 3448 -4504985.17355 3561 3448 -15625000.00513 3562 3448 -22091252.52743 3563 3448 -11857670.76516 3564 3448 -15631584.19572 3565 3448 -57629159.23151 3566 3448 -24484028.50059 3567 3448 18756584.19674 3568 3448 -28030795.60664 3569 3448 24112532.59506 3449 3449 708219203.5496 3450 3449 24401754.41739 3451 3449 12206469.73079 3452 3449 -20394833.53905 3453 3449 -26294646.66457 3454 3449 -30590657.17329 3455 3449 7845748.044902 3456 3449 -31898977.75945 3457 3449 15915437.44331 3458 3449 30120981.60519 3552 3449 9803845.344592 3553 3449 -11764640.61384 3554 3449 3982028.199772 3555 3449 -11968229.26313 3556 3449 -48262567.85004 3557 3449 -28540237.05556 3558 3449 -7512792.611826 3559 3449 -28418903.81719 3560 3449 -109296917.9411 3561 3449 -12536345.25295 3562 3449 -11857670.76516 3563 3449 -15333780.81983 3564 3449 -81133941.74793 3565 3449 -22561100.97091 3566 3449 -119114540.4154 3567 3449 -30141114.55043 3568 3449 16075021.73004 3569 3449 -74748788.28438 3450 3450 1082651565.536 3451 3450 1.692771911621e-05 3452 3450 9143603.512253 3453 3450 130318343.5391 3454 3450 -8.195638656616e-06 3455 3450 2285900.879194 3459 3450 -229462147.1059 3460 3450 3.129243850708e-06 3461 3450 -4571801.756165 3462 3450 -93117579.12609 3463 3450 62499999.98975 3464 3450 -26687655.2966 3555 3450 -98285243.92273 3556 3450 1.072883605957e-06 3557 3450 73747066.90912 3558 3450 -40551938.13439 3559 3450 -15625000.00514 3560 3450 24822942.95376 3561 3450 99158852.54101 3562 3450 3.457069396973e-06 3563 3450 2285900.879224 3564 3450 -39821273.75826 3565 3450 -8.895993232727e-06 3566 3450 571475.2200941 3570 3450 -102220422.2785 3571 3450 1.013278961182e-06 3572 3450 -76032967.78832 3573 3450 -41874328.64406 3574 3450 15625000.00513 3575 3450 -25394418.17384 3451 3451 932645213.4434 3452 3451 -109721202.2342 3453 3451 -8.702278137207e-06 3454 3451 -107181385.3168 3455 3451 54860601.11709 3459 3451 3.904104232788e-06 3460 3451 45539169.75475 3461 3451 -27430300.57206 3462 3451 62499999.98975 3463 3451 -74366785.10525 3464 3451 14949525.28589 3555 3451 -4.172325134277e-07 3556 3451 -29534914.67368 3557 3451 -6857575.146393 3558 3451 -15625000.00514 3559 3451 -35864239.62686 3560 3451 18029482.02244 3561 3451 3.814697265625e-06 3562 3451 61657264.49931 3563 3451 -27430300.57206 3564 3451 -7.718801498413e-06 3565 3451 -99196206.00148 3566 3451 73626608.60945 3570 3451 -7.748603820801e-07 3571 3451 -33470093.0295 3572 3451 -6857575.146393 3573 3451 15625000.00513 3574 3451 -37186630.13654 3575 3451 18715245.91155 3452 3452 1092614674.45 3453 3452 2285900.879194 3454 3452 54860601.11708 3455 3452 98899681.61908 3459 3452 -4571801.756165 3460 3452 -27430300.57206 3461 3452 85330883.72684 3462 3452 -27030537.24082 3463 3452 15223830.84127 3464 3452 -24006523.35327 3555 3452 73404184.96491 3556 3452 -6857575.146392 3557 3452 -87786498.03904 3558 3452 24822942.95376 3559 3452 18029482.02244 3560 3452 -52061746.4183 3561 3452 2285900.879224 3562 3452 -27430300.57206 3563 3452 -184190435.19 3564 3452 571475.2200943 3565 3452 73352303.05408 3566 3452 -168344038.6739 3570 3452 -75690085.8441 3571 3452 -6857575.146393 3572 3452 -98280306.98791 3573 3452 -25394418.17384 3574 3452 18715245.91155 3575 3452 -55588121.11081 3453 3453 1165690130.316 3454 3453 62543894.59362 3455 3453 30858903.05731 3456 3453 26211628.98162 3457 3453 -62517557.8313 3458 3453 26694959.91784 3459 3453 -91763195.44578 3460 3453 -62499999.98975 3461 3453 24744636.36161 3462 3453 -229462147.1059 3463 3453 3.129243850708e-06 3464 3453 -4571801.756165 3465 3453 -93117579.12609 3466 3453 62499999.98975 3467 3453 -26687655.2966 3555 3453 -26133752.36576 3556 3453 15625000.00514 3557 3453 11964870.03287 3558 3453 -115335214.0726 3559 3453 -15631584.19572 3560 3453 68329440.16886 3561 3453 19205852.96814 3562 3453 4.768371582031e-06 3563 3453 571475.220082 3564 3453 130473837.5578 3565 3453 15635973.65611 3566 3453 7712253.313144 3567 3453 -53686446.86531 3568 3453 -15629389.46553 3569 3453 25401550.08976 3570 3453 -26778951.03495 3571 3453 -15625000.00513 3572 3453 -12536345.25295 3573 3453 -102220422.2785 3574 3453 1.013278961182e-06 3575 3453 -76032967.78832 3576 3453 -41874328.64406 3577 3453 15625000.00513 3578 3453 -25394418.17384 3454 3454 996913230.7936 3455 3454 -85034368.77329 3456 3454 -62526336.75207 3457 3454 -192572421.21 3458 3454 45540401.39811 3459 3454 -62499999.98975 3460 3454 -73012401.42493 3461 3454 12480775.28616 3462 3454 3.904104232788e-06 3463 3454 45539169.75475 3464 3454 -27430300.57206 3465 3454 62499999.98975 3466 3454 -74366785.10525 3467 3454 14949525.28589 3555 3454 15625000.00514 3556 3454 -21446053.85824 3557 3454 -11171906.87604 3558 3454 -15629389.46552 3559 3454 -41883469.12474 3560 3454 7334445.059211 3561 3454 6.780028343201e-06 3562 3454 -40169079.27509 3563 3454 -46196308.03739 3564 3454 15635973.65611 3565 3454 88279612.65644 3566 3454 -21260570.15053 3567 3454 -15631584.19572 3568 3454 -108382459.4402 3569 3454 71307025.97358 3570 3454 -15625000.00513 3571 3454 -22091252.52743 3572 3454 -11857670.76516 3573 3454 -7.748603820801e-07 3574 3454 -33470093.0295 3575 3454 -6857575.146393 3576 3454 15625000.00513 3577 3454 -37186630.13654 3578 3454 18715245.91155 3455 3455 1089507525.384 3456 3455 27041494.17268 3457 3455 53223718.26906 3458 3455 45623912.47205 3459 3455 24401754.41739 3460 3455 12206469.73079 3461 3455 -20394833.53905 3462 3455 -4571801.756165 3463 3455 -27430300.57206 3464 3455 85330883.72684 3465 3455 -27030537.24082 3466 3455 15223830.84127 3467 3455 -24006523.35327 3555 3455 11964870.03287 3556 3455 -11171906.87604 3557 3455 -13613251.03531 3558 3455 67985675.23876 3559 3455 5415714.150796 3560 3455 -77126033.46393 3561 3455 571475.2200821 3562 3455 -45922002.48202 3563 3455 -10938367.40355 3564 3455 7717499.145858 3565 3455 -21256373.52338 3566 3455 -156819638.9591 3567 3455 25405116.04772 3568 3455 72953597.68388 3569 3455 -149232299.5136 3570 3455 -12536345.25295 3571 3455 -11857670.76516 3572 3455 -15333780.81983 3573 3455 -75690085.8441 3574 3455 -6857575.146393 3575 3455 -98280306.98791 3576 3455 -25394418.17384 3577 3455 18715245.91155 3578 3455 -55588121.11081 3456 3456 686246478.3192 3457 3456 62499999.98975 3458 3456 26305964.70958 3462 3456 -91763195.44578 3463 3456 -62499999.98975 3464 3456 24744636.36161 3465 3456 -342709650.4072 3466 3456 -62517557.83129 3467 3456 -26298419.34625 3468 3456 11295368.10194 3469 3456 50017557.83334 3470 3456 -21265985.17297 3558 3456 1493260.574915 3559 3456 18756584.19674 3560 3456 14705768.01689 3564 3456 -8426923.443562 3565 3456 -15631584.19572 3566 3456 -11969908.87826 3567 3456 64179725.07093 3568 3456 15625000.00514 3569 3456 22379883.77153 3573 3456 -26778951.03495 3574 3456 -15625000.00513 3575 3456 -12536345.25295 3576 3456 -131080904.1793 3577 3456 -15629389.46552 3578 3456 -81477706.67803 3579 3456 -28030795.60664 3580 3456 12504389.4645 3581 3456 -20094076.36695 3457 3457 592472754.8433 3458 3457 -68590352.01097 3462 3457 -62499999.98975 3463 3457 -73012401.42493 3464 3457 12480775.28616 3465 3457 -62526336.75206 3466 3457 -48902670.76065 3467 3457 -37999764.78392 3468 3457 75026336.75001 3469 3457 11295368.10194 3470 3457 23873156.16496 3558 3457 12504389.4645 3559 3457 1493260.574915 3560 3457 -7843093.74256 3564 3457 -15629389.46552 3565 3457 -63122936.0184 3566 3457 -46615995.93793 3567 3457 15625000.00513 3568 3457 40736294.19042 3569 3457 -4504985.17355 3573 3457 -15625000.00513 3574 3457 -22091252.52743 3575 3457 -11857670.76516 3576 3457 -15631584.19572 3577 3457 -57629159.23151 3578 3457 -24484028.50059 3579 3457 18756584.19674 3580 3457 -28030795.60664 3581 3457 24112532.59506 3458 3458 708219203.5496 3462 3458 24401754.41739 3463 3458 12206469.73079 3464 3458 -20394833.53905 3465 3458 -26294646.66457 3466 3458 -30590657.17329 3467 3458 7845748.044902 3468 3458 -31898977.75945 3469 3458 15915437.44331 3470 3458 30120981.60519 3558 3458 9803845.344592 3559 3458 -11764640.61384 3560 3458 3982028.199772 3564 3458 -11968229.26313 3565 3458 -48262567.85004 3566 3458 -28540237.05556 3567 3458 -7512792.611826 3568 3458 -28418903.81719 3569 3458 -109296917.9411 3573 3458 -12536345.25295 3574 3458 -11857670.76516 3575 3458 -15333780.81983 3576 3458 -81133941.74793 3577 3458 -22561100.97091 3578 3458 -119114540.4154 3579 3458 -30141114.55043 3580 3458 16075021.73004 3581 3458 -74748788.28438 3459 3459 1082651565.536 3460 3459 1.692771911621e-05 3461 3459 9143603.512253 3462 3459 130318343.5391 3463 3459 -8.195638656616e-06 3464 3459 2285900.879194 3471 3459 -229462147.1059 3472 3459 3.129243850708e-06 3473 3459 -4571801.756165 3474 3459 -93117579.12609 3475 3459 62499999.98975 3476 3459 -26687655.2966 3561 3459 -98285243.92273 3562 3459 1.072883605957e-06 3563 3459 73747066.90912 3564 3459 -40551938.13439 3565 3459 -15625000.00514 3566 3459 24822942.95376 3570 3459 99158852.54101 3571 3459 3.457069396973e-06 3572 3459 2285900.879224 3573 3459 -39821273.75826 3574 3459 -8.895993232727e-06 3575 3459 571475.2200941 3582 3459 -102220422.2785 3583 3459 1.013278961182e-06 3584 3459 -76032967.78832 3585 3459 -41874328.64406 3586 3459 15625000.00513 3587 3459 -25394418.17384 3460 3460 932645213.4434 3461 3460 -109721202.2342 3462 3460 -8.702278137207e-06 3463 3460 -107181385.3168 3464 3460 54860601.11709 3471 3460 3.904104232788e-06 3472 3460 45539169.75475 3473 3460 -27430300.57206 3474 3460 62499999.98975 3475 3460 -74366785.10525 3476 3460 14949525.28589 3561 3460 -4.172325134277e-07 3562 3460 -29534914.67368 3563 3460 -6857575.146393 3564 3460 -15625000.00514 3565 3460 -35864239.62686 3566 3460 18029482.02244 3570 3460 3.814697265625e-06 3571 3460 61657264.49931 3572 3460 -27430300.57206 3573 3460 -7.718801498413e-06 3574 3460 -99196206.00148 3575 3460 73626608.60945 3582 3460 -7.748603820801e-07 3583 3460 -33470093.0295 3584 3460 -6857575.146393 3585 3460 15625000.00513 3586 3460 -37186630.13654 3587 3460 18715245.91155 3461 3461 1092614674.45 3462 3461 2285900.879194 3463 3461 54860601.11708 3464 3461 98899681.61908 3471 3461 -4571801.756165 3472 3461 -27430300.57206 3473 3461 85330883.72684 3474 3461 -27030537.24082 3475 3461 15223830.84127 3476 3461 -24006523.35327 3561 3461 73404184.96491 3562 3461 -6857575.146392 3563 3461 -87786498.03904 3564 3461 24822942.95376 3565 3461 18029482.02244 3566 3461 -52061746.4183 3570 3461 2285900.879224 3571 3461 -27430300.57206 3572 3461 -184190435.19 3573 3461 571475.2200943 3574 3461 73352303.05408 3575 3461 -168344038.6739 3582 3461 -75690085.8441 3583 3461 -6857575.146393 3584 3461 -98280306.98791 3585 3461 -25394418.17384 3586 3461 18715245.91155 3587 3461 -55588121.11081 3462 3462 1082651565.536 3463 3462 1.692771911621e-05 3464 3462 9143603.512253 3465 3462 130318343.5391 3466 3462 -8.195638656616e-06 3467 3462 2285900.879194 3471 3462 -91763195.44578 3472 3462 -62499999.98975 3473 3462 24744636.36161 3474 3462 -229462147.1059 3475 3462 3.129243850708e-06 3476 3462 -4571801.756165 3477 3462 -93117579.12609 3478 3462 62499999.98975 3479 3462 -26687655.2966 3561 3462 -26133752.36576 3562 3462 15625000.00514 3563 3462 11964870.03287 3564 3462 -98285243.92273 3565 3462 1.072883605957e-06 3566 3462 73747066.90912 3567 3462 -40551938.13439 3568 3462 -15625000.00514 3569 3462 24822942.95376 3570 3462 19205852.96814 3571 3462 4.768371582031e-06 3572 3462 571475.220082 3573 3462 99158852.54101 3574 3462 3.457069396973e-06 3575 3462 2285900.879224 3576 3462 -39821273.75826 3577 3462 -8.895993232727e-06 3578 3462 571475.2200941 3582 3462 -26778951.03495 3583 3462 -15625000.00513 3584 3462 -12536345.25295 3585 3462 -102220422.2785 3586 3462 1.013278961182e-06 3587 3462 -76032967.78832 3588 3462 -41874328.64406 3589 3462 15625000.00513 3590 3462 -25394418.17384 3463 3463 932645213.4434 3464 3463 -109721202.2342 3465 3463 -8.702278137207e-06 3466 3463 -107181385.3168 3467 3463 54860601.11709 3471 3463 -62499999.98975 3472 3463 -73012401.42493 3473 3463 12480775.28616 3474 3463 3.904104232788e-06 3475 3463 45539169.75475 3476 3463 -27430300.57206 3477 3463 62499999.98975 3478 3463 -74366785.10525 3479 3463 14949525.28589 3561 3463 15625000.00514 3562 3463 -21446053.85824 3563 3463 -11171906.87604 3564 3463 -4.172325134277e-07 3565 3463 -29534914.67368 3566 3463 -6857575.146393 3567 3463 -15625000.00514 3568 3463 -35864239.62686 3569 3463 18029482.02244 3570 3463 6.780028343201e-06 3571 3463 -40169079.27509 3572 3463 -46196308.03739 3573 3463 3.814697265625e-06 3574 3463 61657264.49931 3575 3463 -27430300.57206 3576 3463 -7.718801498413e-06 3577 3463 -99196206.00148 3578 3463 73626608.60945 3582 3463 -15625000.00513 3583 3463 -22091252.52743 3584 3463 -11857670.76516 3585 3463 -7.748603820801e-07 3586 3463 -33470093.0295 3587 3463 -6857575.146393 3588 3463 15625000.00513 3589 3463 -37186630.13654 3590 3463 18715245.91155 3464 3464 1092614674.45 3465 3464 2285900.879194 3466 3464 54860601.11708 3467 3464 98899681.61908 3471 3464 24401754.41739 3472 3464 12206469.73079 3473 3464 -20394833.53905 3474 3464 -4571801.756165 3475 3464 -27430300.57206 3476 3464 85330883.72684 3477 3464 -27030537.24082 3478 3464 15223830.84127 3479 3464 -24006523.35327 3561 3464 11964870.03287 3562 3464 -11171906.87604 3563 3464 -13613251.03531 3564 3464 73404184.96491 3565 3464 -6857575.146392 3566 3464 -87786498.03904 3567 3464 24822942.95376 3568 3464 18029482.02244 3569 3464 -52061746.4183 3570 3464 571475.2200821 3571 3464 -45922002.48202 3572 3464 -10938367.40355 3573 3464 2285900.879224 3574 3464 -27430300.57206 3575 3464 -184190435.19 3576 3464 571475.2200943 3577 3464 73352303.05408 3578 3464 -168344038.6739 3582 3464 -12536345.25295 3583 3464 -11857670.76516 3584 3464 -15333780.81983 3585 3464 -75690085.8441 3586 3464 -6857575.146393 3587 3464 -98280306.98791 3588 3464 -25394418.17384 3589 3464 18715245.91155 3590 3464 -55588121.11081 3465 3465 1165690130.316 3466 3465 62543894.59362 3467 3465 30858903.05731 3468 3465 26211628.98162 3469 3465 -62517557.8313 3470 3465 26694959.91784 3474 3465 -91763195.44578 3475 3465 -62499999.98975 3476 3465 24744636.36161 3477 3465 -229462147.1059 3478 3465 3.129243850708e-06 3479 3465 -4571801.756165 3480 3465 -93117579.12609 3481 3465 62499999.98975 3482 3465 -26687655.2966 3564 3465 -26133752.36576 3565 3465 15625000.00514 3566 3465 11964870.03287 3567 3465 -115335214.0726 3568 3465 -15631584.19572 3569 3465 68329440.16886 3573 3465 19205852.96814 3574 3465 4.768371582031e-06 3575 3465 571475.220082 3576 3465 130473837.5578 3577 3465 15635973.65611 3578 3465 7712253.313144 3579 3465 -53686446.86531 3580 3465 -15629389.46553 3581 3465 25401550.08976 3585 3465 -26778951.03495 3586 3465 -15625000.00513 3587 3465 -12536345.25295 3588 3465 -102220422.2785 3589 3465 1.013278961182e-06 3590 3465 -76032967.78832 3591 3465 -41874328.64406 3592 3465 15625000.00513 3593 3465 -25394418.17384 3466 3466 996913230.7936 3467 3466 -85034368.77329 3468 3466 -62526336.75207 3469 3466 -192572421.21 3470 3466 45540401.39811 3474 3466 -62499999.98975 3475 3466 -73012401.42493 3476 3466 12480775.28616 3477 3466 3.904104232788e-06 3478 3466 45539169.75475 3479 3466 -27430300.57206 3480 3466 62499999.98975 3481 3466 -74366785.10525 3482 3466 14949525.28589 3564 3466 15625000.00514 3565 3466 -21446053.85824 3566 3466 -11171906.87604 3567 3466 -15629389.46552 3568 3466 -41883469.12474 3569 3466 7334445.059211 3573 3466 6.780028343201e-06 3574 3466 -40169079.27509 3575 3466 -46196308.03739 3576 3466 15635973.65611 3577 3466 88279612.65644 3578 3466 -21260570.15053 3579 3466 -15631584.19572 3580 3466 -108382459.4402 3581 3466 71307025.97358 3585 3466 -15625000.00513 3586 3466 -22091252.52743 3587 3466 -11857670.76516 3588 3466 -7.748603820801e-07 3589 3466 -33470093.0295 3590 3466 -6857575.146393 3591 3466 15625000.00513 3592 3466 -37186630.13654 3593 3466 18715245.91155 3467 3467 1089507525.384 3468 3467 27041494.17268 3469 3467 53223718.26906 3470 3467 45623912.47205 3474 3467 24401754.41739 3475 3467 12206469.73079 3476 3467 -20394833.53905 3477 3467 -4571801.756165 3478 3467 -27430300.57206 3479 3467 85330883.72684 3480 3467 -27030537.24082 3481 3467 15223830.84127 3482 3467 -24006523.35327 3564 3467 11964870.03287 3565 3467 -11171906.87604 3566 3467 -13613251.03531 3567 3467 67985675.23876 3568 3467 5415714.150796 3569 3467 -77126033.46393 3573 3467 571475.2200821 3574 3467 -45922002.48202 3575 3467 -10938367.40355 3576 3467 7717499.145858 3577 3467 -21256373.52338 3578 3467 -156819638.9591 3579 3467 25405116.04772 3580 3467 72953597.68388 3581 3467 -149232299.5136 3585 3467 -12536345.25295 3586 3467 -11857670.76516 3587 3467 -15333780.81983 3588 3467 -75690085.8441 3589 3467 -6857575.146393 3590 3467 -98280306.98791 3591 3467 -25394418.17384 3592 3467 18715245.91155 3593 3467 -55588121.11081 3468 3468 686246478.3192 3469 3468 62499999.98975 3470 3468 26305964.70958 3477 3468 -91763195.44578 3478 3468 -62499999.98975 3479 3468 24744636.36161 3480 3468 -342709650.4072 3481 3468 -62517557.83129 3482 3468 -26298419.34625 3483 3468 11295368.10194 3484 3468 50017557.83334 3485 3468 -21265985.17297 3567 3468 1493260.574915 3568 3468 18756584.19674 3569 3468 14705768.01689 3576 3468 -8426923.443562 3577 3468 -15631584.19572 3578 3468 -11969908.87826 3579 3468 64179725.07093 3580 3468 15625000.00514 3581 3468 22379883.77153 3588 3468 -26778951.03495 3589 3468 -15625000.00513 3590 3468 -12536345.25295 3591 3468 -131080904.1793 3592 3468 -15629389.46552 3593 3468 -81477706.67803 3594 3468 -28030795.60664 3595 3468 12504389.4645 3596 3468 -20094076.36695 3469 3469 592472754.8433 3470 3469 -68590352.01097 3477 3469 -62499999.98975 3478 3469 -73012401.42493 3479 3469 12480775.28616 3480 3469 -62526336.75206 3481 3469 -48902670.76065 3482 3469 -37999764.78392 3483 3469 75026336.75001 3484 3469 11295368.10194 3485 3469 23873156.16496 3567 3469 12504389.4645 3568 3469 1493260.574915 3569 3469 -7843093.74256 3576 3469 -15629389.46552 3577 3469 -63122936.0184 3578 3469 -46615995.93793 3579 3469 15625000.00513 3580 3469 40736294.19042 3581 3469 -4504985.17355 3588 3469 -15625000.00513 3589 3469 -22091252.52743 3590 3469 -11857670.76516 3591 3469 -15631584.19572 3592 3469 -57629159.23151 3593 3469 -24484028.50059 3594 3469 18756584.19674 3595 3469 -28030795.60664 3596 3469 24112532.59506 3470 3470 708219203.5496 3477 3470 24401754.41739 3478 3470 12206469.73079 3479 3470 -20394833.53905 3480 3470 -26294646.66457 3481 3470 -30590657.17329 3482 3470 7845748.044902 3483 3470 -31898977.75945 3484 3470 15915437.44331 3485 3470 30120981.60519 3567 3470 9803845.344592 3568 3470 -11764640.61384 3569 3470 3982028.199772 3576 3470 -11968229.26313 3577 3470 -48262567.85004 3578 3470 -28540237.05556 3579 3470 -7512792.611826 3580 3470 -28418903.81719 3581 3470 -109296917.9411 3588 3470 -12536345.25295 3589 3470 -11857670.76516 3590 3470 -15333780.81983 3591 3470 -81133941.74793 3592 3470 -22561100.97091 3593 3470 -119114540.4154 3594 3470 -30141114.55043 3595 3470 16075021.73004 3596 3470 -74748788.28438 3471 3471 1082651565.536 3472 3471 1.692771911621e-05 3473 3471 9143603.512253 3474 3471 130318343.5391 3475 3471 -8.195638656616e-06 3476 3471 2285900.879194 3486 3471 -229462147.1059 3487 3471 3.129243850708e-06 3488 3471 -4571801.756165 3489 3471 -93117579.12609 3490 3471 62499999.98975 3491 3471 -26687655.2966 3570 3471 -98285243.92273 3571 3471 1.072883605957e-06 3572 3471 73747066.90912 3573 3471 -40551938.13439 3574 3471 -15625000.00514 3575 3471 24822942.95376 3582 3471 99158852.54101 3583 3471 3.457069396973e-06 3584 3471 2285900.879224 3585 3471 -39821273.75826 3586 3471 -8.895993232727e-06 3587 3471 571475.2200941 3597 3471 -102220422.2785 3598 3471 1.013278961182e-06 3599 3471 -76032967.78832 3600 3471 -41874328.64406 3601 3471 15625000.00513 3602 3471 -25394418.17384 3472 3472 932645213.4434 3473 3472 -109721202.2342 3474 3472 -8.702278137207e-06 3475 3472 -107181385.3168 3476 3472 54860601.11709 3486 3472 3.904104232788e-06 3487 3472 45539169.75475 3488 3472 -27430300.57206 3489 3472 62499999.98975 3490 3472 -74366785.10525 3491 3472 14949525.28589 3570 3472 -4.172325134277e-07 3571 3472 -29534914.67368 3572 3472 -6857575.146393 3573 3472 -15625000.00514 3574 3472 -35864239.62686 3575 3472 18029482.02244 3582 3472 3.814697265625e-06 3583 3472 61657264.49931 3584 3472 -27430300.57206 3585 3472 -7.718801498413e-06 3586 3472 -99196206.00148 3587 3472 73626608.60945 3597 3472 -7.748603820801e-07 3598 3472 -33470093.0295 3599 3472 -6857575.146393 3600 3472 15625000.00513 3601 3472 -37186630.13654 3602 3472 18715245.91155 3473 3473 1092614674.45 3474 3473 2285900.879194 3475 3473 54860601.11708 3476 3473 98899681.61908 3486 3473 -4571801.756165 3487 3473 -27430300.57206 3488 3473 85330883.72684 3489 3473 -27030537.24082 3490 3473 15223830.84127 3491 3473 -24006523.35327 3570 3473 73404184.96491 3571 3473 -6857575.146392 3572 3473 -87786498.03904 3573 3473 24822942.95376 3574 3473 18029482.02244 3575 3473 -52061746.4183 3582 3473 2285900.879224 3583 3473 -27430300.57206 3584 3473 -184190435.19 3585 3473 571475.2200943 3586 3473 73352303.05408 3587 3473 -168344038.6739 3597 3473 -75690085.8441 3598 3473 -6857575.146393 3599 3473 -98280306.98791 3600 3473 -25394418.17384 3601 3473 18715245.91155 3602 3473 -55588121.11081 3474 3474 1082651565.536 3475 3474 1.692771911621e-05 3476 3474 9143603.512253 3477 3474 130318343.5391 3478 3474 -8.195638656616e-06 3479 3474 2285900.879194 3486 3474 -91763195.44578 3487 3474 -62499999.98975 3488 3474 24744636.36161 3489 3474 -229462147.1059 3490 3474 3.129243850708e-06 3491 3474 -4571801.756165 3492 3474 -93117579.12609 3493 3474 62499999.98975 3494 3474 -26687655.2966 3570 3474 -26133752.36576 3571 3474 15625000.00514 3572 3474 11964870.03287 3573 3474 -98285243.92273 3574 3474 1.072883605957e-06 3575 3474 73747066.90912 3576 3474 -40551938.13439 3577 3474 -15625000.00514 3578 3474 24822942.95376 3582 3474 19205852.96814 3583 3474 4.768371582031e-06 3584 3474 571475.220082 3585 3474 99158852.54101 3586 3474 3.457069396973e-06 3587 3474 2285900.879224 3588 3474 -39821273.75826 3589 3474 -8.895993232727e-06 3590 3474 571475.2200941 3597 3474 -26778951.03495 3598 3474 -15625000.00513 3599 3474 -12536345.25295 3600 3474 -102220422.2785 3601 3474 1.013278961182e-06 3602 3474 -76032967.78832 3603 3474 -41874328.64406 3604 3474 15625000.00513 3605 3474 -25394418.17384 3475 3475 932645213.4434 3476 3475 -109721202.2342 3477 3475 -8.702278137207e-06 3478 3475 -107181385.3168 3479 3475 54860601.11709 3486 3475 -62499999.98975 3487 3475 -73012401.42493 3488 3475 12480775.28616 3489 3475 3.904104232788e-06 3490 3475 45539169.75475 3491 3475 -27430300.57206 3492 3475 62499999.98975 3493 3475 -74366785.10525 3494 3475 14949525.28589 3570 3475 15625000.00514 3571 3475 -21446053.85824 3572 3475 -11171906.87604 3573 3475 -4.172325134277e-07 3574 3475 -29534914.67368 3575 3475 -6857575.146393 3576 3475 -15625000.00514 3577 3475 -35864239.62686 3578 3475 18029482.02244 3582 3475 6.780028343201e-06 3583 3475 -40169079.27509 3584 3475 -46196308.03739 3585 3475 3.814697265625e-06 3586 3475 61657264.49931 3587 3475 -27430300.57206 3588 3475 -7.718801498413e-06 3589 3475 -99196206.00148 3590 3475 73626608.60945 3597 3475 -15625000.00513 3598 3475 -22091252.52743 3599 3475 -11857670.76516 3600 3475 -7.748603820801e-07 3601 3475 -33470093.0295 3602 3475 -6857575.146393 3603 3475 15625000.00513 3604 3475 -37186630.13654 3605 3475 18715245.91155 3476 3476 1092614674.45 3477 3476 2285900.879194 3478 3476 54860601.11708 3479 3476 98899681.61908 3486 3476 24401754.41739 3487 3476 12206469.73079 3488 3476 -20394833.53905 3489 3476 -4571801.756165 3490 3476 -27430300.57206 3491 3476 85330883.72684 3492 3476 -27030537.24082 3493 3476 15223830.84127 3494 3476 -24006523.35327 3570 3476 11964870.03287 3571 3476 -11171906.87604 3572 3476 -13613251.03531 3573 3476 73404184.96491 3574 3476 -6857575.146392 3575 3476 -87786498.03904 3576 3476 24822942.95376 3577 3476 18029482.02244 3578 3476 -52061746.4183 3582 3476 571475.2200821 3583 3476 -45922002.48202 3584 3476 -10938367.40355 3585 3476 2285900.879224 3586 3476 -27430300.57206 3587 3476 -184190435.19 3588 3476 571475.2200943 3589 3476 73352303.05408 3590 3476 -168344038.6739 3597 3476 -12536345.25295 3598 3476 -11857670.76516 3599 3476 -15333780.81983 3600 3476 -75690085.8441 3601 3476 -6857575.146393 3602 3476 -98280306.98791 3603 3476 -25394418.17384 3604 3476 18715245.91155 3605 3476 -55588121.11081 3477 3477 1082651565.536 3478 3477 1.692771911621e-05 3479 3477 9143603.512253 3480 3477 130318343.5391 3481 3477 -8.195638656616e-06 3482 3477 2285900.879194 3489 3477 -91763195.44578 3490 3477 -62499999.98975 3491 3477 24744636.36161 3492 3477 -229462147.1059 3493 3477 3.129243850708e-06 3494 3477 -4571801.756165 3495 3477 -93117579.12609 3496 3477 62499999.98975 3497 3477 -26687655.2966 3573 3477 -26133752.36576 3574 3477 15625000.00514 3575 3477 11964870.03287 3576 3477 -98285243.92273 3577 3477 1.072883605957e-06 3578 3477 73747066.90912 3579 3477 -40551938.13439 3580 3477 -15625000.00514 3581 3477 24822942.95376 3585 3477 19205852.96814 3586 3477 4.768371582031e-06 3587 3477 571475.220082 3588 3477 99158852.54101 3589 3477 3.457069396973e-06 3590 3477 2285900.879224 3591 3477 -39821273.75826 3592 3477 -8.895993232727e-06 3593 3477 571475.2200941 3600 3477 -26778951.03495 3601 3477 -15625000.00513 3602 3477 -12536345.25295 3603 3477 -102220422.2785 3604 3477 1.013278961182e-06 3605 3477 -76032967.78832 3606 3477 -41874328.64406 3607 3477 15625000.00513 3608 3477 -25394418.17384 3478 3478 932645213.4434 3479 3478 -109721202.2342 3480 3478 -8.702278137207e-06 3481 3478 -107181385.3168 3482 3478 54860601.11709 3489 3478 -62499999.98975 3490 3478 -73012401.42493 3491 3478 12480775.28616 3492 3478 3.904104232788e-06 3493 3478 45539169.75475 3494 3478 -27430300.57206 3495 3478 62499999.98975 3496 3478 -74366785.10525 3497 3478 14949525.28589 3573 3478 15625000.00514 3574 3478 -21446053.85824 3575 3478 -11171906.87604 3576 3478 -4.172325134277e-07 3577 3478 -29534914.67368 3578 3478 -6857575.146393 3579 3478 -15625000.00514 3580 3478 -35864239.62686 3581 3478 18029482.02244 3585 3478 6.780028343201e-06 3586 3478 -40169079.27509 3587 3478 -46196308.03739 3588 3478 3.814697265625e-06 3589 3478 61657264.49931 3590 3478 -27430300.57206 3591 3478 -7.718801498413e-06 3592 3478 -99196206.00148 3593 3478 73626608.60945 3600 3478 -15625000.00513 3601 3478 -22091252.52743 3602 3478 -11857670.76516 3603 3478 -7.748603820801e-07 3604 3478 -33470093.0295 3605 3478 -6857575.146393 3606 3478 15625000.00513 3607 3478 -37186630.13654 3608 3478 18715245.91155 3479 3479 1092614674.45 3480 3479 2285900.879194 3481 3479 54860601.11708 3482 3479 98899681.61908 3489 3479 24401754.41739 3490 3479 12206469.73079 3491 3479 -20394833.53905 3492 3479 -4571801.756165 3493 3479 -27430300.57206 3494 3479 85330883.72684 3495 3479 -27030537.24082 3496 3479 15223830.84127 3497 3479 -24006523.35327 3573 3479 11964870.03287 3574 3479 -11171906.87604 3575 3479 -13613251.03531 3576 3479 73404184.96491 3577 3479 -6857575.146392 3578 3479 -87786498.03904 3579 3479 24822942.95376 3580 3479 18029482.02244 3581 3479 -52061746.4183 3585 3479 571475.2200821 3586 3479 -45922002.48202 3587 3479 -10938367.40355 3588 3479 2285900.879224 3589 3479 -27430300.57206 3590 3479 -184190435.19 3591 3479 571475.2200943 3592 3479 73352303.05408 3593 3479 -168344038.6739 3600 3479 -12536345.25295 3601 3479 -11857670.76516 3602 3479 -15333780.81983 3603 3479 -75690085.8441 3604 3479 -6857575.146393 3605 3479 -98280306.98791 3606 3479 -25394418.17384 3607 3479 18715245.91155 3608 3479 -55588121.11081 3480 3480 1165690130.316 3481 3480 62543894.59362 3482 3480 30858903.05731 3483 3480 26211628.98162 3484 3480 -62517557.8313 3485 3480 26694959.91784 3492 3480 -91763195.44578 3493 3480 -62499999.98975 3494 3480 24744636.36161 3495 3480 -229462147.1059 3496 3480 3.129243850708e-06 3497 3480 -4571801.756165 3498 3480 -93117579.12609 3499 3480 62499999.98975 3500 3480 -26687655.2966 3576 3480 -26133752.36576 3577 3480 15625000.00514 3578 3480 11964870.03287 3579 3480 -115335214.0726 3580 3480 -15631584.19572 3581 3480 68329440.16886 3588 3480 19205852.96814 3589 3480 4.768371582031e-06 3590 3480 571475.220082 3591 3480 130473837.5578 3592 3480 15635973.65611 3593 3480 7712253.313144 3594 3480 -53686446.86531 3595 3480 -15629389.46553 3596 3480 25401550.08976 3603 3480 -26778951.03495 3604 3480 -15625000.00513 3605 3480 -12536345.25295 3606 3480 -102220422.2785 3607 3480 1.013278961182e-06 3608 3480 -76032967.78832 3609 3480 -41874328.64406 3610 3480 15625000.00513 3611 3480 -25394418.17384 3481 3481 996913230.7936 3482 3481 -85034368.77329 3483 3481 -62526336.75207 3484 3481 -192572421.21 3485 3481 45540401.39811 3492 3481 -62499999.98975 3493 3481 -73012401.42493 3494 3481 12480775.28616 3495 3481 3.904104232788e-06 3496 3481 45539169.75475 3497 3481 -27430300.57206 3498 3481 62499999.98975 3499 3481 -74366785.10525 3500 3481 14949525.28589 3576 3481 15625000.00514 3577 3481 -21446053.85824 3578 3481 -11171906.87604 3579 3481 -15629389.46552 3580 3481 -41883469.12474 3581 3481 7334445.059211 3588 3481 6.780028343201e-06 3589 3481 -40169079.27509 3590 3481 -46196308.03739 3591 3481 15635973.65611 3592 3481 88279612.65644 3593 3481 -21260570.15053 3594 3481 -15631584.19572 3595 3481 -108382459.4402 3596 3481 71307025.97358 3603 3481 -15625000.00513 3604 3481 -22091252.52743 3605 3481 -11857670.76516 3606 3481 -7.748603820801e-07 3607 3481 -33470093.0295 3608 3481 -6857575.146393 3609 3481 15625000.00513 3610 3481 -37186630.13654 3611 3481 18715245.91155 3482 3482 1089507525.384 3483 3482 27041494.17268 3484 3482 53223718.26906 3485 3482 45623912.47205 3492 3482 24401754.41739 3493 3482 12206469.73079 3494 3482 -20394833.53905 3495 3482 -4571801.756165 3496 3482 -27430300.57206 3497 3482 85330883.72684 3498 3482 -27030537.24082 3499 3482 15223830.84127 3500 3482 -24006523.35327 3576 3482 11964870.03287 3577 3482 -11171906.87604 3578 3482 -13613251.03531 3579 3482 67985675.23876 3580 3482 5415714.150796 3581 3482 -77126033.46393 3588 3482 571475.2200821 3589 3482 -45922002.48202 3590 3482 -10938367.40355 3591 3482 7717499.145858 3592 3482 -21256373.52338 3593 3482 -156819638.9591 3594 3482 25405116.04772 3595 3482 72953597.68388 3596 3482 -149232299.5136 3603 3482 -12536345.25295 3604 3482 -11857670.76516 3605 3482 -15333780.81983 3606 3482 -75690085.8441 3607 3482 -6857575.146393 3608 3482 -98280306.98791 3609 3482 -25394418.17384 3610 3482 18715245.91155 3611 3482 -55588121.11081 3483 3483 686246478.3192 3484 3483 62499999.98975 3485 3483 26305964.70958 3495 3483 -91763195.44578 3496 3483 -62499999.98975 3497 3483 24744636.36161 3498 3483 -342709650.4072 3499 3483 -62517557.83129 3500 3483 -26298419.34625 3501 3483 11295368.10194 3502 3483 50017557.83334 3503 3483 -21265985.17297 3579 3483 1493260.574915 3580 3483 18756584.19674 3581 3483 14705768.01689 3591 3483 -8426923.443562 3592 3483 -15631584.19572 3593 3483 -11969908.87826 3594 3483 64179725.07093 3595 3483 15625000.00514 3596 3483 22379883.77153 3606 3483 -26778951.03495 3607 3483 -15625000.00513 3608 3483 -12536345.25295 3609 3483 -131080904.1793 3610 3483 -15629389.46552 3611 3483 -81477706.67803 3612 3483 -28030795.60664 3613 3483 12504389.4645 3614 3483 -20094076.36695 3484 3484 592472754.8433 3485 3484 -68590352.01097 3495 3484 -62499999.98975 3496 3484 -73012401.42493 3497 3484 12480775.28616 3498 3484 -62526336.75206 3499 3484 -48902670.76065 3500 3484 -37999764.78392 3501 3484 75026336.75001 3502 3484 11295368.10194 3503 3484 23873156.16496 3579 3484 12504389.4645 3580 3484 1493260.574915 3581 3484 -7843093.74256 3591 3484 -15629389.46552 3592 3484 -63122936.0184 3593 3484 -46615995.93793 3594 3484 15625000.00513 3595 3484 40736294.19042 3596 3484 -4504985.17355 3606 3484 -15625000.00513 3607 3484 -22091252.52743 3608 3484 -11857670.76516 3609 3484 -15631584.19572 3610 3484 -57629159.23151 3611 3484 -24484028.50059 3612 3484 18756584.19674 3613 3484 -28030795.60664 3614 3484 24112532.59506 3485 3485 708219203.5496 3495 3485 24401754.41739 3496 3485 12206469.73079 3497 3485 -20394833.53905 3498 3485 -26294646.66457 3499 3485 -30590657.17329 3500 3485 7845748.044902 3501 3485 -31898977.75945 3502 3485 15915437.44331 3503 3485 30120981.60519 3579 3485 9803845.344592 3580 3485 -11764640.61384 3581 3485 3982028.199772 3591 3485 -11968229.26313 3592 3485 -48262567.85004 3593 3485 -28540237.05556 3594 3485 -7512792.611826 3595 3485 -28418903.81719 3596 3485 -109296917.9411 3606 3485 -12536345.25295 3607 3485 -11857670.76516 3608 3485 -15333780.81983 3609 3485 -81133941.74793 3610 3485 -22561100.97091 3611 3485 -119114540.4154 3612 3485 -30141114.55043 3613 3485 16075021.73004 3614 3485 -74748788.28438 3486 3486 1082651565.536 3487 3486 1.692771911621e-05 3488 3486 9143603.512253 3489 3486 130318343.5391 3490 3486 -8.195638656616e-06 3491 3486 2285900.879194 3504 3486 -229462147.1059 3505 3486 3.129243850708e-06 3506 3486 -4571801.756165 3507 3486 -93117579.12609 3508 3486 62499999.98975 3509 3486 -26687655.2966 3582 3486 -98285243.92273 3583 3486 1.072883605957e-06 3584 3486 73747066.90912 3585 3486 -40551938.13439 3586 3486 -15625000.00514 3587 3486 24822942.95376 3597 3486 99158852.54101 3598 3486 3.457069396973e-06 3599 3486 2285900.879224 3600 3486 -39821273.75826 3601 3486 -8.895993232727e-06 3602 3486 571475.2200941 3615 3486 -102220422.2785 3616 3486 1.013278961182e-06 3617 3486 -76032967.78832 3618 3486 -41874328.64406 3619 3486 15625000.00513 3620 3486 -25394418.17384 3487 3487 932645213.4434 3488 3487 -109721202.2342 3489 3487 -8.702278137207e-06 3490 3487 -107181385.3168 3491 3487 54860601.11709 3504 3487 3.904104232788e-06 3505 3487 45539169.75475 3506 3487 -27430300.57206 3507 3487 62499999.98975 3508 3487 -74366785.10525 3509 3487 14949525.28589 3582 3487 -4.172325134277e-07 3583 3487 -29534914.67368 3584 3487 -6857575.146393 3585 3487 -15625000.00514 3586 3487 -35864239.62686 3587 3487 18029482.02244 3597 3487 3.814697265625e-06 3598 3487 61657264.49931 3599 3487 -27430300.57206 3600 3487 -7.718801498413e-06 3601 3487 -99196206.00148 3602 3487 73626608.60945 3615 3487 -7.748603820801e-07 3616 3487 -33470093.0295 3617 3487 -6857575.146393 3618 3487 15625000.00513 3619 3487 -37186630.13654 3620 3487 18715245.91155 3488 3488 1092614674.45 3489 3488 2285900.879194 3490 3488 54860601.11708 3491 3488 98899681.61908 3504 3488 -4571801.756165 3505 3488 -27430300.57206 3506 3488 85330883.72684 3507 3488 -27030537.24082 3508 3488 15223830.84127 3509 3488 -24006523.35327 3582 3488 73404184.96491 3583 3488 -6857575.146392 3584 3488 -87786498.03904 3585 3488 24822942.95376 3586 3488 18029482.02244 3587 3488 -52061746.4183 3597 3488 2285900.879224 3598 3488 -27430300.57206 3599 3488 -184190435.19 3600 3488 571475.2200943 3601 3488 73352303.05408 3602 3488 -168344038.6739 3615 3488 -75690085.8441 3616 3488 -6857575.146393 3617 3488 -98280306.98791 3618 3488 -25394418.17384 3619 3488 18715245.91155 3620 3488 -55588121.11081 3489 3489 1082651565.536 3490 3489 1.692771911621e-05 3491 3489 9143603.512253 3492 3489 130318343.5391 3493 3489 -8.195638656616e-06 3494 3489 2285900.879194 3504 3489 -91763195.44578 3505 3489 -62499999.98975 3506 3489 24744636.36161 3507 3489 -229462147.1059 3508 3489 3.129243850708e-06 3509 3489 -4571801.756165 3510 3489 -93117579.12609 3511 3489 62499999.98975 3512 3489 -26687655.2966 3582 3489 -26133752.36576 3583 3489 15625000.00514 3584 3489 11964870.03287 3585 3489 -98285243.92273 3586 3489 1.072883605957e-06 3587 3489 73747066.90912 3588 3489 -40551938.13439 3589 3489 -15625000.00514 3590 3489 24822942.95376 3597 3489 19205852.96814 3598 3489 4.768371582031e-06 3599 3489 571475.220082 3600 3489 99158852.54101 3601 3489 3.457069396973e-06 3602 3489 2285900.879224 3603 3489 -39821273.75826 3604 3489 -8.895993232727e-06 3605 3489 571475.2200941 3615 3489 -26778951.03495 3616 3489 -15625000.00513 3617 3489 -12536345.25295 3618 3489 -102220422.2785 3619 3489 1.013278961182e-06 3620 3489 -76032967.78832 3621 3489 -41874328.64406 3622 3489 15625000.00513 3623 3489 -25394418.17384 3490 3490 932645213.4434 3491 3490 -109721202.2342 3492 3490 -8.702278137207e-06 3493 3490 -107181385.3168 3494 3490 54860601.11709 3504 3490 -62499999.98975 3505 3490 -73012401.42493 3506 3490 12480775.28616 3507 3490 3.904104232788e-06 3508 3490 45539169.75475 3509 3490 -27430300.57206 3510 3490 62499999.98975 3511 3490 -74366785.10525 3512 3490 14949525.28589 3582 3490 15625000.00514 3583 3490 -21446053.85824 3584 3490 -11171906.87604 3585 3490 -4.172325134277e-07 3586 3490 -29534914.67368 3587 3490 -6857575.146393 3588 3490 -15625000.00514 3589 3490 -35864239.62686 3590 3490 18029482.02244 3597 3490 6.780028343201e-06 3598 3490 -40169079.27509 3599 3490 -46196308.03739 3600 3490 3.814697265625e-06 3601 3490 61657264.49931 3602 3490 -27430300.57206 3603 3490 -7.718801498413e-06 3604 3490 -99196206.00148 3605 3490 73626608.60945 3615 3490 -15625000.00513 3616 3490 -22091252.52743 3617 3490 -11857670.76516 3618 3490 -7.748603820801e-07 3619 3490 -33470093.0295 3620 3490 -6857575.146393 3621 3490 15625000.00513 3622 3490 -37186630.13654 3623 3490 18715245.91155 3491 3491 1092614674.45 3492 3491 2285900.879194 3493 3491 54860601.11708 3494 3491 98899681.61908 3504 3491 24401754.41739 3505 3491 12206469.73079 3506 3491 -20394833.53905 3507 3491 -4571801.756165 3508 3491 -27430300.57206 3509 3491 85330883.72684 3510 3491 -27030537.24082 3511 3491 15223830.84127 3512 3491 -24006523.35327 3582 3491 11964870.03287 3583 3491 -11171906.87604 3584 3491 -13613251.03531 3585 3491 73404184.96491 3586 3491 -6857575.146392 3587 3491 -87786498.03904 3588 3491 24822942.95376 3589 3491 18029482.02244 3590 3491 -52061746.4183 3597 3491 571475.2200821 3598 3491 -45922002.48202 3599 3491 -10938367.40355 3600 3491 2285900.879224 3601 3491 -27430300.57206 3602 3491 -184190435.19 3603 3491 571475.2200943 3604 3491 73352303.05408 3605 3491 -168344038.6739 3615 3491 -12536345.25295 3616 3491 -11857670.76516 3617 3491 -15333780.81983 3618 3491 -75690085.8441 3619 3491 -6857575.146393 3620 3491 -98280306.98791 3621 3491 -25394418.17384 3622 3491 18715245.91155 3623 3491 -55588121.11081 3492 3492 1082651565.536 3493 3492 1.692771911621e-05 3494 3492 9143603.512253 3495 3492 130318343.5391 3496 3492 -8.195638656616e-06 3497 3492 2285900.879194 3507 3492 -91763195.44578 3508 3492 -62499999.98975 3509 3492 24744636.36161 3510 3492 -229462147.1059 3511 3492 3.129243850708e-06 3512 3492 -4571801.756165 3513 3492 -93117579.12609 3514 3492 62499999.98975 3515 3492 -26687655.2966 3585 3492 -26133752.36576 3586 3492 15625000.00514 3587 3492 11964870.03287 3588 3492 -98285243.92273 3589 3492 1.072883605957e-06 3590 3492 73747066.90912 3591 3492 -40551938.13439 3592 3492 -15625000.00514 3593 3492 24822942.95376 3600 3492 19205852.96814 3601 3492 4.768371582031e-06 3602 3492 571475.220082 3603 3492 99158852.54101 3604 3492 3.457069396973e-06 3605 3492 2285900.879224 3606 3492 -39821273.75826 3607 3492 -8.895993232727e-06 3608 3492 571475.2200941 3618 3492 -26778951.03495 3619 3492 -15625000.00513 3620 3492 -12536345.25295 3621 3492 -102220422.2785 3622 3492 1.013278961182e-06 3623 3492 -76032967.78832 3624 3492 -41874328.64406 3625 3492 15625000.00513 3626 3492 -25394418.17384 3493 3493 932645213.4434 3494 3493 -109721202.2342 3495 3493 -8.702278137207e-06 3496 3493 -107181385.3168 3497 3493 54860601.11709 3507 3493 -62499999.98975 3508 3493 -73012401.42493 3509 3493 12480775.28616 3510 3493 3.904104232788e-06 3511 3493 45539169.75475 3512 3493 -27430300.57206 3513 3493 62499999.98975 3514 3493 -74366785.10525 3515 3493 14949525.28589 3585 3493 15625000.00514 3586 3493 -21446053.85824 3587 3493 -11171906.87604 3588 3493 -4.172325134277e-07 3589 3493 -29534914.67368 3590 3493 -6857575.146393 3591 3493 -15625000.00514 3592 3493 -35864239.62686 3593 3493 18029482.02244 3600 3493 6.780028343201e-06 3601 3493 -40169079.27509 3602 3493 -46196308.03739 3603 3493 3.814697265625e-06 3604 3493 61657264.49931 3605 3493 -27430300.57206 3606 3493 -7.718801498413e-06 3607 3493 -99196206.00148 3608 3493 73626608.60945 3618 3493 -15625000.00513 3619 3493 -22091252.52743 3620 3493 -11857670.76516 3621 3493 -7.748603820801e-07 3622 3493 -33470093.0295 3623 3493 -6857575.146393 3624 3493 15625000.00513 3625 3493 -37186630.13654 3626 3493 18715245.91155 3494 3494 1092614674.45 3495 3494 2285900.879194 3496 3494 54860601.11708 3497 3494 98899681.61908 3507 3494 24401754.41739 3508 3494 12206469.73079 3509 3494 -20394833.53905 3510 3494 -4571801.756165 3511 3494 -27430300.57206 3512 3494 85330883.72684 3513 3494 -27030537.24082 3514 3494 15223830.84127 3515 3494 -24006523.35327 3585 3494 11964870.03287 3586 3494 -11171906.87604 3587 3494 -13613251.03531 3588 3494 73404184.96491 3589 3494 -6857575.146392 3590 3494 -87786498.03904 3591 3494 24822942.95376 3592 3494 18029482.02244 3593 3494 -52061746.4183 3600 3494 571475.2200821 3601 3494 -45922002.48202 3602 3494 -10938367.40355 3603 3494 2285900.879224 3604 3494 -27430300.57206 3605 3494 -184190435.19 3606 3494 571475.2200943 3607 3494 73352303.05408 3608 3494 -168344038.6739 3618 3494 -12536345.25295 3619 3494 -11857670.76516 3620 3494 -15333780.81983 3621 3494 -75690085.8441 3622 3494 -6857575.146393 3623 3494 -98280306.98791 3624 3494 -25394418.17384 3625 3494 18715245.91155 3626 3494 -55588121.11081 3495 3495 1082651565.536 3496 3495 1.692771911621e-05 3497 3495 9143603.512253 3498 3495 130318343.5391 3499 3495 -8.195638656616e-06 3500 3495 2285900.879194 3510 3495 -91763195.44578 3511 3495 -62499999.98975 3512 3495 24744636.36161 3513 3495 -229462147.1059 3514 3495 3.129243850708e-06 3515 3495 -4571801.756165 3516 3495 -93117579.12609 3517 3495 62499999.98975 3518 3495 -26687655.2966 3588 3495 -26133752.36576 3589 3495 15625000.00514 3590 3495 11964870.03287 3591 3495 -98285243.92273 3592 3495 1.072883605957e-06 3593 3495 73747066.90912 3594 3495 -40551938.13439 3595 3495 -15625000.00514 3596 3495 24822942.95376 3603 3495 19205852.96814 3604 3495 4.768371582031e-06 3605 3495 571475.220082 3606 3495 99158852.54101 3607 3495 3.457069396973e-06 3608 3495 2285900.879224 3609 3495 -39821273.75826 3610 3495 -8.895993232727e-06 3611 3495 571475.2200941 3621 3495 -26778951.03495 3622 3495 -15625000.00513 3623 3495 -12536345.25295 3624 3495 -102220422.2785 3625 3495 1.013278961182e-06 3626 3495 -76032967.78832 3627 3495 -41874328.64406 3628 3495 15625000.00513 3629 3495 -25394418.17384 3496 3496 932645213.4434 3497 3496 -109721202.2342 3498 3496 -8.702278137207e-06 3499 3496 -107181385.3168 3500 3496 54860601.11709 3510 3496 -62499999.98975 3511 3496 -73012401.42493 3512 3496 12480775.28616 3513 3496 3.904104232788e-06 3514 3496 45539169.75475 3515 3496 -27430300.57206 3516 3496 62499999.98975 3517 3496 -74366785.10525 3518 3496 14949525.28589 3588 3496 15625000.00514 3589 3496 -21446053.85824 3590 3496 -11171906.87604 3591 3496 -4.172325134277e-07 3592 3496 -29534914.67368 3593 3496 -6857575.146393 3594 3496 -15625000.00514 3595 3496 -35864239.62686 3596 3496 18029482.02244 3603 3496 6.780028343201e-06 3604 3496 -40169079.27509 3605 3496 -46196308.03739 3606 3496 3.814697265625e-06 3607 3496 61657264.49931 3608 3496 -27430300.57206 3609 3496 -7.718801498413e-06 3610 3496 -99196206.00148 3611 3496 73626608.60945 3621 3496 -15625000.00513 3622 3496 -22091252.52743 3623 3496 -11857670.76516 3624 3496 -7.748603820801e-07 3625 3496 -33470093.0295 3626 3496 -6857575.146393 3627 3496 15625000.00513 3628 3496 -37186630.13654 3629 3496 18715245.91155 3497 3497 1092614674.45 3498 3497 2285900.879194 3499 3497 54860601.11708 3500 3497 98899681.61908 3510 3497 24401754.41739 3511 3497 12206469.73079 3512 3497 -20394833.53905 3513 3497 -4571801.756165 3514 3497 -27430300.57206 3515 3497 85330883.72684 3516 3497 -27030537.24082 3517 3497 15223830.84127 3518 3497 -24006523.35327 3588 3497 11964870.03287 3589 3497 -11171906.87604 3590 3497 -13613251.03531 3591 3497 73404184.96491 3592 3497 -6857575.146392 3593 3497 -87786498.03904 3594 3497 24822942.95376 3595 3497 18029482.02244 3596 3497 -52061746.4183 3603 3497 571475.2200821 3604 3497 -45922002.48202 3605 3497 -10938367.40355 3606 3497 2285900.879224 3607 3497 -27430300.57206 3608 3497 -184190435.19 3609 3497 571475.2200943 3610 3497 73352303.05408 3611 3497 -168344038.6739 3621 3497 -12536345.25295 3622 3497 -11857670.76516 3623 3497 -15333780.81983 3624 3497 -75690085.8441 3625 3497 -6857575.146393 3626 3497 -98280306.98791 3627 3497 -25394418.17384 3628 3497 18715245.91155 3629 3497 -55588121.11081 3498 3498 1165690130.316 3499 3498 62543894.59362 3500 3498 30858903.05731 3501 3498 26211628.98162 3502 3498 -62517557.8313 3503 3498 26694959.91784 3513 3498 -91763195.44578 3514 3498 -62499999.98975 3515 3498 24744636.36161 3516 3498 -229462147.1059 3517 3498 3.129243850708e-06 3518 3498 -4571801.756165 3519 3498 -93117579.12609 3520 3498 62499999.98975 3521 3498 -26687655.2966 3591 3498 -26133752.36576 3592 3498 15625000.00514 3593 3498 11964870.03287 3594 3498 -115335214.0726 3595 3498 -15631584.19572 3596 3498 68329440.16886 3606 3498 19205852.96814 3607 3498 4.768371582031e-06 3608 3498 571475.220082 3609 3498 130473837.5578 3610 3498 15635973.65611 3611 3498 7712253.313144 3612 3498 -53686446.86531 3613 3498 -15629389.46553 3614 3498 25401550.08976 3624 3498 -26778951.03495 3625 3498 -15625000.00513 3626 3498 -12536345.25295 3627 3498 -102220422.2785 3628 3498 1.013278961182e-06 3629 3498 -76032967.78832 3630 3498 -41874328.64406 3631 3498 15625000.00513 3632 3498 -25394418.17384 3499 3499 996913230.7936 3500 3499 -85034368.77329 3501 3499 -62526336.75207 3502 3499 -192572421.21 3503 3499 45540401.39811 3513 3499 -62499999.98975 3514 3499 -73012401.42493 3515 3499 12480775.28616 3516 3499 3.904104232788e-06 3517 3499 45539169.75475 3518 3499 -27430300.57206 3519 3499 62499999.98975 3520 3499 -74366785.10525 3521 3499 14949525.28589 3591 3499 15625000.00514 3592 3499 -21446053.85824 3593 3499 -11171906.87604 3594 3499 -15629389.46552 3595 3499 -41883469.12474 3596 3499 7334445.059211 3606 3499 6.780028343201e-06 3607 3499 -40169079.27509 3608 3499 -46196308.03739 3609 3499 15635973.65611 3610 3499 88279612.65644 3611 3499 -21260570.15053 3612 3499 -15631584.19572 3613 3499 -108382459.4402 3614 3499 71307025.97358 3624 3499 -15625000.00513 3625 3499 -22091252.52743 3626 3499 -11857670.76516 3627 3499 -7.748603820801e-07 3628 3499 -33470093.0295 3629 3499 -6857575.146393 3630 3499 15625000.00513 3631 3499 -37186630.13654 3632 3499 18715245.91155 3500 3500 1089507525.384 3501 3500 27041494.17268 3502 3500 53223718.26906 3503 3500 45623912.47205 3513 3500 24401754.41739 3514 3500 12206469.73079 3515 3500 -20394833.53905 3516 3500 -4571801.756165 3517 3500 -27430300.57206 3518 3500 85330883.72684 3519 3500 -27030537.24082 3520 3500 15223830.84127 3521 3500 -24006523.35327 3591 3500 11964870.03287 3592 3500 -11171906.87604 3593 3500 -13613251.03531 3594 3500 67985675.23876 3595 3500 5415714.150796 3596 3500 -77126033.46393 3606 3500 571475.2200821 3607 3500 -45922002.48202 3608 3500 -10938367.40355 3609 3500 7717499.145858 3610 3500 -21256373.52338 3611 3500 -156819638.9591 3612 3500 25405116.04772 3613 3500 72953597.68388 3614 3500 -149232299.5136 3624 3500 -12536345.25295 3625 3500 -11857670.76516 3626 3500 -15333780.81983 3627 3500 -75690085.8441 3628 3500 -6857575.146393 3629 3500 -98280306.98791 3630 3500 -25394418.17384 3631 3500 18715245.91155 3632 3500 -55588121.11081 3501 3501 653068470.5481 3502 3501 51182522.29112 3503 3501 -14075591.44842 3516 3501 -91763195.44578 3517 3501 -62499999.98975 3518 3501 24744636.36161 3519 3501 -315959922.3283 3520 3501 -51219443.04345 3521 3501 -1009127.195598 3522 3501 14126098.18154 3523 3501 50036920.74413 3524 3501 -2746063.173858 3594 3501 1493260.574915 3595 3501 18756584.19674 3596 3501 14705768.01689 3609 3501 -8426923.443562 3610 3501 -15631584.19572 3611 3501 -11969908.87826 3612 3501 57174585.59698 3613 3501 13544133.69379 3614 3501 11668680.97911 3627 3501 -26778951.03495 3628 3501 -15625000.00513 3629 3501 -12536345.25295 3630 3501 -120250044.4998 3631 3501 -13552736.157 3632 3501 -74187983.11656 3633 3501 -14447038.24357 3634 3501 12508602.46732 3635 3501 -15288233.60612 3502 3502 574312661.4285 3503 3502 -68239667.19298 3516 3502 -62499999.98975 3517 3502 -73012401.42493 3518 3502 12480775.28616 3519 3502 -51237903.41962 3520 3502 -27189411.59528 3521 3502 -18317053.54182 3522 3502 75055381.1162 3523 3502 4144652.738794 3524 3502 4938030.416524 3594 3502 12504389.4645 3595 3502 1493260.574915 3596 3502 -7843093.74256 3609 3502 -15629389.46552 3610 3502 -63122936.0184 3611 3502 -46615995.93793 3612 3502 13544133.69379 3613 3502 36444414.94717 3614 3502 -4791843.499179 3627 3502 -15625000.00513 3628 3502 -22091252.52743 3629 3502 -11857670.76516 3630 3502 -13557037.38861 3631 3502 -47722549.95791 3632 3502 -18100147.64644 3633 3502 18762903.70099 3634 3502 -16236048.06839 3635 3502 20781353.42089 3503 3503 670482888.5982 3516 3503 24401754.41739 3517 3503 12206469.73079 3518 3503 -20394833.53905 3519 3503 -8551486.517594 3520 3503 -17218969.19268 3521 3503 18458538.37432 3522 3503 -4119094.760787 3523 3503 3840470.11218 3524 3503 47651040.59353 3594 3503 9803845.344592 3595 3503 -11764640.61384 3596 3503 3982028.199772 3609 3503 -11968229.26313 3610 3503 -48262567.85004 3611 3503 -28540237.05556 3612 3503 -17876801.63845 3613 3503 -27875325.58272 3614 3503 -118608665.1674 3627 3503 -12536345.25295 3628 3503 -11857670.76516 3629 3503 -15333780.81983 3630 3503 -75902151.56773 3631 3503 -17547038.78856 3632 3503 -101389882.4658 3633 3503 -22932350.40918 3634 3503 14666146.34475 3635 3503 -36736425.49136 3504 3504 1082651565.536 3505 3504 1.692771911621e-05 3506 3504 9143603.512253 3507 3504 130318343.5391 3508 3504 -8.195638656616e-06 3509 3504 2285900.879194 3525 3504 -229462147.1059 3526 3504 3.129243850708e-06 3527 3504 -4571801.756165 3528 3504 -93117579.12609 3529 3504 62499999.98975 3530 3504 -26687655.2966 3597 3504 -98285243.92273 3598 3504 1.072883605957e-06 3599 3504 73747066.90912 3600 3504 -40551938.13439 3601 3504 -15625000.00514 3602 3504 24822942.95376 3615 3504 99158852.54101 3616 3504 3.457069396973e-06 3617 3504 2285900.879224 3618 3504 -39821273.75826 3619 3504 -8.895993232727e-06 3620 3504 571475.2200941 3636 3504 -102220422.2785 3637 3504 1.013278961182e-06 3638 3504 -76032967.78832 3639 3504 -41874328.64406 3640 3504 15625000.00513 3641 3504 -25394418.17384 3505 3505 932645213.4434 3506 3505 -109721202.2342 3507 3505 -8.702278137207e-06 3508 3505 -107181385.3168 3509 3505 54860601.11709 3525 3505 3.904104232788e-06 3526 3505 45539169.75475 3527 3505 -27430300.57206 3528 3505 62499999.98975 3529 3505 -74366785.10525 3530 3505 14949525.28589 3597 3505 -4.172325134277e-07 3598 3505 -29534914.67368 3599 3505 -6857575.146393 3600 3505 -15625000.00514 3601 3505 -35864239.62686 3602 3505 18029482.02244 3615 3505 3.814697265625e-06 3616 3505 61657264.49931 3617 3505 -27430300.57206 3618 3505 -7.718801498413e-06 3619 3505 -99196206.00148 3620 3505 73626608.60945 3636 3505 -7.748603820801e-07 3637 3505 -33470093.0295 3638 3505 -6857575.146393 3639 3505 15625000.00513 3640 3505 -37186630.13654 3641 3505 18715245.91155 3506 3506 1092614674.45 3507 3506 2285900.879194 3508 3506 54860601.11708 3509 3506 98899681.61908 3525 3506 -4571801.756165 3526 3506 -27430300.57206 3527 3506 85330883.72684 3528 3506 -27030537.24082 3529 3506 15223830.84127 3530 3506 -24006523.35327 3597 3506 73404184.96491 3598 3506 -6857575.146392 3599 3506 -87786498.03904 3600 3506 24822942.95376 3601 3506 18029482.02244 3602 3506 -52061746.4183 3615 3506 2285900.879224 3616 3506 -27430300.57206 3617 3506 -184190435.19 3618 3506 571475.2200943 3619 3506 73352303.05408 3620 3506 -168344038.6739 3636 3506 -75690085.8441 3637 3506 -6857575.146393 3638 3506 -98280306.98791 3639 3506 -25394418.17384 3640 3506 18715245.91155 3641 3506 -55588121.11081 3507 3507 1082651565.536 3508 3507 1.692771911621e-05 3509 3507 9143603.512253 3510 3507 130318343.5391 3511 3507 -8.195638656616e-06 3512 3507 2285900.879194 3525 3507 -91763195.44578 3526 3507 -62499999.98975 3527 3507 24744636.36161 3528 3507 -229462147.1059 3529 3507 3.129243850708e-06 3530 3507 -4571801.756165 3531 3507 -93117579.12609 3532 3507 62499999.98975 3533 3507 -26687655.2966 3597 3507 -26133752.36576 3598 3507 15625000.00514 3599 3507 11964870.03287 3600 3507 -98285243.92273 3601 3507 1.072883605957e-06 3602 3507 73747066.90912 3603 3507 -40551938.13439 3604 3507 -15625000.00514 3605 3507 24822942.95376 3615 3507 19205852.96814 3616 3507 4.768371582031e-06 3617 3507 571475.220082 3618 3507 99158852.54101 3619 3507 3.457069396973e-06 3620 3507 2285900.879224 3621 3507 -39821273.75826 3622 3507 -8.895993232727e-06 3623 3507 571475.2200941 3636 3507 -26778951.03495 3637 3507 -15625000.00513 3638 3507 -12536345.25295 3639 3507 -102220422.2785 3640 3507 1.013278961182e-06 3641 3507 -76032967.78832 3642 3507 -41874328.64406 3643 3507 15625000.00513 3644 3507 -25394418.17384 3508 3508 932645213.4434 3509 3508 -109721202.2342 3510 3508 -8.702278137207e-06 3511 3508 -107181385.3168 3512 3508 54860601.11709 3525 3508 -62499999.98975 3526 3508 -73012401.42493 3527 3508 12480775.28616 3528 3508 3.904104232788e-06 3529 3508 45539169.75475 3530 3508 -27430300.57206 3531 3508 62499999.98975 3532 3508 -74366785.10525 3533 3508 14949525.28589 3597 3508 15625000.00514 3598 3508 -21446053.85824 3599 3508 -11171906.87604 3600 3508 -4.172325134277e-07 3601 3508 -29534914.67368 3602 3508 -6857575.146393 3603 3508 -15625000.00514 3604 3508 -35864239.62686 3605 3508 18029482.02244 3615 3508 6.780028343201e-06 3616 3508 -40169079.27509 3617 3508 -46196308.03739 3618 3508 3.814697265625e-06 3619 3508 61657264.49931 3620 3508 -27430300.57206 3621 3508 -7.718801498413e-06 3622 3508 -99196206.00148 3623 3508 73626608.60945 3636 3508 -15625000.00513 3637 3508 -22091252.52743 3638 3508 -11857670.76516 3639 3508 -7.748603820801e-07 3640 3508 -33470093.0295 3641 3508 -6857575.146393 3642 3508 15625000.00513 3643 3508 -37186630.13654 3644 3508 18715245.91155 3509 3509 1092614674.45 3510 3509 2285900.879194 3511 3509 54860601.11708 3512 3509 98899681.61908 3525 3509 24401754.41739 3526 3509 12206469.73079 3527 3509 -20394833.53905 3528 3509 -4571801.756165 3529 3509 -27430300.57206 3530 3509 85330883.72684 3531 3509 -27030537.24082 3532 3509 15223830.84127 3533 3509 -24006523.35327 3597 3509 11964870.03287 3598 3509 -11171906.87604 3599 3509 -13613251.03531 3600 3509 73404184.96491 3601 3509 -6857575.146392 3602 3509 -87786498.03904 3603 3509 24822942.95376 3604 3509 18029482.02244 3605 3509 -52061746.4183 3615 3509 571475.2200821 3616 3509 -45922002.48202 3617 3509 -10938367.40355 3618 3509 2285900.879224 3619 3509 -27430300.57206 3620 3509 -184190435.19 3621 3509 571475.2200943 3622 3509 73352303.05408 3623 3509 -168344038.6739 3636 3509 -12536345.25295 3637 3509 -11857670.76516 3638 3509 -15333780.81983 3639 3509 -75690085.8441 3640 3509 -6857575.146393 3641 3509 -98280306.98791 3642 3509 -25394418.17384 3643 3509 18715245.91155 3644 3509 -55588121.11081 3510 3510 1082651565.536 3511 3510 1.692771911621e-05 3512 3510 9143603.512253 3513 3510 130318343.5391 3514 3510 -8.195638656616e-06 3515 3510 2285900.879194 3528 3510 -91763195.44578 3529 3510 -62499999.98975 3530 3510 24744636.36161 3531 3510 -229462147.1059 3532 3510 3.129243850708e-06 3533 3510 -4571801.756165 3534 3510 -93117579.12609 3535 3510 62499999.98975 3536 3510 -26687655.2966 3600 3510 -26133752.36576 3601 3510 15625000.00514 3602 3510 11964870.03287 3603 3510 -98285243.92273 3604 3510 1.072883605957e-06 3605 3510 73747066.90912 3606 3510 -40551938.13439 3607 3510 -15625000.00514 3608 3510 24822942.95376 3618 3510 19205852.96814 3619 3510 4.768371582031e-06 3620 3510 571475.220082 3621 3510 99158852.54101 3622 3510 3.457069396973e-06 3623 3510 2285900.879224 3624 3510 -39821273.75826 3625 3510 -8.895993232727e-06 3626 3510 571475.2200941 3639 3510 -26778951.03495 3640 3510 -15625000.00513 3641 3510 -12536345.25295 3642 3510 -102220422.2785 3643 3510 1.013278961182e-06 3644 3510 -76032967.78832 3645 3510 -41874328.64406 3646 3510 15625000.00513 3647 3510 -25394418.17384 3511 3511 932645213.4434 3512 3511 -109721202.2342 3513 3511 -8.702278137207e-06 3514 3511 -107181385.3168 3515 3511 54860601.11709 3528 3511 -62499999.98975 3529 3511 -73012401.42493 3530 3511 12480775.28616 3531 3511 3.904104232788e-06 3532 3511 45539169.75475 3533 3511 -27430300.57206 3534 3511 62499999.98975 3535 3511 -74366785.10525 3536 3511 14949525.28589 3600 3511 15625000.00514 3601 3511 -21446053.85824 3602 3511 -11171906.87604 3603 3511 -4.172325134277e-07 3604 3511 -29534914.67368 3605 3511 -6857575.146393 3606 3511 -15625000.00514 3607 3511 -35864239.62686 3608 3511 18029482.02244 3618 3511 6.780028343201e-06 3619 3511 -40169079.27509 3620 3511 -46196308.03739 3621 3511 3.814697265625e-06 3622 3511 61657264.49931 3623 3511 -27430300.57206 3624 3511 -7.718801498413e-06 3625 3511 -99196206.00148 3626 3511 73626608.60945 3639 3511 -15625000.00513 3640 3511 -22091252.52743 3641 3511 -11857670.76516 3642 3511 -7.748603820801e-07 3643 3511 -33470093.0295 3644 3511 -6857575.146393 3645 3511 15625000.00513 3646 3511 -37186630.13654 3647 3511 18715245.91155 3512 3512 1092614674.45 3513 3512 2285900.879194 3514 3512 54860601.11708 3515 3512 98899681.61908 3528 3512 24401754.41739 3529 3512 12206469.73079 3530 3512 -20394833.53905 3531 3512 -4571801.756165 3532 3512 -27430300.57206 3533 3512 85330883.72684 3534 3512 -27030537.24082 3535 3512 15223830.84127 3536 3512 -24006523.35327 3600 3512 11964870.03287 3601 3512 -11171906.87604 3602 3512 -13613251.03531 3603 3512 73404184.96491 3604 3512 -6857575.146392 3605 3512 -87786498.03904 3606 3512 24822942.95376 3607 3512 18029482.02244 3608 3512 -52061746.4183 3618 3512 571475.2200821 3619 3512 -45922002.48202 3620 3512 -10938367.40355 3621 3512 2285900.879224 3622 3512 -27430300.57206 3623 3512 -184190435.19 3624 3512 571475.2200943 3625 3512 73352303.05408 3626 3512 -168344038.6739 3639 3512 -12536345.25295 3640 3512 -11857670.76516 3641 3512 -15333780.81983 3642 3512 -75690085.8441 3643 3512 -6857575.146393 3644 3512 -98280306.98791 3645 3512 -25394418.17384 3646 3512 18715245.91155 3647 3512 -55588121.11081 3513 3513 1082651565.536 3514 3513 1.692771911621e-05 3515 3513 9143603.512253 3516 3513 130318343.5391 3517 3513 -8.195638656616e-06 3518 3513 2285900.879194 3531 3513 -91763195.44578 3532 3513 -62499999.98975 3533 3513 24744636.36161 3534 3513 -229462147.1059 3535 3513 3.129243850708e-06 3536 3513 -4571801.756165 3537 3513 -93117579.12609 3538 3513 62499999.98975 3539 3513 -26687655.2966 3603 3513 -26133752.36576 3604 3513 15625000.00514 3605 3513 11964870.03287 3606 3513 -98285243.92273 3607 3513 1.072883605957e-06 3608 3513 73747066.90912 3609 3513 -40551938.13439 3610 3513 -15625000.00514 3611 3513 24822942.95376 3621 3513 19205852.96814 3622 3513 4.768371582031e-06 3623 3513 571475.220082 3624 3513 99158852.54101 3625 3513 3.457069396973e-06 3626 3513 2285900.879224 3627 3513 -39821273.75826 3628 3513 -8.895993232727e-06 3629 3513 571475.2200941 3642 3513 -26778951.03495 3643 3513 -15625000.00513 3644 3513 -12536345.25295 3645 3513 -102220422.2785 3646 3513 1.013278961182e-06 3647 3513 -76032967.78832 3648 3513 -41874328.64406 3649 3513 15625000.00513 3650 3513 -25394418.17384 3514 3514 932645213.4434 3515 3514 -109721202.2342 3516 3514 -8.702278137207e-06 3517 3514 -107181385.3168 3518 3514 54860601.11709 3531 3514 -62499999.98975 3532 3514 -73012401.42493 3533 3514 12480775.28616 3534 3514 3.904104232788e-06 3535 3514 45539169.75475 3536 3514 -27430300.57206 3537 3514 62499999.98975 3538 3514 -74366785.10525 3539 3514 14949525.28589 3603 3514 15625000.00514 3604 3514 -21446053.85824 3605 3514 -11171906.87604 3606 3514 -4.172325134277e-07 3607 3514 -29534914.67368 3608 3514 -6857575.146393 3609 3514 -15625000.00514 3610 3514 -35864239.62686 3611 3514 18029482.02244 3621 3514 6.780028343201e-06 3622 3514 -40169079.27509 3623 3514 -46196308.03739 3624 3514 3.814697265625e-06 3625 3514 61657264.49931 3626 3514 -27430300.57206 3627 3514 -7.718801498413e-06 3628 3514 -99196206.00148 3629 3514 73626608.60945 3642 3514 -15625000.00513 3643 3514 -22091252.52743 3644 3514 -11857670.76516 3645 3514 -7.748603820801e-07 3646 3514 -33470093.0295 3647 3514 -6857575.146393 3648 3514 15625000.00513 3649 3514 -37186630.13654 3650 3514 18715245.91155 3515 3515 1092614674.45 3516 3515 2285900.879194 3517 3515 54860601.11708 3518 3515 98899681.61908 3531 3515 24401754.41739 3532 3515 12206469.73079 3533 3515 -20394833.53905 3534 3515 -4571801.756165 3535 3515 -27430300.57206 3536 3515 85330883.72684 3537 3515 -27030537.24082 3538 3515 15223830.84127 3539 3515 -24006523.35327 3603 3515 11964870.03287 3604 3515 -11171906.87604 3605 3515 -13613251.03531 3606 3515 73404184.96491 3607 3515 -6857575.146392 3608 3515 -87786498.03904 3609 3515 24822942.95376 3610 3515 18029482.02244 3611 3515 -52061746.4183 3621 3515 571475.2200821 3622 3515 -45922002.48202 3623 3515 -10938367.40355 3624 3515 2285900.879224 3625 3515 -27430300.57206 3626 3515 -184190435.19 3627 3515 571475.2200943 3628 3515 73352303.05408 3629 3515 -168344038.6739 3642 3515 -12536345.25295 3643 3515 -11857670.76516 3644 3515 -15333780.81983 3645 3515 -75690085.8441 3646 3515 -6857575.146393 3647 3515 -98280306.98791 3648 3515 -25394418.17384 3649 3515 18715245.91155 3650 3515 -55588121.11081 3516 3516 1082651565.536 3517 3516 1.692771911621e-05 3518 3516 9143603.512253 3519 3516 130318343.5391 3520 3516 -8.195638656616e-06 3521 3516 2285900.879194 3534 3516 -91763195.44578 3535 3516 -62499999.98975 3536 3516 24744636.36161 3537 3516 -229462147.1059 3538 3516 3.129243850708e-06 3539 3516 -4571801.756165 3540 3516 -93117579.12609 3541 3516 62499999.98975 3542 3516 -26687655.2966 3606 3516 -26133752.36576 3607 3516 15625000.00514 3608 3516 11964870.03287 3609 3516 -98285243.92273 3610 3516 1.072883605957e-06 3611 3516 73747066.90912 3612 3516 -40551938.13439 3613 3516 -15625000.00514 3614 3516 24822942.95376 3624 3516 19205852.96814 3625 3516 4.768371582031e-06 3626 3516 571475.220082 3627 3516 99158852.54101 3628 3516 3.457069396973e-06 3629 3516 2285900.879224 3630 3516 -39821273.75826 3631 3516 -8.895993232727e-06 3632 3516 571475.2200941 3645 3516 -26778951.03495 3646 3516 -15625000.00513 3647 3516 -12536345.25295 3648 3516 -102220422.2785 3649 3516 1.013278961182e-06 3650 3516 -76032967.78832 3651 3516 -41874328.64406 3652 3516 15625000.00513 3653 3516 -25394418.17384 3517 3517 932645213.4434 3518 3517 -109721202.2342 3519 3517 -8.702278137207e-06 3520 3517 -107181385.3168 3521 3517 54860601.11709 3534 3517 -62499999.98975 3535 3517 -73012401.42493 3536 3517 12480775.28616 3537 3517 3.904104232788e-06 3538 3517 45539169.75475 3539 3517 -27430300.57206 3540 3517 62499999.98975 3541 3517 -74366785.10525 3542 3517 14949525.28589 3606 3517 15625000.00514 3607 3517 -21446053.85824 3608 3517 -11171906.87604 3609 3517 -4.172325134277e-07 3610 3517 -29534914.67368 3611 3517 -6857575.146393 3612 3517 -15625000.00514 3613 3517 -35864239.62686 3614 3517 18029482.02244 3624 3517 6.780028343201e-06 3625 3517 -40169079.27509 3626 3517 -46196308.03739 3627 3517 3.814697265625e-06 3628 3517 61657264.49931 3629 3517 -27430300.57206 3630 3517 -7.718801498413e-06 3631 3517 -99196206.00148 3632 3517 73626608.60945 3645 3517 -15625000.00513 3646 3517 -22091252.52743 3647 3517 -11857670.76516 3648 3517 -7.748603820801e-07 3649 3517 -33470093.0295 3650 3517 -6857575.146393 3651 3517 15625000.00513 3652 3517 -37186630.13654 3653 3517 18715245.91155 3518 3518 1092614674.45 3519 3518 2285900.879194 3520 3518 54860601.11708 3521 3518 98899681.61908 3534 3518 24401754.41739 3535 3518 12206469.73079 3536 3518 -20394833.53905 3537 3518 -4571801.756165 3538 3518 -27430300.57206 3539 3518 85330883.72684 3540 3518 -27030537.24082 3541 3518 15223830.84127 3542 3518 -24006523.35327 3606 3518 11964870.03287 3607 3518 -11171906.87604 3608 3518 -13613251.03531 3609 3518 73404184.96491 3610 3518 -6857575.146392 3611 3518 -87786498.03904 3612 3518 24822942.95376 3613 3518 18029482.02244 3614 3518 -52061746.4183 3624 3518 571475.2200821 3625 3518 -45922002.48202 3626 3518 -10938367.40355 3627 3518 2285900.879224 3628 3518 -27430300.57206 3629 3518 -184190435.19 3630 3518 571475.2200943 3631 3518 73352303.05408 3632 3518 -168344038.6739 3645 3518 -12536345.25295 3646 3518 -11857670.76516 3647 3518 -15333780.81983 3648 3518 -75690085.8441 3649 3518 -6857575.146393 3650 3518 -98280306.98791 3651 3518 -25394418.17384 3652 3518 18715245.91155 3653 3518 -55588121.11081 3519 3519 1119567064.823 3520 3519 51868578.37564 3521 3519 9078619.584517 3522 3519 16739573.67208 3523 3519 -68255098.98124 3524 3519 4440784.766338 3537 3519 -91763195.44578 3538 3519 -62499999.98975 3539 3519 24744636.36161 3540 3519 -219541507.9457 3541 3519 5590443.380515 3542 3519 -308077.8811086 3543 3519 -75671590.24938 3544 3519 62033980.64472 3545 3519 -4658919.241186 3609 3519 -26133752.36576 3610 3519 15625000.00514 3611 3519 11964870.03287 3612 3519 -116635571.6621 3613 3519 -13557037.38861 3614 3519 71825261.52009 3627 3519 19205852.96814 3628 3519 4.768371582031e-06 3629 3519 571475.220082 3630 3519 119513491.7636 3631 3519 13646802.5259 3632 3519 2257650.049491 3633 3519 -37663498.656 3634 3519 -16681828.38297 3635 3519 20639715.93369 3648 3519 -26778951.03495 3649 3519 -15625000.00513 3650 3519 -12536345.25295 3651 3519 -101736939.0315 3652 3519 1031079.308418 3653 3519 -75280279.48546 3654 3519 -32862857.84378 3655 3519 15560983.93726 3656 3519 -19412034.49389 3520 3520 981611138.411 3521 3520 -64673518.78673 3522 3520 -68273559.3574 3523 3520 -202871285.6405 3524 3520 9454749.061244 3537 3520 -62499999.98975 3538 3520 -73012401.42493 3539 3520 12480775.28616 3540 3520 5590443.380517 3541 3520 49584393.39806 3542 3520 -16791816.53285 3543 3520 62033980.64471 3544 3520 -76003075.78772 3545 3520 3373418.155893 3609 3520 15625000.00514 3610 3520 -21446053.85824 3611 3520 -11171906.87604 3612 3520 -13552736.15701 3613 3520 -44108077.12019 3614 3520 9302354.58656 3627 3520 6.780028343201e-06 3628 3520 -40169079.27509 3629 3520 -46196308.03739 3630 3520 13646802.52589 3631 3520 82967131.3934 3632 3520 -15977932.15831 3633 3520 -16686129.61458 3634 3520 -92498249.21409 3635 3520 64870490.37463 3648 3520 -15625000.00513 3649 3520 -22091252.52743 3650 3520 -11857670.76516 3651 3520 1031079.308416 3652 3520 -34052279.33202 3653 3520 -3130435.378702 3654 3520 15560983.93726 3655 3520 -31694365.92876 3656 3520 17477326.20954 3521 3521 1053716606.38 3522 3521 4442288.575716 3523 3521 9455979.495823 3524 3521 53874562.57944 3537 3521 24401754.41739 3538 3521 12206469.73079 3539 3521 -20394833.53905 3540 3521 -7851480.657647 3541 3521 -16791816.53285 3542 3521 84352977.65236 3543 3521 -4658919.240511 3544 3521 3373418.155893 3545 3521 -10044511.20959 3609 3521 11964870.03287 3610 3521 -11171906.87604 3611 3521 -13613251.03531 3612 3521 73539429.97126 3613 3521 9306457.422693 3614 3521 -91751288.23183 3627 3521 571475.2200821 3628 3521 -45922002.48202 3629 3521 -10938367.40355 3630 3521 2267681.283016 3631 3521 -14872684.79652 3632 3521 -169875280.5724 3633 3521 20645082.7339 3634 3521 64870488.0431 3635 3521 -100342559.1602 3648 3521 -12536345.25295 3649 3521 -11857670.76516 3650 3521 -15333780.81983 3651 3521 -76994689.20841 3652 3521 -2856129.82292 3653 3521 -102037504.2931 3654 3521 -19412034.49389 3655 3521 17477326.20954 3656 3521 -37687237.45018 3522 3522 623317858.5368 3523 3522 3675811.7928 3524 3522 517107.2674251 3540 3522 -90991721.40217 3541 3522 -62441458.17468 3542 3522 3788785.758507 3543 3522 -195665726.9223 3544 3522 7452350.770389 3545 3522 -810784.3127724 3546 3522 72846196.4546 3547 3522 -16117683.85556 3548 3522 -157155.5887424 3549 3522 -72505863.56765 3550 3522 60649157.70826 3551 3522 -918091.382888 3612 3522 -9779519.734472 3613 3522 18762903.70099 3614 3522 20872950.87833 3630 3522 -29384033.50768 3631 3522 -16686129.61458 3632 3522 -18457319.24497 3633 3522 27287164.95526 3634 3522 684062.1150855 3635 3522 15553829.11912 3651 3522 -33120558.02393 3652 3522 -15616945.6841 3653 3522 -18587389.84292 3654 3522 -99717017.87952 3655 3522 1376184.523421 3656 3522 -77291329.02194 3657 3522 -7501425.829938 3658 3522 -3801118.93258 3659 3522 5317579.933864 3660 3522 -31714807.53314 3661 3522 15281043.89176 3662 3522 -19247766.26639 3523 3523 680695003.4004 3524 3523 -10342881.00179 3540 3523 -62441458.17468 3541 3523 -68421577.40789 3542 3523 1392259.099982 3543 3523 7452350.77039 3544 3523 67820764.43311 3545 3523 -3133252.076033 3546 3523 8882316.140337 3547 3523 -47551906.89358 3548 3523 482784.0969671 3549 3523 60649157.70826 3550 3523 -65949235.67731 3551 3523 497300.0129927 3612 3523 12508602.46732 3613 3523 -11568529.55929 3614 3523 -12849308.9116 3630 3523 -16681828.38297 3631 3523 -84218784.06579 3632 3523 -60205510.16422 3633 3523 684062.1150822 3634 3523 39801359.55164 3635 3523 3317151.913985 3651 3523 -15616945.6841 3652 3523 -27729259.16604 3653 3523 -15272198.20777 3654 3523 1376184.523421 3655 3523 -33227547.88426 3656 3523 269158.2598691 3657 3523 2448881.069472 3658 3523 -37533389.70497 3659 3523 33453138.41178 3660 3523 15281043.89176 3661 3523 -29454046.72473 3662 3523 16789140.72124 3524 3524 714283333.8847 3540 3524 3788785.758844 3541 3524 1392259.100252 3542 3524 -11821835.32419 3543 3524 -810784.3127718 3544 3524 -3133252.076033 3545 3524 100694743.5742 3546 3524 -157155.5887394 3547 3524 482784.096967 3548 3524 78864901.84259 3549 3524 -918091.3825506 3550 3524 497300.0129927 3551 3524 -2569640.608923 3612 3524 13915300.58555 3613 3524 -18415738.09842 3614 3524 -24289709.4671 3630 3524 -18452655.06576 3631 3524 -60206083.47894 3632 3524 -78263985.43137 3633 3524 -15287906.98693 3634 3524 -8365059.572945 3635 3524 -166656134.6925 3651 3524 -18587389.84292 3652 3524 -15272198.20777 3653 3524 -31019516.42629 3654 3524 -77291329.02227 3655 3524 269158.2600059 3656 3524 -106138990.6835 3657 3524 -2807420.068633 3658 3524 33453138.41178 3659 3524 -49046947.17697 3660 3524 -19247766.26639 3661 3524 16789140.72124 3662 3524 -35065242.93145 3525 3525 541325782.7681 3526 3525 6.437301635742e-06 3527 3525 4571801.756125 3528 3525 65181744.83088 3529 3525 12499999.99795 3530 3525 -3143073.865676 3615 3525 -98285243.92273 3616 3525 1.072883605957e-06 3617 3525 73747066.90912 3618 3525 -40551938.13439 3619 3525 -15625000.00514 3620 3525 24822942.95376 3636 3525 49556853.20918 3637 3525 2.026557922363e-06 3638 3525 -14657969.69626 3639 3525 -19910636.87912 3640 3525 3125000.001023 3641 3525 -4735998.502713 3526 3526 466322606.7217 3527 3526 -54860601.11707 3528 3526 -12499999.99795 3529 3526 -53568119.59706 3530 3526 27155995.00303 3615 3526 -4.172325134277e-07 3616 3526 -29534914.67368 3617 3526 -6857575.146393 3618 3526 -15625000.00514 3619 3526 -35864239.62686 3620 3526 18029482.02244 3636 3526 2.264976501465e-06 3637 3526 30806059.18833 3638 3526 -13715150.28603 3639 3526 -3125000.00103 3640 3526 -49598103.00073 3641 3526 36744727.91581 3527 3527 546307337.2251 3528 3527 7143384.465966 3529 3527 27704606.11405 3530 3527 49510035.63975 3615 3527 73404184.96491 3616 3527 -6857575.146392 3617 3527 -87786498.03904 3618 3527 24822942.95376 3619 3527 18029482.02244 3620 3527 -52061746.4183 3636 3527 15229460.85439 3637 3527 -13715150.28603 3638 3527 -92155412.4252 3639 3527 5307473.722807 3640 3527 36744727.91595 3641 3527 -84172019.33696 3528 3528 541325782.7681 3529 3528 6.437301635742e-06 3530 3528 4571801.756125 3531 3528 65181744.83088 3532 3528 12499999.99795 3533 3528 -3143073.865676 3615 3528 -26133752.36576 3616 3528 15625000.00514 3617 3528 11964870.03287 3618 3528 -98285243.92273 3619 3528 1.072883605957e-06 3620 3528 73747066.90912 3621 3528 -40551938.13439 3622 3528 -15625000.00514 3623 3528 24822942.95376 3636 3528 9602926.484067 3637 3528 -3125000.001024 3638 3528 -2164383.918541 3639 3528 49556853.20918 3640 3528 2.026557922363e-06 3641 3528 -14657969.69626 3642 3528 -19910636.87912 3643 3528 3125000.001023 3644 3528 -4735998.502713 3529 3529 466322606.7217 3530 3529 -54860601.11707 3531 3529 -12499999.99795 3532 3529 -53568119.59706 3533 3529 27155995.00303 3615 3529 15625000.00514 3616 3529 -21446053.85824 3617 3529 -11171906.87604 3618 3529 -4.172325134277e-07 3619 3529 -29534914.67368 3620 3529 -6857575.146393 3621 3529 -15625000.00514 3622 3529 -35864239.62686 3623 3529 18029482.02244 3636 3529 3125000.001031 3637 3529 -20084539.63755 3638 3529 -23029577.62979 3639 3529 2.264976501465e-06 3640 3529 30806059.18833 3641 3529 -13715150.28603 3642 3529 -3125000.00103 3643 3529 -49598103.00073 3644 3529 36744727.91581 3530 3530 546307337.2251 3531 3530 7143384.465966 3532 3530 27704606.11405 3533 3530 49510035.63975 3615 3530 11964870.03287 3616 3530 -11171906.87604 3617 3530 -13613251.03531 3618 3530 73404184.96491 3619 3530 -6857575.146392 3620 3530 -87786498.03904 3621 3530 24822942.95376 3622 3530 18029482.02244 3623 3530 -52061746.4183 3636 3530 2735859.138623 3637 3530 -23029577.62992 3638 3530 -5469183.701778 3639 3530 15229460.85439 3640 3530 -13715150.28603 3641 3530 -92155412.4252 3642 3530 5307473.722807 3643 3530 36744727.91595 3644 3530 -84172019.33696 3531 3531 541325782.7681 3532 3531 6.437301635742e-06 3533 3531 4571801.756125 3534 3531 65181744.83088 3535 3531 12499999.99795 3536 3531 -3143073.865676 3618 3531 -26133752.36576 3619 3531 15625000.00514 3620 3531 11964870.03287 3621 3531 -98285243.92273 3622 3531 1.072883605957e-06 3623 3531 73747066.90912 3624 3531 -40551938.13439 3625 3531 -15625000.00514 3626 3531 24822942.95376 3639 3531 9602926.484067 3640 3531 -3125000.001024 3641 3531 -2164383.918541 3642 3531 49556853.20918 3643 3531 2.026557922363e-06 3644 3531 -14657969.69626 3645 3531 -19910636.87912 3646 3531 3125000.001023 3647 3531 -4735998.502713 3532 3532 466322606.7217 3533 3532 -54860601.11707 3534 3532 -12499999.99795 3535 3532 -53568119.59706 3536 3532 27155995.00303 3618 3532 15625000.00514 3619 3532 -21446053.85824 3620 3532 -11171906.87604 3621 3532 -4.172325134277e-07 3622 3532 -29534914.67368 3623 3532 -6857575.146393 3624 3532 -15625000.00514 3625 3532 -35864239.62686 3626 3532 18029482.02244 3639 3532 3125000.001031 3640 3532 -20084539.63755 3641 3532 -23029577.62979 3642 3532 2.264976501465e-06 3643 3532 30806059.18833 3644 3532 -13715150.28603 3645 3532 -3125000.00103 3646 3532 -49598103.00073 3647 3532 36744727.91581 3533 3533 546307337.2251 3534 3533 7143384.465966 3535 3533 27704606.11405 3536 3533 49510035.63975 3618 3533 11964870.03287 3619 3533 -11171906.87604 3620 3533 -13613251.03531 3621 3533 73404184.96491 3622 3533 -6857575.146392 3623 3533 -87786498.03904 3624 3533 24822942.95376 3625 3533 18029482.02244 3626 3533 -52061746.4183 3639 3533 2735859.138623 3640 3533 -23029577.62992 3641 3533 -5469183.701778 3642 3533 15229460.85439 3643 3533 -13715150.28603 3644 3533 -92155412.4252 3645 3533 5307473.722807 3646 3533 36744727.91595 3647 3533 -84172019.33696 3534 3534 541325782.7681 3535 3534 6.437301635742e-06 3536 3534 4571801.756125 3537 3534 65181744.83088 3538 3534 12499999.99795 3539 3534 -3143073.865676 3621 3534 -26133752.36576 3622 3534 15625000.00514 3623 3534 11964870.03287 3624 3534 -98285243.92273 3625 3534 1.072883605957e-06 3626 3534 73747066.90912 3627 3534 -40551938.13439 3628 3534 -15625000.00514 3629 3534 24822942.95376 3642 3534 9602926.484067 3643 3534 -3125000.001024 3644 3534 -2164383.918541 3645 3534 49556853.20918 3646 3534 2.026557922363e-06 3647 3534 -14657969.69626 3648 3534 -19910636.87912 3649 3534 3125000.001023 3650 3534 -4735998.502713 3535 3535 466322606.7217 3536 3535 -54860601.11707 3537 3535 -12499999.99795 3538 3535 -53568119.59706 3539 3535 27155995.00303 3621 3535 15625000.00514 3622 3535 -21446053.85824 3623 3535 -11171906.87604 3624 3535 -4.172325134277e-07 3625 3535 -29534914.67368 3626 3535 -6857575.146393 3627 3535 -15625000.00514 3628 3535 -35864239.62686 3629 3535 18029482.02244 3642 3535 3125000.001031 3643 3535 -20084539.63755 3644 3535 -23029577.62979 3645 3535 2.264976501465e-06 3646 3535 30806059.18833 3647 3535 -13715150.28603 3648 3535 -3125000.00103 3649 3535 -49598103.00073 3650 3535 36744727.91581 3536 3536 546307337.2251 3537 3536 7143384.465966 3538 3536 27704606.11405 3539 3536 49510035.63975 3621 3536 11964870.03287 3622 3536 -11171906.87604 3623 3536 -13613251.03531 3624 3536 73404184.96491 3625 3536 -6857575.146392 3626 3536 -87786498.03904 3627 3536 24822942.95376 3628 3536 18029482.02244 3629 3536 -52061746.4183 3642 3536 2735859.138623 3643 3536 -23029577.62992 3644 3536 -5469183.701778 3645 3536 15229460.85439 3646 3536 -13715150.28603 3647 3536 -92155412.4252 3648 3536 5307473.722807 3649 3536 36744727.91595 3650 3536 -84172019.33696 3537 3537 541325782.7681 3538 3537 6.437301635742e-06 3539 3537 4571801.756125 3540 3537 65181744.83088 3541 3537 12499999.99795 3542 3537 -3143073.865676 3624 3537 -26133752.36576 3625 3537 15625000.00514 3626 3537 11964870.03287 3627 3537 -98285243.92273 3628 3537 1.072883605957e-06 3629 3537 73747066.90912 3630 3537 -40551938.13439 3631 3537 -15625000.00514 3632 3537 24822942.95376 3645 3537 9602926.484067 3646 3537 -3125000.001024 3647 3537 -2164383.918541 3648 3537 49556853.20918 3649 3537 2.026557922363e-06 3650 3537 -14657969.69626 3651 3537 -19910636.87912 3652 3537 3125000.001023 3653 3537 -4735998.502713 3538 3538 466322606.7217 3539 3538 -54860601.11707 3540 3538 -12499999.99795 3541 3538 -53568119.59706 3542 3538 27155995.00303 3624 3538 15625000.00514 3625 3538 -21446053.85824 3626 3538 -11171906.87604 3627 3538 -4.172325134277e-07 3628 3538 -29534914.67368 3629 3538 -6857575.146393 3630 3538 -15625000.00514 3631 3538 -35864239.62686 3632 3538 18029482.02244 3645 3538 3125000.001031 3646 3538 -20084539.63755 3647 3538 -23029577.62979 3648 3538 2.264976501465e-06 3649 3538 30806059.18833 3650 3538 -13715150.28603 3651 3538 -3125000.00103 3652 3538 -49598103.00073 3653 3538 36744727.91581 3539 3539 546307337.2251 3540 3539 7143384.465966 3541 3539 27704606.11405 3542 3539 49510035.63975 3624 3539 11964870.03287 3625 3539 -11171906.87604 3626 3539 -13613251.03531 3627 3539 73404184.96491 3628 3539 -6857575.146392 3629 3539 -87786498.03904 3630 3539 24822942.95376 3631 3539 18029482.02244 3632 3539 -52061746.4183 3645 3539 2735859.138623 3646 3539 -23029577.62992 3647 3539 -5469183.701778 3648 3539 15229460.85439 3649 3539 -13715150.28603 3650 3539 -92155412.4252 3651 3539 5307473.722807 3652 3539 36744727.91595 3653 3539 -84172019.33696 3540 3540 535568240.4202 3541 3540 58128.69620621 3542 3540 23218753.21209 3543 3540 66687073.10683 3544 3540 6792886.106159 3545 3540 45330.57174599 3627 3540 -26133752.36576 3628 3540 15625000.00514 3629 3540 11964870.03287 3630 3540 -98078021.4205 3631 3540 1031079.308427 3632 3540 73275536.4611 3633 3540 -35178433.35253 3634 3540 -15616945.6841 3635 3540 20484919.19769 3648 3540 9602926.484067 3649 3540 -3125000.001024 3650 3540 -2164383.918541 3651 3540 44756559.78498 3652 3540 7943.295568347 3653 3540 -9908664.635919 3654 3540 -9289690.704191 3655 3540 2077923.076005 3656 3540 -2620124.358963 3541 3541 464393931.4614 3542 3541 -34267393.04202 3543 3541 -18207113.88974 3544 3541 -53835592.86528 3545 3541 5092680.185999 3627 3541 15625000.00514 3628 3541 -21446053.85824 3629 3541 -11171906.87604 3630 3541 1031079.308425 3631 3541 -30393361.72101 3632 3541 -5205088.156207 3633 3541 -15616945.6841 3634 3541 -29787134.49463 3635 3541 15986482.35805 3648 3541 3125000.001031 3649 3541 -20084539.63755 3650 3541 -23029577.62979 3651 3541 7943.295568764 3652 3541 26711708.06824 3653 3541 -8489193.347654 3654 3541 -4172076.926047 3655 3541 -39321029.93073 3656 3541 33555116.98496 3542 3542 537488440.5739 3543 3542 2102622.238072 3544 3542 5092680.185999 3545 3542 67906904.50199 3627 3542 11964870.03287 3628 3542 -11171906.87604 3629 3542 -13613251.03531 3630 3542 74989946.18456 3631 3542 -4930782.600289 3632 3542 -92280390.6637 3633 3542 20484919.19769 3634 3542 15986482.35805 3635 3542 -36507183.96923 3648 3542 2735859.138623 3649 3542 -23029577.62992 3650 3542 -5469183.701778 3651 3542 20663974.24795 3652 3542 -7940582.236633 3653 3542 -103726319.7821 3654 3542 5708660.365653 3655 3542 33555116.98482 3656 3542 -53258101.71172 3543 3543 521142175.6205 3544 3543 4357310.012615 3545 3543 256979.8629427 3546 3543 -93206905.2309 3547 3543 -64350842.27123 3548 3543 796318.3392085 3549 3543 62527224.36834 3550 3543 8714314.733252 3551 3543 -429272.4433933 3630 3543 -29662254.52482 3631 3543 15560983.93727 3632 3543 17067305.79587 3633 3543 -99122890.33304 3634 3543 1376184.523438 3635 3543 76917351.50796 3651 3543 -3482602.472394 3652 3543 -4172076.926049 3653 3543 -4698770.191785 3654 3543 34117046.21824 3655 3543 778570.1040945 3656 3543 -15334961.99471 3657 3543 -35604260.65942 3658 3543 -15968956.1185 3659 3543 20509351.80222 3660 3543 -9151163.575078 3661 3543 2425294.479764 3662 3543 -2620832.474664 3544 3544 478263488.7933 3545 3544 -7336562.232819 3546 3544 -64350842.27123 3547 3544 -73712126.30103 3548 3544 497300.0129924 3549 3544 -16285685.26264 3550 3544 -56721207.5792 3551 3544 1506415.954023 3630 3544 15560983.93727 3631 3544 -28493762.60981 3632 3544 -15856007.13474 3633 3544 1376184.523438 3634 3544 -32633420.33777 3635 3544 -1805494.517635 3651 3544 2077923.076005 3652 3544 -33513941.69894 3653 3544 -31036896.89325 3654 3544 778570.1040981 3655 3544 21602897.83365 3656 3544 -1794166.615711 3657 3544 -15968956.1185 3658 3544 -30912591.64709 3659 3544 16789140.72124 3660 3544 -3824705.522288 3661 3544 -38955306.88653 3662 3544 33703424.44008 3545 3545 543561032.3812 3546 3545 796318.3392083 3547 3545 497300.0129924 3548 3545 -10332531.23264 3549 3545 256491.4453803 3550 3545 1506415.954023 3551 3545 70380363.83328 3630 3545 17067305.79587 3631 3545 -15856007.13474 3632 3545 -29152295.26628 3633 3545 76917351.50829 3634 3545 -1805494.517364 3635 3545 -104554650.5595 3651 3545 2601368.699331 3652 3545 -31036896.89352 3653 3545 -37772533.09358 3654 3545 15506774.11134 3655 3545 -1794166.615711 3656 3545 -123193199.9205 3657 3545 20509351.80222 3658 3545 16789140.72124 3659 3545 -36523787.8538 3660 3545 5157014.750283 3661 3545 33703424.44008 3662 3545 -49886534.23033 3546 3546 272695692.3765 3547 3546 66117683.84736 3548 3546 -414314.3184705 3549 3546 -100751205.8239 3550 3546 -10649157.71646 3551 3546 -224848.4319969 3633 3546 -6952814.718665 3634 3546 2448881.069473 3635 3546 2724611.184208 3654 3546 -35055649.54814 3655 3546 -15968956.11851 3656 3546 -20115648.21112 3657 3546 16994370.30315 3658 3546 16301118.93669 3659 3546 8023536.963962 3660 3546 -50777794.92451 3661 3546 -2781043.887658 3662 3546 -39382499.93705 3547 3547 240750045.7496 3548 3547 -482784.0969512 3549 3547 14350842.27944 3550 3547 32097765.22126 3551 3547 -497300.0129839 3633 3547 -3801118.932581 3634 3547 -36984778.59371 3635 3547 -33213528.24393 3654 3547 -15968956.11851 3655 3547 -30363980.53581 3656 3547 -16544192.62304 3657 3547 16301118.93669 3658 3547 8940396.665666 3659 3547 6546861.581638 3660 3547 3468956.114395 3661 3547 -17383526.42432 3662 3547 3210859.285327 3548 3548 283986385.1319 3549 3548 -224848.4319939 3550 3548 -497300.0129839 3551 3548 51704651.66159 3633 3548 -5400388.818121 3634 3548 -33213528.24393 3635 3548 -47583984.21356 3654 3548 -20115648.21112 3655 3548 -16544192.62304 3656 3548 -35060824.89038 3657 3548 -8226463.033369 3658 3548 -6786471.749505 3659 3548 -65286971.7737 3660 3548 -39382499.93739 3661 3548 -3455807.383529 3662 3548 -54179922.82412 3549 3549 257897400.5802 3550 3549 -58714314.72505 3551 3549 -485079.4090633 3633 3549 -31166196.42186 3634 3549 15281043.89176 3635 3549 18784264.9961 3654 3549 -7505330.242306 3655 3549 -3824705.52229 3656 3549 -5042360.252043 3657 3549 -50777794.92451 3658 3549 3468956.114404 3659 3549 39274531.29995 3660 3549 15865543.81017 3661 3549 -14925294.48387 3662 3549 -7720880.488229 3550 3550 237740233.5922 3551 3550 -1506415.954004 3633 3550 15281043.89176 3634 3550 -28905435.61346 3635 3550 -16544192.62304 3654 3550 2425294.479764 3655 3550 -37309473.55378 3656 3550 -32963242.21564 3657 3550 -2781043.887649 3658 3550 -17383526.42432 3659 3550 3210859.285327 3660 3550 -14925294.48387 3661 3550 10014657.81304 3662 3550 6296575.553343 3551 3551 272931439.9327 3633 3551 18784264.9961 3634 3551 -16544192.62304 3635 3551 -33602279.96802 3654 3551 2392605.028518 3655 3551 -32963242.21564 3656 3551 -45497645.34292 3657 3551 39274531.29978 3658 3551 -3455807.383529 3659 3551 -54179922.82412 3660 3551 7491932.009273 3661 3551 -7036757.7778 3662 3551 -62943559.27428 3552 3552 698751952.167 3553 3552 62499999.98975 3554 3552 33160993.85051 3555 3552 -337915744.7523 3556 3552 -62516096.56266 3557 3552 -27668847.19038 3558 3552 13308405.80675 3559 3552 50016096.56471 3560 3552 -19894290.40682 3663 3552 50455843.08525 3664 3552 15625000.00514 3665 3552 23750485.45243 3666 3552 -136601119.3265 3667 3552 -15628682.15673 3668 3552 -88333821.76341 3669 3552 -31442472.41633 3670 3552 12503682.1557 3671 3552 -21464859.02542 3553 3553 604980043.3115 3554 3553 -63103934.68082 3555 3553 -62524144.84911 3556 3553 -44113422.33778 3557 3553 -38272833.23799 3558 3553 75024144.84706 3559 3553 13308405.80675 3560 3553 25517746.91897 3663 3553 15625000.00514 3664 3553 27013291.43733 3665 3553 -3407345.083582 3666 3553 -15630523.23252 3667 3553 -63151629.12586 3668 3553 -25854695.88552 3669 3553 18755523.23355 3670 3553 -31442472.41633 3671 3553 25757502.85539 3554 3554 741587115.0734 3555 3554 -24922773.86031 3556 3554 -30315528.70936 3557 3554 20612357.80692 3558 3554 -29841435.61023 3559 3554 17011831.27931 3560 3554 35489082.15132 3663 3554 -8884805.348678 3664 3554 -29515355.2492 3665 3554 -145884263.2499 3666 3554 -87990199.11779 3667 3554 -23932056.04702 3668 3554 -133843411.9462 3669 3554 -32197288.53812 3670 3554 17171668.57026 3671 3554 -83846593.11021 3555 3555 1185266328.887 3556 3555 62540241.42204 3557 3555 30860066.01788 3558 3555 30368144.44572 3559 3555 -62516096.56266 3560 3555 27037674.41794 3561 3555 -224004433.2424 3562 3555 3.09944152832e-06 3563 3555 -5943327.707585 3564 3555 -91775737.73549 3565 3555 62499999.98974 3566 3555 -27030536.78462 3663 3555 -119411159.8837 3664 3555 -15630523.23252 3665 3555 75186254.88774 3666 3555 109890622.1535 3667 3555 15634205.38412 3668 3555 7712478.882864 3669 3555 -60563825.20041 3670 3555 -15628682.15673 3671 3555 27115214.46942 3672 3555 -107888591.8846 3673 3555 1.713633537292e-06 3674 3555 -82890605.78265 3675 3555 -43968569.74338 3676 3555 15625000.00513 3677 3555 -27108827.67327 3556 3556 1016491380.459 3557 3556 -85033469.8302 3558 3556 -62524144.84912 3559 3556 -188413029.0158 3560 3556 46636948.6184 3561 3556 3.695487976074e-06 3562 3556 50996827.03073 3563 3556 -27430311.52865 3564 3556 62499999.98974 3565 3556 -73024977.83304 3566 3556 15223836.31984 3663 3556 -15628682.15673 3664 3556 -45961669.68301 3665 3556 8705839.731277 3666 3556 15634205.38412 3667 3556 67697343.25408 3668 3556 -21260405.06448 3669 3556 -15630523.23252 3670 3556 -115258445.5683 3671 3556 76792017.46155 3672 3556 1.668930053711e-06 3673 3556 -39138290.32084 3674 3556 -6857580.506883 3675 3556 15625000.00513 3676 3556 -39280887.92821 3677 3556 20086776.37002 3557 3557 1141730954.706 3558 3557 26698361.28971 3559 3557 52125943.97254 3560 3557 56705174.06508 3561 3557 -3200272.15248 3562 3557 -27430311.52865 3563 3557 99884455.60809 3564 3557 -26687654.83973 3565 3557 14949530.76392 3566 3557 -20428342.61214 3663 3557 74842632.24213 3664 3557 6787043.609902 3665 3557 -88003520.09856 3666 3557 7717283.578221 3667 3557 -21256561.34093 3668 3557 -211698416.8248 3669 3557 27118407.8675 3670 3557 78438470.16785 3671 3557 -167573319.7819 3672 3557 -82547723.83843 3673 3557 -6857580.506883 3674 3557 -113395588.2476 3675 3557 -27108827.67327 3676 3557 20086776.37002 3677 3557 -61172794.84886 3558 3558 698751952.167 3559 3558 62499999.98975 3560 3558 33160993.85051 3561 3558 -90421354.05518 3562 3558 -62499999.98975 3563 3558 24401754.87359 3564 3558 -337915744.7523 3565 3558 -62516096.56266 3566 3558 -27668847.19038 3567 3558 13308405.80675 3568 3558 50016096.56471 3569 3558 -19894290.40682 3663 3558 789479.8663111 3664 3558 18755523.23355 3665 3558 16762853.88037 3666 3558 -11151323.14121 3667 3558 -15630523.23252 3668 3558 -13684113.02055 3669 3558 50455843.08525 3670 3558 15625000.00514 3671 3558 23750485.45243 3672 3558 -27518808.45327 3673 3558 -15625000.00513 3674 3558 -14250754.75238 3675 3558 -136601119.3265 3676 3558 -15628682.15673 3677 3558 -88333821.76341 3678 3558 -31442472.41633 3679 3558 12503682.1557 3680 3558 -21464859.02542 3559 3559 604980043.3115 3560 3559 -63103934.68082 3561 3559 -62499999.98975 3562 3559 -71670594.15271 3563 3559 12206475.20882 3564 3559 -62524144.84911 3565 3559 -44113422.33778 3566 3559 -38272833.23799 3567 3559 75024144.84706 3568 3559 13308405.80675 3569 3559 25517746.91897 3663 3559 12503682.1557 3664 3559 789479.8663122 3665 3559 -8940185.539224 3666 3559 -15628682.15672 3667 3559 -65845943.5091 3668 3559 -52101581.10086 3669 3559 15625000.00514 3670 3559 27013291.43733 3671 3559 -3407345.083582 3672 3559 -15625000.00513 3673 3559 -22831126.63809 3674 3559 -13229195.86314 3675 3559 -15630523.23252 3676 3559 -63151629.12586 3677 3559 -25854695.88552 3678 3559 18755523.23355 3679 3559 -31442472.41633 3680 3559 25757502.85539 3560 3560 741587115.0734 3561 3560 24744636.81848 3562 3560 12480780.76473 3563 3560 -16816652.79793 3564 3560 -24922773.86031 3565 3560 -30315528.70936 3566 3560 20612357.80692 3567 3560 -29841435.61023 3568 3560 17011831.27931 3569 3560 35489082.15132 3663 3560 11175235.92025 3664 3560 -13410278.30884 3665 3560 2105279.643495 3666 3560 -13682502.0067 3667 3560 -53748034.02747 3668 3560 -35806647.62401 3669 3560 -8884805.348678 3670 3560 -29515355.2492 3671 3560 -145884263.2499 3672 3560 -14250754.75238 3673 3560 -13229195.86314 3674 3560 -17306764.74188 3675 3560 -87990199.11779 3676 3560 -23932056.04702 3677 3560 -133843411.9462 3678 3560 -32197288.53812 3679 3560 17171668.57026 3680 3560 -83846593.11021 3561 3561 1104842790.893 3562 3561 1.609325408936e-05 3563 3561 9143599.859988 3564 3561 135775801.5773 3565 3561 -6.794929504395e-06 3566 3561 2285899.966128 3570 3561 -224004433.2424 3571 3561 3.09944152832e-06 3572 3561 -5943327.707585 3573 3561 -91775737.73549 3574 3561 62499999.98974 3575 3561 -27030536.78462 3666 3561 -103592244.5474 3667 3561 1.892447471619e-06 3668 3561 80604706.69032 3669 3561 -42555886.98831 3670 3561 -15625000.00514 3671 3561 26537352.8999 3672 3561 77208121.14848 3673 3561 3.09944152832e-06 3674 3561 2285899.092361 3675 3561 -48017751.39621 3676 3561 -8.776783943176e-06 3677 3561 571474.7733788 3681 3561 -107888591.8846 3682 3561 1.713633537292e-06 3683 3561 -82890605.78265 3684 3561 -43968569.74338 3685 3561 15625000.00513 3686 3561 -27108827.67327 3562 3562 954836711.7471 3563 3562 -109721246.0606 3564 3562 -6.705522537231e-06 3565 3562 -101723938.9279 3566 3562 55957845.25232 3570 3562 3.695487976074e-06 3571 3562 50996827.03073 3572 3562 -27430311.52865 3573 3562 62499999.98974 3574 3562 -73024977.83304 3575 3562 15223836.31984 3666 3562 -9.983777999878e-07 3667 3562 -34841942.9836 3668 3562 -6857580.506883 3669 3562 -15625000.00514 3670 3562 -37868205.17313 3671 3562 19401012.48091 3672 3562 3.09944152832e-06 3673 3562 39706666.64553 3674 3562 -27430322.01402 3675 3562 -7.04824924469e-06 3676 3562 -107392689.3388 3677 3562 79112730.44064 3681 3562 1.668930053711e-06 3682 3562 -39138290.32084 3683 3562 -6857580.506883 3684 3562 15625000.00513 3685 3562 -39280887.92821 3686 3562 20086776.37002 3563 3563 1151791779.138 3564 3563 2285899.966128 3565 3563 53763400.80823 3566 3563 113453108.8746 3570 3563 -3200272.15248 3571 3563 -27430311.52865 3572 3563 99884455.60809 3573 3563 -26687654.83973 3574 3563 14949530.76392 3575 3563 -20428342.61214 3666 3563 80261824.7461 3667 3563 -6857580.506883 3668 3563 -101938662.0149 3669 3563 26537352.8999 3670 3563 19401012.48091 3671 3563 -57405640.83529 3672 3563 2285899.092361 3673 3563 -27430322.01402 3674 3563 -242725472.4512 3675 3563 571474.773379 3676 3563 78838424.88527 3677 3563 -190201211.678 3681 3563 -82547723.83843 3682 3563 -6857580.506883 3683 3563 -113395588.2476 3684 3563 -27108827.67327 3685 3563 20086776.37002 3686 3563 -61172794.84886 3564 3564 1185266328.887 3565 3564 62540241.42204 3566 3564 30860066.01788 3567 3564 30368144.44572 3568 3564 -62516096.56266 3569 3564 27037674.41794 3570 3564 -90421354.05518 3571 3564 -62499999.98975 3572 3564 24401754.87359 3573 3564 -224004433.2424 3574 3564 3.09944152832e-06 3575 3564 -5943327.707585 3576 3564 -91775737.73549 3577 3564 62499999.98974 3578 3564 -27030536.78462 3666 3564 -26783317.53868 3667 3564 15625000.00513 3668 3564 13679279.97901 3669 3564 -119411159.8837 3670 3564 -15630523.23252 3671 3564 75186254.88774 3672 3564 16426910.05153 3673 3564 4.485249519348e-06 3674 3564 571474.7733669 3675 3564 109890622.1535 3676 3564 15634205.38412 3677 3564 7712478.882864 3678 3564 -60563825.20041 3679 3564 -15628682.15673 3680 3564 27115214.46942 3681 3564 -27518808.45327 3682 3564 -15625000.00513 3683 3564 -14250754.75238 3684 3564 -107888591.8846 3685 3564 1.713633537292e-06 3686 3564 -82890605.78265 3687 3564 -43968569.74338 3688 3564 15625000.00513 3689 3564 -27108827.67327 3565 3565 1016491380.459 3566 3565 -85033469.8302 3567 3565 -62524144.84912 3568 3565 -188413029.0158 3569 3565 46636948.6184 3570 3565 -62499999.98975 3571 3565 -71670594.15271 3572 3565 12206475.20882 3573 3565 3.695487976074e-06 3574 3565 50996827.03073 3575 3565 -27430311.52865 3576 3565 62499999.98974 3577 3565 -73024977.83304 3578 3565 15223836.31984 3666 3565 15625000.00513 3667 3565 -22095635.7235 3668 3565 -12543431.97403 3669 3565 -15628682.15673 3670 3565 -45961669.68301 3671 3565 8705839.731277 3672 3565 5.781650543213e-06 3673 3565 -42948027.89108 3674 3565 -51682408.42662 3675 3565 15634205.38412 3676 3565 67697343.25408 3677 3565 -21260405.06448 3678 3565 -15630523.23252 3679 3565 -115258445.5683 3680 3565 76792017.46155 3681 3565 -15625000.00513 3682 3565 -22831126.63809 3683 3565 -13229195.86314 3684 3565 1.668930053711e-06 3685 3565 -39138290.32084 3686 3565 -6857580.506883 3687 3565 15625000.00513 3688 3565 -39280887.92821 3689 3565 20086776.37002 3566 3566 1141730954.706 3567 3566 26698361.28971 3568 3566 52125943.97254 3569 3566 56705174.06508 3570 3566 24744636.81848 3571 3566 12480780.76473 3572 3566 -16816652.79793 3573 3566 -3200272.15248 3574 3566 -27430311.52865 3575 3566 99884455.60809 3576 3566 -26687654.83973 3577 3566 14949530.76392 3578 3566 -20428342.61214 3666 3566 13679279.97901 3667 3566 -12543431.97403 3668 3566 -15345455.6363 3669 3566 74842632.24213 3670 3566 6787043.609902 3671 3566 -88003520.09856 3672 3566 571474.7733671 3673 3566 -51408102.87125 3674 3566 -18348781.1507 3675 3566 7717283.578221 3676 3566 -21256561.34093 3677 3566 -211698416.8248 3678 3566 27118407.8675 3679 3566 78438470.16785 3680 3566 -167573319.7819 3681 3566 -14250754.75238 3682 3566 -13229195.86314 3683 3566 -17306764.74188 3684 3566 -82547723.83843 3685 3566 -6857580.506883 3686 3566 -113395588.2476 3687 3566 -27108827.67327 3688 3566 20086776.37002 3689 3566 -61172794.84886 3567 3567 698751952.167 3568 3567 62499999.98975 3569 3567 33160993.85051 3573 3567 -90421354.05518 3574 3567 -62499999.98975 3575 3567 24401754.87359 3576 3567 -337915744.7523 3577 3567 -62516096.56266 3578 3567 -27668847.19038 3579 3567 13308405.80675 3580 3567 50016096.56471 3581 3567 -19894290.40682 3669 3567 789479.8663111 3670 3567 18755523.23355 3671 3567 16762853.88037 3675 3567 -11151323.14121 3676 3567 -15630523.23252 3677 3567 -13684113.02055 3678 3567 50455843.08525 3679 3567 15625000.00514 3680 3567 23750485.45243 3684 3567 -27518808.45327 3685 3567 -15625000.00513 3686 3567 -14250754.75238 3687 3567 -136601119.3265 3688 3567 -15628682.15673 3689 3567 -88333821.76341 3690 3567 -31442472.41633 3691 3567 12503682.1557 3692 3567 -21464859.02542 3568 3568 604980043.3115 3569 3568 -63103934.68082 3573 3568 -62499999.98975 3574 3568 -71670594.15271 3575 3568 12206475.20882 3576 3568 -62524144.84911 3577 3568 -44113422.33778 3578 3568 -38272833.23799 3579 3568 75024144.84706 3580 3568 13308405.80675 3581 3568 25517746.91897 3669 3568 12503682.1557 3670 3568 789479.8663122 3671 3568 -8940185.539224 3675 3568 -15628682.15672 3676 3568 -65845943.5091 3677 3568 -52101581.10086 3678 3568 15625000.00514 3679 3568 27013291.43733 3680 3568 -3407345.083582 3684 3568 -15625000.00513 3685 3568 -22831126.63809 3686 3568 -13229195.86314 3687 3568 -15630523.23252 3688 3568 -63151629.12586 3689 3568 -25854695.88552 3690 3568 18755523.23355 3691 3568 -31442472.41633 3692 3568 25757502.85539 3569 3569 741587115.0734 3573 3569 24744636.81848 3574 3569 12480780.76473 3575 3569 -16816652.79793 3576 3569 -24922773.86031 3577 3569 -30315528.70936 3578 3569 20612357.80692 3579 3569 -29841435.61023 3580 3569 17011831.27931 3581 3569 35489082.15132 3669 3569 11175235.92025 3670 3569 -13410278.30884 3671 3569 2105279.643495 3675 3569 -13682502.0067 3676 3569 -53748034.02747 3677 3569 -35806647.62401 3678 3569 -8884805.348678 3679 3569 -29515355.2492 3680 3569 -145884263.2499 3684 3569 -14250754.75238 3685 3569 -13229195.86314 3686 3569 -17306764.74188 3687 3569 -87990199.11779 3688 3569 -23932056.04702 3689 3569 -133843411.9462 3690 3569 -32197288.53812 3691 3569 17171668.57026 3692 3569 -83846593.11021 3570 3570 1104842790.893 3571 3570 1.609325408936e-05 3572 3570 9143599.859988 3573 3570 135775801.5773 3574 3570 -6.794929504395e-06 3575 3570 2285899.966128 3582 3570 -224004433.2424 3583 3570 3.09944152832e-06 3584 3570 -5943327.707585 3585 3570 -91775737.73549 3586 3570 62499999.98974 3587 3570 -27030536.78462 3672 3570 -103592244.5474 3673 3570 1.892447471619e-06 3674 3570 80604706.69032 3675 3570 -42555886.98831 3676 3570 -15625000.00514 3677 3570 26537352.8999 3681 3570 77208121.14848 3682 3570 3.09944152832e-06 3683 3570 2285899.092361 3684 3570 -48017751.39621 3685 3570 -8.776783943176e-06 3686 3570 571474.7733788 3693 3570 -107888591.8846 3694 3570 1.713633537292e-06 3695 3570 -82890605.78265 3696 3570 -43968569.74338 3697 3570 15625000.00513 3698 3570 -27108827.67327 3571 3571 954836711.7471 3572 3571 -109721246.0606 3573 3571 -6.705522537231e-06 3574 3571 -101723938.9279 3575 3571 55957845.25232 3582 3571 3.695487976074e-06 3583 3571 50996827.03073 3584 3571 -27430311.52865 3585 3571 62499999.98974 3586 3571 -73024977.83304 3587 3571 15223836.31984 3672 3571 -9.983777999878e-07 3673 3571 -34841942.9836 3674 3571 -6857580.506883 3675 3571 -15625000.00514 3676 3571 -37868205.17313 3677 3571 19401012.48091 3681 3571 3.09944152832e-06 3682 3571 39706666.64553 3683 3571 -27430322.01402 3684 3571 -7.04824924469e-06 3685 3571 -107392689.3388 3686 3571 79112730.44064 3693 3571 1.668930053711e-06 3694 3571 -39138290.32084 3695 3571 -6857580.506883 3696 3571 15625000.00513 3697 3571 -39280887.92821 3698 3571 20086776.37002 3572 3572 1151791779.138 3573 3572 2285899.966128 3574 3572 53763400.80823 3575 3572 113453108.8746 3582 3572 -3200272.15248 3583 3572 -27430311.52865 3584 3572 99884455.60809 3585 3572 -26687654.83973 3586 3572 14949530.76392 3587 3572 -20428342.61214 3672 3572 80261824.7461 3673 3572 -6857580.506883 3674 3572 -101938662.0149 3675 3572 26537352.8999 3676 3572 19401012.48091 3677 3572 -57405640.83529 3681 3572 2285899.092361 3682 3572 -27430322.01402 3683 3572 -242725472.4512 3684 3572 571474.773379 3685 3572 78838424.88527 3686 3572 -190201211.678 3693 3572 -82547723.83843 3694 3572 -6857580.506883 3695 3572 -113395588.2476 3696 3572 -27108827.67327 3697 3572 20086776.37002 3698 3572 -61172794.84886 3573 3573 1104842790.893 3574 3573 1.609325408936e-05 3575 3573 9143599.859988 3576 3573 135775801.5773 3577 3573 -6.794929504395e-06 3578 3573 2285899.966128 3582 3573 -90421354.05518 3583 3573 -62499999.98975 3584 3573 24401754.87359 3585 3573 -224004433.2424 3586 3573 3.09944152832e-06 3587 3573 -5943327.707585 3588 3573 -91775737.73549 3589 3573 62499999.98974 3590 3573 -27030536.78462 3672 3573 -26783317.53868 3673 3573 15625000.00513 3674 3573 13679279.97901 3675 3573 -103592244.5474 3676 3573 1.892447471619e-06 3677 3573 80604706.69032 3678 3573 -42555886.98831 3679 3573 -15625000.00514 3680 3573 26537352.8999 3681 3573 16426910.05153 3682 3573 4.485249519348e-06 3683 3573 571474.7733669 3684 3573 77208121.14848 3685 3573 3.09944152832e-06 3686 3573 2285899.092361 3687 3573 -48017751.39621 3688 3573 -8.776783943176e-06 3689 3573 571474.7733788 3693 3573 -27518808.45327 3694 3573 -15625000.00513 3695 3573 -14250754.75238 3696 3573 -107888591.8846 3697 3573 1.713633537292e-06 3698 3573 -82890605.78265 3699 3573 -43968569.74338 3700 3573 15625000.00513 3701 3573 -27108827.67327 3574 3574 954836711.7471 3575 3574 -109721246.0606 3576 3574 -6.705522537231e-06 3577 3574 -101723938.9279 3578 3574 55957845.25232 3582 3574 -62499999.98975 3583 3574 -71670594.15271 3584 3574 12206475.20882 3585 3574 3.695487976074e-06 3586 3574 50996827.03073 3587 3574 -27430311.52865 3588 3574 62499999.98974 3589 3574 -73024977.83304 3590 3574 15223836.31984 3672 3574 15625000.00513 3673 3574 -22095635.7235 3674 3574 -12543431.97403 3675 3574 -9.983777999878e-07 3676 3574 -34841942.9836 3677 3574 -6857580.506883 3678 3574 -15625000.00514 3679 3574 -37868205.17313 3680 3574 19401012.48091 3681 3574 5.781650543213e-06 3682 3574 -42948027.89108 3683 3574 -51682408.42662 3684 3574 3.09944152832e-06 3685 3574 39706666.64553 3686 3574 -27430322.01402 3687 3574 -7.04824924469e-06 3688 3574 -107392689.3388 3689 3574 79112730.44064 3693 3574 -15625000.00513 3694 3574 -22831126.63809 3695 3574 -13229195.86314 3696 3574 1.668930053711e-06 3697 3574 -39138290.32084 3698 3574 -6857580.506883 3699 3574 15625000.00513 3700 3574 -39280887.92821 3701 3574 20086776.37002 3575 3575 1151791779.138 3576 3575 2285899.966128 3577 3575 53763400.80823 3578 3575 113453108.8746 3582 3575 24744636.81848 3583 3575 12480780.76473 3584 3575 -16816652.79793 3585 3575 -3200272.15248 3586 3575 -27430311.52865 3587 3575 99884455.60809 3588 3575 -26687654.83973 3589 3575 14949530.76392 3590 3575 -20428342.61214 3672 3575 13679279.97901 3673 3575 -12543431.97403 3674 3575 -15345455.6363 3675 3575 80261824.7461 3676 3575 -6857580.506883 3677 3575 -101938662.0149 3678 3575 26537352.8999 3679 3575 19401012.48091 3680 3575 -57405640.83529 3681 3575 571474.7733671 3682 3575 -51408102.87125 3683 3575 -18348781.1507 3684 3575 2285899.092361 3685 3575 -27430322.01402 3686 3575 -242725472.4512 3687 3575 571474.773379 3688 3575 78838424.88527 3689 3575 -190201211.678 3693 3575 -14250754.75238 3694 3575 -13229195.86314 3695 3575 -17306764.74188 3696 3575 -82547723.83843 3697 3575 -6857580.506883 3698 3575 -113395588.2476 3699 3575 -27108827.67327 3700 3575 20086776.37002 3701 3575 -61172794.84886 3576 3576 1185266328.887 3577 3576 62540241.42204 3578 3576 30860066.01788 3579 3576 30368144.44572 3580 3576 -62516096.56266 3581 3576 27037674.41794 3585 3576 -90421354.05518 3586 3576 -62499999.98975 3587 3576 24401754.87359 3588 3576 -224004433.2424 3589 3576 3.09944152832e-06 3590 3576 -5943327.707585 3591 3576 -91775737.73549 3592 3576 62499999.98974 3593 3576 -27030536.78462 3675 3576 -26783317.53868 3676 3576 15625000.00513 3677 3576 13679279.97901 3678 3576 -119411159.8837 3679 3576 -15630523.23252 3680 3576 75186254.88774 3684 3576 16426910.05153 3685 3576 4.485249519348e-06 3686 3576 571474.7733669 3687 3576 109890622.1535 3688 3576 15634205.38412 3689 3576 7712478.882864 3690 3576 -60563825.20041 3691 3576 -15628682.15673 3692 3576 27115214.46942 3696 3576 -27518808.45327 3697 3576 -15625000.00513 3698 3576 -14250754.75238 3699 3576 -107888591.8846 3700 3576 1.713633537292e-06 3701 3576 -82890605.78265 3702 3576 -43968569.74338 3703 3576 15625000.00513 3704 3576 -27108827.67327 3577 3577 1016491380.459 3578 3577 -85033469.8302 3579 3577 -62524144.84912 3580 3577 -188413029.0158 3581 3577 46636948.6184 3585 3577 -62499999.98975 3586 3577 -71670594.15271 3587 3577 12206475.20882 3588 3577 3.695487976074e-06 3589 3577 50996827.03073 3590 3577 -27430311.52865 3591 3577 62499999.98974 3592 3577 -73024977.83304 3593 3577 15223836.31984 3675 3577 15625000.00513 3676 3577 -22095635.7235 3677 3577 -12543431.97403 3678 3577 -15628682.15673 3679 3577 -45961669.68301 3680 3577 8705839.731277 3684 3577 5.781650543213e-06 3685 3577 -42948027.89108 3686 3577 -51682408.42662 3687 3577 15634205.38412 3688 3577 67697343.25408 3689 3577 -21260405.06448 3690 3577 -15630523.23252 3691 3577 -115258445.5683 3692 3577 76792017.46155 3696 3577 -15625000.00513 3697 3577 -22831126.63809 3698 3577 -13229195.86314 3699 3577 1.668930053711e-06 3700 3577 -39138290.32084 3701 3577 -6857580.506883 3702 3577 15625000.00513 3703 3577 -39280887.92821 3704 3577 20086776.37002 3578 3578 1141730954.706 3579 3578 26698361.28971 3580 3578 52125943.97254 3581 3578 56705174.06508 3585 3578 24744636.81848 3586 3578 12480780.76473 3587 3578 -16816652.79793 3588 3578 -3200272.15248 3589 3578 -27430311.52865 3590 3578 99884455.60809 3591 3578 -26687654.83973 3592 3578 14949530.76392 3593 3578 -20428342.61214 3675 3578 13679279.97901 3676 3578 -12543431.97403 3677 3578 -15345455.6363 3678 3578 74842632.24213 3679 3578 6787043.609902 3680 3578 -88003520.09856 3684 3578 571474.7733671 3685 3578 -51408102.87125 3686 3578 -18348781.1507 3687 3578 7717283.578221 3688 3578 -21256561.34093 3689 3578 -211698416.8248 3690 3578 27118407.8675 3691 3578 78438470.16785 3692 3578 -167573319.7819 3696 3578 -14250754.75238 3697 3578 -13229195.86314 3698 3578 -17306764.74188 3699 3578 -82547723.83843 3700 3578 -6857580.506883 3701 3578 -113395588.2476 3702 3578 -27108827.67327 3703 3578 20086776.37002 3704 3578 -61172794.84886 3579 3579 698751952.167 3580 3579 62499999.98975 3581 3579 33160993.85051 3588 3579 -90421354.05518 3589 3579 -62499999.98975 3590 3579 24401754.87359 3591 3579 -337915744.7523 3592 3579 -62516096.56266 3593 3579 -27668847.19038 3594 3579 13308405.80675 3595 3579 50016096.56471 3596 3579 -19894290.40682 3678 3579 789479.8663111 3679 3579 18755523.23355 3680 3579 16762853.88037 3687 3579 -11151323.14121 3688 3579 -15630523.23252 3689 3579 -13684113.02055 3690 3579 50455843.08525 3691 3579 15625000.00514 3692 3579 23750485.45243 3699 3579 -27518808.45327 3700 3579 -15625000.00513 3701 3579 -14250754.75238 3702 3579 -136601119.3265 3703 3579 -15628682.15673 3704 3579 -88333821.76341 3705 3579 -31442472.41633 3706 3579 12503682.1557 3707 3579 -21464859.02542 3580 3580 604980043.3115 3581 3580 -63103934.68082 3588 3580 -62499999.98975 3589 3580 -71670594.15271 3590 3580 12206475.20882 3591 3580 -62524144.84911 3592 3580 -44113422.33778 3593 3580 -38272833.23799 3594 3580 75024144.84706 3595 3580 13308405.80675 3596 3580 25517746.91897 3678 3580 12503682.1557 3679 3580 789479.8663122 3680 3580 -8940185.539224 3687 3580 -15628682.15672 3688 3580 -65845943.5091 3689 3580 -52101581.10086 3690 3580 15625000.00514 3691 3580 27013291.43733 3692 3580 -3407345.083582 3699 3580 -15625000.00513 3700 3580 -22831126.63809 3701 3580 -13229195.86314 3702 3580 -15630523.23252 3703 3580 -63151629.12586 3704 3580 -25854695.88552 3705 3580 18755523.23355 3706 3580 -31442472.41633 3707 3580 25757502.85539 3581 3581 741587115.0734 3588 3581 24744636.81848 3589 3581 12480780.76473 3590 3581 -16816652.79793 3591 3581 -24922773.86031 3592 3581 -30315528.70936 3593 3581 20612357.80692 3594 3581 -29841435.61023 3595 3581 17011831.27931 3596 3581 35489082.15132 3678 3581 11175235.92025 3679 3581 -13410278.30884 3680 3581 2105279.643495 3687 3581 -13682502.0067 3688 3581 -53748034.02747 3689 3581 -35806647.62401 3690 3581 -8884805.348678 3691 3581 -29515355.2492 3692 3581 -145884263.2499 3699 3581 -14250754.75238 3700 3581 -13229195.86314 3701 3581 -17306764.74188 3702 3581 -87990199.11779 3703 3581 -23932056.04702 3704 3581 -133843411.9462 3705 3581 -32197288.53812 3706 3581 17171668.57026 3707 3581 -83846593.11021 3582 3582 1104842790.893 3583 3582 1.609325408936e-05 3584 3582 9143599.859988 3585 3582 135775801.5773 3586 3582 -6.794929504395e-06 3587 3582 2285899.966128 3597 3582 -224004433.2424 3598 3582 3.09944152832e-06 3599 3582 -5943327.707585 3600 3582 -91775737.73549 3601 3582 62499999.98974 3602 3582 -27030536.78462 3681 3582 -103592244.5474 3682 3582 1.892447471619e-06 3683 3582 80604706.69032 3684 3582 -42555886.98831 3685 3582 -15625000.00514 3686 3582 26537352.8999 3693 3582 77208121.14848 3694 3582 3.09944152832e-06 3695 3582 2285899.092361 3696 3582 -48017751.39621 3697 3582 -8.776783943176e-06 3698 3582 571474.7733788 3708 3582 -107888591.8846 3709 3582 1.713633537292e-06 3710 3582 -82890605.78265 3711 3582 -43968569.74338 3712 3582 15625000.00513 3713 3582 -27108827.67327 3583 3583 954836711.7471 3584 3583 -109721246.0606 3585 3583 -6.705522537231e-06 3586 3583 -101723938.9279 3587 3583 55957845.25232 3597 3583 3.695487976074e-06 3598 3583 50996827.03073 3599 3583 -27430311.52865 3600 3583 62499999.98974 3601 3583 -73024977.83304 3602 3583 15223836.31984 3681 3583 -9.983777999878e-07 3682 3583 -34841942.9836 3683 3583 -6857580.506883 3684 3583 -15625000.00514 3685 3583 -37868205.17313 3686 3583 19401012.48091 3693 3583 3.09944152832e-06 3694 3583 39706666.64553 3695 3583 -27430322.01402 3696 3583 -7.04824924469e-06 3697 3583 -107392689.3388 3698 3583 79112730.44064 3708 3583 1.668930053711e-06 3709 3583 -39138290.32084 3710 3583 -6857580.506883 3711 3583 15625000.00513 3712 3583 -39280887.92821 3713 3583 20086776.37002 3584 3584 1151791779.138 3585 3584 2285899.966128 3586 3584 53763400.80823 3587 3584 113453108.8746 3597 3584 -3200272.15248 3598 3584 -27430311.52865 3599 3584 99884455.60809 3600 3584 -26687654.83973 3601 3584 14949530.76392 3602 3584 -20428342.61214 3681 3584 80261824.7461 3682 3584 -6857580.506883 3683 3584 -101938662.0149 3684 3584 26537352.8999 3685 3584 19401012.48091 3686 3584 -57405640.83529 3693 3584 2285899.092361 3694 3584 -27430322.01402 3695 3584 -242725472.4512 3696 3584 571474.773379 3697 3584 78838424.88527 3698 3584 -190201211.678 3708 3584 -82547723.83843 3709 3584 -6857580.506883 3710 3584 -113395588.2476 3711 3584 -27108827.67327 3712 3584 20086776.37002 3713 3584 -61172794.84886 3585 3585 1104842790.893 3586 3585 1.609325408936e-05 3587 3585 9143599.859988 3588 3585 135775801.5773 3589 3585 -6.794929504395e-06 3590 3585 2285899.966128 3597 3585 -90421354.05518 3598 3585 -62499999.98975 3599 3585 24401754.87359 3600 3585 -224004433.2424 3601 3585 3.09944152832e-06 3602 3585 -5943327.707585 3603 3585 -91775737.73549 3604 3585 62499999.98974 3605 3585 -27030536.78462 3681 3585 -26783317.53868 3682 3585 15625000.00513 3683 3585 13679279.97901 3684 3585 -103592244.5474 3685 3585 1.892447471619e-06 3686 3585 80604706.69032 3687 3585 -42555886.98831 3688 3585 -15625000.00514 3689 3585 26537352.8999 3693 3585 16426910.05153 3694 3585 4.485249519348e-06 3695 3585 571474.7733669 3696 3585 77208121.14848 3697 3585 3.09944152832e-06 3698 3585 2285899.092361 3699 3585 -48017751.39621 3700 3585 -8.776783943176e-06 3701 3585 571474.7733788 3708 3585 -27518808.45327 3709 3585 -15625000.00513 3710 3585 -14250754.75238 3711 3585 -107888591.8846 3712 3585 1.713633537292e-06 3713 3585 -82890605.78265 3714 3585 -43968569.74338 3715 3585 15625000.00513 3716 3585 -27108827.67327 3586 3586 954836711.7471 3587 3586 -109721246.0606 3588 3586 -6.705522537231e-06 3589 3586 -101723938.9279 3590 3586 55957845.25232 3597 3586 -62499999.98975 3598 3586 -71670594.15271 3599 3586 12206475.20882 3600 3586 3.695487976074e-06 3601 3586 50996827.03073 3602 3586 -27430311.52865 3603 3586 62499999.98974 3604 3586 -73024977.83304 3605 3586 15223836.31984 3681 3586 15625000.00513 3682 3586 -22095635.7235 3683 3586 -12543431.97403 3684 3586 -9.983777999878e-07 3685 3586 -34841942.9836 3686 3586 -6857580.506883 3687 3586 -15625000.00514 3688 3586 -37868205.17313 3689 3586 19401012.48091 3693 3586 5.781650543213e-06 3694 3586 -42948027.89108 3695 3586 -51682408.42662 3696 3586 3.09944152832e-06 3697 3586 39706666.64553 3698 3586 -27430322.01402 3699 3586 -7.04824924469e-06 3700 3586 -107392689.3388 3701 3586 79112730.44064 3708 3586 -15625000.00513 3709 3586 -22831126.63809 3710 3586 -13229195.86314 3711 3586 1.668930053711e-06 3712 3586 -39138290.32084 3713 3586 -6857580.506883 3714 3586 15625000.00513 3715 3586 -39280887.92821 3716 3586 20086776.37002 3587 3587 1151791779.138 3588 3587 2285899.966128 3589 3587 53763400.80823 3590 3587 113453108.8746 3597 3587 24744636.81848 3598 3587 12480780.76473 3599 3587 -16816652.79793 3600 3587 -3200272.15248 3601 3587 -27430311.52865 3602 3587 99884455.60809 3603 3587 -26687654.83973 3604 3587 14949530.76392 3605 3587 -20428342.61214 3681 3587 13679279.97901 3682 3587 -12543431.97403 3683 3587 -15345455.6363 3684 3587 80261824.7461 3685 3587 -6857580.506883 3686 3587 -101938662.0149 3687 3587 26537352.8999 3688 3587 19401012.48091 3689 3587 -57405640.83529 3693 3587 571474.7733671 3694 3587 -51408102.87125 3695 3587 -18348781.1507 3696 3587 2285899.092361 3697 3587 -27430322.01402 3698 3587 -242725472.4512 3699 3587 571474.773379 3700 3587 78838424.88527 3701 3587 -190201211.678 3708 3587 -14250754.75238 3709 3587 -13229195.86314 3710 3587 -17306764.74188 3711 3587 -82547723.83843 3712 3587 -6857580.506883 3713 3587 -113395588.2476 3714 3587 -27108827.67327 3715 3587 20086776.37002 3716 3587 -61172794.84886 3588 3588 1104842790.893 3589 3588 1.609325408936e-05 3590 3588 9143599.859988 3591 3588 135775801.5773 3592 3588 -6.794929504395e-06 3593 3588 2285899.966128 3600 3588 -90421354.05518 3601 3588 -62499999.98975 3602 3588 24401754.87359 3603 3588 -224004433.2424 3604 3588 3.09944152832e-06 3605 3588 -5943327.707585 3606 3588 -91775737.73549 3607 3588 62499999.98974 3608 3588 -27030536.78462 3684 3588 -26783317.53868 3685 3588 15625000.00513 3686 3588 13679279.97901 3687 3588 -103592244.5474 3688 3588 1.892447471619e-06 3689 3588 80604706.69032 3690 3588 -42555886.98831 3691 3588 -15625000.00514 3692 3588 26537352.8999 3696 3588 16426910.05153 3697 3588 4.485249519348e-06 3698 3588 571474.7733669 3699 3588 77208121.14848 3700 3588 3.09944152832e-06 3701 3588 2285899.092361 3702 3588 -48017751.39621 3703 3588 -8.776783943176e-06 3704 3588 571474.7733788 3711 3588 -27518808.45327 3712 3588 -15625000.00513 3713 3588 -14250754.75238 3714 3588 -107888591.8846 3715 3588 1.713633537292e-06 3716 3588 -82890605.78265 3717 3588 -43968569.74338 3718 3588 15625000.00513 3719 3588 -27108827.67327 3589 3589 954836711.7471 3590 3589 -109721246.0606 3591 3589 -6.705522537231e-06 3592 3589 -101723938.9279 3593 3589 55957845.25232 3600 3589 -62499999.98975 3601 3589 -71670594.15271 3602 3589 12206475.20882 3603 3589 3.695487976074e-06 3604 3589 50996827.03073 3605 3589 -27430311.52865 3606 3589 62499999.98974 3607 3589 -73024977.83304 3608 3589 15223836.31984 3684 3589 15625000.00513 3685 3589 -22095635.7235 3686 3589 -12543431.97403 3687 3589 -9.983777999878e-07 3688 3589 -34841942.9836 3689 3589 -6857580.506883 3690 3589 -15625000.00514 3691 3589 -37868205.17313 3692 3589 19401012.48091 3696 3589 5.781650543213e-06 3697 3589 -42948027.89108 3698 3589 -51682408.42662 3699 3589 3.09944152832e-06 3700 3589 39706666.64553 3701 3589 -27430322.01402 3702 3589 -7.04824924469e-06 3703 3589 -107392689.3388 3704 3589 79112730.44064 3711 3589 -15625000.00513 3712 3589 -22831126.63809 3713 3589 -13229195.86314 3714 3589 1.668930053711e-06 3715 3589 -39138290.32084 3716 3589 -6857580.506883 3717 3589 15625000.00513 3718 3589 -39280887.92821 3719 3589 20086776.37002 3590 3590 1151791779.138 3591 3590 2285899.966128 3592 3590 53763400.80823 3593 3590 113453108.8746 3600 3590 24744636.81848 3601 3590 12480780.76473 3602 3590 -16816652.79793 3603 3590 -3200272.15248 3604 3590 -27430311.52865 3605 3590 99884455.60809 3606 3590 -26687654.83973 3607 3590 14949530.76392 3608 3590 -20428342.61214 3684 3590 13679279.97901 3685 3590 -12543431.97403 3686 3590 -15345455.6363 3687 3590 80261824.7461 3688 3590 -6857580.506883 3689 3590 -101938662.0149 3690 3590 26537352.8999 3691 3590 19401012.48091 3692 3590 -57405640.83529 3696 3590 571474.7733671 3697 3590 -51408102.87125 3698 3590 -18348781.1507 3699 3590 2285899.092361 3700 3590 -27430322.01402 3701 3590 -242725472.4512 3702 3590 571474.773379 3703 3590 78838424.88527 3704 3590 -190201211.678 3711 3590 -14250754.75238 3712 3590 -13229195.86314 3713 3590 -17306764.74188 3714 3590 -82547723.83843 3715 3590 -6857580.506883 3716 3590 -113395588.2476 3717 3590 -27108827.67327 3718 3590 20086776.37002 3719 3590 -61172794.84886 3591 3591 1185266328.887 3592 3591 62540241.42204 3593 3591 30860066.01788 3594 3591 30368144.44572 3595 3591 -62516096.56266 3596 3591 27037674.41794 3603 3591 -90421354.05518 3604 3591 -62499999.98975 3605 3591 24401754.87359 3606 3591 -224004433.2424 3607 3591 3.09944152832e-06 3608 3591 -5943327.707585 3609 3591 -91775737.73549 3610 3591 62499999.98974 3611 3591 -27030536.78462 3687 3591 -26783317.53868 3688 3591 15625000.00513 3689 3591 13679279.97901 3690 3591 -119411159.8837 3691 3591 -15630523.23252 3692 3591 75186254.88774 3699 3591 16426910.05153 3700 3591 4.485249519348e-06 3701 3591 571474.7733669 3702 3591 109890622.1535 3703 3591 15634205.38412 3704 3591 7712478.882864 3705 3591 -60563825.20041 3706 3591 -15628682.15673 3707 3591 27115214.46942 3714 3591 -27518808.45327 3715 3591 -15625000.00513 3716 3591 -14250754.75238 3717 3591 -107888591.8846 3718 3591 1.713633537292e-06 3719 3591 -82890605.78265 3720 3591 -43968569.74338 3721 3591 15625000.00513 3722 3591 -27108827.67327 3592 3592 1016491380.459 3593 3592 -85033469.8302 3594 3592 -62524144.84912 3595 3592 -188413029.0158 3596 3592 46636948.6184 3603 3592 -62499999.98975 3604 3592 -71670594.15271 3605 3592 12206475.20882 3606 3592 3.695487976074e-06 3607 3592 50996827.03073 3608 3592 -27430311.52865 3609 3592 62499999.98974 3610 3592 -73024977.83304 3611 3592 15223836.31984 3687 3592 15625000.00513 3688 3592 -22095635.7235 3689 3592 -12543431.97403 3690 3592 -15628682.15673 3691 3592 -45961669.68301 3692 3592 8705839.731277 3699 3592 5.781650543213e-06 3700 3592 -42948027.89108 3701 3592 -51682408.42662 3702 3592 15634205.38412 3703 3592 67697343.25408 3704 3592 -21260405.06448 3705 3592 -15630523.23252 3706 3592 -115258445.5683 3707 3592 76792017.46155 3714 3592 -15625000.00513 3715 3592 -22831126.63809 3716 3592 -13229195.86314 3717 3592 1.668930053711e-06 3718 3592 -39138290.32084 3719 3592 -6857580.506883 3720 3592 15625000.00513 3721 3592 -39280887.92821 3722 3592 20086776.37002 3593 3593 1141730954.706 3594 3593 26698361.28971 3595 3593 52125943.97254 3596 3593 56705174.06508 3603 3593 24744636.81848 3604 3593 12480780.76473 3605 3593 -16816652.79793 3606 3593 -3200272.15248 3607 3593 -27430311.52865 3608 3593 99884455.60809 3609 3593 -26687654.83973 3610 3593 14949530.76392 3611 3593 -20428342.61214 3687 3593 13679279.97901 3688 3593 -12543431.97403 3689 3593 -15345455.6363 3690 3593 74842632.24213 3691 3593 6787043.609902 3692 3593 -88003520.09856 3699 3593 571474.7733671 3700 3593 -51408102.87125 3701 3593 -18348781.1507 3702 3593 7717283.578221 3703 3593 -21256561.34093 3704 3593 -211698416.8248 3705 3593 27118407.8675 3706 3593 78438470.16785 3707 3593 -167573319.7819 3714 3593 -14250754.75238 3715 3593 -13229195.86314 3716 3593 -17306764.74188 3717 3593 -82547723.83843 3718 3593 -6857580.506883 3719 3593 -113395588.2476 3720 3593 -27108827.67327 3721 3593 20086776.37002 3722 3593 -61172794.84886 3594 3594 698751952.167 3595 3594 62499999.98975 3596 3594 33160993.85051 3606 3594 -90421354.05518 3607 3594 -62499999.98975 3608 3594 24401754.87359 3609 3594 -337915744.7523 3610 3594 -62516096.56266 3611 3594 -27668847.19038 3612 3594 13308405.80675 3613 3594 50016096.56471 3614 3594 -19894290.40682 3690 3594 789479.8663111 3691 3594 18755523.23355 3692 3594 16762853.88037 3702 3594 -11151323.14121 3703 3594 -15630523.23252 3704 3594 -13684113.02055 3705 3594 50455843.08525 3706 3594 15625000.00514 3707 3594 23750485.45243 3717 3594 -27518808.45327 3718 3594 -15625000.00513 3719 3594 -14250754.75238 3720 3594 -136601119.3265 3721 3594 -15628682.15673 3722 3594 -88333821.76341 3723 3594 -31442472.41633 3724 3594 12503682.1557 3725 3594 -21464859.02542 3595 3595 604980043.3115 3596 3595 -63103934.68082 3606 3595 -62499999.98975 3607 3595 -71670594.15271 3608 3595 12206475.20882 3609 3595 -62524144.84911 3610 3595 -44113422.33778 3611 3595 -38272833.23799 3612 3595 75024144.84706 3613 3595 13308405.80675 3614 3595 25517746.91897 3690 3595 12503682.1557 3691 3595 789479.8663122 3692 3595 -8940185.539224 3702 3595 -15628682.15672 3703 3595 -65845943.5091 3704 3595 -52101581.10086 3705 3595 15625000.00514 3706 3595 27013291.43733 3707 3595 -3407345.083582 3717 3595 -15625000.00513 3718 3595 -22831126.63809 3719 3595 -13229195.86314 3720 3595 -15630523.23252 3721 3595 -63151629.12586 3722 3595 -25854695.88552 3723 3595 18755523.23355 3724 3595 -31442472.41633 3725 3595 25757502.85539 3596 3596 741587115.0734 3606 3596 24744636.81848 3607 3596 12480780.76473 3608 3596 -16816652.79793 3609 3596 -24922773.86031 3610 3596 -30315528.70936 3611 3596 20612357.80692 3612 3596 -29841435.61023 3613 3596 17011831.27931 3614 3596 35489082.15132 3690 3596 11175235.92025 3691 3596 -13410278.30884 3692 3596 2105279.643495 3702 3596 -13682502.0067 3703 3596 -53748034.02747 3704 3596 -35806647.62401 3705 3596 -8884805.348678 3706 3596 -29515355.2492 3707 3596 -145884263.2499 3717 3596 -14250754.75238 3718 3596 -13229195.86314 3719 3596 -17306764.74188 3720 3596 -87990199.11779 3721 3596 -23932056.04702 3722 3596 -133843411.9462 3723 3596 -32197288.53812 3724 3596 17171668.57026 3725 3596 -83846593.11021 3597 3597 1104842790.893 3598 3597 1.609325408936e-05 3599 3597 9143599.859988 3600 3597 135775801.5773 3601 3597 -6.794929504395e-06 3602 3597 2285899.966128 3615 3597 -224004433.2424 3616 3597 3.09944152832e-06 3617 3597 -5943327.707585 3618 3597 -91775737.73549 3619 3597 62499999.98974 3620 3597 -27030536.78462 3693 3597 -103592244.5474 3694 3597 1.892447471619e-06 3695 3597 80604706.69032 3696 3597 -42555886.98831 3697 3597 -15625000.00514 3698 3597 26537352.8999 3708 3597 77208121.14848 3709 3597 3.09944152832e-06 3710 3597 2285899.092361 3711 3597 -48017751.39621 3712 3597 -8.776783943176e-06 3713 3597 571474.7733788 3726 3597 -107888591.8846 3727 3597 1.713633537292e-06 3728 3597 -82890605.78265 3729 3597 -43968569.74338 3730 3597 15625000.00513 3731 3597 -27108827.67327 3598 3598 954836711.7471 3599 3598 -109721246.0606 3600 3598 -6.705522537231e-06 3601 3598 -101723938.9279 3602 3598 55957845.25232 3615 3598 3.695487976074e-06 3616 3598 50996827.03073 3617 3598 -27430311.52865 3618 3598 62499999.98974 3619 3598 -73024977.83304 3620 3598 15223836.31984 3693 3598 -9.983777999878e-07 3694 3598 -34841942.9836 3695 3598 -6857580.506883 3696 3598 -15625000.00514 3697 3598 -37868205.17313 3698 3598 19401012.48091 3708 3598 3.09944152832e-06 3709 3598 39706666.64553 3710 3598 -27430322.01402 3711 3598 -7.04824924469e-06 3712 3598 -107392689.3388 3713 3598 79112730.44064 3726 3598 1.668930053711e-06 3727 3598 -39138290.32084 3728 3598 -6857580.506883 3729 3598 15625000.00513 3730 3598 -39280887.92821 3731 3598 20086776.37002 3599 3599 1151791779.138 3600 3599 2285899.966128 3601 3599 53763400.80823 3602 3599 113453108.8746 3615 3599 -3200272.15248 3616 3599 -27430311.52865 3617 3599 99884455.60809 3618 3599 -26687654.83973 3619 3599 14949530.76392 3620 3599 -20428342.61214 3693 3599 80261824.7461 3694 3599 -6857580.506883 3695 3599 -101938662.0149 3696 3599 26537352.8999 3697 3599 19401012.48091 3698 3599 -57405640.83529 3708 3599 2285899.092361 3709 3599 -27430322.01402 3710 3599 -242725472.4512 3711 3599 571474.773379 3712 3599 78838424.88527 3713 3599 -190201211.678 3726 3599 -82547723.83843 3727 3599 -6857580.506883 3728 3599 -113395588.2476 3729 3599 -27108827.67327 3730 3599 20086776.37002 3731 3599 -61172794.84886 3600 3600 1104842790.893 3601 3600 1.609325408936e-05 3602 3600 9143599.859988 3603 3600 135775801.5773 3604 3600 -6.794929504395e-06 3605 3600 2285899.966128 3615 3600 -90421354.05518 3616 3600 -62499999.98975 3617 3600 24401754.87359 3618 3600 -224004433.2424 3619 3600 3.09944152832e-06 3620 3600 -5943327.707585 3621 3600 -91775737.73549 3622 3600 62499999.98974 3623 3600 -27030536.78462 3693 3600 -26783317.53868 3694 3600 15625000.00513 3695 3600 13679279.97901 3696 3600 -103592244.5474 3697 3600 1.892447471619e-06 3698 3600 80604706.69032 3699 3600 -42555886.98831 3700 3600 -15625000.00514 3701 3600 26537352.8999 3708 3600 16426910.05153 3709 3600 4.485249519348e-06 3710 3600 571474.7733669 3711 3600 77208121.14848 3712 3600 3.09944152832e-06 3713 3600 2285899.092361 3714 3600 -48017751.39621 3715 3600 -8.776783943176e-06 3716 3600 571474.7733788 3726 3600 -27518808.45327 3727 3600 -15625000.00513 3728 3600 -14250754.75238 3729 3600 -107888591.8846 3730 3600 1.713633537292e-06 3731 3600 -82890605.78265 3732 3600 -43968569.74338 3733 3600 15625000.00513 3734 3600 -27108827.67327 3601 3601 954836711.7471 3602 3601 -109721246.0606 3603 3601 -6.705522537231e-06 3604 3601 -101723938.9279 3605 3601 55957845.25232 3615 3601 -62499999.98975 3616 3601 -71670594.15271 3617 3601 12206475.20882 3618 3601 3.695487976074e-06 3619 3601 50996827.03073 3620 3601 -27430311.52865 3621 3601 62499999.98974 3622 3601 -73024977.83304 3623 3601 15223836.31984 3693 3601 15625000.00513 3694 3601 -22095635.7235 3695 3601 -12543431.97403 3696 3601 -9.983777999878e-07 3697 3601 -34841942.9836 3698 3601 -6857580.506883 3699 3601 -15625000.00514 3700 3601 -37868205.17313 3701 3601 19401012.48091 3708 3601 5.781650543213e-06 3709 3601 -42948027.89108 3710 3601 -51682408.42662 3711 3601 3.09944152832e-06 3712 3601 39706666.64553 3713 3601 -27430322.01402 3714 3601 -7.04824924469e-06 3715 3601 -107392689.3388 3716 3601 79112730.44064 3726 3601 -15625000.00513 3727 3601 -22831126.63809 3728 3601 -13229195.86314 3729 3601 1.668930053711e-06 3730 3601 -39138290.32084 3731 3601 -6857580.506883 3732 3601 15625000.00513 3733 3601 -39280887.92821 3734 3601 20086776.37002 3602 3602 1151791779.138 3603 3602 2285899.966128 3604 3602 53763400.80823 3605 3602 113453108.8746 3615 3602 24744636.81848 3616 3602 12480780.76473 3617 3602 -16816652.79793 3618 3602 -3200272.15248 3619 3602 -27430311.52865 3620 3602 99884455.60809 3621 3602 -26687654.83973 3622 3602 14949530.76392 3623 3602 -20428342.61214 3693 3602 13679279.97901 3694 3602 -12543431.97403 3695 3602 -15345455.6363 3696 3602 80261824.7461 3697 3602 -6857580.506883 3698 3602 -101938662.0149 3699 3602 26537352.8999 3700 3602 19401012.48091 3701 3602 -57405640.83529 3708 3602 571474.7733671 3709 3602 -51408102.87125 3710 3602 -18348781.1507 3711 3602 2285899.092361 3712 3602 -27430322.01402 3713 3602 -242725472.4512 3714 3602 571474.773379 3715 3602 78838424.88527 3716 3602 -190201211.678 3726 3602 -14250754.75238 3727 3602 -13229195.86314 3728 3602 -17306764.74188 3729 3602 -82547723.83843 3730 3602 -6857580.506883 3731 3602 -113395588.2476 3732 3602 -27108827.67327 3733 3602 20086776.37002 3734 3602 -61172794.84886 3603 3603 1104842790.893 3604 3603 1.609325408936e-05 3605 3603 9143599.859988 3606 3603 135775801.5773 3607 3603 -6.794929504395e-06 3608 3603 2285899.966128 3618 3603 -90421354.05518 3619 3603 -62499999.98975 3620 3603 24401754.87359 3621 3603 -224004433.2424 3622 3603 3.09944152832e-06 3623 3603 -5943327.707585 3624 3603 -91775737.73549 3625 3603 62499999.98974 3626 3603 -27030536.78462 3696 3603 -26783317.53868 3697 3603 15625000.00513 3698 3603 13679279.97901 3699 3603 -103592244.5474 3700 3603 1.892447471619e-06 3701 3603 80604706.69032 3702 3603 -42555886.98831 3703 3603 -15625000.00514 3704 3603 26537352.8999 3711 3603 16426910.05153 3712 3603 4.485249519348e-06 3713 3603 571474.7733669 3714 3603 77208121.14848 3715 3603 3.09944152832e-06 3716 3603 2285899.092361 3717 3603 -48017751.39621 3718 3603 -8.776783943176e-06 3719 3603 571474.7733788 3729 3603 -27518808.45327 3730 3603 -15625000.00513 3731 3603 -14250754.75238 3732 3603 -107888591.8846 3733 3603 1.713633537292e-06 3734 3603 -82890605.78265 3735 3603 -43968569.74338 3736 3603 15625000.00513 3737 3603 -27108827.67327 3604 3604 954836711.7471 3605 3604 -109721246.0606 3606 3604 -6.705522537231e-06 3607 3604 -101723938.9279 3608 3604 55957845.25232 3618 3604 -62499999.98975 3619 3604 -71670594.15271 3620 3604 12206475.20882 3621 3604 3.695487976074e-06 3622 3604 50996827.03073 3623 3604 -27430311.52865 3624 3604 62499999.98974 3625 3604 -73024977.83304 3626 3604 15223836.31984 3696 3604 15625000.00513 3697 3604 -22095635.7235 3698 3604 -12543431.97403 3699 3604 -9.983777999878e-07 3700 3604 -34841942.9836 3701 3604 -6857580.506883 3702 3604 -15625000.00514 3703 3604 -37868205.17313 3704 3604 19401012.48091 3711 3604 5.781650543213e-06 3712 3604 -42948027.89108 3713 3604 -51682408.42662 3714 3604 3.09944152832e-06 3715 3604 39706666.64553 3716 3604 -27430322.01402 3717 3604 -7.04824924469e-06 3718 3604 -107392689.3388 3719 3604 79112730.44064 3729 3604 -15625000.00513 3730 3604 -22831126.63809 3731 3604 -13229195.86314 3732 3604 1.668930053711e-06 3733 3604 -39138290.32084 3734 3604 -6857580.506883 3735 3604 15625000.00513 3736 3604 -39280887.92821 3737 3604 20086776.37002 3605 3605 1151791779.138 3606 3605 2285899.966128 3607 3605 53763400.80823 3608 3605 113453108.8746 3618 3605 24744636.81848 3619 3605 12480780.76473 3620 3605 -16816652.79793 3621 3605 -3200272.15248 3622 3605 -27430311.52865 3623 3605 99884455.60809 3624 3605 -26687654.83973 3625 3605 14949530.76392 3626 3605 -20428342.61214 3696 3605 13679279.97901 3697 3605 -12543431.97403 3698 3605 -15345455.6363 3699 3605 80261824.7461 3700 3605 -6857580.506883 3701 3605 -101938662.0149 3702 3605 26537352.8999 3703 3605 19401012.48091 3704 3605 -57405640.83529 3711 3605 571474.7733671 3712 3605 -51408102.87125 3713 3605 -18348781.1507 3714 3605 2285899.092361 3715 3605 -27430322.01402 3716 3605 -242725472.4512 3717 3605 571474.773379 3718 3605 78838424.88527 3719 3605 -190201211.678 3729 3605 -14250754.75238 3730 3605 -13229195.86314 3731 3605 -17306764.74188 3732 3605 -82547723.83843 3733 3605 -6857580.506883 3734 3605 -113395588.2476 3735 3605 -27108827.67327 3736 3605 20086776.37002 3737 3605 -61172794.84886 3606 3606 1104842790.893 3607 3606 1.609325408936e-05 3608 3606 9143599.859988 3609 3606 135775801.5773 3610 3606 -6.794929504395e-06 3611 3606 2285899.966128 3621 3606 -90421354.05518 3622 3606 -62499999.98975 3623 3606 24401754.87359 3624 3606 -224004433.2424 3625 3606 3.09944152832e-06 3626 3606 -5943327.707585 3627 3606 -91775737.73549 3628 3606 62499999.98974 3629 3606 -27030536.78462 3699 3606 -26783317.53868 3700 3606 15625000.00513 3701 3606 13679279.97901 3702 3606 -103592244.5474 3703 3606 1.892447471619e-06 3704 3606 80604706.69032 3705 3606 -42555886.98831 3706 3606 -15625000.00514 3707 3606 26537352.8999 3714 3606 16426910.05153 3715 3606 4.485249519348e-06 3716 3606 571474.7733669 3717 3606 77208121.14848 3718 3606 3.09944152832e-06 3719 3606 2285899.092361 3720 3606 -48017751.39621 3721 3606 -8.776783943176e-06 3722 3606 571474.7733788 3732 3606 -27518808.45327 3733 3606 -15625000.00513 3734 3606 -14250754.75238 3735 3606 -107888591.8846 3736 3606 1.713633537292e-06 3737 3606 -82890605.78265 3738 3606 -43968569.74338 3739 3606 15625000.00513 3740 3606 -27108827.67327 3607 3607 954836711.7471 3608 3607 -109721246.0606 3609 3607 -6.705522537231e-06 3610 3607 -101723938.9279 3611 3607 55957845.25232 3621 3607 -62499999.98975 3622 3607 -71670594.15271 3623 3607 12206475.20882 3624 3607 3.695487976074e-06 3625 3607 50996827.03073 3626 3607 -27430311.52865 3627 3607 62499999.98974 3628 3607 -73024977.83304 3629 3607 15223836.31984 3699 3607 15625000.00513 3700 3607 -22095635.7235 3701 3607 -12543431.97403 3702 3607 -9.983777999878e-07 3703 3607 -34841942.9836 3704 3607 -6857580.506883 3705 3607 -15625000.00514 3706 3607 -37868205.17313 3707 3607 19401012.48091 3714 3607 5.781650543213e-06 3715 3607 -42948027.89108 3716 3607 -51682408.42662 3717 3607 3.09944152832e-06 3718 3607 39706666.64553 3719 3607 -27430322.01402 3720 3607 -7.04824924469e-06 3721 3607 -107392689.3388 3722 3607 79112730.44064 3732 3607 -15625000.00513 3733 3607 -22831126.63809 3734 3607 -13229195.86314 3735 3607 1.668930053711e-06 3736 3607 -39138290.32084 3737 3607 -6857580.506883 3738 3607 15625000.00513 3739 3607 -39280887.92821 3740 3607 20086776.37002 3608 3608 1151791779.138 3609 3608 2285899.966128 3610 3608 53763400.80823 3611 3608 113453108.8746 3621 3608 24744636.81848 3622 3608 12480780.76473 3623 3608 -16816652.79793 3624 3608 -3200272.15248 3625 3608 -27430311.52865 3626 3608 99884455.60809 3627 3608 -26687654.83973 3628 3608 14949530.76392 3629 3608 -20428342.61214 3699 3608 13679279.97901 3700 3608 -12543431.97403 3701 3608 -15345455.6363 3702 3608 80261824.7461 3703 3608 -6857580.506883 3704 3608 -101938662.0149 3705 3608 26537352.8999 3706 3608 19401012.48091 3707 3608 -57405640.83529 3714 3608 571474.7733671 3715 3608 -51408102.87125 3716 3608 -18348781.1507 3717 3608 2285899.092361 3718 3608 -27430322.01402 3719 3608 -242725472.4512 3720 3608 571474.773379 3721 3608 78838424.88527 3722 3608 -190201211.678 3732 3608 -14250754.75238 3733 3608 -13229195.86314 3734 3608 -17306764.74188 3735 3608 -82547723.83843 3736 3608 -6857580.506883 3737 3608 -113395588.2476 3738 3608 -27108827.67327 3739 3608 20086776.37002 3740 3608 -61172794.84886 3609 3609 1185266328.887 3610 3609 62540241.42204 3611 3609 30860066.01788 3612 3609 30368144.44572 3613 3609 -62516096.56266 3614 3609 27037674.41794 3624 3609 -90421354.05518 3625 3609 -62499999.98975 3626 3609 24401754.87359 3627 3609 -224004433.2424 3628 3609 3.09944152832e-06 3629 3609 -5943327.707585 3630 3609 -91775737.73549 3631 3609 62499999.98974 3632 3609 -27030536.78462 3702 3609 -26783317.53868 3703 3609 15625000.00513 3704 3609 13679279.97901 3705 3609 -119411159.8837 3706 3609 -15630523.23252 3707 3609 75186254.88774 3717 3609 16426910.05153 3718 3609 4.485249519348e-06 3719 3609 571474.7733669 3720 3609 109890622.1535 3721 3609 15634205.38412 3722 3609 7712478.882864 3723 3609 -60563825.20041 3724 3609 -15628682.15673 3725 3609 27115214.46942 3735 3609 -27518808.45327 3736 3609 -15625000.00513 3737 3609 -14250754.75238 3738 3609 -107888591.8846 3739 3609 1.713633537292e-06 3740 3609 -82890605.78265 3741 3609 -43968569.74338 3742 3609 15625000.00513 3743 3609 -27108827.67327 3610 3610 1016491380.459 3611 3610 -85033469.8302 3612 3610 -62524144.84912 3613 3610 -188413029.0158 3614 3610 46636948.6184 3624 3610 -62499999.98975 3625 3610 -71670594.15271 3626 3610 12206475.20882 3627 3610 3.695487976074e-06 3628 3610 50996827.03073 3629 3610 -27430311.52865 3630 3610 62499999.98974 3631 3610 -73024977.83304 3632 3610 15223836.31984 3702 3610 15625000.00513 3703 3610 -22095635.7235 3704 3610 -12543431.97403 3705 3610 -15628682.15673 3706 3610 -45961669.68301 3707 3610 8705839.731277 3717 3610 5.781650543213e-06 3718 3610 -42948027.89108 3719 3610 -51682408.42662 3720 3610 15634205.38412 3721 3610 67697343.25408 3722 3610 -21260405.06448 3723 3610 -15630523.23252 3724 3610 -115258445.5683 3725 3610 76792017.46155 3735 3610 -15625000.00513 3736 3610 -22831126.63809 3737 3610 -13229195.86314 3738 3610 1.668930053711e-06 3739 3610 -39138290.32084 3740 3610 -6857580.506883 3741 3610 15625000.00513 3742 3610 -39280887.92821 3743 3610 20086776.37002 3611 3611 1141730954.706 3612 3611 26698361.28971 3613 3611 52125943.97254 3614 3611 56705174.06508 3624 3611 24744636.81848 3625 3611 12480780.76473 3626 3611 -16816652.79793 3627 3611 -3200272.15248 3628 3611 -27430311.52865 3629 3611 99884455.60809 3630 3611 -26687654.83973 3631 3611 14949530.76392 3632 3611 -20428342.61214 3702 3611 13679279.97901 3703 3611 -12543431.97403 3704 3611 -15345455.6363 3705 3611 74842632.24213 3706 3611 6787043.609902 3707 3611 -88003520.09856 3717 3611 571474.7733671 3718 3611 -51408102.87125 3719 3611 -18348781.1507 3720 3611 7717283.578221 3721 3611 -21256561.34093 3722 3611 -211698416.8248 3723 3611 27118407.8675 3724 3611 78438470.16785 3725 3611 -167573319.7819 3735 3611 -14250754.75238 3736 3611 -13229195.86314 3737 3611 -17306764.74188 3738 3611 -82547723.83843 3739 3611 -6857580.506883 3740 3611 -113395588.2476 3741 3611 -27108827.67327 3742 3611 20086776.37002 3743 3611 -61172794.84886 3612 3612 677400133.3289 3613 3612 57041619.96368 3614 3612 -10754501.96958 3627 3612 -90421354.05518 3628 3612 -62499999.98975 3629 3612 24401754.87359 3630 3612 -325398175.4315 3631 3612 -57073776.75131 3632 3612 -1587457.988453 3633 3612 20401810.48982 3634 3612 50032156.77943 3635 3612 -2745688.895618 3705 3612 789479.8663111 3706 3612 18755523.23355 3707 3612 16762853.88037 3720 3612 -11151323.14121 3721 3612 -15630523.23252 3722 3612 -13684113.02055 3723 3612 47191822.66489 3724 3612 14946498.26301 3725 3612 13014221.82389 3738 3612 -27518808.45327 3739 3612 -15625000.00513 3740 3612 -14250754.75238 3741 3612 -128111353.7422 3742 3612 -14954029.75625 3743 3612 -81018857.78974 3744 3612 -15349095.37302 3745 3612 12507531.49735 3746 3612 -16659255.21042 3613 3613 590623589.3511 3614 3613 -62444456.30045 3627 3613 -62499999.98975 3628 3613 -71670594.15271 3629 3613 12206475.20882 3630 3613 -57089855.14513 3631 3613 -34005965.86669 3632 3613 -16859606.35942 3633 3613 75048235.16915 3634 3613 15816558.46177 3635 3613 4543067.024131 3705 3613 12503682.1557 3706 3613 789479.8663122 3707 3613 -8940185.539224 3720 3613 -15628682.15672 3721 3613 -65845943.5091 3722 3613 -52101581.10086 3723 3613 14946498.263 3724 3613 24602513.67136 3725 3613 -3350281.619218 3738 3613 -15625000.00513 3739 3613 -22831126.63809 3740 3613 -13229195.86314 3741 3613 -14957795.50287 3742 3613 -54956148.79942 3743 3613 -19999621.90016 3744 3613 18761297.24603 3745 3613 -15908052.76959 3746 3613 20964116.01977 3614 3614 709279085.6458 3627 3614 24744636.81848 3628 3614 12480780.76473 3629 3614 -16816652.79793 3630 3614 -7758437.967454 3631 3614 -15761657.05467 3632 3614 24777136.49351 3633 3614 -4118533.343426 3634 3614 3445519.29042 3635 3614 58990080.00089 3705 3614 11175235.92025 3706 3614 -13410278.30884 3707 3614 2105279.643495 3720 3614 -13682502.0067 3721 3614 -53748034.02747 3722 3614 -35806647.62401 3723 3614 -19273894.57614 3724 3614 -29176868.80117 3725 3614 -151535111.2545 3738 3614 -14250754.75238 3739 3614 -13229195.86314 3740 3614 -17306764.74188 3741 3614 -82733059.37263 3742 3614 -19721218.30569 3743 3614 -114816200.9011 3744 3614 -24988882.81563 3745 3614 14300470.30205 3746 3614 -40371963.59817 3615 3615 1104842790.893 3616 3615 1.609325408936e-05 3617 3615 9143599.859988 3618 3615 135775801.5773 3619 3615 -6.794929504395e-06 3620 3615 2285899.966128 3636 3615 -224004433.2424 3637 3615 3.09944152832e-06 3638 3615 -5943327.707585 3639 3615 -91775737.73549 3640 3615 62499999.98974 3641 3615 -27030536.78462 3708 3615 -103592244.5474 3709 3615 1.892447471619e-06 3710 3615 80604706.69032 3711 3615 -42555886.98831 3712 3615 -15625000.00514 3713 3615 26537352.8999 3726 3615 77208121.14848 3727 3615 3.09944152832e-06 3728 3615 2285899.092361 3729 3615 -48017751.39621 3730 3615 -8.776783943176e-06 3731 3615 571474.7733788 3747 3615 -107888591.8846 3748 3615 1.713633537292e-06 3749 3615 -82890605.78265 3750 3615 -43968569.74338 3751 3615 15625000.00513 3752 3615 -27108827.67327 3616 3616 954836711.7471 3617 3616 -109721246.0606 3618 3616 -6.705522537231e-06 3619 3616 -101723938.9279 3620 3616 55957845.25232 3636 3616 3.695487976074e-06 3637 3616 50996827.03073 3638 3616 -27430311.52865 3639 3616 62499999.98974 3640 3616 -73024977.83304 3641 3616 15223836.31984 3708 3616 -9.983777999878e-07 3709 3616 -34841942.9836 3710 3616 -6857580.506883 3711 3616 -15625000.00514 3712 3616 -37868205.17313 3713 3616 19401012.48091 3726 3616 3.09944152832e-06 3727 3616 39706666.64553 3728 3616 -27430322.01402 3729 3616 -7.04824924469e-06 3730 3616 -107392689.3388 3731 3616 79112730.44064 3747 3616 1.668930053711e-06 3748 3616 -39138290.32084 3749 3616 -6857580.506883 3750 3616 15625000.00513 3751 3616 -39280887.92821 3752 3616 20086776.37002 3617 3617 1151791779.138 3618 3617 2285899.966128 3619 3617 53763400.80823 3620 3617 113453108.8746 3636 3617 -3200272.15248 3637 3617 -27430311.52865 3638 3617 99884455.60809 3639 3617 -26687654.83973 3640 3617 14949530.76392 3641 3617 -20428342.61214 3708 3617 80261824.7461 3709 3617 -6857580.506883 3710 3617 -101938662.0149 3711 3617 26537352.8999 3712 3617 19401012.48091 3713 3617 -57405640.83529 3726 3617 2285899.092361 3727 3617 -27430322.01402 3728 3617 -242725472.4512 3729 3617 571474.773379 3730 3617 78838424.88527 3731 3617 -190201211.678 3747 3617 -82547723.83843 3748 3617 -6857580.506883 3749 3617 -113395588.2476 3750 3617 -27108827.67327 3751 3617 20086776.37002 3752 3617 -61172794.84886 3618 3618 1104842790.893 3619 3618 1.609325408936e-05 3620 3618 9143599.859988 3621 3618 135775801.5773 3622 3618 -6.794929504395e-06 3623 3618 2285899.966128 3636 3618 -90421354.05518 3637 3618 -62499999.98975 3638 3618 24401754.87359 3639 3618 -224004433.2424 3640 3618 3.09944152832e-06 3641 3618 -5943327.707585 3642 3618 -91775737.73549 3643 3618 62499999.98974 3644 3618 -27030536.78462 3708 3618 -26783317.53868 3709 3618 15625000.00513 3710 3618 13679279.97901 3711 3618 -103592244.5474 3712 3618 1.892447471619e-06 3713 3618 80604706.69032 3714 3618 -42555886.98831 3715 3618 -15625000.00514 3716 3618 26537352.8999 3726 3618 16426910.05153 3727 3618 4.485249519348e-06 3728 3618 571474.7733669 3729 3618 77208121.14848 3730 3618 3.09944152832e-06 3731 3618 2285899.092361 3732 3618 -48017751.39621 3733 3618 -8.776783943176e-06 3734 3618 571474.7733788 3747 3618 -27518808.45327 3748 3618 -15625000.00513 3749 3618 -14250754.75238 3750 3618 -107888591.8846 3751 3618 1.713633537292e-06 3752 3618 -82890605.78265 3753 3618 -43968569.74338 3754 3618 15625000.00513 3755 3618 -27108827.67327 3619 3619 954836711.7471 3620 3619 -109721246.0606 3621 3619 -6.705522537231e-06 3622 3619 -101723938.9279 3623 3619 55957845.25232 3636 3619 -62499999.98975 3637 3619 -71670594.15271 3638 3619 12206475.20882 3639 3619 3.695487976074e-06 3640 3619 50996827.03073 3641 3619 -27430311.52865 3642 3619 62499999.98974 3643 3619 -73024977.83304 3644 3619 15223836.31984 3708 3619 15625000.00513 3709 3619 -22095635.7235 3710 3619 -12543431.97403 3711 3619 -9.983777999878e-07 3712 3619 -34841942.9836 3713 3619 -6857580.506883 3714 3619 -15625000.00514 3715 3619 -37868205.17313 3716 3619 19401012.48091 3726 3619 5.781650543213e-06 3727 3619 -42948027.89108 3728 3619 -51682408.42662 3729 3619 3.09944152832e-06 3730 3619 39706666.64553 3731 3619 -27430322.01402 3732 3619 -7.04824924469e-06 3733 3619 -107392689.3388 3734 3619 79112730.44064 3747 3619 -15625000.00513 3748 3619 -22831126.63809 3749 3619 -13229195.86314 3750 3619 1.668930053711e-06 3751 3619 -39138290.32084 3752 3619 -6857580.506883 3753 3619 15625000.00513 3754 3619 -39280887.92821 3755 3619 20086776.37002 3620 3620 1151791779.138 3621 3620 2285899.966128 3622 3620 53763400.80823 3623 3620 113453108.8746 3636 3620 24744636.81848 3637 3620 12480780.76473 3638 3620 -16816652.79793 3639 3620 -3200272.15248 3640 3620 -27430311.52865 3641 3620 99884455.60809 3642 3620 -26687654.83973 3643 3620 14949530.76392 3644 3620 -20428342.61214 3708 3620 13679279.97901 3709 3620 -12543431.97403 3710 3620 -15345455.6363 3711 3620 80261824.7461 3712 3620 -6857580.506883 3713 3620 -101938662.0149 3714 3620 26537352.8999 3715 3620 19401012.48091 3716 3620 -57405640.83529 3726 3620 571474.7733671 3727 3620 -51408102.87125 3728 3620 -18348781.1507 3729 3620 2285899.092361 3730 3620 -27430322.01402 3731 3620 -242725472.4512 3732 3620 571474.773379 3733 3620 78838424.88527 3734 3620 -190201211.678 3747 3620 -14250754.75238 3748 3620 -13229195.86314 3749 3620 -17306764.74188 3750 3620 -82547723.83843 3751 3620 -6857580.506883 3752 3620 -113395588.2476 3753 3620 -27108827.67327 3754 3620 20086776.37002 3755 3620 -61172794.84886 3621 3621 1104842790.893 3622 3621 1.609325408936e-05 3623 3621 9143599.859988 3624 3621 135775801.5773 3625 3621 -6.794929504395e-06 3626 3621 2285899.966128 3639 3621 -90421354.05518 3640 3621 -62499999.98975 3641 3621 24401754.87359 3642 3621 -224004433.2424 3643 3621 3.09944152832e-06 3644 3621 -5943327.707585 3645 3621 -91775737.73549 3646 3621 62499999.98974 3647 3621 -27030536.78462 3711 3621 -26783317.53868 3712 3621 15625000.00513 3713 3621 13679279.97901 3714 3621 -103592244.5474 3715 3621 1.892447471619e-06 3716 3621 80604706.69032 3717 3621 -42555886.98831 3718 3621 -15625000.00514 3719 3621 26537352.8999 3729 3621 16426910.05153 3730 3621 4.485249519348e-06 3731 3621 571474.7733669 3732 3621 77208121.14848 3733 3621 3.09944152832e-06 3734 3621 2285899.092361 3735 3621 -48017751.39621 3736 3621 -8.776783943176e-06 3737 3621 571474.7733788 3750 3621 -27518808.45327 3751 3621 -15625000.00513 3752 3621 -14250754.75238 3753 3621 -107888591.8846 3754 3621 1.713633537292e-06 3755 3621 -82890605.78265 3756 3621 -43968569.74338 3757 3621 15625000.00513 3758 3621 -27108827.67327 3622 3622 954836711.7471 3623 3622 -109721246.0606 3624 3622 -6.705522537231e-06 3625 3622 -101723938.9279 3626 3622 55957845.25232 3639 3622 -62499999.98975 3640 3622 -71670594.15271 3641 3622 12206475.20882 3642 3622 3.695487976074e-06 3643 3622 50996827.03073 3644 3622 -27430311.52865 3645 3622 62499999.98974 3646 3622 -73024977.83304 3647 3622 15223836.31984 3711 3622 15625000.00513 3712 3622 -22095635.7235 3713 3622 -12543431.97403 3714 3622 -9.983777999878e-07 3715 3622 -34841942.9836 3716 3622 -6857580.506883 3717 3622 -15625000.00514 3718 3622 -37868205.17313 3719 3622 19401012.48091 3729 3622 5.781650543213e-06 3730 3622 -42948027.89108 3731 3622 -51682408.42662 3732 3622 3.09944152832e-06 3733 3622 39706666.64553 3734 3622 -27430322.01402 3735 3622 -7.04824924469e-06 3736 3622 -107392689.3388 3737 3622 79112730.44064 3750 3622 -15625000.00513 3751 3622 -22831126.63809 3752 3622 -13229195.86314 3753 3622 1.668930053711e-06 3754 3622 -39138290.32084 3755 3622 -6857580.506883 3756 3622 15625000.00513 3757 3622 -39280887.92821 3758 3622 20086776.37002 3623 3623 1151791779.138 3624 3623 2285899.966128 3625 3623 53763400.80823 3626 3623 113453108.8746 3639 3623 24744636.81848 3640 3623 12480780.76473 3641 3623 -16816652.79793 3642 3623 -3200272.15248 3643 3623 -27430311.52865 3644 3623 99884455.60809 3645 3623 -26687654.83973 3646 3623 14949530.76392 3647 3623 -20428342.61214 3711 3623 13679279.97901 3712 3623 -12543431.97403 3713 3623 -15345455.6363 3714 3623 80261824.7461 3715 3623 -6857580.506883 3716 3623 -101938662.0149 3717 3623 26537352.8999 3718 3623 19401012.48091 3719 3623 -57405640.83529 3729 3623 571474.7733671 3730 3623 -51408102.87125 3731 3623 -18348781.1507 3732 3623 2285899.092361 3733 3623 -27430322.01402 3734 3623 -242725472.4512 3735 3623 571474.773379 3736 3623 78838424.88527 3737 3623 -190201211.678 3750 3623 -14250754.75238 3751 3623 -13229195.86314 3752 3623 -17306764.74188 3753 3623 -82547723.83843 3754 3623 -6857580.506883 3755 3623 -113395588.2476 3756 3623 -27108827.67327 3757 3623 20086776.37002 3758 3623 -61172794.84886 3624 3624 1104842790.893 3625 3624 1.609325408936e-05 3626 3624 9143599.859988 3627 3624 135775801.5773 3628 3624 -6.794929504395e-06 3629 3624 2285899.966128 3642 3624 -90421354.05518 3643 3624 -62499999.98975 3644 3624 24401754.87359 3645 3624 -224004433.2424 3646 3624 3.09944152832e-06 3647 3624 -5943327.707585 3648 3624 -91775737.73549 3649 3624 62499999.98974 3650 3624 -27030536.78462 3714 3624 -26783317.53868 3715 3624 15625000.00513 3716 3624 13679279.97901 3717 3624 -103592244.5474 3718 3624 1.892447471619e-06 3719 3624 80604706.69032 3720 3624 -42555886.98831 3721 3624 -15625000.00514 3722 3624 26537352.8999 3732 3624 16426910.05153 3733 3624 4.485249519348e-06 3734 3624 571474.7733669 3735 3624 77208121.14848 3736 3624 3.09944152832e-06 3737 3624 2285899.092361 3738 3624 -48017751.39621 3739 3624 -8.776783943176e-06 3740 3624 571474.7733788 3753 3624 -27518808.45327 3754 3624 -15625000.00513 3755 3624 -14250754.75238 3756 3624 -107888591.8846 3757 3624 1.713633537292e-06 3758 3624 -82890605.78265 3759 3624 -43968569.74338 3760 3624 15625000.00513 3761 3624 -27108827.67327 3625 3625 954836711.7471 3626 3625 -109721246.0606 3627 3625 -6.705522537231e-06 3628 3625 -101723938.9279 3629 3625 55957845.25232 3642 3625 -62499999.98975 3643 3625 -71670594.15271 3644 3625 12206475.20882 3645 3625 3.695487976074e-06 3646 3625 50996827.03073 3647 3625 -27430311.52865 3648 3625 62499999.98974 3649 3625 -73024977.83304 3650 3625 15223836.31984 3714 3625 15625000.00513 3715 3625 -22095635.7235 3716 3625 -12543431.97403 3717 3625 -9.983777999878e-07 3718 3625 -34841942.9836 3719 3625 -6857580.506883 3720 3625 -15625000.00514 3721 3625 -37868205.17313 3722 3625 19401012.48091 3732 3625 5.781650543213e-06 3733 3625 -42948027.89108 3734 3625 -51682408.42662 3735 3625 3.09944152832e-06 3736 3625 39706666.64553 3737 3625 -27430322.01402 3738 3625 -7.04824924469e-06 3739 3625 -107392689.3388 3740 3625 79112730.44064 3753 3625 -15625000.00513 3754 3625 -22831126.63809 3755 3625 -13229195.86314 3756 3625 1.668930053711e-06 3757 3625 -39138290.32084 3758 3625 -6857580.506883 3759 3625 15625000.00513 3760 3625 -39280887.92821 3761 3625 20086776.37002 3626 3626 1151791779.138 3627 3626 2285899.966128 3628 3626 53763400.80823 3629 3626 113453108.8746 3642 3626 24744636.81848 3643 3626 12480780.76473 3644 3626 -16816652.79793 3645 3626 -3200272.15248 3646 3626 -27430311.52865 3647 3626 99884455.60809 3648 3626 -26687654.83973 3649 3626 14949530.76392 3650 3626 -20428342.61214 3714 3626 13679279.97901 3715 3626 -12543431.97403 3716 3626 -15345455.6363 3717 3626 80261824.7461 3718 3626 -6857580.506883 3719 3626 -101938662.0149 3720 3626 26537352.8999 3721 3626 19401012.48091 3722 3626 -57405640.83529 3732 3626 571474.7733671 3733 3626 -51408102.87125 3734 3626 -18348781.1507 3735 3626 2285899.092361 3736 3626 -27430322.01402 3737 3626 -242725472.4512 3738 3626 571474.773379 3739 3626 78838424.88527 3740 3626 -190201211.678 3753 3626 -14250754.75238 3754 3626 -13229195.86314 3755 3626 -17306764.74188 3756 3626 -82547723.83843 3757 3626 -6857580.506883 3758 3626 -113395588.2476 3759 3626 -27108827.67327 3760 3626 20086776.37002 3761 3626 -61172794.84886 3627 3627 1104842790.893 3628 3627 1.609325408936e-05 3629 3627 9143599.859988 3630 3627 135775801.5773 3631 3627 -6.794929504395e-06 3632 3627 2285899.966128 3645 3627 -90421354.05518 3646 3627 -62499999.98975 3647 3627 24401754.87359 3648 3627 -224004433.2424 3649 3627 3.09944152832e-06 3650 3627 -5943327.707585 3651 3627 -91775737.73549 3652 3627 62499999.98974 3653 3627 -27030536.78462 3717 3627 -26783317.53868 3718 3627 15625000.00513 3719 3627 13679279.97901 3720 3627 -103592244.5474 3721 3627 1.892447471619e-06 3722 3627 80604706.69032 3723 3627 -42555886.98831 3724 3627 -15625000.00514 3725 3627 26537352.8999 3735 3627 16426910.05153 3736 3627 4.485249519348e-06 3737 3627 571474.7733669 3738 3627 77208121.14848 3739 3627 3.09944152832e-06 3740 3627 2285899.092361 3741 3627 -48017751.39621 3742 3627 -8.776783943176e-06 3743 3627 571474.7733788 3756 3627 -27518808.45327 3757 3627 -15625000.00513 3758 3627 -14250754.75238 3759 3627 -107888591.8846 3760 3627 1.713633537292e-06 3761 3627 -82890605.78265 3762 3627 -43968569.74338 3763 3627 15625000.00513 3764 3627 -27108827.67327 3628 3628 954836711.7471 3629 3628 -109721246.0606 3630 3628 -6.705522537231e-06 3631 3628 -101723938.9279 3632 3628 55957845.25232 3645 3628 -62499999.98975 3646 3628 -71670594.15271 3647 3628 12206475.20882 3648 3628 3.695487976074e-06 3649 3628 50996827.03073 3650 3628 -27430311.52865 3651 3628 62499999.98974 3652 3628 -73024977.83304 3653 3628 15223836.31984 3717 3628 15625000.00513 3718 3628 -22095635.7235 3719 3628 -12543431.97403 3720 3628 -9.983777999878e-07 3721 3628 -34841942.9836 3722 3628 -6857580.506883 3723 3628 -15625000.00514 3724 3628 -37868205.17313 3725 3628 19401012.48091 3735 3628 5.781650543213e-06 3736 3628 -42948027.89108 3737 3628 -51682408.42662 3738 3628 3.09944152832e-06 3739 3628 39706666.64553 3740 3628 -27430322.01402 3741 3628 -7.04824924469e-06 3742 3628 -107392689.3388 3743 3628 79112730.44064 3756 3628 -15625000.00513 3757 3628 -22831126.63809 3758 3628 -13229195.86314 3759 3628 1.668930053711e-06 3760 3628 -39138290.32084 3761 3628 -6857580.506883 3762 3628 15625000.00513 3763 3628 -39280887.92821 3764 3628 20086776.37002 3629 3629 1151791779.138 3630 3629 2285899.966128 3631 3629 53763400.80823 3632 3629 113453108.8746 3645 3629 24744636.81848 3646 3629 12480780.76473 3647 3629 -16816652.79793 3648 3629 -3200272.15248 3649 3629 -27430311.52865 3650 3629 99884455.60809 3651 3629 -26687654.83973 3652 3629 14949530.76392 3653 3629 -20428342.61214 3717 3629 13679279.97901 3718 3629 -12543431.97403 3719 3629 -15345455.6363 3720 3629 80261824.7461 3721 3629 -6857580.506883 3722 3629 -101938662.0149 3723 3629 26537352.8999 3724 3629 19401012.48091 3725 3629 -57405640.83529 3735 3629 571474.7733671 3736 3629 -51408102.87125 3737 3629 -18348781.1507 3738 3629 2285899.092361 3739 3629 -27430322.01402 3740 3629 -242725472.4512 3741 3629 571474.773379 3742 3629 78838424.88527 3743 3629 -190201211.678 3756 3629 -14250754.75238 3757 3629 -13229195.86314 3758 3629 -17306764.74188 3759 3629 -82547723.83843 3760 3629 -6857580.506883 3761 3629 -113395588.2476 3762 3629 -27108827.67327 3763 3629 20086776.37002 3764 3629 -61172794.84886 3630 3630 1159636637.338 3631 3630 57267063.74011 3632 3630 9020084.21679 3633 3630 31068618.59239 3634 3630 -65274374.9039 3635 3630 4311134.649271 3648 3630 -90421354.05518 3649 3630 -62499999.98975 3650 3630 24401754.87359 3651 3630 -220710941.0308 3652 3630 2712121.047365 3653 3630 -855474.0274411 3654 3630 -80630013.79547 3655 3630 62385045.26156 3656 3630 -4716463.569327 3720 3630 -26783317.53868 3721 3630 15625000.00513 3722 3630 13679279.97901 3723 3630 -124316437.4178 3724 3630 -14957795.50287 3725 3630 78707522.62756 3738 3630 16426910.05153 3739 3630 4.485249519348e-06 3740 3630 571474.7733669 3741 3630 106567923.342 3742 3630 14976154.3703 3743 3630 2242040.339887 3744 3630 -38982657.32228 3745 3630 -15972608.5643 3746 3630 21465843.53807 3759 3630 -27518808.45327 3760 3630 -15625000.00513 3761 3630 -14250754.75238 3762 3630 -107633678.2844 3763 3630 337880.5181414 3764 3630 -81247218.16221 3765 3630 -35196367.11042 3766 3630 15616369.17874 3767 3630 -21139158.27512 3631 3631 1005630507.664 3632 3631 -58747305.48163 3633 3631 -65290453.29772 3634 3631 -188051818.3445 3635 3631 9211005.933655 3648 3631 -62499999.98975 3649 3631 -71670594.15271 3650 3631 12206475.20882 3651 3631 2712121.047367 3652 3631 51529818.24322 3653 3631 -15449642.33916 3654 3631 62385045.26156 3655 3631 -71138195.32306 3656 3631 3120533.507055 3720 3631 15625000.00513 3721 3631 -22095635.7235 3722 3631 -12543431.97403 3723 3631 -14954029.75625 3724 3631 -51161232.47498 3725 3631 11517596.47983 3738 3631 5.781650543213e-06 3739 3631 -42948027.89108 3740 3631 -51682408.42662 3741 3631 14976154.3703 3742 3631 66205199.90227 3743 3631 -15327806.57963 3744 3631 -15976374.31093 3745 3631 -93719762.45757 3746 3631 67555030.84424 3759 3631 -15625000.00513 3760 3631 -22831126.63809 3761 3631 -13229195.86314 3762 3631 337880.5181415 3763 3631 -39223021.22566 3764 3631 -3684799.406556 3765 3631 15616369.17874 3766 3631 -31662826.22467 3767 3631 17418239.39067 3632 3632 1116099565.682 3633 3632 4312451.31953 3634 3632 9212070.355586 3635 3632 74748743.47656 3648 3632 24744636.81848 3649 3632 12480780.76473 3650 3632 -16816652.79793 3651 3632 -7027349.026428 3652 3632 -15449642.33916 3653 3632 95423237.22936 3654 3632 -4716463.568652 3655 3632 3120533.507055 3656 3632 -7137235.120732 3720 3632 13679279.97901 3721 3632 -12543431.97403 3722 3632 -15345455.6363 3723 3632 80421724.21045 3724 3632 11247053.56524 3725 3632 -104696424.0359 3738 3632 571474.7733671 3739 3632 -51408102.87125 3740 3632 -18348781.1507 3741 3632 2251649.800783 3742 3632 -15320118.87702 3743 3632 -215234303.521 3744 3632 21470957.25149 3745 3632 67555192.73323 3746 3632 -108007902.8681 3759 3632 -14250754.75238 3760 3632 -13229195.86314 3761 3632 -17306764.74188 3762 3632 -82961627.88533 3763 3632 -3684799.406555 3764 3632 -114363640.4791 3765 3632 -21139158.27512 3766 3632 17418239.39067 3767 3632 -39860548.18916 3633 3633 643114116.341 3634 3633 1815262.806053 3635 3633 545690.5594623 3651 3633 -88351160.48298 3652 3633 -62485443.67478 3653 3633 3800566.078527 3654 3633 -207344403.6932 3655 3633 3624976.418577 3656 3633 -687512.8056319 3657 3633 73963822.68434 3658 3633 -14301178.74488 3659 3633 -173954.9675533 3660 3633 -78370874.87386 3661 3633 61588601.32361 3662 3633 -935651.2844473 3723 3633 -10501282.92581 3724 3633 18761297.24603 3725 3633 22929736.41723 3741 3633 -30372317.15758 3742 3633 -15976374.31093 3743 3633 -19344589.06185 3744 3633 22995899.35193 3745 3633 227894.836162 3746 3633 16246316.0836 3762 3633 -33455777.13317 3763 3633 -15623874.23674 3764 3633 -19442010.85091 3765 3633 -104909724.8711 3766 3633 452225.1981282 3767 3633 -80690483.95003 3768 3633 -7523100.327808 3769 3633 -3351893.393406 3770 3633 4456236.678043 3771 3633 -33471919.22362 3772 3633 15510724.66075 3773 3633 -20109233.0943 3634 3634 686119149.4706 3635 3634 -9870113.888656 3651 3634 -62485443.67478 3652 3634 -67751390.65724 3653 3634 1462280.361642 3654 3634 3624976.418576 3655 3634 61053696.21525 3656 3634 -3015261.418273 3657 3634 10698821.25101 3658 3634 -45867734.52917 3659 3634 475736.0394503 3660 3634 61588601.32361 3661 3634 -66836531.55906 3662 3634 482735.8839684 3723 3634 12507531.49735 3724 3634 -11060240.32237 3725 3634 -12663686.66971 3741 3634 -15972608.56431 3742 3634 -85109422.29288 3743 3634 -63004424.41222 3744 3634 227894.8361608 3745 3634 32042317.97522 3746 3634 3973582.995076 3762 3634 -15623874.23674 3763 3634 -28538119.24658 3764 3634 -15941688.91568 3765 3634 452225.198129 3766 3634 -37207991.53993 3767 3634 -388625.0459828 3768 3634 2898106.608647 3769 3634 -37400484.43975 3770 3634 33451415.26071 3771 3634 15510724.66075 3772 3634 -29964282.42088 3773 3634 16785618.37505 3635 3635 747110544.2067 3651 3635 3800566.078864 3652 3635 1462280.361912 3653 3635 -8016031.629538 3654 3635 -687512.8056315 3655 3635 -3015261.418274 3656 3635 102348319.6376 3657 3635 -173954.9675504 3658 3635 475736.03945 3659 3635 80405010.0952 3660 3635 -935651.2841095 3661 3635 482735.8839684 3662 3635 -3634854.967177 3723 3635 15286490.94482 3724 3635 -18778561.99058 3725 3635 -27444463.73893 3741 3635 -19340093.59196 3742 3635 -63004759.50055 3743 3635 -85046995.76227 3744 3635 -15966947.8 3745 3635 -8805110.802092 3746 3635 -183271847.5442 3762 3635 -19442010.85091 3763 3635 -15941688.91568 3764 3635 -32724423.62665 3765 3635 -80690483.95036 3766 3635 -388625.0459812 3767 3635 -112004990.4481 3768 3635 -3668763.324622 3769 3635 33451415.26071 3770 3635 -49404477.66436 3771 3635 -20109233.0943 3772 3635 16785618.37505 3773 3635 -36071393.98125 3636 3636 552240810.9557 3637 3636 6.198883056641e-06 3638 3636 -2285838.95777 3639 3636 67865327.72727 3640 3636 12499999.99795 3641 3636 -4857484.044995 3726 3636 -103592244.5474 3727 3636 1.892447471619e-06 3728 3636 80604706.69032 3729 3636 -42555886.98831 3730 3636 -15625000.00514 3731 3636 26537352.8999 3747 3636 38581487.51291 3748 3636 -1.847743988037e-06 3749 3636 -16029498.36724 3750 3636 -24008875.6981 3751 3636 3125000.001023 3752 3636 -5078880.670627 3637 3637 477237771.3828 3638 3637 -54860623.03027 3639 3637 -12499999.99795 3640 3637 -50884542.52531 3641 3637 27704617.07065 3726 3637 -9.983777999878e-07 3727 3637 -34841942.9836 3728 3637 -6857580.506883 3729 3637 -15625000.00514 3730 3637 -37868205.17313 3731 3637 19401012.48091 3747 3637 -2.026557922363e-06 3748 3637 19830760.26143 3749 3637 -13715161.00701 3750 3637 -3125000.00103 3751 3637 -53696344.6694 3752 3637 39487788.83141 3638 3638 575414330.9272 3639 3638 5428974.286648 3640 3638 27156005.95963 3641 3638 56666359.60696 3726 3638 80261824.7461 3727 3638 -6857580.506883 3728 3638 -101938662.0149 3729 3638 26537352.8999 3730 3638 19401012.48091 3731 3638 -57405640.83529 3747 3638 16600987.73851 3748 3638 -13715161.00701 3749 3638 -121422931.0558 3750 3638 5650355.444006 3751 3638 39487788.83154 3752 3638 -95100605.83899 3639 3639 552240810.9557 3640 3639 6.198883056641e-06 3641 3639 -2285838.95777 3642 3639 67865327.72727 3643 3639 12499999.99795 3644 3639 -4857484.044995 3726 3639 -26783317.53868 3727 3639 15625000.00513 3728 3639 13679279.97901 3729 3639 -103592244.5474 3730 3639 1.892447471619e-06 3731 3639 80604706.69032 3732 3639 -42555886.98831 3733 3639 -15625000.00514 3734 3639 26537352.8999 3747 3639 8213455.025764 3748 3639 -3125000.001024 3749 3639 -2507266.086456 3750 3639 38581487.51291 3751 3639 -1.847743988037e-06 3752 3639 -16029498.36724 3753 3639 -24008875.6981 3754 3639 3125000.001023 3755 3639 -5078880.670627 3640 3640 477237771.3828 3641 3640 -54860623.03027 3642 3640 -12499999.99795 3643 3640 -50884542.52531 3644 3640 27704617.07065 3726 3640 15625000.00513 3727 3640 -22095635.7235 3728 3640 -12543431.97403 3729 3640 -9.983777999878e-07 3730 3640 -34841942.9836 3731 3640 -6857580.506883 3732 3640 -15625000.00514 3733 3640 -37868205.17313 3734 3640 19401012.48091 3747 3640 3125000.00103 3748 3640 -21474013.94555 3749 3640 -25772627.8244 3750 3640 -2.026557922363e-06 3751 3640 19830760.26143 3752 3640 -13715161.00701 3753 3640 -3125000.00103 3754 3640 -53696344.6694 3755 3640 39487788.83141 3641 3641 575414330.9272 3642 3641 5428974.286648 3643 3641 27156005.95963 3644 3641 56666359.60696 3726 3641 13679279.97901 3727 3641 -12543431.97403 3728 3641 -15345455.6363 3729 3641 80261824.7461 3730 3641 -6857580.506883 3731 3641 -101938662.0149 3732 3641 26537352.8999 3733 3641 19401012.48091 3734 3641 -57405640.83529 3747 3641 3078740.859823 3748 3641 -25772627.82454 3749 3641 -9174390.575351 3750 3641 16600987.73851 3751 3641 -13715161.00701 3752 3641 -121422931.0558 3753 3641 5650355.444006 3754 3641 39487788.83154 3755 3641 -95100605.83899 3642 3642 552240810.9557 3643 3642 6.198883056641e-06 3644 3642 -2285838.95777 3645 3642 67865327.72727 3646 3642 12499999.99795 3647 3642 -4857484.044995 3729 3642 -26783317.53868 3730 3642 15625000.00513 3731 3642 13679279.97901 3732 3642 -103592244.5474 3733 3642 1.892447471619e-06 3734 3642 80604706.69032 3735 3642 -42555886.98831 3736 3642 -15625000.00514 3737 3642 26537352.8999 3750 3642 8213455.025764 3751 3642 -3125000.001024 3752 3642 -2507266.086456 3753 3642 38581487.51291 3754 3642 -1.847743988037e-06 3755 3642 -16029498.36724 3756 3642 -24008875.6981 3757 3642 3125000.001023 3758 3642 -5078880.670627 3643 3643 477237771.3828 3644 3643 -54860623.03027 3645 3643 -12499999.99795 3646 3643 -50884542.52531 3647 3643 27704617.07065 3729 3643 15625000.00513 3730 3643 -22095635.7235 3731 3643 -12543431.97403 3732 3643 -9.983777999878e-07 3733 3643 -34841942.9836 3734 3643 -6857580.506883 3735 3643 -15625000.00514 3736 3643 -37868205.17313 3737 3643 19401012.48091 3750 3643 3125000.00103 3751 3643 -21474013.94555 3752 3643 -25772627.8244 3753 3643 -2.026557922363e-06 3754 3643 19830760.26143 3755 3643 -13715161.00701 3756 3643 -3125000.00103 3757 3643 -53696344.6694 3758 3643 39487788.83141 3644 3644 575414330.9272 3645 3644 5428974.286648 3646 3644 27156005.95963 3647 3644 56666359.60696 3729 3644 13679279.97901 3730 3644 -12543431.97403 3731 3644 -15345455.6363 3732 3644 80261824.7461 3733 3644 -6857580.506883 3734 3644 -101938662.0149 3735 3644 26537352.8999 3736 3644 19401012.48091 3737 3644 -57405640.83529 3750 3644 3078740.859823 3751 3644 -25772627.82454 3752 3644 -9174390.575351 3753 3644 16600987.73851 3754 3644 -13715161.00701 3755 3644 -121422931.0558 3756 3644 5650355.444006 3757 3644 39487788.83154 3758 3644 -95100605.83899 3645 3645 552240810.9557 3646 3645 6.198883056641e-06 3647 3645 -2285838.95777 3648 3645 67865327.72727 3649 3645 12499999.99795 3650 3645 -4857484.044995 3732 3645 -26783317.53868 3733 3645 15625000.00513 3734 3645 13679279.97901 3735 3645 -103592244.5474 3736 3645 1.892447471619e-06 3737 3645 80604706.69032 3738 3645 -42555886.98831 3739 3645 -15625000.00514 3740 3645 26537352.8999 3753 3645 8213455.025764 3754 3645 -3125000.001024 3755 3645 -2507266.086456 3756 3645 38581487.51291 3757 3645 -1.847743988037e-06 3758 3645 -16029498.36724 3759 3645 -24008875.6981 3760 3645 3125000.001023 3761 3645 -5078880.670627 3646 3646 477237771.3828 3647 3646 -54860623.03027 3648 3646 -12499999.99795 3649 3646 -50884542.52531 3650 3646 27704617.07065 3732 3646 15625000.00513 3733 3646 -22095635.7235 3734 3646 -12543431.97403 3735 3646 -9.983777999878e-07 3736 3646 -34841942.9836 3737 3646 -6857580.506883 3738 3646 -15625000.00514 3739 3646 -37868205.17313 3740 3646 19401012.48091 3753 3646 3125000.00103 3754 3646 -21474013.94555 3755 3646 -25772627.8244 3756 3646 -2.026557922363e-06 3757 3646 19830760.26143 3758 3646 -13715161.00701 3759 3646 -3125000.00103 3760 3646 -53696344.6694 3761 3646 39487788.83141 3647 3647 575414330.9272 3648 3647 5428974.286648 3649 3647 27156005.95963 3650 3647 56666359.60696 3732 3647 13679279.97901 3733 3647 -12543431.97403 3734 3647 -15345455.6363 3735 3647 80261824.7461 3736 3647 -6857580.506883 3737 3647 -101938662.0149 3738 3647 26537352.8999 3739 3647 19401012.48091 3740 3647 -57405640.83529 3753 3647 3078740.859823 3754 3647 -25772627.82454 3755 3647 -9174390.575351 3756 3647 16600987.73851 3757 3647 -13715161.00701 3758 3647 -121422931.0558 3759 3647 5650355.444006 3760 3647 39487788.83154 3761 3647 -95100605.83899 3648 3648 552240810.9557 3649 3648 6.198883056641e-06 3650 3648 -2285838.95777 3651 3648 67865327.72727 3652 3648 12499999.99795 3653 3648 -4857484.044995 3735 3648 -26783317.53868 3736 3648 15625000.00513 3737 3648 13679279.97901 3738 3648 -103592244.5474 3739 3648 1.892447471619e-06 3740 3648 80604706.69032 3741 3648 -42555886.98831 3742 3648 -15625000.00514 3743 3648 26537352.8999 3756 3648 8213455.025764 3757 3648 -3125000.001024 3758 3648 -2507266.086456 3759 3648 38581487.51291 3760 3648 -1.847743988037e-06 3761 3648 -16029498.36724 3762 3648 -24008875.6981 3763 3648 3125000.001023 3764 3648 -5078880.670627 3649 3649 477237771.3828 3650 3649 -54860623.03027 3651 3649 -12499999.99795 3652 3649 -50884542.52531 3653 3649 27704617.07065 3735 3649 15625000.00513 3736 3649 -22095635.7235 3737 3649 -12543431.97403 3738 3649 -9.983777999878e-07 3739 3649 -34841942.9836 3740 3649 -6857580.506883 3741 3649 -15625000.00514 3742 3649 -37868205.17313 3743 3649 19401012.48091 3756 3649 3125000.00103 3757 3649 -21474013.94555 3758 3649 -25772627.8244 3759 3649 -2.026557922363e-06 3760 3649 19830760.26143 3761 3649 -13715161.00701 3762 3649 -3125000.00103 3763 3649 -53696344.6694 3764 3649 39487788.83141 3650 3650 575414330.9272 3651 3650 5428974.286648 3652 3650 27156005.95963 3653 3650 56666359.60696 3735 3650 13679279.97901 3736 3650 -12543431.97403 3737 3650 -15345455.6363 3738 3650 80261824.7461 3739 3650 -6857580.506883 3740 3650 -101938662.0149 3741 3650 26537352.8999 3742 3650 19401012.48091 3743 3650 -57405640.83529 3756 3650 3078740.859823 3757 3650 -25772627.82454 3758 3650 -9174390.575351 3759 3650 16600987.73851 3760 3650 -13715161.00701 3761 3650 -121422931.0558 3762 3650 5650355.444006 3763 3650 39487788.83154 3764 3650 -95100605.83899 3651 3651 546427747.6316 3652 3651 14084.27154636 3653 3651 19801718.51323 3654 3651 72858320.95034 3655 3651 9759238.364084 3656 3651 -116602.2357446 3738 3651 -26783317.53868 3739 3651 15625000.00513 3740 3651 13679279.97901 3741 3651 -103824273.5978 3742 3651 337880.518146 3743 3651 79309465.83793 3744 3651 -35603944.70717 3745 3651 -15623874.23674 3746 3651 21344707.91248 3759 3651 8213455.025764 3760 3651 -3125000.001024 3761 3651 -2507266.086456 3762 3651 36785557.19904 3763 3651 1001.460290611 3764 3651 -10934725.82542 3765 3651 -9732528.17502 3766 3651 2784992.254198 3767 3651 -3687434.039309 3652 3652 473282839.044 3653 3652 -31454317.56922 3654 3652 -15240761.63181 3655 3652 -46838189.21174 3656 3652 4981976.156287 3738 3652 15625000.00513 3739 3652 -22095635.7235 3740 3652 -12543431.97403 3741 3652 337880.5181429 3742 3652 -35413616.53907 3743 3652 -4387924.406508 3744 3652 -15623874.23674 3745 3652 -30686286.82058 3746 3652 16688519.42836 3759 3652 3125000.00103 3760 3652 -21474013.94555 3761 3652 -25772627.8244 3762 3652 1001.460290015 3763 3652 18267026.88321 3764 3652 -8198617.671864 3765 3652 -3465007.747854 3766 3652 -39542525.64835 3767 3652 34214082.44842 3653 3653 563211198.8205 3654 3653 1940689.430582 3655 3653 4981976.156287 3656 3653 76646397.41118 3738 3653 13679279.97901 3739 3653 -12543431.97403 3740 3653 -15345455.6363 3741 3653 81023875.56122 3742 3653 -4387924.406372 3743 3653 -104205227.9814 3744 3653 21344707.91248 3745 3653 16688519.42836 3746 3653 -38452870.49066 3759 3653 3078740.859823 3760 3653 -25772627.82454 3761 3653 -9174390.575351 3762 3653 21695204.72477 3763 3653 -8198617.671865 3764 3653 -125793345.0864 3765 3653 4984232.630034 3766 3653 34214082.44842 3767 3653 -56215515.01345 3654 3654 535719626.833 3655 3654 1986554.525402 3656 3654 424185.6203845 3657 3654 -88785458.20547 3658 3654 -63411398.65587 3659 3654 778758.4376477 3660 3654 68808927.91007 3661 3654 10655584.08215 3662 3654 -482712.6707865 3741 3654 -31935568.9612 3742 3654 15616369.17874 3743 3654 18769001.46021 3744 3654 -104345694.7398 3745 3654 452225.1981363 3746 3654 80375835.46763 3762 3654 -3774952.867633 3763 3654 -3465007.747854 3764 3654 -4051670.15019 3765 3654 32975566.42036 3766 3654 240896.7043756 3767 3654 -15981841.05615 3768 3654 -34789757.76571 3769 3654 -15739275.34951 3770 3654 20505089.8357 3771 3654 -8443092.085658 3772 3654 2894792.016114 3773 3654 -3662387.778975 3655 3655 478673986.4768 3656 3655 -7025191.624467 3657 3655 -63411398.65587 3658 3655 -70742000.30841 3659 3655 482735.8839682 3660 3655 -14344415.91375 3661 3655 -50382297.84958 3662 3655 1455207.495472 3741 3655 15616369.17874 3742 3655 -28402028.07545 3743 3655 -15915093.95361 3744 3655 452225.1981353 3745 3655 -36643961.40857 3746 3655 -1091750.045935 3762 3655 2784992.254199 3763 3655 -33584950.34097 3764 3655 -31749459.20734 3765 3655 240896.7043772 3766 3655 17012000.22864 3767 3655 -1720373.374572 3768 3655 -15739275.34951 3769 3655 -30458471.87417 3770 3655 16785618.37505 3771 3655 -3355207.985938 3772 3655 -38236088.52908 3773 3655 33691058.20639 3656 3656 561203178.0176 3657 3656 778758.4376477 3658 3656 482735.8839681 3659 3656 -7540323.716533 3660 3656 203051.2179867 3661 3656 1455207.495472 3662 3656 76151663.76902 3741 3656 18769001.46021 3742 3656 -15915093.95361 3743 3656 -31165086.45791 3744 3656 80375835.46797 3745 3656 -1091750.045798 3746 3656 -110500910.0978 3762 3656 3591350.685652 3763 3656 -31749459.20747 3764 3656 -40328647.52708 3765 3656 16231422.82745 3766 3656 -1720373.374572 3767 3656 -131615230.9477 3768 3656 20505089.8357 3769 3656 16785618.37505 3770 3656 -36565583.43453 3771 3656 4458341.39036 3772 3656 33691058.20639 3773 3656 -50660541.5339 3657 3657 272675288.3693 3658 3657 64301178.73667 3659 3657 -397514.9396582 3660 3657 -104075430.6267 3661 3657 -11588601.33182 3662 3657 -207288.5304373 3744 3657 -6974489.216529 3745 3657 2898106.608647 3746 3657 3577677.650328 3765 3657 -34241146.65443 3766 3657 -15739275.34951 3767 3657 -20119910.17764 3768 3657 16467433.68971 3769 3657 15851893.39751 3770 3657 8027675.358897 3771 3657 -52140908.9295 3772 3657 -3010724.656649 3773 3657 -40235442.83158 3658 3658 240163095.6078 3659 3658 -475736.039438 3660 3658 13411398.66408 3661 3658 30224861.45123 3662 3658 -482735.8839618 3744 3658 -3351893.393406 3745 3658 -36851873.32848 3746 3658 -33215251.395 3765 3658 -15739275.34951 3766 3658 -29909860.76288 3767 3658 -16547714.96923 3768 3658 15851893.39751 3769 3658 8258880.289149 3770 3658 6548584.732711 3771 3658 3239275.345404 3772 3658 -18386257.30854 3773 3658 3214381.631519 3659 3659 285372202.8062 3660 3659 -207288.530434 3661 3659 -482735.8839618 3662 3659 51838370.07238 3744 3659 -4547322.35217 3745 3659 -33215251.395 3746 3659 -47941514.70095 3765 3659 -20119910.17764 3766 3659 -16547714.96923 3767 3659 -35102620.4711 3768 3659 -8222324.638434 3769 3659 -6784748.598432 3770 3659 -66392404.24977 3771 3659 -40235442.83175 3772 3659 -3452285.037337 3773 3659 -55601090.20684 3660 3660 265193822.0356 3661 3660 -60655584.07394 3662 3660 -431639.1816709 3744 3660 -32923308.11233 3745 3660 15510724.66075 3746 3660 19637207.89097 3765 3660 -6797258.752877 3766 3660 -3355207.985938 3767 3660 -4369505.834413 3768 3660 -52140908.9295 3769 3660 3239275.345408 3770 3660 40135998.12736 3771 3660 16083253.57212 3772 3660 -15394792.02022 3773 3660 -8050852.961471 3661 3661 238550412.4026 3662 3661 -1455207.495458 3744 3661 15510724.66075 3745 3661 -29415671.3096 3746 3661 -16547714.96923 3765 3661 2894792.016115 3766 3661 -36590255.19631 3767 3661 -32975608.44932 3768 3661 -3010724.656646 3769 3661 -18386257.30854 3770 3661 3214381.631519 3771 3661 -15394792.02022 3772 3661 8613961.591849 3773 3661 6308941.787031 3662 3662 279795339.6462 3744 3662 19637207.89097 3745 3662 -16547714.96923 3746 3662 -34608431.01782 3765 3662 3408341.390536 3766 3662 -32975608.44932 3767 3662 -46271652.64648 3768 3662 40135998.12736 3769 3662 -3452285.037337 3770 3662 -55601090.20684 3771 3662 7847723.424807 3772 3662 -7024391.544111 3773 3662 -65594085.3891 3663 3663 713665840.9484 3664 3663 62499999.98975 3665 3663 26303045.6496 3666 3663 -333091779.4995 3667 3663 -62514728.59611 3668 3663 -26296716.12064 3669 3663 15411687.79098 3670 3663 50014728.59815 3671 3663 -21264808.11782 3774 3663 50455843.08525 3775 3663 15625000.00514 3776 3663 23750485.45243 3777 3663 -136601119.3265 3778 3663 -15628682.15673 3779 3663 -88333821.76341 3780 3663 -31442472.41633 3781 3663 12503682.1557 3782 3663 -21464859.02542 3664 3664 619895634.403 3665 3664 -68588052.25144 3666 3664 -62522092.89929 3667 3664 -39293818.84171 3668 3664 -37998394.10174 3669 3664 75022092.89723 3670 3664 15411687.79098 3671 3664 23871774.7618 3774 3664 15625000.00514 3775 3664 27013291.43733 3776 3664 -3407345.083582 3777 3664 -15630523.23252 3778 3664 -63151629.12586 3779 3664 -25854695.88552 3780 3664 18755523.23355 3781 3664 -31442472.41633 3782 3664 25757502.85539 3665 3665 781376197.173 3666 3665 -26293551.35616 3667 3665 -30589746.95883 3668 3665 33460212.57848 3669 3665 -31897212.17672 3670 3665 15914516.50787 3671 3665 41097834.10927 3774 3665 -8884805.348678 3775 3665 -29515355.2492 3776 3665 -145884263.2499 3777 3665 -87990199.11779 3778 3665 -23932056.04702 3779 3665 -133843411.9462 3780 3665 -32197288.53812 3781 3665 17171668.57026 3782 3665 -83846593.11021 3666 3666 1206829602.888 3667 3666 62536821.50566 3668 3666 30859020.00955 3669 3666 35818303.75647 3670 3666 -62514728.59611 3671 3666 26693781.96925 3672 3666 -218486531.0803 3673 3666 2.98023223877e-06 3674 3666 -4571798.18244 3675 3666 -90373702.5448 3676 3666 62499999.98974 3677 3666 -26687654.40317 3774 3666 -119411159.8837 3775 3666 -15630523.23252 3776 3666 75186254.88774 3777 3666 109890622.1535 3778 3666 15634205.38412 3779 3666 7712478.882864 3780 3666 -60563825.20041 3781 3666 -15628682.15673 3782 3666 27115214.46942 3783 3666 -107888591.8846 3784 3666 1.713633537292e-06 3785 3666 -82890605.78265 3786 3666 -43968569.74338 3787 3666 15625000.00513 3788 3666 -27108827.67327 3667 3667 1038056487.373 3668 3667 -85034336.6799 3669 3667 -62522092.89929 3670 3667 -182960177.6074 3671 3667 45539436.5079 3672 3667 4.291534423828e-06 3673 3667 56514675.03912 3674 3667 -27430322.01402 3675 3667 62499999.98974 3676 3667 -71622975.29333 3677 3667 14949536.00687 3774 3667 -15628682.15673 3775 3667 -45961669.68301 3776 3667 8705839.731277 3777 3667 15634205.38412 3778 3667 67697343.25408 3779 3667 -21260405.06448 3780 3667 -15630523.23252 3781 3667 -115258445.5683 3782 3667 76792017.46155 3783 3667 1.668930053711e-06 3784 3667 -39138290.32084 3785 3667 -6857580.506883 3786 3667 15625000.00513 3787 3667 -39280887.92821 3788 3667 20086776.37002 3668 3668 1199251971.759 3669 3668 27039727.69652 3670 3668 53222308.42241 3671 3668 71236333.03937 3672 3668 -4571798.18244 3673 3668 -27430322.01402 3674 3668 114598543.8875 3675 3668 -27030536.34739 3676 3668 15223841.56225 3677 3668 -16689642.3626 3774 3668 74842632.24213 3775 3668 6787043.609902 3776 3668 -88003520.09856 3777 3668 7717283.578221 3778 3668 -21256561.34093 3779 3668 -211698416.8248 3780 3668 27118407.8675 3781 3668 78438470.16785 3782 3668 -167573319.7819 3783 3668 -82547723.83843 3784 3668 -6857580.506883 3785 3668 -113395588.2476 3786 3668 -27108827.67327 3787 3668 20086776.37002 3788 3668 -61172794.84886 3669 3669 713665840.9484 3670 3669 62499999.98975 3671 3669 26303045.6496 3672 3669 -89019318.86449 3673 3669 -62499999.98974 3674 3669 24744637.25504 3675 3669 -333091779.4995 3676 3669 -62514728.59611 3677 3669 -26296716.12064 3678 3669 15411687.79098 3679 3669 50014728.59815 3680 3669 -21264808.11782 3774 3669 789479.8663111 3775 3669 18755523.23355 3776 3669 16762853.88037 3777 3669 -11151323.14121 3778 3669 -15630523.23252 3779 3669 -13684113.02055 3780 3669 50455843.08525 3781 3669 15625000.00514 3782 3669 23750485.45243 3783 3669 -27518808.45327 3784 3669 -15625000.00513 3785 3669 -14250754.75238 3786 3669 -136601119.3265 3787 3669 -15628682.15673 3788 3669 -88333821.76341 3789 3669 -31442472.41633 3790 3669 12503682.1557 3791 3669 -21464859.02542 3670 3670 619895634.403 3671 3670 -68588052.25144 3672 3670 -62499999.98974 3673 3670 -70268591.613 3674 3670 12480786.00715 3675 3670 -62522092.89929 3676 3670 -39293818.84171 3677 3670 -37998394.10174 3678 3670 75022092.89723 3679 3670 15411687.79098 3680 3670 23871774.7618 3774 3670 12503682.1557 3775 3670 789479.8663122 3776 3670 -8940185.539224 3777 3670 -15628682.15672 3778 3670 -65845943.5091 3779 3670 -52101581.10086 3780 3670 15625000.00514 3781 3670 27013291.43733 3782 3670 -3407345.083582 3783 3670 -15625000.00513 3784 3670 -22831126.63809 3785 3670 -13229195.86314 3786 3670 -15630523.23252 3787 3670 -63151629.12586 3788 3670 -25854695.88552 3789 3670 18755523.23355 3790 3670 -31442472.41633 3791 3670 25757502.85539 3671 3671 781376197.173 3672 3671 24401755.31083 3673 3671 12206480.45177 3674 3671 -13077952.54839 3675 3671 -26293551.35616 3676 3671 -30589746.95883 3677 3671 33460212.57848 3678 3671 -31897212.17672 3679 3671 15914516.50787 3680 3671 41097834.10927 3774 3671 11175235.92025 3775 3671 -13410278.30884 3776 3671 2105279.643495 3777 3671 -13682502.0067 3778 3671 -53748034.02747 3779 3671 -35806647.62401 3780 3671 -8884805.348678 3781 3671 -29515355.2492 3782 3671 -145884263.2499 3783 3671 -14250754.75238 3784 3671 -13229195.86314 3785 3671 -17306764.74188 3786 3671 -87990199.11779 3787 3671 -23932056.04702 3788 3671 -133843411.9462 3789 3671 -32197288.53812 3790 3671 17171668.57026 3791 3671 -83846593.11021 3672 3672 1126552465.849 3673 3672 1.227855682373e-05 3674 3672 9143596.364805 3675 3672 141293458.9169 3676 3672 -4.947185516357e-06 3677 3672 2285899.092331 3681 3672 -218486531.0803 3682 3672 2.98023223877e-06 3683 3672 -4571798.18244 3684 3672 -90373702.5448 3685 3672 62499999.98974 3686 3672 -26687654.40317 3777 3672 -103592244.5474 3778 3672 1.892447471619e-06 3779 3672 80604706.69032 3780 3672 -42555886.98831 3781 3672 -15625000.00514 3782 3672 26537352.8999 3783 3672 77208121.14848 3784 3672 3.09944152832e-06 3785 3672 2285899.092361 3786 3672 -48017751.39621 3787 3672 -8.776783943176e-06 3788 3672 571474.7733788 3792 3672 -107888591.8846 3793 3672 1.713633537292e-06 3794 3672 -82890605.78265 3795 3672 -43968569.74338 3796 3672 15625000.00513 3797 3672 -27108827.67327 3673 3673 976546647.911 3674 3673 -109721288.002 3675 3673 -4.738569259644e-06 3676 3673 -96206292.73656 3677 3673 54860644.00101 3681 3673 4.291534423828e-06 3682 3673 56514675.03912 3683 3673 -27430322.01402 3684 3673 62499999.98974 3685 3673 -71622975.29333 3686 3673 14949536.00687 3777 3673 -9.983777999878e-07 3778 3673 -34841942.9836 3779 3673 -6857580.506883 3780 3673 -15625000.00514 3781 3673 -37868205.17313 3782 3673 19401012.48091 3783 3673 3.09944152832e-06 3784 3673 39706666.64553 3785 3673 -27430322.01402 3786 3673 -7.04824924469e-06 3787 3673 -107392689.3388 3788 3673 79112730.44064 3792 3673 1.668930053711e-06 3793 3673 -39138290.32084 3794 3673 -6857580.506883 3795 3673 15625000.00513 3796 3673 -39280887.92821 3797 3673 20086776.37002 3674 3674 1209684727.759 3675 3674 2285899.092332 3676 3674 54860644.00101 3677 3674 128167058.7484 3681 3674 -4571798.18244 3682 3674 -27430322.01402 3683 3674 114598543.8875 3684 3674 -27030536.34739 3685 3674 15223841.56225 3686 3674 -16689642.3626 3777 3674 80261824.7461 3778 3674 -6857580.506883 3779 3674 -101938662.0149 3780 3674 26537352.8999 3781 3674 19401012.48091 3782 3674 -57405640.83529 3783 3674 2285899.092361 3784 3674 -27430322.01402 3785 3674 -242725472.4512 3786 3674 571474.773379 3787 3674 78838424.88527 3788 3674 -190201211.678 3792 3674 -82547723.83843 3793 3674 -6857580.506883 3794 3674 -113395588.2476 3795 3674 -27108827.67327 3796 3674 20086776.37002 3797 3674 -61172794.84886 3675 3675 1206829602.888 3676 3675 62536821.50566 3677 3675 30859020.00955 3678 3675 35818303.75647 3679 3675 -62514728.59611 3680 3675 26693781.96925 3681 3675 -89019318.86449 3682 3675 -62499999.98974 3683 3675 24744637.25504 3684 3675 -218486531.0803 3685 3675 2.98023223877e-06 3686 3675 -4571798.18244 3687 3675 -90373702.5448 3688 3675 62499999.98974 3689 3675 -26687654.40317 3777 3675 -26783317.53868 3778 3675 15625000.00513 3779 3675 13679279.97901 3780 3675 -119411159.8837 3781 3675 -15630523.23252 3782 3675 75186254.88774 3783 3675 16426910.05153 3784 3675 4.485249519348e-06 3785 3675 571474.7733669 3786 3675 109890622.1535 3787 3675 15634205.38412 3788 3675 7712478.882864 3789 3675 -60563825.20041 3790 3675 -15628682.15673 3791 3675 27115214.46942 3792 3675 -27518808.45327 3793 3675 -15625000.00513 3794 3675 -14250754.75238 3795 3675 -107888591.8846 3796 3675 1.713633537292e-06 3797 3675 -82890605.78265 3798 3675 -43968569.74338 3799 3675 15625000.00513 3800 3675 -27108827.67327 3676 3676 1038056487.373 3677 3676 -85034336.6799 3678 3676 -62522092.89929 3679 3676 -182960177.6074 3680 3676 45539436.5079 3681 3676 -62499999.98974 3682 3676 -70268591.613 3683 3676 12480786.00715 3684 3676 4.291534423828e-06 3685 3676 56514675.03912 3686 3676 -27430322.01402 3687 3676 62499999.98974 3688 3676 -71622975.29333 3689 3676 14949536.00687 3777 3676 15625000.00513 3778 3676 -22095635.7235 3779 3676 -12543431.97403 3780 3676 -15628682.15673 3781 3676 -45961669.68301 3782 3676 8705839.731277 3783 3676 5.781650543213e-06 3784 3676 -42948027.89108 3785 3676 -51682408.42662 3786 3676 15634205.38412 3787 3676 67697343.25408 3788 3676 -21260405.06448 3789 3676 -15630523.23252 3790 3676 -115258445.5683 3791 3676 76792017.46155 3792 3676 -15625000.00513 3793 3676 -22831126.63809 3794 3676 -13229195.86314 3795 3676 1.668930053711e-06 3796 3676 -39138290.32084 3797 3676 -6857580.506883 3798 3676 15625000.00513 3799 3676 -39280887.92821 3800 3676 20086776.37002 3677 3677 1199251971.759 3678 3677 27039727.69652 3679 3677 53222308.42241 3680 3677 71236333.03937 3681 3677 24401755.31083 3682 3677 12206480.45177 3683 3677 -13077952.54839 3684 3677 -4571798.18244 3685 3677 -27430322.01402 3686 3677 114598543.8875 3687 3677 -27030536.34739 3688 3677 15223841.56225 3689 3677 -16689642.3626 3777 3677 13679279.97901 3778 3677 -12543431.97403 3779 3677 -15345455.6363 3780 3677 74842632.24213 3781 3677 6787043.609902 3782 3677 -88003520.09856 3783 3677 571474.7733671 3784 3677 -51408102.87125 3785 3677 -18348781.1507 3786 3677 7717283.578221 3787 3677 -21256561.34093 3788 3677 -211698416.8248 3789 3677 27118407.8675 3790 3677 78438470.16785 3791 3677 -167573319.7819 3792 3677 -14250754.75238 3793 3677 -13229195.86314 3794 3677 -17306764.74188 3795 3677 -82547723.83843 3796 3677 -6857580.506883 3797 3677 -113395588.2476 3798 3677 -27108827.67327 3799 3677 20086776.37002 3800 3677 -61172794.84886 3678 3678 713665840.9484 3679 3678 62499999.98975 3680 3678 26303045.6496 3684 3678 -89019318.86449 3685 3678 -62499999.98974 3686 3678 24744637.25504 3687 3678 -333091779.4995 3688 3678 -62514728.59611 3689 3678 -26296716.12064 3690 3678 15411687.79098 3691 3678 50014728.59815 3692 3678 -21264808.11782 3780 3678 789479.8663111 3781 3678 18755523.23355 3782 3678 16762853.88037 3786 3678 -11151323.14121 3787 3678 -15630523.23252 3788 3678 -13684113.02055 3789 3678 50455843.08525 3790 3678 15625000.00514 3791 3678 23750485.45243 3795 3678 -27518808.45327 3796 3678 -15625000.00513 3797 3678 -14250754.75238 3798 3678 -136601119.3265 3799 3678 -15628682.15673 3800 3678 -88333821.76341 3801 3678 -31442472.41633 3802 3678 12503682.1557 3803 3678 -21464859.02542 3679 3679 619895634.403 3680 3679 -68588052.25144 3684 3679 -62499999.98974 3685 3679 -70268591.613 3686 3679 12480786.00715 3687 3679 -62522092.89929 3688 3679 -39293818.84171 3689 3679 -37998394.10174 3690 3679 75022092.89723 3691 3679 15411687.79098 3692 3679 23871774.7618 3780 3679 12503682.1557 3781 3679 789479.8663122 3782 3679 -8940185.539224 3786 3679 -15628682.15672 3787 3679 -65845943.5091 3788 3679 -52101581.10086 3789 3679 15625000.00514 3790 3679 27013291.43733 3791 3679 -3407345.083582 3795 3679 -15625000.00513 3796 3679 -22831126.63809 3797 3679 -13229195.86314 3798 3679 -15630523.23252 3799 3679 -63151629.12586 3800 3679 -25854695.88552 3801 3679 18755523.23355 3802 3679 -31442472.41633 3803 3679 25757502.85539 3680 3680 781376197.173 3684 3680 24401755.31083 3685 3680 12206480.45177 3686 3680 -13077952.54839 3687 3680 -26293551.35616 3688 3680 -30589746.95883 3689 3680 33460212.57848 3690 3680 -31897212.17672 3691 3680 15914516.50787 3692 3680 41097834.10927 3780 3680 11175235.92025 3781 3680 -13410278.30884 3782 3680 2105279.643495 3786 3680 -13682502.0067 3787 3680 -53748034.02747 3788 3680 -35806647.62401 3789 3680 -8884805.348678 3790 3680 -29515355.2492 3791 3680 -145884263.2499 3795 3680 -14250754.75238 3796 3680 -13229195.86314 3797 3680 -17306764.74188 3798 3680 -87990199.11779 3799 3680 -23932056.04702 3800 3680 -133843411.9462 3801 3680 -32197288.53812 3802 3680 17171668.57026 3803 3680 -83846593.11021 3681 3681 1126552465.849 3682 3681 1.227855682373e-05 3683 3681 9143596.364805 3684 3681 141293458.9169 3685 3681 -4.947185516357e-06 3686 3681 2285899.092331 3693 3681 -218486531.0803 3694 3681 2.98023223877e-06 3695 3681 -4571798.18244 3696 3681 -90373702.5448 3697 3681 62499999.98974 3698 3681 -26687654.40317 3783 3681 -103592244.5474 3784 3681 1.892447471619e-06 3785 3681 80604706.69032 3786 3681 -42555886.98831 3787 3681 -15625000.00514 3788 3681 26537352.8999 3792 3681 77208121.14848 3793 3681 3.09944152832e-06 3794 3681 2285899.092361 3795 3681 -48017751.39621 3796 3681 -8.776783943176e-06 3797 3681 571474.7733788 3804 3681 -107888591.8846 3805 3681 1.713633537292e-06 3806 3681 -82890605.78265 3807 3681 -43968569.74338 3808 3681 15625000.00513 3809 3681 -27108827.67327 3682 3682 976546647.911 3683 3682 -109721288.002 3684 3682 -4.738569259644e-06 3685 3682 -96206292.73656 3686 3682 54860644.00101 3693 3682 4.291534423828e-06 3694 3682 56514675.03912 3695 3682 -27430322.01402 3696 3682 62499999.98974 3697 3682 -71622975.29333 3698 3682 14949536.00687 3783 3682 -9.983777999878e-07 3784 3682 -34841942.9836 3785 3682 -6857580.506883 3786 3682 -15625000.00514 3787 3682 -37868205.17313 3788 3682 19401012.48091 3792 3682 3.09944152832e-06 3793 3682 39706666.64553 3794 3682 -27430322.01402 3795 3682 -7.04824924469e-06 3796 3682 -107392689.3388 3797 3682 79112730.44064 3804 3682 1.668930053711e-06 3805 3682 -39138290.32084 3806 3682 -6857580.506883 3807 3682 15625000.00513 3808 3682 -39280887.92821 3809 3682 20086776.37002 3683 3683 1209684727.759 3684 3683 2285899.092332 3685 3683 54860644.00101 3686 3683 128167058.7484 3693 3683 -4571798.18244 3694 3683 -27430322.01402 3695 3683 114598543.8875 3696 3683 -27030536.34739 3697 3683 15223841.56225 3698 3683 -16689642.3626 3783 3683 80261824.7461 3784 3683 -6857580.506883 3785 3683 -101938662.0149 3786 3683 26537352.8999 3787 3683 19401012.48091 3788 3683 -57405640.83529 3792 3683 2285899.092361 3793 3683 -27430322.01402 3794 3683 -242725472.4512 3795 3683 571474.773379 3796 3683 78838424.88527 3797 3683 -190201211.678 3804 3683 -82547723.83843 3805 3683 -6857580.506883 3806 3683 -113395588.2476 3807 3683 -27108827.67327 3808 3683 20086776.37002 3809 3683 -61172794.84886 3684 3684 1126552465.849 3685 3684 1.227855682373e-05 3686 3684 9143596.364805 3687 3684 141293458.9169 3688 3684 -4.947185516357e-06 3689 3684 2285899.092331 3693 3684 -89019318.86449 3694 3684 -62499999.98974 3695 3684 24744637.25504 3696 3684 -218486531.0803 3697 3684 2.98023223877e-06 3698 3684 -4571798.18244 3699 3684 -90373702.5448 3700 3684 62499999.98974 3701 3684 -26687654.40317 3783 3684 -26783317.53868 3784 3684 15625000.00513 3785 3684 13679279.97901 3786 3684 -103592244.5474 3787 3684 1.892447471619e-06 3788 3684 80604706.69032 3789 3684 -42555886.98831 3790 3684 -15625000.00514 3791 3684 26537352.8999 3792 3684 16426910.05153 3793 3684 4.485249519348e-06 3794 3684 571474.7733669 3795 3684 77208121.14848 3796 3684 3.09944152832e-06 3797 3684 2285899.092361 3798 3684 -48017751.39621 3799 3684 -8.776783943176e-06 3800 3684 571474.7733788 3804 3684 -27518808.45327 3805 3684 -15625000.00513 3806 3684 -14250754.75238 3807 3684 -107888591.8846 3808 3684 1.713633537292e-06 3809 3684 -82890605.78265 3810 3684 -43968569.74338 3811 3684 15625000.00513 3812 3684 -27108827.67327 3685 3685 976546647.911 3686 3685 -109721288.002 3687 3685 -4.738569259644e-06 3688 3685 -96206292.73656 3689 3685 54860644.00101 3693 3685 -62499999.98974 3694 3685 -70268591.613 3695 3685 12480786.00715 3696 3685 4.291534423828e-06 3697 3685 56514675.03912 3698 3685 -27430322.01402 3699 3685 62499999.98974 3700 3685 -71622975.29333 3701 3685 14949536.00687 3783 3685 15625000.00513 3784 3685 -22095635.7235 3785 3685 -12543431.97403 3786 3685 -9.983777999878e-07 3787 3685 -34841942.9836 3788 3685 -6857580.506883 3789 3685 -15625000.00514 3790 3685 -37868205.17313 3791 3685 19401012.48091 3792 3685 5.781650543213e-06 3793 3685 -42948027.89108 3794 3685 -51682408.42662 3795 3685 3.09944152832e-06 3796 3685 39706666.64553 3797 3685 -27430322.01402 3798 3685 -7.04824924469e-06 3799 3685 -107392689.3388 3800 3685 79112730.44064 3804 3685 -15625000.00513 3805 3685 -22831126.63809 3806 3685 -13229195.86314 3807 3685 1.668930053711e-06 3808 3685 -39138290.32084 3809 3685 -6857580.506883 3810 3685 15625000.00513 3811 3685 -39280887.92821 3812 3685 20086776.37002 3686 3686 1209684727.759 3687 3686 2285899.092332 3688 3686 54860644.00101 3689 3686 128167058.7484 3693 3686 24401755.31083 3694 3686 12206480.45177 3695 3686 -13077952.54839 3696 3686 -4571798.18244 3697 3686 -27430322.01402 3698 3686 114598543.8875 3699 3686 -27030536.34739 3700 3686 15223841.56225 3701 3686 -16689642.3626 3783 3686 13679279.97901 3784 3686 -12543431.97403 3785 3686 -15345455.6363 3786 3686 80261824.7461 3787 3686 -6857580.506883 3788 3686 -101938662.0149 3789 3686 26537352.8999 3790 3686 19401012.48091 3791 3686 -57405640.83529 3792 3686 571474.7733671 3793 3686 -51408102.87125 3794 3686 -18348781.1507 3795 3686 2285899.092361 3796 3686 -27430322.01402 3797 3686 -242725472.4512 3798 3686 571474.773379 3799 3686 78838424.88527 3800 3686 -190201211.678 3804 3686 -14250754.75238 3805 3686 -13229195.86314 3806 3686 -17306764.74188 3807 3686 -82547723.83843 3808 3686 -6857580.506883 3809 3686 -113395588.2476 3810 3686 -27108827.67327 3811 3686 20086776.37002 3812 3686 -61172794.84886 3687 3687 1206829602.888 3688 3687 62536821.50566 3689 3687 30859020.00955 3690 3687 35818303.75647 3691 3687 -62514728.59611 3692 3687 26693781.96925 3696 3687 -89019318.86449 3697 3687 -62499999.98974 3698 3687 24744637.25504 3699 3687 -218486531.0803 3700 3687 2.98023223877e-06 3701 3687 -4571798.18244 3702 3687 -90373702.5448 3703 3687 62499999.98974 3704 3687 -26687654.40317 3786 3687 -26783317.53868 3787 3687 15625000.00513 3788 3687 13679279.97901 3789 3687 -119411159.8837 3790 3687 -15630523.23252 3791 3687 75186254.88774 3795 3687 16426910.05153 3796 3687 4.485249519348e-06 3797 3687 571474.7733669 3798 3687 109890622.1535 3799 3687 15634205.38412 3800 3687 7712478.882864 3801 3687 -60563825.20041 3802 3687 -15628682.15673 3803 3687 27115214.46942 3807 3687 -27518808.45327 3808 3687 -15625000.00513 3809 3687 -14250754.75238 3810 3687 -107888591.8846 3811 3687 1.713633537292e-06 3812 3687 -82890605.78265 3813 3687 -43968569.74338 3814 3687 15625000.00513 3815 3687 -27108827.67327 3688 3688 1038056487.373 3689 3688 -85034336.6799 3690 3688 -62522092.89929 3691 3688 -182960177.6074 3692 3688 45539436.5079 3696 3688 -62499999.98974 3697 3688 -70268591.613 3698 3688 12480786.00715 3699 3688 4.291534423828e-06 3700 3688 56514675.03912 3701 3688 -27430322.01402 3702 3688 62499999.98974 3703 3688 -71622975.29333 3704 3688 14949536.00687 3786 3688 15625000.00513 3787 3688 -22095635.7235 3788 3688 -12543431.97403 3789 3688 -15628682.15673 3790 3688 -45961669.68301 3791 3688 8705839.731277 3795 3688 5.781650543213e-06 3796 3688 -42948027.89108 3797 3688 -51682408.42662 3798 3688 15634205.38412 3799 3688 67697343.25408 3800 3688 -21260405.06448 3801 3688 -15630523.23252 3802 3688 -115258445.5683 3803 3688 76792017.46155 3807 3688 -15625000.00513 3808 3688 -22831126.63809 3809 3688 -13229195.86314 3810 3688 1.668930053711e-06 3811 3688 -39138290.32084 3812 3688 -6857580.506883 3813 3688 15625000.00513 3814 3688 -39280887.92821 3815 3688 20086776.37002 3689 3689 1199251971.759 3690 3689 27039727.69652 3691 3689 53222308.42241 3692 3689 71236333.03937 3696 3689 24401755.31083 3697 3689 12206480.45177 3698 3689 -13077952.54839 3699 3689 -4571798.18244 3700 3689 -27430322.01402 3701 3689 114598543.8875 3702 3689 -27030536.34739 3703 3689 15223841.56225 3704 3689 -16689642.3626 3786 3689 13679279.97901 3787 3689 -12543431.97403 3788 3689 -15345455.6363 3789 3689 74842632.24213 3790 3689 6787043.609902 3791 3689 -88003520.09856 3795 3689 571474.7733671 3796 3689 -51408102.87125 3797 3689 -18348781.1507 3798 3689 7717283.578221 3799 3689 -21256561.34093 3800 3689 -211698416.8248 3801 3689 27118407.8675 3802 3689 78438470.16785 3803 3689 -167573319.7819 3807 3689 -14250754.75238 3808 3689 -13229195.86314 3809 3689 -17306764.74188 3810 3689 -82547723.83843 3811 3689 -6857580.506883 3812 3689 -113395588.2476 3813 3689 -27108827.67327 3814 3689 20086776.37002 3815 3689 -61172794.84886 3690 3690 713665840.9484 3691 3690 62499999.98975 3692 3690 26303045.6496 3699 3690 -89019318.86449 3700 3690 -62499999.98974 3701 3690 24744637.25504 3702 3690 -333091779.4995 3703 3690 -62514728.59611 3704 3690 -26296716.12064 3705 3690 15411687.79098 3706 3690 50014728.59815 3707 3690 -21264808.11782 3789 3690 789479.8663111 3790 3690 18755523.23355 3791 3690 16762853.88037 3798 3690 -11151323.14121 3799 3690 -15630523.23252 3800 3690 -13684113.02055 3801 3690 50455843.08525 3802 3690 15625000.00514 3803 3690 23750485.45243 3810 3690 -27518808.45327 3811 3690 -15625000.00513 3812 3690 -14250754.75238 3813 3690 -136601119.3265 3814 3690 -15628682.15673 3815 3690 -88333821.76341 3816 3690 -31442472.41633 3817 3690 12503682.1557 3818 3690 -21464859.02542 3691 3691 619895634.403 3692 3691 -68588052.25144 3699 3691 -62499999.98974 3700 3691 -70268591.613 3701 3691 12480786.00715 3702 3691 -62522092.89929 3703 3691 -39293818.84171 3704 3691 -37998394.10174 3705 3691 75022092.89723 3706 3691 15411687.79098 3707 3691 23871774.7618 3789 3691 12503682.1557 3790 3691 789479.8663122 3791 3691 -8940185.539224 3798 3691 -15628682.15672 3799 3691 -65845943.5091 3800 3691 -52101581.10086 3801 3691 15625000.00514 3802 3691 27013291.43733 3803 3691 -3407345.083582 3810 3691 -15625000.00513 3811 3691 -22831126.63809 3812 3691 -13229195.86314 3813 3691 -15630523.23252 3814 3691 -63151629.12586 3815 3691 -25854695.88552 3816 3691 18755523.23355 3817 3691 -31442472.41633 3818 3691 25757502.85539 3692 3692 781376197.173 3699 3692 24401755.31083 3700 3692 12206480.45177 3701 3692 -13077952.54839 3702 3692 -26293551.35616 3703 3692 -30589746.95883 3704 3692 33460212.57848 3705 3692 -31897212.17672 3706 3692 15914516.50787 3707 3692 41097834.10927 3789 3692 11175235.92025 3790 3692 -13410278.30884 3791 3692 2105279.643495 3798 3692 -13682502.0067 3799 3692 -53748034.02747 3800 3692 -35806647.62401 3801 3692 -8884805.348678 3802 3692 -29515355.2492 3803 3692 -145884263.2499 3810 3692 -14250754.75238 3811 3692 -13229195.86314 3812 3692 -17306764.74188 3813 3692 -87990199.11779 3814 3692 -23932056.04702 3815 3692 -133843411.9462 3816 3692 -32197288.53812 3817 3692 17171668.57026 3818 3692 -83846593.11021 3693 3693 1126552465.849 3694 3693 1.227855682373e-05 3695 3693 9143596.364805 3696 3693 141293458.9169 3697 3693 -4.947185516357e-06 3698 3693 2285899.092331 3708 3693 -218486531.0803 3709 3693 2.98023223877e-06 3710 3693 -4571798.18244 3711 3693 -90373702.5448 3712 3693 62499999.98974 3713 3693 -26687654.40317 3792 3693 -103592244.5474 3793 3693 1.892447471619e-06 3794 3693 80604706.69032 3795 3693 -42555886.98831 3796 3693 -15625000.00514 3797 3693 26537352.8999 3804 3693 77208121.14848 3805 3693 3.09944152832e-06 3806 3693 2285899.092361 3807 3693 -48017751.39621 3808 3693 -8.776783943176e-06 3809 3693 571474.7733788 3819 3693 -107888591.8846 3820 3693 1.713633537292e-06 3821 3693 -82890605.78265 3822 3693 -43968569.74338 3823 3693 15625000.00513 3824 3693 -27108827.67327 3694 3694 976546647.911 3695 3694 -109721288.002 3696 3694 -4.738569259644e-06 3697 3694 -96206292.73656 3698 3694 54860644.00101 3708 3694 4.291534423828e-06 3709 3694 56514675.03912 3710 3694 -27430322.01402 3711 3694 62499999.98974 3712 3694 -71622975.29333 3713 3694 14949536.00687 3792 3694 -9.983777999878e-07 3793 3694 -34841942.9836 3794 3694 -6857580.506883 3795 3694 -15625000.00514 3796 3694 -37868205.17313 3797 3694 19401012.48091 3804 3694 3.09944152832e-06 3805 3694 39706666.64553 3806 3694 -27430322.01402 3807 3694 -7.04824924469e-06 3808 3694 -107392689.3388 3809 3694 79112730.44064 3819 3694 1.668930053711e-06 3820 3694 -39138290.32084 3821 3694 -6857580.506883 3822 3694 15625000.00513 3823 3694 -39280887.92821 3824 3694 20086776.37002 3695 3695 1209684727.759 3696 3695 2285899.092332 3697 3695 54860644.00101 3698 3695 128167058.7484 3708 3695 -4571798.18244 3709 3695 -27430322.01402 3710 3695 114598543.8875 3711 3695 -27030536.34739 3712 3695 15223841.56225 3713 3695 -16689642.3626 3792 3695 80261824.7461 3793 3695 -6857580.506883 3794 3695 -101938662.0149 3795 3695 26537352.8999 3796 3695 19401012.48091 3797 3695 -57405640.83529 3804 3695 2285899.092361 3805 3695 -27430322.01402 3806 3695 -242725472.4512 3807 3695 571474.773379 3808 3695 78838424.88527 3809 3695 -190201211.678 3819 3695 -82547723.83843 3820 3695 -6857580.506883 3821 3695 -113395588.2476 3822 3695 -27108827.67327 3823 3695 20086776.37002 3824 3695 -61172794.84886 3696 3696 1126552465.849 3697 3696 1.227855682373e-05 3698 3696 9143596.364805 3699 3696 141293458.9169 3700 3696 -4.947185516357e-06 3701 3696 2285899.092331 3708 3696 -89019318.86449 3709 3696 -62499999.98974 3710 3696 24744637.25504 3711 3696 -218486531.0803 3712 3696 2.98023223877e-06 3713 3696 -4571798.18244 3714 3696 -90373702.5448 3715 3696 62499999.98974 3716 3696 -26687654.40317 3792 3696 -26783317.53868 3793 3696 15625000.00513 3794 3696 13679279.97901 3795 3696 -103592244.5474 3796 3696 1.892447471619e-06 3797 3696 80604706.69032 3798 3696 -42555886.98831 3799 3696 -15625000.00514 3800 3696 26537352.8999 3804 3696 16426910.05153 3805 3696 4.485249519348e-06 3806 3696 571474.7733669 3807 3696 77208121.14848 3808 3696 3.09944152832e-06 3809 3696 2285899.092361 3810 3696 -48017751.39621 3811 3696 -8.776783943176e-06 3812 3696 571474.7733788 3819 3696 -27518808.45327 3820 3696 -15625000.00513 3821 3696 -14250754.75238 3822 3696 -107888591.8846 3823 3696 1.713633537292e-06 3824 3696 -82890605.78265 3825 3696 -43968569.74338 3826 3696 15625000.00513 3827 3696 -27108827.67327 3697 3697 976546647.911 3698 3697 -109721288.002 3699 3697 -4.738569259644e-06 3700 3697 -96206292.73656 3701 3697 54860644.00101 3708 3697 -62499999.98974 3709 3697 -70268591.613 3710 3697 12480786.00715 3711 3697 4.291534423828e-06 3712 3697 56514675.03912 3713 3697 -27430322.01402 3714 3697 62499999.98974 3715 3697 -71622975.29333 3716 3697 14949536.00687 3792 3697 15625000.00513 3793 3697 -22095635.7235 3794 3697 -12543431.97403 3795 3697 -9.983777999878e-07 3796 3697 -34841942.9836 3797 3697 -6857580.506883 3798 3697 -15625000.00514 3799 3697 -37868205.17313 3800 3697 19401012.48091 3804 3697 5.781650543213e-06 3805 3697 -42948027.89108 3806 3697 -51682408.42662 3807 3697 3.09944152832e-06 3808 3697 39706666.64553 3809 3697 -27430322.01402 3810 3697 -7.04824924469e-06 3811 3697 -107392689.3388 3812 3697 79112730.44064 3819 3697 -15625000.00513 3820 3697 -22831126.63809 3821 3697 -13229195.86314 3822 3697 1.668930053711e-06 3823 3697 -39138290.32084 3824 3697 -6857580.506883 3825 3697 15625000.00513 3826 3697 -39280887.92821 3827 3697 20086776.37002 3698 3698 1209684727.759 3699 3698 2285899.092332 3700 3698 54860644.00101 3701 3698 128167058.7484 3708 3698 24401755.31083 3709 3698 12206480.45177 3710 3698 -13077952.54839 3711 3698 -4571798.18244 3712 3698 -27430322.01402 3713 3698 114598543.8875 3714 3698 -27030536.34739 3715 3698 15223841.56225 3716 3698 -16689642.3626 3792 3698 13679279.97901 3793 3698 -12543431.97403 3794 3698 -15345455.6363 3795 3698 80261824.7461 3796 3698 -6857580.506883 3797 3698 -101938662.0149 3798 3698 26537352.8999 3799 3698 19401012.48091 3800 3698 -57405640.83529 3804 3698 571474.7733671 3805 3698 -51408102.87125 3806 3698 -18348781.1507 3807 3698 2285899.092361 3808 3698 -27430322.01402 3809 3698 -242725472.4512 3810 3698 571474.773379 3811 3698 78838424.88527 3812 3698 -190201211.678 3819 3698 -14250754.75238 3820 3698 -13229195.86314 3821 3698 -17306764.74188 3822 3698 -82547723.83843 3823 3698 -6857580.506883 3824 3698 -113395588.2476 3825 3698 -27108827.67327 3826 3698 20086776.37002 3827 3698 -61172794.84886 3699 3699 1126552465.849 3700 3699 1.227855682373e-05 3701 3699 9143596.364805 3702 3699 141293458.9169 3703 3699 -4.947185516357e-06 3704 3699 2285899.092331 3711 3699 -89019318.86449 3712 3699 -62499999.98974 3713 3699 24744637.25504 3714 3699 -218486531.0803 3715 3699 2.98023223877e-06 3716 3699 -4571798.18244 3717 3699 -90373702.5448 3718 3699 62499999.98974 3719 3699 -26687654.40317 3795 3699 -26783317.53868 3796 3699 15625000.00513 3797 3699 13679279.97901 3798 3699 -103592244.5474 3799 3699 1.892447471619e-06 3800 3699 80604706.69032 3801 3699 -42555886.98831 3802 3699 -15625000.00514 3803 3699 26537352.8999 3807 3699 16426910.05153 3808 3699 4.485249519348e-06 3809 3699 571474.7733669 3810 3699 77208121.14848 3811 3699 3.09944152832e-06 3812 3699 2285899.092361 3813 3699 -48017751.39621 3814 3699 -8.776783943176e-06 3815 3699 571474.7733788 3822 3699 -27518808.45327 3823 3699 -15625000.00513 3824 3699 -14250754.75238 3825 3699 -107888591.8846 3826 3699 1.713633537292e-06 3827 3699 -82890605.78265 3828 3699 -43968569.74338 3829 3699 15625000.00513 3830 3699 -27108827.67327 3700 3700 976546647.911 3701 3700 -109721288.002 3702 3700 -4.738569259644e-06 3703 3700 -96206292.73656 3704 3700 54860644.00101 3711 3700 -62499999.98974 3712 3700 -70268591.613 3713 3700 12480786.00715 3714 3700 4.291534423828e-06 3715 3700 56514675.03912 3716 3700 -27430322.01402 3717 3700 62499999.98974 3718 3700 -71622975.29333 3719 3700 14949536.00687 3795 3700 15625000.00513 3796 3700 -22095635.7235 3797 3700 -12543431.97403 3798 3700 -9.983777999878e-07 3799 3700 -34841942.9836 3800 3700 -6857580.506883 3801 3700 -15625000.00514 3802 3700 -37868205.17313 3803 3700 19401012.48091 3807 3700 5.781650543213e-06 3808 3700 -42948027.89108 3809 3700 -51682408.42662 3810 3700 3.09944152832e-06 3811 3700 39706666.64553 3812 3700 -27430322.01402 3813 3700 -7.04824924469e-06 3814 3700 -107392689.3388 3815 3700 79112730.44064 3822 3700 -15625000.00513 3823 3700 -22831126.63809 3824 3700 -13229195.86314 3825 3700 1.668930053711e-06 3826 3700 -39138290.32084 3827 3700 -6857580.506883 3828 3700 15625000.00513 3829 3700 -39280887.92821 3830 3700 20086776.37002 3701 3701 1209684727.759 3702 3701 2285899.092332 3703 3701 54860644.00101 3704 3701 128167058.7484 3711 3701 24401755.31083 3712 3701 12206480.45177 3713 3701 -13077952.54839 3714 3701 -4571798.18244 3715 3701 -27430322.01402 3716 3701 114598543.8875 3717 3701 -27030536.34739 3718 3701 15223841.56225 3719 3701 -16689642.3626 3795 3701 13679279.97901 3796 3701 -12543431.97403 3797 3701 -15345455.6363 3798 3701 80261824.7461 3799 3701 -6857580.506883 3800 3701 -101938662.0149 3801 3701 26537352.8999 3802 3701 19401012.48091 3803 3701 -57405640.83529 3807 3701 571474.7733671 3808 3701 -51408102.87125 3809 3701 -18348781.1507 3810 3701 2285899.092361 3811 3701 -27430322.01402 3812 3701 -242725472.4512 3813 3701 571474.773379 3814 3701 78838424.88527 3815 3701 -190201211.678 3822 3701 -14250754.75238 3823 3701 -13229195.86314 3824 3701 -17306764.74188 3825 3701 -82547723.83843 3826 3701 -6857580.506883 3827 3701 -113395588.2476 3828 3701 -27108827.67327 3829 3701 20086776.37002 3830 3701 -61172794.84886 3702 3702 1206829602.888 3703 3702 62536821.50566 3704 3702 30859020.00955 3705 3702 35818303.75647 3706 3702 -62514728.59611 3707 3702 26693781.96925 3714 3702 -89019318.86449 3715 3702 -62499999.98974 3716 3702 24744637.25504 3717 3702 -218486531.0803 3718 3702 2.98023223877e-06 3719 3702 -4571798.18244 3720 3702 -90373702.5448 3721 3702 62499999.98974 3722 3702 -26687654.40317 3798 3702 -26783317.53868 3799 3702 15625000.00513 3800 3702 13679279.97901 3801 3702 -119411159.8837 3802 3702 -15630523.23252 3803 3702 75186254.88774 3810 3702 16426910.05153 3811 3702 4.485249519348e-06 3812 3702 571474.7733669 3813 3702 109890622.1535 3814 3702 15634205.38412 3815 3702 7712478.882864 3816 3702 -60563825.20041 3817 3702 -15628682.15673 3818 3702 27115214.46942 3825 3702 -27518808.45327 3826 3702 -15625000.00513 3827 3702 -14250754.75238 3828 3702 -107888591.8846 3829 3702 1.713633537292e-06 3830 3702 -82890605.78265 3831 3702 -43968569.74338 3832 3702 15625000.00513 3833 3702 -27108827.67327 3703 3703 1038056487.373 3704 3703 -85034336.6799 3705 3703 -62522092.89929 3706 3703 -182960177.6074 3707 3703 45539436.5079 3714 3703 -62499999.98974 3715 3703 -70268591.613 3716 3703 12480786.00715 3717 3703 4.291534423828e-06 3718 3703 56514675.03912 3719 3703 -27430322.01402 3720 3703 62499999.98974 3721 3703 -71622975.29333 3722 3703 14949536.00687 3798 3703 15625000.00513 3799 3703 -22095635.7235 3800 3703 -12543431.97403 3801 3703 -15628682.15673 3802 3703 -45961669.68301 3803 3703 8705839.731277 3810 3703 5.781650543213e-06 3811 3703 -42948027.89108 3812 3703 -51682408.42662 3813 3703 15634205.38412 3814 3703 67697343.25408 3815 3703 -21260405.06448 3816 3703 -15630523.23252 3817 3703 -115258445.5683 3818 3703 76792017.46155 3825 3703 -15625000.00513 3826 3703 -22831126.63809 3827 3703 -13229195.86314 3828 3703 1.668930053711e-06 3829 3703 -39138290.32084 3830 3703 -6857580.506883 3831 3703 15625000.00513 3832 3703 -39280887.92821 3833 3703 20086776.37002 3704 3704 1199251971.759 3705 3704 27039727.69652 3706 3704 53222308.42241 3707 3704 71236333.03937 3714 3704 24401755.31083 3715 3704 12206480.45177 3716 3704 -13077952.54839 3717 3704 -4571798.18244 3718 3704 -27430322.01402 3719 3704 114598543.8875 3720 3704 -27030536.34739 3721 3704 15223841.56225 3722 3704 -16689642.3626 3798 3704 13679279.97901 3799 3704 -12543431.97403 3800 3704 -15345455.6363 3801 3704 74842632.24213 3802 3704 6787043.609902 3803 3704 -88003520.09856 3810 3704 571474.7733671 3811 3704 -51408102.87125 3812 3704 -18348781.1507 3813 3704 7717283.578221 3814 3704 -21256561.34093 3815 3704 -211698416.8248 3816 3704 27118407.8675 3817 3704 78438470.16785 3818 3704 -167573319.7819 3825 3704 -14250754.75238 3826 3704 -13229195.86314 3827 3704 -17306764.74188 3828 3704 -82547723.83843 3829 3704 -6857580.506883 3830 3704 -113395588.2476 3831 3704 -27108827.67327 3832 3704 20086776.37002 3833 3704 -61172794.84886 3705 3705 713665840.9484 3706 3705 62499999.98975 3707 3705 26303045.6496 3717 3705 -89019318.86449 3718 3705 -62499999.98974 3719 3705 24744637.25504 3720 3705 -333091779.4995 3721 3705 -62514728.59611 3722 3705 -26296716.12064 3723 3705 15411687.79098 3724 3705 50014728.59815 3725 3705 -21264808.11782 3801 3705 789479.8663111 3802 3705 18755523.23355 3803 3705 16762853.88037 3813 3705 -11151323.14121 3814 3705 -15630523.23252 3815 3705 -13684113.02055 3816 3705 50455843.08525 3817 3705 15625000.00514 3818 3705 23750485.45243 3828 3705 -27518808.45327 3829 3705 -15625000.00513 3830 3705 -14250754.75238 3831 3705 -136601119.3265 3832 3705 -15628682.15673 3833 3705 -88333821.76341 3834 3705 -31442472.41633 3835 3705 12503682.1557 3836 3705 -21464859.02542 3706 3706 619895634.403 3707 3706 -68588052.25144 3717 3706 -62499999.98974 3718 3706 -70268591.613 3719 3706 12480786.00715 3720 3706 -62522092.89929 3721 3706 -39293818.84171 3722 3706 -37998394.10174 3723 3706 75022092.89723 3724 3706 15411687.79098 3725 3706 23871774.7618 3801 3706 12503682.1557 3802 3706 789479.8663122 3803 3706 -8940185.539224 3813 3706 -15628682.15672 3814 3706 -65845943.5091 3815 3706 -52101581.10086 3816 3706 15625000.00514 3817 3706 27013291.43733 3818 3706 -3407345.083582 3828 3706 -15625000.00513 3829 3706 -22831126.63809 3830 3706 -13229195.86314 3831 3706 -15630523.23252 3832 3706 -63151629.12586 3833 3706 -25854695.88552 3834 3706 18755523.23355 3835 3706 -31442472.41633 3836 3706 25757502.85539 3707 3707 781376197.173 3717 3707 24401755.31083 3718 3707 12206480.45177 3719 3707 -13077952.54839 3720 3707 -26293551.35616 3721 3707 -30589746.95883 3722 3707 33460212.57848 3723 3707 -31897212.17672 3724 3707 15914516.50787 3725 3707 41097834.10927 3801 3707 11175235.92025 3802 3707 -13410278.30884 3803 3707 2105279.643495 3813 3707 -13682502.0067 3814 3707 -53748034.02747 3815 3707 -35806647.62401 3816 3707 -8884805.348678 3817 3707 -29515355.2492 3818 3707 -145884263.2499 3828 3707 -14250754.75238 3829 3707 -13229195.86314 3830 3707 -17306764.74188 3831 3707 -87990199.11779 3832 3707 -23932056.04702 3833 3707 -133843411.9462 3834 3707 -32197288.53812 3835 3707 17171668.57026 3836 3707 -83846593.11021 3708 3708 1126552465.849 3709 3708 1.227855682373e-05 3710 3708 9143596.364805 3711 3708 141293458.9169 3712 3708 -4.947185516357e-06 3713 3708 2285899.092331 3726 3708 -218486531.0803 3727 3708 2.98023223877e-06 3728 3708 -4571798.18244 3729 3708 -90373702.5448 3730 3708 62499999.98974 3731 3708 -26687654.40317 3804 3708 -103592244.5474 3805 3708 1.892447471619e-06 3806 3708 80604706.69032 3807 3708 -42555886.98831 3808 3708 -15625000.00514 3809 3708 26537352.8999 3819 3708 77208121.14848 3820 3708 3.09944152832e-06 3821 3708 2285899.092361 3822 3708 -48017751.39621 3823 3708 -8.776783943176e-06 3824 3708 571474.7733788 3837 3708 -107888591.8846 3838 3708 1.713633537292e-06 3839 3708 -82890605.78265 3840 3708 -43968569.74338 3841 3708 15625000.00513 3842 3708 -27108827.67327 3709 3709 976546647.911 3710 3709 -109721288.002 3711 3709 -4.738569259644e-06 3712 3709 -96206292.73656 3713 3709 54860644.00101 3726 3709 4.291534423828e-06 3727 3709 56514675.03912 3728 3709 -27430322.01402 3729 3709 62499999.98974 3730 3709 -71622975.29333 3731 3709 14949536.00687 3804 3709 -9.983777999878e-07 3805 3709 -34841942.9836 3806 3709 -6857580.506883 3807 3709 -15625000.00514 3808 3709 -37868205.17313 3809 3709 19401012.48091 3819 3709 3.09944152832e-06 3820 3709 39706666.64553 3821 3709 -27430322.01402 3822 3709 -7.04824924469e-06 3823 3709 -107392689.3388 3824 3709 79112730.44064 3837 3709 1.668930053711e-06 3838 3709 -39138290.32084 3839 3709 -6857580.506883 3840 3709 15625000.00513 3841 3709 -39280887.92821 3842 3709 20086776.37002 3710 3710 1209684727.759 3711 3710 2285899.092332 3712 3710 54860644.00101 3713 3710 128167058.7484 3726 3710 -4571798.18244 3727 3710 -27430322.01402 3728 3710 114598543.8875 3729 3710 -27030536.34739 3730 3710 15223841.56225 3731 3710 -16689642.3626 3804 3710 80261824.7461 3805 3710 -6857580.506883 3806 3710 -101938662.0149 3807 3710 26537352.8999 3808 3710 19401012.48091 3809 3710 -57405640.83529 3819 3710 2285899.092361 3820 3710 -27430322.01402 3821 3710 -242725472.4512 3822 3710 571474.773379 3823 3710 78838424.88527 3824 3710 -190201211.678 3837 3710 -82547723.83843 3838 3710 -6857580.506883 3839 3710 -113395588.2476 3840 3710 -27108827.67327 3841 3710 20086776.37002 3842 3710 -61172794.84886 3711 3711 1126552465.849 3712 3711 1.227855682373e-05 3713 3711 9143596.364805 3714 3711 141293458.9169 3715 3711 -4.947185516357e-06 3716 3711 2285899.092331 3726 3711 -89019318.86449 3727 3711 -62499999.98974 3728 3711 24744637.25504 3729 3711 -218486531.0803 3730 3711 2.98023223877e-06 3731 3711 -4571798.18244 3732 3711 -90373702.5448 3733 3711 62499999.98974 3734 3711 -26687654.40317 3804 3711 -26783317.53868 3805 3711 15625000.00513 3806 3711 13679279.97901 3807 3711 -103592244.5474 3808 3711 1.892447471619e-06 3809 3711 80604706.69032 3810 3711 -42555886.98831 3811 3711 -15625000.00514 3812 3711 26537352.8999 3819 3711 16426910.05153 3820 3711 4.485249519348e-06 3821 3711 571474.7733669 3822 3711 77208121.14848 3823 3711 3.09944152832e-06 3824 3711 2285899.092361 3825 3711 -48017751.39621 3826 3711 -8.776783943176e-06 3827 3711 571474.7733788 3837 3711 -27518808.45327 3838 3711 -15625000.00513 3839 3711 -14250754.75238 3840 3711 -107888591.8846 3841 3711 1.713633537292e-06 3842 3711 -82890605.78265 3843 3711 -43968569.74338 3844 3711 15625000.00513 3845 3711 -27108827.67327 3712 3712 976546647.911 3713 3712 -109721288.002 3714 3712 -4.738569259644e-06 3715 3712 -96206292.73656 3716 3712 54860644.00101 3726 3712 -62499999.98974 3727 3712 -70268591.613 3728 3712 12480786.00715 3729 3712 4.291534423828e-06 3730 3712 56514675.03912 3731 3712 -27430322.01402 3732 3712 62499999.98974 3733 3712 -71622975.29333 3734 3712 14949536.00687 3804 3712 15625000.00513 3805 3712 -22095635.7235 3806 3712 -12543431.97403 3807 3712 -9.983777999878e-07 3808 3712 -34841942.9836 3809 3712 -6857580.506883 3810 3712 -15625000.00514 3811 3712 -37868205.17313 3812 3712 19401012.48091 3819 3712 5.781650543213e-06 3820 3712 -42948027.89108 3821 3712 -51682408.42662 3822 3712 3.09944152832e-06 3823 3712 39706666.64553 3824 3712 -27430322.01402 3825 3712 -7.04824924469e-06 3826 3712 -107392689.3388 3827 3712 79112730.44064 3837 3712 -15625000.00513 3838 3712 -22831126.63809 3839 3712 -13229195.86314 3840 3712 1.668930053711e-06 3841 3712 -39138290.32084 3842 3712 -6857580.506883 3843 3712 15625000.00513 3844 3712 -39280887.92821 3845 3712 20086776.37002 3713 3713 1209684727.759 3714 3713 2285899.092332 3715 3713 54860644.00101 3716 3713 128167058.7484 3726 3713 24401755.31083 3727 3713 12206480.45177 3728 3713 -13077952.54839 3729 3713 -4571798.18244 3730 3713 -27430322.01402 3731 3713 114598543.8875 3732 3713 -27030536.34739 3733 3713 15223841.56225 3734 3713 -16689642.3626 3804 3713 13679279.97901 3805 3713 -12543431.97403 3806 3713 -15345455.6363 3807 3713 80261824.7461 3808 3713 -6857580.506883 3809 3713 -101938662.0149 3810 3713 26537352.8999 3811 3713 19401012.48091 3812 3713 -57405640.83529 3819 3713 571474.7733671 3820 3713 -51408102.87125 3821 3713 -18348781.1507 3822 3713 2285899.092361 3823 3713 -27430322.01402 3824 3713 -242725472.4512 3825 3713 571474.773379 3826 3713 78838424.88527 3827 3713 -190201211.678 3837 3713 -14250754.75238 3838 3713 -13229195.86314 3839 3713 -17306764.74188 3840 3713 -82547723.83843 3841 3713 -6857580.506883 3842 3713 -113395588.2476 3843 3713 -27108827.67327 3844 3713 20086776.37002 3845 3713 -61172794.84886 3714 3714 1126552465.849 3715 3714 1.227855682373e-05 3716 3714 9143596.364805 3717 3714 141293458.9169 3718 3714 -4.947185516357e-06 3719 3714 2285899.092331 3729 3714 -89019318.86449 3730 3714 -62499999.98974 3731 3714 24744637.25504 3732 3714 -218486531.0803 3733 3714 2.98023223877e-06 3734 3714 -4571798.18244 3735 3714 -90373702.5448 3736 3714 62499999.98974 3737 3714 -26687654.40317 3807 3714 -26783317.53868 3808 3714 15625000.00513 3809 3714 13679279.97901 3810 3714 -103592244.5474 3811 3714 1.892447471619e-06 3812 3714 80604706.69032 3813 3714 -42555886.98831 3814 3714 -15625000.00514 3815 3714 26537352.8999 3822 3714 16426910.05153 3823 3714 4.485249519348e-06 3824 3714 571474.7733669 3825 3714 77208121.14848 3826 3714 3.09944152832e-06 3827 3714 2285899.092361 3828 3714 -48017751.39621 3829 3714 -8.776783943176e-06 3830 3714 571474.7733788 3840 3714 -27518808.45327 3841 3714 -15625000.00513 3842 3714 -14250754.75238 3843 3714 -107888591.8846 3844 3714 1.713633537292e-06 3845 3714 -82890605.78265 3846 3714 -43968569.74338 3847 3714 15625000.00513 3848 3714 -27108827.67327 3715 3715 976546647.911 3716 3715 -109721288.002 3717 3715 -4.738569259644e-06 3718 3715 -96206292.73656 3719 3715 54860644.00101 3729 3715 -62499999.98974 3730 3715 -70268591.613 3731 3715 12480786.00715 3732 3715 4.291534423828e-06 3733 3715 56514675.03912 3734 3715 -27430322.01402 3735 3715 62499999.98974 3736 3715 -71622975.29333 3737 3715 14949536.00687 3807 3715 15625000.00513 3808 3715 -22095635.7235 3809 3715 -12543431.97403 3810 3715 -9.983777999878e-07 3811 3715 -34841942.9836 3812 3715 -6857580.506883 3813 3715 -15625000.00514 3814 3715 -37868205.17313 3815 3715 19401012.48091 3822 3715 5.781650543213e-06 3823 3715 -42948027.89108 3824 3715 -51682408.42662 3825 3715 3.09944152832e-06 3826 3715 39706666.64553 3827 3715 -27430322.01402 3828 3715 -7.04824924469e-06 3829 3715 -107392689.3388 3830 3715 79112730.44064 3840 3715 -15625000.00513 3841 3715 -22831126.63809 3842 3715 -13229195.86314 3843 3715 1.668930053711e-06 3844 3715 -39138290.32084 3845 3715 -6857580.506883 3846 3715 15625000.00513 3847 3715 -39280887.92821 3848 3715 20086776.37002 3716 3716 1209684727.759 3717 3716 2285899.092332 3718 3716 54860644.00101 3719 3716 128167058.7484 3729 3716 24401755.31083 3730 3716 12206480.45177 3731 3716 -13077952.54839 3732 3716 -4571798.18244 3733 3716 -27430322.01402 3734 3716 114598543.8875 3735 3716 -27030536.34739 3736 3716 15223841.56225 3737 3716 -16689642.3626 3807 3716 13679279.97901 3808 3716 -12543431.97403 3809 3716 -15345455.6363 3810 3716 80261824.7461 3811 3716 -6857580.506883 3812 3716 -101938662.0149 3813 3716 26537352.8999 3814 3716 19401012.48091 3815 3716 -57405640.83529 3822 3716 571474.7733671 3823 3716 -51408102.87125 3824 3716 -18348781.1507 3825 3716 2285899.092361 3826 3716 -27430322.01402 3827 3716 -242725472.4512 3828 3716 571474.773379 3829 3716 78838424.88527 3830 3716 -190201211.678 3840 3716 -14250754.75238 3841 3716 -13229195.86314 3842 3716 -17306764.74188 3843 3716 -82547723.83843 3844 3716 -6857580.506883 3845 3716 -113395588.2476 3846 3716 -27108827.67327 3847 3716 20086776.37002 3848 3716 -61172794.84886 3717 3717 1126552465.849 3718 3717 1.227855682373e-05 3719 3717 9143596.364805 3720 3717 141293458.9169 3721 3717 -4.947185516357e-06 3722 3717 2285899.092331 3732 3717 -89019318.86449 3733 3717 -62499999.98974 3734 3717 24744637.25504 3735 3717 -218486531.0803 3736 3717 2.98023223877e-06 3737 3717 -4571798.18244 3738 3717 -90373702.5448 3739 3717 62499999.98974 3740 3717 -26687654.40317 3810 3717 -26783317.53868 3811 3717 15625000.00513 3812 3717 13679279.97901 3813 3717 -103592244.5474 3814 3717 1.892447471619e-06 3815 3717 80604706.69032 3816 3717 -42555886.98831 3817 3717 -15625000.00514 3818 3717 26537352.8999 3825 3717 16426910.05153 3826 3717 4.485249519348e-06 3827 3717 571474.7733669 3828 3717 77208121.14848 3829 3717 3.09944152832e-06 3830 3717 2285899.092361 3831 3717 -48017751.39621 3832 3717 -8.776783943176e-06 3833 3717 571474.7733788 3843 3717 -27518808.45327 3844 3717 -15625000.00513 3845 3717 -14250754.75238 3846 3717 -107888591.8846 3847 3717 1.713633537292e-06 3848 3717 -82890605.78265 3849 3717 -43968569.74338 3850 3717 15625000.00513 3851 3717 -27108827.67327 3718 3718 976546647.911 3719 3718 -109721288.002 3720 3718 -4.738569259644e-06 3721 3718 -96206292.73656 3722 3718 54860644.00101 3732 3718 -62499999.98974 3733 3718 -70268591.613 3734 3718 12480786.00715 3735 3718 4.291534423828e-06 3736 3718 56514675.03912 3737 3718 -27430322.01402 3738 3718 62499999.98974 3739 3718 -71622975.29333 3740 3718 14949536.00687 3810 3718 15625000.00513 3811 3718 -22095635.7235 3812 3718 -12543431.97403 3813 3718 -9.983777999878e-07 3814 3718 -34841942.9836 3815 3718 -6857580.506883 3816 3718 -15625000.00514 3817 3718 -37868205.17313 3818 3718 19401012.48091 3825 3718 5.781650543213e-06 3826 3718 -42948027.89108 3827 3718 -51682408.42662 3828 3718 3.09944152832e-06 3829 3718 39706666.64553 3830 3718 -27430322.01402 3831 3718 -7.04824924469e-06 3832 3718 -107392689.3388 3833 3718 79112730.44064 3843 3718 -15625000.00513 3844 3718 -22831126.63809 3845 3718 -13229195.86314 3846 3718 1.668930053711e-06 3847 3718 -39138290.32084 3848 3718 -6857580.506883 3849 3718 15625000.00513 3850 3718 -39280887.92821 3851 3718 20086776.37002 3719 3719 1209684727.759 3720 3719 2285899.092332 3721 3719 54860644.00101 3722 3719 128167058.7484 3732 3719 24401755.31083 3733 3719 12206480.45177 3734 3719 -13077952.54839 3735 3719 -4571798.18244 3736 3719 -27430322.01402 3737 3719 114598543.8875 3738 3719 -27030536.34739 3739 3719 15223841.56225 3740 3719 -16689642.3626 3810 3719 13679279.97901 3811 3719 -12543431.97403 3812 3719 -15345455.6363 3813 3719 80261824.7461 3814 3719 -6857580.506883 3815 3719 -101938662.0149 3816 3719 26537352.8999 3817 3719 19401012.48091 3818 3719 -57405640.83529 3825 3719 571474.7733671 3826 3719 -51408102.87125 3827 3719 -18348781.1507 3828 3719 2285899.092361 3829 3719 -27430322.01402 3830 3719 -242725472.4512 3831 3719 571474.773379 3832 3719 78838424.88527 3833 3719 -190201211.678 3843 3719 -14250754.75238 3844 3719 -13229195.86314 3845 3719 -17306764.74188 3846 3719 -82547723.83843 3847 3719 -6857580.506883 3848 3719 -113395588.2476 3849 3719 -27108827.67327 3850 3719 20086776.37002 3851 3719 -61172794.84886 3720 3720 1206829602.888 3721 3720 62536821.50566 3722 3720 30859020.00955 3723 3720 35818303.75647 3724 3720 -62514728.59611 3725 3720 26693781.96925 3735 3720 -89019318.86449 3736 3720 -62499999.98974 3737 3720 24744637.25504 3738 3720 -218486531.0803 3739 3720 2.98023223877e-06 3740 3720 -4571798.18244 3741 3720 -90373702.5448 3742 3720 62499999.98974 3743 3720 -26687654.40317 3813 3720 -26783317.53868 3814 3720 15625000.00513 3815 3720 13679279.97901 3816 3720 -119411159.8837 3817 3720 -15630523.23252 3818 3720 75186254.88774 3828 3720 16426910.05153 3829 3720 4.485249519348e-06 3830 3720 571474.7733669 3831 3720 109890622.1535 3832 3720 15634205.38412 3833 3720 7712478.882864 3834 3720 -60563825.20041 3835 3720 -15628682.15673 3836 3720 27115214.46942 3846 3720 -27518808.45327 3847 3720 -15625000.00513 3848 3720 -14250754.75238 3849 3720 -107888591.8846 3850 3720 1.713633537292e-06 3851 3720 -82890605.78265 3852 3720 -43968569.74338 3853 3720 15625000.00513 3854 3720 -27108827.67327 3721 3721 1038056487.373 3722 3721 -85034336.6799 3723 3721 -62522092.89929 3724 3721 -182960177.6074 3725 3721 45539436.5079 3735 3721 -62499999.98974 3736 3721 -70268591.613 3737 3721 12480786.00715 3738 3721 4.291534423828e-06 3739 3721 56514675.03912 3740 3721 -27430322.01402 3741 3721 62499999.98974 3742 3721 -71622975.29333 3743 3721 14949536.00687 3813 3721 15625000.00513 3814 3721 -22095635.7235 3815 3721 -12543431.97403 3816 3721 -15628682.15673 3817 3721 -45961669.68301 3818 3721 8705839.731277 3828 3721 5.781650543213e-06 3829 3721 -42948027.89108 3830 3721 -51682408.42662 3831 3721 15634205.38412 3832 3721 67697343.25408 3833 3721 -21260405.06448 3834 3721 -15630523.23252 3835 3721 -115258445.5683 3836 3721 76792017.46155 3846 3721 -15625000.00513 3847 3721 -22831126.63809 3848 3721 -13229195.86314 3849 3721 1.668930053711e-06 3850 3721 -39138290.32084 3851 3721 -6857580.506883 3852 3721 15625000.00513 3853 3721 -39280887.92821 3854 3721 20086776.37002 3722 3722 1199251971.759 3723 3722 27039727.69652 3724 3722 53222308.42241 3725 3722 71236333.03937 3735 3722 24401755.31083 3736 3722 12206480.45177 3737 3722 -13077952.54839 3738 3722 -4571798.18244 3739 3722 -27430322.01402 3740 3722 114598543.8875 3741 3722 -27030536.34739 3742 3722 15223841.56225 3743 3722 -16689642.3626 3813 3722 13679279.97901 3814 3722 -12543431.97403 3815 3722 -15345455.6363 3816 3722 74842632.24213 3817 3722 6787043.609902 3818 3722 -88003520.09856 3828 3722 571474.7733671 3829 3722 -51408102.87125 3830 3722 -18348781.1507 3831 3722 7717283.578221 3832 3722 -21256561.34093 3833 3722 -211698416.8248 3834 3722 27118407.8675 3835 3722 78438470.16785 3836 3722 -167573319.7819 3846 3722 -14250754.75238 3847 3722 -13229195.86314 3848 3722 -17306764.74188 3849 3722 -82547723.83843 3850 3722 -6857580.506883 3851 3722 -113395588.2476 3852 3722 -27108827.67327 3853 3722 20086776.37002 3854 3722 -61172794.84886 3723 3723 706551906.5059 3724 3723 62417112.17672 3725 3723 -14282093.03959 3738 3723 -89019318.86449 3739 3723 -62499999.98974 3740 3723 24744637.25504 3741 3723 -332076358.0832 3742 3723 -62445400.64684 3743 3723 -803160.0738334 3744 3723 26319971.87446 3745 3723 50028288.46192 3746 3723 -2745383.255368 3816 3723 789479.8663111 3817 3723 18755523.23355 3818 3723 16762853.88037 3831 3723 -11151323.14121 3832 3723 -15630523.23252 3833 3723 -13684113.02055 3834 3723 46470413.46474 3835 3723 16235473.27994 3836 3723 13676114.56996 3849 3723 -27518808.45327 3850 3723 -15625000.00513 3851 3723 -14250754.75238 3852 3723 -132948615.2463 3853 3723 -16242128.17313 3854 3723 -84423084.10332 3855 3723 -16459257.1867 3856 3723 12506654.8973 3857 3723 -18030325.78853 3724 3724 612861139.5605 3725 3724 -67677862.13804 3738 3724 -62499999.98974 3739 3724 -70268591.613 3740 3724 12480786.00715 3741 3724 -62459544.88191 3742 3724 -38277258.88191 3743 3724 -18152324.58222 3744 3724 75042432.69288 3745 3724 26239393.73097 3746 3724 4213360.948835 3816 3724 12503682.1557 3817 3724 789479.8663122 3818 3724 -8940185.539224 3831 3724 -15628682.15672 3832 3724 -65845943.5091 3833 3724 -52101581.10086 3834 3724 16235473.27994 3835 3724 22268881.83647 3836 3724 -3019008.474344 3849 3724 -15625000.00513 3850 3724 -22831126.63809 3851 3724 -13229195.86314 3852 3724 -16245455.61973 3853 3724 -59216101.33218 3854 3724 -22175016.50334 3855 3724 18759982.34595 3856 3724 -15983300.91978 3857 3724 21161428.32241 3725 3725 762630407.7355 3738 3725 24401755.31083 3739 3725 12206480.45177 3740 3725 -13077952.54839 3741 3725 -8345786.630533 3742 3725 -17054481.01644 3743 3725 35862722.46929 3744 3725 -4118074.883052 3745 3725 3115829.182002 3746 3725 70267169.80871 3816 3725 11175235.92025 3817 3725 -13410278.30884 3818 3725 2105279.643495 3831 3725 -13682502.0067 3832 3725 -53748034.02747 3833 3725 -35806647.62401 3834 3725 -19983141.87505 3835 3725 -29394519.18652 3836 3725 -159353009.1983 3849 3725 -14250754.75238 3850 3725 -13229195.86314 3851 3725 -17306764.74188 3852 3725 -86137312.42499 3853 3725 -21622642.20025 3854 3725 -120786511.1716 3855 3725 -27045488.6828 3856 3725 13949330.84847 3857 3725 -44367308.76476 3726 3726 1126552465.849 3727 3726 1.227855682373e-05 3728 3726 9143596.364805 3729 3726 141293458.9169 3730 3726 -4.947185516357e-06 3731 3726 2285899.092331 3747 3726 -218486531.0803 3748 3726 2.98023223877e-06 3749 3726 -4571798.18244 3750 3726 -90373702.5448 3751 3726 62499999.98974 3752 3726 -26687654.40317 3819 3726 -103592244.5474 3820 3726 1.892447471619e-06 3821 3726 80604706.69032 3822 3726 -42555886.98831 3823 3726 -15625000.00514 3824 3726 26537352.8999 3837 3726 77208121.14848 3838 3726 3.09944152832e-06 3839 3726 2285899.092361 3840 3726 -48017751.39621 3841 3726 -8.776783943176e-06 3842 3726 571474.7733788 3858 3726 -107888591.8846 3859 3726 1.713633537292e-06 3860 3726 -82890605.78265 3861 3726 -43968569.74338 3862 3726 15625000.00513 3863 3726 -27108827.67327 3727 3727 976546647.911 3728 3727 -109721288.002 3729 3727 -4.738569259644e-06 3730 3727 -96206292.73656 3731 3727 54860644.00101 3747 3727 4.291534423828e-06 3748 3727 56514675.03912 3749 3727 -27430322.01402 3750 3727 62499999.98974 3751 3727 -71622975.29333 3752 3727 14949536.00687 3819 3727 -9.983777999878e-07 3820 3727 -34841942.9836 3821 3727 -6857580.506883 3822 3727 -15625000.00514 3823 3727 -37868205.17313 3824 3727 19401012.48091 3837 3727 3.09944152832e-06 3838 3727 39706666.64553 3839 3727 -27430322.01402 3840 3727 -7.04824924469e-06 3841 3727 -107392689.3388 3842 3727 79112730.44064 3858 3727 1.668930053711e-06 3859 3727 -39138290.32084 3860 3727 -6857580.506883 3861 3727 15625000.00513 3862 3727 -39280887.92821 3863 3727 20086776.37002 3728 3728 1209684727.759 3729 3728 2285899.092332 3730 3728 54860644.00101 3731 3728 128167058.7484 3747 3728 -4571798.18244 3748 3728 -27430322.01402 3749 3728 114598543.8875 3750 3728 -27030536.34739 3751 3728 15223841.56225 3752 3728 -16689642.3626 3819 3728 80261824.7461 3820 3728 -6857580.506883 3821 3728 -101938662.0149 3822 3728 26537352.8999 3823 3728 19401012.48091 3824 3728 -57405640.83529 3837 3728 2285899.092361 3838 3728 -27430322.01402 3839 3728 -242725472.4512 3840 3728 571474.773379 3841 3728 78838424.88527 3842 3728 -190201211.678 3858 3728 -82547723.83843 3859 3728 -6857580.506883 3860 3728 -113395588.2476 3861 3728 -27108827.67327 3862 3728 20086776.37002 3863 3728 -61172794.84886 3729 3729 1126552465.849 3730 3729 1.227855682373e-05 3731 3729 9143596.364805 3732 3729 141293458.9169 3733 3729 -4.947185516357e-06 3734 3729 2285899.092331 3747 3729 -89019318.86449 3748 3729 -62499999.98974 3749 3729 24744637.25504 3750 3729 -218486531.0803 3751 3729 2.98023223877e-06 3752 3729 -4571798.18244 3753 3729 -90373702.5448 3754 3729 62499999.98974 3755 3729 -26687654.40317 3819 3729 -26783317.53868 3820 3729 15625000.00513 3821 3729 13679279.97901 3822 3729 -103592244.5474 3823 3729 1.892447471619e-06 3824 3729 80604706.69032 3825 3729 -42555886.98831 3826 3729 -15625000.00514 3827 3729 26537352.8999 3837 3729 16426910.05153 3838 3729 4.485249519348e-06 3839 3729 571474.7733669 3840 3729 77208121.14848 3841 3729 3.09944152832e-06 3842 3729 2285899.092361 3843 3729 -48017751.39621 3844 3729 -8.776783943176e-06 3845 3729 571474.7733788 3858 3729 -27518808.45327 3859 3729 -15625000.00513 3860 3729 -14250754.75238 3861 3729 -107888591.8846 3862 3729 1.713633537292e-06 3863 3729 -82890605.78265 3864 3729 -43968569.74338 3865 3729 15625000.00513 3866 3729 -27108827.67327 3730 3730 976546647.911 3731 3730 -109721288.002 3732 3730 -4.738569259644e-06 3733 3730 -96206292.73656 3734 3730 54860644.00101 3747 3730 -62499999.98974 3748 3730 -70268591.613 3749 3730 12480786.00715 3750 3730 4.291534423828e-06 3751 3730 56514675.03912 3752 3730 -27430322.01402 3753 3730 62499999.98974 3754 3730 -71622975.29333 3755 3730 14949536.00687 3819 3730 15625000.00513 3820 3730 -22095635.7235 3821 3730 -12543431.97403 3822 3730 -9.983777999878e-07 3823 3730 -34841942.9836 3824 3730 -6857580.506883 3825 3730 -15625000.00514 3826 3730 -37868205.17313 3827 3730 19401012.48091 3837 3730 5.781650543213e-06 3838 3730 -42948027.89108 3839 3730 -51682408.42662 3840 3730 3.09944152832e-06 3841 3730 39706666.64553 3842 3730 -27430322.01402 3843 3730 -7.04824924469e-06 3844 3730 -107392689.3388 3845 3730 79112730.44064 3858 3730 -15625000.00513 3859 3730 -22831126.63809 3860 3730 -13229195.86314 3861 3730 1.668930053711e-06 3862 3730 -39138290.32084 3863 3730 -6857580.506883 3864 3730 15625000.00513 3865 3730 -39280887.92821 3866 3730 20086776.37002 3731 3731 1209684727.759 3732 3731 2285899.092332 3733 3731 54860644.00101 3734 3731 128167058.7484 3747 3731 24401755.31083 3748 3731 12206480.45177 3749 3731 -13077952.54839 3750 3731 -4571798.18244 3751 3731 -27430322.01402 3752 3731 114598543.8875 3753 3731 -27030536.34739 3754 3731 15223841.56225 3755 3731 -16689642.3626 3819 3731 13679279.97901 3820 3731 -12543431.97403 3821 3731 -15345455.6363 3822 3731 80261824.7461 3823 3731 -6857580.506883 3824 3731 -101938662.0149 3825 3731 26537352.8999 3826 3731 19401012.48091 3827 3731 -57405640.83529 3837 3731 571474.7733671 3838 3731 -51408102.87125 3839 3731 -18348781.1507 3840 3731 2285899.092361 3841 3731 -27430322.01402 3842 3731 -242725472.4512 3843 3731 571474.773379 3844 3731 78838424.88527 3845 3731 -190201211.678 3858 3731 -14250754.75238 3859 3731 -13229195.86314 3860 3731 -17306764.74188 3861 3731 -82547723.83843 3862 3731 -6857580.506883 3863 3731 -113395588.2476 3864 3731 -27108827.67327 3865 3731 20086776.37002 3866 3731 -61172794.84886 3732 3732 1126552465.849 3733 3732 1.227855682373e-05 3734 3732 9143596.364805 3735 3732 141293458.9169 3736 3732 -4.947185516357e-06 3737 3732 2285899.092331 3750 3732 -89019318.86449 3751 3732 -62499999.98974 3752 3732 24744637.25504 3753 3732 -218486531.0803 3754 3732 2.98023223877e-06 3755 3732 -4571798.18244 3756 3732 -90373702.5448 3757 3732 62499999.98974 3758 3732 -26687654.40317 3822 3732 -26783317.53868 3823 3732 15625000.00513 3824 3732 13679279.97901 3825 3732 -103592244.5474 3826 3732 1.892447471619e-06 3827 3732 80604706.69032 3828 3732 -42555886.98831 3829 3732 -15625000.00514 3830 3732 26537352.8999 3840 3732 16426910.05153 3841 3732 4.485249519348e-06 3842 3732 571474.7733669 3843 3732 77208121.14848 3844 3732 3.09944152832e-06 3845 3732 2285899.092361 3846 3732 -48017751.39621 3847 3732 -8.776783943176e-06 3848 3732 571474.7733788 3861 3732 -27518808.45327 3862 3732 -15625000.00513 3863 3732 -14250754.75238 3864 3732 -107888591.8846 3865 3732 1.713633537292e-06 3866 3732 -82890605.78265 3867 3732 -43968569.74338 3868 3732 15625000.00513 3869 3732 -27108827.67327 3733 3733 976546647.911 3734 3733 -109721288.002 3735 3733 -4.738569259644e-06 3736 3733 -96206292.73656 3737 3733 54860644.00101 3750 3733 -62499999.98974 3751 3733 -70268591.613 3752 3733 12480786.00715 3753 3733 4.291534423828e-06 3754 3733 56514675.03912 3755 3733 -27430322.01402 3756 3733 62499999.98974 3757 3733 -71622975.29333 3758 3733 14949536.00687 3822 3733 15625000.00513 3823 3733 -22095635.7235 3824 3733 -12543431.97403 3825 3733 -9.983777999878e-07 3826 3733 -34841942.9836 3827 3733 -6857580.506883 3828 3733 -15625000.00514 3829 3733 -37868205.17313 3830 3733 19401012.48091 3840 3733 5.781650543213e-06 3841 3733 -42948027.89108 3842 3733 -51682408.42662 3843 3733 3.09944152832e-06 3844 3733 39706666.64553 3845 3733 -27430322.01402 3846 3733 -7.04824924469e-06 3847 3733 -107392689.3388 3848 3733 79112730.44064 3861 3733 -15625000.00513 3862 3733 -22831126.63809 3863 3733 -13229195.86314 3864 3733 1.668930053711e-06 3865 3733 -39138290.32084 3866 3733 -6857580.506883 3867 3733 15625000.00513 3868 3733 -39280887.92821 3869 3733 20086776.37002 3734 3734 1209684727.759 3735 3734 2285899.092332 3736 3734 54860644.00101 3737 3734 128167058.7484 3750 3734 24401755.31083 3751 3734 12206480.45177 3752 3734 -13077952.54839 3753 3734 -4571798.18244 3754 3734 -27430322.01402 3755 3734 114598543.8875 3756 3734 -27030536.34739 3757 3734 15223841.56225 3758 3734 -16689642.3626 3822 3734 13679279.97901 3823 3734 -12543431.97403 3824 3734 -15345455.6363 3825 3734 80261824.7461 3826 3734 -6857580.506883 3827 3734 -101938662.0149 3828 3734 26537352.8999 3829 3734 19401012.48091 3830 3734 -57405640.83529 3840 3734 571474.7733671 3841 3734 -51408102.87125 3842 3734 -18348781.1507 3843 3734 2285899.092361 3844 3734 -27430322.01402 3845 3734 -242725472.4512 3846 3734 571474.773379 3847 3734 78838424.88527 3848 3734 -190201211.678 3861 3734 -14250754.75238 3862 3734 -13229195.86314 3863 3734 -17306764.74188 3864 3734 -82547723.83843 3865 3734 -6857580.506883 3866 3734 -113395588.2476 3867 3734 -27108827.67327 3868 3734 20086776.37002 3869 3734 -61172794.84886 3735 3735 1126552465.849 3736 3735 1.227855682373e-05 3737 3735 9143596.364805 3738 3735 141293458.9169 3739 3735 -4.947185516357e-06 3740 3735 2285899.092331 3753 3735 -89019318.86449 3754 3735 -62499999.98974 3755 3735 24744637.25504 3756 3735 -218486531.0803 3757 3735 2.98023223877e-06 3758 3735 -4571798.18244 3759 3735 -90373702.5448 3760 3735 62499999.98974 3761 3735 -26687654.40317 3825 3735 -26783317.53868 3826 3735 15625000.00513 3827 3735 13679279.97901 3828 3735 -103592244.5474 3829 3735 1.892447471619e-06 3830 3735 80604706.69032 3831 3735 -42555886.98831 3832 3735 -15625000.00514 3833 3735 26537352.8999 3843 3735 16426910.05153 3844 3735 4.485249519348e-06 3845 3735 571474.7733669 3846 3735 77208121.14848 3847 3735 3.09944152832e-06 3848 3735 2285899.092361 3849 3735 -48017751.39621 3850 3735 -8.776783943176e-06 3851 3735 571474.7733788 3864 3735 -27518808.45327 3865 3735 -15625000.00513 3866 3735 -14250754.75238 3867 3735 -107888591.8846 3868 3735 1.713633537292e-06 3869 3735 -82890605.78265 3870 3735 -43968569.74338 3871 3735 15625000.00513 3872 3735 -27108827.67327 3736 3736 976546647.911 3737 3736 -109721288.002 3738 3736 -4.738569259644e-06 3739 3736 -96206292.73656 3740 3736 54860644.00101 3753 3736 -62499999.98974 3754 3736 -70268591.613 3755 3736 12480786.00715 3756 3736 4.291534423828e-06 3757 3736 56514675.03912 3758 3736 -27430322.01402 3759 3736 62499999.98974 3760 3736 -71622975.29333 3761 3736 14949536.00687 3825 3736 15625000.00513 3826 3736 -22095635.7235 3827 3736 -12543431.97403 3828 3736 -9.983777999878e-07 3829 3736 -34841942.9836 3830 3736 -6857580.506883 3831 3736 -15625000.00514 3832 3736 -37868205.17313 3833 3736 19401012.48091 3843 3736 5.781650543213e-06 3844 3736 -42948027.89108 3845 3736 -51682408.42662 3846 3736 3.09944152832e-06 3847 3736 39706666.64553 3848 3736 -27430322.01402 3849 3736 -7.04824924469e-06 3850 3736 -107392689.3388 3851 3736 79112730.44064 3864 3736 -15625000.00513 3865 3736 -22831126.63809 3866 3736 -13229195.86314 3867 3736 1.668930053711e-06 3868 3736 -39138290.32084 3869 3736 -6857580.506883 3870 3736 15625000.00513 3871 3736 -39280887.92821 3872 3736 20086776.37002 3737 3737 1209684727.759 3738 3737 2285899.092332 3739 3737 54860644.00101 3740 3737 128167058.7484 3753 3737 24401755.31083 3754 3737 12206480.45177 3755 3737 -13077952.54839 3756 3737 -4571798.18244 3757 3737 -27430322.01402 3758 3737 114598543.8875 3759 3737 -27030536.34739 3760 3737 15223841.56225 3761 3737 -16689642.3626 3825 3737 13679279.97901 3826 3737 -12543431.97403 3827 3737 -15345455.6363 3828 3737 80261824.7461 3829 3737 -6857580.506883 3830 3737 -101938662.0149 3831 3737 26537352.8999 3832 3737 19401012.48091 3833 3737 -57405640.83529 3843 3737 571474.7733671 3844 3737 -51408102.87125 3845 3737 -18348781.1507 3846 3737 2285899.092361 3847 3737 -27430322.01402 3848 3737 -242725472.4512 3849 3737 571474.773379 3850 3737 78838424.88527 3851 3737 -190201211.678 3864 3737 -14250754.75238 3865 3737 -13229195.86314 3866 3737 -17306764.74188 3867 3737 -82547723.83843 3868 3737 -6857580.506883 3869 3737 -113395588.2476 3870 3737 -27108827.67327 3871 3737 20086776.37002 3872 3737 -61172794.84886 3738 3738 1126552465.849 3739 3738 1.227855682373e-05 3740 3738 9143596.364805 3741 3738 141293458.9169 3742 3738 -4.947185516357e-06 3743 3738 2285899.092331 3756 3738 -89019318.86449 3757 3738 -62499999.98974 3758 3738 24744637.25504 3759 3738 -218486531.0803 3760 3738 2.98023223877e-06 3761 3738 -4571798.18244 3762 3738 -90373702.5448 3763 3738 62499999.98974 3764 3738 -26687654.40317 3828 3738 -26783317.53868 3829 3738 15625000.00513 3830 3738 13679279.97901 3831 3738 -103592244.5474 3832 3738 1.892447471619e-06 3833 3738 80604706.69032 3834 3738 -42555886.98831 3835 3738 -15625000.00514 3836 3738 26537352.8999 3846 3738 16426910.05153 3847 3738 4.485249519348e-06 3848 3738 571474.7733669 3849 3738 77208121.14848 3850 3738 3.09944152832e-06 3851 3738 2285899.092361 3852 3738 -48017751.39621 3853 3738 -8.776783943176e-06 3854 3738 571474.7733788 3867 3738 -27518808.45327 3868 3738 -15625000.00513 3869 3738 -14250754.75238 3870 3738 -107888591.8846 3871 3738 1.713633537292e-06 3872 3738 -82890605.78265 3873 3738 -43968569.74338 3874 3738 15625000.00513 3875 3738 -27108827.67327 3739 3739 976546647.911 3740 3739 -109721288.002 3741 3739 -4.738569259644e-06 3742 3739 -96206292.73656 3743 3739 54860644.00101 3756 3739 -62499999.98974 3757 3739 -70268591.613 3758 3739 12480786.00715 3759 3739 4.291534423828e-06 3760 3739 56514675.03912 3761 3739 -27430322.01402 3762 3739 62499999.98974 3763 3739 -71622975.29333 3764 3739 14949536.00687 3828 3739 15625000.00513 3829 3739 -22095635.7235 3830 3739 -12543431.97403 3831 3739 -9.983777999878e-07 3832 3739 -34841942.9836 3833 3739 -6857580.506883 3834 3739 -15625000.00514 3835 3739 -37868205.17313 3836 3739 19401012.48091 3846 3739 5.781650543213e-06 3847 3739 -42948027.89108 3848 3739 -51682408.42662 3849 3739 3.09944152832e-06 3850 3739 39706666.64553 3851 3739 -27430322.01402 3852 3739 -7.04824924469e-06 3853 3739 -107392689.3388 3854 3739 79112730.44064 3867 3739 -15625000.00513 3868 3739 -22831126.63809 3869 3739 -13229195.86314 3870 3739 1.668930053711e-06 3871 3739 -39138290.32084 3872 3739 -6857580.506883 3873 3739 15625000.00513 3874 3739 -39280887.92821 3875 3739 20086776.37002 3740 3740 1209684727.759 3741 3740 2285899.092332 3742 3740 54860644.00101 3743 3740 128167058.7484 3756 3740 24401755.31083 3757 3740 12206480.45177 3758 3740 -13077952.54839 3759 3740 -4571798.18244 3760 3740 -27430322.01402 3761 3740 114598543.8875 3762 3740 -27030536.34739 3763 3740 15223841.56225 3764 3740 -16689642.3626 3828 3740 13679279.97901 3829 3740 -12543431.97403 3830 3740 -15345455.6363 3831 3740 80261824.7461 3832 3740 -6857580.506883 3833 3740 -101938662.0149 3834 3740 26537352.8999 3835 3740 19401012.48091 3836 3740 -57405640.83529 3846 3740 571474.7733671 3847 3740 -51408102.87125 3848 3740 -18348781.1507 3849 3740 2285899.092361 3850 3740 -27430322.01402 3851 3740 -242725472.4512 3852 3740 571474.773379 3853 3740 78838424.88527 3854 3740 -190201211.678 3867 3740 -14250754.75238 3868 3740 -13229195.86314 3869 3740 -17306764.74188 3870 3740 -82547723.83843 3871 3740 -6857580.506883 3872 3740 -113395588.2476 3873 3740 -27108827.67327 3874 3740 20086776.37002 3875 3740 -61172794.84886 3741 3741 1204754822.305 3742 3741 62497357.07621 3743 3741 8952962.2647 3744 3741 45024925.86313 3745 3741 -62570336.85273 3746 3741 4194937.250903 3759 3741 -89019318.86449 3760 3741 -62499999.98974 3761 3741 24744637.25504 3762 3741 -219851604.8368 3763 3741 40242.33966598 3764 3741 -40004.89876187 3765 3741 -85662760.9757 3766 3741 62492282.31877 3767 3741 -4761332.72443 3831 3741 -26783317.53868 3832 3741 15625000.00513 3833 3741 13679279.97901 3834 3741 -129153814.3351 3835 3741 -16245455.61973 3836 3741 82158969.80008 3849 3741 16426910.05153 3850 3741 4.485249519348e-06 3851 3741 571474.7733669 3852 3741 104024325.5148 3853 3741 16260854.35681 3854 3741 2224683.703303 3855 3741 -40630590.51198 3856 3741 -15327351.62456 3857 3741 22295084.26312 3870 3741 -27518808.45327 3871 3741 -15625000.00513 3872 3741 -14250754.75238 3873 3741 -110653931.884 3874 3741 -305984.1418301 3875 3741 -83787444.46656 3876 3741 -37582436.37865 3877 3741 15617937.02931 3878 3741 -22863442.41946 3742 3742 1036206231.181 3743 3742 -63859055.41908 3744 3742 -62584481.0878 3745 3742 -173792340.1873 3746 3742 8996740.020617 3759 3742 -62499999.98974 3760 3742 -70268591.613 3761 3742 12480786.00715 3762 3742 40242.33966711 3763 3742 55101624.38748 3764 3742 -16838726.0431 3765 3742 62492282.31877 3766 3742 -67050935.07603 3767 3742 2899204.461618 3831 3742 15625000.00513 3832 3742 -22095635.7235 3833 3742 -12543431.97403 3834 3742 -16242128.17313 3835 3742 -55421300.42098 3836 3742 13456767.21673 3849 3742 5.781650543213e-06 3850 3742 -42948027.89108 3851 3742 -51682408.42662 3852 3742 16260854.35681 3853 3742 60193058.58581 3854 3742 -15789635.31347 3855 3742 -15330679.07116 3856 3742 -95311088.41941 3857 3742 70246455.99071 3870 3742 -15625000.00513 3871 3742 -22831126.63809 3872 3742 -13229195.86314 3873 3742 -305984.1418316 3874 3742 -41608792.32606 3875 3742 -4510931.026938 3876 3742 15617937.02931 3877 3742 -31848750.70198 3878 3742 17366327.12976 3743 3743 1194167608.39 3744 3743 4196101.101037 3745 3743 8997671.484154 3746 3743 96068025.68697 3759 3743 24401755.31083 3760 3743 12206480.45177 3761 3743 -13077952.54839 3762 3743 -7583407.675302 3763 3743 -16838726.0431 3764 3743 110744786.4731 3765 3743 -4761332.723755 3766 3743 2899204.461618 3767 3743 -4337375.443198 3831 3743 13679279.97901 3832 3743 -12543431.97403 3833 3743 -15345455.6363 3834 3743 83873198.12175 3835 3743 13460242.0837 3836 3743 -110667042.0751 3849 3743 571474.7733671 3850 3743 -51408102.87125 3851 3743 -18348781.1507 3852 3743 2233905.431621 3853 3743 -14685035.59046 3854 3743 -232308263.7716 3855 3743 22299969.37665 3856 3743 70246744.15636 3857 3743 -116215570.0634 3870 3743 -14250754.75238 3871 3743 -13229195.86314 3872 3743 -17306764.74188 3873 3743 -85501854.18985 3874 3743 -4236625.471426 3875 3743 -119293921.0885 3876 3743 -22863442.41946 3877 3743 17366327.12976 3878 3743 -42171970.90008 3744 3744 664287766.0269 3745 3744 24091.37187457 3746 3744 571059.7622714 3762 3744 -85626578.19959 3763 3744 -62498840.1633 3764 3744 3809616.386258 3765 3744 -218147695.2755 3766 3744 52750.43064576 3767 3744 -573164.2357075 3768 3744 74869081.74691 3769 3744 -12523451.48296 3770 3744 -190270.809375 3771 3744 -84365929.45554 3772 3744 62487498.23866 3773 3744 -952211.7649758 3834 3744 -11431103.66588 3835 3744 18759982.34595 3836 3744 24986550.61557 3852 3744 -31689345.25595 3853 3744 -15330679.07116 3854 3744 -20228823.39131 3855 3744 18578016.42486 3856 3744 -212048.4434399 3857 3744 16938078.048 3873 3744 -33816955.75253 3874 3744 -15624066.27071 3875 3744 -20297239.76849 3876 3744 -109961515.6943 3877 3744 -411737.3918817 3878 3744 -84091725.01815 3879 3744 -7596963.016065 3880 3744 -2912152.926645 3881 3744 3595010.390649 3882 3744 -35260385.50178 3883 3744 15730701.75788 3884 3744 -20970461.98783 3745 3745 693856738.6524 3746 3745 -9472423.040339 3762 3745 -62498840.1633 3763 3745 -66851597.3442 3764 3745 1522937.794223 3765 3745 52750.43064803 3766 3745 55036643.93943 3767 3745 -2908904.606411 3768 3745 12476548.51293 3769 3745 -44293034.1186 3770 3745 468992.1784517 3771 3745 62487498.23866 3772 3745 -67834262.09186 3773 3745 469097.6150822 3834 3745 12506654.8973 3835 3745 -10955147.39897 3836 3745 -12464032.54073 3852 3745 -15327351.62456 3853 3745 -86369843.16339 3854 3745 -65796808.19713 3855 3745 -212048.4434426 3856 3745 24360358.36927 3857 3745 4613573.717161 3873 3745 -15624066.27071 3874 3745 -29339377.68916 3875 3745 -16613289.94378 3876 3745 -411737.3918818 3877 3745 -41078918.26341 3878 3745 -1049079.875028 3879 3745 3337847.075409 3880 3745 -37294366.69524 3881 3745 33449764.91022 3882 3745 15730701.75788 3883 3745 -30500957.62076 3884 3745 16782316.0706 3746 3746 782229023.3854 3762 3746 3809616.386596 3763 3746 1522937.794493 3764 3746 -3996051.731711 3765 3746 -573164.2357077 3766 3746 -2908904.606411 3767 3746 104637633.003 3768 3746 -190270.8093724 3769 3746 468992.1784514 3770 3746 81857334.49913 3771 3746 -952211.7646383 3772 3746 469097.6150822 3773 3746 -4765687.76924 3834 3746 16657700.41038 3835 3746 -19127368.11652 3836 3746 -30958899.37592 3852 3746 -20224487.07758 3853 3746 -65796957.16143 3854 3746 -92372249.38064 3855 3746 -16646713.61315 3856 3746 -9261719.67195 3857 3746 -200537782.5998 3873 3746 -20297239.76849 3874 3746 -16613289.94378 3875 3746 -34497965.15509 3876 3746 -84091725.01849 3877 3746 -1049079.875162 3878 3746 -117898245.7723 3879 3746 -4529989.612186 3880 3746 33449764.91022 3881 3746 -49783549.25395 3882 3746 -20970461.98783 3883 3746 16782316.0706 3884 3746 -37093315.02675 3747 3747 563276232.9245 3748 3747 3.09944152832e-06 3749 3747 4571798.182401 3750 3747 70669302.51978 3751 3747 12499999.99795 3752 3747 -3143074.759108 3837 3747 -103592244.5474 3838 3747 1.892447471619e-06 3839 3747 80604706.69032 3840 3747 -42555886.98831 3841 3747 -15625000.00514 3842 3747 26537352.8999 3858 3747 38581487.51291 3859 3747 -1.847743988037e-06 3860 3747 -16029498.36724 3861 3747 -24008875.6981 3862 3747 3125000.001023 3863 3747 -5078880.670627 3748 3748 488273323.9555 3749 3748 -54860644.001 3750 3748 -12499999.99795 3751 3748 -48080573.30694 3752 3748 27156016.445 3837 3748 -9.983777999878e-07 3838 3748 -34841942.9836 3839 3748 -6857580.506883 3840 3748 -15625000.00514 3841 3748 -37868205.17313 3842 3748 19401012.48091 3858 3748 -2.026557922363e-06 3859 3748 19830760.26143 3860 3748 -13715161.00701 3861 3748 -3125000.00103 3862 3748 -53696344.6694 3863 3748 39487788.83141 3749 3749 604842363.8797 3750 3749 7143383.572535 3751 3749 27704627.55602 3752 3749 64143724.20442 3837 3749 80261824.7461 3838 3749 -6857580.506883 3839 3749 -101938662.0149 3840 3749 26537352.8999 3841 3749 19401012.48091 3842 3749 -57405640.83529 3858 3749 16600987.73851 3859 3749 -13715161.00701 3860 3749 -121422931.0558 3861 3749 5650355.444006 3862 3749 39487788.83154 3863 3749 -95100605.83899 3750 3750 563276232.9245 3751 3750 3.09944152832e-06 3752 3750 4571798.182401 3753 3750 70669302.51978 3754 3750 12499999.99795 3755 3750 -3143074.759108 3837 3750 -26783317.53868 3838 3750 15625000.00513 3839 3750 13679279.97901 3840 3750 -103592244.5474 3841 3750 1.892447471619e-06 3842 3750 80604706.69032 3843 3750 -42555886.98831 3844 3750 -15625000.00514 3845 3750 26537352.8999 3858 3750 8213455.025764 3859 3750 -3125000.001024 3860 3750 -2507266.086456 3861 3750 38581487.51291 3862 3750 -1.847743988037e-06 3863 3750 -16029498.36724 3864 3750 -24008875.6981 3865 3750 3125000.001023 3866 3750 -5078880.670627 3751 3751 488273323.9555 3752 3751 -54860644.001 3753 3751 -12499999.99795 3754 3751 -48080573.30694 3755 3751 27156016.445 3837 3751 15625000.00513 3838 3751 -22095635.7235 3839 3751 -12543431.97403 3840 3751 -9.983777999878e-07 3841 3751 -34841942.9836 3842 3751 -6857580.506883 3843 3751 -15625000.00514 3844 3751 -37868205.17313 3845 3751 19401012.48091 3858 3751 3125000.00103 3859 3751 -21474013.94555 3860 3751 -25772627.8244 3861 3751 -2.026557922363e-06 3862 3751 19830760.26143 3863 3751 -13715161.00701 3864 3751 -3125000.00103 3865 3751 -53696344.6694 3866 3751 39487788.83141 3752 3752 604842363.8797 3753 3752 7143383.572535 3754 3752 27704627.55602 3755 3752 64143724.20442 3837 3752 13679279.97901 3838 3752 -12543431.97403 3839 3752 -15345455.6363 3840 3752 80261824.7461 3841 3752 -6857580.506883 3842 3752 -101938662.0149 3843 3752 26537352.8999 3844 3752 19401012.48091 3845 3752 -57405640.83529 3858 3752 3078740.859823 3859 3752 -25772627.82454 3860 3752 -9174390.575351 3861 3752 16600987.73851 3862 3752 -13715161.00701 3863 3752 -121422931.0558 3864 3752 5650355.444006 3865 3752 39487788.83154 3866 3752 -95100605.83899 3753 3753 563276232.9245 3754 3753 3.09944152832e-06 3755 3753 4571798.182401 3756 3753 70669302.51978 3757 3753 12499999.99795 3758 3753 -3143074.759108 3840 3753 -26783317.53868 3841 3753 15625000.00513 3842 3753 13679279.97901 3843 3753 -103592244.5474 3844 3753 1.892447471619e-06 3845 3753 80604706.69032 3846 3753 -42555886.98831 3847 3753 -15625000.00514 3848 3753 26537352.8999 3861 3753 8213455.025764 3862 3753 -3125000.001024 3863 3753 -2507266.086456 3864 3753 38581487.51291 3865 3753 -1.847743988037e-06 3866 3753 -16029498.36724 3867 3753 -24008875.6981 3868 3753 3125000.001023 3869 3753 -5078880.670627 3754 3754 488273323.9555 3755 3754 -54860644.001 3756 3754 -12499999.99795 3757 3754 -48080573.30694 3758 3754 27156016.445 3840 3754 15625000.00513 3841 3754 -22095635.7235 3842 3754 -12543431.97403 3843 3754 -9.983777999878e-07 3844 3754 -34841942.9836 3845 3754 -6857580.506883 3846 3754 -15625000.00514 3847 3754 -37868205.17313 3848 3754 19401012.48091 3861 3754 3125000.00103 3862 3754 -21474013.94555 3863 3754 -25772627.8244 3864 3754 -2.026557922363e-06 3865 3754 19830760.26143 3866 3754 -13715161.00701 3867 3754 -3125000.00103 3868 3754 -53696344.6694 3869 3754 39487788.83141 3755 3755 604842363.8797 3756 3755 7143383.572535 3757 3755 27704627.55602 3758 3755 64143724.20442 3840 3755 13679279.97901 3841 3755 -12543431.97403 3842 3755 -15345455.6363 3843 3755 80261824.7461 3844 3755 -6857580.506883 3845 3755 -101938662.0149 3846 3755 26537352.8999 3847 3755 19401012.48091 3848 3755 -57405640.83529 3861 3755 3078740.859823 3862 3755 -25772627.82454 3863 3755 -9174390.575351 3864 3755 16600987.73851 3865 3755 -13715161.00701 3866 3755 -121422931.0558 3867 3755 5650355.444006 3868 3755 39487788.83154 3869 3755 -95100605.83899 3756 3756 563276232.9245 3757 3756 3.09944152832e-06 3758 3756 4571798.182401 3759 3756 70669302.51978 3760 3756 12499999.99795 3761 3756 -3143074.759108 3843 3756 -26783317.53868 3844 3756 15625000.00513 3845 3756 13679279.97901 3846 3756 -103592244.5474 3847 3756 1.892447471619e-06 3848 3756 80604706.69032 3849 3756 -42555886.98831 3850 3756 -15625000.00514 3851 3756 26537352.8999 3864 3756 8213455.025764 3865 3756 -3125000.001024 3866 3756 -2507266.086456 3867 3756 38581487.51291 3868 3756 -1.847743988037e-06 3869 3756 -16029498.36724 3870 3756 -24008875.6981 3871 3756 3125000.001023 3872 3756 -5078880.670627 3757 3757 488273323.9555 3758 3757 -54860644.001 3759 3757 -12499999.99795 3760 3757 -48080573.30694 3761 3757 27156016.445 3843 3757 15625000.00513 3844 3757 -22095635.7235 3845 3757 -12543431.97403 3846 3757 -9.983777999878e-07 3847 3757 -34841942.9836 3848 3757 -6857580.506883 3849 3757 -15625000.00514 3850 3757 -37868205.17313 3851 3757 19401012.48091 3864 3757 3125000.00103 3865 3757 -21474013.94555 3866 3757 -25772627.8244 3867 3757 -2.026557922363e-06 3868 3757 19830760.26143 3869 3757 -13715161.00701 3870 3757 -3125000.00103 3871 3757 -53696344.6694 3872 3757 39487788.83141 3758 3758 604842363.8797 3759 3758 7143383.572535 3760 3758 27704627.55602 3761 3758 64143724.20442 3843 3758 13679279.97901 3844 3758 -12543431.97403 3845 3758 -15345455.6363 3846 3758 80261824.7461 3847 3758 -6857580.506883 3848 3758 -101938662.0149 3849 3758 26537352.8999 3850 3758 19401012.48091 3851 3758 -57405640.83529 3864 3758 3078740.859823 3865 3758 -25772627.82454 3866 3758 -9174390.575351 3867 3758 16600987.73851 3868 3758 -13715161.00701 3869 3758 -121422931.0558 3870 3758 5650355.444006 3871 3758 39487788.83154 3872 3758 -95100605.83899 3759 3759 563276232.9245 3760 3759 3.09944152832e-06 3761 3759 4571798.182401 3762 3759 70669302.51978 3763 3759 12499999.99795 3764 3759 -3143074.759108 3846 3759 -26783317.53868 3847 3759 15625000.00513 3848 3759 13679279.97901 3849 3759 -103592244.5474 3850 3759 1.892447471619e-06 3851 3759 80604706.69032 3852 3759 -42555886.98831 3853 3759 -15625000.00514 3854 3759 26537352.8999 3867 3759 8213455.025764 3868 3759 -3125000.001024 3869 3759 -2507266.086456 3870 3759 38581487.51291 3871 3759 -1.847743988037e-06 3872 3759 -16029498.36724 3873 3759 -24008875.6981 3874 3759 3125000.001023 3875 3759 -5078880.670627 3760 3760 488273323.9555 3761 3760 -54860644.001 3762 3760 -12499999.99795 3763 3760 -48080573.30694 3764 3760 27156016.445 3846 3760 15625000.00513 3847 3760 -22095635.7235 3848 3760 -12543431.97403 3849 3760 -9.983777999878e-07 3850 3760 -34841942.9836 3851 3760 -6857580.506883 3852 3760 -15625000.00514 3853 3760 -37868205.17313 3854 3760 19401012.48091 3867 3760 3125000.00103 3868 3760 -21474013.94555 3869 3760 -25772627.8244 3870 3760 -2.026557922363e-06 3871 3760 19830760.26143 3872 3760 -13715161.00701 3873 3760 -3125000.00103 3874 3760 -53696344.6694 3875 3760 39487788.83141 3761 3761 604842363.8797 3762 3761 7143383.572535 3763 3761 27704627.55602 3764 3761 64143724.20442 3846 3761 13679279.97901 3847 3761 -12543431.97403 3848 3761 -15345455.6363 3849 3761 80261824.7461 3850 3761 -6857580.506883 3851 3761 -101938662.0149 3852 3761 26537352.8999 3853 3761 19401012.48091 3854 3761 -57405640.83529 3867 3761 3078740.859823 3868 3761 -25772627.82454 3869 3761 -9174390.575351 3870 3761 16600987.73851 3871 3761 -13715161.00701 3872 3761 -121422931.0558 3873 3761 5650355.444006 3874 3761 39487788.83154 3875 3761 -95100605.83899 3762 3762 560320827.2113 3763 3762 639.901719451 3764 3762 23239591.98142 3765 3762 78578401.33592 3766 3762 12457957.93012 3767 3762 -264411.8076911 3849 3762 -26783317.53868 3850 3762 15625000.00513 3851 3762 13679279.97901 3852 3762 -106874624.6125 3853 3762 -305984.1418223 3854 3762 81912468.6994 3855 3762 -36055415.57193 3856 3762 -15624066.27071 3857 3762 22203888.71768 3870 3762 8213455.025764 3871 3762 -3125000.001024 3872 3762 -2507266.086456 3873 3762 34185986.02995 3874 3762 798.6461966634 3875 3762 -11275630.76041 3876 3762 -10346432.29075 3877 3762 3429251.762236 3878 3762 -4751421.104327 3763 3763 485350920.2351 3764 3763 -34136717.37342 3765 3763 -12542042.06577 3766 3763 -40180753.19227 3767 3763 4878203.170454 3849 3763 15625000.00513 3850 3763 -22095635.7235 3851 3763 -12543431.97403 3852 3763 -305984.1418242 3853 3763 -37829485.05459 3854 3763 -3842528.249337 3855 3763 -15624066.27071 3856 3763 -31577837.50856 3857 3763 17388446.1785 3870 3763 3125000.00103 3871 3763 -21474013.94555 3872 3763 -25772627.8244 3873 3763 798.6461972594 3874 3763 15227309.46198 3875 3763 -8458758.259206 3876 3763 -2820748.239817 3877 3763 -39910686.18794 3878 3763 34874733.46178 3764 3764 597013597.6343 3765 3764 1792879.858635 3766 3764 4878203.170454 3767 3764 85361307.078 3849 3764 13679279.97901 3850 3764 -12543431.97403 3851 3764 -15345455.6363 3852 3764 83626878.42252 3853 3764 -3568222.69369 3854 3764 -109215768.3646 3855 3764 22203888.71769 3856 3764 17388446.1785 3857 3764 -40467191.34016 3870 3764 3078740.859823 3871 3764 -25772627.82454 3872 3764 -9174390.575351 3873 3764 22040063.67856 3874 3764 -7910147.148185 3875 3764 -133536023.2831 3876 3764 4263127.509742 3877 3764 34874733.46192 3878 3764 -59355434.68897 3765 3765 550746202.1403 3766 3765 36066.57850146 3767 3765 569002.3382969 3768 3765 -84494054.45551 3769 3765 -62512501.74082 3770 3765 762197.9571191 3771 3765 74782825.51741 3772 3765 12473444.47867 3773 3765 -532638.751045 3852 3765 -34261443.39917 3853 3765 15617937.02931 3854 3765 20473536.76144 3855 3765 -109427582.9781 3856 3765 -411737.3918647 3857 3765 83832233.28727 3873 3765 -4238369.907793 3874 3765 -2820748.239818 3875 3765 -3401247.493269 3876 3765 31840797.35778 3877 3765 -201113.0826508 3878 3765 -16633868.93328 3879 3765 -34006609.4597 3880 3765 -15519298.25239 3881 3765 20501065.80357 3882 3765 -7808250.756493 3883 3765 3334959.937417 3884 3765 -4703108.31416 3766 3766 480255926.3528 3767 3766 -6744998.921652 3768 3766 -62512501.74082 3769 3766 -67882308.96685 3770 3766 469097.615082 3771 3766 -12526555.51723 3772 3766 -44375654.77008 3773 3766 1407398.280953 3852 3766 15617937.02931 3853 3766 -28527757.72252 3854 3766 -15967006.21452 3855 3766 -411737.3918659 3856 3766 -40544985.54718 3857 3766 -380677.0974279 3873 3766 3429251.762237 3874 3766 -33802623.805 3875 3766 -32460335.97153 3876 3766 -201113.0826469 3877 3766 12600540.20203 3878 3766 -1653796.126267 3879 3766 -15519298.25239 3880 3766 -30030791.60498 3881 3766 16782316.0706 3882 3766 -2915040.064636 3883 3766 -37595840.66582 3884 3766 33679499.33911 3767 3767 579545011.66 3768 3767 762197.9571192 3769 3767 469097.615082 3770 3767 -4813734.644226 3771 3767 153125.1377279 3772 3767 1407398.280952 3773 3767 81748273.77839 3852 3767 20473536.76144 3853 3767 -15967006.21452 3854 3767 -33315989.62148 3855 3767 83832233.28761 3856 3767 -380677.0974262 3857 3767 -116474425.1957 3873 3767 4584655.287299 3874 3767 -32460335.97153 3875 3767 -43067268.3344 3876 3767 16950922.72787 3877 3767 -1653796.126267 3878 3767 -140113637.8354 3879 3767 20501065.80357 3880 3767 16782316.0706 3881 3767 -36623149.01096 3882 3767 3760502.799563 3883 3767 33679499.33911 3884 3767 -51476087.71803 3768 3768 272867251.5293 3769 3768 62523451.47476 3770 3768 -381199.097837 3771 3768 -107269612.1541 3772 3768 -12487498.24687 3773 3768 -190728.0499092 3855 3768 -7048351.904789 3856 3768 3337847.075409 3857 3768 4430861.084874 3876 3768 -33457998.34841 3877 3768 -15519298.25239 3878 3768 -20123934.20978 3879 3768 15992685.2667 3880 3768 15412152.93075 3881 3768 8031696.785406 3882 3768 -53472668.34682 3883 3768 -3230701.753776 3884 3768 -41088623.6605 3769 3769 239685617.4198 3770 3769 -468992.1784413 3771 3769 12512501.74903 3772 3769 28462392.33225 3773 3769 -469097.6150756 3855 3769 -2912152.926645 3856 3769 -36745755.58397 3857 3769 -33216901.74549 3876 3769 -15519298.25239 3877 3769 -29482180.49371 3878 3769 -16551017.27368 3879 3769 15412152.93075 3880 3769 7604151.433358 3881 3769 6550235.083201 3882 3769 3019298.248277 3883 3769 -19362548.68901 3884 3769 3217683.935962 3770 3770 286845804.3292 3771 3770 -190728.0499058 3772 3770 -469097.6150757 3773 3770 52037706.92696 3855 3770 -3694138.917793 3856 3770 -33216901.74549 3857 3770 -48320586.29054 3876 3770 -20123934.20978 3877 3770 -16551017.27368 3878 3770 -35160186.04754 3879 3770 -8218303.211925 3880 3770 -6783098.247942 3881 3770 -67476295.62359 3882 3770 -41088623.6605 3883 3770 -3448982.732894 3884 3770 -57006487.59384 3771 3771 272798049.4256 3772 3771 -62473444.47046 3773 3771 -381713.1014125 3855 3771 -34711774.39049 3856 3771 15730701.75788 3857 3771 20490388.72023 3876 3771 -6162417.423721 3877 3771 -2915040.064636 3878 3771 -3695816.647659 3879 3771 -53472668.34682 3880 3771 3019298.248286 3881 3771 40997227.02038 3882 3771 16374193.49437 3883 3771 -15834959.94153 3884 3771 -8381660.203837 3772 3772 239692857.863 3773 3772 -1407398.280936 3855 3772 15730701.75788 3856 3772 -29952346.50949 3857 3772 -16551017.27368 3876 3772 3334959.937418 3877 3772 -35950007.33306 3878 3772 -32987167.3166 3879 3772 -3230701.753769 3880 3772 -19362548.68901 3881 3772 3217683.935962 3882 3772 -15834959.94153 3883 3772 7292235.86488 3884 3772 6320500.654305 3773 3773 286833929.2861 3855 3773 20490388.72023 3856 3773 -16551017.27368 3857 3773 -35630352.06332 3876 3773 4424912.521678 3877 3773 -32987167.3166 3878 3773 -47087198.83062 3879 3773 40997227.02055 3880 3773 -3448982.732894 3881 3773 -57006487.59384 3882 3773 8202680.071217 3883 3773 -7012832.676838 3884 3773 -68203072.62332 3774 3774 731873593.1548 3775 3774 63656944.434 3776 3774 18282582.06852 3777 3774 -339558601.0551 3778 3774 -63664153.72624 3779 3774 -14174508.59703 3780 3774 22166321.31964 3781 3774 50932764.83944 3782 3774 -9608497.922564 3885 3774 41127258.27048 3886 3774 16203472.22755 3887 3774 17343888.84954 3888 3774 -135326679.0276 3889 3774 -16203472.09792 3890 3774 -86719444.24762 3891 3774 -13923315.162 3892 3774 12962777.65241 3893 3774 -17343888.52033 3775 3775 636376493.3815 3776 3775 -30188925.21508 3777 3775 -63667758.37236 3778 3775 -40346533.53339 3779 3775 -19199086.44689 3780 3775 76399147.25916 3781 3775 22166321.31964 3782 3775 13164421.99706 3885 3775 16203472.22755 3886 3775 16821163.40287 3887 3775 13874999.85144 3888 3775 -16203472.0331 3889 3775 -59169888.51194 3890 3775 -17343749.90781 3891 3775 19444166.47861 3892 3775 -13923315.162 3893 3775 20812499.90895 3776 3776 809270793.6919 3777 3776 -12120471.86127 3778 3776 -15085251.33671 3779 3776 33187550.82531 3780 3776 -14412746.88385 3781 3776 8776281.331372 3782 3776 59110190.1857 3885 3776 -17343888.84951 3886 3776 -13874999.85143 3887 3776 -181091253.0988 3888 3776 -86719444.24762 3889 3776 -17343749.94043 3890 3776 -121957897.9018 3891 3776 -26015832.7805 3892 3776 13874999.9393 3893 3776 -37128840.43199 3777 3777 1236679322.481 3778 3777 63674967.6646 3779 3777 15441526.4422 3780 3777 49455964.79174 3781 3777 -63664153.72624 3782 3777 13608792.08924 3783 3777 -223854518.1091 3784 3777 1.281499862671e-06 3785 3777 -3314544.719882 3786 3777 -89126355.34779 3787 3777 63656944.434 3788 3777 -13600988.60888 3885 3777 -135326679.0277 3886 3777 -16203472.0331 3887 3777 86719444.24762 3888 3777 101875695.1567 3889 3777 16203471.90348 3890 3777 0.03654569387436 3891 3777 -36808280.87074 3892 3777 -16203472.09792 3893 3777 21679860.74398 3894 3777 -113177912.5204 3895 3777 6.407499313354e-07 3896 3777 -86719444.43019 3897 3777 -36072082.53397 3898 3777 16203472.22755 3899 3777 -21679861.11823 3778 3778 1064791031.509 3779 3778 -42507558.78941 3780 3778 -63667758.37236 3781 3778 -173356800.7659 3782 3778 23590660.68649 3783 3778 2.622604370117e-06 3784 3778 56237222.37539 3785 3778 -13715162.23406 3786 3778 63656944.434 3787 3778 -70028557.53863 3788 3778 7680497.783698 3885 3778 -16203472.09792 3886 3778 -59169888.51195 3887 3778 17343749.94043 3888 3778 16203471.90348 3889 3778 58124724.28025 3890 3778 0.029221534729 3891 3778 -16203472.03311 3892 3778 -93520195.52346 3893 3778 69374999.6084 3894 3778 -1.177191734314e-06 3895 3778 -41882340.60421 3896 3778 8.344650268555e-07 3897 3778 16203472.22754 3898 3778 -31210863.52937 3899 3778 17343750.0057 3779 3779 1241583328.715 3780 3779 13269811.8847 3781 3779 25790082.19602 3782 3779 107138521.2855 3783 3779 -1257253.053552 3784 3779 -13715162.23407 3785 3779 113190145.6041 3786 3779 -13258106.66415 3787 3779 7406192.227917 3788 3779 -9211261.686427 3885 3779 86719444.24762 3886 3779 17343749.9078 3887 3779 -121957897.9018 3888 3779 -0.03648543357849 3889 3779 -0.02920261025429 3890 3779 -251706576.231 3891 3779 21679860.55685 3892 3779 69374999.49133 3893 3779 -104457508.7431 3894 3779 -86719444.43019 3895 3779 8.940696716309e-07 3896 3779 -121047307.7997 3897 3779 -21679861.11823 3898 3779 17343750.0057 3899 3779 -38039431.35476 3780 3780 731873593.1548 3781 3780 63656944.434 3782 3780 18282582.06852 3783 3780 -88449163.50764 3784 3780 -63656944.434 3785 3780 12115157.22023 3786 3780 -339558601.0551 3787 3780 -63664153.72624 3788 3780 -14174508.59703 3789 3780 22166321.31964 3790 3780 50932764.83944 3791 3780 -9608497.922564 3885 3780 -13923315.16199 3886 3780 19444166.47861 3887 3780 26015832.7805 3888 3780 -36808280.87074 3889 3780 -16203472.0331 3890 3780 -21679860.55685 3891 3780 41127258.27048 3892 3780 16203472.22755 3893 3780 17343888.84954 3894 3780 -36072082.53397 3895 3780 -16203472.22754 3896 3780 -21679861.11823 3897 3780 -135326679.0276 3898 3780 -16203472.09792 3899 3780 -86719444.24762 3900 3780 -13923315.162 3901 3780 12962777.65241 3902 3780 -17343888.52033 3781 3781 636376493.3815 3782 3781 -30188925.21508 3783 3781 -63656944.434 3784 3781 -69351365.69847 3785 3781 6034664.450365 3786 3781 -63667758.37236 3787 3781 -40346533.53339 3788 3781 -19199086.44689 3789 3781 76399147.25916 3790 3781 22166321.31964 3791 3781 13164421.99706 3885 3781 12962777.65241 3886 3781 -13923315.162 3887 3781 -13874999.9393 3888 3781 -16203472.09791 3889 3781 -93520195.52345 3890 3781 -69374999.49133 3891 3781 16203472.22755 3892 3781 16821163.40287 3893 3781 13874999.85144 3894 3781 -16203472.22754 3895 3781 -31210863.52937 3896 3781 -17343750.0057 3897 3781 -16203472.0331 3898 3781 -59169888.51194 3899 3781 -17343749.90781 3900 3781 19444166.47861 3901 3781 -13923315.162 3902 3781 20812499.90895 3782 3782 809270793.6919 3783 3782 12458039.16496 3784 3782 6308970.006146 3785 3782 -7405416.779322 3786 3782 -12120471.86127 3787 3782 -15085251.33671 3788 3782 33187550.82531 3789 3782 -14412746.88385 3790 3782 8776281.331372 3791 3782 59110190.1857 3885 3782 17343888.52033 3886 3782 -20812499.90894 3887 3782 -37128840.43198 3888 3782 -21679860.74397 3889 3782 -69374999.6084 3890 3782 -104457508.7431 3891 3782 -17343888.84951 3892 3782 -13874999.85143 3893 3782 -181091253.0988 3894 3782 -21679861.11823 3895 3782 -17343750.0057 3896 3782 -38039431.35476 3897 3782 -86719444.24762 3898 3782 -17343749.94043 3899 3782 -121957897.9018 3900 3782 -26015832.7805 3901 3782 13874999.9393 3902 3782 -37128840.43199 3783 3783 1137565312.076 3784 3783 4.64916229248e-06 3785 3783 4571797.773345 3786 3783 153072235.6709 3787 3783 -3.814697265625e-06 3788 3783 1142949.443904 3792 3783 -223854518.1091 3793 3783 1.281499862671e-06 3794 3783 -3314544.719882 3795 3783 -89126355.34779 3796 3783 63656944.434 3797 3783 -13600988.60888 3888 3783 -113177912.5205 3889 3783 -1.952052116394e-06 3890 3783 86719444.4302 3891 3783 -36072082.53399 3892 3783 -16203472.22755 3893 3783 21679861.11823 3894 3783 65803613.40852 3895 3783 4.112720489502e-06 3896 3783 3.081560134888e-05 3897 3783 -14659514.18418 3898 3783 -1.010298728943e-05 3899 3783 8.165836334229e-06 3903 3783 -113177912.5204 3904 3783 6.407499313354e-07 3905 3783 -86719444.43019 3906 3783 -36072082.53397 3907 3783 16203472.22755 3908 3783 -21679861.11823 3784 3784 984782929.6775 3785 3784 -54860648.90923 3786 3784 -3.695487976074e-06 3787 3784 -88823909.23288 3788 3784 28253241.12114 3792 3784 2.622604370117e-06 3793 3784 56237222.37539 3794 3784 -13715162.23406 3795 3784 63656944.434 3796 3784 -70028557.53863 3797 3784 7680497.783698 3888 3784 -4.097819328308e-06 3889 3784 -41882340.60423 3890 3784 1.296401023865e-06 3891 3784 -16203472.22755 3892 3784 -31210863.52938 3893 3784 17343750.0057 3894 3784 4.053115844727e-06 3895 3784 26913861.39084 3896 3784 4.738569259644e-06 3897 3784 -7.331371307373e-06 3898 3784 -76232648.10076 3899 3784 69374999.9886 3903 3784 -1.177191734314e-06 3904 3784 -41882340.60421 3905 3784 8.344650268555e-07 3906 3784 16203472.22754 3907 3784 -31210863.52937 3908 3784 17343750.0057 3785 3785 1205835345.84 3786 3785 1142949.443904 3787 3785 26607407.78808 3788 3785 154975139.2593 3792 3785 -1257253.053552 3793 3785 -13715162.23407 3794 3785 113190145.6041 3795 3785 -13258106.66415 3796 3785 7406192.227917 3797 3785 -9211261.686427 3888 3785 86719444.4302 3889 3785 1.415610313416e-06 3890 3785 -121047307.7997 3891 3785 21679861.11823 3892 3785 17343750.0057 3893 3785 -38039431.35476 3894 3785 3.02791595459e-05 3895 3785 4.619359970093e-06 3896 3785 -289746007.2349 3897 3785 8.165836334229e-06 3898 3785 69374999.9886 3899 3785 -103546919.3888 3903 3785 -86719444.43019 3904 3785 8.940696716309e-07 3905 3785 -121047307.7997 3906 3785 -21679861.11823 3907 3785 17343750.0057 3908 3785 -38039431.35476 3786 3786 1236679322.481 3787 3786 63674967.6646 3788 3786 15441526.4422 3789 3786 49455964.79174 3790 3786 -63664153.72624 3791 3786 13608792.08924 3792 3786 -88449163.50764 3793 3786 -63656944.434 3794 3786 12115157.22023 3795 3786 -223854518.1091 3796 3786 1.281499862671e-06 3797 3786 -3314544.719882 3798 3786 -89126355.34779 3799 3786 63656944.434 3800 3786 -13600988.60888 3888 3786 -36072082.53399 3889 3786 16203472.22755 3890 3786 21679861.11823 3891 3786 -135326679.0277 3892 3786 -16203472.0331 3893 3786 86719444.24762 3894 3786 -14659514.18418 3895 3786 7.62939453125e-06 3896 3786 7.152557373047e-06 3897 3786 101875695.1567 3898 3786 16203471.90348 3899 3786 0.03654569387436 3900 3786 -36808280.87074 3901 3786 -16203472.09792 3902 3786 21679860.74398 3903 3786 -36072082.53397 3904 3786 -16203472.22754 3905 3786 -21679861.11823 3906 3786 -113177912.5204 3907 3786 6.407499313354e-07 3908 3786 -86719444.43019 3909 3786 -36072082.53397 3910 3786 16203472.22755 3911 3786 -21679861.11823 3787 3787 1064791031.509 3788 3787 -42507558.78941 3789 3787 -63667758.37236 3790 3787 -173356800.7659 3791 3787 23590660.68649 3792 3787 -63656944.434 3793 3787 -69351365.69847 3794 3787 6034664.450365 3795 3787 2.622604370117e-06 3796 3787 56237222.37539 3797 3787 -13715162.23406 3798 3787 63656944.434 3799 3787 -70028557.53863 3800 3787 7680497.783698 3888 3787 16203472.22755 3889 3787 -31210863.52938 3890 3787 -17343750.00569 3891 3787 -16203472.09792 3892 3787 -59169888.51195 3893 3787 17343749.94043 3894 3787 8.970499038696e-06 3895 3787 -76232648.10075 3896 3787 -69374999.9886 3897 3787 16203471.90348 3898 3787 58124724.28025 3899 3787 0.029221534729 3900 3787 -16203472.03311 3901 3787 -93520195.52346 3902 3787 69374999.6084 3903 3787 -16203472.22754 3904 3787 -31210863.52937 3905 3787 -17343750.0057 3906 3787 -1.177191734314e-06 3907 3787 -41882340.60421 3908 3787 8.344650268555e-07 3909 3787 16203472.22754 3910 3787 -31210863.52937 3911 3787 17343750.0057 3788 3788 1241583328.715 3789 3788 13269811.8847 3790 3788 25790082.19602 3791 3788 107138521.2855 3792 3788 12458039.16496 3793 3788 6308970.006146 3794 3788 -7405416.779322 3795 3788 -1257253.053552 3796 3788 -13715162.23407 3797 3788 113190145.6041 3798 3788 -13258106.66415 3799 3788 7406192.227917 3800 3788 -9211261.686427 3888 3788 21679861.11823 3889 3788 -17343750.00569 3890 3788 -38039431.35476 3891 3788 86719444.24762 3892 3788 17343749.9078 3893 3788 -121957897.9018 3894 3788 7.182359695435e-06 3895 3788 -69374999.9886 3896 3788 -103546919.3888 3897 3788 -0.03648543357849 3898 3788 -0.02920261025429 3899 3788 -251706576.231 3900 3788 21679860.55685 3901 3788 69374999.49133 3902 3788 -104457508.7431 3903 3788 -21679861.11823 3904 3788 -17343750.0057 3905 3788 -38039431.35476 3906 3788 -86719444.43019 3907 3788 8.940696716309e-07 3908 3788 -121047307.7997 3909 3788 -21679861.11823 3910 3788 17343750.0057 3911 3788 -38039431.35476 3789 3789 731873593.1548 3790 3789 63656944.434 3791 3789 18282582.06852 3795 3789 -88449163.50764 3796 3789 -63656944.434 3797 3789 12115157.22023 3798 3789 -339558601.0551 3799 3789 -63664153.72624 3800 3789 -14174508.59703 3801 3789 22166321.31964 3802 3789 50932764.83944 3803 3789 -9608497.922564 3891 3789 -13923315.16199 3892 3789 19444166.47861 3893 3789 26015832.7805 3897 3789 -36808280.87074 3898 3789 -16203472.0331 3899 3789 -21679860.55685 3900 3789 41127258.27048 3901 3789 16203472.22755 3902 3789 17343888.84954 3906 3789 -36072082.53397 3907 3789 -16203472.22754 3908 3789 -21679861.11823 3909 3789 -135326679.0276 3910 3789 -16203472.09792 3911 3789 -86719444.24762 3912 3789 -13923315.162 3913 3789 12962777.65241 3914 3789 -17343888.52033 3790 3790 636376493.3815 3791 3790 -30188925.21508 3795 3790 -63656944.434 3796 3790 -69351365.69847 3797 3790 6034664.450365 3798 3790 -63667758.37236 3799 3790 -40346533.53339 3800 3790 -19199086.44689 3801 3790 76399147.25916 3802 3790 22166321.31964 3803 3790 13164421.99706 3891 3790 12962777.65241 3892 3790 -13923315.162 3893 3790 -13874999.9393 3897 3790 -16203472.09791 3898 3790 -93520195.52345 3899 3790 -69374999.49133 3900 3790 16203472.22755 3901 3790 16821163.40287 3902 3790 13874999.85144 3906 3790 -16203472.22754 3907 3790 -31210863.52937 3908 3790 -17343750.0057 3909 3790 -16203472.0331 3910 3790 -59169888.51194 3911 3790 -17343749.90781 3912 3790 19444166.47861 3913 3790 -13923315.162 3914 3790 20812499.90895 3791 3791 809270793.6919 3795 3791 12458039.16496 3796 3791 6308970.006146 3797 3791 -7405416.779322 3798 3791 -12120471.86127 3799 3791 -15085251.33671 3800 3791 33187550.82531 3801 3791 -14412746.88385 3802 3791 8776281.331372 3803 3791 59110190.1857 3891 3791 17343888.52033 3892 3791 -20812499.90894 3893 3791 -37128840.43198 3897 3791 -21679860.74397 3898 3791 -69374999.6084 3899 3791 -104457508.7431 3900 3791 -17343888.84951 3901 3791 -13874999.85143 3902 3791 -181091253.0988 3906 3791 -21679861.11823 3907 3791 -17343750.0057 3908 3791 -38039431.35476 3909 3791 -86719444.24762 3910 3791 -17343749.94043 3911 3791 -121957897.9018 3912 3791 -26015832.7805 3913 3791 13874999.9393 3914 3791 -37128840.43199 3792 3792 1137565312.076 3793 3792 4.64916229248e-06 3794 3792 4571797.773345 3795 3792 153072235.6709 3796 3792 -3.814697265625e-06 3797 3792 1142949.443904 3804 3792 -223854518.1091 3805 3792 1.281499862671e-06 3806 3792 -3314544.719882 3807 3792 -89126355.34779 3808 3792 63656944.434 3809 3792 -13600988.60888 3894 3792 -113177912.5205 3895 3792 -1.952052116394e-06 3896 3792 86719444.4302 3897 3792 -36072082.53399 3898 3792 -16203472.22755 3899 3792 21679861.11823 3903 3792 65803613.40852 3904 3792 4.112720489502e-06 3905 3792 3.081560134888e-05 3906 3792 -14659514.18418 3907 3792 -1.010298728943e-05 3908 3792 8.165836334229e-06 3915 3792 -113177912.5204 3916 3792 6.407499313354e-07 3917 3792 -86719444.43019 3918 3792 -36072082.53397 3919 3792 16203472.22755 3920 3792 -21679861.11823 3793 3793 984782929.6775 3794 3793 -54860648.90923 3795 3793 -3.695487976074e-06 3796 3793 -88823909.23288 3797 3793 28253241.12114 3804 3793 2.622604370117e-06 3805 3793 56237222.37539 3806 3793 -13715162.23406 3807 3793 63656944.434 3808 3793 -70028557.53863 3809 3793 7680497.783698 3894 3793 -4.097819328308e-06 3895 3793 -41882340.60423 3896 3793 1.296401023865e-06 3897 3793 -16203472.22755 3898 3793 -31210863.52938 3899 3793 17343750.0057 3903 3793 4.053115844727e-06 3904 3793 26913861.39084 3905 3793 4.738569259644e-06 3906 3793 -7.331371307373e-06 3907 3793 -76232648.10076 3908 3793 69374999.9886 3915 3793 -1.177191734314e-06 3916 3793 -41882340.60421 3917 3793 8.344650268555e-07 3918 3793 16203472.22754 3919 3793 -31210863.52937 3920 3793 17343750.0057 3794 3794 1205835345.84 3795 3794 1142949.443904 3796 3794 26607407.78808 3797 3794 154975139.2593 3804 3794 -1257253.053552 3805 3794 -13715162.23407 3806 3794 113190145.6041 3807 3794 -13258106.66415 3808 3794 7406192.227917 3809 3794 -9211261.686427 3894 3794 86719444.4302 3895 3794 1.415610313416e-06 3896 3794 -121047307.7997 3897 3794 21679861.11823 3898 3794 17343750.0057 3899 3794 -38039431.35476 3903 3794 3.02791595459e-05 3904 3794 4.619359970093e-06 3905 3794 -289746007.2349 3906 3794 8.165836334229e-06 3907 3794 69374999.9886 3908 3794 -103546919.3888 3915 3794 -86719444.43019 3916 3794 8.940696716309e-07 3917 3794 -121047307.7997 3918 3794 -21679861.11823 3919 3794 17343750.0057 3920 3794 -38039431.35476 3795 3795 1137565312.076 3796 3795 4.64916229248e-06 3797 3795 4571797.773345 3798 3795 153072235.6709 3799 3795 -3.814697265625e-06 3800 3795 1142949.443904 3804 3795 -88449163.50764 3805 3795 -63656944.434 3806 3795 12115157.22023 3807 3795 -223854518.1091 3808 3795 1.281499862671e-06 3809 3795 -3314544.719882 3810 3795 -89126355.34779 3811 3795 63656944.434 3812 3795 -13600988.60888 3894 3795 -36072082.53399 3895 3795 16203472.22755 3896 3795 21679861.11823 3897 3795 -113177912.5205 3898 3795 -1.952052116394e-06 3899 3795 86719444.4302 3900 3795 -36072082.53399 3901 3795 -16203472.22755 3902 3795 21679861.11823 3903 3795 -14659514.18418 3904 3795 7.62939453125e-06 3905 3795 7.152557373047e-06 3906 3795 65803613.40852 3907 3795 4.112720489502e-06 3908 3795 3.081560134888e-05 3909 3795 -14659514.18418 3910 3795 -1.010298728943e-05 3911 3795 8.165836334229e-06 3915 3795 -36072082.53397 3916 3795 -16203472.22754 3917 3795 -21679861.11823 3918 3795 -113177912.5204 3919 3795 6.407499313354e-07 3920 3795 -86719444.43019 3921 3795 -36072082.53397 3922 3795 16203472.22755 3923 3795 -21679861.11823 3796 3796 984782929.6775 3797 3796 -54860648.90923 3798 3796 -3.695487976074e-06 3799 3796 -88823909.23288 3800 3796 28253241.12114 3804 3796 -63656944.434 3805 3796 -69351365.69847 3806 3796 6034664.450365 3807 3796 2.622604370117e-06 3808 3796 56237222.37539 3809 3796 -13715162.23406 3810 3796 63656944.434 3811 3796 -70028557.53863 3812 3796 7680497.783698 3894 3796 16203472.22755 3895 3796 -31210863.52938 3896 3796 -17343750.00569 3897 3796 -4.097819328308e-06 3898 3796 -41882340.60423 3899 3796 1.296401023865e-06 3900 3796 -16203472.22755 3901 3796 -31210863.52938 3902 3796 17343750.0057 3903 3796 8.970499038696e-06 3904 3796 -76232648.10075 3905 3796 -69374999.9886 3906 3796 4.053115844727e-06 3907 3796 26913861.39084 3908 3796 4.738569259644e-06 3909 3796 -7.331371307373e-06 3910 3796 -76232648.10076 3911 3796 69374999.9886 3915 3796 -16203472.22754 3916 3796 -31210863.52937 3917 3796 -17343750.0057 3918 3796 -1.177191734314e-06 3919 3796 -41882340.60421 3920 3796 8.344650268555e-07 3921 3796 16203472.22754 3922 3796 -31210863.52937 3923 3796 17343750.0057 3797 3797 1205835345.84 3798 3797 1142949.443904 3799 3797 26607407.78808 3800 3797 154975139.2593 3804 3797 12458039.16496 3805 3797 6308970.006146 3806 3797 -7405416.779322 3807 3797 -1257253.053552 3808 3797 -13715162.23407 3809 3797 113190145.6041 3810 3797 -13258106.66415 3811 3797 7406192.227917 3812 3797 -9211261.686427 3894 3797 21679861.11823 3895 3797 -17343750.00569 3896 3797 -38039431.35476 3897 3797 86719444.4302 3898 3797 1.415610313416e-06 3899 3797 -121047307.7997 3900 3797 21679861.11823 3901 3797 17343750.0057 3902 3797 -38039431.35476 3903 3797 7.182359695435e-06 3904 3797 -69374999.9886 3905 3797 -103546919.3888 3906 3797 3.02791595459e-05 3907 3797 4.619359970093e-06 3908 3797 -289746007.2349 3909 3797 8.165836334229e-06 3910 3797 69374999.9886 3911 3797 -103546919.3888 3915 3797 -21679861.11823 3916 3797 -17343750.0057 3917 3797 -38039431.35476 3918 3797 -86719444.43019 3919 3797 8.940696716309e-07 3920 3797 -121047307.7997 3921 3797 -21679861.11823 3922 3797 17343750.0057 3923 3797 -38039431.35476 3798 3798 1236679322.481 3799 3798 63674967.6646 3800 3798 15441526.4422 3801 3798 49455964.79174 3802 3798 -63664153.72624 3803 3798 13608792.08924 3807 3798 -88449163.50764 3808 3798 -63656944.434 3809 3798 12115157.22023 3810 3798 -223854518.1091 3811 3798 1.281499862671e-06 3812 3798 -3314544.719882 3813 3798 -89126355.34779 3814 3798 63656944.434 3815 3798 -13600988.60888 3897 3798 -36072082.53399 3898 3798 16203472.22755 3899 3798 21679861.11823 3900 3798 -135326679.0277 3901 3798 -16203472.0331 3902 3798 86719444.24762 3906 3798 -14659514.18418 3907 3798 7.62939453125e-06 3908 3798 7.152557373047e-06 3909 3798 101875695.1567 3910 3798 16203471.90348 3911 3798 0.03654569387436 3912 3798 -36808280.87074 3913 3798 -16203472.09792 3914 3798 21679860.74398 3918 3798 -36072082.53397 3919 3798 -16203472.22754 3920 3798 -21679861.11823 3921 3798 -113177912.5204 3922 3798 6.407499313354e-07 3923 3798 -86719444.43019 3924 3798 -36072082.53397 3925 3798 16203472.22755 3926 3798 -21679861.11823 3799 3799 1064791031.509 3800 3799 -42507558.78941 3801 3799 -63667758.37236 3802 3799 -173356800.7659 3803 3799 23590660.68649 3807 3799 -63656944.434 3808 3799 -69351365.69847 3809 3799 6034664.450365 3810 3799 2.622604370117e-06 3811 3799 56237222.37539 3812 3799 -13715162.23406 3813 3799 63656944.434 3814 3799 -70028557.53863 3815 3799 7680497.783698 3897 3799 16203472.22755 3898 3799 -31210863.52938 3899 3799 -17343750.00569 3900 3799 -16203472.09792 3901 3799 -59169888.51195 3902 3799 17343749.94043 3906 3799 8.970499038696e-06 3907 3799 -76232648.10075 3908 3799 -69374999.9886 3909 3799 16203471.90348 3910 3799 58124724.28025 3911 3799 0.029221534729 3912 3799 -16203472.03311 3913 3799 -93520195.52346 3914 3799 69374999.6084 3918 3799 -16203472.22754 3919 3799 -31210863.52937 3920 3799 -17343750.0057 3921 3799 -1.177191734314e-06 3922 3799 -41882340.60421 3923 3799 8.344650268555e-07 3924 3799 16203472.22754 3925 3799 -31210863.52937 3926 3799 17343750.0057 3800 3800 1241583328.715 3801 3800 13269811.8847 3802 3800 25790082.19602 3803 3800 107138521.2855 3807 3800 12458039.16496 3808 3800 6308970.006146 3809 3800 -7405416.779322 3810 3800 -1257253.053552 3811 3800 -13715162.23407 3812 3800 113190145.6041 3813 3800 -13258106.66415 3814 3800 7406192.227917 3815 3800 -9211261.686427 3897 3800 21679861.11823 3898 3800 -17343750.00569 3899 3800 -38039431.35476 3900 3800 86719444.24762 3901 3800 17343749.9078 3902 3800 -121957897.9018 3906 3800 7.182359695435e-06 3907 3800 -69374999.9886 3908 3800 -103546919.3888 3909 3800 -0.03648543357849 3910 3800 -0.02920261025429 3911 3800 -251706576.231 3912 3800 21679860.55685 3913 3800 69374999.49133 3914 3800 -104457508.7431 3918 3800 -21679861.11823 3919 3800 -17343750.0057 3920 3800 -38039431.35476 3921 3800 -86719444.43019 3922 3800 8.940696716309e-07 3923 3800 -121047307.7997 3924 3800 -21679861.11823 3925 3800 17343750.0057 3926 3800 -38039431.35476 3801 3801 731873593.1548 3802 3801 63656944.434 3803 3801 18282582.06852 3810 3801 -88449163.50764 3811 3801 -63656944.434 3812 3801 12115157.22023 3813 3801 -339558601.0551 3814 3801 -63664153.72624 3815 3801 -14174508.59703 3816 3801 22166321.31964 3817 3801 50932764.83944 3818 3801 -9608497.922564 3900 3801 -13923315.16199 3901 3801 19444166.47861 3902 3801 26015832.7805 3909 3801 -36808280.87074 3910 3801 -16203472.0331 3911 3801 -21679860.55685 3912 3801 41127258.27048 3913 3801 16203472.22755 3914 3801 17343888.84954 3921 3801 -36072082.53397 3922 3801 -16203472.22754 3923 3801 -21679861.11823 3924 3801 -135326679.0276 3925 3801 -16203472.09792 3926 3801 -86719444.24762 3927 3801 -13923315.162 3928 3801 12962777.65241 3929 3801 -17343888.52033 3802 3802 636376493.3815 3803 3802 -30188925.21508 3810 3802 -63656944.434 3811 3802 -69351365.69847 3812 3802 6034664.450365 3813 3802 -63667758.37236 3814 3802 -40346533.53339 3815 3802 -19199086.44689 3816 3802 76399147.25916 3817 3802 22166321.31964 3818 3802 13164421.99706 3900 3802 12962777.65241 3901 3802 -13923315.162 3902 3802 -13874999.9393 3909 3802 -16203472.09791 3910 3802 -93520195.52345 3911 3802 -69374999.49133 3912 3802 16203472.22755 3913 3802 16821163.40287 3914 3802 13874999.85144 3921 3802 -16203472.22754 3922 3802 -31210863.52937 3923 3802 -17343750.0057 3924 3802 -16203472.0331 3925 3802 -59169888.51194 3926 3802 -17343749.90781 3927 3802 19444166.47861 3928 3802 -13923315.162 3929 3802 20812499.90895 3803 3803 809270793.6919 3810 3803 12458039.16496 3811 3803 6308970.006146 3812 3803 -7405416.779322 3813 3803 -12120471.86127 3814 3803 -15085251.33671 3815 3803 33187550.82531 3816 3803 -14412746.88385 3817 3803 8776281.331372 3818 3803 59110190.1857 3900 3803 17343888.52033 3901 3803 -20812499.90894 3902 3803 -37128840.43198 3909 3803 -21679860.74397 3910 3803 -69374999.6084 3911 3803 -104457508.7431 3912 3803 -17343888.84951 3913 3803 -13874999.85143 3914 3803 -181091253.0988 3921 3803 -21679861.11823 3922 3803 -17343750.0057 3923 3803 -38039431.35476 3924 3803 -86719444.24762 3925 3803 -17343749.94043 3926 3803 -121957897.9018 3927 3803 -26015832.7805 3928 3803 13874999.9393 3929 3803 -37128840.43199 3804 3804 1137565312.076 3805 3804 4.64916229248e-06 3806 3804 4571797.773345 3807 3804 153072235.6709 3808 3804 -3.814697265625e-06 3809 3804 1142949.443904 3819 3804 -223854518.1091 3820 3804 1.281499862671e-06 3821 3804 -3314544.719882 3822 3804 -89126355.34779 3823 3804 63656944.434 3824 3804 -13600988.60888 3903 3804 -113177912.5205 3904 3804 -1.952052116394e-06 3905 3804 86719444.4302 3906 3804 -36072082.53399 3907 3804 -16203472.22755 3908 3804 21679861.11823 3915 3804 65803613.40852 3916 3804 4.112720489502e-06 3917 3804 3.081560134888e-05 3918 3804 -14659514.18418 3919 3804 -1.010298728943e-05 3920 3804 8.165836334229e-06 3930 3804 -113177912.5204 3931 3804 6.407499313354e-07 3932 3804 -86719444.43019 3933 3804 -36072082.53397 3934 3804 16203472.22755 3935 3804 -21679861.11823 3805 3805 984782929.6775 3806 3805 -54860648.90923 3807 3805 -3.695487976074e-06 3808 3805 -88823909.23288 3809 3805 28253241.12114 3819 3805 2.622604370117e-06 3820 3805 56237222.37539 3821 3805 -13715162.23406 3822 3805 63656944.434 3823 3805 -70028557.53863 3824 3805 7680497.783698 3903 3805 -4.097819328308e-06 3904 3805 -41882340.60423 3905 3805 1.296401023865e-06 3906 3805 -16203472.22755 3907 3805 -31210863.52938 3908 3805 17343750.0057 3915 3805 4.053115844727e-06 3916 3805 26913861.39084 3917 3805 4.738569259644e-06 3918 3805 -7.331371307373e-06 3919 3805 -76232648.10076 3920 3805 69374999.9886 3930 3805 -1.177191734314e-06 3931 3805 -41882340.60421 3932 3805 8.344650268555e-07 3933 3805 16203472.22754 3934 3805 -31210863.52937 3935 3805 17343750.0057 3806 3806 1205835345.84 3807 3806 1142949.443904 3808 3806 26607407.78808 3809 3806 154975139.2593 3819 3806 -1257253.053552 3820 3806 -13715162.23407 3821 3806 113190145.6041 3822 3806 -13258106.66415 3823 3806 7406192.227917 3824 3806 -9211261.686427 3903 3806 86719444.4302 3904 3806 1.415610313416e-06 3905 3806 -121047307.7997 3906 3806 21679861.11823 3907 3806 17343750.0057 3908 3806 -38039431.35476 3915 3806 3.02791595459e-05 3916 3806 4.619359970093e-06 3917 3806 -289746007.2349 3918 3806 8.165836334229e-06 3919 3806 69374999.9886 3920 3806 -103546919.3888 3930 3806 -86719444.43019 3931 3806 8.940696716309e-07 3932 3806 -121047307.7997 3933 3806 -21679861.11823 3934 3806 17343750.0057 3935 3806 -38039431.35476 3807 3807 1137565312.076 3808 3807 4.64916229248e-06 3809 3807 4571797.773345 3810 3807 153072235.6709 3811 3807 -3.814697265625e-06 3812 3807 1142949.443904 3819 3807 -88449163.50764 3820 3807 -63656944.434 3821 3807 12115157.22023 3822 3807 -223854518.1091 3823 3807 1.281499862671e-06 3824 3807 -3314544.719882 3825 3807 -89126355.34779 3826 3807 63656944.434 3827 3807 -13600988.60888 3903 3807 -36072082.53399 3904 3807 16203472.22755 3905 3807 21679861.11823 3906 3807 -113177912.5205 3907 3807 -1.952052116394e-06 3908 3807 86719444.4302 3909 3807 -36072082.53399 3910 3807 -16203472.22755 3911 3807 21679861.11823 3915 3807 -14659514.18418 3916 3807 7.62939453125e-06 3917 3807 7.152557373047e-06 3918 3807 65803613.40852 3919 3807 4.112720489502e-06 3920 3807 3.081560134888e-05 3921 3807 -14659514.18418 3922 3807 -1.010298728943e-05 3923 3807 8.165836334229e-06 3930 3807 -36072082.53397 3931 3807 -16203472.22754 3932 3807 -21679861.11823 3933 3807 -113177912.5204 3934 3807 6.407499313354e-07 3935 3807 -86719444.43019 3936 3807 -36072082.53397 3937 3807 16203472.22755 3938 3807 -21679861.11823 3808 3808 984782929.6775 3809 3808 -54860648.90923 3810 3808 -3.695487976074e-06 3811 3808 -88823909.23288 3812 3808 28253241.12114 3819 3808 -63656944.434 3820 3808 -69351365.69847 3821 3808 6034664.450365 3822 3808 2.622604370117e-06 3823 3808 56237222.37539 3824 3808 -13715162.23406 3825 3808 63656944.434 3826 3808 -70028557.53863 3827 3808 7680497.783698 3903 3808 16203472.22755 3904 3808 -31210863.52938 3905 3808 -17343750.00569 3906 3808 -4.097819328308e-06 3907 3808 -41882340.60423 3908 3808 1.296401023865e-06 3909 3808 -16203472.22755 3910 3808 -31210863.52938 3911 3808 17343750.0057 3915 3808 8.970499038696e-06 3916 3808 -76232648.10075 3917 3808 -69374999.9886 3918 3808 4.053115844727e-06 3919 3808 26913861.39084 3920 3808 4.738569259644e-06 3921 3808 -7.331371307373e-06 3922 3808 -76232648.10076 3923 3808 69374999.9886 3930 3808 -16203472.22754 3931 3808 -31210863.52937 3932 3808 -17343750.0057 3933 3808 -1.177191734314e-06 3934 3808 -41882340.60421 3935 3808 8.344650268555e-07 3936 3808 16203472.22754 3937 3808 -31210863.52937 3938 3808 17343750.0057 3809 3809 1205835345.84 3810 3809 1142949.443904 3811 3809 26607407.78808 3812 3809 154975139.2593 3819 3809 12458039.16496 3820 3809 6308970.006146 3821 3809 -7405416.779322 3822 3809 -1257253.053552 3823 3809 -13715162.23407 3824 3809 113190145.6041 3825 3809 -13258106.66415 3826 3809 7406192.227917 3827 3809 -9211261.686427 3903 3809 21679861.11823 3904 3809 -17343750.00569 3905 3809 -38039431.35476 3906 3809 86719444.4302 3907 3809 1.415610313416e-06 3908 3809 -121047307.7997 3909 3809 21679861.11823 3910 3809 17343750.0057 3911 3809 -38039431.35476 3915 3809 7.182359695435e-06 3916 3809 -69374999.9886 3917 3809 -103546919.3888 3918 3809 3.02791595459e-05 3919 3809 4.619359970093e-06 3920 3809 -289746007.2349 3921 3809 8.165836334229e-06 3922 3809 69374999.9886 3923 3809 -103546919.3888 3930 3809 -21679861.11823 3931 3809 -17343750.0057 3932 3809 -38039431.35476 3933 3809 -86719444.43019 3934 3809 8.940696716309e-07 3935 3809 -121047307.7997 3936 3809 -21679861.11823 3937 3809 17343750.0057 3938 3809 -38039431.35476 3810 3810 1137565312.076 3811 3810 4.64916229248e-06 3812 3810 4571797.773345 3813 3810 153072235.6709 3814 3810 -3.814697265625e-06 3815 3810 1142949.443904 3822 3810 -88449163.50764 3823 3810 -63656944.434 3824 3810 12115157.22023 3825 3810 -223854518.1091 3826 3810 1.281499862671e-06 3827 3810 -3314544.719882 3828 3810 -89126355.34779 3829 3810 63656944.434 3830 3810 -13600988.60888 3906 3810 -36072082.53399 3907 3810 16203472.22755 3908 3810 21679861.11823 3909 3810 -113177912.5205 3910 3810 -1.952052116394e-06 3911 3810 86719444.4302 3912 3810 -36072082.53399 3913 3810 -16203472.22755 3914 3810 21679861.11823 3918 3810 -14659514.18418 3919 3810 7.62939453125e-06 3920 3810 7.152557373047e-06 3921 3810 65803613.40852 3922 3810 4.112720489502e-06 3923 3810 3.081560134888e-05 3924 3810 -14659514.18418 3925 3810 -1.010298728943e-05 3926 3810 8.165836334229e-06 3933 3810 -36072082.53397 3934 3810 -16203472.22754 3935 3810 -21679861.11823 3936 3810 -113177912.5204 3937 3810 6.407499313354e-07 3938 3810 -86719444.43019 3939 3810 -36072082.53397 3940 3810 16203472.22755 3941 3810 -21679861.11823 3811 3811 984782929.6775 3812 3811 -54860648.90923 3813 3811 -3.695487976074e-06 3814 3811 -88823909.23288 3815 3811 28253241.12114 3822 3811 -63656944.434 3823 3811 -69351365.69847 3824 3811 6034664.450365 3825 3811 2.622604370117e-06 3826 3811 56237222.37539 3827 3811 -13715162.23406 3828 3811 63656944.434 3829 3811 -70028557.53863 3830 3811 7680497.783698 3906 3811 16203472.22755 3907 3811 -31210863.52938 3908 3811 -17343750.00569 3909 3811 -4.097819328308e-06 3910 3811 -41882340.60423 3911 3811 1.296401023865e-06 3912 3811 -16203472.22755 3913 3811 -31210863.52938 3914 3811 17343750.0057 3918 3811 8.970499038696e-06 3919 3811 -76232648.10075 3920 3811 -69374999.9886 3921 3811 4.053115844727e-06 3922 3811 26913861.39084 3923 3811 4.738569259644e-06 3924 3811 -7.331371307373e-06 3925 3811 -76232648.10076 3926 3811 69374999.9886 3933 3811 -16203472.22754 3934 3811 -31210863.52937 3935 3811 -17343750.0057 3936 3811 -1.177191734314e-06 3937 3811 -41882340.60421 3938 3811 8.344650268555e-07 3939 3811 16203472.22754 3940 3811 -31210863.52937 3941 3811 17343750.0057 3812 3812 1205835345.84 3813 3812 1142949.443904 3814 3812 26607407.78808 3815 3812 154975139.2593 3822 3812 12458039.16496 3823 3812 6308970.006146 3824 3812 -7405416.779322 3825 3812 -1257253.053552 3826 3812 -13715162.23407 3827 3812 113190145.6041 3828 3812 -13258106.66415 3829 3812 7406192.227917 3830 3812 -9211261.686427 3906 3812 21679861.11823 3907 3812 -17343750.00569 3908 3812 -38039431.35476 3909 3812 86719444.4302 3910 3812 1.415610313416e-06 3911 3812 -121047307.7997 3912 3812 21679861.11823 3913 3812 17343750.0057 3914 3812 -38039431.35476 3918 3812 7.182359695435e-06 3919 3812 -69374999.9886 3920 3812 -103546919.3888 3921 3812 3.02791595459e-05 3922 3812 4.619359970093e-06 3923 3812 -289746007.2349 3924 3812 8.165836334229e-06 3925 3812 69374999.9886 3926 3812 -103546919.3888 3933 3812 -21679861.11823 3934 3812 -17343750.0057 3935 3812 -38039431.35476 3936 3812 -86719444.43019 3937 3812 8.940696716309e-07 3938 3812 -121047307.7997 3939 3812 -21679861.11823 3940 3812 17343750.0057 3941 3812 -38039431.35476 3813 3813 1236679322.481 3814 3813 63674967.6646 3815 3813 15441526.4422 3816 3813 49455964.79174 3817 3813 -63664153.72624 3818 3813 13608792.08924 3825 3813 -88449163.50764 3826 3813 -63656944.434 3827 3813 12115157.22023 3828 3813 -223854518.1091 3829 3813 1.281499862671e-06 3830 3813 -3314544.719882 3831 3813 -89126355.34779 3832 3813 63656944.434 3833 3813 -13600988.60888 3909 3813 -36072082.53399 3910 3813 16203472.22755 3911 3813 21679861.11823 3912 3813 -135326679.0277 3913 3813 -16203472.0331 3914 3813 86719444.24762 3921 3813 -14659514.18418 3922 3813 7.62939453125e-06 3923 3813 7.152557373047e-06 3924 3813 101875695.1567 3925 3813 16203471.90348 3926 3813 0.03654569387436 3927 3813 -36808280.87074 3928 3813 -16203472.09792 3929 3813 21679860.74398 3936 3813 -36072082.53397 3937 3813 -16203472.22754 3938 3813 -21679861.11823 3939 3813 -113177912.5204 3940 3813 6.407499313354e-07 3941 3813 -86719444.43019 3942 3813 -36072082.53397 3943 3813 16203472.22755 3944 3813 -21679861.11823 3814 3814 1064791031.509 3815 3814 -42507558.78941 3816 3814 -63667758.37236 3817 3814 -173356800.7659 3818 3814 23590660.68649 3825 3814 -63656944.434 3826 3814 -69351365.69847 3827 3814 6034664.450365 3828 3814 2.622604370117e-06 3829 3814 56237222.37539 3830 3814 -13715162.23406 3831 3814 63656944.434 3832 3814 -70028557.53863 3833 3814 7680497.783698 3909 3814 16203472.22755 3910 3814 -31210863.52938 3911 3814 -17343750.00569 3912 3814 -16203472.09792 3913 3814 -59169888.51195 3914 3814 17343749.94043 3921 3814 8.970499038696e-06 3922 3814 -76232648.10075 3923 3814 -69374999.9886 3924 3814 16203471.90348 3925 3814 58124724.28025 3926 3814 0.029221534729 3927 3814 -16203472.03311 3928 3814 -93520195.52346 3929 3814 69374999.6084 3936 3814 -16203472.22754 3937 3814 -31210863.52937 3938 3814 -17343750.0057 3939 3814 -1.177191734314e-06 3940 3814 -41882340.60421 3941 3814 8.344650268555e-07 3942 3814 16203472.22754 3943 3814 -31210863.52937 3944 3814 17343750.0057 3815 3815 1241583328.715 3816 3815 13269811.8847 3817 3815 25790082.19602 3818 3815 107138521.2855 3825 3815 12458039.16496 3826 3815 6308970.006146 3827 3815 -7405416.779322 3828 3815 -1257253.053552 3829 3815 -13715162.23407 3830 3815 113190145.6041 3831 3815 -13258106.66415 3832 3815 7406192.227917 3833 3815 -9211261.686427 3909 3815 21679861.11823 3910 3815 -17343750.00569 3911 3815 -38039431.35476 3912 3815 86719444.24762 3913 3815 17343749.9078 3914 3815 -121957897.9018 3921 3815 7.182359695435e-06 3922 3815 -69374999.9886 3923 3815 -103546919.3888 3924 3815 -0.03648543357849 3925 3815 -0.02920261025429 3926 3815 -251706576.231 3927 3815 21679860.55685 3928 3815 69374999.49133 3929 3815 -104457508.7431 3936 3815 -21679861.11823 3937 3815 -17343750.0057 3938 3815 -38039431.35476 3939 3815 -86719444.43019 3940 3815 8.940696716309e-07 3941 3815 -121047307.7997 3942 3815 -21679861.11823 3943 3815 17343750.0057 3944 3815 -38039431.35476 3816 3816 731873593.1548 3817 3816 63656944.434 3818 3816 18282582.06852 3828 3816 -88449163.50764 3829 3816 -63656944.434 3830 3816 12115157.22023 3831 3816 -339558601.0551 3832 3816 -63664153.72624 3833 3816 -14174508.59703 3834 3816 22166321.31964 3835 3816 50932764.83944 3836 3816 -9608497.922564 3912 3816 -13923315.16199 3913 3816 19444166.47861 3914 3816 26015832.7805 3924 3816 -36808280.87074 3925 3816 -16203472.0331 3926 3816 -21679860.55685 3927 3816 41127258.27048 3928 3816 16203472.22755 3929 3816 17343888.84954 3939 3816 -36072082.53397 3940 3816 -16203472.22754 3941 3816 -21679861.11823 3942 3816 -135326679.0276 3943 3816 -16203472.09792 3944 3816 -86719444.24762 3945 3816 -13923315.162 3946 3816 12962777.65241 3947 3816 -17343888.52033 3817 3817 636376493.3815 3818 3817 -30188925.21508 3828 3817 -63656944.434 3829 3817 -69351365.69847 3830 3817 6034664.450365 3831 3817 -63667758.37236 3832 3817 -40346533.53339 3833 3817 -19199086.44689 3834 3817 76399147.25916 3835 3817 22166321.31964 3836 3817 13164421.99706 3912 3817 12962777.65241 3913 3817 -13923315.162 3914 3817 -13874999.9393 3924 3817 -16203472.09791 3925 3817 -93520195.52345 3926 3817 -69374999.49133 3927 3817 16203472.22755 3928 3817 16821163.40287 3929 3817 13874999.85144 3939 3817 -16203472.22754 3940 3817 -31210863.52937 3941 3817 -17343750.0057 3942 3817 -16203472.0331 3943 3817 -59169888.51194 3944 3817 -17343749.90781 3945 3817 19444166.47861 3946 3817 -13923315.162 3947 3817 20812499.90895 3818 3818 809270793.6919 3828 3818 12458039.16496 3829 3818 6308970.006146 3830 3818 -7405416.779322 3831 3818 -12120471.86127 3832 3818 -15085251.33671 3833 3818 33187550.82531 3834 3818 -14412746.88385 3835 3818 8776281.331372 3836 3818 59110190.1857 3912 3818 17343888.52033 3913 3818 -20812499.90894 3914 3818 -37128840.43198 3924 3818 -21679860.74397 3925 3818 -69374999.6084 3926 3818 -104457508.7431 3927 3818 -17343888.84951 3928 3818 -13874999.85143 3929 3818 -181091253.0988 3939 3818 -21679861.11823 3940 3818 -17343750.0057 3941 3818 -38039431.35476 3942 3818 -86719444.24762 3943 3818 -17343749.94043 3944 3818 -121957897.9018 3945 3818 -26015832.7805 3946 3818 13874999.9393 3947 3818 -37128840.43199 3819 3819 1137565312.076 3820 3819 4.64916229248e-06 3821 3819 4571797.773345 3822 3819 153072235.6709 3823 3819 -3.814697265625e-06 3824 3819 1142949.443904 3837 3819 -223854518.1091 3838 3819 1.281499862671e-06 3839 3819 -3314544.719882 3840 3819 -89126355.34779 3841 3819 63656944.434 3842 3819 -13600988.60888 3915 3819 -113177912.5205 3916 3819 -1.952052116394e-06 3917 3819 86719444.4302 3918 3819 -36072082.53399 3919 3819 -16203472.22755 3920 3819 21679861.11823 3930 3819 65803613.40852 3931 3819 4.112720489502e-06 3932 3819 3.081560134888e-05 3933 3819 -14659514.18418 3934 3819 -1.010298728943e-05 3935 3819 8.165836334229e-06 3948 3819 -113177912.5204 3949 3819 6.407499313354e-07 3950 3819 -86719444.43019 3951 3819 -36072082.53397 3952 3819 16203472.22755 3953 3819 -21679861.11823 3820 3820 984782929.6775 3821 3820 -54860648.90923 3822 3820 -3.695487976074e-06 3823 3820 -88823909.23288 3824 3820 28253241.12114 3837 3820 2.622604370117e-06 3838 3820 56237222.37539 3839 3820 -13715162.23406 3840 3820 63656944.434 3841 3820 -70028557.53863 3842 3820 7680497.783698 3915 3820 -4.097819328308e-06 3916 3820 -41882340.60423 3917 3820 1.296401023865e-06 3918 3820 -16203472.22755 3919 3820 -31210863.52938 3920 3820 17343750.0057 3930 3820 4.053115844727e-06 3931 3820 26913861.39084 3932 3820 4.738569259644e-06 3933 3820 -7.331371307373e-06 3934 3820 -76232648.10076 3935 3820 69374999.9886 3948 3820 -1.177191734314e-06 3949 3820 -41882340.60421 3950 3820 8.344650268555e-07 3951 3820 16203472.22754 3952 3820 -31210863.52937 3953 3820 17343750.0057 3821 3821 1205835345.84 3822 3821 1142949.443904 3823 3821 26607407.78808 3824 3821 154975139.2593 3837 3821 -1257253.053552 3838 3821 -13715162.23407 3839 3821 113190145.6041 3840 3821 -13258106.66415 3841 3821 7406192.227917 3842 3821 -9211261.686427 3915 3821 86719444.4302 3916 3821 1.415610313416e-06 3917 3821 -121047307.7997 3918 3821 21679861.11823 3919 3821 17343750.0057 3920 3821 -38039431.35476 3930 3821 3.02791595459e-05 3931 3821 4.619359970093e-06 3932 3821 -289746007.2349 3933 3821 8.165836334229e-06 3934 3821 69374999.9886 3935 3821 -103546919.3888 3948 3821 -86719444.43019 3949 3821 8.940696716309e-07 3950 3821 -121047307.7997 3951 3821 -21679861.11823 3952 3821 17343750.0057 3953 3821 -38039431.35476 3822 3822 1137565312.076 3823 3822 4.64916229248e-06 3824 3822 4571797.773345 3825 3822 153072235.6709 3826 3822 -3.814697265625e-06 3827 3822 1142949.443904 3837 3822 -88449163.50764 3838 3822 -63656944.434 3839 3822 12115157.22023 3840 3822 -223854518.1091 3841 3822 1.281499862671e-06 3842 3822 -3314544.719882 3843 3822 -89126355.34779 3844 3822 63656944.434 3845 3822 -13600988.60888 3915 3822 -36072082.53399 3916 3822 16203472.22755 3917 3822 21679861.11823 3918 3822 -113177912.5205 3919 3822 -1.952052116394e-06 3920 3822 86719444.4302 3921 3822 -36072082.53399 3922 3822 -16203472.22755 3923 3822 21679861.11823 3930 3822 -14659514.18418 3931 3822 7.62939453125e-06 3932 3822 7.152557373047e-06 3933 3822 65803613.40852 3934 3822 4.112720489502e-06 3935 3822 3.081560134888e-05 3936 3822 -14659514.18418 3937 3822 -1.010298728943e-05 3938 3822 8.165836334229e-06 3948 3822 -36072082.53397 3949 3822 -16203472.22754 3950 3822 -21679861.11823 3951 3822 -113177912.5204 3952 3822 6.407499313354e-07 3953 3822 -86719444.43019 3954 3822 -36072082.53397 3955 3822 16203472.22755 3956 3822 -21679861.11823 3823 3823 984782929.6775 3824 3823 -54860648.90923 3825 3823 -3.695487976074e-06 3826 3823 -88823909.23288 3827 3823 28253241.12114 3837 3823 -63656944.434 3838 3823 -69351365.69847 3839 3823 6034664.450365 3840 3823 2.622604370117e-06 3841 3823 56237222.37539 3842 3823 -13715162.23406 3843 3823 63656944.434 3844 3823 -70028557.53863 3845 3823 7680497.783698 3915 3823 16203472.22755 3916 3823 -31210863.52938 3917 3823 -17343750.00569 3918 3823 -4.097819328308e-06 3919 3823 -41882340.60423 3920 3823 1.296401023865e-06 3921 3823 -16203472.22755 3922 3823 -31210863.52938 3923 3823 17343750.0057 3930 3823 8.970499038696e-06 3931 3823 -76232648.10075 3932 3823 -69374999.9886 3933 3823 4.053115844727e-06 3934 3823 26913861.39084 3935 3823 4.738569259644e-06 3936 3823 -7.331371307373e-06 3937 3823 -76232648.10076 3938 3823 69374999.9886 3948 3823 -16203472.22754 3949 3823 -31210863.52937 3950 3823 -17343750.0057 3951 3823 -1.177191734314e-06 3952 3823 -41882340.60421 3953 3823 8.344650268555e-07 3954 3823 16203472.22754 3955 3823 -31210863.52937 3956 3823 17343750.0057 3824 3824 1205835345.84 3825 3824 1142949.443904 3826 3824 26607407.78808 3827 3824 154975139.2593 3837 3824 12458039.16496 3838 3824 6308970.006146 3839 3824 -7405416.779322 3840 3824 -1257253.053552 3841 3824 -13715162.23407 3842 3824 113190145.6041 3843 3824 -13258106.66415 3844 3824 7406192.227917 3845 3824 -9211261.686427 3915 3824 21679861.11823 3916 3824 -17343750.00569 3917 3824 -38039431.35476 3918 3824 86719444.4302 3919 3824 1.415610313416e-06 3920 3824 -121047307.7997 3921 3824 21679861.11823 3922 3824 17343750.0057 3923 3824 -38039431.35476 3930 3824 7.182359695435e-06 3931 3824 -69374999.9886 3932 3824 -103546919.3888 3933 3824 3.02791595459e-05 3934 3824 4.619359970093e-06 3935 3824 -289746007.2349 3936 3824 8.165836334229e-06 3937 3824 69374999.9886 3938 3824 -103546919.3888 3948 3824 -21679861.11823 3949 3824 -17343750.0057 3950 3824 -38039431.35476 3951 3824 -86719444.43019 3952 3824 8.940696716309e-07 3953 3824 -121047307.7997 3954 3824 -21679861.11823 3955 3824 17343750.0057 3956 3824 -38039431.35476 3825 3825 1137565312.076 3826 3825 4.64916229248e-06 3827 3825 4571797.773345 3828 3825 153072235.6709 3829 3825 -3.814697265625e-06 3830 3825 1142949.443904 3840 3825 -88449163.50764 3841 3825 -63656944.434 3842 3825 12115157.22023 3843 3825 -223854518.1091 3844 3825 1.281499862671e-06 3845 3825 -3314544.719882 3846 3825 -89126355.34779 3847 3825 63656944.434 3848 3825 -13600988.60888 3918 3825 -36072082.53399 3919 3825 16203472.22755 3920 3825 21679861.11823 3921 3825 -113177912.5205 3922 3825 -1.952052116394e-06 3923 3825 86719444.4302 3924 3825 -36072082.53399 3925 3825 -16203472.22755 3926 3825 21679861.11823 3933 3825 -14659514.18418 3934 3825 7.62939453125e-06 3935 3825 7.152557373047e-06 3936 3825 65803613.40852 3937 3825 4.112720489502e-06 3938 3825 3.081560134888e-05 3939 3825 -14659514.18418 3940 3825 -1.010298728943e-05 3941 3825 8.165836334229e-06 3951 3825 -36072082.53397 3952 3825 -16203472.22754 3953 3825 -21679861.11823 3954 3825 -113177912.5204 3955 3825 6.407499313354e-07 3956 3825 -86719444.43019 3957 3825 -36072082.53397 3958 3825 16203472.22755 3959 3825 -21679861.11823 3826 3826 984782929.6775 3827 3826 -54860648.90923 3828 3826 -3.695487976074e-06 3829 3826 -88823909.23288 3830 3826 28253241.12114 3840 3826 -63656944.434 3841 3826 -69351365.69847 3842 3826 6034664.450365 3843 3826 2.622604370117e-06 3844 3826 56237222.37539 3845 3826 -13715162.23406 3846 3826 63656944.434 3847 3826 -70028557.53863 3848 3826 7680497.783698 3918 3826 16203472.22755 3919 3826 -31210863.52938 3920 3826 -17343750.00569 3921 3826 -4.097819328308e-06 3922 3826 -41882340.60423 3923 3826 1.296401023865e-06 3924 3826 -16203472.22755 3925 3826 -31210863.52938 3926 3826 17343750.0057 3933 3826 8.970499038696e-06 3934 3826 -76232648.10075 3935 3826 -69374999.9886 3936 3826 4.053115844727e-06 3937 3826 26913861.39084 3938 3826 4.738569259644e-06 3939 3826 -7.331371307373e-06 3940 3826 -76232648.10076 3941 3826 69374999.9886 3951 3826 -16203472.22754 3952 3826 -31210863.52937 3953 3826 -17343750.0057 3954 3826 -1.177191734314e-06 3955 3826 -41882340.60421 3956 3826 8.344650268555e-07 3957 3826 16203472.22754 3958 3826 -31210863.52937 3959 3826 17343750.0057 3827 3827 1205835345.84 3828 3827 1142949.443904 3829 3827 26607407.78808 3830 3827 154975139.2593 3840 3827 12458039.16496 3841 3827 6308970.006146 3842 3827 -7405416.779322 3843 3827 -1257253.053552 3844 3827 -13715162.23407 3845 3827 113190145.6041 3846 3827 -13258106.66415 3847 3827 7406192.227917 3848 3827 -9211261.686427 3918 3827 21679861.11823 3919 3827 -17343750.00569 3920 3827 -38039431.35476 3921 3827 86719444.4302 3922 3827 1.415610313416e-06 3923 3827 -121047307.7997 3924 3827 21679861.11823 3925 3827 17343750.0057 3926 3827 -38039431.35476 3933 3827 7.182359695435e-06 3934 3827 -69374999.9886 3935 3827 -103546919.3888 3936 3827 3.02791595459e-05 3937 3827 4.619359970093e-06 3938 3827 -289746007.2349 3939 3827 8.165836334229e-06 3940 3827 69374999.9886 3941 3827 -103546919.3888 3951 3827 -21679861.11823 3952 3827 -17343750.0057 3953 3827 -38039431.35476 3954 3827 -86719444.43019 3955 3827 8.940696716309e-07 3956 3827 -121047307.7997 3957 3827 -21679861.11823 3958 3827 17343750.0057 3959 3827 -38039431.35476 3828 3828 1137565312.076 3829 3828 4.64916229248e-06 3830 3828 4571797.773345 3831 3828 153072235.6709 3832 3828 -3.814697265625e-06 3833 3828 1142949.443904 3843 3828 -88449163.50764 3844 3828 -63656944.434 3845 3828 12115157.22023 3846 3828 -223854518.1091 3847 3828 1.281499862671e-06 3848 3828 -3314544.719882 3849 3828 -89126355.34779 3850 3828 63656944.434 3851 3828 -13600988.60888 3921 3828 -36072082.53399 3922 3828 16203472.22755 3923 3828 21679861.11823 3924 3828 -113177912.5205 3925 3828 -1.952052116394e-06 3926 3828 86719444.4302 3927 3828 -36072082.53399 3928 3828 -16203472.22755 3929 3828 21679861.11823 3936 3828 -14659514.18418 3937 3828 7.62939453125e-06 3938 3828 7.152557373047e-06 3939 3828 65803613.40852 3940 3828 4.112720489502e-06 3941 3828 3.081560134888e-05 3942 3828 -14659514.18418 3943 3828 -1.010298728943e-05 3944 3828 8.165836334229e-06 3954 3828 -36072082.53397 3955 3828 -16203472.22754 3956 3828 -21679861.11823 3957 3828 -113177912.5204 3958 3828 6.407499313354e-07 3959 3828 -86719444.43019 3960 3828 -36072082.53397 3961 3828 16203472.22755 3962 3828 -21679861.11823 3829 3829 984782929.6775 3830 3829 -54860648.90923 3831 3829 -3.695487976074e-06 3832 3829 -88823909.23288 3833 3829 28253241.12114 3843 3829 -63656944.434 3844 3829 -69351365.69847 3845 3829 6034664.450365 3846 3829 2.622604370117e-06 3847 3829 56237222.37539 3848 3829 -13715162.23406 3849 3829 63656944.434 3850 3829 -70028557.53863 3851 3829 7680497.783698 3921 3829 16203472.22755 3922 3829 -31210863.52938 3923 3829 -17343750.00569 3924 3829 -4.097819328308e-06 3925 3829 -41882340.60423 3926 3829 1.296401023865e-06 3927 3829 -16203472.22755 3928 3829 -31210863.52938 3929 3829 17343750.0057 3936 3829 8.970499038696e-06 3937 3829 -76232648.10075 3938 3829 -69374999.9886 3939 3829 4.053115844727e-06 3940 3829 26913861.39084 3941 3829 4.738569259644e-06 3942 3829 -7.331371307373e-06 3943 3829 -76232648.10076 3944 3829 69374999.9886 3954 3829 -16203472.22754 3955 3829 -31210863.52937 3956 3829 -17343750.0057 3957 3829 -1.177191734314e-06 3958 3829 -41882340.60421 3959 3829 8.344650268555e-07 3960 3829 16203472.22754 3961 3829 -31210863.52937 3962 3829 17343750.0057 3830 3830 1205835345.84 3831 3830 1142949.443904 3832 3830 26607407.78808 3833 3830 154975139.2593 3843 3830 12458039.16496 3844 3830 6308970.006146 3845 3830 -7405416.779322 3846 3830 -1257253.053552 3847 3830 -13715162.23407 3848 3830 113190145.6041 3849 3830 -13258106.66415 3850 3830 7406192.227917 3851 3830 -9211261.686427 3921 3830 21679861.11823 3922 3830 -17343750.00569 3923 3830 -38039431.35476 3924 3830 86719444.4302 3925 3830 1.415610313416e-06 3926 3830 -121047307.7997 3927 3830 21679861.11823 3928 3830 17343750.0057 3929 3830 -38039431.35476 3936 3830 7.182359695435e-06 3937 3830 -69374999.9886 3938 3830 -103546919.3888 3939 3830 3.02791595459e-05 3940 3830 4.619359970093e-06 3941 3830 -289746007.2349 3942 3830 8.165836334229e-06 3943 3830 69374999.9886 3944 3830 -103546919.3888 3954 3830 -21679861.11823 3955 3830 -17343750.0057 3956 3830 -38039431.35476 3957 3830 -86719444.43019 3958 3830 8.940696716309e-07 3959 3830 -121047307.7997 3960 3830 -21679861.11823 3961 3830 17343750.0057 3962 3830 -38039431.35476 3831 3831 1236679322.481 3832 3831 63674967.6646 3833 3831 15441526.4422 3834 3831 49455964.79174 3835 3831 -63664153.72624 3836 3831 13608792.08924 3846 3831 -88449163.50764 3847 3831 -63656944.434 3848 3831 12115157.22023 3849 3831 -223854518.1091 3850 3831 1.281499862671e-06 3851 3831 -3314544.719882 3852 3831 -89126355.34779 3853 3831 63656944.434 3854 3831 -13600988.60888 3924 3831 -36072082.53399 3925 3831 16203472.22755 3926 3831 21679861.11823 3927 3831 -135326679.0277 3928 3831 -16203472.0331 3929 3831 86719444.24762 3939 3831 -14659514.18418 3940 3831 7.62939453125e-06 3941 3831 7.152557373047e-06 3942 3831 101875695.1567 3943 3831 16203471.90348 3944 3831 0.03654569387436 3945 3831 -36808280.87074 3946 3831 -16203472.09792 3947 3831 21679860.74398 3957 3831 -36072082.53397 3958 3831 -16203472.22754 3959 3831 -21679861.11823 3960 3831 -113177912.5204 3961 3831 6.407499313354e-07 3962 3831 -86719444.43019 3963 3831 -36072082.53397 3964 3831 16203472.22755 3965 3831 -21679861.11823 3832 3832 1064791031.509 3833 3832 -42507558.78941 3834 3832 -63667758.37236 3835 3832 -173356800.7659 3836 3832 23590660.68649 3846 3832 -63656944.434 3847 3832 -69351365.69847 3848 3832 6034664.450365 3849 3832 2.622604370117e-06 3850 3832 56237222.37539 3851 3832 -13715162.23406 3852 3832 63656944.434 3853 3832 -70028557.53863 3854 3832 7680497.783698 3924 3832 16203472.22755 3925 3832 -31210863.52938 3926 3832 -17343750.00569 3927 3832 -16203472.09792 3928 3832 -59169888.51195 3929 3832 17343749.94043 3939 3832 8.970499038696e-06 3940 3832 -76232648.10075 3941 3832 -69374999.9886 3942 3832 16203471.90348 3943 3832 58124724.28025 3944 3832 0.029221534729 3945 3832 -16203472.03311 3946 3832 -93520195.52346 3947 3832 69374999.6084 3957 3832 -16203472.22754 3958 3832 -31210863.52937 3959 3832 -17343750.0057 3960 3832 -1.177191734314e-06 3961 3832 -41882340.60421 3962 3832 8.344650268555e-07 3963 3832 16203472.22754 3964 3832 -31210863.52937 3965 3832 17343750.0057 3833 3833 1241583328.715 3834 3833 13269811.8847 3835 3833 25790082.19602 3836 3833 107138521.2855 3846 3833 12458039.16496 3847 3833 6308970.006146 3848 3833 -7405416.779322 3849 3833 -1257253.053552 3850 3833 -13715162.23407 3851 3833 113190145.6041 3852 3833 -13258106.66415 3853 3833 7406192.227917 3854 3833 -9211261.686427 3924 3833 21679861.11823 3925 3833 -17343750.00569 3926 3833 -38039431.35476 3927 3833 86719444.24762 3928 3833 17343749.9078 3929 3833 -121957897.9018 3939 3833 7.182359695435e-06 3940 3833 -69374999.9886 3941 3833 -103546919.3888 3942 3833 -0.03648543357849 3943 3833 -0.02920261025429 3944 3833 -251706576.231 3945 3833 21679860.55685 3946 3833 69374999.49133 3947 3833 -104457508.7431 3957 3833 -21679861.11823 3958 3833 -17343750.0057 3959 3833 -38039431.35476 3960 3833 -86719444.43019 3961 3833 8.940696716309e-07 3962 3833 -121047307.7997 3963 3833 -21679861.11823 3964 3833 17343750.0057 3965 3833 -38039431.35476 3834 3834 753206313.808 3835 3834 68026432.09525 3836 3834 -4626567.456927 3849 3834 -88449163.50764 3850 3834 -63656944.434 3851 3834 12115157.22023 3852 3834 -341975368.7049 3853 3834 -68039344.23401 3854 3834 -876918.7379556 3855 3834 31371891.95152 3856 3834 50938467.68596 3857 3834 -1381632.119869 3927 3834 -13923315.16199 3928 3834 19444166.47861 3929 3834 26015832.7805 3942 3834 -36808280.87074 3943 3834 -16203472.0331 3944 3834 -21679860.55685 3945 3834 42592361.7517 3946 3834 17468608.18462 3947 3834 17682222.18139 3960 3834 -36072082.53397 3961 3834 -16203472.22754 3962 3834 -21679861.11823 3963 3834 -139005882.4837 3964 3834 -17468608.05498 3965 3834 -88411110.90688 3966 3834 -13882071.21844 3967 3834 12962777.65241 3968 3834 -18020555.17262 3835 3835 652353022.169 3836 3835 -29654678.01534 3849 3835 -63656944.434 3850 3835 -69351365.69847 3851 3835 6034664.450365 3852 3835 -68045800.30339 3853 3835 -40783133.78399 3854 3835 -8009373.208703 3855 3835 76407701.52894 3856 3835 34747916.41813 3857 3835 1988516.814094 3927 3835 12962777.65241 3928 3835 -13923315.162 3929 3835 -13874999.9393 3942 3835 -16203472.09791 3943 3835 -93520195.52345 3944 3835 -69374999.49133 3945 3835 17468608.18461 3946 3835 16743847.91339 3947 3835 14145833.18359 3960 3835 -16203472.22754 3961 3835 -31210863.52937 3962 3835 -17343750.0057 3963 3835 -17468607.99017 3964 3835 -62280769.56998 3965 3835 -18697916.56855 3966 3835 19444166.47861 3967 3835 -12907974.64576 3968 3835 20270833.25379 3836 3836 845960452.2258 3849 3836 12458039.16496 3850 3836 6308970.006146 3851 3836 -7405416.779322 3852 3836 -3628661.835378 3853 3836 -7464235.36192 3854 3836 50316458.1007 3855 3836 -2072448.179803 3856 3836 1443101.03928 3857 3836 80282354.07081 3927 3836 17343888.52033 3928 3836 -20812499.90894 3929 3836 -37128840.43198 3942 3836 -21679860.74397 3943 3836 -69374999.6084 3944 3836 -104457508.7431 3945 3836 -17682222.18136 3946 3836 -14145833.18358 3947 3836 -183017309.7474 3960 3836 -21679861.11823 3961 3836 -17343750.0057 3962 3836 -38039431.35476 3963 3836 -88411110.90688 3964 3836 -18697916.60118 3965 3836 -124962011.2801 3966 3836 -27030832.75893 3967 3836 13062499.95656 3968 3836 -37992953.15516 3837 3837 1137565312.076 3838 3837 4.64916229248e-06 3839 3837 4571797.773345 3840 3837 153072235.6709 3841 3837 -3.814697265625e-06 3842 3837 1142949.443904 3858 3837 -223854518.1091 3859 3837 1.281499862671e-06 3860 3837 -3314544.719882 3861 3837 -89126355.34779 3862 3837 63656944.434 3863 3837 -13600988.60888 3930 3837 -113177912.5205 3931 3837 -1.952052116394e-06 3932 3837 86719444.4302 3933 3837 -36072082.53399 3934 3837 -16203472.22755 3935 3837 21679861.11823 3948 3837 65803613.40852 3949 3837 4.112720489502e-06 3950 3837 3.081560134888e-05 3951 3837 -14659514.18418 3952 3837 -1.010298728943e-05 3953 3837 8.165836334229e-06 3969 3837 -113177912.5204 3970 3837 6.407499313354e-07 3971 3837 -86719444.43019 3972 3837 -36072082.53397 3973 3837 16203472.22755 3974 3837 -21679861.11823 3838 3838 984782929.6775 3839 3838 -54860648.90923 3840 3838 -3.695487976074e-06 3841 3838 -88823909.23288 3842 3838 28253241.12114 3858 3838 2.622604370117e-06 3859 3838 56237222.37539 3860 3838 -13715162.23406 3861 3838 63656944.434 3862 3838 -70028557.53863 3863 3838 7680497.783698 3930 3838 -4.097819328308e-06 3931 3838 -41882340.60423 3932 3838 1.296401023865e-06 3933 3838 -16203472.22755 3934 3838 -31210863.52938 3935 3838 17343750.0057 3948 3838 4.053115844727e-06 3949 3838 26913861.39084 3950 3838 4.738569259644e-06 3951 3838 -7.331371307373e-06 3952 3838 -76232648.10076 3953 3838 69374999.9886 3969 3838 -1.177191734314e-06 3970 3838 -41882340.60421 3971 3838 8.344650268555e-07 3972 3838 16203472.22754 3973 3838 -31210863.52937 3974 3838 17343750.0057 3839 3839 1205835345.84 3840 3839 1142949.443904 3841 3839 26607407.78808 3842 3839 154975139.2593 3858 3839 -1257253.053552 3859 3839 -13715162.23407 3860 3839 113190145.6041 3861 3839 -13258106.66415 3862 3839 7406192.227917 3863 3839 -9211261.686427 3930 3839 86719444.4302 3931 3839 1.415610313416e-06 3932 3839 -121047307.7997 3933 3839 21679861.11823 3934 3839 17343750.0057 3935 3839 -38039431.35476 3948 3839 3.02791595459e-05 3949 3839 4.619359970093e-06 3950 3839 -289746007.2349 3951 3839 8.165836334229e-06 3952 3839 69374999.9886 3953 3839 -103546919.3888 3969 3839 -86719444.43019 3970 3839 8.940696716309e-07 3971 3839 -121047307.7997 3972 3839 -21679861.11823 3973 3839 17343750.0057 3974 3839 -38039431.35476 3840 3840 1137565312.076 3841 3840 4.64916229248e-06 3842 3840 4571797.773345 3843 3840 153072235.6709 3844 3840 -3.814697265625e-06 3845 3840 1142949.443904 3858 3840 -88449163.50764 3859 3840 -63656944.434 3860 3840 12115157.22023 3861 3840 -223854518.1091 3862 3840 1.281499862671e-06 3863 3840 -3314544.719882 3864 3840 -89126355.34779 3865 3840 63656944.434 3866 3840 -13600988.60888 3930 3840 -36072082.53399 3931 3840 16203472.22755 3932 3840 21679861.11823 3933 3840 -113177912.5205 3934 3840 -1.952052116394e-06 3935 3840 86719444.4302 3936 3840 -36072082.53399 3937 3840 -16203472.22755 3938 3840 21679861.11823 3948 3840 -14659514.18418 3949 3840 7.62939453125e-06 3950 3840 7.152557373047e-06 3951 3840 65803613.40852 3952 3840 4.112720489502e-06 3953 3840 3.081560134888e-05 3954 3840 -14659514.18418 3955 3840 -1.010298728943e-05 3956 3840 8.165836334229e-06 3969 3840 -36072082.53397 3970 3840 -16203472.22754 3971 3840 -21679861.11823 3972 3840 -113177912.5204 3973 3840 6.407499313354e-07 3974 3840 -86719444.43019 3975 3840 -36072082.53397 3976 3840 16203472.22755 3977 3840 -21679861.11823 3841 3841 984782929.6775 3842 3841 -54860648.90923 3843 3841 -3.695487976074e-06 3844 3841 -88823909.23288 3845 3841 28253241.12114 3858 3841 -63656944.434 3859 3841 -69351365.69847 3860 3841 6034664.450365 3861 3841 2.622604370117e-06 3862 3841 56237222.37539 3863 3841 -13715162.23406 3864 3841 63656944.434 3865 3841 -70028557.53863 3866 3841 7680497.783698 3930 3841 16203472.22755 3931 3841 -31210863.52938 3932 3841 -17343750.00569 3933 3841 -4.097819328308e-06 3934 3841 -41882340.60423 3935 3841 1.296401023865e-06 3936 3841 -16203472.22755 3937 3841 -31210863.52938 3938 3841 17343750.0057 3948 3841 8.970499038696e-06 3949 3841 -76232648.10075 3950 3841 -69374999.9886 3951 3841 4.053115844727e-06 3952 3841 26913861.39084 3953 3841 4.738569259644e-06 3954 3841 -7.331371307373e-06 3955 3841 -76232648.10076 3956 3841 69374999.9886 3969 3841 -16203472.22754 3970 3841 -31210863.52937 3971 3841 -17343750.0057 3972 3841 -1.177191734314e-06 3973 3841 -41882340.60421 3974 3841 8.344650268555e-07 3975 3841 16203472.22754 3976 3841 -31210863.52937 3977 3841 17343750.0057 3842 3842 1205835345.84 3843 3842 1142949.443904 3844 3842 26607407.78808 3845 3842 154975139.2593 3858 3842 12458039.16496 3859 3842 6308970.006146 3860 3842 -7405416.779322 3861 3842 -1257253.053552 3862 3842 -13715162.23407 3863 3842 113190145.6041 3864 3842 -13258106.66415 3865 3842 7406192.227917 3866 3842 -9211261.686427 3930 3842 21679861.11823 3931 3842 -17343750.00569 3932 3842 -38039431.35476 3933 3842 86719444.4302 3934 3842 1.415610313416e-06 3935 3842 -121047307.7997 3936 3842 21679861.11823 3937 3842 17343750.0057 3938 3842 -38039431.35476 3948 3842 7.182359695435e-06 3949 3842 -69374999.9886 3950 3842 -103546919.3888 3951 3842 3.02791595459e-05 3952 3842 4.619359970093e-06 3953 3842 -289746007.2349 3954 3842 8.165836334229e-06 3955 3842 69374999.9886 3956 3842 -103546919.3888 3969 3842 -21679861.11823 3970 3842 -17343750.0057 3971 3842 -38039431.35476 3972 3842 -86719444.43019 3973 3842 8.940696716309e-07 3974 3842 -121047307.7997 3975 3842 -21679861.11823 3976 3842 17343750.0057 3977 3842 -38039431.35476 3843 3843 1137565312.076 3844 3843 4.64916229248e-06 3845 3843 4571797.773345 3846 3843 153072235.6709 3847 3843 -3.814697265625e-06 3848 3843 1142949.443904 3861 3843 -88449163.50764 3862 3843 -63656944.434 3863 3843 12115157.22023 3864 3843 -223854518.1091 3865 3843 1.281499862671e-06 3866 3843 -3314544.719882 3867 3843 -89126355.34779 3868 3843 63656944.434 3869 3843 -13600988.60888 3933 3843 -36072082.53399 3934 3843 16203472.22755 3935 3843 21679861.11823 3936 3843 -113177912.5205 3937 3843 -1.952052116394e-06 3938 3843 86719444.4302 3939 3843 -36072082.53399 3940 3843 -16203472.22755 3941 3843 21679861.11823 3951 3843 -14659514.18418 3952 3843 7.62939453125e-06 3953 3843 7.152557373047e-06 3954 3843 65803613.40852 3955 3843 4.112720489502e-06 3956 3843 3.081560134888e-05 3957 3843 -14659514.18418 3958 3843 -1.010298728943e-05 3959 3843 8.165836334229e-06 3972 3843 -36072082.53397 3973 3843 -16203472.22754 3974 3843 -21679861.11823 3975 3843 -113177912.5204 3976 3843 6.407499313354e-07 3977 3843 -86719444.43019 3978 3843 -36072082.53397 3979 3843 16203472.22755 3980 3843 -21679861.11823 3844 3844 984782929.6775 3845 3844 -54860648.90923 3846 3844 -3.695487976074e-06 3847 3844 -88823909.23288 3848 3844 28253241.12114 3861 3844 -63656944.434 3862 3844 -69351365.69847 3863 3844 6034664.450365 3864 3844 2.622604370117e-06 3865 3844 56237222.37539 3866 3844 -13715162.23406 3867 3844 63656944.434 3868 3844 -70028557.53863 3869 3844 7680497.783698 3933 3844 16203472.22755 3934 3844 -31210863.52938 3935 3844 -17343750.00569 3936 3844 -4.097819328308e-06 3937 3844 -41882340.60423 3938 3844 1.296401023865e-06 3939 3844 -16203472.22755 3940 3844 -31210863.52938 3941 3844 17343750.0057 3951 3844 8.970499038696e-06 3952 3844 -76232648.10075 3953 3844 -69374999.9886 3954 3844 4.053115844727e-06 3955 3844 26913861.39084 3956 3844 4.738569259644e-06 3957 3844 -7.331371307373e-06 3958 3844 -76232648.10076 3959 3844 69374999.9886 3972 3844 -16203472.22754 3973 3844 -31210863.52937 3974 3844 -17343750.0057 3975 3844 -1.177191734314e-06 3976 3844 -41882340.60421 3977 3844 8.344650268555e-07 3978 3844 16203472.22754 3979 3844 -31210863.52937 3980 3844 17343750.0057 3845 3845 1205835345.84 3846 3845 1142949.443904 3847 3845 26607407.78808 3848 3845 154975139.2593 3861 3845 12458039.16496 3862 3845 6308970.006146 3863 3845 -7405416.779322 3864 3845 -1257253.053552 3865 3845 -13715162.23407 3866 3845 113190145.6041 3867 3845 -13258106.66415 3868 3845 7406192.227917 3869 3845 -9211261.686427 3933 3845 21679861.11823 3934 3845 -17343750.00569 3935 3845 -38039431.35476 3936 3845 86719444.4302 3937 3845 1.415610313416e-06 3938 3845 -121047307.7997 3939 3845 21679861.11823 3940 3845 17343750.0057 3941 3845 -38039431.35476 3951 3845 7.182359695435e-06 3952 3845 -69374999.9886 3953 3845 -103546919.3888 3954 3845 3.02791595459e-05 3955 3845 4.619359970093e-06 3956 3845 -289746007.2349 3957 3845 8.165836334229e-06 3958 3845 69374999.9886 3959 3845 -103546919.3888 3972 3845 -21679861.11823 3973 3845 -17343750.0057 3974 3845 -38039431.35476 3975 3845 -86719444.43019 3976 3845 8.940696716309e-07 3977 3845 -121047307.7997 3978 3845 -21679861.11823 3979 3845 17343750.0057 3980 3845 -38039431.35476 3846 3846 1137565312.076 3847 3846 4.64916229248e-06 3848 3846 4571797.773345 3849 3846 153072235.6709 3850 3846 -3.814697265625e-06 3851 3846 1142949.443904 3864 3846 -88449163.50764 3865 3846 -63656944.434 3866 3846 12115157.22023 3867 3846 -223854518.1091 3868 3846 1.281499862671e-06 3869 3846 -3314544.719882 3870 3846 -89126355.34779 3871 3846 63656944.434 3872 3846 -13600988.60888 3936 3846 -36072082.53399 3937 3846 16203472.22755 3938 3846 21679861.11823 3939 3846 -113177912.5205 3940 3846 -1.952052116394e-06 3941 3846 86719444.4302 3942 3846 -36072082.53399 3943 3846 -16203472.22755 3944 3846 21679861.11823 3954 3846 -14659514.18418 3955 3846 7.62939453125e-06 3956 3846 7.152557373047e-06 3957 3846 65803613.40852 3958 3846 4.112720489502e-06 3959 3846 3.081560134888e-05 3960 3846 -14659514.18418 3961 3846 -1.010298728943e-05 3962 3846 8.165836334229e-06 3975 3846 -36072082.53397 3976 3846 -16203472.22754 3977 3846 -21679861.11823 3978 3846 -113177912.5204 3979 3846 6.407499313354e-07 3980 3846 -86719444.43019 3981 3846 -36072082.53397 3982 3846 16203472.22755 3983 3846 -21679861.11823 3847 3847 984782929.6775 3848 3847 -54860648.90923 3849 3847 -3.695487976074e-06 3850 3847 -88823909.23288 3851 3847 28253241.12114 3864 3847 -63656944.434 3865 3847 -69351365.69847 3866 3847 6034664.450365 3867 3847 2.622604370117e-06 3868 3847 56237222.37539 3869 3847 -13715162.23406 3870 3847 63656944.434 3871 3847 -70028557.53863 3872 3847 7680497.783698 3936 3847 16203472.22755 3937 3847 -31210863.52938 3938 3847 -17343750.00569 3939 3847 -4.097819328308e-06 3940 3847 -41882340.60423 3941 3847 1.296401023865e-06 3942 3847 -16203472.22755 3943 3847 -31210863.52938 3944 3847 17343750.0057 3954 3847 8.970499038696e-06 3955 3847 -76232648.10075 3956 3847 -69374999.9886 3957 3847 4.053115844727e-06 3958 3847 26913861.39084 3959 3847 4.738569259644e-06 3960 3847 -7.331371307373e-06 3961 3847 -76232648.10076 3962 3847 69374999.9886 3975 3847 -16203472.22754 3976 3847 -31210863.52937 3977 3847 -17343750.0057 3978 3847 -1.177191734314e-06 3979 3847 -41882340.60421 3980 3847 8.344650268555e-07 3981 3847 16203472.22754 3982 3847 -31210863.52937 3983 3847 17343750.0057 3848 3848 1205835345.84 3849 3848 1142949.443904 3850 3848 26607407.78808 3851 3848 154975139.2593 3864 3848 12458039.16496 3865 3848 6308970.006146 3866 3848 -7405416.779322 3867 3848 -1257253.053552 3868 3848 -13715162.23407 3869 3848 113190145.6041 3870 3848 -13258106.66415 3871 3848 7406192.227917 3872 3848 -9211261.686427 3936 3848 21679861.11823 3937 3848 -17343750.00569 3938 3848 -38039431.35476 3939 3848 86719444.4302 3940 3848 1.415610313416e-06 3941 3848 -121047307.7997 3942 3848 21679861.11823 3943 3848 17343750.0057 3944 3848 -38039431.35476 3954 3848 7.182359695435e-06 3955 3848 -69374999.9886 3956 3848 -103546919.3888 3957 3848 3.02791595459e-05 3958 3848 4.619359970093e-06 3959 3848 -289746007.2349 3960 3848 8.165836334229e-06 3961 3848 69374999.9886 3962 3848 -103546919.3888 3975 3848 -21679861.11823 3976 3848 -17343750.0057 3977 3848 -38039431.35476 3978 3848 -86719444.43019 3979 3848 8.940696716309e-07 3980 3848 -121047307.7997 3981 3848 -21679861.11823 3982 3848 17343750.0057 3983 3848 -38039431.35476 3849 3849 1137565312.076 3850 3849 4.64916229248e-06 3851 3849 4571797.773345 3852 3849 153072235.6709 3853 3849 -3.814697265625e-06 3854 3849 1142949.443904 3867 3849 -88449163.50764 3868 3849 -63656944.434 3869 3849 12115157.22023 3870 3849 -223854518.1091 3871 3849 1.281499862671e-06 3872 3849 -3314544.719882 3873 3849 -89126355.34779 3874 3849 63656944.434 3875 3849 -13600988.60888 3939 3849 -36072082.53399 3940 3849 16203472.22755 3941 3849 21679861.11823 3942 3849 -113177912.5205 3943 3849 -1.952052116394e-06 3944 3849 86719444.4302 3945 3849 -36072082.53399 3946 3849 -16203472.22755 3947 3849 21679861.11823 3957 3849 -14659514.18418 3958 3849 7.62939453125e-06 3959 3849 7.152557373047e-06 3960 3849 65803613.40852 3961 3849 4.112720489502e-06 3962 3849 3.081560134888e-05 3963 3849 -14659514.18418 3964 3849 -1.010298728943e-05 3965 3849 8.165836334229e-06 3978 3849 -36072082.53397 3979 3849 -16203472.22754 3980 3849 -21679861.11823 3981 3849 -113177912.5204 3982 3849 6.407499313354e-07 3983 3849 -86719444.43019 3984 3849 -36072082.53397 3985 3849 16203472.22755 3986 3849 -21679861.11823 3850 3850 984782929.6775 3851 3850 -54860648.90923 3852 3850 -3.695487976074e-06 3853 3850 -88823909.23288 3854 3850 28253241.12114 3867 3850 -63656944.434 3868 3850 -69351365.69847 3869 3850 6034664.450365 3870 3850 2.622604370117e-06 3871 3850 56237222.37539 3872 3850 -13715162.23406 3873 3850 63656944.434 3874 3850 -70028557.53863 3875 3850 7680497.783698 3939 3850 16203472.22755 3940 3850 -31210863.52938 3941 3850 -17343750.00569 3942 3850 -4.097819328308e-06 3943 3850 -41882340.60423 3944 3850 1.296401023865e-06 3945 3850 -16203472.22755 3946 3850 -31210863.52938 3947 3850 17343750.0057 3957 3850 8.970499038696e-06 3958 3850 -76232648.10075 3959 3850 -69374999.9886 3960 3850 4.053115844727e-06 3961 3850 26913861.39084 3962 3850 4.738569259644e-06 3963 3850 -7.331371307373e-06 3964 3850 -76232648.10076 3965 3850 69374999.9886 3978 3850 -16203472.22754 3979 3850 -31210863.52937 3980 3850 -17343750.0057 3981 3850 -1.177191734314e-06 3982 3850 -41882340.60421 3983 3850 8.344650268555e-07 3984 3850 16203472.22754 3985 3850 -31210863.52937 3986 3850 17343750.0057 3851 3851 1205835345.84 3852 3851 1142949.443904 3853 3851 26607407.78808 3854 3851 154975139.2593 3867 3851 12458039.16496 3868 3851 6308970.006146 3869 3851 -7405416.779322 3870 3851 -1257253.053552 3871 3851 -13715162.23407 3872 3851 113190145.6041 3873 3851 -13258106.66415 3874 3851 7406192.227917 3875 3851 -9211261.686427 3939 3851 21679861.11823 3940 3851 -17343750.00569 3941 3851 -38039431.35476 3942 3851 86719444.4302 3943 3851 1.415610313416e-06 3944 3851 -121047307.7997 3945 3851 21679861.11823 3946 3851 17343750.0057 3947 3851 -38039431.35476 3957 3851 7.182359695435e-06 3958 3851 -69374999.9886 3959 3851 -103546919.3888 3960 3851 3.02791595459e-05 3961 3851 4.619359970093e-06 3962 3851 -289746007.2349 3963 3851 8.165836334229e-06 3964 3851 69374999.9886 3965 3851 -103546919.3888 3978 3851 -21679861.11823 3979 3851 -17343750.0057 3980 3851 -38039431.35476 3981 3851 -86719444.43019 3982 3851 8.940696716309e-07 3983 3851 -121047307.7997 3984 3851 -21679861.11823 3985 3851 17343750.0057 3986 3851 -38039431.35476 3852 3852 1269720907.856 3853 3852 68143803.88653 3854 3852 4472085.757898 3855 3852 56630151.75876 3856 3852 -61493522.07384 3857 3852 2066539.235759 3870 3852 -88449163.50764 3871 3852 -63656944.434 3872 3852 12115157.22023 3873 3852 -221842316.0237 3874 3852 -2192752.606858 3875 3852 -488260.9777767 3876 3852 -92167492.31837 3877 3852 63588271.09756 3878 3852 -2394222.752949 3942 3852 -36072082.53399 3943 3852 16203472.22755 3944 3852 21679861.11823 3945 3852 -139005882.4838 3946 3852 -17468607.99017 3947 3852 88411110.90689 3960 3852 -14659514.18418 3961 3852 7.62939453125e-06 3962 3852 7.152557373047e-06 3963 3852 104468568.107 3964 3852 17495749.11933 3965 3852 0.03796535730362 3966 3852 -35762896.95689 3967 3852 -15573449.9111 3968 3852 21679166.28526 3981 3852 -36072082.53397 3982 3852 -16203472.22754 3983 3852 -21679861.11823 3984 3852 -114724288.833 3985 3852 -635253.1045092 3986 3852 -87564583.31886 3987 3852 -37742508.83701 3988 3852 16181561.88645 3989 3852 -22525694.45184 3853 3853 1086127371.027 3854 3853 -27673448.94957 3855 3853 -61499978.14322 3856 3853 -166059630.2496 3857 3853 4422580.871377 3870 3853 -63656944.434 3871 3853 -69351365.69847 3872 3853 6034664.450365 3873 3853 -2192752.606858 3874 3853 60350350.0081 3875 3853 -7394473.435481 3876 3853 63588271.09756 3877 3853 -65568525.14848 3878 3853 1374962.965883 3942 3853 16203472.22755 3943 3853 -31210863.52938 3944 3853 -17343750.00569 3945 3853 -17468608.05499 3946 3853 -62280769.57 3947 3853 18697916.60118 3960 3853 8.970499038696e-06 3961 3853 -76232648.10075 3962 3853 -69374999.9886 3963 3853 17495749.11933 3964 3853 57330719.05929 3965 3853 0.0303530395031 3966 3853 -15573449.84629 3967 3853 -92437084.05277 3968 3853 69374999.59698 3981 3853 -16203472.22754 3982 3853 -31210863.52937 3983 3853 -17343750.0057 3984 3853 -635253.1045111 3985 3853 -42821513.04608 3986 3853 -677083.3331571 3987 3853 16181561.88645 3988 3853 -30707665.48679 3989 3853 16666666.67214 3854 3854 1294220130.987 3855 3854 2071591.406919 3856 3854 4430099.551854 3857 3854 113359280.4676 3870 3854 12458039.16496 3871 3854 6308970.006146 3872 3854 -7405416.779322 3873 3854 -3231316.532882 3874 3854 -7394473.435481 3875 3854 129130465.5522 3876 3854 -2394222.752611 3877 3854 1374962.965883 3878 3854 -3084530.879807 3942 3854 21679861.11823 3943 3854 -17343750.00569 3944 3854 -38039431.35476 3945 3854 88411110.90689 3946 3854 18697916.56855 3947 3854 -124962011.2801 3960 3854 7.182359695435e-06 3961 3854 -69374999.9886 3962 3854 -103546919.3888 3963 3854 -0.03791534900665 3964 3854 -0.03035178780556 3965 3854 -255055797.837 3966 3854 21679166.091 3967 3854 69374999.4742 3968 3854 -105412602.9399 3981 3854 -21679861.11823 3982 3854 -17343750.0057 3983 3854 -38039431.35476 3984 3854 -87564583.31903 3985 3854 -677083.3332905 3986 3854 -122108417.4801 3987 3854 -22525694.45184 3988 3854 16666666.67214 3989 3854 -38357223.71349 3855 3855 690428323.8106 3856 3855 -1526145.223039 3857 3855 294203.4919279 3873 3855 -85206561.85399 3874 3855 -63648145.55862 3875 3855 1907505.069545 3876 3855 -233498878.8511 3877 3855 -2953519.016915 3878 3855 -246183.6404445 3879 3855 75671100.45934 3880 3855 -11197009.81833 3881 3855 -101111.1356556 3882 3855 -91977007.54163 3883 3855 64417096.23118 3884 3855 -482029.2342617 3945 3855 -13882071.21844 3946 3855 19444166.47861 3947 3855 27030832.75893 3963 3855 -35762896.9569 3964 3855 -15573449.84628 3965 3855 -21679166.091 3966 3855 24359103.43621 3967 3855 -442912.9657402 3968 3855 17135277.77496 3984 3855 -35736813.43153 3985 3855 -16200678.02492 3986 3855 -21679166.67379 3987 3855 -113692433.8764 3988 3855 -855995.94238 3989 3855 -85676388.87482 3990 3855 -6375113.374563 3991 3855 -2795132.258683 3992 3855 3215972.223778 3993 3855 -36573838.1928 3994 3855 16424002.55938 3995 3855 -21159027.78473 3856 3856 709101692.0832 3857 3856 -4623228.324144 3873 3856 -63648145.55862 3874 3856 -67612861.43276 3875 3856 781772.525224 3876 3856 -2953519.016915 3877 3856 48917447.31709 3878 3856 -1417705.220885 3879 3856 14265767.95527 3880 3856 -45017324.84969 3881 3856 232055.2517371 3882 3856 64417096.23118 3883 3856 -70658219.55288 3884 3856 229699.3659164 3945 3856 12962777.65241 3946 3856 -12907974.64577 3947 3856 -13062499.95656 3963 3856 -15573449.9111 3964 3856 -92437084.05279 3965 3856 -69374999.4742 3966 3856 -442912.9657424 3967 3856 28707972.02069 3968 3856 7208333.185864 3984 3856 -16200678.02492 3985 3856 -31311329.22223 3986 3856 -17343750.0057 3987 3856 -855995.9423803 3988 3856 -41658168.45665 3989 3856 -677083.3331592 3990 3856 3686256.632335 3991 3856 -37070043.77932 3992 3856 33333333.32785 3993 3856 16424002.55938 3994 3856 -30987435.47836 3995 3856 16666666.67214 3857 3857 813645978.3204 3873 3857 1907505.069714 3874 3857 781772.5253592 3875 3857 -1613944.686177 3876 3857 -246183.6404451 3877 3857 -1417705.220885 3878 3857 102943642.7192 3879 3857 -101111.1356529 3880 3857 232055.2517369 3881 3857 81331741.41331 3882 3857 -482029.2340931 3883 3857 229699.3659164 3884 3857 -7498333.015678 3945 3857 18020555.17262 3946 3857 -20270833.25379 3947 3857 -37992953.15517 3963 3857 -21679166.28526 3964 3857 -69374999.59698 3965 3857 -105412602.9399 3966 3857 -17135277.77496 3967 3857 -7208333.185869 3968 3857 -197305370.7383 3984 3857 -21679166.67379 3985 3857 -17343750.0057 3986 3857 -37974851.43985 3987 3857 -85676388.87482 3988 3857 -677083.3332927 3989 3857 -117555867.1805 3990 3857 -4909027.779056 3991 3857 33333333.32785 3992 3857 -47673130.40164 3993 3857 -21159027.78473 3994 3857 16666666.67214 3995 3857 -36522727.11636 3858 3858 570930829.7064 3859 3858 -1.072883605957e-06 3860 3858 -2857330.279152 3861 3858 77084447.78357 3862 3858 12731388.8868 3863 3858 -2857344.722774 3948 3858 -113177912.5205 3949 3858 -1.952052116394e-06 3950 3858 86719444.4302 3951 3858 -36072082.53399 3952 3858 -16203472.22755 3953 3858 21679861.11823 3969 3858 32901806.70425 3970 3858 2.026557922363e-06 3971 3858 -17343888.88602 3972 3858 -7329757.09209 3973 3858 3240694.445505 3974 3858 -4335972.223642 3859 3859 494539638.5074 3860 3859 -27430324.4546 3861 3859 -12731388.8868 3862 3859 -43863624.66835 3863 3859 13989467.78282 3948 3859 -4.097819328308e-06 3949 3859 -41882340.60423 3950 3859 1.296401023865e-06 3951 3859 -16203472.22755 3952 3859 -31210863.52938 3953 3859 17343750.0057 3969 3859 1.430511474609e-06 3970 3859 13456930.69541 3971 3859 -4.410743713379e-06 3972 3859 -3240694.445512 3973 3859 -38116324.05037 3974 3859 34687499.9943 3860 3860 608646136.0366 3861 3860 2285884.443047 3862 3860 13440856.6718 3863 3860 78949782.82454 3948 3860 86719444.4302 3949 3860 1.415610313416e-06 3950 3860 -121047307.7997 3951 3860 21679861.11823 3952 3860 17343750.0057 3953 3860 -38039431.35476 3969 3860 17343888.88605 3970 3860 -4.410743713379e-06 3971 3860 -144873003.6175 3972 3860 4335972.22365 3973 3860 34687499.9943 3974 3860 -51773459.69442 3861 3861 570930829.7064 3862 3861 -1.072883605957e-06 3863 3861 -2857330.279152 3864 3861 77084447.78357 3865 3861 12731388.8868 3866 3861 -2857344.722774 3948 3861 -36072082.53399 3949 3861 16203472.22755 3950 3861 21679861.11823 3951 3861 -113177912.5205 3952 3861 -1.952052116394e-06 3953 3861 86719444.4302 3954 3861 -36072082.53399 3955 3861 -16203472.22755 3956 3861 21679861.11823 3969 3861 -7329757.092094 3970 3861 -3240694.445505 3971 3861 -4335972.223642 3972 3861 32901806.70425 3973 3861 2.026557922363e-06 3974 3861 -17343888.88602 3975 3861 -7329757.09209 3976 3861 3240694.445505 3977 3861 -4335972.223642 3862 3862 494539638.5074 3863 3862 -27430324.4546 3864 3862 -12731388.8868 3865 3862 -43863624.66835 3866 3862 13989467.78282 3948 3862 16203472.22755 3949 3862 -31210863.52938 3950 3862 -17343750.00569 3951 3862 -4.097819328308e-06 3952 3862 -41882340.60423 3953 3862 1.296401023865e-06 3954 3862 -16203472.22755 3955 3862 -31210863.52938 3956 3862 17343750.0057 3969 3862 3240694.445514 3970 3862 -38116324.05038 3971 3862 -34687499.9943 3972 3862 1.430511474609e-06 3973 3862 13456930.69541 3974 3862 -4.410743713379e-06 3975 3862 -3240694.445512 3976 3862 -38116324.05037 3977 3862 34687499.9943 3863 3863 608646136.0366 3864 3863 2285884.443047 3865 3863 13440856.6718 3866 3863 78949782.82454 3948 3863 21679861.11823 3949 3863 -17343750.00569 3950 3863 -38039431.35476 3951 3863 86719444.4302 3952 3863 1.415610313416e-06 3953 3863 -121047307.7997 3954 3863 21679861.11823 3955 3863 17343750.0057 3956 3863 -38039431.35476 3969 3863 4335972.22365 3970 3863 -34687499.9943 3971 3863 -51773459.69442 3972 3863 17343888.88605 3973 3863 -4.410743713379e-06 3974 3863 -144873003.6175 3975 3863 4335972.22365 3976 3863 34687499.9943 3977 3863 -51773459.69442 3864 3864 570930829.7064 3865 3864 -1.072883605957e-06 3866 3864 -2857330.279152 3867 3864 77084447.78357 3868 3864 12731388.8868 3869 3864 -2857344.722774 3951 3864 -36072082.53399 3952 3864 16203472.22755 3953 3864 21679861.11823 3954 3864 -113177912.5205 3955 3864 -1.952052116394e-06 3956 3864 86719444.4302 3957 3864 -36072082.53399 3958 3864 -16203472.22755 3959 3864 21679861.11823 3972 3864 -7329757.092094 3973 3864 -3240694.445505 3974 3864 -4335972.223642 3975 3864 32901806.70425 3976 3864 2.026557922363e-06 3977 3864 -17343888.88602 3978 3864 -7329757.09209 3979 3864 3240694.445505 3980 3864 -4335972.223642 3865 3865 494539638.5074 3866 3865 -27430324.4546 3867 3865 -12731388.8868 3868 3865 -43863624.66835 3869 3865 13989467.78282 3951 3865 16203472.22755 3952 3865 -31210863.52938 3953 3865 -17343750.00569 3954 3865 -4.097819328308e-06 3955 3865 -41882340.60423 3956 3865 1.296401023865e-06 3957 3865 -16203472.22755 3958 3865 -31210863.52938 3959 3865 17343750.0057 3972 3865 3240694.445514 3973 3865 -38116324.05038 3974 3865 -34687499.9943 3975 3865 1.430511474609e-06 3976 3865 13456930.69541 3977 3865 -4.410743713379e-06 3978 3865 -3240694.445512 3979 3865 -38116324.05037 3980 3865 34687499.9943 3866 3866 608646136.0366 3867 3866 2285884.443047 3868 3866 13440856.6718 3869 3866 78949782.82454 3951 3866 21679861.11823 3952 3866 -17343750.00569 3953 3866 -38039431.35476 3954 3866 86719444.4302 3955 3866 1.415610313416e-06 3956 3866 -121047307.7997 3957 3866 21679861.11823 3958 3866 17343750.0057 3959 3866 -38039431.35476 3972 3866 4335972.22365 3973 3866 -34687499.9943 3974 3866 -51773459.69442 3975 3866 17343888.88605 3976 3866 -4.410743713379e-06 3977 3866 -144873003.6175 3978 3866 4335972.22365 3979 3866 34687499.9943 3980 3866 -51773459.69442 3867 3867 570930829.7064 3868 3867 -1.072883605957e-06 3869 3867 -2857330.279152 3870 3867 77084447.78357 3871 3867 12731388.8868 3872 3867 -2857344.722774 3954 3867 -36072082.53399 3955 3867 16203472.22755 3956 3867 21679861.11823 3957 3867 -113177912.5205 3958 3867 -1.952052116394e-06 3959 3867 86719444.4302 3960 3867 -36072082.53399 3961 3867 -16203472.22755 3962 3867 21679861.11823 3975 3867 -7329757.092094 3976 3867 -3240694.445505 3977 3867 -4335972.223642 3978 3867 32901806.70425 3979 3867 2.026557922363e-06 3980 3867 -17343888.88602 3981 3867 -7329757.09209 3982 3867 3240694.445505 3983 3867 -4335972.223642 3868 3868 494539638.5074 3869 3868 -27430324.4546 3870 3868 -12731388.8868 3871 3868 -43863624.66835 3872 3868 13989467.78282 3954 3868 16203472.22755 3955 3868 -31210863.52938 3956 3868 -17343750.00569 3957 3868 -4.097819328308e-06 3958 3868 -41882340.60423 3959 3868 1.296401023865e-06 3960 3868 -16203472.22755 3961 3868 -31210863.52938 3962 3868 17343750.0057 3975 3868 3240694.445514 3976 3868 -38116324.05038 3977 3868 -34687499.9943 3978 3868 1.430511474609e-06 3979 3868 13456930.69541 3980 3868 -4.410743713379e-06 3981 3868 -3240694.445512 3982 3868 -38116324.05037 3983 3868 34687499.9943 3869 3869 608646136.0366 3870 3869 2285884.443047 3871 3869 13440856.6718 3872 3869 78949782.82454 3954 3869 21679861.11823 3955 3869 -17343750.00569 3956 3869 -38039431.35476 3957 3869 86719444.4302 3958 3869 1.415610313416e-06 3959 3869 -121047307.7997 3960 3869 21679861.11823 3961 3869 17343750.0057 3962 3869 -38039431.35476 3975 3869 4335972.22365 3976 3869 -34687499.9943 3977 3869 -51773459.69442 3978 3869 17343888.88605 3979 3869 -4.410743713379e-06 3980 3869 -144873003.6175 3981 3869 4335972.22365 3982 3869 34687499.9943 3983 3869 -51773459.69442 3870 3870 570930829.7064 3871 3870 -1.072883605957e-06 3872 3870 -2857330.279152 3873 3870 77084447.78357 3874 3870 12731388.8868 3875 3870 -2857344.722774 3957 3870 -36072082.53399 3958 3870 16203472.22755 3959 3870 21679861.11823 3960 3870 -113177912.5205 3961 3870 -1.952052116394e-06 3962 3870 86719444.4302 3963 3870 -36072082.53399 3964 3870 -16203472.22755 3965 3870 21679861.11823 3978 3870 -7329757.092094 3979 3870 -3240694.445505 3980 3870 -4335972.223642 3981 3870 32901806.70425 3982 3870 2.026557922363e-06 3983 3870 -17343888.88602 3984 3870 -7329757.09209 3985 3870 3240694.445505 3986 3870 -4335972.223642 3871 3871 494539638.5074 3872 3871 -27430324.4546 3873 3871 -12731388.8868 3874 3871 -43863624.66835 3875 3871 13989467.78282 3957 3871 16203472.22755 3958 3871 -31210863.52938 3959 3871 -17343750.00569 3960 3871 -4.097819328308e-06 3961 3871 -41882340.60423 3962 3871 1.296401023865e-06 3963 3871 -16203472.22755 3964 3871 -31210863.52938 3965 3871 17343750.0057 3978 3871 3240694.445514 3979 3871 -38116324.05038 3980 3871 -34687499.9943 3981 3871 1.430511474609e-06 3982 3871 13456930.69541 3983 3871 -4.410743713379e-06 3984 3871 -3240694.445512 3985 3871 -38116324.05037 3986 3871 34687499.9943 3872 3872 608646136.0366 3873 3872 2285884.443047 3874 3872 13440856.6718 3875 3872 78949782.82454 3957 3872 21679861.11823 3958 3872 -17343750.00569 3959 3872 -38039431.35476 3960 3872 86719444.4302 3961 3872 1.415610313416e-06 3962 3872 -121047307.7997 3963 3872 21679861.11823 3964 3872 17343750.0057 3965 3872 -38039431.35476 3978 3872 4335972.22365 3979 3872 -34687499.9943 3980 3872 -51773459.69442 3981 3872 17343888.88605 3982 3872 -4.410743713379e-06 3983 3872 -144873003.6175 3984 3872 4335972.22365 3985 3872 34687499.9943 3986 3872 -51773459.69442 3873 3873 584777336.9746 3874 3873 8233.997064114 3875 3873 9050879.702598 3876 3873 83891523.67113 3877 3873 14907108.62122 3878 3873 -183665.463271 3960 3873 -36072082.53399 3961 3873 16203472.22755 3962 3873 21679861.11823 3963 3873 -114724288.8331 3964 3873 -635253.1045028 3965 3873 87564583.31904 3966 3873 -35736813.43153 3967 3873 -16200678.02491 3968 3873 21679166.67379 3981 3873 -7329757.092094 3982 3873 -3240694.445505 3983 3873 -4335972.223642 3984 3873 33236111.75388 3985 3873 2649.269784987 3986 3873 -17343611.10825 3987 3873 -6450528.111146 3988 3873 3870504.077598 3989 3873 -5182361.112478 3874 3874 506890648.9322 3875 3874 -14990761.54941 3876 3874 -10555669.15238 3877 3874 -36157880.09678 3878 3874 2402246.893188 3960 3874 16203472.22755 3961 3874 -31210863.52938 3962 3874 -17343750.00569 3963 3874 -635253.1045053 3964 3874 -42821513.0461 3965 3874 677083.3332872 3966 3874 -16200678.02491 3967 3874 -31311329.22222 3968 3874 17343750.00569 3981 3874 3240694.445514 3982 3874 -38116324.05038 3983 3874 -34687499.9943 3984 3874 2649.269785047 3985 3874 13357668.57743 3986 3874 -8.702278137207e-06 3987 3874 -2610884.813419 3988 3874 -36974996.97727 3989 3874 34010416.66101 3875 3875 642732276.2337 3876 3875 844980.3698907 3877 3875 2402246.893187 3878 3875 92220882.30562 3960 3875 21679861.11823 3961 3875 -17343750.00569 3962 3875 -38039431.35476 3963 3875 87564583.31887 3964 3875 677083.3331538 3965 3875 -122108417.4801 3966 3875 21679166.67379 3967 3875 17343750.00569 3968 3875 -37974851.43984 3981 3875 4335972.22365 3982 3875 -34687499.9943 3983 3875 -51773459.69442 3984 3875 17343611.10827 3985 3875 -8.702278137207e-06 3986 3875 -144806554.3753 3987 3875 3489305.557202 3988 3875 34010416.66114 3989 3875 -50836907.65005 3876 3876 569990048.566 3877 3876 -1419907.296957 3878 3876 332759.6698096 3879 3876 -82916439.46504 3880 3876 -62896792.63683 3881 3876 375175.6267792 3882 3876 80126740.36145 3883 3876 14237617.00553 3884 3876 -284037.0516534 3963 3876 -37742508.83701 3964 3876 16181561.88645 3965 3876 22525694.45184 3966 3876 -113692433.8764 3967 3876 -855995.9423645 3968 3876 85676388.87482 3984 3876 -6450528.111161 3985 3876 -2610884.81342 3986 3876 -3489305.557202 3987 3876 37702548.37275 3988 3876 -408992.820539 3989 3876 -17135277.77496 3990 3876 -33940233.84008 3991 3876 -15982941.89571 3992 3876 20312500.00667 3993 3876 -5632342.894131 3994 3876 3677253.585592 3995 3876 -5078333.3345 3877 3877 486720818.0868 3878 3877 -3275946.215516 3879 3877 -62896792.63683 3880 3877 -67260506.52416 3881 3877 229699.3659162 3882 3877 -11225160.76807 3883 3877 -41225851.67031 3884 3877 686742.2114756 3963 3877 16181561.88645 3964 3877 -30707665.4868 3965 3877 -16666666.67214 3966 3877 -855995.9423657 3967 3877 -41658168.45665 3968 3877 677083.3332849 3984 3877 3870504.077599 3985 3877 -36974996.9773 3986 3877 -34010416.66115 3987 3877 -408992.820535 3988 3877 16106902.49244 3989 3877 -1.171231269836e-05 3990 3877 -15982941.89571 3991 3877 -29999833.84609 3992 3877 16666666.67214 3993 3877 -2804135.305426 3994 3877 -36521736.91163 3995 3877 33333333.32785 3878 3878 594757336.3219 3879 3878 375175.6267794 3880 3878 229699.3659162 3881 3878 -4100619.986957 3882 3878 58844.89273202 3883 3878 686742.2114754 3884 3878 85064628.09103 3963 3878 22525694.45184 3964 3878 -16666666.67214 3965 3878 -38357223.7135 3966 3878 85676388.87482 3967 3878 677083.3331515 3968 3878 -117555867.1805 3984 3878 5182361.112479 3985 3878 -34010416.66102 3986 3878 -50836907.65008 3987 3878 17135277.77496 3988 3878 -1.192092895508e-05 3989 3878 -135669723.6375 3990 3878 20312500.00667 3991 3878 16666666.67214 3992 3878 -35535125.48409 3993 3878 3385277.779223 3994 3878 33333333.32785 3995 3878 -48059816.83043 3879 3879 275798770.109 3880 3879 62122565.36553 3881 3879 -184623.8179488 3882 3879 -113209643.2581 3883 3879 -13491540.68398 3884 3879 -89440.67317849 3966 3879 -6375113.374575 3967 3879 3686256.632336 3968 3879 4909027.779057 3987 3879 -33940233.84009 3988 3879 -15982941.89571 3989 3879 -20312500.00667 3990 3879 18902645.55566 3991 3879 15757910.04072 3992 3879 8124999.998668 3993 3879 -54847530.63036 3994 3879 -3461224.777349 3995 3879 -41471527.77105 3880 3880 241323393.3602 3881 3880 -232055.2517254 3882 3880 11971237.08962 3883 3880 26298225.85892 3884 3880 -229699.3659078 3966 3880 -2795132.258684 3967 3880 -37070043.77934 3968 3880 -33333333.32786 3987 3880 -15982941.89571 3988 3880 -29999833.8461 3989 3880 -16666666.67214 3990 3880 15757910.04072 3991 3880 10101612.40577 3992 3880 6666666.66557 3993 3880 3020164.11367 3994 3880 -19291967.06971 3995 3880 3333333.334426 3881 3881 286987305.8901 3882 3881 -89440.67317563 3883 3881 -229699.3659079 3884 3881 50031673.60422 3966 3881 -3215972.223779 3967 3881 -33333333.32786 3968 3881 -47673130.40167 3987 3881 -20312500.00667 3988 3881 -16666666.67214 3989 3881 -35535125.48411 3990 3881 -8124999.998663 3991 3881 -6666666.665573 3992 3881 -63738650.14914 3993 3881 -41471527.77088 3994 3881 -3333333.33443 3995 3881 -56413713.40338 3882 3882 282532125.9073 3883 3882 -65163172.55273 3884 3882 -173138.874578 3966 3882 -36573838.19281 3967 3882 16424002.55938 3968 3882 21159027.78473 3987 3882 -5632342.894148 3988 3882 -2804135.305426 3989 3882 -3385277.779223 3990 3882 -54847530.63036 3991 3882 3020164.113678 3992 3882 41471527.77088 3993 3882 19748607.35903 3994 3882 -16640031.36763 3995 3882 -8463611.109722 3883 3883 243058060.8333 3884 3883 -686742.2114532 3966 3883 16424002.55938 3967 3883 -30987435.47837 3968 3883 -16666666.67214 3987 3883 3677253.585593 3988 3883 -36521736.91167 3989 3883 -33333333.32786 3990 3883 -3461224.777342 3991 3883 -19291967.06971 3992 3883 3333333.334426 3993 3883 -16640031.36763 3994 3883 9496035.10145 3995 3883 6666666.665565 3884 3884 292327939.2378 3966 3884 21159027.78473 3967 3884 -16666666.67214 3968 3884 -36522727.11638 3987 3884 5078333.334501 3988 3884 -33333333.32786 3989 3884 -48059816.83045 3990 3884 41471527.77105 3991 3884 -3333333.33443 3992 3884 -56413713.40338 3993 3884 8463611.10972 3994 3884 -6666666.665577 3995 3884 -65150687.6052 3885 3885 721441645.4454 3886 3885 64813888.87825 3887 3885 -8.821487426758e-06 3888 3885 -346380299.6592 3889 3885 -64813888.35974 3890 3885 -2.676248550415e-05 3891 3885 27846630.32399 3892 3885 51851110.58409 3996 3885 41127258.27048 3997 3885 16203472.22755 3998 3885 17343888.84954 3999 3885 -135326679.0276 4000 3885 -16203472.09792 4001 3885 -86719444.24762 4002 3885 -13923315.162 4003 3885 12962777.65241 4004 3885 -17343888.52033 3886 3886 624217266.0229 3887 3886 -7.51187935966e-06 3888 3886 -64813888.10048 3889 3886 -41753137.74642 3890 3886 -7.390975952148e-06 3891 3886 77776665.87613 3892 3886 27846630.32398 3893 3886 6.794929504395e-06 3996 3886 16203472.22755 3997 3886 16821163.40287 3998 3886 13874999.85144 3999 3886 -16203472.0331 4000 3886 -59169888.51194 4001 3886 -17343749.90781 4002 3886 19444166.47861 4003 3886 -13923315.162 4004 3886 20812499.90895 3887 3887 760788621.1472 3888 3887 -2.646446228027e-05 3889 3887 -5.185604095459e-06 3890 3887 31972185.12589 3892 3887 4.708766937256e-06 3893 3887 74257680.86397 3996 3887 -17343888.84951 3997 3887 -13874999.85143 3998 3887 -181091253.0988 3999 3887 -86719444.24762 4000 3887 -17343749.94043 4001 3887 -121957897.9018 4002 3887 -26015832.7805 4003 3887 13874999.9393 4004 3887 -37128840.43199 3888 3888 1242901705.056 3889 3888 64813887.58197 3890 3888 -3.838539123535e-05 3891 3888 47693290.89467 3892 3888 -64813888.35975 3893 3888 -7.510185241699e-06 3894 3888 -229938603.1375 3895 3888 -1.400709152222e-06 3896 3888 -1.621246337891e-05 3897 3888 -88595068.35711 3898 3888 64813888.87826 3899 3888 -3.75509262085e-06 3996 3888 -135326679.0277 3997 3888 -16203472.0331 3998 3888 86719444.24762 3999 3888 101875695.1567 4000 3888 16203471.90348 4001 3888 0.03654569387436 4002 3888 -36808280.87074 4003 3888 -16203472.09792 4004 3888 21679860.74398 4005 3888 -113177912.5204 4006 3888 6.407499313354e-07 4007 3888 -86719444.43019 4008 3888 -36072082.53397 4009 3888 16203472.22755 4010 3888 -21679861.11823 3889 3889 1067897821.637 3891 3889 -64813888.10049 3892 3889 -179154367.6044 3893 3889 -1.16229057312e-05 3894 3889 7.748603820801e-07 3895 3889 55243684.38681 3896 3889 -1.788139343262e-06 3897 3889 64813888.87826 3898 3889 -69150192.34827 3899 3889 -4.619359970093e-07 3996 3889 -16203472.09792 3997 3889 -59169888.51195 3998 3889 17343749.94043 3999 3889 16203471.90348 4000 3889 58124724.28025 4001 3889 0.029221534729 4002 3889 -16203472.03311 4003 3889 -93520195.52346 4004 3889 69374999.6084 4005 3889 -1.177191734314e-06 4006 3889 -41882340.60421 4007 3889 8.344650268555e-07 4008 3889 16203472.22754 4009 3889 -31210863.52937 4010 3889 17343750.0057 3890 3890 1220904161.253 3891 3890 -7.390975952148e-06 3892 3890 -9.536743164063e-06 3893 3890 101973736.7139 3894 3890 -1.54972076416e-05 3895 3890 -1.907348632813e-06 3896 3890 109872226.963 3897 3890 -3.635883331299e-06 3898 3890 -6.109476089478e-07 3899 3890 -3642360.79014 3996 3890 86719444.24762 3997 3890 17343749.9078 3998 3890 -121957897.9018 3999 3890 -0.03648543357849 4000 3890 -0.02920261025429 4001 3890 -251706576.231 4002 3890 21679860.55685 4003 3890 69374999.49133 4004 3890 -104457508.7431 4005 3890 -86719444.43019 4006 3890 8.940696716309e-07 4007 3890 -121047307.7997 4008 3890 -21679861.11823 4009 3890 17343750.0057 4010 3890 -38039431.35476 3891 3891 721441645.4454 3892 3891 64813888.87825 3893 3891 -8.821487426758e-06 3894 3891 -88595068.35711 3895 3891 -64813888.87825 3896 3891 -4.26173210144e-06 3897 3891 -346380299.6592 3898 3891 -64813888.35974 3899 3891 -2.676248550415e-05 3900 3891 27846630.32399 3901 3891 51851110.58409 3996 3891 -13923315.16199 3997 3891 19444166.47861 3998 3891 26015832.7805 3999 3891 -36808280.87074 4000 3891 -16203472.0331 4001 3891 -21679860.55685 4002 3891 41127258.27048 4003 3891 16203472.22755 4004 3891 17343888.84954 4005 3891 -36072082.53397 4006 3891 -16203472.22754 4007 3891 -21679861.11823 4008 3891 -135326679.0276 4009 3891 -16203472.09792 4010 3891 -86719444.24762 4011 3891 -13923315.162 4012 3891 12962777.65241 4013 3891 -17343888.52033 3892 3892 624217266.0229 3893 3892 -7.273460780558e-06 3894 3892 -64813888.87825 3895 3892 -69150192.34827 3896 3892 -6.705522537231e-07 3897 3892 -64813888.10048 3898 3892 -41753137.74642 3899 3892 -7.390975952148e-06 3900 3892 77776665.87613 3901 3892 27846630.32398 3902 3892 6.794929504395e-06 3996 3892 12962777.65241 3997 3892 -13923315.162 3998 3892 -13874999.9393 3999 3892 -16203472.09791 4000 3892 -93520195.52345 4001 3892 -69374999.49133 4002 3892 16203472.22755 4003 3892 16821163.40287 4004 3892 13874999.85144 4005 3892 -16203472.22754 4006 3892 -31210863.52937 4007 3892 -17343750.0057 4008 3892 -16203472.0331 4009 3892 -59169888.51194 4010 3892 -17343749.90781 4011 3892 19444166.47861 4012 3892 -13923315.162 4013 3892 20812499.90895 3893 3893 760788621.1472 3894 3893 -4.231929779053e-06 3895 3893 -5.811452865601e-07 3896 3893 -3642360.790142 3897 3893 -2.646446228027e-05 3898 3893 -5.185604095459e-06 3899 3893 31972185.12589 3901 3893 4.708766937256e-06 3902 3893 74257680.86397 3996 3893 17343888.52033 3997 3893 -20812499.90894 3998 3893 -37128840.43198 3999 3893 -21679860.74397 4000 3893 -69374999.6084 4001 3893 -104457508.7431 4002 3893 -17343888.84951 4003 3893 -13874999.85143 4004 3893 -181091253.0988 4005 3893 -21679861.11823 4006 3893 -17343750.0057 4007 3893 -38039431.35476 4008 3893 -86719444.24762 4009 3893 -17343749.94043 4010 3893 -121957897.9018 4011 3893 -26015832.7805 4012 3893 13874999.9393 4013 3893 -37128840.43199 3894 3894 1154306639.95 3895 3894 4.053115844727e-06 3896 3894 -5.984306335449e-05 3897 3894 164134990.0133 3898 3894 -4.798173904419e-06 3899 3894 -1.537799835205e-05 3903 3894 -229938603.1375 3904 3894 -1.400709152222e-06 3905 3894 -1.621246337891e-05 3906 3894 -88595068.35711 3907 3894 64813888.87826 3908 3894 -3.75509262085e-06 3999 3894 -113177912.5205 4000 3894 -1.952052116394e-06 4001 3894 86719444.4302 4002 3894 -36072082.53399 4003 3894 -16203472.22755 4004 3894 21679861.11823 4005 3894 65803613.40852 4006 3894 4.112720489502e-06 4007 3894 3.081560134888e-05 4008 3894 -14659514.18418 4009 3894 -1.010298728943e-05 4010 3894 8.165836334229e-06 4014 3894 -113177912.5204 4015 3894 6.407499313354e-07 4016 3894 -86719444.43019 4017 3894 -36072082.53397 4018 3894 16203472.22755 4019 3894 -21679861.11823 3895 3895 998747631.9559 3896 3895 -6.675720214844e-06 3897 3895 -3.397464752197e-06 3898 3895 -82157545.53163 3899 3895 -2.264976501465e-06 3903 3895 7.748603820801e-07 3904 3895 55243684.38681 3905 3895 -1.788139343262e-06 3906 3895 64813888.87826 3907 3895 -69150192.34827 3908 3895 -4.619359970093e-07 3999 3895 -4.097819328308e-06 4000 3895 -41882340.60423 4001 3895 1.296401023865e-06 4002 3895 -16203472.22755 4003 3895 -31210863.52938 4004 3895 17343750.0057 4005 3895 4.053115844727e-06 4006 3895 26913861.39084 4007 3895 4.738569259644e-06 4008 3895 -7.331371307373e-06 4009 3895 -76232648.10076 4010 3895 69374999.9886 4014 3895 -1.177191734314e-06 4015 3895 -41882340.60421 4016 3895 8.344650268555e-07 4017 3895 16203472.22754 4018 3895 -31210863.52937 4019 3895 17343750.0057 3896 3896 1217261802.153 3897 3896 -1.52587890625e-05 3898 3896 -2.562999725342e-06 3899 3896 179873780.5718 3903 3896 -1.54972076416e-05 3904 3896 -1.907348632813e-06 3905 3896 109872226.963 3906 3896 -3.635883331299e-06 3907 3896 -6.109476089478e-07 3908 3896 -3642360.79014 3999 3896 86719444.4302 4000 3896 1.415610313416e-06 4001 3896 -121047307.7997 4002 3896 21679861.11823 4003 3896 17343750.0057 4004 3896 -38039431.35476 4005 3896 3.02791595459e-05 4006 3896 4.619359970093e-06 4007 3896 -289746007.2349 4008 3896 8.165836334229e-06 4009 3896 69374999.9886 4010 3896 -103546919.3888 4014 3896 -86719444.43019 4015 3896 8.940696716309e-07 4016 3896 -121047307.7997 4017 3896 -21679861.11823 4018 3896 17343750.0057 4019 3896 -38039431.35476 3897 3897 1242901705.056 3898 3897 64813887.58197 3899 3897 -3.838539123535e-05 3900 3897 47693290.89467 3901 3897 -64813888.35975 3902 3897 -7.510185241699e-06 3903 3897 -88595068.35711 3904 3897 -64813888.87825 3905 3897 -4.26173210144e-06 3906 3897 -229938603.1375 3907 3897 -1.400709152222e-06 3908 3897 -1.621246337891e-05 3909 3897 -88595068.35711 3910 3897 64813888.87826 3911 3897 -3.75509262085e-06 3999 3897 -36072082.53399 4000 3897 16203472.22755 4001 3897 21679861.11823 4002 3897 -135326679.0277 4003 3897 -16203472.0331 4004 3897 86719444.24762 4005 3897 -14659514.18418 4006 3897 7.62939453125e-06 4007 3897 7.152557373047e-06 4008 3897 101875695.1567 4009 3897 16203471.90348 4010 3897 0.03654569387436 4011 3897 -36808280.87074 4012 3897 -16203472.09792 4013 3897 21679860.74398 4014 3897 -36072082.53397 4015 3897 -16203472.22754 4016 3897 -21679861.11823 4017 3897 -113177912.5204 4018 3897 6.407499313354e-07 4019 3897 -86719444.43019 4020 3897 -36072082.53397 4021 3897 16203472.22755 4022 3897 -21679861.11823 3898 3898 1067897821.637 3900 3898 -64813888.10049 3901 3898 -179154367.6044 3902 3898 -1.16229057312e-05 3903 3898 -64813888.87825 3904 3898 -69150192.34827 3905 3898 -6.705522537231e-07 3906 3898 7.748603820801e-07 3907 3898 55243684.38681 3908 3898 -1.788139343262e-06 3909 3898 64813888.87826 3910 3898 -69150192.34827 3911 3898 -4.619359970093e-07 3999 3898 16203472.22755 4000 3898 -31210863.52938 4001 3898 -17343750.00569 4002 3898 -16203472.09792 4003 3898 -59169888.51195 4004 3898 17343749.94043 4005 3898 8.970499038696e-06 4006 3898 -76232648.10075 4007 3898 -69374999.9886 4008 3898 16203471.90348 4009 3898 58124724.28025 4010 3898 0.029221534729 4011 3898 -16203472.03311 4012 3898 -93520195.52346 4013 3898 69374999.6084 4014 3898 -16203472.22754 4015 3898 -31210863.52937 4016 3898 -17343750.0057 4017 3898 -1.177191734314e-06 4018 3898 -41882340.60421 4019 3898 8.344650268555e-07 4020 3898 16203472.22754 4021 3898 -31210863.52937 4022 3898 17343750.0057 3899 3899 1220904161.253 3900 3899 -7.390975952148e-06 3901 3899 -9.536743164063e-06 3902 3899 101973736.7139 3903 3899 -4.231929779053e-06 3904 3899 -5.811452865601e-07 3905 3899 -3642360.790142 3906 3899 -1.54972076416e-05 3907 3899 -1.907348632813e-06 3908 3899 109872226.963 3909 3899 -3.635883331299e-06 3910 3899 -6.109476089478e-07 3911 3899 -3642360.79014 3999 3899 21679861.11823 4000 3899 -17343750.00569 4001 3899 -38039431.35476 4002 3899 86719444.24762 4003 3899 17343749.9078 4004 3899 -121957897.9018 4005 3899 7.182359695435e-06 4006 3899 -69374999.9886 4007 3899 -103546919.3888 4008 3899 -0.03648543357849 4009 3899 -0.02920261025429 4010 3899 -251706576.231 4011 3899 21679860.55685 4012 3899 69374999.49133 4013 3899 -104457508.7431 4014 3899 -21679861.11823 4015 3899 -17343750.0057 4016 3899 -38039431.35476 4017 3899 -86719444.43019 4018 3899 8.940696716309e-07 4019 3899 -121047307.7997 4020 3899 -21679861.11823 4021 3899 17343750.0057 4022 3899 -38039431.35476 3900 3900 721441645.4454 3901 3900 64813888.87825 3902 3900 -8.821487426758e-06 3906 3900 -88595068.35711 3907 3900 -64813888.87825 3908 3900 -4.26173210144e-06 3909 3900 -346380299.6592 3910 3900 -64813888.35974 3911 3900 -2.676248550415e-05 3912 3900 27846630.32399 3913 3900 51851110.58409 4002 3900 -13923315.16199 4003 3900 19444166.47861 4004 3900 26015832.7805 4008 3900 -36808280.87074 4009 3900 -16203472.0331 4010 3900 -21679860.55685 4011 3900 41127258.27048 4012 3900 16203472.22755 4013 3900 17343888.84954 4017 3900 -36072082.53397 4018 3900 -16203472.22754 4019 3900 -21679861.11823 4020 3900 -135326679.0276 4021 3900 -16203472.09792 4022 3900 -86719444.24762 4023 3900 -13923315.162 4024 3900 12962777.65241 4025 3900 -17343888.52033 3901 3901 624217266.0229 3902 3901 -7.273460780558e-06 3906 3901 -64813888.87825 3907 3901 -69150192.34827 3908 3901 -6.705522537231e-07 3909 3901 -64813888.10048 3910 3901 -41753137.74642 3911 3901 -7.390975952148e-06 3912 3901 77776665.87613 3913 3901 27846630.32398 3914 3901 6.794929504395e-06 4002 3901 12962777.65241 4003 3901 -13923315.162 4004 3901 -13874999.9393 4008 3901 -16203472.09791 4009 3901 -93520195.52345 4010 3901 -69374999.49133 4011 3901 16203472.22755 4012 3901 16821163.40287 4013 3901 13874999.85144 4017 3901 -16203472.22754 4018 3901 -31210863.52937 4019 3901 -17343750.0057 4020 3901 -16203472.0331 4021 3901 -59169888.51194 4022 3901 -17343749.90781 4023 3901 19444166.47861 4024 3901 -13923315.162 4025 3901 20812499.90895 3902 3902 760788621.1472 3906 3902 -4.231929779053e-06 3907 3902 -5.811452865601e-07 3908 3902 -3642360.790142 3909 3902 -2.646446228027e-05 3910 3902 -5.185604095459e-06 3911 3902 31972185.12589 3913 3902 4.708766937256e-06 3914 3902 74257680.86397 4002 3902 17343888.52033 4003 3902 -20812499.90894 4004 3902 -37128840.43198 4008 3902 -21679860.74397 4009 3902 -69374999.6084 4010 3902 -104457508.7431 4011 3902 -17343888.84951 4012 3902 -13874999.85143 4013 3902 -181091253.0988 4017 3902 -21679861.11823 4018 3902 -17343750.0057 4019 3902 -38039431.35476 4020 3902 -86719444.24762 4021 3902 -17343749.94043 4022 3902 -121957897.9018 4023 3902 -26015832.7805 4024 3902 13874999.9393 4025 3902 -37128840.43199 3903 3903 1154306639.95 3904 3903 4.053115844727e-06 3905 3903 -5.984306335449e-05 3906 3903 164134990.0133 3907 3903 -4.798173904419e-06 3908 3903 -1.537799835205e-05 3915 3903 -229938603.1375 3916 3903 -1.400709152222e-06 3917 3903 -1.621246337891e-05 3918 3903 -88595068.35711 3919 3903 64813888.87826 3920 3903 -3.75509262085e-06 4005 3903 -113177912.5205 4006 3903 -1.952052116394e-06 4007 3903 86719444.4302 4008 3903 -36072082.53399 4009 3903 -16203472.22755 4010 3903 21679861.11823 4014 3903 65803613.40852 4015 3903 4.112720489502e-06 4016 3903 3.081560134888e-05 4017 3903 -14659514.18418 4018 3903 -1.010298728943e-05 4019 3903 8.165836334229e-06 4026 3903 -113177912.5204 4027 3903 6.407499313354e-07 4028 3903 -86719444.43019 4029 3903 -36072082.53397 4030 3903 16203472.22755 4031 3903 -21679861.11823 3904 3904 998747631.9559 3905 3904 -6.675720214844e-06 3906 3904 -3.397464752197e-06 3907 3904 -82157545.53163 3908 3904 -2.264976501465e-06 3915 3904 7.748603820801e-07 3916 3904 55243684.38681 3917 3904 -1.788139343262e-06 3918 3904 64813888.87826 3919 3904 -69150192.34827 3920 3904 -4.619359970093e-07 4005 3904 -4.097819328308e-06 4006 3904 -41882340.60423 4007 3904 1.296401023865e-06 4008 3904 -16203472.22755 4009 3904 -31210863.52938 4010 3904 17343750.0057 4014 3904 4.053115844727e-06 4015 3904 26913861.39084 4016 3904 4.738569259644e-06 4017 3904 -7.331371307373e-06 4018 3904 -76232648.10076 4019 3904 69374999.9886 4026 3904 -1.177191734314e-06 4027 3904 -41882340.60421 4028 3904 8.344650268555e-07 4029 3904 16203472.22754 4030 3904 -31210863.52937 4031 3904 17343750.0057 3905 3905 1217261802.153 3906 3905 -1.52587890625e-05 3907 3905 -2.562999725342e-06 3908 3905 179873780.5718 3915 3905 -1.54972076416e-05 3916 3905 -1.907348632813e-06 3917 3905 109872226.963 3918 3905 -3.635883331299e-06 3919 3905 -6.109476089478e-07 3920 3905 -3642360.79014 4005 3905 86719444.4302 4006 3905 1.415610313416e-06 4007 3905 -121047307.7997 4008 3905 21679861.11823 4009 3905 17343750.0057 4010 3905 -38039431.35476 4014 3905 3.02791595459e-05 4015 3905 4.619359970093e-06 4016 3905 -289746007.2349 4017 3905 8.165836334229e-06 4018 3905 69374999.9886 4019 3905 -103546919.3888 4026 3905 -86719444.43019 4027 3905 8.940696716309e-07 4028 3905 -121047307.7997 4029 3905 -21679861.11823 4030 3905 17343750.0057 4031 3905 -38039431.35476 3906 3906 1154306639.95 3907 3906 4.053115844727e-06 3908 3906 -5.984306335449e-05 3909 3906 164134990.0133 3910 3906 -4.798173904419e-06 3911 3906 -1.537799835205e-05 3915 3906 -88595068.35711 3916 3906 -64813888.87825 3917 3906 -4.26173210144e-06 3918 3906 -229938603.1375 3919 3906 -1.400709152222e-06 3920 3906 -1.621246337891e-05 3921 3906 -88595068.35711 3922 3906 64813888.87826 3923 3906 -3.75509262085e-06 4005 3906 -36072082.53399 4006 3906 16203472.22755 4007 3906 21679861.11823 4008 3906 -113177912.5205 4009 3906 -1.952052116394e-06 4010 3906 86719444.4302 4011 3906 -36072082.53399 4012 3906 -16203472.22755 4013 3906 21679861.11823 4014 3906 -14659514.18418 4015 3906 7.62939453125e-06 4016 3906 7.152557373047e-06 4017 3906 65803613.40852 4018 3906 4.112720489502e-06 4019 3906 3.081560134888e-05 4020 3906 -14659514.18418 4021 3906 -1.010298728943e-05 4022 3906 8.165836334229e-06 4026 3906 -36072082.53397 4027 3906 -16203472.22754 4028 3906 -21679861.11823 4029 3906 -113177912.5204 4030 3906 6.407499313354e-07 4031 3906 -86719444.43019 4032 3906 -36072082.53397 4033 3906 16203472.22755 4034 3906 -21679861.11823 3907 3907 998747631.9559 3908 3907 -6.675720214844e-06 3909 3907 -3.397464752197e-06 3910 3907 -82157545.53163 3911 3907 -2.264976501465e-06 3915 3907 -64813888.87825 3916 3907 -69150192.34827 3917 3907 -6.705522537231e-07 3918 3907 7.748603820801e-07 3919 3907 55243684.38681 3920 3907 -1.788139343262e-06 3921 3907 64813888.87826 3922 3907 -69150192.34827 3923 3907 -4.619359970093e-07 4005 3907 16203472.22755 4006 3907 -31210863.52938 4007 3907 -17343750.00569 4008 3907 -4.097819328308e-06 4009 3907 -41882340.60423 4010 3907 1.296401023865e-06 4011 3907 -16203472.22755 4012 3907 -31210863.52938 4013 3907 17343750.0057 4014 3907 8.970499038696e-06 4015 3907 -76232648.10075 4016 3907 -69374999.9886 4017 3907 4.053115844727e-06 4018 3907 26913861.39084 4019 3907 4.738569259644e-06 4020 3907 -7.331371307373e-06 4021 3907 -76232648.10076 4022 3907 69374999.9886 4026 3907 -16203472.22754 4027 3907 -31210863.52937 4028 3907 -17343750.0057 4029 3907 -1.177191734314e-06 4030 3907 -41882340.60421 4031 3907 8.344650268555e-07 4032 3907 16203472.22754 4033 3907 -31210863.52937 4034 3907 17343750.0057 3908 3908 1217261802.153 3909 3908 -1.52587890625e-05 3910 3908 -2.562999725342e-06 3911 3908 179873780.5718 3915 3908 -4.231929779053e-06 3916 3908 -5.811452865601e-07 3917 3908 -3642360.790142 3918 3908 -1.54972076416e-05 3919 3908 -1.907348632813e-06 3920 3908 109872226.963 3921 3908 -3.635883331299e-06 3922 3908 -6.109476089478e-07 3923 3908 -3642360.79014 4005 3908 21679861.11823 4006 3908 -17343750.00569 4007 3908 -38039431.35476 4008 3908 86719444.4302 4009 3908 1.415610313416e-06 4010 3908 -121047307.7997 4011 3908 21679861.11823 4012 3908 17343750.0057 4013 3908 -38039431.35476 4014 3908 7.182359695435e-06 4015 3908 -69374999.9886 4016 3908 -103546919.3888 4017 3908 3.02791595459e-05 4018 3908 4.619359970093e-06 4019 3908 -289746007.2349 4020 3908 8.165836334229e-06 4021 3908 69374999.9886 4022 3908 -103546919.3888 4026 3908 -21679861.11823 4027 3908 -17343750.0057 4028 3908 -38039431.35476 4029 3908 -86719444.43019 4030 3908 8.940696716309e-07 4031 3908 -121047307.7997 4032 3908 -21679861.11823 4033 3908 17343750.0057 4034 3908 -38039431.35476 3909 3909 1242901705.056 3910 3909 64813887.58197 3911 3909 -3.838539123535e-05 3912 3909 47693290.89467 3913 3909 -64813888.35975 3914 3909 -7.510185241699e-06 3918 3909 -88595068.35711 3919 3909 -64813888.87825 3920 3909 -4.26173210144e-06 3921 3909 -229938603.1375 3922 3909 -1.400709152222e-06 3923 3909 -1.621246337891e-05 3924 3909 -88595068.35711 3925 3909 64813888.87826 3926 3909 -3.75509262085e-06 4008 3909 -36072082.53399 4009 3909 16203472.22755 4010 3909 21679861.11823 4011 3909 -135326679.0277 4012 3909 -16203472.0331 4013 3909 86719444.24762 4017 3909 -14659514.18418 4018 3909 7.62939453125e-06 4019 3909 7.152557373047e-06 4020 3909 101875695.1567 4021 3909 16203471.90348 4022 3909 0.03654569387436 4023 3909 -36808280.87074 4024 3909 -16203472.09792 4025 3909 21679860.74398 4029 3909 -36072082.53397 4030 3909 -16203472.22754 4031 3909 -21679861.11823 4032 3909 -113177912.5204 4033 3909 6.407499313354e-07 4034 3909 -86719444.43019 4035 3909 -36072082.53397 4036 3909 16203472.22755 4037 3909 -21679861.11823 3910 3910 1067897821.637 3912 3910 -64813888.10049 3913 3910 -179154367.6044 3914 3910 -1.16229057312e-05 3918 3910 -64813888.87825 3919 3910 -69150192.34827 3920 3910 -6.705522537231e-07 3921 3910 7.748603820801e-07 3922 3910 55243684.38681 3923 3910 -1.788139343262e-06 3924 3910 64813888.87826 3925 3910 -69150192.34827 3926 3910 -4.619359970093e-07 4008 3910 16203472.22755 4009 3910 -31210863.52938 4010 3910 -17343750.00569 4011 3910 -16203472.09792 4012 3910 -59169888.51195 4013 3910 17343749.94043 4017 3910 8.970499038696e-06 4018 3910 -76232648.10075 4019 3910 -69374999.9886 4020 3910 16203471.90348 4021 3910 58124724.28025 4022 3910 0.029221534729 4023 3910 -16203472.03311 4024 3910 -93520195.52346 4025 3910 69374999.6084 4029 3910 -16203472.22754 4030 3910 -31210863.52937 4031 3910 -17343750.0057 4032 3910 -1.177191734314e-06 4033 3910 -41882340.60421 4034 3910 8.344650268555e-07 4035 3910 16203472.22754 4036 3910 -31210863.52937 4037 3910 17343750.0057 3911 3911 1220904161.253 3912 3911 -7.390975952148e-06 3913 3911 -9.536743164063e-06 3914 3911 101973736.7139 3918 3911 -4.231929779053e-06 3919 3911 -5.811452865601e-07 3920 3911 -3642360.790142 3921 3911 -1.54972076416e-05 3922 3911 -1.907348632813e-06 3923 3911 109872226.963 3924 3911 -3.635883331299e-06 3925 3911 -6.109476089478e-07 3926 3911 -3642360.79014 4008 3911 21679861.11823 4009 3911 -17343750.00569 4010 3911 -38039431.35476 4011 3911 86719444.24762 4012 3911 17343749.9078 4013 3911 -121957897.9018 4017 3911 7.182359695435e-06 4018 3911 -69374999.9886 4019 3911 -103546919.3888 4020 3911 -0.03648543357849 4021 3911 -0.02920261025429 4022 3911 -251706576.231 4023 3911 21679860.55685 4024 3911 69374999.49133 4025 3911 -104457508.7431 4029 3911 -21679861.11823 4030 3911 -17343750.0057 4031 3911 -38039431.35476 4032 3911 -86719444.43019 4033 3911 8.940696716309e-07 4034 3911 -121047307.7997 4035 3911 -21679861.11823 4036 3911 17343750.0057 4037 3911 -38039431.35476 3912 3912 721441645.4454 3913 3912 64813888.87825 3914 3912 -8.821487426758e-06 3921 3912 -88595068.35711 3922 3912 -64813888.87825 3923 3912 -4.26173210144e-06 3924 3912 -346380299.6592 3925 3912 -64813888.35974 3926 3912 -2.676248550415e-05 3927 3912 27846630.32399 3928 3912 51851110.58409 4011 3912 -13923315.16199 4012 3912 19444166.47861 4013 3912 26015832.7805 4020 3912 -36808280.87074 4021 3912 -16203472.0331 4022 3912 -21679860.55685 4023 3912 41127258.27048 4024 3912 16203472.22755 4025 3912 17343888.84954 4032 3912 -36072082.53397 4033 3912 -16203472.22754 4034 3912 -21679861.11823 4035 3912 -135326679.0276 4036 3912 -16203472.09792 4037 3912 -86719444.24762 4038 3912 -13923315.162 4039 3912 12962777.65241 4040 3912 -17343888.52033 3913 3913 624217266.0229 3914 3913 -7.273460780558e-06 3921 3913 -64813888.87825 3922 3913 -69150192.34827 3923 3913 -6.705522537231e-07 3924 3913 -64813888.10048 3925 3913 -41753137.74642 3926 3913 -7.390975952148e-06 3927 3913 77776665.87613 3928 3913 27846630.32398 3929 3913 6.794929504395e-06 4011 3913 12962777.65241 4012 3913 -13923315.162 4013 3913 -13874999.9393 4020 3913 -16203472.09791 4021 3913 -93520195.52345 4022 3913 -69374999.49133 4023 3913 16203472.22755 4024 3913 16821163.40287 4025 3913 13874999.85144 4032 3913 -16203472.22754 4033 3913 -31210863.52937 4034 3913 -17343750.0057 4035 3913 -16203472.0331 4036 3913 -59169888.51194 4037 3913 -17343749.90781 4038 3913 19444166.47861 4039 3913 -13923315.162 4040 3913 20812499.90895 3914 3914 760788621.1472 3921 3914 -4.231929779053e-06 3922 3914 -5.811452865601e-07 3923 3914 -3642360.790142 3924 3914 -2.646446228027e-05 3925 3914 -5.185604095459e-06 3926 3914 31972185.12589 3928 3914 4.708766937256e-06 3929 3914 74257680.86397 4011 3914 17343888.52033 4012 3914 -20812499.90894 4013 3914 -37128840.43198 4020 3914 -21679860.74397 4021 3914 -69374999.6084 4022 3914 -104457508.7431 4023 3914 -17343888.84951 4024 3914 -13874999.85143 4025 3914 -181091253.0988 4032 3914 -21679861.11823 4033 3914 -17343750.0057 4034 3914 -38039431.35476 4035 3914 -86719444.24762 4036 3914 -17343749.94043 4037 3914 -121957897.9018 4038 3914 -26015832.7805 4039 3914 13874999.9393 4040 3914 -37128840.43199 3915 3915 1154306639.95 3916 3915 4.053115844727e-06 3917 3915 -5.984306335449e-05 3918 3915 164134990.0133 3919 3915 -4.798173904419e-06 3920 3915 -1.537799835205e-05 3930 3915 -229938603.1375 3931 3915 -1.400709152222e-06 3932 3915 -1.621246337891e-05 3933 3915 -88595068.35711 3934 3915 64813888.87826 3935 3915 -3.75509262085e-06 4014 3915 -113177912.5205 4015 3915 -1.952052116394e-06 4016 3915 86719444.4302 4017 3915 -36072082.53399 4018 3915 -16203472.22755 4019 3915 21679861.11823 4026 3915 65803613.40852 4027 3915 4.112720489502e-06 4028 3915 3.081560134888e-05 4029 3915 -14659514.18418 4030 3915 -1.010298728943e-05 4031 3915 8.165836334229e-06 4041 3915 -113177912.5204 4042 3915 6.407499313354e-07 4043 3915 -86719444.43019 4044 3915 -36072082.53397 4045 3915 16203472.22755 4046 3915 -21679861.11823 3916 3916 998747631.9559 3917 3916 -6.675720214844e-06 3918 3916 -3.397464752197e-06 3919 3916 -82157545.53163 3920 3916 -2.264976501465e-06 3930 3916 7.748603820801e-07 3931 3916 55243684.38681 3932 3916 -1.788139343262e-06 3933 3916 64813888.87826 3934 3916 -69150192.34827 3935 3916 -4.619359970093e-07 4014 3916 -4.097819328308e-06 4015 3916 -41882340.60423 4016 3916 1.296401023865e-06 4017 3916 -16203472.22755 4018 3916 -31210863.52938 4019 3916 17343750.0057 4026 3916 4.053115844727e-06 4027 3916 26913861.39084 4028 3916 4.738569259644e-06 4029 3916 -7.331371307373e-06 4030 3916 -76232648.10076 4031 3916 69374999.9886 4041 3916 -1.177191734314e-06 4042 3916 -41882340.60421 4043 3916 8.344650268555e-07 4044 3916 16203472.22754 4045 3916 -31210863.52937 4046 3916 17343750.0057 3917 3917 1217261802.153 3918 3917 -1.52587890625e-05 3919 3917 -2.562999725342e-06 3920 3917 179873780.5718 3930 3917 -1.54972076416e-05 3931 3917 -1.907348632813e-06 3932 3917 109872226.963 3933 3917 -3.635883331299e-06 3934 3917 -6.109476089478e-07 3935 3917 -3642360.79014 4014 3917 86719444.4302 4015 3917 1.415610313416e-06 4016 3917 -121047307.7997 4017 3917 21679861.11823 4018 3917 17343750.0057 4019 3917 -38039431.35476 4026 3917 3.02791595459e-05 4027 3917 4.619359970093e-06 4028 3917 -289746007.2349 4029 3917 8.165836334229e-06 4030 3917 69374999.9886 4031 3917 -103546919.3888 4041 3917 -86719444.43019 4042 3917 8.940696716309e-07 4043 3917 -121047307.7997 4044 3917 -21679861.11823 4045 3917 17343750.0057 4046 3917 -38039431.35476 3918 3918 1154306639.95 3919 3918 4.053115844727e-06 3920 3918 -5.984306335449e-05 3921 3918 164134990.0133 3922 3918 -4.798173904419e-06 3923 3918 -1.537799835205e-05 3930 3918 -88595068.35711 3931 3918 -64813888.87825 3932 3918 -4.26173210144e-06 3933 3918 -229938603.1375 3934 3918 -1.400709152222e-06 3935 3918 -1.621246337891e-05 3936 3918 -88595068.35711 3937 3918 64813888.87826 3938 3918 -3.75509262085e-06 4014 3918 -36072082.53399 4015 3918 16203472.22755 4016 3918 21679861.11823 4017 3918 -113177912.5205 4018 3918 -1.952052116394e-06 4019 3918 86719444.4302 4020 3918 -36072082.53399 4021 3918 -16203472.22755 4022 3918 21679861.11823 4026 3918 -14659514.18418 4027 3918 7.62939453125e-06 4028 3918 7.152557373047e-06 4029 3918 65803613.40852 4030 3918 4.112720489502e-06 4031 3918 3.081560134888e-05 4032 3918 -14659514.18418 4033 3918 -1.010298728943e-05 4034 3918 8.165836334229e-06 4041 3918 -36072082.53397 4042 3918 -16203472.22754 4043 3918 -21679861.11823 4044 3918 -113177912.5204 4045 3918 6.407499313354e-07 4046 3918 -86719444.43019 4047 3918 -36072082.53397 4048 3918 16203472.22755 4049 3918 -21679861.11823 3919 3919 998747631.9559 3920 3919 -6.675720214844e-06 3921 3919 -3.397464752197e-06 3922 3919 -82157545.53163 3923 3919 -2.264976501465e-06 3930 3919 -64813888.87825 3931 3919 -69150192.34827 3932 3919 -6.705522537231e-07 3933 3919 7.748603820801e-07 3934 3919 55243684.38681 3935 3919 -1.788139343262e-06 3936 3919 64813888.87826 3937 3919 -69150192.34827 3938 3919 -4.619359970093e-07 4014 3919 16203472.22755 4015 3919 -31210863.52938 4016 3919 -17343750.00569 4017 3919 -4.097819328308e-06 4018 3919 -41882340.60423 4019 3919 1.296401023865e-06 4020 3919 -16203472.22755 4021 3919 -31210863.52938 4022 3919 17343750.0057 4026 3919 8.970499038696e-06 4027 3919 -76232648.10075 4028 3919 -69374999.9886 4029 3919 4.053115844727e-06 4030 3919 26913861.39084 4031 3919 4.738569259644e-06 4032 3919 -7.331371307373e-06 4033 3919 -76232648.10076 4034 3919 69374999.9886 4041 3919 -16203472.22754 4042 3919 -31210863.52937 4043 3919 -17343750.0057 4044 3919 -1.177191734314e-06 4045 3919 -41882340.60421 4046 3919 8.344650268555e-07 4047 3919 16203472.22754 4048 3919 -31210863.52937 4049 3919 17343750.0057 3920 3920 1217261802.153 3921 3920 -1.52587890625e-05 3922 3920 -2.562999725342e-06 3923 3920 179873780.5718 3930 3920 -4.231929779053e-06 3931 3920 -5.811452865601e-07 3932 3920 -3642360.790142 3933 3920 -1.54972076416e-05 3934 3920 -1.907348632813e-06 3935 3920 109872226.963 3936 3920 -3.635883331299e-06 3937 3920 -6.109476089478e-07 3938 3920 -3642360.79014 4014 3920 21679861.11823 4015 3920 -17343750.00569 4016 3920 -38039431.35476 4017 3920 86719444.4302 4018 3920 1.415610313416e-06 4019 3920 -121047307.7997 4020 3920 21679861.11823 4021 3920 17343750.0057 4022 3920 -38039431.35476 4026 3920 7.182359695435e-06 4027 3920 -69374999.9886 4028 3920 -103546919.3888 4029 3920 3.02791595459e-05 4030 3920 4.619359970093e-06 4031 3920 -289746007.2349 4032 3920 8.165836334229e-06 4033 3920 69374999.9886 4034 3920 -103546919.3888 4041 3920 -21679861.11823 4042 3920 -17343750.0057 4043 3920 -38039431.35476 4044 3920 -86719444.43019 4045 3920 8.940696716309e-07 4046 3920 -121047307.7997 4047 3920 -21679861.11823 4048 3920 17343750.0057 4049 3920 -38039431.35476 3921 3921 1154306639.95 3922 3921 4.053115844727e-06 3923 3921 -5.984306335449e-05 3924 3921 164134990.0133 3925 3921 -4.798173904419e-06 3926 3921 -1.537799835205e-05 3933 3921 -88595068.35711 3934 3921 -64813888.87825 3935 3921 -4.26173210144e-06 3936 3921 -229938603.1375 3937 3921 -1.400709152222e-06 3938 3921 -1.621246337891e-05 3939 3921 -88595068.35711 3940 3921 64813888.87826 3941 3921 -3.75509262085e-06 4017 3921 -36072082.53399 4018 3921 16203472.22755 4019 3921 21679861.11823 4020 3921 -113177912.5205 4021 3921 -1.952052116394e-06 4022 3921 86719444.4302 4023 3921 -36072082.53399 4024 3921 -16203472.22755 4025 3921 21679861.11823 4029 3921 -14659514.18418 4030 3921 7.62939453125e-06 4031 3921 7.152557373047e-06 4032 3921 65803613.40852 4033 3921 4.112720489502e-06 4034 3921 3.081560134888e-05 4035 3921 -14659514.18418 4036 3921 -1.010298728943e-05 4037 3921 8.165836334229e-06 4044 3921 -36072082.53397 4045 3921 -16203472.22754 4046 3921 -21679861.11823 4047 3921 -113177912.5204 4048 3921 6.407499313354e-07 4049 3921 -86719444.43019 4050 3921 -36072082.53397 4051 3921 16203472.22755 4052 3921 -21679861.11823 3922 3922 998747631.9559 3923 3922 -6.675720214844e-06 3924 3922 -3.397464752197e-06 3925 3922 -82157545.53163 3926 3922 -2.264976501465e-06 3933 3922 -64813888.87825 3934 3922 -69150192.34827 3935 3922 -6.705522537231e-07 3936 3922 7.748603820801e-07 3937 3922 55243684.38681 3938 3922 -1.788139343262e-06 3939 3922 64813888.87826 3940 3922 -69150192.34827 3941 3922 -4.619359970093e-07 4017 3922 16203472.22755 4018 3922 -31210863.52938 4019 3922 -17343750.00569 4020 3922 -4.097819328308e-06 4021 3922 -41882340.60423 4022 3922 1.296401023865e-06 4023 3922 -16203472.22755 4024 3922 -31210863.52938 4025 3922 17343750.0057 4029 3922 8.970499038696e-06 4030 3922 -76232648.10075 4031 3922 -69374999.9886 4032 3922 4.053115844727e-06 4033 3922 26913861.39084 4034 3922 4.738569259644e-06 4035 3922 -7.331371307373e-06 4036 3922 -76232648.10076 4037 3922 69374999.9886 4044 3922 -16203472.22754 4045 3922 -31210863.52937 4046 3922 -17343750.0057 4047 3922 -1.177191734314e-06 4048 3922 -41882340.60421 4049 3922 8.344650268555e-07 4050 3922 16203472.22754 4051 3922 -31210863.52937 4052 3922 17343750.0057 3923 3923 1217261802.153 3924 3923 -1.52587890625e-05 3925 3923 -2.562999725342e-06 3926 3923 179873780.5718 3933 3923 -4.231929779053e-06 3934 3923 -5.811452865601e-07 3935 3923 -3642360.790142 3936 3923 -1.54972076416e-05 3937 3923 -1.907348632813e-06 3938 3923 109872226.963 3939 3923 -3.635883331299e-06 3940 3923 -6.109476089478e-07 3941 3923 -3642360.79014 4017 3923 21679861.11823 4018 3923 -17343750.00569 4019 3923 -38039431.35476 4020 3923 86719444.4302 4021 3923 1.415610313416e-06 4022 3923 -121047307.7997 4023 3923 21679861.11823 4024 3923 17343750.0057 4025 3923 -38039431.35476 4029 3923 7.182359695435e-06 4030 3923 -69374999.9886 4031 3923 -103546919.3888 4032 3923 3.02791595459e-05 4033 3923 4.619359970093e-06 4034 3923 -289746007.2349 4035 3923 8.165836334229e-06 4036 3923 69374999.9886 4037 3923 -103546919.3888 4044 3923 -21679861.11823 4045 3923 -17343750.0057 4046 3923 -38039431.35476 4047 3923 -86719444.43019 4048 3923 8.940696716309e-07 4049 3923 -121047307.7997 4050 3923 -21679861.11823 4051 3923 17343750.0057 4052 3923 -38039431.35476 3924 3924 1242901705.056 3925 3924 64813887.58197 3926 3924 -3.838539123535e-05 3927 3924 47693290.89467 3928 3924 -64813888.35975 3929 3924 -7.510185241699e-06 3936 3924 -88595068.35711 3937 3924 -64813888.87825 3938 3924 -4.26173210144e-06 3939 3924 -229938603.1375 3940 3924 -1.400709152222e-06 3941 3924 -1.621246337891e-05 3942 3924 -88595068.35711 3943 3924 64813888.87826 3944 3924 -3.75509262085e-06 4020 3924 -36072082.53399 4021 3924 16203472.22755 4022 3924 21679861.11823 4023 3924 -135326679.0277 4024 3924 -16203472.0331 4025 3924 86719444.24762 4032 3924 -14659514.18418 4033 3924 7.62939453125e-06 4034 3924 7.152557373047e-06 4035 3924 101875695.1567 4036 3924 16203471.90348 4037 3924 0.03654569387436 4038 3924 -36808280.87074 4039 3924 -16203472.09792 4040 3924 21679860.74398 4047 3924 -36072082.53397 4048 3924 -16203472.22754 4049 3924 -21679861.11823 4050 3924 -113177912.5204 4051 3924 6.407499313354e-07 4052 3924 -86719444.43019 4053 3924 -36072082.53397 4054 3924 16203472.22755 4055 3924 -21679861.11823 3925 3925 1067897821.637 3927 3925 -64813888.10049 3928 3925 -179154367.6044 3929 3925 -1.16229057312e-05 3936 3925 -64813888.87825 3937 3925 -69150192.34827 3938 3925 -6.705522537231e-07 3939 3925 7.748603820801e-07 3940 3925 55243684.38681 3941 3925 -1.788139343262e-06 3942 3925 64813888.87826 3943 3925 -69150192.34827 3944 3925 -4.619359970093e-07 4020 3925 16203472.22755 4021 3925 -31210863.52938 4022 3925 -17343750.00569 4023 3925 -16203472.09792 4024 3925 -59169888.51195 4025 3925 17343749.94043 4032 3925 8.970499038696e-06 4033 3925 -76232648.10075 4034 3925 -69374999.9886 4035 3925 16203471.90348 4036 3925 58124724.28025 4037 3925 0.029221534729 4038 3925 -16203472.03311 4039 3925 -93520195.52346 4040 3925 69374999.6084 4047 3925 -16203472.22754 4048 3925 -31210863.52937 4049 3925 -17343750.0057 4050 3925 -1.177191734314e-06 4051 3925 -41882340.60421 4052 3925 8.344650268555e-07 4053 3925 16203472.22754 4054 3925 -31210863.52937 4055 3925 17343750.0057 3926 3926 1220904161.253 3927 3926 -7.390975952148e-06 3928 3926 -9.536743164063e-06 3929 3926 101973736.7139 3936 3926 -4.231929779053e-06 3937 3926 -5.811452865601e-07 3938 3926 -3642360.790142 3939 3926 -1.54972076416e-05 3940 3926 -1.907348632813e-06 3941 3926 109872226.963 3942 3926 -3.635883331299e-06 3943 3926 -6.109476089478e-07 3944 3926 -3642360.79014 4020 3926 21679861.11823 4021 3926 -17343750.00569 4022 3926 -38039431.35476 4023 3926 86719444.24762 4024 3926 17343749.9078 4025 3926 -121957897.9018 4032 3926 7.182359695435e-06 4033 3926 -69374999.9886 4034 3926 -103546919.3888 4035 3926 -0.03648543357849 4036 3926 -0.02920261025429 4037 3926 -251706576.231 4038 3926 21679860.55685 4039 3926 69374999.49133 4040 3926 -104457508.7431 4047 3926 -21679861.11823 4048 3926 -17343750.0057 4049 3926 -38039431.35476 4050 3926 -86719444.43019 4051 3926 8.940696716309e-07 4052 3926 -121047307.7997 4053 3926 -21679861.11823 4054 3926 17343750.0057 4055 3926 -38039431.35476 3927 3927 721441645.4454 3928 3927 64813888.87825 3929 3927 -8.821487426758e-06 3939 3927 -88595068.35711 3940 3927 -64813888.87825 3941 3927 -4.26173210144e-06 3942 3927 -346380299.6592 3943 3927 -64813888.35974 3944 3927 -2.676248550415e-05 3945 3927 27846630.32399 3946 3927 51851110.58409 4023 3927 -13923315.16199 4024 3927 19444166.47861 4025 3927 26015832.7805 4035 3927 -36808280.87074 4036 3927 -16203472.0331 4037 3927 -21679860.55685 4038 3927 41127258.27048 4039 3927 16203472.22755 4040 3927 17343888.84954 4050 3927 -36072082.53397 4051 3927 -16203472.22754 4052 3927 -21679861.11823 4053 3927 -135326679.0276 4054 3927 -16203472.09792 4055 3927 -86719444.24762 4056 3927 -13923315.162 4057 3927 12962777.65241 4058 3927 -17343888.52033 3928 3928 624217266.0229 3929 3928 -7.273460780558e-06 3939 3928 -64813888.87825 3940 3928 -69150192.34827 3941 3928 -6.705522537231e-07 3942 3928 -64813888.10048 3943 3928 -41753137.74642 3944 3928 -7.390975952148e-06 3945 3928 77776665.87613 3946 3928 27846630.32398 3947 3928 6.794929504395e-06 4023 3928 12962777.65241 4024 3928 -13923315.162 4025 3928 -13874999.9393 4035 3928 -16203472.09791 4036 3928 -93520195.52345 4037 3928 -69374999.49133 4038 3928 16203472.22755 4039 3928 16821163.40287 4040 3928 13874999.85144 4050 3928 -16203472.22754 4051 3928 -31210863.52937 4052 3928 -17343750.0057 4053 3928 -16203472.0331 4054 3928 -59169888.51194 4055 3928 -17343749.90781 4056 3928 19444166.47861 4057 3928 -13923315.162 4058 3928 20812499.90895 3929 3929 760788621.1472 3939 3929 -4.231929779053e-06 3940 3929 -5.811452865601e-07 3941 3929 -3642360.790142 3942 3929 -2.646446228027e-05 3943 3929 -5.185604095459e-06 3944 3929 31972185.12589 3946 3929 4.708766937256e-06 3947 3929 74257680.86397 4023 3929 17343888.52033 4024 3929 -20812499.90894 4025 3929 -37128840.43198 4035 3929 -21679860.74397 4036 3929 -69374999.6084 4037 3929 -104457508.7431 4038 3929 -17343888.84951 4039 3929 -13874999.85143 4040 3929 -181091253.0988 4050 3929 -21679861.11823 4051 3929 -17343750.0057 4052 3929 -38039431.35476 4053 3929 -86719444.24762 4054 3929 -17343749.94043 4055 3929 -121957897.9018 4056 3929 -26015832.7805 4057 3929 13874999.9393 4058 3929 -37128840.43199 3930 3930 1154306639.95 3931 3930 4.053115844727e-06 3932 3930 -5.984306335449e-05 3933 3930 164134990.0133 3934 3930 -4.798173904419e-06 3935 3930 -1.537799835205e-05 3948 3930 -229938603.1375 3949 3930 -1.400709152222e-06 3950 3930 -1.621246337891e-05 3951 3930 -88595068.35711 3952 3930 64813888.87826 3953 3930 -3.75509262085e-06 4026 3930 -113177912.5205 4027 3930 -1.952052116394e-06 4028 3930 86719444.4302 4029 3930 -36072082.53399 4030 3930 -16203472.22755 4031 3930 21679861.11823 4041 3930 65803613.40852 4042 3930 4.112720489502e-06 4043 3930 3.081560134888e-05 4044 3930 -14659514.18418 4045 3930 -1.010298728943e-05 4046 3930 8.165836334229e-06 4059 3930 -113177912.5204 4060 3930 6.407499313354e-07 4061 3930 -86719444.43019 4062 3930 -36072082.53397 4063 3930 16203472.22755 4064 3930 -21679861.11823 3931 3931 998747631.9559 3932 3931 -6.675720214844e-06 3933 3931 -3.397464752197e-06 3934 3931 -82157545.53163 3935 3931 -2.264976501465e-06 3948 3931 7.748603820801e-07 3949 3931 55243684.38681 3950 3931 -1.788139343262e-06 3951 3931 64813888.87826 3952 3931 -69150192.34827 3953 3931 -4.619359970093e-07 4026 3931 -4.097819328308e-06 4027 3931 -41882340.60423 4028 3931 1.296401023865e-06 4029 3931 -16203472.22755 4030 3931 -31210863.52938 4031 3931 17343750.0057 4041 3931 4.053115844727e-06 4042 3931 26913861.39084 4043 3931 4.738569259644e-06 4044 3931 -7.331371307373e-06 4045 3931 -76232648.10076 4046 3931 69374999.9886 4059 3931 -1.177191734314e-06 4060 3931 -41882340.60421 4061 3931 8.344650268555e-07 4062 3931 16203472.22754 4063 3931 -31210863.52937 4064 3931 17343750.0057 3932 3932 1217261802.153 3933 3932 -1.52587890625e-05 3934 3932 -2.562999725342e-06 3935 3932 179873780.5718 3948 3932 -1.54972076416e-05 3949 3932 -1.907348632813e-06 3950 3932 109872226.963 3951 3932 -3.635883331299e-06 3952 3932 -6.109476089478e-07 3953 3932 -3642360.79014 4026 3932 86719444.4302 4027 3932 1.415610313416e-06 4028 3932 -121047307.7997 4029 3932 21679861.11823 4030 3932 17343750.0057 4031 3932 -38039431.35476 4041 3932 3.02791595459e-05 4042 3932 4.619359970093e-06 4043 3932 -289746007.2349 4044 3932 8.165836334229e-06 4045 3932 69374999.9886 4046 3932 -103546919.3888 4059 3932 -86719444.43019 4060 3932 8.940696716309e-07 4061 3932 -121047307.7997 4062 3932 -21679861.11823 4063 3932 17343750.0057 4064 3932 -38039431.35476 3933 3933 1154306639.95 3934 3933 4.053115844727e-06 3935 3933 -5.984306335449e-05 3936 3933 164134990.0133 3937 3933 -4.798173904419e-06 3938 3933 -1.537799835205e-05 3948 3933 -88595068.35711 3949 3933 -64813888.87825 3950 3933 -4.26173210144e-06 3951 3933 -229938603.1375 3952 3933 -1.400709152222e-06 3953 3933 -1.621246337891e-05 3954 3933 -88595068.35711 3955 3933 64813888.87826 3956 3933 -3.75509262085e-06 4026 3933 -36072082.53399 4027 3933 16203472.22755 4028 3933 21679861.11823 4029 3933 -113177912.5205 4030 3933 -1.952052116394e-06 4031 3933 86719444.4302 4032 3933 -36072082.53399 4033 3933 -16203472.22755 4034 3933 21679861.11823 4041 3933 -14659514.18418 4042 3933 7.62939453125e-06 4043 3933 7.152557373047e-06 4044 3933 65803613.40852 4045 3933 4.112720489502e-06 4046 3933 3.081560134888e-05 4047 3933 -14659514.18418 4048 3933 -1.010298728943e-05 4049 3933 8.165836334229e-06 4059 3933 -36072082.53397 4060 3933 -16203472.22754 4061 3933 -21679861.11823 4062 3933 -113177912.5204 4063 3933 6.407499313354e-07 4064 3933 -86719444.43019 4065 3933 -36072082.53397 4066 3933 16203472.22755 4067 3933 -21679861.11823 3934 3934 998747631.9559 3935 3934 -6.675720214844e-06 3936 3934 -3.397464752197e-06 3937 3934 -82157545.53163 3938 3934 -2.264976501465e-06 3948 3934 -64813888.87825 3949 3934 -69150192.34827 3950 3934 -6.705522537231e-07 3951 3934 7.748603820801e-07 3952 3934 55243684.38681 3953 3934 -1.788139343262e-06 3954 3934 64813888.87826 3955 3934 -69150192.34827 3956 3934 -4.619359970093e-07 4026 3934 16203472.22755 4027 3934 -31210863.52938 4028 3934 -17343750.00569 4029 3934 -4.097819328308e-06 4030 3934 -41882340.60423 4031 3934 1.296401023865e-06 4032 3934 -16203472.22755 4033 3934 -31210863.52938 4034 3934 17343750.0057 4041 3934 8.970499038696e-06 4042 3934 -76232648.10075 4043 3934 -69374999.9886 4044 3934 4.053115844727e-06 4045 3934 26913861.39084 4046 3934 4.738569259644e-06 4047 3934 -7.331371307373e-06 4048 3934 -76232648.10076 4049 3934 69374999.9886 4059 3934 -16203472.22754 4060 3934 -31210863.52937 4061 3934 -17343750.0057 4062 3934 -1.177191734314e-06 4063 3934 -41882340.60421 4064 3934 8.344650268555e-07 4065 3934 16203472.22754 4066 3934 -31210863.52937 4067 3934 17343750.0057 3935 3935 1217261802.153 3936 3935 -1.52587890625e-05 3937 3935 -2.562999725342e-06 3938 3935 179873780.5718 3948 3935 -4.231929779053e-06 3949 3935 -5.811452865601e-07 3950 3935 -3642360.790142 3951 3935 -1.54972076416e-05 3952 3935 -1.907348632813e-06 3953 3935 109872226.963 3954 3935 -3.635883331299e-06 3955 3935 -6.109476089478e-07 3956 3935 -3642360.79014 4026 3935 21679861.11823 4027 3935 -17343750.00569 4028 3935 -38039431.35476 4029 3935 86719444.4302 4030 3935 1.415610313416e-06 4031 3935 -121047307.7997 4032 3935 21679861.11823 4033 3935 17343750.0057 4034 3935 -38039431.35476 4041 3935 7.182359695435e-06 4042 3935 -69374999.9886 4043 3935 -103546919.3888 4044 3935 3.02791595459e-05 4045 3935 4.619359970093e-06 4046 3935 -289746007.2349 4047 3935 8.165836334229e-06 4048 3935 69374999.9886 4049 3935 -103546919.3888 4059 3935 -21679861.11823 4060 3935 -17343750.0057 4061 3935 -38039431.35476 4062 3935 -86719444.43019 4063 3935 8.940696716309e-07 4064 3935 -121047307.7997 4065 3935 -21679861.11823 4066 3935 17343750.0057 4067 3935 -38039431.35476 3936 3936 1154306639.95 3937 3936 4.053115844727e-06 3938 3936 -5.984306335449e-05 3939 3936 164134990.0133 3940 3936 -4.798173904419e-06 3941 3936 -1.537799835205e-05 3951 3936 -88595068.35711 3952 3936 -64813888.87825 3953 3936 -4.26173210144e-06 3954 3936 -229938603.1375 3955 3936 -1.400709152222e-06 3956 3936 -1.621246337891e-05 3957 3936 -88595068.35711 3958 3936 64813888.87826 3959 3936 -3.75509262085e-06 4029 3936 -36072082.53399 4030 3936 16203472.22755 4031 3936 21679861.11823 4032 3936 -113177912.5205 4033 3936 -1.952052116394e-06 4034 3936 86719444.4302 4035 3936 -36072082.53399 4036 3936 -16203472.22755 4037 3936 21679861.11823 4044 3936 -14659514.18418 4045 3936 7.62939453125e-06 4046 3936 7.152557373047e-06 4047 3936 65803613.40852 4048 3936 4.112720489502e-06 4049 3936 3.081560134888e-05 4050 3936 -14659514.18418 4051 3936 -1.010298728943e-05 4052 3936 8.165836334229e-06 4062 3936 -36072082.53397 4063 3936 -16203472.22754 4064 3936 -21679861.11823 4065 3936 -113177912.5204 4066 3936 6.407499313354e-07 4067 3936 -86719444.43019 4068 3936 -36072082.53397 4069 3936 16203472.22755 4070 3936 -21679861.11823 3937 3937 998747631.9559 3938 3937 -6.675720214844e-06 3939 3937 -3.397464752197e-06 3940 3937 -82157545.53163 3941 3937 -2.264976501465e-06 3951 3937 -64813888.87825 3952 3937 -69150192.34827 3953 3937 -6.705522537231e-07 3954 3937 7.748603820801e-07 3955 3937 55243684.38681 3956 3937 -1.788139343262e-06 3957 3937 64813888.87826 3958 3937 -69150192.34827 3959 3937 -4.619359970093e-07 4029 3937 16203472.22755 4030 3937 -31210863.52938 4031 3937 -17343750.00569 4032 3937 -4.097819328308e-06 4033 3937 -41882340.60423 4034 3937 1.296401023865e-06 4035 3937 -16203472.22755 4036 3937 -31210863.52938 4037 3937 17343750.0057 4044 3937 8.970499038696e-06 4045 3937 -76232648.10075 4046 3937 -69374999.9886 4047 3937 4.053115844727e-06 4048 3937 26913861.39084 4049 3937 4.738569259644e-06 4050 3937 -7.331371307373e-06 4051 3937 -76232648.10076 4052 3937 69374999.9886 4062 3937 -16203472.22754 4063 3937 -31210863.52937 4064 3937 -17343750.0057 4065 3937 -1.177191734314e-06 4066 3937 -41882340.60421 4067 3937 8.344650268555e-07 4068 3937 16203472.22754 4069 3937 -31210863.52937 4070 3937 17343750.0057 3938 3938 1217261802.153 3939 3938 -1.52587890625e-05 3940 3938 -2.562999725342e-06 3941 3938 179873780.5718 3951 3938 -4.231929779053e-06 3952 3938 -5.811452865601e-07 3953 3938 -3642360.790142 3954 3938 -1.54972076416e-05 3955 3938 -1.907348632813e-06 3956 3938 109872226.963 3957 3938 -3.635883331299e-06 3958 3938 -6.109476089478e-07 3959 3938 -3642360.79014 4029 3938 21679861.11823 4030 3938 -17343750.00569 4031 3938 -38039431.35476 4032 3938 86719444.4302 4033 3938 1.415610313416e-06 4034 3938 -121047307.7997 4035 3938 21679861.11823 4036 3938 17343750.0057 4037 3938 -38039431.35476 4044 3938 7.182359695435e-06 4045 3938 -69374999.9886 4046 3938 -103546919.3888 4047 3938 3.02791595459e-05 4048 3938 4.619359970093e-06 4049 3938 -289746007.2349 4050 3938 8.165836334229e-06 4051 3938 69374999.9886 4052 3938 -103546919.3888 4062 3938 -21679861.11823 4063 3938 -17343750.0057 4064 3938 -38039431.35476 4065 3938 -86719444.43019 4066 3938 8.940696716309e-07 4067 3938 -121047307.7997 4068 3938 -21679861.11823 4069 3938 17343750.0057 4070 3938 -38039431.35476 3939 3939 1154306639.95 3940 3939 4.053115844727e-06 3941 3939 -5.984306335449e-05 3942 3939 164134990.0133 3943 3939 -4.798173904419e-06 3944 3939 -1.537799835205e-05 3954 3939 -88595068.35711 3955 3939 -64813888.87825 3956 3939 -4.26173210144e-06 3957 3939 -229938603.1375 3958 3939 -1.400709152222e-06 3959 3939 -1.621246337891e-05 3960 3939 -88595068.35711 3961 3939 64813888.87826 3962 3939 -3.75509262085e-06 4032 3939 -36072082.53399 4033 3939 16203472.22755 4034 3939 21679861.11823 4035 3939 -113177912.5205 4036 3939 -1.952052116394e-06 4037 3939 86719444.4302 4038 3939 -36072082.53399 4039 3939 -16203472.22755 4040 3939 21679861.11823 4047 3939 -14659514.18418 4048 3939 7.62939453125e-06 4049 3939 7.152557373047e-06 4050 3939 65803613.40852 4051 3939 4.112720489502e-06 4052 3939 3.081560134888e-05 4053 3939 -14659514.18418 4054 3939 -1.010298728943e-05 4055 3939 8.165836334229e-06 4065 3939 -36072082.53397 4066 3939 -16203472.22754 4067 3939 -21679861.11823 4068 3939 -113177912.5204 4069 3939 6.407499313354e-07 4070 3939 -86719444.43019 4071 3939 -36072082.53397 4072 3939 16203472.22755 4073 3939 -21679861.11823 3940 3940 998747631.9559 3941 3940 -6.675720214844e-06 3942 3940 -3.397464752197e-06 3943 3940 -82157545.53163 3944 3940 -2.264976501465e-06 3954 3940 -64813888.87825 3955 3940 -69150192.34827 3956 3940 -6.705522537231e-07 3957 3940 7.748603820801e-07 3958 3940 55243684.38681 3959 3940 -1.788139343262e-06 3960 3940 64813888.87826 3961 3940 -69150192.34827 3962 3940 -4.619359970093e-07 4032 3940 16203472.22755 4033 3940 -31210863.52938 4034 3940 -17343750.00569 4035 3940 -4.097819328308e-06 4036 3940 -41882340.60423 4037 3940 1.296401023865e-06 4038 3940 -16203472.22755 4039 3940 -31210863.52938 4040 3940 17343750.0057 4047 3940 8.970499038696e-06 4048 3940 -76232648.10075 4049 3940 -69374999.9886 4050 3940 4.053115844727e-06 4051 3940 26913861.39084 4052 3940 4.738569259644e-06 4053 3940 -7.331371307373e-06 4054 3940 -76232648.10076 4055 3940 69374999.9886 4065 3940 -16203472.22754 4066 3940 -31210863.52937 4067 3940 -17343750.0057 4068 3940 -1.177191734314e-06 4069 3940 -41882340.60421 4070 3940 8.344650268555e-07 4071 3940 16203472.22754 4072 3940 -31210863.52937 4073 3940 17343750.0057 3941 3941 1217261802.153 3942 3941 -1.52587890625e-05 3943 3941 -2.562999725342e-06 3944 3941 179873780.5718 3954 3941 -4.231929779053e-06 3955 3941 -5.811452865601e-07 3956 3941 -3642360.790142 3957 3941 -1.54972076416e-05 3958 3941 -1.907348632813e-06 3959 3941 109872226.963 3960 3941 -3.635883331299e-06 3961 3941 -6.109476089478e-07 3962 3941 -3642360.79014 4032 3941 21679861.11823 4033 3941 -17343750.00569 4034 3941 -38039431.35476 4035 3941 86719444.4302 4036 3941 1.415610313416e-06 4037 3941 -121047307.7997 4038 3941 21679861.11823 4039 3941 17343750.0057 4040 3941 -38039431.35476 4047 3941 7.182359695435e-06 4048 3941 -69374999.9886 4049 3941 -103546919.3888 4050 3941 3.02791595459e-05 4051 3941 4.619359970093e-06 4052 3941 -289746007.2349 4053 3941 8.165836334229e-06 4054 3941 69374999.9886 4055 3941 -103546919.3888 4065 3941 -21679861.11823 4066 3941 -17343750.0057 4067 3941 -38039431.35476 4068 3941 -86719444.43019 4069 3941 8.940696716309e-07 4070 3941 -121047307.7997 4071 3941 -21679861.11823 4072 3941 17343750.0057 4073 3941 -38039431.35476 3942 3942 1242901705.056 3943 3942 64813887.58197 3944 3942 -3.838539123535e-05 3945 3942 47693290.89467 3946 3942 -64813888.35975 3947 3942 -7.510185241699e-06 3957 3942 -88595068.35711 3958 3942 -64813888.87825 3959 3942 -4.26173210144e-06 3960 3942 -229938603.1375 3961 3942 -1.400709152222e-06 3962 3942 -1.621246337891e-05 3963 3942 -88595068.35711 3964 3942 64813888.87826 3965 3942 -3.75509262085e-06 4035 3942 -36072082.53399 4036 3942 16203472.22755 4037 3942 21679861.11823 4038 3942 -135326679.0277 4039 3942 -16203472.0331 4040 3942 86719444.24762 4050 3942 -14659514.18418 4051 3942 7.62939453125e-06 4052 3942 7.152557373047e-06 4053 3942 101875695.1567 4054 3942 16203471.90348 4055 3942 0.03654569387436 4056 3942 -36808280.87074 4057 3942 -16203472.09792 4058 3942 21679860.74398 4068 3942 -36072082.53397 4069 3942 -16203472.22754 4070 3942 -21679861.11823 4071 3942 -113177912.5204 4072 3942 6.407499313354e-07 4073 3942 -86719444.43019 4074 3942 -36072082.53397 4075 3942 16203472.22755 4076 3942 -21679861.11823 3943 3943 1067897821.637 3945 3943 -64813888.10049 3946 3943 -179154367.6044 3947 3943 -1.16229057312e-05 3957 3943 -64813888.87825 3958 3943 -69150192.34827 3959 3943 -6.705522537231e-07 3960 3943 7.748603820801e-07 3961 3943 55243684.38681 3962 3943 -1.788139343262e-06 3963 3943 64813888.87826 3964 3943 -69150192.34827 3965 3943 -4.619359970093e-07 4035 3943 16203472.22755 4036 3943 -31210863.52938 4037 3943 -17343750.00569 4038 3943 -16203472.09792 4039 3943 -59169888.51195 4040 3943 17343749.94043 4050 3943 8.970499038696e-06 4051 3943 -76232648.10075 4052 3943 -69374999.9886 4053 3943 16203471.90348 4054 3943 58124724.28025 4055 3943 0.029221534729 4056 3943 -16203472.03311 4057 3943 -93520195.52346 4058 3943 69374999.6084 4068 3943 -16203472.22754 4069 3943 -31210863.52937 4070 3943 -17343750.0057 4071 3943 -1.177191734314e-06 4072 3943 -41882340.60421 4073 3943 8.344650268555e-07 4074 3943 16203472.22754 4075 3943 -31210863.52937 4076 3943 17343750.0057 3944 3944 1220904161.253 3945 3944 -7.390975952148e-06 3946 3944 -9.536743164063e-06 3947 3944 101973736.7139 3957 3944 -4.231929779053e-06 3958 3944 -5.811452865601e-07 3959 3944 -3642360.790142 3960 3944 -1.54972076416e-05 3961 3944 -1.907348632813e-06 3962 3944 109872226.963 3963 3944 -3.635883331299e-06 3964 3944 -6.109476089478e-07 3965 3944 -3642360.79014 4035 3944 21679861.11823 4036 3944 -17343750.00569 4037 3944 -38039431.35476 4038 3944 86719444.24762 4039 3944 17343749.9078 4040 3944 -121957897.9018 4050 3944 7.182359695435e-06 4051 3944 -69374999.9886 4052 3944 -103546919.3888 4053 3944 -0.03648543357849 4054 3944 -0.02920261025429 4055 3944 -251706576.231 4056 3944 21679860.55685 4057 3944 69374999.49133 4058 3944 -104457508.7431 4068 3944 -21679861.11823 4069 3944 -17343750.0057 4070 3944 -38039431.35476 4071 3944 -86719444.43019 4072 3944 8.940696716309e-07 4073 3944 -121047307.7997 4074 3944 -21679861.11823 4075 3944 17343750.0057 4076 3944 -38039431.35476 3945 3945 733825161.8322 3946 3945 69874541.14581 3947 3945 -2.193450927734e-05 3960 3945 -88595068.35711 3961 3945 -64813888.87825 3962 3945 -4.26173210144e-06 3963 3945 -357844273.7831 3964 3945 -69875651.73839 3965 3945 -1.645088195801e-05 3966 3945 31270320.21803 3967 3945 51852221.69519 3968 3945 2.264976501465e-06 4038 3945 -13923315.16199 4039 3945 19444166.47861 4040 3945 26015832.7805 4053 3945 -36808280.87074 4054 3945 -16203472.0331 4055 3945 -21679860.55685 4056 3945 42596488.85742 4057 3945 17468662.4055 4058 3945 17682222.18139 4071 3945 -36072082.53397 4072 3945 -16203472.22754 4073 3945 -21679861.11823 4074 3945 -139008174.7088 4075 3945 -17469217.83142 4076 3945 -88411110.90688 4077 3945 -13881426.19349 4078 3945 12963333.20796 4079 3945 -18020555.17262 3946 3946 630427502.0707 3947 3946 -7.875263690948e-06 3960 3946 -64813888.87825 3961 3946 -69150192.34827 3962 3946 -6.705522537231e-07 3963 3946 -69876207.03469 3964 3946 -50940301.31525 3965 3946 -9.536743164063e-07 3966 3946 77778332.54279 3967 3946 35166790.002 3968 3946 5.960464477539e-07 4038 3946 12962777.65241 4039 3946 -13923315.162 4040 3946 -13874999.9393 4053 3946 -16203472.09791 4054 3946 -93520195.52345 4055 3946 -69374999.49133 4056 3946 17468662.4055 4057 3946 16746172.7895 4058 3946 14145833.18359 4071 3946 -16203472.22754 4072 3946 -31210863.52937 4073 3946 -17343750.0057 4074 3946 -17469495.54439 4075 3946 -62281301.31302 4076 3946 -18697916.56855 4077 3946 19444999.81194 4078 3946 -12907287.87322 4079 3946 20270833.25379 3947 3947 770466102.9009 3960 3947 -4.231929779053e-06 3961 3947 -5.811452865601e-07 3962 3947 -3642360.790142 3963 3947 -1.710653305054e-05 3964 3947 -1.132488250732e-06 3965 3947 28643285.85722 3966 3947 2.98023223877e-06 3967 3947 5.364418029785e-07 3968 3947 79491050.79751 4038 3947 17343888.52033 4039 3947 -20812499.90894 4040 3947 -37128840.43198 4053 3947 -21679860.74397 4054 3947 -69374999.6084 4055 3947 -104457508.7431 4056 3947 -17682222.18137 4057 3947 -14145833.18358 4058 3947 -183012919.9131 4071 3947 -21679861.11823 4072 3947 -17343750.0057 4073 3947 -38039431.35476 4074 3947 -88411110.90688 4075 3947 -18697916.60118 4076 3947 -124961466.3518 4077 3947 -27030832.75893 4078 3947 13062499.95656 4079 3947 -37991274.83622 3948 3948 1154306639.95 3949 3948 4.053115844727e-06 3950 3948 -5.984306335449e-05 3951 3948 164134990.0133 3952 3948 -4.798173904419e-06 3953 3948 -1.537799835205e-05 3969 3948 -229938603.1375 3970 3948 -1.400709152222e-06 3971 3948 -1.621246337891e-05 3972 3948 -88595068.35711 3973 3948 64813888.87826 3974 3948 -3.75509262085e-06 4041 3948 -113177912.5205 4042 3948 -1.952052116394e-06 4043 3948 86719444.4302 4044 3948 -36072082.53399 4045 3948 -16203472.22755 4046 3948 21679861.11823 4059 3948 65803613.40852 4060 3948 4.112720489502e-06 4061 3948 3.081560134888e-05 4062 3948 -14659514.18418 4063 3948 -1.010298728943e-05 4064 3948 8.165836334229e-06 4080 3948 -113177912.5204 4081 3948 6.407499313354e-07 4082 3948 -86719444.43019 4083 3948 -36072082.53397 4084 3948 16203472.22755 4085 3948 -21679861.11823 3949 3949 998747631.9559 3950 3949 -6.675720214844e-06 3951 3949 -3.397464752197e-06 3952 3949 -82157545.53163 3953 3949 -2.264976501465e-06 3969 3949 7.748603820801e-07 3970 3949 55243684.38681 3971 3949 -1.788139343262e-06 3972 3949 64813888.87826 3973 3949 -69150192.34827 3974 3949 -4.619359970093e-07 4041 3949 -4.097819328308e-06 4042 3949 -41882340.60423 4043 3949 1.296401023865e-06 4044 3949 -16203472.22755 4045 3949 -31210863.52938 4046 3949 17343750.0057 4059 3949 4.053115844727e-06 4060 3949 26913861.39084 4061 3949 4.738569259644e-06 4062 3949 -7.331371307373e-06 4063 3949 -76232648.10076 4064 3949 69374999.9886 4080 3949 -1.177191734314e-06 4081 3949 -41882340.60421 4082 3949 8.344650268555e-07 4083 3949 16203472.22754 4084 3949 -31210863.52937 4085 3949 17343750.0057 3950 3950 1217261802.153 3951 3950 -1.52587890625e-05 3952 3950 -2.562999725342e-06 3953 3950 179873780.5718 3969 3950 -1.54972076416e-05 3970 3950 -1.907348632813e-06 3971 3950 109872226.963 3972 3950 -3.635883331299e-06 3973 3950 -6.109476089478e-07 3974 3950 -3642360.79014 4041 3950 86719444.4302 4042 3950 1.415610313416e-06 4043 3950 -121047307.7997 4044 3950 21679861.11823 4045 3950 17343750.0057 4046 3950 -38039431.35476 4059 3950 3.02791595459e-05 4060 3950 4.619359970093e-06 4061 3950 -289746007.2349 4062 3950 8.165836334229e-06 4063 3950 69374999.9886 4064 3950 -103546919.3888 4080 3950 -86719444.43019 4081 3950 8.940696716309e-07 4082 3950 -121047307.7997 4083 3950 -21679861.11823 4084 3950 17343750.0057 4085 3950 -38039431.35476 3951 3951 1154306639.95 3952 3951 4.053115844727e-06 3953 3951 -5.984306335449e-05 3954 3951 164134990.0133 3955 3951 -4.798173904419e-06 3956 3951 -1.537799835205e-05 3969 3951 -88595068.35711 3970 3951 -64813888.87825 3971 3951 -4.26173210144e-06 3972 3951 -229938603.1375 3973 3951 -1.400709152222e-06 3974 3951 -1.621246337891e-05 3975 3951 -88595068.35711 3976 3951 64813888.87826 3977 3951 -3.75509262085e-06 4041 3951 -36072082.53399 4042 3951 16203472.22755 4043 3951 21679861.11823 4044 3951 -113177912.5205 4045 3951 -1.952052116394e-06 4046 3951 86719444.4302 4047 3951 -36072082.53399 4048 3951 -16203472.22755 4049 3951 21679861.11823 4059 3951 -14659514.18418 4060 3951 7.62939453125e-06 4061 3951 7.152557373047e-06 4062 3951 65803613.40852 4063 3951 4.112720489502e-06 4064 3951 3.081560134888e-05 4065 3951 -14659514.18418 4066 3951 -1.010298728943e-05 4067 3951 8.165836334229e-06 4080 3951 -36072082.53397 4081 3951 -16203472.22754 4082 3951 -21679861.11823 4083 3951 -113177912.5204 4084 3951 6.407499313354e-07 4085 3951 -86719444.43019 4086 3951 -36072082.53397 4087 3951 16203472.22755 4088 3951 -21679861.11823 3952 3952 998747631.9559 3953 3952 -6.675720214844e-06 3954 3952 -3.397464752197e-06 3955 3952 -82157545.53163 3956 3952 -2.264976501465e-06 3969 3952 -64813888.87825 3970 3952 -69150192.34827 3971 3952 -6.705522537231e-07 3972 3952 7.748603820801e-07 3973 3952 55243684.38681 3974 3952 -1.788139343262e-06 3975 3952 64813888.87826 3976 3952 -69150192.34827 3977 3952 -4.619359970093e-07 4041 3952 16203472.22755 4042 3952 -31210863.52938 4043 3952 -17343750.00569 4044 3952 -4.097819328308e-06 4045 3952 -41882340.60423 4046 3952 1.296401023865e-06 4047 3952 -16203472.22755 4048 3952 -31210863.52938 4049 3952 17343750.0057 4059 3952 8.970499038696e-06 4060 3952 -76232648.10075 4061 3952 -69374999.9886 4062 3952 4.053115844727e-06 4063 3952 26913861.39084 4064 3952 4.738569259644e-06 4065 3952 -7.331371307373e-06 4066 3952 -76232648.10076 4067 3952 69374999.9886 4080 3952 -16203472.22754 4081 3952 -31210863.52937 4082 3952 -17343750.0057 4083 3952 -1.177191734314e-06 4084 3952 -41882340.60421 4085 3952 8.344650268555e-07 4086 3952 16203472.22754 4087 3952 -31210863.52937 4088 3952 17343750.0057 3953 3953 1217261802.153 3954 3953 -1.52587890625e-05 3955 3953 -2.562999725342e-06 3956 3953 179873780.5718 3969 3953 -4.231929779053e-06 3970 3953 -5.811452865601e-07 3971 3953 -3642360.790142 3972 3953 -1.54972076416e-05 3973 3953 -1.907348632813e-06 3974 3953 109872226.963 3975 3953 -3.635883331299e-06 3976 3953 -6.109476089478e-07 3977 3953 -3642360.79014 4041 3953 21679861.11823 4042 3953 -17343750.00569 4043 3953 -38039431.35476 4044 3953 86719444.4302 4045 3953 1.415610313416e-06 4046 3953 -121047307.7997 4047 3953 21679861.11823 4048 3953 17343750.0057 4049 3953 -38039431.35476 4059 3953 7.182359695435e-06 4060 3953 -69374999.9886 4061 3953 -103546919.3888 4062 3953 3.02791595459e-05 4063 3953 4.619359970093e-06 4064 3953 -289746007.2349 4065 3953 8.165836334229e-06 4066 3953 69374999.9886 4067 3953 -103546919.3888 4080 3953 -21679861.11823 4081 3953 -17343750.0057 4082 3953 -38039431.35476 4083 3953 -86719444.43019 4084 3953 8.940696716309e-07 4085 3953 -121047307.7997 4086 3953 -21679861.11823 4087 3953 17343750.0057 4088 3953 -38039431.35476 3954 3954 1154306639.95 3955 3954 4.053115844727e-06 3956 3954 -5.984306335449e-05 3957 3954 164134990.0133 3958 3954 -4.798173904419e-06 3959 3954 -1.537799835205e-05 3972 3954 -88595068.35711 3973 3954 -64813888.87825 3974 3954 -4.26173210144e-06 3975 3954 -229938603.1375 3976 3954 -1.400709152222e-06 3977 3954 -1.621246337891e-05 3978 3954 -88595068.35711 3979 3954 64813888.87826 3980 3954 -3.75509262085e-06 4044 3954 -36072082.53399 4045 3954 16203472.22755 4046 3954 21679861.11823 4047 3954 -113177912.5205 4048 3954 -1.952052116394e-06 4049 3954 86719444.4302 4050 3954 -36072082.53399 4051 3954 -16203472.22755 4052 3954 21679861.11823 4062 3954 -14659514.18418 4063 3954 7.62939453125e-06 4064 3954 7.152557373047e-06 4065 3954 65803613.40852 4066 3954 4.112720489502e-06 4067 3954 3.081560134888e-05 4068 3954 -14659514.18418 4069 3954 -1.010298728943e-05 4070 3954 8.165836334229e-06 4083 3954 -36072082.53397 4084 3954 -16203472.22754 4085 3954 -21679861.11823 4086 3954 -113177912.5204 4087 3954 6.407499313354e-07 4088 3954 -86719444.43019 4089 3954 -36072082.53397 4090 3954 16203472.22755 4091 3954 -21679861.11823 3955 3955 998747631.9559 3956 3955 -6.675720214844e-06 3957 3955 -3.397464752197e-06 3958 3955 -82157545.53163 3959 3955 -2.264976501465e-06 3972 3955 -64813888.87825 3973 3955 -69150192.34827 3974 3955 -6.705522537231e-07 3975 3955 7.748603820801e-07 3976 3955 55243684.38681 3977 3955 -1.788139343262e-06 3978 3955 64813888.87826 3979 3955 -69150192.34827 3980 3955 -4.619359970093e-07 4044 3955 16203472.22755 4045 3955 -31210863.52938 4046 3955 -17343750.00569 4047 3955 -4.097819328308e-06 4048 3955 -41882340.60423 4049 3955 1.296401023865e-06 4050 3955 -16203472.22755 4051 3955 -31210863.52938 4052 3955 17343750.0057 4062 3955 8.970499038696e-06 4063 3955 -76232648.10075 4064 3955 -69374999.9886 4065 3955 4.053115844727e-06 4066 3955 26913861.39084 4067 3955 4.738569259644e-06 4068 3955 -7.331371307373e-06 4069 3955 -76232648.10076 4070 3955 69374999.9886 4083 3955 -16203472.22754 4084 3955 -31210863.52937 4085 3955 -17343750.0057 4086 3955 -1.177191734314e-06 4087 3955 -41882340.60421 4088 3955 8.344650268555e-07 4089 3955 16203472.22754 4090 3955 -31210863.52937 4091 3955 17343750.0057 3956 3956 1217261802.153 3957 3956 -1.52587890625e-05 3958 3956 -2.562999725342e-06 3959 3956 179873780.5718 3972 3956 -4.231929779053e-06 3973 3956 -5.811452865601e-07 3974 3956 -3642360.790142 3975 3956 -1.54972076416e-05 3976 3956 -1.907348632813e-06 3977 3956 109872226.963 3978 3956 -3.635883331299e-06 3979 3956 -6.109476089478e-07 3980 3956 -3642360.79014 4044 3956 21679861.11823 4045 3956 -17343750.00569 4046 3956 -38039431.35476 4047 3956 86719444.4302 4048 3956 1.415610313416e-06 4049 3956 -121047307.7997 4050 3956 21679861.11823 4051 3956 17343750.0057 4052 3956 -38039431.35476 4062 3956 7.182359695435e-06 4063 3956 -69374999.9886 4064 3956 -103546919.3888 4065 3956 3.02791595459e-05 4066 3956 4.619359970093e-06 4067 3956 -289746007.2349 4068 3956 8.165836334229e-06 4069 3956 69374999.9886 4070 3956 -103546919.3888 4083 3956 -21679861.11823 4084 3956 -17343750.0057 4085 3956 -38039431.35476 4086 3956 -86719444.43019 4087 3956 8.940696716309e-07 4088 3956 -121047307.7997 4089 3956 -21679861.11823 4090 3956 17343750.0057 4091 3956 -38039431.35476 3957 3957 1154306639.95 3958 3957 4.053115844727e-06 3959 3957 -5.984306335449e-05 3960 3957 164134990.0133 3961 3957 -4.798173904419e-06 3962 3957 -1.537799835205e-05 3975 3957 -88595068.35711 3976 3957 -64813888.87825 3977 3957 -4.26173210144e-06 3978 3957 -229938603.1375 3979 3957 -1.400709152222e-06 3980 3957 -1.621246337891e-05 3981 3957 -88595068.35711 3982 3957 64813888.87826 3983 3957 -3.75509262085e-06 4047 3957 -36072082.53399 4048 3957 16203472.22755 4049 3957 21679861.11823 4050 3957 -113177912.5205 4051 3957 -1.952052116394e-06 4052 3957 86719444.4302 4053 3957 -36072082.53399 4054 3957 -16203472.22755 4055 3957 21679861.11823 4065 3957 -14659514.18418 4066 3957 7.62939453125e-06 4067 3957 7.152557373047e-06 4068 3957 65803613.40852 4069 3957 4.112720489502e-06 4070 3957 3.081560134888e-05 4071 3957 -14659514.18418 4072 3957 -1.010298728943e-05 4073 3957 8.165836334229e-06 4086 3957 -36072082.53397 4087 3957 -16203472.22754 4088 3957 -21679861.11823 4089 3957 -113177912.5204 4090 3957 6.407499313354e-07 4091 3957 -86719444.43019 4092 3957 -36072082.53397 4093 3957 16203472.22755 4094 3957 -21679861.11823 3958 3958 998747631.9559 3959 3958 -6.675720214844e-06 3960 3958 -3.397464752197e-06 3961 3958 -82157545.53163 3962 3958 -2.264976501465e-06 3975 3958 -64813888.87825 3976 3958 -69150192.34827 3977 3958 -6.705522537231e-07 3978 3958 7.748603820801e-07 3979 3958 55243684.38681 3980 3958 -1.788139343262e-06 3981 3958 64813888.87826 3982 3958 -69150192.34827 3983 3958 -4.619359970093e-07 4047 3958 16203472.22755 4048 3958 -31210863.52938 4049 3958 -17343750.00569 4050 3958 -4.097819328308e-06 4051 3958 -41882340.60423 4052 3958 1.296401023865e-06 4053 3958 -16203472.22755 4054 3958 -31210863.52938 4055 3958 17343750.0057 4065 3958 8.970499038696e-06 4066 3958 -76232648.10075 4067 3958 -69374999.9886 4068 3958 4.053115844727e-06 4069 3958 26913861.39084 4070 3958 4.738569259644e-06 4071 3958 -7.331371307373e-06 4072 3958 -76232648.10076 4073 3958 69374999.9886 4086 3958 -16203472.22754 4087 3958 -31210863.52937 4088 3958 -17343750.0057 4089 3958 -1.177191734314e-06 4090 3958 -41882340.60421 4091 3958 8.344650268555e-07 4092 3958 16203472.22754 4093 3958 -31210863.52937 4094 3958 17343750.0057 3959 3959 1217261802.153 3960 3959 -1.52587890625e-05 3961 3959 -2.562999725342e-06 3962 3959 179873780.5718 3975 3959 -4.231929779053e-06 3976 3959 -5.811452865601e-07 3977 3959 -3642360.790142 3978 3959 -1.54972076416e-05 3979 3959 -1.907348632813e-06 3980 3959 109872226.963 3981 3959 -3.635883331299e-06 3982 3959 -6.109476089478e-07 3983 3959 -3642360.79014 4047 3959 21679861.11823 4048 3959 -17343750.00569 4049 3959 -38039431.35476 4050 3959 86719444.4302 4051 3959 1.415610313416e-06 4052 3959 -121047307.7997 4053 3959 21679861.11823 4054 3959 17343750.0057 4055 3959 -38039431.35476 4065 3959 7.182359695435e-06 4066 3959 -69374999.9886 4067 3959 -103546919.3888 4068 3959 3.02791595459e-05 4069 3959 4.619359970093e-06 4070 3959 -289746007.2349 4071 3959 8.165836334229e-06 4072 3959 69374999.9886 4073 3959 -103546919.3888 4086 3959 -21679861.11823 4087 3959 -17343750.0057 4088 3959 -38039431.35476 4089 3959 -86719444.43019 4090 3959 8.940696716309e-07 4091 3959 -121047307.7997 4092 3959 -21679861.11823 4093 3959 17343750.0057 4094 3959 -38039431.35476 3960 3960 1154306639.95 3961 3960 4.053115844727e-06 3962 3960 -5.984306335449e-05 3963 3960 164134990.0133 3964 3960 -4.798173904419e-06 3965 3960 -1.537799835205e-05 3978 3960 -88595068.35711 3979 3960 -64813888.87825 3980 3960 -4.26173210144e-06 3981 3960 -229938603.1375 3982 3960 -1.400709152222e-06 3983 3960 -1.621246337891e-05 3984 3960 -88595068.35711 3985 3960 64813888.87826 3986 3960 -3.75509262085e-06 4050 3960 -36072082.53399 4051 3960 16203472.22755 4052 3960 21679861.11823 4053 3960 -113177912.5205 4054 3960 -1.952052116394e-06 4055 3960 86719444.4302 4056 3960 -36072082.53399 4057 3960 -16203472.22755 4058 3960 21679861.11823 4068 3960 -14659514.18418 4069 3960 7.62939453125e-06 4070 3960 7.152557373047e-06 4071 3960 65803613.40852 4072 3960 4.112720489502e-06 4073 3960 3.081560134888e-05 4074 3960 -14659514.18418 4075 3960 -1.010298728943e-05 4076 3960 8.165836334229e-06 4089 3960 -36072082.53397 4090 3960 -16203472.22754 4091 3960 -21679861.11823 4092 3960 -113177912.5204 4093 3960 6.407499313354e-07 4094 3960 -86719444.43019 4095 3960 -36072082.53397 4096 3960 16203472.22755 4097 3960 -21679861.11823 3961 3961 998747631.9559 3962 3961 -6.675720214844e-06 3963 3961 -3.397464752197e-06 3964 3961 -82157545.53163 3965 3961 -2.264976501465e-06 3978 3961 -64813888.87825 3979 3961 -69150192.34827 3980 3961 -6.705522537231e-07 3981 3961 7.748603820801e-07 3982 3961 55243684.38681 3983 3961 -1.788139343262e-06 3984 3961 64813888.87826 3985 3961 -69150192.34827 3986 3961 -4.619359970093e-07 4050 3961 16203472.22755 4051 3961 -31210863.52938 4052 3961 -17343750.00569 4053 3961 -4.097819328308e-06 4054 3961 -41882340.60423 4055 3961 1.296401023865e-06 4056 3961 -16203472.22755 4057 3961 -31210863.52938 4058 3961 17343750.0057 4068 3961 8.970499038696e-06 4069 3961 -76232648.10075 4070 3961 -69374999.9886 4071 3961 4.053115844727e-06 4072 3961 26913861.39084 4073 3961 4.738569259644e-06 4074 3961 -7.331371307373e-06 4075 3961 -76232648.10076 4076 3961 69374999.9886 4089 3961 -16203472.22754 4090 3961 -31210863.52937 4091 3961 -17343750.0057 4092 3961 -1.177191734314e-06 4093 3961 -41882340.60421 4094 3961 8.344650268555e-07 4095 3961 16203472.22754 4096 3961 -31210863.52937 4097 3961 17343750.0057 3962 3962 1217261802.153 3963 3962 -1.52587890625e-05 3964 3962 -2.562999725342e-06 3965 3962 179873780.5718 3978 3962 -4.231929779053e-06 3979 3962 -5.811452865601e-07 3980 3962 -3642360.790142 3981 3962 -1.54972076416e-05 3982 3962 -1.907348632813e-06 3983 3962 109872226.963 3984 3962 -3.635883331299e-06 3985 3962 -6.109476089478e-07 3986 3962 -3642360.79014 4050 3962 21679861.11823 4051 3962 -17343750.00569 4052 3962 -38039431.35476 4053 3962 86719444.4302 4054 3962 1.415610313416e-06 4055 3962 -121047307.7997 4056 3962 21679861.11823 4057 3962 17343750.0057 4058 3962 -38039431.35476 4068 3962 7.182359695435e-06 4069 3962 -69374999.9886 4070 3962 -103546919.3888 4071 3962 3.02791595459e-05 4072 3962 4.619359970093e-06 4073 3962 -289746007.2349 4074 3962 8.165836334229e-06 4075 3962 69374999.9886 4076 3962 -103546919.3888 4089 3962 -21679861.11823 4090 3962 -17343750.0057 4091 3962 -38039431.35476 4092 3962 -86719444.43019 4093 3962 8.940696716309e-07 4094 3962 -121047307.7997 4095 3962 -21679861.11823 4096 3962 17343750.0057 4097 3962 -38039431.35476 3963 3963 1264143404.142 3964 3963 69984496.09991 3965 3963 -4.60147857666e-05 3966 3963 56216718.86035 3967 3963 -62295134.49991 3968 3963 -1.907348632813e-06 3981 3963 -88595068.35711 3982 3963 -64813888.87825 3983 3963 -4.26173210144e-06 3984 3963 -235044286.8786 3985 3963 -2540789.090044 3986 3963 -1.227855682373e-05 3987 3963 -95281145.7069 3988 3963 64727634.52473 3989 3963 3.665685653687e-06 4053 3963 -36072082.53399 4054 3963 16203472.22755 4055 3963 21679861.11823 4056 3963 -139008174.7088 4057 3963 -17469495.54439 4058 3963 88411110.90689 4071 3963 -14659514.18418 4072 3963 7.62939453125e-06 4073 3963 7.152557373047e-06 4074 3963 104477359.7431 4075 3963 17496498.94787 4076 3963 0.03796523809433 4077 3963 -35761582.98115 4078 3963 -15574117.3542 4079 3963 21679166.28526 4092 3963 -36072082.53397 4093 3963 -16203472.22754 4094 3963 -21679861.11823 4095 3963 -114725173.6726 4096 3963 -635141.4411426 4097 3963 -87564583.31886 4098 3963 -37743330.80579 4099 3963 16182255.39186 4100 3963 -22525694.45184 3964 3964 1075589634.327 3965 3964 1.347064971924e-05 3966 3964 -62295134.24065 3967 3964 -170484887.2684 3968 3964 -5.185604095459e-06 3981 3964 -64813888.87825 3982 3964 -69150192.34827 3983 3964 -6.705522537231e-07 3984 3964 -2541344.645598 3985 3964 52569923.74254 3986 3964 6.318092346191e-06 3987 3964 64727634.52473 3988 3964 -67141169.32472 3989 3964 4.619359970093e-07 4053 3964 16203472.22755 4054 3964 -31210863.52938 4055 3964 -17343750.00569 4056 3964 -17469217.83143 4057 3964 -62281301.31304 4058 3964 18697916.60118 4071 3964 8.970499038696e-06 4072 3964 -76232648.10075 4073 3964 -69374999.9886 4074 3964 17496498.94786 4075 3964 57338323.8368 4076 3964 0.03035295009613 4077 3964 -15574117.28939 4078 3964 -92438199.00546 4079 3964 69374999.59698 4092 3964 -16203472.22754 4093 3964 -31210863.52937 4094 3964 -17343750.0057 4095 3964 -635419.218922 4096 3964 -42820844.07815 4097 3964 -677083.3331566 4098 3964 16182255.39186 4099 3964 -30708185.95798 4100 3964 16666666.67214 3965 3965 1236468691.55 3966 3965 -1.54972076416e-06 3967 3965 -5.036592483521e-06 3968 3965 109730878.4261 3981 3965 -4.231929779053e-06 3982 3965 -5.811452865601e-07 3983 3965 -3642360.790142 3984 3965 -1.358985900879e-05 3985 3965 5.960464477539e-06 3986 3965 108515321.757 3987 3965 3.635883331299e-06 3988 3965 4.768371582031e-07 3989 3965 -4919850.093644 4053 3965 21679861.11823 4054 3965 -17343750.00569 4055 3965 -38039431.35476 4056 3965 88411110.90689 4057 3965 18697916.56855 4058 3965 -124961466.3518 4071 3965 7.182359695435e-06 4072 3965 -69374999.9886 4073 3965 -103546919.3888 4074 3965 -0.03791528940201 4075 3965 -0.0303518474102 4076 3965 -255045254.8364 4077 3965 21679166.091 4078 3965 69374999.47419 4079 3965 -105409529.5055 4092 3965 -21679861.11823 4093 3965 -17343750.0057 4094 3965 -38039431.35476 4095 3965 -87564583.31903 4096 3965 -677083.3332901 4097 3965 -122106772.304 4098 3965 -22525694.45184 4099 3965 16666666.67214 4100 3965 -38356746.04355 3966 3966 696472573.0656 3967 3966 -1771689.826602 3968 3966 -2.384185791016e-07 3984 3966 -87258192.16973 3985 3966 -64804100.71711 3986 3966 -4.500150680542e-06 3987 3966 -242104687.4354 3988 3966 -3424057.139938 3989 3966 -7.450580596924e-07 3990 3966 75831742.92238 3991 3966 -11180768.61541 3992 3966 -2.384185791016e-06 3993 3966 -95109676.42566 3994 3966 65697417.99692 3995 3966 6.496906280518e-06 4056 3966 -13881426.19349 4057 3966 19444999.81194 4058 3966 27030832.75893 4074 3966 -35761582.98116 4075 3966 -15574117.28939 4076 3966 -21679166.091 4077 3966 24368704.92005 4078 3966 -442931.9479949 4079 3966 17135277.77496 4095 3966 -35737549.44071 4096 3966 -16201372.34961 4097 3966 -21679166.67379 4098 3966 -113694268.311 4099 3966 -856032.6284447 4100 3966 -85676388.87482 4101 3966 -6373939.007678 4102 3966 -2795252.051776 4103 3966 3215972.223778 4104 3966 -36574674.40711 4105 3966 16424706.45526 4106 3966 -21159027.78473 3967 3967 713868420.1604 3968 3967 2.801418304443e-05 3984 3967 -64804100.71711 3985 3967 -69555876.00861 3986 3967 2.98023223877e-08 3987 3967 -3424057.139937 3988 3967 46038548.55542 3989 3967 1.448392868042e-05 3990 3967 14745342.49145 3991 3967 -46950609.66778 3992 3967 -3.695487976074e-06 3993 3967 65697417.99692 3994 3967 -72763586.73756 3995 3967 -7.003545761108e-07 4056 3967 12963333.20796 4057 3967 -12907287.87322 4058 3967 -13062499.95656 4074 3967 -15574117.3542 4075 3967 -92438199.00548 4076 3967 -69374999.4742 4077 3967 -442931.947997 4078 3967 28717759.88727 4079 3967 7208333.185863 4095 3967 -16201372.34961 4096 3967 -31311875.5651 4097 3967 -17343750.0057 4098 3967 -856032.6284447 4099 3967 -41656915.6643 4100 3967 -677083.3331583 4101 3967 3686414.617019 4102 3967 -37070184.92824 4103 3967 33333333.32785 4104 3967 16424706.45526 4105 3967 -30988032.27199 4106 3967 16666666.67214 3968 3968 808185795.7469 3984 3968 -4.559755325317e-06 3985 3968 8.940696716309e-08 3986 3968 -3390328.224569 3987 3968 -8.344650268555e-07 3988 3968 1.460313796997e-05 3989 3968 96899236.61813 3990 3968 3.576278686523e-07 3991 3968 -3.904104232788e-06 3992 3968 79524039.77178 3993 3968 6.049871444702e-06 3994 3968 -7.003545761108e-07 3995 3968 -9590542.374578 4056 3968 18020555.17262 4057 3968 -20270833.25379 4058 3968 -37991274.83623 4074 3968 -21679166.28526 4075 3968 -69374999.59698 4076 3968 -105409529.5055 4077 3968 -17135277.77496 4078 3968 -7208333.18587 4079 3968 -197291006.784 4095 3968 -21679166.67379 4096 3968 -17343750.0057 4097 3968 -37974357.38229 4098 3968 -85676388.87482 4099 3968 -677083.3332918 4100 3968 -117552803.5799 4101 3968 -4909027.779057 4102 3968 33333333.32785 4103 3968 -47671313.32517 4104 3968 -21159027.78473 4105 3968 16666666.67214 4106 3968 -36522342.37636 3969 3969 577153319.975 3970 3969 -3.814697265625e-06 3971 3969 -3.170967102051e-05 3972 3969 82067495.00666 3973 3969 12962777.77565 3974 3969 -7.867813110352e-06 4059 3969 -113177912.5205 4060 3969 -1.952052116394e-06 4061 3969 86719444.4302 4062 3969 -36072082.53399 4063 3969 -16203472.22755 4064 3969 21679861.11823 4080 3969 32901806.70425 4081 3969 2.026557922363e-06 4082 3969 -17343888.88602 4083 3969 -7329757.09209 4084 3969 3240694.445505 4085 3969 -4335972.223642 3970 3970 499373815.978 3971 3970 1.025199890137e-05 3972 3970 -12962777.77565 3973 3970 -41078772.7658 3974 3970 2.264976501465e-06 4059 3970 -4.097819328308e-06 4060 3970 -41882340.60423 4061 3970 1.296401023865e-06 4062 3970 -16203472.22755 4063 3970 -31210863.52938 4064 3970 17343750.0057 4080 3970 1.430511474609e-06 4081 3970 13456930.69541 4082 3970 -4.410743713379e-06 4083 3970 -3240694.445512 4084 3970 -38116324.05037 4085 3970 34687499.9943 3971 3971 608630901.0765 3972 3971 -7.867813110352e-06 3973 3971 2.115964889526e-06 3974 3971 89936890.28591 4059 3971 86719444.4302 4060 3971 1.415610313416e-06 4061 3971 -121047307.7997 4062 3971 21679861.11823 4063 3971 17343750.0057 4064 3971 -38039431.35476 4080 3971 17343888.88605 4081 3971 -4.410743713379e-06 4082 3971 -144873003.6175 4083 3971 4335972.22365 4084 3971 34687499.9943 4085 3971 -51773459.69442 3972 3972 577153319.975 3973 3972 -3.814697265625e-06 3974 3972 -3.170967102051e-05 3975 3972 82067495.00666 3976 3972 12962777.77565 3977 3972 -7.867813110352e-06 4059 3972 -36072082.53399 4060 3972 16203472.22755 4061 3972 21679861.11823 4062 3972 -113177912.5205 4063 3972 -1.952052116394e-06 4064 3972 86719444.4302 4065 3972 -36072082.53399 4066 3972 -16203472.22755 4067 3972 21679861.11823 4080 3972 -7329757.092094 4081 3972 -3240694.445505 4082 3972 -4335972.223642 4083 3972 32901806.70425 4084 3972 2.026557922363e-06 4085 3972 -17343888.88602 4086 3972 -7329757.09209 4087 3972 3240694.445505 4088 3972 -4335972.223642 3973 3973 499373815.978 3974 3973 1.025199890137e-05 3975 3973 -12962777.77565 3976 3973 -41078772.7658 3977 3973 2.264976501465e-06 4059 3973 16203472.22755 4060 3973 -31210863.52938 4061 3973 -17343750.00569 4062 3973 -4.097819328308e-06 4063 3973 -41882340.60423 4064 3973 1.296401023865e-06 4065 3973 -16203472.22755 4066 3973 -31210863.52938 4067 3973 17343750.0057 4080 3973 3240694.445514 4081 3973 -38116324.05038 4082 3973 -34687499.9943 4083 3973 1.430511474609e-06 4084 3973 13456930.69541 4085 3973 -4.410743713379e-06 4086 3973 -3240694.445512 4087 3973 -38116324.05037 4088 3973 34687499.9943 3974 3974 608630901.0765 3975 3974 -7.867813110352e-06 3976 3974 2.115964889526e-06 3977 3974 89936890.28591 4059 3974 21679861.11823 4060 3974 -17343750.00569 4061 3974 -38039431.35476 4062 3974 86719444.4302 4063 3974 1.415610313416e-06 4064 3974 -121047307.7997 4065 3974 21679861.11823 4066 3974 17343750.0057 4067 3974 -38039431.35476 4080 3974 4335972.22365 4081 3974 -34687499.9943 4082 3974 -51773459.69442 4083 3974 17343888.88605 4084 3974 -4.410743713379e-06 4085 3974 -144873003.6175 4086 3974 4335972.22365 4087 3974 34687499.9943 4088 3974 -51773459.69442 3975 3975 577153319.975 3976 3975 -3.814697265625e-06 3977 3975 -3.170967102051e-05 3978 3975 82067495.00666 3979 3975 12962777.77565 3980 3975 -7.867813110352e-06 4062 3975 -36072082.53399 4063 3975 16203472.22755 4064 3975 21679861.11823 4065 3975 -113177912.5205 4066 3975 -1.952052116394e-06 4067 3975 86719444.4302 4068 3975 -36072082.53399 4069 3975 -16203472.22755 4070 3975 21679861.11823 4083 3975 -7329757.092094 4084 3975 -3240694.445505 4085 3975 -4335972.223642 4086 3975 32901806.70425 4087 3975 2.026557922363e-06 4088 3975 -17343888.88602 4089 3975 -7329757.09209 4090 3975 3240694.445505 4091 3975 -4335972.223642 3976 3976 499373815.978 3977 3976 1.025199890137e-05 3978 3976 -12962777.77565 3979 3976 -41078772.7658 3980 3976 2.264976501465e-06 4062 3976 16203472.22755 4063 3976 -31210863.52938 4064 3976 -17343750.00569 4065 3976 -4.097819328308e-06 4066 3976 -41882340.60423 4067 3976 1.296401023865e-06 4068 3976 -16203472.22755 4069 3976 -31210863.52938 4070 3976 17343750.0057 4083 3976 3240694.445514 4084 3976 -38116324.05038 4085 3976 -34687499.9943 4086 3976 1.430511474609e-06 4087 3976 13456930.69541 4088 3976 -4.410743713379e-06 4089 3976 -3240694.445512 4090 3976 -38116324.05037 4091 3976 34687499.9943 3977 3977 608630901.0765 3978 3977 -7.867813110352e-06 3979 3977 2.115964889526e-06 3980 3977 89936890.28591 4062 3977 21679861.11823 4063 3977 -17343750.00569 4064 3977 -38039431.35476 4065 3977 86719444.4302 4066 3977 1.415610313416e-06 4067 3977 -121047307.7997 4068 3977 21679861.11823 4069 3977 17343750.0057 4070 3977 -38039431.35476 4083 3977 4335972.22365 4084 3977 -34687499.9943 4085 3977 -51773459.69442 4086 3977 17343888.88605 4087 3977 -4.410743713379e-06 4088 3977 -144873003.6175 4089 3977 4335972.22365 4090 3977 34687499.9943 4091 3977 -51773459.69442 3978 3978 577153319.975 3979 3978 -3.814697265625e-06 3980 3978 -3.170967102051e-05 3981 3978 82067495.00666 3982 3978 12962777.77565 3983 3978 -7.867813110352e-06 4065 3978 -36072082.53399 4066 3978 16203472.22755 4067 3978 21679861.11823 4068 3978 -113177912.5205 4069 3978 -1.952052116394e-06 4070 3978 86719444.4302 4071 3978 -36072082.53399 4072 3978 -16203472.22755 4073 3978 21679861.11823 4086 3978 -7329757.092094 4087 3978 -3240694.445505 4088 3978 -4335972.223642 4089 3978 32901806.70425 4090 3978 2.026557922363e-06 4091 3978 -17343888.88602 4092 3978 -7329757.09209 4093 3978 3240694.445505 4094 3978 -4335972.223642 3979 3979 499373815.978 3980 3979 1.025199890137e-05 3981 3979 -12962777.77565 3982 3979 -41078772.7658 3983 3979 2.264976501465e-06 4065 3979 16203472.22755 4066 3979 -31210863.52938 4067 3979 -17343750.00569 4068 3979 -4.097819328308e-06 4069 3979 -41882340.60423 4070 3979 1.296401023865e-06 4071 3979 -16203472.22755 4072 3979 -31210863.52938 4073 3979 17343750.0057 4086 3979 3240694.445514 4087 3979 -38116324.05038 4088 3979 -34687499.9943 4089 3979 1.430511474609e-06 4090 3979 13456930.69541 4091 3979 -4.410743713379e-06 4092 3979 -3240694.445512 4093 3979 -38116324.05037 4094 3979 34687499.9943 3980 3980 608630901.0765 3981 3980 -7.867813110352e-06 3982 3980 2.115964889526e-06 3983 3980 89936890.28591 4065 3980 21679861.11823 4066 3980 -17343750.00569 4067 3980 -38039431.35476 4068 3980 86719444.4302 4069 3980 1.415610313416e-06 4070 3980 -121047307.7997 4071 3980 21679861.11823 4072 3980 17343750.0057 4073 3980 -38039431.35476 4086 3980 4335972.22365 4087 3980 -34687499.9943 4088 3980 -51773459.69442 4089 3980 17343888.88605 4090 3980 -4.410743713379e-06 4091 3980 -144873003.6175 4092 3980 4335972.22365 4093 3980 34687499.9943 4094 3980 -51773459.69442 3981 3981 577153319.975 3982 3981 -3.814697265625e-06 3983 3981 -3.170967102051e-05 3984 3981 82067495.00666 3985 3981 12962777.77565 3986 3981 -7.867813110352e-06 4068 3981 -36072082.53399 4069 3981 16203472.22755 4070 3981 21679861.11823 4071 3981 -113177912.5205 4072 3981 -1.952052116394e-06 4073 3981 86719444.4302 4074 3981 -36072082.53399 4075 3981 -16203472.22755 4076 3981 21679861.11823 4089 3981 -7329757.092094 4090 3981 -3240694.445505 4091 3981 -4335972.223642 4092 3981 32901806.70425 4093 3981 2.026557922363e-06 4094 3981 -17343888.88602 4095 3981 -7329757.09209 4096 3981 3240694.445505 4097 3981 -4335972.223642 3982 3982 499373815.978 3983 3982 1.025199890137e-05 3984 3982 -12962777.77565 3985 3982 -41078772.7658 3986 3982 2.264976501465e-06 4068 3982 16203472.22755 4069 3982 -31210863.52938 4070 3982 -17343750.00569 4071 3982 -4.097819328308e-06 4072 3982 -41882340.60423 4073 3982 1.296401023865e-06 4074 3982 -16203472.22755 4075 3982 -31210863.52938 4076 3982 17343750.0057 4089 3982 3240694.445514 4090 3982 -38116324.05038 4091 3982 -34687499.9943 4092 3982 1.430511474609e-06 4093 3982 13456930.69541 4094 3982 -4.410743713379e-06 4095 3982 -3240694.445512 4096 3982 -38116324.05037 4097 3982 34687499.9943 3983 3983 608630901.0765 3984 3983 -7.867813110352e-06 3985 3983 2.115964889526e-06 3986 3983 89936890.28591 4068 3983 21679861.11823 4069 3983 -17343750.00569 4070 3983 -38039431.35476 4071 3983 86719444.4302 4072 3983 1.415610313416e-06 4073 3983 -121047307.7997 4074 3983 21679861.11823 4075 3983 17343750.0057 4076 3983 -38039431.35476 4089 3983 4335972.22365 4090 3983 -34687499.9943 4091 3983 -51773459.69442 4092 3983 17343888.88605 4093 3983 -4.410743713379e-06 4094 3983 -144873003.6175 4095 3983 4335972.22365 4096 3983 34687499.9943 4097 3983 -51773459.69442 3984 3984 578486932.6103 3985 3984 11986.19510341 3986 3984 -2.169609069824e-05 3987 3984 84494256.20949 3988 3984 15482348.065 3989 3984 1.311302185059e-06 4071 3984 -36072082.53399 4072 3984 16203472.22755 4073 3984 21679861.11823 4074 3984 -114725173.6726 4075 3984 -635419.2189152 4076 3984 87564583.31904 4077 3984 -35737549.44071 4078 3984 -16201372.3496 4079 3984 21679166.67379 4092 3984 -7329757.092094 4093 3984 -3240694.445505 4094 3984 -4335972.223642 4095 3984 33240013.48478 4096 3984 3343.827772319 4097 3984 -17343611.10825 4098 3984 -6449228.918503 4099 3984 3870669.958714 4100 3984 -5182361.112478 3985 3985 498972289.4165 3986 3985 2.264976501465e-05 3987 3985 -10443763.04186 3988 3985 -37606235.61531 3989 3985 1.877546310425e-06 4071 3985 16203472.22755 4072 3985 -31210863.52938 4073 3985 -17343750.00569 4074 3985 -635141.4411397 4075 3985 -42820844.07817 4076 3985 677083.3332876 4077 3985 -16201372.3496 4078 3985 -31311875.56509 4079 3985 17343750.00569 4092 3985 3240694.445514 4093 3985 -38116324.05038 4094 3985 -34687499.9943 4095 3985 3343.827771783 4096 3985 13361135.04474 4097 3985 -6.437301635742e-06 4098 3985 -2610996.710082 4099 3985 -36975005.99484 4100 3985 34010416.66101 3986 3986 608877037.9683 3987 3986 -3.576278686523e-07 3988 3986 1.966953277588e-06 3989 3986 90773136.12632 4071 3986 21679861.11823 4072 3986 -17343750.00569 4073 3986 -38039431.35476 4074 3986 87564583.31887 4075 3986 677083.3331542 4076 3986 -122106772.304 4077 3986 21679166.67379 4078 3986 17343750.00569 4079 3986 -37974357.38228 4092 3986 4335972.22365 4093 3986 -34687499.9943 4094 3986 -51773459.69442 4095 3986 17343611.10827 4096 3986 -6.526708602905e-06 4097 3986 -144801169.7145 4098 3986 3489305.557202 4099 3986 34010416.66114 4100 3986 -50834884.67833 3987 3987 576078114.5405 3988 3987 -1636006.338362 3989 3987 -1.192092895508e-06 3990 3987 -84575033.27924 3991 3987 -63933137.53737 3992 3987 -5.602836608887e-06 3993 3987 80892647.57501 3994 3987 14709329.53279 3995 3987 1.072883605957e-06 4074 3987 -37743330.8058 4075 3987 16182255.39187 4076 3987 22525694.45184 4077 3987 -113694268.311 4078 3987 -856032.628432 4079 3987 85676388.87482 4095 3987 -6449228.918515 4096 3987 -2610996.710082 4097 3987 -3489305.557202 4098 3987 37710239.3424 4099 3987 -409010.3490507 4100 3987 -17135277.77496 4101 3987 -33940957.18403 4102 3987 -15983626.88872 4103 3987 20312500.00667 4104 3987 -5631106.840498 4105 3987 3677411.184425 4106 3987 -5078333.3345 3988 3988 489693679.98 3989 3988 3.409385681152e-05 3990 3988 -63933137.53736 3991 3988 -68813095.55765 3992 3988 -9.238719940186e-07 3993 3988 -11216781.57407 3994 3988 -42667576.13433 3995 3988 6.556510925293e-07 4074 3988 16182255.39187 4075 3988 -30708185.95799 4076 3988 -16666666.67214 4077 3988 -856032.6284325 4078 3988 -41656915.6643 4079 3988 677083.3332858 4095 3988 3870669.958715 4096 3988 -36975005.99487 4097 3988 -34010416.66115 4098 3988 -409010.3490478 4099 3988 16113667.92119 4100 3988 -7.688999176025e-06 4101 3988 -15983626.88872 4102 3988 -30000388.31333 4103 3988 16666666.67214 4104 3988 -2804255.48437 4105 3988 -36521824.70809 4106 3988 33333333.32785 3989 3989 591348648.5328 3990 3989 -5.483627319336e-06 3991 3989 -9.536743164063e-07 3992 3989 -5640051.194669 3993 3989 -1.072883605957e-06 3994 3989 5.960464477539e-07 3995 3989 83549951.75354 4074 3989 22525694.45184 4075 3989 -16666666.67214 4076 3989 -38356746.04356 4077 3989 85676388.87482 4078 3989 677083.3331523 4079 3989 -117552803.5799 4095 3989 5182361.112479 4096 3989 -34010416.66102 4097 3989 -50834884.67835 4098 3989 17135277.77496 4099 3989 -7.659196853638e-06 4100 3989 -135659337.8091 4101 3989 20312500.00667 4102 3989 16666666.67214 4103 3989 -35534698.41771 4104 3989 3385277.779223 4105 3989 33333333.32785 4106 3989 -48057936.71774 3990 3990 278277688.0438 3991 3990 63032990.82913 3992 3990 7.867813110352e-06 3993 3990 -117017201.3105 3994 3990 -13845195.78321 3995 3990 -3.039836883545e-06 4077 3990 -6373939.007691 4078 3990 3686414.61702 4079 3990 4909027.779057 4098 3990 -33940957.18403 4099 3990 -15983626.88872 4100 3990 -20312500.00667 4101 3990 18906350.86048 4102 3990 15758585.38937 4103 3990 8124999.998668 4104 3990 -54848418.75583 4105 3990 -3461373.117672 4106 3990 -41471527.77105 3991 3991 243072801.0766 3992 3991 1.418590545654e-05 3993 3991 12080915.32365 3994 3991 25208100.52529 3995 3991 7.987022399902e-06 4077 3991 -2795252.051777 4078 3991 -37070184.92826 4079 3991 -33333333.32786 4098 3991 -15983626.88872 4099 3991 -30000388.31335 4100 3991 -16666666.67214 4101 3991 15758585.38937 4102 3991 10104940.51806 4103 3991 6666666.66557 4104 3991 3020293.551124 4105 3991 -19291331.36354 4106 3991 3333333.334427 3992 3992 285481231.0942 3993 3992 -2.384185791016e-07 3994 3992 7.867813110352e-06 3995 3992 47347303.99915 4077 3992 -3215972.223779 4078 3992 -33333333.32786 4079 3992 -47671313.3252 4098 3992 -20312500.00667 4099 3992 -16666666.67214 4100 3992 -35534698.41772 4101 3992 -8124999.998663 4102 3992 -6666666.665573 4103 3992 -63733661.36496 4104 3992 -41471527.77088 4105 3992 -3333333.334429 4106 3992 -56412231.12431 3993 3993 285841125.8965 3994 3993 -66561551.7465 3995 3993 -5.960464477539e-06 4077 3993 -36574674.40712 4078 3993 16424706.45526 4079 3993 21159027.78473 4098 3993 -5631106.840512 4099 3993 -2804255.484371 4100 3993 -3385277.779223 4101 3993 -54848418.75583 4102 3993 3020293.55113 4103 3993 41471527.77088 4104 3993 19752408.62642 4105 3993 -16640744.52202 4106 3993 -8463611.109722 3994 3994 244829958.0819 3995 3994 1.835823059082e-05 4077 3994 16424706.45526 4078 3994 -30988032.272 4079 3994 -16666666.67214 4098 3994 3677411.184426 4099 3994 -36521824.70811 4100 3994 -33333333.32786 4101 3994 -3461373.117666 4102 3994 -19291331.36354 4103 3994 3333333.334427 4104 3994 -16640744.52202 4105 3994 9499396.966606 4106 3994 6666666.665568 3995 3995 290978341.916 4077 3995 21159027.78473 4078 3995 -16666666.67214 4079 3995 -36522342.37638 4098 3995 5078333.334501 4099 3995 -33333333.32786 4100 3995 -48057936.71776 4101 3995 41471527.77105 4102 3995 -3333333.334429 4103 3995 -56412231.12431 4104 3995 8463611.10972 4105 3995 -6666666.665575 4106 3995 -65145600.12031 3996 3996 721441645.4454 3997 3996 64813888.87825 3998 3996 -8.821487426758e-06 3999 3996 -346380299.6592 4000 3996 -64813888.35974 4001 3996 -2.676248550415e-05 4002 3996 27846630.32399 4003 3996 51851110.58409 4107 3996 41127258.27048 4108 3996 16203472.22755 4109 3996 17343888.84954 4110 3996 -135326679.0276 4111 3996 -16203472.09792 4112 3996 -86719444.24762 4113 3996 -13923315.162 4114 3996 12962777.65241 4115 3996 -17343888.52033 3997 3997 624217266.0229 3998 3997 -7.51187935966e-06 3999 3997 -64813888.10048 4000 3997 -41753137.74642 4001 3997 -7.390975952148e-06 4002 3997 77776665.87613 4003 3997 27846630.32398 4004 3997 6.794929504395e-06 4107 3997 16203472.22755 4108 3997 16821163.40287 4109 3997 13874999.85144 4110 3997 -16203472.0331 4111 3997 -59169888.51194 4112 3997 -17343749.90781 4113 3997 19444166.47861 4114 3997 -13923315.162 4115 3997 20812499.90895 3998 3998 760788621.1472 3999 3998 -2.646446228027e-05 4000 3998 -5.185604095459e-06 4001 3998 31972185.12589 4003 3998 4.708766937256e-06 4004 3998 74257680.86397 4107 3998 -17343888.84951 4108 3998 -13874999.85143 4109 3998 -181091253.0988 4110 3998 -86719444.24762 4111 3998 -17343749.94043 4112 3998 -121957897.9018 4113 3998 -26015832.7805 4114 3998 13874999.9393 4115 3998 -37128840.43199 3999 3999 1242901705.056 4000 3999 64813887.58197 4001 3999 -3.838539123535e-05 4002 3999 47693290.89467 4003 3999 -64813888.35975 4004 3999 -7.510185241699e-06 4005 3999 -229938603.1375 4006 3999 -1.400709152222e-06 4007 3999 -1.621246337891e-05 4008 3999 -88595068.35711 4009 3999 64813888.87826 4010 3999 -3.75509262085e-06 4107 3999 -135326679.0277 4108 3999 -16203472.0331 4109 3999 86719444.24762 4110 3999 101875695.1567 4111 3999 16203471.90348 4112 3999 0.03654569387436 4113 3999 -36808280.87074 4114 3999 -16203472.09792 4115 3999 21679860.74398 4116 3999 -113177912.5204 4117 3999 6.407499313354e-07 4118 3999 -86719444.43019 4119 3999 -36072082.53397 4120 3999 16203472.22755 4121 3999 -21679861.11823 4000 4000 1067897821.637 4002 4000 -64813888.10049 4003 4000 -179154367.6044 4004 4000 -1.16229057312e-05 4005 4000 7.748603820801e-07 4006 4000 55243684.38681 4007 4000 -1.788139343262e-06 4008 4000 64813888.87826 4009 4000 -69150192.34827 4010 4000 -4.619359970093e-07 4107 4000 -16203472.09792 4108 4000 -59169888.51195 4109 4000 17343749.94043 4110 4000 16203471.90348 4111 4000 58124724.28025 4112 4000 0.029221534729 4113 4000 -16203472.03311 4114 4000 -93520195.52346 4115 4000 69374999.6084 4116 4000 -1.177191734314e-06 4117 4000 -41882340.60421 4118 4000 8.344650268555e-07 4119 4000 16203472.22754 4120 4000 -31210863.52937 4121 4000 17343750.0057 4001 4001 1220904161.253 4002 4001 -7.390975952148e-06 4003 4001 -9.536743164063e-06 4004 4001 101973736.7139 4005 4001 -1.54972076416e-05 4006 4001 -1.907348632813e-06 4007 4001 109872226.963 4008 4001 -3.635883331299e-06 4009 4001 -6.109476089478e-07 4010 4001 -3642360.79014 4107 4001 86719444.24762 4108 4001 17343749.9078 4109 4001 -121957897.9018 4110 4001 -0.03648543357849 4111 4001 -0.02920261025429 4112 4001 -251706576.231 4113 4001 21679860.55685 4114 4001 69374999.49133 4115 4001 -104457508.7431 4116 4001 -86719444.43019 4117 4001 8.940696716309e-07 4118 4001 -121047307.7997 4119 4001 -21679861.11823 4120 4001 17343750.0057 4121 4001 -38039431.35476 4002 4002 721441645.4454 4003 4002 64813888.87825 4004 4002 -8.821487426758e-06 4005 4002 -88595068.35711 4006 4002 -64813888.87825 4007 4002 -4.26173210144e-06 4008 4002 -346380299.6592 4009 4002 -64813888.35974 4010 4002 -2.676248550415e-05 4011 4002 27846630.32399 4012 4002 51851110.58409 4107 4002 -13923315.16199 4108 4002 19444166.47861 4109 4002 26015832.7805 4110 4002 -36808280.87074 4111 4002 -16203472.0331 4112 4002 -21679860.55685 4113 4002 41127258.27048 4114 4002 16203472.22755 4115 4002 17343888.84954 4116 4002 -36072082.53397 4117 4002 -16203472.22754 4118 4002 -21679861.11823 4119 4002 -135326679.0276 4120 4002 -16203472.09792 4121 4002 -86719444.24762 4122 4002 -13923315.162 4123 4002 12962777.65241 4124 4002 -17343888.52033 4003 4003 624217266.0229 4004 4003 -7.273460780558e-06 4005 4003 -64813888.87825 4006 4003 -69150192.34827 4007 4003 -6.705522537231e-07 4008 4003 -64813888.10048 4009 4003 -41753137.74642 4010 4003 -7.390975952148e-06 4011 4003 77776665.87613 4012 4003 27846630.32398 4013 4003 6.794929504395e-06 4107 4003 12962777.65241 4108 4003 -13923315.162 4109 4003 -13874999.9393 4110 4003 -16203472.09791 4111 4003 -93520195.52345 4112 4003 -69374999.49133 4113 4003 16203472.22755 4114 4003 16821163.40287 4115 4003 13874999.85144 4116 4003 -16203472.22754 4117 4003 -31210863.52937 4118 4003 -17343750.0057 4119 4003 -16203472.0331 4120 4003 -59169888.51194 4121 4003 -17343749.90781 4122 4003 19444166.47861 4123 4003 -13923315.162 4124 4003 20812499.90895 4004 4004 760788621.1472 4005 4004 -4.231929779053e-06 4006 4004 -5.811452865601e-07 4007 4004 -3642360.790142 4008 4004 -2.646446228027e-05 4009 4004 -5.185604095459e-06 4010 4004 31972185.12589 4012 4004 4.708766937256e-06 4013 4004 74257680.86397 4107 4004 17343888.52033 4108 4004 -20812499.90894 4109 4004 -37128840.43198 4110 4004 -21679860.74397 4111 4004 -69374999.6084 4112 4004 -104457508.7431 4113 4004 -17343888.84951 4114 4004 -13874999.85143 4115 4004 -181091253.0988 4116 4004 -21679861.11823 4117 4004 -17343750.0057 4118 4004 -38039431.35476 4119 4004 -86719444.24762 4120 4004 -17343749.94043 4121 4004 -121957897.9018 4122 4004 -26015832.7805 4123 4004 13874999.9393 4124 4004 -37128840.43199 4005 4005 1154306639.95 4006 4005 4.053115844727e-06 4007 4005 -5.984306335449e-05 4008 4005 164134990.0133 4009 4005 -4.798173904419e-06 4010 4005 -1.537799835205e-05 4014 4005 -229938603.1375 4015 4005 -1.400709152222e-06 4016 4005 -1.621246337891e-05 4017 4005 -88595068.35711 4018 4005 64813888.87826 4019 4005 -3.75509262085e-06 4110 4005 -113177912.5205 4111 4005 -1.952052116394e-06 4112 4005 86719444.4302 4113 4005 -36072082.53399 4114 4005 -16203472.22755 4115 4005 21679861.11823 4116 4005 65803613.40852 4117 4005 4.112720489502e-06 4118 4005 3.081560134888e-05 4119 4005 -14659514.18418 4120 4005 -1.010298728943e-05 4121 4005 8.165836334229e-06 4125 4005 -113177912.5204 4126 4005 6.407499313354e-07 4127 4005 -86719444.43019 4128 4005 -36072082.53397 4129 4005 16203472.22755 4130 4005 -21679861.11823 4006 4006 998747631.9559 4007 4006 -6.675720214844e-06 4008 4006 -3.397464752197e-06 4009 4006 -82157545.53163 4010 4006 -2.264976501465e-06 4014 4006 7.748603820801e-07 4015 4006 55243684.38681 4016 4006 -1.788139343262e-06 4017 4006 64813888.87826 4018 4006 -69150192.34827 4019 4006 -4.619359970093e-07 4110 4006 -4.097819328308e-06 4111 4006 -41882340.60423 4112 4006 1.296401023865e-06 4113 4006 -16203472.22755 4114 4006 -31210863.52938 4115 4006 17343750.0057 4116 4006 4.053115844727e-06 4117 4006 26913861.39084 4118 4006 4.738569259644e-06 4119 4006 -7.331371307373e-06 4120 4006 -76232648.10076 4121 4006 69374999.9886 4125 4006 -1.177191734314e-06 4126 4006 -41882340.60421 4127 4006 8.344650268555e-07 4128 4006 16203472.22754 4129 4006 -31210863.52937 4130 4006 17343750.0057 4007 4007 1217261802.153 4008 4007 -1.52587890625e-05 4009 4007 -2.562999725342e-06 4010 4007 179873780.5718 4014 4007 -1.54972076416e-05 4015 4007 -1.907348632813e-06 4016 4007 109872226.963 4017 4007 -3.635883331299e-06 4018 4007 -6.109476089478e-07 4019 4007 -3642360.79014 4110 4007 86719444.4302 4111 4007 1.415610313416e-06 4112 4007 -121047307.7997 4113 4007 21679861.11823 4114 4007 17343750.0057 4115 4007 -38039431.35476 4116 4007 3.02791595459e-05 4117 4007 4.619359970093e-06 4118 4007 -289746007.2349 4119 4007 8.165836334229e-06 4120 4007 69374999.9886 4121 4007 -103546919.3888 4125 4007 -86719444.43019 4126 4007 8.940696716309e-07 4127 4007 -121047307.7997 4128 4007 -21679861.11823 4129 4007 17343750.0057 4130 4007 -38039431.35476 4008 4008 1242901705.056 4009 4008 64813887.58197 4010 4008 -3.838539123535e-05 4011 4008 47693290.89467 4012 4008 -64813888.35975 4013 4008 -7.510185241699e-06 4014 4008 -88595068.35711 4015 4008 -64813888.87825 4016 4008 -4.26173210144e-06 4017 4008 -229938603.1375 4018 4008 -1.400709152222e-06 4019 4008 -1.621246337891e-05 4020 4008 -88595068.35711 4021 4008 64813888.87826 4022 4008 -3.75509262085e-06 4110 4008 -36072082.53399 4111 4008 16203472.22755 4112 4008 21679861.11823 4113 4008 -135326679.0277 4114 4008 -16203472.0331 4115 4008 86719444.24762 4116 4008 -14659514.18418 4117 4008 7.62939453125e-06 4118 4008 7.152557373047e-06 4119 4008 101875695.1567 4120 4008 16203471.90348 4121 4008 0.03654569387436 4122 4008 -36808280.87074 4123 4008 -16203472.09792 4124 4008 21679860.74398 4125 4008 -36072082.53397 4126 4008 -16203472.22754 4127 4008 -21679861.11823 4128 4008 -113177912.5204 4129 4008 6.407499313354e-07 4130 4008 -86719444.43019 4131 4008 -36072082.53397 4132 4008 16203472.22755 4133 4008 -21679861.11823 4009 4009 1067897821.637 4011 4009 -64813888.10049 4012 4009 -179154367.6044 4013 4009 -1.16229057312e-05 4014 4009 -64813888.87825 4015 4009 -69150192.34827 4016 4009 -6.705522537231e-07 4017 4009 7.748603820801e-07 4018 4009 55243684.38681 4019 4009 -1.788139343262e-06 4020 4009 64813888.87826 4021 4009 -69150192.34827 4022 4009 -4.619359970093e-07 4110 4009 16203472.22755 4111 4009 -31210863.52938 4112 4009 -17343750.00569 4113 4009 -16203472.09792 4114 4009 -59169888.51195 4115 4009 17343749.94043 4116 4009 8.970499038696e-06 4117 4009 -76232648.10075 4118 4009 -69374999.9886 4119 4009 16203471.90348 4120 4009 58124724.28025 4121 4009 0.029221534729 4122 4009 -16203472.03311 4123 4009 -93520195.52346 4124 4009 69374999.6084 4125 4009 -16203472.22754 4126 4009 -31210863.52937 4127 4009 -17343750.0057 4128 4009 -1.177191734314e-06 4129 4009 -41882340.60421 4130 4009 8.344650268555e-07 4131 4009 16203472.22754 4132 4009 -31210863.52937 4133 4009 17343750.0057 4010 4010 1220904161.253 4011 4010 -7.390975952148e-06 4012 4010 -9.536743164063e-06 4013 4010 101973736.7139 4014 4010 -4.231929779053e-06 4015 4010 -5.811452865601e-07 4016 4010 -3642360.790142 4017 4010 -1.54972076416e-05 4018 4010 -1.907348632813e-06 4019 4010 109872226.963 4020 4010 -3.635883331299e-06 4021 4010 -6.109476089478e-07 4022 4010 -3642360.79014 4110 4010 21679861.11823 4111 4010 -17343750.00569 4112 4010 -38039431.35476 4113 4010 86719444.24762 4114 4010 17343749.9078 4115 4010 -121957897.9018 4116 4010 7.182359695435e-06 4117 4010 -69374999.9886 4118 4010 -103546919.3888 4119 4010 -0.03648543357849 4120 4010 -0.02920261025429 4121 4010 -251706576.231 4122 4010 21679860.55685 4123 4010 69374999.49133 4124 4010 -104457508.7431 4125 4010 -21679861.11823 4126 4010 -17343750.0057 4127 4010 -38039431.35476 4128 4010 -86719444.43019 4129 4010 8.940696716309e-07 4130 4010 -121047307.7997 4131 4010 -21679861.11823 4132 4010 17343750.0057 4133 4010 -38039431.35476 4011 4011 721441645.4454 4012 4011 64813888.87825 4013 4011 -8.821487426758e-06 4017 4011 -88595068.35711 4018 4011 -64813888.87825 4019 4011 -4.26173210144e-06 4020 4011 -346380299.6592 4021 4011 -64813888.35974 4022 4011 -2.676248550415e-05 4023 4011 27846630.32399 4024 4011 51851110.58409 4113 4011 -13923315.16199 4114 4011 19444166.47861 4115 4011 26015832.7805 4119 4011 -36808280.87074 4120 4011 -16203472.0331 4121 4011 -21679860.55685 4122 4011 41127258.27048 4123 4011 16203472.22755 4124 4011 17343888.84954 4128 4011 -36072082.53397 4129 4011 -16203472.22754 4130 4011 -21679861.11823 4131 4011 -135326679.0276 4132 4011 -16203472.09792 4133 4011 -86719444.24762 4134 4011 -13923315.162 4135 4011 12962777.65241 4136 4011 -17343888.52033 4012 4012 624217266.0229 4013 4012 -7.273460780558e-06 4017 4012 -64813888.87825 4018 4012 -69150192.34827 4019 4012 -6.705522537231e-07 4020 4012 -64813888.10048 4021 4012 -41753137.74642 4022 4012 -7.390975952148e-06 4023 4012 77776665.87613 4024 4012 27846630.32398 4025 4012 6.794929504395e-06 4113 4012 12962777.65241 4114 4012 -13923315.162 4115 4012 -13874999.9393 4119 4012 -16203472.09791 4120 4012 -93520195.52345 4121 4012 -69374999.49133 4122 4012 16203472.22755 4123 4012 16821163.40287 4124 4012 13874999.85144 4128 4012 -16203472.22754 4129 4012 -31210863.52937 4130 4012 -17343750.0057 4131 4012 -16203472.0331 4132 4012 -59169888.51194 4133 4012 -17343749.90781 4134 4012 19444166.47861 4135 4012 -13923315.162 4136 4012 20812499.90895 4013 4013 760788621.1472 4017 4013 -4.231929779053e-06 4018 4013 -5.811452865601e-07 4019 4013 -3642360.790142 4020 4013 -2.646446228027e-05 4021 4013 -5.185604095459e-06 4022 4013 31972185.12589 4024 4013 4.708766937256e-06 4025 4013 74257680.86397 4113 4013 17343888.52033 4114 4013 -20812499.90894 4115 4013 -37128840.43198 4119 4013 -21679860.74397 4120 4013 -69374999.6084 4121 4013 -104457508.7431 4122 4013 -17343888.84951 4123 4013 -13874999.85143 4124 4013 -181091253.0988 4128 4013 -21679861.11823 4129 4013 -17343750.0057 4130 4013 -38039431.35476 4131 4013 -86719444.24762 4132 4013 -17343749.94043 4133 4013 -121957897.9018 4134 4013 -26015832.7805 4135 4013 13874999.9393 4136 4013 -37128840.43199 4014 4014 1154306639.95 4015 4014 4.053115844727e-06 4016 4014 -5.984306335449e-05 4017 4014 164134990.0133 4018 4014 -4.798173904419e-06 4019 4014 -1.537799835205e-05 4026 4014 -229938603.1375 4027 4014 -1.400709152222e-06 4028 4014 -1.621246337891e-05 4029 4014 -88595068.35711 4030 4014 64813888.87826 4031 4014 -3.75509262085e-06 4116 4014 -113177912.5205 4117 4014 -1.952052116394e-06 4118 4014 86719444.4302 4119 4014 -36072082.53399 4120 4014 -16203472.22755 4121 4014 21679861.11823 4125 4014 65803613.40852 4126 4014 4.112720489502e-06 4127 4014 3.081560134888e-05 4128 4014 -14659514.18418 4129 4014 -1.010298728943e-05 4130 4014 8.165836334229e-06 4137 4014 -113177912.5204 4138 4014 6.407499313354e-07 4139 4014 -86719444.43019 4140 4014 -36072082.53397 4141 4014 16203472.22755 4142 4014 -21679861.11823 4015 4015 998747631.9559 4016 4015 -6.675720214844e-06 4017 4015 -3.397464752197e-06 4018 4015 -82157545.53163 4019 4015 -2.264976501465e-06 4026 4015 7.748603820801e-07 4027 4015 55243684.38681 4028 4015 -1.788139343262e-06 4029 4015 64813888.87826 4030 4015 -69150192.34827 4031 4015 -4.619359970093e-07 4116 4015 -4.097819328308e-06 4117 4015 -41882340.60423 4118 4015 1.296401023865e-06 4119 4015 -16203472.22755 4120 4015 -31210863.52938 4121 4015 17343750.0057 4125 4015 4.053115844727e-06 4126 4015 26913861.39084 4127 4015 4.738569259644e-06 4128 4015 -7.331371307373e-06 4129 4015 -76232648.10076 4130 4015 69374999.9886 4137 4015 -1.177191734314e-06 4138 4015 -41882340.60421 4139 4015 8.344650268555e-07 4140 4015 16203472.22754 4141 4015 -31210863.52937 4142 4015 17343750.0057 4016 4016 1217261802.153 4017 4016 -1.52587890625e-05 4018 4016 -2.562999725342e-06 4019 4016 179873780.5718 4026 4016 -1.54972076416e-05 4027 4016 -1.907348632813e-06 4028 4016 109872226.963 4029 4016 -3.635883331299e-06 4030 4016 -6.109476089478e-07 4031 4016 -3642360.79014 4116 4016 86719444.4302 4117 4016 1.415610313416e-06 4118 4016 -121047307.7997 4119 4016 21679861.11823 4120 4016 17343750.0057 4121 4016 -38039431.35476 4125 4016 3.02791595459e-05 4126 4016 4.619359970093e-06 4127 4016 -289746007.2349 4128 4016 8.165836334229e-06 4129 4016 69374999.9886 4130 4016 -103546919.3888 4137 4016 -86719444.43019 4138 4016 8.940696716309e-07 4139 4016 -121047307.7997 4140 4016 -21679861.11823 4141 4016 17343750.0057 4142 4016 -38039431.35476 4017 4017 1154306639.95 4018 4017 4.053115844727e-06 4019 4017 -5.984306335449e-05 4020 4017 164134990.0133 4021 4017 -4.798173904419e-06 4022 4017 -1.537799835205e-05 4026 4017 -88595068.35711 4027 4017 -64813888.87825 4028 4017 -4.26173210144e-06 4029 4017 -229938603.1375 4030 4017 -1.400709152222e-06 4031 4017 -1.621246337891e-05 4032 4017 -88595068.35711 4033 4017 64813888.87826 4034 4017 -3.75509262085e-06 4116 4017 -36072082.53399 4117 4017 16203472.22755 4118 4017 21679861.11823 4119 4017 -113177912.5205 4120 4017 -1.952052116394e-06 4121 4017 86719444.4302 4122 4017 -36072082.53399 4123 4017 -16203472.22755 4124 4017 21679861.11823 4125 4017 -14659514.18418 4126 4017 7.62939453125e-06 4127 4017 7.152557373047e-06 4128 4017 65803613.40852 4129 4017 4.112720489502e-06 4130 4017 3.081560134888e-05 4131 4017 -14659514.18418 4132 4017 -1.010298728943e-05 4133 4017 8.165836334229e-06 4137 4017 -36072082.53397 4138 4017 -16203472.22754 4139 4017 -21679861.11823 4140 4017 -113177912.5204 4141 4017 6.407499313354e-07 4142 4017 -86719444.43019 4143 4017 -36072082.53397 4144 4017 16203472.22755 4145 4017 -21679861.11823 4018 4018 998747631.9559 4019 4018 -6.675720214844e-06 4020 4018 -3.397464752197e-06 4021 4018 -82157545.53163 4022 4018 -2.264976501465e-06 4026 4018 -64813888.87825 4027 4018 -69150192.34827 4028 4018 -6.705522537231e-07 4029 4018 7.748603820801e-07 4030 4018 55243684.38681 4031 4018 -1.788139343262e-06 4032 4018 64813888.87826 4033 4018 -69150192.34827 4034 4018 -4.619359970093e-07 4116 4018 16203472.22755 4117 4018 -31210863.52938 4118 4018 -17343750.00569 4119 4018 -4.097819328308e-06 4120 4018 -41882340.60423 4121 4018 1.296401023865e-06 4122 4018 -16203472.22755 4123 4018 -31210863.52938 4124 4018 17343750.0057 4125 4018 8.970499038696e-06 4126 4018 -76232648.10075 4127 4018 -69374999.9886 4128 4018 4.053115844727e-06 4129 4018 26913861.39084 4130 4018 4.738569259644e-06 4131 4018 -7.331371307373e-06 4132 4018 -76232648.10076 4133 4018 69374999.9886 4137 4018 -16203472.22754 4138 4018 -31210863.52937 4139 4018 -17343750.0057 4140 4018 -1.177191734314e-06 4141 4018 -41882340.60421 4142 4018 8.344650268555e-07 4143 4018 16203472.22754 4144 4018 -31210863.52937 4145 4018 17343750.0057 4019 4019 1217261802.153 4020 4019 -1.52587890625e-05 4021 4019 -2.562999725342e-06 4022 4019 179873780.5718 4026 4019 -4.231929779053e-06 4027 4019 -5.811452865601e-07 4028 4019 -3642360.790142 4029 4019 -1.54972076416e-05 4030 4019 -1.907348632813e-06 4031 4019 109872226.963 4032 4019 -3.635883331299e-06 4033 4019 -6.109476089478e-07 4034 4019 -3642360.79014 4116 4019 21679861.11823 4117 4019 -17343750.00569 4118 4019 -38039431.35476 4119 4019 86719444.4302 4120 4019 1.415610313416e-06 4121 4019 -121047307.7997 4122 4019 21679861.11823 4123 4019 17343750.0057 4124 4019 -38039431.35476 4125 4019 7.182359695435e-06 4126 4019 -69374999.9886 4127 4019 -103546919.3888 4128 4019 3.02791595459e-05 4129 4019 4.619359970093e-06 4130 4019 -289746007.2349 4131 4019 8.165836334229e-06 4132 4019 69374999.9886 4133 4019 -103546919.3888 4137 4019 -21679861.11823 4138 4019 -17343750.0057 4139 4019 -38039431.35476 4140 4019 -86719444.43019 4141 4019 8.940696716309e-07 4142 4019 -121047307.7997 4143 4019 -21679861.11823 4144 4019 17343750.0057 4145 4019 -38039431.35476 4020 4020 1242901705.056 4021 4020 64813887.58197 4022 4020 -3.838539123535e-05 4023 4020 47693290.89467 4024 4020 -64813888.35975 4025 4020 -7.510185241699e-06 4029 4020 -88595068.35711 4030 4020 -64813888.87825 4031 4020 -4.26173210144e-06 4032 4020 -229938603.1375 4033 4020 -1.400709152222e-06 4034 4020 -1.621246337891e-05 4035 4020 -88595068.35711 4036 4020 64813888.87826 4037 4020 -3.75509262085e-06 4119 4020 -36072082.53399 4120 4020 16203472.22755 4121 4020 21679861.11823 4122 4020 -135326679.0277 4123 4020 -16203472.0331 4124 4020 86719444.24762 4128 4020 -14659514.18418 4129 4020 7.62939453125e-06 4130 4020 7.152557373047e-06 4131 4020 101875695.1567 4132 4020 16203471.90348 4133 4020 0.03654569387436 4134 4020 -36808280.87074 4135 4020 -16203472.09792 4136 4020 21679860.74398 4140 4020 -36072082.53397 4141 4020 -16203472.22754 4142 4020 -21679861.11823 4143 4020 -113177912.5204 4144 4020 6.407499313354e-07 4145 4020 -86719444.43019 4146 4020 -36072082.53397 4147 4020 16203472.22755 4148 4020 -21679861.11823 4021 4021 1067897821.637 4023 4021 -64813888.10049 4024 4021 -179154367.6044 4025 4021 -1.16229057312e-05 4029 4021 -64813888.87825 4030 4021 -69150192.34827 4031 4021 -6.705522537231e-07 4032 4021 7.748603820801e-07 4033 4021 55243684.38681 4034 4021 -1.788139343262e-06 4035 4021 64813888.87826 4036 4021 -69150192.34827 4037 4021 -4.619359970093e-07 4119 4021 16203472.22755 4120 4021 -31210863.52938 4121 4021 -17343750.00569 4122 4021 -16203472.09792 4123 4021 -59169888.51195 4124 4021 17343749.94043 4128 4021 8.970499038696e-06 4129 4021 -76232648.10075 4130 4021 -69374999.9886 4131 4021 16203471.90348 4132 4021 58124724.28025 4133 4021 0.029221534729 4134 4021 -16203472.03311 4135 4021 -93520195.52346 4136 4021 69374999.6084 4140 4021 -16203472.22754 4141 4021 -31210863.52937 4142 4021 -17343750.0057 4143 4021 -1.177191734314e-06 4144 4021 -41882340.60421 4145 4021 8.344650268555e-07 4146 4021 16203472.22754 4147 4021 -31210863.52937 4148 4021 17343750.0057 4022 4022 1220904161.253 4023 4022 -7.390975952148e-06 4024 4022 -9.536743164063e-06 4025 4022 101973736.7139 4029 4022 -4.231929779053e-06 4030 4022 -5.811452865601e-07 4031 4022 -3642360.790142 4032 4022 -1.54972076416e-05 4033 4022 -1.907348632813e-06 4034 4022 109872226.963 4035 4022 -3.635883331299e-06 4036 4022 -6.109476089478e-07 4037 4022 -3642360.79014 4119 4022 21679861.11823 4120 4022 -17343750.00569 4121 4022 -38039431.35476 4122 4022 86719444.24762 4123 4022 17343749.9078 4124 4022 -121957897.9018 4128 4022 7.182359695435e-06 4129 4022 -69374999.9886 4130 4022 -103546919.3888 4131 4022 -0.03648543357849 4132 4022 -0.02920261025429 4133 4022 -251706576.231 4134 4022 21679860.55685 4135 4022 69374999.49133 4136 4022 -104457508.7431 4140 4022 -21679861.11823 4141 4022 -17343750.0057 4142 4022 -38039431.35476 4143 4022 -86719444.43019 4144 4022 8.940696716309e-07 4145 4022 -121047307.7997 4146 4022 -21679861.11823 4147 4022 17343750.0057 4148 4022 -38039431.35476 4023 4023 721441645.4454 4024 4023 64813888.87825 4025 4023 -8.821487426758e-06 4032 4023 -88595068.35711 4033 4023 -64813888.87825 4034 4023 -4.26173210144e-06 4035 4023 -346380299.6592 4036 4023 -64813888.35974 4037 4023 -2.676248550415e-05 4038 4023 27846630.32399 4039 4023 51851110.58409 4122 4023 -13923315.16199 4123 4023 19444166.47861 4124 4023 26015832.7805 4131 4023 -36808280.87074 4132 4023 -16203472.0331 4133 4023 -21679860.55685 4134 4023 41127258.27048 4135 4023 16203472.22755 4136 4023 17343888.84954 4143 4023 -36072082.53397 4144 4023 -16203472.22754 4145 4023 -21679861.11823 4146 4023 -135326679.0276 4147 4023 -16203472.09792 4148 4023 -86719444.24762 4149 4023 -13923315.162 4150 4023 12962777.65241 4151 4023 -17343888.52033 4024 4024 624217266.0229 4025 4024 -7.273460780558e-06 4032 4024 -64813888.87825 4033 4024 -69150192.34827 4034 4024 -6.705522537231e-07 4035 4024 -64813888.10048 4036 4024 -41753137.74642 4037 4024 -7.390975952148e-06 4038 4024 77776665.87613 4039 4024 27846630.32398 4040 4024 6.794929504395e-06 4122 4024 12962777.65241 4123 4024 -13923315.162 4124 4024 -13874999.9393 4131 4024 -16203472.09791 4132 4024 -93520195.52345 4133 4024 -69374999.49133 4134 4024 16203472.22755 4135 4024 16821163.40287 4136 4024 13874999.85144 4143 4024 -16203472.22754 4144 4024 -31210863.52937 4145 4024 -17343750.0057 4146 4024 -16203472.0331 4147 4024 -59169888.51194 4148 4024 -17343749.90781 4149 4024 19444166.47861 4150 4024 -13923315.162 4151 4024 20812499.90895 4025 4025 760788621.1472 4032 4025 -4.231929779053e-06 4033 4025 -5.811452865601e-07 4034 4025 -3642360.790142 4035 4025 -2.646446228027e-05 4036 4025 -5.185604095459e-06 4037 4025 31972185.12589 4039 4025 4.708766937256e-06 4040 4025 74257680.86397 4122 4025 17343888.52033 4123 4025 -20812499.90894 4124 4025 -37128840.43198 4131 4025 -21679860.74397 4132 4025 -69374999.6084 4133 4025 -104457508.7431 4134 4025 -17343888.84951 4135 4025 -13874999.85143 4136 4025 -181091253.0988 4143 4025 -21679861.11823 4144 4025 -17343750.0057 4145 4025 -38039431.35476 4146 4025 -86719444.24762 4147 4025 -17343749.94043 4148 4025 -121957897.9018 4149 4025 -26015832.7805 4150 4025 13874999.9393 4151 4025 -37128840.43199 4026 4026 1154306639.95 4027 4026 4.053115844727e-06 4028 4026 -5.984306335449e-05 4029 4026 164134990.0133 4030 4026 -4.798173904419e-06 4031 4026 -1.537799835205e-05 4041 4026 -229938603.1375 4042 4026 -1.400709152222e-06 4043 4026 -1.621246337891e-05 4044 4026 -88595068.35711 4045 4026 64813888.87826 4046 4026 -3.75509262085e-06 4125 4026 -113177912.5205 4126 4026 -1.952052116394e-06 4127 4026 86719444.4302 4128 4026 -36072082.53399 4129 4026 -16203472.22755 4130 4026 21679861.11823 4137 4026 65803613.40852 4138 4026 4.112720489502e-06 4139 4026 3.081560134888e-05 4140 4026 -14659514.18418 4141 4026 -1.010298728943e-05 4142 4026 8.165836334229e-06 4152 4026 -113177912.5204 4153 4026 6.407499313354e-07 4154 4026 -86719444.43019 4155 4026 -36072082.53397 4156 4026 16203472.22755 4157 4026 -21679861.11823 4027 4027 998747631.9559 4028 4027 -6.675720214844e-06 4029 4027 -3.397464752197e-06 4030 4027 -82157545.53163 4031 4027 -2.264976501465e-06 4041 4027 7.748603820801e-07 4042 4027 55243684.38681 4043 4027 -1.788139343262e-06 4044 4027 64813888.87826 4045 4027 -69150192.34827 4046 4027 -4.619359970093e-07 4125 4027 -4.097819328308e-06 4126 4027 -41882340.60423 4127 4027 1.296401023865e-06 4128 4027 -16203472.22755 4129 4027 -31210863.52938 4130 4027 17343750.0057 4137 4027 4.053115844727e-06 4138 4027 26913861.39084 4139 4027 4.738569259644e-06 4140 4027 -7.331371307373e-06 4141 4027 -76232648.10076 4142 4027 69374999.9886 4152 4027 -1.177191734314e-06 4153 4027 -41882340.60421 4154 4027 8.344650268555e-07 4155 4027 16203472.22754 4156 4027 -31210863.52937 4157 4027 17343750.0057 4028 4028 1217261802.153 4029 4028 -1.52587890625e-05 4030 4028 -2.562999725342e-06 4031 4028 179873780.5718 4041 4028 -1.54972076416e-05 4042 4028 -1.907348632813e-06 4043 4028 109872226.963 4044 4028 -3.635883331299e-06 4045 4028 -6.109476089478e-07 4046 4028 -3642360.79014 4125 4028 86719444.4302 4126 4028 1.415610313416e-06 4127 4028 -121047307.7997 4128 4028 21679861.11823 4129 4028 17343750.0057 4130 4028 -38039431.35476 4137 4028 3.02791595459e-05 4138 4028 4.619359970093e-06 4139 4028 -289746007.2349 4140 4028 8.165836334229e-06 4141 4028 69374999.9886 4142 4028 -103546919.3888 4152 4028 -86719444.43019 4153 4028 8.940696716309e-07 4154 4028 -121047307.7997 4155 4028 -21679861.11823 4156 4028 17343750.0057 4157 4028 -38039431.35476 4029 4029 1154306639.95 4030 4029 4.053115844727e-06 4031 4029 -5.984306335449e-05 4032 4029 164134990.0133 4033 4029 -4.798173904419e-06 4034 4029 -1.537799835205e-05 4041 4029 -88595068.35711 4042 4029 -64813888.87825 4043 4029 -4.26173210144e-06 4044 4029 -229938603.1375 4045 4029 -1.400709152222e-06 4046 4029 -1.621246337891e-05 4047 4029 -88595068.35711 4048 4029 64813888.87826 4049 4029 -3.75509262085e-06 4125 4029 -36072082.53399 4126 4029 16203472.22755 4127 4029 21679861.11823 4128 4029 -113177912.5205 4129 4029 -1.952052116394e-06 4130 4029 86719444.4302 4131 4029 -36072082.53399 4132 4029 -16203472.22755 4133 4029 21679861.11823 4137 4029 -14659514.18418 4138 4029 7.62939453125e-06 4139 4029 7.152557373047e-06 4140 4029 65803613.40852 4141 4029 4.112720489502e-06 4142 4029 3.081560134888e-05 4143 4029 -14659514.18418 4144 4029 -1.010298728943e-05 4145 4029 8.165836334229e-06 4152 4029 -36072082.53397 4153 4029 -16203472.22754 4154 4029 -21679861.11823 4155 4029 -113177912.5204 4156 4029 6.407499313354e-07 4157 4029 -86719444.43019 4158 4029 -36072082.53397 4159 4029 16203472.22755 4160 4029 -21679861.11823 4030 4030 998747631.9559 4031 4030 -6.675720214844e-06 4032 4030 -3.397464752197e-06 4033 4030 -82157545.53163 4034 4030 -2.264976501465e-06 4041 4030 -64813888.87825 4042 4030 -69150192.34827 4043 4030 -6.705522537231e-07 4044 4030 7.748603820801e-07 4045 4030 55243684.38681 4046 4030 -1.788139343262e-06 4047 4030 64813888.87826 4048 4030 -69150192.34827 4049 4030 -4.619359970093e-07 4125 4030 16203472.22755 4126 4030 -31210863.52938 4127 4030 -17343750.00569 4128 4030 -4.097819328308e-06 4129 4030 -41882340.60423 4130 4030 1.296401023865e-06 4131 4030 -16203472.22755 4132 4030 -31210863.52938 4133 4030 17343750.0057 4137 4030 8.970499038696e-06 4138 4030 -76232648.10075 4139 4030 -69374999.9886 4140 4030 4.053115844727e-06 4141 4030 26913861.39084 4142 4030 4.738569259644e-06 4143 4030 -7.331371307373e-06 4144 4030 -76232648.10076 4145 4030 69374999.9886 4152 4030 -16203472.22754 4153 4030 -31210863.52937 4154 4030 -17343750.0057 4155 4030 -1.177191734314e-06 4156 4030 -41882340.60421 4157 4030 8.344650268555e-07 4158 4030 16203472.22754 4159 4030 -31210863.52937 4160 4030 17343750.0057 4031 4031 1217261802.153 4032 4031 -1.52587890625e-05 4033 4031 -2.562999725342e-06 4034 4031 179873780.5718 4041 4031 -4.231929779053e-06 4042 4031 -5.811452865601e-07 4043 4031 -3642360.790142 4044 4031 -1.54972076416e-05 4045 4031 -1.907348632813e-06 4046 4031 109872226.963 4047 4031 -3.635883331299e-06 4048 4031 -6.109476089478e-07 4049 4031 -3642360.79014 4125 4031 21679861.11823 4126 4031 -17343750.00569 4127 4031 -38039431.35476 4128 4031 86719444.4302 4129 4031 1.415610313416e-06 4130 4031 -121047307.7997 4131 4031 21679861.11823 4132 4031 17343750.0057 4133 4031 -38039431.35476 4137 4031 7.182359695435e-06 4138 4031 -69374999.9886 4139 4031 -103546919.3888 4140 4031 3.02791595459e-05 4141 4031 4.619359970093e-06 4142 4031 -289746007.2349 4143 4031 8.165836334229e-06 4144 4031 69374999.9886 4145 4031 -103546919.3888 4152 4031 -21679861.11823 4153 4031 -17343750.0057 4154 4031 -38039431.35476 4155 4031 -86719444.43019 4156 4031 8.940696716309e-07 4157 4031 -121047307.7997 4158 4031 -21679861.11823 4159 4031 17343750.0057 4160 4031 -38039431.35476 4032 4032 1154306639.95 4033 4032 4.053115844727e-06 4034 4032 -5.984306335449e-05 4035 4032 164134990.0133 4036 4032 -4.798173904419e-06 4037 4032 -1.537799835205e-05 4044 4032 -88595068.35711 4045 4032 -64813888.87825 4046 4032 -4.26173210144e-06 4047 4032 -229938603.1375 4048 4032 -1.400709152222e-06 4049 4032 -1.621246337891e-05 4050 4032 -88595068.35711 4051 4032 64813888.87826 4052 4032 -3.75509262085e-06 4128 4032 -36072082.53399 4129 4032 16203472.22755 4130 4032 21679861.11823 4131 4032 -113177912.5205 4132 4032 -1.952052116394e-06 4133 4032 86719444.4302 4134 4032 -36072082.53399 4135 4032 -16203472.22755 4136 4032 21679861.11823 4140 4032 -14659514.18418 4141 4032 7.62939453125e-06 4142 4032 7.152557373047e-06 4143 4032 65803613.40852 4144 4032 4.112720489502e-06 4145 4032 3.081560134888e-05 4146 4032 -14659514.18418 4147 4032 -1.010298728943e-05 4148 4032 8.165836334229e-06 4155 4032 -36072082.53397 4156 4032 -16203472.22754 4157 4032 -21679861.11823 4158 4032 -113177912.5204 4159 4032 6.407499313354e-07 4160 4032 -86719444.43019 4161 4032 -36072082.53397 4162 4032 16203472.22755 4163 4032 -21679861.11823 4033 4033 998747631.9559 4034 4033 -6.675720214844e-06 4035 4033 -3.397464752197e-06 4036 4033 -82157545.53163 4037 4033 -2.264976501465e-06 4044 4033 -64813888.87825 4045 4033 -69150192.34827 4046 4033 -6.705522537231e-07 4047 4033 7.748603820801e-07 4048 4033 55243684.38681 4049 4033 -1.788139343262e-06 4050 4033 64813888.87826 4051 4033 -69150192.34827 4052 4033 -4.619359970093e-07 4128 4033 16203472.22755 4129 4033 -31210863.52938 4130 4033 -17343750.00569 4131 4033 -4.097819328308e-06 4132 4033 -41882340.60423 4133 4033 1.296401023865e-06 4134 4033 -16203472.22755 4135 4033 -31210863.52938 4136 4033 17343750.0057 4140 4033 8.970499038696e-06 4141 4033 -76232648.10075 4142 4033 -69374999.9886 4143 4033 4.053115844727e-06 4144 4033 26913861.39084 4145 4033 4.738569259644e-06 4146 4033 -7.331371307373e-06 4147 4033 -76232648.10076 4148 4033 69374999.9886 4155 4033 -16203472.22754 4156 4033 -31210863.52937 4157 4033 -17343750.0057 4158 4033 -1.177191734314e-06 4159 4033 -41882340.60421 4160 4033 8.344650268555e-07 4161 4033 16203472.22754 4162 4033 -31210863.52937 4163 4033 17343750.0057 4034 4034 1217261802.153 4035 4034 -1.52587890625e-05 4036 4034 -2.562999725342e-06 4037 4034 179873780.5718 4044 4034 -4.231929779053e-06 4045 4034 -5.811452865601e-07 4046 4034 -3642360.790142 4047 4034 -1.54972076416e-05 4048 4034 -1.907348632813e-06 4049 4034 109872226.963 4050 4034 -3.635883331299e-06 4051 4034 -6.109476089478e-07 4052 4034 -3642360.79014 4128 4034 21679861.11823 4129 4034 -17343750.00569 4130 4034 -38039431.35476 4131 4034 86719444.4302 4132 4034 1.415610313416e-06 4133 4034 -121047307.7997 4134 4034 21679861.11823 4135 4034 17343750.0057 4136 4034 -38039431.35476 4140 4034 7.182359695435e-06 4141 4034 -69374999.9886 4142 4034 -103546919.3888 4143 4034 3.02791595459e-05 4144 4034 4.619359970093e-06 4145 4034 -289746007.2349 4146 4034 8.165836334229e-06 4147 4034 69374999.9886 4148 4034 -103546919.3888 4155 4034 -21679861.11823 4156 4034 -17343750.0057 4157 4034 -38039431.35476 4158 4034 -86719444.43019 4159 4034 8.940696716309e-07 4160 4034 -121047307.7997 4161 4034 -21679861.11823 4162 4034 17343750.0057 4163 4034 -38039431.35476 4035 4035 1242901705.056 4036 4035 64813887.58197 4037 4035 -3.838539123535e-05 4038 4035 47693290.89467 4039 4035 -64813888.35975 4040 4035 -7.510185241699e-06 4047 4035 -88595068.35711 4048 4035 -64813888.87825 4049 4035 -4.26173210144e-06 4050 4035 -229938603.1375 4051 4035 -1.400709152222e-06 4052 4035 -1.621246337891e-05 4053 4035 -88595068.35711 4054 4035 64813888.87826 4055 4035 -3.75509262085e-06 4131 4035 -36072082.53399 4132 4035 16203472.22755 4133 4035 21679861.11823 4134 4035 -135326679.0277 4135 4035 -16203472.0331 4136 4035 86719444.24762 4143 4035 -14659514.18418 4144 4035 7.62939453125e-06 4145 4035 7.152557373047e-06 4146 4035 101875695.1567 4147 4035 16203471.90348 4148 4035 0.03654569387436 4149 4035 -36808280.87074 4150 4035 -16203472.09792 4151 4035 21679860.74398 4158 4035 -36072082.53397 4159 4035 -16203472.22754 4160 4035 -21679861.11823 4161 4035 -113177912.5204 4162 4035 6.407499313354e-07 4163 4035 -86719444.43019 4164 4035 -36072082.53397 4165 4035 16203472.22755 4166 4035 -21679861.11823 4036 4036 1067897821.637 4038 4036 -64813888.10049 4039 4036 -179154367.6044 4040 4036 -1.16229057312e-05 4047 4036 -64813888.87825 4048 4036 -69150192.34827 4049 4036 -6.705522537231e-07 4050 4036 7.748603820801e-07 4051 4036 55243684.38681 4052 4036 -1.788139343262e-06 4053 4036 64813888.87826 4054 4036 -69150192.34827 4055 4036 -4.619359970093e-07 4131 4036 16203472.22755 4132 4036 -31210863.52938 4133 4036 -17343750.00569 4134 4036 -16203472.09792 4135 4036 -59169888.51195 4136 4036 17343749.94043 4143 4036 8.970499038696e-06 4144 4036 -76232648.10075 4145 4036 -69374999.9886 4146 4036 16203471.90348 4147 4036 58124724.28025 4148 4036 0.029221534729 4149 4036 -16203472.03311 4150 4036 -93520195.52346 4151 4036 69374999.6084 4158 4036 -16203472.22754 4159 4036 -31210863.52937 4160 4036 -17343750.0057 4161 4036 -1.177191734314e-06 4162 4036 -41882340.60421 4163 4036 8.344650268555e-07 4164 4036 16203472.22754 4165 4036 -31210863.52937 4166 4036 17343750.0057 4037 4037 1220904161.253 4038 4037 -7.390975952148e-06 4039 4037 -9.536743164063e-06 4040 4037 101973736.7139 4047 4037 -4.231929779053e-06 4048 4037 -5.811452865601e-07 4049 4037 -3642360.790142 4050 4037 -1.54972076416e-05 4051 4037 -1.907348632813e-06 4052 4037 109872226.963 4053 4037 -3.635883331299e-06 4054 4037 -6.109476089478e-07 4055 4037 -3642360.79014 4131 4037 21679861.11823 4132 4037 -17343750.00569 4133 4037 -38039431.35476 4134 4037 86719444.24762 4135 4037 17343749.9078 4136 4037 -121957897.9018 4143 4037 7.182359695435e-06 4144 4037 -69374999.9886 4145 4037 -103546919.3888 4146 4037 -0.03648543357849 4147 4037 -0.02920261025429 4148 4037 -251706576.231 4149 4037 21679860.55685 4150 4037 69374999.49133 4151 4037 -104457508.7431 4158 4037 -21679861.11823 4159 4037 -17343750.0057 4160 4037 -38039431.35476 4161 4037 -86719444.43019 4162 4037 8.940696716309e-07 4163 4037 -121047307.7997 4164 4037 -21679861.11823 4165 4037 17343750.0057 4166 4037 -38039431.35476 4038 4038 721441645.4454 4039 4038 64813888.87825 4040 4038 -8.821487426758e-06 4050 4038 -88595068.35711 4051 4038 -64813888.87825 4052 4038 -4.26173210144e-06 4053 4038 -346380299.6592 4054 4038 -64813888.35974 4055 4038 -2.676248550415e-05 4056 4038 27846630.32399 4057 4038 51851110.58409 4134 4038 -13923315.16199 4135 4038 19444166.47861 4136 4038 26015832.7805 4146 4038 -36808280.87074 4147 4038 -16203472.0331 4148 4038 -21679860.55685 4149 4038 41127258.27048 4150 4038 16203472.22755 4151 4038 17343888.84954 4161 4038 -36072082.53397 4162 4038 -16203472.22754 4163 4038 -21679861.11823 4164 4038 -135326679.0276 4165 4038 -16203472.09792 4166 4038 -86719444.24762 4167 4038 -13923315.162 4168 4038 12962777.65241 4169 4038 -17343888.52033 4039 4039 624217266.0229 4040 4039 -7.273460780558e-06 4050 4039 -64813888.87825 4051 4039 -69150192.34827 4052 4039 -6.705522537231e-07 4053 4039 -64813888.10048 4054 4039 -41753137.74642 4055 4039 -7.390975952148e-06 4056 4039 77776665.87613 4057 4039 27846630.32398 4058 4039 6.794929504395e-06 4134 4039 12962777.65241 4135 4039 -13923315.162 4136 4039 -13874999.9393 4146 4039 -16203472.09791 4147 4039 -93520195.52345 4148 4039 -69374999.49133 4149 4039 16203472.22755 4150 4039 16821163.40287 4151 4039 13874999.85144 4161 4039 -16203472.22754 4162 4039 -31210863.52937 4163 4039 -17343750.0057 4164 4039 -16203472.0331 4165 4039 -59169888.51194 4166 4039 -17343749.90781 4167 4039 19444166.47861 4168 4039 -13923315.162 4169 4039 20812499.90895 4040 4040 760788621.1472 4050 4040 -4.231929779053e-06 4051 4040 -5.811452865601e-07 4052 4040 -3642360.790142 4053 4040 -2.646446228027e-05 4054 4040 -5.185604095459e-06 4055 4040 31972185.12589 4057 4040 4.708766937256e-06 4058 4040 74257680.86397 4134 4040 17343888.52033 4135 4040 -20812499.90894 4136 4040 -37128840.43198 4146 4040 -21679860.74397 4147 4040 -69374999.6084 4148 4040 -104457508.7431 4149 4040 -17343888.84951 4150 4040 -13874999.85143 4151 4040 -181091253.0988 4161 4040 -21679861.11823 4162 4040 -17343750.0057 4163 4040 -38039431.35476 4164 4040 -86719444.24762 4165 4040 -17343749.94043 4166 4040 -121957897.9018 4167 4040 -26015832.7805 4168 4040 13874999.9393 4169 4040 -37128840.43199 4041 4041 1154306639.95 4042 4041 4.053115844727e-06 4043 4041 -5.984306335449e-05 4044 4041 164134990.0133 4045 4041 -4.798173904419e-06 4046 4041 -1.537799835205e-05 4059 4041 -229938603.1375 4060 4041 -1.400709152222e-06 4061 4041 -1.621246337891e-05 4062 4041 -88595068.35711 4063 4041 64813888.87826 4064 4041 -3.75509262085e-06 4137 4041 -113177912.5205 4138 4041 -1.952052116394e-06 4139 4041 86719444.4302 4140 4041 -36072082.53399 4141 4041 -16203472.22755 4142 4041 21679861.11823 4152 4041 65803613.40852 4153 4041 4.112720489502e-06 4154 4041 3.081560134888e-05 4155 4041 -14659514.18418 4156 4041 -1.010298728943e-05 4157 4041 8.165836334229e-06 4170 4041 -113177912.5204 4171 4041 6.407499313354e-07 4172 4041 -86719444.43019 4173 4041 -36072082.53397 4174 4041 16203472.22755 4175 4041 -21679861.11823 4042 4042 998747631.9559 4043 4042 -6.675720214844e-06 4044 4042 -3.397464752197e-06 4045 4042 -82157545.53163 4046 4042 -2.264976501465e-06 4059 4042 7.748603820801e-07 4060 4042 55243684.38681 4061 4042 -1.788139343262e-06 4062 4042 64813888.87826 4063 4042 -69150192.34827 4064 4042 -4.619359970093e-07 4137 4042 -4.097819328308e-06 4138 4042 -41882340.60423 4139 4042 1.296401023865e-06 4140 4042 -16203472.22755 4141 4042 -31210863.52938 4142 4042 17343750.0057 4152 4042 4.053115844727e-06 4153 4042 26913861.39084 4154 4042 4.738569259644e-06 4155 4042 -7.331371307373e-06 4156 4042 -76232648.10076 4157 4042 69374999.9886 4170 4042 -1.177191734314e-06 4171 4042 -41882340.60421 4172 4042 8.344650268555e-07 4173 4042 16203472.22754 4174 4042 -31210863.52937 4175 4042 17343750.0057 4043 4043 1217261802.153 4044 4043 -1.52587890625e-05 4045 4043 -2.562999725342e-06 4046 4043 179873780.5718 4059 4043 -1.54972076416e-05 4060 4043 -1.907348632813e-06 4061 4043 109872226.963 4062 4043 -3.635883331299e-06 4063 4043 -6.109476089478e-07 4064 4043 -3642360.79014 4137 4043 86719444.4302 4138 4043 1.415610313416e-06 4139 4043 -121047307.7997 4140 4043 21679861.11823 4141 4043 17343750.0057 4142 4043 -38039431.35476 4152 4043 3.02791595459e-05 4153 4043 4.619359970093e-06 4154 4043 -289746007.2349 4155 4043 8.165836334229e-06 4156 4043 69374999.9886 4157 4043 -103546919.3888 4170 4043 -86719444.43019 4171 4043 8.940696716309e-07 4172 4043 -121047307.7997 4173 4043 -21679861.11823 4174 4043 17343750.0057 4175 4043 -38039431.35476 4044 4044 1154306639.95 4045 4044 4.053115844727e-06 4046 4044 -5.984306335449e-05 4047 4044 164134990.0133 4048 4044 -4.798173904419e-06 4049 4044 -1.537799835205e-05 4059 4044 -88595068.35711 4060 4044 -64813888.87825 4061 4044 -4.26173210144e-06 4062 4044 -229938603.1375 4063 4044 -1.400709152222e-06 4064 4044 -1.621246337891e-05 4065 4044 -88595068.35711 4066 4044 64813888.87826 4067 4044 -3.75509262085e-06 4137 4044 -36072082.53399 4138 4044 16203472.22755 4139 4044 21679861.11823 4140 4044 -113177912.5205 4141 4044 -1.952052116394e-06 4142 4044 86719444.4302 4143 4044 -36072082.53399 4144 4044 -16203472.22755 4145 4044 21679861.11823 4152 4044 -14659514.18418 4153 4044 7.62939453125e-06 4154 4044 7.152557373047e-06 4155 4044 65803613.40852 4156 4044 4.112720489502e-06 4157 4044 3.081560134888e-05 4158 4044 -14659514.18418 4159 4044 -1.010298728943e-05 4160 4044 8.165836334229e-06 4170 4044 -36072082.53397 4171 4044 -16203472.22754 4172 4044 -21679861.11823 4173 4044 -113177912.5204 4174 4044 6.407499313354e-07 4175 4044 -86719444.43019 4176 4044 -36072082.53397 4177 4044 16203472.22755 4178 4044 -21679861.11823 4045 4045 998747631.9559 4046 4045 -6.675720214844e-06 4047 4045 -3.397464752197e-06 4048 4045 -82157545.53163 4049 4045 -2.264976501465e-06 4059 4045 -64813888.87825 4060 4045 -69150192.34827 4061 4045 -6.705522537231e-07 4062 4045 7.748603820801e-07 4063 4045 55243684.38681 4064 4045 -1.788139343262e-06 4065 4045 64813888.87826 4066 4045 -69150192.34827 4067 4045 -4.619359970093e-07 4137 4045 16203472.22755 4138 4045 -31210863.52938 4139 4045 -17343750.00569 4140 4045 -4.097819328308e-06 4141 4045 -41882340.60423 4142 4045 1.296401023865e-06 4143 4045 -16203472.22755 4144 4045 -31210863.52938 4145 4045 17343750.0057 4152 4045 8.970499038696e-06 4153 4045 -76232648.10075 4154 4045 -69374999.9886 4155 4045 4.053115844727e-06 4156 4045 26913861.39084 4157 4045 4.738569259644e-06 4158 4045 -7.331371307373e-06 4159 4045 -76232648.10076 4160 4045 69374999.9886 4170 4045 -16203472.22754 4171 4045 -31210863.52937 4172 4045 -17343750.0057 4173 4045 -1.177191734314e-06 4174 4045 -41882340.60421 4175 4045 8.344650268555e-07 4176 4045 16203472.22754 4177 4045 -31210863.52937 4178 4045 17343750.0057 4046 4046 1217261802.153 4047 4046 -1.52587890625e-05 4048 4046 -2.562999725342e-06 4049 4046 179873780.5718 4059 4046 -4.231929779053e-06 4060 4046 -5.811452865601e-07 4061 4046 -3642360.790142 4062 4046 -1.54972076416e-05 4063 4046 -1.907348632813e-06 4064 4046 109872226.963 4065 4046 -3.635883331299e-06 4066 4046 -6.109476089478e-07 4067 4046 -3642360.79014 4137 4046 21679861.11823 4138 4046 -17343750.00569 4139 4046 -38039431.35476 4140 4046 86719444.4302 4141 4046 1.415610313416e-06 4142 4046 -121047307.7997 4143 4046 21679861.11823 4144 4046 17343750.0057 4145 4046 -38039431.35476 4152 4046 7.182359695435e-06 4153 4046 -69374999.9886 4154 4046 -103546919.3888 4155 4046 3.02791595459e-05 4156 4046 4.619359970093e-06 4157 4046 -289746007.2349 4158 4046 8.165836334229e-06 4159 4046 69374999.9886 4160 4046 -103546919.3888 4170 4046 -21679861.11823 4171 4046 -17343750.0057 4172 4046 -38039431.35476 4173 4046 -86719444.43019 4174 4046 8.940696716309e-07 4175 4046 -121047307.7997 4176 4046 -21679861.11823 4177 4046 17343750.0057 4178 4046 -38039431.35476 4047 4047 1154306639.95 4048 4047 4.053115844727e-06 4049 4047 -5.984306335449e-05 4050 4047 164134990.0133 4051 4047 -4.798173904419e-06 4052 4047 -1.537799835205e-05 4062 4047 -88595068.35711 4063 4047 -64813888.87825 4064 4047 -4.26173210144e-06 4065 4047 -229938603.1375 4066 4047 -1.400709152222e-06 4067 4047 -1.621246337891e-05 4068 4047 -88595068.35711 4069 4047 64813888.87826 4070 4047 -3.75509262085e-06 4140 4047 -36072082.53399 4141 4047 16203472.22755 4142 4047 21679861.11823 4143 4047 -113177912.5205 4144 4047 -1.952052116394e-06 4145 4047 86719444.4302 4146 4047 -36072082.53399 4147 4047 -16203472.22755 4148 4047 21679861.11823 4155 4047 -14659514.18418 4156 4047 7.62939453125e-06 4157 4047 7.152557373047e-06 4158 4047 65803613.40852 4159 4047 4.112720489502e-06 4160 4047 3.081560134888e-05 4161 4047 -14659514.18418 4162 4047 -1.010298728943e-05 4163 4047 8.165836334229e-06 4173 4047 -36072082.53397 4174 4047 -16203472.22754 4175 4047 -21679861.11823 4176 4047 -113177912.5204 4177 4047 6.407499313354e-07 4178 4047 -86719444.43019 4179 4047 -36072082.53397 4180 4047 16203472.22755 4181 4047 -21679861.11823 4048 4048 998747631.9559 4049 4048 -6.675720214844e-06 4050 4048 -3.397464752197e-06 4051 4048 -82157545.53163 4052 4048 -2.264976501465e-06 4062 4048 -64813888.87825 4063 4048 -69150192.34827 4064 4048 -6.705522537231e-07 4065 4048 7.748603820801e-07 4066 4048 55243684.38681 4067 4048 -1.788139343262e-06 4068 4048 64813888.87826 4069 4048 -69150192.34827 4070 4048 -4.619359970093e-07 4140 4048 16203472.22755 4141 4048 -31210863.52938 4142 4048 -17343750.00569 4143 4048 -4.097819328308e-06 4144 4048 -41882340.60423 4145 4048 1.296401023865e-06 4146 4048 -16203472.22755 4147 4048 -31210863.52938 4148 4048 17343750.0057 4155 4048 8.970499038696e-06 4156 4048 -76232648.10075 4157 4048 -69374999.9886 4158 4048 4.053115844727e-06 4159 4048 26913861.39084 4160 4048 4.738569259644e-06 4161 4048 -7.331371307373e-06 4162 4048 -76232648.10076 4163 4048 69374999.9886 4173 4048 -16203472.22754 4174 4048 -31210863.52937 4175 4048 -17343750.0057 4176 4048 -1.177191734314e-06 4177 4048 -41882340.60421 4178 4048 8.344650268555e-07 4179 4048 16203472.22754 4180 4048 -31210863.52937 4181 4048 17343750.0057 4049 4049 1217261802.153 4050 4049 -1.52587890625e-05 4051 4049 -2.562999725342e-06 4052 4049 179873780.5718 4062 4049 -4.231929779053e-06 4063 4049 -5.811452865601e-07 4064 4049 -3642360.790142 4065 4049 -1.54972076416e-05 4066 4049 -1.907348632813e-06 4067 4049 109872226.963 4068 4049 -3.635883331299e-06 4069 4049 -6.109476089478e-07 4070 4049 -3642360.79014 4140 4049 21679861.11823 4141 4049 -17343750.00569 4142 4049 -38039431.35476 4143 4049 86719444.4302 4144 4049 1.415610313416e-06 4145 4049 -121047307.7997 4146 4049 21679861.11823 4147 4049 17343750.0057 4148 4049 -38039431.35476 4155 4049 7.182359695435e-06 4156 4049 -69374999.9886 4157 4049 -103546919.3888 4158 4049 3.02791595459e-05 4159 4049 4.619359970093e-06 4160 4049 -289746007.2349 4161 4049 8.165836334229e-06 4162 4049 69374999.9886 4163 4049 -103546919.3888 4173 4049 -21679861.11823 4174 4049 -17343750.0057 4175 4049 -38039431.35476 4176 4049 -86719444.43019 4177 4049 8.940696716309e-07 4178 4049 -121047307.7997 4179 4049 -21679861.11823 4180 4049 17343750.0057 4181 4049 -38039431.35476 4050 4050 1154306639.95 4051 4050 4.053115844727e-06 4052 4050 -5.984306335449e-05 4053 4050 164134990.0133 4054 4050 -4.798173904419e-06 4055 4050 -1.537799835205e-05 4065 4050 -88595068.35711 4066 4050 -64813888.87825 4067 4050 -4.26173210144e-06 4068 4050 -229938603.1375 4069 4050 -1.400709152222e-06 4070 4050 -1.621246337891e-05 4071 4050 -88595068.35711 4072 4050 64813888.87826 4073 4050 -3.75509262085e-06 4143 4050 -36072082.53399 4144 4050 16203472.22755 4145 4050 21679861.11823 4146 4050 -113177912.5205 4147 4050 -1.952052116394e-06 4148 4050 86719444.4302 4149 4050 -36072082.53399 4150 4050 -16203472.22755 4151 4050 21679861.11823 4158 4050 -14659514.18418 4159 4050 7.62939453125e-06 4160 4050 7.152557373047e-06 4161 4050 65803613.40852 4162 4050 4.112720489502e-06 4163 4050 3.081560134888e-05 4164 4050 -14659514.18418 4165 4050 -1.010298728943e-05 4166 4050 8.165836334229e-06 4176 4050 -36072082.53397 4177 4050 -16203472.22754 4178 4050 -21679861.11823 4179 4050 -113177912.5204 4180 4050 6.407499313354e-07 4181 4050 -86719444.43019 4182 4050 -36072082.53397 4183 4050 16203472.22755 4184 4050 -21679861.11823 4051 4051 998747631.9559 4052 4051 -6.675720214844e-06 4053 4051 -3.397464752197e-06 4054 4051 -82157545.53163 4055 4051 -2.264976501465e-06 4065 4051 -64813888.87825 4066 4051 -69150192.34827 4067 4051 -6.705522537231e-07 4068 4051 7.748603820801e-07 4069 4051 55243684.38681 4070 4051 -1.788139343262e-06 4071 4051 64813888.87826 4072 4051 -69150192.34827 4073 4051 -4.619359970093e-07 4143 4051 16203472.22755 4144 4051 -31210863.52938 4145 4051 -17343750.00569 4146 4051 -4.097819328308e-06 4147 4051 -41882340.60423 4148 4051 1.296401023865e-06 4149 4051 -16203472.22755 4150 4051 -31210863.52938 4151 4051 17343750.0057 4158 4051 8.970499038696e-06 4159 4051 -76232648.10075 4160 4051 -69374999.9886 4161 4051 4.053115844727e-06 4162 4051 26913861.39084 4163 4051 4.738569259644e-06 4164 4051 -7.331371307373e-06 4165 4051 -76232648.10076 4166 4051 69374999.9886 4176 4051 -16203472.22754 4177 4051 -31210863.52937 4178 4051 -17343750.0057 4179 4051 -1.177191734314e-06 4180 4051 -41882340.60421 4181 4051 8.344650268555e-07 4182 4051 16203472.22754 4183 4051 -31210863.52937 4184 4051 17343750.0057 4052 4052 1217261802.153 4053 4052 -1.52587890625e-05 4054 4052 -2.562999725342e-06 4055 4052 179873780.5718 4065 4052 -4.231929779053e-06 4066 4052 -5.811452865601e-07 4067 4052 -3642360.790142 4068 4052 -1.54972076416e-05 4069 4052 -1.907348632813e-06 4070 4052 109872226.963 4071 4052 -3.635883331299e-06 4072 4052 -6.109476089478e-07 4073 4052 -3642360.79014 4143 4052 21679861.11823 4144 4052 -17343750.00569 4145 4052 -38039431.35476 4146 4052 86719444.4302 4147 4052 1.415610313416e-06 4148 4052 -121047307.7997 4149 4052 21679861.11823 4150 4052 17343750.0057 4151 4052 -38039431.35476 4158 4052 7.182359695435e-06 4159 4052 -69374999.9886 4160 4052 -103546919.3888 4161 4052 3.02791595459e-05 4162 4052 4.619359970093e-06 4163 4052 -289746007.2349 4164 4052 8.165836334229e-06 4165 4052 69374999.9886 4166 4052 -103546919.3888 4176 4052 -21679861.11823 4177 4052 -17343750.0057 4178 4052 -38039431.35476 4179 4052 -86719444.43019 4180 4052 8.940696716309e-07 4181 4052 -121047307.7997 4182 4052 -21679861.11823 4183 4052 17343750.0057 4184 4052 -38039431.35476 4053 4053 1242901705.056 4054 4053 64813887.58197 4055 4053 -3.838539123535e-05 4056 4053 47693290.89467 4057 4053 -64813888.35975 4058 4053 -7.510185241699e-06 4068 4053 -88595068.35711 4069 4053 -64813888.87825 4070 4053 -4.26173210144e-06 4071 4053 -229938603.1375 4072 4053 -1.400709152222e-06 4073 4053 -1.621246337891e-05 4074 4053 -88595068.35711 4075 4053 64813888.87826 4076 4053 -3.75509262085e-06 4146 4053 -36072082.53399 4147 4053 16203472.22755 4148 4053 21679861.11823 4149 4053 -135326679.0277 4150 4053 -16203472.0331 4151 4053 86719444.24762 4161 4053 -14659514.18418 4162 4053 7.62939453125e-06 4163 4053 7.152557373047e-06 4164 4053 101875695.1567 4165 4053 16203471.90348 4166 4053 0.03654569387436 4167 4053 -36808280.87074 4168 4053 -16203472.09792 4169 4053 21679860.74398 4179 4053 -36072082.53397 4180 4053 -16203472.22754 4181 4053 -21679861.11823 4182 4053 -113177912.5204 4183 4053 6.407499313354e-07 4184 4053 -86719444.43019 4185 4053 -36072082.53397 4186 4053 16203472.22755 4187 4053 -21679861.11823 4054 4054 1067897821.637 4056 4054 -64813888.10049 4057 4054 -179154367.6044 4058 4054 -1.16229057312e-05 4068 4054 -64813888.87825 4069 4054 -69150192.34827 4070 4054 -6.705522537231e-07 4071 4054 7.748603820801e-07 4072 4054 55243684.38681 4073 4054 -1.788139343262e-06 4074 4054 64813888.87826 4075 4054 -69150192.34827 4076 4054 -4.619359970093e-07 4146 4054 16203472.22755 4147 4054 -31210863.52938 4148 4054 -17343750.00569 4149 4054 -16203472.09792 4150 4054 -59169888.51195 4151 4054 17343749.94043 4161 4054 8.970499038696e-06 4162 4054 -76232648.10075 4163 4054 -69374999.9886 4164 4054 16203471.90348 4165 4054 58124724.28025 4166 4054 0.029221534729 4167 4054 -16203472.03311 4168 4054 -93520195.52346 4169 4054 69374999.6084 4179 4054 -16203472.22754 4180 4054 -31210863.52937 4181 4054 -17343750.0057 4182 4054 -1.177191734314e-06 4183 4054 -41882340.60421 4184 4054 8.344650268555e-07 4185 4054 16203472.22754 4186 4054 -31210863.52937 4187 4054 17343750.0057 4055 4055 1220904161.253 4056 4055 -7.390975952148e-06 4057 4055 -9.536743164063e-06 4058 4055 101973736.7139 4068 4055 -4.231929779053e-06 4069 4055 -5.811452865601e-07 4070 4055 -3642360.790142 4071 4055 -1.54972076416e-05 4072 4055 -1.907348632813e-06 4073 4055 109872226.963 4074 4055 -3.635883331299e-06 4075 4055 -6.109476089478e-07 4076 4055 -3642360.79014 4146 4055 21679861.11823 4147 4055 -17343750.00569 4148 4055 -38039431.35476 4149 4055 86719444.24762 4150 4055 17343749.9078 4151 4055 -121957897.9018 4161 4055 7.182359695435e-06 4162 4055 -69374999.9886 4163 4055 -103546919.3888 4164 4055 -0.03648543357849 4165 4055 -0.02920261025429 4166 4055 -251706576.231 4167 4055 21679860.55685 4168 4055 69374999.49133 4169 4055 -104457508.7431 4179 4055 -21679861.11823 4180 4055 -17343750.0057 4181 4055 -38039431.35476 4182 4055 -86719444.43019 4183 4055 8.940696716309e-07 4184 4055 -121047307.7997 4185 4055 -21679861.11823 4186 4055 17343750.0057 4187 4055 -38039431.35476 4056 4056 733825161.8322 4057 4056 69874541.14581 4058 4056 -2.217292785645e-05 4071 4056 -88595068.35711 4072 4056 -64813888.87825 4073 4056 -4.26173210144e-06 4074 4056 -357844273.783 4075 4056 -69875651.73839 4076 4056 -1.627206802368e-05 4077 4056 31270320.21804 4078 4056 51852221.69518 4079 4056 2.145767211914e-06 4149 4056 -13923315.16199 4150 4056 19444166.47861 4151 4056 26015832.7805 4164 4056 -36808280.87074 4165 4056 -16203472.0331 4166 4056 -21679860.55685 4167 4056 42592361.75168 4168 4056 17468608.18462 4169 4056 17682222.18139 4182 4056 -36072082.53397 4183 4056 -16203472.22754 4184 4056 -21679861.11823 4185 4056 -139005882.4837 4186 4056 -17468608.05498 4187 4056 -88411110.90688 4188 4056 -13882071.21844 4189 4056 12962777.65241 4190 4056 -18020555.17262 4057 4057 630427502.0707 4058 4057 -7.890164852142e-06 4071 4057 -64813888.87825 4072 4057 -69150192.34827 4073 4057 -6.705522537231e-07 4074 4057 -69876207.03468 4075 4057 -50940301.31523 4076 4057 -8.344650268555e-07 4077 4057 77778332.54278 4078 4057 35166790.002 4079 4057 3.576278686523e-07 4149 4057 12962777.65241 4150 4057 -13923315.162 4151 4057 -13874999.9393 4164 4057 -16203472.09791 4165 4057 -93520195.52345 4166 4057 -69374999.49133 4167 4057 17468608.18461 4168 4057 16743847.91338 4169 4057 14145833.18359 4182 4057 -16203472.22754 4183 4057 -31210863.52937 4184 4057 -17343750.0057 4185 4057 -17468607.99017 4186 4057 -62280769.56998 4187 4057 -18697916.56855 4188 4057 19444166.47861 4189 4057 -12907974.64577 4190 4057 20270833.25379 4058 4058 770466102.9009 4071 4058 -4.231929779053e-06 4072 4058 -5.811452865601e-07 4073 4058 -3642360.790142 4074 4058 -1.692771911621e-05 4075 4058 -1.072883605957e-06 4076 4058 28643285.85725 4077 4058 2.741813659668e-06 4078 4058 3.576278686523e-07 4079 4058 79491050.79752 4149 4058 17343888.52033 4150 4058 -20812499.90894 4151 4058 -37128840.43198 4164 4058 -21679860.74397 4165 4058 -69374999.6084 4166 4058 -104457508.7431 4167 4058 -17682222.18136 4168 4058 -14145833.18358 4169 4058 -183017309.7474 4182 4058 -21679861.11823 4183 4058 -17343750.0057 4184 4058 -38039431.35476 4185 4058 -88411110.90688 4186 4058 -18697916.60118 4187 4058 -124962011.2801 4188 4058 -27030832.75893 4189 4058 13062499.95656 4190 4058 -37992953.15517 4059 4059 1154306639.95 4060 4059 4.053115844727e-06 4061 4059 -5.984306335449e-05 4062 4059 164134990.0133 4063 4059 -4.798173904419e-06 4064 4059 -1.537799835205e-05 4080 4059 -229938603.1375 4081 4059 -1.400709152222e-06 4082 4059 -1.621246337891e-05 4083 4059 -88595068.35711 4084 4059 64813888.87826 4085 4059 -3.75509262085e-06 4152 4059 -113177912.5205 4153 4059 -1.952052116394e-06 4154 4059 86719444.4302 4155 4059 -36072082.53399 4156 4059 -16203472.22755 4157 4059 21679861.11823 4170 4059 65803613.40852 4171 4059 4.112720489502e-06 4172 4059 3.081560134888e-05 4173 4059 -14659514.18418 4174 4059 -1.010298728943e-05 4175 4059 8.165836334229e-06 4191 4059 -113177912.5204 4192 4059 6.407499313354e-07 4193 4059 -86719444.43019 4194 4059 -36072082.53397 4195 4059 16203472.22755 4196 4059 -21679861.11823 4060 4060 998747631.9559 4061 4060 -6.675720214844e-06 4062 4060 -3.397464752197e-06 4063 4060 -82157545.53163 4064 4060 -2.264976501465e-06 4080 4060 7.748603820801e-07 4081 4060 55243684.38681 4082 4060 -1.788139343262e-06 4083 4060 64813888.87826 4084 4060 -69150192.34827 4085 4060 -4.619359970093e-07 4152 4060 -4.097819328308e-06 4153 4060 -41882340.60423 4154 4060 1.296401023865e-06 4155 4060 -16203472.22755 4156 4060 -31210863.52938 4157 4060 17343750.0057 4170 4060 4.053115844727e-06 4171 4060 26913861.39084 4172 4060 4.738569259644e-06 4173 4060 -7.331371307373e-06 4174 4060 -76232648.10076 4175 4060 69374999.9886 4191 4060 -1.177191734314e-06 4192 4060 -41882340.60421 4193 4060 8.344650268555e-07 4194 4060 16203472.22754 4195 4060 -31210863.52937 4196 4060 17343750.0057 4061 4061 1217261802.153 4062 4061 -1.52587890625e-05 4063 4061 -2.562999725342e-06 4064 4061 179873780.5718 4080 4061 -1.54972076416e-05 4081 4061 -1.907348632813e-06 4082 4061 109872226.963 4083 4061 -3.635883331299e-06 4084 4061 -6.109476089478e-07 4085 4061 -3642360.79014 4152 4061 86719444.4302 4153 4061 1.415610313416e-06 4154 4061 -121047307.7997 4155 4061 21679861.11823 4156 4061 17343750.0057 4157 4061 -38039431.35476 4170 4061 3.02791595459e-05 4171 4061 4.619359970093e-06 4172 4061 -289746007.2349 4173 4061 8.165836334229e-06 4174 4061 69374999.9886 4175 4061 -103546919.3888 4191 4061 -86719444.43019 4192 4061 8.940696716309e-07 4193 4061 -121047307.7997 4194 4061 -21679861.11823 4195 4061 17343750.0057 4196 4061 -38039431.35476 4062 4062 1154306639.95 4063 4062 4.053115844727e-06 4064 4062 -5.984306335449e-05 4065 4062 164134990.0133 4066 4062 -4.798173904419e-06 4067 4062 -1.537799835205e-05 4080 4062 -88595068.35711 4081 4062 -64813888.87825 4082 4062 -4.26173210144e-06 4083 4062 -229938603.1375 4084 4062 -1.400709152222e-06 4085 4062 -1.621246337891e-05 4086 4062 -88595068.35711 4087 4062 64813888.87826 4088 4062 -3.75509262085e-06 4152 4062 -36072082.53399 4153 4062 16203472.22755 4154 4062 21679861.11823 4155 4062 -113177912.5205 4156 4062 -1.952052116394e-06 4157 4062 86719444.4302 4158 4062 -36072082.53399 4159 4062 -16203472.22755 4160 4062 21679861.11823 4170 4062 -14659514.18418 4171 4062 7.62939453125e-06 4172 4062 7.152557373047e-06 4173 4062 65803613.40852 4174 4062 4.112720489502e-06 4175 4062 3.081560134888e-05 4176 4062 -14659514.18418 4177 4062 -1.010298728943e-05 4178 4062 8.165836334229e-06 4191 4062 -36072082.53397 4192 4062 -16203472.22754 4193 4062 -21679861.11823 4194 4062 -113177912.5204 4195 4062 6.407499313354e-07 4196 4062 -86719444.43019 4197 4062 -36072082.53397 4198 4062 16203472.22755 4199 4062 -21679861.11823 4063 4063 998747631.9559 4064 4063 -6.675720214844e-06 4065 4063 -3.397464752197e-06 4066 4063 -82157545.53163 4067 4063 -2.264976501465e-06 4080 4063 -64813888.87825 4081 4063 -69150192.34827 4082 4063 -6.705522537231e-07 4083 4063 7.748603820801e-07 4084 4063 55243684.38681 4085 4063 -1.788139343262e-06 4086 4063 64813888.87826 4087 4063 -69150192.34827 4088 4063 -4.619359970093e-07 4152 4063 16203472.22755 4153 4063 -31210863.52938 4154 4063 -17343750.00569 4155 4063 -4.097819328308e-06 4156 4063 -41882340.60423 4157 4063 1.296401023865e-06 4158 4063 -16203472.22755 4159 4063 -31210863.52938 4160 4063 17343750.0057 4170 4063 8.970499038696e-06 4171 4063 -76232648.10075 4172 4063 -69374999.9886 4173 4063 4.053115844727e-06 4174 4063 26913861.39084 4175 4063 4.738569259644e-06 4176 4063 -7.331371307373e-06 4177 4063 -76232648.10076 4178 4063 69374999.9886 4191 4063 -16203472.22754 4192 4063 -31210863.52937 4193 4063 -17343750.0057 4194 4063 -1.177191734314e-06 4195 4063 -41882340.60421 4196 4063 8.344650268555e-07 4197 4063 16203472.22754 4198 4063 -31210863.52937 4199 4063 17343750.0057 4064 4064 1217261802.153 4065 4064 -1.52587890625e-05 4066 4064 -2.562999725342e-06 4067 4064 179873780.5718 4080 4064 -4.231929779053e-06 4081 4064 -5.811452865601e-07 4082 4064 -3642360.790142 4083 4064 -1.54972076416e-05 4084 4064 -1.907348632813e-06 4085 4064 109872226.963 4086 4064 -3.635883331299e-06 4087 4064 -6.109476089478e-07 4088 4064 -3642360.79014 4152 4064 21679861.11823 4153 4064 -17343750.00569 4154 4064 -38039431.35476 4155 4064 86719444.4302 4156 4064 1.415610313416e-06 4157 4064 -121047307.7997 4158 4064 21679861.11823 4159 4064 17343750.0057 4160 4064 -38039431.35476 4170 4064 7.182359695435e-06 4171 4064 -69374999.9886 4172 4064 -103546919.3888 4173 4064 3.02791595459e-05 4174 4064 4.619359970093e-06 4175 4064 -289746007.2349 4176 4064 8.165836334229e-06 4177 4064 69374999.9886 4178 4064 -103546919.3888 4191 4064 -21679861.11823 4192 4064 -17343750.0057 4193 4064 -38039431.35476 4194 4064 -86719444.43019 4195 4064 8.940696716309e-07 4196 4064 -121047307.7997 4197 4064 -21679861.11823 4198 4064 17343750.0057 4199 4064 -38039431.35476 4065 4065 1154306639.95 4066 4065 4.053115844727e-06 4067 4065 -5.984306335449e-05 4068 4065 164134990.0133 4069 4065 -4.798173904419e-06 4070 4065 -1.537799835205e-05 4083 4065 -88595068.35711 4084 4065 -64813888.87825 4085 4065 -4.26173210144e-06 4086 4065 -229938603.1375 4087 4065 -1.400709152222e-06 4088 4065 -1.621246337891e-05 4089 4065 -88595068.35711 4090 4065 64813888.87826 4091 4065 -3.75509262085e-06 4155 4065 -36072082.53399 4156 4065 16203472.22755 4157 4065 21679861.11823 4158 4065 -113177912.5205 4159 4065 -1.952052116394e-06 4160 4065 86719444.4302 4161 4065 -36072082.53399 4162 4065 -16203472.22755 4163 4065 21679861.11823 4173 4065 -14659514.18418 4174 4065 7.62939453125e-06 4175 4065 7.152557373047e-06 4176 4065 65803613.40852 4177 4065 4.112720489502e-06 4178 4065 3.081560134888e-05 4179 4065 -14659514.18418 4180 4065 -1.010298728943e-05 4181 4065 8.165836334229e-06 4194 4065 -36072082.53397 4195 4065 -16203472.22754 4196 4065 -21679861.11823 4197 4065 -113177912.5204 4198 4065 6.407499313354e-07 4199 4065 -86719444.43019 4200 4065 -36072082.53397 4201 4065 16203472.22755 4202 4065 -21679861.11823 4066 4066 998747631.9559 4067 4066 -6.675720214844e-06 4068 4066 -3.397464752197e-06 4069 4066 -82157545.53163 4070 4066 -2.264976501465e-06 4083 4066 -64813888.87825 4084 4066 -69150192.34827 4085 4066 -6.705522537231e-07 4086 4066 7.748603820801e-07 4087 4066 55243684.38681 4088 4066 -1.788139343262e-06 4089 4066 64813888.87826 4090 4066 -69150192.34827 4091 4066 -4.619359970093e-07 4155 4066 16203472.22755 4156 4066 -31210863.52938 4157 4066 -17343750.00569 4158 4066 -4.097819328308e-06 4159 4066 -41882340.60423 4160 4066 1.296401023865e-06 4161 4066 -16203472.22755 4162 4066 -31210863.52938 4163 4066 17343750.0057 4173 4066 8.970499038696e-06 4174 4066 -76232648.10075 4175 4066 -69374999.9886 4176 4066 4.053115844727e-06 4177 4066 26913861.39084 4178 4066 4.738569259644e-06 4179 4066 -7.331371307373e-06 4180 4066 -76232648.10076 4181 4066 69374999.9886 4194 4066 -16203472.22754 4195 4066 -31210863.52937 4196 4066 -17343750.0057 4197 4066 -1.177191734314e-06 4198 4066 -41882340.60421 4199 4066 8.344650268555e-07 4200 4066 16203472.22754 4201 4066 -31210863.52937 4202 4066 17343750.0057 4067 4067 1217261802.153 4068 4067 -1.52587890625e-05 4069 4067 -2.562999725342e-06 4070 4067 179873780.5718 4083 4067 -4.231929779053e-06 4084 4067 -5.811452865601e-07 4085 4067 -3642360.790142 4086 4067 -1.54972076416e-05 4087 4067 -1.907348632813e-06 4088 4067 109872226.963 4089 4067 -3.635883331299e-06 4090 4067 -6.109476089478e-07 4091 4067 -3642360.79014 4155 4067 21679861.11823 4156 4067 -17343750.00569 4157 4067 -38039431.35476 4158 4067 86719444.4302 4159 4067 1.415610313416e-06 4160 4067 -121047307.7997 4161 4067 21679861.11823 4162 4067 17343750.0057 4163 4067 -38039431.35476 4173 4067 7.182359695435e-06 4174 4067 -69374999.9886 4175 4067 -103546919.3888 4176 4067 3.02791595459e-05 4177 4067 4.619359970093e-06 4178 4067 -289746007.2349 4179 4067 8.165836334229e-06 4180 4067 69374999.9886 4181 4067 -103546919.3888 4194 4067 -21679861.11823 4195 4067 -17343750.0057 4196 4067 -38039431.35476 4197 4067 -86719444.43019 4198 4067 8.940696716309e-07 4199 4067 -121047307.7997 4200 4067 -21679861.11823 4201 4067 17343750.0057 4202 4067 -38039431.35476 4068 4068 1154306639.95 4069 4068 4.053115844727e-06 4070 4068 -5.984306335449e-05 4071 4068 164134990.0133 4072 4068 -4.798173904419e-06 4073 4068 -1.537799835205e-05 4086 4068 -88595068.35711 4087 4068 -64813888.87825 4088 4068 -4.26173210144e-06 4089 4068 -229938603.1375 4090 4068 -1.400709152222e-06 4091 4068 -1.621246337891e-05 4092 4068 -88595068.35711 4093 4068 64813888.87826 4094 4068 -3.75509262085e-06 4158 4068 -36072082.53399 4159 4068 16203472.22755 4160 4068 21679861.11823 4161 4068 -113177912.5205 4162 4068 -1.952052116394e-06 4163 4068 86719444.4302 4164 4068 -36072082.53399 4165 4068 -16203472.22755 4166 4068 21679861.11823 4176 4068 -14659514.18418 4177 4068 7.62939453125e-06 4178 4068 7.152557373047e-06 4179 4068 65803613.40852 4180 4068 4.112720489502e-06 4181 4068 3.081560134888e-05 4182 4068 -14659514.18418 4183 4068 -1.010298728943e-05 4184 4068 8.165836334229e-06 4197 4068 -36072082.53397 4198 4068 -16203472.22754 4199 4068 -21679861.11823 4200 4068 -113177912.5204 4201 4068 6.407499313354e-07 4202 4068 -86719444.43019 4203 4068 -36072082.53397 4204 4068 16203472.22755 4205 4068 -21679861.11823 4069 4069 998747631.9559 4070 4069 -6.675720214844e-06 4071 4069 -3.397464752197e-06 4072 4069 -82157545.53163 4073 4069 -2.264976501465e-06 4086 4069 -64813888.87825 4087 4069 -69150192.34827 4088 4069 -6.705522537231e-07 4089 4069 7.748603820801e-07 4090 4069 55243684.38681 4091 4069 -1.788139343262e-06 4092 4069 64813888.87826 4093 4069 -69150192.34827 4094 4069 -4.619359970093e-07 4158 4069 16203472.22755 4159 4069 -31210863.52938 4160 4069 -17343750.00569 4161 4069 -4.097819328308e-06 4162 4069 -41882340.60423 4163 4069 1.296401023865e-06 4164 4069 -16203472.22755 4165 4069 -31210863.52938 4166 4069 17343750.0057 4176 4069 8.970499038696e-06 4177 4069 -76232648.10075 4178 4069 -69374999.9886 4179 4069 4.053115844727e-06 4180 4069 26913861.39084 4181 4069 4.738569259644e-06 4182 4069 -7.331371307373e-06 4183 4069 -76232648.10076 4184 4069 69374999.9886 4197 4069 -16203472.22754 4198 4069 -31210863.52937 4199 4069 -17343750.0057 4200 4069 -1.177191734314e-06 4201 4069 -41882340.60421 4202 4069 8.344650268555e-07 4203 4069 16203472.22754 4204 4069 -31210863.52937 4205 4069 17343750.0057 4070 4070 1217261802.153 4071 4070 -1.52587890625e-05 4072 4070 -2.562999725342e-06 4073 4070 179873780.5718 4086 4070 -4.231929779053e-06 4087 4070 -5.811452865601e-07 4088 4070 -3642360.790142 4089 4070 -1.54972076416e-05 4090 4070 -1.907348632813e-06 4091 4070 109872226.963 4092 4070 -3.635883331299e-06 4093 4070 -6.109476089478e-07 4094 4070 -3642360.79014 4158 4070 21679861.11823 4159 4070 -17343750.00569 4160 4070 -38039431.35476 4161 4070 86719444.4302 4162 4070 1.415610313416e-06 4163 4070 -121047307.7997 4164 4070 21679861.11823 4165 4070 17343750.0057 4166 4070 -38039431.35476 4176 4070 7.182359695435e-06 4177 4070 -69374999.9886 4178 4070 -103546919.3888 4179 4070 3.02791595459e-05 4180 4070 4.619359970093e-06 4181 4070 -289746007.2349 4182 4070 8.165836334229e-06 4183 4070 69374999.9886 4184 4070 -103546919.3888 4197 4070 -21679861.11823 4198 4070 -17343750.0057 4199 4070 -38039431.35476 4200 4070 -86719444.43019 4201 4070 8.940696716309e-07 4202 4070 -121047307.7997 4203 4070 -21679861.11823 4204 4070 17343750.0057 4205 4070 -38039431.35476 4071 4071 1154306639.95 4072 4071 4.053115844727e-06 4073 4071 -5.984306335449e-05 4074 4071 164134990.0133 4075 4071 -4.798173904419e-06 4076 4071 -1.537799835205e-05 4089 4071 -88595068.35711 4090 4071 -64813888.87825 4091 4071 -4.26173210144e-06 4092 4071 -229938603.1375 4093 4071 -1.400709152222e-06 4094 4071 -1.621246337891e-05 4095 4071 -88595068.35711 4096 4071 64813888.87826 4097 4071 -3.75509262085e-06 4161 4071 -36072082.53399 4162 4071 16203472.22755 4163 4071 21679861.11823 4164 4071 -113177912.5205 4165 4071 -1.952052116394e-06 4166 4071 86719444.4302 4167 4071 -36072082.53399 4168 4071 -16203472.22755 4169 4071 21679861.11823 4179 4071 -14659514.18418 4180 4071 7.62939453125e-06 4181 4071 7.152557373047e-06 4182 4071 65803613.40852 4183 4071 4.112720489502e-06 4184 4071 3.081560134888e-05 4185 4071 -14659514.18418 4186 4071 -1.010298728943e-05 4187 4071 8.165836334229e-06 4200 4071 -36072082.53397 4201 4071 -16203472.22754 4202 4071 -21679861.11823 4203 4071 -113177912.5204 4204 4071 6.407499313354e-07 4205 4071 -86719444.43019 4206 4071 -36072082.53397 4207 4071 16203472.22755 4208 4071 -21679861.11823 4072 4072 998747631.9559 4073 4072 -6.675720214844e-06 4074 4072 -3.397464752197e-06 4075 4072 -82157545.53163 4076 4072 -2.264976501465e-06 4089 4072 -64813888.87825 4090 4072 -69150192.34827 4091 4072 -6.705522537231e-07 4092 4072 7.748603820801e-07 4093 4072 55243684.38681 4094 4072 -1.788139343262e-06 4095 4072 64813888.87826 4096 4072 -69150192.34827 4097 4072 -4.619359970093e-07 4161 4072 16203472.22755 4162 4072 -31210863.52938 4163 4072 -17343750.00569 4164 4072 -4.097819328308e-06 4165 4072 -41882340.60423 4166 4072 1.296401023865e-06 4167 4072 -16203472.22755 4168 4072 -31210863.52938 4169 4072 17343750.0057 4179 4072 8.970499038696e-06 4180 4072 -76232648.10075 4181 4072 -69374999.9886 4182 4072 4.053115844727e-06 4183 4072 26913861.39084 4184 4072 4.738569259644e-06 4185 4072 -7.331371307373e-06 4186 4072 -76232648.10076 4187 4072 69374999.9886 4200 4072 -16203472.22754 4201 4072 -31210863.52937 4202 4072 -17343750.0057 4203 4072 -1.177191734314e-06 4204 4072 -41882340.60421 4205 4072 8.344650268555e-07 4206 4072 16203472.22754 4207 4072 -31210863.52937 4208 4072 17343750.0057 4073 4073 1217261802.153 4074 4073 -1.52587890625e-05 4075 4073 -2.562999725342e-06 4076 4073 179873780.5718 4089 4073 -4.231929779053e-06 4090 4073 -5.811452865601e-07 4091 4073 -3642360.790142 4092 4073 -1.54972076416e-05 4093 4073 -1.907348632813e-06 4094 4073 109872226.963 4095 4073 -3.635883331299e-06 4096 4073 -6.109476089478e-07 4097 4073 -3642360.79014 4161 4073 21679861.11823 4162 4073 -17343750.00569 4163 4073 -38039431.35476 4164 4073 86719444.4302 4165 4073 1.415610313416e-06 4166 4073 -121047307.7997 4167 4073 21679861.11823 4168 4073 17343750.0057 4169 4073 -38039431.35476 4179 4073 7.182359695435e-06 4180 4073 -69374999.9886 4181 4073 -103546919.3888 4182 4073 3.02791595459e-05 4183 4073 4.619359970093e-06 4184 4073 -289746007.2349 4185 4073 8.165836334229e-06 4186 4073 69374999.9886 4187 4073 -103546919.3888 4200 4073 -21679861.11823 4201 4073 -17343750.0057 4202 4073 -38039431.35476 4203 4073 -86719444.43019 4204 4073 8.940696716309e-07 4205 4073 -121047307.7997 4206 4073 -21679861.11823 4207 4073 17343750.0057 4208 4073 -38039431.35476 4074 4074 1264143404.142 4075 4074 69984496.09989 4076 4074 -4.458427429199e-05 4077 4074 56216718.86036 4078 4074 -62295134.4999 4079 4074 -1.54972076416e-06 4092 4074 -88595068.35711 4093 4074 -64813888.87825 4094 4074 -4.26173210144e-06 4095 4074 -235044286.8786 4096 4074 -2540789.090044 4097 4074 -1.227855682373e-05 4098 4074 -95281145.70689 4099 4074 64727634.52473 4100 4074 3.576278686523e-06 4164 4074 -36072082.53399 4165 4074 16203472.22755 4166 4074 21679861.11823 4167 4074 -139005882.4837 4168 4074 -17468607.99017 4169 4074 88411110.90689 4182 4074 -14659514.18418 4183 4074 7.62939453125e-06 4184 4074 7.152557373047e-06 4185 4074 104468568.1069 4186 4074 17495749.11933 4187 4074 0.03796529769897 4188 4074 -35762896.95689 4189 4074 -15573449.91109 4190 4074 21679166.28526 4203 4074 -36072082.53397 4204 4074 -16203472.22754 4205 4074 -21679861.11823 4206 4074 -114724288.833 4207 4074 -635253.1045082 4208 4074 -87564583.31886 4209 4074 -37742508.837 4210 4074 16181561.88644 4211 4074 -22525694.45184 4075 4075 1075589634.327 4076 4075 1.180171966553e-05 4077 4075 -62295134.24064 4078 4075 -170484887.2683 4079 4075 -5.960464477539e-06 4092 4075 -64813888.87825 4093 4075 -69150192.34827 4094 4075 -6.705522537231e-07 4095 4075 -2541344.645597 4096 4075 52569923.74254 4097 4075 4.887580871582e-06 4098 4075 64727634.52473 4099 4075 -67141169.32471 4164 4075 16203472.22755 4165 4075 -31210863.52938 4166 4075 -17343750.00569 4167 4075 -17468608.05498 4168 4075 -62280769.56999 4169 4075 18697916.60118 4182 4075 8.970499038696e-06 4183 4075 -76232648.10075 4184 4075 -69374999.9886 4185 4075 17495749.11932 4186 4075 57330719.05925 4187 4075 0.0303547680378 4188 4075 -15573449.84628 4189 4075 -92437084.05277 4190 4075 69374999.59698 4203 4075 -16203472.22754 4204 4075 -31210863.52937 4205 4075 -17343750.0057 4206 4075 -635253.1045087 4207 4075 -42821513.04609 4208 4075 -677083.3331559 4209 4075 16181561.88644 4210 4075 -30707665.48679 4211 4075 16666666.67214 4076 4076 1236468691.55 4077 4076 -1.54972076416e-06 4078 4076 -5.69224357605e-06 4079 4076 109730878.4261 4092 4076 -4.231929779053e-06 4093 4076 -5.811452865601e-07 4094 4076 -3642360.790142 4095 4076 -1.347064971924e-05 4096 4076 4.768371582031e-06 4097 4076 108515321.757 4098 4076 3.635883331299e-06 4099 4076 -1.490116119385e-08 4100 4076 -4919850.093637 4164 4076 21679861.11823 4165 4076 -17343750.00569 4166 4076 -38039431.35476 4167 4076 88411110.90689 4168 4076 18697916.56855 4169 4076 -124962011.2801 4182 4076 7.182359695435e-06 4183 4076 -69374999.9886 4184 4076 -103546919.3888 4185 4076 -0.03791528940201 4186 4076 -0.03035008907318 4187 4076 -255055797.8371 4188 4076 21679166.091 4189 4076 69374999.4742 4190 4076 -105412602.9399 4203 4076 -21679861.11823 4204 4076 -17343750.0057 4205 4076 -38039431.35476 4206 4076 -87564583.31903 4207 4076 -677083.3332893 4208 4076 -122108417.4801 4209 4076 -22525694.45184 4210 4076 16666666.67214 4211 4076 -38357223.71349 4077 4077 696472573.0655 4078 4077 -1771689.826609 4079 4077 1.192092895508e-06 4095 4077 -87258192.16972 4096 4077 -64804100.71711 4097 4077 -4.500150680542e-06 4098 4077 -242104687.4354 4099 4077 -3424057.139935 4100 4077 -8.940696716309e-07 4101 4077 75831742.92238 4102 4077 -11180768.61541 4103 4077 -2.026557922363e-06 4104 4077 -95109676.42566 4105 4077 65697417.99692 4106 4077 6.526708602905e-06 4167 4077 -13882071.21844 4168 4077 19444166.47861 4169 4077 27030832.75893 4185 4077 -35762896.9569 4186 4077 -15573449.84628 4187 4077 -21679166.091 4188 4077 24359103.43618 4189 4077 -442912.965739 4190 4077 17135277.77496 4206 4077 -35736813.43153 4207 4077 -16200678.02491 4208 4077 -21679166.67379 4209 4077 -113692433.8764 4210 4077 -855995.9423768 4211 4077 -85676388.87482 4212 4077 -6375113.374567 4213 4077 -2795132.258682 4214 4077 3215972.223778 4215 4077 -36573838.1928 4216 4077 16424002.55938 4217 4077 -21159027.78473 4078 4078 713868420.1604 4079 4078 2.408027648926e-05 4095 4078 -64804100.71711 4096 4078 -69555876.00861 4097 4078 -4.619359970093e-07 4098 4078 -3424057.139936 4099 4078 46038548.55542 4100 4078 1.239776611328e-05 4101 4078 14745342.49144 4102 4078 -46950609.66777 4103 4078 -4.500150680542e-06 4104 4078 65697417.99692 4105 4078 -72763586.73755 4106 4078 -1.296401023865e-06 4167 4078 12962777.65241 4168 4078 -12907974.64577 4169 4078 -13062499.95656 4185 4078 -15573449.91109 4186 4078 -92437084.05278 4187 4078 -69374999.4742 4188 4078 -442912.96574 4189 4078 28707972.02065 4190 4078 7208333.185868 4206 4078 -16200678.02491 4207 4078 -31311329.22223 4208 4078 -17343750.0057 4209 4078 -855995.9423762 4210 4078 -41658168.45665 4211 4078 -677083.3331569 4212 4078 3686256.632335 4213 4078 -37070043.77932 4214 4078 33333333.32785 4215 4078 16424002.55938 4216 4078 -30987435.47836 4217 4078 16666666.67214 4079 4079 808185795.747 4095 4079 -4.52995300293e-06 4096 4079 -4.619359970093e-07 4097 4079 -3390328.224563 4098 4079 -1.132488250732e-06 4099 4079 1.233816146851e-05 4100 4079 96899236.61815 4101 4079 3.576278686523e-07 4102 4079 -4.738569259644e-06 4103 4079 79524039.77179 4104 4079 6.139278411865e-06 4105 4079 -1.35600566864e-06 4106 4079 -9590542.374572 4167 4079 18020555.17262 4168 4079 -20270833.25379 4169 4079 -37992953.15518 4185 4079 -21679166.28526 4186 4079 -69374999.59698 4187 4079 -105412602.9399 4188 4079 -17135277.77496 4189 4079 -7208333.185865 4190 4079 -197305370.7384 4206 4079 -21679166.67379 4207 4079 -17343750.0057 4208 4079 -37974851.43985 4209 4079 -85676388.87482 4210 4079 -677083.3332903 4211 4079 -117555867.1805 4212 4079 -4909027.779057 4213 4079 33333333.32785 4214 4079 -47673130.40165 4215 4079 -21159027.78473 4216 4079 16666666.67214 4217 4079 -36522727.11637 4080 4080 577153319.975 4081 4080 -3.814697265625e-06 4082 4080 -3.170967102051e-05 4083 4080 82067495.00666 4084 4080 12962777.77565 4085 4080 -7.867813110352e-06 4170 4080 -113177912.5205 4171 4080 -1.952052116394e-06 4172 4080 86719444.4302 4173 4080 -36072082.53399 4174 4080 -16203472.22755 4175 4080 21679861.11823 4191 4080 32901806.70425 4192 4080 2.026557922363e-06 4193 4080 -17343888.88602 4194 4080 -7329757.09209 4195 4080 3240694.445505 4196 4080 -4335972.223642 4081 4081 499373815.978 4082 4081 1.025199890137e-05 4083 4081 -12962777.77565 4084 4081 -41078772.7658 4085 4081 2.264976501465e-06 4170 4081 -4.097819328308e-06 4171 4081 -41882340.60423 4172 4081 1.296401023865e-06 4173 4081 -16203472.22755 4174 4081 -31210863.52938 4175 4081 17343750.0057 4191 4081 1.430511474609e-06 4192 4081 13456930.69541 4193 4081 -4.410743713379e-06 4194 4081 -3240694.445512 4195 4081 -38116324.05037 4196 4081 34687499.9943 4082 4082 608630901.0765 4083 4082 -7.867813110352e-06 4084 4082 2.115964889526e-06 4085 4082 89936890.28591 4170 4082 86719444.4302 4171 4082 1.415610313416e-06 4172 4082 -121047307.7997 4173 4082 21679861.11823 4174 4082 17343750.0057 4175 4082 -38039431.35476 4191 4082 17343888.88605 4192 4082 -4.410743713379e-06 4193 4082 -144873003.6175 4194 4082 4335972.22365 4195 4082 34687499.9943 4196 4082 -51773459.69442 4083 4083 577153319.975 4084 4083 -3.814697265625e-06 4085 4083 -3.170967102051e-05 4086 4083 82067495.00666 4087 4083 12962777.77565 4088 4083 -7.867813110352e-06 4170 4083 -36072082.53399 4171 4083 16203472.22755 4172 4083 21679861.11823 4173 4083 -113177912.5205 4174 4083 -1.952052116394e-06 4175 4083 86719444.4302 4176 4083 -36072082.53399 4177 4083 -16203472.22755 4178 4083 21679861.11823 4191 4083 -7329757.092094 4192 4083 -3240694.445505 4193 4083 -4335972.223642 4194 4083 32901806.70425 4195 4083 2.026557922363e-06 4196 4083 -17343888.88602 4197 4083 -7329757.09209 4198 4083 3240694.445505 4199 4083 -4335972.223642 4084 4084 499373815.978 4085 4084 1.025199890137e-05 4086 4084 -12962777.77565 4087 4084 -41078772.7658 4088 4084 2.264976501465e-06 4170 4084 16203472.22755 4171 4084 -31210863.52938 4172 4084 -17343750.00569 4173 4084 -4.097819328308e-06 4174 4084 -41882340.60423 4175 4084 1.296401023865e-06 4176 4084 -16203472.22755 4177 4084 -31210863.52938 4178 4084 17343750.0057 4191 4084 3240694.445514 4192 4084 -38116324.05038 4193 4084 -34687499.9943 4194 4084 1.430511474609e-06 4195 4084 13456930.69541 4196 4084 -4.410743713379e-06 4197 4084 -3240694.445512 4198 4084 -38116324.05037 4199 4084 34687499.9943 4085 4085 608630901.0765 4086 4085 -7.867813110352e-06 4087 4085 2.115964889526e-06 4088 4085 89936890.28591 4170 4085 21679861.11823 4171 4085 -17343750.00569 4172 4085 -38039431.35476 4173 4085 86719444.4302 4174 4085 1.415610313416e-06 4175 4085 -121047307.7997 4176 4085 21679861.11823 4177 4085 17343750.0057 4178 4085 -38039431.35476 4191 4085 4335972.22365 4192 4085 -34687499.9943 4193 4085 -51773459.69442 4194 4085 17343888.88605 4195 4085 -4.410743713379e-06 4196 4085 -144873003.6175 4197 4085 4335972.22365 4198 4085 34687499.9943 4199 4085 -51773459.69442 4086 4086 577153319.975 4087 4086 -3.814697265625e-06 4088 4086 -3.170967102051e-05 4089 4086 82067495.00666 4090 4086 12962777.77565 4091 4086 -7.867813110352e-06 4173 4086 -36072082.53399 4174 4086 16203472.22755 4175 4086 21679861.11823 4176 4086 -113177912.5205 4177 4086 -1.952052116394e-06 4178 4086 86719444.4302 4179 4086 -36072082.53399 4180 4086 -16203472.22755 4181 4086 21679861.11823 4194 4086 -7329757.092094 4195 4086 -3240694.445505 4196 4086 -4335972.223642 4197 4086 32901806.70425 4198 4086 2.026557922363e-06 4199 4086 -17343888.88602 4200 4086 -7329757.09209 4201 4086 3240694.445505 4202 4086 -4335972.223642 4087 4087 499373815.978 4088 4087 1.025199890137e-05 4089 4087 -12962777.77565 4090 4087 -41078772.7658 4091 4087 2.264976501465e-06 4173 4087 16203472.22755 4174 4087 -31210863.52938 4175 4087 -17343750.00569 4176 4087 -4.097819328308e-06 4177 4087 -41882340.60423 4178 4087 1.296401023865e-06 4179 4087 -16203472.22755 4180 4087 -31210863.52938 4181 4087 17343750.0057 4194 4087 3240694.445514 4195 4087 -38116324.05038 4196 4087 -34687499.9943 4197 4087 1.430511474609e-06 4198 4087 13456930.69541 4199 4087 -4.410743713379e-06 4200 4087 -3240694.445512 4201 4087 -38116324.05037 4202 4087 34687499.9943 4088 4088 608630901.0765 4089 4088 -7.867813110352e-06 4090 4088 2.115964889526e-06 4091 4088 89936890.28591 4173 4088 21679861.11823 4174 4088 -17343750.00569 4175 4088 -38039431.35476 4176 4088 86719444.4302 4177 4088 1.415610313416e-06 4178 4088 -121047307.7997 4179 4088 21679861.11823 4180 4088 17343750.0057 4181 4088 -38039431.35476 4194 4088 4335972.22365 4195 4088 -34687499.9943 4196 4088 -51773459.69442 4197 4088 17343888.88605 4198 4088 -4.410743713379e-06 4199 4088 -144873003.6175 4200 4088 4335972.22365 4201 4088 34687499.9943 4202 4088 -51773459.69442 4089 4089 577153319.975 4090 4089 -3.814697265625e-06 4091 4089 -3.170967102051e-05 4092 4089 82067495.00666 4093 4089 12962777.77565 4094 4089 -7.867813110352e-06 4176 4089 -36072082.53399 4177 4089 16203472.22755 4178 4089 21679861.11823 4179 4089 -113177912.5205 4180 4089 -1.952052116394e-06 4181 4089 86719444.4302 4182 4089 -36072082.53399 4183 4089 -16203472.22755 4184 4089 21679861.11823 4197 4089 -7329757.092094 4198 4089 -3240694.445505 4199 4089 -4335972.223642 4200 4089 32901806.70425 4201 4089 2.026557922363e-06 4202 4089 -17343888.88602 4203 4089 -7329757.09209 4204 4089 3240694.445505 4205 4089 -4335972.223642 4090 4090 499373815.978 4091 4090 1.025199890137e-05 4092 4090 -12962777.77565 4093 4090 -41078772.7658 4094 4090 2.264976501465e-06 4176 4090 16203472.22755 4177 4090 -31210863.52938 4178 4090 -17343750.00569 4179 4090 -4.097819328308e-06 4180 4090 -41882340.60423 4181 4090 1.296401023865e-06 4182 4090 -16203472.22755 4183 4090 -31210863.52938 4184 4090 17343750.0057 4197 4090 3240694.445514 4198 4090 -38116324.05038 4199 4090 -34687499.9943 4200 4090 1.430511474609e-06 4201 4090 13456930.69541 4202 4090 -4.410743713379e-06 4203 4090 -3240694.445512 4204 4090 -38116324.05037 4205 4090 34687499.9943 4091 4091 608630901.0765 4092 4091 -7.867813110352e-06 4093 4091 2.115964889526e-06 4094 4091 89936890.28591 4176 4091 21679861.11823 4177 4091 -17343750.00569 4178 4091 -38039431.35476 4179 4091 86719444.4302 4180 4091 1.415610313416e-06 4181 4091 -121047307.7997 4182 4091 21679861.11823 4183 4091 17343750.0057 4184 4091 -38039431.35476 4197 4091 4335972.22365 4198 4091 -34687499.9943 4199 4091 -51773459.69442 4200 4091 17343888.88605 4201 4091 -4.410743713379e-06 4202 4091 -144873003.6175 4203 4091 4335972.22365 4204 4091 34687499.9943 4205 4091 -51773459.69442 4092 4092 577153319.975 4093 4092 -3.814697265625e-06 4094 4092 -3.170967102051e-05 4095 4092 82067495.00666 4096 4092 12962777.77565 4097 4092 -7.867813110352e-06 4179 4092 -36072082.53399 4180 4092 16203472.22755 4181 4092 21679861.11823 4182 4092 -113177912.5205 4183 4092 -1.952052116394e-06 4184 4092 86719444.4302 4185 4092 -36072082.53399 4186 4092 -16203472.22755 4187 4092 21679861.11823 4200 4092 -7329757.092094 4201 4092 -3240694.445505 4202 4092 -4335972.223642 4203 4092 32901806.70425 4204 4092 2.026557922363e-06 4205 4092 -17343888.88602 4206 4092 -7329757.09209 4207 4092 3240694.445505 4208 4092 -4335972.223642 4093 4093 499373815.978 4094 4093 1.025199890137e-05 4095 4093 -12962777.77565 4096 4093 -41078772.7658 4097 4093 2.264976501465e-06 4179 4093 16203472.22755 4180 4093 -31210863.52938 4181 4093 -17343750.00569 4182 4093 -4.097819328308e-06 4183 4093 -41882340.60423 4184 4093 1.296401023865e-06 4185 4093 -16203472.22755 4186 4093 -31210863.52938 4187 4093 17343750.0057 4200 4093 3240694.445514 4201 4093 -38116324.05038 4202 4093 -34687499.9943 4203 4093 1.430511474609e-06 4204 4093 13456930.69541 4205 4093 -4.410743713379e-06 4206 4093 -3240694.445512 4207 4093 -38116324.05037 4208 4093 34687499.9943 4094 4094 608630901.0765 4095 4094 -7.867813110352e-06 4096 4094 2.115964889526e-06 4097 4094 89936890.28591 4179 4094 21679861.11823 4180 4094 -17343750.00569 4181 4094 -38039431.35476 4182 4094 86719444.4302 4183 4094 1.415610313416e-06 4184 4094 -121047307.7997 4185 4094 21679861.11823 4186 4094 17343750.0057 4187 4094 -38039431.35476 4200 4094 4335972.22365 4201 4094 -34687499.9943 4202 4094 -51773459.69442 4203 4094 17343888.88605 4204 4094 -4.410743713379e-06 4205 4094 -144873003.6175 4206 4094 4335972.22365 4207 4094 34687499.9943 4208 4094 -51773459.69442 4095 4095 578486932.6103 4096 4095 11986.19510007 4097 4095 -2.288818359375e-05 4098 4095 84494256.20949 4099 4095 15482348.065 4100 4095 1.072883605957e-06 4182 4095 -36072082.53399 4183 4095 16203472.22755 4184 4095 21679861.11823 4185 4095 -114724288.8331 4186 4095 -635253.1045037 4187 4095 87564583.31904 4188 4095 -35736813.43152 4189 4095 -16200678.02491 4190 4095 21679166.67379 4203 4095 -7329757.092094 4204 4095 -3240694.445505 4205 4095 -4335972.223642 4206 4095 33236111.75387 4207 4095 2649.269782305 4208 4095 -17343611.10825 4209 4095 -6450528.111152 4210 4095 3870504.077597 4211 4095 -5182361.112478 4096 4096 498972289.4165 4097 4096 1.955032348633e-05 4098 4096 -10443763.04186 4099 4096 -37606235.6153 4100 4096 3.8743019104e-07 4182 4096 16203472.22755 4183 4096 -31210863.52938 4184 4096 -17343750.00569 4185 4096 -635253.1045074 4186 4096 -42821513.04611 4187 4096 677083.3332883 4188 4096 -16200678.02491 4189 4096 -31311329.22222 4190 4096 17343750.00569 4203 4096 3240694.445514 4204 4096 -38116324.05038 4205 4096 -34687499.9943 4206 4096 2649.26978153 4207 4096 13357668.57741 4208 4096 -5.722045898438e-06 4209 4096 -2610884.81342 4210 4096 -36974996.97728 4211 4096 34010416.66101 4097 4097 608877037.9683 4098 4097 -5.960464477539e-07 4099 4097 4.768371582031e-07 4100 4097 90773136.12633 4182 4097 21679861.11823 4183 4097 -17343750.00569 4184 4097 -38039431.35476 4185 4097 87564583.31887 4186 4097 677083.333155 4187 4097 -122108417.4801 4188 4097 21679166.67379 4189 4097 17343750.00569 4190 4097 -37974851.43984 4203 4097 4335972.22365 4204 4097 -34687499.9943 4205 4097 -51773459.69442 4206 4097 17343611.10828 4207 4097 -5.781650543213e-06 4208 4097 -144806554.3753 4209 4097 3489305.557203 4210 4097 34010416.66114 4211 4097 -50836907.65006 4098 4098 576078114.5405 4099 4098 -1636006.338361 4100 4098 -9.536743164063e-07 4101 4098 -84575033.27923 4102 4098 -63933137.53736 4103 4098 -5.543231964111e-06 4104 4098 80892647.57501 4105 4098 14709329.53279 4106 4098 9.536743164063e-07 4185 4098 -37742508.83701 4186 4098 16181561.88645 4187 4098 22525694.45184 4188 4098 -113692433.8764 4189 4098 -855995.9423672 4190 4098 85676388.87482 4206 4098 -6450528.111163 4207 4098 -2610884.81342 4208 4098 -3489305.557202 4209 4098 37702548.37273 4210 4098 -408992.8205404 4211 4098 -17135277.77496 4212 4098 -33940233.84008 4213 4098 -15982941.89571 4214 4098 20312500.00667 4215 4098 -5632342.894137 4216 4098 3677253.585591 4217 4098 -5078333.334501 4099 4099 489693679.98 4100 4099 2.896785736084e-05 4101 4099 -63933137.53736 4102 4099 -68813095.55764 4103 4099 -1.490116119385e-06 4104 4099 -11216781.57406 4105 4099 -42667576.13432 4106 4099 -9.238719940186e-07 4185 4099 16181561.88645 4186 4099 -30707665.4868 4187 4099 -16666666.67214 4188 4099 -855995.942369 4189 4099 -41658168.45665 4190 4099 677083.3332871 4206 4099 3870504.077598 4207 4099 -36974996.9773 4208 4099 -34010416.66115 4209 4099 -408992.8205381 4210 4099 16106902.49242 4211 4099 -6.198883056641e-06 4212 4099 -15982941.89571 4213 4099 -29999833.84609 4214 4099 16666666.67214 4215 4099 -2804135.305426 4216 4099 -36521736.91164 4217 4099 33333333.32785 4100 4100 591348648.5328 4101 4100 -5.513429641724e-06 4102 4100 -1.490116119385e-06 4103 4100 -5640051.194663 4104 4100 -1.072883605957e-06 4105 4100 -9.238719940186e-07 4106 4100 83549951.75354 4185 4100 22525694.45184 4186 4100 -16666666.67214 4187 4100 -38357223.7135 4188 4100 85676388.87482 4189 4100 677083.3331537 4190 4100 -117555867.1805 4206 4100 5182361.112479 4207 4100 -34010416.66102 4208 4100 -50836907.65008 4209 4100 17135277.77496 4210 4100 -6.258487701416e-06 4211 4100 -135669723.6375 4212 4100 20312500.00667 4213 4100 16666666.67214 4214 4100 -35535125.4841 4215 4100 3385277.779223 4216 4100 33333333.32785 4217 4100 -48059816.83043 4101 4101 278277688.0438 4102 4101 63032990.82912 4103 4101 8.106231689453e-06 4104 4101 -117017201.3105 4105 4101 -13845195.78321 4106 4101 -2.741813659668e-06 4188 4101 -6375113.374578 4189 4101 3686256.632336 4190 4101 4909027.779056 4209 4101 -33940233.84009 4210 4101 -15982941.89571 4211 4101 -20312500.00667 4212 4101 18902645.55565 4213 4101 15757910.04072 4214 4101 8124999.998667 4215 4101 -54847530.63036 4216 4101 -3461224.777347 4217 4101 -41471527.77105 4102 4102 243072801.0765 4103 4102 1.251697540283e-05 4104 4102 12080915.32365 4105 4102 25208100.5253 4106 4102 6.85453414917e-06 4188 4102 -2795132.258682 4189 4102 -37070043.77933 4190 4102 -33333333.32786 4209 4102 -15982941.89571 4210 4102 -29999833.8461 4211 4102 -16666666.67214 4212 4102 15757910.04072 4213 4102 10101612.40576 4214 4102 6666666.665572 4215 4102 3020164.113671 4216 4102 -19291967.06971 4217 4102 3333333.334427 4103 4103 285481231.0942 4104 4103 1.788139343262e-07 4105 4103 6.85453414917e-06 4106 4103 47347303.99915 4188 4103 -3215972.223779 4189 4103 -33333333.32786 4190 4103 -47673130.40168 4209 4103 -20312500.00667 4210 4103 -16666666.67214 4211 4103 -35535125.48411 4212 4103 -8124999.998663 4213 4103 -6666666.665571 4214 4103 -63738650.14916 4215 4103 -41471527.77088 4216 4103 -3333333.334429 4217 4103 -56413713.40339 4104 4104 285841125.8965 4105 4104 -66561551.7465 4106 4104 -6.437301635742e-06 4188 4104 -36573838.1928 4189 4104 16424002.55938 4190 4104 21159027.78473 4209 4104 -5632342.894149 4210 4104 -2804135.305427 4211 4104 -3385277.779223 4212 4104 -54847530.63036 4213 4104 3020164.113676 4214 4104 41471527.77088 4215 4104 19748607.35902 4216 4104 -16640031.36763 4217 4104 -8463611.109722 4105 4105 244829958.0819 4106 4105 1.54972076416e-05 4188 4105 16424002.55938 4189 4105 -30987435.47837 4190 4105 -16666666.67214 4209 4105 3677253.585592 4210 4105 -36521736.91166 4211 4105 -33333333.32786 4212 4105 -3461224.777343 4213 4105 -19291967.06971 4214 4105 3333333.334427 4215 4105 -16640031.36763 4216 4105 9496035.101444 4217 4105 6666666.665568 4106 4106 290978341.916 4188 4106 21159027.78473 4189 4106 -16666666.67214 4190 4106 -36522727.11638 4209 4106 5078333.334501 4210 4106 -33333333.32786 4211 4106 -48059816.83046 4212 4106 41471527.77105 4213 4106 -3333333.334429 4214 4106 -56413713.40339 4215 4106 8463611.10972 4216 4106 -6666666.665574 4217 4106 -65150687.60521 4107 4107 824455161.8017 4108 4107 81018055.54225 4109 4107 -8.583068847656e-06 4110 4107 -460053204.795 4111 4107 -81018054.89409 4112 4107 -1.305341720581e-05 4113 4107 23205392.66699 4114 4107 64814443.78565 4115 4107 1.54972076416e-06 4218 4107 139046393.5639 4219 4107 24305555.56354 4220 4107 17343888.84952 4221 4107 -175918799.4896 4222 4107 -24305555.36909 4223 4107 -86719444.24762 4224 4107 -9282077.505002 4225 4107 19444444.25638 4226 4107 -17343888.52033 4108 4108 702923645.8189 4109 4108 7.830374228711e-07 4110 4108 -81018054.57002 4111 4108 -79265988.49504 4112 4108 -7.152557373047e-07 4113 4108 97221665.67847 4114 4108 23205392.66698 4115 4108 3.457069396973e-06 4218 4108 24305555.56354 4219 4108 102586730.4102 4220 4108 13874999.85143 4221 4108 -24305555.27187 4222 4108 -61681981.76159 4223 4108 -17343749.90781 4224 4108 29166666.38457 4225 4108 -9282077.504995 4226 4108 20812499.90894 4109 4109 744714928.2643 4110 4109 -1.293420791626e-05 4111 4109 3.576278686523e-07 4112 4109 -32232076.56353 4113 4109 1.192092895508e-06 4114 4109 3.218650817871e-06 4115 4109 61881047.11197 4218 4109 -17343888.84952 4219 4109 -13874999.85144 4220 4109 -65361760.6378 4221 4109 -86719444.24762 4222 4109 -17343749.94044 4223 4109 -110741809.7386 4224 4109 -26015832.7805 4225 4109 13874999.9393 4226 4109 -24752206.67999 4110 4110 1437608510.215 4111 4110 81018053.92186 4112 4110 -4.029273986816e-05 4113 4110 32543005.93566 4114 4110 -81018054.8941 4115 4110 -4.887580871582e-06 4116 4110 -318367567.7659 4117 4110 -2.443790435791e-06 4118 4110 -1.460313796997e-05 4119 4110 -118480247.2419 4120 4110 81018055.54225 4121 4110 -3.516674041748e-06 4218 4110 -175918799.4897 4219 4110 -24305555.27186 4220 4110 86719444.24762 4221 4110 268847663.9159 4222 4110 24305555.07742 4223 4110 0.03653132915497 4224 4110 -28139091.37671 4225 4110 -24305555.36909 4226 4110 21679860.74398 4227 4110 -138827443.8751 4228 4110 -5.066394805908e-07 4229 4110 -86719444.43019 4230 4110 -46373434.23611 4231 4110 24305555.56353 4232 4110 -21679861.11823 4111 4111 1218851780.873 4112 4111 -1.430511474609e-06 4113 4111 -81018054.57003 4114 4111 -251018997.7335 4115 4111 -4.26173210144e-06 4116 4111 -1.072883605957e-06 4117 4111 38113347.20754 4118 4111 -1.192092895508e-06 4119 4111 81018055.54225 4120 4111 -94173943.88989 4121 4111 -2.682209014893e-07 4218 4111 -24305555.36908 4219 4111 -61681981.7616 4220 4111 17343749.94043 4221 4111 24305555.07742 4222 4111 203220270.0671 4223 4111 0.02920919656754 4224 4111 -24305555.27186 4225 4111 -113208178.6284 4226 4111 69374999.6084 4227 4111 -8.344650268555e-07 4228 4111 -31882558.21681 4229 4111 -3.278255462646e-07 4230 4111 24305555.56353 4231 4111 -39081501.55875 4232 4111 17343750.00569 4112 4112 1216724781.271 4113 4112 -4.52995300293e-06 4114 4112 -3.457069396973e-06 4115 4112 55270613.64501 4116 4112 -1.388788223267e-05 4117 4112 -1.072883605957e-06 4118 4112 54829860.44019 4119 4112 -3.36766242981e-06 4120 4112 -3.576278686523e-07 4121 4112 -25180890.14437 4218 4112 86719444.24762 4219 4112 17343749.9078 4220 4112 -110741809.7386 4221 4112 -0.03649973869324 4222 4112 -0.02921465039253 4223 4112 -68146756.53808 4224 4112 21679860.55685 4225 4112 69374999.49133 4226 4112 -84490851.68298 4227 4112 -86719444.43019 4228 4112 -2.682209014893e-07 4229 4112 -99061955.12461 4230 4112 -21679861.11823 4231 4112 17343750.00569 4232 4112 -36432062.04358 4113 4113 824455161.8017 4114 4113 81018055.54225 4115 4113 -8.583068847656e-06 4116 4113 -118480247.2419 4117 4113 -81018055.54225 4118 4113 -3.695487976074e-06 4119 4113 -460053204.795 4120 4113 -81018054.89409 4121 4113 -1.305341720581e-05 4122 4113 23205392.66699 4123 4113 64814443.78565 4124 4113 1.54972076416e-06 4218 4113 -9282077.50499 4219 4113 29166666.38457 4220 4113 26015832.78049 4221 4113 -28139091.37673 4222 4113 -24305555.27187 4223 4113 -21679860.55685 4224 4113 139046393.5639 4225 4113 24305555.56354 4226 4113 17343888.84952 4227 4113 -46373434.23611 4228 4113 -24305555.56353 4229 4113 -21679861.11823 4230 4113 -175918799.4896 4231 4113 -24305555.36909 4232 4113 -86719444.24762 4233 4113 -9282077.505002 4234 4113 19444444.25638 4235 4113 -17343888.52033 4114 4114 702923645.8189 4115 4114 7.830374228711e-07 4116 4114 -81018055.54225 4117 4114 -94173943.88989 4118 4114 -1.9371509552e-07 4119 4114 -81018054.57002 4120 4114 -79265988.49504 4121 4114 -7.152557373047e-07 4122 4114 97221665.67847 4123 4114 23205392.66698 4124 4114 3.457069396973e-06 4218 4114 19444444.25638 4219 4114 -9282077.505 4220 4114 -13874999.9393 4221 4114 -24305555.36909 4222 4114 -113208178.6284 4223 4114 -69374999.49133 4224 4114 24305555.56354 4225 4114 102586730.4102 4226 4114 13874999.85143 4227 4114 -24305555.56353 4228 4114 -39081501.55875 4229 4114 -17343750.0057 4230 4114 -24305555.27187 4231 4114 -61681981.76159 4232 4114 -17343749.90781 4233 4114 29166666.38457 4234 4114 -9282077.504995 4235 4114 20812499.90894 4115 4115 744714928.2643 4116 4115 -3.576278686523e-06 4117 4115 -1.341104507446e-07 4118 4115 -25180890.14438 4119 4115 -1.293420791626e-05 4120 4115 3.576278686523e-07 4121 4115 -32232076.56353 4122 4115 1.192092895508e-06 4123 4115 3.218650817871e-06 4124 4115 61881047.11197 4218 4115 17343888.52033 4219 4115 -20812499.90895 4220 4115 -24752206.67999 4221 4115 -21679860.74398 4222 4115 -69374999.6084 4223 4115 -84490851.68299 4224 4115 -17343888.84952 4225 4115 -13874999.85144 4226 4115 -65361760.6378 4227 4115 -21679861.11823 4228 4115 -17343750.0057 4229 4115 -36432062.04358 4230 4115 -86719444.24762 4231 4115 -17343749.94044 4232 4115 -110741809.7386 4233 4115 -26015832.7805 4234 4115 13874999.9393 4235 4115 -24752206.67999 4116 4116 1319128267.022 4117 4116 9.775161743164e-06 4118 4116 -5.745887756348e-05 4119 4116 174228645.9499 4120 4116 -4.291534423828e-06 4121 4116 -1.45435333252e-05 4125 4116 -318367567.7659 4126 4116 -2.443790435791e-06 4127 4116 -1.460313796997e-05 4128 4116 -118480247.2419 4129 4116 81018055.54225 4130 4116 -3.516674041748e-06 4221 4116 -138827443.8752 4222 4116 2.682209014893e-07 4223 4116 86719444.4302 4224 4116 -46373434.23614 4225 4116 -24305555.56354 4226 4116 21679861.11823 4227 4116 222474230.8735 4228 4116 3.933906555176e-06 4229 4116 2.622604370117e-05 4230 4116 8952264.76783 4231 4116 -1.302361488342e-05 4232 4116 6.914138793945e-06 4236 4116 -138827443.8751 4237 4116 -5.066394805908e-07 4238 4116 -86719444.43019 4239 4116 -46373434.23611 4240 4116 24305555.56353 4241 4116 -21679861.11823 4117 4117 1124677840.302 4118 4117 -3.814697265625e-06 4119 4117 -4.947185516357e-06 4120 4117 -133639662.3675 4121 4117 -8.046627044678e-07 4125 4117 -1.072883605957e-06 4126 4117 38113347.20754 4127 4117 -1.192092895508e-06 4128 4117 81018055.54225 4129 4117 -94173943.88989 4130 4117 -2.682209014893e-07 4221 4117 -2.294778823853e-06 4222 4117 -31882558.21685 4223 4117 2.682209014893e-07 4224 4117 -24305555.56354 4225 4117 -39081501.55876 4226 4117 17343750.0057 4227 4117 4.410743713379e-06 4228 4117 164138769.4832 4229 4117 -1.192092895508e-07 4230 4117 -1.156330108643e-05 4231 4117 -83408755.55014 4232 4117 69374999.9886 4236 4117 -8.344650268555e-07 4237 4117 -31882558.21681 4238 4117 -3.278255462646e-07 4239 4117 24305555.56353 4240 4117 -39081501.55875 4241 4117 17343750.00569 4118 4118 1191543893.2 4119 4118 -1.45435333252e-05 4120 4118 -1.192092895508e-06 4121 4118 142332552.4786 4125 4118 -1.388788223267e-05 4126 4118 -1.072883605957e-06 4127 4118 54829860.44019 4128 4118 -3.36766242981e-06 4129 4118 -3.576278686523e-07 4130 4118 -25180890.14437 4221 4118 86719444.4302 4222 4118 3.427267074585e-07 4223 4118 -99061955.12464 4224 4118 21679861.11823 4225 4118 17343750.0057 4226 4118 -36432062.04359 4227 4118 2.598762512207e-05 4228 4118 5.960464477539e-08 4229 4118 -104578818.0156 4230 4118 6.973743438721e-06 4231 4118 69374999.9886 4232 4118 -72810997.49471 4236 4118 -86719444.43019 4237 4118 -2.682209014893e-07 4238 4118 -99061955.12461 4239 4118 -21679861.11823 4240 4118 17343750.00569 4241 4118 -36432062.04358 4119 4119 1437608510.215 4120 4119 81018053.92186 4121 4119 -4.029273986816e-05 4122 4119 32543005.93566 4123 4119 -81018054.8941 4124 4119 -4.887580871582e-06 4125 4119 -118480247.2419 4126 4119 -81018055.54225 4127 4119 -3.695487976074e-06 4128 4119 -318367567.7659 4129 4119 -2.443790435791e-06 4130 4119 -1.460313796997e-05 4131 4119 -118480247.2419 4132 4119 81018055.54225 4133 4119 -3.516674041748e-06 4221 4119 -46373434.23613 4222 4119 24305555.56354 4223 4119 21679861.11823 4224 4119 -175918799.4897 4225 4119 -24305555.27186 4226 4119 86719444.24762 4227 4119 8952264.76783 4228 4119 9.298324584961e-06 4229 4119 6.228685379028e-06 4230 4119 268847663.9159 4231 4119 24305555.07742 4232 4119 0.03653132915497 4233 4119 -28139091.37671 4234 4119 -24305555.36909 4235 4119 21679860.74398 4236 4119 -46373434.23611 4237 4119 -24305555.56353 4238 4119 -21679861.11823 4239 4119 -138827443.8751 4240 4119 -5.066394805908e-07 4241 4119 -86719444.43019 4242 4119 -46373434.23611 4243 4119 24305555.56353 4244 4119 -21679861.11823 4120 4120 1218851780.873 4121 4120 -1.430511474609e-06 4122 4120 -81018054.57003 4123 4120 -251018997.7335 4124 4120 -4.26173210144e-06 4125 4120 -81018055.54225 4126 4120 -94173943.88989 4127 4120 -1.9371509552e-07 4128 4120 -1.072883605957e-06 4129 4120 38113347.20754 4130 4120 -1.192092895508e-06 4131 4120 81018055.54225 4132 4120 -94173943.88989 4133 4120 -2.682209014893e-07 4221 4120 24305555.56354 4222 4120 -39081501.55876 4223 4120 -17343750.00569 4224 4120 -24305555.36908 4225 4120 -61681981.7616 4226 4120 17343749.94043 4227 4120 1.069903373718e-05 4228 4120 -83408755.55014 4229 4120 -69374999.9886 4230 4120 24305555.07742 4231 4120 203220270.0671 4232 4120 0.02920919656754 4233 4120 -24305555.27186 4234 4120 -113208178.6284 4235 4120 69374999.6084 4236 4120 -24305555.56353 4237 4120 -39081501.55875 4238 4120 -17343750.0057 4239 4120 -8.344650268555e-07 4240 4120 -31882558.21681 4241 4120 -3.278255462646e-07 4242 4120 24305555.56353 4243 4120 -39081501.55875 4244 4120 17343750.00569 4121 4121 1216724781.271 4122 4121 -4.52995300293e-06 4123 4121 -3.457069396973e-06 4124 4121 55270613.64501 4125 4121 -3.576278686523e-06 4126 4121 -1.341104507446e-07 4127 4121 -25180890.14438 4128 4121 -1.388788223267e-05 4129 4121 -1.072883605957e-06 4130 4121 54829860.44019 4131 4121 -3.36766242981e-06 4132 4121 -3.576278686523e-07 4133 4121 -25180890.14437 4221 4121 21679861.11823 4222 4121 -17343750.0057 4223 4121 -36432062.04359 4224 4121 86719444.24762 4225 4121 17343749.9078 4226 4121 -110741809.7386 4227 4121 6.169080734253e-06 4228 4121 -69374999.9886 4229 4121 -72810997.49471 4230 4121 -0.03649973869324 4231 4121 -0.02921465039253 4232 4121 -68146756.53808 4233 4121 21679860.55685 4234 4121 69374999.49133 4235 4121 -84490851.68298 4236 4121 -21679861.11823 4237 4121 -17343750.0057 4238 4121 -36432062.04358 4239 4121 -86719444.43019 4240 4121 -2.682209014893e-07 4241 4121 -99061955.12461 4242 4121 -21679861.11823 4243 4121 17343750.00569 4244 4121 -36432062.04358 4122 4122 824455161.8017 4123 4122 81018055.54225 4124 4122 -8.583068847656e-06 4128 4122 -118480247.2419 4129 4122 -81018055.54225 4130 4122 -3.695487976074e-06 4131 4122 -460053204.795 4132 4122 -81018054.89409 4133 4122 -1.305341720581e-05 4134 4122 23205392.66699 4135 4122 64814443.78565 4136 4122 1.54972076416e-06 4224 4122 -9282077.50499 4225 4122 29166666.38457 4226 4122 26015832.78049 4230 4122 -28139091.37673 4231 4122 -24305555.27187 4232 4122 -21679860.55685 4233 4122 139046393.5639 4234 4122 24305555.56354 4235 4122 17343888.84952 4239 4122 -46373434.23611 4240 4122 -24305555.56353 4241 4122 -21679861.11823 4242 4122 -175918799.4896 4243 4122 -24305555.36909 4244 4122 -86719444.24762 4245 4122 -9282077.505002 4246 4122 19444444.25638 4247 4122 -17343888.52033 4123 4123 702923645.8189 4124 4123 7.830374228711e-07 4128 4123 -81018055.54225 4129 4123 -94173943.88989 4130 4123 -1.9371509552e-07 4131 4123 -81018054.57002 4132 4123 -79265988.49504 4133 4123 -7.152557373047e-07 4134 4123 97221665.67847 4135 4123 23205392.66698 4136 4123 3.457069396973e-06 4224 4123 19444444.25638 4225 4123 -9282077.505 4226 4123 -13874999.9393 4230 4123 -24305555.36909 4231 4123 -113208178.6284 4232 4123 -69374999.49133 4233 4123 24305555.56354 4234 4123 102586730.4102 4235 4123 13874999.85143 4239 4123 -24305555.56353 4240 4123 -39081501.55875 4241 4123 -17343750.0057 4242 4123 -24305555.27187 4243 4123 -61681981.76159 4244 4123 -17343749.90781 4245 4123 29166666.38457 4246 4123 -9282077.504995 4247 4123 20812499.90894 4124 4124 744714928.2643 4128 4124 -3.576278686523e-06 4129 4124 -1.341104507446e-07 4130 4124 -25180890.14438 4131 4124 -1.293420791626e-05 4132 4124 3.576278686523e-07 4133 4124 -32232076.56353 4134 4124 1.192092895508e-06 4135 4124 3.218650817871e-06 4136 4124 61881047.11197 4224 4124 17343888.52033 4225 4124 -20812499.90895 4226 4124 -24752206.67999 4230 4124 -21679860.74398 4231 4124 -69374999.6084 4232 4124 -84490851.68299 4233 4124 -17343888.84952 4234 4124 -13874999.85144 4235 4124 -65361760.6378 4239 4124 -21679861.11823 4240 4124 -17343750.0057 4241 4124 -36432062.04358 4242 4124 -86719444.24762 4243 4124 -17343749.94044 4244 4124 -110741809.7386 4245 4124 -26015832.7805 4246 4124 13874999.9393 4247 4124 -24752206.67999 4125 4125 1319128267.022 4126 4125 9.775161743164e-06 4127 4125 -5.745887756348e-05 4128 4125 174228645.9499 4129 4125 -4.291534423828e-06 4130 4125 -1.45435333252e-05 4137 4125 -318367567.7659 4138 4125 -2.443790435791e-06 4139 4125 -1.460313796997e-05 4140 4125 -118480247.2419 4141 4125 81018055.54225 4142 4125 -3.516674041748e-06 4227 4125 -138827443.8752 4228 4125 2.682209014893e-07 4229 4125 86719444.4302 4230 4125 -46373434.23614 4231 4125 -24305555.56354 4232 4125 21679861.11823 4236 4125 222474230.8735 4237 4125 3.933906555176e-06 4238 4125 2.622604370117e-05 4239 4125 8952264.76783 4240 4125 -1.302361488342e-05 4241 4125 6.914138793945e-06 4248 4125 -138827443.8751 4249 4125 -5.066394805908e-07 4250 4125 -86719444.43019 4251 4125 -46373434.23611 4252 4125 24305555.56353 4253 4125 -21679861.11823 4126 4126 1124677840.302 4127 4126 -3.814697265625e-06 4128 4126 -4.947185516357e-06 4129 4126 -133639662.3675 4130 4126 -8.046627044678e-07 4137 4126 -1.072883605957e-06 4138 4126 38113347.20754 4139 4126 -1.192092895508e-06 4140 4126 81018055.54225 4141 4126 -94173943.88989 4142 4126 -2.682209014893e-07 4227 4126 -2.294778823853e-06 4228 4126 -31882558.21685 4229 4126 2.682209014893e-07 4230 4126 -24305555.56354 4231 4126 -39081501.55876 4232 4126 17343750.0057 4236 4126 4.410743713379e-06 4237 4126 164138769.4832 4238 4126 -1.192092895508e-07 4239 4126 -1.156330108643e-05 4240 4126 -83408755.55014 4241 4126 69374999.9886 4248 4126 -8.344650268555e-07 4249 4126 -31882558.21681 4250 4126 -3.278255462646e-07 4251 4126 24305555.56353 4252 4126 -39081501.55875 4253 4126 17343750.00569 4127 4127 1191543893.2 4128 4127 -1.45435333252e-05 4129 4127 -1.192092895508e-06 4130 4127 142332552.4786 4137 4127 -1.388788223267e-05 4138 4127 -1.072883605957e-06 4139 4127 54829860.44019 4140 4127 -3.36766242981e-06 4141 4127 -3.576278686523e-07 4142 4127 -25180890.14437 4227 4127 86719444.4302 4228 4127 3.427267074585e-07 4229 4127 -99061955.12464 4230 4127 21679861.11823 4231 4127 17343750.0057 4232 4127 -36432062.04359 4236 4127 2.598762512207e-05 4237 4127 5.960464477539e-08 4238 4127 -104578818.0156 4239 4127 6.973743438721e-06 4240 4127 69374999.9886 4241 4127 -72810997.49471 4248 4127 -86719444.43019 4249 4127 -2.682209014893e-07 4250 4127 -99061955.12461 4251 4127 -21679861.11823 4252 4127 17343750.00569 4253 4127 -36432062.04358 4128 4128 1319128267.022 4129 4128 9.775161743164e-06 4130 4128 -5.745887756348e-05 4131 4128 174228645.9499 4132 4128 -4.291534423828e-06 4133 4128 -1.45435333252e-05 4137 4128 -118480247.2419 4138 4128 -81018055.54225 4139 4128 -3.695487976074e-06 4140 4128 -318367567.7659 4141 4128 -2.443790435791e-06 4142 4128 -1.460313796997e-05 4143 4128 -118480247.2419 4144 4128 81018055.54225 4145 4128 -3.516674041748e-06 4227 4128 -46373434.23613 4228 4128 24305555.56354 4229 4128 21679861.11823 4230 4128 -138827443.8752 4231 4128 2.682209014893e-07 4232 4128 86719444.4302 4233 4128 -46373434.23614 4234 4128 -24305555.56354 4235 4128 21679861.11823 4236 4128 8952264.76783 4237 4128 9.298324584961e-06 4238 4128 6.228685379028e-06 4239 4128 222474230.8735 4240 4128 3.933906555176e-06 4241 4128 2.622604370117e-05 4242 4128 8952264.76783 4243 4128 -1.302361488342e-05 4244 4128 6.914138793945e-06 4248 4128 -46373434.23611 4249 4128 -24305555.56353 4250 4128 -21679861.11823 4251 4128 -138827443.8751 4252 4128 -5.066394805908e-07 4253 4128 -86719444.43019 4254 4128 -46373434.23611 4255 4128 24305555.56353 4256 4128 -21679861.11823 4129 4129 1124677840.302 4130 4129 -3.814697265625e-06 4131 4129 -4.947185516357e-06 4132 4129 -133639662.3675 4133 4129 -8.046627044678e-07 4137 4129 -81018055.54225 4138 4129 -94173943.88989 4139 4129 -1.9371509552e-07 4140 4129 -1.072883605957e-06 4141 4129 38113347.20754 4142 4129 -1.192092895508e-06 4143 4129 81018055.54225 4144 4129 -94173943.88989 4145 4129 -2.682209014893e-07 4227 4129 24305555.56354 4228 4129 -39081501.55876 4229 4129 -17343750.00569 4230 4129 -2.294778823853e-06 4231 4129 -31882558.21685 4232 4129 2.682209014893e-07 4233 4129 -24305555.56354 4234 4129 -39081501.55876 4235 4129 17343750.0057 4236 4129 1.069903373718e-05 4237 4129 -83408755.55014 4238 4129 -69374999.9886 4239 4129 4.410743713379e-06 4240 4129 164138769.4832 4241 4129 -1.192092895508e-07 4242 4129 -1.156330108643e-05 4243 4129 -83408755.55014 4244 4129 69374999.9886 4248 4129 -24305555.56353 4249 4129 -39081501.55875 4250 4129 -17343750.0057 4251 4129 -8.344650268555e-07 4252 4129 -31882558.21681 4253 4129 -3.278255462646e-07 4254 4129 24305555.56353 4255 4129 -39081501.55875 4256 4129 17343750.00569 4130 4130 1191543893.2 4131 4130 -1.45435333252e-05 4132 4130 -1.192092895508e-06 4133 4130 142332552.4786 4137 4130 -3.576278686523e-06 4138 4130 -1.341104507446e-07 4139 4130 -25180890.14438 4140 4130 -1.388788223267e-05 4141 4130 -1.072883605957e-06 4142 4130 54829860.44019 4143 4130 -3.36766242981e-06 4144 4130 -3.576278686523e-07 4145 4130 -25180890.14437 4227 4130 21679861.11823 4228 4130 -17343750.0057 4229 4130 -36432062.04359 4230 4130 86719444.4302 4231 4130 3.427267074585e-07 4232 4130 -99061955.12464 4233 4130 21679861.11823 4234 4130 17343750.0057 4235 4130 -36432062.04359 4236 4130 6.169080734253e-06 4237 4130 -69374999.9886 4238 4130 -72810997.49471 4239 4130 2.598762512207e-05 4240 4130 5.960464477539e-08 4241 4130 -104578818.0156 4242 4130 6.973743438721e-06 4243 4130 69374999.9886 4244 4130 -72810997.49471 4248 4130 -21679861.11823 4249 4130 -17343750.0057 4250 4130 -36432062.04358 4251 4130 -86719444.43019 4252 4130 -2.682209014893e-07 4253 4130 -99061955.12461 4254 4130 -21679861.11823 4255 4130 17343750.00569 4256 4130 -36432062.04358 4131 4131 1437608510.215 4132 4131 81018053.92186 4133 4131 -4.029273986816e-05 4134 4131 32543005.93566 4135 4131 -81018054.8941 4136 4131 -4.887580871582e-06 4140 4131 -118480247.2419 4141 4131 -81018055.54225 4142 4131 -3.695487976074e-06 4143 4131 -318367567.7659 4144 4131 -2.443790435791e-06 4145 4131 -1.460313796997e-05 4146 4131 -118480247.2419 4147 4131 81018055.54225 4148 4131 -3.516674041748e-06 4230 4131 -46373434.23613 4231 4131 24305555.56354 4232 4131 21679861.11823 4233 4131 -175918799.4897 4234 4131 -24305555.27186 4235 4131 86719444.24762 4239 4131 8952264.76783 4240 4131 9.298324584961e-06 4241 4131 6.228685379028e-06 4242 4131 268847663.9159 4243 4131 24305555.07742 4244 4131 0.03653132915497 4245 4131 -28139091.37671 4246 4131 -24305555.36909 4247 4131 21679860.74398 4251 4131 -46373434.23611 4252 4131 -24305555.56353 4253 4131 -21679861.11823 4254 4131 -138827443.8751 4255 4131 -5.066394805908e-07 4256 4131 -86719444.43019 4257 4131 -46373434.23611 4258 4131 24305555.56353 4259 4131 -21679861.11823 4132 4132 1218851780.873 4133 4132 -1.430511474609e-06 4134 4132 -81018054.57003 4135 4132 -251018997.7335 4136 4132 -4.26173210144e-06 4140 4132 -81018055.54225 4141 4132 -94173943.88989 4142 4132 -1.9371509552e-07 4143 4132 -1.072883605957e-06 4144 4132 38113347.20754 4145 4132 -1.192092895508e-06 4146 4132 81018055.54225 4147 4132 -94173943.88989 4148 4132 -2.682209014893e-07 4230 4132 24305555.56354 4231 4132 -39081501.55876 4232 4132 -17343750.00569 4233 4132 -24305555.36908 4234 4132 -61681981.7616 4235 4132 17343749.94043 4239 4132 1.069903373718e-05 4240 4132 -83408755.55014 4241 4132 -69374999.9886 4242 4132 24305555.07742 4243 4132 203220270.0671 4244 4132 0.02920919656754 4245 4132 -24305555.27186 4246 4132 -113208178.6284 4247 4132 69374999.6084 4251 4132 -24305555.56353 4252 4132 -39081501.55875 4253 4132 -17343750.0057 4254 4132 -8.344650268555e-07 4255 4132 -31882558.21681 4256 4132 -3.278255462646e-07 4257 4132 24305555.56353 4258 4132 -39081501.55875 4259 4132 17343750.00569 4133 4133 1216724781.271 4134 4133 -4.52995300293e-06 4135 4133 -3.457069396973e-06 4136 4133 55270613.64501 4140 4133 -3.576278686523e-06 4141 4133 -1.341104507446e-07 4142 4133 -25180890.14438 4143 4133 -1.388788223267e-05 4144 4133 -1.072883605957e-06 4145 4133 54829860.44019 4146 4133 -3.36766242981e-06 4147 4133 -3.576278686523e-07 4148 4133 -25180890.14437 4230 4133 21679861.11823 4231 4133 -17343750.0057 4232 4133 -36432062.04359 4233 4133 86719444.24762 4234 4133 17343749.9078 4235 4133 -110741809.7386 4239 4133 6.169080734253e-06 4240 4133 -69374999.9886 4241 4133 -72810997.49471 4242 4133 -0.03649973869324 4243 4133 -0.02921465039253 4244 4133 -68146756.53808 4245 4133 21679860.55685 4246 4133 69374999.49133 4247 4133 -84490851.68298 4251 4133 -21679861.11823 4252 4133 -17343750.0057 4253 4133 -36432062.04358 4254 4133 -86719444.43019 4255 4133 -2.682209014893e-07 4256 4133 -99061955.12461 4257 4133 -21679861.11823 4258 4133 17343750.00569 4259 4133 -36432062.04358 4134 4134 824455161.8017 4135 4134 81018055.54225 4136 4134 -8.583068847656e-06 4143 4134 -118480247.2419 4144 4134 -81018055.54225 4145 4134 -3.695487976074e-06 4146 4134 -460053204.795 4147 4134 -81018054.89409 4148 4134 -1.305341720581e-05 4149 4134 23205392.66699 4150 4134 64814443.78565 4151 4134 1.54972076416e-06 4233 4134 -9282077.50499 4234 4134 29166666.38457 4235 4134 26015832.78049 4242 4134 -28139091.37673 4243 4134 -24305555.27187 4244 4134 -21679860.55685 4245 4134 139046393.5639 4246 4134 24305555.56354 4247 4134 17343888.84952 4254 4134 -46373434.23611 4255 4134 -24305555.56353 4256 4134 -21679861.11823 4257 4134 -175918799.4896 4258 4134 -24305555.36909 4259 4134 -86719444.24762 4260 4134 -9282077.505002 4261 4134 19444444.25638 4262 4134 -17343888.52033 4135 4135 702923645.8189 4136 4135 7.830374228711e-07 4143 4135 -81018055.54225 4144 4135 -94173943.88989 4145 4135 -1.9371509552e-07 4146 4135 -81018054.57002 4147 4135 -79265988.49504 4148 4135 -7.152557373047e-07 4149 4135 97221665.67847 4150 4135 23205392.66698 4151 4135 3.457069396973e-06 4233 4135 19444444.25638 4234 4135 -9282077.505 4235 4135 -13874999.9393 4242 4135 -24305555.36909 4243 4135 -113208178.6284 4244 4135 -69374999.49133 4245 4135 24305555.56354 4246 4135 102586730.4102 4247 4135 13874999.85143 4254 4135 -24305555.56353 4255 4135 -39081501.55875 4256 4135 -17343750.0057 4257 4135 -24305555.27187 4258 4135 -61681981.76159 4259 4135 -17343749.90781 4260 4135 29166666.38457 4261 4135 -9282077.504995 4262 4135 20812499.90894 4136 4136 744714928.2643 4143 4136 -3.576278686523e-06 4144 4136 -1.341104507446e-07 4145 4136 -25180890.14438 4146 4136 -1.293420791626e-05 4147 4136 3.576278686523e-07 4148 4136 -32232076.56353 4149 4136 1.192092895508e-06 4150 4136 3.218650817871e-06 4151 4136 61881047.11197 4233 4136 17343888.52033 4234 4136 -20812499.90895 4235 4136 -24752206.67999 4242 4136 -21679860.74398 4243 4136 -69374999.6084 4244 4136 -84490851.68299 4245 4136 -17343888.84952 4246 4136 -13874999.85144 4247 4136 -65361760.6378 4254 4136 -21679861.11823 4255 4136 -17343750.0057 4256 4136 -36432062.04358 4257 4136 -86719444.24762 4258 4136 -17343749.94044 4259 4136 -110741809.7386 4260 4136 -26015832.7805 4261 4136 13874999.9393 4262 4136 -24752206.67999 4137 4137 1319128267.022 4138 4137 9.775161743164e-06 4139 4137 -5.745887756348e-05 4140 4137 174228645.9499 4141 4137 -4.291534423828e-06 4142 4137 -1.45435333252e-05 4152 4137 -318367567.7659 4153 4137 -2.443790435791e-06 4154 4137 -1.460313796997e-05 4155 4137 -118480247.2419 4156 4137 81018055.54225 4157 4137 -3.516674041748e-06 4236 4137 -138827443.8752 4237 4137 2.682209014893e-07 4238 4137 86719444.4302 4239 4137 -46373434.23614 4240 4137 -24305555.56354 4241 4137 21679861.11823 4248 4137 222474230.8735 4249 4137 3.933906555176e-06 4250 4137 2.622604370117e-05 4251 4137 8952264.76783 4252 4137 -1.302361488342e-05 4253 4137 6.914138793945e-06 4263 4137 -138827443.8751 4264 4137 -5.066394805908e-07 4265 4137 -86719444.43019 4266 4137 -46373434.23611 4267 4137 24305555.56353 4268 4137 -21679861.11823 4138 4138 1124677840.302 4139 4138 -3.814697265625e-06 4140 4138 -4.947185516357e-06 4141 4138 -133639662.3675 4142 4138 -8.046627044678e-07 4152 4138 -1.072883605957e-06 4153 4138 38113347.20754 4154 4138 -1.192092895508e-06 4155 4138 81018055.54225 4156 4138 -94173943.88989 4157 4138 -2.682209014893e-07 4236 4138 -2.294778823853e-06 4237 4138 -31882558.21685 4238 4138 2.682209014893e-07 4239 4138 -24305555.56354 4240 4138 -39081501.55876 4241 4138 17343750.0057 4248 4138 4.410743713379e-06 4249 4138 164138769.4832 4250 4138 -1.192092895508e-07 4251 4138 -1.156330108643e-05 4252 4138 -83408755.55014 4253 4138 69374999.9886 4263 4138 -8.344650268555e-07 4264 4138 -31882558.21681 4265 4138 -3.278255462646e-07 4266 4138 24305555.56353 4267 4138 -39081501.55875 4268 4138 17343750.00569 4139 4139 1191543893.2 4140 4139 -1.45435333252e-05 4141 4139 -1.192092895508e-06 4142 4139 142332552.4786 4152 4139 -1.388788223267e-05 4153 4139 -1.072883605957e-06 4154 4139 54829860.44019 4155 4139 -3.36766242981e-06 4156 4139 -3.576278686523e-07 4157 4139 -25180890.14437 4236 4139 86719444.4302 4237 4139 3.427267074585e-07 4238 4139 -99061955.12464 4239 4139 21679861.11823 4240 4139 17343750.0057 4241 4139 -36432062.04359 4248 4139 2.598762512207e-05 4249 4139 5.960464477539e-08 4250 4139 -104578818.0156 4251 4139 6.973743438721e-06 4252 4139 69374999.9886 4253 4139 -72810997.49471 4263 4139 -86719444.43019 4264 4139 -2.682209014893e-07 4265 4139 -99061955.12461 4266 4139 -21679861.11823 4267 4139 17343750.00569 4268 4139 -36432062.04358 4140 4140 1319128267.022 4141 4140 9.775161743164e-06 4142 4140 -5.745887756348e-05 4143 4140 174228645.9499 4144 4140 -4.291534423828e-06 4145 4140 -1.45435333252e-05 4152 4140 -118480247.2419 4153 4140 -81018055.54225 4154 4140 -3.695487976074e-06 4155 4140 -318367567.7659 4156 4140 -2.443790435791e-06 4157 4140 -1.460313796997e-05 4158 4140 -118480247.2419 4159 4140 81018055.54225 4160 4140 -3.516674041748e-06 4236 4140 -46373434.23613 4237 4140 24305555.56354 4238 4140 21679861.11823 4239 4140 -138827443.8752 4240 4140 2.682209014893e-07 4241 4140 86719444.4302 4242 4140 -46373434.23614 4243 4140 -24305555.56354 4244 4140 21679861.11823 4248 4140 8952264.76783 4249 4140 9.298324584961e-06 4250 4140 6.228685379028e-06 4251 4140 222474230.8735 4252 4140 3.933906555176e-06 4253 4140 2.622604370117e-05 4254 4140 8952264.76783 4255 4140 -1.302361488342e-05 4256 4140 6.914138793945e-06 4263 4140 -46373434.23611 4264 4140 -24305555.56353 4265 4140 -21679861.11823 4266 4140 -138827443.8751 4267 4140 -5.066394805908e-07 4268 4140 -86719444.43019 4269 4140 -46373434.23611 4270 4140 24305555.56353 4271 4140 -21679861.11823 4141 4141 1124677840.302 4142 4141 -3.814697265625e-06 4143 4141 -4.947185516357e-06 4144 4141 -133639662.3675 4145 4141 -8.046627044678e-07 4152 4141 -81018055.54225 4153 4141 -94173943.88989 4154 4141 -1.9371509552e-07 4155 4141 -1.072883605957e-06 4156 4141 38113347.20754 4157 4141 -1.192092895508e-06 4158 4141 81018055.54225 4159 4141 -94173943.88989 4160 4141 -2.682209014893e-07 4236 4141 24305555.56354 4237 4141 -39081501.55876 4238 4141 -17343750.00569 4239 4141 -2.294778823853e-06 4240 4141 -31882558.21685 4241 4141 2.682209014893e-07 4242 4141 -24305555.56354 4243 4141 -39081501.55876 4244 4141 17343750.0057 4248 4141 1.069903373718e-05 4249 4141 -83408755.55014 4250 4141 -69374999.9886 4251 4141 4.410743713379e-06 4252 4141 164138769.4832 4253 4141 -1.192092895508e-07 4254 4141 -1.156330108643e-05 4255 4141 -83408755.55014 4256 4141 69374999.9886 4263 4141 -24305555.56353 4264 4141 -39081501.55875 4265 4141 -17343750.0057 4266 4141 -8.344650268555e-07 4267 4141 -31882558.21681 4268 4141 -3.278255462646e-07 4269 4141 24305555.56353 4270 4141 -39081501.55875 4271 4141 17343750.00569 4142 4142 1191543893.2 4143 4142 -1.45435333252e-05 4144 4142 -1.192092895508e-06 4145 4142 142332552.4786 4152 4142 -3.576278686523e-06 4153 4142 -1.341104507446e-07 4154 4142 -25180890.14438 4155 4142 -1.388788223267e-05 4156 4142 -1.072883605957e-06 4157 4142 54829860.44019 4158 4142 -3.36766242981e-06 4159 4142 -3.576278686523e-07 4160 4142 -25180890.14437 4236 4142 21679861.11823 4237 4142 -17343750.0057 4238 4142 -36432062.04359 4239 4142 86719444.4302 4240 4142 3.427267074585e-07 4241 4142 -99061955.12464 4242 4142 21679861.11823 4243 4142 17343750.0057 4244 4142 -36432062.04359 4248 4142 6.169080734253e-06 4249 4142 -69374999.9886 4250 4142 -72810997.49471 4251 4142 2.598762512207e-05 4252 4142 5.960464477539e-08 4253 4142 -104578818.0156 4254 4142 6.973743438721e-06 4255 4142 69374999.9886 4256 4142 -72810997.49471 4263 4142 -21679861.11823 4264 4142 -17343750.0057 4265 4142 -36432062.04358 4266 4142 -86719444.43019 4267 4142 -2.682209014893e-07 4268 4142 -99061955.12461 4269 4142 -21679861.11823 4270 4142 17343750.00569 4271 4142 -36432062.04358 4143 4143 1319128267.022 4144 4143 9.775161743164e-06 4145 4143 -5.745887756348e-05 4146 4143 174228645.9499 4147 4143 -4.291534423828e-06 4148 4143 -1.45435333252e-05 4155 4143 -118480247.2419 4156 4143 -81018055.54225 4157 4143 -3.695487976074e-06 4158 4143 -318367567.7659 4159 4143 -2.443790435791e-06 4160 4143 -1.460313796997e-05 4161 4143 -118480247.2419 4162 4143 81018055.54225 4163 4143 -3.516674041748e-06 4239 4143 -46373434.23613 4240 4143 24305555.56354 4241 4143 21679861.11823 4242 4143 -138827443.8752 4243 4143 2.682209014893e-07 4244 4143 86719444.4302 4245 4143 -46373434.23614 4246 4143 -24305555.56354 4247 4143 21679861.11823 4251 4143 8952264.76783 4252 4143 9.298324584961e-06 4253 4143 6.228685379028e-06 4254 4143 222474230.8735 4255 4143 3.933906555176e-06 4256 4143 2.622604370117e-05 4257 4143 8952264.76783 4258 4143 -1.302361488342e-05 4259 4143 6.914138793945e-06 4266 4143 -46373434.23611 4267 4143 -24305555.56353 4268 4143 -21679861.11823 4269 4143 -138827443.8751 4270 4143 -5.066394805908e-07 4271 4143 -86719444.43019 4272 4143 -46373434.23611 4273 4143 24305555.56353 4274 4143 -21679861.11823 4144 4144 1124677840.302 4145 4144 -3.814697265625e-06 4146 4144 -4.947185516357e-06 4147 4144 -133639662.3675 4148 4144 -8.046627044678e-07 4155 4144 -81018055.54225 4156 4144 -94173943.88989 4157 4144 -1.9371509552e-07 4158 4144 -1.072883605957e-06 4159 4144 38113347.20754 4160 4144 -1.192092895508e-06 4161 4144 81018055.54225 4162 4144 -94173943.88989 4163 4144 -2.682209014893e-07 4239 4144 24305555.56354 4240 4144 -39081501.55876 4241 4144 -17343750.00569 4242 4144 -2.294778823853e-06 4243 4144 -31882558.21685 4244 4144 2.682209014893e-07 4245 4144 -24305555.56354 4246 4144 -39081501.55876 4247 4144 17343750.0057 4251 4144 1.069903373718e-05 4252 4144 -83408755.55014 4253 4144 -69374999.9886 4254 4144 4.410743713379e-06 4255 4144 164138769.4832 4256 4144 -1.192092895508e-07 4257 4144 -1.156330108643e-05 4258 4144 -83408755.55014 4259 4144 69374999.9886 4266 4144 -24305555.56353 4267 4144 -39081501.55875 4268 4144 -17343750.0057 4269 4144 -8.344650268555e-07 4270 4144 -31882558.21681 4271 4144 -3.278255462646e-07 4272 4144 24305555.56353 4273 4144 -39081501.55875 4274 4144 17343750.00569 4145 4145 1191543893.2 4146 4145 -1.45435333252e-05 4147 4145 -1.192092895508e-06 4148 4145 142332552.4786 4155 4145 -3.576278686523e-06 4156 4145 -1.341104507446e-07 4157 4145 -25180890.14438 4158 4145 -1.388788223267e-05 4159 4145 -1.072883605957e-06 4160 4145 54829860.44019 4161 4145 -3.36766242981e-06 4162 4145 -3.576278686523e-07 4163 4145 -25180890.14437 4239 4145 21679861.11823 4240 4145 -17343750.0057 4241 4145 -36432062.04359 4242 4145 86719444.4302 4243 4145 3.427267074585e-07 4244 4145 -99061955.12464 4245 4145 21679861.11823 4246 4145 17343750.0057 4247 4145 -36432062.04359 4251 4145 6.169080734253e-06 4252 4145 -69374999.9886 4253 4145 -72810997.49471 4254 4145 2.598762512207e-05 4255 4145 5.960464477539e-08 4256 4145 -104578818.0156 4257 4145 6.973743438721e-06 4258 4145 69374999.9886 4259 4145 -72810997.49471 4266 4145 -21679861.11823 4267 4145 -17343750.0057 4268 4145 -36432062.04358 4269 4145 -86719444.43019 4270 4145 -2.682209014893e-07 4271 4145 -99061955.12461 4272 4145 -21679861.11823 4273 4145 17343750.00569 4274 4145 -36432062.04358 4146 4146 1437608510.215 4147 4146 81018053.92186 4148 4146 -4.029273986816e-05 4149 4146 32543005.93566 4150 4146 -81018054.8941 4151 4146 -4.887580871582e-06 4158 4146 -118480247.2419 4159 4146 -81018055.54225 4160 4146 -3.695487976074e-06 4161 4146 -318367567.7659 4162 4146 -2.443790435791e-06 4163 4146 -1.460313796997e-05 4164 4146 -118480247.2419 4165 4146 81018055.54225 4166 4146 -3.516674041748e-06 4242 4146 -46373434.23613 4243 4146 24305555.56354 4244 4146 21679861.11823 4245 4146 -175918799.4897 4246 4146 -24305555.27186 4247 4146 86719444.24762 4254 4146 8952264.76783 4255 4146 9.298324584961e-06 4256 4146 6.228685379028e-06 4257 4146 268847663.9159 4258 4146 24305555.07742 4259 4146 0.03653132915497 4260 4146 -28139091.37671 4261 4146 -24305555.36909 4262 4146 21679860.74398 4269 4146 -46373434.23611 4270 4146 -24305555.56353 4271 4146 -21679861.11823 4272 4146 -138827443.8751 4273 4146 -5.066394805908e-07 4274 4146 -86719444.43019 4275 4146 -46373434.23611 4276 4146 24305555.56353 4277 4146 -21679861.11823 4147 4147 1218851780.873 4148 4147 -1.430511474609e-06 4149 4147 -81018054.57003 4150 4147 -251018997.7335 4151 4147 -4.26173210144e-06 4158 4147 -81018055.54225 4159 4147 -94173943.88989 4160 4147 -1.9371509552e-07 4161 4147 -1.072883605957e-06 4162 4147 38113347.20754 4163 4147 -1.192092895508e-06 4164 4147 81018055.54225 4165 4147 -94173943.88989 4166 4147 -2.682209014893e-07 4242 4147 24305555.56354 4243 4147 -39081501.55876 4244 4147 -17343750.00569 4245 4147 -24305555.36908 4246 4147 -61681981.7616 4247 4147 17343749.94043 4254 4147 1.069903373718e-05 4255 4147 -83408755.55014 4256 4147 -69374999.9886 4257 4147 24305555.07742 4258 4147 203220270.0671 4259 4147 0.02920919656754 4260 4147 -24305555.27186 4261 4147 -113208178.6284 4262 4147 69374999.6084 4269 4147 -24305555.56353 4270 4147 -39081501.55875 4271 4147 -17343750.0057 4272 4147 -8.344650268555e-07 4273 4147 -31882558.21681 4274 4147 -3.278255462646e-07 4275 4147 24305555.56353 4276 4147 -39081501.55875 4277 4147 17343750.00569 4148 4148 1216724781.271 4149 4148 -4.52995300293e-06 4150 4148 -3.457069396973e-06 4151 4148 55270613.64501 4158 4148 -3.576278686523e-06 4159 4148 -1.341104507446e-07 4160 4148 -25180890.14438 4161 4148 -1.388788223267e-05 4162 4148 -1.072883605957e-06 4163 4148 54829860.44019 4164 4148 -3.36766242981e-06 4165 4148 -3.576278686523e-07 4166 4148 -25180890.14437 4242 4148 21679861.11823 4243 4148 -17343750.0057 4244 4148 -36432062.04359 4245 4148 86719444.24762 4246 4148 17343749.9078 4247 4148 -110741809.7386 4254 4148 6.169080734253e-06 4255 4148 -69374999.9886 4256 4148 -72810997.49471 4257 4148 -0.03649973869324 4258 4148 -0.02921465039253 4259 4148 -68146756.53808 4260 4148 21679860.55685 4261 4148 69374999.49133 4262 4148 -84490851.68298 4269 4148 -21679861.11823 4270 4148 -17343750.0057 4271 4148 -36432062.04358 4272 4148 -86719444.43019 4273 4148 -2.682209014893e-07 4274 4148 -99061955.12461 4275 4148 -21679861.11823 4276 4148 17343750.00569 4277 4148 -36432062.04358 4149 4149 824455161.8017 4150 4149 81018055.54225 4151 4149 -8.583068847656e-06 4161 4149 -118480247.2419 4162 4149 -81018055.54225 4163 4149 -3.695487976074e-06 4164 4149 -460053204.795 4165 4149 -81018054.89409 4166 4149 -1.305341720581e-05 4167 4149 23205392.66699 4168 4149 64814443.78565 4169 4149 1.54972076416e-06 4245 4149 -9282077.50499 4246 4149 29166666.38457 4247 4149 26015832.78049 4257 4149 -28139091.37673 4258 4149 -24305555.27187 4259 4149 -21679860.55685 4260 4149 139046393.5639 4261 4149 24305555.56354 4262 4149 17343888.84952 4272 4149 -46373434.23611 4273 4149 -24305555.56353 4274 4149 -21679861.11823 4275 4149 -175918799.4896 4276 4149 -24305555.36909 4277 4149 -86719444.24762 4278 4149 -9282077.505002 4279 4149 19444444.25638 4280 4149 -17343888.52033 4150 4150 702923645.8189 4151 4150 7.830374228711e-07 4161 4150 -81018055.54225 4162 4150 -94173943.88989 4163 4150 -1.9371509552e-07 4164 4150 -81018054.57002 4165 4150 -79265988.49504 4166 4150 -7.152557373047e-07 4167 4150 97221665.67847 4168 4150 23205392.66698 4169 4150 3.457069396973e-06 4245 4150 19444444.25638 4246 4150 -9282077.505 4247 4150 -13874999.9393 4257 4150 -24305555.36909 4258 4150 -113208178.6284 4259 4150 -69374999.49133 4260 4150 24305555.56354 4261 4150 102586730.4102 4262 4150 13874999.85143 4272 4150 -24305555.56353 4273 4150 -39081501.55875 4274 4150 -17343750.0057 4275 4150 -24305555.27187 4276 4150 -61681981.76159 4277 4150 -17343749.90781 4278 4150 29166666.38457 4279 4150 -9282077.504995 4280 4150 20812499.90894 4151 4151 744714928.2643 4161 4151 -3.576278686523e-06 4162 4151 -1.341104507446e-07 4163 4151 -25180890.14438 4164 4151 -1.293420791626e-05 4165 4151 3.576278686523e-07 4166 4151 -32232076.56353 4167 4151 1.192092895508e-06 4168 4151 3.218650817871e-06 4169 4151 61881047.11197 4245 4151 17343888.52033 4246 4151 -20812499.90895 4247 4151 -24752206.67999 4257 4151 -21679860.74398 4258 4151 -69374999.6084 4259 4151 -84490851.68299 4260 4151 -17343888.84952 4261 4151 -13874999.85144 4262 4151 -65361760.6378 4272 4151 -21679861.11823 4273 4151 -17343750.0057 4274 4151 -36432062.04358 4275 4151 -86719444.24762 4276 4151 -17343749.94044 4277 4151 -110741809.7386 4278 4151 -26015832.7805 4279 4151 13874999.9393 4280 4151 -24752206.67999 4152 4152 1319128267.022 4153 4152 9.775161743164e-06 4154 4152 -5.745887756348e-05 4155 4152 174228645.9499 4156 4152 -4.291534423828e-06 4157 4152 -1.45435333252e-05 4170 4152 -318367567.7659 4171 4152 -2.443790435791e-06 4172 4152 -1.460313796997e-05 4173 4152 -118480247.2419 4174 4152 81018055.54225 4175 4152 -3.516674041748e-06 4248 4152 -138827443.8752 4249 4152 2.682209014893e-07 4250 4152 86719444.4302 4251 4152 -46373434.23614 4252 4152 -24305555.56354 4253 4152 21679861.11823 4263 4152 222474230.8735 4264 4152 3.933906555176e-06 4265 4152 2.622604370117e-05 4266 4152 8952264.76783 4267 4152 -1.302361488342e-05 4268 4152 6.914138793945e-06 4281 4152 -138827443.8751 4282 4152 -5.066394805908e-07 4283 4152 -86719444.43019 4284 4152 -46373434.23611 4285 4152 24305555.56353 4286 4152 -21679861.11823 4153 4153 1124677840.302 4154 4153 -3.814697265625e-06 4155 4153 -4.947185516357e-06 4156 4153 -133639662.3675 4157 4153 -8.046627044678e-07 4170 4153 -1.072883605957e-06 4171 4153 38113347.20754 4172 4153 -1.192092895508e-06 4173 4153 81018055.54225 4174 4153 -94173943.88989 4175 4153 -2.682209014893e-07 4248 4153 -2.294778823853e-06 4249 4153 -31882558.21685 4250 4153 2.682209014893e-07 4251 4153 -24305555.56354 4252 4153 -39081501.55876 4253 4153 17343750.0057 4263 4153 4.410743713379e-06 4264 4153 164138769.4832 4265 4153 -1.192092895508e-07 4266 4153 -1.156330108643e-05 4267 4153 -83408755.55014 4268 4153 69374999.9886 4281 4153 -8.344650268555e-07 4282 4153 -31882558.21681 4283 4153 -3.278255462646e-07 4284 4153 24305555.56353 4285 4153 -39081501.55875 4286 4153 17343750.00569 4154 4154 1191543893.2 4155 4154 -1.45435333252e-05 4156 4154 -1.192092895508e-06 4157 4154 142332552.4786 4170 4154 -1.388788223267e-05 4171 4154 -1.072883605957e-06 4172 4154 54829860.44019 4173 4154 -3.36766242981e-06 4174 4154 -3.576278686523e-07 4175 4154 -25180890.14437 4248 4154 86719444.4302 4249 4154 3.427267074585e-07 4250 4154 -99061955.12464 4251 4154 21679861.11823 4252 4154 17343750.0057 4253 4154 -36432062.04359 4263 4154 2.598762512207e-05 4264 4154 5.960464477539e-08 4265 4154 -104578818.0156 4266 4154 6.973743438721e-06 4267 4154 69374999.9886 4268 4154 -72810997.49471 4281 4154 -86719444.43019 4282 4154 -2.682209014893e-07 4283 4154 -99061955.12461 4284 4154 -21679861.11823 4285 4154 17343750.00569 4286 4154 -36432062.04358 4155 4155 1319128267.022 4156 4155 9.775161743164e-06 4157 4155 -5.745887756348e-05 4158 4155 174228645.9499 4159 4155 -4.291534423828e-06 4160 4155 -1.45435333252e-05 4170 4155 -118480247.2419 4171 4155 -81018055.54225 4172 4155 -3.695487976074e-06 4173 4155 -318367567.7659 4174 4155 -2.443790435791e-06 4175 4155 -1.460313796997e-05 4176 4155 -118480247.2419 4177 4155 81018055.54225 4178 4155 -3.516674041748e-06 4248 4155 -46373434.23613 4249 4155 24305555.56354 4250 4155 21679861.11823 4251 4155 -138827443.8752 4252 4155 2.682209014893e-07 4253 4155 86719444.4302 4254 4155 -46373434.23614 4255 4155 -24305555.56354 4256 4155 21679861.11823 4263 4155 8952264.76783 4264 4155 9.298324584961e-06 4265 4155 6.228685379028e-06 4266 4155 222474230.8735 4267 4155 3.933906555176e-06 4268 4155 2.622604370117e-05 4269 4155 8952264.76783 4270 4155 -1.302361488342e-05 4271 4155 6.914138793945e-06 4281 4155 -46373434.23611 4282 4155 -24305555.56353 4283 4155 -21679861.11823 4284 4155 -138827443.8751 4285 4155 -5.066394805908e-07 4286 4155 -86719444.43019 4287 4155 -46373434.23611 4288 4155 24305555.56353 4289 4155 -21679861.11823 4156 4156 1124677840.302 4157 4156 -3.814697265625e-06 4158 4156 -4.947185516357e-06 4159 4156 -133639662.3675 4160 4156 -8.046627044678e-07 4170 4156 -81018055.54225 4171 4156 -94173943.88989 4172 4156 -1.9371509552e-07 4173 4156 -1.072883605957e-06 4174 4156 38113347.20754 4175 4156 -1.192092895508e-06 4176 4156 81018055.54225 4177 4156 -94173943.88989 4178 4156 -2.682209014893e-07 4248 4156 24305555.56354 4249 4156 -39081501.55876 4250 4156 -17343750.00569 4251 4156 -2.294778823853e-06 4252 4156 -31882558.21685 4253 4156 2.682209014893e-07 4254 4156 -24305555.56354 4255 4156 -39081501.55876 4256 4156 17343750.0057 4263 4156 1.069903373718e-05 4264 4156 -83408755.55014 4265 4156 -69374999.9886 4266 4156 4.410743713379e-06 4267 4156 164138769.4832 4268 4156 -1.192092895508e-07 4269 4156 -1.156330108643e-05 4270 4156 -83408755.55014 4271 4156 69374999.9886 4281 4156 -24305555.56353 4282 4156 -39081501.55875 4283 4156 -17343750.0057 4284 4156 -8.344650268555e-07 4285 4156 -31882558.21681 4286 4156 -3.278255462646e-07 4287 4156 24305555.56353 4288 4156 -39081501.55875 4289 4156 17343750.00569 4157 4157 1191543893.2 4158 4157 -1.45435333252e-05 4159 4157 -1.192092895508e-06 4160 4157 142332552.4786 4170 4157 -3.576278686523e-06 4171 4157 -1.341104507446e-07 4172 4157 -25180890.14438 4173 4157 -1.388788223267e-05 4174 4157 -1.072883605957e-06 4175 4157 54829860.44019 4176 4157 -3.36766242981e-06 4177 4157 -3.576278686523e-07 4178 4157 -25180890.14437 4248 4157 21679861.11823 4249 4157 -17343750.0057 4250 4157 -36432062.04359 4251 4157 86719444.4302 4252 4157 3.427267074585e-07 4253 4157 -99061955.12464 4254 4157 21679861.11823 4255 4157 17343750.0057 4256 4157 -36432062.04359 4263 4157 6.169080734253e-06 4264 4157 -69374999.9886 4265 4157 -72810997.49471 4266 4157 2.598762512207e-05 4267 4157 5.960464477539e-08 4268 4157 -104578818.0156 4269 4157 6.973743438721e-06 4270 4157 69374999.9886 4271 4157 -72810997.49471 4281 4157 -21679861.11823 4282 4157 -17343750.0057 4283 4157 -36432062.04358 4284 4157 -86719444.43019 4285 4157 -2.682209014893e-07 4286 4157 -99061955.12461 4287 4157 -21679861.11823 4288 4157 17343750.00569 4289 4157 -36432062.04358 4158 4158 1319128267.022 4159 4158 9.775161743164e-06 4160 4158 -5.745887756348e-05 4161 4158 174228645.9499 4162 4158 -4.291534423828e-06 4163 4158 -1.45435333252e-05 4173 4158 -118480247.2419 4174 4158 -81018055.54225 4175 4158 -3.695487976074e-06 4176 4158 -318367567.7659 4177 4158 -2.443790435791e-06 4178 4158 -1.460313796997e-05 4179 4158 -118480247.2419 4180 4158 81018055.54225 4181 4158 -3.516674041748e-06 4251 4158 -46373434.23613 4252 4158 24305555.56354 4253 4158 21679861.11823 4254 4158 -138827443.8752 4255 4158 2.682209014893e-07 4256 4158 86719444.4302 4257 4158 -46373434.23614 4258 4158 -24305555.56354 4259 4158 21679861.11823 4266 4158 8952264.76783 4267 4158 9.298324584961e-06 4268 4158 6.228685379028e-06 4269 4158 222474230.8735 4270 4158 3.933906555176e-06 4271 4158 2.622604370117e-05 4272 4158 8952264.76783 4273 4158 -1.302361488342e-05 4274 4158 6.914138793945e-06 4284 4158 -46373434.23611 4285 4158 -24305555.56353 4286 4158 -21679861.11823 4287 4158 -138827443.8751 4288 4158 -5.066394805908e-07 4289 4158 -86719444.43019 4290 4158 -46373434.23611 4291 4158 24305555.56353 4292 4158 -21679861.11823 4159 4159 1124677840.302 4160 4159 -3.814697265625e-06 4161 4159 -4.947185516357e-06 4162 4159 -133639662.3675 4163 4159 -8.046627044678e-07 4173 4159 -81018055.54225 4174 4159 -94173943.88989 4175 4159 -1.9371509552e-07 4176 4159 -1.072883605957e-06 4177 4159 38113347.20754 4178 4159 -1.192092895508e-06 4179 4159 81018055.54225 4180 4159 -94173943.88989 4181 4159 -2.682209014893e-07 4251 4159 24305555.56354 4252 4159 -39081501.55876 4253 4159 -17343750.00569 4254 4159 -2.294778823853e-06 4255 4159 -31882558.21685 4256 4159 2.682209014893e-07 4257 4159 -24305555.56354 4258 4159 -39081501.55876 4259 4159 17343750.0057 4266 4159 1.069903373718e-05 4267 4159 -83408755.55014 4268 4159 -69374999.9886 4269 4159 4.410743713379e-06 4270 4159 164138769.4832 4271 4159 -1.192092895508e-07 4272 4159 -1.156330108643e-05 4273 4159 -83408755.55014 4274 4159 69374999.9886 4284 4159 -24305555.56353 4285 4159 -39081501.55875 4286 4159 -17343750.0057 4287 4159 -8.344650268555e-07 4288 4159 -31882558.21681 4289 4159 -3.278255462646e-07 4290 4159 24305555.56353 4291 4159 -39081501.55875 4292 4159 17343750.00569 4160 4160 1191543893.2 4161 4160 -1.45435333252e-05 4162 4160 -1.192092895508e-06 4163 4160 142332552.4786 4173 4160 -3.576278686523e-06 4174 4160 -1.341104507446e-07 4175 4160 -25180890.14438 4176 4160 -1.388788223267e-05 4177 4160 -1.072883605957e-06 4178 4160 54829860.44019 4179 4160 -3.36766242981e-06 4180 4160 -3.576278686523e-07 4181 4160 -25180890.14437 4251 4160 21679861.11823 4252 4160 -17343750.0057 4253 4160 -36432062.04359 4254 4160 86719444.4302 4255 4160 3.427267074585e-07 4256 4160 -99061955.12464 4257 4160 21679861.11823 4258 4160 17343750.0057 4259 4160 -36432062.04359 4266 4160 6.169080734253e-06 4267 4160 -69374999.9886 4268 4160 -72810997.49471 4269 4160 2.598762512207e-05 4270 4160 5.960464477539e-08 4271 4160 -104578818.0156 4272 4160 6.973743438721e-06 4273 4160 69374999.9886 4274 4160 -72810997.49471 4284 4160 -21679861.11823 4285 4160 -17343750.0057 4286 4160 -36432062.04358 4287 4160 -86719444.43019 4288 4160 -2.682209014893e-07 4289 4160 -99061955.12461 4290 4160 -21679861.11823 4291 4160 17343750.00569 4292 4160 -36432062.04358 4161 4161 1319128267.022 4162 4161 9.775161743164e-06 4163 4161 -5.745887756348e-05 4164 4161 174228645.9499 4165 4161 -4.291534423828e-06 4166 4161 -1.45435333252e-05 4176 4161 -118480247.2419 4177 4161 -81018055.54225 4178 4161 -3.695487976074e-06 4179 4161 -318367567.7659 4180 4161 -2.443790435791e-06 4181 4161 -1.460313796997e-05 4182 4161 -118480247.2419 4183 4161 81018055.54225 4184 4161 -3.516674041748e-06 4254 4161 -46373434.23613 4255 4161 24305555.56354 4256 4161 21679861.11823 4257 4161 -138827443.8752 4258 4161 2.682209014893e-07 4259 4161 86719444.4302 4260 4161 -46373434.23614 4261 4161 -24305555.56354 4262 4161 21679861.11823 4269 4161 8952264.76783 4270 4161 9.298324584961e-06 4271 4161 6.228685379028e-06 4272 4161 222474230.8735 4273 4161 3.933906555176e-06 4274 4161 2.622604370117e-05 4275 4161 8952264.76783 4276 4161 -1.302361488342e-05 4277 4161 6.914138793945e-06 4287 4161 -46373434.23611 4288 4161 -24305555.56353 4289 4161 -21679861.11823 4290 4161 -138827443.8751 4291 4161 -5.066394805908e-07 4292 4161 -86719444.43019 4293 4161 -46373434.23611 4294 4161 24305555.56353 4295 4161 -21679861.11823 4162 4162 1124677840.302 4163 4162 -3.814697265625e-06 4164 4162 -4.947185516357e-06 4165 4162 -133639662.3675 4166 4162 -8.046627044678e-07 4176 4162 -81018055.54225 4177 4162 -94173943.88989 4178 4162 -1.9371509552e-07 4179 4162 -1.072883605957e-06 4180 4162 38113347.20754 4181 4162 -1.192092895508e-06 4182 4162 81018055.54225 4183 4162 -94173943.88989 4184 4162 -2.682209014893e-07 4254 4162 24305555.56354 4255 4162 -39081501.55876 4256 4162 -17343750.00569 4257 4162 -2.294778823853e-06 4258 4162 -31882558.21685 4259 4162 2.682209014893e-07 4260 4162 -24305555.56354 4261 4162 -39081501.55876 4262 4162 17343750.0057 4269 4162 1.069903373718e-05 4270 4162 -83408755.55014 4271 4162 -69374999.9886 4272 4162 4.410743713379e-06 4273 4162 164138769.4832 4274 4162 -1.192092895508e-07 4275 4162 -1.156330108643e-05 4276 4162 -83408755.55014 4277 4162 69374999.9886 4287 4162 -24305555.56353 4288 4162 -39081501.55875 4289 4162 -17343750.0057 4290 4162 -8.344650268555e-07 4291 4162 -31882558.21681 4292 4162 -3.278255462646e-07 4293 4162 24305555.56353 4294 4162 -39081501.55875 4295 4162 17343750.00569 4163 4163 1191543893.2 4164 4163 -1.45435333252e-05 4165 4163 -1.192092895508e-06 4166 4163 142332552.4786 4176 4163 -3.576278686523e-06 4177 4163 -1.341104507446e-07 4178 4163 -25180890.14438 4179 4163 -1.388788223267e-05 4180 4163 -1.072883605957e-06 4181 4163 54829860.44019 4182 4163 -3.36766242981e-06 4183 4163 -3.576278686523e-07 4184 4163 -25180890.14437 4254 4163 21679861.11823 4255 4163 -17343750.0057 4256 4163 -36432062.04359 4257 4163 86719444.4302 4258 4163 3.427267074585e-07 4259 4163 -99061955.12464 4260 4163 21679861.11823 4261 4163 17343750.0057 4262 4163 -36432062.04359 4269 4163 6.169080734253e-06 4270 4163 -69374999.9886 4271 4163 -72810997.49471 4272 4163 2.598762512207e-05 4273 4163 5.960464477539e-08 4274 4163 -104578818.0156 4275 4163 6.973743438721e-06 4276 4163 69374999.9886 4277 4163 -72810997.49471 4287 4163 -21679861.11823 4288 4163 -17343750.0057 4289 4163 -36432062.04358 4290 4163 -86719444.43019 4291 4163 -2.682209014893e-07 4292 4163 -99061955.12461 4293 4163 -21679861.11823 4294 4163 17343750.00569 4295 4163 -36432062.04358 4164 4164 1437608510.215 4165 4164 81018053.92186 4166 4164 -4.029273986816e-05 4167 4164 32543005.93566 4168 4164 -81018054.8941 4169 4164 -4.887580871582e-06 4179 4164 -118480247.2419 4180 4164 -81018055.54225 4181 4164 -3.695487976074e-06 4182 4164 -318367567.7659 4183 4164 -2.443790435791e-06 4184 4164 -1.460313796997e-05 4185 4164 -118480247.2419 4186 4164 81018055.54225 4187 4164 -3.516674041748e-06 4257 4164 -46373434.23613 4258 4164 24305555.56354 4259 4164 21679861.11823 4260 4164 -175918799.4897 4261 4164 -24305555.27186 4262 4164 86719444.24762 4272 4164 8952264.76783 4273 4164 9.298324584961e-06 4274 4164 6.228685379028e-06 4275 4164 268847663.9159 4276 4164 24305555.07742 4277 4164 0.03653132915497 4278 4164 -28139091.37671 4279 4164 -24305555.36909 4280 4164 21679860.74398 4290 4164 -46373434.23611 4291 4164 -24305555.56353 4292 4164 -21679861.11823 4293 4164 -138827443.8751 4294 4164 -5.066394805908e-07 4295 4164 -86719444.43019 4296 4164 -46373434.23611 4297 4164 24305555.56353 4298 4164 -21679861.11823 4165 4165 1218851780.873 4166 4165 -1.430511474609e-06 4167 4165 -81018054.57003 4168 4165 -251018997.7335 4169 4165 -4.26173210144e-06 4179 4165 -81018055.54225 4180 4165 -94173943.88989 4181 4165 -1.9371509552e-07 4182 4165 -1.072883605957e-06 4183 4165 38113347.20754 4184 4165 -1.192092895508e-06 4185 4165 81018055.54225 4186 4165 -94173943.88989 4187 4165 -2.682209014893e-07 4257 4165 24305555.56354 4258 4165 -39081501.55876 4259 4165 -17343750.00569 4260 4165 -24305555.36908 4261 4165 -61681981.7616 4262 4165 17343749.94043 4272 4165 1.069903373718e-05 4273 4165 -83408755.55014 4274 4165 -69374999.9886 4275 4165 24305555.07742 4276 4165 203220270.0671 4277 4165 0.02920919656754 4278 4165 -24305555.27186 4279 4165 -113208178.6284 4280 4165 69374999.6084 4290 4165 -24305555.56353 4291 4165 -39081501.55875 4292 4165 -17343750.0057 4293 4165 -8.344650268555e-07 4294 4165 -31882558.21681 4295 4165 -3.278255462646e-07 4296 4165 24305555.56353 4297 4165 -39081501.55875 4298 4165 17343750.00569 4166 4166 1216724781.271 4167 4166 -4.52995300293e-06 4168 4166 -3.457069396973e-06 4169 4166 55270613.64501 4179 4166 -3.576278686523e-06 4180 4166 -1.341104507446e-07 4181 4166 -25180890.14438 4182 4166 -1.388788223267e-05 4183 4166 -1.072883605957e-06 4184 4166 54829860.44019 4185 4166 -3.36766242981e-06 4186 4166 -3.576278686523e-07 4187 4166 -25180890.14437 4257 4166 21679861.11823 4258 4166 -17343750.0057 4259 4166 -36432062.04359 4260 4166 86719444.24762 4261 4166 17343749.9078 4262 4166 -110741809.7386 4272 4166 6.169080734253e-06 4273 4166 -69374999.9886 4274 4166 -72810997.49471 4275 4166 -0.03649973869324 4276 4166 -0.02921465039253 4277 4166 -68146756.53808 4278 4166 21679860.55685 4279 4166 69374999.49133 4280 4166 -84490851.68298 4290 4166 -21679861.11823 4291 4166 -17343750.0057 4292 4166 -36432062.04358 4293 4166 -86719444.43019 4294 4166 -2.682209014893e-07 4295 4166 -99061955.12461 4296 4166 -21679861.11823 4297 4166 17343750.00569 4298 4166 -36432062.04358 4167 4167 839023631.6674 4168 4167 87343789.54536 4169 4167 -1.788139343262e-05 4182 4167 -118480247.2419 4183 4167 -81018055.54225 4184 4167 -3.695487976074e-06 4185 4167 -474827934.8941 4186 4167 -87343788.8972 4187 4167 -1.013278961182e-05 4188 4167 27033058.92538 4189 4167 64814443.78564 4190 4167 -1.192092895508e-07 4260 4167 -9282077.50499 4261 4167 29166666.38457 4262 4167 26015832.78049 4275 4167 -28139091.37673 4276 4167 -24305555.27187 4277 4167 -21679860.55685 4278 4167 142149470.4916 4279 4167 26203286.60958 4280 4167 17682222.18138 4293 4167 -46373434.23611 4294 4167 -24305555.56353 4295 4167 -21679861.11823 4296 4167 -180984988.3575 4297 4167 -26203286.41513 4298 4167 -88411110.90688 4299 4167 -8767515.558548 4300 4167 19444444.25638 4301 4167 -18020555.17262 4168 4168 709779954.7303 4169 4168 -3.48687171936e-06 4182 4168 -81018055.54225 4183 4168 -94173943.88989 4184 4168 -1.9371509552e-07 4185 4168 -87343788.57312 4186 4168 -91199082.2484 4188 4168 97221665.67847 4189 4168 31903583.53394 4190 4168 -7.152557373047e-07 4260 4168 19444444.25638 4261 4168 -9282077.505 4262 4168 -13874999.9393 4275 4168 -24305555.36909 4276 4168 -113208178.6284 4277 4168 -69374999.49133 4278 4168 26203286.60958 4279 4168 103376145.8295 4280 4168 14145833.18358 4293 4168 -24305555.56353 4294 4168 -39081501.55875 4295 4168 -17343750.0057 4296 4168 -26203286.31791 4297 4168 -65895674.85385 4298 4168 -18697916.56855 4299 4168 29166666.38457 4300 4168 -7306349.825743 4301 4168 20270833.25379 4169 4169 754398934.9387 4182 4169 -3.576278686523e-06 4183 4169 -1.341104507446e-07 4184 4169 -25180890.14438 4185 4169 -9.834766387939e-06 4186 4169 -1.788139343262e-07 4187 4169 -37595585.9186 4188 4169 -1.311302185059e-06 4189 4169 -4.172325134277e-07 4190 4169 67217632.52583 4260 4169 17343888.52033 4261 4169 -20812499.90895 4262 4169 -24752206.67999 4275 4169 -21679860.74398 4276 4169 -69374999.6084 4277 4169 -84490851.68299 4278 4169 -17682222.18137 4279 4169 -14145833.18359 4280 4169 -65836512.72296 4293 4169 -21679861.11823 4294 4169 -17343750.0057 4295 4169 -36432062.04358 4296 4169 -88411110.90688 4297 4169 -18697916.60118 4298 4169 -114040857.0942 4299 4169 -27030832.75893 4300 4169 13062499.95656 4301 4169 -24841207.22226 4170 4170 1319128267.022 4171 4170 9.775161743164e-06 4172 4170 -5.745887756348e-05 4173 4170 174228645.9499 4174 4170 -4.291534423828e-06 4175 4170 -1.45435333252e-05 4191 4170 -318367567.7659 4192 4170 -2.443790435791e-06 4193 4170 -1.460313796997e-05 4194 4170 -118480247.2419 4195 4170 81018055.54225 4196 4170 -3.516674041748e-06 4263 4170 -138827443.8752 4264 4170 2.682209014893e-07 4265 4170 86719444.4302 4266 4170 -46373434.23614 4267 4170 -24305555.56354 4268 4170 21679861.11823 4281 4170 222474230.8735 4282 4170 3.933906555176e-06 4283 4170 2.622604370117e-05 4284 4170 8952264.76783 4285 4170 -1.302361488342e-05 4286 4170 6.914138793945e-06 4302 4170 -138827443.8751 4303 4170 -5.066394805908e-07 4304 4170 -86719444.43019 4305 4170 -46373434.23611 4306 4170 24305555.56353 4307 4170 -21679861.11823 4171 4171 1124677840.302 4172 4171 -3.814697265625e-06 4173 4171 -4.947185516357e-06 4174 4171 -133639662.3675 4175 4171 -8.046627044678e-07 4191 4171 -1.072883605957e-06 4192 4171 38113347.20754 4193 4171 -1.192092895508e-06 4194 4171 81018055.54225 4195 4171 -94173943.88989 4196 4171 -2.682209014893e-07 4263 4171 -2.294778823853e-06 4264 4171 -31882558.21685 4265 4171 2.682209014893e-07 4266 4171 -24305555.56354 4267 4171 -39081501.55876 4268 4171 17343750.0057 4281 4171 4.410743713379e-06 4282 4171 164138769.4832 4283 4171 -1.192092895508e-07 4284 4171 -1.156330108643e-05 4285 4171 -83408755.55014 4286 4171 69374999.9886 4302 4171 -8.344650268555e-07 4303 4171 -31882558.21681 4304 4171 -3.278255462646e-07 4305 4171 24305555.56353 4306 4171 -39081501.55875 4307 4171 17343750.00569 4172 4172 1191543893.2 4173 4172 -1.45435333252e-05 4174 4172 -1.192092895508e-06 4175 4172 142332552.4786 4191 4172 -1.388788223267e-05 4192 4172 -1.072883605957e-06 4193 4172 54829860.44019 4194 4172 -3.36766242981e-06 4195 4172 -3.576278686523e-07 4196 4172 -25180890.14437 4263 4172 86719444.4302 4264 4172 3.427267074585e-07 4265 4172 -99061955.12464 4266 4172 21679861.11823 4267 4172 17343750.0057 4268 4172 -36432062.04359 4281 4172 2.598762512207e-05 4282 4172 5.960464477539e-08 4283 4172 -104578818.0156 4284 4172 6.973743438721e-06 4285 4172 69374999.9886 4286 4172 -72810997.49471 4302 4172 -86719444.43019 4303 4172 -2.682209014893e-07 4304 4172 -99061955.12461 4305 4172 -21679861.11823 4306 4172 17343750.00569 4307 4172 -36432062.04358 4173 4173 1319128267.022 4174 4173 9.775161743164e-06 4175 4173 -5.745887756348e-05 4176 4173 174228645.9499 4177 4173 -4.291534423828e-06 4178 4173 -1.45435333252e-05 4191 4173 -118480247.2419 4192 4173 -81018055.54225 4193 4173 -3.695487976074e-06 4194 4173 -318367567.7659 4195 4173 -2.443790435791e-06 4196 4173 -1.460313796997e-05 4197 4173 -118480247.2419 4198 4173 81018055.54225 4199 4173 -3.516674041748e-06 4263 4173 -46373434.23613 4264 4173 24305555.56354 4265 4173 21679861.11823 4266 4173 -138827443.8752 4267 4173 2.682209014893e-07 4268 4173 86719444.4302 4269 4173 -46373434.23614 4270 4173 -24305555.56354 4271 4173 21679861.11823 4281 4173 8952264.76783 4282 4173 9.298324584961e-06 4283 4173 6.228685379028e-06 4284 4173 222474230.8735 4285 4173 3.933906555176e-06 4286 4173 2.622604370117e-05 4287 4173 8952264.76783 4288 4173 -1.302361488342e-05 4289 4173 6.914138793945e-06 4302 4173 -46373434.23611 4303 4173 -24305555.56353 4304 4173 -21679861.11823 4305 4173 -138827443.8751 4306 4173 -5.066394805908e-07 4307 4173 -86719444.43019 4308 4173 -46373434.23611 4309 4173 24305555.56353 4310 4173 -21679861.11823 4174 4174 1124677840.302 4175 4174 -3.814697265625e-06 4176 4174 -4.947185516357e-06 4177 4174 -133639662.3675 4178 4174 -8.046627044678e-07 4191 4174 -81018055.54225 4192 4174 -94173943.88989 4193 4174 -1.9371509552e-07 4194 4174 -1.072883605957e-06 4195 4174 38113347.20754 4196 4174 -1.192092895508e-06 4197 4174 81018055.54225 4198 4174 -94173943.88989 4199 4174 -2.682209014893e-07 4263 4174 24305555.56354 4264 4174 -39081501.55876 4265 4174 -17343750.00569 4266 4174 -2.294778823853e-06 4267 4174 -31882558.21685 4268 4174 2.682209014893e-07 4269 4174 -24305555.56354 4270 4174 -39081501.55876 4271 4174 17343750.0057 4281 4174 1.069903373718e-05 4282 4174 -83408755.55014 4283 4174 -69374999.9886 4284 4174 4.410743713379e-06 4285 4174 164138769.4832 4286 4174 -1.192092895508e-07 4287 4174 -1.156330108643e-05 4288 4174 -83408755.55014 4289 4174 69374999.9886 4302 4174 -24305555.56353 4303 4174 -39081501.55875 4304 4174 -17343750.0057 4305 4174 -8.344650268555e-07 4306 4174 -31882558.21681 4307 4174 -3.278255462646e-07 4308 4174 24305555.56353 4309 4174 -39081501.55875 4310 4174 17343750.00569 4175 4175 1191543893.2 4176 4175 -1.45435333252e-05 4177 4175 -1.192092895508e-06 4178 4175 142332552.4786 4191 4175 -3.576278686523e-06 4192 4175 -1.341104507446e-07 4193 4175 -25180890.14438 4194 4175 -1.388788223267e-05 4195 4175 -1.072883605957e-06 4196 4175 54829860.44019 4197 4175 -3.36766242981e-06 4198 4175 -3.576278686523e-07 4199 4175 -25180890.14437 4263 4175 21679861.11823 4264 4175 -17343750.0057 4265 4175 -36432062.04359 4266 4175 86719444.4302 4267 4175 3.427267074585e-07 4268 4175 -99061955.12464 4269 4175 21679861.11823 4270 4175 17343750.0057 4271 4175 -36432062.04359 4281 4175 6.169080734253e-06 4282 4175 -69374999.9886 4283 4175 -72810997.49471 4284 4175 2.598762512207e-05 4285 4175 5.960464477539e-08 4286 4175 -104578818.0156 4287 4175 6.973743438721e-06 4288 4175 69374999.9886 4289 4175 -72810997.49471 4302 4175 -21679861.11823 4303 4175 -17343750.0057 4304 4175 -36432062.04358 4305 4175 -86719444.43019 4306 4175 -2.682209014893e-07 4307 4175 -99061955.12461 4308 4175 -21679861.11823 4309 4175 17343750.00569 4310 4175 -36432062.04358 4176 4176 1319128267.022 4177 4176 9.775161743164e-06 4178 4176 -5.745887756348e-05 4179 4176 174228645.9499 4180 4176 -4.291534423828e-06 4181 4176 -1.45435333252e-05 4194 4176 -118480247.2419 4195 4176 -81018055.54225 4196 4176 -3.695487976074e-06 4197 4176 -318367567.7659 4198 4176 -2.443790435791e-06 4199 4176 -1.460313796997e-05 4200 4176 -118480247.2419 4201 4176 81018055.54225 4202 4176 -3.516674041748e-06 4266 4176 -46373434.23613 4267 4176 24305555.56354 4268 4176 21679861.11823 4269 4176 -138827443.8752 4270 4176 2.682209014893e-07 4271 4176 86719444.4302 4272 4176 -46373434.23614 4273 4176 -24305555.56354 4274 4176 21679861.11823 4284 4176 8952264.76783 4285 4176 9.298324584961e-06 4286 4176 6.228685379028e-06 4287 4176 222474230.8735 4288 4176 3.933906555176e-06 4289 4176 2.622604370117e-05 4290 4176 8952264.76783 4291 4176 -1.302361488342e-05 4292 4176 6.914138793945e-06 4305 4176 -46373434.23611 4306 4176 -24305555.56353 4307 4176 -21679861.11823 4308 4176 -138827443.8751 4309 4176 -5.066394805908e-07 4310 4176 -86719444.43019 4311 4176 -46373434.23611 4312 4176 24305555.56353 4313 4176 -21679861.11823 4177 4177 1124677840.302 4178 4177 -3.814697265625e-06 4179 4177 -4.947185516357e-06 4180 4177 -133639662.3675 4181 4177 -8.046627044678e-07 4194 4177 -81018055.54225 4195 4177 -94173943.88989 4196 4177 -1.9371509552e-07 4197 4177 -1.072883605957e-06 4198 4177 38113347.20754 4199 4177 -1.192092895508e-06 4200 4177 81018055.54225 4201 4177 -94173943.88989 4202 4177 -2.682209014893e-07 4266 4177 24305555.56354 4267 4177 -39081501.55876 4268 4177 -17343750.00569 4269 4177 -2.294778823853e-06 4270 4177 -31882558.21685 4271 4177 2.682209014893e-07 4272 4177 -24305555.56354 4273 4177 -39081501.55876 4274 4177 17343750.0057 4284 4177 1.069903373718e-05 4285 4177 -83408755.55014 4286 4177 -69374999.9886 4287 4177 4.410743713379e-06 4288 4177 164138769.4832 4289 4177 -1.192092895508e-07 4290 4177 -1.156330108643e-05 4291 4177 -83408755.55014 4292 4177 69374999.9886 4305 4177 -24305555.56353 4306 4177 -39081501.55875 4307 4177 -17343750.0057 4308 4177 -8.344650268555e-07 4309 4177 -31882558.21681 4310 4177 -3.278255462646e-07 4311 4177 24305555.56353 4312 4177 -39081501.55875 4313 4177 17343750.00569 4178 4178 1191543893.2 4179 4178 -1.45435333252e-05 4180 4178 -1.192092895508e-06 4181 4178 142332552.4786 4194 4178 -3.576278686523e-06 4195 4178 -1.341104507446e-07 4196 4178 -25180890.14438 4197 4178 -1.388788223267e-05 4198 4178 -1.072883605957e-06 4199 4178 54829860.44019 4200 4178 -3.36766242981e-06 4201 4178 -3.576278686523e-07 4202 4178 -25180890.14437 4266 4178 21679861.11823 4267 4178 -17343750.0057 4268 4178 -36432062.04359 4269 4178 86719444.4302 4270 4178 3.427267074585e-07 4271 4178 -99061955.12464 4272 4178 21679861.11823 4273 4178 17343750.0057 4274 4178 -36432062.04359 4284 4178 6.169080734253e-06 4285 4178 -69374999.9886 4286 4178 -72810997.49471 4287 4178 2.598762512207e-05 4288 4178 5.960464477539e-08 4289 4178 -104578818.0156 4290 4178 6.973743438721e-06 4291 4178 69374999.9886 4292 4178 -72810997.49471 4305 4178 -21679861.11823 4306 4178 -17343750.0057 4307 4178 -36432062.04358 4308 4178 -86719444.43019 4309 4178 -2.682209014893e-07 4310 4178 -99061955.12461 4311 4178 -21679861.11823 4312 4178 17343750.00569 4313 4178 -36432062.04358 4179 4179 1319128267.022 4180 4179 9.775161743164e-06 4181 4179 -5.745887756348e-05 4182 4179 174228645.9499 4183 4179 -4.291534423828e-06 4184 4179 -1.45435333252e-05 4197 4179 -118480247.2419 4198 4179 -81018055.54225 4199 4179 -3.695487976074e-06 4200 4179 -318367567.7659 4201 4179 -2.443790435791e-06 4202 4179 -1.460313796997e-05 4203 4179 -118480247.2419 4204 4179 81018055.54225 4205 4179 -3.516674041748e-06 4269 4179 -46373434.23613 4270 4179 24305555.56354 4271 4179 21679861.11823 4272 4179 -138827443.8752 4273 4179 2.682209014893e-07 4274 4179 86719444.4302 4275 4179 -46373434.23614 4276 4179 -24305555.56354 4277 4179 21679861.11823 4287 4179 8952264.76783 4288 4179 9.298324584961e-06 4289 4179 6.228685379028e-06 4290 4179 222474230.8735 4291 4179 3.933906555176e-06 4292 4179 2.622604370117e-05 4293 4179 8952264.76783 4294 4179 -1.302361488342e-05 4295 4179 6.914138793945e-06 4308 4179 -46373434.23611 4309 4179 -24305555.56353 4310 4179 -21679861.11823 4311 4179 -138827443.8751 4312 4179 -5.066394805908e-07 4313 4179 -86719444.43019 4314 4179 -46373434.23611 4315 4179 24305555.56353 4316 4179 -21679861.11823 4180 4180 1124677840.302 4181 4180 -3.814697265625e-06 4182 4180 -4.947185516357e-06 4183 4180 -133639662.3675 4184 4180 -8.046627044678e-07 4197 4180 -81018055.54225 4198 4180 -94173943.88989 4199 4180 -1.9371509552e-07 4200 4180 -1.072883605957e-06 4201 4180 38113347.20754 4202 4180 -1.192092895508e-06 4203 4180 81018055.54225 4204 4180 -94173943.88989 4205 4180 -2.682209014893e-07 4269 4180 24305555.56354 4270 4180 -39081501.55876 4271 4180 -17343750.00569 4272 4180 -2.294778823853e-06 4273 4180 -31882558.21685 4274 4180 2.682209014893e-07 4275 4180 -24305555.56354 4276 4180 -39081501.55876 4277 4180 17343750.0057 4287 4180 1.069903373718e-05 4288 4180 -83408755.55014 4289 4180 -69374999.9886 4290 4180 4.410743713379e-06 4291 4180 164138769.4832 4292 4180 -1.192092895508e-07 4293 4180 -1.156330108643e-05 4294 4180 -83408755.55014 4295 4180 69374999.9886 4308 4180 -24305555.56353 4309 4180 -39081501.55875 4310 4180 -17343750.0057 4311 4180 -8.344650268555e-07 4312 4180 -31882558.21681 4313 4180 -3.278255462646e-07 4314 4180 24305555.56353 4315 4180 -39081501.55875 4316 4180 17343750.00569 4181 4181 1191543893.2 4182 4181 -1.45435333252e-05 4183 4181 -1.192092895508e-06 4184 4181 142332552.4786 4197 4181 -3.576278686523e-06 4198 4181 -1.341104507446e-07 4199 4181 -25180890.14438 4200 4181 -1.388788223267e-05 4201 4181 -1.072883605957e-06 4202 4181 54829860.44019 4203 4181 -3.36766242981e-06 4204 4181 -3.576278686523e-07 4205 4181 -25180890.14437 4269 4181 21679861.11823 4270 4181 -17343750.0057 4271 4181 -36432062.04359 4272 4181 86719444.4302 4273 4181 3.427267074585e-07 4274 4181 -99061955.12464 4275 4181 21679861.11823 4276 4181 17343750.0057 4277 4181 -36432062.04359 4287 4181 6.169080734253e-06 4288 4181 -69374999.9886 4289 4181 -72810997.49471 4290 4181 2.598762512207e-05 4291 4181 5.960464477539e-08 4292 4181 -104578818.0156 4293 4181 6.973743438721e-06 4294 4181 69374999.9886 4295 4181 -72810997.49471 4308 4181 -21679861.11823 4309 4181 -17343750.0057 4310 4181 -36432062.04358 4311 4181 -86719444.43019 4312 4181 -2.682209014893e-07 4313 4181 -99061955.12461 4314 4181 -21679861.11823 4315 4181 17343750.00569 4316 4181 -36432062.04358 4182 4182 1319128267.022 4183 4182 9.775161743164e-06 4184 4182 -5.745887756348e-05 4185 4182 174228645.9499 4186 4182 -4.291534423828e-06 4187 4182 -1.45435333252e-05 4200 4182 -118480247.2419 4201 4182 -81018055.54225 4202 4182 -3.695487976074e-06 4203 4182 -318367567.7659 4204 4182 -2.443790435791e-06 4205 4182 -1.460313796997e-05 4206 4182 -118480247.2419 4207 4182 81018055.54225 4208 4182 -3.516674041748e-06 4272 4182 -46373434.23613 4273 4182 24305555.56354 4274 4182 21679861.11823 4275 4182 -138827443.8752 4276 4182 2.682209014893e-07 4277 4182 86719444.4302 4278 4182 -46373434.23614 4279 4182 -24305555.56354 4280 4182 21679861.11823 4290 4182 8952264.76783 4291 4182 9.298324584961e-06 4292 4182 6.228685379028e-06 4293 4182 222474230.8735 4294 4182 3.933906555176e-06 4295 4182 2.622604370117e-05 4296 4182 8952264.76783 4297 4182 -1.302361488342e-05 4298 4182 6.914138793945e-06 4311 4182 -46373434.23611 4312 4182 -24305555.56353 4313 4182 -21679861.11823 4314 4182 -138827443.8751 4315 4182 -5.066394805908e-07 4316 4182 -86719444.43019 4317 4182 -46373434.23611 4318 4182 24305555.56353 4319 4182 -21679861.11823 4183 4183 1124677840.302 4184 4183 -3.814697265625e-06 4185 4183 -4.947185516357e-06 4186 4183 -133639662.3675 4187 4183 -8.046627044678e-07 4200 4183 -81018055.54225 4201 4183 -94173943.88989 4202 4183 -1.9371509552e-07 4203 4183 -1.072883605957e-06 4204 4183 38113347.20754 4205 4183 -1.192092895508e-06 4206 4183 81018055.54225 4207 4183 -94173943.88989 4208 4183 -2.682209014893e-07 4272 4183 24305555.56354 4273 4183 -39081501.55876 4274 4183 -17343750.00569 4275 4183 -2.294778823853e-06 4276 4183 -31882558.21685 4277 4183 2.682209014893e-07 4278 4183 -24305555.56354 4279 4183 -39081501.55876 4280 4183 17343750.0057 4290 4183 1.069903373718e-05 4291 4183 -83408755.55014 4292 4183 -69374999.9886 4293 4183 4.410743713379e-06 4294 4183 164138769.4832 4295 4183 -1.192092895508e-07 4296 4183 -1.156330108643e-05 4297 4183 -83408755.55014 4298 4183 69374999.9886 4311 4183 -24305555.56353 4312 4183 -39081501.55875 4313 4183 -17343750.0057 4314 4183 -8.344650268555e-07 4315 4183 -31882558.21681 4316 4183 -3.278255462646e-07 4317 4183 24305555.56353 4318 4183 -39081501.55875 4319 4183 17343750.00569 4184 4184 1191543893.2 4185 4184 -1.45435333252e-05 4186 4184 -1.192092895508e-06 4187 4184 142332552.4786 4200 4184 -3.576278686523e-06 4201 4184 -1.341104507446e-07 4202 4184 -25180890.14438 4203 4184 -1.388788223267e-05 4204 4184 -1.072883605957e-06 4205 4184 54829860.44019 4206 4184 -3.36766242981e-06 4207 4184 -3.576278686523e-07 4208 4184 -25180890.14437 4272 4184 21679861.11823 4273 4184 -17343750.0057 4274 4184 -36432062.04359 4275 4184 86719444.4302 4276 4184 3.427267074585e-07 4277 4184 -99061955.12464 4278 4184 21679861.11823 4279 4184 17343750.0057 4280 4184 -36432062.04359 4290 4184 6.169080734253e-06 4291 4184 -69374999.9886 4292 4184 -72810997.49471 4293 4184 2.598762512207e-05 4294 4184 5.960464477539e-08 4295 4184 -104578818.0156 4296 4184 6.973743438721e-06 4297 4184 69374999.9886 4298 4184 -72810997.49471 4311 4184 -21679861.11823 4312 4184 -17343750.0057 4313 4184 -36432062.04358 4314 4184 -86719444.43019 4315 4184 -2.682209014893e-07 4316 4184 -99061955.12461 4317 4184 -21679861.11823 4318 4184 17343750.00569 4319 4184 -36432062.04358 4185 4185 1462641058.094 4186 4185 87479495.38205 4187 4185 -4.52995300293e-05 4188 4185 42596143.66857 4189 4185 -77867916.96021 4190 4185 1.072883605957e-06 4203 4185 -118480247.2419 4204 4185 -81018055.54225 4205 4185 -3.695487976074e-06 4206 4185 -324895063.8002 4207 4185 -3176292.746493 4208 4185 -9.357929229736e-06 4209 4185 -126834155.7336 4210 4185 80908502.89777 4211 4185 7.748603820801e-07 4275 4185 -46373434.23613 4276 4185 24305555.56354 4277 4185 21679861.11823 4278 4185 -180984988.3575 4279 4185 -26203286.31791 4280 4185 88411110.90689 4293 4185 8952264.76783 4294 4185 9.298324584961e-06 4295 4185 6.228685379028e-06 4296 4185 274245586.3934 4297 4185 26243998.59326 4298 4185 0.03795540332794 4299 4185 -25967702.04295 4300 4185 -23360508.58819 4301 4185 21679166.28526 4314 4185 -46373434.23611 4315 4185 -24305555.56353 4316 4185 -21679861.11823 4317 4185 -140996480.1669 4318 4185 -952893.2695215 4319 4185 -87564583.31886 4320 4185 -48879322.66663 4321 4185 24272689.58237 4322 4185 -22525694.45184 4186 4186 1226949792.75 4187 4186 1.54972076416e-06 4188 4186 -77867916.63614 4189 4186 -240777220.5996 4190 4186 8.642673492432e-07 4203 4186 -81018055.54225 4204 4186 -94173943.88989 4205 4186 -1.9371509552e-07 4206 4186 -3176292.746491 4207 4186 34621896.54898 4208 4186 2.384185791016e-06 4209 4186 80908502.89777 4210 4186 -91659637.50231 4211 4186 4.619359970093e-07 4275 4186 24305555.56354 4276 4186 -39081501.55876 4277 4186 -17343750.00569 4278 4186 -26203286.41513 4279 4186 -65895674.85387 4280 4186 18697916.60118 4293 4186 1.069903373718e-05 4294 4186 -83408755.55014 4295 4186 -69374999.9886 4296 4186 26243998.59325 4297 4186 203537802.7107 4298 4186 0.03034836053848 4299 4186 -23360508.49097 4300 4186 -110980197.151 4301 4186 69374999.59698 4314 4186 -24305555.56353 4315 4186 -39081501.55875 4316 4186 -17343750.0057 4317 4186 -952893.2695235 4318 4186 -33140775.69073 4319 4186 -677083.3331564 4320 4186 24272689.58237 4321 4186 -38326906.89252 4322 4186 16666666.67214 4187 4187 1232160055.067 4188 4187 1.311302185059e-06 4189 4187 8.046627044678e-07 4190 4187 63364897.36566 4203 4187 -3.576278686523e-06 4204 4187 -1.341104507446e-07 4205 4187 -25180890.14438 4206 4187 -9.536743164063e-06 4207 4187 2.503395080566e-06 4208 4187 52736138.02881 4209 4187 5.662441253662e-07 4210 4187 4.91738319397e-07 4211 4187 -26774413.26387 4275 4187 21679861.11823 4276 4187 -17343750.0057 4277 4187 -36432062.04359 4278 4187 88411110.90689 4279 4187 18697916.56855 4280 4187 -114040857.0943 4293 4187 6.169080734253e-06 4294 4187 -69374999.9886 4295 4187 -72810997.49471 4296 4187 -0.03792554140091 4297 4187 -0.03035613894463 4298 4187 -69147840.74464 4299 4187 21679166.091 4300 4187 69374999.4742 4301 4187 -84314737.28063 4314 4187 -21679861.11823 4315 4187 -17343750.0057 4316 4187 -36432062.04358 4317 4187 -87564583.31903 4318 4187 -677083.3332899 4319 4187 -100252145.5455 4320 4187 -22525694.45184 4321 4187 16666666.67214 4322 4187 -36909325.87324 4188 4188 787388547.2823 4189 4188 -2214583.809871 4190 4188 1.430511474609e-06 4206 4188 -116805592.7516 4207 4188 -81004084.40933 4208 4188 -1.579523086548e-06 4209 4188 -332162222.5414 4210 4188 -4280016.395824 4211 4188 -2.384185791016e-07 4212 4188 80715855.11751 4213 4188 -13975781.07962 4214 4188 -1.311302185059e-06 4215 4188 -125994423.3344 4216 4188 82120716.65231 4217 4188 2.652406692505e-06 4278 4188 -8767515.558547 4279 4188 29166666.38457 4280 4188 27030832.75893 4296 4188 -25967702.04295 4297 4188 -23360508.49097 4298 4188 -21679166.091 4299 4188 119740849.7094 4300 4188 -664378.9397402 4301 4188 17135277.77496 4317 4188 -45870736.57861 4318 4188 -24301364.19971 4319 4188 -21679166.67379 4320 4188 -141002035.2671 4321 4188 -1284012.256595 4322 4188 -85676388.87482 4323 4188 4511607.61049 4324 4188 -4192758.28457 4325 4188 3215972.223778 4326 4188 -47751770.62455 4327 4188 24636355.787 4328 4188 -21159027.78473 4189 4189 809133076.5767 4190 4189 9.655952453613e-06 4206 4189 -81004084.40933 4207 4189 -94677982.04967 4208 4189 4.91738319397e-07 4209 4189 -4280016.395824 4210 4189 28012191.60674 4211 4189 6.07967376709e-06 4212 4189 18431441.13728 4213 4189 -72760112.34643 4214 4189 -2.413988113403e-06 4215 4189 82120716.65231 4216 4189 -98062170.35532 4217 4189 -1.490116119385e-07 4278 4189 19444444.25638 4279 4189 -7306349.825742 4280 4189 -13062499.95656 4296 4189 -23360508.58819 4297 4189 -110980197.151 4298 4189 -69374999.4742 4299 4189 -664378.9397414 4300 4189 126264245.7775 4301 4189 7208333.185862 4317 4189 -24301364.19971 4318 4189 -39232415.43151 4319 4189 -17343750.0057 4320 4189 -1284012.256596 4321 4189 -32949093.52409 4322 4189 -677083.3331572 4323 4189 5529463.940844 4324 4189 -41531445.75453 4325 4189 33333333.32786 4326 4189 24636355.787 4327 4189 -39372046.84255 4328 4189 16666666.67214 4190 4190 788376653.8888 4206 4190 -1.698732376099e-06 4207 4190 4.91738319397e-07 4208 4190 -24862535.50895 4209 4190 -2.384185791016e-07 4210 4190 6.258487701416e-06 4211 4190 42361810.64111 4212 4190 -2.384185791016e-07 4213 4190 -2.443790435791e-06 4214 4190 61876825.47302 4215 4190 2.205371856689e-06 4216 4190 -1.192092895508e-07 4217 4190 -30944974.07514 4278 4190 18020555.17262 4279 4190 -20270833.25379 4280 4190 -24841207.22225 4296 4190 -21679166.28526 4297 4190 -69374999.59698 4298 4190 -84314737.28062 4299 4190 -17135277.77496 4300 4190 -7208333.18587 4301 4190 -74091157.2951 4317 4190 -21679166.67379 4318 4190 -17343750.0057 4319 4190 -36335759.26896 4320 4190 -85676388.87482 4321 4190 -677083.3332907 4322 4190 -97565514.93122 4323 4190 -4909027.779057 4324 4190 33333333.32786 4325 4190 -33978945.7605 4326 4190 -21159027.78473 4327 4190 16666666.67214 4328 4190 -35825485.57976 4191 4191 659564133.511 4192 4191 1.192092895508e-06 4193 4191 -3.0517578125e-05 4194 4191 87114322.97494 4195 4191 16203611.10845 4196 4191 -7.62939453125e-06 4281 4191 -138827443.8752 4282 4191 2.682209014893e-07 4283 4191 86719444.4302 4284 4191 -46373434.23614 4285 4191 -24305555.56354 4286 4191 21679861.11823 4302 4191 111237115.4367 4303 4191 -8.344650268555e-07 4304 4191 -17343888.88603 4305 4191 4476132.383917 4306 4191 4861111.1127 4307 4191 -4335972.223642 4192 4192 562338920.1509 4193 4192 8.344650268555e-06 4194 4192 -16203611.10845 4195 4192 -66819831.18376 4196 4192 2.235174179077e-06 4281 4192 -2.294778823853e-06 4282 4192 -31882558.21685 4283 4192 2.682209014893e-07 4284 4192 -24305555.56354 4285 4192 -39081501.55876 4286 4192 17343750.0057 4302 4192 -7.152557373047e-07 4303 4192 82069384.74161 4304 4192 -3.75509262085e-06 4305 4192 -4861111.112713 4306 4192 -41704377.77507 4307 4192 34687499.9943 4193 4193 595771946.5998 4194 4193 -7.62939453125e-06 4195 4193 2.026557922363e-06 4196 4193 71166276.23929 4281 4193 86719444.4302 4282 4193 3.427267074585e-07 4283 4193 -99061955.12464 4284 4193 21679861.11823 4285 4193 17343750.0057 4286 4193 -36432062.04359 4302 4193 17343888.88605 4303 4193 -3.576278686523e-06 4304 4193 -52289409.00778 4305 4193 4335972.22365 4306 4193 34687499.9943 4307 4193 -36405498.74735 4194 4194 659564133.511 4195 4194 1.192092895508e-06 4196 4194 -3.0517578125e-05 4197 4194 87114322.97494 4198 4194 16203611.10845 4199 4194 -7.62939453125e-06 4281 4194 -46373434.23613 4282 4194 24305555.56354 4283 4194 21679861.11823 4284 4194 -138827443.8752 4285 4194 2.682209014893e-07 4286 4194 86719444.4302 4287 4194 -46373434.23614 4288 4194 -24305555.56354 4289 4194 21679861.11823 4302 4194 4476132.383914 4303 4194 -4861111.112702 4304 4194 -4335972.223643 4305 4194 111237115.4367 4306 4194 -8.344650268555e-07 4307 4194 -17343888.88603 4308 4194 4476132.383917 4309 4194 4861111.1127 4310 4194 -4335972.223642 4195 4195 562338920.1509 4196 4195 8.344650268555e-06 4197 4195 -16203611.10845 4198 4195 -66819831.18376 4199 4195 2.235174179077e-06 4281 4195 24305555.56354 4282 4195 -39081501.55876 4283 4195 -17343750.00569 4284 4195 -2.294778823853e-06 4285 4195 -31882558.21685 4286 4195 2.682209014893e-07 4287 4195 -24305555.56354 4288 4195 -39081501.55876 4289 4195 17343750.0057 4302 4195 4861111.112712 4303 4195 -41704377.77507 4304 4195 -34687499.9943 4305 4195 -7.152557373047e-07 4306 4195 82069384.74161 4307 4195 -3.75509262085e-06 4308 4195 -4861111.112713 4309 4195 -41704377.77507 4310 4195 34687499.9943 4196 4196 595771946.5998 4197 4196 -7.62939453125e-06 4198 4196 2.026557922363e-06 4199 4196 71166276.23929 4281 4196 21679861.11823 4282 4196 -17343750.0057 4283 4196 -36432062.04359 4284 4196 86719444.4302 4285 4196 3.427267074585e-07 4286 4196 -99061955.12464 4287 4196 21679861.11823 4288 4196 17343750.0057 4289 4196 -36432062.04359 4302 4196 4335972.223649 4303 4196 -34687499.9943 4304 4196 -36405498.74736 4305 4196 17343888.88605 4306 4196 -3.576278686523e-06 4307 4196 -52289409.00778 4308 4196 4335972.22365 4309 4196 34687499.9943 4310 4196 -36405498.74735 4197 4197 659564133.511 4198 4197 1.192092895508e-06 4199 4197 -3.0517578125e-05 4200 4197 87114322.97494 4201 4197 16203611.10845 4202 4197 -7.62939453125e-06 4284 4197 -46373434.23613 4285 4197 24305555.56354 4286 4197 21679861.11823 4287 4197 -138827443.8752 4288 4197 2.682209014893e-07 4289 4197 86719444.4302 4290 4197 -46373434.23614 4291 4197 -24305555.56354 4292 4197 21679861.11823 4305 4197 4476132.383914 4306 4197 -4861111.112702 4307 4197 -4335972.223643 4308 4197 111237115.4367 4309 4197 -8.344650268555e-07 4310 4197 -17343888.88603 4311 4197 4476132.383917 4312 4197 4861111.1127 4313 4197 -4335972.223642 4198 4198 562338920.1509 4199 4198 8.344650268555e-06 4200 4198 -16203611.10845 4201 4198 -66819831.18376 4202 4198 2.235174179077e-06 4284 4198 24305555.56354 4285 4198 -39081501.55876 4286 4198 -17343750.00569 4287 4198 -2.294778823853e-06 4288 4198 -31882558.21685 4289 4198 2.682209014893e-07 4290 4198 -24305555.56354 4291 4198 -39081501.55876 4292 4198 17343750.0057 4305 4198 4861111.112712 4306 4198 -41704377.77507 4307 4198 -34687499.9943 4308 4198 -7.152557373047e-07 4309 4198 82069384.74161 4310 4198 -3.75509262085e-06 4311 4198 -4861111.112713 4312 4198 -41704377.77507 4313 4198 34687499.9943 4199 4199 595771946.5998 4200 4199 -7.62939453125e-06 4201 4199 2.026557922363e-06 4202 4199 71166276.23929 4284 4199 21679861.11823 4285 4199 -17343750.0057 4286 4199 -36432062.04359 4287 4199 86719444.4302 4288 4199 3.427267074585e-07 4289 4199 -99061955.12464 4290 4199 21679861.11823 4291 4199 17343750.0057 4292 4199 -36432062.04359 4305 4199 4335972.223649 4306 4199 -34687499.9943 4307 4199 -36405498.74736 4308 4199 17343888.88605 4309 4199 -3.576278686523e-06 4310 4199 -52289409.00778 4311 4199 4335972.22365 4312 4199 34687499.9943 4313 4199 -36405498.74735 4200 4200 659564133.511 4201 4200 1.192092895508e-06 4202 4200 -3.0517578125e-05 4203 4200 87114322.97494 4204 4200 16203611.10845 4205 4200 -7.62939453125e-06 4287 4200 -46373434.23613 4288 4200 24305555.56354 4289 4200 21679861.11823 4290 4200 -138827443.8752 4291 4200 2.682209014893e-07 4292 4200 86719444.4302 4293 4200 -46373434.23614 4294 4200 -24305555.56354 4295 4200 21679861.11823 4308 4200 4476132.383914 4309 4200 -4861111.112702 4310 4200 -4335972.223643 4311 4200 111237115.4367 4312 4200 -8.344650268555e-07 4313 4200 -17343888.88603 4314 4200 4476132.383917 4315 4200 4861111.1127 4316 4200 -4335972.223642 4201 4201 562338920.1509 4202 4201 8.344650268555e-06 4203 4201 -16203611.10845 4204 4201 -66819831.18376 4205 4201 2.235174179077e-06 4287 4201 24305555.56354 4288 4201 -39081501.55876 4289 4201 -17343750.00569 4290 4201 -2.294778823853e-06 4291 4201 -31882558.21685 4292 4201 2.682209014893e-07 4293 4201 -24305555.56354 4294 4201 -39081501.55876 4295 4201 17343750.0057 4308 4201 4861111.112712 4309 4201 -41704377.77507 4310 4201 -34687499.9943 4311 4201 -7.152557373047e-07 4312 4201 82069384.74161 4313 4201 -3.75509262085e-06 4314 4201 -4861111.112713 4315 4201 -41704377.77507 4316 4201 34687499.9943 4202 4202 595771946.5998 4203 4202 -7.62939453125e-06 4204 4202 2.026557922363e-06 4205 4202 71166276.23929 4287 4202 21679861.11823 4288 4202 -17343750.0057 4289 4202 -36432062.04359 4290 4202 86719444.4302 4291 4202 3.427267074585e-07 4292 4202 -99061955.12464 4293 4202 21679861.11823 4294 4202 17343750.0057 4295 4202 -36432062.04359 4308 4202 4335972.223649 4309 4202 -34687499.9943 4310 4202 -36405498.74736 4311 4202 17343888.88605 4312 4202 -3.576278686523e-06 4313 4202 -52289409.00778 4314 4202 4335972.22365 4315 4202 34687499.9943 4316 4202 -36405498.74735 4203 4203 659564133.511 4204 4203 1.192092895508e-06 4205 4203 -3.0517578125e-05 4206 4203 87114322.97494 4207 4203 16203611.10845 4208 4203 -7.62939453125e-06 4290 4203 -46373434.23613 4291 4203 24305555.56354 4292 4203 21679861.11823 4293 4203 -138827443.8752 4294 4203 2.682209014893e-07 4295 4203 86719444.4302 4296 4203 -46373434.23614 4297 4203 -24305555.56354 4298 4203 21679861.11823 4311 4203 4476132.383914 4312 4203 -4861111.112702 4313 4203 -4335972.223643 4314 4203 111237115.4367 4315 4203 -8.344650268555e-07 4316 4203 -17343888.88603 4317 4203 4476132.383917 4318 4203 4861111.1127 4319 4203 -4335972.223642 4204 4204 562338920.1509 4205 4204 8.344650268555e-06 4206 4204 -16203611.10845 4207 4204 -66819831.18376 4208 4204 2.235174179077e-06 4290 4204 24305555.56354 4291 4204 -39081501.55876 4292 4204 -17343750.00569 4293 4204 -2.294778823853e-06 4294 4204 -31882558.21685 4295 4204 2.682209014893e-07 4296 4204 -24305555.56354 4297 4204 -39081501.55876 4298 4204 17343750.0057 4311 4204 4861111.112712 4312 4204 -41704377.77507 4313 4204 -34687499.9943 4314 4204 -7.152557373047e-07 4315 4204 82069384.74161 4316 4204 -3.75509262085e-06 4317 4204 -4861111.112713 4318 4204 -41704377.77507 4319 4204 34687499.9943 4205 4205 595771946.5998 4206 4205 -7.62939453125e-06 4207 4205 2.026557922363e-06 4208 4205 71166276.23929 4290 4205 21679861.11823 4291 4205 -17343750.0057 4292 4205 -36432062.04359 4293 4205 86719444.4302 4294 4205 3.427267074585e-07 4295 4205 -99061955.12464 4296 4205 21679861.11823 4297 4205 17343750.0057 4298 4205 -36432062.04359 4311 4205 4335972.223649 4312 4205 -34687499.9943 4313 4205 -36405498.74736 4314 4205 17343888.88605 4315 4205 -3.576278686523e-06 4316 4205 -52289409.00778 4317 4205 4335972.22365 4318 4205 34687499.9943 4319 4205 -36405498.74735 4206 4206 661228297.9436 4207 4206 13246.46245313 4208 4206 -2.217292785645e-05 4209 4206 90298955.40877 4210 4206 19352686.25957 4211 4206 4.768371582031e-07 4293 4206 -46373434.23613 4294 4206 24305555.56354 4295 4206 21679861.11823 4296 4206 -140996480.167 4297 4206 -952893.2695185 4298 4206 87564583.31904 4299 4206 -45870736.57861 4300 4206 -24301364.19971 4301 4206 21679166.67379 4314 4206 4476132.383914 4315 4206 -4861111.112702 4316 4206 -4335972.223643 4317 4206 111737658.2525 4318 4206 3973.96144855 4319 4206 -17343611.10825 4320 4206 5643546.059494 4321 4206 5805839.056954 4322 4206 -5182361.112479 4207 4207 561835230.1649 4208 4207 1.120567321777e-05 4209 4207 -13054535.95733 4210 4207 -62324697.05688 4211 4207 2.32458114624e-06 4293 4207 24305555.56354 4294 4207 -39081501.55876 4295 4207 -17343750.00569 4296 4207 -952893.2695203 4297 4207 -33140775.69076 4298 4207 677083.3332878 4299 4207 -24301364.19971 4300 4207 -39232415.4315 4301 4207 17343750.00569 4314 4207 4861111.112712 4315 4207 -41704377.77507 4316 4207 -34687499.9943 4317 4207 3973.961447358 4318 4207 81919567.51516 4319 4207 -4.619359970093e-06 4320 4207 -3916383.168459 4321 4207 -40143811.34479 4322 4207 34010416.66101 4208 4208 596084528.6123 4209 4208 2.384185791016e-07 4210 4208 2.32458114624e-06 4211 4208 72618276.19601 4293 4208 21679861.11823 4294 4208 -17343750.0057 4295 4208 -36432062.04359 4296 4208 87564583.31887 4297 4208 677083.3331544 4298 4208 -100252145.5455 4299 4208 21679166.67379 4300 4208 17343750.00569 4301 4208 -36335759.26896 4314 4208 4335972.223649 4315 4208 -34687499.9943 4316 4208 -36405498.74736 4317 4208 17343611.10827 4318 4208 -4.559755325317e-06 4319 4208 -52192192.18038 4320 4208 3489305.557202 4321 4208 34010416.66115 4322 4208 -35404513.64281 4209 4209 661029666.5103 4210 4209 -2044981.630182 4211 4209 -1.907348632813e-06 4212 4209 -112826288.707 4213 4209 -79915394.43217 4214 4209 -1.892447471619e-06 4215 4209 86751688.89203 4216 4209 18386425.51773 4217 4209 1.192092895508e-07 4296 4209 -48879322.66663 4297 4209 24272689.58237 4298 4209 22525694.45184 4299 4209 -141002035.2671 4300 4209 -1284012.25659 4301 4209 85676388.87482 4317 4209 5643546.059493 4318 4209 -3916383.168459 4319 4209 -3489305.557201 4320 4209 115620942.6216 4321 4209 -613497.9950585 4322 4209 -17135277.77496 4323 4209 -43801307.66029 4324 4209 -23974755.34006 4325 4209 20312500.00667 4326 4209 5916032.269865 4327 4209 5515959.177803 4328 4209 -5078333.334502 4210 4210 553050511.6211 4211 4210 1.490116119385e-05 4212 4210 -79915394.43217 4213 4210 -93124119.87001 4214 4210 -5.960464477539e-08 4215 4210 -14020796.69916 4216 4210 -67696604.96948 4217 4210 2.056360244751e-06 4296 4210 24272689.58237 4297 4210 -38326906.89252 4298 4210 -16666666.67214 4299 4210 -1284012.256589 4300 4210 -32949093.52409 4301 4210 677083.3332867 4317 4210 5805839.056955 4318 4210 -40143811.3448 4319 4210 -34010416.66115 4320 4210 -613497.9950569 4321 4210 83227011.03068 4322 4210 -5.275011062622e-06 4323 4210 -23974755.34006 4324 4210 -37890623.23096 4325 4210 16666666.67214 4326 4210 -4206263.04761 4327 4210 -40418720.68143 4328 4210 33333333.32786 4211 4211 581686391.3615 4212 4211 -1.966953277588e-06 4213 4211 -5.960464477539e-08 4214 4211 -26006923.58984 4215 4211 -3.576278686523e-07 4216 4211 2.056360244751e-06 4217 4211 66135242.1995 4296 4211 22525694.45184 4297 4211 -16666666.67214 4298 4211 -36909325.87324 4299 4211 85676388.87482 4300 4211 677083.3331533 4301 4211 -97565514.93122 4317 4211 5182361.112479 4318 4211 -34010416.66101 4319 4211 -35404513.64281 4320 4211 17135277.77496 4321 4211 -5.30481338501e-06 4322 4211 -45997327.00158 4323 4211 20312500.00667 4324 4211 16666666.67214 4325 4211 -34344061.96817 4326 4211 3385277.779223 4327 4211 33333333.32786 4328 4211 -33784975.63128 4212 4212 319697428.1411 4213 4212 78790225.51341 4214 4212 3.814697265625e-06 4215 4212 -160487333.6906 4216 4212 -17306272.21852 4217 4212 -2.145767211914e-06 4299 4212 4511607.610488 4300 4212 5529463.940844 4301 4212 4909027.779056 4320 4212 -43801307.66029 4321 4212 -23974755.34006 4322 4212 -20312500.00667 4323 4212 56503201.94981 4324 4212 23637202.7354 4325 4212 8124999.998666 4326 4212 -68052930.47167 4327 4212 -5191911.33618 4328 4212 -41471527.77105 4213 4213 275691885.2208 4214 4213 6.675720214844e-06 4215 4213 15100949.99838 4216 4213 17292007.85667 4217 4213 3.516674041748e-06 4299 4213 -4192758.28457 4300 4213 -41531445.75454 4301 4213 -33333333.32786 4320 4213 -23974755.34006 4321 4213 -37890623.23096 4322 4213 -16666666.67214 4323 4213 23637202.7354 4324 4213 43301463.62872 4325 4213 6666666.66557 4326 4213 4530310.889233 4327 4213 -14718823.21489 4328 4213 3333333.334427 4214 4214 281793058.4744 4215 4214 -1.192092895508e-06 4216 4214 3.457069396973e-06 4217 4214 21269468.60514 4299 4214 -3215972.223779 4300 4214 -33333333.32786 4301 4214 -33978945.7605 4320 4214 -20312500.00667 4321 4214 -16666666.67214 4322 4214 -34344061.96817 4323 4214 -8124999.998665 4324 4214 -6666666.665573 4325 4214 -20545798.26112 4326 4214 -41471527.77088 4327 4214 -3333333.334429 4328 4214 -46703003.53464 4215 4215 328571172.4911 4216 4215 -83200869.95153 4217 4215 -1.907348632813e-06 4299 4215 -47751770.62455 4300 4215 24636355.78701 4301 4215 21159027.78473 4320 4215 5916032.269864 4321 4215 -4206263.04761 4322 4215 -3385277.779223 4323 4215 -68052930.47167 4324 4215 4530310.889237 4325 4215 41471527.77088 4326 4215 58352668.82658 4327 4215 -24960403.62863 4328 4215 -8463611.10972 4216 4216 277307871.8262 4217 4216 7.748603820801e-06 4299 4216 24636355.78701 4300 4216 -39372046.84256 4301 4216 -16666666.67214 4320 4216 5515959.177804 4321 4216 -40418720.68143 4322 4216 -33333333.32786 4323 4216 -5191911.336177 4324 4216 -14718823.21489 4325 4216 3333333.334427 4326 4216 -24960403.62863 4327 4216 42973590.73909 4328 4216 6666666.665569 4217 4217 287116541.5586 4299 4217 21159027.78473 4300 4217 -16666666.67214 4301 4217 -35825485.57976 4320 4217 5078333.334501 4321 4217 -33333333.32786 4322 4217 -33784975.63128 4323 4217 41471527.77105 4324 4217 -3333333.334429 4325 4217 -46703003.53464 4326 4217 8463611.109722 4327 4217 -6666666.665574 4328 4217 -21115868.58705 4218 4218 927468678.158 4219 4218 97222222.20623 4220 4218 -8.106231689453e-06 4221 4218 -573726109.9308 4222 4218 -97222221.42845 4223 4218 8.940696716309e-07 4224 4218 18564155.00999 4225 4218 77777776.9872 4226 4218 2.861022949219e-06 4329 4218 139046393.5639 4330 4218 24305555.56354 4331 4218 17343888.84952 4332 4218 -175918799.4896 4333 4218 -24305555.36909 4334 4218 -86719444.24762 4335 4218 -9282077.505002 4336 4218 19444444.25638 4337 4218 -17343888.52033 4219 4219 781630025.6149 4220 4219 8.412431954121e-06 4221 4219 -97222221.03956 4222 4219 -116778839.2437 4223 4219 5.602836608887e-06 4224 4219 116666665.4808 4225 4219 18564155.00998 4226 4219 5.960464477539e-07 4329 4219 24305555.56354 4330 4219 102586730.4102 4331 4219 13874999.85143 4332 4219 -24305555.27187 4333 4219 -61681981.76159 4334 4219 -17343749.90781 4335 4219 29166666.38457 4336 4219 -9282077.504995 4337 4219 20812499.90894 4220 4220 728641235.3813 4221 4220 4.172325134277e-07 4222 4220 4.887580871582e-06 4223 4220 -96436338.25295 4224 4220 2.503395080566e-06 4225 4220 1.251697540283e-06 4226 4220 49504413.35998 4329 4220 -17343888.84952 4330 4220 -13874999.85144 4331 4220 -65361760.6378 4332 4220 -86719444.24762 4333 4220 -17343749.94044 4334 4220 -110741809.7386 4335 4220 -26015832.7805 4336 4220 13874999.9393 4337 4220 -24752206.67999 4221 4221 1632315315.374 4222 4221 97222220.26178 4223 4221 -4.172325134277e-05 4224 4221 17392720.97666 4225 4221 -97222221.42845 4226 4221 -2.145767211914e-06 4227 4221 -406796532.3944 4228 4221 -2.801418304443e-06 4229 4221 -1.233816146851e-05 4230 4221 -148365426.1266 4231 4221 97222222.20624 4232 4221 -3.308057785034e-06 4329 4221 -175918799.4897 4330 4221 -24305555.27186 4331 4221 86719444.24762 4332 4221 268847663.9159 4333 4221 24305555.07742 4334 4221 0.03653132915497 4335 4221 -28139091.37671 4336 4221 -24305555.36909 4337 4221 21679860.74398 4338 4221 -138827443.8751 4339 4221 -5.066394805908e-07 4340 4221 -86719444.43019 4341 4221 -46373434.23611 4342 4221 24305555.56353 4343 4221 -21679861.11823 4222 4222 1369805740.108 4223 4222 -2.145767211914e-06 4224 4222 -97222221.03956 4225 4222 -322883627.8625 4226 4222 4.798173904419e-06 4227 4222 -3.09944152832e-06 4228 4222 20983010.02827 4229 4222 -4.768371582031e-07 4230 4222 97222222.20624 4231 4222 -119197695.4315 4232 4222 -7.450580596924e-08 4329 4222 -24305555.36908 4330 4222 -61681981.7616 4331 4222 17343749.94043 4332 4222 24305555.07742 4333 4222 203220270.0671 4334 4222 0.02920919656754 4335 4222 -24305555.27186 4336 4222 -113208178.6284 4337 4222 69374999.6084 4338 4222 -8.344650268555e-07 4339 4222 -31882558.21681 4340 4222 -3.278255462646e-07 4341 4222 24305555.56353 4342 4222 -39081501.55875 4343 4222 17343750.00569 4223 4223 1212545401.289 4224 4223 -1.788139343262e-06 4225 4223 3.75509262085e-06 4226 4223 8567490.576108 4227 4223 -1.20997428894e-05 4228 4223 -4.768371582031e-07 4229 4223 -212506.0825927 4230 4223 -3.278255462646e-06 4231 4223 -2.086162567139e-07 4232 4223 -46719419.49861 4329 4223 86719444.24762 4330 4223 17343749.9078 4331 4223 -110741809.7386 4332 4223 -0.03649973869324 4333 4223 -0.02921465039253 4334 4223 -68146756.53808 4335 4223 21679860.55685 4336 4223 69374999.49133 4337 4223 -84490851.68298 4338 4223 -86719444.43019 4339 4223 -2.682209014893e-07 4340 4223 -99061955.12461 4341 4223 -21679861.11823 4342 4223 17343750.00569 4343 4223 -36432062.04358 4224 4224 927468678.158 4225 4224 97222222.20623 4226 4224 -8.106231689453e-06 4227 4224 -148365426.1266 4228 4224 -97222222.20624 4229 4224 -3.039836883545e-06 4230 4224 -573726109.9308 4231 4224 -97222221.42845 4232 4224 8.940696716309e-07 4233 4224 18564155.00999 4234 4224 77777776.9872 4235 4224 2.861022949219e-06 4329 4224 -9282077.50499 4330 4224 29166666.38457 4331 4224 26015832.78049 4332 4224 -28139091.37673 4333 4224 -24305555.27187 4334 4224 -21679860.55685 4335 4224 139046393.5639 4336 4224 24305555.56354 4337 4224 17343888.84952 4338 4224 -46373434.23611 4339 4224 -24305555.56353 4340 4224 -21679861.11823 4341 4224 -175918799.4896 4342 4224 -24305555.36909 4343 4224 -86719444.24762 4344 4224 -9282077.505002 4345 4224 19444444.25638 4346 4224 -17343888.52033 4225 4225 781630025.6149 4226 4225 8.412431954121e-06 4227 4225 -97222222.20624 4228 4225 -119197695.4315 4229 4225 2.831220626831e-07 4230 4225 -97222221.03956 4231 4225 -116778839.2437 4232 4225 5.602836608887e-06 4233 4225 116666665.4808 4234 4225 18564155.00998 4235 4225 5.960464477539e-07 4329 4225 19444444.25638 4330 4225 -9282077.505 4331 4225 -13874999.9393 4332 4225 -24305555.36909 4333 4225 -113208178.6284 4334 4225 -69374999.49133 4335 4225 24305555.56354 4336 4225 102586730.4102 4337 4225 13874999.85143 4338 4225 -24305555.56353 4339 4225 -39081501.55875 4340 4225 -17343750.0057 4341 4225 -24305555.27187 4342 4225 -61681981.76159 4343 4225 -17343749.90781 4344 4225 29166666.38457 4345 4225 -9282077.504995 4346 4225 20812499.90894 4226 4226 728641235.3813 4227 4226 -2.890825271606e-06 4228 4226 3.8743019104e-07 4229 4226 -46719419.49861 4230 4226 4.172325134277e-07 4231 4226 4.887580871582e-06 4232 4226 -96436338.25295 4233 4226 2.503395080566e-06 4234 4226 1.251697540283e-06 4235 4226 49504413.35998 4329 4226 17343888.52033 4330 4226 -20812499.90895 4331 4226 -24752206.67999 4332 4226 -21679860.74398 4333 4226 -69374999.6084 4334 4226 -84490851.68299 4335 4226 -17343888.84952 4336 4226 -13874999.85144 4337 4226 -65361760.6378 4338 4226 -21679861.11823 4339 4226 -17343750.0057 4340 4226 -36432062.04358 4341 4226 -86719444.24762 4342 4226 -17343749.94044 4343 4226 -110741809.7386 4344 4226 -26015832.7805 4345 4226 13874999.9393 4346 4226 -24752206.67999 4227 4227 1483949894.094 4228 4227 7.867813110352e-06 4229 4227 -5.507469177246e-05 4230 4227 184322301.8864 4231 4227 -2.622604370117e-06 4232 4227 -1.358985900879e-05 4236 4227 -406796532.3944 4237 4227 -2.801418304443e-06 4238 4227 -1.233816146851e-05 4239 4227 -148365426.1266 4240 4227 97222222.20624 4241 4227 -3.308057785034e-06 4332 4227 -138827443.8752 4333 4227 2.682209014893e-07 4334 4227 86719444.4302 4335 4227 -46373434.23614 4336 4227 -24305555.56354 4337 4227 21679861.11823 4338 4227 222474230.8735 4339 4227 3.933906555176e-06 4340 4227 2.622604370117e-05 4341 4227 8952264.76783 4342 4227 -1.302361488342e-05 4343 4227 6.914138793945e-06 4347 4227 -138827443.8751 4348 4227 -5.066394805908e-07 4349 4227 -86719444.43019 4350 4227 -46373434.23611 4351 4227 24305555.56353 4352 4227 -21679861.11823 4228 4228 1250608048.648 4229 4228 -1.192092895508e-06 4230 4228 -3.159046173096e-06 4231 4228 -185121779.2034 4232 4228 8.046627044678e-07 4236 4228 -3.09944152832e-06 4237 4228 20983010.02827 4238 4228 -4.768371582031e-07 4239 4228 97222222.20624 4240 4228 -119197695.4315 4241 4228 -7.450580596924e-08 4332 4228 -2.294778823853e-06 4333 4228 -31882558.21685 4334 4228 2.682209014893e-07 4335 4228 -24305555.56354 4336 4228 -39081501.55876 4337 4228 17343750.0057 4338 4228 4.410743713379e-06 4339 4228 164138769.4832 4340 4228 -1.192092895508e-07 4341 4228 -1.156330108643e-05 4342 4228 -83408755.55014 4343 4228 69374999.9886 4347 4228 -8.344650268555e-07 4348 4228 -31882558.21681 4349 4228 -3.278255462646e-07 4350 4228 24305555.56353 4351 4228 -39081501.55875 4352 4228 17343750.00569 4229 4229 1165825984.246 4230 4229 -1.382827758789e-05 4231 4229 1.788139343262e-07 4232 4229 104791324.3853 4236 4229 -1.20997428894e-05 4237 4229 -4.768371582031e-07 4238 4229 -212506.0825927 4239 4229 -3.278255462646e-06 4240 4229 -2.086162567139e-07 4241 4229 -46719419.49861 4332 4229 86719444.4302 4333 4229 3.427267074585e-07 4334 4229 -99061955.12464 4335 4229 21679861.11823 4336 4229 17343750.0057 4337 4229 -36432062.04359 4338 4229 2.598762512207e-05 4339 4229 5.960464477539e-08 4340 4229 -104578818.0156 4341 4229 6.973743438721e-06 4342 4229 69374999.9886 4343 4229 -72810997.49471 4347 4229 -86719444.43019 4348 4229 -2.682209014893e-07 4349 4229 -99061955.12461 4350 4229 -21679861.11823 4351 4229 17343750.00569 4352 4229 -36432062.04358 4230 4230 1632315315.374 4231 4230 97222220.26178 4232 4230 -4.172325134277e-05 4233 4230 17392720.97666 4234 4230 -97222221.42845 4235 4230 -2.145767211914e-06 4236 4230 -148365426.1266 4237 4230 -97222222.20624 4238 4230 -3.039836883545e-06 4239 4230 -406796532.3944 4240 4230 -2.801418304443e-06 4241 4230 -1.233816146851e-05 4242 4230 -148365426.1266 4243 4230 97222222.20624 4244 4230 -3.308057785034e-06 4332 4230 -46373434.23613 4333 4230 24305555.56354 4334 4230 21679861.11823 4335 4230 -175918799.4897 4336 4230 -24305555.27186 4337 4230 86719444.24762 4338 4230 8952264.76783 4339 4230 9.298324584961e-06 4340 4230 6.228685379028e-06 4341 4230 268847663.9159 4342 4230 24305555.07742 4343 4230 0.03653132915497 4344 4230 -28139091.37671 4345 4230 -24305555.36909 4346 4230 21679860.74398 4347 4230 -46373434.23611 4348 4230 -24305555.56353 4349 4230 -21679861.11823 4350 4230 -138827443.8751 4351 4230 -5.066394805908e-07 4352 4230 -86719444.43019 4353 4230 -46373434.23611 4354 4230 24305555.56353 4355 4230 -21679861.11823 4231 4231 1369805740.108 4232 4231 -2.145767211914e-06 4233 4231 -97222221.03956 4234 4231 -322883627.8625 4235 4231 4.798173904419e-06 4236 4231 -97222222.20624 4237 4231 -119197695.4315 4238 4231 2.831220626831e-07 4239 4231 -3.09944152832e-06 4240 4231 20983010.02827 4241 4231 -4.768371582031e-07 4242 4231 97222222.20624 4243 4231 -119197695.4315 4244 4231 -7.450580596924e-08 4332 4231 24305555.56354 4333 4231 -39081501.55876 4334 4231 -17343750.00569 4335 4231 -24305555.36908 4336 4231 -61681981.7616 4337 4231 17343749.94043 4338 4231 1.069903373718e-05 4339 4231 -83408755.55014 4340 4231 -69374999.9886 4341 4231 24305555.07742 4342 4231 203220270.0671 4343 4231 0.02920919656754 4344 4231 -24305555.27186 4345 4231 -113208178.6284 4346 4231 69374999.6084 4347 4231 -24305555.56353 4348 4231 -39081501.55875 4349 4231 -17343750.0057 4350 4231 -8.344650268555e-07 4351 4231 -31882558.21681 4352 4231 -3.278255462646e-07 4353 4231 24305555.56353 4354 4231 -39081501.55875 4355 4231 17343750.00569 4232 4232 1212545401.289 4233 4232 -1.788139343262e-06 4234 4232 3.75509262085e-06 4235 4232 8567490.576108 4236 4232 -2.890825271606e-06 4237 4232 3.8743019104e-07 4238 4232 -46719419.49861 4239 4232 -1.20997428894e-05 4240 4232 -4.768371582031e-07 4241 4232 -212506.0825927 4242 4232 -3.278255462646e-06 4243 4232 -2.086162567139e-07 4244 4232 -46719419.49861 4332 4232 21679861.11823 4333 4232 -17343750.0057 4334 4232 -36432062.04359 4335 4232 86719444.24762 4336 4232 17343749.9078 4337 4232 -110741809.7386 4338 4232 6.169080734253e-06 4339 4232 -69374999.9886 4340 4232 -72810997.49471 4341 4232 -0.03649973869324 4342 4232 -0.02921465039253 4343 4232 -68146756.53808 4344 4232 21679860.55685 4345 4232 69374999.49133 4346 4232 -84490851.68298 4347 4232 -21679861.11823 4348 4232 -17343750.0057 4349 4232 -36432062.04358 4350 4232 -86719444.43019 4351 4232 -2.682209014893e-07 4352 4232 -99061955.12461 4353 4232 -21679861.11823 4354 4232 17343750.00569 4355 4232 -36432062.04358 4233 4233 927468678.158 4234 4233 97222222.20623 4235 4233 -8.106231689453e-06 4239 4233 -148365426.1266 4240 4233 -97222222.20624 4241 4233 -3.039836883545e-06 4242 4233 -573726109.9308 4243 4233 -97222221.42845 4244 4233 8.940696716309e-07 4245 4233 18564155.00999 4246 4233 77777776.9872 4247 4233 2.861022949219e-06 4335 4233 -9282077.50499 4336 4233 29166666.38457 4337 4233 26015832.78049 4341 4233 -28139091.37673 4342 4233 -24305555.27187 4343 4233 -21679860.55685 4344 4233 139046393.5639 4345 4233 24305555.56354 4346 4233 17343888.84952 4350 4233 -46373434.23611 4351 4233 -24305555.56353 4352 4233 -21679861.11823 4353 4233 -175918799.4896 4354 4233 -24305555.36909 4355 4233 -86719444.24762 4356 4233 -9282077.505002 4357 4233 19444444.25638 4358 4233 -17343888.52033 4234 4234 781630025.6149 4235 4234 8.412431954121e-06 4239 4234 -97222222.20624 4240 4234 -119197695.4315 4241 4234 2.831220626831e-07 4242 4234 -97222221.03956 4243 4234 -116778839.2437 4244 4234 5.602836608887e-06 4245 4234 116666665.4808 4246 4234 18564155.00998 4247 4234 5.960464477539e-07 4335 4234 19444444.25638 4336 4234 -9282077.505 4337 4234 -13874999.9393 4341 4234 -24305555.36909 4342 4234 -113208178.6284 4343 4234 -69374999.49133 4344 4234 24305555.56354 4345 4234 102586730.4102 4346 4234 13874999.85143 4350 4234 -24305555.56353 4351 4234 -39081501.55875 4352 4234 -17343750.0057 4353 4234 -24305555.27187 4354 4234 -61681981.76159 4355 4234 -17343749.90781 4356 4234 29166666.38457 4357 4234 -9282077.504995 4358 4234 20812499.90894 4235 4235 728641235.3813 4239 4235 -2.890825271606e-06 4240 4235 3.8743019104e-07 4241 4235 -46719419.49861 4242 4235 4.172325134277e-07 4243 4235 4.887580871582e-06 4244 4235 -96436338.25295 4245 4235 2.503395080566e-06 4246 4235 1.251697540283e-06 4247 4235 49504413.35998 4335 4235 17343888.52033 4336 4235 -20812499.90895 4337 4235 -24752206.67999 4341 4235 -21679860.74398 4342 4235 -69374999.6084 4343 4235 -84490851.68299 4344 4235 -17343888.84952 4345 4235 -13874999.85144 4346 4235 -65361760.6378 4350 4235 -21679861.11823 4351 4235 -17343750.0057 4352 4235 -36432062.04358 4353 4235 -86719444.24762 4354 4235 -17343749.94044 4355 4235 -110741809.7386 4356 4235 -26015832.7805 4357 4235 13874999.9393 4358 4235 -24752206.67999 4236 4236 1483949894.094 4237 4236 7.867813110352e-06 4238 4236 -5.507469177246e-05 4239 4236 184322301.8864 4240 4236 -2.622604370117e-06 4241 4236 -1.358985900879e-05 4248 4236 -406796532.3944 4249 4236 -2.801418304443e-06 4250 4236 -1.233816146851e-05 4251 4236 -148365426.1266 4252 4236 97222222.20624 4253 4236 -3.308057785034e-06 4338 4236 -138827443.8752 4339 4236 2.682209014893e-07 4340 4236 86719444.4302 4341 4236 -46373434.23614 4342 4236 -24305555.56354 4343 4236 21679861.11823 4347 4236 222474230.8735 4348 4236 3.933906555176e-06 4349 4236 2.622604370117e-05 4350 4236 8952264.76783 4351 4236 -1.302361488342e-05 4352 4236 6.914138793945e-06 4359 4236 -138827443.8751 4360 4236 -5.066394805908e-07 4361 4236 -86719444.43019 4362 4236 -46373434.23611 4363 4236 24305555.56353 4364 4236 -21679861.11823 4237 4237 1250608048.648 4238 4237 -1.192092895508e-06 4239 4237 -3.159046173096e-06 4240 4237 -185121779.2034 4241 4237 8.046627044678e-07 4248 4237 -3.09944152832e-06 4249 4237 20983010.02827 4250 4237 -4.768371582031e-07 4251 4237 97222222.20624 4252 4237 -119197695.4315 4253 4237 -7.450580596924e-08 4338 4237 -2.294778823853e-06 4339 4237 -31882558.21685 4340 4237 2.682209014893e-07 4341 4237 -24305555.56354 4342 4237 -39081501.55876 4343 4237 17343750.0057 4347 4237 4.410743713379e-06 4348 4237 164138769.4832 4349 4237 -1.192092895508e-07 4350 4237 -1.156330108643e-05 4351 4237 -83408755.55014 4352 4237 69374999.9886 4359 4237 -8.344650268555e-07 4360 4237 -31882558.21681 4361 4237 -3.278255462646e-07 4362 4237 24305555.56353 4363 4237 -39081501.55875 4364 4237 17343750.00569 4238 4238 1165825984.246 4239 4238 -1.382827758789e-05 4240 4238 1.788139343262e-07 4241 4238 104791324.3853 4248 4238 -1.20997428894e-05 4249 4238 -4.768371582031e-07 4250 4238 -212506.0825927 4251 4238 -3.278255462646e-06 4252 4238 -2.086162567139e-07 4253 4238 -46719419.49861 4338 4238 86719444.4302 4339 4238 3.427267074585e-07 4340 4238 -99061955.12464 4341 4238 21679861.11823 4342 4238 17343750.0057 4343 4238 -36432062.04359 4347 4238 2.598762512207e-05 4348 4238 5.960464477539e-08 4349 4238 -104578818.0156 4350 4238 6.973743438721e-06 4351 4238 69374999.9886 4352 4238 -72810997.49471 4359 4238 -86719444.43019 4360 4238 -2.682209014893e-07 4361 4238 -99061955.12461 4362 4238 -21679861.11823 4363 4238 17343750.00569 4364 4238 -36432062.04358 4239 4239 1483949894.094 4240 4239 7.867813110352e-06 4241 4239 -5.507469177246e-05 4242 4239 184322301.8864 4243 4239 -2.622604370117e-06 4244 4239 -1.358985900879e-05 4248 4239 -148365426.1266 4249 4239 -97222222.20624 4250 4239 -3.039836883545e-06 4251 4239 -406796532.3944 4252 4239 -2.801418304443e-06 4253 4239 -1.233816146851e-05 4254 4239 -148365426.1266 4255 4239 97222222.20624 4256 4239 -3.308057785034e-06 4338 4239 -46373434.23613 4339 4239 24305555.56354 4340 4239 21679861.11823 4341 4239 -138827443.8752 4342 4239 2.682209014893e-07 4343 4239 86719444.4302 4344 4239 -46373434.23614 4345 4239 -24305555.56354 4346 4239 21679861.11823 4347 4239 8952264.76783 4348 4239 9.298324584961e-06 4349 4239 6.228685379028e-06 4350 4239 222474230.8735 4351 4239 3.933906555176e-06 4352 4239 2.622604370117e-05 4353 4239 8952264.76783 4354 4239 -1.302361488342e-05 4355 4239 6.914138793945e-06 4359 4239 -46373434.23611 4360 4239 -24305555.56353 4361 4239 -21679861.11823 4362 4239 -138827443.8751 4363 4239 -5.066394805908e-07 4364 4239 -86719444.43019 4365 4239 -46373434.23611 4366 4239 24305555.56353 4367 4239 -21679861.11823 4240 4240 1250608048.648 4241 4240 -1.192092895508e-06 4242 4240 -3.159046173096e-06 4243 4240 -185121779.2034 4244 4240 8.046627044678e-07 4248 4240 -97222222.20624 4249 4240 -119197695.4315 4250 4240 2.831220626831e-07 4251 4240 -3.09944152832e-06 4252 4240 20983010.02827 4253 4240 -4.768371582031e-07 4254 4240 97222222.20624 4255 4240 -119197695.4315 4256 4240 -7.450580596924e-08 4338 4240 24305555.56354 4339 4240 -39081501.55876 4340 4240 -17343750.00569 4341 4240 -2.294778823853e-06 4342 4240 -31882558.21685 4343 4240 2.682209014893e-07 4344 4240 -24305555.56354 4345 4240 -39081501.55876 4346 4240 17343750.0057 4347 4240 1.069903373718e-05 4348 4240 -83408755.55014 4349 4240 -69374999.9886 4350 4240 4.410743713379e-06 4351 4240 164138769.4832 4352 4240 -1.192092895508e-07 4353 4240 -1.156330108643e-05 4354 4240 -83408755.55014 4355 4240 69374999.9886 4359 4240 -24305555.56353 4360 4240 -39081501.55875 4361 4240 -17343750.0057 4362 4240 -8.344650268555e-07 4363 4240 -31882558.21681 4364 4240 -3.278255462646e-07 4365 4240 24305555.56353 4366 4240 -39081501.55875 4367 4240 17343750.00569 4241 4241 1165825984.246 4242 4241 -1.382827758789e-05 4243 4241 1.788139343262e-07 4244 4241 104791324.3853 4248 4241 -2.890825271606e-06 4249 4241 3.8743019104e-07 4250 4241 -46719419.49861 4251 4241 -1.20997428894e-05 4252 4241 -4.768371582031e-07 4253 4241 -212506.0825927 4254 4241 -3.278255462646e-06 4255 4241 -2.086162567139e-07 4256 4241 -46719419.49861 4338 4241 21679861.11823 4339 4241 -17343750.0057 4340 4241 -36432062.04359 4341 4241 86719444.4302 4342 4241 3.427267074585e-07 4343 4241 -99061955.12464 4344 4241 21679861.11823 4345 4241 17343750.0057 4346 4241 -36432062.04359 4347 4241 6.169080734253e-06 4348 4241 -69374999.9886 4349 4241 -72810997.49471 4350 4241 2.598762512207e-05 4351 4241 5.960464477539e-08 4352 4241 -104578818.0156 4353 4241 6.973743438721e-06 4354 4241 69374999.9886 4355 4241 -72810997.49471 4359 4241 -21679861.11823 4360 4241 -17343750.0057 4361 4241 -36432062.04358 4362 4241 -86719444.43019 4363 4241 -2.682209014893e-07 4364 4241 -99061955.12461 4365 4241 -21679861.11823 4366 4241 17343750.00569 4367 4241 -36432062.04358 4242 4242 1632315315.374 4243 4242 97222220.26178 4244 4242 -4.172325134277e-05 4245 4242 17392720.97666 4246 4242 -97222221.42845 4247 4242 -2.145767211914e-06 4251 4242 -148365426.1266 4252 4242 -97222222.20624 4253 4242 -3.039836883545e-06 4254 4242 -406796532.3944 4255 4242 -2.801418304443e-06 4256 4242 -1.233816146851e-05 4257 4242 -148365426.1266 4258 4242 97222222.20624 4259 4242 -3.308057785034e-06 4341 4242 -46373434.23613 4342 4242 24305555.56354 4343 4242 21679861.11823 4344 4242 -175918799.4897 4345 4242 -24305555.27186 4346 4242 86719444.24762 4350 4242 8952264.76783 4351 4242 9.298324584961e-06 4352 4242 6.228685379028e-06 4353 4242 268847663.9159 4354 4242 24305555.07742 4355 4242 0.03653132915497 4356 4242 -28139091.37671 4357 4242 -24305555.36909 4358 4242 21679860.74398 4362 4242 -46373434.23611 4363 4242 -24305555.56353 4364 4242 -21679861.11823 4365 4242 -138827443.8751 4366 4242 -5.066394805908e-07 4367 4242 -86719444.43019 4368 4242 -46373434.23611 4369 4242 24305555.56353 4370 4242 -21679861.11823 4243 4243 1369805740.108 4244 4243 -2.145767211914e-06 4245 4243 -97222221.03956 4246 4243 -322883627.8625 4247 4243 4.798173904419e-06 4251 4243 -97222222.20624 4252 4243 -119197695.4315 4253 4243 2.831220626831e-07 4254 4243 -3.09944152832e-06 4255 4243 20983010.02827 4256 4243 -4.768371582031e-07 4257 4243 97222222.20624 4258 4243 -119197695.4315 4259 4243 -7.450580596924e-08 4341 4243 24305555.56354 4342 4243 -39081501.55876 4343 4243 -17343750.00569 4344 4243 -24305555.36908 4345 4243 -61681981.7616 4346 4243 17343749.94043 4350 4243 1.069903373718e-05 4351 4243 -83408755.55014 4352 4243 -69374999.9886 4353 4243 24305555.07742 4354 4243 203220270.0671 4355 4243 0.02920919656754 4356 4243 -24305555.27186 4357 4243 -113208178.6284 4358 4243 69374999.6084 4362 4243 -24305555.56353 4363 4243 -39081501.55875 4364 4243 -17343750.0057 4365 4243 -8.344650268555e-07 4366 4243 -31882558.21681 4367 4243 -3.278255462646e-07 4368 4243 24305555.56353 4369 4243 -39081501.55875 4370 4243 17343750.00569 4244 4244 1212545401.289 4245 4244 -1.788139343262e-06 4246 4244 3.75509262085e-06 4247 4244 8567490.576108 4251 4244 -2.890825271606e-06 4252 4244 3.8743019104e-07 4253 4244 -46719419.49861 4254 4244 -1.20997428894e-05 4255 4244 -4.768371582031e-07 4256 4244 -212506.0825927 4257 4244 -3.278255462646e-06 4258 4244 -2.086162567139e-07 4259 4244 -46719419.49861 4341 4244 21679861.11823 4342 4244 -17343750.0057 4343 4244 -36432062.04359 4344 4244 86719444.24762 4345 4244 17343749.9078 4346 4244 -110741809.7386 4350 4244 6.169080734253e-06 4351 4244 -69374999.9886 4352 4244 -72810997.49471 4353 4244 -0.03649973869324 4354 4244 -0.02921465039253 4355 4244 -68146756.53808 4356 4244 21679860.55685 4357 4244 69374999.49133 4358 4244 -84490851.68298 4362 4244 -21679861.11823 4363 4244 -17343750.0057 4364 4244 -36432062.04358 4365 4244 -86719444.43019 4366 4244 -2.682209014893e-07 4367 4244 -99061955.12461 4368 4244 -21679861.11823 4369 4244 17343750.00569 4370 4244 -36432062.04358 4245 4245 927468678.158 4246 4245 97222222.20623 4247 4245 -8.106231689453e-06 4254 4245 -148365426.1266 4255 4245 -97222222.20624 4256 4245 -3.039836883545e-06 4257 4245 -573726109.9308 4258 4245 -97222221.42845 4259 4245 8.940696716309e-07 4260 4245 18564155.00999 4261 4245 77777776.9872 4262 4245 2.861022949219e-06 4344 4245 -9282077.50499 4345 4245 29166666.38457 4346 4245 26015832.78049 4353 4245 -28139091.37673 4354 4245 -24305555.27187 4355 4245 -21679860.55685 4356 4245 139046393.5639 4357 4245 24305555.56354 4358 4245 17343888.84952 4365 4245 -46373434.23611 4366 4245 -24305555.56353 4367 4245 -21679861.11823 4368 4245 -175918799.4896 4369 4245 -24305555.36909 4370 4245 -86719444.24762 4371 4245 -9282077.505002 4372 4245 19444444.25638 4373 4245 -17343888.52033 4246 4246 781630025.6149 4247 4246 8.412431954121e-06 4254 4246 -97222222.20624 4255 4246 -119197695.4315 4256 4246 2.831220626831e-07 4257 4246 -97222221.03956 4258 4246 -116778839.2437 4259 4246 5.602836608887e-06 4260 4246 116666665.4808 4261 4246 18564155.00998 4262 4246 5.960464477539e-07 4344 4246 19444444.25638 4345 4246 -9282077.505 4346 4246 -13874999.9393 4353 4246 -24305555.36909 4354 4246 -113208178.6284 4355 4246 -69374999.49133 4356 4246 24305555.56354 4357 4246 102586730.4102 4358 4246 13874999.85143 4365 4246 -24305555.56353 4366 4246 -39081501.55875 4367 4246 -17343750.0057 4368 4246 -24305555.27187 4369 4246 -61681981.76159 4370 4246 -17343749.90781 4371 4246 29166666.38457 4372 4246 -9282077.504995 4373 4246 20812499.90894 4247 4247 728641235.3813 4254 4247 -2.890825271606e-06 4255 4247 3.8743019104e-07 4256 4247 -46719419.49861 4257 4247 4.172325134277e-07 4258 4247 4.887580871582e-06 4259 4247 -96436338.25295 4260 4247 2.503395080566e-06 4261 4247 1.251697540283e-06 4262 4247 49504413.35998 4344 4247 17343888.52033 4345 4247 -20812499.90895 4346 4247 -24752206.67999 4353 4247 -21679860.74398 4354 4247 -69374999.6084 4355 4247 -84490851.68299 4356 4247 -17343888.84952 4357 4247 -13874999.85144 4358 4247 -65361760.6378 4365 4247 -21679861.11823 4366 4247 -17343750.0057 4367 4247 -36432062.04358 4368 4247 -86719444.24762 4369 4247 -17343749.94044 4370 4247 -110741809.7386 4371 4247 -26015832.7805 4372 4247 13874999.9393 4373 4247 -24752206.67999 4248 4248 1483949894.094 4249 4248 7.867813110352e-06 4250 4248 -5.507469177246e-05 4251 4248 184322301.8864 4252 4248 -2.622604370117e-06 4253 4248 -1.358985900879e-05 4263 4248 -406796532.3944 4264 4248 -2.801418304443e-06 4265 4248 -1.233816146851e-05 4266 4248 -148365426.1266 4267 4248 97222222.20624 4268 4248 -3.308057785034e-06 4347 4248 -138827443.8752 4348 4248 2.682209014893e-07 4349 4248 86719444.4302 4350 4248 -46373434.23614 4351 4248 -24305555.56354 4352 4248 21679861.11823 4359 4248 222474230.8735 4360 4248 3.933906555176e-06 4361 4248 2.622604370117e-05 4362 4248 8952264.76783 4363 4248 -1.302361488342e-05 4364 4248 6.914138793945e-06 4374 4248 -138827443.8751 4375 4248 -5.066394805908e-07 4376 4248 -86719444.43019 4377 4248 -46373434.23611 4378 4248 24305555.56353 4379 4248 -21679861.11823 4249 4249 1250608048.648 4250 4249 -1.192092895508e-06 4251 4249 -3.159046173096e-06 4252 4249 -185121779.2034 4253 4249 8.046627044678e-07 4263 4249 -3.09944152832e-06 4264 4249 20983010.02827 4265 4249 -4.768371582031e-07 4266 4249 97222222.20624 4267 4249 -119197695.4315 4268 4249 -7.450580596924e-08 4347 4249 -2.294778823853e-06 4348 4249 -31882558.21685 4349 4249 2.682209014893e-07 4350 4249 -24305555.56354 4351 4249 -39081501.55876 4352 4249 17343750.0057 4359 4249 4.410743713379e-06 4360 4249 164138769.4832 4361 4249 -1.192092895508e-07 4362 4249 -1.156330108643e-05 4363 4249 -83408755.55014 4364 4249 69374999.9886 4374 4249 -8.344650268555e-07 4375 4249 -31882558.21681 4376 4249 -3.278255462646e-07 4377 4249 24305555.56353 4378 4249 -39081501.55875 4379 4249 17343750.00569 4250 4250 1165825984.246 4251 4250 -1.382827758789e-05 4252 4250 1.788139343262e-07 4253 4250 104791324.3853 4263 4250 -1.20997428894e-05 4264 4250 -4.768371582031e-07 4265 4250 -212506.0825927 4266 4250 -3.278255462646e-06 4267 4250 -2.086162567139e-07 4268 4250 -46719419.49861 4347 4250 86719444.4302 4348 4250 3.427267074585e-07 4349 4250 -99061955.12464 4350 4250 21679861.11823 4351 4250 17343750.0057 4352 4250 -36432062.04359 4359 4250 2.598762512207e-05 4360 4250 5.960464477539e-08 4361 4250 -104578818.0156 4362 4250 6.973743438721e-06 4363 4250 69374999.9886 4364 4250 -72810997.49471 4374 4250 -86719444.43019 4375 4250 -2.682209014893e-07 4376 4250 -99061955.12461 4377 4250 -21679861.11823 4378 4250 17343750.00569 4379 4250 -36432062.04358 4251 4251 1483949894.094 4252 4251 7.867813110352e-06 4253 4251 -5.507469177246e-05 4254 4251 184322301.8864 4255 4251 -2.622604370117e-06 4256 4251 -1.358985900879e-05 4263 4251 -148365426.1266 4264 4251 -97222222.20624 4265 4251 -3.039836883545e-06 4266 4251 -406796532.3944 4267 4251 -2.801418304443e-06 4268 4251 -1.233816146851e-05 4269 4251 -148365426.1266 4270 4251 97222222.20624 4271 4251 -3.308057785034e-06 4347 4251 -46373434.23613 4348 4251 24305555.56354 4349 4251 21679861.11823 4350 4251 -138827443.8752 4351 4251 2.682209014893e-07 4352 4251 86719444.4302 4353 4251 -46373434.23614 4354 4251 -24305555.56354 4355 4251 21679861.11823 4359 4251 8952264.76783 4360 4251 9.298324584961e-06 4361 4251 6.228685379028e-06 4362 4251 222474230.8735 4363 4251 3.933906555176e-06 4364 4251 2.622604370117e-05 4365 4251 8952264.76783 4366 4251 -1.302361488342e-05 4367 4251 6.914138793945e-06 4374 4251 -46373434.23611 4375 4251 -24305555.56353 4376 4251 -21679861.11823 4377 4251 -138827443.8751 4378 4251 -5.066394805908e-07 4379 4251 -86719444.43019 4380 4251 -46373434.23611 4381 4251 24305555.56353 4382 4251 -21679861.11823 4252 4252 1250608048.648 4253 4252 -1.192092895508e-06 4254 4252 -3.159046173096e-06 4255 4252 -185121779.2034 4256 4252 8.046627044678e-07 4263 4252 -97222222.20624 4264 4252 -119197695.4315 4265 4252 2.831220626831e-07 4266 4252 -3.09944152832e-06 4267 4252 20983010.02827 4268 4252 -4.768371582031e-07 4269 4252 97222222.20624 4270 4252 -119197695.4315 4271 4252 -7.450580596924e-08 4347 4252 24305555.56354 4348 4252 -39081501.55876 4349 4252 -17343750.00569 4350 4252 -2.294778823853e-06 4351 4252 -31882558.21685 4352 4252 2.682209014893e-07 4353 4252 -24305555.56354 4354 4252 -39081501.55876 4355 4252 17343750.0057 4359 4252 1.069903373718e-05 4360 4252 -83408755.55014 4361 4252 -69374999.9886 4362 4252 4.410743713379e-06 4363 4252 164138769.4832 4364 4252 -1.192092895508e-07 4365 4252 -1.156330108643e-05 4366 4252 -83408755.55014 4367 4252 69374999.9886 4374 4252 -24305555.56353 4375 4252 -39081501.55875 4376 4252 -17343750.0057 4377 4252 -8.344650268555e-07 4378 4252 -31882558.21681 4379 4252 -3.278255462646e-07 4380 4252 24305555.56353 4381 4252 -39081501.55875 4382 4252 17343750.00569 4253 4253 1165825984.246 4254 4253 -1.382827758789e-05 4255 4253 1.788139343262e-07 4256 4253 104791324.3853 4263 4253 -2.890825271606e-06 4264 4253 3.8743019104e-07 4265 4253 -46719419.49861 4266 4253 -1.20997428894e-05 4267 4253 -4.768371582031e-07 4268 4253 -212506.0825927 4269 4253 -3.278255462646e-06 4270 4253 -2.086162567139e-07 4271 4253 -46719419.49861 4347 4253 21679861.11823 4348 4253 -17343750.0057 4349 4253 -36432062.04359 4350 4253 86719444.4302 4351 4253 3.427267074585e-07 4352 4253 -99061955.12464 4353 4253 21679861.11823 4354 4253 17343750.0057 4355 4253 -36432062.04359 4359 4253 6.169080734253e-06 4360 4253 -69374999.9886 4361 4253 -72810997.49471 4362 4253 2.598762512207e-05 4363 4253 5.960464477539e-08 4364 4253 -104578818.0156 4365 4253 6.973743438721e-06 4366 4253 69374999.9886 4367 4253 -72810997.49471 4374 4253 -21679861.11823 4375 4253 -17343750.0057 4376 4253 -36432062.04358 4377 4253 -86719444.43019 4378 4253 -2.682209014893e-07 4379 4253 -99061955.12461 4380 4253 -21679861.11823 4381 4253 17343750.00569 4382 4253 -36432062.04358 4254 4254 1483949894.094 4255 4254 7.867813110352e-06 4256 4254 -5.507469177246e-05 4257 4254 184322301.8864 4258 4254 -2.622604370117e-06 4259 4254 -1.358985900879e-05 4266 4254 -148365426.1266 4267 4254 -97222222.20624 4268 4254 -3.039836883545e-06 4269 4254 -406796532.3944 4270 4254 -2.801418304443e-06 4271 4254 -1.233816146851e-05 4272 4254 -148365426.1266 4273 4254 97222222.20624 4274 4254 -3.308057785034e-06 4350 4254 -46373434.23613 4351 4254 24305555.56354 4352 4254 21679861.11823 4353 4254 -138827443.8752 4354 4254 2.682209014893e-07 4355 4254 86719444.4302 4356 4254 -46373434.23614 4357 4254 -24305555.56354 4358 4254 21679861.11823 4362 4254 8952264.76783 4363 4254 9.298324584961e-06 4364 4254 6.228685379028e-06 4365 4254 222474230.8735 4366 4254 3.933906555176e-06 4367 4254 2.622604370117e-05 4368 4254 8952264.76783 4369 4254 -1.302361488342e-05 4370 4254 6.914138793945e-06 4377 4254 -46373434.23611 4378 4254 -24305555.56353 4379 4254 -21679861.11823 4380 4254 -138827443.8751 4381 4254 -5.066394805908e-07 4382 4254 -86719444.43019 4383 4254 -46373434.23611 4384 4254 24305555.56353 4385 4254 -21679861.11823 4255 4255 1250608048.648 4256 4255 -1.192092895508e-06 4257 4255 -3.159046173096e-06 4258 4255 -185121779.2034 4259 4255 8.046627044678e-07 4266 4255 -97222222.20624 4267 4255 -119197695.4315 4268 4255 2.831220626831e-07 4269 4255 -3.09944152832e-06 4270 4255 20983010.02827 4271 4255 -4.768371582031e-07 4272 4255 97222222.20624 4273 4255 -119197695.4315 4274 4255 -7.450580596924e-08 4350 4255 24305555.56354 4351 4255 -39081501.55876 4352 4255 -17343750.00569 4353 4255 -2.294778823853e-06 4354 4255 -31882558.21685 4355 4255 2.682209014893e-07 4356 4255 -24305555.56354 4357 4255 -39081501.55876 4358 4255 17343750.0057 4362 4255 1.069903373718e-05 4363 4255 -83408755.55014 4364 4255 -69374999.9886 4365 4255 4.410743713379e-06 4366 4255 164138769.4832 4367 4255 -1.192092895508e-07 4368 4255 -1.156330108643e-05 4369 4255 -83408755.55014 4370 4255 69374999.9886 4377 4255 -24305555.56353 4378 4255 -39081501.55875 4379 4255 -17343750.0057 4380 4255 -8.344650268555e-07 4381 4255 -31882558.21681 4382 4255 -3.278255462646e-07 4383 4255 24305555.56353 4384 4255 -39081501.55875 4385 4255 17343750.00569 4256 4256 1165825984.246 4257 4256 -1.382827758789e-05 4258 4256 1.788139343262e-07 4259 4256 104791324.3853 4266 4256 -2.890825271606e-06 4267 4256 3.8743019104e-07 4268 4256 -46719419.49861 4269 4256 -1.20997428894e-05 4270 4256 -4.768371582031e-07 4271 4256 -212506.0825927 4272 4256 -3.278255462646e-06 4273 4256 -2.086162567139e-07 4274 4256 -46719419.49861 4350 4256 21679861.11823 4351 4256 -17343750.0057 4352 4256 -36432062.04359 4353 4256 86719444.4302 4354 4256 3.427267074585e-07 4355 4256 -99061955.12464 4356 4256 21679861.11823 4357 4256 17343750.0057 4358 4256 -36432062.04359 4362 4256 6.169080734253e-06 4363 4256 -69374999.9886 4364 4256 -72810997.49471 4365 4256 2.598762512207e-05 4366 4256 5.960464477539e-08 4367 4256 -104578818.0156 4368 4256 6.973743438721e-06 4369 4256 69374999.9886 4370 4256 -72810997.49471 4377 4256 -21679861.11823 4378 4256 -17343750.0057 4379 4256 -36432062.04358 4380 4256 -86719444.43019 4381 4256 -2.682209014893e-07 4382 4256 -99061955.12461 4383 4256 -21679861.11823 4384 4256 17343750.00569 4385 4256 -36432062.04358 4257 4257 1632315315.374 4258 4257 97222220.26178 4259 4257 -4.172325134277e-05 4260 4257 17392720.97666 4261 4257 -97222221.42845 4262 4257 -2.145767211914e-06 4269 4257 -148365426.1266 4270 4257 -97222222.20624 4271 4257 -3.039836883545e-06 4272 4257 -406796532.3944 4273 4257 -2.801418304443e-06 4274 4257 -1.233816146851e-05 4275 4257 -148365426.1266 4276 4257 97222222.20624 4277 4257 -3.308057785034e-06 4353 4257 -46373434.23613 4354 4257 24305555.56354 4355 4257 21679861.11823 4356 4257 -175918799.4897 4357 4257 -24305555.27186 4358 4257 86719444.24762 4365 4257 8952264.76783 4366 4257 9.298324584961e-06 4367 4257 6.228685379028e-06 4368 4257 268847663.9159 4369 4257 24305555.07742 4370 4257 0.03653132915497 4371 4257 -28139091.37671 4372 4257 -24305555.36909 4373 4257 21679860.74398 4380 4257 -46373434.23611 4381 4257 -24305555.56353 4382 4257 -21679861.11823 4383 4257 -138827443.8751 4384 4257 -5.066394805908e-07 4385 4257 -86719444.43019 4386 4257 -46373434.23611 4387 4257 24305555.56353 4388 4257 -21679861.11823 4258 4258 1369805740.108 4259 4258 -2.145767211914e-06 4260 4258 -97222221.03956 4261 4258 -322883627.8625 4262 4258 4.798173904419e-06 4269 4258 -97222222.20624 4270 4258 -119197695.4315 4271 4258 2.831220626831e-07 4272 4258 -3.09944152832e-06 4273 4258 20983010.02827 4274 4258 -4.768371582031e-07 4275 4258 97222222.20624 4276 4258 -119197695.4315 4277 4258 -7.450580596924e-08 4353 4258 24305555.56354 4354 4258 -39081501.55876 4355 4258 -17343750.00569 4356 4258 -24305555.36908 4357 4258 -61681981.7616 4358 4258 17343749.94043 4365 4258 1.069903373718e-05 4366 4258 -83408755.55014 4367 4258 -69374999.9886 4368 4258 24305555.07742 4369 4258 203220270.0671 4370 4258 0.02920919656754 4371 4258 -24305555.27186 4372 4258 -113208178.6284 4373 4258 69374999.6084 4380 4258 -24305555.56353 4381 4258 -39081501.55875 4382 4258 -17343750.0057 4383 4258 -8.344650268555e-07 4384 4258 -31882558.21681 4385 4258 -3.278255462646e-07 4386 4258 24305555.56353 4387 4258 -39081501.55875 4388 4258 17343750.00569 4259 4259 1212545401.289 4260 4259 -1.788139343262e-06 4261 4259 3.75509262085e-06 4262 4259 8567490.576108 4269 4259 -2.890825271606e-06 4270 4259 3.8743019104e-07 4271 4259 -46719419.49861 4272 4259 -1.20997428894e-05 4273 4259 -4.768371582031e-07 4274 4259 -212506.0825927 4275 4259 -3.278255462646e-06 4276 4259 -2.086162567139e-07 4277 4259 -46719419.49861 4353 4259 21679861.11823 4354 4259 -17343750.0057 4355 4259 -36432062.04359 4356 4259 86719444.24762 4357 4259 17343749.9078 4358 4259 -110741809.7386 4365 4259 6.169080734253e-06 4366 4259 -69374999.9886 4367 4259 -72810997.49471 4368 4259 -0.03649973869324 4369 4259 -0.02921465039253 4370 4259 -68146756.53808 4371 4259 21679860.55685 4372 4259 69374999.49133 4373 4259 -84490851.68298 4380 4259 -21679861.11823 4381 4259 -17343750.0057 4382 4259 -36432062.04358 4383 4259 -86719444.43019 4384 4259 -2.682209014893e-07 4385 4259 -99061955.12461 4386 4259 -21679861.11823 4387 4259 17343750.00569 4388 4259 -36432062.04358 4260 4260 927468678.158 4261 4260 97222222.20623 4262 4260 -8.106231689453e-06 4272 4260 -148365426.1266 4273 4260 -97222222.20624 4274 4260 -3.039836883545e-06 4275 4260 -573726109.9308 4276 4260 -97222221.42845 4277 4260 8.940696716309e-07 4278 4260 18564155.00999 4279 4260 77777776.9872 4280 4260 2.861022949219e-06 4356 4260 -9282077.50499 4357 4260 29166666.38457 4358 4260 26015832.78049 4368 4260 -28139091.37673 4369 4260 -24305555.27187 4370 4260 -21679860.55685 4371 4260 139046393.5639 4372 4260 24305555.56354 4373 4260 17343888.84952 4383 4260 -46373434.23611 4384 4260 -24305555.56353 4385 4260 -21679861.11823 4386 4260 -175918799.4896 4387 4260 -24305555.36909 4388 4260 -86719444.24762 4389 4260 -9282077.505002 4390 4260 19444444.25638 4391 4260 -17343888.52033 4261 4261 781630025.6149 4262 4261 8.412431954121e-06 4272 4261 -97222222.20624 4273 4261 -119197695.4315 4274 4261 2.831220626831e-07 4275 4261 -97222221.03956 4276 4261 -116778839.2437 4277 4261 5.602836608887e-06 4278 4261 116666665.4808 4279 4261 18564155.00998 4280 4261 5.960464477539e-07 4356 4261 19444444.25638 4357 4261 -9282077.505 4358 4261 -13874999.9393 4368 4261 -24305555.36909 4369 4261 -113208178.6284 4370 4261 -69374999.49133 4371 4261 24305555.56354 4372 4261 102586730.4102 4373 4261 13874999.85143 4383 4261 -24305555.56353 4384 4261 -39081501.55875 4385 4261 -17343750.0057 4386 4261 -24305555.27187 4387 4261 -61681981.76159 4388 4261 -17343749.90781 4389 4261 29166666.38457 4390 4261 -9282077.504995 4391 4261 20812499.90894 4262 4262 728641235.3813 4272 4262 -2.890825271606e-06 4273 4262 3.8743019104e-07 4274 4262 -46719419.49861 4275 4262 4.172325134277e-07 4276 4262 4.887580871582e-06 4277 4262 -96436338.25295 4278 4262 2.503395080566e-06 4279 4262 1.251697540283e-06 4280 4262 49504413.35998 4356 4262 17343888.52033 4357 4262 -20812499.90895 4358 4262 -24752206.67999 4368 4262 -21679860.74398 4369 4262 -69374999.6084 4370 4262 -84490851.68299 4371 4262 -17343888.84952 4372 4262 -13874999.85144 4373 4262 -65361760.6378 4383 4262 -21679861.11823 4384 4262 -17343750.0057 4385 4262 -36432062.04358 4386 4262 -86719444.24762 4387 4262 -17343749.94044 4388 4262 -110741809.7386 4389 4262 -26015832.7805 4390 4262 13874999.9393 4391 4262 -24752206.67999 4263 4263 1483949894.094 4264 4263 7.867813110352e-06 4265 4263 -5.507469177246e-05 4266 4263 184322301.8864 4267 4263 -2.622604370117e-06 4268 4263 -1.358985900879e-05 4281 4263 -406796532.3944 4282 4263 -2.801418304443e-06 4283 4263 -1.233816146851e-05 4284 4263 -148365426.1266 4285 4263 97222222.20624 4286 4263 -3.308057785034e-06 4359 4263 -138827443.8752 4360 4263 2.682209014893e-07 4361 4263 86719444.4302 4362 4263 -46373434.23614 4363 4263 -24305555.56354 4364 4263 21679861.11823 4374 4263 222474230.8735 4375 4263 3.933906555176e-06 4376 4263 2.622604370117e-05 4377 4263 8952264.76783 4378 4263 -1.302361488342e-05 4379 4263 6.914138793945e-06 4392 4263 -138827443.8751 4393 4263 -5.066394805908e-07 4394 4263 -86719444.43019 4395 4263 -46373434.23611 4396 4263 24305555.56353 4397 4263 -21679861.11823 4264 4264 1250608048.648 4265 4264 -1.192092895508e-06 4266 4264 -3.159046173096e-06 4267 4264 -185121779.2034 4268 4264 8.046627044678e-07 4281 4264 -3.09944152832e-06 4282 4264 20983010.02827 4283 4264 -4.768371582031e-07 4284 4264 97222222.20624 4285 4264 -119197695.4315 4286 4264 -7.450580596924e-08 4359 4264 -2.294778823853e-06 4360 4264 -31882558.21685 4361 4264 2.682209014893e-07 4362 4264 -24305555.56354 4363 4264 -39081501.55876 4364 4264 17343750.0057 4374 4264 4.410743713379e-06 4375 4264 164138769.4832 4376 4264 -1.192092895508e-07 4377 4264 -1.156330108643e-05 4378 4264 -83408755.55014 4379 4264 69374999.9886 4392 4264 -8.344650268555e-07 4393 4264 -31882558.21681 4394 4264 -3.278255462646e-07 4395 4264 24305555.56353 4396 4264 -39081501.55875 4397 4264 17343750.00569 4265 4265 1165825984.246 4266 4265 -1.382827758789e-05 4267 4265 1.788139343262e-07 4268 4265 104791324.3853 4281 4265 -1.20997428894e-05 4282 4265 -4.768371582031e-07 4283 4265 -212506.0825927 4284 4265 -3.278255462646e-06 4285 4265 -2.086162567139e-07 4286 4265 -46719419.49861 4359 4265 86719444.4302 4360 4265 3.427267074585e-07 4361 4265 -99061955.12464 4362 4265 21679861.11823 4363 4265 17343750.0057 4364 4265 -36432062.04359 4374 4265 2.598762512207e-05 4375 4265 5.960464477539e-08 4376 4265 -104578818.0156 4377 4265 6.973743438721e-06 4378 4265 69374999.9886 4379 4265 -72810997.49471 4392 4265 -86719444.43019 4393 4265 -2.682209014893e-07 4394 4265 -99061955.12461 4395 4265 -21679861.11823 4396 4265 17343750.00569 4397 4265 -36432062.04358 4266 4266 1483949894.094 4267 4266 7.867813110352e-06 4268 4266 -5.507469177246e-05 4269 4266 184322301.8864 4270 4266 -2.622604370117e-06 4271 4266 -1.358985900879e-05 4281 4266 -148365426.1266 4282 4266 -97222222.20624 4283 4266 -3.039836883545e-06 4284 4266 -406796532.3944 4285 4266 -2.801418304443e-06 4286 4266 -1.233816146851e-05 4287 4266 -148365426.1266 4288 4266 97222222.20624 4289 4266 -3.308057785034e-06 4359 4266 -46373434.23613 4360 4266 24305555.56354 4361 4266 21679861.11823 4362 4266 -138827443.8752 4363 4266 2.682209014893e-07 4364 4266 86719444.4302 4365 4266 -46373434.23614 4366 4266 -24305555.56354 4367 4266 21679861.11823 4374 4266 8952264.76783 4375 4266 9.298324584961e-06 4376 4266 6.228685379028e-06 4377 4266 222474230.8735 4378 4266 3.933906555176e-06 4379 4266 2.622604370117e-05 4380 4266 8952264.76783 4381 4266 -1.302361488342e-05 4382 4266 6.914138793945e-06 4392 4266 -46373434.23611 4393 4266 -24305555.56353 4394 4266 -21679861.11823 4395 4266 -138827443.8751 4396 4266 -5.066394805908e-07 4397 4266 -86719444.43019 4398 4266 -46373434.23611 4399 4266 24305555.56353 4400 4266 -21679861.11823 4267 4267 1250608048.648 4268 4267 -1.192092895508e-06 4269 4267 -3.159046173096e-06 4270 4267 -185121779.2034 4271 4267 8.046627044678e-07 4281 4267 -97222222.20624 4282 4267 -119197695.4315 4283 4267 2.831220626831e-07 4284 4267 -3.09944152832e-06 4285 4267 20983010.02827 4286 4267 -4.768371582031e-07 4287 4267 97222222.20624 4288 4267 -119197695.4315 4289 4267 -7.450580596924e-08 4359 4267 24305555.56354 4360 4267 -39081501.55876 4361 4267 -17343750.00569 4362 4267 -2.294778823853e-06 4363 4267 -31882558.21685 4364 4267 2.682209014893e-07 4365 4267 -24305555.56354 4366 4267 -39081501.55876 4367 4267 17343750.0057 4374 4267 1.069903373718e-05 4375 4267 -83408755.55014 4376 4267 -69374999.9886 4377 4267 4.410743713379e-06 4378 4267 164138769.4832 4379 4267 -1.192092895508e-07 4380 4267 -1.156330108643e-05 4381 4267 -83408755.55014 4382 4267 69374999.9886 4392 4267 -24305555.56353 4393 4267 -39081501.55875 4394 4267 -17343750.0057 4395 4267 -8.344650268555e-07 4396 4267 -31882558.21681 4397 4267 -3.278255462646e-07 4398 4267 24305555.56353 4399 4267 -39081501.55875 4400 4267 17343750.00569 4268 4268 1165825984.246 4269 4268 -1.382827758789e-05 4270 4268 1.788139343262e-07 4271 4268 104791324.3853 4281 4268 -2.890825271606e-06 4282 4268 3.8743019104e-07 4283 4268 -46719419.49861 4284 4268 -1.20997428894e-05 4285 4268 -4.768371582031e-07 4286 4268 -212506.0825927 4287 4268 -3.278255462646e-06 4288 4268 -2.086162567139e-07 4289 4268 -46719419.49861 4359 4268 21679861.11823 4360 4268 -17343750.0057 4361 4268 -36432062.04359 4362 4268 86719444.4302 4363 4268 3.427267074585e-07 4364 4268 -99061955.12464 4365 4268 21679861.11823 4366 4268 17343750.0057 4367 4268 -36432062.04359 4374 4268 6.169080734253e-06 4375 4268 -69374999.9886 4376 4268 -72810997.49471 4377 4268 2.598762512207e-05 4378 4268 5.960464477539e-08 4379 4268 -104578818.0156 4380 4268 6.973743438721e-06 4381 4268 69374999.9886 4382 4268 -72810997.49471 4392 4268 -21679861.11823 4393 4268 -17343750.0057 4394 4268 -36432062.04358 4395 4268 -86719444.43019 4396 4268 -2.682209014893e-07 4397 4268 -99061955.12461 4398 4268 -21679861.11823 4399 4268 17343750.00569 4400 4268 -36432062.04358 4269 4269 1483949894.094 4270 4269 7.867813110352e-06 4271 4269 -5.507469177246e-05 4272 4269 184322301.8864 4273 4269 -2.622604370117e-06 4274 4269 -1.358985900879e-05 4284 4269 -148365426.1266 4285 4269 -97222222.20624 4286 4269 -3.039836883545e-06 4287 4269 -406796532.3944 4288 4269 -2.801418304443e-06 4289 4269 -1.233816146851e-05 4290 4269 -148365426.1266 4291 4269 97222222.20624 4292 4269 -3.308057785034e-06 4362 4269 -46373434.23613 4363 4269 24305555.56354 4364 4269 21679861.11823 4365 4269 -138827443.8752 4366 4269 2.682209014893e-07 4367 4269 86719444.4302 4368 4269 -46373434.23614 4369 4269 -24305555.56354 4370 4269 21679861.11823 4377 4269 8952264.76783 4378 4269 9.298324584961e-06 4379 4269 6.228685379028e-06 4380 4269 222474230.8735 4381 4269 3.933906555176e-06 4382 4269 2.622604370117e-05 4383 4269 8952264.76783 4384 4269 -1.302361488342e-05 4385 4269 6.914138793945e-06 4395 4269 -46373434.23611 4396 4269 -24305555.56353 4397 4269 -21679861.11823 4398 4269 -138827443.8751 4399 4269 -5.066394805908e-07 4400 4269 -86719444.43019 4401 4269 -46373434.23611 4402 4269 24305555.56353 4403 4269 -21679861.11823 4270 4270 1250608048.648 4271 4270 -1.192092895508e-06 4272 4270 -3.159046173096e-06 4273 4270 -185121779.2034 4274 4270 8.046627044678e-07 4284 4270 -97222222.20624 4285 4270 -119197695.4315 4286 4270 2.831220626831e-07 4287 4270 -3.09944152832e-06 4288 4270 20983010.02827 4289 4270 -4.768371582031e-07 4290 4270 97222222.20624 4291 4270 -119197695.4315 4292 4270 -7.450580596924e-08 4362 4270 24305555.56354 4363 4270 -39081501.55876 4364 4270 -17343750.00569 4365 4270 -2.294778823853e-06 4366 4270 -31882558.21685 4367 4270 2.682209014893e-07 4368 4270 -24305555.56354 4369 4270 -39081501.55876 4370 4270 17343750.0057 4377 4270 1.069903373718e-05 4378 4270 -83408755.55014 4379 4270 -69374999.9886 4380 4270 4.410743713379e-06 4381 4270 164138769.4832 4382 4270 -1.192092895508e-07 4383 4270 -1.156330108643e-05 4384 4270 -83408755.55014 4385 4270 69374999.9886 4395 4270 -24305555.56353 4396 4270 -39081501.55875 4397 4270 -17343750.0057 4398 4270 -8.344650268555e-07 4399 4270 -31882558.21681 4400 4270 -3.278255462646e-07 4401 4270 24305555.56353 4402 4270 -39081501.55875 4403 4270 17343750.00569 4271 4271 1165825984.246 4272 4271 -1.382827758789e-05 4273 4271 1.788139343262e-07 4274 4271 104791324.3853 4284 4271 -2.890825271606e-06 4285 4271 3.8743019104e-07 4286 4271 -46719419.49861 4287 4271 -1.20997428894e-05 4288 4271 -4.768371582031e-07 4289 4271 -212506.0825927 4290 4271 -3.278255462646e-06 4291 4271 -2.086162567139e-07 4292 4271 -46719419.49861 4362 4271 21679861.11823 4363 4271 -17343750.0057 4364 4271 -36432062.04359 4365 4271 86719444.4302 4366 4271 3.427267074585e-07 4367 4271 -99061955.12464 4368 4271 21679861.11823 4369 4271 17343750.0057 4370 4271 -36432062.04359 4377 4271 6.169080734253e-06 4378 4271 -69374999.9886 4379 4271 -72810997.49471 4380 4271 2.598762512207e-05 4381 4271 5.960464477539e-08 4382 4271 -104578818.0156 4383 4271 6.973743438721e-06 4384 4271 69374999.9886 4385 4271 -72810997.49471 4395 4271 -21679861.11823 4396 4271 -17343750.0057 4397 4271 -36432062.04358 4398 4271 -86719444.43019 4399 4271 -2.682209014893e-07 4400 4271 -99061955.12461 4401 4271 -21679861.11823 4402 4271 17343750.00569 4403 4271 -36432062.04358 4272 4272 1483949894.094 4273 4272 7.867813110352e-06 4274 4272 -5.507469177246e-05 4275 4272 184322301.8864 4276 4272 -2.622604370117e-06 4277 4272 -1.358985900879e-05 4287 4272 -148365426.1266 4288 4272 -97222222.20624 4289 4272 -3.039836883545e-06 4290 4272 -406796532.3944 4291 4272 -2.801418304443e-06 4292 4272 -1.233816146851e-05 4293 4272 -148365426.1266 4294 4272 97222222.20624 4295 4272 -3.308057785034e-06 4365 4272 -46373434.23613 4366 4272 24305555.56354 4367 4272 21679861.11823 4368 4272 -138827443.8752 4369 4272 2.682209014893e-07 4370 4272 86719444.4302 4371 4272 -46373434.23614 4372 4272 -24305555.56354 4373 4272 21679861.11823 4380 4272 8952264.76783 4381 4272 9.298324584961e-06 4382 4272 6.228685379028e-06 4383 4272 222474230.8735 4384 4272 3.933906555176e-06 4385 4272 2.622604370117e-05 4386 4272 8952264.76783 4387 4272 -1.302361488342e-05 4388 4272 6.914138793945e-06 4398 4272 -46373434.23611 4399 4272 -24305555.56353 4400 4272 -21679861.11823 4401 4272 -138827443.8751 4402 4272 -5.066394805908e-07 4403 4272 -86719444.43019 4404 4272 -46373434.23611 4405 4272 24305555.56353 4406 4272 -21679861.11823 4273 4273 1250608048.648 4274 4273 -1.192092895508e-06 4275 4273 -3.159046173096e-06 4276 4273 -185121779.2034 4277 4273 8.046627044678e-07 4287 4273 -97222222.20624 4288 4273 -119197695.4315 4289 4273 2.831220626831e-07 4290 4273 -3.09944152832e-06 4291 4273 20983010.02827 4292 4273 -4.768371582031e-07 4293 4273 97222222.20624 4294 4273 -119197695.4315 4295 4273 -7.450580596924e-08 4365 4273 24305555.56354 4366 4273 -39081501.55876 4367 4273 -17343750.00569 4368 4273 -2.294778823853e-06 4369 4273 -31882558.21685 4370 4273 2.682209014893e-07 4371 4273 -24305555.56354 4372 4273 -39081501.55876 4373 4273 17343750.0057 4380 4273 1.069903373718e-05 4381 4273 -83408755.55014 4382 4273 -69374999.9886 4383 4273 4.410743713379e-06 4384 4273 164138769.4832 4385 4273 -1.192092895508e-07 4386 4273 -1.156330108643e-05 4387 4273 -83408755.55014 4388 4273 69374999.9886 4398 4273 -24305555.56353 4399 4273 -39081501.55875 4400 4273 -17343750.0057 4401 4273 -8.344650268555e-07 4402 4273 -31882558.21681 4403 4273 -3.278255462646e-07 4404 4273 24305555.56353 4405 4273 -39081501.55875 4406 4273 17343750.00569 4274 4274 1165825984.246 4275 4274 -1.382827758789e-05 4276 4274 1.788139343262e-07 4277 4274 104791324.3853 4287 4274 -2.890825271606e-06 4288 4274 3.8743019104e-07 4289 4274 -46719419.49861 4290 4274 -1.20997428894e-05 4291 4274 -4.768371582031e-07 4292 4274 -212506.0825927 4293 4274 -3.278255462646e-06 4294 4274 -2.086162567139e-07 4295 4274 -46719419.49861 4365 4274 21679861.11823 4366 4274 -17343750.0057 4367 4274 -36432062.04359 4368 4274 86719444.4302 4369 4274 3.427267074585e-07 4370 4274 -99061955.12464 4371 4274 21679861.11823 4372 4274 17343750.0057 4373 4274 -36432062.04359 4380 4274 6.169080734253e-06 4381 4274 -69374999.9886 4382 4274 -72810997.49471 4383 4274 2.598762512207e-05 4384 4274 5.960464477539e-08 4385 4274 -104578818.0156 4386 4274 6.973743438721e-06 4387 4274 69374999.9886 4388 4274 -72810997.49471 4398 4274 -21679861.11823 4399 4274 -17343750.0057 4400 4274 -36432062.04358 4401 4274 -86719444.43019 4402 4274 -2.682209014893e-07 4403 4274 -99061955.12461 4404 4274 -21679861.11823 4405 4274 17343750.00569 4406 4274 -36432062.04358 4275 4275 1632315315.374 4276 4275 97222220.26178 4277 4275 -4.172325134277e-05 4278 4275 17392720.97666 4279 4275 -97222221.42845 4280 4275 -2.145767211914e-06 4290 4275 -148365426.1266 4291 4275 -97222222.20624 4292 4275 -3.039836883545e-06 4293 4275 -406796532.3944 4294 4275 -2.801418304443e-06 4295 4275 -1.233816146851e-05 4296 4275 -148365426.1266 4297 4275 97222222.20624 4298 4275 -3.308057785034e-06 4368 4275 -46373434.23613 4369 4275 24305555.56354 4370 4275 21679861.11823 4371 4275 -175918799.4897 4372 4275 -24305555.27186 4373 4275 86719444.24762 4383 4275 8952264.76783 4384 4275 9.298324584961e-06 4385 4275 6.228685379028e-06 4386 4275 268847663.9159 4387 4275 24305555.07742 4388 4275 0.03653132915497 4389 4275 -28139091.37671 4390 4275 -24305555.36909 4391 4275 21679860.74398 4401 4275 -46373434.23611 4402 4275 -24305555.56353 4403 4275 -21679861.11823 4404 4275 -138827443.8751 4405 4275 -5.066394805908e-07 4406 4275 -86719444.43019 4407 4275 -46373434.23611 4408 4275 24305555.56353 4409 4275 -21679861.11823 4276 4276 1369805740.108 4277 4276 -2.145767211914e-06 4278 4276 -97222221.03956 4279 4276 -322883627.8625 4280 4276 4.798173904419e-06 4290 4276 -97222222.20624 4291 4276 -119197695.4315 4292 4276 2.831220626831e-07 4293 4276 -3.09944152832e-06 4294 4276 20983010.02827 4295 4276 -4.768371582031e-07 4296 4276 97222222.20624 4297 4276 -119197695.4315 4298 4276 -7.450580596924e-08 4368 4276 24305555.56354 4369 4276 -39081501.55876 4370 4276 -17343750.00569 4371 4276 -24305555.36908 4372 4276 -61681981.7616 4373 4276 17343749.94043 4383 4276 1.069903373718e-05 4384 4276 -83408755.55014 4385 4276 -69374999.9886 4386 4276 24305555.07742 4387 4276 203220270.0671 4388 4276 0.02920919656754 4389 4276 -24305555.27186 4390 4276 -113208178.6284 4391 4276 69374999.6084 4401 4276 -24305555.56353 4402 4276 -39081501.55875 4403 4276 -17343750.0057 4404 4276 -8.344650268555e-07 4405 4276 -31882558.21681 4406 4276 -3.278255462646e-07 4407 4276 24305555.56353 4408 4276 -39081501.55875 4409 4276 17343750.00569 4277 4277 1212545401.289 4278 4277 -1.788139343262e-06 4279 4277 3.75509262085e-06 4280 4277 8567490.576108 4290 4277 -2.890825271606e-06 4291 4277 3.8743019104e-07 4292 4277 -46719419.49861 4293 4277 -1.20997428894e-05 4294 4277 -4.768371582031e-07 4295 4277 -212506.0825927 4296 4277 -3.278255462646e-06 4297 4277 -2.086162567139e-07 4298 4277 -46719419.49861 4368 4277 21679861.11823 4369 4277 -17343750.0057 4370 4277 -36432062.04359 4371 4277 86719444.24762 4372 4277 17343749.9078 4373 4277 -110741809.7386 4383 4277 6.169080734253e-06 4384 4277 -69374999.9886 4385 4277 -72810997.49471 4386 4277 -0.03649973869324 4387 4277 -0.02921465039253 4388 4277 -68146756.53808 4389 4277 21679860.55685 4390 4277 69374999.49133 4391 4277 -84490851.68298 4401 4277 -21679861.11823 4402 4277 -17343750.0057 4403 4277 -36432062.04358 4404 4277 -86719444.43019 4405 4277 -2.682209014893e-07 4406 4277 -99061955.12461 4407 4277 -21679861.11823 4408 4277 17343750.00569 4409 4277 -36432062.04358 4278 4278 944226635.8557 4279 4278 104813146.3867 4280 4278 -9.775161743164e-06 4293 4278 -148365426.1266 4294 4278 -97222222.20624 4295 4278 -3.039836883545e-06 4296 4278 -591818040.3847 4297 4278 -104813145.6089 4298 4278 -1.108646392822e-05 4299 4278 22795227.75345 4300 4278 77777776.98722 4301 4278 2.145767211914e-06 4371 4278 -9282077.50499 4372 4278 29166666.38457 4373 4278 26015832.78049 4386 4278 -28139091.37673 4387 4278 -24305555.27187 4388 4278 -21679860.55685 4389 4278 142149470.4917 4390 4278 26203286.60958 4391 4278 17682222.18138 4404 4278 -46373434.23611 4405 4278 -24305555.56353 4406 4278 -21679861.11823 4407 4278 -180984988.3575 4408 4278 -26203286.41514 4409 4278 -88411110.90688 4410 4278 -8767515.55854 4411 4278 19444444.25639 4412 4278 -18020555.17262 4279 4279 789133337.2837 4280 4279 2.644956111908e-06 4293 4279 -97222222.20624 4294 4279 -119197695.4315 4295 4279 2.831220626831e-07 4296 4279 -104813145.22 4297 4279 -131460786.5969 4298 4279 -4.768371582031e-07 4299 4279 116666665.4808 4300 4279 28639890.68178 4301 4279 3.576278686523e-07 4371 4279 19444444.25638 4372 4279 -9282077.505 4373 4279 -13874999.9393 4386 4279 -24305555.36909 4387 4279 -113208178.6284 4388 4279 -69374999.49133 4389 4279 26203286.60958 4390 4279 103376145.8295 4391 4279 14145833.18358 4404 4279 -24305555.56353 4405 4279 -39081501.55875 4406 4279 -17343750.0057 4407 4279 -26203286.31792 4408 4279 -65895674.85386 4409 4279 -18697916.56855 4410 4279 29166666.38458 4411 4279 -7306349.825737 4412 4279 20270833.25379 4280 4280 738330627.0228 4293 4280 -2.890825271606e-06 4294 4280 3.8743019104e-07 4295 4280 -46719419.49861 4296 4280 -1.20997428894e-05 4297 4280 -1.192092895508e-07 4298 4280 -103838327.6491 4299 4280 2.622604370117e-06 4300 4280 1.788139343262e-07 4301 4280 54942611.08087 4371 4280 17343888.52033 4372 4280 -20812499.90895 4373 4280 -24752206.67999 4386 4280 -21679860.74398 4387 4280 -69374999.6084 4388 4280 -84490851.68299 4389 4280 -17682222.18137 4390 4280 -14145833.18359 4391 4280 -65836512.72294 4404 4280 -21679861.11823 4405 4280 -17343750.0057 4406 4280 -36432062.04358 4407 4280 -88411110.90689 4408 4280 -18697916.60118 4409 4280 -114040857.0942 4410 4280 -27030832.75893 4411 4280 13062499.95656 4412 4280 -24841207.22224 4281 4281 1483949894.094 4282 4281 7.867813110352e-06 4283 4281 -5.507469177246e-05 4284 4281 184322301.8864 4285 4281 -2.622604370117e-06 4286 4281 -1.358985900879e-05 4302 4281 -406796532.3944 4303 4281 -2.801418304443e-06 4304 4281 -1.233816146851e-05 4305 4281 -148365426.1266 4306 4281 97222222.20624 4307 4281 -3.308057785034e-06 4374 4281 -138827443.8752 4375 4281 2.682209014893e-07 4376 4281 86719444.4302 4377 4281 -46373434.23614 4378 4281 -24305555.56354 4379 4281 21679861.11823 4392 4281 222474230.8735 4393 4281 3.933906555176e-06 4394 4281 2.622604370117e-05 4395 4281 8952264.76783 4396 4281 -1.302361488342e-05 4397 4281 6.914138793945e-06 4413 4281 -138827443.8751 4414 4281 -5.066394805908e-07 4415 4281 -86719444.43019 4416 4281 -46373434.23611 4417 4281 24305555.56353 4418 4281 -21679861.11823 4282 4282 1250608048.648 4283 4282 -1.192092895508e-06 4284 4282 -3.159046173096e-06 4285 4282 -185121779.2034 4286 4282 8.046627044678e-07 4302 4282 -3.09944152832e-06 4303 4282 20983010.02827 4304 4282 -4.768371582031e-07 4305 4282 97222222.20624 4306 4282 -119197695.4315 4307 4282 -7.450580596924e-08 4374 4282 -2.294778823853e-06 4375 4282 -31882558.21685 4376 4282 2.682209014893e-07 4377 4282 -24305555.56354 4378 4282 -39081501.55876 4379 4282 17343750.0057 4392 4282 4.410743713379e-06 4393 4282 164138769.4832 4394 4282 -1.192092895508e-07 4395 4282 -1.156330108643e-05 4396 4282 -83408755.55014 4397 4282 69374999.9886 4413 4282 -8.344650268555e-07 4414 4282 -31882558.21681 4415 4282 -3.278255462646e-07 4416 4282 24305555.56353 4417 4282 -39081501.55875 4418 4282 17343750.00569 4283 4283 1165825984.246 4284 4283 -1.382827758789e-05 4285 4283 1.788139343262e-07 4286 4283 104791324.3853 4302 4283 -1.20997428894e-05 4303 4283 -4.768371582031e-07 4304 4283 -212506.0825927 4305 4283 -3.278255462646e-06 4306 4283 -2.086162567139e-07 4307 4283 -46719419.49861 4374 4283 86719444.4302 4375 4283 3.427267074585e-07 4376 4283 -99061955.12464 4377 4283 21679861.11823 4378 4283 17343750.0057 4379 4283 -36432062.04359 4392 4283 2.598762512207e-05 4393 4283 5.960464477539e-08 4394 4283 -104578818.0156 4395 4283 6.973743438721e-06 4396 4283 69374999.9886 4397 4283 -72810997.49471 4413 4283 -86719444.43019 4414 4283 -2.682209014893e-07 4415 4283 -99061955.12461 4416 4283 -21679861.11823 4417 4283 17343750.00569 4418 4283 -36432062.04358 4284 4284 1483949894.094 4285 4284 7.867813110352e-06 4286 4284 -5.507469177246e-05 4287 4284 184322301.8864 4288 4284 -2.622604370117e-06 4289 4284 -1.358985900879e-05 4302 4284 -148365426.1266 4303 4284 -97222222.20624 4304 4284 -3.039836883545e-06 4305 4284 -406796532.3944 4306 4284 -2.801418304443e-06 4307 4284 -1.233816146851e-05 4308 4284 -148365426.1266 4309 4284 97222222.20624 4310 4284 -3.308057785034e-06 4374 4284 -46373434.23613 4375 4284 24305555.56354 4376 4284 21679861.11823 4377 4284 -138827443.8752 4378 4284 2.682209014893e-07 4379 4284 86719444.4302 4380 4284 -46373434.23614 4381 4284 -24305555.56354 4382 4284 21679861.11823 4392 4284 8952264.76783 4393 4284 9.298324584961e-06 4394 4284 6.228685379028e-06 4395 4284 222474230.8735 4396 4284 3.933906555176e-06 4397 4284 2.622604370117e-05 4398 4284 8952264.76783 4399 4284 -1.302361488342e-05 4400 4284 6.914138793945e-06 4413 4284 -46373434.23611 4414 4284 -24305555.56353 4415 4284 -21679861.11823 4416 4284 -138827443.8751 4417 4284 -5.066394805908e-07 4418 4284 -86719444.43019 4419 4284 -46373434.23611 4420 4284 24305555.56353 4421 4284 -21679861.11823 4285 4285 1250608048.648 4286 4285 -1.192092895508e-06 4287 4285 -3.159046173096e-06 4288 4285 -185121779.2034 4289 4285 8.046627044678e-07 4302 4285 -97222222.20624 4303 4285 -119197695.4315 4304 4285 2.831220626831e-07 4305 4285 -3.09944152832e-06 4306 4285 20983010.02827 4307 4285 -4.768371582031e-07 4308 4285 97222222.20624 4309 4285 -119197695.4315 4310 4285 -7.450580596924e-08 4374 4285 24305555.56354 4375 4285 -39081501.55876 4376 4285 -17343750.00569 4377 4285 -2.294778823853e-06 4378 4285 -31882558.21685 4379 4285 2.682209014893e-07 4380 4285 -24305555.56354 4381 4285 -39081501.55876 4382 4285 17343750.0057 4392 4285 1.069903373718e-05 4393 4285 -83408755.55014 4394 4285 -69374999.9886 4395 4285 4.410743713379e-06 4396 4285 164138769.4832 4397 4285 -1.192092895508e-07 4398 4285 -1.156330108643e-05 4399 4285 -83408755.55014 4400 4285 69374999.9886 4413 4285 -24305555.56353 4414 4285 -39081501.55875 4415 4285 -17343750.0057 4416 4285 -8.344650268555e-07 4417 4285 -31882558.21681 4418 4285 -3.278255462646e-07 4419 4285 24305555.56353 4420 4285 -39081501.55875 4421 4285 17343750.00569 4286 4286 1165825984.246 4287 4286 -1.382827758789e-05 4288 4286 1.788139343262e-07 4289 4286 104791324.3853 4302 4286 -2.890825271606e-06 4303 4286 3.8743019104e-07 4304 4286 -46719419.49861 4305 4286 -1.20997428894e-05 4306 4286 -4.768371582031e-07 4307 4286 -212506.0825927 4308 4286 -3.278255462646e-06 4309 4286 -2.086162567139e-07 4310 4286 -46719419.49861 4374 4286 21679861.11823 4375 4286 -17343750.0057 4376 4286 -36432062.04359 4377 4286 86719444.4302 4378 4286 3.427267074585e-07 4379 4286 -99061955.12464 4380 4286 21679861.11823 4381 4286 17343750.0057 4382 4286 -36432062.04359 4392 4286 6.169080734253e-06 4393 4286 -69374999.9886 4394 4286 -72810997.49471 4395 4286 2.598762512207e-05 4396 4286 5.960464477539e-08 4397 4286 -104578818.0156 4398 4286 6.973743438721e-06 4399 4286 69374999.9886 4400 4286 -72810997.49471 4413 4286 -21679861.11823 4414 4286 -17343750.0057 4415 4286 -36432062.04358 4416 4286 -86719444.43019 4417 4286 -2.682209014893e-07 4418 4286 -99061955.12461 4419 4286 -21679861.11823 4420 4286 17343750.00569 4421 4286 -36432062.04358 4287 4287 1483949894.094 4288 4287 7.867813110352e-06 4289 4287 -5.507469177246e-05 4290 4287 184322301.8864 4291 4287 -2.622604370117e-06 4292 4287 -1.358985900879e-05 4305 4287 -148365426.1266 4306 4287 -97222222.20624 4307 4287 -3.039836883545e-06 4308 4287 -406796532.3944 4309 4287 -2.801418304443e-06 4310 4287 -1.233816146851e-05 4311 4287 -148365426.1266 4312 4287 97222222.20624 4313 4287 -3.308057785034e-06 4377 4287 -46373434.23613 4378 4287 24305555.56354 4379 4287 21679861.11823 4380 4287 -138827443.8752 4381 4287 2.682209014893e-07 4382 4287 86719444.4302 4383 4287 -46373434.23614 4384 4287 -24305555.56354 4385 4287 21679861.11823 4395 4287 8952264.76783 4396 4287 9.298324584961e-06 4397 4287 6.228685379028e-06 4398 4287 222474230.8735 4399 4287 3.933906555176e-06 4400 4287 2.622604370117e-05 4401 4287 8952264.76783 4402 4287 -1.302361488342e-05 4403 4287 6.914138793945e-06 4416 4287 -46373434.23611 4417 4287 -24305555.56353 4418 4287 -21679861.11823 4419 4287 -138827443.8751 4420 4287 -5.066394805908e-07 4421 4287 -86719444.43019 4422 4287 -46373434.23611 4423 4287 24305555.56353 4424 4287 -21679861.11823 4288 4288 1250608048.648 4289 4288 -1.192092895508e-06 4290 4288 -3.159046173096e-06 4291 4288 -185121779.2034 4292 4288 8.046627044678e-07 4305 4288 -97222222.20624 4306 4288 -119197695.4315 4307 4288 2.831220626831e-07 4308 4288 -3.09944152832e-06 4309 4288 20983010.02827 4310 4288 -4.768371582031e-07 4311 4288 97222222.20624 4312 4288 -119197695.4315 4313 4288 -7.450580596924e-08 4377 4288 24305555.56354 4378 4288 -39081501.55876 4379 4288 -17343750.00569 4380 4288 -2.294778823853e-06 4381 4288 -31882558.21685 4382 4288 2.682209014893e-07 4383 4288 -24305555.56354 4384 4288 -39081501.55876 4385 4288 17343750.0057 4395 4288 1.069903373718e-05 4396 4288 -83408755.55014 4397 4288 -69374999.9886 4398 4288 4.410743713379e-06 4399 4288 164138769.4832 4400 4288 -1.192092895508e-07 4401 4288 -1.156330108643e-05 4402 4288 -83408755.55014 4403 4288 69374999.9886 4416 4288 -24305555.56353 4417 4288 -39081501.55875 4418 4288 -17343750.0057 4419 4288 -8.344650268555e-07 4420 4288 -31882558.21681 4421 4288 -3.278255462646e-07 4422 4288 24305555.56353 4423 4288 -39081501.55875 4424 4288 17343750.00569 4289 4289 1165825984.246 4290 4289 -1.382827758789e-05 4291 4289 1.788139343262e-07 4292 4289 104791324.3853 4305 4289 -2.890825271606e-06 4306 4289 3.8743019104e-07 4307 4289 -46719419.49861 4308 4289 -1.20997428894e-05 4309 4289 -4.768371582031e-07 4310 4289 -212506.0825927 4311 4289 -3.278255462646e-06 4312 4289 -2.086162567139e-07 4313 4289 -46719419.49861 4377 4289 21679861.11823 4378 4289 -17343750.0057 4379 4289 -36432062.04359 4380 4289 86719444.4302 4381 4289 3.427267074585e-07 4382 4289 -99061955.12464 4383 4289 21679861.11823 4384 4289 17343750.0057 4385 4289 -36432062.04359 4395 4289 6.169080734253e-06 4396 4289 -69374999.9886 4397 4289 -72810997.49471 4398 4289 2.598762512207e-05 4399 4289 5.960464477539e-08 4400 4289 -104578818.0156 4401 4289 6.973743438721e-06 4402 4289 69374999.9886 4403 4289 -72810997.49471 4416 4289 -21679861.11823 4417 4289 -17343750.0057 4418 4289 -36432062.04358 4419 4289 -86719444.43019 4420 4289 -2.682209014893e-07 4421 4289 -99061955.12461 4422 4289 -21679861.11823 4423 4289 17343750.00569 4424 4289 -36432062.04358 4290 4290 1483949894.094 4291 4290 7.867813110352e-06 4292 4290 -5.507469177246e-05 4293 4290 184322301.8864 4294 4290 -2.622604370117e-06 4295 4290 -1.358985900879e-05 4308 4290 -148365426.1266 4309 4290 -97222222.20624 4310 4290 -3.039836883545e-06 4311 4290 -406796532.3944 4312 4290 -2.801418304443e-06 4313 4290 -1.233816146851e-05 4314 4290 -148365426.1266 4315 4290 97222222.20624 4316 4290 -3.308057785034e-06 4380 4290 -46373434.23613 4381 4290 24305555.56354 4382 4290 21679861.11823 4383 4290 -138827443.8752 4384 4290 2.682209014893e-07 4385 4290 86719444.4302 4386 4290 -46373434.23614 4387 4290 -24305555.56354 4388 4290 21679861.11823 4398 4290 8952264.76783 4399 4290 9.298324584961e-06 4400 4290 6.228685379028e-06 4401 4290 222474230.8735 4402 4290 3.933906555176e-06 4403 4290 2.622604370117e-05 4404 4290 8952264.76783 4405 4290 -1.302361488342e-05 4406 4290 6.914138793945e-06 4419 4290 -46373434.23611 4420 4290 -24305555.56353 4421 4290 -21679861.11823 4422 4290 -138827443.8751 4423 4290 -5.066394805908e-07 4424 4290 -86719444.43019 4425 4290 -46373434.23611 4426 4290 24305555.56353 4427 4290 -21679861.11823 4291 4291 1250608048.648 4292 4291 -1.192092895508e-06 4293 4291 -3.159046173096e-06 4294 4291 -185121779.2034 4295 4291 8.046627044678e-07 4308 4291 -97222222.20624 4309 4291 -119197695.4315 4310 4291 2.831220626831e-07 4311 4291 -3.09944152832e-06 4312 4291 20983010.02827 4313 4291 -4.768371582031e-07 4314 4291 97222222.20624 4315 4291 -119197695.4315 4316 4291 -7.450580596924e-08 4380 4291 24305555.56354 4381 4291 -39081501.55876 4382 4291 -17343750.00569 4383 4291 -2.294778823853e-06 4384 4291 -31882558.21685 4385 4291 2.682209014893e-07 4386 4291 -24305555.56354 4387 4291 -39081501.55876 4388 4291 17343750.0057 4398 4291 1.069903373718e-05 4399 4291 -83408755.55014 4400 4291 -69374999.9886 4401 4291 4.410743713379e-06 4402 4291 164138769.4832 4403 4291 -1.192092895508e-07 4404 4291 -1.156330108643e-05 4405 4291 -83408755.55014 4406 4291 69374999.9886 4419 4291 -24305555.56353 4420 4291 -39081501.55875 4421 4291 -17343750.0057 4422 4291 -8.344650268555e-07 4423 4291 -31882558.21681 4424 4291 -3.278255462646e-07 4425 4291 24305555.56353 4426 4291 -39081501.55875 4427 4291 17343750.00569 4292 4292 1165825984.246 4293 4292 -1.382827758789e-05 4294 4292 1.788139343262e-07 4295 4292 104791324.3853 4308 4292 -2.890825271606e-06 4309 4292 3.8743019104e-07 4310 4292 -46719419.49861 4311 4292 -1.20997428894e-05 4312 4292 -4.768371582031e-07 4313 4292 -212506.0825927 4314 4292 -3.278255462646e-06 4315 4292 -2.086162567139e-07 4316 4292 -46719419.49861 4380 4292 21679861.11823 4381 4292 -17343750.0057 4382 4292 -36432062.04359 4383 4292 86719444.4302 4384 4292 3.427267074585e-07 4385 4292 -99061955.12464 4386 4292 21679861.11823 4387 4292 17343750.0057 4388 4292 -36432062.04359 4398 4292 6.169080734253e-06 4399 4292 -69374999.9886 4400 4292 -72810997.49471 4401 4292 2.598762512207e-05 4402 4292 5.960464477539e-08 4403 4292 -104578818.0156 4404 4292 6.973743438721e-06 4405 4292 69374999.9886 4406 4292 -72810997.49471 4419 4292 -21679861.11823 4420 4292 -17343750.0057 4421 4292 -36432062.04358 4422 4292 -86719444.43019 4423 4292 -2.682209014893e-07 4424 4292 -99061955.12461 4425 4292 -21679861.11823 4426 4292 17343750.00569 4427 4292 -36432062.04358 4293 4293 1483949894.094 4294 4293 7.867813110352e-06 4295 4293 -5.507469177246e-05 4296 4293 184322301.8864 4297 4293 -2.622604370117e-06 4298 4293 -1.358985900879e-05 4311 4293 -148365426.1266 4312 4293 -97222222.20624 4313 4293 -3.039836883545e-06 4314 4293 -406796532.3944 4315 4293 -2.801418304443e-06 4316 4293 -1.233816146851e-05 4317 4293 -148365426.1266 4318 4293 97222222.20624 4319 4293 -3.308057785034e-06 4383 4293 -46373434.23613 4384 4293 24305555.56354 4385 4293 21679861.11823 4386 4293 -138827443.8752 4387 4293 2.682209014893e-07 4388 4293 86719444.4302 4389 4293 -46373434.23614 4390 4293 -24305555.56354 4391 4293 21679861.11823 4401 4293 8952264.76783 4402 4293 9.298324584961e-06 4403 4293 6.228685379028e-06 4404 4293 222474230.8735 4405 4293 3.933906555176e-06 4406 4293 2.622604370117e-05 4407 4293 8952264.76783 4408 4293 -1.302361488342e-05 4409 4293 6.914138793945e-06 4422 4293 -46373434.23611 4423 4293 -24305555.56353 4424 4293 -21679861.11823 4425 4293 -138827443.8751 4426 4293 -5.066394805908e-07 4427 4293 -86719444.43019 4428 4293 -46373434.23611 4429 4293 24305555.56353 4430 4293 -21679861.11823 4294 4294 1250608048.648 4295 4294 -1.192092895508e-06 4296 4294 -3.159046173096e-06 4297 4294 -185121779.2034 4298 4294 8.046627044678e-07 4311 4294 -97222222.20624 4312 4294 -119197695.4315 4313 4294 2.831220626831e-07 4314 4294 -3.09944152832e-06 4315 4294 20983010.02827 4316 4294 -4.768371582031e-07 4317 4294 97222222.20624 4318 4294 -119197695.4315 4319 4294 -7.450580596924e-08 4383 4294 24305555.56354 4384 4294 -39081501.55876 4385 4294 -17343750.00569 4386 4294 -2.294778823853e-06 4387 4294 -31882558.21685 4388 4294 2.682209014893e-07 4389 4294 -24305555.56354 4390 4294 -39081501.55876 4391 4294 17343750.0057 4401 4294 1.069903373718e-05 4402 4294 -83408755.55014 4403 4294 -69374999.9886 4404 4294 4.410743713379e-06 4405 4294 164138769.4832 4406 4294 -1.192092895508e-07 4407 4294 -1.156330108643e-05 4408 4294 -83408755.55014 4409 4294 69374999.9886 4422 4294 -24305555.56353 4423 4294 -39081501.55875 4424 4294 -17343750.0057 4425 4294 -8.344650268555e-07 4426 4294 -31882558.21681 4427 4294 -3.278255462646e-07 4428 4294 24305555.56353 4429 4294 -39081501.55875 4430 4294 17343750.00569 4295 4295 1165825984.246 4296 4295 -1.382827758789e-05 4297 4295 1.788139343262e-07 4298 4295 104791324.3853 4311 4295 -2.890825271606e-06 4312 4295 3.8743019104e-07 4313 4295 -46719419.49861 4314 4295 -1.20997428894e-05 4315 4295 -4.768371582031e-07 4316 4295 -212506.0825927 4317 4295 -3.278255462646e-06 4318 4295 -2.086162567139e-07 4319 4295 -46719419.49861 4383 4295 21679861.11823 4384 4295 -17343750.0057 4385 4295 -36432062.04359 4386 4295 86719444.4302 4387 4295 3.427267074585e-07 4388 4295 -99061955.12464 4389 4295 21679861.11823 4390 4295 17343750.0057 4391 4295 -36432062.04359 4401 4295 6.169080734253e-06 4402 4295 -69374999.9886 4403 4295 -72810997.49471 4404 4295 2.598762512207e-05 4405 4295 5.960464477539e-08 4406 4295 -104578818.0156 4407 4295 6.973743438721e-06 4408 4295 69374999.9886 4409 4295 -72810997.49471 4422 4295 -21679861.11823 4423 4295 -17343750.0057 4424 4295 -36432062.04358 4425 4295 -86719444.43019 4426 4295 -2.682209014893e-07 4427 4295 -99061955.12461 4428 4295 -21679861.11823 4429 4295 17343750.00569 4430 4295 -36432062.04358 4296 4296 1661147708.834 4297 4296 104975994.3213 4298 4296 -3.504753112793e-05 4299 4296 28973926.47989 4300 4296 -93442034.30675 4301 4296 -1.907348632813e-06 4314 4296 -148365426.1266 4315 4296 -97222222.20624 4316 4296 -3.039836883545e-06 4317 4296 -414750020.4148 4318 4296 -3811573.076203 4319 4296 -6.437301635742e-06 4320 4296 -158390003.058 4321 4296 97090758.28167 4322 4296 3.248453140259e-06 4386 4296 -46373434.23613 4387 4296 24305555.56354 4388 4296 21679861.11823 4389 4296 -180984988.3575 4390 4296 -26203286.31792 4391 4296 88411110.90689 4404 4296 8952264.76783 4405 4296 9.298324584961e-06 4406 4296 6.228685379028e-06 4407 4296 274245586.3935 4408 4296 26243998.59327 4409 4296 0.03795969486237 4410 4296 -25967702.04294 4411 4296 -23360508.5882 4412 4296 21679166.28526 4425 4296 -46373434.23611 4426 4296 -24305555.56353 4427 4296 -21679861.11823 4428 4296 -140996480.1669 4429 4296 -952893.2695213 4430 4296 -87564583.31886 4431 4296 -48879322.66664 4432 4296 24272689.58238 4433 4296 -22525694.45184 4297 4297 1378316574.243 4298 4297 9.655952453613e-06 4299 4297 -93442033.91786 4300 4297 -311076053.7847 4301 4297 -7.063150405884e-06 4314 4297 -97222222.20624 4315 4297 -119197695.4315 4316 4297 2.831220626831e-07 4317 4297 -3811573.07621 4318 4297 16672797.27745 4319 4297 3.218650817871e-06 4320 4297 97090758.28167 4321 4297 -116180339.9824 4322 4297 -6.705522537231e-07 4386 4297 24305555.56354 4387 4297 -39081501.55876 4388 4297 -17343750.00569 4389 4297 -26203286.41514 4390 4297 -65895674.85388 4391 4297 18697916.60118 4404 4297 1.069903373718e-05 4405 4297 -83408755.55014 4406 4297 -69374999.9886 4407 4297 26243998.59326 4408 4297 203537802.7108 4409 4297 0.03035727143288 4410 4297 -23360508.49098 4411 4297 -110980197.151 4412 4297 69374999.59697 4425 4297 -24305555.56353 4426 4297 -39081501.55875 4427 4297 -17343750.0057 4428 4297 -952893.2695255 4429 4297 -33140775.69073 4430 4297 -677083.3331553 4431 4297 24272689.58238 4432 4297 -38326906.89252 4433 4297 16666666.67214 4298 4298 1227849607.294 4299 4298 -9.536743164063e-07 4300 4298 -7.063150405884e-06 4301 4298 16993676.64505 4314 4298 -2.890825271606e-06 4315 4298 3.8743019104e-07 4316 4298 -46719419.49861 4317 4298 -8.046627044678e-06 4318 4298 3.457069396973e-06 4319 4298 -3046182.050696 4320 4298 3.159046173096e-06 4321 4298 -7.599592208862e-07 4322 4298 -48631203.38772 4386 4298 21679861.11823 4387 4298 -17343750.0057 4388 4298 -36432062.04359 4389 4298 88411110.90689 4390 4298 18697916.56855 4391 4298 -114040857.0942 4404 4298 6.169080734253e-06 4405 4298 -69374999.9886 4406 4298 -72810997.49471 4407 4298 -0.03792124986649 4408 4298 -0.03034713864326 4409 4298 -69147840.74458 4410 4298 21679166.091 4411 4298 69374999.47419 4412 4298 -84314737.28059 4425 4298 -21679861.11823 4426 4298 -17343750.0057 4427 4298 -36432062.04358 4428 4298 -87564583.31903 4429 4298 -677083.3332887 4430 4298 -100252145.5455 4431 4298 -22525694.45184 4432 4298 16666666.67214 4433 4298 -36909325.87324 4299 4299 878310888.4809 4300 4299 -2657515.757646 4301 4299 4.768371582031e-07 4317 4299 -146355658.7119 4318 4299 -97205456.75096 4319 4299 -3.725290298462e-06 4320 4299 -422227983.6708 4321 4299 -5136049.023841 4322 4299 -4.172325134277e-07 4323 4299 85600144.70804 4324 4299 -16771033.13002 4325 4299 -1.668930053711e-06 4326 4299 -156881939.5358 4327 4299 98545423.09949 4328 4299 3.606081008911e-06 4389 4299 -8767515.558542 4390 4299 29166666.38458 4391 4299 27030832.75893 4407 4299 -25967702.04296 4408 4299 -23360508.49098 4409 4299 -21679166.091 4410 4299 119740849.7095 4411 4299 -664378.9397371 4412 4299 17135277.77496 4428 4299 -45870736.57862 4429 4299 -24301364.19972 4430 4299 -21679166.67379 4431 4299 -141002035.2672 4432 4299 -1284012.256597 4433 4299 -85676388.87482 4434 4299 4511607.610503 4435 4299 -4192758.28457 4436 4299 3215972.223777 4437 4299 -47751770.62456 4438 4299 24636355.78701 4439 4299 -21159027.78473 4300 4300 904404472.7404 4301 4300 1.704692840576e-05 4317 4300 -97205456.75096 4318 4300 -119802374.1365 4319 4300 -1.087784767151e-06 4320 4300 -5136049.02384 4321 4300 9983783.088483 4322 4300 6.914138793945e-06 4323 4300 22117855.75248 4324 4300 -98572068.66135 4325 4300 -4.559755325317e-06 4326 4300 98545423.09949 4327 4300 -123363044.4243 4328 4300 -8.940696716309e-07 4389 4300 19444444.25639 4390 4300 -7306349.825739 4391 4300 -13062499.95656 4407 4300 -23360508.5882 4408 4300 -110980197.151 4409 4300 -69374999.4742 4410 4300 -664378.9397382 4411 4300 126264245.7776 4412 4300 7208333.185874 4428 4300 -24301364.19972 4429 4300 -39232415.43152 4430 4300 -17343750.0057 4431 4300 -1284012.256597 4432 4300 -32949093.52409 4433 4300 -677083.3331551 4434 4300 5529463.940846 4435 4300 -41531445.75454 4436 4300 33333333.32785 4437 4300 24636355.78701 4438 4300 -39372046.84256 4439 4300 16666666.67214 4301 4301 768562010.6434 4317 4301 -3.784894943237e-06 4318 4301 -9.536743164063e-07 4319 4301 -46336936.97172 4320 4301 -1.788139343262e-07 4321 4301 7.092952728271e-06 4322 4301 -12181640.54615 4323 4301 3.576278686523e-07 4324 4301 -4.827976226807e-06 4325 4301 44227455.09152 4326 4301 3.159046173096e-06 4327 4301 -9.089708328247e-07 4328 4301 -52301561.2662 4389 4301 18020555.17262 4390 4301 -20270833.25379 4391 4301 -24841207.22225 4407 4301 -21679166.28527 4408 4301 -69374999.59699 4409 4301 -84314737.28064 4410 4301 -17135277.77496 4411 4301 -7208333.185859 4412 4301 -74091157.29502 4428 4301 -21679166.67379 4429 4301 -17343750.0057 4430 4301 -36335759.26896 4431 4301 -85676388.87482 4432 4301 -677083.3332886 4433 4301 -97565514.93121 4434 4301 -4909027.779057 4435 4301 33333333.32785 4436 4301 -33978945.76048 4437 4301 -21159027.78473 4438 4301 16666666.67214 4439 4301 -35825485.57976 4302 4302 741974947.0469 4303 4302 5.006790161133e-06 4304 4302 -2.908706665039e-05 4305 4302 92161150.94322 4306 4302 19444444.44125 4307 4302 -7.271766662598e-06 4392 4302 -138827443.8752 4393 4302 2.682209014893e-07 4394 4302 86719444.4302 4395 4302 -46373434.23614 4396 4302 -24305555.56354 4397 4302 21679861.11823 4413 4302 111237115.4367 4414 4302 -8.344650268555e-07 4415 4302 -17343888.88603 4416 4302 4476132.383917 4417 4302 4861111.1127 4418 4302 -4335972.223642 4303 4303 625304024.3239 4304 4303 6.198883056641e-06 4305 4303 -19444444.44125 4306 4303 -92560889.60172 4307 4303 2.32458114624e-06 4392 4303 -2.294778823853e-06 4393 4303 -31882558.21685 4394 4303 2.682209014893e-07 4395 4303 -24305555.56354 4396 4303 -39081501.55876 4397 4303 17343750.0057 4413 4303 -7.152557373047e-07 4414 4303 82069384.74161 4415 4303 -3.75509262085e-06 4416 4303 -4861111.112713 4417 4303 -41704377.77507 4418 4303 34687499.9943 4304 4304 582912992.1231 4305 4304 -7.271766662598e-06 4306 4304 1.877546310425e-06 4307 4304 52395662.19267 4392 4304 86719444.4302 4393 4304 3.427267074585e-07 4394 4304 -99061955.12464 4395 4304 21679861.11823 4396 4304 17343750.0057 4397 4304 -36432062.04359 4413 4304 17343888.88605 4414 4304 -3.576278686523e-06 4415 4304 -52289409.00778 4416 4304 4335972.22365 4417 4304 34687499.9943 4418 4304 -36405498.74735 4305 4305 741974947.0469 4306 4305 5.006790161133e-06 4307 4305 -2.908706665039e-05 4308 4305 92161150.94322 4309 4305 19444444.44125 4310 4305 -7.271766662598e-06 4392 4305 -46373434.23613 4393 4305 24305555.56354 4394 4305 21679861.11823 4395 4305 -138827443.8752 4396 4305 2.682209014893e-07 4397 4305 86719444.4302 4398 4305 -46373434.23614 4399 4305 -24305555.56354 4400 4305 21679861.11823 4413 4305 4476132.383914 4414 4305 -4861111.112702 4415 4305 -4335972.223643 4416 4305 111237115.4367 4417 4305 -8.344650268555e-07 4418 4305 -17343888.88603 4419 4305 4476132.383917 4420 4305 4861111.1127 4421 4305 -4335972.223642 4306 4306 625304024.3239 4307 4306 6.198883056641e-06 4308 4306 -19444444.44125 4309 4306 -92560889.60172 4310 4306 2.32458114624e-06 4392 4306 24305555.56354 4393 4306 -39081501.55876 4394 4306 -17343750.00569 4395 4306 -2.294778823853e-06 4396 4306 -31882558.21685 4397 4306 2.682209014893e-07 4398 4306 -24305555.56354 4399 4306 -39081501.55876 4400 4306 17343750.0057 4413 4306 4861111.112712 4414 4306 -41704377.77507 4415 4306 -34687499.9943 4416 4306 -7.152557373047e-07 4417 4306 82069384.74161 4418 4306 -3.75509262085e-06 4419 4306 -4861111.112713 4420 4306 -41704377.77507 4421 4306 34687499.9943 4307 4307 582912992.1231 4308 4307 -7.271766662598e-06 4309 4307 1.877546310425e-06 4310 4307 52395662.19267 4392 4307 21679861.11823 4393 4307 -17343750.0057 4394 4307 -36432062.04359 4395 4307 86719444.4302 4396 4307 3.427267074585e-07 4397 4307 -99061955.12464 4398 4307 21679861.11823 4399 4307 17343750.0057 4400 4307 -36432062.04359 4413 4307 4335972.223649 4414 4307 -34687499.9943 4415 4307 -36405498.74736 4416 4307 17343888.88605 4417 4307 -3.576278686523e-06 4418 4307 -52289409.00778 4419 4307 4335972.22365 4420 4307 34687499.9943 4421 4307 -36405498.74735 4308 4308 741974947.0469 4309 4308 5.006790161133e-06 4310 4308 -2.908706665039e-05 4311 4308 92161150.94322 4312 4308 19444444.44125 4313 4308 -7.271766662598e-06 4395 4308 -46373434.23613 4396 4308 24305555.56354 4397 4308 21679861.11823 4398 4308 -138827443.8752 4399 4308 2.682209014893e-07 4400 4308 86719444.4302 4401 4308 -46373434.23614 4402 4308 -24305555.56354 4403 4308 21679861.11823 4416 4308 4476132.383914 4417 4308 -4861111.112702 4418 4308 -4335972.223643 4419 4308 111237115.4367 4420 4308 -8.344650268555e-07 4421 4308 -17343888.88603 4422 4308 4476132.383917 4423 4308 4861111.1127 4424 4308 -4335972.223642 4309 4309 625304024.3239 4310 4309 6.198883056641e-06 4311 4309 -19444444.44125 4312 4309 -92560889.60172 4313 4309 2.32458114624e-06 4395 4309 24305555.56354 4396 4309 -39081501.55876 4397 4309 -17343750.00569 4398 4309 -2.294778823853e-06 4399 4309 -31882558.21685 4400 4309 2.682209014893e-07 4401 4309 -24305555.56354 4402 4309 -39081501.55876 4403 4309 17343750.0057 4416 4309 4861111.112712 4417 4309 -41704377.77507 4418 4309 -34687499.9943 4419 4309 -7.152557373047e-07 4420 4309 82069384.74161 4421 4309 -3.75509262085e-06 4422 4309 -4861111.112713 4423 4309 -41704377.77507 4424 4309 34687499.9943 4310 4310 582912992.1231 4311 4310 -7.271766662598e-06 4312 4310 1.877546310425e-06 4313 4310 52395662.19267 4395 4310 21679861.11823 4396 4310 -17343750.0057 4397 4310 -36432062.04359 4398 4310 86719444.4302 4399 4310 3.427267074585e-07 4400 4310 -99061955.12464 4401 4310 21679861.11823 4402 4310 17343750.0057 4403 4310 -36432062.04359 4416 4310 4335972.223649 4417 4310 -34687499.9943 4418 4310 -36405498.74736 4419 4310 17343888.88605 4420 4310 -3.576278686523e-06 4421 4310 -52289409.00778 4422 4310 4335972.22365 4423 4310 34687499.9943 4424 4310 -36405498.74735 4311 4311 741974947.0469 4312 4311 5.006790161133e-06 4313 4311 -2.908706665039e-05 4314 4311 92161150.94322 4315 4311 19444444.44125 4316 4311 -7.271766662598e-06 4398 4311 -46373434.23613 4399 4311 24305555.56354 4400 4311 21679861.11823 4401 4311 -138827443.8752 4402 4311 2.682209014893e-07 4403 4311 86719444.4302 4404 4311 -46373434.23614 4405 4311 -24305555.56354 4406 4311 21679861.11823 4419 4311 4476132.383914 4420 4311 -4861111.112702 4421 4311 -4335972.223643 4422 4311 111237115.4367 4423 4311 -8.344650268555e-07 4424 4311 -17343888.88603 4425 4311 4476132.383917 4426 4311 4861111.1127 4427 4311 -4335972.223642 4312 4312 625304024.3239 4313 4312 6.198883056641e-06 4314 4312 -19444444.44125 4315 4312 -92560889.60172 4316 4312 2.32458114624e-06 4398 4312 24305555.56354 4399 4312 -39081501.55876 4400 4312 -17343750.00569 4401 4312 -2.294778823853e-06 4402 4312 -31882558.21685 4403 4312 2.682209014893e-07 4404 4312 -24305555.56354 4405 4312 -39081501.55876 4406 4312 17343750.0057 4419 4312 4861111.112712 4420 4312 -41704377.77507 4421 4312 -34687499.9943 4422 4312 -7.152557373047e-07 4423 4312 82069384.74161 4424 4312 -3.75509262085e-06 4425 4312 -4861111.112713 4426 4312 -41704377.77507 4427 4312 34687499.9943 4313 4313 582912992.1231 4314 4313 -7.271766662598e-06 4315 4313 1.877546310425e-06 4316 4313 52395662.19267 4398 4313 21679861.11823 4399 4313 -17343750.0057 4400 4313 -36432062.04359 4401 4313 86719444.4302 4402 4313 3.427267074585e-07 4403 4313 -99061955.12464 4404 4313 21679861.11823 4405 4313 17343750.0057 4406 4313 -36432062.04359 4419 4313 4335972.223649 4420 4313 -34687499.9943 4421 4313 -36405498.74736 4422 4313 17343888.88605 4423 4313 -3.576278686523e-06 4424 4313 -52289409.00778 4425 4313 4335972.22365 4426 4313 34687499.9943 4427 4313 -36405498.74735 4314 4314 741974947.0469 4315 4314 5.006790161133e-06 4316 4314 -2.908706665039e-05 4317 4314 92161150.94322 4318 4314 19444444.44125 4319 4314 -7.271766662598e-06 4401 4314 -46373434.23613 4402 4314 24305555.56354 4403 4314 21679861.11823 4404 4314 -138827443.8752 4405 4314 2.682209014893e-07 4406 4314 86719444.4302 4407 4314 -46373434.23614 4408 4314 -24305555.56354 4409 4314 21679861.11823 4422 4314 4476132.383914 4423 4314 -4861111.112702 4424 4314 -4335972.223643 4425 4314 111237115.4367 4426 4314 -8.344650268555e-07 4427 4314 -17343888.88603 4428 4314 4476132.383917 4429 4314 4861111.1127 4430 4314 -4335972.223642 4315 4315 625304024.3239 4316 4315 6.198883056641e-06 4317 4315 -19444444.44125 4318 4315 -92560889.60172 4319 4315 2.32458114624e-06 4401 4315 24305555.56354 4402 4315 -39081501.55876 4403 4315 -17343750.00569 4404 4315 -2.294778823853e-06 4405 4315 -31882558.21685 4406 4315 2.682209014893e-07 4407 4315 -24305555.56354 4408 4315 -39081501.55876 4409 4315 17343750.0057 4422 4315 4861111.112712 4423 4315 -41704377.77507 4424 4315 -34687499.9943 4425 4315 -7.152557373047e-07 4426 4315 82069384.74161 4427 4315 -3.75509262085e-06 4428 4315 -4861111.112713 4429 4315 -41704377.77507 4430 4315 34687499.9943 4316 4316 582912992.1231 4317 4316 -7.271766662598e-06 4318 4316 1.877546310425e-06 4319 4316 52395662.19267 4401 4316 21679861.11823 4402 4316 -17343750.0057 4403 4316 -36432062.04359 4404 4316 86719444.4302 4405 4316 3.427267074585e-07 4406 4316 -99061955.12464 4407 4316 21679861.11823 4408 4316 17343750.0057 4409 4316 -36432062.04359 4422 4316 4335972.223649 4423 4316 -34687499.9943 4424 4316 -36405498.74736 4425 4316 17343888.88605 4426 4316 -3.576278686523e-06 4427 4316 -52289409.00778 4428 4316 4335972.22365 4429 4316 34687499.9943 4430 4316 -36405498.74735 4317 4317 743972693.3092 4318 4317 15895.84579444 4319 4317 -1.430511474609e-05 4320 4317 96103889.57229 4321 4317 23223356.21638 4322 4317 9.536743164063e-07 4404 4317 -46373434.23613 4405 4317 24305555.56354 4406 4317 21679861.11823 4407 4317 -140996480.167 4408 4317 -952893.2695191 4409 4317 87564583.31904 4410 4317 -45870736.57862 4411 4317 -24301364.19971 4412 4317 21679166.67378 4425 4317 4476132.383914 4426 4317 -4861111.112702 4427 4317 -4335972.223643 4428 4317 111737658.2526 4429 4317 3973.961452007 4430 4317 -17343611.10825 4431 4317 5643546.059508 4432 4317 5805839.056957 4433 4317 -5182361.11248 4318 4318 624700330.4184 4319 4318 1.120567321777e-05 4320 4318 -15665532.66612 4321 4318 -87045539.95468 4322 4318 1.788139343262e-07 4404 4318 24305555.56354 4405 4318 -39081501.55876 4406 4318 -17343750.00569 4407 4318 -952893.2695192 4408 4318 -33140775.69075 4409 4318 677083.3332889 4410 4318 -24301364.19971 4411 4318 -39232415.43151 4412 4318 17343750.00569 4425 4318 4861111.112712 4426 4318 -41704377.77507 4427 4318 -34687499.9943 4428 4318 3973.961451173 4429 4318 81919567.51518 4430 4318 -3.188848495483e-06 4431 4318 -3916383.168459 4432 4318 -40143811.34479 4433 4318 34010416.66101 4319 4319 583290059.4325 4320 4319 5.960464477539e-07 4322 4319 54461159.75298 4404 4319 21679861.11823 4405 4319 -17343750.0057 4406 4319 -36432062.04359 4407 4319 87564583.31887 4408 4319 677083.3331555 4409 4319 -100252145.5455 4410 4319 21679166.67378 4411 4319 17343750.00569 4412 4319 -36335759.26895 4425 4319 4335972.223649 4426 4319 -34687499.9943 4427 4319 -36405498.74736 4428 4319 17343611.10827 4429 4319 -3.039836883545e-06 4430 4319 -52192192.18036 4431 4319 3489305.5572 4432 4319 34010416.66114 4433 4319 -35404513.64279 4320 4320 745987487.9303 4321 4320 -2453991.97904 4322 4320 -3.814697265625e-06 4323 4320 -141080087.6865 4324 4320 -95899021.31302 4325 4320 -2.71201133728e-06 4326 4320 92610986.19901 4327 4320 22063836.70035 4328 4320 -2.384185791016e-07 4407 4320 -48879322.66665 4408 4320 24272689.58238 4409 4320 22525694.45184 4410 4320 -141002035.2672 4411 4320 -1284012.256587 4412 4320 85676388.87482 4428 4320 5643546.059495 4429 4320 -3916383.16846 4430 4320 -3489305.5572 4431 4320 115620942.6217 4432 4320 -613497.9950675 4433 4320 -17135277.77496 4434 4320 -43801307.6603 4435 4320 -23974755.34007 4436 4320 20312500.00667 4437 4320 5916032.26988 4438 4320 5515959.177805 4439 4320 -5078333.334502 4321 4321 616411761.6305 4322 4321 1.382827758789e-05 4323 4321 -95899021.31302 4324 4321 -117437349.9808 4325 4321 -7.450580596924e-07 4326 4321 -16825052.18215 4327 4321 -92728025.51489 4328 4321 1.341104507446e-06 4407 4321 24272689.58238 4408 4321 -38326906.89253 4409 4321 -16666666.67214 4410 4321 -1284012.256589 4411 4321 -32949093.52409 4412 4321 677083.3332888 4428 4321 5805839.056958 4429 4321 -40143811.34482 4430 4321 -34010416.66115 4431 4321 -613497.9950655 4432 4321 83227011.03075 4433 4321 -3.36766242981e-06 4434 4321 -23974755.34007 4435 4321 -37890623.23096 4436 4321 16666666.67214 4437 4321 -4206263.047611 4438 4321 -40418720.68142 4439 4321 33333333.32785 4322 4322 572020605.8755 4323 4322 -3.069639205933e-06 4324 4322 -8.642673492432e-07 4325 4322 -46375866.82272 4326 4322 -5.960464477539e-07 4327 4322 1.192092895508e-06 4328 4322 48718383.22464 4407 4322 22525694.45184 4408 4322 -16666666.67214 4409 4322 -36909325.87325 4410 4322 85676388.87482 4411 4322 677083.3331554 4412 4322 -97565514.93121 4428 4322 5182361.112481 4429 4322 -34010416.66102 4430 4322 -35404513.64282 4431 4322 17135277.77496 4432 4322 -3.308057785034e-06 4433 4322 -45997327.00151 4434 4322 20312500.00667 4435 4322 16666666.67214 4436 4322 -34344061.96816 4437 4322 3385277.779222 4438 4322 33333333.32785 4439 4322 -33784975.63126 4323 4323 361120236.1713 4324 4323 94548810.89502 4325 4323 4.291534423828e-06 4326 4323 -203961436.0495 4327 4323 -20767645.33449 4328 4323 -2.741813659668e-06 4410 4323 4511607.610493 4411 4323 5529463.940847 4412 4323 4909027.779058 4431 4323 -43801307.6603 4432 4323 -23974755.34007 4433 4323 -20312500.00667 4434 4323 56503201.94985 4435 4323 23637202.73541 4436 4323 8124999.998668 4437 4323 -68052930.47169 4438 4323 -5191911.336182 4439 4323 -41471527.77105 4324 4324 308313282.913 4325 4324 7.510185241699e-06 4326 4324 18121243.54802 4327 4324 9374992.872532 4328 4324 3.516674041748e-06 4410 4324 -4192758.28457 4411 4324 -41531445.75455 4412 4324 -33333333.32786 4431 4324 -23974755.34007 4432 4324 -37890623.23097 4433 4324 -16666666.67214 4434 4324 23637202.7354 4435 4324 43301463.62875 4436 4324 6666666.665574 4437 4324 4530310.889235 4438 4324 -14718823.21488 4439 4324 3333333.334428 4325 4325 278103282.9517 4326 4325 -1.072883605957e-06 4327 4325 3.635883331299e-06 4328 4325 -4811252.171662 4410 4325 -3215972.223778 4411 4325 -33333333.32786 4412 4325 -33978945.76051 4431 4325 -20312500.00667 4432 4325 -16666666.67214 4433 4325 -34344061.96817 4434 4325 -8124999.998663 4435 4325 -6666666.665569 4436 4325 -20545798.26109 4437 4325 -41471527.77088 4438 4325 -3333333.334428 4439 4325 -46703003.53464 4326 4326 371304389.3859 4327 4326 -99841614.46535 4328 4326 -3.337860107422e-06 4410 4326 -47751770.62457 4411 4326 24636355.78702 4412 4326 21159027.78473 4431 4326 5916032.269869 4432 4326 -4206263.047611 4433 4326 -3385277.779222 4434 4326 -68052930.47169 4435 4326 4530310.88924 4436 4326 41471527.77088 4437 4326 58352668.82663 4438 4326 -24960403.62864 4439 4326 -8463611.109723 4327 4327 309788077.0662 4328 4327 6.914138793945e-06 4410 4327 24636355.78702 4411 4327 -39372046.84257 4412 4327 -16666666.67214 4431 4327 5515959.177806 4432 4327 -40418720.68145 4433 4327 -33333333.32786 4434 4327 -5191911.336178 4435 4327 -14718823.21489 4436 4327 3333333.334428 4437 4327 -24960403.62864 4438 4327 42973590.73913 4439 4327 6666666.665569 4328 4328 283253096.8787 4410 4328 21159027.78473 4411 4328 -16666666.67214 4412 4328 -35825485.57977 4431 4328 5078333.334503 4432 4328 -33333333.32786 4433 4328 -33784975.63128 4434 4328 41471527.77105 4435 4328 -3333333.334428 4436 4328 -46703003.53464 4437 4328 8463611.10972 4438 4328 -6666666.665573 4439 4328 -21115868.58701 4329 4329 927468678.158 4330 4329 97222222.20623 4331 4329 -8.106231689453e-06 4332 4329 -573726109.9308 4333 4329 -97222221.42845 4334 4329 8.940696716309e-07 4335 4329 18564155.00999 4336 4329 77777776.9872 4337 4329 2.861022949219e-06 4440 4329 139046393.5639 4441 4329 24305555.56354 4442 4329 17343888.84952 4443 4329 -175918799.4896 4444 4329 -24305555.36909 4445 4329 -86719444.24762 4446 4329 -9282077.505002 4447 4329 19444444.25638 4448 4329 -17343888.52033 4330 4330 781630025.6149 4331 4330 8.412431954121e-06 4332 4330 -97222221.03956 4333 4330 -116778839.2437 4334 4330 5.602836608887e-06 4335 4330 116666665.4808 4336 4330 18564155.00998 4337 4330 5.960464477539e-07 4440 4330 24305555.56354 4441 4330 102586730.4102 4442 4330 13874999.85143 4443 4330 -24305555.27187 4444 4330 -61681981.76159 4445 4330 -17343749.90781 4446 4330 29166666.38457 4447 4330 -9282077.504995 4448 4330 20812499.90894 4331 4331 728641235.3813 4332 4331 4.172325134277e-07 4333 4331 4.887580871582e-06 4334 4331 -96436338.25295 4335 4331 2.503395080566e-06 4336 4331 1.251697540283e-06 4337 4331 49504413.35998 4440 4331 -17343888.84952 4441 4331 -13874999.85144 4442 4331 -65361760.6378 4443 4331 -86719444.24762 4444 4331 -17343749.94044 4445 4331 -110741809.7386 4446 4331 -26015832.7805 4447 4331 13874999.9393 4448 4331 -24752206.67999 4332 4332 1632315315.374 4333 4332 97222220.26178 4334 4332 -4.172325134277e-05 4335 4332 17392720.97666 4336 4332 -97222221.42845 4337 4332 -2.145767211914e-06 4338 4332 -406796532.3944 4339 4332 -2.801418304443e-06 4340 4332 -1.233816146851e-05 4341 4332 -148365426.1266 4342 4332 97222222.20624 4343 4332 -3.308057785034e-06 4440 4332 -175918799.4897 4441 4332 -24305555.27186 4442 4332 86719444.24762 4443 4332 268847663.9159 4444 4332 24305555.07742 4445 4332 0.03653132915497 4446 4332 -28139091.37671 4447 4332 -24305555.36909 4448 4332 21679860.74398 4449 4332 -138827443.8751 4450 4332 -5.066394805908e-07 4451 4332 -86719444.43019 4452 4332 -46373434.23611 4453 4332 24305555.56353 4454 4332 -21679861.11823 4333 4333 1369805740.108 4334 4333 -2.145767211914e-06 4335 4333 -97222221.03956 4336 4333 -322883627.8625 4337 4333 4.798173904419e-06 4338 4333 -3.09944152832e-06 4339 4333 20983010.02827 4340 4333 -4.768371582031e-07 4341 4333 97222222.20624 4342 4333 -119197695.4315 4343 4333 -7.450580596924e-08 4440 4333 -24305555.36908 4441 4333 -61681981.7616 4442 4333 17343749.94043 4443 4333 24305555.07742 4444 4333 203220270.0671 4445 4333 0.02920919656754 4446 4333 -24305555.27186 4447 4333 -113208178.6284 4448 4333 69374999.6084 4449 4333 -8.344650268555e-07 4450 4333 -31882558.21681 4451 4333 -3.278255462646e-07 4452 4333 24305555.56353 4453 4333 -39081501.55875 4454 4333 17343750.00569 4334 4334 1212545401.289 4335 4334 -1.788139343262e-06 4336 4334 3.75509262085e-06 4337 4334 8567490.576108 4338 4334 -1.20997428894e-05 4339 4334 -4.768371582031e-07 4340 4334 -212506.0825927 4341 4334 -3.278255462646e-06 4342 4334 -2.086162567139e-07 4343 4334 -46719419.49861 4440 4334 86719444.24762 4441 4334 17343749.9078 4442 4334 -110741809.7386 4443 4334 -0.03649973869324 4444 4334 -0.02921465039253 4445 4334 -68146756.53808 4446 4334 21679860.55685 4447 4334 69374999.49133 4448 4334 -84490851.68298 4449 4334 -86719444.43019 4450 4334 -2.682209014893e-07 4451 4334 -99061955.12461 4452 4334 -21679861.11823 4453 4334 17343750.00569 4454 4334 -36432062.04358 4335 4335 927468678.158 4336 4335 97222222.20623 4337 4335 -8.106231689453e-06 4338 4335 -148365426.1266 4339 4335 -97222222.20624 4340 4335 -3.039836883545e-06 4341 4335 -573726109.9308 4342 4335 -97222221.42845 4343 4335 8.940696716309e-07 4344 4335 18564155.00999 4345 4335 77777776.9872 4346 4335 2.861022949219e-06 4440 4335 -9282077.50499 4441 4335 29166666.38457 4442 4335 26015832.78049 4443 4335 -28139091.37673 4444 4335 -24305555.27187 4445 4335 -21679860.55685 4446 4335 139046393.5639 4447 4335 24305555.56354 4448 4335 17343888.84952 4449 4335 -46373434.23611 4450 4335 -24305555.56353 4451 4335 -21679861.11823 4452 4335 -175918799.4896 4453 4335 -24305555.36909 4454 4335 -86719444.24762 4455 4335 -9282077.505002 4456 4335 19444444.25638 4457 4335 -17343888.52033 4336 4336 781630025.6149 4337 4336 8.412431954121e-06 4338 4336 -97222222.20624 4339 4336 -119197695.4315 4340 4336 2.831220626831e-07 4341 4336 -97222221.03956 4342 4336 -116778839.2437 4343 4336 5.602836608887e-06 4344 4336 116666665.4808 4345 4336 18564155.00998 4346 4336 5.960464477539e-07 4440 4336 19444444.25638 4441 4336 -9282077.505 4442 4336 -13874999.9393 4443 4336 -24305555.36909 4444 4336 -113208178.6284 4445 4336 -69374999.49133 4446 4336 24305555.56354 4447 4336 102586730.4102 4448 4336 13874999.85143 4449 4336 -24305555.56353 4450 4336 -39081501.55875 4451 4336 -17343750.0057 4452 4336 -24305555.27187 4453 4336 -61681981.76159 4454 4336 -17343749.90781 4455 4336 29166666.38457 4456 4336 -9282077.504995 4457 4336 20812499.90894 4337 4337 728641235.3813 4338 4337 -2.890825271606e-06 4339 4337 3.8743019104e-07 4340 4337 -46719419.49861 4341 4337 4.172325134277e-07 4342 4337 4.887580871582e-06 4343 4337 -96436338.25295 4344 4337 2.503395080566e-06 4345 4337 1.251697540283e-06 4346 4337 49504413.35998 4440 4337 17343888.52033 4441 4337 -20812499.90895 4442 4337 -24752206.67999 4443 4337 -21679860.74398 4444 4337 -69374999.6084 4445 4337 -84490851.68299 4446 4337 -17343888.84952 4447 4337 -13874999.85144 4448 4337 -65361760.6378 4449 4337 -21679861.11823 4450 4337 -17343750.0057 4451 4337 -36432062.04358 4452 4337 -86719444.24762 4453 4337 -17343749.94044 4454 4337 -110741809.7386 4455 4337 -26015832.7805 4456 4337 13874999.9393 4457 4337 -24752206.67999 4338 4338 1483949894.094 4339 4338 7.867813110352e-06 4340 4338 -5.507469177246e-05 4341 4338 184322301.8864 4342 4338 -2.622604370117e-06 4343 4338 -1.358985900879e-05 4347 4338 -406796532.3944 4348 4338 -2.801418304443e-06 4349 4338 -1.233816146851e-05 4350 4338 -148365426.1266 4351 4338 97222222.20624 4352 4338 -3.308057785034e-06 4443 4338 -138827443.8752 4444 4338 2.682209014893e-07 4445 4338 86719444.4302 4446 4338 -46373434.23614 4447 4338 -24305555.56354 4448 4338 21679861.11823 4449 4338 222474230.8735 4450 4338 3.933906555176e-06 4451 4338 2.622604370117e-05 4452 4338 8952264.76783 4453 4338 -1.302361488342e-05 4454 4338 6.914138793945e-06 4458 4338 -138827443.8751 4459 4338 -5.066394805908e-07 4460 4338 -86719444.43019 4461 4338 -46373434.23611 4462 4338 24305555.56353 4463 4338 -21679861.11823 4339 4339 1250608048.648 4340 4339 -1.192092895508e-06 4341 4339 -3.159046173096e-06 4342 4339 -185121779.2034 4343 4339 8.046627044678e-07 4347 4339 -3.09944152832e-06 4348 4339 20983010.02827 4349 4339 -4.768371582031e-07 4350 4339 97222222.20624 4351 4339 -119197695.4315 4352 4339 -7.450580596924e-08 4443 4339 -2.294778823853e-06 4444 4339 -31882558.21685 4445 4339 2.682209014893e-07 4446 4339 -24305555.56354 4447 4339 -39081501.55876 4448 4339 17343750.0057 4449 4339 4.410743713379e-06 4450 4339 164138769.4832 4451 4339 -1.192092895508e-07 4452 4339 -1.156330108643e-05 4453 4339 -83408755.55014 4454 4339 69374999.9886 4458 4339 -8.344650268555e-07 4459 4339 -31882558.21681 4460 4339 -3.278255462646e-07 4461 4339 24305555.56353 4462 4339 -39081501.55875 4463 4339 17343750.00569 4340 4340 1165825984.246 4341 4340 -1.382827758789e-05 4342 4340 1.788139343262e-07 4343 4340 104791324.3853 4347 4340 -1.20997428894e-05 4348 4340 -4.768371582031e-07 4349 4340 -212506.0825927 4350 4340 -3.278255462646e-06 4351 4340 -2.086162567139e-07 4352 4340 -46719419.49861 4443 4340 86719444.4302 4444 4340 3.427267074585e-07 4445 4340 -99061955.12464 4446 4340 21679861.11823 4447 4340 17343750.0057 4448 4340 -36432062.04359 4449 4340 2.598762512207e-05 4450 4340 5.960464477539e-08 4451 4340 -104578818.0156 4452 4340 6.973743438721e-06 4453 4340 69374999.9886 4454 4340 -72810997.49471 4458 4340 -86719444.43019 4459 4340 -2.682209014893e-07 4460 4340 -99061955.12461 4461 4340 -21679861.11823 4462 4340 17343750.00569 4463 4340 -36432062.04358 4341 4341 1632315315.374 4342 4341 97222220.26178 4343 4341 -4.172325134277e-05 4344 4341 17392720.97666 4345 4341 -97222221.42845 4346 4341 -2.145767211914e-06 4347 4341 -148365426.1266 4348 4341 -97222222.20624 4349 4341 -3.039836883545e-06 4350 4341 -406796532.3944 4351 4341 -2.801418304443e-06 4352 4341 -1.233816146851e-05 4353 4341 -148365426.1266 4354 4341 97222222.20624 4355 4341 -3.308057785034e-06 4443 4341 -46373434.23613 4444 4341 24305555.56354 4445 4341 21679861.11823 4446 4341 -175918799.4897 4447 4341 -24305555.27186 4448 4341 86719444.24762 4449 4341 8952264.76783 4450 4341 9.298324584961e-06 4451 4341 6.228685379028e-06 4452 4341 268847663.9159 4453 4341 24305555.07742 4454 4341 0.03653132915497 4455 4341 -28139091.37671 4456 4341 -24305555.36909 4457 4341 21679860.74398 4458 4341 -46373434.23611 4459 4341 -24305555.56353 4460 4341 -21679861.11823 4461 4341 -138827443.8751 4462 4341 -5.066394805908e-07 4463 4341 -86719444.43019 4464 4341 -46373434.23611 4465 4341 24305555.56353 4466 4341 -21679861.11823 4342 4342 1369805740.108 4343 4342 -2.145767211914e-06 4344 4342 -97222221.03956 4345 4342 -322883627.8625 4346 4342 4.798173904419e-06 4347 4342 -97222222.20624 4348 4342 -119197695.4315 4349 4342 2.831220626831e-07 4350 4342 -3.09944152832e-06 4351 4342 20983010.02827 4352 4342 -4.768371582031e-07 4353 4342 97222222.20624 4354 4342 -119197695.4315 4355 4342 -7.450580596924e-08 4443 4342 24305555.56354 4444 4342 -39081501.55876 4445 4342 -17343750.00569 4446 4342 -24305555.36908 4447 4342 -61681981.7616 4448 4342 17343749.94043 4449 4342 1.069903373718e-05 4450 4342 -83408755.55014 4451 4342 -69374999.9886 4452 4342 24305555.07742 4453 4342 203220270.0671 4454 4342 0.02920919656754 4455 4342 -24305555.27186 4456 4342 -113208178.6284 4457 4342 69374999.6084 4458 4342 -24305555.56353 4459 4342 -39081501.55875 4460 4342 -17343750.0057 4461 4342 -8.344650268555e-07 4462 4342 -31882558.21681 4463 4342 -3.278255462646e-07 4464 4342 24305555.56353 4465 4342 -39081501.55875 4466 4342 17343750.00569 4343 4343 1212545401.289 4344 4343 -1.788139343262e-06 4345 4343 3.75509262085e-06 4346 4343 8567490.576108 4347 4343 -2.890825271606e-06 4348 4343 3.8743019104e-07 4349 4343 -46719419.49861 4350 4343 -1.20997428894e-05 4351 4343 -4.768371582031e-07 4352 4343 -212506.0825927 4353 4343 -3.278255462646e-06 4354 4343 -2.086162567139e-07 4355 4343 -46719419.49861 4443 4343 21679861.11823 4444 4343 -17343750.0057 4445 4343 -36432062.04359 4446 4343 86719444.24762 4447 4343 17343749.9078 4448 4343 -110741809.7386 4449 4343 6.169080734253e-06 4450 4343 -69374999.9886 4451 4343 -72810997.49471 4452 4343 -0.03649973869324 4453 4343 -0.02921465039253 4454 4343 -68146756.53808 4455 4343 21679860.55685 4456 4343 69374999.49133 4457 4343 -84490851.68298 4458 4343 -21679861.11823 4459 4343 -17343750.0057 4460 4343 -36432062.04358 4461 4343 -86719444.43019 4462 4343 -2.682209014893e-07 4463 4343 -99061955.12461 4464 4343 -21679861.11823 4465 4343 17343750.00569 4466 4343 -36432062.04358 4344 4344 927468678.158 4345 4344 97222222.20623 4346 4344 -8.106231689453e-06 4350 4344 -148365426.1266 4351 4344 -97222222.20624 4352 4344 -3.039836883545e-06 4353 4344 -573726109.9308 4354 4344 -97222221.42845 4355 4344 8.940696716309e-07 4356 4344 18564155.00999 4357 4344 77777776.9872 4358 4344 2.861022949219e-06 4446 4344 -9282077.50499 4447 4344 29166666.38457 4448 4344 26015832.78049 4452 4344 -28139091.37673 4453 4344 -24305555.27187 4454 4344 -21679860.55685 4455 4344 139046393.5639 4456 4344 24305555.56354 4457 4344 17343888.84952 4461 4344 -46373434.23611 4462 4344 -24305555.56353 4463 4344 -21679861.11823 4464 4344 -175918799.4896 4465 4344 -24305555.36909 4466 4344 -86719444.24762 4467 4344 -9282077.505002 4468 4344 19444444.25638 4469 4344 -17343888.52033 4345 4345 781630025.6149 4346 4345 8.412431954121e-06 4350 4345 -97222222.20624 4351 4345 -119197695.4315 4352 4345 2.831220626831e-07 4353 4345 -97222221.03956 4354 4345 -116778839.2437 4355 4345 5.602836608887e-06 4356 4345 116666665.4808 4357 4345 18564155.00998 4358 4345 5.960464477539e-07 4446 4345 19444444.25638 4447 4345 -9282077.505 4448 4345 -13874999.9393 4452 4345 -24305555.36909 4453 4345 -113208178.6284 4454 4345 -69374999.49133 4455 4345 24305555.56354 4456 4345 102586730.4102 4457 4345 13874999.85143 4461 4345 -24305555.56353 4462 4345 -39081501.55875 4463 4345 -17343750.0057 4464 4345 -24305555.27187 4465 4345 -61681981.76159 4466 4345 -17343749.90781 4467 4345 29166666.38457 4468 4345 -9282077.504995 4469 4345 20812499.90894 4346 4346 728641235.3813 4350 4346 -2.890825271606e-06 4351 4346 3.8743019104e-07 4352 4346 -46719419.49861 4353 4346 4.172325134277e-07 4354 4346 4.887580871582e-06 4355 4346 -96436338.25295 4356 4346 2.503395080566e-06 4357 4346 1.251697540283e-06 4358 4346 49504413.35998 4446 4346 17343888.52033 4447 4346 -20812499.90895 4448 4346 -24752206.67999 4452 4346 -21679860.74398 4453 4346 -69374999.6084 4454 4346 -84490851.68299 4455 4346 -17343888.84952 4456 4346 -13874999.85144 4457 4346 -65361760.6378 4461 4346 -21679861.11823 4462 4346 -17343750.0057 4463 4346 -36432062.04358 4464 4346 -86719444.24762 4465 4346 -17343749.94044 4466 4346 -110741809.7386 4467 4346 -26015832.7805 4468 4346 13874999.9393 4469 4346 -24752206.67999 4347 4347 1483949894.094 4348 4347 7.867813110352e-06 4349 4347 -5.507469177246e-05 4350 4347 184322301.8864 4351 4347 -2.622604370117e-06 4352 4347 -1.358985900879e-05 4359 4347 -406796532.3944 4360 4347 -2.801418304443e-06 4361 4347 -1.233816146851e-05 4362 4347 -148365426.1266 4363 4347 97222222.20624 4364 4347 -3.308057785034e-06 4449 4347 -138827443.8752 4450 4347 2.682209014893e-07 4451 4347 86719444.4302 4452 4347 -46373434.23614 4453 4347 -24305555.56354 4454 4347 21679861.11823 4458 4347 222474230.8735 4459 4347 3.933906555176e-06 4460 4347 2.622604370117e-05 4461 4347 8952264.76783 4462 4347 -1.302361488342e-05 4463 4347 6.914138793945e-06 4470 4347 -138827443.8751 4471 4347 -5.066394805908e-07 4472 4347 -86719444.43019 4473 4347 -46373434.23611 4474 4347 24305555.56353 4475 4347 -21679861.11823 4348 4348 1250608048.648 4349 4348 -1.192092895508e-06 4350 4348 -3.159046173096e-06 4351 4348 -185121779.2034 4352 4348 8.046627044678e-07 4359 4348 -3.09944152832e-06 4360 4348 20983010.02827 4361 4348 -4.768371582031e-07 4362 4348 97222222.20624 4363 4348 -119197695.4315 4364 4348 -7.450580596924e-08 4449 4348 -2.294778823853e-06 4450 4348 -31882558.21685 4451 4348 2.682209014893e-07 4452 4348 -24305555.56354 4453 4348 -39081501.55876 4454 4348 17343750.0057 4458 4348 4.410743713379e-06 4459 4348 164138769.4832 4460 4348 -1.192092895508e-07 4461 4348 -1.156330108643e-05 4462 4348 -83408755.55014 4463 4348 69374999.9886 4470 4348 -8.344650268555e-07 4471 4348 -31882558.21681 4472 4348 -3.278255462646e-07 4473 4348 24305555.56353 4474 4348 -39081501.55875 4475 4348 17343750.00569 4349 4349 1165825984.246 4350 4349 -1.382827758789e-05 4351 4349 1.788139343262e-07 4352 4349 104791324.3853 4359 4349 -1.20997428894e-05 4360 4349 -4.768371582031e-07 4361 4349 -212506.0825927 4362 4349 -3.278255462646e-06 4363 4349 -2.086162567139e-07 4364 4349 -46719419.49861 4449 4349 86719444.4302 4450 4349 3.427267074585e-07 4451 4349 -99061955.12464 4452 4349 21679861.11823 4453 4349 17343750.0057 4454 4349 -36432062.04359 4458 4349 2.598762512207e-05 4459 4349 5.960464477539e-08 4460 4349 -104578818.0156 4461 4349 6.973743438721e-06 4462 4349 69374999.9886 4463 4349 -72810997.49471 4470 4349 -86719444.43019 4471 4349 -2.682209014893e-07 4472 4349 -99061955.12461 4473 4349 -21679861.11823 4474 4349 17343750.00569 4475 4349 -36432062.04358 4350 4350 1483949894.094 4351 4350 7.867813110352e-06 4352 4350 -5.507469177246e-05 4353 4350 184322301.8864 4354 4350 -2.622604370117e-06 4355 4350 -1.358985900879e-05 4359 4350 -148365426.1266 4360 4350 -97222222.20624 4361 4350 -3.039836883545e-06 4362 4350 -406796532.3944 4363 4350 -2.801418304443e-06 4364 4350 -1.233816146851e-05 4365 4350 -148365426.1266 4366 4350 97222222.20624 4367 4350 -3.308057785034e-06 4449 4350 -46373434.23613 4450 4350 24305555.56354 4451 4350 21679861.11823 4452 4350 -138827443.8752 4453 4350 2.682209014893e-07 4454 4350 86719444.4302 4455 4350 -46373434.23614 4456 4350 -24305555.56354 4457 4350 21679861.11823 4458 4350 8952264.76783 4459 4350 9.298324584961e-06 4460 4350 6.228685379028e-06 4461 4350 222474230.8735 4462 4350 3.933906555176e-06 4463 4350 2.622604370117e-05 4464 4350 8952264.76783 4465 4350 -1.302361488342e-05 4466 4350 6.914138793945e-06 4470 4350 -46373434.23611 4471 4350 -24305555.56353 4472 4350 -21679861.11823 4473 4350 -138827443.8751 4474 4350 -5.066394805908e-07 4475 4350 -86719444.43019 4476 4350 -46373434.23611 4477 4350 24305555.56353 4478 4350 -21679861.11823 4351 4351 1250608048.648 4352 4351 -1.192092895508e-06 4353 4351 -3.159046173096e-06 4354 4351 -185121779.2034 4355 4351 8.046627044678e-07 4359 4351 -97222222.20624 4360 4351 -119197695.4315 4361 4351 2.831220626831e-07 4362 4351 -3.09944152832e-06 4363 4351 20983010.02827 4364 4351 -4.768371582031e-07 4365 4351 97222222.20624 4366 4351 -119197695.4315 4367 4351 -7.450580596924e-08 4449 4351 24305555.56354 4450 4351 -39081501.55876 4451 4351 -17343750.00569 4452 4351 -2.294778823853e-06 4453 4351 -31882558.21685 4454 4351 2.682209014893e-07 4455 4351 -24305555.56354 4456 4351 -39081501.55876 4457 4351 17343750.0057 4458 4351 1.069903373718e-05 4459 4351 -83408755.55014 4460 4351 -69374999.9886 4461 4351 4.410743713379e-06 4462 4351 164138769.4832 4463 4351 -1.192092895508e-07 4464 4351 -1.156330108643e-05 4465 4351 -83408755.55014 4466 4351 69374999.9886 4470 4351 -24305555.56353 4471 4351 -39081501.55875 4472 4351 -17343750.0057 4473 4351 -8.344650268555e-07 4474 4351 -31882558.21681 4475 4351 -3.278255462646e-07 4476 4351 24305555.56353 4477 4351 -39081501.55875 4478 4351 17343750.00569 4352 4352 1165825984.246 4353 4352 -1.382827758789e-05 4354 4352 1.788139343262e-07 4355 4352 104791324.3853 4359 4352 -2.890825271606e-06 4360 4352 3.8743019104e-07 4361 4352 -46719419.49861 4362 4352 -1.20997428894e-05 4363 4352 -4.768371582031e-07 4364 4352 -212506.0825927 4365 4352 -3.278255462646e-06 4366 4352 -2.086162567139e-07 4367 4352 -46719419.49861 4449 4352 21679861.11823 4450 4352 -17343750.0057 4451 4352 -36432062.04359 4452 4352 86719444.4302 4453 4352 3.427267074585e-07 4454 4352 -99061955.12464 4455 4352 21679861.11823 4456 4352 17343750.0057 4457 4352 -36432062.04359 4458 4352 6.169080734253e-06 4459 4352 -69374999.9886 4460 4352 -72810997.49471 4461 4352 2.598762512207e-05 4462 4352 5.960464477539e-08 4463 4352 -104578818.0156 4464 4352 6.973743438721e-06 4465 4352 69374999.9886 4466 4352 -72810997.49471 4470 4352 -21679861.11823 4471 4352 -17343750.0057 4472 4352 -36432062.04358 4473 4352 -86719444.43019 4474 4352 -2.682209014893e-07 4475 4352 -99061955.12461 4476 4352 -21679861.11823 4477 4352 17343750.00569 4478 4352 -36432062.04358 4353 4353 1632315315.374 4354 4353 97222220.26178 4355 4353 -4.172325134277e-05 4356 4353 17392720.97666 4357 4353 -97222221.42845 4358 4353 -2.145767211914e-06 4362 4353 -148365426.1266 4363 4353 -97222222.20624 4364 4353 -3.039836883545e-06 4365 4353 -406796532.3944 4366 4353 -2.801418304443e-06 4367 4353 -1.233816146851e-05 4368 4353 -148365426.1266 4369 4353 97222222.20624 4370 4353 -3.308057785034e-06 4452 4353 -46373434.23613 4453 4353 24305555.56354 4454 4353 21679861.11823 4455 4353 -175918799.4897 4456 4353 -24305555.27186 4457 4353 86719444.24762 4461 4353 8952264.76783 4462 4353 9.298324584961e-06 4463 4353 6.228685379028e-06 4464 4353 268847663.9159 4465 4353 24305555.07742 4466 4353 0.03653132915497 4467 4353 -28139091.37671 4468 4353 -24305555.36909 4469 4353 21679860.74398 4473 4353 -46373434.23611 4474 4353 -24305555.56353 4475 4353 -21679861.11823 4476 4353 -138827443.8751 4477 4353 -5.066394805908e-07 4478 4353 -86719444.43019 4479 4353 -46373434.23611 4480 4353 24305555.56353 4481 4353 -21679861.11823 4354 4354 1369805740.108 4355 4354 -2.145767211914e-06 4356 4354 -97222221.03956 4357 4354 -322883627.8625 4358 4354 4.798173904419e-06 4362 4354 -97222222.20624 4363 4354 -119197695.4315 4364 4354 2.831220626831e-07 4365 4354 -3.09944152832e-06 4366 4354 20983010.02827 4367 4354 -4.768371582031e-07 4368 4354 97222222.20624 4369 4354 -119197695.4315 4370 4354 -7.450580596924e-08 4452 4354 24305555.56354 4453 4354 -39081501.55876 4454 4354 -17343750.00569 4455 4354 -24305555.36908 4456 4354 -61681981.7616 4457 4354 17343749.94043 4461 4354 1.069903373718e-05 4462 4354 -83408755.55014 4463 4354 -69374999.9886 4464 4354 24305555.07742 4465 4354 203220270.0671 4466 4354 0.02920919656754 4467 4354 -24305555.27186 4468 4354 -113208178.6284 4469 4354 69374999.6084 4473 4354 -24305555.56353 4474 4354 -39081501.55875 4475 4354 -17343750.0057 4476 4354 -8.344650268555e-07 4477 4354 -31882558.21681 4478 4354 -3.278255462646e-07 4479 4354 24305555.56353 4480 4354 -39081501.55875 4481 4354 17343750.00569 4355 4355 1212545401.289 4356 4355 -1.788139343262e-06 4357 4355 3.75509262085e-06 4358 4355 8567490.576108 4362 4355 -2.890825271606e-06 4363 4355 3.8743019104e-07 4364 4355 -46719419.49861 4365 4355 -1.20997428894e-05 4366 4355 -4.768371582031e-07 4367 4355 -212506.0825927 4368 4355 -3.278255462646e-06 4369 4355 -2.086162567139e-07 4370 4355 -46719419.49861 4452 4355 21679861.11823 4453 4355 -17343750.0057 4454 4355 -36432062.04359 4455 4355 86719444.24762 4456 4355 17343749.9078 4457 4355 -110741809.7386 4461 4355 6.169080734253e-06 4462 4355 -69374999.9886 4463 4355 -72810997.49471 4464 4355 -0.03649973869324 4465 4355 -0.02921465039253 4466 4355 -68146756.53808 4467 4355 21679860.55685 4468 4355 69374999.49133 4469 4355 -84490851.68298 4473 4355 -21679861.11823 4474 4355 -17343750.0057 4475 4355 -36432062.04358 4476 4355 -86719444.43019 4477 4355 -2.682209014893e-07 4478 4355 -99061955.12461 4479 4355 -21679861.11823 4480 4355 17343750.00569 4481 4355 -36432062.04358 4356 4356 927468678.158 4357 4356 97222222.20623 4358 4356 -8.106231689453e-06 4365 4356 -148365426.1266 4366 4356 -97222222.20624 4367 4356 -3.039836883545e-06 4368 4356 -573726109.9308 4369 4356 -97222221.42845 4370 4356 8.940696716309e-07 4371 4356 18564155.00999 4372 4356 77777776.9872 4373 4356 2.861022949219e-06 4455 4356 -9282077.50499 4456 4356 29166666.38457 4457 4356 26015832.78049 4464 4356 -28139091.37673 4465 4356 -24305555.27187 4466 4356 -21679860.55685 4467 4356 139046393.5639 4468 4356 24305555.56354 4469 4356 17343888.84952 4476 4356 -46373434.23611 4477 4356 -24305555.56353 4478 4356 -21679861.11823 4479 4356 -175918799.4896 4480 4356 -24305555.36909 4481 4356 -86719444.24762 4482 4356 -9282077.505002 4483 4356 19444444.25638 4484 4356 -17343888.52033 4357 4357 781630025.6149 4358 4357 8.412431954121e-06 4365 4357 -97222222.20624 4366 4357 -119197695.4315 4367 4357 2.831220626831e-07 4368 4357 -97222221.03956 4369 4357 -116778839.2437 4370 4357 5.602836608887e-06 4371 4357 116666665.4808 4372 4357 18564155.00998 4373 4357 5.960464477539e-07 4455 4357 19444444.25638 4456 4357 -9282077.505 4457 4357 -13874999.9393 4464 4357 -24305555.36909 4465 4357 -113208178.6284 4466 4357 -69374999.49133 4467 4357 24305555.56354 4468 4357 102586730.4102 4469 4357 13874999.85143 4476 4357 -24305555.56353 4477 4357 -39081501.55875 4478 4357 -17343750.0057 4479 4357 -24305555.27187 4480 4357 -61681981.76159 4481 4357 -17343749.90781 4482 4357 29166666.38457 4483 4357 -9282077.504995 4484 4357 20812499.90894 4358 4358 728641235.3813 4365 4358 -2.890825271606e-06 4366 4358 3.8743019104e-07 4367 4358 -46719419.49861 4368 4358 4.172325134277e-07 4369 4358 4.887580871582e-06 4370 4358 -96436338.25295 4371 4358 2.503395080566e-06 4372 4358 1.251697540283e-06 4373 4358 49504413.35998 4455 4358 17343888.52033 4456 4358 -20812499.90895 4457 4358 -24752206.67999 4464 4358 -21679860.74398 4465 4358 -69374999.6084 4466 4358 -84490851.68299 4467 4358 -17343888.84952 4468 4358 -13874999.85144 4469 4358 -65361760.6378 4476 4358 -21679861.11823 4477 4358 -17343750.0057 4478 4358 -36432062.04358 4479 4358 -86719444.24762 4480 4358 -17343749.94044 4481 4358 -110741809.7386 4482 4358 -26015832.7805 4483 4358 13874999.9393 4484 4358 -24752206.67999 4359 4359 1483949894.094 4360 4359 7.867813110352e-06 4361 4359 -5.507469177246e-05 4362 4359 184322301.8864 4363 4359 -2.622604370117e-06 4364 4359 -1.358985900879e-05 4374 4359 -406796532.3944 4375 4359 -2.801418304443e-06 4376 4359 -1.233816146851e-05 4377 4359 -148365426.1266 4378 4359 97222222.20624 4379 4359 -3.308057785034e-06 4458 4359 -138827443.8752 4459 4359 2.682209014893e-07 4460 4359 86719444.4302 4461 4359 -46373434.23614 4462 4359 -24305555.56354 4463 4359 21679861.11823 4470 4359 222474230.8735 4471 4359 3.933906555176e-06 4472 4359 2.622604370117e-05 4473 4359 8952264.76783 4474 4359 -1.302361488342e-05 4475 4359 6.914138793945e-06 4485 4359 -138827443.8751 4486 4359 -5.066394805908e-07 4487 4359 -86719444.43019 4488 4359 -46373434.23611 4489 4359 24305555.56353 4490 4359 -21679861.11823 4360 4360 1250608048.648 4361 4360 -1.192092895508e-06 4362 4360 -3.159046173096e-06 4363 4360 -185121779.2034 4364 4360 8.046627044678e-07 4374 4360 -3.09944152832e-06 4375 4360 20983010.02827 4376 4360 -4.768371582031e-07 4377 4360 97222222.20624 4378 4360 -119197695.4315 4379 4360 -7.450580596924e-08 4458 4360 -2.294778823853e-06 4459 4360 -31882558.21685 4460 4360 2.682209014893e-07 4461 4360 -24305555.56354 4462 4360 -39081501.55876 4463 4360 17343750.0057 4470 4360 4.410743713379e-06 4471 4360 164138769.4832 4472 4360 -1.192092895508e-07 4473 4360 -1.156330108643e-05 4474 4360 -83408755.55014 4475 4360 69374999.9886 4485 4360 -8.344650268555e-07 4486 4360 -31882558.21681 4487 4360 -3.278255462646e-07 4488 4360 24305555.56353 4489 4360 -39081501.55875 4490 4360 17343750.00569 4361 4361 1165825984.246 4362 4361 -1.382827758789e-05 4363 4361 1.788139343262e-07 4364 4361 104791324.3853 4374 4361 -1.20997428894e-05 4375 4361 -4.768371582031e-07 4376 4361 -212506.0825927 4377 4361 -3.278255462646e-06 4378 4361 -2.086162567139e-07 4379 4361 -46719419.49861 4458 4361 86719444.4302 4459 4361 3.427267074585e-07 4460 4361 -99061955.12464 4461 4361 21679861.11823 4462 4361 17343750.0057 4463 4361 -36432062.04359 4470 4361 2.598762512207e-05 4471 4361 5.960464477539e-08 4472 4361 -104578818.0156 4473 4361 6.973743438721e-06 4474 4361 69374999.9886 4475 4361 -72810997.49471 4485 4361 -86719444.43019 4486 4361 -2.682209014893e-07 4487 4361 -99061955.12461 4488 4361 -21679861.11823 4489 4361 17343750.00569 4490 4361 -36432062.04358 4362 4362 1483949894.094 4363 4362 7.867813110352e-06 4364 4362 -5.507469177246e-05 4365 4362 184322301.8864 4366 4362 -2.622604370117e-06 4367 4362 -1.358985900879e-05 4374 4362 -148365426.1266 4375 4362 -97222222.20624 4376 4362 -3.039836883545e-06 4377 4362 -406796532.3944 4378 4362 -2.801418304443e-06 4379 4362 -1.233816146851e-05 4380 4362 -148365426.1266 4381 4362 97222222.20624 4382 4362 -3.308057785034e-06 4458 4362 -46373434.23613 4459 4362 24305555.56354 4460 4362 21679861.11823 4461 4362 -138827443.8752 4462 4362 2.682209014893e-07 4463 4362 86719444.4302 4464 4362 -46373434.23614 4465 4362 -24305555.56354 4466 4362 21679861.11823 4470 4362 8952264.76783 4471 4362 9.298324584961e-06 4472 4362 6.228685379028e-06 4473 4362 222474230.8735 4474 4362 3.933906555176e-06 4475 4362 2.622604370117e-05 4476 4362 8952264.76783 4477 4362 -1.302361488342e-05 4478 4362 6.914138793945e-06 4485 4362 -46373434.23611 4486 4362 -24305555.56353 4487 4362 -21679861.11823 4488 4362 -138827443.8751 4489 4362 -5.066394805908e-07 4490 4362 -86719444.43019 4491 4362 -46373434.23611 4492 4362 24305555.56353 4493 4362 -21679861.11823 4363 4363 1250608048.648 4364 4363 -1.192092895508e-06 4365 4363 -3.159046173096e-06 4366 4363 -185121779.2034 4367 4363 8.046627044678e-07 4374 4363 -97222222.20624 4375 4363 -119197695.4315 4376 4363 2.831220626831e-07 4377 4363 -3.09944152832e-06 4378 4363 20983010.02827 4379 4363 -4.768371582031e-07 4380 4363 97222222.20624 4381 4363 -119197695.4315 4382 4363 -7.450580596924e-08 4458 4363 24305555.56354 4459 4363 -39081501.55876 4460 4363 -17343750.00569 4461 4363 -2.294778823853e-06 4462 4363 -31882558.21685 4463 4363 2.682209014893e-07 4464 4363 -24305555.56354 4465 4363 -39081501.55876 4466 4363 17343750.0057 4470 4363 1.069903373718e-05 4471 4363 -83408755.55014 4472 4363 -69374999.9886 4473 4363 4.410743713379e-06 4474 4363 164138769.4832 4475 4363 -1.192092895508e-07 4476 4363 -1.156330108643e-05 4477 4363 -83408755.55014 4478 4363 69374999.9886 4485 4363 -24305555.56353 4486 4363 -39081501.55875 4487 4363 -17343750.0057 4488 4363 -8.344650268555e-07 4489 4363 -31882558.21681 4490 4363 -3.278255462646e-07 4491 4363 24305555.56353 4492 4363 -39081501.55875 4493 4363 17343750.00569 4364 4364 1165825984.246 4365 4364 -1.382827758789e-05 4366 4364 1.788139343262e-07 4367 4364 104791324.3853 4374 4364 -2.890825271606e-06 4375 4364 3.8743019104e-07 4376 4364 -46719419.49861 4377 4364 -1.20997428894e-05 4378 4364 -4.768371582031e-07 4379 4364 -212506.0825927 4380 4364 -3.278255462646e-06 4381 4364 -2.086162567139e-07 4382 4364 -46719419.49861 4458 4364 21679861.11823 4459 4364 -17343750.0057 4460 4364 -36432062.04359 4461 4364 86719444.4302 4462 4364 3.427267074585e-07 4463 4364 -99061955.12464 4464 4364 21679861.11823 4465 4364 17343750.0057 4466 4364 -36432062.04359 4470 4364 6.169080734253e-06 4471 4364 -69374999.9886 4472 4364 -72810997.49471 4473 4364 2.598762512207e-05 4474 4364 5.960464477539e-08 4475 4364 -104578818.0156 4476 4364 6.973743438721e-06 4477 4364 69374999.9886 4478 4364 -72810997.49471 4485 4364 -21679861.11823 4486 4364 -17343750.0057 4487 4364 -36432062.04358 4488 4364 -86719444.43019 4489 4364 -2.682209014893e-07 4490 4364 -99061955.12461 4491 4364 -21679861.11823 4492 4364 17343750.00569 4493 4364 -36432062.04358 4365 4365 1483949894.094 4366 4365 7.867813110352e-06 4367 4365 -5.507469177246e-05 4368 4365 184322301.8864 4369 4365 -2.622604370117e-06 4370 4365 -1.358985900879e-05 4377 4365 -148365426.1266 4378 4365 -97222222.20624 4379 4365 -3.039836883545e-06 4380 4365 -406796532.3944 4381 4365 -2.801418304443e-06 4382 4365 -1.233816146851e-05 4383 4365 -148365426.1266 4384 4365 97222222.20624 4385 4365 -3.308057785034e-06 4461 4365 -46373434.23613 4462 4365 24305555.56354 4463 4365 21679861.11823 4464 4365 -138827443.8752 4465 4365 2.682209014893e-07 4466 4365 86719444.4302 4467 4365 -46373434.23614 4468 4365 -24305555.56354 4469 4365 21679861.11823 4473 4365 8952264.76783 4474 4365 9.298324584961e-06 4475 4365 6.228685379028e-06 4476 4365 222474230.8735 4477 4365 3.933906555176e-06 4478 4365 2.622604370117e-05 4479 4365 8952264.76783 4480 4365 -1.302361488342e-05 4481 4365 6.914138793945e-06 4488 4365 -46373434.23611 4489 4365 -24305555.56353 4490 4365 -21679861.11823 4491 4365 -138827443.8751 4492 4365 -5.066394805908e-07 4493 4365 -86719444.43019 4494 4365 -46373434.23611 4495 4365 24305555.56353 4496 4365 -21679861.11823 4366 4366 1250608048.648 4367 4366 -1.192092895508e-06 4368 4366 -3.159046173096e-06 4369 4366 -185121779.2034 4370 4366 8.046627044678e-07 4377 4366 -97222222.20624 4378 4366 -119197695.4315 4379 4366 2.831220626831e-07 4380 4366 -3.09944152832e-06 4381 4366 20983010.02827 4382 4366 -4.768371582031e-07 4383 4366 97222222.20624 4384 4366 -119197695.4315 4385 4366 -7.450580596924e-08 4461 4366 24305555.56354 4462 4366 -39081501.55876 4463 4366 -17343750.00569 4464 4366 -2.294778823853e-06 4465 4366 -31882558.21685 4466 4366 2.682209014893e-07 4467 4366 -24305555.56354 4468 4366 -39081501.55876 4469 4366 17343750.0057 4473 4366 1.069903373718e-05 4474 4366 -83408755.55014 4475 4366 -69374999.9886 4476 4366 4.410743713379e-06 4477 4366 164138769.4832 4478 4366 -1.192092895508e-07 4479 4366 -1.156330108643e-05 4480 4366 -83408755.55014 4481 4366 69374999.9886 4488 4366 -24305555.56353 4489 4366 -39081501.55875 4490 4366 -17343750.0057 4491 4366 -8.344650268555e-07 4492 4366 -31882558.21681 4493 4366 -3.278255462646e-07 4494 4366 24305555.56353 4495 4366 -39081501.55875 4496 4366 17343750.00569 4367 4367 1165825984.246 4368 4367 -1.382827758789e-05 4369 4367 1.788139343262e-07 4370 4367 104791324.3853 4377 4367 -2.890825271606e-06 4378 4367 3.8743019104e-07 4379 4367 -46719419.49861 4380 4367 -1.20997428894e-05 4381 4367 -4.768371582031e-07 4382 4367 -212506.0825927 4383 4367 -3.278255462646e-06 4384 4367 -2.086162567139e-07 4385 4367 -46719419.49861 4461 4367 21679861.11823 4462 4367 -17343750.0057 4463 4367 -36432062.04359 4464 4367 86719444.4302 4465 4367 3.427267074585e-07 4466 4367 -99061955.12464 4467 4367 21679861.11823 4468 4367 17343750.0057 4469 4367 -36432062.04359 4473 4367 6.169080734253e-06 4474 4367 -69374999.9886 4475 4367 -72810997.49471 4476 4367 2.598762512207e-05 4477 4367 5.960464477539e-08 4478 4367 -104578818.0156 4479 4367 6.973743438721e-06 4480 4367 69374999.9886 4481 4367 -72810997.49471 4488 4367 -21679861.11823 4489 4367 -17343750.0057 4490 4367 -36432062.04358 4491 4367 -86719444.43019 4492 4367 -2.682209014893e-07 4493 4367 -99061955.12461 4494 4367 -21679861.11823 4495 4367 17343750.00569 4496 4367 -36432062.04358 4368 4368 1632315315.374 4369 4368 97222220.26178 4370 4368 -4.172325134277e-05 4371 4368 17392720.97666 4372 4368 -97222221.42845 4373 4368 -2.145767211914e-06 4380 4368 -148365426.1266 4381 4368 -97222222.20624 4382 4368 -3.039836883545e-06 4383 4368 -406796532.3944 4384 4368 -2.801418304443e-06 4385 4368 -1.233816146851e-05 4386 4368 -148365426.1266 4387 4368 97222222.20624 4388 4368 -3.308057785034e-06 4464 4368 -46373434.23613 4465 4368 24305555.56354 4466 4368 21679861.11823 4467 4368 -175918799.4897 4468 4368 -24305555.27186 4469 4368 86719444.24762 4476 4368 8952264.76783 4477 4368 9.298324584961e-06 4478 4368 6.228685379028e-06 4479 4368 268847663.9159 4480 4368 24305555.07742 4481 4368 0.03653132915497 4482 4368 -28139091.37671 4483 4368 -24305555.36909 4484 4368 21679860.74398 4491 4368 -46373434.23611 4492 4368 -24305555.56353 4493 4368 -21679861.11823 4494 4368 -138827443.8751 4495 4368 -5.066394805908e-07 4496 4368 -86719444.43019 4497 4368 -46373434.23611 4498 4368 24305555.56353 4499 4368 -21679861.11823 4369 4369 1369805740.108 4370 4369 -2.145767211914e-06 4371 4369 -97222221.03956 4372 4369 -322883627.8625 4373 4369 4.798173904419e-06 4380 4369 -97222222.20624 4381 4369 -119197695.4315 4382 4369 2.831220626831e-07 4383 4369 -3.09944152832e-06 4384 4369 20983010.02827 4385 4369 -4.768371582031e-07 4386 4369 97222222.20624 4387 4369 -119197695.4315 4388 4369 -7.450580596924e-08 4464 4369 24305555.56354 4465 4369 -39081501.55876 4466 4369 -17343750.00569 4467 4369 -24305555.36908 4468 4369 -61681981.7616 4469 4369 17343749.94043 4476 4369 1.069903373718e-05 4477 4369 -83408755.55014 4478 4369 -69374999.9886 4479 4369 24305555.07742 4480 4369 203220270.0671 4481 4369 0.02920919656754 4482 4369 -24305555.27186 4483 4369 -113208178.6284 4484 4369 69374999.6084 4491 4369 -24305555.56353 4492 4369 -39081501.55875 4493 4369 -17343750.0057 4494 4369 -8.344650268555e-07 4495 4369 -31882558.21681 4496 4369 -3.278255462646e-07 4497 4369 24305555.56353 4498 4369 -39081501.55875 4499 4369 17343750.00569 4370 4370 1212545401.289 4371 4370 -1.788139343262e-06 4372 4370 3.75509262085e-06 4373 4370 8567490.576108 4380 4370 -2.890825271606e-06 4381 4370 3.8743019104e-07 4382 4370 -46719419.49861 4383 4370 -1.20997428894e-05 4384 4370 -4.768371582031e-07 4385 4370 -212506.0825927 4386 4370 -3.278255462646e-06 4387 4370 -2.086162567139e-07 4388 4370 -46719419.49861 4464 4370 21679861.11823 4465 4370 -17343750.0057 4466 4370 -36432062.04359 4467 4370 86719444.24762 4468 4370 17343749.9078 4469 4370 -110741809.7386 4476 4370 6.169080734253e-06 4477 4370 -69374999.9886 4478 4370 -72810997.49471 4479 4370 -0.03649973869324 4480 4370 -0.02921465039253 4481 4370 -68146756.53808 4482 4370 21679860.55685 4483 4370 69374999.49133 4484 4370 -84490851.68298 4491 4370 -21679861.11823 4492 4370 -17343750.0057 4493 4370 -36432062.04358 4494 4370 -86719444.43019 4495 4370 -2.682209014893e-07 4496 4370 -99061955.12461 4497 4370 -21679861.11823 4498 4370 17343750.00569 4499 4370 -36432062.04358 4371 4371 927468678.158 4372 4371 97222222.20623 4373 4371 -8.106231689453e-06 4383 4371 -148365426.1266 4384 4371 -97222222.20624 4385 4371 -3.039836883545e-06 4386 4371 -573726109.9308 4387 4371 -97222221.42845 4388 4371 8.940696716309e-07 4389 4371 18564155.00999 4390 4371 77777776.9872 4391 4371 2.861022949219e-06 4467 4371 -9282077.50499 4468 4371 29166666.38457 4469 4371 26015832.78049 4479 4371 -28139091.37673 4480 4371 -24305555.27187 4481 4371 -21679860.55685 4482 4371 139046393.5639 4483 4371 24305555.56354 4484 4371 17343888.84952 4494 4371 -46373434.23611 4495 4371 -24305555.56353 4496 4371 -21679861.11823 4497 4371 -175918799.4896 4498 4371 -24305555.36909 4499 4371 -86719444.24762 4500 4371 -9282077.505002 4501 4371 19444444.25638 4502 4371 -17343888.52033 4372 4372 781630025.6149 4373 4372 8.412431954121e-06 4383 4372 -97222222.20624 4384 4372 -119197695.4315 4385 4372 2.831220626831e-07 4386 4372 -97222221.03956 4387 4372 -116778839.2437 4388 4372 5.602836608887e-06 4389 4372 116666665.4808 4390 4372 18564155.00998 4391 4372 5.960464477539e-07 4467 4372 19444444.25638 4468 4372 -9282077.505 4469 4372 -13874999.9393 4479 4372 -24305555.36909 4480 4372 -113208178.6284 4481 4372 -69374999.49133 4482 4372 24305555.56354 4483 4372 102586730.4102 4484 4372 13874999.85143 4494 4372 -24305555.56353 4495 4372 -39081501.55875 4496 4372 -17343750.0057 4497 4372 -24305555.27187 4498 4372 -61681981.76159 4499 4372 -17343749.90781 4500 4372 29166666.38457 4501 4372 -9282077.504995 4502 4372 20812499.90894 4373 4373 728641235.3813 4383 4373 -2.890825271606e-06 4384 4373 3.8743019104e-07 4385 4373 -46719419.49861 4386 4373 4.172325134277e-07 4387 4373 4.887580871582e-06 4388 4373 -96436338.25295 4389 4373 2.503395080566e-06 4390 4373 1.251697540283e-06 4391 4373 49504413.35998 4467 4373 17343888.52033 4468 4373 -20812499.90895 4469 4373 -24752206.67999 4479 4373 -21679860.74398 4480 4373 -69374999.6084 4481 4373 -84490851.68299 4482 4373 -17343888.84952 4483 4373 -13874999.85144 4484 4373 -65361760.6378 4494 4373 -21679861.11823 4495 4373 -17343750.0057 4496 4373 -36432062.04358 4497 4373 -86719444.24762 4498 4373 -17343749.94044 4499 4373 -110741809.7386 4500 4373 -26015832.7805 4501 4373 13874999.9393 4502 4373 -24752206.67999 4374 4374 1483949894.094 4375 4374 7.867813110352e-06 4376 4374 -5.507469177246e-05 4377 4374 184322301.8864 4378 4374 -2.622604370117e-06 4379 4374 -1.358985900879e-05 4392 4374 -406796532.3944 4393 4374 -2.801418304443e-06 4394 4374 -1.233816146851e-05 4395 4374 -148365426.1266 4396 4374 97222222.20624 4397 4374 -3.308057785034e-06 4470 4374 -138827443.8752 4471 4374 2.682209014893e-07 4472 4374 86719444.4302 4473 4374 -46373434.23614 4474 4374 -24305555.56354 4475 4374 21679861.11823 4485 4374 222474230.8735 4486 4374 3.933906555176e-06 4487 4374 2.622604370117e-05 4488 4374 8952264.76783 4489 4374 -1.302361488342e-05 4490 4374 6.914138793945e-06 4503 4374 -138827443.8751 4504 4374 -5.066394805908e-07 4505 4374 -86719444.43019 4506 4374 -46373434.23611 4507 4374 24305555.56353 4508 4374 -21679861.11823 4375 4375 1250608048.648 4376 4375 -1.192092895508e-06 4377 4375 -3.159046173096e-06 4378 4375 -185121779.2034 4379 4375 8.046627044678e-07 4392 4375 -3.09944152832e-06 4393 4375 20983010.02827 4394 4375 -4.768371582031e-07 4395 4375 97222222.20624 4396 4375 -119197695.4315 4397 4375 -7.450580596924e-08 4470 4375 -2.294778823853e-06 4471 4375 -31882558.21685 4472 4375 2.682209014893e-07 4473 4375 -24305555.56354 4474 4375 -39081501.55876 4475 4375 17343750.0057 4485 4375 4.410743713379e-06 4486 4375 164138769.4832 4487 4375 -1.192092895508e-07 4488 4375 -1.156330108643e-05 4489 4375 -83408755.55014 4490 4375 69374999.9886 4503 4375 -8.344650268555e-07 4504 4375 -31882558.21681 4505 4375 -3.278255462646e-07 4506 4375 24305555.56353 4507 4375 -39081501.55875 4508 4375 17343750.00569 4376 4376 1165825984.246 4377 4376 -1.382827758789e-05 4378 4376 1.788139343262e-07 4379 4376 104791324.3853 4392 4376 -1.20997428894e-05 4393 4376 -4.768371582031e-07 4394 4376 -212506.0825927 4395 4376 -3.278255462646e-06 4396 4376 -2.086162567139e-07 4397 4376 -46719419.49861 4470 4376 86719444.4302 4471 4376 3.427267074585e-07 4472 4376 -99061955.12464 4473 4376 21679861.11823 4474 4376 17343750.0057 4475 4376 -36432062.04359 4485 4376 2.598762512207e-05 4486 4376 5.960464477539e-08 4487 4376 -104578818.0156 4488 4376 6.973743438721e-06 4489 4376 69374999.9886 4490 4376 -72810997.49471 4503 4376 -86719444.43019 4504 4376 -2.682209014893e-07 4505 4376 -99061955.12461 4506 4376 -21679861.11823 4507 4376 17343750.00569 4508 4376 -36432062.04358 4377 4377 1483949894.094 4378 4377 7.867813110352e-06 4379 4377 -5.507469177246e-05 4380 4377 184322301.8864 4381 4377 -2.622604370117e-06 4382 4377 -1.358985900879e-05 4392 4377 -148365426.1266 4393 4377 -97222222.20624 4394 4377 -3.039836883545e-06 4395 4377 -406796532.3944 4396 4377 -2.801418304443e-06 4397 4377 -1.233816146851e-05 4398 4377 -148365426.1266 4399 4377 97222222.20624 4400 4377 -3.308057785034e-06 4470 4377 -46373434.23613 4471 4377 24305555.56354 4472 4377 21679861.11823 4473 4377 -138827443.8752 4474 4377 2.682209014893e-07 4475 4377 86719444.4302 4476 4377 -46373434.23614 4477 4377 -24305555.56354 4478 4377 21679861.11823 4485 4377 8952264.76783 4486 4377 9.298324584961e-06 4487 4377 6.228685379028e-06 4488 4377 222474230.8735 4489 4377 3.933906555176e-06 4490 4377 2.622604370117e-05 4491 4377 8952264.76783 4492 4377 -1.302361488342e-05 4493 4377 6.914138793945e-06 4503 4377 -46373434.23611 4504 4377 -24305555.56353 4505 4377 -21679861.11823 4506 4377 -138827443.8751 4507 4377 -5.066394805908e-07 4508 4377 -86719444.43019 4509 4377 -46373434.23611 4510 4377 24305555.56353 4511 4377 -21679861.11823 4378 4378 1250608048.648 4379 4378 -1.192092895508e-06 4380 4378 -3.159046173096e-06 4381 4378 -185121779.2034 4382 4378 8.046627044678e-07 4392 4378 -97222222.20624 4393 4378 -119197695.4315 4394 4378 2.831220626831e-07 4395 4378 -3.09944152832e-06 4396 4378 20983010.02827 4397 4378 -4.768371582031e-07 4398 4378 97222222.20624 4399 4378 -119197695.4315 4400 4378 -7.450580596924e-08 4470 4378 24305555.56354 4471 4378 -39081501.55876 4472 4378 -17343750.00569 4473 4378 -2.294778823853e-06 4474 4378 -31882558.21685 4475 4378 2.682209014893e-07 4476 4378 -24305555.56354 4477 4378 -39081501.55876 4478 4378 17343750.0057 4485 4378 1.069903373718e-05 4486 4378 -83408755.55014 4487 4378 -69374999.9886 4488 4378 4.410743713379e-06 4489 4378 164138769.4832 4490 4378 -1.192092895508e-07 4491 4378 -1.156330108643e-05 4492 4378 -83408755.55014 4493 4378 69374999.9886 4503 4378 -24305555.56353 4504 4378 -39081501.55875 4505 4378 -17343750.0057 4506 4378 -8.344650268555e-07 4507 4378 -31882558.21681 4508 4378 -3.278255462646e-07 4509 4378 24305555.56353 4510 4378 -39081501.55875 4511 4378 17343750.00569 4379 4379 1165825984.246 4380 4379 -1.382827758789e-05 4381 4379 1.788139343262e-07 4382 4379 104791324.3853 4392 4379 -2.890825271606e-06 4393 4379 3.8743019104e-07 4394 4379 -46719419.49861 4395 4379 -1.20997428894e-05 4396 4379 -4.768371582031e-07 4397 4379 -212506.0825927 4398 4379 -3.278255462646e-06 4399 4379 -2.086162567139e-07 4400 4379 -46719419.49861 4470 4379 21679861.11823 4471 4379 -17343750.0057 4472 4379 -36432062.04359 4473 4379 86719444.4302 4474 4379 3.427267074585e-07 4475 4379 -99061955.12464 4476 4379 21679861.11823 4477 4379 17343750.0057 4478 4379 -36432062.04359 4485 4379 6.169080734253e-06 4486 4379 -69374999.9886 4487 4379 -72810997.49471 4488 4379 2.598762512207e-05 4489 4379 5.960464477539e-08 4490 4379 -104578818.0156 4491 4379 6.973743438721e-06 4492 4379 69374999.9886 4493 4379 -72810997.49471 4503 4379 -21679861.11823 4504 4379 -17343750.0057 4505 4379 -36432062.04358 4506 4379 -86719444.43019 4507 4379 -2.682209014893e-07 4508 4379 -99061955.12461 4509 4379 -21679861.11823 4510 4379 17343750.00569 4511 4379 -36432062.04358 4380 4380 1483949894.094 4381 4380 7.867813110352e-06 4382 4380 -5.507469177246e-05 4383 4380 184322301.8864 4384 4380 -2.622604370117e-06 4385 4380 -1.358985900879e-05 4395 4380 -148365426.1266 4396 4380 -97222222.20624 4397 4380 -3.039836883545e-06 4398 4380 -406796532.3944 4399 4380 -2.801418304443e-06 4400 4380 -1.233816146851e-05 4401 4380 -148365426.1266 4402 4380 97222222.20624 4403 4380 -3.308057785034e-06 4473 4380 -46373434.23613 4474 4380 24305555.56354 4475 4380 21679861.11823 4476 4380 -138827443.8752 4477 4380 2.682209014893e-07 4478 4380 86719444.4302 4479 4380 -46373434.23614 4480 4380 -24305555.56354 4481 4380 21679861.11823 4488 4380 8952264.76783 4489 4380 9.298324584961e-06 4490 4380 6.228685379028e-06 4491 4380 222474230.8735 4492 4380 3.933906555176e-06 4493 4380 2.622604370117e-05 4494 4380 8952264.76783 4495 4380 -1.302361488342e-05 4496 4380 6.914138793945e-06 4506 4380 -46373434.23611 4507 4380 -24305555.56353 4508 4380 -21679861.11823 4509 4380 -138827443.8751 4510 4380 -5.066394805908e-07 4511 4380 -86719444.43019 4512 4380 -46373434.23611 4513 4380 24305555.56353 4514 4380 -21679861.11823 4381 4381 1250608048.648 4382 4381 -1.192092895508e-06 4383 4381 -3.159046173096e-06 4384 4381 -185121779.2034 4385 4381 8.046627044678e-07 4395 4381 -97222222.20624 4396 4381 -119197695.4315 4397 4381 2.831220626831e-07 4398 4381 -3.09944152832e-06 4399 4381 20983010.02827 4400 4381 -4.768371582031e-07 4401 4381 97222222.20624 4402 4381 -119197695.4315 4403 4381 -7.450580596924e-08 4473 4381 24305555.56354 4474 4381 -39081501.55876 4475 4381 -17343750.00569 4476 4381 -2.294778823853e-06 4477 4381 -31882558.21685 4478 4381 2.682209014893e-07 4479 4381 -24305555.56354 4480 4381 -39081501.55876 4481 4381 17343750.0057 4488 4381 1.069903373718e-05 4489 4381 -83408755.55014 4490 4381 -69374999.9886 4491 4381 4.410743713379e-06 4492 4381 164138769.4832 4493 4381 -1.192092895508e-07 4494 4381 -1.156330108643e-05 4495 4381 -83408755.55014 4496 4381 69374999.9886 4506 4381 -24305555.56353 4507 4381 -39081501.55875 4508 4381 -17343750.0057 4509 4381 -8.344650268555e-07 4510 4381 -31882558.21681 4511 4381 -3.278255462646e-07 4512 4381 24305555.56353 4513 4381 -39081501.55875 4514 4381 17343750.00569 4382 4382 1165825984.246 4383 4382 -1.382827758789e-05 4384 4382 1.788139343262e-07 4385 4382 104791324.3853 4395 4382 -2.890825271606e-06 4396 4382 3.8743019104e-07 4397 4382 -46719419.49861 4398 4382 -1.20997428894e-05 4399 4382 -4.768371582031e-07 4400 4382 -212506.0825927 4401 4382 -3.278255462646e-06 4402 4382 -2.086162567139e-07 4403 4382 -46719419.49861 4473 4382 21679861.11823 4474 4382 -17343750.0057 4475 4382 -36432062.04359 4476 4382 86719444.4302 4477 4382 3.427267074585e-07 4478 4382 -99061955.12464 4479 4382 21679861.11823 4480 4382 17343750.0057 4481 4382 -36432062.04359 4488 4382 6.169080734253e-06 4489 4382 -69374999.9886 4490 4382 -72810997.49471 4491 4382 2.598762512207e-05 4492 4382 5.960464477539e-08 4493 4382 -104578818.0156 4494 4382 6.973743438721e-06 4495 4382 69374999.9886 4496 4382 -72810997.49471 4506 4382 -21679861.11823 4507 4382 -17343750.0057 4508 4382 -36432062.04358 4509 4382 -86719444.43019 4510 4382 -2.682209014893e-07 4511 4382 -99061955.12461 4512 4382 -21679861.11823 4513 4382 17343750.00569 4514 4382 -36432062.04358 4383 4383 1483949894.094 4384 4383 7.867813110352e-06 4385 4383 -5.507469177246e-05 4386 4383 184322301.8864 4387 4383 -2.622604370117e-06 4388 4383 -1.358985900879e-05 4398 4383 -148365426.1266 4399 4383 -97222222.20624 4400 4383 -3.039836883545e-06 4401 4383 -406796532.3944 4402 4383 -2.801418304443e-06 4403 4383 -1.233816146851e-05 4404 4383 -148365426.1266 4405 4383 97222222.20624 4406 4383 -3.308057785034e-06 4476 4383 -46373434.23613 4477 4383 24305555.56354 4478 4383 21679861.11823 4479 4383 -138827443.8752 4480 4383 2.682209014893e-07 4481 4383 86719444.4302 4482 4383 -46373434.23614 4483 4383 -24305555.56354 4484 4383 21679861.11823 4491 4383 8952264.76783 4492 4383 9.298324584961e-06 4493 4383 6.228685379028e-06 4494 4383 222474230.8735 4495 4383 3.933906555176e-06 4496 4383 2.622604370117e-05 4497 4383 8952264.76783 4498 4383 -1.302361488342e-05 4499 4383 6.914138793945e-06 4509 4383 -46373434.23611 4510 4383 -24305555.56353 4511 4383 -21679861.11823 4512 4383 -138827443.8751 4513 4383 -5.066394805908e-07 4514 4383 -86719444.43019 4515 4383 -46373434.23611 4516 4383 24305555.56353 4517 4383 -21679861.11823 4384 4384 1250608048.648 4385 4384 -1.192092895508e-06 4386 4384 -3.159046173096e-06 4387 4384 -185121779.2034 4388 4384 8.046627044678e-07 4398 4384 -97222222.20624 4399 4384 -119197695.4315 4400 4384 2.831220626831e-07 4401 4384 -3.09944152832e-06 4402 4384 20983010.02827 4403 4384 -4.768371582031e-07 4404 4384 97222222.20624 4405 4384 -119197695.4315 4406 4384 -7.450580596924e-08 4476 4384 24305555.56354 4477 4384 -39081501.55876 4478 4384 -17343750.00569 4479 4384 -2.294778823853e-06 4480 4384 -31882558.21685 4481 4384 2.682209014893e-07 4482 4384 -24305555.56354 4483 4384 -39081501.55876 4484 4384 17343750.0057 4491 4384 1.069903373718e-05 4492 4384 -83408755.55014 4493 4384 -69374999.9886 4494 4384 4.410743713379e-06 4495 4384 164138769.4832 4496 4384 -1.192092895508e-07 4497 4384 -1.156330108643e-05 4498 4384 -83408755.55014 4499 4384 69374999.9886 4509 4384 -24305555.56353 4510 4384 -39081501.55875 4511 4384 -17343750.0057 4512 4384 -8.344650268555e-07 4513 4384 -31882558.21681 4514 4384 -3.278255462646e-07 4515 4384 24305555.56353 4516 4384 -39081501.55875 4517 4384 17343750.00569 4385 4385 1165825984.246 4386 4385 -1.382827758789e-05 4387 4385 1.788139343262e-07 4388 4385 104791324.3853 4398 4385 -2.890825271606e-06 4399 4385 3.8743019104e-07 4400 4385 -46719419.49861 4401 4385 -1.20997428894e-05 4402 4385 -4.768371582031e-07 4403 4385 -212506.0825927 4404 4385 -3.278255462646e-06 4405 4385 -2.086162567139e-07 4406 4385 -46719419.49861 4476 4385 21679861.11823 4477 4385 -17343750.0057 4478 4385 -36432062.04359 4479 4385 86719444.4302 4480 4385 3.427267074585e-07 4481 4385 -99061955.12464 4482 4385 21679861.11823 4483 4385 17343750.0057 4484 4385 -36432062.04359 4491 4385 6.169080734253e-06 4492 4385 -69374999.9886 4493 4385 -72810997.49471 4494 4385 2.598762512207e-05 4495 4385 5.960464477539e-08 4496 4385 -104578818.0156 4497 4385 6.973743438721e-06 4498 4385 69374999.9886 4499 4385 -72810997.49471 4509 4385 -21679861.11823 4510 4385 -17343750.0057 4511 4385 -36432062.04358 4512 4385 -86719444.43019 4513 4385 -2.682209014893e-07 4514 4385 -99061955.12461 4515 4385 -21679861.11823 4516 4385 17343750.00569 4517 4385 -36432062.04358 4386 4386 1632315315.374 4387 4386 97222220.26178 4388 4386 -4.172325134277e-05 4389 4386 17392720.97666 4390 4386 -97222221.42845 4391 4386 -2.145767211914e-06 4401 4386 -148365426.1266 4402 4386 -97222222.20624 4403 4386 -3.039836883545e-06 4404 4386 -406796532.3944 4405 4386 -2.801418304443e-06 4406 4386 -1.233816146851e-05 4407 4386 -148365426.1266 4408 4386 97222222.20624 4409 4386 -3.308057785034e-06 4479 4386 -46373434.23613 4480 4386 24305555.56354 4481 4386 21679861.11823 4482 4386 -175918799.4897 4483 4386 -24305555.27186 4484 4386 86719444.24762 4494 4386 8952264.76783 4495 4386 9.298324584961e-06 4496 4386 6.228685379028e-06 4497 4386 268847663.9159 4498 4386 24305555.07742 4499 4386 0.03653132915497 4500 4386 -28139091.37671 4501 4386 -24305555.36909 4502 4386 21679860.74398 4512 4386 -46373434.23611 4513 4386 -24305555.56353 4514 4386 -21679861.11823 4515 4386 -138827443.8751 4516 4386 -5.066394805908e-07 4517 4386 -86719444.43019 4518 4386 -46373434.23611 4519 4386 24305555.56353 4520 4386 -21679861.11823 4387 4387 1369805740.108 4388 4387 -2.145767211914e-06 4389 4387 -97222221.03956 4390 4387 -322883627.8625 4391 4387 4.798173904419e-06 4401 4387 -97222222.20624 4402 4387 -119197695.4315 4403 4387 2.831220626831e-07 4404 4387 -3.09944152832e-06 4405 4387 20983010.02827 4406 4387 -4.768371582031e-07 4407 4387 97222222.20624 4408 4387 -119197695.4315 4409 4387 -7.450580596924e-08 4479 4387 24305555.56354 4480 4387 -39081501.55876 4481 4387 -17343750.00569 4482 4387 -24305555.36908 4483 4387 -61681981.7616 4484 4387 17343749.94043 4494 4387 1.069903373718e-05 4495 4387 -83408755.55014 4496 4387 -69374999.9886 4497 4387 24305555.07742 4498 4387 203220270.0671 4499 4387 0.02920919656754 4500 4387 -24305555.27186 4501 4387 -113208178.6284 4502 4387 69374999.6084 4512 4387 -24305555.56353 4513 4387 -39081501.55875 4514 4387 -17343750.0057 4515 4387 -8.344650268555e-07 4516 4387 -31882558.21681 4517 4387 -3.278255462646e-07 4518 4387 24305555.56353 4519 4387 -39081501.55875 4520 4387 17343750.00569 4388 4388 1212545401.289 4389 4388 -1.788139343262e-06 4390 4388 3.75509262085e-06 4391 4388 8567490.576108 4401 4388 -2.890825271606e-06 4402 4388 3.8743019104e-07 4403 4388 -46719419.49861 4404 4388 -1.20997428894e-05 4405 4388 -4.768371582031e-07 4406 4388 -212506.0825927 4407 4388 -3.278255462646e-06 4408 4388 -2.086162567139e-07 4409 4388 -46719419.49861 4479 4388 21679861.11823 4480 4388 -17343750.0057 4481 4388 -36432062.04359 4482 4388 86719444.24762 4483 4388 17343749.9078 4484 4388 -110741809.7386 4494 4388 6.169080734253e-06 4495 4388 -69374999.9886 4496 4388 -72810997.49471 4497 4388 -0.03649973869324 4498 4388 -0.02921465039253 4499 4388 -68146756.53808 4500 4388 21679860.55685 4501 4388 69374999.49133 4502 4388 -84490851.68298 4512 4388 -21679861.11823 4513 4388 -17343750.0057 4514 4388 -36432062.04358 4515 4388 -86719444.43019 4516 4388 -2.682209014893e-07 4517 4388 -99061955.12461 4518 4388 -21679861.11823 4519 4388 17343750.00569 4520 4388 -36432062.04358 4389 4389 944226635.8558 4390 4389 104813146.3867 4391 4389 -5.006790161133e-06 4404 4389 -148365426.1266 4405 4389 -97222222.20624 4406 4389 -3.039836883545e-06 4407 4389 -591818040.3848 4408 4389 -104813145.6089 4409 4389 -1.752376556396e-05 4410 4389 22795227.75344 4411 4389 77777776.98725 4412 4389 4.887580871582e-06 4482 4389 -9282077.50499 4483 4389 29166666.38457 4484 4389 26015832.78049 4497 4389 -28139091.37673 4498 4389 -24305555.27187 4499 4389 -21679860.55685 4500 4389 142149470.4917 4501 4389 26203286.60958 4502 4389 17682222.18138 4515 4389 -46373434.23611 4516 4389 -24305555.56353 4517 4389 -21679861.11823 4518 4389 -180984988.3575 4519 4389 -26203286.41514 4520 4389 -88411110.90689 4521 4389 -8767515.558537 4522 4389 19444444.25639 4523 4389 -18020555.17262 4390 4390 789133337.2837 4391 4390 2.846121788025e-06 4404 4390 -97222222.20624 4405 4390 -119197695.4315 4406 4390 2.831220626831e-07 4407 4390 -104813145.2201 4408 4390 -131460786.597 4409 4390 -2.503395080566e-06 4410 4390 116666665.4809 4411 4390 28639890.68178 4412 4390 2.384185791016e-06 4482 4390 19444444.25638 4483 4390 -9282077.505 4484 4390 -13874999.9393 4497 4390 -24305555.36909 4498 4390 -113208178.6284 4499 4390 -69374999.49133 4500 4390 26203286.60958 4501 4390 103376145.8296 4502 4390 14145833.18358 4515 4390 -24305555.56353 4516 4390 -39081501.55875 4517 4390 -17343750.0057 4518 4390 -26203286.31793 4519 4390 -65895674.85387 4520 4390 -18697916.56855 4521 4390 29166666.38459 4522 4390 -7306349.825734 4523 4390 20270833.25379 4391 4391 738330627.0228 4404 4391 -2.890825271606e-06 4405 4391 3.8743019104e-07 4406 4391 -46719419.49861 4407 4391 -1.990795135498e-05 4408 4391 -1.54972076416e-06 4409 4391 -103838327.6491 4410 4391 7.390975952148e-06 4411 4391 1.609325408936e-06 4412 4391 54942611.08085 4482 4391 17343888.52033 4483 4391 -20812499.90895 4484 4391 -24752206.67999 4497 4391 -21679860.74398 4498 4391 -69374999.6084 4499 4391 -84490851.68299 4500 4391 -17682222.18137 4501 4391 -14145833.18359 4502 4391 -65836512.72291 4515 4391 -21679861.11823 4516 4391 -17343750.0057 4517 4391 -36432062.04358 4518 4391 -88411110.90689 4519 4391 -18697916.60118 4520 4391 -114040857.0942 4521 4391 -27030832.75893 4522 4391 13062499.95656 4523 4391 -24841207.22224 4392 4392 1483949894.094 4393 4392 7.867813110352e-06 4394 4392 -5.507469177246e-05 4395 4392 184322301.8864 4396 4392 -2.622604370117e-06 4397 4392 -1.358985900879e-05 4413 4392 -406796532.3944 4414 4392 -2.801418304443e-06 4415 4392 -1.233816146851e-05 4416 4392 -148365426.1266 4417 4392 97222222.20624 4418 4392 -3.308057785034e-06 4485 4392 -138827443.8752 4486 4392 2.682209014893e-07 4487 4392 86719444.4302 4488 4392 -46373434.23614 4489 4392 -24305555.56354 4490 4392 21679861.11823 4503 4392 222474230.8735 4504 4392 3.933906555176e-06 4505 4392 2.622604370117e-05 4506 4392 8952264.76783 4507 4392 -1.302361488342e-05 4508 4392 6.914138793945e-06 4524 4392 -138827443.8751 4525 4392 -5.066394805908e-07 4526 4392 -86719444.43019 4527 4392 -46373434.23611 4528 4392 24305555.56353 4529 4392 -21679861.11823 4393 4393 1250608048.648 4394 4393 -1.192092895508e-06 4395 4393 -3.159046173096e-06 4396 4393 -185121779.2034 4397 4393 8.046627044678e-07 4413 4393 -3.09944152832e-06 4414 4393 20983010.02827 4415 4393 -4.768371582031e-07 4416 4393 97222222.20624 4417 4393 -119197695.4315 4418 4393 -7.450580596924e-08 4485 4393 -2.294778823853e-06 4486 4393 -31882558.21685 4487 4393 2.682209014893e-07 4488 4393 -24305555.56354 4489 4393 -39081501.55876 4490 4393 17343750.0057 4503 4393 4.410743713379e-06 4504 4393 164138769.4832 4505 4393 -1.192092895508e-07 4506 4393 -1.156330108643e-05 4507 4393 -83408755.55014 4508 4393 69374999.9886 4524 4393 -8.344650268555e-07 4525 4393 -31882558.21681 4526 4393 -3.278255462646e-07 4527 4393 24305555.56353 4528 4393 -39081501.55875 4529 4393 17343750.00569 4394 4394 1165825984.246 4395 4394 -1.382827758789e-05 4396 4394 1.788139343262e-07 4397 4394 104791324.3853 4413 4394 -1.20997428894e-05 4414 4394 -4.768371582031e-07 4415 4394 -212506.0825927 4416 4394 -3.278255462646e-06 4417 4394 -2.086162567139e-07 4418 4394 -46719419.49861 4485 4394 86719444.4302 4486 4394 3.427267074585e-07 4487 4394 -99061955.12464 4488 4394 21679861.11823 4489 4394 17343750.0057 4490 4394 -36432062.04359 4503 4394 2.598762512207e-05 4504 4394 5.960464477539e-08 4505 4394 -104578818.0156 4506 4394 6.973743438721e-06 4507 4394 69374999.9886 4508 4394 -72810997.49471 4524 4394 -86719444.43019 4525 4394 -2.682209014893e-07 4526 4394 -99061955.12461 4527 4394 -21679861.11823 4528 4394 17343750.00569 4529 4394 -36432062.04358 4395 4395 1483949894.094 4396 4395 7.867813110352e-06 4397 4395 -5.507469177246e-05 4398 4395 184322301.8864 4399 4395 -2.622604370117e-06 4400 4395 -1.358985900879e-05 4413 4395 -148365426.1266 4414 4395 -97222222.20624 4415 4395 -3.039836883545e-06 4416 4395 -406796532.3944 4417 4395 -2.801418304443e-06 4418 4395 -1.233816146851e-05 4419 4395 -148365426.1266 4420 4395 97222222.20624 4421 4395 -3.308057785034e-06 4485 4395 -46373434.23613 4486 4395 24305555.56354 4487 4395 21679861.11823 4488 4395 -138827443.8752 4489 4395 2.682209014893e-07 4490 4395 86719444.4302 4491 4395 -46373434.23614 4492 4395 -24305555.56354 4493 4395 21679861.11823 4503 4395 8952264.76783 4504 4395 9.298324584961e-06 4505 4395 6.228685379028e-06 4506 4395 222474230.8735 4507 4395 3.933906555176e-06 4508 4395 2.622604370117e-05 4509 4395 8952264.76783 4510 4395 -1.302361488342e-05 4511 4395 6.914138793945e-06 4524 4395 -46373434.23611 4525 4395 -24305555.56353 4526 4395 -21679861.11823 4527 4395 -138827443.8751 4528 4395 -5.066394805908e-07 4529 4395 -86719444.43019 4530 4395 -46373434.23611 4531 4395 24305555.56353 4532 4395 -21679861.11823 4396 4396 1250608048.648 4397 4396 -1.192092895508e-06 4398 4396 -3.159046173096e-06 4399 4396 -185121779.2034 4400 4396 8.046627044678e-07 4413 4396 -97222222.20624 4414 4396 -119197695.4315 4415 4396 2.831220626831e-07 4416 4396 -3.09944152832e-06 4417 4396 20983010.02827 4418 4396 -4.768371582031e-07 4419 4396 97222222.20624 4420 4396 -119197695.4315 4421 4396 -7.450580596924e-08 4485 4396 24305555.56354 4486 4396 -39081501.55876 4487 4396 -17343750.00569 4488 4396 -2.294778823853e-06 4489 4396 -31882558.21685 4490 4396 2.682209014893e-07 4491 4396 -24305555.56354 4492 4396 -39081501.55876 4493 4396 17343750.0057 4503 4396 1.069903373718e-05 4504 4396 -83408755.55014 4505 4396 -69374999.9886 4506 4396 4.410743713379e-06 4507 4396 164138769.4832 4508 4396 -1.192092895508e-07 4509 4396 -1.156330108643e-05 4510 4396 -83408755.55014 4511 4396 69374999.9886 4524 4396 -24305555.56353 4525 4396 -39081501.55875 4526 4396 -17343750.0057 4527 4396 -8.344650268555e-07 4528 4396 -31882558.21681 4529 4396 -3.278255462646e-07 4530 4396 24305555.56353 4531 4396 -39081501.55875 4532 4396 17343750.00569 4397 4397 1165825984.246 4398 4397 -1.382827758789e-05 4399 4397 1.788139343262e-07 4400 4397 104791324.3853 4413 4397 -2.890825271606e-06 4414 4397 3.8743019104e-07 4415 4397 -46719419.49861 4416 4397 -1.20997428894e-05 4417 4397 -4.768371582031e-07 4418 4397 -212506.0825927 4419 4397 -3.278255462646e-06 4420 4397 -2.086162567139e-07 4421 4397 -46719419.49861 4485 4397 21679861.11823 4486 4397 -17343750.0057 4487 4397 -36432062.04359 4488 4397 86719444.4302 4489 4397 3.427267074585e-07 4490 4397 -99061955.12464 4491 4397 21679861.11823 4492 4397 17343750.0057 4493 4397 -36432062.04359 4503 4397 6.169080734253e-06 4504 4397 -69374999.9886 4505 4397 -72810997.49471 4506 4397 2.598762512207e-05 4507 4397 5.960464477539e-08 4508 4397 -104578818.0156 4509 4397 6.973743438721e-06 4510 4397 69374999.9886 4511 4397 -72810997.49471 4524 4397 -21679861.11823 4525 4397 -17343750.0057 4526 4397 -36432062.04358 4527 4397 -86719444.43019 4528 4397 -2.682209014893e-07 4529 4397 -99061955.12461 4530 4397 -21679861.11823 4531 4397 17343750.00569 4532 4397 -36432062.04358 4398 4398 1483949894.094 4399 4398 7.867813110352e-06 4400 4398 -5.507469177246e-05 4401 4398 184322301.8864 4402 4398 -2.622604370117e-06 4403 4398 -1.358985900879e-05 4416 4398 -148365426.1266 4417 4398 -97222222.20624 4418 4398 -3.039836883545e-06 4419 4398 -406796532.3944 4420 4398 -2.801418304443e-06 4421 4398 -1.233816146851e-05 4422 4398 -148365426.1266 4423 4398 97222222.20624 4424 4398 -3.308057785034e-06 4488 4398 -46373434.23613 4489 4398 24305555.56354 4490 4398 21679861.11823 4491 4398 -138827443.8752 4492 4398 2.682209014893e-07 4493 4398 86719444.4302 4494 4398 -46373434.23614 4495 4398 -24305555.56354 4496 4398 21679861.11823 4506 4398 8952264.76783 4507 4398 9.298324584961e-06 4508 4398 6.228685379028e-06 4509 4398 222474230.8735 4510 4398 3.933906555176e-06 4511 4398 2.622604370117e-05 4512 4398 8952264.76783 4513 4398 -1.302361488342e-05 4514 4398 6.914138793945e-06 4527 4398 -46373434.23611 4528 4398 -24305555.56353 4529 4398 -21679861.11823 4530 4398 -138827443.8751 4531 4398 -5.066394805908e-07 4532 4398 -86719444.43019 4533 4398 -46373434.23611 4534 4398 24305555.56353 4535 4398 -21679861.11823 4399 4399 1250608048.648 4400 4399 -1.192092895508e-06 4401 4399 -3.159046173096e-06 4402 4399 -185121779.2034 4403 4399 8.046627044678e-07 4416 4399 -97222222.20624 4417 4399 -119197695.4315 4418 4399 2.831220626831e-07 4419 4399 -3.09944152832e-06 4420 4399 20983010.02827 4421 4399 -4.768371582031e-07 4422 4399 97222222.20624 4423 4399 -119197695.4315 4424 4399 -7.450580596924e-08 4488 4399 24305555.56354 4489 4399 -39081501.55876 4490 4399 -17343750.00569 4491 4399 -2.294778823853e-06 4492 4399 -31882558.21685 4493 4399 2.682209014893e-07 4494 4399 -24305555.56354 4495 4399 -39081501.55876 4496 4399 17343750.0057 4506 4399 1.069903373718e-05 4507 4399 -83408755.55014 4508 4399 -69374999.9886 4509 4399 4.410743713379e-06 4510 4399 164138769.4832 4511 4399 -1.192092895508e-07 4512 4399 -1.156330108643e-05 4513 4399 -83408755.55014 4514 4399 69374999.9886 4527 4399 -24305555.56353 4528 4399 -39081501.55875 4529 4399 -17343750.0057 4530 4399 -8.344650268555e-07 4531 4399 -31882558.21681 4532 4399 -3.278255462646e-07 4533 4399 24305555.56353 4534 4399 -39081501.55875 4535 4399 17343750.00569 4400 4400 1165825984.246 4401 4400 -1.382827758789e-05 4402 4400 1.788139343262e-07 4403 4400 104791324.3853 4416 4400 -2.890825271606e-06 4417 4400 3.8743019104e-07 4418 4400 -46719419.49861 4419 4400 -1.20997428894e-05 4420 4400 -4.768371582031e-07 4421 4400 -212506.0825927 4422 4400 -3.278255462646e-06 4423 4400 -2.086162567139e-07 4424 4400 -46719419.49861 4488 4400 21679861.11823 4489 4400 -17343750.0057 4490 4400 -36432062.04359 4491 4400 86719444.4302 4492 4400 3.427267074585e-07 4493 4400 -99061955.12464 4494 4400 21679861.11823 4495 4400 17343750.0057 4496 4400 -36432062.04359 4506 4400 6.169080734253e-06 4507 4400 -69374999.9886 4508 4400 -72810997.49471 4509 4400 2.598762512207e-05 4510 4400 5.960464477539e-08 4511 4400 -104578818.0156 4512 4400 6.973743438721e-06 4513 4400 69374999.9886 4514 4400 -72810997.49471 4527 4400 -21679861.11823 4528 4400 -17343750.0057 4529 4400 -36432062.04358 4530 4400 -86719444.43019 4531 4400 -2.682209014893e-07 4532 4400 -99061955.12461 4533 4400 -21679861.11823 4534 4400 17343750.00569 4535 4400 -36432062.04358 4401 4401 1483949894.094 4402 4401 7.867813110352e-06 4403 4401 -5.507469177246e-05 4404 4401 184322301.8864 4405 4401 -2.622604370117e-06 4406 4401 -1.358985900879e-05 4419 4401 -148365426.1266 4420 4401 -97222222.20624 4421 4401 -3.039836883545e-06 4422 4401 -406796532.3944 4423 4401 -2.801418304443e-06 4424 4401 -1.233816146851e-05 4425 4401 -148365426.1266 4426 4401 97222222.20624 4427 4401 -3.308057785034e-06 4491 4401 -46373434.23613 4492 4401 24305555.56354 4493 4401 21679861.11823 4494 4401 -138827443.8752 4495 4401 2.682209014893e-07 4496 4401 86719444.4302 4497 4401 -46373434.23614 4498 4401 -24305555.56354 4499 4401 21679861.11823 4509 4401 8952264.76783 4510 4401 9.298324584961e-06 4511 4401 6.228685379028e-06 4512 4401 222474230.8735 4513 4401 3.933906555176e-06 4514 4401 2.622604370117e-05 4515 4401 8952264.76783 4516 4401 -1.302361488342e-05 4517 4401 6.914138793945e-06 4530 4401 -46373434.23611 4531 4401 -24305555.56353 4532 4401 -21679861.11823 4533 4401 -138827443.8751 4534 4401 -5.066394805908e-07 4535 4401 -86719444.43019 4536 4401 -46373434.23611 4537 4401 24305555.56353 4538 4401 -21679861.11823 4402 4402 1250608048.648 4403 4402 -1.192092895508e-06 4404 4402 -3.159046173096e-06 4405 4402 -185121779.2034 4406 4402 8.046627044678e-07 4419 4402 -97222222.20624 4420 4402 -119197695.4315 4421 4402 2.831220626831e-07 4422 4402 -3.09944152832e-06 4423 4402 20983010.02827 4424 4402 -4.768371582031e-07 4425 4402 97222222.20624 4426 4402 -119197695.4315 4427 4402 -7.450580596924e-08 4491 4402 24305555.56354 4492 4402 -39081501.55876 4493 4402 -17343750.00569 4494 4402 -2.294778823853e-06 4495 4402 -31882558.21685 4496 4402 2.682209014893e-07 4497 4402 -24305555.56354 4498 4402 -39081501.55876 4499 4402 17343750.0057 4509 4402 1.069903373718e-05 4510 4402 -83408755.55014 4511 4402 -69374999.9886 4512 4402 4.410743713379e-06 4513 4402 164138769.4832 4514 4402 -1.192092895508e-07 4515 4402 -1.156330108643e-05 4516 4402 -83408755.55014 4517 4402 69374999.9886 4530 4402 -24305555.56353 4531 4402 -39081501.55875 4532 4402 -17343750.0057 4533 4402 -8.344650268555e-07 4534 4402 -31882558.21681 4535 4402 -3.278255462646e-07 4536 4402 24305555.56353 4537 4402 -39081501.55875 4538 4402 17343750.00569 4403 4403 1165825984.246 4404 4403 -1.382827758789e-05 4405 4403 1.788139343262e-07 4406 4403 104791324.3853 4419 4403 -2.890825271606e-06 4420 4403 3.8743019104e-07 4421 4403 -46719419.49861 4422 4403 -1.20997428894e-05 4423 4403 -4.768371582031e-07 4424 4403 -212506.0825927 4425 4403 -3.278255462646e-06 4426 4403 -2.086162567139e-07 4427 4403 -46719419.49861 4491 4403 21679861.11823 4492 4403 -17343750.0057 4493 4403 -36432062.04359 4494 4403 86719444.4302 4495 4403 3.427267074585e-07 4496 4403 -99061955.12464 4497 4403 21679861.11823 4498 4403 17343750.0057 4499 4403 -36432062.04359 4509 4403 6.169080734253e-06 4510 4403 -69374999.9886 4511 4403 -72810997.49471 4512 4403 2.598762512207e-05 4513 4403 5.960464477539e-08 4514 4403 -104578818.0156 4515 4403 6.973743438721e-06 4516 4403 69374999.9886 4517 4403 -72810997.49471 4530 4403 -21679861.11823 4531 4403 -17343750.0057 4532 4403 -36432062.04358 4533 4403 -86719444.43019 4534 4403 -2.682209014893e-07 4535 4403 -99061955.12461 4536 4403 -21679861.11823 4537 4403 17343750.00569 4538 4403 -36432062.04358 4404 4404 1483949894.094 4405 4404 7.867813110352e-06 4406 4404 -5.507469177246e-05 4407 4404 184322301.8864 4408 4404 -2.622604370117e-06 4409 4404 -1.358985900879e-05 4422 4404 -148365426.1266 4423 4404 -97222222.20624 4424 4404 -3.039836883545e-06 4425 4404 -406796532.3944 4426 4404 -2.801418304443e-06 4427 4404 -1.233816146851e-05 4428 4404 -148365426.1266 4429 4404 97222222.20624 4430 4404 -3.308057785034e-06 4494 4404 -46373434.23613 4495 4404 24305555.56354 4496 4404 21679861.11823 4497 4404 -138827443.8752 4498 4404 2.682209014893e-07 4499 4404 86719444.4302 4500 4404 -46373434.23614 4501 4404 -24305555.56354 4502 4404 21679861.11823 4512 4404 8952264.76783 4513 4404 9.298324584961e-06 4514 4404 6.228685379028e-06 4515 4404 222474230.8735 4516 4404 3.933906555176e-06 4517 4404 2.622604370117e-05 4518 4404 8952264.76783 4519 4404 -1.302361488342e-05 4520 4404 6.914138793945e-06 4533 4404 -46373434.23611 4534 4404 -24305555.56353 4535 4404 -21679861.11823 4536 4404 -138827443.8751 4537 4404 -5.066394805908e-07 4538 4404 -86719444.43019 4539 4404 -46373434.23611 4540 4404 24305555.56353 4541 4404 -21679861.11823 4405 4405 1250608048.648 4406 4405 -1.192092895508e-06 4407 4405 -3.159046173096e-06 4408 4405 -185121779.2034 4409 4405 8.046627044678e-07 4422 4405 -97222222.20624 4423 4405 -119197695.4315 4424 4405 2.831220626831e-07 4425 4405 -3.09944152832e-06 4426 4405 20983010.02827 4427 4405 -4.768371582031e-07 4428 4405 97222222.20624 4429 4405 -119197695.4315 4430 4405 -7.450580596924e-08 4494 4405 24305555.56354 4495 4405 -39081501.55876 4496 4405 -17343750.00569 4497 4405 -2.294778823853e-06 4498 4405 -31882558.21685 4499 4405 2.682209014893e-07 4500 4405 -24305555.56354 4501 4405 -39081501.55876 4502 4405 17343750.0057 4512 4405 1.069903373718e-05 4513 4405 -83408755.55014 4514 4405 -69374999.9886 4515 4405 4.410743713379e-06 4516 4405 164138769.4832 4517 4405 -1.192092895508e-07 4518 4405 -1.156330108643e-05 4519 4405 -83408755.55014 4520 4405 69374999.9886 4533 4405 -24305555.56353 4534 4405 -39081501.55875 4535 4405 -17343750.0057 4536 4405 -8.344650268555e-07 4537 4405 -31882558.21681 4538 4405 -3.278255462646e-07 4539 4405 24305555.56353 4540 4405 -39081501.55875 4541 4405 17343750.00569 4406 4406 1165825984.246 4407 4406 -1.382827758789e-05 4408 4406 1.788139343262e-07 4409 4406 104791324.3853 4422 4406 -2.890825271606e-06 4423 4406 3.8743019104e-07 4424 4406 -46719419.49861 4425 4406 -1.20997428894e-05 4426 4406 -4.768371582031e-07 4427 4406 -212506.0825927 4428 4406 -3.278255462646e-06 4429 4406 -2.086162567139e-07 4430 4406 -46719419.49861 4494 4406 21679861.11823 4495 4406 -17343750.0057 4496 4406 -36432062.04359 4497 4406 86719444.4302 4498 4406 3.427267074585e-07 4499 4406 -99061955.12464 4500 4406 21679861.11823 4501 4406 17343750.0057 4502 4406 -36432062.04359 4512 4406 6.169080734253e-06 4513 4406 -69374999.9886 4514 4406 -72810997.49471 4515 4406 2.598762512207e-05 4516 4406 5.960464477539e-08 4517 4406 -104578818.0156 4518 4406 6.973743438721e-06 4519 4406 69374999.9886 4520 4406 -72810997.49471 4533 4406 -21679861.11823 4534 4406 -17343750.0057 4535 4406 -36432062.04358 4536 4406 -86719444.43019 4537 4406 -2.682209014893e-07 4538 4406 -99061955.12461 4539 4406 -21679861.11823 4540 4406 17343750.00569 4541 4406 -36432062.04358 4407 4407 1661147708.835 4408 4407 104975994.3214 4409 4407 -2.622604370117e-05 4410 4407 28973926.47985 4411 4407 -93442034.30678 4412 4407 -5.245208740234e-06 4425 4407 -148365426.1266 4426 4407 -97222222.20624 4427 4407 -3.039836883545e-06 4428 4407 -414750020.4148 4429 4407 -3811573.076203 4430 4407 -7.62939453125e-06 4431 4407 -158390003.0581 4432 4407 97090758.28169 4433 4407 7.271766662598e-06 4497 4407 -46373434.23613 4498 4407 24305555.56354 4499 4407 21679861.11823 4500 4407 -180984988.3576 4501 4407 -26203286.31793 4502 4407 88411110.90689 4515 4407 8952264.76783 4516 4407 9.298324584961e-06 4517 4407 6.228685379028e-06 4518 4407 274245586.3935 4519 4407 26243998.59328 4520 4407 0.03795856237411 4521 4407 -25967702.04295 4522 4407 -23360508.58821 4523 4407 21679166.28526 4536 4407 -46373434.23611 4537 4407 -24305555.56353 4538 4407 -21679861.11823 4539 4407 -140996480.1669 4540 4407 -952893.2695225 4541 4407 -87564583.31886 4542 4407 -48879322.66665 4543 4407 24272689.58238 4544 4407 -22525694.45184 4408 4408 1378316574.243 4409 4408 2.27689743042e-05 4410 4408 -93442033.9179 4411 4408 -311076053.7848 4412 4408 -1.84178352356e-05 4425 4408 -97222222.20624 4426 4408 -119197695.4315 4427 4408 2.831220626831e-07 4428 4408 -3811573.076217 4429 4408 16672797.27746 4430 4408 6.437301635742e-06 4431 4408 97090758.28169 4432 4408 -116180339.9824 4433 4408 -2.279877662659e-06 4497 4408 24305555.56354 4498 4408 -39081501.55876 4499 4408 -17343750.00569 4500 4408 -26203286.41515 4501 4408 -65895674.85389 4502 4408 18697916.60118 4515 4408 1.069903373718e-05 4516 4408 -83408755.55014 4517 4408 -69374999.9886 4518 4408 26243998.59327 4519 4408 203537802.7108 4520 4408 0.03035420179367 4521 4408 -23360508.49099 4522 4408 -110980197.151 4523 4408 69374999.59698 4536 4408 -24305555.56353 4537 4408 -39081501.55875 4538 4408 -17343750.0057 4539 4408 -952893.2695275 4540 4408 -33140775.69073 4541 4408 -677083.3331562 4542 4408 24272689.58238 4543 4408 -38326906.89252 4544 4408 16666666.67214 4409 4409 1227849607.295 4410 4409 -4.768371582031e-06 4411 4409 -1.84178352356e-05 4412 4409 16993676.64499 4425 4409 -2.890825271606e-06 4426 4409 3.8743019104e-07 4427 4409 -46719419.49861 4428 4409 -1.019239425659e-05 4429 4409 6.794929504395e-06 4430 4409 -3046182.050705 4431 4409 7.182359695435e-06 4432 4409 -2.369284629822e-06 4433 4409 -48631203.38775 4497 4409 21679861.11823 4498 4409 -17343750.0057 4499 4409 -36432062.04359 4500 4409 88411110.90689 4501 4409 18697916.56855 4502 4409 -114040857.0943 4515 4409 6.169080734253e-06 4516 4409 -69374999.9886 4517 4409 -72810997.49471 4518 4409 -0.03792208433151 4519 4409 -0.03035029768944 4520 4409 -69147840.74455 4521 4409 21679166.091 4522 4409 69374999.47419 4523 4409 -84314737.2806 4536 4409 -21679861.11823 4537 4409 -17343750.0057 4538 4409 -36432062.04358 4539 4409 -87564583.31903 4540 4409 -677083.3332895 4541 4409 -100252145.5455 4542 4409 -22525694.45184 4543 4409 16666666.67214 4544 4409 -36909325.87324 4410 4410 878310888.481 4411 4410 -2657515.757642 4412 4410 1.192092895508e-06 4428 4410 -146355658.7119 4429 4410 -97205456.75097 4430 4410 -8.851289749146e-06 4431 4410 -422227983.6709 4432 4410 -5136049.023847 4433 4410 -1.490116119385e-06 4434 4410 85600144.70805 4435 4410 -16771033.13002 4436 4410 -2.384185791016e-06 4437 4410 -156881939.5358 4438 4410 98545423.09951 4439 4410 9.715557098389e-06 4500 4410 -8767515.558538 4501 4410 29166666.38459 4502 4410 27030832.75893 4518 4410 -25967702.04296 4519 4410 -23360508.49099 4520 4410 -21679166.091 4521 4410 119740849.7095 4522 4410 -664378.9397355 4523 4410 17135277.77496 4539 4410 -45870736.57862 4540 4410 -24301364.19972 4541 4410 -21679166.67379 4542 4410 -141002035.2672 4543 4410 -1284012.256601 4544 4410 -85676388.87482 4545 4410 4511607.610505 4546 4410 -4192758.284571 4547 4410 3215972.223777 4548 4410 -47751770.62456 4549 4410 24636355.78701 4550 4410 -21159027.78472 4411 4411 904404472.7405 4412 4411 3.612041473389e-05 4428 4411 -97205456.75097 4429 4411 -119802374.1366 4430 4411 -3.308057785034e-06 4431 4411 -5136049.023845 4432 4411 9983783.088469 4433 4411 1.45435333252e-05 4434 4411 22117855.75249 4435 4411 -98572068.66138 4436 4411 -9.775161743164e-06 4437 4411 98545423.09951 4438 4411 -123363044.4243 4439 4411 -3.531575202942e-06 4500 4411 19444444.25639 4501 4411 -7306349.825734 4502 4411 -13062499.95656 4518 4411 -23360508.58821 4519 4411 -110980197.151 4520 4411 -69374999.4742 4521 4411 -664378.9397378 4522 4411 126264245.7776 4523 4411 7208333.185869 4539 4411 -24301364.19972 4540 4411 -39232415.43152 4541 4411 -17343750.0057 4542 4411 -1284012.256601 4543 4411 -32949093.52409 4544 4411 -677083.3331561 4545 4411 5529463.940845 4546 4411 -41531445.75453 4547 4411 33333333.32785 4548 4411 24636355.78701 4549 4411 -39372046.84256 4550 4411 16666666.67214 4412 4412 768562010.6434 4428 4412 -8.642673492432e-06 4429 4412 -3.188848495483e-06 4430 4412 -46336936.97173 4431 4412 -1.132488250732e-06 4432 4412 1.466274261475e-05 4433 4412 -12181640.5462 4434 4412 1.430511474609e-06 4435 4412 -9.983777999878e-06 4436 4412 44227455.09151 4437 4412 9.298324584961e-06 4438 4412 -3.591179847717e-06 4439 4412 -52301561.26622 4500 4412 18020555.17262 4501 4412 -20270833.25379 4502 4412 -24841207.22224 4518 4412 -21679166.28527 4519 4412 -69374999.59699 4520 4412 -84314737.28063 4521 4412 -17135277.77496 4522 4412 -7208333.185864 4523 4412 -74091157.29499 4539 4412 -21679166.67379 4540 4412 -17343750.0057 4541 4412 -36335759.26896 4542 4412 -85676388.87482 4543 4412 -677083.3332896 4544 4412 -97565514.93121 4545 4412 -4909027.779057 4546 4412 33333333.32785 4547 4412 -33978945.76048 4548 4412 -21159027.78472 4549 4412 16666666.67214 4550 4412 -35825485.57976 4413 4413 741974947.0469 4414 4413 5.006790161133e-06 4415 4413 -2.908706665039e-05 4416 4413 92161150.94322 4417 4413 19444444.44125 4418 4413 -7.271766662598e-06 4503 4413 -138827443.8752 4504 4413 2.682209014893e-07 4505 4413 86719444.4302 4506 4413 -46373434.23614 4507 4413 -24305555.56354 4508 4413 21679861.11823 4524 4413 111237115.4367 4525 4413 -8.344650268555e-07 4526 4413 -17343888.88603 4527 4413 4476132.383917 4528 4413 4861111.1127 4529 4413 -4335972.223642 4414 4414 625304024.3239 4415 4414 6.198883056641e-06 4416 4414 -19444444.44125 4417 4414 -92560889.60172 4418 4414 2.32458114624e-06 4503 4414 -2.294778823853e-06 4504 4414 -31882558.21685 4505 4414 2.682209014893e-07 4506 4414 -24305555.56354 4507 4414 -39081501.55876 4508 4414 17343750.0057 4524 4414 -7.152557373047e-07 4525 4414 82069384.74161 4526 4414 -3.75509262085e-06 4527 4414 -4861111.112713 4528 4414 -41704377.77507 4529 4414 34687499.9943 4415 4415 582912992.1231 4416 4415 -7.271766662598e-06 4417 4415 1.877546310425e-06 4418 4415 52395662.19267 4503 4415 86719444.4302 4504 4415 3.427267074585e-07 4505 4415 -99061955.12464 4506 4415 21679861.11823 4507 4415 17343750.0057 4508 4415 -36432062.04359 4524 4415 17343888.88605 4525 4415 -3.576278686523e-06 4526 4415 -52289409.00778 4527 4415 4335972.22365 4528 4415 34687499.9943 4529 4415 -36405498.74735 4416 4416 741974947.0469 4417 4416 5.006790161133e-06 4418 4416 -2.908706665039e-05 4419 4416 92161150.94322 4420 4416 19444444.44125 4421 4416 -7.271766662598e-06 4503 4416 -46373434.23613 4504 4416 24305555.56354 4505 4416 21679861.11823 4506 4416 -138827443.8752 4507 4416 2.682209014893e-07 4508 4416 86719444.4302 4509 4416 -46373434.23614 4510 4416 -24305555.56354 4511 4416 21679861.11823 4524 4416 4476132.383914 4525 4416 -4861111.112702 4526 4416 -4335972.223643 4527 4416 111237115.4367 4528 4416 -8.344650268555e-07 4529 4416 -17343888.88603 4530 4416 4476132.383917 4531 4416 4861111.1127 4532 4416 -4335972.223642 4417 4417 625304024.3239 4418 4417 6.198883056641e-06 4419 4417 -19444444.44125 4420 4417 -92560889.60172 4421 4417 2.32458114624e-06 4503 4417 24305555.56354 4504 4417 -39081501.55876 4505 4417 -17343750.00569 4506 4417 -2.294778823853e-06 4507 4417 -31882558.21685 4508 4417 2.682209014893e-07 4509 4417 -24305555.56354 4510 4417 -39081501.55876 4511 4417 17343750.0057 4524 4417 4861111.112712 4525 4417 -41704377.77507 4526 4417 -34687499.9943 4527 4417 -7.152557373047e-07 4528 4417 82069384.74161 4529 4417 -3.75509262085e-06 4530 4417 -4861111.112713 4531 4417 -41704377.77507 4532 4417 34687499.9943 4418 4418 582912992.1231 4419 4418 -7.271766662598e-06 4420 4418 1.877546310425e-06 4421 4418 52395662.19267 4503 4418 21679861.11823 4504 4418 -17343750.0057 4505 4418 -36432062.04359 4506 4418 86719444.4302 4507 4418 3.427267074585e-07 4508 4418 -99061955.12464 4509 4418 21679861.11823 4510 4418 17343750.0057 4511 4418 -36432062.04359 4524 4418 4335972.223649 4525 4418 -34687499.9943 4526 4418 -36405498.74736 4527 4418 17343888.88605 4528 4418 -3.576278686523e-06 4529 4418 -52289409.00778 4530 4418 4335972.22365 4531 4418 34687499.9943 4532 4418 -36405498.74735 4419 4419 741974947.0469 4420 4419 5.006790161133e-06 4421 4419 -2.908706665039e-05 4422 4419 92161150.94322 4423 4419 19444444.44125 4424 4419 -7.271766662598e-06 4506 4419 -46373434.23613 4507 4419 24305555.56354 4508 4419 21679861.11823 4509 4419 -138827443.8752 4510 4419 2.682209014893e-07 4511 4419 86719444.4302 4512 4419 -46373434.23614 4513 4419 -24305555.56354 4514 4419 21679861.11823 4527 4419 4476132.383914 4528 4419 -4861111.112702 4529 4419 -4335972.223643 4530 4419 111237115.4367 4531 4419 -8.344650268555e-07 4532 4419 -17343888.88603 4533 4419 4476132.383917 4534 4419 4861111.1127 4535 4419 -4335972.223642 4420 4420 625304024.3239 4421 4420 6.198883056641e-06 4422 4420 -19444444.44125 4423 4420 -92560889.60172 4424 4420 2.32458114624e-06 4506 4420 24305555.56354 4507 4420 -39081501.55876 4508 4420 -17343750.00569 4509 4420 -2.294778823853e-06 4510 4420 -31882558.21685 4511 4420 2.682209014893e-07 4512 4420 -24305555.56354 4513 4420 -39081501.55876 4514 4420 17343750.0057 4527 4420 4861111.112712 4528 4420 -41704377.77507 4529 4420 -34687499.9943 4530 4420 -7.152557373047e-07 4531 4420 82069384.74161 4532 4420 -3.75509262085e-06 4533 4420 -4861111.112713 4534 4420 -41704377.77507 4535 4420 34687499.9943 4421 4421 582912992.1231 4422 4421 -7.271766662598e-06 4423 4421 1.877546310425e-06 4424 4421 52395662.19267 4506 4421 21679861.11823 4507 4421 -17343750.0057 4508 4421 -36432062.04359 4509 4421 86719444.4302 4510 4421 3.427267074585e-07 4511 4421 -99061955.12464 4512 4421 21679861.11823 4513 4421 17343750.0057 4514 4421 -36432062.04359 4527 4421 4335972.223649 4528 4421 -34687499.9943 4529 4421 -36405498.74736 4530 4421 17343888.88605 4531 4421 -3.576278686523e-06 4532 4421 -52289409.00778 4533 4421 4335972.22365 4534 4421 34687499.9943 4535 4421 -36405498.74735 4422 4422 741974947.0469 4423 4422 5.006790161133e-06 4424 4422 -2.908706665039e-05 4425 4422 92161150.94322 4426 4422 19444444.44125 4427 4422 -7.271766662598e-06 4509 4422 -46373434.23613 4510 4422 24305555.56354 4511 4422 21679861.11823 4512 4422 -138827443.8752 4513 4422 2.682209014893e-07 4514 4422 86719444.4302 4515 4422 -46373434.23614 4516 4422 -24305555.56354 4517 4422 21679861.11823 4530 4422 4476132.383914 4531 4422 -4861111.112702 4532 4422 -4335972.223643 4533 4422 111237115.4367 4534 4422 -8.344650268555e-07 4535 4422 -17343888.88603 4536 4422 4476132.383917 4537 4422 4861111.1127 4538 4422 -4335972.223642 4423 4423 625304024.3239 4424 4423 6.198883056641e-06 4425 4423 -19444444.44125 4426 4423 -92560889.60172 4427 4423 2.32458114624e-06 4509 4423 24305555.56354 4510 4423 -39081501.55876 4511 4423 -17343750.00569 4512 4423 -2.294778823853e-06 4513 4423 -31882558.21685 4514 4423 2.682209014893e-07 4515 4423 -24305555.56354 4516 4423 -39081501.55876 4517 4423 17343750.0057 4530 4423 4861111.112712 4531 4423 -41704377.77507 4532 4423 -34687499.9943 4533 4423 -7.152557373047e-07 4534 4423 82069384.74161 4535 4423 -3.75509262085e-06 4536 4423 -4861111.112713 4537 4423 -41704377.77507 4538 4423 34687499.9943 4424 4424 582912992.1231 4425 4424 -7.271766662598e-06 4426 4424 1.877546310425e-06 4427 4424 52395662.19267 4509 4424 21679861.11823 4510 4424 -17343750.0057 4511 4424 -36432062.04359 4512 4424 86719444.4302 4513 4424 3.427267074585e-07 4514 4424 -99061955.12464 4515 4424 21679861.11823 4516 4424 17343750.0057 4517 4424 -36432062.04359 4530 4424 4335972.223649 4531 4424 -34687499.9943 4532 4424 -36405498.74736 4533 4424 17343888.88605 4534 4424 -3.576278686523e-06 4535 4424 -52289409.00778 4536 4424 4335972.22365 4537 4424 34687499.9943 4538 4424 -36405498.74735 4425 4425 741974947.0469 4426 4425 5.006790161133e-06 4427 4425 -2.908706665039e-05 4428 4425 92161150.94322 4429 4425 19444444.44125 4430 4425 -7.271766662598e-06 4512 4425 -46373434.23613 4513 4425 24305555.56354 4514 4425 21679861.11823 4515 4425 -138827443.8752 4516 4425 2.682209014893e-07 4517 4425 86719444.4302 4518 4425 -46373434.23614 4519 4425 -24305555.56354 4520 4425 21679861.11823 4533 4425 4476132.383914 4534 4425 -4861111.112702 4535 4425 -4335972.223643 4536 4425 111237115.4367 4537 4425 -8.344650268555e-07 4538 4425 -17343888.88603 4539 4425 4476132.383917 4540 4425 4861111.1127 4541 4425 -4335972.223642 4426 4426 625304024.3239 4427 4426 6.198883056641e-06 4428 4426 -19444444.44125 4429 4426 -92560889.60172 4430 4426 2.32458114624e-06 4512 4426 24305555.56354 4513 4426 -39081501.55876 4514 4426 -17343750.00569 4515 4426 -2.294778823853e-06 4516 4426 -31882558.21685 4517 4426 2.682209014893e-07 4518 4426 -24305555.56354 4519 4426 -39081501.55876 4520 4426 17343750.0057 4533 4426 4861111.112712 4534 4426 -41704377.77507 4535 4426 -34687499.9943 4536 4426 -7.152557373047e-07 4537 4426 82069384.74161 4538 4426 -3.75509262085e-06 4539 4426 -4861111.112713 4540 4426 -41704377.77507 4541 4426 34687499.9943 4427 4427 582912992.1231 4428 4427 -7.271766662598e-06 4429 4427 1.877546310425e-06 4430 4427 52395662.19267 4512 4427 21679861.11823 4513 4427 -17343750.0057 4514 4427 -36432062.04359 4515 4427 86719444.4302 4516 4427 3.427267074585e-07 4517 4427 -99061955.12464 4518 4427 21679861.11823 4519 4427 17343750.0057 4520 4427 -36432062.04359 4533 4427 4335972.223649 4534 4427 -34687499.9943 4535 4427 -36405498.74736 4536 4427 17343888.88605 4537 4427 -3.576278686523e-06 4538 4427 -52289409.00778 4539 4427 4335972.22365 4540 4427 34687499.9943 4541 4427 -36405498.74735 4428 4428 743972693.3092 4429 4428 15895.84580994 4430 4428 -1.239776611328e-05 4431 4428 96103889.57229 4432 4428 23223356.21639 4433 4428 2.145767211914e-06 4515 4428 -46373434.23613 4516 4428 24305555.56354 4517 4428 21679861.11823 4518 4428 -140996480.167 4519 4428 -952893.2695184 4520 4428 87564583.31904 4521 4428 -45870736.57862 4522 4428 -24301364.19971 4523 4428 21679166.67378 4536 4428 4476132.383914 4537 4428 -4861111.112702 4538 4428 -4335972.223643 4539 4428 111737658.2526 4540 4428 3973.961454153 4541 4428 -17343611.10825 4542 4428 5643546.059512 4543 4428 5805839.056957 4544 4428 -5182361.11248 4429 4429 624700330.4184 4430 4429 1.978874206543e-05 4431 4429 -15665532.66612 4432 4429 -87045539.95471 4433 4429 -3.546476364136e-06 4515 4429 24305555.56354 4516 4429 -39081501.55876 4517 4429 -17343750.00569 4518 4429 -952893.2695179 4519 4429 -33140775.69075 4520 4429 677083.3332881 4521 4429 -24301364.19971 4522 4429 -39232415.43151 4523 4429 17343750.00569 4536 4429 4861111.112712 4537 4429 -41704377.77507 4538 4429 -34687499.9943 4539 4429 3973.961454034 4540 4429 81919567.51518 4541 4429 -4.976987838745e-06 4542 4429 -3916383.16846 4543 4429 -40143811.34479 4544 4429 34010416.66101 4430 4430 583290059.4325 4431 4430 -9.536743164063e-07 4432 4430 -3.75509262085e-06 4433 4430 54461159.75296 4515 4430 21679861.11823 4516 4430 -17343750.0057 4517 4430 -36432062.04359 4518 4430 87564583.31887 4519 4430 677083.3331547 4520 4430 -100252145.5455 4521 4430 21679166.67378 4522 4430 17343750.00569 4523 4430 -36335759.26895 4536 4430 4335972.223649 4537 4430 -34687499.9943 4538 4430 -36405498.74736 4539 4430 17343611.10827 4540 4430 -4.589557647705e-06 4541 4430 -52192192.18035 4542 4430 3489305.557201 4543 4430 34010416.66114 4544 4430 -35404513.64279 4431 4431 745987487.9304 4432 4431 -2453991.979044 4433 4431 -2.861022949219e-06 4434 4431 -141080087.6865 4435 4431 -95899021.31304 4436 4431 -9.119510650635e-06 4437 4431 92610986.19902 4438 4431 22063836.70036 4439 4431 1.668930053711e-06 4518 4431 -48879322.66665 4519 4431 24272689.58238 4520 4431 22525694.45184 4521 4431 -141002035.2672 4522 4431 -1284012.256585 4523 4431 85676388.87482 4539 4431 5643546.059496 4540 4431 -3916383.16846 4541 4431 -3489305.557201 4542 4431 115620942.6217 4543 4431 -613497.9950656 4544 4431 -17135277.77496 4545 4431 -43801307.6603 4546 4431 -23974755.34007 4547 4431 20312500.00667 4548 4431 5916032.269886 4549 4431 5515959.177805 4550 4431 -5078333.334501 4432 4432 616411761.6306 4433 4432 3.254413604736e-05 4434 4432 -95899021.31304 4435 4432 -117437349.9809 4436 4432 -3.94880771637e-06 4437 4432 -16825052.18215 4438 4432 -92728025.51491 4439 4432 -5.006790161133e-06 4518 4432 24272689.58238 4519 4432 -38326906.89253 4520 4432 -16666666.67214 4521 4432 -1284012.256587 4522 4432 -32949093.52409 4523 4432 677083.333288 4539 4432 5805839.056958 4540 4432 -40143811.34482 4541 4432 -34010416.66115 4542 4432 -613497.9950618 4543 4432 83227011.03075 4544 4432 -4.321336746216e-06 4545 4432 -23974755.34007 4546 4432 -37890623.23096 4547 4432 16666666.67214 4548 4432 -4206263.047611 4549 4432 -40418720.68142 4550 4432 33333333.32785 4433 4433 572020605.8755 4434 4433 -9.298324584961e-06 4435 4433 -3.933906555176e-06 4436 4433 -46375866.82274 4437 4433 -1.907348632813e-06 4438 4433 -4.976987838745e-06 4439 4433 48718383.22463 4518 4433 22525694.45184 4519 4433 -16666666.67214 4520 4433 -36909325.87325 4521 4433 85676388.87482 4522 4433 677083.3331545 4523 4433 -97565514.93121 4539 4433 5182361.112481 4540 4433 -34010416.66102 4541 4433 -35404513.64282 4542 4433 17135277.77496 4543 4433 -4.26173210144e-06 4544 4433 -45997327.0015 4545 4433 20312500.00667 4546 4433 16666666.67214 4547 4433 -34344061.96816 4548 4433 3385277.779222 4549 4433 33333333.32785 4550 4433 -33784975.63125 4434 4434 361120236.1714 4435 4434 94548810.89504 4436 4434 1.192092895508e-05 4437 4434 -203961436.0496 4438 4434 -20767645.33449 4439 4434 -3.784894943237e-06 4521 4434 4511607.610493 4522 4434 5529463.940846 4523 4434 4909027.779057 4542 4434 -43801307.66031 4543 4434 -23974755.34007 4544 4434 -20312500.00667 4545 4434 56503201.94985 4546 4434 23637202.73541 4547 4434 8124999.998669 4548 4434 -68052930.47169 4549 4434 -5191911.336184 4550 4434 -41471527.77105 4435 4435 308313282.913 4436 4435 1.406669616699e-05 4437 4435 18121243.54802 4438 4435 9374992.87252 4439 4435 7.748603820801e-06 4521 4435 -4192758.284571 4522 4435 -41531445.75455 4523 4435 -33333333.32786 4542 4435 -23974755.34007 4543 4435 -37890623.23097 4544 4435 -16666666.67214 4545 4435 23637202.73541 4546 4435 43301463.62875 4547 4435 6666666.665572 4548 4435 4530310.889233 4549 4435 -14718823.21489 4550 4435 3333333.334428 4436 4436 278103282.9517 4437 4436 5.364418029785e-07 4438 4436 7.62939453125e-06 4439 4436 -4811252.171693 4521 4436 -3215972.223778 4522 4436 -33333333.32786 4523 4436 -33978945.76051 4542 4436 -20312500.00667 4543 4436 -16666666.67214 4544 4436 -34344061.96818 4545 4436 -8124999.998662 4546 4436 -6666666.66557 4547 4436 -20545798.26108 4548 4436 -41471527.77088 4549 4436 -3333333.334428 4550 4436 -46703003.53464 4437 4437 371304389.3859 4438 4437 -99841614.46537 4439 4437 -9.298324584961e-06 4521 4437 -47751770.62457 4522 4437 24636355.78702 4523 4437 21159027.78473 4542 4437 5916032.269866 4543 4437 -4206263.047612 4544 4437 -3385277.779223 4545 4437 -68052930.47169 4546 4437 4530310.889241 4547 4437 41471527.77088 4548 4437 58352668.82663 4549 4437 -24960403.62864 4550 4437 -8463611.109724 4438 4438 309788077.0662 4439 4438 1.740455627441e-05 4521 4438 24636355.78702 4522 4438 -39372046.84257 4523 4438 -16666666.67214 4542 4438 5515959.177807 4543 4438 -40418720.68145 4544 4438 -33333333.32786 4545 4438 -5191911.336177 4546 4438 -14718823.21489 4547 4438 3333333.334428 4548 4438 -24960403.62864 4549 4438 42973590.73913 4550 4438 6666666.665569 4439 4439 283253096.8787 4521 4439 21159027.78473 4522 4439 -16666666.67214 4523 4439 -35825485.57977 4542 4439 5078333.334503 4543 4439 -33333333.32786 4544 4439 -33784975.63129 4545 4439 41471527.77105 4546 4439 -3333333.334428 4547 4439 -46703003.53464 4548 4439 8463611.109719 4549 4439 -6666666.665573 4550 4439 -21115868.58701 4440 4440 927468678.158 4441 4440 97222222.20623 4442 4440 -8.106231689453e-06 4443 4440 -573726109.9308 4444 4440 -97222221.42845 4445 4440 8.940696716309e-07 4446 4440 18564155.00999 4447 4440 77777776.9872 4448 4440 2.861022949219e-06 4551 4440 139046393.5639 4552 4440 24305555.56354 4553 4440 17343888.84952 4554 4440 -175918799.4896 4555 4440 -24305555.36909 4556 4440 -86719444.24762 4557 4440 -9282077.505002 4558 4440 19444444.25638 4559 4440 -17343888.52033 4441 4441 781630025.6149 4442 4441 8.412431954121e-06 4443 4441 -97222221.03956 4444 4441 -116778839.2437 4445 4441 5.602836608887e-06 4446 4441 116666665.4808 4447 4441 18564155.00998 4448 4441 5.960464477539e-07 4551 4441 24305555.56354 4552 4441 102586730.4102 4553 4441 13874999.85143 4554 4441 -24305555.27187 4555 4441 -61681981.76159 4556 4441 -17343749.90781 4557 4441 29166666.38457 4558 4441 -9282077.504995 4559 4441 20812499.90894 4442 4442 728641235.3813 4443 4442 4.172325134277e-07 4444 4442 4.887580871582e-06 4445 4442 -96436338.25295 4446 4442 2.503395080566e-06 4447 4442 1.251697540283e-06 4448 4442 49504413.35998 4551 4442 -17343888.84952 4552 4442 -13874999.85144 4553 4442 -65361760.6378 4554 4442 -86719444.24762 4555 4442 -17343749.94044 4556 4442 -110741809.7386 4557 4442 -26015832.7805 4558 4442 13874999.9393 4559 4442 -24752206.67999 4443 4443 1632315315.374 4444 4443 97222220.26178 4445 4443 -4.172325134277e-05 4446 4443 17392720.97666 4447 4443 -97222221.42845 4448 4443 -2.145767211914e-06 4449 4443 -406796532.3944 4450 4443 -2.801418304443e-06 4451 4443 -1.233816146851e-05 4452 4443 -148365426.1266 4453 4443 97222222.20624 4454 4443 -3.308057785034e-06 4551 4443 -175918799.4897 4552 4443 -24305555.27186 4553 4443 86719444.24762 4554 4443 268847663.9159 4555 4443 24305555.07742 4556 4443 0.03653132915497 4557 4443 -28139091.37671 4558 4443 -24305555.36909 4559 4443 21679860.74398 4560 4443 -138827443.8751 4561 4443 -5.066394805908e-07 4562 4443 -86719444.43019 4563 4443 -46373434.23611 4564 4443 24305555.56353 4565 4443 -21679861.11823 4444 4444 1369805740.108 4445 4444 -2.145767211914e-06 4446 4444 -97222221.03956 4447 4444 -322883627.8625 4448 4444 4.798173904419e-06 4449 4444 -3.09944152832e-06 4450 4444 20983010.02827 4451 4444 -4.768371582031e-07 4452 4444 97222222.20624 4453 4444 -119197695.4315 4454 4444 -7.450580596924e-08 4551 4444 -24305555.36908 4552 4444 -61681981.7616 4553 4444 17343749.94043 4554 4444 24305555.07742 4555 4444 203220270.0671 4556 4444 0.02920919656754 4557 4444 -24305555.27186 4558 4444 -113208178.6284 4559 4444 69374999.6084 4560 4444 -8.344650268555e-07 4561 4444 -31882558.21681 4562 4444 -3.278255462646e-07 4563 4444 24305555.56353 4564 4444 -39081501.55875 4565 4444 17343750.00569 4445 4445 1212545401.289 4446 4445 -1.788139343262e-06 4447 4445 3.75509262085e-06 4448 4445 8567490.576108 4449 4445 -1.20997428894e-05 4450 4445 -4.768371582031e-07 4451 4445 -212506.0825927 4452 4445 -3.278255462646e-06 4453 4445 -2.086162567139e-07 4454 4445 -46719419.49861 4551 4445 86719444.24762 4552 4445 17343749.9078 4553 4445 -110741809.7386 4554 4445 -0.03649973869324 4555 4445 -0.02921465039253 4556 4445 -68146756.53808 4557 4445 21679860.55685 4558 4445 69374999.49133 4559 4445 -84490851.68298 4560 4445 -86719444.43019 4561 4445 -2.682209014893e-07 4562 4445 -99061955.12461 4563 4445 -21679861.11823 4564 4445 17343750.00569 4565 4445 -36432062.04358 4446 4446 927468678.158 4447 4446 97222222.20623 4448 4446 -8.106231689453e-06 4449 4446 -148365426.1266 4450 4446 -97222222.20624 4451 4446 -3.039836883545e-06 4452 4446 -573726109.9308 4453 4446 -97222221.42845 4454 4446 8.940696716309e-07 4455 4446 18564155.00999 4456 4446 77777776.9872 4457 4446 2.861022949219e-06 4551 4446 -9282077.50499 4552 4446 29166666.38457 4553 4446 26015832.78049 4554 4446 -28139091.37673 4555 4446 -24305555.27187 4556 4446 -21679860.55685 4557 4446 139046393.5639 4558 4446 24305555.56354 4559 4446 17343888.84952 4560 4446 -46373434.23611 4561 4446 -24305555.56353 4562 4446 -21679861.11823 4563 4446 -175918799.4896 4564 4446 -24305555.36909 4565 4446 -86719444.24762 4566 4446 -9282077.505002 4567 4446 19444444.25638 4568 4446 -17343888.52033 4447 4447 781630025.6149 4448 4447 8.412431954121e-06 4449 4447 -97222222.20624 4450 4447 -119197695.4315 4451 4447 2.831220626831e-07 4452 4447 -97222221.03956 4453 4447 -116778839.2437 4454 4447 5.602836608887e-06 4455 4447 116666665.4808 4456 4447 18564155.00998 4457 4447 5.960464477539e-07 4551 4447 19444444.25638 4552 4447 -9282077.505 4553 4447 -13874999.9393 4554 4447 -24305555.36909 4555 4447 -113208178.6284 4556 4447 -69374999.49133 4557 4447 24305555.56354 4558 4447 102586730.4102 4559 4447 13874999.85143 4560 4447 -24305555.56353 4561 4447 -39081501.55875 4562 4447 -17343750.0057 4563 4447 -24305555.27187 4564 4447 -61681981.76159 4565 4447 -17343749.90781 4566 4447 29166666.38457 4567 4447 -9282077.504995 4568 4447 20812499.90894 4448 4448 728641235.3813 4449 4448 -2.890825271606e-06 4450 4448 3.8743019104e-07 4451 4448 -46719419.49861 4452 4448 4.172325134277e-07 4453 4448 4.887580871582e-06 4454 4448 -96436338.25295 4455 4448 2.503395080566e-06 4456 4448 1.251697540283e-06 4457 4448 49504413.35998 4551 4448 17343888.52033 4552 4448 -20812499.90895 4553 4448 -24752206.67999 4554 4448 -21679860.74398 4555 4448 -69374999.6084 4556 4448 -84490851.68299 4557 4448 -17343888.84952 4558 4448 -13874999.85144 4559 4448 -65361760.6378 4560 4448 -21679861.11823 4561 4448 -17343750.0057 4562 4448 -36432062.04358 4563 4448 -86719444.24762 4564 4448 -17343749.94044 4565 4448 -110741809.7386 4566 4448 -26015832.7805 4567 4448 13874999.9393 4568 4448 -24752206.67999 4449 4449 1483949894.094 4450 4449 7.867813110352e-06 4451 4449 -5.507469177246e-05 4452 4449 184322301.8864 4453 4449 -2.622604370117e-06 4454 4449 -1.358985900879e-05 4458 4449 -406796532.3944 4459 4449 -2.801418304443e-06 4460 4449 -1.233816146851e-05 4461 4449 -148365426.1266 4462 4449 97222222.20624 4463 4449 -3.308057785034e-06 4554 4449 -138827443.8752 4555 4449 2.682209014893e-07 4556 4449 86719444.4302 4557 4449 -46373434.23614 4558 4449 -24305555.56354 4559 4449 21679861.11823 4560 4449 222474230.8735 4561 4449 3.933906555176e-06 4562 4449 2.622604370117e-05 4563 4449 8952264.76783 4564 4449 -1.302361488342e-05 4565 4449 6.914138793945e-06 4569 4449 -138827443.8751 4570 4449 -5.066394805908e-07 4571 4449 -86719444.43019 4572 4449 -46373434.23611 4573 4449 24305555.56353 4574 4449 -21679861.11823 4450 4450 1250608048.648 4451 4450 -1.192092895508e-06 4452 4450 -3.159046173096e-06 4453 4450 -185121779.2034 4454 4450 8.046627044678e-07 4458 4450 -3.09944152832e-06 4459 4450 20983010.02827 4460 4450 -4.768371582031e-07 4461 4450 97222222.20624 4462 4450 -119197695.4315 4463 4450 -7.450580596924e-08 4554 4450 -2.294778823853e-06 4555 4450 -31882558.21685 4556 4450 2.682209014893e-07 4557 4450 -24305555.56354 4558 4450 -39081501.55876 4559 4450 17343750.0057 4560 4450 4.410743713379e-06 4561 4450 164138769.4832 4562 4450 -1.192092895508e-07 4563 4450 -1.156330108643e-05 4564 4450 -83408755.55014 4565 4450 69374999.9886 4569 4450 -8.344650268555e-07 4570 4450 -31882558.21681 4571 4450 -3.278255462646e-07 4572 4450 24305555.56353 4573 4450 -39081501.55875 4574 4450 17343750.00569 4451 4451 1165825984.246 4452 4451 -1.382827758789e-05 4453 4451 1.788139343262e-07 4454 4451 104791324.3853 4458 4451 -1.20997428894e-05 4459 4451 -4.768371582031e-07 4460 4451 -212506.0825927 4461 4451 -3.278255462646e-06 4462 4451 -2.086162567139e-07 4463 4451 -46719419.49861 4554 4451 86719444.4302 4555 4451 3.427267074585e-07 4556 4451 -99061955.12464 4557 4451 21679861.11823 4558 4451 17343750.0057 4559 4451 -36432062.04359 4560 4451 2.598762512207e-05 4561 4451 5.960464477539e-08 4562 4451 -104578818.0156 4563 4451 6.973743438721e-06 4564 4451 69374999.9886 4565 4451 -72810997.49471 4569 4451 -86719444.43019 4570 4451 -2.682209014893e-07 4571 4451 -99061955.12461 4572 4451 -21679861.11823 4573 4451 17343750.00569 4574 4451 -36432062.04358 4452 4452 1632315315.374 4453 4452 97222220.26178 4454 4452 -4.172325134277e-05 4455 4452 17392720.97666 4456 4452 -97222221.42845 4457 4452 -2.145767211914e-06 4458 4452 -148365426.1266 4459 4452 -97222222.20624 4460 4452 -3.039836883545e-06 4461 4452 -406796532.3944 4462 4452 -2.801418304443e-06 4463 4452 -1.233816146851e-05 4464 4452 -148365426.1266 4465 4452 97222222.20624 4466 4452 -3.308057785034e-06 4554 4452 -46373434.23613 4555 4452 24305555.56354 4556 4452 21679861.11823 4557 4452 -175918799.4897 4558 4452 -24305555.27186 4559 4452 86719444.24762 4560 4452 8952264.76783 4561 4452 9.298324584961e-06 4562 4452 6.228685379028e-06 4563 4452 268847663.9159 4564 4452 24305555.07742 4565 4452 0.03653132915497 4566 4452 -28139091.37671 4567 4452 -24305555.36909 4568 4452 21679860.74398 4569 4452 -46373434.23611 4570 4452 -24305555.56353 4571 4452 -21679861.11823 4572 4452 -138827443.8751 4573 4452 -5.066394805908e-07 4574 4452 -86719444.43019 4575 4452 -46373434.23611 4576 4452 24305555.56353 4577 4452 -21679861.11823 4453 4453 1369805740.108 4454 4453 -2.145767211914e-06 4455 4453 -97222221.03956 4456 4453 -322883627.8625 4457 4453 4.798173904419e-06 4458 4453 -97222222.20624 4459 4453 -119197695.4315 4460 4453 2.831220626831e-07 4461 4453 -3.09944152832e-06 4462 4453 20983010.02827 4463 4453 -4.768371582031e-07 4464 4453 97222222.20624 4465 4453 -119197695.4315 4466 4453 -7.450580596924e-08 4554 4453 24305555.56354 4555 4453 -39081501.55876 4556 4453 -17343750.00569 4557 4453 -24305555.36908 4558 4453 -61681981.7616 4559 4453 17343749.94043 4560 4453 1.069903373718e-05 4561 4453 -83408755.55014 4562 4453 -69374999.9886 4563 4453 24305555.07742 4564 4453 203220270.0671 4565 4453 0.02920919656754 4566 4453 -24305555.27186 4567 4453 -113208178.6284 4568 4453 69374999.6084 4569 4453 -24305555.56353 4570 4453 -39081501.55875 4571 4453 -17343750.0057 4572 4453 -8.344650268555e-07 4573 4453 -31882558.21681 4574 4453 -3.278255462646e-07 4575 4453 24305555.56353 4576 4453 -39081501.55875 4577 4453 17343750.00569 4454 4454 1212545401.289 4455 4454 -1.788139343262e-06 4456 4454 3.75509262085e-06 4457 4454 8567490.576108 4458 4454 -2.890825271606e-06 4459 4454 3.8743019104e-07 4460 4454 -46719419.49861 4461 4454 -1.20997428894e-05 4462 4454 -4.768371582031e-07 4463 4454 -212506.0825927 4464 4454 -3.278255462646e-06 4465 4454 -2.086162567139e-07 4466 4454 -46719419.49861 4554 4454 21679861.11823 4555 4454 -17343750.0057 4556 4454 -36432062.04359 4557 4454 86719444.24762 4558 4454 17343749.9078 4559 4454 -110741809.7386 4560 4454 6.169080734253e-06 4561 4454 -69374999.9886 4562 4454 -72810997.49471 4563 4454 -0.03649973869324 4564 4454 -0.02921465039253 4565 4454 -68146756.53808 4566 4454 21679860.55685 4567 4454 69374999.49133 4568 4454 -84490851.68298 4569 4454 -21679861.11823 4570 4454 -17343750.0057 4571 4454 -36432062.04358 4572 4454 -86719444.43019 4573 4454 -2.682209014893e-07 4574 4454 -99061955.12461 4575 4454 -21679861.11823 4576 4454 17343750.00569 4577 4454 -36432062.04358 4455 4455 927468678.158 4456 4455 97222222.20623 4457 4455 -8.106231689453e-06 4461 4455 -148365426.1266 4462 4455 -97222222.20624 4463 4455 -3.039836883545e-06 4464 4455 -573726109.9308 4465 4455 -97222221.42845 4466 4455 8.940696716309e-07 4467 4455 18564155.00999 4468 4455 77777776.9872 4469 4455 2.861022949219e-06 4557 4455 -9282077.50499 4558 4455 29166666.38457 4559 4455 26015832.78049 4563 4455 -28139091.37673 4564 4455 -24305555.27187 4565 4455 -21679860.55685 4566 4455 139046393.5639 4567 4455 24305555.56354 4568 4455 17343888.84952 4572 4455 -46373434.23611 4573 4455 -24305555.56353 4574 4455 -21679861.11823 4575 4455 -175918799.4896 4576 4455 -24305555.36909 4577 4455 -86719444.24762 4578 4455 -9282077.505002 4579 4455 19444444.25638 4580 4455 -17343888.52033 4456 4456 781630025.6149 4457 4456 8.412431954121e-06 4461 4456 -97222222.20624 4462 4456 -119197695.4315 4463 4456 2.831220626831e-07 4464 4456 -97222221.03956 4465 4456 -116778839.2437 4466 4456 5.602836608887e-06 4467 4456 116666665.4808 4468 4456 18564155.00998 4469 4456 5.960464477539e-07 4557 4456 19444444.25638 4558 4456 -9282077.505 4559 4456 -13874999.9393 4563 4456 -24305555.36909 4564 4456 -113208178.6284 4565 4456 -69374999.49133 4566 4456 24305555.56354 4567 4456 102586730.4102 4568 4456 13874999.85143 4572 4456 -24305555.56353 4573 4456 -39081501.55875 4574 4456 -17343750.0057 4575 4456 -24305555.27187 4576 4456 -61681981.76159 4577 4456 -17343749.90781 4578 4456 29166666.38457 4579 4456 -9282077.504995 4580 4456 20812499.90894 4457 4457 728641235.3813 4461 4457 -2.890825271606e-06 4462 4457 3.8743019104e-07 4463 4457 -46719419.49861 4464 4457 4.172325134277e-07 4465 4457 4.887580871582e-06 4466 4457 -96436338.25295 4467 4457 2.503395080566e-06 4468 4457 1.251697540283e-06 4469 4457 49504413.35998 4557 4457 17343888.52033 4558 4457 -20812499.90895 4559 4457 -24752206.67999 4563 4457 -21679860.74398 4564 4457 -69374999.6084 4565 4457 -84490851.68299 4566 4457 -17343888.84952 4567 4457 -13874999.85144 4568 4457 -65361760.6378 4572 4457 -21679861.11823 4573 4457 -17343750.0057 4574 4457 -36432062.04358 4575 4457 -86719444.24762 4576 4457 -17343749.94044 4577 4457 -110741809.7386 4578 4457 -26015832.7805 4579 4457 13874999.9393 4580 4457 -24752206.67999 4458 4458 1483949894.094 4459 4458 7.867813110352e-06 4460 4458 -5.507469177246e-05 4461 4458 184322301.8864 4462 4458 -2.622604370117e-06 4463 4458 -1.358985900879e-05 4470 4458 -406796532.3944 4471 4458 -2.801418304443e-06 4472 4458 -1.233816146851e-05 4473 4458 -148365426.1266 4474 4458 97222222.20624 4475 4458 -3.308057785034e-06 4560 4458 -138827443.8752 4561 4458 2.682209014893e-07 4562 4458 86719444.4302 4563 4458 -46373434.23614 4564 4458 -24305555.56354 4565 4458 21679861.11823 4569 4458 222474230.8735 4570 4458 3.933906555176e-06 4571 4458 2.622604370117e-05 4572 4458 8952264.76783 4573 4458 -1.302361488342e-05 4574 4458 6.914138793945e-06 4581 4458 -138827443.8751 4582 4458 -5.066394805908e-07 4583 4458 -86719444.43019 4584 4458 -46373434.23611 4585 4458 24305555.56353 4586 4458 -21679861.11823 4459 4459 1250608048.648 4460 4459 -1.192092895508e-06 4461 4459 -3.159046173096e-06 4462 4459 -185121779.2034 4463 4459 8.046627044678e-07 4470 4459 -3.09944152832e-06 4471 4459 20983010.02827 4472 4459 -4.768371582031e-07 4473 4459 97222222.20624 4474 4459 -119197695.4315 4475 4459 -7.450580596924e-08 4560 4459 -2.294778823853e-06 4561 4459 -31882558.21685 4562 4459 2.682209014893e-07 4563 4459 -24305555.56354 4564 4459 -39081501.55876 4565 4459 17343750.0057 4569 4459 4.410743713379e-06 4570 4459 164138769.4832 4571 4459 -1.192092895508e-07 4572 4459 -1.156330108643e-05 4573 4459 -83408755.55014 4574 4459 69374999.9886 4581 4459 -8.344650268555e-07 4582 4459 -31882558.21681 4583 4459 -3.278255462646e-07 4584 4459 24305555.56353 4585 4459 -39081501.55875 4586 4459 17343750.00569 4460 4460 1165825984.246 4461 4460 -1.382827758789e-05 4462 4460 1.788139343262e-07 4463 4460 104791324.3853 4470 4460 -1.20997428894e-05 4471 4460 -4.768371582031e-07 4472 4460 -212506.0825927 4473 4460 -3.278255462646e-06 4474 4460 -2.086162567139e-07 4475 4460 -46719419.49861 4560 4460 86719444.4302 4561 4460 3.427267074585e-07 4562 4460 -99061955.12464 4563 4460 21679861.11823 4564 4460 17343750.0057 4565 4460 -36432062.04359 4569 4460 2.598762512207e-05 4570 4460 5.960464477539e-08 4571 4460 -104578818.0156 4572 4460 6.973743438721e-06 4573 4460 69374999.9886 4574 4460 -72810997.49471 4581 4460 -86719444.43019 4582 4460 -2.682209014893e-07 4583 4460 -99061955.12461 4584 4460 -21679861.11823 4585 4460 17343750.00569 4586 4460 -36432062.04358 4461 4461 1483949894.094 4462 4461 7.867813110352e-06 4463 4461 -5.507469177246e-05 4464 4461 184322301.8864 4465 4461 -2.622604370117e-06 4466 4461 -1.358985900879e-05 4470 4461 -148365426.1266 4471 4461 -97222222.20624 4472 4461 -3.039836883545e-06 4473 4461 -406796532.3944 4474 4461 -2.801418304443e-06 4475 4461 -1.233816146851e-05 4476 4461 -148365426.1266 4477 4461 97222222.20624 4478 4461 -3.308057785034e-06 4560 4461 -46373434.23613 4561 4461 24305555.56354 4562 4461 21679861.11823 4563 4461 -138827443.8752 4564 4461 2.682209014893e-07 4565 4461 86719444.4302 4566 4461 -46373434.23614 4567 4461 -24305555.56354 4568 4461 21679861.11823 4569 4461 8952264.76783 4570 4461 9.298324584961e-06 4571 4461 6.228685379028e-06 4572 4461 222474230.8735 4573 4461 3.933906555176e-06 4574 4461 2.622604370117e-05 4575 4461 8952264.76783 4576 4461 -1.302361488342e-05 4577 4461 6.914138793945e-06 4581 4461 -46373434.23611 4582 4461 -24305555.56353 4583 4461 -21679861.11823 4584 4461 -138827443.8751 4585 4461 -5.066394805908e-07 4586 4461 -86719444.43019 4587 4461 -46373434.23611 4588 4461 24305555.56353 4589 4461 -21679861.11823 4462 4462 1250608048.648 4463 4462 -1.192092895508e-06 4464 4462 -3.159046173096e-06 4465 4462 -185121779.2034 4466 4462 8.046627044678e-07 4470 4462 -97222222.20624 4471 4462 -119197695.4315 4472 4462 2.831220626831e-07 4473 4462 -3.09944152832e-06 4474 4462 20983010.02827 4475 4462 -4.768371582031e-07 4476 4462 97222222.20624 4477 4462 -119197695.4315 4478 4462 -7.450580596924e-08 4560 4462 24305555.56354 4561 4462 -39081501.55876 4562 4462 -17343750.00569 4563 4462 -2.294778823853e-06 4564 4462 -31882558.21685 4565 4462 2.682209014893e-07 4566 4462 -24305555.56354 4567 4462 -39081501.55876 4568 4462 17343750.0057 4569 4462 1.069903373718e-05 4570 4462 -83408755.55014 4571 4462 -69374999.9886 4572 4462 4.410743713379e-06 4573 4462 164138769.4832 4574 4462 -1.192092895508e-07 4575 4462 -1.156330108643e-05 4576 4462 -83408755.55014 4577 4462 69374999.9886 4581 4462 -24305555.56353 4582 4462 -39081501.55875 4583 4462 -17343750.0057 4584 4462 -8.344650268555e-07 4585 4462 -31882558.21681 4586 4462 -3.278255462646e-07 4587 4462 24305555.56353 4588 4462 -39081501.55875 4589 4462 17343750.00569 4463 4463 1165825984.246 4464 4463 -1.382827758789e-05 4465 4463 1.788139343262e-07 4466 4463 104791324.3853 4470 4463 -2.890825271606e-06 4471 4463 3.8743019104e-07 4472 4463 -46719419.49861 4473 4463 -1.20997428894e-05 4474 4463 -4.768371582031e-07 4475 4463 -212506.0825927 4476 4463 -3.278255462646e-06 4477 4463 -2.086162567139e-07 4478 4463 -46719419.49861 4560 4463 21679861.11823 4561 4463 -17343750.0057 4562 4463 -36432062.04359 4563 4463 86719444.4302 4564 4463 3.427267074585e-07 4565 4463 -99061955.12464 4566 4463 21679861.11823 4567 4463 17343750.0057 4568 4463 -36432062.04359 4569 4463 6.169080734253e-06 4570 4463 -69374999.9886 4571 4463 -72810997.49471 4572 4463 2.598762512207e-05 4573 4463 5.960464477539e-08 4574 4463 -104578818.0156 4575 4463 6.973743438721e-06 4576 4463 69374999.9886 4577 4463 -72810997.49471 4581 4463 -21679861.11823 4582 4463 -17343750.0057 4583 4463 -36432062.04358 4584 4463 -86719444.43019 4585 4463 -2.682209014893e-07 4586 4463 -99061955.12461 4587 4463 -21679861.11823 4588 4463 17343750.00569 4589 4463 -36432062.04358 4464 4464 1632315315.374 4465 4464 97222220.26178 4466 4464 -4.172325134277e-05 4467 4464 17392720.97666 4468 4464 -97222221.42845 4469 4464 -2.145767211914e-06 4473 4464 -148365426.1266 4474 4464 -97222222.20624 4475 4464 -3.039836883545e-06 4476 4464 -406796532.3944 4477 4464 -2.801418304443e-06 4478 4464 -1.233816146851e-05 4479 4464 -148365426.1266 4480 4464 97222222.20624 4481 4464 -3.308057785034e-06 4563 4464 -46373434.23613 4564 4464 24305555.56354 4565 4464 21679861.11823 4566 4464 -175918799.4897 4567 4464 -24305555.27186 4568 4464 86719444.24762 4572 4464 8952264.76783 4573 4464 9.298324584961e-06 4574 4464 6.228685379028e-06 4575 4464 268847663.9159 4576 4464 24305555.07742 4577 4464 0.03653132915497 4578 4464 -28139091.37671 4579 4464 -24305555.36909 4580 4464 21679860.74398 4584 4464 -46373434.23611 4585 4464 -24305555.56353 4586 4464 -21679861.11823 4587 4464 -138827443.8751 4588 4464 -5.066394805908e-07 4589 4464 -86719444.43019 4590 4464 -46373434.23611 4591 4464 24305555.56353 4592 4464 -21679861.11823 4465 4465 1369805740.108 4466 4465 -2.145767211914e-06 4467 4465 -97222221.03956 4468 4465 -322883627.8625 4469 4465 4.798173904419e-06 4473 4465 -97222222.20624 4474 4465 -119197695.4315 4475 4465 2.831220626831e-07 4476 4465 -3.09944152832e-06 4477 4465 20983010.02827 4478 4465 -4.768371582031e-07 4479 4465 97222222.20624 4480 4465 -119197695.4315 4481 4465 -7.450580596924e-08 4563 4465 24305555.56354 4564 4465 -39081501.55876 4565 4465 -17343750.00569 4566 4465 -24305555.36908 4567 4465 -61681981.7616 4568 4465 17343749.94043 4572 4465 1.069903373718e-05 4573 4465 -83408755.55014 4574 4465 -69374999.9886 4575 4465 24305555.07742 4576 4465 203220270.0671 4577 4465 0.02920919656754 4578 4465 -24305555.27186 4579 4465 -113208178.6284 4580 4465 69374999.6084 4584 4465 -24305555.56353 4585 4465 -39081501.55875 4586 4465 -17343750.0057 4587 4465 -8.344650268555e-07 4588 4465 -31882558.21681 4589 4465 -3.278255462646e-07 4590 4465 24305555.56353 4591 4465 -39081501.55875 4592 4465 17343750.00569 4466 4466 1212545401.289 4467 4466 -1.788139343262e-06 4468 4466 3.75509262085e-06 4469 4466 8567490.576108 4473 4466 -2.890825271606e-06 4474 4466 3.8743019104e-07 4475 4466 -46719419.49861 4476 4466 -1.20997428894e-05 4477 4466 -4.768371582031e-07 4478 4466 -212506.0825927 4479 4466 -3.278255462646e-06 4480 4466 -2.086162567139e-07 4481 4466 -46719419.49861 4563 4466 21679861.11823 4564 4466 -17343750.0057 4565 4466 -36432062.04359 4566 4466 86719444.24762 4567 4466 17343749.9078 4568 4466 -110741809.7386 4572 4466 6.169080734253e-06 4573 4466 -69374999.9886 4574 4466 -72810997.49471 4575 4466 -0.03649973869324 4576 4466 -0.02921465039253 4577 4466 -68146756.53808 4578 4466 21679860.55685 4579 4466 69374999.49133 4580 4466 -84490851.68298 4584 4466 -21679861.11823 4585 4466 -17343750.0057 4586 4466 -36432062.04358 4587 4466 -86719444.43019 4588 4466 -2.682209014893e-07 4589 4466 -99061955.12461 4590 4466 -21679861.11823 4591 4466 17343750.00569 4592 4466 -36432062.04358 4467 4467 927468678.158 4468 4467 97222222.20623 4469 4467 -8.106231689453e-06 4476 4467 -148365426.1266 4477 4467 -97222222.20624 4478 4467 -3.039836883545e-06 4479 4467 -573726109.9308 4480 4467 -97222221.42845 4481 4467 8.940696716309e-07 4482 4467 18564155.00999 4483 4467 77777776.9872 4484 4467 2.861022949219e-06 4566 4467 -9282077.50499 4567 4467 29166666.38457 4568 4467 26015832.78049 4575 4467 -28139091.37673 4576 4467 -24305555.27187 4577 4467 -21679860.55685 4578 4467 139046393.5639 4579 4467 24305555.56354 4580 4467 17343888.84952 4587 4467 -46373434.23611 4588 4467 -24305555.56353 4589 4467 -21679861.11823 4590 4467 -175918799.4896 4591 4467 -24305555.36909 4592 4467 -86719444.24762 4593 4467 -9282077.505002 4594 4467 19444444.25638 4595 4467 -17343888.52033 4468 4468 781630025.6149 4469 4468 8.412431954121e-06 4476 4468 -97222222.20624 4477 4468 -119197695.4315 4478 4468 2.831220626831e-07 4479 4468 -97222221.03956 4480 4468 -116778839.2437 4481 4468 5.602836608887e-06 4482 4468 116666665.4808 4483 4468 18564155.00998 4484 4468 5.960464477539e-07 4566 4468 19444444.25638 4567 4468 -9282077.505 4568 4468 -13874999.9393 4575 4468 -24305555.36909 4576 4468 -113208178.6284 4577 4468 -69374999.49133 4578 4468 24305555.56354 4579 4468 102586730.4102 4580 4468 13874999.85143 4587 4468 -24305555.56353 4588 4468 -39081501.55875 4589 4468 -17343750.0057 4590 4468 -24305555.27187 4591 4468 -61681981.76159 4592 4468 -17343749.90781 4593 4468 29166666.38457 4594 4468 -9282077.504995 4595 4468 20812499.90894 4469 4469 728641235.3813 4476 4469 -2.890825271606e-06 4477 4469 3.8743019104e-07 4478 4469 -46719419.49861 4479 4469 4.172325134277e-07 4480 4469 4.887580871582e-06 4481 4469 -96436338.25295 4482 4469 2.503395080566e-06 4483 4469 1.251697540283e-06 4484 4469 49504413.35998 4566 4469 17343888.52033 4567 4469 -20812499.90895 4568 4469 -24752206.67999 4575 4469 -21679860.74398 4576 4469 -69374999.6084 4577 4469 -84490851.68299 4578 4469 -17343888.84952 4579 4469 -13874999.85144 4580 4469 -65361760.6378 4587 4469 -21679861.11823 4588 4469 -17343750.0057 4589 4469 -36432062.04358 4590 4469 -86719444.24762 4591 4469 -17343749.94044 4592 4469 -110741809.7386 4593 4469 -26015832.7805 4594 4469 13874999.9393 4595 4469 -24752206.67999 4470 4470 1483949894.094 4471 4470 7.867813110352e-06 4472 4470 -5.507469177246e-05 4473 4470 184322301.8864 4474 4470 -2.622604370117e-06 4475 4470 -1.358985900879e-05 4485 4470 -406796532.3944 4486 4470 -2.801418304443e-06 4487 4470 -1.233816146851e-05 4488 4470 -148365426.1266 4489 4470 97222222.20624 4490 4470 -3.308057785034e-06 4569 4470 -138827443.8752 4570 4470 2.682209014893e-07 4571 4470 86719444.4302 4572 4470 -46373434.23614 4573 4470 -24305555.56354 4574 4470 21679861.11823 4581 4470 222474230.8735 4582 4470 3.933906555176e-06 4583 4470 2.622604370117e-05 4584 4470 8952264.76783 4585 4470 -1.302361488342e-05 4586 4470 6.914138793945e-06 4596 4470 -138827443.8751 4597 4470 -5.066394805908e-07 4598 4470 -86719444.43019 4599 4470 -46373434.23611 4600 4470 24305555.56353 4601 4470 -21679861.11823 4471 4471 1250608048.648 4472 4471 -1.192092895508e-06 4473 4471 -3.159046173096e-06 4474 4471 -185121779.2034 4475 4471 8.046627044678e-07 4485 4471 -3.09944152832e-06 4486 4471 20983010.02827 4487 4471 -4.768371582031e-07 4488 4471 97222222.20624 4489 4471 -119197695.4315 4490 4471 -7.450580596924e-08 4569 4471 -2.294778823853e-06 4570 4471 -31882558.21685 4571 4471 2.682209014893e-07 4572 4471 -24305555.56354 4573 4471 -39081501.55876 4574 4471 17343750.0057 4581 4471 4.410743713379e-06 4582 4471 164138769.4832 4583 4471 -1.192092895508e-07 4584 4471 -1.156330108643e-05 4585 4471 -83408755.55014 4586 4471 69374999.9886 4596 4471 -8.344650268555e-07 4597 4471 -31882558.21681 4598 4471 -3.278255462646e-07 4599 4471 24305555.56353 4600 4471 -39081501.55875 4601 4471 17343750.00569 4472 4472 1165825984.246 4473 4472 -1.382827758789e-05 4474 4472 1.788139343262e-07 4475 4472 104791324.3853 4485 4472 -1.20997428894e-05 4486 4472 -4.768371582031e-07 4487 4472 -212506.0825927 4488 4472 -3.278255462646e-06 4489 4472 -2.086162567139e-07 4490 4472 -46719419.49861 4569 4472 86719444.4302 4570 4472 3.427267074585e-07 4571 4472 -99061955.12464 4572 4472 21679861.11823 4573 4472 17343750.0057 4574 4472 -36432062.04359 4581 4472 2.598762512207e-05 4582 4472 5.960464477539e-08 4583 4472 -104578818.0156 4584 4472 6.973743438721e-06 4585 4472 69374999.9886 4586 4472 -72810997.49471 4596 4472 -86719444.43019 4597 4472 -2.682209014893e-07 4598 4472 -99061955.12461 4599 4472 -21679861.11823 4600 4472 17343750.00569 4601 4472 -36432062.04358 4473 4473 1483949894.094 4474 4473 7.867813110352e-06 4475 4473 -5.507469177246e-05 4476 4473 184322301.8864 4477 4473 -2.622604370117e-06 4478 4473 -1.358985900879e-05 4485 4473 -148365426.1266 4486 4473 -97222222.20624 4487 4473 -3.039836883545e-06 4488 4473 -406796532.3944 4489 4473 -2.801418304443e-06 4490 4473 -1.233816146851e-05 4491 4473 -148365426.1266 4492 4473 97222222.20624 4493 4473 -3.308057785034e-06 4569 4473 -46373434.23613 4570 4473 24305555.56354 4571 4473 21679861.11823 4572 4473 -138827443.8752 4573 4473 2.682209014893e-07 4574 4473 86719444.4302 4575 4473 -46373434.23614 4576 4473 -24305555.56354 4577 4473 21679861.11823 4581 4473 8952264.76783 4582 4473 9.298324584961e-06 4583 4473 6.228685379028e-06 4584 4473 222474230.8735 4585 4473 3.933906555176e-06 4586 4473 2.622604370117e-05 4587 4473 8952264.76783 4588 4473 -1.302361488342e-05 4589 4473 6.914138793945e-06 4596 4473 -46373434.23611 4597 4473 -24305555.56353 4598 4473 -21679861.11823 4599 4473 -138827443.8751 4600 4473 -5.066394805908e-07 4601 4473 -86719444.43019 4602 4473 -46373434.23611 4603 4473 24305555.56353 4604 4473 -21679861.11823 4474 4474 1250608048.648 4475 4474 -1.192092895508e-06 4476 4474 -3.159046173096e-06 4477 4474 -185121779.2034 4478 4474 8.046627044678e-07 4485 4474 -97222222.20624 4486 4474 -119197695.4315 4487 4474 2.831220626831e-07 4488 4474 -3.09944152832e-06 4489 4474 20983010.02827 4490 4474 -4.768371582031e-07 4491 4474 97222222.20624 4492 4474 -119197695.4315 4493 4474 -7.450580596924e-08 4569 4474 24305555.56354 4570 4474 -39081501.55876 4571 4474 -17343750.00569 4572 4474 -2.294778823853e-06 4573 4474 -31882558.21685 4574 4474 2.682209014893e-07 4575 4474 -24305555.56354 4576 4474 -39081501.55876 4577 4474 17343750.0057 4581 4474 1.069903373718e-05 4582 4474 -83408755.55014 4583 4474 -69374999.9886 4584 4474 4.410743713379e-06 4585 4474 164138769.4832 4586 4474 -1.192092895508e-07 4587 4474 -1.156330108643e-05 4588 4474 -83408755.55014 4589 4474 69374999.9886 4596 4474 -24305555.56353 4597 4474 -39081501.55875 4598 4474 -17343750.0057 4599 4474 -8.344650268555e-07 4600 4474 -31882558.21681 4601 4474 -3.278255462646e-07 4602 4474 24305555.56353 4603 4474 -39081501.55875 4604 4474 17343750.00569 4475 4475 1165825984.246 4476 4475 -1.382827758789e-05 4477 4475 1.788139343262e-07 4478 4475 104791324.3853 4485 4475 -2.890825271606e-06 4486 4475 3.8743019104e-07 4487 4475 -46719419.49861 4488 4475 -1.20997428894e-05 4489 4475 -4.768371582031e-07 4490 4475 -212506.0825927 4491 4475 -3.278255462646e-06 4492 4475 -2.086162567139e-07 4493 4475 -46719419.49861 4569 4475 21679861.11823 4570 4475 -17343750.0057 4571 4475 -36432062.04359 4572 4475 86719444.4302 4573 4475 3.427267074585e-07 4574 4475 -99061955.12464 4575 4475 21679861.11823 4576 4475 17343750.0057 4577 4475 -36432062.04359 4581 4475 6.169080734253e-06 4582 4475 -69374999.9886 4583 4475 -72810997.49471 4584 4475 2.598762512207e-05 4585 4475 5.960464477539e-08 4586 4475 -104578818.0156 4587 4475 6.973743438721e-06 4588 4475 69374999.9886 4589 4475 -72810997.49471 4596 4475 -21679861.11823 4597 4475 -17343750.0057 4598 4475 -36432062.04358 4599 4475 -86719444.43019 4600 4475 -2.682209014893e-07 4601 4475 -99061955.12461 4602 4475 -21679861.11823 4603 4475 17343750.00569 4604 4475 -36432062.04358 4476 4476 1483949894.094 4477 4476 7.867813110352e-06 4478 4476 -5.507469177246e-05 4479 4476 184322301.8864 4480 4476 -2.622604370117e-06 4481 4476 -1.358985900879e-05 4488 4476 -148365426.1266 4489 4476 -97222222.20624 4490 4476 -3.039836883545e-06 4491 4476 -406796532.3944 4492 4476 -2.801418304443e-06 4493 4476 -1.233816146851e-05 4494 4476 -148365426.1266 4495 4476 97222222.20624 4496 4476 -3.308057785034e-06 4572 4476 -46373434.23613 4573 4476 24305555.56354 4574 4476 21679861.11823 4575 4476 -138827443.8752 4576 4476 2.682209014893e-07 4577 4476 86719444.4302 4578 4476 -46373434.23614 4579 4476 -24305555.56354 4580 4476 21679861.11823 4584 4476 8952264.76783 4585 4476 9.298324584961e-06 4586 4476 6.228685379028e-06 4587 4476 222474230.8735 4588 4476 3.933906555176e-06 4589 4476 2.622604370117e-05 4590 4476 8952264.76783 4591 4476 -1.302361488342e-05 4592 4476 6.914138793945e-06 4599 4476 -46373434.23611 4600 4476 -24305555.56353 4601 4476 -21679861.11823 4602 4476 -138827443.8751 4603 4476 -5.066394805908e-07 4604 4476 -86719444.43019 4605 4476 -46373434.23611 4606 4476 24305555.56353 4607 4476 -21679861.11823 4477 4477 1250608048.648 4478 4477 -1.192092895508e-06 4479 4477 -3.159046173096e-06 4480 4477 -185121779.2034 4481 4477 8.046627044678e-07 4488 4477 -97222222.20624 4489 4477 -119197695.4315 4490 4477 2.831220626831e-07 4491 4477 -3.09944152832e-06 4492 4477 20983010.02827 4493 4477 -4.768371582031e-07 4494 4477 97222222.20624 4495 4477 -119197695.4315 4496 4477 -7.450580596924e-08 4572 4477 24305555.56354 4573 4477 -39081501.55876 4574 4477 -17343750.00569 4575 4477 -2.294778823853e-06 4576 4477 -31882558.21685 4577 4477 2.682209014893e-07 4578 4477 -24305555.56354 4579 4477 -39081501.55876 4580 4477 17343750.0057 4584 4477 1.069903373718e-05 4585 4477 -83408755.55014 4586 4477 -69374999.9886 4587 4477 4.410743713379e-06 4588 4477 164138769.4832 4589 4477 -1.192092895508e-07 4590 4477 -1.156330108643e-05 4591 4477 -83408755.55014 4592 4477 69374999.9886 4599 4477 -24305555.56353 4600 4477 -39081501.55875 4601 4477 -17343750.0057 4602 4477 -8.344650268555e-07 4603 4477 -31882558.21681 4604 4477 -3.278255462646e-07 4605 4477 24305555.56353 4606 4477 -39081501.55875 4607 4477 17343750.00569 4478 4478 1165825984.246 4479 4478 -1.382827758789e-05 4480 4478 1.788139343262e-07 4481 4478 104791324.3853 4488 4478 -2.890825271606e-06 4489 4478 3.8743019104e-07 4490 4478 -46719419.49861 4491 4478 -1.20997428894e-05 4492 4478 -4.768371582031e-07 4493 4478 -212506.0825927 4494 4478 -3.278255462646e-06 4495 4478 -2.086162567139e-07 4496 4478 -46719419.49861 4572 4478 21679861.11823 4573 4478 -17343750.0057 4574 4478 -36432062.04359 4575 4478 86719444.4302 4576 4478 3.427267074585e-07 4577 4478 -99061955.12464 4578 4478 21679861.11823 4579 4478 17343750.0057 4580 4478 -36432062.04359 4584 4478 6.169080734253e-06 4585 4478 -69374999.9886 4586 4478 -72810997.49471 4587 4478 2.598762512207e-05 4588 4478 5.960464477539e-08 4589 4478 -104578818.0156 4590 4478 6.973743438721e-06 4591 4478 69374999.9886 4592 4478 -72810997.49471 4599 4478 -21679861.11823 4600 4478 -17343750.0057 4601 4478 -36432062.04358 4602 4478 -86719444.43019 4603 4478 -2.682209014893e-07 4604 4478 -99061955.12461 4605 4478 -21679861.11823 4606 4478 17343750.00569 4607 4478 -36432062.04358 4479 4479 1632315315.374 4480 4479 97222220.26178 4481 4479 -4.172325134277e-05 4482 4479 17392720.97666 4483 4479 -97222221.42845 4484 4479 -2.145767211914e-06 4491 4479 -148365426.1266 4492 4479 -97222222.20624 4493 4479 -3.039836883545e-06 4494 4479 -406796532.3944 4495 4479 -2.801418304443e-06 4496 4479 -1.233816146851e-05 4497 4479 -148365426.1266 4498 4479 97222222.20624 4499 4479 -3.308057785034e-06 4575 4479 -46373434.23613 4576 4479 24305555.56354 4577 4479 21679861.11823 4578 4479 -175918799.4897 4579 4479 -24305555.27186 4580 4479 86719444.24762 4587 4479 8952264.76783 4588 4479 9.298324584961e-06 4589 4479 6.228685379028e-06 4590 4479 268847663.9159 4591 4479 24305555.07742 4592 4479 0.03653132915497 4593 4479 -28139091.37671 4594 4479 -24305555.36909 4595 4479 21679860.74398 4602 4479 -46373434.23611 4603 4479 -24305555.56353 4604 4479 -21679861.11823 4605 4479 -138827443.8751 4606 4479 -5.066394805908e-07 4607 4479 -86719444.43019 4608 4479 -46373434.23611 4609 4479 24305555.56353 4610 4479 -21679861.11823 4480 4480 1369805740.108 4481 4480 -2.145767211914e-06 4482 4480 -97222221.03956 4483 4480 -322883627.8625 4484 4480 4.798173904419e-06 4491 4480 -97222222.20624 4492 4480 -119197695.4315 4493 4480 2.831220626831e-07 4494 4480 -3.09944152832e-06 4495 4480 20983010.02827 4496 4480 -4.768371582031e-07 4497 4480 97222222.20624 4498 4480 -119197695.4315 4499 4480 -7.450580596924e-08 4575 4480 24305555.56354 4576 4480 -39081501.55876 4577 4480 -17343750.00569 4578 4480 -24305555.36908 4579 4480 -61681981.7616 4580 4480 17343749.94043 4587 4480 1.069903373718e-05 4588 4480 -83408755.55014 4589 4480 -69374999.9886 4590 4480 24305555.07742 4591 4480 203220270.0671 4592 4480 0.02920919656754 4593 4480 -24305555.27186 4594 4480 -113208178.6284 4595 4480 69374999.6084 4602 4480 -24305555.56353 4603 4480 -39081501.55875 4604 4480 -17343750.0057 4605 4480 -8.344650268555e-07 4606 4480 -31882558.21681 4607 4480 -3.278255462646e-07 4608 4480 24305555.56353 4609 4480 -39081501.55875 4610 4480 17343750.00569 4481 4481 1212545401.289 4482 4481 -1.788139343262e-06 4483 4481 3.75509262085e-06 4484 4481 8567490.576108 4491 4481 -2.890825271606e-06 4492 4481 3.8743019104e-07 4493 4481 -46719419.49861 4494 4481 -1.20997428894e-05 4495 4481 -4.768371582031e-07 4496 4481 -212506.0825927 4497 4481 -3.278255462646e-06 4498 4481 -2.086162567139e-07 4499 4481 -46719419.49861 4575 4481 21679861.11823 4576 4481 -17343750.0057 4577 4481 -36432062.04359 4578 4481 86719444.24762 4579 4481 17343749.9078 4580 4481 -110741809.7386 4587 4481 6.169080734253e-06 4588 4481 -69374999.9886 4589 4481 -72810997.49471 4590 4481 -0.03649973869324 4591 4481 -0.02921465039253 4592 4481 -68146756.53808 4593 4481 21679860.55685 4594 4481 69374999.49133 4595 4481 -84490851.68298 4602 4481 -21679861.11823 4603 4481 -17343750.0057 4604 4481 -36432062.04358 4605 4481 -86719444.43019 4606 4481 -2.682209014893e-07 4607 4481 -99061955.12461 4608 4481 -21679861.11823 4609 4481 17343750.00569 4610 4481 -36432062.04358 4482 4482 927468678.158 4483 4482 97222222.20623 4484 4482 -8.106231689453e-06 4494 4482 -148365426.1266 4495 4482 -97222222.20624 4496 4482 -3.039836883545e-06 4497 4482 -573726109.9308 4498 4482 -97222221.42845 4499 4482 8.940696716309e-07 4500 4482 18564155.00999 4501 4482 77777776.9872 4502 4482 2.861022949219e-06 4578 4482 -9282077.50499 4579 4482 29166666.38457 4580 4482 26015832.78049 4590 4482 -28139091.37673 4591 4482 -24305555.27187 4592 4482 -21679860.55685 4593 4482 139046393.5639 4594 4482 24305555.56354 4595 4482 17343888.84952 4605 4482 -46373434.23611 4606 4482 -24305555.56353 4607 4482 -21679861.11823 4608 4482 -175918799.4896 4609 4482 -24305555.36909 4610 4482 -86719444.24762 4611 4482 -9282077.505002 4612 4482 19444444.25638 4613 4482 -17343888.52033 4483 4483 781630025.6149 4484 4483 8.412431954121e-06 4494 4483 -97222222.20624 4495 4483 -119197695.4315 4496 4483 2.831220626831e-07 4497 4483 -97222221.03956 4498 4483 -116778839.2437 4499 4483 5.602836608887e-06 4500 4483 116666665.4808 4501 4483 18564155.00998 4502 4483 5.960464477539e-07 4578 4483 19444444.25638 4579 4483 -9282077.505 4580 4483 -13874999.9393 4590 4483 -24305555.36909 4591 4483 -113208178.6284 4592 4483 -69374999.49133 4593 4483 24305555.56354 4594 4483 102586730.4102 4595 4483 13874999.85143 4605 4483 -24305555.56353 4606 4483 -39081501.55875 4607 4483 -17343750.0057 4608 4483 -24305555.27187 4609 4483 -61681981.76159 4610 4483 -17343749.90781 4611 4483 29166666.38457 4612 4483 -9282077.504995 4613 4483 20812499.90894 4484 4484 728641235.3813 4494 4484 -2.890825271606e-06 4495 4484 3.8743019104e-07 4496 4484 -46719419.49861 4497 4484 4.172325134277e-07 4498 4484 4.887580871582e-06 4499 4484 -96436338.25295 4500 4484 2.503395080566e-06 4501 4484 1.251697540283e-06 4502 4484 49504413.35998 4578 4484 17343888.52033 4579 4484 -20812499.90895 4580 4484 -24752206.67999 4590 4484 -21679860.74398 4591 4484 -69374999.6084 4592 4484 -84490851.68299 4593 4484 -17343888.84952 4594 4484 -13874999.85144 4595 4484 -65361760.6378 4605 4484 -21679861.11823 4606 4484 -17343750.0057 4607 4484 -36432062.04358 4608 4484 -86719444.24762 4609 4484 -17343749.94044 4610 4484 -110741809.7386 4611 4484 -26015832.7805 4612 4484 13874999.9393 4613 4484 -24752206.67999 4485 4485 1483949894.094 4486 4485 7.867813110352e-06 4487 4485 -5.507469177246e-05 4488 4485 184322301.8864 4489 4485 -2.622604370117e-06 4490 4485 -1.358985900879e-05 4503 4485 -406796532.3944 4504 4485 -2.801418304443e-06 4505 4485 -1.233816146851e-05 4506 4485 -148365426.1266 4507 4485 97222222.20624 4508 4485 -3.308057785034e-06 4581 4485 -138827443.8752 4582 4485 2.682209014893e-07 4583 4485 86719444.4302 4584 4485 -46373434.23614 4585 4485 -24305555.56354 4586 4485 21679861.11823 4596 4485 222474230.8735 4597 4485 3.933906555176e-06 4598 4485 2.622604370117e-05 4599 4485 8952264.76783 4600 4485 -1.302361488342e-05 4601 4485 6.914138793945e-06 4614 4485 -138827443.8751 4615 4485 -5.066394805908e-07 4616 4485 -86719444.43019 4617 4485 -46373434.23611 4618 4485 24305555.56353 4619 4485 -21679861.11823 4486 4486 1250608048.648 4487 4486 -1.192092895508e-06 4488 4486 -3.159046173096e-06 4489 4486 -185121779.2034 4490 4486 8.046627044678e-07 4503 4486 -3.09944152832e-06 4504 4486 20983010.02827 4505 4486 -4.768371582031e-07 4506 4486 97222222.20624 4507 4486 -119197695.4315 4508 4486 -7.450580596924e-08 4581 4486 -2.294778823853e-06 4582 4486 -31882558.21685 4583 4486 2.682209014893e-07 4584 4486 -24305555.56354 4585 4486 -39081501.55876 4586 4486 17343750.0057 4596 4486 4.410743713379e-06 4597 4486 164138769.4832 4598 4486 -1.192092895508e-07 4599 4486 -1.156330108643e-05 4600 4486 -83408755.55014 4601 4486 69374999.9886 4614 4486 -8.344650268555e-07 4615 4486 -31882558.21681 4616 4486 -3.278255462646e-07 4617 4486 24305555.56353 4618 4486 -39081501.55875 4619 4486 17343750.00569 4487 4487 1165825984.246 4488 4487 -1.382827758789e-05 4489 4487 1.788139343262e-07 4490 4487 104791324.3853 4503 4487 -1.20997428894e-05 4504 4487 -4.768371582031e-07 4505 4487 -212506.0825927 4506 4487 -3.278255462646e-06 4507 4487 -2.086162567139e-07 4508 4487 -46719419.49861 4581 4487 86719444.4302 4582 4487 3.427267074585e-07 4583 4487 -99061955.12464 4584 4487 21679861.11823 4585 4487 17343750.0057 4586 4487 -36432062.04359 4596 4487 2.598762512207e-05 4597 4487 5.960464477539e-08 4598 4487 -104578818.0156 4599 4487 6.973743438721e-06 4600 4487 69374999.9886 4601 4487 -72810997.49471 4614 4487 -86719444.43019 4615 4487 -2.682209014893e-07 4616 4487 -99061955.12461 4617 4487 -21679861.11823 4618 4487 17343750.00569 4619 4487 -36432062.04358 4488 4488 1483949894.094 4489 4488 7.867813110352e-06 4490 4488 -5.507469177246e-05 4491 4488 184322301.8864 4492 4488 -2.622604370117e-06 4493 4488 -1.358985900879e-05 4503 4488 -148365426.1266 4504 4488 -97222222.20624 4505 4488 -3.039836883545e-06 4506 4488 -406796532.3944 4507 4488 -2.801418304443e-06 4508 4488 -1.233816146851e-05 4509 4488 -148365426.1266 4510 4488 97222222.20624 4511 4488 -3.308057785034e-06 4581 4488 -46373434.23613 4582 4488 24305555.56354 4583 4488 21679861.11823 4584 4488 -138827443.8752 4585 4488 2.682209014893e-07 4586 4488 86719444.4302 4587 4488 -46373434.23614 4588 4488 -24305555.56354 4589 4488 21679861.11823 4596 4488 8952264.76783 4597 4488 9.298324584961e-06 4598 4488 6.228685379028e-06 4599 4488 222474230.8735 4600 4488 3.933906555176e-06 4601 4488 2.622604370117e-05 4602 4488 8952264.76783 4603 4488 -1.302361488342e-05 4604 4488 6.914138793945e-06 4614 4488 -46373434.23611 4615 4488 -24305555.56353 4616 4488 -21679861.11823 4617 4488 -138827443.8751 4618 4488 -5.066394805908e-07 4619 4488 -86719444.43019 4620 4488 -46373434.23611 4621 4488 24305555.56353 4622 4488 -21679861.11823 4489 4489 1250608048.648 4490 4489 -1.192092895508e-06 4491 4489 -3.159046173096e-06 4492 4489 -185121779.2034 4493 4489 8.046627044678e-07 4503 4489 -97222222.20624 4504 4489 -119197695.4315 4505 4489 2.831220626831e-07 4506 4489 -3.09944152832e-06 4507 4489 20983010.02827 4508 4489 -4.768371582031e-07 4509 4489 97222222.20624 4510 4489 -119197695.4315 4511 4489 -7.450580596924e-08 4581 4489 24305555.56354 4582 4489 -39081501.55876 4583 4489 -17343750.00569 4584 4489 -2.294778823853e-06 4585 4489 -31882558.21685 4586 4489 2.682209014893e-07 4587 4489 -24305555.56354 4588 4489 -39081501.55876 4589 4489 17343750.0057 4596 4489 1.069903373718e-05 4597 4489 -83408755.55014 4598 4489 -69374999.9886 4599 4489 4.410743713379e-06 4600 4489 164138769.4832 4601 4489 -1.192092895508e-07 4602 4489 -1.156330108643e-05 4603 4489 -83408755.55014 4604 4489 69374999.9886 4614 4489 -24305555.56353 4615 4489 -39081501.55875 4616 4489 -17343750.0057 4617 4489 -8.344650268555e-07 4618 4489 -31882558.21681 4619 4489 -3.278255462646e-07 4620 4489 24305555.56353 4621 4489 -39081501.55875 4622 4489 17343750.00569 4490 4490 1165825984.246 4491 4490 -1.382827758789e-05 4492 4490 1.788139343262e-07 4493 4490 104791324.3853 4503 4490 -2.890825271606e-06 4504 4490 3.8743019104e-07 4505 4490 -46719419.49861 4506 4490 -1.20997428894e-05 4507 4490 -4.768371582031e-07 4508 4490 -212506.0825927 4509 4490 -3.278255462646e-06 4510 4490 -2.086162567139e-07 4511 4490 -46719419.49861 4581 4490 21679861.11823 4582 4490 -17343750.0057 4583 4490 -36432062.04359 4584 4490 86719444.4302 4585 4490 3.427267074585e-07 4586 4490 -99061955.12464 4587 4490 21679861.11823 4588 4490 17343750.0057 4589 4490 -36432062.04359 4596 4490 6.169080734253e-06 4597 4490 -69374999.9886 4598 4490 -72810997.49471 4599 4490 2.598762512207e-05 4600 4490 5.960464477539e-08 4601 4490 -104578818.0156 4602 4490 6.973743438721e-06 4603 4490 69374999.9886 4604 4490 -72810997.49471 4614 4490 -21679861.11823 4615 4490 -17343750.0057 4616 4490 -36432062.04358 4617 4490 -86719444.43019 4618 4490 -2.682209014893e-07 4619 4490 -99061955.12461 4620 4490 -21679861.11823 4621 4490 17343750.00569 4622 4490 -36432062.04358 4491 4491 1483949894.094 4492 4491 7.867813110352e-06 4493 4491 -5.507469177246e-05 4494 4491 184322301.8864 4495 4491 -2.622604370117e-06 4496 4491 -1.358985900879e-05 4506 4491 -148365426.1266 4507 4491 -97222222.20624 4508 4491 -3.039836883545e-06 4509 4491 -406796532.3944 4510 4491 -2.801418304443e-06 4511 4491 -1.233816146851e-05 4512 4491 -148365426.1266 4513 4491 97222222.20624 4514 4491 -3.308057785034e-06 4584 4491 -46373434.23613 4585 4491 24305555.56354 4586 4491 21679861.11823 4587 4491 -138827443.8752 4588 4491 2.682209014893e-07 4589 4491 86719444.4302 4590 4491 -46373434.23614 4591 4491 -24305555.56354 4592 4491 21679861.11823 4599 4491 8952264.76783 4600 4491 9.298324584961e-06 4601 4491 6.228685379028e-06 4602 4491 222474230.8735 4603 4491 3.933906555176e-06 4604 4491 2.622604370117e-05 4605 4491 8952264.76783 4606 4491 -1.302361488342e-05 4607 4491 6.914138793945e-06 4617 4491 -46373434.23611 4618 4491 -24305555.56353 4619 4491 -21679861.11823 4620 4491 -138827443.8751 4621 4491 -5.066394805908e-07 4622 4491 -86719444.43019 4623 4491 -46373434.23611 4624 4491 24305555.56353 4625 4491 -21679861.11823 4492 4492 1250608048.648 4493 4492 -1.192092895508e-06 4494 4492 -3.159046173096e-06 4495 4492 -185121779.2034 4496 4492 8.046627044678e-07 4506 4492 -97222222.20624 4507 4492 -119197695.4315 4508 4492 2.831220626831e-07 4509 4492 -3.09944152832e-06 4510 4492 20983010.02827 4511 4492 -4.768371582031e-07 4512 4492 97222222.20624 4513 4492 -119197695.4315 4514 4492 -7.450580596924e-08 4584 4492 24305555.56354 4585 4492 -39081501.55876 4586 4492 -17343750.00569 4587 4492 -2.294778823853e-06 4588 4492 -31882558.21685 4589 4492 2.682209014893e-07 4590 4492 -24305555.56354 4591 4492 -39081501.55876 4592 4492 17343750.0057 4599 4492 1.069903373718e-05 4600 4492 -83408755.55014 4601 4492 -69374999.9886 4602 4492 4.410743713379e-06 4603 4492 164138769.4832 4604 4492 -1.192092895508e-07 4605 4492 -1.156330108643e-05 4606 4492 -83408755.55014 4607 4492 69374999.9886 4617 4492 -24305555.56353 4618 4492 -39081501.55875 4619 4492 -17343750.0057 4620 4492 -8.344650268555e-07 4621 4492 -31882558.21681 4622 4492 -3.278255462646e-07 4623 4492 24305555.56353 4624 4492 -39081501.55875 4625 4492 17343750.00569 4493 4493 1165825984.246 4494 4493 -1.382827758789e-05 4495 4493 1.788139343262e-07 4496 4493 104791324.3853 4506 4493 -2.890825271606e-06 4507 4493 3.8743019104e-07 4508 4493 -46719419.49861 4509 4493 -1.20997428894e-05 4510 4493 -4.768371582031e-07 4511 4493 -212506.0825927 4512 4493 -3.278255462646e-06 4513 4493 -2.086162567139e-07 4514 4493 -46719419.49861 4584 4493 21679861.11823 4585 4493 -17343750.0057 4586 4493 -36432062.04359 4587 4493 86719444.4302 4588 4493 3.427267074585e-07 4589 4493 -99061955.12464 4590 4493 21679861.11823 4591 4493 17343750.0057 4592 4493 -36432062.04359 4599 4493 6.169080734253e-06 4600 4493 -69374999.9886 4601 4493 -72810997.49471 4602 4493 2.598762512207e-05 4603 4493 5.960464477539e-08 4604 4493 -104578818.0156 4605 4493 6.973743438721e-06 4606 4493 69374999.9886 4607 4493 -72810997.49471 4617 4493 -21679861.11823 4618 4493 -17343750.0057 4619 4493 -36432062.04358 4620 4493 -86719444.43019 4621 4493 -2.682209014893e-07 4622 4493 -99061955.12461 4623 4493 -21679861.11823 4624 4493 17343750.00569 4625 4493 -36432062.04358 4494 4494 1483949894.094 4495 4494 7.867813110352e-06 4496 4494 -5.507469177246e-05 4497 4494 184322301.8864 4498 4494 -2.622604370117e-06 4499 4494 -1.358985900879e-05 4509 4494 -148365426.1266 4510 4494 -97222222.20624 4511 4494 -3.039836883545e-06 4512 4494 -406796532.3944 4513 4494 -2.801418304443e-06 4514 4494 -1.233816146851e-05 4515 4494 -148365426.1266 4516 4494 97222222.20624 4517 4494 -3.308057785034e-06 4587 4494 -46373434.23613 4588 4494 24305555.56354 4589 4494 21679861.11823 4590 4494 -138827443.8752 4591 4494 2.682209014893e-07 4592 4494 86719444.4302 4593 4494 -46373434.23614 4594 4494 -24305555.56354 4595 4494 21679861.11823 4602 4494 8952264.76783 4603 4494 9.298324584961e-06 4604 4494 6.228685379028e-06 4605 4494 222474230.8735 4606 4494 3.933906555176e-06 4607 4494 2.622604370117e-05 4608 4494 8952264.76783 4609 4494 -1.302361488342e-05 4610 4494 6.914138793945e-06 4620 4494 -46373434.23611 4621 4494 -24305555.56353 4622 4494 -21679861.11823 4623 4494 -138827443.8751 4624 4494 -5.066394805908e-07 4625 4494 -86719444.43019 4626 4494 -46373434.23611 4627 4494 24305555.56353 4628 4494 -21679861.11823 4495 4495 1250608048.648 4496 4495 -1.192092895508e-06 4497 4495 -3.159046173096e-06 4498 4495 -185121779.2034 4499 4495 8.046627044678e-07 4509 4495 -97222222.20624 4510 4495 -119197695.4315 4511 4495 2.831220626831e-07 4512 4495 -3.09944152832e-06 4513 4495 20983010.02827 4514 4495 -4.768371582031e-07 4515 4495 97222222.20624 4516 4495 -119197695.4315 4517 4495 -7.450580596924e-08 4587 4495 24305555.56354 4588 4495 -39081501.55876 4589 4495 -17343750.00569 4590 4495 -2.294778823853e-06 4591 4495 -31882558.21685 4592 4495 2.682209014893e-07 4593 4495 -24305555.56354 4594 4495 -39081501.55876 4595 4495 17343750.0057 4602 4495 1.069903373718e-05 4603 4495 -83408755.55014 4604 4495 -69374999.9886 4605 4495 4.410743713379e-06 4606 4495 164138769.4832 4607 4495 -1.192092895508e-07 4608 4495 -1.156330108643e-05 4609 4495 -83408755.55014 4610 4495 69374999.9886 4620 4495 -24305555.56353 4621 4495 -39081501.55875 4622 4495 -17343750.0057 4623 4495 -8.344650268555e-07 4624 4495 -31882558.21681 4625 4495 -3.278255462646e-07 4626 4495 24305555.56353 4627 4495 -39081501.55875 4628 4495 17343750.00569 4496 4496 1165825984.246 4497 4496 -1.382827758789e-05 4498 4496 1.788139343262e-07 4499 4496 104791324.3853 4509 4496 -2.890825271606e-06 4510 4496 3.8743019104e-07 4511 4496 -46719419.49861 4512 4496 -1.20997428894e-05 4513 4496 -4.768371582031e-07 4514 4496 -212506.0825927 4515 4496 -3.278255462646e-06 4516 4496 -2.086162567139e-07 4517 4496 -46719419.49861 4587 4496 21679861.11823 4588 4496 -17343750.0057 4589 4496 -36432062.04359 4590 4496 86719444.4302 4591 4496 3.427267074585e-07 4592 4496 -99061955.12464 4593 4496 21679861.11823 4594 4496 17343750.0057 4595 4496 -36432062.04359 4602 4496 6.169080734253e-06 4603 4496 -69374999.9886 4604 4496 -72810997.49471 4605 4496 2.598762512207e-05 4606 4496 5.960464477539e-08 4607 4496 -104578818.0156 4608 4496 6.973743438721e-06 4609 4496 69374999.9886 4610 4496 -72810997.49471 4620 4496 -21679861.11823 4621 4496 -17343750.0057 4622 4496 -36432062.04358 4623 4496 -86719444.43019 4624 4496 -2.682209014893e-07 4625 4496 -99061955.12461 4626 4496 -21679861.11823 4627 4496 17343750.00569 4628 4496 -36432062.04358 4497 4497 1632315315.374 4498 4497 97222220.26178 4499 4497 -4.172325134277e-05 4500 4497 17392720.97666 4501 4497 -97222221.42845 4502 4497 -2.145767211914e-06 4512 4497 -148365426.1266 4513 4497 -97222222.20624 4514 4497 -3.039836883545e-06 4515 4497 -406796532.3944 4516 4497 -2.801418304443e-06 4517 4497 -1.233816146851e-05 4518 4497 -148365426.1266 4519 4497 97222222.20624 4520 4497 -3.308057785034e-06 4590 4497 -46373434.23613 4591 4497 24305555.56354 4592 4497 21679861.11823 4593 4497 -175918799.4897 4594 4497 -24305555.27186 4595 4497 86719444.24762 4605 4497 8952264.76783 4606 4497 9.298324584961e-06 4607 4497 6.228685379028e-06 4608 4497 268847663.9159 4609 4497 24305555.07742 4610 4497 0.03653132915497 4611 4497 -28139091.37671 4612 4497 -24305555.36909 4613 4497 21679860.74398 4623 4497 -46373434.23611 4624 4497 -24305555.56353 4625 4497 -21679861.11823 4626 4497 -138827443.8751 4627 4497 -5.066394805908e-07 4628 4497 -86719444.43019 4629 4497 -46373434.23611 4630 4497 24305555.56353 4631 4497 -21679861.11823 4498 4498 1369805740.108 4499 4498 -2.145767211914e-06 4500 4498 -97222221.03956 4501 4498 -322883627.8625 4502 4498 4.798173904419e-06 4512 4498 -97222222.20624 4513 4498 -119197695.4315 4514 4498 2.831220626831e-07 4515 4498 -3.09944152832e-06 4516 4498 20983010.02827 4517 4498 -4.768371582031e-07 4518 4498 97222222.20624 4519 4498 -119197695.4315 4520 4498 -7.450580596924e-08 4590 4498 24305555.56354 4591 4498 -39081501.55876 4592 4498 -17343750.00569 4593 4498 -24305555.36908 4594 4498 -61681981.7616 4595 4498 17343749.94043 4605 4498 1.069903373718e-05 4606 4498 -83408755.55014 4607 4498 -69374999.9886 4608 4498 24305555.07742 4609 4498 203220270.0671 4610 4498 0.02920919656754 4611 4498 -24305555.27186 4612 4498 -113208178.6284 4613 4498 69374999.6084 4623 4498 -24305555.56353 4624 4498 -39081501.55875 4625 4498 -17343750.0057 4626 4498 -8.344650268555e-07 4627 4498 -31882558.21681 4628 4498 -3.278255462646e-07 4629 4498 24305555.56353 4630 4498 -39081501.55875 4631 4498 17343750.00569 4499 4499 1212545401.289 4500 4499 -1.788139343262e-06 4501 4499 3.75509262085e-06 4502 4499 8567490.576108 4512 4499 -2.890825271606e-06 4513 4499 3.8743019104e-07 4514 4499 -46719419.49861 4515 4499 -1.20997428894e-05 4516 4499 -4.768371582031e-07 4517 4499 -212506.0825927 4518 4499 -3.278255462646e-06 4519 4499 -2.086162567139e-07 4520 4499 -46719419.49861 4590 4499 21679861.11823 4591 4499 -17343750.0057 4592 4499 -36432062.04359 4593 4499 86719444.24762 4594 4499 17343749.9078 4595 4499 -110741809.7386 4605 4499 6.169080734253e-06 4606 4499 -69374999.9886 4607 4499 -72810997.49471 4608 4499 -0.03649973869324 4609 4499 -0.02921465039253 4610 4499 -68146756.53808 4611 4499 21679860.55685 4612 4499 69374999.49133 4613 4499 -84490851.68298 4623 4499 -21679861.11823 4624 4499 -17343750.0057 4625 4499 -36432062.04358 4626 4499 -86719444.43019 4627 4499 -2.682209014893e-07 4628 4499 -99061955.12461 4629 4499 -21679861.11823 4630 4499 17343750.00569 4631 4499 -36432062.04358 4500 4500 944226635.8558 4501 4500 104813146.3867 4502 4500 -9.059906005859e-06 4515 4500 -148365426.1266 4516 4500 -97222222.20624 4517 4500 -3.039836883545e-06 4518 4500 -591818040.3848 4519 4500 -104813145.6089 4520 4500 -1.09076499939e-05 4521 4500 22795227.75344 4522 4500 77777776.98724 4523 4500 1.311302185059e-06 4593 4500 -9282077.50499 4594 4500 29166666.38457 4595 4500 26015832.78049 4608 4500 -28139091.37673 4609 4500 -24305555.27187 4610 4500 -21679860.55685 4611 4500 142149470.4916 4612 4500 26203286.60958 4613 4500 17682222.18138 4626 4500 -46373434.23611 4627 4500 -24305555.56353 4628 4500 -21679861.11823 4629 4500 -180984988.3575 4630 4500 -26203286.41514 4631 4500 -88411110.90688 4632 4500 -8767515.558541 4633 4500 19444444.25639 4634 4500 -18020555.17262 4501 4501 789133337.2837 4502 4501 2.719461917877e-06 4515 4501 -97222222.20624 4516 4501 -119197695.4315 4517 4501 2.831220626831e-07 4518 4501 -104813145.2201 4519 4501 -131460786.597 4520 4501 -9.536743164063e-07 4521 4501 116666665.4809 4522 4501 28639890.68178 4523 4501 5.960464477539e-07 4593 4501 19444444.25638 4594 4501 -9282077.505 4595 4501 -13874999.9393 4608 4501 -24305555.36909 4609 4501 -113208178.6284 4610 4501 -69374999.49133 4611 4501 26203286.60958 4612 4501 103376145.8295 4613 4501 14145833.18358 4626 4501 -24305555.56353 4627 4501 -39081501.55875 4628 4501 -17343750.0057 4629 4501 -26203286.31792 4630 4501 -65895674.85386 4631 4501 -18697916.56855 4632 4501 29166666.38458 4633 4501 -7306349.825738 4634 4501 20270833.25379 4502 4502 738330627.0228 4515 4502 -2.890825271606e-06 4516 4502 3.8743019104e-07 4517 4502 -46719419.49861 4518 4502 -1.251697540283e-05 4519 4502 -4.768371582031e-07 4520 4502 -103838327.6491 4521 4502 1.907348632813e-06 4522 4502 4.172325134277e-07 4523 4502 54942611.08084 4593 4502 17343888.52033 4594 4502 -20812499.90895 4595 4502 -24752206.67999 4608 4502 -21679860.74398 4609 4502 -69374999.6084 4610 4502 -84490851.68299 4611 4502 -17682222.18137 4612 4502 -14145833.18359 4613 4502 -65836512.72295 4626 4502 -21679861.11823 4627 4502 -17343750.0057 4628 4502 -36432062.04358 4629 4502 -88411110.90688 4630 4502 -18697916.60118 4631 4502 -114040857.0942 4632 4502 -27030832.75893 4633 4502 13062499.95656 4634 4502 -24841207.22225 4503 4503 1483949894.094 4504 4503 7.867813110352e-06 4505 4503 -5.507469177246e-05 4506 4503 184322301.8864 4507 4503 -2.622604370117e-06 4508 4503 -1.358985900879e-05 4524 4503 -406796532.3944 4525 4503 -2.801418304443e-06 4526 4503 -1.233816146851e-05 4527 4503 -148365426.1266 4528 4503 97222222.20624 4529 4503 -3.308057785034e-06 4596 4503 -138827443.8752 4597 4503 2.682209014893e-07 4598 4503 86719444.4302 4599 4503 -46373434.23614 4600 4503 -24305555.56354 4601 4503 21679861.11823 4614 4503 222474230.8735 4615 4503 3.933906555176e-06 4616 4503 2.622604370117e-05 4617 4503 8952264.76783 4618 4503 -1.302361488342e-05 4619 4503 6.914138793945e-06 4635 4503 -138827443.8751 4636 4503 -5.066394805908e-07 4637 4503 -86719444.43019 4638 4503 -46373434.23611 4639 4503 24305555.56353 4640 4503 -21679861.11823 4504 4504 1250608048.648 4505 4504 -1.192092895508e-06 4506 4504 -3.159046173096e-06 4507 4504 -185121779.2034 4508 4504 8.046627044678e-07 4524 4504 -3.09944152832e-06 4525 4504 20983010.02827 4526 4504 -4.768371582031e-07 4527 4504 97222222.20624 4528 4504 -119197695.4315 4529 4504 -7.450580596924e-08 4596 4504 -2.294778823853e-06 4597 4504 -31882558.21685 4598 4504 2.682209014893e-07 4599 4504 -24305555.56354 4600 4504 -39081501.55876 4601 4504 17343750.0057 4614 4504 4.410743713379e-06 4615 4504 164138769.4832 4616 4504 -1.192092895508e-07 4617 4504 -1.156330108643e-05 4618 4504 -83408755.55014 4619 4504 69374999.9886 4635 4504 -8.344650268555e-07 4636 4504 -31882558.21681 4637 4504 -3.278255462646e-07 4638 4504 24305555.56353 4639 4504 -39081501.55875 4640 4504 17343750.00569 4505 4505 1165825984.246 4506 4505 -1.382827758789e-05 4507 4505 1.788139343262e-07 4508 4505 104791324.3853 4524 4505 -1.20997428894e-05 4525 4505 -4.768371582031e-07 4526 4505 -212506.0825927 4527 4505 -3.278255462646e-06 4528 4505 -2.086162567139e-07 4529 4505 -46719419.49861 4596 4505 86719444.4302 4597 4505 3.427267074585e-07 4598 4505 -99061955.12464 4599 4505 21679861.11823 4600 4505 17343750.0057 4601 4505 -36432062.04359 4614 4505 2.598762512207e-05 4615 4505 5.960464477539e-08 4616 4505 -104578818.0156 4617 4505 6.973743438721e-06 4618 4505 69374999.9886 4619 4505 -72810997.49471 4635 4505 -86719444.43019 4636 4505 -2.682209014893e-07 4637 4505 -99061955.12461 4638 4505 -21679861.11823 4639 4505 17343750.00569 4640 4505 -36432062.04358 4506 4506 1483949894.094 4507 4506 7.867813110352e-06 4508 4506 -5.507469177246e-05 4509 4506 184322301.8864 4510 4506 -2.622604370117e-06 4511 4506 -1.358985900879e-05 4524 4506 -148365426.1266 4525 4506 -97222222.20624 4526 4506 -3.039836883545e-06 4527 4506 -406796532.3944 4528 4506 -2.801418304443e-06 4529 4506 -1.233816146851e-05 4530 4506 -148365426.1266 4531 4506 97222222.20624 4532 4506 -3.308057785034e-06 4596 4506 -46373434.23613 4597 4506 24305555.56354 4598 4506 21679861.11823 4599 4506 -138827443.8752 4600 4506 2.682209014893e-07 4601 4506 86719444.4302 4602 4506 -46373434.23614 4603 4506 -24305555.56354 4604 4506 21679861.11823 4614 4506 8952264.76783 4615 4506 9.298324584961e-06 4616 4506 6.228685379028e-06 4617 4506 222474230.8735 4618 4506 3.933906555176e-06 4619 4506 2.622604370117e-05 4620 4506 8952264.76783 4621 4506 -1.302361488342e-05 4622 4506 6.914138793945e-06 4635 4506 -46373434.23611 4636 4506 -24305555.56353 4637 4506 -21679861.11823 4638 4506 -138827443.8751 4639 4506 -5.066394805908e-07 4640 4506 -86719444.43019 4641 4506 -46373434.23611 4642 4506 24305555.56353 4643 4506 -21679861.11823 4507 4507 1250608048.648 4508 4507 -1.192092895508e-06 4509 4507 -3.159046173096e-06 4510 4507 -185121779.2034 4511 4507 8.046627044678e-07 4524 4507 -97222222.20624 4525 4507 -119197695.4315 4526 4507 2.831220626831e-07 4527 4507 -3.09944152832e-06 4528 4507 20983010.02827 4529 4507 -4.768371582031e-07 4530 4507 97222222.20624 4531 4507 -119197695.4315 4532 4507 -7.450580596924e-08 4596 4507 24305555.56354 4597 4507 -39081501.55876 4598 4507 -17343750.00569 4599 4507 -2.294778823853e-06 4600 4507 -31882558.21685 4601 4507 2.682209014893e-07 4602 4507 -24305555.56354 4603 4507 -39081501.55876 4604 4507 17343750.0057 4614 4507 1.069903373718e-05 4615 4507 -83408755.55014 4616 4507 -69374999.9886 4617 4507 4.410743713379e-06 4618 4507 164138769.4832 4619 4507 -1.192092895508e-07 4620 4507 -1.156330108643e-05 4621 4507 -83408755.55014 4622 4507 69374999.9886 4635 4507 -24305555.56353 4636 4507 -39081501.55875 4637 4507 -17343750.0057 4638 4507 -8.344650268555e-07 4639 4507 -31882558.21681 4640 4507 -3.278255462646e-07 4641 4507 24305555.56353 4642 4507 -39081501.55875 4643 4507 17343750.00569 4508 4508 1165825984.246 4509 4508 -1.382827758789e-05 4510 4508 1.788139343262e-07 4511 4508 104791324.3853 4524 4508 -2.890825271606e-06 4525 4508 3.8743019104e-07 4526 4508 -46719419.49861 4527 4508 -1.20997428894e-05 4528 4508 -4.768371582031e-07 4529 4508 -212506.0825927 4530 4508 -3.278255462646e-06 4531 4508 -2.086162567139e-07 4532 4508 -46719419.49861 4596 4508 21679861.11823 4597 4508 -17343750.0057 4598 4508 -36432062.04359 4599 4508 86719444.4302 4600 4508 3.427267074585e-07 4601 4508 -99061955.12464 4602 4508 21679861.11823 4603 4508 17343750.0057 4604 4508 -36432062.04359 4614 4508 6.169080734253e-06 4615 4508 -69374999.9886 4616 4508 -72810997.49471 4617 4508 2.598762512207e-05 4618 4508 5.960464477539e-08 4619 4508 -104578818.0156 4620 4508 6.973743438721e-06 4621 4508 69374999.9886 4622 4508 -72810997.49471 4635 4508 -21679861.11823 4636 4508 -17343750.0057 4637 4508 -36432062.04358 4638 4508 -86719444.43019 4639 4508 -2.682209014893e-07 4640 4508 -99061955.12461 4641 4508 -21679861.11823 4642 4508 17343750.00569 4643 4508 -36432062.04358 4509 4509 1483949894.094 4510 4509 7.867813110352e-06 4511 4509 -5.507469177246e-05 4512 4509 184322301.8864 4513 4509 -2.622604370117e-06 4514 4509 -1.358985900879e-05 4527 4509 -148365426.1266 4528 4509 -97222222.20624 4529 4509 -3.039836883545e-06 4530 4509 -406796532.3944 4531 4509 -2.801418304443e-06 4532 4509 -1.233816146851e-05 4533 4509 -148365426.1266 4534 4509 97222222.20624 4535 4509 -3.308057785034e-06 4599 4509 -46373434.23613 4600 4509 24305555.56354 4601 4509 21679861.11823 4602 4509 -138827443.8752 4603 4509 2.682209014893e-07 4604 4509 86719444.4302 4605 4509 -46373434.23614 4606 4509 -24305555.56354 4607 4509 21679861.11823 4617 4509 8952264.76783 4618 4509 9.298324584961e-06 4619 4509 6.228685379028e-06 4620 4509 222474230.8735 4621 4509 3.933906555176e-06 4622 4509 2.622604370117e-05 4623 4509 8952264.76783 4624 4509 -1.302361488342e-05 4625 4509 6.914138793945e-06 4638 4509 -46373434.23611 4639 4509 -24305555.56353 4640 4509 -21679861.11823 4641 4509 -138827443.8751 4642 4509 -5.066394805908e-07 4643 4509 -86719444.43019 4644 4509 -46373434.23611 4645 4509 24305555.56353 4646 4509 -21679861.11823 4510 4510 1250608048.648 4511 4510 -1.192092895508e-06 4512 4510 -3.159046173096e-06 4513 4510 -185121779.2034 4514 4510 8.046627044678e-07 4527 4510 -97222222.20624 4528 4510 -119197695.4315 4529 4510 2.831220626831e-07 4530 4510 -3.09944152832e-06 4531 4510 20983010.02827 4532 4510 -4.768371582031e-07 4533 4510 97222222.20624 4534 4510 -119197695.4315 4535 4510 -7.450580596924e-08 4599 4510 24305555.56354 4600 4510 -39081501.55876 4601 4510 -17343750.00569 4602 4510 -2.294778823853e-06 4603 4510 -31882558.21685 4604 4510 2.682209014893e-07 4605 4510 -24305555.56354 4606 4510 -39081501.55876 4607 4510 17343750.0057 4617 4510 1.069903373718e-05 4618 4510 -83408755.55014 4619 4510 -69374999.9886 4620 4510 4.410743713379e-06 4621 4510 164138769.4832 4622 4510 -1.192092895508e-07 4623 4510 -1.156330108643e-05 4624 4510 -83408755.55014 4625 4510 69374999.9886 4638 4510 -24305555.56353 4639 4510 -39081501.55875 4640 4510 -17343750.0057 4641 4510 -8.344650268555e-07 4642 4510 -31882558.21681 4643 4510 -3.278255462646e-07 4644 4510 24305555.56353 4645 4510 -39081501.55875 4646 4510 17343750.00569 4511 4511 1165825984.246 4512 4511 -1.382827758789e-05 4513 4511 1.788139343262e-07 4514 4511 104791324.3853 4527 4511 -2.890825271606e-06 4528 4511 3.8743019104e-07 4529 4511 -46719419.49861 4530 4511 -1.20997428894e-05 4531 4511 -4.768371582031e-07 4532 4511 -212506.0825927 4533 4511 -3.278255462646e-06 4534 4511 -2.086162567139e-07 4535 4511 -46719419.49861 4599 4511 21679861.11823 4600 4511 -17343750.0057 4601 4511 -36432062.04359 4602 4511 86719444.4302 4603 4511 3.427267074585e-07 4604 4511 -99061955.12464 4605 4511 21679861.11823 4606 4511 17343750.0057 4607 4511 -36432062.04359 4617 4511 6.169080734253e-06 4618 4511 -69374999.9886 4619 4511 -72810997.49471 4620 4511 2.598762512207e-05 4621 4511 5.960464477539e-08 4622 4511 -104578818.0156 4623 4511 6.973743438721e-06 4624 4511 69374999.9886 4625 4511 -72810997.49471 4638 4511 -21679861.11823 4639 4511 -17343750.0057 4640 4511 -36432062.04358 4641 4511 -86719444.43019 4642 4511 -2.682209014893e-07 4643 4511 -99061955.12461 4644 4511 -21679861.11823 4645 4511 17343750.00569 4646 4511 -36432062.04358 4512 4512 1483949894.094 4513 4512 7.867813110352e-06 4514 4512 -5.507469177246e-05 4515 4512 184322301.8864 4516 4512 -2.622604370117e-06 4517 4512 -1.358985900879e-05 4530 4512 -148365426.1266 4531 4512 -97222222.20624 4532 4512 -3.039836883545e-06 4533 4512 -406796532.3944 4534 4512 -2.801418304443e-06 4535 4512 -1.233816146851e-05 4536 4512 -148365426.1266 4537 4512 97222222.20624 4538 4512 -3.308057785034e-06 4602 4512 -46373434.23613 4603 4512 24305555.56354 4604 4512 21679861.11823 4605 4512 -138827443.8752 4606 4512 2.682209014893e-07 4607 4512 86719444.4302 4608 4512 -46373434.23614 4609 4512 -24305555.56354 4610 4512 21679861.11823 4620 4512 8952264.76783 4621 4512 9.298324584961e-06 4622 4512 6.228685379028e-06 4623 4512 222474230.8735 4624 4512 3.933906555176e-06 4625 4512 2.622604370117e-05 4626 4512 8952264.76783 4627 4512 -1.302361488342e-05 4628 4512 6.914138793945e-06 4641 4512 -46373434.23611 4642 4512 -24305555.56353 4643 4512 -21679861.11823 4644 4512 -138827443.8751 4645 4512 -5.066394805908e-07 4646 4512 -86719444.43019 4647 4512 -46373434.23611 4648 4512 24305555.56353 4649 4512 -21679861.11823 4513 4513 1250608048.648 4514 4513 -1.192092895508e-06 4515 4513 -3.159046173096e-06 4516 4513 -185121779.2034 4517 4513 8.046627044678e-07 4530 4513 -97222222.20624 4531 4513 -119197695.4315 4532 4513 2.831220626831e-07 4533 4513 -3.09944152832e-06 4534 4513 20983010.02827 4535 4513 -4.768371582031e-07 4536 4513 97222222.20624 4537 4513 -119197695.4315 4538 4513 -7.450580596924e-08 4602 4513 24305555.56354 4603 4513 -39081501.55876 4604 4513 -17343750.00569 4605 4513 -2.294778823853e-06 4606 4513 -31882558.21685 4607 4513 2.682209014893e-07 4608 4513 -24305555.56354 4609 4513 -39081501.55876 4610 4513 17343750.0057 4620 4513 1.069903373718e-05 4621 4513 -83408755.55014 4622 4513 -69374999.9886 4623 4513 4.410743713379e-06 4624 4513 164138769.4832 4625 4513 -1.192092895508e-07 4626 4513 -1.156330108643e-05 4627 4513 -83408755.55014 4628 4513 69374999.9886 4641 4513 -24305555.56353 4642 4513 -39081501.55875 4643 4513 -17343750.0057 4644 4513 -8.344650268555e-07 4645 4513 -31882558.21681 4646 4513 -3.278255462646e-07 4647 4513 24305555.56353 4648 4513 -39081501.55875 4649 4513 17343750.00569 4514 4514 1165825984.246 4515 4514 -1.382827758789e-05 4516 4514 1.788139343262e-07 4517 4514 104791324.3853 4530 4514 -2.890825271606e-06 4531 4514 3.8743019104e-07 4532 4514 -46719419.49861 4533 4514 -1.20997428894e-05 4534 4514 -4.768371582031e-07 4535 4514 -212506.0825927 4536 4514 -3.278255462646e-06 4537 4514 -2.086162567139e-07 4538 4514 -46719419.49861 4602 4514 21679861.11823 4603 4514 -17343750.0057 4604 4514 -36432062.04359 4605 4514 86719444.4302 4606 4514 3.427267074585e-07 4607 4514 -99061955.12464 4608 4514 21679861.11823 4609 4514 17343750.0057 4610 4514 -36432062.04359 4620 4514 6.169080734253e-06 4621 4514 -69374999.9886 4622 4514 -72810997.49471 4623 4514 2.598762512207e-05 4624 4514 5.960464477539e-08 4625 4514 -104578818.0156 4626 4514 6.973743438721e-06 4627 4514 69374999.9886 4628 4514 -72810997.49471 4641 4514 -21679861.11823 4642 4514 -17343750.0057 4643 4514 -36432062.04358 4644 4514 -86719444.43019 4645 4514 -2.682209014893e-07 4646 4514 -99061955.12461 4647 4514 -21679861.11823 4648 4514 17343750.00569 4649 4514 -36432062.04358 4515 4515 1483949894.094 4516 4515 7.867813110352e-06 4517 4515 -5.507469177246e-05 4518 4515 184322301.8864 4519 4515 -2.622604370117e-06 4520 4515 -1.358985900879e-05 4533 4515 -148365426.1266 4534 4515 -97222222.20624 4535 4515 -3.039836883545e-06 4536 4515 -406796532.3944 4537 4515 -2.801418304443e-06 4538 4515 -1.233816146851e-05 4539 4515 -148365426.1266 4540 4515 97222222.20624 4541 4515 -3.308057785034e-06 4605 4515 -46373434.23613 4606 4515 24305555.56354 4607 4515 21679861.11823 4608 4515 -138827443.8752 4609 4515 2.682209014893e-07 4610 4515 86719444.4302 4611 4515 -46373434.23614 4612 4515 -24305555.56354 4613 4515 21679861.11823 4623 4515 8952264.76783 4624 4515 9.298324584961e-06 4625 4515 6.228685379028e-06 4626 4515 222474230.8735 4627 4515 3.933906555176e-06 4628 4515 2.622604370117e-05 4629 4515 8952264.76783 4630 4515 -1.302361488342e-05 4631 4515 6.914138793945e-06 4644 4515 -46373434.23611 4645 4515 -24305555.56353 4646 4515 -21679861.11823 4647 4515 -138827443.8751 4648 4515 -5.066394805908e-07 4649 4515 -86719444.43019 4650 4515 -46373434.23611 4651 4515 24305555.56353 4652 4515 -21679861.11823 4516 4516 1250608048.648 4517 4516 -1.192092895508e-06 4518 4516 -3.159046173096e-06 4519 4516 -185121779.2034 4520 4516 8.046627044678e-07 4533 4516 -97222222.20624 4534 4516 -119197695.4315 4535 4516 2.831220626831e-07 4536 4516 -3.09944152832e-06 4537 4516 20983010.02827 4538 4516 -4.768371582031e-07 4539 4516 97222222.20624 4540 4516 -119197695.4315 4541 4516 -7.450580596924e-08 4605 4516 24305555.56354 4606 4516 -39081501.55876 4607 4516 -17343750.00569 4608 4516 -2.294778823853e-06 4609 4516 -31882558.21685 4610 4516 2.682209014893e-07 4611 4516 -24305555.56354 4612 4516 -39081501.55876 4613 4516 17343750.0057 4623 4516 1.069903373718e-05 4624 4516 -83408755.55014 4625 4516 -69374999.9886 4626 4516 4.410743713379e-06 4627 4516 164138769.4832 4628 4516 -1.192092895508e-07 4629 4516 -1.156330108643e-05 4630 4516 -83408755.55014 4631 4516 69374999.9886 4644 4516 -24305555.56353 4645 4516 -39081501.55875 4646 4516 -17343750.0057 4647 4516 -8.344650268555e-07 4648 4516 -31882558.21681 4649 4516 -3.278255462646e-07 4650 4516 24305555.56353 4651 4516 -39081501.55875 4652 4516 17343750.00569 4517 4517 1165825984.246 4518 4517 -1.382827758789e-05 4519 4517 1.788139343262e-07 4520 4517 104791324.3853 4533 4517 -2.890825271606e-06 4534 4517 3.8743019104e-07 4535 4517 -46719419.49861 4536 4517 -1.20997428894e-05 4537 4517 -4.768371582031e-07 4538 4517 -212506.0825927 4539 4517 -3.278255462646e-06 4540 4517 -2.086162567139e-07 4541 4517 -46719419.49861 4605 4517 21679861.11823 4606 4517 -17343750.0057 4607 4517 -36432062.04359 4608 4517 86719444.4302 4609 4517 3.427267074585e-07 4610 4517 -99061955.12464 4611 4517 21679861.11823 4612 4517 17343750.0057 4613 4517 -36432062.04359 4623 4517 6.169080734253e-06 4624 4517 -69374999.9886 4625 4517 -72810997.49471 4626 4517 2.598762512207e-05 4627 4517 5.960464477539e-08 4628 4517 -104578818.0156 4629 4517 6.973743438721e-06 4630 4517 69374999.9886 4631 4517 -72810997.49471 4644 4517 -21679861.11823 4645 4517 -17343750.0057 4646 4517 -36432062.04358 4647 4517 -86719444.43019 4648 4517 -2.682209014893e-07 4649 4517 -99061955.12461 4650 4517 -21679861.11823 4651 4517 17343750.00569 4652 4517 -36432062.04358 4518 4518 1661147708.835 4519 4518 104975994.3214 4520 4518 -3.314018249512e-05 4521 4518 28973926.47986 4522 4518 -93442034.30678 4523 4518 -1.668930053711e-06 4536 4518 -148365426.1266 4537 4518 -97222222.20624 4538 4518 -3.039836883545e-06 4539 4518 -414750020.4148 4540 4518 -3811573.076203 4541 4518 -7.390975952148e-06 4542 4518 -158390003.0581 4543 4518 97090758.28168 4544 4518 3.516674041748e-06 4608 4518 -46373434.23613 4609 4518 24305555.56354 4610 4518 21679861.11823 4611 4518 -180984988.3575 4612 4518 -26203286.31792 4613 4518 88411110.90689 4626 4518 8952264.76783 4627 4518 9.298324584961e-06 4628 4518 6.228685379028e-06 4629 4518 274245586.3934 4630 4518 26243998.59327 4631 4518 0.0379564166069 4632 4518 -25967702.04295 4633 4518 -23360508.5882 4634 4518 21679166.28526 4647 4518 -46373434.23611 4648 4518 -24305555.56353 4649 4518 -21679861.11823 4650 4518 -140996480.1669 4651 4518 -952893.2695236 4652 4518 -87564583.31886 4653 4518 -48879322.66663 4654 4518 24272689.58237 4655 4518 -22525694.45184 4519 4519 1378316574.243 4520 4519 1.299381256104e-05 4521 4519 -93442033.91789 4522 4519 -311076053.7848 4523 4519 -5.543231964111e-06 4536 4519 -97222222.20624 4537 4519 -119197695.4315 4538 4519 2.831220626831e-07 4539 4519 -3811573.076213 4540 4519 16672797.27745 4541 4519 5.483627319336e-06 4542 4519 97090758.28168 4543 4519 -116180339.9824 4544 4519 -2.384185791016e-07 4608 4519 24305555.56354 4609 4519 -39081501.55876 4610 4519 -17343750.00569 4611 4519 -26203286.41514 4612 4519 -65895674.85388 4613 4519 18697916.60118 4626 4519 1.069903373718e-05 4627 4519 -83408755.55014 4628 4519 -69374999.9886 4629 4519 26243998.59326 4630 4519 203537802.7107 4631 4519 0.03034961223602 4632 4519 -23360508.49098 4633 4519 -110980197.151 4634 4519 69374999.59698 4647 4519 -24305555.56353 4648 4519 -39081501.55875 4649 4519 -17343750.0057 4650 4519 -952893.2695259 4651 4519 -33140775.69073 4652 4519 -677083.3331571 4653 4519 24272689.58237 4654 4519 -38326906.89251 4655 4519 16666666.67214 4520 4520 1227849607.295 4521 4520 -7.152557373047e-07 4522 4520 -5.275011062622e-06 4523 4520 16993676.64502 4536 4520 -2.890825271606e-06 4537 4520 3.8743019104e-07 4538 4520 -46719419.49861 4539 4520 -9.238719940186e-06 4540 4520 5.841255187988e-06 4541 4520 -3046182.050694 4542 4520 3.36766242981e-06 4543 4520 -1.788139343262e-07 4544 4520 -48631203.38773 4608 4520 21679861.11823 4609 4520 -17343750.0057 4610 4520 -36432062.04359 4611 4520 88411110.90689 4612 4520 18697916.56855 4613 4520 -114040857.0943 4626 4520 6.169080734253e-06 4627 4520 -69374999.9886 4628 4520 -72810997.49471 4629 4520 -0.03792423009872 4630 4520 -0.03035497665405 4631 4520 -69147840.74461 4632 4520 21679166.091 4633 4520 69374999.4742 4634 4520 -84314737.28062 4647 4520 -21679861.11823 4648 4520 -17343750.0057 4649 4520 -36432062.04358 4650 4520 -87564583.31903 4651 4520 -677083.3332905 4652 4520 -100252145.5455 4653 4520 -22525694.45184 4654 4520 16666666.67214 4655 4520 -36909325.87324 4521 4521 878310888.4809 4522 4521 -2657515.75764 4523 4521 -4.768371582031e-07 4539 4521 -146355658.7119 4540 4521 -97205456.75096 4541 4521 -4.738569259644e-06 4542 4521 -422227983.6709 4543 4521 -5136049.023845 4544 4521 -1.072883605957e-06 4545 4521 85600144.70804 4546 4521 -16771033.13002 4547 4521 -1.192092895508e-06 4548 4521 -156881939.5358 4549 4521 98545423.0995 4550 4521 5.125999450684e-06 4611 4521 -8767515.558542 4612 4521 29166666.38458 4613 4521 27030832.75893 4629 4521 -25967702.04296 4630 4521 -23360508.49098 4631 4521 -21679166.091 4632 4521 119740849.7094 4633 4521 -664378.9397368 4634 4521 17135277.77496 4650 4521 -45870736.57861 4651 4521 -24301364.19971 4652 4521 -21679166.67379 4653 4521 -141002035.2671 4654 4521 -1284012.2566 4655 4521 -85676388.87482 4656 4521 4511607.610493 4657 4521 -4192758.28457 4658 4521 3215972.223778 4659 4521 -47751770.62455 4660 4521 24636355.78701 4661 4521 -21159027.78473 4522 4522 904404472.7405 4523 4522 2.038478851318e-05 4539 4522 -97205456.75096 4540 4522 -119802374.1365 4541 4522 -4.91738319397e-07 4542 4522 -5136049.023844 4543 4522 9983783.088479 4544 4522 1.126527786255e-05 4545 4522 22117855.75248 4546 4522 -98572068.66136 4547 4522 -3.457069396973e-06 4548 4522 98545423.09949 4549 4522 -123363044.4243 4550 4522 -7.003545761108e-07 4611 4522 19444444.25639 4612 4522 -7306349.825739 4613 4522 -13062499.95656 4629 4522 -23360508.5882 4630 4522 -110980197.151 4631 4522 -69374999.4742 4632 4522 -664378.939739 4633 4522 126264245.7775 4634 4522 7208333.185862 4650 4522 -24301364.19971 4651 4522 -39232415.43151 4652 4522 -17343750.0057 4653 4522 -1284012.256601 4654 4522 -32949093.52409 4655 4522 -677083.3331589 4656 4522 5529463.940844 4657 4522 -41531445.75453 4658 4522 33333333.32786 4659 4522 24636355.78701 4660 4522 -39372046.84255 4661 4522 16666666.67214 4523 4523 768562010.6434 4539 4523 -4.708766937256e-06 4540 4523 -5.811452865601e-07 4541 4523 -46336936.97172 4542 4523 -1.251697540283e-06 4543 4523 1.132488250732e-05 4544 4523 -12181640.54617 4545 4523 4.768371582031e-07 4546 4523 -3.576278686523e-06 4547 4523 44227455.09152 4548 4523 4.827976226807e-06 4549 4523 -7.301568984985e-07 4550 4523 -52301561.2662 4611 4523 18020555.17262 4612 4523 -20270833.25379 4613 4523 -24841207.22225 4629 4523 -21679166.28526 4630 4523 -69374999.59698 4631 4523 -84314737.28063 4632 4523 -17135277.77496 4633 4523 -7208333.185871 4634 4523 -74091157.29507 4650 4523 -21679166.67379 4651 4523 -17343750.0057 4652 4523 -36335759.26896 4653 4523 -85676388.87481 4654 4523 -677083.3332923 4655 4523 -97565514.93122 4656 4523 -4909027.779057 4657 4523 33333333.32786 4658 4523 -33978945.7605 4659 4523 -21159027.78473 4660 4523 16666666.67214 4661 4523 -35825485.57976 4524 4524 741974947.0469 4525 4524 5.006790161133e-06 4526 4524 -2.908706665039e-05 4527 4524 92161150.94322 4528 4524 19444444.44125 4529 4524 -7.271766662598e-06 4614 4524 -138827443.8752 4615 4524 2.682209014893e-07 4616 4524 86719444.4302 4617 4524 -46373434.23614 4618 4524 -24305555.56354 4619 4524 21679861.11823 4635 4524 111237115.4367 4636 4524 -8.344650268555e-07 4637 4524 -17343888.88603 4638 4524 4476132.383917 4639 4524 4861111.1127 4640 4524 -4335972.223642 4525 4525 625304024.3239 4526 4525 6.198883056641e-06 4527 4525 -19444444.44125 4528 4525 -92560889.60172 4529 4525 2.32458114624e-06 4614 4525 -2.294778823853e-06 4615 4525 -31882558.21685 4616 4525 2.682209014893e-07 4617 4525 -24305555.56354 4618 4525 -39081501.55876 4619 4525 17343750.0057 4635 4525 -7.152557373047e-07 4636 4525 82069384.74161 4637 4525 -3.75509262085e-06 4638 4525 -4861111.112713 4639 4525 -41704377.77507 4640 4525 34687499.9943 4526 4526 582912992.1231 4527 4526 -7.271766662598e-06 4528 4526 1.877546310425e-06 4529 4526 52395662.19267 4614 4526 86719444.4302 4615 4526 3.427267074585e-07 4616 4526 -99061955.12464 4617 4526 21679861.11823 4618 4526 17343750.0057 4619 4526 -36432062.04359 4635 4526 17343888.88605 4636 4526 -3.576278686523e-06 4637 4526 -52289409.00778 4638 4526 4335972.22365 4639 4526 34687499.9943 4640 4526 -36405498.74735 4527 4527 741974947.0469 4528 4527 5.006790161133e-06 4529 4527 -2.908706665039e-05 4530 4527 92161150.94322 4531 4527 19444444.44125 4532 4527 -7.271766662598e-06 4614 4527 -46373434.23613 4615 4527 24305555.56354 4616 4527 21679861.11823 4617 4527 -138827443.8752 4618 4527 2.682209014893e-07 4619 4527 86719444.4302 4620 4527 -46373434.23614 4621 4527 -24305555.56354 4622 4527 21679861.11823 4635 4527 4476132.383914 4636 4527 -4861111.112702 4637 4527 -4335972.223643 4638 4527 111237115.4367 4639 4527 -8.344650268555e-07 4640 4527 -17343888.88603 4641 4527 4476132.383917 4642 4527 4861111.1127 4643 4527 -4335972.223642 4528 4528 625304024.3239 4529 4528 6.198883056641e-06 4530 4528 -19444444.44125 4531 4528 -92560889.60172 4532 4528 2.32458114624e-06 4614 4528 24305555.56354 4615 4528 -39081501.55876 4616 4528 -17343750.00569 4617 4528 -2.294778823853e-06 4618 4528 -31882558.21685 4619 4528 2.682209014893e-07 4620 4528 -24305555.56354 4621 4528 -39081501.55876 4622 4528 17343750.0057 4635 4528 4861111.112712 4636 4528 -41704377.77507 4637 4528 -34687499.9943 4638 4528 -7.152557373047e-07 4639 4528 82069384.74161 4640 4528 -3.75509262085e-06 4641 4528 -4861111.112713 4642 4528 -41704377.77507 4643 4528 34687499.9943 4529 4529 582912992.1231 4530 4529 -7.271766662598e-06 4531 4529 1.877546310425e-06 4532 4529 52395662.19267 4614 4529 21679861.11823 4615 4529 -17343750.0057 4616 4529 -36432062.04359 4617 4529 86719444.4302 4618 4529 3.427267074585e-07 4619 4529 -99061955.12464 4620 4529 21679861.11823 4621 4529 17343750.0057 4622 4529 -36432062.04359 4635 4529 4335972.223649 4636 4529 -34687499.9943 4637 4529 -36405498.74736 4638 4529 17343888.88605 4639 4529 -3.576278686523e-06 4640 4529 -52289409.00778 4641 4529 4335972.22365 4642 4529 34687499.9943 4643 4529 -36405498.74735 4530 4530 741974947.0469 4531 4530 5.006790161133e-06 4532 4530 -2.908706665039e-05 4533 4530 92161150.94322 4534 4530 19444444.44125 4535 4530 -7.271766662598e-06 4617 4530 -46373434.23613 4618 4530 24305555.56354 4619 4530 21679861.11823 4620 4530 -138827443.8752 4621 4530 2.682209014893e-07 4622 4530 86719444.4302 4623 4530 -46373434.23614 4624 4530 -24305555.56354 4625 4530 21679861.11823 4638 4530 4476132.383914 4639 4530 -4861111.112702 4640 4530 -4335972.223643 4641 4530 111237115.4367 4642 4530 -8.344650268555e-07 4643 4530 -17343888.88603 4644 4530 4476132.383917 4645 4530 4861111.1127 4646 4530 -4335972.223642 4531 4531 625304024.3239 4532 4531 6.198883056641e-06 4533 4531 -19444444.44125 4534 4531 -92560889.60172 4535 4531 2.32458114624e-06 4617 4531 24305555.56354 4618 4531 -39081501.55876 4619 4531 -17343750.00569 4620 4531 -2.294778823853e-06 4621 4531 -31882558.21685 4622 4531 2.682209014893e-07 4623 4531 -24305555.56354 4624 4531 -39081501.55876 4625 4531 17343750.0057 4638 4531 4861111.112712 4639 4531 -41704377.77507 4640 4531 -34687499.9943 4641 4531 -7.152557373047e-07 4642 4531 82069384.74161 4643 4531 -3.75509262085e-06 4644 4531 -4861111.112713 4645 4531 -41704377.77507 4646 4531 34687499.9943 4532 4532 582912992.1231 4533 4532 -7.271766662598e-06 4534 4532 1.877546310425e-06 4535 4532 52395662.19267 4617 4532 21679861.11823 4618 4532 -17343750.0057 4619 4532 -36432062.04359 4620 4532 86719444.4302 4621 4532 3.427267074585e-07 4622 4532 -99061955.12464 4623 4532 21679861.11823 4624 4532 17343750.0057 4625 4532 -36432062.04359 4638 4532 4335972.223649 4639 4532 -34687499.9943 4640 4532 -36405498.74736 4641 4532 17343888.88605 4642 4532 -3.576278686523e-06 4643 4532 -52289409.00778 4644 4532 4335972.22365 4645 4532 34687499.9943 4646 4532 -36405498.74735 4533 4533 741974947.0469 4534 4533 5.006790161133e-06 4535 4533 -2.908706665039e-05 4536 4533 92161150.94322 4537 4533 19444444.44125 4538 4533 -7.271766662598e-06 4620 4533 -46373434.23613 4621 4533 24305555.56354 4622 4533 21679861.11823 4623 4533 -138827443.8752 4624 4533 2.682209014893e-07 4625 4533 86719444.4302 4626 4533 -46373434.23614 4627 4533 -24305555.56354 4628 4533 21679861.11823 4641 4533 4476132.383914 4642 4533 -4861111.112702 4643 4533 -4335972.223643 4644 4533 111237115.4367 4645 4533 -8.344650268555e-07 4646 4533 -17343888.88603 4647 4533 4476132.383917 4648 4533 4861111.1127 4649 4533 -4335972.223642 4534 4534 625304024.3239 4535 4534 6.198883056641e-06 4536 4534 -19444444.44125 4537 4534 -92560889.60172 4538 4534 2.32458114624e-06 4620 4534 24305555.56354 4621 4534 -39081501.55876 4622 4534 -17343750.00569 4623 4534 -2.294778823853e-06 4624 4534 -31882558.21685 4625 4534 2.682209014893e-07 4626 4534 -24305555.56354 4627 4534 -39081501.55876 4628 4534 17343750.0057 4641 4534 4861111.112712 4642 4534 -41704377.77507 4643 4534 -34687499.9943 4644 4534 -7.152557373047e-07 4645 4534 82069384.74161 4646 4534 -3.75509262085e-06 4647 4534 -4861111.112713 4648 4534 -41704377.77507 4649 4534 34687499.9943 4535 4535 582912992.1231 4536 4535 -7.271766662598e-06 4537 4535 1.877546310425e-06 4538 4535 52395662.19267 4620 4535 21679861.11823 4621 4535 -17343750.0057 4622 4535 -36432062.04359 4623 4535 86719444.4302 4624 4535 3.427267074585e-07 4625 4535 -99061955.12464 4626 4535 21679861.11823 4627 4535 17343750.0057 4628 4535 -36432062.04359 4641 4535 4335972.223649 4642 4535 -34687499.9943 4643 4535 -36405498.74736 4644 4535 17343888.88605 4645 4535 -3.576278686523e-06 4646 4535 -52289409.00778 4647 4535 4335972.22365 4648 4535 34687499.9943 4649 4535 -36405498.74735 4536 4536 741974947.0469 4537 4536 5.006790161133e-06 4538 4536 -2.908706665039e-05 4539 4536 92161150.94322 4540 4536 19444444.44125 4541 4536 -7.271766662598e-06 4623 4536 -46373434.23613 4624 4536 24305555.56354 4625 4536 21679861.11823 4626 4536 -138827443.8752 4627 4536 2.682209014893e-07 4628 4536 86719444.4302 4629 4536 -46373434.23614 4630 4536 -24305555.56354 4631 4536 21679861.11823 4644 4536 4476132.383914 4645 4536 -4861111.112702 4646 4536 -4335972.223643 4647 4536 111237115.4367 4648 4536 -8.344650268555e-07 4649 4536 -17343888.88603 4650 4536 4476132.383917 4651 4536 4861111.1127 4652 4536 -4335972.223642 4537 4537 625304024.3239 4538 4537 6.198883056641e-06 4539 4537 -19444444.44125 4540 4537 -92560889.60172 4541 4537 2.32458114624e-06 4623 4537 24305555.56354 4624 4537 -39081501.55876 4625 4537 -17343750.00569 4626 4537 -2.294778823853e-06 4627 4537 -31882558.21685 4628 4537 2.682209014893e-07 4629 4537 -24305555.56354 4630 4537 -39081501.55876 4631 4537 17343750.0057 4644 4537 4861111.112712 4645 4537 -41704377.77507 4646 4537 -34687499.9943 4647 4537 -7.152557373047e-07 4648 4537 82069384.74161 4649 4537 -3.75509262085e-06 4650 4537 -4861111.112713 4651 4537 -41704377.77507 4652 4537 34687499.9943 4538 4538 582912992.1231 4539 4538 -7.271766662598e-06 4540 4538 1.877546310425e-06 4541 4538 52395662.19267 4623 4538 21679861.11823 4624 4538 -17343750.0057 4625 4538 -36432062.04359 4626 4538 86719444.4302 4627 4538 3.427267074585e-07 4628 4538 -99061955.12464 4629 4538 21679861.11823 4630 4538 17343750.0057 4631 4538 -36432062.04359 4644 4538 4335972.223649 4645 4538 -34687499.9943 4646 4538 -36405498.74736 4647 4538 17343888.88605 4648 4538 -3.576278686523e-06 4649 4538 -52289409.00778 4650 4538 4335972.22365 4651 4538 34687499.9943 4652 4538 -36405498.74735 4539 4539 743972693.3092 4540 4539 15895.84580326 4541 4539 -1.50203704834e-05 4542 4539 96103889.5723 4543 4539 23223356.21638 4544 4539 1.668930053711e-06 4626 4539 -46373434.23613 4627 4539 24305555.56354 4628 4539 21679861.11823 4629 4539 -140996480.167 4630 4539 -952893.2695162 4631 4539 87564583.31904 4632 4539 -45870736.57861 4633 4539 -24301364.19971 4634 4539 21679166.67379 4647 4539 4476132.383914 4648 4539 -4861111.112702 4649 4539 -4335972.223643 4650 4539 111737658.2526 4651 4539 3973.961447597 4652 4539 -17343611.10825 4653 4539 5643546.0595 4654 4539 5805839.056953 4655 4539 -5182361.11248 4540 4540 624700330.4184 4541 4540 1.788139343262e-05 4542 4540 -15665532.66612 4543 4540 -87045539.95468 4544 4540 5.960464477539e-07 4626 4540 24305555.56354 4627 4540 -39081501.55876 4628 4540 -17343750.00569 4629 4540 -952893.2695182 4630 4540 -33140775.69076 4631 4540 677083.3332871 4632 4540 -24301364.19971 4633 4540 -39232415.4315 4634 4540 17343750.00569 4647 4540 4861111.112712 4648 4540 -41704377.77507 4649 4540 -34687499.9943 4650 4540 3973.961447477 4651 4540 81919567.51516 4652 4540 -6.735324859619e-06 4653 4540 -3916383.16846 4654 4540 -40143811.34479 4655 4540 34010416.66101 4541 4541 583290059.4325 4542 4541 -1.192092895508e-07 4543 4541 7.748603820801e-07 4544 4541 54461159.75298 4626 4541 21679861.11823 4627 4541 -17343750.0057 4628 4541 -36432062.04359 4629 4541 87564583.31887 4630 4541 677083.3331537 4631 4541 -100252145.5455 4632 4541 21679166.67379 4633 4541 17343750.00569 4634 4541 -36335759.26895 4647 4541 4335972.223649 4648 4541 -34687499.9943 4649 4541 -36405498.74736 4650 4541 17343611.10827 4651 4541 -6.496906280518e-06 4652 4541 -52192192.18038 4653 4541 3489305.557201 4654 4541 34010416.66114 4655 4541 -35404513.64281 4542 4542 745987487.9303 4543 4542 -2453991.979033 4544 4542 -1.192092895508e-06 4545 4542 -141080087.6865 4546 4542 -95899021.31303 4547 4542 -4.440546035767e-06 4548 4542 92610986.19901 4549 4542 22063836.70035 4550 4542 1.54972076416e-06 4629 4542 -48879322.66664 4630 4542 24272689.58238 4631 4542 22525694.45184 4632 4542 -141002035.2671 4633 4542 -1284012.256585 4634 4542 85676388.87482 4650 4542 5643546.05949 4651 4542 -3916383.16846 4652 4542 -3489305.557201 4653 4542 115620942.6216 4654 4542 -613497.9950627 4655 4542 -17135277.77496 4656 4542 -43801307.66029 4657 4542 -23974755.34006 4658 4542 20312500.00667 4659 4542 5916032.26987 4660 4542 5515959.177802 4661 4542 -5078333.334501 4543 4543 616411761.6305 4544 4543 2.765655517578e-05 4545 4543 -95899021.31303 4546 4543 -117437349.9808 4547 4543 -9.536743164063e-07 4548 4543 -16825052.18215 4549 4543 -92728025.5149 4550 4543 3.576278686523e-07 4629 4543 24272689.58238 4630 4543 -38326906.89252 4631 4543 -16666666.67214 4632 4543 -1284012.256586 4633 4543 -32949093.52409 4634 4543 677083.333285 4650 4543 5805839.056955 4651 4543 -40143811.34481 4652 4543 -34010416.66115 4653 4543 -613497.9950588 4654 4543 83227011.03069 4655 4543 -1.034140586853e-05 4656 4543 -23974755.34006 4657 4543 -37890623.23096 4658 4543 16666666.67214 4659 4543 -4206263.047611 4660 4543 -40418720.68142 4661 4543 33333333.32786 4544 4544 572020605.8755 4545 4544 -4.291534423828e-06 4546 4544 -8.79168510437e-07 4547 4544 -46375866.82273 4548 4544 -3.576278686523e-07 4549 4544 3.278255462646e-07 4550 4544 48718383.22464 4629 4544 22525694.45184 4630 4544 -16666666.67214 4631 4544 -36909325.87324 4632 4544 85676388.87482 4633 4544 677083.3331516 4634 4544 -97565514.93122 4650 4544 5182361.11248 4651 4544 -34010416.66102 4652 4544 -35404513.64282 4653 4544 17135277.77496 4654 4544 -1.025199890137e-05 4655 4544 -45997327.00157 4656 4544 20312500.00667 4657 4544 16666666.67214 4658 4544 -34344061.96817 4659 4544 3385277.779223 4660 4544 33333333.32786 4661 4544 -33784975.63128 4545 4545 361120236.1713 4546 4545 94548810.89503 4547 4545 5.722045898438e-06 4548 4545 -203961436.0496 4549 4545 -20767645.33449 4550 4545 -2.413988113403e-06 4632 4545 4511607.610489 4633 4545 5529463.940845 4634 4545 4909027.779056 4653 4545 -43801307.66029 4654 4545 -23974755.34007 4655 4545 -20312500.00667 4656 4545 56503201.94982 4657 4545 23637202.7354 4658 4545 8124999.998666 4659 4545 -68052930.47167 4660 4545 -5191911.336183 4661 4545 -41471527.77105 4546 4546 308313282.913 4547 4546 9.775161743164e-06 4548 4546 18121243.54801 4549 4546 9374992.872524 4550 4546 5.900859832764e-06 4632 4546 -4192758.28457 4633 4546 -41531445.75454 4634 4546 -33333333.32786 4653 4546 -23974755.34007 4654 4546 -37890623.23096 4655 4546 -16666666.67214 4656 4546 23637202.7354 4657 4546 43301463.62873 4658 4546 6666666.665569 4659 4546 4530310.889231 4660 4546 -14718823.21489 4661 4546 3333333.334426 4547 4547 278103282.9517 4548 4547 -2.98023223877e-07 4549 4547 5.781650543213e-06 4550 4547 -4811252.171681 4632 4547 -3215972.223779 4633 4547 -33333333.32786 4634 4547 -33978945.7605 4653 4547 -20312500.00667 4654 4547 -16666666.67214 4655 4547 -34344061.96817 4656 4547 -8124999.998665 4657 4547 -6666666.665574 4658 4547 -20545798.26111 4659 4547 -41471527.77088 4660 4547 -3333333.33443 4661 4547 -46703003.53464 4548 4548 371304389.3859 4549 4548 -99841614.46535 4550 4548 -4.52995300293e-06 4632 4548 -47751770.62456 4633 4548 24636355.78701 4634 4548 21159027.78473 4653 4548 5916032.269863 4654 4548 -4206263.047612 4655 4548 -3385277.779223 4656 4548 -68052930.47167 4657 4548 4530310.889239 4658 4548 41471527.77088 4659 4548 58352668.82659 4660 4548 -24960403.62863 4661 4548 -8463611.10972 4549 4549 309788077.0662 4550 4549 1.430511474609e-05 4632 4549 24636355.78701 4633 4549 -39372046.84256 4634 4549 -16666666.67214 4653 4549 5515959.177803 4654 4549 -40418720.68144 4655 4549 -33333333.32786 4656 4549 -5191911.336175 4657 4549 -14718823.21489 4658 4549 3333333.334426 4659 4549 -24960403.62863 4660 4549 42973590.7391 4661 4549 6666666.665565 4550 4550 283253096.8786 4632 4550 21159027.78473 4633 4550 -16666666.67214 4634 4550 -35825485.57977 4653 4550 5078333.334501 4654 4550 -33333333.32786 4655 4550 -33784975.63128 4656 4550 41471527.77105 4657 4550 -3333333.33443 4658 4550 -46703003.53464 4659 4550 8463611.109722 4660 4550 -6666666.665577 4661 4550 -21115868.58705 4551 4551 927468678.158 4552 4551 97222222.20623 4553 4551 -8.106231689453e-06 4554 4551 -573726109.9308 4555 4551 -97222221.42845 4556 4551 8.940696716309e-07 4557 4551 18564155.00999 4558 4551 77777776.9872 4559 4551 2.861022949219e-06 4662 4551 139046393.5639 4663 4551 24305555.56354 4664 4551 17343888.84952 4665 4551 -175918799.4896 4666 4551 -24305555.36909 4667 4551 -86719444.24762 4668 4551 -9282077.505002 4669 4551 19444444.25638 4670 4551 -17343888.52033 4552 4552 781630025.6149 4553 4552 8.412431954121e-06 4554 4552 -97222221.03956 4555 4552 -116778839.2437 4556 4552 5.602836608887e-06 4557 4552 116666665.4808 4558 4552 18564155.00998 4559 4552 5.960464477539e-07 4662 4552 24305555.56354 4663 4552 102586730.4102 4664 4552 13874999.85143 4665 4552 -24305555.27187 4666 4552 -61681981.76159 4667 4552 -17343749.90781 4668 4552 29166666.38457 4669 4552 -9282077.504995 4670 4552 20812499.90894 4553 4553 728641235.3813 4554 4553 4.172325134277e-07 4555 4553 4.887580871582e-06 4556 4553 -96436338.25295 4557 4553 2.503395080566e-06 4558 4553 1.251697540283e-06 4559 4553 49504413.35998 4662 4553 -17343888.84952 4663 4553 -13874999.85144 4664 4553 -65361760.6378 4665 4553 -86719444.24762 4666 4553 -17343749.94044 4667 4553 -110741809.7386 4668 4553 -26015832.7805 4669 4553 13874999.9393 4670 4553 -24752206.67999 4554 4554 1632315315.374 4555 4554 97222220.26178 4556 4554 -4.172325134277e-05 4557 4554 17392720.97666 4558 4554 -97222221.42845 4559 4554 -2.145767211914e-06 4560 4554 -406796532.3944 4561 4554 -2.801418304443e-06 4562 4554 -1.233816146851e-05 4563 4554 -148365426.1266 4564 4554 97222222.20624 4565 4554 -3.308057785034e-06 4662 4554 -175918799.4897 4663 4554 -24305555.27186 4664 4554 86719444.24762 4665 4554 268847663.9159 4666 4554 24305555.07742 4667 4554 0.03653132915497 4668 4554 -28139091.37671 4669 4554 -24305555.36909 4670 4554 21679860.74398 4671 4554 -138827443.8751 4672 4554 -5.066394805908e-07 4673 4554 -86719444.43019 4674 4554 -46373434.23611 4675 4554 24305555.56353 4676 4554 -21679861.11823 4555 4555 1369805740.108 4556 4555 -2.145767211914e-06 4557 4555 -97222221.03956 4558 4555 -322883627.8625 4559 4555 4.798173904419e-06 4560 4555 -3.09944152832e-06 4561 4555 20983010.02827 4562 4555 -4.768371582031e-07 4563 4555 97222222.20624 4564 4555 -119197695.4315 4565 4555 -7.450580596924e-08 4662 4555 -24305555.36908 4663 4555 -61681981.7616 4664 4555 17343749.94043 4665 4555 24305555.07742 4666 4555 203220270.0671 4667 4555 0.02920919656754 4668 4555 -24305555.27186 4669 4555 -113208178.6284 4670 4555 69374999.6084 4671 4555 -8.344650268555e-07 4672 4555 -31882558.21681 4673 4555 -3.278255462646e-07 4674 4555 24305555.56353 4675 4555 -39081501.55875 4676 4555 17343750.00569 4556 4556 1212545401.289 4557 4556 -1.788139343262e-06 4558 4556 3.75509262085e-06 4559 4556 8567490.576108 4560 4556 -1.20997428894e-05 4561 4556 -4.768371582031e-07 4562 4556 -212506.0825927 4563 4556 -3.278255462646e-06 4564 4556 -2.086162567139e-07 4565 4556 -46719419.49861 4662 4556 86719444.24762 4663 4556 17343749.9078 4664 4556 -110741809.7386 4665 4556 -0.03649973869324 4666 4556 -0.02921465039253 4667 4556 -68146756.53808 4668 4556 21679860.55685 4669 4556 69374999.49133 4670 4556 -84490851.68298 4671 4556 -86719444.43019 4672 4556 -2.682209014893e-07 4673 4556 -99061955.12461 4674 4556 -21679861.11823 4675 4556 17343750.00569 4676 4556 -36432062.04358 4557 4557 927468678.158 4558 4557 97222222.20623 4559 4557 -8.106231689453e-06 4560 4557 -148365426.1266 4561 4557 -97222222.20624 4562 4557 -3.039836883545e-06 4563 4557 -573726109.9308 4564 4557 -97222221.42845 4565 4557 8.940696716309e-07 4566 4557 18564155.00999 4567 4557 77777776.9872 4568 4557 2.861022949219e-06 4662 4557 -9282077.50499 4663 4557 29166666.38457 4664 4557 26015832.78049 4665 4557 -28139091.37673 4666 4557 -24305555.27187 4667 4557 -21679860.55685 4668 4557 139046393.5639 4669 4557 24305555.56354 4670 4557 17343888.84952 4671 4557 -46373434.23611 4672 4557 -24305555.56353 4673 4557 -21679861.11823 4674 4557 -175918799.4896 4675 4557 -24305555.36909 4676 4557 -86719444.24762 4677 4557 -9282077.505002 4678 4557 19444444.25638 4679 4557 -17343888.52033 4558 4558 781630025.6149 4559 4558 8.412431954121e-06 4560 4558 -97222222.20624 4561 4558 -119197695.4315 4562 4558 2.831220626831e-07 4563 4558 -97222221.03956 4564 4558 -116778839.2437 4565 4558 5.602836608887e-06 4566 4558 116666665.4808 4567 4558 18564155.00998 4568 4558 5.960464477539e-07 4662 4558 19444444.25638 4663 4558 -9282077.505 4664 4558 -13874999.9393 4665 4558 -24305555.36909 4666 4558 -113208178.6284 4667 4558 -69374999.49133 4668 4558 24305555.56354 4669 4558 102586730.4102 4670 4558 13874999.85143 4671 4558 -24305555.56353 4672 4558 -39081501.55875 4673 4558 -17343750.0057 4674 4558 -24305555.27187 4675 4558 -61681981.76159 4676 4558 -17343749.90781 4677 4558 29166666.38457 4678 4558 -9282077.504995 4679 4558 20812499.90894 4559 4559 728641235.3813 4560 4559 -2.890825271606e-06 4561 4559 3.8743019104e-07 4562 4559 -46719419.49861 4563 4559 4.172325134277e-07 4564 4559 4.887580871582e-06 4565 4559 -96436338.25295 4566 4559 2.503395080566e-06 4567 4559 1.251697540283e-06 4568 4559 49504413.35998 4662 4559 17343888.52033 4663 4559 -20812499.90895 4664 4559 -24752206.67999 4665 4559 -21679860.74398 4666 4559 -69374999.6084 4667 4559 -84490851.68299 4668 4559 -17343888.84952 4669 4559 -13874999.85144 4670 4559 -65361760.6378 4671 4559 -21679861.11823 4672 4559 -17343750.0057 4673 4559 -36432062.04358 4674 4559 -86719444.24762 4675 4559 -17343749.94044 4676 4559 -110741809.7386 4677 4559 -26015832.7805 4678 4559 13874999.9393 4679 4559 -24752206.67999 4560 4560 1483949894.094 4561 4560 7.867813110352e-06 4562 4560 -5.507469177246e-05 4563 4560 184322301.8864 4564 4560 -2.622604370117e-06 4565 4560 -1.358985900879e-05 4569 4560 -406796532.3944 4570 4560 -2.801418304443e-06 4571 4560 -1.233816146851e-05 4572 4560 -148365426.1266 4573 4560 97222222.20624 4574 4560 -3.308057785034e-06 4665 4560 -138827443.8752 4666 4560 2.682209014893e-07 4667 4560 86719444.4302 4668 4560 -46373434.23614 4669 4560 -24305555.56354 4670 4560 21679861.11823 4671 4560 222474230.8735 4672 4560 3.933906555176e-06 4673 4560 2.622604370117e-05 4674 4560 8952264.76783 4675 4560 -1.302361488342e-05 4676 4560 6.914138793945e-06 4680 4560 -138827443.8751 4681 4560 -5.066394805908e-07 4682 4560 -86719444.43019 4683 4560 -46373434.23611 4684 4560 24305555.56353 4685 4560 -21679861.11823 4561 4561 1250608048.648 4562 4561 -1.192092895508e-06 4563 4561 -3.159046173096e-06 4564 4561 -185121779.2034 4565 4561 8.046627044678e-07 4569 4561 -3.09944152832e-06 4570 4561 20983010.02827 4571 4561 -4.768371582031e-07 4572 4561 97222222.20624 4573 4561 -119197695.4315 4574 4561 -7.450580596924e-08 4665 4561 -2.294778823853e-06 4666 4561 -31882558.21685 4667 4561 2.682209014893e-07 4668 4561 -24305555.56354 4669 4561 -39081501.55876 4670 4561 17343750.0057 4671 4561 4.410743713379e-06 4672 4561 164138769.4832 4673 4561 -1.192092895508e-07 4674 4561 -1.156330108643e-05 4675 4561 -83408755.55014 4676 4561 69374999.9886 4680 4561 -8.344650268555e-07 4681 4561 -31882558.21681 4682 4561 -3.278255462646e-07 4683 4561 24305555.56353 4684 4561 -39081501.55875 4685 4561 17343750.00569 4562 4562 1165825984.246 4563 4562 -1.382827758789e-05 4564 4562 1.788139343262e-07 4565 4562 104791324.3853 4569 4562 -1.20997428894e-05 4570 4562 -4.768371582031e-07 4571 4562 -212506.0825927 4572 4562 -3.278255462646e-06 4573 4562 -2.086162567139e-07 4574 4562 -46719419.49861 4665 4562 86719444.4302 4666 4562 3.427267074585e-07 4667 4562 -99061955.12464 4668 4562 21679861.11823 4669 4562 17343750.0057 4670 4562 -36432062.04359 4671 4562 2.598762512207e-05 4672 4562 5.960464477539e-08 4673 4562 -104578818.0156 4674 4562 6.973743438721e-06 4675 4562 69374999.9886 4676 4562 -72810997.49471 4680 4562 -86719444.43019 4681 4562 -2.682209014893e-07 4682 4562 -99061955.12461 4683 4562 -21679861.11823 4684 4562 17343750.00569 4685 4562 -36432062.04358 4563 4563 1632315315.374 4564 4563 97222220.26178 4565 4563 -4.172325134277e-05 4566 4563 17392720.97666 4567 4563 -97222221.42845 4568 4563 -2.145767211914e-06 4569 4563 -148365426.1266 4570 4563 -97222222.20624 4571 4563 -3.039836883545e-06 4572 4563 -406796532.3944 4573 4563 -2.801418304443e-06 4574 4563 -1.233816146851e-05 4575 4563 -148365426.1266 4576 4563 97222222.20624 4577 4563 -3.308057785034e-06 4665 4563 -46373434.23613 4666 4563 24305555.56354 4667 4563 21679861.11823 4668 4563 -175918799.4897 4669 4563 -24305555.27186 4670 4563 86719444.24762 4671 4563 8952264.76783 4672 4563 9.298324584961e-06 4673 4563 6.228685379028e-06 4674 4563 268847663.9159 4675 4563 24305555.07742 4676 4563 0.03653132915497 4677 4563 -28139091.37671 4678 4563 -24305555.36909 4679 4563 21679860.74398 4680 4563 -46373434.23611 4681 4563 -24305555.56353 4682 4563 -21679861.11823 4683 4563 -138827443.8751 4684 4563 -5.066394805908e-07 4685 4563 -86719444.43019 4686 4563 -46373434.23611 4687 4563 24305555.56353 4688 4563 -21679861.11823 4564 4564 1369805740.108 4565 4564 -2.145767211914e-06 4566 4564 -97222221.03956 4567 4564 -322883627.8625 4568 4564 4.798173904419e-06 4569 4564 -97222222.20624 4570 4564 -119197695.4315 4571 4564 2.831220626831e-07 4572 4564 -3.09944152832e-06 4573 4564 20983010.02827 4574 4564 -4.768371582031e-07 4575 4564 97222222.20624 4576 4564 -119197695.4315 4577 4564 -7.450580596924e-08 4665 4564 24305555.56354 4666 4564 -39081501.55876 4667 4564 -17343750.00569 4668 4564 -24305555.36908 4669 4564 -61681981.7616 4670 4564 17343749.94043 4671 4564 1.069903373718e-05 4672 4564 -83408755.55014 4673 4564 -69374999.9886 4674 4564 24305555.07742 4675 4564 203220270.0671 4676 4564 0.02920919656754 4677 4564 -24305555.27186 4678 4564 -113208178.6284 4679 4564 69374999.6084 4680 4564 -24305555.56353 4681 4564 -39081501.55875 4682 4564 -17343750.0057 4683 4564 -8.344650268555e-07 4684 4564 -31882558.21681 4685 4564 -3.278255462646e-07 4686 4564 24305555.56353 4687 4564 -39081501.55875 4688 4564 17343750.00569 4565 4565 1212545401.289 4566 4565 -1.788139343262e-06 4567 4565 3.75509262085e-06 4568 4565 8567490.576108 4569 4565 -2.890825271606e-06 4570 4565 3.8743019104e-07 4571 4565 -46719419.49861 4572 4565 -1.20997428894e-05 4573 4565 -4.768371582031e-07 4574 4565 -212506.0825927 4575 4565 -3.278255462646e-06 4576 4565 -2.086162567139e-07 4577 4565 -46719419.49861 4665 4565 21679861.11823 4666 4565 -17343750.0057 4667 4565 -36432062.04359 4668 4565 86719444.24762 4669 4565 17343749.9078 4670 4565 -110741809.7386 4671 4565 6.169080734253e-06 4672 4565 -69374999.9886 4673 4565 -72810997.49471 4674 4565 -0.03649973869324 4675 4565 -0.02921465039253 4676 4565 -68146756.53808 4677 4565 21679860.55685 4678 4565 69374999.49133 4679 4565 -84490851.68298 4680 4565 -21679861.11823 4681 4565 -17343750.0057 4682 4565 -36432062.04358 4683 4565 -86719444.43019 4684 4565 -2.682209014893e-07 4685 4565 -99061955.12461 4686 4565 -21679861.11823 4687 4565 17343750.00569 4688 4565 -36432062.04358 4566 4566 927468678.158 4567 4566 97222222.20623 4568 4566 -8.106231689453e-06 4572 4566 -148365426.1266 4573 4566 -97222222.20624 4574 4566 -3.039836883545e-06 4575 4566 -573726109.9308 4576 4566 -97222221.42845 4577 4566 8.940696716309e-07 4578 4566 18564155.00999 4579 4566 77777776.9872 4580 4566 2.861022949219e-06 4668 4566 -9282077.50499 4669 4566 29166666.38457 4670 4566 26015832.78049 4674 4566 -28139091.37673 4675 4566 -24305555.27187 4676 4566 -21679860.55685 4677 4566 139046393.5639 4678 4566 24305555.56354 4679 4566 17343888.84952 4683 4566 -46373434.23611 4684 4566 -24305555.56353 4685 4566 -21679861.11823 4686 4566 -175918799.4896 4687 4566 -24305555.36909 4688 4566 -86719444.24762 4689 4566 -9282077.505002 4690 4566 19444444.25638 4691 4566 -17343888.52033 4567 4567 781630025.6149 4568 4567 8.412431954121e-06 4572 4567 -97222222.20624 4573 4567 -119197695.4315 4574 4567 2.831220626831e-07 4575 4567 -97222221.03956 4576 4567 -116778839.2437 4577 4567 5.602836608887e-06 4578 4567 116666665.4808 4579 4567 18564155.00998 4580 4567 5.960464477539e-07 4668 4567 19444444.25638 4669 4567 -9282077.505 4670 4567 -13874999.9393 4674 4567 -24305555.36909 4675 4567 -113208178.6284 4676 4567 -69374999.49133 4677 4567 24305555.56354 4678 4567 102586730.4102 4679 4567 13874999.85143 4683 4567 -24305555.56353 4684 4567 -39081501.55875 4685 4567 -17343750.0057 4686 4567 -24305555.27187 4687 4567 -61681981.76159 4688 4567 -17343749.90781 4689 4567 29166666.38457 4690 4567 -9282077.504995 4691 4567 20812499.90894 4568 4568 728641235.3813 4572 4568 -2.890825271606e-06 4573 4568 3.8743019104e-07 4574 4568 -46719419.49861 4575 4568 4.172325134277e-07 4576 4568 4.887580871582e-06 4577 4568 -96436338.25295 4578 4568 2.503395080566e-06 4579 4568 1.251697540283e-06 4580 4568 49504413.35998 4668 4568 17343888.52033 4669 4568 -20812499.90895 4670 4568 -24752206.67999 4674 4568 -21679860.74398 4675 4568 -69374999.6084 4676 4568 -84490851.68299 4677 4568 -17343888.84952 4678 4568 -13874999.85144 4679 4568 -65361760.6378 4683 4568 -21679861.11823 4684 4568 -17343750.0057 4685 4568 -36432062.04358 4686 4568 -86719444.24762 4687 4568 -17343749.94044 4688 4568 -110741809.7386 4689 4568 -26015832.7805 4690 4568 13874999.9393 4691 4568 -24752206.67999 4569 4569 1483949894.094 4570 4569 7.867813110352e-06 4571 4569 -5.507469177246e-05 4572 4569 184322301.8864 4573 4569 -2.622604370117e-06 4574 4569 -1.358985900879e-05 4581 4569 -406796532.3944 4582 4569 -2.801418304443e-06 4583 4569 -1.233816146851e-05 4584 4569 -148365426.1266 4585 4569 97222222.20624 4586 4569 -3.308057785034e-06 4671 4569 -138827443.8752 4672 4569 2.682209014893e-07 4673 4569 86719444.4302 4674 4569 -46373434.23614 4675 4569 -24305555.56354 4676 4569 21679861.11823 4680 4569 222474230.8735 4681 4569 3.933906555176e-06 4682 4569 2.622604370117e-05 4683 4569 8952264.76783 4684 4569 -1.302361488342e-05 4685 4569 6.914138793945e-06 4692 4569 -138827443.8751 4693 4569 -5.066394805908e-07 4694 4569 -86719444.43019 4695 4569 -46373434.23611 4696 4569 24305555.56353 4697 4569 -21679861.11823 4570 4570 1250608048.648 4571 4570 -1.192092895508e-06 4572 4570 -3.159046173096e-06 4573 4570 -185121779.2034 4574 4570 8.046627044678e-07 4581 4570 -3.09944152832e-06 4582 4570 20983010.02827 4583 4570 -4.768371582031e-07 4584 4570 97222222.20624 4585 4570 -119197695.4315 4586 4570 -7.450580596924e-08 4671 4570 -2.294778823853e-06 4672 4570 -31882558.21685 4673 4570 2.682209014893e-07 4674 4570 -24305555.56354 4675 4570 -39081501.55876 4676 4570 17343750.0057 4680 4570 4.410743713379e-06 4681 4570 164138769.4832 4682 4570 -1.192092895508e-07 4683 4570 -1.156330108643e-05 4684 4570 -83408755.55014 4685 4570 69374999.9886 4692 4570 -8.344650268555e-07 4693 4570 -31882558.21681 4694 4570 -3.278255462646e-07 4695 4570 24305555.56353 4696 4570 -39081501.55875 4697 4570 17343750.00569 4571 4571 1165825984.246 4572 4571 -1.382827758789e-05 4573 4571 1.788139343262e-07 4574 4571 104791324.3853 4581 4571 -1.20997428894e-05 4582 4571 -4.768371582031e-07 4583 4571 -212506.0825927 4584 4571 -3.278255462646e-06 4585 4571 -2.086162567139e-07 4586 4571 -46719419.49861 4671 4571 86719444.4302 4672 4571 3.427267074585e-07 4673 4571 -99061955.12464 4674 4571 21679861.11823 4675 4571 17343750.0057 4676 4571 -36432062.04359 4680 4571 2.598762512207e-05 4681 4571 5.960464477539e-08 4682 4571 -104578818.0156 4683 4571 6.973743438721e-06 4684 4571 69374999.9886 4685 4571 -72810997.49471 4692 4571 -86719444.43019 4693 4571 -2.682209014893e-07 4694 4571 -99061955.12461 4695 4571 -21679861.11823 4696 4571 17343750.00569 4697 4571 -36432062.04358 4572 4572 1483949894.094 4573 4572 7.867813110352e-06 4574 4572 -5.507469177246e-05 4575 4572 184322301.8864 4576 4572 -2.622604370117e-06 4577 4572 -1.358985900879e-05 4581 4572 -148365426.1266 4582 4572 -97222222.20624 4583 4572 -3.039836883545e-06 4584 4572 -406796532.3944 4585 4572 -2.801418304443e-06 4586 4572 -1.233816146851e-05 4587 4572 -148365426.1266 4588 4572 97222222.20624 4589 4572 -3.308057785034e-06 4671 4572 -46373434.23613 4672 4572 24305555.56354 4673 4572 21679861.11823 4674 4572 -138827443.8752 4675 4572 2.682209014893e-07 4676 4572 86719444.4302 4677 4572 -46373434.23614 4678 4572 -24305555.56354 4679 4572 21679861.11823 4680 4572 8952264.76783 4681 4572 9.298324584961e-06 4682 4572 6.228685379028e-06 4683 4572 222474230.8735 4684 4572 3.933906555176e-06 4685 4572 2.622604370117e-05 4686 4572 8952264.76783 4687 4572 -1.302361488342e-05 4688 4572 6.914138793945e-06 4692 4572 -46373434.23611 4693 4572 -24305555.56353 4694 4572 -21679861.11823 4695 4572 -138827443.8751 4696 4572 -5.066394805908e-07 4697 4572 -86719444.43019 4698 4572 -46373434.23611 4699 4572 24305555.56353 4700 4572 -21679861.11823 4573 4573 1250608048.648 4574 4573 -1.192092895508e-06 4575 4573 -3.159046173096e-06 4576 4573 -185121779.2034 4577 4573 8.046627044678e-07 4581 4573 -97222222.20624 4582 4573 -119197695.4315 4583 4573 2.831220626831e-07 4584 4573 -3.09944152832e-06 4585 4573 20983010.02827 4586 4573 -4.768371582031e-07 4587 4573 97222222.20624 4588 4573 -119197695.4315 4589 4573 -7.450580596924e-08 4671 4573 24305555.56354 4672 4573 -39081501.55876 4673 4573 -17343750.00569 4674 4573 -2.294778823853e-06 4675 4573 -31882558.21685 4676 4573 2.682209014893e-07 4677 4573 -24305555.56354 4678 4573 -39081501.55876 4679 4573 17343750.0057 4680 4573 1.069903373718e-05 4681 4573 -83408755.55014 4682 4573 -69374999.9886 4683 4573 4.410743713379e-06 4684 4573 164138769.4832 4685 4573 -1.192092895508e-07 4686 4573 -1.156330108643e-05 4687 4573 -83408755.55014 4688 4573 69374999.9886 4692 4573 -24305555.56353 4693 4573 -39081501.55875 4694 4573 -17343750.0057 4695 4573 -8.344650268555e-07 4696 4573 -31882558.21681 4697 4573 -3.278255462646e-07 4698 4573 24305555.56353 4699 4573 -39081501.55875 4700 4573 17343750.00569 4574 4574 1165825984.246 4575 4574 -1.382827758789e-05 4576 4574 1.788139343262e-07 4577 4574 104791324.3853 4581 4574 -2.890825271606e-06 4582 4574 3.8743019104e-07 4583 4574 -46719419.49861 4584 4574 -1.20997428894e-05 4585 4574 -4.768371582031e-07 4586 4574 -212506.0825927 4587 4574 -3.278255462646e-06 4588 4574 -2.086162567139e-07 4589 4574 -46719419.49861 4671 4574 21679861.11823 4672 4574 -17343750.0057 4673 4574 -36432062.04359 4674 4574 86719444.4302 4675 4574 3.427267074585e-07 4676 4574 -99061955.12464 4677 4574 21679861.11823 4678 4574 17343750.0057 4679 4574 -36432062.04359 4680 4574 6.169080734253e-06 4681 4574 -69374999.9886 4682 4574 -72810997.49471 4683 4574 2.598762512207e-05 4684 4574 5.960464477539e-08 4685 4574 -104578818.0156 4686 4574 6.973743438721e-06 4687 4574 69374999.9886 4688 4574 -72810997.49471 4692 4574 -21679861.11823 4693 4574 -17343750.0057 4694 4574 -36432062.04358 4695 4574 -86719444.43019 4696 4574 -2.682209014893e-07 4697 4574 -99061955.12461 4698 4574 -21679861.11823 4699 4574 17343750.00569 4700 4574 -36432062.04358 4575 4575 1632315315.374 4576 4575 97222220.26178 4577 4575 -4.172325134277e-05 4578 4575 17392720.97666 4579 4575 -97222221.42845 4580 4575 -2.145767211914e-06 4584 4575 -148365426.1266 4585 4575 -97222222.20624 4586 4575 -3.039836883545e-06 4587 4575 -406796532.3944 4588 4575 -2.801418304443e-06 4589 4575 -1.233816146851e-05 4590 4575 -148365426.1266 4591 4575 97222222.20624 4592 4575 -3.308057785034e-06 4674 4575 -46373434.23613 4675 4575 24305555.56354 4676 4575 21679861.11823 4677 4575 -175918799.4897 4678 4575 -24305555.27186 4679 4575 86719444.24762 4683 4575 8952264.76783 4684 4575 9.298324584961e-06 4685 4575 6.228685379028e-06 4686 4575 268847663.9159 4687 4575 24305555.07742 4688 4575 0.03653132915497 4689 4575 -28139091.37671 4690 4575 -24305555.36909 4691 4575 21679860.74398 4695 4575 -46373434.23611 4696 4575 -24305555.56353 4697 4575 -21679861.11823 4698 4575 -138827443.8751 4699 4575 -5.066394805908e-07 4700 4575 -86719444.43019 4701 4575 -46373434.23611 4702 4575 24305555.56353 4703 4575 -21679861.11823 4576 4576 1369805740.108 4577 4576 -2.145767211914e-06 4578 4576 -97222221.03956 4579 4576 -322883627.8625 4580 4576 4.798173904419e-06 4584 4576 -97222222.20624 4585 4576 -119197695.4315 4586 4576 2.831220626831e-07 4587 4576 -3.09944152832e-06 4588 4576 20983010.02827 4589 4576 -4.768371582031e-07 4590 4576 97222222.20624 4591 4576 -119197695.4315 4592 4576 -7.450580596924e-08 4674 4576 24305555.56354 4675 4576 -39081501.55876 4676 4576 -17343750.00569 4677 4576 -24305555.36908 4678 4576 -61681981.7616 4679 4576 17343749.94043 4683 4576 1.069903373718e-05 4684 4576 -83408755.55014 4685 4576 -69374999.9886 4686 4576 24305555.07742 4687 4576 203220270.0671 4688 4576 0.02920919656754 4689 4576 -24305555.27186 4690 4576 -113208178.6284 4691 4576 69374999.6084 4695 4576 -24305555.56353 4696 4576 -39081501.55875 4697 4576 -17343750.0057 4698 4576 -8.344650268555e-07 4699 4576 -31882558.21681 4700 4576 -3.278255462646e-07 4701 4576 24305555.56353 4702 4576 -39081501.55875 4703 4576 17343750.00569 4577 4577 1212545401.289 4578 4577 -1.788139343262e-06 4579 4577 3.75509262085e-06 4580 4577 8567490.576108 4584 4577 -2.890825271606e-06 4585 4577 3.8743019104e-07 4586 4577 -46719419.49861 4587 4577 -1.20997428894e-05 4588 4577 -4.768371582031e-07 4589 4577 -212506.0825927 4590 4577 -3.278255462646e-06 4591 4577 -2.086162567139e-07 4592 4577 -46719419.49861 4674 4577 21679861.11823 4675 4577 -17343750.0057 4676 4577 -36432062.04359 4677 4577 86719444.24762 4678 4577 17343749.9078 4679 4577 -110741809.7386 4683 4577 6.169080734253e-06 4684 4577 -69374999.9886 4685 4577 -72810997.49471 4686 4577 -0.03649973869324 4687 4577 -0.02921465039253 4688 4577 -68146756.53808 4689 4577 21679860.55685 4690 4577 69374999.49133 4691 4577 -84490851.68298 4695 4577 -21679861.11823 4696 4577 -17343750.0057 4697 4577 -36432062.04358 4698 4577 -86719444.43019 4699 4577 -2.682209014893e-07 4700 4577 -99061955.12461 4701 4577 -21679861.11823 4702 4577 17343750.00569 4703 4577 -36432062.04358 4578 4578 927468678.158 4579 4578 97222222.20623 4580 4578 -8.106231689453e-06 4587 4578 -148365426.1266 4588 4578 -97222222.20624 4589 4578 -3.039836883545e-06 4590 4578 -573726109.9308 4591 4578 -97222221.42845 4592 4578 8.940696716309e-07 4593 4578 18564155.00999 4594 4578 77777776.9872 4595 4578 2.861022949219e-06 4677 4578 -9282077.50499 4678 4578 29166666.38457 4679 4578 26015832.78049 4686 4578 -28139091.37673 4687 4578 -24305555.27187 4688 4578 -21679860.55685 4689 4578 139046393.5639 4690 4578 24305555.56354 4691 4578 17343888.84952 4698 4578 -46373434.23611 4699 4578 -24305555.56353 4700 4578 -21679861.11823 4701 4578 -175918799.4896 4702 4578 -24305555.36909 4703 4578 -86719444.24762 4704 4578 -9282077.505002 4705 4578 19444444.25638 4706 4578 -17343888.52033 4579 4579 781630025.6149 4580 4579 8.412431954121e-06 4587 4579 -97222222.20624 4588 4579 -119197695.4315 4589 4579 2.831220626831e-07 4590 4579 -97222221.03956 4591 4579 -116778839.2437 4592 4579 5.602836608887e-06 4593 4579 116666665.4808 4594 4579 18564155.00998 4595 4579 5.960464477539e-07 4677 4579 19444444.25638 4678 4579 -9282077.505 4679 4579 -13874999.9393 4686 4579 -24305555.36909 4687 4579 -113208178.6284 4688 4579 -69374999.49133 4689 4579 24305555.56354 4690 4579 102586730.4102 4691 4579 13874999.85143 4698 4579 -24305555.56353 4699 4579 -39081501.55875 4700 4579 -17343750.0057 4701 4579 -24305555.27187 4702 4579 -61681981.76159 4703 4579 -17343749.90781 4704 4579 29166666.38457 4705 4579 -9282077.504995 4706 4579 20812499.90894 4580 4580 728641235.3813 4587 4580 -2.890825271606e-06 4588 4580 3.8743019104e-07 4589 4580 -46719419.49861 4590 4580 4.172325134277e-07 4591 4580 4.887580871582e-06 4592 4580 -96436338.25295 4593 4580 2.503395080566e-06 4594 4580 1.251697540283e-06 4595 4580 49504413.35998 4677 4580 17343888.52033 4678 4580 -20812499.90895 4679 4580 -24752206.67999 4686 4580 -21679860.74398 4687 4580 -69374999.6084 4688 4580 -84490851.68299 4689 4580 -17343888.84952 4690 4580 -13874999.85144 4691 4580 -65361760.6378 4698 4580 -21679861.11823 4699 4580 -17343750.0057 4700 4580 -36432062.04358 4701 4580 -86719444.24762 4702 4580 -17343749.94044 4703 4580 -110741809.7386 4704 4580 -26015832.7805 4705 4580 13874999.9393 4706 4580 -24752206.67999 4581 4581 1483949894.094 4582 4581 7.867813110352e-06 4583 4581 -5.507469177246e-05 4584 4581 184322301.8864 4585 4581 -2.622604370117e-06 4586 4581 -1.358985900879e-05 4596 4581 -406796532.3944 4597 4581 -2.801418304443e-06 4598 4581 -1.233816146851e-05 4599 4581 -148365426.1266 4600 4581 97222222.20624 4601 4581 -3.308057785034e-06 4680 4581 -138827443.8752 4681 4581 2.682209014893e-07 4682 4581 86719444.4302 4683 4581 -46373434.23614 4684 4581 -24305555.56354 4685 4581 21679861.11823 4692 4581 222474230.8735 4693 4581 3.933906555176e-06 4694 4581 2.622604370117e-05 4695 4581 8952264.76783 4696 4581 -1.302361488342e-05 4697 4581 6.914138793945e-06 4707 4581 -138827443.8751 4708 4581 -5.066394805908e-07 4709 4581 -86719444.43019 4710 4581 -46373434.23611 4711 4581 24305555.56353 4712 4581 -21679861.11823 4582 4582 1250608048.648 4583 4582 -1.192092895508e-06 4584 4582 -3.159046173096e-06 4585 4582 -185121779.2034 4586 4582 8.046627044678e-07 4596 4582 -3.09944152832e-06 4597 4582 20983010.02827 4598 4582 -4.768371582031e-07 4599 4582 97222222.20624 4600 4582 -119197695.4315 4601 4582 -7.450580596924e-08 4680 4582 -2.294778823853e-06 4681 4582 -31882558.21685 4682 4582 2.682209014893e-07 4683 4582 -24305555.56354 4684 4582 -39081501.55876 4685 4582 17343750.0057 4692 4582 4.410743713379e-06 4693 4582 164138769.4832 4694 4582 -1.192092895508e-07 4695 4582 -1.156330108643e-05 4696 4582 -83408755.55014 4697 4582 69374999.9886 4707 4582 -8.344650268555e-07 4708 4582 -31882558.21681 4709 4582 -3.278255462646e-07 4710 4582 24305555.56353 4711 4582 -39081501.55875 4712 4582 17343750.00569 4583 4583 1165825984.246 4584 4583 -1.382827758789e-05 4585 4583 1.788139343262e-07 4586 4583 104791324.3853 4596 4583 -1.20997428894e-05 4597 4583 -4.768371582031e-07 4598 4583 -212506.0825927 4599 4583 -3.278255462646e-06 4600 4583 -2.086162567139e-07 4601 4583 -46719419.49861 4680 4583 86719444.4302 4681 4583 3.427267074585e-07 4682 4583 -99061955.12464 4683 4583 21679861.11823 4684 4583 17343750.0057 4685 4583 -36432062.04359 4692 4583 2.598762512207e-05 4693 4583 5.960464477539e-08 4694 4583 -104578818.0156 4695 4583 6.973743438721e-06 4696 4583 69374999.9886 4697 4583 -72810997.49471 4707 4583 -86719444.43019 4708 4583 -2.682209014893e-07 4709 4583 -99061955.12461 4710 4583 -21679861.11823 4711 4583 17343750.00569 4712 4583 -36432062.04358 4584 4584 1483949894.094 4585 4584 7.867813110352e-06 4586 4584 -5.507469177246e-05 4587 4584 184322301.8864 4588 4584 -2.622604370117e-06 4589 4584 -1.358985900879e-05 4596 4584 -148365426.1266 4597 4584 -97222222.20624 4598 4584 -3.039836883545e-06 4599 4584 -406796532.3944 4600 4584 -2.801418304443e-06 4601 4584 -1.233816146851e-05 4602 4584 -148365426.1266 4603 4584 97222222.20624 4604 4584 -3.308057785034e-06 4680 4584 -46373434.23613 4681 4584 24305555.56354 4682 4584 21679861.11823 4683 4584 -138827443.8752 4684 4584 2.682209014893e-07 4685 4584 86719444.4302 4686 4584 -46373434.23614 4687 4584 -24305555.56354 4688 4584 21679861.11823 4692 4584 8952264.76783 4693 4584 9.298324584961e-06 4694 4584 6.228685379028e-06 4695 4584 222474230.8735 4696 4584 3.933906555176e-06 4697 4584 2.622604370117e-05 4698 4584 8952264.76783 4699 4584 -1.302361488342e-05 4700 4584 6.914138793945e-06 4707 4584 -46373434.23611 4708 4584 -24305555.56353 4709 4584 -21679861.11823 4710 4584 -138827443.8751 4711 4584 -5.066394805908e-07 4712 4584 -86719444.43019 4713 4584 -46373434.23611 4714 4584 24305555.56353 4715 4584 -21679861.11823 4585 4585 1250608048.648 4586 4585 -1.192092895508e-06 4587 4585 -3.159046173096e-06 4588 4585 -185121779.2034 4589 4585 8.046627044678e-07 4596 4585 -97222222.20624 4597 4585 -119197695.4315 4598 4585 2.831220626831e-07 4599 4585 -3.09944152832e-06 4600 4585 20983010.02827 4601 4585 -4.768371582031e-07 4602 4585 97222222.20624 4603 4585 -119197695.4315 4604 4585 -7.450580596924e-08 4680 4585 24305555.56354 4681 4585 -39081501.55876 4682 4585 -17343750.00569 4683 4585 -2.294778823853e-06 4684 4585 -31882558.21685 4685 4585 2.682209014893e-07 4686 4585 -24305555.56354 4687 4585 -39081501.55876 4688 4585 17343750.0057 4692 4585 1.069903373718e-05 4693 4585 -83408755.55014 4694 4585 -69374999.9886 4695 4585 4.410743713379e-06 4696 4585 164138769.4832 4697 4585 -1.192092895508e-07 4698 4585 -1.156330108643e-05 4699 4585 -83408755.55014 4700 4585 69374999.9886 4707 4585 -24305555.56353 4708 4585 -39081501.55875 4709 4585 -17343750.0057 4710 4585 -8.344650268555e-07 4711 4585 -31882558.21681 4712 4585 -3.278255462646e-07 4713 4585 24305555.56353 4714 4585 -39081501.55875 4715 4585 17343750.00569 4586 4586 1165825984.246 4587 4586 -1.382827758789e-05 4588 4586 1.788139343262e-07 4589 4586 104791324.3853 4596 4586 -2.890825271606e-06 4597 4586 3.8743019104e-07 4598 4586 -46719419.49861 4599 4586 -1.20997428894e-05 4600 4586 -4.768371582031e-07 4601 4586 -212506.0825927 4602 4586 -3.278255462646e-06 4603 4586 -2.086162567139e-07 4604 4586 -46719419.49861 4680 4586 21679861.11823 4681 4586 -17343750.0057 4682 4586 -36432062.04359 4683 4586 86719444.4302 4684 4586 3.427267074585e-07 4685 4586 -99061955.12464 4686 4586 21679861.11823 4687 4586 17343750.0057 4688 4586 -36432062.04359 4692 4586 6.169080734253e-06 4693 4586 -69374999.9886 4694 4586 -72810997.49471 4695 4586 2.598762512207e-05 4696 4586 5.960464477539e-08 4697 4586 -104578818.0156 4698 4586 6.973743438721e-06 4699 4586 69374999.9886 4700 4586 -72810997.49471 4707 4586 -21679861.11823 4708 4586 -17343750.0057 4709 4586 -36432062.04358 4710 4586 -86719444.43019 4711 4586 -2.682209014893e-07 4712 4586 -99061955.12461 4713 4586 -21679861.11823 4714 4586 17343750.00569 4715 4586 -36432062.04358 4587 4587 1483949894.094 4588 4587 7.867813110352e-06 4589 4587 -5.507469177246e-05 4590 4587 184322301.8864 4591 4587 -2.622604370117e-06 4592 4587 -1.358985900879e-05 4599 4587 -148365426.1266 4600 4587 -97222222.20624 4601 4587 -3.039836883545e-06 4602 4587 -406796532.3944 4603 4587 -2.801418304443e-06 4604 4587 -1.233816146851e-05 4605 4587 -148365426.1266 4606 4587 97222222.20624 4607 4587 -3.308057785034e-06 4683 4587 -46373434.23613 4684 4587 24305555.56354 4685 4587 21679861.11823 4686 4587 -138827443.8752 4687 4587 2.682209014893e-07 4688 4587 86719444.4302 4689 4587 -46373434.23614 4690 4587 -24305555.56354 4691 4587 21679861.11823 4695 4587 8952264.76783 4696 4587 9.298324584961e-06 4697 4587 6.228685379028e-06 4698 4587 222474230.8735 4699 4587 3.933906555176e-06 4700 4587 2.622604370117e-05 4701 4587 8952264.76783 4702 4587 -1.302361488342e-05 4703 4587 6.914138793945e-06 4710 4587 -46373434.23611 4711 4587 -24305555.56353 4712 4587 -21679861.11823 4713 4587 -138827443.8751 4714 4587 -5.066394805908e-07 4715 4587 -86719444.43019 4716 4587 -46373434.23611 4717 4587 24305555.56353 4718 4587 -21679861.11823 4588 4588 1250608048.648 4589 4588 -1.192092895508e-06 4590 4588 -3.159046173096e-06 4591 4588 -185121779.2034 4592 4588 8.046627044678e-07 4599 4588 -97222222.20624 4600 4588 -119197695.4315 4601 4588 2.831220626831e-07 4602 4588 -3.09944152832e-06 4603 4588 20983010.02827 4604 4588 -4.768371582031e-07 4605 4588 97222222.20624 4606 4588 -119197695.4315 4607 4588 -7.450580596924e-08 4683 4588 24305555.56354 4684 4588 -39081501.55876 4685 4588 -17343750.00569 4686 4588 -2.294778823853e-06 4687 4588 -31882558.21685 4688 4588 2.682209014893e-07 4689 4588 -24305555.56354 4690 4588 -39081501.55876 4691 4588 17343750.0057 4695 4588 1.069903373718e-05 4696 4588 -83408755.55014 4697 4588 -69374999.9886 4698 4588 4.410743713379e-06 4699 4588 164138769.4832 4700 4588 -1.192092895508e-07 4701 4588 -1.156330108643e-05 4702 4588 -83408755.55014 4703 4588 69374999.9886 4710 4588 -24305555.56353 4711 4588 -39081501.55875 4712 4588 -17343750.0057 4713 4588 -8.344650268555e-07 4714 4588 -31882558.21681 4715 4588 -3.278255462646e-07 4716 4588 24305555.56353 4717 4588 -39081501.55875 4718 4588 17343750.00569 4589 4589 1165825984.246 4590 4589 -1.382827758789e-05 4591 4589 1.788139343262e-07 4592 4589 104791324.3853 4599 4589 -2.890825271606e-06 4600 4589 3.8743019104e-07 4601 4589 -46719419.49861 4602 4589 -1.20997428894e-05 4603 4589 -4.768371582031e-07 4604 4589 -212506.0825927 4605 4589 -3.278255462646e-06 4606 4589 -2.086162567139e-07 4607 4589 -46719419.49861 4683 4589 21679861.11823 4684 4589 -17343750.0057 4685 4589 -36432062.04359 4686 4589 86719444.4302 4687 4589 3.427267074585e-07 4688 4589 -99061955.12464 4689 4589 21679861.11823 4690 4589 17343750.0057 4691 4589 -36432062.04359 4695 4589 6.169080734253e-06 4696 4589 -69374999.9886 4697 4589 -72810997.49471 4698 4589 2.598762512207e-05 4699 4589 5.960464477539e-08 4700 4589 -104578818.0156 4701 4589 6.973743438721e-06 4702 4589 69374999.9886 4703 4589 -72810997.49471 4710 4589 -21679861.11823 4711 4589 -17343750.0057 4712 4589 -36432062.04358 4713 4589 -86719444.43019 4714 4589 -2.682209014893e-07 4715 4589 -99061955.12461 4716 4589 -21679861.11823 4717 4589 17343750.00569 4718 4589 -36432062.04358 4590 4590 1632315315.374 4591 4590 97222220.26178 4592 4590 -4.172325134277e-05 4593 4590 17392720.97666 4594 4590 -97222221.42845 4595 4590 -2.145767211914e-06 4602 4590 -148365426.1266 4603 4590 -97222222.20624 4604 4590 -3.039836883545e-06 4605 4590 -406796532.3944 4606 4590 -2.801418304443e-06 4607 4590 -1.233816146851e-05 4608 4590 -148365426.1266 4609 4590 97222222.20624 4610 4590 -3.308057785034e-06 4686 4590 -46373434.23613 4687 4590 24305555.56354 4688 4590 21679861.11823 4689 4590 -175918799.4897 4690 4590 -24305555.27186 4691 4590 86719444.24762 4698 4590 8952264.76783 4699 4590 9.298324584961e-06 4700 4590 6.228685379028e-06 4701 4590 268847663.9159 4702 4590 24305555.07742 4703 4590 0.03653132915497 4704 4590 -28139091.37671 4705 4590 -24305555.36909 4706 4590 21679860.74398 4713 4590 -46373434.23611 4714 4590 -24305555.56353 4715 4590 -21679861.11823 4716 4590 -138827443.8751 4717 4590 -5.066394805908e-07 4718 4590 -86719444.43019 4719 4590 -46373434.23611 4720 4590 24305555.56353 4721 4590 -21679861.11823 4591 4591 1369805740.108 4592 4591 -2.145767211914e-06 4593 4591 -97222221.03956 4594 4591 -322883627.8625 4595 4591 4.798173904419e-06 4602 4591 -97222222.20624 4603 4591 -119197695.4315 4604 4591 2.831220626831e-07 4605 4591 -3.09944152832e-06 4606 4591 20983010.02827 4607 4591 -4.768371582031e-07 4608 4591 97222222.20624 4609 4591 -119197695.4315 4610 4591 -7.450580596924e-08 4686 4591 24305555.56354 4687 4591 -39081501.55876 4688 4591 -17343750.00569 4689 4591 -24305555.36908 4690 4591 -61681981.7616 4691 4591 17343749.94043 4698 4591 1.069903373718e-05 4699 4591 -83408755.55014 4700 4591 -69374999.9886 4701 4591 24305555.07742 4702 4591 203220270.0671 4703 4591 0.02920919656754 4704 4591 -24305555.27186 4705 4591 -113208178.6284 4706 4591 69374999.6084 4713 4591 -24305555.56353 4714 4591 -39081501.55875 4715 4591 -17343750.0057 4716 4591 -8.344650268555e-07 4717 4591 -31882558.21681 4718 4591 -3.278255462646e-07 4719 4591 24305555.56353 4720 4591 -39081501.55875 4721 4591 17343750.00569 4592 4592 1212545401.289 4593 4592 -1.788139343262e-06 4594 4592 3.75509262085e-06 4595 4592 8567490.576108 4602 4592 -2.890825271606e-06 4603 4592 3.8743019104e-07 4604 4592 -46719419.49861 4605 4592 -1.20997428894e-05 4606 4592 -4.768371582031e-07 4607 4592 -212506.0825927 4608 4592 -3.278255462646e-06 4609 4592 -2.086162567139e-07 4610 4592 -46719419.49861 4686 4592 21679861.11823 4687 4592 -17343750.0057 4688 4592 -36432062.04359 4689 4592 86719444.24762 4690 4592 17343749.9078 4691 4592 -110741809.7386 4698 4592 6.169080734253e-06 4699 4592 -69374999.9886 4700 4592 -72810997.49471 4701 4592 -0.03649973869324 4702 4592 -0.02921465039253 4703 4592 -68146756.53808 4704 4592 21679860.55685 4705 4592 69374999.49133 4706 4592 -84490851.68298 4713 4592 -21679861.11823 4714 4592 -17343750.0057 4715 4592 -36432062.04358 4716 4592 -86719444.43019 4717 4592 -2.682209014893e-07 4718 4592 -99061955.12461 4719 4592 -21679861.11823 4720 4592 17343750.00569 4721 4592 -36432062.04358 4593 4593 927468678.158 4594 4593 97222222.20623 4595 4593 -8.106231689453e-06 4605 4593 -148365426.1266 4606 4593 -97222222.20624 4607 4593 -3.039836883545e-06 4608 4593 -573726109.9308 4609 4593 -97222221.42845 4610 4593 8.940696716309e-07 4611 4593 18564155.00999 4612 4593 77777776.9872 4613 4593 2.861022949219e-06 4689 4593 -9282077.50499 4690 4593 29166666.38457 4691 4593 26015832.78049 4701 4593 -28139091.37673 4702 4593 -24305555.27187 4703 4593 -21679860.55685 4704 4593 139046393.5639 4705 4593 24305555.56354 4706 4593 17343888.84952 4716 4593 -46373434.23611 4717 4593 -24305555.56353 4718 4593 -21679861.11823 4719 4593 -175918799.4896 4720 4593 -24305555.36909 4721 4593 -86719444.24762 4722 4593 -9282077.505002 4723 4593 19444444.25638 4724 4593 -17343888.52033 4594 4594 781630025.6149 4595 4594 8.412431954121e-06 4605 4594 -97222222.20624 4606 4594 -119197695.4315 4607 4594 2.831220626831e-07 4608 4594 -97222221.03956 4609 4594 -116778839.2437 4610 4594 5.602836608887e-06 4611 4594 116666665.4808 4612 4594 18564155.00998 4613 4594 5.960464477539e-07 4689 4594 19444444.25638 4690 4594 -9282077.505 4691 4594 -13874999.9393 4701 4594 -24305555.36909 4702 4594 -113208178.6284 4703 4594 -69374999.49133 4704 4594 24305555.56354 4705 4594 102586730.4102 4706 4594 13874999.85143 4716 4594 -24305555.56353 4717 4594 -39081501.55875 4718 4594 -17343750.0057 4719 4594 -24305555.27187 4720 4594 -61681981.76159 4721 4594 -17343749.90781 4722 4594 29166666.38457 4723 4594 -9282077.504995 4724 4594 20812499.90894 4595 4595 728641235.3813 4605 4595 -2.890825271606e-06 4606 4595 3.8743019104e-07 4607 4595 -46719419.49861 4608 4595 4.172325134277e-07 4609 4595 4.887580871582e-06 4610 4595 -96436338.25295 4611 4595 2.503395080566e-06 4612 4595 1.251697540283e-06 4613 4595 49504413.35998 4689 4595 17343888.52033 4690 4595 -20812499.90895 4691 4595 -24752206.67999 4701 4595 -21679860.74398 4702 4595 -69374999.6084 4703 4595 -84490851.68299 4704 4595 -17343888.84952 4705 4595 -13874999.85144 4706 4595 -65361760.6378 4716 4595 -21679861.11823 4717 4595 -17343750.0057 4718 4595 -36432062.04358 4719 4595 -86719444.24762 4720 4595 -17343749.94044 4721 4595 -110741809.7386 4722 4595 -26015832.7805 4723 4595 13874999.9393 4724 4595 -24752206.67999 4596 4596 1483949894.094 4597 4596 7.867813110352e-06 4598 4596 -5.507469177246e-05 4599 4596 184322301.8864 4600 4596 -2.622604370117e-06 4601 4596 -1.358985900879e-05 4614 4596 -406796532.3944 4615 4596 -2.801418304443e-06 4616 4596 -1.233816146851e-05 4617 4596 -148365426.1266 4618 4596 97222222.20624 4619 4596 -3.308057785034e-06 4692 4596 -138827443.8752 4693 4596 2.682209014893e-07 4694 4596 86719444.4302 4695 4596 -46373434.23614 4696 4596 -24305555.56354 4697 4596 21679861.11823 4707 4596 222474230.8735 4708 4596 3.933906555176e-06 4709 4596 2.622604370117e-05 4710 4596 8952264.76783 4711 4596 -1.302361488342e-05 4712 4596 6.914138793945e-06 4725 4596 -138827443.8751 4726 4596 -5.066394805908e-07 4727 4596 -86719444.43019 4728 4596 -46373434.23611 4729 4596 24305555.56353 4730 4596 -21679861.11823 4597 4597 1250608048.648 4598 4597 -1.192092895508e-06 4599 4597 -3.159046173096e-06 4600 4597 -185121779.2034 4601 4597 8.046627044678e-07 4614 4597 -3.09944152832e-06 4615 4597 20983010.02827 4616 4597 -4.768371582031e-07 4617 4597 97222222.20624 4618 4597 -119197695.4315 4619 4597 -7.450580596924e-08 4692 4597 -2.294778823853e-06 4693 4597 -31882558.21685 4694 4597 2.682209014893e-07 4695 4597 -24305555.56354 4696 4597 -39081501.55876 4697 4597 17343750.0057 4707 4597 4.410743713379e-06 4708 4597 164138769.4832 4709 4597 -1.192092895508e-07 4710 4597 -1.156330108643e-05 4711 4597 -83408755.55014 4712 4597 69374999.9886 4725 4597 -8.344650268555e-07 4726 4597 -31882558.21681 4727 4597 -3.278255462646e-07 4728 4597 24305555.56353 4729 4597 -39081501.55875 4730 4597 17343750.00569 4598 4598 1165825984.246 4599 4598 -1.382827758789e-05 4600 4598 1.788139343262e-07 4601 4598 104791324.3853 4614 4598 -1.20997428894e-05 4615 4598 -4.768371582031e-07 4616 4598 -212506.0825927 4617 4598 -3.278255462646e-06 4618 4598 -2.086162567139e-07 4619 4598 -46719419.49861 4692 4598 86719444.4302 4693 4598 3.427267074585e-07 4694 4598 -99061955.12464 4695 4598 21679861.11823 4696 4598 17343750.0057 4697 4598 -36432062.04359 4707 4598 2.598762512207e-05 4708 4598 5.960464477539e-08 4709 4598 -104578818.0156 4710 4598 6.973743438721e-06 4711 4598 69374999.9886 4712 4598 -72810997.49471 4725 4598 -86719444.43019 4726 4598 -2.682209014893e-07 4727 4598 -99061955.12461 4728 4598 -21679861.11823 4729 4598 17343750.00569 4730 4598 -36432062.04358 4599 4599 1483949894.094 4600 4599 7.867813110352e-06 4601 4599 -5.507469177246e-05 4602 4599 184322301.8864 4603 4599 -2.622604370117e-06 4604 4599 -1.358985900879e-05 4614 4599 -148365426.1266 4615 4599 -97222222.20624 4616 4599 -3.039836883545e-06 4617 4599 -406796532.3944 4618 4599 -2.801418304443e-06 4619 4599 -1.233816146851e-05 4620 4599 -148365426.1266 4621 4599 97222222.20624 4622 4599 -3.308057785034e-06 4692 4599 -46373434.23613 4693 4599 24305555.56354 4694 4599 21679861.11823 4695 4599 -138827443.8752 4696 4599 2.682209014893e-07 4697 4599 86719444.4302 4698 4599 -46373434.23614 4699 4599 -24305555.56354 4700 4599 21679861.11823 4707 4599 8952264.76783 4708 4599 9.298324584961e-06 4709 4599 6.228685379028e-06 4710 4599 222474230.8735 4711 4599 3.933906555176e-06 4712 4599 2.622604370117e-05 4713 4599 8952264.76783 4714 4599 -1.302361488342e-05 4715 4599 6.914138793945e-06 4725 4599 -46373434.23611 4726 4599 -24305555.56353 4727 4599 -21679861.11823 4728 4599 -138827443.8751 4729 4599 -5.066394805908e-07 4730 4599 -86719444.43019 4731 4599 -46373434.23611 4732 4599 24305555.56353 4733 4599 -21679861.11823 4600 4600 1250608048.648 4601 4600 -1.192092895508e-06 4602 4600 -3.159046173096e-06 4603 4600 -185121779.2034 4604 4600 8.046627044678e-07 4614 4600 -97222222.20624 4615 4600 -119197695.4315 4616 4600 2.831220626831e-07 4617 4600 -3.09944152832e-06 4618 4600 20983010.02827 4619 4600 -4.768371582031e-07 4620 4600 97222222.20624 4621 4600 -119197695.4315 4622 4600 -7.450580596924e-08 4692 4600 24305555.56354 4693 4600 -39081501.55876 4694 4600 -17343750.00569 4695 4600 -2.294778823853e-06 4696 4600 -31882558.21685 4697 4600 2.682209014893e-07 4698 4600 -24305555.56354 4699 4600 -39081501.55876 4700 4600 17343750.0057 4707 4600 1.069903373718e-05 4708 4600 -83408755.55014 4709 4600 -69374999.9886 4710 4600 4.410743713379e-06 4711 4600 164138769.4832 4712 4600 -1.192092895508e-07 4713 4600 -1.156330108643e-05 4714 4600 -83408755.55014 4715 4600 69374999.9886 4725 4600 -24305555.56353 4726 4600 -39081501.55875 4727 4600 -17343750.0057 4728 4600 -8.344650268555e-07 4729 4600 -31882558.21681 4730 4600 -3.278255462646e-07 4731 4600 24305555.56353 4732 4600 -39081501.55875 4733 4600 17343750.00569 4601 4601 1165825984.246 4602 4601 -1.382827758789e-05 4603 4601 1.788139343262e-07 4604 4601 104791324.3853 4614 4601 -2.890825271606e-06 4615 4601 3.8743019104e-07 4616 4601 -46719419.49861 4617 4601 -1.20997428894e-05 4618 4601 -4.768371582031e-07 4619 4601 -212506.0825927 4620 4601 -3.278255462646e-06 4621 4601 -2.086162567139e-07 4622 4601 -46719419.49861 4692 4601 21679861.11823 4693 4601 -17343750.0057 4694 4601 -36432062.04359 4695 4601 86719444.4302 4696 4601 3.427267074585e-07 4697 4601 -99061955.12464 4698 4601 21679861.11823 4699 4601 17343750.0057 4700 4601 -36432062.04359 4707 4601 6.169080734253e-06 4708 4601 -69374999.9886 4709 4601 -72810997.49471 4710 4601 2.598762512207e-05 4711 4601 5.960464477539e-08 4712 4601 -104578818.0156 4713 4601 6.973743438721e-06 4714 4601 69374999.9886 4715 4601 -72810997.49471 4725 4601 -21679861.11823 4726 4601 -17343750.0057 4727 4601 -36432062.04358 4728 4601 -86719444.43019 4729 4601 -2.682209014893e-07 4730 4601 -99061955.12461 4731 4601 -21679861.11823 4732 4601 17343750.00569 4733 4601 -36432062.04358 4602 4602 1483949894.094 4603 4602 7.867813110352e-06 4604 4602 -5.507469177246e-05 4605 4602 184322301.8864 4606 4602 -2.622604370117e-06 4607 4602 -1.358985900879e-05 4617 4602 -148365426.1266 4618 4602 -97222222.20624 4619 4602 -3.039836883545e-06 4620 4602 -406796532.3944 4621 4602 -2.801418304443e-06 4622 4602 -1.233816146851e-05 4623 4602 -148365426.1266 4624 4602 97222222.20624 4625 4602 -3.308057785034e-06 4695 4602 -46373434.23613 4696 4602 24305555.56354 4697 4602 21679861.11823 4698 4602 -138827443.8752 4699 4602 2.682209014893e-07 4700 4602 86719444.4302 4701 4602 -46373434.23614 4702 4602 -24305555.56354 4703 4602 21679861.11823 4710 4602 8952264.76783 4711 4602 9.298324584961e-06 4712 4602 6.228685379028e-06 4713 4602 222474230.8735 4714 4602 3.933906555176e-06 4715 4602 2.622604370117e-05 4716 4602 8952264.76783 4717 4602 -1.302361488342e-05 4718 4602 6.914138793945e-06 4728 4602 -46373434.23611 4729 4602 -24305555.56353 4730 4602 -21679861.11823 4731 4602 -138827443.8751 4732 4602 -5.066394805908e-07 4733 4602 -86719444.43019 4734 4602 -46373434.23611 4735 4602 24305555.56353 4736 4602 -21679861.11823 4603 4603 1250608048.648 4604 4603 -1.192092895508e-06 4605 4603 -3.159046173096e-06 4606 4603 -185121779.2034 4607 4603 8.046627044678e-07 4617 4603 -97222222.20624 4618 4603 -119197695.4315 4619 4603 2.831220626831e-07 4620 4603 -3.09944152832e-06 4621 4603 20983010.02827 4622 4603 -4.768371582031e-07 4623 4603 97222222.20624 4624 4603 -119197695.4315 4625 4603 -7.450580596924e-08 4695 4603 24305555.56354 4696 4603 -39081501.55876 4697 4603 -17343750.00569 4698 4603 -2.294778823853e-06 4699 4603 -31882558.21685 4700 4603 2.682209014893e-07 4701 4603 -24305555.56354 4702 4603 -39081501.55876 4703 4603 17343750.0057 4710 4603 1.069903373718e-05 4711 4603 -83408755.55014 4712 4603 -69374999.9886 4713 4603 4.410743713379e-06 4714 4603 164138769.4832 4715 4603 -1.192092895508e-07 4716 4603 -1.156330108643e-05 4717 4603 -83408755.55014 4718 4603 69374999.9886 4728 4603 -24305555.56353 4729 4603 -39081501.55875 4730 4603 -17343750.0057 4731 4603 -8.344650268555e-07 4732 4603 -31882558.21681 4733 4603 -3.278255462646e-07 4734 4603 24305555.56353 4735 4603 -39081501.55875 4736 4603 17343750.00569 4604 4604 1165825984.246 4605 4604 -1.382827758789e-05 4606 4604 1.788139343262e-07 4607 4604 104791324.3853 4617 4604 -2.890825271606e-06 4618 4604 3.8743019104e-07 4619 4604 -46719419.49861 4620 4604 -1.20997428894e-05 4621 4604 -4.768371582031e-07 4622 4604 -212506.0825927 4623 4604 -3.278255462646e-06 4624 4604 -2.086162567139e-07 4625 4604 -46719419.49861 4695 4604 21679861.11823 4696 4604 -17343750.0057 4697 4604 -36432062.04359 4698 4604 86719444.4302 4699 4604 3.427267074585e-07 4700 4604 -99061955.12464 4701 4604 21679861.11823 4702 4604 17343750.0057 4703 4604 -36432062.04359 4710 4604 6.169080734253e-06 4711 4604 -69374999.9886 4712 4604 -72810997.49471 4713 4604 2.598762512207e-05 4714 4604 5.960464477539e-08 4715 4604 -104578818.0156 4716 4604 6.973743438721e-06 4717 4604 69374999.9886 4718 4604 -72810997.49471 4728 4604 -21679861.11823 4729 4604 -17343750.0057 4730 4604 -36432062.04358 4731 4604 -86719444.43019 4732 4604 -2.682209014893e-07 4733 4604 -99061955.12461 4734 4604 -21679861.11823 4735 4604 17343750.00569 4736 4604 -36432062.04358 4605 4605 1483949894.094 4606 4605 7.867813110352e-06 4607 4605 -5.507469177246e-05 4608 4605 184322301.8864 4609 4605 -2.622604370117e-06 4610 4605 -1.358985900879e-05 4620 4605 -148365426.1266 4621 4605 -97222222.20624 4622 4605 -3.039836883545e-06 4623 4605 -406796532.3944 4624 4605 -2.801418304443e-06 4625 4605 -1.233816146851e-05 4626 4605 -148365426.1266 4627 4605 97222222.20624 4628 4605 -3.308057785034e-06 4698 4605 -46373434.23613 4699 4605 24305555.56354 4700 4605 21679861.11823 4701 4605 -138827443.8752 4702 4605 2.682209014893e-07 4703 4605 86719444.4302 4704 4605 -46373434.23614 4705 4605 -24305555.56354 4706 4605 21679861.11823 4713 4605 8952264.76783 4714 4605 9.298324584961e-06 4715 4605 6.228685379028e-06 4716 4605 222474230.8735 4717 4605 3.933906555176e-06 4718 4605 2.622604370117e-05 4719 4605 8952264.76783 4720 4605 -1.302361488342e-05 4721 4605 6.914138793945e-06 4731 4605 -46373434.23611 4732 4605 -24305555.56353 4733 4605 -21679861.11823 4734 4605 -138827443.8751 4735 4605 -5.066394805908e-07 4736 4605 -86719444.43019 4737 4605 -46373434.23611 4738 4605 24305555.56353 4739 4605 -21679861.11823 4606 4606 1250608048.648 4607 4606 -1.192092895508e-06 4608 4606 -3.159046173096e-06 4609 4606 -185121779.2034 4610 4606 8.046627044678e-07 4620 4606 -97222222.20624 4621 4606 -119197695.4315 4622 4606 2.831220626831e-07 4623 4606 -3.09944152832e-06 4624 4606 20983010.02827 4625 4606 -4.768371582031e-07 4626 4606 97222222.20624 4627 4606 -119197695.4315 4628 4606 -7.450580596924e-08 4698 4606 24305555.56354 4699 4606 -39081501.55876 4700 4606 -17343750.00569 4701 4606 -2.294778823853e-06 4702 4606 -31882558.21685 4703 4606 2.682209014893e-07 4704 4606 -24305555.56354 4705 4606 -39081501.55876 4706 4606 17343750.0057 4713 4606 1.069903373718e-05 4714 4606 -83408755.55014 4715 4606 -69374999.9886 4716 4606 4.410743713379e-06 4717 4606 164138769.4832 4718 4606 -1.192092895508e-07 4719 4606 -1.156330108643e-05 4720 4606 -83408755.55014 4721 4606 69374999.9886 4731 4606 -24305555.56353 4732 4606 -39081501.55875 4733 4606 -17343750.0057 4734 4606 -8.344650268555e-07 4735 4606 -31882558.21681 4736 4606 -3.278255462646e-07 4737 4606 24305555.56353 4738 4606 -39081501.55875 4739 4606 17343750.00569 4607 4607 1165825984.246 4608 4607 -1.382827758789e-05 4609 4607 1.788139343262e-07 4610 4607 104791324.3853 4620 4607 -2.890825271606e-06 4621 4607 3.8743019104e-07 4622 4607 -46719419.49861 4623 4607 -1.20997428894e-05 4624 4607 -4.768371582031e-07 4625 4607 -212506.0825927 4626 4607 -3.278255462646e-06 4627 4607 -2.086162567139e-07 4628 4607 -46719419.49861 4698 4607 21679861.11823 4699 4607 -17343750.0057 4700 4607 -36432062.04359 4701 4607 86719444.4302 4702 4607 3.427267074585e-07 4703 4607 -99061955.12464 4704 4607 21679861.11823 4705 4607 17343750.0057 4706 4607 -36432062.04359 4713 4607 6.169080734253e-06 4714 4607 -69374999.9886 4715 4607 -72810997.49471 4716 4607 2.598762512207e-05 4717 4607 5.960464477539e-08 4718 4607 -104578818.0156 4719 4607 6.973743438721e-06 4720 4607 69374999.9886 4721 4607 -72810997.49471 4731 4607 -21679861.11823 4732 4607 -17343750.0057 4733 4607 -36432062.04358 4734 4607 -86719444.43019 4735 4607 -2.682209014893e-07 4736 4607 -99061955.12461 4737 4607 -21679861.11823 4738 4607 17343750.00569 4739 4607 -36432062.04358 4608 4608 1632315315.374 4609 4608 97222220.26178 4610 4608 -4.172325134277e-05 4611 4608 17392720.97666 4612 4608 -97222221.42845 4613 4608 -2.145767211914e-06 4623 4608 -148365426.1266 4624 4608 -97222222.20624 4625 4608 -3.039836883545e-06 4626 4608 -406796532.3944 4627 4608 -2.801418304443e-06 4628 4608 -1.233816146851e-05 4629 4608 -148365426.1266 4630 4608 97222222.20624 4631 4608 -3.308057785034e-06 4701 4608 -46373434.23613 4702 4608 24305555.56354 4703 4608 21679861.11823 4704 4608 -175918799.4897 4705 4608 -24305555.27186 4706 4608 86719444.24762 4716 4608 8952264.76783 4717 4608 9.298324584961e-06 4718 4608 6.228685379028e-06 4719 4608 268847663.9159 4720 4608 24305555.07742 4721 4608 0.03653132915497 4722 4608 -28139091.37671 4723 4608 -24305555.36909 4724 4608 21679860.74398 4734 4608 -46373434.23611 4735 4608 -24305555.56353 4736 4608 -21679861.11823 4737 4608 -138827443.8751 4738 4608 -5.066394805908e-07 4739 4608 -86719444.43019 4740 4608 -46373434.23611 4741 4608 24305555.56353 4742 4608 -21679861.11823 4609 4609 1369805740.108 4610 4609 -2.145767211914e-06 4611 4609 -97222221.03956 4612 4609 -322883627.8625 4613 4609 4.798173904419e-06 4623 4609 -97222222.20624 4624 4609 -119197695.4315 4625 4609 2.831220626831e-07 4626 4609 -3.09944152832e-06 4627 4609 20983010.02827 4628 4609 -4.768371582031e-07 4629 4609 97222222.20624 4630 4609 -119197695.4315 4631 4609 -7.450580596924e-08 4701 4609 24305555.56354 4702 4609 -39081501.55876 4703 4609 -17343750.00569 4704 4609 -24305555.36908 4705 4609 -61681981.7616 4706 4609 17343749.94043 4716 4609 1.069903373718e-05 4717 4609 -83408755.55014 4718 4609 -69374999.9886 4719 4609 24305555.07742 4720 4609 203220270.0671 4721 4609 0.02920919656754 4722 4609 -24305555.27186 4723 4609 -113208178.6284 4724 4609 69374999.6084 4734 4609 -24305555.56353 4735 4609 -39081501.55875 4736 4609 -17343750.0057 4737 4609 -8.344650268555e-07 4738 4609 -31882558.21681 4739 4609 -3.278255462646e-07 4740 4609 24305555.56353 4741 4609 -39081501.55875 4742 4609 17343750.00569 4610 4610 1212545401.289 4611 4610 -1.788139343262e-06 4612 4610 3.75509262085e-06 4613 4610 8567490.576108 4623 4610 -2.890825271606e-06 4624 4610 3.8743019104e-07 4625 4610 -46719419.49861 4626 4610 -1.20997428894e-05 4627 4610 -4.768371582031e-07 4628 4610 -212506.0825927 4629 4610 -3.278255462646e-06 4630 4610 -2.086162567139e-07 4631 4610 -46719419.49861 4701 4610 21679861.11823 4702 4610 -17343750.0057 4703 4610 -36432062.04359 4704 4610 86719444.24762 4705 4610 17343749.9078 4706 4610 -110741809.7386 4716 4610 6.169080734253e-06 4717 4610 -69374999.9886 4718 4610 -72810997.49471 4719 4610 -0.03649973869324 4720 4610 -0.02921465039253 4721 4610 -68146756.53808 4722 4610 21679860.55685 4723 4610 69374999.49133 4724 4610 -84490851.68298 4734 4610 -21679861.11823 4735 4610 -17343750.0057 4736 4610 -36432062.04358 4737 4610 -86719444.43019 4738 4610 -2.682209014893e-07 4739 4610 -99061955.12461 4740 4610 -21679861.11823 4741 4610 17343750.00569 4742 4610 -36432062.04358 4611 4611 944226635.8558 4612 4611 104813146.3867 4613 4611 -1.025199890137e-05 4626 4611 -148365426.1266 4627 4611 -97222222.20624 4628 4611 -3.039836883545e-06 4629 4611 -591818040.3847 4630 4611 -104813145.6089 4631 4611 -7.987022399902e-06 4632 4611 22795227.75344 4633 4611 77777776.98724 4634 4611 -4.768371582031e-07 4704 4611 -9282077.50499 4705 4611 29166666.38457 4706 4611 26015832.78049 4719 4611 -28139091.37673 4720 4611 -24305555.27187 4721 4611 -21679860.55685 4722 4611 142149470.4917 4723 4611 26203286.60958 4724 4611 17682222.18138 4737 4611 -46373434.23611 4738 4611 -24305555.56353 4739 4611 -21679861.11823 4740 4611 -180984988.3575 4741 4611 -26203286.41514 4742 4611 -88411110.90688 4743 4611 -8767515.55854 4744 4611 19444444.25639 4745 4611 -18020555.17262 4612 4612 789133337.2837 4613 4612 2.71201133728e-06 4626 4612 -97222222.20624 4627 4612 -119197695.4315 4628 4612 2.831220626831e-07 4629 4612 -104813145.22 4630 4612 -131460786.5969 4631 4612 -2.384185791016e-07 4632 4612 116666665.4809 4633 4612 28639890.68178 4634 4612 3.576278686523e-07 4704 4612 19444444.25638 4705 4612 -9282077.505 4706 4612 -13874999.9393 4719 4612 -24305555.36909 4720 4612 -113208178.6284 4721 4612 -69374999.49133 4722 4612 26203286.60958 4723 4612 103376145.8296 4724 4612 14145833.18358 4737 4612 -24305555.56353 4738 4612 -39081501.55875 4739 4612 -17343750.0057 4740 4612 -26203286.31792 4741 4612 -65895674.85386 4742 4612 -18697916.56855 4743 4612 29166666.38459 4744 4612 -7306349.825737 4745 4612 20270833.25379 4613 4613 738330627.0228 4626 4613 -2.890825271606e-06 4627 4613 3.8743019104e-07 4628 4613 -46719419.49861 4629 4613 -8.523464202881e-06 4630 4613 5.960464477539e-08 4631 4613 -103838327.6491 4632 4613 -8.344650268555e-07 4633 4613 2.384185791016e-07 4634 4613 54942611.08085 4704 4613 17343888.52033 4705 4613 -20812499.90895 4706 4613 -24752206.67999 4719 4613 -21679860.74398 4720 4613 -69374999.6084 4721 4613 -84490851.68299 4722 4613 -17682222.18137 4723 4613 -14145833.18359 4724 4613 -65836512.72293 4737 4613 -21679861.11823 4738 4613 -17343750.0057 4739 4613 -36432062.04358 4740 4613 -88411110.90688 4741 4613 -18697916.60118 4742 4613 -114040857.0942 4743 4613 -27030832.75893 4744 4613 13062499.95656 4745 4613 -24841207.22224 4614 4614 1483949894.094 4615 4614 7.867813110352e-06 4616 4614 -5.507469177246e-05 4617 4614 184322301.8864 4618 4614 -2.622604370117e-06 4619 4614 -1.358985900879e-05 4635 4614 -406796532.3944 4636 4614 -2.801418304443e-06 4637 4614 -1.233816146851e-05 4638 4614 -148365426.1266 4639 4614 97222222.20624 4640 4614 -3.308057785034e-06 4707 4614 -138827443.8752 4708 4614 2.682209014893e-07 4709 4614 86719444.4302 4710 4614 -46373434.23614 4711 4614 -24305555.56354 4712 4614 21679861.11823 4725 4614 222474230.8735 4726 4614 3.933906555176e-06 4727 4614 2.622604370117e-05 4728 4614 8952264.76783 4729 4614 -1.302361488342e-05 4730 4614 6.914138793945e-06 4746 4614 -138827443.8751 4747 4614 -5.066394805908e-07 4748 4614 -86719444.43019 4749 4614 -46373434.23611 4750 4614 24305555.56353 4751 4614 -21679861.11823 4615 4615 1250608048.648 4616 4615 -1.192092895508e-06 4617 4615 -3.159046173096e-06 4618 4615 -185121779.2034 4619 4615 8.046627044678e-07 4635 4615 -3.09944152832e-06 4636 4615 20983010.02827 4637 4615 -4.768371582031e-07 4638 4615 97222222.20624 4639 4615 -119197695.4315 4640 4615 -7.450580596924e-08 4707 4615 -2.294778823853e-06 4708 4615 -31882558.21685 4709 4615 2.682209014893e-07 4710 4615 -24305555.56354 4711 4615 -39081501.55876 4712 4615 17343750.0057 4725 4615 4.410743713379e-06 4726 4615 164138769.4832 4727 4615 -1.192092895508e-07 4728 4615 -1.156330108643e-05 4729 4615 -83408755.55014 4730 4615 69374999.9886 4746 4615 -8.344650268555e-07 4747 4615 -31882558.21681 4748 4615 -3.278255462646e-07 4749 4615 24305555.56353 4750 4615 -39081501.55875 4751 4615 17343750.00569 4616 4616 1165825984.246 4617 4616 -1.382827758789e-05 4618 4616 1.788139343262e-07 4619 4616 104791324.3853 4635 4616 -1.20997428894e-05 4636 4616 -4.768371582031e-07 4637 4616 -212506.0825927 4638 4616 -3.278255462646e-06 4639 4616 -2.086162567139e-07 4640 4616 -46719419.49861 4707 4616 86719444.4302 4708 4616 3.427267074585e-07 4709 4616 -99061955.12464 4710 4616 21679861.11823 4711 4616 17343750.0057 4712 4616 -36432062.04359 4725 4616 2.598762512207e-05 4726 4616 5.960464477539e-08 4727 4616 -104578818.0156 4728 4616 6.973743438721e-06 4729 4616 69374999.9886 4730 4616 -72810997.49471 4746 4616 -86719444.43019 4747 4616 -2.682209014893e-07 4748 4616 -99061955.12461 4749 4616 -21679861.11823 4750 4616 17343750.00569 4751 4616 -36432062.04358 4617 4617 1483949894.094 4618 4617 7.867813110352e-06 4619 4617 -5.507469177246e-05 4620 4617 184322301.8864 4621 4617 -2.622604370117e-06 4622 4617 -1.358985900879e-05 4635 4617 -148365426.1266 4636 4617 -97222222.20624 4637 4617 -3.039836883545e-06 4638 4617 -406796532.3944 4639 4617 -2.801418304443e-06 4640 4617 -1.233816146851e-05 4641 4617 -148365426.1266 4642 4617 97222222.20624 4643 4617 -3.308057785034e-06 4707 4617 -46373434.23613 4708 4617 24305555.56354 4709 4617 21679861.11823 4710 4617 -138827443.8752 4711 4617 2.682209014893e-07 4712 4617 86719444.4302 4713 4617 -46373434.23614 4714 4617 -24305555.56354 4715 4617 21679861.11823 4725 4617 8952264.76783 4726 4617 9.298324584961e-06 4727 4617 6.228685379028e-06 4728 4617 222474230.8735 4729 4617 3.933906555176e-06 4730 4617 2.622604370117e-05 4731 4617 8952264.76783 4732 4617 -1.302361488342e-05 4733 4617 6.914138793945e-06 4746 4617 -46373434.23611 4747 4617 -24305555.56353 4748 4617 -21679861.11823 4749 4617 -138827443.8751 4750 4617 -5.066394805908e-07 4751 4617 -86719444.43019 4752 4617 -46373434.23611 4753 4617 24305555.56353 4754 4617 -21679861.11823 4618 4618 1250608048.648 4619 4618 -1.192092895508e-06 4620 4618 -3.159046173096e-06 4621 4618 -185121779.2034 4622 4618 8.046627044678e-07 4635 4618 -97222222.20624 4636 4618 -119197695.4315 4637 4618 2.831220626831e-07 4638 4618 -3.09944152832e-06 4639 4618 20983010.02827 4640 4618 -4.768371582031e-07 4641 4618 97222222.20624 4642 4618 -119197695.4315 4643 4618 -7.450580596924e-08 4707 4618 24305555.56354 4708 4618 -39081501.55876 4709 4618 -17343750.00569 4710 4618 -2.294778823853e-06 4711 4618 -31882558.21685 4712 4618 2.682209014893e-07 4713 4618 -24305555.56354 4714 4618 -39081501.55876 4715 4618 17343750.0057 4725 4618 1.069903373718e-05 4726 4618 -83408755.55014 4727 4618 -69374999.9886 4728 4618 4.410743713379e-06 4729 4618 164138769.4832 4730 4618 -1.192092895508e-07 4731 4618 -1.156330108643e-05 4732 4618 -83408755.55014 4733 4618 69374999.9886 4746 4618 -24305555.56353 4747 4618 -39081501.55875 4748 4618 -17343750.0057 4749 4618 -8.344650268555e-07 4750 4618 -31882558.21681 4751 4618 -3.278255462646e-07 4752 4618 24305555.56353 4753 4618 -39081501.55875 4754 4618 17343750.00569 4619 4619 1165825984.246 4620 4619 -1.382827758789e-05 4621 4619 1.788139343262e-07 4622 4619 104791324.3853 4635 4619 -2.890825271606e-06 4636 4619 3.8743019104e-07 4637 4619 -46719419.49861 4638 4619 -1.20997428894e-05 4639 4619 -4.768371582031e-07 4640 4619 -212506.0825927 4641 4619 -3.278255462646e-06 4642 4619 -2.086162567139e-07 4643 4619 -46719419.49861 4707 4619 21679861.11823 4708 4619 -17343750.0057 4709 4619 -36432062.04359 4710 4619 86719444.4302 4711 4619 3.427267074585e-07 4712 4619 -99061955.12464 4713 4619 21679861.11823 4714 4619 17343750.0057 4715 4619 -36432062.04359 4725 4619 6.169080734253e-06 4726 4619 -69374999.9886 4727 4619 -72810997.49471 4728 4619 2.598762512207e-05 4729 4619 5.960464477539e-08 4730 4619 -104578818.0156 4731 4619 6.973743438721e-06 4732 4619 69374999.9886 4733 4619 -72810997.49471 4746 4619 -21679861.11823 4747 4619 -17343750.0057 4748 4619 -36432062.04358 4749 4619 -86719444.43019 4750 4619 -2.682209014893e-07 4751 4619 -99061955.12461 4752 4619 -21679861.11823 4753 4619 17343750.00569 4754 4619 -36432062.04358 4620 4620 1483949894.094 4621 4620 7.867813110352e-06 4622 4620 -5.507469177246e-05 4623 4620 184322301.8864 4624 4620 -2.622604370117e-06 4625 4620 -1.358985900879e-05 4638 4620 -148365426.1266 4639 4620 -97222222.20624 4640 4620 -3.039836883545e-06 4641 4620 -406796532.3944 4642 4620 -2.801418304443e-06 4643 4620 -1.233816146851e-05 4644 4620 -148365426.1266 4645 4620 97222222.20624 4646 4620 -3.308057785034e-06 4710 4620 -46373434.23613 4711 4620 24305555.56354 4712 4620 21679861.11823 4713 4620 -138827443.8752 4714 4620 2.682209014893e-07 4715 4620 86719444.4302 4716 4620 -46373434.23614 4717 4620 -24305555.56354 4718 4620 21679861.11823 4728 4620 8952264.76783 4729 4620 9.298324584961e-06 4730 4620 6.228685379028e-06 4731 4620 222474230.8735 4732 4620 3.933906555176e-06 4733 4620 2.622604370117e-05 4734 4620 8952264.76783 4735 4620 -1.302361488342e-05 4736 4620 6.914138793945e-06 4749 4620 -46373434.23611 4750 4620 -24305555.56353 4751 4620 -21679861.11823 4752 4620 -138827443.8751 4753 4620 -5.066394805908e-07 4754 4620 -86719444.43019 4755 4620 -46373434.23611 4756 4620 24305555.56353 4757 4620 -21679861.11823 4621 4621 1250608048.648 4622 4621 -1.192092895508e-06 4623 4621 -3.159046173096e-06 4624 4621 -185121779.2034 4625 4621 8.046627044678e-07 4638 4621 -97222222.20624 4639 4621 -119197695.4315 4640 4621 2.831220626831e-07 4641 4621 -3.09944152832e-06 4642 4621 20983010.02827 4643 4621 -4.768371582031e-07 4644 4621 97222222.20624 4645 4621 -119197695.4315 4646 4621 -7.450580596924e-08 4710 4621 24305555.56354 4711 4621 -39081501.55876 4712 4621 -17343750.00569 4713 4621 -2.294778823853e-06 4714 4621 -31882558.21685 4715 4621 2.682209014893e-07 4716 4621 -24305555.56354 4717 4621 -39081501.55876 4718 4621 17343750.0057 4728 4621 1.069903373718e-05 4729 4621 -83408755.55014 4730 4621 -69374999.9886 4731 4621 4.410743713379e-06 4732 4621 164138769.4832 4733 4621 -1.192092895508e-07 4734 4621 -1.156330108643e-05 4735 4621 -83408755.55014 4736 4621 69374999.9886 4749 4621 -24305555.56353 4750 4621 -39081501.55875 4751 4621 -17343750.0057 4752 4621 -8.344650268555e-07 4753 4621 -31882558.21681 4754 4621 -3.278255462646e-07 4755 4621 24305555.56353 4756 4621 -39081501.55875 4757 4621 17343750.00569 4622 4622 1165825984.246 4623 4622 -1.382827758789e-05 4624 4622 1.788139343262e-07 4625 4622 104791324.3853 4638 4622 -2.890825271606e-06 4639 4622 3.8743019104e-07 4640 4622 -46719419.49861 4641 4622 -1.20997428894e-05 4642 4622 -4.768371582031e-07 4643 4622 -212506.0825927 4644 4622 -3.278255462646e-06 4645 4622 -2.086162567139e-07 4646 4622 -46719419.49861 4710 4622 21679861.11823 4711 4622 -17343750.0057 4712 4622 -36432062.04359 4713 4622 86719444.4302 4714 4622 3.427267074585e-07 4715 4622 -99061955.12464 4716 4622 21679861.11823 4717 4622 17343750.0057 4718 4622 -36432062.04359 4728 4622 6.169080734253e-06 4729 4622 -69374999.9886 4730 4622 -72810997.49471 4731 4622 2.598762512207e-05 4732 4622 5.960464477539e-08 4733 4622 -104578818.0156 4734 4622 6.973743438721e-06 4735 4622 69374999.9886 4736 4622 -72810997.49471 4749 4622 -21679861.11823 4750 4622 -17343750.0057 4751 4622 -36432062.04358 4752 4622 -86719444.43019 4753 4622 -2.682209014893e-07 4754 4622 -99061955.12461 4755 4622 -21679861.11823 4756 4622 17343750.00569 4757 4622 -36432062.04358 4623 4623 1483949894.094 4624 4623 7.867813110352e-06 4625 4623 -5.507469177246e-05 4626 4623 184322301.8864 4627 4623 -2.622604370117e-06 4628 4623 -1.358985900879e-05 4641 4623 -148365426.1266 4642 4623 -97222222.20624 4643 4623 -3.039836883545e-06 4644 4623 -406796532.3944 4645 4623 -2.801418304443e-06 4646 4623 -1.233816146851e-05 4647 4623 -148365426.1266 4648 4623 97222222.20624 4649 4623 -3.308057785034e-06 4713 4623 -46373434.23613 4714 4623 24305555.56354 4715 4623 21679861.11823 4716 4623 -138827443.8752 4717 4623 2.682209014893e-07 4718 4623 86719444.4302 4719 4623 -46373434.23614 4720 4623 -24305555.56354 4721 4623 21679861.11823 4731 4623 8952264.76783 4732 4623 9.298324584961e-06 4733 4623 6.228685379028e-06 4734 4623 222474230.8735 4735 4623 3.933906555176e-06 4736 4623 2.622604370117e-05 4737 4623 8952264.76783 4738 4623 -1.302361488342e-05 4739 4623 6.914138793945e-06 4752 4623 -46373434.23611 4753 4623 -24305555.56353 4754 4623 -21679861.11823 4755 4623 -138827443.8751 4756 4623 -5.066394805908e-07 4757 4623 -86719444.43019 4758 4623 -46373434.23611 4759 4623 24305555.56353 4760 4623 -21679861.11823 4624 4624 1250608048.648 4625 4624 -1.192092895508e-06 4626 4624 -3.159046173096e-06 4627 4624 -185121779.2034 4628 4624 8.046627044678e-07 4641 4624 -97222222.20624 4642 4624 -119197695.4315 4643 4624 2.831220626831e-07 4644 4624 -3.09944152832e-06 4645 4624 20983010.02827 4646 4624 -4.768371582031e-07 4647 4624 97222222.20624 4648 4624 -119197695.4315 4649 4624 -7.450580596924e-08 4713 4624 24305555.56354 4714 4624 -39081501.55876 4715 4624 -17343750.00569 4716 4624 -2.294778823853e-06 4717 4624 -31882558.21685 4718 4624 2.682209014893e-07 4719 4624 -24305555.56354 4720 4624 -39081501.55876 4721 4624 17343750.0057 4731 4624 1.069903373718e-05 4732 4624 -83408755.55014 4733 4624 -69374999.9886 4734 4624 4.410743713379e-06 4735 4624 164138769.4832 4736 4624 -1.192092895508e-07 4737 4624 -1.156330108643e-05 4738 4624 -83408755.55014 4739 4624 69374999.9886 4752 4624 -24305555.56353 4753 4624 -39081501.55875 4754 4624 -17343750.0057 4755 4624 -8.344650268555e-07 4756 4624 -31882558.21681 4757 4624 -3.278255462646e-07 4758 4624 24305555.56353 4759 4624 -39081501.55875 4760 4624 17343750.00569 4625 4625 1165825984.246 4626 4625 -1.382827758789e-05 4627 4625 1.788139343262e-07 4628 4625 104791324.3853 4641 4625 -2.890825271606e-06 4642 4625 3.8743019104e-07 4643 4625 -46719419.49861 4644 4625 -1.20997428894e-05 4645 4625 -4.768371582031e-07 4646 4625 -212506.0825927 4647 4625 -3.278255462646e-06 4648 4625 -2.086162567139e-07 4649 4625 -46719419.49861 4713 4625 21679861.11823 4714 4625 -17343750.0057 4715 4625 -36432062.04359 4716 4625 86719444.4302 4717 4625 3.427267074585e-07 4718 4625 -99061955.12464 4719 4625 21679861.11823 4720 4625 17343750.0057 4721 4625 -36432062.04359 4731 4625 6.169080734253e-06 4732 4625 -69374999.9886 4733 4625 -72810997.49471 4734 4625 2.598762512207e-05 4735 4625 5.960464477539e-08 4736 4625 -104578818.0156 4737 4625 6.973743438721e-06 4738 4625 69374999.9886 4739 4625 -72810997.49471 4752 4625 -21679861.11823 4753 4625 -17343750.0057 4754 4625 -36432062.04358 4755 4625 -86719444.43019 4756 4625 -2.682209014893e-07 4757 4625 -99061955.12461 4758 4625 -21679861.11823 4759 4625 17343750.00569 4760 4625 -36432062.04358 4626 4626 1483949894.094 4627 4626 7.867813110352e-06 4628 4626 -5.507469177246e-05 4629 4626 184322301.8864 4630 4626 -2.622604370117e-06 4631 4626 -1.358985900879e-05 4644 4626 -148365426.1266 4645 4626 -97222222.20624 4646 4626 -3.039836883545e-06 4647 4626 -406796532.3944 4648 4626 -2.801418304443e-06 4649 4626 -1.233816146851e-05 4650 4626 -148365426.1266 4651 4626 97222222.20624 4652 4626 -3.308057785034e-06 4716 4626 -46373434.23613 4717 4626 24305555.56354 4718 4626 21679861.11823 4719 4626 -138827443.8752 4720 4626 2.682209014893e-07 4721 4626 86719444.4302 4722 4626 -46373434.23614 4723 4626 -24305555.56354 4724 4626 21679861.11823 4734 4626 8952264.76783 4735 4626 9.298324584961e-06 4736 4626 6.228685379028e-06 4737 4626 222474230.8735 4738 4626 3.933906555176e-06 4739 4626 2.622604370117e-05 4740 4626 8952264.76783 4741 4626 -1.302361488342e-05 4742 4626 6.914138793945e-06 4755 4626 -46373434.23611 4756 4626 -24305555.56353 4757 4626 -21679861.11823 4758 4626 -138827443.8751 4759 4626 -5.066394805908e-07 4760 4626 -86719444.43019 4761 4626 -46373434.23611 4762 4626 24305555.56353 4763 4626 -21679861.11823 4627 4627 1250608048.648 4628 4627 -1.192092895508e-06 4629 4627 -3.159046173096e-06 4630 4627 -185121779.2034 4631 4627 8.046627044678e-07 4644 4627 -97222222.20624 4645 4627 -119197695.4315 4646 4627 2.831220626831e-07 4647 4627 -3.09944152832e-06 4648 4627 20983010.02827 4649 4627 -4.768371582031e-07 4650 4627 97222222.20624 4651 4627 -119197695.4315 4652 4627 -7.450580596924e-08 4716 4627 24305555.56354 4717 4627 -39081501.55876 4718 4627 -17343750.00569 4719 4627 -2.294778823853e-06 4720 4627 -31882558.21685 4721 4627 2.682209014893e-07 4722 4627 -24305555.56354 4723 4627 -39081501.55876 4724 4627 17343750.0057 4734 4627 1.069903373718e-05 4735 4627 -83408755.55014 4736 4627 -69374999.9886 4737 4627 4.410743713379e-06 4738 4627 164138769.4832 4739 4627 -1.192092895508e-07 4740 4627 -1.156330108643e-05 4741 4627 -83408755.55014 4742 4627 69374999.9886 4755 4627 -24305555.56353 4756 4627 -39081501.55875 4757 4627 -17343750.0057 4758 4627 -8.344650268555e-07 4759 4627 -31882558.21681 4760 4627 -3.278255462646e-07 4761 4627 24305555.56353 4762 4627 -39081501.55875 4763 4627 17343750.00569 4628 4628 1165825984.246 4629 4628 -1.382827758789e-05 4630 4628 1.788139343262e-07 4631 4628 104791324.3853 4644 4628 -2.890825271606e-06 4645 4628 3.8743019104e-07 4646 4628 -46719419.49861 4647 4628 -1.20997428894e-05 4648 4628 -4.768371582031e-07 4649 4628 -212506.0825927 4650 4628 -3.278255462646e-06 4651 4628 -2.086162567139e-07 4652 4628 -46719419.49861 4716 4628 21679861.11823 4717 4628 -17343750.0057 4718 4628 -36432062.04359 4719 4628 86719444.4302 4720 4628 3.427267074585e-07 4721 4628 -99061955.12464 4722 4628 21679861.11823 4723 4628 17343750.0057 4724 4628 -36432062.04359 4734 4628 6.169080734253e-06 4735 4628 -69374999.9886 4736 4628 -72810997.49471 4737 4628 2.598762512207e-05 4738 4628 5.960464477539e-08 4739 4628 -104578818.0156 4740 4628 6.973743438721e-06 4741 4628 69374999.9886 4742 4628 -72810997.49471 4755 4628 -21679861.11823 4756 4628 -17343750.0057 4757 4628 -36432062.04358 4758 4628 -86719444.43019 4759 4628 -2.682209014893e-07 4760 4628 -99061955.12461 4761 4628 -21679861.11823 4762 4628 17343750.00569 4763 4628 -36432062.04358 4629 4629 1661147708.835 4630 4629 104975994.3213 4631 4629 -3.910064697266e-05 4632 4629 28973926.47985 4633 4629 -93442034.30677 4634 4629 -1.192092895508e-07 4647 4629 -148365426.1266 4648 4629 -97222222.20624 4649 4629 -3.039836883545e-06 4650 4629 -414750020.4148 4651 4629 -3811573.0762 4652 4629 -7.867813110352e-06 4653 4629 -158390003.0581 4654 4629 97090758.28168 4655 4629 2.413988113403e-06 4719 4629 -46373434.23613 4720 4629 24305555.56354 4721 4629 21679861.11823 4722 4629 -180984988.3576 4723 4629 -26203286.31792 4724 4629 88411110.90689 4737 4629 8952264.76783 4738 4629 9.298324584961e-06 4739 4629 6.228685379028e-06 4740 4629 274245586.3935 4741 4629 26243998.59326 4742 4629 0.03795725107193 4743 4629 -25967702.04294 4744 4629 -23360508.5882 4745 4629 21679166.28526 4758 4629 -46373434.23611 4759 4629 -24305555.56353 4760 4629 -21679861.11823 4761 4629 -140996480.1669 4762 4629 -952893.269521 4763 4629 -87564583.31886 4764 4629 -48879322.66665 4765 4629 24272689.58238 4766 4629 -22525694.45184 4630 4630 1378316574.243 4631 4630 6.914138793945e-06 4632 4630 -93442033.91788 4633 4630 -311076053.7848 4634 4630 7.450580596924e-07 4647 4630 -97222222.20624 4648 4630 -119197695.4315 4649 4630 2.831220626831e-07 4650 4630 -3811573.076214 4651 4630 16672797.27745 4652 4630 4.64916229248e-06 4653 4630 97090758.28168 4654 4630 -116180339.9824 4655 4630 4.023313522339e-07 4719 4630 24305555.56354 4720 4630 -39081501.55876 4721 4630 -17343750.00569 4722 4630 -26203286.41514 4723 4630 -65895674.85388 4724 4630 18697916.60118 4737 4630 1.069903373718e-05 4738 4630 -83408755.55014 4739 4630 -69374999.9886 4740 4630 26243998.59326 4741 4630 203537802.7108 4742 4630 0.03034967184067 4743 4630 -23360508.49098 4744 4630 -110980197.151 4745 4630 69374999.59698 4758 4630 -24305555.56353 4759 4630 -39081501.55875 4760 4630 -17343750.0057 4761 4630 -952893.2695279 4762 4630 -33140775.69073 4763 4630 -677083.3331567 4764 4630 24272689.58238 4765 4630 -38326906.89253 4766 4630 16666666.67214 4631 4631 1227849607.294 4632 4631 1.311302185059e-06 4633 4631 4.470348358154e-07 4634 4631 16993676.645 4647 4631 -2.890825271606e-06 4648 4631 3.8743019104e-07 4649 4631 -46719419.49861 4650 4631 -9.059906005859e-06 4651 4631 4.64916229248e-06 4652 4631 -3046182.050712 4653 4631 2.205371856689e-06 4654 4631 2.98023223877e-07 4655 4631 -48631203.38774 4719 4631 21679861.11823 4720 4631 -17343750.0057 4721 4631 -36432062.04359 4722 4631 88411110.90689 4723 4631 18697916.56855 4724 4631 -114040857.0943 4737 4631 6.169080734253e-06 4738 4631 -69374999.9886 4739 4631 -72810997.49471 4740 4631 -0.03792351484299 4741 4631 -0.03035482764244 4742 4631 -69147840.74453 4743 4631 21679166.091 4744 4631 69374999.4742 4745 4631 -84314737.2806 4758 4631 -21679861.11823 4759 4631 -17343750.0057 4760 4631 -36432062.04358 4761 4631 -87564583.31903 4762 4631 -677083.33329 4763 4631 -100252145.5455 4764 4631 -22525694.45184 4765 4631 16666666.67214 4766 4631 -36909325.87324 4632 4632 878310888.481 4633 4632 -2657515.757649 4634 4632 -9.536743164063e-07 4650 4632 -146355658.7119 4651 4632 -97205456.75097 4652 4632 -2.801418304443e-06 4653 4632 -422227983.6709 4654 4632 -5136049.023844 4655 4632 4.768371582031e-07 4656 4632 85600144.70804 4657 4632 -16771033.13002 4658 4632 -1.311302185059e-06 4659 4632 -156881939.5358 4660 4632 98545423.0995 4661 4632 2.205371856689e-06 4722 4632 -8767515.558539 4723 4632 29166666.38459 4724 4632 27030832.75893 4740 4632 -25967702.04295 4741 4632 -23360508.49098 4742 4632 -21679166.091 4743 4632 119740849.7095 4744 4632 -664378.939739 4745 4632 17135277.77496 4761 4632 -45870736.57863 4762 4632 -24301364.19972 4763 4632 -21679166.67379 4764 4632 -141002035.2672 4765 4632 -1284012.2566 4766 4632 -85676388.87481 4767 4632 4511607.610508 4768 4632 -4192758.284571 4769 4632 3215972.223777 4770 4632 -47751770.62457 4771 4632 24636355.78702 4772 4632 -21159027.78473 4633 4633 904404472.7405 4634 4633 1.776218414307e-05 4650 4633 -97205456.75097 4651 4633 -119802374.1365 4652 4633 4.321336746216e-07 4653 4633 -5136049.023847 4654 4633 9983783.088476 4655 4633 9.000301361084e-06 4656 4633 22117855.75249 4657 4633 -98572068.66138 4658 4633 -9.238719940186e-07 4659 4633 98545423.0995 4660 4633 -123363044.4243 4661 4633 5.662441253662e-07 4722 4633 19444444.25639 4723 4633 -7306349.825736 4724 4633 -13062499.95656 4740 4633 -23360508.5882 4741 4633 -110980197.151 4742 4633 -69374999.4742 4743 4633 -664378.9397418 4744 4633 126264245.7776 4745 4633 7208333.185864 4761 4633 -24301364.19972 4762 4633 -39232415.43152 4763 4633 -17343750.0057 4764 4633 -1284012.256601 4765 4633 -32949093.52408 4766 4633 -677083.3331573 4767 4633 5529463.940848 4768 4633 -41531445.75454 4769 4633 33333333.32785 4770 4633 24636355.78702 4771 4633 -39372046.84257 4772 4633 16666666.67214 4634 4634 768562010.6434 4650 4634 -2.801418304443e-06 4651 4634 4.470348358154e-07 4652 4634 -46336936.97173 4653 4634 8.940696716309e-07 4654 4634 9.059906005859e-06 4655 4634 -12181640.54619 4657 4634 -9.834766387939e-07 4658 4634 44227455.09151 4659 4634 1.788139343262e-06 4660 4634 5.513429641724e-07 4661 4634 -52301561.26621 4722 4634 18020555.17262 4723 4634 -20270833.25379 4724 4634 -24841207.22224 4740 4634 -21679166.28526 4741 4634 -69374999.59698 4742 4634 -84314737.28062 4743 4634 -17135277.77496 4744 4634 -7208333.18587 4745 4634 -74091157.29495 4761 4634 -21679166.67379 4762 4634 -17343750.0057 4763 4634 -36335759.26896 4764 4634 -85676388.87481 4765 4634 -677083.3332908 4766 4634 -97565514.9312 4767 4634 -4909027.779057 4768 4634 33333333.32785 4769 4634 -33978945.76048 4770 4634 -21159027.78473 4771 4634 16666666.67214 4772 4634 -35825485.57976 4635 4635 741974947.0469 4636 4635 5.006790161133e-06 4637 4635 -2.908706665039e-05 4638 4635 92161150.94322 4639 4635 19444444.44125 4640 4635 -7.271766662598e-06 4725 4635 -138827443.8752 4726 4635 2.682209014893e-07 4727 4635 86719444.4302 4728 4635 -46373434.23614 4729 4635 -24305555.56354 4730 4635 21679861.11823 4746 4635 111237115.4367 4747 4635 -8.344650268555e-07 4748 4635 -17343888.88603 4749 4635 4476132.383917 4750 4635 4861111.1127 4751 4635 -4335972.223642 4636 4636 625304024.3239 4637 4636 6.198883056641e-06 4638 4636 -19444444.44125 4639 4636 -92560889.60172 4640 4636 2.32458114624e-06 4725 4636 -2.294778823853e-06 4726 4636 -31882558.21685 4727 4636 2.682209014893e-07 4728 4636 -24305555.56354 4729 4636 -39081501.55876 4730 4636 17343750.0057 4746 4636 -7.152557373047e-07 4747 4636 82069384.74161 4748 4636 -3.75509262085e-06 4749 4636 -4861111.112713 4750 4636 -41704377.77507 4751 4636 34687499.9943 4637 4637 582912992.1231 4638 4637 -7.271766662598e-06 4639 4637 1.877546310425e-06 4640 4637 52395662.19267 4725 4637 86719444.4302 4726 4637 3.427267074585e-07 4727 4637 -99061955.12464 4728 4637 21679861.11823 4729 4637 17343750.0057 4730 4637 -36432062.04359 4746 4637 17343888.88605 4747 4637 -3.576278686523e-06 4748 4637 -52289409.00778 4749 4637 4335972.22365 4750 4637 34687499.9943 4751 4637 -36405498.74735 4638 4638 741974947.0469 4639 4638 5.006790161133e-06 4640 4638 -2.908706665039e-05 4641 4638 92161150.94322 4642 4638 19444444.44125 4643 4638 -7.271766662598e-06 4725 4638 -46373434.23613 4726 4638 24305555.56354 4727 4638 21679861.11823 4728 4638 -138827443.8752 4729 4638 2.682209014893e-07 4730 4638 86719444.4302 4731 4638 -46373434.23614 4732 4638 -24305555.56354 4733 4638 21679861.11823 4746 4638 4476132.383914 4747 4638 -4861111.112702 4748 4638 -4335972.223643 4749 4638 111237115.4367 4750 4638 -8.344650268555e-07 4751 4638 -17343888.88603 4752 4638 4476132.383917 4753 4638 4861111.1127 4754 4638 -4335972.223642 4639 4639 625304024.3239 4640 4639 6.198883056641e-06 4641 4639 -19444444.44125 4642 4639 -92560889.60172 4643 4639 2.32458114624e-06 4725 4639 24305555.56354 4726 4639 -39081501.55876 4727 4639 -17343750.00569 4728 4639 -2.294778823853e-06 4729 4639 -31882558.21685 4730 4639 2.682209014893e-07 4731 4639 -24305555.56354 4732 4639 -39081501.55876 4733 4639 17343750.0057 4746 4639 4861111.112712 4747 4639 -41704377.77507 4748 4639 -34687499.9943 4749 4639 -7.152557373047e-07 4750 4639 82069384.74161 4751 4639 -3.75509262085e-06 4752 4639 -4861111.112713 4753 4639 -41704377.77507 4754 4639 34687499.9943 4640 4640 582912992.1231 4641 4640 -7.271766662598e-06 4642 4640 1.877546310425e-06 4643 4640 52395662.19267 4725 4640 21679861.11823 4726 4640 -17343750.0057 4727 4640 -36432062.04359 4728 4640 86719444.4302 4729 4640 3.427267074585e-07 4730 4640 -99061955.12464 4731 4640 21679861.11823 4732 4640 17343750.0057 4733 4640 -36432062.04359 4746 4640 4335972.223649 4747 4640 -34687499.9943 4748 4640 -36405498.74736 4749 4640 17343888.88605 4750 4640 -3.576278686523e-06 4751 4640 -52289409.00778 4752 4640 4335972.22365 4753 4640 34687499.9943 4754 4640 -36405498.74735 4641 4641 741974947.0469 4642 4641 5.006790161133e-06 4643 4641 -2.908706665039e-05 4644 4641 92161150.94322 4645 4641 19444444.44125 4646 4641 -7.271766662598e-06 4728 4641 -46373434.23613 4729 4641 24305555.56354 4730 4641 21679861.11823 4731 4641 -138827443.8752 4732 4641 2.682209014893e-07 4733 4641 86719444.4302 4734 4641 -46373434.23614 4735 4641 -24305555.56354 4736 4641 21679861.11823 4749 4641 4476132.383914 4750 4641 -4861111.112702 4751 4641 -4335972.223643 4752 4641 111237115.4367 4753 4641 -8.344650268555e-07 4754 4641 -17343888.88603 4755 4641 4476132.383917 4756 4641 4861111.1127 4757 4641 -4335972.223642 4642 4642 625304024.3239 4643 4642 6.198883056641e-06 4644 4642 -19444444.44125 4645 4642 -92560889.60172 4646 4642 2.32458114624e-06 4728 4642 24305555.56354 4729 4642 -39081501.55876 4730 4642 -17343750.00569 4731 4642 -2.294778823853e-06 4732 4642 -31882558.21685 4733 4642 2.682209014893e-07 4734 4642 -24305555.56354 4735 4642 -39081501.55876 4736 4642 17343750.0057 4749 4642 4861111.112712 4750 4642 -41704377.77507 4751 4642 -34687499.9943 4752 4642 -7.152557373047e-07 4753 4642 82069384.74161 4754 4642 -3.75509262085e-06 4755 4642 -4861111.112713 4756 4642 -41704377.77507 4757 4642 34687499.9943 4643 4643 582912992.1231 4644 4643 -7.271766662598e-06 4645 4643 1.877546310425e-06 4646 4643 52395662.19267 4728 4643 21679861.11823 4729 4643 -17343750.0057 4730 4643 -36432062.04359 4731 4643 86719444.4302 4732 4643 3.427267074585e-07 4733 4643 -99061955.12464 4734 4643 21679861.11823 4735 4643 17343750.0057 4736 4643 -36432062.04359 4749 4643 4335972.223649 4750 4643 -34687499.9943 4751 4643 -36405498.74736 4752 4643 17343888.88605 4753 4643 -3.576278686523e-06 4754 4643 -52289409.00778 4755 4643 4335972.22365 4756 4643 34687499.9943 4757 4643 -36405498.74735 4644 4644 741974947.0469 4645 4644 5.006790161133e-06 4646 4644 -2.908706665039e-05 4647 4644 92161150.94322 4648 4644 19444444.44125 4649 4644 -7.271766662598e-06 4731 4644 -46373434.23613 4732 4644 24305555.56354 4733 4644 21679861.11823 4734 4644 -138827443.8752 4735 4644 2.682209014893e-07 4736 4644 86719444.4302 4737 4644 -46373434.23614 4738 4644 -24305555.56354 4739 4644 21679861.11823 4752 4644 4476132.383914 4753 4644 -4861111.112702 4754 4644 -4335972.223643 4755 4644 111237115.4367 4756 4644 -8.344650268555e-07 4757 4644 -17343888.88603 4758 4644 4476132.383917 4759 4644 4861111.1127 4760 4644 -4335972.223642 4645 4645 625304024.3239 4646 4645 6.198883056641e-06 4647 4645 -19444444.44125 4648 4645 -92560889.60172 4649 4645 2.32458114624e-06 4731 4645 24305555.56354 4732 4645 -39081501.55876 4733 4645 -17343750.00569 4734 4645 -2.294778823853e-06 4735 4645 -31882558.21685 4736 4645 2.682209014893e-07 4737 4645 -24305555.56354 4738 4645 -39081501.55876 4739 4645 17343750.0057 4752 4645 4861111.112712 4753 4645 -41704377.77507 4754 4645 -34687499.9943 4755 4645 -7.152557373047e-07 4756 4645 82069384.74161 4757 4645 -3.75509262085e-06 4758 4645 -4861111.112713 4759 4645 -41704377.77507 4760 4645 34687499.9943 4646 4646 582912992.1231 4647 4646 -7.271766662598e-06 4648 4646 1.877546310425e-06 4649 4646 52395662.19267 4731 4646 21679861.11823 4732 4646 -17343750.0057 4733 4646 -36432062.04359 4734 4646 86719444.4302 4735 4646 3.427267074585e-07 4736 4646 -99061955.12464 4737 4646 21679861.11823 4738 4646 17343750.0057 4739 4646 -36432062.04359 4752 4646 4335972.223649 4753 4646 -34687499.9943 4754 4646 -36405498.74736 4755 4646 17343888.88605 4756 4646 -3.576278686523e-06 4757 4646 -52289409.00778 4758 4646 4335972.22365 4759 4646 34687499.9943 4760 4646 -36405498.74735 4647 4647 741974947.0469 4648 4647 5.006790161133e-06 4649 4647 -2.908706665039e-05 4650 4647 92161150.94322 4651 4647 19444444.44125 4652 4647 -7.271766662598e-06 4734 4647 -46373434.23613 4735 4647 24305555.56354 4736 4647 21679861.11823 4737 4647 -138827443.8752 4738 4647 2.682209014893e-07 4739 4647 86719444.4302 4740 4647 -46373434.23614 4741 4647 -24305555.56354 4742 4647 21679861.11823 4755 4647 4476132.383914 4756 4647 -4861111.112702 4757 4647 -4335972.223643 4758 4647 111237115.4367 4759 4647 -8.344650268555e-07 4760 4647 -17343888.88603 4761 4647 4476132.383917 4762 4647 4861111.1127 4763 4647 -4335972.223642 4648 4648 625304024.3239 4649 4648 6.198883056641e-06 4650 4648 -19444444.44125 4651 4648 -92560889.60172 4652 4648 2.32458114624e-06 4734 4648 24305555.56354 4735 4648 -39081501.55876 4736 4648 -17343750.00569 4737 4648 -2.294778823853e-06 4738 4648 -31882558.21685 4739 4648 2.682209014893e-07 4740 4648 -24305555.56354 4741 4648 -39081501.55876 4742 4648 17343750.0057 4755 4648 4861111.112712 4756 4648 -41704377.77507 4757 4648 -34687499.9943 4758 4648 -7.152557373047e-07 4759 4648 82069384.74161 4760 4648 -3.75509262085e-06 4761 4648 -4861111.112713 4762 4648 -41704377.77507 4763 4648 34687499.9943 4649 4649 582912992.1231 4650 4649 -7.271766662598e-06 4651 4649 1.877546310425e-06 4652 4649 52395662.19267 4734 4649 21679861.11823 4735 4649 -17343750.0057 4736 4649 -36432062.04359 4737 4649 86719444.4302 4738 4649 3.427267074585e-07 4739 4649 -99061955.12464 4740 4649 21679861.11823 4741 4649 17343750.0057 4742 4649 -36432062.04359 4755 4649 4335972.223649 4756 4649 -34687499.9943 4757 4649 -36405498.74736 4758 4649 17343888.88605 4759 4649 -3.576278686523e-06 4760 4649 -52289409.00778 4761 4649 4335972.22365 4762 4649 34687499.9943 4763 4649 -36405498.74735 4650 4650 743972693.3092 4651 4650 15895.84580994 4652 4650 -1.621246337891e-05 4653 4650 96103889.57229 4654 4650 23223356.21638 4655 4650 1.311302185059e-06 4737 4650 -46373434.23613 4738 4650 24305555.56354 4739 4650 21679861.11823 4740 4650 -140996480.167 4741 4650 -952893.2695191 4742 4650 87564583.31904 4743 4650 -45870736.57862 4744 4650 -24301364.19972 4745 4650 21679166.67378 4758 4650 4476132.383914 4759 4650 -4861111.112702 4760 4650 -4335972.223643 4761 4650 111737658.2526 4762 4650 3973.961459279 4763 4650 -17343611.10825 4764 4650 5643546.059514 4765 4650 5805839.056956 4766 4650 -5182361.11248 4651 4651 624700330.4184 4652 4651 1.406669616699e-05 4653 4651 -15665532.66612 4654 4651 -87045539.95469 4655 4651 1.907348632813e-06 4737 4651 24305555.56354 4738 4651 -39081501.55876 4739 4651 -17343750.00569 4740 4651 -952893.2695158 4741 4651 -33140775.69075 4742 4651 677083.3332877 4743 4651 -24301364.19972 4744 4651 -39232415.43151 4745 4651 17343750.00569 4758 4651 4861111.112712 4759 4651 -41704377.77507 4760 4651 -34687499.9943 4761 4651 3973.961458564 4762 4651 81919567.5152 4763 4651 -4.589557647705e-06 4764 4651 -3916383.168461 4765 4651 -40143811.34479 4766 4651 34010416.66101 4652 4652 583290059.4325 4653 4652 2.384185791016e-07 4654 4652 1.609325408936e-06 4655 4652 54461159.75297 4737 4652 21679861.11823 4738 4652 -17343750.0057 4739 4652 -36432062.04359 4740 4652 87564583.31887 4741 4652 677083.3331543 4742 4652 -100252145.5455 4743 4652 21679166.67378 4744 4652 17343750.00569 4745 4652 -36335759.26895 4758 4652 4335972.223649 4759 4652 -34687499.9943 4760 4652 -36405498.74736 4761 4652 17343611.10827 4762 4652 -4.291534423828e-06 4763 4652 -52192192.18033 4764 4652 3489305.557201 4765 4652 34010416.66114 4766 4652 -35404513.64279 4653 4653 745987487.9303 4654 4653 -2453991.979028 4655 4653 -3.814697265625e-06 4656 4653 -141080087.6865 4657 4653 -95899021.31303 4658 4653 -1.296401023865e-06 4659 4653 92610986.19901 4660 4653 22063836.70035 4661 4653 -3.576278686523e-07 4740 4653 -48879322.66666 4741 4653 24272689.58239 4742 4653 22525694.45184 4743 4653 -141002035.2672 4744 4653 -1284012.256587 4745 4653 85676388.87482 4761 4653 5643546.059503 4762 4653 -3916383.168461 4763 4653 -3489305.557201 4764 4653 115620942.6217 4765 4653 -613497.995061 4766 4653 -17135277.77496 4767 4653 -43801307.66031 4768 4653 -23974755.34007 4769 4653 20312500.00667 4770 4653 5916032.269885 4771 4653 5515959.177805 4772 4653 -5078333.334501 4654 4654 616411761.6305 4655 4654 1.907348632813e-05 4656 4654 -95899021.31303 4657 4654 -117437349.9809 4658 4654 9.387731552124e-07 4659 4654 -16825052.18216 4660 4654 -92728025.5149 4661 4654 3.844499588013e-06 4740 4654 24272689.58239 4741 4654 -38326906.89254 4742 4654 -16666666.67214 4743 4654 -1284012.256586 4744 4654 -32949093.52409 4745 4654 677083.3332867 4761 4654 5805839.056958 4762 4654 -40143811.34482 4763 4654 -34010416.66115 4764 4654 -613497.9950583 4765 4654 83227011.03077 4766 4654 -4.678964614868e-06 4767 4654 -23974755.34007 4768 4654 -37890623.23097 4769 4654 16666666.67214 4770 4654 -4206263.047613 4771 4654 -40418720.68143 4772 4654 33333333.32785 4655 4655 572020605.8755 4656 4655 -1.54972076416e-06 4657 4655 8.493661880493e-07 4658 4655 -46375866.82274 4659 4655 -3.576278686523e-07 4660 4655 3.725290298462e-06 4661 4655 48718383.22463 4740 4655 22525694.45184 4741 4655 -16666666.67214 4742 4655 -36909325.87325 4743 4655 85676388.87482 4744 4655 677083.3331533 4745 4655 -97565514.93121 4761 4655 5182361.11248 4762 4655 -34010416.66102 4763 4655 -35404513.64281 4764 4655 17135277.77496 4765 4655 -4.738569259644e-06 4766 4655 -45997327.00148 4767 4655 20312500.00667 4768 4655 16666666.67214 4769 4655 -34344061.96816 4770 4655 3385277.779222 4771 4655 33333333.32785 4772 4655 -33784975.63126 4656 4656 361120236.1713 4657 4656 94548810.89504 4658 4656 2.861022949219e-06 4659 4656 -203961436.0496 4660 4656 -20767645.33449 4661 4656 -2.056360244751e-06 4743 4656 4511607.610497 4744 4656 5529463.940849 4745 4656 4909027.779057 4764 4656 -43801307.66031 4765 4656 -23974755.34008 4766 4656 -20312500.00667 4767 4656 56503201.94986 4768 4656 23637202.73541 4769 4656 8124999.998667 4770 4656 -68052930.47169 4771 4656 -5191911.336185 4772 4656 -41471527.77105 4657 4657 308313282.913 4658 4657 8.821487426758e-06 4659 4657 18121243.54801 4660 4657 9374992.872531 4661 4657 4.52995300293e-06 4743 4657 -4192758.284571 4744 4657 -41531445.75456 4745 4657 -33333333.32786 4764 4657 -23974755.34008 4765 4657 -37890623.23098 4766 4657 -16666666.67214 4767 4657 23637202.73541 4768 4657 43301463.62877 4769 4657 6666666.66557 4770 4657 4530310.889233 4771 4657 -14718823.21488 4772 4657 3333333.334427 4658 4658 278103282.9517 4659 4658 -8.344650268555e-07 4660 4658 4.52995300293e-06 4661 4658 -4811252.171673 4743 4658 -3215972.223779 4744 4658 -33333333.32786 4745 4658 -33978945.7605 4764 4658 -20312500.00667 4765 4658 -16666666.67214 4766 4658 -34344061.96817 4767 4658 -8124999.998664 4768 4658 -6666666.665573 4769 4658 -20545798.26107 4770 4658 -41471527.77088 4771 4658 -3333333.334429 4772 4658 -46703003.53463 4659 4659 371304389.3859 4660 4659 -99841614.46536 4661 4659 -2.145767211914e-06 4743 4659 -47751770.62458 4744 4659 24636355.78702 4745 4659 21159027.78473 4764 4659 5916032.269875 4765 4659 -4206263.047613 4766 4659 -3385277.779223 4767 4659 -68052930.47169 4768 4659 4530310.88924 4769 4659 41471527.77088 4770 4659 58352668.82663 4771 4659 -24960403.62864 4772 4659 -8463611.109722 4660 4660 309788077.0662 4661 4660 9.059906005859e-06 4743 4660 24636355.78702 4744 4660 -39372046.84258 4745 4660 -16666666.67214 4764 4660 5515959.177806 4765 4660 -40418720.68145 4766 4660 -33333333.32786 4767 4660 -5191911.336178 4768 4660 -14718823.21488 4769 4660 3333333.334427 4770 4660 -24960403.62864 4771 4660 42973590.73914 4772 4660 6666666.665569 4661 4661 283253096.8787 4743 4661 21159027.78473 4744 4661 -16666666.67214 4745 4661 -35825485.57977 4764 4661 5078333.334502 4765 4661 -33333333.32786 4766 4661 -33784975.63127 4767 4661 41471527.77105 4768 4661 -3333333.334429 4769 4661 -46703003.53464 4770 4661 8463611.10972 4771 4661 -6666666.665574 4772 4661 -21115868.587 4662 4662 927468678.158 4663 4662 97222222.20623 4664 4662 -8.106231689453e-06 4665 4662 -573726109.9308 4666 4662 -97222221.42845 4667 4662 8.940696716309e-07 4668 4662 18564155.00999 4669 4662 77777776.9872 4670 4662 2.861022949219e-06 4773 4662 139046393.5639 4774 4662 24305555.56354 4776 4662 -175918799.4896 4777 4662 -24305555.36909 4779 4662 -9282077.505002 4780 4662 19444444.25638 4663 4663 781630025.6149 4664 4663 8.412431954121e-06 4665 4663 -97222221.03956 4666 4663 -116778839.2437 4667 4663 5.602836608887e-06 4668 4663 116666665.4808 4669 4663 18564155.00998 4670 4663 5.960464477539e-07 4773 4663 24305555.56354 4774 4663 102586730.4102 4776 4663 -24305555.27187 4777 4663 -61681981.76159 4779 4663 29166666.38457 4780 4663 -9282077.504995 4664 4664 728641235.3813 4665 4664 4.172325134277e-07 4666 4664 4.887580871582e-06 4667 4664 -96436338.25295 4668 4664 2.503395080566e-06 4669 4664 1.251697540283e-06 4670 4664 49504413.35998 4773 4664 -17343888.84952 4774 4664 -13874999.85144 4776 4664 -86719444.24762 4777 4664 -17343749.94044 4779 4664 -26015832.7805 4780 4664 13874999.9393 4665 4665 1632315315.374 4666 4665 97222220.26178 4667 4665 -4.172325134277e-05 4668 4665 17392720.97666 4669 4665 -97222221.42845 4670 4665 -2.145767211914e-06 4671 4665 -406796532.3944 4672 4665 -2.801418304443e-06 4673 4665 -1.233816146851e-05 4674 4665 -148365426.1266 4675 4665 97222222.20624 4676 4665 -3.308057785034e-06 4773 4665 -175918799.4897 4774 4665 -24305555.27186 4776 4665 268847663.9159 4777 4665 24305555.07742 4779 4665 -28139091.37671 4780 4665 -24305555.36909 4782 4665 -138827443.8751 4783 4665 -5.066394805908e-07 4785 4665 -46373434.23611 4786 4665 24305555.56353 4666 4666 1369805740.108 4667 4666 -2.145767211914e-06 4668 4666 -97222221.03956 4669 4666 -322883627.8625 4670 4666 4.798173904419e-06 4671 4666 -3.09944152832e-06 4672 4666 20983010.02827 4673 4666 -4.768371582031e-07 4674 4666 97222222.20624 4675 4666 -119197695.4315 4676 4666 -7.450580596924e-08 4773 4666 -24305555.36908 4774 4666 -61681981.7616 4776 4666 24305555.07742 4777 4666 203220270.0671 4779 4666 -24305555.27186 4780 4666 -113208178.6284 4782 4666 -8.344650268555e-07 4783 4666 -31882558.21681 4785 4666 24305555.56353 4786 4666 -39081501.55875 4667 4667 1212545401.289 4668 4667 -1.788139343262e-06 4669 4667 3.75509262085e-06 4670 4667 8567490.576108 4671 4667 -1.20997428894e-05 4672 4667 -4.768371582031e-07 4673 4667 -212506.0825927 4674 4667 -3.278255462646e-06 4675 4667 -2.086162567139e-07 4676 4667 -46719419.49861 4773 4667 86719444.24762 4774 4667 17343749.9078 4776 4667 -0.03649973869324 4777 4667 -0.02921465039253 4779 4667 21679860.55685 4780 4667 69374999.49133 4782 4667 -86719444.43019 4783 4667 -2.682209014893e-07 4785 4667 -21679861.11823 4786 4667 17343750.00569 4668 4668 927468678.158 4669 4668 97222222.20623 4670 4668 -8.106231689453e-06 4671 4668 -148365426.1266 4672 4668 -97222222.20624 4673 4668 -3.039836883545e-06 4674 4668 -573726109.9308 4675 4668 -97222221.42845 4676 4668 8.940696716309e-07 4677 4668 18564155.00999 4678 4668 77777776.9872 4679 4668 2.861022949219e-06 4773 4668 -9282077.50499 4774 4668 29166666.38457 4776 4668 -28139091.37673 4777 4668 -24305555.27187 4779 4668 139046393.5639 4780 4668 24305555.56354 4782 4668 -46373434.23611 4783 4668 -24305555.56353 4785 4668 -175918799.4896 4786 4668 -24305555.36909 4788 4668 -9282077.505002 4789 4668 19444444.25638 4669 4669 781630025.6149 4670 4669 8.412431954121e-06 4671 4669 -97222222.20624 4672 4669 -119197695.4315 4673 4669 2.831220626831e-07 4674 4669 -97222221.03956 4675 4669 -116778839.2437 4676 4669 5.602836608887e-06 4677 4669 116666665.4808 4678 4669 18564155.00998 4679 4669 5.960464477539e-07 4773 4669 19444444.25638 4774 4669 -9282077.505 4776 4669 -24305555.36909 4777 4669 -113208178.6284 4779 4669 24305555.56354 4780 4669 102586730.4102 4782 4669 -24305555.56353 4783 4669 -39081501.55875 4785 4669 -24305555.27187 4786 4669 -61681981.76159 4788 4669 29166666.38457 4789 4669 -9282077.504995 4670 4670 728641235.3813 4671 4670 -2.890825271606e-06 4672 4670 3.8743019104e-07 4673 4670 -46719419.49861 4674 4670 4.172325134277e-07 4675 4670 4.887580871582e-06 4676 4670 -96436338.25295 4677 4670 2.503395080566e-06 4678 4670 1.251697540283e-06 4679 4670 49504413.35998 4773 4670 17343888.52033 4774 4670 -20812499.90895 4776 4670 -21679860.74398 4777 4670 -69374999.6084 4779 4670 -17343888.84952 4780 4670 -13874999.85144 4782 4670 -21679861.11823 4783 4670 -17343750.0057 4785 4670 -86719444.24762 4786 4670 -17343749.94044 4788 4670 -26015832.7805 4789 4670 13874999.9393 4671 4671 1483949894.094 4672 4671 7.867813110352e-06 4673 4671 -5.507469177246e-05 4674 4671 184322301.8864 4675 4671 -2.622604370117e-06 4676 4671 -1.358985900879e-05 4680 4671 -406796532.3944 4681 4671 -2.801418304443e-06 4682 4671 -1.233816146851e-05 4683 4671 -148365426.1266 4684 4671 97222222.20624 4685 4671 -3.308057785034e-06 4776 4671 -138827443.8752 4777 4671 2.682209014893e-07 4779 4671 -46373434.23614 4780 4671 -24305555.56354 4782 4671 222474230.8735 4783 4671 3.933906555176e-06 4785 4671 8952264.76783 4786 4671 -1.302361488342e-05 4791 4671 -138827443.8751 4792 4671 -5.066394805908e-07 4794 4671 -46373434.23611 4795 4671 24305555.56353 4672 4672 1250608048.648 4673 4672 -1.192092895508e-06 4674 4672 -3.159046173096e-06 4675 4672 -185121779.2034 4676 4672 8.046627044678e-07 4680 4672 -3.09944152832e-06 4681 4672 20983010.02827 4682 4672 -4.768371582031e-07 4683 4672 97222222.20624 4684 4672 -119197695.4315 4685 4672 -7.450580596924e-08 4776 4672 -2.294778823853e-06 4777 4672 -31882558.21685 4779 4672 -24305555.56354 4780 4672 -39081501.55876 4782 4672 4.410743713379e-06 4783 4672 164138769.4832 4785 4672 -1.156330108643e-05 4786 4672 -83408755.55014 4791 4672 -8.344650268555e-07 4792 4672 -31882558.21681 4794 4672 24305555.56353 4795 4672 -39081501.55875 4673 4673 1165825984.246 4674 4673 -1.382827758789e-05 4675 4673 1.788139343262e-07 4676 4673 104791324.3853 4680 4673 -1.20997428894e-05 4681 4673 -4.768371582031e-07 4682 4673 -212506.0825927 4683 4673 -3.278255462646e-06 4684 4673 -2.086162567139e-07 4685 4673 -46719419.49861 4776 4673 86719444.4302 4777 4673 3.427267074585e-07 4779 4673 21679861.11823 4780 4673 17343750.0057 4782 4673 2.598762512207e-05 4783 4673 5.960464477539e-08 4785 4673 6.973743438721e-06 4786 4673 69374999.9886 4791 4673 -86719444.43019 4792 4673 -2.682209014893e-07 4794 4673 -21679861.11823 4795 4673 17343750.00569 4674 4674 1632315315.374 4675 4674 97222220.26178 4676 4674 -4.172325134277e-05 4677 4674 17392720.97666 4678 4674 -97222221.42845 4679 4674 -2.145767211914e-06 4680 4674 -148365426.1266 4681 4674 -97222222.20624 4682 4674 -3.039836883545e-06 4683 4674 -406796532.3944 4684 4674 -2.801418304443e-06 4685 4674 -1.233816146851e-05 4686 4674 -148365426.1266 4687 4674 97222222.20624 4688 4674 -3.308057785034e-06 4776 4674 -46373434.23613 4777 4674 24305555.56354 4779 4674 -175918799.4897 4780 4674 -24305555.27186 4782 4674 8952264.76783 4783 4674 9.298324584961e-06 4785 4674 268847663.9159 4786 4674 24305555.07742 4788 4674 -28139091.37671 4789 4674 -24305555.36909 4791 4674 -46373434.23611 4792 4674 -24305555.56353 4794 4674 -138827443.8751 4795 4674 -5.066394805908e-07 4797 4674 -46373434.23611 4798 4674 24305555.56353 4675 4675 1369805740.108 4676 4675 -2.145767211914e-06 4677 4675 -97222221.03956 4678 4675 -322883627.8625 4679 4675 4.798173904419e-06 4680 4675 -97222222.20624 4681 4675 -119197695.4315 4682 4675 2.831220626831e-07 4683 4675 -3.09944152832e-06 4684 4675 20983010.02827 4685 4675 -4.768371582031e-07 4686 4675 97222222.20624 4687 4675 -119197695.4315 4688 4675 -7.450580596924e-08 4776 4675 24305555.56354 4777 4675 -39081501.55876 4779 4675 -24305555.36908 4780 4675 -61681981.7616 4782 4675 1.069903373718e-05 4783 4675 -83408755.55014 4785 4675 24305555.07742 4786 4675 203220270.0671 4788 4675 -24305555.27186 4789 4675 -113208178.6284 4791 4675 -24305555.56353 4792 4675 -39081501.55875 4794 4675 -8.344650268555e-07 4795 4675 -31882558.21681 4797 4675 24305555.56353 4798 4675 -39081501.55875 4676 4676 1212545401.289 4677 4676 -1.788139343262e-06 4678 4676 3.75509262085e-06 4679 4676 8567490.576108 4680 4676 -2.890825271606e-06 4681 4676 3.8743019104e-07 4682 4676 -46719419.49861 4683 4676 -1.20997428894e-05 4684 4676 -4.768371582031e-07 4685 4676 -212506.0825927 4686 4676 -3.278255462646e-06 4687 4676 -2.086162567139e-07 4688 4676 -46719419.49861 4776 4676 21679861.11823 4777 4676 -17343750.0057 4779 4676 86719444.24762 4780 4676 17343749.9078 4782 4676 6.169080734253e-06 4783 4676 -69374999.9886 4785 4676 -0.03649973869324 4786 4676 -0.02921465039253 4788 4676 21679860.55685 4789 4676 69374999.49133 4791 4676 -21679861.11823 4792 4676 -17343750.0057 4794 4676 -86719444.43019 4795 4676 -2.682209014893e-07 4797 4676 -21679861.11823 4798 4676 17343750.00569 4677 4677 927468678.158 4678 4677 97222222.20623 4679 4677 -8.106231689453e-06 4683 4677 -148365426.1266 4684 4677 -97222222.20624 4685 4677 -3.039836883545e-06 4686 4677 -573726109.9308 4687 4677 -97222221.42845 4688 4677 8.940696716309e-07 4689 4677 18564155.00999 4690 4677 77777776.9872 4691 4677 2.861022949219e-06 4779 4677 -9282077.50499 4780 4677 29166666.38457 4785 4677 -28139091.37673 4786 4677 -24305555.27187 4788 4677 139046393.5639 4789 4677 24305555.56354 4794 4677 -46373434.23611 4795 4677 -24305555.56353 4797 4677 -175918799.4896 4798 4677 -24305555.36909 4800 4677 -9282077.505002 4801 4677 19444444.25638 4678 4678 781630025.6149 4679 4678 8.412431954121e-06 4683 4678 -97222222.20624 4684 4678 -119197695.4315 4685 4678 2.831220626831e-07 4686 4678 -97222221.03956 4687 4678 -116778839.2437 4688 4678 5.602836608887e-06 4689 4678 116666665.4808 4690 4678 18564155.00998 4691 4678 5.960464477539e-07 4779 4678 19444444.25638 4780 4678 -9282077.505 4785 4678 -24305555.36909 4786 4678 -113208178.6284 4788 4678 24305555.56354 4789 4678 102586730.4102 4794 4678 -24305555.56353 4795 4678 -39081501.55875 4797 4678 -24305555.27187 4798 4678 -61681981.76159 4800 4678 29166666.38457 4801 4678 -9282077.504995 4679 4679 728641235.3813 4683 4679 -2.890825271606e-06 4684 4679 3.8743019104e-07 4685 4679 -46719419.49861 4686 4679 4.172325134277e-07 4687 4679 4.887580871582e-06 4688 4679 -96436338.25295 4689 4679 2.503395080566e-06 4690 4679 1.251697540283e-06 4691 4679 49504413.35998 4779 4679 17343888.52033 4780 4679 -20812499.90895 4785 4679 -21679860.74398 4786 4679 -69374999.6084 4788 4679 -17343888.84952 4789 4679 -13874999.85144 4794 4679 -21679861.11823 4795 4679 -17343750.0057 4797 4679 -86719444.24762 4798 4679 -17343749.94044 4800 4679 -26015832.7805 4801 4679 13874999.9393 4680 4680 1483949894.094 4681 4680 7.867813110352e-06 4682 4680 -5.507469177246e-05 4683 4680 184322301.8864 4684 4680 -2.622604370117e-06 4685 4680 -1.358985900879e-05 4692 4680 -406796532.3944 4693 4680 -2.801418304443e-06 4694 4680 -1.233816146851e-05 4695 4680 -148365426.1266 4696 4680 97222222.20624 4697 4680 -3.308057785034e-06 4782 4680 -138827443.8752 4783 4680 2.682209014893e-07 4785 4680 -46373434.23614 4786 4680 -24305555.56354 4791 4680 222474230.8735 4792 4680 3.933906555176e-06 4794 4680 8952264.76783 4795 4680 -1.302361488342e-05 4803 4680 -138827443.8751 4804 4680 -5.066394805908e-07 4806 4680 -46373434.23611 4807 4680 24305555.56353 4681 4681 1250608048.648 4682 4681 -1.192092895508e-06 4683 4681 -3.159046173096e-06 4684 4681 -185121779.2034 4685 4681 8.046627044678e-07 4692 4681 -3.09944152832e-06 4693 4681 20983010.02827 4694 4681 -4.768371582031e-07 4695 4681 97222222.20624 4696 4681 -119197695.4315 4697 4681 -7.450580596924e-08 4782 4681 -2.294778823853e-06 4783 4681 -31882558.21685 4785 4681 -24305555.56354 4786 4681 -39081501.55876 4791 4681 4.410743713379e-06 4792 4681 164138769.4832 4794 4681 -1.156330108643e-05 4795 4681 -83408755.55014 4803 4681 -8.344650268555e-07 4804 4681 -31882558.21681 4806 4681 24305555.56353 4807 4681 -39081501.55875 4682 4682 1165825984.246 4683 4682 -1.382827758789e-05 4684 4682 1.788139343262e-07 4685 4682 104791324.3853 4692 4682 -1.20997428894e-05 4693 4682 -4.768371582031e-07 4694 4682 -212506.0825927 4695 4682 -3.278255462646e-06 4696 4682 -2.086162567139e-07 4697 4682 -46719419.49861 4782 4682 86719444.4302 4783 4682 3.427267074585e-07 4785 4682 21679861.11823 4786 4682 17343750.0057 4791 4682 2.598762512207e-05 4792 4682 5.960464477539e-08 4794 4682 6.973743438721e-06 4795 4682 69374999.9886 4803 4682 -86719444.43019 4804 4682 -2.682209014893e-07 4806 4682 -21679861.11823 4807 4682 17343750.00569 4683 4683 1483949894.094 4684 4683 7.867813110352e-06 4685 4683 -5.507469177246e-05 4686 4683 184322301.8864 4687 4683 -2.622604370117e-06 4688 4683 -1.358985900879e-05 4692 4683 -148365426.1266 4693 4683 -97222222.20624 4694 4683 -3.039836883545e-06 4695 4683 -406796532.3944 4696 4683 -2.801418304443e-06 4697 4683 -1.233816146851e-05 4698 4683 -148365426.1266 4699 4683 97222222.20624 4700 4683 -3.308057785034e-06 4782 4683 -46373434.23613 4783 4683 24305555.56354 4785 4683 -138827443.8752 4786 4683 2.682209014893e-07 4788 4683 -46373434.23614 4789 4683 -24305555.56354 4791 4683 8952264.76783 4792 4683 9.298324584961e-06 4794 4683 222474230.8735 4795 4683 3.933906555176e-06 4797 4683 8952264.76783 4798 4683 -1.302361488342e-05 4803 4683 -46373434.23611 4804 4683 -24305555.56353 4806 4683 -138827443.8751 4807 4683 -5.066394805908e-07 4809 4683 -46373434.23611 4810 4683 24305555.56353 4684 4684 1250608048.648 4685 4684 -1.192092895508e-06 4686 4684 -3.159046173096e-06 4687 4684 -185121779.2034 4688 4684 8.046627044678e-07 4692 4684 -97222222.20624 4693 4684 -119197695.4315 4694 4684 2.831220626831e-07 4695 4684 -3.09944152832e-06 4696 4684 20983010.02827 4697 4684 -4.768371582031e-07 4698 4684 97222222.20624 4699 4684 -119197695.4315 4700 4684 -7.450580596924e-08 4782 4684 24305555.56354 4783 4684 -39081501.55876 4785 4684 -2.294778823853e-06 4786 4684 -31882558.21685 4788 4684 -24305555.56354 4789 4684 -39081501.55876 4791 4684 1.069903373718e-05 4792 4684 -83408755.55014 4794 4684 4.410743713379e-06 4795 4684 164138769.4832 4797 4684 -1.156330108643e-05 4798 4684 -83408755.55014 4803 4684 -24305555.56353 4804 4684 -39081501.55875 4806 4684 -8.344650268555e-07 4807 4684 -31882558.21681 4809 4684 24305555.56353 4810 4684 -39081501.55875 4685 4685 1165825984.246 4686 4685 -1.382827758789e-05 4687 4685 1.788139343262e-07 4688 4685 104791324.3853 4692 4685 -2.890825271606e-06 4693 4685 3.8743019104e-07 4694 4685 -46719419.49861 4695 4685 -1.20997428894e-05 4696 4685 -4.768371582031e-07 4697 4685 -212506.0825927 4698 4685 -3.278255462646e-06 4699 4685 -2.086162567139e-07 4700 4685 -46719419.49861 4782 4685 21679861.11823 4783 4685 -17343750.0057 4785 4685 86719444.4302 4786 4685 3.427267074585e-07 4788 4685 21679861.11823 4789 4685 17343750.0057 4791 4685 6.169080734253e-06 4792 4685 -69374999.9886 4794 4685 2.598762512207e-05 4795 4685 5.960464477539e-08 4797 4685 6.973743438721e-06 4798 4685 69374999.9886 4803 4685 -21679861.11823 4804 4685 -17343750.0057 4806 4685 -86719444.43019 4807 4685 -2.682209014893e-07 4809 4685 -21679861.11823 4810 4685 17343750.00569 4686 4686 1632315315.374 4687 4686 97222220.26178 4688 4686 -4.172325134277e-05 4689 4686 17392720.97666 4690 4686 -97222221.42845 4691 4686 -2.145767211914e-06 4695 4686 -148365426.1266 4696 4686 -97222222.20624 4697 4686 -3.039836883545e-06 4698 4686 -406796532.3944 4699 4686 -2.801418304443e-06 4700 4686 -1.233816146851e-05 4701 4686 -148365426.1266 4702 4686 97222222.20624 4703 4686 -3.308057785034e-06 4785 4686 -46373434.23613 4786 4686 24305555.56354 4788 4686 -175918799.4897 4789 4686 -24305555.27186 4794 4686 8952264.76783 4795 4686 9.298324584961e-06 4797 4686 268847663.9159 4798 4686 24305555.07742 4800 4686 -28139091.37671 4801 4686 -24305555.36909 4806 4686 -46373434.23611 4807 4686 -24305555.56353 4809 4686 -138827443.8751 4810 4686 -5.066394805908e-07 4812 4686 -46373434.23611 4813 4686 24305555.56353 4687 4687 1369805740.108 4688 4687 -2.145767211914e-06 4689 4687 -97222221.03956 4690 4687 -322883627.8625 4691 4687 4.798173904419e-06 4695 4687 -97222222.20624 4696 4687 -119197695.4315 4697 4687 2.831220626831e-07 4698 4687 -3.09944152832e-06 4699 4687 20983010.02827 4700 4687 -4.768371582031e-07 4701 4687 97222222.20624 4702 4687 -119197695.4315 4703 4687 -7.450580596924e-08 4785 4687 24305555.56354 4786 4687 -39081501.55876 4788 4687 -24305555.36908 4789 4687 -61681981.7616 4794 4687 1.069903373718e-05 4795 4687 -83408755.55014 4797 4687 24305555.07742 4798 4687 203220270.0671 4800 4687 -24305555.27186 4801 4687 -113208178.6284 4806 4687 -24305555.56353 4807 4687 -39081501.55875 4809 4687 -8.344650268555e-07 4810 4687 -31882558.21681 4812 4687 24305555.56353 4813 4687 -39081501.55875 4688 4688 1212545401.289 4689 4688 -1.788139343262e-06 4690 4688 3.75509262085e-06 4691 4688 8567490.576108 4695 4688 -2.890825271606e-06 4696 4688 3.8743019104e-07 4697 4688 -46719419.49861 4698 4688 -1.20997428894e-05 4699 4688 -4.768371582031e-07 4700 4688 -212506.0825927 4701 4688 -3.278255462646e-06 4702 4688 -2.086162567139e-07 4703 4688 -46719419.49861 4785 4688 21679861.11823 4786 4688 -17343750.0057 4788 4688 86719444.24762 4789 4688 17343749.9078 4794 4688 6.169080734253e-06 4795 4688 -69374999.9886 4797 4688 -0.03649973869324 4798 4688 -0.02921465039253 4800 4688 21679860.55685 4801 4688 69374999.49133 4806 4688 -21679861.11823 4807 4688 -17343750.0057 4809 4688 -86719444.43019 4810 4688 -2.682209014893e-07 4812 4688 -21679861.11823 4813 4688 17343750.00569 4689 4689 927468678.158 4690 4689 97222222.20623 4691 4689 -8.106231689453e-06 4698 4689 -148365426.1266 4699 4689 -97222222.20624 4700 4689 -3.039836883545e-06 4701 4689 -573726109.9308 4702 4689 -97222221.42845 4703 4689 8.940696716309e-07 4704 4689 18564155.00999 4705 4689 77777776.9872 4706 4689 2.861022949219e-06 4788 4689 -9282077.50499 4789 4689 29166666.38457 4797 4689 -28139091.37673 4798 4689 -24305555.27187 4800 4689 139046393.5639 4801 4689 24305555.56354 4809 4689 -46373434.23611 4810 4689 -24305555.56353 4812 4689 -175918799.4896 4813 4689 -24305555.36909 4815 4689 -9282077.505002 4816 4689 19444444.25638 4690 4690 781630025.6149 4691 4690 8.412431954121e-06 4698 4690 -97222222.20624 4699 4690 -119197695.4315 4700 4690 2.831220626831e-07 4701 4690 -97222221.03956 4702 4690 -116778839.2437 4703 4690 5.602836608887e-06 4704 4690 116666665.4808 4705 4690 18564155.00998 4706 4690 5.960464477539e-07 4788 4690 19444444.25638 4789 4690 -9282077.505 4797 4690 -24305555.36909 4798 4690 -113208178.6284 4800 4690 24305555.56354 4801 4690 102586730.4102 4809 4690 -24305555.56353 4810 4690 -39081501.55875 4812 4690 -24305555.27187 4813 4690 -61681981.76159 4815 4690 29166666.38457 4816 4690 -9282077.504995 4691 4691 728641235.3813 4698 4691 -2.890825271606e-06 4699 4691 3.8743019104e-07 4700 4691 -46719419.49861 4701 4691 4.172325134277e-07 4702 4691 4.887580871582e-06 4703 4691 -96436338.25295 4704 4691 2.503395080566e-06 4705 4691 1.251697540283e-06 4706 4691 49504413.35998 4788 4691 17343888.52033 4789 4691 -20812499.90895 4797 4691 -21679860.74398 4798 4691 -69374999.6084 4800 4691 -17343888.84952 4801 4691 -13874999.85144 4809 4691 -21679861.11823 4810 4691 -17343750.0057 4812 4691 -86719444.24762 4813 4691 -17343749.94044 4815 4691 -26015832.7805 4816 4691 13874999.9393 4692 4692 1483949894.094 4693 4692 7.867813110352e-06 4694 4692 -5.507469177246e-05 4695 4692 184322301.8864 4696 4692 -2.622604370117e-06 4697 4692 -1.358985900879e-05 4707 4692 -406796532.3944 4708 4692 -2.801418304443e-06 4709 4692 -1.233816146851e-05 4710 4692 -148365426.1266 4711 4692 97222222.20624 4712 4692 -3.308057785034e-06 4791 4692 -138827443.8752 4792 4692 2.682209014893e-07 4794 4692 -46373434.23614 4795 4692 -24305555.56354 4803 4692 222474230.8735 4804 4692 3.933906555176e-06 4806 4692 8952264.76783 4807 4692 -1.302361488342e-05 4818 4692 -138827443.8751 4819 4692 -5.066394805908e-07 4821 4692 -46373434.23611 4822 4692 24305555.56353 4693 4693 1250608048.648 4694 4693 -1.192092895508e-06 4695 4693 -3.159046173096e-06 4696 4693 -185121779.2034 4697 4693 8.046627044678e-07 4707 4693 -3.09944152832e-06 4708 4693 20983010.02827 4709 4693 -4.768371582031e-07 4710 4693 97222222.20624 4711 4693 -119197695.4315 4712 4693 -7.450580596924e-08 4791 4693 -2.294778823853e-06 4792 4693 -31882558.21685 4794 4693 -24305555.56354 4795 4693 -39081501.55876 4803 4693 4.410743713379e-06 4804 4693 164138769.4832 4806 4693 -1.156330108643e-05 4807 4693 -83408755.55014 4818 4693 -8.344650268555e-07 4819 4693 -31882558.21681 4821 4693 24305555.56353 4822 4693 -39081501.55875 4694 4694 1165825984.246 4695 4694 -1.382827758789e-05 4696 4694 1.788139343262e-07 4697 4694 104791324.3853 4707 4694 -1.20997428894e-05 4708 4694 -4.768371582031e-07 4709 4694 -212506.0825927 4710 4694 -3.278255462646e-06 4711 4694 -2.086162567139e-07 4712 4694 -46719419.49861 4791 4694 86719444.4302 4792 4694 3.427267074585e-07 4794 4694 21679861.11823 4795 4694 17343750.0057 4803 4694 2.598762512207e-05 4804 4694 5.960464477539e-08 4806 4694 6.973743438721e-06 4807 4694 69374999.9886 4818 4694 -86719444.43019 4819 4694 -2.682209014893e-07 4821 4694 -21679861.11823 4822 4694 17343750.00569 4695 4695 1483949894.094 4696 4695 7.867813110352e-06 4697 4695 -5.507469177246e-05 4698 4695 184322301.8864 4699 4695 -2.622604370117e-06 4700 4695 -1.358985900879e-05 4707 4695 -148365426.1266 4708 4695 -97222222.20624 4709 4695 -3.039836883545e-06 4710 4695 -406796532.3944 4711 4695 -2.801418304443e-06 4712 4695 -1.233816146851e-05 4713 4695 -148365426.1266 4714 4695 97222222.20624 4715 4695 -3.308057785034e-06 4791 4695 -46373434.23613 4792 4695 24305555.56354 4794 4695 -138827443.8752 4795 4695 2.682209014893e-07 4797 4695 -46373434.23614 4798 4695 -24305555.56354 4803 4695 8952264.76783 4804 4695 9.298324584961e-06 4806 4695 222474230.8735 4807 4695 3.933906555176e-06 4809 4695 8952264.76783 4810 4695 -1.302361488342e-05 4818 4695 -46373434.23611 4819 4695 -24305555.56353 4821 4695 -138827443.8751 4822 4695 -5.066394805908e-07 4824 4695 -46373434.23611 4825 4695 24305555.56353 4696 4696 1250608048.648 4697 4696 -1.192092895508e-06 4698 4696 -3.159046173096e-06 4699 4696 -185121779.2034 4700 4696 8.046627044678e-07 4707 4696 -97222222.20624 4708 4696 -119197695.4315 4709 4696 2.831220626831e-07 4710 4696 -3.09944152832e-06 4711 4696 20983010.02827 4712 4696 -4.768371582031e-07 4713 4696 97222222.20624 4714 4696 -119197695.4315 4715 4696 -7.450580596924e-08 4791 4696 24305555.56354 4792 4696 -39081501.55876 4794 4696 -2.294778823853e-06 4795 4696 -31882558.21685 4797 4696 -24305555.56354 4798 4696 -39081501.55876 4803 4696 1.069903373718e-05 4804 4696 -83408755.55014 4806 4696 4.410743713379e-06 4807 4696 164138769.4832 4809 4696 -1.156330108643e-05 4810 4696 -83408755.55014 4818 4696 -24305555.56353 4819 4696 -39081501.55875 4821 4696 -8.344650268555e-07 4822 4696 -31882558.21681 4824 4696 24305555.56353 4825 4696 -39081501.55875 4697 4697 1165825984.246 4698 4697 -1.382827758789e-05 4699 4697 1.788139343262e-07 4700 4697 104791324.3853 4707 4697 -2.890825271606e-06 4708 4697 3.8743019104e-07 4709 4697 -46719419.49861 4710 4697 -1.20997428894e-05 4711 4697 -4.768371582031e-07 4712 4697 -212506.0825927 4713 4697 -3.278255462646e-06 4714 4697 -2.086162567139e-07 4715 4697 -46719419.49861 4791 4697 21679861.11823 4792 4697 -17343750.0057 4794 4697 86719444.4302 4795 4697 3.427267074585e-07 4797 4697 21679861.11823 4798 4697 17343750.0057 4803 4697 6.169080734253e-06 4804 4697 -69374999.9886 4806 4697 2.598762512207e-05 4807 4697 5.960464477539e-08 4809 4697 6.973743438721e-06 4810 4697 69374999.9886 4818 4697 -21679861.11823 4819 4697 -17343750.0057 4821 4697 -86719444.43019 4822 4697 -2.682209014893e-07 4824 4697 -21679861.11823 4825 4697 17343750.00569 4698 4698 1483949894.094 4699 4698 7.867813110352e-06 4700 4698 -5.507469177246e-05 4701 4698 184322301.8864 4702 4698 -2.622604370117e-06 4703 4698 -1.358985900879e-05 4710 4698 -148365426.1266 4711 4698 -97222222.20624 4712 4698 -3.039836883545e-06 4713 4698 -406796532.3944 4714 4698 -2.801418304443e-06 4715 4698 -1.233816146851e-05 4716 4698 -148365426.1266 4717 4698 97222222.20624 4718 4698 -3.308057785034e-06 4794 4698 -46373434.23613 4795 4698 24305555.56354 4797 4698 -138827443.8752 4798 4698 2.682209014893e-07 4800 4698 -46373434.23614 4801 4698 -24305555.56354 4806 4698 8952264.76783 4807 4698 9.298324584961e-06 4809 4698 222474230.8735 4810 4698 3.933906555176e-06 4812 4698 8952264.76783 4813 4698 -1.302361488342e-05 4821 4698 -46373434.23611 4822 4698 -24305555.56353 4824 4698 -138827443.8751 4825 4698 -5.066394805908e-07 4827 4698 -46373434.23611 4828 4698 24305555.56353 4699 4699 1250608048.648 4700 4699 -1.192092895508e-06 4701 4699 -3.159046173096e-06 4702 4699 -185121779.2034 4703 4699 8.046627044678e-07 4710 4699 -97222222.20624 4711 4699 -119197695.4315 4712 4699 2.831220626831e-07 4713 4699 -3.09944152832e-06 4714 4699 20983010.02827 4715 4699 -4.768371582031e-07 4716 4699 97222222.20624 4717 4699 -119197695.4315 4718 4699 -7.450580596924e-08 4794 4699 24305555.56354 4795 4699 -39081501.55876 4797 4699 -2.294778823853e-06 4798 4699 -31882558.21685 4800 4699 -24305555.56354 4801 4699 -39081501.55876 4806 4699 1.069903373718e-05 4807 4699 -83408755.55014 4809 4699 4.410743713379e-06 4810 4699 164138769.4832 4812 4699 -1.156330108643e-05 4813 4699 -83408755.55014 4821 4699 -24305555.56353 4822 4699 -39081501.55875 4824 4699 -8.344650268555e-07 4825 4699 -31882558.21681 4827 4699 24305555.56353 4828 4699 -39081501.55875 4700 4700 1165825984.246 4701 4700 -1.382827758789e-05 4702 4700 1.788139343262e-07 4703 4700 104791324.3853 4710 4700 -2.890825271606e-06 4711 4700 3.8743019104e-07 4712 4700 -46719419.49861 4713 4700 -1.20997428894e-05 4714 4700 -4.768371582031e-07 4715 4700 -212506.0825927 4716 4700 -3.278255462646e-06 4717 4700 -2.086162567139e-07 4718 4700 -46719419.49861 4794 4700 21679861.11823 4795 4700 -17343750.0057 4797 4700 86719444.4302 4798 4700 3.427267074585e-07 4800 4700 21679861.11823 4801 4700 17343750.0057 4806 4700 6.169080734253e-06 4807 4700 -69374999.9886 4809 4700 2.598762512207e-05 4810 4700 5.960464477539e-08 4812 4700 6.973743438721e-06 4813 4700 69374999.9886 4821 4700 -21679861.11823 4822 4700 -17343750.0057 4824 4700 -86719444.43019 4825 4700 -2.682209014893e-07 4827 4700 -21679861.11823 4828 4700 17343750.00569 4701 4701 1632315315.374 4702 4701 97222220.26178 4703 4701 -4.172325134277e-05 4704 4701 17392720.97666 4705 4701 -97222221.42845 4706 4701 -2.145767211914e-06 4713 4701 -148365426.1266 4714 4701 -97222222.20624 4715 4701 -3.039836883545e-06 4716 4701 -406796532.3944 4717 4701 -2.801418304443e-06 4718 4701 -1.233816146851e-05 4719 4701 -148365426.1266 4720 4701 97222222.20624 4721 4701 -3.308057785034e-06 4797 4701 -46373434.23613 4798 4701 24305555.56354 4800 4701 -175918799.4897 4801 4701 -24305555.27186 4809 4701 8952264.76783 4810 4701 9.298324584961e-06 4812 4701 268847663.9159 4813 4701 24305555.07742 4815 4701 -28139091.37671 4816 4701 -24305555.36909 4824 4701 -46373434.23611 4825 4701 -24305555.56353 4827 4701 -138827443.8751 4828 4701 -5.066394805908e-07 4830 4701 -46373434.23611 4831 4701 24305555.56353 4702 4702 1369805740.108 4703 4702 -2.145767211914e-06 4704 4702 -97222221.03956 4705 4702 -322883627.8625 4706 4702 4.798173904419e-06 4713 4702 -97222222.20624 4714 4702 -119197695.4315 4715 4702 2.831220626831e-07 4716 4702 -3.09944152832e-06 4717 4702 20983010.02827 4718 4702 -4.768371582031e-07 4719 4702 97222222.20624 4720 4702 -119197695.4315 4721 4702 -7.450580596924e-08 4797 4702 24305555.56354 4798 4702 -39081501.55876 4800 4702 -24305555.36908 4801 4702 -61681981.7616 4809 4702 1.069903373718e-05 4810 4702 -83408755.55014 4812 4702 24305555.07742 4813 4702 203220270.0671 4815 4702 -24305555.27186 4816 4702 -113208178.6284 4824 4702 -24305555.56353 4825 4702 -39081501.55875 4827 4702 -8.344650268555e-07 4828 4702 -31882558.21681 4830 4702 24305555.56353 4831 4702 -39081501.55875 4703 4703 1212545401.289 4704 4703 -1.788139343262e-06 4705 4703 3.75509262085e-06 4706 4703 8567490.576108 4713 4703 -2.890825271606e-06 4714 4703 3.8743019104e-07 4715 4703 -46719419.49861 4716 4703 -1.20997428894e-05 4717 4703 -4.768371582031e-07 4718 4703 -212506.0825927 4719 4703 -3.278255462646e-06 4720 4703 -2.086162567139e-07 4721 4703 -46719419.49861 4797 4703 21679861.11823 4798 4703 -17343750.0057 4800 4703 86719444.24762 4801 4703 17343749.9078 4809 4703 6.169080734253e-06 4810 4703 -69374999.9886 4812 4703 -0.03649973869324 4813 4703 -0.02921465039253 4815 4703 21679860.55685 4816 4703 69374999.49133 4824 4703 -21679861.11823 4825 4703 -17343750.0057 4827 4703 -86719444.43019 4828 4703 -2.682209014893e-07 4830 4703 -21679861.11823 4831 4703 17343750.00569 4704 4704 927468678.158 4705 4704 97222222.20623 4706 4704 -8.106231689453e-06 4716 4704 -148365426.1266 4717 4704 -97222222.20624 4718 4704 -3.039836883545e-06 4719 4704 -573726109.9308 4720 4704 -97222221.42845 4721 4704 8.940696716309e-07 4722 4704 18564155.00999 4723 4704 77777776.9872 4724 4704 2.861022949219e-06 4800 4704 -9282077.50499 4801 4704 29166666.38457 4812 4704 -28139091.37673 4813 4704 -24305555.27187 4815 4704 139046393.5639 4816 4704 24305555.56354 4827 4704 -46373434.23611 4828 4704 -24305555.56353 4830 4704 -175918799.4896 4831 4704 -24305555.36909 4833 4704 -9282077.505002 4834 4704 19444444.25638 4705 4705 781630025.6149 4706 4705 8.412431954121e-06 4716 4705 -97222222.20624 4717 4705 -119197695.4315 4718 4705 2.831220626831e-07 4719 4705 -97222221.03956 4720 4705 -116778839.2437 4721 4705 5.602836608887e-06 4722 4705 116666665.4808 4723 4705 18564155.00998 4724 4705 5.960464477539e-07 4800 4705 19444444.25638 4801 4705 -9282077.505 4812 4705 -24305555.36909 4813 4705 -113208178.6284 4815 4705 24305555.56354 4816 4705 102586730.4102 4827 4705 -24305555.56353 4828 4705 -39081501.55875 4830 4705 -24305555.27187 4831 4705 -61681981.76159 4833 4705 29166666.38457 4834 4705 -9282077.504995 4706 4706 728641235.3813 4716 4706 -2.890825271606e-06 4717 4706 3.8743019104e-07 4718 4706 -46719419.49861 4719 4706 4.172325134277e-07 4720 4706 4.887580871582e-06 4721 4706 -96436338.25295 4722 4706 2.503395080566e-06 4723 4706 1.251697540283e-06 4724 4706 49504413.35998 4800 4706 17343888.52033 4801 4706 -20812499.90895 4812 4706 -21679860.74398 4813 4706 -69374999.6084 4815 4706 -17343888.84952 4816 4706 -13874999.85144 4827 4706 -21679861.11823 4828 4706 -17343750.0057 4830 4706 -86719444.24762 4831 4706 -17343749.94044 4833 4706 -26015832.7805 4834 4706 13874999.9393 4707 4707 1483949894.094 4708 4707 7.867813110352e-06 4709 4707 -5.507469177246e-05 4710 4707 184322301.8864 4711 4707 -2.622604370117e-06 4712 4707 -1.358985900879e-05 4725 4707 -406796532.3944 4726 4707 -2.801418304443e-06 4727 4707 -1.233816146851e-05 4728 4707 -148365426.1266 4729 4707 97222222.20624 4730 4707 -3.308057785034e-06 4803 4707 -138827443.8752 4804 4707 2.682209014893e-07 4806 4707 -46373434.23614 4807 4707 -24305555.56354 4818 4707 222474230.8735 4819 4707 3.933906555176e-06 4821 4707 8952264.76783 4822 4707 -1.302361488342e-05 4836 4707 -138827443.8751 4837 4707 -5.066394805908e-07 4839 4707 -46373434.23611 4840 4707 24305555.56353 4708 4708 1250608048.648 4709 4708 -1.192092895508e-06 4710 4708 -3.159046173096e-06 4711 4708 -185121779.2034 4712 4708 8.046627044678e-07 4725 4708 -3.09944152832e-06 4726 4708 20983010.02827 4727 4708 -4.768371582031e-07 4728 4708 97222222.20624 4729 4708 -119197695.4315 4730 4708 -7.450580596924e-08 4803 4708 -2.294778823853e-06 4804 4708 -31882558.21685 4806 4708 -24305555.56354 4807 4708 -39081501.55876 4818 4708 4.410743713379e-06 4819 4708 164138769.4832 4821 4708 -1.156330108643e-05 4822 4708 -83408755.55014 4836 4708 -8.344650268555e-07 4837 4708 -31882558.21681 4839 4708 24305555.56353 4840 4708 -39081501.55875 4709 4709 1165825984.246 4710 4709 -1.382827758789e-05 4711 4709 1.788139343262e-07 4712 4709 104791324.3853 4725 4709 -1.20997428894e-05 4726 4709 -4.768371582031e-07 4727 4709 -212506.0825927 4728 4709 -3.278255462646e-06 4729 4709 -2.086162567139e-07 4730 4709 -46719419.49861 4803 4709 86719444.4302 4804 4709 3.427267074585e-07 4806 4709 21679861.11823 4807 4709 17343750.0057 4818 4709 2.598762512207e-05 4819 4709 5.960464477539e-08 4821 4709 6.973743438721e-06 4822 4709 69374999.9886 4836 4709 -86719444.43019 4837 4709 -2.682209014893e-07 4839 4709 -21679861.11823 4840 4709 17343750.00569 4710 4710 1483949894.094 4711 4710 7.867813110352e-06 4712 4710 -5.507469177246e-05 4713 4710 184322301.8864 4714 4710 -2.622604370117e-06 4715 4710 -1.358985900879e-05 4725 4710 -148365426.1266 4726 4710 -97222222.20624 4727 4710 -3.039836883545e-06 4728 4710 -406796532.3944 4729 4710 -2.801418304443e-06 4730 4710 -1.233816146851e-05 4731 4710 -148365426.1266 4732 4710 97222222.20624 4733 4710 -3.308057785034e-06 4803 4710 -46373434.23613 4804 4710 24305555.56354 4806 4710 -138827443.8752 4807 4710 2.682209014893e-07 4809 4710 -46373434.23614 4810 4710 -24305555.56354 4818 4710 8952264.76783 4819 4710 9.298324584961e-06 4821 4710 222474230.8735 4822 4710 3.933906555176e-06 4824 4710 8952264.76783 4825 4710 -1.302361488342e-05 4836 4710 -46373434.23611 4837 4710 -24305555.56353 4839 4710 -138827443.8751 4840 4710 -5.066394805908e-07 4842 4710 -46373434.23611 4843 4710 24305555.56353 4711 4711 1250608048.648 4712 4711 -1.192092895508e-06 4713 4711 -3.159046173096e-06 4714 4711 -185121779.2034 4715 4711 8.046627044678e-07 4725 4711 -97222222.20624 4726 4711 -119197695.4315 4727 4711 2.831220626831e-07 4728 4711 -3.09944152832e-06 4729 4711 20983010.02827 4730 4711 -4.768371582031e-07 4731 4711 97222222.20624 4732 4711 -119197695.4315 4733 4711 -7.450580596924e-08 4803 4711 24305555.56354 4804 4711 -39081501.55876 4806 4711 -2.294778823853e-06 4807 4711 -31882558.21685 4809 4711 -24305555.56354 4810 4711 -39081501.55876 4818 4711 1.069903373718e-05 4819 4711 -83408755.55014 4821 4711 4.410743713379e-06 4822 4711 164138769.4832 4824 4711 -1.156330108643e-05 4825 4711 -83408755.55014 4836 4711 -24305555.56353 4837 4711 -39081501.55875 4839 4711 -8.344650268555e-07 4840 4711 -31882558.21681 4842 4711 24305555.56353 4843 4711 -39081501.55875 4712 4712 1165825984.246 4713 4712 -1.382827758789e-05 4714 4712 1.788139343262e-07 4715 4712 104791324.3853 4725 4712 -2.890825271606e-06 4726 4712 3.8743019104e-07 4727 4712 -46719419.49861 4728 4712 -1.20997428894e-05 4729 4712 -4.768371582031e-07 4730 4712 -212506.0825927 4731 4712 -3.278255462646e-06 4732 4712 -2.086162567139e-07 4733 4712 -46719419.49861 4803 4712 21679861.11823 4804 4712 -17343750.0057 4806 4712 86719444.4302 4807 4712 3.427267074585e-07 4809 4712 21679861.11823 4810 4712 17343750.0057 4818 4712 6.169080734253e-06 4819 4712 -69374999.9886 4821 4712 2.598762512207e-05 4822 4712 5.960464477539e-08 4824 4712 6.973743438721e-06 4825 4712 69374999.9886 4836 4712 -21679861.11823 4837 4712 -17343750.0057 4839 4712 -86719444.43019 4840 4712 -2.682209014893e-07 4842 4712 -21679861.11823 4843 4712 17343750.00569 4713 4713 1483949894.094 4714 4713 7.867813110352e-06 4715 4713 -5.507469177246e-05 4716 4713 184322301.8864 4717 4713 -2.622604370117e-06 4718 4713 -1.358985900879e-05 4728 4713 -148365426.1266 4729 4713 -97222222.20624 4730 4713 -3.039836883545e-06 4731 4713 -406796532.3944 4732 4713 -2.801418304443e-06 4733 4713 -1.233816146851e-05 4734 4713 -148365426.1266 4735 4713 97222222.20624 4736 4713 -3.308057785034e-06 4806 4713 -46373434.23613 4807 4713 24305555.56354 4809 4713 -138827443.8752 4810 4713 2.682209014893e-07 4812 4713 -46373434.23614 4813 4713 -24305555.56354 4821 4713 8952264.76783 4822 4713 9.298324584961e-06 4824 4713 222474230.8735 4825 4713 3.933906555176e-06 4827 4713 8952264.76783 4828 4713 -1.302361488342e-05 4839 4713 -46373434.23611 4840 4713 -24305555.56353 4842 4713 -138827443.8751 4843 4713 -5.066394805908e-07 4845 4713 -46373434.23611 4846 4713 24305555.56353 4714 4714 1250608048.648 4715 4714 -1.192092895508e-06 4716 4714 -3.159046173096e-06 4717 4714 -185121779.2034 4718 4714 8.046627044678e-07 4728 4714 -97222222.20624 4729 4714 -119197695.4315 4730 4714 2.831220626831e-07 4731 4714 -3.09944152832e-06 4732 4714 20983010.02827 4733 4714 -4.768371582031e-07 4734 4714 97222222.20624 4735 4714 -119197695.4315 4736 4714 -7.450580596924e-08 4806 4714 24305555.56354 4807 4714 -39081501.55876 4809 4714 -2.294778823853e-06 4810 4714 -31882558.21685 4812 4714 -24305555.56354 4813 4714 -39081501.55876 4821 4714 1.069903373718e-05 4822 4714 -83408755.55014 4824 4714 4.410743713379e-06 4825 4714 164138769.4832 4827 4714 -1.156330108643e-05 4828 4714 -83408755.55014 4839 4714 -24305555.56353 4840 4714 -39081501.55875 4842 4714 -8.344650268555e-07 4843 4714 -31882558.21681 4845 4714 24305555.56353 4846 4714 -39081501.55875 4715 4715 1165825984.246 4716 4715 -1.382827758789e-05 4717 4715 1.788139343262e-07 4718 4715 104791324.3853 4728 4715 -2.890825271606e-06 4729 4715 3.8743019104e-07 4730 4715 -46719419.49861 4731 4715 -1.20997428894e-05 4732 4715 -4.768371582031e-07 4733 4715 -212506.0825927 4734 4715 -3.278255462646e-06 4735 4715 -2.086162567139e-07 4736 4715 -46719419.49861 4806 4715 21679861.11823 4807 4715 -17343750.0057 4809 4715 86719444.4302 4810 4715 3.427267074585e-07 4812 4715 21679861.11823 4813 4715 17343750.0057 4821 4715 6.169080734253e-06 4822 4715 -69374999.9886 4824 4715 2.598762512207e-05 4825 4715 5.960464477539e-08 4827 4715 6.973743438721e-06 4828 4715 69374999.9886 4839 4715 -21679861.11823 4840 4715 -17343750.0057 4842 4715 -86719444.43019 4843 4715 -2.682209014893e-07 4845 4715 -21679861.11823 4846 4715 17343750.00569 4716 4716 1483949894.094 4717 4716 7.867813110352e-06 4718 4716 -5.507469177246e-05 4719 4716 184322301.8864 4720 4716 -2.622604370117e-06 4721 4716 -1.358985900879e-05 4731 4716 -148365426.1266 4732 4716 -97222222.20624 4733 4716 -3.039836883545e-06 4734 4716 -406796532.3944 4735 4716 -2.801418304443e-06 4736 4716 -1.233816146851e-05 4737 4716 -148365426.1266 4738 4716 97222222.20624 4739 4716 -3.308057785034e-06 4809 4716 -46373434.23613 4810 4716 24305555.56354 4812 4716 -138827443.8752 4813 4716 2.682209014893e-07 4815 4716 -46373434.23614 4816 4716 -24305555.56354 4824 4716 8952264.76783 4825 4716 9.298324584961e-06 4827 4716 222474230.8735 4828 4716 3.933906555176e-06 4830 4716 8952264.76783 4831 4716 -1.302361488342e-05 4842 4716 -46373434.23611 4843 4716 -24305555.56353 4845 4716 -138827443.8751 4846 4716 -5.066394805908e-07 4848 4716 -46373434.23611 4849 4716 24305555.56353 4717 4717 1250608048.648 4718 4717 -1.192092895508e-06 4719 4717 -3.159046173096e-06 4720 4717 -185121779.2034 4721 4717 8.046627044678e-07 4731 4717 -97222222.20624 4732 4717 -119197695.4315 4733 4717 2.831220626831e-07 4734 4717 -3.09944152832e-06 4735 4717 20983010.02827 4736 4717 -4.768371582031e-07 4737 4717 97222222.20624 4738 4717 -119197695.4315 4739 4717 -7.450580596924e-08 4809 4717 24305555.56354 4810 4717 -39081501.55876 4812 4717 -2.294778823853e-06 4813 4717 -31882558.21685 4815 4717 -24305555.56354 4816 4717 -39081501.55876 4824 4717 1.069903373718e-05 4825 4717 -83408755.55014 4827 4717 4.410743713379e-06 4828 4717 164138769.4832 4830 4717 -1.156330108643e-05 4831 4717 -83408755.55014 4842 4717 -24305555.56353 4843 4717 -39081501.55875 4845 4717 -8.344650268555e-07 4846 4717 -31882558.21681 4848 4717 24305555.56353 4849 4717 -39081501.55875 4718 4718 1165825984.246 4719 4718 -1.382827758789e-05 4720 4718 1.788139343262e-07 4721 4718 104791324.3853 4731 4718 -2.890825271606e-06 4732 4718 3.8743019104e-07 4733 4718 -46719419.49861 4734 4718 -1.20997428894e-05 4735 4718 -4.768371582031e-07 4736 4718 -212506.0825927 4737 4718 -3.278255462646e-06 4738 4718 -2.086162567139e-07 4739 4718 -46719419.49861 4809 4718 21679861.11823 4810 4718 -17343750.0057 4812 4718 86719444.4302 4813 4718 3.427267074585e-07 4815 4718 21679861.11823 4816 4718 17343750.0057 4824 4718 6.169080734253e-06 4825 4718 -69374999.9886 4827 4718 2.598762512207e-05 4828 4718 5.960464477539e-08 4830 4718 6.973743438721e-06 4831 4718 69374999.9886 4842 4718 -21679861.11823 4843 4718 -17343750.0057 4845 4718 -86719444.43019 4846 4718 -2.682209014893e-07 4848 4718 -21679861.11823 4849 4718 17343750.00569 4719 4719 1632315315.374 4720 4719 97222220.26178 4721 4719 -4.172325134277e-05 4722 4719 17392720.97666 4723 4719 -97222221.42845 4724 4719 -2.145767211914e-06 4734 4719 -148365426.1266 4735 4719 -97222222.20624 4736 4719 -3.039836883545e-06 4737 4719 -406796532.3944 4738 4719 -2.801418304443e-06 4739 4719 -1.233816146851e-05 4740 4719 -148365426.1266 4741 4719 97222222.20624 4742 4719 -3.308057785034e-06 4812 4719 -46373434.23613 4813 4719 24305555.56354 4815 4719 -175918799.4897 4816 4719 -24305555.27186 4827 4719 8952264.76783 4828 4719 9.298324584961e-06 4830 4719 268847663.9159 4831 4719 24305555.07742 4833 4719 -28139091.37671 4834 4719 -24305555.36909 4845 4719 -46373434.23611 4846 4719 -24305555.56353 4848 4719 -138827443.8751 4849 4719 -5.066394805908e-07 4851 4719 -46373434.23611 4852 4719 24305555.56353 4720 4720 1369805740.108 4721 4720 -2.145767211914e-06 4722 4720 -97222221.03956 4723 4720 -322883627.8625 4724 4720 4.798173904419e-06 4734 4720 -97222222.20624 4735 4720 -119197695.4315 4736 4720 2.831220626831e-07 4737 4720 -3.09944152832e-06 4738 4720 20983010.02827 4739 4720 -4.768371582031e-07 4740 4720 97222222.20624 4741 4720 -119197695.4315 4742 4720 -7.450580596924e-08 4812 4720 24305555.56354 4813 4720 -39081501.55876 4815 4720 -24305555.36908 4816 4720 -61681981.7616 4827 4720 1.069903373718e-05 4828 4720 -83408755.55014 4830 4720 24305555.07742 4831 4720 203220270.0671 4833 4720 -24305555.27186 4834 4720 -113208178.6284 4845 4720 -24305555.56353 4846 4720 -39081501.55875 4848 4720 -8.344650268555e-07 4849 4720 -31882558.21681 4851 4720 24305555.56353 4852 4720 -39081501.55875 4721 4721 1212545401.289 4722 4721 -1.788139343262e-06 4723 4721 3.75509262085e-06 4724 4721 8567490.576108 4734 4721 -2.890825271606e-06 4735 4721 3.8743019104e-07 4736 4721 -46719419.49861 4737 4721 -1.20997428894e-05 4738 4721 -4.768371582031e-07 4739 4721 -212506.0825927 4740 4721 -3.278255462646e-06 4741 4721 -2.086162567139e-07 4742 4721 -46719419.49861 4812 4721 21679861.11823 4813 4721 -17343750.0057 4815 4721 86719444.24762 4816 4721 17343749.9078 4827 4721 6.169080734253e-06 4828 4721 -69374999.9886 4830 4721 -0.03649973869324 4831 4721 -0.02921465039253 4833 4721 21679860.55685 4834 4721 69374999.49133 4845 4721 -21679861.11823 4846 4721 -17343750.0057 4848 4721 -86719444.43019 4849 4721 -2.682209014893e-07 4851 4721 -21679861.11823 4852 4721 17343750.00569 4722 4722 944226635.8558 4723 4722 104813146.3867 4724 4722 -5.006790161133e-06 4737 4722 -148365426.1266 4738 4722 -97222222.20624 4739 4722 -3.039836883545e-06 4740 4722 -591818040.3848 4741 4722 -104813145.6089 4742 4722 -1.507997512817e-05 4743 4722 22795227.75344 4744 4722 77777776.98725 4745 4722 3.218650817871e-06 4815 4722 -9282077.50499 4816 4722 29166666.38457 4830 4722 -28139091.37673 4831 4722 -24305555.27187 4833 4722 142149470.4917 4834 4722 26203286.60958 4848 4722 -46373434.23611 4849 4722 -24305555.56353 4851 4722 -180984988.3575 4852 4722 -26203286.41514 4854 4722 -8767515.55854 4855 4722 19444444.25639 4723 4723 789133337.2837 4724 4723 2.995133399963e-06 4737 4723 -97222222.20624 4738 4723 -119197695.4315 4739 4723 2.831220626831e-07 4740 4723 -104813145.2201 4741 4723 -131460786.597 4742 4723 -1.668930053711e-06 4743 4723 116666665.4809 4744 4723 28639890.68178 4745 4723 1.54972076416e-06 4815 4723 19444444.25638 4816 4723 -9282077.505 4830 4723 -24305555.36909 4831 4723 -113208178.6284 4833 4723 26203286.60958 4834 4723 103376145.8296 4848 4723 -24305555.56353 4849 4723 -39081501.55875 4851 4723 -26203286.31793 4852 4723 -65895674.85387 4854 4723 29166666.38459 4855 4723 -7306349.825735 4724 4724 738330627.0228 4737 4724 -2.890825271606e-06 4738 4724 3.8743019104e-07 4739 4724 -46719419.49861 4740 4724 -1.716613769531e-05 4741 4724 -1.013278961182e-06 4742 4724 -103838327.6491 4743 4724 5.245208740234e-06 4744 4724 1.132488250732e-06 4745 4724 54942611.08085 4815 4724 17343888.52033 4816 4724 -20812499.90895 4830 4724 -21679860.74398 4831 4724 -69374999.6084 4833 4724 -17682222.18137 4834 4724 -14145833.18359 4848 4724 -21679861.11823 4849 4724 -17343750.0057 4851 4724 -88411110.90689 4852 4724 -18697916.60118 4854 4724 -27030832.75893 4855 4724 13062499.95656 4725 4725 1483949894.094 4726 4725 7.867813110352e-06 4727 4725 -5.507469177246e-05 4728 4725 184322301.8864 4729 4725 -2.622604370117e-06 4730 4725 -1.358985900879e-05 4746 4725 -406796532.3944 4747 4725 -2.801418304443e-06 4748 4725 -1.233816146851e-05 4749 4725 -148365426.1266 4750 4725 97222222.20624 4751 4725 -3.308057785034e-06 4818 4725 -138827443.8752 4819 4725 2.682209014893e-07 4821 4725 -46373434.23614 4822 4725 -24305555.56354 4836 4725 222474230.8735 4837 4725 3.933906555176e-06 4839 4725 8952264.76783 4840 4725 -1.302361488342e-05 4857 4725 -138827443.8751 4858 4725 -5.066394805908e-07 4860 4725 -46373434.23611 4861 4725 24305555.56353 4726 4726 1250608048.648 4727 4726 -1.192092895508e-06 4728 4726 -3.159046173096e-06 4729 4726 -185121779.2034 4730 4726 8.046627044678e-07 4746 4726 -3.09944152832e-06 4747 4726 20983010.02827 4748 4726 -4.768371582031e-07 4749 4726 97222222.20624 4750 4726 -119197695.4315 4751 4726 -7.450580596924e-08 4818 4726 -2.294778823853e-06 4819 4726 -31882558.21685 4821 4726 -24305555.56354 4822 4726 -39081501.55876 4836 4726 4.410743713379e-06 4837 4726 164138769.4832 4839 4726 -1.156330108643e-05 4840 4726 -83408755.55014 4857 4726 -8.344650268555e-07 4858 4726 -31882558.21681 4860 4726 24305555.56353 4861 4726 -39081501.55875 4727 4727 1165825984.246 4728 4727 -1.382827758789e-05 4729 4727 1.788139343262e-07 4730 4727 104791324.3853 4746 4727 -1.20997428894e-05 4747 4727 -4.768371582031e-07 4748 4727 -212506.0825927 4749 4727 -3.278255462646e-06 4750 4727 -2.086162567139e-07 4751 4727 -46719419.49861 4818 4727 86719444.4302 4819 4727 3.427267074585e-07 4821 4727 21679861.11823 4822 4727 17343750.0057 4836 4727 2.598762512207e-05 4837 4727 5.960464477539e-08 4839 4727 6.973743438721e-06 4840 4727 69374999.9886 4857 4727 -86719444.43019 4858 4727 -2.682209014893e-07 4860 4727 -21679861.11823 4861 4727 17343750.00569 4728 4728 1483949894.094 4729 4728 7.867813110352e-06 4730 4728 -5.507469177246e-05 4731 4728 184322301.8864 4732 4728 -2.622604370117e-06 4733 4728 -1.358985900879e-05 4746 4728 -148365426.1266 4747 4728 -97222222.20624 4748 4728 -3.039836883545e-06 4749 4728 -406796532.3944 4750 4728 -2.801418304443e-06 4751 4728 -1.233816146851e-05 4752 4728 -148365426.1266 4753 4728 97222222.20624 4754 4728 -3.308057785034e-06 4818 4728 -46373434.23613 4819 4728 24305555.56354 4821 4728 -138827443.8752 4822 4728 2.682209014893e-07 4824 4728 -46373434.23614 4825 4728 -24305555.56354 4836 4728 8952264.76783 4837 4728 9.298324584961e-06 4839 4728 222474230.8735 4840 4728 3.933906555176e-06 4842 4728 8952264.76783 4843 4728 -1.302361488342e-05 4857 4728 -46373434.23611 4858 4728 -24305555.56353 4860 4728 -138827443.8751 4861 4728 -5.066394805908e-07 4863 4728 -46373434.23611 4864 4728 24305555.56353 4729 4729 1250608048.648 4730 4729 -1.192092895508e-06 4731 4729 -3.159046173096e-06 4732 4729 -185121779.2034 4733 4729 8.046627044678e-07 4746 4729 -97222222.20624 4747 4729 -119197695.4315 4748 4729 2.831220626831e-07 4749 4729 -3.09944152832e-06 4750 4729 20983010.02827 4751 4729 -4.768371582031e-07 4752 4729 97222222.20624 4753 4729 -119197695.4315 4754 4729 -7.450580596924e-08 4818 4729 24305555.56354 4819 4729 -39081501.55876 4821 4729 -2.294778823853e-06 4822 4729 -31882558.21685 4824 4729 -24305555.56354 4825 4729 -39081501.55876 4836 4729 1.069903373718e-05 4837 4729 -83408755.55014 4839 4729 4.410743713379e-06 4840 4729 164138769.4832 4842 4729 -1.156330108643e-05 4843 4729 -83408755.55014 4857 4729 -24305555.56353 4858 4729 -39081501.55875 4860 4729 -8.344650268555e-07 4861 4729 -31882558.21681 4863 4729 24305555.56353 4864 4729 -39081501.55875 4730 4730 1165825984.246 4731 4730 -1.382827758789e-05 4732 4730 1.788139343262e-07 4733 4730 104791324.3853 4746 4730 -2.890825271606e-06 4747 4730 3.8743019104e-07 4748 4730 -46719419.49861 4749 4730 -1.20997428894e-05 4750 4730 -4.768371582031e-07 4751 4730 -212506.0825927 4752 4730 -3.278255462646e-06 4753 4730 -2.086162567139e-07 4754 4730 -46719419.49861 4818 4730 21679861.11823 4819 4730 -17343750.0057 4821 4730 86719444.4302 4822 4730 3.427267074585e-07 4824 4730 21679861.11823 4825 4730 17343750.0057 4836 4730 6.169080734253e-06 4837 4730 -69374999.9886 4839 4730 2.598762512207e-05 4840 4730 5.960464477539e-08 4842 4730 6.973743438721e-06 4843 4730 69374999.9886 4857 4730 -21679861.11823 4858 4730 -17343750.0057 4860 4730 -86719444.43019 4861 4730 -2.682209014893e-07 4863 4730 -21679861.11823 4864 4730 17343750.00569 4731 4731 1483949894.094 4732 4731 7.867813110352e-06 4733 4731 -5.507469177246e-05 4734 4731 184322301.8864 4735 4731 -2.622604370117e-06 4736 4731 -1.358985900879e-05 4749 4731 -148365426.1266 4750 4731 -97222222.20624 4751 4731 -3.039836883545e-06 4752 4731 -406796532.3944 4753 4731 -2.801418304443e-06 4754 4731 -1.233816146851e-05 4755 4731 -148365426.1266 4756 4731 97222222.20624 4757 4731 -3.308057785034e-06 4821 4731 -46373434.23613 4822 4731 24305555.56354 4824 4731 -138827443.8752 4825 4731 2.682209014893e-07 4827 4731 -46373434.23614 4828 4731 -24305555.56354 4839 4731 8952264.76783 4840 4731 9.298324584961e-06 4842 4731 222474230.8735 4843 4731 3.933906555176e-06 4845 4731 8952264.76783 4846 4731 -1.302361488342e-05 4860 4731 -46373434.23611 4861 4731 -24305555.56353 4863 4731 -138827443.8751 4864 4731 -5.066394805908e-07 4866 4731 -46373434.23611 4867 4731 24305555.56353 4732 4732 1250608048.648 4733 4732 -1.192092895508e-06 4734 4732 -3.159046173096e-06 4735 4732 -185121779.2034 4736 4732 8.046627044678e-07 4749 4732 -97222222.20624 4750 4732 -119197695.4315 4751 4732 2.831220626831e-07 4752 4732 -3.09944152832e-06 4753 4732 20983010.02827 4754 4732 -4.768371582031e-07 4755 4732 97222222.20624 4756 4732 -119197695.4315 4757 4732 -7.450580596924e-08 4821 4732 24305555.56354 4822 4732 -39081501.55876 4824 4732 -2.294778823853e-06 4825 4732 -31882558.21685 4827 4732 -24305555.56354 4828 4732 -39081501.55876 4839 4732 1.069903373718e-05 4840 4732 -83408755.55014 4842 4732 4.410743713379e-06 4843 4732 164138769.4832 4845 4732 -1.156330108643e-05 4846 4732 -83408755.55014 4860 4732 -24305555.56353 4861 4732 -39081501.55875 4863 4732 -8.344650268555e-07 4864 4732 -31882558.21681 4866 4732 24305555.56353 4867 4732 -39081501.55875 4733 4733 1165825984.246 4734 4733 -1.382827758789e-05 4735 4733 1.788139343262e-07 4736 4733 104791324.3853 4749 4733 -2.890825271606e-06 4750 4733 3.8743019104e-07 4751 4733 -46719419.49861 4752 4733 -1.20997428894e-05 4753 4733 -4.768371582031e-07 4754 4733 -212506.0825927 4755 4733 -3.278255462646e-06 4756 4733 -2.086162567139e-07 4757 4733 -46719419.49861 4821 4733 21679861.11823 4822 4733 -17343750.0057 4824 4733 86719444.4302 4825 4733 3.427267074585e-07 4827 4733 21679861.11823 4828 4733 17343750.0057 4839 4733 6.169080734253e-06 4840 4733 -69374999.9886 4842 4733 2.598762512207e-05 4843 4733 5.960464477539e-08 4845 4733 6.973743438721e-06 4846 4733 69374999.9886 4860 4733 -21679861.11823 4861 4733 -17343750.0057 4863 4733 -86719444.43019 4864 4733 -2.682209014893e-07 4866 4733 -21679861.11823 4867 4733 17343750.00569 4734 4734 1483949894.094 4735 4734 7.867813110352e-06 4736 4734 -5.507469177246e-05 4737 4734 184322301.8864 4738 4734 -2.622604370117e-06 4739 4734 -1.358985900879e-05 4752 4734 -148365426.1266 4753 4734 -97222222.20624 4754 4734 -3.039836883545e-06 4755 4734 -406796532.3944 4756 4734 -2.801418304443e-06 4757 4734 -1.233816146851e-05 4758 4734 -148365426.1266 4759 4734 97222222.20624 4760 4734 -3.308057785034e-06 4824 4734 -46373434.23613 4825 4734 24305555.56354 4827 4734 -138827443.8752 4828 4734 2.682209014893e-07 4830 4734 -46373434.23614 4831 4734 -24305555.56354 4842 4734 8952264.76783 4843 4734 9.298324584961e-06 4845 4734 222474230.8735 4846 4734 3.933906555176e-06 4848 4734 8952264.76783 4849 4734 -1.302361488342e-05 4863 4734 -46373434.23611 4864 4734 -24305555.56353 4866 4734 -138827443.8751 4867 4734 -5.066394805908e-07 4869 4734 -46373434.23611 4870 4734 24305555.56353 4735 4735 1250608048.648 4736 4735 -1.192092895508e-06 4737 4735 -3.159046173096e-06 4738 4735 -185121779.2034 4739 4735 8.046627044678e-07 4752 4735 -97222222.20624 4753 4735 -119197695.4315 4754 4735 2.831220626831e-07 4755 4735 -3.09944152832e-06 4756 4735 20983010.02827 4757 4735 -4.768371582031e-07 4758 4735 97222222.20624 4759 4735 -119197695.4315 4760 4735 -7.450580596924e-08 4824 4735 24305555.56354 4825 4735 -39081501.55876 4827 4735 -2.294778823853e-06 4828 4735 -31882558.21685 4830 4735 -24305555.56354 4831 4735 -39081501.55876 4842 4735 1.069903373718e-05 4843 4735 -83408755.55014 4845 4735 4.410743713379e-06 4846 4735 164138769.4832 4848 4735 -1.156330108643e-05 4849 4735 -83408755.55014 4863 4735 -24305555.56353 4864 4735 -39081501.55875 4866 4735 -8.344650268555e-07 4867 4735 -31882558.21681 4869 4735 24305555.56353 4870 4735 -39081501.55875 4736 4736 1165825984.246 4737 4736 -1.382827758789e-05 4738 4736 1.788139343262e-07 4739 4736 104791324.3853 4752 4736 -2.890825271606e-06 4753 4736 3.8743019104e-07 4754 4736 -46719419.49861 4755 4736 -1.20997428894e-05 4756 4736 -4.768371582031e-07 4757 4736 -212506.0825927 4758 4736 -3.278255462646e-06 4759 4736 -2.086162567139e-07 4760 4736 -46719419.49861 4824 4736 21679861.11823 4825 4736 -17343750.0057 4827 4736 86719444.4302 4828 4736 3.427267074585e-07 4830 4736 21679861.11823 4831 4736 17343750.0057 4842 4736 6.169080734253e-06 4843 4736 -69374999.9886 4845 4736 2.598762512207e-05 4846 4736 5.960464477539e-08 4848 4736 6.973743438721e-06 4849 4736 69374999.9886 4863 4736 -21679861.11823 4864 4736 -17343750.0057 4866 4736 -86719444.43019 4867 4736 -2.682209014893e-07 4869 4736 -21679861.11823 4870 4736 17343750.00569 4737 4737 1483949894.094 4738 4737 7.867813110352e-06 4739 4737 -5.507469177246e-05 4740 4737 184322301.8864 4741 4737 -2.622604370117e-06 4742 4737 -1.358985900879e-05 4755 4737 -148365426.1266 4756 4737 -97222222.20624 4757 4737 -3.039836883545e-06 4758 4737 -406796532.3944 4759 4737 -2.801418304443e-06 4760 4737 -1.233816146851e-05 4761 4737 -148365426.1266 4762 4737 97222222.20624 4763 4737 -3.308057785034e-06 4827 4737 -46373434.23613 4828 4737 24305555.56354 4830 4737 -138827443.8752 4831 4737 2.682209014893e-07 4833 4737 -46373434.23614 4834 4737 -24305555.56354 4845 4737 8952264.76783 4846 4737 9.298324584961e-06 4848 4737 222474230.8735 4849 4737 3.933906555176e-06 4851 4737 8952264.76783 4852 4737 -1.302361488342e-05 4866 4737 -46373434.23611 4867 4737 -24305555.56353 4869 4737 -138827443.8751 4870 4737 -5.066394805908e-07 4872 4737 -46373434.23611 4873 4737 24305555.56353 4738 4738 1250608048.648 4739 4738 -1.192092895508e-06 4740 4738 -3.159046173096e-06 4741 4738 -185121779.2034 4742 4738 8.046627044678e-07 4755 4738 -97222222.20624 4756 4738 -119197695.4315 4757 4738 2.831220626831e-07 4758 4738 -3.09944152832e-06 4759 4738 20983010.02827 4760 4738 -4.768371582031e-07 4761 4738 97222222.20624 4762 4738 -119197695.4315 4763 4738 -7.450580596924e-08 4827 4738 24305555.56354 4828 4738 -39081501.55876 4830 4738 -2.294778823853e-06 4831 4738 -31882558.21685 4833 4738 -24305555.56354 4834 4738 -39081501.55876 4845 4738 1.069903373718e-05 4846 4738 -83408755.55014 4848 4738 4.410743713379e-06 4849 4738 164138769.4832 4851 4738 -1.156330108643e-05 4852 4738 -83408755.55014 4866 4738 -24305555.56353 4867 4738 -39081501.55875 4869 4738 -8.344650268555e-07 4870 4738 -31882558.21681 4872 4738 24305555.56353 4873 4738 -39081501.55875 4739 4739 1165825984.246 4740 4739 -1.382827758789e-05 4741 4739 1.788139343262e-07 4742 4739 104791324.3853 4755 4739 -2.890825271606e-06 4756 4739 3.8743019104e-07 4757 4739 -46719419.49861 4758 4739 -1.20997428894e-05 4759 4739 -4.768371582031e-07 4760 4739 -212506.0825927 4761 4739 -3.278255462646e-06 4762 4739 -2.086162567139e-07 4763 4739 -46719419.49861 4827 4739 21679861.11823 4828 4739 -17343750.0057 4830 4739 86719444.4302 4831 4739 3.427267074585e-07 4833 4739 21679861.11823 4834 4739 17343750.0057 4845 4739 6.169080734253e-06 4846 4739 -69374999.9886 4848 4739 2.598762512207e-05 4849 4739 5.960464477539e-08 4851 4739 6.973743438721e-06 4852 4739 69374999.9886 4866 4739 -21679861.11823 4867 4739 -17343750.0057 4869 4739 -86719444.43019 4870 4739 -2.682209014893e-07 4872 4739 -21679861.11823 4873 4739 17343750.00569 4740 4740 1661147708.835 4741 4740 104975994.3213 4742 4740 -2.908706665039e-05 4743 4740 28973926.47986 4744 4740 -93442034.30678 4745 4740 -4.887580871582e-06 4758 4740 -148365426.1266 4759 4740 -97222222.20624 4760 4740 -3.039836883545e-06 4761 4740 -414750020.4149 4762 4740 -3811573.076195 4763 4740 -8.344650268555e-06 4764 4740 -158390003.0581 4765 4740 97090758.2817 4766 4740 7.480382919312e-06 4830 4740 -46373434.23613 4831 4740 24305555.56354 4833 4740 -180984988.3576 4834 4740 -26203286.31793 4848 4740 8952264.76783 4849 4740 9.298324584961e-06 4851 4740 274245586.3935 4852 4740 26243998.59327 4854 4740 -25967702.04294 4855 4740 -23360508.5882 4869 4740 -46373434.23611 4870 4740 -24305555.56353 4872 4740 -140996480.1669 4873 4740 -952893.2695205 4875 4740 -48879322.66664 4876 4740 24272689.58238 4741 4741 1378316574.243 4742 4741 2.241134643555e-05 4743 4741 -93442033.91789 4744 4741 -311076053.7848 4745 4741 -1.373887062073e-05 4758 4741 -97222222.20624 4759 4741 -119197695.4315 4760 4741 2.831220626831e-07 4761 4741 -3811573.076215 4762 4741 16672797.27744 4763 4741 6.914138793945e-06 4764 4741 97090758.2817 4765 4741 -116180339.9824 4766 4741 -2.041459083557e-06 4830 4741 24305555.56354 4831 4741 -39081501.55876 4833 4741 -26203286.41514 4834 4741 -65895674.85389 4848 4741 1.069903373718e-05 4849 4741 -83408755.55014 4851 4741 26243998.59327 4852 4741 203537802.7108 4854 4741 -23360508.49098 4855 4741 -110980197.151 4869 4741 -24305555.56353 4870 4741 -39081501.55875 4872 4741 -952893.2695257 4873 4741 -33140775.69073 4875 4741 24272689.58238 4876 4741 -38326906.89252 4742 4742 1227849607.294 4743 4742 -3.337860107422e-06 4744 4742 -1.326203346252e-05 4745 4742 16993676.64498 4758 4742 -2.890825271606e-06 4759 4742 3.8743019104e-07 4760 4742 -46719419.49861 4761 4742 -1.120567321777e-05 4762 4742 7.152557373047e-06 4763 4742 -3046182.050739 4764 4742 7.480382919312e-06 4765 4742 -2.101063728333e-06 4766 4742 -48631203.38775 4830 4742 21679861.11823 4831 4742 -17343750.0057 4833 4742 88411110.90689 4834 4742 18697916.56855 4848 4742 6.169080734253e-06 4849 4742 -69374999.9886 4851 4742 -0.03792053461075 4852 4742 -0.03034740686417 4854 4742 21679166.091 4855 4742 69374999.47419 4869 4742 -21679861.11823 4870 4742 -17343750.0057 4872 4742 -87564583.31903 4873 4742 -677083.3332888 4875 4742 -22525694.45184 4876 4742 16666666.67214 4743 4743 878310888.4811 4744 4743 -2657515.757653 4745 4743 9.536743164063e-07 4761 4743 -146355658.7119 4762 4743 -97205456.75099 4763 4743 -8.374452590942e-06 4764 4743 -422227983.671 4765 4743 -5136049.02384 4766 4743 -9.536743164063e-07 4767 4743 85600144.70805 4768 4743 -16771033.13002 4769 4743 -2.264976501465e-06 4770 4743 -156881939.5358 4771 4743 98545423.09952 4772 4743 9.477138519287e-06 4833 4743 -8767515.558543 4834 4743 29166666.38459 4851 4743 -25967702.04296 4852 4743 -23360508.49098 4854 4743 119740849.7095 4855 4743 -664378.9397391 4872 4743 -45870736.57863 4873 4743 -24301364.19972 4875 4743 -141002035.2672 4876 4743 -1284012.256597 4878 4743 4511607.610506 4879 4743 -4192758.284571 4881 4743 -47751770.62456 4882 4743 24636355.78701 4744 4744 904404472.7406 4745 4744 3.480911254883e-05 4761 4744 -97205456.75099 4762 4744 -119802374.1366 4763 4744 -2.965331077576e-06 4764 4744 -5136049.023842 4765 4744 9983783.088459 4766 4744 1.490116119385e-05 4767 4744 22117855.75249 4768 4744 -98572068.6614 4769 4744 -8.374452590942e-06 4770 4744 98545423.09952 4771 4744 -123363044.4244 4772 4744 -3.159046173096e-06 4833 4744 19444444.25639 4834 4744 -7306349.825738 4851 4744 -23360508.5882 4852 4744 -110980197.151 4854 4744 -664378.9397408 4855 4744 126264245.7776 4872 4744 -24301364.19972 4873 4744 -39232415.43152 4875 4744 -1284012.256598 4876 4744 -32949093.52409 4878 4744 5529463.940846 4879 4744 -41531445.75453 4881 4744 24636355.78701 4882 4744 -39372046.84256 4745 4745 768562010.6434 4761 4745 -8.344650268555e-06 4762 4745 -2.875924110413e-06 4763 4745 -46336936.97175 4764 4745 -5.364418029785e-07 4765 4745 1.47819519043e-05 4766 4745 -12181640.54623 4767 4745 1.430511474609e-06 4768 4745 -8.553266525269e-06 4769 4745 44227455.0915 4770 4745 9.089708328247e-06 4771 4745 -3.17394733429e-06 4772 4745 -52301561.26623 4833 4745 18020555.17262 4834 4745 -20270833.25379 4851 4745 -21679166.28527 4852 4745 -69374999.59699 4854 4745 -17135277.77496 4855 4745 -7208333.18586 4872 4745 -21679166.67379 4873 4745 -17343750.0057 4875 4745 -85676388.87482 4876 4745 -677083.3332884 4878 4745 -4909027.779056 4879 4745 33333333.32785 4881 4745 -21159027.78472 4882 4745 16666666.67214 4746 4746 741974947.0469 4747 4746 5.006790161133e-06 4748 4746 -2.908706665039e-05 4749 4746 92161150.94322 4750 4746 19444444.44125 4751 4746 -7.271766662598e-06 4836 4746 -138827443.8752 4837 4746 2.682209014893e-07 4839 4746 -46373434.23614 4840 4746 -24305555.56354 4857 4746 111237115.4367 4858 4746 -8.344650268555e-07 4860 4746 4476132.383917 4861 4746 4861111.1127 4747 4747 625304024.3239 4748 4747 6.198883056641e-06 4749 4747 -19444444.44125 4750 4747 -92560889.60172 4751 4747 2.32458114624e-06 4836 4747 -2.294778823853e-06 4837 4747 -31882558.21685 4839 4747 -24305555.56354 4840 4747 -39081501.55876 4857 4747 -7.152557373047e-07 4858 4747 82069384.74161 4860 4747 -4861111.112713 4861 4747 -41704377.77507 4748 4748 582912992.1231 4749 4748 -7.271766662598e-06 4750 4748 1.877546310425e-06 4751 4748 52395662.19267 4836 4748 86719444.4302 4837 4748 3.427267074585e-07 4839 4748 21679861.11823 4840 4748 17343750.0057 4857 4748 17343888.88605 4858 4748 -3.576278686523e-06 4860 4748 4335972.22365 4861 4748 34687499.9943 4749 4749 741974947.0469 4750 4749 5.006790161133e-06 4751 4749 -2.908706665039e-05 4752 4749 92161150.94322 4753 4749 19444444.44125 4754 4749 -7.271766662598e-06 4836 4749 -46373434.23613 4837 4749 24305555.56354 4839 4749 -138827443.8752 4840 4749 2.682209014893e-07 4842 4749 -46373434.23614 4843 4749 -24305555.56354 4857 4749 4476132.383914 4858 4749 -4861111.112702 4860 4749 111237115.4367 4861 4749 -8.344650268555e-07 4863 4749 4476132.383917 4864 4749 4861111.1127 4750 4750 625304024.3239 4751 4750 6.198883056641e-06 4752 4750 -19444444.44125 4753 4750 -92560889.60172 4754 4750 2.32458114624e-06 4836 4750 24305555.56354 4837 4750 -39081501.55876 4839 4750 -2.294778823853e-06 4840 4750 -31882558.21685 4842 4750 -24305555.56354 4843 4750 -39081501.55876 4857 4750 4861111.112712 4858 4750 -41704377.77507 4860 4750 -7.152557373047e-07 4861 4750 82069384.74161 4863 4750 -4861111.112713 4864 4750 -41704377.77507 4751 4751 582912992.1231 4752 4751 -7.271766662598e-06 4753 4751 1.877546310425e-06 4754 4751 52395662.19267 4836 4751 21679861.11823 4837 4751 -17343750.0057 4839 4751 86719444.4302 4840 4751 3.427267074585e-07 4842 4751 21679861.11823 4843 4751 17343750.0057 4857 4751 4335972.223649 4858 4751 -34687499.9943 4860 4751 17343888.88605 4861 4751 -3.576278686523e-06 4863 4751 4335972.22365 4864 4751 34687499.9943 4752 4752 741974947.0469 4753 4752 5.006790161133e-06 4754 4752 -2.908706665039e-05 4755 4752 92161150.94322 4756 4752 19444444.44125 4757 4752 -7.271766662598e-06 4839 4752 -46373434.23613 4840 4752 24305555.56354 4842 4752 -138827443.8752 4843 4752 2.682209014893e-07 4845 4752 -46373434.23614 4846 4752 -24305555.56354 4860 4752 4476132.383914 4861 4752 -4861111.112702 4863 4752 111237115.4367 4864 4752 -8.344650268555e-07 4866 4752 4476132.383917 4867 4752 4861111.1127 4753 4753 625304024.3239 4754 4753 6.198883056641e-06 4755 4753 -19444444.44125 4756 4753 -92560889.60172 4757 4753 2.32458114624e-06 4839 4753 24305555.56354 4840 4753 -39081501.55876 4842 4753 -2.294778823853e-06 4843 4753 -31882558.21685 4845 4753 -24305555.56354 4846 4753 -39081501.55876 4860 4753 4861111.112712 4861 4753 -41704377.77507 4863 4753 -7.152557373047e-07 4864 4753 82069384.74161 4866 4753 -4861111.112713 4867 4753 -41704377.77507 4754 4754 582912992.1231 4755 4754 -7.271766662598e-06 4756 4754 1.877546310425e-06 4757 4754 52395662.19267 4839 4754 21679861.11823 4840 4754 -17343750.0057 4842 4754 86719444.4302 4843 4754 3.427267074585e-07 4845 4754 21679861.11823 4846 4754 17343750.0057 4860 4754 4335972.223649 4861 4754 -34687499.9943 4863 4754 17343888.88605 4864 4754 -3.576278686523e-06 4866 4754 4335972.22365 4867 4754 34687499.9943 4755 4755 741974947.0469 4756 4755 5.006790161133e-06 4757 4755 -2.908706665039e-05 4758 4755 92161150.94322 4759 4755 19444444.44125 4760 4755 -7.271766662598e-06 4842 4755 -46373434.23613 4843 4755 24305555.56354 4845 4755 -138827443.8752 4846 4755 2.682209014893e-07 4848 4755 -46373434.23614 4849 4755 -24305555.56354 4863 4755 4476132.383914 4864 4755 -4861111.112702 4866 4755 111237115.4367 4867 4755 -8.344650268555e-07 4869 4755 4476132.383917 4870 4755 4861111.1127 4756 4756 625304024.3239 4757 4756 6.198883056641e-06 4758 4756 -19444444.44125 4759 4756 -92560889.60172 4760 4756 2.32458114624e-06 4842 4756 24305555.56354 4843 4756 -39081501.55876 4845 4756 -2.294778823853e-06 4846 4756 -31882558.21685 4848 4756 -24305555.56354 4849 4756 -39081501.55876 4863 4756 4861111.112712 4864 4756 -41704377.77507 4866 4756 -7.152557373047e-07 4867 4756 82069384.74161 4869 4756 -4861111.112713 4870 4756 -41704377.77507 4757 4757 582912992.1231 4758 4757 -7.271766662598e-06 4759 4757 1.877546310425e-06 4760 4757 52395662.19267 4842 4757 21679861.11823 4843 4757 -17343750.0057 4845 4757 86719444.4302 4846 4757 3.427267074585e-07 4848 4757 21679861.11823 4849 4757 17343750.0057 4863 4757 4335972.223649 4864 4757 -34687499.9943 4866 4757 17343888.88605 4867 4757 -3.576278686523e-06 4869 4757 4335972.22365 4870 4757 34687499.9943 4758 4758 741974947.0469 4759 4758 5.006790161133e-06 4760 4758 -2.908706665039e-05 4761 4758 92161150.94322 4762 4758 19444444.44125 4763 4758 -7.271766662598e-06 4845 4758 -46373434.23613 4846 4758 24305555.56354 4848 4758 -138827443.8752 4849 4758 2.682209014893e-07 4851 4758 -46373434.23614 4852 4758 -24305555.56354 4866 4758 4476132.383914 4867 4758 -4861111.112702 4869 4758 111237115.4367 4870 4758 -8.344650268555e-07 4872 4758 4476132.383917 4873 4758 4861111.1127 4759 4759 625304024.3239 4760 4759 6.198883056641e-06 4761 4759 -19444444.44125 4762 4759 -92560889.60172 4763 4759 2.32458114624e-06 4845 4759 24305555.56354 4846 4759 -39081501.55876 4848 4759 -2.294778823853e-06 4849 4759 -31882558.21685 4851 4759 -24305555.56354 4852 4759 -39081501.55876 4866 4759 4861111.112712 4867 4759 -41704377.77507 4869 4759 -7.152557373047e-07 4870 4759 82069384.74161 4872 4759 -4861111.112713 4873 4759 -41704377.77507 4760 4760 582912992.1231 4761 4760 -7.271766662598e-06 4762 4760 1.877546310425e-06 4763 4760 52395662.19267 4845 4760 21679861.11823 4846 4760 -17343750.0057 4848 4760 86719444.4302 4849 4760 3.427267074585e-07 4851 4760 21679861.11823 4852 4760 17343750.0057 4866 4760 4335972.223649 4867 4760 -34687499.9943 4869 4760 17343888.88605 4870 4760 -3.576278686523e-06 4872 4760 4335972.22365 4873 4760 34687499.9943 4761 4761 743972693.3093 4762 4761 15895.84582305 4763 4761 -1.215934753418e-05 4764 4761 96103889.57231 4765 4761 23223356.21639 4766 4761 2.145767211914e-06 4848 4761 -46373434.23613 4849 4761 24305555.56354 4851 4761 -140996480.167 4852 4761 -952893.2695176 4854 4761 -45870736.57862 4855 4761 -24301364.19972 4869 4761 4476132.383914 4870 4761 -4861111.112702 4872 4761 111737658.2526 4873 4761 3973.961454272 4875 4761 5643546.059514 4876 4761 5805839.056956 4762 4762 624700330.4184 4763 4762 2.026557922363e-05 4764 4762 -15665532.66612 4765 4762 -87045539.95471 4766 4762 -4.470348358154e-06 4848 4762 24305555.56354 4849 4762 -39081501.55876 4851 4762 -952893.2695167 4852 4762 -33140775.69075 4854 4762 -24301364.19972 4855 4762 -39232415.43151 4869 4762 4861111.112712 4870 4762 -41704377.77507 4872 4762 3973.961453795 4873 4762 81919567.51518 4875 4762 -3916383.16846 4876 4762 -40143811.34479 4763 4763 583290059.4325 4764 4763 -1.192092895508e-06 4765 4763 -4.589557647705e-06 4766 4763 54461159.75297 4848 4763 21679861.11823 4849 4763 -17343750.0057 4851 4763 87564583.31887 4852 4763 677083.3331556 4854 4763 21679166.67378 4855 4763 17343750.00569 4869 4763 4335972.223649 4870 4763 -34687499.9943 4872 4763 17343611.10827 4873 4763 -2.473592758179e-06 4875 4763 3489305.557201 4876 4763 34010416.66114 4764 4764 745987487.9304 4765 4764 -2453991.979034 4766 4764 -2.622604370117e-06 4767 4764 -141080087.6866 4768 4764 -95899021.31305 4769 4764 -8.359551429749e-06 4770 4764 92610986.19902 4771 4764 22063836.70035 4772 4764 1.430511474609e-06 4851 4764 -48879322.66665 4852 4764 24272689.58238 4854 4764 -141002035.2672 4855 4764 -1284012.256585 4872 4764 5643546.059495 4873 4764 -3916383.168461 4875 4764 115620942.6217 4876 4764 -613497.9950649 4878 4764 -43801307.6603 4879 4764 -23974755.34007 4881 4764 5916032.269884 4882 4764 5515959.177805 4765 4765 616411761.6306 4766 4765 3.147125244141e-05 4767 4765 -95899021.31305 4768 4765 -117437349.9809 4769 4765 -3.337860107422e-06 4770 4765 -16825052.18216 4771 4765 -92728025.51492 4772 4765 -4.708766937256e-06 4851 4765 24272689.58238 4852 4765 -38326906.89253 4854 4765 -1284012.256586 4855 4765 -32949093.52409 4872 4765 5805839.056957 4873 4765 -40143811.34482 4875 4765 -613497.9950616 4876 4765 83227011.03075 4878 4765 -23974755.34007 4879 4765 -37890623.23096 4881 4765 -4206263.047611 4882 4765 -40418720.68142 4766 4766 572020605.8755 4767 4766 -8.553266525269e-06 4768 4766 -3.397464752197e-06 4769 4766 -46375866.82275 4770 4766 -1.907348632813e-06 4771 4766 -4.738569259644e-06 4772 4766 48718383.22462 4851 4766 22525694.45184 4852 4766 -16666666.67214 4854 4766 85676388.87482 4855 4766 677083.3331557 4872 4766 5182361.11248 4873 4766 -34010416.66102 4875 4766 17135277.77496 4876 4766 -1.698732376099e-06 4878 4766 20312500.00667 4879 4766 16666666.67214 4881 4766 3385277.779223 4882 4766 33333333.32785 4767 4767 361120236.1714 4768 4767 94548810.89505 4769 4767 1.120567321777e-05 4770 4767 -203961436.0496 4771 4767 -20767645.33449 4772 4767 -3.635883331299e-06 4854 4767 4511607.610492 4855 4767 5529463.940847 4875 4767 -43801307.66031 4876 4767 -23974755.34007 4878 4767 56503201.94985 4879 4767 23637202.73541 4881 4767 -68052930.47169 4882 4767 -5191911.336183 4768 4768 308313282.913 4769 4768 1.609325408936e-05 4770 4768 18121243.54802 4771 4768 9374992.872524 4772 4768 7.987022399902e-06 4854 4768 -4192758.284571 4855 4768 -41531445.75455 4875 4768 -23974755.34007 4876 4768 -37890623.23097 4878 4768 23637202.73541 4879 4768 43301463.62875 4881 4768 4530310.889234 4882 4768 -14718823.21488 4769 4769 278103282.9517 4770 4769 5.364418029785e-07 4771 4769 7.927417755127e-06 4772 4769 -4811252.171694 4854 4769 -3215972.223779 4855 4769 -33333333.32786 4875 4769 -20312500.00667 4876 4769 -16666666.67214 4878 4769 -8124999.998662 4879 4769 -6666666.665569 4881 4769 -41471527.77088 4882 4769 -3333333.334428 4770 4770 371304389.3859 4771 4770 -99841614.46538 4772 4770 -9.536743164063e-06 4854 4770 -47751770.62457 4855 4770 24636355.78702 4875 4770 5916032.269866 4876 4770 -4206263.047612 4878 4770 -68052930.47169 4879 4770 4530310.889241 4881 4770 58352668.82662 4882 4770 -24960403.62864 4771 4771 309788077.0663 4772 4771 1.561641693115e-05 4854 4771 24636355.78702 4855 4771 -39372046.84257 4875 4771 5515959.177806 4876 4771 -40418720.68145 4878 4771 -5191911.336177 4879 4771 -14718823.21488 4881 4771 -24960403.62864 4882 4771 42973590.73913 4772 4772 283253096.8787 4854 4772 21159027.78473 4855 4772 -16666666.67214 4875 4772 5078333.334502 4876 4772 -33333333.32786 4878 4772 41471527.77105 4879 4772 -3333333.334428 4881 4772 8463611.109719 4882 4772 -6666666.665572 4773 4773 463734339.079 4774 4773 48611111.10311 4776 4773 -286863054.9654 4777 4773 -48611110.71422 4779 4773 9282077.504984 4780 4773 38888888.4936 4774 4774 390815012.8075 4776 4774 -48611110.51978 4777 4774 -58389419.62183 4779 4774 58333332.7404 4780 4774 9282077.504984 4775 4775 1 4776 4776 816157657.6872 4777 4776 48611110.13091 4779 4776 8696360.488349 4780 4776 -48611110.71423 4782 4776 -203398266.1972 4783 4776 -2.920627593994e-06 4785 4776 -74182713.06331 4786 4776 48611111.10312 4777 4777 684902870.0541 4779 4777 -48611110.51978 4780 4777 -161441813.9313 4782 4777 -2.801418304443e-06 4783 4777 10491505.01414 4785 4777 48611111.10312 4786 4777 -59598847.71575 4778 4778 1 4779 4779 463734339.079 4780 4779 48611111.10311 4782 4779 -74182713.06331 4783 4779 -48611111.10312 4785 4779 -286863054.9654 4786 4779 -48611110.71422 4788 4779 9282077.504984 4789 4779 38888888.4936 4780 4780 390815012.8075 4782 4780 -48611111.10312 4783 4780 -59598847.71576 4785 4780 -48611110.51978 4786 4780 -58389419.62183 4788 4780 58333332.7404 4789 4780 9282077.504984 4781 4781 1 4782 4782 741974947.0469 4783 4782 1.335144042969e-05 4785 4782 92161150.94322 4786 4782 -4.291534423828e-06 4791 4782 -203398266.1972 4792 4782 -2.920627593994e-06 4794 4782 -74182713.06331 4795 4782 48611111.10312 4783 4783 625304024.3239 4785 4783 -1.192092895508e-07 4786 4783 -92560889.60172 4791 4783 -2.801418304443e-06 4792 4783 10491505.01414 4794 4783 48611111.10312 4795 4783 -59598847.71575 4784 4784 1 4785 4785 816157657.6872 4786 4785 48611110.13091 4788 4785 8696360.488349 4789 4785 -48611110.71423 4791 4785 -74182713.06331 4792 4785 -48611111.10312 4794 4785 -203398266.1972 4795 4785 -2.920627593994e-06 4797 4785 -74182713.06331 4798 4785 48611111.10312 4786 4786 684902870.0541 4788 4786 -48611110.51978 4789 4786 -161441813.9313 4791 4786 -48611111.10312 4792 4786 -59598847.71576 4794 4786 -2.801418304443e-06 4795 4786 10491505.01414 4797 4786 48611111.10312 4798 4786 -59598847.71575 4787 4787 1 4788 4788 463734339.079 4789 4788 48611111.10311 4794 4788 -74182713.06331 4795 4788 -48611111.10312 4797 4788 -286863054.9654 4798 4788 -48611110.71422 4800 4788 9282077.504984 4801 4788 38888888.4936 4789 4789 390815012.8075 4794 4789 -48611111.10312 4795 4789 -59598847.71576 4797 4789 -48611110.51978 4798 4789 -58389419.62183 4800 4789 58333332.7404 4801 4789 9282077.504984 4790 4790 1 4791 4791 741974947.0469 4792 4791 1.335144042969e-05 4794 4791 92161150.94322 4795 4791 -4.291534423828e-06 4803 4791 -203398266.1972 4804 4791 -2.920627593994e-06 4806 4791 -74182713.06331 4807 4791 48611111.10312 4792 4792 625304024.3239 4794 4792 -1.192092895508e-07 4795 4792 -92560889.60172 4803 4792 -2.801418304443e-06 4804 4792 10491505.01414 4806 4792 48611111.10312 4807 4792 -59598847.71575 4793 4793 1 4794 4794 741974947.0469 4795 4794 1.335144042969e-05 4797 4794 92161150.94322 4798 4794 -4.291534423828e-06 4803 4794 -74182713.06331 4804 4794 -48611111.10312 4806 4794 -203398266.1972 4807 4794 -2.920627593994e-06 4809 4794 -74182713.06331 4810 4794 48611111.10312 4795 4795 625304024.3239 4797 4795 -1.192092895508e-07 4798 4795 -92560889.60172 4803 4795 -48611111.10312 4804 4795 -59598847.71576 4806 4795 -2.801418304443e-06 4807 4795 10491505.01414 4809 4795 48611111.10312 4810 4795 -59598847.71575 4796 4796 1 4797 4797 816157657.6872 4798 4797 48611110.13091 4800 4797 8696360.488349 4801 4797 -48611110.71423 4806 4797 -74182713.06331 4807 4797 -48611111.10312 4809 4797 -203398266.1972 4810 4797 -2.920627593994e-06 4812 4797 -74182713.06331 4813 4797 48611111.10312 4798 4798 684902870.0541 4800 4798 -48611110.51978 4801 4798 -161441813.9313 4806 4798 -48611111.10312 4807 4798 -59598847.71576 4809 4798 -2.801418304443e-06 4810 4798 10491505.01414 4812 4798 48611111.10312 4813 4798 -59598847.71575 4799 4799 1 4800 4800 463734339.079 4801 4800 48611111.10311 4809 4800 -74182713.06331 4810 4800 -48611111.10312 4812 4800 -286863054.9654 4813 4800 -48611110.71422 4815 4800 9282077.504984 4816 4800 38888888.4936 4801 4801 390815012.8075 4809 4801 -48611111.10312 4810 4801 -59598847.71576 4812 4801 -48611110.51978 4813 4801 -58389419.62183 4815 4801 58333332.7404 4816 4801 9282077.504984 4802 4802 1 4803 4803 741974947.0469 4804 4803 1.335144042969e-05 4806 4803 92161150.94322 4807 4803 -4.291534423828e-06 4818 4803 -203398266.1972 4819 4803 -2.920627593994e-06 4821 4803 -74182713.06331 4822 4803 48611111.10312 4804 4804 625304024.3239 4806 4804 -1.192092895508e-07 4807 4804 -92560889.60172 4818 4804 -2.801418304443e-06 4819 4804 10491505.01414 4821 4804 48611111.10312 4822 4804 -59598847.71575 4805 4805 1 4806 4806 741974947.0469 4807 4806 1.335144042969e-05 4809 4806 92161150.94322 4810 4806 -4.291534423828e-06 4818 4806 -74182713.06331 4819 4806 -48611111.10312 4821 4806 -203398266.1972 4822 4806 -2.920627593994e-06 4824 4806 -74182713.06331 4825 4806 48611111.10312 4807 4807 625304024.3239 4809 4807 -1.192092895508e-07 4810 4807 -92560889.60172 4818 4807 -48611111.10312 4819 4807 -59598847.71576 4821 4807 -2.801418304443e-06 4822 4807 10491505.01414 4824 4807 48611111.10312 4825 4807 -59598847.71575 4808 4808 1 4809 4809 741974947.0469 4810 4809 1.335144042969e-05 4812 4809 92161150.94322 4813 4809 -4.291534423828e-06 4821 4809 -74182713.06331 4822 4809 -48611111.10312 4824 4809 -203398266.1972 4825 4809 -2.920627593994e-06 4827 4809 -74182713.06331 4828 4809 48611111.10312 4810 4810 625304024.3239 4812 4810 -1.192092895508e-07 4813 4810 -92560889.60172 4821 4810 -48611111.10312 4822 4810 -59598847.71576 4824 4810 -2.801418304443e-06 4825 4810 10491505.01414 4827 4810 48611111.10312 4828 4810 -59598847.71575 4811 4811 1 4812 4812 816157657.6872 4813 4812 48611110.13091 4815 4812 8696360.488349 4816 4812 -48611110.71423 4824 4812 -74182713.06331 4825 4812 -48611111.10312 4827 4812 -203398266.1972 4828 4812 -2.920627593994e-06 4830 4812 -74182713.06331 4831 4812 48611111.10312 4813 4813 684902870.0541 4815 4813 -48611110.51978 4816 4813 -161441813.9313 4824 4813 -48611111.10312 4825 4813 -59598847.71576 4827 4813 -2.801418304443e-06 4828 4813 10491505.01414 4830 4813 48611111.10312 4831 4813 -59598847.71575 4814 4814 1 4815 4815 463734339.079 4816 4815 48611111.10311 4827 4815 -74182713.06331 4828 4815 -48611111.10312 4830 4815 -286863054.9654 4831 4815 -48611110.71422 4833 4815 9282077.504984 4834 4815 38888888.4936 4816 4816 390815012.8075 4827 4816 -48611111.10312 4828 4816 -59598847.71576 4830 4816 -48611110.51978 4831 4816 -58389419.62183 4833 4816 58333332.7404 4834 4816 9282077.504984 4817 4817 1 4818 4818 741974947.0469 4819 4818 1.335144042969e-05 4821 4818 92161150.94322 4822 4818 -4.291534423828e-06 4836 4818 -203398266.1972 4837 4818 -2.920627593994e-06 4839 4818 -74182713.06331 4840 4818 48611111.10312 4819 4819 625304024.3239 4821 4819 -1.192092895508e-07 4822 4819 -92560889.60172 4836 4819 -2.801418304443e-06 4837 4819 10491505.01414 4839 4819 48611111.10312 4840 4819 -59598847.71575 4820 4820 1 4821 4821 741974947.0469 4822 4821 1.335144042969e-05 4824 4821 92161150.94322 4825 4821 -4.291534423828e-06 4836 4821 -74182713.06331 4837 4821 -48611111.10312 4839 4821 -203398266.1972 4840 4821 -2.920627593994e-06 4842 4821 -74182713.06331 4843 4821 48611111.10312 4822 4822 625304024.3239 4824 4822 -1.192092895508e-07 4825 4822 -92560889.60172 4836 4822 -48611111.10312 4837 4822 -59598847.71576 4839 4822 -2.801418304443e-06 4840 4822 10491505.01414 4842 4822 48611111.10312 4843 4822 -59598847.71575 4823 4823 1 4824 4824 741974947.0469 4825 4824 1.335144042969e-05 4827 4824 92161150.94322 4828 4824 -4.291534423828e-06 4839 4824 -74182713.06331 4840 4824 -48611111.10312 4842 4824 -203398266.1972 4843 4824 -2.920627593994e-06 4845 4824 -74182713.06331 4846 4824 48611111.10312 4825 4825 625304024.3239 4827 4825 -1.192092895508e-07 4828 4825 -92560889.60172 4839 4825 -48611111.10312 4840 4825 -59598847.71576 4842 4825 -2.801418304443e-06 4843 4825 10491505.01414 4845 4825 48611111.10312 4846 4825 -59598847.71575 4826 4826 1 4827 4827 741974947.0469 4828 4827 1.335144042969e-05 4830 4827 92161150.94322 4831 4827 -4.291534423828e-06 4842 4827 -74182713.06331 4843 4827 -48611111.10312 4845 4827 -203398266.1972 4846 4827 -2.920627593994e-06 4848 4827 -74182713.06331 4849 4827 48611111.10312 4828 4828 625304024.3239 4830 4828 -1.192092895508e-07 4831 4828 -92560889.60172 4842 4828 -48611111.10312 4843 4828 -59598847.71576 4845 4828 -2.801418304443e-06 4846 4828 10491505.01414 4848 4828 48611111.10312 4849 4828 -59598847.71575 4829 4829 1 4830 4830 816157657.6872 4831 4830 48611110.13091 4833 4830 8696360.488349 4834 4830 -48611110.71423 4845 4830 -74182713.06331 4846 4830 -48611111.10312 4848 4830 -203398266.1972 4849 4830 -2.920627593994e-06 4851 4830 -74182713.06331 4852 4830 48611111.10312 4831 4831 684902870.0541 4833 4831 -48611110.51978 4834 4831 -161441813.9313 4845 4831 -48611111.10312 4846 4831 -59598847.71576 4848 4831 -2.801418304443e-06 4849 4831 10491505.01414 4851 4831 48611111.10312 4852 4831 -59598847.71575 4832 4832 1 4833 4833 472113317.9279 4834 4833 52406573.19334 4848 4833 -74182713.06331 4849 4833 -48611111.10312 4851 4833 -295909020.1924 4852 4833 -52406572.80447 4854 4833 11397613.87671 4855 4833 38888888.49362 4834 4834 394566668.6419 4848 4834 -48611111.10312 4849 4834 -59598847.71576 4851 4834 -52406572.61003 4852 4834 -65730393.29849 4854 4834 58333332.74044 4855 4834 14319945.34088 4835 4835 1 4836 4836 741974947.0469 4837 4836 1.335144042969e-05 4839 4836 92161150.94322 4840 4836 -4.291534423828e-06 4857 4836 -203398266.1972 4858 4836 -2.920627593994e-06 4860 4836 -74182713.06331 4861 4836 48611111.10312 4837 4837 625304024.3239 4839 4837 -1.192092895508e-07 4840 4837 -92560889.60172 4857 4837 -2.801418304443e-06 4858 4837 10491505.01414 4860 4837 48611111.10312 4861 4837 -59598847.71575 4838 4838 1 4839 4839 741974947.0469 4840 4839 1.335144042969e-05 4842 4839 92161150.94322 4843 4839 -4.291534423828e-06 4857 4839 -74182713.06331 4858 4839 -48611111.10312 4860 4839 -203398266.1972 4861 4839 -2.920627593994e-06 4863 4839 -74182713.06331 4864 4839 48611111.10312 4840 4840 625304024.3239 4842 4840 -1.192092895508e-07 4843 4840 -92560889.60172 4857 4840 -48611111.10312 4858 4840 -59598847.71576 4860 4840 -2.801418304443e-06 4861 4840 10491505.01414 4863 4840 48611111.10312 4864 4840 -59598847.71575 4841 4841 1 4842 4842 741974947.0469 4843 4842 1.335144042969e-05 4845 4842 92161150.94322 4846 4842 -4.291534423828e-06 4860 4842 -74182713.06331 4861 4842 -48611111.10312 4863 4842 -203398266.1972 4864 4842 -2.920627593994e-06 4866 4842 -74182713.06331 4867 4842 48611111.10312 4843 4843 625304024.3239 4845 4843 -1.192092895508e-07 4846 4843 -92560889.60172 4860 4843 -48611111.10312 4861 4843 -59598847.71576 4863 4843 -2.801418304443e-06 4864 4843 10491505.01414 4866 4843 48611111.10312 4867 4843 -59598847.71575 4844 4844 1 4845 4845 741974947.0469 4846 4845 1.335144042969e-05 4848 4845 92161150.94322 4849 4845 -4.291534423828e-06 4863 4845 -74182713.06331 4864 4845 -48611111.10312 4866 4845 -203398266.1972 4867 4845 -2.920627593994e-06 4869 4845 -74182713.06331 4870 4845 48611111.10312 4846 4846 625304024.3239 4848 4846 -1.192092895508e-07 4849 4846 -92560889.60172 4863 4846 -48611111.10312 4864 4846 -59598847.71576 4866 4846 -2.801418304443e-06 4867 4846 10491505.01414 4869 4846 48611111.10312 4870 4846 -59598847.71575 4847 4847 1 4848 4848 741974947.0469 4849 4848 1.335144042969e-05 4851 4848 92161150.94322 4852 4848 -4.291534423828e-06 4866 4848 -74182713.06331 4867 4848 -48611111.10312 4869 4848 -203398266.1972 4870 4848 -2.920627593994e-06 4872 4848 -74182713.06331 4873 4848 48611111.10312 4849 4849 625304024.3239 4851 4849 -1.192092895508e-07 4852 4849 -92560889.60172 4866 4849 -48611111.10312 4867 4849 -59598847.71576 4869 4849 -2.801418304443e-06 4870 4849 10491505.01414 4872 4849 48611111.10312 4873 4849 -59598847.71575 4850 4850 1 4851 4851 830573854.4174 4852 4851 52487997.16069 4854 4851 14486963.23993 4855 4851 -46721017.15339 4869 4851 -74182713.06331 4870 4851 -48611111.10312 4872 4851 -207375010.2074 4873 4851 -1905786.538097 4875 4851 -79195001.52904 4876 4851 48545379.14084 4852 4852 689158287.1216 4854 4852 -46721016.95895 4855 4852 -155538026.8924 4869 4852 -48611111.10312 4870 4852 -59598847.71576 4872 4852 -1905786.538106 4873 4852 8336398.63873 4875 4852 48545379.14084 4876 4852 -58090169.9912 4853 4853 1 4854 4854 439155444.2405 4855 4854 -1328757.878829 4872 4854 -73177829.35596 4873 4854 -48602728.37549 4875 4854 -211113991.8355 4876 4854 -2568024.51192 4878 4854 42800072.35402 4879 4854 -8385516.565012 4881 4854 -78440969.76791 4882 4854 49272711.54975 4855 4855 452202236.3703 4872 4855 -48602728.37549 4873 4855 -59901187.06828 4875 4855 -2568024.511923 4876 4855 4991891.544235 4878 4855 11058927.87624 4879 4855 -49286034.33069 4881 4855 49272711.54975 4882 4855 -61681522.21217 4856 4856 1 4857 4857 370987473.5234 4858 4857 6.914138793945e-06 4860 4857 46080575.4716 4861 4857 9722222.220623 4858 4858 312652012.1619 4860 4858 -9722222.220622 4861 4858 -46280444.80086 4859 4859 1 4860 4860 370987473.5234 4861 4860 6.914138793945e-06 4863 4860 46080575.4716 4864 4860 9722222.220623 4861 4861 312652012.1619 4863 4861 -9722222.220622 4864 4861 -46280444.80086 4862 4862 1 4863 4863 370987473.5234 4864 4863 6.914138793945e-06 4866 4863 46080575.4716 4867 4863 9722222.220623 4864 4864 312652012.1619 4866 4864 -9722222.220622 4867 4864 -46280444.80086 4865 4865 1 4866 4866 370987473.5234 4867 4866 6.914138793945e-06 4869 4866 46080575.4716 4870 4866 9722222.220623 4867 4867 312652012.1619 4869 4867 -9722222.220622 4870 4867 -46280444.80086 4868 4868 1 4869 4869 370987473.5234 4870 4869 6.914138793945e-06 4872 4869 46080575.4716 4873 4869 9722222.220623 4870 4870 312652012.1619 4872 4870 -9722222.220622 4873 4870 -46280444.80086 4871 4871 1 4872 4872 371986346.6546 4873 4872 7947.922919989 4875 4872 48051944.78615 4876 4872 11611678.10819 4873 4873 312350165.2092 4875 4873 -7832766.333059 4876 4873 -43522769.97735 4874 4874 1 4875 4875 372993743.9652 4876 4875 -1226995.989509 4878 4875 -70540043.84328 4879 4875 -47949510.65652 4881 4875 46305493.09951 4882 4875 11031918.35018 4876 4876 308205880.8153 4878 4876 -47949510.65652 4879 4876 -58718674.99043 4881 4876 -8412526.091075 4882 4876 -46364012.75746 4877 4877 1 4878 4878 180560118.0857 4879 4878 47274405.44752 4881 4878 -101980718.0248 4882 4878 -10383822.66724 4879 4879 154156641.4565 4881 4879 9060621.774008 4882 4879 4687496.436255 4880 4880 1 4881 4881 185652194.6929 4882 4881 -49920807.23268 4882 4882 154894038.5331 4883 4883 1 SuiteSparse/CSparse/Matrix/mbeacxc0000644001170100242450000374020210326007632016107 0ustar davisfac5 0 0.0045458972 6 0 0.24555165 18 0 0.025517598 24 0 7.0999988e-05 62 0 0.0068898983 98 0 0.0028766999 102 0 0.11666727 103 0 8.8799992e-05 104 0 0.0011898 107 0 0.0042084977 108 0 1.779999e-05 111 0 0.00094119995 114 0 8.8799992e-05 117 0 0.0014915999 118 0 0.012057398 119 0 0.0002308 120 0 0.0001776 126 0 1.779999e-05 141 0 3.5499994e-05 143 0 0.0015626999 160 0 0.0002485998 171 0 8.8799992e-05 172 0 1.779999e-05 189 0 1.779999e-05 194 0 1.779999e-05 198 0 0.00014209999 200 0 8.8799992e-05 201 0 7.0999988e-05 206 0 3.5499994e-05 214 0 0.00062149996 217 0 0.0011719998 223 0 0.00095889997 228 0 0.00037289993 229 0 0.0037113 234 0 0.0047767982 237 0 0.0039421991 242 0 1.779999e-05 253 0 0.00039069983 279 0 8.8799992e-05 283 0 3.5499994e-05 307 0 0.0001065 315 0 0.0017402 317 0 0.00095889997 318 0 1.779999e-05 322 0 5.3299998e-05 329 0 0.0049720965 356 0 8.8799992e-05 357 0 0.00014209999 358 0 8.8799992e-05 384 0 7.0999988e-05 387 0 1.779999e-05 394 0 0.00026639993 397 0 5.3299998e-05 402 0 0.00062149996 422 0 1.779999e-05 438 0 3.5499994e-05 442 0 3.5499994e-05 443 0 0.0044926964 444 0 1.779999e-05 445 0 0.032176699 446 0 0.00053269998 447 0 3.5499994e-05 448 0 0.00012429999 450 0 0.0026991998 452 0 0.0080086999 454 0 0.0002308 455 0 0.021841798 456 0 0.00078129978 457 0 0.0098198988 458 0 0.00037289993 459 0 3.5499994e-05 460 0 0.0055580996 463 0 0.029246699 464 0 1.779999e-05 467 0 0.0031963999 468 0 0.00021309999 469 0 0.0013851 470 0 0.00040839985 471 0 0.0032495998 473 0 1.779999e-05 476 0 0.0017402 478 0 0.00035519991 483 0 0.00014209999 490 0 3.5499994e-05 6 1 0.16098946 18 1 0.12319708 62 1 0.0048390999 102 1 0.38757879 114 1 2.3599991e-05 117 1 0.0025966 118 1 0.020938098 119 1 0.00040129991 120 1 0.00030689989 126 1 2.3599991e-05 141 1 4.7199996e-05 171 1 9.4399991e-05 172 1 2.3599991e-05 194 1 0.0046738982 195 1 0.011023797 200 1 9.4399991e-05 201 1 9.4399991e-05 206 1 4.7199996e-05 214 1 0.00028329995 217 1 0.00054289983 223 1 0.00092059979 228 1 0.0059249997 229 1 0.00068459986 234 1 0.0055944994 237 1 0.0020772999 279 1 0.00014159999 283 1 4.7199996e-05 307 1 0.000118 317 1 0.00096779992 318 1 2.3599991e-05 322 1 2.3599991e-05 329 1 0.0028326998 356 1 9.4399991e-05 357 1 7.0799986e-05 358 1 4.7199996e-05 384 1 4.7199996e-05 394 1 0.00016519999 397 1 4.7199996e-05 402 1 0.00028329995 438 1 4.7199996e-05 442 1 4.7199996e-05 443 1 0.010575298 445 1 0.0052403994 446 1 0.0011094999 447 1 4.7199996e-05 448 1 0.00014159999 450 1 0.0026909998 452 1 0.0080494992 453 1 0.00051929988 454 1 0.00023609999 455 1 0.042230196 456 1 0.012062397 457 1 0.0048862994 458 1 0.00037769997 459 1 2.3599991e-05 460 1 0.0033047998 463 1 0.0162878 464 1 2.3599991e-05 467 1 0.0015815999 468 1 0.00021239999 469 1 0.0014398999 470 1 0.00040129991 471 1 0.0017467998 473 1 2.3599991e-05 476 1 0.027901698 478 1 0.00035409979 483 1 0.00014159999 490 1 4.7199996e-05 0 2 0.0031091999 2 2 0.36019218 3 2 0.0014519999 5 2 0.0087651983 6 2 0.22969705 9 2 3.2999997e-06 11 2 7.9399993e-05 14 2 0.00015219999 18 2 0.016207296 62 2 0.0048456974 82 2 1.32e-05 83 2 3.2999997e-06 84 2 3.2999997e-06 98 2 0.00080039981 102 2 0.058878798 103 2 2.9799994e-05 104 2 0.00033739978 107 2 0.0011741999 108 2 3.2999997e-06 111 2 0.00025799987 113 2 6.5999993e-06 114 2 5.2899995e-05 117 2 0.0015479999 118 2 0.012585498 119 2 0.00022819999 120 2 0.00017859999 126 2 6.5999993e-06 141 2 2.6499998e-05 171 2 8.5999985e-05 172 2 1.9799991e-05 189 2 6.5999993e-06 193 2 1.6499995e-05 194 2 9.8999999e-06 197 2 3.2999997e-06 200 2 9.5899988e-05 201 2 7.2799987e-05 203 2 6.5999993e-06 204 2 6.5999993e-06 206 2 1.32e-05 207 2 3.2999997e-06 214 2 0.00036709988 217 2 0.0007077998 223 2 0.00086989999 228 2 0.00048289984 234 2 0.0037838998 237 2 0.0030958999 242 2 9.8999999e-06 252 2 3.2999997e-06 279 2 9.5899988e-05 283 2 4.9599999e-05 307 2 0.00010579999 317 2 0.00093609979 318 2 9.8999999e-06 322 2 3.6399986e-05 329 2 0.0040253997 356 2 8.9299996e-05 357 2 0.00010919999 358 2 5.6199991e-05 384 2 4.9599999e-05 387 2 3.2999997e-06 394 2 0.00020839999 397 2 4.6299989e-05 402 2 0.00043659983 419 2 3.2999997e-06 422 2 9.8999999e-06 423 2 3.2999997e-06 425 2 3.2999997e-06 430 2 3.2999997e-06 431 2 3.2999997e-06 433 2 3.2999997e-06 434 2 3.2999997e-06 438 2 2.9799994e-05 442 2 3.9699997e-05 443 2 0.0041576996 444 2 9.8999999e-06 445 2 0.004623998 446 2 0.00069129979 447 2 3.6399986e-05 448 2 7.9399993e-05 450 2 0.0026791999 452 2 0.0080043972 454 2 0.00015219999 455 2 0.032106999 456 2 0.0010187 457 2 0.0087452978 458 2 4.6299989e-05 459 2 1.6499995e-05 460 2 0.0044586994 463 2 0.022627398 464 2 1.32e-05 467 2 0.0026625998 468 2 0.0002249 469 2 0.0014056999 470 2 0.00039689988 471 2 0.0028014998 473 2 9.8999999e-06 476 2 0.0022987998 478 2 0.00035389978 483 2 0.0001389 490 2 3.309999e-05 3 3 0.068147898 5 3 0.00082899979 6 3 0.21903497 18 3 0.0076272972 62 3 0.0031503998 98 3 0.012104098 101 3 0.037307199 102 3 0.16630739 103 3 0.00049739983 104 3 0.0049742982 107 3 0.017741699 111 3 0.0039793998 114 3 0.0014922998 117 3 0.00066319993 118 3 0.0051400997 119 3 0.0001658 200 3 0.0001658 201 3 0.0001658 214 3 0.00066319993 217 3 0.00099489978 223 3 0.0024871 228 3 0.0021555 234 3 0.0084562972 237 3 0.0013265 251 3 0.023379199 279 3 0.0001658 307 3 0.0001658 317 3 0.00082899979 322 3 0.0016580999 329 3 0.00082899979 356 3 0.0001658 394 3 0.0001658 402 3 0.0001658 443 3 0.0061349981 445 3 0.0051400997 446 3 0.00066319993 447 3 0.00049739983 448 3 0.0001658 450 3 0.0026529999 452 3 0.0079588965 453 3 0.00066319993 454 3 0.0001658 455 3 0.030343197 456 3 0.0043110996 457 3 0.0024871 458 3 0.00049739983 460 3 0.0023212999 463 3 0.028685097 467 3 0.0021555 468 3 0.0001658 469 3 0.0014922998 470 3 0.00049739983 471 3 0.0013265 476 3 0.0096169971 478 3 0.00033159996 483 3 0.0001658 490 3 0.0001658 0 4 0.00024319999 1 4 0.00072969985 2 4 0.0031619 3 4 0.0087560974 4 4 0.012696397 18 4 0.18679768 24 4 0.0016538999 25 4 0.0018485 62 4 0.0087074973 114 4 4.8599992e-05 171 4 9.7299999e-05 200 4 9.7299999e-05 201 4 9.7299999e-05 206 4 4.8599992e-05 214 4 0.028019696 215 4 0.078124166 217 4 0.045775197 223 4 0.00029189978 234 4 0.022765998 237 4 0.0063724965 273 4 9.7299999e-05 279 4 4.8599992e-05 283 4 4.8599992e-05 307 4 9.7299999e-05 317 4 0.00097289984 322 4 9.7299999e-05 329 4 0.0094857998 356 4 0.00029189978 357 4 0.0001946 358 4 9.7299999e-05 384 4 4.8599992e-05 394 4 0.00087559992 397 4 9.7299999e-05 402 4 0.00068099983 438 4 4.8599992e-05 442 4 4.8599992e-05 443 4 0.0069075972 445 4 0.0049617998 446 4 0.0019944999 447 4 4.8599992e-05 448 4 0.00048649986 450 4 0.0026268 453 4 0.006858997 454 4 0.0070535988 455 4 0.038672999 457 4 0.010118198 458 4 0.00034049992 460 4 0.009388499 463 4 0.17463636 467 4 0.012745097 468 4 0.0001946 469 4 0.0014106999 470 4 0.00038919994 471 4 0.0042807981 478 4 0.00034049992 483 4 0.00014589999 490 4 4.8599992e-05 0 5 0.00028399983 1 5 0.00099389977 2 5 0.023086797 3 5 0.0034359999 5 5 0.043362197 18 5 0.017066598 24 5 0.0023852999 25 5 0.0011642999 62 5 0.010109298 114 5 2.8399998e-05 141 5 2.8399998e-05 171 5 8.5199994e-05 172 5 2.8399998e-05 200 5 8.5199994e-05 201 5 8.5199994e-05 206 5 5.6799996e-05 214 5 0.0090017989 215 5 0.037569199 217 5 0.0083486997 223 5 0.00017039999 234 5 0.025670897 237 5 0.0047706999 242 5 2.8399998e-05 273 5 8.5199994e-05 279 5 0.00017039999 283 5 5.6799996e-05 307 5 0.00011359999 317 5 0.0009370998 318 5 2.8399998e-05 322 5 5.6799996e-05 329 5 0.0070991963 356 5 0.00031239982 357 5 0.00011359999 358 5 5.6799996e-05 384 5 2.8399998e-05 394 5 0.00070989993 397 5 5.6799996e-05 402 5 0.00045439997 438 5 2.8399998e-05 442 5 5.6799996e-05 443 5 0.0051114969 445 5 0.0034075999 446 5 0.0017037999 447 5 5.6799996e-05 448 5 0.0005394998 450 5 0.0026409 453 5 0.0031804999 454 5 0.0026125 455 5 0.0240523 457 5 0.0058497973 458 5 0.00036919978 459 5 2.8399998e-05 460 5 0.0082350969 463 5 0.15800089 464 5 2.8399998e-05 467 5 0.010506898 468 5 0.0002272 469 5 0.0013914998 470 5 0.00039759977 471 5 0.0026976999 478 5 0.00036919978 483 5 0.00014199999 490 5 5.6799996e-05 0 6 0.0077898987 1 6 0.0020032998 2 6 0.028940197 3 6 0.0054982975 6 6 0.023989499 7 6 0.0047560968 13 6 0.0006773998 18 6 0.018692899 24 6 0.0040714964 25 6 0.0020754 62 6 0.0094761997 108 6 7.1999993e-06 114 6 7.1999993e-06 126 6 7.1999993e-06 141 6 0.0035670998 171 6 8.6499989e-05 172 6 2.159999e-05 189 6 0.0001657 194 6 1.44e-05 200 6 9.3699986e-05 201 6 7.2099996e-05 203 6 7.1999993e-06 204 6 7.1999993e-06 206 6 1.44e-05 214 6 0.020516098 215 6 0.054731198 217 6 0.019910797 223 6 0.0001946 234 6 0.031282198 237 6 0.0060171969 241 6 0.00040349993 242 6 1.44e-05 273 6 0.00020179999 279 6 8.6499989e-05 283 6 5.0399991e-05 307 6 0.0001009 317 6 0.00093679992 318 6 1.44e-05 322 6 0.0012683 329 6 0.009490598 356 6 0.00030989992 357 6 0.00010809999 358 6 6.4899999e-05 384 6 2.8799986e-05 387 6 7.1999993e-06 394 6 0.0010016998 397 6 5.0399991e-05 402 6 0.00046839984 422 6 7.1999993e-06 430 6 7.1999993e-06 434 6 7.1999993e-06 438 6 2.159999e-05 442 6 5.0399991e-05 443 6 0.0065648966 444 6 1.44e-05 445 6 0.0085104965 446 6 0.0025221999 447 6 0.00011529999 448 6 0.00069179991 450 6 0.0026590999 453 6 0.0036175 454 6 0.006672997 455 6 0.039324299 456 6 2.159999e-05 457 6 0.0064423978 458 6 0.00036749989 459 6 2.159999e-05 460 6 0.0073791966 463 6 0.1141609 464 6 2.159999e-05 467 6 0.015197899 468 6 0.0002234 469 6 0.0013907999 470 6 0.00039629987 471 6 0.0029400999 473 6 7.1999993e-06 478 6 0.00036029983 483 6 0.00013689999 490 6 3.5999998e-05 3 7 0.0092790984 7 7 0.0563883 18 7 0.0513919 24 7 0.00071379985 62 7 0.0028551 153 7 0.00071379985 154 7 0.0028551 172 7 0.00071379985 193 7 0.0028551 214 7 0.0107066 215 7 0.044967897 217 7 0.015703097 223 7 0.00071379985 234 7 0.030692399 237 7 0.0099928975 241 7 0.024982199 317 7 0.0014275999 329 7 0.014275499 357 7 0.00071379985 394 7 0.0014275999 402 7 0.00071379985 443 7 0.0035688998 445 7 0.0135617 446 7 0.00071379985 448 7 0.00071379985 450 7 0.0028551 453 7 0.00071379985 454 7 0.0064239986 455 7 0.037116297 457 7 0.016416799 460 7 0.011420399 463 7 0.084225595 467 7 0.016416799 469 7 0.0014275999 470 7 0.00071379985 471 7 0.0064239986 478 7 0.00071379985 0 8 0.00013659999 1 8 0.00020489999 2 8 0.00027319998 3 8 0.0088114999 8 8 0.00095629995 18 8 0.019398898 24 8 0.0011612 25 8 0.00013659999 62 8 0.0118852 114 8 6.8299996e-05 130 8 0.0064890981 171 8 0.00013659999 200 8 0.00013659999 201 8 6.8299996e-05 206 8 6.8299996e-05 214 8 0.0077185966 217 8 0.0088114999 223 8 0.00040979986 234 8 0.014275998 237 8 0.0064207986 241 8 0.0020491998 273 8 6.8299996e-05 279 8 6.8299996e-05 283 8 6.8299996e-05 307 8 0.00013659999 317 8 0.00088799978 329 8 0.0085382983 356 8 0.00027319998 357 8 0.00020489999 358 8 0.00013659999 384 8 6.8299996e-05 394 8 0.00054639997 397 8 0.00013659999 402 8 0.00081969984 438 8 6.8299996e-05 442 8 6.8299996e-05 443 8 0.00081969984 445 8 0.0017759998 446 8 0.0004780998 448 8 0.00034149992 450 8 0.0027321998 454 8 0.00034149992 455 8 0.048497297 457 8 0.0061474964 458 8 0.00034149992 460 8 0.011816896 463 8 0.12233609 467 8 0.0062157996 468 8 0.00020489999 469 8 0.0013660998 470 8 0.00040979986 471 8 0.0049179979 478 8 0.00034149992 483 8 0.00013659999 490 8 6.8299996e-05 0 9 4.4799992e-05 1 9 0.0001792 2 9 0.00013439999 3 9 0.00094079995 16 9 0.011827398 18 9 0.073786974 24 9 0.0014783998 25 9 8.9599998e-05 62 9 0.0079297982 114 9 4.4799992e-05 141 9 4.4799992e-05 153 9 0.00062719989 154 9 0.0023743999 171 9 8.9599998e-05 172 9 0.049460098 189 9 4.4799992e-05 193 9 0.0023743999 198 9 8.9599998e-05 200 9 0.00013439999 201 9 8.9599998e-05 206 9 4.4799992e-05 214 9 0.0173827 215 9 0.12580079 217 9 0.0284485 223 9 0.0001792 234 9 0.030823 237 9 0.0035392998 273 9 4.4799992e-05 283 9 4.4799992e-05 307 9 0.00013439999 317 9 0.0010751998 322 9 4.4799992e-05 329 9 0.0050176978 356 9 0.00031359983 357 9 8.9599998e-05 358 9 8.9599998e-05 384 9 4.4799992e-05 394 9 0.00044799992 397 9 4.4799992e-05 402 9 0.00035839994 438 9 4.4799992e-05 442 9 4.4799992e-05 443 9 0.010259397 445 9 0.0056896992 446 9 0.0021952 447 9 4.4799992e-05 448 9 0.00058239978 450 9 0.0026433 453 9 0.00022399999 454 9 0.0046144985 455 9 0.053178597 456 9 0.0053760968 457 9 0.0056448989 458 9 0.00040319981 460 9 0.0054208972 463 9 0.021862797 467 9 0.0072577 468 9 0.00022399999 469 9 0.0014336 470 9 0.00044799992 471 9 0.0022847999 478 9 0.00035839994 483 9 0.00013439999 490 9 4.4799992e-05 3 10 0.0016096998 16 10 0.0072434992 18 10 0.074849069 24 10 0.0016096998 62 10 0.013279699 153 10 0.00080479984 154 10 0.0024144999 172 10 0.00080479984 193 10 0.0024144999 214 10 0.012072399 215 10 0.1191147 217 10 0.016498998 234 10 0.029376298 237 10 0.0040240996 317 10 0.0012071999 329 10 0.0028168999 356 10 0.0004023998 394 10 0.0004023998 443 10 0.0088530965 445 10 0.0040240996 446 10 0.0016096998 448 10 0.00080479984 450 10 0.0028168999 453 10 0.0016096998 455 10 0.047082499 456 10 0.0040240996 457 10 0.0060361996 458 10 0.0004023998 460 10 0.006438598 463 10 0.024144899 467 10 0.0100604 468 10 0.0004023998 469 10 0.0016096998 470 10 0.0004023998 471 10 0.0024144999 478 10 0.0004023998 0 11 0.0001144 1 11 0.0001716 2 11 0.00028599985 3 11 0.0028891 11 11 0.015704099 16 11 0.016247597 18 11 0.048456799 24 11 0.001373 25 11 0.0011441999 62 11 0.0060069971 114 11 2.8599999e-05 141 11 2.8599999e-05 153 11 0.00062929979 154 11 0.0024027999 171 11 8.5799998e-05 172 11 0.00077229994 193 11 0.0024599999 198 11 8.5799998e-05 200 11 8.5799998e-05 201 11 8.5799998e-05 206 11 5.7199999e-05 214 11 0.0097256973 215 11 0.046883497 217 11 0.0125576 223 11 0.0001716 234 11 0.011356197 237 11 0.0036613999 273 11 8.5799998e-05 283 11 5.7199999e-05 307 11 0.0001144 317 11 0.0010583999 322 11 5.7199999e-05 329 11 0.0051202998 356 11 0.00028599985 357 11 0.0001144 358 11 8.5799998e-05 384 11 2.8599999e-05 394 11 0.00042909989 397 11 5.7199999e-05 402 11 0.00037189992 438 11 2.8599999e-05 442 11 5.7199999e-05 443 11 0.0042620972 445 11 0.0073514991 446 11 0.0010869999 447 11 5.7199999e-05 448 11 0.0002288 450 11 0.0026602999 453 11 0.0001144 454 11 0.0031178999 455 11 0.051946599 456 11 0.0074086972 457 11 0.0062930994 458 11 0.00037189992 459 11 2.8599999e-05 460 11 0.0046339966 463 11 0.044938397 464 11 2.8599999e-05 467 11 0.0062358975 468 11 0.0002288 469 11 0.0014016 470 11 0.00040049991 471 11 0.0025743998 478 11 0.00037189992 483 11 0.000143 490 11 5.7199999e-05 3 12 0.0059012994 12 12 0.0362124 18 12 0.046405599 24 12 0.0020118 25 12 0.00013409999 62 12 0.008851897 171 12 0.00013409999 200 12 0.00013409999 201 12 0.00013409999 214 12 0.014216699 215 12 0.10005355 217 12 0.0189109 223 12 0.00026819995 234 12 0.017972097 237 12 0.0046941973 273 12 0.00013409999 279 12 0.00013409999 307 12 0.00013409999 317 12 0.00093879993 329 12 0.0060353987 356 12 0.0004023998 357 12 0.00013409999 394 12 0.00080469996 397 12 0.00013409999 402 12 0.00026819995 442 12 0.00013409999 443 12 0.0068400986 445 12 0.0040235966 446 12 0.0013412 448 12 0.0004023998 450 12 0.0028164999 453 12 0.00093879993 455 12 0.032188799 457 12 0.010058999 458 12 0.0004023998 460 12 0.0115343 463 12 0.11614805 467 12 0.0107296 468 12 0.00026819995 469 12 0.0014752999 470 12 0.0004023998 471 12 0.0033529999 478 12 0.0004023998 483 12 0.00013409999 490 12 0.00013409999 3 13 0.0014612998 13 13 0.010715999 16 13 0.0029225999 18 13 0.049683399 24 13 0.0053579994 25 13 0.00048709987 62 13 0.0014612998 214 13 0.017535299 215 13 0.2513395 217 13 0.014612798 234 13 0.014612798 237 13 0.0043837987 273 13 0.00048709987 317 13 0.0014612998 329 13 0.0043837987 443 13 0.017048199 445 13 0.007306397 446 13 0.0019483999 450 13 0.0024354998 453 13 0.00097419997 455 13 0.069654167 457 13 0.009741798 460 13 0.004870899 463 13 0.07355088 467 13 0.010715999 469 13 0.0014612998 470 13 0.00048709987 471 13 0.0038967 478 13 0.00048709987 0 14 0.0011772998 1 14 0.0014295999 2 14 0.011142597 3 14 0.0033006999 14 14 0.056007598 18 14 0.021213099 24 14 0.00058869994 25 14 0.00077789999 62 14 0.0082623996 114 14 2.1e-05 126 14 2.1e-05 141 14 4.2e-05 171 14 0.0001051 172 14 2.1e-05 194 14 2.1e-05 200 14 8.4099986e-05 201 14 8.4099986e-05 206 14 4.2e-05 214 14 0.015767898 215 14 0.010911398 217 14 0.026931599 223 14 0.00016819999 234 14 0.022348396 237 14 0.0057184994 242 14 2.1e-05 273 14 2.1e-05 279 14 0.00014719999 283 14 4.2e-05 307 14 0.0001051 317 14 0.0009670998 318 14 2.1e-05 322 14 4.2e-05 329 14 0.0089350976 356 14 0.00031539984 357 14 0.0001261 358 14 0.0001051 384 14 4.2e-05 394 14 0.0009039999 397 14 6.3099986e-05 402 14 0.00054659997 438 14 4.2e-05 442 14 6.3099986e-05 443 14 0.0023546999 444 14 2.1e-05 445 14 0.0030063998 446 14 0.0012403999 447 14 4.2e-05 448 14 0.00046249991 450 14 0.0026910999 453 14 0.00031539984 454 14 0.00086199981 455 14 0.020182896 457 14 0.0066434965 458 14 0.00037839985 459 14 2.1e-05 460 14 0.0073162988 463 14 0.10947114 464 14 2.1e-05 467 14 0.013875697 468 14 0.0002102 469 14 0.0013875999 470 14 0.0003994999 471 14 0.0029222998 473 14 2.1e-05 478 14 0.00035739993 483 14 0.00014719999 490 14 4.2e-05 1 16 0.00035179988 3 16 0.0021813998 16 16 0.054183397 18 16 0.013932899 22 16 0.00056289998 24 16 0.0019703 25 16 7.0399998e-05 60 16 0.00014069999 62 16 0.0052775964 101 16 7.0399998e-05 114 16 7.0399998e-05 141 16 0.00091479998 143 16 0.0015480998 171 16 7.0399998e-05 198 16 0.0033072999 200 16 7.0399998e-05 201 16 7.0399998e-05 206 16 7.0399998e-05 214 16 0.0030961998 215 16 0.00014069999 217 16 0.0026035998 223 16 0.00021109999 234 16 0.016114298 237 16 0.0038701999 241 16 0.010766298 263 16 0.0040109977 273 16 7.0399998e-05 279 16 7.0399998e-05 283 16 7.0399998e-05 307 16 7.0399998e-05 317 16 0.00077399984 328 16 7.0399998e-05 329 16 0.005840499 356 16 0.00028149993 357 16 0.00014069999 394 16 0.00056289998 397 16 7.0399998e-05 402 16 0.00028149993 442 16 7.0399998e-05 443 16 0.0012665999 444 16 7.0399998e-05 445 16 0.0052775964 446 16 0.00063329982 447 16 0.00014069999 448 16 0.00028149993 450 16 0.0023924999 452 16 0.0069663972 453 16 0.0074589998 454 16 0.00049259979 455 16 0.053550098 456 16 0.0247695 457 16 0.0041516982 458 16 0.00035179988 460 16 0.0045738965 463 16 0.0157624 467 16 0.0066849999 468 16 0.012806997 469 16 0.0013369999 470 16 0.00042219996 471 16 0.0028851 478 16 0.00028149993 483 16 0.00014069999 490 16 7.0399998e-05 3 17 0.0019595998 6 17 0.0056116991 12 17 0.00017809999 16 17 0.00093529979 17 17 0.0040973984 18 17 0.023560297 62 17 0.0004453999 98 17 0.00031179981 101 17 0.010822598 102 17 0.0042755976 104 17 0.0001336 107 17 0.0004453999 108 17 4.449999e-05 111 17 8.9099995e-05 114 17 0.00017809999 118 17 0.0001336 123 17 0.010599896 126 17 4.449999e-05 139 17 0.0083284974 141 17 0.011401597 143 17 0.0035184999 154 17 0.010020897 194 17 4.449999e-05 200 17 4.449999e-05 206 17 8.9099995e-05 207 17 0.001737 214 17 0.0089965984 215 17 0.00071259984 217 17 0.00075709983 223 17 0.0016923998 228 17 0.0001336 233 17 0.0037856998 234 17 0.023248598 237 17 0.0018259999 240 17 4.449999e-05 251 17 0.00062349997 252 17 0.0001336 300 17 0.017414197 317 17 0.0013806999 319 17 0.004587397 322 17 0.0084620975 326 17 0.0042755976 328 17 0.0079721995 329 17 0.00031179981 350 17 0.0076603964 356 17 8.9099995e-05 384 17 0.0011133999 387 17 4.449999e-05 394 17 8.9099995e-05 397 17 4.449999e-05 402 17 8.9099995e-05 404 17 4.449999e-05 406 17 0.020353597 407 17 0.0082393996 414 17 0.0036074999 422 17 4.449999e-05 430 17 0.0031621999 443 17 0.0021378 444 17 0.0016033 445 17 0.011134397 446 17 0.00080169993 447 17 0.0016033 448 17 0.0004453999 450 17 0.0021378 452 17 0.0003562998 453 17 0.00031179981 454 17 4.449999e-05 455 17 0.031443499 456 17 0.00066809985 457 17 0.0050326996 458 17 4.449999e-05 459 17 8.9099995e-05 460 17 0.0068141967 463 17 0.010688998 464 17 0.0022713998 465 17 0.00062349997 467 17 0.017235998 468 17 0.0019150998 469 17 0.0035629999 470 17 0.0019150998 471 17 0.0096200965 473 17 4.449999e-05 476 17 0.00026719994 477 17 0.0004453999 478 17 0.0001336 483 17 0.00026719994 489 17 0.00017809999 490 17 0.00026719994 491 17 0.0011133999 0 18 0.0003849999 1 18 0.045257699 2 18 0.019127999 3 18 0.00055339979 4 18 9.619999e-05 5 18 0.00076989993 6 18 0.016721997 7 18 0.0018044999 9 18 2.4099994e-05 11 18 9.619999e-05 12 18 9.619999e-05 13 18 2.4099994e-05 14 18 0.00052929996 16 18 0.0096481964 17 18 0.0025262998 18 18 0.030460499 24 18 0.00045709987 25 18 9.619999e-05 60 18 0.013112899 62 18 0.00096239988 79 18 2.4099994e-05 82 18 2.4099994e-05 83 18 2.4099994e-05 84 18 2.4099994e-05 98 18 0.00055339979 101 18 0.0049564987 102 18 0.0056061 104 18 0.00057749986 107 18 0.0001203 108 18 4.8099988e-05 111 18 2.4099994e-05 113 18 7.2199997e-05 114 18 0.0001203 117 18 9.619999e-05 118 18 0.00079399999 126 18 7.2199997e-05 127 18 2.4099994e-05 130 18 2.4099994e-05 141 18 9.619999e-05 143 18 0.010249697 153 18 0.0031518999 154 18 4.8099988e-05 172 18 0.0043789968 192 18 0.00021649999 193 18 4.8099988e-05 194 18 0.00048119994 195 18 4.8099988e-05 196 18 7.2199997e-05 197 18 0.0001203 198 18 0.027837899 201 18 7.2199997e-05 203 18 0.0003849999 204 18 0.00055339979 206 18 0.00093839993 207 18 0.00031279982 209 18 9.619999e-05 214 18 0.0013714 215 18 0.017564099 217 18 0.014508396 219 18 2.4099994e-05 223 18 0.0001203 228 18 4.8099988e-05 229 18 2.4099994e-05 234 18 0.0194408 237 18 0.0015399 240 18 2.4099994e-05 241 18 0.0001203 248 18 2.4099994e-05 250 18 2.4099994e-05 251 18 0.00079399999 252 18 0.00033679977 263 18 2.4099994e-05 267 18 0.0022856998 279 18 2.4099994e-05 315 18 2.4099994e-05 317 18 7.2199997e-05 322 18 0.0037774998 326 18 0.0036090999 328 18 0.0042827986 329 18 0.0027188 330 18 0.0027669999 356 18 4.8099988e-05 363 18 2.4099994e-05 387 18 4.8099988e-05 394 18 0.00014439999 397 18 7.2199997e-05 398 18 0.0019007998 402 18 0.0038977999 404 18 0.0013714 412 18 0.00079399999 419 18 2.4099994e-05 422 18 0.00043309992 423 18 2.4099994e-05 425 18 2.4099994e-05 430 18 4.8099988e-05 431 18 7.2199997e-05 432 18 7.2199997e-05 433 18 0.0002406 434 18 0.00028869999 438 18 0.00055339979 443 18 0.0034647 444 18 0.0045714974 445 18 0.0066406988 446 18 0.00089019979 447 18 0.017179199 448 18 0.0003849999 449 18 2.4099994e-05 450 18 0.0056541972 452 18 0.0075308979 453 18 0.0026225999 454 18 0.00033679977 455 18 0.031446997 456 18 0.0060872994 457 18 0.0045233965 458 18 0.0041383989 459 18 7.2199997e-05 460 18 0.0058706999 463 18 0.035681598 464 18 0.0041383989 465 18 0.0012270999 467 18 0.047423098 468 18 0.0051007979 469 18 0.0114046 470 18 0.0067849979 471 18 0.016000196 473 18 0.00014439999 474 18 4.8099988e-05 476 18 0.00098649994 477 18 7.2199997e-05 478 18 0.0027909998 483 18 0.0013714 489 18 0.0002406 490 18 0.00052929996 491 18 9.619999e-05 19 19 0.018687297 20 19 0.0071814992 21 19 0.0027798999 22 19 0.0033976999 24 19 0.0048648976 60 19 0.025250997 114 19 7.7199991e-05 126 19 7.7199991e-05 159 19 0.00054049981 160 19 0.0015443999 206 19 0.0001544 214 19 0.0068725981 215 19 0.00092659984 220 19 0.010965299 234 19 0.010115799 237 19 0.010038599 242 19 0.0026254999 252 19 0.00030889991 254 19 0.00030889991 267 19 0.0012355 272 19 0.00023169999 277 19 0.010656398 282 19 0.014517397 283 19 0.0108108 294 19 7.7199991e-05 295 19 0.0041699 312 19 0.0016215998 317 19 0.00061779981 322 19 0.011196896 328 19 0.0035520999 331 19 0.009034697 332 19 0.009034697 335 19 0.0020848999 336 19 7.7199991e-05 340 19 0.00023169999 343 19 7.7199991e-05 350 19 0.00092659984 352 19 0.0019304999 356 19 0.00030889991 372 19 0.0020076998 374 19 0.00023169999 384 19 0.0003860998 398 19 0.0001544 402 19 0.018455599 408 19 0.0016215998 442 19 0.0020848999 443 19 0.0056370981 444 19 0.0035520999 445 19 0.0078763999 446 19 0.00069499994 447 19 0.0030887998 448 19 7.7199991e-05 450 19 0.00077219983 452 19 0.038146697 453 19 0.0203861 454 19 0.0064864978 455 19 0.023629297 456 19 0.00030889991 457 19 0.0030115999 459 19 0.0014672 460 19 0.0010038998 463 19 0.19752896 464 19 0.00023169999 465 19 0.00030889991 467 19 0.019845597 468 19 0.0097296983 469 19 0.0013126999 470 19 0.0012355 471 19 0.0019304999 473 19 7.7199991e-05 477 19 0.0003860998 478 19 0.00069499994 483 19 0.0013899999 489 19 0.0029344 490 19 0.0001544 491 19 0.0094207972 19 20 6.4199994e-05 20 20 0.13482279 21 20 0.0053928979 22 20 0.0001926 24 20 0.00038519991 60 20 0.0049434975 114 20 6.4199994e-05 126 20 6.4199994e-05 130 20 0.00038519991 143 20 6.4199994e-05 159 20 0.0026322999 160 20 6.4199994e-05 194 20 6.4199994e-05 206 20 0.00012839999 214 20 0.026001498 215 20 0.0015407999 220 20 0.006805297 234 20 0.010336399 237 20 0.024011299 242 20 0.00070619979 252 20 0.00038519991 254 20 0.00077039981 265 20 0.0001926 267 20 0.0069978982 277 20 0.0044298992 282 20 0.010464799 283 20 0.0079609975 284 20 6.4199994e-05 294 20 0.001926 312 20 0.0030174998 317 20 0.00051359995 322 20 0.0082177967 328 20 6.4199994e-05 331 20 0.0093733966 332 20 0.0090523995 335 20 0.001284 336 20 0.00089879986 350 20 6.4199994e-05 356 20 0.00038519991 358 20 0.00012839999 372 20 0.00070619979 384 20 0.00025679986 386 20 0.00025679986 398 20 0.00044939993 402 20 0.00077039981 408 20 0.0017976 413 20 0.00032099988 422 20 6.4199994e-05 442 20 6.4199994e-05 443 20 0.0041731 444 20 0.00012839999 445 20 0.0041731 446 20 0.00096299988 447 20 0.00038519991 448 20 0.0001926 450 20 0.00077039981 452 20 0.027413998 453 20 0.0050076991 454 20 0.0012198 455 20 0.032999497 456 20 0.00051359995 457 20 0.0059706978 458 20 6.4199994e-05 459 20 0.0030174998 460 20 0.00083459984 463 20 0.010528997 464 20 6.4199994e-05 465 20 0.00044939993 467 20 0.014766298 468 20 0.00083459984 469 20 0.0013481998 470 20 0.0015407999 471 20 0.0023753999 473 20 6.4199994e-05 477 20 0.00032099988 478 20 0.00077039981 483 20 0.00070619979 489 20 0.00070619979 490 20 0.0001926 491 20 0.022984099 20 21 0.0012299998 21 21 0.045971699 22 21 0.00015379999 24 21 0.00015379999 60 21 0.013837598 114 21 0.00015379999 159 21 0.0053812973 160 21 0.0039974973 206 21 0.0003074999 214 21 0.021678999 215 21 0.0003074999 220 21 0.0087637976 223 21 0.0015374999 224 21 0.0003074999 234 21 0.012915097 237 21 0.0063037984 242 21 0.0007687998 252 21 0.00061499979 254 21 0.00061499979 272 21 0.0038437999 277 21 0.017681397 282 21 0.00015379999 295 21 0.0003074999 305 21 0.00015379999 312 21 0.0044588 322 21 0.0072262995 328 21 0.010762598 331 21 0.014145099 332 21 0.0133764 335 21 0.0018449998 336 21 0.0010762999 341 21 0.0010762999 350 21 0.00015379999 352 21 0.0003074999 356 21 0.0004612999 358 21 0.0130689 372 21 0.0026137999 384 21 0.0003074999 398 21 0.0018449998 402 21 0.0015374999 442 21 0.0063037984 443 21 0.0030749999 444 21 0.0070725977 445 21 0.0047662966 446 21 0.0004612999 447 21 0.0044588 450 21 0.0007687998 452 21 0.029520299 453 21 0.0035362998 454 21 0.0024599999 455 21 0.019372698 456 21 0.00061499979 457 21 0.011377599 458 21 0.0041512996 459 21 0.0069187991 460 21 0.0052275993 463 21 0.0435117 464 21 0.0027674998 465 21 0.00061499979 467 21 0.023216497 468 21 0.0010762999 469 21 0.0018449998 470 21 0.0012299998 471 21 0.0033824998 477 21 0.0007687998 478 21 0.0010762999 483 21 0.0013837998 489 21 0.00061499979 490 21 0.00015379999 491 21 0.0047662966 19 22 0.00029419991 22 22 0.12051398 60 22 0.0083099976 82 22 1.8399995e-05 108 22 1.8399995e-05 114 22 1.8399995e-05 126 22 1.8399995e-05 130 22 0.0020774999 150 22 0.00071699987 159 22 0.0068943985 189 22 1.8399995e-05 190 22 9.1899987e-05 192 22 1.8399995e-05 193 22 0.0022796998 194 22 1.8399995e-05 200 22 1.8399995e-05 203 22 1.8399995e-05 204 22 3.6799989e-05 206 22 5.5199998e-05 207 22 1.8399995e-05 214 22 0.00051479996 215 22 0.0025738999 220 22 0.0070965998 223 22 3.6799989e-05 234 22 0.014395498 237 22 0.0050558969 242 22 0.0036401998 252 22 3.6799989e-05 264 22 0.00049639982 265 22 0.0012502 267 22 0.00012869999 272 22 5.5199998e-05 273 22 0.0029048 277 22 0.0097991973 282 22 1.8399995e-05 284 22 1.8399995e-05 295 22 0.0026841999 305 22 1.8399995e-05 312 22 0.012299597 317 22 0.00029419991 322 22 0.0033276998 328 22 0.0015626999 331 22 0.031125899 332 22 0.016270798 335 22 0.0027760998 340 22 0.00018389999 352 22 0.00068019982 356 22 0.00034929998 358 22 0.00064349989 372 22 0.00049639982 374 22 5.5199998e-05 384 22 0.0001103 385 22 0.0020223998 387 22 1.8399995e-05 394 22 3.6799989e-05 397 22 3.6799989e-05 402 22 0.00022059999 417 22 0.00012869999 422 22 1.8399995e-05 430 22 1.8399995e-05 433 22 1.8399995e-05 434 22 1.8399995e-05 442 22 0.00068019982 443 22 0.0030334999 444 22 0.00022059999 445 22 0.0035299 446 22 0.00047799991 447 22 0.0022429998 448 22 0.00018389999 450 22 0.00093759992 452 22 0.019524898 453 22 0.0001103 454 22 0.00055159978 455 22 0.030004397 456 22 0.00064349989 457 22 0.0031989999 458 22 9.1899987e-05 459 22 0.00080889999 460 22 0.0025370999 463 22 0.041090596 464 22 9.1899987e-05 465 22 0.00064349989 467 22 0.022742298 468 22 0.0010478999 469 22 0.0025922998 470 22 0.0013052998 471 22 0.0035850999 473 22 3.6799989e-05 477 22 0.00027579977 478 22 0.0009192999 483 22 0.0005698998 489 22 0.00027579977 490 22 0.0001103 491 22 0.0050926991 9 23 1.7899991e-05 16 23 5.9999993e-06 21 23 2.3899993e-05 22 23 5.9999993e-06 23 23 0.033729199 24 23 3.5899997e-05 25 23 5.9999993e-06 60 23 0.0041899979 66 23 4.1799998e-05 74 23 0.036938999 79 23 5.9999993e-06 82 23 2.3899993e-05 83 23 2.3899993e-05 84 23 1.7899991e-05 108 23 2.9899995e-05 113 23 4.1799998e-05 114 23 9.5599986e-05 126 23 4.7799986e-05 127 23 5.9999993e-06 150 23 0.0001255 189 23 4.1799998e-05 190 23 2.3899993e-05 192 23 1.2e-05 194 23 1.7899991e-05 196 23 5.9999993e-06 197 23 1.2e-05 200 23 2.3899993e-05 201 23 1.2e-05 203 23 1.7899991e-05 204 23 1.7899991e-05 206 23 3.5899997e-05 207 23 1.2e-05 209 23 5.9999993e-06 214 23 0.0043453984 215 23 5.9999993e-06 223 23 0.0021098999 233 23 0.00019129999 234 23 0.0036699998 237 23 0.0002331 241 23 1.2e-05 242 23 5.9999993e-06 248 23 1.7899991e-05 250 23 1.2e-05 251 23 5.9999993e-06 252 23 0.0002331 254 23 0.0001255 263 23 5.9999993e-06 272 23 8.3699997e-05 277 23 0.006281998 281 23 0.00028689997 287 23 5.9999993e-06 307 23 0.00093839993 311 23 2.3899993e-05 317 23 5.9999993e-06 319 23 0.0001853 324 23 0.0032754999 326 23 0.0010758999 328 23 0.0025462999 331 23 0.00053789979 333 23 0.0060369968 340 23 0.00016739999 349 23 5.9999993e-06 350 23 0.0024924998 351 23 0.0001375 354 23 0.0010519999 356 23 0.00039449986 358 23 0.0041301996 369 23 0.00028089993 370 23 0.0004482998 372 23 0.0051223971 374 23 0.00094439997 380 23 5.9999993e-06 385 23 0.0002331 386 23 0.00010159999 387 23 3.5899997e-05 390 23 0.00016139999 394 23 1.7899991e-05 397 23 1.7899991e-05 402 23 0.00010759999 404 23 0.0001853 414 23 0.00047819992 419 23 5.9999993e-06 422 23 2.9899995e-05 423 23 1.2e-05 425 23 5.9999993e-06 430 23 2.3899993e-05 431 23 5.9999993e-06 432 23 5.9999993e-06 433 23 1.2e-05 434 23 1.2e-05 442 23 0.0002271 443 23 0.00059169997 444 23 0.0005857998 445 23 0.0013149998 446 23 0.0001733 447 23 0.0033053998 448 23 7.7699995e-05 449 23 1.2e-05 450 23 0.0026000999 452 23 0.0088342987 453 23 0.0029348 454 23 0.0021756999 455 23 0.0046322979 456 23 0.00054389983 457 23 0.0033710999 458 23 8.9699999e-05 459 23 0.00082489988 460 23 0.0020740998 463 23 0.15183824 464 23 0.00059769978 465 23 0.00030479999 467 23 0.014524497 468 23 0.00026299991 469 23 0.007280197 470 23 0.0056543984 471 23 0.0014344999 473 23 0.00010159999 477 23 1.7899991e-05 478 23 0.00035859994 483 23 0.00055589993 489 23 0.00039449986 490 23 0.00035859994 491 23 5.3799988e-05 22 24 0.0014771998 24 24 0.025145996 25 24 3.4399985e-05 60 24 0.0065956973 108 24 3.4399985e-05 114 24 6.8699999e-05 126 24 3.4399985e-05 150 24 0.00072139991 160 24 6.8699999e-05 169 24 0.0002061 171 24 3.4399985e-05 190 24 0.0001374 191 24 3.4399985e-05 192 24 0.0001374 193 24 0.0040535964 194 24 0.0001031 197 24 3.4399985e-05 198 24 0.0001374 200 24 6.8699999e-05 203 24 6.8699999e-05 204 24 6.8699999e-05 206 24 0.0001374 207 24 3.4399985e-05 214 24 0.0023015998 215 24 0.0015115 218 24 3.4399985e-05 220 24 0.009275198 223 24 0.0002748 231 24 0.0001718 233 24 6.8699999e-05 234 24 0.030951597 235 24 0.0001031 237 24 0.0067673996 240 24 0.00034349994 241 24 0.0002061 242 24 0.0021986 252 24 0.0001374 254 24 0.0083132982 266 24 0.0002061 267 24 3.4399985e-05 269 24 3.4399985e-05 270 24 0.0001031 272 24 0.00061829994 273 24 0.00037789997 276 24 3.4399985e-05 277 24 0.011954699 282 24 0.0089659989 283 24 0.00079009985 289 24 0.00079009985 292 24 0.00030919979 295 24 0.0015801999 297 24 0.0009961999 300 24 3.4399985e-05 301 24 3.4399985e-05 305 24 0.0012367 307 24 0.00037789997 312 24 0.0018206998 317 24 0.0002748 322 24 0.0071452968 326 24 3.4399985e-05 328 24 0.011130199 331 24 0.020336699 332 24 0.015218098 335 24 0.0041909963 336 24 0.0029199999 337 24 0.0014771998 341 24 6.8699999e-05 350 24 0.0002405 351 24 0.0018549999 352 24 0.00034349994 354 24 0.0020611 356 24 0.00048089982 358 24 0.00085879979 371 24 0.0001031 372 24 0.0012023 373 24 3.4399985e-05 374 24 0.0002061 384 24 0.0001031 386 24 0.00030919979 387 24 3.4399985e-05 394 24 0.0001031 397 24 6.8699999e-05 402 24 0.0059772991 422 24 0.0001031 433 24 3.4399985e-05 434 24 3.4399985e-05 438 24 3.4399985e-05 442 24 0.0012023 443 24 0.0036413998 444 24 0.0017519998 445 24 0.009275198 446 24 0.0012709999 447 24 0.0022328999 448 24 0.00044659991 450 24 0.0012709999 452 24 0.025523897 453 24 0.0073857978 454 24 0.0037101 455 24 0.0282721 456 24 0.0018549999 457 24 0.0065269992 458 24 0.0002748 459 24 0.0027137999 460 24 0.004637599 463 24 0.0366541 464 24 0.0012023 465 24 0.00085879979 467 24 0.0297492 468 24 0.0016832999 469 24 0.0038130998 470 24 0.0011679998 471 24 0.0098247975 473 24 3.4399985e-05 477 24 3.4399985e-05 478 24 0.0012367 483 24 0.00054959999 489 24 0.00092749996 490 24 0.0001031 491 24 0.0042253993 22 25 0.0014227999 24 25 0.017073199 25 25 0.032520298 60 25 0.011788599 104 25 0.00020329999 114 25 0.00020329999 126 25 0.00020329999 130 25 0.00060979999 160 25 0.0008129999 190 25 0.00020329999 193 25 0.0028454999 194 25 0.00020329999 206 25 0.00020329999 214 25 0.015243899 218 25 0.00060979999 220 25 0.0044714995 223 25 0.0012194999 231 25 0.00020329999 234 25 0.016869899 237 25 0.0028454999 240 25 0.00020329999 242 25 0.00040649995 252 25 0.00020329999 257 25 0.00020329999 272 25 0.00020329999 277 25 0.017886199 282 25 0.0028454999 283 25 0.0024389999 292 25 0.00060979999 295 25 0.00060979999 297 25 0.00020329999 305 25 0.0020325 308 25 0.00020329999 312 25 0.0071137995 322 25 0.0022357998 328 25 0.0079267994 331 25 0.013821099 332 25 0.0097560994 333 25 0.00020329999 335 25 0.0008129999 336 25 0.0020325 337 25 0.0012194999 350 25 0.0008129999 351 25 0.00060979999 352 25 0.0008129999 354 25 0.0010162999 356 25 0.0010162999 371 25 0.00040649995 372 25 0.0016259998 374 25 0.00060979999 384 25 0.00020329999 394 25 0.00020329999 402 25 0.0020325 408 25 0.00060979999 442 25 0.0054877996 443 25 0.0065040998 444 25 0.0044714995 445 25 0.0032519998 446 25 0.00060979999 447 25 0.0038617998 448 25 0.00020329999 450 25 0.0014227999 452 25 0.038008098 453 25 0.041260198 454 25 0.0091462992 455 25 0.014837399 456 25 0.0014227999 457 25 0.015447199 458 25 0.00020329999 459 25 0.0014227999 460 25 0.0018292998 463 25 0.045934997 464 25 0.00060979999 465 25 0.00040649995 467 25 0.034349598 468 25 0.0010162999 469 25 0.0022357998 470 25 0.0022357998 471 25 0.0063007995 473 25 0.00020329999 478 25 0.0010162999 483 25 0.0034552999 489 25 0.0014227999 490 25 0.00020329999 491 25 0.0052846 7 26 0.00024609989 9 26 2.0499996e-05 16 26 0.0015481999 17 26 3.3999995e-06 18 26 0.0011995998 24 26 0.0024024998 60 26 0.00048529985 79 26 1.7099999e-05 80 26 2.729999e-05 82 26 3.7599995e-05 83 26 2.729999e-05 84 26 2.729999e-05 108 26 3.7599995e-05 113 26 4.4399989e-05 114 26 0.00015379999 126 26 7.1799994e-05 127 26 1.0299999e-05 134 26 0.010697 135 26 0.00015379999 139 26 0.0018010999 141 26 2.729999e-05 142 26 0.0001162 150 26 0.00012299999 154 26 2.3899993e-05 160 26 0.051157497 161 26 0.0011312 162 26 0.0035849998 163 26 0.038553499 164 26 0.0095007978 165 26 0.024753399 167 26 0.023434199 168 26 2.3899993e-05 170 26 0.00059119985 171 26 0.0032124999 177 26 0.0012063999 182 26 0.0015207999 189 26 3.7599995e-05 191 26 0.0027818999 192 26 0.00058439979 194 26 4.0999992e-05 195 26 3.0799987e-05 196 26 6.7999999e-06 197 26 0.001432 198 26 4.4399989e-05 201 26 3.0799987e-05 203 26 4.7799986e-05 204 26 7.1799994e-05 206 26 0.0001504 207 26 3.7599995e-05 209 26 1.37e-05 214 26 0.0002153 215 26 0.00011959999 218 26 1.7099999e-05 219 26 0.00026999996 223 26 0.00023919999 233 26 0.0032295999 234 26 0.00068689999 235 26 0.00024949992 236 26 0.0061754994 237 26 0.0013601999 240 26 0.00090909982 241 26 0.0094802976 242 26 0.00021869999 248 26 3.0799987e-05 250 26 1.37e-05 251 26 6.7999999e-06 252 26 0.0011586 254 26 0.0029424999 255 26 0.0065069981 256 26 0.0031817998 257 26 0.00080649997 258 26 0.0017497998 259 26 0.0032090999 263 26 3.3999995e-06 264 26 0.010167297 265 26 0.0019172998 266 26 0.0312468 267 26 9.229999e-05 268 26 0.0056013986 269 26 0.0021940998 270 26 4.7799986e-05 271 26 0.0014079998 272 26 8.8899993e-05 273 26 0.00046139979 274 26 0.0028126999 277 26 0.0026348999 279 26 0.0020915 282 26 0.0013020998 285 26 3.0799987e-05 292 26 0.0030109 293 26 4.7799986e-05 295 26 0.0049144998 302 26 0.0050374977 303 26 0.004220698 304 26 0.0028331999 305 26 2.0499996e-05 306 26 0.015512299 307 26 0.0004784998 308 26 0.01055 309 26 0.00057069981 310 26 0.00022209999 311 26 0.0017497998 312 26 0.0001299 317 26 0.0024913999 318 26 7.5199991e-05 319 26 0.0058884993 322 26 0.0011687998 323 26 6.7999999e-06 324 26 0.00042379997 326 26 3.3999995e-06 331 26 0.0014524998 341 26 0.00020509999 350 26 0.0020949999 352 26 0.00039639999 356 26 4.0999992e-05 358 26 0.00016059999 363 26 3.3999995e-06 366 26 0.012026399 368 26 0.00056389999 371 26 0.0032398999 374 26 6.7999999e-06 380 26 0.0010799998 383 26 0.0015207999 384 26 3.7599995e-05 385 26 0.0040019974 386 26 0.0019479999 387 26 6.8399997e-05 390 26 0.00065279985 394 26 0.0001333 397 26 3.3999995e-06 398 26 0.00053659989 402 26 0.00028019981 412 26 6.7999999e-06 414 26 1.0299999e-05 415 26 0.0013840999 419 26 1.0299999e-05 422 26 0.0001948 423 26 2.3899993e-05 425 26 1.0299999e-05 430 26 3.4199998e-05 431 26 2.3899993e-05 432 26 1.0299999e-05 433 26 2.729999e-05 434 26 3.0799987e-05 438 26 0.00026659993 439 26 0.0014729998 441 26 6.7999999e-06 442 26 3.3999995e-06 443 26 0.010608099 444 26 0.00020509999 445 26 0.0136429 446 26 0.0016814 447 26 0.0010115998 448 26 3.3999995e-06 449 26 1.37e-05 450 26 0.0049417987 452 26 0.00074499985 453 26 8.8899993e-05 454 26 0.0014660999 455 26 0.046813797 456 26 0.059373397 457 26 0.0051946975 458 26 0.00037929998 459 26 2.729999e-05 460 26 0.0038002999 463 26 0.010515798 464 26 0.00026319991 465 26 0.00015719999 467 26 0.012781698 468 26 0.00077919988 469 26 0.033734798 470 26 0.0076621994 471 26 0.0042445995 473 26 0.00017429999 477 26 5.1299998e-05 478 26 0.00086119981 483 26 0.00054679997 489 26 9.9099998e-05 490 26 0.00061519979 491 26 0.00019139999 7 27 0.00040699984 16 27 0.0021831999 18 27 0.0016281998 24 27 0.0034043998 60 27 0.00014799999 80 27 7.3999996e-05 108 27 3.6999991e-05 113 27 3.6999991e-05 114 27 7.3999996e-05 126 27 3.6999991e-05 134 27 0.011175297 135 27 0.00014799999 139 27 0.0010730999 141 27 3.6999991e-05 142 27 7.3999996e-05 150 27 3.6999991e-05 154 27 7.3999996e-05 160 27 0.033488799 161 27 0.00070309988 162 27 0.0018871999 163 27 0.026161898 164 27 0.0076228976 165 27 0.021869399 167 27 0.0045144968 168 27 0.00048109982 170 27 0.00055509992 171 27 0.0026642999 177 27 0.00099909981 182 27 0.0012210999 191 27 0.0023312999 192 27 0.00055509992 195 27 0.00040699984 197 27 0.00096209999 198 27 3.6999991e-05 206 27 7.3999996e-05 214 27 0.00029599993 215 27 0.00011099999 219 27 0.0017392 223 27 0.00036999979 233 27 0.0055875964 234 27 0.0017392 235 27 0.0014062 236 27 0.0037743999 237 27 0.0010360999 240 27 0.00092509994 241 27 0.0099540986 242 27 0.000185 252 27 0.00085109985 254 27 0.0026642999 255 27 0.0043294989 256 27 0.0021092 257 27 0.00059209997 258 27 0.0012951 259 27 0.0022201999 262 27 3.6999991e-05 264 27 0.0068827979 265 27 0.0042554997 266 27 0.025939897 267 27 0.00025899988 268 27 0.0059946999 269 27 0.0013320998 270 27 3.6999991e-05 271 27 0.0023683 272 27 7.3999996e-05 273 27 0.00029599993 274 27 0.0027382998 277 27 0.0046254992 279 27 0.0016651999 282 27 0.0019611998 285 27 0.00014799999 292 27 0.0025902998 293 27 0.00011099999 295 27 0.0052175969 302 27 0.0028122999 303 27 0.0038113999 304 27 0.0027013 305 27 0.00025899988 306 27 0.016577899 307 27 0.00048109982 308 27 0.0099910982 309 27 0.0017021999 310 27 0.00022199999 311 27 0.0028863 312 27 0.00025899988 317 27 0.00092509994 318 27 3.6999991e-05 319 27 0.0049955994 322 27 0.0017761998 324 27 0.00044399989 331 27 0.0010730999 334 27 0.00025899988 341 27 7.3999996e-05 350 27 0.0030713 352 27 0.0010730999 356 27 7.3999996e-05 358 27 3.6999991e-05 366 27 0.013173498 368 27 0.0011470998 371 27 0.0042554997 380 27 0.0012951 381 27 0.0012210999 383 27 0.0017761998 384 27 0.00011099999 385 27 0.0032933999 386 27 0.0027382998 387 27 3.6999991e-05 390 27 0.00066609983 394 27 7.3999996e-05 398 27 0.00040699984 402 27 0.00025899988 415 27 0.0012951 422 27 3.6999991e-05 430 27 3.6999991e-05 438 27 0.00025899988 439 27 0.00096209999 441 27 3.6999991e-05 443 27 0.0071787983 444 27 7.3999996e-05 445 27 0.013617497 446 27 0.00085109985 447 27 0.00036999979 450 27 0.0016651999 452 27 0.00025899988 453 27 3.6999991e-05 454 27 0.00048109982 455 27 0.037374198 456 27 0.045145098 457 27 0.0017392 458 27 0.00022199999 460 27 0.0022942999 463 27 0.0035523998 464 27 7.3999996e-05 465 27 3.6999991e-05 467 27 0.008547999 468 27 0.00025899988 469 27 0.065201283 470 27 0.0025902998 471 27 0.0027752998 473 27 7.3999996e-05 478 27 0.00029599993 483 27 0.000185 489 27 3.6999991e-05 490 27 0.00022199999 491 27 0.00014799999 7 28 0.00049079978 9 28 8.2999995e-06 16 28 0.0028199998 18 28 0.0021046 24 28 0.0045419969 60 28 0.00010809999 80 28 7.4899988e-05 82 28 8.2999995e-06 83 28 8.2999995e-06 84 28 8.2999995e-06 108 28 1.6599995e-05 113 28 1.6599995e-05 114 28 3.3299992e-05 126 28 2.4999987e-05 127 28 8.2999995e-06 134 28 0.012502898 135 28 0.00019129999 139 28 0.00054899999 141 28 2.4999987e-05 142 28 4.1599997e-05 150 28 3.3299992e-05 154 28 9.1499998e-05 159 28 8.2999995e-06 160 28 0.0223605 161 28 0.00031609996 162 28 0.00069879997 163 28 0.018567197 164 28 0.013417996 165 28 0.021229196 167 28 0.0083601996 168 28 0.0009066998 170 28 0.00054069981 171 28 0.0023873998 177 28 0.0017386 182 28 0.0021627999 183 28 1.6599995e-05 189 28 8.2999995e-06 191 28 0.0021378999 192 28 0.00049909996 194 28 8.2999995e-06 195 28 0.0007487 197 28 0.00069879997 198 28 3.3299992e-05 201 28 8.2999995e-06 203 28 8.2999995e-06 204 28 1.6599995e-05 206 28 4.1599997e-05 207 28 8.2999995e-06 214 28 0.00029119989 215 28 0.00010809999 218 28 2.4999987e-05 219 28 0.0021545 220 28 8.2999995e-06 223 28 0.00048249983 233 28 0.0054736994 234 28 0.0026868999 235 28 0.0023624999 236 28 0.0021627999 237 28 0.00064049987 240 28 0.00092339981 241 28 0.010914098 242 28 0.000183 248 28 8.2999995e-06 250 28 8.2999995e-06 252 28 0.00066549983 254 28 0.0025787998 255 28 0.0029281999 256 28 0.0012643998 257 28 0.00049079978 258 28 0.00095659983 259 28 0.0015472998 262 28 7.4899988e-05 264 28 0.0048413984 265 28 0.0064219981 266 28 0.023990899 267 28 0.00034939987 268 28 0.0068461969 269 28 0.00059059984 270 28 2.4999987e-05 271 28 0.0028948998 272 28 7.4899988e-05 273 28 0.00019129999 274 28 0.0030029998 277 28 0.0063969977 279 28 0.0014308 282 28 0.0026785999 285 28 0.00014969999 292 28 0.0025121998 293 28 0.0001581 295 28 0.0057481974 302 28 0.0021046 303 28 0.0046583973 304 28 0.0027700998 305 28 0.00031609996 306 28 0.018883299 307 28 0.00045749987 308 28 0.020472199 309 28 0.0026452998 310 28 0.00025789998 311 28 0.0038681999 312 28 0.0003992999 317 28 0.00057399995 318 28 1.6599995e-05 319 28 0.004724998 322 28 0.0022127999 324 28 0.00048249983 331 28 0.00066549983 334 28 0.00044089998 335 28 8.2999995e-06 341 28 4.1599997e-05 350 28 0.004009597 352 28 0.0013392998 356 28 0.00014969999 358 28 4.1599997e-05 366 28 0.011454798 368 28 0.0014640999 371 28 0.0054736994 374 28 2.4999987e-05 380 28 0.0015305998 383 28 0.0020879998 384 28 0.0001581 385 28 0.0029447998 386 28 0.0034605998 387 28 1.6599995e-05 390 28 0.00074039982 394 28 4.1599997e-05 397 28 8.2999995e-06 398 28 0.00032439991 402 28 0.00016639999 412 28 8.2999995e-06 414 28 8.2999995e-06 415 28 0.0013059999 419 28 3.3299992e-05 422 28 4.9899987e-05 423 28 8.2999995e-06 425 28 8.2999995e-06 430 28 1.6599995e-05 431 28 8.2999995e-06 433 28 8.2999995e-06 434 28 8.2999995e-06 438 28 0.00029119989 439 28 0.00041589979 441 28 6.6499997e-05 443 28 0.0068212971 444 28 4.9899987e-05 445 28 0.017810199 446 28 0.00080689997 447 28 0.0003992999 448 28 8.2999995e-06 450 28 0.0011063998 452 28 0.00016639999 453 28 1.6599995e-05 454 28 0.00033269986 455 28 0.0379912 456 28 0.041984197 457 28 0.0011562998 458 28 0.00013309999 460 28 0.0017551999 463 28 0.0023542 464 28 5.8199992e-05 465 28 3.3299992e-05 467 28 0.0056566969 468 28 0.00017469999 469 28 0.060168698 470 28 0.0017135998 471 28 0.0017718999 473 28 4.1599997e-05 477 28 8.2999995e-06 478 28 0.00019129999 483 28 0.0001165 489 28 2.4999987e-05 490 28 0.0001414 491 28 6.6499997e-05 7 29 0.00025089993 9 29 2.5099987e-05 16 29 0.0013299999 18 29 0.0010038 24 29 0.0021329999 60 29 0.00030109985 80 29 0.00022579999 82 29 2.5099987e-05 83 29 2.5099987e-05 84 29 2.5099987e-05 108 29 5.0199989e-05 113 29 5.0199989e-05 114 29 0.00010039999 126 29 7.5299991e-05 127 29 2.5099987e-05 139 29 0.00030109985 141 29 5.0199989e-05 142 29 2.5099987e-05 150 29 0.00010039999 154 29 0.00010039999 160 29 0.0070262998 161 29 0.00087829982 162 29 2.5099987e-05 163 29 0.0124969 164 29 0.0074528977 165 29 0.0085821971 168 29 0.00022579999 170 29 0.00022579999 171 29 0.0026850998 177 29 0.00097869989 182 29 0.0012546999 183 29 2.5099987e-05 189 29 2.5099987e-05 191 29 0.00020079999 192 29 0.00032619992 194 29 2.5099987e-05 197 29 0.0011292 198 29 5.0199989e-05 201 29 2.5099987e-05 203 29 2.5099987e-05 204 29 5.0199989e-05 206 29 0.0001255 207 29 2.5099987e-05 214 29 7.5299991e-05 215 29 7.5299991e-05 219 29 0.0030866 223 29 0.0003513 233 29 0.0041655973 234 29 0.0017064 235 29 0.0010038 236 29 0.00037639984 237 29 0.00095359981 240 29 0.0008280999 241 29 0.00040149991 242 29 0.00010039999 252 29 0.00037639984 254 29 0.0025093998 255 29 0.0077540986 256 29 0.0014052999 257 29 0.00020079999 258 29 0.00045169983 259 29 0.0023337998 264 29 0.0091592968 265 29 0.0091342963 266 29 0.035558298 267 29 0.0001757 268 29 0.0074027963 269 29 0.00040149991 270 29 5.0199989e-05 271 29 0.0032872998 272 29 0.00022579999 273 29 0.00020079999 274 29 0.0020325999 277 29 0.011467997 279 29 0.00090339989 282 29 0.0032119998 285 29 7.5299991e-05 292 29 0.0027353 293 29 0.00020079999 295 29 0.0055206977 302 29 0.0031116998 303 29 0.0045419969 304 29 0.0030363998 305 29 0.0047678985 306 29 0.033726498 307 29 0.00095359981 308 29 0.026599698 309 29 0.0032621999 310 29 0.0035132 311 29 0.0069259964 312 29 0.0011292 317 29 0.0015808998 318 29 5.0199989e-05 319 29 0.0050689988 322 29 0.0084064975 324 29 0.0016311 331 29 0.00095359981 334 29 0.0085068978 335 29 2.5099987e-05 341 29 0.0001255 350 29 0.0024089999 352 29 0.0036887999 356 29 0.0019071999 358 29 0.00010039999 366 29 0.0050940998 368 29 0.00097869989 371 29 0.0062985979 374 29 0.0001757 380 29 0.00092849997 383 29 0.00077789999 384 29 0.0001757 385 29 0.0027853998 386 29 0.0039648972 387 29 5.0199989e-05 390 29 0.0016059999 394 29 0.00010039999 398 29 0.00022579999 402 29 0.00020079999 412 29 2.5099987e-05 414 29 2.5099987e-05 415 29 0.0044416972 419 29 0.00020079999 422 29 0.0001506 423 29 2.5099987e-05 425 29 2.5099987e-05 430 29 5.0199989e-05 431 29 2.5099987e-05 433 29 2.5099987e-05 434 29 2.5099987e-05 438 29 0.00020079999 439 29 0.00045169983 441 29 5.0199989e-05 443 29 0.0043161996 444 29 0.0001255 445 29 0.011066496 446 29 0.00072769984 447 29 0.00060229981 450 29 0.0030614999 452 29 0.00045169983 453 29 5.0199989e-05 454 29 0.00092849997 455 29 0.034479298 456 29 0.028030097 457 29 0.0032119998 458 29 0.00022579999 460 29 0.0025344999 463 29 0.0065495968 464 29 0.0001757 465 29 0.00010039999 467 29 0.0081304982 468 29 0.00047679991 469 29 0.072547078 470 29 0.0047678985 471 29 0.00266 473 29 0.00010039999 477 29 2.5099987e-05 478 29 0.00052699982 483 29 0.00032619992 489 29 7.5299991e-05 490 29 0.00037639984 491 29 0.00020079999 9 30 1.3399999e-05 16 30 4.0199986e-05 24 30 0.0016213998 60 30 0.00012059999 80 30 1.3399999e-05 82 30 1.3399999e-05 83 30 1.3399999e-05 84 30 1.3399999e-05 108 30 1.3399999e-05 113 30 2.6799986e-05 114 30 5.3599986e-05 126 30 2.6799986e-05 134 30 0.0025459998 135 30 4.0199986e-05 139 30 0.00072359992 141 30 2.6799986e-05 142 30 5.3599986e-05 150 30 4.0199986e-05 160 30 0.040333398 161 30 0.00033499999 162 30 0.0014605999 163 30 0.050034799 164 30 0.022015899 165 30 0.031891499 167 30 0.010009598 170 30 0.00080399984 171 30 0.0067802966 177 30 0.0028541998 182 30 0.0034973 189 30 1.3399999e-05 191 30 0.003082 192 30 0.0020367999 194 30 1.3399999e-05 195 30 1.3399999e-05 197 30 0.0011925998 198 30 2.6799986e-05 203 30 1.3399999e-05 204 30 1.3399999e-05 206 30 4.0199986e-05 207 30 1.3399999e-05 214 30 0.00013399999 215 30 4.0199986e-05 218 30 4.0199986e-05 219 30 0.00095139979 223 30 0.00016079999 233 30 0.010545596 234 30 0.00077719986 235 30 0.00010719999 236 30 0.0021439998 237 30 0.00077719986 240 30 0.00054939999 241 30 0.017205298 242 30 0.00030819979 252 30 0.00046899985 254 30 0.0018759998 255 30 0.0026397998 256 30 0.0044754967 257 30 0.00032159989 258 30 0.0009782 259 30 0.0035642998 264 30 0.0041538998 265 30 0.0016213998 266 30 0.021734498 267 30 9.3799987e-05 268 30 0.0076378994 269 30 0.00049579982 270 30 2.6799986e-05 271 30 0.0017553999 272 30 2.6799986e-05 273 30 0.00020099999 274 30 0.0039126985 277 30 0.0031355999 279 30 0.0014739998 282 30 0.0011657998 285 30 1.3399999e-05 292 30 0.003966298 293 30 4.0199986e-05 295 30 0.018196899 302 30 0.0028541998 303 30 0.023275398 304 30 0.0019161999 306 30 0.019228697 307 30 0.00053599989 308 30 0.0144316 309 30 0.0016615998 310 30 0.007879097 311 30 0.0019697999 312 30 5.3599986e-05 317 30 0.0006163998 318 30 2.6799986e-05 319 30 0.0043548979 322 30 0.0062442981 324 30 0.00025459984 331 30 0.00079059997 334 30 8.0399986e-05 341 30 5.3599986e-05 350 30 0.0018357998 352 30 0.00017419999 356 30 2.6799986e-05 358 30 4.0199986e-05 366 30 0.011992797 368 30 0.00068339985 371 30 0.0128638 380 30 0.0019295998 383 30 0.0013533998 385 30 0.013614196 386 30 0.0025727998 387 30 1.3399999e-05 390 30 0.0021573999 394 30 4.0199986e-05 397 30 1.3399999e-05 398 30 0.00033499999 402 30 0.00020099999 414 30 1.3399999e-05 415 30 0.0013935999 422 30 6.6999986e-05 423 30 1.3399999e-05 425 30 1.3399999e-05 430 30 1.3399999e-05 431 30 1.3399999e-05 433 30 1.3399999e-05 434 30 1.3399999e-05 438 30 0.00057619996 439 30 0.00071019982 441 30 1.3399999e-05 443 30 0.0095942989 444 30 5.3599986e-05 445 30 0.011228997 446 30 0.00091119995 447 30 0.00036179996 450 30 0.0011925998 452 30 0.00017419999 453 30 2.6799986e-05 454 30 0.00036179996 455 30 0.051950999 456 30 0.068982184 457 30 0.0012461999 458 30 0.00014739999 460 30 0.0017955999 463 30 0.0025459998 464 30 6.6999986e-05 465 30 2.6799986e-05 467 30 0.006740097 468 30 0.00018759999 469 30 0.0037518998 470 30 0.0018491999 471 30 0.0021171998 473 30 4.0199986e-05 477 30 1.3399999e-05 478 30 0.00020099999 483 30 0.00012059999 489 30 2.6799986e-05 490 30 0.00014739999 491 30 8.0399986e-05 7 31 0.00010629999 9 31 5.3099997e-05 16 31 0.00042509986 18 31 0.00026569981 24 31 0.0066949986 60 31 0.00037189992 80 31 0.00010629999 82 31 5.3099997e-05 83 31 5.3099997e-05 84 31 5.3099997e-05 108 31 5.3099997e-05 113 31 0.00010629999 114 31 0.00015939999 126 31 5.3099997e-05 134 31 0.0017002998 135 31 5.3099997e-05 139 31 0.00031879987 141 31 5.3099997e-05 150 31 0.00010629999 154 31 0.00010629999 160 31 0.007704597 162 31 0.00031879987 163 31 0.0030286999 164 31 0.0019659998 165 31 0.0065886974 166 31 0.012646098 167 31 0.0034538 168 31 0.0013814999 170 31 0.00021249999 171 31 0.00085019995 177 31 0.00026569981 182 31 0.005313497 183 31 0.0034005998 189 31 5.3099997e-05 191 31 0.0006907999 192 31 0.00085019995 194 31 5.3099997e-05 197 31 0.00015939999 198 31 5.3099997e-05 203 31 5.3099997e-05 204 31 5.3099997e-05 206 31 0.00015939999 207 31 5.3099997e-05 214 31 0.00010629999 219 31 0.0030286999 223 31 0.00042509986 233 31 0.0077576973 234 31 0.0034005998 235 31 0.0054197982 236 31 0.0028692998 237 31 0.00074389996 240 31 0.00026569981 241 31 0.008554697 242 31 5.3099997e-05 252 31 0.0044632964 254 31 0.0042507984 255 31 0.004728999 256 31 0.0030818 257 31 0.00026569981 258 31 0.00074389996 259 31 0.0020722998 262 31 0.00015939999 264 31 0.0074919984 265 31 0.011105198 266 31 0.037353899 267 31 0.00058449991 268 31 0.0073325969 269 31 0.00058449991 271 31 0.0028161998 272 31 0.00015939999 273 31 0.00010629999 274 31 0.0070137978 277 31 0.010573898 279 31 0.0011689998 282 31 0.0038256999 292 31 0.0042507984 293 31 0.00015939999 295 31 0.011105198 302 31 0.0031349999 303 31 0.0026566999 304 31 0.0057916977 305 31 0.020669498 306 31 0.016524997 307 31 0.00079699978 308 31 0.014665198 309 31 0.0037725999 310 31 0.0063761994 311 31 0.010254998 312 31 0.00047819992 315 31 0.00015939999 317 31 0.0019659998 318 31 5.3099997e-05 319 31 0.013974499 322 31 0.0040382966 324 31 0.0013814999 331 31 0.00063759997 334 31 0.0071200989 335 31 0.0019659998 341 31 0.00015939999 350 31 0.00090329978 352 31 0.0021784999 356 31 0.00079699978 358 31 0.00010629999 366 31 0.011530299 368 31 0.00026569981 371 31 0.011689696 380 31 0.00095639983 383 31 0.0014877999 384 31 0.00031879987 385 31 0.0038788998 386 31 0.0071200989 387 31 5.3099997e-05 390 31 0.0012220999 394 31 0.00015939999 398 31 0.00031879987 402 31 0.00015939999 414 31 0.00026569981 415 31 0.0032943999 419 31 0.00010629999 422 31 0.00015939999 423 31 5.3099997e-05 430 31 5.3099997e-05 431 31 5.3099997e-05 433 31 5.3099997e-05 434 31 5.3099997e-05 438 31 0.00037189992 439 31 0.00037189992 441 31 0.00015939999 443 31 0.0047820993 444 31 0.00015939999 445 31 0.017481398 446 31 0.00042509986 447 31 0.00058449991 450 31 0.0038256999 452 31 0.00058449991 453 31 5.3099997e-05 454 31 0.0011157999 455 31 0.036769398 456 31 0.028799098 457 31 0.0040382966 458 31 0.00021249999 460 31 0.0027098998 463 31 0.0081827976 464 31 0.00021249999 465 31 0.00010629999 467 31 0.0064292997 468 31 0.00058449991 469 31 0.085440993 470 31 0.0059510991 471 31 0.0021253999 473 31 0.00010629999 478 31 0.0006907999 483 31 0.00042509986 489 31 5.3099997e-05 490 31 0.00047819992 491 31 0.00026569981 16 32 0.00054049981 18 32 0.00027029985 24 32 0.0064864978 60 32 0.00054049981 114 32 0.00027029985 126 32 0.00027029985 134 32 0.0056756996 139 32 0.00027029985 160 32 0.0078377984 162 32 0.00027029985 163 32 0.0032431998 164 32 0.0018918999 165 32 0.0070269965 166 32 0.012432396 167 32 0.0035134999 168 32 0.0027027 170 32 0.00027029985 171 32 0.00081079989 177 32 0.00027029985 182 32 0.0043242984 183 32 0.0029729998 191 32 0.0010811 192 32 0.00054049981 214 32 0.00027029985 219 32 0.0027027 223 32 0.00054049981 233 32 0.004594598 234 32 0.0016215998 235 32 0.0013513998 236 32 0.0021621999 237 32 0.0010811 240 32 0.00027029985 241 32 0.0081080981 242 32 0.00027029985 252 32 0.0021621999 254 32 0.0072972998 255 32 0.010270298 256 32 0.0029729998 257 32 0.00054049981 258 32 0.0010811 259 32 0.0024323999 262 32 0.00027029985 264 32 0.0162162 265 32 0.014054097 266 32 0.045135099 267 32 0.0010811 268 32 0.0024323999 269 32 0.0029729998 271 32 0.0040540993 273 32 0.00027029985 274 32 0.0067567974 277 32 0.010270298 279 32 0.0010811 282 32 0.0043242984 285 32 0.00027029985 292 32 0.0043242984 293 32 0.00027029985 295 32 0.0083783977 302 32 0.0037837999 303 32 0.0032431998 304 32 0.0043242984 305 32 0.0075675994 306 32 0.034054097 307 32 0.00054049981 308 32 0.012432396 309 32 0.0081080981 310 32 0.0097296983 311 32 0.012162197 312 32 0.00027029985 315 32 0.00027029985 317 32 0.0021621999 319 32 0.013783798 322 32 0.004594598 324 32 0.0010811 331 32 0.00081079989 334 32 0.0072972998 335 32 0.0016215998 341 32 0.00027029985 350 32 0.0010811 352 32 0.0016215998 356 32 0.00054049981 366 32 0.0078377984 368 32 0.00054049981 371 32 0.0091891997 380 32 0.0010811 383 32 0.0018918999 384 32 0.00027029985 385 32 0.0040540993 386 32 0.0054053999 390 32 0.00081079989 394 32 0.00027029985 398 32 0.00027029985 402 32 0.00027029985 414 32 0.00027029985 415 32 0.0018918999 438 32 0.00027029985 439 32 0.00027029985 441 32 0.00027029985 443 32 0.0035134999 444 32 0.00027029985 445 32 0.012432396 446 32 0.00054049981 447 32 0.00054049981 450 32 0.0040540993 452 32 0.00054049981 454 32 0.0010811 455 32 0.031621598 456 32 0.024054099 457 32 0.0043242984 458 32 0.00027029985 460 32 0.0027027 463 32 0.0086485967 464 32 0.00027029985 467 32 0.0072972998 468 32 0.00054049981 469 32 0.085945845 470 32 0.0064864978 471 32 0.0024323999 473 32 0.00027029985 478 32 0.00054049981 483 32 0.00054049981 490 32 0.00054049981 491 32 0.00027029985 7 33 5.7599987e-05 16 33 0.00026869983 18 33 0.00023029999 24 33 0.0027830999 80 33 5.7599987e-05 134 33 0.00021109999 139 33 3.8399987e-05 141 33 1.9199986e-05 154 33 1.9199986e-05 159 33 1.9199986e-05 160 33 0.0011515999 162 33 0.00011519999 163 33 0.00042229984 164 33 0.00028789998 165 33 0.0014203 166 33 0.0017273999 167 33 0.00051819999 168 33 0.0012476 170 33 5.7599987e-05 171 33 0.00015359999 177 33 3.8399987e-05 182 33 0.00069099991 183 33 0.00044149999 191 33 0.00023029999 192 33 0.00030709989 197 33 1.9199986e-05 198 33 1.9199986e-05 214 33 3.8399987e-05 215 33 1.9199986e-05 219 33 0.0004606999 223 33 0.00011519999 233 33 0.0058348998 234 33 0.0018809999 235 33 0.0012859998 236 33 0.0023991999 237 33 0.00024949992 240 33 3.8399987e-05 241 33 0.0029558998 242 33 1.9199986e-05 252 33 0.00084449979 254 33 0.0013436 255 33 0.0020344998 256 33 0.00013439999 257 33 0.0025527999 258 33 0.00015359999 259 33 0.00042229984 262 33 7.6799988e-05 264 33 0.0031478 265 33 0.00044149999 266 33 0.011784997 267 33 0.00015359999 268 33 0.00038389978 269 33 0.00069099991 271 33 0.0016122998 272 33 7.6799988e-05 273 33 0.00086369994 274 33 0.0050671995 275 33 0.023781199 276 33 0.0015354999 277 33 0.0068905987 279 33 0.00030709989 282 33 0.0010556998 285 33 7.6799988e-05 292 33 0.0018809999 293 33 0.00036469987 295 33 0.0047216974 302 33 0.00069099991 303 33 0.00057579996 304 33 0.004875198 305 33 0.098656356 306 33 0.0040882975 307 33 0.055930898 308 33 0.012322497 309 33 0.0128599 310 33 0.0025336 311 33 0.0035316998 312 33 0.00026869983 315 33 7.6799988e-05 319 33 0.0012476 322 33 0.0013627999 324 33 0.11134356 331 33 0.00028789998 334 33 0.00049899984 335 33 0.00023029999 336 33 0.030153599 350 33 0.0004606999 351 33 0.00030709989 352 33 0.0012283998 354 33 0.00024949992 356 33 0.0004606999 366 33 0.0061035976 368 33 5.7599987e-05 371 33 0.004875198 374 33 1.9199986e-05 380 33 0.00038389978 383 33 0.00042229984 384 33 0.00013439999 385 33 0.011458699 386 33 0.0031478 390 33 0.00049899984 398 33 0.00021109999 402 33 7.6799988e-05 414 33 0.00090209977 415 33 0.0019769999 419 33 3.8399987e-05 438 33 9.5999989e-05 439 33 5.7599987e-05 441 33 0.00015359999 443 33 0.006161198 445 33 0.014299396 446 33 0.00057579996 447 33 0.00017269999 455 33 0.041708298 456 33 0.020921297 458 33 3.8399987e-05 460 33 0.00049899984 467 33 0.0027062998 469 33 0.033301298 471 33 0.00071019982 7 34 0.00020759999 9 34 3.1899996e-05 16 34 0.0010856998 18 34 0.00079829991 24 34 0.0053009987 60 34 0.00036719977 79 34 1.5999991e-05 80 34 0.00011179999 82 34 3.1899996e-05 83 34 3.1899996e-05 84 34 3.1899996e-05 108 34 4.7899986e-05 113 34 7.9799996e-05 114 34 0.00014369999 126 34 7.9799996e-05 127 34 1.5999991e-05 134 34 0.0025227999 135 34 4.7899986e-05 139 34 9.5799987e-05 141 34 4.7899986e-05 150 34 0.00011179999 154 34 3.1899996e-05 159 34 1.5999991e-05 160 34 0.002874 162 34 7.9799996e-05 163 34 0.00094199996 164 34 0.00065459986 165 34 0.0030496998 166 34 0.0038959 167 34 0.0010537999 168 34 0.0023630999 170 34 7.9799996e-05 171 34 0.0004629998 177 34 9.5799987e-05 182 34 0.0025386999 183 34 0.0016445999 189 34 3.1899996e-05 191 34 0.00075039989 192 34 0.00076639978 194 34 4.7899986e-05 196 34 3.1899996e-05 197 34 7.9799996e-05 198 34 4.7899986e-05 201 34 4.7899986e-05 203 34 4.7899986e-05 204 34 6.3899992e-05 206 34 0.0001277 207 34 4.7899986e-05 209 34 1.5999991e-05 214 34 0.00023949999 215 34 4.7899986e-05 219 34 0.0017084 223 34 0.00038319989 233 34 0.0027462998 234 34 0.0018041998 235 34 0.0024269999 236 34 0.0017084 237 34 0.00070249988 240 34 0.0003513 241 34 0.0072329976 242 34 0.0001277 248 34 4.7899986e-05 250 34 3.1899996e-05 251 34 1.5999991e-05 252 34 0.0052370988 254 34 0.0042311996 255 34 0.0035605999 256 34 0.0016285998 257 34 0.00019159999 258 34 0.00033529988 259 34 0.0010698 262 34 0.00020759999 263 34 1.5999991e-05 264 34 0.0056042969 265 34 0.0083665997 266 34 0.030768 267 34 0.0004629998 268 34 0.0023790998 269 34 0.0035126999 270 34 4.7899986e-05 271 34 0.0033849999 272 34 0.0001756 273 34 0.0002235 274 34 0.0098674968 277 34 0.0091968998 279 34 0.00075039989 282 34 0.0024269999 285 34 0.00011179999 292 34 0.0032891999 293 34 0.00039919978 294 34 3.1899996e-05 295 34 0.011543997 302 34 0.0016285998 303 34 0.0015008999 304 34 0.0074245967 305 34 0.0407153 306 34 0.013172597 307 34 0.0010698 308 34 0.024045996 309 34 0.0075841993 310 34 0.026504897 311 34 0.020102199 312 34 0.00052689994 315 34 0.0007185 317 34 0.0019159999 318 34 9.5799987e-05 319 34 0.0056362972 322 34 0.0038959 323 34 1.5999991e-05 324 34 0.0011974999 331 34 0.00060669985 334 34 0.010553997 335 34 0.00095799984 341 34 0.00015969999 350 34 0.00051089982 352 34 0.0028261 356 34 0.00083029992 358 34 0.0001277 363 34 1.5999991e-05 366 34 0.016365997 368 34 0.00014369999 371 34 0.012102798 374 34 3.1899996e-05 380 34 0.00095799984 383 34 0.00094199996 384 34 0.00036719977 385 34 0.0107616 386 34 0.0073446967 387 34 4.7899986e-05 390 34 0.0012613998 394 34 0.00011179999 398 34 0.00049499981 402 34 0.00014369999 412 34 1.5999991e-05 414 34 0.00015969999 415 34 0.0047261976 419 34 0.00011179999 422 34 0.00020759999 423 34 3.1899996e-05 425 34 1.5999991e-05 430 34 3.1899996e-05 431 34 3.1899996e-05 432 34 1.5999991e-05 433 34 4.7899986e-05 434 34 3.1899996e-05 438 34 0.0001277 439 34 0.00020759999 443 34 0.0047899969 444 34 0.00015969999 445 34 0.017898798 446 34 0.00086219981 447 34 0.00079829991 449 34 1.5999991e-05 450 34 0.0036882998 452 34 0.00055879983 453 34 7.9799996e-05 454 34 0.0011335998 455 34 0.037553899 456 34 0.027047697 457 34 0.0038959 458 34 0.00020759999 459 34 4.7899986e-05 460 34 0.0025546998 463 34 0.0078556985 464 34 0.00019159999 465 34 0.00011179999 467 34 0.0058916993 468 34 0.00059079984 469 34 0.074852288 470 34 0.0057160966 471 34 0.0019159999 473 34 0.0001277 477 34 6.3899992e-05 478 34 0.00068659987 483 34 0.00039919978 489 34 7.9799996e-05 490 34 0.0004629998 491 34 0.0002235 7 35 0.00016639999 9 35 5.5499986e-05 16 35 0.0010537999 18 35 0.00077649998 24 35 0.0083194971 60 35 0.00033279997 80 35 0.00011089999 82 35 5.5499986e-05 108 35 5.5499986e-05 113 35 5.5499986e-05 114 35 0.00011089999 126 35 5.5499986e-05 139 35 5.5499986e-05 141 35 5.5499986e-05 150 35 0.00011089999 154 35 5.5499986e-05 160 35 0.0023294999 162 35 0.00033279997 163 35 0.00083189993 164 35 0.0005545998 165 35 0.0032168999 166 35 0.0034941998 167 35 0.0009982998 168 35 0.0026621998 170 35 0.00011089999 171 35 0.00044369977 177 35 0.00011089999 182 35 0.0012202 183 35 0.00077649998 189 35 5.5499986e-05 191 35 0.0007209999 192 35 0.0005545998 194 35 5.5499986e-05 197 35 5.5499986e-05 198 35 5.5499986e-05 203 35 5.5499986e-05 206 35 0.00011089999 214 35 5.5499986e-05 215 35 5.5499986e-05 219 35 0.0010537999 223 35 0.00038819993 233 35 0.017914597 234 35 0.0065445974 235 35 0.0046588965 236 35 0.0085967965 237 35 0.0007209999 240 35 5.5499986e-05 241 35 0.0061008967 242 35 5.5499986e-05 252 35 0.0021076 254 35 0.0034941998 255 35 0.0038824 256 35 0.00022189999 257 35 0.00016639999 258 35 0.0002772999 259 35 0.00077649998 262 35 0.00016639999 264 35 0.0059899986 265 35 0.0066000968 266 35 0.025013898 267 35 0.0002772999 268 35 0.00083189993 269 35 0.0038824 270 35 5.5499986e-05 271 35 0.0028285999 272 35 0.00011089999 273 35 0.0002772999 274 35 0.0063227974 277 35 0.011258997 279 35 0.0007209999 282 35 0.0018302999 285 35 0.00016639999 292 35 0.0037159999 293 35 0.00016639999 294 35 5.5499986e-05 295 35 0.007820297 302 35 0.0012756998 303 35 0.0011646999 304 35 0.0047697984 305 35 0.072157443 306 35 0.018635597 307 35 0.049473099 308 35 0.014808699 309 35 0.0074320994 310 35 0.012756497 311 35 0.0167499 312 35 0.00061009987 315 35 0.00038819993 317 35 0.0017193998 318 35 5.5499986e-05 319 35 0.0027731999 322 35 0.0024957999 324 35 0.0023294999 331 35 0.00066559995 334 35 0.00016639999 335 35 0.00044369977 341 35 0.00016639999 350 35 0.00033279997 352 35 0.0018302999 356 35 0.00066559995 358 35 0.00011089999 366 35 0.0091513991 368 35 0.00011089999 371 35 0.0082639977 380 35 0.00061009987 383 35 0.00066559995 384 35 0.0002772999 385 35 0.007820297 386 35 0.0050470978 387 35 5.5499986e-05 390 35 0.00083189993 394 35 0.00011089999 398 35 0.00033279997 402 35 0.00011089999 414 35 0.00011089999 415 35 0.002995 419 35 5.5499986e-05 422 35 0.00016639999 430 35 5.5499986e-05 434 35 5.5499986e-05 438 35 0.00016639999 439 35 0.00011089999 441 35 0.00011089999 443 35 0.0051580966 444 35 0.00011089999 445 35 0.0253466 446 35 0.0009982998 447 35 0.00049919984 450 35 0.0033278 452 35 0.00049919984 453 35 5.5499986e-05 454 35 0.0009982998 455 35 0.035607297 456 35 0.028618999 457 35 0.0034941998 458 35 0.00022189999 460 35 0.0024404 463 35 0.0070992969 464 35 0.00016639999 465 35 0.00011089999 467 35 0.0058235973 468 35 0.00049919984 469 35 0.065723777 470 35 0.0051580966 471 35 0.0019967 473 35 0.00011089999 478 35 0.0005545998 483 35 0.00033279997 489 35 5.5499986e-05 490 35 0.00038819993 491 35 0.00022189999 7 36 0.00045729987 16 36 0.0022865999 18 36 0.0015244 24 36 0.0057926998 60 36 0.00030489988 80 36 0.0001524 114 36 0.0001524 126 36 0.0001524 150 36 0.0001524 160 36 0.0042682998 162 36 0.00030489988 163 36 0.0036584998 164 36 0.00045729987 165 36 0.0038109999 166 36 0.0022865999 167 36 0.00076219998 168 36 0.0033536998 170 36 0.0001524 171 36 0.00030489988 182 36 0.0092987977 183 36 0.0060975999 191 36 0.00076219998 192 36 0.00045729987 214 36 0.00045729987 215 36 0.0001524 219 36 0.0018292998 223 36 0.00060979999 233 36 0.0030487999 234 36 0.0045731999 235 36 0.0032011999 236 36 0.0054877996 237 36 0.00060979999 241 36 0.0050304979 252 36 0.0022865999 254 36 0.0042682998 255 36 0.0025914998 256 36 0.00091459998 257 36 0.0001524 258 36 0.00030489988 259 36 0.00076219998 262 36 0.0001524 264 36 0.005335398 265 36 0.010823198 266 36 0.046951197 267 36 0.00045729987 268 36 0.00091459998 269 36 0.0015244 271 36 0.0024389999 272 36 0.0001524 273 36 0.00030489988 274 36 0.0056401975 277 36 0.010213397 279 36 0.00060979999 282 36 0.001372 285 36 0.0001524 292 36 0.0024389999 293 36 0.00030489988 295 36 0.0065548979 302 36 0.00091459998 303 36 0.001372 304 36 0.0047255978 305 36 0.046341497 306 36 0.021036599 307 36 0.0035060998 308 36 0.016006097 309 36 0.0065548979 310 36 0.010975599 311 36 0.017530497 312 36 0.00045729987 315 36 0.00045729987 317 36 0.0012194999 319 36 0.0018292998 322 36 0.0041158982 324 36 0.0018292998 331 36 0.00045729987 334 36 0.056097597 335 36 0.0035060998 341 36 0.0001524 350 36 0.0001524 352 36 0.0015244 356 36 0.00045729987 358 36 0.0001524 366 36 0.0079267994 368 36 0.00091459998 371 36 0.0082316995 380 36 0.00045729987 383 36 0.00045729987 384 36 0.00030489988 385 36 0.018140197 386 36 0.0048779994 390 36 0.00060979999 394 36 0.0001524 398 36 0.00030489988 402 36 0.0001524 415 36 0.0028962998 438 36 0.0001524 441 36 0.0030487999 443 36 0.0035060998 444 36 0.0001524 445 36 0.023323197 446 36 0.00045729987 447 36 0.00030489988 450 36 0.0027438998 452 36 0.00045729987 454 36 0.00076219998 455 36 0.035975598 456 36 0.021493897 457 36 0.0028962998 458 36 0.0001524 460 36 0.0015244 463 36 0.0057926998 464 36 0.0001524 467 36 0.0051828995 468 36 0.00045729987 469 36 0.062652349 470 36 0.0041158982 471 36 0.0015244 473 36 0.0001524 478 36 0.00030489988 483 36 0.00030489988 490 36 0.00030489988 491 36 0.0001524 7 37 5.2299991e-05 9 37 3.4899989e-05 16 37 0.00034869998 18 37 0.0002441 24 37 0.0072867982 60 37 0.00034869998 79 37 1.7399987e-05 80 37 0.0001395 82 37 3.4899989e-05 83 37 3.4899989e-05 84 37 3.4899989e-05 108 37 5.2299991e-05 113 37 5.2299991e-05 114 37 0.000122 126 37 6.9699992e-05 127 37 1.7399987e-05 134 37 6.9699992e-05 139 37 0.0001395 141 37 3.4899989e-05 142 37 1.7399987e-05 150 37 0.0001046 154 37 3.4899989e-05 159 37 1.7399987e-05 160 37 0.0036259999 162 37 0.00020919999 163 37 0.0012899998 164 37 0.00081929984 165 37 0.0039048998 166 37 0.0053691976 167 37 0.0014294998 168 37 0.0028763998 170 37 0.0001046 171 37 0.00041839993 177 37 0.000122 182 37 0.0014294998 183 37 0.0008890999 189 37 3.4899989e-05 191 37 0.0010284998 192 37 0.00092389993 194 37 3.4899989e-05 196 37 1.7399987e-05 197 37 6.9699992e-05 198 37 3.4899989e-05 201 37 5.2299991e-05 203 37 3.4899989e-05 204 37 5.2299991e-05 206 37 0.0001395 207 37 3.4899989e-05 209 37 1.7399987e-05 214 37 0.00015689999 215 37 1.7399987e-05 218 37 1.7399987e-05 219 37 0.0016909998 223 37 0.00034869998 233 37 0.0037479999 234 37 0.0047938973 235 37 0.0036084999 236 37 0.0058398992 237 37 0.00059269997 240 37 0.00026149978 241 37 0.008507099 242 37 6.9699992e-05 248 37 1.7399987e-05 250 37 1.7399987e-05 252 37 0.0040442981 254 37 0.0039222986 255 37 0.0050205998 256 37 0.00083679985 257 37 0.00022659999 258 37 0.00031379983 259 37 0.00083679985 264 37 0.0078794993 265 37 0.0077399984 266 37 0.029129799 267 37 0.00052299979 268 37 0.0029634999 269 37 0.0022314 270 37 3.4899989e-05 271 37 0.0044452995 272 37 0.00019179999 273 37 0.00027889991 274 37 0.013318498 277 37 0.013684496 279 37 0.0011504998 282 37 0.0021964998 285 37 0.00015689999 292 37 0.0040617995 293 37 0.00027889991 294 37 3.4899989e-05 295 37 0.0139286 302 37 0.0012725999 303 37 0.0011157 304 37 0.0080363974 305 37 0.051443398 306 37 0.010041099 307 37 0.0011157 308 37 0.020570397 309 37 0.0080712996 310 37 0.0038176998 311 37 0.0119587 312 37 0.00066239992 315 37 0.0001046 317 37 0.0017955999 318 37 6.9699992e-05 319 37 0.0042534992 322 37 0.0042360984 324 37 0.0027019999 331 37 0.00048809987 334 37 0.0027542999 335 37 0.00050549977 341 37 0.00015689999 350 37 0.00080189994 352 37 0.0030856 356 37 0.0010807998 358 37 0.000122 366 37 0.016142499 368 37 0.0001046 371 37 0.0148177 374 37 3.4899989e-05 380 37 0.0010982 383 37 0.00080189994 384 37 0.00043579983 385 37 0.0128478 386 37 0.0088382997 387 37 6.9699992e-05 390 37 0.0014991998 394 37 0.0001046 398 37 0.00054039992 402 37 0.0001046 412 37 1.7399987e-05 414 37 0.00015689999 415 37 0.0052297972 419 37 0.00015689999 422 37 0.00017429999 423 37 1.7399987e-05 425 37 1.7399987e-05 430 37 3.4899989e-05 431 37 1.7399987e-05 432 37 1.7399987e-05 433 37 1.7399987e-05 434 37 3.4899989e-05 438 37 0.00017429999 439 37 0.00022659999 441 37 0.00022659999 443 37 0.0057178997 444 37 0.0001395 445 37 0.023655999 446 37 0.00081929984 447 37 0.00062759989 450 37 0.0034864999 452 37 0.00052299979 453 37 5.2299991e-05 454 37 0.0010284998 455 37 0.037288196 456 37 0.027403899 457 37 0.0036783 458 37 0.00019179999 459 37 1.7399987e-05 460 37 0.0024406 463 37 0.0074262992 464 37 0.00019179999 465 37 0.000122 467 37 0.0046021976 468 37 0.00054039992 469 37 0.077069163 470 37 0.0054214969 471 37 0.0015689 473 37 0.000122 477 37 3.4899989e-05 478 37 0.00061009987 483 37 0.00036609988 489 37 6.9699992e-05 490 37 0.00043579983 491 37 0.00020919999 24 38 0.0020142 60 38 0.00011849999 114 38 0.00011849999 162 38 0.0003554998 163 38 0.0033175 164 38 0.0020142 165 38 0.005568698 166 38 0.24111366 167 38 0.062085297 168 38 0.00011849999 170 38 0.00023699999 171 38 0.0003554998 177 38 0.00023699999 182 38 0.0034359999 183 38 0.0021326998 191 38 0.00059239985 192 38 0.0004739 219 38 0.0008293998 223 38 0.00011849999 233 38 0.0034359999 234 38 0.0017772999 235 38 0.00059239985 236 38 0.0024881999 237 38 0.0004739 241 38 0.0023697 252 38 0.0014217999 254 38 0.0015403 255 38 0.0033175 256 38 0.00011849999 257 38 0.00011849999 258 38 0.00011849999 259 38 0.0004739 262 38 0.00011849999 264 38 0.0052132979 265 38 0.0028436 266 38 0.0088862963 267 38 0.00023699999 268 38 0.00071089994 269 38 0.00023699999 271 38 0.0018956999 272 38 0.00011849999 273 38 0.00011849999 274 38 0.0034359999 277 38 0.0034359999 279 38 0.00071089994 282 38 0.00094789988 285 38 0.00011849999 292 38 0.0016587998 295 38 0.0042653978 302 38 0.00071089994 303 38 0.0004739 304 38 0.0029620999 305 38 0.0063980967 306 38 0.0068719983 307 38 0.00011849999 308 38 0.0068719983 309 38 0.0049762987 311 38 0.0041468963 312 38 0.00023699999 315 38 0.00011849999 317 38 0.0004739 319 38 0.004502397 322 38 0.0015403 324 38 0.0004739 331 38 0.00023699999 334 38 0.00011849999 335 38 0.0011847999 350 38 0.00011849999 352 38 0.0013032998 356 38 0.00023699999 366 38 0.0059241988 368 38 0.00011849999 371 38 0.004502397 380 38 0.0003554998 383 38 0.0004739 384 38 0.00011849999 385 38 0.0042653978 386 38 0.0026065998 390 38 0.0004739 398 38 0.00023699999 415 38 0.0018956999 438 38 0.00023699999 439 38 0.00011849999 441 38 0.00011849999 443 38 0.0028436 445 38 0.0074644983 446 38 0.0011847999 447 38 0.00011849999 450 38 0.0010664 452 38 0.00011849999 454 38 0.00023699999 455 38 0.036611397 456 38 0.021919399 457 38 0.0010664 460 38 0.0004739 463 38 0.0022511999 467 38 0.0023697 468 38 0.00011849999 469 38 0.0479858 470 38 0.0016587998 471 38 0.0008293998 478 38 0.00011849999 483 38 0.00011849999 490 38 0.00011849999 7 39 0.00021789999 9 39 3.1099989e-05 16 39 0.0013229998 18 39 0.0009804999 24 39 0.0079221986 60 39 0.00031129993 79 39 1.5599988e-05 80 39 0.00012449999 82 39 3.1099989e-05 83 39 3.1099989e-05 84 39 3.1099989e-05 108 39 4.6699992e-05 113 39 6.2299994e-05 114 39 0.0001089 126 39 6.2299994e-05 127 39 1.5599988e-05 134 39 0.0097120963 135 39 0.00015559999 139 39 9.3399998e-05 141 39 3.1099989e-05 150 39 0.0001089 154 39 3.1099989e-05 159 39 1.5599988e-05 160 39 0.0035330998 162 39 0.00014009999 163 39 0.0014475 164 39 0.00088719977 165 39 0.003393 166 39 0.0056030974 167 39 0.0015409 168 39 0.0022100999 170 39 9.3399998e-05 171 39 0.00045139994 177 39 0.00012449999 181 39 0.0011672999 182 39 0.0014008 183 39 0.0008405 189 39 3.1099989e-05 191 39 0.0011517999 192 39 0.00082489988 194 39 4.6699992e-05 196 39 1.5599988e-05 197 39 7.7799996e-05 198 39 3.1099989e-05 201 39 4.6699992e-05 203 39 3.1099989e-05 204 39 4.6699992e-05 206 39 0.00012449999 207 39 3.1099989e-05 209 39 1.5599988e-05 214 39 0.00026459992 215 39 6.2299994e-05 218 39 1.5599988e-05 219 39 0.0017120999 223 39 0.00032679993 233 39 0.0035641999 234 39 0.0041244999 235 39 0.0070194975 236 39 0.0034397 237 39 0.00082489988 240 39 0.00062259985 241 39 0.0071127973 242 39 0.00012449999 248 39 3.1099989e-05 250 39 1.5599988e-05 252 39 0.0027548999 254 39 0.0035797998 255 39 0.0049649999 256 39 0.00077819987 257 39 0.0002023 258 39 0.00034239981 259 39 0.0010427998 262 39 0.00021789999 264 39 0.0077197999 265 39 0.0059921965 266 39 0.0221323 267 39 0.00054469984 268 39 0.0023657999 269 39 0.0020544999 270 39 3.1099989e-05 271 39 0.0026925998 272 39 0.00014009999 273 39 0.0002489998 274 39 0.0094785988 277 39 0.0075952969 279 39 0.000856 282 39 0.0023035 285 39 0.00012449999 292 39 0.0034552999 293 39 0.0002023 294 39 4.6699992e-05 295 39 0.011782099 302 39 0.0015874999 303 39 0.0014942 304 39 0.0062411986 305 39 0.050972797 306 39 0.023797698 307 39 0.00088719977 308 39 0.015766498 309 39 0.011595298 310 39 0.0058365986 311 39 0.012964997 312 39 0.00057589984 315 39 0.00017119999 317 39 0.0016186999 318 39 7.7799996e-05 319 39 0.0081555992 322 39 0.0039376989 323 39 1.5599988e-05 324 39 0.000856 331 39 0.00073149987 334 39 0.0016031 335 39 0.00048249983 341 39 0.00014009999 350 39 0.00046689995 352 39 0.0023657999 356 39 0.00079379999 358 39 0.0001089 366 39 0.0123735 368 39 0.00014009999 371 39 0.012638099 374 39 4.6699992e-05 380 39 0.0009649999 383 39 0.00087159988 384 39 0.00038909982 385 39 0.011891097 386 39 0.0075952969 387 39 4.6699992e-05 390 39 0.0012762998 394 39 9.3399998e-05 397 39 1.5599988e-05 398 39 0.00042019994 402 39 0.0002023 412 39 1.5599988e-05 414 39 0.00014009999 415 39 0.0039532967 419 39 0.0001089 422 39 0.00015559999 423 39 1.5599988e-05 425 39 1.5599988e-05 430 39 3.1099989e-05 431 39 3.1099989e-05 432 39 1.5599988e-05 433 39 3.1099989e-05 434 39 3.1099989e-05 438 39 0.00015559999 439 39 0.00015559999 441 39 0.0002023 443 39 0.0054629967 444 39 0.00012449999 445 39 0.019937698 446 39 0.00094939978 447 39 0.00063809985 449 39 1.5599988e-05 450 39 0.003144 452 39 0.00046689995 453 39 6.2299994e-05 454 39 0.00094939978 455 39 0.035844397 456 39 0.026381299 457 39 0.0033151999 458 39 0.00021789999 459 39 1.5599988e-05 460 39 0.0026303998 463 39 0.0067081973 464 39 0.00017119999 465 39 0.0001089 467 39 0.0065057985 468 39 0.00051359995 469 39 0.11573535 470 39 0.0048559979 471 39 0.0022256998 473 39 0.0001089 477 39 4.6699992e-05 478 39 0.00054469984 483 39 0.00034239981 489 39 7.7799996e-05 490 39 0.00038909982 491 39 0.0002023 7 40 7.1799994e-05 9 40 2.3899993e-05 16 40 0.00035889982 18 40 0.00028709997 24 40 0.0048085973 60 40 0.00026319991 80 40 9.5699987e-05 82 40 2.3899993e-05 83 40 2.3899993e-05 84 40 2.3899993e-05 108 40 4.7799986e-05 113 40 4.7799986e-05 114 40 9.5699987e-05 126 40 7.1799994e-05 127 40 2.3899993e-05 134 40 0.0011243999 135 40 2.3899993e-05 139 40 0.00023919999 141 40 2.3899993e-05 142 40 2.3899993e-05 150 40 7.1799994e-05 154 40 4.7799986e-05 159 40 2.3899993e-05 160 40 0.0047846995 162 40 9.5699987e-05 163 40 0.0018659998 164 40 0.0012679 165 40 0.0040190965 166 40 0.0077989995 167 40 0.0021052998 168 40 0.0014354 170 40 9.5699987e-05 171 40 0.00071769999 177 40 0.00016749999 182 40 0.00081339991 183 40 0.00040669995 189 40 2.3899993e-05 191 40 0.0011482998 192 40 0.00093299989 194 40 2.3899993e-05 197 40 9.5699987e-05 198 40 2.3899993e-05 201 40 2.3899993e-05 203 40 2.3899993e-05 204 40 4.7799986e-05 206 40 0.00011959999 207 40 2.3899993e-05 214 40 0.0002153 215 40 2.3899993e-05 219 40 0.00189 223 40 0.00026319991 233 40 0.004162699 234 40 0.001555 235 40 0.0013875999 236 40 0.0016985999 237 40 0.00045449985 240 40 0.00031099981 241 40 0.0091147982 242 40 7.1799994e-05 252 40 0.00088519999 254 40 0.0031339999 255 40 0.0023206 256 40 0.0012439999 257 40 0.00011959999 258 40 0.00062199985 259 40 0.0018420999 262 40 0.00023919999 264 40 0.0036841999 265 40 0.0065549985 266 40 0.021626797 267 40 0.00052629993 268 40 0.0054305978 269 40 0.0018420999 270 40 2.3899993e-05 271 40 0.0035885 272 40 0.00023919999 273 40 0.00014349999 274 40 0.0099760965 277 40 0.010287099 279 40 0.0009808999 282 40 0.0038516999 285 40 0.00014349999 292 40 0.0048085973 293 40 0.0002153 294 40 2.3899993e-05 295 40 0.013468899 302 40 0.0028468999 304 40 0.010071799 305 40 0.031674597 306 40 0.012416299 307 40 0.0012439999 308 40 0.019928198 309 40 0.0046650991 311 40 0.0082535967 312 40 0.0005502 315 40 7.1799994e-05 317 40 0.0014114999 318 40 4.7799986e-05 319 40 0.011770297 322 40 0.0045454986 324 40 0.0013875999 331 40 0.00035889982 334 40 0.0089233965 335 40 0.0002153 341 40 0.00011959999 350 40 0.00078949984 352 40 0.0038037999 356 40 0.00093299989 358 40 9.5699987e-05 366 40 0.020909097 368 40 0.00026319991 371 40 0.014162697 374 40 2.3899993e-05 380 40 0.0011482998 383 40 0.0014832998 384 40 0.00035889982 385 40 0.011770297 386 40 0.0085884966 387 40 4.7799986e-05 390 40 0.0014354 394 40 9.5699987e-05 398 40 0.00066989986 402 40 9.5699987e-05 412 40 2.3899993e-05 414 40 0.00028709997 415 40 0.0062678978 419 40 0.00011959999 422 40 0.00014349999 423 40 2.3899993e-05 425 40 2.3899993e-05 430 40 4.7799986e-05 431 40 2.3899993e-05 433 40 2.3899993e-05 434 40 2.3899993e-05 438 40 0.0002153 439 40 0.00026319991 441 40 0.0002153 443 40 0.0043779984 444 40 0.00011959999 445 40 0.0179426 446 40 0.00052629993 447 40 0.0004784998 450 40 0.0027272999 452 40 0.00040669995 453 40 4.7799986e-05 454 40 0.00078949984 455 40 0.033803798 456 40 0.024880398 457 40 0.0028468999 458 40 0.00014349999 460 40 0.0018420999 463 40 0.0057655983 464 40 0.00014349999 465 40 9.5699987e-05 467 40 0.0039233975 468 40 0.00043059979 469 40 0.11217695 470 40 0.0042104982 471 40 0.0012200999 473 40 9.5699987e-05 477 40 2.3899993e-05 478 40 0.00045449985 483 40 0.00028709997 489 40 7.1799994e-05 490 40 0.00033489987 491 40 0.00016749999 7 41 6.8799985e-05 9 41 3.4399985e-05 16 41 0.00020639999 18 41 0.00013759999 24 41 0.0057435967 60 41 0.00037829997 80 41 0.00010319999 82 41 3.4399985e-05 83 41 3.4399985e-05 84 41 3.4399985e-05 108 41 6.8799985e-05 113 41 6.8799985e-05 114 41 0.00013759999 126 41 0.00010319999 134 41 0.0020291999 135 41 3.4399985e-05 139 41 0.00013759999 141 41 3.4399985e-05 150 41 0.00010319999 154 41 3.4399985e-05 159 41 3.4399985e-05 160 41 0.0044365972 162 41 0.00020639999 163 41 0.0016508 164 41 0.0010662 165 41 0.0042990968 166 41 0.0068096966 167 41 0.0018227999 168 41 0.0024074998 170 41 0.00013759999 171 41 0.00061909994 177 41 0.00013759999 181 41 0.0026481999 182 41 0.011383999 183 41 0.0073255971 189 41 3.4399985e-05 191 41 0.00079099997 192 41 0.00072219991 194 41 3.4399985e-05 197 41 6.8799985e-05 198 41 3.4399985e-05 201 41 3.4399985e-05 203 41 3.4399985e-05 204 41 6.8799985e-05 206 41 0.00017199999 207 41 3.4399985e-05 214 41 0.00027509988 219 41 0.001926 223 41 0.00037829997 233 41 0.0034049 234 41 0.0020635999 235 41 0.0010317999 236 41 0.0026825999 237 41 0.00075659994 240 41 0.00030949991 241 41 0.0082541965 242 41 0.00010319999 252 41 0.0023387 254 41 0.0058123991 255 41 0.0036455998 256 41 0.0011349998 257 41 0.00020639999 258 41 0.00051589985 259 41 0.0014444999 262 41 0.00017199999 264 41 0.0057091974 265 41 0.0091827996 266 41 0.032672998 267 41 0.0004127 269 41 0.0073255971 270 41 0.00010319999 271 41 0.0035079999 272 41 0.00020639999 273 41 0.00017199999 274 41 0.010902498 277 41 0.012622099 282 41 0.0031297 285 41 0.00013759999 292 41 0.0044022985 293 41 0.00027509988 295 41 0.010489799 302 41 0.0022010999 303 41 0.0018916 304 41 0.0090108998 305 41 0.023490198 306 41 0.017196298 307 41 0.00079099997 308 41 0.0208763 309 41 0.007875897 310 41 0.0073599964 311 41 0.010386597 312 41 0.00055029988 315 41 0.00020639999 317 41 0.0019947998 318 41 6.8799985e-05 319 41 0.0088732988 322 41 0.0037143999 324 41 0.0019947998 331 41 0.00061909994 334 41 0.0060874969 335 41 0.0042646974 341 41 0.00017199999 350 41 0.00065349997 352 41 0.0034736998 356 41 0.0008254 358 41 0.00010319999 366 41 0.018675197 368 41 0.00017199999 371 41 0.011005599 374 41 6.8799985e-05 380 41 0.00089419982 383 41 0.0011349998 384 41 0.00027509988 385 41 0.0098706968 386 41 0.0067409985 387 41 6.8799985e-05 390 41 0.0011006 394 41 0.00013759999 398 41 0.00061909994 402 41 0.00020639999 412 41 3.4399985e-05 414 41 0.00020639999 415 41 0.0057091974 419 41 0.00013759999 422 41 0.00020639999 423 41 3.4399985e-05 425 41 3.4399985e-05 430 41 6.8799985e-05 431 41 3.4399985e-05 433 41 3.4399985e-05 434 41 3.4399985e-05 438 41 0.00017199999 439 41 0.0002407 441 41 0.00020639999 443 41 0.0044022985 444 41 0.00017199999 445 41 0.016233299 446 41 0.0010317999 447 41 0.00061909994 450 41 0.0037487999 452 41 0.00055029988 453 41 6.8799985e-05 454 41 0.0011006 455 41 0.037281599 456 41 0.024143599 457 41 0.0039207973 458 41 0.0002407 460 41 0.0024074998 463 41 0.0079790987 464 41 0.00020639999 465 41 0.00013759999 467 41 0.0060186982 468 41 0.00058469991 469 41 0.10001379 470 41 0.0058123991 471 41 0.0020635999 473 41 0.00013759999 477 41 3.4399985e-05 478 41 0.00065349997 483 41 0.00037829997 489 41 0.00010319999 490 41 0.00048149982 491 41 0.00020639999 7 42 6.179999e-05 16 42 0.00030909991 18 42 0.00018549999 24 42 0.0051932 60 42 0.0001236 80 42 9.2699993e-05 108 42 3.0899988e-05 113 42 3.0899988e-05 114 42 6.179999e-05 126 42 3.0899988e-05 134 42 0.00046369992 139 42 3.0899988e-05 141 42 3.0899988e-05 150 42 3.0899988e-05 159 42 6.179999e-05 160 42 0.0017001999 162 42 6.179999e-05 163 42 0.00021639999 164 42 0.00018549999 165 42 0.00095829996 166 42 0.00095829996 167 42 0.00027819979 168 42 0.0066460967 170 42 3.0899988e-05 171 42 0.0001546 182 42 0.00055639981 183 42 0.00033999979 191 42 0.00018549999 192 42 0.0002472999 195 42 0.00046369992 197 42 3.0899988e-05 198 42 3.0899988e-05 206 42 6.179999e-05 214 42 3.0899988e-05 219 42 0.00040189992 223 42 0.00021639999 233 42 0.0012365 234 42 0.0051004998 235 42 0.0096753985 236 42 0.00095829996 237 42 0.0012055999 240 42 3.0899988e-05 241 42 0.0017310998 242 42 3.0899988e-05 252 42 0.0011747 254 42 0.0014218998 255 42 0.00092739984 256 42 0.00030909991 257 42 6.179999e-05 258 42 0.0013291999 259 42 0.0002472999 262 42 0.0017001999 264 42 0.0014837999 265 42 0.0059041977 266 42 0.016043298 267 42 0.0001236 268 42 0.00046369992 269 42 0.0011127999 271 42 0.0034311998 272 42 3.0899988e-05 273 42 6.179999e-05 274 42 0.0022874998 277 42 0.0034620999 279 42 0.00018549999 282 42 0.0013291999 285 42 3.0899988e-05 292 42 0.00083459984 293 42 9.2699993e-05 295 42 0.27020085 302 42 0.00037089991 303 42 0.00037089991 304 42 0.0016691999 305 42 0.027573399 306 42 0.0035857998 307 42 0.0002472999 308 42 0.0058732964 309 42 0.0022256998 310 42 0.005656898 311 42 0.0059968978 312 42 0.0004327998 315 42 0.0001546 317 42 0.00068009994 318 42 3.0899988e-05 319 42 0.0012055999 322 42 0.0029365998 324 42 0.016723298 331 42 0.0013291999 334 42 0.0018855999 335 42 0.00021639999 341 42 6.179999e-05 350 42 9.2699993e-05 352 42 0.0012673999 356 42 0.00068009994 358 42 3.0899988e-05 366 42 0.0036166999 368 42 3.0899988e-05 371 42 0.0027202 380 42 0.00021639999 383 42 0.00021639999 384 42 0.0010509999 385 42 0.0040803999 386 42 0.030757297 387 42 3.0899988e-05 390 42 0.00027819979 394 42 3.0899988e-05 397 42 3.0899988e-05 398 42 0.0001236 402 42 0.00033999979 414 42 3.0899988e-05 415 42 0.0010201 419 42 3.0899988e-05 422 42 3.0899988e-05 430 42 3.0899988e-05 438 42 6.179999e-05 439 42 6.179999e-05 441 42 6.179999e-05 443 42 0.0033075998 444 42 6.179999e-05 445 42 0.016383298 446 42 0.00089639984 447 42 0.00018549999 448 42 3.0899988e-05 450 42 0.0011747 452 42 0.00018549999 453 42 3.0899988e-05 454 42 0.00033999979 455 42 0.037341598 456 42 0.013137598 457 42 0.0012365 458 42 0.00021639999 460 42 0.0018546998 463 42 0.0025348 464 42 6.179999e-05 465 42 3.0899988e-05 467 42 0.010324597 468 42 0.00018549999 469 42 0.018485297 470 42 0.0018546998 471 42 0.0034311998 473 42 3.0899988e-05 478 42 0.00018549999 483 42 0.0001236 489 42 3.0899988e-05 490 42 0.0001546 491 42 0.0001236 24 43 0.013648998 134 43 0.00027859979 160 43 0.004735399 163 43 0.0011141999 164 43 0.00055709993 165 43 0.0013927999 166 43 0.0033425998 167 43 0.00083569996 168 43 0.019220099 191 43 0.00027859979 192 43 0.00083569996 233 43 0.00027859979 234 43 0.0019498998 235 43 0.0066851974 236 43 0.00055709993 237 43 0.00083569996 241 43 0.0027854999 252 43 0.00027859979 255 43 0.00055709993 262 43 0.00027859979 264 43 0.00055709993 265 43 0.011977699 266 43 0.0061280988 268 43 0.00027859979 271 43 0.00055709993 274 43 0.0011141999 277 43 0.14512527 279 43 0.00027859979 282 43 0.00027859979 285 43 0.00027859979 292 43 0.00055709993 295 43 0.013091899 302 43 0.00027859979 303 43 0.00027859979 304 43 0.00055709993 305 43 0.021726999 306 43 0.0011141999 308 43 0.0011141999 309 43 0.0011141999 310 43 0.0016712998 311 43 0.0019498998 317 43 0.00027859979 319 43 0.00083569996 322 43 0.0036211999 324 43 0.084958196 326 43 0.067687988 331 43 0.00055709993 334 43 0.00055709993 356 43 0.00083569996 366 43 0.0011141999 371 43 0.0144847 380 43 0.00083569996 384 43 0.00055709993 385 43 0.020055696 386 43 0.029247899 390 43 0.0013927999 402 43 0.00027859979 415 43 0.00027859979 441 43 0.00027859979 443 43 0.0055709966 445 43 0.0231198 446 43 0.00055709993 450 43 0.00055709993 455 43 0.0462396 456 43 0.0064066984 457 43 0.00055709993 460 43 0.00083569996 463 43 0.0011141999 467 43 0.0066851974 469 43 0.010306399 470 43 0.00083569996 471 43 0.0019498998 7 44 2.4899986e-05 9 44 1.24e-05 16 44 8.7099994e-05 18 44 6.2199993e-05 24 44 0.0012937 60 44 7.4599986e-05 80 44 7.4599986e-05 82 44 1.24e-05 108 44 1.24e-05 113 44 1.24e-05 114 44 2.4899986e-05 126 44 1.24e-05 134 44 4.9799986e-05 141 44 2.4899986e-05 150 44 2.4899986e-05 159 44 0.00011199999 160 44 0.0042542964 162 44 2.4899986e-05 163 44 6.2199993e-05 164 44 6.2199993e-05 165 44 0.0010076 166 44 0.00027369987 167 44 7.4599986e-05 168 44 0.022316199 170 44 3.7299993e-05 171 44 0.00018659999 182 44 0.00012439999 183 44 7.4599986e-05 189 44 1.24e-05 191 44 6.2199993e-05 192 44 0.00018659999 194 44 1.24e-05 195 44 0.00080859987 198 44 2.4899986e-05 203 44 1.24e-05 206 44 2.4899986e-05 214 44 0.00013679999 219 44 0.00013679999 220 44 2.4899986e-05 223 44 0.00016169999 233 44 0.00079609989 234 44 0.00083339983 235 44 0.00077119982 236 44 0.00059709977 237 44 0.0010324998 241 44 0.00073389988 242 44 6.2199993e-05 252 44 0.00023629999 254 44 0.0019405 255 44 0.0011816998 256 44 2.4899986e-05 257 44 0.0010698 258 44 0.0005349 259 44 6.2199993e-05 262 44 0.013733096 264 44 0.0010698 265 44 0.015511896 266 44 0.016730897 267 44 8.7099994e-05 268 44 8.7099994e-05 269 44 0.00033589988 271 44 0.0074138977 272 44 0.0007836998 273 44 0.00039809989 274 44 0.0008582999 277 44 0.024605099 279 44 0.0012563998 282 44 0.00075879996 285 44 1.24e-05 292 44 0.00055979984 293 44 1.24e-05 294 44 1.24e-05 295 44 0.0496579 302 44 9.9499986e-05 303 44 9.9499986e-05 304 44 0.00069659995 305 44 0.058265999 306 44 0.0013807998 307 44 0.06998378 308 44 0.0015299998 309 44 0.0016668998 310 44 0.0012314999 311 44 0.0072520971 312 44 0.00059709977 315 44 3.7299993e-05 317 44 0.00038559991 318 44 1.24e-05 319 44 0.00028609997 322 44 0.0016543998 324 44 0.099614382 331 44 0.0011443999 334 44 0.00022389999 335 44 4.9799986e-05 341 44 3.7299993e-05 350 44 2.4899986e-05 352 44 0.00079609989 356 44 0.00062199985 358 44 2.4899986e-05 366 44 0.00087079988 368 44 1.24e-05 371 44 0.00072149979 374 44 0.00073389988 380 44 6.2199993e-05 383 44 8.7099994e-05 384 44 2.4899986e-05 385 44 0.0225899 386 44 0.021619599 387 44 1.24e-05 390 44 7.4599986e-05 394 44 2.4899986e-05 397 44 2.4899986e-05 398 44 2.4899986e-05 402 44 0.00028609997 414 44 0.0061698966 415 44 0.0002487998 422 44 3.7299993e-05 430 44 1.24e-05 438 44 6.2199993e-05 439 44 1.24e-05 441 44 7.4599986e-05 443 44 0.0043661967 444 44 2.4899986e-05 445 44 0.0088318996 446 44 0.0011568998 447 44 0.00026119989 450 44 0.00073389988 452 44 0.00011199999 453 44 1.24e-05 454 44 0.0002115 455 44 0.0447568 456 44 0.016880199 457 44 0.00077119982 458 44 0.00018659999 460 44 0.0016917998 463 44 0.0015673998 464 44 3.7299993e-05 465 44 2.4899986e-05 467 44 0.0087572969 468 44 0.00011199999 469 44 0.035539199 470 44 0.0011443999 471 44 0.0028859 473 44 2.4899986e-05 478 44 0.00012439999 483 44 7.4599986e-05 489 44 1.24e-05 490 44 8.7099994e-05 491 44 6.2199993e-05 16 45 0.00012079999 18 45 6.0399994e-05 24 45 0.010453198 60 45 0.00024169999 108 45 6.0399994e-05 113 45 6.0399994e-05 114 45 0.00012079999 126 45 6.0399994e-05 134 45 6.0399994e-05 141 45 6.0399994e-05 150 45 6.0399994e-05 160 45 0.00030209986 163 45 6.0399994e-05 164 45 6.0399994e-05 165 45 0.0001813 166 45 0.0001813 168 45 0.00030209986 171 45 6.0399994e-05 182 45 0.00012079999 183 45 6.0399994e-05 191 45 6.0399994e-05 192 45 0.00012079999 198 45 6.0399994e-05 206 45 0.00012079999 214 45 0.0033232998 219 45 6.0399994e-05 220 45 0.0010271999 223 45 0.00024169999 233 45 0.0045316964 234 45 0.060120799 235 45 0.0087008998 236 45 0.00036249985 237 45 0.0016917998 241 45 0.0070090964 242 45 0.00012079999 252 45 0.00024169999 254 45 0.00030209986 255 45 0.00024169999 256 45 6.0399994e-05 259 45 6.0399994e-05 264 45 0.00036249985 265 45 0.0016917998 266 45 0.023867097 268 45 0.00012079999 269 45 0.00012079999 271 45 0.0001813 274 45 0.00036249985 277 45 0.088157058 279 45 6.0399994e-05 282 45 0.00012079999 292 45 0.00060419994 295 45 0.0069485977 302 45 0.00012079999 303 45 0.00012079999 304 45 0.00024169999 305 45 0.010876097 306 45 0.0009062998 307 45 0.086344361 308 45 0.006525699 309 45 0.0087008998 310 45 0.0009062998 311 45 0.0032627999 312 45 6.0399994e-05 317 45 0.0013897 318 45 6.0399994e-05 319 45 0.00024169999 322 45 0.004048299 324 45 0.083504498 331 45 0.0018126999 334 45 0.00024169999 335 45 6.0399994e-05 341 45 0.00012079999 352 45 0.00012079999 356 45 0.0029002998 358 45 6.0399994e-05 366 45 0.00066469982 371 45 0.012144998 374 45 0.0039274991 380 45 6.0399994e-05 385 45 0.0018730999 386 45 0.0012689 387 45 6.0399994e-05 390 45 6.0399994e-05 394 45 6.0399994e-05 402 45 0.00042299996 414 45 0.039154097 415 45 0.0001813 422 45 6.0399994e-05 430 45 6.0399994e-05 443 45 0.0048942976 444 45 0.00012079999 445 45 0.011842899 446 45 0.0025982 447 45 0.00078549981 448 45 0.0012084998 450 45 0.0024772999 452 45 0.00036249985 453 45 6.0399994e-05 454 45 0.00072509982 455 45 0.067190289 456 45 0.028398797 457 45 0.0025982 458 45 0.00030209986 460 45 0.0029002998 463 45 0.0053172 464 45 0.00012079999 465 45 6.0399994e-05 467 45 0.013534699 468 45 0.00036249985 469 45 0.015528698 470 45 0.0038671 471 45 0.0045920983 473 45 6.0399994e-05 478 45 0.00042299996 483 45 0.00024169999 489 45 6.0399994e-05 490 45 0.00030209986 491 45 0.00024169999 24 46 0.0098591968 214 46 0.0031689999 220 46 0.0014084999 233 46 0.015140798 234 46 0.058098599 235 46 0.0056337975 237 46 0.0021126999 265 46 0.0014084999 266 46 0.0038731999 277 46 0.20352107 295 46 0.011619698 305 46 0.0014084999 306 46 0.00035209977 307 46 0.12746477 311 46 0.00070419977 317 46 0.00035209977 322 46 0.0031689999 324 46 0.025704198 331 46 0.0024647999 356 46 0.0028168999 371 46 0.021830998 374 46 0.0021126999 385 46 0.0028168999 386 46 0.0017605999 390 46 0.0014084999 402 46 0.00070419977 414 46 0.0098591968 443 46 0.0056337975 445 46 0.010211296 446 46 0.0024647999 448 46 0.0010562998 450 46 0.00070419977 455 46 0.063028157 456 46 0.020774599 457 46 0.00070419977 458 46 0.00035209977 460 46 0.0021126999 463 46 0.0014084999 467 46 0.019718297 469 46 0.011971798 470 46 0.0010562998 471 46 0.0063379966 16 47 0.00018589999 24 47 0.0015798998 60 47 9.2899994e-05 114 47 9.2899994e-05 160 47 0.00037169992 165 47 0.00046469993 214 47 9.2899994e-05 220 47 9.2899994e-05 223 47 9.2899994e-05 233 47 0.00092939986 234 47 0.0045538992 235 47 0.00083639985 236 47 9.2899994e-05 237 47 0.00065059983 241 47 0.010408897 254 47 0.0028809998 255 47 0.00027879979 258 47 9.2899994e-05 259 47 0.00018589999 264 47 0.00055759982 265 47 0.019330896 266 47 0.0096653998 271 47 0.020817798 274 47 0.00037169992 277 47 0.013196997 282 47 0.20836425 292 47 0.00027879979 295 47 0.00055759982 302 47 9.2899994e-05 306 47 0.00046469993 307 47 0.071840048 308 47 0.0070631988 309 47 0.0010223 310 47 0.0055761971 311 47 0.0013010998 312 47 9.2899994e-05 317 47 0.00027879979 319 47 0.00018589999 322 47 0.00018589999 324 47 0.096096694 331 47 0.00065059983 350 47 9.2899994e-05 356 47 0.00083639985 371 47 0.004089199 374 47 0.00065059983 385 47 0.0043679997 386 47 0.00046469993 402 47 9.2899994e-05 414 47 0.0098512992 443 47 0.0029739998 445 47 0.0092936978 446 47 0.00065059983 447 47 0.00018589999 448 47 9.2899994e-05 450 47 0.00074349996 452 47 9.2899994e-05 454 47 0.00018589999 455 47 0.039405197 456 47 0.029182199 457 47 0.00074349996 458 47 9.2899994e-05 460 47 0.0072490983 463 47 0.0015798998 467 47 0.015613399 468 47 9.2899994e-05 469 47 0.022676598 470 47 0.0012081999 471 47 0.0016728998 478 47 9.2899994e-05 483 47 9.2899994e-05 490 47 9.2899994e-05 7 48 0.00019979999 16 48 0.0013486999 18 48 0.00094909989 24 48 0.012986999 60 48 0.00024979981 80 48 9.9899989e-05 82 48 4.9999988e-05 108 48 4.9999988e-05 113 48 4.9999988e-05 114 48 9.9899989e-05 126 48 4.9999988e-05 134 48 4.9999988e-05 139 48 9.9899989e-05 141 48 4.9999988e-05 150 48 9.9899989e-05 154 48 4.9999988e-05 160 48 0.0023975999 163 48 0.00024979981 165 48 0.0012987 166 48 4.9999988e-05 168 48 0.00089909998 170 48 4.9999988e-05 171 48 4.9999988e-05 182 48 0.00014989999 183 48 9.9899989e-05 189 48 4.9999988e-05 191 48 9.9899989e-05 192 48 9.9899989e-05 194 48 4.9999988e-05 197 48 4.9999988e-05 198 48 4.9999988e-05 203 48 4.9999988e-05 206 48 9.9899989e-05 214 48 4.9999988e-05 215 48 9.9899989e-05 219 48 0.00074929977 220 48 0.00069929985 223 48 0.00034969999 233 48 0.0010988999 234 48 0.0015484998 235 48 0.0051448978 236 48 0.00019979999 237 48 0.0016982998 241 48 0.0035963999 242 48 0.00024979981 252 48 4.9999988e-05 254 48 0.00069929985 255 48 0.00059939991 256 48 4.9999988e-05 257 48 9.9899989e-05 258 48 0.015734296 259 48 4.9999988e-05 264 48 0.0013486999 265 48 0.075074852 266 48 0.022827197 267 48 4.9999988e-05 268 48 4.9999988e-05 269 48 0.00029969984 271 48 0.0143856 273 48 9.9899989e-05 274 48 0.004245799 277 48 0.012287699 279 48 0.00049949996 282 48 0.084765196 285 48 4.9999988e-05 292 48 0.00014989999 293 48 4.9999988e-05 295 48 0.0023476998 302 48 4.9999988e-05 303 48 0.0024974998 304 48 0.0056942999 305 48 0.017981999 306 48 0.0028471998 307 48 0.0020978998 308 48 0.0065933987 309 48 0.0019480998 310 48 0.0019480998 311 48 0.0049450994 312 48 0.00039959978 317 48 0.0013985999 318 48 4.9999988e-05 319 48 0.00069929985 322 48 0.0015484998 324 48 0.00089909998 331 48 0.0017982 334 48 4.9999988e-05 335 48 0.0021478999 336 48 0.0027971999 341 48 0.00014989999 350 48 0.00089909998 352 48 0.0015484998 356 48 9.9899989e-05 358 48 9.9899989e-05 366 48 0.00014989999 368 48 0.039210796 371 48 0.0091408975 374 48 9.9899989e-05 380 48 9.9899989e-05 384 48 4.9999988e-05 385 48 0.0014984999 386 48 0.0014984999 387 48 4.9999988e-05 394 48 9.9899989e-05 402 48 0.00039959978 414 48 0.0031468999 415 48 0.0016982998 422 48 0.00014989999 430 48 4.9999988e-05 438 48 4.9999988e-05 439 48 4.9999988e-05 441 48 4.9999988e-05 443 48 0.0033965998 444 48 9.9899989e-05 445 48 0.015534498 446 48 0.00089909998 447 48 0.00049949996 450 48 0.0026473999 452 48 0.00039959978 453 48 4.9999988e-05 454 48 0.0007991998 455 48 0.0412088 456 48 0.011438597 457 48 0.0027971999 458 48 0.00034969999 460 48 0.0053945966 463 48 0.0056942999 464 48 0.00014989999 465 48 9.9899989e-05 467 48 0.016683299 468 48 0.00039959978 469 48 0.026923098 470 48 0.0041458979 471 48 0.0046453997 473 48 9.9899989e-05 478 48 0.00044959993 483 48 0.00029969984 489 48 4.9999988e-05 490 48 0.00034969999 491 48 0.00019979999 7 49 0.00058139977 16 49 0.0027131999 18 49 0.0017441998 24 49 0.014534898 60 49 0.00019379999 114 49 0.00019379999 160 49 0.006395299 165 49 0.0015503999 166 49 0.00019379999 168 49 0.0015503999 192 49 0.00019379999 215 49 0.00019379999 219 49 0.00019379999 223 49 0.00038759992 233 49 0.00058139977 234 49 0.0021317999 235 49 0.006007798 236 49 0.00058139977 237 49 0.0015503999 241 49 0.0017441998 252 49 0.00038759992 254 49 0.0025193999 255 49 0.00038759992 257 49 0.00019379999 258 49 0.00038759992 259 49 0.00019379999 264 49 0.00038759992 265 49 0.014728699 266 49 0.032364298 267 49 0.00038759992 268 49 0.00019379999 269 49 0.00019379999 271 49 0.00058139977 273 49 0.00019379999 274 49 0.0019379999 277 49 0.0093022995 279 49 0.00019379999 282 49 0.00077519985 292 49 0.00058139977 295 49 0.013372097 302 49 0.00019379999 303 49 0.00058139977 304 49 0.00077519985 305 49 0.06996119 306 49 0.0029069998 307 49 0.0050387979 308 49 0.0023255998 309 49 0.0032945999 310 49 0.0029069998 311 49 0.0071704984 312 49 0.00038759992 317 49 0.0015503999 319 49 0.00038759992 322 49 0.0029069998 324 49 0.017829496 326 49 0.00096899993 331 49 0.0017441998 334 49 0.012984499 341 49 0.00019379999 352 49 0.0034883998 356 49 0.00019379999 366 49 0.0038759999 371 49 0.0054263994 380 49 0.00019379999 385 49 0.0050387979 386 49 0.0067828968 390 49 0.00038759992 394 49 0.00019379999 402 49 0.00038759992 415 49 0.00038759992 441 49 0.0034883998 443 49 0.0032945999 444 49 0.00019379999 445 49 0.049418598 446 49 0.00038759992 447 49 0.00038759992 450 49 0.0029069998 452 49 0.00038759992 454 49 0.00077519985 455 49 0.020736396 456 49 0.0073642991 457 49 0.0029069998 458 49 0.00038759992 460 49 0.0027131999 463 49 0.0058139972 464 49 0.00019379999 467 49 0.013953499 468 49 0.00038759992 469 49 0.096705377 470 49 0.0044573992 471 49 0.0046511963 473 49 0.00019379999 478 49 0.00038759992 483 49 0.00038759992 490 49 0.00038759992 491 49 0.00019379999 7 50 8.6299988e-05 9 50 9.5999994e-06 16 50 0.00047939993 18 50 0.00035479991 24 50 0.043887198 60 50 0.00012469999 82 50 9.5999994e-06 83 50 9.5999994e-06 84 50 9.5999994e-06 108 50 1.9199986e-05 113 50 1.9199986e-05 114 50 3.8399987e-05 126 50 2.8799986e-05 127 50 9.5999994e-06 141 50 4.7899986e-05 150 50 3.8399987e-05 159 50 9.5999994e-06 160 50 0.0011026999 165 50 0.0043340996 168 50 0.00093969982 170 50 0.00010549999 171 50 3.8399987e-05 189 50 9.5999994e-06 192 50 0.00020139999 194 50 9.5999994e-06 198 50 4.7899986e-05 201 50 9.5999994e-06 203 50 9.5999994e-06 204 50 1.9199986e-05 206 50 4.7899986e-05 207 50 9.5999994e-06 215 50 0.00070959982 218 50 9.5999994e-06 220 50 0.0011697998 223 50 0.00024929992 233 50 0.005781997 234 50 0.043580398 235 50 0.032093197 237 50 0.0017450999 241 50 0.00012469999 242 50 3.8399987e-05 248 50 9.5999994e-06 250 50 9.5999994e-06 252 50 9.5999994e-06 254 50 0.016645897 255 50 0.00012469999 258 50 0.0015628999 265 50 0.070208073 266 50 0.032745197 269 50 4.7899986e-05 270 50 0.00014379999 274 50 0.0026464998 277 50 0.010806397 279 50 0.00068079983 282 50 0.00017259999 295 50 0.0011409998 305 50 0.028391998 308 50 0.013232298 309 50 0.0077283978 311 50 0.016003497 312 50 1.9199986e-05 317 50 0.00064239977 318 50 1.9199986e-05 319 50 2.8799986e-05 322 50 0.007440798 331 50 0.0019943998 341 50 4.7899986e-05 358 50 3.8399987e-05 371 50 0.00026849983 385 50 0.0078818984 386 50 0.0014094999 387 50 1.9199986e-05 394 50 4.7899986e-05 397 50 2.8799986e-05 402 50 0.000489 412 50 9.5999994e-06 419 50 9.5999994e-06 422 50 5.7499987e-05 423 50 9.5999994e-06 425 50 9.5999994e-06 430 50 1.9199986e-05 431 50 9.5999994e-06 433 50 9.5999994e-06 434 50 9.5999994e-06 438 50 0.00026849983 441 50 0.0048230998 443 50 0.0090708993 444 50 4.7899986e-05 445 50 0.026196197 446 50 0.0030491999 447 50 0.00045069982 448 50 0.00089169992 450 50 0.0012464998 452 50 0.00018219999 453 50 1.9199986e-05 454 50 0.00037399982 455 50 0.047914498 456 50 0.018026698 457 50 0.0013040998 458 50 0.00030679977 460 50 0.00373 463 50 0.0026464998 464 50 6.7099987e-05 465 50 3.8399987e-05 467 50 0.0151213 468 50 0.00019179999 469 50 0.0253428 470 50 0.0019272999 471 50 0.0050244965 473 50 3.8399987e-05 477 50 9.5999994e-06 478 50 0.00022049999 483 50 0.00013419999 489 50 2.8799986e-05 490 50 0.00015339999 491 50 8.6299988e-05 7 51 0.0001736 16 51 0.00086809997 18 51 0.00069439993 24 51 0.0022568998 60 51 0.0001736 114 51 0.0001736 134 51 0.0062499978 135 51 0.0001736 139 51 0.0012152998 142 51 0.0001736 160 51 0.0446181 161 51 0.00086809997 162 51 0.0027778 163 51 0.043402798 164 51 0.0119792 165 51 0.027777798 167 51 0.016145799 170 51 0.00069439993 171 51 0.0024305999 177 51 0.0015624999 182 51 0.0019097 191 51 0.0031249998 192 51 0.0015624999 197 51 0.00086809997 214 51 0.0001736 215 51 0.0001736 219 51 0.0010416999 223 51 0.0001736 233 51 0.0086805969 234 51 0.00069439993 235 51 0.0001736 236 51 0.0041666999 237 51 0.0012152998 240 51 0.00052079977 241 51 0.013715297 242 51 0.00034719985 252 51 0.00069439993 254 51 0.0024305999 255 51 0.004513897 256 51 0.0043402985 257 51 0.00069439993 258 51 0.0013889 259 51 0.0032986 264 51 0.0071180984 265 51 0.0015624999 266 51 0.025694396 267 51 0.0001736 268 51 0.0062499978 269 51 0.0013889 271 51 0.0017360998 273 51 0.00034719985 274 51 0.0036457998 277 51 0.0029513999 279 51 0.0017360998 282 51 0.0012152998 292 51 0.0034721999 295 51 0.0119792 302 51 0.0039930977 303 51 0.013888899 304 51 0.0024305999 306 51 0.0170139 307 51 0.00052079977 308 51 0.013020799 309 51 0.0010416999 310 51 0.0043402985 311 51 0.0019097 312 51 0.0001736 317 51 0.00086809997 319 51 0.0050346963 322 51 0.0043402985 324 51 0.00034719985 331 51 0.0012152998 341 51 0.0001736 350 51 0.0019097 352 51 0.00034719985 366 51 0.011805598 368 51 0.00086809997 371 51 0.0085068978 380 51 0.00069439993 383 51 0.0017360998 385 51 0.0093749985 386 51 0.0043402985 390 51 0.0013889 398 51 0.00052079977 402 51 0.00034719985 415 51 0.0012152998 438 51 0.00052079977 439 51 0.0010416999 443 51 0.0083332993 445 51 0.0088541992 446 51 0.00086809997 447 51 0.00034719985 450 51 0.0019097 452 51 0.00034719985 454 51 0.00052079977 455 51 0.0432292 456 51 0.057638898 457 51 0.0019097 458 51 0.0001736 460 51 0.0024305999 463 51 0.0039930977 464 51 0.0001736 467 51 0.0105903 468 51 0.00034719985 469 51 0.031423599 470 51 0.0029513999 471 51 0.0034721999 478 51 0.0001736 483 51 0.0001736 490 51 0.0001736 491 51 0.0001736 24 52 0.011103399 60 52 6.9799993e-05 114 52 6.9799993e-05 141 52 6.9799993e-05 159 52 0.00013969999 160 52 0.035265397 162 52 0.0025837999 163 52 0.014804497 165 52 0.020530697 168 52 0.015642498 170 52 0.00055869995 171 52 0.00069829985 191 52 0.0038407999 192 52 0.00090779993 197 52 0.00013969999 198 52 6.9799993e-05 214 52 6.9799993e-05 223 52 0.0004888 233 52 0.0055865981 234 52 0.0023742998 235 52 0.0035615 236 52 0.0065641999 237 52 0.00090779993 241 52 0.0147346 254 52 0.0045390986 255 52 0.00027929991 262 52 0.0047485977 264 52 0.0111732 265 52 0.032681599 266 52 0.071298897 268 52 0.0036312998 274 52 0.00069829985 277 52 0.008379899 279 52 0.011871498 292 52 0.00090779993 293 52 0.0037010999 295 52 0.015921798 304 52 6.9799993e-05 306 52 0.0050278977 307 52 0.0097764991 308 52 0.099860251 309 52 0.0023742998 310 52 0.046159197 311 52 0.00083799986 317 52 0.0004888 319 52 0.0030027998 322 52 0.037150797 324 52 0.0017457998 331 52 0.00090779993 341 52 6.9799993e-05 350 52 0.0011172998 356 52 0.00020949999 366 52 6.9799993e-05 371 52 0.0023742998 385 52 0.0071228966 386 52 0.0027234999 398 52 0.00020949999 402 52 0.00020949999 415 52 0.0007681998 438 52 0.00034919987 443 52 0.010125697 444 52 6.9799993e-05 445 52 0.016969297 446 52 0.0011172998 447 52 0.00083799986 450 52 0.00090779993 452 52 0.00013969999 454 52 0.00020949999 455 52 0.051815599 456 52 0.054189898 457 52 0.00097769988 458 52 0.00013969999 460 52 0.002933 463 52 0.0019552999 464 52 6.9799993e-05 467 52 0.0078910999 468 52 0.00013969999 469 52 0.0062150992 470 52 0.0014664999 471 52 0.0025139998 478 52 0.00013969999 483 52 6.9799993e-05 490 52 0.00013969999 491 52 6.9799993e-05 24 53 0.00089739985 60 53 4.269999e-05 80 53 0.00029909983 114 53 4.269999e-05 160 53 0.00029909983 192 53 4.269999e-05 214 53 0.014828399 220 53 0.00051279995 223 53 0.021152899 233 53 0.0012392998 234 53 0.021323897 237 53 0.0061107986 241 53 0.00025639986 242 53 0.00025639986 254 53 0.0276911 273 53 0.012050796 277 53 0.17024904 312 53 0.0014101998 317 53 0.00025639986 319 53 0.00081189978 322 53 0.00094009982 324 53 0.0018374999 331 53 0.0071363971 333 53 0.048630398 341 53 4.269999e-05 350 53 0.006794598 356 53 0.00068369997 374 53 0.0014528998 397 53 8.5499996e-05 402 53 0.0017092999 438 53 8.5499996e-05 443 53 0.014272898 445 53 0.0099567994 446 53 0.0043587983 447 53 0.00017089999 448 53 0.00042729988 450 53 0.00047009997 452 53 8.5499996e-05 454 53 0.00012819999 455 53 0.041322999 456 53 0.0062817968 457 53 0.00051279995 458 53 0.00098289992 460 53 0.0068799965 463 53 0.0010255999 464 53 4.269999e-05 467 53 0.053459298 468 53 8.5499996e-05 469 53 0.00068369997 470 53 0.0007691998 471 53 0.017606098 478 53 8.5499996e-05 483 53 4.269999e-05 490 53 4.269999e-05 491 53 8.5499996e-05 60 54 0.00026829983 114 54 0.00026829983 214 54 0.0085859969 220 54 0.035148896 234 54 0.036222197 237 54 0.0053661987 317 54 0.0018781999 331 54 0.0059028976 341 54 0.00026829983 394 54 0.00026829983 402 54 0.0016098998 443 54 0.0026830998 444 54 0.00026829983 445 54 0.007244397 446 54 0.0021464999 447 54 0.00053659989 448 54 0.00053659989 450 54 0.0037564 452 54 0.00053659989 454 54 0.00080489996 455 54 0.0238798 456 54 0.0056345984 457 54 0.0040246993 458 54 0.00080489996 460 54 0.0053661987 463 54 0.0080493987 464 54 0.00026829983 467 54 0.042124998 468 54 0.00053659989 469 54 0.0050978996 470 54 0.0059028976 471 54 0.014488898 478 54 0.00053659989 483 54 0.00026829983 490 54 0.00053659989 491 54 0.00026829983 7 55 0.00027599977 16 55 0.0018398999 18 55 0.0012878999 24 55 0.011315499 60 55 0.00018399999 80 55 9.1999987e-05 108 55 9.1999987e-05 113 55 9.1999987e-05 114 55 0.00018399999 126 55 9.1999987e-05 134 55 0.0016558999 139 55 9.1999987e-05 150 55 9.1999987e-05 160 55 0.0030359 162 55 0.00018399999 164 55 0.00055199978 165 55 0.0029438999 166 55 0.0033119 167 55 0.0010119998 168 55 0.0030359 170 55 9.1999987e-05 171 55 0.00027599977 182 55 0.0033119 183 55 0.0022078999 191 55 0.00045999978 192 55 0.00073599978 195 55 9.1999987e-05 197 55 9.1999987e-05 206 55 9.1999987e-05 214 55 0.00027599977 215 55 0.00018399999 219 55 0.0010119998 220 55 0.00027599977 223 55 0.00027599977 233 55 0.0074516982 234 55 0.010395598 235 55 0.0068076998 236 55 0.00055199978 237 55 0.0018398999 241 55 0.0062556975 242 55 9.1999987e-05 252 55 0.0014718999 254 55 0.0050597973 255 55 0.0022998999 256 55 0.00064399978 258 55 0.0018398999 259 55 0.00073599978 262 55 0.00091999979 264 55 0.0037717998 265 55 0.022999097 266 55 0.025758997 267 55 0.00036799978 268 55 0.0013798999 269 55 0.0022998999 271 55 0.0046917982 272 55 0.00018399999 273 55 0.00027599977 274 55 0.0056117997 277 55 0.014903396 279 55 0.00055199978 282 55 0.0035879 285 55 9.1999987e-05 292 55 0.0022998999 293 55 0.00018399999 295 55 0.018215299 302 55 0.0011039998 303 55 0.0013798999 304 55 0.0048757978 305 55 0.025482997 306 55 0.010487597 307 55 0.027506899 308 55 0.014075398 309 55 0.0060717985 310 55 0.0053357966 311 55 0.014167398 312 55 0.00036799978 315 55 0.00018399999 317 55 0.0011039998 319 55 0.0043237992 322 55 0.0045997985 324 55 0.0111316 326 55 0.0011039998 331 55 0.0018398999 334 55 0.0034959 335 55 0.0013798999 336 55 0.00018399999 341 55 9.1999987e-05 350 55 0.00045999978 352 55 0.0046917982 356 55 0.00082799979 358 55 9.1999987e-05 366 55 0.0085556991 368 55 0.0033119 371 55 0.010763597 374 55 0.00027599977 380 55 0.00073599978 383 55 0.00064399978 384 55 0.00027599977 385 55 0.011959497 386 55 0.0081876963 387 55 9.1999987e-05 390 55 0.0010119998 394 55 9.1999987e-05 398 55 0.00027599977 402 55 0.00055199978 414 55 0.0022078999 415 55 0.0027598999 419 55 9.1999987e-05 422 55 9.1999987e-05 438 55 0.00018399999 439 55 0.00018399999 441 55 0.0010119998 443 55 0.0037717998 444 55 9.1999987e-05 445 55 0.017295297 446 55 0.0010119998 447 55 0.00027599977 448 55 9.1999987e-05 450 55 0.0022078999 452 55 0.00036799978 454 55 0.00064399978 455 55 0.037074499 456 55 0.023643099 457 55 0.0022998999 458 55 0.00036799978 460 55 0.0028518999 463 55 0.0045997985 464 55 9.1999987e-05 467 55 0.015639398 468 55 0.00036799978 469 55 0.081600666 470 55 0.0034039 471 55 0.004783798 473 55 9.1999987e-05 478 55 0.00036799978 483 55 0.00018399999 490 55 0.00027599977 491 55 9.1999987e-05 7 56 9.2099988e-05 16 56 0.00032229978 18 56 0.00023019999 24 56 0.017541397 60 56 9.2099988e-05 80 56 0.00013809999 108 56 4.5999986e-05 113 56 4.5999986e-05 114 56 9.2099988e-05 126 56 4.5999986e-05 150 56 4.5999986e-05 159 56 4.5999986e-05 160 56 0.0020717999 165 56 0.0017955999 166 56 4.5999986e-05 168 56 0.0075045973 170 56 9.2099988e-05 171 56 9.2099988e-05 191 56 4.5999986e-05 192 56 0.00013809999 195 56 4.5999986e-05 206 56 4.5999986e-05 214 56 0.00023019999 215 56 0.00013809999 217 56 4.5999986e-05 220 56 0.0029006 223 56 0.00018419999 233 56 0.0014272998 234 56 0.037891299 235 56 0.0029006 236 56 0.00023019999 237 56 0.0029006 240 56 9.2099988e-05 241 56 0.004557997 242 56 0.0014272998 252 56 4.5999986e-05 254 56 0.015009198 255 56 0.00013809999 257 56 4.5999986e-05 258 56 0.00023019999 259 56 4.5999986e-05 262 56 0.0035911999 264 56 0.00064459979 265 56 0.0081951991 266 56 0.0084714964 267 56 4.5999986e-05 268 56 4.5999986e-05 271 56 0.0005063999 272 56 0.00018419999 273 56 0.00018419999 274 56 0.0004143999 277 56 0.011325996 279 56 0.00073659979 282 56 0.00027619977 292 56 0.00013809999 293 56 4.5999986e-05 295 56 0.016482498 302 56 4.5999986e-05 303 56 9.2099988e-05 304 56 4.5999986e-05 305 56 0.026058897 306 56 0.0006905999 307 56 0.027532198 308 56 0.0050183982 309 56 0.0010128999 310 56 0.00032229978 311 56 0.0090699978 312 56 0.0005524999 317 56 0.00059849978 319 56 0.0004143999 322 56 0.0040975995 324 56 0.0031768 331 56 0.0031768 333 56 0.00027619977 334 56 4.5999986e-05 341 56 4.5999986e-05 352 56 0.0015192998 356 56 0.00087479991 358 56 4.5999986e-05 366 56 0.00023019999 368 56 4.5999986e-05 371 56 0.00013809999 374 56 0.0005524999 380 56 4.5999986e-05 385 56 0.0031307999 386 56 0.0054787993 387 56 4.5999986e-05 394 56 4.5999986e-05 397 56 4.5999986e-05 402 56 0.00078269979 414 56 0.0019336999 415 56 4.5999986e-05 422 56 4.5999986e-05 438 56 9.2099988e-05 441 56 0.00036829989 443 56 0.0048802979 444 56 4.5999986e-05 445 56 0.013075497 446 56 0.0022559999 447 56 0.00013809999 448 56 0.00073659979 450 56 0.0011509999 452 56 0.00018419999 454 56 0.00036829989 455 56 0.034300197 456 56 0.012522999 457 56 0.0011970999 458 56 0.00046039978 460 56 0.0031768 463 56 0.0023941 464 56 4.5999986e-05 467 56 0.0240792 468 56 0.00018419999 469 56 0.034990799 470 56 0.0017494999 471 56 0.0079189986 473 56 4.5999986e-05 478 56 0.00018419999 483 56 0.00013809999 490 56 0.00013809999 491 56 9.2099988e-05 7 57 0.000103 16 57 0.00056669977 18 57 0.00036059995 24 57 0.0215353 60 57 0.000103 80 57 5.1499999e-05 114 57 5.1499999e-05 126 57 5.1499999e-05 134 57 0.00025759987 141 57 5.1499999e-05 159 57 0.000103 160 57 0.0035548999 161 57 5.1499999e-05 162 57 0.000103 163 57 0.0012365 164 57 0.00077279983 165 57 0.0034002999 166 57 0.0051519983 167 57 0.0014425998 168 57 0.013137598 170 57 0.000103 171 57 0.00025759987 177 57 0.000103 182 57 0.00056669977 183 57 0.00030909991 191 57 0.00025759987 192 57 0.0001546 198 57 5.1499999e-05 214 57 0.000103 215 57 0.0001546 219 57 0.00036059995 220 57 0.00025759987 223 57 0.00030909991 233 57 0.0026789999 234 57 0.014425598 235 57 0.024626497 236 57 0.0011333998 237 57 0.0017517 241 57 0.0031941999 242 57 5.1499999e-05 252 57 0.00041219988 254 57 0.0047397986 255 57 0.00066979998 256 57 5.1499999e-05 257 57 0.0021122999 258 57 0.0019061998 259 57 0.00041219988 264 57 0.0011333998 265 57 0.024574999 266 57 0.023132399 267 57 0.0001546 268 57 0.0002061 269 57 0.0013909999 271 57 0.0048428997 273 57 0.0010303999 274 57 0.0029365998 277 57 0.0092735998 279 57 0.00041219988 282 57 0.0042245984 285 57 5.1499999e-05 292 57 0.00087579992 293 57 5.1499999e-05 294 57 5.1499999e-05 295 57 0.0015455999 302 57 0.00061819982 303 57 0.00077279983 304 57 0.0022153999 305 57 0.0303967 306 57 0.0026789999 307 57 0.018341098 308 57 0.0065944977 309 57 0.0045852996 310 57 0.0032972998 311 57 0.013807297 312 57 0.0002061 315 57 5.1499999e-05 317 57 0.00041219988 319 57 0.00097889989 322 57 0.0067490973 324 57 0.033642497 331 57 0.0020607999 334 57 0.00072129979 335 57 0.00036059995 336 57 0.00025759987 341 57 5.1499999e-05 350 57 0.00025759987 351 57 0.00030909991 352 57 0.00051519996 354 57 0.0002061 356 57 0.00051519996 358 57 5.1499999e-05 366 57 0.0015970999 368 57 0.0037608999 371 57 0.0026274999 374 57 0.000103 380 57 0.0001546 383 57 0.00036059995 385 57 0.0088613965 386 57 0.0010819 390 57 0.0001546 394 57 5.1499999e-05 398 57 5.1499999e-05 402 57 0.00046369992 414 57 0.0016486 415 57 0.00061819982 438 57 0.000103 441 57 0.00082429987 443 57 0.0053580999 444 57 5.1499999e-05 445 57 0.026944898 446 57 0.0012879998 447 57 0.000103 448 57 0.000103 450 57 0.00087579992 452 57 0.000103 454 57 0.0002061 455 57 0.033642497 456 57 0.014270999 457 57 0.00087579992 458 57 0.00030909991 460 57 0.0032456999 463 57 0.0017517 464 57 5.1499999e-05 467 57 0.017568298 468 57 0.0001546 469 57 0.059659999 470 57 0.0013394998 471 57 0.0050488971 473 57 5.1499999e-05 478 57 0.000103 483 57 0.000103 490 57 0.000103 491 57 0.000103 16 58 0.00056229997 24 58 0.017992698 160 58 0.0061849989 165 58 0.0022490998 168 58 0.0044981986 192 58 0.0014056999 215 58 0.00028109993 220 58 0.00028109993 223 58 0.00028109993 233 58 0.0016867998 234 58 0.0132134 235 58 0.0081528984 237 58 0.0022490998 241 58 0.0042169988 254 58 0.0053415969 258 58 0.00028109993 262 58 0.00056229997 265 58 0.022209696 266 58 0.025021099 267 58 0.00028109993 273 58 0.00028109993 274 58 0.0011244998 277 58 0.024739899 279 58 0.00028109993 285 58 0.00028109993 292 58 0.00028109993 295 58 0.021366298 305 58 0.027832396 308 58 0.0030924999 309 58 0.0047792979 311 58 0.0168681 317 58 0.00056229997 319 58 0.00028109993 322 58 0.0084340982 326 58 0.0033735998 331 58 0.0025301999 334 58 0.0084340982 356 58 0.0014056999 366 58 0.0014056999 371 58 0.022490896 380 58 0.0014056999 384 58 0.0008433999 385 58 0.019117199 386 58 0.016586997 390 58 0.0025301999 402 58 0.00056229997 419 58 0.00028109993 441 58 0.0016867998 443 58 0.0033735998 445 58 0.030081499 446 58 0.0008433999 450 58 0.0011244998 452 58 0.00028109993 454 58 0.00028109993 455 58 0.027551297 456 58 0.014900196 457 58 0.0011244998 458 58 0.00028109993 460 58 0.0025301999 463 58 0.0022490998 467 58 0.0205229 468 58 0.00028109993 469 58 0.0019679999 470 58 0.0016867998 471 58 0.0064660981 478 58 0.00028109993 9 59 9.7999991e-06 16 59 9.7999991e-06 24 59 0.00025509996 60 59 0.00025509996 79 59 9.7999991e-06 82 59 1.9599989e-05 83 59 9.7999991e-06 84 59 9.7999991e-06 108 59 2.9399991e-05 113 59 3.9199993e-05 114 59 7.8499987e-05 126 59 3.9199993e-05 127 59 9.7999991e-06 134 59 0.0015109999 135 59 2.9399991e-05 139 59 0.00052979984 141 59 2.9399991e-05 142 59 4.9099996e-05 150 59 7.8499987e-05 154 59 2.9399991e-05 158 59 0.0020309999 160 59 0.0040913969 161 59 0.00024529989 162 59 0.00037279981 163 59 0.0039147995 164 59 0.0097917989 165 59 0.0057003982 168 59 1.9599989e-05 171 59 6.8699999e-05 177 59 0.0009321 182 59 0.0027275998 189 59 1.9599989e-05 191 59 0.000206 192 59 0.00038259989 194 59 1.9599989e-05 195 59 0.00010789999 196 59 9.7999991e-06 197 59 0.006004598 201 59 2.9399991e-05 203 59 2.9399991e-05 204 59 2.9399991e-05 206 59 7.8499987e-05 207 59 1.9599989e-05 209 59 9.7999991e-06 214 59 2.9399991e-05 218 59 3.9199993e-05 219 59 0.0039147995 223 59 3.9199993e-05 233 59 0.056719799 234 59 0.0032769998 235 59 0.00036299997 236 59 0.026902899 237 59 0.0011478998 240 59 0.00089279981 241 59 0.0093992986 242 59 0.00027469988 248 59 1.9599989e-05 250 59 9.7999991e-06 251 59 9.7999991e-06 252 59 0.0023546999 254 59 0.00018639999 255 59 0.00026489981 256 59 0.00017659999 258 59 0.00060829986 259 59 0.00061809993 263 59 9.7999991e-06 264 59 0.00056909979 265 59 0.0024136 266 59 0.0012361999 267 59 2.9399991e-05 268 59 0.0032867999 269 59 2.9399991e-05 271 59 0.007397797 273 59 4.9099996e-05 274 59 0.00066719996 277 59 0.0010890998 279 59 0.00055929995 282 59 0.00042189984 292 59 0.0017857 293 59 0.00052979984 295 59 0.0015993 303 59 0.0054158978 304 59 0.0092619993 305 59 7.8499987e-05 306 59 0.0022075998 307 59 0.0010890998 308 59 0.016561698 309 59 7.8499987e-05 310 59 1.9599989e-05 311 59 5.8899997e-05 312 59 9.7999991e-06 317 59 0.0013343999 318 59 5.8899997e-05 319 59 0.00030419999 322 59 0.00090269977 323 59 9.7999991e-06 331 59 0.00049059978 334 59 0.0065441988 335 59 0.0010399998 336 59 0.0045916997 341 59 0.00036299997 350 59 0.00091249985 352 59 0.0001962 356 59 0.0011282999 358 59 0.00024529989 366 59 0.027471997 368 59 0.00030419999 371 59 0.0024626998 380 59 0.0023252999 381 59 0.00022569999 383 59 0.019279398 384 59 1.9599989e-05 385 59 0.0040716976 386 59 0.0024037999 387 59 2.9399991e-05 390 59 1.9599989e-05 394 59 7.8499987e-05 397 59 2.9399991e-05 398 59 0.0011086999 402 59 0.0002942998 412 59 9.7999991e-06 415 59 0.005219698 419 59 9.7999991e-06 422 59 2.9399991e-05 423 59 9.7999991e-06 425 59 9.7999991e-06 430 59 2.9399991e-05 431 59 9.7999991e-06 432 59 9.7999991e-06 433 59 9.7999991e-06 434 59 9.7999991e-06 438 59 0.0040520988 439 59 0.0046799965 441 59 9.7999991e-06 443 59 0.0037479999 444 59 9.809999e-05 445 59 0.016954098 446 59 0.00084379991 447 59 0.00057889987 448 59 6.8699999e-05 449 59 9.7999991e-06 450 59 0.0025509999 452 59 0.00038259989 453 59 4.9099996e-05 454 59 0.0006769998 455 59 0.0474873 456 59 0.064951599 457 59 0.0026980999 458 59 8.8299988e-05 459 59 2.9399991e-05 460 59 0.0033064999 463 59 0.0053962991 464 59 0.0001275 465 59 9.809999e-05 467 59 0.0048369989 468 59 0.00040229992 469 59 0.0040324964 470 59 0.003953997 471 59 0.0026294999 473 59 8.8299988e-05 477 59 3.9199993e-05 478 59 0.00045129983 483 59 0.00028449995 489 59 5.8899997e-05 490 59 0.00030419999 491 59 0.0001374 9 60 2.6099995e-05 16 60 0.0002345 24 60 0.00038219988 60 60 0.00059929979 79 60 8.6999999e-06 82 60 4.3399996e-05 83 60 3.4699988e-05 84 60 3.4699988e-05 108 60 5.2099989e-05 113 60 7.8199999e-05 114 60 0.0001911 126 60 7.8199999e-05 127 60 1.7399987e-05 134 60 0.000139 139 60 0.00097279996 141 60 6.9499991e-05 142 60 0.00010419999 150 60 0.00018239999 154 60 6.9499991e-05 160 60 0.0064015985 161 60 0.0001563 162 60 0.00022579999 163 60 0.0030140998 164 60 0.00022579999 165 60 0.0102496 167 60 6.9499991e-05 168 60 1.7399987e-05 171 60 0.000139 182 60 0.00014769999 189 60 6.0799997e-05 191 60 0.00043429993 192 60 0.000139 194 60 6.0799997e-05 195 60 8.6899992e-05 196 60 8.6999999e-06 197 60 0.0002345 198 60 8.6999999e-06 201 60 6.0799997e-05 203 60 5.2099989e-05 204 60 6.9499991e-05 206 60 0.00018239999 207 60 4.3399996e-05 209 60 1.7399987e-05 214 60 0.00011289999 218 60 1.7399987e-05 219 60 0.0030226998 223 60 8.6899992e-05 233 60 0.022627197 234 60 0.012143098 235 60 0.00085119996 236 60 0.011274498 237 60 0.0027621998 240 60 0.00057329983 241 60 0.0073831975 242 60 0.00031269994 248 60 4.3399996e-05 250 60 1.7399987e-05 251 60 8.6999999e-06 252 60 0.0023886999 254 60 0.00061669992 255 60 0.00058199978 256 60 0.00067749992 257 60 0.015556697 258 60 0.00016499999 259 60 0.0020325 263 60 8.6999999e-06 264 60 0.0039434992 265 60 0.0012681999 266 60 0.0058022998 267 60 4.3399996e-05 268 60 0.0013897999 269 60 6.9499991e-05 271 60 0.00071229995 273 60 5.2099989e-05 274 60 0.00044299988 275 60 0.015930198 277 60 0.0024667999 279 60 0.00098149991 282 60 0.00096419989 292 60 0.00058199978 293 60 0.00057329983 295 60 0.0023104998 302 60 0.0010162999 303 60 0.0043516979 304 60 0.010049798 305 60 0.0004168998 306 60 0.0023712998 307 60 0.0021019999 308 60 0.0074525997 311 60 0.0004776998 312 60 0.00044299988 317 60 0.0031529998 318 60 0.00013029999 319 60 0.0016416998 322 60 0.00087729981 323 60 1.7399987e-05 324 60 0.0015721999 331 60 0.0011812998 334 60 0.0042213984 335 60 0.00067749992 336 60 0.0029618999 341 60 0.00026059989 350 60 0.00030399999 352 60 0.00028659985 356 60 0.00071229995 358 60 0.0003560998 363 60 8.6999999e-06 366 60 0.0284121 368 60 0.00018239999 371 60 0.0062191971 374 60 6.0799997e-05 380 60 0.00013029999 381 60 8.6999999e-06 383 60 0.0001563 384 60 3.4699988e-05 385 60 0.013854299 386 60 0.018040899 387 60 7.8199999e-05 390 60 0.0019456998 394 60 0.00019979999 397 60 2.6099995e-05 398 60 8.6999999e-06 402 60 0.00071229995 412 60 1.7399987e-05 415 60 0.0042474978 419 60 2.6099995e-05 422 60 7.8199999e-05 423 60 2.6099995e-05 425 60 1.7399987e-05 430 60 5.2099989e-05 431 60 1.7399987e-05 432 60 1.7399987e-05 433 60 2.6099995e-05 434 60 3.4699988e-05 438 60 0.0014852998 439 60 0.0001737 441 60 1.7399987e-05 443 60 0.004516799 444 60 0.00025189994 445 60 0.017789099 446 60 0.0014070999 447 60 0.0010162999 448 60 0.00019979999 449 60 1.7399987e-05 450 60 0.0060888976 452 60 0.00090339989 453 60 0.00011289999 454 60 0.0016156 455 60 0.038305499 456 60 0.036133997 457 60 0.0064015985 458 60 7.8199999e-05 459 60 4.3399996e-05 460 60 0.005072698 463 60 0.012881398 464 60 0.00032139989 465 60 0.00021719999 467 60 0.0067577995 468 60 0.00095549994 469 60 0.0096327998 470 60 0.0094330981 471 60 0.0056111999 473 60 0.00019979999 477 60 7.8199999e-05 478 60 0.0010684 483 60 0.00066009979 489 60 0.00013029999 490 60 0.00071229995 491 60 0.00027799979 24 61 0.00032479991 60 61 0.00064959982 108 61 0.00032479991 114 61 0.00064959982 126 61 0.00032479991 134 61 0.00032479991 139 61 0.0012991 150 61 0.00032479991 160 61 0.0045468993 161 61 0.00032479991 162 61 0.00064959982 163 61 0.0045468993 164 61 0.00032479991 165 61 0.010392997 182 61 0.0032477998 191 61 0.00032479991 192 61 0.00064959982 197 61 0.0077946968 206 61 0.00064959982 219 61 0.0051964968 233 61 0.069503069 234 61 0.0074699968 235 61 0.00032479991 236 61 0.031828497 237 61 0.0025982 240 61 0.00064959982 241 61 0.015264697 242 61 0.00032479991 252 61 0.0025982 254 61 0.00032479991 255 61 0.00032479991 258 61 0.00032479991 259 61 0.00064959982 264 61 0.00064959982 265 61 0.0029229999 266 61 0.0016238999 268 61 0.0035726 271 61 0.0087690987 273 61 0.00032479991 274 61 0.00097429985 277 61 0.0012991 279 61 0.00097429985 282 61 0.00064959982 292 61 0.0022735 293 61 0.00064959982 295 61 0.0016238999 303 61 0.0061707981 304 61 0.011692099 306 61 0.0025982 307 61 0.0025982 308 61 0.023059398 317 61 0.0025982 319 61 0.00032479991 322 61 0.0016238999 324 61 0.025332898 331 61 0.00097429985 334 61 0.0084442981 335 61 0.0012991 336 61 0.0058460981 341 61 0.00064959982 350 61 0.0012991 356 61 0.0016238999 366 61 0.011692099 368 61 0.00032479991 371 61 0.0032477998 380 61 0.0025982 381 61 0.00032479991 383 61 0.022409897 385 61 0.0058460981 386 61 0.0032477998 387 61 0.00032479991 394 61 0.00032479991 398 61 0.0012991 402 61 0.00064959982 415 61 0.0058460981 438 61 0.0048717 439 61 0.0051964968 443 61 0.0019486998 445 61 0.019811597 446 61 0.00097429985 447 61 0.00064959982 450 61 0.0058460981 452 61 0.00097429985 454 61 0.0012991 455 61 0.051964898 456 61 0.070477366 457 61 0.0058460981 460 61 0.0055212975 463 61 0.012341697 464 61 0.00032479991 467 61 0.011367299 468 61 0.00097429985 469 61 0.0087690987 470 61 0.0090938993 471 61 0.0058460981 473 61 0.00032479991 478 61 0.00064959982 483 61 0.00064959982 490 61 0.00097429985 491 61 0.00032479991 18 62 0.0013247 24 62 0.029640697 60 62 0.00016559999 114 62 0.00016559999 126 62 0.00016559999 134 62 0.007948298 139 62 0.00049679982 160 62 0.033945996 162 62 0.0009935 163 62 0.0026493999 165 62 0.015896697 166 62 0.0011590999 168 62 0.0155655 170 62 0.00033119996 171 62 0.0009935 191 62 0.0021527 192 62 0.00049679982 206 62 0.00016559999 219 62 0.00049679982 233 62 0.055141598 234 62 0.0099353977 235 62 0.022685897 236 62 0.010432199 237 62 0.0009935 241 62 0.012088098 254 62 0.0041397996 255 62 0.00016559999 262 62 0.0019870999 264 62 0.010266598 265 62 0.055638399 266 62 0.030468598 268 62 0.0039741993 271 62 0.0009935 273 62 0.00033119996 274 62 0.00049679982 277 62 0.026825599 279 62 0.010763399 292 62 0.0024838999 295 62 0.010929 305 62 0.0061267987 306 62 0.0018214998 307 62 0.0038085999 308 62 0.058287799 311 62 0.0019870999 317 62 0.00066239992 319 62 0.0026493999 322 62 0.035105098 324 62 0.0157311 331 62 0.005464498 350 62 0.0011590999 371 62 0.0016558999 385 62 0.005464498 386 62 0.0029805999 398 62 0.0013247 402 62 0.00016559999 438 62 0.0038085999 441 62 0.00049679982 443 62 0.0110946 445 62 0.025997698 446 62 0.0009935 447 62 0.00033119996 450 62 0.0016558999 452 62 0.00033119996 454 62 0.00033119996 455 62 0.057956599 456 62 0.070707083 457 62 0.0016558999 458 62 0.00016559999 460 62 0.0076171979 463 62 0.0034773999 467 62 0.0064579993 468 62 0.00033119996 469 62 0.0026493999 470 62 0.0024838999 471 62 0.0019870999 473 62 0.00016559999 478 62 0.00016559999 483 62 0.00016559999 490 62 0.00033119996 16 63 0.00010599999 60 63 0.00031799986 108 63 0.00010599999 114 63 0.00010599999 126 63 0.00010599999 139 63 0.00052989996 142 63 0.00010599999 150 63 0.00010599999 160 63 0.00074189994 162 63 0.00010599999 163 63 0.00052989996 165 63 0.042713299 168 63 0.00095389993 171 63 0.00010599999 191 63 0.00010599999 194 63 0.00010599999 206 63 0.00031799986 219 63 0.00063589984 223 63 0.00010599999 233 63 0.0047694966 234 63 0.0076311976 235 63 0.0057233982 236 63 0.0014837999 237 63 0.0018018 241 63 0.0044514984 242 63 0.00010599999 252 63 0.00042399997 254 63 0.0023316999 255 63 0.00010599999 256 63 0.00010599999 259 63 0.000212 262 63 0.0010598998 264 63 0.00042399997 265 63 0.00031799986 266 63 0.0026496998 268 63 0.00031799986 271 63 0.00010599999 273 63 0.000212 277 63 0.00031799986 279 63 0.000212 292 63 0.00010599999 295 63 0.0051933974 302 63 0.000212 303 63 0.00063589984 304 63 0.0014837999 305 63 0.00042399997 306 63 0.00042399997 307 63 0.0026496998 308 63 0.0041334964 309 63 0.00095389993 310 63 0.000212 311 63 0.000212 312 63 0.00074189994 317 63 0.0020138 318 63 0.00010599999 319 63 0.000212 322 63 0.0012718998 324 63 0.000212 331 63 0.00074189994 334 63 0.00063589984 335 63 0.00010599999 336 63 0.00031799986 356 63 0.00010599999 358 63 0.00010599999 366 63 0.0108108 371 63 0.00084789982 385 63 0.019607797 386 63 0.066772699 387 63 0.00010599999 390 63 0.000212 394 63 0.00010599999 402 63 0.00052989996 415 63 0.0010598998 422 63 0.00010599999 430 63 0.00010599999 438 63 0.00031799986 441 63 0.000212 443 63 0.0027556999 444 63 0.000212 445 63 0.0083730966 446 63 0.00063589984 447 63 0.00063589984 448 63 0.00010599999 450 63 0.0036036 452 63 0.00052989996 453 63 0.00010599999 454 63 0.00095389993 455 63 0.025649197 456 63 0.029994696 457 63 0.0037095998 458 63 0.00052989996 460 63 0.0025436999 463 63 0.0075251982 464 63 0.00031799986 467 63 0.018865898 468 63 0.00052989996 469 63 0.0055113994 470 63 0.0055113994 471 63 0.0052993968 473 63 0.00010599999 478 63 0.00063589984 483 63 0.00042399997 490 63 0.00052989996 491 63 0.000212 9 64 5.1999989e-05 24 64 0.010512598 60 64 0.00031229993 80 64 0.00010409999 82 64 5.1999989e-05 83 64 5.1999989e-05 84 64 5.1999989e-05 108 64 5.1999989e-05 113 64 0.00010409999 114 64 0.00010409999 126 64 5.1999989e-05 139 64 0.00046839984 141 64 5.1999989e-05 142 64 5.1999989e-05 150 64 0.00010409999 154 64 5.1999989e-05 159 64 0.014675997 160 64 0.010720797 163 64 0.0002082 165 64 0.0050480999 168 64 0.032890998 171 64 0.00010409999 189 64 5.1999989e-05 191 64 5.1999989e-05 194 64 5.1999989e-05 203 64 5.1999989e-05 204 64 0.00010409999 206 64 5.1999989e-05 207 64 5.1999989e-05 219 64 0.0001561 220 64 0.00026019989 223 64 5.1999989e-05 233 64 0.0060889982 234 64 0.0062971972 235 64 0.00078059989 236 64 0.0006765998 237 64 0.0014052 241 64 0.0036429998 242 64 0.00010409999 252 64 0.0002082 254 64 0.0013530999 255 64 5.1999989e-05 256 64 5.1999989e-05 259 64 0.00010409999 264 64 0.0002082 265 64 0.0001561 266 64 0.00052039977 268 64 0.00010409999 271 64 0.0002082 273 64 0.00026019989 274 64 5.1999989e-05 277 64 0.024407998 279 64 0.00026019989 292 64 5.1999989e-05 293 64 5.1999989e-05 295 64 0.0013010998 302 64 0.00010409999 303 64 0.0002082 304 64 0.00046839984 305 64 0.0083788969 306 64 0.00010409999 307 64 0.0023939998 308 64 0.0034347998 312 64 0.0039551966 317 64 0.0016132998 318 64 5.1999989e-05 319 64 0.00010409999 322 64 0.0006765998 324 64 0.0006765998 326 64 0.0247203 331 64 0.00062449998 334 64 0.00026019989 335 64 5.1999989e-05 336 64 0.00010409999 356 64 5.1999989e-05 358 64 5.1999989e-05 366 64 0.0041633993 371 64 0.00036429986 374 64 0.0029663998 385 64 0.0029143998 386 64 0.0047358982 387 64 5.1999989e-05 390 64 0.016185299 394 64 0.00010409999 402 64 0.00036429986 415 64 0.00036429986 422 64 5.1999989e-05 423 64 5.1999989e-05 430 64 5.1999989e-05 431 64 5.1999989e-05 434 64 5.1999989e-05 438 64 0.00041629979 443 64 0.0057766996 444 64 0.0001561 445 64 0.014311697 446 64 0.0037470998 447 64 0.00062449998 448 64 0.00010409999 450 64 0.0031225998 452 64 0.00046839984 453 64 5.1999989e-05 454 64 0.00083269994 455 64 0.048191499 456 64 0.0091074966 457 64 0.0032786999 458 64 0.00041629979 460 64 0.0023418998 463 64 0.0066093989 464 64 0.0001561 465 64 0.00010409999 467 64 0.015872996 468 64 0.00046839984 469 64 0.0051001981 470 64 0.0048399977 471 64 0.0045276992 473 64 0.00010409999 478 64 0.00052039977 483 64 0.00031229993 489 64 5.1999989e-05 490 64 0.00041629979 491 64 0.00026019989 60 65 7.2199997e-05 114 65 7.2199997e-05 139 65 0.00014439999 160 65 0.00043329992 163 65 0.00021669999 165 65 0.0024553998 191 65 7.2199997e-05 195 65 0.00014439999 206 65 7.2199997e-05 217 65 0.00064999983 219 65 0.00072219991 233 65 0.0086660981 234 65 0.0022387998 235 65 0.0010833 236 65 0.0007944 237 65 0.00043329992 241 65 0.00086659985 252 65 0.00021669999 254 65 0.0012276999 255 65 7.2199997e-05 257 65 0.0025997998 259 65 0.00014439999 262 65 0.0011554998 264 65 0.00028889999 265 65 0.0017331999 266 65 0.00072219991 268 65 0.00014439999 271 65 0.0011554998 272 65 0.00021669999 273 65 0.00021669999 274 65 0.00064999983 275 65 0.052574597 277 65 0.0064995997 279 65 7.2199997e-05 292 65 7.2199997e-05 293 65 7.2199997e-05 295 65 0.015093498 302 65 7.2199997e-05 303 65 0.00028889999 304 65 0.0044052973 305 65 0.0064273998 306 65 0.0010833 307 65 0.0096771978 308 65 0.0024553998 309 65 0.00028889999 310 65 7.2199997e-05 311 65 0.00014439999 312 65 0.005127497 317 65 0.00028889999 319 65 0.00014439999 322 65 0.00093879993 324 65 0.021087598 331 65 0.0044774972 334 65 0.00028889999 335 65 7.2199997e-05 336 65 0.00014439999 356 65 7.2199997e-05 358 65 7.2199997e-05 366 65 0.0052718967 371 65 0.0023832 374 65 0.007655099 385 65 0.0037552998 386 65 0.031198099 390 65 0.00014439999 402 65 7.2199997e-05 414 65 0.0036831 415 65 0.00050549977 438 65 0.00036109984 443 65 0.0038274999 445 65 0.0032497998 446 65 7.2199997e-05 447 65 7.2199997e-05 450 65 0.00064999983 452 65 7.2199997e-05 454 65 0.00014439999 455 65 0.021376498 456 65 0.011771496 457 65 0.00064999983 458 65 0.00043329992 460 65 0.00036109984 463 65 0.0013720999 464 65 7.2199997e-05 467 65 0.016393397 468 65 7.2199997e-05 469 65 0.0010109998 470 65 0.0010109998 471 65 0.0028164999 478 65 7.2199997e-05 483 65 7.2199997e-05 490 65 0.00014439999 18 66 0.00024149999 24 66 0.014734298 60 66 0.00024149999 114 66 0.00024149999 126 66 0.00024149999 134 66 0.0024154999 139 66 0.00048309984 160 66 0.00072459993 163 66 0.00024149999 165 66 0.0050724968 168 66 0.00024149999 206 66 0.00024149999 214 66 0.00096619991 219 66 0.00072459993 223 66 0.00048309984 233 66 0.0084540993 234 66 0.012077298 235 66 0.025603898 236 66 0.0016907998 237 66 0.0014493 240 66 0.00072459993 241 66 0.0043477975 242 66 0.00024149999 252 66 0.00024149999 254 66 0.00072459993 255 66 0.00024149999 259 66 0.00024149999 264 66 0.00024149999 266 66 0.015942 268 66 0.00024149999 269 66 0.00096619991 273 66 0.00048309984 274 66 0.00024149999 277 66 0.12294686 282 66 0.0014493 295 66 0.00024149999 303 66 0.00048309984 304 66 0.00072459993 305 66 0.0048308969 306 66 0.00024149999 307 66 0.0031400998 308 66 0.0036231999 311 66 0.0014493 317 66 0.0014493 322 66 0.0028986 324 66 0.029951699 331 66 0.00096619991 334 66 0.00024149999 336 66 0.00024149999 366 66 0.0050724968 371 66 0.00072459993 374 66 0.0014493 385 66 0.0016907998 386 66 0.0014493 390 66 0.00024149999 402 66 0.00024149999 414 66 0.0014493 415 66 0.00048309984 438 66 0.00072459993 441 66 0.00048309984 443 66 0.0041062981 445 66 0.0135266 446 66 0.00096619991 447 66 0.00048309984 450 66 0.0028986 452 66 0.00048309984 454 66 0.00072459993 455 66 0.022946898 456 66 0.0099033974 457 66 0.0028986 458 66 0.00048309984 460 66 0.0016907998 463 66 0.0060385987 464 66 0.00024149999 467 66 0.018599 468 66 0.00048309984 469 66 0.0045893975 470 66 0.0045893975 471 66 0.0048308969 473 66 0.00024149999 478 66 0.00048309984 483 66 0.00024149999 490 66 0.00048309984 491 66 0.00024149999 18 67 0.001003 24 67 0.0090270974 165 67 0.0040119998 166 67 0.0030089999 214 67 0.001003 220 67 0.001003 233 67 0.011033099 234 67 0.041123398 235 67 0.005014997 237 67 0.001003 241 67 0.0030089999 266 67 0.0040119998 271 67 0.001003 273 67 0.001003 274 67 0.001003 277 67 0.15346038 295 67 0.010030098 305 67 0.023069199 307 67 0.0080240965 308 67 0.0020059999 317 67 0.001003 322 67 0.0040119998 324 67 0.076228678 331 67 0.0040119998 366 67 0.001003 371 67 0.014042098 374 67 0.0030089999 385 67 0.0020059999 386 67 0.0040119998 414 67 0.0070210993 438 67 0.001003 443 67 0.0030089999 445 67 0.010030098 450 67 0.0020059999 455 67 0.033099297 456 67 0.018054198 457 67 0.0020059999 460 67 0.0030089999 463 67 0.0040119998 467 67 0.018054198 469 67 0.0030089999 470 67 0.0030089999 471 67 0.005014997 490 67 0.001003 7 68 0.00013489999 16 68 0.00040459982 18 68 0.0016857998 24 68 0.020633899 60 68 0.00026969984 82 68 6.7399989e-05 108 68 6.7399989e-05 114 68 6.7399989e-05 126 68 6.7399989e-05 139 68 0.00040459982 142 68 6.7399989e-05 150 68 6.7399989e-05 154 68 6.7399989e-05 160 68 0.00033719977 163 68 0.00013489999 165 68 0.0046526976 168 68 0.00013489999 171 68 6.7399989e-05 191 68 6.7399989e-05 192 68 6.7399989e-05 194 68 6.7399989e-05 203 68 6.7399989e-05 204 68 6.7399989e-05 206 68 0.0002023 219 68 0.00053939992 223 68 6.7399989e-05 233 68 0.036817297 234 68 0.0087659992 235 68 0.0225893 236 68 0.00053939992 237 68 0.0014159998 241 68 0.011867799 242 68 6.7399989e-05 252 68 0.00013489999 254 68 0.012002699 259 68 0.00013489999 264 68 0.0002023 265 68 0.0095077977 266 68 0.0093728974 268 68 6.7399989e-05 269 68 0.00053939992 271 68 0.0030343998 273 68 0.00033719977 274 68 0.0015508998 277 68 0.0036412999 279 68 6.7399989e-05 282 68 0.0071476996 292 68 0.00013489999 295 68 6.7399989e-05 302 68 6.7399989e-05 303 68 0.00013489999 304 68 0.00040459982 305 68 0.0048549995 306 68 0.00013489999 307 68 0.0022251999 308 68 0.0043829978 311 68 0.00013489999 317 68 0.0014834998 318 68 6.7399989e-05 319 68 6.7399989e-05 322 68 0.0016182999 324 68 0.040391099 331 68 0.00053939992 334 68 0.0002023 336 68 0.00013489999 350 68 6.7399989e-05 358 68 6.7399989e-05 366 68 0.0033714999 371 68 0.0020228999 374 68 0.0052595995 385 68 0.0010114999 386 68 0.00087659992 387 68 6.7399989e-05 390 68 6.7399989e-05 394 68 6.7399989e-05 402 68 0.00040459982 414 68 0.0025624 415 68 0.00033719977 430 68 6.7399989e-05 438 68 0.0026297998 441 68 0.00047199987 443 68 0.0036412999 444 68 0.0002023 445 68 0.017464597 446 68 0.0010788999 447 68 0.00053939992 448 68 6.7399989e-05 450 68 0.0027647 452 68 0.00040459982 453 68 6.7399989e-05 454 68 0.00074169994 455 68 0.0277141 456 68 0.030815899 457 68 0.0028994998 458 68 0.00040459982 460 68 0.0017531998 463 68 0.0057990998 464 68 0.0002023 465 68 6.7399989e-05 467 68 0.015643999 468 68 0.00040459982 469 68 0.0051246993 470 68 0.0042480975 471 68 0.0041806996 473 68 0.00013489999 478 68 0.00047199987 483 68 0.00026969984 489 68 6.7399989e-05 490 68 0.00040459982 491 68 0.0002023 16 69 0.0001604 18 69 0.00048129982 24 69 0.013637099 60 69 0.00080219982 82 69 0.0001604 108 69 0.0001604 114 69 0.0001604 126 69 0.0001604 134 69 0.0016043999 139 69 0.0011230998 141 69 0.0001604 142 69 0.0001604 150 69 0.0001604 154 69 0.0001604 160 69 0.0016043999 162 69 0.0001604 163 69 0.0011230998 165 69 0.012513999 171 69 0.0001604 191 69 0.0001604 194 69 0.0001604 203 69 0.0001604 206 69 0.0001604 207 69 0.0001604 219 69 0.00096259988 220 69 0.0001604 223 69 0.0001604 233 69 0.014278799 234 69 0.017166696 235 69 0.0097865984 236 69 0.0022461 237 69 0.0035295999 240 69 0.0011230998 241 69 0.0091448985 242 69 0.00048129982 252 69 0.00064169988 254 69 0.021177597 255 69 0.0054547973 256 69 0.0001604 258 69 0.0028879 259 69 0.0003209 264 69 0.0038504999 265 69 0.0145997 266 69 0.012995299 267 69 0.0001604 268 69 0.00048129982 269 69 0.0003209 271 69 0.0016043999 273 69 0.00048129982 274 69 0.00064169988 277 69 0.0036899999 279 69 0.0003209 282 69 0.004171297 292 69 0.0001604 293 69 0.0001604 295 69 0.00048129982 302 69 0.0003209 303 69 0.00096259988 304 69 0.0022461 305 69 0.0027273998 306 69 0.00080219982 307 69 0.0044921972 308 69 0.008503098 311 69 0.008021798 312 69 0.0001604 317 69 0.0040108971 318 69 0.0001604 319 69 0.0003209 322 69 0.013155799 324 69 0.011230499 331 69 0.0014438999 334 69 0.00096259988 335 69 0.0001604 336 69 0.00048129982 356 69 0.0001604 358 69 0.0001604 366 69 0.016204096 371 69 0.00064169988 374 69 0.0014438999 385 69 0.0032086999 386 69 0.0038504999 387 69 0.0001604 390 69 0.0003209 394 69 0.0003209 402 69 0.0011230998 415 69 0.0016043999 422 69 0.0001604 430 69 0.0001604 434 69 0.0001604 438 69 0.00096259988 441 69 0.0003209 443 69 0.0046526976 444 69 0.00048129982 445 69 0.023102798 446 69 0.0017647999 447 69 0.0012834999 448 69 0.0001604 450 69 0.0073800981 452 69 0.0011230998 453 69 0.0001604 454 69 0.0019252 455 69 0.029038999 456 69 0.022300698 457 69 0.0077008978 458 69 0.00064169988 460 69 0.0062569976 463 69 0.0155623 464 69 0.00064169988 465 69 0.0001604 467 69 0.027755499 468 69 0.0011230998 469 69 0.012032699 470 69 0.011390999 471 69 0.0093052983 473 69 0.0003209 478 69 0.0012834999 483 69 0.00080219982 489 69 0.0001604 490 69 0.00096259988 491 69 0.00048129982 24 70 0.0033783999 60 70 0.00067569991 114 70 0.00067569991 126 70 0.00067569991 139 70 0.0013513998 159 70 0.0013513998 160 70 0.0027027 165 70 0.0094594993 168 70 0.0027027 206 70 0.00067569991 233 70 0.019594599 234 70 0.012162197 235 70 0.00067569991 236 70 0.0020269998 237 70 0.0040540993 241 70 0.0087837987 254 70 0.0013513998 264 70 0.00067569991 266 70 0.0013513998 277 70 0.0027027 295 70 0.0060810968 303 70 0.0013513998 304 70 0.00067569991 305 70 0.0020269998 307 70 0.0020269998 308 70 0.0081080981 312 70 0.0047296993 317 70 0.0033783999 324 70 0.00067569991 326 70 0.0027027 331 70 0.0013513998 334 70 0.00067569991 366 70 0.0087837987 371 70 0.00067569991 374 70 0.00067569991 385 70 0.0067567974 386 70 0.0108108 390 70 0.017567597 402 70 0.00067569991 415 70 0.00067569991 438 70 0.0013513998 443 70 0.00067569991 445 70 0.013513498 446 70 0.00067569991 447 70 0.00067569991 450 70 0.0074323975 452 70 0.0013513998 454 70 0.0020269998 455 70 0.0162162 456 70 0.014189199 457 70 0.0074323975 460 70 0.0047296993 463 70 0.014864899 467 70 0.0074323975 468 70 0.0013513998 469 70 0.011486497 470 70 0.011486497 471 70 0.0060810968 473 70 0.00067569991 478 70 0.00067569991 483 70 0.00067569991 490 70 0.0013513998 491 70 0.00067569991 16 71 0.0001258 18 71 0.0001258 24 71 0.018867899 60 71 0.00037739985 108 71 0.0001258 114 71 0.0001258 126 71 0.0001258 134 71 0.00025159982 139 71 0.00062889978 142 71 0.0001258 150 71 0.0001258 160 71 0.0056603998 161 71 0.0001258 162 71 0.00025159982 163 71 0.0020126 164 71 0.0001258 165 71 0.0085534975 168 71 0.0001258 171 71 0.0001258 182 71 0.0001258 191 71 0.00025159982 192 71 0.0001258 194 71 0.0001258 195 71 0.0001258 197 71 0.0001258 206 71 0.00025159982 219 71 0.0023898999 223 71 0.0001258 233 71 0.021006297 234 71 0.018490598 235 71 0.011949699 236 71 0.0075471997 237 71 0.0020126 240 71 0.00025159982 241 71 0.0057861991 242 71 0.00025159982 252 71 0.0017609999 254 71 0.0016351999 255 71 0.00050309999 256 71 0.00050309999 257 71 0.0001258 258 71 0.0001258 259 71 0.0013835998 264 71 0.0027672998 265 71 0.0020126 266 71 0.0094339997 268 71 0.00088049984 269 71 0.0001258 271 71 0.00075469981 273 71 0.00025159982 274 71 0.00037739985 277 71 0.0023898999 279 71 0.00075469981 282 71 0.0010062999 292 71 0.00037739985 293 71 0.00037739985 295 71 0.0022641998 302 71 0.00075469981 303 71 0.0027672998 304 71 0.007169798 305 71 0.0050313994 306 71 0.0017609999 307 71 0.0022641998 308 71 0.0069181994 309 71 0.00088049984 310 71 0.0001258 311 71 0.0010062999 312 71 0.00050309999 317 71 0.0021384 318 71 0.0001258 319 71 0.0010062999 322 71 0.0022641998 324 71 0.0038993999 331 71 0.0010062999 334 71 0.0027672998 335 71 0.00050309999 336 71 0.0018867999 341 71 0.00025159982 350 71 0.00025159982 352 71 0.0001258 356 71 0.00050309999 358 71 0.00062889978 366 71 0.053459097 368 71 0.0001258 371 71 0.004528299 374 71 0.00062889978 380 71 0.0001258 385 71 0.0099370964 386 71 0.013584897 387 71 0.0001258 390 71 0.0012578999 394 71 0.0001258 402 71 0.00050309999 414 71 0.00025159982 415 71 0.0054087974 422 71 0.0001258 430 71 0.0001258 438 71 0.0012578999 439 71 0.0001258 441 71 0.00050309999 443 71 0.0038993999 444 71 0.00025159982 445 71 0.017987397 446 71 0.0011320999 447 71 0.00062889978 448 71 0.0001258 450 71 0.0040251985 452 71 0.00062889978 453 71 0.0001258 454 71 0.0011320999 455 71 0.030440297 456 71 0.0261635 457 71 0.0041508973 458 71 0.00025159982 460 71 0.0032704 463 71 0.0084276982 464 71 0.00025159982 467 71 0.010817599 468 71 0.00062889978 469 71 0.0065408982 470 71 0.0062892996 471 71 0.004528299 473 71 0.0001258 478 71 0.00062889978 483 71 0.00037739985 490 71 0.00050309999 491 71 0.00025159982 16 72 0.000166 18 72 0.000166 24 72 0.0041500963 60 72 0.00033199997 80 72 0.00049799983 108 72 0.000166 114 72 0.00033199997 126 72 0.000166 139 72 0.00049799983 141 72 0.00049799983 150 72 0.000166 160 72 0.0016599998 162 72 0.000166 163 72 0.0008299998 165 72 0.005478099 182 72 0.000166 191 72 0.000166 206 72 0.00033199997 217 72 0.000166 219 72 0.0009959999 220 72 0.0024899999 233 72 0.012782197 234 72 0.032868497 235 72 0.0018259999 236 72 0.0023239998 237 72 0.0013279999 240 72 0.0019919998 241 72 0.0041500963 242 72 0.00049799983 252 72 0.00066399993 255 72 0.000166 256 72 0.000166 257 72 0.00033199997 259 72 0.00033199997 262 72 0.000166 264 72 0.00066399993 265 72 0.00049799983 266 72 0.0023239998 268 72 0.0009959999 271 72 0.00049799983 273 72 0.000166 274 72 0.000166 275 72 0.000166 277 72 0.0018259999 279 72 0.00033199997 292 72 0.000166 293 72 0.000166 295 72 0.0049800985 302 72 0.00033199997 303 72 0.0009959999 304 72 0.002656 305 72 0.0029879999 306 72 0.0008299998 307 72 0.0048140995 308 72 0.0044820979 311 72 0.0011619998 312 72 0.0016599998 317 72 0.0013279999 319 72 0.00033199997 322 72 0.0046480969 324 72 0.007802099 331 72 0.001494 333 72 0.00066399993 334 72 0.0009959999 335 72 0.000166 336 72 0.00049799983 356 72 0.00066399993 358 72 0.000166 366 72 0.016932297 371 72 0.001494 374 72 0.0009959999 385 72 0.0034860999 386 72 0.013280198 387 72 0.000166 390 72 0.00049799983 394 72 0.000166 402 72 0.00033199997 414 72 0.00033199997 415 72 0.0016599998 438 72 0.0008299998 443 72 0.0013279999 445 72 0.0091300979 446 72 0.0009959999 447 72 0.00033199997 448 72 0.000166 450 72 0.0028219998 452 72 0.00049799983 454 72 0.00066399993 455 72 0.020916298 456 72 0.014608197 457 72 0.0029879999 458 72 0.00049799983 460 72 0.0021579999 463 72 0.0061420985 464 72 0.000166 467 72 0.018094297 468 72 0.00049799983 469 72 0.0044820979 470 72 0.0044820979 471 72 0.0048140995 473 72 0.000166 478 72 0.00033199997 483 72 0.00033199997 490 72 0.00049799983 491 72 0.000166 9 73 2.3899993e-05 16 73 2.3899993e-05 24 73 0.061835498 60 73 0.00033449987 79 73 2.3899993e-05 80 73 4.7799986e-05 82 73 2.3899993e-05 83 73 2.3899993e-05 84 73 2.3899993e-05 108 73 2.3899993e-05 113 73 7.1699993e-05 114 73 0.00011949999 126 73 7.1699993e-05 127 73 2.3899993e-05 134 73 0.00038229977 139 73 0.00054949988 141 73 4.7799986e-05 142 73 7.1699993e-05 150 73 9.5599986e-05 154 73 4.7799986e-05 160 73 0.0054714978 165 73 0.0093660988 168 73 0.00062119984 171 73 7.1699993e-05 189 73 2.3899993e-05 192 73 2.3899993e-05 194 73 4.7799986e-05 197 73 2.3899993e-05 201 73 4.7799986e-05 203 73 4.7799986e-05 204 73 4.7799986e-05 206 73 9.5599986e-05 207 73 2.3899993e-05 209 73 2.3899993e-05 219 73 0.00066899997 220 73 0.00014339999 223 73 4.7799986e-05 233 73 0.0071440972 234 73 0.037679497 235 73 0.035696398 237 73 0.0016007998 241 73 0.0055909976 242 73 0.00011949999 248 73 2.3899993e-05 250 73 2.3899993e-05 252 73 2.3899993e-05 254 73 0.0018875999 258 73 9.5599986e-05 265 73 0.0027476999 266 73 0.017872099 271 73 2.3899993e-05 273 73 0.00052559981 277 73 0.00074069994 305 73 0.014718197 307 73 0.0021025999 308 73 0.010680199 309 73 0.0018636999 310 73 0.00050179986 311 73 0.0022459999 317 73 0.0017919999 318 73 4.7799986e-05 322 73 0.0033210998 324 73 0.00023889999 331 73 0.00066899997 384 73 2.3899993e-05 385 73 0.00083629997 387 73 4.7799986e-05 394 73 0.00011949999 397 73 2.3899993e-05 402 73 0.00040619983 412 73 2.3899993e-05 419 73 2.3899993e-05 422 73 7.1699993e-05 423 73 2.3899993e-05 425 73 2.3899993e-05 430 73 2.3899993e-05 431 73 2.3899993e-05 433 73 2.3899993e-05 434 73 2.3899993e-05 438 73 0.00040619983 441 73 0.0015052999 443 73 0.0086731985 444 73 0.00014339999 445 73 0.034358297 446 73 0.0028671999 447 73 0.0004778998 448 73 0.0004300999 450 73 0.0034883998 452 73 0.00052559981 453 73 7.1699993e-05 454 73 0.00093179988 455 73 0.022029497 456 73 0.013810199 457 73 0.0036795 458 73 0.00028669997 460 73 0.0026282 463 73 0.0073590986 464 73 0.00016729999 465 73 0.00011949999 467 73 0.012496099 468 73 0.00054949988 469 73 0.0054475963 470 73 0.0053998977 471 73 0.004396297 473 73 0.00011949999 477 73 4.7799986e-05 478 73 0.00062119984 483 73 0.00035839994 489 73 7.1699993e-05 490 73 0.0004300999 491 73 0.00021499999 18 74 0.00030299998 24 74 0.00090909982 60 74 0.00045449985 80 74 0.00015149999 108 74 0.00015149999 114 74 0.00015149999 126 74 0.00015149999 139 74 0.00075759995 142 74 0.00015149999 150 74 0.00015149999 160 74 0.00030299998 165 74 0.007878799 171 74 0.00015149999 182 74 0.0018181999 183 74 0.00090909982 194 74 0.00015149999 206 74 0.00045449985 214 74 0.013181798 220 74 0.00060609984 223 74 0.017878797 233 74 0.00060609984 234 74 0.017727297 237 74 0.0033332999 240 74 0.00045449985 241 74 0.0057575963 242 74 0.00030299998 254 74 0.022121198 265 74 0.0031817998 266 74 0.00030299998 273 74 0.010302998 274 74 0.00030299998 277 74 0.053484797 305 74 0.00015149999 307 74 0.0034848 308 74 0.0056061 312 74 0.0010605999 317 74 0.0027272999 318 74 0.00015149999 322 74 0.0042423978 324 74 0.0081817992 331 74 0.0287879 333 74 0.040757596 350 74 0.0056061 371 74 0.00030299998 374 74 0.00090909982 387 74 0.00015149999 394 74 0.00015149999 402 74 0.00075759995 422 74 0.00015149999 430 74 0.00015149999 443 74 0.010606099 444 74 0.00030299998 445 74 0.014848497 446 74 0.0015151999 447 74 0.00090909982 448 74 0.00015149999 450 74 0.004999999 452 74 0.00075759995 453 74 0.00015149999 454 74 0.004999999 455 74 0.030151498 456 74 0.0075757988 457 74 0.0053029992 458 74 0.00045449985 460 74 0.0040908977 463 74 0.010606099 464 74 0.00030299998 467 74 0.021818198 468 74 0.00075759995 469 74 0.007878799 470 74 0.007878799 471 74 0.0069696978 473 74 0.00015149999 478 74 0.00090909982 483 74 0.00045449985 490 74 0.00075759995 491 74 0.00030299998 16 75 0.0001852 24 75 0.014999997 60 75 0.00037039979 108 75 0.0001852 114 75 0.00037039979 126 75 0.0001852 134 75 0.0001852 139 75 0.00055559981 150 75 0.0001852 160 75 0.007407397 162 75 0.0001852 163 75 0.0024073999 165 75 0.0072221979 166 75 0.0001852 167 75 0.0012963 182 75 0.00055559981 191 75 0.00037039979 192 75 0.0001852 206 75 0.00037039979 219 75 0.0012963 233 75 0.025185198 234 75 0.014259297 235 75 0.0087036975 236 75 0.0024073999 237 75 0.0014815 241 75 0.004444398 242 75 0.0001852 252 75 0.00074069994 254 75 0.0012963 255 75 0.0001852 256 75 0.0001852 257 75 0.0001852 259 75 0.00037039979 264 75 0.00074069994 265 75 0.0022221999 266 75 0.0092592984 268 75 0.0024073999 271 75 0.00037039979 273 75 0.00037039979 277 75 0.0014815 279 75 0.00055559981 292 75 0.0001852 293 75 0.0001852 295 75 0.0024073999 302 75 0.00037039979 303 75 0.00092589995 304 75 0.0024073999 305 75 0.0062962994 306 75 0.0012963 307 75 0.002963 308 75 0.0055555999 309 75 0.00055559981 311 75 0.0014815 312 75 0.00037039979 317 75 0.0016666998 319 75 0.0011111 322 75 0.0025926 324 75 0.0014815 331 75 0.00074069994 334 75 0.00092589995 335 75 0.0001852 336 75 0.00055559981 356 75 0.0001852 358 75 0.0001852 366 75 0.017036997 371 75 0.0025926 374 75 0.00037039979 380 75 0.0001852 385 75 0.0038888999 386 75 0.0062962994 387 75 0.0001852 390 75 0.00055559981 394 75 0.0001852 402 75 0.00037039979 414 75 0.0001852 415 75 0.0014815 438 75 0.0016666998 441 75 0.00037039979 443 75 0.0031480999 444 75 0.0001852 445 75 0.014259297 446 75 0.00092589995 447 75 0.00037039979 450 75 0.0033332999 452 75 0.00055559981 454 75 0.00092589995 455 75 0.018333297 456 75 0.022222199 457 75 0.0035184999 458 75 0.00055559981 460 75 0.0025926 463 75 0.0072221979 464 75 0.0001852 467 75 0.018518496 468 75 0.00055559981 469 75 0.005185198 470 75 0.005185198 471 75 0.004999999 473 75 0.0001852 478 75 0.00037039979 483 75 0.00037039979 490 75 0.00055559981 491 75 0.0001852 9 76 7.9199992e-05 16 76 2.6399997e-05 18 76 2.6399997e-05 22 76 7.9199992e-05 60 76 0.0039842986 76 76 0.012955498 79 76 2.6399997e-05 81 76 0.00060689985 82 76 0.0001583 83 76 0.00010549999 84 76 0.00010549999 108 76 0.00018469999 113 76 0.0002638998 114 76 0.00055409991 126 76 0.00029019988 127 76 5.2799995e-05 130 76 7.9199992e-05 134 76 2.6399997e-05 150 76 0.00042219996 181 76 5.2799995e-05 187 76 2.6399997e-05 189 76 0.00029019988 190 76 0.00010549999 192 76 5.2799995e-05 194 76 7.9199992e-05 196 76 2.6399997e-05 197 76 5.2799995e-05 198 76 5.2799995e-05 200 76 0.00010549999 201 76 7.9199992e-05 203 76 7.9199992e-05 204 76 0.00010549999 206 76 0.00021109999 207 76 5.2799995e-05 209 76 2.6399997e-05 214 76 5.2799995e-05 223 76 5.2799995e-05 224 76 0.001161 233 76 0.00081799994 234 76 0.0016886999 237 76 7.9199992e-05 240 76 0.00047489977 241 76 0.0015039998 248 76 0.00010549999 250 76 5.2799995e-05 251 76 2.6399997e-05 252 76 0.00023749999 263 76 2.6399997e-05 270 76 0.00034299982 272 76 0.00076519977 277 76 0.0067019984 282 76 0.00021109999 283 76 0.00036939979 284 76 0.00044859992 292 76 0.00013189999 293 76 0.0024275 294 76 0.00063329982 295 76 0.00071239984 296 76 0.00084429979 298 76 0.0020052998 299 76 0.0010026998 312 76 0.0048285984 315 76 0.0013720999 319 76 0.0017414999 320 76 0.00092349993 321 76 0.00097629987 322 76 7.9199992e-05 324 76 0.00047489977 326 76 0.00010549999 338 76 2.6399997e-05 339 76 0.00013189999 340 76 0.003694 350 76 0.0023482998 351 76 0.0002638998 354 76 0.0007387998 356 76 2.6399997e-05 358 76 0.0027704998 359 76 0.0001583 369 76 0.00039579999 370 76 2.6399997e-05 372 76 0.0019788998 380 76 5.2799995e-05 384 76 5.2799995e-05 386 76 7.9199992e-05 387 76 0.00029019988 390 76 0.032058898 391 76 0.00010549999 392 76 0.0019788998 393 76 0.023430698 396 76 2.6399997e-05 397 76 0.00010549999 402 76 0.0029815999 403 76 0.00010549999 404 76 0.006965898 405 76 0.08731097 413 76 0.0062797964 414 76 0.00081799994 419 76 7.9199992e-05 420 76 0.00010549999 422 76 0.00021109999 423 76 7.9199992e-05 425 76 5.2799995e-05 430 76 0.0001583 431 76 2.6399997e-05 432 76 2.6399997e-05 433 76 5.2799995e-05 434 76 5.2799995e-05 443 76 0.00044859992 444 76 0.0014775998 445 76 0.0020844999 446 76 0.00013189999 447 76 0.0027704998 449 76 5.2799995e-05 450 76 0.0058048964 452 76 0.0045647994 453 76 0.00036939979 454 76 0.00031659985 455 76 0.0078893974 456 76 0.0021372999 457 76 0.0027704998 458 76 0.0013984998 459 76 0.00058049988 460 76 0.00089709996 463 76 0.0092086978 464 76 0.0014511999 465 76 0.0031398998 467 76 0.023931999 468 76 0.0011345998 469 76 0.012981899 470 76 0.028786998 471 76 0.0031398998 473 76 0.00058049988 477 76 0.00013189999 478 76 0.0015568 479 76 2.6399997e-05 483 76 0.0038786998 490 76 0.0022427998 491 76 0.00010549999 9 77 7.0099995e-05 22 77 0.0034355 24 77 0.00035059988 60 77 0.0043468997 77 77 0.082521141 78 77 0.00070109987 82 77 7.0099995e-05 83 77 7.0099995e-05 84 77 7.0099995e-05 108 77 7.0099995e-05 113 77 0.00014019999 114 77 0.00021029999 126 77 0.00014019999 127 77 7.0099995e-05 137 77 0.00063099992 150 77 0.008833997 165 77 7.0099995e-05 171 77 7.0099995e-05 172 77 0.021173697 189 77 7.0099995e-05 190 77 0.00014019999 192 77 7.0099995e-05 194 77 7.0099995e-05 198 77 0.010867298 200 77 0.00014019999 201 77 7.0099995e-05 203 77 7.0099995e-05 204 77 0.00014019999 206 77 0.00028039981 207 77 7.0099995e-05 214 77 0.00091139995 218 77 0.00014019999 220 77 0.0086937994 224 77 0.0018228998 229 77 0.0010517 233 77 0.00014019999 234 77 0.0060996972 237 77 0.00028039981 240 77 0.00084129977 241 77 0.0016125999 242 77 0.00035059988 248 77 7.0099995e-05 250 77 7.0099995e-05 252 77 0.00035059988 270 77 0.00021029999 271 77 7.0099995e-05 272 77 7.0099995e-05 273 77 0.00014019999 277 77 0.15754044 282 77 0.0051180981 283 77 0.008833997 284 77 0.00056089996 285 77 0.023206897 288 77 0.00014019999 292 77 0.0084834993 293 77 0.022645999 294 77 0.00028039981 295 77 0.0011217999 296 77 0.0065904967 298 77 0.00014019999 299 77 0.0056789964 304 77 0.00014019999 307 77 7.0099995e-05 308 77 7.0099995e-05 312 77 0.0035055999 315 77 0.0077823997 319 77 0.00035059988 320 77 0.0021734999 321 77 7.0099995e-05 322 77 0.0082731992 324 77 0.00028039981 326 77 0.0046974979 328 77 0.00035059988 331 77 0.00063099992 333 77 7.0099995e-05 338 77 0.00063099992 339 77 7.0099995e-05 340 77 0.008833997 341 77 7.0099995e-05 349 77 7.0099995e-05 350 77 0.00014019999 351 77 0.00077119982 352 77 7.0099995e-05 354 77 0.00070109987 356 77 7.0099995e-05 358 77 0.0072214976 366 77 0.00028039981 369 77 0.00014019999 370 77 0.00014019999 371 77 0.00035059988 372 77 0.0014722999 373 77 0.00014019999 384 77 7.0099995e-05 386 77 0.00028039981 387 77 7.0099995e-05 390 77 0.00091139995 391 77 7.0099995e-05 392 77 0.0072915964 393 77 0.0051180981 398 77 0.00014019999 402 77 0.00028039981 404 77 0.00021029999 405 77 0.0011918999 413 77 0.00021029999 415 77 7.0099995e-05 419 77 0.0030848999 422 77 0.00021029999 423 77 0.00014019999 424 77 7.0099995e-05 425 77 7.0099995e-05 426 77 7.0099995e-05 430 77 7.0099995e-05 431 77 7.0099995e-05 433 77 7.0099995e-05 434 77 7.0099995e-05 438 77 0.00014019999 441 77 0.00014019999 442 77 7.0099995e-05 443 77 0.0077823997 444 77 0.00063099992 445 77 0.0082731992 446 77 0.00084129977 447 77 0.0015425 448 77 7.0099995e-05 450 77 0.0068007968 452 77 0.0178083 453 77 0.0081328973 454 77 0.00084129977 455 77 0.0250999 456 77 0.00056089996 457 77 0.00098159979 458 77 0.0013320998 459 77 0.00014019999 460 77 0.0010517 463 77 0.0058893971 464 77 0.00077119982 465 77 0.0022435999 467 77 0.025941197 468 77 0.0060996972 469 77 0.0091144964 470 77 0.010306399 471 77 0.0013320998 473 77 0.00021029999 477 77 0.00014019999 478 77 0.0016125999 483 77 0.00098159979 489 77 7.0099995e-05 490 77 0.00091139995 491 77 0.00098159979 22 78 0.00031939987 60 78 0.0022356999 77 78 0.020121399 78 78 0.16671985 114 78 0.00031939987 130 78 0.00031939987 156 78 0.017246898 172 78 0.00031939987 198 78 0.00031939987 206 78 0.00031939987 214 78 0.00063879997 225 78 0.00095819985 234 78 0.0015968999 237 78 0.00031939987 240 78 0.0114979 241 78 0.00063879997 252 78 0.00031939987 270 78 0.00031939987 271 78 0.00031939987 277 78 0.035451896 278 78 0.00031939987 282 78 0.047588598 283 78 0.0099009983 284 78 0.00063879997 285 78 0.00031939987 292 78 0.00095819985 293 78 0.0325775 294 78 0.0028744999 295 78 0.028744798 296 78 0.004152 298 78 0.0092621967 299 78 0.0086233988 312 78 0.0038325998 313 78 0.0025550998 315 78 0.0035132999 319 78 0.00063879997 320 78 0.0038325998 321 78 0.0038325998 323 78 0.00031939987 324 78 0.00031939987 326 78 0.0031939 328 78 0.0105398 340 78 0.0092621967 351 78 0.0083040968 353 78 0.00063879997 354 78 0.016288698 357 78 0.00031939987 358 78 0.0079846978 366 78 0.00095819985 369 78 0.00031939987 372 78 0.00095819985 373 78 0.00063879997 375 78 0.00031939987 386 78 0.00031939987 387 78 0.00031939987 390 78 0.0022356999 391 78 0.00031939987 392 78 0.0015968999 393 78 0.0038325998 397 78 0.00095819985 398 78 0.00031939987 401 78 0.00095819985 402 78 0.0079846978 404 78 0.0073458999 405 78 0.0025550998 414 78 0.00063879997 443 78 0.0031939 444 78 0.00031939987 445 78 0.015330598 447 78 0.0015968999 450 78 0.004152 452 78 0.0044713989 453 78 0.0012774998 454 78 0.00063879997 455 78 0.020760097 457 78 0.00063879997 458 78 0.00063879997 460 78 0.00063879997 463 78 0.0038325998 464 78 0.00031939987 465 78 0.0012774998 467 78 0.015969299 468 78 0.0012774998 469 78 0.0038325998 470 78 0.0057489984 471 78 0.0015968999 478 78 0.00095819985 483 78 0.0019162998 490 78 0.00063879997 491 78 0.013094898 22 79 0.00051709986 60 79 0.0033608999 79 79 0.026628699 108 79 0.00025849999 114 79 0.00051709986 126 79 0.00025849999 161 79 0.018355697 190 79 0.00025849999 194 79 0.00025849999 198 79 0.0028437998 200 79 0.00025849999 206 79 0.00051709986 220 79 0.0072388984 229 79 0.00051709986 234 79 0.0033608999 237 79 0.00025849999 240 79 0.00025849999 241 79 0.010082699 252 79 0.00025849999 270 79 0.00025849999 277 79 0.036711499 282 79 0.010082699 283 79 0.015253399 284 79 0.00051709986 292 79 0.0012926999 293 79 0.0054291971 294 79 0.0025852998 296 79 0.0043949969 298 79 0.008272998 299 79 0.0010340998 312 79 0.012409497 313 79 0.00025849999 315 79 0.0080144964 320 79 0.0072388984 321 79 0.0031023999 322 79 0.013443597 340 79 0.018097199 351 79 0.0020682998 358 79 0.0056876987 387 79 0.00025849999 392 79 0.0018096999 393 79 0.0025852998 402 79 0.00051709986 422 79 0.00025849999 441 79 0.0028437998 443 79 0.0023267998 444 79 0.00051709986 445 79 0.003878 446 79 0.00025849999 447 79 0.011892498 450 79 0.0067217983 452 79 0.0067217983 453 79 0.0020682998 454 79 0.0015511999 455 79 0.016287498 456 79 0.00025849999 457 79 0.00077559985 458 79 0.0023267998 459 79 0.00025849999 460 79 0.0010340998 463 79 0.004136499 464 79 0.00077559985 465 79 0.0023267998 467 79 0.028955497 468 79 0.0074973963 469 79 0.008272998 470 79 0.0093070976 471 79 0.0010340998 473 79 0.00025849999 477 79 0.00025849999 478 79 0.0020682998 483 79 0.0012926999 490 79 0.0010340998 491 79 0.0018096999 22 80 0.00066919997 24 80 0.0002231 60 80 0.010484099 79 80 0.009368699 80 80 0.020521998 108 80 0.0002231 114 80 0.00044609979 126 80 0.0002231 135 80 0.0002231 160 80 0.0022306 171 80 0.0013383999 191 80 0.0011153 194 80 0.0002231 198 80 0.013160799 206 80 0.00044609979 220 80 0.039036397 225 80 0.00044609979 229 80 0.00089229993 234 80 0.0026767999 237 80 0.0002231 241 80 0.010260999 252 80 0.0002231 270 80 0.0071380995 271 80 0.0002231 277 80 0.017845199 284 80 0.00044609979 287 80 0.052866399 292 80 0.16417575 315 80 0.036805697 320 80 0.0044612996 321 80 0.009368699 340 80 0.013606999 351 80 0.0002231 358 80 0.0040151998 387 80 0.0002231 443 80 0.0051304996 444 80 0.010260999 445 80 0.017175999 446 80 0.00044609979 447 80 0.0064688995 450 80 0.0055765994 452 80 0.0071380995 453 80 0.0017845 454 80 0.00089229993 455 80 0.023867898 456 80 0.0002231 457 80 0.00066919997 458 80 0.0011153 459 80 0.0002231 460 80 0.00089229993 463 80 0.0017845 464 80 0.00066919997 465 80 0.0013383999 467 80 0.024090998 468 80 0.0055765994 469 80 0.0057996996 470 80 0.0066918992 471 80 0.00066919997 473 80 0.0002231 477 80 0.0002231 478 80 0.0013383999 483 80 0.00066919997 490 80 0.00066919997 491 80 0.0013383999 9 81 0.00017429999 22 81 0.00052279979 24 81 0.00017429999 60 81 0.0060996972 77 81 0.013419297 79 81 0.010108098 81 81 0.00017429999 82 81 0.00017429999 108 81 0.00017429999 114 81 0.00034859986 120 81 0.00017429999 126 81 0.00017429999 130 81 0.00017429999 150 81 0.00052279979 160 81 0.0012198999 161 81 0.00052279979 172 81 0.0012198999 181 81 0.00017429999 189 81 0.00017429999 190 81 0.00017429999 194 81 0.00017429999 198 81 0.0017428 200 81 0.00017429999 203 81 0.00017429999 204 81 0.00017429999 206 81 0.00052279979 214 81 0.00052279979 218 81 0.00017429999 220 81 0.005053997 223 81 0.00017429999 224 81 0.00017429999 229 81 0.00052279979 234 81 0.0033113 237 81 0.00017429999 240 81 0.0015685 241 81 0.0024398998 252 81 0.00017429999 270 81 0.00017429999 277 81 0.031892598 282 81 0.011327997 283 81 0.0087137967 284 81 0.00052279979 285 81 0.0012198999 287 81 0.00017429999 289 81 0.0024398998 290 81 0.00017429999 292 81 0.0020913 293 81 0.006622497 294 81 0.0022655998 295 81 0.00017429999 296 81 0.009585198 298 81 0.0024398998 299 81 0.0067967996 312 81 0.0031369999 313 81 0.00034859986 315 81 0.0026141999 318 81 0.0017428 319 81 0.00034859986 320 81 0.0087137967 321 81 0.0013941999 322 81 0.0078424998 326 81 0.0043568984 328 81 0.0017428 333 81 0.00017429999 338 81 0.00087139988 340 81 0.0041825995 351 81 0.0047054999 354 81 0.00017429999 358 81 0.011153698 369 81 0.00017429999 386 81 0.00017429999 387 81 0.00017429999 390 81 0.0026141999 391 81 0.00017429999 392 81 0.0202161 393 81 0.0085395984 397 81 0.00017429999 402 81 0.00034859986 403 81 0.00017429999 404 81 0.0047054999 405 81 0.026315797 414 81 0.00017429999 419 81 0.0013941999 422 81 0.00017429999 430 81 0.00017429999 434 81 0.00017429999 442 81 0.00017429999 443 81 0.0017428 444 81 0.0010456999 445 81 0.0031369999 447 81 0.0022655998 450 81 0.0078424998 452 81 0.010979399 453 81 0.0020913 454 81 0.0012198999 455 81 0.012896497 456 81 0.00069709984 457 81 0.00087139988 458 81 0.0017428 459 81 0.00034859986 460 81 0.00087139988 463 81 0.0031369999 464 81 0.0013941999 465 81 0.0024398998 467 81 0.033286899 468 81 0.0027883998 469 81 0.013244998 470 81 0.016033497 471 81 0.0013941999 473 81 0.00034859986 478 81 0.0020913 483 81 0.0026141999 490 81 0.0013941999 491 81 0.0034854999 0 82 6.5899992e-05 1 82 4.2299987e-05 2 82 0.72868645 3 82 4.2299987e-05 5 82 0.00035749981 6 82 0.0049346983 9 82 3.2899989e-05 11 82 2.349999e-05 14 82 4.6999994e-06 17 82 6.5899992e-05 18 82 0.00033399998 22 82 0.0001317 25 82 4.2299987e-05 60 82 0.00076209987 62 82 9.8799996e-05 79 82 4.6999994e-06 82 82 0.067349672 83 82 0.0025684999 84 82 2.349999e-05 88 82 0.00019759999 94 82 9.3999997e-06 97 82 4.6999994e-06 98 82 2.349999e-05 102 82 0.0012089999 104 82 9.3999997e-06 107 82 2.8199996e-05 108 82 4.6999994e-06 111 82 4.6999994e-06 113 82 9.3999997e-06 114 82 1.4099999e-05 117 82 4.2299987e-05 118 82 0.00030109985 119 82 1.8799998e-05 120 82 0.0002774999 122 82 2.349999e-05 125 82 0.0014253999 126 82 9.3999997e-06 127 82 4.6999994e-06 141 82 4.6999994e-06 149 82 4.6999994e-06 150 82 0.00012699999 153 82 0.00013639999 172 82 0.00011289999 189 82 3.2899989e-05 190 82 1.8799998e-05 192 82 1.8799998e-05 193 82 3.2899989e-05 194 82 1.4099999e-05 196 82 4.6999994e-06 197 82 4.6999994e-06 198 82 0.0048499964 200 82 9.3999997e-06 201 82 9.3999997e-06 203 82 1.4099999e-05 204 82 0.00019759999 206 82 9.8799996e-05 207 82 9.3999997e-06 209 82 4.6999994e-06 214 82 0.00036219996 217 82 1.4099999e-05 218 82 9.3999997e-06 223 82 0.00013639999 228 82 9.3999997e-06 229 82 0.00068209996 230 82 0.00015519999 234 82 0.00088439998 237 82 0.00015519999 241 82 0.0053721964 242 82 0.0001599 248 82 4.6999994e-06 250 82 4.6999994e-06 251 82 4.6999994e-06 252 82 1.4099999e-05 253 82 4.6999994e-06 272 82 0.00013639999 279 82 0.0002023 300 82 0.0019945998 301 82 0.00011759999 317 82 1.8799998e-05 325 82 1.4099999e-05 329 82 8.469999e-05 344 82 0.00054099993 356 82 6.5899992e-05 358 82 7.0599999e-05 384 82 9.3999997e-06 387 82 9.3999997e-06 394 82 9.3999997e-06 397 82 4.6999994e-06 402 82 4.6999994e-05 404 82 1.8799998e-05 414 82 0.00010819999 419 82 4.6999994e-06 422 82 1.8799998e-05 423 82 4.6999994e-06 425 82 4.6999994e-06 430 82 4.6999994e-06 431 82 4.6999994e-06 432 82 4.6999994e-06 433 82 9.3999997e-06 434 82 9.3999997e-06 443 82 0.0012371999 444 82 1.8799998e-05 445 82 0.0057108998 446 82 0.00031519984 447 82 6.5899992e-05 448 82 1.4099999e-05 450 82 0.00055979984 452 82 0.0028036998 453 82 0.0011336999 454 82 0.00030109985 455 82 0.030807696 456 82 0.0001599 457 82 0.0010537 458 82 9.8799996e-05 459 82 0.00038099987 460 82 0.00071029994 463 82 0.0011713 464 82 2.349999e-05 465 82 0.00030579977 467 82 0.0025072999 468 82 0.0014489 469 82 0.00072439993 470 82 0.00078559993 471 82 0.00066799996 472 82 7.9999998e-05 473 82 1.4099999e-05 476 82 4.6999994e-05 477 82 4.2299987e-05 478 82 0.00021639999 483 82 0.00040459982 489 82 4.2299987e-05 490 82 6.1199986e-05 491 82 0.00044219987 0 83 7.9699996e-05 1 83 0.00090279989 2 83 0.34128594 3 83 2.6599999e-05 5 83 0.00037169992 6 83 0.00023899999 9 83 5.3099997e-05 11 83 9.2899994e-05 13 83 1.3299999e-05 14 83 1.3299999e-05 17 83 0.00018589999 22 83 7.9699996e-05 25 83 1.3299999e-05 60 83 0.0011815999 82 83 0.31769359 83 83 0.033775397 84 83 0.00029209978 85 83 1.3299999e-05 87 83 6.6399996e-05 88 83 0.00099569978 90 83 2.6599999e-05 93 83 5.3099997e-05 94 83 7.9699996e-05 98 83 3.9799997e-05 103 83 1.3299999e-05 104 83 1.3299999e-05 107 83 3.9799997e-05 108 83 1.3299999e-05 114 83 3.9799997e-05 115 83 1.3299999e-05 118 83 2.6599999e-05 120 83 1.3299999e-05 122 83 3.9799997e-05 124 83 3.9799997e-05 125 83 0.0055628978 126 83 1.3299999e-05 130 83 1.3299999e-05 149 83 1.3299999e-05 150 83 0.00022569999 153 83 6.6399996e-05 172 83 5.3099997e-05 189 83 3.9799997e-05 190 83 3.9799997e-05 192 83 0.00087619992 193 83 0.0072090998 194 83 2.6599999e-05 198 83 0.011377998 200 83 1.3299999e-05 203 83 1.3299999e-05 204 83 0.010090098 206 83 0.00019909999 207 83 1.3299999e-05 214 83 0.00033189985 223 83 0.00019909999 224 83 0.00010619999 229 83 0.00066379993 230 83 0.00026549981 234 83 0.0013408998 237 83 0.00014599999 240 83 0.00010619999 241 83 0.011616897 242 83 0.00017259999 252 83 1.3299999e-05 253 83 0.00014599999 272 83 0.00018589999 277 83 1.3299999e-05 279 83 0.00049119978 300 83 0.0060009994 301 83 5.3099997e-05 314 83 2.6599999e-05 315 83 1.3299999e-05 316 83 0.00017259999 318 83 1.3299999e-05 344 83 0.00051779998 356 83 6.6399996e-05 358 83 0.00010619999 384 83 1.3299999e-05 387 83 1.3299999e-05 394 83 1.3299999e-05 402 83 5.3099997e-05 404 83 1.3299999e-05 414 83 5.3099997e-05 422 83 2.6599999e-05 430 83 1.3299999e-05 433 83 1.3299999e-05 434 83 1.3299999e-05 442 83 6.6399996e-05 443 83 0.0023498998 444 83 6.6399996e-05 445 83 0.012984399 446 83 0.00037169992 447 83 0.0014072999 448 83 1.3299999e-05 450 83 0.00082309986 452 83 0.0034385999 453 83 0.0017259 454 83 0.00039829989 455 83 0.0437859 456 83 0.00018589999 457 83 0.001009 458 83 0.00023899999 459 83 0.0010753998 460 83 0.00086299982 463 83 0.0031597998 464 83 7.9699996e-05 465 83 0.0013408998 467 83 0.003359 468 83 0.0026021998 469 83 0.0012877998 470 83 0.0014205999 471 83 0.0010753998 472 83 3.9799997e-05 473 83 3.9799997e-05 477 83 3.9799997e-05 478 83 0.00034519983 483 83 0.00057089981 489 83 5.3099997e-05 490 83 0.00014599999 491 83 0.00029209978 1 84 0.62848139 2 84 0.00014199999 3 84 0.0009937 4 84 2.8399998e-05 5 84 5.6799996e-05 6 84 0.00031229993 9 84 5.6799996e-05 11 84 8.5199994e-05 14 84 0.004059799 18 84 0.0001987 60 84 0.0010221 82 84 0.0013626998 83 84 0.00014199999 84 84 0.026374798 85 84 0.00011359999 94 84 8.5199994e-05 102 84 0.00059619988 108 84 2.8399998e-05 114 84 5.6799996e-05 118 84 0.00017029999 120 84 2.8399998e-05 122 84 2.8399998e-05 125 84 2.8399998e-05 126 84 2.8399998e-05 150 84 0.00045419997 172 84 0.0029525999 189 84 2.8399998e-05 190 84 8.5199994e-05 192 84 2.8399998e-05 193 84 0.012775697 194 84 8.5199994e-05 195 84 0.0002271 197 84 2.8399998e-05 198 84 0.015728399 200 84 2.8399998e-05 203 84 5.6799996e-05 204 84 0.0010787998 206 84 0.00017029999 207 84 2.8399998e-05 214 84 0.0024699999 223 84 0.00014199999 229 84 0.00059619988 230 84 0.00053939992 234 84 0.0023563998 237 84 0.00028389995 240 84 2.8399998e-05 241 84 0.00014199999 242 84 0.00017029999 252 84 2.8399998e-05 272 84 0.00025549997 277 84 2.8399998e-05 279 84 0.00079489988 300 84 0.00025549997 325 84 2.8399998e-05 344 84 0.00045419997 356 84 5.6799996e-05 358 84 0.0002271 366 84 2.8399998e-05 387 84 2.8399998e-05 394 84 2.8399998e-05 397 84 2.8399998e-05 402 84 0.00014199999 422 84 8.5199994e-05 433 84 2.8399998e-05 434 84 2.8399998e-05 443 84 0.0009368998 444 84 5.6799996e-05 445 84 0.010845199 446 84 0.00017029999 447 84 0.00082329987 448 84 2.8399998e-05 450 84 0.0017317999 452 84 0.0049682967 453 84 0.0012492 454 84 0.0015330999 455 84 0.049796999 456 84 0.00039749988 457 84 0.00028389995 458 84 0.00028389995 459 84 0.00014199999 460 84 0.0007664999 463 84 0.0015330999 464 84 8.5199994e-05 465 84 0.0010787998 467 84 0.0041449964 468 84 0.0030377998 469 84 0.0009937 470 84 0.0011355998 471 84 0.0022429 473 84 2.8399998e-05 476 84 5.6799996e-05 477 84 2.8399998e-05 478 84 0.00070979982 483 84 0.0003690999 489 84 0.00014199999 490 84 0.00011359999 491 84 0.00031229993 1 85 0.41609979 2 85 0.000189 9 85 0.0032123998 11 85 0.0022675998 60 85 0.0015117 82 85 0.0041571967 83 85 0.00056689978 84 85 0.14852607 85 85 0.0060468987 97 85 0.000189 98 85 0.00037789997 105 85 0.000189 107 85 0.00037789997 114 85 0.000189 122 85 0.00094479998 125 85 0.000189 172 85 0.000189 189 85 0.00037789997 192 85 0.00075589982 193 85 0.013416499 194 85 0.000189 198 85 0.034580499 204 85 0.00037789997 206 85 0.00037789997 214 85 0.00056689978 223 85 0.00056689978 229 85 0.00056689978 230 85 0.00075589982 234 85 0.0032123998 237 85 0.00037789997 240 85 0.00094479998 241 85 0.0011337998 242 85 0.000189 253 85 0.000189 272 85 0.00056689978 279 85 0.0015117 300 85 0.0096371993 325 85 0.0015117 344 85 0.00056689978 358 85 0.00037789997 366 85 0.000189 402 85 0.000189 443 85 0.00094479998 445 85 0.011526797 446 85 0.00037789997 447 85 0.00075589982 450 85 0.0020786 452 85 0.0056688972 453 85 0.0020786 454 85 0.0013227998 455 85 0.062547147 456 85 0.00037789997 457 85 0.0049130991 458 85 0.00094479998 459 85 0.00094479998 460 85 0.00075589982 463 85 0.0047240965 465 85 0.0011337998 467 85 0.0060468987 468 85 0.0079364963 469 85 0.0013227998 470 85 0.0015117 471 85 0.0022675998 478 85 0.00075589982 483 85 0.00037789997 490 85 0.000189 491 85 0.000189 0 86 0.32495898 1 86 0.0032823998 22 86 0.00025249994 60 86 0.0020198999 82 86 0.00025249994 84 86 0.00050499989 86 86 0.019820698 87 86 0.011614699 88 86 0.020704497 90 86 0.31662667 107 86 0.0036611999 115 86 0.0013887 125 86 0.00025249994 192 86 0.021840699 193 86 0.0020198999 194 86 0.00025249994 198 86 0.023355599 204 86 0.0041660964 206 86 0.00025249994 214 86 0.00050499989 223 86 0.00025249994 229 86 0.00088369986 230 86 0.00012619999 234 86 0.0027774 237 86 0.00025249994 240 86 0.00012619999 241 86 0.0045448989 242 86 0.00050499989 253 86 0.00012619999 272 86 0.00025249994 277 86 0.00012619999 279 86 0.00012619999 300 86 0.012119699 325 86 0.00050499989 344 86 0.00088369986 350 86 0.00037869997 351 86 0.00025249994 356 86 0.00012619999 366 86 0.00012619999 443 86 0.0018936999 444 86 0.00037869997 445 86 0.0090897977 446 86 0.00025249994 447 86 0.0018936999 450 86 0.00088369986 452 86 0.0034087 453 86 0.0032823998 454 86 0.00050499989 455 86 0.050498698 456 86 0.00037869997 457 86 0.0021461998 458 86 0.00025249994 459 86 0.00050499989 460 86 0.0011361998 463 86 0.0017674998 464 86 0.00012619999 465 86 0.0050498992 467 86 0.0039136 468 86 0.004797399 469 86 0.00088369986 470 86 0.00075749983 471 86 0.0025248998 478 86 0.00025249994 483 86 0.00075749983 490 86 0.00025249994 491 86 0.00075749983 0 87 0.29069388 3 87 3.6099998e-05 9 87 3.6099998e-05 11 87 7.2199997e-05 13 87 3.6099998e-05 14 87 7.2199997e-05 22 87 7.2199997e-05 25 87 0.00014429999 60 87 0.00093819993 82 87 7.2199997e-05 86 87 0.0014795 87 87 0.24414527 88 87 0.0046548992 90 87 0.088875294 104 87 3.6099998e-05 105 87 3.6099998e-05 107 87 0.0010463998 114 87 3.6099998e-05 122 87 7.2199997e-05 125 87 0.0019484998 130 87 0.0011908 150 87 0.0012629 151 87 0.0013712 190 87 3.6099998e-05 192 87 0.023887698 193 87 0.0117273 194 87 3.6099998e-05 198 87 0.0105366 203 87 3.6099998e-05 204 87 0.0088767 206 87 0.00018039999 214 87 0.0037527999 223 87 0.00050519989 229 87 0.00079389988 230 87 0.00014429999 234 87 0.0029227999 237 87 0.00036079995 240 87 0.00021649999 241 87 0.018727697 242 87 0.0010103998 253 87 3.6099998e-05 272 87 0.00032479991 277 87 7.2199997e-05 279 87 0.00036079995 300 87 0.0055569969 317 87 0.0011908 324 87 0.00014429999 325 87 0.0022371998 326 87 0.00082989992 340 87 0.0010463998 344 87 0.002165 349 87 3.6099998e-05 356 87 7.2199997e-05 358 87 0.0001083 366 87 0.00086599984 394 87 3.6099998e-05 402 87 0.00014429999 422 87 3.6099998e-05 434 87 3.6099998e-05 442 87 0.00075779995 443 87 0.0022733 444 87 0.0016599 445 87 0.0093457997 446 87 0.00028869999 447 87 0.0011185999 448 87 7.2199997e-05 450 87 0.0020567998 452 87 0.0031392998 453 87 0.0030671998 454 87 0.0014072999 455 87 0.071266174 456 87 0.0004329998 457 87 0.0020567998 458 87 0.00032479991 459 87 0.0018041998 460 87 0.0011908 463 87 0.0046908967 464 87 0.00093819993 465 87 0.005448699 467 87 0.007469397 468 87 0.0110057 469 87 0.0004329998 470 87 0.0004329998 471 87 0.0024175998 472 87 0.00036079995 477 87 3.6099998e-05 478 87 0.00028869999 483 87 0.00028869999 489 87 0.0001083 490 87 0.00018039999 491 87 3.6099998e-05 0 88 0.30537045 1 88 0.0011586999 2 88 5.789999e-05 3 88 5.789999e-05 5 88 5.789999e-05 9 88 0.00011589999 10 88 5.789999e-05 11 88 0.00011589999 13 88 0.00011589999 14 88 0.0001738 22 88 0.00052139978 60 88 0.0017959999 82 88 0.00028969999 84 88 0.00011589999 86 88 0.0057354979 87 88 0.0069520995 88 88 0.071896195 90 88 0.1147095 98 88 0.00011589999 104 88 0.00023169999 105 88 0.0001738 107 88 0.009443298 109 88 0.00011589999 114 88 5.789999e-05 115 88 0.0079948977 116 88 0.00023169999 122 88 0.0001738 125 88 5.789999e-05 150 88 0.00023169999 151 88 5.789999e-05 172 88 5.789999e-05 192 88 0.040495899 193 88 0.009443298 194 88 0.00034759985 198 88 0.023173597 204 88 0.0057933964 206 88 0.00028969999 214 88 0.0020277 223 88 0.00011589999 229 88 0.00063729985 230 88 0.0001738 234 88 0.0034180998 237 88 0.00034759985 240 88 0.00023169999 241 88 0.0057933964 242 88 0.0016800999 253 88 0.00057929987 272 88 0.00034759985 277 88 5.789999e-05 279 88 0.00040549994 300 88 0.067261457 301 88 5.789999e-05 314 88 5.789999e-05 324 88 0.0001738 325 88 0.0018538998 340 88 0.00011589999 344 88 0.0012166 350 88 0.0021435998 351 88 0.0012166 356 88 5.789999e-05 358 88 0.00011589999 366 88 0.00023169999 402 88 0.0001738 443 88 0.0038816 444 88 0.0012166 445 88 0.0064885989 446 88 0.00052139978 447 88 0.0019697999 450 88 0.0010427998 452 88 0.0047505982 453 88 0.004171297 454 88 0.00092689996 455 88 0.0436823 456 88 0.00052139978 457 88 0.0022594 458 88 0.00046349992 459 88 0.00046349992 460 88 0.0013903999 463 88 0.0036497999 464 88 0.00011589999 465 88 0.0057354979 467 88 0.0074734986 468 88 0.016858798 469 88 0.0011586999 470 88 0.00086899986 471 88 0.0029545999 472 88 5.789999e-05 477 88 5.789999e-05 478 88 0.00040549994 483 88 0.00057929987 489 88 0.0001738 490 88 0.00034759985 491 88 0.001738 0 89 0.15343666 2 89 0.0001314 10 89 0.0053225979 14 89 6.5699991e-05 22 89 6.5699991e-05 60 89 0.0025628 86 89 0.0048626997 87 89 0.00072279992 88 89 0.083322346 89 89 0.0011170998 90 89 0.12938625 104 89 0.012682296 105 89 0.0085424967 107 89 0.027795997 108 89 0.00019709999 109 89 0.0076225996 114 89 6.5699991e-05 115 89 0.00019709999 116 89 0.0089367963 117 89 0.0001314 119 89 0.00098569994 125 89 6.5699991e-05 126 89 6.5699991e-05 150 89 0.0001314 172 89 6.5699991e-05 189 89 0.0001314 190 89 6.5699991e-05 192 89 0.010645296 193 89 0.0081481971 194 89 0.00052569993 198 89 0.065645874 203 89 6.5699991e-05 204 89 0.0001314 206 89 0.00032859994 214 89 0.0017084999 223 89 0.00019709999 229 89 0.00059139985 230 89 0.00026279991 234 89 0.0048626997 237 89 0.00078849983 240 89 0.00019709999 241 89 0.0083453991 242 89 0.00059139985 253 89 6.5699991e-05 272 89 0.00059139985 279 89 0.00039429986 300 89 0.0017741998 301 89 0.0001314 314 89 6.5699991e-05 324 89 0.00026279991 325 89 0.00019709999 344 89 0.00045999978 350 89 6.5699991e-05 351 89 0.00032859994 356 89 6.5699991e-05 358 89 0.00026279991 366 89 0.00091999979 402 89 0.00026279991 422 89 6.5699991e-05 434 89 6.5699991e-05 443 89 0.0045340993 444 89 0.00019709999 445 89 0.0056511983 446 89 0.0006571 447 89 0.0032199 448 89 6.5699991e-05 450 89 0.0019055998 452 89 0.0095938966 453 89 0.0018398999 454 89 0.00052569993 455 89 0.048429497 456 89 0.00098569994 457 89 0.0022341998 458 89 0.0006571 459 89 0.00052569993 460 89 0.0019055998 463 89 0.0058482997 464 89 0.0001314 465 89 0.0080167986 467 89 0.0065054968 468 89 0.017413598 469 89 0.0025628 470 89 0.0024312998 471 89 0.0061111972 472 89 6.5699991e-05 473 89 6.5699991e-05 478 89 0.0006571 483 89 0.0017084999 489 89 0.00026279991 490 89 0.00026279991 491 89 6.5699991e-05 0 90 0.3519575 1 90 0.00019929999 2 90 0.00029369979 5 90 0.00087069999 6 90 0.047343798 9 90 2.1e-05 10 90 1.05e-05 11 90 1.05e-05 18 90 0.0049200989 22 90 0.00028319983 24 90 1.05e-05 60 90 0.0015840998 62 90 0.0013322998 79 90 1.05e-05 82 90 1.05e-05 83 90 1.05e-05 84 90 3.1499992e-05 86 90 0.0024128 87 90 0.0039653964 88 90 0.011634 90 90 0.098159969 98 90 0.00055599981 102 90 0.022502199 103 90 2.1e-05 104 90 0.00026229979 105 90 2.1e-05 107 90 0.0067034997 108 90 1.05e-05 109 90 2.1e-05 111 90 0.00017829999 113 90 2.1e-05 114 90 6.2899999e-05 115 90 0.00015739999 116 90 2.1e-05 117 90 0.00028319983 118 90 0.0023184 119 90 4.2e-05 120 90 3.1499992e-05 122 90 2.1e-05 125 90 2.1e-05 126 90 3.1499992e-05 127 90 1.05e-05 130 90 1.05e-05 141 90 1.05e-05 143 90 0.00030419999 150 90 0.00015739999 151 90 3.1499992e-05 160 90 5.2499992e-05 171 90 2.1e-05 172 90 0.00013639999 189 90 0.00011539999 190 90 4.2e-05 191 90 2.1e-05 192 90 0.0013007999 193 90 0.00037769997 194 90 0.0012484 196 90 1.05e-05 197 90 1.05e-05 198 90 0.047238898 200 90 4.2e-05 201 90 3.1499992e-05 203 90 3.1499992e-05 204 90 0.00028319983 206 90 0.00013639999 207 90 2.1e-05 209 90 1.05e-05 214 90 0.00048259995 217 90 0.0002308 218 90 2.1e-05 223 90 0.00024129999 228 90 7.3399991e-05 229 90 0.0012063999 230 90 0.00017829999 234 90 0.0041751973 237 90 0.0013007999 240 90 0.00015739999 241 90 0.0055389963 242 90 0.00030419999 248 90 1.05e-05 250 90 1.05e-05 251 90 1.05e-05 252 90 2.1e-05 253 90 0.0002098 272 90 0.00030419999 279 90 0.0001888 283 90 1.05e-05 300 90 0.0025072 301 90 0.00032519992 307 90 2.1e-05 314 90 0.0001678 315 90 0.00033569988 317 90 0.00019929999 322 90 1.05e-05 324 90 0.0001049 325 90 8.3899999e-05 326 90 1.05e-05 329 90 0.00096509978 334 90 1.05e-05 340 90 2.1e-05 344 90 0.00044059986 350 90 8.3899999e-05 351 90 0.00083919987 356 90 9.4399991e-05 357 90 2.1e-05 358 90 0.0001469 366 90 0.00087069999 384 90 3.1499992e-05 387 90 2.1e-05 394 90 8.3899999e-05 397 90 2.1e-05 402 90 0.00032519992 419 90 1.05e-05 422 90 4.2e-05 423 90 1.05e-05 425 90 1.05e-05 430 90 1.05e-05 431 90 1.05e-05 432 90 1.05e-05 433 90 2.1e-05 434 90 2.1e-05 442 90 2.1e-05 443 90 0.0019302999 444 90 0.0001678 445 90 0.0083399974 446 90 0.00034619984 447 90 0.0011119999 448 90 9.4399991e-05 450 90 0.0017833998 452 90 0.0056123994 453 90 0.0013742999 454 90 0.00038809981 455 90 0.026121397 456 90 0.00093369978 457 90 0.0036821999 458 90 0.00055599981 459 90 0.00071339984 460 90 0.0023079 463 90 0.0089064986 464 90 9.4399991e-05 465 90 0.0013951999 467 90 0.0063572973 468 90 0.0058431998 469 90 0.0034408998 470 90 0.0020456999 471 90 0.0050039999 472 90 0.0001888 473 90 5.2499992e-05 476 90 0.00033569988 477 90 6.2899999e-05 478 90 0.00070289988 483 90 0.0014161998 489 90 0.00015739999 490 90 0.00017829999 491 90 4.2e-05 0 91 0.0030756998 3 91 0.00096119987 9 91 0.00019219999 11 91 0.00096119987 17 91 0.37677819 22 91 0.00019219999 60 91 0.0024989999 82 91 0.0049980991 83 91 0.00038449978 84 91 0.00038449978 90 91 0.00076889992 91 91 0.005190298 93 91 0.00096119987 94 91 0.0011533999 96 91 0.00019219999 98 91 0.00038449978 103 91 0.00019219999 104 91 0.00019219999 107 91 0.00057669985 114 91 0.00019219999 115 91 0.00019219999 116 91 0.00019219999 118 91 0.00019219999 120 91 0.00019219999 122 91 0.0096116997 124 91 0.00057669985 125 91 0.00038449978 150 91 0.00019219999 192 91 0.00038449978 193 91 0.00038449978 194 91 0.00019219999 198 91 0.0151865 204 91 0.017493296 206 91 0.00096119987 214 91 0.00096119987 223 91 0.00076889992 229 91 0.00038449978 230 91 0.00076889992 233 91 0.00019219999 234 91 0.0028835 237 91 0.00019219999 240 91 0.0013455998 241 91 0.0086504966 242 91 0.0023067999 252 91 0.00019219999 253 91 0.0019222999 272 91 0.00057669985 277 91 0.00019219999 300 91 0.051326398 314 91 0.00038449978 340 91 0.00019219999 344 91 0.00038449978 356 91 0.00019219999 358 91 0.00076889992 366 91 0.00019219999 402 91 0.00019219999 443 91 0.0015379 444 91 0.00019219999 445 91 0.0042290986 447 91 0.0098038986 450 91 0.0021145998 452 91 0.0036523999 453 91 0.0013455998 454 91 0.0017300998 455 91 0.10976547 456 91 0.00019219999 457 91 0.0017300998 458 91 0.0011533999 459 91 0.00038449978 460 91 0.0017300998 463 91 0.0065358989 464 91 0.00038449978 465 91 0.0013455998 467 91 0.0078815967 468 91 0.012110699 469 91 0.0019222999 470 91 0.0019222999 471 91 0.0021145998 478 91 0.00076889992 483 91 0.0011533999 489 91 0.00076889992 490 91 0.00038449978 491 91 0.0021145998 0 92 0.00061319978 1 92 0.0018396999 2 92 0.0011037998 3 92 6.1299987e-05 5 92 6.1299987e-05 9 92 0.0063775964 11 92 0.027472898 13 92 0.0017170999 14 92 0.00012259999 16 92 0.00098119979 17 92 0.0051511973 22 92 0.00067459978 60 92 0.0036793998 82 92 0.066045284 83 92 0.00079719978 84 92 0.010424998 85 92 0.00018399999 88 92 0.0019009998 90 92 0.00018399999 92 92 0.00024529989 93 92 0.0226283 94 92 0.028024796 95 92 0.00024529989 98 92 0.0072974972 103 92 0.0025755998 104 92 0.0038019998 107 92 0.014288299 108 92 6.1299987e-05 114 92 0.00012259999 115 92 0.0038633998 116 92 0.0005518999 118 92 0.0036181 119 92 0.0009198999 122 92 0.0072974972 124 92 0.013920397 125 92 0.010976899 126 92 6.1299987e-05 150 92 6.1299987e-05 169 92 6.1299987e-05 172 92 0.00012259999 189 92 6.1299987e-05 190 92 6.1299987e-05 192 92 0.00042929989 193 92 0.00036789989 194 92 6.1299987e-05 198 92 0.016128 203 92 6.1299987e-05 204 92 0.0172932 206 92 0.00018399999 214 92 0.0036793998 223 92 0.0012877998 229 92 0.00079719978 230 92 0.00042929989 234 92 0.0026981998 237 92 0.00018399999 240 92 0.0014717998 241 92 0.0082172975 242 92 0.0011650999 252 92 6.1299987e-05 253 92 0.045317996 272 92 0.0005518999 277 92 6.1299987e-05 300 92 0.11522657 314 92 0.0109156 325 92 6.1299987e-05 344 92 0.00036789989 356 92 6.1299987e-05 358 92 0.00042929989 366 92 0.0016556999 387 92 6.1299987e-05 402 92 0.00012259999 414 92 6.1299987e-05 422 92 6.1299987e-05 434 92 6.1299987e-05 443 92 0.0065002963 444 92 0.00030659977 445 92 0.027104899 446 92 0.0011037998 447 92 0.0031274999 448 92 6.1299987e-05 450 92 0.0015943998 452 92 0.0029434999 453 92 0.0021462999 454 92 0.0012877998 455 92 0.057092 456 92 0.00018399999 457 92 0.0013490999 458 92 0.00049059978 459 92 0.00024529989 460 92 0.0016556999 463 92 0.0075427964 464 92 0.00018399999 465 92 0.0054577999 467 92 0.0082172975 468 92 0.053473998 469 92 0.0017170999 470 92 0.0018396999 471 92 0.0028208999 473 92 6.1299987e-05 477 92 6.1299987e-05 478 92 0.00067459978 483 92 0.0011037998 489 92 0.00024529989 490 92 0.0024528999 491 92 0.00024529989 0 93 0.0046974979 1 93 0.0001777 3 93 7.6199998e-05 5 93 5.0799994e-05 9 93 0.053576399 10 93 2.539999e-05 11 93 0.060482897 12 93 0.00010159999 13 93 0.00022849999 14 93 0.00010159999 16 93 0.015742797 17 93 0.00096489978 21 93 2.539999e-05 22 93 0.0001777 24 93 7.6199998e-05 60 93 0.0026152998 82 93 0.0047227964 83 93 0.00012699999 84 93 0.0012949998 85 93 0.00022849999 86 93 2.539999e-05 87 93 0.00012699999 88 93 0.00027929991 90 93 0.0012695999 93 93 0.0323998 94 93 0.0075412989 95 93 0.0021582998 97 93 0.00020309999 98 93 0.0018789999 103 93 0.00012699999 104 93 0.006804999 105 93 0.00010159999 107 93 0.025924899 108 93 7.6199998e-05 109 93 5.0799994e-05 114 93 5.0799994e-05 115 93 0.0018028 116 93 0.0045450963 117 93 2.539999e-05 118 93 0.00033009984 119 93 0.00010159999 120 93 0.00012699999 122 93 0.0035547998 124 93 0.0006601999 125 93 0.0029707998 126 93 2.539999e-05 150 93 0.00045699999 151 93 2.539999e-05 160 93 0.00048239995 169 93 0.0010410999 172 93 0.0020566999 189 93 5.0799994e-05 190 93 7.6199998e-05 192 93 0.00091409986 193 93 0.00045699999 194 93 0.00010159999 197 93 2.539999e-05 198 93 0.015996698 200 93 2.539999e-05 203 93 5.0799994e-05 204 93 0.018256597 206 93 0.00063479994 207 93 2.539999e-05 214 93 0.0013203998 218 93 5.0799994e-05 223 93 0.00096489978 224 93 5.0799994e-05 228 93 2.539999e-05 229 93 0.00083789998 230 93 0.00053319987 234 93 0.0027676998 237 93 0.00025389995 240 93 0.0014726999 241 93 0.0060939975 242 93 0.00093949982 252 93 0.00010159999 253 93 0.0412107 272 93 0.00055859983 277 93 5.0799994e-05 279 93 7.6199998e-05 300 93 0.12799937 301 93 5.0799994e-05 314 93 0.006982699 325 93 0.0011171999 340 93 2.539999e-05 344 93 0.00048239995 350 93 2.539999e-05 351 93 0.0003554998 356 93 7.6199998e-05 358 93 0.00053319987 366 93 0.0001523 384 93 5.0799994e-05 387 93 2.539999e-05 394 93 2.539999e-05 397 93 2.539999e-05 402 93 0.00012699999 414 93 0.00060939998 422 93 7.6199998e-05 430 93 2.539999e-05 433 93 2.539999e-05 434 93 2.539999e-05 443 93 0.008937899 444 93 0.00048239995 445 93 0.055937797 446 93 0.0022851999 447 93 0.0031486 448 93 5.0799994e-05 450 93 0.0020058998 452 93 0.0042911991 453 93 0.0040626973 454 93 0.0014726999 455 93 0.074194372 456 93 0.00030469988 457 93 0.0013203998 458 93 0.00063479994 459 93 0.00038089999 460 93 0.0017773998 463 93 0.0087854974 464 93 0.00022849999 465 93 0.0040626973 467 93 0.0091917999 468 93 0.014092397 469 93 0.0017519998 470 93 0.0018535999 471 93 0.0018789999 473 93 5.0799994e-05 477 93 2.539999e-05 478 93 0.00076169986 483 93 0.00081249978 489 93 0.0001523 490 93 0.0013964998 491 93 0.00055859983 3 94 0.00027609989 5 94 0.0016562999 6 94 0.00013799999 9 94 0.017529298 11 94 0.067632854 13 94 0.00069009978 14 94 0.00041409978 16 94 0.0019323998 17 94 0.00013799999 18 94 0.011594199 24 94 0.00027609989 60 94 0.0019323998 62 94 0.0012421999 82 94 0.0011041998 84 94 0.0005520999 85 94 0.0011041998 88 94 0.0030365998 93 94 0.0005520999 94 94 0.14837819 95 94 0.0005520999 97 94 0.00013799999 98 94 0.0012421999 104 94 0.0011041998 105 94 0.00027609989 107 94 0.0067632981 114 94 0.00013799999 115 94 0.00013799999 116 94 0.0012421999 118 94 0.00027609989 122 94 0.0051069967 125 94 0.0026224998 153 94 0.00013799999 154 94 0.00041409978 172 94 0.0077294968 192 94 0.010489997 193 94 0.0093857981 198 94 0.067080677 204 94 0.015182897 206 94 0.00027609989 214 94 0.004140798 215 94 0.019875798 217 94 0.0044167973 223 94 0.0015182998 228 94 0.00013799999 229 94 0.00069009978 230 94 0.00041409978 234 94 0.0063491985 237 94 0.00069009978 241 94 0.0092477985 242 94 0.00041409978 252 94 0.00013799999 253 94 0.0042787977 272 94 0.0005520999 279 94 0.00069009978 300 94 0.0016562999 314 94 0.00082819979 317 94 0.00013799999 325 94 0.0099378973 329 94 0.00082819979 344 94 0.00027609989 358 94 0.00041409978 394 94 0.00013799999 443 94 0.0097998977 444 94 0.00013799999 445 94 0.026362997 446 94 0.0011041998 447 94 0.0026224998 448 94 0.00013799999 450 94 0.0019323998 452 94 0.0048308969 453 94 0.0075913966 454 94 0.0017942998 455 94 0.065286398 456 94 0.00096619991 457 94 0.0019323998 458 94 0.0005520999 459 94 0.00027609989 460 94 0.0022083998 463 94 0.0066252984 464 94 0.00041409978 465 94 0.00096619991 467 94 0.0267771 468 94 0.033264298 469 94 0.0017942998 470 94 0.0017942998 471 94 0.0017942998 478 94 0.0005520999 483 94 0.00041409978 490 94 0.0016562999 491 94 0.0022083998 0 95 0.018136699 3 95 0.00051329983 5 95 8.5599997e-05 9 95 0.0129181 10 95 0.00017109999 11 95 0.035332397 12 95 0.00034219981 13 95 0.0106938 14 95 0.0021388 16 95 0.00085549988 17 95 0.00051329983 22 95 0.00025669998 60 95 0.0020531998 82 95 0.0097527988 83 95 8.5599997e-05 84 95 0.0004278 85 95 0.028402798 86 95 8.5599997e-05 87 95 0.014543597 88 95 0.00059889979 90 95 0.0053896978 93 95 0.0022242998 94 95 0.0015399 95 95 0.016254596 97 95 8.5599997e-05 98 95 0.0011121999 103 95 8.5599997e-05 104 95 0.0073572993 105 95 0.00025669998 106 95 8.5599997e-05 107 95 0.0269484 108 95 0.00034219981 109 95 0.00017109999 112 95 8.5599997e-05 114 95 0.00017109999 115 95 0.00025669998 116 95 0.00094109983 117 95 0.0012832999 118 95 0.0091538988 119 95 0.0023953998 122 95 0.11925739 124 95 0.00034219981 125 95 0.016938999 126 95 8.5599997e-05 130 95 8.5599997e-05 150 95 8.5599997e-05 151 95 8.5599997e-05 169 95 8.5599997e-05 172 95 8.5599997e-05 189 95 8.5599997e-05 190 95 8.5599997e-05 192 95 0.0023098998 193 95 0.010266099 194 95 8.5599997e-05 198 95 0.035161298 204 95 0.0180512 206 95 0.00017109999 214 95 0.0014543999 223 95 0.0014543999 229 95 0.00085549988 230 95 0.0004278 231 95 8.5599997e-05 234 95 0.001711 237 95 0.00025669998 240 95 8.5599997e-05 241 95 0.016083498 242 95 0.00094109983 252 95 8.5599997e-05 253 95 0.094875455 272 95 0.00068439986 277 95 8.5599997e-05 279 95 0.0011976999 300 95 0.013003699 301 95 8.5599997e-05 314 95 0.018906698 317 95 8.5599997e-05 325 95 0.00068439986 326 95 8.5599997e-05 340 95 8.5599997e-05 344 95 0.00059889979 350 95 8.5599997e-05 351 95 8.5599997e-05 356 95 8.5599997e-05 358 95 0.0004278 366 95 0.00017109999 387 95 8.5599997e-05 402 95 8.5599997e-05 422 95 8.5599997e-05 442 95 8.5599997e-05 443 95 0.0082127973 444 95 0.0004278 445 95 0.0376422 446 95 0.0011976999 447 95 0.0032509 450 95 0.0015399 452 95 0.003422 453 95 0.0021388 454 95 0.004619699 455 95 0.066472769 456 95 8.5599997e-05 457 95 0.0014543999 458 95 0.00068439986 459 95 0.00051329983 460 95 0.0017965999 463 95 0.012233697 464 95 0.00025669998 465 95 0.0036787 467 95 0.0062451996 468 95 0.065788269 469 95 0.0020531998 470 95 0.0022242998 471 95 0.0016254999 473 95 8.5599997e-05 478 95 0.00051329983 483 95 0.00076999981 489 95 8.5599997e-05 490 95 0.003422 491 95 0.00025669998 3 96 0.0285137 9 96 0.0010110999 11 96 0.0007077998 17 96 0.49484324 22 96 0.0002022 60 96 0.0070778988 82 96 0.00050559989 84 96 0.00030329986 91 96 0.0001011 96 96 0.0077855997 97 96 0.0001011 98 96 0.0001011 107 96 0.0001011 114 96 0.0001011 120 96 0.00050559989 122 96 0.0059655979 125 96 0.0001011 126 96 0.0001011 190 96 0.0001011 192 96 0.0029322999 193 96 0.013346799 194 96 0.0001011 198 96 0.021031298 204 96 0.021132499 206 96 0.0002022 214 96 0.0015166998 223 96 0.0007077998 229 96 0.00040439982 230 96 0.00060669985 234 96 0.0028310998 237 96 0.00030329986 241 96 0.0038422998 242 96 0.0045500994 252 96 0.0001011 272 96 0.00040439982 277 96 0.0001011 279 96 0.00040439982 300 96 0.004752297 301 96 0.0024267 325 96 0.0035388998 344 96 0.00050559989 356 96 0.0001011 358 96 0.00060669985 366 96 0.0069766976 384 96 0.0001011 402 96 0.0001011 422 96 0.0001011 443 96 0.0026288999 444 96 0.0030333998 445 96 0.0052577965 446 96 0.0002022 447 96 0.0075833984 450 96 0.0023255998 452 96 0.0049544983 453 96 0.00030329986 454 96 0.00090999994 455 96 0.12275028 456 96 0.00030329986 457 96 0.0012132998 458 96 0.00080889999 459 96 0.0002022 460 96 0.0021233999 463 96 0.0079878978 464 96 0.00030329986 465 96 0.0010110999 467 96 0.0089989975 468 96 0.0078867972 469 96 0.0019210998 470 96 0.0022244998 471 96 0.0019210998 473 96 0.0001011 478 96 0.00080889999 483 96 0.00060669985 489 96 0.0001011 490 96 0.0002022 491 96 0.0012132998 0 97 0.00035029999 1 97 0.0016347999 2 97 0.0019267998 3 97 0.00011679999 5 97 5.8399994e-05 6 97 5.8399994e-05 9 97 0.069860458 10 97 0.00011679999 11 97 0.049862798 13 97 2.919999e-05 14 97 8.7599998e-05 16 97 0.00052549993 17 97 0.0025106999 24 97 2.919999e-05 60 97 0.0020436 82 97 0.038214497 83 97 0.0036199999 84 97 0.0235301 85 97 8.7599998e-05 86 97 2.919999e-05 87 97 2.919999e-05 88 97 0.00014599999 90 97 8.7599998e-05 93 97 0.0012552999 94 97 0.00075899996 95 97 8.7599998e-05 96 97 2.919999e-05 97 97 0.0060430989 98 97 0.010480497 100 97 8.7599998e-05 102 97 2.919999e-05 103 97 2.919999e-05 104 97 0.00037949998 105 97 0.0023939 107 97 0.011502299 108 97 0.0001752 109 97 0.0011676999 114 97 0.00011679999 115 97 8.7599998e-05 116 97 0.0022186998 118 97 0.00011679999 119 97 2.919999e-05 120 97 5.8399994e-05 122 97 0.017662197 124 97 0.00011679999 125 97 0.0057219975 126 97 5.8399994e-05 150 97 0.00040869997 151 97 2.919999e-05 160 97 2.919999e-05 169 97 2.919999e-05 172 97 5.8399994e-05 189 97 5.8399994e-05 190 97 8.7599998e-05 192 97 0.014480099 193 97 0.010714099 194 97 8.7599998e-05 197 97 2.919999e-05 198 97 0.058650099 200 97 2.919999e-05 203 97 5.8399994e-05 204 97 0.0047001988 206 97 0.00011679999 207 97 2.919999e-05 214 97 0.0097214989 218 97 2.919999e-05 223 97 0.0012844999 224 97 2.919999e-05 228 97 2.919999e-05 229 97 0.00037949998 230 97 0.00058389991 234 97 0.0028025999 237 97 0.00026269979 240 97 0.00043789996 241 97 0.026974998 242 97 0.00096339989 252 97 8.7599998e-05 253 97 0.0020436 272 97 0.00081739994 277 97 2.919999e-05 300 97 0.019326199 301 97 0.00090499991 314 97 0.00035029999 325 97 0.034156598 340 97 0.00099259987 344 97 0.0012844999 350 97 0.00081739994 351 97 0.0012260999 356 97 5.8399994e-05 358 97 0.00058389991 366 97 0.0021894998 384 97 2.919999e-05 387 97 5.8399994e-05 394 97 2.919999e-05 397 97 2.919999e-05 402 97 0.00011679999 414 97 2.919999e-05 422 97 8.7599998e-05 433 97 2.919999e-05 434 97 2.919999e-05 443 97 0.0088456981 444 97 0.00087579992 445 97 0.057073597 446 97 0.0024522999 447 97 0.0038828 448 97 2.919999e-05 450 97 0.0021018998 452 97 0.0071815997 453 97 0.0032988999 454 97 0.0028901999 455 97 0.076691747 456 97 0.00029189978 457 97 0.0013428999 458 97 0.00075899996 459 97 0.0013136999 460 97 0.0017807998 463 97 0.0060430989 464 97 0.0011968999 465 97 0.0023355 467 97 0.0078238994 468 97 0.025310896 469 97 0.0021018998 470 97 0.0022186998 471 97 0.002715 472 97 0.00029189978 473 97 5.8399994e-05 477 97 5.8399994e-05 478 97 0.00081739994 483 97 0.0006130999 489 97 0.0002044 490 97 0.00037949998 491 97 0.00035029999 1 98 0.0003554998 3 98 4.4399989e-05 4 98 4.4399989e-05 5 98 0.39633876 6 98 0.053274699 9 98 0.00026659993 10 98 0.00022219999 11 98 0.00031099981 13 98 8.8899993e-05 14 98 0.0059983991 16 98 8.8899993e-05 22 98 8.8899993e-05 25 98 4.4399989e-05 60 98 0.0023104998 82 98 0.00044429977 84 98 8.8899993e-05 85 98 0.00044429977 88 98 0.0026659998 91 98 4.4399989e-05 93 98 0.0001333 94 98 4.4399989e-05 98 98 0.018750597 99 98 4.4399989e-05 102 98 0.0033324 103 98 0.00062209996 104 98 0.0018661998 105 98 4.4399989e-05 107 98 0.010086197 108 98 4.4399989e-05 109 98 0.00062209996 111 98 4.4399989e-05 114 98 0.0001333 116 98 0.0027547998 117 98 0.00026659993 118 98 0.005865097 119 98 4.4399989e-05 120 98 0.00097749988 122 98 0.0034212999 126 98 4.4399989e-05 143 98 0.0011996999 153 98 0.0052874982 189 98 4.4399989e-05 190 98 4.4399989e-05 191 98 4.4399989e-05 192 98 0.008442197 193 98 0.017328698 194 98 4.4399989e-05 198 98 0.0039545 204 98 8.8899993e-05 206 98 0.00066649984 214 98 0.0010664 215 98 8.8899993e-05 223 98 0.00053319987 228 98 0.0025770999 229 98 0.00044429977 230 98 0.0001777 234 98 0.0011996999 237 98 0.0001333 241 98 0.00026659993 242 98 0.0023548999 252 98 4.4399989e-05 253 98 0.00026659993 272 98 0.00026659993 300 98 0.00084419991 314 98 4.4399989e-05 325 98 8.8899993e-05 344 98 0.00053319987 356 98 8.8899993e-05 358 98 0.0001777 384 98 4.4399989e-05 387 98 4.4399989e-05 402 98 8.8899993e-05 414 98 0.0003998999 422 98 4.4399989e-05 430 98 4.4399989e-05 443 98 0.0379899 444 98 0.0022660999 445 98 0.011730198 446 98 0.004309997 447 98 0.0060872994 450 98 0.0017328998 452 98 0.0065315999 453 98 0.00084419991 454 98 0.00022219999 455 98 0.035634898 456 98 0.0001777 457 98 0.0018216998 458 98 4.4399989e-05 459 98 0.0004888 460 98 0.0024438 463 98 0.0025770999 464 98 0.0022215999 465 98 0.00044429977 467 98 0.0078200996 468 98 0.028036997 469 98 0.0023993999 470 98 0.0027547998 471 98 0.0012884999 473 98 8.8899993e-05 477 98 4.4399989e-05 478 98 0.00031099981 483 98 0.00062209996 489 98 4.4399989e-05 490 98 0.00031099981 491 98 0.00097749988 0 99 0.00053259986 3 99 0.00063909986 5 99 0.081699967 6 99 0.042181499 9 99 0.00053259986 10 99 0.0095866993 11 99 0.0011717 13 99 0.00074559986 14 99 0.00074559986 17 99 0.00031959987 22 99 0.0001065 60 99 0.0019172998 82 99 0.0056454986 84 99 0.0012782 85 99 0.00042609987 88 99 0.0063910969 90 99 0.0001065 91 99 0.00031959987 93 99 0.00042609987 94 99 0.00063909986 98 99 0.023753699 99 99 0.0014912998 101 99 0.00021299999 102 99 0.00085219997 103 99 0.021623299 104 99 0.0021303999 105 99 0.00021299999 106 99 0.0001065 107 99 0.043566298 108 99 0.00074559986 109 99 0.00063909986 114 99 0.00021299999 115 99 0.00021299999 118 99 0.0028759998 120 99 0.0017042998 122 99 0.0063910969 124 99 0.00031959987 125 99 0.00031959987 126 99 0.0001065 143 99 0.00053259986 153 99 0.00042609987 192 99 0.016510397 193 99 0.009480197 194 99 0.0001065 198 99 0.0498509 204 99 0.00074559986 206 99 0.00021299999 214 99 0.00095869997 223 99 0.00053259986 228 99 0.0060715973 229 99 0.00021299999 230 99 0.00031959987 234 99 0.0025564998 237 99 0.00031959987 241 99 0.010545399 242 99 0.0025564998 252 99 0.0001065 253 99 0.0013846999 272 99 0.00042609987 277 99 0.00021299999 300 99 0.0087345988 314 99 0.00031959987 325 99 0.0038347 344 99 0.00031959987 356 99 0.0001065 358 99 0.00031959987 387 99 0.0001065 402 99 0.0001065 443 99 0.019279897 444 99 0.0014912998 445 99 0.012782298 446 99 0.0020238999 447 99 0.0054324977 450 99 0.0015977998 452 99 0.0047933981 453 99 0.0025564998 454 99 0.00063909986 455 99 0.037707698 456 99 0.00031959987 457 99 0.0025564998 458 99 0.00021299999 459 99 0.0033020999 460 99 0.0026629998 463 99 0.0027694998 464 99 0.00042609987 465 99 0.004473798 467 99 0.0046867989 468 99 0.097358286 469 99 0.0031955999 470 99 0.0033020999 471 99 0.0021303999 473 99 0.0001065 478 99 0.00042609987 483 99 0.00063909986 489 99 0.0001065 490 99 0.0013846999 491 99 0.00063909986 0 100 0.0015001998 3 100 0.00024999981 5 100 0.13676709 6 100 0.015126899 9 100 0.00062509999 10 100 0.0012502 11 100 0.0015001998 13 100 0.00037499983 14 100 0.00050009997 17 100 0.00012499999 60 100 0.0018751998 82 100 0.0028753998 84 100 0.00050009997 85 100 0.0041254982 88 100 0.025878198 90 100 0.00037499983 93 100 0.00062509999 94 100 0.00087509979 98 100 0.074884355 99 100 0.00024999981 102 100 0.00024999981 103 100 0.0031253998 104 100 0.013626698 105 100 0.00024999981 107 100 0.057257198 108 100 0.0050005987 109 100 0.0056256987 114 100 0.00024999981 115 100 0.00012499999 116 100 0.00062509999 118 100 0.0080009997 120 100 0.00037499983 122 100 0.0221278 124 100 0.00050009997 125 100 0.00062509999 126 100 0.00012499999 143 100 0.00037499983 153 100 0.0011250998 192 100 0.012501597 193 100 0.013751697 198 100 0.058382299 204 100 0.00062509999 206 100 0.00037499983 214 100 0.0038754998 223 100 0.00062509999 228 100 0.0011250998 229 100 0.00037499983 230 100 0.00024999981 231 100 0.00024999981 232 100 0.00012499999 234 100 0.0020003 237 100 0.00024999981 241 100 0.012126498 242 100 0.0025002998 252 100 0.00012499999 253 100 0.0016251998 272 100 0.00050009997 300 100 0.0071258992 314 100 0.00050009997 325 100 0.0032503998 344 100 0.00050009997 356 100 0.00012499999 358 100 0.00024999981 387 100 0.00012499999 402 100 0.00012499999 414 100 0.00012499999 443 100 0.021252699 444 100 0.00075009977 445 100 0.013376698 446 100 0.0017501998 447 100 0.0061257966 450 100 0.0015001998 452 100 0.0042504966 453 100 0.0011250998 454 100 0.00050009997 455 100 0.0426303 456 100 0.00024999981 457 100 0.0022502998 458 100 0.00012499999 459 100 0.0010000998 460 100 0.0027502999 463 100 0.0053756982 464 100 0.00075009977 465 100 0.0056256987 467 100 0.0052506998 468 100 0.030628797 469 100 0.0040004998 470 100 0.0042504966 471 100 0.0018751998 473 100 0.00012499999 478 100 0.00050009997 483 100 0.00075009977 490 100 0.0012502 491 100 0.00024999981 1 101 0.00034169992 2 101 0.0030756998 3 101 0.0053994991 5 101 0.005331099 6 101 0.036839597 9 101 0.00047839992 11 101 0.00054679997 12 101 6.8299996e-05 13 101 0.0092952996 16 101 6.8299996e-05 17 101 0.012165897 22 101 6.8299996e-05 24 101 6.8299996e-05 25 101 0.00027339999 60 101 0.0017769998 82 101 0.11195409 84 101 0.027407598 85 101 6.8299996e-05 88 101 0.0021187998 91 101 0.0071081966 93 101 0.00013669999 94 101 6.8299996e-05 98 101 0.0134646 101 101 0.0041691996 102 101 0.020914499 103 101 0.0018453998 104 101 0.0056728981 107 101 0.0095686987 111 101 0.00047839992 112 101 0.00034169992 114 101 0.00082019996 116 101 6.8299996e-05 117 101 0.0020503998 118 101 0.049073897 119 101 0.00034169992 120 101 0.045178 122 101 0.0007517999 125 101 0.00041009998 143 101 0.00082019996 153 101 0.00041009998 189 101 6.8299996e-05 192 101 0.00013669999 193 101 0.018043898 194 101 6.8299996e-05 198 101 0.023306698 204 101 0.0069714971 206 101 0.00013669999 214 101 0.0047843978 215 101 0.0013669999 223 101 0.0013669999 228 101 0.013942998 229 101 0.00034169992 230 101 0.00027339999 231 101 0.00013669999 232 101 6.8299996e-05 234 101 0.0019820998 237 101 0.00020499999 240 101 6.8299996e-05 241 101 0.0037590999 242 101 0.0033490998 252 101 6.8299996e-05 253 101 0.00034169992 272 101 0.00082019996 277 101 0.00013669999 300 101 0.06855309 314 101 6.8299996e-05 325 101 0.00013669999 344 101 0.00034169992 356 101 6.8299996e-05 358 101 0.00020499999 402 101 6.8299996e-05 422 101 6.8299996e-05 443 101 0.010115497 444 101 0.0010935999 445 101 0.012917798 446 101 0.0012302999 447 101 0.0038274999 450 101 0.0013669999 452 101 0.0048526973 453 101 0.0033490998 454 101 0.0008884999 455 101 0.054063298 456 101 0.00020499999 457 101 0.0018453998 458 101 0.00054679997 459 101 0.0007517999 460 101 0.0025288998 463 101 0.0038274999 464 101 0.00013669999 465 101 0.00041009998 467 101 0.0052627996 468 101 0.058300897 469 101 0.00068349997 470 101 0.00068349997 471 101 0.0015719999 478 101 0.00034169992 483 101 0.00068349997 489 101 6.8299996e-05 490 101 6.8299996e-05 491 101 0.00034169992 0 102 8.4199986e-05 1 102 0.00060659996 2 102 0.0006571 3 102 3.3699995e-05 4 102 0.00021899999 5 102 0.010412797 6 102 0.12756526 9 102 6.7399989e-05 10 102 1.6799997e-05 11 102 5.0499992e-05 13 102 6.7399989e-05 14 102 0.011322699 17 102 3.3699995e-05 22 102 8.4199986e-05 24 102 0.00084249978 25 102 0.0006571 60 102 0.0013647999 82 102 0.00092669996 84 102 0.00025269995 88 102 0.0071608983 90 102 1.6799997e-05 91 102 5.0499992e-05 93 102 0.00016849999 98 102 0.040438097 101 102 3.3699995e-05 102 102 0.19804549 103 102 0.0059308968 104 102 0.012620099 107 102 0.015534997 108 102 1.6799997e-05 111 102 0.0031339999 112 102 0.0010277999 114 102 0.0017859999 116 102 1.6799997e-05 117 102 0.016882896 118 102 0.12475145 119 102 0.0031675999 120 102 0.050648697 122 102 6.7399989e-05 125 102 0.00047179987 126 102 1.6799997e-05 143 102 0.0014489999 151 102 1.6799997e-05 153 102 0.0018533999 189 102 5.0499992e-05 190 102 1.6799997e-05 192 102 0.00013479999 193 102 0.0064194985 194 102 1.6799997e-05 198 102 0.00050549977 200 102 1.6799997e-05 203 102 1.6799997e-05 204 102 6.7399989e-05 206 102 5.0499992e-05 207 102 1.6799997e-05 214 102 0.008744698 215 102 0.0059140995 217 102 1.6799997e-05 218 102 1.6799997e-05 223 102 0.0013142 228 102 0.033058099 229 102 0.00038749981 230 102 0.0001853 234 102 0.0016343999 237 102 0.0001853 241 102 0.0001179 242 102 0.00084249978 252 102 5.0499992e-05 253 102 1.6799997e-05 272 102 0.00023589999 277 102 3.3699995e-05 300 102 0.00053919991 301 102 1.6799997e-05 324 102 8.4199986e-05 325 102 3.3699995e-05 344 102 0.00043809996 356 102 6.7399989e-05 358 102 0.0001853 384 102 1.6799997e-05 387 102 1.6799997e-05 394 102 1.6799997e-05 397 102 1.6799997e-05 402 102 8.4199986e-05 422 102 1.6799997e-05 433 102 1.6799997e-05 434 102 1.6799997e-05 443 102 0.030210599 444 102 0.00089299981 445 102 0.013513099 446 102 0.0031507998 447 102 0.00094359997 448 102 3.3699995e-05 450 102 0.00094359997 452 102 0.0041280985 453 102 0.0027126998 454 102 0.0001011 455 102 0.063875258 456 102 0.0002022 457 102 0.0022745999 458 102 0.00025269995 459 102 0.0012973999 460 102 0.0020050998 463 102 0.0025104999 464 102 0.00015159999 465 102 0.00032009999 467 102 0.006924998 468 102 0.0045323968 469 102 0.00074139982 470 102 0.00072449981 471 102 0.0016848999 473 102 1.6799997e-05 477 102 3.3699995e-05 478 102 0.00026959996 483 102 0.00092669996 489 102 5.0499992e-05 490 102 6.7399989e-05 491 102 0.00025269995 5 103 0.58880275 60 103 0.0017541 88 103 0.00014619999 98 103 0.0002923999 103 103 0.0029234998 107 103 0.0002923999 114 103 0.00014619999 122 103 0.00014619999 126 103 0.00014619999 153 103 0.014763899 193 103 0.014617696 198 103 0.012571298 204 103 0.00014619999 206 103 0.00014619999 229 103 0.00043849996 230 103 0.00014619999 234 103 0.00043849996 237 103 0.00014619999 241 103 0.00014619999 242 103 0.0057008974 253 103 0.0002923999 272 103 0.00014619999 279 103 0.0002923999 300 103 0.00087709981 344 103 0.00058469991 356 103 0.00014619999 358 103 0.00014619999 414 103 0.0002923999 443 103 0.0024849998 444 103 0.0039467998 445 103 0.024996299 446 103 0.0055546984 447 103 0.0065779984 450 103 0.00073089986 452 103 0.0032158999 453 103 0.0011693998 454 103 0.00058469991 455 103 0.10261655 457 103 0.0017541 458 103 0.00014619999 459 103 0.0002923999 460 103 0.0024849998 463 103 0.0019002999 464 103 0.0002923999 465 103 0.004677698 467 103 0.0029234998 468 103 0.013009798 469 103 0.0020464999 470 103 0.0023387999 471 103 0.00087709981 473 103 0.00014619999 478 103 0.00014619999 483 103 0.00043849996 490 103 0.0073088966 491 103 0.011694197 5 104 0.020244498 6 104 0.35014009 13 104 0.00012729999 14 104 0.0025464999 21 104 0.00012729999 22 104 0.0076393969 24 104 0.00038199988 60 104 0.0061114989 82 104 0.0036923999 98 104 0.00025459984 104 104 0.0418895 107 104 0.00012729999 108 104 0.00012729999 114 104 0.00012729999 119 104 0.00012729999 120 104 0.0005092998 126 104 0.00012729999 153 104 0.00012729999 189 104 0.00012729999 192 104 0.00012729999 193 104 0.0005092998 194 104 0.00012729999 198 104 0.020881098 204 104 0.0057295971 206 104 0.00025459984 214 104 0.0020371999 218 104 0.00038199988 223 104 0.00025459984 224 104 0.00025459984 229 104 0.00038199988 230 104 0.00038199988 231 104 0.00012729999 234 104 0.0034377 237 104 0.00038199988 241 104 0.00012729999 242 104 0.00012729999 252 104 0.00012729999 272 104 0.0014006 279 104 0.0005092998 301 104 0.00025459984 344 104 0.00038199988 356 104 0.00012729999 358 104 0.00038199988 384 104 0.00012729999 387 104 0.00012729999 402 104 0.00012729999 414 104 0.00089129992 430 104 0.00012729999 443 104 0.031448897 444 104 0.00025459984 445 104 0.0076393969 446 104 0.0049655996 447 104 0.00089129992 450 104 0.0019099 452 104 0.010822497 453 104 0.017443299 454 104 0.0029283999 455 104 0.0537306 456 104 0.0005092998 457 104 0.0019099 458 104 0.00076389988 459 104 0.00089129992 460 104 0.0029283999 463 104 0.0021644998 464 104 0.00038199988 465 104 0.00063659996 467 104 0.0099311993 468 104 0.0031830999 469 104 0.006366197 470 104 0.0068754964 471 104 0.0021644998 473 104 0.00012729999 478 104 0.00063659996 483 104 0.0010185998 489 104 0.00089129992 490 104 0.00063659996 491 104 0.0019099 0 105 0.0006465998 5 105 0.0020903 6 105 0.00070679979 9 105 0.00010529999 10 105 0.004180599 11 105 7.5199991e-05 14 105 0.00042109983 22 105 1.5e-05 60 105 0.0036843999 82 105 0.0055941977 83 105 1.5e-05 84 105 4.5099994e-05 85 105 0.0062709972 86 105 3.0099996e-05 87 105 0.0039550997 88 105 0.0076845996 90 105 0.00018049999 93 105 0.0037596 94 105 0.0031579998 97 105 0.0032031999 98 105 0.11024559 100 105 0.012256198 103 105 0.00063159992 104 105 0.0066318996 105 105 0.0075341985 106 105 0.00027069985 107 105 0.032753397 108 105 1.5e-05 109 105 0.00061659981 113 105 3.0099996e-05 114 105 4.5099994e-05 116 105 0.0035189998 118 105 0.0014285999 119 105 0.00055639981 122 105 0.017639898 125 105 0.013474297 126 105 1.5e-05 150 105 0.00093239988 189 105 0.00022559999 190 105 9.0199988e-05 192 105 0.0009474 193 105 0.012481797 194 105 9.0199988e-05 196 105 1.5e-05 197 105 3.0099996e-05 198 105 0.018331699 200 105 4.5099994e-05 201 105 1.5e-05 203 105 7.5199991e-05 204 105 0.013233699 206 105 0.00025569997 207 105 6.0199993e-05 209 105 1.5e-05 214 105 0.0063761994 218 105 1.5e-05 223 105 0.00034589996 228 105 0.0024812999 229 105 0.00016539999 230 105 0.00072179991 234 105 0.0048723966 237 105 0.00076699979 241 105 0.020542298 242 105 0.0006616998 252 105 3.0099996e-05 253 105 1.5e-05 272 105 0.00052629993 279 105 0.00036089984 284 105 3.0099996e-05 300 105 4.5099994e-05 317 105 1.5e-05 325 105 0.0023759999 340 105 0.00025569997 344 105 0.00048119994 356 105 6.0199993e-05 358 105 0.00063159992 384 105 3.0099996e-05 387 105 1.5e-05 394 105 4.5099994e-05 397 105 3.0099996e-05 402 105 0.00028569996 422 105 7.5199991e-05 423 105 1.5e-05 430 105 1.5e-05 431 105 3.0099996e-05 432 105 1.5e-05 433 105 3.0099996e-05 434 105 6.0199993e-05 443 105 0.012557 444 105 0.00045109983 445 105 0.0090379976 446 105 0.0008270999 447 105 0.0020601999 448 105 0.00010529999 450 105 0.0057445988 452 105 0.0041354969 453 105 0.0030377 454 105 0.00054139993 455 105 0.032557897 456 105 0.0010527 457 105 0.0031880999 458 105 0.00037599984 459 105 0.00085719978 460 105 0.0015940999 463 105 0.0077897981 464 105 0.00060149981 465 105 0.0032782999 467 105 0.010496698 468 105 0.013684798 469 105 0.009519197 470 105 0.0016391999 471 105 0.0088725984 473 105 4.5099994e-05 477 105 6.0199993e-05 478 105 0.0013533998 483 105 0.0028873 489 105 0.00022559999 490 105 0.0016541998 491 105 3.0099996e-05 3 106 0.00012139999 5 106 0.0021237 6 106 0.0010314998 9 106 0.0011527999 10 106 0.0011527999 11 106 0.0002427 13 106 0.0002427 14 106 0.00072809984 22 106 0.00012139999 60 106 0.0029123998 82 106 0.012256499 85 106 0.0029730999 87 106 6.0699997e-05 88 106 0.0024269999 93 106 6.0699997e-05 94 106 6.0699997e-05 97 106 6.0699997e-05 98 106 0.085917056 100 106 0.0026697 103 106 0.00030339998 104 106 0.014683597 105 106 0.0040045977 106 106 0.00030339998 107 106 0.0461744 108 106 0.0014561999 109 106 0.024634399 114 106 6.0699997e-05 116 106 0.0050967969 118 106 0.0052787997 122 106 0.028092999 125 106 0.0079484992 126 106 6.0699997e-05 189 106 6.0699997e-05 190 106 6.0699997e-05 192 106 0.0058855973 193 106 0.0074630976 194 106 6.0699997e-05 198 106 0.054062299 200 106 6.0699997e-05 203 106 6.0699997e-05 204 106 0.017049897 206 106 0.0002427 207 106 6.0699997e-05 214 106 0.0081305988 223 106 0.00066739996 228 106 0.0020629999 229 106 0.00018199999 230 106 0.00060679996 234 106 0.0038832999 237 106 0.00060679996 241 106 0.020144399 242 106 0.00012139999 253 106 0.0002427 272 106 0.00042469986 277 106 6.0699997e-05 279 106 0.00066739996 300 106 0.0002427 314 106 6.0699997e-05 325 106 0.0019415999 344 106 0.00030339998 356 106 6.0699997e-05 358 106 0.00054609985 394 106 6.0699997e-05 402 106 0.0002427 422 106 6.0699997e-05 433 106 6.0699997e-05 434 106 6.0699997e-05 443 106 0.011649799 444 106 0.00012139999 445 106 0.0090406984 446 106 0.00072809984 447 106 0.0014561999 448 106 6.0699997e-05 450 106 0.0023057 452 106 0.0037011998 453 106 0.0030944999 454 106 0.00048539997 455 106 0.0364662 456 106 0.00066739996 457 106 0.0020023 458 106 0.00048539997 459 106 0.00036409986 460 106 0.0016988998 463 106 0.0157151 464 106 0.00012139999 465 106 0.0043079965 467 106 0.014440898 468 106 0.013652097 469 106 0.0013348998 470 106 0.0014561999 471 106 0.0041259974 473 106 6.0699997e-05 477 106 6.0699997e-05 478 106 0.00066739996 483 106 0.00097079994 489 106 0.00018199999 490 106 0.00060679996 5 107 3.119999e-05 11 107 3.119999e-05 12 107 0.22531909 18 107 3.119999e-05 22 107 0.0014044999 24 107 0.00059299986 60 107 0.0024656998 85 107 3.119999e-05 88 107 3.119999e-05 93 107 0.00012479999 95 107 3.119999e-05 98 107 3.119999e-05 104 107 0.00053059985 107 107 0.36892539 108 107 3.119999e-05 112 107 3.119999e-05 113 107 3.119999e-05 114 107 9.36e-05 115 107 6.2399995e-05 116 107 0.00062419986 118 107 9.36e-05 119 107 3.119999e-05 122 107 0.00012479999 125 107 3.119999e-05 126 107 3.119999e-05 150 107 3.119999e-05 151 107 0.00068669999 189 107 0.00012479999 190 107 3.119999e-05 193 107 0.0058053993 194 107 6.2399995e-05 198 107 0.0039950982 200 107 3.119999e-05 203 107 3.119999e-05 204 107 0.0001561 206 107 6.2399995e-05 214 107 0.0034957 215 107 6.2399995e-05 223 107 0.00024969992 228 107 6.2399995e-05 229 107 0.00040579983 230 107 0.00018729999 234 107 0.0043696985 237 107 0.00018729999 241 107 3.119999e-05 242 107 0.0011547999 252 107 6.2399995e-05 253 107 0.00040579983 267 107 0.0040575974 272 107 0.00056179985 277 107 0.0012484998 279 107 0.00012479999 300 107 0.0001561 301 107 0.00056179985 314 107 6.2399995e-05 324 107 0.00021849999 344 107 0.00046819984 350 107 0.0017166999 356 107 6.2399995e-05 358 107 0.00037449994 384 107 3.119999e-05 387 107 3.119999e-05 402 107 9.36e-05 422 107 6.2399995e-05 434 107 3.119999e-05 443 107 0.013358697 444 107 0.0016853998 445 107 0.0134211 446 107 0.00034329994 447 107 0.00099879992 450 107 0.0011547999 452 107 0.0019351 453 107 0.010362398 454 107 0.0025281999 455 107 0.028434098 456 107 0.00028089993 457 107 0.0044008978 458 107 0.00040579983 459 107 0.00037449994 460 107 0.00024969992 463 107 0.0035581999 464 107 0.0013732999 465 107 0.00040579983 467 107 0.0042447969 468 107 0.0046817996 469 107 0.0035269998 470 107 0.0010611999 471 107 0.0014044999 473 107 3.119999e-05 477 107 3.119999e-05 478 107 0.00034329994 483 107 0.00031209993 489 107 0.00056179985 490 107 0.00021849999 491 107 6.2399995e-05 0 108 0.00015159999 3 108 0.0002274 5 108 7.5799995e-05 9 108 0.00041679991 10 108 0.054111399 11 108 0.00064419978 13 108 0.0032587999 14 108 0.027927198 16 108 3.7899998e-05 17 108 3.7899998e-05 22 108 0.00018949999 60 108 0.0023872999 82 108 0.00041679991 85 108 7.5799995e-05 86 108 0.0019703999 88 108 0.019439198 90 108 3.7899998e-05 93 108 0.00045469985 94 108 7.5799995e-05 95 108 3.7899998e-05 98 108 0.00037889997 104 108 0.015460398 105 108 0.00015159999 106 108 3.7899998e-05 107 108 0.066881359 108 108 0.083175361 109 108 0.053164098 110 108 0.00079579977 112 108 3.7899998e-05 114 108 7.5799995e-05 115 108 3.7899998e-05 116 108 0.030503999 118 108 0.00037889997 119 108 7.5799995e-05 122 108 0.0039408989 124 108 3.7899998e-05 125 108 0.0053807981 126 108 3.7899998e-05 150 108 0.00049259979 151 108 3.7899998e-05 189 108 0.00011369999 190 108 7.5799995e-05 192 108 0.011746898 193 108 0.0022356999 194 108 0.00011369999 197 108 3.7899998e-05 198 108 0.040394098 200 108 3.7899998e-05 203 108 7.5799995e-05 204 108 0.0025008998 206 108 0.00049259979 207 108 3.7899998e-05 214 108 0.00060629984 223 108 0.0012125999 229 108 0.00030309986 230 108 0.00060629984 231 108 0.0002274 234 108 0.0023494 237 108 0.0002274 241 108 0.010647997 242 108 0.00015159999 252 108 7.5799995e-05 253 108 0.0025766999 272 108 0.00049259979 277 108 3.7899998e-05 279 108 0.00068209996 300 108 0.011367898 301 108 0.00011369999 314 108 0.00064419978 324 108 0.00018949999 325 108 0.0061007999 344 108 0.00037889997 356 108 7.5799995e-05 358 108 0.00071999989 384 108 3.7899998e-05 387 108 3.7899998e-05 402 108 0.00011369999 414 108 0.00026529981 422 108 0.00011369999 430 108 3.7899998e-05 433 108 3.7899998e-05 434 108 3.7899998e-05 443 108 0.0087911971 444 108 0.00026529981 445 108 0.012959499 446 108 0.0013263 447 108 0.00079579977 448 108 3.7899998e-05 450 108 0.0023494 452 108 0.0053807981 453 108 0.0018189 454 108 0.00037889997 455 108 0.061424799 456 108 0.0003409998 457 108 0.0024251998 458 108 0.00037889997 459 108 0.00045469985 460 108 0.0016293998 463 108 0.005342897 464 108 0.00018949999 465 108 0.0020082998 467 108 0.0153846 468 108 0.033383898 469 108 0.0027282999 470 108 0.0030314999 471 108 0.0017051999 473 108 7.5799995e-05 477 108 3.7899998e-05 478 108 0.00079579977 479 108 0.00018949999 483 108 0.0014777998 489 108 7.5799995e-05 490 108 0.027775697 491 108 0.00026529981 3 109 0.0030345998 5 109 0.0030345998 9 109 0.0030345998 10 109 0.0064737983 11 109 0.0046529993 13 109 0.0032368999 14 109 0.0072829984 17 109 0.00040459982 22 109 0.00060689985 60 109 0.0022253999 85 109 0.0002023 86 109 0.012542997 88 109 0.033380497 98 109 0.0046529993 104 109 0.020432897 105 109 0.0014161 106 109 0.00040459982 107 109 0.087396264 108 109 0.015375298 109 109 0.074044049 113 109 0.0002023 114 109 0.0002023 115 109 0.00040459982 116 109 0.00060689985 117 109 0.0002023 118 109 0.00080919988 119 109 0.00040459982 122 109 0.0093060993 125 109 0.0024277 191 109 0.0002023 192 109 0.0036414999 193 109 0.0020230999 198 109 0.038235899 204 109 0.0052599981 206 109 0.0002023 214 109 0.0022253999 223 109 0.0028322998 229 109 0.0002023 230 109 0.0002023 234 109 0.0016184999 237 109 0.0002023 241 109 0.013352197 242 109 0.00040459982 253 109 0.0030345998 272 109 0.00060689985 279 109 0.00060689985 300 109 0.023669798 301 109 0.00080919988 314 109 0.00080919988 324 109 0.0002023 325 109 0.0056645982 344 109 0.00060689985 356 109 0.0002023 358 109 0.00060689985 443 109 0.012947597 444 109 0.00040459982 445 109 0.014970697 446 109 0.0028322998 447 109 0.0016184999 450 109 0.0014161 452 109 0.0058668964 453 109 0.0016184999 454 109 0.00040459982 455 109 0.066154182 456 109 0.00040459982 457 109 0.0026299998 458 109 0.0002023 459 109 0.00040459982 460 109 0.0020230999 463 109 0.0044506975 464 109 0.0002023 465 109 0.0016184999 467 109 0.0226583 468 109 0.027311299 469 109 0.0022253999 470 109 0.0022253999 471 109 0.0016184999 478 109 0.00060689985 483 109 0.00080919988 489 109 0.0002023 490 109 0.16710496 491 109 0.0002023 10 110 0.0034111999 13 110 0.0002623999 14 110 0.0015743999 60 110 0.0031488 82 110 0.0002623999 88 110 0.00078719994 102 110 0.0002623999 104 110 0.023091096 107 110 0.055890799 108 110 0.004985597 109 110 0.002624 110 110 0.073996246 114 110 0.0002623999 116 110 0.050642896 118 110 0.0057727993 122 110 0.0002623999 125 110 0.0002623999 192 110 0.0028863999 193 110 0.0020991999 198 110 0.048281297 204 110 0.015481498 206 110 0.00052479981 214 110 0.0023615998 223 110 0.0002623999 228 110 0.0041983984 230 110 0.00052479981 234 110 0.0055103973 237 110 0.0002623999 241 110 0.012070298 253 110 0.0010495998 272 110 0.0010495998 279 110 0.00078719994 300 110 0.00078719994 314 110 0.0002623999 324 110 0.0002623999 325 110 0.0057727993 344 110 0.0002623999 358 110 0.00052479981 443 110 0.0057727993 444 110 0.0070847981 445 110 0.0073471963 446 110 0.001312 447 110 0.012070298 450 110 0.0020991999 452 110 0.0047231987 453 110 0.00052479981 454 110 0.00078719994 455 110 0.031750198 457 110 0.0023615998 459 110 0.00078719994 460 110 0.0010495998 463 110 0.0028863999 464 110 0.00052479981 465 110 0.010233499 467 110 0.0083966963 468 110 0.047756497 469 110 0.0034111999 470 110 0.0036735998 471 110 0.0010495998 477 110 0.0002623999 478 110 0.00078719994 483 110 0.0015743999 490 110 0.014431898 491 110 0.0002623999 5 111 0.0064279996 6 111 0.012103099 13 111 0.0072193965 22 111 0.00021229999 60 111 0.0038798999 82 111 1.9299987e-05 98 111 0.0092654973 103 111 0.0063120984 104 111 0.002104 107 111 0.0010616998 108 111 1.9299987e-05 111 111 0.0027796999 112 111 0.035575699 113 111 3.8599988e-05 114 111 0.00086859986 116 111 7.7199991e-05 118 111 3.8599988e-05 125 111 0.0008299998 126 111 1.9299987e-05 151 111 1.9299987e-05 189 111 3.8599988e-05 190 111 3.8599988e-05 192 111 0.0014862998 194 111 5.789999e-05 197 111 1.9299987e-05 198 111 0.0283756 200 111 1.9299987e-05 203 111 3.8599988e-05 204 111 0.0051731989 206 111 0.00021229999 207 111 1.9299987e-05 214 111 0.00030889991 218 111 1.9299987e-05 223 111 1.9299987e-05 229 111 0.00067559979 230 111 0.0001737 234 111 0.0025672999 237 111 0.00021229999 241 111 0.0008299998 242 111 0.00055979984 252 111 5.789999e-05 253 111 0.0545507 272 111 0.0005983999 277 111 5.789999e-05 279 111 0.00069489982 300 111 0.22260398 314 111 0.0065437965 324 111 0.00030889991 344 111 0.00027019996 350 111 0.00079139997 356 111 5.789999e-05 358 111 0.00034749997 384 111 5.789999e-05 387 111 1.9299987e-05 394 111 1.9299987e-05 402 111 7.7199991e-05 422 111 5.789999e-05 430 111 1.9299987e-05 433 111 1.9299987e-05 434 111 1.9299987e-05 443 111 0.0065437965 444 111 0.00086859986 445 111 0.0078177974 446 111 0.00065629999 447 111 0.00027019996 448 111 1.9299987e-05 450 111 0.0012353999 452 111 0.0037061998 453 111 0.0023549998 454 111 0.0020653999 455 111 0.0219284 456 111 0.00032819994 457 111 0.0034938999 458 111 0.00032819994 459 111 0.0003668 460 111 0.00023159999 463 111 0.0025479998 464 111 0.0001351 465 111 0.0014283999 467 111 0.0054241978 468 111 0.043547899 469 111 0.0070649981 470 111 0.0013897999 471 111 0.0031849998 473 111 3.8599988e-05 477 111 1.9299987e-05 478 111 0.00034749997 483 111 0.00052119978 489 111 0.0001351 490 111 0.00011579999 491 111 1.9299987e-05 5 112 0.020178299 6 112 0.49460346 22 112 0.00046929996 60 112 0.0065696985 111 112 0.00046929996 112 112 0.014077898 114 112 0.00046929996 116 112 0.00046929996 198 112 0.0014077998 229 112 0.00093849981 234 112 0.0018771 253 112 0.00046929996 272 112 0.00093849981 277 112 0.00046929996 300 112 0.00093849981 344 112 0.00046929996 350 112 0.00046929996 358 112 0.00046929996 443 112 0.025809497 444 112 0.00046929996 445 112 0.029094297 446 112 0.0046925992 447 112 0.0098544993 450 112 0.00093849981 452 112 0.015954997 453 112 0.0229939 454 112 0.0023462998 455 112 0.13233215 457 112 0.0046925992 459 112 0.00046929996 460 112 -0.0018771 463 112 0.0126701 464 112 0.00046929996 467 112 0.0056311972 468 112 0.00046929996 469 112 0.00046929996 470 112 0.00093849981 471 112 0.00046929996 478 112 0.00046929996 490 112 0.00046929996 491 112 0.00093849981 6 113 0.00015889999 9 113 0.081519067 11 113 0.00015889999 60 113 0.0016684998 93 113 0.0373431 94 113 0.0030987 104 113 7.9499994e-05 107 113 0.0081041977 112 113 0.0027013998 113 113 0.073335469 114 113 0.0080247968 116 113 0.0002384 126 113 7.9499994e-05 171 113 0.0025424999 172 113 0.00015889999 192 113 0.00055619981 194 113 7.9499994e-05 198 113 0.0041315965 204 113 0.013268698 206 113 0.00031779986 223 113 7.9499994e-05 229 113 0.00039729988 230 113 0.00015889999 234 113 0.0011918 237 113 0.0002384 241 113 0.00063559995 242 113 0.0025424999 253 113 0.06991899 272 113 0.00071509997 279 113 0.0002384 300 113 0.00031779986 314 113 0.0080247968 324 113 0.00039729988 325 113 0.00039729988 344 113 0.00031779986 356 113 7.9499994e-05 358 113 0.0002384 402 113 7.9499994e-05 443 113 0.0077863969 444 113 0.0038137999 445 113 0.039567798 446 113 0.0025424999 447 113 0.0032575999 450 113 0.0008739999 452 113 0.0021451998 453 113 0.0014301999 454 113 0.0002384 455 113 0.064198256 456 113 0.00015889999 457 113 0.0041315965 459 113 0.0010328998 460 113 0.00095339981 463 113 0.0040520988 464 113 0.0002384 465 113 0.0002384 467 113 0.0026219999 468 113 0.042984299 469 113 0.0011123 470 113 0.0011918 471 113 0.0011918 472 113 0.0015890999 473 113 7.9499994e-05 478 113 0.0002384 483 113 0.0002384 490 113 0.0002384 5 114 0.0005551998 6 114 0.0077535994 9 114 0.00069409981 22 114 0.00057509984 60 114 0.0010707998 93 114 0.0036288998 98 114 0.00041639991 102 114 0.0001586 104 114 7.9299993e-05 107 114 0.00021809999 112 114 0.0019631998 113 114 0.00059489999 114 114 0.041227099 117 114 1.9799991e-05 118 114 9.9199999e-05 120 114 3.9699997e-05 126 114 1.9799991e-05 169 114 0.00061469991 171 114 0.0013682998 172 114 0.0072776973 190 114 1.9799991e-05 192 114 0.0025978 194 114 1.9799991e-05 198 114 0.0045807995 203 114 1.9799991e-05 204 114 0.0059291981 206 114 9.9199999e-05 214 114 7.9299993e-05 228 114 1.9799991e-05 229 114 9.9199999e-05 230 114 5.9499987e-05 234 114 0.00079319999 237 114 7.9299993e-05 241 114 0.0027762 242 114 0.0010311999 252 114 1.9799991e-05 253 114 0.031629298 272 114 0.00013879999 279 114 3.9699997e-05 314 114 0.0017053999 324 114 5.9499987e-05 325 114 0.00023799999 344 114 7.9299993e-05 350 114 0.0013682998 351 114 0.00047589978 356 114 1.9799991e-05 358 114 0.00011899999 384 114 1.9799991e-05 402 114 3.9699997e-05 404 114 1.9799991e-05 422 114 1.9799991e-05 434 114 1.9799991e-05 443 114 0.0019234999 444 114 0.0022012 445 114 0.0047592968 446 114 0.0001983 447 114 0.0093003996 450 114 0.00043629995 452 114 0.00085269986 453 114 0.00045609986 454 114 0.00033709989 455 114 0.017073799 456 114 7.9299993e-05 457 114 0.0039660968 458 114 0.00011899999 459 114 0.0020424998 460 114 0.00093199988 463 114 0.0075552985 464 114 0.0016062998 465 114 0.00013879999 467 114 0.0016855998 468 114 0.042099599 469 114 0.0012889998 470 114 0.00031729997 471 114 0.0005551998 473 114 1.9799991e-05 477 114 1.9799991e-05 478 114 0.00011899999 483 114 9.9199999e-05 489 114 3.9699997e-05 490 114 0.0016458998 491 114 9.9199999e-05 0 115 0.0055522993 1 115 8.1699996e-05 9 115 0.00081649981 10 115 2.0399995e-05 11 115 0.00083689997 16 115 0.0001429 17 115 2.0399995e-05 22 115 0.00089819985 60 115 0.0023882999 82 115 0.00036739977 83 115 4.0799991e-05 84 115 0.00016329999 86 115 4.0799991e-05 87 115 2.0399995e-05 88 115 0.00059199985 90 115 0.0015309998 93 115 0.0083079971 94 115 0.0001429 95 115 2.0399995e-05 97 115 2.0399995e-05 98 115 8.1699996e-05 104 115 0.0014493 105 115 2.0399995e-05 107 115 0.069770753 108 115 4.0799991e-05 113 115 4.0799991e-05 114 115 6.1199986e-05 115 115 0.0053276978 116 115 0.12029225 118 115 4.0799991e-05 122 115 0.00012249999 124 115 4.0799991e-05 125 115 0.00012249999 126 115 4.0799991e-05 127 115 2.0399995e-05 150 115 0.00030619977 151 115 2.0399995e-05 172 115 0.0022249999 189 115 0.0001429 190 115 8.1699996e-05 192 115 0.00010209999 193 115 4.0799991e-05 194 115 0.00010209999 196 115 2.0399995e-05 197 115 2.0399995e-05 198 115 0.023066398 200 115 6.1199986e-05 201 115 2.0399995e-05 203 115 6.1199986e-05 204 115 0.0027965 206 115 0.00032659993 207 115 6.1199986e-05 209 115 2.0399995e-05 214 115 0.0031843998 218 115 2.0399995e-05 223 115 6.1199986e-05 229 115 0.00091859978 230 115 0.00042869989 234 115 0.0039804988 237 115 0.00057159993 240 115 2.0399995e-05 241 115 0.0041029975 242 115 0.00083689997 248 115 2.0399995e-05 252 115 0.0001429 253 115 0.12004739 272 115 0.00085729989 279 115 0.00067359977 284 115 2.0399995e-05 300 115 0.16075039 314 115 0.014452197 324 115 0.00044909981 325 115 0.00030619977 344 115 0.00036739977 351 115 0.00030619977 356 115 8.1699996e-05 358 115 0.00087769981 366 115 2.0399995e-05 384 115 4.0799991e-05 387 115 2.0399995e-05 394 115 4.0799991e-05 397 115 2.0399995e-05 402 115 0.0002041 419 115 2.0399995e-05 422 115 8.1699996e-05 423 115 2.0399995e-05 425 115 2.0399995e-05 430 115 2.0399995e-05 431 115 4.0799991e-05 432 115 2.0399995e-05 433 115 4.0799991e-05 434 115 4.0799991e-05 443 115 0.0050827973 444 115 0.00040829997 445 115 0.011880197 446 115 0.0011838998 447 115 0.0011022999 448 115 8.1699996e-05 450 115 0.0031027 452 115 0.0041233972 453 115 0.0017758999 454 115 0.00073489989 455 115 0.0303129 456 115 0.00091859978 457 115 0.0046132989 458 115 0.00040829997 459 115 0.0013676998 460 115 0.0012859998 463 115 0.0109616 464 115 0.00016329999 465 115 0.0012451999 467 115 0.011206597 468 115 0.057380199 469 115 0.0087161995 470 115 0.0031639999 471 115 0.0057155974 473 115 6.1199986e-05 477 115 8.1699996e-05 478 115 0.0029189999 483 115 0.0018575999 489 115 0.00018369999 490 115 0.00028579985 491 115 2.0399995e-05 0 116 0.00080389995 3 116 0.00053589977 5 116 0.0039522983 6 116 0.0026794998 9 116 0.0017416999 10 116 0.00033489987 11 116 0.0015407 13 116 0.0013398 14 116 0.0010717998 16 116 6.6999986e-05 17 116 6.6999986e-05 60 116 0.0014736999 82 116 0.00026799995 84 116 6.6999986e-05 85 116 0.00020099999 87 116 0.00020099999 88 116 0.00026799995 90 116 0.00020099999 93 116 0.0089763999 94 116 0.00020099999 95 116 0.00013399999 98 116 0.0012057999 99 116 6.6999986e-05 102 116 0.0013398 103 116 0.00073689991 104 116 0.007167697 105 116 0.00026799995 106 116 6.6999986e-05 107 116 0.14529735 108 116 0.00013399999 109 116 0.00013399999 110 116 0.00013399999 112 116 0.0016076998 113 116 0.0020095999 114 116 0.0020766 115 116 0.0050240979 116 116 0.044145197 117 116 0.00013399999 118 116 0.0063638985 119 116 0.0014067998 120 116 0.00040189992 122 116 0.0020095999 125 116 0.0013398 126 116 6.6999986e-05 172 116 6.6999986e-05 192 116 0.0010048 193 116 0.00060289982 194 116 6.6999986e-05 198 116 0.018957697 204 116 0.0061628968 206 116 0.00013399999 214 116 0.0050910972 215 116 6.6999986e-05 223 116 0.016880997 228 116 0.0041532964 229 116 0.00066989986 230 116 0.00013399999 231 116 0.00013399999 232 116 0.00013399999 234 116 0.0018086999 237 116 0.00020099999 241 116 0.0044211969 242 116 0.0030814998 252 116 6.6999986e-05 253 116 0.025187597 272 116 0.00026799995 277 116 6.6999986e-05 279 116 0.00026799995 300 116 0.011053097 301 116 0.0019426998 314 116 0.0034163999 317 116 6.6999986e-05 325 116 0.00040189992 344 116 0.00033489987 349 116 6.6999986e-05 356 116 6.6999986e-05 358 116 0.00026799995 402 116 6.6999986e-05 443 116 0.0086414963 444 116 0.0024116 445 116 0.0087084994 446 116 0.0019426998 447 116 0.0028804999 450 116 0.0010048 452 116 0.0024785998 453 116 0.00087079988 454 116 0.0010048 455 116 0.030948598 456 116 0.00013399999 457 116 0.0045551993 458 116 0.00040189992 459 116 0.00046889996 460 116 0.00020099999 463 116 0.014670398 464 116 0.0026794998 465 116 0.00053589977 467 116 0.0042202994 468 116 0.016278099 469 116 0.0014736999 470 116 0.0013398 471 116 0.0036173998 473 116 6.6999986e-05 478 116 0.00026799995 483 116 0.00040189992 490 116 0.0148714 491 116 0.00093779992 4 117 0.43876797 5 117 0.027132697 6 117 0.0068442971 13 117 0.0002444 14 117 0.12613046 60 117 0.0034220999 82 117 0.0031776999 88 117 0.0002444 98 117 0.00073329988 102 117 0.0034220999 104 117 0.00097779999 107 117 0.0002444 114 117 0.0002444 117 117 0.032265898 118 117 0.016132999 119 117 0.0043998994 120 117 0.00097779999 122 117 0.0065998994 198 117 0.0012222 204 117 0.00097779999 206 117 0.0002444 214 117 0.0012222 228 117 0.00048889988 229 117 0.00048889988 230 117 0.0002444 231 117 0.0002444 234 117 0.0014666 237 117 0.0002444 241 117 0.00073329988 242 117 0.00048889988 253 117 0.00073329988 272 117 0.00048889988 300 117 0.00097779999 301 117 0.0014666 314 117 0.0002444 325 117 0.0002444 344 117 0.00048889988 351 117 0.0002444 358 117 0.00048889988 443 117 0.023710597 444 117 0.00048889988 445 117 0.023466099 446 117 0.0012222 447 117 0.00048889988 450 117 0.0014666 452 117 0.014177497 453 117 0.0051331967 454 117 0.0002444 455 117 0.070642889 456 117 0.0002444 457 117 0.0024444 459 117 0.00048889988 460 117 0.0063553974 463 117 0.00048889988 464 117 0.0002444 465 117 0.0012222 467 117 0.0065998994 468 117 0.0024444 469 117 0.0012222 470 117 0.0012222 471 117 0.0017110999 478 117 0.00048889988 483 117 0.00073329988 490 117 0.00048889988 491 117 0.0031776999 4 118 0.0095405988 5 118 0.0085460991 6 118 0.0083986968 13 118 3.6799989e-05 14 118 0.74266028 17 118 7.3699994e-05 22 118 0.00077359984 60 118 0.0012155999 82 118 0.007993497 84 118 3.6799989e-05 94 118 3.6799989e-05 102 118 3.6799989e-05 104 118 0.001584 114 118 3.6799989e-05 117 118 0.0023206999 118 118 0.022654399 119 118 0.0025416999 120 118 0.00062619988 122 118 0.0020627999 126 118 3.6799989e-05 151 118 3.6799989e-05 193 118 0.00092089991 198 118 0.0014734999 204 118 0.0002946998 206 118 7.3699994e-05 214 118 0.00092089991 224 118 3.6799989e-05 229 118 0.00051569985 230 118 7.3699994e-05 231 118 3.6799989e-05 234 118 0.0010682999 237 118 7.3699994e-05 241 118 0.0014366 242 118 0.0013628998 252 118 3.6799989e-05 253 118 0.00033149985 272 118 0.00022099999 277 118 3.6799989e-05 279 118 3.6799989e-05 300 118 0.00040519983 301 118 0.0015470998 314 118 3.6799989e-05 325 118 3.6799989e-05 344 118 0.00058939983 350 118 3.6799989e-05 351 118 0.00022099999 358 118 0.00014729999 402 118 3.6799989e-05 443 118 0.019891698 444 118 0.0016207998 445 118 0.011861298 446 118 0.0042729974 447 118 0.0012524 450 118 0.00040519983 452 118 0.0045308992 453 118 0.0044203997 454 118 0.00033149985 455 118 0.015581798 456 118 7.3699994e-05 457 118 0.0025785998 458 118 0.00018419999 459 118 0.00044199987 460 118 0.00040519983 463 118 0.0011419 464 118 0.0016575998 465 118 0.00014729999 467 118 0.0021733998 468 118 0.00081039988 469 118 0.0020996998 470 118 0.0005524999 471 118 0.0034625998 473 118 3.6799989e-05 477 118 3.6799989e-05 478 118 0.0001105 483 118 0.0001105 489 118 3.6799989e-05 490 118 0.00014729999 491 118 0.0036099998 4 119 0.030545499 5 119 0.0025454999 6 119 0.00072729983 9 119 0.00036359997 10 119 0.0036364 11 119 0.00036359997 13 119 0.056727298 14 119 0.34036356 17 119 0.0029090999 22 119 0.00036359997 24 119 0.0032726999 60 119 0.0018181999 82 119 0.0105455 84 119 0.00072729983 88 119 0.0010908998 104 119 0.0029090999 107 119 0.0036364 108 119 0.0050908998 109 119 0.0025454999 116 119 0.0018181999 117 119 0.0079999976 118 119 0.038545497 119 119 0.012727298 120 119 0.021454498 122 119 0.017454498 125 119 0.00036359997 192 119 0.00072729983 198 119 0.0058181994 204 119 0.0025454999 214 119 0.0021817998 215 119 0.0010908998 231 119 0.00036359997 234 119 0.0021817998 241 119 0.0029090999 242 119 0.00036359997 253 119 0.0025454999 272 119 0.0029090999 300 119 0.0043635964 301 119 0.0054544993 314 119 0.00036359997 325 119 0.0010908998 344 119 0.00036359997 350 119 0.00036359997 351 119 0.00036359997 356 119 0.00036359997 443 119 0.016727298 444 119 0.00072729983 445 119 0.0192727 446 119 0.0149091 447 119 0.0021817998 450 119 0.00036359997 452 119 0.006545499 453 119 0.0047272965 454 119 0.00072729983 455 119 0.044 457 119 0.0025454999 459 119 0.0101818 460 119 0.0025454999 463 119 0.0018181999 464 119 0.00036359997 465 119 0.00072729983 467 119 0.0050908998 468 119 0.021090899 469 119 0.00072729983 470 119 0.0010908998 489 119 0.00036359997 490 119 0.081090868 491 119 0.0061817989 1 120 0.004378397 2 120 0.18949187 6 120 0.00020359999 13 120 0.00020359999 14 120 0.0016291998 17 120 0.036656097 21 120 0.00010179999 22 120 0.00010179999 24 120 0.00030549988 60 120 0.0021382999 82 120 0.040728997 83 120 0.00061089988 84 120 0.0096731 85 120 0.0011199999 88 120 0.00010179999 91 120 0.0019345998 96 120 0.00091639999 102 120 0.00010179999 104 120 0.00030549988 114 120 0.00010179999 117 120 0.00081459992 118 120 0.0046837963 119 120 0.0016291998 120 120 0.25180739 122 120 0.0023418998 125 120 0.00040729996 126 120 0.00010179999 153 120 0.00010179999 193 120 0.00020359999 194 120 0.00010179999 198 120 0.0023418998 204 120 0.00040729996 206 120 0.00020359999 214 120 0.0029528998 218 120 0.00040729996 223 120 0.00040729996 224 120 0.00040729996 225 120 0.00010179999 229 120 0.00040729996 230 120 0.00020359999 231 120 0.00020359999 232 120 0.00010179999 234 120 0.0060075 237 120 0.00020359999 241 120 0.0021382999 252 120 0.00010179999 253 120 0.00030549988 277 120 0.00030549988 279 120 0.00010179999 300 120 0.0015272999 301 120 0.0037673998 324 120 0.00020359999 325 120 0.00010179999 344 120 0.00040729996 358 120 0.0005090998 402 120 0.00010179999 443 120 0.0079421997 444 120 0.00010179999 445 120 0.0091639981 446 120 0.0015272999 447 120 0.0019345998 450 120 0.0016291998 452 120 0.008145798 453 120 0.0085530989 454 120 0.00071279984 455 120 0.044700097 456 120 0.00020359999 457 120 0.0021382999 458 120 0.00010179999 459 120 0.00061089988 460 120 0.0016291998 463 120 0.0047856979 464 120 0.00020359999 465 120 0.0065165982 467 120 0.0054983981 468 120 0.0039710999 469 120 0.0019345998 470 120 0.0021382999 471 120 0.0016291998 473 120 0.00010179999 478 120 0.00040729996 483 120 0.00071279984 490 120 0.00040729996 491 120 0.004378397 3 121 0.00041569979 5 121 4.6199988e-05 9 121 0.00046189991 10 121 4.6199988e-05 11 121 0.00073899981 13 121 0.0012469999 14 121 0.00073899981 17 121 4.6199988e-05 22 121 4.6199988e-05 60 121 0.0013394 93 121 4.6199988e-05 94 121 9.2399991e-05 98 121 0.00013859999 104 121 0.00018469999 105 121 0.00018469999 106 121 4.6199988e-05 107 121 0.0006465998 108 121 0.00013859999 109 121 4.6199988e-05 114 121 9.2399991e-05 115 121 4.6199988e-05 116 121 9.2399991e-05 118 121 4.6199988e-05 119 121 9.2399991e-05 120 121 9.2399991e-05 121 121 0.0005541998 122 121 0.00073899981 125 121 0.00013859999 126 121 4.6199988e-05 151 121 0.0015703 153 121 0.0016627 189 121 4.6199988e-05 192 121 0.00032329978 193 121 0.0078514963 194 121 4.6199988e-05 198 121 0.031775396 204 121 0.0052650981 206 121 9.2399991e-05 214 121 0.001986 223 121 0.0002309 229 121 0.0003694999 230 121 0.00013859999 231 121 0.00018469999 232 121 4.6199988e-05 234 121 0.0015703 237 121 0.00013859999 241 121 0.0060501993 242 121 0.0015240998 252 121 4.6199988e-05 253 121 0.015379597 272 121 0.0002770999 279 121 0.0005541998 300 121 0.052004397 314 121 0.0026786998 325 121 9.2399991e-05 344 121 0.00050799991 356 121 4.6199988e-05 358 121 0.0002309 387 121 4.6199988e-05 402 121 4.6199988e-05 443 121 0.0036024 444 121 0.0043875985 445 121 0.004202798 446 121 0.023323499 447 121 0.0015703 450 121 0.00073899981 452 121 0.0023553998 453 121 0.0013394 454 121 0.0018936 455 121 0.032745197 456 121 0.00013859999 457 121 0.0024015999 458 121 4.6199988e-05 459 121 0.00041569979 460 121 0.0029557999 463 121 0.0037872 464 121 0.0017088 465 121 0.00032329978 467 121 0.0039718971 468 121 0.042259399 469 121 0.0033714999 470 121 0.0013394 471 121 0.0049879998 473 121 4.6199988e-05 477 121 4.6199988e-05 478 121 0.0002309 483 121 0.00069279992 490 121 0.4301219 491 121 0.00032329978 0 122 0.0065629967 2 122 0.0081926994 3 122 4.3999986e-05 4 122 0.0040082969 5 122 0.0023345 6 122 0.0011011998 9 122 0.00057259994 10 122 0.0002642998 11 122 0.0017618998 13 122 0.00096899993 14 122 0.10064745 17 122 4.3999986e-05 22 122 0.00048449985 24 122 4.3999986e-05 60 122 0.0016737999 82 122 0.041712496 83 122 4.3999986e-05 85 122 0.0015856999 86 122 8.8099987e-05 87 122 0.0051975995 88 122 0.00017619999 90 122 0.0025106999 93 122 4.3999986e-05 95 122 0.00088089984 98 122 4.3999986e-05 104 122 0.012377199 107 122 0.0016297 108 122 0.00044049998 109 122 0.00022019999 114 122 4.3999986e-05 116 122 0.00017619999 117 122 0.0342246 118 122 0.18530589 119 122 0.0606528 120 122 0.0003082999 122 122 0.096683264 125 122 0.00096899993 126 122 4.3999986e-05 130 122 4.3999986e-05 150 122 4.3999986e-05 151 122 8.8099987e-05 189 122 4.3999986e-05 192 122 0.00061669992 193 122 0.00092499983 194 122 4.3999986e-05 198 122 0.0198652 204 122 0.013874799 206 122 8.8099987e-05 214 122 0.0064308979 223 122 4.3999986e-05 229 122 0.00048449985 230 122 0.00013209999 231 122 0.0016737999 234 122 0.0023345 237 122 0.00013209999 241 122 0.012200996 242 122 0.0013213998 252 122 4.3999986e-05 253 122 0.016473599 272 122 0.00035239989 279 122 0.00092499983 300 122 0.014667697 301 122 0.0015856999 314 122 0.0027749999 317 122 4.3999986e-05 324 122 0.00013209999 325 122 0.0024225998 340 122 0.00013209999 344 122 0.00057259994 350 122 0.0014535999 351 122 0.0019381 356 122 4.3999986e-05 358 122 0.00022019999 402 122 4.3999986e-05 443 122 0.018455699 444 122 0.0021582998 445 122 0.025371097 446 122 0.0014535999 447 122 0.0026427999 450 122 0.00088089984 452 122 0.0037439999 453 122 0.0035677999 454 122 0.0010130999 455 122 0.045280397 456 122 0.00013209999 457 122 0.0022023998 458 122 0.00048449985 459 122 0.00052859983 460 122 0.0016737999 463 122 0.0020261998 464 122 0.00039639999 465 122 0.00048449985 467 122 0.005770199 468 122 0.0306127 469 122 0.0012333 470 122 0.0010570998 471 122 0.0011892999 473 122 4.3999986e-05 477 122 4.3999986e-05 478 122 0.0002642998 483 122 0.00039639999 490 122 0.00088089984 491 122 0.0013213998 17 123 0.00091659999 22 123 0.00091659999 60 123 0.021998197 114 123 0.00091659999 123 123 0.0018332 193 123 0.0183318 198 123 0.00091659999 206 123 0.0018332 230 123 0.00091659999 234 123 0.0082492977 237 123 0.0018332 241 123 0.013748899 272 123 0.0018332 277 123 0.00091659999 324 123 0.00091659999 334 123 0.00091659999 358 123 0.0027498 366 123 0.00091659999 444 123 0.00091659999 445 123 0.016498599 447 123 0.0064160973 450 123 0.0082492977 452 123 0.076076984 453 123 0.00091659999 454 123 0.012832299 455 123 0.0073326975 456 123 0.00091659999 457 123 0.0027498 458 123 0.0018332 459 123 0.00091659999 460 123 0.0036664 463 123 0.010082498 464 123 0.0018332 465 123 0.0018332 467 123 0.034830399 468 123 0.0054994971 469 123 0.010082498 470 123 0.010999098 471 123 0.009165898 478 123 0.0018332 483 123 0.0054994971 490 123 0.0018332 0 124 0.0088593997 3 124 0.00055369991 5 124 0.024640098 9 124 0.00055369991 11 124 0.0011073998 13 124 0.00055369991 14 124 0.0127353 60 124 0.0024917 85 124 0.020210396 87 124 0.0074750967 88 124 0.00055369991 90 124 0.0027684998 94 124 0.0019379999 97 124 0.0002768999 98 124 0.27380949 104 124 0.00055369991 105 124 0.0002768999 107 124 0.0019379999 114 124 0.0002768999 118 124 0.0011073998 122 124 0.0016611 124 124 0.011627898 125 124 0.0002768999 192 124 0.013012197 193 124 0.0096898973 198 124 0.059523799 204 124 0.00083059981 206 124 0.00055369991 214 124 0.0011073998 223 124 0.00055369991 228 124 0.0127353 229 124 0.0002768999 230 124 0.00055369991 234 124 0.0038759999 237 124 0.00055369991 241 124 0.033222597 252 124 0.0002768999 253 124 0.00055369991 272 124 0.0002768999 279 124 0.0013842999 300 124 0.0011073998 314 124 0.0002768999 325 124 0.0002768999 340 124 0.0002768999 344 124 0.0002768999 358 124 0.00083059981 443 124 0.023255799 444 124 0.0002768999 445 124 0.018826097 446 124 0.00055369991 447 124 0.011627898 450 124 0.0024917 452 124 0.0066444986 453 124 0.0016611 454 124 0.00055369991 455 124 0.040974498 456 124 0.0002768999 457 124 0.0024917 458 124 0.00055369991 459 124 0.00055369991 460 124 0.0024917 463 124 0.0063676983 464 124 0.00055369991 465 124 0.0011073998 467 124 0.0083055981 468 124 0.026854899 469 124 0.0033222998 470 124 0.0035990998 471 124 0.0024917 478 124 0.00055369991 483 124 0.00083059981 490 124 0.0027684998 0 125 0.0035058998 1 125 0.00034269993 2 125 0.0018189 3 125 0.014418997 5 125 0.0044284984 6 125 0.0038221998 9 125 0.017160498 10 125 0.0001318 11 125 0.025437597 12 125 7.9099991e-05 13 125 0.016079698 14 125 0.025463898 16 125 0.0004480998 17 125 0.0026623998 22 125 0.00021089999 24 125 2.6399997e-05 60 125 0.0020297 82 125 0.0025042 83 125 0.00010539999 84 125 0.00052719982 85 125 0.00055359979 86 125 7.9099991e-05 87 125 0.0006589999 88 125 0.0011862 90 125 0.0013970998 91 125 2.6399997e-05 93 125 0.0011862 94 125 0.0010279999 95 125 0.00028999988 97 125 7.9099991e-05 98 125 0.0091469996 100 125 0.00010539999 102 125 0.00010539999 103 125 0.0001318 104 125 0.0079607964 105 125 0.006563697 106 125 0.0020560999 107 125 0.026043899 108 125 0.0001582 109 125 0.00081719994 112 125 2.6399997e-05 113 125 0.00063259993 114 125 0.0001318 115 125 0.0022143 116 125 0.0027150998 117 125 0.00097529986 118 125 0.0044284984 119 125 0.0021088 120 125 0.00026359991 121 125 2.6399997e-05 122 125 0.029022597 124 125 0.00010539999 125 125 0.0054301992 126 125 5.2699994e-05 150 125 0.00036899978 151 125 5.2699994e-05 153 125 5.2699994e-05 160 125 2.6399997e-05 169 125 2.6399997e-05 172 125 5.2699994e-05 189 125 5.2699994e-05 190 125 5.2699994e-05 191 125 0.00068539986 192 125 0.011862099 193 125 0.0037958999 194 125 0.00010539999 197 125 2.6399997e-05 198 125 0.0279154 200 125 2.6399997e-05 203 125 5.2699994e-05 204 125 0.0081188977 206 125 0.0001318 207 125 2.6399997e-05 214 125 0.004191298 218 125 5.2699994e-05 219 125 5.2699994e-05 223 125 0.0088569969 224 125 2.6399997e-05 228 125 0.00023719999 229 125 0.00031629996 230 125 0.0004480998 231 125 0.00028999988 232 125 0.00010539999 234 125 0.0031895998 237 125 0.00034269993 240 125 2.6399997e-05 241 125 0.029628798 242 125 0.0014497999 252 125 0.0001582 253 125 0.018715698 270 125 2.6399997e-05 272 125 0.00036899978 277 125 7.9099991e-05 279 125 0.0006589999 300 125 0.021483596 301 125 0.00092259981 314 125 0.0045866966 317 125 2.6399997e-05 325 125 0.0043230988 326 125 2.6399997e-05 340 125 7.9099991e-05 344 125 0.00092259981 350 125 2.6399997e-05 351 125 5.2699994e-05 358 125 0.00068539986 366 125 2.6399997e-05 384 125 2.6399997e-05 387 125 2.6399997e-05 394 125 2.6399997e-05 397 125 2.6399997e-05 402 125 0.0001582 414 125 2.6399997e-05 419 125 2.6399997e-05 422 125 0.00010539999 423 125 2.6399997e-05 425 125 2.6399997e-05 430 125 2.6399997e-05 431 125 2.6399997e-05 433 125 2.6399997e-05 434 125 2.6399997e-05 443 125 0.0096214972 444 125 0.0019506998 445 125 0.0294443 446 125 0.0036640998 447 125 0.0058255978 448 125 2.6399997e-05 450 125 0.0023196999 452 125 0.0047711991 453 125 0.0030313998 454 125 0.00052719982 455 125 0.053959299 456 125 0.00050079986 457 125 0.0041121989 458 125 0.00047449977 459 125 0.00050079986 460 125 0.0021352 463 125 0.0137337 464 125 0.00023719999 465 125 0.0050083995 467 125 0.011651199 468 125 0.0526677 469 125 0.0032686999 470 125 0.0035322998 471 125 0.0049029998 473 125 7.9099991e-05 477 125 5.2699994e-05 478 125 0.00068539986 483 125 0.00086989999 489 125 0.00023719999 490 125 0.049688898 491 125 0.00026359991 22 126 0.0002077 60 126 0.00064049987 104 126 0.00027699978 108 126 1.7299986e-05 114 126 1.7299986e-05 126 126 1.7299986e-05 129 126 0.19280237 151 126 1.7299986e-05 187 126 0.012584597 189 126 1.7299986e-05 190 126 1.7299986e-05 194 126 3.4599987e-05 198 126 0.0089147985 200 126 1.7299986e-05 203 126 1.7299986e-05 204 126 0.010316998 206 126 3.4599987e-05 214 126 0.00015579999 229 126 0.00076169986 234 126 0.00070969993 237 126 8.659999e-05 241 126 0.016150497 252 126 3.4599987e-05 272 126 0.00034619984 279 126 0.00019039999 284 126 1.7299986e-05 325 126 0.0047775991 340 126 5.1899988e-05 350 126 0.0006750999 356 126 1.7299986e-05 358 126 0.00032889983 387 126 1.7299986e-05 402 126 5.1899988e-05 404 126 1.7299986e-05 422 126 3.4599987e-05 430 126 1.7299986e-05 434 126 1.7299986e-05 443 126 0.0009347999 444 126 0.00079629989 445 126 0.0020252999 446 126 0.00012119999 447 126 0.00076169986 450 126 0.00060589984 452 126 0.0010213 453 126 0.0002597 454 126 0.0002597 455 126 0.0051584989 456 126 0.00010389999 457 126 0.0014020998 458 126 0.00098669995 459 126 0.0017309999 460 126 0.0004153999 463 126 0.0018867999 464 126 0.000225 465 126 0.0042063966 467 126 0.0027003998 468 126 0.059530199 469 126 0.00084819994 470 126 0.00091739977 471 126 0.00057119993 472 126 0.00017309999 473 126 1.7299986e-05 477 126 6.9199989e-05 478 126 0.000225 483 126 0.0018002999 489 126 1.7299986e-05 490 126 8.659999e-05 491 126 0.00072699995 8 127 0.017421599 60 127 0.0017422 104 127 0.00049779983 114 127 0.00024889992 126 127 0.00024889992 127 127 0.0014932998 129 127 0.25311095 150 127 0.00024889992 172 127 0.00049779983 187 127 0.00099549978 194 127 0.00024889992 198 127 0.033847697 204 127 0.00074659986 206 127 0.00049779983 229 127 0.00074659986 234 127 0.0032354 237 127 0.00049779983 241 127 0.017670497 252 127 0.00024889992 272 127 0.00024889992 279 127 0.00049779983 317 127 0.00024889992 325 127 0.0069685988 358 127 0.0017422 402 127 0.00024889992 443 127 0.00024889992 444 127 0.00024889992 445 127 0.0037331998 447 127 0.0017422 450 127 0.0029865999 452 127 0.0037331998 453 127 0.00074659986 454 127 0.0014932998 455 127 0.0052264966 456 127 0.00024889992 457 127 0.0019909998 458 127 0.00099549978 459 127 0.0012443999 460 127 0.00049779983 463 127 0.0032354 464 127 0.00024889992 465 127 0.0047286972 467 127 0.010452997 468 127 0.020408198 469 127 0.0037331998 470 127 0.0039820969 471 127 0.0029865999 473 127 0.00024889992 478 127 0.00099549978 483 127 0.0037331998 490 127 0.00049779983 491 127 0.00024889992 8 128 0.017788097 22 128 0.0011600999 60 128 0.0023202 104 128 0.015854597 114 128 0.0003866998 128 128 0.0023202 129 128 0.25870067 187 128 0.0042536967 192 128 0.0019334999 193 128 0.0073472969 198 128 0.017788097 204 128 0.0069605969 206 128 0.0003866998 229 128 0.0011600999 234 128 0.0015467999 241 128 0.0073472969 272 128 0.00077339984 279 128 0.0003866998 300 128 0.0019334999 325 128 0.0061871968 340 128 0.0003866998 350 128 0.0003866998 358 128 0.00077339984 443 128 0.0023202 444 128 0.0019334999 445 128 0.0042536967 446 128 0.0003866998 447 128 0.018561497 450 128 0.0015467999 452 128 0.0019334999 453 128 0.00077339984 455 128 0.0058004968 457 128 0.0023202 458 128 0.0003866998 459 128 0.0019334999 460 128 0.0003866998 463 128 0.012760997 464 128 0.0003866998 465 128 0.0015467999 467 128 0.0050270967 468 128 0.11136889 469 128 0.0030935998 470 128 0.0034802998 471 128 0.0015467999 478 128 0.0003866998 483 128 0.0038669999 490 128 0.0003866998 491 128 0.0030935998 8 129 0.5532372 22 129 7.1599992e-05 60 129 0.00093049998 104 129 7.1599992e-05 114 129 3.5799996e-05 126 129 3.5799996e-05 129 129 0.26316166 130 129 3.5799996e-05 151 129 3.5799996e-05 159 129 0.00010739999 160 129 0.00057259994 172 129 0.0016104998 186 129 0.00025049993 187 129 0.0001432 189 129 3.5799996e-05 193 129 3.5799996e-05 198 129 0.00071579986 204 129 0.00010739999 206 129 7.1599992e-05 214 129 7.1599992e-05 229 129 0.0016462998 234 129 0.00078739994 237 129 3.5799996e-05 241 129 0.00017889999 252 129 3.5799996e-05 272 129 0.00010739999 279 129 3.5799996e-05 325 129 7.1599992e-05 356 129 3.5799996e-05 358 129 0.00021469999 443 129 0.0017894998 444 129 7.1599992e-05 445 129 0.043949798 446 129 0.00028629997 447 129 0.00071579986 450 129 0.00035789981 452 129 0.0013599999 453 129 0.00028629997 454 129 0.00010739999 455 129 0.0012526 456 129 3.5799996e-05 457 129 0.0012883998 458 129 0.00010739999 459 129 0.00071579986 460 129 0.00028629997 463 129 0.0025768999 464 129 7.1599992e-05 465 129 0.00010739999 467 129 0.0091263987 468 129 0.0015389998 469 129 0.0007515999 470 129 0.00085899979 471 129 0.0005367999 473 129 3.5799996e-05 477 129 3.5799996e-05 478 129 0.00010739999 483 129 0.0019325998 490 129 0.0070147999 491 129 3.5799996e-05 2 130 0.0017565 4 130 0.0603249 9 130 8.8999996e-06 13 130 0.0001508 16 130 8.8999996e-06 18 130 8.8999996e-06 22 130 0.00074519985 25 130 4.4399989e-05 60 130 0.0025903999 79 130 8.8999996e-06 82 130 8.8999996e-06 83 130 8.8999996e-06 84 130 6.2099993e-05 104 130 0.0018451998 108 130 1.7699989e-05 113 130 2.6599999e-05 114 130 6.2099993e-05 126 130 2.6599999e-05 127 130 8.8999996e-06 130 130 0.32233 131 130 0.00015969999 132 130 0.052855197 133 130 0.00045239995 134 130 4.4399989e-05 136 130 2.6599999e-05 137 130 0.0001242 138 130 0.0014016998 139 130 0.00025729998 140 130 6.2099993e-05 141 130 1.7699989e-05 142 130 0.00028389995 143 130 0.0058816969 145 130 1.7699989e-05 146 130 2.6599999e-05 149 130 0.0011443999 150 130 0.00078949984 151 130 0.00014189999 152 130 0.00021289999 155 130 8.8999996e-06 156 130 8.8999996e-06 157 130 0.00013309999 158 130 7.0999988e-05 171 130 0.00015969999 186 130 1.7699989e-05 187 130 8.8999996e-06 189 130 7.9799996e-05 190 130 8.8699991e-05 192 130 0.0014282998 193 130 0.0001065 194 130 5.3199998e-05 196 130 8.8999996e-06 197 130 2.6599999e-05 198 130 0.0062630996 200 130 2.6599999e-05 201 130 1.7699989e-05 203 130 4.4399989e-05 204 130 5.3199998e-05 206 130 0.0001065 207 130 3.5499994e-05 209 130 8.8999996e-06 214 130 0.024351697 219 130 2.6599999e-05 221 130 0.0012774998 222 130 1.7699989e-05 223 130 0.0039565973 224 130 0.0014548998 225 130 0.00019519999 226 130 0.0220984 227 130 0.043566998 231 130 0.0045598969 232 130 1.7699989e-05 233 130 0.00040809996 234 130 0.0025016998 237 130 8.8699991e-05 240 130 0.0001065 241 130 0.0035662998 242 130 5.3199998e-05 243 130 8.8999996e-06 248 130 8.8999996e-06 250 130 8.8999996e-06 251 130 8.8999996e-06 252 130 0.0047815964 253 130 1.7699989e-05 263 130 8.8999996e-06 271 130 0.0001242 272 130 0.00050569978 277 130 7.9799996e-05 279 130 0.00011529999 284 130 1.7699989e-05 300 130 1.7699989e-05 317 130 0.00014189999 319 130 0.00038149999 322 130 1.7699989e-05 326 130 0.00079839979 334 130 8.8999996e-06 335 130 0.00095809996 336 130 0.00078069977 340 130 8.8999996e-06 345 130 0.0062187985 350 130 0.0002307 351 130 1.7699989e-05 356 130 7.0999988e-05 358 130 0.0013927999 365 130 0.0001774 384 130 4.4399989e-05 387 130 2.6599999e-05 392 130 8.8999996e-06 394 130 8.8999996e-06 397 130 8.8999996e-06 402 130 4.4399989e-05 404 130 1.7699989e-05 414 130 0.0001774 419 130 8.8999996e-06 421 130 0.00040809996 422 130 0.00076289987 423 130 8.8999996e-06 425 130 8.8999996e-06 430 130 1.7699989e-05 431 130 1.7699989e-05 432 130 8.8999996e-06 433 130 1.7699989e-05 434 130 2.6599999e-05 435 130 2.6599999e-05 437 130 2.6599999e-05 442 130 8.8999996e-06 443 130 0.0043380968 444 130 0.0018540998 445 130 0.0093946978 446 130 0.00051449984 447 130 0.0042670965 448 130 1.7699989e-05 449 130 8.8999996e-06 450 130 0.0029187 452 130 0.010015696 453 130 0.0026169999 454 130 0.0018806998 455 130 0.043017 456 130 0.000275 457 130 0.0022089998 458 130 0.00062989979 459 130 0.00055889995 460 130 0.00048789987 463 130 0.0063518994 464 130 0.0014725998 465 130 0.00086049992 467 130 0.012473099 468 130 0.0026258999 469 130 0.0025372 470 130 0.0027945 471 130 0.0010467998 473 130 6.2099993e-05 477 130 5.3199998e-05 478 130 0.00096699991 479 130 0.00079839979 483 130 0.0012153999 489 130 6.2099993e-05 490 130 0.00040809996 491 130 0.0013750999 4 131 0.0029487999 22 131 0.00018429999 60 131 0.0027645 108 131 0.00018429999 114 131 0.00036859978 126 131 0.00018429999 130 131 0.014190897 131 131 0.0086619966 132 131 0.20586067 138 131 0.00018429999 139 131 0.00018429999 142 131 0.013085097 143 131 0.00018429999 144 131 0.00018429999 149 131 0.00036859978 171 131 0.00018429999 189 131 0.00018429999 190 131 0.00018429999 194 131 0.00018429999 198 131 0.0014743998 206 131 0.00036859978 214 131 0.0014743998 223 131 0.00018429999 224 131 0.00018429999 225 131 0.0005528999 226 131 0.072797596 227 131 0.10523409 231 131 0.00018429999 234 131 0.0031331 237 131 0.00018429999 240 131 0.030040499 241 131 0.00018429999 252 131 0.0038702998 272 131 0.00036859978 279 131 0.00092149992 345 131 0.0129008 356 131 0.00018429999 358 131 0.0014743998 387 131 0.00018429999 422 131 0.00018429999 443 131 0.0011057998 444 131 0.0005528999 445 131 0.0145595 447 131 0.0064503998 450 131 0.0031331 452 131 0.009399198 453 131 0.0022115998 454 131 0.00036859978 455 131 0.028566197 457 131 0.0022115998 458 131 0.0005528999 459 131 0.00036859978 460 131 0.0005528999 463 131 0.016033899 464 131 0.0005528999 465 131 0.0014743998 467 131 0.009399198 468 131 0.0053445995 469 131 0.005528897 470 131 0.0060817972 471 131 0.00092149992 473 131 0.00018429999 478 131 0.0018429998 479 131 0.0053445995 483 131 0.0018429998 490 131 0.0005528999 491 131 0.00092149992 2 132 0.0075674988 4 132 0.057291199 9 132 1.9799991e-05 13 132 0.00021789999 18 132 1.9799991e-05 22 132 0.00045559998 60 132 0.0024167998 82 132 1.9799991e-05 83 132 1.9799991e-05 84 132 1.9799991e-05 104 132 0.0017432999 108 132 1.9799991e-05 113 132 3.9599996e-05 114 132 7.9199992e-05 118 132 5.9399987e-05 126 132 3.9599996e-05 127 132 1.9799991e-05 130 132 0.016917899 131 132 0.0015254 132 132 0.087363064 133 132 0.0001981 134 132 0.0001981 135 132 1.9799991e-05 137 132 1.9799991e-05 138 132 0.0011687998 140 132 0.00011889999 142 132 0.00021789999 143 132 0.0086372979 144 132 0.00013869999 149 132 0.0010499 150 132 0.0008121999 151 132 1.9799991e-05 155 132 3.9599996e-05 158 132 3.9599996e-05 171 132 0.0072703995 186 132 0.00051509985 189 132 1.9799991e-05 190 132 9.9099998e-05 192 132 9.9099998e-05 193 132 5.9399987e-05 194 132 0.00011889999 197 132 1.9799991e-05 198 132 0.009409897 200 132 1.9799991e-05 203 132 3.9599996e-05 204 132 5.9399987e-05 206 132 9.9099998e-05 207 132 3.9599996e-05 209 132 1.9799991e-05 214 132 0.035856497 215 132 9.9099998e-05 221 132 5.9399987e-05 223 132 0.0016243998 224 132 0.0025356999 225 132 0.00021789999 226 132 0.031042598 227 132 0.25824594 231 132 0.0012876999 233 132 1.9799991e-05 234 132 0.0025752999 237 132 7.9199992e-05 240 132 0.00021789999 241 132 0.0055071972 242 132 0.00075279991 252 132 0.00075279991 272 132 0.0010102999 277 132 7.9199992e-05 279 132 0.00025749998 284 132 1.9799991e-05 319 132 1.9799991e-05 324 132 3.9599996e-05 326 132 3.9599996e-05 334 132 1.9799991e-05 335 132 5.9399987e-05 336 132 3.9599996e-05 345 132 0.0073693991 349 132 0.00051509985 350 132 1.9799991e-05 351 132 3.9599996e-05 356 132 0.00013869999 358 132 0.0010102999 377 132 1.9799991e-05 382 132 0.0001585 384 132 3.9599996e-05 387 132 1.9799991e-05 392 132 0.0015848 402 132 3.9599996e-05 404 132 3.9599996e-05 414 132 0.0016441999 417 132 1.9799991e-05 419 132 1.9799991e-05 421 132 1.9799991e-05 422 132 0.00013869999 423 132 1.9799991e-05 425 132 1.9799991e-05 430 132 1.9799991e-05 431 132 1.9799991e-05 432 132 1.9799991e-05 433 132 1.9799991e-05 434 132 3.9599996e-05 443 132 0.0042987987 444 132 0.00073299999 445 132 0.0061411969 446 132 0.00045559998 447 132 0.00065369997 450 132 0.0022781999 452 132 0.0135304 453 132 0.0021592998 454 132 0.0010698 455 132 0.035836697 456 132 0.00023769999 457 132 0.0022584 458 132 0.00045559998 459 132 0.0005349 460 132 0.00073299999 463 132 0.0063788965 464 132 0.00033679977 465 132 0.00099049998 467 132 0.0069533996 468 132 0.0029516998 469 132 0.0030111999 470 132 0.0030903998 471 132 0.00067349989 473 132 5.9399987e-05 477 132 1.9799991e-05 478 132 0.0010895999 479 132 5.9399987e-05 483 132 0.00073299999 489 132 7.9199992e-05 490 132 0.00057449983 491 132 0.0016243998 2 133 0.0011536998 4 133 0.039515398 22 133 0.0011536998 60 133 0.0025958999 104 133 0.00086529995 114 133 0.00028839987 130 133 0.008653 132 133 0.28901064 133 133 0.010383599 138 133 0.00086529995 143 133 0.0017305999 171 133 0.046149399 198 133 0.013556398 206 133 0.00057689985 214 133 0.029420197 226 133 0.0028843 227 133 0.090279758 231 133 0.0040380992 234 133 0.0028843 240 133 0.00028839987 241 133 0.011248898 272 133 0.00057689985 279 133 0.00057689985 345 133 0.0106721 358 133 0.00086529995 443 133 0.0034611998 444 133 0.00028839987 445 133 0.015575398 446 133 0.00057689985 447 133 0.010383599 450 133 0.0020189998 452 133 0.012402698 453 133 0.0017305999 454 133 0.0020189998 455 133 0.0409576 457 133 0.0020189998 458 133 0.00028839987 460 133 0.00028839987 463 133 0.026535898 464 133 0.00057689985 465 133 0.00086529995 467 133 0.0072107986 468 133 0.026535898 469 133 0.0034611998 470 133 0.0040380992 471 133 0.0037495999 478 133 0.00086529995 483 133 0.0014421998 490 133 0.0011536998 491 133 0.00057689985 2 134 3.2199998e-05 4 134 0.00061109988 22 134 0.00028939988 60 134 0.0012863998 82 134 3.2199998e-05 104 134 3.2199998e-05 108 134 3.2199998e-05 114 134 3.2199998e-05 126 134 3.2199998e-05 130 134 0.028204799 131 134 0.00032159989 132 134 0.39058977 133 134 3.2199998e-05 134 134 0.035247996 137 134 3.2199998e-05 138 134 3.2199998e-05 139 134 6.4299995e-05 142 134 0.014247097 143 134 0.046568498 149 134 0.00028939988 150 134 0.00041809981 151 134 3.2199998e-05 152 134 6.4299995e-05 157 134 3.2199998e-05 158 134 0.0047597997 171 134 3.2199998e-05 189 134 0.00048239995 190 134 6.4299995e-05 191 134 3.2199998e-05 192 134 3.2199998e-05 193 134 3.2199998e-05 194 134 9.6499993e-05 197 134 3.2199998e-05 198 134 0.0052421987 200 134 3.2199998e-05 203 134 6.4299995e-05 204 134 6.4299995e-05 206 134 9.6499993e-05 207 134 3.2199998e-05 214 134 0.014793899 223 134 3.2199998e-05 224 134 3.2199998e-05 225 134 0.018974699 226 134 0.0019295998 227 134 0.012542598 231 134 0.0015758998 234 134 0.0034411999 237 134 9.6499993e-05 240 134 0.027111299 241 134 0.0048240982 252 134 6.4299995e-05 272 134 0.00051459996 277 134 3.2199998e-05 279 134 0.00012859999 345 134 0.0020260999 351 134 0.0027015 356 134 6.4299995e-05 358 134 0.00080399984 384 134 0.00012859999 387 134 3.2199998e-05 402 134 3.2199998e-05 422 134 9.6499993e-05 430 134 3.2199998e-05 433 134 3.2199998e-05 434 134 3.2199998e-05 443 134 0.0032803998 444 134 0.0013506999 445 134 0.0097124986 446 134 0.0003537999 447 134 0.0031516999 448 134 3.2199998e-05 450 134 0.0056923963 452 134 0.004180897 453 134 0.0034411999 454 134 0.0035376998 455 134 0.043995596 456 134 0.00016079999 457 134 0.0019617998 458 134 0.00048239995 459 134 0.00025729998 460 134 0.00041809981 463 134 0.0090692975 464 134 0.000193 465 134 0.00051459996 467 134 0.0080400966 468 134 0.019650098 469 134 0.0019295998 470 134 0.0021225999 471 134 0.00077189994 473 134 6.4299995e-05 477 134 3.2199998e-05 478 134 0.00064319978 483 134 0.00073969993 489 134 6.4299995e-05 490 134 0.00032159989 491 134 0.00025729998 2 135 0.029029798 23 135 0.0045836978 60 135 0.0030558 114 135 0.00076389988 117 135 0.0015278999 130 135 0.0068754964 132 135 0.060351398 134 135 0.0022918 135 135 0.0022918 138 135 0.11764705 139 135 0.0022918 142 135 0.0038196999 143 135 0.073338389 149 135 0.00076389988 186 135 0.00076389988 192 135 0.00076389988 198 135 0.0022918 206 135 0.00076389988 214 135 0.019862499 219 135 0.00076389988 224 135 0.011459097 225 135 0.0015278999 226 135 0.0045836978 227 135 0.033613399 234 135 0.0068754964 240 135 0.011459097 241 135 0.0084033981 243 135 0.00076389988 272 135 0.00076389988 279 135 0.0015278999 345 135 0.0091672987 358 135 0.0015278999 442 135 0.010695197 443 135 0.0068754964 444 135 0.0038196999 445 135 0.0076393969 446 135 0.00076389988 447 135 0.029793698 450 135 0.0045836978 452 135 0.0084033981 453 135 0.0022918 454 135 0.0015278999 455 135 0.032849498 457 135 0.0022918 458 135 0.00076389988 463 135 0.039724998 464 135 0.00076389988 465 135 0.00076389988 467 135 0.0061114989 468 135 0.0045836978 469 135 0.0038196999 470 135 0.0038196999 471 135 0.00076389988 478 135 0.00076389988 483 135 0.0022918 490 135 0.0015278999 60 136 0.0062240995 130 136 0.0020746998 132 136 0.18672198 136 136 0.016597498 143 136 0.0020746998 149 136 0.0062240995 198 136 0.012448099 206 136 0.0020746998 214 136 0.0394191 226 136 0.029045597 227 136 0.010373399 234 136 0.0082987994 345 136 0.0082987994 358 136 0.0020746998 447 136 0.0020746998 450 136 0.0041493997 452 136 0.010373399 453 136 0.0062240995 455 136 0.018672198 457 136 0.0020746998 463 136 0.014522798 467 136 0.0082987994 468 136 0.016597498 469 136 0.0041493997 470 136 0.0041493997 478 136 0.0020746998 483 136 0.0041493997 490 136 0.0020746998 491 136 0.0020746998 2 137 0.0018843999 22 137 0.00062809978 24 137 0.00062809978 25 137 0.00062809978 60 137 0.0031406998 114 137 0.00062809978 117 137 0.040200997 130 137 0.010678399 131 137 0.00062809978 132 137 0.089195967 133 137 0.00062809978 134 137 0.00062809978 135 137 0.021356799 137 137 0.0031406998 138 137 0.15515077 142 137 0.0031406998 143 137 0.0069094971 149 137 0.00062809978 158 137 0.00062809978 160 137 0.00062809978 161 137 0.00062809978 178 137 0.00062809978 186 137 0.00062809978 187 137 0.0012562999 188 137 0.00062809978 192 137 0.0018843999 193 137 0.0012562999 198 137 0.015075397 206 137 0.00062809978 214 137 0.0050251 219 137 0.0056532994 223 137 0.0012562999 224 137 0.0056532994 225 137 0.00062809978 226 137 0.0062813982 227 137 0.0056532994 234 137 0.0025125998 240 137 0.0012562999 241 137 0.0050251 252 137 0.0012562999 272 137 0.00062809978 273 137 0.00062809978 277 137 0.0012562999 279 137 0.00062809978 293 137 0.0012562999 322 137 0.0037687998 325 137 0.00062809978 345 137 0.0037687998 358 137 0.0012562999 442 137 0.0012562999 443 137 0.013191 444 137 0.0012562999 445 137 0.011934698 446 137 0.0043969974 447 137 0.0031406998 450 137 0.0025125998 452 137 0.0094220974 453 137 0.0056532994 454 137 0.0012562999 455 137 0.039572898 457 137 0.0018843999 463 137 0.0075376965 464 137 0.0012562999 465 137 0.00062809978 467 137 0.0056532994 468 137 0.011934698 469 137 0.0025125998 470 137 0.0025125998 471 137 0.00062809978 478 137 0.00062809978 483 137 0.0018843999 490 137 0.026381899 491 137 0.0012562999 4 138 0.0418569 60 138 0.0022830998 130 138 0.0045661964 132 138 0.0030440998 138 138 0.0045661964 142 138 0.0015220998 143 138 0.0091323964 186 138 0.00076099997 192 138 0.00076099997 198 138 0.0098934993 206 138 0.00076099997 214 138 0.025114197 219 138 0.00076099997 223 138 0.00076099997 224 138 0.0015220998 226 138 0.0038051999 227 138 0.0060882978 230 138 0.0091323964 234 138 0.0030440998 241 138 0.00076099997 272 138 0.00076099997 279 138 0.00076099997 345 138 0.026636198 358 138 0.0015220998 443 138 0.0304414 444 138 0.0068492964 445 138 0.0053271987 446 138 0.0022830998 447 138 0.027397297 450 138 0.0022830998 452 138 0.0076103993 453 138 0.0015220998 454 138 0.0030440998 455 138 0.15144598 457 138 0.0022830998 463 138 0.045662098 464 138 0.00076099997 465 138 0.042617999 467 138 0.0045661964 468 138 0.00076099997 469 138 0.0022830998 470 138 0.0022830998 478 138 0.00076099997 483 138 0.0015220998 490 138 0.0015220998 491 138 0.21308976 2 139 0.0001161 4 139 0.0001161 60 139 0.0019734998 82 139 0.0011608999 108 139 0.0001161 114 139 0.00023219999 118 139 0.0001161 126 139 0.0001161 130 139 0.12955648 131 139 0.020663999 132 139 0.010215897 134 139 0.0001161 138 139 0.0001161 139 139 0.0087067969 140 139 0.0001161 141 139 0.0001161 142 139 0.027977698 143 139 0.030647799 149 139 0.068144858 158 139 0.017993998 160 139 0.0001161 161 139 0.00023219999 171 139 0.0001161 184 139 0.00092869997 187 139 0.00023219999 188 139 0.0001161 190 139 0.0001161 194 139 0.00034829997 198 139 0.012537699 206 139 0.00023219999 214 139 0.042256799 219 139 0.0001161 222 139 0.00023219999 223 139 0.013930798 224 139 0.063501298 225 139 0.0032505 226 139 0.00046439981 227 139 0.00046439981 230 139 0.0001161 233 139 0.0069653988 234 139 0.0033665998 237 139 0.0001161 239 139 0.0001161 240 139 0.0012769999 241 139 0.047596898 243 139 0.00046439981 252 139 0.00023219999 272 139 0.00069649983 276 139 0.0001161 277 139 0.0012769999 279 139 0.00058049988 282 139 0.00034829997 286 139 0.0001161 290 139 0.0001161 292 139 0.0001161 293 139 0.00046439981 294 139 0.0001161 295 139 0.0001161 300 139 0.00023219999 312 139 0.00058049988 315 139 0.0008125999 319 139 0.0001161 320 139 0.00023219999 322 139 0.0001161 326 139 0.00046439981 340 139 0.00034829997 345 139 0.0068492964 349 139 0.00023219999 350 139 0.0046435967 356 139 0.0001161 358 139 0.0011608999 387 139 0.0001161 392 139 0.00034829997 393 139 0.0015091999 422 139 0.0081262998 443 139 0.0071975999 444 139 0.0039470978 445 139 0.011725098 446 139 0.0008125999 447 139 0.0071975999 450 139 0.0018573999 452 139 0.0070814975 453 139 0.0034826999 454 139 0.0012769999 455 139 0.050383098 456 139 0.0001161 457 139 0.0035987999 458 139 0.00034829997 459 139 0.00034829997 460 139 0.00069649983 463 139 0.024611097 464 139 0.0008125999 465 139 0.010680299 467 139 0.0049918965 468 139 0.0022056999 469 139 0.0032505 470 139 0.0034826999 471 139 0.004527498 473 139 0.0001161 478 139 0.00058049988 483 139 0.0012769999 490 139 0.0010447998 491 139 0.0013930998 4 140 0.018298399 22 140 0.00031279982 60 140 0.0014075998 114 140 0.0001564 130 140 0.0086017996 132 140 0.0014075998 140 140 0.022364698 143 140 0.0001564 186 140 0.00093839993 187 140 0.0001564 198 140 0.0075069964 206 140 0.00031279982 214 140 0.011729699 223 140 0.0029714999 225 140 0.017359998 226 140 0.038160797 227 140 0.56803244 231 140 0.0001564 234 140 0.00046919985 241 140 0.0001564 242 140 0.0064122975 252 140 0.032999698 272 140 0.00031279982 279 140 0.00046919985 334 140 0.0034406998 345 140 0.012824498 356 140 0.0001564 358 140 0.00062559987 443 140 0.0029714999 444 140 0.0039098971 445 140 0.0043790974 446 140 0.0001564 447 140 0.005317498 450 140 0.0014075998 452 140 0.0095401965 453 140 0.0017203998 454 140 0.0014075998 455 140 0.035189196 457 140 0.0018767999 459 140 0.00031279982 460 140 0.00031279982 463 140 0.012824498 464 140 0.0057866983 465 140 0.0048482977 467 140 0.0028150999 468 140 0.0007819999 469 140 0.0021895999 470 140 0.0007819999 471 140 0.00046919985 478 140 0.00046919985 483 140 0.0007819999 490 140 0.0001564 491 140 0.0001564 2 141 0.00057939999 4 141 0.0069524981 60 141 0.0028968998 114 141 0.00057939999 130 141 0.0023174998 132 141 0.070683658 138 141 0.084588587 143 141 0.018539999 160 141 0.0011586999 171 141 0.0011586999 198 141 0.023754299 206 141 0.0011586999 214 141 0.0069524981 224 141 0.0011586999 227 141 0.11066049 234 141 0.0034761999 240 141 0.00057939999 241 141 0.030706797 271 141 0.0011586999 272 141 0.00057939999 277 141 0.0017380998 279 141 0.0011586999 312 141 0.00057939999 326 141 0.00057939999 345 141 0.0063731 358 141 0.0023174998 430 141 0.0011586999 442 141 0.00057939999 443 141 0.0069524981 444 141 0.00057939999 445 141 0.0086905994 446 141 0.022595599 447 141 0.0017380998 450 141 0.0040555969 452 141 0.011587497 453 141 0.0017380998 454 141 0.00057939999 455 141 0.0330243 457 141 0.0023174998 458 141 0.00057939999 459 141 0.0028968998 460 141 0.00057939999 463 141 0.011008099 464 141 0.00057939999 465 141 0.0040555969 467 141 0.011587497 468 141 0.025492497 469 141 0.0046349987 470 141 0.0040555969 471 141 0.0017380998 478 141 0.0017380998 483 141 0.0017380998 490 141 0.056199297 491 141 0.00057939999 2 142 0.00075669982 4 142 0.00094589987 6 142 0.00018919999 22 142 0.0026484998 24 142 0.00037839985 60 142 0.0032159998 84 142 0.00018919999 104 142 0.00075669982 114 142 0.00018919999 117 142 0.00056749978 118 142 0.00018919999 130 142 0.012107499 131 142 0.00018919999 132 142 0.014755998 133 142 0.00037839985 135 142 0.00037839985 137 142 0.00018919999 138 142 0.033106297 139 142 0.0011350999 140 142 0.00018919999 142 142 0.024404097 143 142 0.031971198 149 142 0.00018919999 152 142 0.00037839985 157 142 0.00018919999 159 142 0.0034051999 160 142 0.0013243 171 142 0.00018919999 186 142 0.0181612 187 142 0.010593999 188 142 0.00037839985 189 142 0.00056749978 192 142 0.011918299 193 142 0.00018919999 197 142 0.0032159998 198 142 0.020431299 204 142 0.00094589987 206 142 0.00037839985 208 142 0.0017025999 214 142 0.086454749 215 142 0.00037839985 219 142 0.013999198 221 142 0.00075669982 223 142 0.0083238967 224 142 0.016269397 225 142 0.00037839985 226 142 0.070942044 227 142 0.060726397 231 142 0.0030268999 234 142 0.0045402981 240 142 0.00018919999 241 142 0.022890698 243 142 0.00018919999 252 142 0.00018919999 272 142 0.00056749978 279 142 0.00094589987 322 142 0.00018919999 324 142 0.00018919999 326 142 0.00018919999 345 142 0.0024593 347 142 0.00018919999 349 142 0.0017025999 356 142 0.00018919999 358 142 0.0011350999 414 142 0.00018919999 422 142 0.00018919999 442 142 0.00018919999 443 142 0.010404799 444 142 0.0077562965 445 142 0.015323497 446 142 0.0013243 447 142 0.0096480995 450 142 0.0028376998 452 142 0.0102157 453 142 0.0017025999 454 142 0.0054861978 455 142 0.031782098 457 142 0.0026484998 458 142 0.00018919999 459 142 0.00075669982 460 142 0.00037839985 463 142 0.015890997 464 142 0.0049186982 465 142 0.00056749978 467 142 0.0081346966 468 142 0.0088913999 469 142 0.0035943999 470 142 0.0032159998 471 142 0.00056749978 478 142 0.00075669982 479 142 0.00037839985 483 142 0.0013243 489 142 0.00037839985 490 142 0.00094589987 491 142 0.0018918 2 143 0.16462457 4 143 0.0047124997 60 143 0.0018849999 114 143 0.00031419983 117 143 0.00031419983 130 143 0.00094249984 132 143 0.057807099 138 143 0.0065974966 143 143 0.17844796 149 143 0.0062833987 171 143 0.0301602 198 143 0.0087966993 206 143 0.00062829978 214 143 0.014451798 223 143 0.0084825978 224 143 0.00031419983 226 143 0.0040841997 227 143 0.025133498 231 143 0.00031419983 234 143 0.0043983981 241 143 0.00094249984 242 143 0.00031419983 272 143 0.00094249984 277 143 0.00031419983 279 143 0.00031419983 345 143 0.0037699998 358 143 0.0012566999 443 143 0.0031416998 444 143 0.0141376 445 143 0.016965099 446 143 0.0018849999 447 143 0.013823397 450 143 0.0021992 452 143 0.0081683993 453 143 0.0015707999 454 143 0.0135093 455 143 0.033930298 457 143 0.0015707999 458 143 0.00094249984 459 143 0.00031419983 460 143 0.00031419983 463 143 0.0094250999 464 143 0.0081683993 465 143 0.00031419983 467 143 0.0053408965 468 143 0.033301897 469 143 0.0025133998 470 143 0.0028275 471 143 0.00094249984 478 143 0.00062829978 483 143 0.0018849999 490 143 0.019792598 491 143 0.0025133998 4 144 0.00010929999 22 144 0.00010929999 60 144 0.0022957998 114 144 0.00010929999 126 144 0.00010929999 132 144 0.22160268 144 144 0.14245105 145 144 0.0036076999 146 144 0.00032799994 149 144 0.00010929999 150 144 0.0014211999 187 144 0.00010929999 189 144 0.00010929999 190 144 0.00021869999 193 144 0.027768698 194 144 0.028315298 198 144 0.0317044 203 144 0.00010929999 204 144 0.00076529989 206 144 0.00021869999 214 144 0.0027331 227 144 0.027987298 231 144 0.0064501986 234 144 0.0019679 237 144 0.00010929999 241 144 0.0081993975 272 144 0.00032799994 279 144 0.00065599987 345 144 0.0049195997 358 144 0.0010932998 422 144 0.00021869999 443 144 0.0016398998 444 144 0.0029517999 445 144 0.0059035979 446 144 0.00010929999 447 144 0.0030610999 450 144 0.0029517999 452 144 0.0089646988 453 144 0.0018584998 454 144 0.00087459991 455 144 0.042855598 456 144 0.00010929999 457 144 0.0067781992 458 144 0.0010932998 459 144 0.00021869999 460 144 0.0017491998 463 144 0.011479199 464 144 0.0021864998 465 144 0.0014211999 467 144 0.012791097 468 144 0.010932498 469 144 0.0022957998 470 144 0.0019679 471 144 0.00087459991 473 144 0.00010929999 478 144 0.0016398998 483 144 0.0025144999 490 144 0.00021869999 4 145 0.00033049984 22 145 0.00033049984 60 145 0.0019830998 114 145 0.00016529999 130 145 0.00066099991 132 145 0.24838865 144 145 0.0066104978 145 145 0.13435799 146 145 0.00049579982 149 145 0.00066099991 150 145 0.0013220999 190 145 0.00016529999 193 145 0.0099156983 194 145 0.0026441999 198 145 0.015038799 203 145 0.00016529999 204 145 0.011072498 206 145 0.00033049984 214 145 0.0072714984 226 145 0.00033049984 227 145 0.062303796 231 145 0.0062799975 234 145 0.0026441999 237 145 0.00016529999 241 145 0.017517798 272 145 0.00049579982 279 145 0.00049579982 345 145 0.0094198994 358 145 0.0011568 422 145 0.00016529999 434 145 0.00016529999 443 145 0.0013220999 444 145 0.0072714984 445 145 0.0097504966 447 145 0.007436797 450 145 0.0029746999 452 145 0.0064451993 453 145 0.0023136998 454 145 0.00066099991 455 145 0.042472299 456 145 0.00016529999 457 145 0.0021483998 459 145 0.00033049984 460 145 0.0016525998 463 145 0.0059493966 464 145 0.00066099991 465 145 0.0013220999 467 145 0.0071062967 468 145 0.011733599 469 145 0.0018179 470 145 0.0018179 471 145 0.00082629989 478 145 0.0016525998 483 145 0.0026441999 490 145 0.00033049984 491 145 0.00016529999 60 146 0.00088069984 130 146 0.0017612998 131 146 0.0074856989 132 146 0.29854685 133 146 0.015411697 144 146 0.0026419999 145 146 0.0022016999 146 146 0.12549537 149 146 0.015851997 150 146 0.0030822998 198 146 0.013650399 226 146 0.00088069984 227 146 0.0114487 231 146 0.004843697 234 146 0.0017612998 272 146 0.00044029998 279 146 0.00044029998 345 146 0.0039629973 358 146 0.00088069984 436 146 0.004843697 437 146 0.0079259984 443 146 0.00044029998 444 146 0.0022016999 445 146 0.0070453994 447 146 0.0017612998 450 146 0.0035226999 452 146 0.0044032969 453 146 0.0013209998 454 146 0.0017612998 455 146 0.028181396 457 146 0.0017612998 458 146 0.00044029998 459 146 0.00044029998 460 146 0.0022016999 463 146 0.011888999 464 146 0.0022016999 465 146 0.0013209998 467 146 0.0061646998 468 146 0.0026419999 469 146 0.0017612998 470 146 0.0017612998 471 146 0.00088069984 478 146 0.0013209998 483 146 0.00088069984 131 147 0.023809496 132 147 0.28571427 133 147 0.023809496 147 147 0.023809496 149 147 0.047618996 194 147 0.023809496 214 147 0.023809496 226 147 0.023809496 227 147 0.023809496 445 147 0.023809496 455 147 0.023809496 467 147 0.023809496 132 148 0.25 227 148 0.083333254 463 148 0.083333254 2 149 5.3199998e-05 4 149 0.0058772974 18 149 0.0010372 22 149 0.0001064 60 149 0.00087759993 104 149 5.3199998e-05 108 149 2.6599999e-05 114 149 5.3199998e-05 126 149 2.6599999e-05 130 149 0.011728097 131 149 0.00023929999 132 149 0.30360085 133 149 0.00029249978 138 149 5.3199998e-05 139 149 2.6599999e-05 142 149 5.3199998e-05 143 149 0.00023929999 144 149 5.3199998e-05 145 149 5.3199998e-05 146 149 0.0020744 147 149 5.3199998e-05 148 149 7.9799996e-05 149 149 0.096138477 150 149 0.00071799988 151 149 0.00085099996 171 149 0.0047337972 190 149 7.9799996e-05 192 149 5.3199998e-05 193 149 2.6599999e-05 194 149 0.0001064 197 149 2.6599999e-05 198 149 0.023722097 200 149 2.6599999e-05 203 149 5.3199998e-05 204 149 7.9799996e-05 206 149 5.3199998e-05 207 149 2.6599999e-05 214 149 0.025291197 218 149 2.6599999e-05 221 149 5.3199998e-05 223 149 0.00013299999 224 149 0.0001064 225 149 0.0001064 226 149 0.027604897 227 149 0.078958571 231 149 0.0071804971 233 149 2.6599999e-05 234 149 0.0029785999 237 149 5.3199998e-05 240 149 0.0001064 241 149 0.011861097 242 149 0.004122097 252 149 0.00015959999 272 149 0.0016488 277 149 0.0001064 279 149 0.00045209983 282 149 2.6599999e-05 315 149 2.6599999e-05 326 149 2.6599999e-05 335 149 0.0013828999 336 149 2.6599999e-05 345 149 0.0023136998 351 149 0.0022338999 358 149 0.00055849995 387 149 2.6599999e-05 402 149 2.6599999e-05 421 149 2.6599999e-05 422 149 0.0001064 433 149 2.6599999e-05 434 149 2.6599999e-05 436 149 7.9799996e-05 437 149 0.00013299999 443 149 0.0030582999 444 149 0.0013828999 445 149 0.0065421984 446 149 0.00031909999 447 149 0.0012232999 448 149 2.6599999e-05 450 149 0.0014094999 452 149 0.0069676973 453 149 0.0022604999 454 149 0.0021274998 455 149 0.038003299 456 149 7.9799996e-05 457 149 0.0019147999 458 149 0.00069149979 459 149 0.00066489982 460 149 0.0017551999 463 149 0.0085633993 464 149 0.0011435999 465 149 0.00069149979 467 149 0.0045741983 468 149 0.0057709999 469 149 0.0018881999 470 149 0.0013563 471 149 0.00050529977 473 149 2.6599999e-05 477 149 0.00082439999 478 149 0.00079779979 479 149 2.6599999e-05 483 149 0.00074459985 489 149 5.3199998e-05 490 149 0.00015959999 491 149 0.00018619999 4 150 6.0799997e-05 9 150 1.2199999e-05 16 150 4.0999994e-06 17 150 0.0029328 18 150 4.0999994e-06 22 150 3.6499987e-05 60 150 0.00058819982 79 150 4.0999994e-06 82 150 1.6199992e-05 83 150 1.6199992e-05 84 150 0.00027579977 108 150 2.4299996e-05 113 150 3.2499986e-05 114 150 8.1099992e-05 126 150 4.0599989e-05 127 150 4.0999994e-06 130 150 0.16148525 131 150 0.0065591969 132 150 0.0249631 133 150 0.0069688968 135 150 7.709999e-05 136 150 0.0019226999 137 150 1.6199992e-05 138 150 8.0999998e-06 139 150 4.8699992e-05 140 150 8.0999998e-06 141 150 4.0999994e-06 142 150 0.00038939994 143 150 0.0014928 144 150 0.00031229993 145 150 0.00034069992 146 150 0.0071067996 147 150 0.00027579977 149 150 0.12158644 150 150 0.15409046 151 150 4.0999994e-06 152 150 1.2199999e-05 155 150 0.0036954 156 150 0.0087739974 157 150 0.0025189999 158 150 0.00056379987 171 150 8.0999998e-06 188 150 4.0999994e-06 189 150 9.74e-05 190 150 0.00017039999 192 150 7.709999e-05 193 150 0.0001947 194 150 0.0004015998 196 150 1.2199999e-05 197 150 2.4299996e-05 198 150 0.0050826967 200 150 3.6499987e-05 201 150 1.6199992e-05 203 150 6.8999987e-05 204 150 0.00029609981 206 150 0.00017439999 207 150 5.6799996e-05 208 150 0.0001298 209 150 1.6199992e-05 214 150 0.00045029982 219 150 4.0999994e-06 222 150 1.2199999e-05 223 150 2.4299996e-05 224 150 3.2499986e-05 225 150 0.00014599999 226 150 0.00060849986 227 150 0.0012290999 231 150 0.00041779992 234 150 0.0016711999 237 150 0.0001582 239 150 4.0999994e-06 240 150 0.00018659999 241 150 0.00064499979 242 150 4.0999994e-06 243 150 0.0057438985 248 150 1.6199992e-05 249 150 4.0999994e-06 250 150 8.0999998e-06 251 150 4.0999994e-06 252 150 1.2199999e-05 263 150 4.0999994e-06 272 150 0.00011359999 276 150 4.0999994e-06 277 150 6.8999987e-05 279 150 0.00010949999 282 150 1.6199992e-05 292 150 1.2199999e-05 293 150 8.0999998e-06 308 150 4.0999994e-06 315 150 3.2499986e-05 317 150 0.00079099997 319 150 1.6199992e-05 326 150 4.0999994e-06 328 150 4.0999994e-06 340 150 4.0999994e-06 345 150 0.00034889998 349 150 4.0999994e-06 351 150 4.0999994e-06 356 150 2.4299996e-05 358 150 0.0003205 363 150 4.0999994e-06 380 150 4.0999994e-06 382 150 0.00074639986 384 150 8.0999998e-06 387 150 3.2499986e-05 394 150 1.2199999e-05 397 150 1.2199999e-05 402 150 6.0799997e-05 409 150 4.0999994e-06 412 150 4.0999994e-06 419 150 4.0999994e-06 422 150 8.1099992e-05 423 150 8.0999998e-06 425 150 4.0999994e-06 430 150 2.0299995e-05 431 150 1.2199999e-05 432 150 1.2199999e-05 433 150 4.459999e-05 434 150 5.6799996e-05 435 150 0.0010302998 436 150 0.0035899 437 150 0.0138404 442 150 4.0999994e-06 443 150 0.00054359995 444 150 0.0022107 445 150 0.0054842979 446 150 0.00011359999 447 150 0.0041374974 448 150 2.4299996e-05 449 150 8.0999998e-06 450 150 0.004161898 452 150 0.0032491998 453 150 0.00070579979 454 150 0.00033259997 455 150 0.035749096 456 150 0.00039349985 457 150 0.0043321997 458 150 0.00058409991 459 150 0.00064089987 460 150 0.00087619992 463 150 0.0098286979 464 150 0.0023567998 465 150 0.0014886998 467 150 0.012002897 468 150 0.0055937991 469 150 0.0033749 470 150 0.0036791998 471 150 0.0011357998 472 150 8.1099992e-05 473 150 7.709999e-05 477 150 0.00011359999 478 150 0.0016387999 483 150 0.0026974999 489 150 4.459999e-05 490 150 0.00048679998 491 150 0.00021499999 4 151 0.00014559999 84 151 0.00029119989 114 151 0.00014559999 126 151 0.00014559999 130 151 0.44182318 131 151 0.0020386998 132 151 0.017474897 133 151 0.0018930999 134 151 0.00014559999 136 151 0.0037862 137 151 0.00072809984 138 151 0.0005824999 139 151 0.011795498 141 151 0.0027669 142 151 0.011212997 143 151 0.00087369978 149 151 0.00072809984 151 151 0.030580997 152 151 0.0013106 155 151 0.0011649998 157 151 0.00087369978 158 151 0.00014559999 171 151 0.00043689995 184 151 0.00014559999 190 151 0.00014559999 193 151 0.010048099 194 151 0.00029119989 198 151 0.0042230971 203 151 0.00014559999 204 151 0.00014559999 206 151 0.00029119989 225 151 0.00014559999 226 151 0.00014559999 227 151 0.0005824999 234 151 0.0017474999 237 151 0.00029119989 240 151 0.00043689995 241 151 0.0055336989 272 151 0.00029119989 277 151 0.00029119989 279 151 0.00014559999 282 151 0.00014559999 322 151 0.00014559999 358 151 0.00072809984 382 151 0.00029119989 402 151 0.00014559999 422 151 0.00029119989 435 151 0.00014559999 437 151 0.0052424967 443 151 0.0005824999 444 151 0.0040774979 445 151 0.013106197 447 151 0.0045142993 450 151 0.0040774979 452 151 0.0032036998 453 151 0.00072809984 454 151 0.00014559999 455 151 0.036551598 456 151 0.00014559999 457 151 0.0026211999 458 151 0.0005824999 459 151 0.00029119989 460 151 0.0016019 463 151 0.038444698 464 151 0.0046599992 465 151 0.0065530986 467 151 0.005824998 468 151 0.015727397 469 151 0.0027669 470 151 0.0030580999 471 151 0.0017474999 473 151 0.00014559999 477 151 0.0021843999 478 151 0.0014561999 483 151 0.0016019 490 151 0.00029119989 491 151 0.00014559999 2 152 0.00062999991 4 152 0.022501197 13 152 0.00013499999 22 152 0.00076499977 24 152 4.4999993e-05 60 152 0.00099009997 84 152 0.0036001999 104 152 0.00067499978 108 152 4.4999993e-05 114 152 8.9999987e-05 117 152 4.4999993e-05 120 152 4.4999993e-05 126 152 4.4999993e-05 130 152 0.33387339 131 152 0.0040051974 132 152 0.031906798 133 152 0.0054452978 136 152 0.0020250999 137 152 0.0074703991 138 152 0.0071103983 139 152 0.012510698 141 152 0.00017999999 142 152 0.0103506 143 152 0.0082354993 144 152 4.4999993e-05 145 152 4.4999993e-05 149 152 0.0092254989 150 152 0.0016200999 151 152 0.00049499981 152 152 0.014265798 155 152 0.00031499984 156 152 4.4999993e-05 157 152 0.0092254989 158 152 0.0018451 160 152 0.00013499999 161 152 8.9999987e-05 171 152 0.0046802983 178 152 4.4999993e-05 189 152 8.9999987e-05 190 152 0.00013499999 192 152 0.00062999991 193 152 0.0063452981 194 152 8.9999987e-05 198 152 0.0155259 200 152 4.4999993e-05 203 152 4.4999993e-05 204 152 8.9999987e-05 206 152 0.00013499999 207 152 4.4999993e-05 214 152 0.0096304975 221 152 0.00049499981 223 152 0.0016200999 224 152 0.00080999988 226 152 0.0096754991 227 152 0.022096198 230 152 8.9999987e-05 231 152 0.0019351 232 152 0.00017999999 233 152 0.00017999999 234 152 0.0018000999 237 152 0.00013499999 240 152 0.0027001 241 152 0.014175799 243 152 8.9999987e-05 248 152 8.9999987e-05 252 152 0.0017551 253 152 0.00013499999 271 152 4.4999993e-05 272 152 0.00044999993 277 152 0.00017999999 279 152 0.000225 300 152 0.00044999993 315 152 0.00013499999 317 152 4.4999993e-05 319 152 0.00035999995 322 152 0.000225 326 152 0.00035999995 335 152 0.00035999995 336 152 0.00031499984 345 152 0.0023850999 350 152 8.9999987e-05 356 152 8.9999987e-05 358 152 0.00085499999 365 152 8.9999987e-05 382 152 0.00013499999 387 152 4.4999993e-05 402 152 4.4999993e-05 414 152 4.4999993e-05 421 152 0.00013499999 422 152 0.00031499984 433 152 4.4999993e-05 434 152 8.9999987e-05 435 152 0.0021150999 437 152 0.00080999988 442 152 0.00017999999 443 152 0.0033302 444 152 0.0018900998 445 152 0.0117906 446 152 0.00031499984 447 152 0.0034651998 450 152 0.0040501989 452 152 0.0063903965 453 152 0.0018451 454 152 0.0026550998 455 152 0.043832399 456 152 0.00017999999 457 152 0.0023850999 458 152 0.00044999993 459 152 0.00035999995 460 152 0.0015300999 463 152 0.010620598 464 152 0.0027901998 465 152 0.0010801 467 152 0.0089104995 468 152 0.012420699 469 152 0.0025650999 470 152 0.0028801998 471 152 0.0012600999 473 152 4.4999993e-05 477 152 0.0010801 478 152 0.0011250998 479 152 0.00031499984 483 152 0.0016200999 489 152 4.4999993e-05 490 152 0.00035999995 491 152 0.00080999988 4 153 0.0016991999 60 153 0.0016991999 114 153 0.00042479998 130 153 0.15590477 131 153 0.019965999 132 153 0.030161399 133 153 0.0042480975 139 153 0.014443498 143 153 0.28377229 149 153 0.00084959995 150 153 0.00084959995 153 153 0.0046728998 158 153 0.025913298 187 153 0.031435899 188 153 0.00042479998 193 153 0.00042479998 198 153 0.011469796 206 153 0.00084959995 214 153 0.0012743999 219 153 0.00042479998 221 153 0.00084959995 223 153 0.00042479998 224 153 0.0050976984 226 153 0.00042479998 227 153 0.0012743999 234 153 0.00084959995 241 153 0.0033984999 242 153 0.0016991999 272 153 0.00042479998 279 153 0.00042479998 358 153 0.00042479998 437 153 0.00084959995 443 153 0.0025489 444 153 0.00042479998 445 153 0.010195397 450 153 0.0025489 452 153 0.0038232999 453 153 0.0012743999 455 153 0.048852999 457 153 0.0025489 460 153 0.0012743999 463 153 0.0093457997 464 153 0.00042479998 465 153 0.00084959995 467 153 0.0042480975 468 153 0.0016991999 469 153 0.0025489 470 153 0.0025489 471 153 0.0012743999 478 153 0.00084959995 483 153 0.0012743999 490 153 0.00042479998 491 153 0.00042479998 4 154 0.0003562998 22 154 0.0003562998 60 154 0.0010688 114 154 0.0003562998 130 154 0.19202 131 154 0.028856397 132 154 0.044531498 133 154 0.0042749979 137 154 0.0010688 139 154 0.085500479 141 154 0.0078374967 142 154 0.0024937999 143 154 0.0049874969 149 154 0.0021374999 150 154 0.0003562998 152 154 0.0003562998 154 154 0.0092625991 157 154 0.0003562998 158 154 0.027431399 160 154 0.0003562998 187 154 0.0003562998 193 154 0.0014249999 194 154 0.0003562998 198 154 0.0056999996 206 154 0.00071249995 223 154 0.0003562998 227 154 0.0003562998 234 154 0.0014249999 237 154 0.0010688 241 154 0.0003562998 252 154 0.0003562998 272 154 0.0003562998 277 154 0.0028499998 279 154 0.0003562998 282 154 0.00071249995 283 154 0.0003562998 293 154 0.0003562998 312 154 0.0003562998 315 154 0.0003562998 328 154 0.0017812999 329 154 0.00071249995 345 154 0.0032062999 350 154 0.0003562998 351 154 0.0003562998 354 154 0.00071249995 358 154 0.0010688 382 154 0.0003562998 402 154 0.00071249995 412 154 0.0003562998 430 154 0.0003562998 437 154 0.0363377 443 154 0.0014249999 444 154 0.0003562998 445 154 0.0071249977 447 154 0.00071249995 450 154 0.0039187968 452 154 0.0035624998 453 154 0.0014249999 455 154 0.047025297 457 154 0.0021374999 458 154 0.0003562998 460 154 0.0014249999 463 154 0.012112599 464 154 0.00071249995 465 154 0.0010688 467 154 0.0067687966 468 154 0.0024937999 469 154 0.0042749979 470 154 0.0042749979 471 154 0.0014249999 478 154 0.0014249999 483 154 0.0021374999 490 154 0.00071249995 4 155 0.00033979979 114 155 0.00033979979 130 155 0.084947288 132 155 0.17804956 133 155 0.06252116 135 155 0.0061161965 137 155 0.0088344999 139 155 0.00033979979 142 155 0.032279998 143 155 0.0040774979 149 155 0.00033979979 150 155 0.00067959982 155 155 0.015630297 157 155 0.00033979979 171 155 0.00033979979 187 155 0.00033979979 190 155 0.00033979979 193 155 0.013591599 194 155 0.00033979979 198 155 0.0040774979 202 155 0.0013591999 206 155 0.00067959982 210 155 0.00033979979 227 155 0.00033979979 234 155 0.0016988998 237 155 0.00033979979 272 155 0.00033979979 279 155 0.00033979979 358 155 0.00067959982 377 155 0.012572199 382 155 0.00033979979 437 155 0.0010193998 443 155 0.00067959982 444 155 0.0088344999 445 155 0.0292219 447 155 0.0142712 450 155 0.0044172965 452 155 0.0050967969 453 155 0.0016988998 455 155 0.032279998 456 155 0.00033979979 457 155 0.026163798 460 155 0.0016988998 463 155 0.027183097 464 155 0.013591599 465 155 0.013931397 467 155 0.0057763979 468 155 0.0020386998 469 155 0.0030580999 470 155 0.0033978999 471 155 0.0016988998 478 155 0.0016988998 483 155 0.0016988998 490 155 0.00033979979 491 155 0.00033979979 22 156 0.00025529996 60 156 0.0015318999 114 156 8.5099993e-05 117 156 8.5099993e-05 126 156 8.5099993e-05 130 156 0.12017018 131 156 0.016936198 132 156 0.0194043 133 156 0.011914898 136 156 0.0013616998 137 156 0.0065531991 138 156 0.00017019999 139 156 0.13455319 142 156 0.035233997 143 156 0.0003403998 149 156 0.00085109985 150 156 8.5099993e-05 155 156 0.0068935975 156 156 0.0020426 157 156 8.5099993e-05 158 156 0.0069786981 171 156 8.5099993e-05 172 156 8.5099993e-05 188 156 8.5099993e-05 189 156 8.5099993e-05 190 156 8.5099993e-05 194 156 0.0077446997 198 156 0.0045956969 203 156 8.5099993e-05 204 156 0.006808497 206 156 0.00017019999 214 156 0.00051059993 223 156 0.00017019999 224 156 0.00068089995 226 156 0.00025529996 227 156 0.00051059993 233 156 8.5099993e-05 234 156 0.00093619991 237 156 8.5099993e-05 240 156 8.5099993e-05 241 156 0.061361697 243 156 0.026638299 272 156 0.00017019999 277 156 0.0094467998 279 156 0.00025529996 282 156 8.5099993e-05 292 156 8.5099993e-05 293 156 0.00017019999 298 156 0.00017019999 299 156 8.5099993e-05 312 156 0.0003403998 313 156 0.00076599978 320 156 8.5099993e-05 339 156 8.5099993e-05 340 156 0.00017019999 345 156 0.00017019999 350 156 8.5099993e-05 356 156 8.5099993e-05 358 156 0.0005957 382 156 8.5099993e-05 402 156 8.5099993e-05 422 156 0.00017019999 434 156 8.5099993e-05 437 156 0.00068089995 443 156 0.0020426 444 156 0.0039999969 445 156 0.014893599 446 156 0.00017019999 447 156 0.0035744999 450 156 0.0047659986 452 156 0.0030637998 453 156 0.0005957 455 156 0.040680896 456 156 8.5099993e-05 457 156 0.0022127999 458 156 0.0003403998 459 156 0.00025529996 460 156 0.0017020998 463 156 0.013191499 464 156 0.0029787 465 156 0.00068089995 467 156 0.0056169964 468 156 0.00085109985 469 156 0.0057871975 470 156 0.0018722999 471 156 0.00076599978 473 156 8.5099993e-05 477 156 0.0034893998 478 156 0.00068089995 479 156 0.0042552985 483 156 0.0012765999 490 156 0.00017019999 491 156 0.00017019999 60 157 0.0034188 130 157 0.060683798 132 157 0.15982908 133 157 0.00085469987 139 157 0.00085469987 157 157 0.11025637 198 157 0.0017094 206 157 0.00085469987 234 157 0.0025640999 358 157 0.00085469987 444 157 0.00085469987 445 157 0.0025640999 447 157 0.029059798 450 157 0.0042734966 452 157 0.0051281974 455 157 0.0153846 457 157 0.0034188 460 157 0.00085469987 463 157 0.041880298 464 157 0.00085469987 465 157 0.00085469987 467 157 0.0051281974 468 157 0.0017094 469 157 0.0025640999 470 157 0.0025640999 471 157 0.0017094 472 157 0.0085469969 478 157 0.0017094 483 157 0.0025640999 490 157 0.00085469987 2 158 0.0003994999 4 158 0.0027965999 23 158 0.0003994999 60 158 0.0015980999 84 158 0.0034624999 104 158 0.00026629982 114 158 0.0001332 126 158 0.0001332 130 158 0.14848846 131 158 0.033959199 132 158 0.094020486 133 158 0.015181798 134 158 0.00066589983 135 158 0.0025302998 137 158 0.018377896 138 158 0.0011985998 139 158 0.016912997 141 158 0.014116399 142 158 0.046077996 143 158 0.0019975998 149 158 0.023038998 150 158 0.0025302998 151 158 0.0001332 152 158 0.0003994999 155 158 0.0001332 156 158 0.0001332 157 158 0.00053269998 158 158 0.026101999 171 158 0.00026629982 187 158 0.0027965999 188 158 0.0001332 190 158 0.0001332 192 158 0.0001332 193 158 0.0085230991 194 158 0.00026629982 198 158 0.013983198 203 158 0.0001332 206 158 0.00026629982 214 158 0.0018644 219 158 0.0001332 221 158 0.0001332 223 158 0.0071913972 224 158 0.0015980999 225 158 0.0003994999 226 158 0.0037288999 227 158 0.0093220994 231 158 0.00026629982 234 158 0.0023971 237 158 0.0003994999 240 158 0.00093219988 241 158 0.0051937997 243 158 0.0001332 252 158 0.00026629982 271 158 0.00026629982 272 158 0.00066589983 277 158 0.0038619998 279 158 0.0003994999 282 158 0.0026634999 283 158 0.0010654 292 158 0.0003994999 293 158 0.00026629982 295 158 0.0001332 296 158 0.00053269998 308 158 0.0001332 312 158 0.0003994999 313 158 0.00053269998 315 158 0.0001332 320 158 0.0001332 326 158 0.0001332 328 158 0.00026629982 340 158 0.0001332 345 158 0.0003994999 351 158 0.00026629982 357 158 0.00026629982 358 158 0.0007989998 382 158 0.00026629982 397 158 0.0001332 402 158 0.0023971 412 158 0.00026629982 422 158 0.0001332 434 158 0.0001332 437 158 0.012251999 442 158 0.0001332 443 158 0.0023971 444 158 0.00026629982 445 158 0.012118798 446 158 0.00026629982 447 158 0.0011985998 450 158 0.0038619998 452 158 0.0051937997 453 158 0.0010654 454 158 0.00026629982 455 158 0.048475198 456 158 0.0001332 457 158 0.0026634999 458 158 0.00093219988 459 158 0.0003994999 460 158 0.0017312998 463 158 0.0094552971 464 158 0.0003994999 465 158 0.0010654 467 158 0.0067917965 468 158 0.0035956998 469 158 0.0027965999 470 158 0.0029298 471 158 0.0021307999 473 158 0.0001332 478 158 0.0011985998 483 158 0.0015980999 490 158 0.00026629982 491 158 0.0017312998 3 159 4.2e-05 9 159 2.1e-05 16 159 0.00027299998 17 159 0.35643339 18 159 0.0015119999 22 159 0.0036119998 24 159 2.1e-05 60 159 0.00081899995 62 159 8.3999999e-05 75 159 0.0018689998 82 159 2.1e-05 83 159 2.1e-05 84 159 2.1e-05 104 159 2.1e-05 108 159 2.1e-05 113 159 4.2e-05 114 159 6.2999999e-05 126 159 2.1e-05 130 159 2.1e-05 141 159 0.0020579998 150 159 0.00079799979 151 159 0.00079799979 159 159 0.026312999 160 159 0.003759 161 159 2.1e-05 165 159 0.0010289999 170 159 2.1e-05 186 159 0.00027299998 190 159 6.2999999e-05 192 159 2.1e-05 194 159 2.1e-05 198 159 0.00088199996 200 159 2.1e-05 206 159 4.2e-05 214 159 0.00081899995 215 159 0.00067199999 217 159 0.000189 218 159 0.000147 219 159 0.000105 220 159 0.00075599994 223 159 6.2999999e-05 224 159 6.2999999e-05 233 159 0.0008609998 234 159 0.033809997 237 159 0.002226 240 159 0.0017849999 241 159 0.0041579977 242 159 0.0013229998 251 159 0.00062999991 252 159 4.2e-05 270 159 0.000105 271 159 0.00060899998 272 159 0.0016589998 277 159 0.0044309981 279 159 2.1e-05 283 159 0.0040109977 292 159 0.00060899998 295 159 0.00058799982 312 159 0.00088199996 315 159 0.0017429998 317 159 0.0034019998 318 159 0.0068459995 319 159 0.0098699965 322 159 0.0534871 326 159 0.0023729999 329 159 8.3999999e-05 331 159 0.00065099983 334 159 0.00071399985 335 159 4.2e-05 337 159 0.0025829999 340 159 0.00046199979 341 159 0.0017219998 346 159 0.0019739999 349 159 0.000126 350 159 2.1e-05 352 159 4.2e-05 354 159 0.0036749998 356 159 2.1e-05 358 159 0.00058799982 372 159 0.00094499998 374 159 0.00056699989 384 159 0.00073499978 387 159 2.1e-05 394 159 0.000231 397 159 4.2e-05 398 159 0.00054599997 400 159 0.0018059998 401 159 2.1e-05 402 159 0.0039269999 412 159 0.00039899978 417 159 0.000105 421 159 2.1e-05 423 159 2.1e-05 430 159 2.1e-05 431 159 2.1e-05 442 159 0.00094499998 443 159 0.0050399974 444 159 0.0011339998 445 159 0.006719999 446 159 0.0021209999 447 159 0.0026459999 448 159 0.0008609998 450 159 0.00079799979 452 159 0.0011759999 453 159 0.00048299995 454 159 0.0008609998 455 159 0.032697 456 159 0.0025829999 457 159 0.0018269999 458 159 0.00050399988 459 159 0.0013649999 460 159 0.0021629999 463 159 0.0040109977 464 159 0.00065099983 465 159 0.00052499981 467 159 0.0096599981 468 159 0.00079799979 469 159 0.0021629999 470 159 0.002289 471 159 0.013250999 473 159 4.2e-05 477 159 0.00071399985 478 159 0.00060899998 483 159 0.000147 489 159 0.00050399988 490 159 0.000189 491 159 8.3999999e-05 9 160 1.6399994e-05 17 160 0.0038231998 18 160 0.00065629999 22 160 0.0026089998 60 160 0.0022971998 75 160 0.0015915998 82 160 1.6399994e-05 83 160 1.6399994e-05 84 160 1.6399994e-05 108 160 1.6399994e-05 113 160 3.2799988e-05 114 160 4.9199996e-05 117 160 1.6399994e-05 126 160 1.6399994e-05 130 160 6.559999e-05 139 160 1.6399994e-05 141 160 1.6399994e-05 150 160 0.00049229991 151 160 0.00044299988 159 160 0.33716196 160 160 0.070589364 161 160 0.00014769999 162 160 0.0001313 163 160 1.6399994e-05 165 160 0.0066782981 170 160 0.00014769999 171 160 0.0001313 172 160 3.2799988e-05 186 160 8.1999999e-05 189 160 4.9199996e-05 190 160 8.1999999e-05 192 160 0.00034459983 194 160 6.559999e-05 197 160 1.6399994e-05 198 160 8.1999999e-05 200 160 3.2799988e-05 203 160 3.2799988e-05 204 160 3.2799988e-05 206 160 6.559999e-05 207 160 1.6399994e-05 214 160 0.0016243998 215 160 1.6399994e-05 218 160 9.8499993e-05 219 160 0.0005086998 223 160 4.9199996e-05 224 160 0.00057429983 233 160 0.0009680998 234 160 0.0093363971 237 160 0.0012469999 240 160 1.6399994e-05 241 160 0.00068919989 242 160 0.0005086998 251 160 3.2799988e-05 252 160 0.00057429983 270 160 0.0009680998 272 160 0.0010008998 277 160 0.00067269988 279 160 0.0005086998 283 160 4.9199996e-05 312 160 0.00060709985 315 160 0.0012963 317 160 0.0005086998 318 160 0.0025104999 319 160 0.0018048999 322 160 0.0012635 324 160 1.6399994e-05 326 160 0.0069079995 335 160 0.00063989987 337 160 0.00082039996 341 160 1.6399994e-05 346 160 0.0012141999 349 160 0.0026417999 350 160 0.00041019986 352 160 0.00067269988 354 160 3.2799988e-05 356 160 0.00014769999 358 160 0.00063989987 372 160 1.6399994e-05 384 160 4.9199996e-05 387 160 1.6399994e-05 394 160 8.1999999e-05 397 160 3.2799988e-05 400 160 1.6399994e-05 401 160 0.00031179981 402 160 0.0010666 417 160 0.00032819994 421 160 4.9199996e-05 422 160 4.9199996e-05 423 160 1.6399994e-05 430 160 1.6399994e-05 431 160 1.6399994e-05 433 160 1.6399994e-05 434 160 1.6399994e-05 442 160 1.6399994e-05 443 160 0.019017499 444 160 0.00055789994 445 160 0.0055788979 446 160 0.0017392999 447 160 0.0019197999 448 160 0.00019689999 450 160 0.0015423999 452 160 0.0095989965 453 160 0.0019689999 454 160 0.0011157999 455 160 0.031323798 456 160 0.0017720999 457 160 0.0040856972 458 160 0.00080399984 459 160 0.0013126999 460 160 0.0027565998 463 160 0.0041184984 464 160 0.00045939977 465 160 0.00085319998 467 160 0.010041997 468 160 0.0027729999 469 160 0.0027565998 470 160 0.0016736998 471 160 0.0091230981 473 160 3.2799988e-05 477 160 0.00045939977 478 160 0.00085319998 483 160 0.00059069996 489 160 0.0005086998 490 160 0.00014769999 491 160 0.0011649998 17 161 0.00068559987 18 161 0.00034279982 22 161 0.00034279982 60 161 0.0025710999 114 161 0.0001714 126 161 0.0001714 130 161 0.00034279982 156 161 0.0001714 159 161 0.082790494 160 161 0.23260194 161 161 0.014569797 162 161 0.0001714 165 161 0.0020568999 170 161 0.00068559987 171 161 0.00068559987 190 161 0.0001714 194 161 0.0001714 198 161 0.0022282999 206 161 0.00034279982 214 161 0.0001714 219 161 0.0017140999 233 161 0.0022282999 234 161 0.0059992969 237 161 0.00068559987 241 161 0.0011998999 252 161 0.0001714 270 161 0.0435379 272 161 0.00051419996 277 161 0.00051419996 317 161 0.0001714 318 161 0.0022282999 319 161 0.00085699977 322 161 0.0001714 326 161 0.015940998 346 161 0.0022282999 349 161 0.0001714 356 161 0.0001714 358 161 0.0058278963 402 161 0.0001714 417 161 0.00068559987 421 161 0.0001714 422 161 0.0001714 443 161 0.023825798 444 161 0.0029139998 445 161 0.0078847967 446 161 0.0018854998 447 161 0.0053136982 450 161 0.0030854 452 161 0.016112398 453 161 0.0027424998 454 161 0.0011998999 455 161 0.056050699 456 161 0.00085699977 457 161 0.0042851977 458 161 0.00051419996 459 161 0.00034279982 460 161 0.0015427 463 161 0.010455899 464 161 0.00051419996 465 161 0.0015427 467 161 0.0099416971 468 161 0.0068563968 469 161 0.0030854 470 161 0.0034281998 471 161 0.012684297 473 161 0.0001714 477 161 0.0001714 478 161 0.0015427 483 161 0.0011998999 489 161 0.0001714 490 161 0.00034279982 491 161 0.0013712998 17 162 0.0051753968 60 162 0.0011500998 114 162 0.00057499995 159 162 0.29039675 160 162 0.086256444 161 162 0.028752197 162 162 0.00057499995 165 162 0.00057499995 206 162 0.00057499995 234 162 0.0063254982 241 162 0.013800997 270 162 0.00057499995 272 162 0.00057499995 277 162 0.00057499995 317 162 0.00057499995 318 162 0.0023001998 319 162 0.0011500998 322 162 0.00057499995 346 162 0.0028751998 358 162 0.0011500998 417 162 0.00057499995 443 162 0.021276597 444 162 0.00057499995 445 162 0.014951099 446 162 0.0017251 447 162 0.0034502998 450 162 0.0023001998 452 162 0.0069004968 454 162 0.010350797 455 162 0.033927497 457 162 0.0028751998 459 162 0.017826296 460 162 0.0046002977 463 162 0.0086255968 464 162 0.00057499995 465 162 0.0011500998 467 162 0.0069004968 468 162 0.0011500998 469 162 0.0017251 470 162 0.0017251 471 162 0.0034502998 478 162 0.0011500998 483 162 0.0011500998 490 162 0.00057499995 491 162 0.0011500998 18 163 0.00030919979 22 163 0.00017669999 60 163 0.0012808 75 163 0.00013249999 82 163 4.4199987e-05 108 163 4.4199987e-05 114 163 8.8299988e-05 126 163 4.4199987e-05 139 163 4.4199987e-05 150 163 0.00057419995 151 163 4.4199987e-05 156 163 4.4199987e-05 159 163 0.017710399 160 163 0.24949205 161 163 0.0032682999 162 163 4.4199987e-05 163 163 0.0022965998 165 163 0.045137398 170 163 0.006315697 171 163 0.012852199 184 163 4.4199987e-05 187 163 4.4199987e-05 189 163 4.4199987e-05 190 163 8.8299988e-05 192 163 0.0012365999 194 163 8.8299988e-05 198 163 0.0042840987 200 163 4.4199987e-05 203 163 4.4199987e-05 204 163 4.4199987e-05 206 163 8.8299988e-05 214 163 4.4199987e-05 215 163 0.0028265999 219 163 0.0018107998 224 163 4.4199987e-05 233 163 0.0064923987 234 163 0.0027382998 236 163 4.4199987e-05 237 163 0.00039749988 240 163 0.00013249999 241 163 0.0051673986 252 163 0.016694598 268 163 4.4199987e-05 270 163 0.013338 272 163 0.00052999984 277 163 0.000795 279 163 8.8299988e-05 289 163 0.00035329978 290 163 4.4199987e-05 293 163 0.00070669991 297 163 4.4199987e-05 306 163 4.4199987e-05 312 163 0.0063598976 315 163 0.0077289976 317 163 0.011041399 318 163 0.0013249998 319 163 0.040323298 322 163 0.00052999984 326 163 0.0065364987 346 163 0.0012808 349 163 4.4199987e-05 358 163 0.0021640998 387 163 4.4199987e-05 402 163 0.00013249999 417 163 0.00039749988 421 163 4.4199987e-05 422 163 8.8299988e-05 430 163 4.4199987e-05 434 163 4.4199987e-05 438 163 4.4199987e-05 443 163 0.026499398 444 163 0.0021199998 445 163 0.0076406971 446 163 0.00159 447 163 0.0041956976 448 163 4.4199987e-05 450 163 0.0018549999 452 163 0.0052556992 453 163 0.0012365999 454 163 0.0010157998 455 163 0.058475398 456 163 0.00061829994 457 163 0.006094899 458 163 0.00057419995 459 163 0.00039749988 460 163 0.0022524998 463 163 0.0094514973 464 163 0.0014132999 465 163 0.0010599999 467 163 0.0071989968 468 163 0.0052998997 469 163 0.0029590998 470 163 0.0032241 471 163 0.0044165999 473 163 8.8299988e-05 477 163 8.8299988e-05 478 163 0.0010157998 483 163 0.00097159995 489 163 8.8299988e-05 490 163 0.00026499992 491 163 0.00017669999 18 164 0.00045799999 22 164 0.000229 60 164 0.0017175998 108 164 0.0001145 114 164 0.000229 126 164 0.0001145 139 164 0.0001145 159 164 0.0010305999 160 164 0.051757697 161 164 0.035611998 163 164 0.0001145 164 164 0.0012595998 165 164 0.080728292 170 164 0.025535297 171 164 0.015916597 190 164 0.0001145 192 164 0.0032062 194 164 0.0001145 198 164 0.0016031 206 164 0.000229 215 164 0.0001145 219 164 0.013282899 233 164 0.014771599 234 164 0.0036642998 237 164 0.00045799999 240 164 0.0001145 241 164 0.0320623 252 164 0.00068699988 270 164 0.0269094 272 164 0.00068699988 277 164 0.00057249982 279 164 0.000229 293 164 0.000229 312 164 0.0018320999 315 164 0.0067559965 317 164 0.0069849975 318 164 0.0017175998 319 164 0.028512497 326 164 0.010992799 346 164 0.0018320999 358 164 0.0042367987 387 164 0.0001145 402 164 0.000229 417 164 0.00057249982 421 164 0.0001145 422 164 0.0001145 438 164 0.0030916999 443 164 0.018206798 444 164 0.0027482 445 164 0.006870497 446 164 0.00057249982 447 164 0.0037787999 450 164 0.0025191999 452 164 0.0056108981 453 164 0.0016031 454 164 0.00045799999 455 164 0.048207898 456 164 0.00045799999 457 164 0.0042367987 458 164 0.00080159982 459 164 0.00045799999 460 164 0.0064124987 463 164 0.022100098 464 164 0.00045799999 465 164 0.0014885999 467 164 0.010420199 468 164 0.0045802966 469 164 0.0041222982 470 164 0.0044657998 471 164 0.0090460964 473 164 0.0001145 477 164 0.0001145 478 164 0.0014885999 483 164 0.00091609987 489 164 0.000229 490 164 0.00045799999 17 165 0.0015085 18 165 0.00028069993 22 165 0.0012278999 60 165 0.0018944 75 165 0.0074372999 108 165 3.5099991e-05 114 165 7.0199996e-05 126 165 3.5099991e-05 150 165 0.00045609986 151 165 7.0199996e-05 159 165 0.23322219 160 165 0.018663399 161 165 3.5099991e-05 162 165 3.5099991e-05 165 165 0.1547097 170 165 0.0037185999 171 165 0.00021049999 190 165 7.0199996e-05 192 165 0.0011225999 194 165 7.0199996e-05 198 165 0.00010519999 200 165 3.5099991e-05 203 165 3.5099991e-05 204 165 3.5099991e-05 206 165 7.0199996e-05 214 165 0.00010519999 218 165 3.5099991e-05 219 165 0.015049998 224 165 0.0052621998 233 165 0.011296298 234 165 0.0035432 237 165 0.00031569996 241 165 0.0025609999 242 165 3.5099991e-05 252 165 0.0001754 270 165 0.0054726973 272 165 0.00031569996 277 165 0.00045609986 279 165 3.5099991e-05 312 165 7.0199996e-05 315 165 0.00014029999 317 165 0.0049464963 318 165 0.0014382999 319 165 0.0003858998 322 165 0.00024559977 326 165 0.0033326999 335 165 3.5099991e-05 337 165 0.00010519999 346 165 0.0010173998 349 165 0.0001754 350 165 0.00084199989 352 165 3.5099991e-05 356 165 0.00014029999 358 165 0.0015786998 384 165 0.00014029999 387 165 3.5099991e-05 401 165 3.5099991e-05 402 165 0.0001754 404 165 7.0199996e-05 417 165 0.00031569996 421 165 3.5099991e-05 422 165 7.0199996e-05 434 165 3.5099991e-05 443 165 0.023644999 444 165 0.0018241999 445 165 0.0067005977 446 165 0.0014733998 447 165 0.0012629 448 165 3.5099991e-05 450 165 0.0014382999 452 165 0.0081739984 453 165 0.0039641969 454 165 0.00091209984 455 165 0.0390458 456 165 0.00045609986 457 165 0.0047008991 458 165 0.00042099995 459 165 0.00035079988 460 165 0.0016488 463 165 0.0050516985 464 165 0.0001754 465 165 0.00080689997 467 165 0.006139297 468 165 0.0054726973 469 165 0.0014382999 470 165 0.0015085 471 165 0.0037536998 473 165 3.5099991e-05 477 165 7.0199996e-05 478 165 0.00080689997 483 165 0.00031569996 489 165 0.00014029999 490 165 0.00014029999 491 165 0.00056129997 18 166 0.00021719999 22 166 0.00021719999 60 166 0.00086859986 114 166 0.00021719999 126 166 0.00021719999 159 166 0.006731797 160 166 0.33333325 161 166 0.00086859986 162 166 0.00043429993 163 166 0.0017372 164 166 0.00021719999 165 166 0.014983699 166 166 0.0045602992 167 166 0.00043429993 170 166 0.0045602992 171 166 0.00065149995 191 166 0.00021719999 206 166 0.00021719999 219 166 0.0043430999 224 166 0.00086859986 233 166 0.0076003969 234 166 0.0028229998 236 166 0.00043429993 237 166 0.00043429993 241 166 0.00065149995 252 166 0.00065149995 256 166 0.00043429993 268 166 0.00043429993 270 166 0.00086859986 272 166 0.0028229998 274 166 0.00021719999 277 166 0.00021719999 279 166 0.0062974989 292 166 0.00021719999 293 166 0.00021719999 302 166 0.00021719999 303 166 0.00021719999 304 166 0.00021719999 305 166 0.00043429993 306 166 0.00065149995 308 166 0.00021719999 312 166 0.0060802996 315 166 0.00021719999 317 166 0.004777398 318 166 0.0010857999 319 166 0.0078175999 324 166 0.00021719999 326 166 0.020195398 346 166 0.0013028998 356 166 0.00021719999 358 166 0.0056459978 366 166 0.00043429993 385 166 0.0052116998 402 166 0.00021719999 417 166 0.00043429993 443 166 0.0286645 444 166 0.0086861998 445 166 0.0086861998 446 166 0.0017372 447 166 0.011509199 450 166 0.0017372 452 166 0.0028229998 453 166 0.00086859986 455 166 0.052117299 456 166 0.00043429993 457 166 0.0043430999 458 166 0.00065149995 459 166 0.0010857999 460 166 0.0058631971 463 166 0.017589599 464 166 0.0089033991 465 166 0.00065149995 467 166 0.0065146983 468 166 0.0013028998 469 166 0.0032572998 470 166 0.0036915999 471 166 0.0021715998 473 166 0.00021719999 478 166 0.00086859986 483 166 0.00043429993 490 166 0.00043429993 18 167 0.00019359999 22 167 9.6799995e-05 60 167 0.0008711 108 167 9.6799995e-05 114 167 0.00019359999 126 167 9.6799995e-05 134 167 0.0003870998 139 167 9.6799995e-05 159 167 0.0015485999 160 167 0.16376305 161 167 0.021196298 162 167 0.0067750998 163 167 0.041134298 164 167 0.0076460987 165 167 0.0564266 166 167 9.6799995e-05 167 167 0.009775497 170 167 0.0035810999 171 167 0.0090978965 173 167 9.6799995e-05 176 167 9.6799995e-05 177 167 0.0015485999 190 167 9.6799995e-05 191 167 0.0061942972 194 167 9.6799995e-05 206 167 0.00019359999 219 167 0.0003870998 224 167 0.00029039988 233 167 0.0028068 234 167 0.0020325 236 167 0.011033699 237 167 0.0003870998 240 167 9.6799995e-05 241 167 0.0049360991 252 167 0.00019359999 256 167 0.0083236992 259 167 0.0022260998 268 167 0.010162599 270 167 0.012679096 272 167 0.00058069988 274 167 0.0057103969 277 167 0.0014517999 279 167 0.0053232983 289 167 0.00019359999 292 167 0.0030003998 293 167 0.0009678998 295 167 0.0026131999 302 167 0.0029036 303 167 0.005032897 304 167 0.0048392974 305 167 0.0084203966 306 167 0.013550099 308 167 0.0039682984 312 167 0.0010646998 317 167 0.00019359999 318 167 0.0009678998 319 167 0.011227299 324 167 0.0043553971 326 167 0.0003870998 346 167 0.0009678998 356 167 0.00019359999 358 167 0.0047424994 366 167 0.0082268976 377 167 0.00019359999 378 167 0.00029039988 383 167 0.00067749992 385 167 0.0016454 386 167 0.0017422 387 167 9.6799995e-05 402 167 0.00077429996 415 167 0.0020325 417 167 0.00029039988 439 167 0.0020325 443 167 0.023035198 444 167 0.0009678998 445 167 0.0133566 446 167 0.0013549998 447 167 0.0042585991 450 167 0.0072589964 452 167 0.0021292998 453 167 0.00067749992 454 167 0.0003870998 455 167 0.060588498 456 167 0.00029039988 457 167 0.0041617975 458 167 0.0010646998 459 167 0.0003870998 460 167 0.0059039965 463 167 0.020905897 464 167 0.00048389984 465 167 0.0008711 467 167 0.0063878968 468 167 0.0036778999 469 167 0.0032906998 470 167 0.0037747 471 167 0.0037747 472 167 0.0019357 473 167 9.6799995e-05 477 167 9.6799995e-05 478 167 0.0008711 483 167 0.00058069988 490 167 0.0003870998 491 167 9.6799995e-05 17 168 0.0010572998 22 168 0.0002115 60 168 0.0014801999 114 168 0.0002115 159 168 0.17635858 160 168 0.21251845 168 168 0.0074010976 206 168 0.00042289984 214 168 0.10467327 233 168 0.010573097 234 168 0.0046520978 237 168 0.0002115 272 168 0.00063439994 317 168 0.0002115 318 168 0.0002115 322 168 0.0002115 326 168 0.0088813975 346 168 0.0012687999 356 168 0.0002115 358 168 0.00084579992 417 168 0.00042289984 443 168 0.028335799 444 168 0.0002115 445 168 0.0086698979 446 168 0.002749 447 168 0.010573097 450 168 0.0019031998 452 168 0.0067667998 453 168 0.0078240968 454 168 0.00084579992 455 168 0.056037199 456 168 0.0002115 457 168 0.0025374999 458 168 0.00063439994 459 168 0.0002115 460 168 0.0050750971 463 168 0.0012687999 464 168 0.00042289984 465 168 0.00042289984 467 168 0.0063437968 468 168 0.00084579992 469 168 0.0025374999 470 168 0.0029604998 471 168 0.0016917 478 168 0.00063439994 483 168 0.00063439994 490 168 0.00042289984 17 169 0.0020547998 18 169 0.00034249993 22 169 0.00068489998 60 169 0.0075341985 114 169 0.00034249993 159 169 0.073287666 160 169 0.28150678 161 169 0.004794497 162 169 0.0017122999 165 169 0.0023973 169 169 0.0044520982 170 169 0.00034249993 171 169 0.0027396998 172 169 0.00034249993 188 169 0.0017122999 198 169 0.0010273999 206 169 0.00068489998 219 169 0.0013698998 224 169 0.0020547998 233 169 0.00034249993 234 169 0.0041095987 237 169 0.00034249993 270 169 0.0010273999 272 169 0.00068489998 277 169 0.0010273999 279 169 0.030479498 315 169 0.00034249993 318 169 0.0020547998 319 169 0.00034249993 322 169 0.00034249993 326 169 0.00068489998 346 169 0.0023973 358 169 0.0017122999 417 169 0.00068489998 438 169 0.0027396998 443 169 0.027397297 444 169 0.00034249993 445 169 0.024315096 446 169 0.0017122999 447 169 0.0023973 450 169 0.0034246999 452 169 0.0092465989 453 169 0.0054794997 455 169 0.044862997 456 169 0.00034249993 457 169 0.0023973 458 169 0.0023973 459 169 0.00068489998 460 169 0.0013698998 463 169 0.004794497 464 169 0.00068489998 465 169 0.00068489998 467 169 0.013013698 468 169 0.0051369965 469 169 0.0037670999 470 169 0.0041095987 471 169 0.0034246999 478 169 0.0013698998 483 169 0.0010273999 490 169 0.00068489998 491 169 0.00034249993 22 170 0.00067869993 60 170 0.0023752998 114 170 0.00033929991 159 170 0.015269797 160 170 0.087885976 161 170 0.0074651986 162 170 0.0095011964 165 170 0.010519199 170 170 0.00033929991 206 170 0.00033929991 219 170 0.17237866 233 170 0.0010179998 234 170 0.016966399 241 170 0.014591098 270 170 0.019002397 272 170 0.0023752998 277 170 0.00033929991 315 170 0.0020359999 317 170 0.00033929991 318 170 0.00033929991 319 170 0.00033929991 326 170 0.012894496 346 170 0.0016965999 358 170 0.0010179998 417 170 0.00033929991 438 170 0.0074651986 443 170 0.010858499 444 170 0.003054 445 170 0.024092298 446 170 0.00067869993 447 170 0.0159484 450 170 0.0020359999 452 170 0.0288429 453 170 0.0098404996 454 170 0.0013573 455 170 0.047845297 457 170 0.0023752998 458 170 0.00067869993 459 170 0.00067869993 460 170 0.0010179998 463 170 0.012215797 464 170 0.00067869993 465 170 0.00033929991 467 170 0.0074651986 468 170 0.015609097 469 170 0.0023752998 470 170 0.0023752998 471 170 0.0016965999 478 170 0.00067869993 483 170 0.00067869993 490 170 0.00033929991 491 170 0.00033929991 13 171 6.6999986e-05 18 171 0.00033519999 22 171 0.00093849981 24 171 0.00046919985 60 171 0.0024132 75 171 6.6999986e-05 82 171 0.00013409999 104 171 0.00020109999 107 171 0.00020109999 108 171 6.6999986e-05 114 171 6.6999986e-05 126 171 6.6999986e-05 130 171 0.00060329982 131 171 6.6999986e-05 132 171 6.6999986e-05 139 171 6.6999986e-05 150 171 0.00093849981 156 171 6.6999986e-05 159 171 0.032041799 160 171 0.13601017 161 171 0.011730798 162 171 0.0065021999 163 171 6.6999986e-05 165 171 0.010457199 169 171 0.0010724999 170 171 0.013473697 171 171 0.056374799 172 171 0.00093849981 186 171 0.0012065999 187 171 0.00033519999 188 171 6.6999986e-05 189 171 6.6999986e-05 190 171 0.00013409999 191 171 0.0004021998 192 171 0.0049604997 193 171 0.00053629978 194 171 0.00013409999 198 171 0.032913297 200 171 6.6999986e-05 203 171 6.6999986e-05 204 171 6.6999986e-05 206 171 6.6999986e-05 207 171 6.6999986e-05 214 171 0.0010054999 219 171 0.010993399 223 171 6.6999986e-05 224 171 0.0091164969 225 171 6.6999986e-05 233 171 0.0081109963 234 171 0.0043571964 237 171 0.0004021998 240 171 0.00026809983 241 171 0.0062340982 252 171 0.0029495 267 171 0.00013409999 270 171 0.016154997 272 171 0.0011395998 273 171 0.00013409999 277 171 0.0012065999 279 171 0.00020109999 282 171 6.6999986e-05 285 171 6.6999986e-05 292 171 0.00013409999 293 171 0.00020109999 298 171 6.6999986e-05 312 171 0.00046919985 313 171 0.0047593974 315 171 0.0085801966 317 171 0.00013409999 318 171 0.0017428999 319 171 0.0030834998 322 171 0.0004021998 325 171 6.6999986e-05 326 171 0.0053625964 334 171 6.6999986e-05 340 171 0.00020109999 346 171 0.0018098999 347 171 6.6999986e-05 350 171 0.00020109999 356 171 0.00013409999 358 171 0.0016758 387 171 6.6999986e-05 402 171 0.00020109999 417 171 0.00060329982 421 171 6.6999986e-05 422 171 6.6999986e-05 430 171 6.6999986e-05 431 171 6.6999986e-05 433 171 6.6999986e-05 434 171 0.00013409999 438 171 0.0018098999 442 171 0.00026809983 443 171 0.018836297 444 171 0.00087139988 445 171 0.0090494975 446 171 0.0023461999 447 171 0.0075076967 448 171 6.6999986e-05 450 171 0.0031505998 452 171 0.0146803 453 171 0.0089823976 454 171 0.00087139988 455 171 0.044040799 456 171 0.00053629978 457 171 0.0026143 458 171 0.00067029987 459 171 0.00053629978 460 171 0.0014746999 463 171 0.011730798 464 171 0.0004021998 465 171 0.0010724999 467 171 0.0091835 468 171 0.0095186979 469 171 0.0042230971 470 171 0.0045582987 471 171 0.0057647973 473 171 0.00013409999 477 171 6.6999986e-05 478 171 0.0014076999 483 171 0.0010724999 489 171 0.00020109999 490 171 0.0004021998 491 171 0.0010054999 17 172 0.0017462999 18 172 0.00043659983 60 172 0.0028378 114 172 0.00021829999 126 172 0.00021829999 159 172 0.058284197 160 172 0.21305388 161 172 0.0032743998 162 172 0.054136697 165 172 0.067015886 169 172 0.0024011999 170 172 0.00043659983 171 172 0.00043659983 172 172 0.0106964 190 172 0.00021829999 194 172 0.00021829999 206 172 0.00043659983 233 172 0.00021829999 234 172 0.004584197 237 172 0.00043659983 241 172 0.00043659983 252 172 0.00043659983 270 172 0.00021829999 272 172 0.00043659983 277 172 0.023139097 279 172 0.017026898 312 172 0.0021829 315 172 0.00021829999 317 172 0.00021829999 318 172 0.0017462999 319 172 0.0010914998 322 172 0.00021829999 326 172 0.00021829999 346 172 0.0019645998 356 172 0.00021829999 358 172 0.0019645998 402 172 0.00021829999 417 172 0.00065489998 442 172 0.0010914998 443 172 0.029906098 444 172 0.00021829999 445 172 0.0111329 446 172 0.0024011999 447 172 0.0015280999 450 172 0.0034926999 452 172 0.0082950965 453 172 0.0024011999 454 172 0.00043659983 455 172 0.058502499 456 172 0.00043659983 457 172 0.0028378 458 172 0.0008731999 459 172 0.013752498 460 172 0.0010914998 463 172 0.0072036982 464 172 0.00043659983 465 172 0.0010914998 467 172 0.0098231994 468 172 0.0019645998 469 172 0.0032743998 470 172 0.0037109999 471 172 0.0030560999 473 172 0.00021829999 478 172 0.0015280999 483 172 0.0013098 490 172 0.00043659983 491 172 0.00021829999 9 173 3.6199999e-05 18 173 0.00018079999 22 173 0.0005063999 60 173 0.0027849998 82 173 3.6199999e-05 83 173 3.6199999e-05 84 173 3.6199999e-05 108 173 3.6199999e-05 113 173 7.2299998e-05 114 173 7.2299998e-05 117 173 7.2299998e-05 126 173 3.6199999e-05 130 173 0.0043040998 131 173 3.6199999e-05 132 173 3.6199999e-05 133 173 7.2299998e-05 137 173 0.00061489991 139 173 0.0040870979 141 173 3.6199999e-05 143 173 3.6199999e-05 149 173 7.2299998e-05 150 173 0.0011211999 151 173 3.6199999e-05 154 173 3.6199999e-05 159 173 0.00018079999 160 173 0.094437182 161 173 0.041630499 162 173 0.0030743999 165 173 0.037507199 169 173 0.0005063999 170 173 0.019133396 171 173 0.022280097 172 173 0.00043399981 173 173 0.0013382998 175 173 3.6199999e-05 176 173 3.6199999e-05 178 173 3.6199999e-05 188 173 3.6199999e-05 189 173 7.2299998e-05 190 173 0.0001447 192 173 0.0014829 194 173 0.00054249982 198 173 0.019386597 200 173 0.0001085 203 173 0.0001447 204 173 7.2299998e-05 206 173 0.00021699999 207 173 7.2299998e-05 214 173 0.0001447 219 173 0.00021699999 223 173 3.6199999e-05 224 173 0.00054249982 225 173 3.6199999e-05 227 173 3.6199999e-05 233 173 0.018807899 234 173 0.0030019998 237 173 0.00036169984 240 173 0.00021699999 241 173 0.0326606 243 173 0.0001447 252 173 0.0088251978 270 173 0.012080397 272 173 0.00068719988 277 173 0.0027849998 279 173 0.00075949985 282 173 3.6199999e-05 283 173 3.6199999e-05 293 173 0.00028939988 296 173 3.6199999e-05 312 173 0.0064380988 315 173 0.0001085 317 173 0.0067635998 318 173 0.0020615999 319 173 0.030164897 322 173 0.0013744 326 173 0.0014105998 346 173 0.0026764998 356 173 0.0001085 358 173 0.0010851 372 173 3.6199999e-05 384 173 3.6199999e-05 387 173 3.6199999e-05 391 173 3.6199999e-05 393 173 7.2299998e-05 394 173 3.6199999e-05 397 173 3.6199999e-05 402 173 0.00018079999 419 173 3.6199999e-05 422 173 0.0001447 423 173 3.6199999e-05 427 173 3.6199999e-05 428 173 7.2299998e-05 430 173 0.00021699999 431 173 3.6199999e-05 432 173 3.6199999e-05 433 173 7.2299998e-05 434 173 7.2299998e-05 437 173 7.2299998e-05 438 173 0.0013020998 443 173 0.017433397 444 173 0.0013020998 445 173 0.0073422976 446 173 0.0010851 447 173 0.0036531 448 173 3.6199999e-05 450 173 0.0038339 452 173 0.0061848983 453 173 0.0011574 454 173 0.0003254998 455 173 0.056351297 456 173 0.00047019986 457 173 0.0033998999 458 173 0.00043399981 459 173 0.0003254998 460 173 0.0061486997 463 173 0.0098017976 464 173 0.0005063999 465 173 0.0012296999 467 173 0.014322899 468 173 0.0112486 469 173 0.0031466999 470 173 0.0035446 471 173 0.0026041998 473 173 7.2299998e-05 477 173 0.0001447 478 173 0.0015913998 483 173 0.0011574 489 173 0.0001085 490 173 0.00028939988 491 173 0.0003254998 60 174 0.0020682998 114 174 0.00051709986 130 174 0.0046535991 139 174 0.0031023999 159 174 0.0010340998 160 174 0.0062047988 161 174 0.043433297 165 174 0.012926597 170 174 0.0010340998 171 174 0.013443597 187 174 0.00051709986 192 174 0.00051709986 193 174 0.00051709986 194 174 0.0010340998 197 174 0.00051709986 198 174 0.020682499 206 174 0.00051709986 214 174 0.0051705986 219 174 0.020682499 224 174 0.029472597 225 174 0.00051709986 233 174 0.00051709986 234 174 0.0036193999 240 174 0.00051709986 241 174 0.16287488 252 174 0.0015511999 272 174 0.00051709986 274 174 0.00051709986 277 174 0.0025852998 279 174 0.0010340998 282 174 0.00051709986 292 174 0.00051709986 293 174 0.0010340998 294 174 0.00051709986 295 174 0.00051709986 312 174 0.00051709986 315 174 0.0020682998 318 174 0.00051709986 319 174 0.016028997 320 174 0.0010340998 322 174 0.0010340998 326 174 0.0020682998 338 174 0.00051709986 340 174 0.0010340998 349 174 0.00051709986 350 174 0.00051709986 358 174 0.0020682998 373 174 0.00051709986 385 174 0.00051709986 392 174 0.0010340998 393 174 0.0062047988 442 174 0.00051709986 443 174 0.0046535991 444 174 0.008272998 445 174 0.0087900981 447 174 0.023267798 450 174 0.0031023999 452 174 0.010858297 453 174 0.00051709986 455 174 0.0506722 457 174 0.004136499 458 174 0.00051709986 459 174 0.024301998 460 174 0.0051705986 463 174 0.013443597 464 174 0.0020682998 465 174 0.0010340998 467 174 0.0072388984 468 174 0.020682499 469 174 0.0036193999 470 174 0.004136499 471 174 0.0025852998 478 174 0.0010340998 479 174 0.00051709986 490 174 0.0067217983 491 174 0.00051709986 22 175 0.00063229981 60 175 0.0022131 114 175 0.00031619985 126 175 0.00031619985 150 175 0.00031619985 159 175 0.0031615999 160 175 0.075877249 161 175 0.036990199 162 175 0.0123301 165 175 0.053430296 170 175 0.026240896 171 175 0.024660099 174 175 0.00063229981 175 175 0.0018968999 190 175 0.00031619985 192 175 0.00031619985 194 175 0.00031619985 198 175 0.0237117 206 175 0.00063229981 219 175 0.00063229981 233 175 0.016756199 234 175 0.0025291999 237 175 0.00031619985 241 175 0.042680997 252 175 0.00094849989 270 175 0.015491597 272 175 0.00063229981 277 175 0.00063229981 279 175 0.0012645999 295 175 0.00031619985 312 175 0.00094849989 315 175 0.00063229981 317 175 0.0063230991 318 175 0.0022131 319 175 0.035093296 322 175 0.0063230991 326 175 0.0069553964 340 175 0.00031619985 358 175 0.0012645999 386 175 0.00031619985 387 175 0.0012645999 391 175 0.0041099973 392 175 0.00063229981 393 175 0.0041099973 422 175 0.00031619985 443 175 0.019285496 444 175 0.00031619985 445 175 0.0079039 446 175 0.0012645999 447 175 0.0098007992 450 175 0.0041099973 452 175 0.0066392981 453 175 0.0012645999 454 175 0.00063229981 455 175 0.046790998 456 175 0.00031619985 457 175 0.0018968999 458 175 0.00094849989 459 175 0.00031619985 460 175 0.0053745992 463 175 0.035409398 464 175 0.00031619985 465 175 0.0022131 467 175 0.010116998 468 175 0.011381596 469 175 0.0034776998 470 175 0.0037938999 471 175 0.0028453998 473 175 0.00031619985 478 175 0.0015807999 483 175 0.0015807999 490 175 0.00063229981 491 175 0.00031619985 9 176 4.9599999e-05 18 176 0.0012888999 22 176 9.9099998e-05 60 176 0.0014375998 82 176 4.9599999e-05 83 176 4.9599999e-05 84 176 4.9599999e-05 108 176 4.9599999e-05 114 176 9.9099998e-05 117 176 0.0062462986 126 176 4.9599999e-05 130 176 0.13315487 131 176 0.0029247999 132 176 0.0016854999 133 176 0.003024 137 176 0.011302799 139 176 0.018193498 141 176 0.0027265998 143 176 0.0036684999 149 176 0.0015864 150 176 0.0011401998 152 176 4.9599999e-05 156 176 0.00039659999 158 176 9.9099998e-05 160 176 0.043575298 161 176 0.052845497 162 176 0.0016854999 165 176 0.0052547976 170 176 0.0011401998 171 176 0.010360897 172 176 0.0001983 173 176 4.9599999e-05 176 176 0.0016358998 178 176 0.00024789991 187 176 0.0006444999 189 176 9.9099998e-05 190 176 0.0001487 192 176 4.9599999e-05 194 176 0.0001983 197 176 4.9599999e-05 198 176 0.010013897 200 176 4.9599999e-05 203 176 9.9099998e-05 204 176 4.9599999e-05 206 176 0.0001983 207 176 4.9599999e-05 214 176 4.9599999e-05 219 176 0.0014871999 233 176 0.003024 234 176 0.0027265998 237 176 0.00034699985 240 176 0.010162599 241 176 0.044715397 243 176 0.0066428967 252 176 0.00034699985 270 176 0.0017847 272 176 0.00049569993 277 176 0.00044619991 279 176 0.00049569993 293 176 4.9599999e-05 312 176 0.0047094971 315 176 4.9599999e-05 317 176 0.0066923983 318 176 0.0017350998 319 176 0.014673799 322 176 0.023844898 326 176 0.00024789991 346 176 9.9099998e-05 356 176 9.9099998e-05 358 176 0.0010409998 387 176 4.9599999e-05 402 176 0.0001487 422 176 0.0001487 423 176 4.9599999e-05 430 176 4.9599999e-05 433 176 4.9599999e-05 434 176 4.9599999e-05 437 176 0.0045111999 438 176 4.9599999e-05 442 176 4.9599999e-05 443 176 0.0078821965 444 176 0.0016854999 445 176 0.0089727975 446 176 0.00054529984 447 176 0.0054530986 448 176 4.9599999e-05 450 176 0.0036189 452 176 0.0034701999 453 176 0.00089229993 454 176 0.0016854999 455 176 0.049573697 456 176 0.00044619991 457 176 0.0023299998 458 176 0.00049569993 459 176 0.00034699985 460 176 0.0013881 463 176 0.013682298 464 176 0.0013881 465 176 0.0011898 467 176 0.012839597 468 176 0.010063499 469 176 0.0037675998 470 176 0.0040649995 471 176 0.004312899 473 176 9.9099998e-05 477 176 0.0020325 478 176 0.0013384998 483 176 0.0012392998 489 176 9.9099998e-05 490 176 0.00034699985 491 176 0.0001983 22 177 0.00022939999 60 177 0.0017205998 108 177 0.00011469999 114 177 0.00022939999 117 177 0.00011469999 126 177 0.00011469999 130 177 0.0020646998 131 177 0.00057349983 133 177 0.00057349983 137 177 0.011126399 139 177 0.022482198 141 177 0.00011469999 149 177 0.0038999999 150 177 0.0035559 154 177 0.0057352968 156 177 0.00022939999 158 177 0.00011469999 160 177 0.0080293976 161 177 0.0018352999 165 177 0.012043998 170 177 0.014452897 171 177 0.0038999999 178 177 0.00022939999 188 177 0.00011469999 189 177 0.00011469999 190 177 0.00011469999 194 177 0.00022939999 198 177 0.027873397 200 177 0.0041293986 203 177 0.00011469999 204 177 0.00011469999 206 177 0.00022939999 214 177 0.0038999999 223 177 0.00011469999 224 177 0.0012617998 225 177 0.00011469999 227 177 0.00011469999 233 177 0.0069969967 234 177 0.0033264998 237 177 0.00034409994 240 177 0.010438196 241 177 0.085914195 243 177 0.00011469999 252 177 0.020188097 270 177 0.00011469999 272 177 0.00034409994 277 177 0.10690528 282 177 0.00057349983 283 177 0.00011469999 285 177 0.00011469999 286 177 0.00022939999 289 177 0.00034409994 290 177 0.00022939999 292 177 0.00011469999 293 177 0.051158499 294 177 0.00022939999 295 177 0.00011469999 307 177 0.00022939999 312 177 0.0056205988 313 177 0.00011469999 315 177 0.013764597 317 177 0.00022939999 318 177 0.00011469999 319 177 0.018926397 320 177 0.00011469999 321 177 0.00091759977 322 177 0.0035559 324 177 0.00011469999 326 177 0.036476299 328 177 0.00022939999 340 177 0.0010322998 349 177 0.00022939999 350 177 0.00011469999 351 177 0.00011469999 354 177 0.00034409994 356 177 0.00011469999 358 177 0.0011470998 372 177 0.00011469999 373 177 0.00011469999 384 177 0.0019499999 387 177 0.00011469999 402 177 0.00011469999 419 177 0.0037852998 422 177 0.0034411999 428 177 0.00034409994 430 177 0.00034409994 437 177 0.00011469999 443 177 0.0096351989 444 177 0.00022939999 445 177 0.011241097 446 177 0.00045879977 447 177 0.00091759977 450 177 0.0032116999 452 177 0.0048175976 453 177 0.0030969998 454 177 0.00068819989 455 177 0.057008497 456 177 0.00034409994 457 177 0.0026381998 458 177 0.00080289994 459 177 0.00022939999 460 177 0.0013764999 463 177 0.010438196 464 177 0.00022939999 465 177 0.0010322998 467 177 0.0077999979 468 177 0.0056205988 469 177 0.0038999999 470 177 0.0043587983 471 177 0.0021793998 473 177 0.00011469999 477 177 0.00034409994 478 177 0.0013764999 483 177 0.0013764999 489 177 0.00011469999 490 177 0.00034409994 491 177 0.00022939999 18 178 0.00018419999 60 178 0.0018420999 108 178 9.2099988e-05 114 178 0.00018419999 117 178 0.015658099 126 178 9.2099988e-05 130 178 0.10776454 131 178 0.0013815998 132 178 0.00036839978 133 178 0.0046973974 137 178 0.025329299 138 178 9.2099988e-05 139 178 0.008565899 141 178 0.0045131966 142 178 9.2099988e-05 143 178 0.0004604999 149 178 0.0070000999 150 178 0.0043289997 152 178 9.2099988e-05 158 178 0.0076447986 160 178 0.025881898 161 178 0.0298425 162 178 0.00018419999 165 178 0.0038684998 170 178 0.00073689991 171 178 0.0011973998 172 178 0.00027629989 176 178 0.00018419999 178 178 0.023855597 187 178 9.2099988e-05 189 178 9.2099988e-05 190 178 9.2099988e-05 194 178 0.00018419999 198 178 0.0165792 203 178 9.2099988e-05 204 178 9.2099988e-05 206 178 0.00018419999 219 178 0.00018419999 233 178 0.0038684998 234 178 0.0022105998 237 178 0.00027629989 240 178 0.013355397 241 178 0.0350926 243 178 0.00073689991 252 178 9.2099988e-05 270 178 0.00027629989 272 178 0.0004604999 277 178 0.017776497 279 178 0.00092109991 293 178 9.2099988e-05 312 178 0.0004604999 315 178 0.0040526986 317 178 0.00073689991 318 178 0.00018419999 319 178 0.004144799 321 178 9.2099988e-05 322 178 0.10905409 326 178 0.0131712 356 178 9.2099988e-05 358 178 0.00073689991 384 178 0.0019341998 387 178 9.2099988e-05 402 178 9.2099988e-05 422 178 9.2099988e-05 437 178 0.0016578999 442 178 0.004144799 443 178 0.0097632967 444 178 0.0032237 445 178 0.010407999 446 178 0.0004604999 447 178 0.0040526986 450 178 0.0026711 452 178 0.0030395 453 178 0.0011973998 454 178 0.00073689991 455 178 0.049921699 456 178 0.00036839978 457 178 0.0024869 458 178 0.0006446999 459 178 0.0051579997 460 178 0.0011973998 463 178 0.011605397 464 178 0.0012894999 465 178 0.00082899979 467 178 0.014184397 468 178 0.0157502 469 178 0.004144799 470 178 0.004605297 471 178 0.0020262999 473 178 9.2099988e-05 477 178 0.0004604999 478 178 0.0011973998 483 178 0.0015657998 489 178 9.2099988e-05 490 178 0.00036839978 491 178 0.00018419999 22 179 0.00075819995 60 179 0.0022745 114 179 0.00037909998 130 179 0.0041697994 133 179 0.0068233982 137 179 0.011372298 139 179 0.017058399 141 179 0.00037909998 149 179 0.00037909998 150 179 0.0049279965 156 179 0.00037909998 158 179 0.00037909998 160 179 0.075056851 161 179 0.0064442977 165 179 0.040560998 169 179 0.00037909998 170 179 0.015162997 171 179 0.025018997 179 179 0.005307097 180 179 0.0011371998 185 179 0.00037909998 198 179 0.015162997 200 179 0.00037909998 206 179 0.00075819995 214 179 0.00037909998 219 179 0.0015162998 233 179 0.007202398 234 179 0.0026534998 237 179 0.00037909998 240 179 0.005307097 241 179 0.034874897 243 179 0.012130398 252 179 0.00037909998 270 179 0.012130398 272 179 0.00037909998 277 179 0.018953796 279 179 0.00075819995 293 179 0.00037909998 312 179 0.012130398 315 179 0.00075819995 317 179 0.0060651973 318 179 0.0018954 319 179 0.042835496 322 179 0.0022745 326 179 0.0015162998 351 179 0.00037909998 358 179 0.0011371998 437 179 0.0018954 442 179 0.00037909998 443 179 0.012509499 444 179 0.010234997 445 179 0.0060651973 446 179 0.00037909998 447 179 0.018195599 450 179 0.0037908 452 179 0.0056860968 453 179 0.0018954 454 179 0.0011371998 455 179 0.052312396 456 179 0.00037909998 457 179 0.0034116998 460 179 0.0060651973 463 179 0.0094768964 464 179 0.0015162998 465 179 0.00075819995 467 179 0.0094768964 468 179 0.0056860968 469 179 0.0045488998 470 179 0.0049279965 471 179 0.0022745 478 179 0.0011371998 483 179 0.00075819995 490 179 0.00075819995 22 180 0.0026427999 60 180 0.0035237998 108 180 0.0001258 114 180 0.00025169994 126 180 0.0001258 130 180 0.0090611987 133 180 0.0021394 137 180 0.0057890974 139 180 0.0090611987 141 180 0.0001258 149 180 0.0047822967 150 180 0.0055373982 156 180 0.00025169994 158 180 0.0032720999 160 180 0.0036495999 161 180 0.0032720999 165 180 0.0057890974 169 180 0.0050339997 170 180 0.0022652999 171 180 0.0022652999 172 180 0.00037749996 180 180 0.0096903965 185 180 0.0036495999 187 180 0.00075509981 188 180 0.0006291999 189 180 0.0001258 190 180 0.0001258 194 180 0.0001258 198 180 0.018877398 200 180 0.0042788982 203 180 0.0001258 206 180 0.00025169994 214 180 0.0032720999 224 180 0.0015101999 233 180 0.0096903965 234 180 0.0021394 237 180 0.00037749996 240 180 0.0039012998 241 180 0.040649399 243 180 0.0001258 252 180 0.00088089984 270 180 0.00025169994 272 180 0.00075509981 277 180 0.10596526 279 180 0.0010068 282 180 0.00050339988 283 180 0.00025169994 284 180 0.0001258 285 180 0.00037749996 286 180 0.0001258 289 180 0.00075509981 290 180 0.00050339988 292 180 0.00037749996 293 180 0.0076767989 294 180 0.00037749996 295 180 0.00025169994 296 180 0.0001258 299 180 0.0001258 301 180 0.0001258 308 180 0.0001258 312 180 0.004027199 315 180 0.010319699 319 180 0.038509898 320 180 0.00037749996 321 180 0.00075509981 322 180 0.0023910999 325 180 0.0001258 326 180 0.018374 328 180 0.0006291999 339 180 0.0001258 340 180 0.00088089984 351 180 0.0035237998 356 180 0.0001258 358 180 0.0013842999 387 180 0.0001258 392 180 0.0001258 393 180 0.0001258 402 180 0.00025169994 405 180 0.0001258 413 180 0.0001258 422 180 0.0001258 434 180 0.0001258 437 180 0.0006291999 443 180 0.0045305975 444 180 0.0045305975 445 180 0.0064182989 446 180 0.00050339988 447 180 0.0055373982 450 180 0.0028944998 452 180 0.0059148967 453 180 0.0035237998 454 180 0.0015101999 455 180 0.040523499 456 180 0.0001258 457 180 0.010948896 458 180 0.00075509981 459 180 0.00037749996 460 180 0.0013842999 463 180 0.014976099 464 180 0.0056631975 465 180 0.0010068 467 180 0.024666499 468 180 0.0059148967 469 180 0.0052856989 470 180 0.0055373982 471 180 0.0052856989 473 180 0.0001258 477 180 0.0010068 478 180 0.0011325998 483 180 0.0013842999 490 180 0.00050339988 491 180 0.00050339988 22 181 0.0005804 60 181 0.0021280998 108 181 0.00019349999 114 181 0.0003868998 117 181 0.00019349999 126 181 0.00019349999 130 181 0.013735697 133 181 0.0013541998 137 181 0.0061907992 139 181 0.017217997 141 181 0.00019349999 150 181 0.0058037974 156 181 0.032694899 158 181 0.0071580969 160 181 0.036370698 161 181 0.0027084998 165 181 0.022441499 169 181 0.0032887999 170 181 0.0096731 171 181 0.0046430975 178 181 0.00019349999 180 181 0.00019349999 181 181 0.0029018999 189 181 0.00019349999 190 181 0.00019349999 194 181 0.00019349999 198 181 0.012381498 206 181 0.0003868998 214 181 0.0005804 219 181 0.0011608 224 181 0.0011608 233 181 0.0069645979 234 181 0.0023214999 237 181 0.0009672998 240 181 0.0021280998 241 181 0.055329897 243 181 0.00019349999 252 181 0.00077379984 269 181 0.0003868998 270 181 0.0077383965 272 181 0.0005804 277 181 0.068678677 283 181 0.00019349999 286 181 0.00019349999 290 181 0.00019349999 293 181 0.011220697 296 181 0.00019349999 312 181 0.017024599 315 181 0.011220697 317 181 0.00019349999 318 181 0.0015476998 319 181 0.023602199 320 181 0.0005804 321 181 0.0005804 322 181 0.017411496 325 181 0.00019349999 326 181 0.0056103989 328 181 0.00019349999 330 181 0.00019349999 340 181 0.0005804 354 181 0.0011608 356 181 0.00019349999 358 181 0.0013541998 372 181 0.00019349999 387 181 0.00019349999 402 181 0.0003868998 409 181 0.0021280998 412 181 0.0003868998 422 181 0.00019349999 437 181 0.0003868998 442 181 0.00019349999 443 181 0.0102534 444 181 0.0096731 445 181 0.017411496 446 181 0.00019349999 447 181 0.011414196 450 181 0.0030953998 452 181 0.0058037974 453 181 0.0025149998 455 181 0.0433353 456 181 0.00019349999 457 181 0.0090926997 458 181 0.0011608 459 181 0.00019349999 460 181 0.0058037974 463 181 0.013155296 464 181 0.0034822999 465 181 0.0011608 467 181 0.0085122995 468 181 0.0021280998 469 181 0.0056103989 470 181 0.0059972964 471 181 0.0019345998 473 181 0.00019349999 477 181 0.0003868998 478 181 0.0013541998 483 181 0.0017410999 490 181 0.0005804 491 181 0.00019349999 60 182 0.0017557 108 182 0.00012539999 114 182 0.00025079981 126 182 0.00012539999 130 182 0.00062699988 137 182 0.00025079981 139 182 0.0016303 150 182 0.005643297 156 182 0.00062699988 158 182 0.00012539999 159 182 0.00062699988 160 182 0.040381197 161 182 0.0051416978 163 182 0.00012539999 165 182 0.041008297 169 182 0.00012539999 170 182 0.034110896 171 182 0.015675899 180 182 0.00012539999 182 182 0.0050162971 183 182 0.00012539999 189 182 0.00012539999 190 182 0.00012539999 194 182 0.00025079981 198 182 0.0061449967 203 182 0.00012539999 204 182 0.00012539999 206 182 0.00025079981 219 182 0.0018810998 224 182 0.00037619984 233 182 0.0079007 234 182 0.0025081998 237 182 0.00037619984 241 182 0.081514895 243 182 0.00012539999 252 182 0.0219463 270 182 0.0041383989 272 182 0.00037619984 277 182 0.023074999 279 182 0.0012540999 293 182 0.0043892972 312 182 0.005894199 315 182 0.00087789982 317 182 0.0067719966 318 182 0.0015048999 319 182 0.030850299 320 182 0.00012539999 321 182 0.00087789982 322 182 0.00050159986 326 182 0.0057686977 340 182 0.0020064998 354 182 0.00012539999 356 182 0.00012539999 358 182 0.00087789982 372 182 0.00012539999 385 182 0.00050159986 387 182 0.00012539999 402 182 0.00012539999 422 182 0.00012539999 442 182 0.0097817965 443 182 0.015550498 444 182 0.0045146979 445 182 0.0081514977 446 182 0.00037619984 447 182 0.0053924993 450 182 0.0032605999 452 182 0.0051416978 453 182 0.0026335998 454 182 0.0028843998 455 182 0.0451467 456 182 0.00037619984 457 182 0.0028843998 458 182 0.00050159986 459 182 0.00025079981 460 182 0.0062703975 463 182 0.0200652 464 182 0.005643297 465 182 0.0010032998 467 182 0.0077752993 468 182 0.0070227981 469 182 0.0046400987 470 182 0.0051416978 471 182 0.008026097 473 182 0.00012539999 477 182 0.0017557 478 182 0.0012540999 483 182 0.0015048999 489 182 0.00012539999 490 182 0.00050159986 491 182 0.00012539999 60 183 0.0025807999 108 183 0.00013579999 114 183 0.00027169986 126 183 0.00013579999 130 183 0.00040749996 137 183 0.00027169986 139 183 0.00067919982 149 183 0.00013579999 150 183 0.0042107999 156 183 0.00040749996 158 183 0.00027169986 160 183 0.0059765987 161 183 0.0014942 165 183 0.0055690967 169 183 0.0039390996 170 183 0.0031241998 171 183 0.0099157989 172 183 0.00027169986 180 183 0.00027169986 182 183 0.00013579999 183 183 0.0029882998 185 183 0.00013579999 189 183 0.00013579999 190 183 0.00013579999 194 183 0.00013579999 198 183 0.014398299 200 183 0.00013579999 203 183 0.00013579999 206 183 0.00027169986 223 183 0.00013579999 224 183 0.00027169986 233 183 0.012360796 234 183 0.0023091999 237 183 0.00027169986 240 183 0.00013579999 241 183 0.031648997 242 183 0.00013579999 252 183 0.014534097 270 183 0.00013579999 272 183 0.00054329983 277 183 0.20320565 282 183 0.00027169986 288 183 0.00013579999 289 183 0.00040749996 292 183 0.00040749996 293 183 0.012224898 294 183 0.00013579999 295 183 0.00040749996 296 183 0.00013579999 297 183 0.00013579999 298 183 0.00013579999 307 183 0.00027169986 312 183 0.012224898 315 183 0.013583299 317 183 0.00040749996 318 183 0.00040749996 319 183 0.0162999 320 183 0.00013579999 321 183 0.027166497 322 183 0.00013579999 324 183 0.00027169986 326 183 0.0039390996 328 183 0.00013579999 335 183 0.00027169986 340 183 0.0036674999 351 183 0.00027169986 352 183 0.00013579999 354 183 0.00027169986 356 183 0.00013579999 358 183 0.0010866998 366 183 0.00040749996 371 183 0.00013579999 372 183 0.0012224999 373 183 0.00027169986 380 183 0.00013579999 385 183 0.00040749996 386 183 0.00027169986 387 183 0.00013579999 402 183 0.00013579999 415 183 0.00013579999 422 183 0.00013579999 434 183 0.00013579999 442 183 0.00013579999 443 183 0.0051615983 444 183 0.006248299 445 183 0.0059765987 446 183 0.00040749996 447 183 0.0065199994 450 183 0.0027166998 452 183 0.005704999 453 183 0.0040749982 454 183 0.0052974969 455 183 0.035995699 456 183 0.00013579999 457 183 0.0074707977 458 183 0.00081499992 459 183 0.00027169986 460 183 0.0013583 463 183 0.0152133 464 183 0.0036674999 465 183 0.00095079979 467 183 0.0081499964 468 183 0.006248299 469 183 0.0047541 470 183 0.0054332986 471 183 0.006384097 473 183 0.00013579999 477 183 0.0046182983 478 183 0.0012224999 483 183 0.0019016999 490 183 0.00054329983 491 183 0.00027169986 16 184 0.00032139989 22 184 0.00064289989 60 184 0.0025714999 84 184 0.00064289989 114 184 0.00032139989 126 184 0.00032139989 130 184 0.0022500998 131 184 0.0022500998 133 184 0.00032139989 139 184 0.094503343 141 184 0.0070716999 160 184 0.005142998 161 184 0.0080359988 165 184 0.00032139989 184 184 0.057216298 187 184 0.00032139989 198 184 0.0038572999 206 184 0.00064289989 214 184 0.011250399 233 184 0.00032139989 234 184 0.0028929999 237 184 0.00032139989 241 184 0.072966874 272 184 0.00064289989 277 184 0.0520733 279 184 0.00032139989 289 184 0.0025714999 293 184 0.026036598 312 184 0.022179399 315 184 0.0057858974 318 184 0.00032139989 320 184 0.0016071999 321 184 0.0035357999 326 184 0.0073930994 358 184 0.00096429978 435 184 0.00032139989 443 184 0.0070716999 444 184 0.0016071999 445 184 0.018964998 447 184 0.0176792 450 184 0.0032143998 452 184 0.0041786991 453 184 0.0019285998 454 184 0.00064289989 455 184 0.0347155 456 184 0.00064289989 457 184 0.0028929999 458 184 0.00096429978 459 184 0.0012857998 460 184 0.00096429978 463 184 0.018643498 464 184 0.00064289989 465 184 0.00064289989 467 184 0.0077145994 468 184 0.016071998 469 184 0.005464498 470 184 0.0061073974 471 184 0.0016071999 473 184 0.00032139989 477 184 0.00032139989 478 184 0.0012857998 479 184 0.0012857998 483 184 0.0019285998 490 184 0.0019285998 491 184 0.00064289989 22 185 0.00025809999 60 185 0.0010322998 114 185 0.00025809999 117 185 0.00025809999 126 185 0.00025809999 130 185 0.0025805999 137 185 0.0015483999 139 185 0.0136774 142 185 0.00025809999 149 185 0.0028386998 150 185 0.0018064999 156 185 0.00077419984 158 185 0.00025809999 160 185 0.0229677 161 185 0.0072257966 165 185 0.017548397 169 185 0.00025809999 170 185 0.0087741986 171 185 0.0043870993 178 185 0.0049031973 183 185 0.00025809999 185 185 0.0046451986 186 185 0.00025809999 187 185 0.0020644998 193 185 0.00025809999 194 185 0.00025809999 198 185 0.0077418983 206 185 0.00051609986 214 185 0.00025809999 233 185 0.0064515993 234 185 0.0028386998 237 185 0.00025809999 240 185 0.0041289963 241 185 0.0335484 242 185 0.00025809999 252 185 0.0018064999 253 185 0.00025809999 270 185 0.0077418983 272 185 0.00077419984 277 185 0.078451574 279 185 0.00051609986 286 185 0.00077419984 290 185 0.00077419984 293 185 0.0061934963 312 185 0.0098064989 315 185 0.010838699 317 185 0.00051609986 318 185 0.0015483999 319 185 0.014451597 320 185 0.0092902966 321 185 0.011870999 322 185 0.0020644998 325 185 0.00051609986 326 185 0.0079999976 328 185 0.00051609986 340 185 0.0012902999 354 185 0.0085160993 358 185 0.00077419984 366 185 0.00025809999 372 185 0.017290298 401 185 0.00051609986 402 185 0.00051609986 414 185 0.00025809999 416 185 0.00025809999 422 185 0.00025809999 443 185 0.0074838996 444 185 0.010064498 445 185 0.0054193996 447 185 0.013161298 450 185 0.0030967998 452 185 0.0051612966 453 185 0.0015483999 454 185 0.0015483999 455 185 0.038967699 456 185 0.00025809999 457 185 0.0030967998 458 185 0.00025809999 459 185 0.00025809999 460 185 0.0056773983 463 185 0.038709696 464 185 0.0015483999 465 185 0.00051609986 467 185 0.0079999976 468 185 0.0054193996 469 185 0.0046451986 470 185 0.0054193996 471 185 0.0023226 473 185 0.00025809999 477 185 0.00051609986 478 185 0.0010322998 483 185 0.00077419984 490 185 0.00051609986 491 185 0.00077419984 6 186 0.00053219986 17 186 0.0001774 18 186 8.8699991e-05 21 186 0.0001774 22 186 0.0046127997 24 186 0.0025724999 25 186 0.0020402998 60 186 0.011443298 75 186 0.015878599 104 186 0.0041692965 114 186 8.8699991e-05 117 186 0.0062981993 126 186 8.8699991e-05 130 186 0.0038143999 139 186 0.0011531999 150 186 0.0001774 159 186 0.1312871 160 186 0.076554596 169 186 0.00079839979 171 186 0.00044349977 186 186 0.043821499 187 186 0.00079839979 192 186 0.00053219986 193 186 0.00044349977 198 186 0.0015079998 206 186 0.0001774 209 186 0.0001774 214 186 0.050563298 215 186 0.00035479991 218 186 0.00035479991 219 186 0.0001774 223 186 0.0028386 224 186 0.0020402998 225 186 0.0013305999 231 186 0.0015966999 233 186 0.0001774 234 186 0.018184997 240 186 0.00035479991 241 186 0.0017741998 267 186 0.0018628999 272 186 0.0029272998 273 186 8.8699991e-05 277 186 0.00062099984 287 186 8.8699991e-05 318 186 0.00035479991 322 186 0.0021289999 324 186 0.0094029978 326 186 0.0011531999 347 186 0.0031935 349 186 8.8699991e-05 350 186 0.00088709989 356 186 0.00044349977 358 186 0.00088709989 384 186 0.00035479991 414 186 0.0018628999 442 186 8.8699991e-05 443 186 0.038676497 444 186 0.0014193 445 186 0.011088397 446 186 0.0037256998 447 186 0.0066530965 448 186 8.8699991e-05 450 186 0.0015966999 452 186 0.017475396 453 186 0.015612498 454 186 0.020491399 455 186 0.038853899 456 186 8.8699991e-05 457 186 0.0031935 458 186 0.0010644998 459 186 0.0017741998 460 186 0.0012418998 463 186 0.010999698 464 186 0.00097579998 465 186 0.00044349977 467 186 0.015257698 468 186 0.0031935 469 186 0.0041692965 470 186 0.0039030998 471 186 0.00062099984 473 186 8.8699991e-05 477 186 8.8699991e-05 478 186 0.00062099984 483 186 0.0012418998 489 186 0.0028386 490 186 0.00044349977 491 186 0.020313997 4 187 1.589999e-05 6 187 0.0022057998 9 187 1.589999e-05 16 187 1.589999e-05 17 187 0.00058719981 18 187 0.0002063 21 187 0.00042849989 22 187 0.0086645968 24 187 0.0089025982 25 187 0.00041259988 60 187 0.012679499 79 187 1.589999e-05 82 187 1.589999e-05 83 187 1.589999e-05 84 187 1.589999e-05 104 187 0.011584498 108 187 3.1699994e-05 113 187 4.7599999e-05 114 187 7.9299993e-05 117 187 0.00092039979 126 187 4.7599999e-05 127 187 1.589999e-05 130 187 0.011235397 132 187 1.589999e-05 139 187 7.9299993e-05 142 187 6.3499989e-05 143 187 3.1699994e-05 150 187 0.0004918999 151 187 1.589999e-05 159 187 0.072744548 160 187 0.027564898 161 187 7.9299993e-05 169 187 0.0019359998 170 187 0.00012699999 171 187 0.00017459999 172 187 0.00017459999 186 187 0.14163285 187 187 0.0062524974 188 187 0.00031739986 189 187 7.9299993e-05 190 187 6.3499989e-05 192 187 0.0012694998 193 187 0.0013170999 194 187 6.3499989e-05 198 187 0.005189199 200 187 3.1699994e-05 201 187 3.1699994e-05 203 187 6.3499989e-05 204 187 3.1699994e-05 206 187 7.9299993e-05 207 187 3.1699994e-05 208 187 3.1699994e-05 209 187 4.7599999e-05 214 187 0.038514599 215 187 0.00099979993 217 187 1.589999e-05 218 187 0.00012699999 219 187 0.00055539981 221 187 0.00017459999 223 187 0.0040624999 224 187 0.005649399 225 187 0.0031579998 231 187 0.0019677998 233 187 0.00023799999 234 187 0.014361698 237 187 7.9299993e-05 240 187 0.0008886999 241 187 0.0074584968 248 187 1.589999e-05 250 187 1.589999e-05 251 187 4.7599999e-05 252 187 7.9299993e-05 267 187 0.0013647999 272 187 0.0012061 273 187 6.3499989e-05 277 187 0.00033329986 279 187 1.589999e-05 284 187 1.589999e-05 290 187 3.1699994e-05 293 187 0.00011109999 294 187 1.589999e-05 317 187 1.589999e-05 318 187 9.5199997e-05 322 187 0.0051733963 324 187 0.00069819996 325 187 4.7599999e-05 326 187 0.0024120999 337 187 1.589999e-05 347 187 0.0029199 350 187 0.00042849989 356 187 0.00036499999 358 187 0.0010155998 384 187 7.9299993e-05 387 187 3.1699994e-05 392 187 1.589999e-05 402 187 3.1699994e-05 404 187 3.1699994e-05 414 187 0.0019995 419 187 1.589999e-05 420 187 1.589999e-05 422 187 9.5199997e-05 423 187 1.589999e-05 425 187 1.589999e-05 430 187 3.1699994e-05 431 187 1.589999e-05 432 187 1.589999e-05 433 187 3.1699994e-05 434 187 3.1699994e-05 442 187 0.00042849989 443 187 0.031421099 444 187 0.0023804 445 187 0.013726898 446 187 0.0034118998 447 187 0.008061599 448 187 9.5199997e-05 449 187 1.589999e-05 450 187 0.0019995 452 187 0.023534097 453 187 0.013028599 454 187 0.0056017973 455 187 0.037340298 456 187 0.00042849989 457 187 0.0031420998 458 187 0.00038089999 459 187 0.0016504 460 187 0.0008886999 463 187 0.010838699 464 187 0.0022216998 465 187 0.00072999997 467 187 0.014298197 468 187 0.008109197 469 187 0.0053002983 470 187 0.0045702979 471 187 0.0014123998 473 187 9.5199997e-05 477 187 0.00011109999 478 187 0.00076169986 483 187 0.001095 489 187 0.0019202 490 187 0.00034909998 491 187 0.015202697 6 188 0.00013659999 9 188 2.729999e-05 17 188 2.729999e-05 18 188 0.0001639 21 188 2.729999e-05 22 188 0.011200298 24 188 0.0021853999 25 188 0.00032779993 60 188 0.016336098 75 188 2.729999e-05 82 188 2.729999e-05 83 188 2.729999e-05 84 188 2.729999e-05 104 188 0.008277297 108 188 2.729999e-05 113 188 5.4599994e-05 114 188 8.1999999e-05 117 188 5.4599994e-05 126 188 5.4599994e-05 127 188 2.729999e-05 130 188 0.0066108964 139 188 0.0011473999 150 188 0.00035509979 151 188 2.729999e-05 159 188 0.12257546 160 188 0.057613499 169 188 0.0022673998 171 188 0.0027863998 172 188 5.4599994e-05 186 188 0.02251 187 188 0.00019119999 188 188 0.0001639 189 188 5.4599994e-05 190 188 5.4599994e-05 192 188 0.0015297998 193 188 0.00071029994 194 188 5.4599994e-05 197 188 2.729999e-05 198 188 0.002322 200 188 2.729999e-05 203 188 5.4599994e-05 204 188 5.4599994e-05 206 188 5.4599994e-05 207 188 2.729999e-05 209 188 0.00084689981 214 188 0.028793097 215 188 8.1999999e-05 217 188 2.729999e-05 218 188 0.00024589989 219 188 0.00030049984 223 188 0.0088509992 224 188 0.0050810985 225 188 0.0032235 231 188 0.0026497999 233 188 0.00024589989 234 188 0.020761598 237 188 8.1999999e-05 240 188 0.00084689981 241 188 0.00040979986 248 188 2.729999e-05 251 188 5.4599994e-05 252 188 8.1999999e-05 267 188 0.0013658998 272 188 0.0015297998 277 188 0.00076489989 284 188 2.729999e-05 317 188 2.729999e-05 318 188 0.00013659999 322 188 0.0054908991 324 188 0.0017756999 326 188 0.0035785998 347 188 0.0029229999 350 188 0.0010107998 356 188 0.00038249977 358 188 0.0008741999 384 188 0.00010929999 387 188 2.729999e-05 402 188 2.729999e-05 404 188 5.4599994e-05 414 188 0.0015024999 419 188 2.729999e-05 422 188 0.00010929999 423 188 2.729999e-05 425 188 2.729999e-05 430 188 2.729999e-05 431 188 2.729999e-05 433 188 2.729999e-05 434 188 2.729999e-05 442 188 2.729999e-05 443 188 0.0303775 444 188 0.0025952 445 188 0.010353498 446 188 0.0035239998 447 188 0.0047259964 448 188 0.00010929999 450 188 0.0016937 452 188 0.017019097 453 188 0.017947897 454 188 0.0038518 455 188 0.052040599 456 188 0.00024589989 457 188 0.0031961999 458 188 0.00030049984 459 188 0.0011747 460 188 0.00092879985 463 188 0.015489299 464 188 0.0018575999 465 188 0.00054639997 467 188 0.012866698 468 188 0.0048352964 469 188 0.0047259964 470 188 0.0037971998 471 188 0.0013385999 473 188 8.1999999e-05 477 188 0.00010929999 478 188 0.00065559987 483 188 0.0009015 489 188 0.0017482999 490 188 0.00030049984 491 188 0.038436297 60 189 0.0015085 104 189 0.00033519999 108 189 0.0001676 114 189 0.00033519999 126 189 0.0001676 139 189 0.0001676 187 189 0.26651019 188 189 0.0098893978 189 189 0.010224599 190 189 0.0001676 192 189 0.0018437998 194 189 0.00033519999 196 189 0.00033519999 198 189 0.030841399 203 189 0.0001676 204 189 0.00033519999 206 189 0.00033519999 219 189 0.014079798 234 189 0.0026818998 237 189 0.0001676 241 189 0.027991999 252 189 0.0001676 272 189 0.00067049987 279 189 0.00083809998 317 189 0.0010056999 347 189 0.0031846999 356 189 0.00033519999 358 189 0.0018437998 387 189 0.0001676 422 189 0.0001676 443 189 0.0095540993 444 189 0.0001676 445 189 0.017934997 446 189 0.0001676 447 189 0.0010056999 450 189 0.0045255981 452 189 0.007207498 453 189 0.0011733 454 189 0.00050279987 455 189 0.046262197 456 189 0.00033519999 457 189 0.0015085 458 189 0.00050279987 459 189 0.00033519999 460 189 0.00050279987 463 189 0.031176697 464 189 0.00033519999 465 189 0.0092188977 467 189 0.011733197 468 189 0.0020113999 469 189 0.0041903965 470 189 0.0046932995 471 189 0.0013408998 473 189 0.0001676 477 189 0.0001676 478 189 0.0013408998 483 189 0.0013408998 490 189 0.00050279987 491 189 0.0050284974 18 190 0.00010029999 22 190 5.0199989e-05 60 190 0.00321 82 190 5.0199989e-05 108 190 5.0199989e-05 114 190 0.00010029999 126 190 5.0199989e-05 130 190 0.015548199 131 190 0.0002006 132 190 0.0003511 133 190 5.0199989e-05 137 190 5.0199989e-05 138 190 0.0003511 139 190 0.00010029999 141 190 5.0199989e-05 142 190 0.040024098 143 190 0.00030089985 149 190 5.0199989e-05 151 190 5.0199989e-05 158 190 0.00010029999 186 190 0.027334698 187 190 0.32330215 188 190 0.0026081 189 190 0.0002006 190 190 0.00070219999 192 190 0.0014044 193 190 5.0199989e-05 194 190 0.0001505 197 190 5.0199989e-05 198 190 0.048550498 203 190 5.0199989e-05 204 190 0.0004011998 206 190 0.00010029999 208 190 0.00060189981 214 190 0.00055169989 219 190 0.0040123984 221 190 0.0024575999 223 190 5.0199989e-05 224 190 0.0002006 225 190 0.0001505 226 190 0.00075229979 227 190 0.00050159986 228 190 0.0002006 231 190 5.0199989e-05 234 190 0.0019560999 237 190 5.0199989e-05 240 190 0.00095299981 241 190 0.017754998 252 190 0.00010029999 253 190 5.0199989e-05 272 190 0.0011535999 277 190 5.0199989e-05 293 190 5.0199989e-05 300 190 5.0199989e-05 312 190 5.0199989e-05 347 190 0.0034606999 356 190 0.0004011998 358 190 0.00065199984 384 190 5.0199989e-05 387 190 5.0199989e-05 393 190 5.0199989e-05 416 190 5.0199989e-05 417 190 5.0199989e-05 422 190 0.0001505 437 190 5.0199989e-05 443 190 0.012639198 444 190 0.0026081 445 190 0.015899297 446 190 0.00055169989 447 190 0.0054167993 450 190 0.0015548 452 190 0.0042631999 453 190 0.00095299981 454 190 0.00070219999 455 190 0.058079999 456 190 0.00010029999 457 190 0.0016550999 458 190 0.00025079981 459 190 0.00055169989 460 190 0.00090279989 463 190 0.0089276992 464 190 0.00060189981 465 190 0.0049151964 467 190 0.0062192976 468 190 0.024074599 469 190 0.0013541998 470 190 0.0015046999 471 190 0.0017052998 473 190 5.0199989e-05 477 190 0.00010029999 478 190 0.00045139994 479 190 0.00010029999 483 190 0.0004011998 490 190 0.0002006 491 190 0.00010029999 18 191 0.00049479981 22 191 0.0079168975 24 191 0.016576 60 191 0.00074219983 104 191 0.0069272965 107 191 0.011380497 114 191 0.00024739979 126 191 0.00024739979 130 191 0.011133097 138 191 0.00024739979 159 191 0.036120698 160 191 0.028698698 161 191 0.00024739979 165 191 0.00024739979 169 191 0.0071746968 170 191 0.00024739979 171 191 0.00098959985 186 191 0.022018798 191 191 0.00024739979 198 191 0.011133097 206 191 0.00049479981 214 191 0.028698698 219 191 0.0242454 223 191 0.0017317999 224 191 0.0022266 225 191 0.0012369999 231 191 0.0014843999 233 191 0.008411698 234 191 0.010638297 241 191 0.00024739979 267 191 0.0059376992 270 191 0.00024739979 272 191 0.00098959985 273 191 0.0054428987 277 191 0.00074219983 315 191 0.00024739979 317 191 0.00024739979 322 191 0.011627898 326 191 0.00024739979 334 191 0.0039583966 340 191 0.0012369999 347 191 0.0027213998 350 191 0.0098960996 356 191 0.00049479981 358 191 0.0012369999 443 191 0.017812997 444 191 0.0091538988 445 191 0.024492797 446 191 0.0022266 447 191 0.012617499 450 191 0.0022266 452 191 0.033399299 453 191 0.021276597 454 191 0.0049479976 455 191 0.042058397 457 191 0.0029687998 458 191 0.00024739979 459 191 0.00098959985 460 191 0.00074219983 463 191 0.0098960996 464 191 0.005690299 465 191 0.00049479981 467 191 0.014101896 468 191 0.013112299 469 191 0.0037109999 470 191 0.0039583966 471 191 0.00074219983 473 191 0.00024739979 477 191 0.00049479981 478 191 0.00098959985 483 191 0.0012369999 489 191 0.00049479981 490 191 0.00049479981 491 191 0.023503199 18 192 0.00019119999 21 192 6.369999e-05 22 192 0.00063729985 24 192 0.0013382998 60 192 0.0027403999 82 192 0.0001275 104 192 0.0098782964 108 192 6.369999e-05 114 192 6.369999e-05 126 192 6.369999e-05 130 192 0.0092409998 131 192 0.00057359994 132 192 6.369999e-05 138 192 6.369999e-05 139 192 0.00031869998 142 192 0.0042699985 143 192 0.0014658 149 192 0.00044609979 150 192 0.0016569998 158 192 0.0001275 159 192 0.0015294999 160 192 0.0019756998 169 192 0.0012745999 171 192 0.0001275 186 192 0.0014020998 187 192 0.1773628 188 192 0.017462198 189 192 6.369999e-05 190 192 6.369999e-05 192 192 0.0080937967 193 192 0.0001275 194 192 0.00019119999 197 192 6.369999e-05 198 192 0.032566398 200 192 6.369999e-05 203 192 6.369999e-05 204 192 0.00050979992 205 192 0.0001275 206 192 0.0001275 207 192 6.369999e-05 208 192 0.0020393999 209 192 0.0001275 211 192 0.00019119999 212 192 0.00019119999 213 192 0.0001275 214 192 0.017972097 219 192 0.015550297 221 192 0.0099419989 223 192 0.0001275 224 192 0.027786598 229 192 6.369999e-05 233 192 0.0013382998 234 192 0.0073289983 237 192 6.369999e-05 240 192 0.0043336973 241 192 0.040022898 252 192 0.00019119999 270 192 0.0015294999 271 192 0.0001275 272 192 0.00063729985 273 192 0.00057359994 276 192 6.369999e-05 277 192 0.00044609979 287 192 6.369999e-05 289 192 6.369999e-05 290 192 0.0017845 292 192 6.369999e-05 293 192 0.0081574991 294 192 0.00019119999 296 192 6.369999e-05 300 192 6.369999e-05 312 192 6.369999e-05 315 192 0.00019119999 322 192 0.0001275 325 192 0.0026766998 326 192 0.00019119999 340 192 0.00038239988 345 192 6.369999e-05 347 192 0.0028678998 348 192 6.369999e-05 350 192 6.369999e-05 356 192 0.00044609979 358 192 0.00095599983 387 192 6.369999e-05 392 192 0.0001275 393 192 0.0001275 404 192 0.0001275 416 192 6.369999e-05 417 192 0.0001275 420 192 6.369999e-05 422 192 0.00050979992 430 192 6.369999e-05 433 192 6.369999e-05 434 192 6.369999e-05 443 192 0.011471499 444 192 0.0015932999 445 192 0.013765898 446 192 0.00089219981 447 192 0.0026766998 450 192 0.0025491999 452 192 0.006691698 453 192 0.0028041999 454 192 0.0017206999 455 192 0.041233797 456 192 0.00025489996 457 192 0.0016569998 458 192 0.00038239988 459 192 0.00038239988 460 192 0.00076479977 463 192 0.0123 464 192 0.00089219981 465 192 0.0028678998 467 192 0.0087948963 468 192 0.0077113993 469 192 0.0033139999 470 192 0.0035688998 471 192 0.00076479977 473 192 0.0001275 477 192 0.00025489996 478 192 0.00082849991 483 192 0.00095599983 489 192 0.0001275 490 192 0.00038239988 491 192 0.0012108998 4 193 5.4299991e-05 10 193 5.4299991e-05 14 193 5.4299991e-05 18 193 0.00016279999 22 193 5.4299991e-05 23 193 0.0011398999 24 193 5.4299991e-05 60 193 0.0023341998 104 193 0.0038540999 107 193 5.4299991e-05 108 193 0.00016279999 109 193 5.4299991e-05 114 193 5.4299991e-05 116 193 5.4299991e-05 126 193 5.4299991e-05 130 193 0.011670798 131 193 0.0001086 132 193 0.0003256998 138 193 5.4299991e-05 139 193 0.0001086 142 193 0.0012484998 143 193 0.0019542 150 193 0.00081419991 153 193 5.4299991e-05 158 193 0.00016279999 160 193 5.4299991e-05 169 193 5.4299991e-05 186 193 0.00075999997 187 193 0.24546736 188 193 0.0094451979 189 193 0.0001086 190 193 0.0001086 192 193 0.00048849988 193 193 0.0041254982 194 193 0.0003256998 197 193 5.4299991e-05 198 193 0.027467199 200 193 5.4299991e-05 203 193 0.0001086 204 193 0.00037999987 205 193 0.0001086 206 193 0.0001086 207 193 5.4299991e-05 208 193 5.4299991e-05 209 193 0.0020084998 211 193 0.00016279999 212 193 0.00097709987 213 193 0.00016279999 214 193 0.0032026998 219 193 0.0068395995 221 193 0.0158506 224 193 0.062099699 227 193 0.00016279999 233 193 5.4299991e-05 234 193 0.0020627999 237 193 0.0001086 240 193 0.00092279981 241 193 0.060145497 242 193 5.4299991e-05 252 193 0.0001086 271 193 5.4299991e-05 272 193 0.00059709977 277 193 0.00016279999 290 193 5.4299991e-05 293 193 0.0019542 295 193 0.0001086 296 193 5.4299991e-05 315 193 0.0001086 325 193 0.0034740998 326 193 5.4299991e-05 340 193 0.00016279999 347 193 0.0032026998 348 193 5.4299991e-05 356 193 0.00037999987 358 193 0.0011941998 372 193 5.4299991e-05 387 193 5.4299991e-05 422 193 0.00027139997 430 193 5.4299991e-05 433 193 5.4299991e-05 434 193 5.4299991e-05 443 193 0.011507999 444 193 0.0028227 445 193 0.015036397 446 193 0.0007056999 447 193 0.0022798998 448 193 5.4299991e-05 450 193 0.0029312999 452 193 0.0063510984 453 193 0.0015741999 454 193 0.0013027999 455 193 0.047008999 456 193 0.00016279999 457 193 0.0016284999 458 193 0.00043429993 459 193 0.00027139997 460 193 0.00086849998 463 193 0.026815798 464 193 0.00037999987 465 193 0.0084138997 467 193 0.0086852983 468 193 0.0067310967 469 193 0.0028227 470 193 0.0030940999 471 193 0.0030397999 473 193 5.4299991e-05 477 193 0.00016279999 478 193 0.00081419991 483 193 0.00092279981 489 193 5.4299991e-05 490 193 0.0003256998 491 193 0.00016279999 22 194 0.00030299998 60 194 0.0025757998 104 194 0.0019697 114 194 0.00015149999 126 194 0.00015149999 130 194 0.00030299998 159 194 0.0037878999 160 194 0.0018181999 171 194 0.00015149999 186 194 0.0010605999 187 194 0.15742415 188 194 0.18045449 192 194 0.00030299998 194 194 0.0039393976 198 194 0.051666699 204 194 0.00015149999 206 194 0.00030299998 211 194 0.00030299998 214 194 0.0021211999 219 194 0.0039393976 221 194 0.00045449985 223 194 0.00030299998 224 194 0.0013635999 225 194 0.00015149999 234 194 0.0025757998 240 194 0.00075759995 241 194 0.0077272989 272 194 0.00030299998 277 194 0.0012120998 279 194 0.0013635999 294 194 0.00030299998 296 194 0.00015149999 312 194 0.00030299998 317 194 0.00090909982 319 194 0.00015149999 322 194 0.00015149999 326 194 0.00045449985 340 194 0.0015151999 347 194 0.0037878999 356 194 0.00045449985 358 194 0.0012120998 361 194 0.00015149999 372 194 0.00015149999 392 194 0.00030299998 393 194 0.00015149999 419 194 0.00090909982 420 194 0.00015149999 422 194 0.00075759995 434 194 0.00015149999 443 194 0.020909097 444 194 0.0046969987 445 194 0.012727298 446 194 0.00090909982 447 194 0.0068181977 450 194 0.0027272999 452 194 0.0042423978 453 194 0.0015151999 454 194 0.0025757998 455 194 0.0375758 457 194 0.0018181999 458 194 0.00030299998 459 194 0.00030299998 460 194 0.00060609984 463 194 0.037878796 464 194 0.0054544993 465 194 0.016060598 467 194 0.0098484978 468 194 0.0092423968 469 194 0.0033332999 470 194 0.0036364 471 194 0.00060609984 473 194 0.00015149999 477 194 0.00015149999 478 194 0.00075759995 483 194 0.00090909982 490 194 0.00030299998 491 194 0.0033332999 22 195 0.0087335967 60 195 0.0074859969 114 195 0.00062379986 186 195 0.076731086 187 195 0.0043667965 188 195 0.0087335967 192 195 0.0074859969 195 195 0.00062379986 198 195 0.040548999 206 195 0.0012476998 214 195 0.016843397 219 195 0.0037429999 224 195 0.0043667965 234 195 0.0081097968 241 195 0.026824698 272 195 0.00062379986 279 195 0.0018714999 340 195 0.00062379986 347 195 0.0043667965 356 195 0.00062379986 358 195 0.0018714999 443 195 0.013100397 444 195 0.00062379986 445 195 0.026200898 446 195 0.0012476998 447 195 0.013100397 450 195 0.0043667965 452 195 0.036805999 453 195 0.014348097 454 195 0.0043667965 455 195 0.034934498 457 195 0.0018714999 458 195 0.00062379986 459 195 0.021210197 463 195 0.0037429999 464 195 0.00062379986 465 195 0.0012476998 467 195 0.010605097 468 195 0.0012476998 469 195 0.0037429999 470 195 0.0037429999 471 195 0.00062379986 478 195 0.0012476998 483 195 0.0012476998 489 195 0.0018714999 490 195 0.00062379986 491 195 0.037429798 60 196 0.0018582998 114 196 0.00023229999 126 196 0.00023229999 131 196 0.00023229999 138 196 0.00023229999 139 196 0.0023228999 187 196 0.26666665 188 196 0.027874596 189 196 0.0013936998 192 196 0.005342599 194 196 0.0011614 196 196 0.0062717982 198 196 0.021370497 204 196 0.0020905999 206 196 0.00046459981 207 196 0.0011614 208 196 0.0037165999 214 196 0.00023229999 219 196 0.0030196998 221 196 0.0013936998 233 196 0.00023229999 234 196 0.0018582998 241 196 0.080139399 272 196 0.00046459981 277 196 0.00092919986 326 196 0.00046459981 347 196 0.0032519998 348 196 0.00023229999 356 196 0.00046459981 358 196 0.0016259998 422 196 0.00069689984 443 196 0.0109175 444 196 0.0013936998 445 196 0.0141696 446 196 0.00023229999 447 196 0.0020905999 450 196 0.0039488971 452 196 0.0048779994 453 196 0.00092919986 455 196 0.054587699 457 196 0.0020905999 458 196 0.00092919986 459 196 0.00046459981 460 196 0.00046459981 463 196 0.0157956 464 196 0.00069689984 465 196 0.0016259998 467 196 0.011614397 468 196 0.0027874999 469 196 0.0046457984 470 196 0.0051102974 471 196 0.00069689984 473 196 0.00023229999 478 196 0.00092919986 479 196 0.00069689984 483 196 0.0013936998 490 196 0.00046459981 22 197 0.00014729999 60 197 0.0029463999 104 197 0.00029459991 114 197 0.00014729999 126 197 0.00014729999 130 197 0.0013259 131 197 0.00058929995 139 197 0.0047141984 142 197 0.0025044 159 197 0.00073659979 160 197 0.0010311999 161 197 0.00014729999 165 197 0.00029459991 170 197 0.00014729999 171 197 0.00044199987 186 197 0.0013259 187 197 0.20035356 188 197 0.022834398 189 197 0.0011785999 190 197 0.00014729999 192 197 0.0010311999 193 197 0.00014729999 194 197 0.00044199987 196 197 0.00014729999 197 197 0.0039775968 198 197 0.039628796 203 197 0.00014729999 204 197 0.0025044 205 197 0.00014729999 206 197 0.00029459991 208 197 0.0033882998 211 197 0.0017678 212 197 0.00014729999 214 197 0.014142599 219 197 0.0064819977 221 197 0.011490896 222 197 0.0010311999 223 197 0.00014729999 224 197 0.0072185993 225 197 0.00073659979 233 197 0.00014729999 234 197 0.0027990998 237 197 0.00014729999 240 197 0.00044199987 241 197 0.059074797 270 197 0.00014729999 271 197 0.00014729999 272 197 0.00058929995 276 197 0.00014729999 277 197 0.00058929995 282 197 0.00014729999 293 197 0.0066292994 294 197 0.00029459991 296 197 0.00014729999 315 197 0.00044199987 325 197 0.0048614964 326 197 0.00044199987 340 197 0.00044199987 347 197 0.0029463999 356 197 0.00029459991 358 197 0.0013259 392 197 0.00044199987 393 197 0.00014729999 420 197 0.00014729999 422 197 0.0011785999 434 197 0.00014729999 443 197 0.0095756985 444 197 0.0048614964 445 197 0.0123748 446 197 0.00058929995 447 197 0.0082498975 450 197 0.0035356998 452 197 0.0060400963 453 197 0.0016204999 454 197 0.00058929995 455 197 0.043017097 457 197 0.0017678 458 197 0.00029459991 459 197 0.00029459991 460 197 0.00073659979 463 197 0.034767199 464 197 0.00058929995 465 197 0.0016204999 467 197 0.011343498 468 197 0.0079551972 469 197 0.0038302999 470 197 0.0042721964 471 197 0.00088389986 473 197 0.00014729999 477 197 0.00014729999 478 197 0.0011785999 479 197 0.00073659979 483 197 0.0017678 490 197 0.00058929995 491 197 0.0035356998 9 198 1.26e-05 16 198 1.26e-05 18 198 6.2899999e-05 22 198 0.00016339999 24 198 1.26e-05 60 198 0.0056322999 79 198 1.26e-05 82 198 1.26e-05 83 198 1.26e-05 84 198 1.26e-05 104 198 1.26e-05 108 198 2.5099987e-05 113 198 3.7699996e-05 114 198 7.5399992e-05 126 198 3.7699996e-05 127 198 1.26e-05 130 198 2.5099987e-05 142 198 1.26e-05 150 198 0.00057829986 151 198 1.26e-05 159 198 0.00022629999 160 198 0.00033939979 162 198 2.5099987e-05 165 198 3.7699996e-05 169 198 1.26e-05 171 198 2.5099987e-05 186 198 3.7699996e-05 187 198 0.025232296 188 198 0.3545844 189 198 0.0001509 190 198 8.7999986e-05 192 198 0.0021247 194 198 0.012685299 196 198 1.26e-05 197 198 0.00095549994 198 198 0.0183427 200 198 3.7699996e-05 201 198 2.5099987e-05 202 198 3.7699996e-05 203 198 6.2899999e-05 204 198 0.00055319979 205 198 1.26e-05 206 198 0.00016339999 207 198 5.029999e-05 208 198 0.00025139982 209 198 1.26e-05 210 198 1.26e-05 211 198 1.26e-05 212 198 1.26e-05 213 198 1.26e-05 214 198 0.0020114998 218 198 1.26e-05 219 198 0.0070906989 221 198 0.0099570975 223 198 2.5099987e-05 224 198 0.0090896972 229 198 1.26e-05 233 198 0.00013829999 234 198 0.0061602965 237 198 0.0001886 240 198 0.00023889999 241 198 0.0014583999 248 198 1.26e-05 250 198 1.26e-05 252 198 5.029999e-05 272 198 0.00052799983 273 198 1.26e-05 277 198 0.0053305998 279 198 0.0012824 282 198 1.26e-05 284 198 1.26e-05 285 198 1.26e-05 287 198 3.7699996e-05 289 198 0.00057829986 290 198 2.5099987e-05 292 198 2.5099987e-05 293 198 0.0022127 295 198 3.7699996e-05 296 198 1.26e-05 297 198 1.26e-05 299 198 1.26e-05 300 198 1.26e-05 301 198 1.26e-05 312 198 3.7699996e-05 315 198 6.2899999e-05 317 198 0.0002137 319 198 1.26e-05 320 198 2.5099987e-05 321 198 2.5099987e-05 322 198 2.5099987e-05 326 198 0.0012069 328 198 0.0001509 330 198 5.029999e-05 340 198 0.0022629998 347 198 0.0033944999 349 198 1.26e-05 350 198 1.26e-05 351 198 0.00013829999 354 198 3.7699996e-05 356 198 0.0001509 358 198 0.0012949 372 198 2.5099987e-05 384 198 3.7699996e-05 387 198 2.5099987e-05 394 198 1.26e-05 395 198 1.26e-05 397 198 1.26e-05 402 198 6.2899999e-05 419 198 1.26e-05 422 198 0.0001257 423 198 1.26e-05 425 198 1.26e-05 430 198 2.5099987e-05 431 198 1.26e-05 432 198 1.26e-05 433 198 2.5099987e-05 434 198 3.7699996e-05 442 198 0.0009680998 443 198 0.029934198 444 198 0.0025143998 445 198 0.013514999 446 198 0.00098059978 447 198 0.0054185987 448 198 2.5099987e-05 449 198 1.26e-05 450 198 0.0042493977 452 198 0.0060094967 453 198 0.0022880998 454 198 0.00055319979 455 198 0.0278221 456 198 0.00045259995 457 198 0.0016217998 458 198 0.00056569977 459 198 0.0010937999 460 198 0.00093029998 463 198 0.014030498 464 198 0.0021749998 465 198 0.0039350986 467 198 0.011591498 468 198 0.0071283989 469 198 0.0031933 470 198 0.0035452999 471 198 0.0023383999 473 198 7.5399992e-05 477 198 0.00010059999 478 198 0.00094289985 479 198 5.029999e-05 483 198 0.0010308998 489 198 5.029999e-05 490 198 0.00027659978 491 198 0.0001886 9 199 5.0899995e-05 18 199 0.00040749996 60 199 0.0058062971 82 199 0.00010189999 83 199 5.0899995e-05 84 199 5.0899995e-05 108 199 0.00010189999 113 199 0.0001528 114 199 0.0003564998 126 199 0.0001528 141 199 0.00025469996 150 199 5.0899995e-05 151 199 0.00020369999 187 199 0.1624223 189 199 0.00025469996 190 199 0.00020369999 192 199 0.0001528 194 199 0.0003056 196 199 5.0899995e-05 197 199 0.00010189999 200 199 0.0019864 201 199 0.00010189999 203 199 0.0003056 204 199 0.019659799 205 199 0.0029540998 206 199 0.0010696 207 199 0.00025469996 209 199 0.00020369999 212 199 0.0005092998 213 199 0.00010189999 214 199 0.00040749996 221 199 0.0040745996 223 199 5.0899995e-05 233 199 0.0003056 234 199 0.0024446999 237 199 0.0004584 241 199 0.0019864 248 199 5.0899995e-05 250 199 5.0899995e-05 252 199 5.0899995e-05 272 199 0.0009168 277 199 5.0899995e-05 317 199 0.00025469996 334 199 0.00040749996 340 199 0.0003564998 348 199 0.0015788998 356 199 5.0899995e-05 358 199 0.00040749996 384 199 5.0899995e-05 387 199 0.0001528 402 199 0.0001528 422 199 0.0057552978 423 199 5.0899995e-05 425 199 5.0899995e-05 430 199 0.00010189999 431 199 5.0899995e-05 432 199 5.0899995e-05 433 199 0.0001528 434 199 0.00020369999 443 199 0.0049912967 444 199 0.0123256 445 199 0.006519299 446 199 0.00025469996 447 199 0.027706999 448 199 5.0899995e-05 449 199 5.0899995e-05 450 199 0.021798898 452 199 0.0045329966 453 199 0.0006620998 454 199 0.0003564998 455 199 0.0251095 456 199 0.0016297998 457 199 0.0071304999 458 199 0.00056029996 459 199 0.0012732998 460 199 0.0018336 463 199 0.028623797 464 199 0.019557897 465 199 0.0014260998 467 199 0.031781599 468 199 0.0096261986 469 199 0.015788898 470 199 0.0170113 471 199 0.0057043992 472 199 0.00010189999 473 199 0.0003564998 477 199 0.00020369999 478 199 0.0034633998 483 199 0.011765298 489 199 0.00010189999 490 199 0.0013752 9 200 7.0999988e-05 60 200 0.0023425999 82 200 7.0999988e-05 83 200 7.0999988e-05 84 200 7.0999988e-05 108 200 7.0999988e-05 113 200 7.0999988e-05 114 200 0.00021299999 126 200 0.00014199999 139 200 0.00021299999 150 200 0.00035489979 187 200 0.097536683 188 200 7.0999988e-05 189 200 0.0034073999 190 200 0.00014199999 192 200 0.0095832981 194 200 7.0999988e-05 198 200 0.0013487998 200 200 0.0033363998 201 200 0.0013487998 202 200 0.060055397 203 200 0.00014199999 204 200 0.1510613 205 200 0.00014199999 206 200 0.00085179997 207 200 7.0999988e-05 209 200 0.00085179997 210 200 0.010932099 211 200 0.014410399 214 200 0.00092279981 221 200 0.0041172989 234 200 0.00078089978 237 200 0.00014199999 241 200 0.00035489979 272 200 0.00028389995 279 200 7.0999988e-05 325 200 0.00014199999 340 200 0.00042589987 348 200 0.0010648 356 200 7.0999988e-05 358 200 0.00014199999 387 200 0.00014199999 402 200 7.0999988e-05 404 200 7.0999988e-05 422 200 0.0017746999 430 200 7.0999988e-05 433 200 7.0999988e-05 434 200 7.0999988e-05 443 200 0.0034073999 444 200 0.0051820986 445 200 0.0056789964 446 200 0.00014199999 447 200 0.012564797 450 200 0.0047561973 452 200 0.0015616999 453 200 0.00021299999 455 200 0.0203024 456 200 0.0010648 457 200 0.0055369996 458 200 0.00056789978 459 200 0.0015616999 460 200 0.0012778 463 200 0.12209839 464 200 0.0056079999 465 200 0.0026974999 467 200 0.0326542 468 200 0.0472776 469 200 0.012209799 470 200 0.013629597 471 200 0.0040462986 473 200 0.00028389995 477 200 7.0999988e-05 478 200 0.0024136 483 200 0.054376397 490 200 0.0010648 491 200 0.00070989993 9 201 3.309999e-05 16 201 3.309999e-05 18 201 3.309999e-05 60 201 0.0013891 79 201 3.309999e-05 82 201 3.309999e-05 83 201 3.309999e-05 84 201 3.309999e-05 108 201 6.6099994e-05 113 201 9.9199999e-05 114 201 0.00026459992 126 201 9.9199999e-05 127 201 3.309999e-05 133 201 3.309999e-05 139 201 0.0024474999 150 201 0.00033069984 158 201 3.309999e-05 160 201 6.6099994e-05 171 201 3.309999e-05 187 201 0.058045298 188 201 6.6099994e-05 189 201 0.0020836999 190 201 9.9199999e-05 192 201 0.0011906999 194 201 0.00013229999 198 201 0.0021497998 200 201 0.0014552998 201 201 0.015941799 202 201 0.19222754 203 201 0.0014221999 204 201 0.018686999 205 201 0.0021167998 206 201 0.00095919985 207 201 6.6099994e-05 208 201 0.00039689988 209 201 9.9199999e-05 210 201 0.037605397 211 201 0.0056225993 212 201 3.309999e-05 213 201 3.309999e-05 214 201 9.9199999e-05 221 201 0.0030427999 224 201 0.0001984 234 201 0.00092609995 237 201 0.00023149999 240 201 3.309999e-05 241 201 0.005324997 243 201 0.00026459992 248 201 3.309999e-05 250 201 3.309999e-05 252 201 3.309999e-05 263 201 3.309999e-05 272 201 0.00036379998 277 201 6.6099994e-05 279 201 3.309999e-05 312 201 3.309999e-05 317 201 3.309999e-05 325 201 0.0014882998 326 201 3.309999e-05 340 201 3.309999e-05 348 201 0.00079379999 356 201 3.309999e-05 358 201 0.0001984 372 201 3.309999e-05 387 201 9.9199999e-05 388 201 3.309999e-05 390 201 3.309999e-05 402 201 6.6099994e-05 404 201 3.309999e-05 405 201 6.6099994e-05 419 201 3.309999e-05 422 201 0.0014552998 423 201 3.309999e-05 425 201 3.309999e-05 428 201 0.00013229999 430 201 6.6099994e-05 431 201 3.309999e-05 432 201 3.309999e-05 433 201 6.6099994e-05 434 201 6.6099994e-05 443 201 0.0019182998 444 201 0.0068793967 445 201 0.0051264986 446 201 6.6099994e-05 447 201 0.014486499 449 201 3.309999e-05 450 201 0.0051264986 452 201 0.0016205998 453 201 0.00029769982 454 201 9.9199999e-05 455 201 0.012898996 456 201 0.00079379999 457 201 0.0054902993 458 201 0.0006614998 459 201 0.0006614998 460 201 0.0014221999 463 201 0.11992717 464 201 0.0058210976 465 201 0.0012236999 467 201 0.0168017 468 201 0.025632497 469 201 0.011179097 470 201 0.012435898 471 201 0.0023482998 473 201 0.00026459992 477 201 6.6099994e-05 478 201 0.0019514 479 201 9.9199999e-05 483 201 0.031817399 489 201 3.309999e-05 490 201 0.0011906999 491 201 0.0013229998 60 202 0.0036038999 82 202 9.4799994e-05 108 202 9.4799994e-05 114 202 9.4799994e-05 126 202 9.4799994e-05 130 202 9.4799994e-05 132 202 9.4799994e-05 139 202 0.0027504 150 202 0.0034142998 158 202 9.4799994e-05 160 202 0.00028449995 165 202 9.4799994e-05 171 202 0.00018969999 172 202 9.4799994e-05 187 202 0.13154399 188 202 0.0185888 189 202 9.4799994e-05 190 202 0.00037939986 192 202 0.013941597 194 202 0.00028449995 197 202 9.4799994e-05 198 202 0.0036038999 200 202 0.0024658998 201 202 9.4799994e-05 202 202 0.0018967998 203 202 0.0036038999 204 202 0.006069798 205 202 0.017166197 206 202 0.0013277999 207 202 9.4799994e-05 209 202 0.0014225999 210 202 0.0090098977 211 202 0.024848297 212 202 0.0040780976 213 202 0.00085359998 214 202 0.0020864999 219 202 0.010527298 221 202 0.016502298 224 202 0.00075869984 233 202 0.00028449995 234 202 0.0021813 237 202 0.00047419989 241 202 0.011855099 243 202 0.0018967998 272 202 0.00075869984 277 202 0.00047419989 279 202 9.4799994e-05 293 202 9.4799994e-05 294 202 9.4799994e-05 312 202 0.00018969999 315 202 9.4799994e-05 317 202 9.4799994e-05 325 202 0.0043626986 326 202 9.4799994e-05 348 202 0.0027504 358 202 0.00037939986 372 202 9.4799994e-05 387 202 9.4799994e-05 398 202 9.4799994e-05 402 202 9.4799994e-05 409 202 9.4799994e-05 422 202 0.014415797 428 202 0.00075869984 430 202 9.4799994e-05 431 202 9.4799994e-05 433 202 9.4799994e-05 434 202 0.00037939986 443 202 0.0063542984 444 202 0.0027504 445 202 0.029305797 446 202 0.00018969999 447 202 0.0088201985 450 202 0.0080614984 452 202 0.0070181973 453 202 0.001802 454 202 0.00047419989 455 202 0.030348998 456 202 0.00047419989 457 202 0.0037935998 458 202 0.00075869984 459 202 0.00085359998 460 202 0.0018967998 463 202 0.015553899 464 202 0.0023709999 465 202 0.0019916999 467 202 0.019252699 468 202 0.018019699 469 202 0.0065439977 470 202 0.0073026977 471 202 0.0061645992 472 202 9.4799994e-05 473 202 0.00018969999 478 202 0.0016122998 479 202 9.4799994e-05 483 202 0.0022761999 489 202 9.4799994e-05 490 202 0.00056899991 9 203 0.00015369999 60 203 0.0012297998 82 203 0.00015369999 83 203 0.00015369999 84 203 0.00015369999 108 203 0.00015369999 113 203 0.00015369999 114 203 0.0003074999 126 203 0.00015369999 127 203 0.00015369999 133 203 0.00015369999 150 203 0.0019985 160 203 0.00015369999 187 203 0.0424289 188 203 0.0003074999 189 203 0.00046119979 190 203 0.00015369999 192 203 0.00046119979 194 203 0.0003074999 197 203 0.00015369999 198 203 0.0013835998 200 203 0.0033819999 201 203 0.00046119979 202 203 0.050576497 203 203 0.010299798 204 203 0.026748698 205 203 0.0003074999 206 203 0.0012297998 207 203 0.00015369999 208 203 0.00015369999 210 203 0.069792449 211 203 0.0064565986 221 203 0.0015372999 224 203 0.00015369999 234 203 0.0015372999 237 203 0.0003074999 241 203 0.0073788986 248 203 0.00015369999 250 203 0.00015369999 252 203 0.00015369999 272 203 0.00046119979 277 203 0.00015369999 279 203 0.00015369999 317 203 0.00015369999 348 203 0.0007685998 358 203 0.0003074999 387 203 0.00015369999 402 203 0.00015369999 419 203 0.00015369999 422 203 0.0084549971 423 203 0.00015369999 425 203 0.00015369999 428 203 0.00015369999 430 203 0.00015369999 431 203 0.00015369999 433 203 0.00015369999 434 203 0.00015369999 443 203 0.0012297998 444 203 0.0081475973 445 203 0.0027671 446 203 0.00015369999 447 203 0.0167563 450 203 0.006917797 452 203 0.0024595999 453 203 0.0003074999 455 203 0.010299798 456 203 0.0007685998 457 203 0.0039968975 458 203 0.00061489991 459 203 0.00046119979 460 203 0.0012297998 463 203 0.023674097 464 203 0.0083012991 465 203 0.0016909998 467 203 0.035972297 468 203 0.017217498 469 203 0.013835497 470 203 0.0152191 471 203 0.004919298 473 203 0.0003074999 477 203 0.00015369999 478 203 0.0041506998 483 203 0.0063027963 489 203 0.00015369999 490 203 0.0012297998 491 203 0.00015369999 9 204 2.0699998e-05 18 204 6.2199993e-05 22 204 2.0699998e-05 60 204 0.0037759 82 204 2.0699998e-05 83 204 2.0699998e-05 84 204 2.0699998e-05 104 204 8.2999992e-05 108 204 2.0699998e-05 113 204 6.2199993e-05 114 204 0.0001452 126 204 4.1499996e-05 130 204 0.00029049977 131 204 2.0699998e-05 132 204 0.00010369999 133 204 2.0699998e-05 138 204 2.0699998e-05 139 204 0.0001867 141 204 2.0699998e-05 142 204 6.2199993e-05 143 204 4.1499996e-05 150 204 0.00072609982 151 204 2.0699998e-05 159 204 4.1499996e-05 160 204 2.0699998e-05 169 204 2.0699998e-05 171 204 2.0699998e-05 180 204 2.0699998e-05 187 204 0.16491359 188 204 0.0081533976 189 204 0.0002489998 190 204 0.000166 192 204 0.0082985982 193 204 4.1499996e-05 194 204 0.00041489978 196 204 2.0699998e-05 197 204 4.1499996e-05 198 204 0.0039832965 200 204 0.00041489978 201 204 8.2999992e-05 202 204 0.00062239985 203 204 0.00064309989 204 204 0.022240199 205 204 0.010041296 206 204 0.0011824998 207 204 0.00022819999 208 204 0.000166 209 204 0.0040455982 210 204 0.0018048999 211 204 0.015352398 212 204 0.011244599 213 204 0.0022198998 214 204 0.0075101964 219 204 0.0011824998 221 204 0.021472599 223 204 4.1499996e-05 224 204 0.0010372999 225 204 2.0699998e-05 226 204 8.2999992e-05 227 204 6.2199993e-05 233 204 0.00076759979 234 204 0.0021160999 237 204 0.00031119981 240 204 4.1499996e-05 241 204 0.008174099 243 204 6.2199993e-05 248 204 2.0699998e-05 252 204 4.1499996e-05 270 204 2.0699998e-05 271 204 2.0699998e-05 272 204 0.00078839995 277 204 0.0026969998 279 204 0.00012449999 287 204 8.2999992e-05 289 204 0.00091279997 290 204 6.2199993e-05 292 204 6.2199993e-05 293 204 0.0018671998 294 204 6.2199993e-05 295 204 2.0699998e-05 315 204 4.1499996e-05 317 204 2.0699998e-05 319 204 6.2199993e-05 320 204 2.0699998e-05 321 204 2.0699998e-05 325 204 0.0024065999 326 204 8.2999992e-05 334 204 2.0699998e-05 340 204 0.00010369999 347 204 8.2999992e-05 348 204 0.0040247999 356 204 2.0699998e-05 358 204 0.00035269978 370 204 2.0699998e-05 384 204 2.0699998e-05 387 204 6.2199993e-05 392 204 2.0699998e-05 394 204 2.0699998e-05 397 204 2.0699998e-05 402 204 8.2999992e-05 421 204 2.0699998e-05 422 204 0.010829698 430 204 4.1499996e-05 431 204 0.00033189985 432 204 2.0699998e-05 433 204 8.2999992e-05 434 204 0.0011824998 441 204 2.0699998e-05 442 204 2.0699998e-05 443 204 0.0067218989 444 204 0.0023651 445 204 0.0089831986 446 204 0.00029049977 447 204 0.0070122965 448 204 2.0699998e-05 450 204 0.0079665966 452 204 0.0060994998 453 204 0.0020538999 454 204 0.00039419997 455 204 0.031990997 456 204 0.00078839995 457 204 0.0033608999 458 204 0.00066389982 459 204 0.0011202998 460 204 0.0017633999 463 204 0.014315099 464 204 0.0024895999 465 204 0.0024895999 467 204 0.027924698 468 204 0.0080080964 469 204 0.0065973997 470 204 0.0073441975 471 204 0.0028007999 472 204 0.0001867 473 204 0.0001452 477 204 8.2999992e-05 478 204 0.0014936998 479 204 4.1499996e-05 483 204 0.0037550998 489 204 8.2999992e-05 490 204 0.00053939992 491 204 0.0002489998 60 205 0.003268 130 205 0.00065359985 187 205 0.014379099 188 205 0.00065359985 192 205 0.00065359985 198 205 0.0013071999 200 205 0.010457497 203 205 0.0078430995 204 205 0.0026143999 205 205 0.00065359985 206 205 0.00065359985 208 205 0.00065359985 209 205 0.00065359985 211 205 0.0013071999 212 205 0.0019607998 214 205 0.029411796 218 205 0.00065359985 221 205 0.0019607998 222 205 0.00065359985 224 205 0.0019607998 225 205 0.00065359985 233 205 0.0013071999 234 205 0.003268 241 205 0.0071894974 270 205 0.0071894974 272 205 0.00065359985 292 205 0.0045751967 293 205 0.069934547 294 205 0.0071894974 301 205 0.00065359985 320 205 0.013725497 348 205 0.0019607998 422 205 0.0372549 434 205 0.0078430995 442 205 0.011111099 443 205 0.003268 444 205 0.0078430995 445 205 0.0065358989 447 205 0.016993497 450 205 0.0065358989 452 205 0.0058823973 453 205 0.0019607998 455 205 0.022222199 457 205 0.003268 460 205 0.055555597 463 205 0.018300697 464 205 0.00065359985 465 205 0.00065359985 467 205 0.013725497 468 205 0.0026143999 469 205 0.008496698 470 205 0.0098038986 471 205 0.0013071999 478 205 0.0013071999 483 205 0.00065359985 490 205 0.00065359985 9 206 7.1799994e-05 60 206 0.0017233 82 206 7.1799994e-05 108 206 7.1799994e-05 114 206 0.00014359999 126 206 7.1799994e-05 131 206 7.1799994e-05 139 206 7.1799994e-05 150 206 0.0021541 187 206 0.24965888 188 206 0.0031593 189 206 7.1799994e-05 190 206 7.1799994e-05 192 206 0.0034464998 194 206 0.0022976999 197 206 7.1799994e-05 198 206 0.010554999 200 206 0.0017233 203 206 0.0019387 204 206 0.0056005977 205 206 0.00078979996 206 206 0.0099087991 207 206 0.00028719986 208 206 7.1799994e-05 209 206 0.00028719986 210 206 7.1799994e-05 211 206 0.018309798 212 206 0.0016514999 213 206 0.00028719986 214 206 0.00050259987 219 206 0.0028720999 221 206 0.0055287965 233 206 7.1799994e-05 234 206 0.0013642998 237 206 0.0002154 241 206 0.00071799988 272 206 0.00071799988 277 206 7.1799994e-05 279 206 0.00014359999 317 206 7.1799994e-05 325 206 0.00014359999 326 206 7.1799994e-05 348 206 0.0022976999 358 206 0.0002154 387 206 7.1799994e-05 402 206 7.1799994e-05 422 206 0.0041645989 430 206 7.1799994e-05 433 206 7.1799994e-05 434 206 0.030229099 443 206 0.0081136972 444 206 0.0027284999 445 206 0.010267798 446 206 0.00035899994 447 206 0.0081854984 450 206 0.0053133965 452 206 0.0053851977 453 206 0.0010052 454 206 0.0015079 455 206 0.046743698 456 206 0.00028719986 457 206 0.0033028999 458 206 0.00071799988 459 206 0.00043079979 460 206 0.0015079 463 206 0.0078264996 464 206 0.0021541 465 206 0.0013642998 467 206 0.010124199 468 206 0.0052415989 469 206 0.0053851977 470 206 0.0061032996 471 206 0.0015796998 473 206 0.00014359999 478 206 0.0010769998 483 206 0.0016514999 489 206 7.1799994e-05 490 206 0.00050259987 491 206 7.1799994e-05 60 207 0.0015452998 108 207 0.0001717 114 207 0.00034339982 126 207 0.0001717 130 207 0.00034339982 131 207 0.0072114989 133 207 0.0001717 139 207 0.013221197 141 207 0.0001717 150 207 0.0001717 187 207 0.11933374 188 207 0.028674498 189 207 0.0001717 190 207 0.0001717 192 207 0.0015452998 194 207 0.016998596 196 207 0.00034339982 198 207 0.008928597 200 207 0.00034339982 203 207 0.0024037999 204 207 0.00068679987 205 207 0.0001717 206 207 0.00051509985 207 207 0.026270598 210 207 0.00034339982 211 207 0.00034339982 212 207 0.0001717 214 207 0.00051509985 219 207 0.00051509985 221 207 0.00034339982 224 207 0.0018886998 234 207 0.0024037999 237 207 0.00034339982 241 207 0.027815897 243 207 0.00034339982 252 207 0.0001717 272 207 0.00051509985 277 207 0.0070397966 279 207 0.0001717 312 207 0.0001717 315 207 0.0001717 326 207 0.012019198 340 207 0.0001717 347 207 0.0001717 348 207 0.0024037999 358 207 0.00034339982 387 207 0.0001717 422 207 0.0029189999 433 207 0.0001717 434 207 0.0001717 443 207 0.0065246969 444 207 0.0010301999 445 207 0.013221197 446 207 0.0001717 447 207 0.0077265985 450 207 0.0078983977 452 207 0.0058378987 453 207 0.0018886998 454 207 0.00034339982 455 207 0.0331387 456 207 0.0001717 457 207 0.0029189999 458 207 0.0010301999 459 207 0.00034339982 460 207 0.0017169998 463 207 0.021291196 464 207 0.00051509985 465 207 0.0017169998 467 207 0.012877699 468 207 0.0070397966 469 207 0.0060095973 470 207 0.0065246969 471 207 0.0022320999 473 207 0.0001717 477 207 0.0001717 478 207 0.0018886998 483 207 0.0017169998 489 207 0.0001717 490 207 0.00068679987 491 207 0.0001717 9 208 0.00016349999 60 208 0.0024517998 82 208 0.00016349999 83 208 0.00016349999 84 208 0.00016349999 108 208 0.00016349999 113 208 0.00032689981 114 208 0.00032689981 126 208 0.00016349999 150 208 0.00049039978 187 208 0.07682246 188 208 0.00032689981 189 208 0.018960398 190 208 0.00016349999 192 208 0.0034324999 194 208 0.00032689981 198 208 0.0068649985 200 208 0.00016349999 203 208 0.00016349999 204 208 0.039065097 205 208 0.00016349999 206 208 0.00032689981 207 208 0.00016349999 208 208 0.064400077 211 208 0.00032689981 212 208 0.00016349999 214 208 0.00032689981 221 208 0.015200999 233 208 0.0024517998 234 208 0.001798 237 208 0.00032689981 241 208 0.044295497 252 208 0.00016349999 272 208 0.0014710999 279 208 0.00016349999 317 208 0.00016349999 348 208 0.0014710999 358 208 0.00032689981 387 208 0.00016349999 422 208 0.0062111989 423 208 0.00016349999 430 208 0.00016349999 431 208 0.00016349999 433 208 0.00016349999 434 208 0.00016349999 443 208 0.0027786999 444 208 0.004086297 445 208 0.009153299 447 208 0.014383797 450 208 0.0053939 452 208 0.0044131987 453 208 0.0009806999 454 208 0.00065379986 455 208 0.0246813 456 208 0.00032689981 457 208 0.0037594 458 208 0.0013075999 459 208 0.0009806999 460 208 0.0014710999 463 208 0.062602162 464 208 0.00081729982 465 208 0.0014710999 467 208 0.048872199 468 208 0.0080091991 469 208 0.0107878 470 208 0.0120955 471 208 0.0014710999 473 208 0.00032689981 477 208 0.00016349999 478 208 0.0014710999 479 208 0.012912698 483 208 0.0031055999 490 208 0.0013075999 491 208 0.00016349999 60 209 0.0014450999 114 209 0.00048169983 126 209 0.00048169983 130 209 0.032273598 150 209 0.00048169983 187 209 0.094412267 188 209 0.0014450999 192 209 0.00048169983 194 209 0.00048169983 198 209 0.0048169978 204 209 0.0019267998 205 209 0.00048169983 206 209 0.00096339989 208 209 0.00048169983 209 209 0.0019267998 211 209 0.0096338987 212 209 0.00096339989 214 209 0.0019267998 221 209 0.0062619969 225 209 0.0086704977 234 209 0.0028901999 237 209 0.00048169983 241 209 0.0019267998 272 209 0.00048169983 292 209 0.0024084998 293 209 0.00048169983 294 209 0.00096339989 317 209 0.00048169983 348 209 0.0033718999 358 209 0.00048169983 422 209 0.0028901999 443 209 0.0038535998 444 209 0.00048169983 445 209 0.0057802983 447 209 0.0077070966 450 209 0.008188799 452 209 0.0067436993 453 209 0.00096339989 454 209 0.0014450999 455 209 0.015896 456 209 0.00048169983 457 209 0.0033718999 458 209 0.00048169983 459 209 0.015414298 460 209 0.0033718999 463 209 0.025048196 464 209 0.00096339989 465 209 0.0014450999 467 209 0.014450897 468 209 0.0086704977 469 209 0.0077070966 470 209 0.0091521963 471 209 0.0019267998 472 209 0.0048169978 473 209 0.00048169983 478 209 0.0019267998 483 209 0.0024084998 490 209 0.00096339989 60 210 0.00076079997 108 210 0.00025359984 114 210 0.0005071999 126 210 0.00025359984 131 210 0.00025359984 139 210 0.024600599 150 210 0.00025359984 187 210 0.043875199 188 210 0.029165599 189 210 0.00025359984 190 210 0.00025359984 192 210 0.0010144999 194 210 0.0010144999 198 210 0.0017752999 200 210 0.00025359984 201 210 0.0005071999 202 210 0.0076083988 203 210 0.00025359984 204 210 0.0017752999 205 210 0.0005071999 206 210 0.00076079997 207 210 0.0053258985 210 210 0.019274697 211 210 0.00076079997 212 210 0.00025359984 214 210 0.00025359984 219 210 0.022317998 221 210 0.0005071999 234 210 0.0035505998 237 210 0.0005071999 241 210 0.0050722994 243 210 0.00025359984 272 210 0.0005071999 277 210 0.0045650974 290 210 0.00025359984 326 210 0.00025359984 348 210 0.0038041999 358 210 0.0005071999 387 210 0.00025359984 422 210 0.00076079997 433 210 0.00025359984 434 210 0.00025359984 443 210 0.0035505998 444 210 0.0005071999 445 210 0.0053258985 447 210 0.0017752999 450 210 0.011919897 452 210 0.0068475977 453 210 0.00076079997 454 210 0.00025359984 455 210 0.015724096 456 210 0.00025359984 457 210 0.0035505998 458 210 0.0005071999 459 210 0.00025359984 460 210 0.0015216998 463 210 0.015470497 464 210 0.00076079997 465 210 0.003297 467 210 0.017499398 468 210 0.0043113977 469 210 0.0063402988 470 210 0.0071011968 471 210 0.003297 473 210 0.00025359984 478 210 0.0022824998 483 210 0.003297 489 210 0.00025359984 490 210 0.00076079997 60 211 0.0014368 114 211 0.00035919994 150 211 0.00035919994 187 211 0.022270098 188 211 0.0014368 192 211 0.0014368 194 211 0.00035919994 198 211 0.00035919994 202 211 0.0010775998 203 211 0.00035919994 204 211 0.0025143998 205 211 0.0014368 206 211 0.00035919994 209 211 0.00035919994 210 211 0.00071839988 211 211 0.0021551999 212 211 0.00071839988 214 211 0.0010775998 219 211 0.00071839988 221 211 0.0021551999 234 211 0.0017959999 237 211 0.00035919994 241 211 0.0010775998 272 211 0.00035919994 287 211 0.014008597 293 211 0.0010775998 294 211 0.00035919994 320 211 0.00035919994 325 211 0.00035919994 348 211 0.021192499 358 211 0.00035919994 422 211 0.026221298 443 211 0.0010775998 444 211 0.00071839988 445 211 0.010057498 447 211 0.0079022981 450 211 0.0096982978 452 211 0.0071838982 453 211 0.00071839988 455 211 0.011135098 457 211 0.0035919999 458 211 0.0014368 459 211 0.00035919994 460 211 0.0021551999 463 211 0.024425298 464 211 0.0010775998 465 211 0.0014368 467 211 0.0172414 468 211 0.011853397 469 211 0.0075430982 470 211 0.0082614981 471 211 0.0032327999 478 211 0.0017959999 483 211 0.0028736 490 211 0.00071839988 60 212 0.0015552 114 212 0.00077759987 130 212 0.00077759987 187 212 0.029548999 188 212 0.00077759987 192 212 0.00077759987 200 212 0.00077759987 202 212 0.0031103999 203 212 0.00077759987 204 212 0.0038879998 205 212 0.00077759987 206 212 0.00077759987 210 212 0.00077759987 211 212 0.0015552 212 212 0.0093312971 214 212 0.0046655983 221 212 0.0023327998 234 212 0.0015552 241 212 0.031881798 270 212 0.00077759987 292 212 0.024105798 293 212 0.0077759996 294 212 0.038102597 320 212 0.0015552 348 212 0.0031103999 422 212 0.013996899 434 212 0.00077759987 442 212 0.0015552 443 212 0.00077759987 444 212 0.0015552 445 212 0.013996899 447 212 0.0062207989 450 212 0.0093312971 452 212 0.0062207989 453 212 0.0015552 455 212 0.013996899 457 212 0.0031103999 459 212 0.00077759987 460 212 0.050544299 463 212 0.022550497 464 212 0.0023327998 465 212 0.00077759987 467 212 0.014774498 468 212 0.0038879998 469 212 0.010886498 470 212 0.010886498 471 212 0.0015552 478 212 0.0015552 483 212 0.0054431967 490 212 0.00077759987 114 213 0.0039840974 187 213 0.011952199 198 213 0.0039840974 206 213 0.0039840974 214 213 0.07171309 241 213 0.0039840974 292 213 0.023904398 293 213 0.0039840974 294 213 0.011952199 348 213 0.0079680979 422 213 0.019920297 443 213 0.0079680979 444 213 0.0039840974 445 213 0.0039840974 447 213 0.07171309 450 213 0.0079680979 452 213 0.0079680979 455 213 0.011952199 457 213 0.0039840974 460 213 0.011952199 463 213 0.035856597 464 213 0.0039840974 467 213 0.011952199 468 213 0.0039840974 469 213 0.0079680979 470 213 0.0079680979 478 213 0.0039840974 483 213 0.0079680979 490 213 0.0039840974 5 214 1.7299986e-05 6 214 0.00015029999 9 214 2.8899987e-05 10 214 6.359999e-05 12 214 1.1599999e-05 13 214 5.1999989e-05 14 214 4.6199988e-05 16 214 1.7299986e-05 17 214 0.0001734 18 214 0.0002138 19 214 0.0024389999 20 214 0.00068779988 21 214 0.0076001994 22 214 0.0053634979 23 214 0.047849398 24 214 0.0022598 25 214 0.0090277977 60 214 0.011460997 66 214 6.939999e-05 75 214 1.7299986e-05 79 214 1.7299986e-05 82 214 0.00050859991 83 214 2.3099987e-05 84 214 2.3099987e-05 88 214 0.00012139999 98 214 0.00071669999 102 214 0.00010399999 103 214 5.7999996e-06 104 214 0.00053749979 107 214 0.0004623998 108 214 0.00014449999 109 214 5.1999989e-05 113 214 6.359999e-05 114 214 0.0001734 116 214 4.0499988e-05 117 214 8.6699991e-05 118 214 0.00014449999 119 214 0.00030629989 120 214 0.00062419986 122 214 5.7999996e-06 125 214 5.7999996e-06 126 214 6.359999e-05 127 214 1.7299986e-05 130 214 3.4699988e-05 131 214 1.1599999e-05 132 214 2.8899987e-05 139 214 1.1599999e-05 140 214 0.00012139999 150 214 0.0002023 151 214 0.00010399999 153 214 5.7999996e-06 158 214 5.7999996e-06 159 214 0.0001965 160 214 0.00015599999 162 214 5.7999996e-06 169 214 5.7999996e-06 171 214 4.0499988e-05 186 214 0.0022308999 187 214 0.0002023 188 214 1.1599999e-05 189 214 8.089999e-05 190 214 4.0499988e-05 192 214 0.00052589993 193 214 0.0007050999 194 214 6.359999e-05 196 214 5.7999996e-06 197 214 1.1599999e-05 198 214 0.0035601999 200 214 4.6199988e-05 201 214 2.8899987e-05 202 214 5.7999996e-06 203 214 2.8899987e-05 204 214 0.00010979999 206 214 0.00046809996 207 214 2.3099987e-05 209 214 5.7999996e-06 214 214 0.17221504 215 214 0.0048374981 217 214 0.00058949995 218 214 0.00062999991 219 214 1.1599999e-05 220 214 8.089999e-05 222 214 0.0001907 223 214 0.0035023999 224 214 0.0036122999 225 214 0.00023699999 226 214 5.7999996e-06 227 214 2.8899987e-05 228 214 0.00028899987 229 214 0.0001849 230 214 1.1599999e-05 231 214 0.00073979981 232 214 5.7799989e-05 233 214 0.0014044 234 214 0.013911497 237 214 0.00011559999 239 214 5.7999996e-06 240 214 9.2499991e-05 241 214 0.0076290965 242 214 1.1599999e-05 248 214 2.3099987e-05 250 214 1.7299986e-05 251 214 0.00023699999 252 214 0.00039879978 253 214 0.00010979999 254 214 5.7999996e-06 257 214 5.7999996e-06 263 214 1.7299986e-05 267 214 0.0013581999 270 214 2.3099987e-05 272 214 0.0002254 273 214 0.00035259989 276 214 5.7999996e-06 277 214 0.0051727965 278 214 6.939999e-05 279 214 2.3099987e-05 282 214 9.8299992e-05 283 214 4.6199988e-05 284 214 2.8899987e-05 285 214 0.0018032 286 214 0.00078599993 287 214 0.0064731985 288 214 0.0012830999 289 214 0.00082069985 290 214 0.0031093999 291 214 5.7999996e-06 292 214 4.0499988e-05 293 214 1.7299986e-05 294 214 0.00082649989 295 214 3.4699988e-05 297 214 1.7299986e-05 298 214 1.7299986e-05 300 214 0.0011038999 301 214 0.0036527 305 214 4.0499988e-05 307 214 4.6199988e-05 308 214 5.7999996e-06 312 214 0.00014449999 314 214 1.7299986e-05 315 214 2.8899987e-05 317 214 5.7999996e-06 320 214 5.7999996e-06 321 214 1.7299986e-05 322 214 5.1999989e-05 324 214 0.0014564998 325 214 2.3099987e-05 326 214 0.0002427 328 214 0.00012139999 331 214 0.0002081 332 214 0.00015029999 333 214 5.7999996e-06 335 214 1.1599999e-05 336 214 2.8899987e-05 337 214 2.3099987e-05 340 214 4.6199988e-05 341 214 5.7999996e-06 343 214 5.7999996e-06 349 214 0.0099986978 350 214 0.0044040978 351 214 5.1999989e-05 352 214 2.3099987e-05 354 214 4.6199988e-05 356 214 0.0014853999 358 214 0.00076289987 359 214 5.7999996e-06 364 214 5.7999996e-06 366 214 0.0010287999 370 214 2.3099987e-05 371 214 1.7299986e-05 372 214 3.4699988e-05 373 214 1.1599999e-05 374 214 1.7299986e-05 375 214 0.00059529999 380 214 1.1599999e-05 384 214 8.089999e-05 386 214 5.7999996e-06 387 214 6.359999e-05 392 214 5.7999996e-06 393 214 5.7999996e-06 394 214 5.7999996e-06 397 214 5.7999996e-06 402 214 7.509999e-05 404 214 1.7299986e-05 408 214 1.1599999e-05 414 214 0.0010346 416 214 5.7999996e-06 417 214 0.00015029999 419 214 2.3099987e-05 421 214 8.089999e-05 422 214 7.509999e-05 423 214 1.7299986e-05 425 214 1.7299986e-05 430 214 5.1999989e-05 431 214 2.3099987e-05 432 214 5.7999996e-06 433 214 1.1599999e-05 434 214 1.7299986e-05 441 214 5.7999996e-06 442 214 0.00013289999 443 214 0.014957599 444 214 0.00278 445 214 0.011374298 446 214 0.0048721991 447 214 0.0071493983 448 214 0.0033753 449 214 1.7299986e-05 450 214 0.0031382998 452 214 0.023696396 453 214 0.024459299 454 214 0.0027279998 455 214 0.022164799 456 214 0.00061839982 457 214 0.0034330999 458 214 0.00071089994 459 214 0.0013581999 460 214 0.0014910998 463 214 0.0194542 464 214 0.0027973 465 214 0.00071089994 467 214 0.017697196 468 214 0.008941099 469 214 0.010102797 470 214 0.0076001994 471 214 0.0015604999 472 214 5.7999996e-06 473 214 0.0001676 477 214 0.00043349992 478 214 0.00068779988 483 214 0.0011500998 489 214 0.0015315998 490 214 0.0025603999 491 214 0.00087849982 6 215 0.00011199999 9 215 7.4699987e-05 10 215 3.7299993e-05 11 215 3.7299993e-05 14 215 0.00033609988 17 215 3.7299993e-05 18 215 0.00014939999 19 215 0.00056019984 21 215 0.00093369978 22 215 0.0020915999 23 215 0.0058638975 24 215 0.0077313967 25 215 0.046799097 60 215 0.0043698996 72 215 0.00052289991 82 215 0.0025397998 84 215 3.7299993e-05 98 215 7.4699987e-05 102 215 0.0001867 104 215 3.7299993e-05 107 215 7.4699987e-05 108 215 0.00014939999 109 215 3.7299993e-05 114 215 0.00011199999 116 215 3.7299993e-05 118 215 0.00011199999 120 215 0.00029879995 122 215 3.7299993e-05 126 215 7.4699987e-05 153 215 0.0029505999 171 215 3.7299993e-05 186 215 0.00014939999 189 215 7.4699987e-05 190 215 3.7299993e-05 192 215 0.0015312999 193 215 0.0090385973 194 215 0.00011199999 198 215 0.002353 200 215 3.7299993e-05 203 215 3.7299993e-05 204 215 3.7299993e-05 206 215 0.00037349993 214 215 0.089452446 215 215 0.13501894 216 215 0.0024277 217 215 0.0013446 218 215 7.4699987e-05 220 215 7.4699987e-05 222 215 3.7299993e-05 223 215 0.00029879995 224 215 0.00022409999 228 215 3.7299993e-05 229 215 7.4699987e-05 231 215 3.7299993e-05 233 215 0.00014939999 234 215 0.0051542968 237 215 0.0001867 240 215 3.7299993e-05 241 215 0.0042578988 251 215 3.7299993e-05 252 215 0.00037349993 267 215 0.00026139989 272 215 0.00082169985 273 215 3.7299993e-05 277 215 0.0013818999 278 215 0.00014939999 282 215 7.4699987e-05 284 215 3.7299993e-05 285 215 0.00014939999 286 215 3.7299993e-05 287 215 0.00052289991 288 215 0.00014939999 289 215 0.0011951998 290 215 0.00044819992 294 215 7.4699987e-05 295 215 3.7299993e-05 300 215 0.0017553999 301 215 0.0084036998 312 215 3.7299993e-05 324 215 0.0012698998 325 215 3.7299993e-05 326 215 3.7299993e-05 340 215 3.7299993e-05 349 215 0.0040710978 350 215 0.0027264999 351 215 3.7299993e-05 354 215 3.7299993e-05 356 215 0.0013818999 358 215 0.00041079987 366 215 7.4699987e-05 370 215 3.7299993e-05 371 215 3.7299993e-05 375 215 7.4699987e-05 384 215 7.4699987e-05 387 215 7.4699987e-05 402 215 3.7299993e-05 414 215 0.00041079987 417 215 0.00011199999 421 215 7.4699987e-05 422 215 0.00011199999 430 215 3.7299993e-05 434 215 3.7299993e-05 443 215 0.023119397 444 215 0.0017180999 445 215 0.03664 446 215 0.011727799 447 215 0.0040337965 448 215 0.00044819992 450 215 0.0025770999 452 215 0.024688099 453 215 0.059087198 454 215 0.0045192987 455 215 0.023156799 456 215 0.00026139989 457 215 0.0010457998 458 215 0.00085899979 459 215 0.00048549986 460 215 0.0015312999 463 215 0.013819396 464 215 0.0019047998 465 215 0.00037349993 467 215 0.010943498 468 215 0.0056770965 469 215 0.0045192987 470 215 0.0046686977 471 215 0.0011951998 473 215 0.00011199999 477 215 0.00022409999 478 215 0.00056019984 483 215 0.00082169985 489 215 0.00093369978 490 215 0.0070216991 491 215 0.0022035998 24 216 0.023255799 60 216 0.007751897 82 216 0.007751897 153 216 0.007751897 192 216 0.007751897 193 216 0.015503898 198 216 0.007751897 214 216 0.13178289 215 216 0.28682166 216 216 0.007751897 217 216 0.007751897 300 216 0.007751897 301 216 0.007751897 350 216 0.007751897 443 216 0.023255799 444 216 0.007751897 445 216 0.031007797 446 216 0.007751897 447 216 0.007751897 452 216 0.007751897 455 216 0.038759697 463 216 0.038759697 464 216 0.007751897 467 216 0.015503898 468 216 0.007751897 469 216 0.007751897 470 216 0.007751897 3 217 0.0001661 6 217 0.0037368999 10 217 8.2999992e-05 13 217 8.2999992e-05 14 217 8.2999992e-05 17 217 0.00033219997 18 217 0.0001661 19 217 0.00024909992 20 217 0.00049829995 21 217 0.0012455999 22 217 0.0011625998 23 217 0.0004151999 24 217 0.0082211979 25 217 0.0053977966 60 217 0.00382 82 217 0.00033219997 98 217 0.0074737966 102 217 0.00049829995 104 217 0.0021590998 107 217 0.0001661 108 217 0.00024909992 109 217 8.2999992e-05 114 217 8.2999992e-05 116 217 8.2999992e-05 118 217 0.00066429982 119 217 0.00033219997 120 217 0.00058129989 122 217 8.2999992e-05 126 217 8.2999992e-05 153 217 0.0001661 159 217 0.0011625998 160 217 0.0017438999 186 217 0.00049829995 189 217 8.2999992e-05 192 217 0.0033216998 193 217 0.0048164986 194 217 8.2999992e-05 198 217 0.0070585981 204 217 0.00033219997 206 217 0.00074739987 214 217 0.20445108 215 217 0.0047333986 216 217 8.2999992e-05 217 217 0.024414498 218 217 0.0032386999 223 217 0.0015777999 224 217 0.0012455999 228 217 0.00091349985 229 217 8.2999992e-05 230 217 0.0014948 231 217 0.0015777999 232 217 0.00066429982 233 217 0.0008303998 234 217 0.012622498 237 217 0.0001661 240 217 8.2999992e-05 241 217 0.0076398998 252 217 0.00033219997 253 217 0.00074739987 267 217 0.00049829995 273 217 0.00091349985 277 217 0.00066429982 279 217 0.0001661 285 217 0.00024909992 286 217 0.00049829995 287 217 0.0008303998 288 217 0.0001661 289 217 0.0010795998 290 217 0.00049829995 294 217 8.2999992e-05 300 217 0.018435497 301 217 0.0088024996 314 217 0.00033219997 315 217 0.00066429982 324 217 0.0015777999 325 217 8.2999992e-05 326 217 0.0014948 349 217 0.0013287 350 217 0.0031555998 356 217 0.0013287 358 217 0.00033219997 366 217 0.0001661 375 217 8.2999992e-05 387 217 8.2999992e-05 414 217 0.0004151999 417 217 8.2999992e-05 421 217 0.0001661 422 217 8.2999992e-05 430 217 8.2999992e-05 443 217 0.011792097 444 217 0.0047333986 445 217 0.012207299 446 217 0.0048994981 447 217 0.0064772964 448 217 0.0001661 450 217 0.0023251998 452 217 0.0087194964 453 217 0.0064772964 454 217 0.0042351969 455 217 0.030891899 456 217 0.00033219997 457 217 0.0085533969 458 217 0.00058129989 459 217 0.00066429982 460 217 0.0014116999 463 217 0.032137498 464 217 0.0046503991 465 217 0.0008303998 467 217 0.025078896 468 217 0.024746697 469 217 0.0057298988 470 217 0.0058129989 471 217 0.0011625998 473 217 8.2999992e-05 477 217 0.00024909992 478 217 0.00066429982 483 217 0.0010795998 489 217 0.00033219997 490 217 0.014698599 491 217 0.0017438999 17 218 0.013446998 22 218 0.0019679 24 218 0.00098389992 60 218 0.0052475967 75 218 0.00032799994 82 218 0.00032799994 104 218 0.0013118999 114 218 0.00032799994 120 218 0.00032799994 130 218 0.0013118999 139 218 0.00032799994 159 218 0.069858968 160 218 0.075434566 169 218 0.00032799994 171 218 0.00032799994 186 218 0.018694699 192 218 0.00032799994 193 218 0.015086897 198 218 0.0085273981 206 218 0.00098389992 214 218 0.020662498 218 218 0.1197114 219 218 0.00032799994 223 218 0.0016398998 224 218 0.0032797998 225 218 0.00098389992 231 218 0.00032799994 234 218 0.011151198 240 218 0.00032799994 241 218 0.00065599987 252 218 0.00032799994 267 218 0.00032799994 272 218 0.00098389992 277 218 0.00098389992 279 218 0.00032799994 284 218 0.00032799994 287 218 0.00032799994 300 218 0.0059035979 301 218 0.0022957998 322 218 0.00098389992 324 218 0.0016398998 326 218 0.00098389992 347 218 0.00032799994 350 218 0.0075434968 356 218 0.00098389992 358 218 0.00065599987 414 218 0.00032799994 417 218 0.00032799994 421 218 0.00065599987 443 218 0.0242703 444 218 0.0042636991 445 218 0.010495197 446 218 0.0029517999 447 218 0.015086897 450 218 0.0026238 452 218 0.0098392963 453 218 0.011479199 454 218 0.0045916997 455 218 0.042308997 457 218 0.0026238 458 218 0.00065599987 459 218 0.0081993975 460 218 0.00065599987 463 218 0.0121351 464 218 0.00065599987 465 218 0.00032799994 467 218 0.010167297 468 218 0.022958297 469 218 0.0032797998 470 218 0.0032797998 471 218 0.0088553987 477 218 0.00032799994 478 218 0.00098389992 483 218 0.00098389992 489 218 0.00065599987 490 218 0.011479199 491 218 0.0091832988 0 219 0.00031229993 5 219 0.00010409999 6 219 0.00031229993 12 219 0.00041639991 13 219 0.00010409999 14 219 0.0070781969 17 219 0.00031229993 18 219 0.0002082 21 219 0.0002082 22 219 0.0002082 23 219 0.00052049989 24 219 0.0057249963 60 219 0.0023941 82 219 0.0087435991 87 219 0.0002082 90 219 0.0015613998 104 219 0.0047881976 107 219 0.00062449998 108 219 0.00010409999 114 219 0.00010409999 118 219 0.0010408999 119 219 0.0030185999 120 219 0.00093679992 126 219 0.00010409999 130 219 0.0014572998 131 219 0.00010409999 142 219 0.00010409999 149 219 0.00010409999 159 219 0.00041639991 160 219 0.00031229993 161 219 0.00010409999 169 219 0.00010409999 187 219 0.0029145 188 219 0.0002082 191 219 0.00093679992 192 219 0.00229 193 219 0.0026022999 194 219 0.0002082 198 219 0.0087435991 204 219 0.00031229993 206 219 0.0002082 208 219 0.00010409999 214 219 0.16519195 215 219 0.00093679992 218 219 0.018736299 219 219 0.0091599971 222 219 0.00031229993 223 219 0.0066617988 224 219 0.060372598 225 219 0.030498598 227 219 0.00010409999 228 219 0.00010409999 229 219 0.0002082 230 219 0.00010409999 231 219 0.00031229993 232 219 0.00010409999 233 219 0.00052049989 234 219 0.021026298 237 219 0.00010409999 240 219 0.0069740973 241 219 0.0052044988 243 219 0.00031229993 252 219 0.00041639991 273 219 0.0011449999 277 219 0.00041639991 279 219 0.0002082 282 219 0.0002082 284 219 0.00010409999 285 219 0.00010409999 287 219 0.0066617988 288 219 0.00010409999 290 219 0.00010409999 300 219 0.0086394995 301 219 0.026439097 315 219 0.0002082 317 219 0.00010409999 319 219 0.00010409999 322 219 0.00010409999 324 219 0.00062449998 326 219 0.0092640966 337 219 0.00010409999 340 219 0.0002082 349 219 0.00010409999 350 219 0.0031226999 356 219 0.0012490998 358 219 0.00052049989 387 219 0.00010409999 393 219 0.00010409999 402 219 0.00010409999 417 219 0.0002082 421 219 0.0002082 422 219 0.00010409999 430 219 0.00010409999 442 219 0.00010409999 443 219 0.011866298 444 219 0.00229 445 219 0.012699097 446 219 0.0028104999 447 219 0.006245397 448 219 0.00031229993 450 219 0.0029145 452 219 0.0063494965 453 219 0.0029145 454 219 0.00229 455 219 0.031643599 456 219 0.0002082 457 219 0.0020817998 458 219 0.00041639991 459 219 0.00041639991 460 219 0.0017694999 463 219 0.046112198 464 219 0.00093679992 465 219 0.00083269994 467 219 0.010825399 468 219 0.050483998 469 219 0.0059331991 470 219 0.0065576993 471 219 0.0010408999 473 219 0.00010409999 477 219 0.0002082 478 219 0.00072859996 483 219 0.0010408999 490 219 0.0030185999 491 219 0.00093679992 18 220 0.00050529977 21 220 0.00025269995 22 220 0.0149065 25 220 0.00025269995 60 220 0.0058109984 77 220 0.00025269995 104 220 0.0017686 108 220 0.00025269995 114 220 0.00025269995 126 220 0.00025269995 171 220 0.0063162968 189 220 0.00025269995 190 220 0.00025269995 192 220 0.0050530992 193 220 0.00025269995 194 220 0.00025269995 198 220 0.0078321993 200 220 0.00025269995 203 220 0.00025269995 206 220 0.00050529977 214 220 0.044214197 215 220 0.043708898 220 220 0.016927697 223 220 0.00025269995 229 220 0.0096007995 234 220 0.0073268972 237 220 0.00050529977 241 220 0.0098534971 252 220 0.0010105998 272 220 0.0015158998 277 220 0.0027792 282 220 0.00025269995 284 220 0.00050529977 287 220 0.00025269995 292 220 0.0025264998 301 220 0.032844897 333 220 0.00025269995 349 220 0.00025269995 350 220 0.0078321993 356 220 0.0012633 358 220 0.0017686 387 220 0.00025269995 417 220 0.00050529977 421 220 0.00050529977 422 220 0.00025269995 430 220 0.00025269995 434 220 0.00025269995 443 220 0.0149065 444 220 0.00075799995 445 220 0.0060636997 446 220 0.0017686 447 220 0.0012633 450 220 0.0070742965 452 220 0.017180398 453 220 0.0078321993 454 220 0.0010105998 455 220 0.017685696 456 220 0.00050529977 457 220 0.0010105998 459 220 0.00050529977 460 220 0.015159197 463 220 0.0083374977 464 220 0.00075799995 465 220 0.0012633 467 220 0.017685696 468 220 0.0020211998 469 220 0.011116698 470 220 0.012379996 471 220 0.0020211998 473 220 0.00025269995 477 220 0.00025269995 478 220 0.0022739 483 220 0.0020211998 489 220 0.0025264998 490 220 0.0010105998 491 220 0.00050529977 13 221 0.0001981 21 221 0.0001981 22 221 0.0001981 24 221 0.0025752999 25 221 0.0001981 60 221 0.0021790999 108 221 0.0001981 114 221 0.00039619999 118 221 0.0001981 119 221 0.0063390993 120 221 0.00039619999 126 221 0.0001981 131 221 0.00039619999 171 221 0.00039619999 187 221 0.0011886 192 221 0.0017829 193 221 0.0001981 194 221 0.0001981 198 221 0.004754398 206 221 0.00039619999 214 221 0.29793978 215 221 0.0035657999 218 221 0.014659297 221 221 0.00039619999 222 221 0.011093497 223 221 0.0031695999 224 221 0.036846299 225 221 0.0093105994 230 221 0.0015848 233 221 0.031893797 234 221 0.034865297 237 221 0.0001981 240 221 0.0001981 241 221 0.0013867 252 221 0.00039619999 276 221 0.0001981 277 221 0.00099049998 279 221 0.0001981 284 221 0.0001981 287 221 0.0001981 292 221 0.0001981 293 221 0.00039619999 294 221 0.0001981 300 221 0.0021790999 301 221 0.010499198 312 221 0.0001981 315 221 0.00039619999 324 221 0.00059429999 326 221 0.0001981 349 221 0.0001981 350 221 0.0063390993 356 221 0.0013867 358 221 0.00079239998 359 221 0.0001981 361 221 0.0001981 363 221 0.0001981 372 221 0.0001981 387 221 0.0001981 392 221 0.0001981 417 221 0.0001981 419 221 0.0001981 422 221 0.0001981 443 221 0.014263097 444 221 0.001981 445 221 0.011093497 446 221 0.0027733999 447 221 0.010895398 448 221 0.00059429999 450 221 0.0029714999 452 221 0.0063390993 453 221 0.0015848 454 221 0.00059429999 455 221 0.043977797 457 221 0.0011886 458 221 0.0001981 459 221 0.00059429999 460 221 0.0013867 463 221 0.015847899 464 221 0.00059429999 465 221 0.00059429999 467 221 0.0089143999 468 221 0.017036498 469 221 0.006537199 470 221 0.0073295981 471 221 0.00079239998 473 221 0.0001981 477 221 0.0001981 478 221 0.00099049998 483 221 0.0011886 490 221 0.00059429999 491 221 0.00039619999 23 222 0.051610097 60 222 0.0039699972 114 222 0.00044109998 153 222 0.0066166967 169 222 0.0066166967 193 222 0.034406699 198 222 0.0022055998 206 222 0.00044109998 214 222 0.00044109998 223 222 0.00044109998 234 222 0.16453457 252 222 0.00044109998 272 222 0.00088219997 277 222 0.00044109998 350 222 0.014556699 358 222 0.00044109998 443 222 0.0022055998 444 222 0.00044109998 445 222 0.0083810985 446 222 0.0039699972 447 222 0.016321097 450 222 0.0022055998 452 222 0.021173399 453 222 0.022496697 454 222 0.0017643999 455 222 0.0410234 457 222 0.0017643999 459 222 0.029995598 460 222 0.0013232999 463 222 0.029113397 464 222 0.00044109998 467 222 0.0070577972 468 222 0.037494499 469 222 0.0026466998 470 222 0.0022055998 478 222 0.00044109998 483 222 0.00088219997 489 222 0.00044109998 490 222 0.00044109998 491 222 0.0013232999 0 223 0.00043869996 2 223 0.00035099988 3 223 4.39e-05 6 223 0.00026319991 9 223 0.00048259995 11 223 0.00030709989 13 223 0.0089061968 14 223 4.39e-05 17 223 0.00035099988 18 223 0.0002194 19 223 0.0002194 21 223 0.0064054988 22 223 0.0019303998 23 223 0.0025008 24 223 0.022594698 25 223 0.00065809977 60 223 0.0034220999 77 223 0.00074579986 82 223 0.0083358996 83 223 4.39e-05 84 223 0.0001755 88 223 0.0001755 90 223 0.0001316 97 223 4.39e-05 98 223 0.00057039992 102 223 0.0010090999 104 223 0.0010090999 107 223 0.00048259995 108 223 4.39e-05 113 223 8.7699998e-05 114 223 0.0001755 116 223 0.0001755 117 223 0.0001755 118 223 0.00061419979 119 223 0.0046066977 120 223 0.030755099 122 223 0.00035099988 125 223 4.39e-05 126 223 8.7699998e-05 130 223 0.00039489986 131 223 0.0001316 135 223 4.39e-05 140 223 4.39e-05 142 223 4.39e-05 150 223 0.0001316 151 223 4.39e-05 159 223 0.0015355998 160 223 0.0019742998 171 223 0.0001755 172 223 0.0001755 186 223 0.00043869996 187 223 0.00070199999 189 223 8.7699998e-05 190 223 4.39e-05 191 223 4.39e-05 192 223 0.00070199999 193 223 0.011494797 194 223 0.00026319991 197 223 4.39e-05 198 223 0.0165402 200 223 4.39e-05 203 223 4.39e-05 204 223 0.00048259995 206 223 0.00039489986 207 223 4.39e-05 214 223 0.12438029 215 223 0.00039489986 217 223 0.00030709989 218 223 0.020795897 219 223 8.7699998e-05 220 223 0.00061419979 222 223 0.00083359983 223 223 0.018689897 224 223 0.019084796 225 223 0.0020181998 228 223 0.00048259995 229 223 0.0001755 230 223 0.00039489986 231 223 0.0048698969 232 223 0.00083359983 233 223 0.00083359983 234 223 0.016496297 237 223 0.0001316 240 223 0.00030709989 241 223 0.009081699 252 223 0.00057039992 253 223 0.00057039992 254 223 0.0010090999 267 223 8.7699998e-05 270 223 8.7699998e-05 273 223 0.00083359983 274 223 4.39e-05 277 223 0.0048698969 278 223 4.39e-05 282 223 0.00035099988 283 223 8.7699998e-05 284 223 0.0001755 285 223 0.00035099988 286 223 4.39e-05 287 223 0.00052649993 288 223 0.0001755 289 223 0.0002194 290 223 0.00057039992 292 223 0.00026319991 293 223 0.00061419979 294 223 0.0001755 295 223 0.0001755 296 223 0.0001316 297 223 4.39e-05 298 223 4.39e-05 299 223 4.39e-05 300 223 0.0044750981 301 223 0.012547698 307 223 4.39e-05 312 223 0.0001755 314 223 0.0014477998 315 223 0.00057039992 319 223 4.39e-05 322 223 0.0002194 324 223 0.00087749981 325 223 0.00026319991 326 223 0.00057039992 328 223 8.7699998e-05 338 223 0.0002194 340 223 0.00039489986 349 223 0.00083359983 350 223 0.002413 351 223 4.39e-05 354 223 8.7699998e-05 355 223 4.39e-05 356 223 0.0013161998 358 223 0.00092129991 366 223 8.7699998e-05 370 223 0.0001316 372 223 0.0002194 373 223 0.00039489986 374 223 0.0001316 375 223 4.39e-05 384 223 4.39e-05 385 223 4.39e-05 387 223 4.39e-05 392 223 0.0001316 393 223 8.7699998e-05 402 223 8.7699998e-05 414 223 8.7699998e-05 417 223 0.0002194 419 223 4.39e-05 420 223 4.39e-05 421 223 8.7699998e-05 422 223 0.0002194 423 223 4.39e-05 425 223 4.39e-05 430 223 4.39e-05 431 223 8.7699998e-05 433 223 4.39e-05 434 223 4.39e-05 442 223 4.39e-05 443 223 0.013512898 444 223 0.0021497998 445 223 0.017066598 446 223 0.0036414999 447 223 0.0044311993 448 223 0.00043869996 450 223 0.0041678995 452 223 0.0075899996 453 223 0.0065370984 454 223 0.0012722998 455 223 0.035712697 456 223 0.00035099988 457 223 0.0055718981 458 223 0.00048259995 459 223 0.0028078998 460 223 0.0015793999 463 223 0.023428198 464 223 0.00078969984 465 223 0.0022813999 467 223 0.023472097 468 223 0.025753498 469 223 0.0062299967 470 223 0.0065370984 471 223 0.0023691 473 223 0.0001316 477 223 0.0002194 478 223 0.00078969984 479 223 4.39e-05 483 223 0.0011407 489 223 0.00026319991 490 223 0.0021058999 491 223 0.0030711 9 224 2.2099994e-05 13 224 2.2099994e-05 14 224 6.6199995e-05 16 224 2.2099994e-05 17 224 0.00013249999 18 224 0.00017669999 19 224 0.00037539983 20 224 4.4199987e-05 21 224 0.0014574998 22 224 0.0032241 23 224 0.0043502972 24 224 0.00044169999 25 224 0.0014574998 60 224 0.0091864988 79 224 2.2099994e-05 82 224 0.00022079999 83 224 2.2099994e-05 84 224 2.2099994e-05 88 224 2.2099994e-05 98 224 0.0001104 104 224 0.0001104 107 224 6.6199995e-05 108 224 2.2099994e-05 113 224 6.6199995e-05 114 224 0.00013249999 118 224 0.0020758 119 224 0.0026719999 120 224 0.0001987 126 224 8.8299988e-05 127 224 2.2099994e-05 130 224 0.00072869984 131 224 4.4199987e-05 140 224 0.00046369992 149 224 2.2099994e-05 150 224 0.0001987 151 224 4.4199987e-05 159 224 0.00024289999 160 224 0.00033119996 171 224 0.00081709982 186 224 0.0014354 187 224 0.0001104 188 224 8.8299988e-05 189 224 6.6199995e-05 190 224 4.4199987e-05 192 224 0.0071989968 193 224 0.00090539991 194 224 0.00013249999 197 224 2.2099994e-05 198 224 0.0083472989 200 224 4.4199987e-05 201 224 2.2099994e-05 202 224 4.4199987e-05 203 224 2.2099994e-05 204 224 0.0001546 206 224 0.00048579997 207 224 2.2099994e-05 208 224 2.2099994e-05 214 224 0.30310929 215 224 0.0022745 217 224 6.6199995e-05 218 224 0.0037319998 219 224 4.4199987e-05 222 224 0.0010821 223 224 0.0061831996 224 224 0.023164898 225 224 0.0022745 226 224 4.4199987e-05 227 224 0.00026499992 229 224 0.0025173998 231 224 0.0014354 233 224 0.0027162 234 224 0.010555599 237 224 8.8299988e-05 239 224 4.4199987e-05 240 224 0.00028709997 241 224 0.022126999 248 224 2.2099994e-05 250 224 2.2099994e-05 251 224 6.6199995e-05 252 224 0.0011924999 267 224 0.00035329978 270 224 0.00046369992 272 224 2.2099994e-05 273 224 0.0001546 274 224 2.2099994e-05 276 224 2.2099994e-05 277 224 0.0010599999 282 224 6.6199995e-05 285 224 0.00033119996 286 224 4.4199987e-05 287 224 0.0012365999 288 224 0.00022079999 289 224 0.0001546 290 224 0.0010157998 294 224 0.00013249999 300 224 0.00068459986 301 224 0.0045269988 315 224 0.00017669999 319 224 4.4199987e-05 322 224 2.2099994e-05 324 224 0.0013911999 326 224 0.00017669999 340 224 0.00083909999 349 224 0.0028486999 350 224 0.0021861999 356 224 0.0010378999 358 224 0.00070669991 366 224 0.00017669999 375 224 8.8299988e-05 384 224 8.8299988e-05 385 224 2.2099994e-05 387 224 6.6199995e-05 402 224 4.4199987e-05 404 224 4.4199987e-05 414 224 0.00081709982 417 224 0.0001546 419 224 2.2099994e-05 421 224 4.4199987e-05 422 224 6.6199995e-05 423 224 2.2099994e-05 425 224 2.2099994e-05 430 224 2.2099994e-05 431 224 2.2099994e-05 433 224 2.2099994e-05 434 224 2.2099994e-05 442 224 4.4199987e-05 443 224 0.0093630999 444 224 0.0025615999 445 224 0.0096501969 446 224 0.0033344999 447 224 0.012189697 448 224 0.00033119996 450 224 0.0038645 452 224 0.016098399 453 224 0.0083914995 454 224 0.0022304 455 224 0.031843498 456 224 0.00035329978 457 224 0.0038423999 458 224 0.00046369992 459 224 0.0014795999 460 224 0.0015678999 463 224 0.016716696 464 224 0.0023628999 465 224 0.0036436999 467 224 0.014132999 468 224 0.021354098 469 224 0.0075302981 470 224 0.0070002973 471 224 0.0024291 473 224 0.00013249999 477 224 0.0010157998 478 224 0.00059619988 479 224 2.2099994e-05 483 224 0.00081709982 489 224 0.00064039999 490 224 0.0010599999 491 224 0.0018107998 18 225 0.00022819999 19 225 0.00038039987 20 225 7.6099997e-05 21 225 0.0012933 22 225 0.0017496999 23 225 0.007531397 24 225 0.00038039987 25 225 0.0016735999 60 225 0.0059337988 82 225 7.6099997e-05 98 225 0.00015209999 104 225 7.6099997e-05 107 225 7.6099997e-05 108 225 7.6099997e-05 114 225 0.00015209999 118 225 0.00015209999 119 225 0.0021300998 120 225 7.6099997e-05 126 225 7.6099997e-05 130 225 0.00022819999 140 225 0.0015975998 150 225 7.6099997e-05 171 225 7.6099997e-05 186 225 0.00045639998 187 225 7.6099997e-05 189 225 7.6099997e-05 192 225 0.0058576986 193 225 0.00015209999 198 225 0.0072270967 206 225 0.00022819999 214 225 0.31243819 215 225 0.0055533983 217 225 7.6099997e-05 218 225 0.0074552968 222 225 0.019018598 223 225 0.0025864998 224 225 0.0024343999 225 225 0.0067705996 229 225 0.011106897 231 225 0.0064662993 233 225 0.0031951 234 225 0.013084799 239 225 7.6099997e-05 240 225 0.00030429987 241 225 0.0031951 251 225 7.6099997e-05 252 225 0.00030429987 267 225 0.00022819999 272 225 0.00045639998 273 225 7.6099997e-05 277 225 0.0013692998 282 225 7.6099997e-05 285 225 0.00038039987 286 225 7.6099997e-05 287 225 0.0012933 288 225 0.00022819999 290 225 0.0058576986 294 225 0.00015209999 300 225 0.00015209999 301 225 0.00098899985 315 225 7.6099997e-05 324 225 0.00091289985 340 225 0.00030429987 349 225 0.0050969981 350 225 0.0034993999 356 225 0.0011411 358 225 0.00060859998 366 225 0.00022819999 375 225 7.6099997e-05 387 225 7.6099997e-05 402 225 7.6099997e-05 414 225 0.00030429987 417 225 7.6099997e-05 421 225 0.00015209999 443 225 0.011182997 444 225 0.0034993999 445 225 0.0089006983 446 225 0.0031951 447 225 0.0058576986 448 225 0.00076069986 450 225 0.0020539998 452 225 0.014986698 453 225 0.012095898 454 225 0.0019778998 455 225 0.029212598 456 225 7.6099997e-05 457 225 0.0038037 458 225 0.00060859998 459 225 0.0012172 460 225 0.0014453998 463 225 0.015367098 464 225 0.0012172 465 225 0.0041840971 467 225 0.0095853992 468 225 0.018105697 469 225 0.0050969981 470 225 0.0047926977 471 225 0.0025864998 473 225 7.6099997e-05 477 225 0.00030429987 478 225 0.00053249998 483 225 0.00076069986 489 225 0.00053249998 490 225 0.0012172 491 225 0.0026625998 18 226 0.00014969999 22 226 0.019760497 60 226 0.0094310977 114 226 0.00014969999 118 226 0.00029939995 126 226 0.00014969999 130 226 0.0017963999 132 226 0.012425099 150 226 0.00014969999 186 226 0.13757485 190 226 0.00014969999 192 226 0.00014969999 198 226 0.011526898 206 226 0.00089819985 214 226 0.21347308 215 226 0.00029939995 223 226 0.017664697 224 226 0.010628697 226 226 0.00089819985 227 226 0.0055388995 231 226 0.0025448999 234 226 0.002994 241 226 0.013622798 252 226 0.00029939995 277 226 0.0011975998 324 226 0.0013472999 349 226 0.008981999 350 226 0.00014969999 356 226 0.0010478999 358 226 0.001497 384 226 0.00014969999 414 226 0.0032933999 417 226 0.0005987999 443 226 0.030987997 444 226 0.00029939995 445 226 0.012125697 446 226 0.0041915998 447 226 0.0010478999 450 226 0.0031436998 452 226 0.010329299 453 226 0.0077843964 454 226 0.0028442999 455 226 0.024401199 457 226 0.0043412969 458 226 0.0005987999 459 226 0.001497 460 226 0.0017963999 463 226 0.0074849986 464 226 0.00029939995 465 226 0.0007485 467 226 0.011826299 468 226 0.0035927999 469 226 0.0043412969 470 226 0.004041899 471 226 0.00029939995 473 226 0.00014969999 477 226 0.00014969999 478 226 0.0011975998 483 226 0.0007485 489 226 0.0011975998 490 226 0.00044909981 491 226 0.0010478999 2 227 0.00010149999 4 227 0.00087939994 9 227 3.3799995e-05 18 227 0.00016909999 22 227 0.0043630973 25 227 0.00016909999 60 227 0.0095717981 82 227 3.3799995e-05 83 227 3.3799995e-05 84 227 3.3799995e-05 104 227 3.3799995e-05 108 227 3.3799995e-05 113 227 6.7599991e-05 114 227 0.00010149999 118 227 0.0010485 119 227 0.00016909999 126 227 6.7599991e-05 127 227 3.3799995e-05 130 227 0.0024351999 131 227 3.3799995e-05 132 227 0.0013867 143 227 0.0001353 150 227 0.0004735 151 227 3.3799995e-05 171 227 0.0001353 186 227 0.0088953972 189 227 3.3799995e-05 190 227 0.00010149999 192 227 0.00010149999 194 227 0.00010149999 198 227 0.013224598 200 227 6.7599991e-05 203 227 3.3799995e-05 204 227 3.3799995e-05 206 227 0.00040589995 207 227 3.3799995e-05 214 227 0.26828104 215 227 0.0016572999 223 227 0.0052086972 224 227 0.0383549 225 227 0.00010149999 226 227 0.0040248968 227 227 0.029188897 231 227 0.0015896999 234 227 0.0046674982 237 227 6.7599991e-05 240 227 0.00010149999 241 227 0.013123199 248 227 3.3799995e-05 252 227 0.00030439999 277 227 3.3799995e-05 284 227 3.3799995e-05 315 227 6.7599991e-05 322 227 3.3799995e-05 324 227 0.00071029994 326 227 6.7599991e-05 340 227 6.7599991e-05 345 227 0.00010149999 349 227 0.0080835968 350 227 3.3799995e-05 356 227 0.0010146999 358 227 0.0013867 384 227 0.00010149999 387 227 3.3799995e-05 392 227 3.3799995e-05 414 227 6.7599991e-05 417 227 0.00033819978 419 227 3.3799995e-05 421 227 6.7599991e-05 422 227 6.7599991e-05 423 227 3.3799995e-05 425 227 3.3799995e-05 430 227 3.3799995e-05 431 227 3.3799995e-05 433 227 3.3799995e-05 434 227 3.3799995e-05 443 227 0.0065953992 444 227 0.00020289999 445 227 0.0069335997 446 227 0.0023337998 447 227 0.0011499999 448 227 3.3799995e-05 450 227 0.0039910972 452 227 0.0126158 453 227 0.0044645965 454 227 0.0021307999 455 227 0.021714099 456 227 0.0002368 457 227 0.0039571971 458 227 0.00037199981 459 227 0.0016911 460 227 0.0015219999 463 227 0.012480598 464 227 0.0002368 465 227 0.00064259977 467 227 0.0097408965 468 227 0.010112997 469 227 0.0067644976 470 227 0.0042616986 471 227 0.0004735 473 227 0.00010149999 477 227 0.0002368 478 227 0.00087939994 483 227 0.00030439999 489 227 0.00060879998 490 227 0.00037199981 491 227 0.00094699999 0 228 0.00020699999 5 228 1.2899999e-05 6 228 0.0013325999 9 228 7.7599994e-05 10 228 1.2899999e-05 13 228 0.00032349979 14 228 1.2899999e-05 16 228 3.879999e-05 17 228 0.0001811 18 228 0.0001164 19 228 3.879999e-05 21 228 0.0001294 22 228 0.00032349979 23 228 3.879999e-05 24 228 6.4699998e-05 25 228 0.00016819999 60 228 0.0092896968 79 228 2.5899993e-05 82 228 0.0022123998 83 228 7.7599994e-05 84 228 7.7599994e-05 85 228 0.00051749987 88 228 0.00020699999 90 228 5.1799987e-05 98 228 6.4699998e-05 102 228 0.0029628999 104 228 0.0014231999 107 228 0.0011514998 108 228 0.00016819999 109 228 1.2899999e-05 110 228 0.00014229999 113 228 0.00019409999 114 228 0.0004916999 115 228 1.2899999e-05 116 228 0.00037519983 117 228 2.5899993e-05 118 228 9.0599991e-05 119 228 2.5899993e-05 120 228 0.0016949 125 228 0.00055629993 126 228 0.00020699999 127 228 3.879999e-05 130 228 9.0599991e-05 131 228 7.7599994e-05 133 228 1.2899999e-05 135 228 1.2899999e-05 138 228 5.1799987e-05 139 228 2.5899993e-05 142 228 3.879999e-05 149 228 1.2899999e-05 150 228 0.00019409999 151 228 6.4699998e-05 158 228 1.2899999e-05 159 228 1.2899999e-05 160 228 1.2899999e-05 165 228 2.5899993e-05 170 228 1.2899999e-05 171 228 1.2899999e-05 186 228 3.879999e-05 187 228 9.0599991e-05 188 228 1.2899999e-05 189 228 0.00010349999 190 228 5.1799987e-05 192 228 0.0056151971 193 228 0.0025487999 194 228 0.00010349999 196 228 1.2899999e-05 197 228 3.879999e-05 198 228 0.013818096 200 228 7.7599994e-05 201 228 7.7599994e-05 203 228 7.7599994e-05 204 228 0.0015137999 206 228 0.00097039994 207 228 6.4699998e-05 209 228 1.2899999e-05 214 228 0.039177097 215 228 7.7599994e-05 217 228 0.0019407 222 228 1.2899999e-05 223 228 0.0053046979 224 228 0.00016819999 228 228 0.058778599 229 228 0.00080219982 230 228 1.2899999e-05 231 228 0.0001164 232 228 0.00071159983 233 228 5.1799987e-05 234 228 0.0033380999 237 228 0.0001294 240 228 0.00014229999 241 228 0.024893299 242 228 1.2899999e-05 248 228 6.4699998e-05 250 228 5.1799987e-05 251 228 1.2899999e-05 252 228 0.00032349979 253 228 0.016548097 263 228 1.2899999e-05 267 228 2.5899993e-05 271 228 2.5899993e-05 272 228 7.7599994e-05 273 228 1.2899999e-05 277 228 0.00021999999 282 228 1.2899999e-05 285 228 3.879999e-05 286 228 6.4699998e-05 287 228 0.0001294 288 228 2.5899993e-05 290 228 0.00054339995 293 228 0.00020699999 294 228 0.00024579978 296 228 1.2899999e-05 300 228 0.0056927986 301 228 0.00067279977 312 228 0.00010349999 314 228 0.0026781999 315 228 7.7599994e-05 317 228 1.2899999e-05 319 228 3.879999e-05 320 228 2.5899993e-05 321 228 5.1799987e-05 324 228 3.879999e-05 325 228 0.00075039989 326 228 0.0018113998 340 228 3.879999e-05 349 228 0.00019409999 350 228 0.00075039989 354 228 3.879999e-05 356 228 0.00014229999 358 228 0.00036229985 366 228 2.5899993e-05 372 228 1.2899999e-05 375 228 2.5899993e-05 380 228 3.879999e-05 384 228 6.4699998e-05 387 228 0.00019409999 391 228 3.879999e-05 393 228 6.4699998e-05 394 228 1.2899999e-05 396 228 3.879999e-05 397 228 1.2899999e-05 402 228 3.879999e-05 414 228 0.00016819999 416 228 0.0016689999 417 228 0.0001811 419 228 3.879999e-05 421 228 2.5899993e-05 422 228 0.00015529999 423 228 5.1799987e-05 425 228 3.879999e-05 430 228 0.0001164 431 228 3.879999e-05 432 228 1.2899999e-05 433 228 3.879999e-05 434 228 5.1799987e-05 438 228 1.2899999e-05 442 228 1.2899999e-05 443 228 0.0034544999 444 228 0.0014231999 445 228 0.0054340996 446 228 0.00080219982 447 228 0.0030663998 448 228 3.879999e-05 449 228 3.879999e-05 450 228 0.0056410991 452 228 0.0049941987 453 228 0.0017336998 454 228 0.0012549998 455 228 0.023469999 456 228 0.0017207998 457 228 0.0041013993 458 228 0.0010091998 459 228 0.0022123998 460 228 0.001462 463 228 0.026730496 464 228 0.0015137999 465 228 0.0081381984 467 228 0.0363307 468 228 0.099805892 469 228 0.022486698 470 228 0.023172498 471 228 0.0022382999 472 228 0.00024579978 473 228 0.00050459988 477 228 0.0023806 478 228 0.0038426998 479 228 1.2899999e-05 483 228 0.0020183998 489 228 0.00014229999 490 228 0.0082028992 491 228 0.0014878998 3 229 0.0001026 6 229 0.00017089999 9 229 3.4199998e-05 13 229 6.8399997e-05 14 229 3.4199998e-05 17 229 0.0001026 18 229 0.00078629982 19 229 3.4199998e-05 21 229 0.00027349987 22 229 0.00047859992 23 229 0.0001026 24 229 0.00044439989 25 229 0.00017089999 60 229 0.0020853998 82 229 0.00017089999 83 229 3.4199998e-05 84 229 3.4199998e-05 104 229 0.0003076999 107 229 0.00068369997 108 229 3.4199998e-05 113 229 6.8399997e-05 114 229 0.0001026 117 229 6.8399997e-05 118 229 0.00051279995 119 229 0.0069398992 120 229 0.017640397 122 229 0.00017089999 126 229 3.4199998e-05 130 229 0.00071789999 131 229 3.4199998e-05 132 229 0.0001026 137 229 6.8399997e-05 138 229 3.4199998e-05 139 229 3.4199998e-05 142 229 6.8399997e-05 143 229 0.00023929999 149 229 6.8399997e-05 151 229 0.00051279995 152 229 3.4199998e-05 157 229 3.4199998e-05 158 229 6.8399997e-05 160 229 6.8399997e-05 186 229 3.4199998e-05 187 229 3.4199998e-05 189 229 6.8399997e-05 190 229 3.4199998e-05 192 229 0.0031794 193 229 0.005914297 194 229 0.0001026 197 229 3.4199998e-05 198 229 0.036067098 200 229 3.4199998e-05 202 229 0.00085469987 203 229 6.8399997e-05 204 229 0.0076236986 206 229 0.00034189993 207 229 3.4199998e-05 214 229 0.10997909 215 229 0.00013669999 218 229 0.0010255999 223 229 0.0044100992 224 229 0.0018461 228 229 0.00013669999 229 229 0.0029400999 230 229 0.00095719984 231 229 0.039656799 232 229 0.015110597 233 229 0.00051279995 234 229 0.0049912967 237 229 6.8399997e-05 240 229 6.8399997e-05 241 229 0.057092097 252 229 0.00068369997 253 229 0.0031452 260 229 6.8399997e-05 261 229 3.4199998e-05 267 229 3.4199998e-05 270 229 0.0021537999 273 229 3.4199998e-05 277 229 0.00013669999 285 229 3.4199998e-05 287 229 0.00017089999 288 229 3.4199998e-05 289 229 0.00027349987 290 229 0.0001026 294 229 3.4199998e-05 300 229 0.014392696 301 229 0.0030083999 314 229 0.0006153998 315 229 0.00047859992 316 229 0.00027349987 324 229 0.0008888999 325 229 0.0030767999 326 229 0.00034189993 349 229 0.00020509999 350 229 0.0017434999 356 229 0.00017089999 358 229 0.0003076999 366 229 3.4199998e-05 384 229 3.4199998e-05 387 229 3.4199998e-05 402 229 3.4199998e-05 404 229 6.8399997e-05 414 229 0.00054699997 417 229 0.0001026 422 229 0.0001026 423 229 3.4199998e-05 425 229 0.00037609995 426 229 0.00027349987 428 229 0.00058119977 430 229 3.4199998e-05 431 229 0.00085469987 433 229 3.4199998e-05 434 229 3.4199998e-05 443 229 0.0116577 444 229 0.0035895999 445 229 0.0094697997 446 229 0.0030767999 447 229 0.0133329 448 229 3.4199998e-05 450 229 0.0026323998 452 229 0.0038973 453 229 0.0030083999 454 229 0.002017 455 229 0.034460399 456 229 0.00020509999 457 229 0.0024614998 458 229 0.00034189993 459 229 0.0006153998 460 229 0.0014699998 463 229 0.026460599 464 229 0.0031109999 465 229 0.0047519989 467 229 0.011623498 468 229 0.12539738 469 229 0.0088201985 470 229 0.004717797 471 229 0.00064959982 472 229 3.4199998e-05 473 229 0.0001026 477 229 0.0011282 478 229 0.00041019986 483 229 0.0016067999 489 229 0.00013669999 490 229 0.0017776999 491 229 0.00037609995 3 230 0.0021062 5 230 0.00073999981 6 230 0.0059201978 9 230 5.6899997e-05 11 230 5.6899997e-05 13 230 5.6899997e-05 18 230 0.00017079999 19 230 5.6899997e-05 21 230 0.00017079999 22 230 0.00022769999 23 230 5.6899997e-05 24 230 0.0052370988 25 230 0.00028459984 60 230 0.0015369998 82 230 0.00011379999 83 230 5.6899997e-05 84 230 5.6899997e-05 85 230 5.6899997e-05 98 230 5.6899997e-05 102 230 0.00022769999 104 230 0.00022769999 107 230 0.00011379999 108 230 5.6899997e-05 113 230 0.00011379999 114 230 0.00017079999 118 230 0.00017079999 119 230 0.0017646998 120 230 0.0025615999 122 230 0.00022769999 125 230 5.6899997e-05 126 230 5.6899997e-05 130 230 0.0009676998 132 230 0.00011379999 137 230 5.6899997e-05 138 230 5.6899997e-05 139 230 5.6899997e-05 142 230 0.00017079999 149 230 5.6899997e-05 151 230 5.6899997e-05 152 230 5.6899997e-05 157 230 5.6899997e-05 160 230 0.0011384999 186 230 0.00011379999 187 230 0.0010245999 189 230 5.6899997e-05 190 230 5.6899997e-05 191 230 5.6899997e-05 192 230 0.004440099 193 230 0.0019353998 194 230 0.00011379999 198 230 0.023282297 200 230 5.6899997e-05 202 230 0.00011379999 203 230 5.6899997e-05 204 230 0.0042693987 206 230 0.00022769999 207 230 5.6899997e-05 214 230 0.080890298 215 230 0.00028459984 217 230 5.6899997e-05 218 230 0.00022769999 223 230 0.010815699 224 230 0.0048954971 226 230 5.6899997e-05 227 230 5.6899997e-05 228 230 0.00028459984 229 230 0.00051229983 230 230 0.020720698 231 230 0.019126799 232 230 0.0085956976 233 230 0.0086525977 234 230 0.0055216998 237 230 0.00011379999 240 230 5.6899997e-05 241 230 0.060226597 242 230 0.00011379999 252 230 0.00039849989 253 230 0.0078555979 270 230 0.00022769999 277 230 0.00056919991 282 230 0.00017079999 285 230 5.6899997e-05 287 230 0.00011379999 290 230 0.00011379999 293 230 5.6899997e-05 294 230 5.6899997e-05 295 230 0.00017079999 296 230 0.00011379999 300 230 0.06330049 301 230 0.0033586 307 230 5.6899997e-05 312 230 5.6899997e-05 314 230 0.0046677999 315 230 0.0096202977 319 230 5.6899997e-05 322 230 5.6899997e-05 324 230 0.0031309 325 230 0.00034149992 326 230 0.0038139999 349 230 0.00022769999 350 230 0.00028459984 352 230 5.6899997e-05 356 230 0.00017079999 358 230 0.00045539998 368 230 5.6899997e-05 371 230 5.6899997e-05 372 230 0.00017079999 386 230 0.00011379999 387 230 5.6899997e-05 398 230 5.6899997e-05 402 230 5.6899997e-05 414 230 5.6899997e-05 417 230 0.00011379999 421 230 0.00011379999 422 230 5.6899997e-05 423 230 5.6899997e-05 425 230 5.6899997e-05 426 230 5.6899997e-05 428 230 5.6899997e-05 430 230 5.6899997e-05 431 230 0.00017079999 433 230 5.6899997e-05 434 230 5.6899997e-05 438 230 5.6899997e-05 441 230 5.6899997e-05 443 230 0.012466598 444 230 0.0024477998 445 230 0.011897299 446 230 0.0021630998 447 230 0.0043831989 448 230 5.6899997e-05 450 230 0.0027892999 452 230 0.0042693987 453 230 0.0026184998 454 230 0.00085389987 455 230 0.035236496 456 230 0.00022769999 457 230 0.0022769999 458 230 0.00045539998 459 230 0.00056919991 460 230 0.0012522999 463 230 0.059828099 464 230 0.0014799999 465 230 0.0039846972 467 230 0.019752897 468 230 0.11686689 469 230 0.0059770979 470 230 0.0056924969 471 230 0.00062619988 472 230 0.00051229983 473 230 0.00011379999 477 230 0.00062619988 478 230 0.00062619988 483 230 0.0012522999 489 230 0.00011379999 490 230 0.0020492999 491 230 0.00034149992 13 231 0.0003382999 17 231 0.00016909999 19 231 0.00050739991 21 231 0.0018606 22 231 0.0011839999 23 231 0.025372099 24 231 0.0015222998 25 231 0.0020297999 60 231 0.0049052984 82 231 0.0035520999 88 231 0.0006765998 98 231 0.00016909999 104 231 0.0003382999 108 231 0.00016909999 114 231 0.0003382999 117 231 0.00016909999 118 231 0.0037211999 119 231 0.019790299 120 231 0.0087956972 122 231 0.0006765998 126 231 0.00016909999 130 231 0.00016909999 159 231 0.00016909999 160 231 0.00016909999 186 231 0.0008456998 192 231 0.00050739991 193 231 0.0015222998 194 231 0.00016909999 198 231 0.015223298 204 231 0.012347799 206 231 0.00050739991 214 231 0.14918804 215 231 0.0010148999 217 231 0.00050739991 218 231 0.0013531998 219 231 0.00016909999 223 231 0.0529432 224 231 0.0023681 225 231 0.0008456998 228 231 0.0003382999 229 231 0.011332899 230 231 0.00016909999 231 231 0.0018606 232 231 0.0006765998 233 231 0.00050739991 234 231 0.061400499 240 231 0.00016909999 241 231 0.027401898 252 231 0.0003382999 253 231 0.00016909999 267 231 0.0003382999 277 231 0.0013531998 285 231 0.00050739991 287 231 0.0015222998 288 231 0.0003382999 290 231 0.0006765998 294 231 0.00016909999 300 231 0.020466797 301 231 0.019621097 324 231 0.0003382999 325 231 0.00016909999 326 231 0.00016909999 349 231 0.0023681 350 231 0.0010148999 356 231 0.00050739991 358 231 0.00050739991 366 231 0.00016909999 375 231 0.00016909999 387 231 0.00016909999 414 231 0.00016909999 417 231 0.00016909999 443 231 0.0145467 444 231 0.0011839999 445 231 0.014884997 446 231 0.0049052984 447 231 0.0035520999 448 231 0.0027063999 450 231 0.0033828998 452 231 0.010994598 453 231 0.0091339983 454 231 0.0016915 455 231 0.038565598 456 231 0.00016909999 457 231 0.0028754999 458 231 0.0003382999 459 231 0.0010148999 460 231 0.0013531998 463 231 0.018606197 464 231 0.0011839999 465 231 0.0010148999 467 231 0.0121786 468 231 0.032137997 469 231 0.0071041994 470 231 0.0069349967 471 231 0.0010148999 473 231 0.00016909999 477 231 0.0003382999 478 231 0.00050739991 483 231 0.0016915 489 231 0.00050739991 490 231 0.0013531998 491 231 0.0013531998 3 232 2.3399989e-05 6 232 9.3399998e-05 9 232 2.3399989e-05 10 232 0.00011679999 13 232 4.6699992e-05 14 232 4.6699992e-05 17 232 0.00030359998 18 232 0.00011679999 19 232 2.3399989e-05 21 232 4.6699992e-05 22 232 0.00016349999 23 232 0.00037369994 24 232 0.00014009999 25 232 4.6699992e-05 60 232 0.0019150998 82 232 0.00030359998 83 232 2.3399989e-05 84 232 2.3399989e-05 85 232 2.3399989e-05 88 232 2.3399989e-05 93 232 4.6699992e-05 102 232 0.00016349999 104 232 0.00011679999 107 232 0.00091089983 108 232 0.0001868 109 232 9.3399998e-05 113 232 7.0099995e-05 114 232 9.3399998e-05 115 232 2.3399989e-05 116 232 0.00030359998 117 232 2.3399989e-05 118 232 2.3399989e-05 119 232 0.0009341999 120 232 0.0034098998 125 232 2.3399989e-05 126 232 7.0099995e-05 127 232 2.3399989e-05 130 232 0.00028029992 131 232 0.0002102 133 232 2.3399989e-05 135 232 2.3399989e-05 138 232 0.00014009999 139 232 7.0099995e-05 142 232 0.00014009999 149 232 2.3399989e-05 151 232 4.6699992e-05 158 232 0.0009341999 160 232 4.6699992e-05 186 232 2.3399989e-05 187 232 0.0021954 188 232 4.6699992e-05 189 232 4.6699992e-05 190 232 4.6699992e-05 192 232 0.0024522999 193 232 0.00046709995 194 232 0.00011679999 197 232 2.3399989e-05 198 232 0.033070996 200 232 4.6699992e-05 202 232 4.6699992e-05 203 232 4.6699992e-05 204 232 0.00058389991 206 232 0.00051379995 207 232 4.6699992e-05 209 232 2.3399989e-05 214 232 0.036364097 215 232 2.3399989e-05 217 232 0.00011679999 218 232 7.0099995e-05 223 232 0.007964097 224 232 0.0009808999 228 232 0.0036201 229 232 0.0023355 230 232 0.00028029992 231 232 0.0074736997 232 232 0.024733197 233 232 0.00065389997 234 232 0.0033397998 237 232 9.3399998e-05 240 232 0.0002102 241 232 0.061050497 242 232 2.3399989e-05 248 232 2.3399989e-05 250 232 9.3399998e-05 252 232 0.00088749989 253 232 0.026204497 270 232 0.00011679999 271 232 7.0099995e-05 273 232 0.00074739987 276 232 4.6699992e-05 277 232 0.00030359998 282 232 4.6699992e-05 285 232 2.3399989e-05 287 232 4.6699992e-05 290 232 0.0012844999 293 232 7.0099995e-05 294 232 0.00037369994 296 232 2.3399989e-05 300 232 0.036340699 301 232 0.00028029992 312 232 0.0001868 314 232 0.0039936975 315 232 0.0019385 319 232 2.3399989e-05 320 232 2.3399989e-05 324 232 0.0010742999 325 232 0.0009341999 326 232 0.0096456967 340 232 0.00056049996 349 232 7.0099995e-05 350 232 0.00014009999 356 232 0.00011679999 358 232 0.00037369994 372 232 2.3399989e-05 384 232 2.3399989e-05 387 232 7.0099995e-05 393 232 0.00011679999 402 232 2.3399989e-05 414 232 0.00063059991 416 232 0.00025689998 417 232 0.00028029992 419 232 4.6699992e-05 421 232 4.6699992e-05 422 232 9.3399998e-05 423 232 7.0099995e-05 424 232 0.00072399992 425 232 4.6699992e-05 426 232 2.3399989e-05 428 232 2.3399989e-05 430 232 2.3399989e-05 431 232 7.0099995e-05 432 232 2.3399989e-05 433 232 2.3399989e-05 434 232 4.6699992e-05 438 232 0.0005371999 441 232 2.3399989e-05 442 232 2.3399989e-05 443 232 0.0034098998 444 232 0.0037602 445 232 0.0071699992 446 232 0.00074739987 447 232 0.0159049 448 232 4.6699992e-05 450 232 0.0027325999 452 232 0.0025223999 453 232 0.00065389997 454 232 0.00067729992 455 232 0.0275358 456 232 0.00035029999 457 232 0.0024522999 458 232 0.00042039994 459 232 0.00060719997 460 232 0.0014479998 463 232 0.023401897 464 232 0.0024756999 465 232 0.011140399 467 232 0.032300297 468 232 0.20006067 469 232 0.010673299 470 232 0.006235797 471 232 0.00079409988 472 232 2.3399989e-05 473 232 0.00011679999 477 232 0.00063059991 478 232 0.00074739987 479 232 2.3399989e-05 483 232 0.0015180998 489 232 2.3399989e-05 490 232 0.0009808999 491 232 0.00042039994 9 233 2.8099996e-05 13 233 2.8099996e-05 14 233 0.0054736994 16 233 2.8099996e-05 17 233 0.0037052999 18 233 8.4199986e-05 19 233 0.00047719991 21 233 0.0019929998 22 233 8.4199986e-05 23 233 0.0012069999 24 233 0.0024981999 25 233 5.6099991e-05 60 233 0.0028350998 79 233 2.8099996e-05 82 233 0.0001123 83 233 2.8099996e-05 84 233 2.8099996e-05 104 233 2.8099996e-05 108 233 2.8099996e-05 113 233 8.4199986e-05 114 233 0.00014039999 118 233 0.015101798 119 233 0.0069052987 120 233 0.00022459999 126 233 8.4199986e-05 127 233 2.8099996e-05 130 233 2.8099996e-05 135 233 2.8099996e-05 150 233 2.8099996e-05 151 233 2.8099996e-05 159 233 0.0001123 160 233 0.00016839999 169 233 2.8099996e-05 187 233 0.00053329999 188 233 0.00022459999 189 233 0.00014039999 190 233 5.6099991e-05 191 233 0.0001123 192 233 0.00014039999 193 233 0.0012631998 194 233 0.0001123 196 233 2.8099996e-05 197 233 2.8099996e-05 198 233 0.0085052997 200 233 5.6099991e-05 201 233 5.6099991e-05 203 233 8.4199986e-05 204 233 0.0064841993 206 233 0.00047719991 207 233 5.6099991e-05 208 233 0.0011788998 209 233 2.8099996e-05 214 233 0.19489115 215 233 2.8099996e-05 218 233 0.0030315998 219 233 5.6099991e-05 222 233 0.0012631998 223 233 0.0058385991 224 233 0.087663174 225 233 0.0023578999 226 233 0.00016839999 227 233 0.0029473999 229 233 0.0016841998 230 233 8.4199986e-05 231 233 0.00064559979 232 233 8.4199986e-05 233 233 0.0099648982 234 233 0.014877196 237 233 0.0001965 240 233 8.4199986e-05 241 233 0.0028350998 242 233 2.8099996e-05 248 233 2.8099996e-05 250 233 2.8099996e-05 252 233 0.00078599993 253 233 0.00030879979 266 233 2.8099996e-05 267 233 2.8099996e-05 273 233 0.0052210987 277 233 0.00022459999 284 233 5.6099991e-05 285 233 0.0013754 287 233 0.0067648999 288 233 0.0013754 289 233 8.4199986e-05 290 233 0.0025825 293 233 0.00016839999 300 233 0.045192998 301 233 0.0104982 314 233 2.8099996e-05 315 233 0.00039299997 319 233 5.6099991e-05 322 233 2.8099996e-05 324 233 0.00056139985 326 233 0.0030595998 332 233 2.8099996e-05 349 233 5.6099991e-05 350 233 8.4199986e-05 356 233 5.6099991e-05 358 233 0.00022459999 384 233 5.6099991e-05 387 233 5.6099991e-05 402 233 5.6099991e-05 414 233 0.00025259983 417 233 0.00014039999 419 233 2.8099996e-05 421 233 5.6099991e-05 422 233 0.0001123 423 233 2.8099996e-05 425 233 2.8099996e-05 430 233 2.8099996e-05 431 233 2.8099996e-05 432 233 2.8099996e-05 433 233 5.6099991e-05 434 233 5.6099991e-05 442 233 0.0018806998 443 233 0.010806996 444 233 0.0028350998 445 233 0.011059597 446 233 0.0019929998 447 233 0.010919299 448 233 8.4199986e-05 450 233 0.0054174997 452 233 0.0045473985 453 233 0.0019648999 454 233 0.00053329999 455 233 0.033459596 456 233 0.00047719991 457 233 0.0031999999 458 233 0.00039299997 459 233 0.00039299997 460 233 0.0014876998 463 233 0.029585999 464 233 0.0020772 465 233 0.0066525973 467 233 0.0118737 468 233 0.0168982 469 233 0.0056701973 470 233 0.007719297 471 233 0.0021052998 473 233 0.00014039999 477 233 0.00042109983 478 233 0.00084209978 483 233 0.0018245999 489 233 2.8099996e-05 490 233 0.0019087999 491 233 0.00047719991 9 234 1.0399999e-05 16 234 3.4999994e-06 18 234 4.1599997e-05 19 234 3.4999994e-06 21 234 2.0799998e-05 22 234 0.00087069999 23 234 0.49135369 24 234 1.0399999e-05 25 234 2.4299996e-05 60 234 0.017792199 66 234 3.4999994e-06 74 234 0.0010753998 79 234 3.4999994e-06 82 234 0.0001145 83 234 6.8999998e-06 84 234 6.8999998e-06 104 234 3.4999994e-06 108 234 1.0399999e-05 113 234 2.0799998e-05 114 234 5.1999989e-05 117 234 0.00012839999 118 234 0.0002081 119 234 0.0001908 120 234 0.00039199996 122 234 2.0799998e-05 126 234 2.0799998e-05 127 234 3.4999994e-06 135 234 3.4999994e-06 150 234 5.8999998e-05 151 234 3.4999994e-06 160 234 3.4699988e-05 186 234 3.4999994e-06 189 234 4.1599997e-05 190 234 1.3899999e-05 191 234 4.1599997e-05 192 234 2.4299996e-05 194 234 1.3899999e-05 196 234 3.4999994e-06 197 234 3.4999994e-06 198 234 0.0029451 200 234 1.3899999e-05 201 234 1.0399999e-05 203 234 1.0399999e-05 204 234 2.4299996e-05 206 234 1.3899999e-05 207 234 1.0399999e-05 209 234 1.7299986e-05 214 234 0.023873199 215 234 6.8999998e-06 218 234 4.5099994e-05 223 234 0.0035660998 224 234 3.4999994e-06 229 234 3.4999994e-06 230 234 6.8999998e-06 231 234 0.0029936999 232 234 3.4999994e-06 233 234 2.0799998e-05 234 234 0.064313948 235 234 6.8999998e-06 237 234 9.0199988e-05 241 234 0.00074929977 242 234 5.1999989e-05 248 234 6.8999998e-06 250 234 3.4999994e-06 251 234 2.0799998e-05 252 234 6.939999e-05 253 234 1.0399999e-05 254 234 3.4999994e-06 263 234 3.4999994e-06 267 234 0.00010059999 272 234 0.00072499993 273 234 6.2399995e-05 277 234 0.00048909988 279 234 6.8999998e-06 281 234 6.8999998e-06 285 234 3.4999994e-06 287 234 1.0399999e-05 289 234 3.119999e-05 290 234 0.0015262999 294 234 6.8999998e-06 300 234 0.0038053999 301 234 0.0047523975 307 234 2.7799993e-05 315 234 3.4999994e-06 317 234 3.4999994e-06 319 234 6.8999998e-06 324 234 0.0002462999 326 234 0.0014118999 328 234 7.2799987e-05 331 234 1.7299986e-05 333 234 0.00017689999 334 234 6.8999998e-06 337 234 3.4999994e-06 340 234 1.0399999e-05 349 234 1.3899999e-05 350 234 0.0010302998 351 234 0.00029139989 354 234 3.119999e-05 356 234 0.00017689999 358 234 0.00031909999 369 234 6.8999998e-06 370 234 1.3899999e-05 372 234 0.00014919999 374 234 2.7799993e-05 380 234 3.4999994e-06 384 234 7.9799996e-05 385 234 6.8999998e-06 386 234 3.4999994e-06 387 234 2.0799998e-05 390 234 3.4999994e-06 394 234 6.8999998e-06 397 234 6.8999998e-06 402 234 4.1599997e-05 404 234 1.7299986e-05 414 234 0.00042319996 417 234 3.4699988e-05 419 234 3.4999994e-06 421 234 1.7299986e-05 422 234 2.7799993e-05 423 234 3.4999994e-06 425 234 3.4999994e-06 430 234 1.0399999e-05 431 234 6.8999998e-06 432 234 3.4999994e-06 433 234 6.8999998e-06 434 234 6.8999998e-06 441 234 8.6699991e-05 442 234 6.8999998e-06 443 234 0.0035903 444 234 7.6299999e-05 445 234 0.0046101995 446 234 0.0086861998 447 234 0.0020015999 448 234 0.033485599 449 234 3.4999994e-06 450 234 0.0018177 452 234 0.0066880994 453 234 0.012245297 454 234 0.0013979999 455 234 0.0072083995 456 234 0.0002462999 457 234 0.0045477971 458 234 0.00017689999 459 234 0.00058619981 460 234 0.0011377998 463 234 0.013358898 464 234 9.3699986e-05 465 234 0.00017689999 467 234 0.0081554987 468 234 0.0116001 469 234 0.0021402999 470 234 0.0023067999 471 234 0.00060359994 472 234 6.5899992e-05 473 234 4.8599992e-05 477 234 0.0001318 478 234 0.0001943 483 234 0.00077009993 489 234 0.00041279988 490 234 0.00018389999 18 235 0.00021619999 22 235 0.0057284981 23 235 0.00043229992 24 235 0.085170746 25 235 0.00010809999 60 235 0.0023778998 114 235 0.00010809999 126 235 0.00010809999 135 235 0.00010809999 160 235 0.00010809999 171 235 0.0048637986 191 235 0.00097279996 192 235 0.0064850971 193 235 0.00021619999 194 235 0.00010809999 198 235 0.0033505999 203 235 0.00010809999 206 235 0.00021619999 214 235 0.00043229992 215 235 0.00010809999 218 235 0.00010809999 220 235 0.00043229992 223 235 0.00010809999 231 235 0.013078298 233 235 0.0014050999 234 235 0.21379155 235 235 0.011565097 237 235 0.00086469995 241 235 0.020103797 242 235 0.00010809999 252 235 0.00021619999 254 235 0.0073497966 264 235 0.00021619999 266 235 0.00010809999 269 235 0.00021619999 272 235 0.0011888999 273 235 0.0069173984 277 235 0.0016212999 279 235 0.00010809999 282 235 0.00043229992 295 235 0.00010809999 300 235 0.0029183 301 235 0.0042152964 305 235 0.00010809999 312 235 0.00010809999 317 235 0.00010809999 322 235 0.00043229992 326 235 0.0036748999 328 235 0.00054039992 331 235 0.00097279996 332 235 0.00086469995 335 235 0.00021619999 336 235 0.00010809999 337 235 0.00010809999 340 235 0.00021619999 351 235 0.00010809999 354 235 0.00010809999 356 235 0.00010809999 358 235 0.00064849993 372 235 0.00010809999 402 235 0.00064849993 417 235 0.00010809999 421 235 0.00021619999 422 235 0.00010809999 434 235 0.00010809999 442 235 0.00010809999 443 235 0.011889298 444 235 0.0019454998 445 235 0.070146978 446 235 0.0070254989 447 235 0.0033505999 448 235 0.00021619999 450 235 0.0022697998 452 235 0.012105498 453 235 0.0088628978 454 235 0.00075659994 455 235 0.033073898 456 235 0.00054039992 457 235 0.0030264 458 235 0.0014050999 459 235 0.00054039992 460 235 0.0022697998 463 235 0.0155642 464 235 0.00054039992 465 235 0.00021619999 467 235 0.010808498 468 235 0.0056203976 469 235 0.0021616998 470 235 0.0019454998 471 235 0.0041071996 473 235 0.00010809999 477 235 0.00010809999 478 235 0.00064849993 483 235 0.00064849993 489 235 0.00010809999 490 235 0.00021619999 491 235 0.00021619999 18 236 0.0002194 22 236 0.0038389999 23 236 0.0015355998 24 236 0.0085553974 25 236 0.00010969999 60 236 0.0023033998 114 236 0.00010969999 117 236 0.0042776987 118 236 0.0036195999 119 236 0.0037292999 126 236 0.00010969999 130 236 0.00010969999 135 236 0.010749098 171 236 0.00010969999 189 236 0.00010969999 190 236 0.00010969999 191 236 0.084347844 192 236 0.0039486997 194 236 0.00010969999 198 236 0.013162199 203 236 0.00010969999 206 236 0.0002194 214 236 0.0063616969 218 236 0.00010969999 224 236 0.0026323998 225 236 0.00010969999 231 236 0.0002194 233 236 0.0014258998 234 236 0.15761757 235 236 0.0010968999 237 236 0.00065809977 241 236 0.0084457994 252 236 0.0002194 264 236 0.00032909983 267 236 0.0019742998 269 236 0.0002194 272 236 0.00043869996 273 236 0.055062 277 236 0.0028517998 279 236 0.00010969999 300 236 0.0043873973 301 236 0.0106395 315 236 0.00010969999 317 236 0.00010969999 326 236 0.0002194 334 236 0.0002194 340 236 0.0002194 349 236 0.00010969999 356 236 0.00010969999 358 236 0.00076779979 402 236 0.00032909983 417 236 0.00010969999 421 236 0.0002194 422 236 0.0042776987 434 236 0.00010969999 443 236 0.040912598 444 236 0.0028517998 445 236 0.044203099 446 236 0.0049357973 447 236 0.0031808999 448 236 0.0002194 450 236 0.0025227999 452 236 0.0062520988 453 236 0.0084457994 454 236 0.0017549999 455 236 0.047932398 456 236 0.00076779979 457 236 0.0029614998 458 236 0.0013161998 459 236 0.00010969999 460 236 0.0018646 463 236 0.0065810978 464 236 0.00032909983 465 236 0.00043869996 467 236 0.0086650997 468 236 0.0043873973 469 236 0.0019742998 470 236 0.0020839998 471 236 0.0040583983 473 236 0.00010969999 477 236 0.00010969999 478 236 0.00065809977 483 236 0.00098719983 489 236 0.00010969999 490 236 0.0002194 491 236 0.00032909983 9 237 1.7499988e-05 18 237 0.00068069994 22 237 0.00078539993 24 237 0.0018151999 25 237 0.0031241998 60 237 0.0055676997 79 237 1.7499988e-05 82 237 1.7499988e-05 83 237 1.7499988e-05 84 237 1.7499988e-05 108 237 1.7499988e-05 113 237 5.2399992e-05 114 237 8.7299995e-05 126 237 5.2399992e-05 127 237 1.7499988e-05 130 237 0.0065799989 131 237 1.7499988e-05 140 237 0.10304558 150 237 0.0003839999 151 237 0.00034909998 160 237 0.00017449999 189 237 5.2399992e-05 190 237 5.2399992e-05 192 237 5.2399992e-05 193 237 0.00099489978 194 237 6.9799993e-05 198 237 0.0011518998 200 237 3.4899989e-05 201 237 1.7499988e-05 203 237 6.9799993e-05 204 237 3.4899989e-05 206 237 6.9799993e-05 207 237 3.4899989e-05 214 237 0.030456398 222 237 0.022794299 223 237 0.0019373 224 237 0.0021292998 225 237 0.10222524 234 237 0.0021467998 237 237 0.0002269 239 237 0.0060912967 240 237 0.0051661991 241 237 0.0094772987 248 237 1.7499988e-05 250 237 1.7499988e-05 251 237 1.7499988e-05 252 237 0.0001222 272 237 0.00094249984 277 237 0.010314997 282 237 3.4899989e-05 284 237 3.4899989e-05 288 237 1.7499988e-05 312 237 1.7499988e-05 315 237 3.4899989e-05 319 237 0.00048869988 326 237 1.7499988e-05 349 237 1.7499988e-05 350 237 0.00095989997 356 237 0.00024429988 358 237 0.00095989997 384 237 3.4899989e-05 387 237 3.4899989e-05 402 237 0.0035430999 404 237 6.9799993e-05 414 237 0.00047119986 417 237 0.00027929991 419 237 1.7499988e-05 421 237 3.4899989e-05 422 237 6.9799993e-05 423 237 1.7499988e-05 425 237 1.7499988e-05 430 237 3.4899989e-05 431 237 1.7499988e-05 432 237 1.7499988e-05 433 237 3.4899989e-05 434 237 3.4899989e-05 443 237 0.0091979988 444 237 0.0014312 445 237 0.011938199 446 237 0.0023910999 447 237 0.0065450966 448 237 1.7499988e-05 450 237 0.0028275 452 237 0.0078191981 453 237 0.0026528998 454 237 0.0013438999 455 237 0.018134199 456 237 0.0002617999 457 237 0.0046425983 458 237 6.9799993e-05 459 237 0.0020420998 460 237 0.001309 463 237 0.0075049996 464 237 0.0011169999 465 237 0.0037175999 467 237 0.015900198 468 237 0.027297299 469 237 0.0041538998 470 237 0.0045029968 471 237 0.0021990999 473 237 8.7299995e-05 477 237 0.00061089988 478 237 0.00069809984 483 237 0.00085519999 489 237 5.2399992e-05 490 237 0.024469797 491 237 0.00041889981 24 238 0.0001967 60 238 0.0017698999 108 238 0.0001967 114 238 0.00039329985 126 238 0.0001967 130 238 0.075909495 131 238 0.0078662969 133 238 0.012192696 149 238 0.0019665998 150 238 0.0001967 171 238 0.018092398 187 238 0.0001967 189 238 0.0001967 190 238 0.0001967 192 238 0.012389399 194 238 0.00039329985 198 238 0.024778798 200 238 0.0001967 203 238 0.0001967 204 238 0.0001967 206 238 0.00039329985 214 238 0.017895799 219 238 0.0070795976 222 238 0.010816097 224 238 0.0330383 225 238 0.019075699 233 238 0.0031464999 234 238 0.0043265 238 238 0.00098329992 239 238 0.0001967 240 238 0.0214356 241 238 0.027925298 252 238 0.00039329985 270 238 0.0041297972 272 238 0.00078659994 277 238 0.0001967 340 238 0.00039329985 358 238 0.0031464999 387 238 0.0001967 417 238 0.00098329992 421 238 0.0001967 422 238 0.00039329985 437 238 0.0088495985 443 238 0.0045230985 444 238 0.0047197975 445 238 0.0090461969 446 238 0.00098329992 447 238 0.010226198 450 238 0.0060963966 452 238 0.0076695979 453 238 0.00078659994 454 238 0.0011798998 455 238 0.026745297 456 238 0.00039329985 457 238 0.0033431998 458 238 0.00098329992 459 238 0.00058999984 460 238 0.0011798998 463 238 0.0078662969 464 238 0.00078659994 465 238 0.0019665998 467 238 0.016322497 468 238 0.021632299 469 238 0.0074729994 470 238 0.0082595982 471 238 0.0011798998 473 238 0.0001967 477 238 0.0001967 478 238 0.0021631999 483 238 0.0019665998 490 238 0.0104228 21 239 0.0019607998 22 239 0.0039215982 25 239 0.0019607998 60 239 0.0058823973 130 239 0.0019607998 140 239 0.0156863 192 239 0.0019607998 198 239 0.0019607998 214 239 0.060784299 215 239 0.0019607998 218 239 0.0078430995 222 239 0.0039215982 224 239 0.0039215982 225 239 0.021568596 233 239 0.0019607998 234 239 0.031372499 236 239 0.0019607998 239 239 0.074509799 240 239 0.0156863 241 239 0.0058823973 277 239 0.0039215982 287 239 0.0019607998 334 239 0.0019607998 340 239 0.0019607998 349 239 0.0019607998 350 239 0.0019607998 443 239 0.013725497 444 239 0.0019607998 445 239 0.023529399 446 239 0.0039215982 447 239 0.0039215982 450 239 0.0019607998 452 239 0.033333298 453 239 0.0098038986 455 239 0.031372499 457 239 0.0019607998 463 239 0.0058823973 464 239 0.0019607998 467 239 0.0156863 468 239 0.0078430995 469 239 0.0058823973 470 239 0.0058823973 490 239 0.0078430995 491 239 0.019607797 0 240 0.00046659983 4 240 0.00015549999 9 240 3.8899991e-05 18 240 0.00011659999 21 240 0.0001944 22 240 0.001283 24 240 0.00093309977 25 240 7.7799996e-05 60 240 0.0031103999 79 240 3.8899991e-05 82 240 0.00011659999 83 240 3.8899991e-05 84 240 3.8899991e-05 88 240 0.00015549999 90 240 0.00011659999 104 240 7.7799996e-05 108 240 3.8899991e-05 113 240 7.7799996e-05 114 240 0.00015549999 115 240 3.8899991e-05 117 240 3.8899991e-05 126 240 7.7799996e-05 127 240 3.8899991e-05 130 240 0.028887998 131 240 0.0039268993 132 240 0.00050539989 133 240 0.00046659983 135 240 0.0001944 138 240 0.00031099981 139 240 0.0001944 140 240 0.0059486963 142 240 0.00042769988 143 240 0.00034989999 149 240 0.00050539989 150 240 0.00077759987 151 240 3.8899991e-05 152 240 3.8899991e-05 157 240 3.8899991e-05 158 240 0.00015549999 160 240 0.00077759987 161 240 3.8899991e-05 165 240 3.8899991e-05 169 240 0.00093309977 171 240 0.00077759987 186 240 7.7799996e-05 187 240 0.0018273999 188 240 0.0013218999 189 240 0.00015549999 190 240 0.00011659999 191 240 0.00042769988 192 240 0.0012053 193 240 7.7799996e-05 194 240 0.00023329999 197 240 0.00023329999 198 240 0.013685796 200 240 7.7799996e-05 201 240 3.8899991e-05 203 240 7.7799996e-05 204 240 0.00081649981 206 240 0.00015549999 207 240 7.7799996e-05 209 240 3.8899991e-05 214 240 0.053887997 218 240 0.00023329999 219 240 0.001283 221 240 3.8899991e-05 222 240 0.0059486963 223 240 0.0026826998 224 240 0.015435498 225 240 0.077293873 226 240 0.00038879993 227 240 0.0024883 228 240 7.7799996e-05 233 240 0.00023329999 234 240 0.0036546998 237 240 7.7799996e-05 239 240 0.0020607 240 240 0.028188199 241 240 0.031765196 242 240 3.8899991e-05 243 240 0.00062209996 248 240 3.8899991e-05 250 240 3.8899991e-05 251 240 3.8899991e-05 252 240 0.00050539989 254 240 3.8899991e-05 270 240 3.8899991e-05 271 240 0.00011659999 272 240 3.8899991e-05 273 240 0.00062209996 274 240 7.7799996e-05 276 240 0.0020994998 277 240 0.0088257976 282 240 0.0096422993 283 240 0.0001944 284 240 7.7799996e-05 292 240 7.7799996e-05 293 240 0.00011659999 296 240 7.7799996e-05 300 240 0.0001944 312 240 0.00015549999 313 240 3.8899991e-05 315 240 0.011003099 319 240 0.0020994998 322 240 0.00046659983 324 240 3.8899991e-05 326 240 0.0027604999 340 240 0.0020607 345 240 7.7799996e-05 348 240 7.7799996e-05 349 240 0.0026049998 350 240 7.7799996e-05 351 240 7.7799996e-05 354 240 3.8899991e-05 356 240 0.00027219998 357 240 3.8899991e-05 358 240 0.0020217998 372 240 7.7799996e-05 384 240 7.7799996e-05 385 240 3.8899991e-05 387 240 7.7799996e-05 393 240 3.8899991e-05 402 240 0.00027219998 414 240 0.00093309977 416 240 3.8899991e-05 417 240 0.00058319978 419 240 3.8899991e-05 421 240 7.7799996e-05 422 240 0.0001944 423 240 3.8899991e-05 425 240 3.8899991e-05 430 240 0.00042769988 431 240 3.8899991e-05 432 240 3.8899991e-05 433 240 3.8899991e-05 434 240 0.00011659999 437 240 3.8899991e-05 442 240 0.00015549999 443 240 0.0079315975 444 240 0.0033437 445 240 0.0087480992 446 240 0.0019828998 447 240 0.0077759996 448 240 3.8899991e-05 450 240 0.0037324999 452 240 0.01007 453 240 0.0033825999 454 240 0.0013218999 455 240 0.0315708 456 240 0.00038879993 457 240 0.0033047998 458 240 0.00050539989 459 240 0.00062209996 460 240 0.0014385998 463 240 0.0071539991 464 240 0.0023327998 465 240 0.0023716998 467 240 0.0146579 468 240 0.016990699 469 240 0.0063374974 470 240 0.0069595985 471 240 0.00089419982 473 240 0.00015549999 477 240 0.00015549999 478 240 0.0013218999 479 240 0.00011659999 483 240 0.0019439999 489 240 0.00011659999 490 240 0.0183126 491 240 0.0027215998 0 241 4.4299988e-05 2 241 0.00027469988 4 241 6.1999992e-05 9 241 8.8999996e-06 13 241 7.9799996e-05 16 241 8.8999996e-06 18 241 0.00013289999 19 241 1.7699989e-05 21 241 3.5399993e-05 22 241 0.00024809991 23 241 0.00058489991 24 241 0.00026589981 25 241 1.7699989e-05 60 241 0.0055033974 77 241 1.7699989e-05 79 241 8.8999996e-06 82 241 0.00016839999 83 241 1.7699989e-05 84 241 1.7699989e-05 90 241 8.8999996e-06 104 241 5.3199998e-05 107 241 2.6599999e-05 108 241 2.6599999e-05 110 241 3.5399993e-05 113 241 3.5399993e-05 114 241 7.0899987e-05 116 241 2.6599999e-05 118 241 0.0002216 119 241 9.7499986e-05 120 241 7.0899987e-05 126 241 3.5399993e-05 127 241 8.8999996e-06 130 241 0.012008198 131 241 0.0015419999 132 241 0.00021269999 133 241 0.0001241 135 241 1.7699989e-05 137 241 8.8999996e-06 138 241 3.5399993e-05 139 241 0.00027469988 140 241 9.7499986e-05 141 241 8.8999996e-06 142 241 0.00014179999 143 241 0.0001507 149 241 0.00025699986 150 241 0.0010279999 151 241 2.6599999e-05 152 241 0.0001772 157 241 8.8999996e-06 158 241 9.7499986e-05 159 241 0.0001772 160 241 0.00074439985 161 241 0.00052289991 162 241 2.6599999e-05 165 241 0.0001507 169 241 0.00068239984 170 241 0.00046079978 171 241 0.0037486998 172 241 2.6599999e-05 181 241 8.8999996e-06 184 241 5.3199998e-05 186 241 0.0001241 187 241 0.0040853992 188 241 0.0011254998 189 241 4.4299988e-05 190 241 9.7499986e-05 191 241 7.0899987e-05 192 241 0.0019673998 193 241 0.0015065998 194 241 0.0067705996 196 241 8.8999996e-06 197 241 0.001799 198 241 0.021012098 200 241 5.3199998e-05 201 241 2.6599999e-05 203 241 6.1999992e-05 204 241 0.00027469988 206 241 0.0001507 207 241 4.4299988e-05 209 241 3.5399993e-05 212 241 8.8999996e-06 214 241 0.041448098 215 241 0.00035449979 218 241 0.0001507 219 241 0.00084189977 221 241 0.00068239984 222 241 0.00011519999 223 241 0.00071779988 224 241 0.15698326 225 241 0.0032612998 226 241 0.00020379999 227 241 0.0010988999 228 241 3.5399993e-05 229 241 0.00047859992 230 241 2.6599999e-05 231 241 8.8599991e-05 232 241 4.4299988e-05 233 241 0.0021888998 234 241 0.0034385 237 241 0.00010629999 239 241 4.4299988e-05 240 241 0.0023749999 241 241 0.046685599 242 241 1.7699989e-05 243 241 7.0899987e-05 248 241 1.7699989e-05 250 241 1.7699989e-05 251 241 1.7699989e-05 252 241 0.0075504966 253 241 5.3199998e-05 254 241 2.6599999e-05 262 241 1.7699989e-05 263 241 8.8999996e-06 269 241 8.8999996e-06 270 241 0.00024809991 271 241 0.0003101998 272 241 8.8999996e-06 273 241 0.00042539998 274 241 0.0016128998 276 241 7.9799996e-05 277 241 0.0040322989 282 241 0.00080649997 283 241 6.1999992e-05 284 241 4.4299988e-05 285 241 4.4299988e-05 286 241 0.00018609999 287 241 3.5399993e-05 288 241 0.00033679977 289 241 0.00019499999 290 241 0.00021269999 292 241 0.0011342999 293 241 0.0014356999 294 241 0.00013289999 295 241 0.00018609999 296 241 0.00010629999 297 241 7.9799996e-05 298 241 6.1999992e-05 299 241 2.6599999e-05 300 241 0.00013289999 301 241 0.0001772 305 241 8.8999996e-06 307 241 2.6599999e-05 312 241 0.00066469982 313 241 8.8999996e-06 314 241 3.5399993e-05 315 241 0.0099520981 317 241 0.00042539998 319 241 0.0017014998 320 241 9.7499986e-05 321 241 5.3199998e-05 322 241 0.0029687998 324 241 7.9799996e-05 325 241 0.00094819977 326 241 0.0083126985 328 241 0.00010629999 330 241 8.8999996e-06 335 241 7.9799996e-05 336 241 8.8599991e-05 338 241 2.6599999e-05 340 241 0.0061768964 341 241 8.8999996e-06 344 241 8.8999996e-06 345 241 2.6599999e-05 347 241 3.5399993e-05 348 241 0.00060259993 349 241 0.0035979999 350 241 8.8599991e-05 351 241 5.3199998e-05 352 241 8.8999996e-06 353 241 8.8999996e-06 354 241 5.3199998e-05 355 241 8.8999996e-06 356 241 0.00058489991 357 241 1.7699989e-05 358 241 0.003146 363 241 8.8999996e-06 366 241 8.8999996e-06 369 241 8.8999996e-06 370 241 5.3199998e-05 371 241 2.6599999e-05 372 241 9.7499986e-05 373 241 2.6599999e-05 376 241 8.8999996e-06 380 241 1.7699989e-05 384 241 2.6599999e-05 385 241 0.0014799999 386 241 0.00035449979 387 241 2.6599999e-05 390 241 6.1999992e-05 392 241 0.0001241 393 241 0.00024809991 394 241 8.8999996e-06 397 241 1.7699989e-05 398 241 2.6599999e-05 402 241 4.4299988e-05 404 241 2.6599999e-05 405 241 0.00023929999 409 241 2.6599999e-05 414 241 0.00074439985 416 241 8.8999996e-06 417 241 0.00050509977 419 241 3.5399993e-05 420 241 8.8999996e-06 421 241 0.0001241 422 241 0.0001241 423 241 8.8999996e-06 424 241 2.6599999e-05 425 241 8.8999996e-06 426 241 8.8999996e-06 428 241 0.00023929999 430 241 0.00035449979 431 241 2.6599999e-05 432 241 1.7699989e-05 433 241 3.5399993e-05 434 241 4.4299988e-05 437 241 0.0004164998 438 241 1.7699989e-05 441 241 1.7699989e-05 442 241 0.0015596999 443 241 0.0089240968 444 241 0.0048209988 445 241 0.010873798 446 241 0.0012496 447 241 0.014968097 448 241 6.1999992e-05 449 241 8.8999996e-06 450 241 0.0045107976 452 241 0.012442399 453 241 0.0037308999 454 241 0.0012317998 455 241 0.030441299 456 241 0.00047859992 457 241 0.0022952999 458 241 0.00069119991 459 241 0.0013116 460 241 0.0013913999 463 241 0.014223699 464 241 0.0044753999 465 241 0.0025699998 467 241 0.0080467984 468 241 0.0087822974 469 241 0.0036334998 470 241 0.0048032999 471 241 0.0017547 473 241 7.0899987e-05 477 241 0.00053169997 478 241 0.0011077998 479 241 0.0016748998 483 241 0.00069119991 489 241 0.00010629999 490 241 0.00062029995 491 241 0.00093939994 9 242 0.0001121 22 242 0.00056059984 24 242 0.0001121 25 242 0.0001121 60 242 0.0029151 82 242 0.0001121 108 242 0.0001121 114 242 0.00022419999 126 242 0.0001121 130 242 0.066935778 131 242 0.0077362992 132 242 0.00022419999 140 242 0.0076241978 142 242 0.0001121 156 242 0.0001121 158 242 0.0001121 160 242 0.0001121 165 242 0.0001121 171 242 0.0001121 187 242 0.00022419999 189 242 0.0001121 190 242 0.0001121 192 242 0.00056059984 193 242 0.0001121 194 242 0.00044849981 197 242 0.0024665999 198 242 0.0065029971 200 242 0.0001121 203 242 0.0001121 204 242 0.0001121 206 242 0.00022419999 214 242 0.026908796 222 242 0.0107635 223 242 0.0011211999 224 242 0.0244422 225 242 0.072093248 233 242 0.0001121 234 242 0.0038120998 237 242 0.0001121 239 242 0.0025787998 240 242 0.013790797 241 242 0.0028029999 252 242 0.00056059984 272 242 0.00067269988 274 242 0.0001121 277 242 0.013118099 282 242 0.00056059984 284 242 0.0001121 307 242 0.0001121 312 242 0.0001121 315 242 0.00067269988 319 242 0.011324096 322 242 0.0077362992 324 242 0.0001121 326 242 0.0087453984 328 242 0.0001121 340 242 0.0052695982 349 242 0.00022419999 350 242 0.0001121 351 242 0.0001121 354 242 0.0001121 356 242 0.00033639977 358 242 0.0019059998 372 242 0.00022419999 385 242 0.0001121 387 242 0.0001121 402 242 0.00022419999 417 242 0.00056059984 421 242 0.0001121 422 242 0.00022419999 430 242 0.0001121 443 242 0.0061665997 444 242 0.0012333 445 242 0.0065029971 446 242 0.00067269988 447 242 0.0050453991 450 242 0.0034756998 452 242 0.0086332969 453 242 0.0030271998 454 242 0.0010090999 455 242 0.0225362 456 242 0.00044849981 457 242 0.0047089979 458 242 0.00078479992 459 242 0.00078479992 460 242 0.0014575999 463 242 0.009081699 464 242 0.00078479992 465 242 0.0014575999 467 242 0.011996899 468 242 0.023769498 469 242 0.0076241978 470 242 0.0084089972 471 242 0.0023544999 473 242 0.00022419999 477 242 0.0001121 478 242 0.0012333 479 242 0.0001121 483 242 0.0017938998 490 242 0.0056059994 491 242 0.00089699985 22 243 0.00066699996 25 243 0.0009527998 60 243 0.0021914998 82 243 0.41629344 104 243 0.0015244999 114 243 9.5299998e-05 126 243 9.5299998e-05 130 243 0.00028589997 142 243 9.5299998e-05 143 243 9.5299998e-05 160 243 0.00028589997 161 243 9.5299998e-05 188 243 0.0001906 189 243 9.5299998e-05 190 243 9.5299998e-05 194 243 9.5299998e-05 198 243 0.00057169981 206 243 0.0001906 214 243 0.052786998 218 243 0.012100998 223 243 0.0012386998 224 243 9.5299998e-05 230 243 0.020867098 231 243 0.014864199 234 243 0.0046688989 237 243 9.5299998e-05 240 243 9.5299998e-05 241 243 9.5299998e-05 243 243 0.08575505 252 243 9.5299998e-05 267 243 0.0031444 272 243 0.00028589997 277 243 0.0004763999 312 243 9.5299998e-05 350 243 9.5299998e-05 358 243 0.00076229987 422 243 9.5299998e-05 430 243 0.00028589997 442 243 0.00066699996 443 243 0.0078131966 444 243 0.0001906 445 243 0.016769897 446 243 0.0012386998 447 243 0.0014292998 450 243 0.0015244999 452 243 0.0059075989 453 243 0.0033348999 454 243 0.00038109999 455 243 0.052120097 456 243 9.5299998e-05 457 243 0.0035255 458 243 0.00057169981 459 243 0.00028589997 460 243 0.0004763999 463 243 0.0071462989 464 243 0.0001906 465 243 0.00076229987 467 243 0.0044782981 468 243 0.0010480999 469 243 0.0019057 470 243 0.0020009999 471 243 0.00085759978 473 243 9.5299998e-05 478 243 0.00076229987 483 243 0.0012386998 490 243 0.00076229987 491 243 0.0014292998 60 244 0.0025038 82 244 0.025538299 114 244 0.00050079986 130 244 0.075112641 131 244 0.00050079986 133 244 0.00050079986 135 244 0.0095142983 142 244 0.035553299 143 244 0.027541298 149 244 0.0010014998 158 244 0.00050079986 160 244 0.0045067966 161 244 0.047571398 188 244 0.070105195 192 244 0.00050079986 198 244 0.010015 206 244 0.00050079986 214 244 0.0075112991 218 244 0.0015022999 223 244 0.00050079986 224 244 0.0015022999 225 244 0.0015022999 230 244 0.0065097995 231 244 0.0015022999 234 244 0.0035052998 240 244 0.00050079986 241 244 0.014020998 243 244 0.17526287 244 244 0.0075112991 272 244 0.00050079986 277 244 0.010015 279 244 0.00050079986 317 244 0.0010014998 358 244 0.0010014998 443 244 0.0080119967 444 244 0.00050079986 445 244 0.010015 446 244 0.0015022999 450 244 0.0030044999 452 244 0.0055082999 453 244 0.00050079986 454 244 0.0015022999 455 244 0.045568399 457 244 0.0035052998 458 244 0.00050079986 460 244 0.0010014998 463 244 0.0080119967 464 244 0.00050079986 465 244 0.00050079986 467 244 0.0065097995 468 244 0.0020029999 469 244 0.0030044999 470 244 0.0035052998 471 244 0.00050079986 478 244 0.0015022999 483 244 0.0065097995 490 244 0.0010014998 491 244 0.00050079986 18 245 3.3199991e-05 22 245 6.6399996e-05 60 245 0.0011292 108 245 6.6399996e-05 114 245 0.00013279999 126 245 9.9599987e-05 130 245 0.0106606 131 245 0.0046494976 132 245 0.0028893 133 245 0.0055128969 139 245 0.020889398 141 245 0.0015608999 142 245 0.0029224998 143 245 0.0070737973 149 245 0.0027564999 150 245 0.0016272999 151 245 3.3199991e-05 161 245 0.0031881998 171 245 0.0027896999 188 245 0.0015940999 189 245 0.00019929999 190 245 0.0001661 192 245 0.0012951999 193 245 0.0011292 194 245 9.9599987e-05 196 245 3.3199991e-05 197 245 3.3199991e-05 198 245 0.0155425 200 245 3.3199991e-05 203 245 9.9599987e-05 204 245 9.9599987e-05 206 245 0.0001661 207 245 6.6399996e-05 209 245 3.3199991e-05 214 245 0.0025239999 219 245 0.007571999 224 245 3.3199991e-05 230 245 0.0009631 233 245 0.0010626998 234 245 0.0017269 237 245 0.00019929999 240 245 0.0220185 241 245 0.049217898 243 245 0.20706719 244 245 0.019826598 245 245 0.0063099973 246 245 6.6399996e-05 251 245 0.0022914999 272 245 0.0002325 279 245 0.00019929999 284 245 3.3199991e-05 292 245 0.0057453997 315 245 0.0062435977 317 245 0.00099629979 335 245 0.0017269 349 245 0.0057453997 356 245 6.6399996e-05 358 245 0.0011292 387 245 6.6399996e-05 402 245 6.6399996e-05 422 245 9.9599987e-05 430 245 3.3199991e-05 432 245 3.3199991e-05 433 245 6.6399996e-05 434 245 6.6399996e-05 437 245 0.0052804984 442 245 0.0029888998 443 245 0.0009631 444 245 0.0010626998 445 245 0.0096974969 446 245 0.00053139986 447 245 0.0039519966 450 245 0.0032213998 452 245 0.0038192 453 245 0.00033209985 454 245 0.0001661 455 245 0.035468798 456 245 0.00019929999 457 245 0.0055128969 458 245 0.0010958998 459 245 0.00053139986 460 245 0.00099629979 463 245 0.011523999 464 245 0.00073059998 465 245 0.0014944999 467 245 0.015011098 468 245 0.012453899 469 245 0.0034538999 470 245 0.0038855998 471 245 0.0011623998 473 245 9.9599987e-05 477 245 6.6399996e-05 478 245 0.0017269 483 245 0.0044169985 489 245 3.3199991e-05 490 245 0.00033209985 491 245 6.6399996e-05 60 246 0.0012084998 114 246 0.00060419994 130 246 0.047129899 131 246 0.027190298 132 246 0.0054380968 133 246 0.0018126999 139 246 0.062839866 143 246 0.031419899 145 246 0.0084591992 146 246 0.00060419994 149 246 0.0012084998 150 246 0.00060419994 171 246 0.00060419994 192 246 0.00060419994 198 246 0.022960696 206 246 0.00060419994 214 246 0.00060419994 219 246 0.010876097 222 246 0.00060419994 224 246 0.0012084998 225 246 0.00060419994 230 246 0.00060419994 234 246 0.0018126999 240 246 0.0277946 241 246 0.051963698 243 246 0.068277895 244 246 0.0054380968 245 246 0.00060419994 246 246 0.030815698 292 246 0.00060419994 315 246 0.00060419994 317 246 0.0012084998 349 246 0.00060419994 358 246 0.0012084998 377 246 0.00060419994 437 246 0.0012084998 444 246 0.00060419994 445 246 0.006646499 447 246 0.0048337989 450 246 0.0030210998 452 246 0.0036253999 453 246 0.00060419994 455 246 0.033232599 457 246 0.0042295977 458 246 0.00060419994 459 246 0.00060419994 460 246 0.0012084998 463 246 0.0096676983 464 246 0.00060419994 465 246 0.00060419994 467 246 0.0090633966 468 246 0.039879199 469 246 0.0060422979 470 246 0.0060422979 471 246 0.00060419994 478 246 0.0018126999 483 246 0.0060422979 490 246 0.0012084998 60 247 0.0012361 82 247 0.0074165985 114 247 0.0012361 130 247 0.063040793 131 247 0.0012361 133 247 0.034610599 139 247 0.0037082999 149 247 0.029666297 150 247 0.022249699 156 247 0.0012361 198 247 0.0173053 206 247 0.0012361 214 247 0.0012361 224 247 0.004944399 234 247 0.0037082999 243 247 0.31149566 317 247 0.0012361 358 247 0.0012361 382 247 0.0024722 437 247 0.009888798 445 247 0.0086526982 450 247 0.004944399 452 247 0.0037082999 453 247 0.0012361 455 247 0.028430197 457 247 0.004944399 460 247 0.0012361 463 247 0.0037082999 465 247 0.0012361 467 247 0.0086526982 468 247 0.0074165985 469 247 0.004944399 470 247 0.0061804987 471 247 0.0037082999 478 247 0.0012361 483 247 0.0037082999 490 247 0.0012361 491 247 0.0012361 60 248 0.0021007999 114 248 0.00030009984 126 248 0.00030009984 130 248 0.036914799 131 248 0.023109198 132 248 0.00030009984 133 248 0.016206499 135 248 0.00030009984 139 248 0.061224498 141 248 0.00030009984 142 248 0.021308497 156 248 0.0054021999 160 248 0.0024009999 161 248 0.0015005998 165 248 0.006902799 169 248 0.00030009984 171 248 0.0018006999 190 248 0.00030009984 192 248 0.016206499 194 248 0.00060019991 198 248 0.0066025965 206 248 0.00060019991 224 248 0.0057022981 234 248 0.0030011998 237 248 0.00030009984 241 248 0.076530576 243 248 0.017106798 248 248 0.027010798 272 248 0.00060019991 279 248 0.00030009984 284 248 0.00030009984 315 248 0.017106798 317 248 0.00090039987 319 248 0.072328866 322 248 0.00030009984 326 248 0.00030009984 358 248 0.0012004999 378 248 0.00030009984 419 248 0.00060019991 422 248 0.00030009984 437 248 0.027911197 442 248 0.021608599 443 248 0.0024009999 444 248 0.00060019991 445 248 0.013505399 447 248 0.0021007999 450 248 0.0045017973 452 248 0.0048018992 453 248 0.0012004999 454 248 0.00060019991 455 248 0.045618199 456 248 0.00030009984 457 248 0.0036013999 458 248 0.0021007999 459 248 0.00060019991 460 248 0.0015005998 463 248 0.034513798 464 248 0.00060019991 465 248 0.0012004999 467 248 0.0090035982 468 248 0.014405798 469 248 0.0057022981 470 248 0.0063024983 471 248 0.0021007999 473 248 0.00030009984 478 248 0.0015005998 483 248 0.0030011998 490 248 0.00060019991 491 248 0.00090039987 60 249 0.00085229985 114 249 0.00028409995 126 249 0.00028409995 130 249 0.025568198 131 249 0.0068181977 133 249 0.0065340996 139 249 0.11363637 141 249 0.00028409995 149 249 0.0011363998 150 249 0.0014205 156 249 0.0068181977 160 249 0.00028409995 190 249 0.00028409995 194 249 0.00028409995 198 249 0.0028408999 203 249 0.00028409995 206 249 0.0005681999 219 249 0.0073863976 224 249 0.00028409995 234 249 0.0022727 237 249 0.00028409995 241 249 0.093181789 243 249 0.076420486 248 249 0.00028409995 249 249 0.012784097 272 249 0.00028409995 277 249 0.00028409995 279 249 0.00028409995 284 249 0.00028409995 292 249 0.00028409995 317 249 0.0011363998 319 249 0.025284097 326 249 0.00028409995 358 249 0.0014205 422 249 0.00028409995 430 249 0.00028409995 434 249 0.00028409995 437 249 0.018181797 442 249 0.0088067986 443 249 0.0011363998 444 249 0.00028409995 445 249 0.010511398 447 249 0.00085229985 450 249 0.0056817979 452 249 0.0053976998 453 249 0.00085229985 455 249 0.0480114 456 249 0.00028409995 457 249 0.0034091 458 249 0.0005681999 459 249 0.00028409995 460 249 0.0017044998 463 249 0.014772698 464 249 0.0005681999 465 249 0.0014205 467 249 0.0085226968 468 249 0.0082385987 469 249 0.0048294999 470 249 0.0053976998 471 249 0.0025567999 473 249 0.00028409995 478 249 0.0019885998 483 249 0.0036931999 490 249 0.0005681999 60 250 0.0012578999 82 250 0.0012578999 114 250 0.00041929982 126 250 0.00041929982 130 250 0.027672999 131 250 0.018029399 133 250 0.0075471997 139 250 0.032285098 141 250 0.00041929982 142 250 0.00041929982 149 250 0.00083859987 150 250 0.00083859987 156 250 0.020545099 160 250 0.0096435994 161 250 0.00083859987 171 250 0.00041929982 188 250 0.00041929982 193 250 0.0037735999 198 250 0.018867899 206 250 0.00083859987 219 250 0.0075471997 224 250 0.00041929982 231 250 0.00041929982 234 250 0.0033542998 237 250 0.00041929982 241 250 0.064570189 243 250 0.092662454 249 250 0.00041929982 250 250 0.00041929982 251 250 0.00083859987 252 250 0.00041929982 272 250 0.00041929982 279 250 0.00041929982 290 250 0.0016770998 292 250 0.00041929982 298 250 0.0012578999 312 250 0.0033542998 315 250 0.00083859987 317 250 0.00083859987 319 250 0.015513599 322 250 0.012578599 326 250 0.018867899 358 250 0.0012578999 378 250 0.014255799 421 250 0.00083859987 424 250 0.0012578999 426 250 0.00041929982 437 250 0.0083856992 442 250 0.0012578999 443 250 0.0012578999 444 250 0.0037735999 445 250 0.021802898 447 250 0.020545099 450 250 0.0041928999 452 250 0.0037735999 455 250 0.031027298 456 250 0.00041929982 457 250 0.0037735999 458 250 0.00083859987 460 250 0.0012578999 463 250 0.012159299 464 250 0.00083859987 465 250 0.00041929982 467 250 0.010062899 468 250 0.019706499 469 250 0.0062892996 470 250 0.0075471997 471 250 0.0016770998 473 250 0.00041929982 478 250 0.0012578999 483 250 0.0041928999 490 250 0.00083859987 60 251 0.00065449998 82 251 0.033376999 114 251 0.00065449998 130 251 0.0032722999 133 251 0.00065449998 139 251 0.0032722999 142 251 0.00065449998 149 251 0.0013088998 150 251 0.0013088998 161 251 0.028141398 171 251 0.00065449998 188 251 0.0026177999 191 251 0.00065449998 193 251 0.0157068 198 251 0.0058900975 206 251 0.0013088998 214 251 0.0013088998 225 251 0.00065449998 230 251 0.00065449998 231 251 0.021596897 234 251 0.0045811981 237 251 0.00065449998 240 251 0.00065449998 241 251 0.0039266981 243 251 0.19437164 251 251 0.0058900975 312 251 0.0091622993 315 251 0.0078534 317 251 0.00065449998 319 251 0.0235602 358 251 0.0013088998 437 251 0.059554998 443 251 0.00065449998 445 251 0.0045811981 450 251 0.0045811981 452 251 0.0052355975 453 251 0.0019633998 455 251 0.038612597 457 251 0.0039266981 458 251 0.00065449998 460 251 -0.024869099 463 251 0.0065444969 464 251 0.0013088998 465 251 0.00065449998 467 251 0.0065444969 468 251 0.052355997 469 251 0.0052355975 470 251 0.0052355975 471 251 0.0019633998 478 251 0.0013088998 483 251 0.0019633998 490 251 0.00065449998 491 251 0.00065449998 4 252 2.8299997e-05 18 252 0.0011618 22 252 0.00042499998 24 252 0.006403897 25 252 0.00045339996 60 252 0.0098324977 82 252 2.8299997e-05 108 252 8.4999992e-05 114 252 0.00011329999 126 252 8.4999992e-05 130 252 0.00028339983 132 252 5.6699995e-05 135 252 2.8299997e-05 139 252 5.6699995e-05 150 252 0.00062339986 151 252 0.00085009984 156 252 2.8299997e-05 159 252 2.8299997e-05 160 252 0.0043920986 161 252 0.00039669988 162 252 0.00076509989 165 252 0.00036839978 169 252 0.0012750998 170 252 0.00022669999 171 252 0.010144196 172 252 0.0031452999 187 252 5.6699995e-05 189 252 8.4999992e-05 190 252 8.4999992e-05 192 252 0.0022384999 193 252 0.00076509989 194 252 0.00011329999 197 252 2.8299997e-05 198 252 0.01873 200 252 2.8299997e-05 203 252 5.6699995e-05 204 252 8.4999992e-05 206 252 0.00011329999 207 252 2.8299997e-05 214 252 0.015612997 218 252 2.8299997e-05 219 252 0.0016150998 223 252 0.0024368998 224 252 0.00028339983 227 252 2.8299997e-05 228 252 2.8299997e-05 233 252 0.0028902998 234 252 0.0026918999 237 252 0.00017 240 252 0.0012750998 241 252 0.059986997 242 252 0.0012750998 252 252 0.12668949 253 252 2.8299997e-05 263 252 0.00073669991 267 252 0.00070839981 268 252 0.00031169993 270 252 0.00042499998 271 252 2.8299997e-05 272 252 0.00073669991 273 252 0.0047603995 274 252 0.0009066998 277 252 0.0013317999 279 252 0.0010201 282 252 0.00028339983 283 252 8.4999992e-05 284 252 8.4999992e-05 285 252 2.8299997e-05 289 252 2.8299997e-05 290 252 0.0024935999 292 252 0.00025499985 293 252 0.00025499985 295 252 0.00011329999 296 252 0.00014169999 298 252 8.4999992e-05 312 252 0.00017 313 252 2.8299997e-05 315 252 0.0029753 317 252 0.00028339983 318 252 2.8299997e-05 319 252 0.00031169993 320 252 5.6699995e-05 322 252 5.6699995e-05 324 252 2.8299997e-05 325 252 2.8299997e-05 326 252 0.00014169999 328 252 8.4999992e-05 340 252 0.00036839978 345 252 0.0010483998 346 252 2.8299997e-05 349 252 0.00059509999 350 252 0.00082169985 351 252 5.6699995e-05 352 252 0.00011329999 354 252 5.6699995e-05 356 252 0.00022669999 357 252 2.8299997e-05 358 252 0.0030318999 369 252 2.8299997e-05 370 252 0.00031169993 372 252 8.4999992e-05 375 252 0.0013317999 377 252 0.00059509999 384 252 0.00017 385 252 8.4999992e-05 386 252 0.0010201 387 252 8.4999992e-05 393 252 5.6699995e-05 397 252 2.8299997e-05 398 252 5.6699995e-05 401 252 5.6699995e-05 402 252 0.00025499985 412 252 2.8299997e-05 414 252 0.00076509989 417 252 0.00042499998 419 252 0.0013885 420 252 2.8299997e-05 421 252 8.4999992e-05 422 252 8.4999992e-05 430 252 5.6699995e-05 433 252 2.8299997e-05 434 252 2.8299997e-05 442 252 8.4999992e-05 443 252 0.015131298 444 252 0.0011333998 445 252 0.011249296 446 252 0.00085009984 447 252 0.0041653998 450 252 0.0032869999 452 252 0.010710899 453 252 0.020628497 454 252 0.0017567999 455 252 0.038423397 456 252 0.00028339983 457 252 0.0035702998 458 252 0.0021819 459 252 0.0020684998 460 252 0.00082169985 463 252 0.012071099 464 252 0.0012750998 465 252 0.00079339999 467 252 0.015074696 468 252 0.014196299 469 252 0.0047320984 470 252 0.0053554997 471 252 0.0069138967 473 252 8.4999992e-05 477 252 0.00096339989 478 252 0.0010767998 483 252 0.0012467999 489 252 0.00014169999 490 252 0.00039669988 491 252 0.0042219982 9 253 4.7299996e-05 18 253 0.0002366 24 253 0.011972897 60 253 0.0037385998 82 253 4.7299996e-05 108 253 4.7299996e-05 114 253 9.4599993e-05 126 253 4.7299996e-05 150 253 0.00075719994 160 253 0.00037859986 162 253 0.0022715 169 253 0.0021768999 172 253 0.00099379988 189 253 4.7299996e-05 190 253 9.4599993e-05 192 253 0.0032179998 193 253 4.7299996e-05 194 253 0.00014199999 198 253 0.089867949 200 253 4.7299996e-05 203 253 4.7299996e-05 204 253 0.0036912998 206 253 0.00014199999 207 253 4.7299996e-05 214 253 0.033694599 233 253 0.0015143999 234 253 0.0053475983 237 253 0.00014199999 241 253 0.0048743971 252 253 0.00033129985 253 253 0.0031706998 267 253 0.0065779984 270 253 0.0020821998 273 253 0.015948098 276 253 9.4599993e-05 277 253 9.4599993e-05 279 253 0.0041171983 284 253 9.4599993e-05 314 253 0.0026027998 317 253 0.0010410999 326 253 4.7299996e-05 340 253 0.0056788996 349 253 0.0128721 356 253 0.00018929999 358 253 0.0035492999 384 253 4.7299996e-05 387 253 4.7299996e-05 402 253 4.7299996e-05 414 253 0.00094649987 417 253 0.00052059977 421 253 9.4599993e-05 422 253 4.7299996e-05 430 253 4.7299996e-05 433 253 4.7299996e-05 434 253 4.7299996e-05 442 253 0.0032652998 443 253 0.0387582 444 253 0.00014199999 445 253 0.015096299 446 253 0.0019403 447 253 0.00056789978 448 253 4.7299996e-05 450 253 0.0026974999 452 253 0.017604496 453 253 0.030145299 454 253 0.0022241999 455 253 0.0234253 456 253 0.00033129985 457 253 0.0026974999 458 253 0.00033129985 459 253 0.00080449996 460 253 0.00085179997 463 253 0.017415199 464 253 0.00018929999 465 253 0.00099379988 467 253 0.0090861991 468 253 0.0043537989 469 253 0.0031706998 470 253 0.0035019999 471 253 0.0010410999 472 253 0.00047319988 473 253 9.4599993e-05 477 253 4.7299996e-05 478 253 0.0012303998 483 253 0.0010883999 489 253 9.4599993e-05 490 253 0.00028389995 491 253 0.0077137984 18 254 0.00061059999 19 254 0.00088809989 21 254 5.5499986e-05 22 254 0.025312196 24 254 0.0511241 25 254 5.5499986e-05 60 254 0.034415796 68 254 0.00088809989 69 254 0.00044409977 73 254 0.00011099999 75 254 5.5499986e-05 108 254 5.5499986e-05 114 254 0.00011099999 126 254 5.5499986e-05 160 254 0.0017762999 169 254 0.0027754998 189 254 5.5499986e-05 190 254 5.5499986e-05 193 254 0.012323096 194 254 0.00011099999 200 254 5.5499986e-05 203 254 5.5499986e-05 204 254 5.5499986e-05 206 254 0.00011099999 214 254 0.025978398 219 254 0.0015542998 220 254 0.0023313998 224 254 0.0016097999 234 254 0.014654499 235 254 0.00272 237 254 0.00066609983 241 254 5.5499986e-05 242 254 0.0044406988 251 254 0.00011099999 252 254 5.5499986e-05 254 254 0.0020537998 270 254 0.0029419998 273 254 0.014987499 277 254 0.0032195 287 254 5.5499986e-05 295 254 0.0018872998 305 254 0.00016649999 320 254 0.0019427999 322 254 0.0013321999 324 254 0.00049959985 328 254 0.00055509992 331 254 0.0049957968 349 254 0.0011656999 350 254 0.0023868999 356 254 0.00038859993 358 254 0.00038859993 384 254 0.00016649999 386 254 0.0025533999 387 254 5.5499986e-05 402 254 0.00016649999 404 254 5.5499986e-05 414 254 0.00049959985 417 254 0.00016649999 422 254 5.5499986e-05 442 254 0.0044962987 443 254 0.0329725 444 254 0.0021094 445 254 0.0286428 446 254 0.0036636 447 254 0.0022759 448 254 0.00016649999 450 254 0.0021094 452 254 0.050402399 453 254 0.043297298 454 254 0.0032749998 455 254 0.016097698 456 254 0.00066609983 457 254 0.017596398 458 254 0.00038859993 459 254 0.0013321999 460 254 0.0018318 463 254 0.0085483976 464 254 0.0016097999 465 254 0.00044409977 467 254 0.018706597 468 254 0.0026089 469 254 0.0064945966 470 254 0.0020537998 471 254 0.0062169991 473 254 5.5499986e-05 477 254 0.0017762999 478 254 0.00061059999 483 254 0.00044409977 489 254 0.00044409977 490 254 0.00016649999 491 254 5.5499986e-05 18 255 0.00042859977 22 255 0.0021431998 24 255 0.051007297 60 255 0.0092155971 108 255 0.00021429999 114 255 0.00042859977 126 255 0.00021429999 160 255 0.0032146999 169 255 0.0021431998 189 255 0.00021429999 190 255 0.00021429999 194 255 0.00021429999 198 255 0.0062151998 206 255 0.00042859977 214 255 0.0070723966 218 255 0.00021429999 220 255 0.00064289989 233 255 0.0060008988 234 255 0.0098585971 235 255 0.0034290999 237 255 0.00042859977 240 255 0.0012858999 252 255 0.00021429999 254 255 0.00042859977 255 255 0.0032146999 260 255 0.0021431998 271 255 0.00021429999 272 255 0.0017144999 273 255 0.00085729989 277 255 0.0045005977 282 255 0.0019287998 283 255 0.00042859977 284 255 0.00021429999 292 255 0.00021429999 295 255 0.00042859977 297 255 0.00042859977 305 255 0.00085729989 322 255 0.0010715998 324 255 0.00042859977 326 255 0.010930099 328 255 0.0034290999 331 255 0.0045005977 335 255 0.0027860999 351 255 0.0017144999 354 255 0.0034290999 356 255 0.00042859977 358 255 0.0021431998 372 255 0.00085729989 387 255 0.00021429999 402 255 0.0021431998 417 255 0.00064289989 443 255 0.010501496 444 255 0.0070723966 445 255 0.034933597 446 255 0.0021431998 447 255 0.0062151998 448 255 0.00021429999 450 255 0.0038576999 452 255 0.025932297 453 255 0.076082289 454 255 0.00064289989 455 255 0.012430299 456 255 0.00042859977 457 255 0.0070723966 458 255 0.0012858999 459 255 0.00085729989 460 255 0.0077153966 463 255 0.0117874 464 255 0.00064289989 465 255 0.0012858999 467 255 0.0145735 468 255 0.0079296976 469 255 0.0057864971 470 255 0.0062151998 471 255 0.013501897 473 255 0.00021429999 478 255 0.0017144999 483 255 0.0017144999 490 255 0.00064289989 19 256 0.0012429999 24 256 0.011187099 60 256 0.0074579976 114 256 0.00062149996 160 256 0.0055934973 198 256 0.032939699 206 256 0.00062149996 214 256 0.070229948 223 256 0.025481697 233 256 0.013051599 234 256 0.0018644999 235 256 0.003729 240 256 0.0055934973 256 256 0.0031074998 263 256 0.0012429999 268 256 0.00062149996 272 256 0.0012429999 273 256 0.011808597 279 256 0.0018644999 340 256 0.0012429999 356 256 0.00062149996 358 256 0.0024859998 417 256 0.00062149996 443 256 0.0074579976 444 256 0.022374097 445 256 0.010565598 446 256 0.00062149996 447 256 0.028589197 450 256 0.0043504983 452 256 0.0149161 453 256 0.025481697 454 256 0.0018644999 455 256 0.016159099 457 256 0.011808597 458 256 0.0012429999 459 256 0.00062149996 460 256 0.0074579976 463 256 0.0074579976 464 256 0.0012429999 465 256 0.00062149996 467 256 0.010565598 468 256 0.013051599 469 256 0.0074579976 470 256 0.0074579976 471 256 0.003729 478 256 0.0012429999 483 256 0.0031074998 490 256 0.0012429999 18 257 0.00032939995 19 257 0.0013174999 21 257 0.056324098 22 257 0.0029644 24 257 0.072463751 60 257 0.0062581971 114 257 0.00032939995 126 257 0.00032939995 160 257 0.0059288964 169 257 0.012516499 193 257 0.00032939995 198 257 0.00032939995 206 257 0.00065879989 214 257 0.0108696 220 257 0.00032939995 234 257 0.0042818971 237 257 0.00065879989 240 257 0.00032939995 241 257 0.00032939995 257 257 0.030961797 267 257 0.00032939995 270 257 0.00032939995 272 257 0.00065879989 273 257 0.0075757988 275 257 0.0046112984 277 257 0.0023057 278 257 0.00032939995 282 257 0.00032939995 284 257 0.00032939995 286 257 0.00032939995 287 257 0.00032939995 288 257 0.00032939995 289 257 0.00098809996 290 257 0.0088932998 291 257 0.00032939995 301 257 0.0042818971 324 257 0.00032939995 326 257 0.00032939995 328 257 0.00065879989 331 257 0.00098809996 335 257 0.00065879989 340 257 0.00032939995 351 257 0.00032939995 354 257 0.00065879989 356 257 0.00032939995 358 257 0.0013174999 370 257 0.00098809996 402 257 0.00032939995 417 257 0.00032939995 443 257 0.024374198 444 257 0.00065879989 445 257 0.062582254 446 257 0.0023057 447 257 0.0082344972 450 257 0.0029644 452 257 0.014163397 453 257 0.0408432 454 257 0.00065879989 455 257 0.019104097 456 257 0.00032939995 457 257 0.0029644 458 257 0.00065879989 459 257 0.00065879989 460 257 0.0065875985 463 257 0.015151497 464 257 0.00065879989 465 257 0.00065879989 467 257 0.0079050995 468 257 0.0059288964 469 257 0.0059288964 470 257 0.0065875985 471 257 0.0016468999 473 257 0.00032939995 478 257 0.00098809996 483 257 0.0013174999 490 257 0.00065879989 491 257 0.0026349998 22 258 0.0040863976 24 258 0.061295997 60 258 0.0087565966 114 258 0.00058379979 160 258 0.004670199 169 258 0.0029189 198 258 0.0017512999 206 258 0.00058379979 214 258 0.0017512999 220 258 0.00058379979 223 258 0.00058379979 233 258 0.0011674999 234 258 0.006421499 237 258 0.0023351 240 258 0.0011674999 258 258 0.0017512999 268 258 0.004670199 272 258 0.0011674999 273 258 0.00058379979 277 258 0.0023351 282 258 0.0017512999 283 258 0.00058379979 295 258 0.00058379979 297 258 0.00058379979 305 258 0.00058379979 322 258 0.0011674999 326 258 0.00058379979 328 258 0.0035025999 331 258 0.004670199 335 258 0.0029189 351 258 0.0017512999 354 258 0.0029189 358 258 0.0017512999 372 258 0.00058379979 402 258 0.0023351 417 258 0.00058379979 443 258 0.012842998 444 258 0.0052538998 445 258 0.067133665 446 258 0.0023351 447 258 0.016929399 450 258 0.0035025999 452 258 0.018096898 453 258 0.060128398 455 258 0.0075889975 457 258 0.0035025999 458 258 0.0023351 459 258 0.00058379979 460 258 0.0075889975 463 258 0.004670199 464 258 0.00058379979 465 258 0.00058379979 467 258 0.011675399 468 258 0.0017512999 469 258 0.0058376975 470 258 0.0058376975 471 258 0.0040863976 478 258 0.0011674999 483 258 0.0017512999 490 258 0.0011674999 22 259 0.00040019979 24 259 0.036814697 25 259 0.00040019979 60 259 0.0052020997 114 259 0.00040019979 160 259 0.0016005998 198 259 0.028011199 206 259 0.00080029992 214 259 0.075630248 223 259 0.0028010998 224 259 0.00040019979 233 259 0.0024009999 234 259 0.0024009999 240 259 0.00040019979 241 259 0.00040019979 267 259 0.00080029992 268 259 0.0024009999 270 259 0.0016005998 272 259 0.00040019979 273 259 0.016406599 277 259 0.008803498 279 259 0.00080029992 282 259 0.00080029992 284 259 0.00040019979 288 259 0.00080029992 292 259 0.00080029992 295 259 0.00040019979 297 259 0.0012004999 298 259 0.00040019979 312 259 0.00080029992 315 259 0.00080029992 317 259 0.00040019979 319 259 0.00040019979 320 259 0.00040019979 321 259 0.0012004999 324 259 0.00040019979 340 259 0.00040019979 356 259 0.00040019979 358 259 0.0032012998 372 259 0.00080029992 380 259 0.00040019979 386 259 0.00040019979 415 259 0.00080029992 417 259 0.00040019979 422 259 0.010003999 443 259 0.012805097 444 259 0.0052020997 445 259 0.041216496 446 259 0.0016005998 447 259 0.0172069 450 259 0.0032012998 452 259 0.008803498 453 259 0.016006399 454 259 0.0024009999 455 259 0.016806699 457 259 0.0032012998 458 259 0.00040019979 459 259 0.00040019979 460 259 0.00080029992 463 259 0.0172069 464 259 0.00040019979 465 259 0.00080029992 467 259 0.0068026967 468 259 0.022409 469 259 0.0032012998 470 259 0.0032012998 471 259 0.0016005998 478 259 0.0012004999 483 259 0.0012004999 490 259 0.00040019979 491 259 0.00080029992 22 260 0.0012135999 24 260 0.0072815977 60 260 0.0060679987 114 260 0.0012135999 198 260 0.0097086988 206 260 0.0012135999 214 260 0.040048499 223 260 0.0133495 234 260 0.0048543997 260 260 0.0012135999 263 260 0.0024271999 267 260 0.0012135999 268 260 0.0133495 273 260 0.0133495 358 260 0.0072815977 417 260 0.0012135999 443 260 0.0097086988 444 260 0.0012135999 445 260 0.0097086988 446 260 0.0012135999 447 260 0.0048543997 450 260 0.0060679987 452 260 0.0097086988 453 260 0.016990297 454 260 0.0012135999 455 260 0.0072815977 457 260 0.0024271999 463 260 0.033980597 464 260 0.0012135999 465 260 0.0012135999 467 260 0.0097086988 468 260 0.0084950998 469 260 0.0097086988 470 260 0.0097086988 478 260 0.0024271999 483 260 0.0024271999 490 260 0.0012135999 491 260 0.0012135999 24 261 0.020134199 60 261 0.0033556998 114 261 0.0016778999 160 261 0.0033556998 198 261 0.011744998 206 261 0.0016778999 214 261 0.050335597 223 261 0.020134199 234 261 0.0050335974 263 261 0.026845597 268 261 0.0218121 272 261 0.0016778999 273 261 0.0083892979 284 261 0.0016778999 358 261 0.0067113973 417 261 0.0016778999 443 261 0.0067113973 444 261 0.0067113973 445 261 0.018456399 446 261 0.0016778999 447 261 0.036912799 450 261 0.0067113973 452 261 0.0083892979 453 261 0.020134199 455 261 0.010067098 457 261 0.0050335974 464 261 0.0016778999 465 261 0.0016778999 467 261 0.010067098 468 261 0.0067113973 469 261 0.0083892979 470 261 0.010067098 471 261 0.0016778999 478 261 0.0033556998 483 261 0.0033556998 490 261 0.0016778999 18 262 0.00038309977 22 262 0.0137931 24 262 0.047892697 60 262 0.0042145997 114 262 0.00038309977 126 262 0.00038309977 160 262 0.0015325998 198 262 0.016475096 206 262 0.0007662999 214 262 0.062835157 233 262 0.00038309977 234 262 0.0042145997 240 262 0.00038309977 241 262 0.0007662999 252 262 0.0007662999 262 262 0.0011493999 263 262 0.00038309977 268 262 0.0022988999 272 262 0.00038309977 273 262 0.023754798 277 262 0.0007662999 279 262 0.0007662999 284 262 0.00038309977 286 262 0.00038309977 287 262 0.00038309977 288 262 0.00038309977 289 262 0.0049807988 290 262 0.0084290989 291 262 0.00038309977 292 262 0.00038309977 294 262 0.00038309977 295 262 0.0007662999 315 262 0.00038309977 317 262 0.00038309977 326 262 0.00038309977 340 262 0.0007662999 356 262 0.00038309977 358 262 0.0038313998 385 262 0.023754798 386 262 0.0007662999 417 262 0.0007662999 438 262 0.014559399 443 262 0.014559399 444 262 0.0019156998 445 262 0.027969297 446 262 0.0030650999 447 262 0.013409998 450 262 0.0038313998 452 262 0.011494298 453 262 0.013026796 454 262 0.0026819999 455 262 0.017624497 456 262 0.00038309977 457 262 0.0030650999 458 262 0.00038309977 459 262 0.00038309977 460 262 0.0007662999 463 262 0.0038313998 464 262 0.0007662999 465 262 0.0011493999 467 262 0.0095784999 468 262 0.0019156998 469 262 0.0061302967 470 262 0.0068965964 471 262 0.0015325998 473 262 0.00038309977 478 262 0.0019156998 483 262 0.0019156998 490 262 0.0007662999 491 262 0.0019156998 21 263 0.00067749992 22 263 0.00067749992 24 263 0.014905099 25 263 0.00067749992 60 263 0.0060975999 114 263 0.00067749992 160 263 0.0013549998 198 263 0.012195099 206 263 0.0013549998 214 263 0.0616531 223 263 0.018292699 234 263 0.0033874998 241 263 0.0013549998 263 263 0.0040649995 268 263 0.018292699 272 263 0.00067749992 273 263 0.018970199 279 263 0.00067749992 284 263 0.00067749992 287 263 0.00067749992 349 263 0.00067749992 356 263 0.00067749992 358 263 0.0054200999 385 263 0.00067749992 393 263 0.00067749992 417 263 0.00067749992 420 263 0.0013549998 438 263 0.00067749992 443 263 0.013550099 444 263 0.00067749992 445 263 0.018970199 446 263 0.0013549998 447 263 0.0088075995 450 263 0.0047424994 452 263 0.010840099 453 263 0.017615199 454 263 0.0033874998 455 263 0.017615199 457 263 0.0027099999 460 263 0.00067749992 463 263 0.017615199 464 263 0.00067749992 465 263 0.0013549998 467 263 0.010162599 468 263 0.0094850995 469 263 0.0074525997 470 263 0.0074525997 471 263 0.0027099999 478 263 0.0020325 483 263 0.0020325 490 263 0.0013549998 491 263 0.00067749992 18 264 0.0002485998 22 264 0.00074589998 24 264 0.090377867 60 264 0.0031078998 108 264 0.00012429999 114 264 0.0002485998 126 264 0.00012429999 160 264 0.0016160998 169 264 0.00012429999 189 264 0.00012429999 190 264 0.00012429999 193 264 0.00012429999 194 264 0.00012429999 198 264 0.0013674998 203 264 0.00012429999 206 264 0.0002485998 214 264 0.0042267963 218 264 0.00012429999 223 264 0.00049729994 231 264 0.00037289993 233 264 0.0014918 234 264 0.0104426 235 264 0.00074589998 237 264 0.00099449977 240 264 0.00012429999 242 264 0.00012429999 252 264 0.00012429999 254 264 0.14022869 264 264 0.0012431999 265 264 0.00049729994 266 264 0.0012431999 269 264 0.0002485998 270 264 0.015290897 272 264 0.0012431999 273 264 0.033316799 276 264 0.00012429999 277 264 0.0037294999 317 264 0.00012429999 322 264 0.0039780997 326 264 0.005842898 332 264 0.00037289993 356 264 0.00037289993 358 264 0.00074589998 387 264 0.00012429999 402 264 0.00037289993 417 264 0.0002485998 422 264 0.00012429999 434 264 0.00012429999 438 264 0.00012429999 442 264 0.00037289993 443 264 0.034062698 444 264 0.0026105999 445 264 0.059298899 446 264 0.0041023977 447 264 0.0070859976 448 264 0.0002485998 450 264 0.0036052 452 264 0.0085777976 453 264 0.0068373978 454 264 0.00062159984 455 264 0.023744397 456 264 0.0013674998 457 264 0.0032321999 458 264 0.00099449977 459 264 0.00074589998 460 264 0.0021133998 463 264 0.031576298 464 264 0.00099449977 465 264 0.00087019987 467 264 0.017031297 468 264 0.005842898 469 264 0.0057184994 470 264 0.0060914978 471 264 0.0064643994 473 264 0.00012429999 478 264 0.0012431999 483 264 0.0011187999 489 264 0.0002485998 490 264 0.00049729994 9 265 5.2299991e-05 18 265 0.00036609988 22 265 0.0023534 24 265 0.035929099 60 265 0.0023534 82 265 5.2299991e-05 83 265 5.2299991e-05 84 265 5.2299991e-05 108 265 5.2299991e-05 114 265 0.0001046 120 265 5.2299991e-05 126 265 5.2299991e-05 130 265 5.2299991e-05 137 265 5.2299991e-05 150 265 0.00041839993 160 265 0.0015689998 169 265 0.0025626 189 265 5.2299991e-05 190 265 0.0001046 191 265 0.0001046 193 265 0.0046545975 194 265 0.00015689999 197 265 5.2299991e-05 198 265 5.2299991e-05 200 265 5.2299991e-05 203 265 0.0001046 204 265 0.0001046 206 265 0.0001046 207 265 5.2299991e-05 214 265 0.018147599 218 265 0.00015689999 223 265 0.0047068968 231 265 0.00020919999 233 265 0.0073740967 234 265 0.0088906996 235 265 0.0019872999 237 265 0.0010982999 240 265 0.0014644 242 265 0.0019872999 252 265 0.00015689999 254 265 0.078761578 264 265 0.0013597999 265 265 0.016212497 266 265 0.025103297 269 265 0.0013074998 270 265 0.0043407977 272 265 0.0010459998 273 265 0.0026671998 277 265 0.0151143 293 265 0.0001046 317 265 5.2299991e-05 319 265 5.2299991e-05 322 265 0.060875498 326 265 0.0001046 332 265 0.0025102999 340 265 0.00015689999 356 265 0.00041839993 358 265 0.0008890999 384 265 0.00094139995 386 265 0.0012551998 387 265 5.2299991e-05 394 265 5.2299991e-05 397 265 5.2299991e-05 402 265 0.00041839993 404 265 5.2299991e-05 417 265 0.00031379983 421 265 5.2299991e-05 422 265 0.00015689999 423 265 5.2299991e-05 430 265 5.2299991e-05 433 265 5.2299991e-05 434 265 5.2299991e-05 440 265 0.0001046 442 265 0.0020395999 443 265 0.0157419 444 265 0.0020919 445 265 0.041315798 446 265 0.0025626 447 265 0.0050729997 448 265 0.00015689999 450 265 0.0040269978 452 265 0.0055958964 453 265 0.0030332999 454 265 0.00067989994 455 265 0.031065296 456 265 0.0015689998 457 265 0.0028763998 458 265 0.00073219999 459 265 0.00052299979 460 265 0.0018304 463 265 0.0136499 464 265 0.0007844998 465 265 0.0008890999 467 265 0.014172897 468 265 0.0040792972 469 265 0.004236199 470 265 0.0047068968 471 265 0.0071125999 473 265 0.0001046 477 265 0.00020919999 478 265 0.0012029 483 265 0.00067989994 489 265 0.00031379983 490 265 0.00036609988 9 266 2.739999e-05 18 266 0.0002193 22 266 0.0041934997 24 266 0.10689318 60 266 0.0023023 79 266 2.739999e-05 82 266 2.739999e-05 83 266 2.739999e-05 84 266 2.739999e-05 108 266 2.739999e-05 113 266 5.4799995e-05 114 266 8.2199986e-05 126 266 5.4799995e-05 127 266 2.739999e-05 150 266 0.00032889983 151 266 2.739999e-05 160 266 0.0017815998 169 266 2.739999e-05 171 266 2.739999e-05 189 266 5.4799995e-05 190 266 8.2199986e-05 192 266 2.739999e-05 193 266 8.2199986e-05 194 266 0.00010959999 197 266 2.739999e-05 198 266 0.0013155998 200 266 5.4799995e-05 201 266 2.739999e-05 203 266 5.4799995e-05 204 266 2.739999e-05 206 266 0.00010959999 207 266 2.739999e-05 214 266 0.0024941999 218 266 0.00019189999 220 266 0.00043849996 223 266 0.0037823999 231 266 0.0015075 233 266 0.00010959999 234 266 0.010771498 235 266 5.4799995e-05 237 266 0.00073999981 241 266 8.2199986e-05 242 266 2.739999e-05 248 266 2.739999e-05 250 266 2.739999e-05 252 266 0.00010959999 254 266 0.23031378 265 266 0.00010959999 266 266 0.0048512965 270 266 0.00010959999 272 266 0.0012881998 273 266 0.0055090971 277 266 0.0002193 282 266 5.4799995e-05 284 266 2.739999e-05 301 266 2.739999e-05 317 266 2.739999e-05 322 266 0.0024667999 326 266 5.4799995e-05 328 266 8.2199986e-05 331 266 0.000137 332 266 0.0018638 335 266 2.739999e-05 336 266 2.739999e-05 340 266 2.739999e-05 351 266 0.000137 354 266 0.00010959999 358 266 0.0010688999 384 266 5.4799995e-05 386 266 8.2199986e-05 387 266 5.4799995e-05 394 266 2.739999e-05 397 266 2.739999e-05 402 266 0.00032889983 417 266 0.0002193 419 266 2.739999e-05 421 266 2.739999e-05 422 266 0.00010959999 423 266 2.739999e-05 425 266 2.739999e-05 430 266 2.739999e-05 431 266 2.739999e-05 433 266 2.739999e-05 434 266 2.739999e-05 438 266 0.00057559996 442 266 0.0026311998 443 266 0.033383597 444 266 0.002412 445 266 0.097793579 446 266 0.0064409971 447 266 0.0060024969 448 266 0.00019189999 450 266 0.0040290989 452 266 0.004714299 453 266 0.0012059999 454 266 0.00060299993 455 266 0.0260107 456 266 0.0011236998 457 266 0.0029600998 458 266 0.00071259984 459 266 0.00063039991 460 266 0.0027682998 463 266 0.010853797 464 266 0.002686 465 266 0.00060299993 467 266 0.014087997 468 266 0.0055090971 469 266 0.0054542981 470 266 0.0046319999 471 266 0.0046045966 473 266 0.00010959999 477 266 0.00010959999 478 266 0.0007948 483 266 0.0007948 489 266 0.0002193 490 266 0.00038369978 491 266 2.739999e-05 19 267 0.0012536999 21 267 0.00041789981 22 267 0.047221098 24 267 0.0589219 60 267 0.0058503971 114 267 0.00041789981 160 267 0.0025072999 169 267 0.026744697 192 267 0.0091934986 193 267 0.026744697 198 267 0.0071040988 206 267 0.00041789981 214 267 0.011282898 220 267 0.0029251999 233 267 0.0087755993 234 267 0.015043899 237 267 0.00041789981 240 267 0.00083579984 254 267 0.0020893998 265 267 0.00041789981 266 267 0.00083579984 267 267 0.0033431 270 267 0.00041789981 272 267 0.0029251999 273 267 0.0041788965 275 267 0.00041789981 277 267 0.0033431 282 267 0.0016714998 283 267 0.0016714998 289 267 0.0016714998 295 267 0.00041789981 296 267 0.00041789981 305 267 0.00041789981 317 267 0.00041789981 322 267 0.0025072999 328 267 0.00041789981 331 267 0.00083579984 340 267 0.00083579984 356 267 0.00041789981 358 267 0.00041789981 370 267 0.0016714998 386 267 0.0104471 402 267 0.0020893998 417 267 0.00041789981 443 267 0.042206399 444 267 0.014208097 445 267 0.028416198 446 267 0.0041788965 447 267 0.021729998 450 267 0.0025072999 452 267 0.032177199 453 267 0.071040452 454 267 0.0029251999 455 267 0.021729998 456 267 0.00083579984 457 267 0.0025072999 459 267 0.0012536999 460 267 0.0020893998 463 267 0.0075218976 464 267 0.00083579984 465 267 0.00041789981 467 267 0.0071040988 468 267 0.013790198 469 267 0.0033431 470 267 0.0029251999 471 267 0.0041788965 478 267 0.00083579984 483 267 0.00083579984 490 267 0.00041789981 22 268 0.0059717 24 268 0.097082376 60 268 0.0092133991 114 268 0.00017059999 160 268 0.0078484975 169 268 0.013137698 188 268 0.085650861 192 268 0.0061422996 193 268 0.0324177 206 268 0.0003411998 214 268 0.00051189982 220 268 0.00017059999 223 268 0.0054597966 231 268 0.0030711 233 268 0.0059717 234 268 0.0095546991 237 268 0.00051189982 240 268 0.00051189982 241 268 0.0040948987 242 268 0.0058010966 254 268 0.0010237 266 268 0.0063128993 272 268 0.00085309986 273 268 0.028322797 276 268 0.00017059999 277 268 0.0010237 282 268 0.00068249996 283 268 0.00017059999 295 268 0.00017059999 297 268 0.00017059999 305 268 0.00017059999 317 268 0.00017059999 322 268 0.0003411998 328 268 0.0010237 331 268 0.0013649999 332 268 0.0056303963 335 268 0.0010237 340 268 0.0018767999 351 268 0.00051189982 354 268 0.0010237 356 268 0.0003411998 358 268 0.00051189982 372 268 0.00017059999 384 268 0.00017059999 402 268 0.00068249996 417 268 0.00017059999 443 268 0.030882098 444 268 0.005289197 445 268 0.034123898 446 268 0.005289197 447 268 0.0059717 450 268 0.0022180998 452 268 0.018768098 453 268 0.026616599 454 268 0.0022180998 455 268 0.021497998 456 268 0.00068249996 457 268 0.0027298999 459 268 0.00051189982 460 268 0.0015355998 463 268 0.010237198 464 268 0.0068247989 465 268 0.00017059999 467 268 0.0066541992 468 268 0.0059717 469 268 0.0020474 470 268 0.0022180998 471 268 0.0035829998 478 268 0.00051189982 483 268 0.00051189982 489 268 0.00017059999 490 268 0.0003411998 491 268 0.00017059999 22 269 0.00033639977 24 269 0.057853997 60 269 0.0036999998 114 269 0.00033639977 126 269 0.00033639977 160 269 0.0057180971 188 269 0.0033635998 193 269 0.051126797 194 269 0.00033639977 206 269 0.00067269988 214 269 0.00033639977 218 269 0.00033639977 233 269 0.0043726973 234 269 0.0063908994 237 269 0.00067269988 241 269 0.0016817998 252 269 0.00033639977 254 269 0.0026908999 266 269 0.00033639977 269 269 0.0084089972 270 269 0.028254297 272 269 0.0010090999 276 269 0.016481698 277 269 0.00067269988 282 269 0.00033639977 284 269 0.00033639977 317 269 0.00033639977 322 269 0.00067269988 332 269 0.0023544999 340 269 0.0010090999 356 269 0.00033639977 358 269 0.012781698 386 269 0.0043726973 417 269 0.00067269988 443 269 0.0070635974 444 269 0.0057180971 445 269 0.043390498 446 269 0.053481299 447 269 0.0094180964 450 269 0.0057180971 452 269 0.013790797 453 269 0.0013454 454 269 0.0013454 455 269 0.021190699 456 269 0.00033639977 457 269 0.0050453991 458 269 0.00033639977 459 269 0.00067269988 460 269 0.0013454 463 269 0.042045098 464 269 0.0010090999 465 269 0.0010090999 467 269 0.011436298 468 269 0.019172598 469 269 0.0057180971 470 269 0.0063908994 471 269 0.016817998 473 269 0.00033639977 478 269 0.0016817998 483 269 0.0020181998 490 269 0.00067269988 18 270 0.00022099999 21 270 0.005857598 22 270 0.00033159996 24 270 0.014367796 60 270 0.0045313984 104 270 0.00066309981 108 270 0.0001105 114 270 0.0001105 120 270 0.0001105 126 270 0.0001105 130 270 0.025640998 131 270 0.016246699 142 270 0.00022099999 143 270 0.00033159996 150 270 0.0001105 160 270 0.00033159996 169 270 0.0001105 187 270 0.018346597 188 270 0.0011051998 189 270 0.00022099999 190 270 0.0001105 192 270 0.00055259978 193 270 0.0022103998 194 270 0.00022099999 198 270 0.012599498 203 270 0.0001105 204 270 0.0001105 206 270 0.00022099999 208 270 0.0001105 214 270 0.020004399 219 270 0.024425298 221 270 0.00066309981 224 270 0.0081785992 227 270 0.0020998998 233 270 0.0001105 234 270 0.0050839968 237 270 0.00033159996 240 270 0.00033159996 241 270 0.0036471998 242 270 0.0001105 252 270 0.00022099999 270 270 0.11063218 273 270 0.0011051998 277 270 0.0080680996 282 270 0.0016577998 283 270 0.00033159996 284 270 0.00033159996 285 270 0.0001105 286 270 0.00033159996 289 270 0.0062996969 290 270 0.0013263 292 270 0.00022099999 293 270 0.00055259978 294 270 0.002321 296 270 0.0001105 297 270 0.0001105 307 270 0.0011051998 312 270 0.00022099999 317 270 0.0001105 320 270 0.0001105 321 270 0.00033159996 322 270 0.00022099999 324 270 0.00044209999 325 270 0.0001105 326 270 0.00022099999 328 270 0.00022099999 335 270 0.0001105 338 270 0.00044209999 339 270 0.0001105 340 270 0.00055259978 347 270 0.00033159996 349 270 0.00088419998 350 270 0.00044209999 351 270 0.00044209999 352 270 0.0001105 354 270 0.0013263 356 270 0.00033159996 358 270 0.0028736 371 270 0.0001105 372 270 0.00066309981 373 270 0.00077369995 375 270 0.0011051998 387 270 0.0001105 393 270 0.0001105 402 270 0.00033159996 417 270 0.00033159996 422 270 0.0001105 424 270 0.0019893998 430 270 0.0001105 443 270 0.0087311976 444 270 0.0011051998 445 270 0.017020296 446 270 0.0013263 447 270 0.0097258985 450 270 0.0035366998 452 270 0.0099468976 453 270 0.0032050998 454 270 0.00099469977 455 270 0.037577398 456 270 0.00033159996 457 270 0.0028736 458 270 0.00088419998 459 270 0.00033159996 460 270 0.002321 463 270 0.0172414 464 270 0.00055259978 465 270 0.00088419998 467 270 0.0119363 468 270 0.016799297 469 270 0.0059681982 470 270 0.0065207966 471 270 0.0054155998 473 270 0.0001105 477 270 0.0001105 478 270 0.0011051998 483 270 0.0025419998 490 270 0.00055259978 491 270 0.0039787963 4 271 0.0001318 17 271 0.0017127998 18 271 0.00026349979 22 271 0.00065879989 24 271 0.049407098 60 271 0.0044795983 108 271 0.0001318 114 271 0.00026349979 117 271 0.0001318 118 271 0.0001318 119 271 0.0042160973 126 271 0.0001318 130 271 0.00052699982 135 271 0.00065879989 160 271 0.0018445 169 271 0.00026349979 171 271 0.0023714998 172 271 0.0038208 186 271 0.0039525963 189 271 0.0001318 190 271 0.0001318 191 271 0.0088273995 192 271 0.0001318 194 271 0.00026349979 198 271 0.014360998 203 271 0.0001318 206 271 0.00026349979 214 271 0.049143597 219 271 0.032938097 224 271 0.012121197 225 271 0.00092229992 227 271 0.0052700974 234 271 0.016205497 237 271 0.00026349979 239 271 0.0001318 240 271 0.0054017976 241 271 0.027667999 252 271 0.00026349979 254 271 0.013043497 267 271 0.0001318 270 271 0.0014493 271 271 0.0028986 272 271 0.0001318 273 271 0.0038208 274 271 0.0001318 276 271 0.0068510994 277 271 0.0061923973 282 271 0.0001318 283 271 0.0001318 284 271 0.00026349979 285 271 0.0080368966 300 271 0.0001318 301 271 0.00039529987 315 271 0.0060605966 317 271 0.00026349979 322 271 0.0043477975 326 271 0.0001318 328 271 0.0001318 331 271 0.00026349979 337 271 0.00026349979 340 271 0.0001318 349 271 0.0001318 354 271 0.0001318 356 271 0.00039529987 358 271 0.0018445 386 271 0.0047430992 387 271 0.0001318 417 271 0.00039529987 422 271 0.00026349979 434 271 0.0001318 442 271 0.0038208 443 271 0.015942 444 271 0.0064558983 445 271 0.058893297 446 271 0.0035573 447 271 0.0044795983 448 271 0.0001318 450 271 0.0035573 452 271 0.011989497 453 271 0.0054017976 454 271 0.0018445 455 271 0.027536198 456 271 0.00026349979 457 271 0.0038208 458 271 0.00092229992 459 271 0.00092229992 460 271 0.0019762998 463 271 0.0094861984 464 271 0.0013174999 465 271 0.0010539999 467 271 0.0118577 468 271 0.012252998 469 271 0.0048747994 470 271 0.0048747994 471 271 0.002108 473 271 0.0001318 477 271 0.0001318 478 271 0.0015809999 483 271 0.0014493 490 271 0.00052699982 491 271 0.0046112984 13 272 0.0001356 18 272 0.00027109985 21 272 0.0001356 22 272 0.00027109985 24 272 0.011522297 25 272 0.0001356 60 272 0.0020333 82 272 0.00054219994 108 272 0.0001356 114 272 0.0001356 119 272 0.00027109985 120 272 0.00067779981 126 272 0.0001356 130 272 0.0035244999 131 272 0.00040669995 135 272 0.0085400976 138 272 0.0001356 140 272 0.00067779981 143 272 0.0001356 150 272 0.0001356 160 272 0.0013555998 161 272 0.0001356 169 272 0.0001356 171 272 0.06466037 172 272 0.0001356 186 272 0.0040666983 187 272 0.0001356 188 272 0.0001356 189 272 0.0001356 190 272 0.0001356 191 272 0.056255899 192 272 0.0001356 193 272 0.00027109985 194 272 0.00054219994 197 272 0.0020333 198 272 0.0126068 200 272 0.0001356 203 272 0.0001356 204 272 0.0001356 206 272 0.00027109985 214 272 0.0094889998 218 272 0.00040669995 219 272 0.0044733994 222 272 0.00081329979 223 272 0.00067779981 224 272 0.0036599999 225 272 0.036057997 227 272 0.0001356 231 272 0.0001356 233 272 0.0001356 234 272 0.0066422969 237 272 0.00040669995 239 272 0.0048799999 240 272 0.0032533999 241 272 0.0044733994 243 272 0.00067779981 252 272 0.00027109985 254 272 0.00054219994 271 272 0.0070488974 272 272 0.0028466999 273 272 0.0010845 274 272 0.0040666983 276 272 0.00040669995 277 272 0.0032533999 279 272 0.00054219994 282 272 0.0010845 284 272 0.00040669995 285 272 0.00040669995 293 272 0.0001356 301 272 0.00027109985 312 272 0.0001356 315 272 0.0014910998 317 272 0.0001356 319 272 0.00027109985 322 272 0.00027109985 326 272 0.00054219994 340 272 0.00040669995 349 272 0.00027109985 356 272 0.00040669995 358 272 0.0029821999 386 272 0.00027109985 387 272 0.0001356 402 272 0.00027109985 404 272 0.0001356 414 272 0.0001356 417 272 0.00054219994 421 272 0.0001356 422 272 0.0001356 430 272 0.0001356 434 272 0.0001356 437 272 0.0001356 442 272 0.0001356 443 272 0.013284497 444 272 0.00094889989 445 272 0.035515796 446 272 0.0027110998 447 272 0.0014910998 450 272 0.0046088994 452 272 0.0085400976 453 272 0.0020333 454 272 0.00067779981 455 272 0.0322624 456 272 0.00054219994 457 272 0.0028466999 458 272 0.00081329979 459 272 0.00054219994 460 272 0.00122 463 272 0.0070488974 464 272 0.00067779981 465 272 0.00122 467 272 0.010573398 468 272 0.0043377988 469 272 0.0066422969 470 272 0.0074555986 471 272 0.00244 473 272 0.0001356 477 272 0.0001356 478 272 0.0014910998 483 272 0.0020333 490 272 0.0040666983 491 272 0.0010845 19 273 0.014090497 21 273 0.0002135 22 273 0.0017078998 23 273 0.00042699999 24 273 0.075362861 25 273 0.043552499 60 273 0.0070452988 114 273 0.0002135 126 273 0.0002135 160 273 0.0019214 169 273 0.00042699999 188 273 0.0034158998 192 273 0.0002135 193 273 0.013876997 206 273 0.00042699999 214 273 0.0215628 215 273 0.0002135 218 273 0.0002135 220 273 0.0010674999 223 273 0.0002135 224 273 0.00064049987 225 273 0.0002135 231 273 0.0002135 233 273 0.0002135 234 273 0.0098206997 237 273 0.0010674999 241 273 0.0002135 242 273 0.00042699999 254 273 0.0029888998 257 273 0.0002135 266 273 0.0002135 267 273 0.0017078998 268 273 0.0002135 270 273 0.00042699999 273 273 0.047395397 276 273 0.00085399998 277 273 0.048676297 282 273 0.0010674999 283 273 0.0002135 284 273 0.0002135 295 273 0.0002135 301 273 0.0002135 305 273 0.0002135 312 273 0.00064049987 322 273 0.00064049987 326 273 0.0002135 328 273 0.0014944 331 273 0.0023484 332 273 0.0019214 335 273 0.00042699999 336 273 0.0002135 337 273 0.0002135 351 273 0.0002135 354 273 0.0002135 356 273 0.00042699999 358 273 0.0010674999 402 273 0.00042699999 417 273 0.0002135 442 273 0.0002135 443 273 0.056789096 444 273 0.00085399998 445 273 0.058069997 446 273 0.0053372979 447 273 0.001281 450 273 0.0021348998 452 273 0.0213493 453 273 0.019214299 454 273 0.0027753999 455 273 0.016865898 456 273 0.00042699999 457 273 0.0040563978 458 273 0.0010674999 459 273 0.0010674999 460 273 0.0017078998 463 273 0.0098206997 464 273 0.0002135 465 273 0.0002135 467 273 0.011528596 468 273 0.0014944 469 273 0.0029888998 470 273 0.0029888998 471 273 0.0023484 473 273 0.0002135 478 273 0.00085399998 483 273 0.00085399998 489 273 0.00042699999 490 273 0.00042699999 491 273 0.00085399998 18 274 0.00027009984 21 274 0.00027009984 22 274 0.00081029977 24 274 0.010263298 25 274 0.0054017976 60 274 0.0035110998 104 274 0.0024307999 107 274 0.00054019992 108 274 0.00013499999 114 274 0.00027009984 126 274 0.00013499999 130 274 0.014989898 159 274 0.0010803998 160 274 0.0032410999 169 274 0.00040509994 171 274 0.00013499999 186 274 0.0010803998 187 274 0.0171506 190 274 0.00013499999 191 274 0.0033761 192 274 0.0066171996 193 274 0.011343699 194 274 0.00013499999 198 274 0.0094530992 206 274 0.00027009984 214 274 0.011073597 219 274 0.0540176 223 274 0.0059418976 224 274 0.0239028 225 274 0.0031059999 231 274 0.00013499999 233 274 0.00054019992 234 274 0.0054017976 237 274 0.00013499999 241 274 0.031330198 252 274 0.011748798 254 274 0.00094529986 257 274 0.00013499999 265 274 0.00027009984 266 274 0.00027009984 267 274 0.0016204999 270 274 0.0033761 273 274 0.0094530992 276 274 0.00013499999 277 274 0.0059418976 284 274 0.00027009984 290 274 0.0013503998 293 274 0.0118839 322 274 0.013774499 325 274 0.0082376972 334 274 0.00013499999 340 274 0.00013499999 347 274 0.00013499999 350 274 0.00054019992 356 274 0.00040509994 358 274 0.0017555999 387 274 0.00013499999 417 274 0.00027009984 422 274 0.00013499999 443 274 0.014449697 444 274 0.0010803998 445 274 0.0201215 446 274 0.0018906 447 274 0.0064820983 450 274 0.0028358998 452 274 0.019446298 453 274 0.023092497 454 274 0.0022956999 455 274 0.034571197 456 274 0.00027009984 457 274 0.0029709998 458 274 0.0010803998 459 274 0.00067519979 460 274 0.0012153999 463 274 0.015529998 464 274 0.00054019992 465 274 0.00054019992 467 274 0.0074273981 468 274 0.0059418976 469 274 0.0033761 470 274 0.0037811999 471 274 0.0014854998 473 274 0.00013499999 478 274 0.00081029977 483 274 0.00081029977 490 274 0.00040509994 491 274 0.0081025995 19 275 0.019535098 21 275 0.012116697 22 275 0.0039564967 24 275 0.044263098 25 275 0.0046982989 60 275 0.0059346966 114 275 0.0002472999 120 275 0.0002472999 126 275 0.0002472999 130 275 0.00074179983 131 275 0.00049459981 160 275 0.0029673998 169 275 0.0061819963 187 275 0.0002472999 192 275 0.0002472999 193 275 0.0061819963 198 275 0.0037091998 206 275 0.00049459981 214 275 0.010632999 218 275 0.0002472999 219 275 0.00074179983 223 275 0.0002472999 224 275 0.0027200999 233 275 0.0002472999 234 275 0.0044509992 241 275 0.0002472999 254 275 0.00049459981 257 275 0.0024728 267 275 0.0093965977 270 275 0.0066765994 273 275 0.064787269 275 275 0.0064292997 277 275 0.005687397 284 275 0.0002472999 289 275 0.022255197 301 275 0.00049459981 340 275 0.0002472999 349 275 0.0022254998 356 275 0.0002472999 358 275 0.0014836998 370 275 0.025717098 386 275 0.0002472999 417 275 0.0002472999 443 275 0.051186897 444 275 0.00074179983 445 275 0.037091997 446 275 0.0029673998 447 275 0.0096438974 450 275 0.0027200999 452 275 0.015084099 453 275 0.019287799 454 275 0.00098909996 455 275 0.017062299 457 275 0.0027200999 458 275 0.00049459981 459 275 0.00049459981 460 275 0.0017309999 463 275 0.014836799 464 275 0.00049459981 465 275 0.0002472999 467 275 0.0071710981 468 275 0.0022254998 469 275 0.0044509992 470 275 0.0046982989 471 275 0.0042037964 473 275 0.0002472999 478 275 0.00049459981 483 275 0.00098909996 490 275 0.00049459981 491 275 0.0022254998 21 276 0.00059769978 24 276 0.0101614 25 276 0.00059769978 60 276 0.0023908999 114 276 0.00059769978 118 276 0.00059769978 130 276 0.0017931999 131 276 0.0011954999 160 276 0.0011954999 187 276 0.00059769978 193 276 0.050806899 198 276 0.0059772991 206 276 0.00059769978 214 276 0.023311399 219 276 0.0041840971 224 276 0.0035863998 233 276 0.0059772991 234 276 0.0059772991 241 276 0.00059769978 252 276 0.00059769978 268 276 0.0203228 270 276 0.0071726963 272 276 0.00059769978 273 276 0.0017931999 276 276 0.083084285 277 276 0.0017931999 284 276 0.00059769978 289 276 0.00059769978 300 276 0.0017931999 301 276 0.00059769978 326 276 0.026300099 340 276 0.0011954999 356 276 0.00059769978 358 276 0.0023908999 417 276 0.00059769978 443 276 0.011954598 444 276 0.0101614 445 276 0.022713698 447 276 0.028690998 450 276 0.0047817975 452 276 0.011356797 453 276 0.0173341 454 276 0.0011954999 455 276 0.034070499 457 276 0.0029885999 459 276 0.019724999 460 276 0.00059769978 463 276 0.037059199 464 276 0.0011954999 465 276 0.00059769978 467 276 0.0083681978 468 276 0.0029885999 469 276 0.0053795986 470 276 0.0053795986 471 276 0.0029885999 478 276 0.0011954999 483 276 0.0017931999 490 276 0.00059769978 491 276 0.00059769978 9 277 1.17e-05 16 277 3.8999997e-06 18 277 0.00011659999 19 277 0.057920396 21 277 0.00047409977 22 277 0.027266096 23 277 0.00014769999 24 277 0.0018845999 25 277 0.0011034999 60 277 0.0140002 66 277 1.5499987e-05 79 277 3.8999997e-06 82 277 1.17e-05 83 277 7.7999994e-06 84 277 7.7999994e-06 108 277 1.9399988e-05 113 277 1.9399988e-05 114 277 6.6099994e-05 126 277 2.7199989e-05 127 277 3.8999997e-06 150 277 0.00035749981 151 277 2.7199989e-05 153 277 1.17e-05 154 277 0.0001127 160 277 0.0020826999 161 277 6.9899994e-05 165 277 0.00057119993 169 277 0.0011656999 171 277 0.000101 172 277 0.0002293 183 277 0.00058669993 189 277 6.6099994e-05 190 277 6.6099994e-05 192 277 1.5499987e-05 194 277 4.269999e-05 195 277 0.00039629987 196 277 1.17e-05 197 277 7.7999994e-06 198 277 0.00054399995 200 277 1.9399988e-05 201 277 7.7999994e-06 203 277 0.00034189993 204 277 4.269999e-05 206 277 0.00048179994 207 277 2.3299988e-05 209 277 7.7999994e-06 214 277 0.020030897 218 277 5.0499992e-05 223 277 0.00064109988 224 277 2.3299988e-05 233 277 0.00048959977 234 277 0.0049153976 237 277 6.9899994e-05 240 277 0.00048569986 241 277 0.00042349985 242 277 0.0002137 248 277 7.7999994e-06 250 277 3.8999997e-06 251 277 4.6599991e-05 252 277 0.00011659999 262 277 3.8999997e-06 263 277 3.8999997e-06 267 277 0.0029958999 270 277 0.0017990998 272 277 0.00076159998 273 277 0.0011463 276 277 0.00013209999 277 277 0.17267716 278 277 0.019902598 279 277 0.0001049 280 277 0.00092479982 281 277 1.9399988e-05 282 277 0.012259398 283 277 0.00037299981 284 277 0.0022421 285 277 3.8999997e-06 286 277 0.00062949979 287 277 0.00045849988 288 277 0.0045229979 289 277 0.0016786 290 277 0.010495298 291 277 0.0015153999 292 277 0.00015149999 293 277 0.000101 294 277 1.5499987e-05 295 277 0.0018728999 296 277 7.7999994e-06 297 277 3.499999e-05 298 277 7.7999994e-06 300 277 0.0001088 301 277 0.00037299981 302 277 0.00018259999 303 277 0.0001127 306 277 0.00032249978 307 277 3.8999997e-06 308 277 0.00033029984 309 277 8.5499996e-05 310 277 0.0004778998 312 277 0.0068737976 313 277 3.8999997e-06 315 277 0.0018223999 317 277 0.000101 318 277 0.0001088 319 277 0.00038859993 320 277 0.0018145998 321 277 0.0022926 322 277 0.0019622999 324 277 0.00086649996 326 277 0.0067805983 328 277 7.7999994e-06 330 277 3.8999997e-06 331 277 3.8999997e-06 333 277 3.8999997e-06 336 277 0.00024869991 337 277 0.00083929999 338 277 0.000101 339 277 0.00012819999 340 277 0.0039866976 341 277 0.0001088 342 277 0.00068779988 343 277 0.00082379999 349 277 0.00030309986 350 277 0.0035593 351 277 0.0033572998 352 277 0.0021060999 353 277 1.9399988e-05 354 277 0.0045384988 355 277 0.00036139996 356 277 0.00042349985 357 277 0.00012049999 358 277 0.0026305998 359 277 0.0014260998 362 277 5.0499992e-05 363 277 0.000101 368 277 0.00013989999 370 277 0.0017018998 371 277 0.00058669993 372 277 0.0001049 373 277 0.00091309985 374 277 0.00047019986 375 277 0.0026655998 376 277 0.00011659999 380 277 3.8999997e-06 384 277 0.0032017999 385 277 0.00027199998 386 277 0.00013989999 387 277 3.1099989e-05 393 277 3.8999997e-06 394 277 3.8999997e-06 395 277 0.00013599999 397 277 3.8999997e-06 402 277 3.1099989e-05 404 277 2.3299988e-05 408 277 0.00083929999 409 277 4.269999e-05 412 277 9.3299997e-05 413 277 0.00062169996 414 277 0.00082379999 415 277 0.00017489999 417 277 0.00024479977 419 277 0.0001088 421 277 0.00014379999 422 277 3.8899991e-05 423 277 3.8999997e-06 425 277 3.8999997e-06 430 277 1.9399988e-05 431 277 7.7999994e-06 432 277 7.7999994e-06 433 277 1.9399988e-05 434 277 2.3299988e-05 438 277 0.00029139989 441 277 0.00014769999 442 277 8.9399997e-05 443 277 0.037411597 444 277 0.0020088998 445 277 0.0133591 446 277 0.008540798 447 277 0.0046472996 448 277 0.0002176 449 277 3.8999997e-06 450 277 0.0018106999 452 277 0.016898997 453 277 0.014497597 454 277 0.0019701 455 277 0.0368676 456 277 0.00026809983 457 277 0.0021448999 458 277 0.00040019979 459 277 0.00054009981 460 277 0.0022964999 463 277 0.0014648999 464 277 0.0019583998 465 277 0.00076159998 467 277 0.011863098 468 277 0.0030075 469 277 0.0039866976 470 277 0.0024518999 471 277 0.0010064 472 277 7.7699995e-05 473 277 5.8299993e-05 477 277 0.00042739999 478 277 0.00067999982 483 277 0.00083539984 489 277 0.0014260998 490 277 0.0001943 491 277 0.019747198 19 278 0.20604849 21 278 0.032901298 22 278 0.016118299 24 278 0.026088398 25 278 0.0001662 60 278 0.0144566 114 278 0.0001662 130 278 0.00049849995 131 278 0.00033229985 160 278 0.0023263998 169 278 0.0069790967 172 278 0.00049849995 187 278 0.0001662 198 278 0.0001662 206 278 0.00049849995 214 278 0.0018277999 219 278 0.00049849995 223 278 0.00049849995 224 278 0.0001662 234 278 0.0021601999 252 278 0.0001662 267 278 0.00033229985 270 278 0.0023263998 272 278 0.00083079981 273 278 0.0001662 276 278 0.0069790967 277 278 0.024426699 278 278 0.010634799 282 278 0.00099699991 284 278 0.0019939998 286 278 0.00049849995 288 278 0.0011631998 289 278 0.016949199 290 278 0.027251597 291 278 0.0001662 295 278 0.0001662 312 278 0.00049849995 315 278 0.0001662 320 278 0.0001662 321 278 0.0001662 322 278 0.0001662 324 278 0.00049849995 326 278 0.00033229985 340 278 0.00033229985 350 278 0.00033229985 351 278 0.00033229985 352 278 0.0001662 354 278 0.00033229985 355 278 0.00083079981 356 278 0.0001662 358 278 0.0011631998 359 278 0.0001662 375 278 0.028248597 384 278 0.00033229985 417 278 0.0001662 443 278 0.023429699 444 278 0.0084745996 445 278 0.019773997 446 278 0.0034894999 447 278 0.0054834969 450 278 0.0014954999 452 278 0.086739779 453 278 0.0034894999 454 278 0.0053173974 455 278 0.0224327 457 278 0.0019939998 459 278 0.00049849995 460 278 0.0019939998 463 278 0.0058158971 464 278 0.0046526976 465 278 0.00049849995 467 278 0.016616799 468 278 0.0084745996 469 278 0.0023263998 470 278 0.0021601999 471 278 0.0001662 478 278 0.00049849995 483 278 0.00083079981 489 278 0.0036556998 490 278 0.0018277999 491 278 0.013958097 19 279 0.0188291 21 279 0.00029419991 22 279 0.0088260993 24 279 0.0011767999 25 279 0.00029419991 60 279 0.0079434998 160 279 0.0023536 165 279 0.00029419991 169 279 0.00029419991 171 279 0.0029419998 172 279 0.00029419991 183 279 0.00029419991 187 279 0.00029419991 198 279 0.0067666993 203 279 0.0026477999 206 279 0.00029419991 214 279 0.015592799 223 279 0.017652299 233 279 0.00029419991 234 279 0.0047072992 241 279 0.00088259997 267 279 0.0035305 270 279 0.00029419991 272 279 0.00058839982 273 279 0.00029419991 277 279 0.22418356 278 279 0.0064724982 279 279 0.0055898987 280 279 0.00029419991 282 279 0.0038246999 284 279 0.0044130981 286 279 0.0082376972 287 279 0.00058839982 288 279 0.0061782971 289 279 0.0011767999 290 279 0.0035305 291 279 0.00058839982 293 279 0.00029419991 295 279 0.0023536 310 279 0.00029419991 312 279 0.0067666993 315 279 0.00058839982 320 279 0.00058839982 321 279 0.00058839982 322 279 0.00058839982 324 279 0.00058839982 326 279 0.0035305 337 279 0.00029419991 340 279 0.029420398 343 279 0.00029419991 350 279 0.0032362 351 279 0.0050014965 352 279 0.00058839982 354 279 0.0032362 355 279 0.00029419991 356 279 0.00029419991 358 279 0.0017651999 359 279 0.00058839982 361 279 0.00029419991 370 279 0.00029419991 372 279 0.00029419991 373 279 0.0011767999 374 279 0.00058839982 375 279 0.00088259997 384 279 0.0011767999 408 279 0.00029419991 413 279 0.00029419991 414 279 0.00029419991 417 279 0.00029419991 419 279 0.00029419991 443 279 0.017652299 444 279 0.0020593998 445 279 0.0097086988 446 279 0.0032362 447 279 0.0038246999 450 279 0.0020593998 452 279 0.012650799 453 279 0.0085318983 454 279 0.0032362 455 279 0.032656699 456 279 0.00058839982 457 279 0.0020593998 458 279 0.00058839982 459 279 0.00058839982 460 279 0.0011767999 463 279 0.0035305 464 279 0.0026477999 465 279 0.00088259997 467 279 0.018240698 468 279 0.0038246999 469 279 0.0038246999 470 279 0.0035305 471 279 0.00058839982 477 279 0.0020593998 478 279 0.00088259997 483 279 0.00088259997 489 279 0.00058839982 490 279 0.00029419991 491 279 0.0064724982 60 280 0.0054445975 160 280 0.0018149 169 280 0.0018149 198 280 0.0018149 203 280 0.0018149 214 280 0.058076199 234 280 0.0018149 240 280 0.0036297999 270 280 0.010889299 277 280 0.44283116 280 280 0.0054445975 282 280 0.0072594993 284 280 0.0018149 290 280 0.010889299 295 280 0.0018149 312 280 0.010889299 321 280 0.0054445975 322 280 0.0054445975 326 280 0.0272232 342 280 0.0036297999 350 280 0.0054445975 351 280 0.0018149 352 280 0.0090743974 354 280 0.010889299 358 280 0.010889299 370 280 0.019963697 373 280 0.0018149 443 280 0.012704197 444 280 0.0036297999 445 280 0.010889299 446 280 0.0018149 447 280 0.0036297999 450 280 0.0018149 452 280 0.0072594993 453 280 0.0054445975 454 280 0.0036297999 455 280 0.016333897 457 280 0.0018149 460 280 0.0036297999 463 280 0.0036297999 464 280 0.0018149 467 280 0.025408298 468 280 0.0018149 469 280 0.0090743974 470 280 0.0018149 477 280 0.0018149 60 281 0.0036100999 160 281 0.0036100999 169 281 0.0036100999 214 281 0.07581228 223 281 0.0072201975 277 281 0.38267148 282 281 0.010830298 284 281 0.0036100999 288 281 0.0072201975 312 281 0.010830298 320 281 0.0036100999 321 281 0.0036100999 324 281 0.0036100999 326 281 0.0072201975 340 281 0.0072201975 349 281 0.0036100999 350 281 0.0036100999 351 281 0.0036100999 354 281 0.018050499 358 281 0.014440399 370 281 0.010830298 371 281 0.0072201975 375 281 0.0036100999 414 281 0.0036100999 443 281 0.014440399 444 281 0.0036100999 445 281 0.010830298 447 281 0.0036100999 452 281 0.0072201975 453 281 0.0072201975 454 281 0.0036100999 455 281 0.014440399 457 281 0.0036100999 460 281 0.0036100999 463 281 0.0036100999 464 281 0.0036100999 467 281 0.0216606 468 281 0.0036100999 469 281 0.0036100999 470 281 0.0036100999 477 281 0.0036100999 9 282 1.6999998e-05 18 282 0.00015339999 19 282 0.0019434998 21 282 1.6999998e-05 22 282 0.0018070999 24 282 0.0056257993 25 282 0.0003409998 60 282 0.010058299 77 282 1.6999998e-05 78 282 0.00013639999 79 282 1.6999998e-05 82 282 1.6999998e-05 83 282 1.6999998e-05 84 282 1.6999998e-05 98 282 1.6999998e-05 104 282 0.00018749999 108 282 1.6999998e-05 113 282 3.4099998e-05 114 282 8.5199994e-05 126 282 5.1099996e-05 127 282 1.6999998e-05 134 282 6.8199995e-05 150 282 0.00081829983 151 282 1.6999998e-05 156 282 0.00040919986 158 282 0.00010229999 159 282 3.4099998e-05 160 282 0.0029662999 161 282 1.6999998e-05 162 282 1.6999998e-05 165 282 3.4099998e-05 169 282 0.00075009977 170 282 1.6999998e-05 171 282 8.5199994e-05 172 282 0.0010910998 181 282 8.5199994e-05 183 282 1.6999998e-05 189 282 6.8199995e-05 190 282 0.00011929999 192 282 3.4099998e-05 194 282 0.00010229999 195 282 1.6999998e-05 196 282 1.6999998e-05 197 282 1.6999998e-05 198 282 0.0015001998 200 282 3.4099998e-05 201 282 3.4099998e-05 203 282 5.1099996e-05 204 282 8.5199994e-05 206 282 0.00035799993 207 282 5.1099996e-05 209 282 1.6999998e-05 214 282 0.00080129993 218 282 3.4099998e-05 219 282 5.1099996e-05 223 282 0.0048415996 224 282 1.6999998e-05 233 282 0.00011929999 234 282 0.0030685998 236 282 1.6999998e-05 237 282 0.00073309988 240 282 0.00083539984 241 282 0.00020459999 242 282 0.00013639999 248 282 1.6999998e-05 250 282 1.6999998e-05 252 282 0.0004602999 267 282 0.00010229999 270 282 0.0080124997 271 282 1.6999998e-05 272 282 0.0010058 273 282 3.4099998e-05 276 282 3.4099998e-05 277 282 0.060400996 278 282 0.022094198 279 282 8.5199994e-05 280 282 6.8199995e-05 282 282 0.0060349964 283 282 0.0023866999 284 282 0.0077738985 285 282 5.1099996e-05 286 282 0.0027788 287 282 0.00027279998 288 282 0.0003409998 289 282 0.001773 290 282 0.0043983981 291 282 5.1099996e-05 292 282 0.00018749999 293 282 0.00018749999 294 282 0.00013639999 295 282 6.8199995e-05 296 282 0.00015339999 297 282 0.00013639999 298 282 8.5199994e-05 299 282 3.4099998e-05 301 282 1.6999998e-05 304 282 5.1099996e-05 305 282 1.6999998e-05 306 282 1.6999998e-05 307 282 0.00011929999 308 282 1.6999998e-05 310 282 1.6999998e-05 312 282 0.00075009977 313 282 0.0018070999 315 282 0.00030689989 319 282 0.00051139994 320 282 8.5199994e-05 321 282 6.8199995e-05 322 282 0.00020459999 323 282 0.00017049999 324 282 0.00015339999 326 282 0.00068189995 328 282 0.0015683998 329 282 0.00027279998 330 282 5.1099996e-05 331 282 0.00013639999 332 282 1.6999998e-05 333 282 1.6999998e-05 335 282 3.4099998e-05 337 282 3.4099998e-05 338 282 0.00027279998 339 282 6.8199995e-05 340 282 0.0069215 341 282 5.1099996e-05 342 282 0.00011929999 343 282 5.1099996e-05 344 282 1.6999998e-05 345 282 6.8199995e-05 347 282 0.00010229999 349 282 0.0036823999 350 282 0.0004602999 351 282 0.0012274999 352 282 8.5199994e-05 353 282 0.023509197 354 282 0.012444999 355 282 0.00013639999 356 282 0.00030689989 357 282 0.00020459999 358 282 0.015632998 359 282 5.1099996e-05 366 282 0.00020459999 370 282 1.6999998e-05 371 282 6.8199995e-05 372 282 0.00040919986 373 282 0.0002387 374 282 0.0024037999 375 282 0.013689499 384 282 0.00030689989 385 282 0.00011929999 386 282 1.6999998e-05 387 282 0.00017049999 392 282 1.6999998e-05 394 282 8.5199994e-05 397 282 0.00047729979 399 282 5.1099996e-05 401 282 0.00080129993 402 282 0.0055234991 408 282 0.0002387 412 282 1.6999998e-05 413 282 1.6999998e-05 414 282 5.1099996e-05 415 282 3.4099998e-05 417 282 0.00054549985 419 282 3.4099998e-05 421 282 0.00032389979 422 282 6.8199995e-05 423 282 1.6999998e-05 425 282 1.6999998e-05 430 282 1.6999998e-05 431 282 3.4099998e-05 432 282 1.6999998e-05 433 282 3.4099998e-05 434 282 3.4099998e-05 438 282 0.001432 443 282 0.012922399 444 282 0.0015513999 445 282 0.010160599 446 282 0.00098879985 447 282 0.0035118998 448 282 1.6999998e-05 450 282 0.0040573999 452 282 0.020269997 453 282 0.0080806985 454 282 0.0017217998 455 282 0.049456198 456 282 0.00049439981 457 282 0.0048415996 458 282 0.00093759992 459 282 0.0013297 460 282 0.0020458 463 282 0.0021479998 464 282 0.0012444998 465 282 0.0010739998 467 282 0.011405099 468 282 0.0028640998 469 282 0.0035289 470 282 0.0038698998 471 282 0.0017899999 473 282 8.5199994e-05 477 282 0.00010229999 478 282 0.0012786 483 282 0.00092059979 489 282 0.00015339999 490 282 0.0003409998 491 282 0.035630297 18 283 0.00010799999 19 283 0.010635398 21 283 0.00010799999 22 283 0.0059924982 24 283 0.00032389979 25 283 0.0002159 60 283 0.0078820996 78 283 5.3999989e-05 108 283 5.3999989e-05 114 283 0.00010799999 126 283 5.3999989e-05 134 283 5.3999989e-05 150 283 0.00010799999 156 283 0.00032389979 158 283 0.00010799999 160 283 0.00032389979 165 283 0.00010799999 168 283 5.3999989e-05 169 283 0.000162 171 283 0.00037789997 172 283 5.3999989e-05 181 283 5.3999989e-05 183 283 0.00010799999 189 283 5.3999989e-05 190 283 5.3999989e-05 194 283 5.3999989e-05 195 283 5.3999989e-05 198 283 0.0025913999 203 283 0.00010799999 206 283 0.00048589986 214 283 0.0026453999 223 283 0.0002159 224 283 0.0005398998 229 283 0.00070179999 233 283 0.0002159 234 283 0.0054527 237 283 0.00075579993 240 283 0.0014036999 241 283 0.0029153 242 283 0.00043189991 252 283 0.00037789997 262 283 0.0002159 267 283 0.0005398998 270 283 0.0012416998 271 283 0.000162 272 283 0.00043189991 273 283 0.0002159 277 283 0.28499699 278 283 0.0098795965 279 283 0.00010799999 280 283 0.00010799999 282 283 0.0055606999 283 283 0.0084758997 284 283 0.0043189973 286 283 0.00043189991 287 283 0.00010799999 288 283 0.00091779977 289 283 0.0019975 290 283 0.0017815998 291 283 0.00026989984 292 283 0.0021594998 293 283 0.0025913999 294 283 0.013766699 295 283 0.00091779977 296 283 0.00059389998 297 283 0.00010799999 298 283 5.3999989e-05 299 283 0.000162 301 283 5.3999989e-05 302 283 5.3999989e-05 305 283 5.3999989e-05 306 283 5.3999989e-05 307 283 5.3999989e-05 308 283 5.3999989e-05 310 283 0.00010799999 312 283 0.0024293999 313 283 0.0016196 315 283 0.00097179995 317 283 0.000162 319 283 0.00048589986 320 283 0.00091779977 321 283 0.0051826984 322 283 0.00064779981 323 283 0.000162 324 283 0.0027532999 326 283 0.0051287971 328 283 0.0010257999 329 283 0.00048589986 330 283 5.3999989e-05 331 283 0.00032389979 333 283 0.00086379983 336 283 5.3999989e-05 337 283 0.000162 338 283 0.00075579993 339 283 0.0010257999 340 283 0.0131188 341 283 5.3999989e-05 342 283 0.000162 343 283 0.0002159 349 283 5.3999989e-05 350 283 0.0010257999 351 283 0.0025374 352 283 0.00026989984 353 283 5.3999989e-05 354 283 0.0028072998 355 283 0.00037789997 356 283 0.00026989984 357 283 0.00032389979 358 283 0.0073961988 359 283 0.00026989984 366 283 0.00010799999 370 283 0.00010799999 371 283 0.0002159 372 283 0.00010799999 373 283 0.00032389979 374 283 0.00010799999 375 283 0.00048589986 376 283 5.3999989e-05 384 283 0.00070179999 385 283 0.000162 386 283 0.0011336999 387 283 0.000162 392 283 5.3999989e-05 393 283 0.00010799999 394 283 5.3999989e-05 397 283 0.00048589986 398 283 0.00010799999 399 283 5.3999989e-05 401 283 0.00059389998 402 283 0.0053986982 408 283 0.00032389979 413 283 0.00010799999 414 283 0.00010799999 415 283 5.3999989e-05 417 283 0.00032389979 421 283 0.00010799999 422 283 5.3999989e-05 434 283 5.3999989e-05 438 283 5.3999989e-05 443 283 0.012093097 444 283 0.0016196 445 283 0.0080979988 446 283 0.0023753999 447 283 0.0028072998 448 283 0.00010799999 450 283 0.0022674999 452 283 0.010419499 453 283 0.012362998 454 283 0.0014575999 455 283 0.031312399 456 283 0.0002159 457 283 0.0022135 458 283 0.00048589986 459 283 0.00032389979 460 283 0.0020514999 463 283 0.0028612998 464 283 0.00059389998 465 283 0.00075579993 467 283 0.011823099 468 283 0.0018894998 469 283 0.0031311999 470 283 0.0031851998 471 283 0.0010797 473 283 5.3999989e-05 477 283 0.00010799999 478 283 0.00086379983 483 283 0.00086379983 489 283 0.00026989984 490 283 0.00026989984 491 283 0.0046428964 60 284 0.0027506999 114 284 0.0002116 126 284 0.0002116 190 284 0.0002116 194 284 0.0002116 206 284 0.00042319996 214 284 0.0086753964 218 284 0.0002116 223 284 0.049513299 233 284 0.0093101971 234 284 0.018620398 237 284 0.0002116 240 284 0.0012695999 241 284 0.0002116 270 284 0.0002116 272 284 0.0010579999 277 284 0.055649597 284 284 0.0080405995 285 284 0.018197197 286 284 0.0021159998 287 284 0.0040202998 288 284 0.00042319996 289 284 0.0048666969 290 284 0.018408798 320 284 0.0019043998 321 284 0.0002116 354 284 0.0012695999 355 284 0.0010579999 356 284 0.0002116 358 284 0.0029622999 417 284 0.00063479994 443 284 0.0050782971 444 284 0.0019043998 445 284 0.005924698 446 284 0.00042319996 447 284 0.0063478984 450 284 0.0025390999 452 284 0.027930599 453 284 0.0247567 454 284 0.0012695999 455 284 0.015234899 456 284 0.0027506999 457 284 0.0016927999 458 284 0.0010579999 459 284 0.00063479994 460 284 0.0014811999 463 284 0.013753697 464 284 0.00042319996 465 284 0.00084639993 467 284 0.0082521997 468 284 0.0012695999 469 284 0.0044434965 470 284 0.0048666969 471 284 0.0010579999 473 284 0.0002116 478 284 0.0012695999 483 284 0.0012695999 490 284 0.00063479994 19 285 0.045200396 20 285 0.0023298999 21 285 0.0055917986 24 285 0.00093199988 25 285 0.00046599982 60 285 0.0018638999 114 285 0.000233 169 285 0.00069899997 171 285 0.019105297 193 285 0.000233 198 285 0.0067567974 206 285 0.00069899997 214 285 0.046365298 223 285 0.00046599982 224 285 0.00046599982 225 285 0.000233 234 285 0.0037278999 240 285 0.0013978998 241 285 0.0020968998 270 285 0.00093199988 272 285 0.0011649998 273 285 0.00069899997 276 285 0.000233 277 285 0.0090866983 278 285 0.00046599982 279 285 0.000233 282 285 0.0011649998 284 285 0.0041937977 285 285 0.0011649998 286 285 0.023532197 287 285 0.0044267997 288 285 0.0039608963 289 285 0.12744635 290 285 0.038443599 291 285 0.00069899997 292 285 0.00046599982 293 285 0.00046599982 294 285 0.0016309 295 285 0.046598297 296 285 0.00069899997 298 285 0.00069899997 301 285 0.0072226971 312 285 0.0011649998 315 285 0.00046599982 320 285 0.011882599 321 285 0.012814499 322 285 0.00046599982 326 285 0.0018638999 338 285 0.000233 340 285 0.017707396 351 285 0.00093199988 354 285 0.010950599 355 285 0.0011649998 356 285 0.000233 358 285 0.0032618998 370 285 0.000233 371 285 0.000233 373 285 0.000233 375 285 0.00069899997 386 285 0.000233 392 285 0.00046599982 396 285 0.000233 397 285 0.0039608963 402 285 0.000233 417 285 0.000233 438 285 0.000233 443 285 0.010950599 444 285 0.0083876997 445 285 0.0034949 446 285 0.00046599982 447 285 0.011416599 450 285 0.0018638999 452 285 0.017940398 453 285 0.0097855963 454 285 0.0016309 455 285 0.018639296 457 285 0.0023298999 458 285 0.000233 459 285 0.00069899997 460 285 0.0016309 463 285 0.016076397 464 285 0.0011649998 465 285 0.00046599982 467 285 0.0067567974 468 285 0.0020968998 469 285 0.0032618998 470 285 0.0023298999 471 285 0.00093199988 478 285 0.00046599982 483 285 0.0013978998 490 285 0.00046599982 491 285 0.0018638999 18 286 0.00028329995 20 286 0.35669565 22 286 0.00033999979 60 286 0.00079319999 108 286 2.8299997e-05 114 286 5.6699995e-05 126 286 5.6699995e-05 150 286 2.8299997e-05 151 286 2.8299997e-05 160 286 5.6699995e-05 169 286 2.8299997e-05 172 286 2.8299997e-05 189 286 2.8299997e-05 190 286 5.6699995e-05 194 286 5.6699995e-05 198 286 5.6699995e-05 206 286 0.00042489986 214 286 0.0034844999 218 286 2.8299997e-05 223 286 0.00048159994 224 286 2.8299997e-05 233 286 2.8299997e-05 234 286 0.0030311998 237 286 2.8299997e-05 240 286 0.00033999979 241 286 0.00093489978 242 286 2.8299997e-05 252 286 5.6699995e-05 262 286 2.8299997e-05 267 286 0.00056659989 272 286 0.00067989994 277 286 0.0010481998 282 286 5.6699995e-05 283 286 2.8299997e-05 284 286 0.00059489999 285 286 0.0032578998 286 286 0.36805576 287 286 0.0034844999 288 286 0.0054675974 289 286 0.0016148 290 286 0.016601 291 286 0.0028612998 292 286 0.00056659989 293 286 5.6699995e-05 294 286 5.6699995e-05 295 286 0.00011329999 296 286 2.8299997e-05 312 286 8.4999992e-05 315 286 5.6699995e-05 317 286 0.00017 318 286 0.00017 319 286 2.8299997e-05 320 286 2.8299997e-05 321 286 5.6699995e-05 324 286 0.0001983 326 286 8.4999992e-05 340 286 0.00033999979 350 286 2.8299997e-05 351 286 2.8299997e-05 354 286 0.0014730999 356 286 0.0001983 358 286 0.0018696999 373 286 2.8299997e-05 375 286 0.0011047998 386 286 0.00011329999 387 286 2.8299997e-05 417 286 0.00011329999 443 286 0.013229799 444 286 0.00042489986 445 286 0.0018980999 446 286 0.00033999979 447 286 0.00045329984 448 286 2.8299997e-05 450 286 0.00084989984 452 286 0.0044476986 453 286 0.0058924966 454 286 0.0011614999 455 286 0.0246749 456 286 0.0026629998 457 286 0.0021529999 458 286 0.00014159999 459 286 0.00082159997 460 286 0.0017563999 463 286 0.0016997999 464 286 0.00036829989 465 286 0.00014159999 467 286 0.0039094985 468 286 0.0028328998 469 286 0.0035128 470 286 0.00082159997 471 286 0.00045329984 473 286 5.6699995e-05 477 286 5.6699995e-05 478 286 0.00022659999 483 286 0.0001983 489 286 0.00011329999 490 286 8.4999992e-05 491 286 0.050086398 18 287 0.00073289988 19 287 0.00043979986 20 287 0.00043979986 21 287 0.13559067 22 287 0.00073289988 60 287 0.0016123999 206 287 0.0002931999 214 287 0.021108199 223 287 0.0016123999 234 287 0.0087950975 240 287 0.00087949983 241 287 0.0051304996 272 287 0.0002931999 277 287 0.0083552971 278 287 0.0001466 284 287 0.0013192999 285 287 0.012313098 286 287 0.0095279999 287 287 0.22339487 288 287 0.015391398 289 287 0.0086484998 290 287 0.053649999 291 287 0.0082086995 317 287 0.00043979986 318 287 0.00043979986 326 287 0.0001466 340 287 0.0014658 353 287 0.0002931999 354 287 0.0038111999 356 287 0.0002931999 358 287 0.0043974966 375 287 0.0032249 417 287 0.0001466 443 287 0.028584 444 287 0.0042509995 445 287 0.0055701993 446 287 0.00058629992 447 287 0.005423598 450 287 0.0014658 452 287 0.0045440979 453 287 0.0051304996 454 287 0.0014658 455 287 0.061125796 456 287 0.0077689998 457 287 0.0023453999 458 287 0.0001466 459 287 0.00058629992 460 287 0.0026385 463 287 0.0043974966 464 287 0.0011727 465 287 0.0001466 467 287 0.0055701993 468 287 0.0071825981 469 287 0.0095279999 470 287 0.0013192999 471 287 0.00087949983 478 287 0.0033713998 483 287 0.00043979986 489 287 0.0001466 490 287 0.0010260998 491 287 0.12826145 18 288 0.00042659999 20 288 0.0034129999 21 288 0.24850678 22 288 0.0055460967 24 288 0.00021329999 60 288 0.0021330998 114 288 0.00021329999 120 288 0.00021329999 206 288 0.00063989987 214 288 0.0153584 223 288 0.0010666 234 288 0.022397596 240 288 0.00063989987 241 288 0.0017064998 272 288 0.00063989987 277 288 0.0076791979 284 288 0.0014932 285 288 0.0066125989 286 288 0.010025598 287 288 0.015571699 288 288 0.070392489 289 288 0.0029862998 290 288 0.052687697 291 288 0.0057593994 317 288 0.00042659999 318 288 0.00042659999 324 288 0.00021329999 340 288 0.00063989987 354 288 0.0025596998 356 288 0.00021329999 358 288 0.0038395999 375 288 0.0021330998 417 288 0.00021329999 443 288 0.036262799 444 288 0.0012798999 445 288 0.016638197 446 288 0.0012798999 447 288 0.0070391968 450 288 0.0021330998 452 288 0.012158699 453 288 0.012585297 454 288 0.011732098 455 288 0.0505546 456 288 0.0053327978 457 288 0.0025596998 458 288 0.00021329999 459 288 0.00085319998 460 288 0.0023463999 463 288 0.0104522 464 288 0.00085319998 465 288 0.00021329999 467 288 0.0068258978 468 288 0.0049060993 469 288 0.007465899 470 288 0.0019197999 471 288 0.00063989987 478 288 0.00063989987 483 288 0.00085319998 489 288 0.0023463999 490 288 0.00021329999 491 288 0.10025597 18 289 0.0012138998 19 289 3.6799989e-05 21 289 0.052896798 22 289 0.0012874999 60 289 0.010630898 114 289 7.3599993e-05 126 289 3.6799989e-05 150 289 3.6799989e-05 151 289 0.0015449999 160 289 0.00022069999 169 289 7.3599993e-05 172 289 0.00025749998 190 289 3.6799989e-05 194 289 3.6799989e-05 198 289 0.0001104 206 289 0.00058859983 214 289 0.044436298 223 289 0.00099319988 233 289 0.0002942998 234 289 0.016442899 237 289 7.3599993e-05 240 289 0.00033109984 241 289 0.0045612976 242 289 0.0001471 251 289 3.6799989e-05 252 289 3.6799989e-05 267 289 0.0018391998 272 289 0.00088279997 277 289 0.00022069999 278 289 0.0041198991 282 289 0.0001104 284 289 0.00091959978 285 289 0.0034945998 286 289 0.0049291998 287 289 0.0037152998 288 289 0.0085340999 289 289 0.19466615 290 289 0.0337318 291 289 0.0031266999 292 289 3.6799989e-05 293 289 0.0064741969 295 289 0.0036416999 312 289 0.0001471 315 289 3.6799989e-05 317 289 0.0011034999 318 289 0.00018389999 319 289 3.6799989e-05 321 289 0.00018389999 322 289 3.6799989e-05 324 289 0.00033109984 326 289 0.00091959978 337 289 0.00084609981 340 289 0.0018024999 350 289 0.00084609981 351 289 0.0001104 354 289 0.0016921 356 289 0.00018389999 358 289 0.0022070999 370 289 0.0053705983 371 289 0.0029059998 373 289 7.3599993e-05 375 289 0.0057751983 384 289 7.3599993e-05 386 289 0.0010668 404 289 7.3599993e-05 417 289 0.00018389999 421 289 7.3599993e-05 422 289 3.6799989e-05 438 289 3.6799989e-05 443 289 0.025859799 444 289 0.0022806998 445 289 0.0068051964 446 289 0.0015817999 447 289 0.0015081998 450 289 0.0026852998 452 289 0.073643565 453 289 0.011955097 454 289 0.0031635 455 289 0.037814997 456 289 0.0028692 457 289 0.0068419985 458 289 0.00055179978 459 289 0.00095639983 460 289 0.0023542 463 289 0.0049659982 464 289 0.0018391998 465 289 0.00033109984 467 289 0.0082397982 468 289 0.0020599999 469 289 0.012139 470 289 0.00099319988 471 289 0.00069889985 473 289 3.6799989e-05 477 289 0.0001104 478 289 0.00044139987 483 289 0.00033109984 489 289 0.00058859983 490 289 0.00018389999 491 289 0.045907699 18 290 0.00068219984 19 290 0.0074187964 20 290 0.0902192 21 290 0.093459487 22 290 0.00025579985 24 290 8.5299995e-05 25 290 0.00025579985 60 290 0.0014495999 114 290 8.5299995e-05 160 290 8.5299995e-05 171 290 8.5299995e-05 198 290 0.00025579985 206 290 0.00068219984 214 290 0.015519697 223 290 0.0013643999 233 290 8.5299995e-05 234 290 0.0039225966 240 290 0.00085269986 241 290 0.0031550999 242 290 8.5299995e-05 267 290 0.00068219984 270 290 8.5299995e-05 272 290 0.00059689977 276 290 0.00017049999 277 290 0.0020466 278 290 0.0038373 282 290 8.5299995e-05 284 290 0.0010233 285 290 0.008953698 286 290 0.10701799 287 290 0.037349697 288 290 0.023535397 289 290 0.0050310977 290 290 0.067280591 291 290 0.0081009977 292 290 0.00034109992 294 290 8.5299995e-05 295 290 0.00017049999 312 290 0.00017049999 315 290 8.5299995e-05 317 290 0.00042639999 318 290 0.00051159994 320 290 8.5299995e-05 321 290 0.00025579985 324 290 0.00025579985 326 290 0.00085269986 340 290 0.0017054998 349 290 8.5299995e-05 350 290 8.5299995e-05 351 290 0.00034109992 353 290 8.5299995e-05 354 290 0.0036668 356 290 8.5299995e-05 358 290 0.0047752969 373 290 8.5299995e-05 375 290 0.0030697999 386 290 8.5299995e-05 417 290 8.5299995e-05 438 290 8.5299995e-05 442 290 8.5299995e-05 443 290 0.018248498 444 290 0.0034108998 445 290 0.0043488964 446 290 0.00059689977 447 290 0.0045194998 450 290 0.0017906998 452 290 0.016542997 453 290 0.0070776977 454 290 0.0019612999 455 290 0.060288198 456 290 0.0070776977 457 290 0.0023876999 458 290 0.00025579985 459 290 0.00093799992 460 290 0.0032404 463 290 0.0071629994 464 290 0.0011085998 465 290 0.00017049999 467 290 0.0066512972 468 290 0.0061396994 469 290 0.0092947967 470 290 0.0018759998 471 290 0.0010233 478 290 0.00068219984 483 290 0.00034109992 489 290 0.0013643999 490 290 0.0119383 491 290 0.11469257 18 291 0.0017605999 60 291 0.00088029983 214 291 0.024647899 223 291 0.0035210999 234 291 0.0026407999 240 291 0.0026407999 241 291 0.005281698 277 291 0.00088029983 284 291 0.00088029983 285 291 0.023767598 286 291 0.022007 287 291 0.0255282 288 291 0.036091499 289 291 0.0105634 290 291 0.073063374 291 291 0.021126799 317 291 0.00088029983 318 291 0.00088029983 340 291 0.00088029983 354 291 0.0096830986 358 291 0.0096830986 375 291 0.0079224966 443 291 0.0255282 444 291 0.0026407999 445 291 0.005281698 446 291 0.00088029983 447 291 0.0017605999 450 291 0.0026407999 452 291 0.004401397 453 291 0.006161999 454 291 0.0017605999 455 291 0.12147886 456 291 0.019366197 457 291 0.0026407999 459 291 0.00088029983 460 291 0.004401397 463 291 0.0079224966 464 291 0.0017605999 467 291 0.0088027976 468 291 0.0017605999 469 291 0.022007 470 291 0.0026407999 471 291 0.0026407999 483 291 0.00088029983 491 291 0.29577458 18 292 0.00013619999 22 292 0.00013619999 60 292 0.0013275 108 292 3.3999997e-05 114 292 6.8099995e-05 126 292 3.3999997e-05 131 292 0.00010209999 132 292 0.00013619999 139 292 0.00010209999 151 292 6.8099995e-05 160 292 0.0036761998 161 292 0.00030639977 169 292 0.0012593998 171 292 0.00071479985 172 292 0.00078289979 187 292 0.00010209999 189 292 3.3999997e-05 190 292 3.3999997e-05 194 292 6.8099995e-05 197 292 6.8099995e-05 198 292 0.0010211999 200 292 3.3999997e-05 203 292 3.3999997e-05 204 292 3.3999997e-05 206 292 6.8099995e-05 214 292 0.0066375993 223 292 0.00037439982 224 292 0.0015997998 225 292 0.00027229986 233 292 0.0021784999 234 292 0.0021103998 237 292 6.8099995e-05 240 292 0.00017019999 241 292 0.0066716969 242 292 0.0011572998 251 292 3.3999997e-05 252 292 0.00017019999 270 292 6.8099995e-05 271 292 3.3999997e-05 272 292 0.00047649979 276 292 0.00010209999 277 292 0.00068079983 278 292 3.3999997e-05 279 292 3.3999997e-05 282 292 0.0021784999 283 292 0.00017019999 284 292 0.0017019999 285 292 0.00098709995 286 292 0.37371498 287 292 0.0010892998 288 292 0.026550498 289 292 0.0080331974 290 292 0.021274399 291 292 0.0012253998 292 292 0.033256199 293 292 0.0046973974 294 292 0.0002383 295 292 0.0066375993 297 292 3.3999997e-05 299 292 3.3999997e-05 308 292 0.00010209999 312 292 0.0016678998 315 292 0.0012935 317 292 6.8099995e-05 318 292 3.3999997e-05 319 292 0.0013615999 320 292 3.3999997e-05 321 292 0.0011232998 326 292 0.0051398985 327 292 3.3999997e-05 337 292 6.8099995e-05 340 292 0.0070119984 350 292 0.00078289979 351 292 0.0010551999 354 292 0.0056163967 358 292 0.0012935 369 292 3.3999997e-05 370 292 3.3999997e-05 371 292 6.8099995e-05 372 292 0.00010209999 373 292 0.0017019999 375 292 3.3999997e-05 376 292 3.3999997e-05 386 292 0.0014976999 387 292 3.3999997e-05 389 292 0.00037439982 390 292 6.8099995e-05 392 292 0.00017019999 393 292 0.0003403998 417 292 0.0002042 421 292 6.8099995e-05 422 292 6.8099995e-05 438 292 3.3999997e-05 443 292 0.014977198 444 292 0.0013955999 445 292 0.0037443 446 292 0.00047649979 447 292 0.0014295999 450 292 0.0013615999 452 292 0.0085437968 453 292 0.0037103 454 292 0.0028932998 455 292 0.0584451 456 292 0.00010209999 457 292 0.0024848999 458 292 0.00040849997 459 292 0.00078289979 460 292 0.0014976999 463 292 0.0049356967 464 292 0.0012593998 465 292 0.00051059993 467 292 0.0099053979 468 292 0.0039825998 469 292 0.0020082998 470 292 0.0016678998 471 292 0.0018720999 473 292 3.3999997e-05 477 292 6.8099995e-05 478 292 0.00051059993 483 292 0.00071479985 489 292 0.00010209999 490 292 0.00017019999 491 292 0.11202258 18 293 0.00016649999 19 293 5.5499986e-05 21 293 0.0014149998 22 293 0.00027739978 60 293 0.0024138 108 293 2.7699993e-05 114 293 5.5499986e-05 126 293 2.7699993e-05 130 293 2.7699993e-05 131 293 2.7699993e-05 132 293 2.7699993e-05 139 293 2.7699993e-05 150 293 0.00033289986 151 293 5.5499986e-05 160 293 0.0029131998 169 293 0.0010543 171 293 0.00038839993 172 293 0.0037455 187 293 5.5499986e-05 189 293 2.7699993e-05 190 293 5.5499986e-05 192 293 2.7699993e-05 194 293 5.5499986e-05 197 293 2.7699993e-05 198 293 0.0018865999 200 293 2.7699993e-05 203 293 2.7699993e-05 204 293 0.00022199999 206 293 0.00033289986 207 293 2.7699993e-05 214 293 0.005105 223 293 0.0010819999 224 293 0.0007491 225 293 8.3199993e-05 233 293 0.0039674975 234 293 0.0018865999 237 293 8.3199993e-05 240 293 8.3199993e-05 241 293 0.0051327981 242 293 0.0021917999 251 293 2.7699993e-05 252 293 0.00033289986 267 293 5.5499986e-05 270 293 2.7699993e-05 271 293 2.7699993e-05 272 293 0.00066589983 276 293 2.7699993e-05 277 293 0.0011652999 278 293 0.0023859998 279 293 0.00022199999 282 293 0.0018034 284 293 0.0021640998 285 293 0.0012208 286 293 0.010015797 287 293 0.0011097998 288 293 0.0030242 289 293 0.40240818 290 293 0.016147397 291 293 0.0022195999 292 293 0.0029964 293 293 0.091806948 294 293 5.5499986e-05 295 293 0.0038564999 297 293 2.7699993e-05 312 293 0.0022751 315 293 0.00080459984 317 293 0.0013595 318 293 0.00013869999 319 293 0.00083229993 321 293 0.0025247999 322 293 0.00063809985 324 293 2.7699993e-05 326 293 0.0047720969 337 293 0.0016368998 340 293 0.0077961981 350 293 8.3199993e-05 351 293 0.0017756999 354 293 0.0043003969 356 293 0.00016649999 358 293 0.0013316998 370 293 0.00013869999 371 293 0.00011099999 373 293 0.0011374999 375 293 0.00011099999 384 293 5.5499986e-05 386 293 0.00077679986 387 293 2.7699993e-05 401 293 2.7699993e-05 402 293 2.7699993e-05 408 293 2.7699993e-05 417 293 0.00024969992 421 293 5.5499986e-05 422 293 2.7699993e-05 433 293 2.7699993e-05 434 293 2.7699993e-05 438 293 0.00066589983 443 293 0.013594899 444 293 0.0012762998 445 293 0.0055488981 446 293 0.0003052 447 293 0.0011097998 450 293 0.001526 452 293 0.013039999 453 293 0.0095718987 454 293 0.00099879992 455 293 0.032100499 456 293 0.00013869999 457 293 0.0025803 458 293 0.0012484998 459 293 0.00086009991 460 293 0.0016923998 463 293 0.0021917999 464 293 0.00083229993 465 293 0.00041619991 467 293 0.0076574981 468 293 0.0065476969 469 293 0.0029964 470 293 0.0011374999 471 293 0.0017756999 473 293 2.7699993e-05 477 293 0.00083229993 478 293 0.00055489992 483 293 0.00055489992 489 293 8.3199993e-05 490 293 0.00013869999 491 293 0.029575799 19 294 0.00075719994 21 294 0.0019876999 22 294 0.0004733 60 294 0.0020822999 108 294 9.4699993e-05 114 294 0.00018929999 126 294 9.4699993e-05 160 294 0.0020822999 189 294 9.4699993e-05 190 294 9.4699993e-05 194 294 9.4699993e-05 198 294 0.0038806999 206 294 0.00018929999 214 294 0.027354497 223 294 0.0021769998 224 294 9.4699993e-05 233 294 0.0020822999 234 294 0.0015143999 237 294 9.4699993e-05 240 294 9.4699993e-05 241 294 0.015333597 242 294 0.0021769998 252 294 9.4699993e-05 272 294 0.0004733 277 294 0.0032181998 278 294 0.005584497 282 294 0.0022717 284 294 0.0015143999 285 294 0.00028399983 286 294 0.020350199 287 294 0.023284398 288 294 0.017415997 289 294 0.0070988983 290 294 0.42953146 291 294 0.013724599 292 294 0.0015143999 293 294 0.0017036998 294 294 0.0032181998 295 294 0.00066259992 312 294 0.0031234999 315 294 0.0025555999 317 294 9.4699993e-05 318 294 9.4699993e-05 320 294 9.4699993e-05 321 294 0.0037860998 322 294 9.4699993e-05 326 294 0.014860399 337 294 9.4699993e-05 340 294 0.0107903 350 294 0.0021769998 351 294 0.005584497 353 294 9.4699993e-05 354 294 0.0023663 356 294 0.00028399983 358 294 0.0078560971 373 294 0.0011357998 375 294 0.00018929999 386 294 0.0034075 387 294 9.4699993e-05 389 294 0.0019876999 390 294 0.00037859986 391 294 9.4699993e-05 392 294 0.00085189985 393 294 0.0010411998 397 294 0.00028399983 398 294 9.4699993e-05 417 294 0.00028399983 438 294 0.0029342 442 294 0.0019876999 443 294 0.0073828995 444 294 0.0035020998 445 294 0.0042592995 446 294 0.00037859986 447 294 0.0043539964 450 294 0.0016090998 452 294 0.0086132996 453 294 0.0043539964 454 294 0.0024609999 455 294 0.022148598 456 294 0.00028399983 457 294 0.0025555999 458 294 0.0004733 459 294 0.00085189985 460 294 0.0017984 463 294 0.010317098 464 294 0.0027448998 465 294 0.0004733 467 294 0.012588698 468 294 0.0035020998 469 294 0.0039753988 470 294 0.0025555999 471 294 0.0036913999 473 294 9.4699993e-05 477 294 0.00094649987 478 294 0.00056789978 483 294 0.00094649987 490 294 0.00037859986 491 294 0.0088972971 9 295 2.2199994e-05 18 295 0.00057599996 19 295 4.4299988e-05 21 295 2.2199994e-05 22 295 8.8599991e-05 25 295 2.2199994e-05 60 295 0.0013956998 82 295 2.2199994e-05 83 295 2.2199994e-05 84 295 2.2199994e-05 108 295 2.2199994e-05 113 295 4.4299988e-05 114 295 4.4299988e-05 126 295 2.2199994e-05 130 295 2.2199994e-05 131 295 0.0021046 132 295 0.0025919999 139 295 0.002016 150 295 0.00033229985 151 295 0.00042089983 160 295 0.0026805999 169 295 0.0011298 171 295 0.0095925964 172 295 0.00064249989 187 295 0.0022153999 189 295 4.4299988e-05 190 295 4.4299988e-05 194 295 6.6499997e-05 197 295 0.0016393999 198 295 0.0036774999 200 295 2.2199994e-05 203 295 4.4299988e-05 204 295 4.4299988e-05 206 295 4.4299988e-05 207 295 2.2199994e-05 214 295 0.010855399 215 295 2.2199994e-05 223 295 0.0015064999 224 295 0.031945799 225 295 0.005471997 233 295 0.0016615 234 295 0.0022374999 237 295 6.6499997e-05 240 295 0.0018608999 241 295 0.010434397 242 295 0.00062029995 252 295 0.002016 262 295 2.2199994e-05 270 295 0.0015729 271 295 0.0010854998 272 295 0.00066459994 276 295 0.0021488999 277 295 0.0036553999 278 295 0.00013289999 279 295 0.00019939999 282 295 0.00086399983 283 295 0.0002215 284 295 0.0015507999 285 295 4.4299988e-05 286 295 0.10673696 287 295 0.0064023994 288 295 0.0027027999 289 295 0.0173021 290 295 0.0081746988 291 295 0.00026579993 292 295 0.1619221 293 295 0.0580872 294 295 0.0038547998 295 295 0.082389951 296 295 0.0001772 297 295 2.2199994e-05 298 295 2.2199994e-05 312 295 0.0022596999 313 295 0.0001108 315 295 0.0004431 317 295 0.00090829981 319 295 4.4299988e-05 320 295 0.0001772 321 295 0.0044971965 322 295 6.6499997e-05 324 295 2.2199994e-05 326 295 0.0060700998 328 295 2.2199994e-05 337 295 0.0007974999 340 295 0.0066682994 349 295 2.2199994e-05 350 295 0.0010411998 351 295 0.0021267999 354 295 0.0040097982 356 295 0.00019939999 357 295 6.6499997e-05 358 295 0.0015950999 370 295 0.00057599996 371 295 0.00097479997 372 295 0.00066459994 373 295 0.0010411998 375 295 0.00050949981 376 295 2.2199994e-05 380 295 2.2199994e-05 384 295 0.00015509999 386 295 0.0022374999 387 295 2.2199994e-05 390 295 6.6499997e-05 391 295 2.2199994e-05 392 295 0.0001772 393 295 0.00035449979 397 295 0.00024369999 398 295 0.0007974999 402 295 0.00048739999 417 295 0.00024369999 421 295 4.4299988e-05 422 295 4.4299988e-05 423 295 2.2199994e-05 430 295 2.2199994e-05 431 295 2.2199994e-05 433 295 2.2199994e-05 434 295 2.2199994e-05 438 295 6.6499997e-05 442 295 2.2199994e-05 443 295 0.0076651983 444 295 0.0012627998 445 295 0.0082190968 446 295 0.00073109986 447 295 0.0027470998 448 295 2.2199994e-05 450 295 0.0028799998 452 295 0.0079974979 453 295 0.0021931999 454 295 0.0014842998 455 295 0.042003598 456 295 0.00013289999 457 295 0.0034337998 458 295 0.00033229985 459 295 0.00090829981 460 295 0.0016615 463 295 0.0047187991 464 295 0.0011298 465 295 0.00050949981 467 295 0.0081968978 468 295 0.0052725971 469 295 0.0068897977 470 295 0.0023260999 471 295 0.002016 473 295 4.4299988e-05 477 295 0.0007974999 478 295 0.00057599996 483 295 0.00075319991 489 295 4.4299988e-05 490 295 0.00099689979 491 295 0.0029020999 9 296 8.4599989e-05 18 296 0.00016919999 21 296 0.00016919999 24 296 0.0012687999 60 296 0.013703298 82 296 8.4599989e-05 83 296 8.4599989e-05 84 296 8.4599989e-05 104 296 0.00016919999 108 296 8.4599989e-05 113 296 0.00016919999 114 296 0.00033839978 126 296 0.00016919999 150 296 0.00059209997 160 296 0.00016919999 189 296 8.4599989e-05 190 296 8.4599989e-05 194 296 0.00016919999 198 296 0.0036372999 200 296 8.4599989e-05 203 296 8.4599989e-05 204 296 8.4599989e-05 206 296 0.00016919999 214 296 0.0014379998 223 296 0.0047368966 224 296 8.4599989e-05 234 296 0.0025376 237 296 0.00025379984 241 296 0.0038065 242 296 8.4599989e-05 252 296 0.00025379984 268 296 0.0016917998 270 296 0.00042289984 272 296 0.00059209997 276 296 0.00059209997 277 296 0.0035526999 278 296 0.0020301 279 296 0.00016919999 282 296 0.0011841999 283 296 8.4599989e-05 284 296 0.0028759998 286 296 0.014887497 287 296 0.00016919999 288 296 0.023600098 289 296 0.21324646 290 296 0.0032988999 291 296 8.4599989e-05 293 296 0.00016919999 294 296 0.00016919999 295 296 0.00016919999 296 296 0.0014379998 297 296 0.00025379984 298 296 0.00025379984 312 296 0.00059209997 315 296 0.00016919999 320 296 8.4599989e-05 326 296 0.0065978989 328 296 0.00059209997 329 296 8.4599989e-05 339 296 0.0016917998 340 296 0.036372896 341 296 8.4599989e-05 349 296 8.4599989e-05 350 296 0.00016919999 351 296 0.00042289984 353 296 0.014295399 354 296 0.00033839978 356 296 0.00025379984 357 296 8.4599989e-05 358 296 0.0073591992 372 296 0.00025379984 374 296 8.4599989e-05 375 296 0.00025379984 384 296 0.00025379984 387 296 8.4599989e-05 397 296 8.4599989e-05 402 296 0.00025379984 417 296 0.00050749979 419 296 8.4599989e-05 421 296 8.4599989e-05 422 296 0.00025379984 423 296 8.4599989e-05 425 296 8.4599989e-05 430 296 8.4599989e-05 431 296 8.4599989e-05 434 296 8.4599989e-05 443 296 0.0084587969 444 296 0.00059209997 445 296 0.0074437 446 296 8.4599989e-05 447 296 0.0019454998 450 296 0.0032988999 452 296 0.011419397 453 296 0.012011498 454 296 0.00067669991 455 296 0.0190323 456 296 0.00050749979 457 296 0.0027067999 458 296 0.00076129986 459 296 0.00084589981 460 296 0.0021146999 463 296 0.0077820979 464 296 0.00042289984 465 296 0.0011841999 467 296 0.015733398 468 296 0.0036372999 469 296 0.0084587969 470 296 0.0094738975 471 296 0.0010996 473 296 0.00025379984 477 296 8.4599989e-05 478 296 0.0015226 483 296 0.00093049998 490 296 0.00076129986 491 296 0.017848097 19 297 0.00042689987 24 297 0.0029882998 60 297 0.0087512992 104 297 0.0002134 108 297 0.0002134 114 297 0.00042689987 126 297 0.0002134 160 297 0.0002134 190 297 0.0002134 194 297 0.0002134 198 297 0.0040554963 206 297 0.00042689987 214 297 0.00042689987 223 297 0.0049092993 234 297 0.0036285999 241 297 0.00042689987 252 297 0.00042689987 268 297 0.0002134 270 297 0.00064029987 272 297 0.00085379998 277 297 0.010245498 278 297 0.011739597 279 297 0.0002134 282 297 0.001921 283 297 0.00064029987 284 297 0.0034151999 286 297 0.20234787 288 297 0.0040554963 289 297 0.032017097 290 297 0.0017076 292 297 0.0010672 293 297 0.0002134 295 297 0.00042689987 296 297 0.0002134 297 297 0.0070437975 312 297 0.00042689987 313 297 0.0002134 315 297 0.0002134 319 297 0.0002134 322 297 0.0002134 324 297 0.0002134 326 297 0.00064029987 328 297 0.00042689987 340 297 0.011739597 341 297 0.0002134 349 297 0.0002134 351 297 0.00042689987 353 297 0.027534697 354 297 0.0010672 356 297 0.0002134 358 297 0.0096050985 374 297 0.0002134 375 297 0.00085379998 377 297 0.0002134 380 297 0.0002134 386 297 0.0002134 387 297 0.0002134 402 297 0.00064029987 415 297 0.00042689987 417 297 0.00042689987 419 297 0.0002134 443 297 0.010031998 444 297 0.00042689987 445 297 0.014514398 447 297 0.0061899982 450 297 0.0032016998 452 297 0.011099298 453 297 0.0064033978 454 297 0.00042689987 455 297 0.033724699 456 297 0.0002134 457 297 0.0027747999 458 297 0.0002134 459 297 0.00085379998 460 297 0.0017076 463 297 0.022411998 464 297 0.00064029987 465 297 0.00085379998 467 297 0.011099298 468 297 0.0017076 469 297 0.0070437975 470 297 0.0076840967 471 297 0.0010672 473 297 0.0002134 478 297 0.0012806999 483 297 0.0012806999 490 297 0.00085379998 491 297 0.052721497 21 298 0.00081929984 24 298 0.0001639 60 298 0.010650497 104 298 0.0001639 114 298 0.0001639 126 298 0.0001639 150 298 0.0001639 190 298 0.0001639 194 298 0.0001639 198 298 0.0075372979 206 298 0.00032769982 214 298 0.0086842999 223 298 0.0045878999 234 298 0.0026216998 237 298 0.0001639 241 298 0.0065541975 252 298 0.0001639 268 298 0.00032769982 270 298 0.0045878999 272 298 0.00065539987 276 298 0.013927598 277 298 0.0026216998 278 298 0.0029493999 279 298 0.00032769982 284 298 0.0036048 286 298 0.0058986992 287 298 0.0052432977 288 298 0.13747334 289 298 0.053580198 290 298 0.038833398 291 298 0.00098309992 294 298 0.00032769982 295 298 0.00032769982 296 298 0.0001639 298 298 0.0022939998 312 298 0.012125198 321 298 0.0001639 326 298 0.014582999 339 298 0.0026216998 340 298 0.061772898 351 298 0.0062263981 353 298 0.0077010989 354 298 0.0001639 356 298 0.0001639 358 298 0.015238397 370 298 0.0001639 373 298 0.0001639 374 298 0.0001639 375 298 0.0001639 384 298 0.0001639 386 298 0.0001639 417 298 0.00065539987 422 298 0.0001639 438 298 0.0001639 443 298 0.0049155988 444 298 0.0058986992 445 298 0.0093396977 447 298 0.0075372979 450 298 0.0034408998 452 298 0.011797499 453 298 0.0091757998 454 298 0.00098309992 455 298 0.017532397 456 298 0.00049159979 457 298 0.0042601973 458 298 0.00098309992 459 298 0.00098309992 460 298 0.0021300998 463 298 0.018679298 464 298 0.00049159979 465 298 0.00098309992 467 298 0.0119613 468 298 0.0016384998 469 298 0.0042601973 470 298 0.0045878999 471 298 0.0011469999 473 298 0.0001639 478 298 0.0011469999 483 298 0.00098309992 490 298 0.00065539987 491 298 0.0044240989 22 299 0.0013623999 60 299 0.0030653998 114 299 0.0003405998 160 299 0.00068119983 172 299 0.0003405998 198 299 0.0047683977 206 299 0.0003405998 214 299 0.0061307997 223 299 0.0003405998 229 299 0.00068119983 233 299 0.00068119983 234 299 0.0023842 240 299 0.00068119983 241 299 0.014305197 272 299 0.0003405998 277 299 0.091961861 278 299 0.0013623999 279 299 0.0003405998 282 299 0.0010217999 283 299 0.0013623999 284 299 0.0023842 286 299 0.044959098 288 299 0.0034059999 289 299 0.09162128 290 299 0.0040871985 292 299 0.028950997 293 299 0.070163488 294 299 0.053814698 295 299 0.00068119983 299 299 0.0057901964 307 299 0.0003405998 312 299 0.0003405998 320 299 0.0003405998 321 299 0.013964597 324 299 0.0010217999 326 299 0.010217998 333 299 0.0003405998 339 299 0.0003405998 340 299 0.016008198 351 299 0.00068119983 354 299 0.0013623999 358 299 0.0051089972 417 299 0.0003405998 443 299 0.0071525984 444 299 0.00068119983 445 299 0.0207766 447 299 0.0057901964 450 299 0.0017029999 452 299 0.012942798 453 299 0.011580396 454 299 0.0020436 455 299 0.027588598 457 299 0.0023842 458 299 0.00068119983 460 299 0.0017029999 463 299 0.010899197 464 299 0.0003405998 465 299 0.00068119983 467 299 0.009536799 468 299 0.0013623999 469 299 0.0047683977 470 299 0.0037465999 471 299 0.0003405998 478 299 0.00068119983 483 299 0.0010217999 490 299 0.00068119983 491 299 0.016008198 0 300 0.0003052 9 300 7.0399998e-05 11 300 4.6899993e-05 18 300 0.00056339987 22 300 2.349999e-05 60 300 0.0020187998 82 300 2.349999e-05 84 300 2.349999e-05 88 300 0.00011739999 90 300 9.3899987e-05 93 300 2.349999e-05 107 300 0.0003052 108 300 2.349999e-05 114 300 2.349999e-05 115 300 4.6899993e-05 116 300 0.0005398998 122 300 2.349999e-05 126 300 2.349999e-05 130 300 2.349999e-05 150 300 0.00032859994 151 300 0.00068079983 160 300 0.0001408 169 300 0.0015492998 187 300 0.0003052 188 300 0.0013849998 189 300 2.349999e-05 190 300 4.6899993e-05 192 300 0.0002347 193 300 2.349999e-05 194 300 7.0399998e-05 197 300 2.349999e-05 198 300 0.0081691965 200 300 2.349999e-05 203 300 4.6899993e-05 204 300 0.050517596 206 300 4.6899993e-05 207 300 2.349999e-05 214 300 0.00011739999 219 300 0.00072769984 221 300 0.0019248999 224 300 0.00021129999 229 300 0.0010797998 233 300 0.018239897 234 300 0.0015962999 237 300 9.3899987e-05 240 300 0.0010797998 241 300 9.3899987e-05 252 300 2.349999e-05 253 300 0.0005398998 270 300 0.00058689993 272 300 0.0006573 277 300 0.33648676 279 300 0.00037559983 284 300 0.00082159997 287 300 0.0054226965 290 300 0.00046949997 293 300 0.090729773 300 300 0.0022065998 312 300 2.349999e-05 314 300 7.0399998e-05 315 300 0.0006573 317 300 0.00072769984 321 300 0.0040845983 322 300 4.6899993e-05 325 300 2.349999e-05 326 300 9.3899987e-05 339 300 0.0010563999 340 300 0.0045305975 341 300 4.6899993e-05 351 300 0.00070419977 356 300 0.0001408 358 300 0.0026525999 384 300 4.6899993e-05 387 300 2.349999e-05 401 300 2.349999e-05 402 300 4.6899993e-05 417 300 0.0002347 421 300 2.349999e-05 422 300 7.0399998e-05 430 300 2.349999e-05 433 300 2.349999e-05 434 300 2.349999e-05 443 300 0.0071832985 444 300 0.0044366978 445 300 0.0084039979 446 300 0.00089199981 447 300 0.029319897 450 300 0.0015962999 452 300 0.0048592985 453 300 0.0033098999 454 300 0.0011737 455 300 0.031385697 456 300 0.00018779999 457 300 0.0020893 458 300 0.0012910999 459 300 0.0017136999 460 300 0.0016901998 463 300 0.0102585 464 300 0.0036150999 465 300 0.00042249984 467 300 0.015610699 468 300 0.012089498 469 300 0.0064085983 470 300 0.0031690998 471 300 0.0015023998 473 300 2.349999e-05 477 300 0.0007511999 478 300 0.00056339987 483 300 0.00025819987 489 300 2.349999e-05 490 300 0.00011739999 491 300 0.00011739999 23 301 0.0011695998 60 301 0.0029239999 114 301 0.0001949 156 301 0.0001949 187 301 0.0001949 188 301 0.0015594999 198 301 0.0017543999 204 301 0.0017543999 206 301 0.00038989983 214 301 0.0001949 219 301 0.00038989983 223 301 0.0001949 224 301 0.012280699 229 301 0.00097469985 233 301 0.022806998 234 301 0.0027289998 237 301 0.0001949 240 301 0.0001949 241 301 0.00038989983 272 301 0.00038989983 277 301 0.3705653 284 301 0.00097469985 285 301 0.0001949 287 301 0.0001949 292 301 0.0005847998 293 301 0.007017497 295 301 0.0005847998 298 301 0.00038989983 299 301 0.0001949 301 301 0.0011695998 305 301 0.0001949 312 301 0.0015594999 313 301 0.00097469985 315 301 0.0005847998 319 301 0.0005847998 320 301 0.00038989983 321 301 0.0011695998 322 301 0.020467799 324 301 0.0001949 326 301 0.043469798 339 301 0.00097469985 340 301 0.0050681978 341 301 0.0001949 351 301 0.0072124973 356 301 0.0001949 358 301 0.0031188999 371 301 0.0001949 372 301 0.0005847998 380 301 0.0001949 386 301 0.00038989983 402 301 0.0001949 415 301 0.0005847998 417 301 0.0001949 443 301 0.0081870966 444 301 0.0062377974 445 301 0.0087718964 446 301 0.0005847998 447 301 0.017543897 450 301 0.0019492998 452 301 0.0066276975 453 301 0.0044833981 454 301 0.00097469985 455 301 0.0391813 456 301 0.0001949 457 301 0.0031188999 458 301 0.0005847998 459 301 0.00038989983 460 301 0.0011695998 463 301 0.012670599 464 301 0.0005847998 465 301 0.00038989983 467 301 0.0079921968 468 301 0.0079921968 469 301 0.0031188999 470 301 0.0023391999 471 301 0.0007797 478 301 0.0005847998 483 301 0.0005847998 490 301 0.00038989983 491 301 0.00038989983 22 302 0.0012425999 24 302 0.0021745998 60 302 0.0040384978 114 302 0.00031069992 160 302 0.0012425999 169 302 0.0012425999 198 302 0.012736898 206 302 0.00062129996 214 302 0.00093199988 223 302 0.013358198 224 302 0.0018638999 229 302 0.00093199988 233 302 0.018018 234 302 0.0027959 237 302 0.00031069992 240 302 0.00093199988 241 302 0.0012425999 270 302 0.0096302964 272 302 0.0040384978 277 302 0.14103758 279 302 0.00062129996 282 302 0.016154099 283 302 0.0034171999 284 302 0.0015532998 286 302 0.0037278999 288 302 0.013979498 289 302 0.0024851998 292 302 0.010251597 293 302 0.0034171999 295 302 0.00031069992 296 302 0.0034171999 297 302 0.014290199 299 302 0.00031069992 302 302 0.00031069992 303 302 0.00062129996 312 302 0.010251597 313 302 0.00062129996 315 302 0.0052810982 317 302 0.00031069992 319 302 0.00031069992 320 302 0.0055917986 321 302 0.023299199 326 302 0.00031069992 339 302 0.0040384978 340 302 0.0052810982 353 302 0.0031065999 358 302 0.0021745998 374 302 0.00062129996 417 302 0.00062129996 443 302 0.0086983964 444 302 0.0074556991 445 302 0.014290199 446 302 0.00031069992 447 302 0.0080769993 450 302 0.0031065999 452 302 0.0083876997 453 302 0.0083876997 454 302 0.0015532998 455 302 0.031065498 456 302 0.00031069992 457 302 0.0086983964 458 302 0.0012425999 459 302 0.00093199988 460 302 0.0015532998 463 302 0.012115598 464 302 0.00062129996 465 302 0.00062129996 467 302 0.010251597 468 302 0.013668798 469 302 0.0031065999 470 302 0.0027959 471 302 0.0012425999 478 302 0.00093199988 483 302 0.0015532998 490 302 0.00062129996 491 302 0.011183597 24 303 0.00072109979 60 303 0.0015864 114 303 0.00014419999 126 303 0.00014419999 160 303 0.0012979999 190 303 0.00014419999 194 303 0.00014419999 198 303 0.0087971985 206 303 0.00028839987 214 303 0.00043269992 223 303 0.0047591999 229 303 0.00086529995 233 303 0.00086529995 234 303 0.0024516999 237 303 0.00057689985 240 303 0.0011536998 241 303 0.0046148971 270 303 0.0070665963 272 303 0.0040380992 277 303 0.0291318 279 303 0.00028839987 282 303 0.0067781992 283 303 0.00057689985 284 303 0.0015864 286 303 0.024228398 288 303 0.00072109979 289 303 0.0054801963 290 303 0.00028839987 292 303 0.11595035 293 303 0.0036054 296 303 0.0015864 297 303 0.059128899 298 303 0.015575398 303 303 0.006633997 312 303 0.041534498 315 303 0.040092297 317 303 0.00014419999 320 303 0.042544 321 303 0.0011536998 324 303 0.00043269992 328 303 0.0023075 330 303 0.00086529995 339 303 0.0021632998 340 303 0.0038939 341 303 0.00014419999 350 303 0.00014419999 351 303 0.00086529995 353 303 0.00014419999 354 303 0.00057689985 358 303 0.006201297 372 303 0.00043269992 374 303 0.00028839987 386 303 0.00014419999 395 303 0.00014419999 397 303 0.00014419999 417 303 0.00043269992 422 303 0.00014419999 443 303 0.0043265 444 303 0.0015864 445 303 0.0102394 446 303 0.00014419999 447 303 0.0060570985 450 303 0.0027400998 452 303 0.0057686977 453 303 0.0027400998 454 303 0.00057689985 455 303 0.034612097 456 303 0.00028839987 457 303 0.0060570985 458 303 0.00072109979 459 303 0.00072109979 460 303 0.0017305999 463 303 0.0070665963 464 303 0.00028839987 465 303 0.00057689985 467 303 0.0074992999 468 303 0.0095182993 469 303 0.0033169999 470 303 0.0036054 471 303 0.0011536998 473 303 0.00014419999 478 303 0.00086529995 483 303 0.00072109979 490 303 0.00043269992 491 303 0.0030285998 21 304 0.00010399999 22 304 0.00010399999 60 304 0.0033270998 108 304 0.00010399999 114 304 0.00010399999 126 304 0.00010399999 135 304 0.00010399999 160 304 0.0023912999 169 304 0.00093569979 171 304 0.0002079 172 304 0.0023912999 189 304 0.00010399999 190 304 0.00010399999 194 304 0.0002079 198 304 0.0091494992 203 304 0.00010399999 206 304 0.0002079 214 304 0.00031189993 223 304 0.00010399999 224 304 0.00010399999 229 304 0.00083179981 233 304 0.0058223978 234 304 0.0034310999 236 304 0.00031189993 237 304 0.0002079 240 304 0.0021833999 241 304 0.00051989988 242 304 0.0002079 252 304 0.0002079 270 304 0.0022874 271 304 0.00010399999 272 304 0.00010399999 274 304 0.0002079 277 304 0.078706563 278 304 0.00010399999 279 304 0.00010399999 282 304 0.011748798 283 304 0.0002079 284 304 0.0016635 285 304 0.00010399999 286 304 0.0016635 289 304 0.0016635 292 304 0.021522097 293 304 0.015595797 294 304 0.00010399999 295 304 0.00051989988 296 304 0.0029111998 297 304 0.0017674998 298 304 0.0039508976 304 304 0.040964898 307 304 0.00041589979 312 304 0.0066541992 315 304 0.011644799 319 304 0.00041589979 320 304 0.0010396999 321 304 0.004782699 322 304 0.0069660991 324 304 0.013828199 326 304 0.013620298 328 304 0.0011437 339 304 0.0019754998 340 304 0.0046786964 343 304 0.00010399999 350 304 0.00083179981 351 304 0.00072779995 352 304 0.014348097 353 304 0.0012476998 354 304 0.00041589979 355 304 0.00010399999 356 304 0.00010399999 358 304 0.0041588992 366 304 0.023809496 370 304 0.0081097968 371 304 0.00041589979 372 304 0.039925098 373 304 0.0019754998 374 304 0.00083179981 375 304 0.00010399999 376 304 0.0042627975 377 304 0.00010399999 380 304 0.0002079 386 304 0.00051989988 387 304 0.00010399999 402 304 0.00010399999 415 304 0.029839899 417 304 0.00041589979 419 304 0.004782699 421 304 0.00010399999 422 304 0.00010399999 430 304 0.00010399999 434 304 0.00010399999 441 304 0.0025992999 443 304 0.0043667965 444 304 0.0030151999 445 304 0.0065501966 446 304 0.0002079 447 304 0.014867999 450 304 0.0083176978 452 304 0.0049905963 453 304 0.0025992999 454 304 0.00083179981 455 304 0.044915799 456 304 0.00031189993 457 304 0.0051985979 458 304 0.00072779995 459 304 0.00072779995 460 304 0.0016635 463 304 0.016011599 464 304 0.00051989988 465 304 0.0010396999 467 304 0.0085256994 468 304 0.011020999 469 304 0.004782699 470 304 0.0049905963 471 304 0.0041588992 473 304 0.00010399999 477 304 0.00010399999 478 304 0.0010396999 483 304 0.0011437 490 304 0.00041589979 491 304 0.0049905963 9 305 2.9599993e-05 18 305 0.00097779999 19 305 0.00029629981 21 305 5.9299986e-05 22 305 0.00023699999 60 305 0.0025185 79 305 2.9599993e-05 82 305 2.9599993e-05 83 305 2.9599993e-05 84 305 2.9599993e-05 108 305 2.9599993e-05 113 305 5.9299986e-05 114 305 0.00011849999 126 305 5.9299986e-05 127 305 2.9599993e-05 150 305 0.00062219985 151 305 0.00047409977 160 305 0.0016295998 169 305 0.00068149995 172 305 8.8899993e-05 189 305 8.8899993e-05 190 305 8.8899993e-05 191 305 2.9599993e-05 192 305 5.9299986e-05 194 305 8.8899993e-05 197 305 2.9599993e-05 198 305 0.0023999999 200 305 5.9299986e-05 201 305 5.9299986e-05 203 305 5.9299986e-05 204 305 8.8899993e-05 206 305 0.00011849999 207 305 5.9299986e-05 209 305 2.9599993e-05 214 305 0.00068149995 218 305 2.9599993e-05 224 305 2.9599993e-05 229 305 0.00085929991 233 305 0.0093036965 234 305 0.0024295999 237 305 0.00029629981 240 305 0.00029629981 241 305 0.0029926 242 305 2.9599993e-05 248 305 2.9599993e-05 250 305 2.9599993e-05 252 305 0.00017779999 262 305 2.9599993e-05 267 305 2.9599993e-05 270 305 0.00077039981 272 305 0.00044439989 274 305 2.9599993e-05 277 305 0.34613329 278 305 0.00011849999 279 305 0.00011849999 280 305 0.0025185 282 305 0.0040295981 283 305 0.00023699999 284 305 0.00056299986 285 305 0.0013925999 286 305 2.9599993e-05 288 305 0.0019258999 289 305 0.0034667 290 305 0.0024295999 292 305 0.00079999981 293 305 0.010903697 294 305 0.00011849999 295 305 8.8899993e-05 296 305 0.00017779999 297 305 0.0024889 299 305 8.8899993e-05 305 305 0.013748098 307 305 0.0004147999 308 305 2.9599993e-05 309 305 2.9599993e-05 312 305 0.026370399 315 305 0.0055703968 317 305 0.00047409977 318 305 0.0028740999 319 305 0.00011849999 320 305 0.0012147999 321 305 0.0092443973 322 305 0.0053036995 324 305 0.00026669982 326 305 0.0013629999 327 305 0.00017779999 328 305 0.00026669982 331 305 8.8899993e-05 332 305 2.9599993e-05 338 305 0.00077039981 339 305 0.0021332998 340 305 0.0028147998 341 305 2.9599993e-05 343 305 2.9599993e-05 349 305 8.8899993e-05 350 305 5.9299986e-05 351 305 0.0010074 352 305 8.8899993e-05 353 305 0.00097779999 354 305 0.0004147999 356 305 2.9599993e-05 358 305 0.012503698 371 305 0.00011849999 372 305 0.0023703999 373 305 8.8899993e-05 374 305 0.006933298 375 305 2.9599993e-05 384 305 8.8899993e-05 386 305 8.8899993e-05 387 305 5.9299986e-05 390 305 5.9299986e-05 394 305 2.9599993e-05 397 305 2.9599993e-05 398 305 2.9599993e-05 402 305 0.00023699999 405 305 2.9599993e-05 408 305 0.00044439989 417 305 0.00044439989 419 305 2.9599993e-05 421 305 5.9299986e-05 422 305 0.0012443999 423 305 2.9599993e-05 425 305 2.9599993e-05 430 305 2.9599993e-05 431 305 2.9599993e-05 432 305 2.9599993e-05 433 305 2.9599993e-05 434 305 5.9299986e-05 443 305 0.0072295964 444 305 0.0012147999 445 305 0.0091851987 446 305 0.00085929991 447 305 0.0083555989 448 305 2.9599993e-05 450 305 0.0033481 452 305 0.0056592971 453 305 0.0019556 454 305 0.0013036998 455 305 0.034725897 456 305 0.00056299986 457 305 0.0028147998 458 305 0.00047409977 459 305 0.0003258998 460 305 0.0022814998 463 305 0.010607399 464 305 0.0015703999 465 305 0.0008888999 467 305 0.0096592978 468 305 0.0042962991 469 305 0.0093332976 470 305 0.007407397 471 305 0.0016888999 473 305 0.00011849999 477 305 0.00091849989 478 305 0.001037 483 305 0.001037 489 305 8.8899993e-05 490 305 0.00047409977 491 305 0.0015703999 9 306 5.1799987e-05 18 306 0.00015539999 24 306 0.00020719999 60 306 0.0015538 82 306 5.1799987e-05 83 306 5.1799987e-05 84 306 5.1799987e-05 108 306 5.1799987e-05 113 306 0.00010359999 114 306 0.00020719999 126 306 0.00010359999 130 306 5.1799987e-05 139 306 0.00010359999 150 306 0.00077689998 159 306 0.00020719999 160 306 0.0062667988 161 306 0.00010359999 163 306 5.1799987e-05 165 306 0.0032628998 170 306 0.00015539999 171 306 0.00046609994 172 306 0.00025899988 184 306 5.1799987e-05 187 306 0.0060078986 189 306 0.00010359999 190 306 0.00010359999 191 306 5.1799987e-05 194 306 0.0009323 197 306 5.1799987e-05 198 306 0.0065775998 200 306 5.1799987e-05 203 306 0.00010359999 204 306 0.00010359999 206 306 0.00010359999 207 306 5.1799987e-05 214 306 0.0024859998 215 306 5.1799987e-05 219 306 5.1799987e-05 224 306 0.00041429978 229 306 0.00088049984 233 306 0.0078205988 234 306 0.0029520998 237 306 0.00025899988 240 306 5.1799987e-05 241 306 0.0100476 242 306 5.1799987e-05 252 306 0.052361697 254 306 0.00031079981 270 306 0.0013983999 271 306 5.1799987e-05 272 306 0.0005696998 273 306 0.00010359999 274 306 0.0012947998 277 306 0.061114598 278 306 5.1799987e-05 279 306 0.00025899988 280 306 5.1799987e-05 282 306 0.0010358 283 306 0.00010359999 284 306 0.00072509982 286 306 5.1799987e-05 287 306 5.1799987e-05 288 306 0.00036249985 289 306 0.06287545 290 306 0.009633299 291 306 5.1799987e-05 292 306 0.0016055999 293 306 0.11471927 295 306 0.00010359999 296 306 0.00062149996 297 306 0.0076133981 305 306 5.1799987e-05 306 306 0.0030038999 311 306 5.1799987e-05 312 306 0.0082866997 313 306 5.1799987e-05 315 306 0.004246898 317 306 0.00025899988 318 306 5.1799987e-05 319 306 0.037652798 320 306 0.0020198999 321 306 0.0022787999 322 306 0.011135299 326 306 0.0097886994 335 306 5.1799987e-05 337 306 5.1799987e-05 339 306 0.0011912 340 306 0.0012947998 350 306 5.1799987e-05 351 306 0.0016055999 353 306 0.0016572999 354 306 0.00010359999 356 306 5.1799987e-05 357 306 5.1799987e-05 358 306 0.0030556999 366 306 5.1799987e-05 371 306 5.1799987e-05 372 306 5.1799987e-05 374 306 0.00015539999 387 306 5.1799987e-05 402 306 0.00036249985 417 306 0.00051789987 419 306 5.1799987e-05 421 306 5.1799987e-05 422 306 0.00020719999 423 306 5.1799987e-05 425 306 5.1799987e-05 430 306 5.1799987e-05 431 306 5.1799987e-05 433 306 5.1799987e-05 434 306 5.1799987e-05 443 306 0.0073026977 444 306 0.0018126999 445 306 0.0093225986 446 306 0.00036249985 447 306 0.0097368993 448 306 5.1799987e-05 450 306 0.0040915981 452 306 0.0053345971 453 306 0.0038325998 454 306 0.00041429978 455 306 0.034182698 456 306 0.0005696998 457 306 0.0027967999 458 306 0.00072509982 459 306 0.00031079981 460 306 0.0018126999 463 306 0.028174799 464 306 0.0011912 465 306 0.0009323 467 306 0.0097886994 468 306 0.0047648996 469 306 0.0060596988 470 306 0.0066294 471 306 0.0040397979 473 306 0.00015539999 477 306 0.00010359999 478 306 0.0012947998 483 306 0.0014501999 489 306 5.1799987e-05 490 306 0.0005696998 491 306 0.0021235 9 307 2.9699993e-05 18 307 0.00074129994 19 307 0.00029649981 21 307 0.004685197 22 307 0.00017789999 24 307 2.9699993e-05 60 307 0.0024611999 77 307 5.9299986e-05 79 307 2.9699993e-05 82 307 2.9699993e-05 83 307 2.9699993e-05 84 307 2.9699993e-05 108 307 2.9699993e-05 113 307 5.9299986e-05 114 307 0.00011859999 126 307 5.9299986e-05 127 307 2.9699993e-05 142 307 2.9699993e-05 150 307 0.00062269997 151 307 0.00059309998 160 307 0.00083029992 161 307 2.9699993e-05 169 307 2.9699993e-05 171 307 8.8999994e-05 172 307 0.00026689982 189 307 8.8999994e-05 190 307 8.8999994e-05 191 307 2.9699993e-05 194 307 0.00011859999 197 307 2.9699993e-05 198 307 0.00074129994 200 307 5.9299986e-05 201 307 5.9299986e-05 203 307 5.9299986e-05 204 307 5.9299986e-05 206 307 0.00011859999 207 307 2.9699993e-05 214 307 0.0010082 218 307 2.9699993e-05 223 307 0.0014827 224 307 2.9699993e-05 229 307 0.00083029992 233 307 0.0013046998 234 307 0.0031728998 237 307 0.00029649981 240 307 0.00032619992 241 307 0.0033211999 242 307 0.00011859999 248 307 2.9699993e-05 250 307 2.9699993e-05 252 307 0.0017494999 270 307 0.0022239999 272 307 0.00094889989 274 307 0.0014529999 276 307 0.00077099982 277 307 0.25199419 278 307 0.00017789999 280 307 0.00011859999 282 307 0.008480899 283 307 0.0012750998 284 307 0.00059309998 285 307 0.0027280999 286 307 5.9299986e-05 287 307 0.0011268 288 307 0.00014829999 289 307 0.0033507999 290 307 0.00085989991 291 307 2.9699993e-05 292 307 0.0079470985 293 307 0.006227199 294 307 0.0013936998 295 307 0.00023719999 296 307 0.00041509978 297 307 0.0053375997 298 307 0.00023719999 299 307 0.00023719999 304 307 0.00041509978 305 307 0.0030246 307 307 0.023248199 308 307 0.00017789999 312 307 0.0053079985 313 307 2.9699993e-05 315 307 0.00088959979 317 307 0.00068199984 318 307 0.00074129994 319 307 0.0012750998 320 307 0.0016013 321 307 0.0023722998 322 307 0.0028763998 324 307 0.014144599 326 307 0.0088069998 327 307 0.0010972 328 307 0.00035579992 329 307 2.9699993e-05 331 307 2.9699993e-05 332 307 2.9699993e-05 333 307 5.9299986e-05 338 307 0.00074129994 339 307 0.0016901998 340 307 0.0032321999 341 307 2.9699993e-05 343 307 0.0032025999 344 307 0.00014829999 347 307 0.00014829999 349 307 5.9299986e-05 350 307 0.00083029992 351 307 0.0015123 352 307 0.0031136 353 307 0.00020759999 354 307 0.0020164 355 307 2.9699993e-05 356 307 0.00011859999 357 307 5.9299986e-05 358 307 0.0046555996 366 307 0.0019274999 369 307 2.9699993e-05 370 307 8.8999994e-05 371 307 0.00014829999 372 307 0.0044182986 373 307 0.00041509978 374 307 0.0031432998 375 307 0.00071169995 380 307 2.9699993e-05 384 307 5.9299986e-05 386 307 8.8999994e-05 387 307 5.9299986e-05 390 307 0.00011859999 392 307 5.9299986e-05 393 307 0.00011859999 394 307 2.9699993e-05 397 307 5.9299986e-05 398 307 0.00014829999 401 307 5.9299986e-05 402 307 0.0014529999 404 307 0.0010674999 405 307 0.00047449977 408 307 0.00011859999 414 307 0.0011564998 415 307 0.0012750998 417 307 0.00038549979 419 307 5.9299986e-05 421 307 5.9299986e-05 422 307 0.00014829999 423 307 2.9699993e-05 425 307 2.9699993e-05 430 307 2.9699993e-05 431 307 2.9699993e-05 433 307 2.9699993e-05 434 307 2.9699993e-05 441 307 0.0013343999 442 307 2.9699993e-05 443 307 0.0061678998 444 307 0.0029652999 445 307 0.0093704984 446 307 0.00080059981 447 307 0.011179298 448 307 2.9699993e-05 450 307 0.0048927963 452 307 0.0057527982 453 307 0.0028466999 454 307 0.0011564998 455 307 0.0355247 456 307 0.00059309998 457 307 0.0027280999 458 307 0.00044479989 459 307 0.00029649981 460 307 0.0018681998 463 307 0.0109124 464 307 0.0024909 465 307 0.0091924965 467 307 0.0094890967 468 307 0.0021646998 469 307 0.011001397 470 307 0.0074725971 471 307 0.0032321999 473 307 0.00011859999 477 307 0.0010082 478 307 0.0010674999 483 307 0.0011268 489 307 8.8999994e-05 490 307 0.00047449977 491 307 0.0020756999 9 308 3.6999991e-05 18 308 0.0014416999 19 308 0.0014785999 21 308 3.6999991e-05 22 308 0.0023657999 24 308 3.6999991e-05 25 308 3.6999991e-05 60 308 0.0023287998 82 308 3.6999991e-05 83 308 3.6999991e-05 84 308 3.6999991e-05 108 308 3.6999991e-05 113 308 7.3899995e-05 114 308 0.00014789999 126 308 7.3899995e-05 127 308 3.6999991e-05 130 308 3.6999991e-05 139 308 3.6999991e-05 150 308 0.00055449991 151 308 0.00048059993 160 308 0.0044728965 165 308 7.3899995e-05 169 308 0.0018112999 171 308 3.6999991e-05 172 308 0.00022179999 187 308 0.0001848 189 308 7.3899995e-05 190 308 7.3899995e-05 191 308 0.0038443999 194 308 0.00014789999 197 308 3.6999991e-05 198 308 0.0125314 200 308 3.6999991e-05 203 308 7.3899995e-05 204 308 7.3899995e-05 206 308 0.00011089999 207 308 3.6999991e-05 214 308 0.00096109998 223 308 0.0003696999 224 308 3.6999991e-05 229 308 0.00096109998 233 308 0.021994699 234 308 0.0042140968 236 308 0.0011459 237 308 0.00033269986 240 308 0.00025879988 241 308 0.0059514977 242 308 7.3899995e-05 252 308 0.0020700998 254 308 3.6999991e-05 267 308 7.3899995e-05 270 308 0.00092409994 271 308 3.6999991e-05 272 308 3.6999991e-05 273 308 3.6999991e-05 274 308 7.3899995e-05 277 308 0.17909944 278 308 0.00059149996 280 308 0.0026246 282 308 0.0040292963 283 308 0.0001848 284 308 0.00059149996 285 308 0.0015155999 286 308 7.3899995e-05 287 308 0.0028463998 288 308 0.0018852998 289 308 0.018076297 290 308 0.0011459 291 308 0.0018483 292 308 0.0043249987 293 308 0.070863485 294 308 0.00088719977 295 308 0.00029569981 296 308 0.0022548998 297 308 0.0038814 304 308 7.3899995e-05 305 308 0.0003696999 306 308 7.3899995e-05 307 308 0.00022179999 308 308 0.0011459 310 308 3.6999991e-05 311 308 0.0017003999 312 308 0.012605399 313 308 7.3899995e-05 315 308 0.0026614999 317 308 0.0011459 318 308 0.0011089998 319 308 0.0019591998 320 308 0.0023287998 321 308 0.0097589977 322 308 0.0024396998 324 308 0.0014416999 326 308 0.0028094 328 308 0.00011089999 337 308 7.3899995e-05 338 308 0.0011459 339 308 0.0018112999 340 308 0.0046946965 343 308 0.00059149996 350 308 0.0024396998 351 308 0.0014785999 352 308 0.0013307999 353 308 0.0012937998 354 308 0.0012198999 355 308 3.6999991e-05 356 308 0.0016635 357 308 3.6999991e-05 358 308 0.0047685988 359 308 7.3899995e-05 366 308 0.0023657999 369 308 3.6999991e-05 370 308 7.3899995e-05 371 308 0.0029942 372 308 0.0051382966 373 308 0.00014789999 374 308 0.00066539994 375 308 7.3899995e-05 377 308 3.6999991e-05 380 308 3.6999991e-05 384 308 0.0017003999 385 308 3.6999991e-05 386 308 0.00048059993 387 308 3.6999991e-05 390 308 3.6999991e-05 393 308 3.6999991e-05 397 308 3.6999991e-05 398 308 0.0011459 401 308 0.0015525999 402 308 0.00066539994 405 308 3.6999991e-05 408 308 3.6999991e-05 412 308 0.00092409994 414 308 3.6999991e-05 415 308 0.00022179999 417 308 0.00040659984 419 308 0.00014789999 421 308 7.3899995e-05 422 308 0.0001848 423 308 3.6999991e-05 425 308 3.6999991e-05 430 308 3.6999991e-05 431 308 3.6999991e-05 433 308 3.6999991e-05 434 308 3.6999991e-05 438 308 3.6999991e-05 439 308 0.0011089998 443 308 0.0071343966 444 308 0.0015894999 445 308 0.0096111 446 308 0.00092409994 447 308 0.0084651969 448 308 7.3899995e-05 450 308 0.0031420998 452 308 0.0048055984 453 308 0.0028833 454 308 0.0011828998 455 308 0.036854897 456 308 0.00044359989 457 308 0.0027723999 458 308 0.00033269986 459 308 0.00033269986 460 308 0.0018852998 463 308 0.025802199 464 308 0.0017003999 465 308 0.00088719977 467 308 0.0086499974 468 308 0.0057296976 469 308 0.0050273985 470 308 0.0064689964 471 308 0.0038074998 473 308 0.00011089999 477 308 0.001035 478 308 0.0011089998 483 308 0.0009980998 489 308 7.3899995e-05 490 308 0.00040659984 491 308 0.0035118 22 309 0.0034929998 60 309 0.0019959998 108 309 0.00016629999 114 309 0.00033269986 126 309 0.00016629999 139 309 0.00033269986 160 309 0.0018296998 184 309 0.00016629999 190 309 0.00016629999 191 309 0.00016629999 192 309 0.0033266998 194 309 0.00016629999 198 309 0.0078176968 206 309 0.00033269986 214 309 0.0078176968 229 309 0.00066529983 233 309 0.013140399 234 309 0.0033266998 237 309 0.00033269986 240 309 0.00016629999 241 309 0.012474999 242 309 0.00016629999 252 309 0.00083169993 270 309 0.00016629999 272 309 0.00049899984 277 309 0.16566867 279 309 0.00016629999 280 309 0.00016629999 282 309 0.0056553967 284 309 0.00066529983 285 309 0.00016629999 287 309 0.00016629999 288 309 0.0016633 289 309 0.033433098 290 309 0.00033269986 292 309 0.001497 293 309 0.056719899 296 309 0.0023286999 297 309 0.00033269986 305 309 0.0013306998 309 309 0.0024949999 312 309 0.015302699 315 309 0.0073186979 317 309 0.00016629999 318 309 0.00033269986 319 309 0.00033269986 320 309 0.0033266998 321 309 0.0084829964 322 309 0.0054889992 324 309 0.00016629999 326 309 0.029274799 327 309 0.00016629999 331 309 0.00016629999 335 309 0.00033269986 339 309 0.0033266998 340 309 0.0039919987 351 309 0.00016629999 352 309 0.00033269986 353 309 0.0041582994 354 309 0.00033269986 358 309 0.027944099 366 309 0.00099799992 370 309 0.00033269986 371 309 0.00016629999 372 309 0.001497 373 309 0.00049899984 374 309 0.0028277 387 309 0.00016629999 390 309 0.00016629999 402 309 0.00033269986 405 309 0.00016629999 417 309 0.00049899984 422 309 0.00033269986 443 309 0.006486997 444 309 0.0056553967 445 309 0.014304698 446 309 0.00033269986 447 309 0.0088156983 450 309 0.0041582994 452 309 0.0053226985 453 309 0.001497 454 309 0.00066529983 455 309 0.034930099 456 309 0.00033269986 457 309 0.0024949999 458 309 0.00083169993 459 309 0.00033269986 460 309 0.0023286999 463 309 0.017797697 464 309 0.00099799992 465 309 0.00083169993 467 309 0.0093146972 468 309 0.0059879981 469 309 0.0066533983 470 309 0.0069859996 471 309 0.0023286999 473 309 0.00016629999 478 309 0.001497 483 309 0.00099799992 490 309 0.00066529983 491 309 0.0046573989 22 310 0.0055714995 60 310 0.0021947999 114 310 0.00016879999 126 310 0.00016879999 160 310 0.00033769989 191 310 0.00016879999 194 310 0.00016879999 198 310 0.0047272965 206 310 0.00033769989 214 310 0.00016879999 229 310 0.0010129998 233 310 0.0064156987 234 310 0.0018571999 237 310 0.00016879999 240 310 0.00016879999 241 310 0.00033769989 252 310 0.0013506999 272 310 0.00033769989 277 310 0.31723785 279 310 0.00016879999 280 310 0.00016879999 282 310 0.0006752999 283 310 0.00016879999 284 310 0.00033769989 289 310 0.0042207986 290 310 0.00016879999 292 310 0.0057402998 293 310 0.013000198 296 310 0.00033769989 297 310 0.00016879999 305 310 0.00050649978 310 310 0.0054026991 312 310 0.031065296 315 310 0.0251562 318 310 0.00016879999 319 310 0.00016879999 320 310 0.0016882999 321 310 0.0060779974 322 310 0.012155998 326 310 0.0297147 328 310 0.00016879999 329 310 0.00016879999 339 310 0.0030389999 340 310 0.0033767 351 310 0.0052337982 353 310 0.0067532994 358 310 0.0079351999 366 310 0.00016879999 372 310 0.00016879999 374 310 0.0047272965 390 310 0.00033769989 392 310 0.00033769989 393 310 0.00016879999 404 310 0.00016879999 405 310 0.0010129998 417 310 0.00033769989 443 310 0.0074286982 444 310 0.0055714995 445 310 0.0087792985 446 310 0.00084419991 447 310 0.0089481995 450 310 0.0027013 452 310 0.0037143 453 310 0.0025324998 454 310 0.00050649978 455 310 0.035455 456 310 0.00016879999 457 310 0.0027013 458 310 0.00084419991 459 310 0.00033769989 460 310 0.0015194998 463 310 0.011142999 464 310 0.0020259998 465 310 0.00033769989 467 310 0.0072597973 468 310 0.0077662989 469 310 0.0042207986 470 310 0.0048961975 471 310 0.0011817999 473 310 0.00016879999 478 310 0.00084419991 483 310 0.00084419991 490 310 0.00050649978 491 310 0.0011817999 18 311 9.9899989e-05 19 311 0.005791299 22 311 0.0027957999 24 311 0.00039939978 25 311 9.9899989e-05 60 311 0.0030953998 108 311 9.9899989e-05 114 311 9.9899989e-05 126 311 9.9899989e-05 160 311 0.0027957999 165 311 0.00019969999 169 311 0.00069899997 172 311 0.0012981 183 311 9.9899989e-05 187 311 0.00019969999 188 311 0.00019969999 189 311 9.9899989e-05 190 311 9.9899989e-05 191 311 9.9899989e-05 193 311 9.9899989e-05 194 311 9.9899989e-05 198 311 0.0022965998 206 311 0.00019969999 214 311 0.0016974998 229 311 0.0010984 233 311 0.0013978998 234 311 0.0023963999 237 311 9.9899989e-05 240 311 0.00019969999 241 311 0.0007987998 252 311 0.0030953998 267 311 0.00029959995 270 311 9.9899989e-05 272 311 0.00059909979 273 311 0.00019969999 277 311 0.36575139 278 311 0.0019969998 279 311 9.9899989e-05 280 311 0.00039939978 282 311 0.0061906986 284 311 0.00059909979 285 311 9.9899989e-05 287 311 9.9899989e-05 288 311 0.0018971998 289 311 0.0060908981 290 311 0.0013978998 291 311 0.00019969999 292 311 0.0013978998 293 311 0.044932596 295 311 0.00029959995 296 311 9.9899989e-05 297 311 0.00059909979 305 311 0.0007987998 306 311 9.9899989e-05 307 311 0.00029959995 311 311 0.0042935982 312 311 0.0027957999 315 311 0.0112831 318 311 0.00019969999 319 311 0.0011981998 320 311 0.0014978 321 311 0.0017972998 322 311 0.014677998 324 311 0.00029959995 326 311 0.019370899 337 311 9.9899989e-05 339 311 0.00059909979 340 311 0.0025960999 343 311 9.9899989e-05 350 311 0.00039939978 351 311 0.0026959998 352 311 0.00029959995 353 311 0.0009984998 354 311 0.00039939978 358 311 0.0040938966 359 311 9.9899989e-05 366 311 9.9899989e-05 368 311 9.9899989e-05 371 311 9.9899989e-05 372 311 0.00029959995 373 311 9.9899989e-05 374 311 0.00059909979 375 311 0.00029959995 384 311 0.00029959995 386 311 9.9899989e-05 387 311 9.9899989e-05 408 311 0.00029959995 413 311 9.9899989e-05 414 311 9.9899989e-05 417 311 0.00029959995 422 311 0.00019969999 430 311 9.9899989e-05 443 311 0.011382896 444 311 0.0025960999 445 311 0.0090863965 446 311 0.0015975998 447 311 0.0046929978 450 311 0.0028956998 452 311 0.0066899993 453 311 0.0034947998 454 311 0.00069899997 455 311 0.0390414 456 311 0.00029959995 457 311 0.0029954999 458 311 0.00049929996 459 311 0.00049929996 460 311 0.0019969998 463 311 0.0091861971 464 311 0.00069899997 465 311 0.00069899997 467 311 0.0075885989 468 311 0.0054917969 469 311 0.0053918995 470 311 0.005791299 471 311 0.0013978998 473 311 9.9899989e-05 477 311 9.9899989e-05 478 311 0.0009984998 483 311 0.0011981998 489 311 9.9899989e-05 490 311 0.00039939978 491 311 0.0036944998 9 312 3.1899996e-05 18 312 0.0011181999 19 312 0.0022043998 21 312 3.1899996e-05 22 312 0.0011181999 24 312 6.3899992e-05 25 312 3.1899996e-05 60 312 0.0029391998 82 312 3.1899996e-05 83 312 3.1899996e-05 84 312 3.1899996e-05 108 312 3.1899996e-05 113 312 6.3899992e-05 114 312 9.5799987e-05 126 312 3.1899996e-05 150 312 0.00070289988 153 312 0.00083059981 160 312 6.3899992e-05 165 312 3.1899996e-05 169 312 0.0014056999 172 312 0.00079869991 183 312 3.1899996e-05 189 312 6.3899992e-05 190 312 9.5799987e-05 192 312 9.5799987e-05 193 312 0.00083059981 194 312 0.0001278 198 312 0.0025238998 200 312 3.1899996e-05 203 312 0.0001278 204 312 6.3899992e-05 206 312 0.00015969999 207 312 6.3899992e-05 214 312 0.0036420999 223 312 3.1899996e-05 224 312 3.1899996e-05 229 312 0.00063899998 233 312 3.1899996e-05 234 312 0.0050477982 237 312 0.00025559985 240 312 0.0021086 241 312 0.0071562976 242 312 6.3899992e-05 252 312 6.3899992e-05 262 312 3.1899996e-05 267 312 0.0001278 270 312 0.0048240982 271 312 3.1899996e-05 272 312 0.00063899998 273 312 3.1899996e-05 277 312 0.19002587 278 312 0.0007666999 279 312 0.0001278 280 312 3.1899996e-05 282 312 0.0043129995 283 312 0.00031949999 284 312 0.0061019994 285 312 3.1899996e-05 286 312 0.0011820998 287 312 9.5799987e-05 288 312 0.0016931999 289 312 0.00041529979 290 312 0.00060699997 291 312 9.5799987e-05 292 312 0.0277946 293 312 0.0095843971 294 312 0.00092649995 295 312 0.0017251999 296 312 0.00025559985 297 312 0.0058144964 298 312 6.3899992e-05 299 312 3.1899996e-05 301 312 0.0028752999 304 312 3.1899996e-05 307 312 3.1899996e-05 310 312 3.1899996e-05 312 312 0.006836798 313 312 9.5799987e-05 315 312 0.0054630972 318 312 0.00054309983 320 312 0.013481997 321 312 0.00095839985 322 312 0.0011500998 324 312 0.0001278 326 312 0.0010543 327 312 3.1899996e-05 328 312 0.00067089987 329 312 9.5799987e-05 337 312 0.00092649995 338 312 0.0010543 339 312 0.00038339989 340 312 0.027219597 341 312 0.0001278 342 312 3.1899996e-05 343 312 3.1899996e-05 350 312 0.00019169999 351 312 0.00099039986 352 312 6.3899992e-05 354 312 0.00028749998 356 312 9.5799987e-05 357 312 0.00019169999 358 312 0.037155397 359 312 6.3899992e-05 366 312 3.1899996e-05 367 312 3.1899996e-05 372 312 0.0001278 373 312 9.5799987e-05 374 312 3.1899996e-05 375 312 9.5799987e-05 384 312 0.00015969999 386 312 9.5799987e-05 387 312 3.1899996e-05 390 312 3.1899996e-05 392 312 3.1899996e-05 393 312 3.1899996e-05 397 312 0.00015969999 398 312 0.00083059981 402 312 0.00041529979 405 312 0.0001278 408 312 3.1899996e-05 413 312 3.1899996e-05 414 312 0.0001278 417 312 0.00047919992 421 312 6.3899992e-05 422 312 9.5799987e-05 423 312 3.1899996e-05 430 312 3.1899996e-05 431 312 3.1899996e-05 432 312 3.1899996e-05 433 312 6.3899992e-05 434 312 6.3899992e-05 443 312 0.0060380995 444 312 0.0011820998 445 312 0.0092648976 446 312 0.00099039986 447 312 0.008466199 448 312 3.1899996e-05 450 312 0.0034822999 452 312 0.0083702989 453 312 0.0040892996 454 312 0.0021404999 455 312 0.028657198 456 312 0.00067089987 457 312 0.0050157979 458 312 0.00060699997 459 312 0.00041529979 460 312 0.0018529999 463 312 0.011724897 464 312 0.0010543 465 312 0.00092649995 467 312 0.0096801966 468 312 0.0046962984 469 312 0.010478899 470 312 0.0046323985 471 312 0.0015653998 473 312 6.3899992e-05 477 312 0.0014376999 478 312 0.0011500998 479 312 0.0031947999 483 312 0.0013098998 489 312 0.0001278 490 312 0.00028749998 491 312 0.0048560984 9 313 1.9299987e-05 18 313 5.789999e-05 19 313 0.00034749997 22 313 0.00046329992 24 313 1.9299987e-05 60 313 0.0044206977 77 313 0.0005983999 82 313 1.9299987e-05 83 313 1.9299987e-05 84 313 1.9299987e-05 108 313 1.9299987e-05 113 313 3.8599988e-05 114 313 3.8599988e-05 126 313 1.9299987e-05 134 313 0.0001351 150 313 0.00061769993 151 313 1.9299987e-05 156 313 0.003976699 158 313 0.000193 160 313 0.00042469986 169 313 0.00054049981 171 313 5.789999e-05 172 313 0.0019496998 181 313 0.0001544 187 313 0.00061769993 188 313 0.0015056999 189 313 3.8599988e-05 190 313 7.7199991e-05 192 313 5.789999e-05 194 313 7.7199991e-05 197 313 1.9299987e-05 198 313 0.0025095998 200 313 3.8599988e-05 203 313 3.8599988e-05 204 313 5.789999e-05 206 313 7.7199991e-05 207 313 3.8599988e-05 209 313 1.9299987e-05 214 313 0.0016215998 218 313 1.9299987e-05 219 313 0.0007528998 220 313 5.789999e-05 223 313 0.00081079989 224 313 0.0007528998 229 313 0.00086869998 233 313 0.0010616998 234 313 0.0021042 236 313 1.9299987e-05 237 313 0.00084939995 240 313 0.0013319999 241 313 0.001525 242 313 7.7199991e-05 252 313 0.00067559979 267 313 1.9299987e-05 270 313 0.0001544 271 313 7.7199991e-05 272 313 0.00025099982 274 313 3.8599988e-05 277 313 0.31369448 278 313 0.0001351 279 313 3.8599988e-05 282 313 0.0029342 283 313 0.00042469986 284 313 0.00084939995 285 313 0.00025099982 286 313 0.00057909987 288 313 0.00092659984 289 313 0.00023169999 290 313 7.7199991e-05 292 313 0.0041503981 293 313 0.0065054968 294 313 0.00027029985 295 313 0.00030889991 296 313 0.00094589987 297 313 5.789999e-05 298 313 0.0049611963 299 313 0.0020462999 301 313 5.789999e-05 312 313 0.012547798 313 313 0.029052898 315 313 0.00030889991 318 313 1.9299987e-05 319 313 0.0016408998 320 313 0.0040152967 321 313 0.00034749997 322 313 0.00086869998 323 313 0.00028959988 325 313 0.00046329992 326 313 0.0012161999 328 313 0.00042469986 330 313 0.00061769993 338 313 0.00048259995 339 313 0.0016601998 340 313 0.0049997978 350 313 1.9299987e-05 351 313 0.00086869998 354 313 1.9299987e-05 356 313 3.8599988e-05 357 313 0.00030889991 358 313 0.0093818977 366 313 0.00025099982 372 313 5.789999e-05 373 313 0.0010231 374 313 1.9299987e-05 375 313 1.9299987e-05 384 313 0.00011579999 385 313 0.0003668 386 313 1.9299987e-05 387 313 0.00028959988 392 313 7.7199991e-05 393 313 3.8599988e-05 394 313 0.0001351 397 313 0.00083009992 399 313 5.789999e-05 401 313 0.0014863999 402 313 0.012953199 405 313 0.0007528998 414 313 5.789999e-05 417 313 0.0003668 419 313 1.9299987e-05 421 313 5.789999e-05 422 313 5.789999e-05 423 313 1.9299987e-05 430 313 1.9299987e-05 432 313 1.9299987e-05 433 313 1.9299987e-05 434 313 3.8599988e-05 441 313 1.9299987e-05 443 313 0.0069301985 444 313 0.00098449993 445 313 0.0069494992 446 313 0.00086869998 447 313 0.0023936999 448 313 1.9299987e-05 450 313 0.0019689999 452 313 0.0071618967 453 313 0.0017759998 454 313 0.00052119978 455 313 0.028937098 456 313 0.00025099982 457 313 0.0027990998 458 313 0.00027029985 459 313 0.0022199999 460 313 0.0017374 463 313 0.0052121989 464 313 0.0011195999 465 313 0.00067559979 467 313 0.0072004981 468 313 0.0014477998 469 313 0.0044592991 470 313 0.0017952998 471 313 0.0010809998 473 313 3.8599988e-05 477 313 7.7199991e-05 478 313 0.00079149986 483 313 0.00057909987 489 313 5.789999e-05 490 313 0.0001351 491 313 0.0020462999 0 314 0.0036722999 22 314 0.00056499988 24 314 0.00028249994 60 314 0.0036722999 87 314 0.0031072998 90 314 0.0011298999 114 314 0.00028249994 130 314 0.00056499988 135 314 0.00028249994 169 314 0.00084749982 171 314 0.005649697 172 314 0.0016949 187 314 0.0050846972 188 314 0.011299398 191 314 0.0011298999 192 314 0.00056499988 193 314 0.00028249994 194 314 0.00028249994 198 314 0.011299398 204 314 0.0033898 206 314 0.00028249994 214 314 0.003954798 223 314 0.017231598 224 314 0.020338997 225 314 0.00056499988 229 314 0.00084749982 233 314 0.017231598 234 314 0.0019773999 241 314 0.019491497 252 314 0.00056499988 270 314 0.0031072998 272 314 0.0064971969 277 314 0.19039547 284 314 0.00084749982 287 314 0.00028249994 292 314 0.00028249994 293 314 0.088983059 294 314 0.00028249994 312 314 0.0025423998 314 314 0.046045199 315 314 0.00084749982 321 314 0.0050846972 322 314 0.00028249994 326 314 0.00056499988 339 314 0.0014123998 340 314 0.005649697 349 314 0.00028249994 351 314 0.00028249994 358 314 0.0045197979 385 314 0.00028249994 417 314 0.00028249994 443 314 0.0079095997 444 314 0.00084749982 445 314 0.0093219988 446 314 0.00028249994 447 314 0.005649697 450 314 0.0019773999 452 314 0.0062146969 453 314 0.0028249 454 314 0.00028249994 455 314 0.031638399 457 314 0.0016949 458 314 0.00028249994 459 314 0.00028249994 460 314 0.0014123998 463 314 0.0084745996 464 314 0.00084749982 465 314 0.00028249994 467 314 0.0081920996 468 314 0.0019773999 469 314 0.0022598999 470 314 0.0022598999 471 314 0.00084749982 478 314 0.00056499988 483 314 0.00056499988 490 314 0.00028249994 491 314 0.00056499988 9 315 3.7899998e-05 18 315 0.00011359999 19 315 0.0003407998 21 315 3.7899998e-05 22 315 0.00060589984 25 315 3.7899998e-05 60 315 0.0035974998 77 315 0.00011359999 82 315 3.7899998e-05 108 315 3.7899998e-05 114 315 7.5699994e-05 126 315 3.7899998e-05 130 315 0.00026509981 131 315 7.5699994e-05 139 315 0.00015149999 141 315 3.7899998e-05 150 315 0.00075739995 151 315 3.7899998e-05 156 315 0.00011359999 160 315 0.0010225 169 315 0.00053019985 171 315 0.0041655973 172 315 0.0020827998 187 315 0.0020069999 188 315 0.0051500984 189 315 3.7899998e-05 190 315 0.00011359999 192 315 3.7899998e-05 194 315 0.00018929999 197 315 3.7899998e-05 198 315 0.014996 200 315 3.7899998e-05 203 315 7.5699994e-05 204 315 0.00018929999 206 315 0.00015149999 207 315 3.7899998e-05 214 315 0.0054530986 219 315 0.0019312999 220 315 3.7899998e-05 221 315 3.7899998e-05 223 315 0.0029537999 224 315 0.001742 225 315 0.00015149999 229 315 0.00075739995 233 315 0.0040140972 234 315 0.0027643999 237 315 0.00018929999 240 315 0.00030289986 241 315 0.013973597 243 315 3.7899998e-05 252 315 0.0036732999 270 315 0.00037869997 272 315 0.00053019985 274 315 0.0027264999 277 315 0.16366869 278 315 0.00011359999 279 315 3.7899998e-05 280 315 3.7899998e-05 282 315 0.0025750999 283 315 0.00011359999 284 315 0.004506398 285 315 0.0048850998 286 315 0.0003407998 287 315 7.5699994e-05 288 315 0.00083309994 289 315 0.00079519977 290 315 0.00026509981 292 315 0.014314398 293 315 0.038663998 294 315 0.0021584998 295 315 0.015791297 296 315 0.0019691999 297 315 0.00094669987 298 315 0.00083309994 299 315 0.0055287965 301 315 0.0034460998 305 315 3.7899998e-05 307 315 3.7899998e-05 308 315 3.7899998e-05 312 315 0.0095807984 313 315 0.00094669987 314 315 3.7899998e-05 315 315 0.017306 318 315 0.00064379978 319 315 0.006361898 320 315 0.0093535967 321 315 0.0028402 322 315 0.0014389998 324 315 0.00011359999 325 315 0.0012117999 326 315 0.004619997 328 315 0.00011359999 330 315 7.5699994e-05 331 315 7.5699994e-05 338 315 0.00060589984 339 315 0.0018555999 340 315 0.0063240975 341 315 3.7899998e-05 344 315 0.00045439997 349 315 3.7899998e-05 350 315 3.7899998e-05 351 315 0.00079519977 352 315 3.7899998e-05 354 315 7.5699994e-05 356 315 3.7899998e-05 358 315 0.006361898 359 315 0.0016661999 366 315 3.7899998e-05 370 315 0.0002272 371 315 0.00015149999 372 315 0.0033324 373 315 0.00087099988 375 315 3.7899998e-05 376 315 3.7899998e-05 377 315 7.5699994e-05 380 315 0.00079519977 384 315 7.5699994e-05 385 315 0.0002272 386 315 0.0023478998 387 315 3.7899998e-05 389 315 3.7899998e-05 390 315 0.00015149999 392 315 0.00053019985 393 315 0.00075739995 398 315 7.5699994e-05 402 315 0.0049228966 405 315 0.00011359999 415 315 0.00041659991 417 315 0.0005679999 419 315 0.00018929999 421 315 7.5699994e-05 422 315 0.00011359999 430 315 0.00015149999 433 315 3.7899998e-05 434 315 3.7899998e-05 441 315 0.00011359999 442 315 3.7899998e-05 443 315 0.0059453994 444 315 0.00094669987 445 315 0.0065133981 446 315 0.00068159983 447 315 0.0055666976 450 315 0.0028779998 452 315 0.0069677979 453 315 0.0024992998 454 315 0.00053019985 455 315 0.031052399 456 315 0.00030289986 457 315 0.0035597 458 315 0.00049229991 459 315 0.00037869997 460 315 0.0018555999 463 315 0.012458798 464 315 0.0020448999 465 315 0.00094669987 467 315 0.0095807984 468 315 0.0054151975 469 315 0.0079523996 470 315 0.0033702999 471 315 0.0013253998 473 315 7.5699994e-05 477 315 7.5699994e-05 478 315 0.0011739 483 315 0.00064379978 489 315 3.7899998e-05 490 315 0.00026509981 491 315 0.00064379978 60 316 0.0038768998 114 316 0.0002423 160 316 0.00048459996 168 316 0.0002423 171 316 0.0055730976 194 316 0.0002423 198 316 0.0167192 206 316 0.00048459996 214 316 0.0062999986 224 316 0.0012114998 229 316 0.00048459996 234 316 0.0048460998 237 316 0.0002423 240 316 0.010176897 241 316 0.017930698 272 316 0.00048459996 277 316 0.046765197 279 316 0.0002423 282 316 0.0029076999 283 316 0.0036346 284 316 0.0046037994 292 316 0.0065422989 293 316 0.0048460998 294 316 0.0012114998 296 316 0.00048459996 299 316 0.0002423 312 316 0.018899899 315 316 0.0196268 316 316 0.0019385 317 316 0.0002423 319 316 0.0121153 320 316 0.016961496 326 316 0.033438299 340 316 0.0048460998 353 316 0.0072691999 356 316 0.0002423 358 316 0.0026653998 417 316 0.00048459996 441 316 0.0096922964 443 316 0.0019385 444 316 0.0099345967 445 316 0.0043614991 447 316 0.0067845993 450 316 0.0036346 452 316 0.0058153979 453 316 0.0019385 454 316 0.0031499998 455 316 0.019142199 456 316 0.00048459996 457 316 0.0016961 458 316 0.00048459996 459 316 0.00048459996 460 316 0.0019385 463 316 0.0050883964 464 316 0.00096919993 465 316 0.00072689983 467 316 0.0094499998 468 316 0.1344803 469 316 0.0031499998 470 316 0.0033922999 471 316 0.00096919993 478 316 0.00096919993 479 316 0.0048460998 483 316 0.0012114998 490 316 0.00048459996 491 316 0.00096919993 22 317 8.6699991e-05 24 317 8.6699991e-05 60 317 0.0027729999 108 317 8.6699991e-05 114 317 0.0001733 126 317 8.6699991e-05 142 317 0.0001733 159 317 8.6699991e-05 160 317 0.00086659985 161 317 0.00034659985 168 317 0.0036394999 171 317 0.050606597 172 317 0.00060659996 189 317 8.6699991e-05 190 317 8.6699991e-05 192 317 8.6699991e-05 194 317 0.0001733 198 317 0.011525098 200 317 8.6699991e-05 203 317 8.6699991e-05 204 317 8.6699991e-05 206 317 0.0001733 207 317 8.6699991e-05 214 317 8.6699991e-05 224 317 8.6699991e-05 229 317 0.00060659996 234 317 0.0038127999 237 317 0.00025999988 240 317 0.00043329992 241 317 0.013431497 270 317 0.0019063998 271 317 8.6699991e-05 272 317 0.00060659996 277 317 0.095580578 278 317 0.0001733 279 317 0.00025999988 282 317 0.017071098 283 317 0.027902897 284 317 0.0044193976 285 317 0.00034659985 286 317 8.6699991e-05 288 317 8.6699991e-05 289 317 0.00043329992 290 317 8.6699991e-05 292 317 0.0033794998 293 317 0.0032928998 294 317 0.0001733 295 317 0.00043329992 296 317 0.005632598 297 317 8.6699991e-05 298 317 0.00025999988 299 317 0.0064990968 307 317 0.00025999988 308 317 8.6699991e-05 312 317 0.0013865 313 317 8.6699991e-05 315 317 0.0048526973 317 317 0.0045926981 318 317 8.6699991e-05 319 317 0.00025999988 320 317 0.020277299 324 317 0.0001733 326 317 0.011785097 328 317 0.00034659985 330 317 8.6699991e-05 338 317 0.0012997999 339 317 0.00051989988 340 317 0.0086654983 341 317 0.0001733 350 317 0.0001733 351 317 0.00077989977 353 317 0.00025999988 354 317 0.00060659996 355 317 8.6699991e-05 356 317 0.00025999988 357 317 8.6699991e-05 358 317 0.011525098 371 317 8.6699991e-05 372 317 0.00025999988 373 317 0.00069319992 375 317 8.6699991e-05 386 317 0.00025999988 387 317 8.6699991e-05 397 317 8.6699991e-05 401 317 8.6699991e-05 402 317 0.00095319981 412 317 8.6699991e-05 417 317 0.00051989988 421 317 8.6699991e-05 422 317 8.6699991e-05 430 317 8.6699991e-05 433 317 8.6699991e-05 434 317 8.6699991e-05 441 317 8.6699991e-05 443 317 0.0034661999 444 317 0.0041593984 445 317 0.013864797 446 317 0.00034659985 447 317 0.005632598 450 317 0.0036394999 452 317 0.005979199 453 317 0.0037262 454 317 0.00043329992 455 317 0.033882096 456 317 0.00025999988 457 317 0.0019930999 458 317 0.00086659985 459 317 0.00043329992 460 317 0.0019930999 463 317 0.0088387989 464 317 0.0027729999 465 317 0.0010398999 467 317 0.017850999 468 317 0.0076255985 469 317 0.0069323964 470 317 0.0040727966 471 317 0.0016464 473 317 8.6699991e-05 477 317 8.6699991e-05 478 317 0.0012131999 479 317 0.0026862998 483 317 0.0013865 489 317 8.6699991e-05 490 317 0.00043329992 491 317 0.0026862998 60 318 0.0023991999 114 318 0.00047979993 171 318 0.0062379986 172 318 0.00047979993 198 318 0.0052782968 206 318 0.00095969997 224 318 0.00047979993 229 318 0.00047979993 234 318 0.0033588998 237 318 0.00095969997 240 318 0.00047979993 241 318 0.012475997 270 318 0.022072896 272 318 0.00047979993 276 318 0.00047979993 277 318 0.14635319 282 318 0.0038387999 283 318 0.0014394999 284 318 0.0043185987 285 318 0.0014394999 292 318 0.00047979993 293 318 0.00047979993 294 318 0.0023991999 295 318 0.0033588998 296 318 0.0033588998 297 318 0.00047979993 298 318 0.00095969997 307 318 0.00095969997 312 318 0.0014394999 315 318 0.0014394999 317 318 0.00047979993 318 318 0.0038387999 320 318 0.047504798 326 318 0.00047979993 328 318 0.0052782968 330 318 0.0019193999 333 318 0.00047979993 338 318 0.00047979993 340 318 0.013435699 341 318 0.00047979993 351 318 0.0019193999 354 318 0.0019193999 358 318 0.0086371973 371 318 0.00047979993 372 318 0.0014394999 373 318 0.0038387999 386 318 0.0019193999 398 318 0.00047979993 417 318 0.00047979993 443 318 0.0028790999 444 318 0.00047979993 445 318 0.0043185987 447 318 0.018714 450 318 0.0033588998 452 318 0.006717898 453 318 0.0019193999 454 318 0.00047979993 455 318 0.024951998 457 318 0.0023991999 458 318 0.00095969997 459 318 0.00047979993 460 318 0.0014394999 463 318 0.0091170967 464 318 0.00047979993 465 318 0.00047979993 467 318 0.011516299 468 318 0.011516299 469 318 0.0043185987 470 318 0.0043185987 471 318 0.0014394999 478 318 0.00095969997 483 318 0.0014394999 490 318 0.00047979993 491 318 0.0014394999 9 319 3.1499992e-05 18 319 9.4399991e-05 22 319 0.00034609996 60 319 0.0032406999 82 319 3.1499992e-05 83 319 3.1499992e-05 84 319 3.1499992e-05 108 319 3.1499992e-05 113 319 6.2899999e-05 114 319 9.4399991e-05 126 319 6.2899999e-05 139 319 0.00062929979 150 319 0.00072369981 151 319 3.1499992e-05 160 319 0.00044049998 169 319 0.00091239996 171 319 0.0050655976 172 319 0.00037759985 189 319 9.4399991e-05 190 319 9.4399991e-05 192 319 6.2899999e-05 194 319 0.0001259 198 319 0.0090613998 200 319 6.2899999e-05 203 319 0.0001259 204 319 6.2899999e-05 206 319 0.00022019999 207 319 6.2899999e-05 214 319 0.0026429 223 319 0.0025485 224 319 0.0050026998 229 319 0.00066069979 233 319 0.0013528999 234 319 0.0030834 237 319 0.0010698 240 319 0.0060723983 241 319 0.024258297 242 319 3.1499992e-05 252 319 0.0020450999 253 319 0.0016675999 270 319 0.0014473 272 319 3.1499992e-05 277 319 0.10058838 279 319 3.1499992e-05 282 319 0.0094074979 283 319 0.00037759985 284 319 0.0040901974 285 319 0.00056629977 286 319 0.0023597998 288 319 0.018122897 289 319 0.00056629977 290 319 9.4399991e-05 292 319 0.013875298 293 319 0.0098479986 294 319 0.0026115 295 319 0.0025171 296 319 0.0024226999 297 319 0.0033350999 298 319 0.0023911998 304 319 3.1499992e-05 305 319 3.1499992e-05 312 319 0.0182487 313 319 6.2899999e-05 315 319 0.0082748979 317 319 3.1499992e-05 319 319 0.028600197 320 319 0.00031459983 321 319 0.0079287998 322 319 0.0040272996 324 319 9.4399991e-05 326 319 0.0072679967 328 319 3.1499992e-05 335 319 3.1499992e-05 337 319 6.2899999e-05 338 319 0.00050339988 339 319 0.00062929979 340 319 0.0056948997 341 319 6.2899999e-05 350 319 3.1499992e-05 351 319 0.00088099996 353 319 0.00015729999 354 319 0.00028319983 356 319 0.00015729999 357 319 3.1499992e-05 358 319 0.0042789988 359 319 6.2899999e-05 366 319 9.4399991e-05 367 319 3.1499992e-05 369 319 0.0001888 370 319 9.4399991e-05 372 319 0.008872699 373 319 3.1499992e-05 384 319 9.4399991e-05 385 319 6.2899999e-05 386 319 0.00022019999 387 319 6.2899999e-05 390 319 0.0017618998 391 319 0.00022019999 392 319 0.0012899998 393 319 0.0027372998 402 319 9.4399991e-05 405 319 9.4399991e-05 414 319 6.2899999e-05 415 319 3.1499992e-05 417 319 0.00047199987 419 319 3.1499992e-05 421 319 6.2899999e-05 422 319 9.4399991e-05 423 319 3.1499992e-05 425 319 3.1499992e-05 430 319 3.1499992e-05 431 319 3.1499992e-05 432 319 3.1499992e-05 433 319 6.2899999e-05 434 319 6.2899999e-05 441 319 0.0011955998 443 319 0.0042160973 444 319 0.0016675999 445 319 0.0092816986 446 319 0.00040899985 447 319 0.012176298 448 319 3.1499992e-05 450 319 0.0033979998 452 319 0.0061038993 453 319 0.0017933999 454 319 0.00078659994 455 319 0.029732898 456 319 0.0005349 457 319 0.0019192998 458 319 0.0016989999 459 319 0.00050339988 460 319 0.0018877999 463 319 0.009438999 464 319 0.0018248998 465 319 0.0010382999 467 319 0.0128056 468 319 0.0011640999 469 319 0.0066387989 470 319 0.0042160973 471 319 0.0012584999 473 319 9.4399991e-05 477 319 6.2899999e-05 478 319 0.0011326999 483 319 0.0014159 489 319 6.2899999e-05 490 319 0.00034609996 491 319 0.00069219992 18 320 0.0001928 22 320 9.6399992e-05 60 320 0.015715398 108 320 9.6399992e-05 114 320 9.6399992e-05 126 320 9.6399992e-05 150 320 0.001157 189 320 9.6399992e-05 190 320 0.0001928 192 320 9.6399992e-05 194 320 0.0001928 198 320 0.0019282999 200 320 9.6399992e-05 203 320 9.6399992e-05 204 320 9.6399992e-05 206 320 0.00028919987 207 320 9.6399992e-05 214 320 0.024006899 218 320 9.6399992e-05 223 320 0.094967186 224 320 9.6399992e-05 229 320 0.00038569979 233 320 0.0037600999 234 320 0.0062668994 237 320 0.00038569979 240 320 0.0010604998 241 320 0.0034708998 252 320 0.0031815998 270 320 0.0071345977 277 320 0.0086771995 278 320 9.6399992e-05 284 320 0.0026995998 286 320 0.004049398 287 320 0.0001928 288 320 0.0074237995 289 320 0.0016389999 290 320 0.027767099 291 320 0.0001928 292 320 9.6399992e-05 293 320 0.00048209983 294 320 9.6399992e-05 295 320 9.6399992e-05 312 320 0.0012534 315 320 0.0042421967 320 320 0.0006748999 326 320 0.0001928 340 320 0.0001928 349 320 0.0031815998 351 320 9.6399992e-05 356 320 0.0001928 358 320 0.0030852 384 320 0.00028919987 387 320 9.6399992e-05 392 320 0.0001928 393 320 0.001157 402 320 0.0001928 417 320 0.00077129994 421 320 9.6399992e-05 422 320 9.6399992e-05 430 320 9.6399992e-05 433 320 9.6399992e-05 434 320 9.6399992e-05 443 320 0.0078094974 444 320 0.00057849986 445 320 0.013883498 446 320 0.0006748999 447 320 0.0041457973 450 320 0.0052062981 452 320 0.022271499 453 320 0.0095448978 454 320 0.0017353999 455 320 0.017450798 456 320 0.00077129994 457 320 0.0054955967 458 320 0.00086769997 459 320 0.00057849986 460 320 0.0024102998 463 320 0.023814097 464 320 0.00038569979 465 320 0.0015425999 467 320 0.014751296 468 320 0.0019282999 469 320 0.0046277978 470 320 0.0051098987 471 320 0.0026995998 473 320 9.6399992e-05 478 320 0.0018318999 483 320 0.0010604998 489 320 0.0001928 490 320 0.00048209983 491 320 0.00028919987 19 321 0.0001372 22 321 0.0001372 24 321 0.00041159987 25 321 0.0001372 60 321 0.0026069998 108 321 0.0001372 114 321 0.00027439999 126 321 0.0001372 130 321 0.0001372 160 321 0.0001372 171 321 0.00027439999 187 321 0.0015093 190 321 0.0001372 192 321 0.0001372 194 321 0.00041159987 198 321 0.0032930998 203 321 0.0001372 204 321 0.0001372 205 321 0.0001372 206 321 0.00027439999 211 321 0.0001372 212 321 0.0001372 214 321 0.058452297 221 321 0.0001372 223 321 0.00027439999 224 321 0.0024697999 229 321 0.00068609999 233 321 0.10812289 234 321 0.0030186998 237 321 0.00027439999 240 321 0.023874898 241 321 0.014132798 250 321 0.0001372 252 321 0.00027439999 270 321 0.019072399 272 321 0.00068609999 273 321 0.0001372 277 321 0.0057628974 278 321 0.00041159987 279 321 0.0001372 282 321 0.00027439999 284 321 0.0020581998 286 321 0.00027439999 288 321 0.0429473 289 321 0.0042535998 290 321 0.0017837998 292 321 0.00068609999 293 321 0.0021954 295 321 0.00082329987 298 321 0.00041159987 308 321 0.00054879999 312 321 0.00041159987 315 321 0.0001372 320 321 0.024286497 321 321 0.026619099 326 321 0.0001372 340 321 0.0097419992 353 321 0.00041159987 354 321 0.00027439999 356 321 0.0001372 358 321 0.00041159987 369 321 0.00027439999 370 321 0.0001372 371 321 0.00027439999 372 321 0.00041159987 373 321 0.0032930998 375 321 0.00027439999 376 321 0.0001372 386 321 0.00041159987 387 321 0.0001372 393 321 0.00082329987 402 321 0.0001372 417 321 0.00054879999 421 321 0.0001372 422 321 0.00027439999 424 321 0.00054879999 426 321 0.0001372 434 321 0.0001372 442 321 0.0001372 443 321 0.0086442977 444 321 0.0043907985 445 321 0.013172299 446 321 0.001921 447 321 0.0080954991 450 321 0.0039790981 452 321 0.011662997 453 321 0.011662997 454 321 0.0038418998 455 321 0.037184399 456 321 0.00027439999 457 321 0.0031558999 458 321 0.0010976999 459 321 0.00041159987 460 321 0.0017837998 463 321 0.025932997 464 321 0.0045279972 465 321 0.0012349 467 321 0.010702498 468 321 0.0017837998 469 321 0.0038418998 470 321 0.0042535998 471 321 0.001921 473 321 0.0001372 477 321 0.0032930998 478 321 0.0012349 483 321 0.00082329987 490 321 0.00041159987 491 321 0.0010976999 18 322 0.00016269999 19 322 0.0076869987 21 322 8.1299993e-05 22 322 0.0036604998 24 322 0.00048809987 25 322 0.00016269999 60 322 0.0049212985 77 322 8.1299993e-05 108 322 8.1299993e-05 114 322 8.1299993e-05 126 322 8.1299993e-05 131 322 4.069999e-05 132 322 4.069999e-05 139 322 4.069999e-05 141 322 0.0037417999 150 322 0.00052869995 160 322 0.0055720992 165 322 8.1299993e-05 169 322 0.00044739991 171 322 0.0018302 172 322 0.0012607998 183 322 8.1299993e-05 187 322 4.069999e-05 189 322 8.1299993e-05 190 322 0.000122 192 322 8.1299993e-05 194 322 0.00016269999 195 322 4.069999e-05 197 322 4.069999e-05 198 322 0.011184797 200 322 4.069999e-05 203 322 0.0010574998 204 322 4.069999e-05 206 322 0.00032539992 207 322 4.069999e-05 214 322 0.0093544982 223 322 0.0065074973 224 322 0.00069139991 225 322 0.000122 229 322 0.00052869995 233 322 0.000244 234 322 0.0039044998 237 322 0.00081339991 240 322 0.0037417999 241 322 0.0117542 242 322 4.069999e-05 252 322 0.000122 267 322 0.0014234998 270 322 0.00020339999 271 322 4.069999e-05 272 322 0.00056939991 273 322 0.00016269999 276 322 4.069999e-05 277 322 0.22190589 278 322 0.0026842998 279 322 0.0021555999 280 322 8.1299993e-05 282 322 0.014926597 283 322 8.1299993e-05 284 322 0.0028063999 285 322 0.0012202 286 322 0.0059380978 287 322 0.00044739991 288 322 0.0097612999 289 322 0.00077279983 290 322 0.0019928999 291 322 0.00020339999 292 322 0.010737397 293 322 0.0057753995 294 322 8.1299993e-05 295 322 0.010493398 301 322 4.069999e-05 302 322 4.069999e-05 306 322 4.069999e-05 307 322 4.069999e-05 308 322 4.069999e-05 310 322 8.1299993e-05 311 322 4.069999e-05 312 322 0.0061820969 315 322 0.0015454998 318 322 0.00044739991 319 322 0.0012202 320 322 0.004189197 321 322 0.005734697 322 322 0.0060193986 323 322 4.069999e-05 324 322 0.00016269999 326 322 0.0017082 328 322 0.000122 329 322 4.069999e-05 330 322 4.069999e-05 335 322 4.069999e-05 336 322 4.069999e-05 337 322 0.000122 339 322 0.00032539992 340 322 0.012892999 342 322 4.069999e-05 343 322 0.000122 345 322 4.069999e-05 347 322 4.069999e-05 349 322 4.069999e-05 350 322 0.0013014998 351 322 0.0029689998 352 322 0.000244 353 322 4.069999e-05 354 322 0.0014234998 355 322 0.00028469996 356 322 0.00016269999 358 322 0.0030503999 359 322 0.00020339999 361 322 4.069999e-05 370 322 4.069999e-05 371 322 4.069999e-05 372 322 0.000122 373 322 0.00044739991 374 322 0.00093549979 375 322 0.00032539992 384 322 0.00040669995 385 322 4.069999e-05 387 322 8.1299993e-05 402 322 0.00020339999 408 322 0.000122 413 322 8.1299993e-05 414 322 8.1299993e-05 415 322 4.069999e-05 417 322 0.00048809987 421 322 8.1299993e-05 422 322 8.1299993e-05 430 322 4.069999e-05 433 322 4.069999e-05 434 322 8.1299993e-05 438 322 4.069999e-05 441 322 0.0010167998 443 322 0.011062797 444 322 0.0021555999 445 322 0.0079716966 446 322 0.0017488999 447 322 0.0033350999 448 322 4.069999e-05 450 322 0.0030910999 452 322 0.0089884996 453 322 0.0052466989 454 322 0.0015048999 455 322 0.030625898 456 322 0.00052869995 457 322 0.0036604998 458 322 0.00065079983 459 322 0.00040669995 460 322 0.0020742998 463 322 0.0090697967 464 322 0.0013422 465 322 0.00093549979 467 322 0.012160897 468 322 0.0036197999 469 322 0.0035384998 470 322 0.0036604998 471 322 0.0014234998 473 322 8.1299993e-05 477 322 0.00089479983 478 322 0.0010980999 483 322 0.0010980999 489 322 0.00028469996 490 322 0.00036599999 491 322 0.0032943999 60 323 0.0021851999 114 323 0.00027309987 141 323 0.00054629985 156 323 0.00054629985 158 323 0.00027309987 160 323 0.00081939995 172 323 0.00027309987 198 323 0.015842699 206 323 0.00054629985 214 323 0.0081944987 223 323 0.00027309987 224 323 0.00027309987 229 323 0.00081939995 233 323 0.0090138987 234 323 0.0021851999 237 323 0.00054629985 240 323 0.020213097 241 323 0.0027315 252 323 0.00054629985 270 323 0.00027309987 271 323 0.00081939995 272 323 0.00027309987 277 323 0.23900568 278 323 0.00027309987 279 323 0.00027309987 282 323 0.011745397 283 323 0.0032777998 284 323 0.0016388998 285 323 0.016935296 288 323 0.0013656998 292 323 0.0024583 293 323 0.0013656998 294 323 0.00054629985 295 323 0.0019119999 296 323 0.0019119999 312 323 0.023763999 313 323 0.0040971972 315 323 0.00081939995 319 323 0.0010925999 320 323 0.0098333992 321 323 0.00081939995 322 323 0.0010925999 323 323 0.0046434999 328 323 0.0024583 329 323 0.00027309987 340 323 0.012018599 351 323 0.0013656998 354 323 0.00054629985 355 323 0.0081944987 357 323 0.0013656998 358 323 0.0030045998 366 323 0.00027309987 374 323 0.0065555982 385 323 0.00027309987 387 323 0.00027309987 397 323 0.0013656998 401 323 0.0013656998 402 323 0.013657499 417 323 0.00027309987 441 323 0.00027309987 443 323 0.0060092993 444 323 0.0084675997 445 323 0.0062823966 446 323 0.00027309987 447 323 0.0084675997 450 323 0.0024583 452 323 0.0060092993 453 323 0.0076481998 454 323 0.0079212971 455 323 0.031412199 457 323 0.0032777998 458 323 0.00027309987 459 323 0.00027309987 460 323 0.0016388998 463 323 0.0114723 464 323 0.010925997 465 323 0.00027309987 467 323 0.0068286993 468 323 0.0019119999 469 323 0.0024583 470 323 0.0027315 471 323 0.0038240999 478 323 0.0010925999 483 323 0.0010925999 490 323 0.00027309987 491 323 0.0010925999 9 324 2.739999e-05 18 324 0.00079379999 19 324 0.00027369987 21 324 2.739999e-05 22 324 0.00021899999 24 324 0.0006295999 60 324 0.0029563999 82 324 2.739999e-05 83 324 2.739999e-05 84 324 2.739999e-05 108 324 5.4699995e-05 113 324 5.4699995e-05 114 324 0.00013689999 126 324 8.2099999e-05 135 324 2.739999e-05 142 324 0.00010949999 150 324 0.00065699988 151 324 0.0010401998 160 324 0.0003558998 171 324 0.0006295999 172 324 2.739999e-05 187 324 2.739999e-05 189 324 8.2099999e-05 190 324 0.00010949999 191 324 2.739999e-05 192 324 5.4699995e-05 194 324 0.00010949999 198 324 0.0055021979 200 324 5.4699995e-05 203 324 0.00010949999 204 324 8.2099999e-05 206 324 0.00010949999 207 324 5.4699995e-05 214 324 0.00038319989 223 324 0.0015876999 224 324 0.00021899999 229 324 0.00071169995 233 324 8.2099999e-05 234 324 0.0034218 237 324 0.00027369987 240 324 0.0103474 241 324 0.0028742999 242 324 0.0032574998 252 324 0.00013689999 254 324 5.4699995e-05 262 324 8.2099999e-05 266 324 2.739999e-05 267 324 2.739999e-05 270 324 0.0038596999 272 324 0.0037228998 277 324 0.077824295 278 324 0.00021899999 279 324 2.739999e-05 282 324 0.0447018 283 324 0.013933398 284 324 0.0017245999 285 324 8.2099999e-05 286 324 0.016725499 288 324 0.0016971999 289 324 0.00060219993 290 324 0.010292597 292 324 0.023596399 293 324 0.0034490998 294 324 0.00049269991 295 324 0.0029837999 296 324 0.0044345967 297 324 0.0130574 298 324 0.0101831 299 324 0.0021352 303 324 8.2099999e-05 304 324 0.00010949999 305 324 8.2099999e-05 307 324 0.00060219993 308 324 8.2099999e-05 312 324 0.013960697 313 324 2.739999e-05 315 324 0.0060222968 317 324 0.00065699988 318 324 0.00010949999 319 324 0.001314 320 324 0.0030385 321 324 0.0019983 322 324 0.0028468999 324 324 0.0213244 326 324 0.0017519 327 324 0.00013689999 328 324 0.00073909992 329 324 5.4699995e-05 330 324 0.00068439986 333 324 0.00049269991 335 324 2.739999e-05 338 324 0.0012591998 339 324 2.739999e-05 340 324 0.0058032982 341 324 0.00027369987 349 324 8.2099999e-05 350 324 0.0010401998 351 324 0.0018340999 352 324 0.00010949999 353 324 0.0023542 354 324 0.00087599992 356 324 0.0003558998 358 324 0.018559597 359 324 2.739999e-05 366 324 0.00032849982 368 324 0.00090329978 369 324 0.00021899999 370 324 0.0001642 371 324 0.0003558998 372 324 0.0076099969 373 324 0.00090329978 375 324 2.739999e-05 384 324 8.2099999e-05 386 324 0.00027369987 387 324 5.4699995e-05 390 324 2.739999e-05 392 324 8.2099999e-05 393 324 0.0012865998 394 324 2.739999e-05 397 324 2.739999e-05 398 324 2.739999e-05 402 324 0.00024639978 404 324 2.739999e-05 405 324 2.739999e-05 413 324 5.4699995e-05 414 324 0.0006295999 415 324 0.00013689999 417 324 0.00043799984 419 324 0.00013689999 421 324 5.4699995e-05 422 324 0.00010949999 423 324 2.739999e-05 425 324 2.739999e-05 430 324 5.4699995e-05 431 324 2.739999e-05 432 324 2.739999e-05 433 324 5.4699995e-05 434 324 5.4699995e-05 443 324 0.0039144978 444 324 0.0027647999 445 324 0.0051736981 446 324 0.00038319989 447 324 0.0081574991 448 324 2.739999e-05 450 324 0.0035038998 452 324 0.0064602979 453 324 0.0027099999 454 324 0.0016697999 455 324 0.031534899 456 324 0.00052009989 457 324 0.0069803968 458 324 0.0017245999 459 324 0.0028468999 460 324 0.0017792999 463 324 0.0082942992 464 324 0.0024362998 465 324 0.0010401998 467 324 0.010210499 468 324 0.0015876999 469 324 0.014097597 470 324 0.0063780993 471 324 0.0044345967 473 324 0.00010949999 477 324 5.4699995e-05 478 324 0.0011771 483 324 0.0014507999 489 324 0.00010949999 490 324 0.00043799984 491 324 0.0068160966 24 325 0.0001928 60 325 0.0028923999 77 325 0.00057849986 104 325 0.00077129994 114 325 0.0001928 130 325 0.001157 139 325 0.0001928 142 325 0.00038569979 143 325 0.0001928 150 325 0.00038569979 160 325 0.001157 169 325 0.00057849986 171 325 0.00038569979 172 325 0.0015425999 187 325 0.033744697 188 325 0.0025066999 189 325 0.00038569979 192 325 0.001157 194 325 0.0001928 197 325 0.0001928 198 325 0.052834596 204 325 0.0017353999 205 325 0.00057849986 206 325 0.00038569979 208 325 0.001157 209 325 0.0001928 211 325 0.00077129994 212 325 0.00057849986 213 325 0.0001928 214 325 0.004820697 219 325 0.0015425999 221 325 0.0026995998 223 325 0.00077129994 224 325 0.0088699982 229 325 0.00057849986 233 325 0.0019282999 234 325 0.0026995998 240 325 0.00057849986 241 325 0.06440419 242 325 0.00077129994 252 325 0.0001928 271 325 0.0030852 272 325 0.00077129994 277 325 0.0053991973 278 325 0.00077129994 279 325 0.0001928 282 325 0.00057849986 284 325 0.0013497998 285 325 0.00057849986 286 325 0.00057849986 287 325 0.0025066999 288 325 0.00077129994 289 325 0.13825679 290 325 0.0059775971 291 325 0.00077129994 292 325 0.0019282999 293 325 0.1396066 295 325 0.00077129994 312 325 0.00077129994 314 325 0.001157 315 325 0.00057849986 317 325 0.00038569979 319 325 0.0001928 321 325 0.00096409977 322 325 0.00038569979 325 325 0.012148097 326 325 0.0019282999 337 325 0.00057849986 340 325 0.0034708998 347 325 0.00038569979 348 325 0.0001928 349 325 0.0001928 351 325 0.00057849986 354 325 0.0015425999 358 325 0.0013497998 373 325 0.00038569979 386 325 0.0001928 417 325 0.0001928 422 325 0.00077129994 438 325 0.0001928 443 325 0.0080986992 444 325 0.0050134994 445 325 0.010026999 446 325 0.0001928 447 325 0.0061704963 450 325 0.0023138998 452 325 0.010026999 453 325 0.0055919997 454 325 0.0013497998 455 325 0.029116899 457 325 0.0028923999 458 325 0.00057849986 459 325 0.00057849986 460 325 0.0019282999 463 325 0.014269199 464 325 0.00096409977 465 325 0.00077129994 467 325 0.0084843971 468 325 0.004049398 469 325 0.0034708998 470 325 0.0028923999 471 325 0.001157 477 325 0.00038569979 478 325 0.00057849986 479 325 0.0001928 483 325 0.00077129994 490 325 0.0001928 491 325 0.010219797 9 326 4.5399996e-05 18 326 0.00013619999 19 326 0.0032229 21 326 4.5399996e-05 22 326 0.0015886999 24 326 0.0010893999 25 326 4.5399996e-05 60 326 0.0026781999 77 326 0.00013619999 82 326 9.0799993e-05 84 326 4.5399996e-05 108 326 4.5399996e-05 114 326 9.0799993e-05 126 326 4.5399996e-05 130 326 0.00018159999 131 326 0.00027239998 132 326 4.5399996e-05 135 326 4.5399996e-05 139 326 0.00013619999 141 326 4.5399996e-05 142 326 9.0799993e-05 150 326 0.00059009995 156 326 4.5399996e-05 159 326 0.00013619999 160 326 0.0032682999 161 326 4.5399996e-05 165 326 0.00027239998 169 326 0.00072629983 170 326 0.00013619999 171 326 0.0030866999 172 326 0.000227 175 326 4.5399996e-05 183 326 4.5399996e-05 188 326 0.00013619999 189 326 4.5399996e-05 190 326 9.0799993e-05 191 326 4.5399996e-05 194 326 0.000227 197 326 4.5399996e-05 198 326 0.0052201971 200 326 4.5399996e-05 203 326 9.0799993e-05 204 326 0.00027239998 206 326 9.0799993e-05 207 326 4.5399996e-05 214 326 0.0040398985 223 326 0.0012255998 224 326 0.0022241999 225 326 4.5399996e-05 227 326 4.5399996e-05 229 326 0.00063549983 233 326 0.0068542995 234 326 0.0032682999 237 326 0.00027239998 240 326 0.0048115999 241 326 0.0192011 242 326 9.0799993e-05 243 326 4.5399996e-05 252 326 0.0023603998 267 326 0.00018159999 270 326 0.0016794999 271 326 9.0799993e-05 272 326 0.0016341 273 326 4.5399996e-05 274 326 4.5399996e-05 276 326 4.5399996e-05 277 326 0.13091236 278 326 0.0012709999 280 326 4.5399996e-05 282 326 0.0088969991 283 326 0.0022695998 284 326 0.0015886999 285 326 0.0067180991 286 326 0.0024057999 287 326 0.00063549983 288 326 0.0018610999 289 326 0.013708599 290 326 0.0093054995 291 326 0.00013619999 292 326 0.0054470971 293 326 0.028324999 294 326 0.005810298 295 326 0.0062187985 296 326 0.0015886999 297 326 0.0012709999 298 326 0.000227 299 326 0.0020881 300 326 0.00086249993 301 326 0.0014525999 304 326 9.0799993e-05 306 326 0.00063549983 307 326 0.00013619999 308 326 0.0011347998 310 326 4.5399996e-05 312 326 0.0071719997 313 326 0.00027239998 315 326 0.0145256 317 326 4.5399996e-05 319 326 0.0060825981 320 326 0.0048115999 321 326 0.0049931966 322 326 0.0057648979 324 326 0.00068089995 326 326 0.016386699 327 326 4.5399996e-05 328 326 0.010304097 329 326 9.0799993e-05 331 326 4.5399996e-05 332 326 4.5399996e-05 337 326 4.5399996e-05 338 326 4.5399996e-05 339 326 0.0019518998 340 326 0.013027698 341 326 4.5399996e-05 342 326 4.5399996e-05 343 326 4.5399996e-05 344 326 4.5399996e-05 345 326 4.5399996e-05 349 326 0.00054469984 350 326 0.00031769997 351 326 0.0012709999 352 326 0.00013619999 353 326 0.00018159999 354 326 0.00072629983 355 326 4.5399996e-05 356 326 0.000227 357 326 9.0799993e-05 358 326 0.0077620968 359 326 0.00013619999 364 326 4.5399996e-05 366 326 0.00018159999 369 326 0.000227 370 326 0.000227 371 326 0.00031769997 372 326 0.00090789981 373 326 0.0018610999 374 326 4.5399996e-05 375 326 0.000227 376 326 0.00018159999 380 326 4.5399996e-05 384 326 0.000227 385 326 4.5399996e-05 386 326 0.00059009995 387 326 4.5399996e-05 389 326 0.00090789981 390 326 0.000227 391 326 0.00013619999 392 326 0.00045389985 393 326 0.0012709999 397 326 4.5399996e-05 401 326 9.0799993e-05 402 326 0.0011801999 404 326 9.0799993e-05 405 326 0.00013619999 408 326 9.0799993e-05 413 326 4.5399996e-05 414 326 9.0799993e-05 415 326 0.00013619999 417 326 0.00040849997 421 326 4.5399996e-05 422 326 9.0799993e-05 424 326 4.5399996e-05 428 326 4.5399996e-05 430 326 0.00018159999 433 326 4.5399996e-05 434 326 4.5399996e-05 437 326 9.0799993e-05 441 326 9.0799993e-05 442 326 0.00013619999 443 326 0.0062187985 444 326 0.00081709982 445 326 0.0072173998 446 326 0.00077169994 447 326 0.0061733983 450 326 0.0034043998 452 326 0.0077620968 453 326 0.0037221999 454 326 0.00040849997 455 326 0.028778899 456 326 0.00036309985 457 326 0.0055832975 458 326 0.00040849997 459 326 0.00049929996 460 326 0.0017249 463 326 0.013073098 464 326 0.0018157 465 326 0.0010893999 467 326 0.010213297 468 326 0.0025419998 469 326 0.0044484995 470 326 0.0044484995 471 326 0.0017702999 473 326 9.0799993e-05 477 326 9.0799993e-05 478 326 0.0010439998 483 326 0.00068089995 489 326 0.00013619999 490 326 0.00031769997 491 326 0.0032682999 9 327 4.6199988e-05 18 327 0.00013869999 60 327 0.0018952999 77 327 9.2499991e-05 79 327 9.2499991e-05 82 327 4.6199988e-05 83 327 4.6199988e-05 84 327 4.6199988e-05 108 327 4.6199988e-05 113 327 9.2499991e-05 114 327 0.0001849 126 327 4.6199988e-05 130 327 4.6199988e-05 150 327 0.00036979979 172 327 4.6199988e-05 181 327 4.6199988e-05 187 327 4.6199988e-05 189 327 4.6199988e-05 190 327 9.2499991e-05 192 327 4.6199988e-05 194 327 4.6199988e-05 198 327 0.0002311 200 327 4.6199988e-05 203 327 4.6199988e-05 204 327 4.6199988e-05 206 327 0.0002311 207 327 4.6199988e-05 214 327 0.00013869999 218 327 4.6199988e-05 220 327 4.6199988e-05 224 327 0.0002311 233 327 0.00013869999 234 327 0.0035595 237 327 4.6199988e-05 240 327 0.0005084998 241 327 0.0016641999 242 327 4.6199988e-05 252 327 9.2499991e-05 270 327 0.00046229991 272 327 0.0005084998 276 327 4.6199988e-05 277 327 0.049509998 282 327 0.047475997 283 327 0.055149797 284 327 0.001618 289 327 0.0001849 290 327 4.6199988e-05 292 327 0.0066567995 293 327 0.0013867998 294 327 0.0012943998 295 327 0.0068878978 296 327 0.0011094999 297 327 0.0012019 298 327 0.00087829982 299 327 0.0083209984 305 327 0.015671197 307 327 0.016364597 308 327 0.010817297 312 327 0.0065642968 315 327 0.0002311 318 327 4.6199988e-05 319 327 0.00013869999 320 327 0.00069339992 321 327 0.0014793 322 327 0.00013869999 324 327 0.0096616 326 327 0.00013869999 327 327 0.065920889 328 327 0.0082285963 331 327 4.6199988e-05 338 327 0.0010631999 339 327 0.0002311 340 327 0.0075813979 341 327 0.00013869999 343 327 4.6199988e-05 350 327 0.0020339999 351 327 0.0034671 352 327 4.6199988e-05 354 327 0.0061020963 355 327 0.00013869999 356 327 0.00041609979 357 327 0.0001849 358 327 0.014423098 370 327 0.0023575998 371 327 0.00013869999 372 327 0.0046689995 373 327 0.0023113999 374 327 4.6199988e-05 375 327 4.6199988e-05 376 327 4.6199988e-05 387 327 4.6199988e-05 390 327 0.00087829982 392 327 0.00092459982 393 327 0.00069339992 396 327 4.6199988e-05 397 327 0.00036979979 398 327 0.0091068968 403 327 4.6199988e-05 404 327 0.0054548979 405 327 0.0042529963 408 327 0.0001849 413 327 9.2499991e-05 414 327 0.0002311 417 327 0.0003235999 421 327 4.6199988e-05 422 327 4.6199988e-05 423 327 4.6199988e-05 430 327 4.6199988e-05 431 327 4.6199988e-05 433 327 4.6199988e-05 434 327 9.2499991e-05 443 327 0.0024962998 444 327 0.00060099992 445 327 0.0042991973 446 327 0.0002311 447 327 0.0051774979 450 327 0.0028660998 452 327 0.0042529963 453 327 0.0010169998 454 327 0.00092459982 455 327 0.018629797 456 327 0.00046229991 457 327 0.0028660998 458 327 0.0002311 459 327 0.00041609979 460 327 0.0010631999 463 327 0.0058247 464 327 0.00064719981 465 327 0.0011556998 467 327 0.0092917979 468 327 0.00092459982 469 327 0.0049463995 470 327 0.0063331984 471 327 0.0018491 473 327 0.00013869999 477 327 9.2499991e-05 478 327 0.0010169998 483 327 0.0011556998 489 327 0.0002311 490 327 0.00055469992 491 327 0.0026349998 9 328 2.8699986e-05 18 328 8.6099986e-05 22 328 0.00028689997 60 328 0.0022374999 82 328 2.8699986e-05 83 328 2.8699986e-05 84 328 2.8699986e-05 108 328 2.8699986e-05 113 328 5.7399986e-05 114 328 8.6099986e-05 126 328 2.8699986e-05 130 328 2.8699986e-05 134 328 2.8699986e-05 150 328 0.00045899977 151 328 2.8699986e-05 156 328 2.8699986e-05 160 328 0.00022949999 161 328 2.8699986e-05 169 328 5.7399986e-05 172 328 0.00011469999 187 328 0.00045899977 189 328 5.7399986e-05 190 328 5.7399986e-05 194 328 8.6099986e-05 197 328 2.8699986e-05 198 328 0.0039299987 200 328 2.8699986e-05 203 328 5.7399986e-05 204 328 5.7399986e-05 206 328 0.00020079999 207 328 2.8699986e-05 214 328 8.6099986e-05 223 328 2.8699986e-05 224 328 0.00011469999 233 328 0.00077449996 234 328 0.0027825998 237 328 0.00091799977 240 328 0.00077449996 241 328 0.0038438998 242 328 0.00034419983 252 328 0.00014339999 270 328 0.0044176988 271 328 0.0004015998 272 328 0.0059666969 276 328 2.8699986e-05 277 328 0.026190497 282 328 0.069219649 283 328 0.018932898 284 328 0.0016637999 285 328 2.8699986e-05 286 328 2.8699986e-05 289 328 0.0066551976 290 328 2.8699986e-05 292 328 0.0038438998 293 328 0.00077449996 294 328 0.013568599 295 328 0.0018071998 296 328 0.024555396 297 328 0.0012908999 298 328 0.00037289993 299 328 0.0050200969 307 328 0.0049913973 312 328 0.0088926964 313 328 0.00048769987 315 328 0.020309798 317 328 0.0025531 319 328 0.00017209999 320 328 0.0029546998 321 328 5.7399986e-05 322 328 0.0041307993 323 328 0.00014339999 324 328 0.001922 326 328 0.00011469999 327 328 0.0021227999 328 328 0.1164372 329 328 0.00028689997 330 328 0.001004 331 328 0.0034136998 332 328 5.7399986e-05 338 328 0.001463 339 328 2.8699986e-05 340 328 0.0094950981 341 328 0.00028689997 344 328 2.8699986e-05 350 328 0.0059379973 351 328 0.0090074986 352 328 8.6099986e-05 354 328 0.010728598 356 328 0.00091799977 357 328 0.022289198 358 328 0.021658096 366 328 2.8699986e-05 370 328 0.001004 371 328 0.00045899977 372 328 0.0059093982 373 328 0.0011187999 375 328 2.8699986e-05 376 328 2.8699986e-05 384 328 2.8699986e-05 387 328 5.7399986e-05 390 328 5.7399986e-05 392 328 2.8699986e-05 393 328 0.00025819987 397 328 0.011876099 399 328 8.6099986e-05 401 328 0.00014339999 402 328 0.0093229972 404 328 0.0019506998 405 328 0.0004302999 408 328 0.0011473999 412 328 5.7399986e-05 413 328 2.8699986e-05 414 328 0.00011469999 417 328 0.00031549996 421 328 2.8699986e-05 422 328 8.6099986e-05 423 328 2.8699986e-05 430 328 2.8699986e-05 431 328 2.8699986e-05 433 328 2.8699986e-05 434 328 2.8699986e-05 441 328 2.8699986e-05 443 328 0.0022948999 444 328 0.00094659999 445 328 0.0071428977 446 328 0.00020079999 447 328 0.0037292 450 328 0.0027538999 452 328 0.0044749975 453 328 0.0014916998 454 328 0.0010326998 455 328 0.031812999 456 328 0.0004302999 457 328 0.0028972998 458 328 0.0013482999 459 328 0.0004302999 460 328 0.001004 463 328 0.0026677998 464 328 0.0011473999 465 328 0.0008605998 467 328 0.0091795996 468 328 0.0046184994 469 328 0.0033849999 470 328 0.0036144999 471 328 0.0053642988 473 328 5.7399986e-05 477 328 8.6099986e-05 478 328 0.0008892999 483 328 0.0008605998 489 328 2.8699986e-05 490 328 0.00034419983 491 328 0.0038438998 6 329 2.3299988e-05 9 329 2.3299988e-05 18 329 0.00016329999 22 329 0.0002799998 24 329 2.3299988e-05 60 329 0.0022401998 78 329 4.6699992e-05 79 329 2.3299988e-05 82 329 2.3299988e-05 83 329 2.3299988e-05 84 329 2.3299988e-05 98 329 0.0014700999 102 329 4.6699992e-05 108 329 2.3299988e-05 113 329 4.6699992e-05 114 329 9.3299997e-05 118 329 2.3299988e-05 120 329 2.3299988e-05 126 329 4.6699992e-05 127 329 2.3299988e-05 139 329 2.3299988e-05 142 329 2.3299988e-05 150 329 0.00046669994 151 329 2.3299988e-05 156 329 4.6699992e-05 160 329 0.0020301 161 329 9.3299997e-05 163 329 2.3299988e-05 165 329 4.6699992e-05 169 329 0.00037339982 171 329 2.3299988e-05 172 329 0.00079339999 173 329 2.3299988e-05 176 329 2.3299988e-05 189 329 0.00011669999 190 329 6.9999995e-05 192 329 2.3299988e-05 194 329 9.3299997e-05 198 329 0.0012133999 200 329 4.6699992e-05 201 329 4.6699992e-05 203 329 9.3299997e-05 204 329 6.9999995e-05 206 329 0.0002799998 207 329 4.6699992e-05 214 329 0.00030339998 224 329 2.3299988e-05 233 329 0.0024734999 234 329 0.0027534999 237 329 0.017781299 240 329 0.0072104968 241 329 0.0020067999 242 329 0.0021702 248 329 2.3299988e-05 250 329 2.3299988e-05 252 329 0.00011669999 270 329 2.3299988e-05 271 329 0.0020067999 272 329 0.00084009999 277 329 0.087039649 278 329 4.6699992e-05 279 329 2.3299988e-05 282 329 0.041209698 283 329 0.0107341 284 329 0.0018900998 285 329 0.00067669991 286 329 2.3299988e-05 289 329 0.00016329999 292 329 0.0022868 293 329 0.0013533998 294 329 6.9999995e-05 295 329 2.3299988e-05 296 329 0.0015633998 297 329 6.9999995e-05 298 329 0.00062999991 302 329 2.3299988e-05 304 329 2.3299988e-05 305 329 2.3299988e-05 306 329 9.3299997e-05 307 329 0.00023339999 308 329 4.6699992e-05 312 329 0.0105941 313 329 0.00025669998 315 329 0.011037499 317 329 4.6699992e-05 318 329 0.00039669988 319 329 9.3299997e-05 320 329 4.6699992e-05 321 329 4.6699992e-05 322 329 0.0075138994 323 329 0.0023335 324 329 0.0001867 326 329 6.9999995e-05 328 329 0.037499398 329 329 0.034022499 330 329 0.0036169 331 329 0.0013067999 335 329 2.3299988e-05 337 329 4.6699992e-05 338 329 0.0025668999 339 329 0.00048999977 340 329 0.0052736998 341 329 0.00011669999 343 329 4.6699992e-05 344 329 2.3299988e-05 349 329 4.6699992e-05 350 329 0.014117699 351 329 0.014047697 353 329 4.6699992e-05 354 329 0.026205298 356 329 0.0018667998 357 329 0.0064637996 358 329 0.0089372993 366 329 0.00011669999 371 329 6.9999995e-05 372 329 0.0045269988 373 329 0.00016329999 375 329 2.3299988e-05 377 329 2.3299988e-05 378 329 4.6699992e-05 383 329 2.3299988e-05 384 329 4.6699992e-05 386 329 0.00025669998 387 329 6.9999995e-05 395 329 0.00023339999 397 329 0.0060203969 399 329 0.0028702 401 329 0.00011669999 402 329 0.020814899 412 329 2.3299988e-05 417 329 0.00034999987 419 329 2.3299988e-05 421 329 4.6699992e-05 422 329 9.3299997e-05 423 329 2.3299988e-05 425 329 2.3299988e-05 430 329 2.3299988e-05 431 329 2.3299988e-05 432 329 2.3299988e-05 433 329 4.6699992e-05 434 329 4.6699992e-05 439 329 2.3299988e-05 441 329 0.00025669998 442 329 0.00039669988 443 329 0.0041069984 444 329 0.00023339999 445 329 0.0065104999 446 329 0.00037339982 447 329 0.0030568999 450 329 0.0035003 452 329 0.0037802998 453 329 0.0026135 454 329 0.00051339995 455 329 0.039786298 456 329 0.00044339988 457 329 0.0032435998 458 329 0.00039669988 459 329 0.0012834 460 329 0.0010733998 463 329 0.0024734999 464 329 0.0001867 465 329 0.0018435 467 329 0.0097539984 468 329 0.011364199 469 329 0.0039202981 470 329 0.0043869987 471 329 0.0012600999 473 329 9.3299997e-05 477 329 9.3299997e-05 478 329 0.00088669988 483 329 0.0015401 489 329 6.9999995e-05 490 329 0.00084009999 491 329 0.0033602 18 330 0.00016719999 22 330 0.00016719999 60 330 0.0015886 98 330 8.3599996e-05 108 330 8.3599996e-05 114 330 0.00016719999 126 330 8.3599996e-05 139 330 8.3599996e-05 160 330 0.0030099999 172 330 0.00083609996 189 330 8.3599996e-05 190 330 8.3599996e-05 194 330 8.3599996e-05 198 330 0.0087792985 203 330 8.3599996e-05 206 330 0.00016719999 214 330 8.3599996e-05 223 330 8.3599996e-05 224 330 8.3599996e-05 233 330 0.0024247 234 330 0.0020066998 237 330 0.026672199 240 330 0.0061036982 241 330 0.0095317997 242 330 0.00016719999 270 330 0.00016719999 271 330 0.00041809981 272 330 0.00083609996 276 330 0.00016719999 277 330 0.065551758 282 330 0.014715698 283 330 0.0048494972 284 330 0.0015886 285 330 0.0027591998 286 330 8.3599996e-05 292 330 0.0011705998 293 330 0.0015886 294 330 0.00058529992 295 330 0.00058529992 296 330 0.010117099 297 330 0.0067725964 298 330 0.00058529992 299 330 0.0018394999 307 330 0.00033439999 312 330 0.017056897 313 330 0.00050169998 315 330 0.017391298 317 330 0.0091136992 318 330 8.3599996e-05 320 330 0.0011705998 321 330 0.0031772999 322 330 0.0013377999 323 330 0.0010032998 324 330 8.3599996e-05 326 330 0.00016719999 328 330 0.13185614 329 330 0.0024247 330 330 0.049581897 338 330 0.00016719999 340 330 0.0061872974 341 330 0.00016719999 350 330 0.0071069971 351 330 0.010953199 354 330 0.034949798 356 330 0.0010869999 357 330 0.0011705998 358 330 0.0072741993 371 330 0.00025079981 372 330 0.018896297 373 330 0.0012541998 385 330 8.3599996e-05 386 330 0.0056855977 387 330 8.3599996e-05 395 330 0.0057691969 397 330 0.0058527999 398 330 0.00016719999 399 330 0.00016719999 401 330 0.00016719999 402 330 0.0036789 409 330 0.0056019984 412 330 0.00033439999 417 330 0.00025079981 419 330 8.3599996e-05 422 330 8.3599996e-05 434 330 8.3599996e-05 441 330 0.0012541998 442 330 0.0015049998 443 330 0.0028428 444 330 0.00083609996 445 330 0.0064380988 446 330 0.00025079981 447 330 0.0056855977 450 330 0.0025083998 452 330 0.0032608998 453 330 0.0016721999 454 330 0.00025079981 455 330 0.053344499 456 330 0.00016719999 457 330 0.010200698 458 330 0.00041809981 459 330 0.00066889985 460 330 0.0009196999 463 330 0.0043477975 464 330 0.00033439999 465 330 0.0030099999 467 330 0.011956498 468 330 0.013545197 469 330 0.0039297976 470 330 0.0042641982 471 330 0.0026755999 472 330 8.3599996e-05 473 330 8.3599996e-05 477 330 8.3599996e-05 478 330 0.00083609996 483 330 0.0011705998 490 330 0.00050169998 491 330 0.0012541998 9 331 1.7199985e-05 16 331 1.7199985e-05 18 331 8.6199987e-05 22 331 0.00031049992 60 331 0.0054679997 78 331 3.4499986e-05 79 331 1.7199985e-05 82 331 1.7199985e-05 83 331 1.7199985e-05 84 331 1.7199985e-05 98 331 3.4499986e-05 108 331 1.7199985e-05 113 331 5.1699986e-05 114 331 0.00010349999 126 331 5.1699986e-05 127 331 1.7199985e-05 134 331 1.7199985e-05 135 331 1.7199985e-05 140 331 0.00010349999 142 331 3.4499986e-05 150 331 0.00044849981 151 331 1.7199985e-05 156 331 3.4499986e-05 160 331 0.0020698998 161 331 1.7199985e-05 165 331 1.7199985e-05 169 331 0.00046569994 171 331 1.7199985e-05 172 331 0.00043119979 181 331 1.7199985e-05 189 331 6.8999987e-05 190 331 6.8999987e-05 192 331 3.4499986e-05 194 331 8.6199987e-05 196 331 1.7199985e-05 197 331 1.7199985e-05 198 331 8.6199987e-05 200 331 5.1699986e-05 201 331 3.4499986e-05 203 331 5.1699986e-05 204 331 8.6199987e-05 206 331 0.00024149999 207 331 5.1699986e-05 209 331 1.7199985e-05 214 331 0.00024149999 222 331 1.7199985e-05 225 331 0.00010349999 233 331 0.0020525998 234 331 0.0028460999 237 331 0.013005797 240 331 0.0030185999 241 331 0.00091419998 242 331 0.0015006999 248 331 1.7199985e-05 250 331 1.7199985e-05 251 331 1.7199985e-05 252 331 0.00010349999 263 331 1.7199985e-05 270 331 0.00012069999 271 331 0.0036050999 272 331 0.0027253998 277 331 0.069686353 279 331 1.7199985e-05 282 331 0.047072798 283 331 0.028564498 284 331 0.0018801999 285 331 8.6199987e-05 289 331 3.4499986e-05 292 331 0.0010176999 293 331 0.0007071998 294 331 0.00010349999 295 331 0.00048299995 296 331 0.0024320998 297 331 0.00060369982 298 331 0.00086249993 299 331 8.6199987e-05 304 331 6.8999987e-05 305 331 6.8999987e-05 307 331 0.0053645 308 331 1.7199985e-05 312 331 0.0080897994 313 331 0.00017249999 315 331 0.0055024996 318 331 1.7199985e-05 319 331 0.00012069999 320 331 5.1699986e-05 321 331 3.4499986e-05 322 331 0.0024493998 323 331 0.0010866998 324 331 0.0053645 326 331 0.00018969999 327 331 3.4499986e-05 328 331 0.037775598 329 331 0.00079349987 330 331 0.00010349999 331 331 0.061251599 332 331 0.00032769982 333 331 8.6199987e-05 336 331 3.4499986e-05 337 331 0.00015519999 338 331 0.0010003999 339 331 0.0005347 340 331 0.010142498 341 331 0.00020699999 346 331 1.7199985e-05 349 331 1.7199985e-05 350 331 0.011125699 351 331 0.011349898 352 331 0.00051749987 353 331 1.7199985e-05 354 331 0.034256697 356 331 0.0015178998 357 331 0.00024149999 358 331 0.015731197 366 331 0.00010349999 370 331 0.00012069999 371 331 0.0033463 372 331 0.0053645 373 331 0.0019836 374 331 3.4499986e-05 376 331 3.4499986e-05 384 331 3.4499986e-05 387 331 5.1699986e-05 390 331 6.8999987e-05 392 331 3.4499986e-05 393 331 1.7199985e-05 394 331 1.7199985e-05 397 331 0.00031049992 398 331 6.8999987e-05 399 331 0.0013626998 401 331 0.0011556998 402 331 0.014333997 404 331 0.00037949998 405 331 0.00018969999 408 331 0.00089699985 412 331 5.1699986e-05 414 331 1.7199985e-05 415 331 5.1699986e-05 417 331 0.0002931999 419 331 1.7199985e-05 421 331 5.1699986e-05 422 331 6.8999987e-05 423 331 1.7199985e-05 425 331 1.7199985e-05 430 331 1.7199985e-05 431 331 3.4499986e-05 432 331 1.7199985e-05 433 331 3.4499986e-05 434 331 3.4499986e-05 441 331 0.00041399989 442 331 1.7199985e-05 443 331 0.0035532999 444 331 0.0006899999 445 331 0.0053126998 446 331 0.00037949998 447 331 0.0025873999 448 331 1.7199985e-05 450 331 0.0045709983 452 331 0.0044847988 453 331 0.0018973998 454 331 0.00062099984 455 331 0.042156797 456 331 0.00050019985 457 331 0.0042259991 458 331 0.0010521999 459 331 0.0014316998 460 331 0.0010348998 463 331 0.0040362999 464 331 0.00081069977 465 331 0.00077619986 467 331 0.015196498 468 331 0.0045364983 469 331 0.0041052997 470 331 0.0041397996 471 331 0.0015697 472 331 0.00018969999 473 331 8.6199987e-05 477 331 0.00012069999 478 331 0.00087969983 483 331 0.0011211999 489 331 3.4499986e-05 490 331 0.00032769982 491 331 0.00081069977 22 332 0.00013089999 60 332 0.0027486999 77 332 0.0002617999 82 332 0.00013089999 108 332 0.00013089999 114 332 0.0002617999 126 332 0.00013089999 130 332 0.00013089999 131 332 0.00013089999 138 332 0.00013089999 142 332 0.0002617999 151 332 0.00013089999 160 332 0.0037957998 172 332 0.00078529981 187 332 0.00013089999 189 332 0.00013089999 190 332 0.00013089999 194 332 0.00013089999 198 332 0.0002617999 203 332 0.00013089999 206 332 0.00039269985 214 332 0.00078529981 224 332 0.00013089999 233 332 0.0014397998 234 332 0.0036648999 237 332 0.0026177999 240 332 0.0002617999 241 332 0.0019633998 242 332 0.010863896 252 332 0.00013089999 263 332 0.0011779999 270 332 0.012565397 271 332 0.0013088998 272 332 0.0028795998 277 332 0.070026159 282 332 0.042670198 283 332 0.024476398 284 332 0.0024869 285 332 0.0060208999 286 332 0.00013089999 289 332 0.00013089999 292 332 0.00065449998 293 332 0.0010470999 294 332 0.0089004971 295 332 0.0023559998 296 332 0.0010470999 297 332 0.0014397998 298 332 0.00078529981 305 332 0.00013089999 307 332 0.0060208999 312 332 0.0082460977 315 332 0.00078529981 320 332 0.00013089999 321 332 0.0002617999 322 332 0.00013089999 324 332 0.0023559998 326 332 0.0066753998 328 332 0.011387397 331 332 0.0075915977 332 332 0.045549698 333 332 0.0011779999 339 332 0.00078529981 340 332 0.014790598 341 332 0.00013089999 343 332 0.00013089999 344 332 0.00013089999 349 332 0.0002617999 350 332 0.0058900975 351 332 0.014005199 352 332 0.0036648999 354 332 0.017277498 356 332 0.00078529981 358 332 0.014921498 370 332 0.00013089999 371 332 0.0023559998 372 332 0.015314098 373 332 0.0013088998 385 332 0.00013089999 387 332 0.00013089999 390 332 0.00013089999 393 332 0.00013089999 398 332 0.0091622993 399 332 0.00013089999 402 332 0.0010470999 408 332 0.00013089999 416 332 0.00013089999 417 332 0.0005235998 422 332 0.00013089999 434 332 0.00013089999 441 332 0.0030105 443 332 0.0027486999 444 332 0.0013088998 445 332 0.0066753998 446 332 0.00013089999 447 332 0.004973799 450 332 0.0044502988 452 332 0.0058900975 453 332 0.0022250998 454 332 0.00078529981 455 332 0.036911 456 332 0.00039269985 457 332 0.0030105 458 332 0.0010470999 459 332 0.00065449998 460 332 0.0010470999 463 332 0.0069371983 464 332 0.0005235998 465 332 0.00078529981 467 332 0.0115183 468 332 0.0052355975 469 332 0.0058900975 470 332 0.0064135976 471 332 0.0066753998 472 332 0.0024869 473 332 0.00013089999 477 332 0.00013089999 478 332 0.0010470999 483 332 0.0014397998 490 332 0.0005235998 491 332 0.0047119968 9 333 9.2199989e-05 19 333 9.2199989e-05 22 333 9.2199989e-05 60 333 0.0023961 77 333 0.00027649989 79 333 9.2199989e-05 82 333 9.2199989e-05 108 333 9.2199989e-05 114 333 0.00018429999 126 333 9.2199989e-05 160 333 0.0012901998 169 333 0.00027649989 172 333 0.0005528999 189 333 9.2199989e-05 190 333 9.2199989e-05 192 333 9.2199989e-05 194 333 9.2199989e-05 198 333 0.00018429999 200 333 9.2199989e-05 203 333 9.2199989e-05 204 333 9.2199989e-05 206 333 0.00027649989 207 333 9.2199989e-05 214 333 0.0028569 220 333 9.2199989e-05 233 333 0.0011058999 234 333 0.0030411999 237 333 0.0011979998 240 333 0.00036859978 241 333 0.0043313988 242 333 0.0109667 270 333 0.0043313988 272 333 0.00018429999 277 333 0.072712183 282 333 0.0319786 283 333 0.015851099 284 333 0.0024881999 285 333 9.2199989e-05 286 333 0.00027649989 290 333 0.00018429999 292 333 0.0020275 293 333 0.0011979998 294 333 9.2199989e-05 296 333 0.00027649989 297 333 0.0014744999 298 333 0.00018429999 299 333 0.00018429999 305 333 0.0024881999 307 333 0.00027649989 312 333 0.0035940998 315 333 0.0011979998 319 333 9.2199989e-05 320 333 9.2199989e-05 321 333 0.0029489999 322 333 9.2199989e-05 324 333 0.011335399 326 333 0.0037784998 327 333 9.2199989e-05 328 333 0.010874599 331 333 0.00027649989 333 333 0.0359414 338 333 0.0019353 339 333 0.00036859978 340 333 0.010229498 341 333 0.00036859978 350 333 0.0025803999 351 333 0.012533396 354 333 0.0073725991 356 333 0.00046079978 357 333 0.0008293998 358 333 0.023684498 370 333 9.2199989e-05 371 333 0.0062666982 372 333 0.0038705999 373 333 0.0037784998 374 333 9.2199989e-05 376 333 0.0009215998 387 333 9.2199989e-05 390 333 9.2199989e-05 392 333 0.00018429999 393 333 9.2199989e-05 402 333 0.0042391978 404 333 9.2199989e-05 405 333 0.00027649989 408 333 0.0015666999 417 333 0.00046079978 421 333 9.2199989e-05 422 333 9.2199989e-05 430 333 9.2199989e-05 433 333 9.2199989e-05 434 333 0.00018429999 443 333 0.0020275 444 333 0.0014744999 445 333 0.0036862998 446 333 0.00036859978 447 333 0.0029489999 450 333 0.0087549984 452 333 0.0062666982 453 333 0.0023961 454 333 0.00036859978 455 333 0.026725598 456 333 0.00046079978 457 333 0.0035940998 458 333 0.00027649989 459 333 0.00073729991 460 333 0.0010136999 463 333 0.017509896 464 333 0.0005528999 465 333 0.0010136999 467 333 0.014837299 468 333 0.0077411979 469 333 0.006082397 470 333 0.0064509995 471 333 0.0032255 473 333 0.00018429999 477 333 9.2199989e-05 478 333 0.0011058999 483 333 0.0008293998 490 333 0.0005528999 491 333 0.0077411979 22 334 0.0002291 60 334 0.0027498 108 334 0.0002291 114 334 0.00045829988 126 334 0.0002291 160 334 0.0013748999 172 334 0.0029789 189 334 0.0002291 194 334 0.0002291 198 334 0.0016039999 206 334 0.00045829988 214 334 0.0002291 233 334 0.00068739988 234 334 0.0041246973 241 334 0.0183318 242 334 0.00091659999 270 334 0.0016039999 272 334 0.00045829988 277 334 0.086388588 282 334 0.021310698 283 334 0.0054994971 284 334 0.0029789 292 334 0.0045829974 293 334 0.0020623 295 334 0.009165898 296 334 0.0061869994 297 334 0.06393218 312 334 0.014207099 320 334 0.0036664 321 334 0.0192484 322 334 0.0075618997 324 334 0.00091659999 326 334 0.0107699 328 334 0.034142997 334 334 0.0087075979 335 334 0.0002291 340 334 0.020623296 351 334 0.0087075979 354 334 0.031164099 358 334 0.010082498 367 334 0.00068739988 371 334 0.0032080999 372 334 0.0304766 387 334 0.0002291 414 334 0.0018332 417 334 0.00045829988 422 334 0.0002291 443 334 0.0029789 444 334 0.0032080999 445 334 0.0045829974 446 334 0.0002291 447 334 0.011228196 450 334 0.004812099 452 334 0.004812099 453 334 0.0013748999 454 334 0.0002291 455 334 0.026122797 456 334 0.0002291 457 334 0.0029789 458 334 0.00091659999 459 334 0.0013748999 460 334 0.00068739988 463 334 0.0192484 464 334 0.00068739988 465 334 0.00091659999 467 334 0.012603097 468 334 0.020164996 469 334 0.009165898 470 334 0.0096241981 471 334 0.0089367963 473 334 0.0002291 478 334 0.0013748999 483 334 0.0020623 490 334 0.00091659999 491 334 0.00068739988 22 335 0.00011339999 24 335 0.00011339999 60 335 0.0020419999 82 335 0.00011339999 108 335 0.00011339999 114 335 0.00011339999 120 335 0.0002269 126 335 0.00011339999 135 335 0.00011339999 150 335 0.00011339999 160 335 0.0013612998 172 335 0.0005671999 189 335 0.00011339999 190 335 0.00011339999 193 335 0.00011339999 194 335 0.0002269 198 335 0.00079409988 200 335 0.00011339999 203 335 0.00011339999 204 335 0.00011339999 206 335 0.00034029991 214 335 0.0011343998 218 335 0.00011339999 223 335 0.00011339999 224 335 0.0002269 233 335 0.00045379996 234 335 0.0037435999 237 335 0.0049914978 241 335 0.0014747998 242 335 0.012705598 270 335 0.00011339999 271 335 0.00011339999 277 335 0.13045937 282 335 0.012365296 283 335 0.0069199987 284 335 0.0026091998 286 335 0.00011339999 288 335 0.00011339999 289 335 0.00011339999 292 335 0.0020419999 293 335 0.0040838979 294 335 0.00034029991 295 335 0.0010209999 296 335 0.0023822999 297 335 0.00011339999 298 335 0.00045379996 299 335 0.00011339999 301 335 0.00011339999 305 335 0.0081678964 307 335 0.0005671999 312 335 0.0057855994 315 335 0.0029495 319 335 0.0039704964 320 335 0.00011339999 321 335 0.00011339999 322 335 0.0010209999 324 335 0.0039704964 326 335 0.00011339999 328 335 0.0015882 329 335 0.00011339999 331 335 0.0010209999 332 335 0.0002269 335 335 0.034373198 337 335 0.0036301999 339 335 0.0010209999 340 335 0.0031764 344 335 0.0002269 347 335 0.00011339999 349 335 0.0002269 350 335 0.0038570999 351 335 0.018831499 352 335 0.0002269 354 335 0.019739099 355 335 0.00011339999 356 335 0.00045379996 357 335 0.0020419999 358 335 0.0080544986 371 335 0.0057855994 372 335 0.012138397 373 335 0.0034033 387 335 0.00011339999 390 335 0.00045379996 392 335 0.00034029991 393 335 0.0002269 398 335 0.00011339999 402 335 0.00034029991 404 335 0.0002269 405 335 0.0013612998 417 335 0.00045379996 421 335 0.00011339999 422 335 0.0002269 430 335 0.00011339999 443 335 0.0027225998 444 335 0.0015882 445 335 0.0063527972 446 335 0.00011339999 447 335 0.0043107979 450 335 0.0044242963 452 335 0.0049914978 453 335 0.0018151 454 335 0.00011339999 455 335 0.034146298 456 335 0.00045379996 457 335 0.0030629998 458 335 0.0005671999 459 335 0.00045379996 460 335 0.0010209999 463 335 0.016789597 464 335 0.00068069994 465 335 0.00090749981 467 335 0.011571199 468 335 0.0060124993 469 335 0.0076006986 470 335 0.008508198 471 335 0.0057855994 473 335 0.0002269 477 335 0.00011339999 478 335 0.0012478998 483 335 0.0018151 490 335 0.00068069994 491 335 0.0014747998 60 336 0.0024917 108 336 0.00020759999 114 336 0.00041529979 126 336 0.00020759999 160 336 0.0018687998 165 336 0.00020759999 181 336 0.00020759999 190 336 0.00020759999 194 336 0.00020759999 198 336 0.00020759999 206 336 0.00062289997 214 336 0.00020759999 233 336 0.00062289997 234 336 0.0033222998 237 336 0.0020764 241 336 0.0078903995 242 336 0.0083055981 252 336 0.00020759999 270 336 0.00062289997 272 336 0.0035299 277 336 0.11025745 282 336 0.030107997 283 336 0.0091362 284 336 0.0026992999 285 336 0.00020759999 292 336 0.009551499 293 336 0.0012457999 294 336 0.00041529979 295 336 0.0064368993 296 336 0.0062291995 297 336 0.0014534998 298 336 0.010382097 305 336 0.00020759999 307 336 0.00062289997 312 336 0.011420298 313 336 0.00020759999 315 336 0.00062289997 319 336 0.00020759999 320 336 0.0014534998 322 336 0.0014534998 323 336 0.00041529979 324 336 0.0020764 328 336 0.0047756992 331 336 0.0016611 332 336 0.00062289997 335 336 0.00041529979 336 336 0.0049833991 337 336 0.00062289997 338 336 0.00020759999 339 336 0.0010382 340 336 0.0085132979 344 336 0.00020759999 350 336 0.00041529979 351 336 0.013081398 354 336 0.056893699 357 336 0.00020759999 358 336 0.034883697 366 336 0.00041529979 370 336 0.012043197 371 336 0.0168189 372 336 0.017649498 373 336 0.010797299 376 336 0.004360497 386 336 0.00020759999 387 336 0.00020759999 397 336 0.00041529979 398 336 0.00020759999 399 336 0.00020759999 401 336 0.0014534998 402 336 0.00083059981 417 336 0.00041529979 422 336 0.00020759999 443 336 0.0022840998 444 336 0.0016611 445 336 0.016195998 446 336 0.00020759999 447 336 0.0056062974 450 336 0.004360497 452 336 0.0049833991 453 336 0.0031146 454 336 0.00041529979 455 336 0.030938499 456 336 0.00020759999 457 336 0.0029069998 458 336 0.0012457999 459 336 0.00062289997 460 336 0.00083059981 463 336 0.011004999 464 336 0.00062289997 465 336 0.0012457999 467 336 0.011835497 468 336 0.0014534998 469 336 0.0060215965 470 336 0.0070597976 471 336 0.0078903995 473 336 0.00020759999 478 336 0.0012457999 483 336 0.0010382 490 336 0.00083059981 491 336 0.0016611 60 337 0.0020203998 108 337 9.619999e-05 114 337 9.619999e-05 126 337 9.619999e-05 150 337 9.619999e-05 160 337 0.0017317999 169 337 0.00028859987 171 337 9.619999e-05 172 337 0.00028859987 181 337 0.0014430999 189 337 9.619999e-05 190 337 9.619999e-05 194 337 0.0001924 198 337 0.0001924 200 337 9.619999e-05 203 337 9.619999e-05 206 337 0.00048099994 214 337 0.0001924 233 337 0.0011544998 234 337 0.0031748998 236 337 0.0001924 237 337 0.016163196 240 337 9.619999e-05 241 337 0.0013468999 242 337 0.0050990991 270 337 9.619999e-05 271 337 0.0018279999 272 337 9.619999e-05 277 337 0.076197743 282 337 0.038772397 283 337 0.0074080974 284 337 0.0022127999 288 337 9.619999e-05 292 337 0.0010582998 293 337 0.0053876974 295 337 0.0010582998 296 337 0.0015393 297 337 9.619999e-05 298 337 9.619999e-05 305 337 0.0084663965 307 337 9.619999e-05 312 337 0.0063497983 313 337 0.0011544998 315 337 0.0012506999 319 337 0.0078891963 322 337 0.00076969992 323 337 0.00028859987 324 337 0.0054838993 326 337 0.0010582998 328 337 0.024725799 329 337 0.0001924 331 337 0.0016355999 335 337 0.0001924 337 337 0.059072498 339 337 0.00067349989 340 337 0.0053876974 341 337 9.619999e-05 350 337 0.0085625984 351 337 0.011833798 353 337 0.0003847999 354 337 0.037232999 356 337 0.0010582998 357 337 0.016836599 358 337 0.016547997 366 337 9.619999e-05 370 337 9.619999e-05 371 337 0.010871697 372 337 0.011160299 373 337 0.0066383965 376 337 0.0029824998 387 337 9.619999e-05 390 337 9.619999e-05 394 337 0.0058688 397 337 0.00028859987 401 337 0.0003847999 402 337 0.0011544998 408 337 0.00067349989 417 337 0.00028859987 422 337 9.619999e-05 430 337 9.619999e-05 441 337 0.0013468999 443 337 0.0023089999 444 337 0.0003847999 445 337 0.0077929981 446 337 0.0001924 447 337 0.0058688 450 337 0.0033672999 452 337 0.0036559999 453 337 0.0018279999 454 337 0.0001924 455 337 0.035308797 456 337 0.0003847999 457 337 0.0027900999 458 337 0.0010582998 459 337 0.00048099994 460 337 0.0010582998 463 337 0.010679197 464 337 0.0003847999 465 337 0.00076969992 467 337 0.010294396 468 337 0.0049066991 469 337 0.0052914992 470 337 0.0058688 471 337 0.0024051999 473 337 9.619999e-05 477 337 9.619999e-05 478 337 0.0010582998 483 337 0.0011544998 490 337 0.00048099994 491 337 0.0022127999 9 338 7.4899988e-05 18 338 7.4899988e-05 22 338 0.00022469999 60 338 0.0049426965 82 338 7.4899988e-05 83 338 7.4899988e-05 84 338 7.4899988e-05 108 338 7.4899988e-05 113 338 0.00014979999 114 338 0.00022469999 126 338 0.00014979999 127 338 7.4899988e-05 150 338 0.00082379999 160 338 0.0020219998 171 338 0.00029959995 172 338 0.00022469999 189 338 0.00022469999 190 338 0.00014979999 192 338 7.4899988e-05 194 338 0.00014979999 198 338 0.00014979999 200 338 7.4899988e-05 203 338 7.4899988e-05 204 338 7.4899988e-05 206 338 0.00037439982 207 338 7.4899988e-05 214 338 0.00089869997 223 338 7.4899988e-05 233 338 7.4899988e-05 234 338 0.0072642975 237 338 0.00014979999 241 338 0.00029959995 242 338 7.4899988e-05 248 338 7.4899988e-05 250 338 7.4899988e-05 252 338 0.00014979999 270 338 0.0050175972 272 338 7.4899988e-05 277 338 0.046206798 282 338 0.038118798 283 338 0.0038194 284 338 0.0032203 285 338 0.00059909979 286 338 7.4899988e-05 288 338 7.4899988e-05 289 338 0.00014979999 292 338 0.0014978 293 338 0.0014228998 294 338 0.00029959995 295 338 0.0019470998 296 338 0.0034448998 297 338 0.0010485 298 338 0.007788498 299 338 7.4899988e-05 300 338 7.4899988e-05 307 338 0.010185 312 338 0.0070395991 315 338 7.4899988e-05 317 338 0.0007489 318 338 0.0014978 319 338 7.4899988e-05 320 338 0.0017225 321 338 7.4899988e-05 322 338 0.0020968998 324 338 0.00014979999 326 338 0.00029959995 328 338 0.00037439982 331 338 7.4899988e-05 338 338 0.046057098 339 338 0.0007489 340 338 0.017748799 341 338 0.00059909979 343 338 0.00014979999 344 338 7.4899988e-05 347 338 7.4899988e-05 349 338 0.00029959995 350 338 0.018048398 351 338 0.012656298 353 338 7.4899988e-05 354 338 0.0065153986 356 338 0.0024714 358 338 0.027559299 366 338 7.4899988e-05 371 338 0.0034448998 372 338 0.016101297 373 338 0.031678297 384 338 7.4899988e-05 387 338 0.00014979999 393 338 7.4899988e-05 402 338 7.4899988e-05 404 338 7.4899988e-05 405 338 7.4899988e-05 417 338 0.0056915991 419 338 7.4899988e-05 421 338 7.4899988e-05 422 338 0.00014979999 423 338 7.4899988e-05 425 338 7.4899988e-05 430 338 7.4899988e-05 431 338 7.4899988e-05 433 338 7.4899988e-05 434 338 7.4899988e-05 443 338 0.0017972998 444 338 0.00029959995 445 338 0.0032950998 446 338 0.00029959995 447 338 0.0010485 450 338 0.0062906966 452 338 0.0077135973 453 338 0.0020219998 454 338 0.00037439982 455 338 0.036246497 456 338 0.0010485 457 338 0.0035946998 458 338 0.00082379999 459 338 0.00037439982 460 338 0.0011981998 463 338 0.0057664998 464 338 0.00037439982 465 338 0.0013479998 467 338 0.012656298 468 338 0.0017972998 469 338 0.010185 470 338 0.011308298 471 338 0.0013479998 473 338 0.00029959995 477 338 7.4899988e-05 478 338 0.0016476 483 338 0.0028457998 489 338 7.4899988e-05 490 338 0.0014978 491 338 0.0053172 19 339 0.00014199999 24 339 0.00028409995 60 339 0.0041186996 82 339 0.00014199999 108 339 0.00014199999 114 339 0.00014199999 126 339 0.00014199999 150 339 0.00014199999 160 339 0.0015622999 169 339 0.00028409995 172 339 0.00056809979 189 339 0.00014199999 190 339 0.00014199999 193 339 0.00014199999 194 339 0.00014199999 203 339 0.00014199999 204 339 0.00028409995 206 339 0.00042609987 214 339 0.00071009994 223 339 0.0018463 233 339 0.00014199999 234 339 0.0069591999 237 339 0.00014199999 240 339 0.00014199999 241 339 0.00014199999 254 339 0.00042609987 265 339 0.00014199999 266 339 0.00014199999 270 339 0.0052548982 272 339 0.0052548982 277 339 0.073284984 282 339 0.041187298 283 339 0.010651898 284 339 0.0032666 285 339 0.00028409995 286 339 0.00014199999 289 339 0.00014199999 292 339 0.0017042998 293 339 0.0019883998 294 339 0.0019883998 295 339 0.00099419989 296 339 0.0015622999 297 339 0.0048288964 298 339 0.0088055991 307 339 0.0083794966 312 339 0.0053969994 317 339 0.0028404999 320 339 0.00014199999 321 339 0.00028409995 322 339 0.0026984999 324 339 0.00014199999 328 339 0.00014199999 338 339 0.0042607971 339 339 0.032239698 340 339 0.012356199 341 339 0.00042609987 342 339 0.00028409995 343 339 0.00028409995 349 339 0.00028409995 350 339 0.0124982 351 339 0.0086634979 352 339 0.00014199999 353 339 0.00099419989 354 339 0.015622798 355 339 0.00014199999 356 339 0.0015622999 358 339 0.035222299 370 339 0.00014199999 371 339 0.0032666 372 339 0.011930097 373 339 0.027410898 374 339 0.00014199999 386 339 0.00014199999 387 339 0.00014199999 417 339 0.00071009994 421 339 0.00014199999 422 339 0.00014199999 430 339 0.00014199999 434 339 0.00014199999 443 339 0.0021303999 444 339 0.00042609987 445 339 0.0036926998 446 339 0.00028409995 447 339 0.0012782 450 339 0.0042607971 452 339 0.0066751987 453 339 0.0022723998 454 339 0.00028409995 455 339 0.034086097 456 339 0.00071009994 457 339 0.0038347 458 339 0.0011361998 459 339 0.00042609987 460 339 0.0011361998 463 339 0.0066751987 464 339 0.00042609987 465 339 0.00085219997 467 339 0.011646099 468 339 0.0012782 469 339 0.0085214972 470 339 0.0092315972 471 339 0.00085219997 473 339 0.00028409995 477 339 0.00014199999 478 339 0.0012782 483 339 0.0018463 490 339 0.00085219997 491 339 0.0061070994 9 340 4.9099996e-05 18 340 4.9099996e-05 22 340 7.3599993e-05 60 340 0.0030415 82 340 4.9099996e-05 83 340 4.9099996e-05 84 340 4.9099996e-05 108 340 4.9099996e-05 113 340 9.809999e-05 114 340 0.00014719999 126 340 7.3599993e-05 127 340 2.4499997e-05 130 340 0.0002942998 131 340 4.9099996e-05 134 340 4.9099996e-05 139 340 2.4499997e-05 142 340 2.4499997e-05 150 340 0.0008584999 156 340 0.00039249985 158 340 4.9099996e-05 160 340 0.00026979996 169 340 0.0001717 171 340 0.0002942998 172 340 0.0006622998 181 340 4.9099996e-05 187 340 0.0001717 188 340 0.0001962 189 340 9.809999e-05 190 340 0.00012259999 192 340 7.3599993e-05 193 340 2.4499997e-05 194 340 0.00022079999 196 340 2.4499997e-05 197 340 4.9099996e-05 198 340 0.0011037998 200 340 7.3599993e-05 201 340 2.4499997e-05 203 340 7.3599993e-05 204 340 7.3599993e-05 206 340 0.00031889998 207 340 4.9099996e-05 209 340 2.4499997e-05 214 340 0.0037528998 218 340 2.4499997e-05 219 340 9.809999e-05 223 340 0.00068679987 224 340 0.0033604 225 340 0.00012259999 227 340 2.4499997e-05 229 340 4.9099996e-05 233 340 0.0015207999 234 340 0.0060830973 237 340 0.00039249985 240 340 0.00034339982 241 340 0.0037037998 242 340 2.4499997e-05 248 340 2.4499997e-05 252 340 0.00053959992 253 340 2.4499997e-05 270 340 0.0083641969 271 340 4.9099996e-05 272 340 0.00049059978 274 340 4.9099996e-05 276 340 4.9099996e-05 277 340 0.067526758 278 340 4.9099996e-05 282 340 0.012460399 283 340 0.0021584998 284 340 0.0032867999 285 340 0.017586898 286 340 0.0001962 287 340 0.00078489981 288 340 0.0009321 289 340 0.0019622999 290 340 0.0001962 292 340 0.0023546999 293 340 0.0029678999 294 340 0.00053959992 295 340 0.0007358999 296 340 0.0026490998 297 340 0.0009321 298 340 0.0024773998 299 340 0.0001962 301 340 4.9099996e-05 307 340 0.00041699992 312 340 0.0037773999 313 340 0.0022810998 315 340 0.00076039997 317 340 0.0012754998 318 340 2.4499997e-05 319 340 0.00076039997 320 340 0.0024283 321 340 0.0001962 322 340 0.00039249985 323 340 7.3599993e-05 324 340 2.4499997e-05 325 340 7.3599993e-05 326 340 0.0023792998 328 340 0.00026979996 330 340 2.4499997e-05 331 340 4.9099996e-05 332 340 2.4499997e-05 338 340 0.0048320964 339 340 0.00083399983 340 340 0.044813499 341 340 0.00022079999 343 340 0.00044149999 344 340 7.3599993e-05 345 340 2.4499997e-05 347 340 2.4499997e-05 348 340 2.4499997e-05 349 340 0.00014719999 350 340 0.00095659983 351 340 0.0032378 353 340 0.0013245 354 340 0.0011282999 355 340 2.4499997e-05 356 340 0.00041699992 357 340 0.00012259999 358 340 0.020309497 366 340 7.3599993e-05 369 340 0.00012259999 370 340 9.809999e-05 371 340 0.00095659983 372 340 0.0013245 373 340 0.0015452998 374 340 0.00058869994 375 340 2.4499997e-05 376 340 2.4499997e-05 384 340 9.809999e-05 385 340 9.809999e-05 386 340 0.0001717 387 340 0.00012259999 390 340 4.9099996e-05 392 340 9.809999e-05 393 340 0.00026979996 394 340 7.3599993e-05 397 340 0.00026979996 398 340 7.3599993e-05 399 340 2.4499997e-05 401 340 0.00039249985 402 340 0.0032867999 404 340 7.3599993e-05 405 340 0.0001717 414 340 9.809999e-05 415 340 2.4499997e-05 417 340 0.00068679987 419 340 2.4499997e-05 420 340 2.4499997e-05 421 340 7.3599993e-05 422 340 0.00012259999 423 340 4.9099996e-05 424 340 0.00071129994 425 340 2.4499997e-05 430 340 4.9099996e-05 431 340 4.9099996e-05 432 340 2.4499997e-05 433 340 4.9099996e-05 434 340 4.9099996e-05 441 340 4.9099996e-05 442 340 4.9099996e-05 443 340 0.0025754999 444 340 0.00061319978 445 340 0.0030169999 446 340 0.00034339982 447 340 0.0025263999 448 340 2.4499997e-05 450 340 0.0048565976 452 340 0.0076773986 453 340 0.0018886998 454 340 0.00024529989 455 340 0.019009497 456 340 0.00083399983 457 340 0.0035075999 458 340 0.0007358999 459 340 0.00056419987 460 340 0.0012999999 463 340 0.0094188973 464 340 0.00049059978 465 340 0.0012263998 467 340 0.012215197 468 340 0.0018642 469 340 0.0062301978 470 340 0.0068924986 471 340 0.0014962 473 340 0.00014719999 477 340 0.00012259999 478 340 0.0014471998 479 340 2.4499997e-05 483 340 0.0014962 489 340 4.9099996e-05 490 340 0.0038019 491 340 0.0014225999 19 341 0.0001582 22 341 0.0001582 60 341 0.0014240998 108 341 0.0001582 114 341 0.0001582 126 341 0.0001582 150 341 0.0001582 160 341 0.0012657999 171 341 0.00031649997 172 341 0.00094939978 189 341 0.0001582 190 341 0.0001582 194 341 0.0001582 198 341 0.0068037994 203 341 0.00031649997 206 341 0.00047469977 214 341 0.00079109985 223 341 0.0017404999 234 341 0.0080695972 237 341 0.0001582 240 341 0.0018986999 241 341 0.012025297 267 341 0.0001582 270 341 0.0022151999 276 341 0.0042721964 277 341 0.041139197 279 341 0.00079109985 282 341 0.013291098 283 341 0.0026898999 284 341 0.0031645999 285 341 0.011075899 286 341 0.00047469977 288 341 0.00031649997 289 341 0.0014240998 292 341 0.0015822998 293 341 0.0020569998 294 341 0.015189897 295 341 0.013449397 296 341 0.032911398 297 341 0.0011075998 298 341 0.0128165 307 341 0.0088607967 312 341 0.011075899 315 341 0.0026898999 317 341 0.00079109985 318 341 0.0022151999 320 341 0.0031645999 321 341 0.0001582 322 341 0.0001582 326 341 0.0001582 328 341 0.0001582 331 341 0.0001582 332 341 0.0001582 338 341 0.0001582 339 341 0.0001582 340 341 0.036392398 341 341 0.0049050972 344 341 0.0001582 350 341 0.0001582 351 341 0.014873397 353 341 0.0001582 354 341 0.0128165 356 341 0.00094939978 358 341 0.014398698 371 341 0.0063290969 372 341 0.0131329 373 341 0.0344937 386 341 0.0068037994 387 341 0.0001582 417 341 0.00063289981 421 341 0.0001582 422 341 0.0001582 430 341 0.0001582 434 341 0.0001582 443 341 0.0017404999 444 341 0.00079109985 445 341 0.0037974999 447 341 0.0075948983 450 341 0.0036391998 452 341 0.005854398 453 341 0.0014240998 454 341 0.00063289981 455 341 0.031329099 456 341 0.00079109985 457 341 0.0036391998 458 341 0.0011075998 459 341 0.00047469977 460 341 0.0011075998 463 341 0.012183499 464 341 0.00079109985 465 341 0.00094939978 467 341 0.0099683963 468 341 0.0028480999 469 341 0.0066455975 470 341 0.0074366964 471 341 0.00094939978 472 341 0.0014240998 473 341 0.0001582 477 341 0.00031649997 478 341 0.0012657999 483 341 0.0012657999 490 341 0.0020569998 491 341 0.0026898999 22 342 0.00036019995 24 342 0.00036019995 60 342 0.0072045997 108 342 0.00036019995 114 342 0.00072049978 126 342 0.00036019995 160 342 0.0010807 172 342 0.00072049978 206 342 0.00072049978 223 342 0.0021613999 234 342 0.0068443976 240 342 0.0057636984 270 342 0.0018012 276 342 0.0010807 277 342 0.049351599 278 342 0.0014408999 282 342 0.015129697 283 342 0.032780997 284 342 0.0032420999 285 342 0.00036019995 290 342 0.00036019995 292 342 0.0010807 294 342 0.012247797 295 342 0.0010807 296 342 0.00036019995 297 342 0.0039624982 298 342 0.0043227971 307 342 0.0064840987 312 342 0.0093659982 315 342 0.0025215999 317 342 0.00072049978 328 342 0.00036019995 338 342 0.00036019995 339 342 0.0093659982 340 342 0.013688799 341 342 0.00036019995 342 342 0.013328496 349 342 0.00036019995 350 342 0.0223343 351 342 0.011167098 353 342 0.0014408999 354 342 0.011527397 356 342 0.0014408999 358 342 0.027017299 370 342 0.00036019995 371 342 0.0028817998 372 342 0.0028817998 373 342 0.0162104 374 342 0.00036019995 375 342 0.00072049978 386 342 0.0036022998 387 342 0.00036019995 417 342 0.00072049978 443 342 0.0021613999 444 342 0.00072049978 445 342 0.0028817998 447 342 0.0010807 450 342 0.0036022998 452 342 0.0079250969 453 342 0.0068443976 454 342 0.00072049978 455 342 0.024495699 456 342 0.00036019995 457 342 0.0039624982 458 342 0.00072049978 459 342 0.00036019995 460 342 0.0010807 463 342 0.0025215999 464 342 0.00036019995 465 342 0.00072049978 467 342 0.011167098 468 342 0.0010807 469 342 0.0079250969 470 342 0.0090057999 471 342 0.0010807 473 342 0.00036019995 478 342 0.0010807 483 342 0.0018012 490 342 0.0014408999 491 342 0.0108069 60 343 0.0016154998 108 343 0.0002308 114 343 0.00046159979 126 343 0.0002308 142 343 0.0002308 160 343 0.0011538998 172 343 0.00092309993 194 343 0.0002308 198 343 0.00069239992 206 343 0.00069239992 214 343 0.0011538998 223 343 0.0023079 233 343 0.0002308 234 343 0.0060004964 236 343 0.0002308 237 343 0.0002308 240 343 0.0011538998 241 343 0.0062311999 270 343 0.0018463 277 343 0.045465 282 343 0.013385598 283 343 0.0018463 284 343 0.0030001998 285 343 0.0057696998 286 343 0.0002308 289 343 0.0066927969 290 343 0.0002308 292 343 0.018924497 293 343 0.0027693999 294 343 0.010616198 295 343 0.0025386999 296 343 0.0043849982 297 343 0.0053080991 298 343 0.0034617998 307 343 0.010846999 312 343 0.012231696 315 343 0.0078467987 317 343 0.00046159979 318 343 0.0002308 320 343 0.0023079 321 343 0.00046159979 322 343 0.0069235973 324 343 0.0002308 326 343 0.0080774985 328 343 0.00069239992 338 343 0.00046159979 339 343 0.00092309993 340 343 0.026540499 341 343 0.0002308 343 343 0.0270021 347 343 0.0002308 349 343 0.00046159979 350 343 0.0120009 351 343 0.0055388995 353 343 0.0002308 354 343 0.011539299 355 343 0.0002308 356 343 0.0016154998 358 343 0.016616698 370 343 0.00046159979 371 343 0.0023079 372 343 0.0120009 373 343 0.014539599 374 343 0.00046159979 387 343 0.0002308 401 343 0.0002308 402 343 0.0002308 405 343 0.0002308 417 343 0.00046159979 443 343 0.0013846999 444 343 0.0023079 445 343 0.0090007 447 343 0.011077799 450 343 0.0041541979 452 343 0.0053080991 453 343 0.0016154998 454 343 0.0002308 455 343 0.025155798 456 343 0.00046159979 457 343 0.0036925999 458 343 0.00069239992 459 343 0.00046159979 460 343 0.00069239992 463 343 0.013847198 464 343 0.00069239992 465 343 0.00092309993 467 343 0.010616198 468 343 0.0016154998 469 343 0.0083082989 470 343 0.0092314966 471 343 0.00069239992 473 343 0.0002308 478 343 0.0013846999 483 343 0.00069239992 490 343 0.0011538998 491 343 0.0032309999 9 344 0.00010729999 22 344 0.00010729999 60 344 0.0025758999 82 344 0.00010729999 108 344 0.00010729999 114 344 0.00021469999 126 344 0.00010729999 142 344 0.00010729999 150 344 0.00010729999 160 344 0.0038639 169 344 0.00085859979 171 344 0.00010729999 172 344 0.00042929989 187 344 0.00010729999 188 344 0.00021469999 189 344 0.00010729999 190 344 0.00010729999 194 344 0.00021469999 198 344 0.00053669978 200 344 0.00010729999 203 344 0.00010729999 204 344 0.00010729999 206 344 0.00021469999 214 344 0.0010732999 223 344 0.00021469999 224 344 0.00021469999 233 344 0.00042929989 234 344 0.0064397976 236 344 0.00021469999 237 344 0.00021469999 240 344 0.00021469999 241 344 0.0052591972 242 344 0.0086937994 252 344 0.00021469999 270 344 0.00021469999 272 344 0.00010729999 277 344 0.066759646 282 344 0.0226468 283 344 0.0031126 284 344 0.0018245999 285 344 0.0010732999 286 344 0.00010729999 289 344 0.00021469999 292 344 0.0017172999 293 344 0.004937198 294 344 0.0015025998 295 344 0.0095523968 296 344 0.0047225989 297 344 0.0024685999 298 344 0.00010729999 299 344 0.00010729999 301 344 0.00010729999 307 344 0.012665 312 344 0.0027905998 314 344 0.00042929989 315 344 0.0078350976 319 344 0.00010729999 320 344 0.00021469999 321 344 0.0053664967 322 344 0.0048298985 324 344 0.0059031993 326 344 0.0040785968 328 344 0.00053669978 329 344 0.00021469999 331 344 0.00010729999 338 344 0.0015025998 339 344 0.00075129978 340 344 0.0080497973 341 344 0.00021469999 344 344 0.047654796 347 344 0.00064399978 349 344 0.00042929989 350 344 0.0061177984 351 344 0.0084790997 352 344 0.0012879998 354 344 0.018890198 356 344 0.0010732999 358 344 0.018031597 362 344 0.00096599991 366 344 0.0030053 371 344 0.0015025998 372 344 0.015884899 373 344 0.0084790997 386 344 0.00010729999 387 344 0.00010729999 393 344 0.00010729999 402 344 0.00021469999 417 344 0.00053669978 421 344 0.00010729999 422 344 0.00021469999 430 344 0.00010729999 443 344 0.0021465998 444 344 0.00042929989 445 344 0.0040785968 446 344 0.00021469999 447 344 0.011913698 450 344 0.0044005997 452 344 0.0050444975 453 344 0.0016099999 454 344 0.00032199989 455 344 0.0296233 456 344 0.00085859979 457 344 0.0042931996 458 344 0.00064399978 459 344 0.00032199989 460 344 0.0010732999 463 344 0.023290798 464 344 0.00053669978 465 344 0.0011805999 467 344 0.0099817999 468 344 0.0015025998 469 344 0.0078350976 470 344 0.0085864998 471 344 0.00096599991 473 344 0.00021469999 477 344 0.00010729999 478 344 0.0012879998 483 344 0.0020392998 490 344 0.00075129978 491 344 0.0042931996 60 345 0.0033787999 82 345 0.00012999999 108 345 0.00012999999 114 345 0.00012999999 126 345 0.00012999999 130 345 0.0005198 150 345 0.00012999999 160 345 0.005847998 161 345 0.0015594999 172 345 0.00038989983 189 345 0.00012999999 190 345 0.00012999999 194 345 0.0002599 200 345 0.00012999999 203 345 0.00012999999 204 345 0.00012999999 206 345 0.0002599 214 345 0.00064979983 218 345 0.00012999999 222 345 0.00012999999 224 345 0.00012999999 225 345 0.0005198 234 345 0.0090967976 236 345 0.00012999999 237 345 0.00012999999 240 345 0.00012999999 241 345 0.017023999 242 345 0.0057179965 277 345 0.079662085 282 345 0.033138398 283 345 0.0015594999 284 345 0.0022091998 290 345 0.0031188999 292 345 0.0018193999 293 345 0.012085799 294 345 0.0031188999 296 345 0.011305999 305 345 0.00012999999 307 345 0.0010396 312 345 0.010526299 317 345 0.0011695998 319 345 0.00012999999 324 345 0.0025990999 326 345 0.00012999999 328 345 0.00012999999 331 345 0.00012999999 338 345 0.0027289998 340 345 0.007017497 341 345 0.00038989983 344 345 0.00012999999 345 345 0.043534797 347 345 0.00012999999 349 345 0.00012999999 350 345 0.0038985999 351 345 0.0109162 354 345 0.014684897 356 345 0.0005198 358 345 0.0162443 366 345 0.00012999999 371 345 0.0014294998 372 345 0.011176098 373 345 0.0081870966 387 345 0.00012999999 417 345 0.00064979983 421 345 0.00012999999 422 345 0.0002599 430 345 0.00012999999 443 345 0.0024690998 444 345 0.0005198 445 345 0.0042884983 446 345 0.0002599 447 345 0.0011695998 450 345 0.004938297 452 345 0.007017497 453 345 0.0012995 454 345 0.00038989983 455 345 0.026640698 456 345 0.0010396 457 345 0.0038985999 458 345 0.0012995 459 345 0.0005198 460 345 0.0012995 463 345 0.010396399 464 345 0.0005198 465 345 0.0012995 467 345 0.011695899 468 345 0.0016893998 469 345 0.007407397 470 345 0.0084469989 471 345 0.0010396 473 345 0.0002599 477 345 0.00012999999 478 345 0.0016893998 483 345 0.0022091998 490 345 0.017023999 491 345 0.0053280964 60 346 0.0017275 108 346 0.0002159 114 346 0.00043189991 126 346 0.0002159 160 346 0.0023752998 194 346 0.0002159 198 346 0.0090692975 206 346 0.00043189991 214 346 0.0002159 233 346 0.0047505982 234 346 0.0056142993 236 346 0.0002159 237 346 0.00064779981 241 346 0.0095011964 242 346 0.0071258992 270 346 0.0060461983 272 346 0.00064779981 277 346 0.041675698 282 346 0.029799197 283 346 0.010580897 284 346 0.0017275 285 346 0.0088533983 293 346 0.0010797 294 346 0.0002159 295 346 0.0002159 296 346 0.015331499 297 346 0.0002159 298 346 0.00043189991 307 346 0.0097170994 311 346 0.0010797 312 346 0.00064779981 315 346 0.0002159 317 346 0.0002159 318 346 0.0002159 320 346 0.0062620975 328 346 0.093284369 330 346 0.0010797 331 346 0.0002159 338 346 0.0017275 339 346 0.0002159 340 346 0.06780386 341 346 0.0002159 346 346 0.0051824972 347 346 0.0002159 350 346 0.00086369994 351 346 0.014683697 353 346 0.0066939965 354 346 0.0015115999 356 346 0.0002159 358 346 0.021377698 371 346 0.0002159 372 346 0.0246167 373 346 0.0017275 387 346 0.0002159 395 346 0.0002159 417 346 0.00064779981 443 346 0.0017275 444 346 0.0095011964 445 346 0.0041027963 447 346 0.011876497 450 346 0.0038867998 452 346 0.0047505982 453 346 0.0019433999 454 346 0.00086369994 455 346 0.031742599 456 346 0.00043189991 457 346 0.0043186992 458 346 0.00064779981 459 346 0.00043189991 460 346 0.00064779981 463 346 0.025696397 464 346 0.00086369994 465 346 0.00064779981 467 346 0.0090692975 468 346 0.0012955999 469 346 0.0060461983 470 346 0.0064780973 471 346 0.00064779981 473 346 0.0002159 478 346 0.0010797 483 346 0.0012955999 490 346 0.00064779981 491 346 0.003239 60 347 0.0046533979 108 347 0.00024489989 114 347 0.00048979977 126 347 0.00024489989 142 347 0.00024489989 160 347 0.0034288999 169 347 0.00073479977 172 347 0.00097969989 187 347 0.00024489989 188 347 0.00048979977 189 347 0.00024489989 190 347 0.00024489989 194 347 0.00024489989 206 347 0.00048979977 214 347 0.0029389998 223 347 0.00024489989 234 347 0.0063678995 236 347 0.00024489989 237 347 0.00024489989 240 347 0.0097966976 241 347 0.00024489989 242 347 0.00024489989 252 347 0.00024489989 270 347 0.00048979977 277 347 0.066372752 282 347 0.023022298 283 347 0.012735698 284 347 0.0019592999 285 347 0.00024489989 286 347 0.00048979977 289 347 0.00048979977 290 347 0.00024489989 292 347 0.0031838999 293 347 0.00024489989 294 347 0.00073479977 295 347 0.0036737998 296 347 0.00024489989 305 347 0.00024489989 307 347 0.0058779977 312 347 0.0034288999 320 347 0.00048979977 321 347 0.00048979977 322 347 0.0024491998 324 347 0.0036737998 326 347 0.00024489989 328 347 0.00048979977 332 347 0.00048979977 338 347 0.0026940999 340 347 0.0061228983 341 347 0.00048979977 347 347 0.064903259 349 347 0.0014694999 350 347 0.00048979977 351 347 0.015674699 354 347 0.027675699 356 347 0.00048979977 358 347 0.031349499 371 347 0.0034288999 372 347 0.013715398 373 347 0.017634097 387 347 0.00024489989 390 347 0.00024489989 393 347 0.00024489989 408 347 0.00024489989 417 347 0.00048979977 443 347 0.0012245998 444 347 0.00048979977 445 347 0.013715398 447 347 0.0012245998 450 347 0.0048983991 452 347 0.0058779977 453 347 0.0019592999 454 347 0.00024489989 455 347 0.038696997 456 347 0.00048979977 457 347 0.0039186999 458 347 0.00073479977 459 347 0.00048979977 460 347 0.0012245998 463 347 0.016899299 464 347 0.00048979977 465 347 0.00097969989 467 347 0.012000997 468 347 0.0012245998 469 347 0.0088169985 470 347 0.0097966976 471 347 0.0014694999 473 347 0.00024489989 478 347 0.0017143998 483 347 0.0026940999 490 347 0.00097969989 491 347 0.012000997 22 348 0.0001314 24 348 0.0001314 60 348 0.0031545998 108 348 0.0001314 114 348 0.0001314 120 348 0.0001314 126 348 0.0001314 130 348 0.00052579981 140 348 0.00039429986 150 348 0.0001314 160 348 0.0067034997 172 348 0.00052579981 187 348 0.0010515 189 348 0.0001314 190 348 0.0001314 194 348 0.00026289979 198 348 0.00039429986 204 348 0.00026289979 206 348 0.00026289979 208 348 0.0001314 211 348 0.0001314 214 348 0.0010515 218 348 0.0001314 221 348 0.0001314 222 348 0.0001314 223 348 0.00026289979 224 348 0.00052579981 225 348 0.0009200999 227 348 0.0001314 234 348 0.0064405985 236 348 0.0001314 237 348 0.0001314 240 348 0.00039429986 241 348 0.0024973999 242 348 0.0092007965 243 348 0.0001314 270 348 0.0032859999 277 348 0.025499497 282 348 0.033385899 283 348 0.0093322992 284 348 0.0017086999 290 348 0.0013144 292 348 0.0162986 293 348 0.0056518987 294 348 0.0013144 295 348 0.0009200999 296 348 0.0047318973 301 348 0.0001314 307 348 0.0077549964 308 348 0.0013144 312 348 0.0051261969 315 348 0.0001314 317 348 0.0014457998 320 348 0.0001314 322 348 0.0015772998 324 348 0.0014457998 340 348 0.0086750984 341 348 0.00026289979 345 348 0.0001314 347 348 0.00078859995 348 348 0.054942198 350 348 0.0068348981 351 348 0.011698198 353 348 0.0001314 354 348 0.027733997 356 348 0.00052579981 358 348 0.016693 359 348 0.0042060986 361 348 0.0001314 369 348 0.00026289979 371 348 0.0015772998 372 348 0.013144098 373 348 0.0098579973 386 348 0.00026289979 387 348 0.0001314 392 348 0.0009200999 393 348 0.0057833977 417 348 0.00039429986 422 348 0.00039429986 430 348 0.00052579981 443 348 0.0015772998 444 348 0.0052575991 445 348 0.0039431974 446 348 0.0001314 447 348 0.012224 450 348 0.0039431974 452 348 0.0051261969 453 348 0.0009200999 454 348 0.0030230999 455 348 0.023922198 456 348 0.00078859995 457 348 0.0078863986 458 348 0.00065719988 459 348 0.00039429986 460 348 0.0011829999 463 348 0.033254497 464 348 0.0056518987 465 348 0.0009200999 467 348 0.010778099 468 348 0.0019715999 469 348 0.007492099 470 348 0.0082807988 471 348 0.0010515 473 348 0.0001314 477 348 0.0001314 478 348 0.0011829999 483 348 0.0015772998 490 348 0.0009200999 491 348 0.0055204965 9 349 3.8899991e-05 18 349 0.00011659999 21 349 3.8899991e-05 22 349 3.8899991e-05 60 349 0.0023705999 77 349 7.7699995e-05 79 349 3.8899991e-05 82 349 3.8899991e-05 83 349 3.8899991e-05 84 349 3.8899991e-05 108 349 3.8899991e-05 113 349 7.7699995e-05 114 349 0.00015539999 126 349 7.7699995e-05 127 349 3.8899991e-05 130 349 0.00015539999 131 349 3.8899991e-05 135 349 0.00015539999 142 349 0.00023319999 150 349 0.00062179985 158 349 3.8899991e-05 160 349 0.0044690967 165 349 3.8899991e-05 168 349 3.8899991e-05 169 349 0.00015539999 171 349 0.00054409984 172 349 0.00027199998 187 349 3.8899991e-05 189 349 7.7699995e-05 190 349 7.7699995e-05 191 349 3.8899991e-05 194 349 0.00011659999 197 349 3.8899991e-05 198 349 0.0012435999 200 349 3.8899991e-05 201 349 3.8899991e-05 203 349 7.7699995e-05 204 349 0.00011659999 206 349 0.00015539999 207 349 3.8899991e-05 214 349 0.035714298 219 349 3.8899991e-05 220 349 3.8899991e-05 223 349 0.0001943 224 349 0.00077719986 225 349 0.00038859993 227 349 7.7699995e-05 233 349 0.00069949985 234 349 0.0054406971 236 349 0.00015539999 237 349 0.0012824 240 349 0.00038859993 241 349 0.0033032999 242 349 0.0033421 243 349 7.7699995e-05 248 349 3.8899991e-05 250 349 3.8899991e-05 251 349 0.00015539999 252 349 0.0040416978 262 349 7.7699995e-05 270 349 0.0023705999 271 349 3.8899991e-05 272 349 0.00011659999 274 349 0.0010103998 275 349 3.8899991e-05 276 349 3.8899991e-05 277 349 0.051647797 282 349 0.0242888 283 349 0.0043136999 284 349 0.0015155999 285 349 0.0010880998 286 349 0.0061401986 287 349 0.00011659999 288 349 7.7699995e-05 289 349 0.0073060989 290 349 0.0024482999 292 349 0.0052463971 293 349 0.0034586999 294 349 0.0099486969 295 349 0.0010493 296 349 0.0025648999 297 349 0.0016710998 298 349 0.00042749988 299 349 0.0001943 305 349 7.7699995e-05 307 349 0.019081298 312 349 0.0050908998 315 349 0.00089379982 317 349 0.0014767998 318 349 3.8899991e-05 319 349 3.8899991e-05 320 349 0.0026814998 321 349 0.0054017976 322 349 0.0032255999 324 349 0.0083164982 326 349 0.0034975999 327 349 3.8899991e-05 328 349 0.0036141998 331 349 0.00015539999 332 349 7.7699995e-05 333 349 3.8899991e-05 334 349 7.7699995e-05 335 349 0.0012824 338 349 0.0015155999 339 349 0.00046629994 340 349 0.0054795966 341 349 0.0001943 344 349 0.00066069979 345 349 0.00011659999 347 349 0.0018264998 349 349 0.017021596 350 349 0.0070728995 351 349 0.0072283968 352 349 0.0016321999 353 349 7.7699995e-05 354 349 0.027086899 355 349 0.00050519989 356 349 0.0010103998 357 349 3.8899991e-05 358 349 0.012630198 366 349 7.7699995e-05 369 349 0.00011659999 370 349 0.00015539999 371 349 0.0024094998 372 349 0.011503197 373 349 0.011697497 374 349 0.00089379982 375 349 3.8899991e-05 384 349 3.8899991e-05 385 349 3.8899991e-05 386 349 0.00011659999 387 349 7.7699995e-05 389 349 0.00034979987 390 349 0.00027199998 392 349 0.00066069979 393 349 0.0052463971 397 349 7.7699995e-05 398 349 0.0012047 402 349 0.0012435999 404 349 0.0016710998 405 349 0.00066069979 408 349 3.8899991e-05 414 349 0.00015539999 415 349 3.8899991e-05 417 349 0.00046629994 419 349 3.8899991e-05 420 349 7.7699995e-05 421 349 0.00031089992 422 349 0.00015539999 423 349 3.8899991e-05 425 349 3.8899991e-05 430 349 0.00046629994 431 349 3.8899991e-05 433 349 3.8899991e-05 434 349 3.8899991e-05 442 349 0.00011659999 443 349 0.0034586999 444 349 0.0012435999 445 349 0.0049743988 446 349 0.0011658999 447 349 0.0051297992 450 349 0.0089382976 452 349 0.0053240992 453 349 0.0014767998 454 349 0.00031089992 455 349 0.029301997 456 349 0.00093269977 457 349 0.0041581988 458 349 0.00054409984 459 349 0.00050519989 460 349 0.001127 463 349 0.023433898 464 349 0.0005828999 465 349 0.00097159995 467 349 0.010181896 468 349 0.0019041998 469 349 0.006917499 470 349 0.0077723972 471 349 0.0025648999 473 349 0.00015539999 477 349 0.00015539999 478 349 0.0011658999 479 349 3.8899991e-05 483 349 0.0013989999 489 349 3.8899991e-05 490 349 0.00085499999 491 349 0.0014378999 9 350 3.9599996e-05 18 350 7.9199992e-05 19 350 3.9599996e-05 22 350 0.0001583 24 350 3.9599996e-05 60 350 0.0024146999 79 350 3.9599996e-05 82 350 7.9199992e-05 83 350 3.9599996e-05 84 350 3.9599996e-05 108 350 7.9199992e-05 113 350 7.9199992e-05 114 350 0.00019789999 126 350 0.00011879999 127 350 3.9599996e-05 142 350 3.9599996e-05 150 350 0.00059379986 151 350 3.9599996e-05 160 350 0.0025334 169 350 0.00019789999 171 350 3.9599996e-05 172 350 0.00075209979 187 350 0.00031669997 188 350 0.0003562998 189 350 0.00011879999 190 350 0.00011879999 192 350 0.0002770999 194 350 0.0001583 197 350 0.00031669997 198 350 0.0027313998 200 350 7.9199992e-05 201 350 3.9599996e-05 203 350 7.9199992e-05 204 350 3.9599996e-05 206 350 0.0001583 207 350 3.9599996e-05 214 350 0.00047499989 224 350 7.9199992e-05 233 350 7.9199992e-05 234 350 0.0058982 237 350 0.0002770999 240 350 0.00011879999 241 350 0.0055022985 242 350 0.0093420967 248 350 3.9599996e-05 250 350 3.9599996e-05 252 350 0.00011879999 270 350 0.00011879999 271 350 3.9599996e-05 272 350 0.0049480982 276 350 3.9599996e-05 277 350 0.040376898 282 350 0.067809343 283 350 0.010410897 284 350 0.0016229998 285 350 3.9599996e-05 286 350 0.0013458999 289 350 0.00011879999 290 350 0.00019789999 292 350 0.0043147989 293 350 0.0012667 294 350 0.0060564987 295 350 0.0027313998 296 350 0.0068085976 297 350 0.0090649985 298 350 0.0001583 299 350 0.0019792998 304 350 0.0001583 305 350 0.00011879999 307 350 0.0129839 308 350 7.9199992e-05 312 350 0.013894398 313 350 7.9199992e-05 315 350 0.0005541998 317 350 3.9599996e-05 320 350 0.00019789999 321 350 0.0012270999 322 350 0.00011879999 324 350 0.014369398 326 350 0.00019789999 327 350 0.00039589987 328 350 0.0134985 329 350 7.9199992e-05 331 350 0.0003562998 332 350 0.00019789999 333 350 0.0003562998 338 350 0.0017021999 339 350 3.9599996e-05 340 350 0.010252599 341 350 0.0002770999 349 350 0.00011879999 350 350 0.028738797 351 350 0.010410897 352 350 0.0001583 353 350 3.9599996e-05 354 350 0.014092296 355 350 3.9599996e-05 356 350 0.0033251999 357 350 0.00011879999 358 350 0.016665298 366 350 0.00011879999 367 350 0.0002770999 368 350 7.9199992e-05 369 350 3.9599996e-05 370 350 0.0026521999 371 350 0.004987698 372 350 0.049164798 373 350 0.0027709999 375 350 7.9199992e-05 376 350 0.0001583 384 350 3.9599996e-05 386 350 7.9199992e-05 387 350 0.00011879999 390 350 3.9599996e-05 392 350 3.9599996e-05 393 350 0.00094999978 397 350 0.00047499989 398 350 7.9199992e-05 401 350 3.9599996e-05 402 350 0.00071249995 404 350 0.00019789999 405 350 0.00019789999 408 350 0.00011879999 413 350 3.9599996e-05 414 350 0.0016229998 415 350 0.00011879999 417 350 0.00043539982 419 350 7.9199992e-05 421 350 7.9199992e-05 422 350 0.0001583 423 350 3.9599996e-05 425 350 3.9599996e-05 430 350 7.9199992e-05 431 350 3.9599996e-05 433 350 3.9599996e-05 434 350 3.9599996e-05 443 350 0.0019397 444 350 0.0020979999 445 350 0.0053439997 446 350 0.00023749999 447 350 0.0041959994 450 350 0.0051064976 452 350 0.0054231994 453 350 0.0018208998 454 350 0.0005541998 455 350 0.033924498 456 350 0.00091049983 457 350 0.0037606 458 350 0.00083129993 459 350 0.0013062998 460 350 0.00098959985 463 350 0.0067690983 464 350 0.00067289989 465 350 0.0011083998 467 350 0.011083797 468 350 0.004275199 469 350 0.0088274963 470 350 0.0099358968 471 350 0.0026917998 473 350 0.00023749999 477 350 0.00011879999 478 350 0.0011876 483 350 0.0016229998 489 350 3.9599996e-05 490 350 0.0008709 491 350 0.0044334978 18 351 0.0001394 19 351 0.00027889991 22 351 0.00034859986 60 351 0.003973797 82 351 6.9699992e-05 108 351 6.9699992e-05 114 351 6.9699992e-05 126 351 6.9699992e-05 150 351 0.00069719995 160 351 0.0016035 169 351 0.00034859986 172 351 0.00027889991 189 351 6.9699992e-05 190 351 0.0001394 192 351 6.9699992e-05 194 351 0.00020909999 198 351 0.0052286983 200 351 6.9699992e-05 203 351 6.9699992e-05 204 351 6.9699992e-05 206 351 0.00020909999 207 351 6.9699992e-05 214 351 0.00020909999 234 351 0.011851598 237 351 0.0001394 270 351 0.0073200986 277 351 0.15184045 278 351 6.9699992e-05 282 351 0.0098995976 283 351 0.015616298 284 351 0.0018125998 285 351 0.00034859986 286 351 0.0011153999 290 351 6.9699992e-05 292 351 0.0020217998 294 351 0.0001394 296 351 0.0010456999 297 351 0.0039040998 299 351 0.0001394 312 351 0.0025795 320 351 0.0013245998 338 351 0.0009062998 340 351 0.025306698 341 351 0.0001394 351 351 0.075711071 354 351 0.00244 356 351 0.0001394 358 351 0.0092721991 372 351 0.00083659985 384 351 6.9699992e-05 387 351 6.9699992e-05 402 351 6.9699992e-05 417 351 0.00048799999 421 351 6.9699992e-05 422 351 6.9699992e-05 430 351 6.9699992e-05 433 351 6.9699992e-05 434 351 6.9699992e-05 443 351 0.0036251999 444 351 0.00020909999 445 351 0.0047406964 446 351 0.00069719995 447 351 0.00069719995 450 351 0.0039040998 452 351 0.0092721991 453 351 0.0041828975 454 351 0.0010456999 455 351 0.024888497 456 351 0.0007668999 457 351 0.0036251999 458 351 0.00020909999 459 351 0.0011153999 460 351 0.0011851999 463 351 0.0046011992 464 351 0.00027889991 465 351 0.0010456999 467 351 0.0087841973 468 351 0.0020217998 469 351 0.003973797 470 351 0.0043920986 471 351 0.0011851999 473 351 0.0001394 477 351 6.9699992e-05 478 351 0.0012548999 483 351 0.001464 489 351 6.9699992e-05 490 351 0.00041829981 491 351 0.0029280998 24 352 0.000141 25 352 0.000141 60 352 0.0018324999 82 352 0.000141 108 352 0.000141 114 352 0.000141 126 352 0.000141 130 352 0.00070479978 131 352 0.00042289984 135 352 0.0087397993 138 352 0.00028189993 139 352 0.000141 142 352 0.00042289984 150 352 0.000141 160 352 0.0029602 169 352 0.00042289984 172 352 0.00098669995 187 352 0.00056389999 188 352 0.000141 189 352 0.000141 190 352 0.000141 192 352 0.000141 193 352 0.00028189993 194 352 0.00042289984 198 352 0.0028192999 206 352 0.00028189993 214 352 0.0014095998 219 352 0.00098669995 223 352 0.000141 224 352 0.00084579992 229 352 0.000141 233 352 0.00028189993 234 352 0.0056385994 236 352 0.00042289984 237 352 0.000141 240 352 0.00028189993 241 352 0.0014095998 242 352 0.0031011999 252 352 0.00056389999 270 352 0.00028189993 271 352 0.000141 272 352 0.00070479978 273 352 0.000141 277 352 0.07569778 279 352 0.000141 282 352 0.015083198 283 352 0.0022553999 284 352 0.0015505999 285 352 0.0014095998 286 352 0.00028189993 289 352 0.00056389999 292 352 0.014237396 293 352 0.011136197 294 352 0.00042289984 295 352 0.021003697 296 352 0.0057794973 297 352 0.00070479978 298 352 0.0097264983 300 352 0.000141 304 352 0.00028189993 307 352 0.00070479978 312 352 0.0139555 315 352 0.0081758983 317 352 0.000141 320 352 0.0029602 321 352 0.0043698996 322 352 0.0067662969 324 352 0.0098674968 325 352 0.000141 326 352 0.0094445981 327 352 0.000141 328 352 0.011277098 331 352 0.000141 335 352 0.00028189993 338 352 0.000141 339 352 0.00098669995 340 352 0.0046517998 349 352 0.00056389999 350 352 0.00042289984 351 352 0.0094445981 352 352 0.037073597 353 352 0.0018324999 354 352 0.015224099 355 352 0.000141 356 352 0.00028189993 358 352 0.0059204996 366 352 0.0011276999 370 352 0.0018324999 371 352 0.0014095998 372 352 0.033549499 373 352 0.0023963999 380 352 0.000141 386 352 0.00028189993 387 352 0.000141 393 352 0.00028189993 402 352 0.000141 414 352 0.000141 415 352 0.0018324999 416 352 0.00028189993 417 352 0.00070479978 419 352 0.0012687 422 352 0.00028189993 430 352 0.000141 443 352 0.0035240999 444 352 0.00056389999 445 352 0.0063433982 446 352 0.00028189993 447 352 0.0067662969 450 352 0.0039469972 452 352 0.0047927983 453 352 0.0025374 454 352 0.00042289984 455 352 0.043698899 456 352 0.00084579992 457 352 0.0038059999 458 352 0.00070479978 459 352 0.0012687 460 352 0.00084579992 463 352 0.021567497 464 352 0.00056389999 465 352 0.00098669995 467 352 0.0091626979 468 352 0.0070481971 469 352 0.0057794973 470 352 0.0064843968 471 352 0.0011276999 473 352 0.000141 477 352 0.000141 478 352 0.0012687 483 352 0.0012687 490 352 0.00070479978 491 352 0.0043698996 21 353 0.0020937999 24 353 0.0033500998 60 353 0.0054438971 114 353 0.00041879993 160 353 0.023031797 165 353 0.0037687998 169 353 0.00041879993 198 353 0.00083749997 206 353 0.00083749997 214 353 0.00041879993 223 353 0.0012562999 234 353 0.0058625974 257 353 0.0012562999 270 353 0.0012562999 272 353 0.00041879993 277 353 0.015912898 278 353 0.0029312999 282 353 0.0196817 283 353 0.00041879993 284 353 0.0029312999 286 353 0.0025125998 288 353 0.0020937999 289 353 0.011306498 290 353 0.00083749997 293 353 0.0041875988 296 353 0.015075397 297 353 0.0016749999 326 353 0.00041879993 340 353 0.010887798 349 353 0.00041879993 351 353 0.00041879993 353 353 0.0087939985 354 353 0.0016749999 356 353 0.00041879993 358 353 0.0062813982 374 353 0.00041879993 375 353 0.0016749999 417 353 0.00041879993 443 353 0.0050251 444 353 0.00041879993 445 353 0.0046063997 447 353 0.0029312999 450 353 0.0046063997 452 353 0.0096314996 453 353 0.0058625974 454 353 0.00041879993 455 353 0.048576199 456 353 0.00041879993 457 353 0.0033500998 459 353 0.00083749997 460 353 0.0016749999 463 353 0.010887798 464 353 0.00041879993 465 353 0.00041879993 467 353 0.011306498 468 353 0.0020937999 469 353 0.0037687998 470 353 0.0041875988 471 353 0.0020937999 478 353 0.0012562999 483 353 0.00083749997 490 353 0.00041879993 491 353 0.0062813982 9 354 6.2399995e-05 18 354 0.00012479999 22 354 0.00018729999 60 354 0.002809 82 354 6.2399995e-05 83 354 6.2399995e-05 84 354 6.2399995e-05 108 354 6.2399995e-05 113 354 0.00012479999 114 354 0.00018729999 126 354 6.2399995e-05 135 354 6.2399995e-05 139 354 6.2399995e-05 142 354 6.2399995e-05 150 354 0.00062419986 160 354 0.0013108999 169 354 0.00037449994 171 354 6.2399995e-05 172 354 0.0010611999 184 354 6.2399995e-05 189 354 6.2399995e-05 190 354 0.00012479999 192 354 6.2399995e-05 194 354 0.00012479999 198 354 0.0035581 200 354 6.2399995e-05 203 354 6.2399995e-05 204 354 6.2399995e-05 206 354 0.00024969992 207 354 6.2399995e-05 214 354 0.00037449994 224 354 0.00018729999 233 354 0.00068659987 234 354 0.0079275966 237 354 0.00012479999 240 354 0.00018729999 241 354 0.00037449994 242 354 0.0035581 252 354 6.2399995e-05 270 354 0.0015604999 271 354 0.00012479999 272 354 0.0025592998 276 354 6.2399995e-05 277 354 0.070661664 278 354 0.00012479999 282 354 0.037702899 283 354 0.0360175 284 354 0.0017477998 285 354 0.0019975 286 354 0.0043070987 289 354 0.00018729999 290 354 6.2399995e-05 292 354 0.0054306984 293 354 0.00043699984 294 354 0.0059924982 295 354 0.0012484 296 354 0.0045567974 297 354 0.0068663992 298 354 0.0013108999 299 354 0.0053682998 303 354 6.2399995e-05 304 354 6.2399995e-05 305 354 6.2399995e-05 307 354 0.00024969992 308 354 6.2399995e-05 312 354 0.0077402964 313 354 0.00018729999 315 354 0.00068659987 317 354 6.2399995e-05 318 354 6.2399995e-05 319 354 0.00012479999 320 354 0.0018726999 322 354 6.2399995e-05 324 354 0.00056179985 326 354 0.00012479999 327 354 0.00049939984 328 354 0.00043699984 333 354 0.00031209993 335 354 0.00012479999 338 354 0.0022471999 340 354 0.011235997 341 354 0.00037449994 342 354 6.2399995e-05 343 354 6.2399995e-05 349 354 6.2399995e-05 350 354 0.00018729999 351 354 0.019350797 352 354 0.00031209993 353 354 0.00024969992 354 354 0.029587999 356 354 0.00018729999 357 354 0.00024969992 358 354 0.026841398 366 354 0.0007491 371 354 0.00037449994 372 354 0.012983799 373 354 0.00068659987 375 354 0.00012479999 376 354 0.00012479999 386 354 6.2399995e-05 387 354 6.2399995e-05 390 354 0.00018729999 392 354 6.2399995e-05 393 354 0.00018729999 397 354 0.00031209993 398 354 6.2399995e-05 401 354 6.2399995e-05 402 354 0.00099879992 404 354 0.0068039969 405 354 0.0016229998 413 354 6.2399995e-05 414 354 0.00031209993 415 354 6.2399995e-05 417 354 0.00043699984 419 354 6.2399995e-05 421 354 6.2399995e-05 422 354 6.2399995e-05 423 354 6.2399995e-05 430 354 6.2399995e-05 431 354 6.2399995e-05 433 354 6.2399995e-05 434 354 6.2399995e-05 443 354 0.0022471999 444 354 0.00049939984 445 354 0.0036829 446 354 0.00018729999 447 354 0.0025592998 450 354 0.0041822977 452 354 0.0069287978 453 354 0.0029962999 454 354 0.00056179985 455 354 0.023969997 456 354 0.00087389979 457 354 0.0036829 458 354 0.00099879992 459 354 0.00087389979 460 354 0.001186 463 354 0.007116098 464 354 0.00037449994 465 354 0.0013732999 467 354 0.010798998 468 354 0.0041198991 469 354 0.006242197 470 354 0.0076154992 471 354 0.0028714 472 354 0.001186 473 354 0.00018729999 477 354 6.2399995e-05 478 354 0.0013108999 483 354 0.0015604999 489 354 6.2399995e-05 490 354 0.00068659987 491 354 0.0050561987 60 355 0.0024044998 108 355 0.00026719994 114 355 0.00053429999 126 355 0.00026719994 160 355 0.0024044998 187 355 0.00080149993 188 355 0.00080149993 189 355 0.00026719994 192 355 0.00053429999 194 355 0.00026719994 197 355 0.00053429999 198 355 0.00026719994 206 355 0.00053429999 214 355 0.00080149993 223 355 0.00080149993 233 355 0.00026719994 234 355 0.0050760992 237 355 0.00026719994 240 355 0.0053432994 241 355 0.0029387998 257 355 0.003206 272 355 0.0029387998 275 355 0.0042745993 277 355 0.10633177 282 355 0.009350799 284 355 0.0018701998 289 355 0.00026719994 292 355 0.009350799 293 355 0.0048089996 294 355 0.0085492991 295 355 0.00080149993 307 355 0.015495598 312 355 0.0085492991 324 355 0.012022398 328 355 0.00026719994 339 355 0.0010686999 340 355 0.003206 349 355 0.00053429999 350 355 0.0050760992 351 355 0.00026719994 352 355 0.0024044998 354 355 0.015762798 355 355 0.063585341 356 355 0.0010686999 358 355 0.0048089996 366 355 0.00026719994 370 355 0.0082820989 371 355 0.014159799 372 355 0.0037403 373 355 0.0085492991 374 355 0.00026719994 387 355 0.00026719994 393 355 0.018434398 405 355 0.00026719994 414 355 0.0050760992 415 355 0.0040074997 417 355 0.00053429999 443 355 0.0029387998 444 355 0.00026719994 445 355 0.0045417994 447 355 0.024846397 450 355 0.0042745993 452 355 0.0050760992 453 355 0.0026717 455 355 0.049425598 456 355 0.00053429999 457 355 0.0037403 458 355 0.00080149993 459 355 0.0010686999 460 355 0.00080149993 463 355 0.010419399 464 355 0.00053429999 465 355 0.0010686999 467 355 0.010152299 468 355 0.0013357999 469 355 0.0082820989 470 355 0.009350799 471 355 0.00080149993 473 355 0.00026719994 478 355 0.0016029999 483 355 0.0026717 490 355 0.0010686999 491 355 0.0029387998 9 356 8.4999992e-05 13 356 0.0001699 19 356 8.4999992e-05 21 356 0.0001699 22 356 8.4999992e-05 24 356 0.00042479998 60 356 0.0028039999 82 356 0.00025489996 83 356 8.4999992e-05 84 356 8.4999992e-05 108 356 8.4999992e-05 113 356 0.0001699 114 356 0.0001699 119 356 8.4999992e-05 120 356 0.00050979992 126 356 8.4999992e-05 135 356 0.0056928992 142 356 0.019203 150 356 8.4999992e-05 160 356 0.0011896 172 356 0.00059479987 187 356 0.0050131977 189 356 0.0001699 190 356 8.4999992e-05 191 356 0.0030588999 193 356 0.0001699 194 356 0.0001699 198 356 0.0046732984 200 356 8.4999992e-05 203 356 8.4999992e-05 204 356 8.4999992e-05 206 356 0.00025489996 214 356 0.0029738999 218 356 0.00025489996 221 356 8.4999992e-05 223 356 0.00025489996 224 356 0.0031438998 231 356 8.4999992e-05 233 356 8.4999992e-05 234 356 0.006542597 236 356 0.0001699 237 356 0.00033989991 240 356 0.0023790998 241 356 0.010366198 242 356 0.00076469989 252 356 0.0001699 270 356 0.00025489996 272 356 0.0041634999 277 356 0.066700697 278 356 0.0001699 282 356 0.024641 283 356 0.0045033991 284 356 0.0017843 285 356 8.4999992e-05 286 356 0.00050979992 289 356 0.00025489996 290 356 0.00033989991 292 356 0.007817097 293 356 0.0069674999 294 356 0.0024640998 295 356 0.0075621977 296 356 0.0033987998 297 356 0.0057778992 298 356 0.00042479998 301 356 0.0001699 304 356 0.00025489996 305 356 8.4999992e-05 307 356 0.0076471977 312 356 0.0073922984 315 356 0.010876 317 356 8.4999992e-05 320 356 0.0011045998 321 356 0.00093469978 322 356 0.00025489996 324 356 0.0073922984 326 356 0.00042479998 328 356 0.00076469989 329 356 0.00042479998 338 356 0.0011896 339 356 0.00050979992 340 356 0.006457597 341 356 0.0001699 344 356 0.00025489996 347 356 0.00025489996 349 356 0.00050979992 350 356 0.012150597 351 356 0.005438 352 356 0.0001699 353 356 0.0001699 354 356 0.022431798 355 356 0.00050979992 356 356 0.017333698 357 356 8.4999992e-05 358 356 0.017078798 364 356 8.4999992e-05 365 356 8.4999992e-05 366 356 0.00033989991 367 356 0.00025489996 368 356 8.4999992e-05 370 356 0.0029738999 371 356 0.006542597 372 356 0.015294399 373 356 0.0070523992 375 356 8.4999992e-05 386 356 8.4999992e-05 387 356 8.4999992e-05 393 356 0.0042483993 397 356 8.4999992e-05 402 356 0.00033989991 405 356 8.4999992e-05 414 356 0.0035686998 415 356 0.00025489996 417 356 0.00042479998 419 356 8.4999992e-05 421 356 8.4999992e-05 422 356 0.00025489996 423 356 8.4999992e-05 430 356 8.4999992e-05 442 356 8.4999992e-05 443 356 0.0028889 444 356 0.0013595 445 356 0.010026298 446 356 0.0001699 447 356 0.0039934963 450 356 0.0084118992 452 356 0.005438 453 356 0.0014444999 454 356 0.00025489996 455 356 0.057438999 456 356 0.00076469989 457 356 0.0036537 458 356 0.00067979982 459 356 0.0013595 460 356 0.0011045998 463 356 0.021922 464 356 0.00042479998 465 356 0.0010195998 467 356 0.015209399 468 356 0.005098097 469 356 0.0073072985 470 356 0.0076471977 471 356 0.0044183992 473 356 0.0001699 477 356 8.4999992e-05 478 356 0.0011896 483 356 0.0021241999 490 356 0.00059479987 491 356 0.0032287999 19 357 0.0001127 22 357 0.0002254 60 357 0.0021412999 108 357 0.0001127 114 357 0.0002254 126 357 0.0001127 135 357 0.0003380999 143 357 0.0001127 150 357 0.0003380999 160 357 0.0001127 189 357 0.0001127 190 357 0.0001127 194 357 0.0002254 198 357 0.0052969977 200 357 0.0001127 203 357 0.0001127 206 357 0.0003380999 214 357 0.00056349998 223 357 0.0001127 224 357 0.00045079994 225 357 0.0002254 233 357 0.0001127 234 357 0.008452598 237 357 0.0001127 240 357 0.0013523998 241 357 0.0025920998 242 357 0.0019158998 262 357 0.0001127 270 357 0.0048461966 271 357 0.0001127 272 357 0.0020285998 274 357 0.0002254 277 357 0.062549293 282 357 0.037529599 283 357 0.0031555998 284 357 0.0015777999 286 357 0.00067619979 288 357 0.0003380999 289 357 0.0029302 290 357 0.00067619979 292 357 0.0041699968 293 357 0.017355997 294 357 0.0067620985 295 357 0.0061985999 296 357 0.010030396 297 357 0.0032682999 298 357 0.017130598 299 357 0.0001127 312 357 0.010931998 313 357 0.0001127 315 357 0.0032682999 317 357 0.001127 318 357 0.0010142999 320 357 0.0123972 321 357 0.00045079994 322 357 0.0027047999 324 357 0.00090159988 326 357 0.001127 328 357 0.00045079994 338 357 0.0020285998 340 357 0.015214697 341 357 0.0003380999 343 357 0.0003380999 351 357 0.0013523998 353 357 0.0003380999 354 357 0.001127 355 357 0.0001127 356 357 0.0001127 357 357 0.0024793998 358 357 0.041699499 370 357 0.00056349998 372 357 0.0002254 374 357 0.0001127 375 357 0.0002254 376 357 0.0003380999 386 357 0.0001127 387 357 0.0001127 392 357 0.00056349998 396 357 0.0002254 397 357 0.0046207979 398 357 0.00056349998 402 357 0.00090159988 417 357 0.00056349998 421 357 0.0001127 422 357 0.0001127 442 357 0.0014650999 443 357 0.0023667 444 357 0.00078889984 445 357 0.0065366998 446 357 0.0002254 447 357 0.0048461966 450 357 0.0039445981 452 357 0.0089033991 453 357 0.0025920998 454 357 0.00067619979 455 357 0.020060897 456 357 0.00056349998 457 357 0.0032682999 458 357 0.00078889984 459 357 0.00045079994 460 357 0.001127 463 357 0.020962499 464 357 0.00078889984 465 357 0.001127 467 357 0.0103685 468 357 0.0034936999 469 357 0.0039445981 470 357 0.0043953992 471 357 0.0029302 473 357 0.0001127 477 357 0.0001127 478 357 0.0012396998 483 357 0.0012396998 490 357 0.0003380999 491 357 0.0029302 9 358 2.7899994e-05 18 358 0.0001393 22 358 0.00066889985 60 358 0.0020344998 79 358 2.7899994e-05 82 358 2.7899994e-05 83 358 2.7899994e-05 84 358 2.7899994e-05 108 358 2.7899994e-05 113 358 5.5699988e-05 114 358 8.3599996e-05 126 358 5.5699988e-05 127 358 2.7899994e-05 135 358 0.001923 142 358 2.7899994e-05 143 358 0.00075249979 150 358 0.0017278998 151 358 2.7899994e-05 160 358 0.00064099999 169 358 0.00019509999 172 358 0.00019509999 187 358 2.7899994e-05 189 358 8.3599996e-05 190 358 0.0001393 192 358 5.5699988e-05 194 358 0.0001393 196 358 2.7899994e-05 197 358 2.7899994e-05 198 358 0.0080264993 200 358 8.3599996e-05 201 358 5.5699988e-05 203 358 8.3599996e-05 204 358 0.0001393 206 358 0.00019509999 207 358 8.3599996e-05 209 358 2.7899994e-05 214 358 0.0026755 218 358 2.7899994e-05 219 358 2.7899994e-05 223 358 0.00089179981 224 358 2.7899994e-05 229 358 0.00030659977 233 358 0.00072459993 234 358 0.0123742 237 358 0.00030659977 240 358 0.0016442998 241 358 0.0037066999 242 358 5.5699988e-05 248 358 2.7899994e-05 250 358 2.7899994e-05 252 358 8.3599996e-05 270 358 0.003929697 271 358 2.7899994e-05 272 358 0.000223 274 358 0.0020623999 277 358 0.061285898 278 358 5.5699988e-05 282 358 0.024163198 283 358 0.0012262999 284 358 0.0022852998 285 358 5.5699988e-05 286 358 0.00078039989 288 358 0.00016719999 289 358 0.00025079981 290 358 0.0024247 292 358 0.010562699 293 358 0.0085002966 294 358 0.0017000998 295 358 0.0009476 296 358 0.0073576979 297 358 0.0024247 298 358 0.0043476969 299 358 2.7899994e-05 307 358 0.00016719999 312 358 0.008639697 313 358 8.3599996e-05 315 358 0.0054067969 317 358 0.0022016999 318 358 0.00041799992 320 358 0.0042919964 321 358 0.0009476 322 358 0.0054903999 324 358 0.0019508998 326 358 0.0040410981 328 358 0.0022016999 333 358 2.7899994e-05 335 358 2.7899994e-05 338 358 0.0034000999 339 358 0.00016719999 340 358 0.014353 341 358 0.00055739982 343 358 0.003205 345 358 2.7899994e-05 347 358 2.7899994e-05 349 358 2.7899994e-05 350 358 0.00025079981 351 358 0.0048771985 352 358 2.7899994e-05 353 358 0.00097539998 354 358 0.0049329996 355 358 0.0010868998 356 358 0.00025079981 357 358 0.00030659977 358 358 0.0624565 359 358 0.00025079981 366 358 0.0001393 370 358 0.0043755993 371 358 2.7899994e-05 372 358 0.00066889985 373 358 0.00030659977 374 358 0.00083609996 375 358 5.5699988e-05 376 358 0.0024803998 384 358 2.7899994e-05 386 358 5.5699988e-05 387 358 5.5699988e-05 390 358 8.3599996e-05 392 358 0.0001393 393 358 0.00011149999 394 358 2.7899994e-05 397 358 0.00016719999 398 358 0.0051001981 401 358 5.5699988e-05 402 358 0.0027590999 404 358 5.5699988e-05 405 358 0.000223 417 358 0.00064099999 419 358 2.7899994e-05 421 358 8.3599996e-05 422 358 0.00011149999 423 358 2.7899994e-05 425 358 2.7899994e-05 430 358 2.7899994e-05 431 358 5.5699988e-05 432 358 2.7899994e-05 433 358 5.5699988e-05 434 358 5.5699988e-05 442 358 0.0006130999 443 358 0.0028426999 444 358 0.0027033999 445 358 0.0071346983 446 358 0.0006130999 447 358 0.0074133985 448 358 0.00011149999 450 358 0.0051280968 452 358 0.008054398 453 358 0.0025082999 454 358 0.0001393 455 358 0.021376196 456 358 0.0012540999 457 358 0.0051558986 458 358 0.00047379988 459 358 0.00030659977 460 358 0.0011983998 463 358 0.018505599 464 358 0.0019508998 465 358 0.0012262999 467 358 0.012151297 468 358 0.0026755 469 358 0.0046820976 470 358 0.0072739981 471 358 0.0020344998 473 358 0.00011149999 477 358 0.00011149999 478 358 0.0015886 483 358 0.0011704999 489 358 8.3599996e-05 490 358 0.00039019994 491 358 0.0012540999 9 359 3.2899989e-05 16 359 1.6399994e-05 18 359 6.5799992e-05 22 359 1.6399994e-05 24 359 1.6399994e-05 60 359 0.0012828 76 359 1.6399994e-05 79 359 1.6399994e-05 82 359 8.2199986e-05 83 359 6.5799992e-05 84 359 6.5799992e-05 104 359 0.0001316 108 359 9.8699995e-05 113 359 0.0001316 114 359 0.00032889983 126 359 0.00014799999 127 359 3.2899989e-05 130 359 8.2199986e-05 142 359 4.9299997e-05 143 359 1.6399994e-05 150 359 0.0002795998 151 359 1.6399994e-05 160 359 0.0002138 169 359 1.6399994e-05 175 359 8.2199986e-05 187 359 0.0024174999 188 359 0.00026309979 189 359 9.8699995e-05 190 359 8.2199986e-05 192 359 0.00014799999 193 359 6.5799992e-05 194 359 0.00037829997 196 359 1.6399994e-05 197 359 3.2899989e-05 198 359 0.0017104 200 359 0.0001316 201 359 6.5799992e-05 203 359 0.00075649982 204 359 9.8699995e-05 206 359 0.0009209998 207 359 6.5799992e-05 208 359 3.2899989e-05 209 359 1.6399994e-05 214 359 0.00078939996 219 359 0.00026309979 221 359 0.0001316 223 359 0.0002138 224 359 0.00069069979 233 359 0.0002138 234 359 0.0015787999 237 359 0.00011509999 240 359 0.00052629993 241 359 0.010936398 248 359 4.9299997e-05 250 359 3.2899989e-05 251 359 1.6399994e-05 252 359 0.0013485998 262 359 0.0001316 263 359 1.6399994e-05 276 359 0.00059199985 277 359 0.0052296966 282 359 0.00064139999 283 359 3.2899989e-05 284 359 8.2199986e-05 285 359 0.00011509999 289 359 9.8699995e-05 290 359 8.2199986e-05 292 359 0.00050979992 293 359 0.0023846 294 359 0.0014142999 295 359 0.0109693 296 359 0.0025326 297 359 6.5799992e-05 298 359 0.0013649999 299 359 0.00054269983 305 359 1.6399994e-05 308 359 0.0045883991 312 359 0.0045883991 315 359 0.010837696 317 359 1.6399994e-05 319 359 6.5799992e-05 320 359 0.0058875978 321 359 0.0013813998 322 359 0.0020227998 325 359 0.00011509999 326 359 0.0016445999 338 359 0.00014799999 340 359 0.0028450999 341 359 1.6399994e-05 347 359 3.2899989e-05 351 359 0.00083869998 354 359 0.0011840998 356 359 0.0001316 358 359 0.0023516999 359 359 0.17314076 360 359 3.2899989e-05 361 359 0.00083869998 363 359 1.6399994e-05 369 359 0.0001809 370 359 9.8699995e-05 371 359 0.0025819999 372 359 0.0053119995 373 359 0.011166699 375 359 8.2199986e-05 376 359 0.0036181 380 359 3.2899989e-05 384 359 1.6399994e-05 386 359 0.0043580979 387 359 0.00014799999 389 359 0.0013649999 390 359 0.00077299983 391 359 0.0004276 392 359 0.049254999 393 359 0.061112396 394 359 1.6399994e-05 396 359 3.2899989e-05 397 359 1.6399994e-05 402 359 6.5799992e-05 404 359 4.9299997e-05 405 359 9.8699995e-05 417 359 0.00019729999 419 359 0.0010032 421 359 1.6399994e-05 422 359 0.00011509999 423 359 4.9299997e-05 425 359 3.2899989e-05 430 359 9.8699995e-05 431 359 3.2899989e-05 432 359 1.6399994e-05 433 359 3.2899989e-05 434 359 4.9299997e-05 441 359 0.00047689979 442 359 0.00062489999 443 359 0.00090449979 444 359 0.0027957999 445 359 0.0027792999 446 359 0.0001316 447 359 0.010656796 448 359 1.6399994e-05 449 359 3.2899989e-05 450 359 0.0061013997 452 359 0.0042100996 453 359 0.00074009993 454 359 0.0002795998 455 359 0.032578997 456 359 0.0012828 457 359 0.0062165 458 359 0.0002795998 459 359 0.0022859999 460 359 0.0011347998 463 359 0.042676698 464 359 0.0028615999 465 359 0.0019898999 467 359 0.008913599 468 359 0.0056737997 469 359 0.0044567995 470 359 0.016478598 471 359 0.0026641998 472 359 0.00014799999 473 359 0.00034539984 477 359 0.00023019999 478 359 0.0015129999 483 359 0.0012663 489 359 4.9299997e-05 490 359 0.0016116998 491 359 0.0001809 9 360 0.00013569999 22 360 0.00054289983 60 360 0.0039358996 82 360 0.00013569999 83 360 0.00013569999 84 360 0.00013569999 108 360 0.00013569999 113 360 0.00027139997 114 360 0.00040719984 126 360 0.00013569999 175 360 0.00027139997 187 360 0.0008142998 189 360 0.00013569999 190 360 0.00013569999 194 360 0.0008142998 198 360 0.0013571999 200 360 0.00013569999 206 360 0.0023073 214 360 0.0010857999 221 360 0.00013569999 223 360 0.00013569999 224 360 0.00013569999 234 360 0.0016286999 237 360 0.00013569999 240 360 0.00067859981 241 360 0.0089576989 252 360 0.00054289983 262 360 0.00013569999 277 360 0.012486398 279 360 0.00027139997 282 360 0.0010857999 283 360 0.0036644998 284 360 0.0009500999 290 360 0.00027139997 292 360 0.0062431991 293 360 0.0008142998 294 360 0.0016286999 295 360 0.0021715998 296 360 0.0021715998 298 360 0.0009500999 299 360 0.00067859981 308 360 0.0044787973 312 360 0.0047502965 315 360 0.010450598 320 360 0.0059717968 321 360 0.00027139997 322 360 0.00013569999 326 360 0.0017643999 340 360 0.006107498 341 360 0.00013569999 351 360 0.0012214999 354 360 0.0013571999 358 360 0.0096362978 359 360 0.046552699 360 360 0.010450598 361 360 0.0008142998 362 360 0.00040719984 363 360 0.00013569999 364 360 0.00013569999 366 360 0.00013569999 369 360 0.0019000999 370 360 0.00013569999 371 360 0.0028501998 372 360 0.0065146983 373 360 0.011807799 376 360 0.0036644998 386 360 0.0057002977 387 360 0.00027139997 390 360 0.00013569999 391 360 0.0044787973 392 360 0.086862087 393 360 0.061753497 417 360 0.00040719984 419 360 0.00013569999 423 360 0.00013569999 424 360 0.00013569999 430 360 0.00013569999 431 360 0.00013569999 434 360 0.0009500999 441 360 0.0044787973 443 360 0.00067859981 444 360 0.0016286999 445 360 0.0021715998 447 360 0.010179199 450 360 0.006107498 452 360 0.0033930999 453 360 0.00054289983 454 360 0.00040719984 455 360 0.026330099 456 360 0.00067859981 457 360 0.0055645965 458 360 0.0009500999 459 360 0.0020357999 460 360 0.0012214999 463 360 0.031351797 464 360 0.0010857999 465 360 0.030944597 467 360 0.0299946 468 360 0.006921798 469 360 0.012893599 470 360 0.014657997 471 360 0.0013571999 472 360 0.0027143999 473 360 0.00027139997 477 360 0.00013569999 478 360 0.0016286999 483 360 0.0014928998 490 360 0.0014928998 491 360 0.0059717968 9 361 0.0002058 60 361 0.0022642999 82 361 0.0002058 83 361 0.0002058 84 361 0.0002058 108 361 0.0002058 113 361 0.00041169999 114 361 0.00082339998 126 361 0.00041169999 131 361 0.00041169999 187 361 0.00061749993 189 361 0.0002058 190 361 0.0002058 194 361 0.00041169999 198 361 0.0146151 200 361 0.0002058 203 361 0.0026759999 206 361 0.0028817998 224 361 0.0049402975 233 361 0.011939097 234 361 0.0016468 237 361 0.0002058 240 361 0.0022642999 241 361 0.074310362 252 361 0.0002058 272 361 0.0018525999 277 361 0.022025499 279 361 0.00082339998 282 361 0.0049402975 284 361 0.0010291999 293 361 0.0032934998 295 361 0.00082339998 296 361 0.011527397 298 361 0.0069987997 312 361 0.0010291999 315 361 0.012350798 320 361 0.011527397 321 361 0.013997499 322 361 0.0002058 326 361 0.012968298 340 361 0.0002058 351 361 0.0014408999 356 361 0.0002058 359 361 0.00082339998 361 361 0.0181145 372 361 0.0057636984 386 361 0.0034993999 387 361 0.0002058 392 361 0.0024702 393 361 0.0002058 417 361 0.00041169999 419 361 0.0002058 422 361 0.00041169999 423 361 0.0002058 425 361 0.0002058 430 361 0.0002058 431 361 0.0002058 434 361 0.0014408999 441 361 0.0032934998 443 361 0.0010291999 444 361 0.0012351 445 361 0.012968298 447 361 0.016673498 450 361 0.0053519979 452 361 0.004528597 453 361 0.0024702 454 361 0.0002058 455 361 0.023672298 456 361 0.00082339998 457 361 0.0063811988 458 361 0.0024702 459 361 0.0020585 460 361 0.0014408999 463 361 0.042198397 464 361 0.0010291999 465 361 0.0016468 467 361 0.0296418 468 361 0.0148209 469 361 0.0181145 470 361 0.020172898 471 361 0.00082339998 473 361 0.00061749993 477 361 0.00041169999 478 361 0.0016468 483 361 0.0018525999 490 361 0.0018525999 491 361 0.0018525999 60 362 0.0015439999 108 362 0.00051469984 114 362 0.00051469984 126 362 0.00051469984 187 362 0.00051469984 198 362 0.0087493993 206 362 0.0010292998 233 362 0.0056612976 234 362 0.0020587 240 362 0.021616098 241 362 0.071538866 262 362 0.00051469984 272 362 0.0041172989 277 362 0.044261497 279 362 0.00051469984 282 362 0.0036026998 283 362 0.00051469984 284 362 0.0010292998 292 362 0.014410697 293 362 0.0041172989 295 362 0.0077199973 296 362 0.0077199973 298 362 0.0046319999 312 362 0.00051469984 315 362 0.021101397 317 362 0.00051469984 320 362 0.009778697 321 362 0.020586699 326 362 0.00051469984 333 362 0.00051469984 340 362 0.010807998 351 362 0.0010292998 353 362 0.0036026998 358 362 0.0092639998 362 362 0.033968098 370 362 0.00051469984 371 362 0.00051469984 372 362 0.0082346983 376 362 0.00051469984 386 362 0.0066906996 387 362 0.00051469984 392 362 0.0061759986 393 362 0.0015439999 414 362 0.00051469984 417 362 0.00051469984 430 362 0.00051469984 443 362 0.0010292998 444 362 0.0010292998 445 362 0.0046319999 447 362 0.003088 450 362 0.0066906996 452 362 0.0051466972 453 362 0.0020587 455 362 0.029850699 456 362 0.00051469984 457 362 0.0056612976 458 362 0.0015439999 459 362 0.0020587 460 362 0.0010292998 463 362 0.0416881 464 362 0.0025732999 465 362 0.0020587 467 362 0.032938797 468 362 0.0056612976 469 362 0.022130698 470 362 0.025218699 471 362 0.0010292998 473 362 0.00051469984 478 362 0.0020587 483 362 0.0025732999 490 362 0.0025732999 491 362 0.0015439999 9 363 0.0001637 22 363 0.0001637 60 363 0.0034387 82 363 0.0001637 83 363 0.0001637 84 363 0.0001637 104 363 0.0001637 108 363 0.0001637 113 363 0.00032749982 114 363 0.00049119978 126 363 0.00032749982 127 363 0.0001637 130 363 0.0001637 131 363 0.00098249991 151 363 0.0001637 160 363 0.00081869983 171 363 0.00081869983 187 363 0.022924498 188 363 0.00081869983 189 363 0.0001637 190 363 0.0001637 192 363 0.00098249991 194 363 0.00049119978 198 363 0.015392199 200 363 0.0001637 203 363 0.00032749982 206 363 0.0022924999 211 363 0.0001637 214 363 0.0037661998 219 363 0.0001637 221 363 0.0088422969 223 363 0.00098249991 224 363 0.0034387 233 363 0.00081869983 234 363 0.0024561998 237 363 0.0001637 240 363 0.0039298981 241 363 0.011789698 242 363 0.0001637 248 363 0.0001637 250 363 0.00032749982 252 363 0.00049119978 270 363 0.00032749982 276 363 0.00049119978 277 363 0.0442116 279 363 0.0001637 282 363 0.0024561998 283 363 0.0001637 284 363 0.00098249991 285 363 0.00049119978 286 363 0.0001637 288 363 0.0001637 290 363 0.0001637 292 363 0.0081872977 293 363 0.0027836999 294 363 0.0057310984 295 363 0.0011461999 296 363 0.0039298981 298 363 0.0026198998 307 363 0.0001637 308 363 0.006713599 312 363 0.013918497 315 363 0.0099884979 317 363 0.0001637 320 363 0.0021286998 321 363 0.0055673979 322 363 0.0026198998 326 363 0.0021286998 339 363 0.0001637 340 363 0.0070410967 348 363 0.00098249991 350 363 0.0001637 351 363 0.0050760992 354 363 0.0021286998 356 363 0.0001637 358 363 0.0078597963 359 363 0.0096609965 360 363 0.0001637 361 363 0.00081869983 363 363 0.0081872977 370 363 0.0016374998 371 363 0.0029473999 372 363 0.016865898 373 363 0.0016374998 376 363 0.00049119978 384 363 0.0001637 386 363 0.0055673979 387 363 0.00032749982 390 363 0.00049119978 392 363 0.0099884979 393 363 0.0024561998 398 363 0.0001637 413 363 0.0001637 417 363 0.00032749982 419 363 0.016538396 420 363 0.00049119978 422 363 0.0026198998 423 363 0.00032749982 424 363 0.0001637 425 363 0.0001637 426 363 0.0001637 430 363 0.0001637 431 363 0.0001637 434 363 0.0001637 441 363 0.0054035969 442 363 0.00049119978 443 363 0.0021286998 444 363 0.0024561998 445 363 0.0058948994 446 363 0.0001637 447 363 0.0027836999 450 363 0.0050760992 452 363 0.0049123988 453 363 0.0018012 454 363 0.00049119978 455 363 0.034386799 456 363 0.0011461999 457 363 0.0065498985 458 363 0.00081869983 459 363 0.0031111999 460 363 0.00098249991 463 363 0.040936597 464 363 0.00131 465 363 0.0027836999 467 363 0.027836896 468 363 0.0065498985 469 363 0.020468298 470 363 0.022760797 471 363 0.00081869983 473 363 0.00065499987 478 363 0.0019649998 479 363 0.0001637 483 363 0.0019649998 490 363 0.0019649998 491 363 0.0027836999 60 364 0.0018743998 104 364 0.00031239982 107 364 0.00093719992 110 364 0.0012496 114 364 0.00031239982 116 364 0.00093719992 126 364 0.00031239982 174 364 0.00031239982 175 364 0.00062479987 198 364 0.010309298 204 364 0.00031239982 206 364 0.00062479987 233 364 0.0068728998 234 364 0.0053107999 236 364 0.00031239982 240 364 0.0024991999 241 364 0.011871297 242 364 0.011246499 277 364 0.061543297 282 364 0.00093719992 284 364 0.0018743998 292 364 0.0012496 293 364 0.005623199 294 364 0.0034363999 295 364 0.032802198 296 364 0.0012496 297 364 0.0034363999 298 364 0.00093719992 312 364 0.037175898 315 364 0.023742598 319 364 0.0062479973 320 364 0.0062479973 340 364 0.0059355982 358 364 0.0012496 364 364 0.028740998 366 364 0.036238696 370 364 0.0309278 371 364 0.0134333 372 364 0.020930998 373 364 0.0084348992 375 364 0.0021867999 376 364 0.021868199 386 364 0.0090596974 387 364 0.00031239982 391 364 0.0012496 392 364 0.00031239982 393 364 0.0018743998 415 364 0.0018743998 417 364 0.00062479987 441 364 0.022492997 443 364 0.0012496 444 364 0.0031239998 445 364 0.0065603964 447 364 0.013745699 450 364 0.0037487999 452 364 0.0037487999 453 364 0.0028116 454 364 0.00093719992 455 364 0.036551099 456 364 0.00062479987 457 364 0.0012496 458 364 0.00062479987 459 364 0.010309298 460 364 0.00062479987 463 364 0.016244899 464 364 0.00062479987 465 364 0.0012496 467 364 0.0090596974 468 364 0.0121837 469 364 0.0062479973 470 364 0.0068728998 471 364 0.00093719992 473 364 0.00031239982 478 364 0.0012496 483 364 0.0018743998 490 364 0.00093719992 491 364 0.0021867999 60 365 0.0021243 114 365 0.00053109997 172 365 0.0010620998 198 365 0.012214597 206 365 0.00053109997 233 365 0.0058416985 234 365 0.0047795996 236 365 0.00053109997 240 365 0.0026552998 241 365 0.012214597 242 365 0.011152398 270 365 0.00053109997 277 365 0.082846463 279 365 0.00053109997 282 365 0.015400998 284 365 0.0015931998 292 365 0.0047795996 293 365 0.0031863998 295 365 0.0074348971 296 365 0.0026552998 297 365 0.0026552998 298 365 0.0095591992 312 365 0.0132767 315 365 0.0074348971 319 365 0.00053109997 320 365 0.0058416985 321 365 0.00053109997 322 365 0.0026552998 324 365 0.0058416985 340 365 0.010090299 341 365 0.00053109997 351 365 0.0021243 352 365 0.00053109997 354 365 0.0053106993 358 365 0.006903898 364 365 0.0265534 365 365 0.019649498 366 365 0.0053106993 370 365 0.00053109997 372 365 0.050982498 373 365 0.0015931998 376 365 0.00053109997 377 365 0.0010620998 379 365 0.00053109997 385 365 0.00053109997 386 365 0.00053109997 398 365 0.0015931998 415 365 0.0175252 417 365 0.00053109997 419 365 0.016994197 441 365 0.0037174998 443 365 0.0010620998 444 365 0.0010620998 445 365 0.029208697 447 365 0.0042484999 450 365 0.0037174998 452 365 0.0047795996 453 365 0.0026552998 455 365 0.034519397 456 365 0.00053109997 457 365 0.0015931998 458 365 0.00053109997 459 365 0.027084399 460 365 0.00053109997 463 365 0.014338799 464 365 0.00053109997 465 365 0.00053109997 467 365 0.0090280995 468 365 0.0090280995 469 365 0.0053106993 470 365 0.0053106993 478 365 0.00053109997 483 365 0.0015931998 490 365 0.00053109997 491 365 0.0037174998 9 366 1.5399986e-05 16 366 1.5399986e-05 18 366 7.7199991e-05 22 366 0.0002931999 25 366 1.5399986e-05 60 366 0.0012653 79 366 1.5399986e-05 82 366 1.5399986e-05 83 366 1.5399986e-05 84 366 1.5399986e-05 108 366 3.0899988e-05 113 366 4.6299989e-05 114 366 9.2599992e-05 126 366 4.6299989e-05 127 366 1.5399986e-05 130 366 1.5399986e-05 131 366 6.169999e-05 135 366 4.6299989e-05 139 366 1.5399986e-05 150 366 0.0004474998 151 366 1.5399986e-05 160 366 0.0023145999 169 366 0.00021599999 171 366 1.5399986e-05 172 366 0.0017127998 187 366 0.00066349981 189 366 4.6299989e-05 190 366 7.7199991e-05 191 366 0.00050919992 192 366 3.0899988e-05 194 366 7.7199991e-05 196 366 1.5399986e-05 197 366 1.5399986e-05 198 366 0.006881997 200 366 4.6299989e-05 201 366 3.0899988e-05 203 366 4.6299989e-05 204 366 7.7199991e-05 206 366 0.00010799999 207 366 4.6299989e-05 209 366 1.5399986e-05 214 366 0.0035026998 218 366 1.5399986e-05 219 366 0.00021599999 223 366 0.00041659991 224 366 7.7199991e-05 229 366 1.5399986e-05 233 366 0.0028237998 234 366 0.0038884999 236 366 0.00066349981 237 366 0.0001389 240 366 0.0038729999 241 366 0.0081009977 242 366 0.0035489998 248 366 1.5399986e-05 250 366 1.5399986e-05 252 366 0.00098749995 270 366 0.0018670999 271 366 6.169999e-05 272 366 0.00026229979 274 366 0.0023453999 277 366 0.052201197 279 366 4.6299989e-05 282 366 0.015754499 283 366 0.0023916999 284 366 0.0011264 285 366 0.00067889993 286 366 0.00063259993 287 366 3.0899988e-05 288 366 6.169999e-05 289 366 7.7199991e-05 290 366 0.0002468999 292 366 0.0293178 293 366 0.016078498 294 366 0.0025614998 295 366 0.0031168999 296 366 0.0048605986 297 366 0.0025922998 298 366 0.0025459998 299 366 1.5399986e-05 304 366 0.0033020999 307 366 0.0001852 312 366 0.0068510994 313 366 0.00010799999 315 366 0.014782399 317 366 1.5399986e-05 318 366 1.5399986e-05 319 366 0.0036878998 320 366 0.00055549992 321 366 0.0011880998 322 366 0.0025151998 324 366 0.0169889 326 366 0.0013269999 327 366 1.5399986e-05 328 366 0.0037958999 329 366 3.0899988e-05 331 366 6.169999e-05 332 366 1.5399986e-05 338 366 0.00032399991 339 366 0.00037029991 340 366 0.0022836998 341 366 4.6299989e-05 344 366 4.6299989e-05 349 366 6.169999e-05 350 366 0.00080239982 351 366 0.0042124987 352 366 0.0085329972 353 366 0.00046289992 354 366 0.0018670999 355 366 0.0001852 356 366 7.7199991e-05 357 366 0.00010799999 358 366 0.0035952998 364 366 3.0899988e-05 366 366 0.069853544 368 366 0.0004474998 370 366 0.0001389 371 366 0.0041353963 372 366 0.071689785 373 366 0.033159997 374 366 1.5399986e-05 376 366 6.169999e-05 377 366 3.0899988e-05 380 366 3.0899988e-05 384 366 3.0899988e-05 385 366 0.00012339999 386 366 0.0033175 387 366 3.0899988e-05 390 366 6.169999e-05 392 366 4.6299989e-05 393 366 0.00012339999 397 366 7.7199991e-05 398 366 0.0004782998 401 366 1.5399986e-05 402 366 0.00057089981 404 366 1.5399986e-05 405 366 4.6299989e-05 414 366 1.5399986e-05 415 366 0.0066041984 417 366 0.00032399991 419 366 0.0045982972 421 366 4.6299989e-05 422 366 6.169999e-05 423 366 1.5399986e-05 425 366 1.5399986e-05 430 366 1.5399986e-05 431 366 3.0899988e-05 432 366 1.5399986e-05 433 366 3.0899988e-05 434 366 3.0899988e-05 441 366 0.0018824998 442 366 0.00032399991 443 366 0.0033175 444 366 0.0012498999 445 366 0.0063727982 446 366 0.00043209991 447 366 0.0022219999 448 366 1.5399986e-05 450 366 0.0042433999 452 366 0.004227899 453 366 0.0016355999 454 366 0.00092579983 455 366 0.040119097 456 366 0.00063259993 457 366 0.0018516998 458 366 0.0001543 459 366 0.00078699994 460 366 0.00095669995 463 366 0.0080237985 464 366 0.0016355999 465 366 0.00087949983 467 366 0.0094433986 468 366 0.010199498 469 366 0.0055394992 470 366 0.0039192997 471 366 0.0041044988 473 366 9.2599992e-05 477 366 0.0001389 478 366 0.00083319983 483 366 0.00083319983 489 366 4.6299989e-05 490 366 0.00030859979 491 366 0.0026385998 60 367 0.0020736 114 367 0.00051839999 126 367 0.00051839999 160 367 0.00051839999 198 367 0.0088128969 206 367 0.0010368 214 367 0.0025919999 233 367 0.00051839999 234 367 0.0051839985 241 367 0.012441698 242 367 0.034214597 270 367 0.00051839999 272 367 0.0020736 277 367 0.046656299 279 367 0.00051839999 282 367 0.020736098 283 367 0.0057023987 284 367 0.0015552 285 367 0.00051839999 286 367 0.00051839999 289 367 0.00051839999 292 367 0.0031103999 293 367 0.0015552 294 367 0.0010368 295 367 0.0010368 296 367 0.011923298 297 367 0.0010368 298 367 0.0010368 307 367 0.0020736 312 367 0.0015552 321 367 0.020736098 324 367 0.033696197 328 367 0.0041471981 329 367 0.00051839999 333 367 0.00051839999 340 367 0.0098496974 349 367 0.0010368 350 367 0.0010368 351 367 0.0031103999 354 367 0.0041471981 358 367 0.0155521 367 367 0.025920197 372 367 0.023846596 373 367 0.0020736 402 367 0.00051839999 414 367 0.06428194 417 367 0.00051839999 419 367 0.00051839999 443 367 0.0010368 444 367 0.00051839999 445 367 0.0031103999 447 367 0.013996899 450 367 0.0046655983 452 367 0.0051839985 453 367 0.0025919999 454 367 0.0015552 455 367 0.033177797 456 367 0.00051839999 457 367 0.0020736 458 367 0.0010368 459 367 0.020217698 460 367 0.0010368 463 367 0.022291299 464 367 0.00051839999 465 367 0.00051839999 467 367 0.0093312971 468 367 0.0088128969 469 367 0.0057023987 470 367 0.0057023987 471 367 0.00051839999 473 367 0.00051839999 478 367 0.0010368 483 367 0.0015552 490 367 0.0010368 491 367 0.0015552 13 368 0.00011179999 22 368 0.00011179999 24 368 0.00011179999 25 368 0.0032434999 60 368 0.0014539999 82 368 0.00011179999 108 368 0.00011179999 114 368 0.00011179999 120 368 0.00022369999 126 368 0.00011179999 135 368 0.00033549988 139 368 0.00011179999 142 368 0.00078289979 150 368 0.00011179999 160 368 0.00022369999 165 368 0.00022369999 170 368 0.00011179999 171 368 0.00011179999 187 368 0.00067109987 189 368 0.00011179999 190 368 0.00011179999 191 368 0.00011179999 193 368 0.00011179999 194 368 0.00022369999 198 368 0.010289699 206 368 0.00022369999 214 368 0.0059276968 218 368 0.00011179999 223 368 0.00022369999 224 368 0.011631798 233 368 0.0027961 234 368 0.0051447973 236 368 0.00033549988 237 368 0.00011179999 240 368 0.0019013998 241 368 0.0161056 242 368 0.0095067993 252 368 0.00011179999 270 368 0.0010066 272 368 0.0026842998 277 368 0.070461869 279 368 0.00055919983 282 368 0.0152108 283 368 0.00033549988 284 368 0.0015657998 289 368 0.00011179999 292 368 0.0024605999 293 368 0.0074935965 294 368 0.0049210973 295 368 0.00067109987 296 368 0.0048092976 297 368 0.0035789998 298 368 0.0012302999 299 368 0.00011179999 301 368 0.00011179999 307 368 0.018566199 312 368 0.0079408996 315 368 0.016553 317 368 0.00011179999 318 368 0.0021249999 319 368 0.0036908998 320 368 0.0012302999 321 368 0.0039145984 322 368 0.00022369999 324 368 0.017223999 326 368 0.00044739991 328 368 0.0040263981 331 368 0.00011179999 332 368 0.00011179999 335 368 0.00011179999 339 368 0.00044739991 340 368 0.0031315999 350 368 0.009394899 351 368 0.0032434999 352 368 0.020131998 354 368 0.010513399 355 368 0.00011179999 356 368 0.0019013998 358 368 0.0053684972 366 368 0.00033549988 368 368 0.013868697 369 368 0.00011179999 370 368 0.00011179999 371 368 0.00033549988 372 368 0.034112498 373 368 0.00044739991 377 368 0.00011179999 380 368 0.00022369999 386 368 0.014092397 387 368 0.00011179999 390 368 0.00033549988 392 368 0.00033549988 393 368 0.00044739991 404 368 0.00011179999 405 368 0.0014539999 414 368 0.0061513968 415 368 0.0026842998 417 368 0.00044739991 419 368 0.009618599 421 368 0.00011179999 422 368 0.00022369999 430 368 0.00011179999 438 368 0.0029079998 441 368 0.0026842998 443 368 0.0034671999 444 368 0.0022368999 445 368 0.011967298 446 368 0.00067109987 447 368 0.0055921972 450 368 0.0036908998 452 368 0.0039145984 453 368 0.0017894998 454 368 0.00033549988 455 368 0.044178497 456 368 0.00067109987 457 368 0.0021249999 458 368 0.00044739991 459 368 0.00022369999 460 368 0.00089479983 463 368 0.013868697 464 368 0.0078290999 465 368 0.00078289979 467 368 0.0090593994 468 368 0.012302898 469 368 0.006710697 470 368 0.0076053999 471 368 0.0010066 473 368 0.00022369999 477 368 0.00011179999 478 368 0.0010066 483 368 0.0013420999 490 368 0.00067109987 491 368 0.0019013998 9 369 7.0799986e-05 18 369 0.00014169999 60 369 0.0029044999 82 369 7.0799986e-05 83 369 7.0799986e-05 84 369 7.0799986e-05 108 369 7.0799986e-05 113 369 0.00014169999 114 369 0.00021249999 126 369 0.00014169999 127 369 7.0799986e-05 150 369 0.00070839981 165 369 7.0799986e-05 189 369 0.00014169999 190 369 0.00014169999 192 369 7.0799986e-05 194 369 0.00021249999 198 369 0.0029044999 200 369 7.0799986e-05 201 369 7.0799986e-05 203 369 7.0799986e-05 204 369 0.0014167998 206 369 0.0003541999 207 369 7.0799986e-05 214 369 7.0799986e-05 223 369 7.0799986e-05 224 369 0.0039670989 233 369 7.0799986e-05 234 369 0.0018418999 237 369 7.0799986e-05 240 369 7.0799986e-05 241 369 0.0043212995 248 369 7.0799986e-05 250 369 7.0799986e-05 252 369 0.003117 262 369 0.00014169999 277 369 0.010555398 282 369 0.0014167998 283 369 0.00014169999 284 369 0.00049589993 285 369 7.0799986e-05 286 369 7.0799986e-05 290 369 0.0058798976 292 369 0.0030461999 293 369 0.003117 294 369 0.0011334999 295 369 0.0167186 296 369 0.0045338981 297 369 0.00021249999 305 369 7.0799986e-05 307 369 7.0799986e-05 308 369 0.00014169999 312 369 0.0053130984 313 369 7.0799986e-05 315 369 0.011193 317 369 7.0799986e-05 320 369 0.0019126998 321 369 0.00014169999 322 369 0.0021251999 326 369 0.0015584999 340 369 0.0037546 351 369 0.00021249999 356 369 0.00014169999 358 369 0.0057381988 359 369 0.010484599 369 369 0.0575234 370 369 0.0011334999 371 369 0.0034711999 372 369 0.0037546 373 369 0.0016293998 376 369 0.00042499998 386 369 0.027203199 387 369 0.00021249999 389 369 0.0023377999 390 369 0.0034003998 391 369 0.0033296 392 369 0.028265797 393 369 0.065670192 402 369 0.00021249999 413 369 0.00014169999 414 369 0.0021960998 417 369 0.00049589993 419 369 0.00092089991 420 369 0.00014169999 421 369 7.0799986e-05 422 369 0.00014169999 423 369 7.0799986e-05 424 369 0.0026919998 425 369 7.0799986e-05 430 369 7.0799986e-05 431 369 7.0799986e-05 433 369 7.0799986e-05 434 369 7.0799986e-05 443 369 0.00056669977 444 369 0.0060923994 445 369 0.0022668999 446 369 7.0799986e-05 447 369 0.0083592981 450 369 0.0089259967 452 369 0.0043921992 453 369 0.0010625999 454 369 0.00056669977 455 369 0.021039996 456 369 0.0007793 457 369 0.0049588978 458 369 0.00099179987 459 369 0.00063759997 460 369 0.0012043 463 369 0.018418796 464 369 0.0092093982 465 369 0.010626197 467 369 0.016010199 468 369 0.0062340982 469 369 0.010272 470 369 0.011901397 471 369 0.0030461999 473 369 0.00028339983 477 369 0.00021249999 478 369 0.0016293998 483 369 0.0017001999 490 369 0.0087134987 491 369 0.0035420998 9 370 6.8699999e-05 18 370 0.0001375 22 370 0.0001375 60 370 0.0027494999 82 370 6.8699999e-05 83 370 6.8699999e-05 84 370 6.8699999e-05 108 370 6.8699999e-05 113 370 0.0001375 114 370 0.0002062 126 370 6.8699999e-05 150 370 0.00061859982 160 370 0.0040554963 169 370 0.0015121999 172 370 0.0026807999 187 370 0.010379396 189 370 6.8699999e-05 190 370 6.8699999e-05 192 370 6.8699999e-05 194 370 6.8699999e-05 198 370 0.0043304972 200 370 6.8699999e-05 203 370 6.8699999e-05 204 370 6.8699999e-05 206 370 0.0001375 207 370 6.8699999e-05 214 370 0.0028869999 223 370 6.8699999e-05 224 370 0.0001375 233 370 0.0068737976 234 370 0.013335198 237 370 6.8699999e-05 241 370 0.0030244999 252 370 0.000275 262 370 0.015397299 272 370 0.0068737976 277 370 0.12998348 279 370 0.0002062 282 370 6.8699999e-05 284 370 0.00041239988 289 370 0.016359597 290 370 6.8699999e-05 292 370 0.012097899 293 370 0.016772099 294 370 0.0001375 295 370 0.062620282 296 370 0.0001375 307 370 0.0052240975 308 370 6.8699999e-05 312 370 0.0065987967 315 370 0.0063238963 320 370 0.0001375 339 370 0.00048119994 340 370 0.0015121999 354 370 6.8699999e-05 356 370 0.0001375 358 370 0.0019246999 359 370 0.0001375 369 370 0.00068739988 370 370 0.00082489988 371 370 0.0026119999 372 370 6.8699999e-05 373 370 0.00048119994 375 370 6.8699999e-05 376 370 0.044267297 384 370 6.8699999e-05 385 370 6.8699999e-05 386 370 0.019384097 387 370 6.8699999e-05 391 370 0.0002062 392 370 0.00048119994 393 370 0.0017183998 396 370 6.8699999e-05 398 370 6.8699999e-05 402 370 6.8699999e-05 404 370 0.0002062 414 370 0.0056364983 417 370 0.00041239988 421 370 6.8699999e-05 422 370 6.8699999e-05 423 370 6.8699999e-05 430 370 6.8699999e-05 431 370 6.8699999e-05 433 370 6.8699999e-05 434 370 0.0001375 443 370 0.0046053976 444 370 0.0002062 445 370 0.0077673979 446 370 0.00075609982 447 370 0.00075609982 448 370 0.0002062 450 370 0.0043304972 452 370 0.0063238963 453 370 0.0010998 454 370 0.0023371 455 370 0.0328568 456 370 0.00034369994 457 370 0.0030244999 458 370 0.00096229999 459 370 0.00034369994 460 370 0.00096229999 463 370 0.0048803985 464 370 0.00041239988 465 370 0.023302197 467 370 0.014297497 468 370 0.0011684999 469 370 0.0060488991 470 370 0.0066675991 471 370 0.00054989988 473 370 0.0001375 477 370 0.0001375 478 370 0.0013748 483 370 0.0010998 490 370 0.0093483999 491 370 0.00082489988 9 371 4.7399997e-05 18 371 9.4799994e-05 22 371 4.7399997e-05 60 371 0.0020857998 82 371 4.7399997e-05 83 371 4.7399997e-05 84 371 4.7399997e-05 108 371 4.7399997e-05 113 371 9.4799994e-05 114 371 0.00014219999 126 371 9.4799994e-05 127 371 4.7399997e-05 150 371 0.00071109994 160 371 0.0011850998 169 371 0.0015168998 172 371 0.00080589997 187 371 0.00023699999 189 371 9.4799994e-05 190 371 9.4799994e-05 194 371 0.00014219999 197 371 4.7399997e-05 198 371 0.0041715987 200 371 9.4799994e-05 201 371 9.4799994e-05 203 371 9.4799994e-05 204 371 0.00014219999 206 371 0.00014219999 207 371 4.7399997e-05 214 371 0.00028439984 223 371 0.00018959999 224 371 0.008011397 233 371 0.0019435999 234 371 0.0024175998 237 371 9.4799994e-05 240 371 0.0018961998 241 371 0.017065696 248 371 4.7399997e-05 250 371 4.7399997e-05 252 371 0.00018959999 262 371 0.016686399 272 371 4.7399997e-05 277 371 0.038018499 282 371 0.0016117999 283 371 0.00018959999 284 371 0.00042659999 286 371 0.0070632994 288 371 0.00014219999 289 371 0.0025123998 290 371 0.0035078998 292 371 0.027067997 293 371 0.0102394 294 371 0.00085329986 295 371 0.011045299 296 371 0.0028442999 297 371 0.0063047968 298 371 0.0035078998 299 371 4.7399997e-05 305 371 4.7399997e-05 307 371 9.4799994e-05 308 371 0.0073002987 312 371 0.013557699 315 371 0.0030812998 317 371 9.4799994e-05 320 371 0.011282299 321 371 0.00042659999 322 371 0.0021331999 324 371 4.7399997e-05 326 371 0.00085329986 327 371 0.00018959999 328 371 9.4799994e-05 338 371 0.00047399988 339 371 0.0005214999 340 371 0.0037449999 341 371 4.7399997e-05 351 371 4.7399997e-05 354 371 0.0005214999 356 371 0.00014219999 358 371 0.0044559985 359 371 9.4799994e-05 369 371 0.0027021 370 371 0.0036976 371 371 0.010571197 372 371 0.0036026998 373 371 0.08063519 376 371 0.0037923998 386 371 0.010191999 387 371 9.4799994e-05 389 371 0.00014219999 390 371 0.00023699999 391 371 4.7399997e-05 392 371 0.0005214999 393 371 0.0085327998 398 371 0.00014219999 402 371 4.7399997e-05 405 371 4.7399997e-05 414 371 4.7399997e-05 417 371 0.00042659999 419 371 0.00037919986 421 371 4.7399997e-05 422 371 0.00018959999 423 371 4.7399997e-05 425 371 4.7399997e-05 430 371 4.7399997e-05 431 371 4.7399997e-05 433 371 4.7399997e-05 434 371 4.7399997e-05 441 371 0.0019909998 443 371 0.002228 444 371 0.0049300976 445 371 0.0066365972 446 371 0.00014219999 447 371 0.004882697 450 371 0.0064469986 452 371 0.0054514967 453 371 0.00099549978 454 371 0.00071109994 455 371 0.026830997 456 371 0.00056889979 457 371 0.004740499 458 371 0.00075849984 459 371 0.00033179997 460 371 0.00094809989 463 371 0.024934798 464 371 0.0071106963 465 371 0.011708897 467 371 0.015880499 468 371 0.0047878996 469 371 0.0079165995 470 371 0.0088172965 471 371 0.0027494999 473 371 0.00018959999 477 371 0.00018959999 478 371 0.0014694999 483 371 0.0012798999 489 371 4.7399997e-05 490 371 0.00085329986 491 371 0.0011850998 9 372 3.5699995e-05 18 372 0.000143 19 372 7.1499991e-05 22 372 0.00017869999 60 372 0.0025020998 79 372 3.5699995e-05 82 372 3.5699995e-05 83 372 3.5699995e-05 84 372 3.5699995e-05 108 372 3.5699995e-05 113 372 7.1499991e-05 114 372 0.000143 126 372 7.1499991e-05 127 372 3.5699995e-05 130 372 7.1499991e-05 134 372 7.1499991e-05 135 372 0.00071489997 139 372 3.5699995e-05 150 372 0.00064339978 160 372 0.0016084998 161 372 3.5699995e-05 169 372 0.00085779978 172 372 0.00064339978 187 372 3.5699995e-05 189 372 0.00010719999 190 372 0.00010719999 191 372 0.00085779978 194 372 0.000143 197 372 3.5699995e-05 198 372 0.0048968978 200 372 7.1499991e-05 201 372 7.1499991e-05 203 372 7.1499991e-05 204 372 7.1499991e-05 206 372 0.00017869999 207 372 3.5699995e-05 214 372 0.000143 218 372 3.5699995e-05 223 372 0.000143 224 372 0.0029666999 225 372 0.00017869999 227 372 3.5699995e-05 233 372 0.0028594998 234 372 0.0022161 237 372 0.000143 240 372 0.00053619989 241 372 0.0038602999 242 372 0.0034671 243 372 3.5699995e-05 248 372 3.5699995e-05 250 372 7.1499991e-05 252 372 0.00021449999 262 372 0.00010719999 270 372 0.00028589997 271 372 0.00025019981 272 372 0.00028589997 276 372 0.0030381999 277 372 0.070057452 279 372 3.5699995e-05 282 372 0.027951498 283 372 0.0043964982 284 372 0.00053619989 285 372 3.5699995e-05 286 372 0.0010722999 288 372 0.00010719999 289 372 0.0033955998 290 372 0.0046823993 292 372 0.011688199 293 372 0.0043606982 294 372 0.00096509978 295 372 0.052614599 296 372 0.0068627968 297 372 0.00089359982 298 372 0.00035739993 299 372 0.00050039985 305 372 0.00025019981 307 372 0.00050039985 308 372 0.00025019981 312 372 0.009114597 313 372 0.00042889989 315 372 0.011008997 317 372 0.0021445998 319 372 0.00017869999 320 372 0.0023232999 321 372 0.00021449999 322 372 0.00050039985 323 372 7.1499991e-05 324 372 0.00028589997 326 372 0.0028237 327 372 0.0011437999 328 372 0.012688998 330 372 3.5699995e-05 331 372 0.00025019981 332 372 0.000143 338 372 0.00082209986 339 372 0.00021449999 340 372 0.011259198 341 372 0.00010719999 350 372 0.00046469993 351 372 0.0084354989 352 372 0.00010719999 354 372 0.0096507967 355 372 3.5699995e-05 356 372 0.00017869999 357 372 0.0010366 358 372 0.0090430975 366 372 7.1499991e-05 369 372 0.000143 370 372 0.00010719999 371 372 0.0095077977 372 372 0.015298299 373 372 0.00060759997 374 372 3.5699995e-05 375 372 0.0033241999 376 372 0.0059691966 384 372 3.5699995e-05 386 372 0.00017869999 387 372 7.1499991e-05 390 372 0.00028589997 391 372 0.0010366 392 372 0.0013939999 393 372 0.0026807999 396 372 0.00010719999 397 372 0.002931 398 372 0.00017869999 402 372 0.0021445998 404 372 0.00032169977 405 372 0.00028589997 408 372 0.0029666999 412 372 0.00010719999 414 372 7.1499991e-05 417 372 0.00042889989 419 372 0.0012867998 421 372 7.1499991e-05 422 372 0.000143 423 372 7.1499991e-05 424 372 3.5699995e-05 425 372 3.5699995e-05 426 372 3.5699995e-05 430 372 0.000143 431 372 3.5699995e-05 433 372 3.5699995e-05 434 372 3.5699995e-05 443 372 0.0030024999 444 372 0.0030739999 445 372 0.0072201975 446 372 0.00039319997 447 372 0.0034671 450 372 0.0061121993 452 372 0.0060406998 453 372 0.0021088999 454 372 0.00057189981 455 372 0.026021399 456 372 0.00046469993 457 372 0.0028951999 458 372 0.00064339978 459 372 0.00046469993 460 372 0.0010722999 463 372 0.0115452 464 372 0.0041462965 465 372 0.011330698 467 372 0.015262499 468 372 0.0028237 469 372 0.0064695999 470 372 0.0073988996 471 372 0.0022876 473 372 0.000143 477 372 0.00025019981 478 372 0.0014654999 483 372 0.0015727 489 372 3.5699995e-05 490 372 0.0048968978 491 372 0.0024305999 9 373 7.6299999e-05 18 373 0.0001527 60 373 0.0025954 82 373 7.6299999e-05 83 373 7.6299999e-05 84 373 7.6299999e-05 108 373 7.6299999e-05 113 373 0.0001527 114 373 0.000229 126 373 0.0001527 127 373 7.6299999e-05 150 373 0.00061069988 160 373 0.0010686999 169 373 7.6299999e-05 172 373 0.00061069988 175 373 7.6299999e-05 189 373 7.6299999e-05 190 373 0.0001527 192 373 7.6299999e-05 194 373 0.0001527 198 373 0.0060304999 200 373 7.6299999e-05 201 373 7.6299999e-05 203 373 7.6299999e-05 204 373 7.6299999e-05 206 373 0.000229 207 373 7.6299999e-05 214 373 7.6299999e-05 223 373 0.0001527 224 373 0.0070228986 233 373 0.0016031 234 373 0.0021374 237 373 7.6299999e-05 240 373 0.0014503999 241 373 0.014427498 248 373 7.6299999e-05 250 373 7.6299999e-05 252 373 0.000229 262 373 0.0010686999 270 373 0.0001527 272 373 7.6299999e-05 277 373 0.024198499 282 373 0.0029771 283 373 0.00030529988 284 373 0.00053439988 286 373 0.0032823998 288 373 0.0001527 289 373 0.0024426999 290 373 0.00068699988 292 373 0.0164885 293 373 0.0031297999 294 373 0.00053439988 295 373 0.016793899 296 373 0.0024426999 297 373 0.0012214 298 373 0.00030529988 305 373 7.6299999e-05 307 373 7.6299999e-05 308 373 0.015877899 312 373 0.0098472983 315 373 0.00091599999 317 373 7.6299999e-05 319 373 0.0001527 320 373 0.0067938976 321 373 0.0037405 322 373 0.0003817 324 373 0.000229 326 373 0.0001527 327 373 0.0001527 328 373 7.6299999e-05 340 373 0.006870199 351 373 7.6299999e-05 352 373 7.6299999e-05 354 373 0.0001527 356 373 0.0001527 358 373 0.0044274963 359 373 0.0012977 369 373 0.0082442984 370 373 0.0022900999 371 373 0.0073281974 372 373 0.0074045993 373 373 0.08763355 376 373 0.0042747967 386 373 0.011450399 387 373 0.000229 389 373 0.00091599999 390 373 0.00068699988 391 373 0.0016031 392 373 0.0012977 393 373 0.023969498 405 373 0.0001527 413 373 7.6299999e-05 414 373 7.6299999e-05 415 373 7.6299999e-05 417 373 0.00053439988 419 373 0.00061069988 421 373 7.6299999e-05 422 373 0.0001527 423 373 7.6299999e-05 424 373 7.6299999e-05 425 373 7.6299999e-05 430 373 7.6299999e-05 431 373 7.6299999e-05 433 373 7.6299999e-05 434 373 7.6299999e-05 441 373 0.0017557 442 373 7.6299999e-05 443 373 0.001374 444 373 0.00083969999 445 373 0.0058014989 446 373 7.6299999e-05 447 373 0.0038168 450 373 0.0076335967 452 373 0.0067175999 453 373 0.0016031 454 373 0.00061069988 455 373 0.025419798 456 373 0.00068699988 457 373 0.0031297999 458 373 0.00099239987 459 373 0.00045799999 460 373 0.00099239987 463 373 0.011603098 464 373 0.0010686999 465 373 0.011144999 467 373 0.016717598 468 373 0.0017557 469 373 0.010839697 470 373 0.012137398 471 373 0.0028243999 473 373 0.00030529988 477 373 0.0001527 478 373 0.0016794 483 373 0.0011449999 490 373 0.0010686999 491 373 0.0012977 22 374 0.00016659999 60 374 0.0019989999 108 374 0.00016659999 114 374 0.00016659999 126 374 0.00016659999 130 374 0.00016659999 131 374 0.00016659999 160 374 0.0013326998 169 374 0.00099949981 171 374 0.00016659999 172 374 0.00033319998 187 374 0.00016659999 190 374 0.00016659999 198 374 0.0041645989 204 374 0.00016659999 206 374 0.00049979985 214 374 0.0013326998 223 374 0.057471298 224 374 0.00033319998 225 374 0.00016659999 233 374 0.0019989999 234 374 0.0011660999 240 374 0.00099949981 241 374 0.0016657999 252 374 0.00083289994 270 374 0.0028318998 272 374 0.00033319998 277 374 0.14192897 279 374 0.00016659999 282 374 0.00049979985 283 374 0.00016659999 284 374 0.00033319998 285 374 0.00016659999 287 374 0.0036648 290 374 0.008828897 292 374 0.012660298 293 374 0.0029984999 294 374 0.00016659999 295 374 0.022155598 296 374 0.0043311976 297 374 0.0073296987 312 374 0.011161096 320 374 0.00016659999 324 374 0.00016659999 328 374 0.010994498 338 374 0.00016659999 339 374 0.00016659999 340 374 0.011993997 344 374 0.00016659999 356 374 0.00016659999 358 374 0.0079959966 370 374 0.015991997 372 374 0.011827398 373 374 0.030651297 374 374 0.015325699 375 374 0.00049979985 387 374 0.00016659999 390 374 0.00016659999 392 374 0.00033319998 393 374 0.0011660999 394 374 0.00066629983 405 374 0.00016659999 408 374 0.00033319998 416 374 0.00016659999 417 374 0.00049979985 430 374 0.00016659999 443 374 0.0064967982 444 374 0.0036648 445 374 0.014159597 446 374 0.00033319998 447 374 0.0053306967 450 374 0.0034983 452 374 0.0058303997 453 374 0.0028318998 454 374 0.00049979985 455 374 0.032317199 456 374 0.00016659999 457 374 0.0031650998 458 374 0.00066629983 459 374 0.00049979985 460 374 0.00083289994 463 374 0.010827899 464 374 0.00066629983 465 374 0.0016657999 467 374 0.019157097 468 374 0.0084957965 469 374 0.0074962974 470 374 0.0079959966 471 374 0.00049979985 473 374 0.00016659999 477 374 0.00016659999 478 374 0.0011660999 483 374 0.00083289994 490 374 0.00099949981 491 374 0.0019989999 22 375 0.0038426998 60 375 0.0065030977 114 375 0.00029559992 126 375 0.00029559992 160 375 0.0011823999 169 375 0.0011823999 172 375 0.0011823999 198 375 0.0029559999 206 375 0.00059119985 214 375 0.029263999 223 375 0.00029559992 233 375 0.0076854974 234 375 0.0331067 241 375 0.055867597 270 375 0.012710597 273 375 0.0091634989 277 375 0.0091634989 284 375 0.00029559992 286 375 0.013892997 292 375 0.0026603998 295 375 0.0041382983 312 375 0.0112326 326 375 0.042565797 340 375 0.0056162998 356 375 0.00029559992 358 375 0.015075397 372 375 0.008572299 373 375 0.00059119985 375 375 0.037244998 417 375 0.00059119985 443 375 0.015962198 444 375 0.015075397 445 375 0.013597399 446 375 0.0011823999 447 375 0.013006199 450 375 0.0050251 452 375 0.034289099 453 375 0.015666597 454 375 0.0035470999 455 375 0.023943197 457 375 0.0032515998 458 375 0.00088679977 459 375 0.00059119985 460 375 0.0011823999 463 375 0.0032515998 464 375 0.00088679977 465 375 0.0014779998 467 375 0.015962198 468 375 0.013301797 469 375 0.0065030977 470 375 0.0070942976 471 375 0.00029559992 473 375 0.00029559992 477 375 0.00029559992 478 375 0.0011823999 483 375 0.00088679977 490 375 0.00088679977 491 375 0.0026603998 22 376 0.0012508 60 376 0.0022930999 108 376 0.00020849999 114 376 0.00020849999 126 376 0.00020849999 150 376 0.00020849999 160 376 0.0012508 169 376 0.0016676998 172 376 0.0012508 187 376 0.033562597 190 376 0.00020849999 194 376 0.00020849999 198 376 0.0052115992 200 376 0.00020849999 206 376 0.0004168998 214 376 0.0045861974 223 376 0.0010422999 224 376 0.00062539987 233 376 0.0050030984 234 376 0.0027099999 237 376 0.00020849999 241 376 0.016468599 252 376 0.00062539987 262 376 0.022305597 272 376 0.00020849999 276 376 0.00020849999 277 376 0.026474897 282 376 0.0012508 283 376 0.00062539987 284 376 0.00062539987 285 376 0.00020849999 290 376 0.00020849999 292 376 0.012507796 293 376 0.015426297 294 376 0.0035438999 295 376 0.052115899 296 376 0.0004168998 298 376 0.00062539987 299 376 0.0022930999 307 376 0.00020849999 312 376 0.013133198 315 376 0.012924697 317 376 0.0018761999 320 376 0.0012508 321 376 0.0062538981 326 376 0.014175497 328 376 0.0004168998 331 376 0.00020849999 332 376 0.00020849999 335 376 0.00020849999 340 376 0.0052115992 349 376 0.00020849999 351 376 0.00020849999 354 376 0.00083389995 355 376 0.00020849999 356 376 0.00020849999 358 376 0.0064623989 359 376 0.00020849999 369 376 0.0010422999 370 376 0.0150094 371 376 0.0193871 372 376 0.00062539987 373 376 0.0014591999 374 376 0.00020849999 376 376 0.013550099 384 376 0.0004168998 385 376 0.0004168998 386 376 0.0010422999 387 376 0.00020849999 390 376 0.00020849999 392 376 0.0152178 393 376 0.024181798 397 376 0.0010422999 402 376 0.00020849999 404 376 0.0025016 405 376 0.0012508 414 376 0.00020849999 417 376 0.00062539987 422 376 0.00020849999 430 376 0.00020849999 443 376 0.0025016 444 376 0.0010422999 445 376 0.0062538981 447 376 0.0075046979 450 376 0.0058369972 452 376 0.0064623989 453 376 0.0018761999 454 376 0.00083389995 455 376 0.026058 456 376 0.0004168998 457 376 0.0027099999 458 376 0.0014591999 459 376 0.0004168998 460 376 0.00062539987 463 376 0.015843198 464 376 0.0018761999 465 376 0.011465497 467 376 0.0193871 468 376 0.0020845998 469 376 0.011256997 470 376 0.012924697 471 376 0.0012508 473 376 0.00020849999 477 376 0.00020849999 478 376 0.0018761999 483 376 0.0010422999 490 376 0.0014591999 491 376 0.0012508 22 377 0.00019199999 24 377 9.5999989e-05 60 377 0.0011520998 108 377 9.5999989e-05 114 377 0.00019199999 126 377 9.5999989e-05 130 377 9.5999989e-05 131 377 0.0039362982 135 377 0.0025921999 137 377 9.5999989e-05 139 377 0.00019199999 150 377 9.5999989e-05 160 377 0.00057599996 161 377 9.5999989e-05 165 377 9.5999989e-05 170 377 9.5999989e-05 171 377 0.00019199999 172 377 0.00067199999 187 377 0.00019199999 190 377 9.5999989e-05 191 377 9.5999989e-05 194 377 0.00019199999 198 377 0.016609099 206 377 0.00067199999 214 377 0.00096009998 223 377 0.0060484 224 377 0.0026882 233 377 0.0080644973 234 377 0.0014400999 236 377 0.00028799986 240 377 0.0026882 241 377 0.0106567 242 377 0.00096009998 252 377 0.015648998 270 377 0.0003839999 272 377 0.0021120999 273 377 9.5999989e-05 274 377 0.006144397 277 377 0.10608679 282 377 0.0049922988 283 377 0.00019199999 284 377 0.00047999993 285 377 9.5999989e-05 292 377 0.0037441999 293 377 0.011616699 294 377 0.0012480998 295 377 0.014208898 296 377 0.0030721999 297 377 0.00028799986 298 377 0.0040322989 304 377 0.00057599996 307 377 9.5999989e-05 312 377 0.010560699 315 377 0.020929299 319 377 0.0134409 320 377 0.0019200998 321 377 0.0049922988 322 377 0.012384798 324 377 0.0072004981 326 377 0.0028801998 328 377 0.00028799986 339 377 0.00067199999 340 377 0.0098885968 341 377 0.00019199999 350 377 0.00047999993 351 377 0.0018240998 352 377 0.0010560998 354 377 0.0026882 355 377 0.00028799986 356 377 9.5999989e-05 358 377 0.0015360999 364 377 0.00028799986 366 377 0.0094085969 370 377 0.0050882995 371 377 0.0076804981 372 377 0.020545296 373 377 0.0034561998 377 377 0.012192797 379 377 0.00019199999 380 377 0.011808798 385 377 0.00019199999 386 377 0.016128998 387 377 9.5999989e-05 393 377 9.5999989e-05 398 377 0.0045122989 415 377 0.043106798 417 377 0.0003839999 419 377 0.022465397 422 377 0.00019199999 441 377 0.0032641999 443 377 0.0045122989 444 377 0.0018240998 445 377 0.0071044974 446 377 0.00019199999 447 377 0.0038401999 450 377 0.0028801998 452 377 0.0050882995 453 377 0.0034561998 454 377 0.00086409994 455 377 0.044546898 456 377 9.5999989e-05 457 377 0.0027841998 458 377 0.00096009998 459 377 0.00047999993 460 377 0.00096009998 463 377 0.016513098 464 377 0.00057599996 465 377 0.0016321 467 377 0.0096005984 468 377 0.020737298 469 377 0.0042242967 470 377 0.0045122989 471 377 0.00096009998 472 377 0.00096009998 473 377 9.5999989e-05 477 377 9.5999989e-05 478 377 0.0010560998 483 377 0.0019200998 490 377 0.0003839999 491 377 0.00086409994 22 378 0.00048609986 60 378 0.0012500999 108 378 6.939999e-05 114 378 0.0001389 126 378 6.939999e-05 131 378 0.0013889999 150 378 0.0001389 160 378 0.0024307 171 378 6.939999e-05 172 378 0.0019445999 187 378 0.0014583999 189 378 6.939999e-05 190 378 6.939999e-05 191 378 0.0010416999 194 378 0.0001389 198 378 0.014098197 200 378 6.939999e-05 203 378 6.939999e-05 204 378 6.939999e-05 206 378 0.00048609986 214 378 0.0069448985 219 378 0.0004166998 223 378 0.0026391 233 378 0.013889898 234 378 0.0013194999 236 378 0.00062499987 237 378 6.939999e-05 240 378 0.0092367977 241 378 0.053059198 242 378 0.0004166998 252 378 0.0012500999 270 378 0.00034719985 272 378 0.0037502998 274 378 0.0097922981 277 378 0.068685293 282 378 0.0038196999 283 378 0.00055559981 284 378 0.00048609986 285 378 0.0001389 286 378 6.939999e-05 289 378 6.939999e-05 292 378 0.012431398 293 378 0.012084197 294 378 0.00034719985 295 378 0.012709197 296 378 0.0013889999 297 378 0.0004166998 298 378 0.00034719985 304 378 0.0015278999 312 378 0.010278497 315 378 0.0117369 319 378 0.011875797 320 378 0.0001389 321 378 0.0068754964 322 378 0.014237098 324 378 0.0069448985 326 378 0.0029862998 328 378 0.0004166998 338 378 6.939999e-05 339 378 0.00055559981 340 378 0.0004166998 350 378 0.0084033981 351 378 0.00083339983 352 378 0.0037502998 353 378 6.939999e-05 354 378 0.0002083 356 378 0.0001389 358 378 0.0022918 366 378 0.049934 368 378 6.939999e-05 370 378 0.0002083 371 378 0.0077782981 372 378 0.050628498 373 378 0.0087505989 376 378 0.0001389 386 378 0.010834098 387 378 6.939999e-05 398 378 0.00055559981 415 378 0.015278798 417 378 0.00034719985 419 378 0.00069449982 421 378 6.939999e-05 422 378 0.0001389 441 378 0.00076389988 442 378 6.939999e-05 443 378 0.0043058991 444 378 0.00034719985 445 378 0.0078477971 446 378 0.00034719985 447 378 0.0026391 450 378 0.0025001999 452 378 0.0042363964 453 378 0.0018751 454 378 0.00090279989 455 378 0.042364098 456 378 0.0002083 457 378 0.0027084998 458 378 0.00048609986 459 378 0.0004166998 460 378 0.00090279989 463 378 0.0099311993 464 378 0.0004166998 465 378 0.004166998 467 378 0.0075699985 468 378 0.015834399 469 378 0.0031251998 470 378 0.0031947 471 378 0.0010416999 473 378 6.939999e-05 477 378 0.0001389 478 378 0.00076389988 483 378 0.0018056999 490 378 0.00027779979 491 378 0.00083339983 22 379 0.0001526 60 379 0.00091529987 108 379 7.6299999e-05 114 379 0.0001526 126 379 7.6299999e-05 150 379 7.6299999e-05 160 379 0.00076279999 169 379 0.00061019999 172 379 0.0045766979 187 379 7.6299999e-05 190 379 7.6299999e-05 194 379 0.0001526 198 379 0.015484396 206 379 0.00061019999 214 379 0.00030509988 219 379 0.00030509988 223 379 0.00030509988 224 379 7.6299999e-05 233 379 0.0073988996 234 379 0.00099159987 236 379 0.0010678999 240 379 0.012051899 241 379 0.018916897 242 379 0.0089244992 252 379 7.6299999e-05 270 379 0.002746 271 379 7.6299999e-05 272 379 0.0001526 274 379 0.0001526 277 379 0.099694848 282 379 0.011060297 283 379 0.00045769988 284 379 0.00038139988 285 379 7.6299999e-05 292 379 0.002746 293 379 0.0049579963 294 379 0.0002288 295 379 0.0045766979 296 379 0.0050342977 297 379 0.0002288 298 379 0.013424899 304 379 0.0002288 312 379 0.013882499 313 379 0.0001526 315 379 0.018230397 319 379 0.0021358 320 379 0.0022121 321 379 0.0028223 322 379 0.0035849998 324 379 0.0076277964 326 379 7.6299999e-05 328 379 0.00030509988 339 379 0.00030509988 340 379 0.0017543999 341 379 0.0026697 343 379 7.6299999e-05 351 379 0.0034324999 352 379 0.00061019999 354 379 0.0086956993 356 379 7.6299999e-05 357 379 7.6299999e-05 358 379 0.0025171998 364 379 0.0042714998 365 379 7.6299999e-05 366 379 0.011517897 371 379 0.00030509988 372 379 0.071929753 373 379 0.0025934 377 379 0.0041189976 379 379 0.0019069 385 379 0.0019832 386 379 0.00091529987 387 379 7.6299999e-05 397 379 7.6299999e-05 398 379 0.0062547997 402 379 0.00068649999 415 379 0.025858097 417 379 0.00030509988 419 379 0.028298996 421 379 7.6299999e-05 422 379 0.0001526 438 379 7.6299999e-05 441 379 0.0039663985 443 379 0.0029747998 444 379 0.0028986 445 379 0.0063309968 446 379 0.00030509988 447 379 0.0025171998 450 379 0.0017543999 452 379 0.004195299 453 379 0.0026697 454 379 0.00083909999 455 379 0.036536999 456 379 7.6299999e-05 457 379 0.0025171998 458 379 0.00030509988 459 379 0.00061019999 460 379 0.00076279999 463 379 0.0092295967 464 379 0.00053389999 465 379 0.0011441999 467 379 0.0064072981 468 379 0.023188397 469 379 0.0025934 470 379 0.002746 471 379 0.00099159987 473 379 7.6299999e-05 477 379 0.0001526 478 379 0.00068649999 483 379 0.0017543999 490 379 0.0002288 491 379 0.00083909999 9 380 6.7199988e-05 60 380 0.0046345964 82 380 6.7199988e-05 83 380 6.7199988e-05 84 380 6.7199988e-05 108 380 6.7199988e-05 113 380 0.00013429999 114 380 0.00013429999 126 380 6.7199988e-05 130 380 0.011015598 131 380 0.0016792 133 380 6.7199988e-05 137 380 6.7199988e-05 139 380 0.0058435984 150 380 0.00080599985 160 380 6.7199988e-05 161 380 0.00013429999 165 380 6.7199988e-05 170 380 6.7199988e-05 171 380 0.0090004988 172 380 6.7199988e-05 187 380 0.00013429999 188 380 0.00013429999 189 380 6.7199988e-05 190 380 0.00013429999 192 380 6.7199988e-05 194 380 0.00013429999 198 380 0.0190758 200 380 6.7199988e-05 203 380 6.7199988e-05 204 380 0.00073889992 206 380 0.00067169988 207 380 6.7199988e-05 214 380 0.00026869983 219 380 6.7199988e-05 223 380 0.0024180999 224 380 0.019948997 233 380 0.0032911999 234 380 0.0017463998 236 380 0.0003358 237 380 6.7199988e-05 240 380 0.0023508999 241 380 0.036472298 252 380 0.0065824986 257 380 6.7199988e-05 270 380 6.7199988e-05 272 380 0.00080599985 274 380 0.0021493998 275 380 6.7199988e-05 277 380 0.052659899 279 380 6.7199988e-05 282 380 0.0030896999 284 380 0.00067169988 285 380 0.00053729978 286 380 6.7199988e-05 292 380 0.0040972978 293 380 0.016120397 294 380 0.0089333989 295 380 0.030359998 296 380 0.0074556991 298 380 0.0064480975 299 380 0.00013429999 301 380 6.7199988e-05 304 380 6.7199988e-05 307 380 0.00020149999 312 380 0.011687297 315 380 0.011082798 319 380 0.005507797 320 380 0.00040299981 321 380 0.0039628968 322 380 0.0028881999 324 380 0.00040299981 326 380 0.0034926999 330 380 0.0010746999 339 380 0.0003358 340 380 0.0048360974 350 380 0.00013429999 351 380 0.00013429999 352 380 6.7199988e-05 353 380 6.7199988e-05 354 380 0.00026869983 355 380 0.00073889992 356 380 0.00013429999 358 380 0.0053734966 366 380 0.00067169988 370 380 0.0038285998 371 380 0.0051047988 372 380 0.026732899 373 380 0.00047019986 380 380 0.012627598 384 380 6.7199988e-05 386 380 0.0168592 387 380 6.7199988e-05 393 380 0.00020149999 395 380 0.00060449983 398 380 0.0017463998 402 380 0.00020149999 414 380 6.7199988e-05 415 380 0.0070526972 417 380 0.00060449983 419 380 0.0029553999 421 380 6.7199988e-05 422 380 6.7199988e-05 423 380 6.7199988e-05 430 380 6.7199988e-05 433 380 6.7199988e-05 434 380 6.7199988e-05 441 380 0.0030896999 442 380 0.00080599985 443 380 0.0031568999 444 380 0.0003358 445 380 0.0072541982 446 380 0.00013429999 447 380 0.0023508999 450 380 0.0032241 452 380 0.0053062998 453 380 0.0018806998 454 380 0.00060449983 455 380 0.040032197 456 380 0.00020149999 457 380 0.0028210999 458 380 0.00060449983 459 380 0.00040299981 460 380 0.0010746999 463 380 0.018941399 464 380 0.0003358 465 380 0.0016792 467 380 0.011149898 468 380 0.032442197 469 380 0.0051719993 470 380 0.005507797 471 380 0.0008731999 473 380 0.00013429999 477 380 0.00013429999 478 380 0.0011419 479 380 0.0008731999 483 380 0.002015 490 380 0.00047019986 491 380 0.0018806998 60 381 0.0037928999 114 381 0.0002231 126 381 0.0002231 130 381 0.00044619991 139 381 0.0002231 160 381 0.0002231 171 381 0.00044619991 172 381 0.0002231 193 381 0.0017849 198 381 0.0182954 206 381 0.00089249993 214 381 0.0053547993 219 381 0.0002231 223 381 0.00044619991 224 381 0.016287398 233 381 0.0071396977 234 381 0.00066929986 236 381 0.0002231 240 381 0.0046853982 241 381 0.026550598 242 381 0.016733598 252 381 0.0002231 271 381 0.00044619991 272 381 0.0037928999 274 381 0.00066929986 277 381 0.031905398 279 381 0.00089249993 282 381 0.010263298 283 381 0.0013386998 284 381 0.00044619991 292 381 0.0037928999 293 381 0.0080320984 294 381 0.00044619991 295 381 0.034359697 296 381 0.022757698 298 381 0.0002231 312 381 0.010040198 313 381 0.00066929986 315 381 0.025211997 319 381 0.0080320984 320 381 0.0002231 321 381 0.00066929986 322 381 0.0078089982 324 381 0.0040160976 326 381 0.00044619991 340 381 0.004462298 349 381 0.0031235998 350 381 0.00044619991 351 381 0.0024542999 352 381 0.0002231 356 381 0.0037928999 357 381 0.00044619991 358 381 0.0031235998 366 381 0.0026773999 370 381 0.004462298 371 381 0.0066933967 372 381 0.017849199 373 381 0.0002231 380 381 0.00066929986 381 381 0.00044619991 386 381 0.010709498 390 381 0.00066929986 392 381 0.00044619991 393 381 0.0011155999 397 381 0.0002231 398 381 0.0060240999 402 381 0.0026773999 415 381 0.0011155999 417 381 0.00044619991 419 381 0.00066929986 438 381 0.0095938966 441 381 0.0093707964 443 381 0.0022310999 444 381 0.0020079999 445 381 0.007585898 447 381 0.010932598 450 381 0.0026773999 452 381 0.004462298 453 381 0.0017849 454 381 0.00089249993 455 381 0.0305667 457 381 0.0026773999 459 381 0.00044619991 460 381 0.00089249993 463 381 0.0122713 464 381 0.00044619991 465 381 0.0013386998 467 381 0.0084783994 468 381 0.0276662 469 381 0.0051315986 470 381 0.0055778995 471 381 0.0015617998 473 381 0.0002231 477 381 0.0002231 478 381 0.00066929986 479 381 0.0013386998 483 381 0.0015617998 490 381 0.00066929986 491 381 0.0020079999 60 382 0.0077120997 114 382 0.00064269989 172 382 0.0012852999 198 382 0.0032133998 206 382 0.0012852999 234 382 0.0038559998 241 382 0.00064269989 242 382 0.0102828 272 382 0.0044986978 277 382 0.023136199 282 382 0.014781497 284 382 0.00064269989 292 382 0.0025706999 293 382 0.0032133998 295 382 0.034061696 296 382 0.00064269989 307 382 0.00064269989 312 382 0.0044986978 315 382 0.0064266995 319 382 0.0038559998 322 382 0.0032133998 340 382 0.0025706999 344 382 0.0019279998 351 382 0.00064269989 354 382 0.00064269989 358 382 0.025706898 371 382 0.00064269989 372 382 0.0025706999 373 382 0.00064269989 382 382 0.082262158 386 382 0.0012852999 417 382 0.00064269989 441 382 0.0044986978 444 382 0.00064269989 445 382 0.0012852999 447 382 0.012210798 450 382 0.0032133998 452 382 0.0064266995 453 382 0.00064269989 454 382 0.0019279998 455 382 0.025706898 457 382 0.0032133998 459 382 0.00064269989 460 382 0.00064269989 463 382 0.031490996 464 382 0.00064269989 465 382 0.0019279998 467 382 0.014138799 468 382 0.084832847 469 382 0.0044986978 470 382 0.0051413998 478 382 0.0012852999 483 382 0.0025706999 490 382 0.00064269989 491 382 0.0070693977 22 383 0.00011879999 60 383 0.0009500999 108 383 0.00011879999 114 383 0.00023749999 126 383 0.00011879999 130 383 0.00011879999 131 383 0.00011879999 135 383 0.00011879999 139 383 0.00011879999 160 383 0.00023749999 161 383 0.0032066999 171 383 0.00011879999 172 383 0.0003562998 182 383 0.0030878999 193 383 0.00011879999 194 383 0.00011879999 198 383 0.015439399 206 383 0.00071259984 214 383 0.0040379986 223 383 0.0065320991 224 383 0.0089073963 233 383 0.009263698 234 383 0.0009500999 236 383 0.0003562998 240 383 0.0089073963 241 383 0.0108076 242 383 0.0045130998 252 383 0.0021378 270 383 0.0038005 272 383 0.0043942966 274 383 0.0047505982 275 383 0.00011879999 277 383 0.10558188 282 383 0.0061757974 283 383 0.00011879999 284 383 0.0003562998 292 383 0.0071258992 293 383 0.0041567981 294 383 0.0016627 295 383 0.011045098 296 383 0.0046317987 297 383 0.00023749999 298 383 0.0074821971 300 383 0.00011879999 304 383 0.00023749999 307 383 0.00023749999 312 383 0.017695997 315 383 0.011757698 319 383 0.0097386986 320 383 0.0038005 321 383 0.0065320991 322 383 0.0061757974 324 383 0.0081947967 326 383 0.0058194995 328 383 0.00023749999 340 383 0.0059381984 341 383 0.00011879999 349 383 0.00011879999 350 383 0.0003562998 351 383 0.0047505982 352 383 0.00083139981 354 383 0.00071259984 355 383 0.0009500999 356 383 0.00023749999 358 383 0.0019001998 364 383 0.00011879999 366 383 0.006650798 370 383 0.00059379986 371 383 0.0072446987 372 383 0.040973898 373 383 0.0026127999 377 383 0.00059379986 379 383 0.00011879999 380 383 0.0102138 383 383 0.00011879999 385 383 0.00011879999 386 383 0.019477397 387 383 0.00011879999 393 383 0.00023749999 398 383 0.00059379986 414 383 0.00011879999 415 383 0.032066498 417 383 0.00023749999 419 383 0.0052256994 438 383 0.0032066999 441 383 0.0027315998 443 383 0.0039191991 444 383 0.0046317987 445 383 0.0070070997 446 383 0.00011879999 447 383 0.0053443983 450 383 0.0024940998 452 383 0.0039191991 453 383 0.0028503998 454 383 0.0011876 455 383 0.040142499 457 383 0.0026127999 458 383 0.00059379986 459 383 0.0003562998 460 383 0.00083139981 463 383 0.015676998 464 383 0.00047509978 465 383 0.0010688999 467 383 0.0077196993 468 383 0.019833699 469 383 0.0041567981 470 383 0.0043942966 471 383 0.00059379986 473 383 0.00011879999 477 383 0.00011879999 478 383 0.00059379986 479 383 0.00047509978 483 383 0.0021378 490 383 0.0003562998 491 383 0.0010688999 18 384 9.3799987e-05 60 384 0.0019689 108 384 9.3799987e-05 114 384 0.00018749999 126 384 9.3799987e-05 150 384 9.3799987e-05 151 384 9.3799987e-05 190 384 9.3799987e-05 194 384 0.00018749999 198 384 0.0235327 200 384 9.3799987e-05 203 384 9.3799987e-05 204 384 9.3799987e-05 206 384 0.00018749999 214 384 0.024282798 219 384 0.00018749999 223 384 9.3799987e-05 224 384 0.00018749999 233 384 0.00065629999 234 384 0.0021563999 237 384 9.3799987e-05 240 384 9.3799987e-05 241 384 0.0012188 252 384 0.073504567 270 384 9.3799987e-05 271 384 0.00018749999 277 384 0.0030001998 282 384 0.0021563999 283 384 0.00084379991 284 384 0.00037499983 290 384 0.00018749999 292 384 0.0050627999 293 384 9.3799987e-05 294 384 0.019032396 295 384 0.00028129993 296 384 0.00056249998 312 384 0.00046879984 313 384 0.00037499983 315 384 0.00018749999 320 384 0.00018749999 340 384 0.0018751 351 384 0.00018749999 357 384 0.00018749999 358 384 0.0013126 370 384 0.00037499983 384 384 0.00046879984 385 384 0.0033751999 386 384 0.00028129993 387 384 9.3799987e-05 389 384 0.00084379991 390 384 0.00018749999 392 384 0.00037499983 393 384 0.0027188999 397 384 0.00018749999 398 384 0.11110067 402 384 0.0016875998 417 384 0.00037499983 421 384 9.3799987e-05 422 384 0.00018749999 443 384 0.0015937998 444 384 0.0045939982 445 384 0.0058128983 446 384 0.00084379991 447 384 0.0058128983 450 384 0.004031498 452 384 0.0059065968 453 384 0.0029063998 454 384 0.00074999989 455 384 0.029251799 456 384 0.00018749999 457 384 0.0029063998 458 384 0.00056249998 459 384 0.00037499983 460 384 0.0010312998 463 384 0.0041252971 464 384 0.00046879984 465 384 0.0015937998 467 384 0.011531997 468 384 0.010031898 469 384 0.0032815 470 384 0.0037501999 471 384 0.0039376989 473 384 9.3799987e-05 477 384 0.00018749999 478 384 0.0012188 483 384 0.00065629999 490 384 0.00037499983 491 384 0.0012188 18 385 0.00012879999 21 385 4.2899992e-05 22 385 0.00034359982 24 385 4.2899992e-05 60 385 0.0015031998 82 385 4.2899992e-05 108 385 0.0001718 114 385 0.00034359982 126 385 0.0001718 130 385 0.0043806992 131 385 0.0014173 138 385 4.2899992e-05 139 385 4.2899992e-05 142 385 4.2899992e-05 150 385 0.00060129981 151 385 4.2899992e-05 156 385 0.0013742999 160 385 0.0019755999 161 385 0.0012883998 171 385 0.0026197999 187 385 8.5899999e-05 188 385 0.00012879999 190 385 8.5899999e-05 194 385 0.00012879999 197 385 4.2899992e-05 198 385 0.020314399 200 385 8.5899999e-05 201 385 4.2899992e-05 203 385 8.5899999e-05 204 385 0.00012879999 206 385 0.0001718 207 385 4.2899992e-05 214 385 0.0042088963 219 385 4.2899992e-05 223 385 0.00068719988 224 385 0.010693997 225 385 4.2899992e-05 227 385 4.2899992e-05 229 385 4.2899992e-05 233 385 0.0054972991 234 385 0.0018038 237 385 0.00012879999 240 385 0.00098779984 241 385 0.038008898 242 385 4.2899992e-05 243 385 4.2899992e-05 252 385 0.032597497 254 385 0.00012879999 262 385 8.5899999e-05 263 385 0.00085899979 265 385 4.2899992e-05 266 385 4.2899992e-05 270 385 0.0009019 271 385 4.2899992e-05 272 385 0.0020615 276 385 4.2899992e-05 277 385 0.048058797 282 385 0.0055402964 283 385 0.00012879999 284 385 0.00042949989 286 385 4.2899992e-05 288 385 0.0012454998 289 385 0.0014601999 290 385 0.00030059996 292 385 0.0038653 293 385 0.016062498 294 385 0.00064419978 295 385 0.0085465983 296 385 0.01151 297 385 0.0011165999 298 385 0.0033069998 300 385 4.2899992e-05 312 385 0.011037599 315 385 0.032683399 317 385 4.2899992e-05 319 385 0.00012879999 320 385 0.010865796 321 385 0.00025769998 322 385 0.0024909999 324 385 0.00012879999 326 385 0.00060129981 328 385 0.00021469999 329 385 8.5899999e-05 339 385 0.0001718 340 385 0.0073440969 350 385 4.2899992e-05 351 385 0.00012879999 352 385 4.2899992e-05 354 385 0.00012879999 356 385 0.00012879999 358 385 0.0018896998 366 385 0.00047239987 370 385 0.050764497 371 385 4.2899992e-05 372 385 0.00047239987 373 385 0.00034359982 375 385 4.2899992e-05 376 385 0.0014173 384 385 0.017823398 385 385 0.015203599 386 385 0.023621399 387 385 0.0001718 392 385 0.0003864998 393 385 0.0027486999 395 385 0.00012879999 397 385 0.00021469999 398 385 0.0015890999 402 385 0.00012879999 415 385 4.2899992e-05 416 385 4.2899992e-05 417 385 0.00051539997 419 385 4.2899992e-05 421 385 4.2899992e-05 422 385 0.00012879999 427 385 4.2899992e-05 430 385 0.00021469999 433 385 4.2899992e-05 434 385 4.2899992e-05 442 385 4.2899992e-05 443 385 0.0033928999 444 385 0.0044235997 445 385 0.0068286993 446 385 0.00012879999 447 385 0.0049389973 450 385 0.0042517968 452 385 0.0048101991 453 385 0.0021902998 454 385 0.00064419978 455 385 0.043978699 456 385 0.00012879999 457 385 0.0030922999 458 385 0.00081599993 459 385 0.0003864998 460 385 0.00073009985 463 385 0.018038098 464 385 0.0056261979 465 385 0.0017608998 467 385 0.012583699 468 385 0.0066998973 469 385 0.0054972991 470 385 0.0060985982 471 385 0.0055831969 473 385 0.0001718 477 385 0.00030059996 478 385 0.0012454998 479 385 0.0011596 483 385 0.00085899979 489 385 4.2899992e-05 490 385 0.00060129981 491 385 0.00068719988 9 386 4.7999987e-05 18 386 0.00014389999 19 386 0.0003837999 21 386 0.00014389999 22 386 0.0004317998 24 386 0.0003358 60 386 0.0022546998 82 386 0.00014389999 83 386 4.7999987e-05 84 386 4.7999987e-05 108 386 9.5899988e-05 113 386 9.5899988e-05 114 386 0.00019189999 117 386 4.7999987e-05 126 386 9.5899988e-05 130 386 0.00023989999 131 386 0.00019189999 135 386 0.00019189999 138 386 0.00014389999 139 386 4.7999987e-05 142 386 9.5899988e-05 150 386 0.00062369998 160 386 9.5899988e-05 169 386 9.5899988e-05 175 386 4.7999987e-05 187 386 0.0010074 188 386 9.5899988e-05 189 386 9.5899988e-05 190 386 9.5899988e-05 192 386 0.00028779986 193 386 9.5899988e-05 194 386 0.00023989999 197 386 4.7999987e-05 198 386 0.0086351968 200 386 9.5899988e-05 201 386 4.7999987e-05 203 386 9.5899988e-05 204 386 9.5899988e-05 206 386 0.00019189999 207 386 4.7999987e-05 214 386 0.0031661999 219 386 9.5899988e-05 223 386 0.0045573972 224 386 0.011177696 229 386 4.7999987e-05 233 386 0.00062369998 234 386 0.0025425998 237 386 9.5899988e-05 240 386 0.0038378998 241 386 0.015831098 242 386 4.7999987e-05 252 386 0.0012472998 262 386 0.0047013983 270 386 4.7999987e-05 271 386 9.5899988e-05 273 386 0.00019189999 276 386 9.5899988e-05 277 386 0.079827249 278 386 0.00014389999 282 386 0.0047492981 283 386 0.0003837999 284 386 0.00057569984 285 386 0.00019189999 286 386 0.0051810965 288 386 0.0039817989 289 386 0.0030703 290 386 0.0010074 292 386 0.026720997 293 386 0.0096905977 294 386 0.017270297 295 386 0.014056098 296 386 0.0062844977 297 386 0.0029742999 298 386 0.00028779986 300 386 9.5899988e-05 308 386 0.00023989999 312 386 0.015159499 313 386 9.5899988e-05 315 386 0.0096425973 317 386 0.0023987 320 386 0.009018898 321 386 0.0060925968 322 386 0.0039817989 324 386 0.00023989999 325 386 4.7999987e-05 326 386 0.00057569984 328 386 0.00023989999 339 386 0.00028779986 340 386 0.0066682994 343 386 4.7999987e-05 349 386 4.7999987e-05 350 386 9.5899988e-05 351 386 0.00028779986 352 386 0.00057569984 353 386 4.7999987e-05 354 386 0.00062369998 355 386 4.7999987e-05 356 386 9.5899988e-05 357 386 4.7999987e-05 358 386 0.004941199 359 386 4.7999987e-05 369 386 0.0003358 370 386 0.0013911999 371 386 0.0003837999 372 386 0.00086349994 373 386 0.0022067998 374 386 4.7999987e-05 375 386 0.00014389999 376 386 0.00023989999 384 386 0.00014389999 385 386 0.00023989999 386 386 0.026049398 387 386 9.5899988e-05 389 386 0.0016311 390 386 0.0004317998 391 386 9.5899988e-05 392 386 0.0037898999 393 386 0.0088749975 396 386 4.7999987e-05 397 386 9.5899988e-05 398 386 0.0013432 402 386 0.00052769994 414 386 4.7999987e-05 416 386 0.00014389999 417 386 0.00067159999 419 386 9.5899988e-05 420 386 0.00019189999 421 386 4.7999987e-05 422 386 0.00095949997 423 386 4.7999987e-05 430 386 9.5899988e-05 431 386 4.7999987e-05 433 386 4.7999987e-05 434 386 4.7999987e-05 438 386 9.5899988e-05 441 386 4.7999987e-05 442 386 4.7999987e-05 443 386 0.0039337985 444 386 0.00067159999 445 386 0.0075317994 446 386 0.00023989999 447 386 0.0032621999 450 386 0.0048452988 452 386 0.0067161992 453 386 0.0017749998 454 386 0.00076759979 455 386 0.023986597 456 386 0.0003358 457 386 0.0031182999 458 386 0.00081549981 459 386 0.00071959989 460 386 0.0010553999 463 386 0.0118494 464 386 0.0010074 465 386 0.0024465998 467 386 0.014343999 468 386 0.0023027 469 386 0.0067161992 470 386 0.0076276995 471 386 0.0019669 473 386 0.00014389999 477 386 0.00023989999 478 386 0.0015350999 479 386 9.5899988e-05 483 386 0.0012953 489 386 4.7999987e-05 490 386 0.00071959989 491 386 0.0033100999 9 387 2.6799986e-05 18 387 8.0299986e-05 22 387 2.6799986e-05 60 387 0.0019816 82 387 2.6799986e-05 83 387 2.6799986e-05 84 387 2.6799986e-05 108 387 2.6799986e-05 113 387 5.3599986e-05 114 387 0.00010709999 126 387 5.3599986e-05 150 387 0.00037489994 151 387 2.6799986e-05 160 387 0.0013388998 169 387 0.00091049983 172 387 0.0014727998 174 387 0.016522497 175 387 0.061778598 177 387 0.0016335 187 387 0.0022761999 188 387 0.00072299992 189 387 5.3599986e-05 190 387 8.0299986e-05 192 387 0.00010709999 194 387 8.0299986e-05 197 387 2.6799986e-05 198 387 0.0073641986 200 387 8.0299986e-05 201 387 2.6799986e-05 203 387 5.3599986e-05 204 387 8.0299986e-05 206 387 0.0026510998 207 387 5.3599986e-05 209 387 2.6799986e-05 214 387 5.3599986e-05 219 387 5.3599986e-05 223 387 2.6799986e-05 224 387 0.0023832999 234 387 0.00091049983 236 387 2.6799986e-05 237 387 5.3599986e-05 240 387 0.00085689989 241 387 0.013309099 252 387 0.0077390969 262 387 2.6799986e-05 276 387 2.6799986e-05 277 387 0.0064536966 279 387 0.00085689989 282 387 5.3599986e-05 283 387 2.6799986e-05 284 387 0.00013389999 285 387 0.00064269989 292 387 5.3599986e-05 293 387 0.00077659986 294 387 8.0299986e-05 295 387 0.0080871992 296 387 0.00069619995 298 387 0.00091049983 312 387 0.0068285987 315 387 0.020914197 318 387 8.0299986e-05 319 387 0.0027047 320 387 0.0014193 321 387 5.3599986e-05 326 387 0.0025974999 340 387 0.00066949986 356 387 0.00013389999 358 387 0.00042849989 359 387 0.00026779994 364 387 0.00061589992 369 387 0.00010709999 372 387 0.0033741 382 387 0.00077659986 384 387 2.6799986e-05 386 387 0.011113197 387 387 0.045898799 390 387 0.00024099999 391 387 0.14615858 392 387 0.020619698 393 387 0.13927639 396 387 0.00083009992 402 387 5.3599986e-05 404 387 2.6799986e-05 417 387 0.00026779994 419 387 0.0017674 421 387 2.6799986e-05 422 387 0.00013389999 423 387 2.6799986e-05 425 387 2.6799986e-05 430 387 2.6799986e-05 431 387 2.6799986e-05 432 387 2.6799986e-05 433 387 2.6799986e-05 434 387 0.00016069999 441 387 0.00064269989 443 387 0.0016870999 444 387 0.0013122 445 387 0.0038560999 446 387 8.0299986e-05 447 387 0.0038293998 450 387 0.0050343983 452 387 0.0023029998 453 387 0.00053559989 454 387 0.00080339983 455 387 0.0396326 456 387 0.00013389999 457 387 0.0048736967 458 387 0.00056239986 459 387 0.0021422999 460 387 0.00091049983 463 387 0.0103634 464 387 0.0026778998 465 387 0.028385498 467 387 0.0137375 468 387 0.027769599 469 387 0.0032402 470 387 0.0035883998 471 387 0.0027313998 473 387 8.0299986e-05 477 387 0.00058909995 478 387 0.0010443998 483 387 0.00096399989 489 387 2.6799986e-05 490 387 0.00032129977 491 387 0.0012585998 60 388 0.0014654999 108 388 0.0001832 114 388 0.0003664 126 388 0.0001832 160 388 0.00073269987 187 388 0.012456499 190 388 0.0001832 194 388 0.0003664 198 388 0.0031140998 200 388 0.0001832 204 388 0.084814072 206 388 0.0003664 214 388 0.0003664 224 388 0.050192297 234 388 0.0025646 237 388 0.0001832 241 388 0.020882897 272 388 0.00054959999 279 388 0.0001832 284 388 0.0001832 293 388 0.0047627985 317 388 0.0001832 356 388 0.0001832 387 388 0.0032972998 388 388 0.043780897 390 388 0.0001832 392 388 0.0001832 393 388 0.031873997 417 388 0.0003664 422 388 0.0003664 443 388 0.002015 444 388 0.0060450993 445 388 0.0137388 446 388 0.0001832 447 388 0.0089759976 450 388 0.0065945983 452 388 0.0071441978 453 388 0.0029308998 454 388 0.00054959999 455 388 0.040849999 457 388 0.0047627985 458 388 0.0014654999 459 388 0.00054959999 460 388 0.00073269987 463 388 0.11705434 464 388 0.00091589987 465 388 0.012456499 467 388 0.056970097 468 388 0.045429599 469 388 0.0056786984 470 388 0.0064113997 471 388 0.00073269987 473 388 0.0038468998 477 388 0.0001832 478 388 0.0018318 483 388 0.00073269987 490 388 0.00054959999 491 388 0.00091589987 9 389 2.3799992e-05 16 389 2.3799992e-05 18 389 0.00011899999 22 389 9.5199997e-05 60 389 0.0026900999 79 389 2.3799992e-05 82 389 2.3799992e-05 83 389 2.3799992e-05 84 389 2.3799992e-05 108 389 4.7599999e-05 113 389 7.1399991e-05 114 389 0.0001428 126 389 7.1399991e-05 127 389 2.3799992e-05 132 389 2.3799992e-05 150 389 0.00049989996 160 389 0.00042849989 169 389 0.00021429999 171 389 4.7599999e-05 172 389 0.0015711999 189 389 7.1399991e-05 190 389 9.5199997e-05 192 389 4.7599999e-05 194 389 0.0017139998 196 389 2.3799992e-05 197 389 2.3799992e-05 198 389 0.0019520998 200 389 9.5199997e-05 201 389 4.7599999e-05 203 389 7.1399991e-05 204 389 0.00011899999 206 389 9.5199997e-05 207 389 7.1399991e-05 209 389 2.3799992e-05 214 389 7.1399991e-05 219 389 0.0014759998 223 389 0.0011188998 224 389 0.0049278997 225 389 2.3799992e-05 233 389 0.0022139999 234 389 0.0010950998 237 389 9.5199997e-05 240 389 0.0010237 241 389 0.0034280999 248 389 2.3799992e-05 250 389 2.3799992e-05 252 389 0.0012616999 263 389 2.3799992e-05 270 389 0.0012379 277 389 0.013378996 279 389 4.7599999e-05 284 389 0.00019039999 285 389 0.0020234999 286 389 0.00054749986 287 389 2.3799992e-05 289 389 4.7599999e-05 290 389 0.022639599 292 389 0.011093698 293 389 0.0020234999 294 389 0.0103557 295 389 0.011450697 296 389 0.0024758 298 389 0.00052369991 312 389 0.0042850971 315 389 0.0036185 317 389 0.0018092999 318 389 2.3799992e-05 319 389 0.0015473999 320 389 0.0050468966 321 389 0.0019997 322 389 0.0030947998 326 389 0.0036422999 338 389 0.00035709981 339 389 0.00011899999 340 389 0.0029757998 341 389 2.3799992e-05 343 389 2.3799992e-05 351 389 0.00052369991 354 389 2.3799992e-05 356 389 0.00011899999 358 389 0.0041898973 359 389 2.3799992e-05 369 389 0.00011899999 375 389 0.00011899999 384 389 4.7599999e-05 386 389 0.016640499 387 389 7.1399991e-05 389 389 0.10936528 390 389 0.022092097 391 389 0.0041660964 392 389 0.049350098 393 389 0.059015397 396 389 0.0006903999 398 389 0.0010237 402 389 4.7599999e-05 417 389 0.00038089999 419 389 2.3799992e-05 421 389 4.7599999e-05 422 389 9.5199997e-05 423 389 2.3799992e-05 425 389 2.3799992e-05 430 389 4.7599999e-05 431 389 4.7599999e-05 432 389 2.3799992e-05 433 389 4.7599999e-05 434 389 4.7599999e-05 443 389 0.0014283999 444 389 0.0034280999 445 389 0.0037613998 446 389 7.1399991e-05 447 389 0.0054277964 449 389 2.3799992e-05 450 389 0.0065704994 452 389 0.0034995 453 389 0.0013807998 454 389 0.00047609978 455 389 0.017949797 456 389 0.00052369991 457 389 0.0039041999 458 389 0.00083319983 459 389 0.0016663999 460 389 0.0011188998 463 389 0.009760499 464 389 0.0086415969 465 389 0.0024995999 467 389 0.017640296 468 389 0.0029281999 469 389 0.0063799992 470 389 0.0071655996 471 389 0.0029519999 472 389 0.00047609978 473 389 0.00016659999 477 389 0.0001428 478 389 0.0014521999 479 389 0.0010237 483 389 0.0010950998 489 389 2.3799992e-05 490 389 0.00059519988 491 389 0.00045229984 9 390 6.6099994e-05 16 390 3.309999e-05 17 390 1.0999999e-05 18 390 9.9199999e-05 22 390 3.309999e-05 60 390 0.0021483998 76 390 0.00016529999 77 390 0.0004296999 79 390 2.1999993e-05 81 390 1.0999999e-05 82 390 0.0001102 83 390 6.6099994e-05 84 390 6.6099994e-05 108 390 0.00012119999 113 390 0.00017629999 114 390 0.00044069998 126 390 0.00018729999 127 390 3.309999e-05 130 390 7.709999e-05 131 390 3.309999e-05 138 390 1.0999999e-05 139 390 1.0999999e-05 142 390 1.0999999e-05 150 390 0.00060599996 151 390 1.0999999e-05 156 390 1.0999999e-05 160 390 0.0005398998 161 390 1.0999999e-05 165 390 2.1999993e-05 169 390 4.4099987e-05 171 390 8.8099987e-05 172 390 0.00044069998 174 390 7.709999e-05 175 390 0.00057289982 177 390 1.0999999e-05 181 390 1.0999999e-05 187 390 9.9199999e-05 188 390 1.0999999e-05 189 390 0.0002424 190 390 0.0001102 192 390 7.709999e-05 193 390 8.8099987e-05 194 390 0.0001102 196 390 2.1999993e-05 197 390 3.309999e-05 198 390 0.0016635999 200 390 0.00012119999 201 390 7.709999e-05 203 390 8.8099987e-05 204 390 0.00013219999 206 390 0.002534 207 390 5.5099998e-05 209 390 2.1999993e-05 214 390 0.00059489999 219 390 3.309999e-05 220 390 4.4099987e-05 223 390 7.709999e-05 224 390 0.00091439998 225 390 1.0999999e-05 229 390 1.0999999e-05 233 390 9.9199999e-05 234 390 0.0016305998 237 390 8.8099987e-05 240 390 0.0014322998 241 390 0.004561197 248 390 7.709999e-05 250 390 4.4099987e-05 251 390 1.0999999e-05 252 390 0.0016415999 262 390 5.5099998e-05 263 390 1.0999999e-05 270 390 0.00064999983 272 390 3.309999e-05 276 390 0.00012119999 277 390 0.0080426969 279 390 5.5099998e-05 282 390 0.00057289982 283 390 0.0001542 284 390 0.00022029999 285 390 0.00035259989 286 390 5.5099998e-05 289 390 5.5099998e-05 290 390 0.0011788998 292 390 0.0013330998 293 390 0.0040653981 294 390 0.00059489999 295 390 0.0043738969 296 390 0.0029195999 297 390 0.00023139999 298 390 0.0007821999 299 390 9.9199999e-05 300 390 1.0999999e-05 305 390 0.00085939979 307 390 1.0999999e-05 308 390 0.00057289982 312 390 0.0066985972 313 390 1.0999999e-05 315 390 0.008946199 317 390 0.00067209988 318 390 7.709999e-05 319 390 0.00022029999 320 390 0.0055307969 321 390 0.0014101998 322 390 0.0018068999 324 390 3.309999e-05 325 390 1.0999999e-05 326 390 0.0021153998 328 390 2.1999993e-05 338 390 0.00023139999 339 390 6.6099994e-05 340 390 0.0052442998 341 390 3.309999e-05 344 390 1.0999999e-05 349 390 0.00052879984 350 390 4.4099987e-05 351 390 0.00012119999 353 390 1.0999999e-05 354 390 0.0001432 356 390 0.00012119999 358 390 0.0034924999 359 390 0.001862 362 390 1.0999999e-05 363 390 1.0999999e-05 366 390 1.0999999e-05 369 390 0.0072053969 370 390 0.0016196 371 390 7.709999e-05 372 390 0.0024788999 373 390 0.0001542 375 390 3.309999e-05 376 390 2.1999993e-05 380 390 5.5099998e-05 384 390 0.0002424 385 390 0.00064999983 386 390 0.0070070997 387 390 0.0016525998 389 390 0.0012339999 390 390 0.060651097 391 390 0.0086596981 392 390 0.044598699 393 390 0.097140968 394 390 1.0999999e-05 396 390 0.00016529999 397 390 0.00017629999 398 390 0.00040759984 401 390 2.1999993e-05 402 390 0.0001102 403 390 2.1999993e-05 404 390 0.00047379988 405 390 0.0017186999 413 390 0.00013219999 414 390 6.6099994e-05 415 390 1.0999999e-05 416 390 1.0999999e-05 417 390 0.00041869981 419 390 0.00090339989 420 390 0.00031949999 421 390 5.5099998e-05 422 390 0.00027539977 423 390 4.4099987e-05 424 390 1.0999999e-05 425 390 3.309999e-05 427 390 8.8099987e-05 430 390 0.0001102 431 390 3.309999e-05 432 390 2.1999993e-05 433 390 4.4099987e-05 434 390 0.0001102 438 390 1.0999999e-05 441 390 1.0999999e-05 442 390 2.1999993e-05 443 390 0.00081529981 444 390 0.0021153998 445 390 0.0025670999 446 390 0.00016529999 447 390 0.0047044978 448 390 1.0999999e-05 449 390 3.309999e-05 450 390 0.0062027983 452 390 0.0053324997 453 390 0.00067209988 454 390 0.00029749982 455 390 0.021197598 456 390 0.0015203999 457 390 0.0025781 458 390 0.00082629989 459 390 0.0011127999 460 390 0.00095849996 463 390 0.013419297 464 390 0.0042196997 465 390 0.0031399999 467 390 0.022078998 468 390 0.0022695998 469 390 0.012174297 470 390 0.020228099 471 390 0.0028535 472 390 0.0001102 473 390 0.00045169983 477 390 0.00012119999 478 390 0.0020603 479 390 3.309999e-05 483 390 0.0034043998 489 390 3.309999e-05 490 390 0.0017296998 491 390 0.0001432 18 391 0.00016299999 22 391 8.1499995e-05 60 391 0.0038301998 108 391 0.00016299999 114 391 0.00032599992 126 391 0.00024449988 150 391 0.0007334 175 391 8.1499995e-05 189 391 0.00016299999 190 391 0.00016299999 192 391 0.00065189996 193 391 0.0005704998 194 391 0.00016299999 198 391 0.0048080981 200 391 8.1499995e-05 203 391 8.1499995e-05 204 391 8.1499995e-05 206 391 0.00016299999 207 391 8.1499995e-05 214 391 0.0082307979 223 391 0.00040749996 224 391 0.0047265999 233 391 8.1499995e-05 234 391 0.0022002999 237 391 8.1499995e-05 240 391 8.1499995e-05 241 391 0.013935298 252 391 0.12403226 262 391 0.00016299999 270 391 0.00016299999 272 391 0.00065189996 276 391 0.0036672 277 391 0.013609298 282 391 8.1499995e-05 284 391 0.000489 290 391 0.00032599992 292 391 0.0026077998 293 391 0.0039931983 294 391 0.0047265999 295 391 0.0094531998 296 391 8.1499995e-05 297 391 0.00097789988 298 391 8.1499995e-05 312 391 0.00016299999 315 391 0.00089639984 317 391 8.1499995e-05 320 391 0.0082307979 321 391 0.0024448 326 391 0.0052154996 339 391 8.1499995e-05 340 391 0.0017114 351 391 0.000489 356 391 8.1499995e-05 358 391 0.0086382963 369 391 8.1499995e-05 372 391 8.1499995e-05 375 391 0.00024449988 384 391 8.1499995e-05 385 391 0.00016299999 386 391 0.00016299999 387 391 0.00024449988 389 391 0.0008148998 390 391 0.0008148998 391 391 0.0033411998 392 391 0.0077417977 393 391 0.057778496 396 391 0.00089639984 417 391 0.000489 421 391 8.1499995e-05 422 391 8.1499995e-05 430 391 8.1499995e-05 433 391 8.1499995e-05 434 391 8.1499995e-05 443 391 0.0022002999 444 391 0.0011409 445 391 0.0074158981 447 391 0.0033411998 450 391 0.0048080981 452 391 0.0092086978 453 391 0.0018743 454 391 0.0011409 455 391 0.028603997 456 391 0.00024449988 457 391 0.0053784996 458 391 0.0011409 459 391 0.0044005997 460 391 0.00097789988 463 391 0.0125499 464 391 0.0066008978 465 391 0.0022002999 467 391 0.015239198 468 391 0.0091271996 469 391 0.0084752999 470 391 0.0092901997 471 391 0.0039931983 473 391 0.00024449988 477 391 0.00024449988 478 391 0.0013853998 483 391 0.0016299 490 391 0.027055699 491 391 0.0015483999 9 392 4.2299987e-05 16 392 4.2299987e-05 18 392 0.00016919999 60 392 0.0027917998 79 392 4.2299987e-05 82 392 4.2299987e-05 83 392 4.2299987e-05 84 392 4.2299987e-05 108 392 8.4599989e-05 113 392 0.00016919999 114 392 0.00029609981 126 392 0.00012689999 127 392 4.2299987e-05 150 392 0.00080369995 175 392 0.00012689999 187 392 0.00033839978 188 392 8.4599989e-05 189 392 8.4599989e-05 190 392 0.00012689999 192 392 4.2299987e-05 193 392 4.2299987e-05 194 392 0.00012689999 197 392 4.2299987e-05 198 392 0.0015650999 200 392 8.4599989e-05 201 392 8.4599989e-05 203 392 8.4599989e-05 204 392 0.00012689999 206 392 0.0002115 207 392 8.4599989e-05 209 392 4.2299987e-05 214 392 0.022841699 219 392 4.2299987e-05 223 392 0.0067678988 224 392 0.0013112999 233 392 0.00012689999 234 392 0.0024533998 237 392 8.4599989e-05 240 392 0.0021572998 241 392 0.0057526976 242 392 4.2299987e-05 248 392 4.2299987e-05 250 392 4.2299987e-05 252 392 0.0067255981 262 392 0.0044413991 263 392 4.2299987e-05 270 392 0.00029609981 276 392 0.0011843999 277 392 0.0015650999 279 392 4.2299987e-05 282 392 0.00029609981 284 392 0.00050759991 285 392 0.0002115 290 392 0.0037222998 292 392 0.0015228 293 392 0.00059219985 294 392 0.025633398 295 392 0.0014381998 296 392 0.00046529993 297 392 0.00033839978 298 392 0.00025379984 308 392 0.00012689999 312 392 0.002961 315 392 0.0240261 317 392 4.2299987e-05 320 392 0.011293899 321 392 0.00059219985 322 392 0.0006767998 325 392 4.2299987e-05 326 392 0.00016919999 335 392 8.4599989e-05 339 392 4.2299987e-05 340 392 0.0031724998 351 392 8.4599989e-05 354 392 8.4599989e-05 356 392 0.0002115 358 392 0.0012266999 359 392 0.0048220977 361 392 4.2299987e-05 369 392 4.2299987e-05 370 392 4.2299987e-05 371 392 8.4599989e-05 372 392 0.00071909977 373 392 0.00033839978 375 392 0.0023687999 376 392 8.4599989e-05 384 392 4.2299987e-05 386 392 0.00054989988 387 392 0.00016919999 389 392 0.00050759991 390 392 0.00042299996 391 392 0.00054989988 392 392 0.018823199 393 392 0.11374307 396 392 0.0006767998 402 392 4.2299987e-05 405 392 4.2299987e-05 417 392 0.00050759991 419 392 0.00012689999 421 392 8.4599989e-05 422 392 0.00016919999 423 392 4.2299987e-05 425 392 4.2299987e-05 430 392 8.4599989e-05 431 392 4.2299987e-05 432 392 4.2299987e-05 433 392 4.2299987e-05 434 392 8.4599989e-05 443 392 0.0013112999 444 392 0.0032147998 445 392 0.0041029975 446 392 0.00071909977 447 392 0.0063448995 449 392 4.2299987e-05 450 392 0.0056681 452 392 0.0089251995 453 392 0.0010574998 454 392 0.0010574998 455 392 0.022207197 456 392 0.0010574998 457 392 0.0059218965 458 392 0.00093059987 459 392 0.0013958998 460 392 0.0012266999 463 392 0.013831899 464 392 0.0071485974 465 392 0.0025379998 467 392 0.018780898 468 392 0.0033417 469 392 0.012478299 470 392 0.014339499 471 392 0.0049912967 473 392 0.00029609981 477 392 0.00029609981 478 392 0.0038068998 483 392 0.0013535998 489 392 0.00016919999 490 392 0.0065140985 491 392 0.0038068998 9 393 3.9699997e-05 18 393 0.00015869999 22 393 5.9499987e-05 24 393 1.9799991e-05 60 393 0.0023800998 77 393 3.9699997e-05 79 393 1.9799991e-05 82 393 3.9699997e-05 83 393 3.9699997e-05 84 393 3.9699997e-05 104 393 7.9299993e-05 108 393 9.9199999e-05 113 393 7.9299993e-05 114 393 0.00023799999 126 393 0.00011899999 127 393 1.9799991e-05 130 393 7.9299993e-05 142 393 3.9699997e-05 143 393 1.9799991e-05 150 393 0.0007536998 151 393 5.9499987e-05 160 393 0.00015869999 169 393 3.9699997e-05 171 393 1.9799991e-05 172 393 9.9199999e-05 174 393 0.00017849999 175 393 0.0020428998 177 393 1.9799991e-05 187 393 0.0029155998 188 393 0.0002776999 189 393 9.9199999e-05 190 393 0.00011899999 192 393 0.00011899999 193 393 0.0012496 194 393 0.00013879999 196 393 1.9799991e-05 197 393 1.9799991e-05 198 393 0.0059105977 200 393 9.9199999e-05 201 393 3.9699997e-05 203 393 0.00013879999 204 393 0.00013879999 206 393 0.00031729997 207 393 5.9499987e-05 208 393 1.9799991e-05 209 393 1.9799991e-05 214 393 0.0016263998 219 393 0.0014676999 221 393 7.9299993e-05 223 393 0.0038279998 224 393 0.0069022998 225 393 3.9699997e-05 233 393 0.0001983 234 393 0.0026775999 237 393 0.00013879999 240 393 0.00089249993 241 393 0.030048799 242 393 1.9799991e-05 248 393 1.9799991e-05 250 393 1.9799991e-05 252 393 0.0022015998 262 393 0.0027965999 268 393 1.9799991e-05 270 393 0.00011899999 271 393 0.00011899999 272 393 3.9699997e-05 276 393 0.0026180998 277 393 0.014260799 278 393 1.9799991e-05 279 393 7.9299993e-05 282 393 0.0024197998 283 393 0.00045619998 284 393 0.00051569985 285 393 0.0022015998 286 393 0.00051569985 287 393 1.9799991e-05 288 393 9.9199999e-05 289 393 0.00061489991 290 393 0.0021023999 291 393 1.9799991e-05 292 393 0.0087071992 293 393 0.0080327988 294 393 0.010274097 295 393 0.014022797 296 393 0.0019437999 297 393 0.00031729997 298 393 0.0007536998 299 393 5.9499987e-05 305 393 3.9699997e-05 307 393 3.9699997e-05 308 393 0.00051569985 312 393 0.0067237988 313 393 0.00021819999 315 393 0.015371498 317 393 0.00021819999 319 393 0.00011899999 320 393 0.017612796 321 393 0.00089249993 322 393 0.0017255999 325 393 0.0014081998 326 393 0.0010908998 328 393 3.9699997e-05 337 393 9.9199999e-05 338 393 3.9699997e-05 340 393 0.0047601983 341 393 1.9799991e-05 347 393 1.9799991e-05 349 393 3.9699997e-05 350 393 1.9799991e-05 351 393 0.00025779987 352 393 1.9799991e-05 353 393 3.9699997e-05 354 393 0.00021819999 356 393 0.00017849999 357 393 0.00013879999 358 393 0.0033320999 359 393 0.012297198 361 393 5.9499987e-05 369 393 0.0010313999 370 393 0.0016065999 371 393 0.00045619998 372 393 0.0011900999 373 393 0.0019040999 375 393 0.0015470998 376 393 0.00057519996 384 393 3.9699997e-05 385 393 1.9799991e-05 386 393 0.0033320999 387 393 0.00065449998 388 393 1.9799991e-05 389 393 0.0016858999 390 393 0.0016263998 391 393 0.0028164999 392 393 0.030941296 393 393 0.14048547 395 393 1.9799991e-05 396 393 0.00081319991 397 393 0.00059499987 398 393 5.9499987e-05 402 393 0.0009519998 405 393 1.9799991e-05 413 393 1.9799991e-05 414 393 5.9499987e-05 417 393 0.00051569985 419 393 0.0015272 420 393 3.9699997e-05 421 393 7.9299993e-05 422 393 9.9199999e-05 423 393 3.9699997e-05 424 393 3.9699997e-05 425 393 1.9799991e-05 427 393 1.9799991e-05 430 393 9.9199999e-05 431 393 5.9499987e-05 432 393 1.9799991e-05 433 393 3.9699997e-05 434 393 3.9699997e-05 441 393 5.9499987e-05 442 393 3.9699997e-05 443 393 0.0018048999 444 393 0.0036692999 445 393 0.0047799982 446 393 0.00015869999 447 393 0.0067039989 448 393 1.9799991e-05 450 393 0.0058312975 452 393 0.0065253973 453 393 0.00099169998 454 393 0.0010511999 455 393 0.026835699 456 393 0.00061489991 457 393 0.0054345988 458 393 0.00079339999 459 393 0.0014479 460 393 0.00097189983 463 393 0.015351698 464 393 0.0077947974 465 393 0.0031734998 467 393 0.016402896 468 393 0.0044229999 469 393 0.0084889978 470 393 0.010353398 471 393 0.0024395999 472 393 1.9799991e-05 473 393 0.00021819999 477 393 0.00021819999 478 393 0.0018048999 479 393 1.9799991e-05 483 393 0.0016065999 489 393 1.9799991e-05 490 393 0.0034510999 491 393 0.0022213999 21 394 0.00020499999 60 394 0.0020501998 108 394 0.00010249999 114 394 0.00020499999 126 394 0.00010249999 150 394 0.0035879 160 394 0.00040999986 171 394 0.0050230995 190 394 0.00010249999 194 394 0.00020499999 198 394 0.009943597 200 394 0.00010249999 204 394 0.0050230995 206 394 0.00020499999 214 394 0.06847769 224 394 0.0064581968 225 394 0.0042029992 233 394 0.0010250998 234 394 0.0017426999 237 394 0.00010249999 240 394 0.0512558 241 394 0.049205497 252 394 0.00010249999 272 394 0.00010249999 273 394 0.0013325999 277 394 0.00040999986 284 394 0.0003074999 287 394 0.18718606 288 394 0.00010249999 290 394 0.0048179999 294 394 0.0094310977 295 394 0.00010249999 315 394 0.00010249999 326 394 0.00082009984 340 394 0.0024603 356 394 0.00010249999 358 394 0.00092259981 370 394 0.00010249999 375 394 0.00061509991 384 394 0.00010249999 386 394 0.00010249999 387 394 0.00010249999 394 394 0.036904197 395 394 0.0003074999 397 394 0.00020499999 417 394 0.0003074999 422 394 0.00020499999 443 394 0.0056380965 444 394 0.0028702999 445 394 0.0093284994 446 394 0.00051259995 447 394 0.0039978996 450 394 0.0032803998 452 394 0.0094310977 453 394 0.0026652999 454 394 0.0012300999 455 394 0.022654999 456 394 0.00010249999 457 394 0.0080983974 458 394 0.00082009984 459 394 0.00040999986 460 394 0.00092259981 463 394 0.016094297 464 394 0.0017426999 465 394 0.0045104995 467 394 0.023577698 468 394 0.0054330975 469 394 0.0034854 470 394 0.0039978996 471 394 0.0039978996 473 394 0.00010249999 477 394 0.00071759988 478 394 0.0010250998 483 394 0.00061509991 490 394 0.00040999986 491 394 0.0019476998 21 395 0.005887799 22 395 0.00030989992 60 395 0.0024790999 114 395 0.00030989992 126 395 0.00030989992 188 395 0.0021692 198 395 0.0034087 206 395 0.00061979983 214 395 0.044003699 234 395 0.0015493999 240 395 0.00061979983 241 395 0.00061979983 272 395 0.013015199 279 395 0.00030989992 284 395 0.00030989992 287 395 0.0024790999 288 395 0.0111559 290 395 0.057018898 294 395 0.029439099 326 395 0.10040289 340 395 0.0055778995 358 395 0.0037185999 375 395 0.015494298 394 395 0.00061979983 395 395 0.034087397 405 395 0.00030989992 417 395 0.00030989992 443 395 0.0061976984 445 395 0.0055778995 446 395 0.0015493999 447 395 0.0086767972 450 395 0.0034087 452 395 0.0052680969 453 395 0.00092969998 454 395 0.0012394998 455 395 0.0238612 457 395 0.026030399 458 395 0.00061979983 459 395 0.00030989992 460 395 0.00061979983 463 395 0.035946697 464 395 0.0027889998 465 395 0.0015493999 467 395 0.019832697 468 395 0.011465799 469 395 0.0040284991 470 395 0.0043383986 471 395 0.00030989992 473 395 0.00030989992 477 395 0.00061979983 478 395 0.00092969998 483 395 0.00092969998 490 395 0.00061979983 491 395 0.0012394998 60 396 0.0016305998 108 396 0.0002329 114 396 0.00046589994 126 396 0.0002329 194 396 0.0002329 198 396 0.0025622998 206 396 0.00046589994 214 396 0.00046589994 224 396 0.0002329 233 396 0.00093169999 234 396 0.0011646999 241 396 0.0027951999 252 396 0.007221099 270 396 0.0002329 272 396 0.0039598979 276 396 0.0002329 277 396 0.003727 282 396 0.0025622998 284 396 0.00046589994 290 396 0.004658699 292 396 0.0020963999 293 396 0.004658699 294 396 0.0055904984 295 396 0.0041928999 312 396 0.0023293998 319 396 0.0048916973 320 396 0.0002329 321 396 0.010948099 326 396 0.0002329 340 396 0.0051245987 350 396 0.00069879997 351 396 0.0020963999 354 396 0.0358724 358 396 0.0044257976 369 396 0.0002329 372 396 0.0041928999 375 396 0.015140899 386 396 0.0011646999 387 396 0.0002329 390 396 0.00046589994 391 396 0.042161699 392 396 0.00069879997 393 396 0.0200326 395 396 0.0002329 396 396 0.029583 398 396 0.0016305998 414 396 0.0016305998 417 396 0.00046589994 422 396 0.0002329 441 396 0.00069879997 443 396 0.00046589994 444 396 0.006988097 445 396 0.010715097 447 396 0.0090845972 450 396 0.0044257976 452 396 0.0041928999 453 396 0.0016305998 454 396 0.0030281998 455 396 0.026787799 457 396 0.023060799 458 396 0.00069879997 459 396 0.00069879997 460 396 0.00069879997 463 396 0.045189798 464 396 0.0093174987 465 396 0.0090845972 467 396 0.023293696 468 396 0.0030281998 469 396 0.0097833984 470 396 0.011180997 471 396 0.010249197 473 396 0.0002329 477 396 0.00069879997 478 396 0.0013975999 483 396 0.0011646999 490 396 0.0018634999 491 396 0.0039598979 9 397 5.4299991e-05 18 397 0.00016289999 19 397 0.0011403 22 397 0.00038009998 60 397 0.0030950999 82 397 5.4299991e-05 83 397 5.4299991e-05 84 397 5.4299991e-05 108 397 5.4299991e-05 113 397 0.0001086 114 397 0.0001086 126 397 5.4299991e-05 130 397 5.4299991e-05 135 397 0.0008144998 137 397 5.4299991e-05 139 397 5.4299991e-05 150 397 0.00059729978 160 397 0.00043439982 169 397 5.4299991e-05 172 397 0.0001086 187 397 0.0001086 188 397 5.4299991e-05 189 397 5.4299991e-05 190 397 0.0001086 191 397 5.4299991e-05 194 397 0.00016289999 197 397 5.4299991e-05 198 397 0.0054300986 200 397 5.4299991e-05 203 397 0.0001086 204 397 0.0001086 206 397 0.0001086 207 397 5.4299991e-05 214 397 0.0014117998 223 397 0.00032579992 224 397 0.0073305964 225 397 0.0038552999 233 397 0.00016289999 234 397 0.0023349 237 397 0.0001086 240 397 0.0073305964 241 397 0.0079821981 242 397 5.4299991e-05 252 397 0.00038009998 262 397 0.0018461999 270 397 0.0021176999 271 397 0.00076019997 272 397 0.00021719999 277 397 0.051694199 282 397 0.0122719 283 397 0.0039638989 284 397 0.00048869988 285 397 5.4299991e-05 286 397 5.4299991e-05 287 397 0.00027149986 288 397 0.0022262998 289 397 0.0045069978 290 397 5.4299991e-05 292 397 0.0098826997 293 397 0.0021176999 294 397 0.008905299 295 397 0.042463098 296 397 0.0085251965 297 397 0.00038009998 298 397 0.0084165968 299 397 5.4299991e-05 308 397 5.4299991e-05 312 397 0.0078735985 313 397 0.0013031999 315 397 0.0034208999 319 397 5.4299991e-05 320 397 0.0051585995 321 397 0.0037466998 322 397 0.0064617991 323 397 5.4299991e-05 324 397 5.4299991e-05 326 397 0.007710699 328 397 0.00021719999 329 397 5.4299991e-05 338 397 5.4299991e-05 339 397 0.00027149986 340 397 0.0111316 351 397 0.008905299 352 397 5.4299991e-05 354 397 0.0072762966 356 397 5.4299991e-05 357 397 0.00076019997 358 397 0.0023349 370 397 0.00038009998 371 397 5.4299991e-05 372 397 0.0007058999 373 397 0.00032579992 374 397 5.4299991e-05 375 397 0.0037466998 376 397 5.4299991e-05 384 397 0.00016289999 385 397 0.0001086 386 397 0.0013031999 387 397 5.4299991e-05 389 397 5.4299991e-05 390 397 5.4299991e-05 391 397 5.4299991e-05 392 397 0.0079821981 393 397 0.0014117998 394 397 5.4299991e-05 396 397 0.0034751999 397 397 0.065920889 402 397 0.0060816966 404 397 0.0001086 412 397 5.4299991e-05 414 397 5.4299991e-05 417 397 0.00043439982 421 397 5.4299991e-05 422 397 0.0001086 423 397 5.4299991e-05 430 397 5.4299991e-05 431 397 5.4299991e-05 433 397 5.4299991e-05 434 397 5.4299991e-05 443 397 0.0033665998 444 397 0.0015203999 445 397 0.0076020993 446 397 0.00032579992 447 397 0.0019548 450 397 0.0038552999 452 397 0.0049413964 453 397 0.0012488998 454 397 0.00086879986 455 397 0.029539499 456 397 0.00027149986 457 397 0.0049413964 458 397 0.00048869988 459 397 0.00043439982 460 397 0.00092309993 463 397 0.0078192987 464 397 0.0032036998 465 397 0.0030950999 467 397 0.023240697 468 397 0.0029322 469 397 0.0041267984 470 397 0.0044525973 471 397 0.011185899 473 397 0.0001086 477 397 0.0008144998 478 397 0.0010859999 483 397 0.0008144998 490 397 0.00043439982 491 397 0.0033665998 22 398 0.00040169992 60 398 0.0010042 108 398 0.00020079999 114 398 0.00040169992 126 398 0.00020079999 150 398 0.00020079999 160 398 0.00080339983 171 398 0.0018075998 172 398 0.00020079999 187 398 0.00020079999 188 398 0.00020079999 190 398 0.00020079999 194 398 0.00020079999 198 398 0.010042198 200 398 0.00020079999 206 398 0.00040169992 214 398 0.0056235977 223 398 0.00020079999 224 398 0.010644697 225 398 0.00020079999 233 398 0.00040169992 234 398 0.0022092999 237 398 0.00020079999 240 398 0.00020079999 241 398 0.0092387982 242 398 0.00020079999 252 398 0.00040169992 262 398 0.00020079999 270 398 0.00020079999 274 398 0.00040169992 277 398 0.024703797 278 398 0.00020079999 282 398 0.0016066998 283 398 0.00020079999 284 398 0.00060249981 285 398 0.00020079999 286 398 0.0040168986 287 398 0.00060249981 288 398 0.00040169992 289 398 0.00020079999 290 398 0.0084353983 291 398 0.00020079999 292 398 0.016067497 293 398 0.0098412968 294 398 0.031532399 295 398 0.089576185 296 398 0.00040169992 297 398 0.00020079999 298 398 0.00020079999 299 398 0.00020079999 301 398 0.00020079999 304 398 0.00020079999 307 398 0.00020079999 312 398 0.0054227971 313 398 0.00020079999 315 398 0.013657399 319 398 0.00040169992 320 398 0.00060249981 321 398 0.00020079999 322 398 0.00020079999 324 398 0.0014058999 326 398 0.0012051 328 398 0.00020079999 340 398 0.0078328997 350 398 0.00020079999 351 398 0.00060249981 352 398 0.00080339983 354 398 0.00020079999 356 398 0.00020079999 358 398 0.0036151998 366 398 0.0054227971 369 398 0.00040169992 370 398 0.00020079999 371 398 0.00040169992 372 398 0.0068286993 373 398 0.0026109999 384 398 0.0056235977 386 398 0.057642099 387 398 0.00020079999 389 398 0.00060249981 390 398 0.00060249981 392 398 0.0048201978 393 398 0.0078328997 398 398 0.019281 402 398 0.00020079999 415 398 0.00080339983 417 398 0.00040169992 419 398 0.00060249981 422 398 0.00020079999 441 398 0.00020079999 442 398 0.00020079999 443 398 0.0028118 444 398 0.0046193972 445 398 0.0098412968 447 398 0.0054227971 450 398 0.0048201978 452 398 0.0052218996 453 398 0.0014058999 454 398 0.0044185966 455 398 0.032134999 456 398 0.00020079999 457 398 0.0070294999 458 398 0.0012051 459 398 0.00040169992 460 398 0.00080339983 463 398 0.025707997 464 398 0.0062260963 465 398 0.0018075998 467 398 0.050813399 468 398 0.0028118 469 398 0.0070294999 470 398 0.0072303973 471 398 0.0010042 473 398 0.00020079999 477 398 0.00060249981 478 398 0.0014058999 483 398 0.00040169992 490 398 0.00060249981 491 398 0.0024100998 18 399 0.0001181 60 399 0.0011808998 78 399 0.00047239987 113 399 0.0001181 114 399 0.0001181 130 399 0.0020075999 134 399 0.0016532999 139 399 0.0044874996 149 399 0.0001181 150 399 0.00047239987 151 399 0.00023619999 156 399 0.0022437 158 399 0.0001181 160 399 0.010510199 161 399 0.00070849992 163 399 0.00070849992 165 399 0.011572998 171 399 0.00047239987 173 399 0.00035429979 176 399 0.00035429979 177 399 0.0001181 178 399 0.0001181 181 399 0.0096834973 191 399 0.00023619999 194 399 0.0001181 198 399 0.00023619999 206 399 0.00023619999 214 399 0.0001181 224 399 0.00094469986 233 399 0.0081482977 234 399 0.0015351998 237 399 0.0057864971 240 399 0.005668398 241 399 0.0044874996 242 399 0.0001181 252 399 0.0090930983 270 399 0.0001181 271 399 0.0001181 274 399 0.00082659977 277 399 0.079475641 282 399 0.0060226992 283 399 0.00094469986 284 399 0.0010627999 289 399 0.00035429979 292 399 0.0027160998 293 399 0.022909798 295 399 0.0018894998 296 399 0.00059049996 297 399 0.0001181 298 399 0.0001181 302 399 0.00035429979 303 399 0.0033065998 304 399 0.0011808998 305 399 0.0001181 306 399 0.0034246999 307 399 0.00023619999 308 399 0.0012989999 312 399 0.0085025989 313 399 0.0093291998 315 399 0.0038969999 319 399 0.0220831 320 399 0.0017714 321 399 0.0017714 323 399 0.00082659977 324 399 0.0018894998 326 399 0.0024798999 328 399 0.0082663968 331 399 0.00082659977 332 399 0.0001181 337 399 0.0001181 338 399 0.0010627999 339 399 0.00047239987 340 399 0.0016532999 350 399 0.0001181 351 399 0.00059049996 354 399 0.0035426999 356 399 0.0001181 357 399 0.00023619999 358 399 0.0046055987 366 399 0.023854498 370 399 0.0001181 371 399 0.0001181 372 399 0.0018894998 373 399 0.0001181 374 399 0.0001181 377 399 0.0022437 378 399 0.0030703999 383 399 0.0011808998 384 399 0.0001181 385 399 0.0012989999 386 399 0.00023619999 387 399 0.0001181 394 399 0.00070849992 397 399 0.0043693967 399 399 0.0090930983 400 399 0.0069673993 401 399 0.10167688 402 399 0.042040598 410 399 0.0001181 412 399 0.0017714 417 399 0.00035429979 421 399 0.0001181 422 399 0.0001181 439 399 0.00023619999 441 399 0.0001181 443 399 0.0066130981 444 399 0.00047239987 445 399 0.0067311972 446 399 0.00023619999 447 399 0.0031884999 450 399 0.0020075999 452 399 0.0035426999 453 399 0.0014171 454 399 0.00023619999 455 399 0.0422768 456 399 0.00023619999 457 399 0.0017714 458 399 0.00023619999 459 399 0.00047239987 460 399 0.00082659977 463 399 0.011572998 464 399 0.0034246999 465 399 0.00082659977 467 399 0.0085025989 468 399 0.016532797 469 399 0.0043693967 470 399 0.0049597993 471 399 0.0016532999 473 399 0.0001181 477 399 0.0001181 478 399 0.00094469986 483 399 0.00070849992 490 399 0.00035429979 491 399 0.00035429979 22 400 0.0001643 60 400 0.0017255999 108 400 8.2199986e-05 114 400 0.0001643 126 400 8.2199986e-05 130 400 0.0017255999 139 400 0.00082169985 150 400 8.2199986e-05 160 400 0.022021398 161 400 0.022432197 165 400 0.0057517998 169 400 0.0001643 181 400 0.0001643 189 400 8.2199986e-05 190 400 8.2199986e-05 194 400 8.2199986e-05 198 400 8.2199986e-05 206 400 0.00032869983 214 400 0.0004929998 224 400 0.00041079987 233 400 0.0046835989 234 400 0.00098599982 237 400 0.053574398 240 400 0.0015611998 241 400 0.0016433999 242 400 8.2199986e-05 252 400 0.0001643 270 400 0.0032046 271 400 8.2199986e-05 274 400 0.0026294 277 400 0.077896476 282 400 0.010681998 283 400 0.0031223998 284 400 0.00090389978 286 400 8.2199986e-05 289 400 8.2199986e-05 292 400 0.0015611998 293 400 0.067214489 294 400 0.0002464999 295 400 0.00082169985 296 400 0.00041079987 303 400 8.2199986e-05 307 400 0.00032869983 312 400 0.012900598 313 400 0.0092029981 315 400 0.0077238977 319 400 0.0094494969 320 400 8.2199986e-05 321 400 0.0036153998 322 400 8.2199986e-05 323 400 0.007477399 324 400 0.0073130988 326 400 0.0023006999 328 400 0.00032869983 331 400 0.0001643 335 400 8.2199986e-05 337 400 0.0055052973 338 400 0.0016433999 339 400 0.0004929998 340 400 0.0017255999 349 400 0.0002464999 350 400 8.2199986e-05 351 400 0.0013968998 354 400 0.0029580998 356 400 0.0001643 357 400 8.2199986e-05 358 400 0.0039440989 366 400 0.006737899 372 400 0.0001643 373 400 0.0001643 374 400 0.0001643 378 400 8.2199986e-05 385 400 0.00073949993 387 400 8.2199986e-05 397 400 0.0001643 399 400 0.0001643 400 400 0.00082169985 401 400 0.0020541998 402 400 0.091454387 412 400 0.0024650998 417 400 0.00032869983 421 400 0.0001643 422 400 8.2199986e-05 443 400 0.0082990974 444 400 0.0023828999 445 400 0.006819997 446 400 0.00032869983 447 400 0.0044370964 450 400 0.0017255999 452 400 0.0028758999 453 400 0.0010682 454 400 0.0002464999 455 400 0.045850497 456 400 8.2199986e-05 457 400 0.0018076999 458 400 0.0004929998 459 400 0.00041079987 460 400 0.00073949993 463 400 0.0061626993 464 400 0.0004929998 465 400 0.00065739988 467 400 0.0077238977 468 400 0.0050944984 469 400 0.0035332998 470 400 0.0038619998 471 400 0.0051766969 473 400 8.2199986e-05 477 400 0.0001643 478 400 0.00073949993 483 400 0.00090389978 490 400 0.00032869983 491 400 0.00065739988 9 401 7.0999995e-06 16 401 2.3999992e-06 18 401 2.6099995e-05 22 401 0.00035159988 60 401 0.0012591998 79 401 2.3999992e-06 82 401 9.4999996e-06 83 401 7.0999995e-06 84 401 7.0999995e-06 108 401 9.4999996e-06 113 401 1.19e-05 114 401 2.6099995e-05 126 401 1.6599995e-05 127 401 2.3999992e-06 130 401 0.00014969999 134 401 0.0036753998 137 401 4.7999993e-06 139 401 0.00014259999 150 401 0.0001924 156 401 0.019572198 158 401 0.0052410997 160 401 0.00017819999 161 401 7.0999995e-06 165 401 0.00022099999 181 401 0.0041861981 189 401 2.6099995e-05 190 401 2.8499999e-05 192 401 7.0999995e-06 194 401 0.00059869979 196 401 2.3999992e-06 197 401 4.7999993e-06 198 401 9.4999996e-06 200 401 1.19e-05 201 401 4.7999993e-06 203 401 1.43e-05 204 401 1.6599995e-05 206 401 0.00020189999 207 401 9.4999996e-06 209 401 2.3999992e-06 214 401 0.00012119999 218 401 7.0999995e-06 219 401 0.0013613999 223 401 0.00023759999 224 401 8.079999e-05 233 401 0.0036254998 234 401 0.00083869998 236 401 0.00052739982 237 401 0.019515198 240 401 0.0094225965 241 401 0.0049725994 242 401 0.0021287999 248 401 4.7999993e-06 250 401 2.3999992e-06 251 401 2.3999992e-06 252 401 0.0159158 263 401 2.3999992e-06 270 401 0.00014019999 271 401 4.5099994e-05 272 401 2.3799992e-05 274 401 1.43e-05 276 401 8.79e-05 277 401 0.0096791983 282 401 0.0051579997 283 401 0.0011213999 284 401 0.00038009998 285 401 6.8899986e-05 289 401 0.0001164 290 401 1.19e-05 292 401 0.0002328 293 401 0.00096459989 295 401 0.0001449 296 401 0.0011997998 297 401 7.0999995e-06 298 401 0.00019009999 299 401 0.00020669999 303 401 7.129999e-05 304 401 1.19e-05 306 401 2.6099995e-05 307 401 2.3999992e-06 312 401 0.0092586987 313 401 0.0885216 315 401 8.3199993e-05 318 401 7.5999997e-05 319 401 0.023254797 320 401 0.00016159999 321 401 0.0012543998 322 401 0.0036136999 323 401 0.0077238977 324 401 3.5599995e-05 326 401 0.00048939977 328 401 0.011480097 331 401 3.0899988e-05 338 401 0.00015919999 339 401 4.9899987e-05 340 401 0.0017295999 341 401 1.19e-05 350 401 4.7999993e-06 351 401 0.0010928998 354 401 7.5999997e-05 355 401 7.0999995e-06 356 401 0.00024469988 357 401 0.0060155988 358 401 0.00098119979 359 401 3.5599995e-05 366 401 0.0069041997 371 401 2.3999992e-06 372 401 0.00058679981 374 401 0.00056309998 377 401 3.3299992e-05 378 401 5.4599994e-05 380 401 2.3999992e-06 383 401 1.6599995e-05 384 401 0.0014848998 385 401 0.0053503998 386 401 1.19e-05 387 401 0.0071084984 392 401 0.00088379998 393 401 0.00027799979 394 401 0.0035993999 397 401 0.020527299 399 401 0.0018127998 400 401 0.00015209999 401 401 0.040363196 402 401 0.25693089 404 401 2.6099995e-05 412 401 0.00016159999 414 401 0.0013281 417 401 0.00013069999 419 401 0.00062479987 421 401 7.3699994e-05 422 401 5.2299991e-05 423 401 4.7999993e-06 425 401 2.3999992e-06 430 401 1.19e-05 431 401 4.7999993e-06 432 401 2.3999992e-06 433 401 4.7999993e-06 434 401 2.1399988e-05 441 401 0.00031599985 443 401 0.0087050982 444 401 0.00048229983 445 401 0.0074007995 446 401 0.00023049999 447 401 0.0016963999 448 401 1.19e-05 449 401 2.3999992e-06 450 401 0.00084819994 452 401 0.0020051999 453 401 0.00076029985 454 401 0.00045849988 455 401 0.058405399 456 401 0.0001354 457 401 0.0019220999 458 401 0.00010929999 459 401 0.00054169982 460 401 0.00084579992 463 401 0.0010239999 464 401 0.0006010998 465 401 0.00026609981 467 401 0.0040341988 468 401 0.013839297 469 401 0.0011498998 470 401 0.0012852999 471 401 0.00020189999 472 401 4.5099994e-05 473 401 2.8499999e-05 477 401 0.00014969999 478 401 0.00030169985 483 401 0.00050609978 489 401 1.6599995e-05 490 401 0.00010219999 491 401 7.8399986e-05 9 402 1.44e-05 16 402 4.7999993e-06 18 402 5.2699994e-05 19 402 9.5999994e-06 22 402 0.00061379978 24 402 2.3999994e-05 60 402 0.0025604998 76 402 9.5999994e-06 77 402 4.7999993e-06 78 402 9.5999994e-06 79 402 1.44e-05 82 402 2.8799986e-05 83 402 9.5999994e-06 84 402 9.5999994e-06 108 402 1.44e-05 113 402 2.8799986e-05 114 402 6.2299994e-05 117 402 4.7999993e-06 126 402 2.3999994e-05 127 402 4.7999993e-06 130 402 0.00076719979 131 402 3.8399987e-05 133 402 4.7999993e-06 134 402 0.00022059999 135 402 1.44e-05 137 402 0.00047949981 138 402 1.9199986e-05 139 402 0.00051789987 140 402 7.1899995e-05 142 402 0.0001774 149 402 4.7999993e-06 150 402 0.0004602999 156 402 0.0012610999 158 402 0.00031169993 159 402 4.7999993e-06 160 402 0.00012469999 161 402 2.8799986e-05 165 402 0.0001007 169 402 0.00061379978 170 402 4.7999993e-06 171 402 0.00020139999 172 402 0.00088229985 174 402 3.8399987e-05 175 402 0.00013429999 177 402 4.7999993e-06 181 402 0.00024929992 187 402 0.00055139977 188 402 0.00042679999 189 402 5.2699994e-05 190 402 6.2299994e-05 191 402 0.00030209986 192 402 9.1099995e-05 194 402 8.1499995e-05 196 402 4.7999993e-06 197 402 9.5999994e-06 198 402 0.0043873973 200 402 2.3999994e-05 201 402 9.5999994e-06 203 402 2.8799986e-05 204 402 0.00013429999 206 402 0.00024929992 207 402 2.3999994e-05 209 402 4.7999993e-06 214 402 0.00031649997 218 402 4.7999993e-06 219 402 8.6299988e-05 220 402 4.7999993e-06 221 402 9.5999994e-06 222 402 1.9199986e-05 223 402 0.0018028999 224 402 0.00269 225 402 0.0001774 229 402 9.5999994e-06 230 402 7.6699987e-05 233 402 0.0013952998 234 402 0.0023015998 236 402 4.3199994e-05 237 402 0.001707 239 402 4.7999993e-06 240 402 0.0046942979 241 402 0.0042243972 242 402 0.00086309994 248 402 9.5999994e-06 250 402 4.7999993e-06 251 402 1.9199986e-05 252 402 0.0018700999 262 402 1.9199986e-05 263 402 9.5999994e-06 270 402 0.0016925998 271 402 0.0075329989 272 402 0.0010932998 274 402 3.3599994e-05 276 402 0.00019179999 277 402 0.084425747 278 402 0.0001007 279 402 0.00021099999 282 402 0.071153164 283 402 0.028041199 284 402 0.00095419982 285 402 0.00064729992 286 402 0.00031169993 287 402 9.5899988e-05 288 402 0.0001199 289 402 0.00089669996 290 402 0.00011509999 292 402 0.010548998 293 402 0.0018461 294 402 0.00096379989 295 402 0.0041092969 296 402 0.014207598 297 402 0.00028769998 298 402 0.0013714 299 402 0.00045069982 300 402 9.5999994e-06 303 402 4.7999993e-06 304 402 5.7499987e-05 307 402 5.7499987e-05 308 402 9.5999994e-06 312 402 0.013416398 313 402 0.017995697 315 402 0.0006616998 317 402 1.9199986e-05 318 402 0.00024449988 319 402 0.0021145998 320 402 0.0045408979 321 402 0.0014769 322 402 0.0016494999 323 402 0.00092539983 324 402 0.00070009986 326 402 0.00094939978 327 402 1.44e-05 328 402 0.0020234999 329 402 3.8399987e-05 330 402 0.000187 331 402 0.0001966 332 402 4.7999993e-06 337 402 1.44e-05 338 402 0.0007815999 339 402 0.00024449988 340 402 0.0048668981 341 402 0.0001007 345 402 1.44e-05 349 402 2.8799986e-05 350 402 9.5899988e-05 351 402 0.0077966973 352 402 0.0009015 353 402 0.00011509999 354 402 0.00052749994 355 402 1.44e-05 356 402 2.8799986e-05 357 402 0.0078445971 358 402 0.0079980977 359 402 9.5999994e-06 361 402 4.7999993e-06 363 402 9.5999994e-06 366 402 0.0016639 367 402 9.5999994e-06 368 402 9.5999994e-06 369 402 9.5999994e-06 370 402 0.00020139999 371 402 0.0001103 372 402 0.0019850999 373 402 0.0006616998 374 402 6.2299994e-05 375 402 0.00030689989 376 402 9.5999994e-06 377 402 4.7999993e-06 378 402 4.7999993e-06 380 402 4.7999993e-06 384 402 0.00018219999 385 402 0.00041239988 386 402 0.00024449988 387 402 0.00054659997 390 402 3.8399987e-05 391 402 0.00032129977 392 402 0.00071449997 393 402 0.00039319997 394 402 0.0002158 396 402 3.3599994e-05 397 402 0.0064300969 398 402 1.9199986e-05 399 402 0.00011509999 400 402 1.44e-05 401 402 0.0024358998 402 402 0.070299685 404 402 0.00034519983 405 402 0.0001582 408 402 4.7999993e-06 409 402 1.44e-05 412 402 0.00061859982 413 402 4.7999993e-06 414 402 0.0006616998 415 402 0.0001007 416 402 1.9199986e-05 417 402 0.00034999987 419 402 0.00023019999 421 402 0.00023019999 422 402 4.7999987e-05 423 402 4.7999993e-06 425 402 4.7999993e-06 430 402 1.44e-05 431 402 9.5999994e-06 432 402 4.7999993e-06 433 402 1.44e-05 434 402 1.9199986e-05 438 402 4.7999993e-06 441 402 5.7499987e-05 442 402 1.44e-05 443 402 0.0053224973 444 402 0.00089189992 445 402 0.0074274987 446 402 0.00055619981 447 402 0.0015103999 448 402 1.44e-05 449 402 4.7999993e-06 450 402 0.0021386 452 402 0.0057875998 453 402 0.0017788999 454 402 0.00070969993 455 402 0.037520997 456 402 0.00064729992 457 402 0.0019275998 458 402 0.0001774 459 402 0.00088709989 460 402 0.0009782 463 402 0.0025988999 464 402 0.0015966999 465 402 0.0011795999 467 402 0.0075760968 468 402 0.0033564998 469 402 0.0030113 470 402 0.0033421 471 402 0.023615398 472 402 5.7499987e-05 473 402 6.2299994e-05 477 402 0.00016299999 478 402 0.00075759995 479 402 9.5999994e-06 483 402 0.0018604998 489 402 4.3199994e-05 490 402 0.00029729982 491 402 0.0053703971 9 403 7.4699987e-05 16 403 2.4899986e-05 17 403 1.25e-05 18 403 7.4699987e-05 22 403 2.4899986e-05 60 403 0.0030271998 75 403 0.0004608999 76 403 0.00022419999 79 403 2.4899986e-05 81 403 0.00012459999 82 403 0.00012459999 83 403 9.9699988e-05 84 403 9.9699988e-05 108 403 0.00014949999 113 403 0.0002118 114 403 0.00054809987 126 403 0.0002367 127 403 4.9799986e-05 130 403 0.00093429978 134 403 0.00057309982 150 403 0.00044849981 158 403 3.7399994e-05 160 403 0.00028649997 171 403 1.25e-05 172 403 6.2299994e-05 181 403 0.0016070998 187 403 1.25e-05 189 403 0.000137 190 403 8.7199995e-05 192 403 2.4899986e-05 194 403 4.9799986e-05 196 403 1.25e-05 197 403 3.7399994e-05 198 403 2.4899986e-05 200 403 8.7199995e-05 201 403 7.4699987e-05 203 403 3.7399994e-05 204 403 0.00089699985 206 403 0.0014326 207 403 3.7399994e-05 209 403 1.25e-05 214 403 0.00017439999 218 403 1.25e-05 219 403 0.0001121 224 403 0.0017814999 233 403 0.0023047 234 403 0.0025787998 237 403 0.0004608999 240 403 0.00061039999 241 403 0.00078479992 248 403 6.2299994e-05 250 403 4.9799986e-05 251 403 2.4899986e-05 252 403 9.9699988e-05 263 403 1.25e-05 270 403 2.4899986e-05 272 403 0.0002491998 276 403 0.00039859978 277 403 0.0020181998 282 403 0.00064779981 283 403 0.00075989985 284 403 0.0011834998 292 403 0.00012459999 293 403 0.0088823996 294 403 0.0020554999 295 403 0.0013704 296 403 0.0022548998 297 403 3.7399994e-05 298 403 0.00078479992 299 403 0.0042978972 308 403 1.25e-05 312 403 0.0068641976 315 403 0.00097169983 317 403 9.9699988e-05 318 403 0.0001121 319 403 0.004783798 320 403 0.0022423998 321 403 0.0025787998 322 403 0.00064779981 324 403 0.0011461 326 403 0.0019433999 338 403 0.00057309982 339 403 0.00017439999 340 403 0.0041234978 341 403 3.7399994e-05 350 403 0.0046467967 351 403 0.00062289997 354 403 6.2299994e-05 356 403 0.00066029979 357 403 9.9699988e-05 358 403 0.019483998 359 403 0.0059547983 369 403 0.001769 372 403 0.00032389979 380 403 2.4899986e-05 384 403 4.9799986e-05 387 403 0.0002367 390 403 0.071071684 392 403 0.0098416992 393 403 0.020517997 394 403 3.7399994e-05 396 403 9.9699988e-05 397 403 0.0032265999 402 403 6.2299994e-05 403 403 0.0034133999 404 403 0.0446986 405 403 0.13625085 413 403 0.0062662996 414 403 0.0023794 417 403 0.00031139981 419 403 0.0016943 420 403 0.0046467967 421 403 9.9699988e-05 422 403 0.0018437998 423 403 4.9799986e-05 425 403 3.7399994e-05 430 403 0.000137 431 403 4.9799986e-05 432 403 1.25e-05 433 403 2.4899986e-05 434 403 0.0001869 442 403 1.25e-05 443 403 0.00077239983 444 403 0.0036251999 445 403 0.0047215 446 403 0.00019929999 447 403 0.0088326 448 403 1.25e-05 449 403 4.9799986e-05 450 403 0.0047215 452 403 0.0039241984 453 403 0.00074749999 454 403 0.00037369994 455 403 0.015958399 456 403 0.0020929 457 403 0.0026659998 458 403 0.00057309982 459 403 0.0011461 460 403 0.0010090999 463 403 0.0061541982 464 403 0.0083342977 465 403 0.0026659998 467 403 0.018686697 468 403 0.0021054 469 403 0.012121398 470 403 0.0270583 471 403 0.0022298999 473 403 0.00057309982 477 403 8.7199995e-05 478 403 0.0013952998 479 403 0.00072259991 483 403 0.0020305999 489 403 2.4899986e-05 490 403 0.0020554999 491 403 6.2299994e-05 9 404 7.509999e-05 16 404 5.0099989e-05 18 404 0.00010009999 22 404 0.0002002 60 404 0.0038039999 76 404 5.0099989e-05 77 404 0.00012509999 79 404 5.0099989e-05 82 404 0.00015019999 83 404 0.00012509999 84 404 0.00012509999 108 404 0.0002002 113 404 0.00027529988 114 404 0.00067569991 126 404 0.00030029984 127 404 7.509999e-05 130 404 7.509999e-05 150 404 0.00057559996 169 404 0.00010009999 172 404 0.0010760999 181 404 5.0099989e-05 187 404 2.4999987e-05 189 404 0.0002002 190 404 0.00010009999 192 404 5.0099989e-05 194 404 0.00010009999 196 404 2.4999987e-05 197 404 5.0099989e-05 198 404 0.0017267999 200 404 0.00010009999 201 404 0.00010009999 203 404 7.509999e-05 204 404 0.00010009999 206 404 0.0016017 207 404 7.509999e-05 209 404 2.4999987e-05 214 404 0.0008758998 220 404 2.4999987e-05 224 404 0.0015766998 233 404 0.00027529988 234 404 0.0045797974 237 404 5.0099989e-05 240 404 0.00095099979 241 404 0.00015019999 248 404 0.00010009999 250 404 7.509999e-05 251 404 2.4999987e-05 252 404 0.0001752 263 404 2.4999987e-05 271 404 2.4999987e-05 272 404 0.00095099979 277 404 0.028630096 279 404 0.00015019999 282 404 0.011612199 283 404 0.0192452 284 404 0.0013513998 285 404 2.4999987e-05 286 404 7.509999e-05 287 404 2.4999987e-05 288 404 2.4999987e-05 289 404 2.4999987e-05 290 404 0.00080079981 291 404 2.4999987e-05 292 404 0.0012512999 293 404 0.0025527 294 404 0.0059812963 295 404 0.00037539983 296 404 0.008433897 297 404 0.00037539983 298 404 0.022023097 299 404 0.013664298 305 404 5.0099989e-05 307 404 7.509999e-05 308 404 2.4999987e-05 312 404 0.0040291995 313 404 2.4999987e-05 315 404 0.00072579994 318 404 0.00067569991 319 404 0.0011511999 320 404 0.005380597 321 404 7.509999e-05 322 404 5.0099989e-05 324 404 0.0014765998 326 404 7.509999e-05 327 404 0.0023273998 328 404 0.0003252998 329 404 2.4999987e-05 331 404 2.4999987e-05 338 404 0.0014515 339 404 0.00012509999 340 404 0.013514198 341 404 0.00030029984 343 404 0.00095099979 350 404 0.0012762998 351 404 0.0034035998 354 404 0.0002002 356 404 0.00042539998 357 404 0.0021271999 358 404 0.021422498 359 404 2.4999987e-05 366 404 5.0099989e-05 369 404 2.4999987e-05 371 404 2.4999987e-05 372 404 0.00040039979 373 404 2.4999987e-05 380 404 5.0099989e-05 384 404 7.509999e-05 386 404 2.4999987e-05 387 404 0.00030029984 390 404 0.0046798997 391 404 5.0099989e-05 392 404 0.00095099979 393 404 0.0035787998 396 404 2.4999987e-05 397 404 0.0054306984 398 404 2.4999987e-05 402 404 0.00015019999 403 404 7.509999e-05 404 404 0.14269978 405 404 0.033885598 413 404 0.0011511999 414 404 0.0063315965 417 404 0.00035039987 419 404 7.509999e-05 420 404 2.4999987e-05 421 404 0.00012509999 422 404 0.0001752 423 404 0.00010009999 425 404 7.509999e-05 430 404 0.0002002 431 404 7.509999e-05 432 404 2.4999987e-05 433 404 5.0099989e-05 434 404 5.0099989e-05 443 404 0.0012013 444 404 0.0010511 445 404 0.0034285998 446 404 0.00025029993 447 404 0.0030532 448 404 2.4999987e-05 449 404 7.509999e-05 450 404 0.0052804984 452 404 0.0073326975 453 404 0.0014515 454 404 0.0015766998 455 404 0.015816599 456 404 0.0022773999 457 404 0.0028279999 458 404 0.00085089984 459 404 0.00067569991 460 404 0.00092599983 463 404 0.0041793995 464 404 0.0014264998 465 404 0.0026777999 467 404 0.021472499 468 404 0.0020271 469 404 0.014239997 470 404 0.031457998 471 404 0.00037539983 473 404 0.00067569991 477 404 0.00010009999 478 404 0.0015515999 483 404 0.0027278999 489 404 0.00012509999 490 404 0.0023774998 491 404 0.0024525998 9 405 0.00010999999 16 405 4.3999986e-05 18 405 0.00013199999 22 405 0.00015399999 24 405 2.1999993e-05 60 405 0.0028153998 75 405 0.00010999999 76 405 0.00048389984 77 405 0.00028589997 79 405 0.00013199999 81 405 2.1999993e-05 82 405 0.00017599999 83 405 0.00010999999 84 405 0.00010999999 108 405 0.00015399999 113 405 0.0002638998 114 405 0.00057189981 126 405 0.0002638998 127 405 4.3999986e-05 130 405 0.0020895 131 405 4.3999986e-05 132 405 2.1999993e-05 134 405 0.00013199999 135 405 2.1999993e-05 138 405 2.1999993e-05 139 405 2.1999993e-05 140 405 2.1999993e-05 142 405 2.1999993e-05 150 405 0.00052789995 156 405 2.1999993e-05 160 405 8.7999986e-05 161 405 2.1999993e-05 165 405 2.1999993e-05 169 405 0.00015399999 171 405 0.00010999999 172 405 0.00054989988 181 405 0.0018036 187 405 0.00068179984 189 405 0.00015399999 190 405 0.00010999999 191 405 6.5999993e-05 192 405 6.5999993e-05 194 405 0.00013199999 196 405 2.1999993e-05 197 405 4.3999986e-05 198 405 0.0011876998 200 405 0.00010999999 201 405 8.7999986e-05 203 405 6.5999993e-05 204 405 0.00028589997 206 405 0.0017376 207 405 6.5999993e-05 209 405 2.1999993e-05 214 405 0.0015395998 219 405 2.1999993e-05 220 405 4.3999986e-05 222 405 4.3999986e-05 223 405 4.3999986e-05 224 405 0.0036511999 225 405 0.00032989983 233 405 0.0014076999 234 405 0.0040470995 237 405 0.00017599999 240 405 0.0011216998 241 405 0.0022214998 248 405 8.7999986e-05 250 405 4.3999986e-05 251 405 2.1999993e-05 252 405 0.00021989999 262 405 2.1999993e-05 263 405 4.3999986e-05 272 405 0.00050589978 276 405 8.7999986e-05 277 405 0.013328899 278 405 2.1999993e-05 279 405 4.3999986e-05 282 405 0.004684899 283 405 0.0076981969 284 405 0.0013416999 285 405 0.00010999999 286 405 4.3999986e-05 287 405 4.3999986e-05 288 405 4.3999986e-05 290 405 0.00092379982 291 405 2.1999993e-05 292 405 0.00070379977 293 405 0.015352499 294 405 0.0051687993 295 405 0.0020234999 296 405 0.004970897 297 405 0.00013199999 298 405 0.0028372998 299 405 0.0056086965 305 405 6.5999993e-05 307 405 8.7999986e-05 308 405 6.5999993e-05 312 405 0.0089079998 313 405 4.3999986e-05 315 405 0.0030792998 317 405 4.3999986e-05 318 405 2.1999993e-05 319 405 0.0031893 320 405 0.0049268976 321 405 0.00096779992 322 405 0.0012096998 324 405 0.00092379982 326 405 0.0020234999 327 405 0.00028589997 328 405 0.00024189999 329 405 4.3999986e-05 331 405 2.1999993e-05 335 405 2.1999993e-05 338 405 0.00087979995 339 405 0.0002638998 340 405 0.0090838969 341 405 0.00019799999 343 405 2.1999993e-05 350 405 0.0016496 351 405 0.0031893 352 405 2.1999993e-05 354 405 0.0018916 356 405 0.00041789981 357 405 6.5999993e-05 358 405 0.016672198 359 405 0.0013636998 366 405 6.5999993e-05 369 405 0.00052789995 371 405 2.1999993e-05 372 405 0.0011876998 373 405 0.00017599999 380 405 2.1999993e-05 384 405 6.5999993e-05 386 405 8.7999986e-05 387 405 0.00024189999 390 405 0.0340482 391 405 4.3999986e-05 392 405 0.019817397 393 405 0.017002098 396 405 0.00052789995 397 405 0.0013196999 398 405 4.3999986e-05 401 405 2.1999993e-05 402 405 0.00021989999 403 405 0.0019574999 404 405 0.020345297 405 405 0.099087179 408 405 0.00010999999 413 405 0.0025293999 414 405 0.00079179998 416 405 2.1999993e-05 417 405 0.00037389994 419 405 0.00043989997 420 405 0.0010777998 421 405 0.00013199999 422 405 0.00063789985 423 405 6.5999993e-05 425 405 4.3999986e-05 430 405 0.00015399999 431 405 6.5999993e-05 432 405 2.1999993e-05 433 405 4.3999986e-05 434 405 8.7999986e-05 442 405 4.3999986e-05 443 405 0.0011437 444 405 0.0049928986 445 405 0.0036291999 446 405 0.00021989999 447 405 0.0080940984 448 405 2.1999993e-05 449 405 4.3999986e-05 450 405 0.0053667985 452 405 0.0065764971 453 405 0.0012316999 454 405 0.00039589987 455 405 0.017529998 456 405 0.0020015 457 405 0.0026613998 458 405 0.00094579998 459 405 0.0015615998 460 405 0.00092379982 463 405 0.0082700998 464 405 0.0095897987 465 405 0.0032332998 467 405 0.020367298 468 405 0.0023094998 469 405 0.012405097 470 405 0.027471699 471 405 0.0023534999 473 405 0.00061589992 477 405 0.00013199999 478 405 0.0015615998 479 405 0.00017599999 483 405 0.0023094998 489 405 2.1999993e-05 490 405 0.0021114999 491 405 0.00015399999 9 406 3.1999996e-05 16 406 3.1999996e-05 18 406 0.0001602 22 406 6.4099993e-05 24 406 9.609999e-05 60 406 0.0027557998 76 406 0.00025639986 79 406 3.1999996e-05 82 406 3.1999996e-05 83 406 3.1999996e-05 84 406 3.1999996e-05 108 406 6.4099993e-05 113 406 9.609999e-05 114 406 0.00022429999 126 406 9.609999e-05 127 406 3.1999996e-05 131 406 0.0012496999 150 406 0.0010253999 154 406 0.00092929997 160 406 0.0023071999 161 406 0.0014419998 163 406 0.00022429999 165 406 0.00089719985 169 406 9.609999e-05 171 406 0.0031402998 177 406 0.005543597 178 406 0.0015701998 180 406 0.0049026981 183 406 0.00086519984 185 406 0.00064089987 189 406 9.609999e-05 190 406 0.0001602 194 406 0.00012819999 200 406 6.4099993e-05 201 406 6.4099993e-05 203 406 0.00012819999 204 406 6.4099993e-05 206 406 0.00070499978 207 406 6.4099993e-05 214 406 0.00035249977 218 406 3.1999996e-05 219 406 3.1999996e-05 223 406 0.00012819999 224 406 0.0010894998 233 406 0.010926999 234 406 0.0058319978 237 406 6.4099993e-05 240 406 3.1999996e-05 241 406 0.0010574998 242 406 0.00048069982 248 406 3.1999996e-05 250 406 3.1999996e-05 252 406 0.0011855999 254 406 0.00041659991 256 406 0.00038449978 259 406 0.00019229999 263 406 3.1999996e-05 270 406 3.1999996e-05 271 406 0.00070499978 272 406 0.00092929997 274 406 0.0015701998 276 406 0.00083309994 277 406 0.090139985 279 406 3.1999996e-05 282 406 0.0017623999 283 406 0.0014739998 284 406 0.00012819999 289 406 0.0029801 290 406 0.0044220984 292 406 0.0045181997 293 406 0.0024353999 295 406 0.0052231997 296 406 6.4099993e-05 297 406 3.1999996e-05 298 406 3.1999996e-05 299 406 3.1999996e-05 302 406 0.00048069982 303 406 0.00089719985 304 406 0.00076909992 305 406 0.019130297 306 406 0.0049989 307 406 0.0083955973 308 406 0.0028518999 309 406 0.0048065968 312 406 0.0049347989 315 406 6.4099993e-05 319 406 3.1999996e-05 321 406 3.1999996e-05 322 406 9.609999e-05 323 406 0.00028839987 324 406 0.010382298 326 406 0.0048065968 327 406 0.018425398 328 406 0.012689497 331 406 0.010574598 334 406 0.0014419998 335 406 0.00044859992 336 406 0.0033004999 337 406 3.1999996e-05 338 406 0.00035249977 339 406 0.0014098999 340 406 0.0010894998 341 406 0.00086519984 349 406 0.0022751 350 406 0.0056076981 351 406 0.0024353999 352 406 0.0071778968 354 406 0.0092928 355 406 6.4099993e-05 356 406 0.0027557998 358 406 0.0052872971 359 406 0.00012819999 366 406 0.0046142973 368 406 0.0017944998 369 406 0.0015381 370 406 0.0050308965 371 406 0.0010253999 372 406 0.0030120998 373 406 0.0049026981 374 406 0.0094209984 384 406 9.609999e-05 385 406 0.00038449978 386 406 0.00035249977 387 406 9.609999e-05 389 406 0.0013458999 390 406 0.021982197 391 406 3.1999996e-05 392 406 0.00054469984 393 406 0.00054469984 394 406 0.00035249977 396 406 0.00028839987 402 406 9.609999e-05 404 406 0.0001602 405 406 0.0017623999 406 406 0.0042939 407 406 9.609999e-05 412 406 0.0017623999 413 406 0.0037811999 414 406 0.0015701998 415 406 0.0034607998 417 406 0.00070499978 419 406 0.0022431 421 406 0.00022429999 422 406 0.00012819999 423 406 3.1999996e-05 425 406 3.1999996e-05 430 406 6.4099993e-05 431 406 3.1999996e-05 432 406 3.1999996e-05 433 406 6.4099993e-05 434 406 9.609999e-05 439 406 0.00028839987 442 406 0.0012496999 443 406 0.0033645998 444 406 0.00032039988 445 406 0.0059281997 446 406 0.00044859992 447 406 0.00073699979 449 406 3.1999996e-05 450 406 0.0044861995 452 406 0.0065369979 453 406 0.00054469984 454 406 0.00076909992 455 406 0.032204296 456 406 0.0011855999 457 406 0.0020828999 458 406 0.00048069982 459 406 0.0010894998 460 406 0.0015381 463 406 0.0038772998 464 406 0.00038449978 465 406 0.0017944998 467 406 0.016502697 468 406 0.0016982998 469 406 0.0095811971 470 406 0.010926999 471 406 0.00051269983 473 406 0.00022429999 477 406 0.00019229999 478 406 0.0018585999 483 406 0.0013138 489 406 6.4099993e-05 490 406 0.00083309994 491 406 0.0010253999 9 407 7.9899997e-05 18 407 0.00015979999 60 407 0.0017579 82 407 7.9899997e-05 83 407 7.9899997e-05 84 407 7.9899997e-05 108 407 7.9899997e-05 114 407 0.00015979999 126 407 7.9899997e-05 134 407 0.0022372999 137 407 0.0070315972 138 407 0.0043946989 139 407 0.0073511973 141 407 0.0084697977 143 407 0.0011985998 149 407 7.9899997e-05 150 407 0.00071909977 151 407 0.00015979999 154 407 0.0060726963 160 407 0.0095884986 161 407 0.00031959987 163 407 0.0095884986 165 407 0.012624897 166 407 0.0061525963 171 407 0.010387499 173 407 0.00015979999 176 407 0.00015979999 177 407 0.00015979999 178 407 7.9899997e-05 180 407 7.9899997e-05 182 407 0.0035158 189 407 7.9899997e-05 190 407 7.9899997e-05 191 407 7.9899997e-05 194 407 0.00015979999 198 407 7.9899997e-05 200 407 7.9899997e-05 203 407 7.9899997e-05 204 407 7.9899997e-05 206 407 0.00063919998 214 407 0.00023969999 219 407 0.00023969999 224 407 0.028046299 233 407 0.016220499 234 407 0.0042348988 237 407 7.9899997e-05 240 407 0.0023971 241 407 0.0065520965 242 407 0.0019975998 252 407 0.0350779 270 407 0.0027965999 272 407 0.00063919998 274 407 7.9899997e-05 277 407 0.0087094977 282 407 0.00055929995 283 407 0.0021573999 284 407 7.9899997e-05 289 407 0.0041549988 290 407 0.0015980999 292 407 0.0003994999 293 407 0.018058296 295 407 0.00047939993 296 407 0.0012784998 297 407 0.00055929995 302 407 0.00015979999 303 407 7.9899997e-05 304 407 0.0091889985 305 407 0.00023969999 306 407 0.0013583999 307 407 0.0034359 308 407 0.0042348988 309 407 7.9899997e-05 312 407 0.0075908974 315 407 0.0019975998 319 407 0.0088693984 320 407 0.0029564998 321 407 0.0023171999 322 407 0.0035158 324 407 0.00015979999 326 407 0.0119057 327 407 0.00023969999 328 407 0.1043548 331 407 0.00023969999 340 407 0.0015181999 350 407 0.0076707974 351 407 0.0019176998 352 407 0.0024769998 354 407 0.015741099 356 407 0.0023171999 357 407 0.0043946989 358 407 0.0032760999 366 407 0.0036755998 370 407 0.00071909977 372 407 0.0020774999 373 407 7.9899997e-05 374 407 7.9899997e-05 377 407 0.00031959987 378 407 0.0003994999 383 407 0.00015979999 384 407 7.9899997e-05 385 407 7.9899997e-05 386 407 7.9899997e-05 387 407 7.9899997e-05 390 407 0.00023969999 394 407 0.00095879985 397 407 0.0003994999 398 407 0.0034359 401 407 7.9899997e-05 402 407 0.0012784998 406 407 7.9899997e-05 407 407 0.0178186 410 407 7.9899997e-05 412 407 0.0020774999 413 407 0.00031959987 415 407 7.9899997e-05 417 407 0.00047939993 419 407 0.0027166998 421 407 0.00015979999 422 407 0.00015979999 423 407 7.9899997e-05 430 407 0.00023969999 439 407 0.00015979999 441 407 7.9899997e-05 443 407 0.004794199 444 407 0.0043946989 445 407 0.0096683986 446 407 0.00015979999 447 407 0.0033559999 450 407 0.0030363998 452 407 0.0033559999 453 407 0.00087889982 454 407 0.00031959987 455 407 0.046264499 456 407 0.00047939993 457 407 0.0015980999 458 407 0.00063919998 459 407 0.0007989998 460 407 0.0015181999 463 407 0.012624897 464 407 0.00055929995 465 407 0.0011985998 467 407 0.0097482987 468 407 0.0167799 469 407 0.0063123964 470 407 0.0069516972 471 407 0.0039951988 473 407 0.00015979999 477 407 7.9899997e-05 478 407 0.0011985998 483 407 0.00071909977 490 407 0.00055929995 491 407 0.00063919998 9 408 4.0399987e-05 18 408 0.00012109999 22 408 0.00044409977 60 408 0.00072669983 82 408 4.0399987e-05 108 408 4.0399987e-05 114 408 8.0699989e-05 126 408 4.0399987e-05 130 408 4.0399987e-05 134 408 0.0025435998 137 408 0.00012109999 139 408 0.0010093998 150 408 0.00048449985 160 408 0.0046430975 161 408 0.0022205999 165 408 0.00044409977 169 408 0.00016149999 172 408 8.0699989e-05 181 408 4.0399987e-05 189 408 4.0399987e-05 190 408 8.0699989e-05 192 408 4.0399987e-05 194 408 4.0399987e-05 196 408 4.0399987e-05 198 408 4.0399987e-05 200 408 4.0399987e-05 203 408 4.0399987e-05 204 408 4.0399987e-05 206 408 0.0003229999 207 408 4.0399987e-05 214 408 0.0019379999 224 408 4.0399987e-05 233 408 0.0047641993 234 408 0.0018975998 237 408 4.0399987e-05 240 408 0.0056524985 241 408 0.00072669983 242 408 0.0014534998 252 408 0.0039566979 270 408 0.00044409977 271 408 8.0699989e-05 272 408 0.00040369993 277 408 0.10352069 278 408 4.0399987e-05 282 408 0.066779673 283 408 0.018895298 284 408 0.00028259982 286 408 8.0699989e-05 289 408 0.0041181967 290 408 4.0399987e-05 292 408 0.0044815987 293 408 0.0016553998 294 408 0.00088819978 295 408 0.00072669983 296 408 0.0020994998 298 408 0.0003229999 299 408 0.0070655979 307 408 0.0002422 312 408 0.0058946982 313 408 4.0399987e-05 315 408 0.00048449985 318 408 0.00012109999 319 408 0.0061369985 320 408 0.00020189999 321 408 0.0015341998 322 408 0.0028665999 323 408 0.0039970987 324 408 0.00016149999 326 408 0.0073481984 327 408 4.0399987e-05 328 408 0.022932798 331 408 0.00012109999 332 408 0.00012109999 338 408 0.00048449985 339 408 0.0006459998 340 408 0.0054101981 341 408 8.0699989e-05 343 408 4.0399987e-05 347 408 4.0399987e-05 349 408 0.0002422 350 408 0.0035932998 351 408 0.015301999 352 408 0.0010497 353 408 4.0399987e-05 354 408 0.011627898 355 408 4.0399987e-05 356 408 0.00040369993 357 408 8.0699989e-05 358 408 0.0057331994 359 408 4.0399987e-05 366 408 0.0034721999 371 408 0.014736798 372 408 0.0031895998 373 408 0.00016149999 374 408 0.00016149999 375 408 4.0399987e-05 386 408 0.00040369993 387 408 4.0399987e-05 390 408 0.00044409977 392 408 0.00028259982 393 408 0.00036339997 394 408 0.00036339997 397 408 8.0699989e-05 398 408 4.0399987e-05 402 408 0.0002422 404 408 0.0020994998 405 408 0.0017764999 408 408 0.13654715 412 408 0.0027858999 414 408 8.0699989e-05 417 408 0.0003229999 421 408 8.0699989e-05 422 408 4.0399987e-05 430 408 4.0399987e-05 433 408 4.0399987e-05 434 408 4.0399987e-05 443 408 0.0060157999 444 408 0.00080749998 445 408 0.0055312999 446 408 0.00044409977 447 408 0.0018571999 450 408 0.0020591 452 408 0.0039162971 453 408 0.0013323999 454 408 0.00044409977 455 408 0.029231299 456 408 0.00020189999 457 408 0.0041181967 458 408 0.00036339997 459 408 0.0026244 460 408 0.00084789982 463 408 0.005935099 464 408 0.00036339997 465 408 0.00072669983 467 408 0.0075903982 468 408 0.0018169 469 408 0.0030280999 470 408 0.0037145 471 408 0.00028259982 473 408 8.0699989e-05 477 408 8.0699989e-05 478 408 0.0007670999 483 408 0.0014130999 490 408 0.0003229999 491 408 0.0015745999 60 409 0.0054290965 114 409 0.00017509999 126 409 0.00017509999 139 409 0.0014010998 142 409 0.00017509999 150 409 0.00017509999 160 409 0.00017509999 190 409 0.00017509999 194 409 0.00017509999 198 409 0.0024517998 206 409 0.00052539981 214 409 0.00017509999 224 409 0.00017509999 233 409 0.0028020998 234 409 0.0019263998 237 409 0.035726797 240 409 0.0012258999 241 409 0.0012258999 272 409 0.0010507999 277 409 0.062696993 279 409 0.00017509999 282 409 0.0054290965 283 409 0.0099824965 284 409 0.00070049986 292 409 0.00017509999 293 409 0.0017512999 296 409 0.0082311966 297 409 0.00017509999 298 409 0.0010507999 308 409 0.00017509999 312 409 0.022591896 313 409 0.00017509999 315 409 0.010507897 317 409 0.00017509999 320 409 0.026269697 321 409 0.0071803965 322 409 0.0064798966 326 409 0.0052538998 328 409 0.0099824965 330 409 0.012434296 340 409 0.0036777998 350 409 0.00017509999 351 409 0.0036777998 354 409 0.053415097 356 409 0.00035029999 357 409 0.00070049986 358 409 0.0096321963 372 409 0.00035029999 385 409 0.0010507999 386 409 0.00017509999 395 409 0.00017509999 397 409 0.00052539981 398 409 0.0050787963 402 409 0.0089316964 409 409 0.15621716 412 409 0.0085813999 417 409 0.00052539981 419 409 0.0012258999 422 409 0.00017509999 430 409 0.00017509999 441 409 0.0031523998 443 409 0.0024517998 444 409 0.0010507999 445 409 0.0047284998 446 409 0.00017509999 447 409 0.0057792999 450 409 0.002627 452 409 0.0036777998 453 409 0.0017512999 454 409 0.00052539981 455 409 0.057267997 456 409 0.00017509999 457 409 0.0040279999 458 409 0.00052539981 459 409 0.00070049986 460 409 0.0010507999 463 409 0.010682996 464 409 0.00035029999 465 409 0.00070049986 467 409 0.0070052966 468 409 0.024693497 469 409 0.0028020998 470 409 0.0031523998 471 409 0.00052539981 473 409 0.00017509999 477 409 0.00017509999 478 409 0.0010507999 483 409 0.00052539981 490 409 0.00035029999 491 409 0.00035029999 60 410 0.00053639989 114 410 7.6599987e-05 130 410 7.6599987e-05 134 410 0.0080453977 139 410 0.0087349974 149 410 0.0028349999 150 410 7.6599987e-05 151 410 0.0075089969 154 410 0.00099609978 156 410 0.00015319999 160 410 0.045513798 161 410 0.00061299978 163 410 0.018925797 164 410 0.0013025999 165 410 0.0311087 170 410 0.00061299978 171 410 0.012642696 173 410 0.0086582974 176 410 0.009347897 177 410 0.0026051998 178 410 0.0033713998 181 410 0.00030649989 190 410 7.6599987e-05 191 410 0.0055933967 194 410 0.00015319999 198 410 7.6599987e-05 206 410 0.00015319999 214 410 0.00015319999 224 410 0.00045969989 233 410 0.0026051998 234 410 0.0012259998 237 410 0.0064362995 240 410 0.0022986999 241 410 0.015630998 252 410 0.0034479999 274 410 0.0051336996 277 410 0.029422998 282 410 0.0025284998 283 410 7.6599987e-05 289 410 0.0060531981 292 410 0.0016856999 293 410 0.027737297 295 410 0.0058998987 296 410 0.00030649989 302 410 0.010880399 303 410 0.0036778999 304 410 0.017852999 305 410 7.6599987e-05 306 410 0.061910998 307 410 0.0012259998 308 410 0.034096997 312 410 0.006512899 313 410 0.00045969989 315 410 0.00030649989 319 410 0.0064362995 320 410 0.0019155999 321 410 0.0033713998 322 410 7.6599987e-05 324 410 7.6599987e-05 326 410 0.0028349999 327 410 7.6599987e-05 328 410 0.0008427999 338 410 7.6599987e-05 340 410 7.6599987e-05 351 410 7.6599987e-05 354 410 7.6599987e-05 356 410 7.6599987e-05 358 410 0.00015319999 366 410 0.0046739988 372 410 7.6599987e-05 377 410 0.017929699 378 410 0.024595797 383 410 0.0081219971 384 410 0.0036012998 385 410 0.0047505982 386 410 0.0031414998 387 410 0.0009194999 390 410 7.6599987e-05 397 410 0.00022989999 399 410 0.00030649989 400 410 0.00022989999 401 410 0.0067427978 402 410 0.071105659 407 410 7.6599987e-05 410 410 0.0046739988 412 410 0.0023752998 417 410 0.00045969989 421 410 7.6599987e-05 422 410 0.00015319999 439 410 0.0078920983 441 410 0.0022986999 443 410 0.012412798 444 410 0.0024518999 445 410 0.011110298 446 410 0.00038309977 447 410 0.0032180999 450 410 0.0019155999 452 410 0.0024518999 453 410 0.0012259998 454 410 0.00022989999 455 410 0.068883598 456 410 0.00015319999 457 410 0.0040609986 458 410 0.00061299978 459 410 0.00061299978 460 410 0.00099609978 463 410 0.0086582974 464 410 0.00076619978 465 410 0.0006895999 467 410 0.0045972988 468 410 0.0037544998 469 410 0.0009194999 470 410 0.0009194999 471 410 0.0013025999 477 410 7.6599987e-05 478 410 0.0009194999 483 410 0.00015319999 490 410 0.00015319999 491 410 0.00053639989 9 411 3.119999e-05 18 411 6.2299994e-05 60 411 0.00052969996 82 411 3.119999e-05 83 411 3.119999e-05 84 411 3.119999e-05 108 411 3.119999e-05 113 411 6.2299994e-05 114 411 9.3499999e-05 126 411 3.119999e-05 134 411 0.026487198 135 411 0.00037389994 139 411 0.008569397 149 411 0.0026798998 150 411 0.00049859984 151 411 0.0019319998 159 411 0.00028049992 160 411 0.065937459 161 411 0.0013398998 163 411 0.015829999 164 411 0.013087798 165 411 0.041787397 170 411 0.0044248998 171 411 0.0099092983 173 411 0.0086004995 176 411 0.0064191967 177 411 0.0027109999 178 411 0.0031784999 182 411 0.0029292 183 411 0.00012459999 184 411 0.0017761998 190 411 6.2299994e-05 191 411 0.0012775999 192 411 0.00040509994 194 411 3.119999e-05 196 411 3.119999e-05 200 411 3.119999e-05 203 411 3.119999e-05 204 411 3.119999e-05 206 411 6.2299994e-05 207 411 3.119999e-05 214 411 0.00031159981 219 411 0.00056089996 223 411 0.00024929992 229 411 3.119999e-05 230 411 0.00071669999 233 411 0.0047053993 234 411 0.00087249978 236 411 0.0025240998 237 411 0.0096288994 240 411 0.00059209997 241 411 0.008507099 252 411 0.00049859984 259 411 0.0020877998 268 411 0.0059517995 270 411 9.3499999e-05 271 411 0.0023993999 272 411 0.00040509994 274 411 0.0032718999 277 411 0.025832798 279 411 0.0020877998 282 411 0.0017761998 283 411 3.119999e-05 285 411 6.2299994e-05 287 411 0.00040509994 289 411 0.0030226998 292 411 0.0025863999 293 411 0.034682598 294 411 0.00012459999 295 411 0.0073229 296 411 0.0014334 302 411 0.0097534992 303 411 0.010220896 304 411 9.3499999e-05 306 411 0.014116097 308 411 0.0037393998 312 411 0.0017138999 317 411 9.3499999e-05 318 411 3.119999e-05 319 411 0.0051415972 320 411 0.0014646 321 411 0.00090369978 324 411 0.00084139989 326 411 0.0012775999 337 411 3.119999e-05 339 411 0.00015579999 340 411 9.3499999e-05 341 411 0.0015892 343 411 3.119999e-05 346 411 0.00084139989 350 411 0.00056089996 356 411 9.3499999e-05 358 411 0.00015579999 366 411 0.085382164 369 411 0.0018384999 377 411 0.013710998 378 411 0.020410698 379 411 0.0013398998 380 411 0.0017449998 383 411 0.0091613978 384 411 6.2299994e-05 385 411 0.0065438971 386 411 0.0032408 387 411 3.119999e-05 398 411 0.00062319986 401 411 9.3499999e-05 402 411 0.049079198 410 411 3.119999e-05 411 411 0.0019942999 412 411 0.0017138999 415 411 0.00024929992 417 411 0.00034279982 419 411 0.00084139989 421 411 0.00015579999 422 411 3.119999e-05 423 411 3.119999e-05 430 411 3.119999e-05 431 411 3.119999e-05 433 411 3.119999e-05 434 411 3.119999e-05 438 411 6.2299994e-05 439 411 0.0010282998 441 411 0.00099719991 443 411 0.014583498 444 411 0.0010905999 445 411 0.010439098 446 411 0.00068559987 447 411 0.0015580999 450 411 0.0016204 452 411 0.0016204 453 411 0.00099719991 454 411 0.00021809999 455 411 0.067994058 456 411 0.00024929992 457 411 0.0042378977 458 411 0.00028049992 459 411 0.00059209997 460 411 0.00046739983 463 411 0.0036146999 464 411 0.0019007998 465 411 0.00059209997 467 411 0.0033030999 468 411 0.0029602998 469 411 0.0027733999 470 411 0.003085 471 411 0.00087249978 473 411 6.2299994e-05 478 411 0.00074789999 483 411 0.00021809999 489 411 3.119999e-05 490 411 0.00024929992 491 411 9.3499999e-05 60 412 0.0007540998 114 412 0.0001257 126 412 0.0001257 130 412 0.0007540998 131 412 0.0001257 132 412 0.0001257 134 412 0.00037699984 137 412 0.0001257 138 412 0.0001257 139 412 0.0012567998 141 412 0.0001257 149 412 0.0001257 151 412 0.00037699984 152 412 0.0027649 154 412 0.0001257 158 412 0.0001257 160 412 0.0080431998 161 412 0.0001257 163 412 0.0012567998 164 412 0.0001257 165 412 0.0030161999 166 412 0.0001257 171 412 0.011562098 173 412 0.00050269999 176 412 0.00050269999 177 412 0.0011310999 178 412 0.0018850998 182 412 0.0001257 188 412 0.0001257 190 412 0.0001257 191 412 0.0016337999 194 412 0.0001257 198 412 0.0012567998 206 412 0.00037699984 214 412 0.0001257 224 412 0.0011310999 233 412 0.0054039992 234 412 0.0018850998 237 412 0.033052698 240 412 0.0021364999 241 412 0.0090485997 242 412 0.0007540998 252 412 0.00087969983 274 412 0.00025139982 277 412 0.12379038 282 412 0.0026391998 283 412 0.0036445998 284 412 0.0006283999 285 412 0.0001257 289 412 0.0012567998 292 412 0.0001257 293 412 0.035440497 295 412 0.00037699984 296 412 0.0015081 297 412 0.00037699984 298 412 0.0023877998 299 412 0.0001257 302 412 0.0006283999 303 412 0.0020107999 304 412 0.0036445998 306 412 0.0064094998 307 412 0.00025139982 308 412 0.018599998 312 412 0.0086715966 313 412 0.0001257 315 412 0.013698597 317 412 0.00050269999 319 412 0.0006283999 320 412 0.0042729974 321 412 0.0062837973 322 412 0.0090485997 326 412 0.013949998 328 412 0.047756698 329 412 0.00087969983 330 412 0.0033932 337 412 0.00025139982 338 412 0.0001257 340 412 0.0031418998 350 412 0.00087969983 351 412 0.0059066974 354 412 0.0057810992 356 412 0.0001257 357 412 0.00037699984 358 412 0.0027649 366 412 0.00037699984 372 412 0.0012567998 377 412 0.0035188999 378 412 0.0037703 383 412 0.00050269999 384 412 0.0007540998 385 412 0.0011310999 386 412 0.0030161999 393 412 0.0028904998 395 412 0.00025139982 397 412 0.00037699984 398 412 0.00037699984 399 412 0.0001257 401 412 0.00050269999 402 412 0.068744481 407 412 0.00037699984 408 412 0.0001257 409 412 0.0090485997 410 412 0.00025139982 412 412 0.030664798 417 412 0.00025139982 419 412 0.0001257 421 412 0.00025139982 428 412 0.00037699984 430 412 0.00025139982 437 412 0.0001257 439 412 0.0016337999 441 412 0.00037699984 442 412 0.0001257 443 412 0.0072891973 444 412 0.00050269999 445 412 0.0082945973 446 412 0.0001257 447 412 0.0015081 450 412 0.0026391998 452 412 0.0032676 453 412 0.0017594998 454 412 0.00025139982 455 412 0.06736207 457 412 0.004524298 458 412 0.0007540998 459 412 0.00050269999 460 412 0.0007540998 463 412 0.0064094998 464 412 0.00025139982 465 412 0.0006283999 467 412 0.0071634986 468 412 0.0060323998 469 412 0.0031418998 470 412 0.0035188999 471 412 0.0006283999 473 412 0.0001257 477 412 0.0001257 478 412 0.0007540998 483 412 0.00037699984 490 412 0.00025139982 491 412 0.0016337999 9 413 8.6699991e-05 18 413 0.0001733 60 413 0.0027731999 77 413 0.00034669996 82 413 8.6699991e-05 83 413 8.6699991e-05 84 413 8.6699991e-05 108 413 8.6699991e-05 113 413 0.0001733 114 413 0.00025999988 126 413 8.6699991e-05 130 413 8.6699991e-05 150 413 0.0001733 156 413 8.6699991e-05 160 413 0.0013865998 161 413 8.6699991e-05 165 413 0.0064996965 171 413 0.00069329981 172 413 8.6699991e-05 181 413 8.6699991e-05 189 413 0.0001733 190 413 8.6699991e-05 192 413 0.0001733 194 413 8.6699991e-05 196 413 8.6699991e-05 198 413 0.0025998999 200 413 8.6699991e-05 203 413 8.6699991e-05 204 413 0.0001733 206 413 0.00051999977 207 413 8.6699991e-05 214 413 0.00077999989 223 413 8.6699991e-05 224 413 0.0018198998 228 413 0.00086659985 233 413 0.00077999989 234 413 0.0044197999 237 413 0.00051999977 240 413 0.0042464994 241 413 0.012306098 252 413 0.0037264999 253 413 0.00034669996 270 413 8.6699991e-05 277 413 0.013952699 279 413 8.6699991e-05 282 413 0.0050263964 283 413 0.00086659985 284 413 0.00060659996 285 413 8.6699991e-05 286 413 0.00025999988 290 413 0.00034669996 292 413 0.0021666 293 413 0.0045930967 294 413 0.00069329981 295 413 0.0021666 296 413 0.0042464994 297 413 0.0012132998 298 413 0.00060659996 299 413 0.00051999977 300 413 8.6699991e-05 305 413 8.6699991e-05 308 413 0.011179499 312 413 0.010139499 315 413 0.006672997 317 413 0.00025999988 318 413 0.00060659996 319 413 0.00034669996 320 413 0.0040730983 321 413 0.00025999988 322 413 0.0054596998 325 413 8.6699991e-05 326 413 0.006672997 328 413 0.00025999988 340 413 0.0099661984 341 413 8.6699991e-05 349 413 8.6699991e-05 350 413 8.6699991e-05 351 413 0.0030331998 353 413 0.0025998999 354 413 0.00025999988 358 413 0.011959396 359 413 0.00043329992 369 413 0.012219399 370 413 0.0001733 371 413 0.0085795969 372 413 0.0061529987 385 413 0.00069329981 386 413 0.007886298 387 413 0.00025999988 390 413 0.0077995993 391 413 0.0015598999 392 413 0.020625699 393 413 0.041251399 396 413 0.0033797999 397 413 0.0001733 402 413 0.00025999988 403 413 0.0001733 404 413 0.0012132998 405 413 0.0061529987 408 413 0.0011266 413 413 0.016119197 414 413 0.00025999988 417 413 0.00034669996 419 413 0.011006199 420 413 0.00095329992 421 413 8.6699991e-05 422 413 0.0032931999 423 413 8.6699991e-05 424 413 8.6699991e-05 430 413 8.6699991e-05 431 413 8.6699991e-05 433 413 8.6699991e-05 434 413 8.6699991e-05 435 413 8.6699991e-05 438 413 0.0030331998 443 413 0.0012998998 444 413 0.0019931998 445 413 0.0060663968 446 413 8.6699991e-05 447 413 0.0048530996 448 413 8.6699991e-05 450 413 0.0065863989 452 413 0.0063263997 453 413 0.0012998998 454 413 0.00043329992 455 413 0.025305498 456 413 0.0012132998 457 413 0.0032064999 458 413 0.0011266 459 413 0.0036397998 460 413 0.0014732999 463 413 0.018805798 464 413 0.0018198998 465 413 0.0025131998 467 413 0.017332498 468 413 0.0058930963 469 413 0.010486197 470 413 0.013086099 471 413 0.0038131999 472 413 0.0016466 473 413 0.0001733 477 413 8.6699991e-05 478 413 0.0017332998 483 413 0.0027731999 489 413 0.0001733 490 413 0.0012998998 491 413 0.0025998999 9 414 5.6499994e-05 18 414 0.00011299999 60 414 0.0029368999 77 414 0.0003388999 82 414 0.00016939999 83 414 5.6499994e-05 84 414 5.6499994e-05 108 414 0.00011299999 113 414 0.00011299999 114 414 0.00028239982 126 414 0.00022589999 127 414 5.6499994e-05 130 414 0.00011299999 131 414 0.00011299999 138 414 5.6499994e-05 139 414 5.6499994e-05 142 414 5.6499994e-05 150 414 0.00073419977 160 414 0.001186 165 414 0.00022589999 172 414 5.6499994e-05 187 414 0.00011299999 189 414 0.00022589999 190 414 0.00011299999 194 414 0.00022589999 197 414 5.6499994e-05 198 414 0.0045181997 200 414 0.00011299999 201 414 5.6499994e-05 203 414 0.00011299999 204 414 0.0030497999 206 414 0.00028239982 207 414 5.6499994e-05 214 414 0.00045179995 220 414 5.6499994e-05 223 414 0.00011299999 224 414 0.0057607964 233 414 0.00011299999 234 414 0.0051394999 237 414 0.00056479988 240 414 0.0028239 241 414 0.0076244995 242 414 0.00011299999 252 414 0.0055347979 253 414 5.6499994e-05 270 414 0.00011299999 271 414 0.00028239982 272 414 0.00011299999 277 414 0.018637698 282 414 0.010787297 283 414 0.0012424998 284 414 0.0005082998 285 414 0.00022589999 286 414 0.00056479988 289 414 0.00011299999 290 414 0.00039529987 292 414 0.0085846968 293 414 0.0031627999 294 414 0.0045181997 295 414 0.0027673999 296 414 0.012029797 297 414 0.011408597 298 414 0.0022025998 299 414 5.6499994e-05 300 414 5.6499994e-05 307 414 0.00022589999 308 414 0.0016943 312 414 0.012820497 313 414 0.00039529987 315 414 0.0081327967 317 414 5.6499994e-05 318 414 5.6499994e-05 319 414 5.6499994e-05 320 414 0.0068337992 321 414 0.00016939999 322 414 0.0053088963 324 414 0.00039529987 325 414 0.00011299999 326 414 0.0056477971 328 414 5.6499994e-05 339 414 5.6499994e-05 340 414 0.0048570968 341 414 5.6499994e-05 343 414 0.00016939999 344 414 5.6499994e-05 348 414 5.6499994e-05 349 414 0.00016939999 350 414 0.00016939999 351 414 0.0011296 353 414 0.00011299999 354 414 0.00079069985 356 414 5.6499994e-05 357 414 0.00022589999 358 414 0.012538098 359 414 0.0019202998 369 414 0.025923397 370 414 0.002598 371 414 0.0059301965 372 414 0.0081892982 373 414 0.0018072999 376 414 0.00067769992 384 414 5.6499994e-05 386 414 0.0081892982 387 414 0.00011299999 389 414 0.00011299999 390 414 0.0010730999 391 414 0.0014119998 392 414 0.0075115971 393 414 0.030215699 394 414 5.6499994e-05 395 414 0.00062129996 396 414 0.00096009998 397 414 0.00022589999 402 414 0.0020897 404 414 0.00016939999 405 414 0.0003388999 413 414 0.0027673999 414 414 0.0079633966 415 414 0.00011299999 416 414 5.6499994e-05 417 414 0.00056479988 419 414 0.0024285999 420 414 0.00067769992 421 414 5.6499994e-05 422 414 0.0022590999 423 414 5.6499994e-05 424 414 5.6499994e-05 425 414 5.6499994e-05 430 414 0.00011299999 431 414 5.6499994e-05 433 414 5.6499994e-05 434 414 5.6499994e-05 435 414 5.6499994e-05 438 414 5.6499994e-05 441 414 5.6499994e-05 442 414 0.00011299999 443 414 0.0012989999 444 414 0.00073419977 445 414 0.0059301965 446 414 0.00011299999 447 414 0.0018072999 448 414 5.6499994e-05 450 414 0.0070032999 452 414 0.0058736987 453 414 0.0011296 454 414 0.0003388999 455 414 0.0194849 456 414 0.0010165998 457 414 0.0032756999 458 414 0.0016943 459 414 0.0012989999 460 414 0.0014683998 463 414 0.011126198 464 414 0.0009035999 465 414 0.0021461998 467 414 0.018468298 468 414 0.0058736987 469 414 0.011747397 470 414 0.013215899 471 414 0.0049700998 472 414 5.6499994e-05 473 414 0.0003388999 477 414 0.00016939999 478 414 0.0018072999 483 414 0.0030497999 489 414 0.00016939999 490 414 0.0012989999 491 414 0.0096012987 21 415 0.00058899983 60 415 0.0026505999 108 415 0.00014729999 114 415 0.00014729999 126 415 0.00014729999 150 415 0.00014729999 160 415 0.0010307999 175 415 0.0002944998 189 415 0.0002944998 190 415 0.00014729999 192 415 0.00014729999 193 415 0.0007362999 194 415 0.00014729999 196 415 0.00014729999 198 415 0.0069208965 200 415 0.00014729999 203 415 0.00014729999 204 415 0.0016198 206 415 0.00014729999 207 415 0.00014729999 224 415 0.010013297 233 415 0.00014729999 234 415 0.0044175982 237 415 0.0007362999 240 415 0.0044175982 241 415 0.019731998 252 415 0.0014724999 262 415 0.00044179987 270 415 0.0002944998 271 415 0.00014729999 272 415 0.00014729999 277 415 0.015608899 282 415 0.0054483972 283 415 0.0007362999 284 415 0.00058899983 286 415 0.00058899983 290 415 0.00044179987 292 415 0.024296898 293 415 0.0051538981 294 415 0.0016198 295 415 0.0076571964 296 415 0.0085406974 297 415 0.0050065964 298 415 0.00044179987 308 415 0.0002944998 312 415 0.019879296 313 415 0.00014729999 315 415 0.0098659992 317 415 0.00014729999 318 415 0.00014729999 320 415 0.0067736991 322 415 0.012222096 324 415 0.0007362999 326 415 0.0014724999 340 415 0.0070681982 351 415 0.0002944998 352 415 0.00014729999 357 415 0.00014729999 358 415 0.0058900975 366 415 0.00088349986 369 415 0.017375898 370 415 0.0016198 371 415 0.0044175982 372 415 0.0041230991 373 415 0.0042703971 376 415 0.0007362999 386 415 0.016786899 387 415 0.0002944998 390 415 0.00014729999 391 415 0.00088349986 392 415 0.0032396 393 415 0.010749497 402 415 0.0011779999 408 415 0.0002944998 414 415 0.010896798 415 415 0.0060373992 417 415 0.00058899983 419 415 0.0013253 421 415 0.00014729999 422 415 0.0033867999 430 415 0.00014729999 433 415 0.00014729999 434 415 0.00014729999 441 415 0.0042703971 442 415 0.0051538981 443 415 0.0016198 444 415 0.0025032999 445 415 0.010749497 446 415 0.0002944998 447 415 0.0082461983 450 415 0.0073626973 452 415 0.0050065964 453 415 0.0013253 454 415 0.00058899983 455 415 0.024885897 456 415 0.00088349986 457 415 0.0030922999 458 415 0.0013253 459 415 0.0013253 460 415 0.0014724999 463 415 0.010749497 464 415 0.00088349986 465 415 0.0025032999 467 415 0.015903398 468 415 0.0075098984 469 415 0.0070681982 470 415 0.0076571964 471 415 0.0044175982 473 415 0.00014729999 478 415 0.0019142998 483 415 0.0032396 489 415 0.00014729999 490 415 0.0007362999 491 415 0.0013253 6 416 9.8599994e-05 9 416 9.8599994e-05 60 416 0.0020699999 82 416 0.00049289991 102 416 0.00019709999 104 416 9.8599994e-05 107 416 9.8599994e-05 108 416 9.8599994e-05 114 416 0.00019709999 117 416 0.00019709999 120 416 9.8599994e-05 126 416 9.8599994e-05 130 416 0.00098569994 131 416 0.00039429986 135 416 9.8599994e-05 137 416 9.8599994e-05 138 416 0.00019709999 139 416 0.0013799998 142 416 0.00019709999 150 416 0.0027599998 159 416 0.0020699999 160 416 0.0029570998 161 416 9.8599994e-05 165 416 0.0056184977 170 416 0.0030556999 171 416 9.8599994e-05 178 416 9.8599994e-05 184 416 9.8599994e-05 187 416 0.00029569981 188 416 9.8599994e-05 189 416 9.8599994e-05 190 416 9.8599994e-05 192 416 0.0006899999 193 416 0.0030556999 194 416 0.00029569981 198 416 0.0068013966 200 416 9.8599994e-05 203 416 9.8599994e-05 204 416 0.00019709999 206 416 0.00039429986 207 416 9.8599994e-05 214 416 0.0059141964 217 416 0.00019709999 223 416 0.00049289991 224 416 0.0006899999 228 416 0.0048299991 229 416 0.00019709999 233 416 0.0045342967 234 416 0.0041399971 237 416 0.00059139985 240 416 0.011631299 241 416 0.023361299 242 416 0.0030556999 252 416 0.0067027994 253 416 0.0059141964 268 416 9.8599994e-05 270 416 0.00019709999 271 416 9.8599994e-05 272 416 0.00078859995 277 416 0.019221298 279 416 9.8599994e-05 282 416 0.0011827999 283 416 0.00019709999 284 416 9.8599994e-05 286 416 0.018629897 290 416 0.0189256 292 416 0.00019709999 293 416 0.0013799998 294 416 0.00039429986 295 416 0.00019709999 296 416 0.00019709999 297 416 0.00019709999 300 416 0.00049289991 307 416 0.00019709999 308 416 9.8599994e-05 312 416 0.015179899 314 416 0.00019709999 315 416 0.014588498 317 416 0.0029570998 319 416 0.0089698993 320 416 0.0087727979 321 416 0.0094627999 322 416 0.00049289991 324 416 0.00029569981 325 416 0.013405599 326 416 0.0045342967 328 416 9.8599994e-05 340 416 0.006407097 345 416 0.00019709999 350 416 0.00039429986 351 416 0.00019709999 352 416 0.00019709999 354 416 0.00039429986 356 416 9.8599994e-05 358 416 0.0028585999 368 416 9.8599994e-05 369 416 0.00049289991 372 416 0.00098569994 375 416 9.8599994e-05 386 416 0.00039429986 387 416 9.8599994e-05 391 416 0.00019709999 392 416 0.00019709999 393 416 0.0010843 395 416 9.8599994e-05 396 416 0.0027599998 397 416 9.8599994e-05 398 416 9.8599994e-05 402 416 0.00029569981 405 416 9.8599994e-05 413 416 9.8599994e-05 414 416 0.0072941966 416 416 0.0042384975 417 416 0.0006899999 419 416 9.8599994e-05 421 416 0.00098569994 422 416 0.0027599998 430 416 9.8599994e-05 433 416 9.8599994e-05 434 416 9.8599994e-05 441 416 9.8599994e-05 442 416 0.00029569981 443 416 0.0023657 444 416 0.0040413998 445 416 0.007589899 446 416 0.00019709999 447 416 0.0041399971 448 416 9.8599994e-05 450 416 0.0068013966 452 416 0.0052241981 453 416 0.0015770998 454 416 0.0036470999 455 416 0.028191198 456 416 0.00088709989 457 416 0.0042384975 458 416 0.0010843 459 416 0.00088709989 460 416 0.0014785999 463 416 0.015475597 464 416 0.0051256977 465 416 0.0019713999 467 416 0.016362697 468 416 0.014391299 469 416 0.0088713989 470 416 0.0098570995 471 416 0.0042384975 473 416 0.00019709999 477 416 0.00059139985 478 416 0.0016756998 479 416 0.0012814 483 416 0.0010843 489 416 0.00019709999 490 416 0.0014785999 491 416 0.0030556999 4 417 0.00068269996 9 417 8.5299995e-05 60 417 0.0022187999 82 417 0.0093872994 83 417 8.5299995e-05 84 417 8.5299995e-05 104 417 0.00034139981 108 417 8.5299995e-05 113 417 0.00017069999 114 417 0.00025599985 117 417 0.0026454998 120 417 8.5299995e-05 126 417 8.5299995e-05 130 417 0.023894899 131 417 0.0180065 132 417 0.00051199994 133 417 0.0021334998 135 417 0.0028161998 137 417 8.5299995e-05 138 417 0.011862099 139 417 0.0052909963 141 417 8.5299995e-05 142 417 0.010923397 143 417 0.00025599985 149 417 0.0021334998 150 417 0.00025599985 158 417 0.00017069999 160 417 0.0016213998 169 417 8.5299995e-05 187 417 0.021334697 188 417 0.0040962994 189 417 0.00017069999 190 417 8.5299995e-05 192 417 0.0034989 193 417 8.5299995e-05 194 417 0.0039255992 197 417 8.5299995e-05 198 417 0.012288798 200 417 8.5299995e-05 203 417 0.00017069999 204 417 0.00017069999 206 417 0.00017069999 207 417 8.5299995e-05 208 417 8.5299995e-05 214 417 0.0017068 219 417 0.00059739989 221 417 0.00025599985 223 417 0.0029014999 224 417 0.016384996 226 417 0.00034139981 227 417 0.00025599985 228 417 0.00025599985 229 417 0.0046935976 231 417 8.5299995e-05 232 417 0.00051199994 233 417 8.5299995e-05 234 417 0.0040962994 237 417 0.00059739989 240 417 0.012032799 241 417 0.021334697 243 417 0.00017069999 252 417 0.0084484965 253 417 0.00059739989 268 417 0.00076799979 271 417 0.0052056983 277 417 0.016214397 282 417 0.0043522976 283 417 0.00034139981 284 417 0.00017069999 286 417 8.5299995e-05 287 417 0.00017069999 290 417 0.00059739989 292 417 0.00017069999 293 417 0.0066563971 295 417 8.5299995e-05 296 417 0.0023894999 297 417 0.00042669987 300 417 0.0073390976 312 417 0.0130568 313 417 0.00017069999 314 417 8.5299995e-05 315 417 0.00017069999 320 417 8.5299995e-05 325 417 0.00017069999 326 417 0.00025599985 340 417 8.5299995e-05 347 417 8.5299995e-05 351 417 8.5299995e-05 354 417 8.5299995e-05 356 417 8.5299995e-05 357 417 8.5299995e-05 358 417 0.0023041 372 417 0.0019627998 387 417 8.5299995e-05 391 417 8.5299995e-05 393 417 0.0088751987 394 417 8.5299995e-05 396 417 8.5299995e-05 397 417 0.00017069999 402 417 0.0010241 404 417 8.5299995e-05 416 417 0.012374099 417 417 0.015787698 421 417 0.00076799979 422 417 0.00017069999 423 417 8.5299995e-05 430 417 0.00025599985 431 417 8.5299995e-05 433 417 8.5299995e-05 434 417 8.5299995e-05 437 417 8.5299995e-05 442 417 0.00025599985 443 417 0.0039255992 444 417 0.0040108971 445 417 0.015275598 446 417 0.00025599985 447 417 0.0032428999 448 417 8.5299995e-05 450 417 0.0067417994 452 417 0.0048642978 453 417 0.0015360999 454 417 0.00076799979 455 417 0.040109199 456 417 0.00093869981 457 417 0.0045229979 458 417 0.00093869981 459 417 0.00068269996 460 417 0.0014507999 463 417 0.0093872994 464 417 0.0042668991 465 417 0.0015360999 467 417 0.019969299 468 417 0.027479097 469 417 0.0071684979 470 417 0.0076804981 471 417 0.0040108971 473 417 0.00017069999 477 417 0.00051199994 478 417 0.0013653999 479 417 0.0028161998 483 417 0.0017920998 489 417 0.00017069999 490 417 0.0015360999 491 417 0.0018775 24 418 0.0016246999 60 418 0.0016246999 82 418 0.00054159993 108 418 0.00027079997 114 418 0.00054159993 126 418 0.00027079997 130 418 0.0010831 131 418 0.00081229978 138 418 0.00054159993 139 418 0.0021662998 142 418 0.00054159993 160 418 0.00027079997 165 418 0.0010831 187 418 0.00081229978 188 418 0.00027079997 192 418 0.00027079997 193 418 0.0086649992 194 418 0.00054159993 198 418 0.0043324977 206 418 0.00054159993 224 418 0.00054159993 229 418 0.00027079997 233 418 0.0021662998 234 418 0.003791 237 418 0.00054159993 240 418 0.00054159993 241 418 0.0075818971 252 418 0.00054159993 268 418 0.0059571974 270 418 0.010560498 271 418 0.00027079997 272 418 0.00081229978 277 418 0.025995098 282 418 0.00027079997 290 418 0.13647437 293 418 0.0016246999 294 418 0.030327599 300 418 0.00027079997 312 418 0.00054159993 320 418 0.00027079997 340 418 0.00081229978 358 418 0.0024369999 387 418 0.00027079997 392 418 0.00027079997 393 418 0.0016246999 395 418 0.010831296 396 418 0.0078526996 398 418 0.0092065968 402 418 0.00027079997 416 418 0.00054159993 417 418 0.0013538999 418 418 0.00027079997 422 418 0.00027079997 441 418 0.011372898 443 418 0.0024369999 444 418 0.013809897 445 418 0.017600898 446 418 0.00027079997 447 418 0.012997597 450 418 0.0056863986 452 418 0.0046032965 453 418 0.0010831 455 418 0.035472497 456 418 0.00027079997 457 418 0.0046032965 458 418 0.0013538999 459 418 0.00081229978 460 418 0.0013538999 463 418 0.013539098 464 418 0.0016246999 465 418 0.011102099 467 418 0.013809897 468 418 0.071757376 469 418 0.0070402995 470 418 0.0078526996 471 418 0.0043324977 473 418 0.00027079997 477 418 0.00054159993 478 418 0.0013538999 483 418 0.0013538999 489 418 0.00027079997 490 418 0.00081229978 18 419 0.00021679999 22 419 0.00032519992 60 419 0.0010841 108 419 0.0001084 114 419 0.00021679999 126 419 0.0001084 130 419 0.0001084 150 419 0.0001084 160 419 0.0014093998 171 419 0.0001084 187 419 0.0001084 189 419 0.0001084 190 419 0.0001084 194 419 0.00021679999 198 419 0.010624498 203 419 0.0001084 204 419 0.0001084 206 419 0.00021679999 221 419 0.0001084 224 419 0.0092150979 234 419 0.0026018999 237 419 0.00032519992 240 419 0.00043369993 241 419 0.018863797 250 419 0.0042280965 252 419 0.0030355998 277 419 0.015828297 282 419 0.0001084 284 419 0.00065049995 290 419 0.00097569986 292 419 0.013659999 293 419 0.00021679999 294 419 0.015828297 295 419 0.0017345999 296 419 0.0001084 297 419 0.0001084 298 419 0.0017345999 308 419 0.0001084 312 419 0.0203816 315 419 0.015394598 317 419 0.0001084 320 419 0.011274897 322 419 0.0035775998 326 419 0.0039028998 340 419 0.0026018999 356 419 0.0001084 358 419 0.0020597999 359 419 0.0001084 361 419 0.0001084 363 419 0.0001084 369 419 0.00021679999 370 419 0.00054209982 371 419 0.00065049995 372 419 0.0076972991 373 419 0.0001084 380 419 0.0001084 385 419 0.00075889984 386 419 0.00043369993 387 419 0.0001084 390 419 0.00032519992 392 419 0.00043369993 393 419 0.0014093998 398 419 0.0033608 402 419 0.0001084 413 419 0.003144 414 419 0.00021679999 415 419 0.0001084 417 419 0.00054209982 419 419 0.22820896 421 419 0.0001084 422 419 0.00021679999 423 419 0.0052037984 424 419 0.0070467964 426 419 0.0057458989 441 419 0.00021679999 442 419 0.0028186999 443 419 0.0014093998 444 419 0.004119698 445 419 0.015177798 447 419 0.0062878989 450 419 0.0058542974 452 419 0.0034691999 453 419 0.00065049995 454 419 0.00032519992 455 419 0.048460498 456 419 0.00032519992 457 419 0.0015177999 458 419 0.00097569986 459 419 0.00032519992 460 419 0.00097569986 463 419 0.0091066994 464 419 0.0052037984 465 419 0.012575898 467 419 0.018213399 468 419 0.034475297 469 419 0.0037943998 470 419 0.004119698 471 419 0.0021682999 473 419 0.0001084 477 419 0.00043369993 478 419 0.0011924999 479 419 0.00043369993 483 419 0.0016261998 489 419 0.0001084 490 419 0.00032519992 491 419 0.00065049995 60 420 0.0026131 82 420 0.00016329999 108 420 0.00016329999 114 420 0.00016329999 126 420 0.00016329999 187 420 0.00016329999 189 420 0.00016329999 190 420 0.00016329999 194 420 0.00032659993 198 420 0.0019597998 203 420 0.00016329999 206 420 0.00065329997 214 420 0.00048999977 224 420 0.0037562998 234 420 0.0042462982 237 420 0.00048999977 240 420 0.00016329999 241 420 0.056344897 252 420 0.014208697 270 420 0.00016329999 273 420 0.00048999977 276 420 0.00016329999 277 420 0.0073492974 282 420 0.0037562998 283 420 0.00016329999 284 420 0.00016329999 290 420 0.0011431999 292 420 0.00097989989 293 420 0.0039195977 294 420 0.0055527985 295 420 0.00081659993 296 420 0.0037562998 297 420 0.00016329999 298 420 0.017148498 299 420 0.00016329999 308 420 0.00097989989 312 420 0.0029396999 315 420 0.011105698 320 420 0.00097989989 321 420 0.00016329999 322 420 0.00032659993 324 420 0.00032659993 326 420 0.0019597998 340 420 0.00065329997 351 420 0.00065329997 352 420 0.00016329999 356 420 0.00016329999 358 420 0.0032664 359 420 0.00016329999 366 420 0.0014698999 369 420 0.0019597998 370 420 0.00016329999 371 420 0.00032659993 372 420 0.0024497998 373 420 0.00065329997 386 420 0.00081659993 387 420 0.00032659993 390 420 0.0039195977 391 420 0.00065329997 392 420 0.017148498 393 420 0.036746699 398 420 0.00016329999 402 420 0.00032659993 404 420 0.00097989989 405 420 0.00048999977 413 420 0.00016329999 414 420 0.00016329999 415 420 0.00016329999 417 420 0.00032659993 419 420 0.00032659993 420 420 0.070880294 421 420 0.0017964998 422 420 0.00065329997 430 420 0.00016329999 434 420 0.00016329999 435 420 0.005879499 442 420 0.00065329997 443 420 0.00081659993 444 420 0.00081659993 445 420 0.010778997 447 420 0.0026131 450 420 0.0053894967 452 420 0.0057161972 453 420 0.00048999977 454 420 0.00016329999 455 420 0.035276797 456 420 0.00081659993 457 420 0.0037562998 458 420 0.0017964998 459 420 0.00065329997 460 420 0.00097989989 463 420 0.0097990967 464 420 0.0011431999 465 420 0.0011431999 467 420 0.017311797 468 420 0.0032664 469 420 0.010778997 470 420 0.0125755 471 420 0.0037562998 473 420 0.00032659993 477 420 0.00032659993 478 420 0.0014698999 483 420 0.0019597998 489 420 0.00016329999 490 420 0.0019597998 491 420 0.0026131 60 421 0.0025086999 108 421 0.000193 114 421 0.00038599991 126 421 0.000193 150 421 0.000193 187 421 0.00038599991 189 421 0.000193 190 421 0.000193 192 421 0.000193 194 421 0.00038599991 198 421 0.0019297998 200 421 0.000193 203 421 0.000193 204 421 0.000193 206 421 0.00057889987 214 421 0.0011578999 223 421 0.000193 224 421 0.022771098 234 421 0.0065611973 237 421 0.00077189994 240 421 0.000193 241 421 0.029718298 252 421 0.030490197 270 421 0.0034735999 277 421 0.00096489978 284 421 0.000193 290 421 0.041489799 294 421 0.00038599991 296 421 0.000193 312 421 0.000193 315 421 0.000193 326 421 0.000193 356 421 0.000193 358 421 0.0032805998 387 421 0.000193 392 421 0.00057889987 393 421 0.00038599991 402 421 0.00038599991 417 421 0.00057889987 420 421 0.00038599991 421 421 0.060401399 422 421 0.0011578999 442 421 0.020262398 443 421 0.0021227 444 421 0.00057889987 445 421 0.0119645 446 421 0.00038599991 447 421 0.0028945999 450 421 0.0071400963 452 421 0.0048243999 453 421 0.0025086999 454 421 0.0011578999 455 421 0.07043606 456 421 0.00077189994 457 421 0.0040524974 458 421 0.0017368 459 421 0.00057889987 460 421 0.0015437999 463 421 0.0121575 464 421 0.00077189994 465 421 0.0017368 467 421 0.016595896 468 421 0.0144732 469 421 0.0073330998 470 421 0.0082979985 471 421 0.0048243999 473 421 0.000193 477 421 0.00038599991 478 421 0.0023156998 483 421 0.0021227 489 421 0.000193 490 421 0.00077189994 491 421 0.00096489978 9 422 1.8599996e-05 13 422 9.3199997e-05 16 422 1.8599996e-05 18 422 9.3199997e-05 21 422 5.5899989e-05 22 422 0.0010809 24 422 0.00026089977 60 422 0.0057770982 79 422 1.8599996e-05 82 422 0.00013049999 83 422 1.8599996e-05 84 422 1.8599996e-05 104 422 9.3199997e-05 108 422 3.7299993e-05 113 422 5.5899989e-05 114 422 9.3199997e-05 119 422 3.7299993e-05 120 422 0.00031679985 126 422 5.5899989e-05 127 422 1.8599996e-05 130 422 7.45e-05 131 422 3.7299993e-05 132 422 1.8599996e-05 135 422 0.00054039992 139 422 3.7299993e-05 142 422 1.8599996e-05 143 422 1.8599996e-05 150 422 0.00029819994 151 422 1.8599996e-05 158 422 1.8599996e-05 159 422 0.00014909999 160 422 0.00050319987 162 422 1.8599996e-05 171 422 5.5899989e-05 184 422 1.8599996e-05 186 422 0.00031679985 187 422 0.016548596 188 422 0.00013049999 189 422 5.5899989e-05 190 422 5.5899989e-05 192 422 0.0084606968 193 422 0.00013049999 194 422 9.3199997e-05 196 422 1.8599996e-05 197 422 1.8599996e-05 198 422 0.0081810988 200 422 7.45e-05 201 422 3.7299993e-05 203 422 5.5899989e-05 204 422 7.45e-05 206 422 0.00011179999 207 422 3.7299993e-05 208 422 3.7299993e-05 209 422 1.8599996e-05 214 422 0.043607898 218 422 0.00018639999 219 422 0.00011179999 221 422 9.3199997e-05 223 422 0.003950797 224 422 0.00040999986 225 422 1.8599996e-05 230 422 1.8599996e-05 231 422 3.7299993e-05 233 422 7.45e-05 234 422 0.0028512999 237 422 0.0002423 240 422 0.00089449994 241 422 0.012765598 248 422 1.8599996e-05 250 422 3.7299993e-05 252 422 0.0011741 254 422 1.8599996e-05 270 422 1.8599996e-05 277 422 0.0196236 279 422 1.8599996e-05 284 422 3.7299993e-05 290 422 0.0031307999 292 422 0.00076409988 293 422 0.0010249999 294 422 0.014014199 295 422 5.5899989e-05 296 422 0.0051993988 297 422 1.8599996e-05 298 422 0.0030375998 300 422 1.8599996e-05 301 422 0.00013049999 308 422 3.7299993e-05 312 422 0.0024785998 314 422 1.8599996e-05 315 422 0.0040066987 318 422 7.45e-05 320 422 0.00013049999 321 422 3.7299993e-05 322 422 0.00096909981 325 422 0.00050319987 326 422 0.0056838989 340 422 5.5899989e-05 341 422 1.8599996e-05 347 422 1.8599996e-05 350 422 1.8599996e-05 351 422 1.8599996e-05 354 422 0.0030003998 356 422 0.00022359999 358 422 0.0013790999 359 422 3.7299993e-05 361 422 1.8599996e-05 363 422 3.7299993e-05 369 422 9.3199997e-05 370 422 0.00018639999 371 422 1.8599996e-05 372 422 0.0031494999 384 422 0.0017704 386 422 5.5899989e-05 387 422 5.5899989e-05 390 422 0.00020499999 391 422 7.45e-05 392 422 0.017554998 393 422 0.0056652986 394 422 1.8599996e-05 396 422 0.00014909999 397 422 1.8599996e-05 398 422 1.8599996e-05 402 422 0.00011179999 404 422 5.5899989e-05 405 422 1.8599996e-05 413 422 3.7299993e-05 417 422 0.00018639999 419 422 0.0030748998 420 422 0.0074542984 421 422 1.8599996e-05 422 422 0.030245997 423 422 5.5899989e-05 424 422 3.7299993e-05 425 422 1.8599996e-05 426 422 3.7299993e-05 427 422 1.8599996e-05 428 422 1.8599996e-05 430 422 5.5899989e-05 431 422 1.8599996e-05 432 422 1.8599996e-05 433 422 3.7299993e-05 434 422 5.5899989e-05 435 422 0.00050319987 438 422 0.00048449985 441 422 0.00035409979 442 422 0.0022548998 443 422 0.0028698999 444 422 0.0012299998 445 422 0.0047520995 446 422 0.00093179988 447 422 0.0044166967 448 422 1.8599996e-05 449 422 1.8599996e-05 450 422 0.004304897 452 422 0.0029630999 453 422 0.00089449994 454 422 0.00095039979 455 422 0.0232016 456 422 0.00061499979 457 422 0.0073424987 458 422 0.0010809 459 422 0.0032984999 460 422 0.0012486 463 422 0.0079201981 464 422 0.0017889999 465 422 0.0038949 467 422 0.018766299 468 422 0.0197354 469 422 0.0050502978 470 422 0.0056838989 471 422 0.0015280999 472 422 0.00018639999 473 422 0.00011179999 477 422 0.00046589994 478 422 0.003950797 479 422 0.0016027 483 422 0.00098769995 489 422 9.3199997e-05 490 422 0.0004472998 491 422 0.00011179999 9 423 9.8699995e-05 18 423 0.00019729999 24 423 9.8699995e-05 82 423 9.8699995e-05 108 423 9.8699995e-05 114 423 0.00019729999 126 423 9.8699995e-05 150 423 9.8699995e-05 171 423 0.00019729999 189 423 9.8699995e-05 190 423 9.8699995e-05 192 423 9.8699995e-05 194 423 9.8699995e-05 196 423 9.8699995e-05 198 423 0.0057226978 200 423 9.8699995e-05 203 423 9.8699995e-05 204 423 9.8699995e-05 206 423 9.8699995e-05 207 423 9.8699995e-05 214 423 9.8699995e-05 224 423 9.8699995e-05 234 423 0.0022693998 237 423 0.00019729999 240 423 9.8699995e-05 241 423 0.0019733999 250 423 0.013418797 252 423 0.0010853 270 423 0.0031573998 276 423 0.0095707998 277 423 0.00069069979 284 423 9.8699995e-05 290 423 0.20404536 292 423 0.00049329991 294 423 0.057128798 298 423 0.0011839999 312 423 0.00019729999 315 423 0.00019729999 317 423 0.00029599993 320 423 0.00019729999 325 423 0.0070053972 326 423 9.8699995e-05 356 423 9.8699995e-05 358 423 0.0012826999 372 423 9.8699995e-05 387 423 9.8699995e-05 402 423 9.8699995e-05 417 423 0.00049329991 419 423 0.0054266974 421 423 9.8699995e-05 422 423 9.8699995e-05 423 423 0.0059200972 424 423 0.11909229 426 423 0.00049329991 430 423 9.8699995e-05 433 423 9.8699995e-05 434 423 9.8699995e-05 438 423 0.0019733999 441 423 9.8699995e-05 442 423 0.0022693998 443 423 0.0013813998 444 423 0.0039466992 445 423 0.0063147992 447 423 0.005130697 450 423 0.010162797 452 423 0.0026639998 453 423 0.00019729999 454 423 0.0034534 455 423 0.051406 456 423 0.00039469986 457 423 0.0042426996 458 423 0.00078929984 459 423 0.00039469986 460 423 0.00098669995 463 423 0.0263444 464 423 0.0073013976 465 423 0.0012826999 467 423 0.014800198 468 423 0.026640397 469 423 0.0066107996 470 423 0.0073013976 471 423 0.0018747 473 423 0.00019729999 477 423 9.8699995e-05 478 423 0.0011839999 479 423 0.00019729999 483 423 0.0021706999 489 423 9.8699995e-05 490 423 0.0049333982 491 423 0.00088799978 24 424 0.013278097 114 424 0.0001428 131 424 0.0001428 171 424 0.0001428 198 424 0.0041405 206 424 0.00028559985 214 424 0.011707596 234 424 0.0011421998 237 424 0.0001428 241 424 0.00028559985 250 424 0.00085669989 270 424 0.0098514967 272 424 0.0001428 276 424 0.0068531968 277 424 0.046402097 279 424 0.0001428 286 424 0.0001428 287 424 0.0001428 288 424 0.0001428 290 424 0.022130199 291 424 0.0001428 292 424 0.0068531968 294 424 0.0418332 295 424 0.0001428 298 424 0.00042829989 308 424 0.0001428 317 424 0.0001428 325 424 0.00042829989 326 424 0.0001428 358 424 0.00042829989 373 424 0.00042829989 393 424 0.0001428 417 424 0.0001428 419 424 0.00042829989 423 424 0.0025699998 424 424 0.022701297 426 424 0.0001428 438 424 0.0001428 441 424 0.0011421998 442 424 0.00028559985 443 424 0.0044259988 444 424 0.00028559985 445 424 0.015848096 446 424 0.0011421998 447 424 0.0052826963 450 424 0.0019989 452 424 0.0017132999 453 424 0.0001428 454 424 0.0001428 455 424 0.056253597 457 424 0.0019989 458 424 0.0001428 459 424 0.0001428 460 424 0.0021415998 463 424 0.0042832978 464 424 0.00057109981 465 424 0.00028559985 467 424 0.0032837999 468 424 0.0042832978 469 424 0.0018560998 470 424 0.0019989 471 424 0.00071389996 478 424 0.00028559985 483 424 0.0019989 490 424 0.37592798 491 424 0.0054254979 22 425 0.00091299997 60 425 0.0021301999 108 425 0.00030429987 114 425 0.00060859998 126 425 0.00030429987 171 425 0.027084596 194 425 0.00030429987 198 425 0.024649996 206 425 0.00060859998 214 425 0.028910499 234 425 0.0039561987 237 425 0.00030429987 240 425 0.00030429987 241 425 0.0219111 250 425 0.00030429987 270 425 0.018563598 272 425 0.00060859998 276 425 0.0097383 277 425 0.079123557 279 425 0.00060859998 284 425 0.00030429987 290 425 0.0608643 292 425 0.037127197 293 425 0.00060859998 294 425 0.06299448 297 425 0.013390098 298 425 0.00060859998 312 425 0.00060859998 315 425 0.00060859998 317 425 0.00030429987 319 425 0.00030429987 320 425 0.00030429987 326 425 0.011259899 339 425 0.00030429987 340 425 0.00060859998 353 425 0.00030429987 358 425 0.0015215999 387 425 0.00030429987 417 425 0.00060859998 424 425 0.00091299997 425 425 0.0051734969 426 425 0.00030429987 441 425 0.00030429987 443 425 0.0063906983 444 425 0.0051734969 445 425 0.013998799 446 425 0.00060859998 447 425 0.0146074 450 425 0.0045647994 452 425 0.0066950992 453 425 0.0015215999 454 425 0.00091299997 455 425 0.032562397 456 425 0.00030429987 457 425 0.0045647994 458 425 0.00060859998 459 425 0.00060859998 460 425 0.00091299997 463 425 0.0076079965 464 425 0.00091299997 465 425 0.00060859998 467 425 0.0094339997 468 425 0.018259298 469 425 0.0063906983 470 425 0.0073036999 471 425 0.0018258998 473 425 0.00030429987 478 425 0.0012172998 483 425 0.0033475 490 425 0.00091299997 491 425 0.00030429987 17 426 0.00044509978 60 426 0.001558 82 426 0.00022259999 108 426 0.00022259999 114 426 0.00044509978 126 426 0.00022259999 131 426 0.00022259999 132 426 0.00022259999 139 426 0.00022259999 150 426 0.00022259999 171 426 0.016470097 187 426 0.00022259999 189 426 0.00022259999 190 426 0.00022259999 194 426 0.0011127999 198 426 0.011796098 203 426 0.00022259999 206 426 0.00066769985 208 426 0.00022259999 214 426 0.0022256998 223 426 0.00022259999 224 426 0.0024482999 233 426 0.0024482999 234 426 0.0080124997 237 426 0.00044509978 241 426 0.016024899 243 426 0.00044509978 250 426 0.020698898 252 426 0.0064544976 270 426 0.0066770986 276 426 0.0060092993 277 426 0.00066769985 279 426 0.00044509978 284 426 0.00022259999 290 426 0.064099669 292 426 0.015802398 293 426 0.00044509978 294 426 0.0037836998 295 426 0.00022259999 298 426 0.079234362 312 426 0.00022259999 315 426 0.00066769985 317 426 0.00022259999 320 426 0.0064544976 325 426 0.00044509978 326 426 0.0057867989 340 426 0.00044509978 358 426 0.0020030998 387 426 0.00022259999 392 426 0.00066769985 393 426 0.0035611 417 426 0.00066769985 419 426 0.00066769985 422 426 0.00022259999 423 426 0.00044509978 424 426 0.1112842 426 426 0.0244825 438 426 0.00022259999 441 426 0.0084575973 442 426 0.0182506 443 426 0.0011127999 444 426 0.0084575973 445 426 0.012463797 446 426 0.00022259999 447 426 0.013576698 448 426 0.00022259999 450 426 0.0064544976 452 426 0.0051190965 453 426 0.00066769985 454 426 0.00089029991 455 426 0.0316047 456 426 0.00022259999 457 426 0.0046738982 458 426 0.00044509978 459 426 0.00022259999 460 426 0.0011127999 463 426 0.016470097 464 426 0.001558 465 426 0.0011127999 467 426 0.012018699 468 426 0.012241296 469 426 0.0075672977 470 426 0.0082349963 471 426 0.0026707998 473 426 0.00022259999 478 426 0.0017804999 479 426 0.012018699 483 426 0.0035611 490 426 0.00066769985 491 426 0.00044509978 22 427 0.00018239999 60 427 0.0027357 108 427 0.00018239999 114 427 0.00036479998 126 427 0.00018239999 130 427 0.0032829 135 427 0.0031005 150 427 0.00018239999 160 427 0.0492431 165 427 0.010395799 171 427 0.041035898 172 427 0.00091189984 188 427 0.0078423992 189 427 0.00018239999 190 427 0.00018239999 194 427 0.00036479998 198 427 0.0063833967 203 427 0.00018239999 206 427 0.00054709986 214 427 0.00036479998 224 427 0.0142258 233 427 0.0041947998 234 427 0.0031005 237 427 0.00036479998 241 427 0.0076599978 248 427 0.018602997 277 427 0.0116724 279 427 0.00036479998 282 427 0.0036475998 284 427 0.00018239999 292 427 0.011854798 297 427 0.0069304965 298 427 0.0069304965 312 427 0.00091189984 315 427 0.0010942998 321 427 0.00091189984 322 427 0.00091189984 356 427 0.00018239999 358 427 0.0018237999 387 427 0.017508697 392 427 0.013313897 393 427 0.063468874 402 427 0.00018239999 417 427 0.00072949985 421 427 0.00018239999 422 427 0.00036479998 427 427 0.077329874 443 427 0.0067480989 444 427 0.00054709986 445 427 0.0041947998 446 427 0.00036479998 447 427 0.0052890964 450 427 0.0052890964 452 427 0.0049242973 453 427 0.0023709999 454 427 0.00054709986 455 427 0.032463998 456 427 0.00018239999 457 427 0.0045594983 458 427 0.00072949985 459 427 0.00054709986 460 427 0.0010942998 463 427 0.011307698 464 427 0.00054709986 465 427 0.0012766998 467 427 0.010942899 468 427 0.0087542981 469 427 0.0069304965 470 427 0.0076599978 471 427 0.0021885999 473 427 0.00018239999 477 427 0.00018239999 478 427 0.0016413999 483 427 0.0031005 490 427 0.0012766998 491 427 0.0018237999 9 428 6.5699991e-05 18 428 0.0001315 22 428 6.5699991e-05 60 428 0.0025636 82 428 6.5699991e-05 83 428 6.5699991e-05 84 428 6.5699991e-05 108 428 6.5699991e-05 113 428 0.0001315 114 428 0.00026289979 126 428 0.0001315 130 428 0.0041411966 132 428 0.0026950999 135 428 6.5699991e-05 137 428 6.5699991e-05 138 428 0.00019719999 139 428 0.0097942986 143 428 6.5699991e-05 150 428 0.00085449987 154 428 0.0018404999 158 428 0.0046012998 160 428 0.017222099 161 428 0.0021034998 165 428 0.0024320998 170 428 0.00032869983 171 428 0.010517299 172 428 0.0037467999 175 428 6.5699991e-05 187 428 0.0020376998 188 428 0.016236097 189 428 0.00026289979 190 428 0.0001315 194 428 0.00039439998 197 428 0.0001315 198 428 0.044238497 200 428 6.5699991e-05 202 428 6.5699991e-05 203 428 0.0001315 204 428 0.00046009989 206 428 0.00026289979 207 428 6.5699991e-05 208 428 0.00046009989 214 428 0.00085449987 219 428 0.0020376998 221 428 0.0007230998 224 428 0.042200699 225 428 0.00039439998 227 428 0.00039439998 233 428 0.0043383986 234 428 0.0024978998 237 428 0.0066390969 240 428 0.0010517 241 428 0.1003089 243 428 0.0015775999 252 428 0.00052589993 270 428 6.5699991e-05 277 428 0.023466799 282 428 0.00019719999 283 428 0.00019719999 284 428 0.00019719999 288 428 6.5699991e-05 292 428 0.0001315 293 428 0.0032867 294 428 0.0024320998 295 428 0.00019719999 296 428 0.0001315 299 428 6.5699991e-05 300 428 6.5699991e-05 312 428 0.010122899 315 428 0.0038124998 317 428 6.5699991e-05 319 428 0.0012488998 320 428 0.0006573 321 428 0.00059159985 322 428 0.0024978998 324 428 6.5699991e-05 326 428 0.0061131977 328 428 0.0006573 330 428 0.0001315 340 428 0.00032869983 349 428 0.0007230998 351 428 0.00026289979 354 428 0.00052589993 356 428 6.5699991e-05 358 428 0.0017747998 370 428 0.0011831999 372 428 0.0046670996 377 428 6.5699991e-05 380 428 6.5699991e-05 384 428 0.0013146999 386 428 6.5699991e-05 387 428 0.0001315 391 428 0.00019719999 393 428 0.00019719999 398 428 0.0026292999 402 428 0.00019719999 409 428 0.0040754974 412 428 0.0012488998 415 428 0.0001315 417 428 0.00052589993 419 428 0.0001315 421 428 6.5699991e-05 422 428 0.00026289979 423 428 6.5699991e-05 425 428 6.5699991e-05 428 428 0.036679197 429 428 0.00026289979 430 428 0.0007230998 431 428 6.5699991e-05 433 428 6.5699991e-05 434 428 6.5699991e-05 443 428 0.0069676973 444 428 0.00052589993 445 428 0.011371899 446 428 0.00059159985 447 428 0.0039439984 450 428 0.0045355968 452 428 0.0060474984 453 428 0.0015119 454 428 0.00039439998 455 428 0.050746098 456 428 0.00052589993 457 428 0.0043383986 458 428 0.00078879995 459 428 0.0046670996 460 428 0.0011831999 463 428 0.022875197 464 428 0.0042726994 465 428 0.004929997 467 428 0.016959198 468 428 0.06961149 469 428 0.0067047998 470 428 0.0071648993 471 428 0.0020376998 473 428 0.00019719999 477 428 0.0001315 478 428 0.0013803998 479 428 0.0059816986 483 428 0.0022348999 489 428 0.0001315 490 428 0.00078879995 491 428 0.00078879995 60 429 0.0021276998 114 429 0.00035459991 130 429 0.10496449 132 429 0.0039006998 137 429 0.0021276998 139 429 0.0031915 150 429 0.00035459991 154 429 0.00070919981 158 429 0.0014183999 160 429 0.0056737997 161 429 0.00070919981 162 429 0.00035459991 165 429 0.00070919981 171 429 0.0035460999 172 429 0.0014183999 187 429 0.00035459991 188 429 0.0049644969 194 429 0.00035459991 198 429 0.039361697 206 429 0.00070919981 219 429 0.00070919981 224 429 0.027305 225 429 0.00035459991 233 429 0.0216312 234 429 0.0024822999 237 429 0.0024822999 240 429 0.0092198998 241 429 0.11702126 243 429 0.00070919981 277 429 0.0070921965 293 429 0.0010638 294 429 0.00070919981 312 429 0.0031915 315 429 0.0010638 317 429 0.00035459991 319 429 0.00035459991 322 429 0.00070919981 326 429 0.001773 328 429 0.00035459991 349 429 0.00035459991 358 429 0.001773 370 429 0.00035459991 372 429 0.0014183999 384 429 0.00035459991 398 429 0.00070919981 409 429 0.00070919981 412 429 0.00035459991 417 429 0.00070919981 428 429 0.012056697 429 429 0.026950397 430 429 0.00035459991 442 429 0.00070919981 443 429 0.0028368998 444 429 0.00035459991 445 429 0.025886498 447 429 0.0046098977 450 429 0.0056737997 452 429 0.0056737997 453 429 0.0014183999 455 429 0.039361697 456 429 0.00035459991 457 429 0.0042552985 458 429 0.00070919981 459 429 0.022340398 460 429 0.0014183999 463 429 0.024468098 464 429 0.001773 465 429 0.0024822999 467 429 0.013120599 468 429 0.048226997 469 429 0.0056737997 470 429 0.0060283989 471 429 0.0024822999 478 429 0.0014183999 479 429 0.0163121 483 429 0.0042552985 490 429 0.0010638 491 429 0.00070919981 9 430 6.2499996e-05 18 430 0.00012489999 22 430 6.2499996e-05 60 430 0.0034351 82 430 0.00012489999 83 430 6.2499996e-05 84 430 6.2499996e-05 108 430 6.2499996e-05 113 430 0.00012489999 114 430 0.00018739999 126 430 6.2499996e-05 130 430 0.011991799 131 430 0.00024979981 132 430 0.00031229993 133 430 0.00068699988 135 430 0.0033101998 138 430 0.00024979981 139 430 0.0018736999 141 430 0.00081189978 142 430 0.00018739999 143 430 6.2499996e-05 145 430 6.2499996e-05 149 430 0.00074949977 150 430 0.004371997 156 430 0.00012489999 158 430 0.0046842992 159 430 6.2499996e-05 160 430 0.053713098 161 430 0.0013740999 165 430 0.0039972998 169 430 0.0013116 170 430 0.0011866998 171 430 0.0051838979 172 430 6.2499996e-05 188 430 0.00018739999 189 430 0.00012489999 190 430 0.00012489999 192 430 6.2499996e-05 194 430 0.00018739999 197 430 6.2499996e-05 198 430 0.015739199 200 430 6.2499996e-05 203 430 0.00012489999 204 430 0.0015613998 206 430 0.00024979981 207 430 6.2499996e-05 214 430 0.00062459987 219 430 0.005621098 222 430 6.2499996e-05 224 430 0.029104996 225 430 0.0099306963 227 430 0.0092435963 230 430 0.00031229993 233 430 0.007557299 234 430 0.0025606998 237 430 0.00037469994 240 430 0.011179797 241 430 0.020111199 242 430 0.0025606998 243 430 0.0110549 248 430 0.00012489999 252 430 0.00087439991 269 430 0.0022484998 270 430 0.00056209997 277 430 0.051464599 282 430 0.0081193969 283 430 0.0084316991 284 430 0.00018739999 292 430 0.0021235 293 430 0.0074947998 294 430 0.0014364999 295 430 6.2499996e-05 296 430 0.0061207972 298 430 0.00062459987 312 430 0.011554599 315 430 0.00031229993 319 430 0.00043719984 321 430 0.00049969996 322 430 6.2499996e-05 324 430 0.0026856998 326 430 0.00018739999 340 430 6.2499996e-05 350 430 6.2499996e-05 351 430 0.00018739999 354 430 6.2499996e-05 355 430 6.2499996e-05 356 430 0.0023108998 358 430 0.0015613998 371 430 0.0016862999 372 430 0.0029354999 387 430 6.2499996e-05 392 430 0.0019361998 393 430 0.0021235 398 430 6.2499996e-05 402 430 0.00012489999 409 430 6.2499996e-05 417 430 0.00056209997 421 430 6.2499996e-05 422 430 0.00018739999 423 430 6.2499996e-05 428 430 0.00049969996 430 430 0.052214097 431 430 6.2499996e-05 433 430 6.2499996e-05 434 430 6.2499996e-05 437 430 0.00074949977 441 430 0.0018736999 442 430 0.00012489999 443 430 0.0083691999 444 430 0.0021235 445 430 0.0098681971 446 430 0.00099929981 447 430 0.0033101998 450 430 0.0078695975 452 430 0.0053712986 453 430 0.0023733999 454 430 0.00056209997 455 430 0.054462597 456 430 0.00049969996 457 430 0.0073698983 458 430 0.0023733999 459 430 0.0038722998 460 430 0.0013116 463 430 0.017550398 464 430 0.0053712986 465 430 0.0012490998 467 430 0.014802299 468 430 0.041408997 469 430 0.013053499 470 430 0.0066203997 471 430 0.0019985999 473 430 0.00012489999 477 430 0.00018739999 478 430 0.0013116 479 430 0.0042470992 483 430 0.0021235 489 430 0.0019361998 490 430 0.0023108998 491 430 0.0024357999 13 431 0.00030889991 24 431 0.00092679984 60 431 0.0021624998 114 431 0.00030889991 120 431 0.00030889991 126 431 0.00030889991 130 431 0.00030889991 131 431 0.00061789993 135 431 0.021933898 160 431 0.00061789993 171 431 0.0027804 187 431 0.00092679984 194 431 0.00061789993 198 431 0.030274898 206 431 0.00061789993 214 431 0.00061789993 224 431 0.043558899 225 431 0.00030889991 233 431 0.00061789993 234 431 0.0021624998 237 431 0.00030889991 240 431 0.00061789993 241 431 0.10534447 268 431 0.00030889991 272 431 0.00061789993 273 431 0.00030889991 276 431 0.0111214 277 431 0.0024714 279 431 0.00061789993 290 431 0.00030889991 292 431 0.063639164 293 431 0.00030889991 298 431 0.00061789993 312 431 0.00030889991 315 431 0.00092679984 321 431 0.00030889991 322 431 0.0027804 326 431 0.029039197 358 431 0.0012357 370 431 0.00030889991 372 431 0.00030889991 417 431 0.00061789993 424 431 0.00061789993 431 431 0.050664198 432 431 0.00061789993 433 431 0.00030889991 434 431 0.00061789993 442 431 0.0101946 443 431 0.0040160976 444 431 0.0071052983 445 431 0.018226799 446 431 0.00030889991 447 431 0.0089588985 450 431 0.0046338998 452 431 0.0058695972 453 431 0.00061789993 454 431 0.0012357 455 431 0.0457213 456 431 0.00030889991 457 431 0.012665998 458 431 0.00061789993 459 431 0.00061789993 460 431 0.00092679984 463 431 0.0176089 464 431 0.00092679984 465 431 0.011430297 467 431 0.0092677996 468 431 0.016990997 469 431 0.0071052983 470 431 0.0071052983 471 431 0.0015445999 473 431 0.00030889991 478 431 0.00092679984 479 431 0.0052517988 483 431 0.0024714 490 431 0.00061789993 491 431 0.0024714 24 432 0.011454798 60 432 0.0028636998 114 432 0.00057269982 126 432 0.00057269982 135 432 0.010309298 139 432 0.00057269982 156 432 0.00057269982 159 432 0.00057269982 160 432 0.0148912 171 432 0.048682697 187 432 0.0017181998 188 432 0.00057269982 198 432 0.016036697 206 432 0.0011455 208 432 0.00057269982 218 432 0.0011455 224 432 0.0028636998 225 432 0.010881998 233 432 0.012600198 234 432 0.0091637969 240 432 0.0068728998 241 432 0.057273798 268 432 0.0040091984 272 432 0.00057269982 273 432 0.0040091984 276 432 0.021191299 277 432 0.002291 279 432 0.00057269982 292 432 0.0028636998 294 432 0.0011455 312 432 0.0057273991 315 432 0.0223368 317 432 0.00057269982 325 432 0.0017181998 326 432 0.018327598 358 432 0.0017181998 417 432 0.00057269982 428 432 0.0011455 430 432 0.00057269982 431 432 0.002291 432 432 0.0011455 433 432 0.0051545985 434 432 0.010881998 442 432 0.044100799 443 432 0.0063000992 445 432 0.014318399 446 432 0.00057269982 447 432 0.0011455 450 432 0.0045818985 452 432 0.0057273991 453 432 0.0034363999 455 432 0.038946196 457 432 0.0045818985 458 432 0.00057269982 459 432 0.00057269982 460 432 0.0011455 463 432 0.0154639 464 432 0.0017181998 465 432 0.0011455 467 432 0.010309298 468 432 0.053264599 469 432 0.0080182999 470 432 0.0091637969 471 432 0.0017181998 473 432 0.00057269982 478 432 0.0011455 479 432 0.0148912 483 432 0.0028636998 490 432 0.0011455 491 432 0.00057269982 24 433 0.00060099992 60 433 0.0030047998 114 433 0.00060099992 126 433 0.00060099992 131 433 0.0012019 135 433 0.00060099992 160 433 0.00060099992 171 433 0.058293298 187 433 0.0018028999 198 433 0.012019198 206 433 0.0012019 214 433 0.0036058 224 433 0.025240399 225 433 0.00060099992 233 433 0.0012019 234 433 0.0036058 237 433 0.00060099992 240 433 0.025841299 241 433 0.050480798 272 433 0.00060099992 276 433 0.022836499 277 433 0.040264398 279 433 0.00060099992 292 433 0.0012019 294 433 0.032451898 315 433 0.044471197 326 433 0.0096153989 358 433 0.0018028999 417 433 0.00060099992 431 433 0.00060099992 433 433 0.0024037999 434 433 0.00060099992 437 433 0.00060099992 442 433 0.0024037999 443 433 0.0030047998 444 433 0.0012019 445 433 0.032451898 447 433 0.0042066984 450 433 0.0066105984 452 433 0.0078125 453 433 0.0030047998 455 433 0.025240399 457 433 0.0048076995 458 433 0.00060099992 459 433 0.036057699 460 433 0.0012019 463 433 0.021033697 464 433 0.0012019 465 433 0.0012019 467 433 0.011418298 468 433 0.019831698 469 433 0.012620199 470 433 0.013822097 471 433 0.0024037999 473 433 0.00060099992 478 433 0.0012019 479 433 0.0036058 483 433 0.0030047998 490 433 0.0018028999 491 433 0.00060099992 60 434 0.015398797 114 434 0.00030799978 126 434 0.00030799978 131 434 0.05328 187 434 0.10101628 188 434 0.0021557999 192 434 0.010163199 198 434 0.037265196 203 434 0.00030799978 206 434 0.0018479 211 434 0.0006159998 214 434 0.00092389993 219 434 0.00030799978 221 434 0.0021557999 222 434 0.0030797999 223 434 0.0043116994 224 434 0.0015399 233 434 0.0018479 234 434 0.0120111 240 434 0.00092389993 241 434 0.064367056 272 434 0.00092389993 276 434 0.012626998 277 434 0.010779198 279 434 0.0006159998 282 434 0.00092389993 284 434 0.00030799978 292 434 0.0015399 293 434 0.0018479 294 434 0.00092389993 295 434 0.00030799978 296 434 0.0021557999 298 434 0.0012319 308 434 0.0015399 312 434 0.0027717999 315 434 0.0036956999 320 434 0.0021557999 321 434 0.0033876998 322 434 0.0006159998 326 434 0.041576799 340 434 0.0012319 351 434 0.0012319 354 434 0.00030799978 358 434 0.0021557999 359 434 0.0018479 361 434 0.0024637999 363 434 0.0018479 370 434 0.00030799978 371 434 0.0006159998 372 434 0.0043116994 373 434 0.00030799978 386 434 0.0018479 392 434 0.0018479 417 434 0.00030799978 419 434 0.0021557999 422 434 0.00030799978 434 434 0.0024637999 441 434 0.0015399 443 434 0.005543597 444 434 0.0080073997 445 434 0.012319099 446 434 0.00030799978 447 434 0.012319099 450 434 0.0040036999 452 434 0.0046195984 453 434 0.0012319 454 434 0.00092389993 455 434 0.046196498 456 434 0.00030799978 457 434 0.0052355975 458 434 0.0006159998 459 434 0.0012319 460 434 0.0018479 463 434 0.020942397 464 434 0.0024637999 465 434 0.00092389993 467 434 0.0157068 468 434 0.0033876998 469 434 0.011087198 470 434 0.012626998 471 434 0.0012319 473 434 0.00030799978 478 434 0.011087198 483 434 0.0021557999 490 434 0.0012319 491 434 0.0015399 16 435 0.013605397 60 435 0.00097179995 82 435 0.00097179995 84 435 0.038872696 114 435 0.00097179995 130 435 0.0019435999 132 435 0.00097179995 149 435 0.00097179995 150 435 0.0019435999 171 435 0.00097179995 187 435 0.0019435999 194 435 0.00097179995 198 435 0.017492697 206 435 0.00097179995 214 435 0.00097179995 223 435 0.00097179995 224 435 0.0019435999 233 435 0.00097179995 234 435 0.0068026967 241 435 0.27016515 272 435 0.00097179995 277 435 0.00097179995 279 435 0.00097179995 292 435 0.00097179995 293 435 0.00097179995 298 435 0.00097179995 326 435 0.0019435999 358 435 0.0019435999 417 435 0.00097179995 435 435 0.033041798 442 435 0.0029155 443 435 0.00097179995 444 435 0.00097179995 445 435 0.012633599 447 435 0.0068026967 450 435 0.0058308989 452 435 0.0048590973 455 435 0.047618996 456 435 0.03207 457 435 0.0048590973 459 435 0.060252696 460 435 0.00097179995 463 435 0.012633599 464 435 0.00097179995 465 435 0.00097179995 467 435 0.0087463968 468 435 0.0029155 469 435 0.0048590973 470 435 0.0058308989 471 435 0.0029155 478 435 0.00097179995 479 435 0.0019435999 483 435 0.0029155 490 435 0.00097179995 60 436 0.0028652998 114 436 0.00095509994 131 436 0.0057306997 139 436 0.00095509994 160 436 0.00095509994 188 436 0.0019101999 198 436 0.014326598 206 436 0.00095509994 224 436 0.09551096 234 436 0.0047754981 241 436 0.0057306997 277 436 0.034383997 279 436 0.00095509994 292 436 0.029608399 293 436 0.0085959993 295 436 0.00095509994 312 436 0.00095509994 315 436 0.0038204 319 436 0.00095509994 320 436 0.00095509994 358 436 0.0019101999 417 436 0.00095509994 428 436 0.00095509994 436 436 0.1432665 437 436 0.0019101999 443 436 0.0028652998 444 436 0.0019101999 445 436 0.0076408982 447 436 0.015281796 450 436 0.0047754981 452 436 0.0085959993 455 436 0.043935098 457 436 0.0028652998 459 436 0.057306599 460 436 0.00095509994 463 436 0.0095510967 464 436 0.00095509994 467 436 0.010506198 468 436 0.0047754981 469 436 0.0066857971 470 436 0.0066857971 471 436 0.0019101999 478 436 0.00095509994 483 436 0.0038204 490 436 0.00095509994 491 436 0.00095509994 4 437 0.0005394998 60 437 0.0014385998 108 437 0.00017979999 114 437 0.00035959994 126 437 0.00017979999 130 437 0.00017979999 131 437 0.078223288 132 437 0.00089909998 143 437 0.00017979999 149 437 0.00017979999 150 437 0.00035959994 188 437 0.0088113993 189 437 0.00017979999 190 437 0.00017979999 194 437 0.00035959994 198 437 0.0115087 206 437 0.00035959994 214 437 0.00035959994 224 437 0.027153399 226 437 0.00035959994 227 437 0.0028771998 233 437 0.0050350986 234 437 0.0032368 237 437 0.00017979999 240 437 0.00017979999 241 437 0.013306998 277 437 0.043337498 282 437 0.00017979999 284 437 0.00017979999 288 437 0.0046753995 290 437 0.0043157972 292 437 0.038122598 293 437 0.013486799 295 437 0.00017979999 298 437 0.00017979999 312 437 0.0053946972 313 437 0.00071929977 315 437 0.036504198 317 437 0.00017979999 319 437 0.0005394998 320 437 0.00035959994 321 437 0.00017979999 322 437 0.0062937997 326 437 0.00017979999 340 437 0.0005394998 356 437 0.00017979999 358 437 0.0017982 372 437 0.00017979999 387 437 0.00017979999 417 437 0.0005394998 422 437 0.0005394998 436 437 0.0016184 437 437 0.031109497 443 437 0.0035964998 444 437 0.0071929991 445 437 0.0055744983 446 437 0.00017979999 447 437 0.009530697 450 437 0.0043157972 452 437 0.0066534989 453 437 0.00071929977 454 437 0.00071929977 455 437 0.032188497 456 437 0.00017979999 457 437 0.0041358992 458 437 0.00089909998 459 437 0.0012587998 460 437 0.0010788999 463 437 0.0098902993 464 437 0.0005394998 465 437 0.00089909998 467 437 0.0086314976 468 437 0.0032368 469 437 0.0062937997 470 437 0.0064736977 471 437 0.0017982 473 437 0.00017979999 477 437 0.00017979999 478 437 0.0014385998 479 437 0.0037762998 483 437 0.0026973998 490 437 0.00071929977 13 438 0.041518997 60 438 0.0025316 108 438 0.00025319983 114 438 0.00050629978 119 438 0.00025319983 120 438 0.00050629978 126 438 0.00025319983 130 438 0.042278498 132 438 0.00025319983 135 438 0.00025319983 137 438 0.00025319983 139 438 0.00025319983 142 438 0.00025319983 149 438 0.00025319983 150 438 0.00025319983 152 438 0.00025319983 157 438 0.00025319983 160 438 0.0098733976 161 438 0.0040505975 171 438 0.042531598 172 438 0.00025319983 189 438 0.00025319983 190 438 0.00025319983 193 438 0.00025319983 194 438 0.00050629978 198 438 0.0083543994 204 438 0.00025319983 206 438 0.00050629978 214 438 0.0032910998 219 438 0.0015189999 224 438 0.00075949985 227 438 0.0073417984 228 438 0.00025319983 231 438 0.0010126999 232 438 0.00025319983 233 438 0.0025316 234 438 0.0032910998 237 438 0.00025319983 240 438 0.0012657999 241 438 0.085316479 277 438 0.0260759 284 438 0.00025319983 292 438 0.00075949985 293 438 0.0025316 295 438 0.0068353973 300 438 0.0010126999 315 438 0.015949398 326 438 0.00025319983 358 438 0.0017722 387 438 0.00025319983 417 438 0.00075949985 422 438 0.00050629978 431 438 0.00050629978 438 438 0.0027847998 442 438 0.054177199 443 438 0.0065822974 444 438 0.00025319983 445 438 0.018227797 446 438 0.00050629978 447 438 0.00075949985 450 438 0.0050632991 452 438 0.0073417984 453 438 0.0015189999 454 438 0.00075949985 455 438 0.059493698 456 438 0.00025319983 457 438 0.0043037981 458 438 0.00075949985 459 438 0.00050629978 460 438 0.0027847998 463 438 0.0096202977 464 438 0.00025319983 465 438 0.0012657999 467 438 0.010126598 468 438 0.06556958 469 438 0.0068353973 470 438 0.0073417984 471 438 0.0020252999 473 438 0.00025319983 478 438 0.0015189999 483 438 0.0035442999 490 438 0.00075949985 22 439 0.00032639992 24 439 0.0022845999 60 439 0.013707597 114 439 0.00032639992 119 439 0.0088119991 132 439 0.0026109999 134 439 0.00032639992 143 439 0.00032639992 169 439 0.0065273978 171 439 0.0058746971 191 439 0.058746699 198 439 0.015339397 206 439 0.00065269996 214 439 0.021866798 224 439 0.072780669 234 439 0.0048955977 240 439 0.00065269996 241 439 0.057114899 272 439 0.00097909989 279 439 0.00032639992 317 439 0.0075064972 337 439 0.0068537965 358 439 0.00065269996 417 439 0.00032639992 439 439 0.00032639992 443 439 0.012728497 444 439 0.012402099 445 439 0.039164498 446 439 0.00065269996 447 439 0.0104439 450 439 0.0088119991 452 439 0.0068537965 453 439 0.0022845999 454 439 0.013707597 455 439 0.038511697 457 439 0.030352499 458 439 0.013381198 459 439 0.014360297 460 439 0.00065269996 463 439 0.033616196 464 439 0.014033899 465 439 0.0120757 467 439 0.030352499 468 439 0.071801543 469 439 0.0267624 470 439 0.0029372999 471 439 0.015665799 478 439 0.015013099 483 439 0.00097909989 490 439 0.00065269996 491 439 0.0084855966 22 440 0.00025589997 60 440 0.0028146999 108 440 0.00025589997 114 440 0.00051179994 126 440 0.00025589997 130 440 0.030706197 137 440 0.029426798 142 440 0.0040941983 160 440 0.038126897 165 440 0.020726699 170 440 0.0079323985 172 440 0.0038382998 188 440 0.0023029998 189 440 0.00025589997 194 440 0.00025589997 206 440 0.00051179994 233 440 0.013817798 234 440 0.0023029998 237 440 0.00025589997 241 440 0.0084441975 252 440 0.00025589997 272 440 0.0025588998 277 440 0.075230241 279 440 0.00025589997 284 440 0.00025589997 289 440 0.00025589997 292 440 0.014585499 293 440 0.00051179994 307 440 0.00025589997 319 440 0.057830099 324 440 0.00025589997 358 440 0.0015352999 387 440 0.00025589997 417 440 0.00051179994 422 440 0.00025589997 440 440 0.095701098 443 440 0.0071647987 444 440 0.00025589997 445 440 0.015353099 446 440 0.0010235 447 440 0.0051176995 450 440 0.0043500997 452 440 0.0051176995 453 440 0.0040941983 454 440 0.00051179994 455 440 0.061156597 456 440 0.00025589997 457 440 0.0038382998 458 440 0.00076769991 459 440 0.00051179994 460 440 0.0010235 463 440 0.0099794976 464 440 0.00051179994 465 440 0.0089559965 467 440 0.0099794976 468 440 0.023285598 469 440 0.0066529997 470 440 0.0071647987 471 440 0.0020470999 473 440 0.00025589997 478 440 0.0010235 483 440 0.0038382998 490 440 0.00076769991 18 441 0.0001679 60 441 0.0018465999 113 441 0.0001679 114 441 0.0001679 130 441 0.0001679 150 441 0.00083929999 160 441 0.010072198 165 441 0.0125902 170 441 0.0043645985 171 441 0.0090649985 172 441 0.0001679 187 441 0.00067149987 188 441 0.0078898966 189 441 0.0001679 190 441 0.0001679 194 441 0.021487299 198 441 0.013933197 203 441 0.0001679 204 441 0.00067149987 206 441 0.0001679 214 441 0.00067149987 219 441 0.0001679 221 441 0.0001679 224 441 0.046835698 233 441 0.010072198 234 441 0.0036930998 237 441 0.00033569988 240 441 0.0001679 241 441 0.026355498 252 441 0.00083929999 270 441 0.0001679 277 441 0.044485498 279 441 0.0001679 282 441 0.0001679 284 441 0.0001679 288 441 0.0001679 292 441 0.0001679 293 441 0.018297799 295 441 0.016451199 312 441 0.0015107999 315 441 0.0001679 319 441 0.007554099 320 441 0.0001679 321 441 0.0047003999 326 441 0.0035253 340 441 0.0001679 358 441 0.0016786999 370 441 0.019137099 371 441 0.0043645985 373 441 0.0025179998 376 441 0.0026858998 384 441 0.0040288977 385 441 0.0001679 386 441 0.0063789971 398 441 0.0001679 402 441 0.00033569988 417 441 0.00050359988 422 441 0.0001679 431 441 0.0001679 441 441 0.016115498 442 441 0.0028537998 443 441 0.0068826973 444 441 0.0025179998 445 441 0.0095685981 446 441 0.00033569988 447 441 0.0047003999 450 441 0.0048681982 452 441 0.0058753975 453 441 0.0028537998 454 441 0.0001679 455 441 0.0256841 456 441 0.00067149987 457 441 0.0040288977 458 441 0.00067149987 459 441 0.00033569988 460 441 0.001343 463 441 0.024508998 464 441 0.00050359988 465 441 0.001343 467 441 0.014772497 468 441 0.015276097 469 441 0.0083934963 470 441 0.0092327967 471 441 0.0023502 473 441 0.0001679 478 441 0.0015107999 483 441 0.0025179998 490 441 0.00067149987 4 442 0.00020639999 9 442 6.8799985e-05 13 442 0.00013759999 17 442 0.0010320998 18 442 0.00013759999 22 442 0.00020639999 60 442 0.0040593967 82 442 0.0087380968 83 442 6.8799985e-05 84 442 6.8799985e-05 104 442 6.8799985e-05 108 442 6.8799985e-05 113 442 0.00013759999 114 442 0.00027519977 120 442 6.8799985e-05 126 442 0.00013759999 130 442 0.0037841999 131 442 0.0074308999 132 442 0.0087380968 138 442 0.00013759999 139 442 0.0063299984 143 442 6.8799985e-05 149 442 0.00013759999 150 442 0.0011008999 151 442 6.8799985e-05 158 442 0.0052978992 159 442 0.0017888998 160 442 0.0048162974 161 442 0.00013759999 162 442 0.004403498 165 442 0.00013759999 171 442 0.010664597 172 442 6.8799985e-05 187 442 0.00061919983 188 442 0.005917199 189 442 0.00013759999 190 442 0.00013759999 192 442 0.0053666979 193 442 0.0054354966 194 442 0.0097701997 197 442 6.8799985e-05 198 442 0.054492898 200 442 6.8799985e-05 203 442 0.00013759999 204 442 0.00020639999 206 442 0.00027519977 207 442 6.8799985e-05 214 442 0.0088068992 218 442 6.8799985e-05 219 442 0.00061919983 221 442 0.00027519977 223 442 0.010733496 224 442 0.0013760999 225 442 0.0025457998 226 442 0.00020639999 227 442 0.0012384998 228 442 0.00013759999 230 442 0.0027521998 232 442 6.8799985e-05 233 442 0.0083252974 234 442 0.023255799 237 442 0.00048159994 240 442 0.0057106987 241 442 0.0191276 252 442 0.0013760999 253 442 0.00013759999 270 442 0.004403498 272 442 0.0013760999 277 442 0.017889097 279 442 0.00048159994 282 442 6.8799985e-05 283 442 6.8799985e-05 284 442 0.00020639999 290 442 0.0020640998 292 442 0.0087380968 293 442 0.0072243996 294 442 0.00027519977 295 442 0.005917199 296 442 0.00013759999 297 442 0.0052290969 298 442 0.010114197 300 442 0.00013759999 312 442 0.005917199 315 442 0.0065363981 317 442 6.8799985e-05 319 442 6.8799985e-05 320 442 0.0018576998 321 442 0.0022704999 322 442 0.0031649999 326 442 0.028347299 339 442 0.00061919983 340 442 0.00041279988 341 442 0.0030273998 351 442 0.0023392998 356 442 0.0030961998 358 442 0.0048850998 364 442 0.0024080998 369 442 6.8799985e-05 370 442 0.00020639999 371 442 6.8799985e-05 372 442 0.00027519977 380 442 6.8799985e-05 384 442 6.8799985e-05 385 442 0.0017888998 386 442 0.00055039977 387 442 6.8799985e-05 390 442 0.00020639999 392 442 0.00013759999 393 442 0.00041279988 398 442 0.00013759999 402 442 0.00020639999 409 442 6.8799985e-05 415 442 6.8799985e-05 417 442 0.00061919983 419 442 0.0018576998 421 442 6.8799985e-05 422 442 0.00027519977 423 442 6.8799985e-05 424 442 6.8799985e-05 425 442 6.8799985e-05 428 442 0.00061919983 430 442 6.8799985e-05 431 442 0.00013759999 433 442 6.8799985e-05 434 442 6.8799985e-05 437 442 0.00020639999 442 442 0.030755498 443 442 0.0050226972 444 442 0.0028209998 445 442 0.013141599 446 442 0.0010320998 447 442 0.0060547963 448 442 6.8799985e-05 450 442 0.0053666979 452 442 0.0056418963 453 442 0.0012384998 454 442 0.00055039977 455 442 0.0399752 456 442 0.00075679994 457 442 0.010251798 458 442 0.0034401999 459 442 0.004403498 460 442 0.0012384998 463 442 0.023393396 464 442 0.0018576998 465 442 0.0050914995 467 442 0.020916499 468 442 0.023118198 469 442 0.0074996985 470 442 0.0083252974 471 442 0.0024769998 473 442 0.00020639999 477 442 0.00020639999 478 442 0.0015824998 479 442 6.8799985e-05 483 442 0.0022016999 489 442 0.0024080998 490 442 0.0025457998 491 442 6.8799985e-05 9 443 1.3299999e-05 16 443 0.00017279999 60 443 1.9899991e-05 64 443 0.12640977 79 443 6.5999993e-06 82 443 1.9899991e-05 83 443 1.3299999e-05 84 443 1.3299999e-05 108 443 1.9899991e-05 113 443 2.6599999e-05 114 443 6.6499997e-05 123 443 0.00026579993 126 443 3.9899998e-05 127 443 6.5999993e-06 134 443 2.6599999e-05 141 443 0.00018609999 143 443 1.3299999e-05 150 443 0.00045189983 154 443 0.00036549987 169 443 1.3299999e-05 187 443 0.000206 189 443 0.0001662 190 443 0.00011959999 192 443 5.3199998e-05 194 443 0.00011299999 196 443 1.9899991e-05 197 443 2.6599999e-05 198 443 0.00023929999 200 443 5.979999e-05 201 443 2.6599999e-05 203 443 9.9699988e-05 204 443 0.0011564 206 443 0.00072439993 207 443 7.9799996e-05 209 443 2.6599999e-05 214 443 0.0004319998 217 443 0.0010633999 218 443 2.6599999e-05 219 443 6.5999993e-06 220 443 1.3299999e-05 223 443 0.00043859985 229 443 3.9899998e-05 230 443 6.5999993e-06 233 443 0.00013289999 234 443 0.023520697 237 443 0.0004319998 240 443 0.00036549987 241 443 0.0002326 242 443 0.00043859985 248 443 1.3299999e-05 250 443 6.5999993e-06 251 443 6.5999993e-06 252 443 0.00051839999 263 443 6.5999993e-06 270 443 7.3099989e-05 271 443 0.0001794 272 443 6.5999993e-06 277 443 0.0019673 279 443 6.5999993e-06 282 443 0.0062872991 283 443 0.0014288998 284 443 3.3199991e-05 292 443 0.00044529978 293 443 0.00026579993 294 443 9.9699988e-05 295 443 8.6399989e-05 296 443 0.00014619999 297 443 9.2999995e-05 312 443 0.00038549979 315 443 6.5999993e-06 317 443 0.00053169997 318 443 9.2999995e-05 319 443 0.00065129995 322 443 0.0012494999 323 443 1.3299999e-05 324 443 0.00010629999 326 443 0.0023726998 327 443 9.2999995e-05 328 443 0.002931 340 443 0.00029909983 341 443 0.00013289999 351 443 0.0057887994 356 443 4.649999e-05 358 443 0.0002923999 363 443 6.5999993e-06 370 443 0.00013289999 371 443 0.00018609999 372 443 0.00087729981 374 443 0.00029909983 375 443 0.00021269999 380 443 6.5999993e-06 384 443 0.00035889982 385 443 0.00025919988 386 443 0.00019939999 387 443 3.3199991e-05 393 443 5.3199998e-05 394 443 3.3199991e-05 395 443 2.6599999e-05 397 443 3.3199991e-05 402 443 0.00041209999 408 443 0.020782497 412 443 0.00088389986 414 443 0.00023929999 417 443 6.5999993e-06 419 443 6.5999993e-06 422 443 0.00011299999 423 443 6.5999993e-06 425 443 6.5999993e-06 430 443 2.6599999e-05 431 443 1.9899991e-05 432 443 1.9899991e-05 433 443 5.979999e-05 434 443 0.00015289999 439 443 1.3299999e-05 442 443 3.3199991e-05 443 443 0.054571599 444 443 0.00011959999 445 443 0.010421198 446 443 0.0006446999 447 443 0.0021201 448 443 0.00050509977 449 443 0.013578098 450 443 0.0065597966 452 443 0.010035697 453 443 0.0016681999 454 443 0.0025189 455 443 0.0096435994 456 443 0.0007509999 457 443 0.0034693 458 443 0.00039209984 459 443 0.0013557998 460 443 0.0038081999 463 443 0.016283099 464 443 0.00012629999 465 443 0.0014622 467 443 0.012335297 468 443 0.0014421998 469 443 0.0082212985 470 443 0.0036553999 471 443 0.0026916999 472 443 0.00041869981 473 443 7.3099989e-05 477 443 0.00011299999 478 443 0.0015152998 483 443 0.00107 486 443 6.5999993e-06 489 443 0.00049849995 490 443 0.0028910998 491 443 1.3299999e-05 18 444 6.8799985e-05 22 444 1.38e-05 25 444 1.38e-05 60 444 0.0023518999 70 444 0.020355999 108 444 4.1299994e-05 114 444 0.00010999999 126 444 4.1299994e-05 134 444 0.00045389985 135 444 4.1299994e-05 150 444 0.0050614998 153 444 0.00016499999 187 444 0.0001926 189 444 0.0001238 190 444 0.00016499999 192 444 9.6299991e-05 194 444 9.6299991e-05 196 444 6.8799985e-05 197 444 0.00060519995 198 444 0.00041259988 200 444 1.38e-05 201 444 1.38e-05 202 444 2.7499991e-05 203 444 9.6299991e-05 204 444 0.002627 206 444 0.00017879999 207 444 6.8799985e-05 209 444 2.7499991e-05 223 444 0.0031633999 229 444 0.0011002999 230 444 0.00034389994 231 444 0.00015129999 233 444 6.8799985e-05 234 444 0.043380197 237 444 0.0079497993 240 444 6.8799985e-05 241 444 0.0011278 242 444 0.0018155 252 444 0.0012379 272 444 0.00015129999 282 444 0.00078399992 283 444 0.0014028999 307 444 1.38e-05 308 444 8.2499988e-05 309 444 1.38e-05 313 444 0.0038235998 317 444 0.00039889989 318 444 2.7499991e-05 319 444 2.7499991e-05 322 444 0.0012516 323 444 0.0001238 328 444 0.0053640977 340 444 0.00048139994 341 444 4.1299994e-05 350 444 9.6299991e-05 351 444 0.0025306998 354 444 9.6299991e-05 356 444 2.7499991e-05 358 444 0.00024759979 366 444 6.8799985e-05 368 444 2.7499991e-05 370 444 0.00017879999 371 444 0.0001375 372 444 0.0035484999 373 444 0.0011965998 374 444 0.00038509979 375 444 0.00053639989 376 444 0.00075649982 384 444 0.00042639999 385 444 5.4999997e-05 387 444 4.1299994e-05 390 444 6.8799985e-05 391 444 4.1299994e-05 392 444 0.00042639999 393 444 0.00016499999 394 444 0.0037685998 395 444 4.1299994e-05 397 444 0.0032046998 402 444 0.0175776 408 444 0.0026544998 412 444 0.0017604998 422 444 0.0001238 431 444 1.38e-05 432 444 2.7499991e-05 433 444 5.4999997e-05 434 444 5.4999997e-05 438 444 2.7499991e-05 441 444 4.1299994e-05 442 444 0.00059139985 443 444 0.0017604998 444 444 0.0065743998 445 444 0.014758099 446 444 0.0013478999 447 444 0.00023379999 448 444 0.00090779993 449 444 0.0001926 450 444 0.0067119971 452 444 0.013753999 453 444 0.0022419 454 444 0.0040161982 455 444 0.027081698 456 444 0.0059554987 457 444 0.0065606982 458 444 0.0019393 459 444 0.0001926 460 444 0.013987798 463 444 0.021538798 464 444 5.4999997e-05 465 444 0.0011965998 467 444 0.016656097 468 444 0.0086924993 469 444 0.013795298 470 444 0.0015816998 471 444 0.040161699 473 444 4.1299994e-05 474 444 4.1299994e-05 475 444 4.1299994e-05 476 444 2.7499991e-05 477 444 0.0007976999 478 444 0.0016229998 483 444 0.0017879999 489 444 0.0070282966 490 444 0.00017879999 491 444 0.00056389999 0 445 1.6499995e-05 1 445 3.2999997e-06 2 445 8.8899993e-05 3 445 1.6499995e-05 5 445 4.2799991e-05 6 445 5.2699994e-05 7 445 9.8999999e-06 9 445 9.8999999e-06 16 445 3.2999997e-06 18 445 5.9299986e-05 22 445 3.2999997e-06 24 445 1.32e-05 25 445 3.2999997e-06 60 445 0.0029501999 62 445 2.9599993e-05 64 445 0.00015149999 68 445 9.8799996e-05 69 445 4.6099987e-05 73 445 9.8999999e-06 75 445 6.5999993e-06 79 445 3.2999997e-06 82 445 1.9799991e-05 83 445 1.6499995e-05 84 445 1.6499995e-05 108 445 2.2999986e-05 113 445 3.2899989e-05 114 445 8.2299986e-05 126 445 3.6199999e-05 127 445 9.8999999e-06 134 445 3.2999997e-06 141 445 9.8999999e-06 150 445 0.00020089999 154 445 0.00077709998 169 445 0.00010209999 189 445 1.6499995e-05 190 445 0.00011849999 192 445 0.00038519991 194 445 8.5599997e-05 196 445 1.32e-05 197 445 0.0001449 198 445 0.00070789992 200 445 3.6199999e-05 201 445 2.2999986e-05 203 445 8.2299986e-05 204 445 0.0010042998 206 445 0.00031279982 207 445 5.9299986e-05 209 445 1.9799991e-05 214 445 0.00037539983 215 445 0.000158 217 445 4.9399998e-05 219 445 3.2999997e-06 223 445 0.00022059999 229 445 0.00016459999 233 445 0.00023049999 234 445 0.027138099 237 445 0.010543097 240 445 3.2999997e-06 241 445 3.2999997e-06 242 445 0.00017779999 248 445 1.32e-05 250 445 9.8999999e-06 251 445 3.2999997e-06 252 445 2.2999986e-05 263 445 3.2999997e-06 271 445 3.2999997e-06 272 445 0.00012839999 277 445 3.2999997e-06 279 445 3.2999997e-06 282 445 6.5999993e-06 283 445 9.8999999e-06 313 445 1.6499995e-05 316 445 0.00010539999 317 445 0.0001317 322 445 8.8899993e-05 323 445 2.9599993e-05 326 445 0.00027989992 328 445 0.00055319979 329 445 2.6299997e-05 335 445 4.2799991e-05 337 445 4.6099987e-05 340 445 0.00014819999 343 445 3.9499995e-05 351 445 3.6199999e-05 356 445 4.2799991e-05 358 445 0.00033589988 363 445 6.5999993e-06 366 445 4.6099987e-05 368 445 0.0001449 372 445 9.8999999e-06 375 445 3.2999997e-06 376 445 3.2999997e-06 380 445 6.5999993e-06 384 445 2.2999986e-05 387 445 3.2899989e-05 392 445 3.2999997e-06 393 445 2.9599993e-05 394 445 0.00060909986 397 445 0.00038849982 401 445 0.0019195999 402 445 0.0052385963 408 445 2.2999986e-05 412 445 0.00010209999 419 445 9.8999999e-06 422 445 9.55e-05 423 445 1.32e-05 425 445 9.8999999e-06 430 445 2.2999986e-05 431 445 1.6499995e-05 432 445 1.6499995e-05 433 445 4.6099987e-05 434 445 5.599999e-05 442 445 7.2399998e-05 443 445 0.0037141 444 445 0.00015479999 445 445 0.1266225 446 445 0.00071449997 447 445 0.00037869997 448 445 0.00056959991 449 445 0.0031148999 450 445 0.016440198 452 445 0.00063549983 453 445 0.00028649997 454 445 0.00025349995 455 445 0.025369897 456 445 0.010299399 457 445 0.0036778999 458 445 0.000214 459 445 0.00024369999 460 445 0.015541296 463 445 0.012390297 464 445 0.00014159999 465 445 0.00090549979 467 445 0.023940898 468 445 0.0011062999 469 445 0.0048961975 470 445 0.0040861964 471 445 0.0393341 473 445 8.5599997e-05 476 445 1.6499995e-05 477 445 2.9599993e-05 478 445 0.0011755 483 445 0.001373 489 445 0.0014289999 490 445 0.00031609996 491 445 5.2699994e-05 1 446 1.3399999e-05 7 446 1.3399999e-05 11 446 1.3399999e-05 16 446 1.3399999e-05 18 446 1.3399999e-05 22 446 0.00012069999 25 446 1.3399999e-05 60 446 0.012515098 66 446 8.0499987e-05 68 446 0.0080616996 69 446 0.0037826998 73 446 0.0007511999 75 446 0.00052309991 82 446 0.00012069999 83 446 1.3399999e-05 84 446 1.3399999e-05 86 446 1.3399999e-05 87 446 1.3399999e-05 88 446 1.3399999e-05 90 446 1.3399999e-05 93 446 1.3399999e-05 95 446 1.3399999e-05 96 446 2.6799986e-05 97 446 1.3399999e-05 105 446 2.6799986e-05 106 446 1.3399999e-05 108 446 6.7099987e-05 114 446 0.00012069999 115 446 1.3399999e-05 121 446 1.3399999e-05 122 446 1.3399999e-05 125 446 1.3399999e-05 126 446 4.0199986e-05 134 446 0.00037559983 141 446 0.0030180998 150 446 0.0002950998 153 446 1.3399999e-05 154 446 0.00037559983 187 446 2.6799986e-05 189 446 9.3899987e-05 190 446 0.00010729999 192 446 2.6799986e-05 194 446 8.0499987e-05 196 446 1.3399999e-05 197 446 1.3399999e-05 198 446 8.0499987e-05 200 446 6.7099987e-05 201 446 2.6799986e-05 203 446 6.7099987e-05 204 446 0.00033529988 206 446 0.00017439999 207 446 4.0199986e-05 209 446 1.3399999e-05 214 446 0.0012474998 215 446 1.3399999e-05 217 446 0.00014759999 223 446 9.3899987e-05 228 446 1.3399999e-05 229 446 6.7099987e-05 230 446 2.6799986e-05 231 446 4.0199986e-05 233 446 0.00071089994 234 446 0.036928199 237 446 0.00028169993 240 446 0.00079139997 242 446 1.3399999e-05 252 446 1.3399999e-05 260 446 1.3399999e-05 267 446 2.6799986e-05 272 446 1.3399999e-05 277 446 1.3399999e-05 279 446 2.6799986e-05 282 446 0.0015291998 283 446 0.005808197 295 446 0.001006 296 446 0.00025489996 316 446 0.0021193998 317 446 0.0002950998 318 446 2.6799986e-05 319 446 0.00028169993 322 446 0.0021327999 324 446 0.00042919978 326 446 0.0006573 327 446 6.7099987e-05 328 446 0.0019717999 330 446 2.6799986e-05 331 446 9.3899987e-05 340 446 0.00033529988 350 446 0.0023741999 351 446 0.00081819994 356 446 4.0199986e-05 358 446 0.0013279999 368 446 1.3399999e-05 372 446 5.3699987e-05 374 446 0.00046949997 375 446 2.6799986e-05 377 446 1.3399999e-05 380 446 1.3399999e-05 384 446 8.0499987e-05 387 446 4.0199986e-05 390 446 0.0011669998 394 446 4.0199986e-05 397 446 2.6799986e-05 400 446 2.6799986e-05 402 446 0.00026829983 406 446 0.035130799 407 446 0.0014754999 412 446 0.0017437998 413 446 1.3399999e-05 414 446 0.0013414 419 446 0.0014487 422 446 0.00022799999 431 446 1.3399999e-05 432 446 1.3399999e-05 433 446 2.6799986e-05 434 446 2.6799986e-05 442 446 0.0010998999 443 446 0.0007511999 444 446 6.7099987e-05 445 446 0.0032460999 446 446 0.27338696 447 446 0.00021459999 448 446 0.00013409999 449 446 0.0120993 450 446 0.0082762986 452 446 0.0078067966 453 446 0.0022400999 454 446 0.0008450998 455 446 0.013749197 456 446 0.0006438999 457 446 0.0035009999 458 446 0.016847797 459 446 0.0009657999 460 446 0.018189099 463 446 0.030167699 464 446 8.0499987e-05 465 446 0.00071089994 467 446 0.038323298 468 446 0.0040777996 469 446 0.0028436999 470 446 0.0019987 471 446 0.0030314999 473 446 5.3699987e-05 474 446 1.3399999e-05 477 446 4.0199986e-05 478 446 0.00093899993 483 446 0.00072429981 486 446 0.0023339998 489 446 0.00021459999 490 446 0.042427897 1 447 0.00024909992 7 447 7.2999992e-06 9 447 8.0599988e-05 11 447 0.00035169977 16 447 1.4699999e-05 17 447 0.0001466 18 447 7.2999992e-06 22 447 7.2999992e-06 25 447 7.2999992e-06 60 447 0.0017074 64 447 0.00087939994 66 447 2.929999e-05 68 447 0.0028944998 69 447 0.0013629999 73 447 0.00027109985 75 447 0.0014728999 79 447 7.2999992e-06 82 447 0.0036199999 83 447 0.00028579985 84 447 0.00043969997 86 447 0.00016119999 87 447 0.0001832 88 447 0.0001905 89 447 0.00027109985 90 447 0.00041039987 91 447 4.3999986e-05 92 447 9.5299998e-05 93 447 0.00049099978 94 447 2.1999993e-05 95 447 0.00024909992 96 447 0.00079139997 97 447 0.00032239989 98 447 5.1299998e-05 99 447 7.2999992e-06 100 447 3.6599988e-05 103 447 1.4699999e-05 105 447 0.00082069985 106 447 3.6599988e-05 107 447 7.3299991e-05 108 447 0.00081339991 109 447 0.00013189999 113 447 6.5999993e-05 114 447 0.00015389999 115 447 0.00026379991 116 447 0.00015389999 121 447 0.00032239989 122 447 0.0002272 124 447 2.1999993e-05 125 447 0.00016849999 126 447 7.3299991e-05 127 447 1.4699999e-05 130 447 0.00025649997 134 447 0.0001466 141 447 2.1999993e-05 150 447 0.00093799992 152 447 5.1299998e-05 154 447 0.00034439983 169 447 3.6599988e-05 187 447 1.4699999e-05 189 447 1.4699999e-05 190 447 0.00093799992 192 447 3.6599988e-05 193 447 7.2999992e-06 194 447 9.5299998e-05 195 447 4.3999986e-05 196 447 0.00072549982 197 447 2.1999993e-05 198 447 0.0002272 199 447 1.4699999e-05 200 447 0.00011719999 201 447 1.4699999e-05 203 447 8.0599988e-05 204 447 0.0018906 206 447 0.00098189991 207 447 5.8599995e-05 209 447 1.4699999e-05 214 447 0.00091599999 217 447 3.6599988e-05 219 447 8.79e-05 223 447 0.00026379991 228 447 7.2999992e-06 229 447 0.0001466 230 447 7.2999992e-06 231 447 5.8599995e-05 233 447 0.00011719999 234 447 0.064676344 237 447 0.0013776999 240 447 0.00010989999 241 447 0.00083539984 242 447 0.00035909982 248 447 1.4699999e-05 250 447 7.2999992e-06 251 447 7.2999992e-06 252 447 6.5999993e-05 263 447 7.2999992e-06 267 447 7.2999992e-06 272 447 7.2999992e-06 277 447 1.4699999e-05 282 447 4.3999986e-05 283 447 7.2999992e-06 284 447 2.1999993e-05 317 447 0.0001905 318 447 7.2999992e-06 319 447 2.929999e-05 322 447 0.0001832 326 447 1.4699999e-05 328 447 2.1999993e-05 330 447 7.2999992e-06 331 447 3.6599988e-05 340 447 0.00015389999 341 447 2.1999993e-05 351 447 3.6599988e-05 356 447 3.6599988e-05 358 447 0.00049099978 363 447 7.2999992e-06 371 447 0.00032239989 372 447 7.2999992e-06 375 447 0.00024179999 380 447 7.2999992e-06 384 447 2.929999e-05 385 447 0.00030779978 387 447 6.5999993e-05 388 447 3.6599988e-05 390 447 0.00026379991 391 447 0.00040299981 392 447 0.0008280999 393 447 0.0014509 394 447 0.00065219984 395 447 0.0001832 397 447 0.00088669988 402 447 0.00012459999 403 447 0.0063825995 404 447 0.015300699 405 447 0.013197597 408 447 0.0001466 412 447 0.00043969997 413 447 7.2999992e-06 414 447 0.0001832 419 447 1.4699999e-05 422 447 0.00010989999 423 447 2.1999993e-05 425 447 1.4699999e-05 430 447 2.929999e-05 431 447 2.929999e-05 432 447 1.4699999e-05 433 447 5.1299998e-05 434 447 5.8599995e-05 441 447 0.0001905 442 447 0.00033709989 443 447 0.0014288998 444 447 0.00040299981 445 447 0.011358298 446 447 0.0017146999 447 447 0.036822896 448 447 0.0013776999 449 447 0.023346797 450 447 0.011013899 452 447 0.0020738 453 447 0.0013043999 454 447 0.0055984966 455 447 0.018781498 456 447 0.00065949978 457 447 0.0057670996 458 447 0.021302298 459 447 0.0007693998 460 447 0.0047044978 463 447 0.012127697 464 447 0.00093059987 465 447 0.0017952998 467 447 0.038434997 468 447 0.016165398 469 447 0.0032169998 470 447 0.020606197 471 447 0.0018173 472 447 0.0010258998 473 447 0.0001466 474 447 7.2999992e-06 477 447 0.00013189999 478 447 0.0011064999 483 447 0.00024909992 489 447 0.00015389999 490 447 0.046129398 491 447 7.2999992e-06 23 448 0.019549597 67 448 0.061680298 108 448 6.1899991e-05 114 448 0.0001237 126 448 6.1899991e-05 154 448 0.0069907978 187 448 0.00092799985 189 448 0.0001237 190 448 6.1899991e-05 194 448 0.0001237 197 448 6.1899991e-05 203 448 0.0001237 204 448 0.0001237 206 448 0.0001237 207 448 6.1899991e-05 234 448 0.017136797 237 448 0.00018559999 272 448 0.004083097 322 448 0.0045780987 328 448 0.0028457998 350 448 0.0054441988 351 448 0.0051348992 356 448 6.1899991e-05 358 448 0.00018559999 371 448 0.00018559999 372 448 0.0016703999 373 448 0.00049489993 387 448 6.1899991e-05 389 448 0.0003711998 393 448 0.00061869994 402 448 6.1899991e-05 414 448 0.0031551998 422 448 0.0001237 433 448 6.1899991e-05 434 448 6.1899991e-05 443 448 0.0003711998 444 448 6.1899991e-05 445 448 0.0065577999 446 448 0.00068049994 447 448 0.0047636963 448 448 0.0013609999 450 448 0.0044542998 452 448 0.043182399 453 448 0.010888398 454 448 0.0022272 455 448 0.0071145967 457 448 0.015590198 458 448 0.00068049994 459 448 0.00098989997 460 448 0.0076713972 463 448 0.013486799 464 448 0.0001237 465 448 0.00068049994 467 448 0.013362996 468 448 0.00092799985 469 448 0.0052585974 470 448 0.0025364999 471 448 0.0044542998 473 448 6.1899991e-05 478 448 0.0028457998 483 448 0.0001237 489 448 6.1899991e-05 490 448 0.00024749991 9 449 0.00016499999 16 449 8.2499988e-05 60 449 0.0034641998 79 449 8.2499988e-05 82 449 0.00016499999 83 449 0.00016499999 84 449 0.00016499999 108 449 0.00024739979 113 449 0.00032989983 114 449 0.00049489993 126 449 0.00024739979 127 449 8.2499988e-05 169 449 0.0027218999 189 449 0.00024739979 190 449 0.00024739979 192 449 0.00024739979 194 449 0.00049489993 196 449 0.00016499999 197 449 0.00016499999 198 449 0.0016496 200 449 0.00032989983 201 449 0.00016499999 203 449 0.00041239988 204 449 0.002227 206 449 0.00098979985 207 449 0.00032989983 209 449 0.00016499999 223 449 0.00024739979 234 449 0.0010722999 237 449 0.0032992 242 449 0.0026393998 248 449 8.2499988e-05 250 449 8.2499988e-05 252 449 0.00016499999 272 449 8.2499988e-05 317 449 0.0010722999 356 449 8.2499988e-05 358 449 0.00032989983 363 449 8.2499988e-05 384 449 8.2499988e-05 387 449 0.00024739979 394 449 0.00024739979 397 449 0.00032989983 402 449 0.0014022 412 449 0.0018970999 419 449 8.2499988e-05 422 449 0.00049489993 423 449 0.00016499999 425 449 8.2499988e-05 430 449 0.00024739979 431 449 0.00016499999 432 449 0.00016499999 433 449 0.00024739979 434 449 0.00032989983 443 449 0.00024739979 444 449 0.0037115999 445 449 0.0038765999 446 449 8.2499988e-05 447 449 0.0037115999 449 449 8.2499988e-05 450 449 0.024166897 452 449 0.0017320998 453 449 0.0006597999 454 449 0.0032992 455 449 0.0044539981 456 449 0.0019794998 457 449 0.025074199 458 449 0.0017320998 459 449 0.00041239988 460 449 0.029280797 463 449 0.055262297 464 449 0.0027218999 465 449 0.0020619999 467 449 0.024744298 468 449 0.022352397 469 449 0.018888198 470 449 0.024661798 471 449 0.0013196999 473 449 0.00049489993 477 449 0.0016496 478 449 0.0027218999 483 449 0.005773697 489 449 0.00098979985 490 449 0.0018970999 9 450 1.3e-05 16 450 6.4999995e-06 18 450 0.0027947 63 450 0.029890999 79 450 3.2999997e-06 82 450 2.2799999e-05 83 450 1.6299993e-05 84 450 1.3e-05 108 450 2.929999e-05 113 450 3.5899997e-05 114 450 8.7999986e-05 126 450 4.2399988e-05 127 450 6.4999995e-06 150 450 0.00044999993 187 450 3.2999997e-06 189 450 0.00029679993 190 450 9.7799988e-05 192 450 9.1299997e-05 194 450 0.00018589999 196 450 3.2599986e-05 197 450 5.54e-05 200 450 5.54e-05 201 450 2.6099995e-05 203 450 0.00018259999 204 450 0.0015391998 206 450 0.0012163999 207 450 0.00014349999 209 450 0.00016629999 219 450 9.7999991e-06 223 450 1.6299993e-05 234 450 0.00042069983 237 450 0.0001141 240 450 0.00013039999 241 450 6.4999995e-06 248 450 1.6299993e-05 250 450 9.7999991e-06 251 450 3.2999997e-06 252 450 1.6299993e-05 263 450 3.2999997e-06 272 450 3.2999997e-06 279 450 6.4999995e-06 295 450 0.00059029995 322 450 3.2999997e-06 359 450 0.0001011 363 450 1.3e-05 380 450 3.2999997e-06 384 450 0.00047609978 387 450 3.5899997e-05 389 450 0.018637098 390 450 0.00059029995 392 450 0.0012750998 393 450 7.83e-05 394 450 9.7999991e-06 395 450 0.00010759999 397 450 6.4999995e-06 402 450 4.5699999e-05 412 450 0.00034569995 419 450 6.4999995e-06 422 450 0.00021849999 423 450 1.3e-05 425 450 9.7999991e-06 430 450 2.6099995e-05 431 450 2.6099995e-05 432 450 3.9099992e-05 433 450 0.00010759999 434 450 0.00016629999 442 450 7.4999989e-05 443 450 5.54e-05 444 450 0.00078589981 445 450 0.0012945998 446 450 2.2799999e-05 447 450 0.00086419983 448 450 9.7999991e-06 449 450 9.7999991e-06 450 450 0.0133182 452 450 0.0052046999 453 450 0.00033919979 454 450 0.0010239999 455 450 0.0016728998 456 450 0.0003847999 457 450 0.0035969999 458 450 0.00031959987 459 450 0.0036231 460 450 0.0018000999 463 450 0.019996896 464 450 0.001187 465 450 0.0033490998 467 450 0.013367198 468 450 0.015812997 469 450 0.0013630998 470 450 0.0043730997 471 450 0.0032414999 472 450 0.00020539999 473 450 9.1299997e-05 477 450 4.8899994e-05 478 450 0.0011445999 483 450 0.0042947978 489 450 0.00049239979 490 450 0.012303997 450 451 0.023809496 463 451 0.071428597 467 451 0.023809496 468 451 0.023809496 469 451 0.023809496 472 451 0.14285707 473 451 0.071428597 9 452 9.4999996e-06 16 452 8.849999e-05 18 452 0.0029249999 22 452 0.082447052 25 452 7.5899996e-05 65 452 0.043742198 72 452 0.0024569998 79 452 3.1999998e-06 82 452 1.26e-05 83 452 9.4999996e-06 84 452 9.4999996e-06 108 452 1.8999999e-05 113 452 2.2099994e-05 114 452 6.3199986e-05 126 452 3.1599993e-05 127 452 3.1999998e-06 135 452 2.2099994e-05 150 452 0.00039529987 187 452 7.5899996e-05 188 452 1.5799989e-05 189 452 0.00017079999 190 452 6.3199986e-05 192 452 0.00012649999 194 452 0.00027829991 195 452 6.2999998e-06 196 452 5.0599992e-05 197 452 7.5899996e-05 200 452 4.4299988e-05 201 452 5.6899997e-05 203 452 0.00027189986 204 452 0.00064819981 206 452 0.0010529999 207 452 0.00020549999 209 452 6.3199986e-05 214 452 0.00078419992 217 452 6.2999998e-06 219 452 1.26e-05 223 452 0.0029187 228 452 2.8499999e-05 229 452 5.6899997e-05 230 452 2.8499999e-05 231 452 2.8499999e-05 234 452 0.044997599 237 452 0.00031309994 240 452 0.00023719999 241 452 6.2999998e-06 242 452 0.00077469996 248 452 9.4999996e-06 250 452 6.2999998e-06 251 452 3.1999998e-06 252 452 7.5899996e-05 254 452 0.0001107 263 452 3.1999998e-06 272 452 3.1999998e-06 277 452 0.0001581 279 452 9.4999996e-06 295 452 0.00032249978 315 452 9.4999996e-06 317 452 6.9599992e-05 322 452 0.00010439999 327 452 0.0027037 328 452 0.00056599989 351 452 0.00027829991 352 452 7.9099991e-05 356 452 0.00029409979 357 452 9.4999996e-06 358 452 3.1599993e-05 359 452 0.00016129999 363 452 1.5799989e-05 369 452 8.849999e-05 370 452 0.00058819982 371 452 1.5799989e-05 375 452 0.0001107 380 452 3.1999998e-06 384 452 0.0016442998 387 452 2.2099994e-05 393 452 3.1599993e-05 394 452 3.4799988e-05 396 452 2.2099994e-05 397 452 3.1999998e-06 402 452 0.00028459984 412 452 7.2699986e-05 413 452 9.4999996e-06 414 452 4.7399997e-05 417 452 2.2099994e-05 419 452 3.1999998e-06 422 452 0.0003668 423 452 6.2999998e-06 425 452 3.1999998e-06 430 452 1.5799989e-05 431 452 3.7899998e-05 432 452 5.6899997e-05 433 452 0.0001486 434 452 0.0001929 438 452 6.2999998e-06 443 452 0.0075670965 444 452 0.00020549999 445 452 0.0060207993 446 452 0.0020521998 447 452 0.00059759989 448 452 0.0002024 449 452 6.2999998e-06 450 452 0.0044997968 452 452 0.11142516 453 452 0.038730197 454 452 0.0012078998 455 452 0.012642298 456 452 0.00047429977 457 452 0.0035700998 458 452 0.0002024 459 452 0.0063021965 460 452 0.0017676998 463 452 0.011465997 464 452 0.00038259989 465 452 0.0057234988 467 452 0.012964897 468 452 0.0017835 469 452 0.0033455999 470 452 0.0033233999 471 452 0.0028743998 472 452 0.00014229999 473 452 6.0099992e-05 475 452 2.5299989e-05 477 452 6.0099992e-05 478 452 0.00036359997 483 452 0.0032096 489 452 0.00018019999 490 452 0.00026879995 491 452 6.2999998e-06 7 453 4.7999993e-06 9 453 4.7999993e-06 16 453 7.1999995e-05 18 453 1.9199986e-05 19 453 6.7199988e-05 22 453 4.3199994e-05 23 453 0.17643529 25 453 4.7999993e-06 60 453 0.00033609988 66 453 0.0191787 68 453 0.0037838998 69 453 0.0017766999 73 453 0.00035049999 74 453 0.00052819983 75 453 0.00023529999 79 453 4.7999993e-06 82 453 4.7999993e-06 83 453 4.7999993e-06 84 453 4.7999993e-06 108 453 4.7999993e-06 113 453 9.5999994e-06 114 453 2.3999994e-05 126 453 1.44e-05 127 453 4.7999993e-06 150 453 0.0001489 153 453 4.7999993e-06 187 453 9.5999994e-06 189 453 8.1599996e-05 190 453 3.3599994e-05 192 453 1.44e-05 194 453 4.7999987e-05 196 453 4.7999993e-06 197 453 1.44e-05 200 453 1.44e-05 201 453 9.5999994e-06 203 453 3.3599994e-05 204 453 8.6399989e-05 206 453 0.00032649981 207 453 2.8799986e-05 209 453 4.7999993e-06 214 453 0.00066749984 215 453 4.7999993e-06 217 453 4.3199994e-05 223 453 3.8399987e-05 228 453 4.7999993e-06 229 453 3.3599994e-05 230 453 1.44e-05 231 453 1.9199986e-05 233 453 4.7999993e-06 234 453 0.00079229986 237 453 0.00018249999 248 453 4.7999993e-06 250 453 4.7999993e-06 252 453 2.3999994e-05 267 453 1.9199986e-05 272 453 4.7999993e-06 277 453 0.00023529999 278 453 2.3999994e-05 281 453 4.7999993e-06 282 453 1.44e-05 288 453 4.7999993e-06 290 453 9.5999994e-06 307 453 1.44e-05 312 453 4.7999993e-06 317 453 2.8799986e-05 319 453 4.7999993e-06 324 453 4.7999987e-05 326 453 1.9199986e-05 328 453 3.8399987e-05 330 453 9.5999994e-06 331 453 5.2799995e-05 333 453 8.6399989e-05 340 453 9.5999994e-06 350 453 3.8399987e-05 351 453 4.7999993e-06 354 453 1.9199986e-05 356 453 0.00020169999 358 453 5.7599987e-05 359 453 5.7599987e-05 368 453 4.7999993e-06 369 453 4.7999993e-06 370 453 4.7999993e-06 372 453 7.1999995e-05 374 453 1.44e-05 375 453 4.7999993e-06 384 453 0.00033129985 385 453 4.7999993e-06 387 453 9.5999994e-06 393 453 4.3199994e-05 394 453 2.3999994e-05 402 453 6.2399995e-05 404 453 4.7999993e-06 412 453 0.0001008 413 453 9.5999994e-06 414 453 0.00011519999 419 453 4.7999993e-06 422 453 5.2799995e-05 423 453 4.7999993e-06 425 453 4.7999993e-06 430 453 4.7999993e-06 431 453 9.5999994e-06 432 453 4.7999993e-06 433 453 1.44e-05 434 453 4.3199994e-05 438 453 4.7999993e-06 442 453 4.7999993e-06 443 453 0.00013449999 444 453 0.00038409978 445 453 0.00035049999 446 453 5.2799995e-05 447 453 0.0008882999 448 453 1.44e-05 450 453 0.0022761 452 453 0.0028426999 453 453 0.35604936 454 453 0.00068669999 455 453 0.0008882999 456 453 0.00034569995 457 453 0.0036109998 458 453 0.0001585 459 453 0.0021559999 460 453 0.0012965 463 453 0.0092051998 464 453 0.00066749984 465 453 0.0021849 467 453 0.0065641999 468 453 0.00093159988 469 453 0.0030491999 470 453 0.0012772998 471 453 0.0010084 473 453 2.3999994e-05 474 453 4.7999993e-06 478 453 0.00052339979 483 453 0.0026554 489 453 0.00018249999 490 453 9.5999989e-05 491 453 2.3999994e-05 7 454 0.000118 9 454 3.3699995e-05 16 454 0.00013479999 18 454 0.00025279983 22 454 0.00067409989 25 454 0.000118 60 454 0.0063873976 65 454 0.00023589999 66 454 0.00091009983 68 454 0.1192531 69 454 0.043632898 72 454 1.6899998e-05 73 454 0.0083759986 75 454 0.0056794994 79 454 1.6899998e-05 82 454 5.0599992e-05 83 454 3.3699995e-05 84 454 3.3699995e-05 108 454 5.0599992e-05 113 454 8.4299987e-05 114 454 0.00013479999 126 454 6.7399989e-05 127 454 1.6899998e-05 134 454 5.0599992e-05 150 454 0.0010785998 152 454 5.0599992e-05 153 454 6.7399989e-05 187 454 0.00016849999 188 454 1.6899998e-05 189 454 0.00016849999 190 454 0.00026969984 192 454 5.0599992e-05 194 454 0.00015169999 196 454 5.0599992e-05 197 454 6.7399989e-05 200 454 3.3699995e-05 201 454 1.6899998e-05 202 454 3.3699995e-05 203 454 0.0001011 204 454 0.0011292 206 454 0.00025279983 207 454 8.4299987e-05 209 454 3.3699995e-05 214 454 0.015386898 215 454 0.000118 217 454 0.00097749988 218 454 5.0599992e-05 219 454 1.6899998e-05 223 454 0.000118 228 454 0.00016849999 229 454 0.00074149994 230 454 0.00030339998 231 454 0.00047189998 234 454 0.011207398 237 454 0.00094379997 240 454 5.0599992e-05 248 454 1.6899998e-05 250 454 1.6899998e-05 252 454 0.00016849999 267 454 0.00033709989 272 454 6.7399989e-05 317 454 0.00074149994 327 454 1.6899998e-05 329 454 3.3699995e-05 330 454 0.00023589999 331 454 0.0010617999 356 454 0.00030339998 358 454 5.0599992e-05 359 454 1.6899998e-05 363 454 1.6899998e-05 368 454 0.000118 384 454 0.0041458979 387 454 6.7399989e-05 393 454 1.6899998e-05 394 454 0.00026969984 397 454 1.6899998e-05 402 454 0.00032019988 412 454 0.00018539999 413 454 0.0002022 414 454 0.00040449994 419 454 1.6899998e-05 422 454 0.00016849999 423 454 3.3699995e-05 425 454 1.6899998e-05 430 454 5.0599992e-05 431 454 5.0599992e-05 432 454 1.6899998e-05 433 454 6.7399989e-05 434 454 8.4299987e-05 438 454 6.7399989e-05 442 454 1.6899998e-05 443 454 0.0020728998 444 454 0.00015169999 445 454 0.013583697 446 454 0.00092689996 447 454 0.0012302999 448 454 0.00023589999 450 454 0.011881497 452 454 0.009555798 453 454 0.017678998 454 454 0.028802097 455 454 0.0066401996 456 454 0.0029829999 457 454 0.0030503999 458 454 3.3699995e-05 459 454 0.0042469986 460 454 0.0039435998 463 454 0.017173398 464 454 0.0002022 465 454 0.0011459999 467 454 0.019920498 468 454 0.0013987999 469 454 0.0089826994 470 454 0.0066738985 471 454 0.0062524974 473 454 0.00013479999 474 454 0.000118 475 454 3.3699995e-05 476 454 1.6899998e-05 477 454 3.3699995e-05 478 454 0.00021909999 483 454 0.0034717999 489 454 0.00032019988 490 454 0.00050559989 491 454 1.6899998e-05 9 455 4.7999993e-06 16 455 0.0001165 17 455 7.6999995e-06 18 455 0.00072969985 60 455 0.0024815998 75 455 0.0002407 79 455 1.3499999e-05 82 455 3.0799987e-05 83 455 3.4699988e-05 84 455 0.00014629999 97 455 0.0001223 101 455 4.6199988e-05 105 455 3.9499995e-05 108 455 4.1399995e-05 113 455 0.0002483998 114 455 0.00017809999 115 455 4.8099988e-05 123 455 3.2699987e-05 126 455 9.5299998e-05 127 455 2.7899994e-05 141 455 4.9099996e-05 149 455 3.2699987e-05 150 455 0.00020699999 153 455 0.00071519986 158 455 7.5999997e-05 162 455 2.2099994e-05 169 455 0.00030129985 171 455 1.5399986e-05 187 455 0.000978 189 455 0.00082399999 190 455 0.000128 192 455 0.00084039988 193 455 0.0015776998 194 455 0.00020309999 195 455 9.2399991e-05 196 455 4.7199996e-05 197 455 0.00045049982 198 455 0.0022304 200 455 4.1399995e-05 201 455 4.0399987e-05 203 455 0.00023779999 204 455 0.0010974 206 455 0.0008278999 207 455 0.0002387 209 455 7.1199989e-05 219 455 1.8299994e-05 223 455 6.7399989e-05 229 455 0.00020309999 230 455 0.0002002 234 455 0.0086067989 237 455 0.0011339998 240 455 6.3499989e-05 241 455 0.0013341999 242 455 4.8099988e-05 248 455 3.7499995e-05 250 455 8.6999999e-06 251 455 1.25e-05 252 455 6.8299996e-05 253 455 0.00031289994 263 455 7.6999995e-06 272 455 1.7299986e-05 276 455 3.2699987e-05 279 455 9.5999994e-06 284 455 2.6999987e-05 316 455 9.2399991e-05 318 455 2.3099987e-05 322 455 9.429999e-05 323 455 3.8999997e-06 326 455 2.4999987e-05 330 455 7.2199997e-05 335 455 6.6999992e-06 337 455 6.1599989e-05 340 455 0.00014439999 356 455 7.6999995e-06 358 455 0.00038219988 359 455 6.7399989e-05 362 455 1.06e-05 363 455 2.0199994e-05 366 455 0.00048029982 368 455 8.279999e-05 380 455 6.2599996e-05 384 455 5.5799988e-05 387 455 1.5399986e-05 393 455 3.1799995e-05 394 455 0.00010199999 397 455 9.429999e-05 402 455 0.00037929998 412 455 0.00011359999 419 455 3.4699988e-05 422 455 0.00030799978 423 455 2.7899994e-05 425 455 1.25e-05 430 455 1.5399986e-05 431 455 4.8099988e-05 432 455 5.2899995e-05 433 455 0.00014539999 434 455 0.0001944 438 455 8.089999e-05 442 455 2.6999987e-05 443 455 0.00051309983 444 455 0.0022341998 445 455 0.015707098 446 455 0.00039269985 447 455 0.0032046 448 455 0.0001848 449 455 0.00037639984 450 455 0.019686598 452 455 0.0056803972 453 455 0.0006920998 454 455 0.0016643999 455 455 0.017598599 456 455 0.0033912999 457 455 0.0067344978 458 455 0.00034939987 459 455 0.00043609994 460 455 0.0051172972 463 455 0.023017198 464 455 0.0041546971 465 455 0.0031746998 467 455 0.018062599 468 455 0.029311799 469 455 0.0131003 470 455 0.0187345 471 455 0.020459499 473 455 0.00024349999 477 455 0.0001107 478 455 0.0023930999 483 455 0.0033960999 489 455 0.00096939993 490 455 0.0011935998 491 455 3.7499995e-05 7 456 8.9999997e-07 9 456 1.3999999e-05 16 456 6.9999996e-06 17 456 8.9999997e-07 18 456 0.00025359984 22 456 1.6999993e-06 25 456 8.9999997e-07 59 456 1.1399999e-05 60 456 0.0048253983 64 456 9.5999994e-06 66 456 8.6999999e-06 68 456 0.00090249977 69 456 0.00042409985 73 456 8.3999999e-05 75 456 0.00039609987 79 456 3.4999994e-06 82 456 1.9199986e-05 83 456 1.5699989e-05 84 456 1.49e-05 108 456 2.539999e-05 113 456 3.499999e-05 114 456 8.659999e-05 126 456 4.2e-05 127 456 5.1999996e-06 134 456 1.6999993e-06 135 456 3.3199991e-05 141 456 7.8999992e-06 142 456 5.9499987e-05 150 456 0.00013029999 152 456 3.4999994e-06 153 456 8.9999997e-07 154 456 6.3799991e-05 171 456 8.9999997e-07 187 456 0.00058769993 189 456 0.00022649999 190 456 0.00030339998 192 456 0.0003209 193 456 0.0035722998 194 456 4.3999999e-06 195 456 0.00021079999 196 456 8.9999997e-07 197 456 0.0001583 198 456 0.0011787999 201 456 7.8999992e-06 203 456 4.3999999e-06 204 456 0.001129 206 456 9.36e-05 207 456 3.4999994e-06 209 456 8.9999997e-07 214 456 0.00014339999 215 456 1.6999993e-06 217 456 9.5999994e-06 220 456 8.9999997e-07 223 456 4.8099988e-05 228 456 1.6999993e-06 229 456 7.8699988e-05 230 456 0.00055619981 231 456 4.3999999e-06 233 456 3.4999994e-06 234 456 0.0058432966 237 456 0.00092429994 240 456 5.3299998e-05 241 456 0.00083509996 242 456 1.49e-05 248 456 6.3799991e-05 250 456 6.0999992e-06 251 456 4.3999999e-06 252 456 1.6599995e-05 253 456 0.00020899999 260 456 8.9999997e-07 263 456 2.5999998e-06 267 456 3.4999994e-06 272 456 1.31e-05 275 456 1.6999993e-06 282 456 3.4999994e-06 283 456 1.31e-05 284 456 1.05e-05 295 456 2.5999998e-06 296 456 6.9999996e-06 307 456 8.9999997e-07 315 456 3.3199991e-05 316 456 7.8999992e-06 317 456 7.8999992e-06 319 456 2.5999998e-06 322 456 0.00032009999 323 456 2.5999998e-06 324 456 8.9999997e-07 326 456 1.6999993e-06 328 456 3.4999994e-06 330 456 2.5999998e-06 331 456 1.2199999e-05 335 456 5.1999996e-06 340 456 6.9999995e-05 346 456 1.05e-05 350 456 5.1999996e-06 351 456 5.1999996e-06 356 456 1.1399999e-05 358 456 0.00010059999 359 456 2.8899987e-05 364 456 0.0001679 366 456 6.8199995e-05 368 456 3.4999994e-06 370 456 8.9999997e-07 374 456 8.9999997e-07 377 456 6.0999992e-06 380 456 1.2199999e-05 382 456 1.1399999e-05 384 456 0.00015129999 387 456 3.5899997e-05 389 456 8.9999997e-07 390 456 2.5999998e-06 393 456 2.4499997e-05 394 456 9.0099988e-05 397 456 8.0499987e-05 402 456 0.00026849983 406 456 7.5199991e-05 407 456 2.5999998e-06 408 456 5.1999996e-06 412 456 1.31e-05 413 456 1.6999993e-06 414 456 2.5999998e-06 419 456 7.8999992e-06 422 456 0.0001163 423 456 8.6999999e-06 425 456 1.3999999e-05 430 456 2.2699998e-05 431 456 4.3999999e-06 432 456 8.9999997e-07 433 456 3.4999994e-06 434 456 1.49e-05 435 456 0.0001758 438 456 3.4999994e-06 442 456 7.5199991e-05 443 456 0.0002789998 444 456 0.00011889999 445 456 0.0026951998 446 456 0.00071359985 447 456 0.00030779978 448 456 0.00012069999 449 456 3.1499992e-05 450 456 0.0089713968 452 456 0.0184194 453 456 0.0026033998 454 456 0.00090069999 455 456 0.0057663992 456 456 0.0016273998 457 456 0.0090911984 458 456 0.00036729989 459 456 0.00049059978 460 456 0.005153399 463 456 0.057630599 464 456 0.00014949999 465 456 0.0014648 467 456 0.012564696 468 456 0.034562498 469 456 0.0053561963 470 456 0.0044021979 471 456 0.0065061972 472 456 8.9199995e-05 473 456 9.1799986e-05 474 456 8.9999997e-07 477 456 0.00031309994 478 456 0.0015679998 483 456 0.0057698973 486 456 4.3699998e-05 489 456 0.00052029989 490 456 0.0016230999 491 456 2.4499997e-05 9 457 2.7499991e-05 16 457 1.5699989e-05 17 457 3.8999997e-06 18 457 2.7499991e-05 60 457 0.0075417981 68 457 5.4899996e-05 69 457 2.7499991e-05 73 457 3.8999997e-06 75 457 3.8999997e-06 79 457 1.18e-05 82 457 3.9199993e-05 83 457 2.7499991e-05 84 457 2.7499991e-05 108 457 5.4899996e-05 113 457 6.6699999e-05 114 457 0.00017269999 126 457 7.8499987e-05 127 457 1.18e-05 150 457 3.8999997e-06 153 457 0.0017147998 171 457 3.8999997e-06 187 457 0.00089469994 189 457 0.00087499991 190 457 0.0001373 192 457 0.00017659999 194 457 0.00039629987 196 457 7.4599986e-05 197 457 0.00011379999 199 457 7.4599986e-05 200 457 0.0001295 201 457 5.4899996e-05 203 457 0.00037669996 204 457 0.0097470991 206 457 0.0035903999 207 457 0.0073612966 209 457 0.0012987999 214 457 7.7999994e-06 219 457 1.9599989e-05 223 457 1.9599989e-05 230 457 0.00014909999 234 457 0.0020915 237 457 5.4899996e-05 240 457 1.9599989e-05 241 457 1.18e-05 248 457 3.1399992e-05 250 457 1.5699989e-05 251 457 7.7999994e-06 252 457 2.349999e-05 263 457 7.7999994e-06 279 457 1.18e-05 322 457 7.7999994e-06 326 457 3.8999997e-06 359 457 0.00078089978 363 457 2.349999e-05 380 457 1.18e-05 384 457 0.0001256 387 457 7.0599999e-05 393 457 0.00029039988 394 457 3.8999997e-06 397 457 3.8999997e-06 402 457 2.349999e-05 412 457 7.4599986e-05 419 457 1.5699989e-05 422 457 0.00043159979 423 457 1.5699989e-05 425 457 1.5699989e-05 430 457 4.7099995e-05 431 457 6.2799998e-05 432 457 7.8499987e-05 433 457 0.000204 434 457 0.00040809996 442 457 3.8999997e-06 443 457 0.0001295 444 457 0.0002158 445 457 0.0010476999 446 457 8.6299988e-05 447 457 0.00060819997 448 457 3.5299992e-05 449 457 1.5699989e-05 450 457 0.015079699 452 457 0.0082402974 453 457 0.00081229978 454 457 0.0018324999 455 457 0.0029899999 456 457 0.00058859983 457 457 0.013529699 458 457 0.0038257998 459 457 0.027820699 460 457 0.0026917998 463 457 0.022617597 464 457 0.00027469988 465 457 0.0027780998 467 457 0.063218594 468 457 0.0166061 469 457 0.015166 470 457 0.0082794987 471 457 0.0012085999 472 457 0.0001452 473 457 0.00017269999 477 457 7.8499987e-05 478 457 0.0025622998 483 457 0.018540598 486 457 0.0086090975 489 457 0.00036489987 490 457 0.00076119998 9 458 7.0599999e-05 16 458 3.5299992e-05 18 458 7.0599999e-05 60 458 0.0077514984 79 458 1.7699989e-05 82 458 0.0001236 83 458 8.8299988e-05 84 458 7.0599999e-05 108 458 0.00015889999 113 458 0.00019419999 114 458 0.00047669979 126 458 0.00022949999 127 458 3.5299992e-05 187 458 1.7699989e-05 189 458 0.002472 190 458 0.00024719979 192 458 0.00040609995 194 458 0.00091819977 196 458 0.00015889999 197 458 0.00026489981 200 458 0.00031779986 201 458 0.0001413 203 458 0.00086519984 204 458 0.023660697 206 458 0.0019952999 207 458 0.00065329997 209 458 0.00075929984 219 458 5.2999996e-05 223 458 8.8299988e-05 229 458 5.2999996e-05 231 458 3.5299992e-05 234 458 0.0056149997 237 458 0.00086519984 240 458 5.2999996e-05 241 458 3.5299992e-05 242 458 0.00044139987 248 458 7.0599999e-05 250 458 5.2999996e-05 251 458 1.7699989e-05 252 458 7.0599999e-05 263 458 1.7699989e-05 272 458 1.7699989e-05 279 458 3.5299992e-05 322 458 1.7699989e-05 352 458 0.0001236 363 458 5.2999996e-05 380 458 1.7699989e-05 384 458 0.00042379997 387 458 0.00019419999 394 458 7.0599999e-05 397 458 8.8299988e-05 402 458 0.0003707998 412 458 0.00040609995 419 458 3.5299992e-05 422 458 0.00097109983 423 458 7.0599999e-05 425 458 5.2999996e-05 430 458 0.0001413 431 458 0.0001236 432 458 0.00017659999 433 458 0.00049439981 434 458 0.00061799982 442 458 0.0006002998 443 458 0.00022949999 444 458 0.0022953998 445 458 0.0021364999 446 458 0.00022949999 447 458 0.0034254999 448 458 0.0001236 449 458 5.2999996e-05 450 458 0.037115499 452 458 0.020164598 453 458 0.0034607998 454 458 0.0088462979 455 458 0.0061270967 456 458 0.0024366998 457 458 0.16089267 458 458 0.036056098 459 458 0.13617259 460 458 0.0064271986 463 458 0.11118758 464 458 0.0035138 465 458 0.0018187 467 458 0.15382987 468 458 0.022512998 469 458 0.056891598 470 458 0.023837298 471 458 0.0099409968 473 458 0.00049439981 477 458 0.00019419999 478 458 0.004537899 483 458 0.018416498 486 458 0.0380513 489 458 0.00061799982 490 458 0.0018187 9 459 6.11e-05 16 459 2.4399997e-05 17 459 1.2199999e-05 18 459 3.6599988e-05 60 459 0.0011967998 79 459 1.2199999e-05 82 459 9.7699987e-05 83 459 7.3299991e-05 84 459 6.11e-05 108 459 0.00010989999 113 459 0.00015879999 114 459 0.00039079995 126 459 0.00019539999 127 459 2.4399997e-05 153 459 4.8799993e-05 187 459 0.0017708 189 459 0.0017463998 190 459 7.3299991e-05 192 459 0.00013429999 194 459 0.00029309979 196 459 4.8799993e-05 197 459 9.7699987e-05 200 459 0.0001465 201 459 7.3299991e-05 203 459 0.00028089993 204 459 0.012065798 206 459 0.0015020999 207 459 0.0004151999 209 459 9.7699987e-05 219 459 1.2199999e-05 223 459 2.4399997e-05 234 459 0.00074499985 237 459 0.00015879999 240 459 1.2199999e-05 241 459 2.4399997e-05 248 459 6.11e-05 250 459 3.6599988e-05 251 459 1.2199999e-05 252 459 4.8799993e-05 263 459 1.2199999e-05 279 459 1.2199999e-05 326 459 1.2199999e-05 359 459 2.4399997e-05 363 459 2.4399997e-05 380 459 2.4399997e-05 384 459 2.4399997e-05 387 459 0.00015879999 393 459 1.2199999e-05 394 459 1.2199999e-05 397 459 1.2199999e-05 402 459 3.6599988e-05 412 459 0.00040299981 419 459 3.6599988e-05 422 459 0.00031749997 423 459 3.6599988e-05 425 459 3.6599988e-05 430 459 9.7699987e-05 431 459 3.6599988e-05 432 459 4.8799993e-05 433 459 0.00015879999 434 459 0.00019539999 442 459 1.2199999e-05 443 459 0.00010989999 444 459 0.00052509992 445 459 0.0011479999 446 459 7.3299991e-05 447 459 0.0012945 448 459 1.2199999e-05 449 459 3.6599988e-05 450 459 0.032094199 452 459 0.0012335 453 459 0.00029309979 454 459 0.00087929983 455 459 0.0025646 456 459 0.0015020999 457 459 0.018049899 458 459 0.00065949978 459 459 0.067595541 460 459 0.0026011998 461 459 0.002992 463 459 0.040838297 464 459 0.00067169988 465 459 0.0015753999 467 459 0.042035099 468 459 0.0093057975 469 459 0.012016997 470 459 0.019918397 471 459 0.0014898998 473 459 0.00040299981 474 459 3.6599988e-05 477 459 8.5499996e-05 478 459 0.0016730998 483 459 0.017683599 486 459 0.00025649997 489 459 9.7699987e-05 490 459 0.0015264999 9 460 4.3099993e-05 16 460 2.5199988e-05 17 460 3.5999992e-06 18 460 1.44e-05 79 460 1.0799999e-05 82 460 7.5499993e-05 83 460 5.7499987e-05 84 460 5.3899988e-05 108 460 9.6999996e-05 113 460 0.0001294 114 460 0.00031979987 126 460 0.0001509 127 460 2.159999e-05 150 460 3.5999992e-06 171 460 3.5999992e-06 187 460 0.0012612999 189 460 0.0010636998 190 460 1.44e-05 192 460 0.00019759999 194 460 0.00043119979 196 460 7.9099991e-05 197 460 0.0007689998 200 460 0.00045639998 201 460 0.00054259994 203 460 0.00040969998 204 460 0.0024614998 206 460 0.0019619998 207 460 0.00033059996 209 460 0.00010419999 219 460 2.159999e-05 223 460 3.2299999e-05 229 460 3.5999992e-06 230 460 3.5999992e-06 234 460 0.00048149982 237 460 0.00024079999 240 460 2.159999e-05 241 460 2.5199988e-05 242 460 0.00017249999 248 460 4.6699992e-05 250 460 3.2299999e-05 251 460 1.0799999e-05 252 460 3.9499995e-05 263 460 1.0799999e-05 272 460 3.5999992e-06 279 460 7.1999993e-06 315 460 3.5999992e-06 322 460 7.1999993e-06 326 460 7.1999993e-06 359 460 0.0003054 363 460 2.8699986e-05 380 460 1.7999992e-05 384 460 3.9499995e-05 387 460 0.0001294 393 460 0.00023719999 394 460 1.7999992e-05 397 460 2.5199988e-05 402 460 0.00011499999 412 460 6.8299996e-05 419 460 2.8699986e-05 422 460 0.00048509985 423 460 3.5899997e-05 425 460 2.8699986e-05 430 460 8.2599989e-05 431 460 6.4699998e-05 432 460 7.9099991e-05 433 460 0.00022999999 434 460 0.00040609995 442 460 7.1999993e-06 443 460 0.00013299999 444 460 0.00041679991 445 460 0.0016385999 446 460 6.8299996e-05 447 460 0.00086959987 448 460 1.0799999e-05 449 460 2.8699986e-05 450 460 0.011437897 452 460 0.0014660999 453 460 0.00062529999 454 460 0.0012612999 455 460 0.0023681 456 460 0.0012182 457 460 0.017967198 458 460 0.0020661999 459 460 0.0095082 460 460 0.0083259977 461 460 0.36792135 463 460 0.012663297 464 460 0.0005245998 465 460 0.00033059996 467 460 0.016109399 468 460 0.0044594966 469 460 0.0043587983 470 460 0.015724897 471 460 0.0023357 472 460 0.00013659999 473 460 0.00033419998 474 460 0.0051888973 477 460 0.00011859999 478 460 0.0041036978 483 460 0.0041072965 486 460 3.5999992e-06 489 460 0.00017609999 490 460 0.0026375998 9 461 0.0001068 16 461 3.879999e-05 17 461 9.6999993e-06 60 461 0.004794199 79 461 2.9099989e-05 82 461 0.00017469999 83 461 0.00013589999 84 461 0.00013589999 108 461 0.00020379999 113 461 0.00029109977 114 461 0.00072789984 126 461 0.00033969991 127 461 4.8499991e-05 171 461 9.6999993e-06 187 461 0.0043768995 189 461 0.0033093998 190 461 8.7299995e-05 192 461 0.00015529999 194 461 0.00033969991 196 461 5.8199992e-05 197 461 0.00040759984 200 461 0.0006114 201 461 0.0002135 203 461 0.00032999995 204 461 0.014780499 206 461 0.0042312965 207 461 0.00025229994 209 461 8.7299995e-05 219 461 1.9399988e-05 223 461 0.00013589999 234 461 0.0050561987 237 461 0.0010384 240 461 1.9399988e-05 241 461 4.8499991e-05 242 461 0.00038819993 248 461 0.0001068 250 461 6.7899993e-05 251 461 3.879999e-05 252 461 6.7899993e-05 263 461 1.9399988e-05 272 461 9.6999993e-06 279 461 9.6999993e-06 322 461 9.6999993e-06 326 461 9.6999993e-06 363 461 1.9399988e-05 380 461 4.8499991e-05 384 461 4.8499991e-05 387 461 0.00028139981 394 461 0.00017469999 397 461 0.00020379999 402 461 0.00017469999 412 461 0.00029109977 419 461 5.8199992e-05 422 461 0.00042699999 423 461 6.7899993e-05 425 461 5.8199992e-05 430 461 0.00019409999 431 461 6.7899993e-05 432 461 5.8199992e-05 433 461 0.00019409999 434 461 0.0002329 442 461 1.9399988e-05 443 461 0.00035909982 444 461 0.0028531998 445 461 0.0032607999 446 461 0.00030089985 447 461 0.0043671988 448 461 0.00015529999 449 461 0.00080549996 450 461 0.059908196 452 461 0.0070359968 453 461 0.00035909982 454 461 0.0015915998 455 461 0.0072300993 456 461 0.0042215995 457 461 0.021515697 458 461 0.00066959998 459 461 0.0039983988 460 461 0.0042506978 463 461 0.055492498 464 461 0.0048717968 465 461 0.0096465982 467 461 0.0523481 468 461 0.024621297 469 461 0.024533898 470 461 0.0414689 471 461 0.0150523 473 461 0.00075699994 477 461 9.6999996e-05 478 461 0.017332897 483 461 0.016721498 486 461 0.00046579982 489 461 0.0007375998 490 461 0.0027561998 7 462 0.00021519999 18 462 0.0066920966 59 462 0.069293857 61 462 0.0034294999 215 462 0.00046419981 217 462 0.0001773 241 462 0.0012935998 242 462 0.00036509987 303 462 0.00011739999 330 462 0.00027379999 412 462 7.1699993e-05 443 462 5.35e-05 445 462 0.00042769988 446 462 5.1999996e-06 447 462 2.5999998e-06 455 462 0.000489 457 462 0.0045078993 458 462 0.0029508998 460 462 0.015934698 463 462 0.023242299 467 462 0.0036289999 469 462 0.0064351968 486 462 0.0054233 7 463 3.5599995e-05 9 463 9.1999991e-06 11 463 9.9999943e-07 13 463 8.8599991e-05 16 463 0.00094469986 17 463 9.9999943e-07 18 463 0.0009680998 22 463 1.6299993e-05 59 463 0.047734197 60 463 0.0039569996 61 463 0.00045709987 62 463 0.0007685998 75 463 0.00017199999 79 463 3.1e-06 82 463 1.8299994e-05 83 463 1.2199999e-05 84 463 1.12e-05 85 463 1.9999998e-06 90 463 1.9999998e-06 93 463 9.9999943e-07 94 463 9.9999943e-07 105 463 9.9999943e-07 108 463 1.7299986e-05 113 463 2.549999e-05 114 463 6.4099993e-05 126 463 2.9499992e-05 127 463 5.0999997e-06 130 463 1.9999998e-06 142 463 9.9999943e-07 150 463 3.0499999e-05 151 463 5.0999997e-06 152 463 8.0999998e-06 171 463 3.1e-06 187 463 4.6799993e-05 189 463 4.6799993e-05 190 463 3.3599994e-05 192 463 4.1699997e-05 194 463 9.2599992e-05 196 463 2.6499998e-05 197 463 2.7499991e-05 198 463 9.9999943e-07 200 463 5.3999989e-05 201 463 2.1399988e-05 203 463 9.0599991e-05 204 463 0.00012619999 206 463 0.00021069999 207 463 6.9199989e-05 209 463 2.2399996e-05 215 463 7.0199996e-05 217 463 1.0199999e-05 219 463 4.0999994e-06 223 463 4.3799999e-05 229 463 3.8699989e-05 230 463 1.43e-05 231 463 1.0199999e-05 234 463 0.0045748986 237 463 0.00049369992 240 463 4.0999994e-06 241 463 0.00039799977 242 463 0.0001812 248 463 1.2199999e-05 250 463 6.0999992e-06 251 463 3.1e-06 252 463 1.12e-05 263 463 1.9999998e-06 272 463 1.9999998e-06 279 463 3.1e-06 303 463 4.069999e-05 315 463 9.9999943e-07 322 463 3.1e-06 326 463 9.9999943e-07 329 463 2.6499998e-05 330 463 4.0999994e-06 352 463 2.8499999e-05 357 463 3.1e-06 358 463 1.0199999e-05 363 463 6.0999992e-06 380 463 3.1e-06 384 463 7.8399986e-05 387 463 2.549999e-05 394 463 4.6799993e-05 397 463 4.8899994e-05 402 463 4.069999e-05 412 463 9.9999943e-07 419 463 4.0999994e-06 422 463 0.0001008 423 463 6.0999992e-06 425 463 4.0999994e-06 428 463 9.9999943e-07 430 463 1.7299986e-05 431 463 1.32e-05 432 463 1.8299994e-05 433 463 4.8899994e-05 434 463 6.0099992e-05 435 463 3.1599993e-05 438 463 8.0999998e-06 441 463 9.9999943e-07 442 463 1.43e-05 443 463 0.00011299999 444 463 8.5499996e-05 445 463 0.0014842998 446 463 0.0001354 447 463 0.00031049992 448 463 0.0001008 449 463 0.00011299999 450 463 0.0030061998 452 463 0.0062219985 453 463 0.0014648999 454 463 0.0016166 455 463 0.0029531999 456 463 0.0018863999 457 463 0.0058534965 458 463 0.00089889998 459 463 0.00079199998 460 463 0.0083455965 461 463 0.00041639991 463 463 0.10133928 464 463 0.0001089 465 463 0.0019646999 467 463 0.0052253976 468 463 0.0086590983 469 463 0.0039314963 470 463 0.0032127998 471 463 0.0034194998 473 463 6.7199988e-05 474 463 6.0999992e-06 476 463 1.7299986e-05 477 463 2.9499992e-05 478 463 0.00033189985 483 463 0.00049069989 486 463 0.00063319993 489 463 0.00060369982 490 463 0.00025039981 9 464 2.3999994e-05 11 464 0.00065869978 16 464 0.0012573998 18 464 0.0020597999 22 464 0.00052689994 60 464 0.023771297 64 464 1.2e-05 75 464 0.00098199979 79 464 2.3999994e-05 82 464 0.0011376999 83 464 2.3999994e-05 84 464 2.3999994e-05 85 464 0.0010298998 90 464 0.0010658 93 464 0.00039519998 94 464 0.00038319989 105 464 0.00043109991 106 464 7.1899995e-05 107 464 0.00020359999 108 464 2.3999994e-05 113 464 4.7899986e-05 114 464 9.5799987e-05 126 464 4.7899986e-05 127 464 2.3999994e-05 130 464 0.00082629989 142 464 0.00033529988 150 464 0.0031015999 151 464 0.0021197 152 464 0.0037362999 171 464 0.0010897999 187 464 0.00064669992 189 464 0.00034729997 190 464 0.0034967999 192 464 0.00010779999 194 464 0.00022749999 196 464 0.00035929983 197 464 5.989999e-05 198 464 0.00041909982 200 464 0.0003711998 201 464 7.1899995e-05 203 464 0.0012693999 204 464 0.0041314997 206 464 0.00049099978 207 464 0.0001677 209 464 0.0002156 215 464 0.00056279986 217 464 0.00010779999 219 464 1.2e-05 223 464 0.00014369999 229 464 0.0033292 230 464 0.0036165998 234 464 0.010753997 237 464 0.00034729997 240 464 1.2e-05 241 464 0.0058918968 248 464 3.5899997e-05 250 464 2.3999994e-05 252 464 0.0017603999 263 464 0.00046699983 279 464 1.2e-05 315 464 0.0005987999 322 464 0.00035929983 356 464 5.989999e-05 363 464 1.2e-05 384 464 0.00063469983 387 464 4.7899986e-05 394 464 2.3999994e-05 397 464 3.5899997e-05 402 464 4.7899986e-05 412 464 0.0002156 419 464 2.3999994e-05 422 464 0.00022749999 423 464 2.3999994e-05 425 464 2.3999994e-05 428 464 0.00043109991 430 464 2.3999994e-05 431 464 4.7899986e-05 432 464 3.5899997e-05 433 464 0.0001198 434 464 0.00015569999 435 464 0.0010058999 438 464 8.3799998e-05 441 464 0.0004431 442 464 0.00094609987 443 464 0.00075449981 444 464 0.0001317 445 464 0.0029099998 446 464 0.00051489985 447 464 0.00041909982 448 464 0.00023949999 449 464 0.0014250998 450 464 0.0034967999 452 464 0.034968399 453 464 0.0075804964 454 464 0.0075205974 455 464 0.0090055987 456 464 0.0036165998 457 464 0.0091971979 458 464 0.0070774965 459 464 0.00067059998 460 464 0.013388596 463 464 0.12847286 464 464 0.0001677 465 464 0.025807098 467 464 0.043039899 468 464 0.014238797 469 464 0.0053050965 470 464 0.0046344995 471 464 0.0071612969 473 464 9.5799987e-05 477 464 0.0001198 478 464 0.0016645999 483 464 0.0038800999 489 464 0.0017962998 490 464 0.0003711998 9 465 2.2699998e-05 16 465 1.13e-05 18 465 9.6399992e-05 22 465 0.0001872 60 465 0.0067609996 79 465 5.6999997e-06 82 465 3.9699997e-05 83 465 2.8399998e-05 84 465 2.2699998e-05 104 465 0.00016449999 108 465 5.0999995e-05 113 465 6.2399995e-05 114 465 0.00015879999 117 465 6.2399995e-05 126 465 7.3699994e-05 127 465 1.13e-05 130 465 0.0043843985 133 465 5.6999997e-06 137 465 0.00027229986 139 465 0.00042539998 149 465 3.9699997e-05 150 465 0.022103697 152 465 0.0065284967 153 465 0.00068059983 156 465 0.0001928 158 465 0.0013612998 160 465 0.00076569989 161 465 0.0002099 169 465 0.0002948998 187 465 0.0006295999 189 465 8.5099993e-05 190 465 0.00014179999 192 465 7.3699994e-05 193 465 0.0051047988 194 465 0.00015309999 196 465 2.8399998e-05 197 465 0.00093019987 198 465 0.0039022998 200 465 0.00036299997 201 465 4.5399996e-05 203 465 0.00036299997 204 465 0.00085649989 206 465 0.00034599984 207 465 0.00011339999 209 465 3.3999997e-05 214 465 0.0059215985 215 465 5.6999997e-06 219 465 2.2699998e-05 223 465 0.00060119992 229 465 0.0049516 230 465 0.0013498999 231 465 0.00013609999 233 465 0.0006465998 234 465 0.0118942 237 465 0.0026715 240 465 0.0050990991 241 465 0.0052181967 242 465 0.00017019999 244 465 0.0072147995 248 465 2.8399998e-05 250 465 1.6999998e-05 251 465 5.6999997e-06 252 465 6.2399995e-05 263 465 5.6999997e-06 265 465 0.0041575991 271 465 5.6999997e-06 272 465 3.3999997e-05 279 465 0.0002948998 284 465 2.2699998e-05 285 465 2.8399998e-05 295 465 0.000397 312 465 0.0016675999 315 465 0.0010209999 316 465 0.00089619984 317 465 0.0018887999 319 465 0.00030629989 322 465 0.0057173967 323 465 5.6999997e-06 326 465 0.00014179999 328 465 0.0026431 340 465 9.6399992e-05 351 465 0.00036299997 356 465 0.00010779999 358 465 0.0025354 360 465 0.0027111999 363 465 0.0029210998 364 465 0.00037439982 365 465 0.00074299984 366 465 0.0023708998 368 465 0.0010152999 372 465 0.0016845998 376 465 0.00095859985 377 465 0.00075999997 379 465 0.0049686991 380 465 0.001038 381 465 0.0019340999 382 465 3.3999997e-05 383 465 5.6699995e-05 384 465 0.00014179999 387 465 9.0799993e-05 391 465 0.0090070963 392 465 0.0091148987 393 465 0.00031199981 394 465 0.0002212 397 465 0.00013609999 402 465 0.0007487 403 465 5.6999997e-06 404 465 1.13e-05 405 465 1.13e-05 409 465 0.0016107999 412 465 0.00031199981 419 465 0.004089497 422 465 0.013164699 423 465 2.2699998e-05 424 465 0.0029040999 425 465 1.6999998e-05 430 465 4.5399996e-05 431 465 2.2699998e-05 432 465 2.8399998e-05 433 465 7.9399993e-05 434 465 0.00010779999 437 465 0.00089049991 440 465 0.019591 442 465 0.0033634999 443 465 0.0016107999 444 465 0.00060119992 445 465 0.005836498 446 465 0.00060689985 447 465 0.0013839998 448 465 0.0002269 449 465 3.3999997e-05 450 465 0.021598898 452 465 0.0067893974 453 465 0.0018717998 454 465 0.0011741 455 465 0.030180696 456 465 0.0026657998 457 465 0.0057910979 458 465 0.00034599984 459 465 0.0012080998 460 465 0.0047190972 463 465 0.039312597 464 465 0.0010265999 465 465 0.037849199 467 465 0.036969997 468 465 0.0083944984 469 465 0.0122572 470 465 0.0078443997 471 465 0.017815698 473 465 0.00016449999 477 465 5.6699995e-05 478 465 0.0020589 483 465 0.0019738998 489 465 0.0010435998 490 465 0.0006295999 491 465 1.13e-05 9 466 2.3199987e-05 60 466 0.0092115998 82 466 2.3199987e-05 108 466 2.3199987e-05 114 466 4.639999e-05 126 466 2.3199987e-05 149 466 0.0016705999 150 466 0.00051049981 187 466 2.3199987e-05 189 466 9.2799994e-05 190 466 0.0004176998 192 466 2.3199987e-05 194 466 4.639999e-05 200 466 4.639999e-05 203 466 2.3199987e-05 204 466 2.3199987e-05 206 466 6.9599992e-05 207 466 2.3199987e-05 223 466 6.9599992e-05 230 466 0.00039439998 232 466 0.043366298 234 466 0.0054990984 237 466 2.3199987e-05 240 466 0.00018559999 241 466 0.0043156967 242 466 0.00034799986 316 466 0.0017865999 356 466 9.2799994e-05 380 466 0.0014385998 384 466 0.0001624 387 466 2.3199987e-05 394 466 0.000116 397 466 0.000116 402 466 2.3199987e-05 422 466 2.3199987e-05 430 466 2.3199987e-05 433 466 2.3199987e-05 434 466 2.3199987e-05 435 466 0.00023199999 438 466 0.00027839979 442 466 0.0090722963 443 466 0.0001624 444 466 6.9599992e-05 445 466 0.0021811 446 466 0.0001624 447 466 0.0001392 448 466 0.000116 450 466 0.0073785 452 466 0.0069608986 453 466 0.00092809997 454 466 0.0018097998 455 466 0.013666499 456 466 0.0009976998 457 466 0.0061255991 458 466 4.639999e-05 459 466 0.0024595 460 466 2.3199987e-05 463 466 0.078518689 464 466 9.2799994e-05 465 466 0.016218897 467 466 0.0080513991 468 466 0.0071000978 469 466 0.0052206963 470 466 0.0018097998 471 466 0.008561898 473 466 4.639999e-05 478 466 0.0022042999 483 466 0.0016241998 489 466 0.00076569989 490 466 0.0001624 6 467 3.2199998e-05 9 467 2.9499992e-05 16 467 1.3399999e-05 17 467 2.6999996e-06 18 467 7.509999e-05 60 467 0.0067344978 75 467 0.0014568998 79 467 0.00054199994 82 467 4.0199986e-05 83 467 2.9499992e-05 84 467 2.9499992e-05 102 467 4.5599998e-05 108 467 5.3699987e-05 113 467 6.7099987e-05 114 467 0.0001717 126 467 8.3199993e-05 127 467 1.3399999e-05 141 467 0.0002307 149 467 0.0001851 150 467 0.00056879991 152 467 0.00014219999 153 467 1.6099992e-05 160 467 0.00041319989 171 467 0.0002442 187 467 0.00028709997 189 467 0.0010356999 190 467 0.00026559993 192 467 0.0017976998 194 467 0.0002388 196 467 4.0199986e-05 197 467 6.7099987e-05 198 467 0.0010248998 200 467 0.00036489987 201 467 0.00043999986 202 467 0.00051779998 203 467 0.00045609986 204 467 0.0014972 206 467 0.0036489998 207 467 0.00045609986 209 467 6.7099987e-05 210 467 0.00045879977 214 467 0.0027071999 217 467 0.0014836998 218 467 8.3199993e-05 219 467 1.07e-05 223 467 0.0010195998 228 467 0.00016899999 229 467 0.0011670999 230 467 0.0018485999 231 467 0.00020929999 233 467 0.00040779985 234 467 0.0080975965 237 467 0.0013442 238 467 1.3399999e-05 240 467 0.00022809999 241 467 0.0051058978 242 467 0.00054469984 247 467 2.9499992e-05 248 467 3.4899989e-05 250 467 1.6099992e-05 251 467 0.0001181 252 467 0.00082099997 263 467 0.00017439999 270 467 0.00034609996 271 467 8.0499987e-05 272 467 0.00024679978 279 467 0.00041319989 284 467 3.7599995e-05 301 467 0.00023339999 312 467 0.00099009997 314 467 0.00026559993 315 467 0.0019506 316 467 0.00016899999 317 467 0.00061979983 319 467 0.00017439999 322 467 0.0012985999 323 467 5.3999993e-06 324 467 5.3999993e-06 326 467 0.0026535999 328 467 0.0022779 329 467 0.0024952998 330 467 0.0019612999 340 467 0.00018239999 341 467 0.00024149999 348 467 0.00025489996 351 467 0.0010731998 352 467 6.4399996e-05 356 467 0.00028439984 358 467 0.0032358 359 467 0.0016527998 361 467 0.00080759986 362 467 9.3899987e-05 363 467 0.00039439998 368 467 0.00066809985 370 467 0.00040509994 372 467 0.0020472 373 467 0.00050979992 374 467 0.0011053998 375 467 0.0004453999 376 467 0.0006438999 380 467 8e-06 382 467 0.00032729981 384 467 4.2899992e-05 387 467 6.9799993e-05 392 467 0.0044350997 393 467 0.00059829978 394 467 0.00011539999 395 467 8.3199993e-05 397 467 6.169999e-05 402 467 0.00037289993 404 467 2.6999996e-06 405 467 2.6999996e-06 406 467 5.3999993e-06 409 467 0.0018781999 412 467 0.0003515 413 467 5.6299992e-05 414 467 5.8999998e-05 419 467 1.6099992e-05 422 467 0.010463998 423 467 2.1499989e-05 425 467 1.6099992e-05 427 467 0.00051779998 430 467 4.8299989e-05 431 467 4.2899992e-05 432 467 0.00031929999 433 467 0.00012339999 434 467 0.00039979978 435 467 0.00028169993 437 467 8.0499987e-05 438 467 0.00032729981 441 467 0.0001985 442 467 0.0012583998 443 467 0.0022296 444 467 0.0023261998 445 467 0.007056497 446 467 0.00055539981 447 467 0.0083711967 448 467 0.00019319999 449 467 1.3399999e-05 450 467 0.021086399 452 467 0.0052400976 453 467 0.0010409998 454 467 0.0024630998 455 467 0.014257897 456 467 0.0014032999 457 467 0.0054868981 458 467 0.0010007999 459 467 0.0021088999 460 467 0.0035416998 463 467 0.046736699 464 467 0.0049797967 465 467 0.0034961 467 467 0.045102697 468 467 0.018735997 469 467 0.015781898 470 467 0.0093585998 471 467 0.013571098 473 467 0.00016899999 477 467 0.0001449 478 467 0.0022242998 483 467 0.011212599 486 467 7.7799996e-05 489 467 0.00046689995 490 467 0.00061439979 491 467 5.3999993e-06 9 468 4.6699992e-05 16 468 2.1199987e-05 18 468 0.00025459984 22 468 8.4999992e-06 60 468 0.003756 63 468 0.0011415998 75 468 8.9099995e-05 79 468 5.5199998e-05 82 468 6.369999e-05 83 468 4.6699992e-05 84 468 4.2399988e-05 102 468 4.1999992e-06 108 468 8.4899992e-05 113 468 0.0001103 114 468 0.00026309979 126 468 0.0001316 127 468 2.549999e-05 139 468 4.1999992e-06 141 468 8.0599988e-05 149 468 1.2699999e-05 150 468 0.00028429995 151 468 6.7899993e-05 152 468 8.4999992e-06 160 468 0.00028429995 165 468 0.00032249978 170 468 0.00010609999 171 468 0.00025459984 172 468 8.4999992e-06 187 468 0.080585241 188 468 0.0010270998 189 468 0.00055169989 190 468 0.00015699999 192 468 0.0026651998 194 468 0.0008403 196 468 5.5199998e-05 197 468 0.00024189999 198 468 0.0011119 199 468 8.4999992e-06 200 468 0.0010397998 201 468 0.00012729999 202 468 0.0048805997 203 468 0.00060259993 204 468 0.022247098 205 468 0.0027798 206 468 0.0010992 207 468 0.00024619978 209 468 0.0010354999 210 468 0.0023979 211 468 0.0043458976 212 468 0.0026015998 213 468 0.00050499989 214 468 0.0020498999 217 468 8.9099995e-05 218 468 8.4999992e-06 219 468 0.00012729999 221 468 0.0057972968 223 468 9.7599986e-05 224 468 0.0011797999 228 468 8.4999992e-06 229 468 7.2099996e-05 230 468 0.0001103 231 468 1.2699999e-05 233 468 0.0005092998 234 468 0.0024487998 237 468 0.00047109998 240 468 0.00039039995 241 468 0.0032382 242 468 3.3999997e-05 248 468 4.6699992e-05 250 468 2.549999e-05 251 468 2.549999e-05 252 468 0.0001103 263 468 2.549999e-05 270 468 7.2099996e-05 271 468 4.1999992e-06 272 468 0.00044989982 277 468 0.0011713 279 468 7.2099996e-05 284 468 8.4999992e-06 287 468 0.00016549999 292 468 0.0001528 293 468 0.00095909997 294 468 0.0002249 295 468 0.00045409985 301 468 1.2699999e-05 312 468 0.00010189999 314 468 1.6999998e-05 315 468 0.00011879999 316 468 8.4999992e-06 317 468 0.00012309999 319 468 0.000208 320 468 9.3399998e-05 321 468 0.0001146 322 468 8.0599988e-05 325 468 0.0004584 326 468 0.00024619978 328 468 0.00013579999 329 468 0.0001485 330 468 0.00011879999 334 468 0.00010609999 340 468 0.0001316 341 468 1.2699999e-05 348 468 0.0017315999 351 468 6.369999e-05 352 468 4.1999992e-06 356 468 7.64e-05 358 468 0.00043709995 359 468 0.00010609999 361 468 5.0899995e-05 362 468 4.1999992e-06 363 468 4.6699992e-05 368 468 3.82e-05 370 468 0.00052629993 371 468 0.0001103 372 468 0.00012309999 373 468 9.7599986e-05 374 468 6.7899993e-05 375 468 2.549999e-05 376 468 0.00010609999 380 468 1.6999998e-05 382 468 2.1199987e-05 384 468 0.0001867 385 468 4.1999992e-06 386 468 0.00016549999 387 468 0.0001103 388 468 0.0003564998 389 468 0.00071299984 390 468 8.9099995e-05 391 468 0.0015320999 392 468 0.00031829998 393 468 4.2399988e-05 394 468 3.3999997e-05 395 468 8.4999992e-06 397 468 2.9699993e-05 401 468 4.1999992e-06 402 468 0.0001316 404 468 4.1999992e-06 409 468 0.0001146 412 468 0.00021639999 413 468 4.1999992e-06 414 468 4.1999992e-06 417 468 1.6999998e-05 419 468 2.549999e-05 421 468 4.1999992e-06 422 468 0.0059840977 423 468 3.82e-05 425 468 2.549999e-05 427 468 2.9699993e-05 430 468 7.2099996e-05 431 468 0.00011879999 432 468 0.00014429999 433 468 0.0001485 434 468 0.00037349993 435 468 1.6999998e-05 437 468 4.1999992e-06 438 468 2.1199987e-05 441 468 0.00043289992 442 468 0.0024614998 443 468 0.0031235998 444 468 0.0051309988 445 468 0.0057251975 446 468 0.000208 447 468 0.0114928 448 468 4.6699992e-05 449 468 2.549999e-05 450 468 0.016933598 451 468 0.00017399999 452 468 0.0053431988 453 468 0.0010439998 454 468 0.00089549995 455 468 0.017527796 456 468 0.0012010999 457 468 0.0064466968 458 468 0.00062389998 459 468 0.0018078999 460 468 0.0033951998 463 468 0.043382298 464 468 0.0079320967 465 468 0.0021346998 467 468 0.030531399 468 468 0.016916599 469 468 0.0119766 470 468 0.012464698 471 468 0.0049017966 472 468 0.031647597 473 468 0.021988198 477 468 0.0001316 478 468 0.0036032 483 468 0.010113496 489 468 0.00038619991 490 468 0.0018036999 491 468 0.00010609999 9 469 3.6599988e-05 16 469 1.4599999e-05 17 469 3.7e-06 18 469 1.4599999e-05 60 469 0.00046439981 79 469 7.2999992e-06 82 469 6.2199993e-05 83 469 4.7499998e-05 84 469 4.39e-05 108 469 7.3099989e-05 113 469 0.00010599999 114 469 0.00025959988 126 469 0.00012069999 127 469 2.1899992e-05 150 469 9.1399997e-05 171 469 3.7e-06 187 469 3.7e-06 189 469 0.00033279997 190 469 0.00011339999 192 469 9.5099997e-05 194 469 0.0002121 196 469 3.2899989e-05 197 469 0.00068379985 200 469 0.00054849987 201 469 0.0051302984 203 469 0.00020109999 204 469 0.0026437999 206 469 0.0011298999 207 469 0.00015359999 209 469 4.7499998e-05 210 469 0.00054849987 214 469 3.7e-06 219 469 1.0999999e-05 223 469 2.5599991e-05 230 469 8.4099986e-05 233 469 0.00010239999 234 469 0.0026217999 237 469 0.00033639977 240 469 1.8299994e-05 241 469 0.00074229995 242 469 0.00018649999 248 469 5.4899996e-05 250 469 2.1899992e-05 251 469 1.0999999e-05 252 469 0.00036569987 263 469 7.6799988e-05 279 469 7.2999992e-06 322 469 3.7e-06 326 469 3.7e-06 356 469 3.6599988e-05 359 469 0.00011339999 363 469 1.0999999e-05 380 469 1.0999999e-05 384 469 1.0999999e-05 387 469 0.00010599999 393 469 8.7799999e-05 394 469 2.5599991e-05 397 469 2.5599991e-05 402 469 1.0999999e-05 412 469 8.4099986e-05 419 469 1.4599999e-05 422 469 0.00086299982 423 469 2.929999e-05 425 469 1.4599999e-05 430 469 6.5799992e-05 431 469 3.2899989e-05 432 469 9.8699995e-05 433 469 0.00011339999 434 469 0.00019009999 438 469 0.00010239999 441 469 0.00037659984 442 469 0.0011884 443 469 0.00018649999 444 469 0.0073352978 445 469 0.0026071998 446 469 0.0001755 447 469 0.011339299 448 469 7.3099989e-05 449 469 2.1899992e-05 450 469 0.018243097 452 469 0.00046809996 453 469 0.000128 454 469 0.00086299982 455 469 0.0035762 456 469 0.0011847999 457 469 0.0082237981 458 469 0.00072399992 459 469 0.00047539989 460 469 0.0022012999 463 469 0.043547299 464 469 0.014926497 465 469 0.0007642 467 469 0.029885899 468 469 0.0067428984 469 469 0.040234298 470 469 0.015537199 471 469 0.011763498 473 469 0.00027429988 477 469 0.0001755 478 469 0.0022817999 483 469 0.0051448978 489 469 0.00010239999 490 469 0.0011664999 491 469 3.7e-06 1 470 0.0051065981 9 470 0.0013710998 11 470 0.010274697 16 470 2.8699986e-05 17 470 0.0064303987 59 470 4.0999994e-06 60 470 0.0034871998 64 470 4.0999994e-06 75 470 0.00015189999 82 470 0.07518667 83 470 0.018761799 84 470 0.010701697 85 470 0.0014962999 86 470 0.0035919 87 470 0.0061553977 88 470 0.0024013999 89 470 0.0083884969 90 470 0.013706498 91 470 0.001956 92 470 0.0013771998 93 470 0.0096179992 94 470 0.0010817 95 470 0.0050757974 96 470 0.0096774995 97 470 0.0070563965 98 470 0.0013730999 99 470 0.00027299998 100 470 0.0008578999 103 470 0.00056649977 104 470 3.0799987e-05 105 470 0.022238698 106 470 0.0015947998 107 470 0.0016747999 108 470 0.0032676 109 470 0.00049879984 111 470 0.029477797 113 470 0.0066725984 114 470 0.0311937 115 470 0.0072760992 116 470 0.008080598 121 470 0.0089980997 122 470 0.0052625984 123 470 0.00073679979 124 470 0.00051309983 125 470 0.0093326978 152 470 0.00051309983 187 470 4.0999994e-06 189 470 0.00010059999 190 470 0.0012601998 192 470 2.8699986e-05 193 470 0.0014634 194 470 2.0999996e-06 195 470 0.00025659986 197 470 0.00038789981 198 470 0.0062764995 203 470 2.0999996e-06 204 470 0.00091129984 206 470 7.9999998e-05 214 470 4.0999992e-05 218 470 0.00015189999 223 470 0.00017449999 229 470 0.0021571999 230 470 0.00039819977 234 470 0.00023189999 237 470 3.689999e-05 240 470 2.0999996e-06 241 470 0.0031361999 252 470 0.0010713998 260 470 0.00079839979 261 470 1.8499995e-05 263 470 2.0999996e-06 296 470 0.0002422 315 470 0.0010386 316 470 7.9999998e-05 317 470 1.44e-05 322 470 2.0999996e-06 344 470 0.0003386999 351 470 2.0999996e-06 358 470 8.6199987e-05 368 470 2.0999996e-06 377 470 2.0999996e-06 380 470 4.0999994e-06 384 470 9.8499993e-05 406 470 2.0999996e-06 408 470 2.0999996e-06 412 470 4.0999994e-06 422 470 8.1999997e-06 425 470 0.00046799984 434 470 2.0999996e-06 435 470 0.0002462999 442 470 0.00042689987 443 470 0.0035281999 445 470 0.011432298 446 470 0.00046799984 447 470 0.00017859999 448 470 6.1999999e-06 450 470 0.0030828 452 470 0.011588298 453 470 0.0011041998 454 470 0.0032428999 455 470 0.061297499 456 470 4.5199995e-05 457 470 0.0045297965 458 470 0.0029719998 459 470 0.0002176 460 470 0.0030294999 463 470 0.041891199 465 470 0.011153199 467 470 0.011684798 468 470 0.010305498 469 470 0.0054287985 470 470 2.8699986e-05 471 470 0.00045149983 472 470 3.8999991e-05 473 470 0.0086244978 477 470 0.00013959999 478 470 0.0012848999 479 470 0.0019888999 483 470 0.0012786998 486 470 1.6399994e-05 489 470 0.00067939982 490 470 0.00066909986 9 471 1.2199999e-05 16 471 8.0999998e-06 18 471 4.0999994e-06 22 471 4.0999994e-06 60 471 0.0052297972 66 471 1.2199999e-05 68 471 0.0013929999 69 471 0.00065579987 73 471 0.00013029999 75 471 0.00081869983 79 471 4.0999994e-06 82 471 1.6299993e-05 83 471 1.2199999e-05 84 471 1.2199999e-05 108 471 1.6299993e-05 113 471 2.4399997e-05 114 471 5.6999997e-05 126 471 2.4399997e-05 127 471 4.0999994e-06 150 471 0.0022034999 187 471 4.0999994e-06 189 471 1.6299993e-05 190 471 5.6999997e-05 192 471 0.0012341 194 471 3.6699988e-05 196 471 4.0999994e-06 197 471 1.2199999e-05 200 471 2.0399995e-05 201 471 1.2199999e-05 203 471 2.4399997e-05 204 471 5.2999996e-05 206 471 6.5199987e-05 207 471 2.0399995e-05 209 471 4.0999994e-06 214 471 0.00021989999 217 471 1.6299993e-05 223 471 8.9599998e-05 228 471 4.0999994e-06 229 471 1.2199999e-05 230 471 4.0999994e-06 231 471 8.0999998e-06 233 471 0.0042481981 234 471 0.0074577965 237 471 0.010687798 240 471 0.0037757999 241 471 4.0999994e-06 242 471 0.0001222 248 471 1.2199999e-05 250 471 4.0999994e-06 251 471 4.0999994e-06 252 471 0.0048550963 263 471 4.0999994e-06 267 471 4.0999994e-06 272 471 0.0069975965 312 471 0.00024849991 313 471 0.012805797 317 471 0.0022320999 319 471 0.0045007989 323 471 0.0016496 328 471 0.0018206998 330 471 4.0999994e-06 331 471 1.6299993e-05 340 471 7.7399993e-05 356 471 0.00035839994 357 471 0.0062236972 358 471 0.00023619999 366 471 0.034645699 376 471 0.00046429993 380 471 4.0999994e-06 384 471 9.7799988e-05 385 471 0.0040567964 387 471 0.0055678971 394 471 0.0001222 397 471 0.0024601 402 471 0.23339194 412 471 0.00044799992 413 471 4.0999994e-06 419 471 4.0999994e-06 422 471 4.4799992e-05 423 471 8.0999998e-06 425 471 4.0999994e-06 430 471 1.2199999e-05 431 471 8.0999998e-06 432 471 4.0999994e-06 433 471 1.2199999e-05 434 471 1.6299993e-05 442 471 9.3699986e-05 443 471 0.0064150989 444 471 7.3299991e-05 445 471 0.0042807981 446 471 0.00025659986 447 471 0.00086759985 448 471 0.00013439999 449 471 0.00027699978 450 471 0.0062236972 452 471 0.0041096993 453 471 0.0013685999 454 471 0.0010589999 455 471 0.047207098 456 471 0.012357697 457 471 0.0018328999 458 471 0.00048059993 459 471 0.00031359983 460 471 0.0090992972 463 471 0.037012096 464 471 9.7799988e-05 465 471 0.0013440999 467 471 0.011502396 468 471 0.0053316988 469 471 0.0058896989 470 471 0.0028837 471 471 0.0027655999 473 471 5.6999997e-05 477 471 1.2199999e-05 478 471 0.00060279993 483 471 0.00045619998 489 471 0.00066389982 490 471 0.00021989999 491 471 0.0025374999 9 472 6.9099988e-05 16 472 2.2999986e-05 18 472 0.00027639978 60 472 0.012623798 79 472 2.2999986e-05 82 472 9.2099988e-05 83 472 6.9099988e-05 84 472 6.9099988e-05 108 472 9.2099988e-05 113 472 0.00013819999 114 472 0.00029949984 126 472 0.00013819999 127 472 2.2999986e-05 189 472 0.00011519999 190 472 4.6099987e-05 197 472 2.2999986e-05 200 472 0.00029949984 201 472 4.6099987e-05 203 472 0.00071409997 204 472 2.2999986e-05 223 472 2.2999986e-05 229 472 4.6099987e-05 230 472 2.2999986e-05 234 472 0.0014281999 237 472 0.00032249978 241 472 4.6099987e-05 248 472 4.6099987e-05 250 472 2.2999986e-05 251 472 2.2999986e-05 252 472 4.6099987e-05 263 472 2.2999986e-05 315 472 2.2999986e-05 356 472 0.00016129999 380 472 2.2999986e-05 384 472 0.00016129999 387 472 0.00013819999 394 472 2.2999986e-05 397 472 2.2999986e-05 402 472 0.00013819999 412 472 0.00069109979 419 472 2.2999986e-05 422 472 0.0218383 423 472 4.6099987e-05 425 472 2.2999986e-05 430 472 6.9099988e-05 431 472 2.2999986e-05 443 472 6.9099988e-05 444 472 0.00039159996 445 472 0.0066343993 446 472 9.2099988e-05 447 472 0.00089839986 448 472 2.2999986e-05 449 472 2.2999986e-05 450 472 0.0025801 452 472 0.0088688992 453 472 0.0024648998 454 472 0.0016124998 455 472 0.0057359971 456 472 0.0013130999 457 472 0.0077631995 458 472 0.00025339983 459 472 0.00082929991 460 472 0.0027643 463 472 0.060124397 464 472 0.0005067999 465 472 0.00059889979 467 472 0.0063809976 468 472 0.039506998 469 472 0.0066113994 470 472 0.015272997 471 472 0.0048145987 472 472 0.30955994 473 472 0.00029949984 477 472 4.6099987e-05 478 472 0.0017046998 483 472 0.0031559998 486 472 2.2999986e-05 489 472 0.0004606999 490 472 0.044137299 0 473 2.3899993e-05 2 473 0.0013367999 3 473 0.0051442981 5 473 4.7699999e-05 6 473 0.0423957 9 473 7.1599992e-05 14 473 1.19e-05 16 473 7.1599992e-05 17 473 1.19e-05 18 473 0.0094053969 60 473 0.0069226995 62 473 2.3899993e-05 75 473 0.0089517981 79 473 2.3899993e-05 82 473 0.00010739999 83 473 8.3599996e-05 84 473 8.3599996e-05 101 473 0.0021125998 102 473 0.00039389986 105 473 0.000179 108 473 0.0001313 113 473 0.00021479999 114 473 0.00048939977 118 473 5.9699989e-05 126 473 0.00021479999 127 473 3.5799996e-05 141 473 0.00096679991 150 473 0.0003819 154 473 0.0013249 171 473 1.19e-05 189 473 8.3599996e-05 190 473 0.0002387 192 473 8.3599996e-05 194 473 0.0002268 196 473 2.3899993e-05 197 473 0.00035809982 200 473 0.0002625999 201 473 0.00011939999 203 473 0.0016828999 204 473 0.0030913998 206 473 0.00041779992 207 473 0.00010739999 209 473 2.3899993e-05 214 473 3.5799996e-05 215 473 0.0016232999 217 473 0.00054899999 223 473 0.00039389986 230 473 0.00040579983 234 473 0.0026974999 237 473 0.00062069995 241 473 4.7699999e-05 242 473 0.00033419998 244 473 0.0002387 245 473 0.0016590999 248 473 8.3599996e-05 250 473 4.7699999e-05 251 473 0.0020528999 252 473 7.1599992e-05 263 473 1.19e-05 283 473 1.19e-05 322 473 0.00015519999 326 473 1.19e-05 329 473 2.3899993e-05 356 473 0.00015519999 364 473 0.00093099987 380 473 3.5799996e-05 384 473 0.0002625999 387 473 0.00020289999 388 473 1.19e-05 391 473 5.9699989e-05 394 473 4.7699999e-05 397 473 4.7699999e-05 402 473 5.9699989e-05 406 473 5.9699989e-05 412 473 0.00065649999 419 473 2.3899993e-05 422 473 0.00027449988 423 473 4.7699999e-05 425 473 3.5799996e-05 430 473 0.0020291 431 473 4.7699999e-05 432 473 2.3899993e-05 433 473 7.1599992e-05 434 473 9.55e-05 442 473 0.0014680999 443 473 0.0010264998 444 473 0.00066839997 445 473 0.0024348998 446 473 0.00081159989 447 473 0.0016709999 448 473 5.9699989e-05 449 473 7.1599992e-05 450 473 0.0087130964 451 473 1.19e-05 452 473 0.0070181973 453 473 0.0019335998 454 473 0.001862 455 473 0.016483299 456 473 0.0022677998 457 473 0.0066004992 458 473 8.3599996e-05 459 473 0.00041779992 460 473 0.010467596 463 473 0.074001551 464 473 0.00085939979 465 473 0.0123774 467 473 0.037716899 468 473 0.016972598 469 473 0.0066481978 470 473 0.024468299 471 473 0.0039745979 472 473 0.0010861999 473 473 0.069263041 476 473 2.3899993e-05 477 473 0.00015519999 478 473 0.0033180998 483 473 0.0013128999 489 473 0.00047739991 490 473 0.0021841999 1 474 4.259999e-05 9 474 3.4099998e-05 11 474 1.2799999e-05 16 474 8.4999992e-06 17 474 4.2999991e-06 18 474 4.6899993e-05 60 474 0.00067789992 79 474 8.4999992e-06 82 474 0.00014069999 83 474 6.8199995e-05 84 474 5.9699989e-05 86 474 4.2999991e-06 87 474 8.4999992e-06 88 474 4.2999991e-06 89 474 8.4999992e-06 90 474 7.6699987e-05 91 474 1.7099999e-05 92 474 1.2799999e-05 93 474 8.0999991e-05 94 474 4.2999991e-06 95 474 4.2999991e-06 96 474 4.2999991e-06 97 474 3.8399987e-05 98 474 4.2999991e-06 99 474 8.4999992e-06 100 474 4.2999991e-06 101 474 2.1299988e-05 105 474 2.5599991e-05 106 474 4.2999991e-06 107 474 4.2999991e-06 108 474 4.6899993e-05 113 474 8.0999991e-05 114 474 0.0001791 115 474 4.2999991e-06 121 474 2.9799994e-05 122 474 8.4999992e-06 125 474 2.5599991e-05 126 474 8.0999991e-05 127 474 1.2799999e-05 150 474 0.00017059999 151 474 4.2999991e-06 152 474 2.5599991e-05 171 474 1.2799999e-05 187 474 4.2999991e-06 189 474 0.00090819993 190 474 0.00069929985 192 474 0.00014919999 194 474 0.00030269986 196 474 5.54e-05 197 474 9.3799987e-05 198 474 0.0007205999 200 474 0.00089969998 201 474 0.0024175998 203 474 0.00030269986 204 474 0.00040929997 206 474 0.00072909985 207 474 0.00023019999 209 474 7.6699987e-05 214 474 0.00057129981 219 474 1.7099999e-05 223 474 0.0001279 228 474 0.019135799 229 474 1.7099999e-05 230 474 0.0001279 234 474 0.0019655998 237 474 0.00071629998 240 474 0.00059689977 241 474 0.00057129981 242 474 0.00015779999 248 474 3.8399987e-05 250 474 2.1299988e-05 251 474 8.4999992e-06 252 474 6.3999993e-05 253 474 1.2799999e-05 263 474 1.2799999e-05 279 474 8.4999992e-06 315 474 1.2799999e-05 322 474 8.4999992e-06 326 474 4.2999991e-06 356 474 3.8399987e-05 359 474 4.2999991e-06 363 474 2.1299988e-05 380 474 1.2799999e-05 384 474 2.5599991e-05 387 474 7.6699987e-05 393 474 4.2999991e-06 394 474 3.4099998e-05 397 474 4.259999e-05 412 474 4.2999991e-06 416 474 0.0023365 417 474 0.0058924966 418 474 0.0024089999 419 474 8.4999992e-06 422 474 0.0017907999 423 474 1.7099999e-05 424 474 2.1299988e-05 425 474 1.2799999e-05 430 474 4.259999e-05 431 474 4.6899993e-05 432 474 5.9699989e-05 433 474 0.00017059999 434 474 0.00020889999 435 474 4.2999991e-06 438 474 8.4999992e-06 441 474 0.00011509999 442 474 0.00011939999 443 474 0.0002388 444 474 0.00025579985 445 474 0.00092519983 446 474 9.3799987e-05 447 474 0.00055859983 448 474 3.8399987e-05 449 474 1.7099999e-05 450 474 0.0040505975 452 474 0.0013857 453 474 0.00030269986 454 474 0.0018163999 455 474 0.010433499 456 474 0.0011170998 457 474 0.0026733999 458 474 0.00019189999 459 474 1.7099999e-05 460 474 0.015814297 463 474 0.042249698 464 474 0.00032399991 465 474 0.012509897 467 474 0.018717997 468 474 5.54e-05 469 474 0.0092821978 470 474 0.0090988986 471 474 0.003973797 473 474 0.00018759999 476 474 0.040394999 477 474 0.00014919999 478 474 0.0012663 483 474 0.0065704994 489 474 0.00015349999 490 474 0.00069069979 1 475 0.0018086999 9 475 0.00035729981 11 475 0.000795 16 475 4.4999997e-06 17 475 0.00017419999 18 475 0.0008709 22 475 0.00030369987 60 475 0.025831498 79 475 4.4999997e-06 82 475 0.0079539977 83 475 0.0019649998 84 475 0.0015407999 86 475 0.0005090998 87 475 0.00035729981 88 475 9.3799987e-05 89 475 0.0013577 90 475 0.0040684976 91 475 0.0002233 92 475 0.00045999978 93 475 0.0024964998 94 475 0.00026799995 95 475 0.00027239998 96 475 0.00095129991 97 475 0.0010405998 98 475 8.9299996e-05 99 475 0.00024119999 100 475 0.0001027 103 475 3.1299991e-05 104 475 4.4999997e-06 105 475 0.001706 106 475 0.0002233 107 475 0.00025009993 108 475 0.00020099999 109 475 4.4699991e-05 113 475 2.6799986e-05 114 475 6.2499996e-05 115 475 0.0005806 116 475 0.0001965 121 475 0.0021123998 122 475 0.00033499999 124 475 4.0199986e-05 125 475 0.00093339989 126 475 2.6799986e-05 127 475 4.4999997e-06 142 475 8.9299996e-05 149 475 0.00037069991 150 475 0.0078646988 151 475 0.00053149997 152 475 0.0072081983 153 475 4.4999997e-06 189 475 0.00020539999 190 475 0.0015719999 192 475 8.9299996e-05 194 475 0.00020099999 196 475 3.5699995e-05 197 475 5.8099991e-05 198 475 0.00075479993 199 475 9.8299992e-05 200 475 0.00065649999 201 475 0.00010719999 203 475 0.00018759999 204 475 0.00093339989 206 475 0.00077709998 207 475 0.00014739999 209 475 4.4699991e-05 214 475 0.011634 215 475 0.00013839999 217 475 0.00013839999 219 475 1.3399999e-05 223 475 1.3399999e-05 228 475 0.0246346 229 475 0.0016389999 230 475 0.0013978998 233 475 0.00010719999 234 475 0.0067972988 237 475 5.8099991e-05 240 475 0.0061585978 241 475 0.0085345991 248 475 1.7899991e-05 250 475 4.4999997e-06 251 475 4.4999997e-06 252 475 0.0015274 253 475 0.00044209999 261 475 7.1499991e-05 263 475 0.00026349979 279 475 4.4999997e-06 315 475 0.00043319981 316 475 0.00024119999 322 475 3.1299991e-05 356 475 4.0199986e-05 363 475 8.8999996e-06 366 475 7.1499991e-05 380 475 4.4999997e-06 384 475 0.000795 387 475 2.6799986e-05 394 475 4.4999997e-06 397 475 4.4999997e-06 402 475 2.2299995e-05 412 475 0.00060739997 414 475 0.00012499999 416 475 0.0019695 417 475 0.0097269975 418 475 6.6999986e-05 419 475 4.4999997e-06 420 475 8.9299996e-05 422 475 0.010798797 423 475 8.8999996e-06 425 475 0.00035279989 430 475 1.3399999e-05 431 475 2.6799986e-05 432 475 4.0199986e-05 433 475 0.00010719999 434 475 0.00013399999 435 475 0.00012059999 438 475 0.0001831 442 475 0.0016836999 443 475 0.0018846998 444 475 0.0020721999 445 475 0.0056717992 446 475 0.00039299997 447 475 0.0076904967 448 475 3.5699995e-05 449 475 4.4999997e-06 450 475 0.008248698 452 475 0.010289699 453 475 0.0063506998 454 475 0.0052564964 455 475 0.020950098 456 475 0.00026349979 457 475 0.0065739974 458 475 0.00058949995 459 475 1.7899991e-05 460 475 0.0047383979 463 475 0.042681798 464 475 0.0035861998 465 475 0.0086684972 467 475 0.0309227 469 475 0.013197098 470 475 0.011781398 471 475 0.0024696998 472 475 0.00033049984 473 475 6.2499996e-05 477 475 0.00021879999 478 475 0.0015183999 483 475 0.0046088994 489 475 0.00025899988 490 475 0.00033499999 1 476 0.0024945999 9 476 0.00036999979 11 476 0.00081389979 16 476 1.06e-05 17 476 6.3399988e-05 18 476 0.00012679999 60 476 0.010115899 79 476 1.06e-05 82 476 0.0060144998 83 476 0.0023995 84 476 0.0017123998 86 476 0.00034879986 87 476 0.00060249981 88 476 0.00035939994 89 476 0.00060249981 90 476 0.0044289976 91 476 0.0011204998 92 476 0.00086679985 93 476 0.0048094988 94 476 0.0003382999 95 476 0.0002642998 96 476 0.00038049999 97 476 0.0023148998 98 476 0.00020079999 99 476 0.00046509993 100 476 0.00020079999 101 476 0.0012895998 103 476 6.3399988e-05 104 476 1.06e-05 105 476 0.0015009998 106 476 0.00028539984 107 476 0.00032769982 108 476 7.3999996e-05 109 476 2.1099986e-05 113 476 3.1699994e-05 114 476 7.3999996e-05 115 476 0.00036999979 116 476 2.1099986e-05 121 476 0.0016594999 122 476 0.00059189997 124 476 0.00012679999 125 476 0.0014692999 126 476 3.1699994e-05 127 476 1.06e-05 130 476 2.1099986e-05 150 476 0.00057079992 151 476 1.06e-05 152 476 0.0014058999 153 476 1.06e-05 171 476 0.00048619998 187 476 1.06e-05 189 476 0.00034879986 190 476 0.00022199999 192 476 5.2899995e-05 194 476 0.00012679999 196 476 2.1099986e-05 197 476 2.1099986e-05 198 476 0.0017123998 200 476 0.00099359988 201 476 8.4599989e-05 203 476 0.00010569999 204 476 0.00083509996 206 476 0.00048619998 207 476 7.3999996e-05 209 476 2.1099986e-05 214 476 0.0043443963 219 476 1.06e-05 223 476 0.00060249981 228 476 0.022768598 229 476 0.00089849997 230 476 0.0011415998 233 476 3.1699994e-05 234 476 0.0012895998 237 476 0.00031709997 240 476 0.0029491 241 476 0.0075471997 248 476 3.1699994e-05 250 476 0.00017969999 252 476 0.0016594999 253 476 0.00041219988 263 476 0.00052849995 315 476 0.00073989993 322 476 0.00012679999 356 476 4.2299987e-05 359 476 0.0001586 363 476 1.06e-05 384 476 0.00082449988 387 476 3.1699994e-05 393 476 0.00012679999 394 476 3.1699994e-05 397 476 2.1099986e-05 402 476 4.2299987e-05 412 476 0.00019029999 416 476 0.00065539987 417 476 0.0020083999 418 476 0.010781799 419 476 1.06e-05 422 476 0.0062893964 423 476 1.06e-05 424 476 0.0013424 425 476 1.06e-05 430 476 2.1099986e-05 431 476 3.1699994e-05 432 476 2.1099986e-05 433 476 6.3399988e-05 434 476 0.0001374 435 476 0.00028539984 438 476 0.00041219988 441 476 0.0002642998 442 476 0.001131 443 476 0.0011099 444 476 0.00091959978 445 476 0.0045663975 446 476 0.0001586 447 476 0.0013740999 448 476 3.1699994e-05 449 476 1.06e-05 450 476 0.0097775981 452 476 0.013826098 453 476 0.0094710998 454 476 0.0048517995 455 476 0.016891498 456 476 0.00046509993 457 476 0.0056551993 458 476 0.00012679999 459 476 0.00012679999 460 476 0.0042175986 463 476 0.038169596 464 476 0.0013846999 465 476 0.014650498 467 476 0.020760197 468 476 0.0032767998 469 476 0.015992999 470 476 0.0069129989 471 476 0.0032133998 473 476 7.3999996e-05 476 476 0.0059510991 477 476 0.00025369995 478 476 0.0015538 483 476 0.0065535977 489 476 0.00052849995 490 476 0.00041219988 3 477 0.00081139989 9 477 2.4599998e-05 16 477 8.1999997e-06 18 477 0.0033439 22 477 0.0011391998 60 477 0.021226898 79 477 8.1999997e-06 82 477 3.2799988e-05 83 477 2.4599998e-05 84 477 2.4599998e-05 101 477 0.00028679986 105 477 0.00024589989 108 477 3.2799988e-05 113 477 4.9199996e-05 114 477 0.00011469999 126 477 4.9199996e-05 127 477 8.1999997e-06 150 477 9.8299992e-05 187 477 0.0010326998 189 477 0.00022949999 190 477 0.00026229979 192 477 0.0001065 194 477 0.00025409996 196 477 4.0999992e-05 197 477 0.00076219998 198 477 0.00062289997 199 477 9.8299992e-05 200 477 0.0011391998 201 477 0.010260999 202 477 0.0012293998 203 477 0.00068019982 204 477 0.0050321966 206 477 0.0012620999 207 477 0.00018849999 209 477 5.7399986e-05 210 477 0.0019506 214 477 0.00086869998 215 477 0.00027049985 217 477 0.00030319998 218 477 7.3799994e-05 219 477 1.6399994e-05 223 477 6.559999e-05 228 477 0.0011145999 229 477 0.00021309999 230 477 0.00024589989 234 477 0.010842897 237 477 0.00031959987 240 477 0.00072939997 241 477 8.1999997e-06 248 477 2.4599998e-05 250 477 8.1999997e-06 251 477 8.1999997e-06 252 477 0.0019013998 253 477 0.000336 263 477 8.1999997e-06 279 477 8.1999997e-06 317 477 1.6399994e-05 318 477 4.0999992e-05 322 477 8.1999997e-06 356 477 4.0999992e-05 359 477 0.00059009995 363 477 1.6399994e-05 366 477 0.00013109999 380 477 8.1999997e-06 384 477 0.00091789989 385 477 0.00036879978 387 477 4.9199996e-05 388 477 0.00024589989 393 477 0.0018685998 394 477 4.0999992e-05 397 477 1.6399994e-05 402 477 4.0999992e-05 412 477 0.00018849999 417 477 0.00023769999 419 477 8.1999997e-06 422 477 0.0010326998 423 477 1.6399994e-05 425 477 8.1999997e-06 428 477 0.00030319998 430 477 0.000336 431 477 4.0999992e-05 432 477 4.9199996e-05 433 477 0.00013109999 434 477 0.0004015998 438 477 0.00050809979 442 477 0.0017211 443 477 0.00082779978 444 477 0.0005655 445 477 0.0052288994 446 477 0.00037699984 447 477 0.0045075975 448 477 0.0001639 449 477 8.1999997e-06 450 477 0.010982297 452 477 0.013957299 453 477 0.0050812997 454 477 0.0041305982 455 477 0.0067368969 456 477 0.0009506999 457 477 0.0028766999 458 477 0.00074579986 459 477 0.0039584972 460 477 0.0032782999 463 477 0.10760146 464 477 0.00018849999 465 477 0.0043600984 467 477 0.028389998 468 477 0.010490499 469 477 0.0046305992 470 477 0.0067778975 471 477 0.0063762963 472 477 0.0029177 473 477 0.0025406999 477 477 0.00036879978 478 477 0.0027947 483 477 0.004056897 489 477 0.00090969983 490 477 0.00043439982 9 478 0.00012089999 16 478 4.6999994e-05 18 478 0.00081929984 60 478 0.028722197 75 478 0.0010072999 79 478 4.0299987e-05 82 478 0.00020149999 83 478 0.000141 84 478 0.00013429999 101 478 0.00050369999 105 478 0.00017459999 106 478 3.3599994e-05 108 478 0.000235 113 478 0.00030889991 114 478 0.00075209979 126 478 0.00034919987 127 478 6.7199988e-05 150 478 0.00096699991 187 478 6.6999992e-06 189 478 0.00049019977 190 478 0.00030889991 192 478 0.0001545 194 478 0.00034249993 196 478 6.0399994e-05 197 478 0.00012089999 200 478 0.0029481 201 478 0.0039352998 202 478 0.0047679991 203 478 0.00032229978 204 478 0.012074497 206 478 0.00075889984 207 478 0.00027529988 209 478 8.0599988e-05 214 478 6.6999992e-06 215 478 0.00013429999 217 478 5.3699987e-05 219 478 2.0099993e-05 223 478 2.0099993e-05 229 478 0.00066479994 230 478 0.0013094998 234 478 0.0050634965 237 478 0.00016119999 240 478 2.0099993e-05 241 478 5.3699987e-05 248 478 0.00013429999 250 478 7.3899995e-05 251 478 4.0299987e-05 252 478 0.0001276 263 478 4.0299987e-05 279 478 1.3399999e-05 316 478 0.00026189978 322 478 0.0001813 356 478 4.0299987e-05 363 478 2.0099993e-05 366 478 0.00062449998 380 478 5.3699987e-05 384 478 0.00049019977 387 478 0.00031559984 394 478 1.3399999e-05 397 478 1.3399999e-05 402 478 5.3699987e-05 412 478 0.00014769999 419 478 6.7199988e-05 422 478 0.00099389977 423 478 0.00010739999 425 478 7.3899995e-05 428 478 2.6899987e-05 430 478 0.0002082 431 478 8.7299995e-05 432 478 6.7199988e-05 433 478 0.00018799999 434 478 0.00022829999 435 478 0.00082599977 441 478 0.00026189978 442 478 0.0029346999 443 478 0.00032229978 444 478 0.0010139998 445 478 0.0033106999 446 478 0.00024179999 447 478 0.0022161 448 478 0.00010739999 449 478 6.7199988e-05 450 478 0.016379099 452 478 0.025747299 453 478 0.0030622999 454 478 0.0048149973 455 478 0.0058088973 456 478 0.0026055998 457 478 0.0005371999 459 478 0.00055069989 460 478 0.0045732968 463 478 0.073460996 464 478 0.0012826999 465 478 0.0021086999 467 478 0.025156297 468 478 0.012739297 469 478 0.022228297 470 478 0.037714299 471 478 0.0013833998 472 478 0.0019071999 473 478 0.0027868999 477 478 0.0096098967 478 478 0.0049022995 483 478 0.0188572 489 478 0.0013497998 490 478 0.0029010999 60 479 0.0089971982 114 479 0.00016359999 130 479 0.014722697 171 479 0.015213497 190 479 0.00032719993 192 479 0.0107967 194 479 0.00049079978 196 479 0.00016359999 197 479 0.00016359999 198 479 0.0042531975 200 479 0.00065429998 201 479 0.00016359999 203 479 0.00049079978 204 479 0.00049079978 206 479 0.00065429998 207 479 0.00032719993 209 479 0.00016359999 233 479 0.013086896 234 479 0.00081789983 237 479 0.00016359999 241 479 0.016522199 279 479 0.013577599 312 479 0.014559098 315 479 0.014886297 316 479 0.015540697 317 479 0.0068705976 318 479 0.0081792995 319 479 0.016849298 322 479 0.015213497 384 479 0.00016359999 422 479 0.00049079978 428 479 0.0075248964 432 479 0.00016359999 433 479 0.00032719993 434 479 0.00032719993 441 479 0.0063797981 442 479 0.0053982995 443 479 0.0014722999 445 479 0.022247698 447 479 0.00016359999 452 479 0.056437097 453 479 0.010960199 454 479 0.0049075969 455 479 0.020284597 456 479 0.00016359999 459 479 0.0055618994 460 479 0.00016359999 463 479 0.021756899 464 479 0.00016359999 465 479 0.0016358998 467 479 0.014231998 468 479 0.0070341974 470 479 0.0022902 471 479 0.0011451 472 479 0.0089971982 478 479 0.0026173999 483 479 0.017667297 489 479 0.0042531975 490 479 0.00032719993 1 480 0.0012118998 9 480 0.00030299998 11 480 0.0013633999 60 480 0.0089379996 82 480 0.011664897 83 480 0.0039387979 84 480 0.0024238999 86 480 0.00060599996 87 480 0.00090899994 88 480 0.00045449985 89 480 0.0022723998 90 480 0.007271599 91 480 0.00045449985 92 480 0.00045449985 93 480 0.0031812999 94 480 0.00060599996 95 480 0.00060599996 96 480 0.0015148998 97 480 0.0015148998 98 480 0.00030299998 99 480 0.00045449985 100 480 0.00075749983 104 480 0.0022723998 105 480 0.0031812999 106 480 0.00045449985 107 480 0.00030299998 108 480 0.0019693999 114 480 0.00015149999 116 480 0.0010603999 122 480 0.00075749983 149 480 0.00015149999 190 480 0.00030299998 192 480 0.00030299998 194 480 0.00075749983 196 480 0.00015149999 197 480 0.00015149999 200 480 0.00060599996 201 480 0.00015149999 203 480 0.00045449985 204 480 0.00045449985 206 480 0.00090899994 207 480 0.00030299998 209 480 0.00015149999 234 480 0.00090899994 237 480 0.00015149999 356 480 0.00015149999 384 480 0.00015149999 422 480 0.00045449985 428 480 0.00015149999 432 480 0.00015149999 433 480 0.00030299998 434 480 0.00030299998 438 480 0.0027268999 442 480 0.0054536983 443 480 0.00045449985 445 480 0.0051506981 450 480 0.0019693999 452 480 0.0180276 453 480 0.0034842999 454 480 0.004999198 455 480 0.0083320998 456 480 0.00015149999 457 480 0.00015149999 460 480 0.00015149999 463 480 0.10013628 465 480 0.0016663999 467 480 0.012119398 470 480 0.0010603999 471 480 0.0021209 478 480 0.0027268999 490 480 0.00015149999 1 481 0.008002799 9 481 0.0012178 11 481 0.0050451979 17 481 0.0013917999 18 481 0.0029575999 60 481 0.015483599 82 481 0.041579697 83 481 0.017919298 84 481 0.0092205964 86 481 0.0020876999 87 481 0.0026095998 88 481 0.0012178 89 481 0.0036533999 90 481 0.026965898 91 481 0.00086989999 92 481 0.0033054999 93 481 0.012178097 94 481 0.0012178 95 481 0.0015657998 96 481 0.0027835998 97 481 0.0033054999 98 481 0.0017396999 99 481 0.0046972968 100 481 0.00034789997 103 481 0.00086989999 104 481 0.00017399999 105 481 0.024530299 106 481 0.0052191988 107 481 0.0022616999 108 481 0.0005218999 109 481 0.00017399999 114 481 0.00017399999 115 481 0.0015657998 116 481 0.00034789997 121 481 0.0043492988 122 481 0.0020876999 124 481 0.0005218999 125 481 0.006610997 152 481 0.016005598 190 481 0.00017399999 194 481 0.00034789997 198 481 0.0064369999 200 481 0.00017399999 204 481 0.0026095998 206 481 0.00034789997 223 481 0.00017399999 229 481 0.0038273998 234 481 0.0109603 241 481 0.017571297 384 481 0.00034789997 422 481 0.00034789997 441 481 0.0041753985 442 481 0.0064369999 443 481 0.0020876999 445 481 0.015831597 446 481 0.00034789997 448 481 0.00017399999 450 481 0.013395999 452 481 0.032011099 453 481 0.006262999 454 481 0.008872699 455 481 0.030619297 457 481 0.0046972968 459 481 0.011134297 463 481 0.19432849 465 481 0.008872699 467 481 0.0311413 468 481 0.0048712976 470 481 0.0012178 471 481 0.00017399999 478 481 0.00069589983 483 481 0.008002799 490 481 0.0012178 60 482 0.011436399 105 482 0.0099115968 106 482 0.00091489987 114 482 0.0001525 190 482 0.00045749987 192 482 0.00030499999 194 482 0.00060989987 196 482 0.0001525 197 482 0.0001525 200 482 0.00076239998 201 482 0.00076239998 202 482 0.0056419969 203 482 0.00060989987 204 482 0.029429697 206 482 0.0013724 207 482 0.00045749987 209 482 0.0001525 234 482 0.004879497 237 482 0.00030499999 384 482 0.0001525 422 482 0.00045749987 431 482 0.0001525 432 482 0.0001525 433 482 0.00030499999 434 482 0.00030499999 441 482 0.0051844977 442 482 0.0041170977 444 482 0.0073192976 445 482 0.011131398 446 482 0.0001525 447 482 0.0050319992 450 482 0.021957897 452 482 0.014028698 453 482 0.0027446998 454 482 0.0094540976 455 482 0.0050319992 457 482 0.0057943985 459 482 0.0096065998 460 482 0.00030499999 463 482 0.011283897 464 482 0.0042695999 465 482 0.0019822998 467 482 0.037816398 468 482 0.019365698 469 482 0.012656298 470 482 0.0021348 471 482 0.0073192976 472 482 0.0065568984 478 482 0.0035071999 483 482 0.020890497 490 482 0.00030499999 9 483 1.2199999e-05 22 483 6.0999999e-05 60 483 0.0036364999 82 483 1.2199999e-05 83 483 1.2199999e-05 84 483 1.2199999e-05 108 483 2.4399997e-05 113 483 2.4399997e-05 114 483 4.8799993e-05 126 483 2.4399997e-05 130 483 0.00029289979 139 483 6.0999999e-05 141 483 8.5399995e-05 150 483 1.2199999e-05 153 483 0.0016229998 154 483 0.0010738999 158 483 7.319999e-05 187 483 0.00023189999 189 483 0.00014639999 190 483 0.0002197 192 483 7.319999e-05 194 483 4.8799993e-05 196 483 1.2199999e-05 197 483 3.6599988e-05 198 483 0.00034169992 200 483 8.5399995e-05 201 483 2.4399997e-05 202 483 0.00036609988 203 483 6.0999999e-05 204 483 0.0012690998 206 483 4.8799993e-05 207 483 3.6599988e-05 209 483 0.0033801999 223 483 0.0001586 228 483 1.2199999e-05 229 483 0.00035389978 230 483 0.00036609988 234 483 0.0045150965 237 483 0.00075659994 242 483 4.8799993e-05 243 483 1.2199999e-05 251 483 0.00029289979 252 483 1.2199999e-05 272 483 1.2199999e-05 277 483 2.4399997e-05 297 483 1.2199999e-05 312 483 3.6599988e-05 335 483 3.6599988e-05 337 483 4.8799993e-05 359 483 6.0999999e-05 362 483 3.6599988e-05 363 483 0.000183 364 483 0.0001586 384 483 7.319999e-05 387 483 2.4399997e-05 390 483 7.319999e-05 394 483 4.8799993e-05 397 483 0.000183 402 483 0.0014155 417 483 6.0999999e-05 422 483 6.0999999e-05 423 483 1.2199999e-05 430 483 1.2199999e-05 431 483 2.4399997e-05 432 483 1.2199999e-05 433 483 2.4399997e-05 434 483 2.4399997e-05 443 483 0.0120808 444 483 0.00046369992 445 483 0.028920799 446 483 0.0022940999 447 483 0.036754999 448 483 8.5399995e-05 450 483 0.0020988998 452 483 0.005466897 453 483 0.0011958999 454 483 0.0011105 455 483 0.0020134998 456 483 4.8799993e-05 457 483 4.8799993e-05 460 483 0.00058569992 463 483 0.024759598 464 483 6.0999999e-05 465 483 3.6599988e-05 467 483 0.013581797 468 483 0.0002441 469 483 0.0024527998 470 483 0.0016107999 471 483 0.0074558966 472 483 2.4399997e-05 473 483 3.6599988e-05 477 483 0.00032949983 478 483 0.00013419999 489 483 0.00054909987 490 483 0.0020134998 9 486 0.00014559999 59 486 0.0012377 64 486 0.0010920998 75 486 0.00014559999 82 486 7.2799987e-05 83 486 7.2799987e-05 84 486 7.2799987e-05 108 486 0.00014559999 113 486 7.2799987e-05 114 486 0.00036399998 126 486 0.00014559999 141 486 0.00021839999 152 486 0.00021839999 187 486 0.0014560998 189 486 0.00043679983 190 486 0.00087369978 192 486 0.00014559999 193 486 7.2799987e-05 194 486 0.00043679983 195 486 0.00014559999 196 486 7.2799987e-05 197 486 0.00021839999 198 486 0.00021839999 200 486 7.2799987e-05 201 486 7.2799987e-05 202 486 7.2799987e-05 203 486 0.00043679983 204 486 0.0025481998 206 486 0.00072809984 207 486 0.00021839999 209 486 7.2799987e-05 214 486 0.0005824999 219 486 7.2799987e-05 220 486 0.00014559999 223 486 7.2799987e-05 229 486 0.0080814995 230 486 0.0038587998 233 486 0.00014559999 234 486 0.0051692985 237 486 0.00043679983 240 486 0.00065529998 241 486 0.0059700981 252 486 0.00080089993 260 486 7.2799987e-05 261 486 7.2799987e-05 275 486 0.00014559999 282 486 7.2799987e-05 283 486 0.00014559999 295 486 0.00014559999 296 486 0.00072809984 307 486 7.2799987e-05 308 486 7.2799987e-05 315 486 0.0037858998 316 486 0.00043679983 319 486 0.00014559999 322 486 0.00029119989 328 486 7.2799987e-05 331 486 0.00014559999 340 486 7.2799987e-05 350 486 7.2799987e-05 351 486 0.00043679983 368 486 0.00036399998 370 486 0.00014559999 377 486 0.00072809984 380 486 0.00087369978 384 486 0.00036399998 387 486 0.00014559999 389 486 7.2799987e-05 390 486 7.2799987e-05 393 486 0.00014559999 402 486 0.00014559999 406 486 0.00065529998 408 486 0.0005824999 412 486 0.00087369978 422 486 0.0023297998 423 486 7.2799987e-05 425 486 0.00087369978 430 486 7.2799987e-05 431 486 0.00014559999 432 486 7.2799987e-05 433 486 0.00021839999 434 486 0.00029119989 438 486 0.00029119989 443 486 0.00094649987 444 486 0.00021839999 445 486 0.0040043965 446 486 0.00029119989 447 486 0.0005824999 448 486 7.2799987e-05 450 486 0.0048779994 452 486 0.0144885 453 486 0.010411397 454 486 0.0034947 455 486 0.0061885975 456 486 0.00014559999 457 486 0.039242797 458 486 0.010192897 459 486 0.0015288999 460 486 0.0018201999 463 486 0.018929698 464 486 0.00029119989 465 486 0.019075397 467 486 0.067054987 469 486 0.0014560998 470 486 0.0082999989 471 486 0.00050959992 472 486 0.0033490998 473 486 0.00021839999 477 486 7.2799987e-05 483 486 0.0046595968 486 486 0.004441198 489 486 0.00065529998 490 486 0.13673097 7 489 0.00021439999 9 489 3.5699995e-05 16 489 0.00021439999 18 489 0.00028589997 22 489 0.00039309985 25 489 0.00021439999 60 489 0.011398599 66 489 0.0016078998 68 489 0.16208094 69 489 0.076145172 73 489 0.0150075 75 489 0.010147899 82 489 3.5699995e-05 83 489 3.5699995e-05 84 489 3.5699995e-05 108 489 7.1499991e-05 113 489 7.1499991e-05 114 489 0.00017869999 126 489 0.00010719999 127 489 3.5699995e-05 134 489 0.00010719999 150 489 0.0019294999 152 489 0.00010719999 153 489 0.0001429 187 489 0.00032159989 189 489 0.00010719999 190 489 0.00042879977 192 489 7.1499991e-05 194 489 0.00017869999 196 489 7.1499991e-05 197 489 0.00010719999 201 489 3.5699995e-05 202 489 3.5699995e-05 203 489 0.0001429 204 489 0.0019652999 206 489 0.00032159989 207 489 0.00010719999 209 489 3.5699995e-05 214 489 0.024833798 215 489 0.00021439999 217 489 0.0017508999 218 489 7.1499991e-05 223 489 0.0001429 228 489 0.00028589997 229 489 0.0013577999 230 489 0.00057169981 231 489 0.00085759978 234 489 0.0095047988 237 489 0.00017869999 240 489 7.1499991e-05 248 489 3.5699995e-05 252 489 0.00021439999 267 489 0.00060739997 272 489 7.1499991e-05 317 489 0.0013220999 329 489 3.5699995e-05 330 489 0.00039309985 331 489 0.0019294999 356 489 0.00021439999 358 489 7.1499991e-05 368 489 0.00017869999 384 489 0.00078609982 387 489 7.1499991e-05 394 489 0.00035729981 402 489 0.0001429 412 489 0.00032159989 413 489 0.00035729981 414 489 3.5699995e-05 419 489 3.5699995e-05 422 489 0.00021439999 423 489 3.5699995e-05 425 489 3.5699995e-05 430 489 3.5699995e-05 431 489 7.1499991e-05 432 489 3.5699995e-05 433 489 7.1499991e-05 434 489 0.00010719999 438 489 0.00010719999 442 489 3.5699995e-05 443 489 0.0030014999 444 489 0.00017869999 445 489 0.0054312982 446 489 0.0012863998 447 489 0.0017865999 448 489 0.00017869999 450 489 0.0078967996 452 489 0.012899298 453 489 0.030658197 454 489 0.0060386993 455 489 0.0057170987 456 489 0.0033230998 457 489 0.00085759978 459 489 0.0069677979 460 489 0.0035017999 463 489 0.020760398 464 489 0.00025009993 465 489 0.0010004998 467 489 0.023547497 468 489 0.0020366998 469 489 0.012113199 470 489 0.0085756965 471 489 0.0027514 473 489 0.0001429 474 489 0.00021439999 475 489 7.1499991e-05 476 489 3.5699995e-05 477 489 7.1499991e-05 478 489 0.00010719999 483 489 0.0012148998 489 489 7.1499991e-05 490 489 0.00057169981 SuiteSparse/CSparse/Matrix/ash2190000644001170100242450000000713110336455624015517 0ustar davisfac0 0 1 1 0 1 2 0 1 3 0 1 0 1 1 4 1 1 5 1 1 6 1 1 7 1 1 4 2 1 8 2 1 9 2 1 8 3 1 10 3 1 11 3 1 12 3 1 13 3 1 10 4 1 14 4 1 15 4 1 3 5 1 16 5 1 17 5 1 18 5 1 19 5 1 2 6 1 16 6 1 20 6 1 21 6 1 22 6 1 23 6 1 1 7 1 7 7 1 22 7 1 24 7 1 25 7 1 26 7 1 6 8 1 26 8 1 27 8 1 28 8 1 29 8 1 30 8 1 31 8 1 5 9 1 9 9 1 13 9 1 29 9 1 32 9 1 12 10 1 30 10 1 32 10 1 33 10 1 34 10 1 35 10 1 36 10 1 11 11 1 15 11 1 34 11 1 37 11 1 38 11 1 19 12 1 39 12 1 40 12 1 17 13 1 21 13 1 41 13 1 42 13 1 43 13 1 44 13 1 20 14 1 44 14 1 45 14 1 46 14 1 47 14 1 48 14 1 49 14 1 23 15 1 25 15 1 48 15 1 50 15 1 51 15 1 49 16 1 50 16 1 52 16 1 53 16 1 54 16 1 55 16 1 24 17 1 28 17 1 51 17 1 54 17 1 56 17 1 57 17 1 58 17 1 27 18 1 57 18 1 59 18 1 60 18 1 61 18 1 31 19 1 33 19 1 60 19 1 62 19 1 63 19 1 36 20 1 63 20 1 64 20 1 65 20 1 66 20 1 67 20 1 68 20 1 35 21 1 37 21 1 66 21 1 69 21 1 70 21 1 14 22 1 38 22 1 69 22 1 71 22 1 72 22 1 67 23 1 70 23 1 72 23 1 73 23 1 74 23 1 75 23 1 76 23 1 68 24 1 74 24 1 77 24 1 78 24 1 64 25 1 77 25 1 79 25 1 80 25 1 81 25 1 82 25 1 61 26 1 62 26 1 65 26 1 81 26 1 83 26 1 84 26 1 85 26 1 58 27 1 59 27 1 85 27 1 86 27 1 87 27 1 55 28 1 56 28 1 87 28 1 88 28 1 89 28 1 90 28 1 52 29 1 89 29 1 91 29 1 92 29 1 93 29 1 94 29 1 45 30 1 53 30 1 93 30 1 95 30 1 96 30 1 97 30 1 71 31 1 75 31 1 98 31 1 99 31 1 76 32 1 99 32 1 100 32 1 101 32 1 102 32 1 73 33 1 78 33 1 82 33 1 102 33 1 103 33 1 104 33 1 105 33 1 106 33 1 104 34 1 107 34 1 108 34 1 109 34 1 110 34 1 79 35 1 105 35 1 109 35 1 111 35 1 112 35 1 80 36 1 83 36 1 112 36 1 113 36 1 114 36 1 108 37 1 111 37 1 114 37 1 115 37 1 116 37 1 117 37 1 118 37 1 84 38 1 86 38 1 90 38 1 113 38 1 116 38 1 119 38 1 120 38 1 121 38 1 122 38 1 88 39 1 94 39 1 121 39 1 123 39 1 124 39 1 125 39 1 120 40 1 125 40 1 126 40 1 127 40 1 91 41 1 124 41 1 128 41 1 129 41 1 130 41 1 131 41 1 92 42 1 95 42 1 130 42 1 132 42 1 133 42 1 134 42 1 40 43 1 135 43 1 136 43 1 137 43 1 138 43 1 18 44 1 39 44 1 43 44 1 135 44 1 139 44 1 140 44 1 141 44 1 42 45 1 139 45 1 142 45 1 143 45 1 144 45 1 41 46 1 47 46 1 142 46 1 145 46 1 146 46 1 46 47 1 97 47 1 145 47 1 147 47 1 148 47 1 149 47 1 96 48 1 134 48 1 147 48 1 150 48 1 151 48 1 152 48 1 129 49 1 132 49 1 153 49 1 154 49 1 155 49 1 133 50 1 150 50 1 154 50 1 156 50 1 157 50 1 158 50 1 136 51 1 141 51 1 159 51 1 160 51 1 161 51 1 138 52 1 162 52 1 163 52 1 164 52 1 137 53 1 161 53 1 162 53 1 165 53 1 166 53 1 167 53 1 163 54 1 167 54 1 168 54 1 169 54 1 170 54 1 171 54 1 166 55 1 168 55 1 172 55 1 173 55 1 174 55 1 140 56 1 144 56 1 159 56 1 175 56 1 176 56 1 177 56 1 143 57 1 146 57 1 149 57 1 177 57 1 178 57 1 179 57 1 148 58 1 152 58 1 178 58 1 180 58 1 181 58 1 182 58 1 183 58 1 151 59 1 158 59 1 183 59 1 184 59 1 157 60 1 180 60 1 184 60 1 185 60 1 186 60 1 187 60 1 188 60 1 189 60 1 185 61 1 190 61 1 191 61 1 192 61 1 193 61 1 100 62 1 194 62 1 98 63 1 101 63 1 106 63 1 194 63 1 195 63 1 103 64 1 110 64 1 195 64 1 196 64 1 107 65 1 117 65 1 196 65 1 197 65 1 118 66 1 197 66 1 198 66 1 199 66 1 198 67 1 200 67 1 115 68 1 122 68 1 199 68 1 200 68 1 201 68 1 119 69 1 127 69 1 201 69 1 202 69 1 123 70 1 126 70 1 131 70 1 202 70 1 203 70 1 128 71 1 155 71 1 203 71 1 204 71 1 153 72 1 156 72 1 189 72 1 193 72 1 204 72 1 205 72 1 190 73 1 205 73 1 206 73 1 207 73 1 206 74 1 208 74 1 186 75 1 191 75 1 207 75 1 208 75 1 209 75 1 210 75 1 209 76 1 211 76 1 187 77 1 192 77 1 210 77 1 211 77 1 212 77 1 181 78 1 188 78 1 212 78 1 213 78 1 175 79 1 179 79 1 182 79 1 213 79 1 214 79 1 160 80 1 165 80 1 172 80 1 176 80 1 214 80 1 215 80 1 173 81 1 215 81 1 216 81 1 169 82 1 174 82 1 216 82 1 217 82 1 170 83 1 217 83 1 218 83 1 164 84 1 171 84 1 218 84 1 SuiteSparse/CSparse/Matrix/ibm32a0000644001170100242450000000156610533354710015564 0ustar davisfac0 0 1 1 0 1 2 0 1 3 0 1 6 0 1 25 0 1 0 1 1 1 1 1 8 1 1 20 1 1 27 1 1 1 2 1 2 2 1 5 2 1 7 2 1 8 2 1 28 2 1 2 3 1 3 3 1 4 3 1 11 3 1 2 4 1 4 4 1 22 4 1 26 4 1 0 5 1 5 5 1 15 5 1 2 6 1 6 6 1 13 6 1 20 6 1 30 6 1 0 7 1 7 7 1 11 7 1 16 7 1 26 7 1 6 8 1 8 8 1 9 8 1 12 8 1 18 8 1 22 8 1 26 8 1 0 9 1 9 9 1 10 9 1 20 9 1 22 9 1 24 9 1 26 9 1 1 10 1 10 10 1 14 10 1 17 10 1 28 10 1 5 11 1 11 11 1 23 11 1 10 12 1 12 12 1 2 13 1 13 13 1 1 14 1 14 14 1 19 14 1 3 15 1 15 15 1 21 15 1 3 16 1 15 16 1 16 16 1 5 17 1 9 17 1 17 17 1 19 17 1 29 17 1 0 18 1 18 18 1 25 18 1 7 19 1 15 19 1 19 19 1 2 20 1 20 20 1 31 20 1 10 21 1 21 21 1 1 22 1 16 22 1 20 22 1 22 22 1 11 23 1 23 23 1 25 23 1 5 24 1 14 24 1 17 24 1 23 24 1 24 24 1 12 25 1 17 25 1 21 25 1 25 25 1 4 26 1 23 26 1 25 26 1 26 26 1 8 27 1 27 27 1 2 28 1 4 28 1 26 28 1 28 28 1 31 28 1 11 29 1 16 29 1 22 29 1 29 29 1 12 30 1 13 30 1 30 30 1 SuiteSparse/CSparse/Matrix/ibm32b0000644001170100242450000000156610533354751015572 0ustar davisfac0 0 1 1 0 1 5 0 1 7 0 1 9 0 1 18 0 1 0 1 1 1 1 1 2 1 1 10 1 1 14 1 1 22 1 1 0 2 1 2 2 1 3 2 1 4 2 1 6 2 1 13 2 1 20 2 1 28 2 1 0 3 1 3 3 1 15 3 1 16 3 1 3 4 1 4 4 1 26 4 1 28 4 1 2 5 1 5 5 1 11 5 1 17 5 1 24 5 1 0 6 1 6 6 1 8 6 1 2 7 1 7 7 1 19 7 1 1 8 1 2 8 1 8 8 1 27 8 1 8 9 1 9 9 1 17 9 1 9 10 1 10 10 1 12 10 1 21 10 1 3 11 1 7 11 1 11 11 1 23 11 1 29 11 1 8 12 1 12 12 1 25 12 1 30 12 1 6 13 1 13 13 1 30 13 1 10 14 1 14 14 1 24 14 1 5 15 1 15 15 1 16 15 1 19 15 1 7 16 1 16 16 1 22 16 1 29 16 1 10 17 1 17 17 1 24 17 1 25 17 1 8 18 1 18 18 1 14 19 1 17 19 1 19 19 1 1 20 1 6 20 1 9 20 1 20 20 1 22 20 1 15 21 1 21 21 1 25 21 1 4 22 1 8 22 1 9 22 1 22 22 1 29 22 1 11 23 1 23 23 1 24 23 1 26 23 1 9 24 1 24 24 1 0 25 1 18 25 1 23 25 1 25 25 1 26 25 1 4 26 1 7 26 1 8 26 1 9 26 1 26 26 1 28 26 1 1 27 1 27 27 1 2 28 1 10 28 1 28 28 1 17 29 1 29 29 1 6 30 1 30 30 1 20 31 1 28 31 1 SuiteSparse/CSparse/Matrix/fs_183_10000644001170100242450000005746410326006636015743 0ustar davisfac0 0 0.002560366756349 1 0 -1.1708957011e-07 19 0 -2.586020978498e-09 20 0 -4.21919637073e-09 21 0 -1.539733401845e-09 22 0 -6.992289087251e-10 23 0 -4.146605957406e-10 25 0 -9.308915110713e-10 26 0 -9.604355274254e-10 41 0 2.171877777815e-10 42 0 3.647892785308e-08 43 0 -1.336119643102e-08 48 0 1.408677324709e-08 49 0 1.305985310558e-09 50 0 -1.305985310558e-09 55 0 1.913774718225e-09 56 0 1.157436047015e-08 58 0 8.188399588829e-10 59 0 3.175236018339e-10 60 0 2.641174449437e-10 61 0 1.806834262368e-09 63 0 1.282846930985e-09 64 0 4.905553913699e-10 66 0 -1.222950896396e-09 67 0 3.400474955813e-09 69 0 7.424492418032e-10 70 0 2.273214423366e-10 71 0 -5.283442852457e-09 72 0 3.062630817767e-09 73 0 3.065874619571e-10 74 0 -5.094621858827e-11 75 0 3.960494500802e-10 77 0 4.877537231018e-10 78 0 -4.040563386643e-11 79 0 2.816301020271e-10 80 0 5.826517970276e-10 81 0 4.086508172586e-10 82 0 -3.911529194823e-11 83 0 2.678169982465e-10 85 0 -8.092386069823e-11 86 0 2.232108616543e-10 88 0 -5.675705795258e-11 89 0 2.189991319367e-10 90 0 3.291028612829e-10 91 0 2.716647717251e-10 92 0 5.497860474784e-10 93 0 6.707083412842e-10 94 0 -4.570873073371e-11 95 0 2.972566894958e-10 97 0 -3.773121829515e-11 98 0 3.084061767158e-10 100 0 -7.635917326112e-11 101 0 -9.31539362895e-11 102 0 1.426533063689e-09 103 0 -3.117499412749e-09 104 0 3.663312222128e-10 105 0 -1.573096874488e-09 106 0 4.411931980445e-10 108 0 5.849297948125e-10 109 0 -5.849297948125e-10 111 0 2.37578324949e-09 112 0 -3.466111061052e-09 113 0 3.907987277182e-10 114 0 9.58833451452e-10 115 0 4.195017191123e-10 117 0 4.11819413623e-10 118 0 -4.11819413623e-10 121 0 1.09032781156e-09 122 0 7.32132897605e-10 123 0 -7.32132897605e-10 124 0 4.496357023427e-10 125 0 4.955473972382e-10 126 0 7.153774580173e-10 127 0 1.479748156533e-09 128 0 6.992289087255e-10 129 0 8.243559438288e-10 130 0 9.604355274199e-10 131 0 4.146605957404e-10 132 0 4.353441138305e-10 135 0 -1.811030893479e-25 136 0 -3.789615200312e-08 139 0 9.673369514853e-13 143 0 -1.408677324709e-08 157 0 -1.157436047015e-08 158 0 -3.720608980593e-09 159 0 -1.116096648379e-09 160 0 -5.853406000804e-10 161 0 -1.773402322355e-09 162 0 -3.400474955813e-09 163 0 -1.138498691883e-09 164 0 -2.273214423366e-10 165 0 -3.062630817767e-09 166 0 -5.640474200845e-10 167 0 -4.473480892354e-10 168 0 -2.425148100789e-10 169 0 -5.017279363293e-10 170 0 -3.51893759306e-10 171 0 -2.232108616543e-10 172 0 -2.189991319367e-10 173 0 -2.833941305492e-10 174 0 -2.3393355343e-10 175 0 -4.734268742175e-10 176 0 -5.775544049947e-10 178 0 -4.411931980445e-10 181 0 -4.195017191123e-10 0 1 -3.383430159138e-16 1 1 0.002562768415974 41 1 3.592572729579e-13 42 1 6.776264827548e-09 44 1 -1.22477633951e-08 45 1 -6.776264827554e-09 50 1 2.084654127474e-09 51 1 -2.084654127467e-09 52 1 -2.084654127479e-09 56 1 6.232347945464e-09 57 1 -6.232347945464e-09 61 1 1.051739346752e-09 62 1 -1.051739346751e-09 64 1 2.855471681108e-10 65 1 -2.855471681108e-10 75 1 2.305362470616e-10 76 1 -2.305362470616e-10 83 1 1.558934765912e-10 84 1 -1.558934765912e-10 95 1 1.730300132886e-10 96 1 -1.730300132886e-10 98 1 1.795200133122e-10 99 1 -1.795200133122e-10 107 1 -7.358794192803e-10 108 1 7.358794192803e-10 109 1 1.097807355488e-09 110 1 -1.097807355488e-09 117 1 5.180953913322e-10 118 1 8.609286077266e-10 119 1 -8.609286077266e-10 120 1 -5.180953913322e-10 135 1 -7.712897469546e-25 136 1 1.224776339511e-08 139 1 -1.998289194383e-13 140 1 -1.59089384321e-13 146 1 -2.5e-06 2 2 0.002580237047555 48 2 3.732994910464e-11 136 2 1.224776339511e-09 141 2 -1.224776339511e-09 142 2 -3.732994910478e-11 143 2 -3.732994910464e-11 145 2 -2e-05 3 3 0.002560236106991 136 3 3.215427927254e-10 137 3 -3.215427927254e-10 4 4 0.002560235791703 136 4 6.25497283521e-12 157 4 -6.25497283521e-12 5 5 0.002560236045299 55 5 -2.598512597553e-10 136 5 2.598512597553e-10 6 6 0.002560238207518 63 6 -1.197293314616e-09 69 6 -1.224776339511e-09 136 6 2.422069654126e-09 7 7 0.002560238204238 58 7 -2.073248123406e-09 59 7 -3.45541353901e-10 136 7 2.418789477308e-09 8 8 0.002560238221515 73 8 -6.046973693266e-10 77 8 -1.831369175675e-09 136 8 2.436066545003e-09 9 9 0.002560239760404 79 9 -4.119702232899e-10 80 9 -2.338209375429e-09 81 9 -1.224776339511e-09 136 9 3.974955938231e-09 10 10 0.002560239292762 90 10 -4.1197022329e-10 91 10 -2.004179464654e-10 92 10 -1.224776339511e-09 93 10 -1.670149553878e-09 136 10 3.507314063145e-09 11 11 0.002560245365513 19 11 -1.824940942984e-14 41 11 1.824919610165e-14 67 11 -9.580046406017e-09 68 11 -1.824919610165e-14 136 11 9.580046406017e-09 12 12 0.002560267253745 19 12 -6.406758531213e-14 20 12 -6.406758531213e-14 41 12 1.281355477283e-13 42 12 -6.406777544864e-14 68 12 -6.406777386417e-14 72 12 -3.146816878888e-08 136 12 3.146816878888e-08 157 12 -6.406777386417e-14 13 13 0.002560236483522 124 13 -6.980733871843e-10 136 13 6.980733871849e-10 14 14 0.00256024291142 102 14 -6.012538393961e-09 136 14 7.125971429882e-09 177 14 -1.113433035919e-09 15 15 0.002560251373511 114 15 -1.224776339511e-08 136 15 1.558806250287e-08 180 15 -3.340299107757e-09 16 16 0.002560262507841 111 16 -2.672239286205e-08 136 16 2.672239286205e-08 17 17 0.002560252486944 121 17 -1.670149553878e-08 136 17 1.670149553879e-08 18 18 0.002560244136196 122 18 -8.350747769391e-09 136 18 8.350747769386e-09 3 19 -1.019050359178e-08 19 19 0.002560245975952 42 19 -1.019050349627e-08 44 19 -4.038103921654e-17 47 19 0 136 19 1.019050345554e-08 137 19 0 139 19 4.072997690462e-17 3 20 0 20 20 0.002560254946453 42 20 0 44 20 -1.865674463727e-17 56 20 -1.916100433649e-08 136 20 1.916100431562e-08 139 20 2.087411316368e-17 157 20 0 3 21 0 5 21 0 21 21 0.002560258054109 42 21 0 55 21 0 61 21 -2.226866071837e-08 136 21 2.226866071836e-08 3 22 0 6 22 0 11 22 0 20 22 0 22 22 0.002560252486944 42 22 0 63 22 0 64 22 -1.670149553878e-08 136 22 1.670149553866e-08 3 23 0 6 23 0 23 23 0.002560252486944 42 23 0 69 23 0 75 23 -1.67014955388e-08 136 23 1.670149553893e-08 3 24 0 7 24 0 12 24 0 20 24 0 24 24 0.002560237455598 42 24 0 59 24 0 83 24 -1.670149553913e-09 136 24 1.670149553913e-09 3 25 0 25 25 0.002560236342165 56 25 0 70 25 -5.567165179605e-10 136 25 5.567165179645e-10 157 25 0 26 26 0.002560239571121 55 26 0 56 26 0 60 26 -3.785672322123e-09 136 26 3.78567232212e-09 27 27 0.002560242132017 55 27 0 61 27 0 89 27 -6.346568304741e-09 136 27 6.346568305847e-09 28 28 0.002560242132017 56 28 0 63 28 0 64 28 0 86 28 -6.346568304728e-09 136 28 6.346568304223e-09 157 28 0 29 29 0.002560235785448 56 29 0 69 29 0 75 29 0 157 29 0 19 30 -1.22477647953e-09 30 30 0.002560237010225 42 30 -1.224776353574e-09 136 30 1.224776337829e-09 20 31 -3.674329017938e-09 31 31 0.002560239459777 42 31 -3.67432901844e-09 136 31 3.674329018535e-09 32 32 0.002560280507511 126 32 -4.472206250153e-08 136 32 4.472206250153e-08 33 33 0.002560311921433 127 33 -7.613598441436e-08 136 33 7.613598441436e-08 34 34 0.002560335994421 129 34 -1.002089732327e-07 136 34 1.002089732327e-07 35 35 0.002560272421112 128 35 -3.663566345244e-08 136 35 3.663566345244e-08 36 36 0.002560307793476 130 36 -7.200802816513e-08 136 36 7.200802816513e-08 37 37 0.002560274529531 131 37 -3.874408291661e-08 136 37 3.874408291661e-08 38 38 0.002560246586652 132 38 -1.080120422477e-08 136 38 1.080120422477e-08 39 39 0.002560297068413 125 39 -6.128296525551e-08 136 39 6.128296525557e-08 40 40 0.002560250260078 136 40 1.447462946702e-08 179 40 -1.447462946694e-08 0 41 0.01959713882917 1 41 -0.0195734543737 11 41 5.470666548231e-07 12 41 1.045301631314e-06 19 41 -1.06971747048e-06 20 41 -5.22650815657e-07 41 41 0.02219765160175 42 41 -5.227136107366e-07 68 41 -1.069713542891e-06 135 41 0 136 41 6.298045247717e-11 138 41 0 139 41 -2.368449673054e-05 147 41 -1.5e-05 157 41 -5.226505491834e-07 0 42 12.85660947467 1 42 -11.61477992426 41 42 3.155818156655e-11 42 42 14.10099940671 45 42 -1.241829550736 46 42 -3.95951429917e-08 48 42 9.156397070899e-09 54 42 -9.156402619557e-09 135 42 -2.952908677967e-24 136 42 -12.85660941827 0 43 0 1 43 -7.348658035297e-09 43 43 0.002560243134106 136 43 7.348658037033e-09 1 44 0 44 44 0.002615235874523 52 44 -3e-05 136 44 8.907464288464e-11 139 44 -8.90746428735e-11 144 44 -2.5e-05 1 45 -0.009866610928398 42 45 -0.009866610928589 45 45 0.01242684671403 42 46 -7.813937183221e-10 44 46 0 46 46 0.002590236566843 53 46 -3e-05 136 46 7.81394413174e-10 139 46 2.086591291478e-17 47 47 0.002560235789603 136 47 4.154625999537e-12 137 47 -4.154625999537e-12 0 48 3.174471475334 1 48 -3.174471475334 2 48 0.007477326419287 19 48 -4.660849919314e-09 30 48 -4.651519116252e-09 42 48 8.206737146991e-09 48 48 3.18450906156 54 48 -8.226488015661e-09 55 48 2.3273038548e-10 56 48 1.157409717687e-10 58 48 6.432076925481e-11 59 48 3.955350175667e-11 60 48 2.130154064686e-11 61 48 6.741586490436e-11 63 48 1.015204377654e-10 64 48 1.830397952409e-11 66 48 -2.130154064686e-11 67 48 2.742345777721e-10 69 48 7.703276924401e-11 70 48 1.832998873123e-11 72 48 2.46989933294e-10 73 48 3.397452682535e-11 75 48 1.477973195675e-11 77 48 3.607477030183e-11 79 48 1.955892376855e-11 80 48 4.046382400654e-11 81 48 2.837604498868e-11 86 48 1.800487364199e-11 89 48 1.76602516474e-11 90 48 2.285559077342e-11 91 48 1.886317747758e-11 92 48 3.818151608009e-11 93 48 4.657598768421e-11 95 48 1.109292684479e-11 98 48 1.150907415902e-11 142 48 -0.007477326380339 143 48 -3.181948808246 157 48 -1.157409717687e-10 158 48 -3.001462503844e-10 159 48 -7.541369609961e-11 160 48 -3.955350175667e-11 161 48 -1.198244172895e-10 162 48 -2.742410800739e-10 163 48 -9.181250120076e-11 164 48 -1.832998873123e-11 165 48 -2.469834309922e-10 166 48 -4.548360098437e-11 167 48 -3.607477030183e-11 168 48 -1.955892376855e-11 169 48 -4.046382400654e-11 170 48 -2.838254729046e-11 171 48 -1.800487364199e-11 172 48 -1.76602516474e-11 173 48 -2.285559077342e-11 174 48 -1.886317747758e-11 175 48 -3.818151608009e-11 176 48 -4.657598768421e-11 0 49 1.587235737478 1 49 -1.587235737627 49 49 1.589795973443 50 49 -1.587235737657 1 50 1.15969220199 50 50 1.16225243772 51 50 -1.159692201935 52 50 -1.159692201935 51 51 0.002560235785448 52 52 0.002560235785448 53 53 0.002560235785448 54 54 0.002560235785448 0 55 0.4920430785978 1 55 -0.4920430786783 48 55 1.760841129905e-10 55 55 0.4946033146353 143 55 -1.760846653791e-10 158 55 -0.4920430788498 0 56 4.126812917873 1 56 -2.503243835186 48 56 1.831229970625e-10 56 56 5.752942236585 57 56 -1.623569082708 143 56 -1.83128052366e-10 157 56 -4.126812918092 1 57 -4.20505517238e-05 56 57 -4.205055172407e-05 57 57 0.002607286337172 148 57 -5e-06 0 58 0.5872772225917 1 58 -0.5872772229227 48 58 1.760985569519e-10 58 58 0.5898374588947 143 58 -1.76084666663e-10 159 58 -0.5872772231093 0 59 0.5872772226272 1 59 -0.5872772228874 48 59 1.761039768105e-10 59 59 0.5898374588947 143 59 -1.760846658855e-10 160 59 -0.5872772231093 0 60 0.4920430782541 1 60 -0.4920430787321 42 60 -0.4920430788507 48 60 1.761058645096e-10 60 60 0.4946033146353 66 60 -0.4920430788499 143 60 -1.760846663789e-10 0 61 1.063447943607 1 61 -0.611167985462 48 61 1.760796391616e-10 55 61 -1.063447944406 61 61 1.518288138946 62 61 -0.4522799587544 143 61 -1.760846641892e-10 1 62 -4.205055172351e-05 61 62 -4.205055172407e-05 62 62 0.002607286337172 149 62 -5e-06 0 63 0.587277222639 1 63 -0.5872772229313 48 63 1.760915824221e-10 63 63 0.5898374588947 143 63 -1.760846645129e-10 161 63 -0.5872772231093 0 64 1.063447944716 1 64 -0.6111679856255 48 64 1.760485001368e-10 63 64 -1.063447944406 64 64 1.518288138946 65 64 -0.4522799587544 143 64 -1.760846620023e-10 1 65 -4.205055171448e-05 64 65 -4.205055172407e-05 65 65 0.002607286337172 150 65 -5e-06 56 66 0 66 66 0.002560235785448 0 67 0.4920430786916 1 67 -0.4920430786737 48 67 1.76087455517e-10 67 67 0.4946033146353 143 67 -1.760846658223e-10 162 67 -0.4920430788499 42 68 -4471.999999998 68 68 2236.002560236 0 69 0.4920430781392 1 69 -0.4920430786817 48 69 1.76081375747e-10 69 69 0.4946033146558 143 69 -1.760846641579e-10 163 69 -0.4920430788704 0 70 0.4920430784468 1 70 -0.4920430787271 48 70 1.76045894176e-10 70 70 0.4946033146352 143 70 -1.760846630309e-10 164 70 -0.4920430788498 3 71 0 20 71 0 71 71 0.002560235785448 0 72 0.4920430786528 1 72 -0.4920430786728 48 72 1.760879170302e-10 72 72 0.4946033146352 143 72 -1.760846649084e-10 165 72 -0.4920430788498 0 73 0.5364856792436 1 73 -0.4920430786501 48 73 1.76076432387e-10 73 73 0.5390459152896 74 73 -0.04444260065442 143 73 -1.760846654441e-10 166 73 -0.4920430788498 52 74 -3.000000000035e-05 74 74 0.002590235785448 0 75 1.063447942908 1 75 -0.611167985407 48 75 1.760890988945e-10 69 75 -1.063447944406 75 75 1.518288138946 76 75 -0.4522799587544 143 75 -1.760846677221e-10 1 76 -4.20505517325e-05 75 76 -4.205055172408e-05 76 76 0.002607286337172 151 76 -5e-06 0 77 0.5364856784025 1 77 -0.4920430785641 48 77 1.760864303599e-10 77 77 0.5390459152898 78 77 -0.04444260065443 143 77 -1.760846692902e-10 167 77 -0.4920430788499 52 78 -3.000000000004e-05 78 78 0.002590235785448 0 79 0.5714048638366 1 79 -0.4920430788403 48 79 1.761313366208e-10 79 79 0.5739651015182 82 79 -0.07936178688284 143 79 -1.760846606554e-10 168 79 -0.4920430788499 0 80 0.5714048658603 1 80 -0.4920430786621 48 80 1.760978635704e-10 80 80 0.5739651015181 85 80 -0.07936178688274 143 80 -1.7608466099e-10 169 80 -0.4920430788498 0 81 0.5714048637404 1 81 -0.4920430786228 48 81 1.76111764434e-10 81 81 0.5739651015181 88 81 -0.07936178688285 143 81 -1.760846745068e-10 170 81 -0.4920430788498 52 82 -2.999999999955e-05 82 82 0.002590235785448 0 83 1.063447940963 1 83 -0.6111679852405 59 83 -1.06344794423 83 83 1.51828813877 84 83 -0.4522799587544 1 84 -4.205055174117e-05 83 84 -4.205055172408e-05 84 84 0.002607286337172 152 84 -5e-06 52 85 -3.000000000001e-05 85 85 0.002590235785448 0 86 0.4920430770882 1 86 -0.492043078801 48 86 1.76116592985e-10 86 86 0.4946033146353 143 86 -1.760846726148e-10 171 86 -0.4920430788499 56 87 0 61 87 0 87 87 0.002560235785448 52 88 -2.999999999991e-05 88 88 0.002590235785448 0 89 0.4920430795657 1 89 -0.4920430786908 48 89 1.760903935369e-10 89 89 0.4946033146352 143 89 -1.760846741761e-10 172 89 -0.4920430788498 0 90 0.5714048645668 1 90 -0.4920430787554 48 90 1.761092705536e-10 90 90 0.5739651015181 94 90 -0.07936178688281 143 90 -1.760846678343e-10 173 90 -0.4920430788498 0 91 0.5714048628028 1 91 -0.4920430784636 48 91 1.760938499993e-10 91 91 0.5739651015181 97 91 -0.07936178688285 143 91 -1.760846559022e-10 174 91 -0.4920430788499 0 92 0.5714048647635 1 92 -0.4920430786719 48 92 1.760842468591e-10 92 92 0.5739651015181 100 92 -0.07936178688332 143 92 -1.760846666463e-10 175 92 -0.4920430788498 0 93 0.5714048650255 1 93 -0.4920430786659 48 93 1.760701683169e-10 93 93 0.5739651015181 101 93 -0.07936178688317 143 93 -1.760846640724e-10 176 93 -0.4920430788498 52 94 -2.999999999991e-05 94 94 0.002590235785448 0 95 1.063447939988 1 95 -0.6111679854925 48 95 1.760865894972e-10 58 95 -1.063447944406 95 95 1.518288138946 96 95 -0.4522799587544 143 95 -1.760846670718e-10 1 96 -4.20505517104e-05 95 96 -4.205055172407e-05 96 96 0.002607286337172 153 96 -5e-06 52 97 -3.000000000023e-05 97 97 0.002590235785448 0 98 1.063447942306 1 98 -0.6111679855538 48 98 1.761258586564e-10 73 98 -1.063447944406 98 98 1.518288138946 99 98 -0.4522799587544 143 98 -1.76084677565e-10 1 99 -4.205055174038e-05 98 99 -4.205055172407e-05 99 99 0.002607286337172 154 99 -5e-06 52 100 -3.000000000001e-05 100 100 0.002590235785448 52 101 -3.000000000001e-05 101 101 0.002590235785448 0 102 0.4920430783954 1 102 -0.4920430786518 42 102 -0.4920430786736 71 102 -0.4920430786731 102 102 0.4946033144592 103 102 -0.4920430786731 103 103 0.002560258054109 104 103 -2.226866071837e-08 136 103 2.226866071835e-08 0 104 0.4920430785024 1 104 -0.4920430786679 42 104 -0.4920430786738 104 104 0.4946033144592 105 104 -0.9840861573462 3 105 0 19 105 0 105 105 0.002560235785448 0 106 0.4920430787744 1 106 -0.4920430786336 106 106 0.4946033144592 178 106 -0.4920430786737 1 107 -4.205055172973e-05 107 107 0.002607286337172 108 107 -4.205055172408e-05 155 107 -5e-06 0 108 0.492043078665 1 108 -0.0397631199438 107 108 -0.4522799587544 108 108 0.9468832732136 109 108 -0.4920430786737 1 109 0.4522799587133 109 109 0.4548401945398 110 109 -0.4522799587545 52 110 -3.000000000002e-05 110 110 0.002590235785448 0 111 0.4920430787639 1 111 -0.4920430786612 42 111 -0.4920430786738 71 111 -0.4920430786741 111 111 0.4946033144592 112 111 -0.4920430786741 112 112 0.002560258054109 113 112 -2.226866071837e-08 136 112 2.226866071842e-08 0 113 0.492043077127 1 113 -0.4920430786716 42 113 -0.4920430786734 71 113 -0.4920430786716 105 113 -0.4920430786716 113 113 0.4946033144592 0 114 0.4920430789374 1 114 -0.4920430786817 42 114 -0.4920430786738 66 114 -0.4920430786737 103 114 -0.4920430786738 114 114 0.4946033144592 0 115 0.4920430771209 1 115 -0.4920430786049 115 115 0.4946033144592 181 115 -0.4920430786738 116 116 0.002560258054109 136 116 2.226866071865e-08 182 116 -2.226866071838e-08 0 117 0.4920430792701 1 117 -0.03976312002707 117 117 0.9468832732136 118 117 -0.4920430786737 120 117 -0.4522799587544 1 118 0.4522799587949 118 118 0.4548401945399 119 118 -0.4522799587544 52 119 -2.999999999999e-05 119 119 0.002590235785448 1 120 -4.210351212105e-05 117 120 -4.210351211667e-05 120 120 0.002607339297565 156 120 -5e-06 0 121 0.4920430788121 1 121 -0.4920430786437 42 121 -0.4920430786738 71 121 -0.4920430786718 112 121 -0.4920430786718 121 121 0.4946033144592 0 122 0.4920430783275 1 122 -0.4920430786632 42 122 -0.4920430786737 103 122 -0.4920430786737 122 122 0.4946033144592 123 122 -0.4920430786737 3 123 0 21 123 0 123 123 0.002560235785448 0 124 0.4920430781638 1 124 -0.4920430787149 42 124 -0.492043078674 105 124 -0.4920430786718 124 124 0.4946033144592 0 125 0.4920430783304 1 125 -0.4920430787081 19 125 -0.4920430787081 25 125 -0.4920430786766 42 125 -0.4920430786737 125 125 0.4946033144592 0 126 0.4920430788384 1 126 -0.4920430786653 19 126 -0.4920430786653 21 126 -0.4920430786707 42 126 -0.4920430786738 126 126 0.4946033144592 0 127 0.4920430782251 1 127 -0.4920430786839 20 127 -0.9840861573261 42 127 -0.4920430786736 127 127 0.4946033144592 0 128 4.920430783576 1 128 -4.920430786231 22 128 -4.920430786735 42 128 -9.840861573471 128 128 4.922991022523 0 129 0.4920430784622 1 129 -0.4920430786878 20 129 -0.4920430786878 21 129 -0.4920430786737 42 129 -0.4920430786737 129 129 0.4946033144592 0 130 0.492043078061 1 130 -0.4920430786408 19 130 -0.4920430787053 26 130 -0.4920430786771 42 130 -0.4920430786737 130 130 0.4946033144592 0 131 0.4920430786715 1 131 -0.4920430786715 19 131 -0.4920430786715 23 131 -0.4920430786738 42 131 -0.4920430786737 131 131 0.4946033144591 0 132 0.4920430771688 1 132 -0.4920430787426 20 132 -0.4920430785995 25 132 -0.4920430786711 42 132 -0.4920430786737 132 132 0.4946033144591 3 133 0 7 133 0 12 133 0 20 133 0 42 133 0 58 133 0 95 133 -1.670149553868e-08 133 133 0.002560252486944 136 133 1.670149553899e-08 3 134 0 8 134 0 12 134 0 20 134 0 42 134 0 73 134 0 98 134 -5.344478572417e-08 134 134 0.002560289230234 136 134 5.344478572347e-08 0 135 -7.111615739898 1 135 7.17828713746 41 135 -88821.07168099 42 135 0 135 135 88835.01890368 136 135 0 137 135 0 0 136 19.04682885138 1 136 12.69780942333 2 136 1.551897928024 3 136 4.542268257074 4 136 0.5229845102146 5 136 0.7613816461353 6 136 1.480230569393 7 136 1.000339760513 8 136 0.512851928463 9 136 0.8853929618887 10 136 1.357290834111 11 136 4.537130330448 12 136 4.055676354829 13 136 0.3312138382014 14 136 2.042784344269 15 136 1.34525930264 16 136 3.076618012512 17 136 1.244411855421 18 136 0.7338649798254 19 136 1.348270950961 20 136 0.6469882275473 21 136 0.2369911487333 22 136 0.04863623886552 23 136 0.02521370220331 24 136 0.0007713506269431 25 136 0.01435088885521 26 136 0.06679405394823 27 136 0.002489159161422 28 136 0.00849074313382 30 136 0.0001270842306168 31 136 0.382161620131 32 136 0.7100070793526 33 136 1.799538208012 34 136 0.865355063926 35 136 0.6870828123593 36 136 1.059317102324 37 136 0.2813771214523 38 136 0.31085305976 39 136 0.3966738983409 40 136 0.0580211220974 41 136 1.174501910599e-09 42 136 -1.730690936564 43 136 -18.9880240538 44 136 -12.75561059991 46 136 4.518678508122e-06 47 136 0.05235981401697 55 136 -0.7613816459101 56 136 -1.029149847639 58 136 -0.8574340804235 59 136 -0.1429056800706 60 136 -0.06679405395313 61 136 -0.2369911487297 63 136 -0.7317172575218 64 136 -0.04863623886561 67 136 -4.537130330346 69 136 -0.7485133118877 70 136 -0.01435088885262 72 136 -4.055676354803 73 136 -0.1273036701897 75 136 -0.02521370220349 77 136 -0.3855482582889 79 136 -0.09176341623108 80 136 -0.5208193894197 81 136 -0.2728101563627 83 136 -0.0007713506269865 86 136 -0.008490743133777 89 136 -0.002489159161422 90 136 -0.1594278122623 91 136 -0.07755947623575 92 136 -0.4739745769963 93 136 -0.6463289686313 95 136 -0.005294262221911 98 136 -0.007368421405836 102 136 -1.723599290493 103 136 0.2124294538529 104 136 -0.2124294538527 111 136 -3.076618012459 112 136 0.2472943022219 113 136 -0.247294302222 114 136 -1.056989452061 116 136 0.01727652875782 121 136 -1.244411855365 122 136 -0.7338649797077 124 136 -0.3312138382308 125 136 -0.3966738983424 126 136 -0.710007079354 127 136 -1.799538208108 128 136 -0.6870828123639 129 136 -0.8653550639193 130 136 -1.059317102321 131 136 -0.2813771214472 132 136 -0.3108530598792 133 136 0.005294262221824 134 136 0.007368421405836 135 136 -3.782226733727e-24 136 136 73.06959962922 137 136 -5.943026113463 139 136 -0.001003621431071 141 136 -1.551897927995 157 136 -0.52298446947 177 136 -0.319185053795 179 136 -0.0580211220982 180 136 -0.2882698505622 182 136 -0.01727652875733 42 137 -7778510.286871 137 137 7778510.289384 135 138 -765000000 136 138 -115453078.1193 138 138 822724342.888 0 139 30.14975346743 1 139 -56.69119543686 3 139 0 19 139 0.0001184669871946 20 139 2.369339743891e-05 42 139 -0.0001178587861442 44 139 -0.0001421603846335 46 139 2.634022891202e-09 56 139 -2.451314668066e-05 135 139 0 139 139 33.79163103904 140 139 -3.623762789545 1 140 -0.01666608622337 52 140 -6.000026836812e-05 139 140 -0.01666609507463 140 140 0.01922185093315 49 141 -5200 141 141 5200.002525756 51 142 -228387.6175097 142 142 228387.6200291 19 143 -9360.000000003 42 143 -9360 143 143 9360.002525756 144 144 0.00252575585851 145 145 0.00252575585851 146 146 0.00252575585851 147 147 0.00252575585851 148 148 0.00252575585851 149 149 0.00252575585851 150 150 0.00252575585851 151 151 0.00252575585851 152 152 0.00252575585851 153 153 0.00252575585851 154 154 0.00252575585851 155 155 0.00252575585851 156 156 0.00252575585851 48 157 -2652000 157 157 2652000.002526 19 158 -33.00000000199 20 158 -192.3999999996 42 158 -192.4 157 158 -33 158 158 225.4025257558 20 159 -1199.999999857 26 159 -1092.000000009 42 159 -1092 55 159 -1200.000000001 159 159 2292.002525756 19 160 -3200.000000038 22 160 -192.3999999999 42 160 -192.3999999999 63 160 -3200 160 160 3392.402525756 21 161 -192.3999999995 42 161 -192.4 161 161 192.4025257559 19 162 -4472.000000018 42 162 -2236 162 162 2236.002525756 20 163 -1099.999999993 25 163 -192.4000000026 42 163 -192.3999999997 157 163 -1100 163 163 1292.402525756 42 164 -192.3999999999 71 164 -192.3999999969 164 164 192.4025257558 19 165 -2236.000000018 20 165 -2236.000000018 42 165 -2236 165 165 2236.002525756 23 166 -192.4000000001 42 166 -192.3999999999 166 166 192.4025257559 25 167 -33.30000000023 157 167 -33.3 167 167 33.30252575586 24 168 -192.4000000003 42 168 -192.4000000003 168 168 192.4025257559 28 169 -192.4000000001 42 169 -192.3999999999 169 169 192.4025257559 27 170 -192.4 42 170 -192.4 170 170 192.4025257559 42 171 -192.3999999997 87 171 -192.4 171 171 192.4025257559 42 172 -192.3999999998 87 172 -192.4 172 172 192.4025257558 42 173 -192.4000000002 133 173 -192.3999999999 173 173 192.4025257559 134 174 -192.4000000002 174 174 192.4025257558 29 175 -192.4 42 175 -192.4 175 175 192.4025257559 25 176 -3199.999999985 55 176 -3200 176 176 3200.002525756 106 177 -2236 177 177 2236.002525756 40 178 -2236.000000006 42 178 -2236.000000001 178 178 2236.002525756 108 179 -2236 179 179 2236.002525756 115 180 -2236 180 180 2236.002525756 42 181 -2236.000000002 116 181 -2235.999999999 181 181 2236.002525756 117 182 -2236.000000002 182 182 2236.002525756 SuiteSparse/CSparse/Matrix/lp_afiro0000644001170100242450000000161710336456056016306 0ustar davisfac2 0 1 3 1 1 6 2 1 7 3 1 8 4 1 9 5 1 12 6 1 13 7 1 16 8 1 17 9 1 18 10 1 19 11 1 20 12 1 21 13 1 22 14 1 23 15 1 24 16 1 25 17 1 26 18 1 0 19 -1 1 19 -1.06 2 19 1 23 19 0.301 0 20 1 3 20 -1 0 21 1 21 21 -1 1 22 1 25 22 1 4 23 -1 5 23 -1.06 6 23 1 24 23 0.301 4 24 -1 5 24 -1.06 7 24 1 24 24 0.313 4 25 -1 5 25 -0.96 8 25 1 24 25 0.313 4 26 -1 5 26 -0.86 9 26 1 24 26 0.326 6 27 -1 20 27 2.364 7 28 -1 20 28 2.386 8 29 -1 20 29 2.408 9 30 -1 20 30 2.429 3 31 1.4 4 31 1 4 32 1 22 32 -1 5 33 1 26 33 1 10 34 -1 11 34 -0.43 12 34 1 21 34 0.109 10 35 1 13 35 -1 10 36 1 23 36 -1 10 37 1 20 37 -1 11 38 1 25 38 1 14 39 -0.43 15 39 1 16 39 1 22 39 0.109 14 40 -0.43 15 40 1 17 40 1 22 40 0.108 14 41 -0.39 15 41 1 18 41 1 22 41 0.108 14 42 -0.37 15 42 1 19 42 1 22 42 0.107 16 43 -1 20 43 2.191 17 44 -1 20 44 2.219 18 45 -1 20 45 2.249 19 46 -1 20 46 2.279 13 47 1.4 15 47 -1 15 48 1 24 48 -1 14 49 1 26 49 1 15 50 1 SuiteSparse/CSparse/Include/0000755001170100242450000000000010711427636014701 5ustar davisfacSuiteSparse/CSparse/Include/cs.h0000644001170100242450000001371610711427635015466 0ustar davisfac#ifndef _CS_H #define _CS_H #include #include #include #include #ifdef MATLAB_MEX_FILE #include "mex.h" #endif #define CS_VER 2 /* CSparse Version 2.2.1 */ #define CS_SUBVER 2 #define CS_SUBSUB 1 #define CS_DATE "Nov 1, 2007" /* CSparse release date */ #define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006-2007" /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs ; cs *cs_add (const cs *A, const cs *B, double alpha, double beta) ; int cs_cholsol (int order, const cs *A, double *b) ; cs *cs_compress (const cs *T) ; int cs_dupl (cs *A) ; int cs_entry (cs *T, int i, int j, double x) ; int cs_gaxpy (const cs *A, const double *x, double *y) ; cs *cs_load (FILE *f) ; int cs_lusol (int order, const cs *A, double *b, double tol) ; cs *cs_multiply (const cs *A, const cs *B) ; double cs_norm (const cs *A) ; int cs_print (const cs *A, int brief) ; int cs_qrsol (int order, const cs *A, double *b) ; cs *cs_transpose (const cs *A, int values) ; /* utilities */ void *cs_calloc (int n, size_t size) ; void *cs_free (void *p) ; void *cs_realloc (void *p, int n, size_t size, int *ok) ; cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet) ; cs *cs_spfree (cs *A) ; int cs_sprealloc (cs *A, int nzmax) ; void *cs_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } css ; typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */ { cs *L ; /* L for LU and Cholesky, V for QR */ cs *U ; /* U for LU, R for QR, not used for Cholesky */ int *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } csn ; typedef struct cs_dmperm_results /* cs_dmperm or cs_scc output */ { int *p ; /* size m, row permutation */ int *q ; /* size n, column permutation */ int *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ int *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } csd ; int *cs_amd (int order, const cs *A) ; csn *cs_chol (const cs *A, const css *S) ; csd *cs_dmperm (const cs *A, int seed) ; int cs_droptol (cs *A, double tol) ; int cs_dropzeros (cs *A) ; int cs_happly (const cs *V, int i, double beta, double *x) ; int cs_ipvec (const int *p, const double *b, double *x, int n) ; int cs_lsolve (const cs *L, double *x) ; int cs_ltsolve (const cs *L, double *x) ; csn *cs_lu (const cs *A, const css *S, double tol) ; cs *cs_permute (const cs *A, const int *pinv, const int *q, int values) ; int *cs_pinv (const int *p, int n) ; int cs_pvec (const int *p, const double *b, double *x, int n) ; csn *cs_qr (const cs *A, const css *S) ; css *cs_schol (int order, const cs *A) ; css *cs_sqr (int order, const cs *A, int qr) ; cs *cs_symperm (const cs *A, const int *pinv, int values) ; int cs_updown (cs *L, int sigma, const cs *C, const int *parent) ; int cs_usolve (const cs *U, double *x) ; int cs_utsolve (const cs *U, double *x) ; /* utilities */ css *cs_sfree (css *S) ; csn *cs_nfree (csn *N) ; csd *cs_dfree (csd *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_counts (const cs *A, const int *parent, const int *post, int ata) ; double cs_cumsum (int *p, int *c, int n) ; int cs_dfs (int j, cs *G, int top, int *xi, int *pstack, const int *pinv) ; int cs_ereach (const cs *A, int k, const int *parent, int *s, int *w) ; int *cs_etree (const cs *A, int ata) ; int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other) ; double cs_house (double *x, double *beta, int n) ; int cs_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) ; int *cs_maxtrans (const cs *A, int seed) ; int *cs_post (const int *parent, int n) ; int *cs_randperm (int n, int seed) ; int cs_reach (cs *G, const cs *B, int k, int *xi, const int *pinv) ; int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark, cs *C, int nz) ; csd *cs_scc (cs *A) ; int cs_spsolve (cs *G, const cs *B, int k, int *xi, double *x, const int *pinv, int lo) ; int cs_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; /* utilities */ csd *cs_dalloc (int m, int n) ; csd *cs_ddone (csd *D, cs *C, void *w, int ok) ; cs *cs_done (cs *C, void *w, void *x, int ok) ; int *cs_idone (int *p, cs *C, void *w, int ok) ; csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok) ; #define CS_MAX(a,b) (((a) > (b)) ? (a) : (b)) #define CS_MIN(a,b) (((a) < (b)) ? (a) : (b)) #define CS_FLIP(i) (-(i)-2) #define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i)) #define CS_MARKED(w,j) (w [j] < 0) #define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; } #define CS_CSC(A) (A && (A->nz == -1)) #define CS_TRIPLET(A) (A && (A->nz >= 0)) #endif SuiteSparse/CSparse/Source/0000755001170100242450000000000010702451113014541 5ustar davisfacSuiteSparse/CSparse/Source/cs_ltsolve.c0000644001170100242450000000072410414335547017101 0ustar davisfac#include "cs.h" /* solve L'x=b where x and b are dense. x=b on input, solution on output. */ int cs_ltsolve (const cs *L, double *x) { int p, j, n, *Lp, *Li ; double *Lx ; if (!CS_CSC (L) || !x) return (0) ; /* check inputs */ n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (j = n-1 ; j >= 0 ; j--) { for (p = Lp [j]+1 ; p < Lp [j+1] ; p++) { x [j] -= Lx [p] * x [Li [p]] ; } x [j] /= Lx [Lp [j]] ; } return (1) ; } SuiteSparse/CSparse/Source/cs_cholsol.c0000644001170100242450000000141510416442163017045 0ustar davisfac#include "cs.h" /* x=A\b where A is symmetric positive definite; b overwritten with solution */ int cs_cholsol (int order, const cs *A, double *b) { double *x ; css *S ; csn *N ; int n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; S = cs_schol (order, A) ; /* ordering and symbolic analysis */ N = cs_chol (A, S) ; /* numeric Cholesky factorization */ x = cs_malloc (n, sizeof (double)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (S->pinv, b, x, n) ; /* x = P*b */ cs_lsolve (N->L, x) ; /* x = L\x */ cs_ltsolve (N->L, x) ; /* x = L'\x */ cs_pvec (S->pinv, x, b, n) ; /* b = P'*x */ } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; return (ok) ; } SuiteSparse/CSparse/Source/cs_lu.c0000644001170100242450000000657510414563004016032 0ustar davisfac#include "cs.h" /* [L,U,pinv]=lu(A, [q lnz unz]). lnz and unz can be guess */ csn *cs_lu (const cs *A, const css *S, double tol) { cs *L, *U ; csn *N ; double pivot, *Lx, *Ux, *x, a, t ; int *Lp, *Li, *Up, *Ui, *pinv, *xi, *q, n, ipiv, k, top, p, i, col, lnz,unz; if (!CS_CSC (A) || !S) return (NULL) ; /* check inputs */ n = A->n ; q = S->q ; lnz = S->lnz ; unz = S->unz ; x = cs_malloc (n, sizeof (double)) ; /* get double workspace */ xi = cs_malloc (2*n, sizeof (int)) ; /* get int workspace */ N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ if (!x || !xi || !N) return (cs_ndone (N, NULL, xi, x, 0)) ; N->L = L = cs_spalloc (n, n, lnz, 1, 0) ; /* allocate result L */ N->U = U = cs_spalloc (n, n, unz, 1, 0) ; /* allocate result U */ N->pinv = pinv = cs_malloc (n, sizeof (int)) ; /* allocate result pinv */ if (!L || !U || !pinv) return (cs_ndone (N, NULL, xi, x, 0)) ; Lp = L->p ; Up = U->p ; for (i = 0 ; i < n ; i++) x [i] = 0 ; /* clear workspace */ for (i = 0 ; i < n ; i++) pinv [i] = -1 ; /* no rows pivotal yet */ for (k = 0 ; k <= n ; k++) Lp [k] = 0 ; /* no cols of L yet */ lnz = unz = 0 ; for (k = 0 ; k < n ; k++) /* compute L(:,k) and U(:,k) */ { /* --- Triangular solve --------------------------------------------- */ Lp [k] = lnz ; /* L(:,k) starts here */ Up [k] = unz ; /* U(:,k) starts here */ if ((lnz + n > L->nzmax && !cs_sprealloc (L, 2*L->nzmax + n)) || (unz + n > U->nzmax && !cs_sprealloc (U, 2*U->nzmax + n))) { return (cs_ndone (N, NULL, xi, x, 0)) ; } Li = L->i ; Lx = L->x ; Ui = U->i ; Ux = U->x ; col = q ? (q [k]) : k ; top = cs_spsolve (L, A, col, xi, x, pinv, 1) ; /* x = L\A(:,col) */ /* --- Find pivot --------------------------------------------------- */ ipiv = -1 ; a = -1 ; for (p = top ; p < n ; p++) { i = xi [p] ; /* x(i) is nonzero */ if (pinv [i] < 0) /* row i is not yet pivotal */ { if ((t = fabs (x [i])) > a) { a = t ; /* largest pivot candidate so far */ ipiv = i ; } } else /* x(i) is the entry U(pinv[i],k) */ { Ui [unz] = pinv [i] ; Ux [unz++] = x [i] ; } } if (ipiv == -1 || a <= 0) return (cs_ndone (N, NULL, xi, x, 0)) ; if (pinv [col] < 0 && fabs (x [col]) >= a*tol) ipiv = col ; /* --- Divide by pivot ---------------------------------------------- */ pivot = x [ipiv] ; /* the chosen pivot */ Ui [unz] = k ; /* last entry in U(:,k) is U(k,k) */ Ux [unz++] = pivot ; pinv [ipiv] = k ; /* ipiv is the kth pivot row */ Li [lnz] = ipiv ; /* first entry in L(:,k) is L(k,k) = 1 */ Lx [lnz++] = 1 ; for (p = top ; p < n ; p++) /* L(k+1:n,k) = x / pivot */ { i = xi [p] ; if (pinv [i] < 0) /* x(i) is an entry in L(:,k) */ { Li [lnz] = i ; /* save unpermuted row in L */ Lx [lnz++] = x [i] / pivot ; /* scale pivot column */ } x [i] = 0 ; /* x [0..n-1] = 0 for next k */ } } /* --- Finalize L and U ------------------------------------------------- */ Lp [n] = lnz ; Up [n] = unz ; Li = L->i ; /* fix row indices of L for final pinv */ for (p = 0 ; p < lnz ; p++) Li [p] = pinv [Li [p]] ; cs_sprealloc (L, 0) ; /* remove extra space from L and U */ cs_sprealloc (U, 0) ; return (cs_ndone (N, NULL, xi, x, 1)) ; /* success */ } SuiteSparse/CSparse/Source/cs_qr.c0000644001170100242450000000564710571642754016051 0ustar davisfac#include "cs.h" /* sparse QR factorization [V,beta,pinv,R] = qr (A) */ csn *cs_qr (const cs *A, const css *S) { double *Rx, *Vx, *Ax, *x, *Beta ; int i, k, p, m, n, vnz, p1, top, m2, len, col, rnz, *s, *leftmost, *Ap, *Ai, *parent, *Rp, *Ri, *Vp, *Vi, *w, *pinv, *q ; cs *R, *V ; csn *N ; if (!CS_CSC (A) || !S) return (NULL) ; m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; q = S->q ; parent = S->parent ; pinv = S->pinv ; m2 = S->m2 ; vnz = S->lnz ; rnz = S->unz ; leftmost = S->leftmost ; w = cs_malloc (m2+n, sizeof (int)) ; /* get int workspace */ x = cs_malloc (m2, sizeof (double)) ; /* get double workspace */ N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ if (!w || !x || !N) return (cs_ndone (N, NULL, w, x, 0)) ; s = w + m2 ; /* s is size n */ for (k = 0 ; k < m2 ; k++) x [k] = 0 ; /* clear workspace x */ N->L = V = cs_spalloc (m2, n, vnz, 1, 0) ; /* allocate result V */ N->U = R = cs_spalloc (m2, n, rnz, 1, 0) ; /* allocate result R */ N->B = Beta = cs_malloc (n, sizeof (double)) ; /* allocate result Beta */ if (!R || !V || !Beta) return (cs_ndone (N, NULL, w, x, 0)) ; Rp = R->p ; Ri = R->i ; Rx = R->x ; Vp = V->p ; Vi = V->i ; Vx = V->x ; for (i = 0 ; i < m2 ; i++) w [i] = -1 ; /* clear w, to mark nodes */ rnz = 0 ; vnz = 0 ; for (k = 0 ; k < n ; k++) /* compute V and R */ { Rp [k] = rnz ; /* R(:,k) starts here */ Vp [k] = p1 = vnz ; /* V(:,k) starts here */ w [k] = k ; /* add V(k,k) to pattern of V */ Vi [vnz++] = k ; top = n ; col = q ? q [k] : k ; for (p = Ap [col] ; p < Ap [col+1] ; p++) /* find R(:,k) pattern */ { i = leftmost [Ai [p]] ; /* i = min(find(A(i,q))) */ for (len = 0 ; w [i] != k ; i = parent [i]) /* traverse up to k */ { s [len++] = i ; w [i] = k ; } while (len > 0) s [--top] = s [--len] ; /* push path on stack */ i = pinv [Ai [p]] ; /* i = permuted row of A(:,col) */ x [i] = Ax [p] ; /* x (i) = A(:,col) */ if (i > k && w [i] < k) /* pattern of V(:,k) = x (k+1:m) */ { Vi [vnz++] = i ; /* add i to pattern of V(:,k) */ w [i] = k ; } } for (p = top ; p < n ; p++) /* for each i in pattern of R(:,k) */ { i = s [p] ; /* R(i,k) is nonzero */ cs_happly (V, i, Beta [i], x) ; /* apply (V(i),Beta(i)) to x */ Ri [rnz] = i ; /* R(i,k) = x(i) */ Rx [rnz++] = x [i] ; x [i] = 0 ; if (parent [i] == k) vnz = cs_scatter (V, i, 0, w, NULL, k, V, vnz); } for (p = p1 ; p < vnz ; p++) /* gather V(:,k) = x */ { Vx [p] = x [Vi [p]] ; x [Vi [p]] = 0 ; } Ri [rnz] = k ; /* R(k,k) = norm (x) */ Rx [rnz++] = cs_house (Vx+p1, Beta+k, vnz-p1) ; /* [v,beta]=house(x) */ } Rp [n] = rnz ; /* finalize R */ Vp [n] = vnz ; /* finalize V */ return (cs_ndone (N, NULL, w, x, 1)) ; /* success */ } SuiteSparse/CSparse/Source/cs_house.c0000644001170100242450000000125410571117254016530 0ustar davisfac#include "cs.h" /* create a Householder reflection [v,beta,s]=house(x), overwrite x with v, * where (I-beta*v*v')*x = s*e1. See Algo 5.1.1, Golub & Van Loan, 3rd ed. */ double cs_house (double *x, double *beta, int n) { double s, sigma = 0 ; int i ; if (!x || !beta) return (-1) ; /* check inputs */ for (i = 1 ; i < n ; i++) sigma += x [i] * x [i] ; if (sigma == 0) { s = fabs (x [0]) ; /* s = |x(0)| */ (*beta) = (x [0] <= 0) ? 2 : 0 ; x [0] = 1 ; } else { s = sqrt (x [0] * x [0] + sigma) ; /* s = norm (x) */ x [0] = (x [0] <= 0) ? (x [0] - s) : (-sigma / (x [0] + s)) ; (*beta) = -1. / (s * x [0]) ; } return (s) ; } SuiteSparse/CSparse/Source/cs_updown.c0000644001170100242450000000303710571364004016717 0ustar davisfac#include "cs.h" /* sparse Cholesky update/downdate, L*L' + sigma*w*w' (sigma = +1 or -1) */ int cs_updown (cs *L, int sigma, const cs *C, const int *parent) { int n, p, f, j, *Lp, *Li, *Cp, *Ci ; double *Lx, *Cx, alpha, beta = 1, delta, gamma, w1, w2, *w, beta2 = 1 ; if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ; /* check inputs */ Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ; Cp = C->p ; Ci = C->i ; Cx = C->x ; if ((p = Cp [0]) >= Cp [1]) return (1) ; /* return if C empty */ w = cs_malloc (n, sizeof (double)) ; /* get workspace */ if (!w) return (0) ; /* out of memory */ f = Ci [p] ; for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ; /* f = min (find (C)) */ for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ; /* clear workspace w */ for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */ for (j = f ; j != -1 ; j = parent [j]) /* walk path f up to root */ { p = Lp [j] ; alpha = w [j] / Lx [p] ; /* alpha = w(j) / L(j,j) */ beta2 = beta*beta + sigma*alpha*alpha ; if (beta2 <= 0) break ; /* not positive definite */ beta2 = sqrt (beta2) ; delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ; gamma = sigma * alpha / (beta2 * beta) ; Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ; beta = beta2 ; for (p++ ; p < Lp [j+1] ; p++) { w1 = w [Li [p]] ; w [Li [p]] = w2 = w1 - alpha * Lx [p] ; Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ; } } cs_free (w) ; return (beta2 > 0) ; } SuiteSparse/CSparse/Source/cs_cumsum.c0000644001170100242450000000077510414317363016724 0ustar davisfac#include "cs.h" /* p [0..n] = cumulative sum of c [0..n-1], and then copy p [0..n-1] into c */ double cs_cumsum (int *p, int *c, int n) { int i, nz = 0 ; double nz2 = 0 ; if (!p || !c) return (-1) ; /* check inputs */ for (i = 0 ; i < n ; i++) { p [i] = nz ; nz += c [i] ; nz2 += c [i] ; /* also in double to avoid int overflow */ c [i] = p [i] ; /* also copy p[0..n-1] back into c[0..n-1]*/ } p [n] = nz ; return (nz2) ; /* return sum (c [0..n-1]) */ } SuiteSparse/CSparse/Source/cs_malloc.c0000644001170100242450000000154110415504624016651 0ustar davisfac#include "cs.h" #ifdef MATLAB_MEX_FILE #define malloc mxMalloc #define free mxFree #define realloc mxRealloc #define calloc mxCalloc #endif /* wrapper for malloc */ void *cs_malloc (int n, size_t size) { return (malloc (CS_MAX (n,1) * size)) ; } /* wrapper for calloc */ void *cs_calloc (int n, size_t size) { return (calloc (CS_MAX (n,1), size)) ; } /* wrapper for free */ void *cs_free (void *p) { if (p) free (p) ; /* free p if it is not already NULL */ return (NULL) ; /* return NULL to simplify the use of cs_free */ } /* wrapper for realloc */ void *cs_realloc (void *p, int n, size_t size, int *ok) { void *pnew ; pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */ *ok = (pnew != NULL) ; /* realloc fails if pnew is NULL */ return ((*ok) ? pnew : p) ; /* return original p if failure */ } SuiteSparse/CSparse/Source/cs_permute.c0000644001170100242450000000166010415504764017072 0ustar davisfac#include "cs.h" /* C = A(p,q) where p and q are permutations of 0..m-1 and 0..n-1. */ cs *cs_permute (const cs *A, const int *pinv, const int *q, int values) { int t, j, k, nz = 0, m, n, *Ap, *Ai, *Cp, *Ci ; double *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (m, n, Ap [n], values && Ax != NULL, 0) ; /* alloc result */ if (!C) return (cs_done (C, NULL, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (k = 0 ; k < n ; k++) { Cp [k] = nz ; /* column k of C is column q[k] of A */ j = q ? (q [k]) : k ; for (t = Ap [j] ; t < Ap [j+1] ; t++) { if (Cx) Cx [nz] = Ax [t] ; /* row i of A is row pinv[i] of C */ Ci [nz++] = pinv ? (pinv [Ai [t]]) : Ai [t] ; } } Cp [n] = nz ; /* finalize the last column of C */ return (cs_done (C, NULL, NULL, 1)) ; } SuiteSparse/CSparse/Source/cs_symperm.c0000644001170100242450000000277410414454316017110 0ustar davisfac#include "cs.h" /* C = A(p,p) where A and C are symmetric the upper part stored; pinv not p */ cs *cs_symperm (const cs *A, const int *pinv, int values) { int i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w ; double *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (n, n, Ap [n], values && (Ax != NULL), 0) ; /* alloc result*/ w = cs_calloc (n, sizeof (int)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (j = 0 ; j < n ; j++) /* count entries in each column of C */ { j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (i > j) continue ; /* skip lower triangular part of A */ i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */ w [CS_MAX (i2, j2)]++ ; /* column count of C */ } } cs_cumsum (Cp, w, n) ; /* compute column pointers of C */ for (j = 0 ; j < n ; j++) { j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (i > j) continue ; /* skip lower triangular part of A*/ i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */ Ci [q = w [CS_MAX (i2, j2)]++] = CS_MIN (i2, j2) ; if (Cx) Cx [q] = Ax [p] ; } } return (cs_done (C, w, NULL, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CSparse/Source/cs_lsolve.c0000644001170100242450000000071710414335545016715 0ustar davisfac#include "cs.h" /* solve Lx=b where x and b are dense. x=b on input, solution on output. */ int cs_lsolve (const cs *L, double *x) { int p, j, n, *Lp, *Li ; double *Lx ; if (!CS_CSC (L) || !x) return (0) ; /* check inputs */ n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (j = 0 ; j < n ; j++) { x [j] /= Lx [Lp [j]] ; for (p = Lp [j]+1 ; p < Lp [j+1] ; p++) { x [Li [p]] -= Lx [p] * x [j] ; } } return (1) ; } SuiteSparse/CSparse/Source/cs_happly.c0000644001170100242450000000104410414335542016675 0ustar davisfac#include "cs.h" /* apply the ith Householder vector to x */ int cs_happly (const cs *V, int i, double beta, double *x) { int p, *Vp, *Vi ; double *Vx, tau = 0 ; if (!CS_CSC (V) || !x) return (0) ; /* check inputs */ Vp = V->p ; Vi = V->i ; Vx = V->x ; for (p = Vp [i] ; p < Vp [i+1] ; p++) /* tau = v'*x */ { tau += Vx [p] * x [Vi [p]] ; } tau *= beta ; /* tau = beta*(v'*x) */ for (p = Vp [i] ; p < Vp [i+1] ; p++) /* x = x - v*tau */ { x [Vi [p]] -= Vx [p] * tau ; } return (1) ; } SuiteSparse/CSparse/Source/cs_utsolve.c0000644001170100242450000000072510414335707017111 0ustar davisfac#include "cs.h" /* solve U'x=b where x and b are dense. x=b on input, solution on output. */ int cs_utsolve (const cs *U, double *x) { int p, j, n, *Up, *Ui ; double *Ux ; if (!CS_CSC (U) || !x) return (0) ; /* check inputs */ n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ; for (j = 0 ; j < n ; j++) { for (p = Up [j] ; p < Up [j+1]-1 ; p++) { x [j] -= Ux [p] * x [Ui [p]] ; } x [j] /= Ux [Up [j+1]-1] ; } return (1) ; } SuiteSparse/CSparse/Source/cs_ipvec.c0000644001170100242450000000044610415505577016523 0ustar davisfac#include "cs.h" /* x(p) = b, for dense vectors x and b; p=NULL denotes identity */ int cs_ipvec (const int *p, const double *b, double *x, int n) { int k ; if (!x || !b) return (0) ; /* check inputs */ for (k = 0 ; k < n ; k++) x [p ? p [k] : k] = b [k] ; return (1) ; } SuiteSparse/CSparse/Source/cs_print.c0000644001170100242450000000206410376365073016550 0ustar davisfac#include "cs.h" /* print a sparse matrix */ int cs_print (const cs *A, int brief) { int p, j, m, n, nzmax, nz, *Ap, *Ai ; double *Ax ; if (!A) { printf ("(null)\n") ; return (0) ; } m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; nzmax = A->nzmax ; nz = A->nz ; printf ("CSparse Version %d.%d.%d, %s. %s\n", CS_VER, CS_SUBVER, CS_SUBSUB, CS_DATE, CS_COPYRIGHT) ; if (nz < 0) { printf ("%d-by-%d, nzmax: %d nnz: %d, 1-norm: %g\n", m, n, nzmax, Ap [n], cs_norm (A)) ; for (j = 0 ; j < n ; j++) { printf (" col %d : locations %d to %d\n", j, Ap [j], Ap [j+1]-1); for (p = Ap [j] ; p < Ap [j+1] ; p++) { printf (" %d : %g\n", Ai [p], Ax ? Ax [p] : 1) ; if (brief && p > 20) { printf (" ...\n") ; return (1) ; } } } } else { printf ("triplet: %d-by-%d, nzmax: %d nnz: %d\n", m, n, nzmax, nz) ; for (p = 0 ; p < nz ; p++) { printf (" %d %d : %g\n", Ai [p], Ap [p], Ax ? Ax [p] : 1) ; if (brief && p > 20) { printf (" ...\n") ; return (1) ; } } } return (1) ; } SuiteSparse/CSparse/Source/cs_scatter.c0000644001170100242450000000136010414335615017047 0ustar davisfac#include "cs.h" /* x = x + beta * A(:,j), where x is a dense vector and A(:,j) is sparse */ int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark, cs *C, int nz) { int i, p, *Ap, *Ai, *Ci ; double *Ax ; if (!CS_CSC (A) || !w || !CS_CSC (C)) return (-1) ; /* check inputs */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Ci = C->i ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* A(i,j) is nonzero */ if (w [i] < mark) { w [i] = mark ; /* i is new entry in column j */ Ci [nz++] = i ; /* add i to pattern of C(:,j) */ if (x) x [i] = beta * Ax [p] ; /* x(i) = beta*A(i,j) */ } else if (x) x [i] += beta * Ax [p] ; /* i exists in C(:,j) already */ } return (nz) ; } SuiteSparse/CSparse/Source/cs_counts.c0000644001170100242450000000502310414453543016716 0ustar davisfac#include "cs.h" /* column counts of LL'=A or LL'=A'A, given parent & post ordering */ #define HEAD(k,j) (ata ? head [k] : j) #define NEXT(J) (ata ? next [J] : -1) static void init_ata (cs *AT, const int *post, int *w, int **head, int **next) { int i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ; *head = w+4*n, *next = w+5*n+1 ; for (k = 0 ; k < n ; k++) w [post [k]] = k ; /* invert post */ for (i = 0 ; i < m ; i++) { for (k = n, p = ATp[i] ; p < ATp[i+1] ; p++) k = CS_MIN (k, w [ATi[p]]); (*next) [i] = (*head) [k] ; /* place row i in linked list k */ (*head) [k] = i ; } } int *cs_counts (const cs *A, const int *parent, const int *post, int ata) { int i, j, k, n, m, J, s, p, q, jleaf, *ATp, *ATi, *maxfirst, *prevleaf, *ancestor, *head = NULL, *next = NULL, *colcount, *w, *first, *delta ; cs *AT ; if (!CS_CSC (A) || !parent || !post) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; s = 4*n + (ata ? (n+m+1) : 0) ; delta = colcount = cs_malloc (n, sizeof (int)) ; /* allocate result */ w = cs_malloc (s, sizeof (int)) ; /* get workspace */ AT = cs_transpose (A, 0) ; /* AT = A' */ if (!AT || !colcount || !w) return (cs_idone (colcount, AT, w, 0)) ; ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; for (k = 0 ; k < s ; k++) w [k] = -1 ; /* clear workspace w [0..s-1] */ for (k = 0 ; k < n ; k++) /* find first [j] */ { j = post [k] ; delta [j] = (first [j] == -1) ? 1 : 0 ; /* delta[j]=1 if j is a leaf */ for ( ; j != -1 && first [j] == -1 ; j = parent [j]) first [j] = k ; } ATp = AT->p ; ATi = AT->i ; if (ata) init_ata (AT, post, w, &head, &next) ; for (i = 0 ; i < n ; i++) ancestor [i] = i ; /* each node in its own set */ for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in postordered etree */ if (parent [j] != -1) delta [parent [j]]-- ; /* j is not a root */ for (J = HEAD (k,j) ; J != -1 ; J = NEXT (J)) /* J=j for LL'=A case */ { for (p = ATp [J] ; p < ATp [J+1] ; p++) { i = ATi [p] ; q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf); if (jleaf >= 1) delta [j]++ ; /* A(i,j) is in skeleton */ if (jleaf == 2) delta [q]-- ; /* account for overlap in q */ } } if (parent [j] != -1) ancestor [j] = parent [j] ; } for (j = 0 ; j < n ; j++) /* sum up delta's of each child */ { if (parent [j] != -1) colcount [parent [j]] += colcount [j] ; } return (cs_idone (colcount, AT, w, 1)) ; /* success: free workspace */ } SuiteSparse/CSparse/Source/cs_reach.c0000644001170100242450000000121210415507221016453 0ustar davisfac#include "cs.h" /* xi [top...n-1] = nodes reachable from graph of G*P' via nodes in B(:,k). * xi [n...2n-1] used as workspace */ int cs_reach (cs *G, const cs *B, int k, int *xi, const int *pinv) { int p, n, top, *Bp, *Bi, *Gp ; if (!CS_CSC (G) || !CS_CSC (B) || !xi) return (-1) ; /* check inputs */ n = G->n ; Bp = B->p ; Bi = B->i ; Gp = G->p ; top = n ; for (p = Bp [k] ; p < Bp [k+1] ; p++) { if (!CS_MARKED (Gp, Bi [p])) /* start a dfs at unmarked node i */ { top = cs_dfs (Bi [p], G, top, xi, xi+n, pinv) ; } } for (p = top ; p < n ; p++) CS_MARK (Gp, xi [p]) ; /* restore G */ return (top) ; } SuiteSparse/CSparse/Source/cs_dropzeros.c0000644001170100242450000000032610414754172017435 0ustar davisfac#include "cs.h" static int cs_nonzero (int i, int j, double aij, void *other) { return (aij != 0) ; } int cs_dropzeros (cs *A) { return (cs_fkeep (A, &cs_nonzero, NULL)) ; /* keep all nonzero entries */ } SuiteSparse/CSparse/Source/cs_qrsol.c0000644001170100242450000000307410416442215016543 0ustar davisfac#include "cs.h" /* x=A\b where A can be rectangular; b overwritten with solution */ int cs_qrsol (int order, const cs *A, double *b) { double *x ; css *S ; csn *N ; cs *AT = NULL ; int k, m, n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; m = A->m ; if (m >= n) { S = cs_sqr (order, A, 1) ; /* ordering and symbolic analysis */ N = cs_qr (A, S) ; /* numeric QR factorization */ x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (S->pinv, b, x, m) ; /* x(0:m-1) = b(p(0:m-1) */ for (k = 0 ; k < n ; k++) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_usolve (N->U, x) ; /* x = R\x */ cs_ipvec (S->q, x, b, n) ; /* b(q(0:n-1)) = x(0:n-1) */ } } else { AT = cs_transpose (A, 1) ; /* Ax=b is underdetermined */ S = cs_sqr (order, AT, 1) ; /* ordering and symbolic analysis */ N = cs_qr (AT, S) ; /* numeric QR factorization of A' */ x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */ ok = (AT && S && N && x) ; if (ok) { cs_pvec (S->q, b, x, m) ; /* x(q(0:m-1)) = b(0:m-1) */ cs_utsolve (N->U, x) ; /* x = R'\x */ for (k = m-1 ; k >= 0 ; k--) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_pvec (S->pinv, x, b, n) ; /* b(0:n-1) = x(p(0:n-1)) */ } } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; cs_spfree (AT) ; return (ok) ; } SuiteSparse/CSparse/Source/cs_chol.c0000644001170100242450000000462510415615347016342 0ustar davisfac#include "cs.h" /* L = chol (A, [pinv parent cp]), pinv is optional */ csn *cs_chol (const cs *A, const css *S) { double d, lki, *Lx, *x, *Cx ; int top, i, p, k, n, *Li, *Lp, *cp, *pinv, *s, *c, *parent, *Cp, *Ci ; cs *L, *C, *E ; csn *N ; if (!CS_CSC (A) || !S || !S->cp || !S->parent) return (NULL) ; n = A->n ; N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ c = cs_malloc (2*n, sizeof (int)) ; /* get int workspace */ x = cs_malloc (n, sizeof (double)) ; /* get double workspace */ cp = S->cp ; pinv = S->pinv ; parent = S->parent ; C = pinv ? cs_symperm (A, pinv, 1) : ((cs *) A) ; E = pinv ? C : NULL ; /* E is alias for A, or a copy E=A(p,p) */ if (!N || !c || !x || !C) return (cs_ndone (N, E, c, x, 0)) ; s = c + n ; Cp = C->p ; Ci = C->i ; Cx = C->x ; N->L = L = cs_spalloc (n, n, cp [n], 1, 0) ; /* allocate result */ if (!L) return (cs_ndone (N, E, c, x, 0)) ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (k = 0 ; k < n ; k++) Lp [k] = c [k] = cp [k] ; for (k = 0 ; k < n ; k++) /* compute L(:,k) for L*L' = C */ { /* --- Nonzero pattern of L(k,:) ------------------------------------ */ top = cs_ereach (C, k, parent, s, c) ; /* find pattern of L(k,:) */ x [k] = 0 ; /* x (0:k) is now zero */ for (p = Cp [k] ; p < Cp [k+1] ; p++) /* x = full(triu(C(:,k))) */ { if (Ci [p] <= k) x [Ci [p]] = Cx [p] ; } d = x [k] ; /* d = C(k,k) */ x [k] = 0 ; /* clear x for k+1st iteration */ /* --- Triangular solve --------------------------------------------- */ for ( ; top < n ; top++) /* solve L(0:k-1,0:k-1) * x = C(:,k) */ { i = s [top] ; /* s [top..n-1] is pattern of L(k,:) */ lki = x [i] / Lx [Lp [i]] ; /* L(k,i) = x (i) / L(i,i) */ x [i] = 0 ; /* clear x for k+1st iteration */ for (p = Lp [i] + 1 ; p < c [i] ; p++) { x [Li [p]] -= Lx [p] * lki ; } d -= lki * lki ; /* d = d - L(k,i)*L(k,i) */ p = c [i]++ ; Li [p] = k ; /* store L(k,i) in column i */ Lx [p] = lki ; } /* --- Compute L(k,k) ----------------------------------------------- */ if (d <= 0) return (cs_ndone (N, E, c, x, 0)) ; /* not pos def */ p = c [k]++ ; Li [p] = k ; /* store L(k,k) = sqrt (d) in column k */ Lx [p] = sqrt (d) ; } Lp [n] = cp [n] ; /* finalize L */ return (cs_ndone (N, E, c, x, 1)) ; /* success: free E,s,x; return N */ } SuiteSparse/CSparse/Source/cs_dupl.c0000644001170100242450000000200210414335517016341 0ustar davisfac#include "cs.h" /* remove duplicate entries from A */ int cs_dupl (cs *A) { int i, j, p, q, nz = 0, n, m, *Ap, *Ai, *w ; double *Ax ; if (!CS_CSC (A)) return (0) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; w = cs_malloc (m, sizeof (int)) ; /* get workspace */ if (!w) return (0) ; /* out of memory */ for (i = 0 ; i < m ; i++) w [i] = -1 ; /* row i not yet seen */ for (j = 0 ; j < n ; j++) { q = nz ; /* column j will start at q */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* A(i,j) is nonzero */ if (w [i] >= q) { Ax [w [i]] += Ax [p] ; /* A(i,j) is a duplicate */ } else { w [i] = nz ; /* record where row i occurs */ Ai [nz] = i ; /* keep A(i,j) */ Ax [nz++] = Ax [p] ; } } Ap [j] = q ; /* record start of column j */ } Ap [n] = nz ; /* finalize A */ cs_free (w) ; /* free workspace */ return (cs_sprealloc (A, 0)) ; /* remove extra space from A */ } SuiteSparse/CSparse/Source/cs_schol.c0000644001170100242450000000212610416444066016516 0ustar davisfac#include "cs.h" /* ordering and symbolic analysis for a Cholesky factorization */ css *cs_schol (int order, const cs *A) { int n, *c, *post, *P ; cs *C ; css *S ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; S = cs_calloc (1, sizeof (css)) ; /* allocate result S */ if (!S) return (NULL) ; /* out of memory */ P = cs_amd (order, A) ; /* P = amd(A+A'), or natural */ S->pinv = cs_pinv (P, n) ; /* find inverse permutation */ cs_free (P) ; if (order && !S->pinv) return (cs_sfree (S)) ; C = cs_symperm (A, S->pinv, 0) ; /* C = spones(triu(A(P,P))) */ S->parent = cs_etree (C, 0) ; /* find etree of C */ post = cs_post (S->parent, n) ; /* postorder the etree */ c = cs_counts (C, S->parent, post, 0) ; /* find column counts of chol(C) */ cs_free (post) ; cs_spfree (C) ; S->cp = cs_malloc (n+1, sizeof (int)) ; /* allocate result S->cp */ S->unz = S->lnz = cs_cumsum (S->cp, c, n) ; /* find column pointers for L */ cs_free (c) ; return ((S->lnz >= 0) ? S : cs_sfree (S)) ; } SuiteSparse/CSparse/Source/cs_leaf.c0000644001170100242450000000172210414756135016317 0ustar davisfac#include "cs.h" /* consider A(i,j), node j in ith row subtree and return lca(jprev,j) */ int cs_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) { int q, s, sparent, jprev ; if (!first || !maxfirst || !prevleaf || !ancestor || !jleaf) return (-1) ; *jleaf = 0 ; if (i <= j || first [j] <= maxfirst [i]) return (-1) ; /* j not a leaf */ maxfirst [i] = first [j] ; /* update max first[j] seen so far */ jprev = prevleaf [i] ; /* jprev = previous leaf of ith subtree */ prevleaf [i] = j ; *jleaf = (jprev == -1) ? 1: 2 ; /* j is first or subsequent leaf */ if (*jleaf == 1) return (i) ; /* if 1st leaf, q = root of ith subtree */ for (q = jprev ; q != ancestor [q] ; q = ancestor [q]) ; for (s = jprev ; s != q ; s = sparent) { sparent = ancestor [s] ; /* path compression */ ancestor [s] = q ; } return (q) ; /* q = least common ancester (jprev,j) */ } SuiteSparse/CSparse/Source/cs_dmperm.c0000644001170100242450000001322610417204204016662 0ustar davisfac#include "cs.h" /* breadth-first search for coarse decomposition (C0,C1,R1 or R0,R3,C3) */ static int cs_bfs (const cs *A, int n, int *wi, int *wj, int *queue, const int *imatch, const int *jmatch, int mark) { int *Ap, *Ai, head = 0, tail = 0, j, i, p, j2 ; cs *C ; for (j = 0 ; j < n ; j++) /* place all unmatched nodes in queue */ { if (imatch [j] >= 0) continue ; /* skip j if matched */ wj [j] = 0 ; /* j in set C0 (R0 if transpose) */ queue [tail++] = j ; /* place unmatched col j in queue */ } if (tail == 0) return (1) ; /* quick return if no unmatched nodes */ C = (mark == 1) ? ((cs *) A) : cs_transpose (A, 0) ; if (!C) return (0) ; /* bfs of C=A' to find R3,C3 from R0 */ Ap = C->p ; Ai = C->i ; while (head < tail) /* while queue is not empty */ { j = queue [head++] ; /* get the head of the queue */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (wi [i] >= 0) continue ; /* skip if i is marked */ wi [i] = mark ; /* i in set R1 (C3 if transpose) */ j2 = jmatch [i] ; /* traverse alternating path to j2 */ if (wj [j2] >= 0) continue ;/* skip j2 if it is marked */ wj [j2] = mark ; /* j2 in set C1 (R3 if transpose) */ queue [tail++] = j2 ; /* add j2 to queue */ } } if (mark != 1) cs_spfree (C) ; /* free A' if it was created */ return (1) ; } /* collect matched rows and columns into p and q */ static void cs_matched (int n, const int *wj, const int *imatch, int *p, int *q, int *cc, int *rr, int set, int mark) { int kc = cc [set], j ; int kr = rr [set-1] ; for (j = 0 ; j < n ; j++) { if (wj [j] != mark) continue ; /* skip if j is not in C set */ p [kr++] = imatch [j] ; q [kc++] = j ; } cc [set+1] = kc ; rr [set] = kr ; } /* collect unmatched rows into the permutation vector p */ static void cs_unmatched (int m, const int *wi, int *p, int *rr, int set) { int i, kr = rr [set] ; for (i = 0 ; i < m ; i++) if (wi [i] == 0) p [kr++] = i ; rr [set+1] = kr ; } /* return 1 if row i is in R2 */ static int cs_rprune (int i, int j, double aij, void *other) { int *rr = (int *) other ; return (i >= rr [1] && i < rr [2]) ; } /* Given A, compute coarse and then fine dmperm */ csd *cs_dmperm (const cs *A, int seed) { int m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci, *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ; cs *C ; csd *D, *scc ; /* --- Maximum matching ------------------------------------------------- */ if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; D = cs_dalloc (m, n) ; /* allocate result */ if (!D) return (NULL) ; p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ; jmatch = cs_maxtrans (A, seed) ; /* max transversal */ imatch = jmatch + m ; /* imatch = inverse of jmatch */ if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ; /* --- Coarse decomposition --------------------------------------------- */ wi = r ; wj = s ; /* use r and s as workspace */ for (j = 0 ; j < n ; j++) wj [j] = -1 ; /* unmark all cols for bfs */ for (i = 0 ; i < m ; i++) wi [i] = -1 ; /* unmark all rows for bfs */ cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ; /* find C1, R1 from C0*/ ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ; /* find R3, C3 from R0*/ if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ; cs_unmatched (n, wj, q, cc, 0) ; /* unmatched set C0 */ cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ; /* set R1 and C1 */ cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */ cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */ cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set R0 */ cs_free (jmatch) ; /* --- Fine decomposition ----------------------------------------------- */ pinv = cs_pinv (p, m) ; /* pinv=p' */ if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ; C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */ cs_free (pinv) ; if (!C) return (cs_ddone (D, NULL, NULL, 0)) ; Cp = C->p ; nc = cc [3] - cc [2] ; /* delete cols C0, C1, and C3 from C */ if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ; C->n = nc ; if (rr [2] - rr [1] < m) /* delete rows R0, R1, and R3 from C */ { cs_fkeep (C, cs_rprune, rr) ; cnz = Cp [nc] ; Ci = C->i ; if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ; } C->m = nc ; scc = cs_scc (C) ; /* find strongly connected components of C*/ if (!scc) return (cs_ddone (D, C, NULL, 0)) ; /* --- Combine coarse and fine decompositions --------------------------- */ ps = scc->p ; /* C(ps,ps) is the permuted matrix */ rs = scc->r ; /* kth block is rs[k]..rs[k+1]-1 */ nb1 = scc->nb ; /* # of blocks of A(R2,C2) */ for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ; for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ; for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ; for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ; nb2 = 0 ; /* create the fine block partitions */ r [0] = s [0] = 0 ; if (cc [2] > 0) nb2++ ; /* leading coarse block A (R1, [C0 C1]) */ for (k = 0 ; k < nb1 ; k++) /* coarse block A (R2,C2) */ { r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */ s [nb2] = rs [k] + cc [2] ; nb2++ ; } if (rr [2] < m) { r [nb2] = rr [2] ; /* trailing coarse block A ([R3 R0], C3) */ s [nb2] = cc [3] ; nb2++ ; } r [nb2] = m ; s [nb2] = n ; D->nb = nb2 ; cs_dfree (scc) ; return (cs_ddone (D, C, NULL, 1)) ; } SuiteSparse/CSparse/Source/cs_load.c0000644001170100242450000000056510414453660016330 0ustar davisfac#include "cs.h" /* load a triplet matrix from a file */ cs *cs_load (FILE *f) { int i, j ; double x ; cs *T ; if (!f) return (NULL) ; /* check inputs */ T = cs_spalloc (0, 0, 1, 1, 1) ; /* allocate result */ while (fscanf (f, "%d %d %lg\n", &i, &j, &x) == 3) { if (!cs_entry (T, i, j, x)) return (cs_spfree (T)) ; } return (T) ; } SuiteSparse/CSparse/Source/README.txt0000644001170100242450000000032210360550613016241 0ustar davisfacCSparse/Source directory: primary ANSI C source code files for CSparse. All of these files are printed verbatim in the book. To compile the libcsparse.a C-callable library, just type "make" in this directory. SuiteSparse/CSparse/Source/cs_norm.c0000644001170100242450000000066410414335566016370 0ustar davisfac#include "cs.h" /* 1-norm of a sparse matrix = max (sum (abs (A))), largest column sum */ double cs_norm (const cs *A) { int p, j, n, *Ap ; double *Ax, norm = 0, s ; if (!CS_CSC (A) || !A->x) return (-1) ; /* check inputs */ n = A->n ; Ap = A->p ; Ax = A->x ; for (j = 0 ; j < n ; j++) { for (s = 0, p = Ap [j] ; p < Ap [j+1] ; p++) s += fabs (Ax [p]) ; norm = CS_MAX (norm, s) ; } return (norm) ; } SuiteSparse/CSparse/Source/cs_randperm.c0000644001170100242450000000143710417245045017217 0ustar davisfac#include "cs.h" /* return a random permutation vector, the identity perm, or p = n-1:-1:0. * seed = -1 means p = n-1:-1:0. seed = 0 means p = identity. otherwise * p = random permutation. */ int *cs_randperm (int n, int seed) { int *p, k, j, t ; if (seed == 0) return (NULL) ; /* return p = NULL (identity) */ p = cs_malloc (n, sizeof (int)) ; /* allocate result */ if (!p) return (NULL) ; /* out of memory */ for (k = 0 ; k < n ; k++) p [k] = n-k-1 ; if (seed == -1) return (p) ; /* return reverse permutation */ srand (seed) ; /* get new random number seed */ for (k = 0 ; k < n ; k++) { j = k + (rand ( ) % (n-k)) ; /* j = rand int in range k to n-1 */ t = p [j] ; /* swap p[k] and p[j] */ p [j] = p [k] ; p [k] = t ; } return (p) ; } SuiteSparse/CSparse/Source/cs_pinv.c0000644001170100242450000000062210414454051016352 0ustar davisfac#include "cs.h" /* pinv = p', or p = pinv' */ int *cs_pinv (int const *p, int n) { int k, *pinv ; if (!p) return (NULL) ; /* p = NULL denotes identity */ pinv = cs_malloc (n, sizeof (int)) ; /* allocate result */ if (!pinv) return (NULL) ; /* out of memory */ for (k = 0 ; k < n ; k++) pinv [p [k]] = k ;/* invert the permutation */ return (pinv) ; /* return result */ } SuiteSparse/CSparse/Source/cs_post.c0000644001170100242450000000171410415505633016372 0ustar davisfac#include "cs.h" /* post order a forest */ int *cs_post (const int *parent, int n) { int j, k = 0, *post, *w, *head, *next, *stack ; if (!parent) return (NULL) ; /* check inputs */ post = cs_malloc (n, sizeof (int)) ; /* allocate result */ w = cs_malloc (3*n, sizeof (int)) ; /* get workspace */ if (!w || !post) return (cs_idone (post, NULL, w, 0)) ; head = w ; next = w + n ; stack = w + 2*n ; for (j = 0 ; j < n ; j++) head [j] = -1 ; /* empty linked lists */ for (j = n-1 ; j >= 0 ; j--) /* traverse nodes in reverse order*/ { if (parent [j] == -1) continue ; /* j is a root */ next [j] = head [parent [j]] ; /* add j to list of its parent */ head [parent [j]] = j ; } for (j = 0 ; j < n ; j++) { if (parent [j] != -1) continue ; /* skip j if it is not a root */ k = cs_tdfs (j, k, head, next, post, stack) ; } return (cs_idone (post, NULL, w, 1)) ; /* success; free w, return post */ } SuiteSparse/CSparse/Source/cs_pvec.c0000644001170100242450000000044510415505525016342 0ustar davisfac#include "cs.h" /* x = b(p), for dense vectors x and b; p=NULL denotes identity */ int cs_pvec (const int *p, const double *b, double *x, int n) { int k ; if (!x || !b) return (0) ; /* check inputs */ for (k = 0 ; k < n ; k++) x [k] = b [p ? p [k] : k] ; return (1) ; } SuiteSparse/CSparse/Source/cs_entry.c0000644001170100242450000000070010414336100016526 0ustar davisfac#include "cs.h" /* add an entry to a triplet matrix; return 1 if ok, 0 otherwise */ int cs_entry (cs *T, int i, int j, double x) { if (!CS_TRIPLET (T) || i < 0 || j < 0) return (0) ; /* check inputs */ if (T->nz >= T->nzmax && !cs_sprealloc (T,2*(T->nzmax))) return (0) ; if (T->x) T->x [T->nz] = x ; T->i [T->nz] = i ; T->p [T->nz++] = j ; T->m = CS_MAX (T->m, i+1) ; T->n = CS_MAX (T->n, j+1) ; return (1) ; } SuiteSparse/CSparse/Source/cs_tdfs.c0000644001170100242450000000142010372172174016341 0ustar davisfac#include "cs.h" /* depth-first search and postorder of a tree rooted at node j */ int cs_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) { int i, p, top = 0 ; if (!head || !next || !post || !stack) return (-1) ; /* check inputs */ stack [0] = j ; /* place j on the stack */ while (top >= 0) /* while (stack is not empty) */ { p = stack [top] ; /* p = top of stack */ i = head [p] ; /* i = youngest child of p */ if (i == -1) { top-- ; /* p has no unordered children left */ post [k++] = p ; /* node p is the kth postordered node */ } else { head [p] = next [i] ; /* remove i from children of p */ stack [++top] = i ; /* start dfs on child node i */ } } return (k) ; } SuiteSparse/CSparse/Source/cs_usolve.c0000644001170100242450000000072610414335705016724 0ustar davisfac#include "cs.h" /* solve Ux=b where x and b are dense. x=b on input, solution on output. */ int cs_usolve (const cs *U, double *x) { int p, j, n, *Up, *Ui ; double *Ux ; if (!CS_CSC (U) || !x) return (0) ; /* check inputs */ n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ; for (j = n-1 ; j >= 0 ; j--) { x [j] /= Ux [Up [j+1]-1] ; for (p = Up [j] ; p < Up [j+1]-1 ; p++) { x [Ui [p]] -= Ux [p] * x [j] ; } } return (1) ; } SuiteSparse/CSparse/Source/cs_util.c0000644001170100242450000000733510436047730016371 0ustar davisfac#include "cs.h" /* allocate a sparse matrix (triplet form or compressed-column form) */ cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet) { cs *A = cs_calloc (1, sizeof (cs)) ; /* allocate the cs struct */ if (!A) return (NULL) ; /* out of memory */ A->m = m ; /* define dimensions and nzmax */ A->n = n ; A->nzmax = nzmax = CS_MAX (nzmax, 1) ; A->nz = triplet ? 0 : -1 ; /* allocate triplet or comp.col */ A->p = cs_malloc (triplet ? nzmax : n+1, sizeof (int)) ; A->i = cs_malloc (nzmax, sizeof (int)) ; A->x = values ? cs_malloc (nzmax, sizeof (double)) : NULL ; return ((!A->p || !A->i || (values && !A->x)) ? cs_spfree (A) : A) ; } /* change the max # of entries sparse matrix */ int cs_sprealloc (cs *A, int nzmax) { int ok, oki, okj = 1, okx = 1 ; if (!A) return (0) ; if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ; A->i = cs_realloc (A->i, nzmax, sizeof (int), &oki) ; if (CS_TRIPLET (A)) A->p = cs_realloc (A->p, nzmax, sizeof (int), &okj) ; if (A->x) A->x = cs_realloc (A->x, nzmax, sizeof (double), &okx) ; ok = (oki && okj && okx) ; if (ok) A->nzmax = nzmax ; return (ok) ; } /* free a sparse matrix */ cs *cs_spfree (cs *A) { if (!A) return (NULL) ; /* do nothing if A already NULL */ cs_free (A->p) ; cs_free (A->i) ; cs_free (A->x) ; return (cs_free (A)) ; /* free the cs struct and return NULL */ } /* free a numeric factorization */ csn *cs_nfree (csn *N) { if (!N) return (NULL) ; /* do nothing if N already NULL */ cs_spfree (N->L) ; cs_spfree (N->U) ; cs_free (N->pinv) ; cs_free (N->B) ; return (cs_free (N)) ; /* free the csn struct and return NULL */ } /* free a symbolic factorization */ css *cs_sfree (css *S) { if (!S) return (NULL) ; /* do nothing if S already NULL */ cs_free (S->pinv) ; cs_free (S->q) ; cs_free (S->parent) ; cs_free (S->cp) ; cs_free (S->leftmost) ; return (cs_free (S)) ; /* free the css struct and return NULL */ } /* allocate a cs_dmperm or cs_scc result */ csd *cs_dalloc (int m, int n) { csd *D ; D = cs_calloc (1, sizeof (csd)) ; if (!D) return (NULL) ; D->p = cs_malloc (m, sizeof (int)) ; D->r = cs_malloc (m+6, sizeof (int)) ; D->q = cs_malloc (n, sizeof (int)) ; D->s = cs_malloc (n+6, sizeof (int)) ; return ((!D->p || !D->r || !D->q || !D->s) ? cs_dfree (D) : D) ; } /* free a cs_dmperm or cs_scc result */ csd *cs_dfree (csd *D) { if (!D) return (NULL) ; /* do nothing if D already NULL */ cs_free (D->p) ; cs_free (D->q) ; cs_free (D->r) ; cs_free (D->s) ; return (cs_free (D)) ; } /* free workspace and return a sparse matrix result */ cs *cs_done (cs *C, void *w, void *x, int ok) { cs_free (w) ; /* free workspace */ cs_free (x) ; return (ok ? C : cs_spfree (C)) ; /* return result if OK, else free it */ } /* free workspace and return int array result */ int *cs_idone (int *p, cs *C, void *w, int ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ return (ok ? p : cs_free (p)) ; /* return result if OK, else free it */ } /* free workspace and return a numeric factorization (Cholesky, LU, or QR) */ csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ cs_free (x) ; return (ok ? N : cs_nfree (N)) ; /* return result if OK, else free it */ } /* free workspace and return a csd result */ csd *cs_ddone (csd *D, cs *C, void *w, int ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ return (ok ? D : cs_dfree (D)) ; /* return result if OK, else free it */ } SuiteSparse/CSparse/Source/cs_maxtrans.c0000644001170100242450000000746510447326135017256 0ustar davisfac#include "cs.h" /* find an augmenting path starting at column k and extend the match if found */ static void cs_augment (int k, const cs *A, int *jmatch, int *cheap, int *w, int *js, int *is, int *ps) { int found = 0, p, i = -1, *Ap = A->p, *Ai = A->i, head = 0, j ; js [0] = k ; /* start with just node k in jstack */ while (head >= 0) { /* --- Start (or continue) depth-first-search at node j ------------- */ j = js [head] ; /* get j from top of jstack */ if (w [j] != k) /* 1st time j visited for kth path */ { w [j] = k ; /* mark j as visited for kth path */ for (p = cheap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* try a cheap assignment (i,j) */ found = (jmatch [i] == -1) ; } cheap [j] = p ; /* start here next time j is traversed*/ if (found) { is [head] = i ; /* column j matched with row i */ break ; /* end of augmenting path */ } ps [head] = Ap [j] ; /* no cheap match: start dfs for j */ } /* --- Depth-first-search of neighbors of j ------------------------- */ for (p = ps [head] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* consider row i */ if (w [jmatch [i]] == k) continue ; /* skip jmatch [i] if marked */ ps [head] = p + 1 ; /* pause dfs of node j */ is [head] = i ; /* i will be matched with j if found */ js [++head] = jmatch [i] ; /* start dfs at column jmatch [i] */ break ; } if (p == Ap [j+1]) head-- ; /* node j is done; pop from stack */ } /* augment the match if path found: */ if (found) for (p = head ; p >= 0 ; p--) jmatch [is [p]] = js [p] ; } /* find a maximum transveral */ int *cs_maxtrans (const cs *A, int seed) /*[jmatch [0..m-1]; imatch [0..n-1]]*/ { int i, j, k, n, m, p, n2 = 0, m2 = 0, *Ap, *jimatch, *w, *cheap, *js, *is, *ps, *Ai, *Cp, *jmatch, *imatch, *q ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; m = A->m ; Ap = A->p ; Ai = A->i ; w = jimatch = cs_calloc (m+n, sizeof (int)) ; /* allocate result */ if (!jimatch) return (NULL) ; for (k = 0, j = 0 ; j < n ; j++) /* count nonempty rows and columns */ { n2 += (Ap [j] < Ap [j+1]) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { w [Ai [p]] = 1 ; k += (j == Ai [p]) ; /* count entries already on diagonal */ } } if (k == CS_MIN (m,n)) /* quick return if diagonal zero-free */ { jmatch = jimatch ; imatch = jimatch + m ; for (i = 0 ; i < k ; i++) jmatch [i] = i ; for ( ; i < m ; i++) jmatch [i] = -1 ; for (j = 0 ; j < k ; j++) imatch [j] = j ; for ( ; j < n ; j++) imatch [j] = -1 ; return (cs_idone (jimatch, NULL, NULL, 1)) ; } for (i = 0 ; i < m ; i++) m2 += w [i] ; C = (m2 < n2) ? cs_transpose (A,0) : ((cs *) A) ; /* transpose if needed */ if (!C) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, NULL, 0)) ; n = C->n ; m = C->m ; Cp = C->p ; jmatch = (m2 < n2) ? jimatch + n : jimatch ; imatch = (m2 < n2) ? jimatch : jimatch + m ; w = cs_malloc (5*n, sizeof (int)) ; /* get workspace */ if (!w) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 0)) ; cheap = w + n ; js = w + 2*n ; is = w + 3*n ; ps = w + 4*n ; for (j = 0 ; j < n ; j++) cheap [j] = Cp [j] ; /* for cheap assignment */ for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */ for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* nothing matched yet */ q = cs_randperm (n, seed) ; /* q = random permutation */ for (k = 0 ; k < n ; k++) /* augment, starting at column q[k] */ { cs_augment (q ? q [k]: k, C, jmatch, cheap, w, js, is, ps) ; } cs_free (q) ; for (j = 0 ; j < n ; j++) imatch [j] = -1 ; /* find row match */ for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ; return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 1)) ; } SuiteSparse/CSparse/Source/cs_spsolve.c0000644001170100242450000000225410415246613017100 0ustar davisfac#include "cs.h" /* solve Gx=b(:,k), where G is either upper (lo=0) or lower (lo=1) triangular */ int cs_spsolve (cs *G, const cs *B, int k, int *xi, double *x, const int *pinv, int lo) { int j, J, p, q, px, top, n, *Gp, *Gi, *Bp, *Bi ; double *Gx, *Bx ; if (!CS_CSC (G) || !CS_CSC (B) || !xi || !x) return (-1) ; Gp = G->p ; Gi = G->i ; Gx = G->x ; n = G->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; top = cs_reach (G, B, k, xi, pinv) ; /* xi[top..n-1]=Reach(B(:,k)) */ for (p = top ; p < n ; p++) x [xi [p]] = 0 ; /* clear x */ for (p = Bp [k] ; p < Bp [k+1] ; p++) x [Bi [p]] = Bx [p] ; /* scatter B */ for (px = top ; px < n ; px++) { j = xi [px] ; /* x(j) is nonzero */ J = pinv ? (pinv [j]) : j ; /* j maps to col J of G */ if (J < 0) continue ; /* column J is empty */ x [j] /= Gx [lo ? (Gp [J]) : (Gp [J+1]-1)] ;/* x(j) /= G(j,j) */ p = lo ? (Gp [J]+1) : (Gp [J]) ; /* lo: L(j,j) 1st entry */ q = lo ? (Gp [J+1]) : (Gp [J+1]-1) ; /* up: U(j,j) last entry */ for ( ; p < q ; p++) { x [Gi [p]] -= Gx [p] * x [j] ; /* x(i) -= G(i,j) * x(j) */ } } return (top) ; /* return top of stack */ } SuiteSparse/CSparse/Source/cs_droptol.c0000644001170100242450000000035410372171107017064 0ustar davisfac#include "cs.h" static int cs_tol (int i, int j, double aij, void *tol) { return (fabs (aij) > *((double *) tol)) ; } int cs_droptol (cs *A, double tol) { return (cs_fkeep (A, &cs_tol, &tol)) ; /* keep all large entries */ } SuiteSparse/CSparse/Source/cs_etree.c0000644001170100242450000000224310414452033016501 0ustar davisfac#include "cs.h" /* compute the etree of A (using triu(A), or A'A without forming A'A */ int *cs_etree (const cs *A, int ata) { int i, k, p, m, n, inext, *Ap, *Ai, *w, *parent, *ancestor, *prev ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; parent = cs_malloc (n, sizeof (int)) ; /* allocate result */ w = cs_malloc (n + (ata ? m : 0), sizeof (int)) ; /* get workspace */ if (!w || !parent) return (cs_idone (parent, NULL, w, 0)) ; ancestor = w ; prev = w + n ; if (ata) for (i = 0 ; i < m ; i++) prev [i] = -1 ; for (k = 0 ; k < n ; k++) { parent [k] = -1 ; /* node k has no parent yet */ ancestor [k] = -1 ; /* nor does k have an ancestor */ for (p = Ap [k] ; p < Ap [k+1] ; p++) { i = ata ? (prev [Ai [p]]) : (Ai [p]) ; for ( ; i != -1 && i < k ; i = inext) /* traverse from i to k */ { inext = ancestor [i] ; /* inext = ancestor of i */ ancestor [i] = k ; /* path compression */ if (inext == -1) parent [i] = k ; /* no anc., parent is k */ } if (ata) prev [Ai [p]] = k ; } } return (cs_idone (parent, NULL, w, 1)) ; } SuiteSparse/CSparse/Source/cs_fkeep.c0000644001170100242450000000142510415722164016476 0ustar davisfac#include "cs.h" /* drop entries for which fkeep(A(i,j)) is false; return nz if OK, else -1 */ int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other) { int j, p, nz = 0, n, *Ap, *Ai ; double *Ax ; if (!CS_CSC (A) || !fkeep) return (-1) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; for (j = 0 ; j < n ; j++) { p = Ap [j] ; /* get current location of col j */ Ap [j] = nz ; /* record new location of col j */ for ( ; p < Ap [j+1] ; p++) { if (fkeep (Ai [p], j, Ax ? Ax [p] : 1, other)) { if (Ax) Ax [nz] = Ax [p] ; /* keep A(i,j) */ Ai [nz++] = Ai [p] ; } } } Ap [n] = nz ; /* finalize A */ cs_sprealloc (A, 0) ; /* remove extra space from A */ return (nz) ; } SuiteSparse/CSparse/Source/cs_lusol.c0000644001170100242450000000142210416442200016526 0ustar davisfac#include "cs.h" /* x=A\b where A is unsymmetric; b overwritten with solution */ int cs_lusol (int order, const cs *A, double *b, double tol) { double *x ; css *S ; csn *N ; int n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; S = cs_sqr (order, A, 0) ; /* ordering and symbolic analysis */ N = cs_lu (A, S, tol) ; /* numeric LU factorization */ x = cs_malloc (n, sizeof (double)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (N->pinv, b, x, n) ; /* x = b(p) */ cs_lsolve (N->L, x) ; /* x = L\x */ cs_usolve (N->U, x) ; /* x = U\x */ cs_ipvec (S->q, x, b, n) ; /* b(q) = x */ } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; return (ok) ; } SuiteSparse/CSparse/Source/cs_ereach.c0000644001170100242450000000173610414336415016637 0ustar davisfac#include "cs.h" /* find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k)) */ int cs_ereach (const cs *A, int k, const int *parent, int *s, int *w) { int i, p, n, len, top, *Ap, *Ai ; if (!CS_CSC (A) || !parent || !s || !w) return (-1) ; /* check inputs */ top = n = A->n ; Ap = A->p ; Ai = A->i ; CS_MARK (w, k) ; /* mark node k as visited */ for (p = Ap [k] ; p < Ap [k+1] ; p++) { i = Ai [p] ; /* A(i,k) is nonzero */ if (i > k) continue ; /* only use upper triangular part of A */ for (len = 0 ; !CS_MARKED (w,i) ; i = parent [i]) /* traverse up etree*/ { s [len++] = i ; /* L(k,i) is nonzero */ CS_MARK (w, i) ; /* mark i as visited */ } while (len > 0) s [--top] = s [--len] ; /* push path onto stack */ } for (p = top ; p < n ; p++) CS_MARK (w, s [p]) ; /* unmark all nodes */ CS_MARK (w, k) ; /* unmark node k */ return (top) ; /* s [top..n-1] contains pattern of L(k,:)*/ } SuiteSparse/CSparse/Source/cs_gaxpy.c0000644001170100242450000000061410414335537016536 0ustar davisfac#include "cs.h" /* y = A*x+y */ int cs_gaxpy (const cs *A, const double *x, double *y) { int p, j, n, *Ap, *Ai ; double *Ax ; if (!CS_CSC (A) || !x || !y) return (0) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { y [Ai [p]] += Ax [p] * x [j] ; } } return (1) ; } SuiteSparse/CSparse/Source/cs_multiply.c0000644001170100242450000000256110567641255017276 0ustar davisfac#include "cs.h" /* C = A*B */ cs *cs_multiply (const cs *A, const cs *B) { int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values, *Bi ; double *x, *Bx, *Cx ; cs *C ; if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */ if (A->n != B->m) return (NULL) ; m = A->m ; anz = A->p [A->n] ; n = B->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; bnz = Bp [n] ; w = cs_calloc (m, sizeof (int)) ; /* get workspace */ values = (A->x != NULL) && (Bx != NULL) ; x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */ C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result */ if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ; Cp = C->p ; for (j = 0 ; j < n ; j++) { if (nz + m > C->nzmax && !cs_sprealloc (C, 2*(C->nzmax)+m)) { return (cs_done (C, w, x, 0)) ; /* out of memory */ } Ci = C->i ; Cx = C->x ; /* C->i and C->x may be reallocated */ Cp [j] = nz ; /* column j of C starts here */ for (p = Bp [j] ; p < Bp [j+1] ; p++) { nz = cs_scatter (A, Bi [p], Bx ? Bx [p] : 1, w, x, j+1, C, nz) ; } if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ; } Cp [n] = nz ; /* finalize the last column of C */ cs_sprealloc (C, 0) ; /* remove extra space from C */ return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CSparse/Source/cs_add.c0000644001170100242450000000242210567641320016134 0ustar davisfac#include "cs.h" /* C = alpha*A + beta*B */ cs *cs_add (const cs *A, const cs *B, double alpha, double beta) { int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values ; double *x, *Bx, *Cx ; cs *C ; if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */ if (A->m != B->m || A->n != B->n) return (NULL) ; m = A->m ; anz = A->p [A->n] ; n = B->n ; Bp = B->p ; Bx = B->x ; bnz = Bp [n] ; w = cs_calloc (m, sizeof (int)) ; /* get workspace */ values = (A->x != NULL) && (Bx != NULL) ; x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */ C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result*/ if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; for (j = 0 ; j < n ; j++) { Cp [j] = nz ; /* column j of C starts here */ nz = cs_scatter (A, j, alpha, w, x, j+1, C, nz) ; /* alpha*A(:,j)*/ nz = cs_scatter (B, j, beta, w, x, j+1, C, nz) ; /* beta*B(:,j) */ if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ; } Cp [n] = nz ; /* finalize the last column of C */ cs_sprealloc (C, 0) ; /* remove extra space from C */ return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CSparse/Source/cs_amd.c0000644001170100242450000003047310447326117016155 0ustar davisfac#include "cs.h" /* clear w */ static int cs_wclear (int mark, int lemax, int *w, int n) { int k ; if (mark < 2 || (mark + lemax < 0)) { for (k = 0 ; k < n ; k++) if (w [k] != 0) w [k] = 1 ; mark = 2 ; } return (mark) ; /* at this point, w [0..n-1] < mark holds */ } /* keep off-diagonal entries; drop diagonal entries */ static int cs_diag (int i, int j, double aij, void *other) { return (i != j) ; } /* p = amd(A+A') if symmetric is true, or amd(A'A) otherwise */ int *cs_amd (int order, const cs *A) /* order 0:natural, 1:Chol, 2:LU, 3:QR */ { cs *C, *A2, *AT ; int *Cp, *Ci, *last, *W, *len, *nv, *next, *P, *head, *elen, *degree, *w, *hhead, *ATp, *ATi, d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, ok, cnz, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, n, m, t ; unsigned int h ; /* --- Construct matrix C ----------------------------------------------- */ if (!CS_CSC (A) || order <= 0 || order > 3) return (NULL) ; /* check */ AT = cs_transpose (A, 0) ; /* compute A' */ if (!AT) return (NULL) ; m = A->m ; n = A->n ; dense = CS_MAX (16, 10 * sqrt ((double) n)) ; /* find dense threshold */ dense = CS_MIN (n-2, dense) ; if (order == 1 && n == m) { C = cs_add (A, AT, 0, 0) ; /* C = A+A' */ } else if (order == 2) { ATp = AT->p ; /* drop dense columns from AT */ ATi = AT->i ; for (p2 = 0, j = 0 ; j < m ; j++) { p = ATp [j] ; /* column j of AT starts here */ ATp [j] = p2 ; /* new column j starts here */ if (ATp [j+1] - p > dense) continue ; /* skip dense col j */ for ( ; p < ATp [j+1] ; p++) ATi [p2++] = ATi [p] ; } ATp [m] = p2 ; /* finalize AT */ A2 = cs_transpose (AT, 0) ; /* A2 = AT' */ C = A2 ? cs_multiply (AT, A2) : NULL ; /* C=A'*A with no dense rows */ cs_spfree (A2) ; } else { C = cs_multiply (AT, A) ; /* C=A'*A */ } cs_spfree (AT) ; if (!C) return (NULL) ; cs_fkeep (C, &cs_diag, NULL) ; /* drop diagonal entries */ Cp = C->p ; cnz = Cp [n] ; P = cs_malloc (n+1, sizeof (int)) ; /* allocate result */ W = cs_malloc (8*(n+1), sizeof (int)) ; /* get workspace */ t = cnz + cnz/5 + 2*n ; /* add elbow room to C */ if (!P || !W || !cs_sprealloc (C, t)) return (cs_idone (P, C, W, 0)) ; len = W ; nv = W + (n+1) ; next = W + 2*(n+1) ; head = W + 3*(n+1) ; elen = W + 4*(n+1) ; degree = W + 5*(n+1) ; w = W + 6*(n+1) ; hhead = W + 7*(n+1) ; last = P ; /* use P as workspace for last */ /* --- Initialize quotient graph ---------------------------------------- */ for (k = 0 ; k < n ; k++) len [k] = Cp [k+1] - Cp [k] ; len [n] = 0 ; nzmax = C->nzmax ; Ci = C->i ; for (i = 0 ; i <= n ; i++) { head [i] = -1 ; /* degree list i is empty */ last [i] = -1 ; next [i] = -1 ; hhead [i] = -1 ; /* hash list i is empty */ nv [i] = 1 ; /* node i is just one node */ w [i] = 1 ; /* node i is alive */ elen [i] = 0 ; /* Ek of node i is empty */ degree [i] = len [i] ; /* degree of node i */ } mark = cs_wclear (0, 0, w, n) ; /* clear w */ elen [n] = -2 ; /* n is a dead element */ Cp [n] = -1 ; /* n is a root of assembly tree */ w [n] = 0 ; /* n is a dead element */ /* --- Initialize degree lists ------------------------------------------ */ for (i = 0 ; i < n ; i++) { d = degree [i] ; if (d == 0) /* node i is empty */ { elen [i] = -2 ; /* element i is dead */ nel++ ; Cp [i] = -1 ; /* i is a root of assembly tree */ w [i] = 0 ; } else if (d > dense) /* node i is dense */ { nv [i] = 0 ; /* absorb i into element n */ elen [i] = -1 ; /* node i is dead */ nel++ ; Cp [i] = CS_FLIP (n) ; nv [n]++ ; } else { if (head [d] != -1) last [head [d]] = i ; next [i] = head [d] ; /* put node i in degree list d */ head [d] = i ; } } while (nel < n) /* while (selecting pivots) do */ { /* --- Select node of minimum approximate degree -------------------- */ for (k = -1 ; mindeg < n && (k = head [mindeg]) == -1 ; mindeg++) ; if (next [k] != -1) last [next [k]] = -1 ; head [mindeg] = next [k] ; /* remove k from degree list */ elenk = elen [k] ; /* elenk = |Ek| */ nvk = nv [k] ; /* # of nodes k represents */ nel += nvk ; /* nv[k] nodes of A eliminated */ /* --- Garbage collection ------------------------------------------- */ if (elenk > 0 && cnz + mindeg >= nzmax) { for (j = 0 ; j < n ; j++) { if ((p = Cp [j]) >= 0) /* j is a live node or element */ { Cp [j] = Ci [p] ; /* save first entry of object */ Ci [p] = CS_FLIP (j) ; /* first entry is now CS_FLIP(j) */ } } for (q = 0, p = 0 ; p < cnz ; ) /* scan all of memory */ { if ((j = CS_FLIP (Ci [p++])) >= 0) /* found object j */ { Ci [q] = Cp [j] ; /* restore first entry of object */ Cp [j] = q++ ; /* new pointer to object j */ for (k3 = 0 ; k3 < len [j]-1 ; k3++) Ci [q++] = Ci [p++] ; } } cnz = q ; /* Ci [cnz...nzmax-1] now free */ } /* --- Construct new element ---------------------------------------- */ dk = 0 ; nv [k] = -nvk ; /* flag k as in Lk */ p = Cp [k] ; pk1 = (elenk == 0) ? p : cnz ; /* do in place if elen[k] == 0 */ pk2 = pk1 ; for (k1 = 1 ; k1 <= elenk + 1 ; k1++) { if (k1 > elenk) { e = k ; /* search the nodes in k */ pj = p ; /* list of nodes starts at Ci[pj]*/ ln = len [k] - elenk ; /* length of list of nodes in k */ } else { e = Ci [p++] ; /* search the nodes in e */ pj = Cp [e] ; ln = len [e] ; /* length of list of nodes in e */ } for (k2 = 1 ; k2 <= ln ; k2++) { i = Ci [pj++] ; if ((nvi = nv [i]) <= 0) continue ; /* node i dead, or seen */ dk += nvi ; /* degree[Lk] += size of node i */ nv [i] = -nvi ; /* negate nv[i] to denote i in Lk*/ Ci [pk2++] = i ; /* place i in Lk */ if (next [i] != -1) last [next [i]] = last [i] ; if (last [i] != -1) /* remove i from degree list */ { next [last [i]] = next [i] ; } else { head [degree [i]] = next [i] ; } } if (e != k) { Cp [e] = CS_FLIP (k) ; /* absorb e into k */ w [e] = 0 ; /* e is now a dead element */ } } if (elenk != 0) cnz = pk2 ; /* Ci [cnz...nzmax] is free */ degree [k] = dk ; /* external degree of k - |Lk\i| */ Cp [k] = pk1 ; /* element k is in Ci[pk1..pk2-1] */ len [k] = pk2 - pk1 ; elen [k] = -2 ; /* k is now an element */ /* --- Find set differences ----------------------------------------- */ mark = cs_wclear (mark, lemax, w, n) ; /* clear w if necessary */ for (pk = pk1 ; pk < pk2 ; pk++) /* scan 1: find |Le\Lk| */ { i = Ci [pk] ; if ((eln = elen [i]) <= 0) continue ;/* skip if elen[i] empty */ nvi = -nv [i] ; /* nv [i] was negated */ wnvi = mark - nvi ; for (p = Cp [i] ; p <= Cp [i] + eln - 1 ; p++) /* scan Ei */ { e = Ci [p] ; if (w [e] >= mark) { w [e] -= nvi ; /* decrement |Le\Lk| */ } else if (w [e] != 0) /* ensure e is a live element */ { w [e] = degree [e] + wnvi ; /* 1st time e seen in scan 1 */ } } } /* --- Degree update ------------------------------------------------ */ for (pk = pk1 ; pk < pk2 ; pk++) /* scan2: degree update */ { i = Ci [pk] ; /* consider node i in Lk */ p1 = Cp [i] ; p2 = p1 + elen [i] - 1 ; pn = p1 ; for (h = 0, d = 0, p = p1 ; p <= p2 ; p++) /* scan Ei */ { e = Ci [p] ; if (w [e] != 0) /* e is an unabsorbed element */ { dext = w [e] - mark ; /* dext = |Le\Lk| */ if (dext > 0) { d += dext ; /* sum up the set differences */ Ci [pn++] = e ; /* keep e in Ei */ h += e ; /* compute the hash of node i */ } else { Cp [e] = CS_FLIP (k) ; /* aggressive absorb. e->k */ w [e] = 0 ; /* e is a dead element */ } } } elen [i] = pn - p1 + 1 ; /* elen[i] = |Ei| */ p3 = pn ; p4 = p1 + len [i] ; for (p = p2 + 1 ; p < p4 ; p++) /* prune edges in Ai */ { j = Ci [p] ; if ((nvj = nv [j]) <= 0) continue ; /* node j dead or in Lk */ d += nvj ; /* degree(i) += |j| */ Ci [pn++] = j ; /* place j in node list of i */ h += j ; /* compute hash for node i */ } if (d == 0) /* check for mass elimination */ { Cp [i] = CS_FLIP (k) ; /* absorb i into k */ nvi = -nv [i] ; dk -= nvi ; /* |Lk| -= |i| */ nvk += nvi ; /* |k| += nv[i] */ nel += nvi ; nv [i] = 0 ; elen [i] = -1 ; /* node i is dead */ } else { degree [i] = CS_MIN (degree [i], d) ; /* update degree(i) */ Ci [pn] = Ci [p3] ; /* move first node to end */ Ci [p3] = Ci [p1] ; /* move 1st el. to end of Ei */ Ci [p1] = k ; /* add k as 1st element in of Ei */ len [i] = pn - p1 + 1 ; /* new len of adj. list of node i */ h %= n ; /* finalize hash of i */ next [i] = hhead [h] ; /* place i in hash bucket */ hhead [h] = i ; last [i] = h ; /* save hash of i in last[i] */ } } /* scan2 is done */ degree [k] = dk ; /* finalize |Lk| */ lemax = CS_MAX (lemax, dk) ; mark = cs_wclear (mark+lemax, lemax, w, n) ; /* clear w */ /* --- Supernode detection ------------------------------------------ */ for (pk = pk1 ; pk < pk2 ; pk++) { i = Ci [pk] ; if (nv [i] >= 0) continue ; /* skip if i is dead */ h = last [i] ; /* scan hash bucket of node i */ i = hhead [h] ; hhead [h] = -1 ; /* hash bucket will be empty */ for ( ; i != -1 && next [i] != -1 ; i = next [i], mark++) { ln = len [i] ; eln = elen [i] ; for (p = Cp [i]+1 ; p <= Cp [i] + ln-1 ; p++) w [Ci [p]] = mark; jlast = i ; for (j = next [i] ; j != -1 ; ) /* compare i with all j */ { ok = (len [j] == ln) && (elen [j] == eln) ; for (p = Cp [j] + 1 ; ok && p <= Cp [j] + ln - 1 ; p++) { if (w [Ci [p]] != mark) ok = 0 ; /* compare i and j*/ } if (ok) /* i and j are identical */ { Cp [j] = CS_FLIP (i) ; /* absorb j into i */ nv [i] += nv [j] ; nv [j] = 0 ; elen [j] = -1 ; /* node j is dead */ j = next [j] ; /* delete j from hash bucket */ next [jlast] = j ; } else { jlast = j ; /* j and i are different */ j = next [j] ; } } } } /* --- Finalize new element------------------------------------------ */ for (p = pk1, pk = pk1 ; pk < pk2 ; pk++) /* finalize Lk */ { i = Ci [pk] ; if ((nvi = -nv [i]) <= 0) continue ;/* skip if i is dead */ nv [i] = nvi ; /* restore nv[i] */ d = degree [i] + dk - nvi ; /* compute external degree(i) */ d = CS_MIN (d, n - nel - nvi) ; if (head [d] != -1) last [head [d]] = i ; next [i] = head [d] ; /* put i back in degree list */ last [i] = -1 ; head [d] = i ; mindeg = CS_MIN (mindeg, d) ; /* find new minimum degree */ degree [i] = d ; Ci [p++] = i ; /* place i in Lk */ } nv [k] = nvk ; /* # nodes absorbed into k */ if ((len [k] = p-pk1) == 0) /* length of adj list of element k*/ { Cp [k] = -1 ; /* k is a root of the tree */ w [k] = 0 ; /* k is now a dead element */ } if (elenk != 0) cnz = p ; /* free unused space in Lk */ } /* --- Postordering ----------------------------------------------------- */ for (i = 0 ; i < n ; i++) Cp [i] = CS_FLIP (Cp [i]) ;/* fix assembly tree */ for (j = 0 ; j <= n ; j++) head [j] = -1 ; for (j = n ; j >= 0 ; j--) /* place unordered nodes in lists */ { if (nv [j] > 0) continue ; /* skip if j is an element */ next [j] = head [Cp [j]] ; /* place j in list of its parent */ head [Cp [j]] = j ; } for (e = n ; e >= 0 ; e--) /* place elements in lists */ { if (nv [e] <= 0) continue ; /* skip unless e is an element */ if (Cp [e] != -1) { next [e] = head [Cp [e]] ; /* place e in list of its parent */ head [Cp [e]] = e ; } } for (k = 0, i = 0 ; i <= n ; i++) /* postorder the assembly tree */ { if (Cp [i] == -1) k = cs_tdfs (i, k, head, next, P, w) ; } return (cs_idone (P, C, W, 1)) ; } SuiteSparse/CSparse/Source/cs_dfs.c0000644001170100242450000000253110415506416016157 0ustar davisfac#include "cs.h" /* depth-first-search of the graph of a matrix, starting at node j */ int cs_dfs (int j, cs *G, int top, int *xi, int *pstack, const int *pinv) { int i, p, p2, done, jnew, head = 0, *Gp, *Gi ; if (!CS_CSC (G) || !xi || !pstack) return (-1) ; /* check inputs */ Gp = G->p ; Gi = G->i ; xi [0] = j ; /* initialize the recursion stack */ while (head >= 0) { j = xi [head] ; /* get j from the top of the recursion stack */ jnew = pinv ? (pinv [j]) : j ; if (!CS_MARKED (Gp, j)) { CS_MARK (Gp, j) ; /* mark node j as visited */ pstack [head] = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew]) ; } done = 1 ; /* node j done if no unvisited neighbors */ p2 = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew+1]) ; for (p = pstack [head] ; p < p2 ; p++) /* examine all neighbors of j */ { i = Gi [p] ; /* consider neighbor node i */ if (CS_MARKED (Gp, i)) continue ; /* skip visited node i */ pstack [head] = p ; /* pause depth-first search of node j */ xi [++head] = i ; /* start dfs at node i */ done = 0 ; /* node j is not done */ break ; /* break, to start dfs (i) */ } if (done) /* depth-first search at node j is done */ { head-- ; /* remove j from the recursion stack */ xi [--top] = j ; /* and place in the output stack */ } } return (top) ; } SuiteSparse/CSparse/Source/cs_scc.c0000644001170100242450000000332410414452565016160 0ustar davisfac#include "cs.h" /* find the strongly connected components of a square matrix */ csd *cs_scc (cs *A) /* matrix A temporarily modified, then restored */ { int n, i, k, b, nb = 0, top, *xi, *pstack, *p, *r, *Ap, *ATp, *rcopy, *Blk ; cs *AT ; csd *D ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; Ap = A->p ; D = cs_dalloc (n, 0) ; /* allocate result */ AT = cs_transpose (A, 0) ; /* AT = A' */ xi = cs_malloc (2*n+1, sizeof (int)) ; /* get workspace */ if (!D || !AT || !xi) return (cs_ddone (D, AT, xi, 0)) ; Blk = xi ; rcopy = pstack = xi + n ; p = D->p ; r = D->r ; ATp = AT->p ; top = n ; for (i = 0 ; i < n ; i++) /* first dfs(A) to find finish times (xi) */ { if (!CS_MARKED (Ap, i)) top = cs_dfs (i, A, top, xi, pstack, NULL) ; } for (i = 0 ; i < n ; i++) CS_MARK (Ap, i) ; /* restore A; unmark all nodes*/ top = n ; nb = n ; for (k = 0 ; k < n ; k++) /* dfs(A') to find strongly connnected comp */ { i = xi [k] ; /* get i in reverse order of finish times */ if (CS_MARKED (ATp, i)) continue ; /* skip node i if already ordered */ r [nb--] = top ; /* node i is the start of a component in p */ top = cs_dfs (i, AT, top, p, pstack, NULL) ; } r [nb] = 0 ; /* first block starts at zero; shift r up */ for (k = nb ; k <= n ; k++) r [k-nb] = r [k] ; D->nb = nb = n-nb ; /* nb = # of strongly connected components */ for (b = 0 ; b < nb ; b++) /* sort each block in natural order */ { for (k = r [b] ; k < r [b+1] ; k++) Blk [p [k]] = b ; } for (b = 0 ; b <= nb ; b++) rcopy [b] = r [b] ; for (i = 0 ; i < n ; i++) p [rcopy [Blk [i]]++] = i ; return (cs_ddone (D, AT, xi, 1)) ; } SuiteSparse/CSparse/Source/cs_sqr.c0000644001170100242450000000651010416442261016207 0ustar davisfac#include "cs.h" /* compute nnz(V) = S->lnz, S->pinv, S->leftmost, S->m2 from A and S->parent */ static int cs_vcount (const cs *A, css *S) { int i, k, p, pa, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i, *next, *head, *tail, *nque, *pinv, *leftmost, *w, *parent = S->parent ; S->pinv = pinv = cs_malloc (m+n, sizeof (int)) ; /* allocate pinv, */ S->leftmost = leftmost = cs_malloc (m, sizeof (int)) ; /* and leftmost */ w = cs_malloc (m+3*n, sizeof (int)) ; /* get workspace */ if (!pinv || !w || !leftmost) { cs_free (w) ; /* pinv and leftmost freed later */ return (0) ; /* out of memory */ } next = w ; head = w + m ; tail = w + m + n ; nque = w + m + 2*n ; for (k = 0 ; k < n ; k++) head [k] = -1 ; /* queue k is empty */ for (k = 0 ; k < n ; k++) tail [k] = -1 ; for (k = 0 ; k < n ; k++) nque [k] = 0 ; for (i = 0 ; i < m ; i++) leftmost [i] = -1 ; for (k = n-1 ; k >= 0 ; k--) { for (p = Ap [k] ; p < Ap [k+1] ; p++) { leftmost [Ai [p]] = k ; /* leftmost[i] = min(find(A(i,:)))*/ } } for (i = m-1 ; i >= 0 ; i--) /* scan rows in reverse order */ { pinv [i] = -1 ; /* row i is not yet ordered */ k = leftmost [i] ; if (k == -1) continue ; /* row i is empty */ if (nque [k]++ == 0) tail [k] = i ; /* first row in queue k */ next [i] = head [k] ; /* put i at head of queue k */ head [k] = i ; } S->lnz = 0 ; S->m2 = m ; for (k = 0 ; k < n ; k++) /* find row permutation and nnz(V)*/ { i = head [k] ; /* remove row i from queue k */ S->lnz++ ; /* count V(k,k) as nonzero */ if (i < 0) i = S->m2++ ; /* add a fictitious row */ pinv [i] = k ; /* associate row i with V(:,k) */ if (--nque [k] <= 0) continue ; /* skip if V(k+1:m,k) is empty */ S->lnz += nque [k] ; /* nque [k] is nnz (V(k+1:m,k)) */ if ((pa = parent [k]) != -1) /* move all rows to parent of k */ { if (nque [pa] == 0) tail [pa] = tail [k] ; next [tail [k]] = head [pa] ; head [pa] = next [i] ; nque [pa] += nque [k] ; } } for (i = 0 ; i < m ; i++) if (pinv [i] < 0) pinv [i] = k++ ; cs_free (w) ; return (1) ; } /* symbolic ordering and analysis for QR or LU */ css *cs_sqr (int order, const cs *A, int qr) { int n, k, ok = 1, *post ; css *S ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; S = cs_calloc (1, sizeof (css)) ; /* allocate result S */ if (!S) return (NULL) ; /* out of memory */ S->q = cs_amd (order, A) ; /* fill-reducing ordering */ if (order && !S->q) return (cs_sfree (S)) ; if (qr) /* QR symbolic analysis */ { cs *C = order ? cs_permute (A, NULL, S->q, 0) : ((cs *) A) ; S->parent = cs_etree (C, 1) ; /* etree of C'*C, where C=A(:,q) */ post = cs_post (S->parent, n) ; S->cp = cs_counts (C, S->parent, post, 1) ; /* col counts chol(C'*C) */ cs_free (post) ; ok = C && S->parent && S->cp && cs_vcount (C, S) ; if (ok) for (S->unz = 0, k = 0 ; k < n ; k++) S->unz += S->cp [k] ; ok = ok && S->lnz >= 0 && S->unz >= 0 ; /* int overflow guard */ if (order) cs_spfree (C) ; } else { S->unz = 4*(A->p [n]) + n ; /* for LU factorization only, */ S->lnz = S->unz ; /* guess nnz(L) and nnz(U) */ } return (ok ? S : cs_sfree (S)) ; /* return result S */ } SuiteSparse/CSparse/Source/cs_compress.c0000644001170100242450000000161210436112644017234 0ustar davisfac#include "cs.h" /* C = compressed-column form of a triplet matrix T */ cs *cs_compress (const cs *T) { int m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj ; double *Cx, *Tx ; cs *C ; if (!CS_TRIPLET (T)) return (NULL) ; /* check inputs */ m = T->m ; n = T->n ; Ti = T->i ; Tj = T->p ; Tx = T->x ; nz = T->nz ; C = cs_spalloc (m, n, nz, Tx != NULL, 0) ; /* allocate result */ w = cs_calloc (n, sizeof (int)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (k = 0 ; k < nz ; k++) w [Tj [k]]++ ; /* column counts */ cs_cumsum (Cp, w, n) ; /* column pointers */ for (k = 0 ; k < nz ; k++) { Ci [p = w [Tj [k]]++] = Ti [k] ; /* A(i,j) is the pth entry in C */ if (Cx) Cx [p] = Tx [k] ; } return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */ } SuiteSparse/CSparse/Source/cs_transpose.c0000644001170100242450000000162310414453156017423 0ustar davisfac#include "cs.h" /* C = A' */ cs *cs_transpose (const cs *A, int values) { int p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ; double *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ; /* allocate result */ w = cs_calloc (m, sizeof (int)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (p = 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ; /* row counts */ cs_cumsum (Cp, w, m) ; /* row pointers */ for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ci [q = w [Ai [p]]++] = j ; /* place A(i,j) as entry C(j,i) */ if (Cx) Cx [q] = Ax [p] ; } } return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */ } SuiteSparse/CSparse/README.txt0000644001170100242450000004374410620606322015016 0ustar davisfacCSparse: a Concise Sparse Matrix package. Version 2.2.0, Copyright (c) 2006-2007, Timothy A. Davis, Mar 31, 2007. Refer to "Direct Methods for Sparse Linear Systems," Timothy A. Davis, SIAM, Philadelphia, 2006. No detailed user guide is included in this package; the user guide is the book itself. The algorithms contained in CSparse have been chosen with five goals in mind: (1) they must embody much of the theory behind sparse matrix algorithms, (2) they must be either asymptotically optimal in their run time and memory usage or be fast in practice, (3) they must be concise so as to be easily understood and short enough to print in the book, (4) they must cover a wide spectrum of matrix operations, and (5) they must be accurate and robust. The focus is on direct methods; iterative methods and solvers for eigenvalue problems are beyond the scope of this package. No detailed user guide is included in this package; the user guide is the book itself. Some indication of how to call the CSparse C routines is given by the M-files in the MATLAB/CSparse directory. Complex matrices are not supported, except for methods that operate only on the nonzero pattern of a matrix. A complex version of CSparse appears as a separate package, CXSparse ("Concise Extended Sparse matrix package"). The performance of the sparse factorization methods in CSparse will not be competitive with UMFPACK or CHOLMOD, but the codes are much more concise and easy to understand (see the above goals). Other methods are competitive. Some of the MATLAB tests require the AMD package. See http://www.cise.ufl.edu/research/sparse for CSparse and the AMD ordering package. See the Doc/License.txt file for the license (GNU LGPL). To compile the C-library (./Source) and C demo programs (./Demo) just type "make" in this directory. This should work on any system with the "make" command. To run the exhaustive tests, type "make" in the Tcov directory (Linux is assumed). To compile the MATLAB mexFunctions type "make mex" in this directory, or just "make" in the MATLAB directory. To remove all files not in the original distribution, type "make distclean". I recommend that you use a different level of optimization than "cc -O", which was chosen so that the Makefile is portable. See Source/Makefile. You can simply type "cs_install" while in the CSparse/MATLAB directory to compile and install CSparse for use in MATLAB. This is especially useful for a typical Microsoft Windows system, which does not include "make". For more details, see CSparse/MATLAB/README.txt. -------------------------------------------------------------------------------- Contents: -------------------------------------------------------------------------------- Demo/ demo C programs that use CSparse Doc/ license and change log Makefile Makefile for the whole package MATLAB/ MATLAB interface, demos, and tests for CSparse Matrix/ sample matrices README.txt this file Source/ primary CSparse source files (C only, no MATLAB) Tcov/ CSparse tests -------------------------------------------------------------------------------- ./Doc: license and change log -------------------------------------------------------------------------------- ChangeLog changes in CSparse since first release lesser.txt the GNU LGPL License.txt license (GNU LGPL) -------------------------------------------------------------------------------- ./Source: Primary source code for CSparse -------------------------------------------------------------------------------- cs_add.c add sparse matrices cs_amd.c approximate minimum degree cs_chol.c sparse Cholesky cs_cholsol.c x=A\b using sparse Cholesky cs_compress.c convert a triplet form to compressed-column form cs_counts.c column counts for Cholesky and QR cs_cumsum.c cumulative sum cs_dfs.c depth-first-search cs_dmperm.c Dulmage-Mendelsohn permutation cs_droptol.c drop small entries from a sparse matrix cs_dropzeros.c drop zeros from a sparse matrix cs_dupl.c remove (and sum) duplicates cs_entry.c add an entry to a triplet matrix cs_ereach.c nonzero pattern of Cholesky L(k,:) from etree and triu(A(:,k)) cs_etree.c find elimination tree cs_fkeep.c drop entries from a sparse matrix cs_gaxpy.c sparse matrix times dense matrix cs.h include file for CSparse cs_happly.c apply Householder reflection cs_house.c compute Householder reflection cs_ipvec.c x(p)=b cs_leaf.c determine if j is a leaf of the skeleton matrix and find lca cs_load.c load a sparse matrix from a file cs_lsolve.c x=L\b cs_ltsolve.c x=L'\b cs_lu.c sparse LU factorization cs_lusol.c x=A\b using sparse LU factorization cs_malloc.c memory manager cs_maxtrans.c maximum transveral (permutation for zero-free diagonal) cs_multiply.c sparse matrix multiply cs_norm.c sparse matrix norm cs_permute.c permute a sparse matrix cs_pinv.c invert a permutation vector cs_post.c postorder an elimination tree cs_print.c print a sparse matrix cs_pvec.c x=b(p) cs_qr.c sparse QR cs_qrsol.c solve a least-squares problem cs_randperm.c random permutation cs_reach.c find nonzero pattern of x=L\b for sparse L and b cs_scatter.c scatter a sparse vector cs_scc.c strongly-connected components cs_schol.c symbolic Cholesky cs_spsolve.c x=G\b where G, x, and b are sparse, and G upper/lower triangular cs_sqr.c symbolic QR (also can be used for LU) cs_symperm.c symmetric permutation of a sparse matrix cs_tdfs.c depth-first-search of a tree cs_transpose.c transpose a sparse matrix cs_updown.c sparse rank-1 Cholesky update/downate cs_usolve.c x=U\b cs_util.c various utilities (allocate/free matrices, workspace, etc) cs_utsolve.c x=U'\b Makefile Makefile for CSparse README.txt README file for CSparse -------------------------------------------------------------------------------- ./Demo: C program demos -------------------------------------------------------------------------------- cs_demo1.c read a matrix from a file and perform basic matrix operations cs_demo2.c read a matrix from a file and solve a linear system cs_demo3.c read a matrix, solve a linear system, update/downdate cs_demo.c support routines for cs_demo*.c cs_demo.h include file for demo programs cs_demo.out output of "make", which runs the demos on some matrices Makefile Makefile for Demo programs readhb.f read a Rutherford-Boeing matrix README.txt Demo README file -------------------------------------------------------------------------------- ./MATLAB: MATLAB interface, demos, and tests -------------------------------------------------------------------------------- cs_install.m MATLAB function for compiling and installing CSparse for MATLAB CSparse/ MATLAB interface for CSparse Demo/ MATLAB demos for CSparse Makefile MATLAB interface Makefile README.txt MATLAB README file Test/ MATLAB test for CSparse, and "textbook" routines UFget/ MATLAB interface to UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./MATLAB/CSparse: MATLAB interface for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB interface to CSparse cs_add.m add two sparse matrices cs_add_mex.c cs_amd.m approximate minimum degree cs_amd_mex.c cs_chol.m sparse Cholesky cs_chol_mex.c cs_cholsol.m x=A\b using a sparse Cholesky cs_cholsol_mex.c cs_counts.m column counts for Cholesky or QR (like "symbfact" in MATLAB) cs_counts_mex.c cs_dmperm.m Dulmage-Mendelsohn permutation cs_dmperm_mex.c cs_dmsol.m x=A\b using dmperm cs_dmspy.m plot a picture of a dmperm-permuted matrix cs_droptol.m drop small entries cs_droptol_mex.c cs_esep.m find edge separator cs_etree.m compute elimination tree cs_etree_mex.c cs_gaxpy.m sparse matrix times dense vector cs_gaxpy_mex.c cs_lsolve.m x=L\b where L is lower triangular cs_lsolve_mex.c cs_ltsolve.m x=L'\b where L is lower triangular cs_ltsolve_mex.c cs_lu.m sparse LU factorization cs_lu_mex.c cs_lusol.m x=A\b using sparse LU factorization cs_lusol_mex.c cs_make.m compiles CSparse for use in MATLAB cs_mex.c support routines for CSparse mexFunctions cs_mex.h cs_multiply.m sparse matrix multiply cs_multiply_mex.c cs_must_compile.m determine if a source file needs to be compiled with mex cs_nd.m nested dissection cs_nsep.m find node separator cs_permute.m permute a sparse matrix cs_permute_mex.c cs_print.m print a sparse matrix cs_print_mex.c cs_qleft.m apply Householder vectors to the left cs_qright.m apply Householder vectors to the right cs_qr.m sparse QR factorization cs_qr_mex.c cs_qrsol.m solve a sparse least squares problem cs_qrsol_mex.c cs_randperm.m randdom permutation cs_randperm_mex.c cs_scc.m strongly-connected components cs_scc_mex.c cs_sep.m convert an edge separator into a node separator cs_sparse.m convert a triplet form matrix to a compress-column form cs_sparse_mex.c cs_symperm.m symmetric permutation of a sparse matrix cs_symperm_mex.c cs_sqr.m symbolic QR ordering and analysis cs_sqr_mex.c cs_thumb_mex.c compute small "thumbnail" of a sparse matrix (for cspy). cs_transpose.m transpose a sparse matrix cs_transpose_mex.c cs_updown.m sparse Cholesky update/downdate cs_updown_mex.c cs_usolve.m x=U\b where U is upper triangular cs_usolve_mex.c cs_utsolve.m x=U'\b where U is upper triangular cs_utsolve_mex.c cspy.m a color "spy" Makefile Makefile for CSparse MATLAB interface README.txt README file for CSparse MATLAB interface -------------------------------------------------------------------------------- ./MATLAB/Demo: MATLAB demos for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB demo for CSparse cs_demo.m run all MATLAB demos for CSparse cs_demo1.m MATLAB version of Demo/cs_demo1.c cs_demo2.m MATLAB version of Demo/cs_demo2.c cs_demo3.m MATLAB version of Demo/cs_demo3.c private/ private functions for MATLAB demos README.txt README file for CSparse MATLAB demo -------------------------------------------------------------------------------- ./MATLAB/Demo/private: private functions for MATLAB demos -------------------------------------------------------------------------------- demo2.m demo 2 demo3.m demo 3 ex_1.m example 1 ex2.m example 2 ex3.m example 3 frand.m generate a random finite-element matrix get_problem.m get a matrix is_sym.m determine if a matrix is symmetric mesh2d1.m construct a 2D mesh (method 1) mesh2d2.m construct a 2D mesh (method 2) mesh3d1.m construct a 3D mesh (method 1) mesh3d2.m construct a 3D mesh (method 2) print_order.m print the ordering method used resid.m compute residual rhs.m create right-hand-side -------------------------------------------------------------------------------- ./MATLAB/Test: Extensive test of CSparse, in MATLAB -------------------------------------------------------------------------------- Makefile Makefile for MATLAB Test directory README.txt README file for MATLAB/Test Contents.m Contents of MATLAB/Test, "textbook" files only chol_downdate.m downdate a Cholesky factorization. chol_left.m left-looking Cholesky factorization. chol_left2.m left-looking Cholesky factorization, more details. chol_right.m right-looking Cholesky factorization. chol_super.m left-looking "supernodal" Cholesky factorization. chol_up.m up-looking Cholesky factorization. chol_update.m update a Cholesky factorization. chol_updown.m update or downdate a Cholesky factorization. cond1est.m 1-norm condition estimate. cs_fiedler.m the Fiedler vector of a connected graph. givens2.m find a Givens rotation. house.m find a Householder reflection. lu_left.m left-looking LU factorization. lu_right.m right-looking LU factorization. lu_rightp.m right-looking LU factorization, with partial pivoting. lu_rightpr.m recursive right-looking LU, with partial pivoting. lu_rightr.m recursive right-looking LU. norm1est.m 1-norm estimate. qr_givens.m Givens-rotation QR factorization. qr_givens_full.m Givens-rotation QR factorization, for full matrices. qr_left.m left-looking Householder QR factorization. qr_right.m right-looking Householder QR factorization. cs_fiedler.m Fiedler vector cs_frand.m generate a random finite-element matrix cs_frand_mex.c cs_ipvec.m x(p)=b cs_ipvec_mex.c cs_maxtransr.m recursive maximum matching algorithm cs_maxtransr_mex.c cs_pvec.m x=b(p) cs_pvec_mex.c interface for cs_pvec cs_reach.m non-recursive reach (interface to CSparse cs_reach) cs_reach_mex.c non-recursive x=spones(L\sparse(b)) cs_reachr.m recursive reach (interface to CSparse cs_reachr) cs_reachr_mex.c cs_rowcnt.m row counts for sparse Cholesky cs_rowcnt_mex.c row counts for sparse Cholesky cs_sparse2.m same as cs_sparse, to test cs_entry function cs_sparse2_mex.c like cs_sparse, but for testing cs_entry cs_test_make.m compiles MATLAB tests check_if_same.m check if two inputs are identical or not choldn.m Cholesky downdate cholup.m Cholesky update, using Given's rotations cholupdown.m Cholesky update/downdate (Bischof, Pan, and Tang method) cs_q1.m construct Q from Householder vectors cs_test_make.m compiles the CSparse, Demo, and Test mexFunctions. dmperm_test.m test cs_dmperm chol_example.m simple Cholesky factorization example etree_sample.m construct a sample etree and symbolic factorization gqr3.m QR factorization, based on Givens rotations happly.m apply Householder reflection to a vector hmake1.m construct a Householder reflection mynormest1.m estimate norm(A,1), using LU factorization (L*U = P*A*Q). myqr.m QR factorization using Householder reflections another_colormap.m try another color map cspy_test.m test cspy and cs_dmspy qr2.m QR factorization based on Householder reflections sample_colormap.m try a colormap for use in cspy signum.m compute and display the sign of a column vector x sqr_example.m test cs_sqr dmspy_test.m test cspy, cs_dmspy, and cs_dmperm test_qr.m test various QR factorization methods test_randperms.m test random permutations testh.m test Householder reflections test_qr1.m test QR factorizations test_qrsol.m test cs_qrsol test_sep.m test cs_sep, and compare with Gilbert's meshpart vtxsep testall.m test all CSparse functions (run tests 1 to 28 below) test1.m test cs_transpose test2.m test cs_sparse test3.m test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol test4.m test cs_multiply test5.m test cs_add test6.m test cs_reach, cs_reachr, cs_lsolve, cs_usolve test7.m test cs_lu test8.m test cs_cholsol, cs_lusol test9.m test cs_qr test10.m test cs_qr test11.m test cs_rowcnt test12.m test cs_qr and compare with svd test13.m test cs_counts, cs_etree test14.m test cs_droptol test15.m test cs_amd test16.m test cs_amd test17.m test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol test18.m test iterative refinement after backslash test19.m test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc test20.m test cholupdown test21.m test cs_updown test22.m test cond1est test23.m test cs_dmspy test24.m test cs_fielder test25.m test cs_nd test26.m test cs_dmsol and cs_dmspy test27.m test cs_qr, cs_utsolve, cs_qrsol test28.m test cs_randperm, cs_dmperm -------------------------------------------------------------------------------- ./MATLAB/UFget: MATLAB interface for the UF Sparse Matrix Collection -------------------------------------------------------------------------------- Contents.m Contents of UFget mat/ default directory where downloaded matrices will be put README.txt README file for UFget UFget_defaults.m default parameter settings UFget_example.m example of use UFget_install.m installs UFget temporarily (for current session) UFget_java.class read a url and load it in into MATLAB (compiled Java code) UFget_java.java read a url and load it in into MATLAB (Java source code) UFget_lookup.m look up a matrix in the index UFget.m UFget itself (primary user interface) UFweb.m open url for a matrix or collection mat/UF_Index.mat index of matrices in UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./Matrix: Sample matrices, most from Rutherford/Boeing collection -------------------------------------------------------------------------------- ash219 overdetermined pattern of Holland survey. Ashkenazi, 1974. bcsstk01 stiffness matrix for small generalized eigenvalue problem bcsstk16 stiffness matrix, Corp of Engineers dam fs_183_1 unsymmetric facsimile convergence matrix lp_afiro NETLIB afiro linear programming problem mbeacxc US economy, 1972. Dan Szyld, while at NYU t1 small example used in Chapter 2 west0067 Cavett problem with 5 components (chemical eng., Westerberg) -------------------------------------------------------------------------------- ./Tcov: Exhaustive test coverage of CSparse -------------------------------------------------------------------------------- covall same as covall.linux covall.linux find coverage (Linux) covall.sol find coverage (Solaris) cov.awk coverage summary cover print uncovered lines covs print uncovered lines cstcov_malloc_test.c malloc test cstcov_malloc_test.h cstcov_test.c main program for Tcov tests gcovs run gcov (Linux) Makefile Makefile for Tcov tests nil an empty matrix zero a 1-by-1 zero matrix README.txt README file for Tcov directory SuiteSparse/CSparse_to_CXSparse0000755001170100242450000002300310571643144015512 0ustar davisfac#! /usr/bin/perl # Constructs the CXSparse package from CSparse, adding four different sets of # functions (int/UF_long, and double/complex). Backward compatible with # CSparse. No MATLAB interface is provided for CXSparse, however. # # To create CXSparse from CSparse, the ./CXSparse directory should not (yet) # exist. Use the following commands, where CSparse is the CSparse directory: # # ./CSparse_to_CXSparse CSparse CXSparse CXSparse_newfiles.tar.gz # cd CXSparse/Demo # make > cs_demo.out # # Alternatively, use "make cx", using the UFsparse/Makefile, while in the # UFsparse directory. # # Created by David Bateman, Feb. 2006, David dot Bateman atsign motorola # dot com. Modified by Tim Davis, Aug 23, 2006. use strict; use Cwd; use File::Find; use File::Basename; use Text::Wrap; use FileHandle; use IPC::Open3; my $in_dir = @ARGV[0]; my $out_dir = @ARGV[1]; my $tar_file = @ARGV[2]; #------------------------------------------------------------------------------- # copy all files from CSparse to CXSparse #------------------------------------------------------------------------------- system ("cp -pr $in_dir $out_dir") ; #------------------------------------------------------------------------------- # Add the new files from the tar file given by the third argument #------------------------------------------------------------------------------- my $old_pwd = cwd(); chdir($out_dir); system ("tar xpBvzf $old_pwd/$tar_file"); chdir($old_pwd); #------------------------------------------------------------------------------- # Convert Demo/* files #------------------------------------------------------------------------------- # convert demo *.[ch] files into the four different versions (di, dl, ci, cl) my @demo_files = ('demo1.c', 'demo2.c', 'demo3.c', 'demo.c', 'demo.h') ; foreach my $fff ( @demo_files ) { my $infile = sprintf ("%s/Demo/cs_%s", $out_dir, $fff) ; # create di version my $outfile = sprintf ("%s/Demo/cs_di_%s", $out_dir, $fff) ; if (open (OUT, ">$outfile")) { if (open (IN, $infile)) { while () { # change all "cs*" names to "cs_di*", except #include "cs.h" s/\bcs/cs_di/g ; s/cs_di\.h/cs.h/ ; print OUT $_; } close (IN); } close (OUT); } # create dl version my $outfile = sprintf ("%s/Demo/cs_dl_%s", $out_dir, $fff) ; if (open (OUT, ">$outfile")) { if (open (IN, $infile)) { while () { # change all "cs*" names to "cs_dl*", except #include "cs.h" s/\bcs/cs_dl/g ; s/cs_dl\.h/cs.h/ ; # change int to UF_long, except for "int main" s/\bint\b/UF_long/g; s/UF_long main/int main/; # change %d to %ld in printf and scanf s/\%d/\%ld/g; print OUT $_; } close (IN); } close (OUT); } # create ci version my $outfile = sprintf ("%s/Demo/cs_ci_%s", $out_dir, $fff) ; if (open (OUT, ">$outfile")) { if (open (IN, $infile)) { while () { # change all "cs*" names to "cs_ci*", except #include "cs.h" s/\bcs/cs_ci/g ; s/cs_ci\.h/cs.h/ ; # fabs becomes cabs s/fabs/cabs/g; # change double to cs_complex_t s/\bdouble\b/cs_complex_t/g; # (double) typecasts stay double s/\(cs_complex_t\) /(double) /g; # tic, toc, tol, and norm are double, not cs_complex_t s/cs_complex_t norm/double norm/; s/cs_complex_t tic/double tic/; s/cs_complex_t toc \(cs_complex_t/double toc (double/; s/cs_complex_t s = tic/double s = tic/; s/cs_complex_t tol/double tol/; # cumsum, S->lnz, S->unz are double s/cs_complex_t lnz/double lnz/; s/cs_complex_t unz/double unz/; s/cs_complex_t cs_cumsum/double cs_cumsum/; # local variable declarations that stay double s/, / ;\n double / ; print OUT $_; } close (IN); } close (OUT); } # create cl version my $outfile = sprintf ("%s/Demo/cs_cl_%s", $out_dir, $fff) ; if (open (OUT, ">$outfile")) { if (open (IN, $infile)) { while () { # change all "cs*" names to "cs_cl*", except #include "cs.h" s/\bcs/cs_cl/g ; s/cs_cl\.h/cs.h/ ; # change int to UF_long, except for "int main" s/\bint\b/UF_long/g; s/UF_long main/int main/; # change %d to %ld in printf and scanf s/\%d/\%ld/g; # fabs becomes cabs s/fabs/cabs/g; # change double to cs_complex_t s/\bdouble\b/cs_complex_t/g; # (double) typecasts stay double s/\(cs_complex_t\) /(double) /g; # tic, toc, tol, and norm are double, not cs_complex_t s/cs_complex_t norm/double norm/; s/cs_complex_t tic/double tic/; s/cs_complex_t toc \(cs_complex_t/double toc (double/; s/cs_complex_t s = tic/double s = tic/; s/cs_complex_t tol/double tol/; # cumsum, S->lnz, S->unz are double s/cs_complex_t lnz/double lnz/; s/cs_complex_t unz/double unz/; s/cs_complex_t cs_cumsum/double cs_cumsum/; # local variable declarations that stay double s/, / ;\n double / ; print OUT $_; } close (IN); } close (OUT); } } #------------------------------------------------------------------------------- # Convert Source/*.c files (except cs_house.c) #------------------------------------------------------------------------------- # note that cs.h, cs_house.c, cs_updown.c, ... # are not included in this list my @src_files = ('Source/cs_add.c', 'Source/cs_amd.c', 'Source/cs_chol.c', 'Source/cs_cholsol.c', 'Source/cs_counts.c', 'Source/cs_cumsum.c', 'Source/cs_dfs.c', 'Source/cs_dmperm.c', 'Source/cs_droptol.c', 'Source/cs_dropzeros.c', 'Source/cs_dupl.c', 'Source/cs_entry.c', 'Source/cs_etree.c', 'Source/cs_fkeep.c', 'Source/cs_gaxpy.c', 'Source/cs_happly.c', 'Source/cs_ipvec.c', 'Source/cs_load.c', 'Source/cs_lsolve.c', 'Source/cs_ltsolve.c', 'Source/cs_lu.c', 'Source/cs_lusol.c', 'Source/cs_malloc.c', 'Source/cs_maxtrans.c', 'Source/cs_multiply.c', 'Source/cs_norm.c', 'Source/cs_permute.c', 'Source/cs_pinv.c', 'Source/cs_post.c', 'Source/cs_print.c', 'Source/cs_pvec.c', 'Source/cs_qr.c', 'Source/cs_qrsol.c', 'Source/cs_scatter.c', 'Source/cs_scc.c', 'Source/cs_schol.c', 'Source/cs_sqr.c', 'Source/cs_symperm.c', 'Source/cs_tdfs.c', 'Source/cs_transpose.c', 'Source/cs_compress.c', 'Source/cs_usolve.c', 'Source/cs_util.c', 'Source/cs_utsolve.c', 'Source/cs_reach.c', 'Source/cs_spsolve.c', 'Source/cs_leaf.c', 'Source/cs_ereach.c', 'Source/cs_randperm.c' ) ; foreach my $file ( @src_files ) { my $infile = sprintf ("%s/%s", $in_dir, $file) ; my $outfile = sprintf ("%s/%s", $out_dir, $file) ; my $fbase = basename($file,('.c')); if (open(OUT,">$outfile")) { if (open(IN,$infile)) { # my $qrsol_beta_seen = 0; while () { # change the name of the package (for cs_print.c) s/CSparse/CXSparse/g; # fabs becomes CS_ABS s/fabs/CS_ABS/g; # change int to CS_INT s/\bint\b/CS_INT/g; # change %d to "CS_ID" in printf and scanf (except version #'s) s/\%d/"CS_ID"/g; s/"CS_ID"\."CS_ID"\."CS_ID"/%d.%d.%d/; # change double to CS_ENTRY s/\bdouble\b/CS_ENTRY/g; # (double) and (double *) typecasts stay double, # tol and vnz for cs_vcount stays double s/\(CS_ENTRY\) /(double) /g; s/\(CS_ENTRY \*\) /(double \*) /; s/CS_ENTRY tol/double tol/; s/CS_ENTRY \*vnz/double \*vnz/; # local variable declarations that stay double s/, / ;\n double / ; # nargin and nargout stay "int" for MATLAB mexFunctions s/CS_INT nargin/int nargin/; s/CS_INT nargout/int nargout/; #--------------------------------------------------------------- # Special cases. Some undo changes made above. #--------------------------------------------------------------- # cs_mex.c if ($fbase =~ /cs_mex/) { s/matrix must be CS_ENTRY/matrix must be double/; s/A->p =/A->p = (CS_INT *)/; s/A->i =/A->i = (CS_INT *)/; s/, A->p/, (mwIndex *) A->p/; s/, A->i/, (mwIndex *) A->i/; } # fix comments in cs_add_mex.c and cs_permute_mex.c if ($fbase =~ /cs_add_mex/ || $fbase =~ /cs_permute_mex/) { s/via CS_ENTRY transpose/via double transpose/; } # cs_chol if ($fbase =~ /cs_chol/) { s/\(d <= 0\)/(CS_REAL (d) <= 0 || CS_IMAG (d) != 0)\n\t /; s/lki \* lki/lki * CS_CONJ (lki)/; s/ = lki/ = CS_CONJ (lki)/; } # cs_norm if ($fbase =~ /cs_norm/) { s/^CS_ENTRY cs_norm/double cs_norm/; } # cs_cumsum if ($fbase =~ /cs_cumsum/) { s/CS_ENTRY/double/; } # cs_transpose if ($fbase =~ /cs_transpose/) { s/Ax \[p\]/(values > 0) ? CS_CONJ (Ax [p]) : Ax [p]/; } # cs_symperm if ($fbase =~ /cs_symperm/) { s/Ax \[p\]/(i2 <= j2) ? Ax [p] : CS_CONJ (Ax [p])/; } # cs_qr if ($fbase =~ /cs_qr/) { s/n, sizeof \(CS_ENTRY\)/n, sizeof (double)/; } # cs_happly if ($fbase =~ /cs_happly/) { s/^(.*tau.*)(Vx\s*\[p\])/$1CS_CONJ ($2)/; s/CS_ENTRY beta/double beta/; } # cs_ltsolve if ($fbase =~ /cs_ltsolve/) { s/(Lx \[.*?\])(\s+[\*;])/CS_CONJ ($1)$2/; } # cs_utsolve if ($fbase =~ /cs_utsolve/) { s/(Ux \[.*?\])(\s+[\*;])/CS_CONJ ($1)$2/; } # cs_load if ($fbase =~ /cs_load/) { s/CS_ENTRY x ;/double x ;\n#ifdef CS_COMPLEX\n double xi ;\n#endif/ ; s/^(\s*while.*)%lg(.*)&x\) == 3(.*)$/#ifdef CS_COMPLEX\n$1%lg %lg$2&x, &xi) == 4$3\n#else\n$1%lg$2&x) == 3$3\n#endif/; s/(.*cs_entry.*), x(.*)$/#ifdef CS_COMPLEX\n$1, x + xi*I$2\n#else\n$1, x$2\n#endif/ } # cs_print if ($fbase =~ /cs_print/) { s/^(.*)%g(.*)Ax\s*\?\s*Ax\s*\[p\]\s*:\s*1(.*)/#ifdef CS_COMPLEX\n$1(%g, %g)$2\n\t\t Ax ? CS_REAL (Ax [p]) : 1, Ax ? CS_IMAG (Ax [p]) : 0$3\n#else\n$1%g$2Ax ? Ax [p] : 1$3\n#endif/; } print OUT $_; } close (IN); } close (OUT); } } SuiteSparse/Makefile0000644001170100242450000000557510711436073013425 0ustar davisfac#------------------------------------------------------------------------------- # Makefile for all UF sparse matrix packages #------------------------------------------------------------------------------- include UFconfig/UFconfig.mk # Compile the default rules for each package default: ( cd UFconfig/xerbla ; $(MAKE) ) # ( cd metis-4.0 ; $(MAKE) ) ( cd AMD ; $(MAKE) ) ( cd CAMD ; $(MAKE) ) ( cd COLAMD ; $(MAKE) ) ( cd BTF ; $(MAKE) ) ( cd KLU ; $(MAKE) ) ( cd LDL ; $(MAKE) ) ( cd CCOLAMD ; $(MAKE) ) ( cd UMFPACK ; $(MAKE) ) ( cd CHOLMOD ; $(MAKE) ) ( cd CSparse ; $(MAKE) ) ( cd CXSparse ; $(MAKE) ) # ( cd LPDASA ; $(MAKE) ) # ( cd PARAKLETE ; $(MAKE) ) library: default # Compile the MATLAB mexFunctions (except RBio and UFcollection) mex: ( cd AMD ; $(MAKE) mex ) ( cd CAMD ; $(MAKE) mex ) ( cd COLAMD ; $(MAKE) mex ) ( cd BTF ; $(MAKE) mex ) ( cd KLU ; $(MAKE) mex ) ( cd LDL ; $(MAKE) mex ) ( cd CCOLAMD ; $(MAKE) mex ) ( cd CHOLMOD ; $(MAKE) mex ) ( cd UMFPACK ; $(MAKE) mex ) ( cd CXSparse ; $(MAKE) mex ) ( cd CSparse ; $(MAKE) mex ) # Remove all files not in the original distribution purge: ( cd UFconfig/xerbla ; $(MAKE) purge ) # ( cd metis-4.0 ; $(MAKE) realclean ) ( cd AMD ; $(MAKE) purge ) ( cd CAMD ; $(MAKE) purge ) ( cd COLAMD ; $(MAKE) purge ) ( cd BTF ; $(MAKE) purge ) ( cd KLU ; $(MAKE) purge ) ( cd LDL ; $(MAKE) purge ) ( cd CCOLAMD ; $(MAKE) purge ) ( cd UMFPACK ; $(MAKE) purge ) ( cd CHOLMOD ; $(MAKE) purge ) ( cd CSparse ; $(MAKE) purge ) ( cd CXSparse ; $(MAKE) purge ) ( cd RBio ; $(RM) *.mex* ) ( cd UFcollection ; $(RM) *.mex* ) ( cd SSMULT ; $(RM) *.mex* ) # ( cd LPDASA ; $(MAKE) purge ) # ( cd PARAKLETE ; $(MAKE) purge ) # Remove all files not in the original distribution, but keep the libraries clean: ( cd UFconfig/xerbla ; $(MAKE) clean ) # ( cd metis-4.0 ; $(MAKE) clean ) ( cd AMD ; $(MAKE) clean ) ( cd CAMD ; $(MAKE) clean ) ( cd COLAMD ; $(MAKE) clean ) ( cd BTF ; $(MAKE) clean ) ( cd KLU ; $(MAKE) clean ) ( cd LDL ; $(MAKE) clean ) ( cd CCOLAMD ; $(MAKE) clean ) ( cd UMFPACK ; $(MAKE) clean ) ( cd CHOLMOD ; $(MAKE) clean ) ( cd CSparse ; $(MAKE) clean ) ( cd CXSparse ; $(MAKE) clean ) # ( cd LPDASA ; $(MAKE) clean ) # ( cd PARAKLETE ; $(MAKE) clean ) distclean: purge # Create CXSparse from CSparse. Note that the CXSparse directory should # initially not exist. cx: ( cd CSparse ; $(MAKE) purge ) ( cd CXSparse_newfiles ; tar cfv - * | gzip -9 > ../CXSparse_newfiles.tar.gz ) ./CSparse_to_CXSparse CSparse CXSparse CXSparse_newfiles.tar.gz ( cd CXSparse/Demo ; $(MAKE) ) ( cd CXSparse/Demo ; $(MAKE) > cs_demo.out ) ( cd CXSparse ; $(MAKE) purge ) # statement coverage (Linux only); this requires a lot of time. # The umfpack tcov requires a lot of disk space cov: ( cd CXSparse ; $(MAKE) cov ) ( cd CSparse ; $(MAKE) cov ) ( cd KLU ; $(MAKE) cov ) ( cd CHOLMOD ; $(MAKE) cov ) ( cd UMFPACK ; $(MAKE) cov ) SuiteSparse/SuiteSparse_demo.m0000644001170100242450000000507310707710170015405 0ustar davisfacfunction SuiteSparse_demo (matrixpath) %SUITESPARSE_DEMO a demo of all packages in SuiteSparse % % Example: % SuiteSparse_demo % % See also umfpack, cholmod, amd, camd, colamd, ccolamd, btf, klu, % CSparse, CXSparse, ldlsparse % Copyright (c) Timothy A. Davis, Univ. of Florida if (nargin < 1) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) 'CXSparse/Matrix' ] ; catch % mfilename failed, assume we're in the SuiteSparse directory matrixpath = 'CXSparse/Matrix' ; end end input ('Hit enter to run the CXSparse demo: ') ; try cs_demo (0, matrixpath) catch fprintf ('\nIf you have an older version of MATLAB, you must run the\n') ; fprintf ('SuiteSparse_demo while in the SuiteSparse directory.\n\n') ; fprintf ('CXSparse demo failed\n' ) end input ('Hit enter to run the UMFPACK demo: ') ; try umfpack_demo (1) catch disp (lasterr) ; fprintf ('UMFPACK demo failed\n' ) end input ('Hit enter to run the CHOLMOD demo: ') ; try cholmod_demo catch disp (lasterr) ; fprintf ('CHOLMOD demo failed\n' ) end input ('Hit enter to run the CHOLMOD graph partitioning demo: ') ; try graph_demo catch disp (lasterr) ; fprintf ('graph_demo failed, probably because METIS not installed\n') ; end input ('Hit enter to run the AMD demo: ') ; try amd_demo catch disp (lasterr) ; fprintf ('AMD demo failed\n' ) end input ('Hit enter to run the CAMD demo: ') ; try camd_demo catch disp (lasterr) ; fprintf ('CAMD demo failed\n' ) end input ('Hit enter to run the COLAMD demo: ') ; try colamd_demo catch disp (lasterr) ; fprintf ('COLAMD demo failed\n' ) end input ('Hit enter to run the CCOLAMD demo: ') ; try ccolamd_demo catch disp (lasterr) ; fprintf ('CCOLAMD demo failed\n' ) end input ('Hit enter to run the BTF demo: ') ; try btf_demo catch disp (lasterr) ; fprintf ('BTF demo failed\n' ) end input ('Hit enter to run the KLU demo: ') ; try klu_demo catch disp (lasterr) ; fprintf ('KLU demo failed\n' ) end input ('Hit enter to run the LDL demo: ') ; try ldldemo catch disp (lasterr) ; fprintf ('LDL demo failed\n' ) end input ('Hit enter to run the SSMULT demo: ') ; try ssmult_demo catch disp (lasterr) ; fprintf ('SSMULT demo failed\n' ) end input ('Hit enter to run the MESHND demo: ') ; try meshnd_example catch disp (lasterr) ; fprintf ('MESHND demo failed\n' ) end fprintf ('\n\n---- SuiteSparse demos complete\n') ; SuiteSparse/MESHND/0000755001170100242450000000000010711674716012737 5ustar davisfacSuiteSparse/MESHND/meshnd.m0000644001170100242450000000603110710135075014360 0ustar davisfacfunction [G, p, pinv, Gnew] = meshnd (arg1,n,k) %MESHND creation and nested dissection of a regular 2D or 3D mesh. % [p G pinv Gnew] = meshnd (m,n) constructs a m-by-n 2D mesh G, and then finds % a permuted mesh Gnew where Gnew = pinv(G) and G = p(Gnew). meshnd(m,n,k) % creates an m-by-n-by-k 3D mesh. % % [p G pinv Gnew] = meshnd (G) does not construct G, but uses the mesh G as % given on input instead. % % Example: % [G p pinv Gnew] = meshnd (4,5) ; % % returns % Gnew = % 1 2 17 9 10 % 7 8 18 15 16 % 3 5 19 11 13 % 4 6 20 12 14 % G = % 1 2 3 4 5 % 6 7 8 9 10 % 11 12 13 14 15 % 16 17 18 19 20 % % With no inputs, a few example meshes are generated and plotted. % % See also nested, numgrid. % Copyright 2007, Timothy A. Davis, Univ. of Florida % get the inputs and create the mesh if not provided on input if (nargin == 0) % run a simple example meshnd_example ; elseif (nargin == 1) % the mesh is provided on input G = arg1 ; [m n k] = size (G) ; elseif (nargin == 2) % create the m-by-n-by-k mesh in "natural" (row-major) order. This is how % a typical 2D mesh is ordered. A column-major order would be better, since % in that case G(:) would equal 1:(m*n) ... but let's stick with tradition. m = arg1 ; k = 1 ; G = reshape (1:(m*n*k), n, m, k)' ; elseif (nargin == 3) % create the m-by-n-by-k mesh in column-major order. The first m-by-n-by-1 % slice is in column-major order, followed by all the other slices 2 to k. m = arg1 ; G = reshape (1:(m*n*k), m, n, k) ; else error ('Usage: [G p pinv Gnew] = meshnd(G), meshnd(m,n) or meshnd(m,n,k)') ; end if (nargout > 1) p = nd2 (G)' ; % order the mesh end if (nargout > 2) pinv (p) = 1:(m*n*k) ; % find the inverse permutation end if (nargout > 3) Gnew = pinv (G) ; % find the permuted mesh end %------------------------------------------------------------------------------- function p = nd2 (G) %ND2 p = nd2 (G) permutes a 2D or 3D mesh G. % Compare with nestdiss which uses p as a scalar offset and returns a modified % mesh G that corresponds to Gnew in meshnd. Here, the scalar offset p in % nestdiss is not needed. Instead, p is a permutation, and the modified mesh % Gnew is not returned. [m n k] = size (G) ; if (max ([m n k]) <= 2) % G is small; do not cut it p = G (:) ; elseif k >= max (m,n) % cut G along the middle slice, cutting k in half s = ceil (k/2) ; middle = G (:,:,s) ; p = [(nd2 (G (:,:,1:s-1))) ; (nd2 (G (:,:,s+1:k))) ; middle(:)] ; elseif n >= max (m,k) % cut G along the middle column, cutting n in half s = ceil (n/2) ; middle = G (:,s,:) ; p = [(nd2 (G (:,1:s-1,:))) ; (nd2 (G (:,s+1:n,:))) ; middle(:)] ; else % cut G along the middle row, cutting m in half s = ceil (m/2) ; middle = G (s,:,:) ; p = [(nd2 (G (1:s-1,:,:))) ; (nd2 (G (s+1:m,:,:))) ; middle(:)] ; end SuiteSparse/MESHND/Contents.m0000644001170100242450000000165410711427406014710 0ustar davisfac%MESHND: creation and nested dissection of regular 2D and 3D meshes. % % meshnd - creation and nested dissection of a regular 2D or 3D mesh. % meshnd_quality - test the ordering quality computed by meshnd. % meshsparse - convert a 2D or 3D mesh into a sparse matrix matrix. % meshnd_example - example usage of meshnd and meshsparse. % % The outputs of the meshnd example and meshnd_quality are in meshd.png, % meshnd_quality_out.txt, and meshnd_quality.png. % % Example: % % with no inputs or outputs, meshnd runs a demo: % meshnd % % % create the sparse matrix for a 7-by-5-by-2 mesh: % A = meshsparse (meshnd (7,5,2)) ; % % % create a 7-by-5-by-2 mesh and find the nested dissection ordering: % [G p] = meshnd (7,5,2) ; % A = meshsparse (G) ; % subplot (1,2,1) ; spy (A) ; % subplot (1,2,2) ; spy (A (p,p)) ; % % Copyright 2007, Timothy A. Davis, Univ. of Florida % VERSION 1.1.0, Nov 1, 2007 SuiteSparse/MESHND/meshnd_quality.png0000644001170100242450000005234610642471442016477 0ustar davisfacPNG  IHDRy pHYs B(xtIME+{"tEXtCreation Time03-Jul-2007 12:02:42.Q$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx뒣8PeKJqNlllLQ|NH ~ J]@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@x@xD|do}Uz ֦6wyD;D[[՗Z@ӎ/G8W-=cxYF%Ѡ!ѫAU+CZT2B:IVÃ[j;J+3[Og֪.շ82|EQAlrǰ~}xKd|[\XF:ѣ;!^'zA`?Wz_8}fb/"g_rm//zEޑ[E@Do ں0m?>ogAdzEol'z'z]!7hmuw._!XqNSDxѻGY&Y7ir~]. &z,z<=_#M^Z#8juxM1ձ^.3=։uX]OG$;dzD: zT-@!zPAKTj!zPAi =(Bу4-@ <#848484848_>2(>E!z@+ZQvmxAEOу"D1;=B=ȯuGMF6 lTa?um_~OW_>na֭qm(.$zT]J^vk;w%*z;S 횱zW!ѻ|r׉^l Ek$mdS\c]clkl l)[r@x`nzQ%d#zPAA@E!z@.Q3h ,Kg1pG \fz.Qdvl7xpD jDRT=HhuG^t 4?ՈN s׉j>zѹD%W@T= `pKTf9oh;AfYަAfxnz &z@td9</ rRU҆Q-wQąCT=(H`J/# ؖU)>hpSb'/*vaҍ@48hЕx1aFqJy T=(Kգ Þ;{AQhpĠ@A< Rh~.Qa,_v UU>I3#5DAx,ȂzP#nJA:@ՃT= ( `C`f3Q 2 }t0UEhG$ _*rjtkA=@Ճ"T= . `i^-V =XRUmb޻C3|򃗎DVzeGH[s?kEuz/ÒgG{ςŨS`8z%C& HfنW*1Ғ3==UFS`۫.Qa+!у"D=zp3`l20O`IՃ"T=}2 HT(" )A"T=2Zߑ48XTRу"D=G$]. !z0ADxG$˻vuo8˚=Rje;T=(BDuR;(E(.8ݮڡWda0Z&n$z9zDaPhpD]A)'tTKG#\#4FգafG$ynƙ䍓T=L㬛48"q<)A~G$ !zPA5|.zmύq\% wP6vNF9hTfWYw<*WЪigbc'lBfBKùثz|Z#flH48bPoi;z|Xz v̜7CyRsۆ348"Qo1qN U~Q|d_:c̖U9ѡb7PAN:x3{NBwZC__kaqXZ L;T=YUS),M$u﷎ Cgg;D=28xkLZ=?4}&|s&MϡBKkZn@vE95ܪ8KԹ;9-j[68*O]/Q<+Pу"D wu4~Fֻkidd]R4o)ѝ.> x)z=pZu-˝w6?ȑ0Z2_DĒ5aWoffVxoQuö.ckTm2k Dވ^8⩿xZܩz)v\=MO99ЖyFtN## 8Km}Qk$JY4~>9;1{N TBVMz6GQăQ#}];]}8}] >ӧ}N6Vf֢u:lbS8.۩*&B6t]V%/5G;b@.էX]ȑe^>n{5hp|ݟ~sJAPcf #)]%zl}:;#_zgׇoy`?V/J]2J27,;s{F}^O.mCV@z3{h+>w^+zTڣ;UQj-2sOUoo6{O870@cAXv2&Ws#yWk&!~*dƝzS ~`Rջh izpE-w7Olơ ]kPi9J"1"71'f{BGX:ֻs_QXB+]sE\כ[}qڼ>Z;ҫqPbŦW4t]oL40k$gwݤqpn}g]p_miBUo<՟ ~>5h/;}c|k'~WxAXҩsH#O(G`\MzG]> Jw..}~⍖팿{?f758phl>fWL9.k8Wh$@=|<ʱĵ _e']cJԤY!1q=t% z-OU WiĦ82`ws{+E\q6[3-{OhMi>?$ 8<+1t ;@COf{Dzjy"P:+H|#+o6;9~&.Vۯ`h\ۀ_>U"5[p$R=h}{dAO_5J\Hjp(=^ocbAR{P `Uo9,TگS'޺~., N[iyoh1ǿ9!@_?6%%VOtUhM'Vkyy~\&y֤+JwՙfC.8sOO:x'48cg#&  G.`jbٿz=j͝O ڸhCN\p: K?I|aW%s:lMqpRnU~SyL}گR੮Ǘ[zжz8hp`IOva:%&G~{-SW/,u䢈&jw_%Ϟ<5%8.毹A*zipC?};MN/w;}*8u낑eo:θ2=fuǝJP9Ϛ]SV=, ~ߑǏ>_9;9]ql,ik.O\sYU鳬3+3#iO-+KOP7\ڶI,?JYz5.{AobzPKA17#߫4נ=ks6t'\Z7I~-_5{ef;Sr^bd6eMǛ6ֵmwc|eo.VՃ^!g)n9k5[WNuYſvVjya;C;إ%nH%bKw@$:_d+f27ӗ5}AUzhpz—o+7mg3v]]ұC~ȡ߃jц>MJ],mytْ:,&}]R0i~}ktCâ&ӕLU#}>{$ g:n-O}nnsxquΘ=mkU~bz:xOJ׍:|=UX3VߏG>^>m,T1nyw|̓>>wj[w?Y}کll/ڍ`믳euWyzPD%U8 395_f.rqa9~:{rDz8QI|a=[r׹=yfﲺz*z;=sV_|y!rͱ_)AfU=481J0_m^x9zgɭA)ox?t]Н&٭v@V%FH_;ު>'JBzCםk2"z0A~G 04+}6US48bx /={՟ADO39)3у"D= J]Fp ߡip@~FB)ipĠpwNhDzE74IՃ"T= : (eBNip@A $@P7PBfB GH !tPEGH d&tPBfBz $ip@~*7Fxz@t17P|A!_@t17|\p}0hpD@Ne $q@P7tt߮ IDATT=LBCwZEzDzE~?T=(BAR| zPzgYfOU]T"ꍙ!8ov'6UP48"Qo)"T=(Bʀ48"VoC՗/P!zpP M.nTaEzipĐ+YO(6j;5nSGT#Dzi5aJVg,˂1{d컗YQ7y IZ%&zܤ]#z1WTpq8у"DGcO}k;t:.$zO|A @07׈!zP5FpcR "] =S.=(B|܅K"gFD=FfM+ӥbӭ3E!zPspDrSbG$nwz)8;T=ipD=(Bvippkу"D=|TG O#Uv&z.Dr6Z48ˈkuUgnt|m^_s_#kO=ѻVZ]v :Tz-sD=(B7>Y>hh/ѻ@*a(6PAE Ul7.;l7.l4lJDOO'- (>Qnn#mdS\c]`Mnhdg|: Wnn#mdS\c]`MnhA3;?^xlklMqv6).Ѧlkl l4848484848&~Kf!>vvnn#mָvFDOOOOOOOO>Kу=LjJ|A~rEu?.~:}[)4F ?"D_`~G=c?].%̞4hA~rE\f3~|> M!zpȽiB/YA ?"D481E"1>0/_у=Hs ~s?.sl$jJ+3[Og֪.շ82|[zUeXDO>.tsOڀ]]%_Ӷ)'zd+nRN'ze^8ǩW}awٗJcDK&%z_"zaeYɦm"Gvz ټ#_ 'z> BzobJ8ޅw= ABD\Bn֧||K>Z契ީ%w MK=^b!M~Tlgau>yk+C{D:7Ŋ嵒Aj#z%zƜgY /= $zpKTJ!zAip3(B q"D3OOOO#"!zPAd+@Iezm݆7!zPiO9D=(Bl )#у]'zDdi[aN /20z>זsUG~zs+zT$z5kk&zߢ>M%zBҫt%*<&DEI+<זsUGgjfO4D>Mh`K'ipON<Ŗ;SlI<8{K48/*ڄlD=(B7hpRT@у"D%*|;Dh_~q4$1ہ3?Qlq(2ip0}oh@~z pJ$c3F7#oxlW#AB%=j|4_QFtN(dw2KT"Y~y%]JU(5ipP\gG0)m|@T=e  ,oS 3UN`x<7=r@T=r*~UGdH̎$5(B#{YFpD2T T= HA/24(BPx[// U8N#XC)β ?UJQfgS48v8;T=ަ{&6;T=|~S1Lk gY٨zPSQqG j 4_9˂l Rx°c٢Qߡq88>tݱ6_c`nzLmK߿mteǧx=0SU `@:d6U=8 H RƳa$z@PYq?%6AטϬMWU8H#CU%꡷|3(*H24CD xKV5&y:HS#8"+JbSپF=UUS74/㏦sHOvpjIbcB)O`JՃ^ճ[eijP3 N뢩ͫGH˅珀QPOND ;U/gGm-͟@ksWZ4i3=yf:=>t~/zy;U/S<} /0(1e=,e@+zi:UK^8Cbב?#84Fot(z#T>A ipD|&/^Ov qJ$&"D.Hvk8=(B>KPl1aѼJl̈!z!̚Ac48"Qѣmڊ!z{sZDM:|d.T~<*ZriN*U`l:|KT74\hJ{՝{s<H%7R2'nEzovgn 8B#(6pDT~AA{?pT9/D7;(BՃ".mxG 0U<Y=r K48p=$d.͈rԫAA^=|hC%48"Q]Y."6]AREzoH) 8٥A8n wThJ,iUYFp@J֧ϗip;>Rje`׸O T"fhpl:vlGT7X6}ܧA~&W*U=>zU'@Da yz8p8LYUY=mXY{?ApG V^;d8ړ/*1}AtwQąCB{ 6PΫ7 ͵oBm9Os Ѫe8i~1l9l%vDn@YFMŻ·Zj45#xW;& UJ#5IzT=4^vg.t-;xNԷ΂ev.V}e;Hczi>Z,/<~ȱgЭMx#07C%gTΆftw1үĥ0ӫe`|JA6`OQrAIj_YqjObnb!)KaGϞ\5Lգ;')Uohp5[Q1,yς1X{ŨS8yiWu8P)x0rJ ^hG\4|z/4hћ?7惢GaFpBbk@bA%z50S(2G`:r,Ee(_yjkA]gzKbꩩiFalY]#G$`)WnGRJ9uxj;^|ջ𫸇7DW- M:uFmDᄈ32ys}Z-z G$v..EJN=Q6pcqE@E}> dy׮Αw8˚=3z;ح>2UVKUϾ_I*r"}UqqAipaߋ 9%{Uq[x} >H# 7̃ jm,7q\W#Q\3U7"Y4v.5hثTW]}%⢇Nk>NN })gYvn1#UOk48bs<(q&y myY`BŸ.@Uoy1Me+Ѷ:snl9,T7N-Nkk=UT^lʏEyñj#z-u&AOn8zv4E}ړ4I8W=6hpqOkUWE6!T KV/l\TS:ݻ8"s-{2iGqm3}8Mǧ4-%TS֛a $qpnr/mzD{r8iz]vO,͞VC- ~r-( Fp1D8~6-qٰz3|wNJgAUI4GZ~J`צغYӻ[g.G7T .F48bPo8fUv ^ugf'QOe/>_ힸ^ TMV1}0_88C#smpdoo[WՒ8Y=:ةKOX]7`ܶ9#Gvo+\EJ$COf`sۧtto7DK27݅%Oo`n8l4~ʟOS@H\3DH bIDATˣ~sM֝`^V kV;dk6G YhppRTl*?2DsN0{Oު5햪^Sن Y>~doS48¨DT2 8S_Ϛ==UӭzvzFEhpSmv#6XR48# 8 PAmP)޴a8G ,5}&UP48b_o\>˹}$zcVz<%*: lyYD xs9>kvoTm:2b~NǟPbړJ-oһ{'tEip|xꥏ韲jy@ ѓHVǘu=xƃL}䧬rJ=YFz@t1ЯV+hp0'gb2> ze>xŸYWh=/[=z|KS -z r֛4ol*%>3~eCGOwyfDG6~2U=H{#w{^!g8w,)ѿX9˭ `춎QUM# U/V0ZEwyiuBE G0ͳ5KL P_n |IğhMۡ GH7NՏs>ŒX!Kr[<ȫ9zVEbxM^e5zPDUhGH[陜ʖՓka[_)-zez߯Ɲ_B-TUM#G n}>xxdn/mCdls%tPwc]>yݣ/"t@haSoϐv|“B'6_co/G.oB;K-zG:ʟrT= UhG ԛew}뺾.|hsD5`:j6>(kÔNՃP N#oqFsDƟ=Yv{}3P/9۰i?C XDi[;}w:(~'=ϝ,Ќq(%9 $3[8r)@48x& 3>>O Vg; gV7 j;2~jkM 7cf =~섇_wn㬉*7//ࢶIEuMa+[1ąstW<m!؞Sn?V[GqqRor6o76~ZwF-^+Vo.;h@ЪipRKycn6#f@ Í*g,ĉksqjl̄<SآI£jNٹv?7gڬzP=)zo:+xiđ.#lޡ ㍝g|I U `o9 @yyóW WI@#8TAw'z)t]{/4jhpU9{ʜȥ(iF1| U@#Ji*k/ݛhA)Sf4xM'i[M74A}T=(B48;;nbz14AO5ݩM_DAQ =j#zm`nZH'$8زkr͕|a}1zPZuGL Dy;*fobJVi8@#@Uz3p-V 'zp = ? JKD=(B)w6`|z= zDzwz!;1G 1N 'UP48bPo!t9zPz d&tPAip@A $@8!7PA!t@8!7AA G0 d&tPBfBz\޴RUipĠ@EzP|ipĠp NhĢz9I%Aip@fәR 3UM# iA~G ܫSUN#J2A)G 4eP UJ#ʒ8IՃ$E#*P]^484848vߡqipD@O ?"T= .wQd7f̆ў$T=(BD" P)Z W_CIxM"z@ 487ܻS5f!zUJ#g >V@ US48"yl- CD]h{S`KĒ׉ާhp0/6³+* uںZGD NhB}׹U9{2E=إqipDxY-6g+*U c{D%^ U/у ^7Os RSNuUA U/kG$tM?ǣOctܧAfG vo?hH߅P\A)G pA~"w@\^NPoU8EOOO`x+vz@P̅潱&~[֯0>>α~/{ lcQT D#^͝w}_48z=>|r$jLY ͈ާ=UK^'zԪEC`g=HvָMmP=^ꥉL#O> +YH, 쑱^fEl)&iqwUуzd46|$AGcOh@v,у"DGzgTBfK\P)6T%*|nB=(BуlUMbq3]W1Rr=xG >.Xn񑭹WHq=))Uaw.LՃ K#˒8hp1-/KvadAAG0 pPA~ipDlĠ*U8%*Ld0w8}zĥObny%zAip5<GdM\%NަAf@C:CBfYWlK7>1Wr7}8KIջFTp%>KAG+T}$Rɩc%#]f|Iu*zDؐӺ6cy҈pEnژF8'qZs̖Y)8m_m?&:,q&3;wta;DIIrq1{"zхEz C.G`у!D őne;-&zLOsKiwq21 C !z0? y_O@+C !z@1@<@<=n΄}!I%k`RC3 (8JgWoF*^[rלAHqK%S-I%S-I 9CJ d  w !z@B?!Do  fHO~D;B栣⹂)8ho{Z? ӊ#I=!I=:GSyyX?أY3aZ1b´b$g4d0g\+8hiY0I1aZ13[23[FSp@<OXܲ,3y10I1aZ13[23[&歿@<@<OSp@<OSp@W?'w0qe 8eYF\ArCPpzQr?nzvoכnFa2 !zߣw”Reonsv߭ !zП? 8qX?t|_/\w9pM !zcfWʕd{q 'w0>4$s}z*_у=hsW;':'w0K6}dכxQу=cxnQ)8x  )8x  )8x  )8x  )8x  )8x  )8x  )8x  )8x  )8x  `?VIENDB`SuiteSparse/MESHND/meshnd_example.m0000644001170100242450000000452710711674662016116 0ustar davisfacfunction meshnd_example %MESHND_EXAMPLE example usage of meshnd and meshsparse. % % Example: % meshnd_example % % See also meshnd. % Copyright 2007, Timothy A. Davis, Univ. of Florida help meshnd % 2D mesh, compare with Cleve Moler's demos m = 7 ; n = 7 ; [G p pinv Gnew] = meshnd (m,n) ; fprintf ('Original mesh:\n') ; disp (G) ; fprintf ('Permuted node numbers using meshnd.m (nested dissection):\n') ; disp (Gnew) ; Moler = nested (n+2) ; Moler = Moler (2:n+1,2:n+1) ; fprintf ('Cleve Moler''s nested dissection ordering, using nested.m\n') ; disp (Moler) ; fprintf ('Difference between nested.m and meshnd.m:\n') ; disp (Gnew-Moler) ; % 2D and 3D meshes stencils = [5 9 7 27] ; mm = [7 7 7 7] ; nn = [7 7 7 7] ; kk = [1 1 7 7] ; for s = 1:4 m = mm (s) ; n = nn (s) ; k = kk (s) ; [G p] = meshnd (mm (s), nn (s), kk (s)) ; A = meshsparse (G, stencils (s)) ; C = A (p,p) ; parent = etree (C) ; try L = chol (C, 'lower') ; catch % old version of MATLAB L = chol (C)' ; end subplot (4,5,(s-1)*5 + 1) ; do_spy (A) ; if (k > 1) title (sprintf ('%d-by-%d-by-%d mesh, %d-point stencil', ... m, n, k, stencils (s))) ; else title (sprintf ('%d-by-%d mesh, %d-point stencil', ... m, n, stencils (s))) ; end subplot (4,5,(s-1)*5 + 2) ; do_spy (C) ; title ('nested dissection') ; subplot (4,5,(s-1)*5 + 3) ; treeplot (parent) ; title ('etree') ; xlabel ('') ; subplot (4,5,(s-1)*5 + 4) ; do_spy (L) ; title (sprintf ('Cholesky with nd, nnz %d', nnz (L))) ; try % use the built-in AMD p = amd (A) ; catch try % use AMD from SuiteSparse p = amd2 (A) ; catch % use the older built-in SYMAMD p = symamd (A) ; end end try L = chol (A (p,p), 'lower') ; catch % old version of MATLAB L = chol (A (p,p))' ; end subplot (4,5,(s-1)*5 + 5) ; do_spy (L) ; title (sprintf ('Cholesky with amd, nnz %d', nnz (L))) ; end %------------------------------------------------------------------------------- function do_spy (A) %DO_SPY use cspy(A) to plot a matrix, or spy(A) if cspy not installed. try % This function is in CSparse. It generates better looking plots than spy. cspy (A) ; catch spy (A) ; end SuiteSparse/MESHND/meshnd_quality_out.txt0000644001170100242450000013246710642470476017432 0ustar davisfacprofile on meshnd_quality 2D mesh: 7-by-7, 5-point stencil MESHND: nnz(L) 2.880e+02 flops 1.926e+03 AMD: nnz(L) 2.550e+02 flops 1.483e+03 METIS: nnz(L) 2.680e+02 flops 1.656e+03 2D mesh: 7-by-7, 5-point stencil MESHND: nnz(L) 2.880e+02 flops 1.926e+03 AMD: nnz(L) 2.550e+02 flops 1.483e+03 METIS: nnz(L) 2.680e+02 flops 1.656e+03 2D mesh: 8-by-8, 5-point stencil MESHND: nnz(L) 4.210e+02 flops 3.141e+03 AMD: nnz(L) 3.540e+02 flops 2.192e+03 METIS: nnz(L) 3.800e+02 flops 2.568e+03 2D mesh: 8-by-8, 5-point stencil MESHND: nnz(L) 4.210e+02 flops 3.141e+03 AMD: nnz(L) 3.540e+02 flops 2.192e+03 METIS: nnz(L) 3.800e+02 flops 2.568e+03 2D mesh: 9-by-9, 5-point stencil MESHND: nnz(L) 6.000e+02 flops 5.078e+03 AMD: nnz(L) 5.060e+02 flops 3.722e+03 METIS: nnz(L) 5.230e+02 flops 3.947e+03 2D mesh: 10-by-10, 5-point stencil MESHND: nnz(L) 7.970e+02 flops 7.331e+03 AMD: nnz(L) 6.480e+02 flops 4.936e+03 METIS: nnz(L) 6.840e+02 flops 5.656e+03 2D mesh: 11-by-11, 5-point stencil MESHND: nnz(L) 1.008e+03 flops 9.920e+03 AMD: nnz(L) 8.160e+02 flops 6.636e+03 METIS: nnz(L) 8.610e+02 flops 7.713e+03 2D mesh: 11-by-11, 5-point stencil MESHND: nnz(L) 1.008e+03 flops 9.920e+03 AMD: nnz(L) 8.160e+02 flops 6.636e+03 METIS: nnz(L) 8.610e+02 flops 7.713e+03 2D mesh: 12-by-12, 5-point stencil MESHND: nnz(L) 1.234e+03 flops 1.287e+04 AMD: nnz(L) 1.035e+03 flops 9.143e+03 METIS: nnz(L) 1.076e+03 flops 1.014e+04 2D mesh: 13-by-13, 5-point stencil MESHND: nnz(L) 1.558e+03 flops 1.792e+04 AMD: nnz(L) 1.253e+03 flops 1.166e+04 METIS: nnz(L) 1.301e+03 flops 1.292e+04 2D mesh: 15-by-15, 5-point stencil MESHND: nnz(L) 2.272e+03 flops 2.936e+04 AMD: nnz(L) 1.798e+03 flops 1.886e+04 METIS: nnz(L) 1.916e+03 flops 2.178e+04 2D mesh: 16-by-16, 5-point stencil MESHND: nnz(L) 2.663e+03 flops 3.553e+04 AMD: nnz(L) 2.118e+03 flops 2.307e+04 METIS: nnz(L) 2.351e+03 flops 3.014e+04 2D mesh: 17-by-17, 5-point stencil MESHND: nnz(L) 3.180e+03 flops 4.567e+04 AMD: nnz(L) 2.433e+03 flops 2.755e+04 METIS: nnz(L) 2.678e+03 flops 3.446e+04 2D mesh: 18-by-18, 5-point stencil MESHND: nnz(L) 3.719e+03 flops 5.614e+04 AMD: nnz(L) 2.900e+03 flops 3.612e+04 METIS: nnz(L) 3.068e+03 flops 4.065e+04 2D mesh: 20-by-20, 5-point stencil MESHND: nnz(L) 4.861e+03 flops 7.836e+04 AMD: nnz(L) 3.702e+03 flops 4.831e+04 METIS: nnz(L) 3.931e+03 flops 5.721e+04 2D mesh: 21-by-21, 5-point stencil MESHND: nnz(L) 5.556e+03 flops 9.475e+04 AMD: nnz(L) 4.162e+03 flops 5.684e+04 METIS: nnz(L) 4.525e+03 flops 7.004e+04 2D mesh: 23-by-23, 5-point stencil MESHND: nnz(L) 6.980e+03 flops 1.283e+05 AMD: nnz(L) 5.349e+03 flops 8.331e+04 METIS: nnz(L) 5.677e+03 flops 9.672e+04 2D mesh: 24-by-24, 5-point stencil MESHND: nnz(L) 7.632e+03 flops 1.432e+05 AMD: nnz(L) 5.787e+03 flops 8.703e+04 METIS: nnz(L) 6.285e+03 flops 1.069e+05 2D mesh: 26-by-26, 5-point stencil MESHND: nnz(L) 9.466e+03 flops 1.938e+05 AMD: nnz(L) 7.144e+03 flops 1.174e+05 METIS: nnz(L) 7.424e+03 flops 1.322e+05 2D mesh: 28-by-28, 5-point stencil MESHND: nnz(L) 1.138e+04 flops 2.446e+05 AMD: nnz(L) 8.516e+03 flops 1.479e+05 METIS: nnz(L) 9.940e+03 flops 2.166e+05 2D mesh: 31-by-31, 5-point stencil MESHND: nnz(L) 1.479e+04 flops 3.498e+05 AMD: nnz(L) 1.092e+04 flops 2.059e+05 METIS: nnz(L) 1.283e+04 flops 2.945e+05 2D mesh: 33-by-33, 5-point stencil MESHND: nnz(L) 1.724e+04 flops 4.275e+05 AMD: nnz(L) 1.281e+04 flops 2.623e+05 METIS: nnz(L) 1.402e+04 flops 3.099e+05 2D mesh: 35-by-35, 5-point stencil MESHND: nnz(L) 2.016e+04 flops 5.258e+05 AMD: nnz(L) 1.485e+04 flops 3.194e+05 METIS: nnz(L) 1.684e+04 flops 4.089e+05 2D mesh: 38-by-38, 5-point stencil MESHND: nnz(L) 2.491e+04 flops 6.928e+05 AMD: nnz(L) 1.830e+04 flops 4.217e+05 METIS: nnz(L) 1.888e+04 flops 4.522e+05 2D mesh: 41-by-41, 5-point stencil MESHND: nnz(L) 2.992e+04 flops 8.803e+05 AMD: nnz(L) 2.173e+04 flops 5.265e+05 METIS: nnz(L) 2.416e+04 flops 6.691e+05 2D mesh: 44-by-44, 5-point stencil MESHND: nnz(L) 3.559e+04 flops 1.103e+06 AMD: nnz(L) 2.701e+04 flops 7.580e+05 METIS: nnz(L) 2.805e+04 flops 7.813e+05 2D mesh: 47-by-47, 5-point stencil MESHND: nnz(L) 4.198e+04 flops 1.384e+06 AMD: nnz(L) 3.031e+04 flops 8.216e+05 METIS: nnz(L) 3.359e+04 flops 1.007e+06 2D mesh: 50-by-50, 5-point stencil MESHND: nnz(L) 4.848e+04 flops 1.683e+06 AMD: nnz(L) 3.591e+04 flops 1.042e+06 METIS: nnz(L) 3.832e+04 flops 1.173e+06 2D mesh: 54-by-54, 5-point stencil MESHND: nnz(L) 5.879e+04 flops 2.177e+06 AMD: nnz(L) 4.362e+04 flops 1.368e+06 METIS: nnz(L) 4.469e+04 flops 1.391e+06 2D mesh: 58-by-58, 5-point stencil MESHND: nnz(L) 6.973e+04 flops 2.730e+06 AMD: nnz(L) 5.255e+04 flops 1.801e+06 METIS: nnz(L) 5.679e+04 flops 2.062e+06 2D mesh: 63-by-63, 5-point stencil MESHND: nnz(L) 8.542e+04 flops 3.578e+06 AMD: nnz(L) 6.195e+04 flops 2.170e+06 METIS: nnz(L) 6.725e+04 flops 2.471e+06 2D mesh: 67-by-67, 5-point stencil MESHND: nnz(L) 9.898e+04 flops 4.353e+06 AMD: nnz(L) 7.249e+04 flops 2.712e+06 METIS: nnz(L) 7.963e+04 flops 3.303e+06 2D mesh: 72-by-72, 5-point stencil MESHND: nnz(L) 1.179e+05 flops 5.442e+06 AMD: nnz(L) 9.047e+04 flops 3.802e+06 METIS: nnz(L) 9.518e+04 flops 4.119e+06 2D mesh: 77-by-77, 5-point stencil MESHND: nnz(L) 1.395e+05 flops 6.816e+06 AMD: nnz(L) 1.030e+05 flops 4.537e+06 METIS: nnz(L) 1.038e+05 flops 4.305e+06 2D mesh: 83-by-83, 5-point stencil MESHND: nnz(L) 1.666e+05 flops 8.648e+06 AMD: nnz(L) 1.249e+05 flops 6.030e+06 METIS: nnz(L) 1.275e+05 flops 5.935e+06 2D mesh: 89-by-89, 5-point stencil MESHND: nnz(L) 1.965e+05 flops 1.077e+07 AMD: nnz(L) 1.506e+05 flops 8.109e+06 METIS: nnz(L) 1.479e+05 flops 6.985e+06 2D mesh: 96-by-96, 5-point stencil MESHND: nnz(L) 2.346e+05 flops 1.361e+07 AMD: nnz(L) 1.890e+05 flops 1.119e+07 METIS: nnz(L) 1.780e+05 flops 8.883e+06 2D mesh: 102-by-102, 5-point stencil MESHND: nnz(L) 2.714e+05 flops 1.664e+07 AMD: nnz(L) 2.122e+05 flops 1.239e+07 METIS: nnz(L) 2.082e+05 flops 1.146e+07 2D mesh: 110-by-110, 5-point stencil MESHND: nnz(L) 3.253e+05 flops 2.117e+07 AMD: nnz(L) 2.568e+05 flops 1.617e+07 METIS: nnz(L) 2.463e+05 flops 1.439e+07 2D mesh: 118-by-118, 5-point stencil MESHND: nnz(L) 3.827e+05 flops 2.637e+07 AMD: nnz(L) 3.013e+05 flops 1.973e+07 METIS: nnz(L) 2.714e+05 flops 1.511e+07 2D mesh: 127-by-127, 5-point stencil MESHND: nnz(L) 4.556e+05 flops 3.326e+07 AMD: nnz(L) 3.501e+05 flops 2.484e+07 METIS: nnz(L) 3.516e+05 flops 2.392e+07 2D mesh: 136-by-136, 5-point stencil MESHND: nnz(L) 5.336e+05 flops 4.098e+07 AMD: nnz(L) 4.319e+05 flops 3.296e+07 METIS: nnz(L) 3.998e+05 flops 2.760e+07 2D mesh: 146-by-146, 5-point stencil MESHND: nnz(L) 6.322e+05 flops 5.135e+07 AMD: nnz(L) 5.053e+05 flops 3.980e+07 METIS: nnz(L) 4.773e+05 flops 3.598e+07 2D mesh: 156-by-156, 5-point stencil MESHND: nnz(L) 7.403e+05 flops 6.317e+07 AMD: nnz(L) 6.154e+05 flops 5.580e+07 METIS: nnz(L) 5.572e+05 flops 4.390e+07 2D mesh: 167-by-167, 5-point stencil MESHND: nnz(L) 8.668e+05 flops 7.834e+07 AMD: nnz(L) 6.652e+05 flops 5.757e+07 METIS: nnz(L) 6.114e+05 flops 4.667e+07 2D mesh: 180-by-180, 5-point stencil MESHND: nnz(L) 1.030e+06 flops 9.857e+07 AMD: nnz(L) 8.558e+05 flops 8.577e+07 METIS: nnz(L) 7.593e+05 flops 6.550e+07 2D mesh: 193-by-193, 5-point stencil MESHND: nnz(L) 1.210e+06 flops 1.225e+08 AMD: nnz(L) 9.532e+05 flops 9.653e+07 METIS: nnz(L) 8.647e+05 flops 7.595e+07 2D mesh: 206-by-206, 5-point stencil MESHND: nnz(L) 1.408e+06 flops 1.505e+08 AMD: nnz(L) 1.150e+06 flops 1.205e+08 METIS: nnz(L) 1.040e+06 flops 1.007e+08 2D mesh: 221-by-221, 5-point stencil MESHND: nnz(L) 1.656e+06 flops 1.871e+08 AMD: nnz(L) 1.305e+06 flops 1.469e+08 METIS: nnz(L) 1.194e+06 flops 1.202e+08 2D mesh: 237-by-237, 5-point stencil MESHND: nnz(L) 1.941e+06 flops 2.321e+08 AMD: nnz(L) 1.541e+06 flops 1.839e+08 METIS: nnz(L) 1.429e+06 flops 1.594e+08 2D mesh: 255-by-255, 5-point stencil MESHND: nnz(L) 2.300e+06 flops 2.914e+08 AMD: nnz(L) 1.834e+06 flops 2.329e+08 METIS: nnz(L) 1.652e+06 flops 1.903e+08 2D mesh: 273-by-273, 5-point stencil MESHND: nnz(L) 2.685e+06 flops 3.588e+08 AMD: nnz(L) 2.166e+06 flops 2.976e+08 METIS: nnz(L) 1.954e+06 flops 2.460e+08 2D mesh: 293-by-293, 5-point stencil MESHND: nnz(L) 3.163e+06 flops 4.466e+08 AMD: nnz(L) 2.522e+06 flops 3.557e+08 METIS: nnz(L) 2.301e+06 flops 3.051e+08 2D mesh: 314-by-314, 5-point stencil MESHND: nnz(L) 3.714e+06 flops 5.527e+08 AMD: nnz(L) 3.181e+06 flops 5.084e+08 METIS: nnz(L) 2.639e+06 flops 3.652e+08 2D mesh: 336-by-336, 5-point stencil MESHND: nnz(L) 4.325e+06 flops 6.799e+08 AMD: nnz(L) 3.763e+06 flops 6.432e+08 METIS: nnz(L) 3.172e+06 flops 4.801e+08 2D mesh: 361-by-361, 5-point stencil MESHND: nnz(L) 5.088e+06 flops 8.480e+08 AMD: nnz(L) 4.281e+06 flops 8.179e+08 METIS: nnz(L) 3.709e+06 flops 6.032e+08 2D mesh: 387-by-387, 5-point stencil MESHND: nnz(L) 5.959e+06 flops 1.050e+09 AMD: nnz(L) 5.229e+06 flops 1.056e+09 METIS: nnz(L) 4.294e+06 flops 7.027e+08 2D mesh: 414-by-414, 5-point stencil MESHND: nnz(L) 6.944e+06 flops 1.293e+09 AMD: nnz(L) 6.008e+06 flops 1.184e+09 METIS: nnz(L) 4.992e+06 flops 9.106e+08 2D mesh: 444-by-444, 5-point stencil MESHND: nnz(L) 8.135e+06 flops 1.600e+09 AMD: nnz(L) 7.243e+06 flops 1.637e+09 METIS: nnz(L) 6.077e+06 flops 1.208e+09 2D mesh: 476-by-476, 5-point stencil MESHND: nnz(L) 9.501e+06 flops 1.979e+09 AMD: nnz(L) 8.346e+06 flops 1.859e+09 METIS: nnz(L) 7.009e+06 flops 1.473e+09 2D mesh: 511-by-511, 5-point stencil MESHND: nnz(L) 1.116e+07 flops 2.462e+09 AMD: nnz(L) 9.426e+06 flops 2.345e+09 METIS: nnz(L) 8.167e+06 flops 1.822e+09 2D mesh: 547-by-547, 5-point stencil MESHND: nnz(L) 1.299e+07 flops 3.027e+09 AMD: nnz(L) 1.190e+07 flops 3.313e+09 METIS: nnz(L) 9.654e+06 flops 2.351e+09 2D mesh: 587-by-587, 5-point stencil MESHND: nnz(L) 1.525e+07 flops 3.755e+09 AMD: nnz(L) 1.410e+07 flops 4.259e+09 METIS: nnz(L) 1.120e+07 flops 2.798e+09 2D mesh: 629-by-629, 5-point stencil MESHND: nnz(L) 1.784e+07 flops 4.634e+09 AMD: nnz(L) 1.539e+07 flops 4.645e+09 METIS: nnz(L) 1.337e+07 flops 3.633e+09 2D mesh: 674-by-674, 5-point stencil MESHND: nnz(L) 2.080e+07 flops 5.717e+09 AMD: nnz(L) 1.826e+07 flops 5.280e+09 METIS: nnz(L) 1.517e+07 flops 4.278e+09 2D mesh: 723-by-723, 5-point stencil MESHND: nnz(L) 2.431e+07 flops 7.081e+09 AMD: nnz(L) 2.306e+07 flops 8.546e+09 METIS: nnz(L) 1.825e+07 flops 5.617e+09 2D mesh: 775-by-775, 5-point stencil MESHND: nnz(L) 2.840e+07 flops 8.749e+09 AMD: nnz(L) 2.592e+07 flops 1.053e+10 METIS: nnz(L) 2.100e+07 flops 6.839e+09 2D mesh: 830-by-830, 5-point stencil MESHND: nnz(L) 3.309e+07 flops 1.078e+10 AMD: nnz(L) 2.981e+07 flops 1.064e+10 METIS: nnz(L) 2.402e+07 flops 8.110e+09 2D mesh: 890-by-890, 5-point stencil MESHND: nnz(L) 3.865e+07 flops 1.331e+10 AMD: nnz(L) 3.668e+07 flops 1.607e+10 METIS: nnz(L) 2.793e+07 flops 9.861e+09 2D mesh: 954-by-954, 5-point stencil MESHND: nnz(L) 4.502e+07 flops 1.644e+10 AMD: nnz(L) 4.217e+07 flops 1.812e+10 METIS: nnz(L) 3.252e+07 flops 1.205e+10 2D mesh: 1023-by-1023, 5-point stencil MESHND: nnz(L) 5.262e+07 flops 2.033e+10 AMD: nnz(L) 4.567e+07 flops 1.966e+10 METIS: nnz(L) 3.884e+07 flops 1.660e+10 2D mesh: 7-by-7, 9-point stencil MESHND: nnz(L) 3.540e+02 flops 2.830e+03 AMD: nnz(L) 3.290e+02 flops 2.413e+03 METIS: nnz(L) 3.500e+02 flops 2.758e+03 2D mesh: 7-by-7, 9-point stencil MESHND: nnz(L) 3.540e+02 flops 2.830e+03 AMD: nnz(L) 3.290e+02 flops 2.413e+03 METIS: nnz(L) 3.500e+02 flops 2.758e+03 2D mesh: 8-by-8, 9-point stencil MESHND: nnz(L) 5.200e+02 flops 4.602e+03 AMD: nnz(L) 4.890e+02 flops 4.129e+03 METIS: nnz(L) 5.110e+02 flops 4.595e+03 2D mesh: 8-by-8, 9-point stencil MESHND: nnz(L) 5.200e+02 flops 4.602e+03 AMD: nnz(L) 4.890e+02 flops 4.129e+03 METIS: nnz(L) 5.110e+02 flops 4.595e+03 2D mesh: 9-by-9, 9-point stencil MESHND: nnz(L) 7.450e+02 flops 7.529e+03 AMD: nnz(L) 6.960e+02 flops 6.762e+03 METIS: nnz(L) 7.000e+02 flops 6.798e+03 2D mesh: 10-by-10, 9-point stencil MESHND: nnz(L) 1.000e+03 flops 1.104e+04 AMD: nnz(L) 9.150e+02 flops 9.687e+03 METIS: nnz(L) 9.340e+02 flops 9.900e+03 2D mesh: 11-by-11, 9-point stencil MESHND: nnz(L) 1.248e+03 flops 1.436e+04 AMD: nnz(L) 1.206e+03 flops 1.413e+04 METIS: nnz(L) 1.221e+03 flops 1.396e+04 2D mesh: 11-by-11, 9-point stencil MESHND: nnz(L) 1.248e+03 flops 1.436e+04 AMD: nnz(L) 1.206e+03 flops 1.413e+04 METIS: nnz(L) 1.221e+03 flops 1.396e+04 2D mesh: 12-by-12, 9-point stencil MESHND: nnz(L) 1.513e+03 flops 1.811e+04 AMD: nnz(L) 1.500e+03 flops 1.795e+04 METIS: nnz(L) 1.548e+03 flops 1.931e+04 2D mesh: 13-by-13, 9-point stencil MESHND: nnz(L) 1.904e+03 flops 2.492e+04 AMD: nnz(L) 1.888e+03 flops 2.479e+04 METIS: nnz(L) 1.926e+03 flops 2.557e+04 2D mesh: 15-by-15, 9-point stencil MESHND: nnz(L) 2.778e+03 flops 4.033e+04 AMD: nnz(L) 2.654e+03 flops 3.651e+04 METIS: nnz(L) 2.945e+03 flops 4.859e+04 2D mesh: 16-by-16, 9-point stencil MESHND: nnz(L) 3.258e+03 flops 4.852e+04 AMD: nnz(L) 3.284e+03 flops 5.128e+04 METIS: nnz(L) 3.393e+03 flops 5.508e+04 2D mesh: 17-by-17, 9-point stencil MESHND: nnz(L) 3.877e+03 flops 6.177e+04 AMD: nnz(L) 3.854e+03 flops 6.276e+04 METIS: nnz(L) 3.933e+03 flops 6.594e+04 2D mesh: 18-by-18, 9-point stencil MESHND: nnz(L) 4.534e+03 flops 7.600e+04 AMD: nnz(L) 4.382e+03 flops 7.316e+04 METIS: nnz(L) 4.618e+03 flops 8.215e+04 2D mesh: 20-by-20, 9-point stencil MESHND: nnz(L) 5.944e+03 flops 1.057e+05 AMD: nnz(L) 5.910e+03 flops 1.112e+05 METIS: nnz(L) 6.104e+03 flops 1.189e+05 2D mesh: 21-by-21, 9-point stencil MESHND: nnz(L) 6.775e+03 flops 1.263e+05 AMD: nnz(L) 6.567e+03 flops 1.221e+05 METIS: nnz(L) 6.983e+03 flops 1.413e+05 2D mesh: 23-by-23, 9-point stencil MESHND: nnz(L) 8.452e+03 flops 1.680e+05 AMD: nnz(L) 8.259e+03 flops 1.678e+05 METIS: nnz(L) 9.053e+03 flops 2.052e+05 2D mesh: 24-by-24, 9-point stencil MESHND: nnz(L) 9.215e+03 flops 1.864e+05 AMD: nnz(L) 9.473e+03 flops 2.074e+05 METIS: nnz(L) 1.009e+04 flops 2.353e+05 2D mesh: 26-by-26, 9-point stencil MESHND: nnz(L) 1.137e+04 flops 2.488e+05 AMD: nnz(L) 1.150e+04 flops 2.641e+05 METIS: nnz(L) 1.250e+04 flops 3.157e+05 2D mesh: 28-by-28, 9-point stencil MESHND: nnz(L) 1.367e+04 flops 3.128e+05 AMD: nnz(L) 1.384e+04 flops 3.312e+05 METIS: nnz(L) 1.550e+04 flops 4.276e+05 2D mesh: 31-by-31, 9-point stencil MESHND: nnz(L) 1.767e+04 flops 4.390e+05 AMD: nnz(L) 1.753e+04 flops 4.428e+05 METIS: nnz(L) 1.966e+04 flops 5.658e+05 2D mesh: 33-by-33, 9-point stencil MESHND: nnz(L) 2.056e+04 flops 5.323e+05 AMD: nnz(L) 2.175e+04 flops 6.360e+05 METIS: nnz(L) 2.251e+04 flops 6.479e+05 2D mesh: 35-by-35, 9-point stencil MESHND: nnz(L) 2.398e+04 flops 6.508e+05 AMD: nnz(L) 2.379e+04 flops 6.609e+05 METIS: nnz(L) 2.563e+04 flops 7.559e+05 2D mesh: 38-by-38, 9-point stencil MESHND: nnz(L) 2.954e+04 flops 8.528e+05 AMD: nnz(L) 2.998e+04 flops 9.280e+05 METIS: nnz(L) 3.172e+04 flops 1.009e+06 2D mesh: 41-by-41, 9-point stencil MESHND: nnz(L) 3.548e+04 flops 1.075e+06 AMD: nnz(L) 3.685e+04 flops 1.246e+06 METIS: nnz(L) 3.857e+04 flops 1.298e+06 2D mesh: 44-by-44, 9-point stencil MESHND: nnz(L) 4.218e+04 flops 1.341e+06 AMD: nnz(L) 4.299e+04 flops 1.483e+06 METIS: nnz(L) 4.482e+04 flops 1.514e+06 2D mesh: 47-by-47, 9-point stencil MESHND: nnz(L) 4.948e+04 flops 1.662e+06 AMD: nnz(L) 4.981e+04 flops 1.798e+06 METIS: nnz(L) 5.427e+04 flops 2.006e+06 2D mesh: 50-by-50, 9-point stencil MESHND: nnz(L) 5.695e+04 flops 2.005e+06 AMD: nnz(L) 5.813e+04 flops 2.163e+06 METIS: nnz(L) 6.190e+04 flops 2.326e+06 2D mesh: 54-by-54, 9-point stencil MESHND: nnz(L) 6.879e+04 flops 2.574e+06 AMD: nnz(L) 7.023e+04 flops 2.757e+06 METIS: nnz(L) 7.597e+04 flops 3.063e+06 2D mesh: 58-by-58, 9-point stencil MESHND: nnz(L) 8.146e+04 flops 3.206e+06 AMD: nnz(L) 8.291e+04 flops 3.364e+06 METIS: nnz(L) 8.973e+04 flops 3.797e+06 2D mesh: 63-by-63, 9-point stencil MESHND: nnz(L) 9.945e+04 flops 4.164e+06 AMD: nnz(L) 1.021e+05 flops 4.652e+06 METIS: nnz(L) 1.097e+05 flops 4.874e+06 2D mesh: 67-by-67, 9-point stencil MESHND: nnz(L) 1.150e+05 flops 5.037e+06 AMD: nnz(L) 1.180e+05 flops 5.569e+06 METIS: nnz(L) 1.249e+05 flops 5.648e+06 2D mesh: 72-by-72, 9-point stencil MESHND: nnz(L) 1.369e+05 flops 6.282e+06 AMD: nnz(L) 1.452e+05 flops 7.910e+06 METIS: nnz(L) 1.478e+05 flops 7.046e+06 2D mesh: 77-by-77, 9-point stencil MESHND: nnz(L) 1.614e+05 flops 7.810e+06 AMD: nnz(L) 1.703e+05 flops 9.510e+06 METIS: nnz(L) 1.762e+05 flops 8.938e+06 2D mesh: 83-by-83, 9-point stencil MESHND: nnz(L) 1.925e+05 flops 9.843e+06 AMD: nnz(L) 2.008e+05 flops 1.180e+07 METIS: nnz(L) 2.094e+05 flops 1.112e+07 2D mesh: 89-by-89, 9-point stencil MESHND: nnz(L) 2.268e+05 flops 1.220e+07 AMD: nnz(L) 2.384e+05 flops 1.456e+07 METIS: nnz(L) 2.464e+05 flops 1.444e+07 2D mesh: 96-by-96, 9-point stencil MESHND: nnz(L) 2.699e+05 flops 1.534e+07 AMD: nnz(L) 2.804e+05 flops 1.759e+07 METIS: nnz(L) 2.910e+05 flops 1.693e+07 2D mesh: 102-by-102, 9-point stencil MESHND: nnz(L) 3.111e+05 flops 1.863e+07 AMD: nnz(L) 3.226e+05 flops 2.113e+07 METIS: nnz(L) 3.363e+05 flops 2.036e+07 2D mesh: 110-by-110, 9-point stencil MESHND: nnz(L) 3.717e+05 flops 2.357e+07 AMD: nnz(L) 3.828e+05 flops 2.610e+07 METIS: nnz(L) 4.100e+05 flops 2.657e+07 2D mesh: 118-by-118, 9-point stencil MESHND: nnz(L) 4.367e+05 flops 2.921e+07 AMD: nnz(L) 4.550e+05 flops 3.361e+07 METIS: nnz(L) 4.737e+05 flops 3.190e+07 2D mesh: 127-by-127, 9-point stencil MESHND: nnz(L) 5.186e+05 flops 3.667e+07 AMD: nnz(L) 5.732e+05 flops 5.110e+07 METIS: nnz(L) 5.634e+05 flops 4.015e+07 2D mesh: 136-by-136, 9-point stencil MESHND: nnz(L) 6.067e+05 flops 4.504e+07 AMD: nnz(L) 6.357e+05 flops 5.249e+07 METIS: nnz(L) 6.533e+05 flops 4.822e+07 2D mesh: 146-by-146, 9-point stencil MESHND: nnz(L) 7.171e+05 flops 5.616e+07 AMD: nnz(L) 8.085e+05 flops 8.384e+07 METIS: nnz(L) 7.723e+05 flops 6.055e+07 2D mesh: 156-by-156, 9-point stencil MESHND: nnz(L) 8.381e+05 flops 6.888e+07 AMD: nnz(L) 8.718e+05 flops 8.218e+07 METIS: nnz(L) 9.152e+05 flops 7.528e+07 2D mesh: 167-by-167, 9-point stencil MESHND: nnz(L) 9.800e+05 flops 8.500e+07 AMD: nnz(L) 1.142e+06 flops 1.458e+08 METIS: nnz(L) 1.059e+06 flops 9.115e+07 2D mesh: 180-by-180, 9-point stencil MESHND: nnz(L) 1.163e+06 flops 1.066e+08 AMD: nnz(L) 1.214e+06 flops 1.268e+08 METIS: nnz(L) 1.225e+06 flops 1.111e+08 2D mesh: 193-by-193, 9-point stencil MESHND: nnz(L) 1.363e+06 flops 1.320e+08 AMD: nnz(L) 1.433e+06 flops 1.561e+08 METIS: nnz(L) 1.448e+06 flops 1.383e+08 2D mesh: 206-by-206, 9-point stencil MESHND: nnz(L) 1.582e+06 flops 1.614e+08 AMD: nnz(L) 1.637e+06 flops 1.824e+08 METIS: nnz(L) 1.692e+06 flops 1.693e+08 2D mesh: 221-by-221, 9-point stencil MESHND: nnz(L) 1.857e+06 flops 2.001e+08 AMD: nnz(L) 1.952e+06 flops 2.337e+08 METIS: nnz(L) 2.052e+06 flops 2.293e+08 2D mesh: 237-by-237, 9-point stencil MESHND: nnz(L) 2.173e+06 flops 2.474e+08 AMD: nnz(L) 2.297e+06 flops 2.959e+08 METIS: nnz(L) 2.382e+06 flops 2.825e+08 2D mesh: 255-by-255, 9-point stencil MESHND: nnz(L) 2.569e+06 flops 3.096e+08 AMD: nnz(L) 3.239e+06 flops 6.408e+08 METIS: nnz(L) 2.777e+06 flops 3.271e+08 2D mesh: 273-by-273, 9-point stencil MESHND: nnz(L) 2.996e+06 flops 3.802e+08 AMD: nnz(L) 3.158e+06 flops 4.548e+08 METIS: nnz(L) 3.203e+06 flops 3.979e+08 2D mesh: 293-by-293, 9-point stencil MESHND: nnz(L) 3.523e+06 flops 4.719e+08 AMD: nnz(L) 3.693e+06 flops 5.605e+08 METIS: nnz(L) 3.749e+06 flops 4.883e+08 2D mesh: 314-by-314, 9-point stencil MESHND: nnz(L) 4.130e+06 flops 5.826e+08 AMD: nnz(L) 5.119e+06 flops 1.109e+09 METIS: nnz(L) 4.406e+06 flops 6.167e+08 2D mesh: 336-by-336, 9-point stencil MESHND: nnz(L) 4.806e+06 flops 7.152e+08 AMD: nnz(L) 4.992e+06 flops 8.400e+08 METIS: nnz(L) 5.098e+06 flops 7.461e+08 2D mesh: 361-by-361, 9-point stencil MESHND: nnz(L) 5.647e+06 flops 8.894e+08 AMD: nnz(L) 6.052e+06 flops 1.167e+09 METIS: nnz(L) 5.997e+06 flops 9.406e+08 2D mesh: 387-by-387, 9-point stencil MESHND: nnz(L) 6.603e+06 flops 1.099e+09 AMD: nnz(L) 8.957e+06 flops 2.760e+09 METIS: nnz(L) 7.034e+06 flops 1.201e+09 2D mesh: 414-by-414, 9-point stencil MESHND: nnz(L) 7.677e+06 flops 1.349e+09 AMD: nnz(L) 7.998e+06 flops 1.580e+09 METIS: nnz(L) 8.259e+06 flops 1.479e+09 2D mesh: 444-by-444, 9-point stencil MESHND: nnz(L) 8.979e+06 flops 1.667e+09 AMD: nnz(L) 9.248e+06 flops 1.844e+09 METIS: nnz(L) 9.933e+06 flops 2.032e+09 2D mesh: 476-by-476, 9-point stencil MESHND: nnz(L) 1.047e+07 flops 2.058e+09 AMD: nnz(L) 1.106e+07 flops 2.676e+09 METIS: nnz(L) 1.122e+07 flops 2.153e+09 2D mesh: 511-by-511, 9-point stencil MESHND: nnz(L) 1.228e+07 flops 2.554e+09 AMD: nnz(L) 1.701e+07 flops 6.335e+09 METIS: nnz(L) 1.336e+07 flops 3.011e+09 2D mesh: 547-by-547, 9-point stencil MESHND: nnz(L) 1.428e+07 flops 3.134e+09 AMD: nnz(L) 1.972e+07 flops 7.576e+09 METIS: nnz(L) 1.564e+07 flops 3.740e+09 2D mesh: 587-by-587, 9-point stencil MESHND: nnz(L) 1.674e+07 flops 3.881e+09 AMD: nnz(L) 2.297e+07 flops 9.089e+09 METIS: nnz(L) 1.790e+07 flops 4.116e+09 2D mesh: 629-by-629, 9-point stencil MESHND: nnz(L) 1.956e+07 flops 4.783e+09 AMD: nnz(L) 2.072e+07 flops 6.333e+09 METIS: nnz(L) 2.116e+07 flops 5.333e+09 2D mesh: 674-by-674, 9-point stencil MESHND: nnz(L) 2.278e+07 flops 5.891e+09 AMD: nnz(L) 3.397e+07 flops 1.679e+10 METIS: nnz(L) 2.510e+07 flops 7.157e+09 2D mesh: 723-by-723, 9-point stencil MESHND: nnz(L) 2.661e+07 flops 7.285e+09 AMD: nnz(L) 4.122e+07 flops 2.462e+10 METIS: nnz(L) 3.006e+07 flops 1.027e+10 2D mesh: 775-by-775, 9-point stencil MESHND: nnz(L) 3.104e+07 flops 8.987e+09 AMD: nnz(L) 4.552e+07 flops 2.629e+10 METIS: nnz(L) 3.455e+07 flops 1.175e+10 2D mesh: 830-by-830, 9-point stencil MESHND: nnz(L) 3.610e+07 flops 1.105e+10 AMD: nnz(L) 3.763e+07 flops 1.320e+10 METIS: nnz(L) 4.003e+07 flops 1.444e+10 2D mesh: 890-by-890, 9-point stencil MESHND: nnz(L) 4.211e+07 flops 1.364e+10 AMD: nnz(L) 6.025e+07 flops 3.514e+10 METIS: nnz(L) 4.675e+07 flops 1.695e+10 2D mesh: 954-by-954, 9-point stencil MESHND: nnz(L) 4.900e+07 flops 1.682e+10 AMD: nnz(L) 6.918e+07 flops 4.011e+10 METIS: nnz(L) 5.542e+07 flops 2.311e+10 2D mesh: 1023-by-1023, 9-point stencil MESHND: nnz(L) 5.720e+07 flops 2.078e+10 AMD: nnz(L) 8.545e+07 flops 5.878e+10 METIS: nnz(L) 6.355e+07 flops 2.692e+10 3D mesh: 8-by-8-by-8, 7-point stencil MESHND: nnz(L) 1.680e+04 flops 8.311e+05 AMD: nnz(L) 1.133e+04 flops 4.851e+05 METIS: nnz(L) 1.042e+04 flops 3.922e+05 3D mesh: 8-by-8-by-8, 7-point stencil MESHND: nnz(L) 1.680e+04 flops 8.311e+05 AMD: nnz(L) 1.133e+04 flops 4.851e+05 METIS: nnz(L) 1.042e+04 flops 3.922e+05 3D mesh: 9-by-9-by-9, 7-point stencil MESHND: nnz(L) 2.949e+04 flops 1.792e+06 AMD: nnz(L) 1.894e+04 flops 1.088e+06 METIS: nnz(L) 1.824e+04 flops 9.172e+05 3D mesh: 9-by-9-by-9, 7-point stencil MESHND: nnz(L) 2.949e+04 flops 1.792e+06 AMD: nnz(L) 1.894e+04 flops 1.088e+06 METIS: nnz(L) 1.824e+04 flops 9.172e+05 3D mesh: 10-by-10-by-10, 7-point stencil MESHND: nnz(L) 4.725e+04 flops 3.564e+06 AMD: nnz(L) 3.219e+04 flops 2.333e+06 METIS: nnz(L) 3.309e+04 flops 2.321e+06 3D mesh: 11-by-11-by-11, 7-point stencil MESHND: nnz(L) 7.246e+04 flops 6.518e+06 AMD: nnz(L) 4.807e+04 flops 4.349e+06 METIS: nnz(L) 4.327e+04 flops 3.073e+06 3D mesh: 12-by-12-by-12, 7-point stencil MESHND: nnz(L) 1.058e+05 flops 1.139e+07 AMD: nnz(L) 7.604e+04 flops 8.543e+06 METIS: nnz(L) 6.937e+04 flops 6.329e+06 3D mesh: 12-by-12-by-12, 7-point stencil MESHND: nnz(L) 1.058e+05 flops 1.139e+07 AMD: nnz(L) 7.604e+04 flops 8.543e+06 METIS: nnz(L) 6.937e+04 flops 6.329e+06 3D mesh: 13-by-13-by-13, 7-point stencil MESHND: nnz(L) 1.549e+05 flops 1.942e+07 AMD: nnz(L) 1.045e+05 flops 1.382e+07 METIS: nnz(L) 1.072e+05 flops 1.244e+07 3D mesh: 14-by-14-by-14, 7-point stencil MESHND: nnz(L) 2.147e+05 flops 3.111e+07 AMD: nnz(L) 1.517e+05 flops 2.320e+07 METIS: nnz(L) 1.332e+05 flops 1.707e+07 3D mesh: 16-by-16-by-16, 7-point stencil MESHND: nnz(L) 3.859e+05 flops 7.201e+07 AMD: nnz(L) 2.810e+05 flops 6.000e+07 METIS: nnz(L) 2.347e+05 flops 3.751e+07 3D mesh: 17-by-17-by-17, 7-point stencil MESHND: nnz(L) 5.150e+05 flops 1.082e+08 AMD: nnz(L) 3.773e+05 flops 9.681e+07 METIS: nnz(L) 3.416e+05 flops 6.752e+07 3D mesh: 18-by-18-by-18, 7-point stencil MESHND: nnz(L) 6.624e+05 flops 1.547e+08 AMD: nnz(L) 4.883e+05 flops 1.344e+08 METIS: nnz(L) 4.306e+05 flops 9.356e+07 3D mesh: 19-by-19-by-19, 7-point stencil MESHND: nnz(L) 8.464e+05 flops 2.186e+08 AMD: nnz(L) 6.447e+05 flops 2.091e+08 METIS: nnz(L) 5.905e+05 flops 1.515e+08 3D mesh: 21-by-21-by-21, 7-point stencil MESHND: nnz(L) 1.311e+06 flops 4.129e+08 AMD: nnz(L) 1.040e+06 flops 4.105e+08 METIS: nnz(L) 9.257e+05 flops 2.940e+08 3D mesh: 22-by-22-by-22, 7-point stencil MESHND: nnz(L) 1.603e+06 flops 5.504e+08 AMD: nnz(L) 1.274e+06 flops 5.573e+08 METIS: nnz(L) 1.060e+06 flops 3.527e+08 3D mesh: 24-by-24-by-24, 7-point stencil MESHND: nnz(L) 2.319e+06 flops 9.398e+08 AMD: nnz(L) 1.875e+06 flops 9.692e+08 METIS: nnz(L) 1.563e+06 flops 6.256e+08 3D mesh: 25-by-25-by-25, 7-point stencil MESHND: nnz(L) 2.805e+06 flops 1.237e+09 AMD: nnz(L) 2.407e+06 flops 1.448e+09 METIS: nnz(L) 1.830e+06 flops 7.686e+08 3D mesh: 27-by-27-by-27, 7-point stencil MESHND: nnz(L) 3.940e+06 flops 2.003e+09 AMD: nnz(L) 3.388e+06 flops 2.407e+09 METIS: nnz(L) 2.580e+06 flops 1.289e+09 3D mesh: 29-by-29-by-29, 7-point stencil MESHND: nnz(L) 5.356e+06 flops 3.133e+09 AMD: nnz(L) 4.974e+06 flops 4.313e+09 METIS: nnz(L) 3.524e+06 flops 1.995e+09 3D mesh: 32-by-32-by-32, 7-point stencil MESHND: nnz(L) 8.114e+06 flops 5.700e+09 AMD: nnz(L) 7.747e+06 flops 8.358e+09 METIS: nnz(L) 5.462e+06 flops 3.875e+09 3D mesh: 34-by-34-by-34, 7-point stencil MESHND: nnz(L) 1.064e+07 flops 8.405e+09 AMD: nnz(L) 1.046e+07 flops 1.327e+10 METIS: nnz(L) 7.356e+06 flops 6.089e+09 3D mesh: 36-by-36-by-36, 7-point stencil MESHND: nnz(L) 1.355e+07 flops 1.188e+10 AMD: nnz(L) 1.300e+07 flops 1.701e+10 METIS: nnz(L) 9.141e+06 flops 8.339e+09 3D mesh: 39-by-39-by-39, 7-point stencil MESHND: nnz(L) 1.929e+07 flops 1.978e+10 AMD: nnz(L) 1.989e+07 flops 3.346e+10 METIS: nnz(L) 1.304e+07 flops 1.376e+10 3D mesh: 42-by-42-by-42, 7-point stencil MESHND: nnz(L) 2.635e+07 flops 3.117e+10 AMD: nnz(L) 2.643e+07 flops 4.924e+10 METIS: nnz(L) 1.793e+07 flops 2.216e+10 3D mesh: 45-by-45-by-45, 7-point stencil MESHND: nnz(L) 3.543e+07 flops 4.791e+10 AMD: nnz(L) 3.935e+07 flops 9.450e+10 METIS: nnz(L) 2.439e+07 flops 3.474e+10 3D mesh: 48-by-48-by-48, 7-point stencil MESHND: nnz(L) 4.627e+07 flops 7.053e+10 AMD: nnz(L) 5.230e+07 flops 1.364e+11 METIS: nnz(L) 3.194e+07 flops 5.087e+10 3D mesh: 51-by-51-by-51, 7-point stencil MESHND: nnz(L) 6.040e+07 flops 1.037e+11 AMD: nnz(L) 6.736e+07 flops 1.961e+11 METIS: nnz(L) 4.172e+07 flops 7.570e+10 3D mesh: 55-by-55-by-55, 7-point stencil MESHND: nnz(L) 8.329e+07 flops 1.650e+11 AMD: nnz(L) 1.034e+08 flops 3.906e+11 METIS: nnz(L) 5.757e+07 flops 1.215e+11 3D mesh: 59-by-59-by-59, 7-point stencil MESHND: nnz(L) 1.119e+08 flops 2.539e+11 AMD: nnz(L) 1.341e+08 flops 5.484e+11 METIS: nnz(L) 7.938e+07 flops 1.918e+11 3D mesh: 64-by-64-by-64, 7-point stencil MESHND: nnz(L) 1.566e+08 flops 4.141e+11 AMD: nnz(L) 1.842e+08 flops 8.278e+11 METIS: nnz(L) 1.162e+08 flops 3.359e+11 3D mesh: 68-by-68-by-68, 7-point stencil MESHND: nnz(L) 2.025e+08 flops 6.011e+11 AMD: nnz(L) 2.698e+08 flops 1.634e+12 METIS: nnz(L) 1.470e+08 flops 4.750e+11 3D mesh: 73-by-73-by-73, 7-point stencil MESHND: nnz(L) 2.736e+08 flops 9.344e+11 AMD: nnz(L) 3.668e+08 flops 2.354e+12 METIS: nnz(L) 2.022e+08 flops 7.528e+11 3D mesh: 78-by-78-by-78, 7-point stencil MESHND: nnz(L) 3.618e+08 flops 1.399e+12 AMD: nnz(L) 5.023e+08 flops 3.914e+12 METIS: nnz(L) 2.656e+08 flops 1.121e+12 3D mesh: 84-by-84-by-84, 7-point stencil MESHND: nnz(L) 4.913e+08 flops 2.189e+12 AMD: nnz(L) 6.984e+08 flops 6.325e+12 METIS: nnz(L) 3.599e+08 flops 1.738e+12 3D mesh: 90-by-90-by-90, 7-point stencil MESHND: nnz(L) 6.565e+08 flops 3.348e+12 AMD: nnz(L) 9.696e+08 flops 1.028e+13 METIS: nnz(L) 4.872e+08 flops 2.720e+12 3D mesh: 97-by-97-by-97, 7-point stencil MESHND: nnz(L) 8.967e+08 flops 5.291e+12 AMD: nnz(L) 1.441e+09 flops 1.913e+13 METIS: nnz(L) 7.002e+08 flops 4.607e+12 3D mesh: 103-by-103-by-103, 7-point stencil MESHND: nnz(L) 1.155e+09 flops 7.634e+12 AMD: nnz(L) 1.911e+09 flops 2.882e+13 METIS: nnz(L) 8.864e+08 flops 6.511e+12 3D mesh: 111-by-111-by-111, 7-point stencil MESHND: nnz(L) 1.576e+09 flops 1.203e+13 AMD: nnz(L) 2.729e+09 flops 4.858e+13 METIS: nnz(L) 1.233e+09 flops 1.044e+13 3D mesh: 119-by-119-by-119, 7-point stencil MESHND: nnz(L) 2.101e+09 flops 1.836e+13 AMD: nnz(L) 3.913e+09 flops 8.547e+13 METIS: nnz(L) 1.624e+09 flops 1.564e+13 3D mesh: 128-by-128-by-128, 7-point stencil MESHND: nnz(L) 2.830e+09 flops 2.843e+13 AMD: nnz(L) 5.174e+09 flops 1.317e+14 METIS: nnz(L) 2.214e+09 flops 2.465e+13 3D mesh: 8-by-8-by-8, 27-point stencil MESHND: nnz(L) 2.222e+04 flops 1.217e+06 AMD: nnz(L) 2.493e+04 flops 1.673e+06 METIS: nnz(L) 2.437e+04 flops 1.511e+06 3D mesh: 8-by-8-by-8, 27-point stencil MESHND: nnz(L) 2.222e+04 flops 1.217e+06 AMD: nnz(L) 2.493e+04 flops 1.673e+06 METIS: nnz(L) 2.437e+04 flops 1.511e+06 3D mesh: 9-by-9-by-9, 27-point stencil MESHND: nnz(L) 3.920e+04 flops 2.663e+06 AMD: nnz(L) 4.592e+04 flops 4.291e+06 METIS: nnz(L) 4.200e+04 flops 3.188e+06 3D mesh: 9-by-9-by-9, 27-point stencil MESHND: nnz(L) 3.920e+04 flops 2.663e+06 AMD: nnz(L) 4.592e+04 flops 4.291e+06 METIS: nnz(L) 4.200e+04 flops 3.188e+06 3D mesh: 10-by-10-by-10, 27-point stencil MESHND: nnz(L) 6.278e+04 flops 5.167e+06 AMD: nnz(L) 7.465e+04 flops 8.732e+06 METIS: nnz(L) 6.872e+04 flops 6.315e+06 3D mesh: 11-by-11-by-11, 27-point stencil MESHND: nnz(L) 9.422e+04 flops 9.146e+06 AMD: nnz(L) 1.214e+05 flops 1.789e+07 METIS: nnz(L) 1.056e+05 flops 1.112e+07 3D mesh: 12-by-12-by-12, 27-point stencil MESHND: nnz(L) 1.349e+05 flops 1.537e+07 AMD: nnz(L) 1.755e+05 flops 2.951e+07 METIS: nnz(L) 1.569e+05 flops 1.964e+07 3D mesh: 12-by-12-by-12, 27-point stencil MESHND: nnz(L) 1.349e+05 flops 1.537e+07 AMD: nnz(L) 1.755e+05 flops 2.951e+07 METIS: nnz(L) 1.569e+05 flops 1.964e+07 3D mesh: 13-by-13-by-13, 27-point stencil MESHND: nnz(L) 1.965e+05 flops 2.620e+07 AMD: nnz(L) 2.612e+05 flops 5.341e+07 METIS: nnz(L) 2.149e+05 flops 2.970e+07 3D mesh: 14-by-14-by-14, 27-point stencil MESHND: nnz(L) 2.720e+05 flops 4.148e+07 AMD: nnz(L) 3.461e+05 flops 7.622e+07 METIS: nnz(L) 2.886e+05 flops 4.459e+07 3D mesh: 16-by-16-by-16, 27-point stencil MESHND: nnz(L) 4.793e+05 flops 9.220e+07 AMD: nnz(L) 6.963e+05 flops 2.274e+08 METIS: nnz(L) 5.179e+05 flops 1.017e+08 3D mesh: 17-by-17-by-17, 27-point stencil MESHND: nnz(L) 6.368e+05 flops 1.382e+08 AMD: nnz(L) 9.422e+05 flops 3.422e+08 METIS: nnz(L) 6.736e+05 flops 1.468e+08 3D mesh: 18-by-18-by-18, 27-point stencil MESHND: nnz(L) 8.181e+05 flops 1.965e+08 AMD: nnz(L) 1.214e+06 flops 5.202e+08 METIS: nnz(L) 8.633e+05 flops 2.066e+08 3D mesh: 19-by-19-by-19, 27-point stencil MESHND: nnz(L) 1.040e+06 flops 2.744e+08 AMD: nnz(L) 1.721e+06 flops 8.973e+08 METIS: nnz(L) 1.097e+06 flops 2.900e+08 3D mesh: 21-by-21-by-21, 27-point stencil MESHND: nnz(L) 1.596e+06 flops 5.086e+08 AMD: nnz(L) 2.601e+06 flops 1.580e+09 METIS: nnz(L) 1.710e+06 flops 5.433e+08 3D mesh: 22-by-22-by-22, 27-point stencil MESHND: nnz(L) 1.948e+06 flops 6.750e+08 AMD: nnz(L) 2.931e+06 flops 1.800e+09 METIS: nnz(L) 2.057e+06 flops 7.039e+08 3D mesh: 24-by-24-by-24, 27-point stencil MESHND: nnz(L) 2.775e+06 flops 1.128e+09 AMD: nnz(L) 4.552e+06 flops 3.473e+09 METIS: nnz(L) 3.009e+06 flops 1.205e+09 3D mesh: 25-by-25-by-25, 27-point stencil MESHND: nnz(L) 3.341e+06 flops 1.479e+09 AMD: nnz(L) 5.806e+06 flops 5.075e+09 METIS: nnz(L) 3.561e+06 flops 1.534e+09 3D mesh: 27-by-27-by-27, 27-point stencil MESHND: nnz(L) 4.666e+06 flops 2.373e+09 AMD: nnz(L) 8.688e+06 flops 9.583e+09 METIS: nnz(L) 4.884e+06 flops 2.434e+09 3D mesh: 29-by-29-by-29, 27-point stencil MESHND: nnz(L) 6.307e+06 flops 3.674e+09 AMD: nnz(L) 1.030e+07 flops 1.066e+10 METIS: nnz(L) 6.503e+06 flops 3.713e+09 3D mesh: 32-by-32-by-32, 27-point stencil MESHND: nnz(L) 9.468e+06 flops 6.588e+09 AMD: nnz(L) 1.689e+07 flops 2.414e+10 METIS: nnz(L) 9.909e+06 flops 6.799e+09 3D mesh: 34-by-34-by-34, 27-point stencil MESHND: nnz(L) 1.235e+07 flops 9.670e+09 AMD: nnz(L) 2.352e+07 flops 4.169e+10 METIS: nnz(L) 1.277e+07 flops 9.824e+09 3D mesh: 36-by-36-by-36, 27-point stencil MESHND: nnz(L) 1.568e+07 flops 1.357e+10 AMD: nnz(L) 2.655e+07 flops 4.624e+10 METIS: nnz(L) 1.622e+07 flops 1.391e+10 3D mesh: 39-by-39-by-39, 27-point stencil MESHND: nnz(L) 2.218e+07 flops 2.239e+10 AMD: nnz(L) 4.294e+07 flops 9.642e+10 METIS: nnz(L) 2.277e+07 flops 2.263e+10 3D mesh: 42-by-42-by-42, 27-point stencil MESHND: nnz(L) 3.012e+07 flops 3.502e+10 AMD: nnz(L) 5.621e+07 flops 1.440e+11 METIS: nnz(L) 3.128e+07 flops 3.594e+10 3D mesh: 45-by-45-by-45, 27-point stencil MESHND: nnz(L) 4.029e+07 flops 5.341e+10 AMD: nnz(L) 7.698e+07 flops 2.221e+11 METIS: nnz(L) 4.137e+07 flops 5.373e+10 3D mesh: 48-by-48-by-48, 27-point stencil MESHND: nnz(L) 5.234e+07 flops 7.814e+10 AMD: nnz(L) 9.967e+07 flops 3.390e+11 METIS: nnz(L) 5.464e+07 flops 8.076e+10 3D mesh: 51-by-51-by-51, 27-point stencil MESHND: nnz(L) 6.795e+07 flops 1.143e+11 AMD: nnz(L) 1.553e+08 flops 7.073e+11 METIS: nnz(L) 7.030e+07 flops 1.164e+11 3D mesh: 55-by-55-by-55, 27-point stencil MESHND: nnz(L) 9.324e+07 flops 1.807e+11 AMD: nnz(L) 1.987e+08 flops 9.362e+11 METIS: nnz(L) 9.495e+07 flops 1.813e+11 3D mesh: 59-by-59-by-59, 27-point stencil MESHND: nnz(L) 1.247e+08 flops 2.765e+11 AMD: nnz(L) 3.106e+08 flops 2.025e+12 METIS: nnz(L) 1.263e+08 flops 2.766e+11 3D mesh: 64-by-64-by-64, 27-point stencil MESHND: nnz(L) 1.736e+08 flops 4.483e+11 AMD: nnz(L) 3.518e+08 flops 2.143e+12 METIS: nnz(L) 1.778e+08 flops 4.557e+11 3D mesh: 68-by-68-by-68, 27-point stencil MESHND: nnz(L) 2.237e+08 flops 6.482e+11 AMD: nnz(L) 4.708e+08 flops 3.377e+12 METIS: nnz(L) 2.286e+08 flops 6.596e+11 3D mesh: 73-by-73-by-73, 27-point stencil MESHND: nnz(L) 3.009e+08 flops 1.002e+12 AMD: nnz(L) 6.676e+08 flops 5.964e+12 METIS: nnz(L) 3.050e+08 flops 1.004e+12 3D mesh: 78-by-78-by-78, 27-point stencil MESHND: nnz(L) 3.965e+08 flops 1.495e+12 AMD: nnz(L) 8.348e+08 flops 8.647e+12 METIS: nnz(L) 4.022e+08 flops 1.502e+12 3D mesh: 84-by-84-by-84, 27-point stencil MESHND: nnz(L) 5.363e+08 flops 2.329e+12 AMD: nnz(L) 1.115e+09 flops 1.179e+13 METIS: nnz(L) 5.543e+08 flops 2.445e+12 3D mesh: 90-by-90-by-90, 27-point stencil MESHND: nnz(L) 7.137e+08 flops 3.548e+12 AMD: nnz(L) 1.585e+09 flops 2.062e+13 METIS: nnz(L) 7.255e+08 flops 3.572e+12 3D mesh: 97-by-97-by-97, 27-point stencil MESHND: nnz(L) 9.707e+08 flops 5.583e+12 AMD: nnz(L) 2.101e+09 flops 3.018e+13 METIS: nnz(L) 9.926e+08 flops 5.662e+12 3D mesh: 103-by-103-by-103, 27-point stencil MESHND: nnz(L) 1.246e+09 flops 8.032e+12 AMD: nnz(L) 3.387e+09 flops 7.019e+13 METIS: nnz(L) 1.323e+09 flops 9.197e+12 3D mesh: 111-by-111-by-111, 27-point stencil MESHND: nnz(L) 1.694e+09 flops 1.261e+13 AMD: nnz(L) 4.288e+09 flops 9.780e+13 METIS: nnz(L) 1.789e+09 flops 1.437e+13 SuiteSparse/MESHND/meshnd_quality.m0000644001170100242450000001214110711445703016132 0ustar davisfacfunction meshnd_quality (do_metis) %MESHND_QUALITY test the ordering quality computed by meshnd. % The fill-in and flop count for sparse Cholesky factorization using the meshnd % nested dissection ordering is computed with AMD. If SuiteSparse is installed % with METIS, and if requested, then the metis nested dissection ordering is % also compared. % % Example: % meshnd_quality % compare MESHND and AMD % meshnd_quality (1) % also compare with METIS % % See also meshnd, meshsparse, nested, amd, metis. % Copyright 2007, Timothy A. Davis, Univ. of Florida stencils = [5 9 7 27] ; if (nargin < 1) do_metis = 0 ; end if (do_metis) if (exist ('metis') ~= 3) %#ok % METIS not installed do_metis = 0 ; end end figure (1) clf for sk = 1:4 stencil = stencils (sk) ; is3D = (stencil == 7 | stencil == 27) ; %#ok if (is3D) s = 2.^(3:.1:7) ; % mesh size up to 127-by-127-by-127 else s = 2.^(3:.1:10) - 1 ; % mesh size up to 1023-by-1023 end t = length (s) ; lnz = nan * zeros (3,t) ; fl = nan * zeros (3,t) ; try for t = 1:length (s) n = floor (s (t)) ; % create the mesh and the matrix, and get nested dissection ordering if (is3D) fprintf ('3D mesh: %d-by-%d-by-%d, %d-point stencil\n', ... n, n, n, stencil) ; [G p] = meshnd (n, n, n) ; else fprintf ('2D mesh: %d-by-%d, %d-point stencil\n', n, n,stencil); [G p] = meshnd (n, n) ; end A = meshsparse (G, stencil) ; % ND results c = symbfact (A (p,p)) ; lnz (1,t) = sum (c) ; fl (1,t) = sum (c.^2) ; fprintf (' MESHND: nnz(L) %8.3e flops %8.3e\n', ... lnz (1,t), fl (1,t)) ; clear G % AMD results try p = amd (A) ; catch % assume SuiteSparse is installed p = amd2 (A) ; end c = symbfact (A (p,p)) ; lnz (2,t) = sum (c) ; fl (2,t) = sum (c.^2) ; fprintf (' AMD: nnz(L) %8.3e flops %8.3e\n', ... lnz (2,t), fl (2,t)) ; % METIS results (requires SuiteSparse and METIS) if (do_metis) p = metis (A) ; c = symbfact (A (p,p)) ; lnz (3,t) = sum (c) ; fl (3,t) = sum (c.^2) ; fprintf (... ' METIS: nnz(L) %8.3e flops %8.3e\n', ... lnz (3,t), fl (3,t)) ; end % plot the relative nnz(L) results subplot (2, 4, 2*sk - 1) ; loglog (s (1:t), lnz (2,1:t) ./ lnz (1,1:t), 'b-') ; hold on if (do_metis) loglog (s (1:t), lnz (3,1:t) ./ lnz (1,1:t), 'r-') ; end loglog (s (1:t), ones (1,t), 'k-') ; if (do_metis) ylabel ('nnz(L) for AMD or METIS / nnz(L) for meshnd') ; legend ('AMD', 'METIS') ; else ylabel ('nnz(L) for AMD / nnz(L) for meshnd') ; end xlabel ('mesh size') ; axis ([min(s) max(s) .1 10]) ; set (gca, 'YTick', [.1 .25 .5 .8 1 1.25 2 4 10]) ; if (is3D) set (gca, 'XTick', [1 10 100]) ; title (sprintf ('3D mesh, %d-point stencil', stencil)) ; else set (gca, 'XTick', [1 10 100 1000]) ; title (sprintf ('2D mesh, %d-point stencil', stencil)) ; end % plot the relative flop results subplot (2, 4, 2*sk) ; loglog (s (1:t), fl (2,1:t) ./ fl (1,1:t), 'b-') ; hold on if (do_metis) loglog (s (1:t), fl (3,1:t) ./ fl (1,1:t), 'r-') ; end loglog (s (1:t), ones (1,t), 'k-') ; ylabel ('flops for AMD or METIS / flops for meshnd') ; if (do_metis) ylabel ('flops for AMD or METIS / flops for meshnd') ; legend ('AMD', 'METIS') ; else ylabel ('nnz(L) for AMD / nnz(L) for meshnd') ; end xlabel ('mesh size') ; axis ([min(s) max(s) .1 10]) ; set (gca, 'YTick', [.1 .25 .5 .8 1 1.25 2 4 10]) ; if (is3D) set (gca, 'XTick', [1 10 100]) ; title (sprintf ('3D mesh, %d-point stencil', stencil)) ; else set (gca, 'XTick', [1 10 100 1000]) ; title (sprintf ('2D mesh, %d-point stencil', stencil)) ; end drawnow end catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end end SuiteSparse/MESHND/README.txt0000644001170100242450000000165410711427413014431 0ustar davisfac%MESHND: creation and nested dissection of regular 2D and 3D meshes. % % meshnd - creation and nested dissection of a regular 2D or 3D mesh. % meshnd_quality - test the ordering quality computed by meshnd. % meshsparse - convert a 2D or 3D mesh into a sparse matrix matrix. % meshnd_example - example usage of meshnd and meshsparse. % % The outputs of the meshnd example and meshnd_quality are in meshd.png, % meshnd_quality_out.txt, and meshnd_quality.png. % % Example: % % with no inputs or outputs, meshnd runs a demo: % meshnd % % % create the sparse matrix for a 7-by-5-by-2 mesh: % A = meshsparse (meshnd (7,5,2)) ; % % % create a 7-by-5-by-2 mesh and find the nested dissection ordering: % [G p] = meshnd (7,5,2) ; % A = meshsparse (G) ; % subplot (1,2,1) ; spy (A) ; % subplot (1,2,2) ; spy (A (p,p)) ; % % Copyright 2007, Timothy A. Davis, Univ. of Florida % VERSION 1.1.0, Nov 1, 2007 SuiteSparse/MESHND/meshsparse.m0000644001170100242450000000673110710135122015254 0ustar davisfacfunction A = meshsparse (G, stencil) %MESHSPARSE convert a 2D or 3D mesh into a sparse matrix matrix. % % Example: % A = meshsparse (G) % A = meshsparse (G,5) % 2D 5-point stencil (default for 2D case) % A = meshsparse (G,9) % 2D 9-point stencil % A = meshsparse (G,7) % 3D 7-point stencil (default for 3D case) % A = meshsparse (G,27) % 3D 27-point stencil % A = meshsparse (G,stencil) % user-provided stencil % % To create a sparse matrix for an m-by-n 2D mesh or m-by-n-by-k 3D mesh, use % % A = meshsparse (meshnd (m,n)) ; % A = meshsparse (meshnd (m,n,k)) ; % % G is an m-by-n-by-k matrix, with entries numbered 1 to m*n*k (with k=1 for % the 2D case). The entries in G can appear in any order, but no duplicate % entries can appear. That is sort(G(:))' must equal 1:m*n*k. A is returned as % a sparse matrix with m*n*k rows and columns whose pattern depends on the % stencil. The number of nonzeros in most rows/columns of A is equal to the % number of points in the stencil. For examples on how to specify your own % stencil, see the contents of meshsparse.m. % % See also meshnd. % Copyright 2007, Timothy A. Davis, Univ. of Florida if (nargin < 2) [m n k] = size (G) ; if (k == 1) stencil = 5 ; % 2D default is a 5-point stencil else stencil = 7 ; % 3D default is a 7-point stencil end end if (numel (stencil) == 1) % create the stencil if (stencil == 5) % 5-point stencil (2D) stencil = [ -1 0 % north 1 0 % south 0 1 % east 0 -1 ] ; % west elseif (stencil == 9) % 9-point stencil (2D) stencil = [ -1 0 % north 1 0 % south 0 1 % east 0 -1 % west -1 -1 % north-west -1 1 % north-east 1 -1 % south-west 1 1 ] ; % south-east elseif (stencil == 7) % 7-point stencil (3D) stencil = [ -1 0 0 % north 1 0 0 % south 0 1 0 % east 0 -1 0 % west 0 0 -1 % up 0 0 1] ; % down elseif (stencil == 27) % 27-point stencil (3D) stencil = zeros (26, 3) ; t = 0 ; for i = -1:1 for j = -1:1 for k = -1:1 if (~(i == 0 & j == 0 & k == 0)) %#ok t = t + 1 ; stencil (t,:) = [i j k] ; end end end end end end stencil = fix (stencil) ; [npoints d] = size (stencil) ; if (d == 2) % append zeros onto a 2D stencil to make it "3D" stencil = [stencil zeros(npoints,1)] ; end [npoints d] = size (stencil) ; if (d ~= 3) error ('invalid stencil') ; end [m n k] = size (G) ; i1 = 1:m ; j1 = 1:n ; k1 = 1:k ; Ti = zeros (npoints*m*n*k, 1) ; Tj = zeros (npoints*m*n*k, 1) ; nz = 0 ; for point = 1:npoints % find the overlapping rows of G idelta = stencil (point,1) ; i2 = i1 + idelta ; ki = find (i2 >= 1 & i2 <= m) ; % find the overlapping columns of G jdelta = stencil (point,2) ; j2 = j1 + jdelta ; kj = find (j2 >= 1 & j2 <= n) ; % find the overlapping slices of G kdelta = stencil (point,3) ; k2 = k1 + kdelta ; kk = find (k2 >= 1 & k2 <= k) ; % find the nodes in G the shifted G that touch g2 = G (i2 (ki), j2 (kj), k2 (kk)) ; % shifted mesh g1 = G (i1 (ki), j1 (kj), k1 (kk)) ; % unshifted mesh % place the edges in the triplet list e = numel (g1) ; Ti ((nz+1):(nz+e)) = g1 (:) ; Tj ((nz+1):(nz+e)) = g2 (:) ; nz = nz + e ; end % convert the triplets into a sparse matrix Ti = Ti (1:nz) ; Tj = Tj (1:nz) ; A = npoints * speye (m*n*k) - sparse (Ti, Tj, 1, m*n*k, m*n*k) ; SuiteSparse/MESHND/meshnd.png0000644001170100242450000012343210642456324014724 0ustar davisfacPNG  IHDRy pHYs B(xtIME 3"tEXtCreation Time03-Jul-2007 10:27:32uE$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx/ W3`HK Y$!9E i7 NȂ!.I.j$'` I]2`֑eYlY>{kz, gp =  {@$8Ipٓ'dOȞ=  {@$8Ipٓ'dOȞ=  {@$8Ipٓ'dOȞ=  {@$8Ipٓ'dOȞ=  {@$8Ipٓ`Jžc\oi ?U˹R;3w~gE7[oRex3.cg2j'\/\m8wj观j9<ɹaYq ܯgalXNsO \%EsQg]!ذzc@ܢFu]qYȅqn* NxQ nXWӮ1Nw:v-}H'= Yu6-ɞ&1<,{rWݞtN0vnj>5辞$;dQt:c#gHeXz$bX CuϙSA*"y"kk[ ~ui:== )$a Sv{8eϓddch霸 =+mN@[^in).6` `S/"bd-*@B 7'u[st 1v5=xSq*~Uw"Uz`q =$x<[D.qׯUnhTip Hp.HBYj7Φ$%u^}*hߓS} kcNDpnQ<8!54@n/nرsbp '/ '«5pO8-~KT@ d!zA4/WpV3gsD[oBRHdstj꙯dneb5۵N6-*}9|V9M#z?Vt\Hab !~he@4l9:k8]Tyk5V8|VIlTpLN>8Xx,By*!cEA랔՗o-JwH*VW{PEmSsk54zCYlzwwPqѻZ*8lcOU`p˱^?nKin5qAoG}D ,[wTp90L,KȞ<[HZ}_m dce|'g^oJT4d?UnC—S{Uȁab^2[$a`Ggߎ5z9*} j@IȂy}cQTE_#,|_=On_s46R_>|K"q"zWK=-pQg > Z䳯aV=c}f}g"b׫Bql6z{".q'zWK~v <gDD?Et^nd1f.u3r$>^-bmsм+裑dm^C߯m 590L,K+$a`?@.z*?'{Ct5}abDE6)cDIgDjQ`8 USm:2Tn;$al[HKߎ C aVޫTTGd  '0̮1c߷ۿPjEȞ cTWۉCX\u߱uB@ ˕U7TF=iXy9&"^o^Fp %Ҍ TL뒺A{a7wd  '2_u9J961""ޔ\:G'@&`u&EqPu@=^w=cE7t^ [ s^oٍk%*jаuד>B8l.o꓿%M׳?Evi)Djn>GQzсhsi=#K=Ir`XNL|D]2S]#"y0v,o6aX-*@&  0[?@畾o/ˌs4{].]CȰ?8gݱKj&#*nbWQv{NG7_"ߟK>M"M]}~H2?@> }2[$a$ۺwy+Q>hE.5vﺉh^[}p|<:{uD7/G)_TM_!fTS/#&eN*82ua uFCjàDD&"ڲUc\6"e=. U28X!;$VUd*뉷稂kHUCt5:d7Un;S8fUM¨`kHI*=`2 LU4Rc)X3-p$zyS/RZ9Zmy#jN96T!yβǢbɶFxdtym걃(#&Tp|zNuSt60v <80/ IRťt$r6q8e?5z]r+x v@y[4왷~)>GYivDw׻*۵8ǐZsEDQ|qlTUƮA5 .bs;Ͻ xxsz);5Ox2ژf'H?zLIYmqȊ HBBwOvgj >Xۈ"v7{UHtѪZr}~>G 0,/օ&_hqfXк:Ҽv} 8>G}4zؼJZϝ}M$sķyqȊL*֨->>xرF8HvNЛǎ ]rpc!}ʌ  RW`-u;P~Uj?UH*r>"cDkl W8z, >G[N[̟WSbtT<.jM#}_I~b;VTZUAdD5,ů"GM h hRΣc q.6Ǟ,y/@l)e:*QM'Hph}749Jƪo{]ﱱlJv 0vǙB''7uL% 7Rc0 0F}ڬv :_! YWY7uߪ{Cޞ8a/E-{~z3YwQ 8ڤ Z^So~q,I-*qVB%\@dHW{]6}a hU[پi ׾PCZE6J./\RߪwB91v4skDZIkƎS+J4 h!Ŧ;vMyTp4؜};[o,Y~8ʈ.?;鐜PR\/獵NksvYUQwQ|{idrcBo7QT|cDz*8Te[`dğCR&>Dćϟ"|/*"~9"߶ۄ:#sh7ިRA:ګh+~pusMFKW&nQ5YhqX 琄4+e]UmNGzI]ň,J&۞fp5"-5|?o"EU/1э*Km%oQMD}Sh#"WOѺ9\ 6)P+SmqX}pTEW8mEUy/_Dw>E0ϫ{D7/9hTa )o"㇈( RUDī]D|!"o6LRHp s}gyZߍ`zESOo8\ˠ/7Qen y}SDwa&""^T;6/C.-Ե:>V>0zVzMD~zyx3j]Un""uM;$8fo!8=O\]0fkE~uڿ3UYjwVC'2յ[]ѽW*8` qϫxpqy7d4U3{}vc}Q%}û(''콪s&"=ۏQMD/'X/"v"cN;ѺMǓoNJ{{޶f$t$<<YuqkՓiTh>L;ǵw&b[;u<|m7/WϽcտ^uq^yx{c{3yk=嶔0vlچvO8s`gm~_V݌dOܭl"߄cLR1glzpt<7VJic_ZD,u[a.{{w凈q?z]\G*){Uk7iZċxLOՓHnj:|w1bow?DD*K/T'=` [RPBm L=e]!xI1tY;Oġ%xk.:<&"~zڻ;<w#"oc]DD&z8lƾڜQoy_G#"xw6Lީ?OϦzP8]-8V=`ġ-hl\?"/<+n]ySCTuw4rw~xX!VMꞔ#{V=X=ٷSq((Qu v[M뗯#/ů;.&]6uˇTaĞ\W dOG_^o"8r]-@Z.*_5{]dH$IS9zH̝ Nެ8y1DFkVe눈o^Sv2zV}C{{~xF'O7njO6PfH'σv>;jjUSD|anbwoDm+?o"7Ap4K9Dj;#4lI.㭦lt}z?fhc7o""z}Fėx1#RMk{nd ոK`9/_obsJG*8]Q.PQd?>E]$z(*f ?_5{$8 sYdag)! ƺQM=9gߌUphMhmwQzmH'U%9/~U]{^XyP,w4F=VQݪmD_|i.MDD]'ߋ$M |''n=T)jɡcu>3>cg2j'\/\m8wj6apb} 4' ܰɎ{rkX6>'-5bz̓sɂ yrDNpxj&[f+m<6\{;@galXNsi*&<|,%b9䞱 )! \4a&u-)jWճ~vdalX^m=\ݱg.txm9eҩ._Ld'm9rɢgx0$nQab[\fA Hi ƆegYXC)ǚuOG2cgqLғljXwzQĎ`0oeQ t]P[Gڳ]K?\fϪ;d=pV֭8ocy[w~=O0vnj>BAulJ$%_dcL~x'٪zV>_0b[yrt9ͦ;D$[3v%GIi~U nI[THEd7 4U nɂ" K=-u`|  {nQ'dOȞ= HHQ,DHm\F$,KcMd@}$&yp*[)BST-*@Nd7N*8HKRr203<- ;-9iՒ aĄޟ'_ߗRV0muHNl&{ww$8Hջ2nME1|Q뻣?V("Nv\},\Q<5ayuHfމ^>8 !~heF4HpYhUC>W;qJ8Dx+bﶔE,/hO5M\q`DE/'uG  {RVZ$HQ+Mf㈮k$.=6 _yƨPpMSlEAT<2蚙蝐]3@$HQw#t1z|;~O>k ݖwDEïNtLNH  zInv# rJ*ܲ5MaCeW$fvB%zL=  zl;eݏڪoNڊ{.?^)ӫswEԇߧm赑p  {_!EEQ4;_߬~$HQ+zXj]9z:39MB"kbKGhaEF[u5AFuSdw-Rԙv=KFǠ/?r&f(=z)f"k9q`DE<ߕ]3;Gw\ݣƳkȞ)яtD 5"=ۼؕ7ViiFic)\*8k~WEtlƿ?^HVn-@&p@):YW6ya}X"];ǎ]0~pgy0 ڇU蚙蝐]3@&  'EƦ]GtCǎ=oIÞܵ:)<ը e-~WkfWhT  {?Duߥn"N;zpfuVU9qnj:m_>Tƺǎ%GS0@/   ):gc[Co^Dfi~yg5MeQ2SDDOoD^Efne+zL In/_n52ߖ&ifB5MaCeSDD7'6"oL` ?X(@$Hkhq ~oE{~U20*:G2}so8)Tp-7/7~~~yݡ㧈CD>u%\tz D|(>o~iuwTp90L,g LxgeQF8vM?xFȈbwCdXε=V5;߾]>>W:lӗx|>"22e] gI>zxPdOȄabܢuHrzUGK.8ƐK()kenu[JPJ́1d?OîV5ie7"x)"~z Ȫ_?)ɯ?~_^@D]|8`RtF9rͱ˿*e/6o]׋QVDF_]Fq5HWSkŻI7;-~>?^Ha]aF~;`$HwCoVÞ_m^66/ ݞE ٘7̦8#%Qrr;HA2}3\4\\.O: 㼵 \ +ӽ4"R*8\mTyμQ%vdr"P|{۰yvZRk 5wpw6 Fd 8١iώH*Qd7A5_ na4yiؗeBeiY,,)9zx=ĸ>GOqia/6o^HQ,sc7ܸ5ޠ L{,I|Ȣ1$oMy;+7&W5,keKldR Envhw/*r˨ͷgG<0۵\s cS~>UBߕHrSdd qdԘːQ^R "uɜd;"E7L^T)"=,|/嶝qdј E% XhxBQ,fgјKQ~&5&̤,þ!a&';5|Hp|M7Q&6mjw"{:;Y<=}~VzG]>\Nfu8}=?Y<=WrE)N7×򷛈DD|'zINF3A.;ޜp֘kZ< RkJ)VE;JT$#i~?ED3Zc.^ ުzLj% *8V;ZjwuKmnO/ >eN\dt/|}O#⇻2:d.fjw'v.|bá7|m5?83ŵ9Q҅8yj~o+o"EǫKd[-w}qX 'n;shZ%\ŷy;skҌctkٍ94M:s]/t}@Z ׵LM|;8گ7/~(*ep fW UVVJujqX:;(ӿ ;ǎ|*VҘ'MUB9pKq4 61I:R?o:&"~>noBw;B\ Xzӛtuyõv`5hO\}s &"N21#f k_k]7S'8bƓu×9{\ LZ훜fpqw}Lo>k+\kٟ<=?y"{7O'|-z  {  *F2Ww`lĥu &9"o m-!Ƽɚb.q}@Zl7Gd_w#CcO(~}\v%<\O2{{=>FcNyx""P ˹Tpjv8>8`& vSU. (yw:ӹ00߾hr8W:lӗx|>" B>Dn"Ri~|&"!z9IVE7\jwV-*2հ[]W*8`V7>v?O 9vw\r qϫxpq8n|)"~xq8㑮I+__Dj`m}3SCZTYN{{yMD|h1v7ds՝Yp&"^zE2,z>dq$`C68 ٜxU#Ic mIgfjwwư:>VOnNUXiDqrC̲=cƎ]3[yx(ul_;2c卹r8<>o!=bZD[T A/z4ݰ{zf38c{+=s/:"zrsZ^nè_'ߞǗ_"cScsٔ]Ƕ?F_^^QR$_RG`gՓh-0{HAخ=ECoOMFVPs NcnDj@֧cw{$^|&"U7~hycDn/"⫧[a 99"Į?|| MDyyh>;o?N^TSD˿o!k~dgIp@*Zx6qD}%e|}VOTx2CzYiǽ_޷o~^[SDwk?v^ˮy;&b;fDXu;K3V]>vTMܞmwiZmUuO8RQ< 73LDD}tTqЦ>g:;Рu*oUcGBy |E[j|ggvcm_uD<]Dl}?T= tu(p;unϻsDWG~#/GQ=Fb i]Dݛ9J<>q]= Y_u=o0ٳ 5<$(D'ץ^7#a.\ցCߧxkױCQ/Ou:z՝w OoOZ&"~o(xW"Uwdw2T݃዗w/"Ӷҟw|/'>1zynvxT)jwZkNwZwܢBȚ _%zaj8$pq?z.%dOȞ uߙƒ {@~v NXs=^tl+ 3 HZ$vm''}UJe՚oZ$8,5ky8 {@t 4Ips*n]i{k֫hd-*@$8Ipٓ'dOȞ=  {@$8Ipٓ'dOȞ=  {@$8IpٓO4.B;/ajz9Wjg7)f &'֦r\ڄ9?R? 3Vwm?޾kApm?,Ǔ]ݞn.akk8CQ˼&ymmKǣFߔpM? J`G/XҺzEԳ&ܘfRԇs߹QC#ߩ|{۹]p2|U֟cQV>'V{VǏ#s Ǟ3RGeYpڹ!plEi)P~ XCW:&\],8ٱU1Kߩ惓Uc'G 19pMcu~!q;p׆h4_:!+8 -5\{~Qk g$88 ^4j͉n5vv,çN{@OpBeY@جٴ٧'3;{-d%$&iZj{/9#Kb6<< Ln{U[(Gff_̬36;u !cx;tsۅ_<9c:/en.pM0{.NEq sCfGI Ou@ڳ26ҮN3pm T`[?*:/zkE"\[e>,zfs%-NF9aq3ӅYȅ1j{m1i@c#p3ݿ͙R:,b}3r蝖]-}pwe--򌎌+wlyV+]ҐJ Ee=? |hzا^g| Eţ:VL"s`nZ&ʇMv;9K$c8b۽HJQlc]8.W* EY8ڃF-##B;NF;w'ZrlvЌt k{UN6+eઊ*ʕpr .!EZ9luSÞMuaB]q8J{o '+A!QQ~qLJͣ54j u8K3l`\C.-u*"^?qUȖ:8ia㸌lzU6㐨<μ=ˠqy $zWKyPA/ `e8#N0 &EZ8l8b;JɕTp ꁶKͣ]OQ~hx`ѻZ*8ȉ:UQ_HJ-ʋ/p++᤬{7"ʧ(""Mw"-'uG՝A@{6*DjEzɤB*+A!QQ~biyk\'-C9KLg3st^ v8$*jUIcx;{GV2SRU\⹕f5Ui>Bk`N#+ʝVp9{WGyRP놔C*!p%۫?hTs@^8`,cqtR7nf7}I7vޢRQ-*ߢWeiO~,%ܫr9I R4jqUD{co.X*&]aQ|./QGY%QSM|UƟ] '[_^&Ar^6F̲?U菃Dƽ*^#5/ז/"V(?Eno#VķU!+ɽ*Mt ?I3PA"=kat2o)J<U^zU!A&]wr$Һ_nx?Ք.\g~7pE;&Mrp{AC^fY-NqlOAx8j%zIftf[q\H{6^Ro1-p&+A!QQx@{6 yLެ Z*8ȃ:֠ai<6A\d@Wɔ腊iɶ8l&l*[TNF"8:KZVY!QQU+b4jyIK#Ƥ*"Ec3#?yb԰ӪDEmï{U3{ qTp38/|d3;%W-s%D\8$*j'E*%ySx1}|=eYG={qm&1"_|~,~ 67S jcW:!g0R:݇(O?tx]_vj)E|_o~M{)+"Rrl+e[W^!=iAvauTp3_>}KSY7ߊߕ>$V>,_E9oD}/K(O"ŋo_7#"~ܫB$8X38 d\2dgm+˲rSEy^{ވ(#OQF|i[RECwۉ,w!AܛDZf_nlg ]Iwu75cx]9 Mh}p"Mksq9QJ?rvxJi\e7:RG3 @rU){^--2[uUa&ަmX"9p3l՛*8ZMQa%تl;'aCd\OZLpİTRVqmI{U"$]ʭ:' qHTRn_[9ms!RR,E"2 ݈(菃<]ܰU5vUяljeժҿ_޾Zkߘ|ތ̛qFwHF^M沝˫s\ɩs8F9柴89yvXFs;2Pؗ88k~EݶX=WQq?R'EZnm[Q>lgsV]zVx[ĻșXZ_WoU=qs-mdߒ>ʫ)ķ9VW\E].b[rܒ`2gl9FiW쏣HaG&ZQp޳6ɖ%9 ("nڨɏu'KdHK"QE9awBUzʊW۪ܶ 7Z6gqǡlO[IGmoy7{vcX$ݪ1zᫀkh_7q?jAGT)Wߨrw/"^l_m4_/_lq 8:3` {UOEG+*v=6K9z?6+&D61^a2"͇ qoiI~3*S#V]z/wL>^yKˮUD^#tԲk(U)"O?]fj^=Fp)8HFO9F+㰽Ṏc4> *5G"l~MѸ*dlp%2[%lk$۪˓ESd.:8n.V K|:jY4EQx嗮"2VD2uY,ٗtAB~ ^W)#;vٖrDī2#ht?"}"-g[3HUdyM}CBٵ,k฽HaR؆5X^;G)l7FP8ZuWdϺN l,qdѪ˰ަ㘼>nqz^#tԖ kymkI*8`4uJ?qPvC^鏃\w6dHKF8ʲ>TujU!8bZep*8n/F-)nwnt,?˧("I2+pá(;q)ƤT?WQ#0H+qSDDyN"-9f[_U9ju=R16,Uϣkb{N,̼ k45*TpFq菃e7v|2[`WeTT=qO8ȘqUi7ۚrGE6^v#|ul3฽Ȧ("^"".c/1*l*-*8`28XfU[ǝO DƧ7CR dHK8'/ΫȽU3 mlO1~JU1*8n/F騭)ߵ꭬E/W&vF ٪Tp^zQ[gS\{٪[C;w?D\ qAvu;Ht轥m$ ,+|[>ENW!EZmMg\%j,m19U7lCCwEMRp6\nqQ[gSWu5ʩ+2 qUԸ,,őshٻ_(l_֬C&  xd%  RC~I:$y`HrV DeФҠ#˲,ْ*oJ[s%JQt Ucf]㸼^vu:fث6tʼʍȶd. +^{,m{uXA:qХ*f7Pqa :o /Oxrˎ@BDW| DҰzM[bQgjc-vz+bh1lfǽHgV>m1v)-$xtqkAW]B·`n2zH :8GC㠖UZ@VQ}4薭5CN2@^<B>LqPg bPܪ몀q0At q9u99b#sdk2yGDC@Y#ȓc<`DBdmX&6wk ƒ8`Lp;$UwqK9Jc7DDfFmws ̒|D""B *5`g}\u!0֏`NNܕomB]0ؔwxR aӯ2^uuhi⏚W[r**NܫgoB+luEE'q5r@Ӻ}UUEq]26ijqEbk?$/jOŅ& 0 Cl``ܑ_ko2A+\_ S_ FIc LAFnVp8#}W~8""珼rHu E@/I'<8h3Ii>`Y^.¹fpLF)]d7\ ­1 ۃ3]4Np S{]p>:&i]mL|`ptae cMm>EW_D\$@޴:P}~o߸n-N꯳#?X*@~1MnF!@7aX:>c5Kpdfx7#^3ziLp 8j"d}fІ$5J_[ATVn=Bpt m5e""mT5~Վ)xuV3' |-(Q:إ)k3].J\ D8wd: A`<h~ qPQ`; QL;[\4`X#Ps H쌡I TU\qB<଍`QUMAL5u>>hBkMVcRʃ~dፙ`(T_g(1!fp]'_nڄ@o 7uLvޅncѕF `WDZW/Ǐ1wiߙp |wvQIF]$^}oB<'|*<gA"$/M,J@7MܿӉ4~c‘3rm%ƿd-'5K nѮז;2^=WwZcgKc]i6?f[܆7m#]0u47M uV셟$[Y$IMǘkR$3/U"4bC 9qkX,,<~q1ri1пhŸtOaE#Cvq0zn^ T9t*ncgQ,8|goБ6 D L3 *w,fbxQRc0xؼDsLLÉhcl%kFI>W} .J ud+>~"-Λh`dZV OW`6?RMG @f'^jsp_8츮 X)&+bn5y"qFm`f^ޒeV$"$b)`,Hll_!_̭k>$A2H֖JMu(Tb?hf1fdef Vd+F۬=UIѾˎU!9) D ꜝ8KD/֖+~DԆ5YK3?9 n]h^eKrMR<.ԅ_͵}Zw$$p;s73݉n( ?0S_r IDATJq`qw.6ٟMhe d/&mVVq0NIv‰¹3@f$T3Pp ve)ث'Ӱ3[nUTG8{q;rM?~5Y7mvyddдnl:Ύ 41ړ]$a`Lj2};N<~cVZ]АhGeإaG~1W^g:7ض*wXAQNi =d7ƥw=?8@^TqqU o0f͡61!%[EqtG,*]}3dn%9&;_і_bn9d 3JlQ0Zt:tmrY&anbhi#\u+EۓBALFi8wئ9sVN۩-ٲC UG/ÙdVx9SFjq|A\xOR8yoh-wIbr3VXA{H$4:bٯq]*w/"@ӑ*Uy`C&ISxuUO\HR\ NݷC=35PS@6ǗAd`fuqWOX]}1r䐽,a}#\WDUx4-Y072Bm^N1šI:bV2E7*ژڏ>$:(,Nag qG/p}xw`Qgq S}#E`¶lx+;4y8 `e}=ֿJc@v:(xGXW:B ~*H@1`q!wTbݓQ`<% 6@hmɲm@b؉KW[idɢXqfBװ cMQ`4R7 LYxd/`ޭTe%tQBA9f[m:ܰWOܩ:j xa/ 2+ 61yc#'g/svA#dvɆ0L7B 7 GF~7/Y AjșNJu n 9)UC̍bYHQ*V'}N1b 򋱵Hn2F$a࠮&ͯ0QUtʆT07[`)3&]@:3ٝW\ β ɛ( l\!>hrKRBFLKd?`s٤궿+u^YJKLaM 0tNL]$݋VAE6DEu8kXMFi .4!M7r8-0gOܩӷdWؖCj3Y8`܌Gh\Zhf MB^]]Sߺ&A6[lFu Y\ 7[,f+n]c0Do`!Jmq + naHLVy?䘋j3]h<$_9wSè~u-S9c;  3WnbX_z d_pM0>AM. }f")gcd4[G6" \_g`2"qbʺ打 >r ȦuaoO1CQd?W$ 7iiSqpER8a6w{`d =alum-ҰC6ȿ=|.iN@?~[;FoKߋDDDP_#"" ""tē44Lmb'xAKDDD:w'%""|&Qv&"""DDDDDDD{BDDDDDDD%""!Qmp1DDDV>(*%wBDDD;:& """""*az"""Z!*DDDDDDD{LpQ/qM"""*bzVnSi?ڱ g!""*E"""""""=Q!""""""cz """""""=&8 """"""cz """""""=&8 """"""cz """""""=&8 """"""cz """""""=&8 """"""cz  6mӃhî7渍?BԼ3n c, A#~}ãa~?Q|0b8i̕G`H8wT5o|"7),:+H (׿~d.>xIt`0WRl}3dL>펛5Ym n oK'}RyC%;:]?.?mʦIDm &Uҷ;}H"mgI3yVaӃ5=4/\Ln6=3IU*&7"έm٥n{4Jv NݩU̓&ޚG֠5&OvVh Z&ov}R (jR#Wy_ R4mFf0+8hx\c7;UMglh]oދ5: Eճ_rMGiU~]wjw#έ{u' ыKŴ._w6mXg&EonwѻSOq DDD/=VQ.6z`/0mԓ%"":#Υ~aۃzCT """"""cz """""""=&8:DD"""^ù@DDDS eh+8:AUvADDDDDD= I1""!U#m V1N| OcZ5O1z[ &8c72[@]>O^q#<md68^`Ӓ*D~$`D!6:mEZ~Ewubܭp"wJpV MOvPPkn˥aF0U)^6(eC؄'wL`85 ȓ>hLplFw16Fo{UT[Վy΢~{4 : c>q6$;ԱxtUvDgDGu puG T6Th0VpT`TX3GkZx>? F0U)~ Rq'`XU1;LpT`TXvUW$@ꝹY16~R? ޣ`PGEX✣p>]P3DDI_@*"\CzAQuձ_A$e |ź.X)ٸrIqebQy? -ܰKQ8ޞID|vC* ɖcO|qpN몔Ro &`'CT*0*_LqX!*ךDH 7F0Uٸ8"8?O`k' niñ `GF~hmsp@ 8@YcaNuUhLDK`' k[UcmY$PWQLp@.DwS ?\Pfmf' ma'8ʺ*D]`F/q3_󌖞rLgLD+SP1zbZ:IuCs'ѼcV ` ǯ$ȖYcmc};LࠞYnHMB|6dDR[:)qu!1{=k{=abuKolKiTǁ%hMr:N7CD'bnٍ4GS/q>LpP+ǁեd7mcSf:vՏuv{52 )a)#s8{^%RPgmQ%&8[Mvq8Gc.D*7X~}#3v0*͡nlkGn@y7 zNa߶mɇ_^m;F0r ]:cU(+(Ѱk3P1zrLkQ8"O\ H4b6N32N+8*0*,C{طmۯE@ @ $Tc S9G[lmRGEfo3x'L$I$b>]g1V.%bmǎ0Ar vӦHDyqoC@*@I.,Ef'oQ0A]:| e4SbBbub$OmN8uگnb p4pDR?Rn=d>=Q'p`'7w`'spT`TX~fkR $@:>Jz16p{ط ̋M8u{60q>h˻ߋx'KŴu<: ͋2ON^bC.#t-0 `GF~hmo'9A|G?)l`nw©30zipࠞ)% R\WSٺ*vҪDDtB}gbud;@/^znb =Dnd=ӱ=Rjx0;RQae7cmkEUW$&!} 8F ~ğ:TXdw1=۶Ed&Q~[_صDVKٶJqE" h@Uh(֢o V=إ-qqbNJIM\0 `GFUW$^,"z-cm;YPu>Ww0zo~`5ၧ jC9PoAeHg7uUo4LkQg=FT8>SL2y>bVpT`TX-Wp؋TI8g=\Lp`^ ee+8vm2Yr{m" 0ٍQN$,D$@Gj>A=};ꪺ8s7-LpЅ;as)Ź6GybMG "FF$FD4)`nҤc&"$"H`VgHB$f #S-RSq0ڱv1f2xHǸ2A=ꐖ J6ܾOqz,;R'W!izT{їo&S2NT`TX_I)\$['ccZWm8h; FzxO#cm;A(IH.~(<( 4jcN;LAأX?)hև`CiƦc){<+yv$1hHYQ{;L|թCNQxъ.;.K)N'N5jda LpcTXnjW, FRtLpp$_UaаV4_c~2)Ztquݣd76:?|.\dM^\k;Cuu6t֢9}cUq ua@7;9#o[ҳNS=;=1v+81*nH8l[sKrۚ{i?|թCN1>-DZ)Əx'7m`'0Qau!Nt;|թCN1t:&۷'N'wBs'k۹Q Lѻ흎HjYX|gk.:޷Vp)VPf&֏Vzotz66/pjJ[ކ;;QKƴu9&u;rurzɥoۋφ}M+8 9j#;XEr_[8PaqWh񑚟v'X9.t]J+D=*:i-ꐎYOZ%h8PGMBoQ'*8Jtְ" tNx/]nFNҝsl)ѝ`&touְzήLѻ흾 |QN{~Stch2DZ);0MBS]߶ ^'a pϢw};}aϢ}KD[4_;6۾0Gv=Qs3_J:^q 86NDNO$'s]ދLO>-p"[C vm=n%ܮ IeD*4̾92TLǩ}@o_Kc+.`h0Ag0֋2WކdڷDD@ձ_")f4F$ 0+W}"H$yd쿏"љ[Fk֎ Dv=QsyuƦn|ug"eu0G>x'΍3Pty*Ң'M&-m5s)r^<7W)=R{^j僗ط$׽N[ú~)zطBqnk/}8.G/"U\ uo jd Ǫ4cSX|@mpA6d}KNADCN8uA)?z?^:&8*f_tWHñ-{=yهR̗ݷ quְ..o=l9) ;lV_ݼc"r>$U^0zXA'6+q4stSJ5p!Wo "Tv"l$[ 9Zwbj,pU :=&8vVm/ꊗMh~ Iqp%": Wt/5οVu"vJxR?$w"o= ^:%&8q|;9).ZQڀLD{c\$Fvg^%-F,D`s>>I$H":<] c3f&Qn\֎]EvrT:ʘ]q^'a]d?dS Y "SNf)΃5P>8@Ԯ[,)^37i}{!ޝzXF0U_ӄŎs6?EAzطs\̲-&ԸԾ ׽N[ú~ITInf|ڷqH|ظڰen6CGyg@b0ĸxspb_u~  -wݥ{۷=2N^5VWZy`}[ ^'a '9װ" }vAxM\E%j6$ us37){pUw3`&!ڣ vl]o;y=888, 7uLp_:a;'{;ѧG <I5I\(o=8 ^k |94;uO^j'%:dMID&-=`>%I_DM)"'qmqhE>ךbZ 1MS;hD2P}ý{p)KY01Ery}9q).o;n\ `k}BU6b}[ ^'a N۷'s^[mq/5!b΍< u#IE |㵇`1V$uaNrIC]ɥb] osG|6eu֐8ܷqFi6N䳋q$H5M<'86&cU;Q{i2JrU/+/ԇІ7#mKa/2Dۈܤn>EC΃4 >g{?1>Dpg>"nF/Z!g]_  ւ--ùzurM~fQAм(k6?)_K5bd1w]o\{xYaJ .ԁՃ,E+57˯GbN F0UuuU).o;kh\]qS15tKMY~]ֳM:K5n|@ $mt*{|t_$)7>ױ#fIɗU4gұUNq\Xv;E &8_dS |kX{ '\ߞXm#kb kk.pkosj#>W!1zn*^5`A [s)vR5[Om {-Λk/?~CZS?҆?l+M1>]|}P<+K"ŽNg@ XICH`7D +8;aQ0AԢryٖ 88zhU$ɑ&Y%#[' tj))>@叐hx˫HM Ipx&SpP#[$JHڟ&m.̍A śHz^ /_BE$I\$" 'r?~C2Đ.i7>CF^^Y<$"'>QdBfsC{{ڱ"߭}{J˥W=O]'4MO+־3 8GְHC^E5A-X@ь`搧cUW H5Z8Hkg2aڋ&d xz|vH_'N5q<ɖ}Up]w; K 0KOT7 Le_FeClzɛ0ěH+8o}-3`uF3PԌ8 >_F<y;|goБ6\lEuU=f%!e {j@8r(bNgc 5P^beR)@bIFMw'Toy'GT]uQe_UO$-{ހB-*8Rx!|ثd>'0ḩoJ?MH7c fZ[4Ig4;-3#4fq2#g2 f*C 4_]B&↷e+e*>~EqC-j8؊7J$ 0 0X~-+pysZ67??BD>"ebx}x>׺}D>k$OMtg? ;[<N }|cؚk@RHDpS NA ?1Ƅv>e|ev#;~< 'nz@ _=G~28x![F/c[k|uM Ͳ-U|t255 ?m25N/n-kV*C1$n}OqGU8g~v4G/}E16"WM7 0~al2$/s./ux>g~"OG?^=G< OC A`HBLqF< &8x Rv1\+;BȨY`dT/'q㍂bbrԁPuuJ$ ۇu=O! 0x-`e R/3] 8!W1=JL,Q XLHr_؋{Ig.g.mPl#7ο^??7)/ [ KШ{ Aj{nĀvUgeC >RܪIŝQyw: nujw]ANnx <p7;,6UXՃ.ó+psf \|_|qe#"u}1b}+7~pW)3U?<}KE~<w> 7-SN88o[|:pe'wtQ#\ְ++ೋDT'tRc{#SH#?R98$UuB# ~d-$,L<ąznv1?}Dwp⡢cm;b;tb`QǑUdܻkE k-O5.#JLςdo}Lp}9Q'*N}᭏gx\Oh? |9p $F/e8D8ǐ9poB*)y:G]-qQ췛108y#Leޥ&{fɪ@qq'22೏cA>/mvc F/-0EͯmHn6l0;ڋy4{Y|]Dп!3gCQF4 9EIDATқxF<}D&c GF/X1L~M$-\[g lҝ x8wB<$q;ۢH,2l4;f$s~p^is=$H2l![N8u8UvbxgO\Hx侑7lG 1@=;Updom t|cO3yk8YbAL?O .*> j<}٣>" YKCǴu5j;^q e.=N:2+?_A[sQ_ci#PAFF)f:?融IT˾3ջ)٢*sg٘ZQɼ4.e l)FF$]Tpa`4ކ6lpGccLm^)O?㍂oL{8*TpĦ8kLdR7 |DσwXA{q$jQH lۦ Tv 0bV=?JpAm@GX\ӹB 'B$z=C |kY[~e_J+W^ pP^sn<>|t`, GdNFE  >>Tp-Tpa`צ dQ 3—%rR-Ȋ8#7>_\e(l./CyΦjpAcZ:F⛽m V !l-ƛ.=|7(#.`#[oޟ\ocb;@HDD u L9"""""N h ""ZQOh3N2JDDDDDDD'%""|&Qv&"""DDDDDDD{BDDDDDDD%""!Qmp1DDDV>(*%w@tlC˟i/ @Zkl/&w$QcxyM`'pywҼwt7ι䙨y'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'py'pyp IENDB`SuiteSparse/SuiteSparse_install.m0000644001170100242450000002037010712164560016126 0ustar davisfacfunction SuiteSparse_install (do_demo) %SuiteSparse_install: compiles and installs all of SuiteSparse % A Suite of Sparse matrix packages, authored or co-authored by Tim Davis, Univ. % Florida. You must be in the same directory as SuiteSparse_install to use this. % % Packages in SuiteSparse: % % UMFPACK sparse LU factorization (multifrontal) % CHOLMOD sparse Cholesky factorization, and many other operations % AMD sparse symmetric approximate minimum degree ordering % COLAMD sparse column approximate minimum degree ordering % CAMD constrained AMD % CCOLAMD constrained COLAMD % CSparse a Concise Sparse matrix package (32-bit/real only) % CXSparse extended version of CSparse (32-bit/64-bit/real/complex) % UFget interface to UF Sparse Matrix Collection (MATLAB 7.0 or later) % KLU sparse LU factorization (left-looking) % BTF permutation to block triangular form (like dmperm) % LDL sparse LDL' factorization % UFcollection tools for managing the UF Sparse Matrix Collection % RBio read/write Rutherford/Boeing files (requires Fortran compiler) % SSMULT sparse matrix times sparse matrix % MESHND 2D and 3D regular mesh generation and nested dissection % LINFACTOR illustrates the use of LU and CHOL (MATLAB 7.3 or later) % MATLAB_Tools various simple m-files and demos % % CXSparse is installed in place of CSparse; cd to CSparse/MATLAB and type % cs_install if you wish to use the latter. Since Microsoft Windows does not % support ANSI C99, CXSparse does not support complex matrices on Windows. % % Except where noted, all packages work on MATLAB 6.1 or later. They have not % been tested on earlier versions, but they might work there. Please let me % know if you try SuiteSparse on MATLAB 6.0 or earlier, whether it works or not. % % Example: % SuiteSparse_install % help SuiteSparse % for more details % % See also AMD, COLAMD, CAMD, CCOLAMD, CHOLMOD, UMFPACK, CSPARSE, CXSPARSE, % UFget, RBio, UFcollection, KLU, BTF, MESHND, SSMULT, LINFACTOR, % SuiteSparse, PATHTOOL, PATH. % Copyright 1990-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse % In collaboration with Patrick Amestoy, Yanqing Chen, Iain Duff, John Gilbert, % Steve Hadfield, Bill Hager, Stefan Larimore, Esmond Ng, Eka Palamadai, and % Siva Rajamanickam. paths = { } ; SuiteSparse = pwd ; % add MATLAB_Tools to the path (for getversion) cd ([SuiteSparse '/MATLAB_Tools']) ; paths = add_to_path (paths, pwd) ; cd (SuiteSparse) ; % determine the MATLAB version (6.1, 6.5, 7.0, ...) v = getversion ; pc = ispc ; % check if METIS 4.0.1 is present where it's supposed to be have_metis = exist ('metis-4.0', 'dir') ; if (~have_metis) fprintf ('CHOLMOD and KLU optionally use METIS 4.0.1. Download it\n') ; fprintf ('from http://glaros.dtc.umn.edu/gkhome/views/metis\n'); fprintf ('and place the metis-4.0 directory in this directory.\n') ; fprintf ('Now compiling without METIS...\n\n') ; end % print the introduction help SuiteSparse_install fprintf ('MATLAB version %g (%s)\n', v, version) ; % add SuiteSparse to the path fprintf ('\nPlease wait while SuiteSparse is compiled and installed...\n') ; paths = add_to_path (paths, SuiteSparse) ; % compile and install UMFPACK try cd ([SuiteSparse '/UMFPACK/MATLAB']) ; paths = add_to_path (paths, pwd) ; umfpack_make catch try fprintf ('Trying to install with lcc_lib/libmwlapack.lib instead\n') ; umfpack_make ('lcc_lib/libmwlapack.lib') ; catch fprintf ('UMFPACK not installed\n') ; end end % compile and install CHOLMOD try % determine whether or not to compile CHOLMOD cd ([SuiteSparse '/CHOLMOD/MATLAB']) ; paths = add_to_path (paths, pwd) ; if (have_metis) cholmod_make else cholmod_make ('no metis') ; end catch fprintf ('CHOLMOD not installed\n') ; end % compile and install AMD try cd ([SuiteSparse '/AMD/MATLAB']) ; paths = add_to_path (paths, pwd) ; amd_make catch fprintf ('AMD not installed\n') ; end % compile and install COLAMD try cd ([SuiteSparse '/COLAMD/MATLAB']) ; paths = add_to_path (paths, pwd) ; colamd_make catch fprintf ('COLAMD not installed\n') ; end % compile and install CCOLAMD try cd ([SuiteSparse '/CCOLAMD/MATLAB']) ; paths = add_to_path (paths, pwd) ; ccolamd_make catch fprintf ('CCOLAMD not installed\n') ; end % compile and install CAMD try cd ([SuiteSparse '/CAMD/MATLAB']) ; paths = add_to_path (paths, pwd) ; camd_make catch fprintf ('CAMD not installed\n') ; end % compile and install CXSparse and UFget try cd ([SuiteSparse '/CXSparse/MATLAB/CSparse']) ; paths = add_to_path (paths, [SuiteSparse '/CXSparse/MATLAB/CSparse']) ; paths = add_to_path (paths, [SuiteSparse '/CXSparse/MATLAB/Demo']) ; if (v >= 7.0) paths = add_to_path (paths, [SuiteSparse '/CXSparse/MATLAB/UFget']) ; fprintf ('UFget installed successfully\n') ; else fprintf ('UFget skipped; requires MATLAB 7.0 or later\n') ; end if (pc) % Windows does not support ANSI C99 complex, which CXSparse requires fprintf ('Compiling CXSparse without complex support\n') ; cs_make (1, 0) ; else cs_make (1) ; end catch fprintf ('CXSparse not installed\n') ; end % compile and install LDL try cd ([SuiteSparse '/LDL/MATLAB']) ; paths = add_to_path (paths, pwd) ; ldl_make catch fprintf ('LDL not installed\n') ; end % compile and install BTF try cd ([SuiteSparse '/BTF/MATLAB']) ; paths = add_to_path (paths, pwd) ; btf_make catch fprintf ('BTF not installed\n') ; end % compile and install KLU try cd ([SuiteSparse '/KLU/MATLAB']) ; paths = add_to_path (paths, pwd) ; klu_make (have_metis) ; catch fprintf ('KLU not installed\n') ; end % compile and install SSMULT try cd ([SuiteSparse '/SSMULT']) ; paths = add_to_path (paths, pwd) ; ssmult_install (0) ; catch fprintf ('SSMULT not installed\n') ; end % compile and install UFcollection try % do not try to compile with large-file I/O for MATLAB 6.5 or earlier cd ([SuiteSparse '/UFcollection']) ; paths = add_to_path (paths, pwd) ; UFcollection_install (v < 7.0) ; catch fprintf ('UFcollection not installed\n') ; end % install LINFACTOR, MESHND, MATLAB_Tools/* try cd ([SuiteSparse '/MESHND']) ; paths = add_to_path (paths, pwd) ; if (v > 7.2) % LINFACTOR requires MATLAB 7.3 or later cd ([SuiteSparse '/LINFACTOR']) ; paths = add_to_path (paths, pwd) ; fprintf ('LINFACTOR installed\n') ; end cd ([SuiteSparse '/MATLAB_Tools/shellgui']) ; paths = add_to_path (paths, pwd) ; cd ([SuiteSparse '/MATLAB_Tools/waitmex']) ; paths = add_to_path (paths, pwd) ; fprintf ('MESHND, MATLAB_Tools installed\n') ; catch fprintf ('LINFACTOR, MESHND, or MATLAB_Tools not installed\n') ; end % compile and install RBio (not on Windows ... no default Fortran compiler) if (~pc) try cd ([SuiteSparse '/RBio']) ; RBmake paths = add_to_path (paths, pwd) ; catch disp (lasterr) fprintf ('RBio not installed (Fortran compiler required).\n') ; end end % post-install wrapup cd (SuiteSparse) fprintf ('SuiteSparse is now installed.\n') ; if (nargin < 1) % ask if demo should be run y = input ('Hit enter to run the SuiteSparse demo (or "n" to quit): ', 's') ; if (isempty (y)) y = 'y' ; end do_demo = (y (1) ~= 'n') ; end if (do_demo) try SuiteSparse_demo ; catch fprintf ('SuiteSparse demo failed\n') ; end end fprintf ('\nSuiteSparse installation is complete. The following paths\n') ; fprintf ('have been added for this session. Use pathtool to add them\n') ; fprintf ('permanently. If you cannot save the new path because of file\n'); fprintf ('permissions, then add these commands to your startup.m file.\n') ; fprintf ('Type "doc startup" and "doc pathtool" for more information.\n\n') ; for k = 1:length (paths) fprintf ('addpath %s\n', paths {k}) ; end cd (SuiteSparse) fprintf ('\nSuiteSparse for MATLAB %g installation complete\n', getversion) ; %------------------------------------------------------------------------------- function paths = add_to_path (paths, newpath) % add a path addpath (newpath) ; paths = [paths { newpath } ] ; %#ok SuiteSparse/SSMULT/0000755001170100242450000000000010712370230012771 5ustar davisfacSuiteSparse/SSMULT/Contents.m0000644001170100242450000000157010707702576014767 0ustar davisfac% SSMULT: sparse matrix multiplication (sparse times sparse) % % SSMULT computes C=A*B where A and B are sparse. It is typically faster % than C=A*B in MATLAB 7.4 (or earlier), and always uses less memory. % % ssmult - multiplies two sparse matrices. % ssmult_install - compiles, installs, and tests ssmult. % ssmult_unsorted - multiplies two sparse matrices, returning non-standard result. % ssmultsym - computes nnz(C), memory, and flops to compute C=A*B; A and B sparse. % ssmult_test - tests ssmult, ssmultsym (sparse times sparse matrix multiply) % ssmult_demo - simple demo for ssmult. % sstest - exhaustive performance test for SSMULT. % sstest2 - exhaustive performance test for SSMULT. Requires UFget. % % Example: % C = ssmult(A,B) ; % computes C = A*B % % Copyright 2007, Timothy A. Davis, University of Florida SuiteSparse/SSMULT/Results/0000755001170100242450000000000010630012630014426 5ustar davisfacSuiteSparse/SSMULT/Results/CoreDuo_Linux.png0000644001170100242450000007554010625633525017706 0ustar davisfacPNG  IHDR^dL pHYs B(xtIMĖ"tEXtCreation Time25-May-2007 15:17:24Y}O$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx풣PusۡQpJ؂?P=] j@$/I^U&yTMP5 j@$/I^U&yTMP5 j@$/I^U&yTMP5 j@$/I^U&yTMP5 j@$/I^U&yTMP5 .4_xtWF<#ӭ9hW5l{7U|O^Yrz8j`.~& P.xI{vm {?mX Жq _m .1sL/ܜ-%?N,~ Fܽ%LlvCJ ØR).'躩ZQMa-Q8[X{SֵOS|[ȜqiUC:wi vr_ ˲>͋o{ɦ+ə_a/s=\/Хղ(f^pWp$&vmy^tyistb/~!,6N''K8ݖcdlZ*v 5ZU5pnz_UtHgghJ|O}4ͲX3Kpwg%~8F@$/I^U8hn0) :|@_g. $$BqPU}TIډt' %:{N5G[=页'@qkGݞ V3҅`5ĺlfD<_&vO赅C*38:`vPeyZ),qWywt܊"䗨M7Et']tK閭_jHϼxOĵί5o82?'&-S-F`ګ\?c66t9[1sۇ_K ̼}ESUMn_\ƩW+E:|"1:5mKo[\w.>H5h.="]w>t?,F}{. U5S(יxLvf^gKc?;q󶆹M9y"￵ˇ"©E8ax'VQa;|>y}S_} \|yN6:GꚧsKpSez7Ii(%lG1*ȩ^ģI^MSO^wO|qoך{& ԉ<8Ldb~ |gLr/3oʫR6z43АLOD/#:2<.nSQߔOy VlDyDrL*y:sgfln1cZQ (Y ͺ?8I^+OX8vJW~ajq%snxb}}=΅H7áHT04eU4™̿oeX=w&UKvmQe@zŇJOrt%g:w ovr~JPMGW6F[^~3^}!:$Bz^FSwGN:=?f3ZC8s(ՙN~Qz9!'P,>TDs3=Џi vlbx1(r>0ʗ?*;ho\r>\p g3 uqs69F&|8J " Xhp>%ڜG׊ԎMd.7X~84lҹ=jAiИ$?¯~HN"aӳCPHFZV PQ._=HEq8,8Ys;x ױ|J9}q_,Sñ8\X#$/%9 haHw}071 ޣo?LsܙNeΰeKg_H9vfI[_8"xLu8?7p$ >w[ ڻ] C?=&~3Yvr. gmtutfyx||`,?8?Q6;k؟xp}q2kZ=/Nk.+H^СGFޘQ Z/;(Sa",Td&Ӄ۬z m2C05cqBXUyE*fouN{QkCYI^Чfk)3_ gN{s.ƝWӸ댥D$]?ÏOB"sqn ' C7MN﴾ZH9GLB8rm;G5$oHOj^ ϗE\yL.7mG*{39. sJs.\; C:ewP:J+p1US~w×_r h@"DS>gި 1bL4CyR$l8pf)zf:͑VJRL'C"BW!F3*O|^D`嚝 pjÜ??*_B Z!y),Lzovb];>cCe4"&Qdfdsh^@_;3_ðr~z8GkH^3g䋲e\*+xh/̂/xF2WHc1=*1/0]yz};fH^@g#Dzԗ[YpS7HbT* QәYkOKnLPN_m<^0BGO$/`cgS֘tr YX0氫Rp k!HѨA}OJrY/4z*~%ݐvYJwsf[L(}$}ZiW`aX 1wdz%lNBqbjlS=hqkjymN{of"?$/QwUl 4*\$ؕA(2c_;{rg>p1ɞH%9zrgڿ<4*lşgJDB$/K\D!#< 5skcfoEd_m,֥Ŝ\N==cl_M}J겷m9@{sGC2R.K2Ct)YY\xvœN ?}]≓0 0ט3aS:EXSrrtc[WE2}>dNO E\8~{\]aj~XqwszX= j[zfA;8wj%&wT al_]˟,PkiݟXkԢ-M-O?d(_ǟV4b ì~}f._GKrxTĥS]+C"9绽X\k!=5#=EX&H^S=vC:|1l_ z[qUDD37Uw5쯮am F8#\١M$'ѯK n3Sfo…&Ƈ ϰ/y~=}'$2n_tezB/ccƄN*xrY ,̅Gai8o*̉cƞmx|g=s?m׭ hO^e:76zu&ːhW,]$>g.&p~".zh/,S2oW]$߈;pz3uW~}WmCgݮ@$/$wh@14Dm;Nhtwl @SRڣá,Cz,.JTh3xj]!BJ|3o"lh~j-cqZ@W~t55~=*I@$/V4Y<#&Irayo/K: y2c>ː7h2v3Ր`qbVO%}84ZGݸDϲ$~Ks~+ocHͣe,>X#'PG Crw= -D8]9ȧDҏp8cx;9eXoO43OCoYXG׺njqfR" pODy 7'E\|ļ t>%,86p!gv"5aDӧ3zZoEvH\<4ZJ=Š"b(\)71{8l1P]Vʒ9}8dk{* ͓CM IOg>Z=8k裩}[ [qč0 17U喇RyOTԤNħ{<[=-SthZb~8~NNsMbBCp~G-{,yyݛvoX}>PeOƔ Mo& v[O[u쾓a?jf7 5m)+C=;<30MY)1ݹ&፟F-|>}ԋI^O:\3- 8!sS0uD|h7ݟH?*19szkkNW`LR0s1cA3?md6n?'l32' ;џ-W6:Ⱦ,[0֯F@#P4Oc>;Q7=|)h沑gȢX_XK- i{% ɑߟ<<$/=+ [,f+ Zf.~f;pmA k.<3/XvQ}KE{WOFV|>8g t' kָ_\NZq@Jt9, DM\]eseWL  A61_5̖~lo"9b|Jmw.ov]9_%)sM̥dԙܼ`g%'ࢇ69L$D}_wox>v^Küׄ?eL|qoܼ¨wo:rَXH^'\$29;Tr͉dh 8d!M;^R2$XY]  6wN=sL8D+V'~VVD^I@N^%^'e$tN 'Zx. @;—.9 w >Š1o ++G7Z@f^gGOLQ~ Tcuidpo|)k-͋t%\HM P:,lzO3q񷁀GH^m|78Gq7{O:IOv$ jm|>쾞ㅯ %tqs.l^qPA̋}n8Km>y[t) $3/|3 ɋCpVH^mw8]tle#- isЇ;8:Q @$/7t8 :Zm;\JDܬTMn$׼^Of^U3mt>? Wqp'7t@$/Q;8 :ZUh_;8 :Zm3rp'wqp3ALP566hwqp'7t@$/Q;8 :ZU3yUR"$fE۾h(EDL5Z .m / =ȎD8 IDATQbIRB/qp3A̋}nko3ifE۴"p+"n&֕tTM͇ :f s#T!͛KDIP-ɋMj7,e8 8j&ys͋M0MµgFM:qI-Rd:t9Y ɋ慍JNn5c,pA pl14 ~BXz6hcEfBU6Ij[!yahc6Xdv!uj$/0&t ?\phWم .Џs.@$/h_Ā .E{lmH^=~g~H^]1@$/I^U&yTMP5 j@$/I^U&yTMP5 jq8&<@{@Yq?6f^G|>DJB( Bk.78xeMX0"mA Mϖ4FKPPPP5׼~!u, (+1)[dP5 j@$/I^U&yTMP5 j@$/I^U&yTMP5 j@$/I^`Ǧ"娰H}q5Pq5PWt5P$:."p'wqp3Ad|>t)-DIP8.W s*AL7tp"c`;8 :`FI^U&yTͯU3P.x98w/ϙwI-WRifkKq-ir%EqD\E\O]>Ab-WR$ J ӝ{;E:/)Ҵ?/xϮ^a[| +;`5$y%}]CvS0ۙg{J}cmm*J]]Bt6`NP$o7/D#(z9ܬ}-eWYsf^Pqe>t籭yn§eG[ O73Y|a٨<7-Юx(]Ivd A<]75_B+b8LE#p k/غrʜ/s :g%'h.$b- g-a؉B(ښ}_U3_tI%|3-Jyo1ꟿXEJra/5URNcoj_8D$/܄{zxvBYy ƭW'2햲jh@'785sN.1_0tY֞?ݢy3mu#ts%9v+eWZŐ  3Į-ϋ._4/mδս]X8d|$t ovUXy]NdWͷӾP)={z,l}MS/)Y6z:Y@}v_U=z,>C/H~U3P5 j@{pqኴ-gB:8L婟6=-gYȵ_[p ~*7O*TXceYȵ_[p 0Nc_ e#PGܩe,a"-8^5;:=P"۲{dOii3ngxA纈{$åc/RRԩ6n^Y_k;`hdSu.ۖݕYK]4A`xAĵίЛg;[f7]{_s6gVT-6!y)Ap.<,aZ>=- 79]jk]\wTss37x*cIatT>-XΌւ ye֣7w$472fW{dN_kLJ~No&S-b7g?^7ˋ𺃀n$/x,=Os^E2l6jjpjcʑç.r?NҙnEoJ'mxr7wOvkr9b]Mç_Jhc{\O ZI솋VM $ġGbdS%['yD:͙;^{UkZ/?C;cuv-IˏM_^;bp|_[Np-%1O[IП$=:r4@^KVy ~QuSiu:YZpSk?lbozi/ʻ=<# 4Ԙa>:){MrԦ-}sS[wOkermڵ3jSX#yA{ʞˍn'W.шQ Oex?]JNCP?mf-gc4#Ä́]0ΐ܁(&ڽS};7]~"q{gn,/~ٶnHn Ey\Z"p\B"I^P̣1üy`HtXՋĐff}nX9ʟɗ;qJߢఔ%]TlWDΤ'4a)вMoix v ZUy[]k+-&RgO˳NGg[|E7틿WN(H^tw6$3,st 4)FʉJ"n١h{j`F!Yv]Ty#a[C.|q W4{O1ȁ!\!ߥO>Y nX0?OU6sԢd.dwdCْ&ynk v]Q J4 ,aWRTLi!Z{6P' bBOŰ4shAԣzy%׳9+ؼHZ"X1-(I^E/(W3\eX=N<|gfh;B Z'y/6ˉ3 Nr҇"?>2vTXg kW/zd -p=B ;*ygKj"3/TBzJU{r15hm<.Uf 㰔8Uf!b "yA3$jadIB&"$/hFO:Ww`of%[t,*3vyac%g22H^ZN2$/WLZEq2i{E?2?I58)Y@0,M*!y0 .c?*s^m~y 6sING4 k^o1> $/WqY|f Pi@3/wYv]T"9[$/I,gKr0Dz-\%y˲E uR"$f+_[$/6?\羈 ps4yc隝@6 |{r$[ՑE>Oxx8 _Ö"n/vk4`m60Q33.8 wF085Gnk-m]nɠF6蘵@3/6./y"qpgN#yѶ~y`3tx7{,d. t%F4p;"e;6nv_ Gi`NFз,i<~qM>Dto@=t&y$/@7N{&aǟ,M*fe#dQ"oO \a5vp'$yѪ͚ x"rwMIy [=$/Z55$XV |$ y"./<-X6ҶQ3TEmݭ7k3>`ȋЍ9FPphmivct_ĭo\Chc'y1 cu㭪h0%Rt|,hkHP;qz7s;h. opą%y"^ޭ N0;}TZI^p,<er;\Gp@eH|w_#:<=e(EiNp8xALy7*R̓E f]iF8e>3-|~ :z55s20 f^t`wk<JFBߞ7^ =z>e :^ ̼h_;Uq"nV]b yTfs! yЪ'W 1xִ<9 k^_r zWWM+z8“ka0]5 zW`l)ѕ=z2⢰eC {uԻh츞jE9_pvօ 'GG<+tk7 kLPr K"S+!i:H^{Q0Y>Syw̬ۢ/Wq@B@AmQx@kQ`v\}"¹NA!d.R6diLn{u]D I^T~]qd&(N2! w*GAx= (0OJ^s+\"j?Kf!] O8t+uW52BtZVWMyW]A cPWGmөpn|o|u7SkkRnP~ёw4t`'yR}_75- hjyQ$B\mSF,db\ದ}2f^pşncX}#7 \흉$՘*ugasI3xJ1ѤuS3Oyr IDAT7??c' YLT51 .f:m:ܨT+>8?DsD+u.yE>N凇H^pzS82{&\$Ӝk Gk~S:E򊵓4UB $/1 ! ;D_‹t _M w֫y}NQy&Vz(ګjk06T# ʅ%'SќoH/JL^up_:6' wEkB7 7%xJT3ʟ(K;H^pL&g:f7K ҃3'`? 'ɦ9=vJgQo713uo^1 D6ӅmZ&y])3Kjm9Y{mzmvį\*78<ON ct1g!g$^:ŖN[\"+I2 2?` 7;|sm腉3T .|h.2]itI@.;E/OG`HIku/bۛOZ.co0,f]v3?'o'!9 m6}7|~0XDथ3n يŗ/6>6Ӆz{[~~J:$r҅m,zN IKgom'ɑњ]CEp@Sl2^ta~( O/$/Wp̱f7O&%QH;9ٙGb;{d!Θ'&'þ&OO4\@{ lvg6#sc]ɜmu.tl_; "(h>OSv6LB$/x,isvqݹеޮd'M"^ _{3\б& vw/QP? x)b7=׆ՙZ͛d~:vzF(Fkۙ~x H^PKvE2'Oe 4lxËJ̈oY1XQ :88o=$/[^]ѻ$R,Hoi XPIG\QF|c|MmvX.9ӻSӣS*7Om=B}>8 qHmP3-]7x7 *L6>?I0:% mHҩ4ʠ7tG{#n3 *Țjόa?=טo'9CO/|$=ùSDXۻR5r8MK7s}4ejyD?=c@}>c!(n﹊'$RmGLuM^WpDO^~xaCYP tI^Ўë_6p̟To6SYp x)k'[ yA;{BDg9w*  m9B re=*G> ~s10y<58s6xto&T>s}fΜ7NZH*>3r'Og@'yo}$/M_9g  xW`xˢJ0 a8Ĥ b@E%&e2,*!ydH/*qOJ9g)d9|Aj"y\,dI^WJ/*.KmsDjcq@_$/Om ֌@$/ZLmڴ+'@/$/X0^|H9*,RD\ =D\ U] tIDLyc>EDL(̍rŐ>BD qp3Aw :f;f;8vlP5 j@P53/I^UСq#ޟyir%E6mTb-WR$OĵXiIt-ir%Eq}0 <_3"M[+XyHqiZr'6F4m`9t]EV牸X6BIϧ`Q8x;O&3tݯPKMq.RVtFoj$/P5 j@$/I^U&yTM1oWdEq"`Irq/' $Q+XGgH^Вq?OgsO‡;<(27qq/''8CZ|Le6?b1/,XR QK[^|Nڕ戸R8qq"2K%hODxh7#]>}f$$JU0-,6\J%-(N%-⸂K[" *rQifhx\J<@a>y)U"]D\Nq%rJx64l8,s\WJ qTg+=C])#yAs6_!Tt{:3\M rNX7և f"$fN2\sh%w\{̥S`qkE홨g Aq#78%A\Zåmcε^~&m}"ֵU8:ַ),IDL yA[i5{mq퉈뉈댠#6U3P5 j@$/I^U&yTM/Yg+s#kw}+S*'/,O =kPyS5^bӿUOn|L$z=6{n6h˃ոܯC`9wAفnNng)}(svmvm ـ:YBzdݼQ0pj__vgQ gyA-ƕӝǶ6杺 mm'D?ffl&@Vt%vcȁtt| (޿&0 -cڧ)s-dN8P͗c습'̟a'r jk]|Q+W~% 8eP0\d"\Ng+]Ũb /6g*ELJpnVI;Y}D5nsQj:m g7=^".T^Iȴ[ʪ\;t_;|篋 eY{ktֽӏd͕튯× _STj_C3/Jt+8\fg%~8FVԻ鳀 # T j@$/I^Uǟ, E)hT$/J㿦% #6TT*~ۼQb jJ X(KLAi &⨐}8n) P\,a"Or-R: #n}tq9KE(Rf#X0AwIDz~m3Gg~cr:AC90qmmJC1E<6Lr+ ;L};%ԥKHgb gy<;'O|)GUEzڙFЄVH^gXfmq:;V O 6[7m =ئTe1*'yy'\Q >>yy, {5W_MO|vdڜBL5猰uˠt3Ec"fn=q xxpK / &9 2C$/m3KX ̚“Cj>|ZIdo#UAڱûv KNؐh />,۱_NωnwO'Qs6oݴwDj~T )9Kg̝IB6 H_^BJkpSgY rdžCtK3cVAY։.I^l 'UJ1Epƫ|+k#4uƞ.$/:I?QQ>uK?a3xM8,=,i^|;-̶a}s/8k>au[s3:|Lgޝ" MW;{f;0 -;htg ,63˧ҕ?g̛. YSX6B޹JlA^lGN{." WزsV3a o~ע]=0as辷0"ԫ^$;7s[ށ$J>\n? 0fZķDtl0Qi_f?.8勳[I6"$/T(xր:{ug&#Ҝzfzbz_>a?R<  &;]0)C,NĨ\"҃5/^+1y/wcβW0鸫"&?Ob5ENҥM?̋'۸gW8-S;5 *<V)Ny}3?ՐDCxJOEH^Nzzؙau"_] =ppTf֏{ћ]wPHׇģCW+ڸ}qf%}it<%VǢN/kwVluVDOGp dЙ%fF>4/3m\T𓸈wT?Vp5\碰:?6{zf^l=9J]JW טkgڈ[V<_K^9v$ѐE m~Vܵk[d%=8͡&8~aZ]fuӓhbvz-=?C_Ѯd;m4?2mop(g)W{&s]{XY{[sM"ΐ RWw1]8ֹyjf_LO-f+E|nVUS>d>4-Q)+D1F? $y2OnEJm>>b{C5q;SleK~hoIKjqPt&jH^vwLk^o3<]'f60VybhEuj $/ٯMqDP+`ά8ZjLmڸ.?_z7~~_uO0+z5L"Jkʒx6)[q:'rjyu-y&p8-U\ ܘo6K P̘c즐(Jbg7Og.vQEߔ$qn2r?e8MCѵNKAU3  P}%ݮږd:L)Bqw$n.*)?H$/j* _j< uD Paˇqf*xuDq{ [tt[/w}sɋjkWwgK` pɯ?5,<+GܖLo_ x=EFMN_a^IrPI?خY;ݔ=GG$8.-H7yvd.8E5k7UE^z4_yGD\uMuM׌ɪSgJ}?7(Tq "kM}TihIjqoSCO~U3:GFʳ5qSVUMQb/r:DtKv/;گl^I?C/ʬyQg0`yF.w= PjuD\yO[跷.jn˪߸_;{mG^͂9i#\TZ*AiA r..0;ubU2_qǑ)?wgYvgi֣B';:0_ʪK}؅}9tǜ-N tM۶]st-/$q;uHN/l4,X){k#cj;O 8$yQRIU$Ѡ 0bh>b`^..we:0^)Zݯ@2Krb1o 0\ gl. <㼒;+}?ݴyU ԥ0GyԲ4f,s?\7j9jm+@3 Vcm^c6Vk%2^,TKɭ޼*iգ1+H^ea$11<)7WyorCU2O{$<SkdWc6|m6?lEO: vJ${c>%$O"tm4gq8ۂiPGHc!btp;['~. UF,SU8A=#Q_بlІ0<1=pt~{!=Q8isn[|qsuwV|i[ X T7^c(d=^~P-ɋ?>_NR[ 8ԄyD7(KGu0.2u}mO_dG jfAx#j`94 [wXMS𝕫XPthyvɲ JY]C 黋>&T//Ll1"W8<Lary`]}fN=# ɋ ,6Kֿbg*Bu6dWo_Z>x^Ÿ 'T4Ps>9w,sWą0vx{{29Xt]Y)n#H5>G|Bjwvɹtxðk1M,[[GwB:c[mct}%FV^ ے=Ίh;/=UT.ؿ"gfԱ4s 0#n4[dCY0:ve#g|I! mcS#'%usg7||}ݤpgXW~*\^1IT[ץ)W1J<͍YEʽYڊ,z┊/(@x07Im2y6w ΋8`Awj5՚VjbEMW]}%)'x"V^rlw_ܙ(L js%) رAw: B.LML,I, ['SO>˒]^:J?|4pFI<3٤ V/|%n ks775+a[GGɖVo;YȤwK1,ܙyBy9ccv?|Ү6\Of'8|wZ5uAH]Y^sO#(ee"{7)•Exs)^yh`C!&[F̞H3ݸNϙqou͂V^`5""ďzgQu7s[{nmI-[;I21bj|e{>u})Hpa0_Ы*TjsHĭk5%{MoCH^T#/v|mo?Nio]~ .z\"fr}ܟ ˆ}Iң?_ѵ,N=LNs$JZX<ͽ2v% g'UW\WF\~֐(Ouhs)z:*$/qS3'~19}N|UԷ0FN /vM4þY >֢^FQ1ʹYvD+}nj 7k \w c+ڹ`E.ɏw.}vi0<6LI_׶m{pmFDRui#V~ܚ*,a".9 SrsDa_'g 24D_;U)f yQ~ͤɊJWGh"4fCaׇar^e ׁy#G}bRΎGg)tiSxM=p V*K'ZSh\~WgQB9v >AMPv,:0_~NwG6|$=],ǂÌ ^3?F\õ"Sυ(i[ 0oof._^Kٹp@!\Õ #r)$/^*jhbiyn0bIaS $c7,9(?imn{A! y.WqvmPPQ]%ζ%/-M4M׍f= J1׳sVĀ_At,pєamf|梟+8X-T^Ϲ)H\|p,g1fBicrVn3$/Xq|;%sQN9Lj28*~,GZr1w`]?nw9n#;%WnaƊBK >[Vɕ1wԲxpv䉒*4L>7M4ܬYZ P2B*/X[E:j.jjU̎*5jnݙ3o <K%JE=YtL UWMI WI,lcGhP4:I˩h׬[yޭ=44UEr,$"J ֭m5mu][Hٺ@<ٱ7fu[tV_8يMӨ %ii(JoSzږ vxE R s#pUZO˙6B}O< $/QuO|ξ|=p>Fy#Y6YN&y:Jی~'utw?,'x )[T|tXFs&M~:UL1EYgN^I@=$/x$/x| },cP 4 4 4 4 4 4 4 4 4 4 4 Ѷ?hԣrmtSI^CA$/'d.,QHsP F'W+l'1$18IѤqѤ%6D\*.M '#F}^xO)t8]ua \4߼FO*t8:kCpqTD\``+8 :`F$/$/$/mMw7jt:R۶/p{Ko9H &-E#jlR Mqˉo9Nr&[$ )9.?I{%Mv`;˷s{q6ځOq6ځ<%*mR۹{F8Ruт9Z{Mj$ؤFI-I["`A9T^юlt&E*ϫ{ ^!Z|ACled"LU-LtU 'te"L|?UX2S~8:Խگ&L4D"%F\%"tAN۩+8 :cxqjtlûդ~ނCηTU%W#UPtA[b9 4k^I^I^I^I^I^I^I^I^Pm <7-?x0׿/q8N"FqGЍ>(E*mu]s?gSr"n۳g9yj YI7OKOh3 /6j^'*f ѝ<˷)8˷)8˷)w7FwOMNeG9rKJ6opyvnD?O-D\yD\ǩ]AGT^ǩ~S/n?̾jm\Vq,'7Oıiϴ?Oޯw<{kO4H>C=k8r.u}? C0Q{H32{ON=ξ/ZCV/NDв1 4 ggiNSc!<{ ݷ0kۑw[F2E8wäDҊ-O͗ԗ[U@,k?Bݵ6Zmo0Z~\7[h晧{4|e#nP:;YIov_Yٖ͞zGPeTcH6} jNJ+Z4'YtӇeZoۇ0?<8]qk]k3ҥ>Otp|<ܶCUpш|68OM{o~!L.%#iEf |{wG|g881(8:OQ2f3V'ξ\&Ti5<ݟ9Dnf#yNxv4>t":K(Q̖h%ub|IZQZ$/wڇ4 (]\ ^Z_"iEg3pV^_Ň谉#h iM׿ώ>܃϶D4-XF`<NP I+j0P)Vr,|owG ^R p^O׎˗Fpq~ۿf??`^};ȏ6~t%rQԔO@6$/A -0 `S 2Ddp, I+‘ I+ 7FѨQ} טBi(RE&瓱 pPoTJ3zh("WSk'J?ChF&TJ;Sk Uj*+fO+ reҪLpsTQD_ 5k?; ZiU 5ڵ >VzU֬]\r|' "HM;Ov}]`֪$RES#zʨR#c"H%I+6; ]e`K@,a2VgCu,% vIHZѰV@4cJ1CE>=n49sh+ f 9I+2' (j4^un`O+Z18!3DTZP7φ hJ+Ǎ 7UEK7IHZ,ġ#짛 ,s$ܶ'IZ@Zn!iƛ؀$Ƅ̏$&(Vcn^0_ 1- 7D!ia ;|)-Q4IZ 3?YK }rb i@^X^\b},–IvGL]unܺc7z՜Y.?q]7&ۻ5_|F$\I&G˜rtktj DޜDI(OiHj^gQte3GDҊJ 92;w$Z׏$'oRJip.alx "5d |06Vz!b$:Im n F(vdQGj*s7Flx`a *"iE- msdr)u! O*`1.|d6BTPlx" UC]$qd 9UbQ#iE- ms!{Z_u+FQ1U|=V"ԭs^a&@=#TG *rWI欘 y#F F[;G89!B 8Ss!$ kBbT=sr"HPig=V6'VmC|#4;LXuvC$(۹1cuݿՅz5d&2L^Z>K@lnp`ek >;L pGᣀHZQaYugu^O H)`M: b/nltw׽s9^>N49n~]L~9mJAA$^'S(U}Խs )}?߻~#DP̞s>`(bʩ;nC-…t,$4n%~2?ۯjw?K5=W w2V\o8}j* :8*O/0D2cP uNJ.Z>6|iWXtDI god͉`L2mJ=,DϷJX ~z=с@}Rvq$I͘&}msRۦi8~MPI+Nشu'PvNCr0_\=R;GsU%t wn:\3)Kҷpr1C,'el✜n|_ O *Ѻ$O}M.YBiսxi>=xiK\3I+U6bnu] }?|ɕ~>r,1vwtb,49䆮tj̢|}}r;(Y1=!>蚳?ġҊFYyS On΂)>r&tGc+g¹o1 v}"~;pWcXXg=ݓVheDi$j+u? uTYNΑajDGWZhl,{].pqWH*hvr Io'pgxM$8-O5BG\Xu'wт8p-ن>WIRAz憗Yxn!_=y)mwV3:_ ybyn&I1|_|5xBq-bW=wRSdɓ|8fr;B&~<[| v||.7+E1XаcH4⑴}gok'\%D~2xbo9u"yOg6-4+Cو;JiMW[fJU]g>fECX/y#/.J?G1tyZh¿ݼ|"6=ٜ<dO+Y7[?ӣgv-v=ߩmRg(˱(ƸU#{v%i:<YiSݼb NyT|X~s-Sg| LHVsn= rbi0ӊ;)'b|sW_V+AՆ+exʷ 7Yn P7sKSn6PI+:)؟tVy;ߤ?,}'e|ח]eo.tMJnwZ;kh(IU$T7#I+2ըNCO}|F'p+O3xV}TK7u[?MȻ^=9LȁpN3t[u.L,~}Ned:8jҪu35M\:9MG-vߛ uFo'\b*sM}Bv|0f Z*%iմ~nT~2'0toBSw ᪓3.o rЦR;y gM7(b@L-dJ7=~Hkmཆr ״Gd1|!iմa9fua֯~Fu N_{^ɋſ JUǰ_"WR-NVtfhf5䚻on*}dy`>䬛컟=|>^FJ={u݋]Be{)+򰍌^K "1 KIEX-/enW ٯMk%-ema*MEZ,Ex- gb xdw.]o׽e<$<>U 3 .ɸRiմ~lϤS;p 0\}B{}N[ѼӺ~tjZy7ypӻwΎV^BwCE?X_8/|(@lC*gv~+~X Lφvizw)c6 {rxl@R9B{=@$o8 ?g[5.:&aΛ= ];\- @T|$yn<\PrtBrbl? tem8%b c펚V!.xҬrdcy 9,̓|3"QNJOy.2 F9|3Y.w;9LW($2tE8#6jg{L2rtB{r1}?[{'T߳l?hdB{JaZ\9L{dI$X\: _*&`eU匷FҊǙ8H&wwaCaxzY^OK;^lԸ+b^hJ"oT*.T'iմڈ?y慬Oo8.X#-k/8\w3[Vk IDAT)8;pc}_w E7i)ىlաIeV_Oj GVY-w[mI"GUA'z+iU#$iմwM@ F<::;>ړc 䳝hkОҧ?dCj~d u jKYr8R_W.1Y+'r7@3v6LC@ 6"l 3ldQ/)qJ|ivI?`';<>bvD5sJ#/ms1.,͐t=j];ҺqX0<^. c2.{^.%G߸^~olIZ5v@ncEVJ?'A^鵇sﳛGѬ"zR<,hrL3;{pEP4S_ )q#^;1 sT& lNbch`A;*d+S~t1 NAlXu/>9{ް$iմwL,rsduH2&+_̽ BHυxHʼ'.lwSI֥t~|SI] ZDiw;|b\N?P'B{c؈=[%ﶄT$xAQ vv\mA]F Dd9{pU3&8saa=S%`BM mKLO_^KxB=΄9A mBUV9{UӖ]NN7}_/ډІQD[vυמRJܳ6ɠ>C$HIu_ix"Jb=n(3lzQ!>=_飃ؘAī{izNʉgLqN-4Dh;?B 鍕VI_HqIf* gNKsT9%<]vKD M~.bvj*$?I%u|shTTH3yB᛾&۷v뵋7'|u`Y_hGͩY!z)bO֍}7, mh#;7qD^{\ d`@j~A>Z*Ҫi>5ok"(c_eČІ* , T/aDN"V@%Ia;^C,Qh EZ̦ؕc5D"iմfun:#8ݦZ;;6d\,qnTIM;E$qmt['ߔnM!%! =.Jo;P~ZGNo\zX`C] ZhP~<=S(|9lbGh@ f߾}8[Zj cP" Д%WڧVIZ%a_SV`"P,pAV@%F+RD wcO+A=b+e#WHZ|o29x̞VSnanwdv@ ૊o~lnGvj5*˜Wl XB 3 l$$^QU2A-. !'C1 6 cE~wj*# !3I+Fʊ>͓Ղ ay @dlܽ 07.t(*> r*{@.cETZAI+t/jUWG< WiE$0瘫(@fw=BHZHZHZ@I$+>||']g|R I+qDa\>V#i4l:k6 I+Y$;)=]W_Vq睔FUF h{`>Zk cT@ h;c@AG7F h@d#i>=V@x9}kBҊ+P% {@5$8G UPOwT@ҊsP% ;jQTh>V$YuBf@}5ow5$HII*#6-8 ;PI+RGB6eð%@A$H@ U֬GΚUcHZq>$iA<{ΞV@>ϗ۠x4oQI+QP1@->O'o(@1*jX["+,(@f -Ex ϗ5mp?bmHv>NH hZi6ju+**6޲WY@8V-R`'i@8hȸ}0 K f?, I+‘ I+‘ I+‘ I+‘ ax iT媦Pz̲T HZHZ@lTeHZqA qcYƠm I+‘Bsc6و΍A$i@5HZHZHZpHo7hnIW"l׷\HNd0 0d{REs}">ɊghFKhN%VmJLhF>$c* m&VSBka}"}~I6E|]^$1L,߯S UP*CA*Y$KҊ6TIhe;4gc%c@@*EӼIZp' 2GHZ؉W;]M~5N򴳈F^+Z;M5r|ȍI9VF $vS_+r#vk$hv&8=%}?ÇyIyYD#O,CrX3$ }>CrX3$,I+& 6کmBکmBکmb<x_І* m&,#q-O[-1y=9w:63,FFFM(VcO+‘ I+‘ I+‘ I+‘ I+8|<l S _+=1.=H1$iE6N+ϐp"IQv6#~j 7"$kGC'U r`lٳ%Ti5[Eڮ#U!ğ٭"j*^J?7ޑ(x`9;AA;tǴFo0mᯇpdl1[lnq7qd>ܩ@._"=zwt M"-#mlzb٫o;^V;כk[8~o ߎݠ>rq6;lPPu,rK|\t!A5 kz/ͻ#l9KB9X!?^ lsAVBMК d#pm4Ȍ ᨴ I+‘ I+ @'8&TIhC D:p{E$"@E?: 慀LІt ~&^OE3: m!J˷&iG}&*퉣e] k9PBR#7 42B{ɯ ȣEzF&T_h7@Er34K`B6<*HBAI%oB~ vj O=ġ>VprU<e̪\<8k/Wv'i'L{>8Wj-c5akl}%"iE=2OƁ"U4 ?߈5iVTѪ~Ryt+Tz.)v|9b Mv`>*pG"Z#i^ rtz>uUc0 ~p! eA'C@H`Ef.5fQ ?cG}Gp0(4`?C1047\?2εP4I+R;:]iMug#:G(d 6M@?1= id%Nv#/2(bC8̌Uo4\ agqgކHaU;Jo?`y Y->| Jo?4N >~Fc\o@Ȉ"rmVg)o2_&rN?eP=I+HF1a i%P8@ RMBe ކ JoF t aI+̰uw P -~LEMՔQHP8TO sRG 1V&i?eV_|QXJcP(I+xfŃ0]9nK8_ J'ioZ8eJ4av]+&@Y{XDP Vޮ2@q$8mc;+ha ՘'xaFLK,Z *O )V;uA{EV+ׅ6~ʰSV5.>Z*8>u?xڕ]avTVr}[GV>j~zGFSU*WYӥ$oZɝ36I+/l0]N7##en+X[?(⿷@yګ81W>||h}v𻸅"f7v IDATYM팕3⇮pe2?v` ;gy ^0 ;Qx'-N<} 2I+NSvo}z[kO uǂCȈ|{ zu;Uf v?75Ά {1 PBH"Tho:@fVM[nPU& #rhhŎ#=fs'rh mE䪦 _Że@|شT] 鍇UcWZ֝Ї "C禍y+?Gky5*ҪirMG /'|[82E/rYCRkc,6$!IEnt v^/x+F8uC*zm ]ܬޚf)UYYV' h0SXT̜-M[# h?l[SEVMΈf{tV_Ya.y7gv^Ar\=ƀX$ugErR56*@ {mRx7wnR8  սbl ?gvO%vY*7!<=FZwxB^)ghrFO3 V,ZV]M=\X#y+@eTPe}c;>$ GeuEҪii RۛTbh;9ۦҵiUh^m{.IE.<Em \Vk% ^ܿTWUV۸piuf40_Shx&̸HZ5jc =eSkืBF,Cm86>Eح, ̸WHZ5jwyq0)C{ Z^e>; myf;f￷fgG?_iSI 򇶣 2k]R,]0 9@l1=Ss6(ZPqGi]0G͞QVM[伾Р$uU+:Cf ]#JCVE뵫H{K)hfOIօ^p3I djoYn$#VP`qN!/EҊ(eކ"LK*46B&mݧݷ\8{8&IMa܇]g\dXY VV>:kG$҆__M$f{`>ر=zi7Dzϓ,음XoHd طtFVrP^{jnF<Kau:\9z!$ҊL옐W*L|d?\­\{p=fyMr#|2ebsTi6ݖ^nM+}学䂍rlC,O?5;ijh|NnVd@5$6-?|\6tԽ}9C;ӃTARgP䡽j7 |-LUwVPTC<@gV!F HBhO7xOH"O5,^0C1œqjZje,r' -T6̫D4%= x Hy_p6r[[5/m]yD/M7Ϟ^8qSzOsrY~ܬPcf%gpӁm:oDONpНv}k?ŋ x6QkǴR騴"+$95g>zcPnRAM-׷􇻋_I:Mbrݖ,H紻)(!*m{LNj?gfv/eν ȳ@xum3}>+E(g $FMnPVMslRmy#tݿqrƒ#њJ3a{ZsOY6[M$7 u paķatIǮrU{<ϥo V9ÅT>+jvWs%gfY4̢{Vje/NvQ9O<ÝO2B{ya(4si /톼kWsz|vW|'̳݉XiUCKTZ5Aκkk5*Մ}j*z(Cuӷ9Ƹ,^5||֭> 'Cy+-^fͳeVZUq?k$|xR*D ݯ_sWinl$gr2>?wbIҪivSXGJ5d Wgr[+x1l_V(~h^{z4|L<5{Z.AJҪuNe-|SԴЎXN4B{z5q9s]:h^y2V^G0D"iEb|\*SSӤJG,M3V]ŗl7T/2Bf7g0f}]qG8d#iEJTNY?bt<'TSץyCmZ҅ mv[VVsUMXzVX%iHApZ^XZ,Z |__SX2ݹݮB/*0⊎ľc;LY>(f{bz8lTru>~̮KWϸf0p)nV]{u%f|tniʵ`g*Ao~2P0z=NVɔշ`VtǾNkL/,K0^| V 6lMFj}.VΦm-wmUXc5:z2p9|x]W' ({# a, TsљKG2VΆ̎oerj6X>cf9r¡&k'QQdx=k`ǧ#v)8\;I+8HlgVM+v)WSc߬rRՓ_<éǟj,j]Xa[k 0o$#=ΦA-th6Χl\U~[`؈kFL$2f}@@̠ʼneR쯷1p}AQ%1IZ#kM]t͍6/[H)I~Ij b1JƎ_Z'Fg&i_=#kM tݜ,̷cl>EtDOO#,۪o ‚%9>k^ܼeh |P˳#Fl>E2$I yIn;￑#v&H`.}ikvVa>BĐڵ:U{rnȞk{% `+ O ,I+^zNyv\- :-lA 8#U4>0}?pWn.؞A!$Bӡ}VDILVd-<\RrU-ϯD(tA!3뽍ib9ZYCQT$n*(>Vd&.Xm꯯~t-}%ENi~JV+E5 iA^/fm,ܟ3!M$e Z|jqDH䩒WY\o>+3g]qa0KV:؈P9}Vo.3PkU0͓"2skps\8D `!3Ƿz׿f> KqP`+Wi.x@Vd1oW  y2|.ЁD9H}oipK^Xu):V gXQ]. FIҊ,aцko W̙dX;IJlPf]+%H(O|k+uWisHZҬf[7]vCk"XE,me|%~r/^6g(,{*9᪡AVJht7~mHyuR}9UY1;ƃ[Jr^ا J$W m"_B;ݡkDzvǀ;]ayLwyX6~e}𺊗@vVbYo5 LJE<.$.䤶_ұoPay}[7|oHmkHfX m4˱>[(={dhۻFu%/sHc VT~߯=|VYc0pd7{ߙ.JAgaXHbk-+XKe'k#nsJ1ӊLN)cP"'Oa5$|/H7as̴u{t=} I+SHDҊڛ`=[n>/~4XRp{ p7 VX%/};3_%(ntbA{D.O"1|[J:T,h V\a:؁npAT, &KqV@ @kl>t*ȥ8I+vC'R43Gj$ry_kB;Сi6kq%>wp9P#$/3\v8O^P>F J@ T>V@7Ai9ͫ"@9xF2I+iO4ON+ lY Ywq·9V@~AiC4t%rm楻ZuXG ,I+ 6pĠ Й1SFbЇN茅QuQ69?yT,Hp eK:b|I /Ёyմ>s!X'HZDJH-k/j:1PTE@_B }JbʙI&zY?I+ I@-p9@uLl@!P3m|@-!0@-L @lV_^a^0熻}8G*1q|M_VC 3][VK 6K $"i4!'!HA hB)NCZ|keV@+.+Ӧvx׿ -}s>DvfZM0 -V@LqhHZHZHZHZHZHZ TE9CB{r*$JTH *ʩ)0hІ& mhZb)8ӥ$ M@K5 ye؇~4Y m$ Mj2;dy 5IB$IB#i@8V#i@8@8fZ{00=X~73NʔB+Z9]r~ȅI 9WB $vW+r!vo$hU\VIT;E*S* 9~’g1',y&B[!OXLBBίXHD8VQ}(dBڌ턪(KhAh'TE!_BB;* ڄd$~L =]]]7 =lQleYZeUvB+UvB+UvB7-*CrZ>ǐ9%iUQonFBB;M(B;M(B;ML3$IB$ H\{翙.oSr=`!+:a 6 6 6 mB {ZHZHZHZHZav풼R$g~m!PKh',ə m KrB2v’& I+0 8VW) <'C.OhS.OhS.Ohݙ*ִk]7,ί/؛T+o>gE>'K%>Y*M]R mtwgOx滿?_*Ia?}= w-)) IDATЦ^B{BfV(G:Nkx[RZ)۷/Hf}Y̹ezy}j_UC.$0 8+gn~竗OpMKZFSUfZQsSVOt>ڧg|^a5~n={6|Bh'CuФKs K7#WVh0hW΍m.vW{h{rW/*=YWCilE |퇪RgB\J~i3"iEV >SmçOw|Ӹ.W妤LgWA} W _+藞Ne;əAWH8vd^~-Fƛ%_l$^*o %ľYok %KI+Z9im_~k!<%qY@"f㫽 976bz e*ݧn{Ovpux ea]{%rYb-XU 38'7|{ie:eqjcPplt~;W6˵i.P~iA(Z YgGB>KB9X!>YSK!I+nhK8>2b@8fZHZ{4b~DhO1ӊJM1P5 8| hh$iE%Frj66mh*]B6at@)&ntU m!IBUh7̞Vuz=PGֵr*dBvSa}Y'B&$;S!vI P*< - @V1? !gՑ% dNTp,%σp>=JoS!I+R:\u'; xlYϖ$=luAC*YU;Y* 2 &iEl~V͍-4='|[O.wS&$oG }kk"PҧiVv"&Ӣo2e(CҊV'A!Rvu O1u Yi*fhk)̢~*HZ=܈KO/4 ?yO WfBKY*VVT,80Uw}?X+Oe$Sjnqt3P5SkvĴ ^{ZȂtI+eBYVk+n>ig]hh{Nj&iE lM i7oYd1m0AIZQ[amvp[94*e $iEMo ⫩x!ץj_n" +^&Y 1isQkkt`|oWMϟФ[l~ 73 (TH}_IZ𰓝`-jȄF|Cvw8O td[[c8a QlBN$$ˬ ^=y++hJ@$iEhfU@w^*48I{ w~" 9<c@2a_/ Zf;Ay> q 7cgW .B@IfZЀlI+ $Had!5@Viu . L2>_%U1T }!0 /y+vVTP-m B:SB6 @Lm^%4rfnki9r/]I+j!=ȠiyٕYZTby?[R<;x[G0 ?_@36y8+|HZQCS~Ε-g5BtC ϑ }~,s$p=C7F>Du0^'z;;Gu*.(jaX!9\*;;3lʣ還317#iE+Vk,)0N]~|?7XHCVk,)0qgWBմ fZQ5D0K$"K6!nCE,EoTCU h1jAl 0sR~:v[ yU\'iE CO72<P3a, #iE˼͋zM)ͤΏvgO~i!̆ Xf_c7U8n^O?*_*(`tAHFҊVWLGzrY~,)lXp >2 5qAWƢ=Ӱ62]۲G>xK9ĕ-ܱ\lI)ЖZ'sLZgC_95WNl%}sH=8Pl2D"̴"9ݓ],=cWYT)8mV[-vxj2܊7u֨]` MIl{(;ا&Gz5='Phf6&%iյi6Ɛ,tfK&K+i7~vDA x"ڍDB$5ĒqdҵInJ};fODBl޵쉗Qӗxv w!aع 8 P56365fr~\SnE"Vn\VtBhO+;)QrtNgva!V&j'iE=$s4ݼb+a"mHr-tPO8+2DB$HfR6D-`_Vs9%GhqZNy48IҪknK-!՟B; =Tz vQ8fv>h x'iյa}֬Zv,ͫNϡ}%oWut9WO[ᐜOj?&I"^WZnuڮ9i[6EGi-+W$ղ@贿}Z+ >$LNhMibb*B!̉q\ZV)pU4.eݷ8ItӪCP8;$yhi{w}C1Gϡ}f}5DIϡ]θz dZ ԟ6J 94_E 2$k(+H%/<"iյNf#^o7: W|S锗xvGd ՀVRMra;*j$i;$ l.+ˎ6x&) ;A&xQ0{| xPfZa ӭ @R/pU<ݠgQm/fL rLs*2Y8gr~V av6Q(о5T'taiUJ%.@}{B~~ځtw9Q?켠l ]~JK93\Lhsi-s|$Hv'?-WF]t,Z;TeٙqTeXs(SIN5$KrIҪw [ zcʐPgo*qdS~{'W*E 5-M }B96{`גaw9$F n`5+)q.@hmSv|{߃uThkT`]P:[3v n\%a*z/kjSsWkMO(isy2Ksz[hR"L_ I!ŠQK_jPp&ejk )O7PU.aww_GMšoi[J.rz>WsFSCʛOo23bJW}2V9^ph71gj5w~5ڤuA]iCj@r.ԡ6j7&$CTI}"iջզy̴ spf:PEBC {YIZu}\[W-N ʅn+5OaoьCR^m"SOvz;IU[AVR\7^ }VbM}6ܮ 8kl8:%ЬїW"),c? 4AҪk˛r̕z#^oY歋Evb&.]lp˅A<:jƁh]U39?N^v]ce]IEC; 5^6isa#/eN[չ7wRSӼfhy66ǁ?m3ۮW[I9tf2kCpt̎8V^rHm!\.\kT>dVGUjC~fOiiVQp#9 0q$3 |?U>:v>釷H[ЗZB1.SG#*jŞw?Ӫws0Y@#,ή4;[x2ΧHDZ9V?V-[BgW~ҍH[4t]/C$ԡ0+mvzt*ϼV{ejaUVAvDSO1C;Bedj!?8_N8I |w'7X]E [ˌI'JЮ U71}၊HZ)\VՕhQ b.1Z5rz":;p՟i۲E:c*٣k%*-8쑴|WӬdbә 3k׷&O/mh r{ic7+̈P|sܵ^=n\/j?>=PJx8y}X'EEU/4 H~>iϮtY.*Γ*;/xu!yGaV<ÕiW(զLP,Taļ0xrժ8), y!GҊ4[j:F YhI3^u68^1A9=3Bf,IV2ljf亿yQ4ƘLפ:gS~3tpfyG5x1(U鳓 =]u [w͊pb׌/8A!ΌxUhhͪwu5MUm=vCNc̴8z~fjr&Dcq8jƠ$p4Gm,pV7Ab ]ƅJar"*7S"w\ޝnCt{#infeWM9zrJ_|tPS3*.9MN?$xF7b59z䱹'ەPJ_AߢkM. &p&q|dp,|(Vsa!eߵj ܵMM^?SݬVMKJW<IDATɀ9V+/Y 4u$p# Z]S+]#CDVyժf;p8G ~ݞ15=]?.}aء+!HrQ)dzv գI:4z~V9rfC58M uiz=l;t>z$ׅTBT&d 02TFs8D ϲ&iE2EYʄvmЭo"S U2! PI+茁:5d+ I\rk3…>zg7R;WyvUoyDŽ4\siֶ5ldV~<|G/2}jY@/ Z vڮ A>t)ilYe{s)5}$8T&H^,f!_!5Ihs8 }r譡iyl^cg 4-wq'"L0-%x~uN=I%iOKcʼ2g-xj&٫m'fƙRh?뿿Fu4fc>HZ %`fL'Pk7{jûr_U 힍aؾ*M' 7I+x*t 2,/2Rks|}G(v'W9Te? jY3zeCu7SNbNҊB~.aF@@5ҙ,yzrp՗v3W%ͧ\F%r'r4' I+JK|4XX| xĩ.G Ks9VV$i{3Gk$nY?*^>D-!ATf,C'SXh_)sUiSVG{xwIH&Q,ۿ쉤Eu}5șx?8qQya)nf}l; _e*4O>xc,z䴝O4qe rxQyșT %?,v'Uh)KV(gyBՈ 4=G}e$QjRQ#I+kjegx!iC 9 2{Q>z8Uh)KǗf|ʏq=)ITI"iE sS}Mg[8V9IBAݘ&^WiN]NLX]PhoDS"DVj#^eĝaqc"{I zl{Q>S9^񱟓k$T\%iEQ'?wcAsR1ƍaʡ"䣋88u*ޫ̹T5u HSH\74FҊ=!:Ӷ);MĻ =u99&'E8C;(Ee5cV\1|j_%ڞO*]G^n>Nw_ǗrmQN?au; a_"=)Dxb?'=Uhϴ{o{nۜZKPQuɳoyvWNiL.U)h[Bn]2'iEӔZmEh{DNم:ӡ@drg[gV=sF hP5I+X5~5кNv%>@XzP1şRW};3sQeOml'I)&r~nF_kޚ&RVŶǞVP9;8;W2ʭx ~O'jH.ɘikulsȁ50fkc@L!i)c liV>L>'Tcy FV$0/%&0/I+2!mFvBU% /P| mB2 _Oc& Yt~~~HZ]oa ,d-e*B; ݕ*B; ݕ*B; }!9-s iycH@NC’모77ьf]e#!&&&& M$ Mڄt$rs˽Q7OYk)̰vr?vvr?vvr?6HZ=G p$G p$G p$G p$0 ;vI^p3qߗV o mj'7)ЦVgqW~i>5~OǟS' }x ֹOoY__7aT~D? C.)i~MMk mXtIwgO#x滿?_V//O`5m/"i~MmiErԳk~z7=S7,ַ>W; m' Hh/ЦafZ6G6>?ᩄr| NMB MB MBVIZ);stJ5~ɡ#ЦjBMՄ'BYo./'2ІkІkЦ7fZA.^[q3- v'cD'/"MdB'D&/"M m9,ju<eJޤ=l+nm߼ȳH>k֛[~3bؠ<_wod igHZݲ~ǡ+غw8_?>!y\uM䊽 us."|< Tk$~SA^m۝VT2p}gWWɮ'T]\ 5RmLz\ŨqS 5MY<ߐ)Ϫ'"SOO8 0 0o4"%33lX59dDq j+@vG4yh )y Wd< c+'@qrEH#HnG!EC#P+Td+PqExi1U\&:uLDDt'b#sP!) (b1+S`i>"Tk!OIuqlRe&W(f>.g;1l1U(nKemrs&\^eoX^%d'GwXfrExeM%&Q@ذ39PfNHb>bqSk̈́moi` \UCʅ?l[\miy`ܼ9Q&B\mTps, eKz}^LxpWԣn{zé"@9aڹzW!W>f$WlpGK> ,C4QqEitWŮTum?=aOl<+j&W 3v/FݳDq/ti>c SİpLAO_ lAlj[p/?)SS}UHVh=>i;^v`~Bsi.\sUOp,v-̖s4arEj_|ijF7z0<駁PzK-L&W&9x,͟gǝtO܎5y~MSuh 'Yӟ=[QWxr7-~8ϯ]ĭcx=R 2qEs&1 jޔImqSqaЙP??i VM:"kCGyT`ݾbs| rhn?5ӰPPX/ۻnv +%jo|z}fo|MZ4 Ü.N4!ƪwOAwXxuVM;8<ٔ}6w]!$=g{ Oh^i7G-|ª>U%lO\8q'̹/f9+˸"<`>O?EQq4& :}XQ3ld-=La[EYK͢ɲGY#W?==գtӏ}]:۬km|Dq{6΂/=Λw+B9͕휹 ^E_@ j-߾wf!{*gN8RTÆ,Gi#U dUYp~_86g_В--x{~xF] _+|ƭ7޽ㅋ.|!boS[/aV!Gk*,H?s͟ی+³\%SzaTaܦw aLB#m.ִj>)lGIohw(o[¸":ð3rxϋy;:&F&r村bN\ __ň8c?~6a{r\coTS6~{nfNZƟ߆_X]F;VIX*$OjB){b%kc_בVʺ9W?katg7'({w.Y,WL_OOZJzghЩ+^7K*V=/5!;N]*SWO=i.k{a[e~&mp.Չ5_h=uEط5Ω x TcorR "Ɵe;%q1mC#|ZY$x\V|7%ݭ gg"یu2-=K ;$ &ɁڦB77(`p AfseU!lѕ+/yF"멞?OU>֙Yg|gڦ2΃W&̫Lky^(3YX,s'%SӖ^]YPԝA rŪΚ7|K7|Kc}cEqnun>gsz)Or 뜚SlN2!x/X&x1A( b>L]0Møȃ 1QC?S79onWNӰTR/'iݪ3R~9΃ӓL61y`~u-|;Dy{g˚Ope<{ڟs^|D  Uhσ".Ɵ?'u8hD6{Sl(^ i$"WlC'MYL6$Im:wqL&,m'9*"L_%eِYBcO~>q zkKXDq9`O?3Q 6.x|2ȶ$\)Uye#\Tn ;W?OgwCnm\j{b&+u8{e/I3we nm^#RRUC;mi}qErž=Ƹq^$`Â\^ljb{~֤y=Klwn)~|=.}޿o-Lw^_;coj䝱נ967c-nm(wZԆdNrv9$oVѳJ]{9޲s6׋UIJDG|wZmRPZq^_/D yC|Wq}Ͷ+a 9hbf {:J~;“+a(=OxĬzs!y?}.Z>}kfBNX7'ky[Mi- FY ,pV|l6rǗg gkLA{;ޭ{r-ڃꗮL_NIk H b6몰ogHt6ՉI/'fCDzCm;<7o%5ĢEyWWs ǕHӆt& v*ш 3_Or{Z'{ roU8o'gk\R草cL~?sq簨$glh>s^ty>A]<0oR7<*+,Ҧzg/\1Ip wU-*}Ujl$fLG-9rnz"_ϗh&߁w*.##A9 ?R_m%WqOEapW̤hP>f^w\~lzs񬃝PwۯY٢zPVxfM~TLv A'K4.8<;%j2z[P3D6['g}o L?4`˫y>thhp}LSOk+3ٜQSm,B%XOXk3״-ԏ 6wb0 =N>h#Uz~jS?=4RP_.&YqVz3{Yzao,4mfP }q~q1WڵW˲+2S-6TVie y;R D%e|n)ܛY9|~h/:QB}׍?90 G/>USݳy)Oj9cEtieP`9-;"Q+anZ%Q#5Kv,ô.И?00ߢN^o]J4>;iw0X"ߏ?u8W,^C/ ela9~ӏP8l;9C16n1wJ1.}:L0NƤл$-SxgstΝjPܛI`%}z. M[S{lYʣwAg# W|A|]~ꗹǃX_䛃{{kCIu0`U<egy8r! IDAT\1u'7_$gR__SPPT[WV~~ygzlHrONOm-J=GhOAj mu_b>+ֹV/vb+҆+a\Eb e'zﲧ-)Hmq$ {J\Z.Jy\I,[Vo=M|_e9N\o-N\`Жuex屋!9b>&wLӟۜ) -&v{m$Ci>2$NN/,mZck| +f2\twr朗-:w1YiSۓ |3f u*sѾLe.‹T9Nθ^r3C|S})ĵy3wǕTdA-TrEIͼeKqZenXZ%MTg8~qR' ~߼08۪z6X>tc+fyTk53mMk u^M/sl^8-*IWJ.yG%~7e>qi㚧bnTGӱ6:~޸M ;T\8){aRvr\]W׼x'9>DvAɀV44pkѹ8J"rv9yw3Z]Wur|OXNrE#wA+nKZh1HH;ڙi=o|{SJ*v&mIM>y^qNGxsM[Y\iY/uތ'9', p=&㊭:MO.ˡf ]Uw%6m?ds oɣOm$cY>ՙ4͸b&o#] Ŧϭ[԰UO9ݒ+擼b\eN~oC,F$G;|u9j.d̽NW|2tqkͶL]x-ܙ^ЃEd`|{ȈPGU]-J~0@!rLmQl^|Gr9[P\=O:GC媩CUbO,Uvi^b wpU9WSU:GdDi?ɴVdel*_CB%W̤|MdQ0Ӯ:_^ UV=D_P b*c`% tã˸@M?A60AdG~o<Կ~Dg~NS; ;ow@1=ݑ3? =oa\1~:xfoY|cc-n~Nu\1eŪ^waZK^6 bu\`radJ@wӧgWWnsomo-튺1)WVp,Ƭ<HA+c.kh\ǵAGSJ.a3C@rEI\`Z#@[A@\)"9\@z8N[W˻NgH)sPHi& qE&6Y:dMZrEY&43dž1sPLjB@cUy9zY=^PFCH>;2(!\̄zNB,ўP/O/)T2hm{,z{^ɡ`y5|U)F P홋!KBg#̠B~v:!ԙ>7/ 3r.e>϶^PϹy BўsV'sz^P\nǃ>$ \/[Cg#ԋوz6BirE.qUB|S{z~-w_@f+iJxTJ랰n*Af'7YP?.P~\BBS+]*5vނtuYm.s͵_>y\x8.Ʌ2윏TLtכe9B }],s uz1;Cȸ"۞8e-`1q[𕯟Qf&c A@P)P'qEJl,ĆTs$dG'TaPOC*rEZWO_+`ƒ{>B}~]2IEϯ]&Iuˤ,sPiCBN6#GG\f\}/tzV f p!7sP?(P~PT&BB}\_nP玶vh粶P sPyui"hB\h%ËulA $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W $W|q!+E.d;n=QԘ]T=b;Ğy>SѕzgW$64M{\As.X.a륪)s%DZ^(ׯ ~SA'ϖpو9E^x: Ϝ?&b/q<%s?.b?IcQIگЁyD%?b=jTb/6Gގ''je^ }ܒD*~ZuȤw|1o;`SUֳN=TSg~mZ;ݐyS̿Ν՝ e#rV6x,=;|hqŷ S{Sރ+ץtv!b[6 K8}Xĵ_g1;U샣;~iUUv:)PQ7wߴ-T6197qK=iJuTͽi[(H YTMg7m  $8Qp^7BW4o~${T e3EAv>'9r]P#Oӿ=EAv>'QNhMWBxM ډ&DsP_3=7~į:>W=├!ԓjs0$VB}.taw핬zӊ{AHX*6ބuL k*xVGf&j+:U.s UwȪ+Ir_-ڋCi"7c ד+rZJE3;;"TtgΓF -++@PsPj+@ʸiƧ@ rEEENq"!"!"gT.p"2](p\Imr+ ()fp\8gǖwqWJ+SCmM 6u$;8>Ƿ~=SiC@6KXV˖$϶:2(H W5QYDjWPLa_W5+Í usry1?_AC){M3T9"7BV_ڜ%EQi x"7B|D򈐖 df\mFi8km쑶h@~rE:@sgjv᧳ol\>27`"]4*ӾTh\aXuEK jqǬlI+-J&e٥"x+nZU GZش8Qp399O͹+a20P3"@1Rcri(TjnoAs+Pg yh20z1?J_ "W.l^kll8sP.~.U(bwժb 2~Gn +Z.Nʝ: UqbG6kՇ@N_Eүosbѳ^Cm ~y.~+(vziI.# rŧu*(nY!Mlk"h3`cc^gWȵ *?Z.xS^6qž\޷QoMxX,ϞGDڽM8s/_׮JtZAw+f½RT.[խfAg7Pbn6%տ<3T_-^M)]-P'b6-i{տPah_ UZ([G|>?d\_!k;Nkן`v'&bHrػ'{:sу;qoN+@>x-ZU95tHmOr\pىi7W{dSGks@ț9ĸ0jW-Z%F;Nm! "/~^xGXppYyq7sTИ * 2I;}nM\ WT5EhҮ]w9|WVĐ+uѢ@N֝)NRw4*'WEۧce-9yǵ-%WT5EOL8ɵ(kNpRhD@zcw|0ez#Ws9cw=fN=}݀!+v!ztGѐqq:gOtQUɞl>yoywOTenZ[%`|)5_UIS*}<Kv%w锪!~'S~U@ɧ._~yQC32;pzƗ'MT7o}k9b&mՉM(*Ii2я"^=l tNS^r a[{\JAtS.4?4bwRN0o";y" pDMHqETy$Wd962 iQZ*͖L4D6ς"W솆y}>k{rS uKmg̝ps3BMtuV~pTv/KP߫p}<,ÁL$y-dQ7}\8;zdl3{#xi*7;9\w] ґ+!zqNs5mTL2vm! 9aomzqA؁E"/̔wIƮ%lcFwZgC2 pfqov;}P;K4֙R'~9L/Qº9.5LW'Hʸ"Оq ݡ{WwBa9P>O;H6[N1'\}Wy;h5`7go<yl3cT&R«oζmh\gh up7w/&3g6GbR͏m 2?ELJ9d꛽ h\{uzi Ѻ-|oeaqf\kaN6/9>=Oz.{x۬cDʵAΘe.O^C*|J{+k.^(&y *-x @Q{N~TcJAP_tvܦpÕiL63qdݒ<_Puxnj]\y(kЮIz^"OBUˍWfZ}ޏ{h(l=[r,˳T6~FKᦃ9^-Y7DScշdb??*~Znto{;Ci]J -3e<>5x31YPDu}V P\gM=>o`yb :fh&-rWu׽x;ؐR_[ i.D0 0O ~ A%a-gXb.9&{gOAmUE'5]TȏS0G &vbÉ~t&o3;Z_UD D~زbεw#O[oӐX':-iaI }r,/eoORrVҝ^Id~6Kґ^ #4 NA4s 6E+.~^h.併,vu}sv`Q%1ʮQzȿ^?G2Dx` +v.oqEV\!нS穉uqhzfH'B{P^j/bMsL;k}&6Z?}4]M~tLso@Qw WU$mH:Y$=*w,o\4gC8OۜziK*p\K}_%\EY厽$paq&*qVm S9r.eNҺjY|M sᙛbk<znnן{/eI]"oCo^8]\fo.ɩU\H)g/@gT& /'nSKL1^ _ .^PSp!NNx8t<J9{:#Wy{ũqU{b爫{Ϯa'T!@9rE)6{pW;@4"ٕ+Q.ax|p^[n~'W$;L.7&C||Mm+~!gǝt?%/O4BH^s@. hip\]wf} P"@.7!2rEi@MC+@e+l4P\z喃+B晍\:6+_rE[Or6c˴:WnV n"'C 0تii*] xPNuhXm8nzD% ԹPD; u:J7wr N?D;PsP*!<_;G]fzﬥUK(rnxYB=%"D{UKȼj> {&WHpo.7W}g-zVJε$ԅz'>΢]|w &`jGi*uqލ;mז6.?֛[~3bؠ<_wod igHZݸIlꯉ7)_%?M䊽 ur {_/Um]LE.!rBy~Ne= ?yF̩/әfx<I5y{qpG-)lqI%؍J?~̳V'*oQ:M.{9v<9!T./N%zTsE&5C Yx{KTל68sĜ2>ŷnӺؑl 혚euT`/yśHfxxC+Mp'L"/؛\.m̤[Ю,۲YGߜXx\":{ YݩbK㭪GթN8Wuڍm$)U[:$ITjMBA r'W:o:i[(H Y2@H@H@H@xG*'@+Ҭ ^C'Ўq?k+ҬT4"8Fe iT J@PD;ф:h=ԛz׺|cӫԥTiiSԪS"txV_]{U'u1l^ɏO@[aEsPi\њAЈ5m7vNe -O "ZO6/lBqM>i5Njc*Ksu}9EAry$W)sm 蘄 䊴SJIrEZIuѓq b_̽mh\]P'n$ǂP2]tbz1bn󢣇6/G3 RH" \^ᄳeyO41u&r֍\R^Q8:'W';8 3XmYMC^Q6mq/<J/R?Ձw+*)զuqņSO70X[bC˖jfTݑB.F\L2æ7Nrņ PЏ{nt:IϜOE.N'n]"MR)雘uН[P}_F.{&HĬi\<):݄VKr̗&N pVb:zJaϥT25߼O+.*EpgB 9Df~lf$y-iU3yT _tAfrEڦvyBǖ -"o Odh_@.0ۻ0(⠩M `\fMr &4RU*R2+4ImS5~n~Ol<ϸ"V۰zEB2RKrM$09̒2*P0 8l; IDAT*JMǃIM־Y{]R UPi X:Ƕu ."N熛Ȟ(>{JW8k4 \\(K^4Ԡ½\՝BVP%\:?mg]Ty{ocW5]rRy|lYWFU[tair$ng^xH*vk")Uу]Nm&RMS"TFY"i˹RQƫ"8X^) +BMZ)ڸK> WR;>tK.m^5:yFq{O98 ɦZxK[BI@Hk4:Ђ'FZV- U}Q` TTѺګbKW ] OH#*j0w:@TyՅ5rECe-{@+\ś";㠣ò5 wi{ʴrrZҍlJӫd#MP3yjH%{>r'MNӮ˞zarf%v^ʉm-ZZ GTr(^2A2 _s> &f4MHzIX=&`Myh &_2YTQ4uZ akfh\JEwXzuݒB)uiy3Z^ *KLn2+h?Ǣv^H"R;Q\1m0+g,Z |c}ފ^2}_bϕJcg'Z#~)O[à/.<'cР%y/ҨAeEŸ4Qb} 5^BMOhd>[ذ\'d31P)lZ24:,u'K;"XeW.M{9u~ 秏jZY_m4q)*>>\1.6@09pE/h7ֺݪ "ѱs|Grm=NlwDwMTf'S[AiԠ\RD|B]}-9x _|i4`uwޝ6\[ScL!*QN_ k[Xg]qH+aLڤ5Wډ)op}ڥ;F=oj.qjSü5ް1$:e+&2k5{svetjz,;^>)szƢ}^r #͇9߃4EN]+&VhG'mliX;ai^,=㶾xѾh*˙&Ct3zE+hi>Ɗve'{x3+a*a9%'cSCuePT%a^v뿋i`#o8~bS'[j *WSz]i>7&Pk p.R5ݸ!WؘN1]G?jOr#Qh(b)HU%UzEm%{Bo4k2uE] gY&c$ևq%bhiD沜Mw{JFLJcUj*|Ʊvt|Z9 ܰG4Gt"xk/Ϛ}jp㦩ލզYdrkQX;, !⊅RIs0T`Pno:jE8Wۋ[GEjԠ&29+T),ާq?90.p70z"D5'B}xA.c^vKvѾ' ҵ D]B256qkYcmġKs7]N7^>2rW8BǒZhcaRt#)?.GĻۙݵS+uo{eϛf"w+RQHJ+']zFF)U FZMSNWB+tbʓ _Zxd1 ;>pWl苪md9#pmWR17m?z8֥O;Qwqnu%/gWb`~v5&/yt5?|zA}+Z^q5C>MQ^־>ӤHЏf7KDjPg}*_EK&u7;s؁v"K/`o4:'Io0?AJDOS'4GcTO͋qN#*oK*gq_aSPUy-ڙhm2PZ1%^W^|Q'4'ԙ&%rFȪaܤ1Vl-L4rD^Chc]2ټb^l"P;]G3ur_dOnL0}Ijؕ=E@Taօش-A8jP)a] /;BӿuxT=+zkթv-ݥ+"o0flgާ2 FFH$VIF 61Bj6 s?L&d^wհ|{չg"zF">q܉'ui{g8?>#Ǵ#,nO!FZqDb^12B77+Onݞrׯ]"KUB]}*s_L]˭Y>mEUz lا4#δ9 vDd)yD nt3XC2ww+4s0L;)JUNrA.GF~ 5A%/LW|i2[±~wҿ`w`m@çMc {b~=obݘ({Wi7TMK2flF|³WL'hX!ώ\ֺ zÍ3ӈILf7vgk ao lWMKVT͞>s^Q b",KOǽ.L Ѽ3iϸDX=SNʕ#N%q/3]&Ԡ>`7]= ,n;=#0pCK:K,?3O5F j"㕦G^6܍y&$$C=IChJ:_ޣdGh}P<0#V-Dȉ4XG>3#|6较 ԦN߷_g ']؆̰k#ݭY?qnҼ-tEX.Ǵ9o hg@u| U)*گVÒ,N=ep X6c^b[sWV->vg'HK"TטvSy6T}P2󊉌כ5 w.Q}[i2JU.0|5H̳Jخa\{{ ++FM]@W\z>Q}7ifX(6x! bMާCn|<^nn/7BF'4tG7gS|Zs q@W? >ހMAwڍbΪ[a\e4 RaNlmlܡK4;S\ +6h,ؘ]enn/0? D|_1g@Zr7'Eͻщ:t}ߏWeo~.xU `wݬ-rJ)NqO}Mص<¼oړ&gVc_OfnYqJRw &Ⳇ9mk --[-W;Huu"5K!7]!"2ykd.BRw  1}zЮiB$ ӸUw}  "W1ŮiB+E4t\hǫ==r4|Qto GnFz?$wH_q{ʵm-5r`vXQ:9x_yҼTs-ʲɓ!xJ)d%Wd3y2]K]5B)ùib+uXyubgv~.ubddbԢ RD{6jib+az4]#9d{d$ݽCG]µmZc8Hg{=20d} @SMY,Um]f5Ũ5Oɝ0h__w;M_ONu0we¿Ɏ8ǵm"(ȬnX|yE*c||!7J r֨)~rn8(͙3l{n#c#l ;4ƹCbrE5} ]?ރnq ʡfMwͭk-R p\hjl L{:?0 WdBxM)}sA}\ۆohׅ3@kY'P |V@, "㌢tL \nK7on;̯), bF'΂CX,ssJXa, 籾}NAY,(2j:(P  rfud^Sb c dW'b)wBk(\?@^M?Djw~$"@ A&rEi.\n.`[]  ".wh?Durd"W:A/B4aqE՚^Å"eP")YP$5 :2@u qCeIDATտ6х"ͼ"TfIDP"IJGx3]J#W=2mxMR0nXe C{,(yE(dŲh&(0 j`^]8 tHpNOܿ+{t_E^?2zG")dltW'KŸL C"ԅA[!:!y8s~qwt鵌\_`v%Sz܂PB)w=nA?\?] NwkN &E{{BmrE~՝𣿽OާoS_~&"]7xF󑰵.ƟOvx߮gn!(|BU}M$>ߦP'R!{-mװڠ6^aq_>7xxy-x3 /hU/vuePE]olG+ګP׻Z gRJj}mpsvBS‘~Uh8n=G{hp>'BjP_r y_IENDB`SuiteSparse/SSMULT/Results/Opteron64_sstest2.png0000644001170100242450000032041410630012620020426 0ustar davisfacPNG  IHDR<EI| pHYs B(xtIME 0+N"tEXtCreation Time01-Jun-2007 08:48:07!f$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx۲(EI~WξXMIc3FuuK0!Yfo hA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+V0`:(ZtPhA LE+Vz?we2bαyՈp_q< V~^mA `}YPP3F\>s *~)MjXC9#px0hlo.Ӿ7ar@Ćf=kXc9#c(}55?*jcTjKn{wD;/:Ɵpዼz@_7<_^޿1DS9N5P,8\iU3y7E+x5([w'Y߅](Zt`W`r fk#V}VTM;G ` `NZ A 9 0-!`'WX}3sເ5A8i??xkPЅ?0*_X<g ]ȑf;` E+!ȑ G_ߴ᷊ ?<8ia΃ A 0àh?Q,? _CIP_(:" p& `~M+~_I᷊@8p8i !ZI+_Cσ" ÉNV0?;L' %MhBN T9|`Rؿ<WB!9-o E+ Æг;;I5v~{ `?䴿 CE+#9orq4wC E+~ʳg| 5@],o،X5S9hV(~p 3o?g<iWS~3,Z-g@/2|~e$X؟`oTRNF7I+c p%͠>V VAp|=Є ,߰SXQQXcq8iw&ЄUt˜p=(} 5,6TFV\SDr1u߽0 1+:ےB8i0l-G\`h}4 ڈ~aV4SX 묟gFf\E p14ۅ ؊}ތ E+8*H B#If*gT ^r!;p=T2YWkA E+]-,~q!NFP8: 쯺.h{X)lE8\JAϳJQupA `/C׆}W7^S9lsɋeɠ yw~g0W85qZ_qFJ%4 f*k\\(wJlgh? *ٜT(qI>0V#\?tNGlY;[r\J?R(9أR͈gw˛GÿΟD`'v"u[UAxtB( %_s_QWi'/[hK'-:uH*<g}b0sQzB.yWlSc3+pugP'c=aSGaga&pxL<n+z?˩KYr_q^aph3+hF]0{6~Ov潅ZW-O}YԐI:i  g<~`X+p |zy:Kh5CUQ*N[MXyPH;?zD7'7`ԣͩJ ُ/~f:bd^(6?yS|Pӵ_&ҫ:k鋫k䧣69AE8ovJDMH5Pgb:/gosݿIv[*Ԅz4Ex[NS8Y-`&+un\H!|==vrrU*=y]B `5aȨFP U_"h/x^mϵq .| S=Ǭܣ׈:X wtjiQY*S}ŝ:P$x\ބ_D 6Zmr/4)9 >+ p f8r |gth$MJ-S*ℛdNvgX\YwwڠPgrAz3RqذّHiR@γ0 Go.ᏥHk l?h-|> nG [7CЅ,zgٶ6sXeENYBpʞۿpUxZ" m?GxW9_͎XG/׊Da*I+l !u(nv-n8|V=kdSa~o$A6t߄[Rշ~(L>")HxVJ3 =I]4z ||M[?b8%o)0L5t$1=( }m52\;agSkcC#P{svĹM6T/ Tni Uaofx7t~6_v+y#SJE+9o7Wg1Uh8UcQ5][GPH 8t-ټ߿RIq7!;zxgEǦfvo`98<Y1Pm*;m~}r6×Orèz\OZΏ`Ef_F O>?NWlejyj4ܛ"AN*X/K7TmԭXq W*~ˠP8;ʾp:ٌy@Wݻ5ïg=CZ{S&yxNJinجXhl甮M ݋ĩ A#Rm8 #]z-<.zFּ^Ve__2/zj*~dֱ˶m LJS@w V g\XVU(SF{Lb%GA 3ׅ pזwG6QãUz"+gэ|풒ʦ/[#ze 1W;l_?C*/;;-];޿O`>X{4Mx g)rl Z  7Eˎc}= (Ɲ E5bX2i?{st7\&ކGfӷgY_|dr(Z]9#ctHj1p9Gz ;uI"f]:*滇7~&LUYvOYC>wuaP3*zm(w:t8Еc(ٵ PUC9Nxib>~[rCmyG.֓0psb+V-ѠmmuƁ9n#Zz j溭h!AxE$Ƭᮣja'$ FC,G/Kx P|Eg.e*\9>WbPY-Z5_ՋphmTh[jK5쇢܃z(4hkVƾS ׈2|7W)pHw rpV8URQJ>z, 2w?&4tm9>s6pmQ M_/dhi9 .mUkz[7Dݙ^H?Fh=a[V28}++ˎA"^q,w]h.;)PX F`bVZտ+7/zfdsֽږ _vr]^\U9Ff+.6YMI6rA{vQ+ `l?#.-=X/1-8 iYFcm FAR/ Uؖ,kks۪trp] 3M!dJ}Z޽j\eMf(l5@FvF),(o 0/jOl$kƯvc,p/uxe=A6#gDuk1*EX(Q9͓v9Ӻ<=B(UapVk^M< V}ncuA!Q2hx|#;aqX-/ t%br%PSK., ]LYZᵮVyǷ8=)RA҉04W {f5UeιVm&lWmMNgf&&YŬDRƲzBل/vեP6ק~3Y$P7PI+XzgnM-hu0IP4}ǾЇ+F*-<}?oC3{t,,.u0hg$?`BU׳"zK3ޝ# wM)wc\8VW0C pVᾯAa.CSn_V7)%ݱ䱿@: 3h&Iq pG"GCݱvڴO̹nE̾Sz  PG3[~p7աmZ p6ٹxȌ^zIa-֍-dwvhVFWp9jekn-iǥ}SoaE.V;`큣cn"\sI+ ؅3nlm5,V.<X%ȡ :w$Cbxv#ȨaZf qGGԮsSmEu+$<]՚Z}]s$f˄$_9uu=upv^~m۟$d-HB>*qjܣ>EbwK.^QfX 1Z:Ϗǻ#T-?zzHPkX: Pm ˶e0[ 恢X2L?eX, \pݘe1=/#2<Vsn>^o?G؞q ݜka(e㐫JF,raAJtҊ(Z=)yJeԾ} ݾM[;Hٵ.a1%\M- ׮˰=h0`,۹G&e-ܳW0ʶ}}29-E&<4(a ZX >#nYm55+.^jƾQ? [Z'ܮ<{.\n߮JZ[>ܝjy+mzTX{P e#tUgq1Uq6rх*ZG&n;q=ۨN愢.I\ɕʥZ{m;2drM5GYM*Dr0y<]`iY6<<97tvRzRkz}/nZg0ԅS3J:q goWkh(^$U;qG ?]-ّ͙ /w:hܾ}\?aͶVXPrN^Uk~4&AxvaΙ˖\xF(,=~EWU\W-(Z=;S9/*Nj9(ZϪ8%!Q\x8-].:RTr60kʁ rB>&(ln2|nޗ"ڹUq{}FB龵(g%wg?E+]o8y)/WeU:(<נؖ./te0ۙKp_vn m(=gbb{P#`W# s>YޱpۻeP%rQ[ozC0(ϰ (Z^,.PaծІt;>yyQZ ,ѳ2]9YUkm5FA#mH>8nﻞНhǃjFw;. %O7aXm6/1aς9D!y)4]涄l5__ g\.TM;FYԿEeqnfU={==I䳷zbpq-.i_ j8h@>c"Ԟ,a.DmkD9» .#=pA+CgYۛ*E.̶y3 S\ݽi0ΏX+ u${{;ʆ㥟D Q1OagS(jP6xܺ@e-=8hGvgh5)2ҹd(Y'k92b(|WHC?:G76*U,n$VUoCrTz[%V徽#) w%N=M2V#5h$pJݛ^*(Z=o·^ݞqNߒyZ^ ¹,=-~VƔ{JHaQB ぜye?)2U!Ӵږmms*llP Oۡf%+Vd6oXN-_w.]Q֒-S1 [Zh!pjdۡqnBO]GTseA&OZuPah(L7uc<<2̓ɜ熊v6h0蛫w OYnU;0ćgaeCqD jDݘUa]ee8m߹L}jk K-ڜf2Ble}5dT_ms/vm}z[93fm実m7C;EohN!o3toiVx?jZX<<c&b肩iú!QnϚ.mв,.> o,mf ?k+B3tkp5²ُBa4*u.V9!վr>[ yef&%2Ʋu܍{:^mErr"w WMJl:[-v;ye¶uքZSF-Z;;ɮz̎-ƛaTN VC|+Q? (QUaFðR®$,upf{~^82kt)4ShN=y*#֡ZN۵7sp>̈vGioG׮P- iy (Z5\PϑJ5# udn0RljİzpE84** {8-]{Pnꙉ թuvkRG"/C ~B+넰 2c$>O: #Qfqjp,mh2 $B}o)ܞŶs}vtU,tR>B$vmo}n݉*r]+7 -Naqp/`:_lH~|TSVֽSkI} EGAqClo֞\w}uWkSYN{aB$ts\'WQX9[G7jddF`Aft9m%:,Pz .̦F>&ٙ:>#vG@\-0mvYh]U p{wf`zbsuP0g4Q n-,-O7܊g]T{<w[Jla-WBkBvV<izQ@!?7G }I"3ˍv>qMtՓnJxZMk1¤}rޜlw0^/?Tγ K}͹9jCA ͩkZқiOK̵Txsk}}KهUCnmrv{H}.X KnPzO1C詏͐S޳չm8بlQ%[n.W #l tOՕ7;Іjΰ kʾ~.%-]&ڇAhbٲ!ځ?PbCz MiC1J7Et 9EtX 8;nqwݲrTǑث Ԛp+uy'Lwy\l{FG9ZGږ:UdKWN"8Rت2taW Q(3n/btL-Q]VOG)ˆ3Ճ5Ynm4pL)/ANE޷喇s.oTX5B)f VbP#QM a?;zɸۘyyhi^6v:ѫOB 1eqi} kEn}-:8Q9}7X8iL&g-:oܽv g}%Yz"+ru_ Jۥvmg5/ :OZݬhJB?Dq N]ltn}ڦoJwk]]Tl6)Pϫ1L!d ܊' EwkDZG6o|pkfP/29h~$CMTӈ:`-We"m'XٔviUVje9v$(j>ʬDxAuڧk/S6^uPkfo}˜ Pzx&ݧrk2dgm TȆVvnGbaZ^'E]K?:)mgXXoXB[ޅ MHevk >#(յ s,X Xyqi>P!jez٢=.y(O3VQТthQ;k^ӦL{[n="AAߛ0Tuaup=Dc_tFh[deG]/ {X'ԗm_Z,+~tvjZy\ğ tͅZMFaו6Z[sN=;T)8| VG8Fj_Vd ۖ䥭XYb o\UEcK{_>{(FY=׭ɺvMk5RC֚X[Q*4!a %:]--¸:йOxÜPSx#9s_T6RQh*&qsQ:p°%;kxd.I~J i%m $_hZ9=" ~ Iwp%tݮ2j.F۫ EYVl涟ZXcB9؟XvJ3u.I\Y3 Ǻ|@ڗ`d/,hm"={&֝JY"zհ ;G5E׿=w٠kj\ DU%JfS1*T4D:dÅsu8UK E"5tI)˚eq;Edل;gLHQc ǨFy>U0+ZEO~P ;֏.TIKn-2;xXZ[/ ],;t5c)v>ul(ߴ20=:/*IMKPX؃]#V۱7Kk3[K$?w՟dHQqŗp;^ڨ5)e0̶gwۦ%(~VOwr8ov #w?*5qj_LӘETKZG ;:"V~ y2JZW7jKosT :[k\ʜd+ TFcbn`YZ:;ePfTѽe'ULnE+ul\ i^j]7?kdk]vN53 -:^nèX3>ñ+jdzVLڊ2Fwz_nҖ*pfK^=Uʱa׿+ڞUD52yZķUy+x > G)G(.섢Cx.ꎄlvCg 'k5>ojK]L2uiU*mխ"[{/},Uf4%\փJa~tjfdtml;9ͿiY{{6d;RHR?\aQf#.ؚZ j(F殶1l>%yewspp?rs8 mݧU:Ck0ԛgS.s>UõuL$&ښWY GgXA`@۰eu<ؕ IDAT蛙ҹ!sZ˵sZ: YؿeߋKwmdėOȏޱ[ɦW ,ɵVUCt.qC ?E0e6j>B;+!cikCsn ^ǯ6S'd@v/]G6vXRYh]zR܂r?cVۘIV}}g5;GF~[ NWOx8Z}H &cZ՞~TJEXjIxUFZt)qQwdPT'X6B޳{ke#Re! *ULm5qE{g}%lf]#zIUkNuXG+:t-V`Ix6J'(Z=~:?.{QĦj۽ gߖlko'ԾfS{xꎆ;"őV~-R Xu"x2&J%GÌwpnа<# *n^H-.K2XY}pqC= ehPz23xv 4Vf;B;koBVvRԆB}Z^"D~iq3Bz'Ko6gw2׳AC2)f7lpe,uM,R-!\vOQ8o/p0P[P RQ lviVWѶ,-a@!fS9U TAy?kТ!.EcPY`Ntl;ƩSZ{'܈60ס]5ɑe ek"\&!bUL /)e~$7]ts3BWβ/JH u ?ơеwV⁑x[ a,vfك8-Xv3Z1{ ;M>:}jnc>?-ܗe1,}Z5X(Q]2N 2Zohj\:DkqC8u k؉՜ӊ݄Z03dñϺ[zyT7Q/k~6涉W=m#3擻_ͮ^Ru,2')"PŜtQe#fNЍƺ˷gu-@i<5WqA"U;mR Oqyb+- #\W V? OU @a$\p*d٢-pڡ}'9r>Cԫ}:=;5Sy0e3 Snn⽪ݥ8X-CUDž\{UCrϮ8dۇص6ܧaĨھ{=>j;v# B9y?}\(|wQy(ٔ"n3IeSWTx m&yjo΂²vQs j/"1n:J~ۧ}Ur70F3\v=;|;i5P.=ղ>W,y? z:=T7ϱf8QWw6iLd MCBů#9̱zy0r(t3nYP?n s*_Cx^wɹ;aP{6e#K,ݧE&@8:;Xs#VU ܩCZ[Ykʇgy쪉w֪fC5 v]4pa8 @?½,lk^/ۉ{Q({! EFzۆ`m³K7kU)[ǎVp2E:hu۠. fe)Wx%PVA!oVXBdz'j<Ԛw?MWrVit"T%RItG,RւwZsq2 &^ZPYM4ʼn~ 헫&f~Lge#uMgu + tzsnZpvRxIס CbJ2HagBNPz8\&/ۂ2M'5*G7gZU"B6}>TPXkO}HnuT{`Ei}naTy4q#0aam,lhLb2sK'o{?*ʸnn`蔮"g2͊2k-Oڍ@f\BMKl+xivb5Sl(Z=ec1?c kiXqmvh/ЍiogVgVClxCRξbmY[*+ɺ8>n.]?UAlG;,ob%zfDCU=E&f}P o!R3Uשcp7 \m`dZg3eᶭZe$ڠ, 6QUxdimQM%< -m@J,\^k //f׌㾰xA+e׬Uz6x^m8WT˰]F.Ն mh`o w=+ >nȡ\}~F!S^ٝ?p0Uu.Yuڸ dBg]Y"S?" eafՃq8ip^Jء#գlsB#Cv{Z$s}ah}UժzpkGGn:mB݈_ {:JÄ2\AjdK]7XajW:"tz@2ߋmw;D)bpv+8K?jOFk5wvٽ^38(Ca7SYU^A3‹QG|Ղ-Eхa F GkÖ>Yqĩ]]L Z؛YB]FƯ臥\ˬ0ձa+ҙJ{Γ!|vhzvc>%+p(ț0&LEkګ#s|TjI;Ȳ- pFsTzUfp(Z=印խmSVυU*v2gmƾFmY`sօj|iKw-(U]j%ԝ"v+/ 8>K!܋pP9Q(jkP݅wIТe,O֫UjF9LBemg,Vu.[ҺR J>FEu^!ho*hunQRVX#8KDߵ6v^ܾ3rg)/҆Od^{hf2dB%Ef˯Pjea~,*t|s3נAQ5u{6n:%q֭&Kqsl0hlB h(]ڑ`cCE{_CשL>K-hŪIFymc5aE +pk]wR^KVEՒ#TV4 o+* HTphaZL"3^ErE|GFd:;r6oJvm.YQ(Uqvixg_RC_JWl]dw",,]W5Y;83b #Em,rmFlIP@!:#tsAgW#EmSX(MB7?Um7fN S 2r]>8:vbŲn$2CN$ B ox0F,I-qp)#S=]ҳԪ{UpjN3'$̌jWN7ORZ06\:ΪY˯TaxW[dt]xb?P8 ;XqU7o5QbR܄[P?(#Zl B2akTofQkJ^Daz$Y{{n'uk^FRa.rյ{a)COKГvו}U1u'U >.S,+Wa3X8P8zcȺE&M CUmB>k)i6[UC:ܢ P&+M bXDkI0향B f-JP؏f&FUٲZfXlad5JFSa;G6FҪ<y= tI6~䆶hm.9Y8P06p>CZgqr?HY(Cӏ9un?7n{JGwMwEQ'Y?k]cymp ~S퓵`ݪum%nm4E,. :*^ֳ{r+[Xw׏eXKfƖjںUZGQ;0^*0֡73nuKng1~A7T7h/\82T}M[h*T%1wIfZq=ةC;'VIpB Opv)ŶZDa𭯗 7]}.20M2 r.u7a[ *&a>o0,)l̊8nf[v;M|ڕ)xءJJݽ MA׃{'su \.aֽ' >l]XN\^V\Fƙ7Bj +V7Ewwc簇,lFsU]M%#'m L.){?V5:v_zn?Ï)lf6*,ٜMk*Y B}m:_r2$pFuEn[Wd6TL XhVun/ Fֽkp v' #9Nn(Ljm=` P=*srZO7oƏd/-4jFX6Bf5YxjW"sI̜fI4c^n*(eG㺱 4 V:i0,d%5n]Mtj| ]W\jk~>QM;٢e&B އru]EyeU=kSw#+I;Gp^9[:Rev8,O܂*Hŗ̳E޵ p6t(Mߊs`u7*txkwF@{^"3p' QƺyQH% y7 'RǣK(-7QPy4a4HEҔIFfR_+lYiYMlZ1t6tV8X{x6 wס(5%0Y[~AS/}y [ |Swn&sYZT4y}.m_xmw+uP}q&sjppe&Sij€9|3o]VGaX\YfFY4nam)wxP8ÅBeaj ÝB1^QZs/2R1z.9Kh]R󺳺 D-ZƶuNI\z.TF%U=h/ #ڑ:Yca ԿH #c,CAb]O FѝHWPСE> ]ophAfjlV#^u7bks:; Muy$w7$W 2hɤZtCx^LuYUJ94곳)j﫳Ȥm童"]Ít1>0] $9,N0ک3aBW;PZ5JByE~(Eh6t / {^rԻQ\Z"EL\h[۵q7ԑfax+`}9kO03Q,OU% ۄz7{?C}eTkQ[4sډ}3 [ԍCi,;O.,j:kڬAܕm\_ k!swP`=}6!ܛ}njMz]àFr .0WW0ΌE{+ޮ!cQCLwaZXW4lȄQE{ZO *&MgĉsB`Tt[%EUۉʣ K%lEѪPXuIu*._E(*]J-_r@&X=W;loBT$\Eo%%WP%]3ק~} n3P#q|1&n<9eT<2D$,D[Pd6YU#(%tSYǮTeܗfE-Uᬌ 'OOf:lݒptyy-?U\['`@h4) ĚUs ڛ# up.K=]U{\tGdYtYD-iA_/KT5PTOqj0wqsAp!,2lf[u#LnZ K_ˈ[yfa63!U:˦=?f?L73[Ы^~W)tGNEh׶bԿٽgF?-#-Bճ{{D w3S^p s< ShC< ^% T°FB7\ݭ)t  ,N CAp/*6D(;5dC3JTa<ŸVC2ӑY]ջntCgk48㎖a3~_/\(Tw1*+:gFn]?E\^Wi&JӰź]&]3m)G2sއPmQz*wb3a8Wiaصa0氍sEM[.CFz?oMU{$->u˯vWEVd"<&4o8VВNSE׆M$onTa>n YB}S ZG`nj60-f_ ]1X cݺZwu#2l]1Y,6W7qagOk-R$ z d2v,vr7\h#|I%=yPz3x^~}H,B5qx/)]i6u4Az0."w,u3Lh]V~Su.aAJ8?3f4T\ڣUl5Pu5 n] 7YjOTZ:Q\m遒^ [[=+Pt+S/Kf\(%(s`@n}?B1Msb<`E?F7 {MBhqU,r2aVU84Gz a;Bmb7j?_ive6D_8(Z=/zG7y +vzr2f:'50Ahclʮs}@JEEaM7r|J}#!rP0h+ddTqBHo5̢fneML A`6Sg歺KڹqЍLZ$`ଖ C>E7Vm:;$T/>.peu5Yh3t#]e,N4$:{_\L>, ;w2.iR|j_ehPŎV^ Ya&X`bܫ:y{P )Tm3ӱ=-CncT@׏[jdl;z&}$oc96˖C Ú0CJ=nn#\'2U# i٪6H%Rϲq- }NE2KP C#\K܌܃U)Ln\1{m؉ 740n.m c@U"2+9&=?P0,ϾoKڇuPEoY>դEv`wm-#&Bk^Huncn2} ˫6`,l`GEr*ƶ#ָgK槼 亹/骸𕜳bテ}pjJ A/<g ӧ-{}_ϷXbm-v}s-Z:::sؚpOzD8conk_kulfù.|R~-ݧNq;.V$cY]tYh\*]] 9nȺRsg?|y˔eSK:PwF̩OV\EU?Zq- V 0*uh<.qW_[׮6FKcc[&*Կ;LB& lзnjt(hsጸf6+cF;O*kb[$), t~-4He3STHVE 3nzF ]#õfWg T{VΪ8]rۢڜjvn02a7 -%.Ƕf7E-n [oyybul?lDr Sp5YNl?,%wLPh`)k aWЅ-4r1v^ dEug KR7nU{`&UQxj&[67h^w49cE.,aqhB_ :Ll'j@e}Hݦ n\Epel|0Ybe*lŰ}W"B/6t2S]-N$~ N8KgmH 鲫8as[hEl}+1mY!YNm!9^M @(NѰj]U NU4Ӽʌ"S q}u'C4hniS0jf~j"ԍUQnsFoy7MνZ\'mOΏZ %?_rۼCue}>^'K͠ Q;uߵ;H Ge;ED e7UuI$g;u+QJÎ+ǗJ"U)I$; 3Y?}ˀ'Z_!Uޗ^ÁD_O]fqHMB(uICp=]  #{7쑵LcԒ$Y>EL3G'QP>ON[=!D:ZK Lj*W15f1u!}=ڷ;/z|6B#dq^Ȣwm\-m 3XdOuvnR#M25/vcewfC cݩf= M2e%=!@kbm!ߚwowgnp٥nEɚ[vJ[Nm.H4}KuxUv{$}b܉rGEM4Pvs[T%UXU>l݄sQFkrt{%Y10eg#($Tɛ,9btVl/zhecY{T"~&Ym^JR|657;ߧņGa7q-n!w ީ3nkoխ2,atD5w~>r^=ƨ[)VM_Z1^b4C"XE܀ϮbdF+);ugsXe8w6L.Ge6.-Х.#HƳґTΊm<>Q+vVrf^meR%;t3NKJдg$;ɷd$;c_WP5MO9Hw m44'Ƶ?\|=O*t_r:vX(WR3_U7a"%l!*9= 0Žrec@ꪩV\ Vêd@Tju[lݗM}"kUX:2Ȫ+0Ug~?2wbUT`uCBGmY%=Wp+-]4FNPQ]/M*Q[xT*=C˗mD.Q-fZs.֛ۗ[2G^m#Oة`B Wj&~07u}X'8n=;=(m07e%=@Xܽ׹[J8̧ p90']9ťiWZ:<:6HctIסF+{,fzGY7D˭IR#2\4fy)ɉ[v_B!iqoRTцItT -YO~N՚#{s~QLՙ%F'BAeĭ<0uiVsٱӭS~ҧK >voybۣz֙~w2>ҿ}O"='\nt>_{]1o:]N/b`u$:JgVnˏNӢ=d]F&t SE>Rю>z m<_MD->׵0S\WFh`V`7& j\.kҸǢ꣮4Vtܡ d );CҠJplQ{WoxUJf5 u3j5vy9(.]1/]nVEŽ۞G9oí4f;32VžɪVdVna_'?s=p#(vBюR'd]Jޗ+ꍛit3+n䮘N(~10Gp]\^VY ԓnDNn'pH1DqKF눓y̩rEmP$˝IF#ezSyTS'C%w橮uX1- T%;u;Lje'yՁ$S{h*2VvpBuCYtNMՎ&sj\)yQxVYi #uzU6!5TGCLR-6/J1\ҝT$c$|͹s$kXVT~!TI.3@c)VHȧ(6S?6|yä~ܽ?{X Ua8!D/:|:aRFjHv<1_-̌% IDATh+Pwlw픬Jт]_֡fCNUVc?*.v6 6 SlцmVejmAvL^E řV{{U#z$/rm֞ DIGT=(NJ 1zQUI+ #v7~3QY&bKXv[ GLݺ%V-6Υn6菂c6aB4\:ìl"Y뺕 yh*vzIVkFӆɴmMʘ-Aj8Kēyu/2o5yV؊^$|ZOUqJjϽ""2WsvLTi4--dQloxe#dnd%u3&/p~ CPÞ; k6ö&ݷQV kQ+i[lwV% /z:rŵɽdX1AUv;yp y +k!D)8Dlu:4h\٩JtgqTRX閯:.H=g\:I;Ҿm\6|R2J.1yH!*Mf&/kܭ|N]WrW"u[W~\ X7͹|+Ymr;N9]~Rf*3@V݃m#7BX8 gφwnc6VEH` FD$Q^r>(vGvTݚSؗ]'Jk^zZ;i[Q*ZVaI&v -s^bҼ,ho`{h'/Q^T}V}*T[}jMtvV}T3g}{IjMljg+44wUlSWŒU}9YK*J-2VUU;Idh!3IwRktWQEvi덕i/utI%Ћ ,jal4>ވrۚsZ^ T"{;'M>ImG{:UOK](,Iگ:W4`~ CF;f8~wgv0#}ݡ"g:;tn߲ڵMmT.\(FqTP*Li%Փ;Y<4X48Svjo_.Qܶ˩rjk}kL)p>+Ŀ.KoMtA{GvDkEjҨTcWg큫!꽻q&wuw+ټxlR+(9%QGT _v){q! g=ʭCcG$0 5*hyouGPJei|W7g n>VtwRѤ;XƢ~FEQ )Ɗ7[{MrԅuTl:/{W>طQ'p,ݜ;yd7u^=RvRgq6W~Sl^O'j?-T~Ǘ+V+ټVfQ2uJx/7Qx[w(BNΡZnVIE8 I+ č1#`/FCJV q05ywQD :@ΧM[]:/b݁yi#+܈ͽT:[!s~(As]?9ʫQUNnU=e cs!u7[Avt%'5Iqswswj{6<~Td˲&w_kl*Szwtuŵy [`}^wlJ*p7,7FcĒ^Yu6vu DD>E)h!ʜJMTmwmkQEIwh]yN&*wMڅܑAcwf.|5ZG͵ 6Y]GV&)[󓔓nU^˗d5yYtɔ56NFfխr:Q47U+iŽM{NHG}w^pQEkxW;Ⱥwr2<+,Kޮsm[rOW_Ր7m|C츍+O d> TFS UeL-N@<:R<^/itWu>]8ݸ7wÁd/]ja>uʁ޽?Gr29vCNkъX#.eUL6s;d)"T9ZVifԤݚTֿP2=PjgwVw כ?QǾ"|q;Kp IVZ/!OKسIn{IҪ>Y6 i{kg,Y%c6ݻ%1v;huS啔V>&ϛdrWoxg4(&<ȁŭ`?$TQT)X[OqKޒr#-< G!?jk&xk%>w6峾>QB&#gx.dՎljΆ[ը3+բ* v4m_GwPU+Uݠy3$[Qj߲YEUZ7Ws$]xd t#gU$k7QL[d2?9p[%7*6d}ٕ/eaC<ך3s紓xPDSSwY/9WrO|}q{K bo ~M/>UfvFBdy.j2͋JNyTU]Gjk$׼>Bm# 緦/qক gJm[7;1(UZŦ!!d[܎:~]ɋdE5 jUk~iT(ȴ(,-V~@vy9Tϓ7y·0AHZbs3i[TRݙ[UY`4a۝bmMu]XbFyQv#QP4 J||>H;n Ldn.A{%Qr=2cD“fbֶ8Es e+˙-c@̔ԔϮ)KS&rw5ZḍHnu;d^;Oƥʑ=-VlNCS:9Kn瀣%U+Nnu{Ͼ=@^O-DzP,JL36{D='* h⬪NLGVF HZa,Y8Q n՝HW65E|H>BR{OvЭ\DY.%*rWǝ`JM?Vڭk${jj(3'ۻ-$jmPfZe4{6Uu~qGvdc7C1'yy\ ܱ%3y|ީl,D:iA(qA{»cLXubєRg:M3ŽF>Wdwne8/n$7 w$[t-<(i{*w8VdŢnJk6Q݀-M+`=q;\SwXgwݨ_TFyrbN<[Vd4xc/)ޭרKM&ru%l[=?eY{)w'Mccz ȝO6Awf[lDK1N-: {&9䤙ooخ8 P{_ws.Ѷv-GF rAy]Dn0@vw|Kgn'p1uϸQ ߏ#^T#o)^F,F~څ;3Eݔ۔PF}n#Kd5{ʱyrTs|)7a+xm7ҝͺ}rwAK?Ect3{*?jgXi@7cي;'ۋbeܷo>':6WnUNE47 Fo-N@Q57/\lhng%V`T&~mܠ7rBsfYIcGê;I+O*uBF]ªd5:& ԅ^IAbv ўlmﶨ]FQ n ]R& 'ɶi|HC\Ikshxᖐd݅;FO`tBF1L:3[TKK[0܊z:س5pwMLU Ns mZ4-[Iu /ݓSo,-^GEeFKh?ȑ4oXU6uGDv9* +he[`4G$uӭbd5y d jk'*B])w0Iic.Q[|kMZ|wd8ڻ@2pQ9ߢʭ U%c[lV0悏#GF ZȷZ0 tۣ]y} /VtԝRRKT!>U%\|NǞUYhn,;d\"Z;PvƂ<Δ{q@nsU†]I6.ٍDPrPnDޕ;EP;zcl)6|>MDvJX3n~(vȗoƮJF'!_ȠSenm[B(.fU,.W [oFgX{ T-XW8SK>feg.Nbm5q[Du^9 -7c5skD;AU(T;rױqڣQtfo/ǒ:(淗KKtȌֺ7Zy^4guQ^J5ijG[pwN{ QOb{{\j[.n`ZG#*y@:$^@%cu2śٞ%-v>?Vݳ*PӱI+\tI\̅VǧE$TjU/^T|՝R2s'dGQEd؍wg'H [xl3wmNQFnrILjp3 @ XB$Fy;n=#{ysw.nyvaj5]@T=ފKva]|hv`VeLwlm^kRʕRuw3ͻrE{~6Pؿˣ9[3hUqGkiKrcJ5~ض fQ9)owi7B;' WnMQ4ֱURՋjET7SϓŭytM&)مݠ9|hc_Jiއn'iV>W2f)?۟DM/::V~yG;]д{!@tѕ| N6Mf_.~%wh_y $IQ!;VE] UE14Y+B_VtkHSQRcd.:߳FDdB<Zȕ~]b}=c^C%nE=%т{;:6rDy;r_GsW[zp.۴' qzynшLۻō=eé 6d=>^,wrw5BtG"blecf! 5NDu$S n($p=.LN8uu[}=Fխi7NBd2j:=Q!jX1>=Q d۸vg;%AE{=:WWgƞy ڗ lFݾAyG?b)_ݽ kfU;26ް+4~lrIIތ_&oy׆5nd7cQfX )0\R=uQ|ewv"ߚkʎ;cƍЧ$ve+*n$S$ؚ+ʸ /4%mqkCtWY-$R \-u쒨jd7Wl=Ӓ?=q7,,IF1_]v TZWb鶟ùd2My_%Q[tnd Sϗ$J*[ZZ4ZZUn 9{eUkk<6NS jE22 kwM;&#[n|wĴAB4봴 w6nv7q_'K[ iMd$+9Vjj*AНuلTwefEC U)tj$kAfړG?5@jY*jEH}2yؤiF+Nv,9T>#i(_v%{hMm%U:$?ҵx؃qQk,0:fczVz]! I+\LMGm~;DNy#Y[g[< ݚR#[Jբ3.LU[4޻ce;.e%##9/2g| i DQQvkgV8ڢ11~ͤ$&qUU+f\%uNdс wUb]MZ*tSB-x!7b8hfm,ɭW6zqפɨLqeA*\];மm=К\1۩>8&QQ~\Ђ.5Lwuo&ˉf6jN5^{D;˓^,[iJ^~gu84ԝ\LG[r7-Jt[݁v- `$m'ںvc"Ig>i#{m)gf5ͣԝ7mld~*~KG @3D?ݹܔґ)U%$3dhG) ]#Þ<(o[~"pi?M<~LZ6پ+:ٖoEIpYjiS-ľp,;:M׫uTx#u׷Even=;Ì'ח6r<'j/_g|G^L։jn3Pj*X=u1ʨW"i6%}y3[7aa{hj*j]y`]G(YP{PǢ G%#yK||Lqۋ#- p=rRy+'VG|eQOXKPvjsf9ۛO9jślph߭vtDH vr/Ws=[J vFWl c|W <;ElWKT,U.+袁Xnl7<}c尒mW6TS JvXyQz<ȗϗ[^5ٙcۅ){ݒ[-B^}V[6kBּęٍ--&BvwKT[tu?)AE%{5m c㹍ަ/e~+hM_}rkGy݋M ZRM%h4t@7)/%!0`w|>/Ze]5 +l7Fܑ4U^8Vx׃ *M"d;u7KT=Ux0LHɔu|wOZ7KeglJtݣDrJe7!vwܗ;.uZ2D"0IrV22e澫P;@jtaK49ws|-4G]Yzv;@SZM\,$4NA*ZAnVuԭeo̐*ig(ۯ{8rwQKds%SW;&CEީf]xVo'~2[_0yBgEi L>hS w7|TSOwf6Y?Y/zմ3y7AS&-j{UcWo6~{҅)yY<Й\vn}DmT1iB뤜b䡩ɏK޼]uvwB{~gxAڎ ;WWOgvԡ.Vpfr;//LIE]&~*R| O gyuڏZP2=kgeS;8uT]?Qʻ--KJOFj+W2qF*1? W3Zq',vɅ삛d_5ݴ\Y(\U%s.V/L/#=Ʌy[zWx$V;7/~Z!ɇ679X#RK;frDY%zK^ #I-x{ehoA,VKMڕ.&™t%AGA;^HZyXRѭz-VsϬȭy_63]1B QROZIyN*oBelHeX4DʻIfmt[J=c%IWδ>0dpHZZw_۳p=>MPɟY1NʾiիY\js &OSi|=zX)YQUX=K*gqUd[0<3i`;VE/%=qS{>NoK`ZmeZ4O* em&/ܽȼ.MLP17ks 0rކ[<3G*l5_&;U7P#\[5$i} ZJrJ-\/auw%w6WG®\_{߰kVzc|~}zʷܭ*Y}1? hp.jgqn}Iͽdy55.4$1eGUkqnn2˗]A}Fj% ;c0 VOُyB}Nb7O8oV0v%_,ռB~C;tjb܌UMio}'hiRݰ^(;dOD]I+w_? p3*C`?1Hm]Q)"5k jM1FMװqs:*W%U=uvUuT2![¢A1/y Ԍe^8rw q#;fϹ^.O#R|F})~-I%{YѬCEOU հi=UQr<\Qo"]PE9&vuchS[Q0مLx?_"ˏb@^il$==~i3bnLQY;we0Q[8 y1 ^Z [_T՘sF^Ԛl9nsQѶ?߾c`a3VOJ_!'Z듧dǾeWhOՏT}Wຶ7f1_DUJKRÁFQ=Ii8- PG xǤ{*?`"yO9,y=61;S/8h[[~ Bf$zǠ//v4}zF媚@`X[iLӢmѹM~jyv/VqD) Tҗu/ U"x yi^Lw㩚{M6zEv4VD-`:VI*$jY6?R3EK7~Ӌ ٫|HZ8cGNe\bc^.PZ/Dkm[bJn[ {&w++TW55{KzP,HZAne`:4kV&~j~!o%z=T% Wkunv/ 8{GwM~spVn<SΙi '7C&`ѩ;Ӆ* ץ5"vYHqHZ_pZnq]_#VFvY]9Jz %E\r~Cssu[3Vo'+nJ Bg'LbUXLJEsrŚTˮ|pG-/Vr*.0.npE duۡ^bG8}o<$EBrNw^x#7/K:KlO!gPA [ < }t٧ޞ|N$ dTf?~aAFqoͿ ~I+`lPS8Pb]Mx\E>h_r߭/|~Azq%o6'\7ސNNQVi)HZ; 8#G=>:B@I+^Vx \! G !;VlOkrS$ᇊi)qHZꩨ-*^I+ܴ9e_LWW5sJ[ni:79ywa7}x16p>g7`g- H4mh OZanr]-_GvwE\_sidweMs:iCi?{wr4M{r_ӴE~1jc($`7?D&־oK.+]Qrxo:K4mv݂hڻѴivDFOM'#i|>3GxڎN>M{Ѵ1;ic4wDHZ].vt{xgд3=}=G Vx8}q)gt/y$hGMi;wuc!V:0B>twUhڇx6V6|wwN1>MѴBPh{ic(4дq VI+ vw?wz1b?wJӾ?wJӾ?wJF?Ďr{Ii?qxN/9F,xNiڷxNiڷxNiX'pWݝ^rXwҴowҴowҴI+ C !iᐴpwu=}>g)N{<%LjW<)MW<)MW<)M{I+ C !iᐴpHZ`8$0]]ui|>j4MvJH 0iD I+qk^G9[UT4H <Mx$6p |=MN(%h#ѴGi_$ |?l<\du!Vn߱P$ތ <Mx$6p |=x#9՟7E Mx$6H4mp7w$*;ކ <Mx$60>VpO.z.6H4mh M+2ɧ:'<Mx$6H4m`pWWqעF>u0Ki6IVUiv_վ#r; ie4`]]}'3&_8S.REKXwۨ׎#8T2?I+Ae鐳oir65`\Ѻv]}A-hxa[ٰA Q[3mohAxa[ٰ!i܌`D={aiΔchA; a[ٰ؁7$gK*n;[n([ [1`i;ݵoiϯi4mcдGhkomڲO^޴s#c~2YMlwߦ-FMF{|Ci? OZ_HϏ^oJ6mRLpq_2tKx7o>v\~HǶo|MPo>v\"z x A~x 6T? sl<9ʛ Ej~q kA.NF @k7h9"g3H[$% HZ&1A}PXHZhzxx`|$cN <WSw-xZzFV{nd h*ZٞNO1ngQS]##i`q~^7]ϥ䛐; x$M{y@@?=3ɚgtƾTƪ  8OZ;x*Ap1kT]~FKh8N[7qJ@I+`+bqn}Y.|FLByvQ =LF^vI++ V]Dڧ=?Ul[8^~/KȞB6꤁?j< PHZXC;VcZis߻ӨOoV}gONڇ(<I+`g<.UtD5֝;z|+zG>u>>׺}'4HV+% i^?vP_-:ZԽpq7N/݀_Tnnݑp vU@}: ճh{ihG俧~I+` L>j=Vo1X/\rrp/׶;n>#i,t#`߃SEdsGY4Nƈ[ ֗/!<-q $eia噻kWDfh|ڹߐCp~[Vfp?[|D@E*ꉒ9?9R7!; xl}rc`gRT.}7],i\Ti9o#kkuNivio/k(ih`ѫ/+7`g-h.'3I}@#;y@V4. 4Znv޻AI}5x=5~ݴj4N@&Vz8e7X/ȋR]5O`6,ns.^Tfc)UxkIc_VF#ؘB}<%kz&6!K u{_Wzw9"ľ}}ؑ=#7G7o*ďxt@qo5ga=Ycư~=v9TJopq 2@֘_oT$Y@'Mq.U%n͚tυ=lS=סiem7f? %#V/iULv{Z*6A7yY;f"UȾfsyO&o.jSQ_8k>IxS48V(UWмqc[,ߩᴓո x=5bEڭ)Կ^xix;/>s! |lfɆ-;P M5qAcnp]/[D Emq{_<VW5_Վ Xj$.%ބk8%g=s70k6j˻pt&;$5G/ͥoom*m\ ݴjkt.`VUb=7KaSgp QiU+P\xkș;<;C(vS jTM]/Hupy|?;[!#C*Vi+(mgcQ QXζbpTN>> {@T]+O?@M5KNJFݴj#- +Q.ce2><_4om,љ¯no&P!*rH^WtO͛2oWtJS:y߹uhM.bFٯfeO^,uۗߍ";L>g->ɽo㋰-Fݴj4,n"C'h[*_dۺP,׿uh|TUX^u6>V߭~hd(T(yMEԥ1`;|nZ2qP/̽ 7΂w({gY}+`wN'O }sUaVPgM$7H,BԤ.dV^.?&xN||*~VS z.Eb{xcFUqoO3WB܌f38HSv~Gи8ih}+ld:tWZ0l ?LAit<քT›]d=M\?M:VSFn+6Sh~WL?[%ȾΣy6D}ݵOyM]?nZ5)JÉA+C|]Ed@\@Y (Z´mZAiB2P`ץ/خ h~Swbھ-S:T^ۑNYQ&So("܊c6>nZ5f ~+N|Ev ͳ$.\^5,uh :r6`7w_d]:5Jv;`k!:lg^#1!eGsm>Bf6~3Ww.]zC_ 7>nZ5x7%xێ|@T(v,͘e-RέVeGP%<zM=ǥp36V :@mAg|u˅ _=D\.j^${M2.l4vV@0F/V+w g]; ax]*_f5xI{z='t+Ws_Z C]7:7ekeAb?[YxA\6EJƯV{aSJ)Vb_X|?B&*b6E&H5;FdI ZƝqYhC94LÎ~} u*o,|_`{k>7"IS6tiոv6Ty 6z_ y$RjZnV?^OsӹaP xocSх?xMJ<*_"NR^qW-+*$z{uʫFnZ5@_uxsVJ L4!c !! <[+zȈZcUdv] X֣p*z*yS 5i׾!BU`0?:Q Vn3sW[A8攧ߗG%}D}d=0jo46Vkg"æuvlzKoa?n_v?eZcK*E/5T$h 4qBiI":}Ŋ2O8HH{t"֍% ^,ci, &jLYDù{tTYj4U.(ϩ xp s7L DVS # ].%Sxb}0Bv5;ZZ_j/_@iE}Jo0VmrhNf,X{i?C*PLEjg-ePͭlqJh[S7Vҳmںi8n+YDzz\iapt.V6n"}LѷE Gw@6~g[_ZG, zO L{ n΍ص-?ݤ}kKz>&KU%_OlѰnZ5nMs7,f|0<7wN; C]Lz6;Lƕ5I hCy &3n ww`aS:;Ү[e1AqLڑmߔ)hbǵʦo->;7*6YHFw7B?jǻc^;ԛVZ^:iXYM#+`;j9=:R/bǏߑnL: T9!kZpM_h򠩇+e;Ѱd*uY6䥣1_Ajk8!g_L#C}>עE>Ҙh[}ZODFns;qEkwh tӪq )+`Zo >ħBW*Q|s}Z]7:G.l*igϚSSAڃ}=DP7VOLLEY倅}{m2g:NG\z Xh^U%>n :M>9rɶ1/MF@Ǫ)n`/^y~&JQmp^ro)Bw+Jw,Ѹ\ ^Xh]g"6 (6? ~FS,Pb(_#‚Kpu=>ЧIٸB#4ǘ>@Gһ&Qً림&S%wD{AtA7~5*& jM,1ӔL{`G@WjMgX/qƕPZQáM퇺gިq=VʰxSPm\c_c(LRJW SF>#to{=v*},Z[(6p& ?!T1(_*M'UXݫjnZ5if$Y5aՊ80 кBy334]ML6;i)o!{T|Qgdz,py֋Qūtb1mʶ[/ GV"*b0[i&Yf. fb&/𭬲4mAe݇ 9v@tsQ~Q՚|6mOӎUrSΥPnZ5nyheۛkwGeQF~uY/KjEdHK0>|fC{_?~\fGd+߂nQ U51N|A z itOؓʺuzvh$Ďu;(8Y_Y:DۺѨV!^RY?k|i),:jnYB(*;UQv'T8WbU`BH%uaJY Yq7$0|ŏkϺUL%߰~-UZV{n 3bWb)% Ҋsl;zT?K&tӪ8.{:"6{q|uxQC},z(iW;w)%geQiuv7ĦNY9Y~hRio*T%u= Q$S2uXNz%ݑ[ @ķAmk[V1 Y`9v4żJC^y3Io9žAqi34XrxiJ΃G'om#Z: UvV^ϼ}W n~_=67Ѿ=݀~M,H1Yg֐M4Y`1[Ppk*a79+YRhgonZ5$)|5J^Pf!xW0X)]hGYnN0?K-d+B)aى_أ)|`ǍȎuqeM4"iFx<زØ X8KüLH4:TZ+DQݫ)AAP![VK➮M%FE j"3kj2/o&3Fm3iqOnHݩto4;N-TΎvt2tmaFm =BQSY$yb~ThA7HVi"Ku߭6:2EV|8&%$׀LM,wu[tmѮl5&Wf Gj0;̛uرk|(~tm5ŬbjBtXjȐ*ЯrPkgMA<2Br~tb*fR1NjĆ`UcqTgio hY(s0d-zшBIxp$:$Ay7(}qRⅵ"XXU/"h uU@ې0) #i wӥ(/tO/YĬ*MAœ5htj)}BW5 @|㋺iN4TEAH:qR]Uސߡkvm-lGUhZfzQx9ن>GqO׮#cBRƆז<|_1en.$1tAྖM ]{BG;X]G3r"e2} й T⌁!RU#FС8nZN>ZC7`HQ$"- QsZLC6;:{GƘXr z\Z 85@Vnx]t"|;)Xh|< غ -wJ#-npl{yˠ]{`hzYHi#,tAdKP`$#U%(00@[WYfTxOM  } w&;qA*QS :vC"BE ]HTI)O}׉ t#PmV {y+g+kY, T?6(E kglB'j J"h;:Zݺ\emΪjx@W=aU6QM>MU\6^SV,KWaﻳHي^tm|C)IJ2",>oʬ7 33TQu t"|1=]̡}ygk;*Q ?~E^Rg#q$u1$ s؁r6ܺHni=}mh("Vߤ-]!ҧ!Ӌ=|{oi6  [.epbbȊiE6Ю=:>pe hlk/Vj欧x.ڵ50{OϒmlY a:MFub)8d+јVK>vLiGTr&Vw2 o1IסW 'ps.1#6wTlBюA M.&]Ӻ YzՂ_HȨA$˔oNɂUkb~uƹ }Cάףҟ#3(Yysv}4 ;-0}kㆮMt 4pC] Y$X̧;!hM4ڵ̏x_ #)/頙fgۘËȹxЁsq iN\1g3!>s騀2E2EdCk%θkJ ZV[آ5{[Qr5w0LjQ+4 GC7 lרۑq[F`NCOݍi,̈F'xy [A=m;X|:BѮ=#%OYδ5^5Fx{@۠I< 1ŷ ^7Bt;P?+AHutj~3En&~&}w,ҵ\fjlTW;T&]Ex9kgÿ@sEHʼnXIRn'=c3݂T2?>*ŖlC7izŔ$ ~3­pg܀Fph<ɚ*CyBpd*1vw?)AgY!ݴZfh  Eڔ\C~;^AճQX4n6IRpo6%V$?N-,,luQS@%mH[Xx Y[Xؽ}"sPzЫC}z˛]XH4fM̤}zRt VjU@hFO+R"J3V|[ƙ:sZy+1 sz<^± a .+{x]'S0Rv}1lt+*eepHank?/rv-D5po!uT vیR/rf=7BPO0O),ֽږ@a߇`2Na"#W|OȧZ>Q\4Dr1@=%lYpx9Pi.L2 QD:.4O-x MK . /?'>n1J5?qOCŜs ?Z nl]le-euʯa9ͳ6Q:ABC7OɃziS=eܵh `JA9L7Q~nֱ kd}x!FoEMS+E|NWmÕ޷װcܪx_$7[479Aɩ($꽃~ tm ykUiֻNg\^|<ܥufmY <.Y~t_ Ɏ+ fQy#]COA5sg*@ !R~zVܢK>ߨs"2)#25ABa%#S7um_DŽU6F3hD7! ?nmV+] aLVeZo?obg~4-؇ڈJ_4>|hnUiM}"ݕ%D޺FY@X+z{kl#Ah*($zw+FwJN] =LW4NLOu=ex8wgˁ,c54MVA9"Dɬj?TTLi!L{bPLc"ܽ݋c&_%T> :h<Y ^I)XjT6N57 \V ;lC`| :xW _hlΧKOž?W(Eọ77,0epY xPՌ#!=w.6pe|/Ə_^m|4Xșhϒq$e%BRWNQ ȹ`5~5@ѸcN{ֻj27+VCͩ ,QD RX!68=ɬw-Z޵su{Al7 k^g_"B^0t 0ue\kdFӪ,D,d-0/G+Qq}zÂ<(vn*^4NHs0wPmǍw{E?)Nհ\mMʳV4Tأ0.aq:fӵpEj[\nNip.2e%4(3Bbg5Hs,իqTHp֟. ig23CZ^L+='Wml0iľc@-?b~BHi̢Y 44nZ-_?~ P)M3>G#>])(Jq@@M7~=+͵W2_37VS@'*A/E)~Ts/mV3Ӯ +{ԏ>Ut6?%~" %_;=-4m8Q@@4tp6H5]ۜbO`1|4΢WpD GDx|bR9}K n4f"_|v{7Q.MKd]go~J eNp+׮4i8wu %!_+DGuqp!A,m )Bb}5ʵ)2hp4-NhQ@vx^E,mo+h 3EkN' s:2J_u٭01R"Mf밅Mc Ҹ>EIi`*3*tXƧQ֙ud=[@8#᳉AU\{"* £br55suxϺLD-jga-D;/gF-}(si7JD9ꆔh@M=Bǝr*Rt?a'jCpJTbŐ9u7G:|Kk00M ûa"m@̧<5S*o2atUW,kacotb\x_;]uE˯0&X"fP;(1b|E1#wᆮ-f/^&yihc>K?:)H>cFh=FDP7AtFi XV]"Oy\L&#sF'R+ay< }bX VaᤸA.dcYs'!LH(W6~5av&T|A#cb"`neTsP lf,,* a-eƔ {BuX޵3h sg1wq>:6sLj!sk7ӋƉ4/O麿#S祾gP+ tE@EX&/7.ƚꟌ+)gHn{/$W,*;x\hř7~!e-lp˼HqdC;,>C PMZ VY9Je˃ MyѓA cڶًͣ]Y qK2Tݔ}^#B>!C.tCE =Ʒ~׭_ zȔjr+(hfޞO @VDdaZUT4[ߴZ E1CF(p XEg/Jۗ8ڮM%,3{WxAmd"S(%E1 ӸB $OĬ:,.wFamhi3J AQ@߼ }OVjhI, `Lڏej#/PwWpVeLW8qap۩ȍˢVKa$ſL|rYrG)bmΡMXtMix Y8W9`I1 Hy hD_GSua@h c.B2lE{)Y/.k!e'cɔ?VGEsPS1ch[ApU 치9 \:s[*"U@~,fzb(!.9}{MUc)Фba!DK8حYoQNтO)iC䭭) 'V!ZWt)g Ɛ%*s7%4Ф'!TOw΍!-k.yhN{U? YP)K[T@NP#v @ +x1x Ph,tiv>.E5h/:B0|ySqzQ7/![$ӠAȶڻӪ|Qd9>D,ۍ[4FԯHzXhǭ1ג-j)occ5:C(; qfjpQ{ ֖_x#FIv-<GROmCޢv%*@jhDǃLsX20lB8o)z8,Lt؎Ck FM _;@ֈɨǔQ9ՐTm*m(]* Or\мzP7ck6Pgr LL1TO7 ݡs1Â7G~òW Qk`m)9C>=iV$d2ߢ>a!NӓgAEĵ3w|&}GY=x/jOJ酨M^}޷$4ݴZ J(uUfwi7@Ngj24J[k 'OH/^9VVT`@_v>vBgbѰz~̀Xs&&=Wt.Dd'hØУֈiZ E1A[J-6 Y=,;Iogd2i9f@hY%"YX札ho^#n7oZ-%ۢB BHo!%>wGzjl*PTlCsXQ>kn90е%{PDQΚԳ٣geaX J^ ?>n!+: nKr7Gg}\;KDZ=u_񟩉 r  #3 ;G:s OG<_lp_YҬ,dfp$*mc‹FݴZ{o#c5.(^*Ft-ܳ/Odk2=7aJ~ws%Pg%AK3B,UjPuj~|V# h.\HQ=,.FS`v':Q,3opL7AFB"J1'%NLY^_kt$Fًd@]1]KИPpb'x}d_)P65ա^`:hPtӪԅ`@y`EZEj_:VbBN*sDu+խ'^`(-G-7,e5@+mS`B€֊Og|n,]e1'zk5R[ ~̲6 T' 2F2Oui@lTn( Z~mDV0T[4&P (z^e 0f(*\؊nZ-Yv*FFF@iTx 1pc.H6KNi0-%{`oޣ)*zv1)rbq'tfq/q27G+ 7tml,CҼ4Z@^ LݣpiU\ftk4XoX<-9nM'kƲ. Up⦭aZETZN~:L]2L]ZW܍kVKo/2Cp1(!hŹ!9++V?~t (]dVɲVJ"kO(0d٢B3b*6]գȘ4u0!Bbɺde{׶ĭDFa_t9E^!PͯLD7J] {CY>FiL<%4A2-6c'MJ")R.]&~Yʵ)[h 2.W"HF+ȼ2k1/h1‡P\]myatʯcmf,~׿샶 4l96FY5,j25" Y/*=Sƭk!$AaǏ1z<^g a$u*q| Lt"oq!YUㇱifQctȻt|(V,ebXv@l/2% IDAT ZтVd\?A4. =q?zؤM9wCYfz6Vd {u|:0lc"\=W0u.jhB221&lj4χlܲ%=2Ţb@ׁ,:kHSU2hF>Oզ*^hV\Q&Jq9T#F|jX!"W3WeE9NB8oQ9 0&Q+VHZXRa7hπO|M븕k3VV::,]66Qs duuC|38LG- nxbwr),"!LMHTnm/dR*SϢREa8%k)WPn}vmB|)^3_. :]+&tlBK^` ' Y#0W$=y-(wR?x?A/hK]& o\ɊsPSmNv[eB`Z]qm"du`a!}*cG gsHL7 A7Uo+#U>=24ETm: 3Tq=+; 0dP($L(||mצX$,x 2_w!d= P:ܙ0B:uEY!⺸;$iS~r7nZ5~4c>-ɦ MfMVJNJ2!E30&X-"S;&J9@'{:w،^4a4!ZTauxk,ռ6l+ޯ^XjhŒb~^0n`ae犘Sa<ς [G14. dZ2Qbf; }1s^!'U6؁@q6Qn0.jZ*[1v;PY)5z/0-4B _Ű'E3 "<}|9LT7QR?=^'a`hi81cٔ"+G)3 (Ӊ4\4~ }o\B*9@)ψ;L]T_( AaM߸2BFL3>uD]##=  8h+VCj]IYn4Rx>k /1Qº {43(MP'd1 @OC)v7pb6f}g[Xϵ3譄1A9bzR<ͦXn Nj ArKIWгn']{>Si[4L=+빩H}3.o&s陘 P(+iU ;2PE.vBɖS0ل!ugBF.[YJ2 (Kjy&Y9ěkF%+69?D](>VbS@i$ (Ċ, 8{W)yRebZz Tf?,ت`)0np$B.TYo>V@!%0Ř]P 9>9xP__<C7Vh'}-3嬇Ft%sv JTլgnnITB+:7B͊^!# EU%\_q@2FW5pQ-bau=l#Y{ < <'CkSdNzJga- p4f4{yPFjM<G(mf: CEVha.N!ڛܭBdZ K^‰UBiҩ/BEO,a7wQ3F kq=^%mF>C?6cWP,>;n_:и>* fUI/d$nhGlw]+ʈz;oX7/!Nq񰶾ƪx?$mAsp%@TTZ&Yh@w kfYRaȏ+g:^1T"k}{2MA0uhoCkaicNUw~z cul[d('LQN˽ $C?Nי/6NM ޷)Tg(ͅq5m(bTD̘$42i"fYr_ٞ._X4${KrV>l4q} mYB"HƇPÕ)1u)Nfe.B4;C#+,t kw9iE8uX;&St$A{oIuxnY]$Q=}ńW(6Y2`e}@SB$&%;Ji=`#rϸ^LNdTאa>5Ki^uB3]oIip"=un|DZ(ϙ J3R,Q&Ļ(3\pS5A˜Kٰ( 5J{};ٴcnxv5Uۦ2E4 kTB=Ȅ+^+z)(ƫ FZkb;聎/DԅxPƽ t82S)6k6>nZ_.t +_j,pʋۏtpԤ€zR3ܟ_1yʲrsMz"Epj:7|J9uZ8Re~˸:Z T7g$y'&Z~]z^)2n<á3kL-} r9޴Q3C c7dT>@A8mkEO;;p+s#R F蹩WG8h">j4+/t] gg3t;a0XEPqצV&G1[ջ<NDKbmJdz|pDࢭOc1צNupq=E.m! Jr1D#BtG2DO:ƫ#b1׶{lITɼlb5*vR!Bf܀#"MkKbtӪq>F~>Eӧ$||'NdJIU%=p+DpE,q:U/MY*xOe@4t R#M1T"PsZshzJEm]: >qƭM[Lڸ@Ɇ0S ԡӴiZ?iZfy1;5YYwmZa5&(uWŭ1.n-_%; 0 Cjm h[kcyצظbMd~8&$֩;&©1U"W[w)Z8LX޵vX|^[&ji+hEϾv[&a wn?tj),=h3m=@r 2NҼTL1*L[6]ԍ'M7A p[޵M6GfL ׭N1]۫|ZOI?CaTѕ?݅AWJڮkK"U =1p vА/0 s[3Q( sIeO1q ̉|ҌSq*SuP#Qi@9@+fFtӪ{R f&日.rOSL& 0ey?1crR6+ٝ~3Ul6i5(OثKS ExN&AL c:ooNK1!M&KS" t`xz[@@'Y1P]W!U #x%#,VMsEMt t؄nZ-ro{m)ACd(V,*8rM"E fE18W-P3{1nC]eq@W"ƐH^(*mBnR|e,UMiYV8^H5:Mbm_TÏ"9 2&Oj ԩu+XҵYqz6ָWz%Ex7u0uC3Y {A,#^`٬lbG"3|~ r?a ^ u&xetZ9&RaݑNgt_C>^B,=kW!?  )SWʙO/R86b(,wNLGMuU|Ň:'^۵+\> 2L%ʖťb ykNz1k+xapN񕰼kdxXjRP wiސeؾhkap1^FX3i5V+cw(:6`a]5SWTxV… C 4FL)@d7a!cWXɵihi9)c>8 Vg k t\W^}^heӋ-%J->yu\bPC/ ,h"x6X2k},CXɵ@sO;S2@o643TzR\AH$)%XeA${">nu<>}qs7?k3 çZE{)~&ߖBɺՕXƣpl'B] Af+;VaX?[[ծ۾EW<~[1DʳvHDǟD_l].AV%&K<1~xREgv5p،NmqE+? Zu1؋5e`,ŸB2FA(WAMAe3[⠂7L5R__6==H^,: W[8r:,*k\e'E\NL4lZnԼXLc 22*zq,SL6H1¿~1xjqJqgZdm}:d#bĸXUĦ\{k{>2d`WuэWlePz@S>SiAQg=q&i^鬝#^Ho"z T0MJELXsi%VKbyu i,2~G/%LeJcBi‰!`jfLֶ S9 Zek{bI6fUAi4AV& /FP@!s(#n bg-oVji&pny3 b# L/a4b]Lhih@ME'y< FzD4@c}1oyA@%6?G_ 5HΒ_:TȪMV= tmOjC(j'ϼGl}qNe0Vd8#@߶eTp톰TY!t=D=cD9Vb^vì0e4,`CæJξk!"+Q~֗­\;K7o\z_;4Wz>' }W >L}@㊐1 i4i^4{0<#_{%J]bW y$}8&,oInnOc%צ4n'<܍ /O˭bDZ!CD J{2zJ@5QNg?XɵXy9(尺Jq'Wh1 C 5U^Tc4 y\k|6~0 [os茣5߁`hi>>H}9q̳g)3M1R_QrC={^YfBQte:ӼeIF 2#^L3(Q~ 6&Dpmo0ϊ21g"J*(]Y覽Mǰ#~B]nHř6q, ҆YGz]4ztndLORԏJݡ=kORZE,yeGMEx<04} |z YC0r ̗nyLʄ&Z#8y7\[c~b{&қx HC"H_jȤ1'ETȣ+OcDy|v=S`],jNbXy>1;X=Ӣv|̉!Tc}UR)$ÕFc7ixm10HErhMsV:XwujńMeo;mMK&C0i% 2RY/:E5xs6e H\ 6@c>]̻] nMmT<«@|B1!?ϼ+Ϩ=[6Fo Ɓ-7$aȊ?#1D\*ݗC߀XXACE%j9A_YAߎ%ٝXY+\ 6Y1K5],Ёև~|<=?,u1#UJ1)UT̻cҴFeCлA=HGo:'{G ЃQ w6fT Q ;jgy!/ez>o%Zzv9K IDATW4\ Asg54,Π48dr۞J&SO)x(Ze Fc7V ߔ,d|2 Y(JQH(}aW4BF^4 AY!z O2ezXɵُJhQl J%f+NY`v+CuCx 6NOŨb,bk[n`!zkM7mv$aq=+Tgt4Mtt_u*ΪK0smD=[4t\S㎨ʔ bb˹!G5Lop tj, w +CU!4ck2aXQ^^ػލZ &$3$П'b%׮C6c!(G0nVԱ8EHwQ=]w-pQ\}(ĩh<kf>VaYћEL ,}֚9(c{i|+65^> vZTޔlܜ0q#[23hZ}+KGFC=cr$R=_e\we-re/?lj|Ƽn+11|}Ks P8rƯ' !SRKMƌN}m&hբr(5DW qG1Ёw^#hZu|9NG݄7,q+C¬)ӠXb,dOvB@787_SID e4)Pg((E}N֚f|eeX>xg#{ zc hXӪ%b(!D|:v4м><.-B0cePbJN4~X!CPx2)۴T Fg6u0fJ<ctĪvB%jg.ׇծl}(@'iihǿ)ɜQ;I<3)ƁDžU2nQΏKxv}9u"ejݴZkd'YDRO!!(RfŦ,^'/՜5=rP]ݦ(Fvٯʄ4~ ]=Vh[ِ-="@ZӣXcgEJbS|z< >bUrXE|VT @'jS6 PXf$@XuD( R%A07Xd aҘV*y-S&a4+?G, D|ôbY q>F#C7? ]5~0 yBh-˲XE xS5ܔ^AeD1۸mP/*]BVT=eV"p)\JXɵv!A!z*Ff0 4K_TG8p0Vr?`Y#%ʤʠӡíg^~]\C(1PD2*ױkg5dm=ML[̓[G5f[ĊzOM~7-BłCi~;CVyAt"03͑afCSX,'t2:?]?QLr&sկcxDІBh+ɘ)>;e;bHdBc%)!wӊ2@K^L2H[#2JhH KKG4 . PJ6vT4O9eY̵3hMc)lŁ,eGk Wl%BaFk ݴjio[@Bj+ }^f易k@ #Dh.6aLU(oEfojݑFfeV:8Me6bjcBgDX+io# JI)6Ah *)dhqeL@6ο "~ bF6ՄX6ܚʟ~k6޵Ib^J"+n5td([vTޥAI=13isq:0Vrm?n ˂!0:>oӛ%eS袀j5 !-:L,:kev҉KR;MEi$%$011KKf$@+菚dSl3Pg?N ;E]d,c.5@:MK`E(T<4˴Z@5EzYLȔ#PjIi*U _˸0BͨGT !˴ ,a1U*!<'|gYr~J:]%ըc1Nm䨨1^NMBn(beedQ`-p~5EDQ?V qS?68ŮӶK,^,dqqT[Nv>w&dq)LX[/a w8NƘ;ճ@M#ߍ a-?a?,[iVX .~e̵Buu&?H%ad%ArDAcƱ{};,smi"8MǑ#9`E¤c/6 ztL`H-3zD=^{^y4h,nZ5~ )z5>WB!MOu3eF7|J|ZQ6UI5ܭTc2;,6У+<qQ%DECaNTX7zM;!aJ+sHO 7LO!yQpf\C LhNnph>CIK6p_) ӎ9^1ӊ |FN BTF%T&uqY_l0b>/Y0DItOʏ RBO?>pnV"-~tJXg|`콴.Ixx ӎNJ+be6_]"adw-h䬘A{g@c~a >K)<8M"Z+{56k2k=hN`1FMUOCJ4v"hWƷCFKMQ Dpv?_A> L͘1qYej^銂jV`h,k,5 e {i#{nQUQP`YLbʘu$_4(0MiZ#5WraT[!3 sVhx3Ũ{G-s&4$+>{Czmlj9E|u D*+;AW6`?EĦkF"تE_,xr=nN񊺹`q4.Ɛrtj"\9Gېᦔ檭TI]cy)$K-2)k]3~2Elb$sb ٢4 1zH1@JaSӤTìj 2b}-,=9a 60y+կ\k"P=+GkiDڴ؋1Xյ[M=3ZtRKmPGG};+a"o MhjjG'OwhA7EķrbMRr:0=$g)B`f.KJ㧁t|M-*c5TYEW*kGva5 _Auӹq!P1D涖OAc~ʘwLG$,R A+[i~ qW]kvVIԜf/ev]dÊY/J0zQ7HtQ[ؠێTމV 6'Jh΄X!F}X'SØw%adV?X/b1~@#)|fkZE;˩ox]!|<#˒Ngx%[NWԯ+|5ڴc slH:EqA`e_9{ĀCjw-Aq? hE Jm̒qN%F|!Jfn1e37$,[xQtw+Z5Etj<Ͽ4q 5c@Dg~Xq)_ әdSP~]Zb[:;n[ɵGYp=ъ#fwJ=WTkMS(iu^1Hƥ#?\;KolǍf j;F2O ]Xjrtyp)u+$aI6SS9:@VTtJ )Cw{ŔW) SJ) ՞:Ay;y6ˌt5f Z(+Ax4(5|}Ot4dEF,Rii:Pϖk{Ѯ4+^hXh,ІM\/}#"*%D]Anoh7|[x>/y[|⏷ r-Q&?=Er&ttz&g8jiexdhb):N?F}f&YцiHg{^yױ*&+Kk{dEůx_}bEǨ2XQ'(rOٗ ܠ4ipaޕ{F`\ ^7oZ5^PАWH>UQBǭDRzu,Q!4N6M/6eB$`+] ʄ !a+J)Xo rG']{bBves%qHGLeq~-@y3m kdEǥv ,koz gP@GLv,xoYV~kG z%?>[聛 ,F7OgG V͐SQEJCgٺ,WN.B}J?ڡ1% ?ּK+aTM:W\,'Qۭ>]"_=,^Nn%*.%adi]I)ϊV J(b+O\~׵1h> 3?H8GT~#o^ߠ%T(Apnj8 薄itөG]{M@+(Cxdw(|NV@N5U_{ݾNB}'x2N<:ԃA%PG3궛2& g鬠_S"y%٣sƝMuLv@S^n+*uq cҲ)hV4c$Yܵ%.ͻt]w]{J\Vwgoڍ){,70TSH ix"n+unk֌t>%^d{;~ a"vgNh⦩\ a;aOO˸vg7;РM9@$PYȠ9 ٢`32_=hhtjq)«zGZ 4}/ fL ')9gcu)c Gۃg]|"*ևHuLBnX?M%1V/_w}CA ԭ `.hBGm a!| 2dX!HxG {#h3u.^t+A0 44 3T̉zAxt\c+j g$+?YW~WoG7%1E@8>$`{a$JȒ\YAH?jR94\EЅ,gC\pE?2Gq°#u&U?VM <=\{ݦX $h"ZC!o}(i:^<źY&#lB#JƓ!f+y?ab&}bQb52CZ4h!?授$SZ(4ehPVQtӪKU& ?2ˋ9⨋"]"EgA 5f+ J}RNg@1\c@VE!i*JOލS{!a4?b[ʄS-£I9UiR19-6+5(E s2z We2kTA"jE : sI/rA%bS&sJNPHmuh;\ o$C{Lj j7qtj<zg|'y>X|c)cфT,\));(r e!  kzXõYR;{Z$"fˤQu%ntqE,:Hz}{)^O\Q(suצ 5 …3G˒Ԏ]PlO!YgUEU;#?m큶ӟx@2.WBamu,#3U+6sQA`PE,:(hX7AHG1QyLz_2) 1pPO6>KM9g_z#:PwmK< LZ"ĐTQ x.@{!(v4QR' kdmQJocAgU%aHn 'i+2{% IDATִ -Cp+PcgXõ==t̅< vsɔ&JĘ(6"KxKh GeB=JC7MnnhᔉŘ 3-)5hA>m8d$4'y}Sgw{5*_wLz #)gWUQJ=q)-#LVgaWA%^2!hd4>,@k]QXȎ RIE V`ˡ2QAZ؈hd?jS6/ѿ $R!cAf8tsK}6H>uLܑY>%?tj5?P2p0 4D:#ig~gUɻA1"NW8Ma[+kN黻n蜋w82裄WtU\D} m+xҵ| %X%{Ab֦?aȨ |hc^ q#誙O (N(:F*SqLc'YG\yiC^tMt=mB(m#Ech| ݴj\Hi͈l3TZƼ+[YJ Ӆ&ΎAI*Y7::}:=sڰxL/LCК q8E%& 8&5e5j}QGP[ Pfp2ihOSizgosQKxஷ YE8oP/2HEǙJج d;BaůG"x>zG_ -7a Yi }D+p\6+.;k 6O9Gvƀ!5Nl˂dE^6=i<ܰ) gt]ܠ 1cN#MGEqϛaEn Haަ}ꢫ">6'utNNOmvyYs+I^WH.4ݤ}5qGhT}.]CG(16Ԉ֜u&wf^ԒA̍Ԓî}mWHZ1:Vm띊1ٛ4'T0=Q%CZ<v*ڃ; rud?Gȣ3hi;f]]fQvfke_3r5}JhA}꾢Ʀ'z]SmbF9yZٮ*K${D\NSK>JD.%&î:)>jւ lWur -l&uy$%Zӟ-nRopk܎&w*z[7vTk=i<䃟=(PحJeku\Nmg3KZfԥчأpg-hJQ\,q#DrnAB8;YJɳ\͌ȷZnf8ŦN͔P2usv?r{3]P])2{[jT uRͺ%<Ϯڪ|׭Թ݌}FX Lr\mNΛW՛?};wތZ+%@8`Է@uPQ4) n 5,bFZYشJ%4qn]rd1[賫poQw IFC#aѴOkί]勷l^!\TcWd1;T8Bu vD'>ɧ|r݁ eԺDV'5vݳ x>/./hcUQ[9"ijt_?Bq{bEKuUnG^^GynVCߝiUʮ9&w\5|Եi %hG<[HT]1%Q:njL-qmIZM+ jgTM.ɥ|%(ku}3j5LGOSg8j}WSsHFqjS4~hAE]`QB]ױӹҾ\IhO|YRoUFy%FZaaܠV"i}VyE6h줸ZwZ{A䖕b3{*lȻYO>@s$wEԩ`T"|,-+*­y;y(Dnn9{p$U6@H5hͽEp#3&*e]<)# KDδ=Tޥ폕D2Ryyt`x'M.۪ܚ"RR}+mIhaXzGmfw`Y [ ~9Ж➇]sUrVw;tw7(q#鎳4g5m{ $G!'z9GUѨ>2݉^FմsLC>@>$pQ@0lоe'4|~>%pQ;5uweknG T)ꟓ.7j}ʺmb땬.irrKtR-:mU:Q#-ve_xs4YUӺzfI+LJonvo  -2ėѩA" 2 12%ݛ o?Le3 k׽ڰXz]T% *ԧTzy]J3Ku2V8Cr1%ǻu %zU3BUyldg.kFb*U0JŖ%22$^|$ӏO¦q6 ?!jQ!` b[fF 7$u7Q Fm՘!O0O>yqM{^W;@CjZrm2 GF{\imGQRTC׮Tj?W}2H<;h`jrUgɨ\?Rm{2sav^w8w5TKZ kYIWVKwwl 4VZ10[5|BnR~Dv8n-:jl\LD;lY wF) QJIFb0hL)ZM_/-"̮M+C;rC4͞f؝ӺzE41p2ٴoh&Vk[EGŶ>EM:DN}Me *eTs|Gz,?r L|uj-(u*Q teOX[$K0 YY~L^BӼtLݩlʦ TqP ٵC[Kr'ID^Gc/Sck^d6=o\:ClC^Hՙ_W:D3 [.׏%uI7;4qs-ȶ2QZJx~vvIDnΒ۽~#9Rƞ#iE3uI4䝣TvFlE%S[s 9v{2ǴyTͣ=(6by%µ|[Bjȉ۔LrVQIrV'Uݒ凖tձ9sˬ晏Y6v^hKr 36ۻ\bIvb6_fߡ8|Kyd;Wk9&ٿZ_4wF#; GFٝKj{tQ]]Ig@(ꯣN{Gh@hGD;$TJcFrs%Õq=F)v5{W~(n(3٤K6bnSj[l*T=&IX'}uIٖ`t6ؼ 2*NndRLo ujv!nh(x^n.f|iQ6^O4vʋu\oq;]*@I+L$ wFur'[qvVG`X%_D[y~9ǻTaC/99&*Wf$T)Z-Tmؼ ֡݃ 7?b*Zbcz_-w*ӱN?}.npdpt4dĻ@kXRDuHh;|wMiϭ*e.q״uw' }] @ݻSWѡ]5G-'(}y*!Gi]V2ݵ顨JN2z(UCE-.ڂSV&܂؝Q'6$6/V)J|7t7/nY9Y5 ^uktSyڵfN|rmѵ=jQۏu;'+ִh}; f`rK NX i,7g~^$$z0JE%&o@%cN$0utw'L-q+IQоr{ֱE='Q*B8{֏󼷛nʹQleS;rԡ*`'J};t(i[f}XqܖڬORb`>]*$s6luoBKQGj,vڬhlD#[.HZaBk[;G(ĩG?GzJ)6.O-+95!PUiij|9h|teI/(_2>z U m^ gM`Ə+f.'Los:3$@}51=W^1tl$7L''$J=,'>[T2n08T+V[AVTb|7 iٞՂ|W;>ѭMc[Z:ٛ/7:$R`d]wAc&%鎹$ϒT}byݺwn.'5Uϵ²YaMyUr jW68ϥDĕ?Ix3* LVn^&ntj?(p Cۃj}%aF&*)h cEI@7n㘪y7ڧP4Zj6fSr9'9dVlMz֕+2<#o58PABr5'uS+1J8F&plwҗ| ދ?1fTsfwծwԢq`j%,b; *fش^T\cGzi= ֛̆A>(VjowuDJV+j$/_쟻+Q!N}ky=szTұQbVuO+#LLv|Fn7:|r*E8wsu˪[R\f3w;<#tInMlM{ ;լ4dWDFKl=ؼ+3[ٔrvU[sUmū3rG戴NZZS o{\Rh,:]7`z62S%AmAWWTrV=wC[ k".̏Nc1Iyνp17vT嬨Air-EnkW;_{mI̍ t%\AszY>ٚdTiG|"u\< Ura:53SfB->bDjǾb2z'Nġm;ݶeUb=,'@ w]|6nꁦ*ޛKI쨖MOe`%mkd!jD77j 39sjrNe`g}Z[4M>.}IDATeLqN*/ʬ+[V՟fmۥwV~ؼ\eȮMrC;+'eǸYyuHZNn?nWʝdlo^ɰ$=u&M`N$m>D[V fE($5um!ްz ;B 4$HZfpю}{^9*t/OF58wZՈnuZSv7tgOϋl~y,Շ<Lxώ8p;QK΄_Os܂g^l,f 8($qf2ZVFː_"tATca9<>;F@㵩@!cqFwRΦ$O'EZ_o ~Iw6e z7쭯&F=ή_yWp=M2>6ؖoͩ,tW+jԆjf/0 I+\k\>Ѫ2HRx00+vt R|׮yoGn .bz5T'hOt߼KluC.(k#^;@-.M['3Чػcͺ.߹N@=OoXZF2q`6>sECA$pH6:w$5/w9I05o)|6HwΏ}ޱ<03 #P{FnXl߱Zo2evxsW c*Wo9 ۲}٠=غ혻>A(AuAl]\ýIѶO46n*I2e* LF6ŭR*wo7SPc"7VŗE ţS+57u1Ͷ.-+ <;t݉H}XG-hݘH~_OG +]]{xD(]eMt ٶ^̏DTe66 Gփ=hYD{'|. 2{PXp7-mo+7W:qZwF>k3rߚ9R -G 07Z>{7wki++=#u.mNtVL*'Xy3޼k$_GTb2wq!(Oʬu?$p} |wj 7lkB5E 6<8r\xVj?^Վzxd8D=Ƞ5;yj<<ԑQl&c[Seo*g*_2VJ)O{V]]t<eI.nwHW[ى;TGrj8ܜPb'U]jM:!h[#ɝhKV{/jS@6݄ڨqɘ"&t0^+xSv|&5G"ÄS Tx>OMd*#yHZ1l/{+˞u8Yk̔bSQ65i]u@Ε*>r2秃?Q~#?Gȑ:tl5o1_6y* z {=~|]&P$~v`KRoJ&RmJdO;_yo= gsbX15[Q}#[tqFW3KN<Q,‹v.VPS)P[]PdϪ=8;٥#aܛ:ciLBt,s@⤰ukOlDOA)1C(,͜9^bH i*."V̻GY}:`Hw_u`{ b<kܛ=͝XQu*0uf܅>eѯ ~/O~F=0Q7'O$#s ڪ#Sl&䬧^Œs{2f<$pOJgD{ 乲f}]O[ڧz0D=eU>T_s/RsonmVo%H,w=lh' خ= =E7fpcw͂ݽ1K{`w =7ïfq5s>(.%i|OQtc~k3d'%Yl3<#- 9r͓b)IKU`1?ʳ~;?Rflv}wKb<&?.8!N}9xxz+i˨#i$$OlG&#Oƺ뫭*&}pmeK(<ɷ_?W5qWW$&-:fz(=g`C=dn>+Dc߭aR]up5jT؛0Wys[~M?ͣGl*:ŧ䘑n|㍵> CqY v; o~Ji_I{z'Ɍcf$p'ՏK^C:D>zhh$mOA->Qh/-rCbϧT}MMGm=.Z; sh {;ּ~zɌvyx#{`\=h70TNB2t%Qkcy'5,ڟ! CV~o, O 1}k6N`ThWgYR=o%4y*Z[̷nd;"!V{ķ{`֝d)%I=@76˨!x 'z f5m3M)B @jIPkimY6C[钄{.Zv_t߭/l'9<dso{^$p +%M>R7m_ al ro,v=~䷠dFfww- p]|0P$p+Q¿ѓnVb|u[W7rِO807!QXPǩՏvx B zoy0P1a2gkiu]Y%ۂkwG3u!4Dsc`BCZpRyjHZvҮGym)UGnV/&+$gLOZSm{fE#! $LA!_N=-U}LbKmkص:<}HZJi`)U ah/i,?wWG[~kG&YcUM|Ϯ>T5nTv\?3U OZt?w0 &V~%}8!=?Q}P/CoQ}_qs+VvPkxv0#Z y++;L&\lI.q3PrI+`!Hu<l~)~[]~P$zn:~ƣ&Ё0#΄XQh~ I+`jiTV[+.&|@`3w'ɚWܕo#eke?SDjXTǓV0cxr~Og+_ &[[rO˄ߔB |6qsY 7nn>V8ϾMMI@_޹|k/ʹR0^)'7I+`Rz8VH$ooB ׮rw_Jn߷RF5+w-$ʶ$pofHҧtM/y{'Ñ`}XiMܨ Nwƪ!V?R/@ x 97~*x V{<(_*r!x.Vm&ч?4pok ߱ iL> 5>?wW@A^wX;Xe'oE 8 /"iM|;Q_RW!vߴKH~{А_vS/.0C>Fu2dK^rcw6ɚ\yG‰xILǑ­g}Zkƒwy>7SV|>sR5f79}pLS^Ck,<I+lT5j NVWI+d<&?j Dߢv߭/pZ i'$d9@䟻+h$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC ,ˋD$^m]x|wq8ƻAwwZz@ x%6Vn@I+M?%);,O+8VGwbqyAs#ִ_Uok4iӴ-Gд-ϧSM i]ָ`6yiT+дw7-Z[>i?+PA /'a/N-]rc>{|#E>84nA>8wws![+gG^&A>8.4SB>8HZ'l\wqXP4Qhژ M{6B[\^ߴtHZ`:$lg,zAqחx^_-Lj^U/*^J~_? ibS="T2v\\%^z1b_? i?믊ҴWBi؋'T/[{x^_(M^U/*^J^$0VI+LC F|>_QR\\%^z1b_? i?믊ҴWBiH,\ _tHZ`:$0VI+LC !i ?gYSY,b|>ݪ=$[;iD^ <I+ֺ\s}QNԮ6 ѴWiDоOץMx%6J4mp͖sj]wn;}~0_F^ Mx"9՟7E Mx%6J4mp7؇!vR _C^ MI+`:癩[=&6J4mh$M+6]@^ MOZo+Ǘ h+ѴWigx[R/0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0VI+LC !i鐴tHZ`:$0V9W-5IENDB`SuiteSparse/SSMULT/Results/CoreDuo_MS_lcc.png0000644001170100242450000011053710625635205017740 0ustar davisfacPNG  IHDR) pHYs+tIME "tEXtCreation Time25-May-2007 15:30:11-*$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx풣*Pݺq*S[[a:GIp͓'4Oh< y@$8Ip͓'4Oh< y@$8Ip͓'4Oh< y@$8Ip͓'4Oh< y@$8Ip͓'4Oh< N'!] @ &7wwx8 ægMpzv-?Z?S7˕>[+ڝx{=Wˑj9a N$23qpJ^vٖϾô G}>?saUiT |%N3|űQSX}x~'ug< 9o=DDۜ:US׿Y_ۜB&^%IƿxzwiH.iΫ߮b[}hlsb;DzeǽX}q~;:0,1]~x: >-M䜽tkAOZ}}3sgLlJw 1پ 0`-;::hcMԝl*cL<,'qR{I,|Ÿgw\ hqO НQ9 tXwl*nam|KhzN)%RP%=i! DwF$88!gD94-9b>cvi3[^}yx8[ =i! ;$88K4pY=?#*.gIsz8?',E5Cx%٥ӧh[_qY_ h@}}dzOt4&삜+t34L7u-yO_nMo6V< F}$9*O*i/']=ڧk1ںvrޣ Yw;*ٓ+i\EJqRtz/'3Ehмnpf.8c-A_BN*0 !݅&K%n>}LopG SϏϖ~GF^_e]6/T Pg8Uf6%5C{Hp0uKԙgU6*J=G]&}iRv|DUQ [IU矯VIz70EXX6[[\q}ܬJJ_ wo~?jf]%Al5s!JbGY}G0mB']8 :GquapWڱLF" cB݃ tF{C3/tVtp{DŽ .8 |v9BZո32;N>^$8^*Eou0vFSd,e)p՜MNS/} PV&].C3]̵9х:E~ZܞE*D^,sCJwh[V홁,Vry"]R>wyVnYM ߐ3M:wyrRL7[| ]N )9IgDjvE->swlU ;C3*v'(g8Rըn1$8u[l "? \C"QȇQUz7}RIpU0q;cאCK}?,6j YW5ӄv.ȑJ愼:x3hpk]VV}Od7vIzQ#m\}RȻvxvxm55V9KnG HTa@͛YeYuצ\blz|f{;N7VpjkS.G \c%ך wZ<*8LJ!=k,s''+_G&~uCܑ*Ջ-ymi"&N%Alu6g,hBuvH U[<ͯɗNR޾hׯ^%'k#np]U3yLQKn7;RU{ YaIN_㥎dL`In0nnێ<8s;/6HC6y8,ÊD"‰Dcu]2- 9_gn|s%8˂XsRӻҫlxn ϐvdVf3:@ [X`5.Xt}$^c?{cL#MeKEcɜ.ood9yѩ~;|9QqO-5T:#so{&j7r>Fc/c?>\^@^H9 +5=ݣ37twZLǷ@t#$8/(Bvv? >Q\RЧx fG0n; P`B7A&r|[jpww ܮmөIQrȽÎ< XdG8qjՀ}N]bݴe;c$-.(2eDyJW$8,-nPv(GFɑkCy%־KdaXHƮ#u XMSk MaGft;Qrʉbz˫ɑ +8 SV.BN`e Mk osyAᷧNa f=>s6oI =luvHa:\ON[2Z{Wӧ7c/ G4q|W4;'f d1j9{ do%ʦ)v@i 82SO)*!.UGy%4_cOs)\T:g!QJg*86ak<Ąz:Pz \,MWwohI~M  ɵF^mwߴ}[};m^z lO"0@u*{h pۊ$w1 >xD$ :rNZ+zsu:7uawbeu^o>bsD)BXHmuN8=^kB?d+P(*ǦKhlť "f[Qѯf76+덡7&n ]^٪w*XD>P9Юā%1DIyMǨM^s@{{1ګ;n%ST6M"u."d=qCvl.tM$BvH]#]mzhilI wQъsg3v߹ՠ]hvue^ G=asjv#6=jvdnwXMʚz5+Ng6,H \4,`W%UH'?5%z55лjX>4Ыպ֔׸}51e>C`ӬSx4 hΉcVf?~ Qp~FBpsFF+6C>C ?qrҰi]s$6ώ.UN(VoWv쫫>Z>VD=l#kj(.u_]S<6;k-$8ڶ,kKmbB#Q53W^q ;rY9㶩ǕQhx׾zݾ냢iGd즒 yM=G} _Gwkw r,tr#Evޑm-=Xp2T]R0o#td_]@P7л!4wSC*.b ->f\THK\7~[B:Uz[XӾRƋ/({i5{0wu M9/66Ľ'_x ɮݹH[YcuOe:8]Cw>-Zk~{F؞q$)x{i8E-_sT>eusԬ{MgY׍s6;9{Nӆӡz>ܴc? ԕy%K>˪aܟd|iz ;(8$ft"/&ѰDܤu/xE|D^=YVb~ q6KOG8ѵ#M_n 7j6eNC-9%sswiZאh:/ԡx%:!3a '8nj}_;}gt.]Il/|pڏӟ-n\2Lia)VjS# :\KU^TZ+5 IEׇkW*lI5HXL?.:vV~?هC^&hL 2~r_?>-ݜ;EerAK~>`&%jRYVͻ>$N M Arv0_}+;ؑLwQ~bZCw}~w_v#ۘkaed} gos8}j|'h;UR=Y="3,F ̋y5$MY{L*?ɍN(an?zCoo |r}# hGj`/݃{i'{D"BoRt}||b+IT>|c.#dW9n<&hסEzG*[ !5$8 CMdsW7G9n!qJrDM_g IDATsw\ZZbHE}rO&?E(߆!b_N/nsEQpnI &2o(3$8sc'C$^`1=v0;Bm32 ÜkՕjp r|`s_V'])H nZUMWg<>a>p={ܵvٗ3s30!SpVt2u]r̼'(^;yp$86,Rwq~ADFtɮ:f 7=^ R1gK-k 7_1"YPӾ٫qōٸ<͚ɛIp-`6u6g-дx^AjoԱEO s);P׍kųSDg:bpB/_J4αǑ[']W QWwS:f&.*o;l>=vܘpً y43 ꂳ9\ZQ  _w7 C 92%$]EsI/ U- )-ëx * {;bC^=K\+ߣ{a>0‚qo|ILnX@#~ -U ~ :Ja}Վfdо[enpnVˤh٦i/wG6FXD ǙƒLkBðDyGIa8%z˕Z^Zf7~R/rLZטV-N,׼ 4DEK[ͻR 1>5{lItneK?adooјA;R2 r%jCG#+rм}RnBxekkAe-piunuӳ{Mbqm0Y=t>~8tV\́ MoY]} ̺nXx93"yi_'/Xzكk^Z!;pUm|L.LvpgImujpdb/j' MW[w#A/+4-gnلkz`<|Hpk)}')2.O|1v6J{x _['~\[z(a+3s*d BH WMxJN3T?dM h :u!JRdJ\:wrؖymﴊ~);#GM'u_}h[HxYBdj@$8 >a;wڥd0L}ki[v0-E>θwVHp[VO،*Yz07L9)\泿>1;EGdRekO0P%l2|>6Hٝ6ZY}7Į nj_ʰVn[0/qO ]&|^g&"ku ,y5gD UI{ yuQkYn " =$.y;_?02@>  ;U~>G]gwczvjʼ=#,_aGm2oYnڝ.dƳ(.iaJ$HpxZukMs_;[e UY4\28q=Ɖ$mʍI`[+$P8Yw` '"i]ysU U1JE&iq~O'1x0wv"HvՂD=œ~.oޮh*67"Qn(IL9CRr~'uNW(Ra&@͆!.|uaJ-fWGDWx|ԃEKYIAK rX6'2a7!|xfgW]px6R~z83\6 ]^n26\IpA|qboå ٣>i$,ٽ1"9 W`/}~0kkM_ٸlQ=]^ HpρwEzwJN#)!1Ȋ7, :1g֏w a9[ 8)e:jg r}-87]b}__.Trk٪ S,Y0Vkn!v3?c0t-$9^$:UTt1mpwd{ AD$\f._dv ҆vIpONk|*8~iF#Qw՘5x0ELz?qn?0w/q[Y\ +ww%TwE9e4lHb"i݅3.vEXS C1d:tx \jv /Mk a{[A vIbw#Qk}-5'9oY)#Hpe ´j0>>#_t'ND E 3LgAvuh(E&7?16>w&=d rm:MΛ_tcT1v<hw}߮N6A})TpukM%ӧXcv$o3.6|n^}1[ nK]pibifHNBsSVL.醮.-]B25hp:}ꂅBW6]-S1p\-= c!R_GǤlJͻ':@saB|P8^rjF BE|/νE,nzRǦ<ho,H9g`RtF&G"O2[ 7K0n2 mq`Tڍ$8쌕P>aP`JEY ,ݤzQ>$8>)ZV=zK!aB@^~N* 9kIpOImD+Is{T3)p ^/ܤNFy^!Op qx b}_p dI]"G [I׫&Q'1 ]]jPNI<1F07#lx' n y hЧ+NT^x+2iRɮj1jУZψ;yF-zT١n6BnqE}.r^nq$ȴx6ST}xh؛n Ip}Y;9[{Xdh N-G.=[U;^앐¿Ԫv'q.UQB]BoSjۣgg < y@$8Ip͓'sDލԗ+H~K~K/}R'zB =j 2!6a+6翋l5 /GqBo˴QsЛ>2~\I< 0-UFnmF36Dl#}]|rzKoAq*zKoASThأt-cҕlۜzvO~2~;ٖOgz'~[B̈́^i{3h|E/(Bm86nsiiOMճ[N?zZ"(EmjУ%B i98=S !z\L}=j#EQ2;Y:=S8'zB =*d 2;_- ~B4a6y9z\CEzG=Tp_3p .2n;Jpdz9z'r/(N4^qiyy_ϟ"Z =?Z =^x YpЃ[=^r`<}9ɿ` vUB3V =nd/g < y@$8Ip͓'4Oh< yYSĦn ^Ծ*Y.v1gO9D>̍\煳 bU jd}0:Ys/>?vٖϾnӨDMB7"g^~,q9Кna釭D4&GODI~<|pWg짱OG{iO6;mhN۸o"6bJmNlgXzmGz| 9cVDé$8hU‛xX 2[{8>?9ihV6H/BIGp* 6{&ܒ άtغodߧqmd-'_a.ʪ' ݲ?`ҝQ9 3%3Jsr۰I{ݒ/.ZZyy8E1FbA!eГn|0{ΨphB!o*N[㦗>i41z6f}ҭ3^ g: TpppPU<f|KmN3[lcK(H#Miq}m0&<[kAuGyEu4T⌁V BxJJ;z0u͓,Kf?Ndx Aj'4mb[~KhK"%o4A$82>[-/藼Mt 1E(&CĀ %G&H;h)*o&O7R,Y5>?OU ]z‘TzKǑN^$8^`:&us!w%M}џ/W#qMBo߁=UKh9^J4i<ƎMt.[& 5sO#2;5 ?-$_6.`jy> v3%;LTت ԥ9r=IW}Qؾ0 Vi{;^&%R4ﻮ냯k緞$"+Hl0= #W+@9HCM }f|pPz8cwH^(QqˮoJfG#9zP}+-F$&ABwDo.O/W w:X#~V'5'VZ}Ms@P}+KrN$o 2IX;rt%C75ٖ I]m MZ8xC^C"˹$аՉ$g S֖z f jwއtn\Ro T!9X[qtO?RD1$8>;!i\gKĠؤ(gp *W-0Mda &Tm=V WUNVSADzscs~RծA:OO\jJK;Ux [8rw7 0 %Nep  h2*bl$8?p(s~+[mN bl9LQ,ݻa?j0;Zo+.5t@r&` a]~,ҙ|+`$\Oؠ' BĮ >R]x1n ՅN|o23*ܖ};t||d%{8Hq2L6rp1,2Z+k&#_%V8&j>'3Ni)6D"u-'*^w3!I*'GVAA5)Ę]vƜ$8WqcIp s|B>p+x!{@\#Ԕo3Z\0 8H&,\CF٧Z7 IDATp#5^IKP?Ocx$&*8_̡~t&ӅFʍ9?)̅ $kҀ{5$WmhT9_) eҀ ͞.H4Z1mc}lP'Qa?qzáZc^cv-OCX&!bkg95qB Mmܲ Sɸ{[* je:ԯ콓3ˍ!$rvG)Վ~93O윔g(x^ۊ0U{:J,MwDÌyHvdN̼|k:D$8Rrg:eq#Eg$56ɼ|%gGHp@utlɹdp^n!ebar4t/:T~:VFS ]Μ3MLl|v }l]uVQUclw5H3w椠׃[Px4ʜM$8㶜P?̩ki_H?tM<^ĭ)_li:$z6-9\| ף臊+xaYV o),ɸ_gq ^Ӻpe~IːIg?F[79˂^ ^ӄ^ʦ`Unww-tǯaK%/iER9U$`q ٰep#LPѰi2B\X>X 'IZWxQj*-]FnL%z@C$8vwQ'_VlG%#*7Dw WB+  r<`Z1v9βSsN35y+ ΰ( 7-p#gZ,Hp'L,{CkCI3E ko: sz}8׫YK,GjvyfP' }@mXѺрoʽ9l?ړƷ͡w EKw:_ZeCx%R$FN RrR@x Evbyʹ'] W˿72I^zX:u%yٺ}yR5z՛^fuuʼ{# 4FAxsi1a(#b=h$Ѱi^ e7;rBoW041^AfxYe =#.x3 U'-KTr^>xJ;$xajljVIpm1kU$*nD\˃{*'-ҹثBP_ M;),EHp4l>0-n%Q:C쫦ͦWܰ SJ׊hZJx(N Ã1ROhlpHZWF ֵF?vL4z.R\IX_6qYnl@Pw RkyP#ZYٟ5X]+JkjٷoG»vpl&g i wkr^q>?r%F :IpMs(Cu?𙟒x2b;BXqg@z;8w8w7,"$8`ʅ},5&Is&npP-ΝfR$8y2~n\sRg7*\K4̲7=܉ެQ>W8 `O.ה>?xTa|I$&Kion([;?Nt?X$2q}}5<ߎA {,P60%y뾾]D+c֛ĒQ #JM|.q/m<']ץVKTZIn+ /p-"I(iωTtlrȎPo cUV89Y[25e'f=E}3\MauxM+Grļ~zitRef7}R)?j/70EؖiԎ.#Uo-PEQ*#Ѷ7w0'/R N+ո ‹ 12`HUJٔ!cv^UIB[vCj`Zy)`YNM1bfsgO~?9)+)eS~.Q4NӧFO+T4Ӆ.X ѶrS~~=Q  m>+-"pݡ>2I85R*vFW$s6fFVzIp4l:&˜ß-Vԟi+9)'V.9'|%1nrUgwwZO]}Æ!Ę>S$j~5i=2wsl3|ٔW~ 46?UNiъhٷ`pNϽR~ƅ]fQ{O4k_o J]lc`ju/6KOv{`U1M/7Y>cɜ!=+zzXDLׇ'ׯqpOOZ+nR0nMTnG#Gf6 wN~*ttYi&[gp,U3Gr整E I=rmHpmJm󢓖9 wRM^o7~SCPozi;h LVS#W*,Ƀ 3EՕLL06]+U!;O}$86!>_DK@D'-<#7:[s]7R~jUu8,\jUoouW#l6BouNY÷zs#S/E9@z~>'bdVDtPb52IMRjSPcj~mRx[pMOT8VǓl(HpR6Tk17a_xg#C{=Ufy4=dӓ0_N5@I$82=0d7~W(XR dzK5B,ݶo'9)HlDigN*\- A.p]MkY̝#eLRDG6J,qd#lVwZ G4u1FHpypGײث_{soU=$“ܒΛ] ggo)%8i0GRNXWao7Gwo *7{;*j)'jX2o.uP3m׉享,~k٫}f =2OUpK.ϑXjYMA8z% cd[lC~ԺqB$8XwK`}7= 87,auKԛ<:go]{#P{ïͮXQMzh_8.%|gO̼@t utv^]K#$8^UGiըQ̲T]3Q^#|;zQ= C}7t]#O(o8-ܘ%f2f]} `z uF~͈dwS6}ZݧAjYSo3\U]uul>0n>S%by 8Ϧ~H'xJrt V~%^y:ӧUM+ |Y0q(5-AsHU@׭e7@ȟw/e-E$3StuR_> r-Uכ^=?ƅcyEG5 K\ԠO%g3yUWcVXm~}7R}߯޻/_vՊTnpظP̔8*V $8xӪgb=Κ+)\f&`U !' J!Xw5KDV|ZPE2 i_#M<Lb=ɚ7R*h&lT6.ěFOxxJ_&$¦Uk4x7k&Ap1خDM85oTlWg;>{=\hM˓Yٵ9‚ Qn:LCD9t cСtz_|}/DVQsmfSuF)*4=:7c4Q%_bci}hSlQm̔DEQu4~=~[IfJ"ѴX3bxUU{F VnB!ww&.ѴiM ,G$HH;}a3 n%FKQuU78$*ov gu4PBULgڑݘ߾M'q­$8^'c5= ?דJO_ u JN -h|ٯwH*Ivw3E  {ؚݘ͗C=G{ p=8SLQounzpQa$($3}}S |q1J2.~e;Cf(j6Q8tHӿ=H03,]r!.e!2M>=Dǩ-fC4~% G#ꏽҩѹI2P 6[Jso3+~ﻡKu`!8 Pƒ)V?`dBjeQ nڝuԡb?g-87G]b:ٯjMϊ3B|51>Q8 ƨ^O@$8():ΟW18kL6ֹ]хZ]?-GC;ՋX=k*ـIpuW2)5?T6f738C;Oxw[%`~H> `I+Hpp1q<(sXr l i dgOmlO&&$8BhH<8D+ꥠ0 hNx:behEkw]9As¼,ߛ*o`Q.27i=]ak1`lM\MUo  xZn)MI.GJytG)\a:q< ;FŸVP OjY-5Q|q06\$b̖Ʒ} n2ue,/+zՒ-=#6\*W!i3=(e,K%< E&N\U#6 S4%7qD鳬ٯ5f7*Ӓ WakiC#$8HbEy}wC|5}\ PdC`> LJvwwx(yN-oIgY71ڈ9xF)E]4EtQog6J]JE\ aI]ݞw m2ElwuႠV C 0[W,.ֺG5љ ' 6 [mv40n 5bx&Tꤦ@RюB(N&fB$8b(\FwK s/ܡ'N !(X'hX'<V_p$漈Jh)*lYkJQ)7Y1'pْ9/93EA3GAlKSQf1|D'HE&hAHPF` x Ms ݮɑYq!Duf>FSUEGz.sUd#\Bg`{W#β dHNF"931`0 xXAF$ aEFk*sęx'j/G"`0!8.v= _?УԪ}Vɘ6;GTpVK+#*>WF1DXMjaHNK al1s6\FiVғma:@6L.iѷpRY[KcKXn}ƴ :w1rD(0 DH) 鬱 <]FG+kp>zd fz7ŌfzHgLz}I f֓ꤺ \[|aq K9yHlb1f;L Al}EϘ4o]MUؤV5-ZV|D6\}zw (MJ{zKa'Mܣ¿&gvcRo&TcHp]g,'ǤMY5|?z&1] 3W-ҜKjм)#'6nf33\ 6UMK=NAa"  sUf3 mmji%ԬZP`G"zpgHp0o} |fs_#qp!WvpKGyeЃS 1H&$8W$hsXN1gtI; IDATiϑѪ 5VEK|{$ZlRضz$6z-6)l[=Mz& ǐ࠼1{iϑѪ 5TSK5)qSb­jg&LB&[+RMz^M V$ 0kkOWehQahQahQalHںF Z>ն֞Vۮ^[{jjZmzmST6cmCjZoZ#E ^GqB/{ ޥؒzZUOKB5>@UBfD3Tz93Tz9c‹8Zȟ^sA5^sD٬}?~qwx&8KzD =&+y4]5:?+2 U3UB3UBe7ms6ҋ6#e͛mINO}'Ә(/^'h+zx Z$H=%x! 4MHճլK~gEqBO6 ݸWr[Tw#y!9죂D~aƤFU7G&:)QQMDٯ3[5u{5O -to0jjU1=sf#[9ewn㾑sQ(e9cSVN赵u4持V[ Una5l &8# L\}ckmڇ[9@w"=' y{Dé$89vHpK&8a}_`M|wgK׻(4t KwF$8Xtx*ɍZo&9qwKΫji-EviUCOe;rY dΪ8Ko}^m&ͪ3vJx!X/hxgG4RAUncK-91w{lY.r>#7Ž{rW\zjGlչ P3ZuF4.Yw~;*ٓ+i\EJ֙4OzmN]&KzMwwoۍH@Yy N\J Iͯ>~V / 6.S,ev$|lp3ر"RG_$8GkI[TVwM+|쳒is)'j`it56i::jmjhU]4xp)|̲N'jhU6崸_ KT no7gNX`?7=W]%/t[ݡ-ƈ1zB/@nc|'\-zcU# sV ӵ`up>S28AZpoڝɻ!/z!]ڝq_}Ӓi0,x xx_Ym?Ҥ+8 _T͸7p}׬} o2xv+?v6~+> Vmܕq7e]PR+-\/(H/⫤o:ri*zHpW,J%Ј_XRKs|&OD_K}S<ܴJkE^A(w8Sdͣ<>v i5#}^Nئ|QbyƽwÕ~O fG֡ȞY,83`/YIpUJ̸e̲.֡GU%AVhLJ$8FlsFU̲GA%IShhuɒ_KS$렒b#YG[Z֠}ztGl|Yޓ~㧱L:(Z#)y-mLބhP%<ԐטW̃Ip4Av:[cu>KO;Z6LѠt D67fuC y瓙V`u. ,kUGhD6(x0 RX{g eӓ;m6ݬ$] $XX619Uビ[<l=~ri={9<\o  NBɎ\U~ jw,Pb5'{/rXĦ`.Mq:^q٥CU1CJ^?w7apBp8Rt+Y\9䖱do1 o[ͩ%v1M/ /vؒx`O5K[p%ӫ㇟-慸UPnQfRzyT&R*o$>-_h7; wiū~*d)geWSBAM;m-fY,83 2fIN=;^4䵂Hg:3V>Q.!P3<F6-!:Rt|üC(5'C 8j-id0)o/eM 7ݰ k4<>LL>%.d{7(m%"xHx!,Zڀ㷼E%ȪE)C GBeӰ NugxՉe0%A^ư0[h 0~ e:3_$쟙n5I1P\KA?+8?d8zpժl'(H =hue'E(?Ae/P1NP4zeS+h2י';^;Nr9, j(zek3Au9]mvwar, ΰi͎z6fIpАMMy܆MB_ڹ,o9޻ڣĻlĬy^60y|Yw0HpP]\8n.?Iʇ\[ [ +&t~kX@ 86e/sߍ?FUC@\zdy$ZpzSVd3)vky~ t56X#vNsw +5{Z^vSepBoӻdo}kRv<&oH7.KpH;:gÿ7uKz&T{{婥CZj_F.zM< RGl5{omcnrYK /- ]^^Hc) BS*Yz~Kˡyu%tЛ[ڱ^/!ѱ{xC/ޔw>Q(=z4$GobK =x 6WXwYl5ίrWϤ2f1[ =x [םЋ%kR,9GOɃk[O"џi2=S<]0;/\zCnc : ay)m۱ԮIuЛZ߀4z8gj*b㚔)Ջ**88S:@vl <^.^)vL7<~b֗ N3aebove%.-@UўIԖ[qnD͏>`->E~Ȓ[u źwt+_ ^^ozB9o5d'ˮ> |o$ѱK+[Pȫ\zx<$!pL,'T:OOWn85rxtS Wf7š[ k^$N;Ft$]xj`?/vW9zp?NGnt䠧=Ru.H\z㻍)(hEՏ٭Y05N5ua(d3 ƪ5ZgU m _h~Etetٍ M+7~KX=. =`qj7xdK8H`찰< {̅4` c$8:6ΈjWק )W[:0/y V\-/uBWtOl=$8We>!n ؎;M_<*0i,x^ezO@ĵ.r0n ?\!~n= n5 LyhIewV[l06JjH c|hw懣:3q3KU_vVO@u+ãyy\F~ׅv0Ц箾C#[^8v'`y$zcP0 XeMw\F~ׅv0GzQ}ߥsW#騾_vO798-k";\Gz%GU{aK'$8eQ]\F,uZOكYJW= =k"UlpIDATGz@z.2eY3 g3l$0D_ύʛOv$Nk8=[JU ?5{#L?%}1%_>S:aūM׍ۼ$X-LsEH1jvcrBz/\훦SZQy7tb: ޒZ| А 0\Ñ,q~6p3ӈ۴&%5tb: [-5ԃڂ\5KDXYzO^;<MJVdP*xkKDxכz%J&͗O5~/)zIAśBO"$ᳩ[}PmXV#yћeu[j3THxkHpІm5gok4F_kbBgb6IpЌMG*5X6/!`C(@6xP6>PpՅܼ4"(AP^.*K LT_wp!V|WQՓ_D$ݪAƯ|G 4 x$9pd'"j&SKlͪp 8KyfKz"j&S#V|!v7.{>*ZVop ̀!z/&Ae.&)XHU[Vq. C" BTfe,3Vj7X=22;=0+L.x( j2ue,$Vϥ5oV.]7 ]/2%^.x. j2uJy?nCUu!I%[5DGB߬b]8 x_ytzA<lgaeچ,.v\H.]<[pľl}3Ӹ%ۭn9n\ay ɠ 4jk}}/W|>߉y c[4nIp.doݸ.p^4jk}}祂}h`4@MKН)}`k IpvdovcHMz8xsƜGU&xL9_f2}pvp G퉍5݆#h+Q6'&my+l.`JƫԞؘ8Pnr4f]͟?䆋<˘! jӹS6JW [04%NeJ]Q\:ai?#ӒTs}lSت"Dj$}$pD^Tӈ> "g(YlU{bcDdxrO\z@7VA$8A2>rq}JOHD&0W#_Rc$ D;>ЄބnO>>z~ Z) a̲0ι[hݼ҆F4b?8)=`( YVs!nb(N q" ;އ0 t)MIk]Ν@>pվ)NDՕe6eן0lOB6WY`b/KpyW}`/pPL]ΙeK8c%OԇqZɟ5рFuXnd4mLk+~NP߯NNLj R)GzjW`'ٲ,B ǘ_(#vA8EJ$=~-ըǒ j7\Vb;Hpp@,%2M̓o_&=d/:m΋؇cUп=&B %Iz1s4ud/L͓~.zxxnijP~bw-^q2t}w˥i HpPR"F<_Bצ$IξơaVȚϗʻx%y| 쳄W&3Kڸj_gg]1fU^F.Ve3A%$8(vV:N_BoSZD ~ Mj%A%*@$8Ipݓ'tOJ=^N|Vw,˕RU V =zKzI.}>|韹_q2n4q~zsW>`9MܨiF.JΖI6}k_&f<}G_yw.5>h)#N)#K<=z߹̓/K<=߻cRҵ[z|57<}Z/珟/mjHׄ^rB/Gq #x5^97_~Ꮡ+$8+$8+$ݛŏOJj5%5/1z5UB*G ,QcyaʿK &OMMm%8Jq F*8xCZ홲޹iYR)OӃο4>3hIt;O+3hIt;OhRɺִ#zͶfG-YQlmz\x)YpЃ[=b^J}%/W`~ =v=N豃qB+XݳD= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {LIENDB`SuiteSparse/SSMULT/Results/CoreDuo_MS_vc2005.png0000644001170100242450000010644510625644052020121 0ustar davisfacPNG  IHDR) pHYs+tIME!-qSh"tEXtCreation Time25-May-2007 16:33:44mc$tEXtSoftwareMATLAB, The Mathworks, Inc.R IDATx*P5Ώx"7Zuk&g'1؂m0 @{GIpՓ'TOP= z@$8IpՓ'TOP= z@$8IpՓ'TOP= z@$8IpՓ'TOP= z@$8IpՓ'TOP= z\}9Ŧn ^]Ծ:}^Xnv%"fAn~\ׅ fE *j e}0{OsіGc[(I ]<ؾc a\e_aLjw 9nV鏜DL}٪]/2K~ऩOovҀǷO +¦&^Aj,mL XKDn-wCI!w9;Sѫ1w6G?E8Y=9%Ps7n㶑Plsb9jsЫk?h(".%A;J L,'qENgLmckmچk@7Sz|J!.hKIpp1vH_H&8a~}kxomd-'߉pn.UHOzdoxgҝQ8 3%^3?Ksq۰Iwݒ/nZZy{)p3FbA!*' =73g(pɄ]^*.[㦏>6YEYu|qQK^i;a .NO_rl1R3~~̖mvN4ٔڷmnɓһV۟$.ϖYpPp^P bUfD#lu{߈w*dK.p; Cjg P= ^2o;ْ STOP= zp?#B!`mzܥ!B!`IJM/ILޡ =puB =xDۡ׀=sJT}ɵZɦSo|E[]YqwZNU`]'2"'2 U6{G8ӌՃ &LJ6+WÉN=\:LJ6F5s=Qo 5 雍x+rf2(8Ǚ%>ŬN,}9y#L40ţY3UaH%/ qSgG~ڢ0kp|rjݦ$ʼn.vٍԤ4똌{!pV9F6-&w/sOV숦?Ca߼0н KɸP( *o8 Η=ܽ# xަ\œ;wwrwtUx ^,c'Бg+kҦ\bxnq[7  /eএ&GM]I[D_9Ian<_?n9y|qĥnqInʦ5̯Ț> ՖHҰDp0t5;7/^ :\wqrO[}hDž™[p%6kؒGP?/>},=u?! x>&'_c:R'mN֘!jSgl0#%Gnv0Cl"j:p6C$8ӝknn!?.J\:NwWCf̳n6Uђv3Cl%[>k&RX/ ..{1$ڼzjhތI"s> >&P߉3C] G[մ~w8l2Ehb.[:tW_ccʴ{;)zޗnFy=áuu]0xG./Zk)jZu5e>*#v}XwYs4=p]CO.L 6[ /TQ~GNQ z]`co:V-tf}w6i| l_7>x}lESV7:Kdnh$9<5e''u穓|@X1X5S;lnE*9I77nɕ>\=ଧNj_QrGs'1/ |΢Xf_^uꑁw:lWK[jd; 7j#Y&VIpk%>L<[8BPaf{55.7΃ĚY-q }+ yu`ýH/!L25:X+q!e d<=:2˙˃[`瑁5sW+G)ǻb^~sAְt Ig覻TZHDq"j Gjjs3|[$:7 v#vוhՔ>Q+ŸG!~xlەtݕYR^KG}N[a7}~FA1g9]wZoynYx%g2N-Yol;ZLat9?ϘoՏnaiHYJKGW+Ipд{%]O7 8XtV]Ȧ{#\">V3AmQXH鉁SZtv׫nL$8hW1]C=A!bG?K[.!puHB~ 3grziBՋXb~m_WhHpАI_U`w^c\e>dqI>8罏h*߉Q9fʶ33 6GO 8L_2JE4Za=[.o.tK(鏓p*i[6PXZ*8"Ȯ~/wqi|6Y3>=D7dVGcRM\ei>=TS=st_WIwK&VTfǴq!KZf/>#ݯ(mW]`u\㉆ŮMtdGKcTͬW?>fjwS鈗G8̨d*,[UQ of )Lnȿ]rʫ Pt"G1u<~VWa9aKK 4`%Dg>G`G<6Ҏ!5>:ityfR\ G nP6^hum&ZH3}ͤ;#ec*#&(7$8Y{NYO4<Ծ!|ҺpqOYGK> mtLiX:kpPPzӆ'Gџ(tVZ\#OBxXM B{|v~I2Hwj]0DrmviKOg2!EapK2q4;%.lؙ.#0\]QC\̬JLJGKu ̩XꪸІP"T=܍;q_S.[(gvj:b_KoH5ZzPz<3&. ]`ٍ"r OP d7:8AEnBߨM^Vwdĥ;ĜrO-_|f˺Г֯UI_wN[/Փ]שnмC?11 ٛXQp}C4zk{ ۄV3P~au;9`aγG('Hwvط=ʕ֯U)u\h.x)9riE]eYM_J!E;#Mh~<E仇sORE8sjwJ0@K #5;(:J[vd+JM&v )>(s4y#W]6IGv#鮶RTUnymN)tv=E̫f'?am땚Q;xXntLwn[P n*J>҈\Dv賫?Gn1sN)ܧC֭1I]$8(H,<,)l\/}(>L`H|Ds;q85w}'Fٕ歘<[<5G|NͲ_n59bgR ST(H,,kz|i3mtċQJ6ԥYy6VEJK 'mkUGG9z`DsȻiRݙ4[ \dG|NܾE[pd `=9ٖ>O6B3YзϪ:HFԏyR9Ѹ XzUo_jS4j.jwLW]\^tOY-9Df2ZzG:5[Lj[^uKHppɎ5|+ol_V˶+yңR[]\\hcENmƳqn;X0VYqP}XK0H|%vJΚ=Y$88 wB&% 4&4sKg7.}֎v*L3*Yo+zF~m`mzK{0ѝ:; 1L]j5f~Hw}AKt}0Ѵ## ~OxÊJ.^Fz{(`S-X$8^t07󞼲<=#sy#U^%9hl~0~G.%VA,˯n>ثG=2'D̍}FECOd~i_jCzxv"9g261}UXltdЂMGkJ {tߴs0Ҏ(Kk{;nnj|\WБY Z=-=Am~SpY&֤T- u7)H!քnI۽^ۭ~wU$.#yyr*1H4UxhG*LK5^xrM,m~{KCΎRsC/+ŖGdFu G=~]g) "lKX%zcҌ5tSCO&o.2qjKõ`.{Ns5oHTÞpyQ帨O'F8҇=+i8YiU]O$8*6?;M_ɫIǎNꏄsꗆ-)ϟN+nɜxq9^9_r:ު* qWf`)u(Nn$nl{t%Ŏ*GŮؕ3ɫbs9rZܓ1&/n;ؚf*86 c*Jms\h`%ZFnXѹ5{) 6‰kwjn48Vgk~P|u^4xqNAt9pgm<ߤBd ;]f5 =$߬{X`2=z5g/~Pn4fkǧa*8,Z1h]sy%LE7 -vng}ͯͱc@hC! sp@5 /OOx[:ܮ-| J>vQ륃t.#LGm9!E x|N :Ǝ}~7r>7<,lS}|APoXsNbrƇE'`RF]`~$&%t`l83s}|VԼ(#x[/qk|F7~òG3F2n.)ک ט2Ov,Fy[>Yx>9͕@^L'~0|?'_lYy7wfMp .P/ K?M^tIF]^<1vpBY[iµ(Csu2ʾ=:X oju'1k[O =VKhg@>?5 o8 ^7ߡ/\>'|MIц[*:=?b*%AI>=SN<Ǒxa6ĄI3v* m=RJOzԜfoí0e?']z}-#.^^IpTl`Ww9?efpCo"$88x=eߓ`7gI]NNo&5ެ_1u]Hm$8K[s뿧p\zi8 \DoxVXqp.~H liX]V`. #7 5ŏK[ag$8qzW˹FZzN@&n`q~Tqjd0ˍdGG,*8krr Af#&SWx) Fn.bv@T4M5Myn`D]*{a{͐xèH5Sϒx.x}. xMgv)*@$8IpՓ'TOP= z@$8IpՓ'TOP= z@$8IpՓ'TOP= z@$8IpՓ'TOnЃG=x%A!B!Ip00 7|C*I]+&+&+& nl9z\AahnP%k`&Nq =*$m^tG=xЃG=`STIpՓ"@\dKL^ {{Oiϑ\Ѫ4i^9\J[U&Wc¶$qЫIaiDؤm4I5CMvg?Ҟ# U6iҼzV&*Uz56)\Yy}ߏn-zi⎋4E^jBiM{!.s]Iw\Az\Az\ Ay<ޘ_>K.U;>+!*|]EmjUiԪҶ(W/UmQB+Hp3EP= z@$8IpՓۏF~ǝ؉\>ϥ(BO'xzO70 NXIS_UqBoԻ9NxzW5 oSN*8IpP,m2mG6wR6/[h3rޞY+$$_үL}#RBo+=.%У"PGZפ+٢ˌ>>/'[ΗG[nƧmz'=B̈́^gOi{3h|S/8 pm\Ӟ5?J'KN翋M-zEmj,BoSKRAkXEvF%N$>7zB Gi$8hФwYKNjj֍F%N'zBG=GLQ)j]  /zB{ =ބУ*8_3p .2\)7Jqk 2 =N'r/8i W9K`O?z4Ɵ^рzǫo! zz}kw<(DM@n"g^v*rx 0 cR}#@Tppq{4zHdԤ&bV'6~i $]B'MM|J~#7f7D2V|)WTM"_? =; lU0EW"&g&2'hp\k[>SZD&H[U#܂ 0TpK,D{9$8(Ƒ%kD?vh#*Db /xT~0kwm]Zg7r 1A|ESsm{I3\2ぽchSf+ޓ}6+ava\Pĥt+ieXYxc08Gb2?p1Y1po$›3_{XogST(R01PɷkK} Dže" H?;ҀѐthX[WOON^_cs2KŪ3W}WO-nz`Ax>8Tm//;y]WpBWNٝJm̷=yn6dȸ5tO[mjqVW\C«bmˮ58SWrE?F2U]F]xLܙ7n5$8ɶARx mV3cI;*֎}?es ޜ݈f'ƭ2dfR:BK/v/9ji9_6~Z.]܁#&}jqu,!g?!\o:D!2+HpݾϚPX3#OSfg6m81}0S'D)Ǐ2NM2/Չ晋t^cՓOgM@s ۍr=^񹧩g0G{UWVuܞ+ )~>rb_yy]|БV=q⩊%v:u"#iGq{܉KPblZ .v}K~7#QLŒGvйʶ9w<4z(iXH_`<߾`2$,HKG`h:v{[q_sXn`9?rNc-)*cOEN&TR*1WcзTO{5bpEVw;uZ s=35'=?O>tY>`^rR'0ZҖvDN9puS9ȶ+80a1稙F,|9hٱC(9PTc8xkΗH!;Rwjy\V3%8)*-2P)N;"/TnjФ:w~tm׸bAdNq[b% C+POlQ9%%ܓv5nif+6,-5c1 ܓGhGc펜X=:S }Fe#(#=Tkt`mj:,8:?p3ʣ.=gdiՙ?wcO$?{FNFvzs6pgsf><2{bW>?}sT8ki纤Je/w^W7`ld%<.,axpR]{G R򖿴}1XٍcSNsپ&xcܓ\qTJkXK(quld2GL]9}թRJ>qػ|ճl#pD}IuL{P}HpTy'oxe][))R'X¿94QB&4<빾#{dOrJt1+Oȁ$8ިȥqG-?\֩cO2tlWI@;:!Yݛ\P+AS;HO׵1QQ%.y͍Bdi+xKg#suA8Lz8Ci.>qgJ[?|O?-;q%.F~9cmC'cõd&/#skG/ݞjuMDAfEz'~ +".7F~34lϾ<:JbD&(>wa7W|O7yRa:%õpŎ,t IOG5S(XҩDSeSeR󯂸bgXs5i˹cL?_=^뾍WmK>[) 8pڳTS: ˚o8gz6?#&?RID~lj!!I㱯#U"KW+M|'6f)Y7SvA3EN)dU>'=)`yr-mjXqӴI>7ιqhLcEvghWIvi3Sg$8dҪ IDATUcia}ʠ?' A/[]QN~eivA// QAy3Vk^90yb< 8!tZVQ[TxA714醮o?1t96r~G,G;r1Udx p60S2kW9]DGNں*aJ矓 BQrmppVe*s 8WyȰ~)g\7#}B?LB|w߃ G _'q /Qm^i1 S\eמpht\A#0ٶ:l}BI;r>6qj%&R0E.h帹X^i>/1 ^왵=_aG7 {эᄉɏ^-;#P٬ {_az%$8NWbNc6*RĔ֡9)Ԑ.).HkaԽ=]׽/u۽PQ ST`Idt$|-cbs Fx/c/^vrMGgc-`0[v”C;WzJl7?}?YnskP'VWq/~ѧtlKn+ҕJ󫓜һn0YdvytSLv+A錹;7…S[od%~}W'Ok-{Jx֝!- UUBvLx[i˭c,ݩ+̔Y]U ǦCh[ڛl7o8ӝ͏Z)Ϳeq_w}.ݓ2+ _ doFlLnX)!^=P\⭖.L{Nj-w,?_ɂmw㳳S?2ysWP-,cǷT<>a?82&H\^4p8};l{mxM(bw$rƭ9BBW5 Z܍wƒA]YTJt]:i/_-x@1}`ƼS7Otv63,^{}qZߑ(թ۞/so%9a* |(߁]n| >^.1&Ip@u+CGJ(0rf(EnΞ[vl͆a0^Z?=O -(bΜ4Pve}uxa^uߑuZ_1Ittƥְ $DXퟛ~l%AL&Y=i/Bsےó>e^$r]^te ,xu7jµ5OrNv) N|OF?їO_5ANJ7nmC1X2d-vo%aE w\$R#+]FF"5z>+ѦKM[$8CdG˛2>X͏)I~WZW^~cD(^鏤.ʜOX*:wUt^+N9'?a8qzK40~p;[~08m٢ k4i{w F7[OZ4I98p1y#՞\n}O|h Nz_"߰onh_0J[ڭ7d|z-nr}wm)F:x@+>yozi)+v}|3vƏ Yp} ֘$8*6_ d`PN3ߎ"Cu\׭_5̯hUQ[~ɘo'1e%zY~0XS/ٌ#Ǻ:oNWd ]승ё٤cuckc fַs$.(Ci$89"IJ؟~n?}=7{Y1 7cr."gKkL8~L6In* Ol]kUȱnXy*-{s,} ULd:Tz"d~*}-EяדF}^#_mbxsy]E]^*5z{!N(J3Ů?+tw ÿcaX줢İ5ƽM}o&[VDԳކC$Z^Oi{|q%ցC$8*l #eԉy4MT_=c\Zg.M/6=<zlqlrj6㓤y\O ;ƃGYC6ӜzcG"O ~|Īޡ9i/+:|y1l~_r8Vv.K\"[O 'u+T_wx?&ɑC`$X"7w}NiyzϘxS'WO>z2= zz (Z62czPƒ֓??=ec))^҆I, rjvq~҅K'XwmtQGя{9&RZk/ CFvF 1luQ_MXD|,!WtqAzL^-^/P[ >LQid6#ya%&N}.1rJ/YiUҳu뺟>/C{*K͞0)9T;뻅ǣbjخVSap럦KTp& <^mkO_?o!*)yádO7p#…u!u":{/?sCq?!\}Y7ږ͝T:ʀ7<}~Sn-G- ]19%t?|;[rQZO~bٍu /ސiS)ݞ9Z=]Fl LVsUI6 !Q+zɼʧqD_0tyV^/_#ۂbiO]Xt{cZ'Ux?꿗CyΏE}jv#jU\E *8$8܇~յqH\S?Q'PXߛ$ɪyNqW8tvc㘿lB;-od?/ ;w̉&N*+.^3^5x$rks'ùH/=X_[XxgS #ƭLǃΥ^o^?x1 ,M!yl:1m%qrz K- zvW^41<*^7;%\au!d4$A|^o<`ILHpTl|.vbOF9Tڛ8BmH?FgA03/ ^zWmE#11^gAY$Amn42t(TXw6vA?3.3cY` ᅮ ÿ%/Ln2|qUjj}2} }^veQL ݱ/,yCb~QTK2˯r,)>QqB?%Dm7{;qүռzhT3`Nn7)|r"C1)p"1oh|FlrfxQ;C/zؽ)myK0Eb̧.γǓCDfR>)9p=ILuTpz{|פP3Xsw}7c/xwg4Dbfc3$/ܮndx6,=yo#|mX"YkVL-]QOT1I 7v="-3a[\] gjtǪɋgb%ēW9N=Cy+_=ɑӌ3So}@<A ! IL#oǙ og {}w}.N]>$.Fj\B#Hҳ$G*Uڦ\F[x  _:sə2w}lM@ba`W~ȿZ{"LL,?`$ai7CSԝNfٵТ}YdNfI/03y1;IpK~/1uK|7ʉH r2 CzTzFk:yc58nMDu }냝dFhtvPeA.:bM{!Y5 #n Nt ,&/TpλvK#uGAZ߸lQn y[*C1fKw&GoNR{z*8x+B/\Nth<屋G`yh/ڿ>/wJ?ω30,/?lp{ #ЋzrE^v͸(VМEɵdܳ-as(v¿e,</stF7;ȝaf<%Z2> Vs`zвɋJwIpYt&dx~o4tƷwikwTzq)=1'J4ŒUC&5 pMhNCK6HPB/xM^*zܖd O^@n%G[o(#4ik ^ Giw$Uz7ܺѯ@бkif\Qȡ]aUۨBBevߖD=7i$}WxIhQ<z@OlЃj TKKHpTl~{n,L+}NJE5?5F㮭S`dNJc Pt?ə.TB zaj)h{dB=߽cw]crS}O,br 4R/}&Fzx }.@= n˦/\8 ]?iB{*VE;ɕ0T,'wg>d8+2[WV|f0t}720*z!BJ}ƒOt$S/kX}FFt^x ;עO^pzK_hO7$] ÿ|=Z(iWn_:E jWN^SVIpm,?zyO&E_Ž 6~ClkzI(]cEh)*݄uR9_,M/ KPBBK\+;IpS;Eh"Y 'g(_"Ng&EKf3gY11?+#@J|UOvBJSxz6ҳT[F_Gq^=_'LψkA U^xVl2ix3 .䢤*TzD\4l! #NeVy@ӓf~pki<&^"EG{|ꤸVžkK$8:l]֡NӍ[Luݕ\Hв%:9I#ןB*8j~]\dZlfQfc^cR+@V3<W0"<,Jf2P yN|$&VGSPH9\y"Q9ƦyY$8^ʹ,x uRurv[3:>o\V'6"8#$<#>\VKʁr8A&sYDN7+n&sY $8p.8fb&Dx11dTMeОĭz ι,*'ReВnQ@$8IpՓ'TOP=A}ðx5[Ip' S¤F")*9 "0GHps KY>P B 4ڠ(Q>STy p: VLQ.7&5>uadp |O "Փ'TO >rgJ#A\j Wxk(k7B:(P= zF[GHp+qE bO^CQ'TOq.BoS2["X%65/%BUBoS2["(cn[s48k#k#k#x! 4OH_?gY:]ҺtB:-+N'ҺtB:-+"T&;ϩ~AnߥuՄ^W:o#2y՟[ig |R)c5fl|KM]ZWr14O͗Tlj|KMzH͗TE\rj{,͑6}]^ƟO}]^ƟO}]^ƟO}]zT#c9d; J J J =>l@TpՓ'TOP= z@$8IpՓ_ IDAT'JٷSl_EW饋fW9[r.jawnu]8 RnV@@=Z0 97|di?׎my;vQD܀ E#;μQU&~aƤFQ7|G*>h `ɨIMdǙ;NmH,3 NFnj' x|İ*lj >К/a鏵D4&{q89ԟOK$q=e/~Xjs^Z۳3X9w6n9M8 6'3< 6#=\1Ъ+R*M-߽rrWtV_Pm.6ڦm (?⢁V+hwcd3+.aٷ67FVrm,\G6w&,>c]547j |-fK7m$ rz#;x¹ WLXE_9";nkۼU4UWlWon]Ad_赽hx#VBn%ǖ^-91wwl, mQz 9H#Mi}sr ^Kc/nh+Ϧ /;wuаcDBkmpw_|aUbLg>Gvݑ.7Z >;CVׄ^ʾڎG/Iњݥ =5F] Gah8/(VۡSTSqdu"&uV9{V}Gc=ayaBN4w T=wg?zw*I;N^}]UBN4nN)zCmbO}v웶"lGKR}[Ⱥ:f|}?n̎.āoǰm:|a+"^KðSreت62}lr|\]N9c9- ت ɦ&mEV{, Ȼ"[UTS0DfEmQ[UEr GNz`K%-pV/4‹>7lƒErDliVGĘuE' YӰ _> DmjR 7r(f'$}ho"k5VO;Ǭ!vyBK., Xzx՛8jޑC^nlS?tNZKqNiҾVT0u4`xdc񇭎Ыǻ+ƣu7Yw$Iq&h:X4ele-a;4`n)fRx)W8 wYÅ7{Dq*ڨ7qQl햣*P3+Hm" (뮙T* p0.:$ 'walYL>E$M8{(l$8U]Éˬ{0@RRͦ@轓"i1ƇHpdvTXcP{q'uxVl4 |E*pZU +. Iĝ`یxڱ }!s\&o׿jsQh!Gad1a/˥et*>?]8p10%wlro!0ݧ8_aHG"Y N|6ǡ)0 Oͬj}ǐ2:i$C1 . :A%Ҏ)%WcVH\&DsCR5a`J;¡ wji jjgIKn?f`eA\5ПAf`acNg JO}/=PkYM$8Kҩ0tZb^`Y I:c ZMuwqp]CV` zYp3IV9HtLIF6Ip@4株r<H(2^Ue*$-(2ܻ ݔn\p 4n/=w(ۣ-|(H0xFcoNcL\-h'67K#W 4bU]|MʔǃVofbb 7HppR-o5F)#.s_`fa!97Ǎۀ ,Y&O# ֪nj}A|7ϧ)m 3odա` ie#<qc^4zr)i6(> ~gSLVU.Ov0p2Ϙ7MۙsRrZR)q9l5OiSt񸂓jn9cv47 F;^3L0G(Ka&CX4;GRZo:]dy=3V}ӲoNƲkV?^.9@Y$=0} -(հ[]7,0wo8GA^ A jN9fLhoj=-!ٜg39[xuBuO5c/W17K7#7<ry gk+ODR㔉{%zZm.?YᢕS,Zϖ3<G^ad:,>ubڪJ(<;Pny,M7lA.L/pJshwYb0+m;!p[- )/;Utc nn;MVcXQOvԛ$C) ThRFif$8:{Gkj>>w7Κz'\شz'KP0EBl)[k^xnq/(ȜڡwAI [ ࠢVј`RTdT8Gisi9#N!c\Vp7 Ԙt h$uݧ*Iptg {¸wėW 4hU5Qoj Zު xYQ2Yٞ[C<o4^G6j*6 ^qCoitu~ZǠoM^MzTҺgz6hGZeJWM㡷±FB/~x B)) lД=]qt)~~avU Ѓ=zSвz}o+2#]Бz@ f ~ݿ$%`0BHEn × Bc7t1C$^|^$Mcf6$8ة,; F# =żAwBϲFYީvb$m*Z(%Z =n۱U]"ւ5z;-Qj$A-.̀e Y rݢr9y ;Iptl9E%{CXnWɐ uz06COZ$ѷ+0KaDӃgg_ެZv@MFJx~=fpvU =xgCo5EQzk&k]]6bTφ;1Zw~NB3b[*p738(`nM[7!qffpP-U8wԂ=z{ux xZ'$ѷ+rЃwzBv@%*\t50[&Xѷ.Ma`;1ЃG~ǕW|+?ؤɽ.B{< eϧlD\-T-) ]Ȑl$I>GEqeҎkuzc7>v!RkohWͭgI@~ewjcqʱ̆h59g-6sr4e|an);Yx6Cm[|2i!fN+eoh4:f]y-3M7%&Y>//U^cyS-i(8XU<)JT3,F\lhB/S&ٜ1?jCn>~ayE"1qyT(=N%.sLG~m*e晧ߙiīys m$Jv(^֪sb\r*(=|q$gcƵS9 I32kIp0M|׀ ǝv%1Ӵqc[rȋ?c a ImsfiNHpԅ=6פpa?_/<-k#%yB{)&U>͉Ӝ$ fIs8Bn1>r(6VK:c*1\9xݗ(}o.ƴ&e)aSKBr,$ \T6*eƊ1&{g.kO1zWZJ%R yV_@=O}gn>..>seܧiAץ^mp!lPe5)pފC$Wr*_#Їy|7P_Yrv \@tܛE},VݩaSe%U4FVȓEDz)9CC7br},o-1f|kR`ndxyXT4Fcp"*P<6R.`ٖW|}`371I͋ >p.:,,/ YWr l,UR,zY6~N 9 Z^pbzaS.+C|iI\/1-9Pv&lW_%O0gݺ`osY,9@2.>Nͻ/`Hpp)ЍvFت[cFnO{^D mv%*Hfg)p an^ gGzJ5% sb0Xpԏ%Шxǫm>-(`V}/|ۜR 0ky 19@jО 'n s=:O"[a̖N̝9 M#ɑxƿ7&ܥN_o܍J/b2fKWo93z%o[WbhIpw7?nlKovV)!c `gׄ GNJ_8"sXmG .7m1aPrW²;d̖m6!2C塚d<%FzA]LggDG*W䪷ŠO9UU6!rBj\4H/ Ԍ{rgMzn΃Wg! 6IDATy:K_u;ī,c $Zj;\I'wvvJFUٖ%̪]6*>"$KCf.$4#:3qq(RsU-,Yη|.lgDP`72;%g9чgacO%Ԑ̽kI^u"HiE(w6)IS&=UM7Qtayٹ J4gas-z(n*·74lūH9Tv+~Z!YjPI.xųj͵SUvy3!-6vU xTCa47=K%x^էR'6݀NHpl?H2~si"UuS ea<ꜝ2/[HppF8%awV*sJ[f7zNf9;e_i-? :+/\D2@kF$8H91Yyw h3&4n197 mNLxvB@O2c2e q/Qp۽T+9"e484Š *7x J^*Vls4c7#tMY ` x= .Ϥ8uJH q_'%=;_I;Nq_S V\I~lcDNDbӿ$8.>"Ljpӿ|62Hpp\Ǜ>8e $8ضSݬW\*,: =+Xn`A+5(t9z# (thw`RG+1kG5X4Zޝw4X*EzX腋.~m~| JIHpV0> hxn-ky&pi y=f~R)R"yY-d7ueq^&= D{ISiKZ6У;$ЃGzDsYLm z?Sb;,Q>|Wp  aFˀ4@l2 t&T{|EʓSjHSV3?^6 ,[;Ew,[;Ez,[;EzÐ࠼DX?Y<9Q*^*T5B"-V$ <[r*K$z,lYHBo ࠰CLM       j0ߤkZy_k]筕eڥZyZk]ꭕcyR>5RK!(Nz'RaHp.M%h璴SvJdYZ F"g'R14 Bo"z#k B;>1F"[l}}>%bB/NQЋzT"Ip U6m~,L$";$Az  =jk+Fx;r`Y==s;wBZ~SjrwzJ%%N+JQ=KTIpݓ'tO= zxxoW+o/wz{zT%J%JJ& |~~~V?v5[ LOЛLOЛLOЛLO* {4gu]eOsqu7,F>|r2/2gʩH>|r2OB߄a' )$M>|r2OB{t`\T-kq{<y"Og%c OYx/uF&V=!V=!V=`-5s7M)5[JlQ9ץEw^{JH西Wʯ^{J38gk_L%z% =z{ܹWSj%53" =jz5CBXB6s牓W~K-,~N&z!z!z< ^gk,<,po*O#E *|HI"CKy2R!R$r8D'#%K)[r?=~-Y葨O2 =ɶ\f ,QG=xЃG=n&El]rZ|| =.zet{@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8Ipݓ'tO= {@$8QspIENDB`SuiteSparse/SSMULT/ssmult_demo.m0000644001170100242450000000060210707702576015520 0ustar davisfacfunction ssmult_demo %SSMULT_DEMO simple demo for ssmult. % % Example: % ssmult_demo % % See also ssmult, ssmult_unsorted, ssmultsym, sstest, sstest2. % Copyright 2007, Timothy A. Davis, University of Florida type ssmult_demo load west0479 A = west0479 ; B = sprand (A) ; C = A*B ; D = ssmult (A,B) ; err = norm (C-D,1) / norm (C,1) ; fprintf ('ssmult west0479 error: %g\n', err) ; SuiteSparse/SSMULT/ssmultsym.c0000644001170100242450000001111010630013635015211 0ustar davisfac/* ========================================================================== */ /* === ssmultsym ============================================================ */ /* ========================================================================== */ /* s = ssmultsym (A,B) computes nnz(A*B), and the flops and memory required to * compute it, where A and B are both sparse. Either A or B, or both, can be * complex. Memory usage includes C itself, and workspace. If C is m-by-n, * ssmultsym requires only 4*m bytes for 32-bit MATLAB, 8*m for 64-bit MATLAB. * * Copyright 2007, Timothy A. Davis, University of Florida. */ #include "ssmult.h" /* -------------------------------------------------------------------------- */ /* ssmultsym mexFunction */ /* -------------------------------------------------------------------------- */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double cnz, flops, mem, e, multadds ; Int *Ap, *Ai, *Bp, *Bi, *Flag ; Int Anrow, Ancol, Bnrow, Bncol, i, j, k, pb, pa, pbend, paend, mark, A_is_complex, B_is_complex, C_is_complex, pbstart, cjnz ; static const char *snames [ ] = { "nz", /* # of nonzeros in C=A*B */ "flops", /* flop count required to compute C=A*B */ "memory" /* memory requirement in bytes */ } ; /* ---------------------------------------------------------------------- */ /* get inputs and workspace */ /* ---------------------------------------------------------------------- */ if (nargin != 2 || nargout > 1) { mexErrMsgTxt ("Usage: s = ssmultsym (A,B)") ; } Ap = mxGetJc (pargin [0]) ; Ai = mxGetIr (pargin [0]) ; Anrow = mxGetM (pargin [0]) ; Ancol = mxGetN (pargin [0]) ; A_is_complex = mxIsComplex (pargin [0]) ; Bp = mxGetJc (pargin [1]) ; Bi = mxGetIr (pargin [1]) ; Bnrow = mxGetM (pargin [1]) ; Bncol = mxGetN (pargin [1]) ; B_is_complex = mxIsComplex (pargin [1]) ; if (Ancol != Bnrow || !mxIsSparse (pargin [0]) || !mxIsSparse (pargin [1])) { mexErrMsgTxt ("wrong dimensions, or A and B not sparse") ; } #ifndef MATLAB_6p1_OR_EARLIER if (!mxIsDouble (pargin [0]) || !mxIsDouble (pargin [1])) { mexErrMsgTxt ("A and B must be of class 'double'") ; } #endif Flag = mxCalloc (Anrow, sizeof (Int)) ; /* workspace */ /* ---------------------------------------------------------------------- */ /* compute # of nonzeros in result, flop count, and memory */ /* ---------------------------------------------------------------------- */ pb = 0 ; cnz = 0 ; multadds = 0 ; for (j = 0 ; j < Bncol ; j++) /* compute C(:,j) */ { mark = j+1 ; pbstart = Bp [j] ; pbend = Bp [j+1] ; cjnz = 0 ; for ( ; pb < pbend ; pb++) { k = Bi [pb] ; /* nonzero entry B(k,j) */ pa = Ap [k] ; paend = Ap [k+1] ; multadds += (paend - pa) ; /* one mult-add per entry in A(:,k) */ if (cjnz == Anrow) { /* C(:,j) is already completely dense; no need to scan A. * Continue scanning B(:,j) to compute flop count. */ continue ; } for ( ; pa < paend ; pa++) { i = Ai [pa] ; /* nonzero entry A(i,k) */ if (Flag [i] != mark) { /* C(i,j) is a new nonzero */ Flag [i] = mark ; /* mark i as appearing in C(:,j) */ cjnz++ ; } } } cnz += cjnz ; } C_is_complex = A_is_complex || B_is_complex ; e = (C_is_complex ? 2 : 1) ; mem = Anrow * sizeof (Int) /* Flag */ #ifndef UNSORTED /* the workspace W is not required if C is returned unsorted */ + e * Anrow * sizeof (double) /* W */ #endif + (Bncol+1) * sizeof (Int) /* Cp */ + cnz * sizeof (Int) /* Ci */ + e * cnz * sizeof (double) ; /* Cx and Cx */ if (A_is_complex) { if (B_is_complex) { /* all of C, A, and B are complex */ flops = 8 * multadds - 2 * cnz ; } else { /* C and A are complex, B is real */ flops = 4 * multadds - 2 * cnz ; } } else { if (B_is_complex) { /* C and B are complex, A is real */ flops = 4 * multadds - 2 * cnz ; } else { /* all of C, A, and B are real */ flops = 2 * multadds - cnz ; } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ pargout [0] = mxCreateStructMatrix (1, 1, 3, snames) ; mxSetFieldByNumber (pargout [0], 0, 0, mxCreateScalarDouble (cnz)) ; mxSetFieldByNumber (pargout [0], 0, 1, mxCreateScalarDouble (flops)) ; mxSetFieldByNumber (pargout [0], 0, 2, mxCreateScalarDouble (mem)) ; } SuiteSparse/SSMULT/ssmultsym.m0000644001170100242450000000232010625623527015241 0ustar davisfacfunction s = ssmultsym (A,B) %#ok %SSMULTSYM computes nnz(C), memory, and flops to compute C=A*B; A and B sparse. % s = ssmultsym (A,B) returns a struct s with the following fields: % % s.nz nnz (A*B), assuming no numerical cancelation % s.flops flops required to compute C=A*B % s.memory memory required to compute C=A*B, including C itself. % % Either A or B, or both, can be complex. Only matrices of class "double" are % supported. If i is the size of an integer (4 bytes on 32-bit MATLAB, 8 bytes % on 64-bit MATLAB) and x is the size of an entry (8 bytes if real, 16 if % complex), and [m n]=size(C), then the memory usage of SSMULT is % (i+x)*nnz(C) + i*(n+1) for C itself, and (i+x)*m for temporary workspace. % SSMULTSYM itself does not compute C, and uses only i*m workspace. % % Example: % load west0479 % A = west0479 ; % B = sprand (west0479) ; % C = A*B ; % D = ssmult (A,B) ; % C-D % ssmultsym (A,B) % nnz (C) % whos ('C') % [m n] = size (C) % mem = 12*nnz(C) + 4*(n+1) + (12*m) % assuming real, 32-bit MATLAB % % See also ssmult, mtimes. % Copyright 2007, Timothy A. Davis, University of Florida error ('ssmultsym mexFunction not found') ; SuiteSparse/SSMULT/ssmult_install.m0000644001170100242450000000470110712370230016226 0ustar davisfacfunction ssmult_install (dotests) %SSMULT_INSTALL compiles, installs, and tests ssmult. % Note that the "lcc" compiler provided with MATLAB for Windows can generate % slow code; use another compiler if possible. Your current directory must be % SSMULT for ssmult_install to work properly. If you use Linux/Unix/Mac, I % recommend that you use COPTIMFLAGS='-O3 -DNDEBUG' in your mexopts.sh file. % % Example: % ssmult_install % compile and install % ssmult_install (0) % just compile and install, do not test % % See also ssmult, ssmultsym, ssmult_unsorted, sstest, sstest2, mtimes. % Copyright 2007, Timothy A. Davis, University of Florida %------------------------------------------------------------------------------- % print an introduction %------------------------------------------------------------------------------- help ssmult help ssmult_install %------------------------------------------------------------------------------- % compile ssmult and add it to the path %------------------------------------------------------------------------------- d = '' ; if (~isempty (strfind (computer, '64'))) % 64-bit MATLAB d = ' -largeArrayDims -DIS64' ; end v = getversion ; if (v < 6.5) % mxIsDouble is false for a double sparse matrix in MATLAB 6.1 or earlier d = [d ' -DMATLAB_6p1_OR_EARLIER'] ; end cmd = sprintf ('mex -O%s ssmult.c', d) ; disp (cmd) ; eval (cmd) ; cmd = sprintf ('mex -O%s ssmultsym.c', d) ; disp (cmd) ; eval (cmd) ; cmd = sprintf ('mex -O%s -DUNSORTED ssmult.c -output ssmult_unsorted', d) ; disp (cmd) ; eval (cmd) ; addpath (pwd) ; fprintf ('\nssmult has been compiled, and the following directory has been\n') ; fprintf ('added to your MATLAB path. Use pathtool to add it permanently:\n') ; fprintf ('\n%s\n\n', pwd) ; fprintf ('If you cannot save your path with pathtool, add the following\n') ; fprintf ('to your MATLAB startup.m file (type "doc startup" for help):\n') ; fprintf ('\naddpath (''%s'') ;\n\n', pwd) ; %------------------------------------------------------------------------------- % test ssmult and ssmultsym %------------------------------------------------------------------------------- if (nargin < 1) dotests = 1 ; end if (dotests) ssmult_test ; end %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/SSMULT/README.txt0000644001170100242450000001044610711427455014507 0ustar davisfacSSMULT version 1.1.0, Nov 1, 2007. Distributed under the GNU GPL license (see below). Copyright (c) 2007, Timothy A. Davis, University of Florida. SSMULT is also available under other licenses; contact the author for details. http://www.cise.ufl.edu/research/sparse SSMULT is a MATLAB toolbox for multiplying two sparse matrices, C = A*B. It always uses less memory than the built-in C=A*B (in MATLAB 7.4 or earlier, at least). It is typically faster, particularly when A or B are complex. It is also much faster when A or B are diagonal or permutations of diagonal matrices. Requires MATLAB 6.1 or later (it may work on earlier versions; it has been tested on MATLAB 6.1, 6.5, 7.0.1, 7.0.4, 7.1, 7.2, 7.3, and 7.4). Works on 32-bit and 64-bit MATLAB. Either A or B, or both, can be complex. It should work in 64-bit Windows, but it has only been tested on Linux for the 64-bit case. Only "double" sparse matrices are supported. To compile, install, and test, type ssmult_install in the MATLAB command window. Then edit your path (with pathtool, or startup.m) to add the SSMULT directory to your MATLAB path. For more extensive tests (which require the UFget package) type sstest2 after installing SSMULT. For best performance, do not use the "lcc" compiler that ships with MATLAB 7.4 (or earlier) for Windows. Use another compiler instead. Type "mex -setup" or "doc mex" for more information. For Linux/Unix/Mac, edit your mexopts.sh file and use the option: COPTIMFLAGS='-O3 -DNDEBUG' Note that there is a workaround for a minor "gcc -O" bug (handling floating- point underflow) in ssmult_template.c. Use -DNO_GCC_BUG if this bug does not affect you, and you might slightly increase your performance. The Results directory contains the result of sstest on various platforms. The first three are all on the same laptop, an Intel Core Duo (2GHz, 2GB memory, 2MB of cache): CoreDuo_Linux.png MATLAB 7.4, Intel Core Duo, Linux, gcc v4.1, -O3 CoreDuo_MS_lcc.png MATLAB 7.4, same laptop as above, lcc compiler. CoreDuo_MS_vc2005.png MATLAB 7.4, same laptop, MS VC++ 2005 compiler. Opteron64_Linux.png MATLAB 7.3, AMD Opteron (64-bit) Pentium4M_Linux.png MATLAB 7.3, Pentium 4M, Linux, gcc version 4.1, -O3 These results show that ssmult is always faster for the matrices in this test, when using gcc -O3 in Linux. Comparing the CoreDuo_*.png results, you can see that lcc generates very slow code; these results are on the same laptop. If you see that ssmult is slower than C=A*B in sstest, then check your compiler and its optimization options. In particular, "lcc" as the default compiler used by the "mex" function in MATLAB on Windows will lead to poor performance. In particular, Microsoft provides Visual C++ 2005 Express Edition for free. Intel's compiler also generates high-quality code. If you do not have a C compiler for Windows (other than "lcc" provided with MATLAB) do the following. Download and install the following from www.microsoft.com: Microsoft Visual C++ 2005 Express Edition Microsoft Platform SDK (Windows Server 2003) Next, install the compiler for use in the MATLAB "mex" command: Right click My Computer and select Properties. Click the Advanced tab. Click the Environment Variables button. Create a new environment variable called MSSdk and set its value to the path to the Microsoft Platform SDK. The default location is C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\ In MATLAB, type the command "mex -setup". Select the Microsoft Visual C++ 2005 Express Edition compiler. -------------------------------------------------------------------------------- SSMULT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. SSMULT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/SSMULT/gpl.txt0000644001170100242450000004313310625564151014332 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/SSMULT/ssmult_test.m0000644001170100242450000000563310707702332015552 0ustar davisfacfunction ssmult_test %SSMULT_TEST tests ssmult, ssmultsym (sparse times sparse matrix multiply) % % Example: % ssmult_test % % See also ssmult, ssmult_unsorted, ssmultsym, sstest, sstest2. % Copyright 2007, Timothy A. Davis, University of Florida fprintf ('Please wait while your new ssmult function is tested ...\n') ; ssmult_demo ; fprintf ('\ntesting large matrices (may fail if you are low on memory):\n') rand ('state', 0) ; n = 10000 ; A = sprand (n, n, 0.01) ; B = sprand (n, n, 0.001) ; test_large (A,B) ; msg = { 'real', 'complex' } ; % all of these calls to ssmult should fail: fprintf ('\ntesting error handling (the errors below are expected):\n') ; A = { 3, 'gunk', sparse(1), sparse(1), sparse(rand(3,2)) } ; B = { 4, 0 , 5, msg, sparse(rand(3,4)) } ; for k = 1:length(A) try % the following statement is supposed to fail C = ssmult (A {k}, B {k}) ; %#ok error ('test failed\n') ; catch disp (lasterr) ; end end fprintf ('error handling tests: ok.\n') ; % err should be zero: rand ('state', 0) for Acomplex = 0:1 for Bcomplex = 0:1 err = 0 ; fprintf ('\ntesting C = A*B where A is %s, B is %s\n', ... msg {Acomplex+1}, msg {Bcomplex+1}) ; for m = [ 0:30 100 ] fprintf ('.') ; for n = [ 0:30 100 ] for k = [ 0:30 100 ] A = sprand (m,k,0.1) ; if (Acomplex) A = A + 1i*sprand (A) ; end B = sprand (k,n,0.1) ; if (Bcomplex) B = B + 1i*sprand (B) ; end C = A*B ; D = ssmult (A,B) ; s = ssmultsym (A,B) ; err = max (err, norm (C-D,1)) ; err = max (err, nnz (C-D)) ; err = max (err, isreal (D) ~= (norm (imag (D), 1) == 0)) ; err = max (err, s.nz > nnz (C)) ; [i j x] = find (D) ; %#ok if (~isempty (x)) err = max (err, any (x == 0)) ; end end end end fprintf (' maximum error: %g\n', err) ; end end sstest ; fprintf ('\nSSMULT tests complete.\n') ; %------------------------------------------------------------------------------- function test_large (A,B) % test large matrices n = size (A,1) ; fprintf ('dimension %d nnz(A): %d nnz(B): %d\n', n, nnz (A), nnz (B)) ; c = ssmultsym (A,B) ; fprintf ('nnz(C): %d flops: %g memory: %g MB\n', ... c.nz, c.flops, c.memory/2^20) ; try % warmup for accurate timings C = A*B ; %#ok D = ssmult (A,B) ; %#ok E = ssmult_unsorted (A,B) ; %#ok tic ; C = A*B ; t1 = toc ; tic ; D = ssmult (A,B) ; t2 = toc ; tic ; E = ssmult_unsorted (A,B) ; t3 = toc ; E = E'' ; % sort E, to be safe ... fprintf ('MATLAB time: %g\n', t1) ; err = norm (C-D,1) ; fprintf ('SSMULT time: %g err: %g\n', t2, err) ; err = norm (C-E,1) ; fprintf ('SSMULT_UNSORTED time: %g err: %g\n', t3, err) ; catch disp (lasterr) fprintf ('tests with large random matrices failed ...\n') ; end clear C D E SuiteSparse/SSMULT/ssmult.c0000644001170100242450000003177410630013635014502 0ustar davisfac/* ========================================================================== */ /* === ssmult =============================================================== */ /* ========================================================================== */ /* C = ssmult (A,B) multiplies two sparse matrices A and B, in MATLAB. Either * A or B, or both, can be complex. C is returned as a proper MATLAB sparse * matrix, with sorted row indices and no explicit zero entries. If A or B are * complex, but the imaginary part of C is computed to be zero, then C is * returned as a real sparse matrix (as in MATLAB). * * These extra checks (sorting, dropping zeros, and dropping the complex part * if it is all zero) take time, particulary the requirement that C have sorted * columns. If you are interested in speed, try compiling with -DUNSORTED. The * resulting matrix C can have columns with unsorted row indices, but many * MATLAB functions work just fine when given a matrix with unsorted columns. * * When compiled to return C sorted, this function is called SSMULT. When * compiled without returning C sorted, this function is called SSMULT_UNSORTED. * * Copyright 2007, Timothy A. Davis, University of Florida */ #include "ssmult.h" #ifndef UNSORTED /* -------------------------------------------------------------------------- */ /* merge Left [0..nleft-1] and Right [0..nright-1] into S [0..nleft+nright-1] */ /* -------------------------------------------------------------------------- */ static void merge ( Int S [ ], /* output of length nleft + nright */ const Int Left [ ], /* left input of length nleft */ const Int nleft, const Int Right [ ], /* right input of length nright */ const Int nright ) { Int p, pleft, pright ; /* merge the two inputs, Left and Right, while both inputs exist */ for (p = 0, pleft = 0, pright = 0 ; pleft < nleft && pright < nright ; p++) { if (Left [pleft] < Right [pright]) { S [p] = Left [pleft++] ; } else { S [p] = Right [pright++] ; } } /* either input is exhausted; copy the remaining list into S */ for ( ; pleft < nleft ; p++) { S [p] = Left [pleft++] ; } for ( ; pright < nright ; p++) { S [p] = Right [pright++] ; } } /* -------------------------------------------------------------------------- */ /* SORT(a,b) sorts [a b] in ascending order, so that a < b holds on output */ /* -------------------------------------------------------------------------- */ #define SORT(a,b) { if (a > b) { t = a ; a = b ; b = t ; } } /* -------------------------------------------------------------------------- */ /* BUBBLE(a,b) sorts [a b] in ascending order, and sets done to 0 if it swaps */ /* -------------------------------------------------------------------------- */ #define BUBBLE(a,b) { if (a > b) { t = a ; a = b ; b = t ; done = 0 ; } } /* -------------------------------------------------------------------------- */ /* mergesort */ /* -------------------------------------------------------------------------- */ /* mergesort (A, W, n) sorts an Int array A of length n in ascending order. W is * a workspace array of size n. function is used for sorting the row indices * in each column of C. Small lists (of length SMALL or less) are sorted with * a bubble sort. A value of 10 for SMALL works well on an Intel Core Duo, an * Intel Pentium 4M, and a 64-bit AMD Opteron. SMALL must be in the range 4 to * 10. */ #ifndef SMALL #define SMALL 10 #endif static void mergesort ( Int A [ ], /* array to sort, of size n */ Int W [ ], /* workspace of size n */ Int n ) { if (n <= SMALL) { /* ------------------------------------------------------------------ */ /* bubble sort for small lists of length SMALL or less */ /* ------------------------------------------------------------------ */ Int t, done ; switch (n) { #if SMALL >= 10 case 10: /* 10-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; BUBBLE (A [4], A [5]) ; BUBBLE (A [5], A [6]) ; BUBBLE (A [6], A [7]) ; BUBBLE (A [7], A [8]) ; BUBBLE (A [8], A [9]) ; if (done) return ; #endif #if SMALL >= 9 case 9: /* 9-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; BUBBLE (A [4], A [5]) ; BUBBLE (A [5], A [6]) ; BUBBLE (A [6], A [7]) ; BUBBLE (A [7], A [8]) ; if (done) return ; #endif #if SMALL >= 8 case 8: /* 7-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; BUBBLE (A [4], A [5]) ; BUBBLE (A [5], A [6]) ; BUBBLE (A [6], A [7]) ; if (done) return ; #endif #if SMALL >= 7 case 7: /* 7-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; BUBBLE (A [4], A [5]) ; BUBBLE (A [5], A [6]) ; if (done) return ; #endif #if SMALL >= 6 case 6: /* 6-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; BUBBLE (A [4], A [5]) ; if (done) return ; #endif #if SMALL >= 5 case 5: /* 5-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; BUBBLE (A [3], A [4]) ; if (done) return ; #endif case 4: /* 4-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; BUBBLE (A [2], A [3]) ; if (done) return ; case 3: /* 3-element bubble sort */ done = 1 ; BUBBLE (A [0], A [1]) ; BUBBLE (A [1], A [2]) ; if (done) return ; case 2: /* 2-element bubble sort */ SORT (A [0], A [1]) ; case 1: case 0: /* nothing to do */ ; } } else { /* ------------------------------------------------------------------ */ /* recursive mergesort if A has length 5 or more */ /* ------------------------------------------------------------------ */ Int n1, n2, n3, n4, n12, n34, n123 ; n12 = n / 2 ; /* split n into n12 and n34 */ n34 = n - n12 ; n1 = n12 / 2 ; /* split n12 into n1 and n2 */ n2 = n12 - n1 ; n3 = n34 / 2 ; /* split n34 into n3 and n4 */ n4 = n34 - n3 ; n123 = n12 + n3 ; /* start of 4th subset = n1 + n2 + n3 */ mergesort (A, W, n1) ; /* sort A [0 ... n1-1] */ mergesort (A + n1, W, n2) ; /* sort A [n1 ... n12-1] */ mergesort (A + n12, W, n3) ; /* sort A [n12 ... n123-1] */ mergesort (A + n123, W, n4) ; /* sort A [n123 ... n-1] */ /* merge A [0 ... n1-1] and A [n1 ... n12-1] into W [0 ... n12-1] */ merge (W, A, n1, A + n1, n2) ; /* merge A [n12 ... n123-1] and A [n123 ... n-1] into W [n12 ... n-1] */ merge (W + n12, A + n12, n3, A + n123, n4) ; /* merge W [0 ... n12-1] and W [n12 ... n-1] into A [0 ... n-1] */ merge (A, W, n12, W + n12, n34) ; } } #endif /* -------------------------------------------------------------------------- */ /* ssmult mexFunction */ /* -------------------------------------------------------------------------- */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double *Ax, *Az, *Bx, *Bz, *Cx, *Cz, *W, *Wz ; double bkj, bzkj, cij, czij ; Int *Ap, *Ai, *Bp, *Bi, *Cp, *Ci, *Flag ; Int Anrow, Ancol, Bnrow, Bncol, p, i, j, k, cnz, pb, pa, pbend, paend, mark, pc, pcstart, blen, drop, zallzero, pend, needs_sorting, pcmax ; int A_is_complex, B_is_complex, C_is_complex, A_is_diagonal, A_is_permutation ; /* ---------------------------------------------------------------------- */ /* get inputs and workspace */ /* ---------------------------------------------------------------------- */ if (nargin != 2 || nargout > 1) { mexErrMsgTxt ("Usage: C = ssmult (A,B)") ; } Ap = mxGetJc (pargin [0]) ; Ai = mxGetIr (pargin [0]) ; Ax = mxGetPr (pargin [0]) ; Az = mxGetPi (pargin [0]) ; Anrow = mxGetM (pargin [0]) ; Ancol = mxGetN (pargin [0]) ; A_is_complex = mxIsComplex (pargin [0]) ; Bp = mxGetJc (pargin [1]) ; Bi = mxGetIr (pargin [1]) ; Bx = mxGetPr (pargin [1]) ; Bz = mxGetPi (pargin [1]) ; Bnrow = mxGetM (pargin [1]) ; Bncol = mxGetN (pargin [1]) ; B_is_complex = mxIsComplex (pargin [1]) ; if (Ancol != Bnrow || !mxIsSparse (pargin [0]) || !mxIsSparse (pargin [1])) { mexErrMsgTxt ("wrong dimensions, or A and B not sparse") ; } #ifndef MATLAB_6p1_OR_EARLIER if (!mxIsDouble (pargin [0]) || !mxIsDouble (pargin [1])) { mexErrMsgTxt ("A and B must be of class 'double'") ; } #endif Flag = mxCalloc (Anrow, sizeof (Int)) ; /* workspace */ Cp = mxMalloc ((Bncol+1) * sizeof (Int)) ; /* allocate C column pointers */ /* ---------------------------------------------------------------------- */ /* compute # of nonzeros in result */ /* ---------------------------------------------------------------------- */ pb = 0 ; cnz = 0 ; mark = 0 ; for (j = 0 ; j < Bncol ; j++) { /* Compute nnz (C (:,j)) */ mark-- ; /* Flag [0..n-1] != mark is now true */ pb = Bp [j] ; pbend = Bp [j+1] ; pcstart = cnz ; pcmax = cnz + Anrow ; Cp [j] = cnz ; /* cnz += nnz (C (:,j)), stopping early if nnz(C(:,j)) == Anrow */ for ( ; pb < pbend && cnz < pcmax ; pb++) { k = Bi [pb] ; /* nonzero entry B(k,j) */ paend = Ap [k+1] ; for (pa = Ap [k] ; pa < paend ; pa++) { i = Ai [pa] ; /* nonzero entry A(i,k) */ if (Flag [i] != mark) { /* C(i,j) is a new nonzero */ Flag [i] = mark ; /* mark i as appearing in C(:,j) */ cnz++ ; } } } if (cnz < pcstart) { /* integer overflow has occurred */ mexErrMsgTxt ("problem too large") ; } } Cp [Bncol] = cnz ; /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ Ci = mxMalloc (MAX (cnz,1) * sizeof (Int)) ; Cx = mxMalloc (MAX (cnz,1) * sizeof (double)) ; C_is_complex = A_is_complex || B_is_complex ; Cz = (C_is_complex) ? mxMalloc (MAX (cnz,1) * sizeof (double)) : NULL ; /* ---------------------------------------------------------------------- */ /* C = A*B */ /* ---------------------------------------------------------------------- */ if (A_is_complex) { if (B_is_complex) { /* all of C, A, and B are complex */ #define ACOMPLEX #define BCOMPLEX #include "ssmult_template.c" } else { /* C and A are complex, B is real */ #define ACOMPLEX #include "ssmult_template.c" } } else { if (B_is_complex) { /* C and B are complex, A is real */ #define BCOMPLEX #include "ssmult_template.c" } else { /* all of C, A, and B are real */ #include "ssmult_template.c" } } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ mxFree (Flag) ; #ifndef UNSORTED /* ---------------------------------------------------------------------- */ /* convert C to real if Cz is all zero */ /* ---------------------------------------------------------------------- */ if (C_is_complex && zallzero) { C_is_complex = 0 ; mxFree (Cz) ; Cz = NULL ; } /* ---------------------------------------------------------------------- */ /* drop zeros from C and reduce its size, if any zeros appear */ /* ---------------------------------------------------------------------- */ if (drop) { if (C_is_complex) { for (cnz = 0, p = 0, j = 0 ; j < Bncol ; j++) { Cp [j] = cnz ; pend = Cp [j+1] ; for ( ; p < pend ; p++) { if (Cx [p] != 0 || Cz [p] != 0) { Ci [cnz] = Ci [p] ; /* keep this entry */ Cx [cnz] = Cx [p] ; Cz [cnz] = Cz [p] ; cnz++ ; } } } Cz = mxRealloc (Cz, MAX (cnz,1) * sizeof (double)) ; } else { for (cnz = 0, p = 0, j = 0 ; j < Bncol ; j++) { Cp [j] = cnz ; pend = Cp [j+1] ; for ( ; p < pend ; p++) { if (Cx [p] != 0) { Ci [cnz] = Ci [p] ; /* keep this entry */ Cx [cnz] = Cx [p] ; cnz++ ; } } } } Cp [Bncol] = cnz ; Ci = mxRealloc (Ci, MAX (cnz,1) * sizeof (Int)) ; Cx = mxRealloc (Cx, MAX (cnz,1) * sizeof (double)) ; } #endif /* ---------------------------------------------------------------------- */ /* return C */ /* ---------------------------------------------------------------------- */ pargout [0] = mxCreateSparse (0, 0, 0, C_is_complex ? mxCOMPLEX : mxREAL) ; mxFree (mxGetJc (pargout [0])) ; mxFree (mxGetIr (pargout [0])) ; mxFree (mxGetPr (pargout [0])) ; mxFree (mxGetPi (pargout [0])) ; mxSetJc (pargout [0], Cp) ; mxSetIr (pargout [0], Ci) ; mxSetPr (pargout [0], Cx) ; mxSetPi (pargout [0], Cz) ; mxSetNzmax (pargout [0], MAX (cnz,1)) ; mxSetM (pargout [0], Anrow) ; mxSetN (pargout [0], Bncol) ; } SuiteSparse/SSMULT/ssmult.h0000644001170100242450000000112510625574551014507 0ustar davisfac/* ========================================================================== */ /* === ssmult.h ============================================================= */ /* ========================================================================== */ /* Include file for ssmult.c and ssmultsym.c * Copyright 2007, Timothy A. Davis, University of Florida */ #include "mex.h" #include /* define the MATLAB integer */ #ifdef IS64 #define Int mwSignedIndex #else #define Int int #endif /* turn off debugging */ #ifndef NDEBUG #define NDEBUG #endif #define MAX(a,b) (((a) > (b)) ? (a) : (b)) SuiteSparse/SSMULT/ssmult.m0000644001170100242450000000110410625564742014512 0ustar davisfacfunction C = ssmult (A,B) %#ok %SSMULT multiplies two sparse matrices. % C = ssmult (A,B) computes C=A*B where A and B are sparse. This function is % typically faster than C=A*B in MATLAB 7.4, and always uses less memory. % Either A or B, or both, can be complex. Only matrices of class "double" are % supported. % % Example: % load west0479 % A = west0479 ; % B = sprand (west0479) ; % C = A*B ; % D = ssmult (A,B) ; % C-D % % See also ssmultsym, mtimes. % Copyright 2007, Timothy A. Davis, University of Florida error ('ssmult mexFunction not found') ; SuiteSparse/SSMULT/sstest2.m0000644001170100242450000001003510627675010014566 0ustar davisfacfunction sstest2 %SSTEST2 exhaustive performance test for SSMULT. Requires UFget. % UFget is available at http://www.cise.ufl.edu/research/sparse, or in MATLAB % Central. % % Example % sstest2 % % See also ssmult, ssmultsym, ssmult_unsorted, ssmult_install, sstest, UFget, mtimes. % Copyright 2007, Timothy A. Davis, University of Florida. help sstest2 try index = UFget ; catch fprintf ('\nsstest2 requires UFget.\n') ; fprintf ('see http://www.cise.ufl.edu/research/sparse\n') ; return ; end [ignore, f] = sort (index.nnz) ; %#ok nmat = length (f) ; TM = zeros (nmat, 4) ; T1 = zeros (nmat, 4) ; TU = zeros (nmat, 4) ; tlim = 0.01 ; tmin = 1 ; tmax = 0 ; check = 1 ; rand ('state', 0) for k = 1:nmat Prob = UFget (f (k), index) ; A = Prob.A ; clear Prob for kind = 1:4 try if (~isreal (A)) A = spones (A) ; end B = A' ; if (kind == 2) A = sprand (A) + 1i*sprand(A) ; B = sprand (B) ; elseif (kind == 3) A = sprand (A) ; B = sprand (B) + 1i*sprand(B) ; elseif (kind == 4) A = sprand (A) + 1i*sprand(A) ; B = sprand (B) + 1i*sprand(B) ; end C = A*B ; % warmup if (check) D = ssmult (A,B) ; err = norm (C-D,1) ; if (err > 0) fprintf ('err: %g\n', err) ; error ('!') end clear D D = ssmult_unsorted (A,B) ; err = norm (C-D,1) ; if (err > 0) fprintf ('err: %g\n', err) ; error ('!') end clear D else % warmup, for accurate timings C = ssmult_unsorted (A,B) ; %#ok C = ssmult (A,B) ; %#ok clear C end tr = 0 ; tm = 0 ; tic while (tm < tlim) C = A*B ; %#ok clear C tr = tr + 1 ; tm = toc ; end tm = tm / tr ; tr = 0 ; t1 = 0 ; tic while (t1 < tlim) C = ssmult (A,B) ; %#ok clear C tr = tr + 1 ; t1 = toc ; end t1 = t1 / tr ; tr = 0 ; tu = 0 ; tic while (tu < tlim) C = ssmult_unsorted (A,B) ; %#ok clear C tr = tr + 1 ; tu = toc ; end tu = tu / tr ; fprintf ('%4d: %4d ', k, f(k)) ; fprintf (... 'MATLAB %12.6f SSMULT %12.6f unsorted %12.6f speedup %12.3f', .... tm, t1, tu, tm / t1) ; if (tm < t1) fprintf (' ****') ; end fprintf ('\n') ; TM (k,kind) = tm ; T1 (k,kind) = t1 ; TU (k,kind) = tu ; tmin = min (tmin, tm) ; tmax = max (tmax, tm) ; catch disp (lasterr) TM (k,kind) = 1 ; T1 (k,kind) = 1 ; TU (k,kind) = 1 ; end end for kind = 1:4 subplot (2,4,kind) ; r = TM (1:k,kind) ./ T1 (1:k,kind) ; rmin = min (r) ; rmax = max (r) ; loglog (TM (1:k,kind), r, 'o', ... [tmin tmax], [1 1], 'r-', ... [tmin tmax], [1.1 1.1], 'r-', ... [tmin tmax], [1/1.1 1/1.1], 'r-', ... [tmin tmax], [2 2], 'g-', ... [tmin tmax], [1.5 1.5], 'g-', ... [tmin tmax], [1/1.5 1/1.5], 'g-', ... [tmin tmax], [.5 .5], 'g-' ); if (k > 2) axis ([tmin tmax rmin rmax]) ; end xlabel ('MATLAB time') ; ylabel ('MATLAB/SM time') ; if (kind == 1) title ('real*real') ; elseif (kind == 2) title ('complex*real') ; elseif (kind == 3) title ('real*complex') ; elseif (kind == 4) title ('complex*complex') ; end subplot (2,4,kind+4) ; r = T1 (1:k,kind) ./ TU (1:k,kind) ; rmin = min (r) ; rmax = max (r) ; loglog (TM (1:k,kind), r, 'o', ... [tmin tmax], [1 1], 'r-', ... [tmin tmax], [1.1 1.1], 'r-', ... [tmin tmax], [1/1.1 1/1.1], 'r-', ... [tmin tmax], [2 2], 'g-', ... [tmin tmax], [1.5 1.5], 'g-', ... [tmin tmax], [1/1.5 1/1.5], 'g-', ... [tmin tmax], [.5 .5], 'g-' ); if (k > 2) axis ([tmin tmax rmin rmax]) ; end xlabel ('MATLAB time') ; ylabel ('SSMULT/unsorted time') ; if (kind == 1) title ('real*real') ; elseif (kind == 2) title ('complex*real') ; elseif (kind == 3) title ('real*complex') ; elseif (kind == 4) title ('complex*complex') ; end end drawnow clear A B C save sstest2_results.mat TM T1 TU f diary off diary on end SuiteSparse/SSMULT/sstest.m0000644001170100242450000000661610710706771014520 0ustar davisfacfunction sstest %SSTEST exhaustive performance test for SSMULT. % % Example % sstest % % See also ssmult, ssmultsym, ssmult_unsorted, ssmult_install, sstest2, mtimes. % Copyright 2007, Timothy A. Davis, University of Florida. N = [500:50:1000 1100:100:3000 3200:200:5000 ] ; rand ('state',0) ; % warmup for more accurate timings A = sparse (1) ; B = sparse (1) ; C = A*B ; D = ssmult(A,B) ; err = norm (C-D,1) ; if (err > 0) error ('test failure') ; end clear C D titles = { ... 'C=A*B blue, C=B*A red, both real', ... 'A real, B complex', 'A complex, B real', 'both complex' } ; xlabels = { '(A random, B diagonal)', '(A random, B permutation)', ... '(A random, B tridiagonal)' } ; fprintf ('\nIn the next plots, speedup is the time for MATLAB C=A*B divided\n'); fprintf ('by the time for C=ssmult(A,B). The X-axis is n, the dimension\n') ; fprintf ('of the square matrices A and B. A is a sparse random matrix with\n'); fprintf ('1%% nonzero values. B is diagonal in the first row of plots,\n') ; fprintf ('a permutation in the 2nd row, and tridiagonal in the third.\n') ; fprintf ('C=A*B is in blue, C=B*A is in red. A and B are both real in the\n') ; fprintf ('first column of plots, B is complex in the 2nd, A in the 3rd, and\n'); fprintf ('both are complex in the 4th column of plots. You will want to\n') ; fprintf ('maximize the figure; otherwise the text is too hard to read.\n') ; tlim = 0.1 ; figure (1) ; clf ; for fig = 1:3 fprintf ('Testing C=A*B and C=B*A %s\n', xlabels {fig}) ; T = zeros (length(N),4,4) ; for k = 1:length(N) n = N (k) ; try A = sprand (n,n,0.01) ; if (fig == 1) % B diagonal B = spdiags (rand (n,1), 0, n, n) ; elseif (fig == 2) % B permutation B = spdiags (rand (n,1), 0, n, n) ; B = B (:,randperm(n)) ; else % B tridiagonal B = spdiags (rand (n,3), -1:1, n, n) ; end for kind = 1:4 if (kind == 2) % A complex, B real A = A + 1i*sprand (A) ; elseif (kind == 3) % A real, B complex A = real (A) ; B = B + 1i*sprand (B) ; elseif (kind == 4) % both complex A = A + 1i*sprand (A) ; B = B + 1i*sprand (B) ; end t1 = 0 ; trials = 0 ; tic while (t1 < tlim) C = A*B ; trials = trials + 1 ; t1 = toc ; end t1 = t1 / trials ; t2 = 0 ; trials = 0 ; tic while (t2 < tlim) D = ssmult (A,B) ; trials = trials + 1 ; t2 = toc ; end t2 = t2 / trials ; err = norm (C-D,1) ; if (err > 0) error ('test failure') ; end clear C clear D t3 = 0 ; trials = 0 ; tic while (t3 < tlim) C = B*A ; trials = trials + 1 ; t3 = toc ; end t3 = t3 / trials ; t4 = 0 ; trials = 0 ; tic while (t4 < tlim) D = ssmult (B,A) ; trials = trials + 1 ; t4 = toc ; end t4 = t4 / trials ; err = norm (C-D,1) ; if (err > 0) error ('test failure') ; end clear C clear D T (k,kind,1) = t1 ; T (k,kind,2) = t2 ; T (k,kind,3) = t3 ; T (k,kind,4) = t4 ; subplot (3,4,kind + 4*(fig-1)) ; plot (N(1:k), T (1:k,kind,1) ./ T (1:k,kind,2), 'o', ... N(1:k), T (1:k,kind,3) ./ T (1:k,kind,4), 'rx', ... [N(1) n], [1 1], 'k') ; xlabel (['n ' xlabels{fig}]) ; ylabel ('speedup') ; axis tight title (titles {kind}) ; drawnow end catch % probably because we ran out of memory ... disp (lasterr) ; break ; end end end SuiteSparse/SSMULT/ssmult_unsorted.m0000644001170100242450000000272710625565703016447 0ustar davisfacfunction C = ssmult_unsorted (A,B) %#ok %SSMULT_UNSORTED multiplies two sparse matrices, returning non-standard result. % C = ssmult_unsorted (A,B) computes C=A*B where A and B are sparse. It returns % C with unsorted row indices in its columns, and possibly with explicit zero % entries due to numeric cancellation. This does *NOT* conform to the MATLAB % standard (as of MATLAB 7.4 ...) for MATLAB sparse matrices. However, such % matrices are often safe to use in subsequent operations (such as C*X where % X is a full matrix). Computing C'' (a double transpose) gives a sorted % result. This function is typically MUCH faster than C=A*B in MATLAB 7.4, and % uses less memory. Either A or B, or both, can be complex. Only matrices of % class "double" are supported. The primary reason for this function is to % demonstrate how much performance MATLAB loses by insisting on keeping its % sparse matrices sorted. % % *** USE AT YOUR OWN RISK. USE SSMULT TO BE SAFE. *** % % Example: % load west0479 % A = west0479 ; % B = sprand (west0479) ; % tic ; C = A*B ; toc % tic ; D = ssmult_unsorted (A,B) ; toc % C-D % % To see that the result D from ssmult_unsorted has unsorted columns: % % spparms ('spumoni', 1) % colamd (D) ; % spparms ('spumoni', 0) % % See also ssmult, ssmultsym, mtimes. % % *** USE AT YOUR OWN RISK. USE SSMULT TO BE SAFE. *** % Copyright 2007, Timothy A. Davis, University of Florida error ('ssmult_unsorted mexFunction not found') ; SuiteSparse/SSMULT/ssmult_template.c0000644001170100242450000002671310625557022016401 0ustar davisfac/* ========================================================================== */ /* === ssmult_template.c ==================================================== */ /* ========================================================================== */ /* C = A*B, where A and B are sparse. The column pointers for C (the Cp array) * have already been computed. entries are dropped. This code fragment is * #include'd into ssmult.c four times, with all four combinations of ACOMPLEX * (defined or not) and BCOMPLEX (defined or not). * * By default, C is returned with sorted column indices, and with explicit * zero entries dropped. If C is complex with an all-zero imaginary part, then * the imaginary part is freed and C becomes real. Thus, C is a pure MATLAB * sparse matrix. * * If UNSORTED is defined (-DUNSORTED), then the nonzero pattern of C is * returned with unsorted column indices, explicit zeros may be present in C, * and the imaginary of a complex C may be all zero. This is much faster than * returning a pure MATLAB sparse matrix. * * If the compiler bug discussed below does not affect you, then uncomment the * following line, or compile with code with -DNO_GCC_BUG. #define NO_GCC_BUG * The gcc bug occurs when cij underflows to zero: * * cij = aik * bkj ; * if (cij == 0) * { * drop this entry * } * * If cij underflows, cij is zero but the above test is incorrectly FALSE with * gcc -O, using gcc version 4.1.0 on an Intel Pentium. The bug does not appear * on an AMD Opteron with the same compiler. The solution is to store cij to * memory first, and then to read it back in and test it, which is slower. */ /* -------------------------------------------------------------------------- */ /* MULT: multiply (or multiply and accumulate, depending on op) */ /* -------------------------------------------------------------------------- */ /* op can be "=" or "+=" */ #ifdef ACOMPLEX #ifdef BCOMPLEX #define MULT(x,z,op) \ x op Ax [pa] * bkj - Az [pa] * bzkj ; \ z op Az [pa] * bkj + Ax [pa] * bzkj ; #else #define MULT(x,z,op) \ x op Ax [pa] * bkj ; \ z op Az [pa] * bkj ; #endif #else #ifdef BCOMPLEX #define MULT(x,z,op) \ x op Ax [pa] * bkj ; \ z op Ax [pa] * bzkj ; #else #define MULT(x,z,op) \ x op Ax [pa] * bkj ; #endif #endif /* -------------------------------------------------------------------------- */ /* ASSIGN_BKJ: copy B(k,j) into a local scalar */ /* -------------------------------------------------------------------------- */ #ifdef BCOMPLEX #define ASSIGN_BKJ \ bkj = Bx [pb] ; \ bzkj = Bz [pb] ; #else #define ASSIGN_BKJ \ bkj = Bx [pb] ; #endif /* -------------------------------------------------------------------------- */ /* DROP_CHECK: check if an entry must be dropped */ /* -------------------------------------------------------------------------- */ #ifndef UNSORTED #if defined (ACOMPLEX) || defined (BCOMPLEX) #define DROP_CHECK(x,z) \ if (x == 0 && z == 0) drop = 1 ; \ if (z != 0) zallzero = 0 ; #else #define DROP_CHECK(x,z) if (x == 0) drop = 1 ; #endif #else #define DROP_CHECK(x,z) #endif /* -------------------------------------------------------------------------- */ /* sparse matrix multiply template */ /* -------------------------------------------------------------------------- */ { /* ---------------------------------------------------------------------- */ /* initialize drop tests */ /* ---------------------------------------------------------------------- */ #ifndef UNSORTED drop = 0 ; /* true if any entry in C is zero */ zallzero = 1 ; /* true if Cz is all zero */ #endif /* ---------------------------------------------------------------------- */ /* quick check if A is diagonal, or a permutation matrix */ /* ---------------------------------------------------------------------- */ if (Anrow == Ancol && Ap [Ancol] == Ancol) { /* A is square, with n == nnz (A); check the pattern */ A_is_permutation = 1 ; A_is_diagonal = 1 ; for (j = 0 ; j < Ancol ; j++) { if (Ap [j] != j) { /* A has a column with no entries, or more than 1 entry */ A_is_permutation = 0 ; A_is_diagonal = 0 ; break ; } } mark-- ; /* Flag [0..n-1] != mark is now true */ for (j = 0 ; j < Ancol && (A_is_permutation || A_is_diagonal) ; j++) { /* A has one entry in each column, so j == Ap [j] */ i = Ai [j] ; if (i != j) { /* A is not diagonal, but might still be a permutation */ A_is_diagonal = 0 ; } if (Flag [i] == mark) { /* row i appears twice; A is neither permutation nor diagonal */ A_is_permutation = 0 ; A_is_diagonal = 0 ; } /* mark row i, so we know if we see it again */ Flag [i] = mark ; } } else { /* A is not square, or nnz (A) is not equal to n */ A_is_permutation = 0 ; A_is_diagonal = 0 ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ #ifndef UNSORTED W = NULL ; if (!A_is_diagonal) { #if defined (ACOMPLEX) || defined (BCOMPLEX) W = mxMalloc (Anrow * 2 * sizeof (double)) ; Wz = W + Anrow ; #else W = mxMalloc (Anrow * sizeof (double)) ; #endif } #endif /* ---------------------------------------------------------------------- */ /* compute C one column at a time */ /* ---------------------------------------------------------------------- */ if (A_is_diagonal) { /* ------------------------------------------------------------------ */ /* C = A*B where A is diagonal */ /* ------------------------------------------------------------------ */ pb = 0 ; for (j = 0 ; j < Bncol ; j++) { pcstart = pb ; pbend = Bp [j+1] ; /* column B is in Bi,Bx,Bz [pb ... pbend+1] */ for ( ; pb < pbend ; pb++) { k = Bi [pb] ; /* nonzero entry B(k,j) */ ASSIGN_BKJ ; Ci [pb] = k ; pa = k ; MULT (Cx [pb], Cz [pb], =) ; /* C(k,j) = A(k,k)*B(k,j) */ #ifdef NO_GCC_BUG DROP_CHECK (Cx [pb], Cz [pb]) ; /* check if C(k,j) == 0 */ #endif } #ifndef UNSORTED #ifndef NO_GCC_BUG for (pc = pcstart ; pc < pbend ; pc++) { DROP_CHECK (Cx [pc], Cz [pc]) ; /* check if C(k,j) == 0 */ } #endif #endif } } else { /* ------------------------------------------------------------------ */ /* C = A*B, general case, or A permutation */ /* ------------------------------------------------------------------ */ pb = 0 ; cnz = 0 ; for (j = 0 ; j < Bncol ; j++) { /* -------------------------------------------------------------- */ /* compute jth column of C: C(:,j) = A * B(:,j) */ /* -------------------------------------------------------------- */ pbend = Bp [j+1] ; /* column B is in Bi,Bx,Bz [pb ... pbend+1] */ pcstart = cnz ; /* start of column j in C */ blen = pbend - pb ; /* number of entries in B */ needs_sorting = 0 ; /* true if column j needs sorting */ if (blen == 0) { /* ---------------------------------------------------------- */ /* nothing to do, B(:,j) and C(:,j) are empty */ /* ---------------------------------------------------------- */ continue ; } else if (blen == 1) { /* ---------------------------------------------------------- */ /* B(:,j) contains only one nonzero */ /* ---------------------------------------------------------- */ /* since there is only one entry in B, just scale column A(:,k): * C(:,j) = A(:,k) * B(k,j) * C is sorted only if A is sorted on input */ k = Bi [pb] ; /* nonzero entry B(k,j) */ ASSIGN_BKJ ; paend = Ap [k+1] ; for (pa = Ap [k] ; pa < paend ; pa++, cnz++) { Ci [cnz] = Ai [pa] ; /* nonzero entry A(i,k) */ MULT (Cx [cnz], Cz [cnz], =) ; /* C(i,j) = A(i,k)*B(k,j) */ #ifdef NO_GCC_BUG DROP_CHECK (Cx [cnz], Cz [cnz]) ; /* check C(i,j) == 0 */ #endif } pb++ ; #ifndef UNSORTED #ifndef NO_GCC_BUG for (pc = pcstart ; pc < cnz ; pc++) { DROP_CHECK (Cx [pc], Cz [pc]) ; /* check if C(i,j) == 0 */ } #endif #endif } else { /* ---------------------------------------------------------- */ /* B(:,j) has two or more entries */ /* ---------------------------------------------------------- */ if (A_is_permutation) { /* ------------------------------------------------------ */ /* A is a permutation matrix */ /* ------------------------------------------------------ */ needs_sorting = 1 ; for ( ; pb < pbend ; pb++) { k = Bi [pb] ; /* nonzero entry B(k,j) */ ASSIGN_BKJ ; i = Ai [k] ; /* nonzero entry A(i,k) */ Ci [pb] = i ; pa = k ; /* C(i,j) = A(i,k)*B(k,j) */ #ifndef UNSORTED MULT (W [i], Wz [i], =) ; #else MULT (Cx [pb], Cz [pb], =) ; #endif } cnz = pbend ; } else { /* ------------------------------------------------------ */ /* general case */ /* ------------------------------------------------------ */ /* first entry in jth column of B is simpler */ /* C(:,j) = A (:,k) * B (k,j) */ k = Bi [pb] ; /* nonzero entry B(k,j) */ ASSIGN_BKJ ; paend = Ap [k+1] ; for (pa = Ap [k] ; pa < paend ; pa++) { i = Ai [pa] ; /* nonzero entry A(i,k) */ Flag [i] = cnz ; Ci [cnz] = i ; /* new entry C(i,j) */ /* C(i,j) = A(i,k)*B(k,j) */ #ifndef UNSORTED MULT (W [i], Wz [i], =) ; #else MULT (Cx [cnz], Cz [cnz], =) ; #endif cnz++ ; } pb++ ; for ( ; pb < pbend ; pb++) { k = Bi [pb] ; /* nonzero entry B(k,j) */ ASSIGN_BKJ ; /* C(:,j) += A (:,k) * B (k,j) */ paend = Ap [k+1] ; for (pa = Ap [k] ; pa < paend ; pa++) { i = Ai [pa] ; /* nonzero entry A(i,k) */ pc = Flag [i] ; if (pc < pcstart) { pc = cnz++ ; Flag [i] = pc ; Ci [pc] = i ; /* new entry C(i,j) */ /* C(i,j) = A(i,k)*B(k,j) */ #ifndef UNSORTED MULT (W [i], Wz [i], =) ; needs_sorting = 1 ; #else MULT (Cx [pc], Cz [pc], =) ; #endif } else { /* C(i,j) += A(i,k)*B(k,j) */ #ifndef UNSORTED MULT (W [i], Wz [i], +=) ; #else MULT (Cx [pc], Cz [pc], +=) ; #endif } } } } /* ---------------------------------------------------------- */ /* sort the pattern of C(:,j) and gather the values of C(:,j) */ /* ---------------------------------------------------------- */ #ifndef UNSORTED /* Sort the row indices in C(:,j). Use Cx as Int workspace. * This assumes sizeof (Int) < sizeof (double). If blen <= 1, * or if subsequent entries in B(:,j) appended entries onto C, * there is no need to sort C(:,j), assuming A is sorted. */ if (needs_sorting) { mergesort (Ci + pcstart, (Int *) (Cx + pcstart), cnz - pcstart) ; } for (pc = pcstart ; pc < cnz ; pc++) { #if defined (ACOMPLEX) || defined (BCOMPLEX) i = Ci [pc] ; cij = W [i] ; /* get C(i,j) from W */ czij = Wz [i] ; Cx [pc] = cij ; /* copy C(i,j) into C */ Cz [pc] = czij ; #else cij = W [Ci [pc]] ; /* get C(i,j) from W */ Cx [pc] = cij ; /* copy C(i,j) into C */ #endif DROP_CHECK (cij, czij) ; /* check if C(i,j) == 0 */ } #endif } } } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ #ifndef UNSORTED mxFree (W) ; #endif } #undef ACOMPLEX #undef BCOMPLEX #undef MULT #undef ASSIGN_BKJ #undef DROP_CHECK SuiteSparse/SuiteSparse_test.m0000644001170100242450000001454310712357773015456 0ustar davisfacfunction SuiteSparse_test % SuiteSparse_test exhaustive test of all SuiteSparse packages % % Your current directory must be SuiteSparse for this function to work. % SuiteSparse_install must be run prior to running this test. Warning: % this test takes a *** long **** time. % % Example: % SuiteSparse_test % % See also SuiteSparse_install, SuiteSparse_demo. % Copyright 2007, Tim Davis, University of Florida npackages = 13 ; h = waitbar (0, 'SuiteSparse test:') ; SuiteSparse = pwd ; v = getversion ; if (v < 7) error ('SuiteSparse_test requires MATLAB 7.0 or later') ; end % if at UF, ensure pre-installed UF Sparse Matrix Collection is used uf = { '/cise/homes/davis/Install/UFget', 'd:/UFget', '/share/UFget' } ; for k = 1:length(uf) if (exist (uf {k}, 'dir')) addpath (uf {k}) ; break ; end end try %--------------------------------------------------------------------------- % CSparse (32-bit MATLAB only) %--------------------------------------------------------------------------- if (isempty (strfind (computer, '64'))) % compile and install CSparse (not installed by SuiteSparse_install) waitbar (1/(npackages+1), h, 'SuiteSparse test: CSparse') ; addpath ([SuiteSparse '/CSparse/MATLAB/CSparse']) ; addpath ([SuiteSparse '/CSparse/MATLAB/Demo']) ; cd ([SuiteSparse '/CSparse/MATLAB/CSparse']) ; cs_make ; % test CSparse cd ([SuiteSparse '/CSparse/MATLAB/Test']) ; testall ; % uninstall CSparse by removing it from path rmpath ([SuiteSparse '/CSparse/MATLAB/CSparse']) ; rmpath ([SuiteSparse '/CSparse/MATLAB/Demo']) ; end %--------------------------------------------------------------------------- % CXSparse %--------------------------------------------------------------------------- waitbar (2/(npackages+1), h, 'SuiteSparse test: CXSparse') ; cd ([SuiteSparse '/CXSparse/MATLAB/Test']) ; testall ; %--------------------------------------------------------------------------- % COLAMD %--------------------------------------------------------------------------- waitbar (3/(npackages+1), h, 'SuiteSparse test: COLAMD') ; cd ([SuiteSparse '/COLAMD/MATLAB']) ; colamd_test ; %--------------------------------------------------------------------------- % CCOLAMD %--------------------------------------------------------------------------- waitbar (4/(npackages+1), h, 'SuiteSparse test: CCOLAMD') ; cd ([SuiteSparse '/CCOLAMD/MATLAB']) ; ccolamd_test ; %--------------------------------------------------------------------------- % UMFPACK %--------------------------------------------------------------------------- waitbar (5/(npackages+1), h, 'SuiteSparse test: UMFPACK') ; cd ([SuiteSparse '/UMFPACK/MATLAB']) ; umfpack_test (800) ; %--------------------------------------------------------------------------- % CHOLMOD %--------------------------------------------------------------------------- waitbar (6/(npackages+1), h, 'SuiteSparse test: CHOLMOD') ; cd ([SuiteSparse '/CHOLMOD/MATLAB/Test']) ; cholmod_test ; %--------------------------------------------------------------------------- % BTF %--------------------------------------------------------------------------- waitbar (7/(npackages+1), h, 'SuiteSparse test: BTF') ; cd ([SuiteSparse '/BTF/MATLAB/Test']) ; btf_test ; %--------------------------------------------------------------------------- % KLU %--------------------------------------------------------------------------- waitbar (8/(npackages+1), h, 'SuiteSparse test: KLU') ; cd ([SuiteSparse '/KLU/MATLAB/Test']) ; klu_test ; %--------------------------------------------------------------------------- % LDL %--------------------------------------------------------------------------- waitbar (9/(npackages+1), h, 'SuiteSparse test: LDL') ; cd ([SuiteSparse '/LDL/MATLAB']) ; ldlmain2 ; ldltest ; %--------------------------------------------------------------------------- % LINFACTOR: MATLAB 7.3 (R2006b) or later required %--------------------------------------------------------------------------- if (v > 7.2) waitbar (10/(npackages+1), h, 'SuiteSparse test: LINFACTOR') ; cd ([SuiteSparse '/LINFACTOR']) ; lintests ; end %--------------------------------------------------------------------------- % MESHND %--------------------------------------------------------------------------- waitbar (11/(npackages+1), h, 'SuiteSparse test: MESHND') ; cd ([SuiteSparse '/MESHND']) ; meshnd_quality ; %--------------------------------------------------------------------------- % SSMULT %--------------------------------------------------------------------------- waitbar (12/(npackages+1), h, 'SuiteSparse test: SSMULT') ; cd ([SuiteSparse '/SSMULT']) ; ssmult_test ; %--------------------------------------------------------------------------- % MATLAB_Tools %--------------------------------------------------------------------------- waitbar (13/(npackages+1), h, 'SuiteSparse test: MATLAB Tools') ; cd ([SuiteSparse '/MATLAB_Tools']) ; figure (1) ; clf pagerankdemo (1000) ; figure (2) ; clf seashell ; shellgui ; cd ([SuiteSparse '/MATLAB_Tools/waitmex']) ; waitmex ; url = 'http://www.cise.ufl.edu/research/sparse' ; fprintf ('Click here for more details\n', url) ; hprintf ('or see \n', url) ; %--------------------------------------------------------------------------- % AMD, CAMD, UFcollection, UFget %--------------------------------------------------------------------------- % no exhaustive tests; tested via other packages catch %--------------------------------------------------------------------------- % test failure %--------------------------------------------------------------------------- cd (SuiteSparse) ; disp (lasterr) ; fprintf ('SuiteSparse test: FAILED\n') ; return end %------------------------------------------------------------------------------- % test OK %------------------------------------------------------------------------------- close (h) ; fprintf ('SuiteSparse test: OK\n') ; cd (SuiteSparse) ; SuiteSparse/Contents.m0000644001170100242450000001576710707715566013760 0ustar davisfac% Welcome to SuiteSparse : a Suite of Sparse matrix packages, containing a % collection of sparse matrix packages authored or co-authored by Tim Davis. % Only the primary MATLAB functions are listed below. % % Example: % SuiteSparse_install % compiles and installs all of SuiteSparse, and runs several demos and tests. % %------------------------------------------------------------------------------- % Ordering methods: %------------------------------------------------------------------------------- % % amd2 - approximate minimum degree ordering. % colamd2 - column approximate minimum degree ordering. % symamd2 - symmetrix approximate min degree ordering based on colamd. % camd - constrained amd. % ccolamd - constrained colamd. % csymamd - constrained symamd. % meshnd - nested dissection of regular 2D and 3D meshes % %------------------------------------------------------------------------------- % CHOLMOD: a sparse supernodal Cholesky update/downdate package: %------------------------------------------------------------------------------- % % cholmod2 - computes x=A\b when A is symmetric and positive definite. % chol2 - same as MATLAB chol(sparse(A)), just faster. % lchol - computes an LL' factorization. % ldlchol - computes an LDL' factorization. % ldlupdate - updates an LDL' factorization. % resymbol - recomputes symbolic LL or LDL' factorization. % ldlsolve - solves Ax=b using an LDL' factorization. % ldlsplit - splits LD into L and D. % metis - interface to METIS node-nested-dissection. % nesdis - interface to CHOLMOD's nested-dissection (based on METIS). % septree - prune a separator tree. % bisect - interface to METIS' node bisector. % analyze - order and analyze using CHOLMOD. % etree2 - same as MATLAB "etree", just faster and more reliable. % sparse2 - same as MATLAB "sparse", just faster. % symbfact2 - same as MATLAB "symbfact", just faster and more reliable. % sdmult - same as MATLAB S*F or S'*F (S sparse, F full), just faster. % ldl_normest - compute error in LDL' factorization. % lu_normest - compute error in LU factorization. % mread - read a sparse matrix in Matrix Market format % mwrite - write a sparse matrix in Matrix Market format % spsym - determine the symmetry of a sparse matrix % %------------------------------------------------------------------------------- % CSPARSE / CXSPARSE: a Concise Sparse matrix package: %------------------------------------------------------------------------------- % % Matrices used in CSparse must in general be either sparse and real, or % dense vectors. Ordering methods can accept any sparse matrix. CXSparse % supports complex matrices and 64-bit MATLAB; it is installed by default. % % cs_add - sparse matrix addition. % cs_amd - approximate minimum degree ordering. % cs_chol - sparse Cholesky factorization. % cs_cholsol - solve A*x=b using a sparse Cholesky factorization. % cs_counts - column counts for sparse Cholesky factor L. % cs_dmperm - maximum matching or Dulmage-Mendelsohn permutation. % cs_dmsol - x=A\b using the coarse Dulmage-Mendelsohn decomposition. % cs_dmspy - plot the Dulmage-Mendelsohn decomposition of a matrix. % cs_droptol - remove small entries from a sparse matrix. % cs_esep - find an edge separator of a symmetric matrix A % cs_etree - elimination tree of A or A'*A. % cs_gaxpy - sparse matrix times vector. % cs_lsolve - solve a sparse lower triangular system L*x=b. % cs_ltsolve - solve a sparse upper triangular system L'*x=b. % cs_lu - sparse LU factorization, with fill-reducing ordering. % cs_lusol - solve Ax=b using LU factorization. % cs_make - compiles CSparse for use in MATLAB. % cs_multiply - sparse matrix multiply. % cs_nd - generalized nested dissection ordering. % cs_nsep - find a node separator of a symmetric matrix A. % cs_permute - permute a sparse matrix. % cs_print - print the contents of a sparse matrix. % cs_qr - sparse QR factorization. % cs_qleft - apply Householder vectors on the left. % cs_qright - apply Householder vectors on the right. % cs_qrsol - solve a sparse least-squares problem. % cs_randperm - random permutation. % cs_sep - convert an edge separator into a node separator. % cs_scc - strongly-connected components of a square sparse matrix. % cs_scc2 - cs_scc, or connected components of a bipartite graph. % cs_sparse - convert a triplet form into a sparse matrix. % cs_sqr - symbolic sparse QR factorization. % cs_symperm - symmetric permutation of a symmetric matrix. % cs_transpose - transpose a sparse matrix. % cs_updown - rank-1 update/downdate of a sparse Cholesky factorization. % cs_usolve - solve a sparse upper triangular system U*x=b. % cs_utsolve - solve a sparse lower triangular system U'*x=b. % cspy - plot a sparse matrix in color. % ccspy - plot the connected components of a matrix. % %------------------------------------------------------------------------------- % LDL: Sparse LDL factorization: %------------------------------------------------------------------------------- % % ldlsparse - LDL' factorization of a real, sparse, symmetric matrix. % ldlrow - an m-file description of the algorithm used by LDL. % %------------------------------------------------------------------------------- % UMFPACK: the Unsymmetric MultiFrontal Package: %------------------------------------------------------------------------------- % % umfpack2 - computes x=A\b, x=A/b, or lu (A) for a sparse matrix A % umfpack_details - details on all the options for using umfpack in MATLAB % umfpack_report - prints optional control settings and statistics % umfpack_btf - factorize A using a block triangular form % umfpack_solve - x = A\b or x = b/A % lu_normest - estimates norm (L*U-A,1) without forming L*U-A % (duplicate of CHOLMOD/lu_normest, for completeness) % luflop - given L and U, computes # of flops required % %------------------------------------------------------------------------------- % Other packages: %------------------------------------------------------------------------------- % % UFGET MATLAB interface to the UF Sparse Matrix Collection % MATLAB_Tools various simple m-files % SSMULT sparse matrix times sparse matrix % LINFACTOR solve Ax=b using LU or CHOL % %------------------------------------------------------------------------------- % % For help on compiling SuiteSparse or the demos, testing functions, etc., % please see the help for each individual package. UFcollection and RBio % are two additional toolboxes, for managing the UF Sparse Matrix Collection. % % Copyright 2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse help SuiteSparse SuiteSparse/CXSparse/0000755001170100242450000000000010712165171013440 5ustar davisfacSuiteSparse/CXSparse/Doc/0000755001170100242450000000000010620606360014143 5ustar davisfacSuiteSparse/CXSparse/Doc/License.txt0000644001170100242450000000162210375601211016264 0ustar davisfacCXSparse: a Concise Sparse matrix package - Extended. Copyright (c) 2006, Timothy A. Davis. http://www.cise.ufl.edu/research/sparse/CSparse -------------------------------------------------------------------------------- CXSparse is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. CXSparse is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CXSparse/Doc/ChangeLog0000644001170100242450000002072410711427621015724 0ustar davisfacNov 1, 2007, v2.2.1 * very minor change to Include/cs.h: Changed name of 2nd argument of cs_permute, to match the code. This has no affect on the code itself, since the type ("int *") is unchanged. It's just a documentation issue. * minor lint cleanup in mexFunctions Mar 31, 2007, v2.2.0 * few changes to primary Source/ files. Changes mostly affect MATLAB interface. * Source/cs_house.c: correction to comment * Souce/cs_updown.c: whitespace changed to reflect change in CXSparse, no impact at all on CSparse itself. * Doc/, Lib/ and Include/ directories created. * Source/cs.h moved to Include/cs.h, version number changed to 2.2.0. * modification to Makefiles, cs_make.m * correction to help comments in cs_dmperm.m, cs_qr.m, cs_scc2.m, cs_scc.m * if complex matrix passed to CSparse in MATLAB, error message suggests using CXSparse instead * minor performance fix to cs_sparse_mex.c * cs_randperm added to MATLAB/Makefile; already appeared in cs_make.m * minor improvements to MATLAB/ demos. Mar 1, 2007, v2.1.0 * Source/cs_add.c: added test for matrix dimensions * Source/cs_multiply.c: added test for matrix dimensions * correction to MATLAB demo3 (no error in C code version of the demo) * minor corrections to MATLAB m-file help comments. Dec 12, 2006, v2.0.7 * minor MATLAB cleanup Dec 6, 2006, v2.0.6 * Update to UFget. Now relies on the MATLAB urlwrite function instead of my own Java code. Nov 2006, v2.0.5 * Added UFgrep to UFget toolbox. * No changes to C Source code, except for version number and date. * Added two test matrices: ibm32a and ibm32b. ibm32a is the Harwell/ Boeing matrix ibm32, but with the last column removed. ibm32b is the transpose of ibm32a. With optimization enabled (-O), 2 lines in cs_maxtrans.c are not tested; these matrices correct that problem. * Fixed UFget. Earlier version could not download matrices larger than 32MB. * Modified UFget/UFweb, to reflect changes in the UF Sparse Matrix Collection. * Added ccspy.m and cs_scc2.m MATLAB functions * Added examples to help info in each *.m MATLAB file * modified cs_dmspy to speed up the plotting of large matrices with many singletons * minor change to cspy: now draws a box around the matrix. * minor changes to MATLAB demos and tests. Oct 13, 2006, v2.0.4 * minor modification to cs_updown.c. "n" was incorrectly declared "double". It should be "int". This was safe, just a little confusing (n was only used in an argument to cs_malloc, and is thus typecast). Sept 28, 2006, v2.0.3 * minor modifications to MATLAB interface, to allow CSparse to be used in MATLAB 6.5. * added examples to m-files, other minor m-file cleanup. * bug fix to cspy, to handle NaN's properly. Aug 23, 2006: v2.0.2 * change to cs_updown mexFunction, to handle multiple rank updates * symbolic links removed from Tcov/ directory in the distribution. They are now created by Tcov/Makefile as needed. This makes the zip files cleaner. Tcov/*test.c test files renamed. July 19, 2006: * minor fix to cs_must_compile.m and cs_make.m, to allow CSparse to be compiled in MATLAB 6.5 with cs_make. * minor fix to cspy for complex matrices (imaginary part was ignored). * no change to version number or date, since there are no changes that affect the appearance of CSparse in the book ("Direct Methods for Sparse Linear Systems", SIAM, 2006). June 24, 2006: * minor typos in comments corrected. No change in code itself, and no change in version number or date. May 27, 2006, v2.0.1: (this version is printed in the book) * minor bug fix. cs_util.c modified, so that cs_sprealloc (T,0) works properly for a triplet matrix T (setting T->nzmax equal to T->nz). The line in v2.0.0: nzmax = (nzmax <= 0) ? (A->p [A->n]) : nzmax ; changes to the following in v2.0.1: if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ; * minor typographical changes arising from the editting of the book. Apr 12, 2006, v2.0.0: * random permutation option added to cs_maxtrans and cs_dmperm, to help avoid rare cases where the O(|A|n) time complexity is reached in practice (GHS_indef/boyd2 in the UF sparse matrix collection, for example). New cs_randperm function added. Apr 10, 2006: * stylistic changes for the book (except for the bug fix): * "int order" parameter of cs_amd, cs_lusol, cs_cholsol, cs_qrsol, cs_sqr, cs_schol changed. Now 0 means no ordering, 1 is A+A', 2 is S*S', and 3 is A*A'. In v1.2 and earlier, "order" took on a value ranging from -1 to 2. "int n" parameter rearranged for cs_ipvec, cs_pvec, cs_post (int n moved to the end). cs_triplet renamed cs_compress. To ensure that these changes are propagated into user code that calls CSparse, the "order" parameter has been placed as the first parameter in all these routines. Your compiler will complain (gcc will halt) if you upgrade from v1.2 to v2.0 without changing your code. This is much better than a silent error in which you get the wrong ordering by mistake (with a huge penalty in run-time performance and no compiler warnings). New syntax (v2.0 and later): ---------------------------- order = 0: natural ordering order = 1: amd (A+A') order = 2: amd (S'*S), where S=A except dense rows dropped order = 3: amd (A'*A) int cs_cholsol (int order, const cs *A, double *b) ; int cs_lusol (int order, const cs *A, double *b, double tol) ; int cs_qrsol (int order, const cs *A, double *b) ; int *cs_amd (int order, const cs *A) ; css *cs_schol (int order, const cs *A) ; css *cs_sqr (int order, const cs *A, int qr) ; int *cs_post (const int *parent, int n) ; int cs_ipvec (const int *p, const double *b, double *x, int n) ; int cs_pvec (const int *p, const double *b, double *x, int n) ; cs *cs_compress (const cs *T) ; Old syntax (v1.2 and earlier): ------------------------------ order = -1: natural ordering order = 0: amd (A+A') order = 1: amd (S'*S), where S=A except dense rows dropped order = 2: amd (A'*A) int cs_cholsol (const cs *A, double *b, int order) ; int cs_lusol (const cs *A, double *b, int order, double tol) ; int cs_qrsol (const cs *A, double *b, int order) ; int *cs_amd (const cs *A, int order) ; css *cs_schol (const cs *A, int order) ; css *cs_sqr (const cs *A, int order, int qr) ; int *cs_post (int n, const int *parent) ; int cs_ipvec (int n, const int *p, const double *b, double *x) ; int cs_pvec (int n, const int *p, const double *b, double *x) ; cs *cs_triplet (const cs *T) ; * CS_OVERFLOW macro removed (removed from cs_malloc.c; not needed). * S->leftmost added to css (it was tacked onto S->pinv before). * P,Q,R,S components of csd struct changed to p,q,r,s. * Pinv and Q components of css struct changed to pinv and q. * CS_CSC and CS_TRIPLET macros added, to clarify which CSparse functions accept cs matrices in compressed column form, triplet form, or both. * check for negative row/column indices added to cs_entry. * cs_ereach and cs_leaf functions added. * call to cs_sprealloc added to cs_fkeep. * bug fixes in cs_counts and cs_amd (memory leak under rare out-of-memory conditions). Mar 15, 2006: * cs_scc modified so that the row and columns of each component are put in their natural order. cs_dmperm modified so that columns of each block (instead of rows) are placed in their natural order. * cs_splsolve renamed cs_spsolve, generalized to handle both Lx=b and Ux=b, and non-unit diagonal, and placed in its own file (cs_spsolve.c; it was a static function in cs_lu.c). cs_lsolve_mex.c and cs_splsolve_mex.c merged (the latter was removed). cs_spsolve.c file added * cs_dmspy changed, so that block borders line up better with the matrix. Mar 6, 2006: * Makefile modified so that the Tcov tests (which may not be portable) are not compiled and run by the default "make" in the CSparse directory. To compile everything, including the Tcov tests, use "make all". Trivial change to cs.h. Feb 27, 2006: * cs_reach, cs_dfs, cs_splsolve, cs_lu, and cs_scc changed to remove O(n) initialized workspace. * cs_reach and cs_splsolve now user-callable (were static in cs_lu.c). Feb 20, 2006: * various changes to simplify the construction of CXSparse Feb 7, 2006: * changed prototypes, adding "const" where appropriate. SuiteSparse/CXSparse/Doc/lesser.txt0000644001170100242450000006350010346315140016203 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CXSparse/Lib/0000755001170100242450000000000010712165433014147 5ustar davisfacSuiteSparse/CXSparse/Lib/Makefile0000644001170100242450000001062010617170455015612 0ustar davisfac# Modify the "-O" optimization option for best performance (-O3 on Linux): CC = cc CFLAGS = -O I = -I../../UFconfig -I../Include AR = ar cr RANLIB = ranlib all: libcxsparse.a CS_SOURCE = cs_add.c cs_amd.c cs_chol.c cs_cholsol.c cs_counts.c cs_cumsum.c \ cs_droptol.c cs_dropzeros.c cs_dupl.c cs_entry.c \ cs_etree.c cs_fkeep.c cs_gaxpy.c cs_happly.c cs_house.c cs_ipvec.c \ cs_lsolve.c cs_ltsolve.c cs_lu.c cs_lusol.c cs_util.c cs_multiply.c \ cs_permute.c cs_pinv.c cs_post.c cs_pvec.c cs_qr.c cs_qrsol.c \ cs_scatter.c cs_schol.c cs_sqr.c cs_symperm.c cs_tdfs.c cs_malloc.c \ cs_transpose.c cs_compress.c cs_usolve.c cs_utsolve.c cs_scc.c \ cs_maxtrans.c cs_dmperm.c cs_updown.c cs_print.c cs_norm.c cs_load.c \ cs_dfs.c cs_reach.c cs_spsolve.c cs_leaf.c cs_ereach.c cs_randperm.c CS_DI_OBJ = cs_add_di.o cs_amd_di.o cs_chol_di.o cs_cholsol_di.o cs_counts_di.o \ cs_cumsum_di.o cs_droptol_di.o cs_dropzeros_di.o cs_dupl_di.o \ cs_entry_di.o cs_etree_di.o cs_fkeep_di.o cs_gaxpy_di.o cs_happly_di.o \ cs_house_di.o cs_ipvec_di.o cs_lsolve_di.o cs_ltsolve_di.o cs_lu_di.o \ cs_lusol_di.o cs_util_di.o cs_multiply_di.o cs_permute_di.o cs_pinv_di.o \ cs_post_di.o cs_pvec_di.o cs_qr_di.o cs_qrsol_di.o cs_scatter_di.o \ cs_schol_di.o cs_sqr_di.o cs_symperm_di.o cs_tdfs_di.o cs_malloc_di.o \ cs_transpose_di.o cs_compress_di.o cs_usolve_di.o cs_utsolve_di.o \ cs_scc_di.o cs_maxtrans_di.o cs_dmperm_di.o cs_updown_di.o cs_print_di.o \ cs_norm_di.o cs_load_di.o cs_dfs_di.o cs_reach_di.o cs_spsolve_di.o \ cs_leaf_di.o cs_ereach_di.o cs_randperm_di.o CS_DL_OBJ = cs_add_dl.o cs_amd_dl.o cs_chol_dl.o cs_cholsol_dl.o cs_counts_dl.o \ cs_cumsum_dl.o cs_droptol_dl.o cs_dropzeros_dl.o cs_dupl_dl.o \ cs_entry_dl.o cs_etree_dl.o cs_fkeep_dl.o cs_gaxpy_dl.o cs_happly_dl.o \ cs_house_dl.o cs_ipvec_dl.o cs_lsolve_dl.o cs_ltsolve_dl.o cs_lu_dl.o \ cs_lusol_dl.o cs_util_dl.o cs_multiply_dl.o cs_permute_dl.o cs_pinv_dl.o \ cs_post_dl.o cs_pvec_dl.o cs_qr_dl.o cs_qrsol_dl.o cs_scatter_dl.o \ cs_schol_dl.o cs_sqr_dl.o cs_symperm_dl.o cs_tdfs_dl.o cs_malloc_dl.o \ cs_transpose_dl.o cs_compress_dl.o cs_usolve_dl.o cs_utsolve_dl.o \ cs_scc_dl.o cs_maxtrans_dl.o cs_dmperm_dl.o cs_updown_dl.o cs_print_dl.o \ cs_norm_dl.o cs_load_dl.o cs_dfs_dl.o cs_reach_dl.o cs_spsolve_dl.o \ cs_leaf_dl.o cs_ereach_dl.o cs_randperm_dl.o CS_CI_OBJ = cs_add_ci.o cs_amd_ci.o cs_chol_ci.o cs_cholsol_ci.o cs_counts_ci.o \ cs_cumsum_ci.o cs_droptol_ci.o cs_dropzeros_ci.o cs_dupl_ci.o \ cs_entry_ci.o cs_etree_ci.o cs_fkeep_ci.o cs_gaxpy_ci.o cs_happly_ci.o \ cs_house_ci.o cs_ipvec_ci.o cs_lsolve_ci.o cs_ltsolve_ci.o cs_lu_ci.o \ cs_lusol_ci.o cs_util_ci.o cs_multiply_ci.o cs_permute_ci.o cs_pinv_ci.o \ cs_post_ci.o cs_pvec_ci.o cs_qr_ci.o cs_qrsol_ci.o cs_scatter_ci.o \ cs_schol_ci.o cs_sqr_ci.o cs_symperm_ci.o cs_tdfs_ci.o cs_malloc_ci.o \ cs_transpose_ci.o cs_compress_ci.o cs_usolve_ci.o cs_utsolve_ci.o \ cs_scc_ci.o cs_maxtrans_ci.o cs_dmperm_ci.o cs_updown_ci.o cs_print_ci.o \ cs_norm_ci.o cs_load_ci.o cs_dfs_ci.o cs_reach_ci.o cs_spsolve_ci.o \ cs_leaf_ci.o cs_ereach_ci.o cs_randperm_ci.o CS_CL_OBJ = cs_add_cl.o cs_amd_cl.o cs_chol_cl.o cs_cholsol_cl.o cs_counts_cl.o \ cs_cumsum_cl.o cs_droptol_cl.o cs_dropzeros_cl.o cs_dupl_cl.o \ cs_entry_cl.o cs_etree_cl.o cs_fkeep_cl.o cs_gaxpy_cl.o cs_happly_cl.o \ cs_house_cl.o cs_ipvec_cl.o cs_lsolve_cl.o cs_ltsolve_cl.o cs_lu_cl.o \ cs_lusol_cl.o cs_util_cl.o cs_multiply_cl.o cs_permute_cl.o cs_pinv_cl.o \ cs_post_cl.o cs_pvec_cl.o cs_qr_cl.o cs_qrsol_cl.o cs_scatter_cl.o \ cs_schol_cl.o cs_sqr_cl.o cs_symperm_cl.o cs_tdfs_cl.o cs_malloc_cl.o \ cs_transpose_cl.o cs_compress_cl.o cs_usolve_cl.o cs_utsolve_cl.o \ cs_scc_cl.o cs_maxtrans_cl.o cs_dmperm_cl.o cs_updown_cl.o cs_print_cl.o \ cs_norm_cl.o cs_load_cl.o cs_dfs_cl.o cs_reach_cl.o cs_spsolve_cl.o \ cs_leaf_cl.o cs_ereach_cl.o cs_randperm_cl.o CS = cs_convert.o $(CS_DI_OBJ) $(CS_DL_OBJ) $(CS_CI_OBJ) $(CS_CL_OBJ) $(CS): ../Include/cs.h Makefile cs_convert.o: ../Source/cs_convert.c $(CC) $(CFLAGS) $(I) -c $< -o $@ %_di.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -c $< -o $@ %_dl.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_LONG -c $< -o $@ %_ci.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_COMPLEX -c $< -o $@ %_cl.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_LONG -DCS_COMPLEX -c $< -o $@ libcxsparse.a: $(CS) $(AR) libcxsparse.a $(CS) $(RANLIB) libcxsparse.a clean: rm -f *.o purge: distclean distclean: clean rm -f *.a SuiteSparse/CXSparse/Demo/0000755001170100242450000000000010712165433014325 5ustar davisfacSuiteSparse/CXSparse/Demo/Makefile0000644001170100242450000001176510620626640015777 0ustar davisfacCC = cc CFLAGS = -O I = -I../Include -I../../UFconfig CS = ../Lib/libcxsparse.a all: $(CS) cs_demo1 cs_demo2 cs_demo3 \ cs_di_demo1 cs_di_demo2 cs_di_demo3 \ cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 \ cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 \ cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 \ tests cs_idemo tests: test_convert test test_di test_dl test_ci test_cl test: cs_demo1 cs_demo2 cs_demo3 - ./cs_demo1 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/fs_183_1 - ./cs_demo2 < ../Matrix/west0067 - ./cs_demo2 < ../Matrix/lp_afiro - ./cs_demo2 < ../Matrix/ash219 - ./cs_demo2 < ../Matrix/mbeacxc - ./cs_demo2 < ../Matrix/bcsstk01 - ./cs_demo3 < ../Matrix/bcsstk01 - ./cs_demo2 < ../Matrix/bcsstk16 - ./cs_demo3 < ../Matrix/bcsstk16 test_di: cs_di_demo1 cs_di_demo2 cs_di_demo3 - ./cs_di_demo1 < ../Matrix/t1 - ./cs_di_demo2 < ../Matrix/t1 - ./cs_di_demo2 < ../Matrix/fs_183_1 - ./cs_di_demo2 < ../Matrix/west0067 - ./cs_di_demo2 < ../Matrix/lp_afiro - ./cs_di_demo2 < ../Matrix/ash219 - ./cs_di_demo2 < ../Matrix/mbeacxc - ./cs_di_demo2 < ../Matrix/bcsstk01 - ./cs_di_demo3 < ../Matrix/bcsstk01 - ./cs_di_demo2 < ../Matrix/bcsstk16 - ./cs_di_demo3 < ../Matrix/bcsstk16 test_dl: cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 - ./cs_dl_demo1 < ../Matrix/t1 - ./cs_dl_demo2 < ../Matrix/t1 - ./cs_dl_demo2 < ../Matrix/fs_183_1 - ./cs_dl_demo2 < ../Matrix/west0067 - ./cs_dl_demo2 < ../Matrix/lp_afiro - ./cs_dl_demo2 < ../Matrix/ash219 - ./cs_dl_demo2 < ../Matrix/mbeacxc - ./cs_dl_demo2 < ../Matrix/bcsstk01 - ./cs_dl_demo3 < ../Matrix/bcsstk01 - ./cs_dl_demo2 < ../Matrix/bcsstk16 - ./cs_dl_demo3 < ../Matrix/bcsstk16 test_ci: cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 - ./cs_ci_demo1 < ../Matrix/t2 - ./cs_ci_demo2 < ../Matrix/t2 - ./cs_ci_demo2 < ../Matrix/t3 - ./cs_ci_demo2 < ../Matrix/t4 - ./cs_ci_demo2 < ../Matrix/c_west0067 - ./cs_ci_demo2 < ../Matrix/c_mbeacxc - ./cs_ci_demo2 < ../Matrix/young1c - ./cs_ci_demo2 < ../Matrix/qc324 - ./cs_ci_demo2 < ../Matrix/neumann - ./cs_ci_demo2 < ../Matrix/c4 - ./cs_ci_demo3 < ../Matrix/c4 - ./cs_ci_demo2 < ../Matrix/mhd1280b - ./cs_ci_demo3 < ../Matrix/mhd1280b test_cl: cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 - ./cs_cl_demo1 < ../Matrix/t2 - ./cs_cl_demo2 < ../Matrix/t2 - ./cs_cl_demo2 < ../Matrix/t3 - ./cs_cl_demo2 < ../Matrix/t4 - ./cs_cl_demo2 < ../Matrix/c_west0067 - ./cs_cl_demo2 < ../Matrix/c_mbeacxc - ./cs_cl_demo2 < ../Matrix/young1c - ./cs_cl_demo2 < ../Matrix/qc324 - ./cs_cl_demo2 < ../Matrix/neumann - ./cs_cl_demo2 < ../Matrix/c4 - ./cs_cl_demo3 < ../Matrix/c4 - ./cs_cl_demo2 < ../Matrix/mhd1280b - ./cs_cl_demo3 < ../Matrix/mhd1280b test_convert: cs_idemo cs_ldemo - ./cs_idemo < ../Matrix/t2 - ./cs_ldemo < ../Matrix/t2 $(CS): ( cd ../Lib ; $(MAKE) ) cs_demo1: $(CS) cs_demo1.c Makefile $(CS) $(CC) $(I) -o cs_demo1 cs_demo1.c $(CS) -lm cs_demo2: $(CS) cs_demo2.c cs_demo.c cs_demo.h Makefile $(CS) $(CC) $(I) -o cs_demo2 cs_demo2.c cs_demo.c $(CS) -lm cs_demo3: $(CS) cs_demo3.c cs_demo.c cs_demo.h Makefile $(CS) $(CC) $(I) -o cs_demo3 cs_demo3.c cs_demo.c $(CS) -lm cs_di_demo1: $(CS) cs_di_demo1.c Makefile $(CS) $(CC) $(I) -o cs_di_demo1 cs_di_demo1.c $(CS) -lm cs_di_demo2: $(CS) cs_di_demo2.c cs_di_demo.c cs_di_demo.h Makefile $(CS) $(CC) $(I) -o cs_di_demo2 cs_di_demo2.c cs_di_demo.c $(CS) -lm cs_di_demo3: $(CS) cs_di_demo3.c cs_di_demo.c cs_di_demo.h Makefile $(CS) $(CC) $(I) -o cs_di_demo3 cs_di_demo3.c cs_di_demo.c $(CS) -lm cs_ci_demo1: $(CS) cs_ci_demo1.c Makefile $(CS) $(CC) $(I) -o cs_ci_demo1 cs_ci_demo1.c $(CS) -lm cs_ci_demo2: $(CS) cs_ci_demo2.c cs_ci_demo.c cs_ci_demo.h Makefile $(CS) $(CC) $(I) -o cs_ci_demo2 cs_ci_demo2.c cs_ci_demo.c $(CS) -lm cs_ci_demo3: $(CS) cs_ci_demo3.c cs_ci_demo.c cs_ci_demo.h Makefile $(CS) $(CC) $(I) -o cs_ci_demo3 cs_ci_demo3.c cs_ci_demo.c $(CS) -lm cs_dl_demo1: $(CS) cs_dl_demo1.c Makefile $(CS) $(CC) $(I) -o cs_dl_demo1 cs_dl_demo1.c $(CS) -lm cs_dl_demo2: $(CS) cs_dl_demo2.c cs_dl_demo.c cs_dl_demo.h Makefile $(CS) $(CC) $(I) -o cs_dl_demo2 cs_dl_demo2.c cs_dl_demo.c $(CS) -lm cs_dl_demo3: $(CS) cs_dl_demo3.c cs_dl_demo.c cs_dl_demo.h Makefile $(CS) $(CC) $(I) -o cs_dl_demo3 cs_dl_demo3.c cs_dl_demo.c $(CS) -lm cs_cl_demo1: $(CS) cs_cl_demo1.c Makefile $(CS) $(CC) $(I) -o cs_cl_demo1 cs_cl_demo1.c $(CS) -lm cs_cl_demo2: $(CS) cs_cl_demo2.c cs_cl_demo.c cs_cl_demo.h Makefile $(CS) $(CC) $(I) -o cs_cl_demo2 cs_cl_demo2.c cs_cl_demo.c $(CS) -lm cs_cl_demo3: $(CS) cs_cl_demo3.c cs_cl_demo.c cs_cl_demo.h Makefile $(CS) $(CC) $(I) -o cs_cl_demo3 cs_cl_demo3.c cs_cl_demo.c $(CS) -lm cs_idemo: $(CS) cs_idemo.c Makefile $(CS) $(CC) $(I) -o cs_idemo cs_idemo.c $(CS) -lm cs_ldemo: $(CS) cs_ldemo.c Makefile $(CS) $(CC) $(I) -DCS_LONG -o cs_ldemo cs_ldemo.c $(CS) -lm clean: rm -f *.o purge: distclean distclean: clean rm -f cs_demo1 cs_demo2 cs_demo3 *.a rm -f cs_di_demo1 cs_di_demo2 cs_di_demo3 rm -f cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 rm -f cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 rm -f cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 rm -f cs_idemo cs_ldemo SuiteSparse/CXSparse/Demo/cs_demo1.c0000644001170100242450000000201110436111360016146 0ustar davisfac#include "cs.h" int main (void) { cs *T, *A, *Eye, *AT, *C, *D ; int i, m ; T = cs_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_print (T, 0) ; /* print T */ A = cs_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_print (A, 0) ; /* print A */ cs_spfree (T) ; /* clear T */ AT = cs_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_entry (T, i, i, 1) ; Eye = cs_compress (T) ; /* Eye = speye (m) */ cs_spfree (T) ; C = cs_multiply (A, AT) ; /* C = A*A' */ D = cs_add (C, Eye, 1, cs_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_print (D, 0) ; /* print D */ cs_spfree (A) ; /* clear A AT C D Eye */ cs_spfree (AT) ; cs_spfree (C) ; cs_spfree (D) ; cs_spfree (Eye) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_demo2.c0000644001170100242450000000032010326434515016160 0ustar davisfac#include "cs_demo.h" /* cs_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_demo3.c0000644001170100242450000000032410326434521016162 0ustar davisfac#include "cs_demo.h" /* cs_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_demo.out0000644001170100242450000010774710712165431016505 0ustar davisfacmake[1]: Entering directory `/amd/netapp3/vol/research0a/research18/sparse2/SuiteSparse/CXSparse/Demo' ./cs_idemo < ../Matrix/t2 --- cs_idemo, size of CS_INT: 4 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : (3, 3.14159) 1 0 : (3.1, 42) 3 3 : (1, 7) 0 2 : (3.2, 0.1) 1 1 : (2.9, 1.3) 3 0 : (3.5, 0) 3 1 : (0.4, 2.71828) 1 3 : (0.9, 99) 0 0 : (4.5, 6) 2 1 : (1.7, 1) Treal: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 Timag: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3.14159 1 0 : 42 3 3 : 7 0 2 : 0.1 1 1 : 1.3 3 0 : 0 3 1 : 2.71828 1 3 : 99 0 0 : 6 2 1 : 1 A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, 42) 3 : (3.5, 0) 0 : (4.5, 6) col 1 : locations 3 to 5 1 : (2.9, 1.3) 3 : (0.4, 2.71828) 2 : (1.7, 1) col 2 : locations 6 to 7 2 : (3, 3.14159) 0 : (3.2, 0.1) col 3 : locations 8 to 9 3 : (1, 7) 1 : (0.9, 99) C1 = real(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 C2 = imag(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106 col 0 : locations 0 to 2 1 : 42 3 : 0 0 : 6 col 1 : locations 3 to 5 1 : 1.3 3 : 2.71828 2 : 1 col 2 : locations 6 to 7 2 : 3.14159 0 : 0.1 col 3 : locations 8 to 9 3 : 7 1 : 99 A1: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : (3.1, 0) 3 : (3.5, 0) 0 : (4.5, 0) col 1 : locations 3 to 5 1 : (2.9, 0) 3 : (0.4, 0) 2 : (1.7, 0) col 2 : locations 6 to 7 2 : (3, 0) 0 : (3.2, 0) col 3 : locations 8 to 9 3 : (1, 0) 1 : (0.9, 0) A2: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106 col 0 : locations 0 to 2 1 : (0, 42) 3 : (0, 0) 0 : (0, 6) col 1 : locations 3 to 5 1 : (0, 1.3) 3 : (0, 2.71828) 2 : (0, 1) col 2 : locations 6 to 7 2 : (0, 3.14159) 0 : (0, 0.1) col 3 : locations 8 to 9 3 : (0, 7) 1 : (0, 99) B = conj(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, -42) 3 : (3.5, 0) 0 : (4.5, -6) col 1 : locations 3 to 5 1 : (2.9, -1.3) 3 : (0.4, -2.71828) 2 : (1.7, -1) col 2 : locations 6 to 7 2 : (3, -3.14159) 0 : (3.2, -0.1) col 3 : locations 8 to 9 3 : (1, -7) 1 : (0.9, -99) ./cs_ldemo < ../Matrix/t2 --- cs_ldemo, size of CS_INT: 8 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : (3, 3.14159) 1 0 : (3.1, 42) 3 3 : (1, 7) 0 2 : (3.2, 0.1) 1 1 : (2.9, 1.3) 3 0 : (3.5, 0) 3 1 : (0.4, 2.71828) 1 3 : (0.9, 99) 0 0 : (4.5, 6) 2 1 : (1.7, 1) Treal: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 Timag: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3.14159 1 0 : 42 3 3 : 7 0 2 : 0.1 1 1 : 1.3 3 0 : 0 3 1 : 2.71828 1 3 : 99 0 0 : 6 2 1 : 1 A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, 42) 3 : (3.5, 0) 0 : (4.5, 6) col 1 : locations 3 to 5 1 : (2.9, 1.3) 3 : (0.4, 2.71828) 2 : (1.7, 1) col 2 : locations 6 to 7 2 : (3, 3.14159) 0 : (3.2, 0.1) col 3 : locations 8 to 9 3 : (1, 7) 1 : (0.9, 99) C1 = real(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 C2 = imag(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106 col 0 : locations 0 to 2 1 : 42 3 : 0 0 : 6 col 1 : locations 3 to 5 1 : 1.3 3 : 2.71828 2 : 1 col 2 : locations 6 to 7 2 : 3.14159 0 : 0.1 col 3 : locations 8 to 9 3 : 7 1 : 99 A1: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : (3.1, 0) 3 : (3.5, 0) 0 : (4.5, 0) col 1 : locations 3 to 5 1 : (2.9, 0) 3 : (0.4, 0) 2 : (1.7, 0) col 2 : locations 6 to 7 2 : (3, 0) 0 : (3.2, 0) col 3 : locations 8 to 9 3 : (1, 0) 1 : (0.9, 0) A2: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106 col 0 : locations 0 to 2 1 : (0, 42) 3 : (0, 0) 0 : (0, 6) col 1 : locations 3 to 5 1 : (0, 1.3) 3 : (0, 2.71828) 2 : (0, 1) col 2 : locations 6 to 7 2 : (0, 3.14159) 0 : (0, 0.1) col 3 : locations 8 to 9 3 : (0, 7) 1 : (0, 99) B = conj(A): CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, -42) 3 : (3.5, 0) 0 : (4.5, -6) col 1 : locations 3 to 5 1 : (2.9, -1.3) 3 : (0.4, -2.71828) 2 : (1.7, -1) col 2 : locations 6 to 7 2 : (3, -3.14159) 0 : (3.2, -0.1) col 3 : locations 8 to 9 3 : (1, -7) 1 : (0.9, -99) ./cs_demo1 < ../Matrix/t1 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 AT: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 7.7 col 0 : locations 0 to 1 0 : 4.5 2 : 3.2 col 1 : locations 2 to 4 0 : 3.1 1 : 2.9 3 : 0.9 col 2 : locations 5 to 6 1 : 1.7 2 : 3 col 3 : locations 7 to 9 0 : 3.5 1 : 0.4 3 : 1 D: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 139.58 col 0 : locations 0 to 3 1 : 13.95 3 : 15.75 0 : 100.28 2 : 9.6 col 1 : locations 4 to 7 1 : 88.62 3 : 12.91 0 : 13.95 2 : 4.93 col 2 : locations 8 to 11 1 : 4.93 3 : 0.68 2 : 81.68 0 : 9.6 col 3 : locations 12 to 15 1 : 12.91 3 : 83.2 0 : 15.75 2 : 0.68 ./cs_demo2 < ../Matrix/t1 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.11e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 3.06e-17 QR amd(A'*A) time: 0.00 resid: 2.30e-17 LU natural time: 0.00 resid: 1.53e-17 LU amd(A+A') time: 0.00 resid: 1.53e-17 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 1.53e-17 ./cs_demo2 < ../Matrix/fs_183_1 --- Matrix: 183-by-183, nnz: 988 (sym: 0: nnz 0), norm: 1.70e+09 zero entries dropped: 71 tiny entries dropped: 10 blocks: 38 singletons: 37 structural rank: 183 QR natural time: 0.01 resid: 1.42e-27 QR amd(A'*A) time: 0.00 resid: 3.35e-28 LU natural time: 0.01 resid: 6.20e-28 LU amd(A+A') time: 0.00 resid: 1.55e-27 LU amd(S'*S) time: 0.00 resid: 6.98e-28 LU amd(A'*A) time: 0.00 resid: 6.98e-28 ./cs_demo2 < ../Matrix/west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.14e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 5.19e-17 QR amd(A'*A) time: 0.00 resid: 3.25e-17 LU natural time: 0.00 resid: 3.89e-17 LU amd(A+A') time: 0.00 resid: 2.27e-17 LU amd(S'*S) time: 0.00 resid: 1.95e-17 LU amd(A'*A) time: 0.00 resid: 2.60e-17 ./cs_demo2 < ../Matrix/lp_afiro --- Matrix: 27-by-51, nnz: 102 (sym: 0: nnz 0), norm: 3.43e+00 blocks: 1 singletons: 0 structural rank: 27 QR natural time: 0.00 resid: 3.85e-16 QR amd(A'*A) time: 0.00 resid: 1.50e-16 ./cs_demo2 < ../Matrix/ash219 --- Matrix: 219-by-85, nnz: 438 (sym: 0: nnz 0), norm: 9.00e+00 blocks: 1 singletons: 0 structural rank: 85 QR natural time: 0.00 resid: 1.61e-02 QR amd(A'*A) time: 0.00 resid: 1.61e-02 ./cs_demo2 < ../Matrix/mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.13 resid: nan QR amd(A'*A) time: 0.19 resid: nan ./cs_demo2 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 blocks: 1 singletons: 0 structural rank: 48 QR natural time: 0.00 resid: 3.65e-19 QR amd(A'*A) time: 0.00 resid: 4.02e-19 LU natural time: 0.00 resid: 2.17e-19 LU amd(A+A') time: 0.00 resid: 1.87e-19 LU amd(S'*S) time: 0.00 resid: 2.38e-19 LU amd(A'*A) time: 0.00 resid: 2.38e-19 Chol natural time: 0.00 resid: 2.64e-19 Chol amd(A+A') time: 0.00 resid: 2.55e-19 ./cs_demo3 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 2.55e-19 update: time: 0.00 update: time: 0.00 (incl solve) resid: 9.66e-19 rechol: time: 0.00 (incl solve) resid: 1.55e-18 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 3.74e-17 ./cs_demo2 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 blocks: 75 singletons: 74 structural rank: 4884 QR amd(A'*A) time: 2.13 resid: 2.01e-22 LU amd(A+A') time: 1.19 resid: 1.10e-22 LU amd(S'*S) time: 1.15 resid: 1.28e-22 LU amd(A'*A) time: 1.22 resid: 1.78e-22 Chol amd(A+A') time: 0.37 resid: 1.19e-22 ./cs_demo3 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 chol then update/downdate amd(A+A') symbolic chol time 0.02 numeric chol time 0.35 solve chol time 0.00 original: resid: 1.19e-22 update: time: 0.00 update: time: 0.01 (incl solve) resid: 1.12e-23 rechol: time: 0.34 (incl solve) resid: 1.17e-23 downdate: time: 0.00 downdate: time: 0.01 (incl solve) resid: 4.09e-22 ./cs_di_demo1 < ../Matrix/t1 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 AT: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 7.7 col 0 : locations 0 to 1 0 : 4.5 2 : 3.2 col 1 : locations 2 to 4 0 : 3.1 1 : 2.9 3 : 0.9 col 2 : locations 5 to 6 1 : 1.7 2 : 3 col 3 : locations 7 to 9 0 : 3.5 1 : 0.4 3 : 1 D: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 139.58 col 0 : locations 0 to 3 1 : 13.95 3 : 15.75 0 : 100.28 2 : 9.6 col 1 : locations 4 to 7 1 : 88.62 3 : 12.91 0 : 13.95 2 : 4.93 col 2 : locations 8 to 11 1 : 4.93 3 : 0.68 2 : 81.68 0 : 9.6 col 3 : locations 12 to 15 1 : 12.91 3 : 83.2 0 : 15.75 2 : 0.68 ./cs_di_demo2 < ../Matrix/t1 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.11e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 3.06e-17 QR amd(A'*A) time: 0.00 resid: 2.30e-17 LU natural time: 0.00 resid: 1.53e-17 LU amd(A+A') time: 0.00 resid: 1.53e-17 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 1.53e-17 ./cs_di_demo2 < ../Matrix/fs_183_1 --- Matrix: 183-by-183, nnz: 988 (sym: 0: nnz 0), norm: 1.70e+09 zero entries dropped: 71 tiny entries dropped: 10 blocks: 38 singletons: 37 structural rank: 183 QR natural time: 0.00 resid: 1.42e-27 QR amd(A'*A) time: 0.00 resid: 3.35e-28 LU natural time: 0.01 resid: 6.20e-28 LU amd(A+A') time: 0.00 resid: 1.55e-27 LU amd(S'*S) time: 0.00 resid: 6.98e-28 LU amd(A'*A) time: 0.00 resid: 6.98e-28 ./cs_di_demo2 < ../Matrix/west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.14e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 5.19e-17 QR amd(A'*A) time: 0.00 resid: 3.25e-17 LU natural time: 0.00 resid: 3.89e-17 LU amd(A+A') time: 0.00 resid: 2.27e-17 LU amd(S'*S) time: 0.00 resid: 1.95e-17 LU amd(A'*A) time: 0.00 resid: 2.60e-17 ./cs_di_demo2 < ../Matrix/lp_afiro --- Matrix: 27-by-51, nnz: 102 (sym: 0: nnz 0), norm: 3.43e+00 blocks: 1 singletons: 0 structural rank: 27 QR natural time: 0.00 resid: 3.85e-16 QR amd(A'*A) time: 0.00 resid: 1.50e-16 ./cs_di_demo2 < ../Matrix/ash219 --- Matrix: 219-by-85, nnz: 438 (sym: 0: nnz 0), norm: 9.00e+00 blocks: 1 singletons: 0 structural rank: 85 QR natural time: 0.00 resid: 1.61e-02 QR amd(A'*A) time: 0.00 resid: 1.61e-02 ./cs_di_demo2 < ../Matrix/mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.13 resid: nan QR amd(A'*A) time: 0.19 resid: nan ./cs_di_demo2 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 blocks: 1 singletons: 0 structural rank: 48 QR natural time: 0.00 resid: 3.65e-19 QR amd(A'*A) time: 0.00 resid: 4.02e-19 LU natural time: 0.00 resid: 2.17e-19 LU amd(A+A') time: 0.00 resid: 1.87e-19 LU amd(S'*S) time: 0.00 resid: 2.38e-19 LU amd(A'*A) time: 0.00 resid: 2.38e-19 Chol natural time: 0.00 resid: 2.64e-19 Chol amd(A+A') time: 0.00 resid: 2.55e-19 ./cs_di_demo3 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 2.55e-19 update: time: 0.00 update: time: 0.00 (incl solve) resid: 9.66e-19 rechol: time: 0.00 (incl solve) resid: 1.55e-18 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 3.74e-17 ./cs_di_demo2 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 blocks: 75 singletons: 74 structural rank: 4884 QR amd(A'*A) time: 2.17 resid: 2.01e-22 LU amd(A+A') time: 1.23 resid: 1.10e-22 LU amd(S'*S) time: 1.18 resid: 1.28e-22 LU amd(A'*A) time: 1.23 resid: 1.78e-22 Chol amd(A+A') time: 0.39 resid: 1.19e-22 ./cs_di_demo3 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 chol then update/downdate amd(A+A') symbolic chol time 0.03 numeric chol time 0.33 solve chol time 0.00 original: resid: 1.19e-22 update: time: 0.00 update: time: 0.01 (incl solve) resid: 1.12e-23 rechol: time: 0.34 (incl solve) resid: 1.17e-23 downdate: time: 0.00 downdate: time: 0.01 (incl solve) resid: 4.09e-22 ./cs_dl_demo1 < ../Matrix/t1 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : 3 1 0 : 3.1 3 3 : 1 0 2 : 3.2 1 1 : 2.9 3 0 : 3.5 3 1 : 0.4 1 3 : 0.9 0 0 : 4.5 2 1 : 1.7 A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1 col 0 : locations 0 to 2 1 : 3.1 3 : 3.5 0 : 4.5 col 1 : locations 3 to 5 1 : 2.9 3 : 0.4 2 : 1.7 col 2 : locations 6 to 7 2 : 3 0 : 3.2 col 3 : locations 8 to 9 3 : 1 1 : 0.9 AT: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 7.7 col 0 : locations 0 to 1 0 : 4.5 2 : 3.2 col 1 : locations 2 to 4 0 : 3.1 1 : 2.9 3 : 0.9 col 2 : locations 5 to 6 1 : 1.7 2 : 3 col 3 : locations 7 to 9 0 : 3.5 1 : 0.4 3 : 1 D: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 139.58 col 0 : locations 0 to 3 1 : 13.95 3 : 15.75 0 : 100.28 2 : 9.6 col 1 : locations 4 to 7 1 : 88.62 3 : 12.91 0 : 13.95 2 : 4.93 col 2 : locations 8 to 11 1 : 4.93 3 : 0.68 2 : 81.68 0 : 9.6 col 3 : locations 12 to 15 1 : 12.91 3 : 83.2 0 : 15.75 2 : 0.68 ./cs_dl_demo2 < ../Matrix/t1 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.11e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 3.06e-17 QR amd(A'*A) time: 0.00 resid: 2.30e-17 LU natural time: 0.00 resid: 1.53e-17 LU amd(A+A') time: 0.00 resid: 1.53e-17 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 1.53e-17 ./cs_dl_demo2 < ../Matrix/fs_183_1 --- Matrix: 183-by-183, nnz: 988 (sym: 0: nnz 0), norm: 1.70e+09 zero entries dropped: 71 tiny entries dropped: 10 blocks: 38 singletons: 37 structural rank: 183 QR natural time: 0.01 resid: 1.42e-27 QR amd(A'*A) time: 0.00 resid: 3.35e-28 LU natural time: 0.00 resid: 6.20e-28 LU amd(A+A') time: 0.00 resid: 1.55e-27 LU amd(S'*S) time: 0.00 resid: 6.98e-28 LU amd(A'*A) time: 0.01 resid: 6.98e-28 ./cs_dl_demo2 < ../Matrix/west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.14e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 5.19e-17 QR amd(A'*A) time: 0.00 resid: 3.25e-17 LU natural time: 0.00 resid: 3.89e-17 LU amd(A+A') time: 0.00 resid: 2.27e-17 LU amd(S'*S) time: 0.00 resid: 1.95e-17 LU amd(A'*A) time: 0.00 resid: 2.60e-17 ./cs_dl_demo2 < ../Matrix/lp_afiro --- Matrix: 27-by-51, nnz: 102 (sym: 0: nnz 0), norm: 3.43e+00 blocks: 1 singletons: 0 structural rank: 27 QR natural time: 0.00 resid: 3.85e-16 QR amd(A'*A) time: 0.00 resid: 1.50e-16 ./cs_dl_demo2 < ../Matrix/ash219 --- Matrix: 219-by-85, nnz: 438 (sym: 0: nnz 0), norm: 9.00e+00 blocks: 1 singletons: 0 structural rank: 85 QR natural time: 0.00 resid: 1.61e-02 QR amd(A'*A) time: 0.00 resid: 1.61e-02 ./cs_dl_demo2 < ../Matrix/mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.15 resid: nan QR amd(A'*A) time: 0.20 resid: nan ./cs_dl_demo2 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 blocks: 1 singletons: 0 structural rank: 48 QR natural time: 0.00 resid: 3.65e-19 QR amd(A'*A) time: 0.00 resid: 4.02e-19 LU natural time: 0.00 resid: 2.17e-19 LU amd(A+A') time: 0.00 resid: 1.87e-19 LU amd(S'*S) time: 0.00 resid: 2.38e-19 LU amd(A'*A) time: 0.00 resid: 2.38e-19 Chol natural time: 0.00 resid: 2.64e-19 Chol amd(A+A') time: 0.00 resid: 2.55e-19 ./cs_dl_demo3 < ../Matrix/bcsstk01 --- Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 2.55e-19 update: time: 0.00 update: time: 0.00 (incl solve) resid: 9.66e-19 rechol: time: 0.00 (incl solve) resid: 1.55e-18 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 3.74e-17 ./cs_dl_demo2 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 blocks: 75 singletons: 74 structural rank: 4884 QR amd(A'*A) time: 2.62 resid: 2.01e-22 LU amd(A+A') time: 1.43 resid: 1.10e-22 LU amd(S'*S) time: 1.28 resid: 1.28e-22 LU amd(A'*A) time: 1.35 resid: 1.78e-22 Chol amd(A+A') time: 0.49 resid: 1.19e-22 ./cs_dl_demo3 < ../Matrix/bcsstk16 --- Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09 chol then update/downdate amd(A+A') symbolic chol time 0.02 numeric chol time 0.46 solve chol time 0.02 original: resid: 1.19e-22 update: time: 0.00 update: time: 0.01 (incl solve) resid: 1.12e-23 rechol: time: 0.52 (incl solve) resid: 1.17e-23 downdate: time: 0.00 downdate: time: 0.01 (incl solve) resid: 4.09e-22 ./cs_ci_demo1 < ../Matrix/t2 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : (3, 3.14159) 1 0 : (3.1, 42) 3 3 : (1, 7) 0 2 : (3.2, 0.1) 1 1 : (2.9, 1.3) 3 0 : (3.5, 0) 3 1 : (0.4, 2.71828) 1 3 : (0.9, 99) 0 0 : (4.5, 6) 2 1 : (1.7, 1) A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, 42) 3 : (3.5, 0) 0 : (4.5, 6) col 1 : locations 3 to 5 1 : (2.9, 1.3) 3 : (0.4, 2.71828) 2 : (1.7, 1) col 2 : locations 6 to 7 2 : (3, 3.14159) 0 : (3.2, 0.1) col 3 : locations 8 to 9 3 : (1, 7) 1 : (0.9, 99) AT: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 144.296 col 0 : locations 0 to 1 0 : (4.5, -6) 2 : (3.2, -0.1) col 1 : locations 2 to 4 0 : (3.1, -42) 1 : (2.9, -1.3) 3 : (0.9, -99) col 2 : locations 5 to 6 1 : (1.7, -1) 2 : (3, -3.14159) col 3 : locations 7 to 9 0 : (3.5, -0) 1 : (0.4, -2.71828) 3 : (1, -7) D: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 25308.3 col 0 : locations 0 to 3 1 : (265.95, 170.4) 3 : (15.75, -21) 0 : (12720.7, 0) 2 : (9.91416, 9.7531) col 1 : locations 4 to 7 1 : (24239.7, 0) 3 : (709.444, -232.337) 0 : (265.95, -170.4) 2 : (6.23, 0.69) col 2 : locations 8 to 11 1 : (6.23, -0.69) 3 : (3.39828, 4.22108) 2 : (12676.9, 0) 0 : (9.91416, -9.7531) col 3 : locations 12 to 15 1 : (709.444, 232.337) 3 : (12724, 0) 0 : (15.75, 21) 2 : (3.39828, -4.22108) ./cs_ci_demo2 < ../Matrix/t2 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.06e+02 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 2.06e-17 QR amd(A'*A) time: 0.00 resid: 6.36e-18 LU natural time: 0.00 resid: 4.88e-18 LU amd(A+A') time: 0.00 resid: 2.11e-18 LU amd(S'*S) time: 0.00 resid: 6.36e-18 LU amd(A'*A) time: 0.00 resid: 2.11e-18 ./cs_ci_demo2 < ../Matrix/t3 --- Matrix: 3-by-4, nnz: 12 (sym: 0: nnz 0), norm: 3.06e+00 blocks: 1 singletons: 0 structural rank: 3 QR natural time: 0.00 resid: 1.05e-16 QR amd(A'*A) time: 0.00 resid: 1.05e-16 ./cs_ci_demo2 < ../Matrix/t4 --- Matrix: 2-by-2, nnz: 3 (sym: 1: nnz 4), norm: 2.83e+00 blocks: 1 singletons: 0 structural rank: 2 QR natural time: 0.00 resid: 5.65e-17 QR amd(A'*A) time: 0.00 resid: 5.65e-17 LU natural time: 0.00 resid: 0.00e+00 LU amd(A+A') time: 0.00 resid: 0.00e+00 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 0.00e+00 Chol natural time: 0.00 (failed) Chol amd(A+A') time: 0.00 (failed) ./cs_ci_demo2 < ../Matrix/c_west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.17e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 8.16e-17 QR amd(A'*A) time: 0.00 resid: 5.34e-17 LU natural time: 0.00 resid: 4.54e-17 LU amd(A+A') time: 0.00 resid: 5.90e-17 LU amd(S'*S) time: 0.00 resid: 5.28e-17 LU amd(A'*A) time: 0.00 resid: 4.76e-17 ./cs_ci_demo2 < ../Matrix/c_mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.32 resid: nan QR amd(A'*A) time: 0.37 resid: nan ./cs_ci_demo2 < ../Matrix/young1c --- Matrix: 841-by-841, nnz: 4089 (sym: 0: nnz 0), norm: 7.30e+02 blocks: 1 singletons: 0 structural rank: 841 QR natural time: 0.02 resid: 1.51e-16 QR amd(A'*A) time: 0.00 resid: 1.53e-16 LU natural time: 0.01 resid: 1.39e-16 LU amd(A+A') time: 0.01 resid: 2.95e-16 LU amd(S'*S) time: 0.01 resid: 3.37e-16 LU amd(A'*A) time: 0.00 resid: 3.37e-16 ./cs_ci_demo2 < ../Matrix/qc324 --- Matrix: 324-by-324, nnz: 26730 (sym: 0: nnz 0), norm: 1.71e+00 blocks: 1 singletons: 0 structural rank: 324 QR natural time: 0.04 resid: 9.08e-17 QR amd(A'*A) time: 0.05 resid: 8.71e-17 LU natural time: 0.02 resid: 6.01e-17 LU amd(A+A') time: 0.02 resid: 4.05e-17 LU amd(S'*S) time: 0.04 resid: 4.71e-17 LU amd(A'*A) time: 0.03 resid: 4.71e-17 ./cs_ci_demo2 < ../Matrix/neumann --- Matrix: 1600-by-1600, nnz: 7840 (sym: 0: nnz 0), norm: 1.41e+01 blocks: 1 singletons: 0 structural rank: 1600 QR amd(A'*A) time: 0.03 resid: 1.04e-15 LU amd(A+A') time: 0.00 resid: 3.55e-16 LU amd(S'*S) time: 0.02 resid: 4.03e-16 LU amd(A'*A) time: 0.02 resid: 4.03e-16 ./cs_ci_demo2 < ../Matrix/c4 --- Matrix: 4-by-4, nnz: 10 (sym: -1: nnz 16), norm: 7.37e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 5.85e-17 QR amd(A'*A) time: 0.00 resid: 5.85e-17 LU natural time: 0.00 resid: 2.29e-17 LU amd(A+A') time: 0.00 resid: 2.29e-17 LU amd(S'*S) time: 0.00 resid: 2.29e-17 LU amd(A'*A) time: 0.00 resid: 2.29e-17 Chol natural time: 0.00 resid: 6.88e-17 Chol amd(A+A') time: 0.00 resid: 6.88e-17 ./cs_ci_demo3 < ../Matrix/c4 --- Matrix: 4-by-4, nnz: 10 (sym: -1: nnz 16), norm: 7.37e+01 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 6.88e-17 update: time: 0.00 update: time: 0.00 (incl solve) resid: 6.49e-17 rechol: time: 0.00 (incl solve) resid: 6.49e-17 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 5.85e-17 ./cs_ci_demo2 < ../Matrix/mhd1280b --- Matrix: 1280-by-1280, nnz: 11963 (sym: -1: nnz 22646), norm: 8.00e+01 tiny entries dropped: 66 blocks: 20 singletons: 14 structural rank: 1280 QR amd(A'*A) time: 0.01 resid: 6.15e-25 LU amd(A+A') time: 0.01 resid: 2.33e-25 LU amd(S'*S) time: 0.01 resid: 3.96e-25 LU amd(A'*A) time: 0.01 resid: 3.96e-25 Chol amd(A+A') time: 0.00 resid: 1.58e-25 ./cs_ci_demo3 < ../Matrix/mhd1280b --- Matrix: 1280-by-1280, nnz: 12029 (sym: -1: nnz 22778), norm: 8.00e+01 chol then update/downdate amd(A+A') symbolic chol time 0.01 numeric chol time 0.00 solve chol time 0.00 original: resid: 1.51e-25 update: time: 0.00 update: time: 0.00 (incl solve) resid: 1.75e-25 rechol: time: 0.00 (incl solve) resid: 1.71e-25 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 5.85e-25 ./cs_cl_demo1 < ../Matrix/t2 T: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 triplet: 4-by-4, nzmax: 16 nnz: 10 2 2 : (3, 3.14159) 1 0 : (3.1, 42) 3 3 : (1, 7) 0 2 : (3.2, 0.1) 1 1 : (2.9, 1.3) 3 0 : (3.5, 0) 3 1 : (0.4, 2.71828) 1 3 : (0.9, 99) 0 0 : (4.5, 6) 2 1 : (1.7, 1) A: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 106.075 col 0 : locations 0 to 2 1 : (3.1, 42) 3 : (3.5, 0) 0 : (4.5, 6) col 1 : locations 3 to 5 1 : (2.9, 1.3) 3 : (0.4, 2.71828) 2 : (1.7, 1) col 2 : locations 6 to 7 2 : (3, 3.14159) 0 : (3.2, 0.1) col 3 : locations 8 to 9 3 : (1, 7) 1 : (0.9, 99) AT: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 10 nnz: 10, 1-norm: 144.296 col 0 : locations 0 to 1 0 : (4.5, -6) 2 : (3.2, -0.1) col 1 : locations 2 to 4 0 : (3.1, -42) 1 : (2.9, -1.3) 3 : (0.9, -99) col 2 : locations 5 to 6 1 : (1.7, -1) 2 : (3, -3.14159) col 3 : locations 7 to 9 0 : (3.5, -0) 1 : (0.4, -2.71828) 3 : (1, -7) D: CXSparse Version 2.2.1, Nov 1, 2007. Copyright (c) Timothy A. Davis, 2006-2007 4-by-4, nzmax: 16 nnz: 16, 1-norm: 25308.3 col 0 : locations 0 to 3 1 : (265.95, 170.4) 3 : (15.75, -21) 0 : (12720.7, 0) 2 : (9.91416, 9.7531) col 1 : locations 4 to 7 1 : (24239.7, 0) 3 : (709.444, -232.337) 0 : (265.95, -170.4) 2 : (6.23, 0.69) col 2 : locations 8 to 11 1 : (6.23, -0.69) 3 : (3.39828, 4.22108) 2 : (12676.9, 0) 0 : (9.91416, -9.7531) col 3 : locations 12 to 15 1 : (709.444, 232.337) 3 : (12724, 0) 0 : (15.75, 21) 2 : (3.39828, -4.22108) ./cs_cl_demo2 < ../Matrix/t2 --- Matrix: 4-by-4, nnz: 10 (sym: 0: nnz 0), norm: 1.06e+02 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 2.06e-17 QR amd(A'*A) time: 0.00 resid: 6.36e-18 LU natural time: 0.00 resid: 4.88e-18 LU amd(A+A') time: 0.00 resid: 2.11e-18 LU amd(S'*S) time: 0.00 resid: 6.36e-18 LU amd(A'*A) time: 0.00 resid: 2.11e-18 ./cs_cl_demo2 < ../Matrix/t3 --- Matrix: 3-by-4, nnz: 12 (sym: 0: nnz 0), norm: 3.06e+00 blocks: 1 singletons: 0 structural rank: 3 QR natural time: 0.00 resid: 1.05e-16 QR amd(A'*A) time: 0.00 resid: 1.05e-16 ./cs_cl_demo2 < ../Matrix/t4 --- Matrix: 2-by-2, nnz: 3 (sym: 1: nnz 4), norm: 2.83e+00 blocks: 1 singletons: 0 structural rank: 2 QR natural time: 0.00 resid: 5.65e-17 QR amd(A'*A) time: 0.00 resid: 5.65e-17 LU natural time: 0.00 resid: 0.00e+00 LU amd(A+A') time: 0.00 resid: 0.00e+00 LU amd(S'*S) time: 0.00 resid: 0.00e+00 LU amd(A'*A) time: 0.00 resid: 0.00e+00 Chol natural time: 0.00 (failed) Chol amd(A+A') time: 0.00 (failed) ./cs_cl_demo2 < ../Matrix/c_west0067 --- Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.17e+00 blocks: 2 singletons: 1 structural rank: 67 QR natural time: 0.00 resid: 8.16e-17 QR amd(A'*A) time: 0.00 resid: 5.34e-17 LU natural time: 0.00 resid: 4.54e-17 LU amd(A+A') time: 0.00 resid: 5.90e-17 LU amd(S'*S) time: 0.00 resid: 5.28e-17 LU amd(A'*A) time: 0.00 resid: 4.76e-17 ./cs_cl_demo2 < ../Matrix/c_mbeacxc --- Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01 blocks: 10 singletons: 8 structural rank: 448 QR natural time: 0.29 resid: nan QR amd(A'*A) time: 0.35 resid: nan ./cs_cl_demo2 < ../Matrix/young1c --- Matrix: 841-by-841, nnz: 4089 (sym: 0: nnz 0), norm: 7.30e+02 blocks: 1 singletons: 0 structural rank: 841 QR natural time: 0.02 resid: 1.51e-16 QR amd(A'*A) time: 0.01 resid: 1.53e-16 LU natural time: 0.01 resid: 1.39e-16 LU amd(A+A') time: 0.01 resid: 2.95e-16 LU amd(S'*S) time: 0.01 resid: 3.37e-16 LU amd(A'*A) time: 0.00 resid: 3.37e-16 ./cs_cl_demo2 < ../Matrix/qc324 --- Matrix: 324-by-324, nnz: 26730 (sym: 0: nnz 0), norm: 1.71e+00 blocks: 1 singletons: 0 structural rank: 324 QR natural time: 0.04 resid: 9.08e-17 QR amd(A'*A) time: 0.06 resid: 8.71e-17 LU natural time: 0.02 resid: 6.01e-17 LU amd(A+A') time: 0.03 resid: 4.05e-17 LU amd(S'*S) time: 0.03 resid: 4.71e-17 LU amd(A'*A) time: 0.03 resid: 4.71e-17 ./cs_cl_demo2 < ../Matrix/neumann --- Matrix: 1600-by-1600, nnz: 7840 (sym: 0: nnz 0), norm: 1.41e+01 blocks: 1 singletons: 0 structural rank: 1600 QR amd(A'*A) time: 0.03 resid: 1.04e-15 LU amd(A+A') time: 0.01 resid: 3.55e-16 LU amd(S'*S) time: 0.03 resid: 4.03e-16 LU amd(A'*A) time: 0.01 resid: 4.03e-16 ./cs_cl_demo2 < ../Matrix/c4 --- Matrix: 4-by-4, nnz: 10 (sym: -1: nnz 16), norm: 7.37e+01 blocks: 1 singletons: 0 structural rank: 4 QR natural time: 0.00 resid: 5.85e-17 QR amd(A'*A) time: 0.00 resid: 5.85e-17 LU natural time: 0.00 resid: 2.29e-17 LU amd(A+A') time: 0.00 resid: 2.29e-17 LU amd(S'*S) time: 0.00 resid: 2.29e-17 LU amd(A'*A) time: 0.00 resid: 2.29e-17 Chol natural time: 0.00 resid: 6.88e-17 Chol amd(A+A') time: 0.00 resid: 6.88e-17 ./cs_cl_demo3 < ../Matrix/c4 --- Matrix: 4-by-4, nnz: 10 (sym: -1: nnz 16), norm: 7.37e+01 chol then update/downdate amd(A+A') symbolic chol time 0.00 numeric chol time 0.00 solve chol time 0.00 original: resid: 6.88e-17 update: time: 0.00 update: time: 0.00 (incl solve) resid: 6.49e-17 rechol: time: 0.00 (incl solve) resid: 6.49e-17 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 5.85e-17 ./cs_cl_demo2 < ../Matrix/mhd1280b --- Matrix: 1280-by-1280, nnz: 11963 (sym: -1: nnz 22646), norm: 8.00e+01 tiny entries dropped: 66 blocks: 20 singletons: 14 structural rank: 1280 QR amd(A'*A) time: 0.01 resid: 6.15e-25 LU amd(A+A') time: 0.00 resid: 2.33e-25 LU amd(S'*S) time: 0.01 resid: 3.96e-25 LU amd(A'*A) time: 0.00 resid: 3.96e-25 Chol amd(A+A') time: 0.01 resid: 1.58e-25 ./cs_cl_demo3 < ../Matrix/mhd1280b --- Matrix: 1280-by-1280, nnz: 12029 (sym: -1: nnz 22778), norm: 8.00e+01 chol then update/downdate amd(A+A') symbolic chol time 0.01 numeric chol time 0.00 solve chol time 0.00 original: resid: 1.51e-25 update: time: 0.00 update: time: 0.00 (incl solve) resid: 1.75e-25 rechol: time: 0.00 (incl solve) resid: 1.71e-25 downdate: time: 0.00 downdate: time: 0.00 (incl solve) resid: 5.85e-25 make[1]: Leaving directory `/amd/netapp3/vol/research0a/research18/sparse2/SuiteSparse/CXSparse/Demo' SuiteSparse/CXSparse/Demo/cs_demo.c0000644001170100242450000002315210440110365016075 0ustar davisfac#include "cs_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static int is_sym (cs *A) { int is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static int dropdiag (int i, int j, double aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs *make_sym (cs *A) { cs *AT, *C ; AT = cs_transpose (A, 1) ; /* AT = A' */ cs_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_add (A, AT, 1, 1) ; /* C = A+AT */ cs_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (double *x, double *b, int m) { int i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (double *x, int n) { int i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, fabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (int ok, cs *A, double *x, double *b, double *resid) { int i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (int order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs *T, *A, *C ; int sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_compress (T) ; /* A = compressed-column form of T */ cs_spfree (T) ; /* clear T */ if (!cs_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ; Prob->b = cs_malloc (mn, sizeof (double)) ; Prob->x = cs_malloc (mn, sizeof (double)) ; Prob->resid = cs_malloc (mn, sizeof (double)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_spfree (Prob->A) ; if (Prob->sym) cs_spfree (Prob->C) ; cs_free (Prob->b) ; cs_free (Prob->x) ; cs_free (Prob->resid) ; return (cs_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ int demo2 (problem *Prob) { cs *A, *C ; double *b, *x, *resid, t, tol ; int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; csd *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %d singletons: %d structural rank: %d\n", nb, ns, sprank) ; cs_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static int done3 (int ok, css *S, csn *N, double *y, cs *W, cs *E, int *p) { cs_sfree (S) ; cs_nfree (N) ; cs_free (y) ; cs_spfree (W) ; cs_spfree (E) ; cs_free (p) ; return (ok) ; } /* Cholesky update/downdate */ int demo3 (problem *Prob) { cs *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, t1 ; css *S = NULL ; csn *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_malloc (n, sizeof (double)) ; t = tic () ; S = cs_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_pinv (S->pinv, n) ; W2 = cs_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_transpose (W2,1) ; WW = cs_multiply (W2, WT) ; cs_spfree (WT) ; cs_spfree (W2) ; E = cs_add (C, WW, 1, 1) ; cs_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_nfree (N) ; /* clear N */ t = tic () ; N = cs_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_lsolve (N->L, y) ; /* y = L\y */ cs_ltsolve (N->L, y) ; /* y = L'\y */ cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CXSparse/Demo/cs_demo.h0000644001170100242450000000044410414325170016104 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs *A ; cs *C ; int sym ; double *x ; double *b ; double *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; int demo2 (problem *Prob) ; int demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CXSparse/Demo/README.txt0000644001170100242450000000045410375603510016024 0ustar davisfacCXSparse/Demo: to compile a run the demos, just type "make" in this directory. The printed residuals should all be small, except for the mbeacxc matrix (which is numerically and structurally singular), and ash219 (which is a least-squares problem). See cs_demo.out for the proper output of "make". SuiteSparse/CXSparse/Demo/cs_idemo.c0000644001170100242450000000300610623313303016242 0ustar davisfac#include "cs.h" /* test real/complex conversion routines (int version) */ int main (void) { cs_ci *T, *A, *A1, *A2, *B ; cs_di *C1, *C2, *Treal, *Timag ; printf ("\n--- cs_idemo, size of CS_INT: %d\n", (int) sizeof (CS_INT)) ; T = cs_ci_load (stdin) ; /* load a complex triplet matrix, T */ printf ("\nT:\n") ; cs_ci_print (T, 0) ; Treal = cs_i_real (T, 1) ; /* Treal = real part of T */ printf ("\nTreal:\n") ; cs_di_print (Treal, 0) ; Timag = cs_i_real (T, 0) ; /* Treal = imaginary part of T */ printf ("\nTimag:\n") ; cs_di_print (Timag, 0) ; A = cs_ci_compress (T) ; /* A = compressed-column form of T */ printf ("\nA:\n") ; cs_ci_print (A, 0) ; C1 = cs_i_real (A, 1) ; /* C1 = real (A) */ printf ("\nC1 = real(A):\n") ; cs_di_print (C1, 0) ; C2 = cs_i_real (A, 0) ; /* C2 = imag (A) */ printf ("\nC2 = imag(A):\n") ; cs_di_print (C2, 0) ; A1 = cs_i_complex (C1, 1) ; /* A1 = complex version of C1 */ printf ("\nA1:\n") ; cs_ci_print (A1, 0) ; A2 = cs_i_complex (C2, 0) ; /* A2 = complex version of C2 (imag.) */ printf ("\nA2:\n") ; cs_ci_print (A2, 0) ; B = cs_ci_add (A1, A2, 1., -1.) ; /* B = A1 - A2 */ printf ("\nB = conj(A):\n") ; cs_ci_print (B, 0) ; cs_ci_spfree (T) ; cs_ci_spfree (A) ; cs_ci_spfree (A1) ; cs_ci_spfree (A2) ; cs_ci_spfree (B) ; cs_di_spfree (C1) ; cs_di_spfree (C2) ; cs_di_spfree (Treal) ; cs_di_spfree (Timag) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_ldemo.c0000644001170100242450000000300610623313341016247 0ustar davisfac#include "cs.h" /* test real/complex conversion routines (int version) */ int main (void) { cs_cl *T, *A, *A1, *A2, *B ; cs_dl *C1, *C2, *Treal, *Timag ; printf ("\n--- cs_ldemo, size of CS_INT: %d\n", (int) sizeof (CS_INT)) ; T = cs_cl_load (stdin) ; /* load a complex triplet matrix, T */ printf ("\nT:\n") ; cs_cl_print (T, 0) ; Treal = cs_l_real (T, 1) ; /* Treal = real part of T */ printf ("\nTreal:\n") ; cs_dl_print (Treal, 0) ; Timag = cs_l_real (T, 0) ; /* Treal = imaginary part of T */ printf ("\nTimag:\n") ; cs_dl_print (Timag, 0) ; A = cs_cl_compress (T) ; /* A = compressed-column form of T */ printf ("\nA:\n") ; cs_cl_print (A, 0) ; C1 = cs_l_real (A, 1) ; /* C1 = real (A) */ printf ("\nC1 = real(A):\n") ; cs_dl_print (C1, 0) ; C2 = cs_l_real (A, 0) ; /* C2 = imag (A) */ printf ("\nC2 = imag(A):\n") ; cs_dl_print (C2, 0) ; A1 = cs_l_complex (C1, 1) ; /* A1 = complex version of C1 */ printf ("\nA1:\n") ; cs_cl_print (A1, 0) ; A2 = cs_l_complex (C2, 0) ; /* A2 = complex version of C2 (imag.) */ printf ("\nA2:\n") ; cs_cl_print (A2, 0) ; B = cs_cl_add (A1, A2, 1., -1.) ; /* B = A1 - A2 */ printf ("\nB = conj(A):\n") ; cs_cl_print (B, 0) ; cs_cl_spfree (T) ; cs_cl_spfree (A) ; cs_cl_spfree (A1) ; cs_cl_spfree (A2) ; cs_cl_spfree (B) ; cs_dl_spfree (C1) ; cs_dl_spfree (C2) ; cs_dl_spfree (Treal) ; cs_dl_spfree (Timag) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_di_demo1.c0000644001170100242450000000211010712165171016630 0ustar davisfac#include "cs.h" int main (void) { cs_di *T, *A, *Eye, *AT, *C, *D ; int i, m ; T = cs_di_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_di_print (T, 0) ; /* print T */ A = cs_di_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_di_print (A, 0) ; /* print A */ cs_di_spfree (T) ; /* clear T */ AT = cs_di_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_di_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_di_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_di_entry (T, i, i, 1) ; Eye = cs_di_compress (T) ; /* Eye = speye (m) */ cs_di_spfree (T) ; C = cs_di_multiply (A, AT) ; /* C = A*A' */ D = cs_di_add (C, Eye, 1, cs_di_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_di_print (D, 0) ; /* print D */ cs_di_spfree (A) ; /* clear A AT C D Eye */ cs_di_spfree (AT) ; cs_di_spfree (C) ; cs_di_spfree (D) ; cs_di_spfree (Eye) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_dl_demo1.c0000644001170100242450000000211410712165171016637 0ustar davisfac#include "cs.h" int main (void) { cs_dl *T, *A, *Eye, *AT, *C, *D ; UF_long i, m ; T = cs_dl_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_dl_print (T, 0) ; /* print T */ A = cs_dl_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_dl_print (A, 0) ; /* print A */ cs_dl_spfree (T) ; /* clear T */ AT = cs_dl_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_dl_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_dl_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_dl_entry (T, i, i, 1) ; Eye = cs_dl_compress (T) ; /* Eye = speye (m) */ cs_dl_spfree (T) ; C = cs_dl_multiply (A, AT) ; /* C = A*A' */ D = cs_dl_add (C, Eye, 1, cs_dl_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_dl_print (D, 0) ; /* print D */ cs_dl_spfree (A) ; /* clear A AT C D Eye */ cs_dl_spfree (AT) ; cs_dl_spfree (C) ; cs_dl_spfree (D) ; cs_dl_spfree (Eye) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_ci_demo1.c0000644001170100242450000000211010712165171016627 0ustar davisfac#include "cs.h" int main (void) { cs_ci *T, *A, *Eye, *AT, *C, *D ; int i, m ; T = cs_ci_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_ci_print (T, 0) ; /* print T */ A = cs_ci_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_ci_print (A, 0) ; /* print A */ cs_ci_spfree (T) ; /* clear T */ AT = cs_ci_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_ci_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_ci_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_ci_entry (T, i, i, 1) ; Eye = cs_ci_compress (T) ; /* Eye = speye (m) */ cs_ci_spfree (T) ; C = cs_ci_multiply (A, AT) ; /* C = A*A' */ D = cs_ci_add (C, Eye, 1, cs_ci_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_ci_print (D, 0) ; /* print D */ cs_ci_spfree (A) ; /* clear A AT C D Eye */ cs_ci_spfree (AT) ; cs_ci_spfree (C) ; cs_ci_spfree (D) ; cs_ci_spfree (Eye) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_cl_demo1.c0000644001170100242450000000211410712165171016636 0ustar davisfac#include "cs.h" int main (void) { cs_cl *T, *A, *Eye, *AT, *C, *D ; UF_long i, m ; T = cs_cl_load (stdin) ; /* load triplet matrix T from stdin */ printf ("T:\n") ; cs_cl_print (T, 0) ; /* print T */ A = cs_cl_compress (T) ; /* A = compressed-column form of T */ printf ("A:\n") ; cs_cl_print (A, 0) ; /* print A */ cs_cl_spfree (T) ; /* clear T */ AT = cs_cl_transpose (A, 1) ; /* AT = A' */ printf ("AT:\n") ; cs_cl_print (AT, 0) ; /* print AT */ m = A ? A->m : 0 ; /* m = # of rows of A */ T = cs_cl_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */ for (i = 0 ; i < m ; i++) cs_cl_entry (T, i, i, 1) ; Eye = cs_cl_compress (T) ; /* Eye = speye (m) */ cs_cl_spfree (T) ; C = cs_cl_multiply (A, AT) ; /* C = A*A' */ D = cs_cl_add (C, Eye, 1, cs_cl_norm (C)) ; /* D = C + Eye*norm (C,1) */ printf ("D:\n") ; cs_cl_print (D, 0) ; /* print D */ cs_cl_spfree (A) ; /* clear A AT C D Eye */ cs_cl_spfree (AT) ; cs_cl_spfree (C) ; cs_cl_spfree (D) ; cs_cl_spfree (Eye) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_di_demo2.c0000644001170100242450000000032610712165171016640 0ustar davisfac#include "cs_di_demo.h" /* cs_di_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_dl_demo2.c0000644001170100242450000000032610712165171016643 0ustar davisfac#include "cs_dl_demo.h" /* cs_dl_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_ci_demo2.c0000644001170100242450000000032610712165171016637 0ustar davisfac#include "cs_ci_demo.h" /* cs_ci_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_cl_demo2.c0000644001170100242450000000032610712165171016642 0ustar davisfac#include "cs_cl_demo.h" /* cs_cl_demo2: read a matrix and solve a linear system */ int main (void) { problem *Prob = get_problem (stdin, 1e-14) ; demo2 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_di_demo3.c0000644001170100242450000000033210712165171016636 0ustar davisfac#include "cs_di_demo.h" /* cs_di_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_dl_demo3.c0000644001170100242450000000033210712165171016641 0ustar davisfac#include "cs_dl_demo.h" /* cs_dl_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_ci_demo3.c0000644001170100242450000000033210712165171016635 0ustar davisfac#include "cs_ci_demo.h" /* cs_ci_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_cl_demo3.c0000644001170100242450000000033210712165171016640 0ustar davisfac#include "cs_cl_demo.h" /* cs_cl_demo3: read a matrix and test Cholesky update/downdate */ int main (void) { problem *Prob = get_problem (stdin, 0) ; demo3 (Prob) ; free_problem (Prob) ; return (0) ; } SuiteSparse/CXSparse/Demo/cs_di_demo.c0000644001170100242450000002354010712165171016561 0ustar davisfac#include "cs_di_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static int is_sym (cs_di *A) { int is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static int dropdiag (int i, int j, double aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs_di *make_sym (cs_di *A) { cs_di *AT, *C ; AT = cs_di_transpose (A, 1) ; /* AT = A' */ cs_di_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_di_add (A, AT, 1, 1) ; /* C = A+AT */ cs_di_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (double *x, double *b, int m) { int i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (double *x, int n) { int i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, fabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (int ok, cs_di *A, double *x, double *b, double *resid) { int i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_di_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_di_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (int order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs_di *T, *A, *C ; int sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_di_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_di_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_di_compress (T) ; /* A = compressed-column form of T */ cs_di_spfree (T) ; /* clear T */ if (!cs_di_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_di_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_di_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_di_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ; Prob->b = cs_di_malloc (mn, sizeof (double)) ; Prob->x = cs_di_malloc (mn, sizeof (double)) ; Prob->resid = cs_di_malloc (mn, sizeof (double)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_di_spfree (Prob->A) ; if (Prob->sym) cs_di_spfree (Prob->C) ; cs_di_free (Prob->b) ; cs_di_free (Prob->x) ; cs_di_free (Prob->resid) ; return (cs_di_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ int demo2 (problem *Prob) { cs_di *A, *C ; double *b, *x, *resid, t, tol ; int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; cs_did *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_di_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %d singletons: %d structural rank: %d\n", nb, ns, sprank) ; cs_di_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_di_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_di_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_di_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static int done3 (int ok, cs_dis *S, cs_din *N, double *y, cs_di *W, cs_di *E, int *p) { cs_di_sfree (S) ; cs_di_nfree (N) ; cs_di_free (y) ; cs_di_spfree (W) ; cs_di_spfree (E) ; cs_di_free (p) ; return (ok) ; } /* Cholesky update/downdate */ int demo3 (problem *Prob) { cs_di *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, t1 ; cs_dis *S = NULL ; cs_din *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_di_malloc (n, sizeof (double)) ; t = tic () ; S = cs_di_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_di_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_di_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_di_lsolve (N->L, y) ; /* y = L\y */ cs_di_ltsolve (N->L, y) ; /* y = L'\y */ cs_di_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_di_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_di_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_di_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_di_lsolve (N->L, y) ; /* y = L\y */ cs_di_ltsolve (N->L, y) ; /* y = L'\y */ cs_di_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_di_pinv (S->pinv, n) ; W2 = cs_di_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_di_transpose (W2,1) ; WW = cs_di_multiply (W2, WT) ; cs_di_spfree (WT) ; cs_di_spfree (W2) ; E = cs_di_add (C, WW, 1, 1) ; cs_di_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_di_nfree (N) ; /* clear N */ t = tic () ; N = cs_di_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_di_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_di_lsolve (N->L, y) ; /* y = L\y */ cs_di_ltsolve (N->L, y) ; /* y = L'\y */ cs_di_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_di_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_di_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_di_lsolve (N->L, y) ; /* y = L\y */ cs_di_ltsolve (N->L, y) ; /* y = L'\y */ cs_di_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CXSparse/Demo/cs_dl_demo.c0000644001170100242450000002367210712165171016572 0ustar davisfac#include "cs_dl_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static UF_long is_sym (cs_dl *A) { UF_long is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static UF_long dropdiag (UF_long i, UF_long j, double aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs_dl *make_sym (cs_dl *A) { cs_dl *AT, *C ; AT = cs_dl_transpose (A, 1) ; /* AT = A' */ cs_dl_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_dl_add (A, AT, 1, 1) ; /* C = A+AT */ cs_dl_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (double *x, double *b, UF_long m) { UF_long i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (double *x, UF_long n) { UF_long i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, fabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (UF_long ok, cs_dl *A, double *x, double *b, double *resid) { UF_long i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_dl_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_dl_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (UF_long order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs_dl *T, *A, *C ; UF_long sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_dl_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_dl_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_dl_compress (T) ; /* A = compressed-column form of T */ cs_dl_spfree (T) ; /* clear T */ if (!cs_dl_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_dl_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_dl_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %ld-by-%ld, nnz: %ld (sym: %ld: nnz %ld), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_dl_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %ld\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %ld\n", nz2 - A->p [n]) ; Prob->b = cs_dl_malloc (mn, sizeof (double)) ; Prob->x = cs_dl_malloc (mn, sizeof (double)) ; Prob->resid = cs_dl_malloc (mn, sizeof (double)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_dl_spfree (Prob->A) ; if (Prob->sym) cs_dl_spfree (Prob->C) ; cs_dl_free (Prob->b) ; cs_dl_free (Prob->x) ; cs_dl_free (Prob->resid) ; return (cs_dl_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ UF_long demo2 (problem *Prob) { cs_dl *A, *C ; double *b, *x, *resid, t, tol ; UF_long k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; cs_dld *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_dl_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %ld singletons: %ld structural rank: %ld\n", nb, ns, sprank) ; cs_dl_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_dl_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_dl_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_dl_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static UF_long done3 (UF_long ok, cs_dls *S, cs_dln *N, double *y, cs_dl *W, cs_dl *E, UF_long *p) { cs_dl_sfree (S) ; cs_dl_nfree (N) ; cs_dl_free (y) ; cs_dl_spfree (W) ; cs_dl_spfree (E) ; cs_dl_free (p) ; return (ok) ; } /* Cholesky update/downdate */ UF_long demo3 (problem *Prob) { cs_dl *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; UF_long n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, t1 ; cs_dls *S = NULL ; cs_dln *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_dl_malloc (n, sizeof (double)) ; t = tic () ; S = cs_dl_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_dl_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_dl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_dl_lsolve (N->L, y) ; /* y = L\y */ cs_dl_ltsolve (N->L, y) ; /* y = L'\y */ cs_dl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_dl_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_dl_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_dl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_dl_lsolve (N->L, y) ; /* y = L\y */ cs_dl_ltsolve (N->L, y) ; /* y = L'\y */ cs_dl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_dl_pinv (S->pinv, n) ; W2 = cs_dl_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_dl_transpose (W2,1) ; WW = cs_dl_multiply (W2, WT) ; cs_dl_spfree (WT) ; cs_dl_spfree (W2) ; E = cs_dl_add (C, WW, 1, 1) ; cs_dl_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_dl_nfree (N) ; /* clear N */ t = tic () ; N = cs_dl_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_dl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_dl_lsolve (N->L, y) ; /* y = L\y */ cs_dl_ltsolve (N->L, y) ; /* y = L'\y */ cs_dl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_dl_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_dl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_dl_lsolve (N->L, y) ; /* y = L\y */ cs_dl_ltsolve (N->L, y) ; /* y = L'\y */ cs_dl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CXSparse/Demo/cs_ci_demo.c0000644001170100242450000002371210712165171016561 0ustar davisfac#include "cs_ci_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static int is_sym (cs_ci *A) { int is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static int dropdiag (int i, int j, cs_complex_t aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs_ci *make_sym (cs_ci *A) { cs_ci *AT, *C ; AT = cs_ci_transpose (A, 1) ; /* AT = A' */ cs_ci_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_ci_add (A, AT, 1, 1) ; /* C = A+AT */ cs_ci_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (cs_complex_t *x, cs_complex_t *b, int m) { int i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (cs_complex_t *x, int n) { int i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, cabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (int ok, cs_ci *A, cs_complex_t *x, cs_complex_t *b, cs_complex_t *resid) { int i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_ci_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_ci_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (int order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs_ci *T, *A, *C ; int sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_ci_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_ci_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_ci_compress (T) ; /* A = compressed-column form of T */ cs_ci_spfree (T) ; /* clear T */ if (!cs_ci_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_ci_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_ci_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_ci_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ; Prob->b = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; Prob->x = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; Prob->resid = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_ci_spfree (Prob->A) ; if (Prob->sym) cs_ci_spfree (Prob->C) ; cs_ci_free (Prob->b) ; cs_ci_free (Prob->x) ; cs_ci_free (Prob->resid) ; return (cs_ci_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ int demo2 (problem *Prob) { cs_ci *A, *C ; cs_complex_t *b, *x, *resid ; double t, tol ; int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; cs_cid *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_ci_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %d singletons: %d structural rank: %d\n", nb, ns, sprank) ; cs_ci_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_ci_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_ci_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_ci_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static int done3 (int ok, cs_cis *S, cs_cin *N, cs_complex_t *y, cs_ci *W, cs_ci *E, int *p) { cs_ci_sfree (S) ; cs_ci_nfree (N) ; cs_ci_free (y) ; cs_ci_spfree (W) ; cs_ci_spfree (E) ; cs_ci_free (p) ; return (ok) ; } /* Cholesky update/downdate */ int demo3 (problem *Prob) { cs_ci *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; cs_complex_t *b, *x, *resid, *y = NULL, *Lx, *Wx, s ; double t, t1 ; cs_cis *S = NULL ; cs_cin *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_ci_malloc (n, sizeof (cs_complex_t)) ; t = tic () ; S = cs_ci_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_ci_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_ci_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_ci_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_ci_pinv (S->pinv, n) ; W2 = cs_ci_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_ci_transpose (W2,1) ; WW = cs_ci_multiply (W2, WT) ; cs_ci_spfree (WT) ; cs_ci_spfree (W2) ; E = cs_ci_add (C, WW, 1, 1) ; cs_ci_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_ci_nfree (N) ; /* clear N */ t = tic () ; N = cs_ci_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_ci_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CXSparse/Demo/cs_cl_demo.c0000644001170100242450000002404410712165171016563 0ustar davisfac#include "cs_cl_demo.h" #include /* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */ static UF_long is_sym (cs_cl *A) { UF_long is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ; if (m != n) return (0) ; is_upper = 1 ; is_lower = 1 ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (Ai [p] > j) is_upper = 0 ; if (Ai [p] < j) is_lower = 0 ; } } return (is_upper ? 1 : (is_lower ? -1 : 0)) ; } /* true for off-diagonal entries */ static UF_long dropdiag (UF_long i, UF_long j, cs_complex_t aij, void *other) { return (i != j) ;} /* C = A + triu(A,1)' */ static cs_cl *make_sym (cs_cl *A) { cs_cl *AT, *C ; AT = cs_cl_transpose (A, 1) ; /* AT = A' */ cs_cl_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_cl_add (A, AT, 1, 1) ; /* C = A+AT */ cs_cl_spfree (AT) ; return (C) ; } /* create a right-hand side */ static void rhs (cs_complex_t *x, cs_complex_t *b, UF_long m) { UF_long i ; for (i = 0 ; i < m ; i++) b [i] = 1 + ((double) i) / m ; for (i = 0 ; i < m ; i++) x [i] = b [i] ; } /* infinity-norm of x */ static double norm (cs_complex_t *x, UF_long n) { UF_long i ; double normx = 0 ; for (i = 0 ; i < n ; i++) normx = CS_MAX (normx, cabs (x [i])) ; return (normx) ; } /* compute residual, norm(A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) */ static void print_resid (UF_long ok, cs_cl *A, cs_complex_t *x, cs_complex_t *b, cs_complex_t *resid) { UF_long i, m, n ; if (!ok) { printf (" (failed)\n") ; return ; } m = A->m ; n = A->n ; for (i = 0 ; i < m ; i++) resid [i] = -b [i] ; /* resid = -b */ cs_cl_gaxpy (A, x, resid) ; /* resid = resid + A*x */ printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) ? 1 : (cs_cl_norm (A) * norm (x,n) + norm (b,m)))) ; } static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; } static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; } static void print_order (UF_long order) { switch (order) { case 0: printf ("natural ") ; break ; case 1: printf ("amd(A+A') ") ; break ; case 2: printf ("amd(S'*S) ") ; break ; case 3: printf ("amd(A'*A) ") ; break ; } } /* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs_cl *T, *A, *C ; UF_long sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_cl_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_cl_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_cl_compress (T) ; /* A = compressed-column form of T */ cs_cl_spfree (T) ; /* clear T */ if (!cs_cl_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_cl_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_cl_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %ld-by-%ld, nnz: %ld (sym: %ld: nnz %ld), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_cl_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %ld\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %ld\n", nz2 - A->p [n]) ; Prob->b = cs_cl_malloc (mn, sizeof (cs_complex_t)) ; Prob->x = cs_cl_malloc (mn, sizeof (cs_complex_t)) ; Prob->resid = cs_cl_malloc (mn, sizeof (cs_complex_t)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; } /* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_cl_spfree (Prob->A) ; if (Prob->sym) cs_cl_spfree (Prob->C) ; cs_cl_free (Prob->b) ; cs_cl_free (Prob->x) ; cs_cl_free (Prob->resid) ; return (cs_cl_free (Prob)) ; } /* solve a linear system using Cholesky, LU, and QR, with various orderings */ UF_long demo2 (problem *Prob) { cs_cl *A, *C ; cs_complex_t *b, *x, *resid ; double t, tol ; UF_long k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; cs_cld *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_cl_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %ld singletons: %ld structural rank: %ld\n", nb, ns, sprank) ; cs_cl_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cl_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cl_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cl_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; } /* free workspace for demo3 */ static UF_long done3 (UF_long ok, cs_cls *S, cs_cln *N, cs_complex_t *y, cs_cl *W, cs_cl *E, UF_long *p) { cs_cl_sfree (S) ; cs_cl_nfree (N) ; cs_cl_free (y) ; cs_cl_spfree (W) ; cs_cl_spfree (E) ; cs_cl_free (p) ; return (ok) ; } /* Cholesky update/downdate */ UF_long demo3 (problem *Prob) { cs_cl *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; UF_long n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; cs_complex_t *b, *x, *resid, *y = NULL, *Lx, *Wx, s ; double t, t1 ; cs_cls *S = NULL ; cs_cln *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_cl_malloc (n, sizeof (cs_complex_t)) ; t = tic () ; S = cs_cl_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_cl_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_cl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_cl_lsolve (N->L, y) ; /* y = L\y */ cs_cl_ltsolve (N->L, y) ; /* y = L'\y */ cs_cl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_cl_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_cl_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_cl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_cl_lsolve (N->L, y) ; /* y = L\y */ cs_cl_ltsolve (N->L, y) ; /* y = L'\y */ cs_cl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_cl_pinv (S->pinv, n) ; W2 = cs_cl_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_cl_transpose (W2,1) ; WW = cs_cl_multiply (W2, WT) ; cs_cl_spfree (WT) ; cs_cl_spfree (W2) ; E = cs_cl_add (C, WW, 1, 1) ; cs_cl_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_cl_nfree (N) ; /* clear N */ t = tic () ; N = cs_cl_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_cl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_cl_lsolve (N->L, y) ; /* y = L\y */ cs_cl_ltsolve (N->L, y) ; /* y = L'\y */ cs_cl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_cl_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_cl_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_cl_lsolve (N->L, y) ; /* y = L\y */ cs_cl_ltsolve (N->L, y) ; /* y = L'\y */ cs_cl_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; } SuiteSparse/CXSparse/Demo/cs_di_demo.h0000644001170100242450000000045210712165171016563 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs_di *A ; cs_di *C ; int sym ; double *x ; double *b ; double *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; int demo2 (problem *Prob) ; int demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CXSparse/Demo/cs_dl_demo.h0000644001170100242450000000046610712165171016573 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs_dl *A ; cs_dl *C ; UF_long sym ; double *x ; double *b ; double *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; UF_long demo2 (problem *Prob) ; UF_long demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CXSparse/Demo/cs_ci_demo.h0000644001170100242450000000047410712165171016566 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs_ci *A ; cs_ci *C ; int sym ; cs_complex_t *x ; cs_complex_t *b ; cs_complex_t *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; int demo2 (problem *Prob) ; int demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CXSparse/Demo/cs_cl_demo.h0000644001170100242450000000051010712165171016560 0ustar davisfac#include "cs.h" typedef struct problem_struct { cs_cl *A ; cs_cl *C ; UF_long sym ; cs_complex_t *x ; cs_complex_t *b ; cs_complex_t *resid ; } problem ; problem *get_problem (FILE *f, double tol) ; UF_long demo2 (problem *Prob) ; UF_long demo3 (problem *Prob) ; problem *free_problem (problem *Prob) ; SuiteSparse/CXSparse/Tcov/0000755001170100242450000000000010617167237014364 5ustar davisfacSuiteSparse/CXSparse/Tcov/nil0000644001170100242450000000000010325754634015056 0ustar davisfacSuiteSparse/CXSparse/Tcov/covs0000755001170100242450000000033110336471716015257 0ustar davisfac#!/bin/csh echo '=================================================================' foreach file (*.?cov) echo $file grep "#####" $file echo '=================================================================' end SuiteSparse/CXSparse/Tcov/zero0000644001170100242450000000000610375445021015251 0ustar davisfac0 0 0 SuiteSparse/CXSparse/Tcov/cov.awk0000644001170100242450000000026610325730035015647 0ustar davisfac/cannot/ /function/ { f = $8 } /file/ { f = $8 } /lines/ { k = match ($1, "%") ; p = substr ($1, 1, k-1) ; if ((p+0) != 100) { printf "%8s %s\n", p, f } } SuiteSparse/CXSparse/Tcov/Makefile0000644001170100242450000002751610617167237016037 0ustar davisfac # To run with valgrind: V = # V = valgrind -q # Linux test coverage CC = gcc CFLAGS = -O -g -fprofile-arcs -ftest-coverage \ -Wall -W -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization -ansi \ -Wno-unused-parameter -Werror -I../Include -I../Demo -I../../UFconfig run: all run_convert run_di run_dl run_ci run_cl ./covall all: cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di \ cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl \ cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci \ cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl \ cs_idemo cs_ldemo CS_DI = cs_add_di.o cs_amd_di.o cs_chol_di.o cs_cholsol_di.o cs_counts_di.o \ cs_cumsum_di.o cs_droptol_di.o cs_dropzeros_di.o cs_dupl_di.o \ cs_entry_di.o cs_etree_di.o cs_fkeep_di.o cs_gaxpy_di.o cs_happly_di.o \ cs_house_di.o cs_ipvec_di.o cs_lsolve_di.o cs_ltsolve_di.o cs_lu_di.o \ cs_lusol_di.o cs_util_di.o cs_multiply_di.o cs_permute_di.o \ cs_pinv_di.o cs_post_di.o cs_pvec_di.o cs_qr_di.o cs_qrsol_di.o \ cs_scatter_di.o cs_schol_di.o cs_sqr_di.o cs_symperm_di.o cs_tdfs_di.o \ cs_transpose_di.o cs_compress_di.o cs_usolve_di.o cs_scc_di.o \ cs_maxtrans_di.o cs_dmperm_di.o cs_updown_di.o cs_print_di.o \ cs_norm_di.o cs_load_di.o cs_dfs_di.o cstcov_malloc_test_di.o \ cs_utsolve_di.o cs_reach_di.o cs_spsolve_di.o \ cs_leaf_di.o cs_ereach_di.o cs_randperm_di.o CS_DL = cs_add_dl.o cs_amd_dl.o cs_chol_dl.o cs_cholsol_dl.o cs_counts_dl.o \ cs_cumsum_dl.o cs_droptol_dl.o cs_dropzeros_dl.o cs_dupl_dl.o \ cs_entry_dl.o cs_etree_dl.o cs_fkeep_dl.o cs_gaxpy_dl.o cs_happly_dl.o \ cs_house_dl.o cs_ipvec_dl.o cs_lsolve_dl.o cs_ltsolve_dl.o cs_lu_dl.o \ cs_lusol_dl.o cs_util_dl.o cs_multiply_dl.o cs_permute_dl.o \ cs_pinv_dl.o cs_post_dl.o cs_pvec_dl.o cs_qr_dl.o cs_qrsol_dl.o \ cs_scatter_dl.o cs_schol_dl.o cs_sqr_dl.o cs_symperm_dl.o cs_tdfs_dl.o \ cs_transpose_dl.o cs_compress_dl.o cs_usolve_dl.o cs_scc_dl.o \ cs_maxtrans_dl.o cs_dmperm_dl.o cs_updown_dl.o cs_print_dl.o \ cs_norm_dl.o cs_load_dl.o cs_dfs_dl.o cstcov_malloc_test_dl.o \ cs_utsolve_dl.o cs_reach_dl.o cs_spsolve_dl.o \ cs_leaf_dl.o cs_ereach_dl.o cs_randperm_dl.o CS_CI = cs_add_ci.o cs_amd_ci.o cs_chol_ci.o cs_cholsol_ci.o cs_counts_ci.o \ cs_cumsum_ci.o cs_droptol_ci.o cs_dropzeros_ci.o cs_dupl_ci.o \ cs_entry_ci.o cs_etree_ci.o cs_fkeep_ci.o cs_gaxpy_ci.o cs_happly_ci.o \ cs_house_ci.o cs_ipvec_ci.o cs_lsolve_ci.o cs_ltsolve_ci.o cs_lu_ci.o \ cs_lusol_ci.o cs_util_ci.o cs_multiply_ci.o cs_permute_ci.o \ cs_pinv_ci.o cs_post_ci.o cs_pvec_ci.o cs_qr_ci.o cs_qrsol_ci.o \ cs_scatter_ci.o cs_schol_ci.o cs_sqr_ci.o cs_symperm_ci.o cs_tdfs_ci.o \ cs_transpose_ci.o cs_compress_ci.o cs_usolve_ci.o cs_scc_ci.o \ cs_maxtrans_ci.o cs_dmperm_ci.o cs_updown_ci.o cs_print_ci.o \ cs_norm_ci.o cs_load_ci.o cs_dfs_ci.o cstcov_malloc_test_ci.o \ cs_utsolve_ci.o cs_reach_ci.o cs_spsolve_ci.o \ cs_leaf_ci.o cs_ereach_ci.o cs_randperm_ci.o CS_CL = cs_add_cl.o cs_amd_cl.o cs_chol_cl.o cs_cholsol_cl.o cs_counts_cl.o \ cs_cumsum_cl.o cs_droptol_cl.o cs_dropzeros_cl.o cs_dupl_cl.o \ cs_entry_cl.o cs_etree_cl.o cs_fkeep_cl.o cs_gaxpy_cl.o cs_happly_cl.o \ cs_house_cl.o cs_ipvec_cl.o cs_lsolve_cl.o cs_ltsolve_cl.o cs_lu_cl.o \ cs_lusol_cl.o cs_util_cl.o cs_multiply_cl.o cs_permute_cl.o \ cs_pinv_cl.o cs_post_cl.o cs_pvec_cl.o cs_qr_cl.o cs_qrsol_cl.o \ cs_scatter_cl.o cs_schol_cl.o cs_sqr_cl.o cs_symperm_cl.o cs_tdfs_cl.o \ cs_transpose_cl.o cs_compress_cl.o cs_usolve_cl.o cs_scc_cl.o \ cs_maxtrans_cl.o cs_dmperm_cl.o cs_updown_cl.o cs_print_cl.o \ cs_norm_cl.o cs_load_cl.o cs_dfs_cl.o cstcov_malloc_test_cl.o \ cs_utsolve_cl.o cs_reach_cl.o cs_spsolve_cl.o \ cs_leaf_cl.o cs_ereach_cl.o cs_randperm_cl.o OBJ = $(CS_DI) $(CS_DL) $(CS_CI) $(CS_CL) cs_convert.o $(OBJ): ../Include/cs.h cstcov_malloc_test.h Makefile .PRECIOUS: %demo.c %demo1.c %demo2.c %demo3.c cs_%.c cs_%_ci.c cs_%_cl.c cs_%_di.c cs_%_dl.c cstcov_%.c %demo.c: - ln -s ../Demo/$*demo.c %demo1.c: - ln -s ../Demo/$*demo1.c %demo2.c: - ln -s ../Demo/$*demo2.c %demo3.c: - ln -s ../Demo/$*demo3.c cstcov_%.c: - ln -s cstcov_malloc_test.c cstcov_$*.c cs_convert.c: - ln -s ../Source/cs_convert.c cs_%_ci.c: - ln -s ../Source/cs_$*.c cs_$*_ci.c cs_%_di.c: - ln -s ../Source/cs_$*.c cs_$*_di.c cs_%_dl.c: - ln -s ../Source/cs_$*.c cs_$*_dl.c cs_%_cl.c: - ln -s ../Source/cs_$*.c cs_$*_cl.c %_di.o: %_di.c $(CC) $(CFLAGS) -c $< %_dl.o: %_dl.c $(CC) $(CFLAGS) -DCS_LONG -c $< %_ci.o: %_ci.c $(CC) $(CFLAGS) -DCS_COMPLEX -c $< %_cl.o: %_cl.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -c $< cs_idemo: $(OBJ) cs_idemo.c $(CC) $(CFLAGS) -o cs_idemo cs_idemo.c $(OBJ) -lm cs_ldemo: $(OBJ) cs_ldemo.c $(CC) $(CFLAGS) -o cs_ldemo cs_ldemo.c $(OBJ) -lm cs_demo1_di: $(CS_DI) cs_di_demo1.c $(CC) $(CFLAGS) -o cs_demo1_di cs_di_demo1.c $(CS_DI) -lm cs_demo2_di: $(CS_DI) cs_di_demo2.c cs_di_demo.c $(CC) $(CFLAGS) -o cs_demo2_di cs_di_demo2.c cs_di_demo.c $(CS_DI) -lm cs_demo3_di: $(CS_DI) cs_di_demo3.c cs_di_demo.c $(CC) $(CFLAGS) -o cs_demo3_di cs_di_demo3.c cs_di_demo.c $(CS_DI) -lm cstcov_test_di: $(CS_DI) cstcov_test.c cs_di_demo.c $(CC) $(CFLAGS) -o cstcov_test_di cstcov_test.c cs_di_demo.c $(CS_DI) -lm cs_demo1_dl: $(CS_DL) cs_dl_demo1.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo1_dl cs_dl_demo1.c $(CS_DL) -lm cs_demo2_dl: $(CS_DL) cs_dl_demo2.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo2_dl cs_dl_demo2.c cs_dl_demo.c $(CS_DL) -lm cs_demo3_dl: $(CS_DL) cs_dl_demo3.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo3_dl cs_dl_demo3.c cs_dl_demo.c $(CS_DL) -lm cstcov_test_dl: $(CS_DL) cstcov_test.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cstcov_test_dl cstcov_test.c cs_dl_demo.c $(CS_DL) -lm cs_demo1_ci: $(CS_CI) cs_ci_demo1.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo1_ci cs_ci_demo1.c $(CS_CI) -lm cs_demo2_ci: $(CS_CI) cs_ci_demo2.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo2_ci cs_ci_demo2.c cs_ci_demo.c $(CS_CI) -lm cs_demo3_ci: $(CS_CI) cs_ci_demo3.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo3_ci cs_ci_demo3.c cs_ci_demo.c $(CS_CI) -lm cstcov_test_ci: $(CS_CI) cstcov_test.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cstcov_test_ci cstcov_test.c cs_ci_demo.c $(CS_CI) -lm cs_demo1_cl: $(CS_CL) cs_cl_demo1.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo1_cl cs_cl_demo1.c $(CS_CL) -lm cs_demo2_cl: $(CS_CL) cs_cl_demo2.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo2_cl cs_cl_demo2.c cs_cl_demo.c $(CS_CL) -lm cs_demo3_cl: $(CS_CL) cs_cl_demo3.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo3_cl cs_cl_demo3.c cs_cl_demo.c $(CS_CL) -lm cstcov_test_cl: $(CS_CL) cstcov_test.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cstcov_test_cl cstcov_test.c cs_cl_demo.c $(CS_CL) -lm run_convert: cs_idemo cs_ldemo - $(V) ./cs_idemo < ../Matrix/t2 - $(V) ./cs_ldemo < ../Matrix/t2 run_di: cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di - $(V) ./cs_demo1_di < ../Matrix/t1 - $(V) ./cs_demo1_di < nil - $(V) ./cs_demo1_di < zero - $(V) ./cs_demo2_di < nil - $(V) ./cs_demo2_di < zero - $(V) ./cs_demo2_di < ../Matrix/t1 - $(V) ./cs_demo2_di < ../Matrix/bcsstk01 - $(V) ./cs_demo2_di < ../Matrix/fs_183_1 - $(V) ./cs_demo2_di < ../Matrix/west0067 - $(V) ./cs_demo2_di < ../Matrix/lp_afiro - $(V) ./cs_demo2_di < ../Matrix/ash219 - $(V) ./cs_demo2_di < ../Matrix/mbeacxc - $(V) ./cs_demo2_di < ../Matrix/bcsstk16 - $(V) ./cs_demo2_di < ../Matrix/ibm32a - $(V) ./cs_demo2_di < ../Matrix/ibm32b - $(V) ./cs_demo3_di < nil - $(V) ./cs_demo3_di < ../Matrix/bcsstk01 - $(V) ./cs_demo3_di < ../Matrix/bcsstk16 - $(V) ./cstcov_test_di nil > test_di_nil.out - $(V) ./cstcov_test_di zero > test_di_zero.out - $(V) ./cstcov_test_di ../Matrix/t1 > test_di_t1.out - $(V) ./cstcov_test_di ../Matrix/bcsstk01 > test_di_k1.out - $(V) ./cstcov_test_di ../Matrix/fs_183_1 > test_di_fs.out - $(V) ./cstcov_test_di ../Matrix/west0067 > test_di_we.out - $(V) ./cstcov_test_di ../Matrix/ash219 > test_di_ash.out - $(V) ./cstcov_test_di ../Matrix/lp_afiro > test_di_afiro.out run_dl: cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl - $(V) ./cs_demo1_dl < ../Matrix/t1 - $(V) ./cs_demo1_dl < nil - $(V) ./cs_demo1_dl < zero - $(V) ./cs_demo2_dl < nil - $(V) ./cs_demo2_dl < zero - $(V) ./cs_demo2_dl < ../Matrix/t1 - $(V) ./cs_demo2_dl < ../Matrix/bcsstk01 - $(V) ./cs_demo2_dl < ../Matrix/fs_183_1 - $(V) ./cs_demo2_dl < ../Matrix/west0067 - $(V) ./cs_demo2_dl < ../Matrix/lp_afiro - $(V) ./cs_demo2_dl < ../Matrix/ash219 - $(V) ./cs_demo2_dl < ../Matrix/mbeacxc - $(V) ./cs_demo2_dl < ../Matrix/bcsstk16 - $(V) ./cs_demo2_dl < ../Matrix/ibm32a - $(V) ./cs_demo2_dl < ../Matrix/ibm32b - $(V) ./cs_demo3_dl < nil - $(V) ./cs_demo3_dl < ../Matrix/bcsstk01 - $(V) ./cs_demo3_dl < ../Matrix/bcsstk16 - $(V) ./cstcov_test_dl nil > test_dl_nil.out - $(V) ./cstcov_test_dl zero > test_dl_zero.out - $(V) ./cstcov_test_dl ../Matrix/t1 > test_dl_t1.out - $(V) ./cstcov_test_dl ../Matrix/bcsstk01 > test_dl_k1.out - $(V) ./cstcov_test_dl ../Matrix/fs_183_1 > test_dl_fs.out - $(V) ./cstcov_test_dl ../Matrix/west0067 > test_dl_we.out - $(V) ./cstcov_test_dl ../Matrix/ash219 > test_dl_ash.out - $(V) ./cstcov_test_dl ../Matrix/lp_afiro > test_dl_afiro.out run_ci: cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci - $(V) ./cs_demo1_ci < ../Matrix/t2 - $(V) ./cs_demo2_ci < ../Matrix/t2 - $(V) ./cs_demo1_ci < czero - $(V) ./cs_demo2_ci < czero - $(V) ./cs_demo1_ci < ../Matrix/t3 - $(V) ./cs_demo2_ci < ../Matrix/t3 - $(V) ./cs_demo1_ci < ../Matrix/t4 - $(V) ./cs_demo2_ci < ../Matrix/t4 - $(V) ./cs_demo2_ci < ../Matrix/c_west0067 - $(V) ./cs_demo2_ci < ../Matrix/c_mbeacxc - $(V) ./cs_demo2_ci < ../Matrix/c_ibm32a - $(V) ./cs_demo2_ci < ../Matrix/c_ibm32b - $(V) ./cs_demo2_ci < ../Matrix/young1c - $(V) ./cs_demo2_ci < ../Matrix/qc324 - $(V) ./cs_demo2_ci < ../Matrix/neumann - $(V) ./cs_demo2_ci < ../Matrix/c4 - $(V) ./cs_demo3_ci < ../Matrix/c4 - $(V) ./cs_demo2_ci < ../Matrix/mhd1280b - $(V) ./cs_demo3_ci < ../Matrix/mhd1280b - $(V) ./cstcov_test_ci ../Matrix/t2 > test_ci_t2.out - $(V) ./cstcov_test_ci ../Matrix/young1c > test_ci_young1c.out - $(V) ./cstcov_test_ci ../Matrix/qc324 > test_ci_qc324.out - $(V) ./cstcov_test_ci ../Matrix/neumann > test_ci_neumann.out - $(V) ./cstcov_test_ci ../Matrix/mhd1280b > test_ci_mhd1280b.out run_cl: cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl - $(V) ./cs_demo1_cl < ../Matrix/t2 - $(V) ./cs_demo2_cl < ../Matrix/t2 - $(V) ./cs_demo1_cl < czero - $(V) ./cs_demo2_cl < czero - $(V) ./cs_demo1_cl < ../Matrix/t3 - $(V) ./cs_demo2_cl < ../Matrix/t3 - $(V) ./cs_demo1_cl < ../Matrix/t4 - $(V) ./cs_demo2_cl < ../Matrix/t4 - $(V) ./cs_demo2_cl < ../Matrix/c_west0067 - $(V) ./cs_demo2_cl < ../Matrix/c_mbeacxc - $(V) ./cs_demo2_cl < ../Matrix/c_ibm32a - $(V) ./cs_demo2_cl < ../Matrix/c_ibm32b - $(V) ./cs_demo2_cl < ../Matrix/young1c - $(V) ./cs_demo2_cl < ../Matrix/qc324 - $(V) ./cs_demo2_cl < ../Matrix/neumann - $(V) ./cs_demo2_cl < ../Matrix/c4 - $(V) ./cs_demo3_cl < ../Matrix/c4 - $(V) ./cs_demo2_cl < ../Matrix/mhd1280b - $(V) ./cs_demo3_cl < ../Matrix/mhd1280b - $(V) ./cstcov_test_cl ../Matrix/t2 > test_cl_t2.out - $(V) ./cstcov_test_cl ../Matrix/young1c > test_cl_young1c.out - $(V) ./cstcov_test_cl ../Matrix/qc324 > test_cl_qc324.out - $(V) ./cstcov_test_cl ../Matrix/neumann > test_cl_neumann.out - $(V) ./cstcov_test_cl ../Matrix/mhd1280b > test_cl_mhd1280b.out readhb: readhb.f f77 -o readhb readhb.f readhb.f: - ln -s ../Demo/readhb.f clean: rm -f *.o *.bbg *.da *.gcov *.gcda *.gcno purge: distclean distclean: clean rm -f readhb *.out *.a cov.sort rm -f cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di rm -f cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl rm -f cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci rm -f cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl rm -f cs_idemo cs_ldemo rm -f cs_*.c rm -f cs*_di.c cs*_dl.c cs*_ci.c cs*_cl.c SuiteSparse/CXSparse/Tcov/covall.linux0000755001170100242450000000031110336471635016721 0ustar davisfac#!/bin/csh ./gcovs cs*.c |& awk -f cov.awk | sort -n > cov.out sort -n cov.out > cov.sort ./covs > covs.out echo -n "statments not yet tested: " grep "#####" *gcov | wc -l ./cover *v > cover.out SuiteSparse/CXSparse/Tcov/cover0000755001170100242450000000050310325730035015412 0ustar davisfac#!/bin/csh # usage: cover files echo '=================================================================' foreach file ($argv[1-]) echo $file echo '=================================================================' grep "#####" -A5 -B5 $file echo '=================================================================' end SuiteSparse/CXSparse/Tcov/gcovs0000755001170100242450000000032510325727753015434 0ustar davisfac# usage: gcovs files echo '=================================================================' foreach file ($argv[1-]) gcov -f $file echo '=================================================================' end SuiteSparse/CXSparse/Tcov/cstcov_test.c0000644001170100242450000000144210473073175017066 0ustar davisfac#include "cs_demo.h" /* cs_test: read a matrix and run cs_demo2 and cs_demo3, using malloc tests. */ #include "cstcov_malloc_test.h" int main (int argc, char **argv) { FILE *f ; problem *Prob ; int trials, ok, demo ; if (argc < 2) return (-1) ; printf ("cs_test, file: %s\n", argv [1]) ; for (demo = 2 ; demo <= 3 ; demo++) { printf ("demo: %d\n", demo) ; for (trials = 0 ; trials < 4000 ; trials++) { malloc_count = trials ; f = fopen (argv [1], "r") ; if (!f) return (-1) ; Prob = get_problem (f, (demo == 2) ? 1e-14 : 0) ; fclose (f) ; if (Prob) ok = (demo == 2) ? demo2 (Prob) : demo3 (Prob) ; free_problem (Prob) ; if (malloc_count > 0) break ; } printf ("demo %d # trials: %d\n", demo, trials) ; } return (0) ; } SuiteSparse/CXSparse/Tcov/covall0000755001170100242450000000031110325753446015564 0ustar davisfac#!/bin/csh ./gcovs cs*.c |& awk -f cov.awk | sort -n > cov.out sort -n cov.out > cov.sort ./covs > covs.out echo -n "statments not yet tested: " grep "#####" *gcov | wc -l ./cover *v > cover.out SuiteSparse/CXSparse/Tcov/covall.sol0000755001170100242450000000020710336471673016365 0ustar davisfac#!/bin/csh tcov -x cm.profile cs*.c >& /dev/null echo -n "statments not yet tested: " ./covs > covs.out grep "#####" *tcov | wc -l SuiteSparse/CXSparse/Tcov/README.txt0000644001170100242450000000131210376376004016053 0ustar davisfacCXSparse/Tcov: comprehensive test coverage for CXSparse. Requires Linux. Type "make" to compile, and then "make run" to run the tests. The test coverage is in cover.out. The test output is printed on stdout, except for cs_test (which prints its output in various *.out files). If the test is successful, the last line printed should be "statements not yet tested: 0", and all printed residuals should be small. Note that you will get warnings about unused parameters for some functions. These warnings can be safely ignored. They are parameters for functions that are passed to cs_fkeep, and all functions used in this manner must have the same calling sequence, even if some of the parameters are not used. SuiteSparse/CXSparse/Tcov/cstcov_malloc_test.c0000644001170100242450000000171110473440334020407 0ustar davisfac#include "cstcov_malloc_test.h" int malloc_count = INT_MAX ; /* wrapper for malloc */ void *cs_malloc (CS_INT n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (malloc (CS_MAX (n,1) * size)) ; } /* wrapper for calloc */ void *cs_calloc (CS_INT n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (calloc (CS_MAX (n,1), size)) ; } /* wrapper for free */ void *cs_free (void *p) { if (p) free (p) ; /* free p if it is not already NULL */ return (NULL) ; /* return NULL to simplify the use of cs_free */ } /* wrapper for realloc */ void *cs_realloc (void *p, CS_INT n, size_t size, CS_INT *ok) { void *pnew ; *ok = 0 ; if (--malloc_count < 0) return (p) ; /* pretend to fail */ pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */ *ok = (pnew != NULL) ; return ((*ok) ? pnew : p) ; /* return original p if failure */ } SuiteSparse/CXSparse/Tcov/cstcov_malloc_test.h0000644001170100242450000000020410473440334020410 0ustar davisfac#include "cs.h" #define malloc_count CS_NAME (_malloc_count) #ifndef EXTERN #define EXTERN extern #endif EXTERN int malloc_count ; SuiteSparse/CXSparse/Tcov/czero0000644001170100242450000000001010376373611015415 0ustar davisfac0 0 0 0 SuiteSparse/CXSparse/Makefile0000644001170100242450000000067010710676627015116 0ustar davisfac# CSparse Makefile C: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) all: C cov library: ( cd Lib ; $(MAKE) ) cov: ( cd Tcov ; $(MAKE) ) mex: ( cd MATLAB ; $(MAKE) ) clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd Tcov ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd Tcov ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) distclean: purge SuiteSparse/CXSparse/MATLAB/0000755001170100242450000000000010712370315014376 5ustar davisfacSuiteSparse/CXSparse/MATLAB/Demo/0000755001170100242450000000000010620375072015265 5ustar davisfacSuiteSparse/CXSparse/MATLAB/Demo/Contents.m0000644001170100242450000000053410620375072017242 0ustar davisfac% CXSparse MATLAB demos. % % cs_demo - run all CXSparse demos. % cs_demo1 - MATLAB version of the CSparse/Demo/cs_demo1.c program. % cs_demo2 - MATLAB version of the CSparse/Demo/cs_demo2.c program. % cs_demo3 - MATLAB version of the CSparse/Demo/cs_demo3.c program. % Example: % help cs_demo % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CXSparse/MATLAB/Demo/cs_demo1.m0000644001170100242450000000342410621036577017145 0ustar davisfacfunction cs_demo1 (matrixpath) %CS_DEMO1 MATLAB version of the CSparse/Demo/cs_demo1.c program. % Uses both MATLAB functions and CSparse mexFunctions, and compares the two % results. This demo also plots the results, which the C version does not do. % % Example: % cs_demo1 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end t1 = load ([matrixpath '/t1']) ; T = t1 %#ok A = sparse (T(:,1)+1, T(:,2)+1, T(:,3)) %#ok A2 = cs_sparse (T(:,1)+1, T(:,2)+1, T(:,3)) %#ok fprintf ('A difference: %g\n', norm (A-A2,1)) ; % CSparse/Demo/cs_demo1.c also clears the triplet matrix T at this point: % clear T clf subplot (2,2,1) ; cspy (A) ; title ('A', 'FontSize', 16) ; AT = A' %#ok AT2 = cs_transpose (A) %#ok fprintf ('AT difference: %g\n', norm (AT-AT2,1)) ; subplot (2,2,2) ; cspy (AT) ; title ('A''', 'FontSize', 16) ; n = size (A,2) ; I = speye (n) ; C = A*AT ; C2 = cs_multiply (A, AT) %#ok fprintf ('C difference: %g\n', norm (C-C2,1)) ; subplot (2,2,3) ; cspy (C) ; title ('C=A*A''', 'FontSize', 16) ; cnorm = norm (C,1) ; D = C + I*cnorm %#ok D2 = cs_add (C, I, 1, cnorm) %#ok fprintf ('D difference: %g\n', norm (D-D2,1)) ; subplot (2,2,4) ; cspy (D) ; title ('D=C+I*norm(C,1)', 'FontSize', 16) ; % CSparse/Demo/cs_demo1.c clears all matrices at this point: % clear A AT C D I % clear A2 AT2 C2 D2 SuiteSparse/CXSparse/MATLAB/Demo/cs_demo2.m0000644001170100242450000000205210620721047017132 0ustar davisfacfunction cs_demo2 (do_pause, matrixpath) %CS_DEMO2 MATLAB version of the CSparse/Demo/cs_demo2.c program. % Solves a linear system using Cholesky, LU, and QR, with various orderings. % % Example: % cs_demo2 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 2) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end matrices = { 't1', 'HB/fs_183_1', 'HB/west0067', 'LPnetlib/lp_afiro', ... 'HB/ash219', 'HB/mbeacxc', 'HB/bcsstk01', 'HB/bcsstk16' } ; if (nargin < 1) do_pause = 1 ; end for i = 1:length(matrices) name = matrices {i} ; [C sym] = get_problem (matrixpath, name, 1e-14) ; demo2 (C, sym, name) ; if (do_pause) input ('Hit enter to continue: ') ; end end SuiteSparse/CXSparse/MATLAB/Demo/cs_demo3.m0000644001170100242450000000164110620721075017137 0ustar davisfacfunction cs_demo3 (do_pause, matrixpath) %CS_DEMO3 MATLAB version of the CSparse/Demo/cs_demo3.c program. % Cholesky update/downdate. % % Example: % cs_demo3 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 2) matrixpath = [] ; end if (isempty (matrixpath)) try % older versions of MATLAB do not have an input argument to mfilename p = mfilename ('fullpath') ; t = strfind (p, filesep) ; matrixpath = [ p(1:t(end)) '../../Matrix' ] ; catch % assume we are in the C*Sparse/MATLAB/CSparse/Demo directory matrixpath = '../../Matrix' ; end end matrices = { 'HB/bcsstk01', 'HB/bcsstk16' } ; if (nargin < 1) do_pause = 1 ; end for i = 1:length(matrices) name = matrices {i} ; [C sym] = get_problem (matrixpath, name, 1e-14) ; demo3 (C, sym, name) ; if (do_pause) input ('Hit enter to continue: ') ; end end SuiteSparse/CXSparse/MATLAB/Demo/cs_demo.m0000644001170100242450000000206410620723666017064 0ustar davisfacfunction cs_demo (do_pause, matrixpath) %CS_DEMO run all CXSparse demos. % cs_demo(0) will run all demos without pausing. % % Example: % cs_demo % See also: cs_demo1, cs_demo2, cs_demo3 % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse help cs_demo if (nargin < 1) do_pause = 1 ; end if (nargin < 2) matrixpath = [] ; end figure (1) clf fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo1 ; cs_demo1 (matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo2 cs_demo2 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo3 cs_demo3 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help ex_1 ex_1 fprintf ('\n\n-------------------------------------------------------\n') ; help ex2 ex2 fprintf ('\n\n-------------------------------------------------------\n') ; help ex3 ex3 fprintf ('\nAll CXSparse demos finished.\n') ; SuiteSparse/CXSparse/MATLAB/Demo/README.txt0000644001170100242450000000010510571365661016767 0ustar davisfacDemo for MATLAB interface for CXSparse. See Contents.m for details. SuiteSparse/CXSparse/MATLAB/Demo/private/0000755001170100242450000000000010620730542016734 5ustar davisfacSuiteSparse/CXSparse/MATLAB/Demo/private/demo2.m0000644001170100242450000000457310620671165020136 0ustar davisfacfunction demo2 (C, sym, name) %DEMO2: solve a linear system using Cholesky, LU, and QR, with various orderings % % Example: % demo2 (C, 1, 'name of system') % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf subplot (2,2,1) ; cspy (C) ; title (name, 'FontSize', 16, 'Interpreter', 'none') ; [m n] = size (C) ; [p,q,r,s,cc,rr] = cs_dmperm (C) ; subplot (2,2,3) ; cs_dmspy (C) ; subplot (2,2,2) ; ccspy (C) ; drawnow sprnk = rr (4) - 1 ; nb = length (r) - 1 ; ns = sum ((r (2:nb+1) == r (1:nb)+1) & (s (2:nb+1) == s (1:nb)+1)) ; fprintf ('blocks: %d singletons %d structural rank %d\n', nb, ns, sprnk) ; if (sprnk ~= sprank (C)) error ('sprank mismatch!') ; end if (sprnk < min (m,n)) return ; % return if structurally singular end % the following code is not in the C version of this demo: if (m == n) if (sym) try [L,p] = cs_chol (C) ; %#ok subplot (2,2,4) ; cspy (L+triu(L',1)) ; title ('L+L''') ; catch % tol = 0.001 ; [L,U,p,q] = cs_lu (C,0.001) ; %#ok subplot (2,2,4) ; cspy (L+U-speye(n)) ; title ('L+U') ; end else [L,U,p,q] = cs_lu (C) ; %#ok subplot (2,2,4) ; cspy (L+U-speye(n)) ; title ('L+U') ; end else if (m < n) [V,beta,p,R,q] = cs_qr (C') ; %#ok else [V,beta,p,R,q] = cs_qr (C) ; %#ok end subplot (2,2,4) ; cspy (V+R) ; title ('V+R') ; end drawnow % continue with the MATLAB equivalent of the C cs_demo2 program for order = [0 3] if (order == 0 & m > 1000) %#ok continue ; end fprintf ('QR ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_qrsol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end if (m ~= n) return ; end for order = 0:3 if (order == 0 & m > 1000) %#ok continue ; end fprintf ('LU ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_lusol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end if (sym == 0) return ; end for order = 0:1 if (order == 0 & m > 1000) %#ok continue ; end fprintf ('Chol ') ; print_order (order) ; b = rhs (m) ; % compute right-hand-side tic ; x = cs_cholsol (C, b, order) ; fprintf ('time %8.2f ', toc) ; print_resid (C, x, b) ; end SuiteSparse/CXSparse/MATLAB/Demo/private/demo3.m0000644001170100242450000000344310620671175020133 0ustar davisfacfunction demo3 (C, sym, name) %DEMO3: Cholesky update/downdate % % Example: % demo3 (C, 1, 'name of system') % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf subplot (2,2,1) ; cspy (C) ; title (name, 'FontSize', 16, 'Interpreter', 'none') ; drawnow [m n] = size (C) ; if (m ~= n | ~sym) %#ok return ; end b = rhs (n) ; fprintf ('chol then update/downdate ') ; print_order (0) ; tic ; [L,p] = cs_chol (C) ; t = toc ; fprintf ('\nchol time: %8.2f\n', t) ; subplot (2,2,2) ; cspy (L) ; title ('L') ; drawnow tic ; x = b (p) ; x = cs_lsolve (L,x) ; x = cs_ltsolve (L,x) ; x (p) = x ; t = toc ; fprintf ('solve time: %8.2f\n', t) ; fprintf ('original: ') ; print_resid (C, x, b) ; k = fix (n/2) ; w = L(k,k) * sprand (L (:,k)) ; parent = cs_etree (C (p,p)) ; tic ; L2 = cs_updown (L, w, parent, '+') ; t1 = toc ; fprintf ('update: time: %8.2f\n', t1) ; subplot (2,2,3) ; cspy (L2) ; title ('updated L') ; subplot (2,2,4) ; cspy (L-L2) ; title ('L - updated L') ; drawnow tic ; x = b (p) ; x = cs_lsolve (L2,x) ; x = cs_ltsolve (L2,x) ; x (p) = x ; t = toc ; w2 = sparse (n,1) ; w2 (p) = w ; % w2 = P'*w wt = cs_transpose (w2) ; ww = cs_multiply (w2,wt) ; E = cs_add (C, ww, 1, 1) ; % E = C + w2*w2' ; fprintf ('update: time: %8.2f (incl solve) ', t1+t) ; print_resid (E, x, b) ; tic [L,p2] = cs_chol (E) ; x = b (p2) ; x = cs_lsolve (L,x) ; x = cs_ltsolve (L,x) ; x (p2) = x ; t = toc ; fprintf ('rechol: time: %8.2f (incl solve) ', t) ; print_resid (E, x, b) ; tic ; L3 = cs_updown (L2, w, parent, '-') ; t1 = toc ; fprintf ('downdate: time: %8.2f\n', t1) ; tic ; x = b (p) ; x = cs_lsolve (L3,x) ; x = cs_ltsolve (L3,x) ; x (p) = x ; t = toc ; fprintf ('downdate: time: %8.2f (incl solve) ', t1+t) ; print_resid (C, x, b) ; SuiteSparse/CXSparse/MATLAB/Demo/private/ex2.m0000644001170100242450000000370510620725624017622 0ustar davisfacfunction ex2 (n) %EX2: create an n-by-n 2D mesh, four different ways % Example: % ex2 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) n = 30 ; end subplot (1,2,1) ; % method 1: create an n-by-n 2D mesh for the 2nd difference operator tic ii = zeros (5*n^2, 1) ; jj = zeros (5*n^2, 1) ; xx = zeros (5*n^2, 1) ; k = 1 ; for j = 0:n-1 for i = 0:n-1 s = j*n+i + 1 ; ii (k:k+4) = [(j-1)*n+i j*n+(i-1) j*n+i j*n+(i+1) (j+1)*n+i ] + 1 ; jj (k:k+4) = [s s s s s] ; xx (k:k+4) = [-1 -1 4 -1 -1] ; k = k + 5 ; end end % remove entries beyond the boundary keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; ii = ii (keep) ; jj = jj (keep) ; xx = xx (keep) ; A = sparse (ii,jj,xx) ; t1 = toc ; disp (t1) ; % subplot (2,2,1) ; spy (A) title (sprintf ('%d-by-%d 2D mesh\n', n, n)) ; % method 2, using no for loops tic nn = 1:n^2 ; i2 = [nn-n ; nn-1 ; nn ; nn+1 ; nn+n] ; j2 = repmat (nn, 5, 1) ; x2 = repmat ([-1 -1 4 -1 -1]', 1, n^2) ; keep = find (i2 >= 1 & i2 <= n^2 & j2 >= 1 & j2 <= n^2) ; i2 = i2 (keep) ; j2 = j2 (keep) ; x2 = x2 (keep) ; C = sparse (i2,j2,x2) ; t2 = toc ; disp (t2) ; % subplot (2,2,2) ; plot (j2) ; % title ('2D fast j2') ; disp (A-C) ; any (ii-i2) any (jj-jj) % method 3: create an n-by-n-by-n 3D mesh for the 2nd difference operator tic [A, keep, ii, jj, xx] = mesh3d1 (n) ; ii = ii (keep) ; jj = jj (keep) ; xx = xx (keep) ; t3 = toc ; disp (t3) ; tic E = sparse (ii,jj,xx) ; t3b = toc ; disp (t3b) ; subplot (1,2,2) ; spy (E) ; title (sprintf ('%d-by-%d-by-%d 3D mesh\n', n, n, n)) ; % method 4, using no for loops tic nn = 1:n^3 ; i2 = [nn-n^2 ; nn-n ; nn-1 ; nn ; nn+1 ; nn+n ; nn+n^2] ; j2 = repmat (nn, 7, 1) ; x2 = repmat ([-1 -1 -1 6 -1 -1 -1]', 1, n^3) ; keep = find (i2 >= 1 & i2 <= n^3 & j2 >= 1 & j2 <= n^3) ; i2 = i2 (keep) ; j2 = j2 (keep) ; x2 = x2 (keep) ; t4 = toc ; disp (t4) ; tic F = sparse (i2,j2,x2) ; t4b = toc ; disp (t4b) ; disp (E-F) ; SuiteSparse/CXSparse/MATLAB/Demo/private/ex3.m0000644001170100242450000000161410620372241017611 0ustar davisfacfunction ex3 %EX3: create 2D and 3D meshes using mesh2d1, mesh2d2, mesh3d1, mesh3d2. % Example: % ex3 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse t1 = zeros (50,1) ; t2 = zeros (50,1) ; t3 = zeros (50,1) ; t4 = zeros (50,1) ; fprintf ('run times for each method, given n:\n') ; for n = 2:50 tic ; A = mesh2d1 (n) ; t1 (n) = toc ; tic B = mesh2d2 (n) ; t2 (n) = toc ; tic C = mesh3d1 (n) ; t3 (n) = toc ; tic D = mesh3d2 (n) ; t4 (n) = toc ; fprintf ('%3d: %8.3f %8.3f %8.3f %8.3f\n', n, t1(n), t2(n), t3(n), t4(n)) ; subplot (2,2,1) ; spy (A) ; title ('2D mesh, method 1') ; subplot (2,2,2) ; spy (B) ; title ('2D mesh, method 2') ; subplot (2,2,3) ; spy (C) ; title ('3D mesh, method 1') ; subplot (2,2,4) ; spy (D) ; title ('3D mesh, method 2') ; drawnow end SuiteSparse/CXSparse/MATLAB/Demo/private/rhs.m0000644001170100242450000000034710620372266017717 0ustar davisfacfunction b = rhs (m) % b = rhs (m), compute a right-hand-side % Example: % b = rhs (30) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse b = ones (m,1) + (0:m-1)'/m ; SuiteSparse/CXSparse/MATLAB/Demo/private/print_order.m0000644001170100242450000000072110620372257021446 0ustar davisfacfunction print_order (order) % print_order(order) prints the ordering determined by the order parameter % Example: % print_order (0) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse switch (fix (order)) case 0 fprintf ('natural ') ; case 1 fprintf ('amd(A+A'') ') ; case 2 fprintf ('amd(S''*S) ') ; case 3 fprintf ('amd(A''*A) ') ; otherwise fprintf ('undefined ') ; end SuiteSparse/CXSparse/MATLAB/Demo/private/get_problem.m0000644001170100242450000000254710620720547021425 0ustar davisfacfunction [C, sym] = get_problem (prefix, name, tol) % [C, sym] = get_problem(prefix, name,tol) % read a problem from a file, drop entries with abs value < tol % tol defaults to zero if not present % % Example: % [C, sym] = get_problem ('', 'west0067') ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('\n------------------- Matrix: %s\n', name) ; if (nargin < 2) tol = 0 ; end s = find (name == '/') ; if (isempty (s)) s = 0 ; end % f = sprintf ('%s..%s..%sMatrix%s%s', ... % prefix, filesep, filesep, filesep, name (s+1:end)) ; % load the triplet version of the matrix T = load ([ prefix '/' name(s+1:end) ]) ; % convert into a sparse matrix and compare with cs_sparse A = sparse (T (:,1)+1, T (:,2)+1, T (:,3)) ; A2 = cs_sparse (T (:,1)+1, T (:,2)+1, T (:,3)) ; err = norm (A-A2,1) ; if (err > 0) fprintf ('A difference: %g\n', err) ; end [m n] = size (A) ; nz2 = nnz (A) ; if (tol > 0) A = cs_droptol (A, tol) ; end % assume A is symmetric if it is upper or lower triangular sym = is_sym (A) ; if (sym) C = A + (A' - diag (diag (A))) ; else C = A ; end fprintf ('--- Matrix: %d-by-%d, nnz: %d (sym: %d nnz %d), norm: %8.2e\n', ... m, n, nnz(A), sym, abs(sym)*nnz(C), norm (C,1)) ; if (nz2 ~= nnz(A)) fprintf ('tiny entries dropped: %d\n', nz2 - nnz(A)) end SuiteSparse/CXSparse/MATLAB/Demo/private/is_sym.m0000644001170100242450000000071510620372246020423 0ustar davisfacfunction sym = is_sym (A) % sym = is_sym(A) % 1 if A is square and upper tri., -1 if square and lower tri., 0 otherwise % % Example: % sym = is_sym (A) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; sym = 0 ; if (m == n) is_upper = nnz (tril (A,-1)) == 0 ; is_lower = nnz (triu (A,1)) == 0 ; if (is_upper) sym = 1 ; elseif (is_lower) sym = -1 ; end end SuiteSparse/CXSparse/MATLAB/Demo/private/ex_1.m0000644001170100242450000000345010620372224017747 0ustar davisfacfunction ex_1 %EX_1: four methods for creating the same matrix. % (please wait, this can take a while...) % Example: % ex_1 % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = 1000 ; nz = 1e5 ; tic % method 1: A(i,j) = ... rand ('state', 0) ; A = sparse (n,n) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix i = 1 + fix (n * rand (1)) ; j = 1 + fix (n * rand (1)) ; x = rand (1) ; A (i,j) = A (i,j) + x ; % VERY slow, esp. if A(i,j) not already nonzero! end fprintf ('Method 1: ') ; toc A1 = A ; tic % method 2: triplet form, one entry at a time rand ('state', 0) ; ii = zeros (nz, 1) ; % preallocate ii, jj, and xx jj = zeros (nz, 1) ; xx = zeros (nz, 1) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix ii (k) = 1 + fix (n * rand (1)) ; jj (k) = 1 + fix (n * rand (1)) ; xx (k) = rand (1) ; end A = sparse (ii,jj,xx) ; fprintf ('Method 2: ') ; toc A2 = A ; disp (A1-A2) ; tic % method 3: triplet form, one entry at a time, pretend nz is unknown rand ('state', 0) ; len = 16 ; ii = zeros (len, 1) ; jj = zeros (len, 1) ; xx = zeros (len, 1) ; for k = 1:nz % compute some arbitrary entry and add it into the matrix if (k > len) % double the size of ii,jj,xx len = 2*len ; ii (len) = 0 ; jj (len) = 0 ; xx (len) = 0 ; end ii (k) = 1 + fix (n * rand (1)) ; jj (k) = 1 + fix (n * rand (1)) ; xx (k) = rand (1) ; end A = sparse (ii (1:k), jj (1:k), xx (1:k)) ; fprintf ('Method 3: ') ; toc A3 = A ; disp (A1-A3) ; tic % method 4: avoid the for loop rand ('state', 0) ; e = rand (3, nz) ; e (1,:) = 1 + fix (n * e (1,:)) ; e (2,:) = 1 + fix (n * e (2,:)) ; A = sparse (e (1,:), e (2,:), e (3,:)) ; fprintf ('Method 4: ') ; toc A4 = A ; disp (A1-A4) ; SuiteSparse/CXSparse/MATLAB/Demo/private/frand.m0000644001170100242450000000133210620372243020203 0ustar davisfacfunction A = frand (n,nel,s) % A = frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel finite % elements, each of which are of size s-by-s with random symmetric nonzero % pattern, plus the identity matrix. % % Example: % A = frand (100, 100, 4) ; cspy (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ss = s^2 ; nz = nel*ss ; ii = zeros (nz,1) ; jj = zeros (nz,1) ; xx = zeros (nz,1) ; k = 1 ; for e = 1:nel i = 1 + fix (n * rand (s,1)) ; i = repmat (i, 1, s) ; j = i' ; x = rand (s,s) ; ii (k:k+ss-1) = i (:) ; jj (k:k+ss-1) = j (:) ; xx (k:k+ss-1) = x (:) ; k = k + ss ; end A = sparse (ii,jj,xx,n,n) + speye (n) ; SuiteSparse/CXSparse/MATLAB/Demo/private/print_resid.m0000644001170100242450000000060310620372261021433 0ustar davisfacfunction print_resid (A, x, b) % print_resid (A, x, b), print the relative residual, % norm (A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf)) % Example: % print_resid (A, x, b) ; % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('resid: %8.2e\n', ... norm (A*x-b,inf) / (norm(A,1)*norm(x,inf) + norm(b,inf))) ; SuiteSparse/CXSparse/MATLAB/Demo/private/mesh2d1.m0000644001170100242450000000130010620372250020345 0ustar davisfacfunction A = mesh2d1 (n) % create an n-by-n 2D mesh for the 2nd difference operator % Example: % A = mesh2d1 (30) ; % a 30-by-30 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ii = zeros (5*n^2, 1) ; % preallocate ii, jj, and xx jj = zeros (5*n^2, 1) ; xx = zeros (5*n^2, 1) ; k = 1 ; for j = 0:n-1 for i = 0:n-1 s = j*n+i + 1 ; ii (k:k+4) = [(j-1)*n+i j*n+(i-1) j*n+i j*n+(i+1) (j+1)*n+i ] + 1 ; jj (k:k+4) = [s s s s s] ; xx (k:k+4) = [-1 -1 4 -1 -1] ; k = k + 5 ; end end % remove entries beyond the boundary keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CXSparse/MATLAB/Demo/private/mesh2d2.m0000644001170100242450000000072610620372252020363 0ustar davisfacfunction A = mesh2d2 (n) % create an n-by-n 2D mesh for the 2nd difference operator % Example: % A = mesh2d2 (30) ; % a 30-by-30 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse nn = 1:n^2 ; ii = [nn-n ; nn-1 ; nn ; nn+1 ; nn+n] ; jj = repmat (nn, 5, 1) ; xx = repmat ([-1 -1 4 -1 -1]', 1, n^2) ; keep = find (ii >= 1 & ii <= n^2 & jj >= 1 & jj <= n^2) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CXSparse/MATLAB/Demo/private/mesh3d1.m0000644001170100242450000000151510620725647020372 0ustar davisfacfunction [A, keep, ii, jj, xx] = mesh3d1 (n) % create an n-by-n-by-n 3D mesh for the 2nd difference operator % Example: % A = mesh3d1 (10) ; % a 10-by-10-by-10 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse ii = zeros (7*n^3, 1) ; jj = zeros (7*n^3, 1) ; xx = zeros (7*n^3, 1) ; t = 1 ; for k = 0:n-1 for j = 0:n-1 for i = 0:n-1 s = k*n^2 + j*n+i + 1 ; ii (t:t+6) = [ (k-1)*n^2 + j*n+i k*n^2 + (j-1)*n+i k*n^2 + j*n+(i-1) k*n^2 + j*n+i k*n^2 + j*n+(i+1) k*n^2 + (j+1)*n+i (k+1)*n^2 + j*n+i ]' + 1 ; jj (t:t+6) = [s s s s s s s] ; xx (t:t+6) = [-1 -1 -1 6 -1 -1 -1] ; t = t + 7 ; end end end keep = find (ii >= 1 & ii <= n^3 & jj >= 1 & jj <= n^3) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CXSparse/MATLAB/Demo/private/mesh3d2.m0000644001170100242450000000077110620372255020367 0ustar davisfacfunction A = mesh3d2 (n) % create an n-by-n-by-n 3D mesh for the 2nd difference operator % Example: % A = mesh3d2 (10) ; % a 10-by-10-by-10 mesh % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse nn = 1:n^3 ; ii = [nn-n^2 ; nn-n ; nn-1 ; nn ; nn+1 ; nn+n ; nn+n^2] ; jj = repmat (nn, 7, 1) ; xx = repmat ([-1 -1 -1 6 -1 -1 -1]', 1, n^3) ; keep = find (ii >= 1 & ii <= n^3 & jj >= 1 & jj <= n^3) ; A = sparse (ii (keep), jj (keep), xx (keep)) ; SuiteSparse/CXSparse/MATLAB/Test/0000755001170100242450000000000010710651265015321 5ustar davisfacSuiteSparse/CXSparse/MATLAB/Test/hmake1.m0000644001170100242450000000127110620373127016644 0ustar davisfacfunction [v,beta,xnorm] = hmake1 (x) %HMAKE1 construct a Householder reflection % Example: % [v,beta,xnorm] = hmake1 (x) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = length (x) ; if (n == 1) v = 1 ; xnorm = norm (x) ; if (x (1) < 0) beta = 2 ; else beta = 0 ; end return end sigma = x (2:n)'*x(2:n) ; xnorm = sqrt (x (1)^2 + sigma) ; v = x ; if (sigma == 0) v (1) = 1 ; if (x (1) < 0) beta = 2 ; else beta = 0 ; end else if (x (1) <= 0) v (1) = x(1) - xnorm ; else v (1) = -sigma / (x(1) + xnorm) ; end beta = (2*v(1)^2) / (sigma + v(1)^2) ; v = v / v(1) ; end SuiteSparse/CXSparse/MATLAB/Test/sqr_example.m0000644001170100242450000000101510620373174020014 0ustar davisfacfunction sqr_example %SQR_EXAMPLE test cs_sqr % Example: % sqr_example % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse Prob = UFget (706) ; A = Prob.A' ; q = colamd (A) ; A = A (:,q) ; A = sprandn (A) ; [m n] = size (A) ; [vnz, rnz, parent, c, leftmost, p] = cs_sqr(A) ; m2 = length (p) ; B = [A ; sparse(m2-m,n)] ; B = B (p,q) ; R1 = gqr3 (B) ; clf subplot (2,2,1) ; spy(A) subplot (2,2,3) ; spy (chol (A'*A + 100*speye(n))) ; subplot (2,2,4) ; spy (R1) ; SuiteSparse/CXSparse/MATLAB/Test/cs_sparse2_mex.c0000644001170100242450000000276610710251214020403 0ustar davisfac#include "cs_mex.h" /* A = cs_sparse2 (i,j,x), removing duplicates and numerically zero entries, * and returning A sorted (test cs_entry) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT k, m, n, nz, *Ti, *Tj ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse2(i,j,x)") ; } nz = mxGetM (pargin [0]) ; Ti = cs_dl_mex_get_int (nz, pargin [0], &m, 1) ; Tj = cs_dl_mex_get_int (nz, pargin [1], &n, 1) ; cs_mex_check (1, nz, 1, 0, 0, 1, pargin [2]) ; if (mxIsComplex (pargin [2])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *Tx ; cs_cl *A, *C, *T ; Tx = cs_cl_mex_get_double (nz, pargin [2]) ; T = cs_cl_spalloc (n, m, 1, 1, 1) ; for (k = 0 ; k < nz ; k++) { cs_cl_entry (T, Tj [k], Ti [k], Tx [k]) ; } C = cs_cl_compress (T) ; cs_cl_spfree (T) ; cs_cl_dupl (C) ; cs_cl_dropzeros (C) ; A = cs_cl_transpose (C, -1) ; cs_cl_spfree (C) ; pargout [0] = cs_cl_mex_put_sparse (&A) ; cs_free (Tx) ; #endif } else { double *Tx ; cs_dl *A, *C, *T ; Tx = mxGetPr (pargin [2]) ; T = cs_dl_spalloc (n, m, 1, 1, 1) ; for (k = 0 ; k < nz ; k++) { cs_dl_entry (T, Tj [k], Ti [k], Tx [k]) ; } C = cs_dl_compress (T) ; cs_dl_spfree (T) ; cs_dl_dupl (C) ; cs_dl_dropzeros (C) ; A = cs_dl_transpose (C, 1) ; cs_dl_spfree (C) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; } cs_free (Ti) ; cs_free (Tj) ; } SuiteSparse/CXSparse/MATLAB/Test/cs_rowcnt_mex.c0000644001170100242450000000521710571353755020354 0ustar davisfac/* Compute the row counts of the Cholesky factor L of the matrix A. Uses * the lower triangular part of A. */ #include "cs_mex.h" static void firstdesc (CS_INT n, CS_INT *parent, CS_INT *post, CS_INT *first, CS_INT *level) { CS_INT len, i, k, r, s ; for (i = 0 ; i < n ; i++) first [i] = -1 ; for (k = 0 ; k < n ; k++) { i = post [k] ; /* node i of etree is kth postordered node */ len = 0 ; /* traverse from i towards the root */ for (r = i ; r != -1 && first [r] == -1 ; r = parent [r], len++) first [r] = k ; len += (r == -1) ? (-1) : level [r] ; /* root node or end of path */ for (s = i ; s != r ; s = parent [s]) level [s] = len-- ; } } /* return rowcount [0..n-1] */ static CS_INT *rowcnt (cs_dl *A, CS_INT *parent, CS_INT *post) { CS_INT i, j, k, len, s, p, jprev, q, n, sparent, jleaf, *Ap, *Ai, *maxfirst, *ancestor, *prevleaf, *w, *first, *level, *rowcount ; n = A->n ; Ap = A->p ; Ai = A->i ; /* get A */ w = cs_dl_malloc (5*n, sizeof (CS_INT)) ; /* get workspace */ ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; level = w+4*n ; rowcount = cs_dl_malloc (n, sizeof (CS_INT)) ; /* allocate result */ firstdesc (n, parent, post, first, level) ; /* find first and level */ for (i = 0 ; i < n ; i++) { rowcount [i] = 1 ; /* count the diagonal of L */ prevleaf [i] = -1 ; /* no previous leaf of the ith row subtree */ maxfirst [i] = -1 ; /* max first[j] for node j in ith subtree */ ancestor [i] = i ; /* every node is in its own set, by itself */ } for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in the postordered etree */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; q = cs_dl_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf) ; if (jleaf) rowcount [i] += (level [j] - level [q]) ; } if (parent [j] != -1) ancestor [j] = parent [j] ; } cs_dl_free (w) ; return (rowcount) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl *A, Amatrix ; double *x ; CS_INT i, m, n, *parent, *post, *rowcount ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: r = cs_rowcnt(A,parent,post)") ; } /* get inputs */ A = cs_dl_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; n = A->n ; parent = cs_dl_mex_get_int (n, pargin [1], &i, 0) ; post = cs_dl_mex_get_int (n, pargin [2], &i, 1) ; rowcount = rowcnt (A, parent, post) ; pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = rowcount [i] ; cs_dl_free (rowcount) ; } SuiteSparse/CXSparse/MATLAB/Test/test_qrsol.m0000644001170100242450000000145610620373304017677 0ustar davisfacfunction test_qrsol %TEST_QRSOL test cs_qrsol % % Example: % test_qrsol % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; k = 0 ; rs1 = zeros (1,0) ; rs2 = zeros (1,0) ; for i = f Prob = UFget (i,index) ; A = Prob.A ; if (~isreal (A)) continue ; end [m n] = size (A) ; %#ok b = rand (m,1) ; x1 = A\b ; x2 = cs_qrsol (A,b) ; x1 (~isfinite (x1)) = 0 ; x2 (~isfinite (x2)) = 0 ; r1 = norm (A*x1-b) ; r2 = norm (A*x2-b) ; k = k + 1 ; rs1 (k) = r1 ; rs2 (k) = r2 ; fprintf ('%30s MATLAB: %6.2e CS: %6.2e\n', Prob.name, r1, r2) ; loglog (rs1, rs2, 'o') ; drawnow clear A b x1 x2 % pack end SuiteSparse/CXSparse/MATLAB/Test/check_if_same.m0000644001170100242450000000063110620373016020232 0ustar davisfacfunction check_if_same (p1,p2) %CHECK_IF_SAME check if two inputs are identical or not % % Example: % check_if_same (1:5, 2:6) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (isempty (p1)) if (~isempty (p2)) p1 %#ok p2 %#ok error ('empty!') ; end elseif (any (p1 ~= p2)) p1 %#ok p2 %#ok error ('!') ; end SuiteSparse/CXSparse/MATLAB/Test/qr_left.m0000644001170100242450000000113010620373162017123 0ustar davisfacfunction [V,Beta,R] = qr_left (A) %QR_LEFT left-looking Householder QR factorization. % Example: % [V,Beta,R] = qr_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; R = zeros (m,n) ; for k = 1:n x = A (:,k) ; for i = 1:k-1 v = V (i:m,i) ; beta = Beta (i) ; x (i:m) = x (i:m) - v * (beta * (v' * x (i:m))) ; end [v,beta,s] = gallery ('house', x (k:m), 2) ; V (k:m,k) = v ; Beta (k) = beta ; R (1:(k-1),k) = x (1:(k-1)) ; R (k,k) = s ; end SuiteSparse/CXSparse/MATLAB/Test/test_qr1.m0000644001170100242450000000162410620373300017233 0ustar davisfacfunction test_qr1 %TEST_QR1 test QR factorizations % % Example: % test_qr1 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; for i = f Prob = UFget (i,index) ; A = Prob.A ; if (~isreal (A)) continue ; end [m n] = size (A) ; if (m < n) A = A' ; end t0 = 0 ; k0 = 0 ; while (t0 < 0.1) tic q = colamd (A, [-1 10]) ; % [Q,R] = qr (A (:,q)) ; R = qr (A (:,q)) ; %#ok t = toc ; t0 = t0 + t ; k0 = k0 + 1 ; end t0 = t0 / k0 ; t1 = 0 ; k1 = 0 ; while (t1 < 0.1) tic [V,beta, p, R,q] = cs_qr (A) ; %#ok t = toc ; t1 = t1 + t ; k1 = k1 + 1 ; end t1 = t1 / k1 ; fprintf (... '%25s MATLAB: %10.4f (%8d) CS: %10.4f (%8d) speedup: %8.2f\n', ... Prob.name, t0, k0, t1, k1, t0/t1) ; end SuiteSparse/CXSparse/MATLAB/Test/test_sep.m0000644001170100242450000000350610620373310017321 0ustar davisfacfunction test_sep %TEST_SEP test cs_sep, and compare with Gilbert's meshpart vtxsep % (requires MESHPART). % % Example: % test_sep % % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; clf for k = 1:length(f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = spones (Prob.A) ; [m n] = size (A) ; if (m ~= n) A = A'*A ; end A = A|A' ; p = symrcm (A) ; n = size (A,1) ; n2 = fix (n/2) ; a = p (1:n2) ; b = p ((n2+1):n) ; clf subplot (2,3,1) ; spy (A) ; subplot (2,3,2) ; spy (A (p,p)) ; hold on plot ([.5 n2+.5 n2+.5 .5 .5], [.5 .5 n2+.5 n2+.5 .5], 'r', 'LineWidth', 2) ; hold off subplot (2,3,3) ; spy (A (a,b)) ; title ('edge sep') ; subplot (2,3,6) ; cs_dmspy (A (a,b)) ; title ('node sep') ; [s as bs] = vtxsep (A,a,b) ; %#ok [s2 a2 b2] = cs_sep (A,a,b) ; p2 = [a2 b2 s2] ; B = A (p2,p2) ; subplot (2,3,5) ; spy (B) ; hold on px = [s2 a2 b2] ; if (any (sort (px) ~= 1:n)) px %#ok n %#ok error ('!') ; end na = length (a2) ; nb = length (b2) ; ns = length (s2) ; %#ok nab = na + nb ; plot ([.5 na+.5 na+.5 .5 .5], [.5 .5 na+.5 na+.5 .5], 'r', 'LineWidth', 2) ; plot ([na nab nab na na]+0.5, [na na nab nab na]+0.5, 'r', 'LineWidth', 2) ; plot ([.5 nab+.5 nab+.5 .5 .5], [.5 .5 nab+.5 nab+.5 .5], 'g', 'LineWidth', 1) ; hold off nz1 = nnz (A (a2,b2)) ; if (nz1 ~= 0) nz1 %#ok error ('!') ; end nz2 = nnz (A (a2,b2)) ; if (nz2 ~= 0) nz2 %#ok error ('!') ; end if (length (s) ~= length (s2)) fprintf ('lengths differ: %d %d\n', length (s), length (s2)) ; end drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/Makefile0000644001170100242450000000235610617732311016765 0ustar davisfacinclude ../../../UFconfig/UFconfig.mk MX = $(MEX) -DCS_LONG AR = ar cr RANLIB = ranlib I = -I../../Include -I../../../UFconfig -I../CSparse all: cs_sparse2.mexglx \ cs_ipvec.mexglx \ cs_pvec.mexglx \ cs_reach.mexglx \ cs_maxtransr.mexglx \ cs_reachr.mexglx \ cs_rowcnt.mexglx \ cs_frand.mexglx mexcsparse: ( cd ../CSparse ; make mexcsparse.a ) cs_ipvec.mexglx: cs_ipvec_mex.c mexcsparse $(MX) -output cs_ipvec $< $(I) ../CSparse/mexcsparse.a cs_pvec.mexglx: cs_pvec_mex.c mexcsparse $(MX) -output cs_pvec $< $(I) ../CSparse/mexcsparse.a cs_reach.mexglx: cs_reach_mex.c mexcsparse $(MX) -output cs_reach $< $(I) ../CSparse/mexcsparse.a cs_sparse2.mexglx: cs_sparse2_mex.c mexcsparse $(MX) -output cs_sparse2 $< $(I) ../CSparse/mexcsparse.a cs_maxtransr.mexglx: cs_maxtransr_mex.c mexcsparse $(MX) -output cs_maxtransr $< $(I) ../CSparse/mexcsparse.a cs_reachr.mexglx: cs_reachr_mex.c mexcsparse $(MX) -output cs_reachr $< $(I) ../CSparse/mexcsparse.a cs_rowcnt.mexglx: cs_rowcnt_mex.c mexcsparse $(MX) -output cs_rowcnt $< $(I) ../CSparse/mexcsparse.a cs_frand.mexglx: cs_frand_mex.c mexcsparse $(MX) -output cs_frand $< $(I) ../CSparse/mexcsparse.a clean: rm -f *.o distclean: clean rm -f *.mex* *.a cs_cl_*.c purge: distclean SuiteSparse/CXSparse/MATLAB/Test/givens2.m0000644001170100242450000000061310620373121017044 0ustar davisfacfunction g = givens2(a,b) %GIVENS2 find a Givens rotation. % Example: % g = givens2(a,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (b == 0) c = 1 ; s = 0 ; elseif (abs (b) > abs (a)) tau = -a/b ; s = 1 / sqrt (1+tau^2) ; c = s*tau ; else tau = -b/a ; c = 1 / sqrt (1+tau^2) ; s = c*tau ; end g = [c -s ; s c] ; SuiteSparse/CXSparse/MATLAB/Test/cs_q1.m0000644001170100242450000000061710620373075016511 0ustar davisfacfunction Q = cs_q1 (V, Beta, p) %CS_Q1 construct Q from Householder vectors % Example: % Q = cs_q1 (V, beta, p) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (V) ; Q = speye (m) ; if (nargin > 2) Q = Q (:,p) ; end for i = 1:m for k = 1:n Q (i,:) = Q (i,:) - ((Q(i,:) * V(:,k)) * Beta(k)) * V(:,k)' ; end end SuiteSparse/CXSparse/MATLAB/Test/cspy_test.m0000644001170100242450000000155510620666207017524 0ustar davisfacfunction cspy_test %CSPY_TEST test cspy and cs_dmspy % Example % cspy_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; clf % f = f (523:end) ; % f = f ((find (f == 938)):end) ; for i = f Prob = UFget (i,index) ; disp (Prob) ; A = Prob.A ; try subplot (1,4,1) ; cspy (A) ; drawnow subplot (1,4,2) ; cspy (A,64) ; drawnow subplot (1,4,3) ; cs_dmspy (A) ; drawnow subplot (1,4,4) ; cs_dmspy (A,0) ; drawnow catch fprintf ('failed...\n') ; end [m n] = size (A) ; if (m == n & nnz (diag (A)) == n) %#ok p = cs_dmperm (A) ; if (any (p ~= 1:n)) error ('!') ; end [p q r s cc rr] = cs_dmperm (A) ; %#ok if (any (p ~= q)) error ('not sym!') ; end end drawnow end SuiteSparse/CXSparse/MATLAB/Test/cs_maxtransr.m0000644001170100242450000000043710620373065020206 0ustar davisfacfunction p = cs_maxtransr(A) %#ok %CS_MAXTRANSR recursive maximum matching algorithm % Example: % p = cs_maxtransr(A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_maxtransr mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/qr2.m0000644001170100242450000000100510620373153016174 0ustar davisfacfunction [V,Beta,R] = qr2 (A) %QR2 QR factorization based on Householder reflections % % Example: % [V,beta,R] = qr2 (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; for k = 1:n % [v,beta,s] = gallery ('house', A (k:m,k), 2) ; [v,beta] = house (A (k:m,k)) ; V (k:m,k) = v ; Beta (k) = beta ; A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n))) ; end R = triu (A) ; SuiteSparse/CXSparse/MATLAB/Test/cholupdown.m0000644001170100242450000000236210620701365017661 0ustar davisfacfunction L = cholupdown (Lold, sigma, w) %CHOLUPDOWN Cholesky update/downdate (Bischof, Pan, and Tang method) % This version only works for the real case. See chol_updown2 for % a code that handles both the real and complex cases. % Example: % L = cholupdown (Lold, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (Lold,1) ; L = Lold ; % x = weros (n,1) ; % worig = w ; for k = 1:n alpha = w(k) / L(k,k) ; beta_new = sqrt (beta^2 + sigma*alpha^2) ; gamma = alpha / (beta_new * beta) ; if (sigma < 0) % downdate bratio = beta_new / beta ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k,k) = bratio * L (k,k) ; L (k+1:n,k) = bratio * L (k+1:n,k) - gamma*w(k+1:n) ; else % update bratio = beta / beta_new ; % wold = w (k+1:n) ; % w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; % L (k ,k) = bratio * L (k ,k) + gamma*w(k) ; % L (k+1:n,k) = bratio * L (k+1:n,k) + gamma*wold ; L (k,k) = bratio * L (k,k) + gamma*w(k) ; for i = k+1:n wold = w (i) ; w (i) = w (i) - alpha * L (i,k) ; L (i,k) = bratio * L (i,k) + gamma*wold ; end end w (k) = alpha ; beta = beta_new ; end % norm (w-(Lold\worig)) SuiteSparse/CXSparse/MATLAB/Test/cs_sparse2.m0000644001170100242450000000064010620373105017535 0ustar davisfacfunction A = cs_sparse2 (i,j,x) %#ok %CS_SPARSE2 same as cs_sparse, to test cs_entry function % A = cs_sparse2 (i,j,x), removing duplicates and numerically zero entries, % and returning A sorted (test cs_entry) % % Example: % A = cs_sparse2 (i,j,x) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sparse2 mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/chol_right.m0000644001170100242450000000063110620373032017612 0ustar davisfacfunction L = chol_right (A) %CHOL_RIGHT right-looking Cholesky factorization. % Example % L = chol_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; for k = 1:n L (k,k) = sqrt (A (k,k)) ; L (k+1:n,k) = A (k+1:n,k) / L (k,k) ; A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * L (k+1:n,k)' ; end SuiteSparse/CXSparse/MATLAB/Test/signum.m0000644001170100242450000000046010620373167017003 0ustar davisfacfunction s = signum (x) %SIGNUM compute and display the sign of a column vector x % Example % s = signum(x) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse s = ones (length (x),1) ; s (find (x < 0)) = -1 ; %#ok disp ('s =') ; disp (s) ; SuiteSparse/CXSparse/MATLAB/Test/dmperm_test.m0000644001170100242450000000430710620666271020031 0ustar davisfacfunction dmperm_test %DMPERM_TEST test cs_dmperm % % Example: % dmperm_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; f = find (index.nrows ~= index.ncols) ; [ignore i] = sort (index.nrows(f) ./ index.ncols(f)) ; f = [209:211 f(i)] ; nmat = length(f) ; tt1 = zeros (1,nmat) ; tt2 = zeros (1,nmat) ; tt3 = zeros (1,nmat) ; tt4 = zeros (1,nmat) ; mm = zeros (1,nmat) ; nn = zeros (1,nmat) ; ss = zeros (1,nmat) ; me = zeros (1,nmat) ; ne = zeros (1,nmat) ; p = cs_dmperm (sparse (1)) ; for k = 1:length(f) i = f(k) ; Prob = UFget (i) %#ok A = Prob.A ; [m n] = size (A) ; if (m > n) % make sure A is short and fat A = A' ; end % C is tall and thin C = A' ; [m n] = size (A) ; k1 = 0 ; t1 = 0 ; while (t1 < 1) tic p = cs_dmperm (A) ; t = toc ; t1 = t1 + t ; k1 = k1 + 1 ; end t1 = t1 / k1 ; s1 = sum (p > 0) ; k2 = 0 ; t2 = 0 ; while (t2 < 1) tic p = cs_dmperm (C) ; t = toc ; t2 = t2 + t ; k2 = k2 + 1 ; end t2 = t2 / k2 ; s2 = sum (p > 0) ; k3 = 0 ; t3 = 0 ; while (t3 < 1) tic p = cs_dmperm_orig (A) ; t = toc ; t3 = t3 + t ; k3 = k3 + 1 ; end t3 = t3 / k3 ; k4 = 0 ; t4 = 0 ; while (t4 < 1) tic p = cs_dmperm_orig (A') ; t = toc ; t4 = t4 + t ; k4 = k4 + 1 ; end t4 = t4 / k4 ; sprnk = sum (p > 0) ; nempty = full (sum (sum (spones (A)) == 0)) ; mempty = full (sum (sum (spones (C)) == 0)) ; fprintf ('[m %d:%d n %d:%d (%d)]:\n', m, mempty, n, nempty, sprnk) ; fprintf (' A: t1 %10.6f (%6d) C: t2 %10.6f (%6d) new\n', ... t1, k1, t2, k2) ; fprintf (' A: t3 %10.6f (%6d) C: t4 %10.6f (%6d) orig\n', ... t3, k3, t4, k4) ; if (s1 ~= sprnk | s2 ~= sprnk) %#ok s1 %#ok s2 %#ok sprnk %#ok error ('!') ; end tt1 (k) = t1 ; tt2 (k) = t2 ; tt3 (k) = t3 ; tt4 (k) = t4 ; mm (k) = m ; nn (k) = n ; ss (k) = sprnk ; me (k) = mempty ; ne (k) = nempty ; clear A C semilogy (ss(1:k) ./ nn(1:k), tt1(1:k) ./ tt3(1:k), 'o', ... [0 1], [1 1], 'r-') ; drawnow end SuiteSparse/CXSparse/MATLAB/Test/cs_reachr_mex.c0000644001170100242450000000332010571353322020263 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse and lower * triangular. b must be a sparse vector. */ static void dfsr (CS_INT j, const cs *L, CS_INT *top, CS_INT *xi, CS_INT *w) { CS_INT p ; w [j] = 1 ; /* mark node j */ for (p = L->p [j] ; p < L->p [j+1] ; p++) /* for each i in L(:,j) */ { if (w [L->i [p]] != 1) /* if i is unmarked */ { dfsr (L->i [p], L, top, xi, w) ; /* start a dfs at i */ } } xi [--(*top)] = j ; /* push j onto the stack */ } /* w [0..n-1] == 0 on input, <= 1 on output. size n */ static CS_INT reachr (const cs *L, const cs *B, CS_INT *xi, CS_INT *w) { CS_INT p, n = L->n ; CS_INT top = n ; /* stack is empty */ for (p = B->p [0] ; p < B->p [1] ; p++) /* for each i in pattern of b */ { if (w [B->i [p]] != 1) /* if i is unmarked */ { dfsr (B->i [p], L, &top, xi, w) ; /* start a dfs at i */ } } return (top) ; /* return top of stack */ } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Lmatrix, Bmatrix, *L, *B ; double *x ; CS_INT i, j, top, *xi ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reachr(L,b)") ; } /* get inputs */ L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_calloc (2*L->n, sizeof (CS_INT)) ; top = reachr (L, B, xi, xi + L->n) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; } SuiteSparse/CXSparse/MATLAB/Test/chol_left2.m0000644001170100242450000000073510620373026017521 0ustar davisfacfunction L = chol_left2 (A) %CHOL_LEFT2 left-looking Cholesky factorization, more details. % Example % L = chol_left2 (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = sparse (n,n) ; a = sparse (n,1) ; for k = 1:n a (k:n) = A (k:n,k) ; for j = find (L (k,:)) a (k:n) = a (k:n) - L (k:n,j) * L (k,j) ; end L (k,k) = sqrt (a (k)) ; L (k+1:n,k) = a (k+1:n) / L (k,k) ; end SuiteSparse/CXSparse/MATLAB/Test/chol_up.m0000644001170100242450000000056110620373042017124 0ustar davisfacfunction L = chol_up (A) %CHOL_UP up-looking Cholesky factorization. % Example: % L = chol_up (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; for k = 1:n L (k,1:k-1) = (L (1:k-1,1:k-1) \ A (1:k-1,k))' ; L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)') ; end SuiteSparse/CXSparse/MATLAB/Test/cs_ipvec.m0000644001170100242450000000037010620373063017267 0ustar davisfacfunction x = cs_ipvec (b,p) %#ok %CS_IPVEC x(p)=b % % Example: % x = cs_ipvec (b,p) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_ipvec mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/Contents.m0000644001170100242450000001213510620375605017277 0ustar davisfac% CXSparse testing and "textbook" MATLAB M-files and mexFunctions, related to % CXSparse but not a part of CXSparse itself. % % M-files: % % chol_downdate - downdate a Cholesky factorization. % chol_left - left-looking Cholesky factorization. % chol_left2 - left-looking Cholesky factorization, more details. % chol_right - right-looking Cholesky factorization. % chol_super - left-looking "supernodal" Cholesky factorization. % chol_up - up-looking Cholesky factorization. % chol_update - update a Cholesky factorization. % chol_updown - update or downdate a Cholesky factorization. % chol_updown2 - Cholesky update/downdate (real and complex) % cond1est - 1-norm condition estimate. % cs_fiedler - the Fiedler vector of a connected graph. % givens2 - find a Givens rotation. % house - find a Householder reflection. % lu_left - left-looking LU factorization. % lu_right - right-looking LU factorization. % lu_rightp - right-looking LU factorization, with partial pivoting. % lu_rightpr - recursive right-looking LU, with partial pivoting. % lu_rightr - recursive right-looking LU. % norm1est - 1-norm estimate. % qr_givens - Givens-rotation QR factorization. % qr_givens_full - Givens-rotation QR factorization, for full matrices. % qr_left - left-looking Householder QR factorization. % qr_right - right-looking Householder QR factorization. % % mexFunctions: % % cs_frand - generate a random finite-element matrix % cs_ipvec - x(p)=b % cs_maxtransr - recursive maximum matching algorithm % cs_pvec - x=b(p) % cs_reach - non-recursive reach (interface to CSparse cs_reach) % cs_reachr - recursive reach (interface to CSparse cs_reachr) % cs_rowcnt - row counts for sparse Cholesky % cs_sparse2 - same as cs_sparse, to test cs_entry function % % Extensive test functions, not for normal usage: % % check_if_same - check if two inputs are identical or not % choldn - Cholesky downdate % cholup - Cholesky update, using Given's rotations % cholupdown - Cholesky update/downdate (Bischof, Pan, and Tang method) % cs_q1 - construct Q from Householder vectors % cs_test_make - compiles the CSparse, Demo, and Test mexFunctions. % dmperm_test - test cs_dmperm % chol_example - simple Cholesky factorization example % etree_sample - construct a sample etree and symbolic factorization % gqr3 - QR factorization, based on Givens rotations % happly - apply Householder reflection to a vector % hmake1 - construct a Householder reflection % mynormest1 - estimate norm(A,1), using LU factorization (L*U = P*A*Q). % myqr - QR factorization using Householder reflections % another_colormap - try another color map % cspy_test - test cspy and cs_dmspy % qr2 - QR factorization based on Householder reflections % sample_colormap - try a colormap for use in cspy % signum - compute and display the sign of a column vector x % sqr_example - test cs_sqr % dmspy_test - test cspy, cs_dmspy, and cs_dmperm % test_qr - test various QR factorization methods % test_randperms - test random permutations % testh - test Householder reflections % test_qr1 - test QR factorizations % test_qrsol - test cs_qrsol % test_sep - test cs_sep, and compare with Gilbert's meshpart vtxsep % testall - test all CSparse functions (run tests 1 to 28 below) % test1 - test cs_transpose, cs_gaxpy, cs_sparse, cs_sparse2 % test2 - test cs_sparse, cs_permute, cs_pvec, cs_ipvec, cs_symperm % test3 - test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % test4 - test cs_multiply % test5 - test cs_add % test6 - test cs_reach, cs_reachr, cs_lsolve, cs_usolve % test7 - test cs_lu % test8 - test cs_cholsol, cs_lusol % test9 - test cs_qr % test10 - test cs_qr % test11 - test cs_rowcnt % test12 - test cs_qr and compare with svd % test13 - test cs_counts, cs_etree % test14 - test cs_droptol % test15 - test cs_amd % test16 - test cs_amd % test17 - test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % test18 - test iterative refinement after backslash % test19 - test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc, cspy % test20 - test chol_updown2 % test21 - test cs_updown, chol_updown2 % test22 - test cond1est % test23 - test cs_dmspy % test24 - test cs_fielder % test25 - test cs_nd % test26 - test cs_dmsol and cs_dmspy % test27 - test cs_qr, cs_utsolve, cs_qrsol % test28 - test cs_randperm, cs_dmperm % Example: % help chol_update % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CXSparse/MATLAB/Test/test10.m0000644001170100242450000000371610710254556016630 0ustar davisfacfunction test10 %TEST10 test cs_qr % % Example: % test10 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; % f = 185 ; % f = 449 ; clf for trials = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; A = sprandn (m, n, d) ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sp < n) % continue ; % end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) * norm (A,1) / 10 ; end Aorig = A ; % A = A (:, colamd (A)) ; if (cmplex) tic ; R = chol (A'*A + speye (n)) ; t1 = toc ; else tic ; R = qr (A) ; t1 = toc ; end % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; %#ok rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; [H1,R1] = myqr (C) ; err1 = norm (R1-R2,1) / norm (R1) ; disp ('err1 = ') ; disp (err1) ; % [svd(A) svd(R1) svd(full(R2))] s1 = svd (full (A)) ; s2 = svd (full (R2)) ; if (n > 0) err2 = norm (s1 - s2) / s1 (1) ; disp ('err2 = ') ; disp (err2) ; else err2 = 0 ; end fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d vs %d\n', t1, t2, t1/t2, sp, n) ; % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr H') ; drawnow if (err2 > 1e-9) error ('!') ; end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end end end SuiteSparse/CXSparse/MATLAB/Test/test11.m0000644001170100242450000000162510710651265016624 0ustar davisfacfunction test11 %TEST11 test cs_rowcnt % % Example: % test11 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; for i = f Prob = UFget (i, index) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end A = spones (A) ; A = A+A' + speye(n) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end try p = amd (A) ; catch p = symamd (A) ; end A = A (p,p) ; [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end end SuiteSparse/CXSparse/MATLAB/Test/test12.m0000644001170100242450000000154210710254563016623 0ustar davisfacfunction test12 %TEST12 test cs_qr and compare with svd % % Example: % test12 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('test 12\n') ; rand ('state',0) ; % A = rand (3,4) for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (m,n,d) ; if (m < n) continue ; end if (m == 0 | n == 0) %#ok continue ; end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) ; end fprintf ('m %d n %d nnz %d\n', m, n, nnz(A)) ; [V,Beta,p,R] = cs_qr (A) ; s1 = svd (full (A)) ; s2 = svd (full (R)) ; s2 = s2 (1:length(s1)) ; err = norm (s1-s2) ; if (length (s1) > 1) err = err / s1 (1) ; end fprintf ('err %g\n', err) ; if (err > 1e-12) error ('!') ; end end end SuiteSparse/CXSparse/MATLAB/Test/test13.m0000644001170100242450000000334610710252076016625 0ustar davisfacfunction test13 %TEST13 test cs_counts, cs_etree % % Example: % test13 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state',0) ; rand ('state',0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (n,n,d) ; C = sprandn (m,n,d) ; A = A+A' ; fprintf ('m %4d n %4d nnz(A) %6d nnz(C) %6d\n', m, n, nnz(A), nnz(C)) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end [p1,po1] = etree (A) ; [p2,po2] = cs_etree (A) ; [p3,po3] = cs_etree (A, 'sym') ; % po2 = cs_post (p2) ; check_if_same (p1,p2) ; check_if_same (po1,po2) ; check_if_same (p1,p3) ; check_if_same (po1,po3) ; c1 = symbfact (A) ; c2 = cs_counts (A) ; % A-A' check_if_same (c1,c2) ; c2 = cs_counts (triu (A)) ; check_if_same (c1,c2) ; % pause p0 = etree (A, 'col') ; % p1 = etree2 (A, 'col') ; % CHOLMOD p2 = cs_etree (A, 'col') ; if (~isempty (A)) check_if_same (p0,p2) ; end p0 = etree (C, 'col') ; % p1 = etree2 (C, 'col') ; % CHOLMOD p2 = cs_etree (C, 'col') ; if (~isempty (C)) check_if_same (p0,p2) ; end % find etree of A'A, and postorder it [m n] = size (A) ; %#ok % full (A) [cp0 cpo0] = etree (A, 'col') ; % [cp1 cpo1] = etree2 (A, 'col') ; % CHOLMOD [cp2 cpo2] = cs_etree (A, 'col') ; % cpo2 = cs_post (cp2) ; check_if_same (cp0, cp2) ; check_if_same (cpo0, cpo2) ; c0 = symbfact (A, 'col') ; % c1 = symbfact2 (A, 'col') ; % CHOLMOD c2 = cs_counts (A, 'col') ; check_if_same (c0, c2) ; end SuiteSparse/CXSparse/MATLAB/Test/test14.m0000644001170100242450000000153010710254565016624 0ustar davisfacfunction test14 %TEST14 test cs_droptol % % Example: % test14 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1*rand (1) ; A = sprandn (m,n,d) ; [i j x] = find (A) ; A = sparse (i,j,2*x-1) ; fprintf ('test14 m %3d n %3d nz %d\n', m, n, nnz (A)) ; for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sparse (i,j,2*rand(size(x))-1) ; end % using CSparse tol = 0.5 ; B = cs_droptol (A, tol) ; % using MATLAB C = A .* (abs (A) > tol) ; % [m n] = size (A) ; % s = abs (A) > tol ; % [i j] = find (s) ; % x = A (find (s)) ; % A = sparse (i, j, x, m, n) ; if (norm (C-B,1) > 0) error ('!') ; end end end SuiteSparse/CXSparse/MATLAB/Test/test15.m0000644001170100242450000000177410710252146016630 0ustar davisfacfunction test15 %TEST15 test cs_amd % % Example: % test15 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:100 n = fix (200 * rand (1)) ; d = 0.05 * rand (1) ; A = sprandn (n, n, d) ; % add a randomly placed dense column k = fix (n * rand (1)) ; k = max (1, k) ; k = min (n, k) ; if (n > 0) A (:,k) = 1 ; end if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end try p0 = amd (A) ; catch p0 = symamd (A) ; end p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (1,3,1) ; spy (C) subplot (1,3,2) ; spy (C (p0,p0)) subplot (1,3,3) ; spy (C (p1,p1)) fprintf ('n %4d nz %6d lnz %6d %6d\n', n, nnz(A), lnz0, lnz1) ; drawnow end SuiteSparse/CXSparse/MATLAB/Test/test16.m0000644001170100242450000000357110710252163016625 0ustar davisfacfunction test16 %TEST16 test cs_amd % % Example: % test16 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; skip = 811 ; % f = 719 for i = f if (any (i == skip)) continue end Prob = UFget (i) ; A = spones (Prob.A) ; Aorig = A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; if (m ~= n) A = A'*A ; end if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end fprintf ('n %4d nz %d\n', n, nnz (A)) ; try p0 = amd (A) ; catch p0 = symamd (A) ; end fprintf ('symmetric case:\n') ; p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (2,3,1) ; spy (C) subplot (2,3,2) ; spy (C (p0,p0)) ; title ('amd') ; subplot (2,3,3) ; spy (C (p1,p1)) ; title ('csamd') ; drawnow if (lnz0 ~= lnz1) fprintf ('----------------- lnz %d %d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; end if (1) p0 = colamd (Aorig) ; [m n] = size (Aorig) ; fprintf ('m %d n %d\n', m, n) ; fprintf ('A''A case, no dense rows (for QR):\n') ; p1 = cs_amd (Aorig, 3) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end subplot (2,3,4) ; spy (Aorig) subplot (2,3,5) ; spy (Aorig (:,p0)) ; title ('colamd') ; subplot (2,3,6) ; spy (Aorig (:,p1)) ; title ('cs amd(A''A)') ; lnz0 = sum (symbfact (Aorig (:,p0), 'col')) ; lnz1 = sum (symbfact (Aorig (:,p1), 'col')) ; fprintf (' A''A: %7d %7d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; drawnow % pause end end SuiteSparse/CXSparse/MATLAB/Test/test17.m0000644001170100242450000000430310710252200016610 0ustar davisfacfunction test17 %TEST17 test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % % Example: % test17 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions clf rand ('state', 0) ; randn ('state', 0) ; for trials = 1:100 m = 1 + fix (10 * rand (1)) ; n = 1 + fix (10 * rand (1)) ; d = rand (1) ; % n = m ; A = sprandn (m, n, d) ; if (m < n) A = A' ; end [m n] = size (A) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end subplot (3,4,1) ; spy (A) ; [V1, Beta1, p1, R1, q1] = cs_qr (A) ; Q1 = cs_qright (V1, Beta1, p1, speye (size (V1,1))) ; Q1b = cs_q1 (V1, Beta1, p1) ; err = norm (Q1-Q1b,1) ; disp ('err = ') ; disp (err) ; if (err > 1e-12) error ('!') ; end m2 = size (Q1,1) ; A1 = [A ; sparse(m2-m,n)] ; subplot (3,4,5) ; spy (A1 (p1,q1)) ; subplot (3,4,6) ; spy (V1) ; subplot (3,4,7) ; spy (R1) ; subplot (3,4,8) ; spy (Q1) ; [V3, Beta3, R3] = qr2 (A) ; % Q3 = cs_qmake (V3, Beta3) ; Q3 = cs_q1 (V3, Beta3) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (V3) ; subplot (3,4,11) ; spy (R3) ; subplot (3,4,12) ; spy (Q3) ; err1 = norm (Q1*R1 - A1(:,q1), 1) ; % err2 = norm (Q2*R2 - A (:,q2), 1) ; err3 = norm (Q3*R3 - A, 1) ; fprintf ('m %3d m2 %3d n %3d ::: %3d %6.2e %6.2e\n', ... m, m2, n, m2-m, err1, err3) ; if (err1 > 1e-12) error ('2!') ; end % if (err2 > 1e-12) % error ('!') ; % end if (err3 > 1e-12) error ('3!') ; end try % this fails if A is complex b = rand (m,1) ; [Q,R] = qr (A (:,q1)) ; x = R\(Q'*b) ; x (q1) = x ; r1 = norm (A*x-b) ; x2 = cs_qrsol (A,b) ; r2 = norm (A*x2(1:n)-b) ; qt = cs_qleft (V1, Beta1, p1, speye(size(V1,1))) ; fprintf ('Q''*A-R: %6.2e\n', norm (qt*A1(:,q1)-R1,1)) ; qtb = cs_qleft (V1, Beta1, p1, b) ; % [V1, Beta1, p1, R1, q1] = cs_qr (A) ; x3 = R1 \ qtb ; r3 = norm (A(:,q1)*x3(1:n)-b) ; fprintf ('least sq: %6.2e %6.2e %6.2e diff %6.2e %6.2e\n', ... r1, r2, r3, r1-r2, r1-r3) ; catch end drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test18.m0000644001170100242450000000112110620667511016623 0ustar davisfacfunction test18 %TEST18 test iterative refinement after backslash % % Example: % test18 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end b = rand (n,1) ; x = A\b ; r = b - A*x ; x = x + A\r ; fprintf ('\n%6.2e to %6.2e\n', norm (r), norm (b-A*x)) ; end SuiteSparse/CXSparse/MATLAB/Test/test19.m0000644001170100242450000000704610710252222016625 0ustar davisfacfunction test19 %TEST19 test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc, cspy % % Example: % test19 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end if (rand ( ) > .5) S = S + 1i * sprand (S) ; end end subplot (2,3,1) ; cspy (A) ; pp = dmperm (A) ; sprnk = sum (pp > 0) ; pp2 = cs_dmperm (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end pp2 = cs_maxtransr (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end [p,q,r,s] = dmperm (A) ; C = A (p,q) ; % r % s nk = length (r) - 1 ; fprintf ('sprnk: %d m %d n %d nb: %d\n', sprnk, m, n, nk) ; subplot (2,3,2) ; hold off spy (C) hold on for k = 1:nk r1 = r(k) ; r2 = r(k+1) ; c1 = s(k) ; c2 = s(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end [p2,q2,rr2,ss2,cp,rp] = cs_dmperm (A) ; if (min (m,n) > 0) if (length (rr2) ~= length (r)) error ('# fine blocks!') ; end end if (rp (4) - 1 ~= sprnk) rp %#ok sprnk %#ok error ('!') ; end if (any (sort (p2) ~= 1:m)) error ('p2!') ; end if (any (sort (q2) ~= 1:n)) error ('q2!') ; end if (cp (5) ~= n+1) error ('cp!') ; end if (rp (5) ~= m+1) error ('rp!') ; end C = A (p2,q2) ; subplot (2,3,3) ; cs_dmspy (A,0) ; % hold off % spy (C) ; % hold on % r1 = rp(1) ; % r2 = rp(2) ; % c1 = cp(1) ; % c2 = cp(2) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; r1 = rp(1) ; r2 = rp(2) ; c1 = cp(2) ; c2 = cp(3) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C1 diag!') ; end r1 = rp(2) ; r2 = rp(3) ; c1 = cp(3) ; c2 = cp(4) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'r') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C2 diag!') ; end r1 = rp(3) ; r2 = rp(4) ; c1 = cp(4) ; c2 = cp(5) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C3 diag!') ; end r1 = rp(4) ; %#ok r2 = rp(5) ; %#ok c1 = cp(4) ; %#ok c2 = cp(5) ; %#ok % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; if (~isempty (S)) [p1,q1,r0,s0] = dmperm (S) ; [p3,r3] = cs_scc (S) ; if (length (r3) ~= length (r0)) error ('scc size!') ; end if (any (sort (p3) ~= 1:m)) error ('scc perm!') ; end nk = length (r0)-1 ; subplot (2,3,4) ; hold off spy (S (p1,q1)) ; hold on for k = 1:nk r1 = r0(k) ; r2 = r0(k+1) ; c1 = s0(k) ; c2 = s0(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end subplot (2,3,5) ; hold off spy (S (p3,p3)) ; hold on for k = 1:nk r1 = r3(k) ; r2 = r3(k+1) ; c1 = r3(k) ; c2 = r3(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end end subplot (2,3,6) ; cs_dmspy (A) ; drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test20.m0000644001170100242450000000175610710252311016616 0ustar davisfacfunction test20 %TEST20 test chol_updown2 % % Example: % test20 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; maxerr = [0 0 0 0] ; for trials = 1:100 n = fix (100 * rand (1)) ; A = rand (n) ; if (~ispc) if (mod (trials, 2) == 0) A = A + 1i*rand(n) ; end end A1 = A*A' + n*eye (n) ; try L1 = chol (A1)' ; catch continue ; end err1 = norm (L1*L1'-A1) ; w = rand (n,1) ; A2 = A1 + w*w' ; L2 = chol (A2)' ; err2 = norm (L2*L2'-A2) ; % try an update L2b = chol_updown2 (L1, +1, w) ; err2b = norm (L2b*L2b'-A2) ; % try a downdate L1b = chol_updown2 (L2, -1, w) ; %#ok err1b = norm (L1b*L1b'-A1) ; fprintf ('%3d: %6.2e %6.2e : %6.2e %6.2e\n', n, err1, err2, err2b, err1b) ; % pause maxerr = max (maxerr, [err1 err2 err2b err1b]) ; end fprintf ('maxerr: %g\n', maxerr) ; SuiteSparse/CXSparse/MATLAB/Test/test21.m0000644001170100242450000000360410710252335016617 0ustar davisfacfunction test21 %TEST21 test cs_updown, chol_updown2 % % Example: % test21 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:100 if (trials <= 1) n = trials ; else n = 1+fix (100 * rand (1)) ; end fprintf ('n: %d\n', n) ; d = 0.1 * rand (1) ; A = sprandn (n,n,d) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end A = A+A' + 100 * speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end A = sparse (A (p,p)) ; try L = chol (A)' ; catch continue ; end parent = etree (A) ; subplot (1,3,1) ; spy (A) ; if (n > 0) subplot (1,3,2) ; treeplot (parent) ; end subplot (1,3,3) ; spy (L) ; drawnow for trials2 = 1:10 k = 1+fix (n * rand (1)) ; if (k <= 0 | k > n) %#ok k = 1 ; end w = sprandn (L (:,k)) ; Anew = A + w*w' ; Lnew = cs_updown (L, w, parent) ; err6 = norm (Lnew*Lnew' - Anew, 1) ; Lnew = cs_updown (L, w, parent, '+') ; err7 = norm (Lnew*Lnew' - Anew, 1) ; [Lnew, wnew] = chol_updown2 (L, 1, w) ; err2 = norm (Lnew*Lnew' - Anew, 1) ; err10 = norm (wnew - (L\w)) ; L3 = chol_updown2 (L, +1, w) ; err9 = norm (L3*L3' - Anew, 1) ; [L2, wnew] = chol_updown2 (Lnew, -1, w) ; err3 = norm (L2*L2' - A, 1) ; err11 = norm (wnew - (Lnew\w)) ; L2 = cs_updown (Lnew, w, parent, '-') ; err5 = norm (L2*L2' - A, 1) ; L2 = chol_updown2 (Lnew, -1, w) ; err8 = norm (L2*L2' - A, 1) ; err = max ([err2 err3 err5 err6 err7 err9 err8 err10 err11]) ; fprintf (' k %3d %6.2e\n', k, err) ; if (err > 1e-11) err2 %#ok err3 %#ok err5 %#ok err6 %#ok err7 %#ok err8 %#ok err9 %#ok err10 %#ok err11 %#ok pause end end % pause end SuiteSparse/CXSparse/MATLAB/Test/test22.m0000644001170100242450000000174610620667553016641 0ustar davisfacfunction test22 %TEST22 test cond1est % % Example: % test22 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) nprob = length (f) ; C1 = zeros (nprob,1) ; C2 = zeros (nprob,1) ; C3 = zeros (nprob,1) ; for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end c1 = condest (A) ; c2 = cond1est (A) ; if (c1 == c2) err = 0 ; else err = (c1-c2)/max(1,c1) ; end c3 = cond (full (A), 1) ; fprintf ('%10.4e %10.4e (%10.4e) : %10.4e\n', c1, c2, c3, err) ; C1 (k) = c1 ; C2 (k) = c2 ; C3 (k) = c3 ; subplot (1,2,1) ; loglog (C1, C2, 'x', [1 1e20], [1 1e20], 'r') ; subplot (1,2,2) ; loglog (C3, C2, 'x', [1 1e20], [1 1e20], 'r') ; drawnow end SuiteSparse/CXSparse/MATLAB/Test/test23.m0000644001170100242450000000116010710252361016613 0ustar davisfacfunction test23 %TEST23 test cs_dmspy % % Example: % test23 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:1000 % m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; m = n ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end cs_dmspy (A) ; drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test24.m0000644001170100242450000000171410710252400016613 0ustar davisfacfunction test24 %TEST24 test cs_fielder % % Example: % test24 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end S = A ; if (~ispc) if (mod (k,2) == 0) S = S + 1i * sprand (A) ; end end tic p1 = symrcm (A) ; t1 = toc ; tic p2 = cs_fiedler (S) ; t2 = toc ; rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f fiedler %8.3f rel %8.2f\n', t1, t2, rel) ; A = A|A' ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test25.m0000644001170100242450000000212310710252417016617 0ustar davisfacfunction test25 %TEST25 test cs_nd % % Example: % test25 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:400) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end A = A|A' ; S = A ; if (~ispc) if (mod (k,2) == 0) S = S + 1i * sprand (A) ; end end tic ; p1 = symrcm (A) ; t1 = toc ; tic ; p2 = cs_nd (sparse (1)) ; toc ; if (p2 ~= 1) error ('!') ; end tic ; p2 = cs_nd (S) ; t2 = toc ; if (any (sort (p2) ~= 1:n)) error ('!') ; end rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f nd %8.3f rel %8.2f\n', t1, t2, rel) ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test26.m0000644001170100242450000000335310710252502016621 0ustar davisfacfunction test26 %TEST26 test cs_dmsol and cs_dmspy % % Example: % test26 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf ntrials = 1000 ; e1 = zeros (ntrials,1) ; e2 = zeros (ntrials,1) ; for trials = 1:ntrials m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end subplot (1,3,2) ; spy (A) ; subplot (1,3,3) ; cs_dmspy (A) ; b = rand (m,1) ; if (~ispc) if (rand ( ) > .5) b = b + 1i * rand (size (b)) ; end end % MATLAB cannot do A\b when A is sparse and rectangular and either % A or b are complex if (m ~= n & isreal (A) & ~isreal (b)) %#ok x1 = (A\real(b)) + 1i * (A\imag(b)) ; err1 = norm (A*x1-b) ; elseif ((m ~= n) & ~isreal (A)) %#ok err1 = 1 ; else x1 = A\b ; err1 = norm (A*x1-b) ; end x2 = cs_dmsol (A,b) ; err2 = norm (A*x2-b) ; lerr1 = log10 (max (err1, eps)) ; lerr2 = log10 (max (err2, eps)) ; fprintf ('rank: %3d %3d err %6.2e %6.2e : %6.1f\n', ... sprank(A), rank(full(A)), err1, err2, lerr1 - lerr2) ; if (isnan (err1)) lerr1 = 10 ; end if (isnan (err2)) lerr2 = 10 ; end if (lerr2 > lerr1 + 5) % pause end e1 (trials) = lerr1 ; e2 (trials) = lerr2 ; subplot (1,3,1) ; plot (e1, e2, 'o', [-16 10], [-16 10], 'r') ; xlabel ('MATLAB error') ; ylabel ('dmsol error') ; drawnow % pause end SuiteSparse/CXSparse/MATLAB/Test/test27.m0000644001170100242450000000116710620372664016637 0ustar davisfacfunction test27 %TEST27 test cs_qr, cs_utsolve, cs_qrsol % % Example: % test27 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; Prob = UFget ('HB/ibm32') ; A = Prob.A ; A = A (1:10,:) ; [m n] = size (A) ; [V,Beta,p,R,q] = cs_qr (A') ; b = rand (m,1) ; Rm = R (1:m,1:m) ; bq = b (q) ; rtbq = Rm' \ bq ; rt2 = cs_utsolve (Rm, bq) ; norm (rtbq - rt2) x = [rt2 ; zeros(n-m,1)] ; for k = m:-1:1 x = x - V(:,k) * (Beta (k) * (V (:,k)' * x)) ; end x (p) = x ; norm (A*x-b) x2 = cs_qrsol (A,b) ; norm (A*x2-b) norm (x-x2) SuiteSparse/CXSparse/MATLAB/Test/test28.m0000644001170100242450000000436310710252523016630 0ustar davisfacfunction test28 %TEST28 test cs_randperm, cs_dmperm % % Example: % test28 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; for n = 1:100 for trials = 1:1000 p = cs_randperm (n, rand) ; if (any (sort (p) ~= 1:n)) n %#ok p %#ok error ('!') end end end index = UFget ; [ignore f] = sort (index.nnz) ; fprintf ('p=dmperm (std, rand, rev) [p,q,r,s]=dmperm (std, rand, rev)\n') ; nmat = length (f) ; nmat = min (100, nmat) ; T1 = zeros (nmat,1) ; T2 = zeros (nmat,1) ; T3 = zeros (nmat,1) ; D1 = zeros (nmat,1) ; D2 = zeros (nmat,1) ; D3 = zeros (nmat,1) ; for k = 1:nmat i = f (k) ; Prob = UFget (i,index) ; A = Prob.A ; [m n] = size (A) ; fprintf ('%35s: ', Prob.name) ; if (~ispc) if (rand () > .5) A = A + 1i * sprand (A) ; end end tic p = cs_dmperm (A) ; t1 = toc ; sprank1 = sum (p > 0) ; fprintf (' %8.2f', t1) ; T1 (k) = t1 ; tic p = cs_dmperm (A,1) ; t2 = toc ; sprank2 = sum (p > 0) ; fprintf (' %8.2f', t2) ; T2 (k) = t2 ; tic p = cs_dmperm (A,-1) ; t3 = toc ; sprank3 = sum (p > 0) ; fprintf (' %8.2f', t3) ; T3 (k) = t3 ; if (sprank1 ~= sprank2 | sprank1 ~= sprank3) %#ok error ('!') ; end tic [p1,q1,r1,s1,cc1,rr1] = cs_dmperm (A) ; %#ok d1 = toc ; fprintf (' %8.2f', d1) ; D1 (k) = d1 ; tic [p2,q2,r2,s2,cc2,rr2] = cs_dmperm (A,1) ; %#ok d2 = toc ; fprintf (' %8.2f', d2) ; D2 (k) = d2 ; tic [p3,q3,r3,s3,cc3,rr3] = cs_dmperm (A,-1) ; %#ok d3 = toc ; fprintf (' %8.2f\n', d3) ; D3 (k) = d3 ; if (sprank1 == max (m,n)) nz1 = nnz (diag (A (p1,q1))) ; nz2 = nnz (diag (A (p2,q2))) ; nz3 = nnz (diag (A (p3,q3))) ; if (nz1 ~= sprank1 | nz2 ~= sprank2 | nz3 ~= sprank3) %#ok error ('!') end end subplot (1,2,1) loglog (T1 (1:k), T2 (1:k), 'x', ... T1 (1:k), T3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal subplot (1,2,2) loglog (D1 (1:k), D2 (1:k), 'x', ... D1 (1:k), D3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal drawnow end SuiteSparse/CXSparse/MATLAB/Test/cs_frand_mex.c0000644001170100242450000000276210571350365020126 0ustar davisfac#include "cs_mex.h" /* A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel * finite elements, each of which are of size s-by-s with random symmetric * nonzero pattern, plus the identity matrix. * See also MATLAB/Demo/private/frand.m */ cs_dl *cs_dl_frand (CS_INT n, CS_INT nel, CS_INT s) { CS_INT ss = s*s, nz = nel*ss, e, i, j, *P ; cs *A, *T = cs_dl_spalloc (n, n, nz, 1, 1) ; if (!T) return (NULL) ; P = cs_dl_malloc (s, sizeof (CS_INT)) ; if (!P) return (cs_dl_spfree (T)) ; for (e = 0 ; e < nel ; e++) { for (i = 0 ; i < s ; i++) P [i] = rand () % n ; for (j = 0 ; j < s ; j++) { for (i = 0 ; i < s ; i++) { cs_dl_entry (T, P [i], P [j], rand () / (double) RAND_MAX) ; } } } for (i = 0 ; i < n ; i++) cs_dl_entry (T, i, i, 1) ; A = cs_dl_compress (T) ; cs_dl_spfree (T) ; return (cs_dl_dupl (A) ? A : cs_dl_spfree (A)) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, nel, s ; cs *A, *AT ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_frand(n,nel,s)") ; } n = mxGetScalar (pargin [0]) ; nel = mxGetScalar (pargin [1]) ; s = mxGetScalar (pargin [2]) ; n = CS_MAX (1,n) ; nel = CS_MAX (1,nel) ; s = CS_MAX (1,s) ; AT = cs_dl_frand (n, nel, s) ; A = cs_dl_transpose (AT, 1) ; cs_dl_spfree (AT) ; cs_dl_dropzeros (A) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; } SuiteSparse/CXSparse/MATLAB/Test/cond1est.m0000644001170100242450000000075410620666162017227 0ustar davisfacfunction c = cond1est (A) %COND1EST 1-norm condition estimate. % Example: % c = cond1est(A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; if (m ~= n | ~isreal (A)) %#ok error ('A must be square and real') ; end if isempty(A) c = 0 ; return ; end [L,U,P,Q] = lu (A) ; if (~isempty (find (abs (diag (U)) == 0))) %#ok c = Inf ; else c = norm (A,1) * norm1est (L,U,P,Q) ; end SuiteSparse/CXSparse/MATLAB/Test/test1.m0000644001170100242450000000274110710254571016542 0ustar davisfacfunction test1 %TEST1 test cs_transpose, cs_gaxpy, cs_sparse, cs_sparse2 % % Example: % test1 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; for ii = f Prob = UFget (ii) ; disp (Prob) ; for cmplex = 0:double(~ispc) A = Prob.A ; if (cmplex) A = A + 1i*sprand(A) ; end B = A' ; C = cs_transpose (A) ; if (nnz (B-C) ~= 0) error ('!') end C = cs_transpose (A,0) ; if (nnz (A.'-C) ~= 0) error ('!') end C = cs_transpose (A,1) ; if (nnz (A'-C) ~= 0) error ('!') end [m n] = size (A) ; % if (m == n) x = rand (n,1) ; y = rand (m,1) ; z = y+A*x ; q = cs_gaxpy (A,x,y) ; err = norm (z-q,1) / norm (z,1) ; disp (err) ; if (err > 1e-14) error ('!') end % end if (~ispc) x = x + 1i*rand (n,1) ; y = y + 1i*rand (m,1) ; z = y+A*x ; q = cs_gaxpy (A,x,y) ; err = norm (z-q,1) / norm (z,1) ; disp (err) ; if (err > 1e-14) error ('!') end end [i j x] = find (A) ; p = randperm (length (i)) ; i = i (p) ; j = j (p) ; x = x (p) ; D = sparse (i,j,x) ; E = cs_sparse (i,j,x) ; % [i j x] F = cs_sparse2 (i,j,x) ; if (nnz (D-E) ~= 0) error ('!') end if (nnz (F-E) ~= 0) error ('!') end clear A B C D E F % pause end end SuiteSparse/CXSparse/MATLAB/Test/test2.m0000644001170100242450000000371310710252554016542 0ustar davisfacfunction test2 %TEST2 test cs_sparse, cs_permute, cs_pvec, cs_ipvec, cs_symperm % % Example: % test2 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) % clf for trial = 1:100 m = fix (10 * rand (1)) ; n = fix (10 * rand (1)) ; nz = fix (100 * rand (1)) ; i = 1 + fix (m * rand (nz,1)) ; j = 1 + fix (n * rand (nz,1)) ; x = rand (nz,1) ; if (~ispc) if (mod (trial, 2) == 1) x = x + 1i * (2*rand(nz,1)-1) ; end end A = sparse (i,j,x) ; B = cs_sparse (i,j,x) ; D = cs_sparse2 (i,j,x) ; fprintf ('%3d %3d %6d : %6d %6d : %d\n', ... m, n, nz, nnz (A), nnz(B), nz-nnz(A)) ; err = norm (A-B,1) / max (1, norm (A,1)) ; if (err > 0) disp ('err = ') ; disp (err) ; end if (err > 1e-14) error ('!') ; end if (nnz (B-D) > 0) error ('!') ; end if (nnz (A) ~= nnz (B)) error ('nz!') ; end if (max (1,nnz (B)) ~= max (1,nzmax (B))) nnz (B) nzmax (B) error ('nzmax!') ; end % pack [m n] = size (A) ; p = randperm (m) ; q = randperm (n) ; C1 = A (p,q) ; C2 = cs_permute (A,p,q) ; err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end % subplot (1,2,1) ; spy (A) % subplot (1,2,2) ; spy (C2) % drawnow x = rand (m,1) ; if (~ispc) if (mod (trial, 2) == 1) x = x + 1i * (2*rand(m,1)-1) ; end end x1 = x (p) ; x2 = cs_pvec (x, p) ; err = norm (x1-x2,1) ; if (err > 0) error ('!') ; end x1 = zeros (m,1) ; x1 (p) = x ; %#ok x2 = cs_ipvec (x, p) ; %#ok n = min (m,n) ; B = A (1:n, 1:n) ; p = randperm (n) ; B = B+B' ; C1 = triu (B (p,p)) ; C2 = cs_symperm (B,p) ; try pp = amd (C2) ; %#ok catch pp = symamd (C2) ; %#ok end err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end end SuiteSparse/CXSparse/MATLAB/Test/test3.m0000644001170100242450000000326610710254574016552 0ustar davisfacfunction test3 %TEST3 test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % % Example: % test3 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; for cmplex = 0:double(~ispc) A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end if (cmplex) A = A + 1i*sprand(A) ; end A = A*A' + 2*n*speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end try L0 = chol (A)' ; catch continue end b = rand (n,1) ; if (~ispc) if (mod (i,2) == 1) b = b + 1i*rand(n,1) ; end end C = A(p,p) ; c = condest (C) ; fprintf ('condest: %g\n', c) ; x1 = L0\b ; x2 = cs_lsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-12 * c) error ('!') ; end x1 = L0'\b ; x2 = cs_ltsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end U = L0' ; x1 = U\b ; x2 = cs_usolve (U,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end L2 = cs_chol (A) ; subplot (2,3,1) ; spy (L0) ; subplot (2,3,4) ; spy (L2) ; err = norm (L0-L2,1) ; if (err > 1e-8 * c) error ('!') ; end L1 = chol (C)' ; L2 = cs_chol (C) ; subplot (2,3,2) ; spy (L1) ; subplot (2,3,5) ; spy (L2) ; err = norm (L1-L2,1) ; if (err > 1e-8 * c) error ('!') ; end [L3,p] = cs_chol (A) ; C = A(p,p) ; L4 = chol (C)' ; subplot (2,3,3) ; spy (L4) ; subplot (2,3,6) ; spy (L3) ; err = norm (L4-L3,1) ; if (err > 1e-8 * c) error ('!') ; end drawnow end end SuiteSparse/CXSparse/MATLAB/Test/test4.m0000644001170100242450000000156510710252626016547 0ustar davisfacfunction test4 %TEST4 test cs_multiply % % Example: % test4 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (10 * rand (1)) ; n = fix (10 * rand (1)) ; k = fix (10 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (n,k,d) ; if (~ispc) if (mod (trial, 4) == 0) A = A + 1i * sprandn (A) ; end if (mod (trial, 2) == 0) B = B + 1i * sprandn (B) ; end end C = A*B ; D = cs_multiply (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d k %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, k, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CXSparse/MATLAB/Test/test5.m0000644001170100242450000000323410710252655016545 0ustar davisfacfunction test5 %TEST5 test cs_add % % Example: % test5 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:200 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (m,n,d) ; if (~ispc) if (mod (trial, 4) == 0) A = A + 1i*sprand(A) ; end if (mod (trial, 2) == 0) B = B + 1i*sprand(B) ; end end C = A+B ; D = cs_add (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end alpha = pi ; beta = 3 ; if (~ispc) if (rand () > .5) alpha = alpha + rand ( ) * 1i ; end if (rand () > .5) beta = beta + rand ( ) * 1i ; end end C = alpha*A+B ; D = cs_add (A,B,alpha) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end C = alpha*A + beta*B ; D = cs_add (A,B,alpha,beta) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CXSparse/MATLAB/Test/test6.m0000644001170100242450000000342710710252671016550 0ustar davisfacfunction test6 %TEST6 test cs_reach, cs_reachr, cs_lsolve, cs_usolve % % Example: % test6 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) maxerr = 0 ; clf for trial = 1:201 n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; L = tril (sprandn (n,n,d),-1) + sprand (speye (n)) ; b = sprandn (n,1,d) ; if (~ispc) if (rand ( ) > .5) L = L + 1i*sprand(L) ; end if (rand ( ) > .5) b = b + 1i*sprand(b) ; end end for uplo = 0:1 if (uplo == 1) % solve Ux=b instead ; L = L' ; end x = L\b ; sr = 1 + cs_reachr (L,b) ; sz = 1 + cs_reachr (L,b) ; check_if_same (sr,sz) ; s2 = 1 + cs_reach (L,b) ; try if (uplo == 0) x3 = cs_lsolve (L,b) ; else x3 = cs_usolve (L,b) ; end catch if (isreal (L) & isreal (b)) %#ok lasterr error ('!') ; end % punt: sparse(L)\sparse(b) not handled by cs_lsolve or cs_usolve x3 = L\b ; end spy ([L b x x3]) drawnow s = sort (sr) ; [i j xx] = find (x) ; %#ok [i3 j3 xx3] = find (x3) ; %#ok if (isempty (i)) if (~isempty (s)) i %#ok s %#ok error ('!') ; end elseif (any (s ~= i)) i %#ok s %#ok error ('!') ; end if (isempty (i3)) if (~isempty (s)) i3 %#ok s %#ok error ('!') ; end elseif (any (s ~= sort (i3))) s %#ok i3 %#ok error ('!') ; end if (any (s2 ~= sr)) s2 %#ok sr %#ok error ('!') ; end err = norm (x-x3,1) ; if (err > 1e-12) x %#ok x3 %#ok uplo %#ok err %#ok error ('!') end maxerr = max (maxerr, err) ; end drawnow end fprintf ('maxerr = %g\n', maxerr) ; SuiteSparse/CXSparse/MATLAB/Test/test7.m0000644001170100242450000000505610620667776016571 0ustar davisfacfunction test7 %TEST7 test cs_lu % % Example: % test7 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf maxerr1 = 0 ; maxerr2 = 0 ; for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end for cmplex = 0:1 if (cmplex) A = A + norm(A,1) * sprand (A) / 3 ; end [L,U,P] = lu (A) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g\n', umin) ; if (umin > 1e-14) [L2,U2,p] = cs_lu (A) ; subplot (3,4,1) ; spy (A) ; subplot (3,4,2) ; spy (A(p,:)) ; subplot (3,4,3) ; spy (L2) ; subplot (3,4,4) ; spy (U2) ; err1 = norm (L*U-P*A,1) / norm (A,1) ; err2 = norm (L2*U2-A(p,:),1) / norm (A,1) ; fprintf ('err %g %g\n', err1, err2) ; if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end q = colamd (A) ; [L,U,P] = lu (A (:,q)) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A) ; subplot (3,4,5) ; spy (A) ; subplot (3,4,6) ; spy (A(p,q2)) ; subplot (3,4,7) ; spy (L2) ; subplot (3,4,8) ; spy (U2) ; err1 = norm (L*U-P*A(:,q),1) / norm (A,1) ; err2 = norm (L2*U2-A(p,q2),1) / norm (A,1) ; fprintf ('err %g %g\n', err1, err2) ; if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end try q = amd (A) ; catch q = symamd (A) ; end tol = 0.01 ; [L,U,P] = lu (A (q,q), tol) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with amd q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A,tol) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (A(p,q2)) ; subplot (3,4,11) ; spy (L2) ; subplot (3,4,12) ; spy (U2) ; err1 = norm (L*U-P*A(q,q),1) / norm (A,1) ; err2 = norm (L2*U2-A(p,q2),1) / norm (A,1) ; lbig = full (max (max (abs (L2)))) ; fprintf ('err %g %g lbig %g\n', err1, err2, lbig) ; if (lbig > 1/tol) error ('L!') ; end if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end drawnow % pause end end fprintf ('maxerr %g %g\n', maxerr1, maxerr2) ; SuiteSparse/CXSparse/MATLAB/Test/test8.m0000644001170100242450000000277110710254600016545 0ustar davisfacfunction test8 %TEST8 test cs_cholsol, cs_lusol % % Example: % test8 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end for cmplex = 0:double(~ispc) if (cmplex) A = A + 0.1i * (sprand (tril (A,-1) + triu (A,1))) ; end spd = 0 ; if (m == n) if (nnz (A-A') == 0) try p = amd (A) ; catch p = symamd (A) ; end [R,p] = chol (A (p,p)) ; spd = (p == 0) ; end end if (spd) C = A ; else C = A*A' + n*speye (n) ; try p = amd (C) ; catch p = symamd (C) ; end try R = chol (C (p,p)) ; %#ok catch continue end end b = rand (n,1) ; x1 = C\b ; x2 = cs_cholsol (C,b) ; r1 = norm (C*x1-b,1) / norm (C,1) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g\n', err) ; if (err > 1e-10) error ('!') ; end x2 = cs_lusol (C,b, 1, 0.001) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g (lu with amd(A+A'')\n', err) ; if (err > 1e-10) error ('!') ; end if (m ~= n) continue ; end x1 = A\b ; r1 = norm (A*x1-b,1) / norm (A,1) ; if (r1 < 1e-6) x2 = cs_lusol (A,b) ; r2 = norm (A*x2-b,1) / norm (A,1) ; fprintf ('lu resid %g %g\n', r1, r2) ; end end end SuiteSparse/CXSparse/MATLAB/Test/test9.m0000644001170100242450000000504110710254603016542 0ustar davisfacfunction test9 %TEST9 test cs_qr % % Example: % test9 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = 185 ; % f = 449 ; % f = 186 for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sprank (A) < min (m,n)) % continue % end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) ; end Aorig = A ; A = A (:, colamd (A)) ; s1 = svd (full (A)) ; if (cmplex) try tic ; R = chol (A'*A) ; t1 = toc ; %#ok catch fprintf ('chol (A''*A) failed\n') ; R = [ ] ; end else tic ; R = qr (A) ; t1 = toc ; %#ok end % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; %#ok v2 = full (V2) ; if (any (spones (v2) ~= spones (V2))) error ('got zeros!') ; end C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; % [H1,R1] = myqr (C) ; % err1 = norm (R1-R2,1) / norm (R1) % % [svd(A) svd(R1) svd(full(R2))] % s2 = svd (full (R2)) ; % err2 = norm (s1 - s2) / s1 (1) % fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d n %d\n', ... % t1, t2, t1/t2, sp, n) ; % err2 % left-looking: [V,Beta3,R3] = qr_left (C) ; %#ok s3 = svd (full (R2)) ; err3 = norm (s1 - s3) / s1 (1) ; disp ('err3 = ') ; disp (err3) ; if (err3 > 1e-12) error ('!') ; end % right-looking: [V,Beta4,R4] = qr_right (C) ; %#ok s4 = svd (full (R2)) ; err4 = norm (s1 - s4) / s1 (1) ; disp ('err4 = ') ; disp (err4) ; if (err4 > 1e-12) error ('!') ; end % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,3) ; treeplot (parent) ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr V') ; drawnow % if (err2 > 1e-9) % error ('!') ; % end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end % pause end end SuiteSparse/CXSparse/MATLAB/Test/testh.m0000644001170100242450000000315510620372711016626 0ustar davisfacfunction testh %TESTH test Householder reflections % % Example: % testh % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse format long e fprintf ('-------------------------------------------------\n') ; x = [-3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 eps]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = -pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 0 0]' ; disp (x) ; [v, beta, s] = house (x) ; %#ok x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; SuiteSparse/CXSparse/MATLAB/Test/cs_reach.m0000644001170100242450000000063610620373077017255 0ustar davisfacfunction x = cs_reach(L,b) %#ok %CS_REACH non-recursive reach (interface to CSparse cs_reach) % find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower % triangular. b must be a real sparse vector. % % Example: % x = cs_reach(L,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_reach mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/cs_pvec_mex.c0000644001170100242450000000215210710251202017743 0ustar davisfac#include "cs_mex.h" /* x = b(p) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, k, *p ; double *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_pvec(b,p)") ; } n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } xx = mxGetPr (pargin [1]) ; p = cs_dl_malloc (n, sizeof (CS_INT)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; if (mxIsComplex (pargin [0])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *x, *b ; b = cs_cl_mex_get_double (n, pargin [0]) ; x = cs_dl_malloc (n, sizeof (cs_complex_t)) ; cs_cl_pvec (p, b, x, n) ; pargout [0] = cs_cl_mex_put_double (n, x) ; cs_free (b) ; /* free copy of complex values */ #endif } else { double *x, *b ; b = cs_dl_mex_get_double (n, pargin [0]) ; pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; cs_dl_pvec (p, b, x, n) ; } cs_free (p) ; } SuiteSparse/CXSparse/MATLAB/Test/cs_rowcnt.m0000644001170100242450000000062110620373103017467 0ustar davisfacfunction r = cs_rowcnt(A,parent,post) %#ok %CS_ROWCNT row counts for sparse Cholesky % Compute the row counts of the Cholesky factor L of the matrix A. Uses % the lower triangular part of A. % % Example: % r = cs_rowcnt(A,parent,post) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_rowcnt mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/happly.m0000644001170100242450000000047310620373125016774 0ustar davisfacfunction hx = happly (v, beta, x) %HAPPLY apply Householder reflection to a vector % Example: % hx = happly (v,beta,x) ; % computes hx = x - v * (beta * (v' *x)) ; % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse hx = x - v * (beta * (v' *x)) ; SuiteSparse/CXSparse/MATLAB/Test/choldn.m0000644001170100242450000000137610620373020016743 0ustar davisfacfunction L = choldn (Lold,w) %CHOLDN Cholesky downdate % given Lold and w, compute L so that L*L' = Lold*Lold' - w*w' % % Example: % L = cholnd (Lold,w) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (Lold,1) ; L = Lold ; alpha = 1 ; beta = 1 ; wold = w ; wnew = zeros (n,1) ; for i = 1:n a = w (i) / L(i,i) ; alpha = alpha - a^2 ; if (alpha <= 0) error ('not pos def') ; end beta_new = sqrt (alpha) ; b = beta_new / beta ; c = (a / (beta*beta_new)) ; beta = beta_new ; % L (i,i) = b * L (i,i) ; wnew (i) = a ; for k = i:n w (k) = w (k) - a * L (k,i) ; L (k,i) = b * L (k,i) - c * w(k) ; end end % w % wnew disp (wnew - Lold\wold) SuiteSparse/CXSparse/MATLAB/Test/cholup.m0000644001170100242450000000075010620373044016767 0ustar davisfacfunction L = cholup (Lold,w) %CHOLUP Cholesky update, using Given's rotations % given Lold and w, compute L so that L*L' = Lold*Lold' + w*w' % Example: % L = cholup (Lold,w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (Lold,1) ; L = [Lold w] ; for k = 1:n g = givens (L(k,k), L(k,n+1)) ; L (:, [k n+1]) = L (:, [k n+1]) * g' ; disp ('L:') ; disp (L) pause end L = L (:,1:n) ; disp (L) ; SuiteSparse/CXSparse/MATLAB/Test/qr_right.m0000644001170100242450000000073610620373164017323 0ustar davisfacfunction [V,Beta,R] = qr_right (A) %QR_RIGHT right-looking Householder QR factorization. % Example: % [V,Beta,R] = qr_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; V = zeros (m,n) ; Beta = zeros (1,n) ; for k = 1:n [v,beta] = gallery ('house', A (k:m,k), 2) ; V (k:m,k) = v ; Beta (k) = beta ; A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n))) ; end R = A ; SuiteSparse/CXSparse/MATLAB/Test/chol_super.m0000644001170100242450000000100110620373034017625 0ustar davisfacfunction L = chol_super (A,s) %CHOL_SUPER left-looking "supernodal" Cholesky factorization. % Example: % L = chol_super (A,s) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A) ; L = zeros (n) ; ss = cumsum ([1 s]) ; for j = 1:length (s) k1 = ss (j) ; k2 = ss (j+1) ; k = k1:(k2-1) ; L (k,k) = chol (A (k,k) - L (k,1:k1-1) * L (k,1:k1-1)')' ; L (k2:n,k) = (A (k2:n,k) - L (k2:n,1:k1-1) * L (k,1:k1-1)') / L (k,k)' ; end SuiteSparse/CXSparse/MATLAB/Test/cs_maxtransr_mex.c0000644001170100242450000000556710571351706021061 0ustar davisfac#include "cs_mex.h" /* find an augmenting path starting at column j and extend the match if found */ static CS_INT augment (CS_INT k, cs_dl *A, CS_INT *jmatch, CS_INT *cheap, CS_INT *w, CS_INT j) { CS_INT found = 0, p, i = -1, *Ap = A->p, *Ai = A->i ; /* --- Start depth-first-search at node j ------------------------------- */ w [j] = k ; /* mark j as visited for kth path */ for (p = cheap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* try a cheap assignment (i,j) */ found = (jmatch [i] == -1) ; } cheap [j] = p ; /* start here next time for j */ /* --- Depth-first-search of neighbors of j ----------------------------- */ for (p = Ap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* consider row i */ if (w [jmatch [i]] == k) continue ; /* skip col jmatch [i] if marked */ found = augment (k, A, jmatch, cheap, w, jmatch [i]) ; } if (found) jmatch [i] = j ; /* augment jmatch if path found */ return (found) ; } /* find a maximum transveral */ static CS_INT *maxtrans (cs_dl *A) /* returns jmatch [0..m-1] */ { CS_INT i, j, k, n, m, *Ap, *jmatch, *w, *cheap ; if (!A) return (NULL) ; /* check inputs */ n = A->n ; m = A->m ; Ap = A->p ; jmatch = cs_dl_malloc (m, sizeof (CS_INT)) ; /* allocate result */ w = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* allocate workspace */ if (!w || !jmatch) return (cs_dl_idone (jmatch, NULL, w, 0)) ; cheap = w + n ; for (j = 0 ; j < n ; j++) cheap [j] = Ap [j] ; /* for cheap assignment */ for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */ for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* no rows matched yet */ for (k = 0 ; k < n ; k++) augment (k, A, jmatch, cheap, w, k) ; return (cs_dl_idone (jmatch, NULL, w, 1)) ; } /* invert a maximum matching */ static CS_INT *invmatch (CS_INT *jmatch, CS_INT m, CS_INT n) { CS_INT i, j, *imatch ; if (!jmatch) return (NULL) ; imatch = cs_dl_malloc (n, sizeof (CS_INT)) ; if (!imatch) return (NULL) ; for (j = 0 ; j < n ; j++) imatch [j] = -1 ; for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ; return (imatch) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl *A, Amatrix ; double *x ; CS_INT i, m, n, *imatch, *jmatch ; if (nargout > 1 || nargin != 1) { mexErrMsgTxt ("Usage: p = cr_maxtransr(A)") ; } /* get inputs */ A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; m = A->m ; n = A->n ; jmatch = maxtrans (A) ; imatch = invmatch (jmatch, m, n) ; /* imatch = inverse of jmatch */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = imatch [i] + 1 ; cs_free (jmatch) ; cs_free (imatch) ; } SuiteSparse/CXSparse/MATLAB/Test/lu_rightp.m0000644001170100242450000000120310620373140017461 0ustar davisfacfunction [L,U,P] = lu_rightp (A) %LU_RIGHTP right-looking LU factorization, with partial pivoting. % % Example: % [L,U,P] = lu_rightp (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; P = eye (n) ; for k = 1:n [x,i] = max (abs (A (k:n,k))) ; % partial pivoting i = i+k-1 ; P ([k i],:) = P ([i k], :) ; A ([k i],:) = A ([i k], :) ; % (6.10), (6.11) A (k+1:n,k) = A (k+1:n,k) / A (k,k) ; % (6.12) A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - A (k+1:n,k) * A (k,k+1:n) ; % (6.9) end L = tril (A,-1) + eye (n) ; U = triu (A) ; SuiteSparse/CXSparse/MATLAB/Test/lu_rightr.m0000644001170100242450000000102710620373143017472 0ustar davisfacfunction [L,U] = lu_rightr (A) %LU_RIGHTR recursive right-looking LU. % Example: % [L,U] = lu_rightr (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) L = 1 ; U = A ; else u11 = A (1,1) ; % (6.4) u12 = A (1,2:n) ; % (6.5) l21 = A (2:n,1) / u11 ; % (6.6) [L22,U22] = lu_rightr (A (2:n,2:n) - l21*u12) ; % (6.7) L = [ 1 zeros(1,n-1) ; l21 L22 ] ; U = [ u11 u12 ; zeros(n-1,1) U22 ] ; end SuiteSparse/CXSparse/MATLAB/Test/dmspy_test.m0000644001170100242450000000125310620373113017664 0ustar davisfacfunction dmspy_test %DMSPY_TEST test cspy, cs_dmspy, and cs_dmperm % Example: % dmspy_test % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; f = find (index.nblocks > 1) ; % f = find (index.nblocks > 1 & index.nrows == index.ncols & ... % index.nnzdiag == index.nrows) ; [ignore i] = sort (index.nnz (f)) ; f = f (i) ; for i = f Prob = UFget (i,index) ; disp (Prob) ; clf subplot (2,2,1) ; cspy (Prob.A) ; subplot (2,2,2) ; cs_dmspy (Prob.A) ; [p,q,r,s,cc,rr] = cs_dmperm (Prob.A) ; %#ok subplot (2,2,3) ; plot (p) ; subplot (2,2,4) ; plot (q) ; drawnow end SuiteSparse/CXSparse/MATLAB/Test/gqr3.m0000644001170100242450000000106610620373123016350 0ustar davisfacfunction R = gqr3 (A) %GQR3 QR factorization, based on Givens rotations % % Example: % R = gqr3 (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; % parent = cs_etree (sparse (A), 'col') ; for i = 2:m % i for k = 1:min(i-1,n) % k % Givens rotation to zero out A(i,k) using A(k,k) G = givens2 (A(k,k), A(i,k)) ; A ([k i],k:n) = G * A ([k i],k:n) ; A (i,k) = 0 ; % fprintf ('A(21,25)=%g\n', A(21,25)) ; % if (A(21,25) ~= 0) % pause % end end end R = A ; SuiteSparse/CXSparse/MATLAB/Test/lu_rightpr.m0000644001170100242450000000143110620373141017647 0ustar davisfacfunction [L,U,P] = lu_rightpr (A) %LU_RIGHTPR recursive right-looking LU, with partial pivoting. % % Example: % [L,U,P] = lu_rightpr (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) P = 1 ; L = 1 ; U = A ; else [x,i] = max (abs (A (1:n,1))) ; % partial pivoting P1 = eye (n) ; P1 ([1 i],:) = P1 ([i 1], :) ; A = P1*A ; u11 = A (1,1) ; % (6.10) u12 = A (1,2:n) ; % (6.11) l21 = A (2:n,1) / u11 ; % (6.12) [L22,U22,P2] = lu_rightpr (A (2:n,2:n) - l21*u12) ; % (6.9) or (6.13) o = zeros(1,n-1) ; L = [ 1 o ; P2*l21 L22 ] ; % (6.14) U = [ u11 u12 ; o' U22 ] ; P = [ 1 o ; o' P2] * P1 ; end SuiteSparse/CXSparse/MATLAB/Test/cs_ipvec_mex.c0000644001170100242450000000215510710251173020126 0ustar davisfac#include "cs_mex.h" /* x(p) = b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, k, *p ; double *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ipvec(b,p)") ; } n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } xx = mxGetPr (pargin [1]) ; p = cs_dl_malloc (n, sizeof (CS_INT)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; if (mxIsComplex (pargin [0])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *x, *b ; b = cs_cl_mex_get_double (n, pargin [0]) ; x = cs_dl_malloc (n, sizeof (cs_complex_t)) ; cs_cl_ipvec (p, b, x, n) ; pargout [0] = cs_cl_mex_put_double (n, x) ; cs_free (b) ; /* free copy of complex values */ #endif } else { double *x, *b ; b = cs_dl_mex_get_double (n, pargin [0]) ; pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; cs_dl_ipvec (p, b, x, n) ; } cs_free (p) ; } SuiteSparse/CXSparse/MATLAB/Test/myqr.m0000644001170100242450000000202410620373147016465 0ustar davisfacfunction [H,R] = myqr (A) %MYQR QR factorization using Householder reflections % uses function [v,beta,xnorm] = hmake1 (x) % and function hx = happly (v, beta, x) % % Example % [H,R] = myqr (A) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; H = zeros (m,n) ; R = zeros (m,n) ; for k = 1:n % apply prior H's % fprintf ('\n-----------------init %d\n', k) ; x = A (:,k) ; for i = 1:k-1 v = H(((i+1):m),i) ; v = [1 ; v] ; %#ok beta = H (i,i) ; % n1 = norm (x (i:m)) ; x (i:m) = happly (v, beta, x (i:m)) ; % n2 = norm (x (i:m)) ; % fprintf ('=============== i %d %g %g\n', i, n1, n2) ; % beta % v' % X = x' % pause % i % x end % k % x % make Hk % fprintf ('x(k:m) = ') ; x (k:m) [v,beta,xnorm] = hmake1 (x (k:m)) ; H (k,k) = beta ; H (k+1:m, k) = v (2:end) ; R (1:(k-1),k) = x (1:(k-1)) ; R (k,k) = xnorm ; % full (R) % pause end % s2 = svd (full (R)) ; % [s1 s2 s1-s2] SuiteSparse/CXSparse/MATLAB/Test/README.txt0000644001170100242450000000035110571641104017012 0ustar davisfacTest for MATLAB interface for CXSparse. Type "testall" to run all the tests. Also includes "textbook" codes for the book "Direct Methods for Sparse Linear Systems", which are not part of CXSparse proper, but are used in the tests. SuiteSparse/CXSparse/MATLAB/Test/chol_example.m0000644001170100242450000000112010620373024020123 0ustar davisfacfunction chol_example %CHOL_EXAMPLE simple Cholesky factorization example % Example % chol_example % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse D = 10 ; X = 1 ; o = 0 ; A = sparse ([ D o X o o o o X o o o D o o X o o o o X X o D o o o X o o o o o o D o o o o X X o X o o D o o o X X o o o o o D X X o o o o X o o X D o o o X o o o o X o D X X o o o X X o o X D o o X o X X o o X o D ]) ; disp ('A = ') ; disp (A) ; L = chol(A)' ; disp ('L = ') ; disp (L) ; clf subplot (1,2,1) ; spy (A) ; subplot (1,2,2) ; spy (L+L') ; SuiteSparse/CXSparse/MATLAB/Test/chol_left.m0000644001170100242450000000062210620373030017425 0ustar davisfacfunction L = chol_left (A) %CHOL_LEFT left-looking Cholesky factorization. % Example % L = chol_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = zeros (n) ; for k = 1:n L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)') ; L (k+1:n,k) = (A (k+1:n,k) - L (k+1:n,1:k-1) * L (k,1:k-1)') / L (k,k) ; end SuiteSparse/CXSparse/MATLAB/Test/chol_update.m0000644001170100242450000000121610620373036017763 0ustar davisfacfunction [L, w] = chol_update (L, w) %CHOL_UPDATE update a Cholesky factorization. % Example: % [L, w] = chol_update (L, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; for j = 1:n alpha = w (j) / L (j,j) ; beta2 = sqrt (beta^2 + alpha^2) ; gamma = alpha / (beta2 * beta) ; delta = beta / beta2 ; L (j,j) = delta * L (j,j) + gamma * w (j) ; w (j) = alpha ; beta = beta2 ; if (j == n) return end w1 = w (j+1:n) ; w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ; L (j+1:n,j) = delta * L (j+1:n,j) + gamma * w1 ; end SuiteSparse/CXSparse/MATLAB/Test/cs_pvec.m0000644001170100242450000000036410620373067017125 0ustar davisfacfunction x = cs_pvec (b,p) %#ok %CS_PVEC x=b(p) % % Example: % x = cs_pvec (b,p) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_pvec mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/chol_updown.m0000644001170100242450000000163210620373037020020 0ustar davisfacfunction [L, w] = chol_updown (L, sigma, w) %CHOL_UPDOWN update or downdate a Cholesky factorization. % Example: % [L, w] = chol_updown (L, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; if (n == 1) L = sqrt (L*L'+sigma*w*w') ; return ; end for k = 1:n alpha = w(k) / L(k,k) ; beta2 = sqrt (beta^2 + sigma*alpha^2) ; gamma = sigma * alpha / (beta2 * beta) ; if (sigma > 0) % update delta = beta / beta2 ; L (k,k) = delta * L (k,k) + gamma * w (k) ; w1 = w (k+1:n) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = delta * L (k+1:n,k) + gamma * w1 ; else % downdate delta = beta2 / beta ; L (k,k) = delta * L (k,k) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = delta * L (k+1:n,k) + gamma * w (k+1:n) ; end w (k) = alpha ; beta = beta2 ; end SuiteSparse/CXSparse/MATLAB/Test/cs_test_make.m0000644001170100242450000000221610710251526020135 0ustar davisfacfunction cs_test_make (force) %CS_TEST_MAKE compiles the CSparse, Demo, and Test mexFunctions. % The current directory must be CSparse/MATLAB/Test to use this function. % % Example: % cs_test_make % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse mexcmd = 'mex -DCS_LONG -I../../../UFconfig' ; if (~isempty (strfind (computer, '64'))) mexcmd = [mexcmd ' -largeArrayDims'] ; end if (nargin < 1) force = 0 ; end cd ('../CSparse') ; [object_files timestamp] = cs_make ; cd ('../Test') ; mexfunc = { 'cs_ipvec', 'cs_pvec', 'cs_sparse2', ... 'cs_reach', 'cs_maxtransr', 'cs_reachr', 'cs_rowcnt', 'cs_frand' } ; if (ispc) % Windows does not support ANSI C99 mexcmd = [mexcmd ' -DNCOMPLEX'] ; end for i = 1:length(mexfunc) [s t tobj] = cs_must_compile ('', mexfunc{i}, '_mex', ... ['.' mexext], 'cs_test_make.m', force) ; if (s | tobj < timestamp) %#ok cmd = [mexcmd ' -O -output ' mexfunc{i} ' ' mexfunc{i} '_mex.c -I..' ... filesep '..' filesep 'Include -I..' ... filesep 'CSparse ' object_files] ; fprintf ('%s\n', cmd) ; eval (cmd) ; end end SuiteSparse/CXSparse/MATLAB/Test/cs_reachr.m0000644001170100242450000000063710620373100017423 0ustar davisfacfunction x = cs_reachr(L,b) %#ok %CS_REACHR recursive reach (interface to CSparse cs_reachr) % find nonzero pattern of x=L\sparse(b). L must be sparse, real, and lower % triangular. b must be a real sparse vector. % % Example: % x = cs_reachr(L,b) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_reach mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/etree_sample.m0000644001170100242450000000227010620373115020140 0ustar davisfacfunction etree_sample % ETREE_SAMPLE construct a sample etree and symbolic factorization % % Example % etree_sample % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clf % desired etree: % 1 2 3 4 5 6 7 8 9 10 11 goal = [6 3 8 6 8 7 9 10 10 11 0] ; o = 0 ; X = 1 ; x = 0 ; A = [ 1 o o o o o o o o o o o 2 o o o o o o o o o o X 3 o o o o o o o o o o o 4 o o o o o o o o o o o 5 o o o o o o X o o X o 6 o o o o o X o o x o x 7 o o o o o X x o X o o 8 o o o x o o x o X x o 9 o o x x X X x X x X x 10 o x x X x X x X X x X 11 ] ; A = A + tril(A,-1)' ; disp ('A = ') ; disp (A) [count,h,parent,post,R] = symbfact (A) ; L = R' ; subplot (2,3,1) ; spy (A) title ('A') ; subplot (2,3,2) ; etreeplot (A) title ('etree') ; % [parent, post] = etree (A) ; subplot (2,3,3) ; spy (L) title ('L, not postordered') ; n = size (A,1) ; for k = 1:n fprintf ('parent (%d) = %d goal: %d ok: %d\n', ... k, parent (k), goal (k), goal (k) == parent(k)) ; end [count,h,parent2,post2,R] = symbfact (A (post,post)) ; L = R' ; subplot (2,3,5) ; spy (A (post,post)) title ('A postordered') ; subplot (2,3,6) ; spy (L) title ('L postordered') ; SuiteSparse/CXSparse/MATLAB/Test/another_colormap.m0000644001170100242450000000102010620701546021022 0ustar davisfacfunction another_colormap %ANOTHER_COLORMAP try another color map % % Example: % another_colormap % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse j = jet (128) ; j = j (48:112, :) ; % jj = linspace (0,1,64)' ./ sum (jet,2) ; % j (:,1) = j (:,1) .* jj ; % j (:,2) = j (:,2) .* jj ; % j (:,3) = j (:,3) .* jj ; % white = [1 1 1] ; % gray = [.5 .5 .5] ; %#ok % j = [white ; purple ; j ] ; disp ('j = ') ; disp (j) image (1:size(j,1)) ; colormap (j) ; SuiteSparse/CXSparse/MATLAB/Test/test_randperms.m0000644001170100242450000000161110620373306020525 0ustar davisfacfunction test_randperms %TEST_RANDPERMS test random permutations % Example: % test_randperms % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) for trial = 1:100 m = fix (30 * rand (1)) ; n = fix (30 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; if (m == 0) p = [] ; else p = randperm (m) ; end if (n == 0) q = [] ; else q = randperm (n) ; end C = A(p,q) ; Im = speye (m) ; In = speye (n) ; P = Im (p,:) ; Q = In (:,q) ; q2 = find (Q) ; if (any (q ~= q2')) error ('!') end p2 = find (P') ; if (any (p ~= p2')) error ('!') end E = P*A*Q ; if (norm (C-E,1) ~= 0) error ('!') end P = sparse (1:m, p, 1) ; Q = sparse (q, 1:n, 1) ; E = P*A*Q ; if (norm (C-E,1) ~= 0) error ('2!') end end SuiteSparse/CXSparse/MATLAB/Test/sample_colormap.m0000644001170100242450000000157110620373165020660 0ustar davisfacfunction sample_colormap %SAMPLE_COLORMAP try a colormap for use in cspy % % Example: % sample_colormap % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse h = jet (64) ; h = h (64:-1:1,:) ; h = h (20:end,:) ; % h = h (17:128,:) ; % s = sum (jet,2) ; % h (:,1) = h (:,1) ./ s ; % h (:,2) = h (:,2) ./ s ; % h (:,3) = h (:,3) ./ s ; h (1,:) = [1 1 1] ; % white h (2,:) = [1 1 .8] ; % light yellow % h colormap (h) ; clf subplot (5,1,1) ; image (1:size(h,1)) ; h = rgb2hsv (h) ; % h (:,3) = linspace (1,0,64) ; % h= hsv2rgb (h) ; subplot (5,1,2) ; plot (h(:,1)) ; axis ([1 64 0 1]) ; ylabel ('red') ; subplot (5,1,3) ; plot (h(:,2)) ; axis ([1 64 0 1]) ; ylabel ('green') ; subplot (5,1,4) ; plot (h(:,3)) ; axis ([1 64 0 1]) ; ylabel ('blue') ; subplot (5,1,5) ; plot (sum(h,2)) ; axis ([1 64 0 3]) ; ylabel ('sum') ; SuiteSparse/CXSparse/MATLAB/Test/house.m0000644001170100242450000000067410620372614016627 0ustar davisfacfunction [v,beta,s] = house (x) %HOUSE find a Householder reflection. % real or complex case. % Example: % [v,beta,s] = house (x) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse v = x ; s = norm (x) ; if (s == 0) beta = 0 ; v (1) = 1 ; else if (x (1) ~= 0) s = sign (x (1)) * s ; end v (1) = v (1) + s ; beta = 1 / real (conj (s) * v (1)) ; end s = - s ; SuiteSparse/CXSparse/MATLAB/Test/cs_reach_mex.c0000644001170100242450000000200110571352431020074 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse and lower * triangular. b must be a sparse vector. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, Bmatrix, *L, *B ; double *x ; CS_INT k, i, j, top, *xi, *perm ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reach(L,b)") ; } /* get inputs */ L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; perm = cs_dl_malloc (L->n, sizeof (CS_INT)) ; for (k = 0 ; k < L->n ; k++) perm [k] = k ; xi = cs_dl_calloc (3*L->n, sizeof (CS_INT)) ; top = cs_dl_reach (L, B, 0, xi, perm) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; cs_free (perm) ; } SuiteSparse/CXSparse/MATLAB/Test/cs_fiedler.m0000644001170100242450000000164410620372610017575 0ustar davisfacfunction [p,v,d] = cs_fiedler (A) %CS_FIEDLER the Fiedler vector of a connected graph. % [p,v,d] = cs_fiedler(A) computes the Fiedler vector v (the eigenvector % corresponding to the 2nd smallest eigenvalue d of the Laplacian of the graph % of A+A'). p is the permutation obtained when v is sorted. A should be a % connected graph. % % Example: % [p,v,d] = cs_fiedler (A) ; % % See also CS_SCC, EIGS, SYMRCM, UNMESH. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n < 2) p = 1 ; v = 1 ; d = 0 ; return ; end opt.disp = 0 ; % turn off printing in eigs opt.tol = sqrt (eps) ; if (~isreal (A)) A = spones (A) ; end S = A | A' | speye (n) ; % compute the Laplacian of A S = diag (sum (S)) - S ; [v,d] = eigs (S, 2, 'SA', opt) ; % find the Fiedler vector v v = v (:,2) ; d = d (2,2) ; [ignore p] = sort (v) ; % sort it to get p SuiteSparse/CXSparse/MATLAB/Test/chol_downdate.m0000644001170100242450000000127310620373022020304 0ustar davisfacfunction [L, w] = chol_downdate (L, w) %CHOL_DOWNDATE downdate a Cholesky factorization. % Example % [L, w] = chol_downdate (L, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; for j = 1:n alpha = w (j) / L (j,j) ; beta2 = sqrt (beta^2 - alpha^2) ; if (~isreal (beta2)) error ('not positive definite') ; end gamma = alpha / (beta2 * beta) ; delta = beta2 / beta ; L (j,j) = delta * L (j,j) ; w (j) = alpha ; beta = beta2 ; if (j == n) return end w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ; L (j+1:n,j) = delta * L (j+1:n,j) - gamma * w (j+1:n) ; end SuiteSparse/CXSparse/MATLAB/Test/qr_givens.m0000644001170100242450000000105610620666403017476 0ustar davisfacfunction R = qr_givens (A) %QR_GIVENS Givens-rotation QR factorization. % Example: % R = qr_givens (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; parent = cs_etree (sparse (A), 'col') ; A = full (A) ; for i = 2:m k = min (find (A (i,:))) ; %#ok if (isempty (k)) continue ; end while (k > 0 & k <= min (i-1,n)) %#ok A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ; A (i,k) = 0 ; k = parent (k) ; end end R = sparse (A) ; SuiteSparse/CXSparse/MATLAB/Test/cs_frand.m0000644001170100242450000000075010620373060017252 0ustar davisfacfunction A = cs_frand (n,nel,s) %#ok %CS_FRAND generate a random finite-element matrix % A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel % finite elements, each of which are of size s-by-s with random symmetric % nonzero pattern, plus the identity matrix. % % Example % A = cs_frand (100, 100, 3) ; % See also cs_demo. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_frand mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/Test/lu_right.m0000644001170100242450000000072310620373136017314 0ustar davisfacfunction [L,U] = lu_right (A) %LU_RIGHT right-looking LU factorization. % Example: % [L,U] = lu_right (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; L = eye (n) ; U = zeros (n) ; for k = 1:n U (k,k:n) = A (k,k:n) ; % (6.4) and (6.5) L (k+1:n,k) = A (k+1:n,k) / U (k,k) ; % (6.6) A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * U (k,k+1:n) ; % (6.7) end SuiteSparse/CXSparse/MATLAB/Test/qr_givens_full.m0000644001170100242450000000061710620373155020521 0ustar davisfacfunction R = qr_givens_full (A) %QR_GIVENS_FULL Givens-rotation QR factorization, for full matrices. % Example: % R = qr_givens_full (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; for i = 2:m for k = 1:min(i-1,n) A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ; A (i,k) = 0 ; end end R = A ; SuiteSparse/CXSparse/MATLAB/Test/lu_left.m0000644001170100242450000000134310620373133017125 0ustar davisfacfunction [L,U,P] = lu_left (A) %LU_LEFT left-looking LU factorization. % Example: % [L,U,P] = lu_left (A) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; P = eye (n) ; L = zeros (n) ; U = zeros (n) ; for k = 1:n x = [ L(:,1:k-1) [ zeros(k-1,n-k+1) ; eye(n-k+1) ]] \ (P * A (:,k)) ; U (1:k-1,k) = x (1:k-1) ; % the column of U [a i] = max (abs (x (k:n))) ; % find the pivot row i i = i + k - 1 ; L ([i k],:) = L ([k i], :) ; % swap rows i and k of L, P, and x P ([i k],:) = P ([k i], :) ; x ([i k]) = x ([k i]) ; U (k,k) = x (k) ; L (k,k) = 1 ; L (k+1:n,k) = x (k+1:n) / x (k) ; % divide the pivot column by U(k,k) end SuiteSparse/CXSparse/MATLAB/Test/test_qr.m0000644001170100242450000000240210620667064017162 0ustar davisfacfunction test_qr %TEST_QR test various QR factorization methods % % Example: % test_qr % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows,index.ncols)) ; % f = 276 % f = 706 f = f (1:100) ; for i = f % Prob = UFget (i,index) Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; if (sprank (A) < n | ~isreal (A)) %#ok continue ; end [V,beta,p,R1,q] = cs_qr(A) ; A = A (p,q) ; parent = etree (A, 'col') ; %#ok R0 = qr (A) ; R2 = qr_givens (full (A)) ; R3 = qr_givens_full (full (A)) ; subplot (2,2,1) ; cspy (R0) ; title ('matlab') ; subplot (2,2,2) ; cspy (R3) ; title ('qr-full') ; subplot (2,2,3) ; cspy (R2) ; title ('qr-givens') ; subplot (2,2,4) ; cspy (R1) ; title ('cs-qr') ; e0 = norm (A'*A-R0'*R0,1) / norm (A,1) ; e1 = norm (A'*A-R1'*R1,1) / norm (A,1) ; e2 = norm (A'*A-R2'*R2,1) / norm (A,1) ; e3 = norm (A'*A-R3'*R3,1) / norm (A,1) ; fprintf ('error %6.2e %6.2e %6.2e %6.2e\n', e0, e1, e2, e3) ; drawnow if (e1 > e0*1e3 | e2 > e0*1e3) %#ok pause end end SuiteSparse/CXSparse/MATLAB/Test/testall.m0000644001170100242450000000302110710513106017132 0ustar davisfacfunction testall %TESTALL test all CSparse functions (run tests 1 to 28 below) % % Example: % testall % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse h = waitbar (0, 'CXSparse') ; cs_test_make % compile all CSparse, Demo, Text, and Test mexFunctions ntests = 29 ; testwait (1, ntests, h) ; test1 ; testwait (2, ntests, h) ; test2 ; testwait (3, ntests, h) ; test3 ; testwait (4, ntests, h) ; test4 ; testwait (5, ntests, h) ; test5 ; testwait (6, ntests, h) ; test6 ; testwait (7, ntests, h) ; test7 ; testwait (8, ntests, h) ; test8 ; testwait (9, ntests, h) ; test9 ; testwait (10, ntests, h) ; test10 ; testwait (11, ntests, h) ; test11 ; testwait (12, ntests, h) ; test12 ; testwait (13, ntests, h) ; test13 ; testwait (14, ntests, h) ; test14 ; testwait (15, ntests, h) ; test15 ; testwait (16, ntests, h) ; test16 ; testwait (17, ntests, h) ; test17 ; testwait (18, ntests, h) ; test18 ; testwait (19, ntests, h) ; test19 ; testwait (20, ntests, h) ; test20 ; testwait (21, ntests, h) ; test21 ; testwait (22, ntests, h) ; test22 ; testwait (23, ntests, h) ; test23 ; testwait (24, ntests, h) ; test24 ; testwait (25, ntests, h) ; test25 ; testwait (26, ntests, h) ; test26 ; testwait (27, ntests, h) ; test27 ; testwait (28, ntests, h) ; test28 ; testwait (29, ntests, h) ; test_qr ; close (h) function testwait (n,ntests,h) fprintf ('\n------------------------ test%d\n', n) ; waitbar (n/(ntests+1), h, sprintf ('CXSparse test %d of %d\n', n, ntests)) ; SuiteSparse/CXSparse/MATLAB/Test/norm1est.m0000644001170100242450000000131410620667470017253 0ustar davisfacfunction est = norm1est (L,U,P,Q) %NORM1EST 1-norm estimate. % L and U must be real. % Example: % est = norm1est (L,U,P,Q) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (L,1) ; for k = 1:5 if (k == 1) est = 0 ; x = ones (n,1) / n ; jold = -1 ; else j = min (find (abs (x) == norm (x,inf))) ; %#ok if (j == jold) break end ; x = zeros (n,1) ; x (j) = 1 ; jold = j ; end x = Q * (U \ (L \ (P*x))) ; est_old = est ; est = norm (x,1) ; if (k > 1 & est <= est_old) %#ok break end ; s = ones (n,1) ; s (find (x < 0)) = -1 ; %#ok x = P' * (L' \ (U' \ (Q'*s))) ; end SuiteSparse/CXSparse/MATLAB/Test/mynormest1.m0000644001170100242450000000302410620666356017623 0ustar davisfacfunction est = mynormest1 (L, U, P, Q) %MYNORMEST1 estimate norm(A,1), using LU factorization (L*U = P*A*Q). % % Example: % est = mynormest1 (L, U, P, Q) % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (L,1) ; est = 0 ; S = zeros (n,1) ; for k = 1:5 if k == 1 x = ones (n,1) / n ; else j = find (abs (x) == max (abs (x))) ; j = j (1) ; x = zeros (n,1) ; x (j) = 1 ; % fprintf ('eka: k %d j %d est %g\n', k, j, est) ; end % x=A\x, but use the existing P*A*Q=L*U factorization x = Q * (U \ (L \ (P*x))) ; est_old = est ; est = sum (abs (x)) ; unchanged = 1 ; for i = 1:n if (x (i) >= 0) s = 1 ; else s = -1 ; end if (s ~= S (i)) S (i) = s ; unchanged = 0 ; end end if (any (S ~= signum (x))) S' %#ok signum(x)' %#ok error ('Hey!') ; end if k > 1 & (est <= est_old | unchanged) %#ok break ; end x = S ; % x=A'\x, but use the existing P*A*Q=L*U factorization x = P' * (L' \ (U' \ (Q'*x))) ; if k > 1 jnew = find (abs (x) == max (abs (x))) ; if (jnew == j) break ; end end end for k = 1:n x (k) = power (-1, k+1) * (1 + ((k-1)/(n-1))) ; end % x=A\x, but use the existing P*A*Q=L*U factorization x = Q * (U \ (L \ (P*x))) ; est_new = 2 * sum (abs (x)) / (3 * n) ; if (est_new > est) est = est_new ; end function s = signum (x) %SIGNUM compute sign of x s = ones (length (x),1) ; s (find (x < 0)) = -1 ; %#ok SuiteSparse/CXSparse/MATLAB/Test/chol_updown2.m0000644001170100242450000000221410620375657020111 0ustar davisfacfunction [L, w] = chol_updown2 (L, sigma, w) %CHOL_UPDOWN2 Cholesky update/downdate (real and complex) % (real or complex) % Example: % [L, w] = chol_updown2 (L, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis, William W. Hager % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; if (n == 1) wnew = L\w ; L = sqrt (L*L'+sigma*w*w') ; w = wnew ; return ; end for k = 1:n alpha = w(k) / L(k,k) ; beta2 = sqrt (beta*beta + sigma*alpha*conj(alpha)) ; gamma = sigma * conj(alpha) / (beta2 * beta) ; if (sigma > 0) % update delta = beta / beta2 ; L (k,k) = delta * L (k,k) + gamma * w (k) ; phase = abs (L (k, k))/L (k, k) ; L (k, k) = phase*L (k, k) ; w1 = w (k+1:n) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = phase * (delta * L (k+1:n,k) + gamma * w1) ; else % downdate delta = beta2 / beta ; L (k,k) = delta * L (k,k) ; phase = abs (L (k, k))/L (k, k) ; L (k, k) = phase*L (k, k) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = phase * (delta * L (k+1:n,k) + gamma * w (k+1:n)) ; end w (k) = alpha ; beta = beta2 ; end SuiteSparse/CXSparse/MATLAB/CSparse/0000755001170100242450000000000010634327246015746 5ustar davisfacSuiteSparse/CXSparse/MATLAB/CSparse/cs_ltsolve.m0000644001170100242450000000110310620371640020264 0ustar davisfacfunction x = cs_ltsolve (L,b) %#ok %CS_LTSOLVE solve a sparse upper triangular system L'*x=b. % x = cs_ltsolve(L,b) computes x = L'\b, L must be lower triangular with a % zero-free diagonal. b must be a full vector. % % Example: % Prob = UFget ('HB/bcsstk01') ; L = cs_chol (Prob.A) ; n = size (L,1) ; % b = rand (n,1) ; x = cs_ltsolve (L,b) ; norm (L'*x-b) % % See also CS_LSOLVE, CS_USOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_ltsolve mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_cholsol.m0000644001170100242450000000135210620371612020244 0ustar davisfacfunction x = cs_cholsol (A,b,order) %#ok %CS_CHOLSOL solve A*x=b using a sparse Cholesky factorization. % x = cs_cholsol(A,b) computes x = A\b, where A sparse symmetric positive % definite, and b is a full vector. A 3rd input parameter allows the % ordering to be modified: 0: natural, 1:amd(A), 2: amd(S'*S) where S=A except % with no dense rows, 3:amd(A'*A). The default ordering option is 1. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; b = rand (size (A,1),1) ; % x = cs_cholsol (A,b) ; norm (A*x-b) % % See also CS_CHOL, CS_AMD, CS_LUSOL, CS_QRSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_cholsol mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/Makefile0000644001170100242450000000735410617167014017413 0ustar davisfacinclude ../../../UFconfig/UFconfig.mk MX = $(MEX) -DCS_LONG AR = ar cr RANLIB = ranlib I = -I../../Include -I../../../UFconfig all: mexcsparse.a cs_mex.h $(MX) cs_thumb_mex.c $(I) mexcsparse.a -output cs_thumb $(MX) cs_print_mex.c $(I) mexcsparse.a -output cs_print $(MX) cs_updown_mex.c $(I) mexcsparse.a -output cs_updown $(MX) cs_gaxpy_mex.c $(I) mexcsparse.a -output cs_gaxpy $(MX) cs_transpose_mex.c $(I) mexcsparse.a -output cs_transpose $(MX) cs_sparse_mex.c $(I) mexcsparse.a -output cs_sparse $(MX) cs_multiply_mex.c $(I) mexcsparse.a -output cs_multiply $(MX) cs_add_mex.c $(I) mexcsparse.a -output cs_add $(MX) cs_permute_mex.c $(I) mexcsparse.a -output cs_permute $(MX) cs_symperm_mex.c $(I) mexcsparse.a -output cs_symperm $(MX) cs_lsolve_mex.c $(I) mexcsparse.a -output cs_lsolve $(MX) cs_ltsolve_mex.c $(I) mexcsparse.a -output cs_ltsolve $(MX) cs_usolve_mex.c $(I) mexcsparse.a -output cs_usolve $(MX) cs_utsolve_mex.c $(I) mexcsparse.a -output cs_utsolve $(MX) cs_chol_mex.c $(I) mexcsparse.a -output cs_chol $(MX) cs_etree_mex.c $(I) mexcsparse.a -output cs_etree $(MX) cs_counts_mex.c $(I) mexcsparse.a -output cs_counts $(MX) cs_qr_mex.c $(I) mexcsparse.a -output cs_qr $(MX) cs_amd_mex.c $(I) mexcsparse.a -output cs_amd $(MX) cs_lu_mex.c $(I) mexcsparse.a -output cs_lu $(MX) cs_cholsol_mex.c $(I) mexcsparse.a -output cs_cholsol $(MX) cs_lusol_mex.c $(I) mexcsparse.a -output cs_lusol $(MX) cs_droptol_mex.c $(I) mexcsparse.a -output cs_droptol $(MX) cs_qrsol_mex.c $(I) mexcsparse.a -output cs_qrsol $(MX) cs_dmperm_mex.c $(I) mexcsparse.a -output cs_dmperm $(MX) cs_scc_mex.c $(I) mexcsparse.a -output cs_scc $(MX) cs_sqr_mex.c $(I) mexcsparse.a -output cs_sqr $(MX) cs_randperm_mex.c $(I) mexcsparse.a -output cs_randperm CSD = cs_mex.o \ cs_amd.o \ cs_chol.o \ cs_counts.o \ cs_cumsum.o \ cs_fkeep.o \ cs_dfs.o \ cs_dmperm.o \ cs_droptol.o \ cs_dropzeros.o \ cs_dupl.o \ cs_entry.o \ cs_etree.o \ cs_gaxpy.o \ cs_ipvec.o \ cs_lsolve.o \ cs_ltsolve.o \ cs_lu.o \ cs_maxtrans.o \ cs_util.o \ cs_malloc.o \ cs_multiply.o \ cs_add.o \ cs_scatter.o \ cs_permute.o \ cs_pinv.o \ cs_post.o \ cs_tdfs.o \ cs_pvec.o \ cs_qr.o \ cs_happly.o \ cs_house.o \ cs_schol.o \ cs_scc.o \ cs_sqr.o \ cs_symperm.o \ cs_transpose.o \ cs_compress.o \ cs_usolve.o \ cs_utsolve.o \ cs_cholsol.o \ cs_lusol.o \ cs_qrsol.o \ cs_updown.o \ cs_norm.o \ cs_print.o \ cs_load.o \ cs_spsolve.o \ cs_reach.o \ cs_ereach.o \ cs_leaf.o \ cs_randperm.o CSC = \ cs_cl_amd.o \ cs_cl_chol.o \ cs_cl_counts.o \ cs_cl_cumsum.o \ cs_cl_fkeep.o \ cs_cl_dfs.o \ cs_cl_dmperm.o \ cs_cl_droptol.o \ cs_cl_dropzeros.o \ cs_cl_dupl.o \ cs_cl_entry.o \ cs_cl_etree.o \ cs_cl_gaxpy.o \ cs_cl_ipvec.o \ cs_cl_lsolve.o \ cs_cl_ltsolve.o \ cs_cl_lu.o \ cs_cl_maxtrans.o \ cs_cl_util.o \ cs_cl_malloc.o \ cs_cl_multiply.o \ cs_cl_add.o \ cs_cl_scatter.o \ cs_cl_permute.o \ cs_cl_pinv.o \ cs_cl_post.o \ cs_cl_tdfs.o \ cs_cl_pvec.o \ cs_cl_qr.o \ cs_cl_happly.o \ cs_cl_house.o \ cs_cl_schol.o \ cs_cl_scc.o \ cs_cl_sqr.o \ cs_cl_symperm.o \ cs_cl_transpose.o \ cs_cl_compress.o \ cs_cl_usolve.o \ cs_cl_utsolve.o \ cs_cl_cholsol.o \ cs_cl_lusol.o \ cs_cl_qrsol.o \ cs_cl_updown.o \ cs_cl_norm.o \ cs_cl_print.o \ cs_cl_load.o \ cs_cl_spsolve.o \ cs_cl_reach.o \ cs_cl_ereach.o \ cs_cl_leaf.o \ cs_cl_randperm.o CS = $(CSD) $(CSC) mexcsparse.a: $(CS) $(AR) mexcsparse.a $(CS) $(RANLIB) mexcsparse.a $(CS): ../../Include/cs.h cs_mex.o: cs_mex.c cs_mex.h $(MX) -c $(I) $< cs_cl_%.o: ../../Source/cs_%.c cp -f $< cs_cl_$*.c $(MX) -DCS_COMPLEX -c $(I) cs_cl_$*.c cs_%.o: ../../Source/cs_%.c $(MX) -c $(I) $< clean: - rm -f *.o distclean: clean - rm -f *.mex* *.dll *.a cs_cl_*.c purge: distclean SuiteSparse/CXSparse/MATLAB/CSparse/cs_lu.m0000644001170100242450000000240310620371643017223 0ustar davisfacfunction [L,U,p,q] = cs_lu (A,tol) %#ok %CS_LU sparse LU factorization, with fill-reducing ordering. % [L,U,p] = cs_lu(A) factorizes A(p,:) into L*U using no fill-reducing % ordering. % % [L,U,p] = cs_lu(A,tol) factorizes A(p,:) into L*U using no fill-reducing % ordering. Entries on the diagonal are given preference in partial pivoting. % % [L,U,p,q] = cs_lu(A) factorizes A(p,q) into L*U using a fill-reducing % ordering q = cs_amd(A,2). Normal partial pivoting is used. % % [L,U,p,q] = cs_lu(A,tol) factorizes A(p,q) into L*U, using a fill-reducing % ordering q = cs_amd(A,1). Entries on the diagonal are given preference in % partial pivoting. With a pivot tolerance tol, the entries in L have % magnitude 1/tol or less. tol = 1 is normal partial pivoting (with % q = cs_amd(A)). tol = 0 ensures p = q. 0= tol * max(abs(A(:,k))). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [L,U,p,q] = cs_lu (A) ; % cspy (A (p,q)) ; cspy (L+U) ; % norm (L*U - A(p,q), 1) % % See also CS_AMD, LU, UMFPACK, AMD, COLAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lu mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_nd.m0000644001170100242450000000164310620371653017212 0ustar davisfacfunction p = cs_nd (A) %CS_ND generalized nested dissection ordering. % p = cs_nd(A) computes the nested dissection ordering of a matrix. Small % submatrices (order 500 or less) are ordered via cs_amd. A must be sparse % and symmetric (use p = cs_nd(A|A') if it is not symmetric). % % Example: % A = delsq (numgrid ('L', 300)) ; % matrix used in 'bench' % p = cs_nd (A) ; % cspy (A (p,p)) ; % % See also CS_AMD, CS_SEP, CS_ESEP, CS_NSEP, AMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n == 1) p = 1 ; elseif (n < 500) p = cs_amd (A) ; % use cs_amd on small graphs else [s a b] = cs_nsep (A) ; % find a node separator a = a (cs_nd (A (a,a))) ; % order A(a,a) recursively b = b (cs_nd (A (b,b))) ; % order A(b,b) recursively p = [a b s] ; % concatenate to obtain the final ordering end SuiteSparse/CXSparse/MATLAB/CSparse/cs_qr.m0000644001170100242450000000266410620371667017244 0ustar davisfacfunction [V,beta,p,R,q] = cs_qr (A) %#ok %CS_QR sparse QR factorization (Householder-based). % [V,beta,p,R] = cs_qr(A) computes the QR factorization of A(p,:). % [V,beta,p,R,q] = cs_qr(A) computes the QR factorization of A(p,q). % The V, beta, and p terms represent the Householder vectors and coefficients. % The fill-reducing ordering q is found via q = cs_amd(A,3). % The orthogonal factor Q can be obtained via % Q = cs_qright(V,beta,p,speye(size(V,1))), in which case Q*R=A(:,q) is the % resulting factorization (the permutation p is folded into Q). A must be % m-by-n with m >= n. If A is structurally rank deficient, additional empty % rows may have been added to V and R. Note that V is typically much sparser % than Q. % % Example: % % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % [V,beta,p,R,q] = cs_qr (A) ; % QR factorization of A(p,q) % b1 = cs_qleft (V, beta, p, b) ; % x1 = R (1:n,1:n) \ b1 (1:n) ; % x1 (q) = x1 ; % x2 = A\b ; % norm (x1-x2) % Q = cs_qright(V,beta,p,speye(size(V,1))) ; % Note: p accounted for in Q % norm (Q*R-A(:,q),1) % fprintf ('nnz(R) %d, nnz(V) %d, nnz(Q) %d\n', nnz(R), nnz(V), nnz(Q)) ; % % See also CS_AMD, CS_QRIGHT, CS_QR, CS_DMPERM, QR, COLAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_qr mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_qright.m0000644001170100242450000000154710620371665020115 0ustar davisfacfunction X = cs_qright (V, Beta, p, Y) %CS_QRIGHT apply Householder vectors on the right. % X = cs_qright(V,Beta,p,Y) computes X = Y*P'*H1*H2*...*Hn = Y*Q where Q is % represented by the Householder vectors V, coefficients Beta, and % permutation p. p can be [], which denotes the identity permutation. % To obtain Q itself, use Q = cs_qright(V,Beta,p,speye(size(V,1))). % % Example: % load west0479 ; q = colamd (west0479) ; A = west0479 (:,q) ; % [Q,R] = qr (A) ; norm (Q*R-A, 1) % [V,beta,p,R2] = cs_qr (A) ; % Q2 = cs_qright (V, beta, p, speye(size(V,1))) ; norm (Q2*R2-A, 1) % % See also CS_QR, CS_QLEFT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (V) ; X = Y ; if (~isempty (p)) X = X (:,p) ; end for k = 1:n X = X - (X * (Beta (k) * V (:,k))) * V (:,k)' ; end SuiteSparse/CXSparse/MATLAB/CSparse/cs_amd_mex.c0000644001170100242450000000126310573562345020216 0ustar davisfac#include "cs_mex.h" /* cs_amd: approximate minimum degree ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT *P, order ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_amd(A,order)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ order = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; /* get ordering */ order = CS_MAX (order, 1) ; order = CS_MIN (order, 3) ; P = cs_dl_amd (order, A) ; /* min. degree ordering */ pargout [0] = cs_dl_mex_put_int (P, A->n, 1, 1) ; /* return P */ } SuiteSparse/CXSparse/MATLAB/CSparse/cs_updown.m0000644001170100242450000000221410620371716020120 0ustar davisfacfunction L = cs_updown (L, c, parent, sigma) %#ok %CS_UPDOWN rank-1 update/downdate of a sparse Cholesky factorization. % L = cs_updown(L,c,parent) computes the rank-1 update L = chol(L*L'+c*c')', % where parent is the elimination tree of L. c must be a sparse column % vector, and find(c) must be a subset of find(L(:,k)) where k = min(find(c)). % L = cs_updown(L,c,parent,'-') is the downdate L = chol(L*L'-c*c'). % L = cs_updown(L,c,parent,'+') is the update L = chol(L*L'+c*c'). % Updating/downdating is much faster than refactorizing the matrix with % cs_chol or chol. L must not have an entries dropped due to numerical % cancellation (use cs_chol(A,0)). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; n = size (A,1) ; % L = cs_chol (A,0) ; % parent = cs_etree (A) ; % c = sprand (L (:, floor(n/2))) ; % L1 = cs_updown (L, c, parent) ; % L2 = cs_chol (A + c*c', 0) ; % norm (L1-L2, 1) % % See also CS_ETREE, CS_CHOL, ETREE, CHOLUPDATE, CHOL. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_updown mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_counts_mex.c0000644001170100242450000000165710573562346021000 0ustar davisfac#include "cs_mex.h" /* cs_counts: column counts for sparse Cholesky factor L. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT n, ata, *parent, *post, *c ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: c = cs_counts(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_dl_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_dl_etree (A, ata) ; /* compute etree */ post = cs_dl_post (parent, n) ; /* postorder the etree*/ c = cs_dl_counts (A, parent, post, ata) ; /* get column counts */ pargout [0] = cs_dl_mex_put_int (c, n, 0, 1) ; /* return counts */ cs_free (parent) ; cs_free (post) ; } SuiteSparse/CXSparse/MATLAB/CSparse/cs_permute.m0000644001170100242450000000073610620371657020300 0ustar davisfacfunction C = cs_permute (A,p,q) %#ok %CS_PERMUTE permute a sparse matrix. % C = cs_permute(A,p,q) computes C = A(p,q) % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [m n] = size (A) ; % p = randperm (m) ; q = randperm (n) ; % C = cs_permute (A,p,q) ; % C = A(p,q) % % See also CS_SYMPERM, SUBSREF. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_permute mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_symperm.m0000644001170100242450000000127010620371706020300 0ustar davisfacfunction C = cs_symperm (A,p) %#ok %CS_SYMPERM symmetric permutation of a symmetric matrix. % C = cs_symperm(A,p) computes C = A(p,p), but accesses only the % upper triangular part of A, and returns C upper triangular (A and C are % symmetric with just their upper triangular parts stored). A must be square. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % p = cs_amd (A) ; % C = cs_symperm (A, p) ; % cspy (A (p,p)) ; % cspy (C) ; % C - triu (A (p,p)) % % See also CS_PERMUTE, SUBSREF, TRIU. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_symperm mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_lsolve.m0000644001170100242450000000131510620371636020112 0ustar davisfacfunction x = cs_lsolve (L,b) %#ok %CS_LSOLVE solve a sparse lower triangular system L*x=b. % x = cs_lsolve(L,b) computes x = L\b, L must be lower triangular with a % zero-free diagonal. b must be a column vector. x is full if b is full. % If b is sparse, x is sparse but the nonzero pattern of x is NOT sorted (it % is returned in topological order). % % Example: % Prob = UFget ('HB/bcsstk01') ; L = cs_chol (Prob.A) ; n = size (L,1) ; % b = rand (n,1) ; x = cs_lsolve (L,b) ; norm (L*x-b) % % See also CS_LTSOLVE, CS_USOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lsolve mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_transpose_mex.c0000644001170100242450000000204110573562353021465 0ustar davisfac#include "cs_mex.h" /* C = cs_transpose (A), computes C=A', where A must be sparse. C = cs_transpose (A,kind) computes C=A.' if kind <= 0, C=A' if kind > 0 */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT values ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: C = cs_transpose(A,kind)") ; } values = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; values = (values <= 0) ? -1 : 1 ; if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_transpose (A, values) ; /* C = A' */ pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_transpose (A, values) ; /* C = A' */ pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_utsolve.m0000644001170100242450000000125110620371722020302 0ustar davisfacfunction x = cs_utsolve (U,b) %#ok %CS_UTSOLVE solve a sparse lower triangular system U'*x=b. % x = cs_utsolve(U,b) computes x = U'\b, U must be upper triangular with a % zero-free diagonal. b must be a full vector. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size (A,1) ; % b = rand (n,1); % [L U p q] = cs_lu (A) ; % x = cs_ltsolve (L, cs_utsolve (U, b(q))) ; % x = L' \ (U' \ b(q)) ; % x (p) = x ; % norm (A'*x-b) % % See also CS_LSOLVE, CS_LTSOLVE, CS_USOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_utsolve mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_permute_mex.c0000644001170100242450000000272410573562351021136 0ustar davisfac#include "cs_mex.h" /* cs_permute: permute a sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, *P, *Q, *Pinv, m, n ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_permute(A,p,q)") ; } m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; P = cs_dl_mex_get_int (m, pargin [1], &ignore, 1) ; /* get P */ Q = cs_dl_mex_get_int (n, pargin [2], &ignore, 1) ; /* get Q */ Pinv = cs_pinv (P, m) ; /* P = Pinv' */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_permute (A, Pinv, Q, 1) ; /* C = A(p,q) */ cs_cl_free (A->x) ; D = cs_cl_transpose (C, 1) ; /* sort C via double transpose */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_permute (A, Pinv, Q, 1) ; /* C = A(p,q) */ D = cs_dl_transpose (C, 1) ; /* sort C via double transpose */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } cs_free (Pinv) ; cs_free (P) ; cs_free (Q) ; } SuiteSparse/CXSparse/MATLAB/CSparse/Contents.m0000644001170100242450000000537510620374610017723 0ustar davisfac% CXSparse: a Concise Sparse matrix Package. % % Matrices used in CXSparse must in general be either sparse matrices % or dense vectors. Ordering methods can accept any sparse matrix. % CXsparse allows for complex matrices (CSparse does not). % % cs_add - sparse matrix addition. % cs_amd - approximate minimum degree ordering. % cs_chol - sparse Cholesky factorization. % cs_cholsol - solve A*x=b using a sparse Cholesky factorization. % cs_counts - column counts for sparse Cholesky factor L. % cs_dmperm - maximum matching or Dulmage-Mendelsohn permutation. % cs_dmsol - x=A\b using the coarse Dulmage-Mendelsohn decomposition. % cs_dmspy - plot the Dulmage-Mendelsohn decomposition of a matrix. % cs_droptol - remove small entries from a sparse matrix. % cs_esep - find an edge separator of a symmetric matrix A % cs_etree - elimination tree of A or A'*A. % cs_gaxpy - sparse matrix times vector. % cs_lsolve - solve a sparse lower triangular system L*x=b. % cs_ltsolve - solve a sparse upper triangular system L'*x=b. % cs_lu - sparse LU factorization, with fill-reducing ordering. % cs_lusol - solve Ax=b using LU factorization. % cs_make - compiles CXSparse for use in MATLAB. % cs_multiply - sparse matrix multiply. % cs_nd - generalized nested dissection ordering. % cs_nsep - find a node separator of a symmetric matrix A. % cs_permute - permute a sparse matrix. % cs_print - print the contents of a sparse matrix. % cs_qr - sparse QR factorization (Householder-based). % cs_qleft - apply Householder vectors on the left. % cs_qright - apply Householder vectors on the right. % cs_qrsol - solve a sparse least-squares problem. % cs_randperm - random permutation. % cs_sep - convert an edge separator into a node separator. % cs_scc - strongly-connected components of a square sparse matrix. % cs_scc2 - cs_scc, or connected components of a bipartite graph. % cs_sparse - convert a triplet form into a sparse matrix. % cs_sqr - symbolic sparse QR factorization. % cs_symperm - symmetric permutation of a symmetric matrix. % cs_transpose - transpose a sparse matrix. % cs_updown - rank-1 update/downdate of a sparse Cholesky factorization. % cs_usolve - solve a sparse upper triangular system U*x=b. % cs_utsolve - solve a sparse lower triangular system U'*x=b. % cspy - plot a matrix in color. % ccspy - plot the connected components of a matrix. % Example: % help cs_add % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse % helper function: % cs_must_compile - return 1 if source code f must be compiled, 0 otherwise SuiteSparse/CXSparse/MATLAB/CSparse/cs_multiply_mex.c0000644001170100242450000000277010634322566021335 0ustar davisfac#include "cs_mex.h" /* cs_multiply: sparse matrix multiply */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_multiply(A,B)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl A1matrix, B1matrix, *A, *B, *C, *D, *A1, *B1 ; A1 = cs_cl_mex_get_sparse (&A1matrix, 0, pargin [0]) ; A = cs_cl_transpose (A1, 1) ; cs_cl_free (A1->x) ; /* complex copy no longer needed */ B1 = cs_cl_mex_get_sparse (&B1matrix, 0, pargin [1]) ; B = cs_cl_transpose (B1, 1) ; cs_cl_free (B1->x) ; /* complex copy no longer needed */ D = cs_cl_multiply (B,A) ; /* D = B'*A' */ cs_cl_spfree (A) ; cs_cl_spfree (B) ; cs_cl_dropzeros (D) ; /* drop zeros from D */ C = cs_cl_transpose (D, 1) ; /* C = D', so C is sorted */ cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_dl_transpose (cs_dl_mex_get_sparse (&Amatrix, 0,1, pargin[0]),1); B = cs_dl_transpose (cs_dl_mex_get_sparse (&Bmatrix, 0,1, pargin[1]),1); D = cs_dl_multiply (B,A) ; /* D = B'*A' */ cs_dl_spfree (A) ; cs_dl_spfree (B) ; cs_dl_dropzeros (D) ; /* drop zeros from D */ C = cs_dl_transpose (D, 1) ; /* C = D', so C is sorted */ cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_gaxpy_mex.c0000644001170100242450000000230310634322365020573 0ustar davisfac#include "cs_mex.h" /* z = cs_gaxpy (A,x,y) computes z = A*x+y */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: z = cs_gaxpy(A,x,y)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]) || mxIsComplex (pargin [2])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; cs_complex_t *x, *z ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ;/* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* get x */ z = cs_cl_mex_get_double (A->m, pargin [2]) ; /* z = y */ cs_cl_gaxpy (A, x, z) ; /* z = z + A*x */ cs_free (x) ; cs_free (A->x) ; pargout [0] = cs_cl_mex_put_double (A->m, z) ; /* return z */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; double *x, *y, *z ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;/* get A */ x = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get x */ y = cs_dl_mex_get_double (A->m, pargin [2]) ; /* get y */ z = cs_dl_mex_put_double (A->m, y, &(pargout [0])) ; /* z = y */ cs_dl_gaxpy (A, x, z) ; /* z = z + A*x */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_print.m0000644001170100242450000000064710620371660017746 0ustar davisfacfunction cs_print (A,brief) %#ok %CS_PRINT print the contents of a sparse matrix. % cs_print(A) prints a sparse matrix. cs_print(A,1) prints just a few entries. % % Example: % Prob = UFget ('vanHeukelum/cage3') ; A = Prob.A % cs_print (A) ; % % See also: DISPLAY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_print mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_scc_mex.c0000644001170100242450000000215310573562352020222 0ustar davisfac#include "cs_mex.h" /* [p,r] = cs_scc (A) finds the strongly connected components of A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; cs_dld *D ; CS_INT n, j, *Ap2 ; if (nargout > 2 || nargin != 1) { mexErrMsgTxt ("Usage: [p,r] = cs_scc(A)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; /* get A */ /* cs_scc modifies A->p and then restores it (in cs_dfs). Avoid the issue * of a mexFunction modifying its input (even temporarily) by making a copy * of A->p. This issue does not arise in cs_dmperm, because that function * applies cs_scc to a submatrix C, not to A directly. */ n = A->n ; Ap2 = cs_dl_malloc (n+1, sizeof (CS_INT)) ; for (j = 0 ; j <= n ; j++) Ap2 [j] = A->p [j] ; A->p = Ap2 ; D = cs_dl_scc (A) ; /* find conn. comp. */ pargout [0] = cs_dl_mex_put_int (D->p, n, 1, 0) ; /* return p */ pargout [1] = cs_dl_mex_put_int (D->r, D->nb+1, 1, 0) ; /* return r */ cs_dl_dfree (D) ; cs_free (Ap2) ; /* free the copy of A->p */ } SuiteSparse/CXSparse/MATLAB/CSparse/cs_lu_mex.c0000644001170100242450000000562610634322545020076 0ustar davisfac#include "cs_mex.h" /* cs_lu: sparse LU factorization, with optional fill-reducing ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, order, *p ; double tol ; if (nargout > 4 || nargin > 3 || nargin < 1) { mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ; } if (nargin == 2) /* determine tol and ordering */ { tol = mxGetScalar (pargin [1]) ; order = (nargout == 4) ? 1 : 0 ; /* amd (A+A'), or natural */ } else { tol = 1 ; order = (nargout == 4) ? 2 : 0 ; /* amd(S'*S) w/dense rows or I */ } if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_cl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_cl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_cl_free (A->x) ; /* complex copy no longer needed */ cs_cl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; p = cs_cl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_cl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_dl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_dl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_dl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; p = cs_dl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_dl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_chol_mex.c0000644001170100242450000000346710573562345020412 0ustar davisfac#include "cs_mex.h" /* cs_chol: sparse Cholesky factorization */ void mexFunction (int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ]) { CS_INT order, n, drop, *p ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [L,p] = cs_chol(A,drop)") ; } drop = (nargin == 1) ? 1 : mxGetScalar (pargin [1]) ; order = (nargout > 1) ? 1 : 0 ; /* determine ordering */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; cs_cls *S ; cs_cln *N ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_cl_schol (order, A) ; /* symbolic Cholesky */ N = cs_cl_chol (A, S) ; /* numeric Cholesky */ if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ; cs_free (A->x) ; if (drop) cs_cl_dropzeros (N->L) ; /* drop zeros if requested*/ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return L */ if (nargout > 1) { p = cs_cl_pinv (S->pinv, n) ; /* p=pinv' */ pargout [1] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; cs_dls *S ; cs_dln *N ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_dl_schol (order, A) ; /* symbolic Cholesky */ N = cs_dl_chol (A, S) ; /* numeric Cholesky */ if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ; if (drop) cs_dl_dropzeros (N->L) ; /* drop zeros if requested*/ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return L */ if (nargout > 1) { p = cs_dl_pinv (S->pinv, n) ; /* p=pinv' */ pargout [1] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_counts.m0000644001170100242450000000135710620371614020123 0ustar davisfacfunction c = cs_counts (A,mode) %#ok %CS_COUNTS column counts for sparse Cholesky factor L. % c = cs_counts(A) returns a vector of the column counts of L, for the % Cholesky factorization L*L' = A. That is, c = sum(spones(chol(A)')), % except the Cholesky factorization is not computed. % c = cs_counts(A), returns counts for cs_chol(A). % c = cs_counts(A,'col'), returns counts for cs_chol(A'*A). % c = cs_counts(A,'sym'), same as cs_counts(A). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; c = cs_counts (A) % full (sum (spones (chol (A)'))) % % See also SYMBFACT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_counts mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_dmperm_mex.c0000644001170100242450000000240110573562346020735 0ustar davisfac#include "cs_mex.h" /* cs_dmperm: maximum matching or Dulmage-Mendelsohn permutation. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; cs_dl *A, Amatrix ; cs_dld *D ; CS_INT m, n, *jmatch, iseed ; if (nargin < 1 || nargin > 2 || nargout > 6) { mexErrMsgTxt ("Usage: [p,q,r,s,cc,rr] = cs_dmperm (A,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 0 ; /* get seed */ iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ n = A->n ; m = A->m ; if (nargout <= 1) { jmatch = cs_dl_maxtrans (A, iseed) ; /* max. matching */ pargout [0] = cs_dl_mex_put_int (jmatch+m, n, 1, 0) ; /* return imatch */ cs_free (jmatch) ; } else { D = cs_dl_dmperm (A, iseed) ; /* Dulmage-Mendelsohn decomposition */ pargout [0] = cs_dl_mex_put_int (D->p, m, 1, 0) ; pargout [1] = cs_dl_mex_put_int (D->q, n, 1, 0) ; pargout [2] = cs_dl_mex_put_int (D->r, D->nb+1, 1, 0) ; pargout [3] = cs_dl_mex_put_int (D->s, D->nb+1, 1, 0) ; pargout [4] = cs_dl_mex_put_int (D->cc, 5, 1, 0) ; pargout [5] = cs_dl_mex_put_int (D->rr, 5, 1, 0) ; cs_dl_dfree (D) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_qleft.m0000644001170100242450000000174310620371664017727 0ustar davisfacfunction X = cs_qleft (V, Beta, p, Y) %CS_QLEFT apply Householder vectors on the left. % X = cs_qleft(V,Beta,p,Y) computes X = Hn*...*H2*H1*P*Y = Q'*Y where Q is % represented by the Householder vectors V, coefficients Beta, and % permutation p. p can be [], which denotes the identity permutation. % % Example: % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % [V,beta,p,R] = cs_qr (A) ; % QR factorization of A(p,:) % b1 = cs_qleft (V, beta, p, b) ; % x1 = R (1:n,1:n) \ b1 (1:n) ; % x2 = A\b ; % norm (x1-x2) % % See also CS_QR, CS_QRIGHT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m2 n] = size (V) ; [m ny] = size (Y) ; X = Y ; if (m2 > m) if (issparse (Y)) X = [X ; sparse(m2-m,ny)] ; else X = [X ; zeros(m2-m,ny)] ; end end if (~isempty (p)) X = X (p,:) ; end for k = 1:n X = X - V (:,k) * (Beta (k) * (V (:,k)' * X)) ; end SuiteSparse/CXSparse/MATLAB/CSparse/cs_qrsol_mex.c0000644001170100242450000000304110573562351020606 0ustar davisfac#include "cs_mex.h" /* cs_qrsol: solve least squares or underdetermined problem */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT k, order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_qrsol(A,b,order)") ; } order = (nargin < 3) ? 3 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x, *b ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ b = cs_cl_mex_get_double (A->m, pargin [1]) ; /* get b */ x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (cs_complex_t)) ; for (k = 0 ; k < A->m ; k++) x [k] = b [k] ; /* x = b */ cs_free (b) ; if (!cs_cl_qrsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("QR solve failed") ; } pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->m, pargin [1]) ; /* get b */ x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (double)) ; /* x = b */ for (k = 0 ; k < A->m ; k++) x [k] = b [k] ; if (!cs_dl_qrsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("QR solve failed") ; } cs_dl_mex_put_double (A->n, x, &(pargout [0])) ; /* return x */ cs_free (x) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_droptol_mex.c0000644001170100242450000000255410573562346021145 0ustar davisfac#include "cs_mex.h" /* cs_droptol: remove small entries from A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT j, k ; double tol ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_droptol(A,tol)") ; } tol = mxGetScalar (pargin [1]) ; /* get tol */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *C, *A ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_spalloc (A->m, A->n, A->nzmax, 1, 0) ; /* C = A */ for (j = 0 ; j <= A->n ; j++) C->p [j] = A->p [j] ; for (k = 0 ; k < A->nzmax ; k++) C->i [k] = A->i [k] ; for (k = 0 ; k < A->nzmax ; k++) C->x [k] = A->x [k] ; cs_cl_droptol (C, tol) ; /* drop from C */ pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *C, *A ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_spalloc (A->m, A->n, A->nzmax, 1, 0) ; /* C = A */ for (j = 0 ; j <= A->n ; j++) C->p [j] = A->p [j] ; for (k = 0 ; k < A->nzmax ; k++) C->i [k] = A->i [k] ; for (k = 0 ; k < A->nzmax ; k++) C->x [k] = A->x [k] ; cs_dl_droptol (C, tol) ; /* drop from C */ pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_lsolve_mex.c0000644001170100242450000000574210634322432020754 0ustar davisfac#include "cs_mex.h" /* cs_lsolve: x=L\b. L must be sparse and lower triangular. b must be a * full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on L and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, L, by modifying L->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of L->p * (see cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. * * Note that b cannot be sparse complex. This function does not support * sparse complex L and b because the sparse x=L\b only accesses part of the * matrix L. Converting L from a MATLAB complex matrix to a CXSparse complex * matrix requires all of L to be accessed, defeating the purpose of this * function. * * L can be sparse complex, but in that case b must be full real or complex, * not sparse. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT top, nz, p, *xi, n ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_lsolve(L,b)") ; } if (mxIsSparse (pargin [1])) { cs_dl Lmatrix, Bmatrix, *L, *B, *X ; double *x ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { mexErrMsgTxt ("sparse complex case not supported") ; } L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ;/* get L */ n = L->n ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b*/ cs_mex_check (0, n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* get workspace */ x = cs_dl_malloc (n, sizeof (double)) ; top = cs_dl_spsolve (L, B, 0, xi, x, NULL, 1) ; /* x = L\b */ X = cs_dl_spalloc (n, 1, n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_dl_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *L ; cs_complex_t *x ; L = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* get L */ n = L->n ; x = cs_cl_mex_get_double (n, pargin [1]) ; /* x = b */ cs_cl_lsolve (L, x) ; /* x = L\x */ cs_free (L->x) ; pargout [0] = cs_cl_mex_put_double (n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *L ; double *x, *b ; L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ n = L->n ; b = cs_dl_mex_get_double (n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (n, b, &(pargout [0])) ; /* x = b */ cs_dl_lsolve (L, x) ; /* x = L\x */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cspy.m0000644001170100242450000000477410620665733017117 0ustar davisfacfunction [s,M,H] = cspy (A,res) %CSPY plot a matrix in color. % cspy(A) plots a matrix, in color, with a default resolution of % 256-by-256. cspy(A,res) changes the resolution to res. Zero entries are % white. Entries with tiny absolute value are light orange. Entries with % large magnitude are black. Entries in the midrange (the median of the % log10 of the nonzero values, +/- one standard deviation) range from light % green to deep blue. With no inputs, the color legend of cspy is plotted. % [s,M,H] = cspy(A) returns the scale factor s, the image M, and colormap H. % % The matrix A can be full or sparse, and either numeric (double, single, % integer) or character type, and either complex or real. % % Example % A = delsq (numgrid ('L', 10)) ; % cspy (A) ; % % See also CS_DMSPY, SPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if nargin < 2 res = 256 ; end h = jet (64) ; h = h (64:-1:1,:) ; h = h (30:end,:) ; hmax = size (h,1) ; h (1,:) = [1 1 1] ; % white for zero h (2,:) = [1 .9 .5] ; % light orange for tiny entries h (hmax,:) = [0 0 0] ; % black for very large entries colormap (h) ; if (nargin == 0) image (1:hmax) ; title ('cspy color map') ; return end % convert complex, integers, and strings to real double if (~isreal (A) | ~isa (A, 'double') | ~issparse (A)) %#ok A = sparse (abs (double (A))) ; end [m1 n1] = size (A) ; if (m1 == 0 | n1 == 0) %#ok A (1,1) = 0 ; end [m1 n1] = size (A) ; S = cs_thumb (A,res) ; % get the thumbnail of the matrix [m n] = size (S) ; [i j x] = find (S) ; x = log10 (x) ; if (isempty (x)) S = zeros (size (S)) ; else med = median (x) ; sdev = std (x) ; big = med + sdev ; tiny = med - sdev ; imid = find (x > tiny & x < big) ; itiny = find (x <= tiny) ; ibig = find (x >= big) ; x (imid) = 1 + ceil ((hmax-2) * (x (imid) - tiny) / (big - tiny)) ; x (itiny) = 1 ; %#ok x (ibig) = hmax-1 ; %#ok S = full (1 + sparse (i,j,x,m,n)) ; % title (sprintf ('tiny: %-8.2g median: %-8.2g big: %-8.2g\n', ... % 10^tiny, 10^med, 10^big)) ; end % draw the matrix image (S) ; axis equal ; axis ([-1 n+1 -1 m+1]) ; axis off % draw a box around the whole matrix e = ceil (max (m1,n1) / max (m,n)) ; % scale factor hold on drawbox (1,m1+1,1,n1+1,'k',1,e) ; hold off % return results if (nargout > 0) s = e ; end if (nargout > 1) M = S ; % image end if (nargout > 2) H = h ; % colormap end SuiteSparse/CXSparse/MATLAB/CSparse/cs_qrsol.m0000644001170100242450000000160310620371671017745 0ustar davisfacfunction x = cs_qrsol (A,b,order) %#ok %CS_QRSOL solve a sparse least-squares problem. % x = cs_qrsol(A,b) solves the over-determined least squares problem to % find x that minimizes norm(A*x-b), where b is a full vector and % A is m-by-n with m >= n. If m < n, it solves the underdetermined system % Ax=b. A 3rd input argument specifies the ordering method to use % (0: natural, 3: amd(A'*A)). The default ordering is 3. % % Example: % Prob = UFget ('HB/well1033') ; A = Prob.A ; [m n] = size (A) ; % b = rand (m,1) ; % x1 = cs_qrsol (A,b) ; % x2 = A\b ; % norm (x1-x2) % % For this example, cs_qrsol is about 3 times faster than A\b in MATLAB 7.3. % % See also CS_QR, CS_AMD, CS_LUSOL, CS_CHOLSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_qrsol mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_chol.m0000644001170100242450000000141010620371611017520 0ustar davisfacfunction [L,p] = cs_chol (A,drop) %#ok %CS_CHOL sparse Cholesky factorization. % L = cs_chol(A) is the same as L = chol(A)', using triu(A). % [L,p] = cs_chol(A) first orders A with p=cs_amd(A), so that L*L' = A(p,p). % A second optional input argument controls whether or not numerically zero % entries are removed from L. cs_chol(A) and cs_chol(A,1) drop them; % cs_chol(A,0) keeps them. They must be kept for cs_updown to work properly. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; [L,p] = cs_chol (A) ; % cspy (A (p,p)) ; % cspy (L) ; % % See also CS_AMD, CS_UPDOWN, CHOL, AMD, SYMAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_chol mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_print_mex.c0000644001170100242450000000147110573562351020607 0ustar davisfac#include "cs_mex.h" /* cs_print: print the contents of a sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT brief ; if (nargout > 0 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: cs_print(A,brief)") ; } brief = (nargin < 2) ? 0 : mxGetScalar (pargin [1]) ; /* get brief */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ cs_cl_print (A, brief) ; /* print A */ cs_free (A->x) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;/* get A */ cs_print (A, brief) ; /* print A */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_dmsol.m0000644001170100242450000000220610620665615017727 0ustar davisfacfunction x = cs_dmsol (A,b) %CS_DMSOL x=A\b using the coarse Dulmage-Mendelsohn decomposition. % x = cs_dmsol(A,b) computes x=A\b where A may be rectangular and/or % structurally rank deficient, and b is a full vector. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; b = rand (size (A,1),1) ; % x = cs_dmsol (A,b) ; norm (A*x-b) % % See also CS_QRSOL, CS_LUSOL, CS_DMPERM, SPRANK, RANK. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; [p q r s cc rr] = cs_dmperm (A) ; C = A (p,q) ; b = b (p) ; x = zeros (n,1) ; if (rr(3) <= m & cc(4) <= n) %#ok x (cc(4):n) = cs_qrsol (C (rr(3):m, cc(4):n), b (rr(3):m)) ; b (1:rr(3)-1) = b (1:rr(3)-1) - C (1:rr(3)-1, cc(4):n) * x (cc(4):n) ; end if (rr(2) < rr (3) & cc(3) < cc(4)) %#ok x (cc(3):cc(4)-1) = ... cs_lusol (C (rr(2):rr(3)-1, cc(3):cc(4)-1), b (rr(2):rr(3)-1)) ; b (1:rr(2)-1) = ... b (1:rr(2)-1) - C (1:rr(2)-1, cc(3):cc(4)-1) * x (cc(3):cc(4)-1) ; end if (rr(2) > 1 & cc(3) > 1) %#ok x (1:cc(3)-1) = cs_qrsol (C (1:rr(2)-1, 1:cc(3)-1), b (1:rr(2)-1)) ; end x (q) = x ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_dmspy.m0000644001170100242450000000345410620371626017747 0ustar davisfacfunction [p,q,r,s,cc,rr] = cs_dmspy (A,res,seed) %CS_DMSPY plot the Dulmage-Mendelsohn decomposition of a matrix. % [p,q,r,s,cc,rr] = cs_dmspy(A) computes [p,q,r,s,cc,rr] = cs_dmperm(A), % does spy(A(p,q)), and then draws boxes around the coarse and fine % decompositions. A 2nd input argument (cs_dmspy(A,res)) changes the % resolution of the image to res-by-res (default resolution is 256). % If res is zero, spy is used instead of cspy. If the resolution is low, the % picture of the blocks in the figure can overlap. They do not actually % overlap in the matrix. With 3 arguments, cs_dmspy(A,res,seed), % cs_dmperm(A,seed) is used, where seed controls the randomized algorithm % used by cs_dmperm. % % Example: % Prob = UFget ('HB/arc130') ; cs_dmspy (Prob.A) ; % % See also CS_DMPERM, CS_DMSOL, DMPERM, SPRANK, SPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~issparse (A)) A = sparse (A) ; end if (nargin < 2) res = 256 ; end if (nargin < 3) seed = 0 ; end % Dulmage-Mendelsohn permutation [p1,q,r,s,cc,rr] = cs_dmperm (A,seed) ; if (nargout > 0) p = p1 ; end nb = length (r)-1 ; % plot the result S = A (p1,q) ; if (res == 0) spy (S) ; e = 1 ; else e = cspy (S,res) ; end hold on title (sprintf ( ... '%d-by-%d, sprank: %d, fine blocks: %d, coarse blocks: %d-by-%d\n', ... size (A), rr(4)-1, nb, length (find (diff (rr))), ... length (find (diff (cc))))) ; drawboxes (nb, e, r, s) ; [m n] = size (A) ; drawbox (1,m+1,1,n+1,'k',1,e) ; drawbox (rr(1), rr(2), cc(1), cc (2), 'r', 2, e) ; drawbox (rr(1), rr(2), cc(2), cc (3), 'r', 2, e) ; drawbox (rr(2), rr(3), cc(3), cc (4), 'k', 2, e) ; drawbox (rr(3), rr(4), cc(4), cc (5), 'r', 2, e) ; drawbox (rr(4), rr(5), cc(4), cc (5), 'r', 2, e) ; hold off SuiteSparse/CXSparse/MATLAB/CSparse/cs_esep.m0000644001170100242450000000120310620372560017533 0ustar davisfacfunction [a,b] = cs_esep (A) %CS_ESEP find an edge separator of a symmetric matrix A % [a,b] = cs_esep(A) finds a edge separator s that splits the graph of A % into two parts a and b of roughly equal size. The edge separator is the % set of entries in A(a,b). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % [a,b] = cs_esep (A) ; % cspy (A (a,b)) ; % % See also CS_NSEP, CS_SEP, CS_ND, SYMRCM. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~isreal (A)) A = spones (A) ; end p = symrcm (A) ; n2 = fix (size(A,1)/2) ; a = p (1:n2) ; b = p (n2+1:end) ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_thumb_mex.c0000644001170100242450000000340610573562353020574 0ustar davisfac#include "cs_mex.h" /* cs_thumb: convert a sparse matrix to a dense 2D thumbnail matrix of size * at most k-by-k. k defaults to 256. A helper mexFunction for cspy. */ #define INDEX(i,j,lda) ((i)+(j)*(lda)) #define ISNAN(x) ((x) != (x)) #ifdef DBL_MAX #define BIG_VALUE DBL_MAX #else #define BIG_VALUE 1.7e308 #endif void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT m, n, mn, m2, n2, k, s, j, ij, sj, si, p, *Ap, *Ai ; double aij, ax, az, *S, *Ax, *Az ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: S = cs_thumb(A,k)") ; } cs_mex_check (0, -1, -1, 0, 1, 1, pargin [0]) ; m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; mn = CS_MAX (m,n) ; k = (nargin == 1) ? 256 : mxGetScalar (pargin [1]) ; /* get k */ /* s = size of each submatrix; A(1:s,1:s) maps to S(1,1) */ s = (mn < k) ? 1 : (CS_INT) ceil ((double) mn / (double) k) ; m2 = (CS_INT) ceil ((double) m / (double) s) ; n2 = (CS_INT) ceil ((double) n / (double) s) ; /* create S */ pargout [0] = mxCreateDoubleMatrix (m2, n2, mxREAL) ; S = mxGetPr (pargout [0]) ; Ap = (CS_INT *) mxGetJc (pargin [0]) ; Ai = (CS_INT *) mxGetIr (pargin [0]) ; Ax = mxGetPr (pargin [0]) ; Az = (mxIsComplex (pargin [0])) ? mxGetPi (pargin [0]) : NULL ; for (j = 0 ; j < n ; j++) { sj = j/s ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { si = Ai [p] / s ; ij = INDEX (si,sj,m2) ; ax = Ax [p] ; az = Az ? Az [p] : 0 ; if (az == 0) { aij = fabs (ax) ; } else { aij = sqrt (ax*ax + az*az) ; } if (ISNAN (aij)) aij = BIG_VALUE ; aij = CS_MIN (BIG_VALUE, aij) ; S [ij] = CS_MAX (S [ij], aij) ; } } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_updown_mex.c0000644001170100242450000000612210634327243020762 0ustar davisfac#include "cs_mex.h" /* cs_updown: sparse Cholesky update/downdate (rank-1 or multiple rank) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, j, k, n, lnz, *parent, sigma = 1, cp [2], ok ; char sigma_string [20] ; if (nargout > 1 || nargin < 3 || nargin > 4) { mexErrMsgTxt ("Usage: L = cs_updown(L,C,parent,sigma)") ; } if (nargin > 3 && mxIsChar (pargin [3])) { mxGetString (pargin [3], sigma_string, 8) ; sigma = (sigma_string [0] == '-') ? (-1) : 1 ; } n = mxGetN (pargin [0]) ; parent = cs_dl_mex_get_int (n, pargin [2], &ignore, 0) ; /* get parent*/ if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *Lin, Cmatrix, *C, *L, Cvector, *Cvec ; /* get input L, and copy MATLAB complex to C complex type */ Lin = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* make a copy of L (this can take more work than updating L itself) */ lnz = Lin->p [n] ; L = cs_cl_spalloc (n, n, lnz, 0, 0) ; for (j = 0 ; j <= n ; j++) L->p [j] = Lin->p [j] ; for (k = 0 ; k < lnz ; k++) L->i [k] = Lin->i [k] ; /* complex values already copied into Lin->x, use shallow copy for L */ L->x = Lin->x ; cs_mex_check (0, n, -1, 0, 1, 1, pargin [1]) ; /* get C */ C = cs_cl_mex_get_sparse (&Cmatrix, 0, pargin [1]) ; /* do the update one column at a time */ Cvec = &Cvector ; Cvec->m = n ; Cvec->n = 1 ; Cvec->p = cp ; Cvec->nz = -1 ; cp [0] = 0 ; for (k = 0 ; k < C->n ; k++) { /* extract C(:,k) */ cp [1] = C->p [k+1] - C->p [k] ; Cvec->nzmax = cp [1] ; Cvec->i = C->i + C->p [k] ; Cvec->x = C->x + C->p [k] ; /* update/downdate */ ok = cs_cl_updown (L, sigma, Cvec, parent) ; if (!ok) mexErrMsgTxt ("matrix is not positive definite") ; } /* return new L */ pargout [0] = cs_cl_mex_put_sparse (&L) ; cs_free (C->x) ; /* free complex copy of C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *Lin, Cmatrix, *C, *L, Cvector, *Cvec ; /* get input L */ Lin = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* make a copy of L (this can take more work than updating L itself) */ lnz = Lin->p [n] ; L = cs_dl_spalloc (n, n, lnz, 1, 0) ; for (j = 0 ; j <= n ; j++) L->p [j] = Lin->p [j] ; for (k = 0 ; k < lnz ; k++) L->i [k] = Lin->i [k] ; for (k = 0 ; k < lnz ; k++) L->x [k] = Lin->x [k] ; cs_mex_check (0, n, -1, 0, 1, 1, pargin [1]) ; /* get C */ C = cs_dl_mex_get_sparse (&Cmatrix, 0, 1, pargin [1]) ; /* do the update one column at a time */ Cvec = &Cvector ; Cvec->m = n ; Cvec->n = 1 ; Cvec->p = cp ; Cvec->nz = -1 ; cp [0] = 0 ; for (k = 0 ; k < C->n ; k++) { /* extract C(:,k) */ cp [1] = C->p [k+1] - C->p [k] ; Cvec->nzmax = cp [1] ; Cvec->i = C->i + C->p [k] ; Cvec->x = C->x + C->p [k] ; /* update/downdate */ ok = cs_dl_updown (L, sigma, Cvec, parent) ; if (!ok) mexErrMsgTxt ("matrix is not positive definite") ; } /* return new L */ pargout [0] = cs_dl_mex_put_sparse (&L) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_make.m0000644001170100242450000000613110621037031017511 0ustar davisfacfunction [objfiles, timestamp] = cs_make (f, docomplex) %CS_MAKE compiles CXSparse for use in MATLAB. % Usage: % cs_make % [objfiles, timestamp] = cs_make (f, docomplex) % % With no input arguments, or with f=0, only those files needing to be % compiled are compiled (like the Unix/Linux/GNU "make" command, but not % requiring "make"). If f is a nonzero number, all files are compiled. % If f is a string, only that mexFunction is compiled. For example, % cs_make ('cs_add') just compiles the cs_add mexFunction. This option is % useful when developing a single new mexFunction. This function can only be % used if the current directory is CXSparse/MATLAB/CSparse. Returns a list of % the object files in CXSparse, and the latest modification time of any source % codes. % % NOTE: if your compiler does not support the ANSI C99 complex type (most % notably Microsoft Windows), the CXSparse mexFunctions will not support % complex sparse matrices. The complex case is not attempted if docomplex is % zero. % % To add a new function and its MATLAB mexFunction to CXSparse: % % (1) Create a source code file CXSparse/Source/cs_mynewfunc.c. % (2) Create a help file, CXSparse/MATLAB/CSparse/cs_mynewfunc.m. % This is very useful, but not strictly required. % (3) Add the prototype of cs_mynewfunc to CXSparse/Include/cs.h. % (4) Create its MATLAB mexFunction, CXSparse/MATLAB/cs_mynewfunc_mex.c. % (5) Edit cs_make.m, and add 'cs_mynewfunc' to the 'cs' and 'csm' lists. % (6) Type 'cs_make' in the CXSparse/MATLAB/CSparse directory. % If all goes well, your new function is ready for use in MATLAB. % % (7) Optionally add 'cs_mynewfunc' to CXSparse/Source/Makefile % and CXSparse/MATLAB/CSparse/Makefile, if you want to use the % Unix/Linux/GNU make command instead of cs_make.m. See where % 'cs_add' and 'cs_add_mex' appear in those files, and add % 'cs_mynewfunc' accordingly. % (8) Optionally add 'cs_mynewfunc' to Tcov/Makefile, and add additional % test code to cs_test.c, and add MATLAB test code to MATLAB/Test/*. % % Example: % cs_make % compile everything % cs_make ('cs_chol') ; % just compile cs_chol mexFunction % % See also MEX. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) f = 0 ; end if (nargin < 2) docomplex = 1 ; end try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) docomplex = 0 ; end if (docomplex == 0) % do not attempt to compile with complex matrices [objfiles, timestamp] = cs_make_helper (f, 0) ; else try % try with complex support [objfiles, timestamp] = cs_make_helper (f, 1) ; catch % oops - that failed, try without complex support fprintf ('retrying without complex matrix support\n') ; [objfiles, timestamp] = cs_make_helper (f, 0) ; end end if (f > 0) fprintf ('CXSparse successfully installed.\n') ; end SuiteSparse/CXSparse/MATLAB/CSparse/cs_dmperm.m0000644001170100242450000000621410620371623020071 0ustar davisfacfunction [p,q,r,s,cc,rr] = cs_dmperm (A,seed) %#ok %CS_DMPERM maximum matching or Dulmage-Mendelsohn permutation. % p = cs_dmperm(A) finds a maximum matching p such that p(j) = i if column j % is matched to row i, or 0 if column j is unmatched. If A is square and % full structural rank, p is a row permutation and A(p,:) has a zero-free % diagonal. The structural rank of A is sprank(A) = sum(p>0). % % [p,q,r,s,cc,rr] = cs_dmperm(A) finds the Dulmage-Mendelsohn decomposition % of A. p and q are permutation vectors. cc and rr are vectors of length 5. % C = A(p,q) is split into a 4-by-4 set of coarse blocks: % % A11 A12 A13 A14 % 0 0 A23 A24 % 0 0 0 A34 % 0 0 0 A44 % % where A12, A23, and A34 are square with zero-free diagonals. The columns of % A11 are the unmatched columns, and the rows of A44 are the unmatched rows. % Any of these blocks can be empty. In the "coarse" decomposition, the % (i,j)th block is C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1). In terms of a linear % system, [A11 A12] is the underdetermined part of the system (it is always % rectangular and with more columns and rows, or 0-by-0), A23 is the well- % determined part of the system (it is always square), and [A34 ; A44] is % the over-determined part of the system (it is always rectangular with more % rows than columns, or 0-by-0). % % The structural rank of A is sprank(A) = rr(4)-1, which is an upper bound on % the numerical rank of A. sprank(A) = rank(full(sprand(A))) with probability % 1 in exact arithmetic. % % The A23 submatrix is further subdivided into block upper triangular form % via the "fine" decomposition (the strongly-connected components of A23). % If A is square and structurally non-singular, A23 is the entire matrix. % % C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine % decomposition. The (1,1) block is the rectangular block [A11 A12], unless % this block is 0-by-0. The (b,b) block is the rectangular block [A34 ; A44], % unless this block is 0-by-0, where b = length(r)-1. All other blocks of the % form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are diagonal blocks of A23, and are % square with a zero-free diagonal. % % The matching algorithm used in cs_dmperm can take a very long time % in rare cases. This can be avoided by exploiting a randomized algorithm, % with cs_dmperm(A,seed). If seed=0, the non-randomized algorithm is used % (columns are considered in order 1:n). If seed=-1, columns are considered % in reverse order. Otherwise, the columns are considered in a random order, % using seed as the random number generator seed. Try cs_dmpmerm(A,1) or % cs_dmperm(A,rand), for a randomized order, for example. Seed defaults to 0. % % % Example: % Prob = UFget ('HB/west0479') ; A = Prob.A ; cspy (A) ; % p = cs_dmperm (A) ; % cspy (A (p,:)) ; % [p q r s cc rr] = cs_dmperm (A) ; % cspy (A (p,q)) ; % cs_dmspy (A) ; % % See also CS_DMSPY, CS_DMSOL, DMPERM, SPRANK, CS_RANDPERM, RAND % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_dmperm mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/README.txt0000644001170100242450000000007410571365512017443 0ustar davisfacMATLAB interface for CXSparse. See Contents.m for details. SuiteSparse/CXSparse/MATLAB/CSparse/cs_lusol_mex.c0000644001170100242450000000315710573562350020613 0ustar davisfac#include "cs_mex.h" /* cs_lusol: solve A*x=b using a sparse LU factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double tol ; CS_INT order ; if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: x = cs_lusol(A,b,order,tol)") ; } order = (nargin < 3) ? 2 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (nargin == 2) { tol = 1 ; /* normal partial pivoting */ } else if (nargin == 3) { tol = (order == 1) ? 0.001 : 1 ; /* tol = 0.001 for amd(A+A') */ } else { tol = mxGetScalar (pargin [3]) ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* x = b */ if (!cs_cl_lusol (order, A, x, tol)) /* x = A\x */ { mexErrMsgTxt ("failed (singular or out of memory)") ; } cs_cl_free (A->x) ; /* complex copy no longer needed */ pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ if (!cs_dl_lusol (order, A, x, tol)) /* x = A\x */ { mexErrMsgTxt ("failed (singular or out of memory)") ; } } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_randperm.m0000644001170100242450000000132010620371673020413 0ustar davisfacfunction p = cs_randperm (n, seed) %#ok %CS_RANDPERM random permutation. % p = cs_randperm (n) returns a repeatable random permutation of 1:n. % p = cs_randperm (n,seed) returns the random permutation using the given % seed for the random number generator (try cs_randperm (n,rand)), where % seed is not 0 or -1. Two special cases are not random permutations at all: % p=cs_randperm (n,0) is 1:n, and p=cs_randperm (n,-1) is n:-1:1. % This function does not change RAND's state. % % Example: % p = cs_randperm (10) % % See also CS_DMPERM, RAND, RANDPERM % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_randperm mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_nsep.m0000644001170100242450000000123110620371655017551 0ustar davisfacfunction [s,a,b] = cs_nsep (A) %CS_NSEP find a node separator of a symmetric matrix A. % [s,a,b] = cs_nsep(A) finds a node separator s that splits the graph of A % into two parts a and b of roughly equal size. If A is unsymmetric, use % cs_nsep(A|A'). The permutation p = [a b s] is a one-level dissection of A. % % Example: % A = delsq (numgrid ('L', 10)) ; % smaller version as used in 'bench' % [s a b] = cs_nsep (A) ; p = [a b s] ; % cspy (A (p,p)) ; % % See also CS_SEP, CS_ESEP, CS_ND. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [a b] = cs_esep (A) ; [s a b] = cs_sep (A, a, b) ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_etree_mex.c0000644001170100242450000000164410573562347020566 0ustar davisfac#include "cs_mex.h" /* cs_etree: elimination tree of A or A'*A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT n, *parent, *post ; int ata ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [parent,post] = cs_etree(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_dl_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_dl_etree (A, ata) ; /* compute etree */ if (nargout > 1) { post = cs_dl_post (parent, n) ; /* postorder the etree*/ pargout [1] = cs_dl_mex_put_int (post, n, 1, 1) ; /* return post */ } pargout [0] = cs_dl_mex_put_int (parent, n, 1, 1) ; /* return parent */ } SuiteSparse/CXSparse/MATLAB/CSparse/cs_scc2.m0000644001170100242450000000354710620666137017454 0ustar davisfacfunction [p, q, r, s] = cs_scc2 (A, bipartite) %CS_SCC2 cs_scc, or connected components of a bipartite graph. % [p,q,r,s] = cs_scc2(A) finds a permutation p so that A(p,q) is permuted into % block upper triangular form (if A is square). In this case, r=s, p=q and % the kth diagonal block is given by A (t,t) where t = r(k):r(k)+1. % The diagonal of A is ignored. Each block is one strongly connected % component of A. % % If A is not square (or for [p,q,r,s] = cs_scc2(A,1)), then the connected % components of the bipartite graph of A are found. A(p,q) is permuted into % block diagonal form, where the diagonal blocks are rectangular. The kth % block is given by A(r(k):r(k+1)-1,s(k):s(k+1)-1). A can be rectangular. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [p q r s] = cs_scc2 (A) ; % cspy (A (p,q)) ; % Prob = UFget ('HB/wm1') ; A = Prob.A ; [p q r s] = cs_scc2 (A) ; % cspy (A (p,q)) ; % % See also CS_DMPERM, DMPERM, CS_SCC, CCSPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; if (nargin < 2) bipartite = 0 ; end if (m ~= n | bipartite) %#ok % find the connected components of [I A ; A' 0] S = spaugment (A) ; [psym,rsym] = cs_scc (S) ; p = psym (find (psym <= m)) ; %#ok q = psym (find (psym > m)) - m ; %#ok nb = length (rsym) - 1 ; r = zeros (1,nb+1) ; s = zeros (1,nb+1) ; krow = 1 ; kcol = 1 ; for k = 1:nb % find the rows and columns in the kth component r (k) = krow ; s (k) = kcol ; ksym = psym (rsym (k):rsym (k+1)-1) ; krow = krow + length (find (ksym <= m)) ; kcol = kcol + length (find (ksym > m)) ; end r (nb+1) = m+1 ; s (nb+1) = n+1 ; else % find the strongly connected components of A [p,r] = cs_scc (A) ; q = p ; s = r ; end SuiteSparse/CXSparse/MATLAB/CSparse/cs_sparse_mex.c0000644001170100242450000000346110573562352020752 0ustar davisfac#include "cs_mex.h" /* cs_sparse: convert triplet form into compress-column form sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse(i,j,x)") ; } if (mxIsComplex (pargin [2])) { #ifndef NCOMPLEX cs_cl *A, *C, *T, Tmatrix ; T = &Tmatrix ; /* get i,j,x and copy to triplet form */ T->nz = mxGetM (pargin [0]) ; T->p = cs_dl_mex_get_int (T->nz, pargin [0], &(T->n), 1) ; T->i = cs_dl_mex_get_int (T->nz, pargin [1], &(T->m), 1) ; cs_mex_check (1, T->nz, 1, 0, 0, 1, pargin [2]) ; T->x = cs_cl_mex_get_double (T->nz, pargin [2]) ; T->nzmax = T->nz ; C = cs_cl_compress (T) ; /* create sparse matrix C */ cs_cl_dupl (C) ; /* remove duplicates from C */ cs_cl_dropzeros (C) ; /* remove zeros from C */ A = cs_cl_transpose (C, -1) ; /* A=C.' */ cs_cl_spfree (C) ; pargout [0] = cs_cl_mex_put_sparse (&A) ; /* return A */ cs_free (T->p) ; cs_free (T->i) ; cs_free (T->x) ; /* free copy of complex values*/ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, *C, *T, Tmatrix ; T = &Tmatrix ; /* get i,j,x and copy to triplet form */ T->nz = mxGetM (pargin [0]) ; T->p = cs_dl_mex_get_int (T->nz, pargin [0], &(T->n), 1) ; T->i = cs_dl_mex_get_int (T->nz, pargin [1], &(T->m), 1) ; cs_mex_check (1, T->nz, 1, 0, 0, 1, pargin [2]) ; T->x = mxGetPr (pargin [2]) ; T->nzmax = T->nz ; C = cs_dl_compress (T) ; /* create sparse matrix C */ cs_dl_dupl (C) ; /* remove duplicates from C */ cs_dl_dropzeros (C) ; /* remove zeros from C */ A = cs_dl_transpose (C, 1) ; /* A=C' */ cs_dl_spfree (C) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; /* return A */ cs_free (T->p) ; cs_free (T->i) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_usolve.m0000644001170100242450000000145410620371721020122 0ustar davisfacfunction x = cs_usolve (U,b) %#ok %CS_USOLVE solve a sparse upper triangular system U*x=b. % x = cs_usolve(U,b) computes x = U\b, U must be lower triangular with a % zero-free diagonal. b must be a column vector. x is full if b is full. % If b is sparse, x is sparse but nonzero pattern of x is NOT sorted (it is % returned in topological order). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size (A,1) ; % b = rand (n,1); % [L U p q] = cs_lu (A) ; % x = cs_usolve (U, cs_lsolve (L, b(p))) ; % x = U \ (L \ b(p)) ; % x (q) = x ; % norm (A*x-b) % % See also CS_LSOLVE, CS_LTSOLVE, CS_UTSOLVE, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_usolve mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_droptol.m0000644001170100242450000000104210620371627020266 0ustar davisfacfunction C = cs_droptol (A, tol) %#ok %CS_DROPTOL remove small entries from a sparse matrix. % C = cs_droptol(A,tol) removes entries from A of magnitude less than or % equal to tol. Same as A = A .* (abs (A) >= tol). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; % cspy (abs (A) >= 1e-10) ; % C = cs_droptol (A, 1e-10) ; % cspy (C) ; % % See also: RELOP, ABS % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_droptol mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_etree.m0000644001170100242450000000130610620371633017707 0ustar davisfacfunction [parent, post] = cs_etree (A, mode) %#ok %CS_ETREE elimination tree of A or A'*A. % parent = cs_etree (A) returns the elimination tree of A. % parent = cs_etree (A,'col') returns the elimination tree of A'*A. % parent = cs_etree (A,'sym') is the same as cs_etree(A). % For the symmetric case (cs_etree(A)), only triu(A) is used. % % [parent,post] = cs_etree(...) also returns a postorder of the tree. % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % parent = cs_etree (A) ; treeplot (parent) ; % % See also ETREE, TREEPLOT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_etree mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_add_mex.c0000644001170100242450000000403210573562344020201 0ustar davisfac#include "cs_mex.h" /* cs_add: sparse matrix addition */ #ifndef NCOMPLEX static cs_complex_t get_complex (const mxArray *a) { cs_complex_t s = mxGetScalar (a) ; if (mxIsComplex (a)) { double *z = mxGetPi (a) ; s += I * z [0] ; } return (s) ; } #endif void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: C = cs_add(A,B,alpha,beta)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]) || (nargin > 2 && mxIsComplex (pargin [2])) || (nargin > 3 && mxIsComplex (pargin [3]))) { #ifndef NCOMPLEX cs_complex_t alpha, beta ; cs_cl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ B = cs_cl_mex_get_sparse (&Bmatrix, 0, pargin [1]) ; /* get B */ alpha = (nargin < 3) ? 1 : get_complex (pargin [2]) ; /* get alpha */ beta = (nargin < 4) ? 1 : get_complex (pargin [3]) ; /* get beta */ C = cs_cl_add (A,B,alpha,beta) ; /* C = alpha*A + beta *B */ cs_cl_dropzeros (C) ; /* drop zeros */ D = cs_cl_transpose (C, 1) ; /* sort result via double transpose */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { double alpha, beta ; cs_dl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; /* get B */ alpha = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; /* get alpha */ beta = (nargin < 4) ? 1 : mxGetScalar (pargin [3]) ; /* get beta */ C = cs_dl_add (A,B,alpha,beta) ; /* C = alpha*A + beta *B */ cs_dl_dropzeros (C) ; /* drop zeros */ D = cs_dl_transpose (C, 1) ; /* sort result via double transpose */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_ltsolve_mex.c0000644001170100242450000000200610634327040021126 0ustar davisfac#include "cs_mex.h" /* cs_ltsolve: solve an upper triangular system L'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ltsolve(L,b)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *L ; cs_complex_t *x ; L = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* get L */ x = cs_cl_mex_get_double (L->n, pargin [1]) ; /* x = b */ cs_cl_ltsolve (L, x) ; /* x = L'\x */ cs_free (L->x) ; pargout [0] = cs_cl_mex_put_double (L->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *L ; double *x, *b ; L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ b = cs_dl_mex_get_double (L->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (L->n, b, &(pargout [0])) ; /* x = b */ cs_dl_ltsolve (L, x) ; /* x = L'\x */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_must_compile.m0000644001170100242450000000121010620705276021301 0ustar davisfacfunction [s, t, tobj] = cs_must_compile (srcdir, f, suffix, obj, hfile, force) %CS_MUST_COMPILE return 1 if source code f must be compiled, 0 otherwise % Used by cs_make, and MATLAB/Test/cs_test_make.m. % % Example: % none, not meant for end users. % See also: CS_MAKE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse dobj = dir ([f obj]) ; if (force | isempty (dobj)) %#ok s = 1 ; t = Inf ; tobj = -1 ; return end dsrc = dir ([srcdir f suffix '.c']) ; dh = dir (hfile) ; t = max (datenum (dsrc.date), datenum (dh.date)) ; tobj = datenum (dobj.date) ; s = (tobj < t) ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_lusol.m0000644001170100242450000000165210620371644017747 0ustar davisfacfunction x = cs_lusol (A,b,order,tol) %#ok %CS_LUSOL solve Ax=b using LU factorization. % x = cs_lusol(A,b) computes x = A\b, where A is sparse and square, and b is a % full vector. The ordering cs_amd(A,2) is used. % % x = cs_lusol(A,b,1) also computes x = A\b, but uses the cs_amd(A) ordering % with diagonal preference (tol=0.001). % % x = cs_lusol(A,b,order,tol) allows both the ordering and tolerance to be % defined. The ordering defaults to 1, and tol defaults to 1. % ordering: 0: natural, 1: amd(A+A'), 2: amd(S'*S) where S=A except with no % dense rows, 3: amd(A'*A). % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; n = size(A,1) ; % b = rand (n,1) ; x = cs_lusol (A,b) ; norm (A*x-b) % % See also CS_LU, CS_AMD, CS_CHOLSOL, CS_QRSOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_lusol mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_gaxpy.m0000644001170100242450000000074410620371634017741 0ustar davisfacfunction z = cs_gaxpy (A,x,y) %#ok %CS_GAXPY sparse matrix times vector. % z = cs_gaxpy(A,x,y) computes z = A*x+y where x and y are full vectors. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [m n] = size (A) ; % x = rand (m,1) ; y = rand (n,1) ; % z = cs_gaxpy (A, x, y) ; % % See also PLUS, MTIMES. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_gaxpy mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_symperm_mex.c0000644001170100242450000000261010634322614021135 0ustar davisfac#include "cs_mex.h" /* cs_symperm: symmetric permutation of a symmetric sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, n, *P, *Pinv ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_symperm(A,p)") ; } if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; n = A->n ; P = cs_dl_mex_get_int (n, pargin [1], &ignore, 1) ; /* get P */ Pinv = cs_cl_pinv (P, n) ; /* P=Pinv' */ C = cs_cl_symperm (A, Pinv, 1) ; /* C = A(p,p) */ D = cs_cl_transpose (C, 1) ; /* sort C */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ cs_free (P) ; cs_free (Pinv) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; n = A->n ; P = cs_dl_mex_get_int (n, pargin [1], &ignore, 1) ; /* get P */ Pinv = cs_dl_pinv (P, n) ; /* P=Pinv' */ C = cs_dl_symperm (A, Pinv, 1) ; /* C = A(p,p) */ D = cs_dl_transpose (C, 1) ; /* sort C */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ cs_free (P) ; cs_free (Pinv) ; } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_multiply.m0000644001170100242450000000100410620371650020454 0ustar davisfacfunction C = cs_multiply (A,B) %#ok %CS_MULTIPLY sparse matrix multiply. % C = cs_multiply(A,B) computes C = A*B. % % Example: % Prob1 = UFget ('HB/ibm32') ; A = Prob1.A ; % Prob2 = UFget ('Hamrle/Hamrle1') ; B = Prob2.A ; % C = cs_multiply (A,B) ; % D = A*B ; % same as C % % See also CS_GAXPY, CS_ADD, MTIMES. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_mult mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_add.m0000644001170100242450000000111710620371606017333 0ustar davisfacfunction C = cs_add (A,B,alpha,beta) %#ok %CS_ADD sparse matrix addition. % C = cs_add(A,B,alpha,beta) computes C = alpha*A+beta*B, % where alpha and beta default to 1 if not present. % % Example: % Prob1 = UFget ('HB/ibm32') ; A = Prob1.A ; % Prob2 = UFget ('Hamrle/Hamrle1') ; B = Prob2.A ; % C = cs_add (A,B) ; % D = A+B ; % same as C % % See also CS_MULTIPLY, CS_GAXPY, PLUS, MINUS. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_add mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_amd.m0000644001170100242450000000203010620371607017340 0ustar davisfacfunction p = cs_amd (A,order) %#ok %CS_AMD approximate minimum degree ordering. % p = cs_amd(A) finds a minimum degree ordering of A+A' % p = cs_amd(A,order): % order = 1: same as cs_amd(A) % order = 2: minimum degree ordering of S'*S where S = A except that % "dense" rows of A are removed from S (a dense row has % 10*sqrt(n) or more entries where n = size(A,2)). Similar % to p = colamd(A), except that colamd does not form A'*A % explicitly. % order = 3: minimum degree ordering of A'*A. Similar to colamd(A,[n m]) % where [m n] = size(A), except that colamd does not form A'*A % explicitly. % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % p = cs_amd (A) ; % nnz (chol (A)) % nnz (chol (A (p,p))) % % See also AMD, COLAMD, SYMAMD. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_amd mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_mex.c0000644001170100242450000001451210634322255017366 0ustar davisfac#include "cs_mex.h" /* check MATLAB input argument */ void cs_mex_check (CS_INT nel, CS_INT m, CS_INT n, int square, int sparse, int values, const mxArray *A) { CS_INT nnel, mm = mxGetM (A), nn = mxGetN (A) ; #ifdef NCOMPLEX if (values) { if (mxIsComplex (A)) mexErrMsgTxt ("complex matrices not supported") ; } #endif if (sparse && !mxIsSparse (A)) mexErrMsgTxt ("matrix must be sparse") ; if (!sparse) { if (mxIsSparse (A)) mexErrMsgTxt ("matrix must be full") ; if (values && !mxIsDouble (A)) mexErrMsgTxt ("matrix must be double") ; } if (nel) { /* check number of elements */ nnel = mxGetNumberOfElements (A) ; if (m >= 0 && n >= 0 && m*n != nnel) mexErrMsgTxt ("wrong length") ; } else { /* check row and/or column dimensions */ if (m >= 0 && m != mm) mexErrMsgTxt ("wrong dimension") ; if (n >= 0 && n != nn) mexErrMsgTxt ("wrong dimension") ; } if (square && mm != nn) mexErrMsgTxt ("matrix must be square") ; } /* get a real (or pattern) MATLAB sparse matrix and convert to cs_dl */ cs_dl *cs_dl_mex_get_sparse (cs_dl *A, int square, int values, const mxArray *Amatlab) { cs_mex_check (0, -1, -1, square, 1, values, Amatlab) ; A->m = mxGetM (Amatlab) ; A->n = mxGetN (Amatlab) ; A->p = (CS_INT *) mxGetJc (Amatlab) ; A->i = (CS_INT *) mxGetIr (Amatlab) ; A->x = values ? mxGetPr (Amatlab) : NULL ; A->nzmax = mxGetNzmax (Amatlab) ; A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */ return (A) ; } /* return a real sparse matrix to MATLAB */ mxArray *cs_dl_mex_put_sparse (cs_dl **Ahandle) { cs_dl *A ; mxArray *Amatlab ; A = *Ahandle ; if (!A) mexErrMsgTxt ("failed") ; Amatlab = mxCreateSparse (0, 0, 0, mxREAL) ; mxSetM (Amatlab, A->m) ; mxSetN (Amatlab, A->n) ; mxSetNzmax (Amatlab, A->nzmax) ; cs_free (mxGetJc (Amatlab)) ; cs_free (mxGetIr (Amatlab)) ; cs_free (mxGetPr (Amatlab)) ; mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */ mxSetIr (Amatlab, (void *) (A->i)) ; mxSetPr (Amatlab, A->x) ; cs_free (A) ; /* frees A struct only, not A->p, etc */ *Ahandle = NULL ; return (Amatlab) ; } /* get a real MATLAB dense column vector */ double *cs_dl_mex_get_double (CS_INT n, const mxArray *X) { cs_mex_check (0, n, 1, 0, 0, 1, X) ; return (mxGetPr (X)) ; } /* return a double vector to MATLAB */ double *cs_dl_mex_put_double (CS_INT n, const double *b, mxArray **X) { double *x ; CS_INT k ; *X = mxCreateDoubleMatrix (n, 1, mxREAL) ; /* create x */ x = mxGetPr (*X) ; for (k = 0 ; k < n ; k++) x [k] = b [k] ; /* copy x = b */ return (x) ; } /* get a MATLAB flint array and convert to CS_INT */ CS_INT *cs_dl_mex_get_int (CS_INT n, const mxArray *Imatlab, CS_INT *imax, int lo) { double *p ; CS_INT i, k, *C = cs_dl_malloc (n, sizeof (CS_INT)) ; cs_mex_check (1, n, 1, 0, 0, 1, Imatlab) ; if (mxIsComplex (Imatlab)) { mexErrMsgTxt ("integer input cannot be complex") ; } p = mxGetPr (Imatlab) ; *imax = 0 ; for (k = 0 ; k < n ; k++) { i = p [k] ; C [k] = i - 1 ; if (i < lo) mexErrMsgTxt ("index out of bounds") ; *imax = CS_MAX (*imax, i) ; } return (C) ; } /* return an CS_INT array to MATLAB as a flint row vector */ mxArray *cs_dl_mex_put_int (CS_INT *p, CS_INT n, CS_INT offset, int do_free) { mxArray *X = mxCreateDoubleMatrix (1, n, mxREAL) ; double *x = mxGetPr (X) ; CS_INT k ; for (k = 0 ; k < n ; k++) x [k] = (p ? p [k] : k) + offset ; if (do_free) cs_free (p) ; return (X) ; } #ifndef NCOMPLEX /* copy a MATLAB real or complex vector into a cs_cl complex vector */ static cs_complex_t *cs_cl_get_vector (CS_INT n, CS_INT size, const mxArray *Xmatlab) { CS_INT p ; double *X, *Z ; cs_complex_t *Y ; X = mxGetPr (Xmatlab) ; Z = (mxIsComplex (Xmatlab)) ? mxGetPi (Xmatlab) : NULL ; Y = cs_dl_malloc (size, sizeof (cs_complex_t)) ; for (p = 0 ; p < n ; p++) { Y [p] = X [p] + I * (Z ? Z [p] : 0) ; } return (Y) ; } /* get a real or complex MATLAB sparse matrix and convert to cs_cl */ cs_cl *cs_cl_mex_get_sparse (cs_cl *A, int square, const mxArray *Amatlab) { cs_mex_check (0, -1, -1, square, 1, 1, Amatlab) ; A->m = mxGetM (Amatlab) ; A->n = mxGetN (Amatlab) ; A->p = (CS_INT *) mxGetJc (Amatlab) ; A->i = (CS_INT *) mxGetIr (Amatlab) ; A->nzmax = mxGetNzmax (Amatlab) ; A->x = cs_cl_get_vector (A->p [A->n], A->nzmax, Amatlab) ; A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */ return (A) ; } /* return a complex sparse matrix to MATLAB */ mxArray *cs_cl_mex_put_sparse (cs_cl **Ahandle) { cs_cl *A ; double *x, *z ; mxArray *Amatlab ; CS_INT k ; A = *Ahandle ; if (!A) mexErrMsgTxt ("failed") ; Amatlab = mxCreateSparse (0, 0, 0, mxCOMPLEX) ; mxSetM (Amatlab, A->m) ; mxSetN (Amatlab, A->n) ; mxSetNzmax (Amatlab, A->nzmax) ; cs_cl_free (mxGetJc (Amatlab)) ; cs_cl_free (mxGetIr (Amatlab)) ; cs_cl_free (mxGetPr (Amatlab)) ; cs_cl_free (mxGetPi (Amatlab)) ; mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */ mxSetIr (Amatlab, (void *) (A->i)) ; x = cs_dl_malloc (A->nzmax, sizeof (double)) ; z = cs_dl_malloc (A->nzmax, sizeof (double)) ; for (k = 0 ; k < A->nzmax ; k++) { x [k] = creal (A->x [k]) ; /* copy and split numerical values */ z [k] = cimag (A->x [k]) ; } cs_cl_free (A->x) ; /* free copy of complex values */ mxSetPr (Amatlab, x) ; mxSetPi (Amatlab, z) ; cs_cl_free (A) ; /* frees A struct only, not A->p, etc */ *Ahandle = NULL ; return (Amatlab) ; } /* get a real or complex MATLAB dense column vector, and copy to cs_complex_t */ cs_complex_t *cs_cl_mex_get_double (CS_INT n, const mxArray *X) { cs_mex_check (0, n, 1, 0, 0, 1, X) ; return (cs_cl_get_vector (n, n, X)) ; } /* copy a complex vector back to MATLAB and free it */ mxArray *cs_cl_mex_put_double (CS_INT n, cs_complex_t *b) { double *x, *z ; mxArray *X ; CS_INT k ; X = mxCreateDoubleMatrix (n, 1, mxCOMPLEX) ; /* create x */ x = mxGetPr (X) ; z = mxGetPi (X) ; for (k = 0 ; k < n ; k++) { x [k] = creal (b [k]) ; /* copy x = b */ z [k] = cimag (b [k]) ; } cs_cl_free (b) ; return (X) ; } #endif SuiteSparse/CXSparse/MATLAB/CSparse/cs_mex.h0000644001170100242450000000153510573562554017406 0ustar davisfac#include "cs.h" #include "mex.h" void cs_mex_check (CS_INT nel, CS_INT m, CS_INT n, int square, int sparse, int values, const mxArray *A) ; CS_INT *cs_dl_mex_get_int (CS_INT n, const mxArray *Imatlab, CS_INT *imax, int lo); mxArray *cs_dl_mex_put_int (CS_INT *p, CS_INT n, CS_INT offset, int do_free) ; double *cs_dl_mex_get_double (CS_INT n, const mxArray *X) ; cs_dl *cs_dl_mex_get_sparse (cs_dl *A, int square, int values, const mxArray *Amatlab) ; double *cs_dl_mex_put_double (CS_INT n, const double *b, mxArray **X) ; mxArray *cs_dl_mex_put_sparse (cs_dl **A) ; #ifndef NCOMPLEX cs_complex_t *cs_cl_mex_get_double (CS_INT n, const mxArray *X) ; cs_cl *cs_cl_mex_get_sparse (cs_cl *A, int square, const mxArray *Amatlab) ; mxArray *cs_cl_mex_put_double (CS_INT n, cs_complex_t *b) ; mxArray *cs_cl_mex_put_sparse (cs_cl **Ahandle) ; #endif SuiteSparse/CXSparse/MATLAB/CSparse/cs_scc.m0000644001170100242450000000123410620371677017363 0ustar davisfacfunction [p,r] = cs_scc (A) %#ok %CS_SCC strongly-connected components of a square sparse matrix. % [p,r] = cs_scc(A) finds a permutation p so that A(p,p) is permuted into % block upper triangular form. The diagonal of A is ignored. The kth block % is given by A (s,s) where s = r(k):r(k+1)-1. A must be square. % For bipartite or rectangular graphs, use cs_scc2. % % Example: % Prob = UFget ('HB/arc130') ; A = Prob.A ; [p r] = cs_scc (A) ; % cspy (A (p,p)) ; % % See also CS_DMPERM, DMPERM, CS_SCC2. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_scc mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_sep.m0000644001170100242450000000147410620371701017374 0ustar davisfacfunction [s,as,bs] = cs_sep (A,a,b) %CS_SEP convert an edge separator into a node separator. % [s,as,bs] = cs_sep (A,a,b) converts an edge separator into a node separator. % [a b] is a partition of 1:n, thus the edges in A(a,b) are an edge separator % of A. s is the node separator, consisting of a node cover of the edges of % A(a,b). as and bs are the sets a and b with s removed. % % Example: % type cs_nsep ; % to see a simple example of use in cs_nsep.m % % See also CS_DMPERM, CS_NSEP, CS_ESEP, CS_ND. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse [p q r s cc rr] = cs_dmperm (A (a,b)) ; s = [(a (p (1:rr(2)-1))) (b (q (cc(3):(cc(5)-1))))] ; w = ones (1, size (A,1)) ; w (s) = 0 ; as = a (find (w (a))) ; %#ok bs = b (find (w (b))) ; %#ok SuiteSparse/CXSparse/MATLAB/CSparse/cs_sqr.m0000644001170100242450000000206710620371704017414 0ustar davisfacfunction [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr (A) %#ok %CS_SQR symbolic sparse QR factorization. % [vnz,rnz,parent,c,leftmost,p] = cs_sqr(A): symbolic QR of A(p,:). % [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A) computes the symbolic QR % factorization of A(p,q). The fill-reducing ordering q is found via % q = cs_amd(A,3). % % vnz is the number of entries in the matrix of Householder vectors, V. % rnz is the number of entries in R. parent is elimination tree. % c(i) is the number of entries in R(i,:). leftmost(i) = min(find(A(i,q))). % p is the row permutation used to ensure R has a symbolically zero-free % diagonal (it can be larger than m if A is structurally rank deficient). % q is the fill-reducing ordering, if requested. % % Example: % Prob = UFget ('HB/ibm32') ; A = Prob.A ; % [vnz, rnz, parent, c, leftmost, p, q] = cs_sqr (A) ; % cspy (A (p,q)) ; % % See also CS_AMD, CS_QR. % % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sqr mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/ccspy.m0000644001170100242450000000333710622674743017257 0ustar davisfacfunction [p, q, r, s] = ccspy (A, bipartite, res) %CCSPY plot the connected components of a matrix. % % Example: % [p, q, r, s] = ccspy (A, bipartite, res) % % If A is square, [p,q,r,s] = ccspy(A) finds a permutation p so that A(p,q) % is permuted into block upper triangular form. In this case, r=s, p=q and % the kth diagonal block is given by A (t,t) where t = r(k):r(k+1)-1. % The diagonal of A is ignored. % % If A is not square (or for [p,q,r,s] = ccspy(A,1)), then the connected % components of the bipartite graph of A are found. A(p,q) is permuted into % block diagonal form, where the diagonal blocks are rectangular. The kth % block is given by A(r(k):r(k+1)-1,s(k):s(k+1)-1). A can be rectangular. % % It then plots the result via cspy, drawing a greenbox around each component. % A 3rd input argument (res) controls the resolution (see cspy for a % description of the res parameter). % % See also CSPY, CS_DMPERM, DMPERM, CS_SCC, CS_SCC2, CS_DMSPY. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~issparse (A)) A = sparse (A) ; end [m n] = size (A) ; if (nargin < 3) res = 256 ; end if (nargin < 2) bipartite = [ ] ; end if (isempty (bipartite)) bipartite = (m ~= n) ; end % find the strongly connected components [p1 q r s] = cs_scc2 (A, bipartite) ; if (nargout > 0) p = p1 ; end nb = length (r)-1 ; % plot the result S = A (p1,q) ; if (res == 0) spy (S) ; e = 1 ; else e = cspy (S,res) ; end hold on title (sprintf ('%d-by-%d, strongly connected commponents: %d\n', m, n, nb)) ; if (~bipartite) plot ([.5 .5 n+.5 n+.5], [.5 .5 n+.5 n+.5], 'r') ; end drawboxes (nb, e, r, s) ; drawbox (1,m+1,1,n+1,'k',1,e) ; hold off SuiteSparse/CXSparse/MATLAB/CSparse/cs_utsolve_mex.c0000644001170100242450000000200510634322660021141 0ustar davisfac#include "cs_mex.h" /* cs_utsolve: solve a lower triangular system U'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_utsolve(U,b)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Umatrix, *U ; cs_complex_t *x ; U = cs_cl_mex_get_sparse (&Umatrix, 1, pargin [0]) ; /* get U */ x = cs_cl_mex_get_double (U->n, pargin [1]) ; /* x = b */ cs_cl_utsolve (U, x) ; /* x = U'\x */ cs_free (U->x) ; pargout [0] = cs_cl_mex_put_double (U->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Umatrix, *U ; double *x, *b ; U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ b = cs_dl_mex_get_double (U->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (U->n, b, &(pargout [0])) ; /* x = b */ cs_dl_utsolve (U, x) ; /* x = U'\x */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_randperm_mex.c0000644001170100242450000000165110573562351021263 0ustar davisfac#include "cs_mex.h" /* cs_randperm: random permutation. p=cs_randperm(n,0) is 1:n, * p=cs_randperm(n,-1) is n:-1:1. p = cs_randperm (n,seed) is a random * permutation using the given seed (where seed is not 0 or -1). * seed defaults to 1. A single seed always gives a repeatable permutation. * Use p = cs_randperm(n,rand) to get a permutation that varies with each use. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; CS_INT iseed, n, *p ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_randperm(n,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; n = mxGetScalar (pargin [0]) ; n = CS_MAX (n, 0) ; p = cs_dl_randperm (n, iseed) ; pargout [0] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } SuiteSparse/CXSparse/MATLAB/CSparse/cs_sparse.m0000644001170100242450000000105010620371702020071 0ustar davisfacfunction A = cs_sparse (i,j,x) %#ok %CS_SPARSE convert a triplet form into a sparse matrix. % A = cs_sparse(i,j,x) is identical to A = sparse(i,j,x), except that x must % be real, and the length of i, j, and x must be the same. % % Example: % Prob = UFget ('HB/arc130') ; S = Prob.A ; % [i j x] = find (S) ; % A = cs_sparse (i,j,x) ; % S-A % % See also FIND, SPARSE, SPCONVERT. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_sparse mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_usolve_mex.c0000644001170100242450000000574210634322644020772 0ustar davisfac#include "cs_mex.h" /* cs_usolve: x=U\b. U must be sparse and upper triangular. b must be a * full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on U and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, U, by modifying U->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of U->p * (see cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. * * Note that b cannot be sparse complex. This function does not support * sparse complex U and b because the sparse x=U\b only accesses part of the * matrix U. Converting U from a MATLAB complex matrix to a CXSparse complex * matrix requires all of U to be accessed, defeating the purpose of this * function. * * U can be sparse complex, but in that case b must be full real or complex, * not sparse. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT top, nz, p, *xi, n ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_usolve(U,b)") ; } if (mxIsSparse (pargin [1])) { cs_dl Umatrix, Bmatrix, *U, *B, *X ; double *x ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { mexErrMsgTxt ("sparse complex case not supported") ; } U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ;/* get U */ n = U->n ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b*/ cs_mex_check (0, n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* get workspace */ x = cs_dl_malloc (n, sizeof (double)) ; top = cs_dl_spsolve (U, B, 0, xi, x, NULL, 0) ; /* x = U\b */ X = cs_dl_spalloc (n, 1, n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_dl_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Umatrix, *U ; cs_complex_t *x ; U = cs_cl_mex_get_sparse (&Umatrix, 1, pargin [0]) ; /* get U */ n = U->n ; x = cs_cl_mex_get_double (n, pargin [1]) ; /* x = b */ cs_cl_usolve (U, x) ; /* x = U\x */ cs_free (U->x) ; pargout [0] = cs_cl_mex_put_double (n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Umatrix, *U ; double *x, *b ; U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ n = U->n ; b = cs_dl_mex_get_double (n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (n, b, &(pargout [0])) ; /* x = b */ cs_dl_usolve (U, x) ; /* x = U\x */ } } SuiteSparse/CXSparse/MATLAB/CSparse/cs_cholsol_mex.c0000644001170100242450000000246510634322337021116 0ustar davisfac#include "cs_mex.h" /* cs_cholsol: solve A*x=b using a sparse Cholesky factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_cholsol(A,b,order)") ; } order = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* x = b */ if (!cs_cl_cholsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("A not positive definite") ; } cs_free (A->x) ; pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ if (!cs_dl_cholsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("A not positive definite") ; } } } SuiteSparse/CXSparse/MATLAB/CSparse/private/0000755001170100242450000000000010621054722017410 5ustar davisfacSuiteSparse/CXSparse/MATLAB/CSparse/private/drawbox.m0000644001170100242450000000127710620671143021244 0ustar davisfacfunction drawbox (r1,r2,c1,c2,color,w,e) %DRAWBOX draw a box around a submatrix in the figure. % Used by cspy, cs_dmspy, and ccspy. % Example: % drawbox (r1,r2,c1,c2,color,w,e) % See also drawboxes, plot % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (r1 == r2 | c1 == c2) %#ok return end if (e == 1) r1 = r1 - .5 ; r2 = r2 - .5 ; c1 = c1 - .5 ; c2 = c2 - .5 ; else r1 = ceil (r1 / e) - .5 ; r2 = ceil ((r2 - 1) / e) + .5 ; c1 = ceil (c1 / e) - .5 ; c2 = ceil ((c2 - 1) / e) + .5 ; end if (c2 > c1 | r2 > r1) %#ok plot ([c1 c2 c2 c1 c1], [r1 r1 r2 r2 r1], color, 'LineWidth', w) ; end SuiteSparse/CXSparse/MATLAB/CSparse/private/drawboxes.m0000644001170100242450000000136710620372107021572 0ustar davisfacfunction drawboxes (nb, e, r, s) %DRAWBOXES: helper function for cs_dmpsy and ccspy % Example: % drawboxes (nb, e, r, s) % See also drawbox, plot % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nb > 1) if (e == 1) r1 = r (1:nb) - .5 ; r2 = r (2:nb+1) - .5 ; c1 = s (1:nb) - .5 ; c2 = s (2:nb+1) - .5 ; else r1 = ceil (r (1:nb) / e) - .5 ; r2 = ceil ((r (2:nb+1) - 1) / e) + .5 ; c1 = ceil (s (1:nb) / e) - .5 ; c2 = ceil ((s (2:nb+1) - 1) / e) + .5 ; end kk = find (diff (c1) > 0 | diff (c2) > 0 | diff (r1) > 0 | diff (r2) > 0) ; kk = [1 kk+1] ; for k = kk plot ([c1(k) c2(k) c2(k) c1(k) c1(k)], ... [r1(k) r1(k) r2(k) r2(k) r1(k)], 'k', 'LineWidth', 1) ; end end SuiteSparse/CXSparse/MATLAB/CSparse/private/cs_make_helper.m0000644001170100242450000001545610621054716022545 0ustar davisfacfunction [objfiles, timestamp_out] = cs_make_helper (f, docomplex) %CS_MAKE_HELPER compiles CXSparse for use in MATLAB. % Usage: % [objfiles, timestamp] = cs_make (f, docomplex) % % With f=0, only those files needing to be % compiled are compiled (like the Unix/Linux/GNU "make" command, but not % requiring "make"). If f is a nonzero number, all files are compiled. % If f is a string, only that mexFunction is compiled. For example, % cs_make ('cs_add') just compiles the cs_add mexFunction. This option is % useful when developing a single new mexFunction. This function can only be % used if the current directory is CXSparse/MATLAB/CSparse. Returns a list of % the object files in CXSparse, and the latest modification time of any source % codes. % % NOTE: if your compiler does not support the ANSI C99 complex type, the % CXSparse mexFunctions will not support complex sparse matrices. % % To add a new function and its MATLAB mexFunction to CXSparse: % % (1) Create a source code file CXSparse/Source/cs_mynewfunc.c. % (2) Create a help file, CXSparse/MATLAB/CSparse/cs_mynewfunc.m. % This is very useful, but not strictly required. % (3) Add the prototype of cs_mynewfunc to CXSparse/Include/cs.h. % (4) Create its MATLAB mexFunction, CXSparse/MATLAB/cs_mynewfunc_mex.c. % (5) Edit cs_make.m, and add 'cs_mynewfunc' to the 'cs' and 'csm' lists. % (6) Type 'cs_make' in the CXSparse/MATLAB/CSparse directory. % If all goes well, your new function is ready for use in MATLAB. % % (7) Optionally add 'cs_mynewfunc' to CXSparse/Source/Makefile % and CXSparse/MATLAB/CSparse/Makefile, if you want to use the % Unix/Linux/GNU make command instead of cs_make.m. See where % 'cs_add' and 'cs_add_mex' appear in those files, and add % 'cs_mynewfunc' accordingly. % (8) Optionally add 'cs_mynewfunc' to Tcov/Makefile, and add additional % test code to cs_test.c, and add MATLAB test code to MATLAB/Test/*. % % Example: % cs_make_helper (1,1) ; % compile everything % cs_make ('cs_chol', 1) ; % just compile cs_chol mexFunction % % See also MEX. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse mexcmd = 'mex -DCS_LONG -I../../../UFconfig' ; if (~isempty (strfind (computer, '64'))) mexcmd = [mexcmd ' -largeArrayDims'] ; end if (nargin < 2) docomplex = 1 ; end if (~docomplex) mexcmd = [mexcmd ' -DNCOMPLEX'] ; end % CSparse source files, in ../../Source, such as ../../Source/cs_add.c. % Note that not all CSparse source files have their own mexFunction. cs = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_cumsum', 'cs_dfs', 'cs_dmperm', 'cs_droptol', 'cs_dropzeros', ... 'cs_dupl', 'cs_entry', 'cs_etree', 'cs_fkeep', 'cs_gaxpy', 'cs_happly', ... 'cs_house', 'cs_ipvec', 'cs_load', 'cs_lsolve', 'cs_ltsolve', 'cs_lu', ... 'cs_lusol', 'cs_malloc', 'cs_maxtrans', 'cs_multiply', 'cs_norm', ... 'cs_permute', 'cs_pinv', 'cs_post', 'cs_print', 'cs_pvec', 'cs_qr', ... 'cs_qrsol', 'cs_scatter', 'cs_scc', 'cs_schol', 'cs_sqr', 'cs_symperm', ... 'cs_tdfs', 'cs_transpose', 'cs_compress', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_util', 'cs_reach', 'cs_spsolve', 'cs_ereach', ... 'cs_leaf', 'cs_randperm' } ; % add cs_mynewfunc to the above list details = 1 ; kk = 0 ; csm = { } ; if (nargin == 0) force = 0 ; elseif (ischar (f)) fprintf ('cs_make: compiling ../../Source files and %s_mex.c\n', f) ; force = 0 ; csm = {f} ; else force = f ; details = details | (force > 1) ; %#ok if (force & details) %#ok fprintf ('cs_make: re-compiling everything\n') ; end end if (isempty (csm)) % mexFunctions, of the form cs_add_mex.c, etc, in this directory csm = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_dmperm', 'cs_droptol', 'cs_etree', 'cs_gaxpy', 'cs_lsolve', ... 'cs_ltsolve', 'cs_lu', 'cs_lusol', 'cs_multiply', 'cs_permute', ... 'cs_print', 'cs_qr', 'cs_qrsol', 'cs_scc', 'cs_symperm', 'cs_thumb', ... 'cs_transpose', 'cs_sparse', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_randperm', 'cs_sqr' } ; % add cs_mynewfunc to the above list end try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) obj = '.obj' ; else obj = '.o' ; end srcdir = '../../Source/' ; hfile = '../../Include/cs.h' ; % compile each CSparse source file [anysrc timestamp kk] = compile_source ('', 'cs_mex', obj, hfile, force, ... mexcmd, kk, details) ; CS = ['cs_mex' obj] ; if (nargout > 0) objfiles = ['..' filesep 'CSparse' filesep 'cs_mex' obj] ; end for i = 1:length (cs) [s t kk] = compile_source (srcdir, cs{i}, obj, hfile, force, mexcmd, ... kk, details) ; timestamp = max (timestamp, t) ; anysrc = anysrc | s ; %#ok CS = [CS ' ' cs{i} obj] ; %#ok if (nargout > 0) objfiles = [objfiles ' ..' filesep 'CSparse' filesep cs{i} obj] ; %#ok end % complex version: if (docomplex) csrc = cs {i} ; csrc = [ 'cs_cl_' csrc(4:end) ] ; CS = [CS ' ' csrc obj] ; %#ok if (nargout > 0) objfiles = [objfiles ' ..' filesep 'CSparse' filesep csrc obj] ;%#ok end if (s) copyfile (['../../Source/' cs{i} '.c'], [csrc '.c'], 'f') ; if (details) fprintf ('%s\n', ['cp -f ../../Source/' cs{i} '.c ' csrc '.c']); end cmd = sprintf ('%s -DCS_COMPLEX -O -c -I../../Include %s.c\n', ... mexcmd, csrc) ; kk = do_cmd (cmd, kk, details) ; end end end % compile each CSparse mexFunction obj = ['.' mexext] ; for i = 1:length (csm) [s t] = cs_must_compile ('', csm{i}, '_mex', obj, hfile, force) ; timestamp = max (timestamp, t) ; if (anysrc | s) %#ok cmd = sprintf ('%s -O -I../../Include %s_mex.c %s -output %s\n', ... mexcmd, csm{i}, CS, csm{i}) ; kk = do_cmd (cmd, kk, details) ; end end if (nargout > 1) timestamp_out = timestamp ; end fprintf ('\n') ; %------------------------------------------------------------------------------- function [s,t,kk] = compile_source (srcdir, f, obj, hfile, force, mexcmd, ... kk, details) % compile a source code file in ../../Source, leaving object file in % this directory. [s t] = cs_must_compile (srcdir, f, '', obj, hfile, force) ; if (s) cmd = sprintf ('%s -O -c -I../../Include %s%s.c\n', mexcmd, srcdir, f) ; kk = do_cmd (cmd, kk, details) ; end %------------------------------------------------------------------------------- function kk = do_cmd (s, kk, details) %DO_CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_transpose.m0000644001170100242450000000075410620372563020632 0ustar davisfacfunction C = cs_transpose (A) %#ok %CS_TRANSPOSE transpose a sparse matrix. % C = cs_transpose(A), computes C = A' % C = cs_transpose(A,-1) computes C=A.' % C = cs_transpose(A,1) computes C=A' % % Example: % Prob = UFget ('HB/ibm32') ; A = Prob.A ; % C = cs_transpose (A) ; % C-A' % % See also TRANSPOSE, CTRANSPOSE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_transpose mexFunction not found') ; SuiteSparse/CXSparse/MATLAB/CSparse/cs_sqr_mex.c0000644001170100242450000000260610620711515020250 0ustar davisfac#include "cs_mex.h" /* cs_sqr: symbolic sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double s ; cs_dls *S ; cs_dl Amatrix, *A ; CS_INT m, n, order, *p ; if (nargout > 7 || nargin != 1) { mexErrMsgTxt ("Usage: [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; order = (nargout == 7) ? 3 : 0 ; /* determine ordering */ S = cs_dl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ if (!S) mexErrMsgTxt ("cs_sqr failed") ; s = S->lnz ; cs_dl_mex_put_double (1, &s, &(pargout [0])) ; /* return nnz(V) */ s = S->unz ; cs_dl_mex_put_double (1, &s, &(pargout [1])) ; /* return nnz(R) */ pargout [2] = cs_dl_mex_put_int (S->parent, n, 1, 0) ; /* return parent */ pargout [3] = cs_dl_mex_put_int (S->cp, n, 0, 0) ; /* return c */ pargout [4] = cs_dl_mex_put_int (S->leftmost, m, 1, 0) ;/* return leftmost*/ p = cs_dl_pinv (S->pinv, S->m2) ; /* p = pinv' */ pargout [5] = cs_dl_mex_put_int (p, S->m2, 1, 1) ; /* return p */ if (nargout > 6) { pargout [6] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ } cs_dl_sfree (S) ; } SuiteSparse/CXSparse/MATLAB/CSparse/cs_qr_mex.c0000644001170100242450000000543410573562351020100 0ustar davisfac#include "cs_mex.h" /* cs_qr: sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT m, n, order, *p ; if (nargout > 5 || nargin != 1) { mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ; } order = (nargout == 5) ? 3 : 0 ; /* determine ordering */ m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ S = cs_cl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_cl_qr (A, S) ; /* numeric QR factorization */ cs_free (A->x) ; if (!N) mexErrMsgTxt ("qr failed") ; cs_cl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_cl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_cl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ S = cs_dl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_dl_qr (A, S) ; /* numeric QR factorization */ if (!N) mexErrMsgTxt ("qr failed") ; cs_dl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_dl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_dl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse/MATLAB/Makefile0000644001170100242450000000032310375340406016037 0ustar davisfacall: ( cd CSparse ; $(MAKE) ) ( cd Test ; $(MAKE) ) clean: ( cd CSparse ; $(MAKE) clean ) ( cd Test ; $(MAKE) clean ) purge: ( cd CSparse ; $(MAKE) purge ) ( cd Test ; $(MAKE) purge ) distclean: purge SuiteSparse/CXSparse/MATLAB/UFget/0000755001170100242450000000000010711673300015407 5ustar davisfacSuiteSparse/CXSparse/MATLAB/UFget/mat/0000755001170100242450000000000010620672242016173 5ustar davisfacSuiteSparse/CXSparse/MATLAB/UFget/mat/UF_Index.mat0000644001170100242450000036260010677525546020366 0ustar davisfacMATLAB 5.0 MAT-file, Platform: GLNX86, Created on: Thu Sep 6 13:49:48 2007 IMxMN@_ n;?IbbXqlЙif HI'p5\}x/4&|ԓg#YXW-;ǗkTa7ωtl4 aV=RBQdpe<T&9&^tPD*.xbn4F!"nĮY]sɍX žnJ!gA`(^[OQ$hb(wikhQBi> Df/Cn$"C2E+?ذB|GxL< %WdLV?Y\x>eϴv{}躧Gnry?\v]"?ޜ)-?Ww#<#<#<#<#<#<#<˱ @DQTK.\0x eגjwKU qqqqqqqqqO 0GرMEwrL!e|d?^/sI3.U?F㧑i]]kGgf˄M󃇇)aazgI;~l%[߇ϥnZ 1 @EQӈIiia5$BpũҤJ3/.ņXkcU_绌|}-e}::::::::::::ܿtڏyOuyyyy 0%˺´a@iY}y W$ఝgpLgm.m^VNM~k3x<x<W#B||ƃ~]Sƴ ';nʞ"U7Íu!sꓮ9x<T_qQK0*?G eU{XXDvoj" ^B^W6 ~OyD,e+y˨쫦vMQfudfe\yɓGmL~0Igqy0H3nxfXU OIY~+w^!Kzq'n(r0ǵ:>:|KD!u):hRGPǻ죃:贡S\2gqy߹ixmˮT;tJٹ+B>[ 0E )]v RȂUFͨ$׷TJTĤW.L-h NgEM^^^U^J|ܳ#`nFʋ~Fs~Gqgˑf+xw]q8pS^Y>; p`c$2慡kGiylc;qp8p|9QBIN:`=ȼ{!w)89W]K0@+D>uEd8m\H?&mW iv[IM\jfdeqVtIVxޛSk^|مF<"wTG^$?."'0Ÿx?Xܞ?tސeb2% q y#b$|QY< c،߄5xӶ}t}ZX5F ^tH|`16ux.[4sQi{{?㯅TiΘ ?fg?>}Y6;i;/dvZZ7؏st]6t5OUBU/i_aՠ朎Re&!|x;F8<*Cj%F?}YJᄑeOY.J98EK/WB726ѓuöו(~&͠coǓxbl1M.Ew-&c>C,ܟ ?$57@A~)g}P#Yg=ҟH#Yg=ҟHG#?#?#?#?#?8`쏃q0`*e=U}m < %&_F)8|blm{Q>7=)]7|~zſ(4~ (l,ퟅ#0?Oip4555k>?pݏk( ΟFώy ^ǟ򧢿pp-)Xqy z zu!|[;\˻{ P+V˭_֊?zG+k݈/z[|!om ͟_~kl"l o8|&?/p k+;1տC;z`EϬ?G맸 (=8ΟKퟒxy=6~̿ 8/U;y}_WX ?7?n6K&ɋ񗖠/~<2#OOh#G~MݙO{{5;7ۯVմ-!5xM}o dx_o_灔R6\Vɳ~ GM˸?yqOn0`ګ64zM8 k\$QVB+.>`aYz/=f~_L[w͉^&KR7_ڎ*(4ZuUj.9?xYɤ;8)ȇ yw׉D`$4-/$9\Lo_ФuhU?ERտm8oٛm8֯_ߜ<t2X4a8qY|{_w|xΠFA'@'ANN;lN;qn\߽=g,I}C= ^jͩsO\yi%>~{x>ѹmgxv潛 u|sopW;fowͻO[wu^_1}ҏgo'?[fyO?SD,KM'_l8͛/|nZ0m\{b|$#Lͯ_U|KSc> -76/^}ca:=vϼ{`-Z1ąI0A+A]36>"x\V#^(~Q_b 1&5h|_LY5iO# D"zM񯜑 sn0L(m/2% Td$-!Fj!#v9ϲ!ZO}oz}Jl} yqdUe}ܤ~ueu:?\]o*:ů{+K`\c?2e8,/͸~[wx_S~] <6yb-SN;ᩦɧn%#}N {2~'y:~%kȟҤ{r\'?oQj%p^+'o-m8Ua'x1S.޿F/7zR_.xݝ=;ljěqԍqYdqxDovi7}azyfV~jj~|p {>, ]}h>/Jwϻ2z>/*z;y?M֟&O+ѓdi?!O~1z w.ۼh h=A'3s+@Wbu#`}p`̻y0=q+Ёu&` X/֋n_yI|.ikn]o0~hS؄g C4IPRH=F=k $w=T*5|Nv7-.^9nS'.qid_t]ۨ}).6hܳU;}QO=˓_&. < y-Y!oRgB~%U _ܾs_ípuQ*ch_ow|=޹,Cƿs<t_~xq=@@N9 rK@.gzFgzFgzFgzFgzFgzA4=ӠgLi3 zA4=c3=c3=c3=c3=c3=c3zf@ =3g̀3zf@ =ĝY3 zfA, 7f CNrsOy<'^~xj &7۪W;Oz;p^\mRoe9H"`a1crdY*89H+#z"yHSJڇ~NkV㤟q?H<)Gc#屑dn03iKVv)ow1ԉcSk~Eu UO^sbom?=7{.HJ'\^!s?PBc8;8 88~6H~6H~$? s5AgHL'uƶf?ù;}pRu>U|Z5'Nz:zN_闽}͙g@C.,yȵ4 ǠgȭḐgf<8PUO1G^;osz(I'ϹDJY#pJMpfd,dÏ\8;z=N~ sQ$.2F qA V_ ı⦒8^DZj#' /]$N>t;!>8lw|(|DC@8H)HɳM oz@tF#r:¿(8szi9tYN $8.ef_*t&GR8n<''ۃ߷W1ę'^SovЧzuRzx/([9g'^ʱgq"8/ʿGy g[/5'|;@}ԧ|4aC9(8S#ևI:wK6ӣCdr<'E eXI3ndl)xn0ٓFUkȐ fQ$3o_H hFB#/pu_??~OU4_&:u:*ɔtF::73Qmm=]!y&y+q;ӹu^Jt^m⸛w'Cl|Ƿ`!жKnrs@|ټ L]sm '>:Jrzd3 DgouG[tT"ij}X_\jc/O<y; A0#@?G#c?ؿG3G{RU.w_'yMx7ăs#[K烐jf̝S'bd)9rV^:/X][ H{r/4{f\ss*u<\dyxufɉn0PVM~ Ɛ&o_/!k;Il[dL"E#}E{~ /~P6BlyȈ~;UŌt{Xu=oG<Fg1g.e"P^ԯ IP='Dω>%?h( >~+CXFz =CJ8e^CWWe5Їڿ̭u%_`ܶ >!zN)ѣ 9C?O\q1 z皪ʵfHP{Fc{1n)+"~3o@{j?#iQz[о-b}wڟ۟( 7P }}H*h˶:W%X?&rmЇn e79h~/;QK';C{9w>W;t qt,T -m۽[5Z1! yJc8>o}ۍ'Y^(|#Z.s(>#?@<߷NzB^c)YV{ap]hD1t؋zݮe<}@U||yn^%/qn>wme z=c] Nr8Bq &]@F1aqUt Gۻ PRBB8}LȔHӎGxՌ7k}fk٨n͘tz'y ϼ3~HNDr*K⸄m)Q:7eyz#Ŝez]}ÛY*[;<'dB?xzv^.zkjWt=[;G?Cϵ0Εь̓˿= `ϝ{a<pG<O_7Ţj; wR 8ӶO<~rEy5O@>\js˖?x?Zne~7*lc۹Y.|sAHG< ȓ<s2Ax@=3P 3@=3P 3@=gL 3z&P@=gA=sPϨꙃz栞9gꙃz栞gYzgYzgYz%g Yz%g YzgYzVgYzVgZ'OLu8hx(j_~<Ϸz< N@BB{7h*E$A }~[( IM-_)rmY6Mm4*s+Mt^=׫_P'a:Au(1@=C,g< Y yȳ@,g<+Y! yVȳBg<+ y6ȳA lg< y:"[R硎<4:~^,}>>WNy?~/n\]i{](1LN usx@t !!!!yȳ@,g< Y yȳBg<+Y! yVȳBlg< y6ȳA lg<s<s<s<shy~:/ncJӏq.27h|ikwj_Yۜ]SgūN:'>2N4 o03~hTr୏{Cȉ ةm sZd>;|˲kdetzb~ߋ;᧱bcM,Kcig҂bb1|='Lr_Niܚͨ? ?p=݇a_I)/ ɗHBs$@K$̿92rxfU⏝#5uV~yYW3$/PBWc >WH*~VX''y7#˴{{OcYSiEغi ۢG;&k-+0Ϊr8% !G/ly{^VxӃyf=!ζA|޴PŎ3jp 5P9$~y혆KŜ^JCnwO#\g>!Qi'۱d2H/;᧱ {V.^C8Sp~T3w|H&QݺF\[x= ac%5ӭeGl_}5*oj|ꕿVtp~ZI-S|Ƽ= T.nxGri:n=Z6Hl@@kz:thQ_"yPl'q^2M/D5Jen(=3Ӎ{2 } 9};ϵy #q'Z;|)7ӋA [O7Ǎ٣ħhI=>2~Sp =_r *YX'G7n84EIيꤨls"7%1[n}#5-6 8$33$s8>Mhoзu&G'8~G ̀溑Ej5Ae~%J忕*,^WXJ)S*A_oܐ.g'В 9jp6dKмD$H^kF '~ƿ𶭫2}]JP6B댍s˅2+lܿxnLNyF<ہ:}?lO2<;8w^'?=1C]]a'?G̕(嫃'g1 =t<)XǕ'-1yOHMHL>_Ej)N8 ~s)Uph%XX+I=0f3tdH?^Vrzq<}J!qŽ z]B;y5F@oۊ:ɷal#yti_eߏ]pgyvT]GF8])wcZ+d[6W"9s<9σ&?|&{%M24]?D珁mg !є&y}@z]:Kڊ}k~uNݏ?VgN3Soxm税\5UOq*OCu\qmdU ~_H3k}mO03|<&yGG`C io"q[ ׮lCoMfA5wT ȑ~83n _9ʯί g,s>%}N3 :Thu:K:`dE+JbX?,ݞm4мge[6R _aDŽT:13jx'a _33L ~dG]=3(UpҺI; t잣%~9n>QԮo׽f|zH2~#>hem[sN[>Kɞ_o_J%C㟵]7%p3+賂.#Vuo|mYTtv:fH>zs5q鿉DP|?D"#?FƏ|@o:R'fN!_AL5PB>(A_@U]sVWt4Ɉg6:%dbg3DwٯyblL F#Ģy.u:rtG]%Dd,%f7NݾiԭI] 9S s~߇&FqO>7Lgh#x6y&-6 Uyd>ց;u@}<e>ց?tBsO!ki<~w0_\ |y@ !k& _|`~ %K/_`~ r_[o0M$1o{rBBrI-鿟M`[)QsR~>&t:h>͖/ob<:t$)N]s0_$0_$0_$0_$p%pppT?wΝh//f:\Gġ@qx8"PymISv* JŁ WH|G_&ޕu)QD/0q G18=^"G&>8CG$+)`ϐ#mqGyslrJ1\a?گyi0H o0E /Wn241H@x~1 ygB msi?/o=#Й[_x[Ѻ.Wa)8ϑժncgwϐ{mwH s>7ݗ9+O?i8~1u^ݼs7qv~t$sa }9/}o0˶}J6/yoߤrP!MO?CRez}.J;|5+]FϗXNd_+!_#;UKciaȋ7e+\MpQ@ w]rkҺ~8λ}>>84F?wz/#< vIS[~swxc"Ek-Wp~CJBR*נv+R(ONgG8׵U/NY1rfucc9r 5]A[}Ym$o'>f O|L~WL~MCu?[lX|i|nI=2[3RW[v/SB$\Sa~[!n7}U_ïytE\>,n7^f BP}F30ʇ}m]ݨJ=nc5*{wc=ww!.떨)nwp1][.x.x.x. t}[>9oo԰^<ú'LSg(?x#RRCt?l 觺[D'z}hg]7-x%_y!]JrPs~<>N0ɱ/o'ڒ`/:s|3;L<33t3;塉Α g?O_y1n|ǾnKgynfܼ'^Fyg\gzϣkC*7`2[hS5Z{QzY{pyyA$& IHbA£$B<6nVKA(/KĩJ)"--Vy8T@bJ:ws̲kjLif~s{ι{K+*=voR*!"Em3~sCskMEI2q##U며6S?oc^-(}ح)ze6Wob-6õco&;̜W;'}r{30au7z0_F{mUb'8;vt{nqݓ*g%gth(5&@_:˜U-Ś[W2RX،ZS3|BbƖ5La}vT;4sGS8 [p5kPvZ*V*w g:*\WBݶ:* +lÝPl[u2b@amsm5Npm,nnqz?T;.w?s'OϢ{dyyƼf:RG<8jLv4i8=vWU9iOk&;Vo;q~CcFsVYYuz<ՎQZSbgZ?u4y \s~+q8O?Gb|"nB*.-0OOГCPD#{7[ ]cv$ x9þ(sKr69Rg*b bcx1nD 6kTM|FJ D4KtP9 {7ܯDžG!I=E:MLop {#p.?`eTpF_P|BJר;?z%*V3ʟn-d1G&`O?[;ds^)볢dazo--JbrYPڈ )u[׵kw$v2N}>żZ S%\Ds ƍFg/y>{@I8䢱Qo/1=ݔ[9 >t>ERK)#9!Gkd>Gz{ 2c_0Zx ~Y3ޗa4cQ? g~<0%,.EY>2Ttچ}b aE4N)/G~ż,&FܤyO+%.?a_rw7mWo3gk.ńJ}ѝxx"]ɌkE}E;s2 uޫ\_2F91{?R} 7YMzhG*|ԓXl<։#vw2ceć_iSPG ݕbixs9]f}YqX:3 :[2!lO(5s޶d&io1,~xʽR(Ϭ}="4t,~7Y/t7끿XDt&u|n5o߹3)P- ZC}Ѣ2[sxPݐ+L~ m^v E$<.]}x9l`TݣO9o1ԧa  ׾}A3-~ƘoC<2N~5OD Yfs |%<Ɛ[~W^t9k36O:;ykߌYj[Z `](G6u}WgP#/֓xkFH&׆;Q{+&-eMe{^Z^^8ʺ:H\4"_'v,ͯL2TyC=G}Dbpo_CUm8y ٌQ݉/}-qt? 7 .$ 6Ё؏#;Yze<{T'kRxou9P7'jCmqa*#ֽe_"C!eXo_uZtܻ  ك &9Np㗕ħYjC}PF$}ȍE:iѨFq)}{?{|榡V7nSƪ|S&羸`033?e ;`;ftYgA)y;X&i#I"H澃gu;<1Wjg;}okI~JYT$)wLzJ}>Zu&] qAl ׃_܋Xn=0I'"R 2J,zd:\Z-IYNIU"Ju,CcY枹?J[κkdWӶ[ᖛL36l'a~[5U3ڧq?HOKһ/H K6(6 lᬾ0xI9I+^u Xф;%Kd%HlpC2Q|:ۧa6)F ~gTQvkdřϔ֥H]L5PuM ͑ݥS|z?S5i}fp4܈ ao0,"hih_Fuꞔi GԷ|E1(49>YqsVWLѾ;U 7d_݇vwg}*FV֬1{z@͘Ehsv Py_՝|zoУ҄Fn ާ+?WA7wBl'nEKVh:VZ3 ťIpl⛑cOQ=i ~䎫c 5:zؗjԑekWaQU"D>#{PқVRa+/"t,{+ , bBi&xCf?7j0_~Ow#;b͍ҏ.ɒ2b̷FۿV11 g)MFVѮC/_~6-=Ľ(ų/&㱶3q<ں- 1յTP@{h _M W0_V~J!}τ(O>%>JA^bGU)zy:2 @mJrL✊ Us Jy c#;hw):[سaj~ hEY!4GH!nTC..YZo;84}M#4E9h=lxCz"ͯĸ+WQwO+>o\~ſajl}#Rx0y};r(.Վ30a,nqŚTKg‚ V ęJܳ>52ͨ?~F ik3_ F&:lIevYڀ8ծ`?!^Kߐfei#B=2kNZ{ncGȰ` LrOYmn\ʯu89! o k,1)j4[ A/NB9Hd} =7D3kAk rIHCYw:/Aqpr߄=9kt˅:N[~ӱ%Eۙ8)/9Xr4uKSAcd>Hɢw'B"XS}mB] fD8Gc}sa7GӬuc l\߂==*v F9Wy:{ɹ۸[s~2s{ q䊜fq j^\l<,G:KPAm-$ξO[>E$}dȏGbvR|Xbl} ;- ADZ>|j>KSmD_ֶN&A%:.j_pX4brj:{n3?F %ĜEnȳV)Qw-sq #qM 3|rX߃ kz`q5ir Q}<'+[/}\N<ΣL/^i]380uk zz\2v@.))DiMiOɸ~۾qC]mmcTt;'(=?dYӛs/?I(ckCH#>:`cpp{33rDžŲ6-"lOK}l3-OyܻY-H "([Iof1)C$Ϊ`k J# 9~&V"r Vl1ȭaOfl_l8[4[Qu%g|qaw1CN,d)~¹&k(Ϟ8us)aϵ6f9lǩηXZ6pXܡ(!sC!E`a<1Tk'r/;okd3 : a[]\yUvnkZ)2 cq?` ?"FCKDZ_YˢJV!t@!%ՈsO"̈́BBCH< MpcY}kjݱt44k?9KEn=sEЫ\wÌ^nӽ\Ll>.Tt۩/j\ojq3AR48hL@9B6W9 nO33;½m )-ikQϜ3^ΞSâh#6"_CGwuX wXD7ƣFtVUS2ӱwFWC\pfC\9_-}"V) ;::LlM:h}Ub*wG?׃_l~cܙwtUնƿi)H!P1AJ+{*)!F&R.4ґ#E "r!ToZ{1>:k2,ߜ+j$mLt(A/_ԓTh[ҍ҅ґRQ3$uRgR^P&6^S/f/gFI nuii -VJ+Ku6TdJKi!*_TL5>9; u)uiLiIWg⁖4^M*ON0*3(54HA:nݦf:oh9\jQɷwFJiЌHA t@{u i@4Ճ_VCǻqCJ:UG8 ߖϗ_6}~L-.0QLPUC.W/1ϻR ۏYڲŐ3wi86TP?k(P}Wҥ}WwSkyRtkv{Cߓrгݿ^FYnvixEZNb\z} ?0~46^{83V_j衡b;"T4_lC#3Υ. ~"PGqrrZv.PaR׿I -"d{= AV}љ#{"҆ОJ-u"jsYjZ17n.rU\ '#%a e;Tu=qXem?I&wK[`"=7Ch16Pno~e. qM !^j*g eld4b ߴ4dD;އs9d,hx [|:(G,q;9QbA2>1 ô:X>{YstBUu8Fjv>AYnDUh]Ͼ]ݏՕ=m94{MF7(TyY;IsVS8G'OI^?"?chEﶝ )v Xv ?>{\ Ǟp|??C FЋX{G9pAxM*ֈ+nZQJywlKϗ Q0R֜u+C]WjxM}LP|USZW9Qދ|ݑ_]_A)z8K;rWqnFO|7^ZWvisŸΓ :zŏ'kp_OGX##k4Vf {ñr9Yۘ NĶkw6|J l)C,fRKlT| F[PbE<(]Uup.?|Ox\ೊV2x8{~5,ݘ w:.U<DF1Hz'e+s01 0t |SKz{vDy0&mTp lj+dn6rOG&Z2q3oC]SǧCm2]@-35xie( 6Dڒus@CglQ#FV 2]\ chTYÎln{=Et=ioOg_\J/l>`lDw9~7|oN`O[ Gm ,B'Ci9ԟnS-;;xaC_ߔ}Ԋ]0٣^M!D~fFZag,>ʨ;J+a @r=~U;mPͥda<λ >*ծ˝/S 6s뷣pzŷaktcחz {\@G_yT '¿[ `ٯhȼމg`.OmO  †16#9J?"ϰ=.k%6 ]aH[ߦ gM;p][ΫF>gE?s$8543>}|%"q7}~~y'|N[]؛'f#m|r|zɇc>H-Б=n8E;N8dfl]`쾖Ri/B]aֿi*W^uq.خ;tġTr\ӈIwhsq&"xS/[&ΦN:?sCovg'G3Fd}#֝m^+ڑq>Cu)=\:[ |Ӽk͕Cq ͱzj+.u)ߪt~\NwpW W%2S52ZZMpWvt%]IUGW5=ץ U}N/jG=pkT6tXSRJ{ o_fg C+jG2PhC7Y: ERlǏ}$xjdbd9ɏg~[%XzC8o_1ڲ:%oʦ} m4t+Zrtl2IL/ g!cRsbk 9ÚB0^/m_qKMnc%FV^X_(.KXp?d5\R@6:{y=42To*ewY}Q}E=FB V^=[]fOnM]A}~lc Ŧ |~ ƕ@?R(gQfagdY~|@~ܷ0ӏa-?ǸX#yn?7N¿Pj6K@ 'Ùst8yf-K);t8KMegrU1~=~5VaͧRF IbJ/}ʻs0^[#_vns!W8vN=uث <.rnEmfC:N!z[ҶHSuR?݃of͈ G7٧ qOs##y,J5t ]MumXK[Id fsi(̨:7H%N~cRGS(Wa3Oh@ra[?%2uC4#K<:״iՒuޡ;?V=~/ҁ-MLXOoVh ^\GIԼjcOGtbbܤU#I\+?{-[ձ[q-q}ǞEvvS ZQP}KF k*!,Z6j&}J߾6Wf8x<_A\+:j2$ff*]K{IPqe5KS@- ӁjY7^&jO|7*Bsu+vzKnWrn7sG5?.H{8Je)0o. tMs^MDHF CE 1G RmK'yWq5✋zZ2 xn`^hcAsÑĀ-J6yt lp腍,8It Ig7pSЩwlHyl,=/rTF4o\M-W,̐p*Ѳ=Z`Pjx7-\I&J U7t$$t!Ԛ&Ld[MΑ3$I;R#tFR/ · 2B1OƗK t'qH6 9,p2c[Lu|Z~2σT&f`B-^B7kGN,W}zo[`[!@D`t ;wa&p`%. d}D> @b,0L}i3O$A C؁2Z48XVFvFvXC$NFGkq'EQqkux&r@ (!ȨA{҄o^ޚo}Oz9k.qOFKL= tHzJ8lf0~kFx3S΅K§&aXwqL B41\nȥ/"0Dgpz?tYzc\$س9e̸SB=揵pQFڔ] CYd"En8,&Hw=q7"'i҇ьf s96|^k'#=RF۳236^dF`PA|%7 w 4|[fk0iY $DLq{{ /q < W /tUƾyn.3\yMc[+p`q68m/w8mq u"05ʣ0Hi5=،*iH߮##c2&SjJwJ d<޻jy,ܗ†t^1f?"f2;N3"K ]$pKU^B@8'' 1V݁Y}S.Ir4YG(\ $},/mVA:{v qAœ[aJSR/6mL+zE?̏@r;)jnY(As4o"I8 #py!vaWT{`B"aa9Ĭ ckL7hU8 '>qN` ;~Q޺Ru$ ێ/:cPhEnҜc1_VQ!]"e(YᦂNdWAZpB4㍕Q .U#AI!עL ʵQEu`4\Q8*kiEC;5v%>7(z稇X?CN2n{|^#&$?ԻU9 {{S.')xT{g4 O|\`GI(J޽mO2g+.?zi8GFۥjN)-E4^L w3*tA^ y!%".'Szl3򇿛=%!DMWB;}Goa++yWf~r'xx4ܔuY!XInl=wgW.w!I=-_@ 4YKsMHYUV/NsʫlIBHD&EҠB:Dz`F[SIӘ=s}A\ 'BJзP-_?ˋ4݆2^<`z !3U ۆ ('0BU!Z-Z dgïZ'X"AY>TF:0C|l&$GB.!%cTIRÿ#FY0IG'j`mr{2CE}Jv(S첗7FXonm|EoIr̉s i৕/qQ ";19NT4y€F}{Mk'gä~ ĵV*.uL /Չh\%s,!}|&[H"sw[lǫWPB,C}<Rs:ne<-|=[c_sd,gmjTw17rLK<(/&ux >M_$=ӛG.SBd]AO;zn 5:Jb_zRH=K_Quilh:f}mZ ]0GT HuΓy-^Ĭw{ݗgѳ7 \[`J)ꀀ4 i5{q[*U"=8BK )ޣ4m(vrXwhR>Q0'#u<.9{sǼJZld{5yۥ)RLPjc@i? oB!V@a 60Kd*ŕ:\0vPevz$ǜj2VSg>*JAܚyjwx&0(XA V(ၜQ[}zt2ޔ48މ$wc ^;8><='#;Q2NPO2Efk2~J5bHr P̬a}̃6\h zϩN볠Vk^+tKNj9oOlWIvQumsSP;fmvq~}D>vUUˆ6Kf>`;v߶Wi 2'v{1P#AxYa.efNvd(,[K HHeNP]wt]=WgX8 Ëʆ??X4h\S [Z["$iZLohTź/"Ć8,L ~Z^Gb*{Lnv/k`b;*UHZAdEn1~P 槖&.1{f8c26FժJ"煭sq¼wڎe^e4=ܓtfX/>\IO"Gqut8O|&K 4~TP{$殓7,$a&{a]XznLMꪯ豘+{ubG}+yFs;|>=!ip}efj?NQo*_Y׽>Ι|C#o 4Yǫri&%۔G",*Iɣ'TgW)ylSy<2wh(m1K]%"`m-q2,󽧆W_~ٚո\5v Ć&pHT 6_zu;kw@f LEpգ (76?Uˊ&qE[ P,&&3Y*9ԪT7GP8v5fajq'6tHJL ۓPZ)47\Bh1pP[ oBE@u{XD3Ε "BF`rZ.b|b|\,rYV_t*KXc5MlU5_0`xԒ u1`pBC=/|~{~ P~Ƙ4Hƺ(93e+TPlgkPHe~R|;ϟU9Zɝ}5״8 Z5g5F+ynWtA8܆6 u\hWjO:S|uFUh %Y{~=1ϢVPEI7$E_ERHnV2p-_=G{K޵)(G tH zYvo,|ڠA쾡nՠgIhs-~ut=`$){؍L9N#dL +OߜF.c&mWUcïz`u=9[r9dc)J9҇<~~hT 1E@~o[]|حQ^qi>g?bO9EQȉ>M ?~OJϤl5۽5;rZ~ik-lzin RfTPU+W~/iף٦3d~;D'Gc !"Iԁ/ԋd1gpxG4W 8Y7~)j")k"$=h-D.l.5vQ_BT2Qd˸L!f\r٧oR_ߧ={9?=7РL}< /ڻQa]NP?/"@CŋH6"&dXv(VX4PQvwQITg4ըAg.?k7PߛD*N\N\;[ihV$ʃufm sk7S{r[)tьP]*MPV_ B#|= `O]}i^E0uIYNkڽCj;?b5蝎Ӹ)CDl{")hė=o7N<>P2wC<ӶSLz| 0Μѽλ ZS/AQ%ɍ=eլX qQͰ~u ^4nILǠȲkMP?#|49oq,FT@礙ʫ2z2sP\~4kȈԹFҨLfB?3چo3t~3~YTPsu)־JѶsiwXkŪF>&Ki#1%=Eo9'a^k]ܕ/)a!jR$ KLXׄ8>O*VA;kI4:P;OZɷsDyn? XP켆=Շu〆~;K؀AǽSތ|kviЮ[X3hV[\$vɖmt Bk6}_W6F%.?,ɸo>kԽk_}b= (([њ}pqE%RGAgHc`Aem:ڊ hq F~tsm]6 $e|Sk[mJ2B)DZsu:s^>pW W՞u3#;&M+B#crñ&mv[Y"gG]>ؕe\R9Î?(xcn2HajaRHFJW]-U>)[Ԍ+ MpJk[(N0l5Wӌ9dd|'TԯQo #ߟULꥋeSgտDp-st|pՍN8P"Hid5G Z:vTªUेb+;j٨N\]06&mp&֭ZHIMl`IX1(uG5_؞2J&mg'8QTU8+ r.~׉DP`ܡw/xiBW| j[Aa,Y)OW^u!/!>V:o6+"!}?'W 8iBV:3D$*%:rT") c(gdJrR¦#ǹGx 6HjOތ1>nѰ[}P(}34 gDZlK#ѯRQ%~kravB_5@hc\6sEU҆4y\̭%ھx'e&D̠ݟ,TJs%n.іpdeP蠞G~ K!StDe<ifjVT8$^j8ݾEWQp)E/}m:`gXjxx$dA ЧMv},/r9~z!vMG@WDvC5g&ҕ=%5y[jXcvOܴR2pDb,9MǽΜn Gݰ&&-8Cm6GPRūSuƢÿmYBQeZ_Hgwȋ˺p$j;!f/8ӕ*)su8qV&cs+N|'= (\/ݸFV$@oQ V[0 Et? G y+ 쀇>9򰞔fi5~%,6dFb;Pvb1t4݂v>u@=k?}$2 ڼVbaS,K֣Zԭ^O:VOjfyf/+:@fLԣAat)Wu?&!-rGjQ˯=T:cT(g4"4[ 纎 L VZ/'glMJe0upg.?xQ-1k>Zϣ CbJtt8Y5 o,橎ePuMn1(I Z U|MLtr&:kL(X,ݏG@3sk;([2zވh2E[CHÖL ISF0B0Q ƼWFc?K o4fxˆe~v9t0KmoU/'JbF>eŢI =f"ӯwW[߽gOÏs p^@ӄ1 )E@5 3p#*6bS   J b%UJf0Xh!/q9rMj|wݳ眽r}bB;8y{Lab梋{][5#&Z7"1?]L~ C+Ԥb4,  #m >[q|ͩa Pֿ>.IsW;_jV5ɥl4>}CR:ܹؾFi!"'x ߊupo~|f@[oGv(I(y5JO2Tآ"1׊.M&#E>NeԯBƭ׈9Og!E7$$o~1 iZiXiwCօXFy=lc"wfiP̸ ϕ'_0H/\ 5:~d9cZ<#)?@ >' LYekuy"!O^Ac=aYzA' eґ/%UB sٖ3ohԇFZ =ewS9[3.2ݢzʑKVrz28W9QZZ)WVQuPV(X),ZLMTj+NQYr_Ԝ6RS)YfX(sz"R,o۸W) ޲jИIU?1.+FCnEgA z'kr[#Gr$H# T qm QOpT߃lžgb|Y {4p3kHed+z" <[$Ch6y5xlZc>ƅ_tvJ=e2l]%ʐ׵#T2N?ۂ&cw9Ȣ'0u 'KaC;O<~0W?PrrX.g=/qT>' Vn:kyS9s/m(c[?,Qe}=mM .kN`!a+E[-%vM Tּd#; wȲ (f#kw\,[VS+)1喎dDKb# |l?{i[,`^ B_ =ak[2y+ϕu[ehvFFO6߁OoD1=#YÑf!"#*ώg-Rig) "wo䣌9Il]Yý>{VΆ$O|t2Ŀ'߭2 _X_G6tx|yэߚ`.\ȫ\0aG~}qŅyg5RX tM6 QBH"`H 8HƜ|Ej"Eli !(ra D/OPDZQ&%Iz29}ܹ3sfm~. Wac-.L 2P39@Bch3@WG9b[<XZ(O(| s~:`ioLر έl0wMh5(ƶ'~}\hWJpN7 ʇ]Ż@Gs!m+9-O<X@Sm"o# [X GJ KaS"BHTo*mk%Vm~)K¬f ra? d(] [grt4gKB>" o{/ew8ڂ[r-5Uc?jP{ / nm1V\Vyv[yE%>d5+!3Ԝ˕VBp/])#5V;o>vif@Fӊ+'g5 ߰ywI^%*kc#Q}N&2kĥBE[ׂloκgԽXW+r. jtv_B [[ڳs-|-_$\BWGϔ;esSjI#V=A,{e"]KL)L);Hܨ谘w8^A_l,:d }-mcQ?dYmlD;\K6_,a"l.jS?)w4H1s ͟nO0=ԋ1S*=Վ'{w+f{/Q{x(g>GLU{4.'/'xvSzͱ?Ԏżq70UKLʾ؟矤4O$ޫqڕA̢Rb :-}1`jVst_KJ('dq̓V+fK_U1_7!9<**Wp?)OJo4($z2ŗ5'"G#Ꙥ4vRmtSp\AmGl^;ϻ Ļ=6r_]omyc>>i7/cX0G6%#~wRnky oSVk4?+9eG:X3X/ѷ3[Y?}mLwB/u۬S~E11{Z܁z.w2ۙh`:ݷ慏l:04nlR.zkg1j͜7Dẖrͬ[Z6糎LJ׉?^}zʸYqzVɾO>QpֽG[h>U7{XMǗ2)v!!)mN2[CRIn)!d&l2\b-2lgp2E;q)2e܎gus 'De[P c?#&93̽)xۻĨQcq5oǖG nD^G)=G 07v">'ȇ ($<<{K9(3}ߧ-F}OPyY&MGn&P}q 8~P>ŝQP?TMo*1 Z_ ;,zO\j1^+Y-ɲݯxOTwl]wTf09oj_5x(MNc%'ajGOjt?anH vF%`]۟Q-_졁K? D:gcߤ8ye!4~ +}EXCCs Z#.le#A#v(4/z=2╋/6YQA{ㄞ0 _ ޙ^N֣/9˃DrcjO97sW΁틈Xs wlWx-v{sh,(eZ}nd6 C\aGvnӞ9cdqlh/~f~@]>_rqfWRj=YϲM}X=R _P}vNr)ͩ=G>UJɘCjb\u:5U7 kWsz 8Έ KdaO: ~hK=aRrn}KOUMR_JeƥKz},,pQK;#RmKq!zL.%\J~\z|\iR'GRjWIIKf6%d}lnr:N6i8YTﺋ[3Wx˅RSL8fE䧌D78#%i9W/"j'?D('87&sY(Ú8ebk/uagG|}HsЋv^M:MקȰ}'Ч87sqlZ}I}0Q4g[h5]ĺ.Ӧ‘sBYubSx/g`Z螁vs*Ib?,4I!Kt}|cwx!iTVk6gm t~X=o>+@3ڑk{'8]v:>nmqfI1ᛐ$$aJgRchXoqׅM0٫\C!lP| K(گZִn;󿆿ttpu˨Mيc޾[:)'1օ ~fEM~> ѢC[+X *q>wM#xFtiŸ{;yϐv6Fe 7]@>t63L'|ftlY|c7`;х) hAn?lڏWCqVzJ]U Az=Sdۋockۘp,zQL {\#ʪz#9W{".sZIԦ_lVnSƆ~V( <7{a2?"jGR%7/车oe sIb>DlTHonMoT#[I;4E$rc"s~gf6(_*Y62|b p_4OYGo)C>}b;"ITB;qF1/q1_(]gr|U!îЋuf~["*[ޟѨ@m@nJ#F/1霊p@o>УMA"KNdn;_My{ ؟5IgvmaJLOJoG^5p>t,Gv}@ -liݏogyPT[(FGA7,!q4.EG"8 e$.T"Q#p`ȓATD+*".kRLK#U7o^N>\Ƙ1j#eߘŜ~u- NR2Bi騡v;t"LqЁȟǝz_K,naJD<%g&SGJ4?23-w)4ˈ/yrV.|8gBڋr R 2d[\<#HMU# =sU#s>z۟1-7S^lV 2P"}hJ<9C|iwfeVsYc$.lv .)vLwwԘG-GrDڅ6%WKu˙).k"lpy@G)\>]mS}^9<ȇ5*B3^]J9^v3Vujszu#3%'Qj}_r}@!M%q_Ģ~x=`\ҏ$_zηsC/~˥݁3\׻kn9x굜sϺTL2NJ]$]w-G-~*iy}!?y \<ǐg Qr!7 `إ-`d1I{yUEB^ }@h/k|P#ڳŠC --ϏVa|]<) hAʉh2K؍3Wbw& B~q^)?[=IvXy,1ηPn͡om&~GOQ/!"O>n2n%{ T`vSD?C //)Qr ?zym=t;_I8:CQ<Yӵq!!{NJ_0 RЗg&#Ģq?~[xcםBW?>{ܶBNX)a8uΩn'/t9x<=~5Dإi <~(b_L -:gBvp kryȄ%NxP([lTo\)З8G#{>6s9"Vz.B5ڀu>gy-C{Mww*$"הCyF)}O/Ja! 1tr%cL!y4Ng:۷OCo%2~Měr4ap.!#a"F qKi;0/KXogwsC4yX9T}[;羫˅ 7C q~Stz*;O!փ5]MTZ#_3%Uzi#d-Пèw!_xih3 K/KZ>L|^XZܴgVrtn5Ω#{or~iM=KWʛm\CNU"vTcݔ\^U)ƦU2ox=Ω%}sf|>C(qse$ě ~E=d2߲!F̧<Z8X?co/8SVgrUg@]<]F\9QD$KeQ7ܗl~{yܖIv@ 7Gqa}xbrʙծ#4MW7Bsr4wX}Kudfօ]\}G)yI/lކD̯ ЗL̋t{2s`?vA6s1`WZ.T#ņa?awc<0O \o%%Mpb}~"~\y2y\^o\U3YяwwNOQ 軄G缯9p߷VY#szNv1˴EоbɊ y?K]dGVqXV+ĽdJkae_JC~[[uJ'}LK| K ?acpV2r!n뵭*Zј냔u?He#37'w;/Z⻂cs:o*P'|7 SҎ9LqLqg7]D==^ik>Wny vs9Msgnge}ٴΆOs6~FE(kg9KOϧR#4-S9g i[[؍{'+;b}f32wreGfc78qv^Կ܀{9m~aWԟjQϛQ^Zv8w1G2a/S(?.M]zz%ft=&cJ) h5m"tNoßtOrٴ,olWJ=;_(e)T/'F8)@y\YO4%G\g]B4bJ"}rzCIz}xLN?w5%z6Jeݰ4?YsQ&&'y3W:g.R5=`s~Ow$D`K][ϧ_BҎNQH I^z۠=\}/y&KC\̦]E5QsvrLO,88UaGYr.}(OQay[b"m县_1e;7va~^T.r'~2XQ>9+ ʯʿSL~&qӎi87f.{Y=}Aؗ=B$-wd/iMQ>>AzrM)Dւ2̒rdOi7 ֖C-D؞ t(H ȭ99i}tORP1S6]qy྿N}_v p9xM9iPИ\,$SFaz_mGA{wRLgc|l^Oܜ醺~v;/%BP .dG#҄?S׉S3t>mߜ 9۞0E[kp)g>\Kq)|c̥zJ~U^rum=윆}ܲE|7*Z,mgTfA<=٠/}`}[C9äs/MB;tq:"w]-xtិ{|{O"X̪ 5$21 _o-ho޻̾BO$݇|NL|<ŧsE?1.k$|F3%V͙HL[T1U#;a'LMΎGͳ2A#ʬvB>"1t=Շޔըf>gN-{!햽ip吏oRKhOUř29>q^O_h~ĸ/)zdҍ1]Zg) D ivX{a .hxwēŜv 8}Cǵfo$jC ?MsWpUfOMsBp/yMe4 DךTԃnݻvB"ўu`G(?{ Vxܰ9WWx˵ U),b^*Ծ𞨷'i ힷZ~mEok|T~cn*u9{tckv^O@NMS)^geyʧ|ʧy<5ca0ȉWx¨zL迎%(eٍ˔sin!%by3sCW5Jɺăוs9F4qk}>sV9j.W}ނMˋ|t,K-"_,/2H NН;/VE>n7~.7#3i'0]у -K˟rcf:0P#= {$4=!+08k; ;v|@ JQ@}Zn^ # G!o M Jtȷ'J辳##*}~ 7Q/1󼮂6S< Ԁܣ1aYs"YȯFl=)w9Q[>CD^k/gLydb]_H_-H|">! lz>&Һs߷`N4dV"X E>';"A `,[|r#n<'(+Gc.l OLS`?l(飞ꦠ|e[;>d ^-'}VHA=W`?_rLUS'PD S4N Ȉ#Kv}hou0B?.|7qۼوch= 맞Q;`гcF#4ox3=PZK{Ɗˣ qda#q{9>W zнzw~?LO`oݜv] K4q^ x9`l`8} z[XiiVyKgڿ ?,2i4ϦxfqZ8ZzA ͣ}->V!y<~ vbYd4}i^kG>8&٬k9Z?}޻B9XO0g]:=oy_NG ~X;MvLE`,aODfH}ΛWknE3Z:?5{,S(?J!=RSI(eP|<${^!by2=՘gG3ZI%h-ޅB_t?;?n ^ ޳R;B>TɦIc7'w5Vu'l¹EY_[ D ? ~.;7­\aSXW8wu[dvkzsū |/B*DvK6 d+f7瑐-ck)_d!4~JPיִ m˒0o s8AH6`IOh4' yYڇxWqh U~_Y)Λ.I}1oߥm8wMAxw5<~ڃk+pe'Fw_)2ޥ}YH =y(K$EFe)ʅF'PH r/Π:&ʍSvf(=4{*>, z- 'A,wm9gKԒP^`/y%`]`"i]]q|.e57M|-e-ӄ~ < C[JZ7NfBI1|N2hlW=\1XGɒ/̫ Gc4<OMj?\M Rm3oO&mi@<] 9S ~ jl,=y=\umȞjAX7>,HE#lO8Fqk^N=A_qu4#]/M{~2plwp֭l_$'Ӈd LKI-E}s:"nxkPo7yNė לBϰu3Uʅ]A}Ug=*Yr띴a]N6C MXAunʵ6`s bgEt +6B{w oUqd\MK} [d)98-f#qX?iDl##ɡ\<+vcs츆X8v.ps#9nI[0y[{,"z~[Zzv:xu+ {{ǵ4IC!v>4wj2Owc~*>dO.t#5g&i]}=y^ӱ/^hֹV̰c!o?Rrm7i~9pߍSVpLpa:πH 1ji_KݫWw~?-]ۗSRV[^٧NSSʱ.1>8nkjsxα="v2ɲvHF> :ބ7c^5_y\sP/[G:Vo;GU'TӞu*ᄂ!LPmHDl;mUݬW$ӺmXq22ć햤;8x %͋c? ԅ#o.徎N;?m)6},WA2wLhW)=\UVe3@O ۸MڹXG~V= ,n;dn#l?\yq/1Q>ܯbӋ2W{V;#^^{|ZOb?D6^sj%Jw=XY'T/*>QAkӀ"c֜[&9't5!59i7 &$^pCFh!OqֱU9*Ot9V$RNhO!AYUoSvQ-XinVKI5~% eqO~yBMχq0A=7 ||H+6g4ާ+od|vT:3_b}=NfTp~j7 zgVR,8܆X7lS|Cyo;~x(ɧُ=𣔑v#%JO#~Hτ'aK0#o*Ch#P3>oCVaƣSCi%Q\Ͽ.N#pR(KUSP_gLyw{Tvnڒ[AsM~qhq)TbʤAa:s Cs>(?D} 1QKŹeyXM1,q)WOs8GuUS FxJz7%<\ԃoR '.2Gƭ^I^gc= [ ~)nX nt,chV ΩCSEJ M{G#L15 *i}+yX$xB:H`j2.u y,[{DM @^%W +3OF U7 WKf<槶y>\"# 9.msr^I`S}؟>!^=#,o̗+NumQ)t֭WWB~zNj{]iwIGbЂoNjE/c3y{x%y_ZI-y?kG 9HٮJ/|XomU`eM|h|PWܒ, x]D aZDM!kZIOub !<}>(p2VdΌaz{SȐdގyb>ZB)t[3$0/Ws=m{e~3s}uWBgvheZӅR}>z,j/SvOc:Og6ρu.|MTy]ej[v#+y|2yҨ5}Dr[әw9wL^;T)|q~}z-Þcv)gZ xW26;dxO4\aogIƋ9,[普hg1u"ʵ h ;!ZwEH+,z}ʪy>OXvq^{$n#2_sO=`o2Q_/!=*|q>5cQ3>UXY>T?uwfU(LU] tWo5"jX[ i-V!JT?D6rH ҈`D*uRm^"xR8y.hS\7'R{^I!U Kh>D.bк} 4#߱NTۖ'̗{/[1<-M'`?i,L<%߉H˰AD,̣yԞ8'hg1bjkP8I&~;(__&~)o]0Ej:k+#ϑnqwuc]i˫"ꖣ|?}߮3^L}`}(GJ/.۷LG+ÉG{\ًs}+70_M3;^ĭ_J$M27܋}wP} }վGrd_}Ij}@޶$p8Vچ2xj"O{LZߠem1oɣLITnLm;dGMj IFsD;n~opXGj.ywTПںyL(^9Sb4a$о3 u|5z̻ 5=1=8qNTCjK}`ת8%˽rK'K_})+thrx6] SI"Q_ $K( OlGs5)`vp(OA^lOa\ n-`猕^vw&*PP~B[ݨĕ߄?KQ^" TΞü/qS)οd%ƽIX)v4!{cG}$a{N!tO|S?`Me9VAw@UAhxv9/Ac/l%ʮQX8Dw I1Eߤek8OEToxn]ȟ>t7fO&~:r q5M:Dgj.g/KX(w؏ &7A\#&!NKb1ncX&烖MiźPǸۋ,cQ;ѝ 3qĕ3P/-v}' ʹ](vaoNs|4h= ?Q+W1|~l`߷>rwnK #j[.|uXd vt b-41qkkkסq VOAUWUhkX^]Jy`ž=XXףB;0OO*[`MC7ӈ0Ep@.;! kČ[;G}Kny[^ٮN}?V^I*ۿE8 ~w?z.q~fXN~~gWJ>A'3_1s x7+?d?v}t.E (w"NQC~Rpn>D)GL-Iҋ"%#c;%"' Bm70U{ZςI39 v.~7Eʇ*zmmBݛS);_9#[u/k-u~'3~LWz졼Ӗ`_r1i}ZzZao+b9Gy{4+GQڊobH=%d/~{WOCq@oG ݒaߤwx39Ћez+9K:(ߌ\ {`Kxa.hLOKdA\el m5$/ߟN^ ؎8/se# my6Yȿ#gOG9]C寠4]/4wfY9Sz[)ГVw9Z9E4m`!^r8vetWK ݋"խ %mi:S֬"?!ń:S~L}iTMqδ6ׅKku3K'9S|: {wL~3EљJ?q= ͑okT~‚ԅ-a3Y^Kg #=V= 9AR<6%F鈗g`ׅ}9>rĠܮXSY-?v񵜆# y_)r||buYO> drypQ7ʅ2bd a~~cٳ?汮C{z5_C8nC[>)teh=lvlzFQVOc>oDJr~WOcyNp0Qc}._r<*Dm8 {%v>Q󋆀&o~è}5% pgo-z|9Yb|dgϽur5Uj,ήdʃ[9CWq:/)\-O 9ΔQ>|ݑ^G}>;a1+q".#s߬}3(Ъ$I30!Ys9~^Ͻ5K7vq& N).G1C|5cOB\u)8pRO3JU^1d*$+ m~qj&vn ;P/'mOuoHnrqz8:Z~ykQ`mIt)F{OOvgo+[,>뭡9SbL(F]v1ݼ].!sY~G՞XH*V*ꤾX>׷[ߋΠ⚉^}Z o.zٌ|8}~q$O\_fm| }ׂ_eDa5뿂om-Dͦ^U;FPzȢʛĠ_B;waαPn!7=o%^83(kWO sm<VG̚nkxN'[;BJТ {؍[\-֙9 34:BG_a9| :$*_T̙)pjabV>"+gGaݎpH({Ñ|gQ[?Z#OD:R^г:fM\<-b|A΁^kة2nb^C)Imu6XI:^VMZ{Ͻ+S85o>]}%jb&уB{;S<fIs(o1ш?x.}Ud J(/[3sq99NĨ.%Fs0EOR8 d\WH o"L4ϳ& t|1]iKx&Tw 8n/}QdOkt~ɫ=D]q;1>k/4. SRi8C>6τ`s̶xxڟ&=I.P&hRfd[Ht3ry}s $DsuTyγ,|/<Ԣۛg<>B'ӽK؆w# fюmL[&kg<-١x?lO'[V wNpE4$L?gM+}a ؁HA^O{CstIIx5:G * =K;͟}-+¯XMz6Ln\}dvՠ#1 k%;S~U r9湏hCgm-oa] &pv7 Z>))s[:4.`|دnI29nq%b|-|)瑲ϓVI_W~%z|F/1h+ĭ^*+ FW"ZϰdkZdJr W"hVT۽v|A^ŸHǎ|DwUNH8*YThɗqJ$gAo/օS8zoq[Ti>f]@r˪L?UÃ$KhPR&C>B~lr߆y_er5*:Si=YCslW4ORj7e~CMM{ P=#skY25G1SkeeuU՟\߇aujWjRB}bz<;\ygU>>}(մ^[G󊖰ӑ!B3Ҹy|+L\Ҹ揢 !U.N5F_;X;_lg|#_Q޸QQ^LX\ׂI`{أK00XPZ=dnQrwE!?e?q1 /w7%9Gz8yDC8~΢_wՐ3R~YH//U~ V! F\R(];8 BzԁbzP3}˳YF ߔ=I8~uw YL ^F? nvxNfޏD{X8i4xߚ} } oE~rl/ M`ǻn0 B;' [)(-A|<؂lq*KA|ϓ׀W<^frpzn*JlO~7[ Ϳoa\\o&sq=ȍy΀C`i#Jٛ>+oh妅v%H~zo% !J֟ o.?yҹ<7ofǰLy<aYq+,l_xO~@fw-\5_qN jvz=GrKПeA S/䧁]o>ᚊ7~w}}iv^ӣ}e'v(`Gy_(!mH-+EmAᇊp͕Uk>1[hCځO K+ +o9/ɹlOSQz zxTZyzN=Xn8ʯŽ4)7:TSR\2ЏIGOy;GO-Wymw-$_:7Z{n䭕݈gB Gq/92  3Mp8њ c!i?Qq݌ ,݄)/x}s/%ˣy2Iq rړ]wg;5sS >#C'M_ss~ƆάgWSW// 3F@ncx6{o;'7`1؟t&ߑ$~Ug<9/߅~uO(wz9u!w@#GPlbΘVq.K% F|W2o(K!#(*AT;yт;m&^<J+k dޏx<_4Gj}{P[7wt&:4}D}gXޔv=Ѱ@}Vpg ?Z8ܐWjz v g;Fhv#Ğ >'mf@Cd]=Z{dܛ̈́t/M6=ڷJ e3 igoANO-؀xɁf8~Y=e;n=:őݜbiIoO91={*^{Sw3ޞ"5Ϸw`6|0{#}roSΞsQ"ƞJS)//M5}E>=N`?c/bPe<ů+_RraI)gZȹ*];$,SүZ?K}_8t~ c/OϜ+Lͪ&\z)~RQv#Z#ss3Y/g~pN. ܛ?0" *ŹEn9WCy||7`_o/j6<әJ,Z ufMT^L-?K ulK?V儉y T{ȕM^QD%rǤw5Tt߈')D&*7ס0*9I紼҃Q(/Yxʥyh; cRwj\Gk^Fagp'|oY9Lvuށ#XϨpTwTvqgDc= #/ 9jW!)saރ;mqGwTId꾘3&=IvR?@Qi˃h>Xv ™%yӼgSyY'B)_.v|Ui٧xd2uÜQ N7"i)c;}>G ;^BTā>=ʜh}KZ [6q[5^dIВ&?MqK5ٯ6_IzLz_շuzK#Fv2?_ :L_KA6A5͇_03B]#?cw B=EHHJMeaֆQ־GE%=iuqܸJ/QO8uR >G\=xY95 rT.UAx[H~߹iǸJI#_z+s\ g3t;#caJ|o<KkzP̯~T[.+bǑtۻ 1opT~!&r"=111߽M¿oѺ='RKк_ZnG9B⥘Pcs)w5}:='H{ux~&zWCL#>?o⴬-p<#xzz~ZM~\0ŗh洢yyn_}@zNv6X'ɥp2^ت<, YiߋъX8WjF L\AQ[ڮt1O'ǂòc_N8GRt+ eV奰K/p}&Ҭ]T>ȟA!z_$zΤyUw {`88{7HP,E}y +uWE4O-Q٠Vԫ\*k iёBhW Ȉ23ommŏ\=V]Q]xXomgg% y].3l1Zך/qX!adWAyJ)_qyfBvR@N]lݒ-*AoӚؾ~OԎ6݀!X?]3/^ ~̞BN,EqŠW:"41lsnxXÜG7xTV hϰ77!:!42 LqE_FW'|= Aҥ;0:#.#;wG:Q{j) E^lidw,]ȲJ:Lr3c`ol)Q#:(OD7b_fGRc} ]IϑoңKh_탞W qnj(>YwHع,}=V\Dy~ ek:ֱu8Wu4ESo9M? Matߏ֛=vzU'dxP!Sˤ{z Yk%-f]_w@VsPZZƩ[֏Ŧo=靑ׅ!OO9^Ҵ揢~Д4YoJ?-g~K-jSdd^}K2Zk\.-{6{y\.9G? ϗR_>|[OM;yf9//d3dP %>Kjv(6H&QUaBo+KR*QP}XJ"EIC3#D=#3H #u=M8RDz1}/dtSDp^4횹ϝ߳^X{އ(4M"@F9Mil'BK5lMjB+'O(ԖѲ A~ȍIGc] j9u7]!@g/)u6O]l';%a}(T@\Z1)Wd ~S x#j* $3EY.OT\X27Xu]3e?*ߌ㣇h@Z8X l4vt_OJ ꡞ-·Sԍe 'FUhY[2kv]l9g9y{hlsNC/g,+qx OmFUˢ?5~qҮsؾi|m}} ߅[z@ND9_/G=cKb\i/'}SPҫ8&ԙ܄'S3 T{Wuړwˎ^07aУ?*= }=밿mqlnp8?g S:@|cFd8([zb/"ڝ~9lXdf3ѿl}ǟ oDo{?|-ؙmYqFC !f|Z_VΑɠ.˜; uZ`?GdvvcT9Lpp*GzU;UG)7M: Pګ}G?1j:[@$u,G,+y*ϗ~'n&4*ǧn9y9؃=댲=XARTBh0,ȴ7vϗ(̣{%1N|Ju5HAܲZ67 dنiK ̀|&sXY@ڜA9㡇:oWf)mih?b<8%WCdZGUY<] GJjOo#% 4?f#붪?v⎝.K9JE鼀~Í&h doV>$dNXE<M<ڪ(^5~W] ͣЫ><*~̃w)B 3=#90Ow[U#2󩱰*LXYN% οŧzCf߁G<iy~wḬ 4B׷pŒϴie+9_&ܟ_#u9aV O²Fb^[Bؿ^3hW,u6b#g**o/Bc2 cĚ\t΄S y`+?B?—P.Yn A[X8 rC3S[a8lj_CJ5: @=gc PŠ7`?sCgk{)w$kpԙZ&#;)C>PSyC0_y,%58~glp WO]?4W:k2 sM2u06&Ie{?wRLS{» ܿw!ϣ'Me ]l^OF/pg%VnWxb0#3 p]-7s*vÆߑr!yP?GX59ON& 9{+I>(=<"Ga?LU! T:I CG*S[}1 ~/72>NzSR^ އ= ;7=qxS((}ЍGfBƺW.zrOE  ON擱;D֑qOJ6.wӛ5{~Hc*eSБhKZɹϗApdY}18o@w|?;™ɺӽñmHQ?nr *%^$^2\P[9[~d^dwlɘ^Z#J MMd^M# y?0gAw[aݎݝXJ:'<hOޛ6$\V %^[ɴ!']zTuq%4t.#iӸN/)zryZ7{I gP._A/ۍ#H|/_,D2Ke)#ս=f]G793t#/=m#R23eϿi?{\w t# !tI~B"01:Qȫ0"Dy5:a(2~ DGB+opZk9͝Z{k5?4y'[ >H@ݢq4$]ZAg2uWuä{puW_0Vk)S~ } fATB*/).͝=07uX-PLޕ \.΂Õ7cnB]o\TZupgR_e9*]Ƨ^|t<ک]lZƕ0r%.|>G@}Nk3q(hyr?L%US3>Bl֏B 4\OQ\3.6{Ɨ3p67$ߤtC#+9{|E>YT9YfK1{6$6rר\  ?v7h8' #7|TX>ص٩s\vqa6mw v|3/Owtv-SұX7m.Cf cNU%`k?Lᄁ)RJx0 \}Kn]/ۜ٠8Íaڽ };04AVEs@8hj 7- %_nc==^Kfl8 cHn2m=-3t4:d u{&&T^f9 v~$//nU_xs2ȂPC;K^A:cc6rmqa>5R%nxbmCO>KjR'ɎоxMJYֹH&T`|Y~3Yҵ,t{ϣ⴬}kL^|2Q.mh/uLeJ#ZU+ʗV3=XS/r;Jт|i\?Jݵᣘ^ޘx;]$̥׵6h4͝郠|E臆-Spmڣ4v ݏd1^]9}W|5~C>Cv ߋ|qGw#~)5q{傇9לC~o3w>sq5{}Už觱oIQ9y. f<1Ͽ\ev^l<5ƙn*{_.7)YJ3zG,[pYWG5A~36}rnցSg_yOn8lfq5a ϓsWssk ڰ9Ye o)mG+1NY#)o]! +z\?08,pƄ.:JwLmCfAa>Y%iWUOuD;MOmN͑-[ ui8WB9vi}Lڇ{5[ZXq(wod6mT78nK? Rد7uJf<4=_4.ރMlÁunxoMֿd [|hOd7' s4.תcowa|KR1ࠗ^’N}*,KucVC?mk1^Syz?M{N(G;ƢݮGc~/lo'gǡlT)zLcI-hʛlcq ԓ<@[P)_F# J)ӓ?އP^Ū48:CJLԿ[16's2>87l 7ë;?#?#[Csq|d9w{H ;ۮi֤/(?{ /N#5փ4 c yW&8XYb8eVk Pe^Ń!Omҡ?/zKD+L F}Jt^ Y06m' xW.o-Žꗕ2M[ 0V 1"X ق|B7b8=1a71ޝY^xaqhgюy]̏ "DOԮ%g!KI~=KS"+ĸSOԁ}~@bJ0ߡ;˽j?ܓ_-H(ZoAפM)v()ˍ9ϐny]^31^-WKEd## Q>'b s*BꞐ>Z^_aO,15GK~|N=[nQD>_q?CJt'!(,evAķpM:@\&-;ƿ0߳T>sF$78u`Dž5+E#)Nif"N "_/1Se z뒽X=b>4> S>rxG[|x8VHź%a".m+ݳy܇=IW=UK/]jWL'4$[!;sl+ûlE!'Mu~Ոޑ Rsw^ G(Qޒ+o ?cr/&L GG轋/|S!|ꏨJz2o+'WǗO C 'z'>)O[=$;||W,~"r]L.y-4ɊNʩJy_I|ԓ}C5ʛe/Ci مqoƛ<ȣA6v{TU $0hDW| vT|B5 F0ME Jv5T .jJ(pU4LiT"AAM QZiVf|>c}\i[,k S}K(yf"8 >Cdo|EcMn}-AOOw}o%j,Q#dOh!ǀ{} :n|^!0'~of5JN:svc7!u,LSW̃v=Ih!_#1QUq(`\h<#m>B3R쿃WAS~W{`:U~ӨCL,5 }KyPfmm"IvyЍXGvcvs \}>s/}t##~_1sjkܒ7 sK{]˾M  _Î$ێC;oɾ>% |87]U*MYzƯx݅۞X1"34 X{:Qo/û=쯨XޱA >}܋DcYIIUЇ57YOtgM?kar[\Ao}5}d0^Xox *|K)%mI?އ8ya_~>AApM~Ĭ[TzG\@S&(]D d(IAU(}1@#}9B @2il?*Xrغ>6u:X:l Zi@av=ص^ }jk29n 5GRulǤ>`sp `b2TIp/~,d-;-e&ߜ`_*\· '`;+E-zhynbZ;sx3k~gN"?KRZmY\vK_ૅfʩO9rg;(xQ}Vp^P79y#`r?9/';Y >p+d~oY3mɪŸ*mqߨP|?ssd DL8G/ ;|r:;;ǺE|kz[ළ`;W #^nC\fn~>@k0'rq*5CWC{Eׄ<,* Պ4qAطKŽ~OČ$ e.z->/8/-vr|x m('{".yJemPT&n/#Q<#ny(]%K a7U'8#qBQL_U/2S"ء?_B< ~2q͢K:+* 0/ t֗Xתİۛ/"zdϯXྼDPP}z hL=ؒO+⒢C)`~G8?S_~ǐA F`Aw`giLk?7@O-qϜzzOPz#7]󜒇xϧ4vGݓiT>7M*zeуuc7]QpH.Id՟-YUsE o^;ACC("?\fE>x>폡o2W箅 JиҜ\?ENƻ<ꗉX;Jlǁ0Gİ4ޔs_@<7n?? dž8(~Ўg't3Ksi6m@eye0=EW;TݤM,==Z(~ Mݯ>9=#y^v-;"ˬO՝?(WuW)"t.DOmp&OsF6 %"{>O zзXPlut)f'c{H4К ;ha8Ň GtPFFa⟤?w ~NӋΝqYAweUd*y /19U1Nkk\)OLs}4wIuJy~h}}/QA29DQ};mg[,zG>$aUO,cE/hU.klG~\5y `A*!%Ge>!TuRJLǘ7'&}F/$݃Sm'7b9߭_*&|D&;zKA[8G]<ȶAN!^G\]z;~둟$=3Imz!rW0Ԭ{G>u5f+G4^SaF#MҸ酈_8_j:Nm \g/fSC ʆj]̴䍢ai{sA0BZȱ{وgbd#C/o~g>{?^ !\nm~lUl]m-vxF4\#HޝQ׫Qx4ziB,Nso\J ]1Z(V~@94n۱iFwFiT*veQԻK~b9Һ~G4﵆zGѸ?H&7`ICs[z%?煡@+o }5>Կz=ˤѻA)+RuZ,|_~@.0Ёho=Nr|/3~3\uYS05W$ၠ?w]CIofl?˖ӳe_˶Ս=k+CE_%9ɧƐ8a NpWj~(sJ_]t%n{CU$jwrA֦q̡=bȌ)G|Ծ]ZLglp6+-˵ y;?voxH=0{5Y;Gw7hȶ3EFyr'9-F;yGg:t?2myN3Q蟧UIس-"KBw3?  .Dz?Q.!~N;l:yoC!1k3!,7CuOI+}6rWeFu]ir0ؗuO1.VsjQ.~O0~?W^ z/gV5xfxu =TBAha:7O}}WL-F=F=H?̱3!sDU~֟yv:F)ng2Ydq&?I#.(<031y\}d>vUKoLO&Y ?I}?a}^C_N܀d?g@#eEFĒǵaaXCOwJ^ 0כxZq ^@)s߫ HpgOsh4\Fz!^Z̰)iR\8ԛy[]_HpŔŵ|V#/AF7#Oҳ׃7L jV_fN{<ڻI̺W>uag|5敋zG? Ó<ǻ(Bd G =umd=Y/NK%ΣZ"9~-YNpb;sPً},:>a˃^caVkv'oпvgaոl7p~Ӹw8P~DpwȊXu`J o1\ط3ck7n:dӇ#N4]z&pg#_2?j|_U=Pg@o!hς]yr![dHc^e1م9>! [^xVo40oh+%~c s|݁p"GP(uEW-Ƿ,ϓlm~0(G?@11 TTObޢ ː=eֱ[.#~Z~؇U^6cYŽn9dmΗ 韛xxXɇ|o3P<Ӽq[c~ /9[] @=iF}}w8s0$[}L<[G8e?꜍~u@i$a-OsEm?#g)TknTYG}E`)>pm #_}E+OuַPuՃT76_Non=P2yb Ϣ G6y6zh8[\sC96#;? {tMƗו+B+)P Իq+ѦAKDp^%%**$R =!" mH Wxũrz5C;7Z5s5kǏJ < 9yA=skzqϻOn{݋Shv {YGtzS`jSɫ٣B@B=ʍ`:dei qK`0~/jt_>"ruZeCSMoP8!d|79 T nl+KPV@3 WxJ (Bi(y-L;T(vO9fѾMpȉ2Ei<ǝ<^XԕQoA[As7fV}&s߶8s\cIsϡz6;ޠ6ߎ]/h|qN{k#Aޯ¼bcHy2i7KvV:scl/H"fuO,u BEZcYj\SW8 ޷9j'3h^7e)l6qVMߴIг4r 1޶8 Qq5|usvS3V/_N ي]BoT?wIכPw)'dy 89M vW쐢t?hM^[;VGFORv}SoOSr"_X QG@2?>qKRٚ3,\_Q/k\41Ӻ1i~Dhz.>m/9*.^)1--X}y*'/ Y_}vI.Oۑ)~4ߢ7޿“ȣ 岳lw~C_j=Or7:VGσ_XYo"۝Xխ@~+f=d]Wy1)r.sJ!ឲ9҆~ !9ww9VvAn6I}L*KOC>#ĥosw^׀uڰC=7~yo(L:eB%]sA~WE*LorKNwn:՞#bhe-;CcꖷUU(ڎ>(lRaɆod,X~Z=v[/b`}s1Qȃ?<풖"=y3vKٟ#TcKk{S0^xwW!7n@~fo8 ]nzpgjVߊ!O][j edF+Hv\uϣ^*yP |)HVY˝')&> o֐h%?+M?%)t _ux߆#< ?6iz;zؑ \E?%Rcu=\>dA-oy-q[ghPv\MMXWgG]#zMjaܠƓ:'^,ߥ ơ_e8v[%r(3˼ha߳YQiV5̭B| {^L!ThpJҟfjeG#Gm^=sG.u2~Έ/9_T9? օU1/=q`~ݤg;Q8kUY)5g>Nol~F{&_bzqmκO>x*=Ac+en]~K ut]=<QJG xS>#y]ak/gW XU3SE@E" ڀ#A@cAZ_󁩄Dc [J(|=e5$6|`s4(~Ͻ=3Bs]ɔHbSVo$lG+_fI6dmH71 a9^ͲIWϞe0cq˩AYsSJ6 30K[RgkYF e"DrJa_ qN>lMZ SטYZ3+5:0'f=v;[՝y][cz1̓_S1ן CX30si<xkP>׊>CƆJN9S)w{/m{մq*8+w jPecWqPeP#l Y1u^۱~awu~tx&EZM8c]-uvϻؑQ5ux<ߴ?xSاPʁ_Fd. wd؍+Mƻ y8o3r ix}{E]lՏy}:a'!!ӞI{g?_]uͰ}EfkY:Ŧ\=&ꗔ]|?BĻp8u"R~fҝm=O\‹K#Sʔ sV 'Cm-AU$pkh[𰛳:C}:Aъx AiR"(P9EpQk*/П}\kpAٳ)X}6 hfwٓEjFD#,WS;p!I~}q$,S,e_coȸ #Ph?[h|q{k}c+@WF61E#mCxsğ2 m,VJE>"nKJC4ơ5yP0:V=>"w!V I1ЙܞIB9M6i]up+L YCpGr9 |mKPsK^+Wߦ9!?V.|{Y(E6'-Ai'ѓWZW+M'k}~*~k/)+5~.}#c':?qtL 'uYF> xʕ,Qf% |;#7 e|3i\j4$M.Ib-$H#PnP֪l!J iVRB*HVRYѪ3;3qj9߼{}}/"Iú*"MJ4 *+N;VP),,Ma?+DPyN"eReB!ϗi;F \lHCi⬍N_TLXW6gbI K_x.+z~ 1N>Xs|F{V._Ph v/4WW/AqsۙoXY*GN)uY7[r*^*r"{/7s/F0a!)Eү&J/_,\ފJ3Z$L,u L+|1J\!^tu:Qk-Frr?ac{ZQQ (w;6wNΨm@sI/Q-O( XۈVTAh+ۄ"tꗐ%~,#kUyyW>t s9qi@kX97H+ S}ە-]πi~qM'Z+PFs KԖ'ȫo7Et)z>W~9{RMDN "IƇSt!}({ԅ ϠX\t/JparfP0cS{ESKURi:9#p~KYڄvmңy̋R6GiYy%+Ǘu+΂yp{TN03^?l >KvN4z$IN?]˭ecfެ/\lBB2'2Gz/g߁AM .N炤y٣dx d<]Kd8I8eD;+}N6t߆qƱu8eSnVI|ipi񒑣~|eJ0b\_]2$E)?c?y|DF硺SMڪ~浒F/}@yc|m{ѹFN,t&,sa잚ލ;Lх\ƨQ۳&9'Y̭J3Ry؆m7 'm#*co5f5c4^i\vo-6oh^G_A:3;5ֻr*r8jvdБ@|]m/b)wxo=; ,3L ז05M1vl &|Yv.AUȻfMl3>N=fUօ}W3HX΢Ÿa f_SYNCIݒul`;➊ QJ8cL@vgnC٦HK!IB]g1{D썳Əխl!&L@6=JD >Ͼ1FTѷݼc@2E2V]j6-:sU߲$1pkMf cr2ɪuNIc!o:MR뻁3Bp3gN9y`SXNLy#od|mE0ߟ3a3wq6G! >̣`1ftʹ.mw XV%'$_/6o2>'O8c\}dQ,EsƳIdBK S'FrTڄ>%¤CwS(i2_`#b7jcGdMR=On8j␗ym1,2|ۇ<|ܴOwvoة6lJC/Vik;> d!IWGĂjG6.qkNraxl|˓ooqg(k>/a 6y-6c?C}ciO@p~O:H̚TkI[ނ:Nw9)d!yx\^ g3G'u tU|Dbw\ڌ_LRٞϝdjܙ tƿnBBI@P" `x? Fʫ(iyREj0ZhjE걈UovvɲnB9vΝ̝;wsgKAۙҨF2cIҲҁFf4%i IKzH[Wz(F3Ʃ6kԥlzԊ4 =^%I3>5#U]Αnʎ#]}GRsfey8F >єI*ޭӵѦ񺈳Li*]K Mb_zEdПuIñ>twZ{9F|o@Zгi`R }Ϫk%`f[UjÛ ǡtcE?B iQ\ВrHT1@<1PN^pl[M`oW~ŵs}J^ͦe({?86ݴ蕭 :vd]JsЄqٮ/` f~5ͭdZt>`{i ^BiA?QF1cWIM/CZrD? 7f,6 5f6>@GGlDck"6PoE}R>>zZzO}F{4]?]B\{_zm ITY>Վs2Up\<[p&9ܑ3աĶ~rX]! \rPJЋ_W28ݬi4(61MLA] ΰ Niu%r!sTCE=qFKFUh¼ž#hÜ@s eOEY{ sa(hAda[]v&űJ,ξy59cB|}<s|洱=n S70̷8ޝQq `1-n۞[vKQ [GlnOo<ψ7 _e!tУ*wK0\/m:jc Wuzտ9yd_b= :{S[ J4Uq["u INC O -m1WUXb=2ޝ[ mcߛw-{C\XmL[d־<^'q:Ub={s%0 ԍ/c)f `o֏ʱn a.iN(k.@)qQО x)Or2] 2x/N\/.%hӬ`XX۽}Mf~"eNQԊy#_m쉞F8@1G_Ĺfq͜ą1\)Ϳ~%@Þ8z?p-v{D,r2 "W"r5nxCr5 e,mh$f?f{nKm}!&~5,bS! ޞS0;m_|+(p >3RrI+'˻CD(qdXnhWQ$Z^ Sx$WjgxRRRwߙM)4s rw֙2t!qsUToNg !w cռY,>۵]_g$$wA8~?c2 6u}hN;9:Uv{\UU7 A#eeH*JI9'$DȇP99 jI |X |T CtpJsoя9|YkeL}`= >մX{JjzXhNAZg*!Xkp^nTFZOmGàY/k+8ȼ| ,; ]IdwF~ZLˌ8r)~nW+f?t4'{=kJoSqZMqy=D3yWyIRFFvRJhnςrϋ&΋7>\>WGGqfN-ڹS<6-~`u㢥}(Ȅ@y=TxȾa0Iր{WEi}4z9tᅣ6woO/|n/Ͱ.:9 bN2-ӓ?}&9GKę^5?W鑼}bal%ڡtcJ3~bOCzn|eҩ%QKf^&nA)küD_gjR9/zٛW7s&\X;-@^ G1ד`6#V/"":?ѽ=F[Y|Ůǫ2; AqGf?mW~Óx}q/ ⤘0Iۅj7n=`IQML&Ov2[;yMo2 د65g,kw#7Ly07 M &WZ|ԤcsN,SƟ,6i^f~#g+ ޓιh+޺At`3kW(oYMXeH9g.G>{n6Ƴm )Akv?m/ݢ|w>;;]a/3haCʟD{bYj/X(_ P;ᾒ|/<={>}B?6ACZ SS2w(55 F~sՔ'Tǫ)HTS?d.0z ?qϫ)M=ZMa@ ˅( LRS8'Npx?G|G||x|""?L*CdXF{"ל?Zzs9"bXgL)S]c8{)E><=6ݐ[DAϼ])ڐQv,ה'}X5N={ $q#[`ߝmN 7U-cI0OTqod7# TǷqcEhfrj CnjhP_13f>0MD&4Id%ERk1F#(Q"sFY׊c֜Kg콟ٟB3**JQN25,/oRzuԁQW*l]^D#Q>:|t8AuoK|PkzvC^b?P/CȦ%9bLy{  yS4In7@yISmkA_U6fe@|[#3x*M^ *w)AO[3Dz@X޹(?56nN*#\N}ToٮR}O}*.}7&}[ڀR-M|)قkG?@CESP@}hקT6~~vߒ$k ,Wo9x=uWs v|y{X{ $9 _c^ZEnWU!ޓD 8=8ph;0Ge~G//[Q;اo 8#UCy4L47O:9hom;J<i cz z}:8Iv|ؽi³xawg2滶fӞv(h =j{_4%ұtvf.?Ȟ;ˢd=%`Ûc{!*7)`Z؟ǰ^G6XJil;itFjr~k_MJX3ihWMQO駖/ƛ[-xӂ&)2juY: _Ԯx+܏8g~4o`'E;cZ}3mx+ƍ"u g{2-Cq ׺!)=W5 3g{Ql/s<Ӷk*S_ o<xlƿ_/MC]AuG}tz۷f\rw״(W Ы?Ra^3G:}pl=r1įro,(_}T73ָU|(aa>^LDkn/@7:"N+Am❱+rG-LVEMBR?i8ǁW#u"^9fӱlIⵃS1,M;*Zmb^? =D#Wc_a ɣ%2.uzFD' u7mj <*_aWVݛD~sB1w(neTZwX;=x:tϭr}8[xf~. ) P!lߜN->g,uƼ.NGpr;;/1= (/t$tug ^s&HJ>["ռ[zKWU8, ݎV615m&?TET">R6ҏc %D>Kj >uϡ^J؁*Q˽+U.凘O}77'57k>2я)=elU7q >du߳]~GLZHY_]w7n|`Qʾoyv_x2mE=Ry70>;~n"|75\D68{}oUi#yOo{`*w0ʭqέP< Ǿ;!qFuwJ.yyqǻ= b+ICQobl=s>R~YFE> h?PEo@]]qIr??Q>9cAkMKir ݂+'Md hU)NBܐx>l=]Zֲ?㯭0y|Mw^xi{KDzE('CbJM c5\1|#j:L% .[{"y}C>vkk+?Ӵ#Bu٘/xj7ZJǒl͉&?FMJ/C!%rm/Q?)ґ~z ɋ(%=WH6ȥY6ZOFifb}jc .Ɯ<(J+DB: Weʀ60y#!\S[$>"rZ8H{_=hYoD9*diD{yk㘊Ru!׹ 9[EcRe>gN}@HS+M~u =q1Rssg#3C̅N%)F\Ծ7O/NRvj1# #ȋKuױ5 0n78 yj~og]$I]``@m`r*of>sx| &0r yл`=UЯQ/_"W"oZ@no>S/KOk@P9z~.[ r)wR5OG< P`N-D~k]asq|-A\g q8 3WKl ?GY^~9 De`SaY'Ǐ]l9ȣˈh/SY߫psi7༽pGEg8ix#a2+(4@nWΧќ>BOc5xqٙh~W\S }pE*Koi < =Z2 !q^)/koe_ܝy2D/Y(?]؏LI4o#yvgrڔʁDCkM(\35WDk #쏢~bHO[j&cp>5}~ޜW.O5 a/盨WrnYXs{GĹ(Z"?(W\+WXoe9J[~[Pl93o_ҠܣΝn4h[^>7\v5Ga=4A r=T$Hg~[`WrZ#QVE4(d[=k/dOzY!Ԅ>u6C܄9XaY[v@G*V9pHD#9Rsj#MOͣTH|_Qp*-D>Uq*Fźy*^ݑҞގT~\O3AzG'#`/#0dy:yH/'Zbt}mwǠ s݉1GWc//nN &}ߵtDFJEEKW[>5?9Wj PQiGPp}y% `GE}U]ڢ~w=9͊}y[$/^{P3iXqBT+ M/ktZkF(6_(5̛}imsɁX}p S]einM6 9fa8ήzS0:t];"=ڻD}4)iܧxqd{'\ɑ ngv%A+vl\J8?qӞ~J> v8G(NY@#ޘE~Q`xG{8?|'b#,>V_N `o?ę,OaJcs: &O/q"xj7Y"E}BAtUVzxF}^-Vh 8 4ÐFvpp2oxMqYDxy qϠDP1uS Rȸkq]փNE׺3B)ʩ9t5ED뿾+ŭ6$=uPw3]#(&}5 Iq۳oup"o0!o 7=]FZn5#weocַouJ\ص1Imbc·^(ӟ:Ҵ7i]GH7; TG1b >1jp}#15FPQ#(ATbDPA0f+i hQ̪hTQ4jzNzR8ޙܙsZP]p%6C01z#gOQupm^w]9|!_;GPP+(Z5ՒO_8~j$ՒSk1}[Xkͪ(+3'?wc'?ruwm)1-S/]#58x$dѿ'^\zO\ wC~[CVFW21ReQ{lߟShIEGrmo|m*/0ةP:w9k9z"9CrʮSgcƺ8TuD4嶢~ޜ?fԒslX|Oڭ…oi`x(M*/\Cshg?RҝдLԍ&ʣx[ykZo_~./ex8hxm]5Ouy rAԏ޼jxi̪ wI3h(ejalN ;nD=~ '*I|7ǔ̠}7#Χ">>bC.I1*9юt~_"2Y!+ωrMa$'{[9G7>(9NLKD^3g#$$|5%}ArXasq(GZ^7J!yF?^X-|2GqӁ|ew ; b5}ϣ]s "#Jo\phQ7 #HB_Q㡆(pwG.|}rI}!bءs>tsEՈc&[U(c ߛ =,|8nF~1_=sk? YM\aQň_oy:!=t}Z,dE|f,0v2%+A9wC,a%uiR5~xd-8^9 h&iTdU4_,lE"׷H|i;$-qaKt=YzR_ڎz,)Onkp$0~r:oFFPy\ +Z8JĻiۯ@Ƀd}5lkߌSH|{!( ƹD7Efc"/wuKٵeUH~6G`ɇ1 2P4V߀&if5|"9wf$qLQܻV} [&aAxvJ~F=r.oרC vcҐꥏ/}i Goz'5 Ok-@^=}p[;|BKe<_ɏnue$7h;e)8{\y괗 ͞!w#WpAHvR|R/ܯup|f8_u׳w=/[}?3W B#X䦔G֌?2J?[R'za;֕;@,:oRSouC^C{&ܻ  *QPƇ}+"^I<yBKi/}'߮#2FDIV0@N@o(wtizZP/ {JE"U#ҁls90(`2=Y1X >o~B^vocg@z&1'yoO9r`O: ux>b?r<>RI !Ô &S"iS+Fr@rC*3j <"O֌c,ym4ۍJaʸ(,}xAo @?ɣ>d?,<`<}(КR7r|ncqưtuX?qӸ<,?m̊FR"4 Y,)F1 oP^)E?Pd6{s@OCץHRs<7r<]},ANhySs֕EPm<6d'!8MmN1>( W?qT9Er?zЎ҅yx2[xwZY+ QE z/bWlE=|3CZIN0ޗ}>iHZvbTc"g8[T h˨ۄez׮PyRb9og>g:쟡%a.P Qwq~׫g*f^arvԓ'zL Gv#ˀơ*~Q.O) 1x,2 UiFרϲ$M"1.jL5W ;/ AQ2WJEՔNf!*g:Ҹ0V˹Ȁ'1փ~+0}HۛO깪j_CMӗԀ^x3D/+ֿdͧNީsYSeJA1C+2`Q84y&yڋ聸e/-CT- zb y߈y #%gj.uə/ w|cHFy1,uy~{A2q7~eC6(1 =r\h7ql;V -,qoeRr,e ҟ ;@A)|9v%vS=vJ9x~Hh"_:18tmdLA>ɴ>HX;?!x(ȫha|&h;->xu =6'i%QVJO;}WVBr,c~${(킡]C^(8?ҋx c>08xړwMǘve\к (-'&;Hta Ft$sHøia<2>ڵ(c.~Vx{R3 ~e*a%lqY%Dtf0X//{.dH.%dup/91OR^5^?ګ yj{Bk]!M)к !0o𾕯PїQ%z˷'͇rs]3#!?d&@>+]S$_`D'CN*` `/Ν^{><[A |!%yo+{mX7ODfz0S Km0(8dX?{R [M8Ή8=aqMw"}J>O9_o1ECD%ۈ8(mUk-_ !"w6Wj޷_n ߜg*>WOlo9_M[yx.ص{{Յ$~lagjڦ yERǴ8 -tU.YK; }k2&NN],kԽA˥lQge8y/p3$!+6 F%}ȴ\瑝y"~zQR(Mh F1G*{-<.,4Oè}FӼ~ZDՕO|¶M_z ),e#}#|$'rCz~%V4Y5XhO3K`OZ礝/_d gwg>D$[YHPgqGC׬:~g ]UÕL|_H>`H^BK{hԞE ƏPE-朥+ٓ7sFvFMG aǥ3TOjy4sx҈t؏~Z7mYq嘝$X8Óp鹜R 䮌{HuxRԏ5̰'KKhb2&kD=s y4v;8+ܔHX){N' LZfz%S\dL"{OrNSge$iKyTG j@Ѩ͈cA|g+ӾDJ;U9r/n ʡ01E^B=;Hpv-36@MWAnl'/"wHe@3.r o=~$W&@{ul<`Xԧ d#I}{evE=al\>Bס%Vhn1Vb}$O?z̖Xꍧ$Rn[=<< W= r̪5_:5[XW=Z)\^͍uRyׂ w% ;0?2@O?L`IMK~.E;C`TׄAy'J]%:8H sDKNgRBG2,>ىk0lwE?H|r_#;|gHE#Pl1 1ŋw N|.|u9-HzHi>sLַ~eX|\,n=29%ᬯ_ Cu4򳺹ΘONTo̓qcVc> S7CyʵB7:|pZd`p=߼`_3I'WJɝ۰4CRݏ?UC\6+nB"mlݨI |5{ORlT~=SO+̿]#ߴqWN˙xCa*O?muqYqOj.بVZ~q S{lq>JCĚ>X=Ii}%Z:.v;[)juRyfv%i"aƜ|>T*3[BL:+Rl}@pT$q!4 ub}蟔/Ε?]8-` ԥ>hA(o_V4o)/w)'<$ͿpYT3cRcES'Go DjayBd9 w4o="(:py2wQ^K|tͥ|+9-x ܟ̌sOQ<O_,'8OTzQXIJ>`L9#ϔFDYH]pa^zJ{bOđ1D<4QN%gWS9D#ġ?)Ɵ ymw$qD{@Dq;1P#mǖgP=ˎGG0^D/@n̗ʅe|~<ދ13D~x3ԧZM7Y*;P$'wq>O7_;?pd-x"k'T uĴX?`7Žr8έll9Q9O)E KxJFe>Ӹ'۷ۓŅ#l:o :nwHuZf3x5|"fy*8y~}+ci}y$4f牑D6/pY[!\}!gT/! }&ALq#쌻؛C#v?-B*kw,q!Q":y.d֕(&xzϓޮN߯><~ޯa܌qrٚ!zf!4:XjZTgyu%|u-oL\1wkJw{jlCLi _˶P~RW"u{gOԳY+ ^6Z;~~d ޷4./Ϳ9}hӾ |ueYf Gs2_y|@{\bS\=R=o洄<ȼBmŎ6\DlRy\UǷEIj^(+WE%CDp JpTLE< U01!݂SyoZOt{ڗ)E%].X Z#`C`lLCVfLVEf c6)|>ƒTnԾkkK^~Ə|Ơݬ04trM|?̅#(9Ȭ @q&n0L>N֬ fBN.(!y QNB%G?<-{RWDypRw׈ f>H_S(;yRs^F/i{ y1cƱq]LqU]_0`׵hםwN~+ߝhցD<؍-#^oUw-1 &w\C|g7 O/T>xvܰܺi(,Ȯ0^De3?x {_YCؽeDӑ Q> ψyN8玐K[a틩/cݍm +.WVQ[{rK,y}x;Br@&rKF?]8}l>]/B}K_ }3!VO$te q'/1yƝ{ru*/gЯ(y\qX`4sAD{#NЧ(҄( @#w0Ϡq(]vS⣱^s'=>v}Gkv| {~2⥾r{ uk곏;={sb/x|1h^Nk$`9떤^W{r9C".ufwOKb2۾n[J`6&JMۂ!QO5*!-zvs(,У Cz|׋|RP+F?9a j-T3WM䡟qԐ l:p5{ѓd74{A~[S ٞNL&맦z`@ՔvΙoQ6TDXE|wyECp rwiz<VʇKu?yhq{=_% Qyȳ?I]$"N?4}t܉s7P~q1 >5Q߹7+U=wSxq(n6Ȕz^}~5 QhhƫhdIo(;3yxw/ q-o6&yz : uRA@gXce-K!v7D?aS;y"Wo!3D>+DJ+|qf9'i^y wuFfs{qI.+D?icTؗs~b"/HsBf}G~1V] 8noǼX)M9E)LT+:z)A!"5"N7Za WKa>l?-VN绰F)=NM~~l쩼&H{WD%O C]ڢ@oX?Dkhoυ>Gt4)Oa}v5'ag~*{ 딵 01%7r{/خx%Y',/KLuF֓)t lBssQߛ$[z).+4HTX2ۛ≜[W8/'{ZW Ā ?.SޣqyW~a$łQ^{E~BM8gSHbLQxC}Wt=E|엠Dߕ&U?Qj2vk +OB<{|\UuF6?}oTHA:MiX~0 Zq_Or+t8LR00CafqWڦ|bNh];2cP_֏F"îao/t"+;wT'uҧ#x^i ;Sf)W z%Z>ݸ`7?Jzliw杉;qu"ڶ#0Qm~yP Oω^i˧V="߳i{Λ:MgdEObM;6qE7U<0qZ= :_>BwɏC⽢fA ~R}Gi4dlՂYfZ?x8?GG4ț!؟̛9O kGq_qH< _̽,OZ"59.lx28p%ΆwUfY 9_Jv Gfق8p`O Sװt.ǞH3>vhex.}R;~Ӑ x2vgiL;(pE?Sꆈ7\)^7gQ]G| ˵s|*탣c[iQF%bW+ܑF$BFvQ#(qK?xȋ^y&>n.?K{fW()}o~{/ԙy|Wǯ5]2*b'֌-M)XX&K a%4Z#cUZVc{~7xS7Ous{9s1Av0Lwl 990D+hlJr+ـ;@ (Tjzs_L-^8g# zVyZ:S]1cLsfۻ>}ӄ[^(`84=zq-c.RxreE#֐VA[zz]ڴ')ږ~XO=[ ^~ƍ qIb>3mY2r_ނZɔ oԮ?~d/B%sO/ 6;`!)4{ۏ <$֯)YcIV=}jw]1s)Ghoi>O\yֵDe iIЮV9ɖn8#d4ٻEi 4Pn.ѡ>e<4w^DxG6֕cp=A I] CW\=MԅB>`FAϟ}:%iSG$<tv:9m,`7¢o<-&sq/EJn&oqx݈>^rZcOĔ8_sUdjDsJxdɬ.PڧFIa2n>Ht qL\s!3uaoD0g*8/fhAu1F6塶)5po-(oVڇ l*[-up)aoy(;/ 36vx-)4cEYߕ)w|ښî=]-u`u.|9fB/AۉH4U1䫏{۸ۉdjwp~﷤?9 @:V%.<z M0p+-h(-Dғb 'PS\']Pߨ}|o`g}AN]29/i=1f4~R~y֭iL}o] #Rj#ڭQ~Ont>߈} }~ϣ}LxLg1^)-g]FBЗ轘ށ4?Yn\RW?E}iOFa-ٞz/Y%NqмRo~o̼iuFp:W;_*u0kˋ *ɏ=G5sc:d?*R`R>֑| _Ϡ38/lYѡ6_ϋ}a+,z_qRX`<yAP ~y _*#@Po6 ny`/≒"rO·Gr>Y2hmsgM+Qr-etJ2!WZc?&xߙu+^Hta~k?-8? ?>V=kVq0iIz;m8G}]9!hW&Bw>2e=xVH'ct七'٩oq_ܡyף_{x}s`M-`ݝ^=F˼X^'32[`o e(x<3炦qD]-8,r1fd_i*ne?Kt\w'J?ɑ~(߻ #ݰڸ>i`~=܅8"տ"Y4JwD|gor7_O.dw/=={GA:)Zyu/YP8cEw;Pu~DZ>ZϹWJ 3"*\LLWe^7GϧE!ڋoIC&nzCA7l(cMhL۔Fy8Hv&Qcvn"cO{T'uO=\j)ԁ.dkE^P{k5tgZT>d:`f`mA!WAm>PhT(Lfr,SGp10 : m@SF7̇B80ى$kN!;nJl_9hqyK5LTHsTT>4Ƶ릠~r* :jE'WSFb>bvKv/WV =K@ephB/?8q K&Vիڼ]Hۖwe !ɪĔĒO0Al} ;%;s.؁EE{LRr8)_/77k%L-[BmjBOU*äc]e>`y^GΨu 'o}J6+MNR eHRJir>@JsS4LR/%9Rc}-%\-˘&л\2Y񛵽e|>RYҚ~&;<6]PoמPx rጷ~˨.= ?) w6H3ǩS("?hLl$gzl+K|4QA4&Xh@o;J5"W5ݝڕH P!UEOLQeoG'Imi*,$򣉪LJiکuDqr=cZƢ` +s|{Ou`W.vCE/Wnܧw133iՁAUs֏P4&kdpCp9zء_Һ?%c^D+) IXȉϤLu.eũ$WSNq&9wP}&A<3ht?ci|@.DG&)ľ +Ok&v>3{Mk{ {Ub{9 ?]7ɕIT#Td8uY{9٢Rk)5kj6} ?83_'h{i%zb΁6/p~Ƭ ~Ȱ7Źօ=]$ef8|k,xq\[؅`<͘qR&cl(/"Щ[+XnϜdo"G֢!rP>L'r_+_QEMM9ճȓWE扬'7iͿD!ऌU;כ*f|ي?^[Ws7s.1~l7쨰K(޼hgvzޡ8$g 7z- {Łgs6z mvgf8ȾK~>1]BG| o3ںUgޯ"]-}Lh4d n480u!ȏ+"j:1Ж'o{,eF2@ ěWE\fw ˴tƳ \Xep! ^U:V1/%3OkGv 3psj&yQt>CCi{hV'77㋲R0Α>v)|ea,ɼ&~G G[7/޵{p;ޏ5myD6zsqbrE. Y3ɩn&ʳ*j~Ya:i=Gf " #1숫ȓ#hm}e4ޏj`ܣ g[Q;l' Mx7FGKpnHi<ֺ =hɘw`]E>ha]9?6{\db&;ը-K nڇ,eʞ/:?&Yc?Spw-^9⬅}I91|d] 6ůx/I[1"KUpЪ6Ni=3z(oQ_WnVNfi0YM =w˝ZqM=Ѣw:-^Ef85@\w"q'onu vuu'cv)Ɋ1`cʦlܒ9FZ?n naߎĹIKyΗ⤋;>(7?:ϝNՂ54.OfchOV߅1:wH֧U`J h7-{ٹ҄2F|Rxr:r:kNR]|=]@7:g @]7܀|jU~6Y%c/٣xlMڮ<#+7| PTe@*Z>R|$ !,ER`1"yE|LɈoGI uAhH(!Dls޻/t)Ϩ?s+d_aq&MM6CN>gM~yރɼ6;/^U@fW-.=0% oo߮P݀'K+e`NOq} pz0лu!q%Ƌ|5^0: xbS2;/}`Ah,XWC(ѓ'ӀѓέI0Ή0l&p~xOϢ݅8.>ƦC&%Q%\r5%Cf1old֖o z,xw5M;Ø#ާQS]vh矏+D S=,N-~\&R/ "gaGPGJ3 =+Lµ P(DAhVu ;^fQ< Ӎ>1PzcIdWiz_=k%5׆.:g-k} ƺZ8@j5sOn.?aO6w?X ʎCNǸ.bc<;?>]ҋn#;JC;wq8ຯw>t})i$0VlK#ɗ:_w].o|oTA\<3Y4^u;0|WH/;p'BPg^1/9.$u'Ca犪2װOb޵4裉_,",9!( s'+:`|ݘ.{UB|=>:z΀qŃ:p@1k@[ߠA3ۅp.G»jfC^SNf@o͌$Ln;fa Ϝ.1Vj9$my|F8ofkoɤ;idC_hCMwL]S| g1_ {>Y0/6;9kߩW@8>).\Bu({PN8`+ab60ʆ M#)A4E5#%љ=l9.-Ҋ~ڂFP#駍Ьw`=B|46g=k.5~2diOIAc,ZH]M~]NQٔ% Ūw%44*u R0fR"&SVR1(H,QC֕8cpĂ7ZXKa%m~(5*bTO+Z*N'fTyćaJZX?u]t^L3Hfm ҌGmEF*\۪8KUOV","bBO4l!FRJ, +g9ysg}E|9w̝3g̽FhMCz.1@RҖ&)1Q=o EuPZP M\ˬj?9䐤P9EP-RfA=݂śW1bV&<)3eoWfJǫ7u ଣ5|jz@~ NsM/L|^-5"F3N4@[_>[LȝcUyNX.12!)pZ¯(Ikm2 "Ǒ M>rllM1Q6>`h˨[?+vֲ/K>*{ptUX2f2y>#:7>nBi3.j1s, L eYo{[!b+.7ջL1Y7g?Wߧ^7 .l}ĵ]T]O+(m-hE`f@Buב~wRU]6ם | {{w|aw IQ2 =SЇ'Yg}k8at[^So'Y'k!>1] 's1ITXtxYNW+D ?Ai !V|=_wvu{^Fq4ԏ** M6x"K:f#sQ1 1bRmk7ErH9dsx|<&{FKp#'6/Եr۹}&LCuo8ŬkٸF }iʚ" t~wLH5Yޑџi;bH]yCvF \numUKkAĄY"M`|D"*cy^j 0) if (id == 0) if (isempty (group)) % return stats about the whole collection stats.nmatrices = length (UF_Index.nrows) ; stats.LastRevisionDate = UF_Index.LastRevisionDate ; stats.DownloadTime = datestr (UF_Index.DownloadTimeStamp) ; else % return stats about one matrix group nmat = length (UF_Index.nrows) ; ngroup = 0 ; for i = 1:nmat if (strcmp (group, UF_Index.Group {i})) ngroup = ngroup + 1 ; end end stats.nmatrices = ngroup ; stats.LastRevisionDate = UF_Index.LastRevisionDate ; stats.DownloadTime = datestr (UF_Index.DownloadTimeStamp) ; end else % look up the matrix statistics stats.Group = group ; stats.Name = name ; stats.nrows = UF_Index.nrows (id) ; stats.ncols = UF_Index.ncols (id) ; stats.nnz = UF_Index.nnz (id) ; stats.nzero = UF_Index.nzero (id) ; stats.pattern_symmetry = UF_Index.pattern_symmetry (id) ; stats.numerical_symmetry = UF_Index.numerical_symmetry (id) ; stats.isBinary = UF_Index.isBinary (id) ; stats.isReal = UF_Index.isReal (id) ; stats.nnzdiag = UF_Index.nnzdiag (id) ; stats.posdef = UF_Index.posdef (id) ; stats.amd_lnz = UF_Index.amd_lnz (id) ; stats.amd_flops = UF_Index.amd_flops (id) ; stats.amd_vnz = UF_Index.amd_vnz (id) ; stats.amd_rnz = UF_Index.amd_rnz (id) ; stats.metis_lnz = UF_Index.metis_lnz (id) ; stats.metis_flops = UF_Index.metis_flops (id) ; stats.metis_vnz = UF_Index.metis_vnz (id) ; stats.metis_rnz = UF_Index.metis_rnz (id) ; stats.nblocks = UF_Index.nblocks (id) ; stats.sprank = UF_Index.sprank (id) ; stats.nzoff = UF_Index.nzoff (id) ; stats.dmperm_lnz = UF_Index.dmperm_lnz (id) ; stats.dmperm_unz = UF_Index.dmperm_unz (id) ; stats.dmperm_flops = UF_Index.dmperm_flops (id) ; stats.dmperm_vnz = UF_Index.dmperm_vnz (id) ; stats.dmperm_rnz = UF_Index.dmperm_rnz (id) ; stats.RBtype = UF_Index.RBtype (id,:) ; stats.cholcand = UF_Index.cholcand (id) ; stats.ncc = UF_Index.ncc (id) ; end end SuiteSparse/CXSparse/MATLAB/UFget/README.txt0000644001170100242450000000404510620373550017113 0ustar davisfacUFget: a MATLAB interface to the UF sparse matrix collection. MATLAB 7.0 or later is required. Date: May 31, 2007. Copyright 2005-2007, Tim Davis, University of Florida. Authors: Tim Davis and Erich Mirable. Availability: http://www.cise.ufl.edu/research/sparse/mat/UFget See http://www.cise.ufl.edu/research/sparse/mat/UFget.tar.gz for a single archive file with all the files listed below. UFget/Contents.m help for UFget UFget/README.txt this file UFget/UFget_defaults.m default parameter settings for UFget UFget/UFget_example.m demo for UFget UFget/UFget_lookup.m get the group, name, and id of a matrix UFget/UFget.m primary user interface UFget/UFweb.m opens the URL for a matrix or collection UFget/mat default download directory (can be changed) UFget/mat/UF_Index.mat index to the UF sparse matrix collection To install the package, just add the path containing the UFget directory to your MATLAB path. Type "pathtool" in MATLAB for more details. For a simple example of use, type this command in MATLAB: UFget_example The MATLAB statement Problem = UFget ('HB/arc130') (for example), will download a sparse matrix called HB/arc130 (a laser simulation problem) and load it into MATLAB. You don't need to use your web browser to load the matrix. The statement Problem = UFget (6) will also load same the HB/arc130 matrix. Each matrix in the collection has a unique identifier, in the range 1 to the number of matrices. As new matrices are added, the id's of existing matrices will not change. To view an index of the entire collection, just type UFget in MATLAB. To modify your download directory, edit the UFget_defaults.m file. To open a URL of the entire collection, just type UFweb To open the URL of a group of matrices in the collection: UFweb ('HB') To open the web page for one matrix, use either of these formats: UFweb ('HB/arc130') UFweb (6) For more information on how the index entries were created, see http://www.cise.ufl.edu/research/sparse/SuiteSparse. SuiteSparse/CXSparse/MATLAB/UFget/UFget_lookup.m0000644001170100242450000000403210711661566020202 0ustar davisfacfunction [group, name, id] = UFget_lookup (matrix, UF_Index) %UFGET_LOOKUP gets the group, name, and id of a matrix. % % Example: % [group name id] = UFget_lookup (matrix, UF_Index) % % See also UFget. % Copyright 2007, Tim Davis, University of Florida. if (isnumeric (matrix)) % make sure that the matrix parameter is only one integer value % this means that if we get an array, just use the first value id = fix (full (matrix (1))) ; % if the index is less than one or bigger than the length of the array, % then no particular matrix is accessed if (id > length (UF_Index.nrows) | id < 1) %#ok id = 0 ; group = '' ; name = '' ; else % assign the group and name for the given id group = UF_Index.Group {matrix} ; name = UF_Index.Name {matrix} ; end elseif (ischar (matrix)) % the group and matrix name are in the string as in GroupName\MatrixName % find the group index for the file separator % check both types of slashes, and a colon gi = find (matrix == '/') ; if (length (gi) == 0) %#ok gi = find (matrix == '\') ; end if (length (gi) == 0) %#ok gi = find (matrix == ':') ; end % if no name divider is in the string, a whole group is specified if (length (gi) == 0) %#ok id = 0 ; group = matrix ; name = '' ; else % group equals the first part of the string up to the character before % the last file separator group = matrix (1:gi(end)-1) ; % group equals the last section of the string after the last file % separator name = matrix (gi(end)+1:end) ; % validate the given name and group by checking the index for a match refName = strmatch (name, UF_Index.Name) ; refGroup = strmatch (group, UF_Index.Group) ; id = intersect (refName, refGroup) ; if (length (id) >= 1) id = id (1) ; else % the given group/matrix does not exist in the index file id = 0 ; end end else % there is an error in the argument types passed into the function error ('invalid input') ; end SuiteSparse/CXSparse/MATLAB/UFget/UFgrep.m0000644001170100242450000000265710620373464016776 0ustar davisfacfunction list = UFgrep (expression, index) %UFGREP search for matrices in the UF Sparse Matrix Collection. % UFgrep returns a list of Problem id's whose Problem.name string matches an % expression. With no output arguments, the list is displayed. Otherwise, it % is returned as a list of integer id's. % % Example: % UFgrep ('HB') ; % all matrices in the HB group % UFgrep ('\= 7.0) addpath ([pwd filesep 'UFget']) ; else fprintf ('UFget not installed (MATLAB 7.0 or later required)\n') ; end cd ('CSparse') ; cs_make (1) ; cd ('../Demo') ; cs_demo (do_pause) %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/CXSparse/Matrix/0000755001170100242450000000000010567667105014720 5ustar davisfacSuiteSparse/CXSparse/Matrix/t10000644001170100242450000000012010323544611015142 0ustar davisfac2 2 3.0 1 0 3.1 3 3 1.0 0 2 3.2 1 1 2.9 3 0 3.5 3 1 0.4 1 3 0.9 0 0 4.5 2 1 1.7 SuiteSparse/CXSparse/Matrix/west00670000644001170100242450000000753510326012123016125 0ustar davisfac44 55 -1.863354 54 61 -1.863354 29 37 -1.567398 44 56 -1.490683 54 62 -1.490683 9 12 -1.265823 29 38 -1.253918 44 57 -1.118012 54 63 -1.118012 15 31 -1.05 16 32 -1.05 17 33 -1.05 18 34 -1.05 19 35 -1.05 24 31 -1.05 25 32 -1.05 26 33 -1.05 27 34 -1.05 28 35 -1.05 9 13 -1.012658 10 20 -1 11 21 -1 12 22 -1 13 23 -1 14 24 -1 30 49 -0.9722222 31 50 -0.9722222 32 51 -0.9722222 33 52 -0.9722222 34 53 -0.9722222 39 49 -0.9722222 40 50 -0.9722222 41 51 -0.9722222 42 52 -0.9722222 43 53 -0.9722222 35 25 -0.9583187 36 26 -0.9583187 37 27 -0.9583187 38 28 -0.9583187 49 55 -0.9444444 50 56 -0.9444444 51 57 -0.9444444 52 58 -0.9444444 53 59 -0.9444444 29 39 -0.9404389 20 1 -0.9159533 21 2 -0.9159533 22 3 -0.9159533 23 4 -0.9159533 0 7 -0.8341818 1 8 -0.8341818 2 9 -0.8341818 3 10 -0.8341818 45 43 -0.8242248 46 44 -0.8242248 47 45 -0.8242248 48 46 -0.8242248 4 1 -0.8 5 2 -0.8 6 3 -0.8 7 4 -0.8 8 5 -0.8 9 14 -0.7594937 44 58 -0.7453416 54 64 -0.7453416 29 40 -0.6269592 9 15 -0.5063291 44 59 -0.3726708 54 65 -0.3726708 0 17 -0.3361556 29 41 -0.3134796 1 17 -0.2939196 20 42 -0.2788416 4 0 -0.2788416 21 42 -0.2680186 5 0 -0.2680186 52 54 -0.2667757 53 54 -0.2630706 48 66 -0.2541193 9 16 -0.2531646 37 60 -0.2475675 47 66 -0.2421498 33 48 -0.2362845 42 48 -0.2362845 36 60 -0.2356469 22 42 -0.2323717 6 0 -0.2323717 32 48 -0.2303917 41 48 -0.2303917 17 30 -0.2286264 26 30 -0.2286264 16 30 -0.2232997 25 30 -0.2232997 2 17 -0.2214815 12 19 -0.2144206 11 19 -0.2140392 51 54 -0.2122056 38 60 -0.2074873 10 19 -0.2071759 15 30 -0.2070986 24 30 -0.2070986 35 60 -0.2069954 18 30 -0.2024528 27 30 -0.2024528 13 19 -0.1986768 31 48 -0.1947711 40 48 -0.1947711 46 66 -0.1918557 34 48 -0.18039 43 48 -0.18039 14 19 -0.1656874 30 48 -0.1581626 39 48 -0.1581626 23 42 -0.1575082 7 0 -0.1575082 50 54 -0.1514908 45 66 -0.1443354 19 30 -0.1385226 28 30 -0.1385226 3 17 -0.118986 49 54 -0.1064573 8 0 -0.06325978 8 6 0.01178291 28 0 0.03162989 7 6 0.04759439 39 54 0.05322864 40 54 0.07574542 27 0 0.07875411 24 36 0.08147449 6 6 0.08859262 30 36 0.09052721 28 36 0.09241909 25 36 0.09789015 19 19 0.09941246 34 36 0.1026879 41 54 0.1061028 31 36 0.1087668 26 36 0.1131608 27 36 0.1150555 26 0 0.1161859 5 6 0.1175679 18 19 0.1192061 15 19 0.1243055 32 36 0.1257342 33 36 0.1278394 16 19 0.1284235 17 19 0.1286524 43 54 0.1315353 42 54 0.1333878 25 0 0.1340093 4 6 0.1344622 24 0 0.1394208 30 43 0.25 31 44 0.25 32 45 0.25 33 46 0.25 34 47 0.25 10 12 0.3333333 11 13 0.3333333 12 14 0.3333333 13 15 0.3333333 14 16 0.3333333 24 1 0.4 25 2 0.4 26 3 0.4 27 4 0.4 28 5 0.4 4 12 0.4 4 7 0.4 5 13 0.4 5 8 0.4 6 14 0.4 6 9 0.4 7 10 0.4 7 15 0.4 8 11 0.4 8 16 0.4 49 61 0.4444444 50 62 0.4444444 51 63 0.4444444 52 64 0.4444444 53 65 0.4444444 15 25 0.45 16 26 0.45 17 27 0.45 18 28 0.45 19 29 0.45 39 55 0.4722222 40 56 0.4722222 41 57 0.4722222 42 58 0.4722222 43 59 0.4722222 39 25 0.5 40 26 0.5 41 27 0.5 42 28 0.5 43 29 0.5 49 43 0.5 50 44 0.5 51 45 0.5 52 46 0.5 53 47 0.5 3 15 0.5063291 15 20 0.6 16 21 0.6 17 22 0.6 18 23 0.6 19 24 0.6 23 40 0.6269592 24 37 0.65 25 38 0.65 26 39 0.65 27 40 0.65 28 41 0.65 14 18 0.6666667 30 37 0.7222222 31 38 0.7222222 32 39 0.7222222 33 40 0.7222222 34 41 0.7222222 38 58 0.7453416 48 64 0.7453416 2 14 0.7594937 22 39 0.9404389 59 31 0.5 59 32 0.5 59 33 0.5 59 34 0.5 59 35 0.5 29 42 1 44 60 1 54 66 1 55 18 1 56 10 1 56 11 1 56 7 1 56 8 1 56 9 1 57 12 1 57 13 1 57 14 1 57 15 1 57 16 1 58 20 1 58 21 1 58 22 1 58 23 1 58 24 1 59 31 0.5 59 32 0.5 59 33 0.5 59 34 0.5 59 35 0.5 60 1 1 60 2 1 60 3 1 60 4 1 60 5 1 61 37 1 61 38 1 61 39 1 61 40 1 61 41 1 62 49 1 62 50 1 62 51 1 62 52 1 62 53 1 63 25 1 63 26 1 63 27 1 63 28 1 63 29 1 64 55 1 64 56 1 64 57 1 64 58 1 64 59 1 65 43 1 65 44 1 65 45 1 65 46 1 65 47 1 66 61 1 66 62 1 66 63 1 66 64 1 66 65 1 9 17 1 1 13 1.012658 37 57 1.118012 47 63 1.118012 21 38 1.253918 0 12 1.265823 36 56 1.490683 46 62 1.490683 20 37 1.567398 35 55 1.863354 45 61 1.863354 SuiteSparse/CXSparse/Matrix/bcsstk010000644001170100242450000001157510326005665016274 0ustar davisfac0 0 2.83226851852e+06 4 0 1.0e+06 5 0 2.08333333333e+06 6 0 -3.33333333333e+03 10 0 1.0e+06 18 0 -2.8e+06 24 0 -2.89351851852e+04 29 0 2.08333333333e+06 1 1 1.63544753086e+06 3 1 -2.0e+06 5 1 5.55555555555e+06 7 1 -6.66666666667e+03 9 1 -2.0e+06 19 1 -3.08641975309e+04 23 1 5.55555555555e+06 25 1 -1.59791666667e+06 2 2 1.72436728395e+06 3 2 -2.08333333333e+06 4 2 -2.77777777778e+06 8 2 -1.68e+06 20 2 -1.54320987654e+04 22 2 -2.77777777778e+06 26 2 -2.89351851852e+04 27 2 -2.08333333333e+06 3 3 1.00333333333e+09 7 3 2.0e+06 9 3 4.0e+08 21 3 -3.33333333333e+06 26 3 2.08333333333e+06 27 3 1.0e+08 4 4 1.06750000000e+09 6 4 -1.0e+06 10 4 2.0e+08 20 4 2.77777777778e+06 22 4 3.33333333333e+08 28 4 -8.33333333333e+05 5 5 1.53533333333e+09 11 5 -2.0e+06 19 5 -5.55555555555e+06 23 5 6.66666666667e+08 24 5 -2.08333333333e+06 29 5 1.0e+08 6 6 2.83226851852e+06 10 6 -1.0e+06 11 6 2.08333333333e+06 12 6 -2.8e+06 30 6 -2.89351851852e+04 35 6 2.08333333333e+06 7 7 1.63544753086e+06 9 7 2.0e+06 11 7 5.55555555555e+06 13 7 -3.08641975309e+04 17 7 5.55555555555e+06 31 7 -1.59791666667e+06 8 8 1.72436728395e+06 9 8 -2.08333333333e+06 10 8 -2.77777777778e+06 14 8 -1.54320987654e+04 16 8 -2.77777777778e+06 32 8 -2.89351851852e+04 33 8 -2.08333333333e+06 9 9 1.00333333333e+09 15 9 -3.33333333333e+06 32 9 2.08333333333e+06 33 9 1.0e+08 10 10 1.06750000000e+09 14 10 2.77777777778e+06 16 10 3.33333333333e+08 34 10 -8.33333333333e+05 11 11 1.53533333333e+09 13 11 -5.55555555555e+06 17 11 6.66666666667e+08 30 11 -2.08333333333e+06 35 11 1.0e+08 12 12 2.83609946950e+06 16 12 -2.14928529451e+06 17 12 2.35916180402e+06 18 12 -3.33333333333e+03 22 12 -1.0e+06 36 12 -2.89351851852e+04 41 12 2.08333333333e+06 42 12 -3.83095098171e+03 46 12 -1.14928529451e+06 47 12 2.75828470683e+05 13 13 1.76741074446e+06 14 13 5.17922131816e+05 15 13 4.29857058902e+06 17 13 -5.55555555555e+06 19 13 -6.66666666667e+03 21 13 2.0e+06 37 13 -1.59791666667e+06 43 13 -1.31963213599e+05 44 13 -5.17922131816e+05 45 13 2.29857058902e+06 14 14 3.89003806848e+06 15 14 -2.63499027470e+06 16 14 2.77777777778e+06 20 14 -1.68e+06 38 14 -2.89351851852e+04 39 14 -2.08333333333e+06 43 14 -5.17922131816e+05 44 14 -2.16567078453e+06 45 14 -5.51656941367e+05 15 15 1.97572063531e+09 19 15 -2.0e+06 21 15 4.0e+08 38 15 2.08333333333e+06 39 15 1.0e+08 43 15 -2.29857058902e+06 44 15 5.51656941366e+05 45 15 4.86193650990e+08 16 16 1.52734651547e+09 17 16 -1.09779731332e+08 18 16 1.0e+06 22 16 2.0e+08 40 16 -8.33333333333e+05 42 16 1.14928529451e+06 46 16 2.29724661236e+08 47 16 -5.57173510779e+07 17 17 1.56411143711e+09 23 17 -2.0e+06 36 17 -2.08333333333e+06 41 17 1.0e+08 42 17 -2.75828470683e+05 46 17 -5.57173510779e+07 47 17 1.09411960038e+07 18 18 2.83226851852e+06 22 18 1.0e+06 23 18 2.08333333333e+06 42 18 -2.89351851852e+04 47 18 2.08333333333e+06 19 19 1.63544753086e+06 21 19 -2.0e+06 23 19 -5.55555555555e+06 43 19 -1.59791666667e+06 20 20 1.72436728395e+06 21 20 -2.08333333333e+06 22 20 2.77777777778e+06 44 20 -2.89351851852e+04 45 20 -2.08333333333e+06 21 21 1.00333333333e+09 44 21 2.08333333333e+06 45 21 1.0e+08 22 22 1.06750000000e+09 46 22 -8.33333333333e+05 23 23 1.53533333333e+09 42 23 -2.08333333333e+06 47 23 1.0e+08 24 24 6.08796296296e+04 28 24 1.25e+06 29 24 4.16666666667e+05 30 24 -4.16666666667e+03 34 24 1.25e+06 25 25 3.37291666667e+06 27 25 -2.5e+06 31 25 -8.33333333333e+03 33 25 -2.5e+06 26 26 2.41171296296e+06 27 26 -4.16666666667e+05 32 26 -2.35500000000e+06 27 27 1.5e+09 31 27 2.5e+06 33 27 5.0e+08 28 28 5.01833333333e+08 30 28 -1.25e+06 34 28 2.5e+08 29 29 5.02500000000e+08 35 29 -2.5e+06 30 30 3.98587962963e+06 34 30 -1.25e+06 35 30 4.16666666667e+05 36 30 -3.92500000000e+06 31 31 3.41149691358e+06 33 31 2.5e+06 35 31 6.94444444444e+06 37 31 -3.85802469136e+04 41 31 6.94444444445e+06 32 32 2.43100308642e+06 33 32 -4.16666666667e+05 34 32 -3.47222222222e+06 38 32 -1.92901234568e+04 40 32 -3.47222222222e+06 33 33 1.50416666667e+09 39 33 -4.16666666667e+06 34 34 1.33516666667e+09 38 34 3.47222222222e+06 40 34 4.16666666667e+08 35 35 2.16916666667e+09 37 35 -6.94444444444e+06 41 35 8.33333333333e+08 36 36 3.98587962963e+06 40 36 -1.25e+06 41 36 4.16666666667e+05 42 36 -4.16666666667e+03 46 36 -1.25e+06 37 37 3.41149691358e+06 39 37 2.5e+06 41 37 -6.94444444445e+06 43 37 -8.33333333333e+03 45 37 2.5e+06 38 38 2.43100308642e+06 39 38 -4.16666666667e+05 40 38 3.47222222222e+06 44 38 -2.35500000000e+06 39 39 1.50416666667e+09 43 39 -2.5e+06 45 39 5.0e+08 40 40 1.33516666667e+09 42 40 1.25e+06 46 40 2.5e+08 41 41 2.16916666667e+09 47 41 -2.5e+06 42 42 6.47105806113e+04 46 42 2.39928529451e+06 47 42 1.40838195984e+05 43 43 3.50487988027e+06 44 43 5.17922131816e+05 45 43 -4.79857058902e+06 44 44 4.57738374749e+06 45 44 1.34990274700e+05 45 45 2.47238730198e+09 46 46 9.61679848804e+08 47 46 -1.09779731332e+08 47 47 5.31278103775e+08 SuiteSparse/CXSparse/Matrix/bcsstk160000644001170100242450001632470710326007427016313 0ustar davisfac0 0 285559874.9195 1 0 26666666.66228 3 0 -146456504.1625 4 0 -26666666.44895 6 0 9767101.054332 7 0 21333333.1165 111 0 45108925.89256 112 0 13333333.33771 113 0 13177222.19231 114 0 -107413106.5112 115 0 -13333333.23104 116 0 -65886110.96157 117 0 -9767101.054335 118 0 10666666.5635 119 0 -13177221.94221 1 1 245557954.5208 3 1 -26666666.34228 4 1 -21122150.29068 6 1 31999999.67474 7 1 9767101.054331 111 1 13333333.33771 112 1 25107965.68335 113 1 10541666.55379 114 1 -13333333.17771 115 1 -44745929.54446 116 1 -13177083.26329 117 1 15999999.84525 118 1 -9767101.054335 119 1 15812499.93082 2 2 1 3 3 494473574.2688 4 3 26666666.12895 6 3 15679616.33822 7 3 -26666666.44895 9 3 -99111631.13552 10 3 2.384185791016e-07 12 3 -37577772.88735 13 3 26666666.66229 111 3 -107413106.5112 112 3 -13333333.17771 113 3 65886110.96157 114 3 100730268.7541 115 3 13333333.07105 116 3 0.02774140238762 117 3 -26345045.89131 118 3 -13333333.23105 119 3 16471527.49884 120 3 -88624220.55292 121 3 2.235174179077e-07 122 3 -65886111.10029 123 3 -28555987.69793 124 3 13333333.33771 125 3 -16471527.78319 4 4 422470117.3622 6 4 -26666666.34229 7 4 -77653201.26574 9 4 1.490116119385e-07 10 4 18222339.27204 12 4 26666666.66229 13 4 -29577388.75645 111 4 -13333333.23104 112 4 -44745929.54447 113 4 13177083.28808 114 4 13333333.07105 115 4 64728540.28304 116 4 0.022192299366 117 4 -13333333.17771 118 4 -73011454.71628 119 4 52708333.03581 120 4 1.9371509552e-07 121 4 -29957235.32024 122 4 -3.8743019104e-07 123 4 13333333.33771 124 4 -24555795.63051 125 4 13177083.33766 5 5 1 6 6 285559874.9195 7 6 26666666.66228 9 6 -37577772.88735 10 6 -26666666.66229 12 6 -146456504.1625 13 6 -26666666.44895 15 6 9767101.054332 16 6 21333333.1165 111 6 -9767101.054335 112 6 15999999.84525 113 6 19765832.91331 114 6 -26345045.8913 115 6 -13333333.17771 116 6 -16471527.35667 117 6 45108925.89256 118 6 13333333.33771 119 6 13177222.19231 120 6 -28555987.69793 121 6 -13333333.33771 122 6 -16471527.78319 123 6 -107413106.5112 124 6 -13333333.23104 125 6 -65886110.96157 126 6 -9767101.054335 127 6 10666666.5635 128 6 -13177221.94221 7 7 245557954.5208 9 7 -26666666.66229 10 7 -29577388.75645 12 7 -26666666.34228 13 7 -21122150.29068 15 7 31999999.67474 16 7 9767101.054331 111 7 10666666.5635 112 7 -9767101.054336 113 7 -10541666.62055 114 7 -13333333.23105 115 7 -73011454.71627 116 7 -52708332.94687 117 7 13333333.33771 118 7 25107965.68335 119 7 10541666.55379 120 7 -13333333.33771 121 7 -24555795.63051 122 7 -13177083.33766 123 7 -13333333.17771 124 7 -44745929.54446 125 7 -13177083.26329 126 7 15999999.84525 127 7 -9767101.054335 128 7 15812499.93082 8 8 1 9 9 456895802.7167 10 9 3.695487976074e-06 12 9 63024490.39561 13 9 -1.102685928345e-06 18 9 -99111631.13552 19 9 2.384185791016e-07 21 9 -37577772.88735 22 9 26666666.66229 114 9 -88624220.55292 115 9 1.043081283569e-07 116 9 65886111.10029 117 9 -28555987.69793 118 9 -13333333.33771 119 9 16471527.78319 120 9 72174281.7049 121 9 1.728534698486e-06 122 9 1.221895217896e-06 123 9 -7556159.747413 124 9 -7.450580596924e-07 125 9 1.341104507446e-06 129 9 -88624220.55292 130 9 2.235174179077e-07 131 9 -65886111.10029 132 9 -28555987.69793 133 9 13333333.33771 134 9 -16471527.78319 10 10 392892729.701 12 10 -1.311302185059e-06 13 10 -38308711.76591 18 10 1.490116119385e-07 19 10 18222339.27204 21 10 26666666.66229 22 10 -29577388.75645 114 10 4.470348358154e-08 115 10 -29957235.32024 116 10 2.831220626831e-07 117 10 -13333333.33771 118 10 -24555795.63051 119 10 13177083.33766 120 10 1.728534698486e-06 121 10 40172745.1813 122 10 -5.960464477539e-08 123 10 -7.003545761108e-07 124 10 -58222760.85313 125 10 52708333.32467 129 10 1.9371509552e-07 130 10 -29957235.32024 131 10 -3.8743019104e-07 132 10 13333333.33771 133 10 -24555795.63051 134 10 13177083.33766 11 11 1 12 12 494473574.2688 13 12 26666666.12895 15 12 15679616.33822 16 12 -26666666.44895 18 12 -37577772.88735 19 12 -26666666.66229 21 12 -99111631.13552 22 12 2.384185791016e-07 24 12 -37577772.88735 25 12 26666666.66229 114 12 -28555987.69793 115 12 13333333.33771 116 12 16471527.78319 117 12 -107413106.5112 118 12 -13333333.17771 119 12 65886110.96157 120 12 -7556159.747413 121 12 -3.278255462646e-07 122 12 -1.206994056702e-06 123 12 100730268.7541 124 12 13333333.07105 125 12 0.02774140238762 126 12 -26345045.89131 127 12 -13333333.23105 128 12 16471527.49884 129 12 -28555987.69793 130 12 -13333333.33771 131 12 -16471527.78319 132 12 -88624220.55292 133 12 2.235174179077e-07 134 12 -65886111.10029 135 12 -28555987.69793 136 12 13333333.33771 137 12 -16471527.78319 13 13 422470117.3622 15 13 -26666666.34229 16 13 -77653201.26574 18 13 -26666666.66229 19 13 -29577388.75645 21 13 1.490116119385e-07 22 13 18222339.27204 24 13 26666666.66229 25 13 -29577388.75645 114 13 13333333.33771 115 13 -24555795.63051 116 13 -13177083.33766 117 13 -13333333.23104 118 13 -44745929.54447 119 13 13177083.28808 120 13 -2.98023223877e-07 121 13 -58222760.85313 122 13 -52708333.32467 123 13 13333333.07105 124 13 64728540.28304 125 13 0.022192299366 126 13 -13333333.17771 127 13 -73011454.71628 128 13 52708333.03581 129 13 -13333333.33771 130 13 -24555795.63051 131 13 -13177083.33766 132 13 1.9371509552e-07 133 13 -29957235.32024 134 13 -3.8743019104e-07 135 13 13333333.33771 136 13 -24555795.63051 137 13 13177083.33766 14 14 1 15 15 285559874.9195 16 15 26666666.66228 21 15 -37577772.88735 22 15 -26666666.66229 24 15 -146456504.1625 25 15 -26666666.44895 27 15 9767101.054332 28 15 21333333.1165 117 15 -9767101.054335 118 15 15999999.84525 119 15 19765832.91331 123 15 -26345045.8913 124 15 -13333333.17771 125 15 -16471527.35667 126 15 45108925.89256 127 15 13333333.33771 128 15 13177222.19231 132 15 -28555987.69793 133 15 -13333333.33771 134 15 -16471527.78319 135 15 -107413106.5112 136 15 -13333333.23104 137 15 -65886110.96157 138 15 -9767101.054335 139 15 10666666.5635 140 15 -13177221.94221 16 16 245557954.5208 21 16 -26666666.66229 22 16 -29577388.75645 24 16 -26666666.34228 25 16 -21122150.29068 27 16 31999999.67474 28 16 9767101.054331 117 16 10666666.5635 118 16 -9767101.054336 119 16 -10541666.62055 123 16 -13333333.23105 124 16 -73011454.71627 125 16 -52708332.94687 126 16 13333333.33771 127 16 25107965.68335 128 16 10541666.55379 132 16 -13333333.33771 133 16 -24555795.63051 134 16 -13177083.33766 135 16 -13333333.17771 136 16 -44745929.54446 137 16 -13177083.26329 138 16 15999999.84525 139 16 -9767101.054335 140 16 15812499.93082 17 17 1 18 18 456895802.7167 19 18 3.695487976074e-06 21 18 63024490.39561 22 18 -1.102685928345e-06 30 18 -99111631.13552 31 18 2.384185791016e-07 33 18 -37577772.88735 34 18 26666666.66229 120 18 -88624220.55292 121 18 1.043081283569e-07 122 18 65886111.10029 123 18 -28555987.69793 124 18 -13333333.33771 125 18 16471527.78319 129 18 72174281.7049 130 18 1.728534698486e-06 131 18 1.221895217896e-06 132 18 -7556159.747413 133 18 -7.450580596924e-07 134 18 1.341104507446e-06 141 18 -88624220.55292 142 18 2.235174179077e-07 143 18 -65886111.10029 144 18 -28555987.69793 145 18 13333333.33771 146 18 -16471527.78319 19 19 392892729.701 21 19 -1.311302185059e-06 22 19 -38308711.76591 30 19 1.490116119385e-07 31 19 18222339.27204 33 19 26666666.66229 34 19 -29577388.75645 120 19 4.470348358154e-08 121 19 -29957235.32024 122 19 2.831220626831e-07 123 19 -13333333.33771 124 19 -24555795.63051 125 19 13177083.33766 129 19 1.728534698486e-06 130 19 40172745.1813 131 19 -5.960464477539e-08 132 19 -7.003545761108e-07 133 19 -58222760.85313 134 19 52708333.32467 141 19 1.9371509552e-07 142 19 -29957235.32024 143 19 -3.8743019104e-07 144 19 13333333.33771 145 19 -24555795.63051 146 19 13177083.33766 20 20 1 21 21 456895802.7167 22 21 3.695487976074e-06 24 21 63024490.39561 25 21 -1.102685928345e-06 30 21 -37577772.88735 31 21 -26666666.66229 33 21 -99111631.13552 34 21 2.384185791016e-07 36 21 -37577772.88735 37 21 26666666.66229 120 21 -28555987.69793 121 21 13333333.33771 122 21 16471527.78319 123 21 -88624220.55292 124 21 1.043081283569e-07 125 21 65886111.10029 126 21 -28555987.69793 127 21 -13333333.33771 128 21 16471527.78319 129 21 -7556159.747413 130 21 -3.278255462646e-07 131 21 -1.206994056702e-06 132 21 72174281.7049 133 21 1.728534698486e-06 134 21 1.221895217896e-06 135 21 -7556159.747413 136 21 -7.450580596924e-07 137 21 1.341104507446e-06 141 21 -28555987.69793 142 21 -13333333.33771 143 21 -16471527.78319 144 21 -88624220.55292 145 21 2.235174179077e-07 146 21 -65886111.10029 147 21 -28555987.69793 148 21 13333333.33771 149 21 -16471527.78319 22 22 392892729.701 24 22 -1.311302185059e-06 25 22 -38308711.76591 30 22 -26666666.66229 31 22 -29577388.75645 33 22 1.490116119385e-07 34 22 18222339.27204 36 22 26666666.66229 37 22 -29577388.75645 120 22 13333333.33771 121 22 -24555795.63051 122 22 -13177083.33766 123 22 4.470348358154e-08 124 22 -29957235.32024 125 22 2.831220626831e-07 126 22 -13333333.33771 127 22 -24555795.63051 128 22 13177083.33766 129 22 -2.98023223877e-07 130 22 -58222760.85313 131 22 -52708333.32467 132 22 1.728534698486e-06 133 22 40172745.1813 134 22 -5.960464477539e-08 135 22 -7.003545761108e-07 136 22 -58222760.85313 137 22 52708333.32467 141 22 -13333333.33771 142 22 -24555795.63051 143 22 -13177083.33766 144 22 1.9371509552e-07 145 22 -29957235.32024 146 22 -3.8743019104e-07 147 22 13333333.33771 148 22 -24555795.63051 149 22 13177083.33766 23 23 1 24 24 494473574.2688 25 24 26666666.12895 27 24 15679616.33822 28 24 -26666666.44895 33 24 -37577772.88735 34 24 -26666666.66229 36 24 -99111631.13552 37 24 2.384185791016e-07 39 24 -37577772.88735 40 24 26666666.66229 123 24 -28555987.69793 124 24 13333333.33771 125 24 16471527.78319 126 24 -107413106.5112 127 24 -13333333.17771 128 24 65886110.96157 132 24 -7556159.747413 133 24 -3.278255462646e-07 134 24 -1.206994056702e-06 135 24 100730268.7541 136 24 13333333.07105 137 24 0.02774140238762 138 24 -26345045.89131 139 24 -13333333.23105 140 24 16471527.49884 144 24 -28555987.69793 145 24 -13333333.33771 146 24 -16471527.78319 147 24 -88624220.55292 148 24 2.235174179077e-07 149 24 -65886111.10029 150 24 -28555987.69793 151 24 13333333.33771 152 24 -16471527.78319 25 25 422470117.3622 27 25 -26666666.34229 28 25 -77653201.26574 33 25 -26666666.66229 34 25 -29577388.75645 36 25 1.490116119385e-07 37 25 18222339.27204 39 25 26666666.66229 40 25 -29577388.75645 123 25 13333333.33771 124 25 -24555795.63051 125 25 -13177083.33766 126 25 -13333333.23104 127 25 -44745929.54447 128 25 13177083.28808 132 25 -2.98023223877e-07 133 25 -58222760.85313 134 25 -52708333.32467 135 25 13333333.07105 136 25 64728540.28304 137 25 0.022192299366 138 25 -13333333.17771 139 25 -73011454.71628 140 25 52708333.03581 144 25 -13333333.33771 145 25 -24555795.63051 146 25 -13177083.33766 147 25 1.9371509552e-07 148 25 -29957235.32024 149 25 -3.8743019104e-07 150 25 13333333.33771 151 25 -24555795.63051 152 25 13177083.33766 26 26 1 27 27 285559874.9195 28 27 26666666.66228 36 27 -37577772.88735 37 27 -26666666.66229 39 27 -146456504.1625 40 27 -26666666.44895 42 27 9767101.054332 43 27 21333333.1165 126 27 -9767101.054335 127 27 15999999.84525 128 27 19765832.91331 135 27 -26345045.8913 136 27 -13333333.17771 137 27 -16471527.35667 138 27 45108925.89256 139 27 13333333.33771 140 27 13177222.19231 147 27 -28555987.69793 148 27 -13333333.33771 149 27 -16471527.78319 150 27 -107413106.5112 151 27 -13333333.23104 152 27 -65886110.96157 153 27 -9767101.054335 154 27 10666666.5635 155 27 -13177221.94221 28 28 245557954.5208 36 28 -26666666.66229 37 28 -29577388.75645 39 28 -26666666.34228 40 28 -21122150.29068 42 28 31999999.67474 43 28 9767101.054331 126 28 10666666.5635 127 28 -9767101.054336 128 28 -10541666.62055 135 28 -13333333.23105 136 28 -73011454.71627 137 28 -52708332.94687 138 28 13333333.33771 139 28 25107965.68335 140 28 10541666.55379 147 28 -13333333.33771 148 28 -24555795.63051 149 28 -13177083.33766 150 28 -13333333.17771 151 28 -44745929.54446 152 28 -13177083.26329 153 28 15999999.84525 154 28 -9767101.054335 155 28 15812499.93082 29 29 1 30 30 456895802.7167 31 30 3.695487976074e-06 33 30 63024490.39561 34 30 -1.102685928345e-06 45 30 -99111631.13552 46 30 2.384185791016e-07 48 30 -37577772.88735 49 30 26666666.66229 129 30 -88624220.55292 130 30 1.043081283569e-07 131 30 65886111.10029 132 30 -28555987.69793 133 30 -13333333.33771 134 30 16471527.78319 141 30 72174281.7049 142 30 1.728534698486e-06 143 30 1.221895217896e-06 144 30 -7556159.747413 145 30 -7.450580596924e-07 146 30 1.341104507446e-06 156 30 -88624220.55292 157 30 2.235174179077e-07 158 30 -65886111.10029 159 30 -28555987.69793 160 30 13333333.33771 161 30 -16471527.78319 31 31 392892729.701 33 31 -1.311302185059e-06 34 31 -38308711.76591 45 31 1.490116119385e-07 46 31 18222339.27204 48 31 26666666.66229 49 31 -29577388.75645 129 31 4.470348358154e-08 130 31 -29957235.32024 131 31 2.831220626831e-07 132 31 -13333333.33771 133 31 -24555795.63051 134 31 13177083.33766 141 31 1.728534698486e-06 142 31 40172745.1813 143 31 -5.960464477539e-08 144 31 -7.003545761108e-07 145 31 -58222760.85313 146 31 52708333.32467 156 31 1.9371509552e-07 157 31 -29957235.32024 158 31 -3.8743019104e-07 159 31 13333333.33771 160 31 -24555795.63051 161 31 13177083.33766 32 32 1 33 33 456895802.7167 34 33 3.695487976074e-06 36 33 63024490.39561 37 33 -1.102685928345e-06 45 33 -37577772.88735 46 33 -26666666.66229 48 33 -99111631.13552 49 33 2.384185791016e-07 51 33 -37577772.88735 52 33 26666666.66229 129 33 -28555987.69793 130 33 13333333.33771 131 33 16471527.78319 132 33 -88624220.55292 133 33 1.043081283569e-07 134 33 65886111.10029 135 33 -28555987.69793 136 33 -13333333.33771 137 33 16471527.78319 141 33 -7556159.747413 142 33 -3.278255462646e-07 143 33 -1.206994056702e-06 144 33 72174281.7049 145 33 1.728534698486e-06 146 33 1.221895217896e-06 147 33 -7556159.747413 148 33 -7.450580596924e-07 149 33 1.341104507446e-06 156 33 -28555987.69793 157 33 -13333333.33771 158 33 -16471527.78319 159 33 -88624220.55292 160 33 2.235174179077e-07 161 33 -65886111.10029 162 33 -28555987.69793 163 33 13333333.33771 164 33 -16471527.78319 34 34 392892729.701 36 34 -1.311302185059e-06 37 34 -38308711.76591 45 34 -26666666.66229 46 34 -29577388.75645 48 34 1.490116119385e-07 49 34 18222339.27204 51 34 26666666.66229 52 34 -29577388.75645 129 34 13333333.33771 130 34 -24555795.63051 131 34 -13177083.33766 132 34 4.470348358154e-08 133 34 -29957235.32024 134 34 2.831220626831e-07 135 34 -13333333.33771 136 34 -24555795.63051 137 34 13177083.33766 141 34 -2.98023223877e-07 142 34 -58222760.85313 143 34 -52708333.32467 144 34 1.728534698486e-06 145 34 40172745.1813 146 34 -5.960464477539e-08 147 34 -7.003545761108e-07 148 34 -58222760.85313 149 34 52708333.32467 156 34 -13333333.33771 157 34 -24555795.63051 158 34 -13177083.33766 159 34 1.9371509552e-07 160 34 -29957235.32024 161 34 -3.8743019104e-07 162 34 13333333.33771 163 34 -24555795.63051 164 34 13177083.33766 35 35 1 36 36 456895802.7167 37 36 3.695487976074e-06 39 36 63024490.39561 40 36 -1.102685928345e-06 48 36 -37577772.88735 49 36 -26666666.66229 51 36 -99111631.13552 52 36 2.384185791016e-07 54 36 -37577772.88735 55 36 26666666.66229 132 36 -28555987.69793 133 36 13333333.33771 134 36 16471527.78319 135 36 -88624220.55292 136 36 1.043081283569e-07 137 36 65886111.10029 138 36 -28555987.69793 139 36 -13333333.33771 140 36 16471527.78319 144 36 -7556159.747413 145 36 -3.278255462646e-07 146 36 -1.206994056702e-06 147 36 72174281.7049 148 36 1.728534698486e-06 149 36 1.221895217896e-06 150 36 -7556159.747413 151 36 -7.450580596924e-07 152 36 1.341104507446e-06 159 36 -28555987.69793 160 36 -13333333.33771 161 36 -16471527.78319 162 36 -88624220.55292 163 36 2.235174179077e-07 164 36 -65886111.10029 165 36 -28555987.69793 166 36 13333333.33771 167 36 -16471527.78319 37 37 392892729.701 39 37 -1.311302185059e-06 40 37 -38308711.76591 48 37 -26666666.66229 49 37 -29577388.75645 51 37 1.490116119385e-07 52 37 18222339.27204 54 37 26666666.66229 55 37 -29577388.75645 132 37 13333333.33771 133 37 -24555795.63051 134 37 -13177083.33766 135 37 4.470348358154e-08 136 37 -29957235.32024 137 37 2.831220626831e-07 138 37 -13333333.33771 139 37 -24555795.63051 140 37 13177083.33766 144 37 -2.98023223877e-07 145 37 -58222760.85313 146 37 -52708333.32467 147 37 1.728534698486e-06 148 37 40172745.1813 149 37 -5.960464477539e-08 150 37 -7.003545761108e-07 151 37 -58222760.85313 152 37 52708333.32467 159 37 -13333333.33771 160 37 -24555795.63051 161 37 -13177083.33766 162 37 1.9371509552e-07 163 37 -29957235.32024 164 37 -3.8743019104e-07 165 37 13333333.33771 166 37 -24555795.63051 167 37 13177083.33766 38 38 1 39 39 494473574.2688 40 39 26666666.12895 42 39 15679616.33822 43 39 -26666666.44895 51 39 -37577772.88735 52 39 -26666666.66229 54 39 -99111631.13552 55 39 2.384185791016e-07 57 39 -37577772.88735 58 39 26666666.66229 135 39 -28555987.69793 136 39 13333333.33771 137 39 16471527.78319 138 39 -107413106.5112 139 39 -13333333.17771 140 39 65886110.96157 147 39 -7556159.747413 148 39 -3.278255462646e-07 149 39 -1.206994056702e-06 150 39 100730268.7541 151 39 13333333.07105 152 39 0.02774140238762 153 39 -26345045.89131 154 39 -13333333.23105 155 39 16471527.49884 162 39 -28555987.69793 163 39 -13333333.33771 164 39 -16471527.78319 165 39 -88624220.55292 166 39 2.235174179077e-07 167 39 -65886111.10029 168 39 -28555987.69793 169 39 13333333.33771 170 39 -16471527.78319 40 40 422470117.3622 42 40 -26666666.34229 43 40 -77653201.26574 51 40 -26666666.66229 52 40 -29577388.75645 54 40 1.490116119385e-07 55 40 18222339.27204 57 40 26666666.66229 58 40 -29577388.75645 135 40 13333333.33771 136 40 -24555795.63051 137 40 -13177083.33766 138 40 -13333333.23104 139 40 -44745929.54447 140 40 13177083.28808 147 40 -2.98023223877e-07 148 40 -58222760.85313 149 40 -52708333.32467 150 40 13333333.07105 151 40 64728540.28304 152 40 0.022192299366 153 40 -13333333.17771 154 40 -73011454.71628 155 40 52708333.03581 162 40 -13333333.33771 163 40 -24555795.63051 164 40 -13177083.33766 165 40 1.9371509552e-07 166 40 -29957235.32024 167 40 -3.8743019104e-07 168 40 13333333.33771 169 40 -24555795.63051 170 40 13177083.33766 41 41 1 42 42 285559874.9195 43 42 26666666.66228 54 42 -37577772.88735 55 42 -26666666.66229 57 42 -146456504.1625 58 42 -26666666.44895 60 42 9767101.054332 61 42 21333333.1165 138 42 -9767101.054335 139 42 15999999.84525 140 42 19765832.91331 150 42 -26345045.8913 151 42 -13333333.17771 152 42 -16471527.35667 153 42 45108925.89256 154 42 13333333.33771 155 42 13177222.19231 165 42 -28555987.69793 166 42 -13333333.33771 167 42 -16471527.78319 168 42 -107413106.5112 169 42 -13333333.23104 170 42 -65886110.96157 171 42 -9767101.054335 172 42 10666666.5635 173 42 -13177221.94221 43 43 245557954.5208 54 43 -26666666.66229 55 43 -29577388.75645 57 43 -26666666.34228 58 43 -21122150.29068 60 43 31999999.67474 61 43 9767101.054331 138 43 10666666.5635 139 43 -9767101.054336 140 43 -10541666.62055 150 43 -13333333.23105 151 43 -73011454.71627 152 43 -52708332.94687 153 43 13333333.33771 154 43 25107965.68335 155 43 10541666.55379 165 43 -13333333.33771 166 43 -24555795.63051 167 43 -13177083.33766 168 43 -13333333.17771 169 43 -44745929.54446 170 43 -13177083.26329 171 43 15999999.84525 172 43 -9767101.054335 173 43 15812499.93082 44 44 1 45 45 456895802.7167 46 45 3.695487976074e-06 48 45 63024490.39561 49 45 -1.102685928345e-06 63 45 -99111631.13552 64 45 2.384185791016e-07 66 45 -37577772.88735 67 45 26666666.66229 141 45 -88624220.55292 142 45 1.043081283569e-07 143 45 65886111.10029 144 45 -28555987.69793 145 45 -13333333.33771 146 45 16471527.78319 156 45 72174281.7049 157 45 1.728534698486e-06 158 45 1.221895217896e-06 159 45 -7556159.747413 160 45 -7.450580596924e-07 161 45 1.341104507446e-06 174 45 -88624220.55292 175 45 2.235174179077e-07 176 45 -65886111.10029 177 45 -28555987.69793 178 45 13333333.33771 179 45 -16471527.78319 46 46 392892729.701 48 46 -1.311302185059e-06 49 46 -38308711.76591 63 46 1.490116119385e-07 64 46 18222339.27204 66 46 26666666.66229 67 46 -29577388.75645 141 46 4.470348358154e-08 142 46 -29957235.32024 143 46 2.831220626831e-07 144 46 -13333333.33771 145 46 -24555795.63051 146 46 13177083.33766 156 46 1.728534698486e-06 157 46 40172745.1813 158 46 -5.960464477539e-08 159 46 -7.003545761108e-07 160 46 -58222760.85313 161 46 52708333.32467 174 46 1.9371509552e-07 175 46 -29957235.32024 176 46 -3.8743019104e-07 177 46 13333333.33771 178 46 -24555795.63051 179 46 13177083.33766 47 47 1 48 48 456895802.7167 49 48 3.695487976074e-06 51 48 63024490.39561 52 48 -1.102685928345e-06 63 48 -37577772.88735 64 48 -26666666.66229 66 48 -99111631.13552 67 48 2.384185791016e-07 69 48 -37577772.88735 70 48 26666666.66229 141 48 -28555987.69793 142 48 13333333.33771 143 48 16471527.78319 144 48 -88624220.55292 145 48 1.043081283569e-07 146 48 65886111.10029 147 48 -28555987.69793 148 48 -13333333.33771 149 48 16471527.78319 156 48 -7556159.747413 157 48 -3.278255462646e-07 158 48 -1.206994056702e-06 159 48 72174281.7049 160 48 1.728534698486e-06 161 48 1.221895217896e-06 162 48 -7556159.747413 163 48 -7.450580596924e-07 164 48 1.341104507446e-06 174 48 -28555987.69793 175 48 -13333333.33771 176 48 -16471527.78319 177 48 -88624220.55292 178 48 2.235174179077e-07 179 48 -65886111.10029 180 48 -28555987.69793 181 48 13333333.33771 182 48 -16471527.78319 49 49 392892729.701 51 49 -1.311302185059e-06 52 49 -38308711.76591 63 49 -26666666.66229 64 49 -29577388.75645 66 49 1.490116119385e-07 67 49 18222339.27204 69 49 26666666.66229 70 49 -29577388.75645 141 49 13333333.33771 142 49 -24555795.63051 143 49 -13177083.33766 144 49 4.470348358154e-08 145 49 -29957235.32024 146 49 2.831220626831e-07 147 49 -13333333.33771 148 49 -24555795.63051 149 49 13177083.33766 156 49 -2.98023223877e-07 157 49 -58222760.85313 158 49 -52708333.32467 159 49 1.728534698486e-06 160 49 40172745.1813 161 49 -5.960464477539e-08 162 49 -7.003545761108e-07 163 49 -58222760.85313 164 49 52708333.32467 174 49 -13333333.33771 175 49 -24555795.63051 176 49 -13177083.33766 177 49 1.9371509552e-07 178 49 -29957235.32024 179 49 -3.8743019104e-07 180 49 13333333.33771 181 49 -24555795.63051 182 49 13177083.33766 50 50 1 51 51 456895802.7167 52 51 3.695487976074e-06 54 51 63024490.39561 55 51 -1.102685928345e-06 66 51 -37577772.88735 67 51 -26666666.66229 69 51 -99111631.13552 70 51 2.384185791016e-07 72 51 -37577772.88735 73 51 26666666.66229 144 51 -28555987.69793 145 51 13333333.33771 146 51 16471527.78319 147 51 -88624220.55292 148 51 1.043081283569e-07 149 51 65886111.10029 150 51 -28555987.69793 151 51 -13333333.33771 152 51 16471527.78319 159 51 -7556159.747413 160 51 -3.278255462646e-07 161 51 -1.206994056702e-06 162 51 72174281.7049 163 51 1.728534698486e-06 164 51 1.221895217896e-06 165 51 -7556159.747413 166 51 -7.450580596924e-07 167 51 1.341104507446e-06 177 51 -28555987.69793 178 51 -13333333.33771 179 51 -16471527.78319 180 51 -88624220.55292 181 51 2.235174179077e-07 182 51 -65886111.10029 183 51 -28555987.69793 184 51 13333333.33771 185 51 -16471527.78319 52 52 392892729.701 54 52 -1.311302185059e-06 55 52 -38308711.76591 66 52 -26666666.66229 67 52 -29577388.75645 69 52 1.490116119385e-07 70 52 18222339.27204 72 52 26666666.66229 73 52 -29577388.75645 144 52 13333333.33771 145 52 -24555795.63051 146 52 -13177083.33766 147 52 4.470348358154e-08 148 52 -29957235.32024 149 52 2.831220626831e-07 150 52 -13333333.33771 151 52 -24555795.63051 152 52 13177083.33766 159 52 -2.98023223877e-07 160 52 -58222760.85313 161 52 -52708333.32467 162 52 1.728534698486e-06 163 52 40172745.1813 164 52 -5.960464477539e-08 165 52 -7.003545761108e-07 166 52 -58222760.85313 167 52 52708333.32467 177 52 -13333333.33771 178 52 -24555795.63051 179 52 -13177083.33766 180 52 1.9371509552e-07 181 52 -29957235.32024 182 52 -3.8743019104e-07 183 52 13333333.33771 184 52 -24555795.63051 185 52 13177083.33766 53 53 1 54 54 456895802.7167 55 54 3.695487976074e-06 57 54 63024490.39561 58 54 -1.102685928345e-06 69 54 -37577772.88735 70 54 -26666666.66229 72 54 -99111631.13552 73 54 2.384185791016e-07 75 54 -37577772.88735 76 54 26666666.66229 147 54 -28555987.69793 148 54 13333333.33771 149 54 16471527.78319 150 54 -88624220.55292 151 54 1.043081283569e-07 152 54 65886111.10029 153 54 -28555987.69793 154 54 -13333333.33771 155 54 16471527.78319 162 54 -7556159.747413 163 54 -3.278255462646e-07 164 54 -1.206994056702e-06 165 54 72174281.7049 166 54 1.728534698486e-06 167 54 1.221895217896e-06 168 54 -7556159.747413 169 54 -7.450580596924e-07 170 54 1.341104507446e-06 180 54 -28555987.69793 181 54 -13333333.33771 182 54 -16471527.78319 183 54 -88624220.55292 184 54 2.235174179077e-07 185 54 -65886111.10029 186 54 -28555987.69793 187 54 13333333.33771 188 54 -16471527.78319 55 55 392892729.701 57 55 -1.311302185059e-06 58 55 -38308711.76591 69 55 -26666666.66229 70 55 -29577388.75645 72 55 1.490116119385e-07 73 55 18222339.27204 75 55 26666666.66229 76 55 -29577388.75645 147 55 13333333.33771 148 55 -24555795.63051 149 55 -13177083.33766 150 55 4.470348358154e-08 151 55 -29957235.32024 152 55 2.831220626831e-07 153 55 -13333333.33771 154 55 -24555795.63051 155 55 13177083.33766 162 55 -2.98023223877e-07 163 55 -58222760.85313 164 55 -52708333.32467 165 55 1.728534698486e-06 166 55 40172745.1813 167 55 -5.960464477539e-08 168 55 -7.003545761108e-07 169 55 -58222760.85313 170 55 52708333.32467 180 55 -13333333.33771 181 55 -24555795.63051 182 55 -13177083.33766 183 55 1.9371509552e-07 184 55 -29957235.32024 185 55 -3.8743019104e-07 186 55 13333333.33771 187 55 -24555795.63051 188 55 13177083.33766 56 56 1 57 57 494473574.2688 58 57 26666666.12895 60 57 15679616.33822 61 57 -26666666.44895 72 57 -37577772.88735 73 57 -26666666.66229 75 57 -99111631.13552 76 57 2.384185791016e-07 78 57 -37577772.88735 79 57 26666666.66229 150 57 -28555987.69793 151 57 13333333.33771 152 57 16471527.78319 153 57 -107413106.5112 154 57 -13333333.17771 155 57 65886110.96157 165 57 -7556159.747413 166 57 -3.278255462646e-07 167 57 -1.206994056702e-06 168 57 100730268.7541 169 57 13333333.07105 170 57 0.02774140238762 171 57 -26345045.89131 172 57 -13333333.23105 173 57 16471527.49884 183 57 -28555987.69793 184 57 -13333333.33771 185 57 -16471527.78319 186 57 -88624220.55292 187 57 2.235174179077e-07 188 57 -65886111.10029 189 57 -28555987.69793 190 57 13333333.33771 191 57 -16471527.78319 58 58 422470117.3622 60 58 -26666666.34229 61 58 -77653201.26574 72 58 -26666666.66229 73 58 -29577388.75645 75 58 1.490116119385e-07 76 58 18222339.27204 78 58 26666666.66229 79 58 -29577388.75645 150 58 13333333.33771 151 58 -24555795.63051 152 58 -13177083.33766 153 58 -13333333.23104 154 58 -44745929.54447 155 58 13177083.28808 165 58 -2.98023223877e-07 166 58 -58222760.85313 167 58 -52708333.32467 168 58 13333333.07105 169 58 64728540.28304 170 58 0.022192299366 171 58 -13333333.17771 172 58 -73011454.71628 173 58 52708333.03581 183 58 -13333333.33771 184 58 -24555795.63051 185 58 -13177083.33766 186 58 1.9371509552e-07 187 58 -29957235.32024 188 58 -3.8743019104e-07 189 58 13333333.33771 190 58 -24555795.63051 191 58 13177083.33766 59 59 1 60 60 254577284.4124 61 60 12542819.63852 75 60 -37577772.88735 76 60 -26666666.66229 78 60 -114012622.4679 79 60 -12542819.42519 81 60 -2041494.77529 82 60 21333333.1165 153 60 -9767101.054335 154 60 15999999.84525 155 60 19765832.91331 168 60 -26345045.8913 169 60 -13333333.17771 170 60 -16471527.35667 171 60 37378109.13818 172 60 6271409.822349 173 60 11432222.19995 186 60 -28555987.69793 187 60 -13333333.33771 188 60 -16471527.78319 189 60 -87310926.38278 190 60 -6271409.715683 191 60 -57161110.99975 192 60 -11791159.78617 193 60 10666666.5635 194 60 -9687222.01637 61 61 236302495.3909 75 61 -26666666.66229 76 61 -29577388.75645 78 61 -12542819.31852 79 61 4964216.203455 81 61 31999999.67474 82 61 -17411110.95215 153 61 10666666.5635 154 61 -9767101.054336 155 61 -10541666.62055 168 61 -13333333.23105 169 61 -73011454.71627 170 61 -52708332.94687 171 61 6271409.822349 172 61 28240714.62293 173 61 9145833.226567 186 61 -13333333.33771 187 61 -24555795.63051 188 61 -13177083.33766 189 61 -6271409.66235 190 61 -27822507.01778 191 61 -6197916.627156 192 61 15999999.84526 193 61 -19475967.87838 194 61 18604166.53816 62 62 1 63 63 456895802.7167 64 63 3.695487976074e-06 66 63 63024490.39561 67 63 -1.102685928345e-06 84 63 -99111631.13552 85 63 2.384185791016e-07 87 63 -37577772.88735 88 63 26666666.66229 156 63 -88624220.55292 157 63 1.043081283569e-07 158 63 65886111.10029 159 63 -28555987.69793 160 63 -13333333.33771 161 63 16471527.78319 174 63 72174281.7049 175 63 1.728534698486e-06 176 63 1.221895217896e-06 177 63 -7556159.747413 178 63 -7.450580596924e-07 179 63 1.341104507446e-06 195 63 -88624220.55292 196 63 2.235174179077e-07 197 63 -65886111.10029 198 63 -28555987.69793 199 63 13333333.33771 200 63 -16471527.78319 64 64 392892729.701 66 64 -1.311302185059e-06 67 64 -38308711.76591 84 64 1.490116119385e-07 85 64 18222339.27204 87 64 26666666.66229 88 64 -29577388.75645 156 64 4.470348358154e-08 157 64 -29957235.32024 158 64 2.831220626831e-07 159 64 -13333333.33771 160 64 -24555795.63051 161 64 13177083.33766 174 64 1.728534698486e-06 175 64 40172745.1813 176 64 -5.960464477539e-08 177 64 -7.003545761108e-07 178 64 -58222760.85313 179 64 52708333.32467 195 64 1.9371509552e-07 196 64 -29957235.32024 197 64 -3.8743019104e-07 198 64 13333333.33771 199 64 -24555795.63051 200 64 13177083.33766 65 65 1 66 66 456895802.7167 67 66 3.695487976074e-06 69 66 63024490.39561 70 66 -1.102685928345e-06 84 66 -37577772.88735 85 66 -26666666.66229 87 66 -99111631.13552 88 66 2.384185791016e-07 90 66 -37577772.88735 91 66 26666666.66229 156 66 -28555987.69793 157 66 13333333.33771 158 66 16471527.78319 159 66 -88624220.55292 160 66 1.043081283569e-07 161 66 65886111.10029 162 66 -28555987.69793 163 66 -13333333.33771 164 66 16471527.78319 174 66 -7556159.747413 175 66 -3.278255462646e-07 176 66 -1.206994056702e-06 177 66 72174281.7049 178 66 1.728534698486e-06 179 66 1.221895217896e-06 180 66 -7556159.747413 181 66 -7.450580596924e-07 182 66 1.341104507446e-06 195 66 -28555987.69793 196 66 -13333333.33771 197 66 -16471527.78319 198 66 -88624220.55292 199 66 2.235174179077e-07 200 66 -65886111.10029 201 66 -28555987.69793 202 66 13333333.33771 203 66 -16471527.78319 67 67 392892729.701 69 67 -1.311302185059e-06 70 67 -38308711.76591 84 67 -26666666.66229 85 67 -29577388.75645 87 67 1.490116119385e-07 88 67 18222339.27204 90 67 26666666.66229 91 67 -29577388.75645 156 67 13333333.33771 157 67 -24555795.63051 158 67 -13177083.33766 159 67 4.470348358154e-08 160 67 -29957235.32024 161 67 2.831220626831e-07 162 67 -13333333.33771 163 67 -24555795.63051 164 67 13177083.33766 174 67 -2.98023223877e-07 175 67 -58222760.85313 176 67 -52708333.32467 177 67 1.728534698486e-06 178 67 40172745.1813 179 67 -5.960464477539e-08 180 67 -7.003545761108e-07 181 67 -58222760.85313 182 67 52708333.32467 195 67 -13333333.33771 196 67 -24555795.63051 197 67 -13177083.33766 198 67 1.9371509552e-07 199 67 -29957235.32024 200 67 -3.8743019104e-07 201 67 13333333.33771 202 67 -24555795.63051 203 67 13177083.33766 68 68 1 69 69 456895802.7167 70 69 3.695487976074e-06 72 69 63024490.39561 73 69 -1.102685928345e-06 87 69 -37577772.88735 88 69 -26666666.66229 90 69 -99111631.13552 91 69 2.384185791016e-07 93 69 -37577772.88735 94 69 26666666.66229 159 69 -28555987.69793 160 69 13333333.33771 161 69 16471527.78319 162 69 -88624220.55292 163 69 1.043081283569e-07 164 69 65886111.10029 165 69 -28555987.69793 166 69 -13333333.33771 167 69 16471527.78319 177 69 -7556159.747413 178 69 -3.278255462646e-07 179 69 -1.206994056702e-06 180 69 72174281.7049 181 69 1.728534698486e-06 182 69 1.221895217896e-06 183 69 -7556159.747413 184 69 -7.450580596924e-07 185 69 1.341104507446e-06 198 69 -28555987.69793 199 69 -13333333.33771 200 69 -16471527.78319 201 69 -88624220.55292 202 69 2.235174179077e-07 203 69 -65886111.10029 204 69 -28555987.69793 205 69 13333333.33771 206 69 -16471527.78319 70 70 392892729.701 72 70 -1.311302185059e-06 73 70 -38308711.76591 87 70 -26666666.66229 88 70 -29577388.75645 90 70 1.490116119385e-07 91 70 18222339.27204 93 70 26666666.66229 94 70 -29577388.75645 159 70 13333333.33771 160 70 -24555795.63051 161 70 -13177083.33766 162 70 4.470348358154e-08 163 70 -29957235.32024 164 70 2.831220626831e-07 165 70 -13333333.33771 166 70 -24555795.63051 167 70 13177083.33766 177 70 -2.98023223877e-07 178 70 -58222760.85313 179 70 -52708333.32467 180 70 1.728534698486e-06 181 70 40172745.1813 182 70 -5.960464477539e-08 183 70 -7.003545761108e-07 184 70 -58222760.85313 185 70 52708333.32467 198 70 -13333333.33771 199 70 -24555795.63051 200 70 -13177083.33766 201 70 1.9371509552e-07 202 70 -29957235.32024 203 70 -3.8743019104e-07 204 70 13333333.33771 205 70 -24555795.63051 206 70 13177083.33766 71 71 1 72 72 456895802.7167 73 72 3.695487976074e-06 75 72 63024490.39561 76 72 -1.102685928345e-06 90 72 -37577772.88735 91 72 -26666666.66229 93 72 -99111631.13552 94 72 2.384185791016e-07 96 72 -37577772.88735 97 72 26666666.66229 162 72 -28555987.69793 163 72 13333333.33771 164 72 16471527.78319 165 72 -88624220.55292 166 72 1.043081283569e-07 167 72 65886111.10029 168 72 -28555987.69793 169 72 -13333333.33771 170 72 16471527.78319 180 72 -7556159.747413 181 72 -3.278255462646e-07 182 72 -1.206994056702e-06 183 72 72174281.7049 184 72 1.728534698486e-06 185 72 1.221895217896e-06 186 72 -7556159.747413 187 72 -7.450580596924e-07 188 72 1.341104507446e-06 201 72 -28555987.69793 202 72 -13333333.33771 203 72 -16471527.78319 204 72 -88624220.55292 205 72 2.235174179077e-07 206 72 -65886111.10029 207 72 -28555987.69793 208 72 13333333.33771 209 72 -16471527.78319 73 73 392892729.701 75 73 -1.311302185059e-06 76 73 -38308711.76591 90 73 -26666666.66229 91 73 -29577388.75645 93 73 1.490116119385e-07 94 73 18222339.27204 96 73 26666666.66229 97 73 -29577388.75645 162 73 13333333.33771 163 73 -24555795.63051 164 73 -13177083.33766 165 73 4.470348358154e-08 166 73 -29957235.32024 167 73 2.831220626831e-07 168 73 -13333333.33771 169 73 -24555795.63051 170 73 13177083.33766 180 73 -2.98023223877e-07 181 73 -58222760.85313 182 73 -52708333.32467 183 73 1.728534698486e-06 184 73 40172745.1813 185 73 -5.960464477539e-08 186 73 -7.003545761108e-07 187 73 -58222760.85313 188 73 52708333.32467 201 73 -13333333.33771 202 73 -24555795.63051 203 73 -13177083.33766 204 73 1.9371509552e-07 205 73 -29957235.32024 206 73 -3.8743019104e-07 207 73 13333333.33771 208 73 -24555795.63051 209 73 13177083.33766 74 74 1 75 75 456895802.7167 76 75 3.695487976074e-06 78 75 63024490.39561 79 75 -1.102685928345e-06 93 75 -37577772.88735 94 75 -26666666.66229 96 75 -99111631.13552 97 75 2.384185791016e-07 99 75 -37577772.88735 100 75 26666666.66229 165 75 -28555987.69793 166 75 13333333.33771 167 75 16471527.78319 168 75 -88624220.55292 169 75 1.043081283569e-07 170 75 65886111.10029 171 75 -28555987.69793 172 75 -13333333.33771 173 75 16471527.78319 183 75 -7556159.747413 184 75 -3.278255462646e-07 185 75 -1.206994056702e-06 186 75 72174281.7049 187 75 1.728534698486e-06 188 75 1.221895217896e-06 189 75 -7556159.747413 190 75 -7.450580596924e-07 191 75 1.341104507446e-06 204 75 -28555987.69793 205 75 -13333333.33771 206 75 -16471527.78319 207 75 -88624220.55292 208 75 2.235174179077e-07 209 75 -65886111.10029 210 75 -28555987.69793 211 75 13333333.33771 212 75 -16471527.78319 76 76 392892729.701 78 76 -1.311302185059e-06 79 76 -38308711.76591 93 76 -26666666.66229 94 76 -29577388.75645 96 76 1.490116119385e-07 97 76 18222339.27204 99 76 26666666.66229 100 76 -29577388.75645 165 76 13333333.33771 166 76 -24555795.63051 167 76 -13177083.33766 168 76 4.470348358154e-08 169 76 -29957235.32024 170 76 2.831220626831e-07 171 76 -13333333.33771 172 76 -24555795.63051 173 76 13177083.33766 183 76 -2.98023223877e-07 184 76 -58222760.85313 185 76 -52708333.32467 186 76 1.728534698486e-06 187 76 40172745.1813 188 76 -5.960464477539e-08 189 76 -7.003545761108e-07 190 76 -58222760.85313 191 76 52708333.32467 204 76 -13333333.33771 205 76 -24555795.63051 206 76 -13177083.33766 207 76 1.9371509552e-07 208 76 -29957235.32024 209 76 -3.8743019104e-07 210 76 13333333.33771 211 76 -24555795.63051 212 76 13177083.33766 77 77 1 78 78 443038053.544 79 78 14753289.29481 81 78 -7825052.860854 82 78 -33997652.77504 96 78 -37577772.88735 97 78 -26666666.66229 99 78 -84996673.21432 100 78 6792787.185364 102 78 -24718984.37946 103 78 24994395.61339 168 78 -28555987.69793 169 78 13333333.33771 170 78 16471527.78319 171 78 -87310926.38278 172 78 -6271409.66235 173 78 57161110.99975 186 78 -7556159.747413 187 78 -3.278255462646e-07 188 78 -1.206994056702e-06 189 78 87947441.63499 190 78 7376644.65104 191 78 0.02039501070976 192 78 -32923131.70809 193 78 -16998826.39589 194 78 16470833.12799 207 78 -28555987.69793 208 78 -13333333.33771 209 78 -16471527.78319 210 78 -80272721.40676 211 78 3396393.594356 212 78 -61522916.65699 213 78 -22126192.23639 214 78 12497197.81285 215 78 -12109027.78175 79 79 410708568.3999 81 79 -33997652.66837 82 79 -102930724.6535 96 79 -26666666.66229 97 79 -29577388.75645 99 79 6792787.185364 100 79 24210319.49286 102 79 24994395.61339 103 79 -40135224.92162 168 79 13333333.33771 169 79 -24555795.63051 170 79 -13177083.33766 171 79 -6271409.715683 172 79 -27822507.01778 173 79 6197916.651945 186 79 -2.98023223877e-07 187 79 -58222760.85313 188 79 -52708333.32467 189 79 7376644.65104 190 79 71782699.055 191 79 0.01631674170494 192 79 -16998826.34256 193 79 -80475967.62785 194 79 52708333.09468 207 79 -13333333.33771 208 79 -24555795.63051 209 79 -13177083.33766 210 79 3396393.594355 211 79 -25669225.02627 212 79 3489583.332416 213 79 12497197.81285 214 79 -29834312.51126 215 79 16666666.67214 80 80 1 81 81 265887547.5234 82 81 4251691.216096 99 81 -40185009.13188 100 81 -26453880.6983 102 81 -56727888.77942 103 81 9054179.643625 105 81 34241530.0939 106 81 -9372296.81691 108 81 -21164769.40107 109 81 24517959.64911 171 81 -11791159.78616 172 81 15999999.84526 173 81 14530833.02455 189 81 -32923131.7081 190 81 -16998826.34256 191 81 -16470833.02261 192 81 14669982.03611 193 81 2125845.609096 194 81 12968611.10898 210 81 -29859204.61641 211 81 -13226940.35567 212 81 -16470833.33874 213 81 -76387958.09069 214 81 4527089.824043 215 81 -64843055.54491 216 81 -11712307.86994 217 81 -4686148.410764 218 81 8424305.555742 219 81 -24181082.63358 220 81 12258979.8306 221 81 -15950694.44968 82 82 313462909.2146 99 82 -26453880.6983 100 82 -27436535.90625 102 82 9054179.643625 103 82 48935939.89062 105 82 1294369.848004 106 82 -17586593.12844 108 82 24517959.64911 109 82 -24849021.79609 171 82 10666666.5635 172 82 -19475967.87838 173 82 -14729166.53156 189 82 -16998826.39589 190 82 -80475967.62786 191 82 -52708333.03516 192 82 2125845.609096 193 82 38457662.89345 194 82 3874999.888226 210 82 -13226940.35567 211 82 -23484968.00046 212 82 -13177083.33766 213 82 4527089.824043 214 82 -23556043.72965 215 82 3489583.332417 216 82 647184.9243208 217 82 -37626369.49388 218 82 33333333.32786 219 82 12258979.8306 220 82 -26023208.832 221 82 16666666.67214 83 83 1 84 84 228447901.3583 85 84 2.026557922363e-06 87 84 31512245.19781 88 84 5333333.332457 174 84 -88624220.55292 175 84 1.043081283569e-07 176 84 65886111.10029 177 84 -28555987.69793 178 84 -13333333.33771 179 84 16471527.78319 195 84 36087140.85245 196 84 8.344650268555e-07 197 84 -13177222.22006 198 84 -3778079.873706 199 84 2666666.667542 200 84 -3294305.556637 85 85 196446364.8505 87 85 -5333333.332458 88 85 -19154355.88295 174 85 4.470348358154e-08 175 85 -29957235.32024 176 85 2.831220626831e-07 177 85 -13333333.33771 178 85 -24555795.63051 179 85 13177083.33766 195 85 8.940696716309e-07 196 85 20086372.59065 197 85 -2.98023223877e-08 198 85 -2666666.667543 199 85 -29111380.42657 200 85 26354166.66234 86 86 1 87 87 228447901.3583 88 87 2.026557922363e-06 90 87 31512245.19781 91 87 5333333.332457 174 87 -28555987.69793 175 87 13333333.33771 176 87 16471527.78319 177 87 -88624220.55292 178 87 1.043081283569e-07 179 87 65886111.10029 180 87 -28555987.69793 181 87 -13333333.33771 182 87 16471527.78319 195 87 -3778079.873706 196 87 -2666666.667542 197 87 -3294305.556638 198 87 36087140.85245 199 87 8.344650268555e-07 200 87 -13177222.22006 201 87 -3778079.873706 202 87 2666666.667542 203 87 -3294305.556637 88 88 196446364.8505 90 88 -5333333.332458 91 88 -19154355.88295 174 88 13333333.33771 175 88 -24555795.63051 176 88 -13177083.33766 177 88 4.470348358154e-08 178 88 -29957235.32024 179 88 2.831220626831e-07 180 88 -13333333.33771 181 88 -24555795.63051 182 88 13177083.33766 195 88 2666666.667542 196 88 -29111380.42657 197 88 -26354166.66234 198 88 8.940696716309e-07 199 88 20086372.59065 200 88 -2.98023223877e-08 201 88 -2666666.667543 202 88 -29111380.42657 203 88 26354166.66234 89 89 1 90 90 228447901.3583 91 90 2.026557922363e-06 93 90 31512245.19781 94 90 5333333.332457 177 90 -28555987.69793 178 90 13333333.33771 179 90 16471527.78319 180 90 -88624220.55292 181 90 1.043081283569e-07 182 90 65886111.10029 183 90 -28555987.69793 184 90 -13333333.33771 185 90 16471527.78319 198 90 -3778079.873706 199 90 -2666666.667542 200 90 -3294305.556638 201 90 36087140.85245 202 90 8.344650268555e-07 203 90 -13177222.22006 204 90 -3778079.873706 205 90 2666666.667542 206 90 -3294305.556637 91 91 196446364.8505 93 91 -5333333.332458 94 91 -19154355.88295 177 91 13333333.33771 178 91 -24555795.63051 179 91 -13177083.33766 180 91 4.470348358154e-08 181 91 -29957235.32024 182 91 2.831220626831e-07 183 91 -13333333.33771 184 91 -24555795.63051 185 91 13177083.33766 198 91 2666666.667542 199 91 -29111380.42657 200 91 -26354166.66234 201 91 8.940696716309e-07 202 91 20086372.59065 203 91 -2.98023223877e-08 204 91 -2666666.667543 205 91 -29111380.42657 206 91 26354166.66234 92 92 1 93 93 228447901.3583 94 93 2.026557922363e-06 96 93 31512245.19781 97 93 5333333.332457 180 93 -28555987.69793 181 93 13333333.33771 182 93 16471527.78319 183 93 -88624220.55292 184 93 1.043081283569e-07 185 93 65886111.10029 186 93 -28555987.69793 187 93 -13333333.33771 188 93 16471527.78319 201 93 -3778079.873706 202 93 -2666666.667542 203 93 -3294305.556638 204 93 36087140.85245 205 93 8.344650268555e-07 206 93 -13177222.22006 207 93 -3778079.873706 208 93 2666666.667542 209 93 -3294305.556637 94 94 196446364.8505 96 94 -5333333.332458 97 94 -19154355.88295 180 94 13333333.33771 181 94 -24555795.63051 182 94 -13177083.33766 183 94 4.470348358154e-08 184 94 -29957235.32024 185 94 2.831220626831e-07 186 94 -13333333.33771 187 94 -24555795.63051 188 94 13177083.33766 201 94 2666666.667542 202 94 -29111380.42657 203 94 -26354166.66234 204 94 8.940696716309e-07 205 94 20086372.59065 206 94 -2.98023223877e-08 207 94 -2666666.667543 208 94 -29111380.42657 209 94 26354166.66234 95 95 1 96 96 228447901.3583 97 96 2.026557922363e-06 99 96 31512245.19781 100 96 5333333.332457 183 96 -28555987.69793 184 96 13333333.33771 185 96 16471527.78319 186 96 -88624220.55292 187 96 1.043081283569e-07 188 96 65886111.10029 189 96 -28555987.69793 190 96 -13333333.33771 191 96 16471527.78319 204 96 -3778079.873706 205 96 -2666666.667542 206 96 -3294305.556638 207 96 36087140.85245 208 96 8.344650268555e-07 209 96 -13177222.22006 210 96 -3778079.873706 211 96 2666666.667542 212 96 -3294305.556637 97 97 196446364.8505 99 97 -5333333.332458 100 97 -19154355.88295 183 97 13333333.33771 184 97 -24555795.63051 185 97 -13177083.33766 186 97 4.470348358154e-08 187 97 -29957235.32024 188 97 2.831220626831e-07 189 97 -13333333.33771 190 97 -24555795.63051 191 97 13177083.33766 204 97 2666666.667542 205 97 -29111380.42657 206 97 -26354166.66234 207 97 8.940696716309e-07 208 97 20086372.59065 209 97 -2.98023223877e-08 210 97 -2666666.667543 211 97 -29111380.42657 212 97 26354166.66234 98 98 1 99 99 225836329.6274 100 99 212728.6534935 102 99 22613666.86668 103 99 -1884968.470388 186 99 -28555987.69793 187 99 13333333.33771 188 99 16471527.78319 189 99 -80272721.40676 190 99 3396393.594356 191 99 61522916.65613 192 99 -29859204.61641 193 99 -13226940.35567 194 99 16470833.33874 207 99 -3778079.873706 208 99 -2666666.667542 209 99 -3294305.556638 210 99 34782980.96289 211 99 106364.3267991 212 99 -13176944.44228 213 99 -9519773.826407 214 99 -942484.2356579 215 99 1067638.88752 100 100 198587519.4449 102 100 -12551635.1353 103 100 -29426771.93377 186 100 13333333.33771 187 100 -24555795.63051 188 100 -13177083.33766 189 100 3396393.594355 190 100 -25669225.02627 191 100 -3489583.333104 192 100 -13226940.35567 193 100 -23484968.00045 194 100 13177083.33766 207 100 2666666.667542 208 100 -29111380.42657 209 100 -26354166.66234 210 100 106364.3267991 211 100 21158575.86493 212 100 2.682209014893e-07 213 100 -6275817.570742 214 100 -35539993.23945 215 100 29843749.99544 101 101 1 102 102 222322244.5873 103 102 6540964.785291 105 102 -43497213.84184 106 102 -28815373.67546 108 102 22102059.00906 109 102 777468.7684572 189 102 -22126192.23639 190 102 12497197.81285 191 102 12109027.78176 192 102 -76387958.09069 193 102 4527089.824043 194 102 64843055.54491 210 102 -9519773.826409 211 102 -6275817.570743 212 102 -7655972.222158 213 102 15798034.7999 214 102 3270482.394257 215 102 -12968611.10898 216 102 -35347304.85947 217 102 -14407686.84483 218 102 20312500.00667 219 102 -14510689.24923 220 102 388734.3844201 221 102 1171666.664472 103 103 224877122.8958 105 103 -28815373.67546 106 103 -33223688.46138 108 103 -9889197.896457 109 103 -28933494.0074 189 103 12497197.81285 190 103 -29834312.51127 191 103 -16666666.67214 192 103 4527089.824043 193 103 -23556043.72965 194 103 -3489583.333103 210 103 -942484.2356579 211 103 -35539993.23945 212 103 -29843749.99475 213 103 3270482.394257 214 103 17075473.95481 215 103 9.536743164063e-07 216 103 -14407686.84483 217 103 -30210542.16671 218 103 16666666.67214 219 103 -4944598.950664 220 103 -40028465.77003 221 103 33333333.32786 104 104 1 105 105 127424615.7113 106 105 30705630.14674 108 105 -33305390.29881 109 105 -3184626.319285 192 105 -11712307.86995 193 105 647184.9243208 194 105 -299305.5539346 213 105 -35347304.85947 214 105 -14407686.84483 215 105 -20312500.00667 216 105 6046162.064774 217 105 15352815.08093 218 105 8124999.998666 219 105 -43850090.99987 220 105 -1592313.160427 221 105 -36263194.43806 106 106 114252738.9443 108 106 7482040.345629 109 106 21421084.31006 192 106 -4686148.410764 193 106 -37626369.49388 194 106 -33333333.32786 213 106 -14407686.84483 214 106 -30210542.16671 215 106 -16666666.67214 216 106 15352815.08093 217 106 -539776.3219635 218 106 6666666.665572 219 106 3741020.174657 220 106 -16486853.68196 221 106 3333333.334428 107 107 1 108 108 110688934.0263 109 108 -22110802.09829 192 108 -24181082.63358 193 108 12258979.8306 194 108 15950694.44968 213 108 -14510689.24923 214 108 -4944598.950664 215 108 -7551944.445206 216 108 -43850090.99987 217 108 3741020.174657 218 108 36263194.43892 219 108 4221029.5472 220 108 -11055401.05459 221 108 -6380277.77673 109 109 110682264.8289 192 109 12258979.8306 193 109 -26023208.832 194 109 -16666666.67214 213 109 388734.38442 214 109 -40028465.77003 215 109 -33333333.32786 216 109 -1592313.160427 217 109 -16486853.68196 218 109 3333333.334428 219 109 -11055401.05459 220 109 4217694.948508 221 109 6666666.665572 110 110 1 111 111 571119749.839 112 111 53333333.32457 113 111 -5.960464477539e-06 114 111 -292913008.3249 115 111 -53333332.8979 116 111 6.556510925293e-06 117 111 19534202.10867 118 111 42666666.23299 119 111 -1.490116119385e-06 222 111 45108925.89256 223 111 13333333.33771 224 111 13177222.19231 225 111 -107413106.5112 226 111 -13333333.23104 227 111 -65886110.96157 228 111 -9767101.054335 229 111 10666666.5635 230 111 -13177221.94221 112 112 491115909.0416 113 112 -2.855678641392e-06 114 112 -53333332.68457 115 112 -42244300.58137 116 112 2.145767211914e-06 117 112 63999999.34949 118 112 19534202.10866 119 112 -2.384185791016e-06 222 112 13333333.33771 223 112 25107965.68335 224 112 10541666.55379 225 112 -13333333.17771 226 112 -44745929.54446 227 112 -13177083.26329 228 112 15999999.84525 229 112 -9767101.054335 230 112 15812499.93082 113 113 565941879.2302 114 113 6.943941116333e-06 115 113 1.609325408936e-06 116 113 5277897.861165 117 113 -2.145767211914e-06 118 113 -1.54972076416e-06 119 113 52091205.62311 222 113 -13177222.19232 223 113 -10541666.5538 224 113 -118970561.1562 225 113 -65886110.96157 226 113 -13177083.28808 227 113 -89840137.25117 228 113 -19765832.91331 229 113 10541666.62055 230 113 -26045602.81156 114 114 988947148.5376 115 114 53333332.25791 116 114 -8.940696716309e-06 117 114 31359232.67644 118 114 -53333332.8979 119 114 1.251697540283e-06 120 114 -198223262.271 121 114 2.98023223877e-07 122 114 5.960464477539e-08 123 114 -75155545.7747 124 114 53333333.32457 125 114 -1.490116119385e-08 222 114 -107413106.5112 223 114 -13333333.17771 224 114 65886110.96157 225 114 100730268.7541 226 114 13333333.07105 227 114 0.02774140238762 228 114 -26345045.89131 229 114 -13333333.23105 230 114 16471527.49884 231 114 -88624220.55292 232 114 2.235174179077e-07 233 114 -65886111.10029 234 114 -28555987.69793 235 114 13333333.33771 236 114 -16471527.78319 115 115 844940234.7245 116 115 -7.867813110352e-06 117 115 -53333332.68457 118 115 -155306402.5315 119 115 5.394220352173e-06 120 115 3.576278686523e-07 121 115 36444678.54407 122 115 -4.172325134277e-07 123 115 53333333.32457 124 115 -59154777.5129 125 115 2.98023223877e-08 222 115 -13333333.23104 223 115 -44745929.54447 224 115 13177083.28808 225 115 13333333.07105 226 115 64728540.28304 227 115 0.022192299366 228 115 -13333333.17771 229 115 -73011454.71628 230 115 52708333.03581 231 115 1.9371509552e-07 232 115 -29957235.32024 233 115 -3.8743019104e-07 234 115 13333333.33771 235 115 -24555795.63051 236 115 13177083.33766 116 116 914512974.9691 117 116 1.728534698486e-06 118 116 4.559755325317e-06 119 116 62880662.12465 120 116 1.192092895508e-07 121 116 -4.768371582031e-07 122 116 66375066.93519 123 116 4.470348358154e-08 124 116 -4.470348358154e-08 125 116 -9005963.440553 222 116 65886110.96157 223 116 13177083.26329 224 116 -89840137.25118 225 116 -0.0277450978756 226 116 -0.02219566702843 227 116 -162055805.4842 228 116 16471527.35667 229 116 52708332.94687 230 116 -75439445.29918 231 116 -65886111.10029 232 116 -2.831220626831e-07 233 116 -87588646.48668 234 116 -16471527.78319 235 116 13177083.33766 236 116 -28297094.18124 117 117 571119749.839 118 117 53333333.32457 119 117 -6.198883056641e-06 120 117 -75155545.77471 121 117 -53333333.32457 122 117 5.066394805908e-07 123 117 -292913008.3249 124 117 -53333332.8979 125 117 6.556510925293e-06 126 117 19534202.10867 127 117 42666666.23299 128 117 -1.490116119385e-06 222 117 -9767101.054335 223 117 15999999.84525 224 117 19765832.91331 225 117 -26345045.8913 226 117 -13333333.17771 227 117 -16471527.35667 228 117 45108925.89256 229 117 13333333.33771 230 117 13177222.19231 231 117 -28555987.69793 232 117 -13333333.33771 233 117 -16471527.78319 234 117 -107413106.5112 235 117 -13333333.23104 236 117 -65886110.96157 237 117 -9767101.054335 238 117 10666666.5635 239 117 -13177221.94221 118 118 491115909.0416 119 118 -2.974887930942e-06 120 118 -53333333.32457 121 118 -59154777.5129 122 118 2.086162567139e-07 123 118 -53333332.68457 124 118 -42244300.58137 125 118 2.145767211914e-06 126 118 63999999.34949 127 118 19534202.10866 128 118 -2.384185791016e-06 222 118 10666666.5635 223 118 -9767101.054336 224 118 -10541666.62055 225 118 -13333333.23105 226 118 -73011454.71627 227 118 -52708332.94687 228 118 13333333.33771 229 118 25107965.68335 230 118 10541666.55379 231 118 -13333333.33771 232 118 -24555795.63051 233 118 -13177083.33766 234 118 -13333333.17771 235 118 -44745929.54446 236 118 -13177083.26329 237 118 15999999.84525 238 118 -9767101.054335 239 118 15812499.93082 119 119 565941879.2302 120 119 5.811452865601e-07 121 119 3.129243850708e-07 122 119 -9005963.440556 123 119 6.943941116333e-06 124 119 1.609325408936e-06 125 119 5277897.861165 126 119 -2.145767211914e-06 127 119 -1.54972076416e-06 128 119 52091205.62311 222 119 13177221.94221 223 119 -15812499.93082 224 119 -26045602.81156 225 119 -16471527.49884 226 119 -52708333.03581 227 119 -75439445.29917 228 119 -13177222.19232 229 119 -10541666.5538 230 119 -118970561.1562 231 119 -16471527.78319 232 119 -13177083.33766 233 119 -28297094.18124 234 119 -65886110.96157 235 119 -13177083.28808 236 119 -89840137.25117 237 119 -19765832.91331 238 119 10541666.62055 239 119 -26045602.81156 120 120 913791605.4334 121 120 7.748603820801e-06 122 120 -2.622604370117e-06 123 120 126048980.7912 124 120 -2.175569534302e-06 125 120 -1.490116119385e-06 129 120 -198223262.271 130 120 2.98023223877e-07 131 120 5.960464477539e-08 132 120 -75155545.7747 133 120 53333333.32457 134 120 -1.490116119385e-08 225 120 -88624220.55292 226 120 1.043081283569e-07 227 120 65886111.10029 228 120 -28555987.69793 229 120 -13333333.33771 230 120 16471527.78319 231 120 72174281.7049 232 120 1.728534698486e-06 233 120 1.221895217896e-06 234 120 -7556159.747413 235 120 -7.450580596924e-07 236 120 1.341104507446e-06 240 120 -88624220.55292 241 120 2.235174179077e-07 242 120 -65886111.10029 243 120 -28555987.69793 244 120 13333333.33771 245 120 -16471527.78319 121 121 785785459.402 122 121 -1.788139343262e-06 123 121 -2.086162567139e-06 124 121 -76617423.53181 125 121 5.066394805908e-07 129 121 3.576278686523e-07 130 121 36444678.54407 131 121 -4.172325134277e-07 132 121 53333333.32457 133 121 -59154777.5129 134 121 2.98023223877e-08 225 121 4.470348358154e-08 226 121 -29957235.32024 227 121 2.831220626831e-07 228 121 -13333333.33771 229 121 -24555795.63051 230 121 13177083.33766 231 121 1.728534698486e-06 232 121 40172745.1813 233 121 -5.960464477539e-08 234 121 -7.003545761108e-07 235 121 -58222760.85313 236 121 52708333.32467 240 121 1.9371509552e-07 241 121 -29957235.32024 242 121 -3.8743019104e-07 243 121 13333333.33771 244 121 -24555795.63051 245 121 13177083.33766 122 122 905507012.9075 123 122 -1.668930053711e-06 124 122 4.470348358154e-07 125 122 123977832.6588 129 122 1.192092895508e-07 130 122 -4.768371582031e-07 131 122 66375066.93519 132 122 4.470348358154e-08 133 122 -4.470348358154e-08 134 122 -9005963.440553 225 122 65886111.10029 226 122 3.8743019104e-07 227 122 -87588646.48668 228 122 16471527.78319 229 122 13177083.33766 230 122 -28297094.18124 231 122 8.642673492432e-07 232 122 1.788139343262e-07 233 122 -190352899.3709 234 122 1.475214958191e-06 235 122 52708333.32467 236 122 -73187955.0487 240 122 -65886111.10029 241 122 -2.831220626831e-07 242 122 -87588646.48668 243 122 -16471527.78319 244 122 13177083.33766 245 122 -28297094.18124 123 123 988947148.5376 124 123 53333332.25791 125 123 -9.298324584961e-06 126 123 31359232.67644 127 123 -53333332.8979 128 123 1.251697540283e-06 129 123 -75155545.77471 130 123 -53333333.32457 131 123 5.066394805908e-07 132 123 -198223262.271 133 123 2.98023223877e-07 134 123 5.960464477539e-08 135 123 -75155545.7747 136 123 53333333.32457 137 123 -1.490116119385e-08 225 123 -28555987.69793 226 123 13333333.33771 227 123 16471527.78319 228 123 -107413106.5112 229 123 -13333333.17771 230 123 65886110.96157 231 123 -7556159.747413 232 123 -3.278255462646e-07 233 123 -1.206994056702e-06 234 123 100730268.7541 235 123 13333333.07105 236 123 0.02774140238762 237 123 -26345045.89131 238 123 -13333333.23105 239 123 16471527.49884 240 123 -28555987.69793 241 123 -13333333.33771 242 123 -16471527.78319 243 123 -88624220.55292 244 123 2.235174179077e-07 245 123 -65886111.10029 246 123 -28555987.69793 247 123 13333333.33771 248 123 -16471527.78319 124 124 844940234.7245 125 124 -7.987022399902e-06 126 124 -53333332.68457 127 124 -155306402.5315 128 124 5.394220352173e-06 129 124 -53333333.32457 130 124 -59154777.5129 131 124 2.086162567139e-07 132 124 3.576278686523e-07 133 124 36444678.54407 134 124 -4.172325134277e-07 135 124 53333333.32457 136 124 -59154777.5129 137 124 2.98023223877e-08 225 124 13333333.33771 226 124 -24555795.63051 227 124 -13177083.33766 228 124 -13333333.23104 229 124 -44745929.54447 230 124 13177083.28808 231 124 -2.98023223877e-07 232 124 -58222760.85313 233 124 -52708333.32467 234 124 13333333.07105 235 124 64728540.28304 236 124 0.022192299366 237 124 -13333333.17771 238 124 -73011454.71628 239 124 52708333.03581 240 124 -13333333.33771 241 124 -24555795.63051 242 124 -13177083.33766 243 124 1.9371509552e-07 244 124 -29957235.32024 245 124 -3.8743019104e-07 246 124 13333333.33771 247 124 -24555795.63051 248 124 13177083.33766 125 125 914512974.9691 126 125 1.728534698486e-06 127 125 4.559755325317e-06 128 125 62880662.12465 129 125 5.811452865601e-07 130 125 3.129243850708e-07 131 125 -9005963.440556 132 125 1.192092895508e-07 133 125 -4.768371582031e-07 134 125 66375066.93519 135 125 4.470348358154e-08 136 125 -4.470348358154e-08 137 125 -9005963.440553 225 125 16471527.78319 226 125 -13177083.33766 227 125 -28297094.18124 228 125 65886110.96157 229 125 13177083.26329 230 125 -89840137.25118 231 125 -9.983777999878e-07 232 125 -52708333.32467 233 125 -73187955.04869 234 125 -0.0277450978756 235 125 -0.02219566702843 236 125 -162055805.4842 237 125 16471527.35667 238 125 52708332.94687 239 125 -75439445.29918 240 125 -16471527.78319 241 125 -13177083.33766 242 125 -28297094.18124 243 125 -65886111.10029 244 125 -2.831220626831e-07 245 125 -87588646.48668 246 125 -16471527.78319 247 125 13177083.33766 248 125 -28297094.18124 126 126 571119749.839 127 126 53333333.32457 128 126 -6.198883056641e-06 132 126 -75155545.77471 133 126 -53333333.32457 134 126 5.066394805908e-07 135 126 -292913008.3249 136 126 -53333332.8979 137 126 6.556510925293e-06 138 126 19534202.10867 139 126 42666666.23299 140 126 -1.490116119385e-06 228 126 -9767101.054335 229 126 15999999.84525 230 126 19765832.91331 234 126 -26345045.8913 235 126 -13333333.17771 236 126 -16471527.35667 237 126 45108925.89256 238 126 13333333.33771 239 126 13177222.19231 243 126 -28555987.69793 244 126 -13333333.33771 245 126 -16471527.78319 246 126 -107413106.5112 247 126 -13333333.23104 248 126 -65886110.96157 249 126 -9767101.054335 250 126 10666666.5635 251 126 -13177221.94221 127 127 491115909.0416 128 127 -2.974887930942e-06 132 127 -53333333.32457 133 127 -59154777.5129 134 127 2.086162567139e-07 135 127 -53333332.68457 136 127 -42244300.58137 137 127 2.145767211914e-06 138 127 63999999.34949 139 127 19534202.10866 140 127 -2.384185791016e-06 228 127 10666666.5635 229 127 -9767101.054336 230 127 -10541666.62055 234 127 -13333333.23105 235 127 -73011454.71627 236 127 -52708332.94687 237 127 13333333.33771 238 127 25107965.68335 239 127 10541666.55379 243 127 -13333333.33771 244 127 -24555795.63051 245 127 -13177083.33766 246 127 -13333333.17771 247 127 -44745929.54446 248 127 -13177083.26329 249 127 15999999.84525 250 127 -9767101.054335 251 127 15812499.93082 128 128 565941879.2302 132 128 5.811452865601e-07 133 128 3.129243850708e-07 134 128 -9005963.440556 135 128 6.943941116333e-06 136 128 1.609325408936e-06 137 128 5277897.861165 138 128 -2.145767211914e-06 139 128 -1.54972076416e-06 140 128 52091205.62311 228 128 13177221.94221 229 128 -15812499.93082 230 128 -26045602.81156 234 128 -16471527.49884 235 128 -52708333.03581 236 128 -75439445.29917 237 128 -13177222.19232 238 128 -10541666.5538 239 128 -118970561.1562 243 128 -16471527.78319 244 128 -13177083.33766 245 128 -28297094.18124 246 128 -65886110.96157 247 128 -13177083.28808 248 128 -89840137.25117 249 128 -19765832.91331 250 128 10541666.62055 251 128 -26045602.81156 129 129 913791605.4334 130 129 7.748603820801e-06 131 129 -2.622604370117e-06 132 129 126048980.7912 133 129 -2.175569534302e-06 134 129 -1.490116119385e-06 141 129 -198223262.271 142 129 2.98023223877e-07 143 129 5.960464477539e-08 144 129 -75155545.7747 145 129 53333333.32457 146 129 -1.490116119385e-08 231 129 -88624220.55292 232 129 1.043081283569e-07 233 129 65886111.10029 234 129 -28555987.69793 235 129 -13333333.33771 236 129 16471527.78319 240 129 72174281.7049 241 129 1.728534698486e-06 242 129 1.221895217896e-06 243 129 -7556159.747413 244 129 -7.450580596924e-07 245 129 1.341104507446e-06 252 129 -88624220.55292 253 129 2.235174179077e-07 254 129 -65886111.10029 255 129 -28555987.69793 256 129 13333333.33771 257 129 -16471527.78319 130 130 785785459.402 131 130 -1.788139343262e-06 132 130 -2.086162567139e-06 133 130 -76617423.53181 134 130 5.066394805908e-07 141 130 3.576278686523e-07 142 130 36444678.54407 143 130 -4.172325134277e-07 144 130 53333333.32457 145 130 -59154777.5129 146 130 2.98023223877e-08 231 130 4.470348358154e-08 232 130 -29957235.32024 233 130 2.831220626831e-07 234 130 -13333333.33771 235 130 -24555795.63051 236 130 13177083.33766 240 130 1.728534698486e-06 241 130 40172745.1813 242 130 -5.960464477539e-08 243 130 -7.003545761108e-07 244 130 -58222760.85313 245 130 52708333.32467 252 130 1.9371509552e-07 253 130 -29957235.32024 254 130 -3.8743019104e-07 255 130 13333333.33771 256 130 -24555795.63051 257 130 13177083.33766 131 131 905507012.9075 132 131 -1.668930053711e-06 133 131 4.470348358154e-07 134 131 123977832.6588 141 131 1.192092895508e-07 142 131 -4.768371582031e-07 143 131 66375066.93519 144 131 4.470348358154e-08 145 131 -4.470348358154e-08 146 131 -9005963.440553 231 131 65886111.10029 232 131 3.8743019104e-07 233 131 -87588646.48668 234 131 16471527.78319 235 131 13177083.33766 236 131 -28297094.18124 240 131 8.642673492432e-07 241 131 1.788139343262e-07 242 131 -190352899.3709 243 131 1.475214958191e-06 244 131 52708333.32467 245 131 -73187955.0487 252 131 -65886111.10029 253 131 -2.831220626831e-07 254 131 -87588646.48668 255 131 -16471527.78319 256 131 13177083.33766 257 131 -28297094.18124 132 132 913791605.4334 133 132 7.748603820801e-06 134 132 -2.622604370117e-06 135 132 126048980.7912 136 132 -2.175569534302e-06 137 132 -1.490116119385e-06 141 132 -75155545.77471 142 132 -53333333.32457 143 132 5.066394805908e-07 144 132 -198223262.271 145 132 2.98023223877e-07 146 132 5.960464477539e-08 147 132 -75155545.7747 148 132 53333333.32457 149 132 -1.490116119385e-08 231 132 -28555987.69793 232 132 13333333.33771 233 132 16471527.78319 234 132 -88624220.55292 235 132 1.043081283569e-07 236 132 65886111.10029 237 132 -28555987.69793 238 132 -13333333.33771 239 132 16471527.78319 240 132 -7556159.747413 241 132 -3.278255462646e-07 242 132 -1.206994056702e-06 243 132 72174281.7049 244 132 1.728534698486e-06 245 132 1.221895217896e-06 246 132 -7556159.747413 247 132 -7.450580596924e-07 248 132 1.341104507446e-06 252 132 -28555987.69793 253 132 -13333333.33771 254 132 -16471527.78319 255 132 -88624220.55292 256 132 2.235174179077e-07 257 132 -65886111.10029 258 132 -28555987.69793 259 132 13333333.33771 260 132 -16471527.78319 133 133 785785459.402 134 133 -1.788139343262e-06 135 133 -2.086162567139e-06 136 133 -76617423.53181 137 133 5.066394805908e-07 141 133 -53333333.32457 142 133 -59154777.5129 143 133 2.086162567139e-07 144 133 3.576278686523e-07 145 133 36444678.54407 146 133 -4.172325134277e-07 147 133 53333333.32457 148 133 -59154777.5129 149 133 2.98023223877e-08 231 133 13333333.33771 232 133 -24555795.63051 233 133 -13177083.33766 234 133 4.470348358154e-08 235 133 -29957235.32024 236 133 2.831220626831e-07 237 133 -13333333.33771 238 133 -24555795.63051 239 133 13177083.33766 240 133 -2.98023223877e-07 241 133 -58222760.85313 242 133 -52708333.32467 243 133 1.728534698486e-06 244 133 40172745.1813 245 133 -5.960464477539e-08 246 133 -7.003545761108e-07 247 133 -58222760.85313 248 133 52708333.32467 252 133 -13333333.33771 253 133 -24555795.63051 254 133 -13177083.33766 255 133 1.9371509552e-07 256 133 -29957235.32024 257 133 -3.8743019104e-07 258 133 13333333.33771 259 133 -24555795.63051 260 133 13177083.33766 134 134 905507012.9075 135 134 -1.668930053711e-06 136 134 4.470348358154e-07 137 134 123977832.6588 141 134 5.811452865601e-07 142 134 3.129243850708e-07 143 134 -9005963.440556 144 134 1.192092895508e-07 145 134 -4.768371582031e-07 146 134 66375066.93519 147 134 4.470348358154e-08 148 134 -4.470348358154e-08 149 134 -9005963.440553 231 134 16471527.78319 232 134 -13177083.33766 233 134 -28297094.18124 234 134 65886111.10029 235 134 3.8743019104e-07 236 134 -87588646.48668 237 134 16471527.78319 238 134 13177083.33766 239 134 -28297094.18124 240 134 -9.983777999878e-07 241 134 -52708333.32467 242 134 -73187955.04869 243 134 8.642673492432e-07 244 134 1.788139343262e-07 245 134 -190352899.3709 246 134 1.475214958191e-06 247 134 52708333.32467 248 134 -73187955.0487 252 134 -16471527.78319 253 134 -13177083.33766 254 134 -28297094.18124 255 134 -65886111.10029 256 134 -2.831220626831e-07 257 134 -87588646.48668 258 134 -16471527.78319 259 134 13177083.33766 260 134 -28297094.18124 135 135 988947148.5376 136 135 53333332.25791 137 135 -9.298324584961e-06 138 135 31359232.67644 139 135 -53333332.8979 140 135 1.251697540283e-06 144 135 -75155545.77471 145 135 -53333333.32457 146 135 5.066394805908e-07 147 135 -198223262.271 148 135 2.98023223877e-07 149 135 5.960464477539e-08 150 135 -75155545.7747 151 135 53333333.32457 152 135 -1.490116119385e-08 234 135 -28555987.69793 235 135 13333333.33771 236 135 16471527.78319 237 135 -107413106.5112 238 135 -13333333.17771 239 135 65886110.96157 243 135 -7556159.747413 244 135 -3.278255462646e-07 245 135 -1.206994056702e-06 246 135 100730268.7541 247 135 13333333.07105 248 135 0.02774140238762 249 135 -26345045.89131 250 135 -13333333.23105 251 135 16471527.49884 255 135 -28555987.69793 256 135 -13333333.33771 257 135 -16471527.78319 258 135 -88624220.55292 259 135 2.235174179077e-07 260 135 -65886111.10029 261 135 -28555987.69793 262 135 13333333.33771 263 135 -16471527.78319 136 136 844940234.7245 137 136 -7.987022399902e-06 138 136 -53333332.68457 139 136 -155306402.5315 140 136 5.394220352173e-06 144 136 -53333333.32457 145 136 -59154777.5129 146 136 2.086162567139e-07 147 136 3.576278686523e-07 148 136 36444678.54407 149 136 -4.172325134277e-07 150 136 53333333.32457 151 136 -59154777.5129 152 136 2.98023223877e-08 234 136 13333333.33771 235 136 -24555795.63051 236 136 -13177083.33766 237 136 -13333333.23104 238 136 -44745929.54447 239 136 13177083.28808 243 136 -2.98023223877e-07 244 136 -58222760.85313 245 136 -52708333.32467 246 136 13333333.07105 247 136 64728540.28304 248 136 0.022192299366 249 136 -13333333.17771 250 136 -73011454.71628 251 136 52708333.03581 255 136 -13333333.33771 256 136 -24555795.63051 257 136 -13177083.33766 258 136 1.9371509552e-07 259 136 -29957235.32024 260 136 -3.8743019104e-07 261 136 13333333.33771 262 136 -24555795.63051 263 136 13177083.33766 137 137 914512974.9691 138 137 1.728534698486e-06 139 137 4.559755325317e-06 140 137 62880662.12465 144 137 5.811452865601e-07 145 137 3.129243850708e-07 146 137 -9005963.440556 147 137 1.192092895508e-07 148 137 -4.768371582031e-07 149 137 66375066.93519 150 137 4.470348358154e-08 151 137 -4.470348358154e-08 152 137 -9005963.440553 234 137 16471527.78319 235 137 -13177083.33766 236 137 -28297094.18124 237 137 65886110.96157 238 137 13177083.26329 239 137 -89840137.25118 243 137 -9.983777999878e-07 244 137 -52708333.32467 245 137 -73187955.04869 246 137 -0.0277450978756 247 137 -0.02219566702843 248 137 -162055805.4842 249 137 16471527.35667 250 137 52708332.94687 251 137 -75439445.29918 255 137 -16471527.78319 256 137 -13177083.33766 257 137 -28297094.18124 258 137 -65886111.10029 259 137 -2.831220626831e-07 260 137 -87588646.48668 261 137 -16471527.78319 262 137 13177083.33766 263 137 -28297094.18124 138 138 571119749.839 139 138 53333333.32457 140 138 -6.198883056641e-06 147 138 -75155545.77471 148 138 -53333333.32457 149 138 5.066394805908e-07 150 138 -292913008.3249 151 138 -53333332.8979 152 138 6.556510925293e-06 153 138 19534202.10867 154 138 42666666.23299 155 138 -1.490116119385e-06 237 138 -9767101.054335 238 138 15999999.84525 239 138 19765832.91331 246 138 -26345045.8913 247 138 -13333333.17771 248 138 -16471527.35667 249 138 45108925.89256 250 138 13333333.33771 251 138 13177222.19231 258 138 -28555987.69793 259 138 -13333333.33771 260 138 -16471527.78319 261 138 -107413106.5112 262 138 -13333333.23104 263 138 -65886110.96157 264 138 -9767101.054335 265 138 10666666.5635 266 138 -13177221.94221 139 139 491115909.0416 140 139 -2.974887930942e-06 147 139 -53333333.32457 148 139 -59154777.5129 149 139 2.086162567139e-07 150 139 -53333332.68457 151 139 -42244300.58137 152 139 2.145767211914e-06 153 139 63999999.34949 154 139 19534202.10866 155 139 -2.384185791016e-06 237 139 10666666.5635 238 139 -9767101.054336 239 139 -10541666.62055 246 139 -13333333.23105 247 139 -73011454.71627 248 139 -52708332.94687 249 139 13333333.33771 250 139 25107965.68335 251 139 10541666.55379 258 139 -13333333.33771 259 139 -24555795.63051 260 139 -13177083.33766 261 139 -13333333.17771 262 139 -44745929.54446 263 139 -13177083.26329 264 139 15999999.84525 265 139 -9767101.054335 266 139 15812499.93082 140 140 565941879.2302 147 140 5.811452865601e-07 148 140 3.129243850708e-07 149 140 -9005963.440556 150 140 6.943941116333e-06 151 140 1.609325408936e-06 152 140 5277897.861165 153 140 -2.145767211914e-06 154 140 -1.54972076416e-06 155 140 52091205.62311 237 140 13177221.94221 238 140 -15812499.93082 239 140 -26045602.81156 246 140 -16471527.49884 247 140 -52708333.03581 248 140 -75439445.29917 249 140 -13177222.19232 250 140 -10541666.5538 251 140 -118970561.1562 258 140 -16471527.78319 259 140 -13177083.33766 260 140 -28297094.18124 261 140 -65886110.96157 262 140 -13177083.28808 263 140 -89840137.25117 264 140 -19765832.91331 265 140 10541666.62055 266 140 -26045602.81156 141 141 913791605.4334 142 141 7.748603820801e-06 143 141 -2.622604370117e-06 144 141 126048980.7912 145 141 -2.175569534302e-06 146 141 -1.490116119385e-06 156 141 -198223262.271 157 141 2.98023223877e-07 158 141 5.960464477539e-08 159 141 -75155545.7747 160 141 53333333.32457 161 141 -1.490116119385e-08 240 141 -88624220.55292 241 141 1.043081283569e-07 242 141 65886111.10029 243 141 -28555987.69793 244 141 -13333333.33771 245 141 16471527.78319 252 141 72174281.7049 253 141 1.728534698486e-06 254 141 1.221895217896e-06 255 141 -7556159.747413 256 141 -7.450580596924e-07 257 141 1.341104507446e-06 267 141 -88624220.55292 268 141 2.235174179077e-07 269 141 -65886111.10029 270 141 -28555987.69793 271 141 13333333.33771 272 141 -16471527.78319 142 142 785785459.402 143 142 -1.788139343262e-06 144 142 -2.086162567139e-06 145 142 -76617423.53181 146 142 5.066394805908e-07 156 142 3.576278686523e-07 157 142 36444678.54407 158 142 -4.172325134277e-07 159 142 53333333.32457 160 142 -59154777.5129 161 142 2.98023223877e-08 240 142 4.470348358154e-08 241 142 -29957235.32024 242 142 2.831220626831e-07 243 142 -13333333.33771 244 142 -24555795.63051 245 142 13177083.33766 252 142 1.728534698486e-06 253 142 40172745.1813 254 142 -5.960464477539e-08 255 142 -7.003545761108e-07 256 142 -58222760.85313 257 142 52708333.32467 267 142 1.9371509552e-07 268 142 -29957235.32024 269 142 -3.8743019104e-07 270 142 13333333.33771 271 142 -24555795.63051 272 142 13177083.33766 143 143 905507012.9075 144 143 -1.668930053711e-06 145 143 4.470348358154e-07 146 143 123977832.6588 156 143 1.192092895508e-07 157 143 -4.768371582031e-07 158 143 66375066.93519 159 143 4.470348358154e-08 160 143 -4.470348358154e-08 161 143 -9005963.440553 240 143 65886111.10029 241 143 3.8743019104e-07 242 143 -87588646.48668 243 143 16471527.78319 244 143 13177083.33766 245 143 -28297094.18124 252 143 8.642673492432e-07 253 143 1.788139343262e-07 254 143 -190352899.3709 255 143 1.475214958191e-06 256 143 52708333.32467 257 143 -73187955.0487 267 143 -65886111.10029 268 143 -2.831220626831e-07 269 143 -87588646.48668 270 143 -16471527.78319 271 143 13177083.33766 272 143 -28297094.18124 144 144 913791605.4334 145 144 7.748603820801e-06 146 144 -2.622604370117e-06 147 144 126048980.7912 148 144 -2.175569534302e-06 149 144 -1.490116119385e-06 156 144 -75155545.77471 157 144 -53333333.32457 158 144 5.066394805908e-07 159 144 -198223262.271 160 144 2.98023223877e-07 161 144 5.960464477539e-08 162 144 -75155545.7747 163 144 53333333.32457 164 144 -1.490116119385e-08 240 144 -28555987.69793 241 144 13333333.33771 242 144 16471527.78319 243 144 -88624220.55292 244 144 1.043081283569e-07 245 144 65886111.10029 246 144 -28555987.69793 247 144 -13333333.33771 248 144 16471527.78319 252 144 -7556159.747413 253 144 -3.278255462646e-07 254 144 -1.206994056702e-06 255 144 72174281.7049 256 144 1.728534698486e-06 257 144 1.221895217896e-06 258 144 -7556159.747413 259 144 -7.450580596924e-07 260 144 1.341104507446e-06 267 144 -28555987.69793 268 144 -13333333.33771 269 144 -16471527.78319 270 144 -88624220.55292 271 144 2.235174179077e-07 272 144 -65886111.10029 273 144 -28555987.69793 274 144 13333333.33771 275 144 -16471527.78319 145 145 785785459.402 146 145 -1.788139343262e-06 147 145 -2.086162567139e-06 148 145 -76617423.53181 149 145 5.066394805908e-07 156 145 -53333333.32457 157 145 -59154777.5129 158 145 2.086162567139e-07 159 145 3.576278686523e-07 160 145 36444678.54407 161 145 -4.172325134277e-07 162 145 53333333.32457 163 145 -59154777.5129 164 145 2.98023223877e-08 240 145 13333333.33771 241 145 -24555795.63051 242 145 -13177083.33766 243 145 4.470348358154e-08 244 145 -29957235.32024 245 145 2.831220626831e-07 246 145 -13333333.33771 247 145 -24555795.63051 248 145 13177083.33766 252 145 -2.98023223877e-07 253 145 -58222760.85313 254 145 -52708333.32467 255 145 1.728534698486e-06 256 145 40172745.1813 257 145 -5.960464477539e-08 258 145 -7.003545761108e-07 259 145 -58222760.85313 260 145 52708333.32467 267 145 -13333333.33771 268 145 -24555795.63051 269 145 -13177083.33766 270 145 1.9371509552e-07 271 145 -29957235.32024 272 145 -3.8743019104e-07 273 145 13333333.33771 274 145 -24555795.63051 275 145 13177083.33766 146 146 905507012.9075 147 146 -1.668930053711e-06 148 146 4.470348358154e-07 149 146 123977832.6588 156 146 5.811452865601e-07 157 146 3.129243850708e-07 158 146 -9005963.440556 159 146 1.192092895508e-07 160 146 -4.768371582031e-07 161 146 66375066.93519 162 146 4.470348358154e-08 163 146 -4.470348358154e-08 164 146 -9005963.440553 240 146 16471527.78319 241 146 -13177083.33766 242 146 -28297094.18124 243 146 65886111.10029 244 146 3.8743019104e-07 245 146 -87588646.48668 246 146 16471527.78319 247 146 13177083.33766 248 146 -28297094.18124 252 146 -9.983777999878e-07 253 146 -52708333.32467 254 146 -73187955.04869 255 146 8.642673492432e-07 256 146 1.788139343262e-07 257 146 -190352899.3709 258 146 1.475214958191e-06 259 146 52708333.32467 260 146 -73187955.0487 267 146 -16471527.78319 268 146 -13177083.33766 269 146 -28297094.18124 270 146 -65886111.10029 271 146 -2.831220626831e-07 272 146 -87588646.48668 273 146 -16471527.78319 274 146 13177083.33766 275 146 -28297094.18124 147 147 913791605.4334 148 147 7.748603820801e-06 149 147 -2.622604370117e-06 150 147 126048980.7912 151 147 -2.175569534302e-06 152 147 -1.490116119385e-06 159 147 -75155545.77471 160 147 -53333333.32457 161 147 5.066394805908e-07 162 147 -198223262.271 163 147 2.98023223877e-07 164 147 5.960464477539e-08 165 147 -75155545.7747 166 147 53333333.32457 167 147 -1.490116119385e-08 243 147 -28555987.69793 244 147 13333333.33771 245 147 16471527.78319 246 147 -88624220.55292 247 147 1.043081283569e-07 248 147 65886111.10029 249 147 -28555987.69793 250 147 -13333333.33771 251 147 16471527.78319 255 147 -7556159.747413 256 147 -3.278255462646e-07 257 147 -1.206994056702e-06 258 147 72174281.7049 259 147 1.728534698486e-06 260 147 1.221895217896e-06 261 147 -7556159.747413 262 147 -7.450580596924e-07 263 147 1.341104507446e-06 270 147 -28555987.69793 271 147 -13333333.33771 272 147 -16471527.78319 273 147 -88624220.55292 274 147 2.235174179077e-07 275 147 -65886111.10029 276 147 -28555987.69793 277 147 13333333.33771 278 147 -16471527.78319 148 148 785785459.402 149 148 -1.788139343262e-06 150 148 -2.086162567139e-06 151 148 -76617423.53181 152 148 5.066394805908e-07 159 148 -53333333.32457 160 148 -59154777.5129 161 148 2.086162567139e-07 162 148 3.576278686523e-07 163 148 36444678.54407 164 148 -4.172325134277e-07 165 148 53333333.32457 166 148 -59154777.5129 167 148 2.98023223877e-08 243 148 13333333.33771 244 148 -24555795.63051 245 148 -13177083.33766 246 148 4.470348358154e-08 247 148 -29957235.32024 248 148 2.831220626831e-07 249 148 -13333333.33771 250 148 -24555795.63051 251 148 13177083.33766 255 148 -2.98023223877e-07 256 148 -58222760.85313 257 148 -52708333.32467 258 148 1.728534698486e-06 259 148 40172745.1813 260 148 -5.960464477539e-08 261 148 -7.003545761108e-07 262 148 -58222760.85313 263 148 52708333.32467 270 148 -13333333.33771 271 148 -24555795.63051 272 148 -13177083.33766 273 148 1.9371509552e-07 274 148 -29957235.32024 275 148 -3.8743019104e-07 276 148 13333333.33771 277 148 -24555795.63051 278 148 13177083.33766 149 149 905507012.9075 150 149 -1.668930053711e-06 151 149 4.470348358154e-07 152 149 123977832.6588 159 149 5.811452865601e-07 160 149 3.129243850708e-07 161 149 -9005963.440556 162 149 1.192092895508e-07 163 149 -4.768371582031e-07 164 149 66375066.93519 165 149 4.470348358154e-08 166 149 -4.470348358154e-08 167 149 -9005963.440553 243 149 16471527.78319 244 149 -13177083.33766 245 149 -28297094.18124 246 149 65886111.10029 247 149 3.8743019104e-07 248 149 -87588646.48668 249 149 16471527.78319 250 149 13177083.33766 251 149 -28297094.18124 255 149 -9.983777999878e-07 256 149 -52708333.32467 257 149 -73187955.04869 258 149 8.642673492432e-07 259 149 1.788139343262e-07 260 149 -190352899.3709 261 149 1.475214958191e-06 262 149 52708333.32467 263 149 -73187955.0487 270 149 -16471527.78319 271 149 -13177083.33766 272 149 -28297094.18124 273 149 -65886111.10029 274 149 -2.831220626831e-07 275 149 -87588646.48668 276 149 -16471527.78319 277 149 13177083.33766 278 149 -28297094.18124 150 150 988947148.5376 151 150 53333332.25791 152 150 -9.298324584961e-06 153 150 31359232.67644 154 150 -53333332.8979 155 150 1.251697540283e-06 162 150 -75155545.77471 163 150 -53333333.32457 164 150 5.066394805908e-07 165 150 -198223262.271 166 150 2.98023223877e-07 167 150 5.960464477539e-08 168 150 -75155545.7747 169 150 53333333.32457 170 150 -1.490116119385e-08 246 150 -28555987.69793 247 150 13333333.33771 248 150 16471527.78319 249 150 -107413106.5112 250 150 -13333333.17771 251 150 65886110.96157 258 150 -7556159.747413 259 150 -3.278255462646e-07 260 150 -1.206994056702e-06 261 150 100730268.7541 262 150 13333333.07105 263 150 0.02774140238762 264 150 -26345045.89131 265 150 -13333333.23105 266 150 16471527.49884 273 150 -28555987.69793 274 150 -13333333.33771 275 150 -16471527.78319 276 150 -88624220.55292 277 150 2.235174179077e-07 278 150 -65886111.10029 279 150 -28555987.69793 280 150 13333333.33771 281 150 -16471527.78319 151 151 844940234.7245 152 151 -7.987022399902e-06 153 151 -53333332.68457 154 151 -155306402.5315 155 151 5.394220352173e-06 162 151 -53333333.32457 163 151 -59154777.5129 164 151 2.086162567139e-07 165 151 3.576278686523e-07 166 151 36444678.54407 167 151 -4.172325134277e-07 168 151 53333333.32457 169 151 -59154777.5129 170 151 2.98023223877e-08 246 151 13333333.33771 247 151 -24555795.63051 248 151 -13177083.33766 249 151 -13333333.23104 250 151 -44745929.54447 251 151 13177083.28808 258 151 -2.98023223877e-07 259 151 -58222760.85313 260 151 -52708333.32467 261 151 13333333.07105 262 151 64728540.28304 263 151 0.022192299366 264 151 -13333333.17771 265 151 -73011454.71628 266 151 52708333.03581 273 151 -13333333.33771 274 151 -24555795.63051 275 151 -13177083.33766 276 151 1.9371509552e-07 277 151 -29957235.32024 278 151 -3.8743019104e-07 279 151 13333333.33771 280 151 -24555795.63051 281 151 13177083.33766 152 152 914512974.9691 153 152 1.728534698486e-06 154 152 4.559755325317e-06 155 152 62880662.12465 162 152 5.811452865601e-07 163 152 3.129243850708e-07 164 152 -9005963.440556 165 152 1.192092895508e-07 166 152 -4.768371582031e-07 167 152 66375066.93519 168 152 4.470348358154e-08 169 152 -4.470348358154e-08 170 152 -9005963.440553 246 152 16471527.78319 247 152 -13177083.33766 248 152 -28297094.18124 249 152 65886110.96157 250 152 13177083.26329 251 152 -89840137.25118 258 152 -9.983777999878e-07 259 152 -52708333.32467 260 152 -73187955.04869 261 152 -0.0277450978756 262 152 -0.02219566702843 263 152 -162055805.4842 264 152 16471527.35667 265 152 52708332.94687 266 152 -75439445.29918 273 152 -16471527.78319 274 152 -13177083.33766 275 152 -28297094.18124 276 152 -65886111.10029 277 152 -2.831220626831e-07 278 152 -87588646.48668 279 152 -16471527.78319 280 152 13177083.33766 281 152 -28297094.18124 153 153 571119749.839 154 153 53333333.32457 155 153 -6.198883056641e-06 165 153 -75155545.77471 166 153 -53333333.32457 167 153 5.066394805908e-07 168 153 -292913008.3249 169 153 -53333332.8979 170 153 6.556510925293e-06 171 153 19534202.10867 172 153 42666666.23299 173 153 -1.490116119385e-06 249 153 -9767101.054335 250 153 15999999.84525 251 153 19765832.91331 261 153 -26345045.8913 262 153 -13333333.17771 263 153 -16471527.35667 264 153 45108925.89256 265 153 13333333.33771 266 153 13177222.19231 276 153 -28555987.69793 277 153 -13333333.33771 278 153 -16471527.78319 279 153 -107413106.5112 280 153 -13333333.23104 281 153 -65886110.96157 282 153 -9767101.054335 283 153 10666666.5635 284 153 -13177221.94221 154 154 491115909.0416 155 154 -2.974887930942e-06 165 154 -53333333.32457 166 154 -59154777.5129 167 154 2.086162567139e-07 168 154 -53333332.68457 169 154 -42244300.58137 170 154 2.145767211914e-06 171 154 63999999.34949 172 154 19534202.10866 173 154 -2.384185791016e-06 249 154 10666666.5635 250 154 -9767101.054336 251 154 -10541666.62055 261 154 -13333333.23105 262 154 -73011454.71627 263 154 -52708332.94687 264 154 13333333.33771 265 154 25107965.68335 266 154 10541666.55379 276 154 -13333333.33771 277 154 -24555795.63051 278 154 -13177083.33766 279 154 -13333333.17771 280 154 -44745929.54446 281 154 -13177083.26329 282 154 15999999.84525 283 154 -9767101.054335 284 154 15812499.93082 155 155 565941879.2302 165 155 5.811452865601e-07 166 155 3.129243850708e-07 167 155 -9005963.440556 168 155 6.943941116333e-06 169 155 1.609325408936e-06 170 155 5277897.861165 171 155 -2.145767211914e-06 172 155 -1.54972076416e-06 173 155 52091205.62311 249 155 13177221.94221 250 155 -15812499.93082 251 155 -26045602.81156 261 155 -16471527.49884 262 155 -52708333.03581 263 155 -75439445.29917 264 155 -13177222.19232 265 155 -10541666.5538 266 155 -118970561.1562 276 155 -16471527.78319 277 155 -13177083.33766 278 155 -28297094.18124 279 155 -65886110.96157 280 155 -13177083.28808 281 155 -89840137.25117 282 155 -19765832.91331 283 155 10541666.62055 284 155 -26045602.81156 156 156 913791605.4334 157 156 7.748603820801e-06 158 156 -2.622604370117e-06 159 156 126048980.7912 160 156 -2.175569534302e-06 161 156 -1.490116119385e-06 174 156 -198223262.271 175 156 2.98023223877e-07 176 156 5.960464477539e-08 177 156 -75155545.7747 178 156 53333333.32457 179 156 -1.490116119385e-08 252 156 -88624220.55292 253 156 1.043081283569e-07 254 156 65886111.10029 255 156 -28555987.69793 256 156 -13333333.33771 257 156 16471527.78319 267 156 72174281.7049 268 156 1.728534698486e-06 269 156 1.221895217896e-06 270 156 -7556159.747413 271 156 -7.450580596924e-07 272 156 1.341104507446e-06 285 156 -88624220.55292 286 156 2.235174179077e-07 287 156 -65886111.10029 288 156 -28555987.69793 289 156 13333333.33771 290 156 -16471527.78319 157 157 785785459.402 158 157 -1.788139343262e-06 159 157 -2.086162567139e-06 160 157 -76617423.53181 161 157 5.066394805908e-07 174 157 3.576278686523e-07 175 157 36444678.54407 176 157 -4.172325134277e-07 177 157 53333333.32457 178 157 -59154777.5129 179 157 2.98023223877e-08 252 157 4.470348358154e-08 253 157 -29957235.32024 254 157 2.831220626831e-07 255 157 -13333333.33771 256 157 -24555795.63051 257 157 13177083.33766 267 157 1.728534698486e-06 268 157 40172745.1813 269 157 -5.960464477539e-08 270 157 -7.003545761108e-07 271 157 -58222760.85313 272 157 52708333.32467 285 157 1.9371509552e-07 286 157 -29957235.32024 287 157 -3.8743019104e-07 288 157 13333333.33771 289 157 -24555795.63051 290 157 13177083.33766 158 158 905507012.9075 159 158 -1.668930053711e-06 160 158 4.470348358154e-07 161 158 123977832.6588 174 158 1.192092895508e-07 175 158 -4.768371582031e-07 176 158 66375066.93519 177 158 4.470348358154e-08 178 158 -4.470348358154e-08 179 158 -9005963.440553 252 158 65886111.10029 253 158 3.8743019104e-07 254 158 -87588646.48668 255 158 16471527.78319 256 158 13177083.33766 257 158 -28297094.18124 267 158 8.642673492432e-07 268 158 1.788139343262e-07 269 158 -190352899.3709 270 158 1.475214958191e-06 271 158 52708333.32467 272 158 -73187955.0487 285 158 -65886111.10029 286 158 -2.831220626831e-07 287 158 -87588646.48668 288 158 -16471527.78319 289 158 13177083.33766 290 158 -28297094.18124 159 159 913791605.4334 160 159 7.748603820801e-06 161 159 -2.622604370117e-06 162 159 126048980.7912 163 159 -2.175569534302e-06 164 159 -1.490116119385e-06 174 159 -75155545.77471 175 159 -53333333.32457 176 159 5.066394805908e-07 177 159 -198223262.271 178 159 2.98023223877e-07 179 159 5.960464477539e-08 180 159 -75155545.7747 181 159 53333333.32457 182 159 -1.490116119385e-08 252 159 -28555987.69793 253 159 13333333.33771 254 159 16471527.78319 255 159 -88624220.55292 256 159 1.043081283569e-07 257 159 65886111.10029 258 159 -28555987.69793 259 159 -13333333.33771 260 159 16471527.78319 267 159 -7556159.747413 268 159 -3.278255462646e-07 269 159 -1.206994056702e-06 270 159 72174281.7049 271 159 1.728534698486e-06 272 159 1.221895217896e-06 273 159 -7556159.747413 274 159 -7.450580596924e-07 275 159 1.341104507446e-06 285 159 -28555987.69793 286 159 -13333333.33771 287 159 -16471527.78319 288 159 -88624220.55292 289 159 2.235174179077e-07 290 159 -65886111.10029 291 159 -28555987.69793 292 159 13333333.33771 293 159 -16471527.78319 160 160 785785459.402 161 160 -1.788139343262e-06 162 160 -2.086162567139e-06 163 160 -76617423.53181 164 160 5.066394805908e-07 174 160 -53333333.32457 175 160 -59154777.5129 176 160 2.086162567139e-07 177 160 3.576278686523e-07 178 160 36444678.54407 179 160 -4.172325134277e-07 180 160 53333333.32457 181 160 -59154777.5129 182 160 2.98023223877e-08 252 160 13333333.33771 253 160 -24555795.63051 254 160 -13177083.33766 255 160 4.470348358154e-08 256 160 -29957235.32024 257 160 2.831220626831e-07 258 160 -13333333.33771 259 160 -24555795.63051 260 160 13177083.33766 267 160 -2.98023223877e-07 268 160 -58222760.85313 269 160 -52708333.32467 270 160 1.728534698486e-06 271 160 40172745.1813 272 160 -5.960464477539e-08 273 160 -7.003545761108e-07 274 160 -58222760.85313 275 160 52708333.32467 285 160 -13333333.33771 286 160 -24555795.63051 287 160 -13177083.33766 288 160 1.9371509552e-07 289 160 -29957235.32024 290 160 -3.8743019104e-07 291 160 13333333.33771 292 160 -24555795.63051 293 160 13177083.33766 161 161 905507012.9075 162 161 -1.668930053711e-06 163 161 4.470348358154e-07 164 161 123977832.6588 174 161 5.811452865601e-07 175 161 3.129243850708e-07 176 161 -9005963.440556 177 161 1.192092895508e-07 178 161 -4.768371582031e-07 179 161 66375066.93519 180 161 4.470348358154e-08 181 161 -4.470348358154e-08 182 161 -9005963.440553 252 161 16471527.78319 253 161 -13177083.33766 254 161 -28297094.18124 255 161 65886111.10029 256 161 3.8743019104e-07 257 161 -87588646.48668 258 161 16471527.78319 259 161 13177083.33766 260 161 -28297094.18124 267 161 -9.983777999878e-07 268 161 -52708333.32467 269 161 -73187955.04869 270 161 8.642673492432e-07 271 161 1.788139343262e-07 272 161 -190352899.3709 273 161 1.475214958191e-06 274 161 52708333.32467 275 161 -73187955.0487 285 161 -16471527.78319 286 161 -13177083.33766 287 161 -28297094.18124 288 161 -65886111.10029 289 161 -2.831220626831e-07 290 161 -87588646.48668 291 161 -16471527.78319 292 161 13177083.33766 293 161 -28297094.18124 162 162 913791605.4334 163 162 7.748603820801e-06 164 162 -2.622604370117e-06 165 162 126048980.7912 166 162 -2.175569534302e-06 167 162 -1.490116119385e-06 177 162 -75155545.77471 178 162 -53333333.32457 179 162 5.066394805908e-07 180 162 -198223262.271 181 162 2.98023223877e-07 182 162 5.960464477539e-08 183 162 -75155545.7747 184 162 53333333.32457 185 162 -1.490116119385e-08 255 162 -28555987.69793 256 162 13333333.33771 257 162 16471527.78319 258 162 -88624220.55292 259 162 1.043081283569e-07 260 162 65886111.10029 261 162 -28555987.69793 262 162 -13333333.33771 263 162 16471527.78319 270 162 -7556159.747413 271 162 -3.278255462646e-07 272 162 -1.206994056702e-06 273 162 72174281.7049 274 162 1.728534698486e-06 275 162 1.221895217896e-06 276 162 -7556159.747413 277 162 -7.450580596924e-07 278 162 1.341104507446e-06 288 162 -28555987.69793 289 162 -13333333.33771 290 162 -16471527.78319 291 162 -88624220.55292 292 162 2.235174179077e-07 293 162 -65886111.10029 294 162 -28555987.69793 295 162 13333333.33771 296 162 -16471527.78319 163 163 785785459.402 164 163 -1.788139343262e-06 165 163 -2.086162567139e-06 166 163 -76617423.53181 167 163 5.066394805908e-07 177 163 -53333333.32457 178 163 -59154777.5129 179 163 2.086162567139e-07 180 163 3.576278686523e-07 181 163 36444678.54407 182 163 -4.172325134277e-07 183 163 53333333.32457 184 163 -59154777.5129 185 163 2.98023223877e-08 255 163 13333333.33771 256 163 -24555795.63051 257 163 -13177083.33766 258 163 4.470348358154e-08 259 163 -29957235.32024 260 163 2.831220626831e-07 261 163 -13333333.33771 262 163 -24555795.63051 263 163 13177083.33766 270 163 -2.98023223877e-07 271 163 -58222760.85313 272 163 -52708333.32467 273 163 1.728534698486e-06 274 163 40172745.1813 275 163 -5.960464477539e-08 276 163 -7.003545761108e-07 277 163 -58222760.85313 278 163 52708333.32467 288 163 -13333333.33771 289 163 -24555795.63051 290 163 -13177083.33766 291 163 1.9371509552e-07 292 163 -29957235.32024 293 163 -3.8743019104e-07 294 163 13333333.33771 295 163 -24555795.63051 296 163 13177083.33766 164 164 905507012.9075 165 164 -1.668930053711e-06 166 164 4.470348358154e-07 167 164 123977832.6588 177 164 5.811452865601e-07 178 164 3.129243850708e-07 179 164 -9005963.440556 180 164 1.192092895508e-07 181 164 -4.768371582031e-07 182 164 66375066.93519 183 164 4.470348358154e-08 184 164 -4.470348358154e-08 185 164 -9005963.440553 255 164 16471527.78319 256 164 -13177083.33766 257 164 -28297094.18124 258 164 65886111.10029 259 164 3.8743019104e-07 260 164 -87588646.48668 261 164 16471527.78319 262 164 13177083.33766 263 164 -28297094.18124 270 164 -9.983777999878e-07 271 164 -52708333.32467 272 164 -73187955.04869 273 164 8.642673492432e-07 274 164 1.788139343262e-07 275 164 -190352899.3709 276 164 1.475214958191e-06 277 164 52708333.32467 278 164 -73187955.0487 288 164 -16471527.78319 289 164 -13177083.33766 290 164 -28297094.18124 291 164 -65886111.10029 292 164 -2.831220626831e-07 293 164 -87588646.48668 294 164 -16471527.78319 295 164 13177083.33766 296 164 -28297094.18124 165 165 913791605.4334 166 165 7.748603820801e-06 167 165 -2.622604370117e-06 168 165 126048980.7912 169 165 -2.175569534302e-06 170 165 -1.490116119385e-06 180 165 -75155545.77471 181 165 -53333333.32457 182 165 5.066394805908e-07 183 165 -198223262.271 184 165 2.98023223877e-07 185 165 5.960464477539e-08 186 165 -75155545.7747 187 165 53333333.32457 188 165 -1.490116119385e-08 258 165 -28555987.69793 259 165 13333333.33771 260 165 16471527.78319 261 165 -88624220.55292 262 165 1.043081283569e-07 263 165 65886111.10029 264 165 -28555987.69793 265 165 -13333333.33771 266 165 16471527.78319 273 165 -7556159.747413 274 165 -3.278255462646e-07 275 165 -1.206994056702e-06 276 165 72174281.7049 277 165 1.728534698486e-06 278 165 1.221895217896e-06 279 165 -7556159.747413 280 165 -7.450580596924e-07 281 165 1.341104507446e-06 291 165 -28555987.69793 292 165 -13333333.33771 293 165 -16471527.78319 294 165 -88624220.55292 295 165 2.235174179077e-07 296 165 -65886111.10029 297 165 -28555987.69793 298 165 13333333.33771 299 165 -16471527.78319 166 166 785785459.402 167 166 -1.788139343262e-06 168 166 -2.086162567139e-06 169 166 -76617423.53181 170 166 5.066394805908e-07 180 166 -53333333.32457 181 166 -59154777.5129 182 166 2.086162567139e-07 183 166 3.576278686523e-07 184 166 36444678.54407 185 166 -4.172325134277e-07 186 166 53333333.32457 187 166 -59154777.5129 188 166 2.98023223877e-08 258 166 13333333.33771 259 166 -24555795.63051 260 166 -13177083.33766 261 166 4.470348358154e-08 262 166 -29957235.32024 263 166 2.831220626831e-07 264 166 -13333333.33771 265 166 -24555795.63051 266 166 13177083.33766 273 166 -2.98023223877e-07 274 166 -58222760.85313 275 166 -52708333.32467 276 166 1.728534698486e-06 277 166 40172745.1813 278 166 -5.960464477539e-08 279 166 -7.003545761108e-07 280 166 -58222760.85313 281 166 52708333.32467 291 166 -13333333.33771 292 166 -24555795.63051 293 166 -13177083.33766 294 166 1.9371509552e-07 295 166 -29957235.32024 296 166 -3.8743019104e-07 297 166 13333333.33771 298 166 -24555795.63051 299 166 13177083.33766 167 167 905507012.9075 168 167 -1.668930053711e-06 169 167 4.470348358154e-07 170 167 123977832.6588 180 167 5.811452865601e-07 181 167 3.129243850708e-07 182 167 -9005963.440556 183 167 1.192092895508e-07 184 167 -4.768371582031e-07 185 167 66375066.93519 186 167 4.470348358154e-08 187 167 -4.470348358154e-08 188 167 -9005963.440553 258 167 16471527.78319 259 167 -13177083.33766 260 167 -28297094.18124 261 167 65886111.10029 262 167 3.8743019104e-07 263 167 -87588646.48668 264 167 16471527.78319 265 167 13177083.33766 266 167 -28297094.18124 273 167 -9.983777999878e-07 274 167 -52708333.32467 275 167 -73187955.04869 276 167 8.642673492432e-07 277 167 1.788139343262e-07 278 167 -190352899.3709 279 167 1.475214958191e-06 280 167 52708333.32467 281 167 -73187955.0487 291 167 -16471527.78319 292 167 -13177083.33766 293 167 -28297094.18124 294 167 -65886111.10029 295 167 -2.831220626831e-07 296 167 -87588646.48668 297 167 -16471527.78319 298 167 13177083.33766 299 167 -28297094.18124 168 168 988947148.5376 169 168 53333332.25791 170 168 -9.298324584961e-06 171 168 31359232.67644 172 168 -53333332.8979 173 168 1.251697540283e-06 183 168 -75155545.77471 184 168 -53333333.32457 185 168 5.066394805908e-07 186 168 -198223262.271 187 168 2.98023223877e-07 188 168 5.960464477539e-08 189 168 -75155545.7747 190 168 53333333.32457 191 168 -1.490116119385e-08 261 168 -28555987.69793 262 168 13333333.33771 263 168 16471527.78319 264 168 -107413106.5112 265 168 -13333333.17771 266 168 65886110.96157 276 168 -7556159.747413 277 168 -3.278255462646e-07 278 168 -1.206994056702e-06 279 168 100730268.7541 280 168 13333333.07105 281 168 0.02774140238762 282 168 -26345045.89131 283 168 -13333333.23105 284 168 16471527.49884 294 168 -28555987.69793 295 168 -13333333.33771 296 168 -16471527.78319 297 168 -88624220.55292 298 168 2.235174179077e-07 299 168 -65886111.10029 300 168 -28555987.69793 301 168 13333333.33771 302 168 -16471527.78319 169 169 844940234.7245 170 169 -7.987022399902e-06 171 169 -53333332.68457 172 169 -155306402.5315 173 169 5.394220352173e-06 183 169 -53333333.32457 184 169 -59154777.5129 185 169 2.086162567139e-07 186 169 3.576278686523e-07 187 169 36444678.54407 188 169 -4.172325134277e-07 189 169 53333333.32457 190 169 -59154777.5129 191 169 2.98023223877e-08 261 169 13333333.33771 262 169 -24555795.63051 263 169 -13177083.33766 264 169 -13333333.23104 265 169 -44745929.54447 266 169 13177083.28808 276 169 -2.98023223877e-07 277 169 -58222760.85313 278 169 -52708333.32467 279 169 13333333.07105 280 169 64728540.28304 281 169 0.022192299366 282 169 -13333333.17771 283 169 -73011454.71628 284 169 52708333.03581 294 169 -13333333.33771 295 169 -24555795.63051 296 169 -13177083.33766 297 169 1.9371509552e-07 298 169 -29957235.32024 299 169 -3.8743019104e-07 300 169 13333333.33771 301 169 -24555795.63051 302 169 13177083.33766 170 170 914512974.9691 171 170 1.728534698486e-06 172 170 4.559755325317e-06 173 170 62880662.12465 183 170 5.811452865601e-07 184 170 3.129243850708e-07 185 170 -9005963.440556 186 170 1.192092895508e-07 187 170 -4.768371582031e-07 188 170 66375066.93519 189 170 4.470348358154e-08 190 170 -4.470348358154e-08 191 170 -9005963.440553 261 170 16471527.78319 262 170 -13177083.33766 263 170 -28297094.18124 264 170 65886110.96157 265 170 13177083.26329 266 170 -89840137.25118 276 170 -9.983777999878e-07 277 170 -52708333.32467 278 170 -73187955.04869 279 170 -0.0277450978756 280 170 -0.02219566702843 281 170 -162055805.4842 282 170 16471527.35667 283 170 52708332.94687 284 170 -75439445.29918 294 170 -16471527.78319 295 170 -13177083.33766 296 170 -28297094.18124 297 170 -65886111.10029 298 170 -2.831220626831e-07 299 170 -87588646.48668 300 170 -16471527.78319 301 170 13177083.33766 302 170 -28297094.18124 171 171 509154568.8248 172 171 25085639.27704 173 171 -5.960464477539e-07 186 171 -75155545.77471 187 171 -53333333.32457 188 171 5.066394805908e-07 189 171 -228025244.9359 190 171 -25085638.85037 191 171 7.152557373047e-07 192 171 -4082989.550575 193 171 42666666.23299 194 171 -1.251697540283e-06 264 171 -9767101.054335 265 171 15999999.84525 266 171 19765832.91331 279 171 -26345045.8913 280 171 -13333333.17771 281 171 -16471527.35667 282 171 37378109.13818 283 171 6271409.822349 284 171 11432222.19995 297 171 -28555987.69793 298 171 -13333333.33771 299 171 -16471527.78319 300 171 -87310926.38278 301 171 -6271409.715683 302 171 -57161110.99975 303 171 -11791159.78617 304 171 10666666.5635 305 171 -9687222.01637 172 172 472604990.7818 173 172 -2.652406692505e-06 186 172 -53333333.32457 187 172 -59154777.5129 188 172 2.086162567139e-07 189 172 -25085638.63704 190 172 9928432.40691 191 172 2.384185791016e-07 192 172 63999999.34949 193 172 -34822221.9043 194 172 -1.788139343262e-07 264 172 10666666.5635 265 172 -9767101.054336 266 172 -10541666.62055 279 172 -13333333.23105 280 172 -73011454.71627 281 172 -52708332.94687 282 172 6271409.822349 283 172 28240714.62293 284 172 9145833.226567 297 172 -13333333.33771 298 172 -24555795.63051 299 172 -13177083.33766 300 172 -6271409.66235 301 172 -27822507.01778 302 172 -6197916.627156 303 172 15999999.84526 304 172 -19475967.87838 305 172 18604166.53816 173 173 522045024.059 186 173 5.811452865601e-07 187 173 3.129243850708e-07 188 173 -9005963.440556 189 173 7.450580596924e-07 190 173 2.384185791016e-07 191 173 26229073.67805 192 173 -1.490116119385e-06 193 173 2.384185791016e-07 194 173 19851260.21887 264 173 13177221.94221 265 173 -15812499.93082 266 173 -26045602.81156 279 173 -16471527.49884 280 173 -52708333.03581 281 173 -75439445.29917 282 173 -11432222.19995 283 173 -9145833.22657 284 173 -109250165.6029 297 173 -16471527.78319 298 173 -13177083.33766 299 173 -28297094.18124 300 173 -57161110.99975 301 173 -6197916.651946 302 173 -74255038.56586 303 173 -14530833.02455 304 173 14729166.53156 305 173 -23758284.67089 174 174 913791605.4334 175 174 7.748603820801e-06 176 174 -2.622604370117e-06 177 174 126048980.7912 178 174 -2.175569534302e-06 179 174 -1.490116119385e-06 195 174 -198223262.271 196 174 2.98023223877e-07 197 174 5.960464477539e-08 198 174 -75155545.7747 199 174 53333333.32457 200 174 -1.490116119385e-08 267 174 -88624220.55292 268 174 1.043081283569e-07 269 174 65886111.10029 270 174 -28555987.69793 271 174 -13333333.33771 272 174 16471527.78319 285 174 72174281.7049 286 174 1.728534698486e-06 287 174 1.221895217896e-06 288 174 -7556159.747413 289 174 -7.450580596924e-07 290 174 1.341104507446e-06 306 174 -88624220.55292 307 174 2.235174179077e-07 308 174 -65886111.10029 309 174 -28555987.69793 310 174 13333333.33771 311 174 -16471527.78319 175 175 785785459.402 176 175 -1.788139343262e-06 177 175 -2.086162567139e-06 178 175 -76617423.53181 179 175 5.066394805908e-07 195 175 3.576278686523e-07 196 175 36444678.54407 197 175 -4.172325134277e-07 198 175 53333333.32457 199 175 -59154777.5129 200 175 2.98023223877e-08 267 175 4.470348358154e-08 268 175 -29957235.32024 269 175 2.831220626831e-07 270 175 -13333333.33771 271 175 -24555795.63051 272 175 13177083.33766 285 175 1.728534698486e-06 286 175 40172745.1813 287 175 -5.960464477539e-08 288 175 -7.003545761108e-07 289 175 -58222760.85313 290 175 52708333.32467 306 175 1.9371509552e-07 307 175 -29957235.32024 308 175 -3.8743019104e-07 309 175 13333333.33771 310 175 -24555795.63051 311 175 13177083.33766 176 176 905507012.9075 177 176 -1.668930053711e-06 178 176 4.470348358154e-07 179 176 123977832.6588 195 176 1.192092895508e-07 196 176 -4.768371582031e-07 197 176 66375066.93519 198 176 4.470348358154e-08 199 176 -4.470348358154e-08 200 176 -9005963.440553 267 176 65886111.10029 268 176 3.8743019104e-07 269 176 -87588646.48668 270 176 16471527.78319 271 176 13177083.33766 272 176 -28297094.18124 285 176 8.642673492432e-07 286 176 1.788139343262e-07 287 176 -190352899.3709 288 176 1.475214958191e-06 289 176 52708333.32467 290 176 -73187955.0487 306 176 -65886111.10029 307 176 -2.831220626831e-07 308 176 -87588646.48668 309 176 -16471527.78319 310 176 13177083.33766 311 176 -28297094.18124 177 177 913791605.4334 178 177 7.748603820801e-06 179 177 -2.622604370117e-06 180 177 126048980.7912 181 177 -2.175569534302e-06 182 177 -1.490116119385e-06 195 177 -75155545.77471 196 177 -53333333.32457 197 177 5.066394805908e-07 198 177 -198223262.271 199 177 2.98023223877e-07 200 177 5.960464477539e-08 201 177 -75155545.7747 202 177 53333333.32457 203 177 -1.490116119385e-08 267 177 -28555987.69793 268 177 13333333.33771 269 177 16471527.78319 270 177 -88624220.55292 271 177 1.043081283569e-07 272 177 65886111.10029 273 177 -28555987.69793 274 177 -13333333.33771 275 177 16471527.78319 285 177 -7556159.747413 286 177 -3.278255462646e-07 287 177 -1.206994056702e-06 288 177 72174281.7049 289 177 1.728534698486e-06 290 177 1.221895217896e-06 291 177 -7556159.747413 292 177 -7.450580596924e-07 293 177 1.341104507446e-06 306 177 -28555987.69793 307 177 -13333333.33771 308 177 -16471527.78319 309 177 -88624220.55292 310 177 2.235174179077e-07 311 177 -65886111.10029 312 177 -28555987.69793 313 177 13333333.33771 314 177 -16471527.78319 178 178 785785459.402 179 178 -1.788139343262e-06 180 178 -2.086162567139e-06 181 178 -76617423.53181 182 178 5.066394805908e-07 195 178 -53333333.32457 196 178 -59154777.5129 197 178 2.086162567139e-07 198 178 3.576278686523e-07 199 178 36444678.54407 200 178 -4.172325134277e-07 201 178 53333333.32457 202 178 -59154777.5129 203 178 2.98023223877e-08 267 178 13333333.33771 268 178 -24555795.63051 269 178 -13177083.33766 270 178 4.470348358154e-08 271 178 -29957235.32024 272 178 2.831220626831e-07 273 178 -13333333.33771 274 178 -24555795.63051 275 178 13177083.33766 285 178 -2.98023223877e-07 286 178 -58222760.85313 287 178 -52708333.32467 288 178 1.728534698486e-06 289 178 40172745.1813 290 178 -5.960464477539e-08 291 178 -7.003545761108e-07 292 178 -58222760.85313 293 178 52708333.32467 306 178 -13333333.33771 307 178 -24555795.63051 308 178 -13177083.33766 309 178 1.9371509552e-07 310 178 -29957235.32024 311 178 -3.8743019104e-07 312 178 13333333.33771 313 178 -24555795.63051 314 178 13177083.33766 179 179 905507012.9075 180 179 -1.668930053711e-06 181 179 4.470348358154e-07 182 179 123977832.6588 195 179 5.811452865601e-07 196 179 3.129243850708e-07 197 179 -9005963.440556 198 179 1.192092895508e-07 199 179 -4.768371582031e-07 200 179 66375066.93519 201 179 4.470348358154e-08 202 179 -4.470348358154e-08 203 179 -9005963.440553 267 179 16471527.78319 268 179 -13177083.33766 269 179 -28297094.18124 270 179 65886111.10029 271 179 3.8743019104e-07 272 179 -87588646.48668 273 179 16471527.78319 274 179 13177083.33766 275 179 -28297094.18124 285 179 -9.983777999878e-07 286 179 -52708333.32467 287 179 -73187955.04869 288 179 8.642673492432e-07 289 179 1.788139343262e-07 290 179 -190352899.3709 291 179 1.475214958191e-06 292 179 52708333.32467 293 179 -73187955.0487 306 179 -16471527.78319 307 179 -13177083.33766 308 179 -28297094.18124 309 179 -65886111.10029 310 179 -2.831220626831e-07 311 179 -87588646.48668 312 179 -16471527.78319 313 179 13177083.33766 314 179 -28297094.18124 180 180 913791605.4334 181 180 7.748603820801e-06 182 180 -2.622604370117e-06 183 180 126048980.7912 184 180 -2.175569534302e-06 185 180 -1.490116119385e-06 198 180 -75155545.77471 199 180 -53333333.32457 200 180 5.066394805908e-07 201 180 -198223262.271 202 180 2.98023223877e-07 203 180 5.960464477539e-08 204 180 -75155545.7747 205 180 53333333.32457 206 180 -1.490116119385e-08 270 180 -28555987.69793 271 180 13333333.33771 272 180 16471527.78319 273 180 -88624220.55292 274 180 1.043081283569e-07 275 180 65886111.10029 276 180 -28555987.69793 277 180 -13333333.33771 278 180 16471527.78319 288 180 -7556159.747413 289 180 -3.278255462646e-07 290 180 -1.206994056702e-06 291 180 72174281.7049 292 180 1.728534698486e-06 293 180 1.221895217896e-06 294 180 -7556159.747413 295 180 -7.450580596924e-07 296 180 1.341104507446e-06 309 180 -28555987.69793 310 180 -13333333.33771 311 180 -16471527.78319 312 180 -88624220.55292 313 180 2.235174179077e-07 314 180 -65886111.10029 315 180 -28555987.69793 316 180 13333333.33771 317 180 -16471527.78319 181 181 785785459.402 182 181 -1.788139343262e-06 183 181 -2.086162567139e-06 184 181 -76617423.53181 185 181 5.066394805908e-07 198 181 -53333333.32457 199 181 -59154777.5129 200 181 2.086162567139e-07 201 181 3.576278686523e-07 202 181 36444678.54407 203 181 -4.172325134277e-07 204 181 53333333.32457 205 181 -59154777.5129 206 181 2.98023223877e-08 270 181 13333333.33771 271 181 -24555795.63051 272 181 -13177083.33766 273 181 4.470348358154e-08 274 181 -29957235.32024 275 181 2.831220626831e-07 276 181 -13333333.33771 277 181 -24555795.63051 278 181 13177083.33766 288 181 -2.98023223877e-07 289 181 -58222760.85313 290 181 -52708333.32467 291 181 1.728534698486e-06 292 181 40172745.1813 293 181 -5.960464477539e-08 294 181 -7.003545761108e-07 295 181 -58222760.85313 296 181 52708333.32467 309 181 -13333333.33771 310 181 -24555795.63051 311 181 -13177083.33766 312 181 1.9371509552e-07 313 181 -29957235.32024 314 181 -3.8743019104e-07 315 181 13333333.33771 316 181 -24555795.63051 317 181 13177083.33766 182 182 905507012.9075 183 182 -1.668930053711e-06 184 182 4.470348358154e-07 185 182 123977832.6588 198 182 5.811452865601e-07 199 182 3.129243850708e-07 200 182 -9005963.440556 201 182 1.192092895508e-07 202 182 -4.768371582031e-07 203 182 66375066.93519 204 182 4.470348358154e-08 205 182 -4.470348358154e-08 206 182 -9005963.440553 270 182 16471527.78319 271 182 -13177083.33766 272 182 -28297094.18124 273 182 65886111.10029 274 182 3.8743019104e-07 275 182 -87588646.48668 276 182 16471527.78319 277 182 13177083.33766 278 182 -28297094.18124 288 182 -9.983777999878e-07 289 182 -52708333.32467 290 182 -73187955.04869 291 182 8.642673492432e-07 292 182 1.788139343262e-07 293 182 -190352899.3709 294 182 1.475214958191e-06 295 182 52708333.32467 296 182 -73187955.0487 309 182 -16471527.78319 310 182 -13177083.33766 311 182 -28297094.18124 312 182 -65886111.10029 313 182 -2.831220626831e-07 314 182 -87588646.48668 315 182 -16471527.78319 316 182 13177083.33766 317 182 -28297094.18124 183 183 913791605.4334 184 183 7.748603820801e-06 185 183 -2.622604370117e-06 186 183 126048980.7912 187 183 -2.175569534302e-06 188 183 -1.490116119385e-06 201 183 -75155545.77471 202 183 -53333333.32457 203 183 5.066394805908e-07 204 183 -198223262.271 205 183 2.98023223877e-07 206 183 5.960464477539e-08 207 183 -75155545.7747 208 183 53333333.32457 209 183 -1.490116119385e-08 273 183 -28555987.69793 274 183 13333333.33771 275 183 16471527.78319 276 183 -88624220.55292 277 183 1.043081283569e-07 278 183 65886111.10029 279 183 -28555987.69793 280 183 -13333333.33771 281 183 16471527.78319 291 183 -7556159.747413 292 183 -3.278255462646e-07 293 183 -1.206994056702e-06 294 183 72174281.7049 295 183 1.728534698486e-06 296 183 1.221895217896e-06 297 183 -7556159.747413 298 183 -7.450580596924e-07 299 183 1.341104507446e-06 312 183 -28555987.69793 313 183 -13333333.33771 314 183 -16471527.78319 315 183 -88624220.55292 316 183 2.235174179077e-07 317 183 -65886111.10029 318 183 -28555987.69793 319 183 13333333.33771 320 183 -16471527.78319 184 184 785785459.402 185 184 -1.788139343262e-06 186 184 -2.086162567139e-06 187 184 -76617423.53181 188 184 5.066394805908e-07 201 184 -53333333.32457 202 184 -59154777.5129 203 184 2.086162567139e-07 204 184 3.576278686523e-07 205 184 36444678.54407 206 184 -4.172325134277e-07 207 184 53333333.32457 208 184 -59154777.5129 209 184 2.98023223877e-08 273 184 13333333.33771 274 184 -24555795.63051 275 184 -13177083.33766 276 184 4.470348358154e-08 277 184 -29957235.32024 278 184 2.831220626831e-07 279 184 -13333333.33771 280 184 -24555795.63051 281 184 13177083.33766 291 184 -2.98023223877e-07 292 184 -58222760.85313 293 184 -52708333.32467 294 184 1.728534698486e-06 295 184 40172745.1813 296 184 -5.960464477539e-08 297 184 -7.003545761108e-07 298 184 -58222760.85313 299 184 52708333.32467 312 184 -13333333.33771 313 184 -24555795.63051 314 184 -13177083.33766 315 184 1.9371509552e-07 316 184 -29957235.32024 317 184 -3.8743019104e-07 318 184 13333333.33771 319 184 -24555795.63051 320 184 13177083.33766 185 185 905507012.9075 186 185 -1.668930053711e-06 187 185 4.470348358154e-07 188 185 123977832.6588 201 185 5.811452865601e-07 202 185 3.129243850708e-07 203 185 -9005963.440556 204 185 1.192092895508e-07 205 185 -4.768371582031e-07 206 185 66375066.93519 207 185 4.470348358154e-08 208 185 -4.470348358154e-08 209 185 -9005963.440553 273 185 16471527.78319 274 185 -13177083.33766 275 185 -28297094.18124 276 185 65886111.10029 277 185 3.8743019104e-07 278 185 -87588646.48668 279 185 16471527.78319 280 185 13177083.33766 281 185 -28297094.18124 291 185 -9.983777999878e-07 292 185 -52708333.32467 293 185 -73187955.04869 294 185 8.642673492432e-07 295 185 1.788139343262e-07 296 185 -190352899.3709 297 185 1.475214958191e-06 298 185 52708333.32467 299 185 -73187955.0487 312 185 -16471527.78319 313 185 -13177083.33766 314 185 -28297094.18124 315 185 -65886111.10029 316 185 -2.831220626831e-07 317 185 -87588646.48668 318 185 -16471527.78319 319 185 13177083.33766 320 185 -28297094.18124 186 186 913791605.4334 187 186 7.748603820801e-06 188 186 -2.622604370117e-06 189 186 126048980.7912 190 186 -2.175569534302e-06 191 186 -1.490116119385e-06 204 186 -75155545.77471 205 186 -53333333.32457 206 186 5.066394805908e-07 207 186 -198223262.271 208 186 2.98023223877e-07 209 186 5.960464477539e-08 210 186 -75155545.7747 211 186 53333333.32457 212 186 -1.490116119385e-08 276 186 -28555987.69793 277 186 13333333.33771 278 186 16471527.78319 279 186 -88624220.55292 280 186 1.043081283569e-07 281 186 65886111.10029 282 186 -28555987.69793 283 186 -13333333.33771 284 186 16471527.78319 294 186 -7556159.747413 295 186 -3.278255462646e-07 296 186 -1.206994056702e-06 297 186 72174281.7049 298 186 1.728534698486e-06 299 186 1.221895217896e-06 300 186 -7556159.747413 301 186 -7.450580596924e-07 302 186 1.341104507446e-06 315 186 -28555987.69793 316 186 -13333333.33771 317 186 -16471527.78319 318 186 -88624220.55292 319 186 2.235174179077e-07 320 186 -65886111.10029 321 186 -28555987.69793 322 186 13333333.33771 323 186 -16471527.78319 187 187 785785459.402 188 187 -1.788139343262e-06 189 187 -2.086162567139e-06 190 187 -76617423.53181 191 187 5.066394805908e-07 204 187 -53333333.32457 205 187 -59154777.5129 206 187 2.086162567139e-07 207 187 3.576278686523e-07 208 187 36444678.54407 209 187 -4.172325134277e-07 210 187 53333333.32457 211 187 -59154777.5129 212 187 2.98023223877e-08 276 187 13333333.33771 277 187 -24555795.63051 278 187 -13177083.33766 279 187 4.470348358154e-08 280 187 -29957235.32024 281 187 2.831220626831e-07 282 187 -13333333.33771 283 187 -24555795.63051 284 187 13177083.33766 294 187 -2.98023223877e-07 295 187 -58222760.85313 296 187 -52708333.32467 297 187 1.728534698486e-06 298 187 40172745.1813 299 187 -5.960464477539e-08 300 187 -7.003545761108e-07 301 187 -58222760.85313 302 187 52708333.32467 315 187 -13333333.33771 316 187 -24555795.63051 317 187 -13177083.33766 318 187 1.9371509552e-07 319 187 -29957235.32024 320 187 -3.8743019104e-07 321 187 13333333.33771 322 187 -24555795.63051 323 187 13177083.33766 188 188 905507012.9075 189 188 -1.668930053711e-06 190 188 4.470348358154e-07 191 188 123977832.6588 204 188 5.811452865601e-07 205 188 3.129243850708e-07 206 188 -9005963.440556 207 188 1.192092895508e-07 208 188 -4.768371582031e-07 209 188 66375066.93519 210 188 4.470348358154e-08 211 188 -4.470348358154e-08 212 188 -9005963.440553 276 188 16471527.78319 277 188 -13177083.33766 278 188 -28297094.18124 279 188 65886111.10029 280 188 3.8743019104e-07 281 188 -87588646.48668 282 188 16471527.78319 283 188 13177083.33766 284 188 -28297094.18124 294 188 -9.983777999878e-07 295 188 -52708333.32467 296 188 -73187955.04869 297 188 8.642673492432e-07 298 188 1.788139343262e-07 299 188 -190352899.3709 300 188 1.475214958191e-06 301 188 52708333.32467 302 188 -73187955.0487 315 188 -16471527.78319 316 188 -13177083.33766 317 188 -28297094.18124 318 188 -65886111.10029 319 188 -2.831220626831e-07 320 188 -87588646.48668 321 188 -16471527.78319 322 188 13177083.33766 323 188 -28297094.18124 189 189 886076107.088 190 189 29506578.58962 191 189 -4.172325134277e-06 192 189 -15650105.72171 193 189 -67995305.55008 194 189 -1.788139343262e-06 207 189 -75155545.77471 208 189 -53333333.32457 209 189 5.066394805908e-07 210 189 -169993346.4286 211 189 13585574.37073 212 189 1.579523086548e-06 213 189 -49437968.75893 214 189 49988791.22677 215 189 2.637505531311e-06 279 189 -28555987.69793 280 189 13333333.33771 281 189 16471527.78319 282 189 -87310926.38278 283 189 -6271409.66235 284 189 57161110.99975 297 189 -7556159.747413 298 189 -3.278255462646e-07 299 189 -1.206994056702e-06 300 189 87947441.63499 301 189 7376644.65104 302 189 0.02039501070976 303 189 -32923131.70809 304 189 -16998826.39589 305 189 16470833.12799 318 189 -28555987.69793 319 189 -13333333.33771 320 189 -16471527.78319 321 189 -80272721.40676 322 189 3396393.594356 323 189 -61522916.65699 324 189 -22126192.23639 325 189 12497197.81285 326 189 -12109027.78175 190 190 821417136.7999 191 190 5.125999450684e-06 192 190 -67995305.33675 193 190 -205861449.307 194 190 -3.56137752533e-06 207 190 -53333333.32457 208 190 -59154777.5129 209 190 2.086162567139e-07 210 190 13585574.37073 211 190 48420638.98572 212 190 8.940696716309e-07 213 190 49988791.22677 214 190 -80270449.84323 215 190 -2.548098564148e-06 279 190 13333333.33771 280 190 -24555795.63051 281 190 -13177083.33766 282 190 -6271409.715683 283 190 -27822507.01778 284 190 6197916.651945 297 190 -2.98023223877e-07 298 190 -58222760.85313 299 190 -52708333.32467 300 190 7376644.65104 301 190 71782699.055 302 190 0.01631674170494 303 190 -16998826.34256 304 190 -80475967.62785 305 190 52708333.09468 318 190 -13333333.33771 319 190 -24555795.63051 320 190 -13177083.33766 321 190 3396393.594355 322 190 -25669225.02627 323 190 3489583.332416 324 190 12497197.81285 325 190 -29834312.51126 326 190 16666666.67214 191 191 843458196.4419 192 191 1.192092895508e-07 193 191 -3.039836883545e-06 194 191 21637954.44543 207 191 5.811452865601e-07 208 191 3.129243850708e-07 209 191 -9005963.440556 210 191 6.85453414917e-07 211 191 1.072883605957e-06 212 191 73680450.86193 213 191 1.996755599976e-06 214 191 -2.592802047729e-06 215 191 -7752033.245933 279 191 16471527.78319 280 191 -13177083.33766 281 191 -28297094.18124 282 191 57161110.99975 283 191 6197916.627155 284 191 -74255038.56586 297 191 -9.983777999878e-07 298 191 -52708333.32467 299 191 -73187955.04869 300 191 -0.02039638161659 301 191 -0.01631587743759 302 191 -145326344.7753 303 191 16470833.02261 304 191 52708333.03516 305 191 -71952125.45461 318 191 -16471527.78319 319 191 -13177083.33766 320 191 -28297094.18124 321 191 -61522916.65613 322 191 3489583.333104 323 191 -82311580.01855 324 191 -12109027.78175 325 191 16666666.67214 326 191 -27982541.75396 192 192 531775095.0468 193 192 8503382.432196 210 192 -80370018.26376 211 192 -52907761.3966 212 192 -1.847743988037e-06 213 192 -113455777.5588 214 192 18108359.28725 215 192 1.311302185059e-06 216 192 68483060.18779 217 192 -18744593.63382 218 192 5.960464477539e-07 219 192 -42329538.80213 220 192 49035919.29823 221 192 1.922249794006e-06 282 192 -11791159.78616 283 192 15999999.84526 284 192 14530833.02455 300 192 -32923131.7081 301 192 -16998826.34256 302 192 -16470833.02261 303 192 14669982.03611 304 192 2125845.609096 305 192 12968611.10898 321 192 -29859204.61641 322 192 -13226940.35567 323 192 -16470833.33874 324 192 -76387958.09069 325 192 4527089.824043 326 192 -64843055.54491 327 192 -11712307.86994 328 192 -4686148.410764 329 192 8424305.555742 330 192 -24181082.63358 331 192 12258979.8306 332 192 -15950694.44968 193 193 626925818.4292 194 193 3.933906555176e-06 210 193 -52907761.3966 211 193 -54873071.8125 212 193 -8.642673492432e-07 213 193 18108359.28725 214 193 97871879.78123 215 193 3.337860107422e-06 216 193 2588739.696008 217 193 -35173186.25688 218 193 -3.695487976074e-06 219 193 49035919.29823 220 193 -49698043.59219 221 193 -1.505017280579e-06 282 193 10666666.5635 283 193 -19475967.87838 284 193 -14729166.53156 300 193 -16998826.39589 301 193 -80475967.62786 302 193 -52708333.03516 303 193 2125845.609096 304 193 38457662.89345 305 193 3874999.888226 321 193 -13226940.35567 322 193 -23484968.00046 323 193 -13177083.33766 324 193 4527089.824043 325 193 -23556043.72965 326 193 3489583.332417 327 193 647184.9243208 328 193 -37626369.49388 329 193 33333333.32786 330 193 12258979.8306 331 193 -26023208.832 332 193 16666666.67214 194 194 650521074.3426 210 194 -1.788139343262e-06 211 194 -7.748603820801e-07 212 194 -9261489.102506 213 194 1.117587089539e-06 214 194 3.337860107422e-06 215 194 131575339.2945 216 194 1.54972076416e-06 217 194 -3.75509262085e-06 218 194 90632596.10001 219 194 2.279877662659e-06 220 194 -1.594424247742e-06 221 194 13362532.26789 282 194 9687222.01637 283 194 -18604166.53816 284 194 -23758284.67089 300 194 -16470833.12799 301 194 -52708333.09468 302 194 -71952125.45462 303 194 -12968611.10898 304 194 -3874999.888222 305 194 -152766509.4438 321 194 -16470833.33874 322 194 -13177083.33766 323 194 -28359905.71829 324 194 -64843055.54491 325 194 3489583.333105 326 194 -95170201.65885 327 194 299305.5539342 328 194 33333333.32786 329 194 -54230045.43137 330 194 -15950694.44968 331 194 16666666.67214 332 194 -32922561.4056 195 195 456895802.7167 196 195 3.933906555176e-06 197 195 -1.668930053711e-06 198 195 63024490.39562 199 195 10666666.66491 200 195 -1.013278961182e-06 285 195 -88624220.55292 286 195 1.043081283569e-07 287 195 65886111.10029 288 195 -28555987.69793 289 195 -13333333.33771 290 195 16471527.78319 306 195 36087140.85245 307 195 8.344650268555e-07 308 195 -13177222.22006 309 195 -3778079.873706 310 195 2666666.667542 311 195 -3294305.556637 196 196 392892729.701 197 196 -7.152557373047e-07 198 196 -10666666.66491 199 196 -38308711.7659 200 196 3.8743019104e-07 285 196 4.470348358154e-08 286 196 -29957235.32024 287 196 2.831220626831e-07 288 196 -13333333.33771 289 196 -24555795.63051 290 196 13177083.33766 306 196 8.940696716309e-07 307 196 20086372.59065 308 196 -2.98023223877e-08 309 196 -2666666.667543 310 196 -29111380.42657 311 196 26354166.66234 197 197 452753506.4538 198 197 -8.940696716309e-07 199 197 1.490116119385e-07 200 197 61988916.32938 285 197 65886111.10029 286 197 3.8743019104e-07 287 197 -87588646.48668 288 197 16471527.78319 289 197 13177083.33766 290 197 -28297094.18124 306 197 13177222.22006 307 197 1.490116119385e-07 308 197 -95176449.68545 309 197 3294305.556638 310 197 26354166.66234 311 197 -36593977.52435 198 198 456895802.7167 199 198 3.933906555176e-06 200 198 -1.668930053711e-06 201 198 63024490.39562 202 198 10666666.66491 203 198 -1.013278961182e-06 285 198 -28555987.69793 286 198 13333333.33771 287 198 16471527.78319 288 198 -88624220.55292 289 198 1.043081283569e-07 290 198 65886111.10029 291 198 -28555987.69793 292 198 -13333333.33771 293 198 16471527.78319 306 198 -3778079.873706 307 198 -2666666.667542 308 198 -3294305.556638 309 198 36087140.85245 310 198 8.344650268555e-07 311 198 -13177222.22006 312 198 -3778079.873706 313 198 2666666.667542 314 198 -3294305.556637 199 199 392892729.701 200 199 -7.152557373047e-07 201 199 -10666666.66491 202 199 -38308711.7659 203 199 3.8743019104e-07 285 199 13333333.33771 286 199 -24555795.63051 287 199 -13177083.33766 288 199 4.470348358154e-08 289 199 -29957235.32024 290 199 2.831220626831e-07 291 199 -13333333.33771 292 199 -24555795.63051 293 199 13177083.33766 306 199 2666666.667542 307 199 -29111380.42657 308 199 -26354166.66234 309 199 8.940696716309e-07 310 199 20086372.59065 311 199 -2.98023223877e-08 312 199 -2666666.667543 313 199 -29111380.42657 314 199 26354166.66234 200 200 452753506.4538 201 200 -8.940696716309e-07 202 200 1.490116119385e-07 203 200 61988916.32938 285 200 16471527.78319 286 200 -13177083.33766 287 200 -28297094.18124 288 200 65886111.10029 289 200 3.8743019104e-07 290 200 -87588646.48668 291 200 16471527.78319 292 200 13177083.33766 293 200 -28297094.18124 306 200 3294305.556637 307 200 -26354166.66234 308 200 -36593977.52435 309 200 13177222.22006 310 200 1.490116119385e-07 311 200 -95176449.68545 312 200 3294305.556638 313 200 26354166.66234 314 200 -36593977.52435 201 201 456895802.7167 202 201 3.933906555176e-06 203 201 -1.668930053711e-06 204 201 63024490.39562 205 201 10666666.66491 206 201 -1.013278961182e-06 288 201 -28555987.69793 289 201 13333333.33771 290 201 16471527.78319 291 201 -88624220.55292 292 201 1.043081283569e-07 293 201 65886111.10029 294 201 -28555987.69793 295 201 -13333333.33771 296 201 16471527.78319 309 201 -3778079.873706 310 201 -2666666.667542 311 201 -3294305.556638 312 201 36087140.85245 313 201 8.344650268555e-07 314 201 -13177222.22006 315 201 -3778079.873706 316 201 2666666.667542 317 201 -3294305.556637 202 202 392892729.701 203 202 -7.152557373047e-07 204 202 -10666666.66491 205 202 -38308711.7659 206 202 3.8743019104e-07 288 202 13333333.33771 289 202 -24555795.63051 290 202 -13177083.33766 291 202 4.470348358154e-08 292 202 -29957235.32024 293 202 2.831220626831e-07 294 202 -13333333.33771 295 202 -24555795.63051 296 202 13177083.33766 309 202 2666666.667542 310 202 -29111380.42657 311 202 -26354166.66234 312 202 8.940696716309e-07 313 202 20086372.59065 314 202 -2.98023223877e-08 315 202 -2666666.667543 316 202 -29111380.42657 317 202 26354166.66234 203 203 452753506.4538 204 203 -8.940696716309e-07 205 203 1.490116119385e-07 206 203 61988916.32938 288 203 16471527.78319 289 203 -13177083.33766 290 203 -28297094.18124 291 203 65886111.10029 292 203 3.8743019104e-07 293 203 -87588646.48668 294 203 16471527.78319 295 203 13177083.33766 296 203 -28297094.18124 309 203 3294305.556637 310 203 -26354166.66234 311 203 -36593977.52435 312 203 13177222.22006 313 203 1.490116119385e-07 314 203 -95176449.68545 315 203 3294305.556638 316 203 26354166.66234 317 203 -36593977.52435 204 204 456895802.7167 205 204 3.933906555176e-06 206 204 -1.668930053711e-06 207 204 63024490.39562 208 204 10666666.66491 209 204 -1.013278961182e-06 291 204 -28555987.69793 292 204 13333333.33771 293 204 16471527.78319 294 204 -88624220.55292 295 204 1.043081283569e-07 296 204 65886111.10029 297 204 -28555987.69793 298 204 -13333333.33771 299 204 16471527.78319 312 204 -3778079.873706 313 204 -2666666.667542 314 204 -3294305.556638 315 204 36087140.85245 316 204 8.344650268555e-07 317 204 -13177222.22006 318 204 -3778079.873706 319 204 2666666.667542 320 204 -3294305.556637 205 205 392892729.701 206 205 -7.152557373047e-07 207 205 -10666666.66491 208 205 -38308711.7659 209 205 3.8743019104e-07 291 205 13333333.33771 292 205 -24555795.63051 293 205 -13177083.33766 294 205 4.470348358154e-08 295 205 -29957235.32024 296 205 2.831220626831e-07 297 205 -13333333.33771 298 205 -24555795.63051 299 205 13177083.33766 312 205 2666666.667542 313 205 -29111380.42657 314 205 -26354166.66234 315 205 8.940696716309e-07 316 205 20086372.59065 317 205 -2.98023223877e-08 318 205 -2666666.667543 319 205 -29111380.42657 320 205 26354166.66234 206 206 452753506.4538 207 206 -8.940696716309e-07 208 206 1.490116119385e-07 209 206 61988916.32938 291 206 16471527.78319 292 206 -13177083.33766 293 206 -28297094.18124 294 206 65886111.10029 295 206 3.8743019104e-07 296 206 -87588646.48668 297 206 16471527.78319 298 206 13177083.33766 299 206 -28297094.18124 312 206 3294305.556637 313 206 -26354166.66234 314 206 -36593977.52435 315 206 13177222.22006 316 206 1.490116119385e-07 317 206 -95176449.68545 318 206 3294305.556638 319 206 26354166.66234 320 206 -36593977.52435 207 207 456895802.7167 208 207 3.933906555176e-06 209 207 -1.668930053711e-06 210 207 63024490.39562 211 207 10666666.66491 212 207 -1.013278961182e-06 294 207 -28555987.69793 295 207 13333333.33771 296 207 16471527.78319 297 207 -88624220.55292 298 207 1.043081283569e-07 299 207 65886111.10029 300 207 -28555987.69793 301 207 -13333333.33771 302 207 16471527.78319 315 207 -3778079.873706 316 207 -2666666.667542 317 207 -3294305.556638 318 207 36087140.85245 319 207 8.344650268555e-07 320 207 -13177222.22006 321 207 -3778079.873706 322 207 2666666.667542 323 207 -3294305.556637 208 208 392892729.701 209 208 -7.152557373047e-07 210 208 -10666666.66491 211 208 -38308711.7659 212 208 3.8743019104e-07 294 208 13333333.33771 295 208 -24555795.63051 296 208 -13177083.33766 297 208 4.470348358154e-08 298 208 -29957235.32024 299 208 2.831220626831e-07 300 208 -13333333.33771 301 208 -24555795.63051 302 208 13177083.33766 315 208 2666666.667542 316 208 -29111380.42657 317 208 -26354166.66234 318 208 8.940696716309e-07 319 208 20086372.59065 320 208 -2.98023223877e-08 321 208 -2666666.667543 322 208 -29111380.42657 323 208 26354166.66234 209 209 452753506.4538 210 209 -8.940696716309e-07 211 209 1.490116119385e-07 212 209 61988916.32938 294 209 16471527.78319 295 209 -13177083.33766 296 209 -28297094.18124 297 209 65886111.10029 298 209 3.8743019104e-07 299 209 -87588646.48668 300 209 16471527.78319 301 209 13177083.33766 302 209 -28297094.18124 315 209 3294305.556637 316 209 -26354166.66234 317 209 -36593977.52435 318 209 13177222.22006 319 209 1.490116119385e-07 320 209 -95176449.68545 321 209 3294305.556638 322 209 26354166.66234 323 209 -36593977.52435 210 210 451672659.2548 211 210 425457.3069872 213 210 45227333.73336 214 210 -3769936.940774 215 210 5.960464477539e-07 297 210 -28555987.69793 298 210 13333333.33771 299 210 16471527.78319 300 210 -80272721.40676 301 210 3396393.594356 302 210 61522916.65613 303 210 -29859204.61641 304 210 -13226940.35567 305 210 16470833.33874 318 210 -3778079.873706 319 210 -2666666.667542 320 210 -3294305.556638 321 210 34782980.96289 322 210 106364.3267991 323 210 -13176944.44228 324 210 -9519773.826407 325 210 -942484.2356579 326 210 1067638.88752 211 211 397175038.8898 212 211 1.072883605957e-06 213 211 -25103270.2706 214 211 -58853543.86754 215 211 -1.341104507446e-06 297 211 13333333.33771 298 211 -24555795.63051 299 211 -13177083.33766 300 211 3396393.594355 301 211 -25669225.02627 302 211 -3489583.333104 303 211 -13226940.35567 304 211 -23484968.00045 305 211 13177083.33766 318 211 2666666.667542 319 211 -29111380.42657 320 211 -26354166.66234 321 211 106364.3267991 322 211 21158575.86493 323 211 2.682209014893e-07 324 211 -6275817.570742 325 211 -35539993.23945 326 211 29843749.99544 212 212 452492316.5668 214 212 -1.490116119385e-06 215 212 55187296.56271 297 212 16471527.78319 298 212 -13177083.33766 299 212 -28297094.18124 300 212 61522916.65699 301 212 -3489583.332416 302 212 -82311580.01855 303 212 16470833.33874 304 212 13177083.33766 305 212 -28359905.71829 318 212 3294305.556637 319 212 -26354166.66234 320 212 -36593977.52435 321 212 13176944.44228 322 212 3.8743019104e-07 323 212 -95237411.21973 324 212 7655972.222158 325 212 29843749.99475 326 212 -41740795.2267 213 213 444644489.1745 214 213 13081929.57058 215 213 9.536743164063e-07 216 213 -86994427.68368 217 213 -57630747.35091 218 213 -2.384185791016e-06 219 213 44204118.01812 220 213 1554937.536914 221 213 -1.192092895508e-06 300 213 -22126192.23639 301 213 12497197.81285 302 213 12109027.78176 303 213 -76387958.09069 304 213 4527089.824043 305 213 64843055.54491 321 213 -9519773.826409 322 213 -6275817.570743 323 213 -7655972.222158 324 213 15798034.7999 325 213 3270482.394257 326 213 -12968611.10898 327 213 -35347304.85947 328 213 -14407686.84483 329 213 20312500.00667 330 213 -14510689.24923 331 213 388734.3844201 332 213 1171666.664472 214 214 449754245.7917 215 214 4.64916229248e-06 216 214 -57630747.35091 217 214 -66447376.92277 218 214 -1.296401023865e-06 219 214 -19778395.79291 220 214 -57866988.0148 221 214 -2.086162567139e-06 300 214 12497197.81285 301 214 -29834312.51127 302 214 -16666666.67214 303 214 4527089.824043 304 214 -23556043.72965 305 214 -3489583.333103 321 214 -942484.2356579 322 214 -35539993.23945 323 214 -29843749.99475 324 214 3270482.394257 325 214 17075473.95481 326 214 9.536743164063e-07 327 214 -14407686.84483 328 214 -30210542.16671 329 214 16666666.67214 330 214 -4944598.950664 331 214 -40028465.77003 332 214 33333333.32786 215 215 513640710.6392 216 215 -3.159046173096e-06 217 215 -1.370906829834e-06 218 215 -3386801.062691 219 215 -1.907348632813e-06 220 215 -2.235174179077e-06 221 215 68569532.94435 300 215 12109027.78176 301 215 -16666666.67214 302 215 -27982541.75396 303 215 64843055.54491 304 215 -3489583.332416 305 215 -95170201.65886 321 215 -1067638.887521 322 215 -29843749.99544 323 215 -41740795.22671 324 215 12968611.10898 325 215 1.013278961182e-06 326 215 -125891389.0729 327 215 20312500.00667 328 215 16666666.67214 329 215 -37109894.74031 330 215 7551944.445205 331 215 33333333.32786 332 215 -51022200.11333 216 216 254849231.4225 217 216 61411260.29348 218 216 3.814697265625e-06 219 216 -66610780.59762 220 216 -6369252.63857 221 216 -1.132488250732e-06 303 216 -11712307.86995 304 216 647184.9243208 305 216 -299305.5539346 324 216 -35347304.85947 325 216 -14407686.84483 326 216 -20312500.00667 327 216 6046162.064774 328 216 15352815.08093 329 216 8124999.998666 330 216 -43850090.99987 331 216 -1592313.160427 332 216 -36263194.43806 217 217 228505477.8886 218 217 4.172325134277e-06 219 217 14964080.69126 220 217 42842168.62011 221 217 1.728534698486e-06 303 217 -4686148.410764 304 217 -37626369.49388 305 217 -33333333.32786 324 217 -14407686.84483 325 217 -30210542.16671 326 217 -16666666.67214 327 217 15352815.08093 328 217 -539776.3219635 329 217 6666666.665572 330 217 3741020.174657 331 217 -16486853.68196 332 217 3333333.334428 218 218 294920181.6058 220 218 1.788139343262e-06 221 218 70439578.90092 303 218 -8424305.555743 304 218 -33333333.32786 305 218 -54230045.43139 324 218 -20312500.00667 325 218 -16666666.67214 326 218 -37109894.74031 327 218 -8124999.998665 328 218 -6666666.665571 329 218 -80046343.42155 330 218 -36263194.43892 331 218 -3333333.334428 332 218 -54916494.1788 219 219 221377868.0526 220 219 -44221604.19657 221 219 -1.311302185059e-06 303 219 -24181082.63358 304 219 12258979.8306 305 219 15950694.44968 324 219 -14510689.24923 325 219 -4944598.950664 326 219 -7551944.445206 327 219 -43850090.99987 328 219 3741020.174657 329 219 36263194.43892 330 219 4221029.5472 331 219 -11055401.05459 332 219 -6380277.77673 220 220 221364529.6578 221 220 2.861022949219e-06 303 220 12258979.8306 304 220 -26023208.832 305 220 -16666666.67214 324 220 388734.38442 325 220 -40028465.77003 326 220 -33333333.32786 327 220 -1592313.160427 328 220 -16486853.68196 329 220 3333333.334428 330 220 -11055401.05459 331 220 4217694.948508 332 220 6666666.665572 221 221 265339467.0094 303 221 15950694.44968 304 221 -16666666.67214 305 221 -32922561.4056 324 221 -1171666.664473 325 221 -33333333.32786 326 221 -51022200.11334 327 221 36263194.43806 328 221 -3333333.334428 329 221 -54916494.1788 330 221 6380277.77673 331 221 -6666666.665571 332 221 -69994299.86354 222 222 571119749.839 223 222 53333333.32457 224 222 -6.198883056641e-06 225 222 -292913008.3249 226 222 -53333332.8979 227 222 6.556510925293e-06 228 222 19534202.10867 229 222 42666666.23299 230 222 -1.490116119385e-06 333 222 45108925.89256 334 222 13333333.33771 335 222 13177222.19231 336 222 -107413106.5112 337 222 -13333333.23104 338 222 -65886110.96157 339 222 -9767101.054335 340 222 10666666.5635 341 222 -13177221.94221 223 223 491115909.0416 224 223 -3.094097220493e-06 225 223 -53333332.68457 226 223 -42244300.58137 227 223 2.145767211914e-06 228 223 63999999.34949 229 223 19534202.10866 230 223 -2.384185791016e-06 333 223 13333333.33771 334 223 25107965.68335 335 223 10541666.55379 336 223 -13333333.17771 337 223 -44745929.54446 338 223 -13177083.26329 339 223 15999999.84525 340 223 -9767101.054335 341 223 15812499.93082 224 224 565941879.2302 225 224 6.943941116333e-06 226 224 1.609325408936e-06 227 224 5277897.861165 228 224 -2.145767211914e-06 229 224 -1.54972076416e-06 230 224 52091205.62311 333 224 -13177222.19232 334 224 -10541666.5538 335 224 -118970561.1562 336 224 -65886110.96157 337 224 -13177083.28808 338 224 -89840137.25117 339 224 -19765832.91331 340 224 10541666.62055 341 224 -26045602.81156 225 225 988947148.5376 226 225 53333332.25791 227 225 -9.298324584961e-06 228 225 31359232.67644 229 225 -53333332.8979 230 225 1.251697540283e-06 231 225 -198223262.271 232 225 2.98023223877e-07 233 225 5.960464477539e-08 234 225 -75155545.7747 235 225 53333333.32457 236 225 -1.490116119385e-08 333 225 -107413106.5112 334 225 -13333333.17771 335 225 65886110.96157 336 225 100730268.7541 337 225 13333333.07105 338 225 0.02774140238762 339 225 -26345045.89131 340 225 -13333333.23105 341 225 16471527.49884 342 225 -88624220.55292 343 225 2.235174179077e-07 344 225 -65886111.10029 345 225 -28555987.69793 346 225 13333333.33771 347 225 -16471527.78319 226 226 844940234.7245 227 226 -7.987022399902e-06 228 226 -53333332.68457 229 226 -155306402.5315 230 226 5.394220352173e-06 231 226 3.576278686523e-07 232 226 36444678.54407 233 226 -4.172325134277e-07 234 226 53333333.32457 235 226 -59154777.5129 236 226 2.98023223877e-08 333 226 -13333333.23104 334 226 -44745929.54447 335 226 13177083.28808 336 226 13333333.07105 337 226 64728540.28304 338 226 0.022192299366 339 226 -13333333.17771 340 226 -73011454.71628 341 226 52708333.03581 342 226 1.9371509552e-07 343 226 -29957235.32024 344 226 -3.8743019104e-07 345 226 13333333.33771 346 226 -24555795.63051 347 226 13177083.33766 227 227 914512974.9691 228 227 1.728534698486e-06 229 227 4.559755325317e-06 230 227 62880662.12465 231 227 1.192092895508e-07 232 227 -4.768371582031e-07 233 227 66375066.93519 234 227 4.470348358154e-08 235 227 -4.470348358154e-08 236 227 -9005963.440553 333 227 65886110.96157 334 227 13177083.26329 335 227 -89840137.25118 336 227 -0.0277450978756 337 227 -0.02219566702843 338 227 -162055805.4842 339 227 16471527.35667 340 227 52708332.94687 341 227 -75439445.29918 342 227 -65886111.10029 343 227 -2.831220626831e-07 344 227 -87588646.48668 345 227 -16471527.78319 346 227 13177083.33766 347 227 -28297094.18124 228 228 571119749.839 229 228 53333333.32457 230 228 -6.198883056641e-06 231 228 -75155545.77471 232 228 -53333333.32457 233 228 5.066394805908e-07 234 228 -292913008.3249 235 228 -53333332.8979 236 228 6.556510925293e-06 237 228 19534202.10867 238 228 42666666.23299 239 228 -1.490116119385e-06 333 228 -9767101.054335 334 228 15999999.84525 335 228 19765832.91331 336 228 -26345045.8913 337 228 -13333333.17771 338 228 -16471527.35667 339 228 45108925.89256 340 228 13333333.33771 341 228 13177222.19231 342 228 -28555987.69793 343 228 -13333333.33771 344 228 -16471527.78319 345 228 -107413106.5112 346 228 -13333333.23104 347 228 -65886110.96157 348 228 -9767101.054335 349 228 10666666.5635 350 228 -13177221.94221 229 229 491115909.0416 230 229 -2.974887930942e-06 231 229 -53333333.32457 232 229 -59154777.5129 233 229 2.086162567139e-07 234 229 -53333332.68457 235 229 -42244300.58137 236 229 2.145767211914e-06 237 229 63999999.34949 238 229 19534202.10866 239 229 -2.384185791016e-06 333 229 10666666.5635 334 229 -9767101.054336 335 229 -10541666.62055 336 229 -13333333.23105 337 229 -73011454.71627 338 229 -52708332.94687 339 229 13333333.33771 340 229 25107965.68335 341 229 10541666.55379 342 229 -13333333.33771 343 229 -24555795.63051 344 229 -13177083.33766 345 229 -13333333.17771 346 229 -44745929.54446 347 229 -13177083.26329 348 229 15999999.84525 349 229 -9767101.054335 350 229 15812499.93082 230 230 565941879.2302 231 230 5.811452865601e-07 232 230 3.129243850708e-07 233 230 -9005963.440556 234 230 6.943941116333e-06 235 230 1.609325408936e-06 236 230 5277897.861165 237 230 -2.145767211914e-06 238 230 -1.54972076416e-06 239 230 52091205.62311 333 230 13177221.94221 334 230 -15812499.93082 335 230 -26045602.81156 336 230 -16471527.49884 337 230 -52708333.03581 338 230 -75439445.29917 339 230 -13177222.19232 340 230 -10541666.5538 341 230 -118970561.1562 342 230 -16471527.78319 343 230 -13177083.33766 344 230 -28297094.18124 345 230 -65886110.96157 346 230 -13177083.28808 347 230 -89840137.25117 348 230 -19765832.91331 349 230 10541666.62055 350 230 -26045602.81156 231 231 913791605.4334 232 231 7.748603820801e-06 233 231 -2.622604370117e-06 234 231 126048980.7912 235 231 -2.175569534302e-06 236 231 -1.490116119385e-06 240 231 -198223262.271 241 231 2.98023223877e-07 242 231 5.960464477539e-08 243 231 -75155545.7747 244 231 53333333.32457 245 231 -1.490116119385e-08 336 231 -88624220.55292 337 231 1.043081283569e-07 338 231 65886111.10029 339 231 -28555987.69793 340 231 -13333333.33771 341 231 16471527.78319 342 231 72174281.7049 343 231 1.728534698486e-06 344 231 1.221895217896e-06 345 231 -7556159.747413 346 231 -7.450580596924e-07 347 231 1.341104507446e-06 351 231 -88624220.55292 352 231 2.235174179077e-07 353 231 -65886111.10029 354 231 -28555987.69793 355 231 13333333.33771 356 231 -16471527.78319 232 232 785785459.402 233 232 -1.788139343262e-06 234 232 -2.086162567139e-06 235 232 -76617423.53181 236 232 5.066394805908e-07 240 232 3.576278686523e-07 241 232 36444678.54407 242 232 -4.172325134277e-07 243 232 53333333.32457 244 232 -59154777.5129 245 232 2.98023223877e-08 336 232 4.470348358154e-08 337 232 -29957235.32024 338 232 2.831220626831e-07 339 232 -13333333.33771 340 232 -24555795.63051 341 232 13177083.33766 342 232 1.728534698486e-06 343 232 40172745.1813 344 232 -5.960464477539e-08 345 232 -7.003545761108e-07 346 232 -58222760.85313 347 232 52708333.32467 351 232 1.9371509552e-07 352 232 -29957235.32024 353 232 -3.8743019104e-07 354 232 13333333.33771 355 232 -24555795.63051 356 232 13177083.33766 233 233 905507012.9075 234 233 -1.668930053711e-06 235 233 4.470348358154e-07 236 233 123977832.6588 240 233 1.192092895508e-07 241 233 -4.768371582031e-07 242 233 66375066.93519 243 233 4.470348358154e-08 244 233 -4.470348358154e-08 245 233 -9005963.440553 336 233 65886111.10029 337 233 3.8743019104e-07 338 233 -87588646.48668 339 233 16471527.78319 340 233 13177083.33766 341 233 -28297094.18124 342 233 8.642673492432e-07 343 233 1.788139343262e-07 344 233 -190352899.3709 345 233 1.475214958191e-06 346 233 52708333.32467 347 233 -73187955.0487 351 233 -65886111.10029 352 233 -2.831220626831e-07 353 233 -87588646.48668 354 233 -16471527.78319 355 233 13177083.33766 356 233 -28297094.18124 234 234 988947148.5376 235 234 53333332.25791 236 234 -9.298324584961e-06 237 234 31359232.67644 238 234 -53333332.8979 239 234 1.251697540283e-06 240 234 -75155545.77471 241 234 -53333333.32457 242 234 5.066394805908e-07 243 234 -198223262.271 244 234 2.98023223877e-07 245 234 5.960464477539e-08 246 234 -75155545.7747 247 234 53333333.32457 248 234 -1.490116119385e-08 336 234 -28555987.69793 337 234 13333333.33771 338 234 16471527.78319 339 234 -107413106.5112 340 234 -13333333.17771 341 234 65886110.96157 342 234 -7556159.747413 343 234 -3.278255462646e-07 344 234 -1.206994056702e-06 345 234 100730268.7541 346 234 13333333.07105 347 234 0.02774140238762 348 234 -26345045.89131 349 234 -13333333.23105 350 234 16471527.49884 351 234 -28555987.69793 352 234 -13333333.33771 353 234 -16471527.78319 354 234 -88624220.55292 355 234 2.235174179077e-07 356 234 -65886111.10029 357 234 -28555987.69793 358 234 13333333.33771 359 234 -16471527.78319 235 235 844940234.7245 236 235 -7.987022399902e-06 237 235 -53333332.68457 238 235 -155306402.5315 239 235 5.394220352173e-06 240 235 -53333333.32457 241 235 -59154777.5129 242 235 2.086162567139e-07 243 235 3.576278686523e-07 244 235 36444678.54407 245 235 -4.172325134277e-07 246 235 53333333.32457 247 235 -59154777.5129 248 235 2.98023223877e-08 336 235 13333333.33771 337 235 -24555795.63051 338 235 -13177083.33766 339 235 -13333333.23104 340 235 -44745929.54447 341 235 13177083.28808 342 235 -2.98023223877e-07 343 235 -58222760.85313 344 235 -52708333.32467 345 235 13333333.07105 346 235 64728540.28304 347 235 0.022192299366 348 235 -13333333.17771 349 235 -73011454.71628 350 235 52708333.03581 351 235 -13333333.33771 352 235 -24555795.63051 353 235 -13177083.33766 354 235 1.9371509552e-07 355 235 -29957235.32024 356 235 -3.8743019104e-07 357 235 13333333.33771 358 235 -24555795.63051 359 235 13177083.33766 236 236 914512974.9691 237 236 1.728534698486e-06 238 236 4.559755325317e-06 239 236 62880662.12465 240 236 5.811452865601e-07 241 236 3.129243850708e-07 242 236 -9005963.440556 243 236 1.192092895508e-07 244 236 -4.768371582031e-07 245 236 66375066.93519 246 236 4.470348358154e-08 247 236 -4.470348358154e-08 248 236 -9005963.440553 336 236 16471527.78319 337 236 -13177083.33766 338 236 -28297094.18124 339 236 65886110.96157 340 236 13177083.26329 341 236 -89840137.25118 342 236 -9.983777999878e-07 343 236 -52708333.32467 344 236 -73187955.04869 345 236 -0.0277450978756 346 236 -0.02219566702843 347 236 -162055805.4842 348 236 16471527.35667 349 236 52708332.94687 350 236 -75439445.29918 351 236 -16471527.78319 352 236 -13177083.33766 353 236 -28297094.18124 354 236 -65886111.10029 355 236 -2.831220626831e-07 356 236 -87588646.48668 357 236 -16471527.78319 358 236 13177083.33766 359 236 -28297094.18124 237 237 571119749.839 238 237 53333333.32457 239 237 -6.198883056641e-06 243 237 -75155545.77471 244 237 -53333333.32457 245 237 5.066394805908e-07 246 237 -292913008.3249 247 237 -53333332.8979 248 237 6.556510925293e-06 249 237 19534202.10867 250 237 42666666.23299 251 237 -1.490116119385e-06 339 237 -9767101.054335 340 237 15999999.84525 341 237 19765832.91331 345 237 -26345045.8913 346 237 -13333333.17771 347 237 -16471527.35667 348 237 45108925.89256 349 237 13333333.33771 350 237 13177222.19231 354 237 -28555987.69793 355 237 -13333333.33771 356 237 -16471527.78319 357 237 -107413106.5112 358 237 -13333333.23104 359 237 -65886110.96157 360 237 -9767101.054335 361 237 10666666.5635 362 237 -13177221.94221 238 238 491115909.0416 239 238 -2.974887930942e-06 243 238 -53333333.32457 244 238 -59154777.5129 245 238 2.086162567139e-07 246 238 -53333332.68457 247 238 -42244300.58137 248 238 2.145767211914e-06 249 238 63999999.34949 250 238 19534202.10866 251 238 -2.384185791016e-06 339 238 10666666.5635 340 238 -9767101.054336 341 238 -10541666.62055 345 238 -13333333.23105 346 238 -73011454.71627 347 238 -52708332.94687 348 238 13333333.33771 349 238 25107965.68335 350 238 10541666.55379 354 238 -13333333.33771 355 238 -24555795.63051 356 238 -13177083.33766 357 238 -13333333.17771 358 238 -44745929.54446 359 238 -13177083.26329 360 238 15999999.84525 361 238 -9767101.054335 362 238 15812499.93082 239 239 565941879.2302 243 239 5.811452865601e-07 244 239 3.129243850708e-07 245 239 -9005963.440556 246 239 6.943941116333e-06 247 239 1.609325408936e-06 248 239 5277897.861165 249 239 -2.145767211914e-06 250 239 -1.54972076416e-06 251 239 52091205.62311 339 239 13177221.94221 340 239 -15812499.93082 341 239 -26045602.81156 345 239 -16471527.49884 346 239 -52708333.03581 347 239 -75439445.29917 348 239 -13177222.19232 349 239 -10541666.5538 350 239 -118970561.1562 354 239 -16471527.78319 355 239 -13177083.33766 356 239 -28297094.18124 357 239 -65886110.96157 358 239 -13177083.28808 359 239 -89840137.25117 360 239 -19765832.91331 361 239 10541666.62055 362 239 -26045602.81156 240 240 913791605.4334 241 240 7.748603820801e-06 242 240 -2.622604370117e-06 243 240 126048980.7912 244 240 -2.175569534302e-06 245 240 -1.490116119385e-06 252 240 -198223262.271 253 240 2.98023223877e-07 254 240 5.960464477539e-08 255 240 -75155545.7747 256 240 53333333.32457 257 240 -1.490116119385e-08 342 240 -88624220.55292 343 240 1.043081283569e-07 344 240 65886111.10029 345 240 -28555987.69793 346 240 -13333333.33771 347 240 16471527.78319 351 240 72174281.7049 352 240 1.728534698486e-06 353 240 1.221895217896e-06 354 240 -7556159.747413 355 240 -7.450580596924e-07 356 240 1.341104507446e-06 363 240 -88624220.55292 364 240 2.235174179077e-07 365 240 -65886111.10029 366 240 -28555987.69793 367 240 13333333.33771 368 240 -16471527.78319 241 241 785785459.402 242 241 -1.788139343262e-06 243 241 -2.086162567139e-06 244 241 -76617423.53181 245 241 5.066394805908e-07 252 241 3.576278686523e-07 253 241 36444678.54407 254 241 -4.172325134277e-07 255 241 53333333.32457 256 241 -59154777.5129 257 241 2.98023223877e-08 342 241 4.470348358154e-08 343 241 -29957235.32024 344 241 2.831220626831e-07 345 241 -13333333.33771 346 241 -24555795.63051 347 241 13177083.33766 351 241 1.728534698486e-06 352 241 40172745.1813 353 241 -5.960464477539e-08 354 241 -7.003545761108e-07 355 241 -58222760.85313 356 241 52708333.32467 363 241 1.9371509552e-07 364 241 -29957235.32024 365 241 -3.8743019104e-07 366 241 13333333.33771 367 241 -24555795.63051 368 241 13177083.33766 242 242 905507012.9075 243 242 -1.668930053711e-06 244 242 4.470348358154e-07 245 242 123977832.6588 252 242 1.192092895508e-07 253 242 -4.768371582031e-07 254 242 66375066.93519 255 242 4.470348358154e-08 256 242 -4.470348358154e-08 257 242 -9005963.440553 342 242 65886111.10029 343 242 3.8743019104e-07 344 242 -87588646.48668 345 242 16471527.78319 346 242 13177083.33766 347 242 -28297094.18124 351 242 8.642673492432e-07 352 242 1.788139343262e-07 353 242 -190352899.3709 354 242 1.475214958191e-06 355 242 52708333.32467 356 242 -73187955.0487 363 242 -65886111.10029 364 242 -2.831220626831e-07 365 242 -87588646.48668 366 242 -16471527.78319 367 242 13177083.33766 368 242 -28297094.18124 243 243 913791605.4334 244 243 7.748603820801e-06 245 243 -2.622604370117e-06 246 243 126048980.7912 247 243 -2.175569534302e-06 248 243 -1.490116119385e-06 252 243 -75155545.77471 253 243 -53333333.32457 254 243 5.066394805908e-07 255 243 -198223262.271 256 243 2.98023223877e-07 257 243 5.960464477539e-08 258 243 -75155545.7747 259 243 53333333.32457 260 243 -1.490116119385e-08 342 243 -28555987.69793 343 243 13333333.33771 344 243 16471527.78319 345 243 -88624220.55292 346 243 1.043081283569e-07 347 243 65886111.10029 348 243 -28555987.69793 349 243 -13333333.33771 350 243 16471527.78319 351 243 -7556159.747413 352 243 -3.278255462646e-07 353 243 -1.206994056702e-06 354 243 72174281.7049 355 243 1.728534698486e-06 356 243 1.221895217896e-06 357 243 -7556159.747413 358 243 -7.450580596924e-07 359 243 1.341104507446e-06 363 243 -28555987.69793 364 243 -13333333.33771 365 243 -16471527.78319 366 243 -88624220.55292 367 243 2.235174179077e-07 368 243 -65886111.10029 369 243 -28555987.69793 370 243 13333333.33771 371 243 -16471527.78319 244 244 785785459.402 245 244 -1.788139343262e-06 246 244 -2.086162567139e-06 247 244 -76617423.53181 248 244 5.066394805908e-07 252 244 -53333333.32457 253 244 -59154777.5129 254 244 2.086162567139e-07 255 244 3.576278686523e-07 256 244 36444678.54407 257 244 -4.172325134277e-07 258 244 53333333.32457 259 244 -59154777.5129 260 244 2.98023223877e-08 342 244 13333333.33771 343 244 -24555795.63051 344 244 -13177083.33766 345 244 4.470348358154e-08 346 244 -29957235.32024 347 244 2.831220626831e-07 348 244 -13333333.33771 349 244 -24555795.63051 350 244 13177083.33766 351 244 -2.98023223877e-07 352 244 -58222760.85313 353 244 -52708333.32467 354 244 1.728534698486e-06 355 244 40172745.1813 356 244 -5.960464477539e-08 357 244 -7.003545761108e-07 358 244 -58222760.85313 359 244 52708333.32467 363 244 -13333333.33771 364 244 -24555795.63051 365 244 -13177083.33766 366 244 1.9371509552e-07 367 244 -29957235.32024 368 244 -3.8743019104e-07 369 244 13333333.33771 370 244 -24555795.63051 371 244 13177083.33766 245 245 905507012.9075 246 245 -1.668930053711e-06 247 245 4.470348358154e-07 248 245 123977832.6588 252 245 5.811452865601e-07 253 245 3.129243850708e-07 254 245 -9005963.440556 255 245 1.192092895508e-07 256 245 -4.768371582031e-07 257 245 66375066.93519 258 245 4.470348358154e-08 259 245 -4.470348358154e-08 260 245 -9005963.440553 342 245 16471527.78319 343 245 -13177083.33766 344 245 -28297094.18124 345 245 65886111.10029 346 245 3.8743019104e-07 347 245 -87588646.48668 348 245 16471527.78319 349 245 13177083.33766 350 245 -28297094.18124 351 245 -9.983777999878e-07 352 245 -52708333.32467 353 245 -73187955.04869 354 245 8.642673492432e-07 355 245 1.788139343262e-07 356 245 -190352899.3709 357 245 1.475214958191e-06 358 245 52708333.32467 359 245 -73187955.0487 363 245 -16471527.78319 364 245 -13177083.33766 365 245 -28297094.18124 366 245 -65886111.10029 367 245 -2.831220626831e-07 368 245 -87588646.48668 369 245 -16471527.78319 370 245 13177083.33766 371 245 -28297094.18124 246 246 988947148.5376 247 246 53333332.25791 248 246 -9.298324584961e-06 249 246 31359232.67644 250 246 -53333332.8979 251 246 1.251697540283e-06 255 246 -75155545.77471 256 246 -53333333.32457 257 246 5.066394805908e-07 258 246 -198223262.271 259 246 2.98023223877e-07 260 246 5.960464477539e-08 261 246 -75155545.7747 262 246 53333333.32457 263 246 -1.490116119385e-08 345 246 -28555987.69793 346 246 13333333.33771 347 246 16471527.78319 348 246 -107413106.5112 349 246 -13333333.17771 350 246 65886110.96157 354 246 -7556159.747413 355 246 -3.278255462646e-07 356 246 -1.206994056702e-06 357 246 100730268.7541 358 246 13333333.07105 359 246 0.02774140238762 360 246 -26345045.89131 361 246 -13333333.23105 362 246 16471527.49884 366 246 -28555987.69793 367 246 -13333333.33771 368 246 -16471527.78319 369 246 -88624220.55292 370 246 2.235174179077e-07 371 246 -65886111.10029 372 246 -28555987.69793 373 246 13333333.33771 374 246 -16471527.78319 247 247 844940234.7245 248 247 -7.987022399902e-06 249 247 -53333332.68457 250 247 -155306402.5315 251 247 5.394220352173e-06 255 247 -53333333.32457 256 247 -59154777.5129 257 247 2.086162567139e-07 258 247 3.576278686523e-07 259 247 36444678.54407 260 247 -4.172325134277e-07 261 247 53333333.32457 262 247 -59154777.5129 263 247 2.98023223877e-08 345 247 13333333.33771 346 247 -24555795.63051 347 247 -13177083.33766 348 247 -13333333.23104 349 247 -44745929.54447 350 247 13177083.28808 354 247 -2.98023223877e-07 355 247 -58222760.85313 356 247 -52708333.32467 357 247 13333333.07105 358 247 64728540.28304 359 247 0.022192299366 360 247 -13333333.17771 361 247 -73011454.71628 362 247 52708333.03581 366 247 -13333333.33771 367 247 -24555795.63051 368 247 -13177083.33766 369 247 1.9371509552e-07 370 247 -29957235.32024 371 247 -3.8743019104e-07 372 247 13333333.33771 373 247 -24555795.63051 374 247 13177083.33766 248 248 914512974.9691 249 248 1.728534698486e-06 250 248 4.559755325317e-06 251 248 62880662.12465 255 248 5.811452865601e-07 256 248 3.129243850708e-07 257 248 -9005963.440556 258 248 1.192092895508e-07 259 248 -4.768371582031e-07 260 248 66375066.93519 261 248 4.470348358154e-08 262 248 -4.470348358154e-08 263 248 -9005963.440553 345 248 16471527.78319 346 248 -13177083.33766 347 248 -28297094.18124 348 248 65886110.96157 349 248 13177083.26329 350 248 -89840137.25118 354 248 -9.983777999878e-07 355 248 -52708333.32467 356 248 -73187955.04869 357 248 -0.0277450978756 358 248 -0.02219566702843 359 248 -162055805.4842 360 248 16471527.35667 361 248 52708332.94687 362 248 -75439445.29918 366 248 -16471527.78319 367 248 -13177083.33766 368 248 -28297094.18124 369 248 -65886111.10029 370 248 -2.831220626831e-07 371 248 -87588646.48668 372 248 -16471527.78319 373 248 13177083.33766 374 248 -28297094.18124 249 249 571119749.839 250 249 53333333.32457 251 249 -6.198883056641e-06 258 249 -75155545.77471 259 249 -53333333.32457 260 249 5.066394805908e-07 261 249 -292913008.3249 262 249 -53333332.8979 263 249 6.556510925293e-06 264 249 19534202.10867 265 249 42666666.23299 266 249 -1.490116119385e-06 348 249 -9767101.054335 349 249 15999999.84525 350 249 19765832.91331 357 249 -26345045.8913 358 249 -13333333.17771 359 249 -16471527.35667 360 249 45108925.89256 361 249 13333333.33771 362 249 13177222.19231 369 249 -28555987.69793 370 249 -13333333.33771 371 249 -16471527.78319 372 249 -107413106.5112 373 249 -13333333.23104 374 249 -65886110.96157 375 249 -9767101.054335 376 249 10666666.5635 377 249 -13177221.94221 250 250 491115909.0416 251 250 -2.974887930942e-06 258 250 -53333333.32457 259 250 -59154777.5129 260 250 2.086162567139e-07 261 250 -53333332.68457 262 250 -42244300.58137 263 250 2.145767211914e-06 264 250 63999999.34949 265 250 19534202.10866 266 250 -2.384185791016e-06 348 250 10666666.5635 349 250 -9767101.054336 350 250 -10541666.62055 357 250 -13333333.23105 358 250 -73011454.71627 359 250 -52708332.94687 360 250 13333333.33771 361 250 25107965.68335 362 250 10541666.55379 369 250 -13333333.33771 370 250 -24555795.63051 371 250 -13177083.33766 372 250 -13333333.17771 373 250 -44745929.54446 374 250 -13177083.26329 375 250 15999999.84525 376 250 -9767101.054335 377 250 15812499.93082 251 251 565941879.2302 258 251 5.811452865601e-07 259 251 3.129243850708e-07 260 251 -9005963.440556 261 251 6.943941116333e-06 262 251 1.609325408936e-06 263 251 5277897.861165 264 251 -2.145767211914e-06 265 251 -1.54972076416e-06 266 251 52091205.62311 348 251 13177221.94221 349 251 -15812499.93082 350 251 -26045602.81156 357 251 -16471527.49884 358 251 -52708333.03581 359 251 -75439445.29917 360 251 -13177222.19232 361 251 -10541666.5538 362 251 -118970561.1562 369 251 -16471527.78319 370 251 -13177083.33766 371 251 -28297094.18124 372 251 -65886110.96157 373 251 -13177083.28808 374 251 -89840137.25117 375 251 -19765832.91331 376 251 10541666.62055 377 251 -26045602.81156 252 252 913791605.4334 253 252 7.748603820801e-06 254 252 -2.622604370117e-06 255 252 126048980.7912 256 252 -2.175569534302e-06 257 252 -1.490116119385e-06 267 252 -198223262.271 268 252 2.98023223877e-07 269 252 5.960464477539e-08 270 252 -75155545.7747 271 252 53333333.32457 272 252 -1.490116119385e-08 351 252 -88624220.55292 352 252 1.043081283569e-07 353 252 65886111.10029 354 252 -28555987.69793 355 252 -13333333.33771 356 252 16471527.78319 363 252 72174281.7049 364 252 1.728534698486e-06 365 252 1.221895217896e-06 366 252 -7556159.747413 367 252 -7.450580596924e-07 368 252 1.341104507446e-06 378 252 -88624220.55292 379 252 2.235174179077e-07 380 252 -65886111.10029 381 252 -28555987.69793 382 252 13333333.33771 383 252 -16471527.78319 253 253 785785459.402 254 253 -1.788139343262e-06 255 253 -2.086162567139e-06 256 253 -76617423.53181 257 253 5.066394805908e-07 267 253 3.576278686523e-07 268 253 36444678.54407 269 253 -4.172325134277e-07 270 253 53333333.32457 271 253 -59154777.5129 272 253 2.98023223877e-08 351 253 4.470348358154e-08 352 253 -29957235.32024 353 253 2.831220626831e-07 354 253 -13333333.33771 355 253 -24555795.63051 356 253 13177083.33766 363 253 1.728534698486e-06 364 253 40172745.1813 365 253 -5.960464477539e-08 366 253 -7.003545761108e-07 367 253 -58222760.85313 368 253 52708333.32467 378 253 1.9371509552e-07 379 253 -29957235.32024 380 253 -3.8743019104e-07 381 253 13333333.33771 382 253 -24555795.63051 383 253 13177083.33766 254 254 905507012.9075 255 254 -1.668930053711e-06 256 254 4.470348358154e-07 257 254 123977832.6588 267 254 1.192092895508e-07 268 254 -4.768371582031e-07 269 254 66375066.93519 270 254 4.470348358154e-08 271 254 -4.470348358154e-08 272 254 -9005963.440553 351 254 65886111.10029 352 254 3.8743019104e-07 353 254 -87588646.48668 354 254 16471527.78319 355 254 13177083.33766 356 254 -28297094.18124 363 254 8.642673492432e-07 364 254 1.788139343262e-07 365 254 -190352899.3709 366 254 1.475214958191e-06 367 254 52708333.32467 368 254 -73187955.0487 378 254 -65886111.10029 379 254 -2.831220626831e-07 380 254 -87588646.48668 381 254 -16471527.78319 382 254 13177083.33766 383 254 -28297094.18124 255 255 913791605.4334 256 255 7.748603820801e-06 257 255 -2.622604370117e-06 258 255 126048980.7912 259 255 -2.175569534302e-06 260 255 -1.490116119385e-06 267 255 -75155545.77471 268 255 -53333333.32457 269 255 5.066394805908e-07 270 255 -198223262.271 271 255 2.98023223877e-07 272 255 5.960464477539e-08 273 255 -75155545.7747 274 255 53333333.32457 275 255 -1.490116119385e-08 351 255 -28555987.69793 352 255 13333333.33771 353 255 16471527.78319 354 255 -88624220.55292 355 255 1.043081283569e-07 356 255 65886111.10029 357 255 -28555987.69793 358 255 -13333333.33771 359 255 16471527.78319 363 255 -7556159.747413 364 255 -3.278255462646e-07 365 255 -1.206994056702e-06 366 255 72174281.7049 367 255 1.728534698486e-06 368 255 1.221895217896e-06 369 255 -7556159.747413 370 255 -7.450580596924e-07 371 255 1.341104507446e-06 378 255 -28555987.69793 379 255 -13333333.33771 380 255 -16471527.78319 381 255 -88624220.55292 382 255 2.235174179077e-07 383 255 -65886111.10029 384 255 -28555987.69793 385 255 13333333.33771 386 255 -16471527.78319 256 256 785785459.402 257 256 -1.788139343262e-06 258 256 -2.086162567139e-06 259 256 -76617423.53181 260 256 5.066394805908e-07 267 256 -53333333.32457 268 256 -59154777.5129 269 256 2.086162567139e-07 270 256 3.576278686523e-07 271 256 36444678.54407 272 256 -4.172325134277e-07 273 256 53333333.32457 274 256 -59154777.5129 275 256 2.98023223877e-08 351 256 13333333.33771 352 256 -24555795.63051 353 256 -13177083.33766 354 256 4.470348358154e-08 355 256 -29957235.32024 356 256 2.831220626831e-07 357 256 -13333333.33771 358 256 -24555795.63051 359 256 13177083.33766 363 256 -2.98023223877e-07 364 256 -58222760.85313 365 256 -52708333.32467 366 256 1.728534698486e-06 367 256 40172745.1813 368 256 -5.960464477539e-08 369 256 -7.003545761108e-07 370 256 -58222760.85313 371 256 52708333.32467 378 256 -13333333.33771 379 256 -24555795.63051 380 256 -13177083.33766 381 256 1.9371509552e-07 382 256 -29957235.32024 383 256 -3.8743019104e-07 384 256 13333333.33771 385 256 -24555795.63051 386 256 13177083.33766 257 257 905507012.9075 258 257 -1.668930053711e-06 259 257 4.470348358154e-07 260 257 123977832.6588 267 257 5.811452865601e-07 268 257 3.129243850708e-07 269 257 -9005963.440556 270 257 1.192092895508e-07 271 257 -4.768371582031e-07 272 257 66375066.93519 273 257 4.470348358154e-08 274 257 -4.470348358154e-08 275 257 -9005963.440553 351 257 16471527.78319 352 257 -13177083.33766 353 257 -28297094.18124 354 257 65886111.10029 355 257 3.8743019104e-07 356 257 -87588646.48668 357 257 16471527.78319 358 257 13177083.33766 359 257 -28297094.18124 363 257 -9.983777999878e-07 364 257 -52708333.32467 365 257 -73187955.04869 366 257 8.642673492432e-07 367 257 1.788139343262e-07 368 257 -190352899.3709 369 257 1.475214958191e-06 370 257 52708333.32467 371 257 -73187955.0487 378 257 -16471527.78319 379 257 -13177083.33766 380 257 -28297094.18124 381 257 -65886111.10029 382 257 -2.831220626831e-07 383 257 -87588646.48668 384 257 -16471527.78319 385 257 13177083.33766 386 257 -28297094.18124 258 258 913791605.4334 259 258 7.748603820801e-06 260 258 -2.622604370117e-06 261 258 126048980.7912 262 258 -2.175569534302e-06 263 258 -1.490116119385e-06 270 258 -75155545.77471 271 258 -53333333.32457 272 258 5.066394805908e-07 273 258 -198223262.271 274 258 2.98023223877e-07 275 258 5.960464477539e-08 276 258 -75155545.7747 277 258 53333333.32457 278 258 -1.490116119385e-08 354 258 -28555987.69793 355 258 13333333.33771 356 258 16471527.78319 357 258 -88624220.55292 358 258 1.043081283569e-07 359 258 65886111.10029 360 258 -28555987.69793 361 258 -13333333.33771 362 258 16471527.78319 366 258 -7556159.747413 367 258 -3.278255462646e-07 368 258 -1.206994056702e-06 369 258 72174281.7049 370 258 1.728534698486e-06 371 258 1.221895217896e-06 372 258 -7556159.747413 373 258 -7.450580596924e-07 374 258 1.341104507446e-06 381 258 -28555987.69793 382 258 -13333333.33771 383 258 -16471527.78319 384 258 -88624220.55292 385 258 2.235174179077e-07 386 258 -65886111.10029 387 258 -28555987.69793 388 258 13333333.33771 389 258 -16471527.78319 259 259 785785459.402 260 259 -1.788139343262e-06 261 259 -2.086162567139e-06 262 259 -76617423.53181 263 259 5.066394805908e-07 270 259 -53333333.32457 271 259 -59154777.5129 272 259 2.086162567139e-07 273 259 3.576278686523e-07 274 259 36444678.54407 275 259 -4.172325134277e-07 276 259 53333333.32457 277 259 -59154777.5129 278 259 2.98023223877e-08 354 259 13333333.33771 355 259 -24555795.63051 356 259 -13177083.33766 357 259 4.470348358154e-08 358 259 -29957235.32024 359 259 2.831220626831e-07 360 259 -13333333.33771 361 259 -24555795.63051 362 259 13177083.33766 366 259 -2.98023223877e-07 367 259 -58222760.85313 368 259 -52708333.32467 369 259 1.728534698486e-06 370 259 40172745.1813 371 259 -5.960464477539e-08 372 259 -7.003545761108e-07 373 259 -58222760.85313 374 259 52708333.32467 381 259 -13333333.33771 382 259 -24555795.63051 383 259 -13177083.33766 384 259 1.9371509552e-07 385 259 -29957235.32024 386 259 -3.8743019104e-07 387 259 13333333.33771 388 259 -24555795.63051 389 259 13177083.33766 260 260 905507012.9075 261 260 -1.668930053711e-06 262 260 4.470348358154e-07 263 260 123977832.6588 270 260 5.811452865601e-07 271 260 3.129243850708e-07 272 260 -9005963.440556 273 260 1.192092895508e-07 274 260 -4.768371582031e-07 275 260 66375066.93519 276 260 4.470348358154e-08 277 260 -4.470348358154e-08 278 260 -9005963.440553 354 260 16471527.78319 355 260 -13177083.33766 356 260 -28297094.18124 357 260 65886111.10029 358 260 3.8743019104e-07 359 260 -87588646.48668 360 260 16471527.78319 361 260 13177083.33766 362 260 -28297094.18124 366 260 -9.983777999878e-07 367 260 -52708333.32467 368 260 -73187955.04869 369 260 8.642673492432e-07 370 260 1.788139343262e-07 371 260 -190352899.3709 372 260 1.475214958191e-06 373 260 52708333.32467 374 260 -73187955.0487 381 260 -16471527.78319 382 260 -13177083.33766 383 260 -28297094.18124 384 260 -65886111.10029 385 260 -2.831220626831e-07 386 260 -87588646.48668 387 260 -16471527.78319 388 260 13177083.33766 389 260 -28297094.18124 261 261 988947148.5376 262 261 53333332.25791 263 261 -9.298324584961e-06 264 261 31359232.67644 265 261 -53333332.8979 266 261 1.251697540283e-06 273 261 -75155545.77471 274 261 -53333333.32457 275 261 5.066394805908e-07 276 261 -198223262.271 277 261 2.98023223877e-07 278 261 5.960464477539e-08 279 261 -75155545.7747 280 261 53333333.32457 281 261 -1.490116119385e-08 357 261 -28555987.69793 358 261 13333333.33771 359 261 16471527.78319 360 261 -107413106.5112 361 261 -13333333.17771 362 261 65886110.96157 369 261 -7556159.747413 370 261 -3.278255462646e-07 371 261 -1.206994056702e-06 372 261 100730268.7541 373 261 13333333.07105 374 261 0.02774140238762 375 261 -26345045.89131 376 261 -13333333.23105 377 261 16471527.49884 384 261 -28555987.69793 385 261 -13333333.33771 386 261 -16471527.78319 387 261 -88624220.55292 388 261 2.235174179077e-07 389 261 -65886111.10029 390 261 -28555987.69793 391 261 13333333.33771 392 261 -16471527.78319 262 262 844940234.7245 263 262 -7.987022399902e-06 264 262 -53333332.68457 265 262 -155306402.5315 266 262 5.394220352173e-06 273 262 -53333333.32457 274 262 -59154777.5129 275 262 2.086162567139e-07 276 262 3.576278686523e-07 277 262 36444678.54407 278 262 -4.172325134277e-07 279 262 53333333.32457 280 262 -59154777.5129 281 262 2.98023223877e-08 357 262 13333333.33771 358 262 -24555795.63051 359 262 -13177083.33766 360 262 -13333333.23104 361 262 -44745929.54447 362 262 13177083.28808 369 262 -2.98023223877e-07 370 262 -58222760.85313 371 262 -52708333.32467 372 262 13333333.07105 373 262 64728540.28304 374 262 0.022192299366 375 262 -13333333.17771 376 262 -73011454.71628 377 262 52708333.03581 384 262 -13333333.33771 385 262 -24555795.63051 386 262 -13177083.33766 387 262 1.9371509552e-07 388 262 -29957235.32024 389 262 -3.8743019104e-07 390 262 13333333.33771 391 262 -24555795.63051 392 262 13177083.33766 263 263 914512974.9691 264 263 1.728534698486e-06 265 263 4.559755325317e-06 266 263 62880662.12465 273 263 5.811452865601e-07 274 263 3.129243850708e-07 275 263 -9005963.440556 276 263 1.192092895508e-07 277 263 -4.768371582031e-07 278 263 66375066.93519 279 263 4.470348358154e-08 280 263 -4.470348358154e-08 281 263 -9005963.440553 357 263 16471527.78319 358 263 -13177083.33766 359 263 -28297094.18124 360 263 65886110.96157 361 263 13177083.26329 362 263 -89840137.25118 369 263 -9.983777999878e-07 370 263 -52708333.32467 371 263 -73187955.04869 372 263 -0.0277450978756 373 263 -0.02219566702843 374 263 -162055805.4842 375 263 16471527.35667 376 263 52708332.94687 377 263 -75439445.29918 384 263 -16471527.78319 385 263 -13177083.33766 386 263 -28297094.18124 387 263 -65886111.10029 388 263 -2.831220626831e-07 389 263 -87588646.48668 390 263 -16471527.78319 391 263 13177083.33766 392 263 -28297094.18124 264 264 571119749.839 265 264 53333333.32457 266 264 -6.198883056641e-06 276 264 -75155545.77471 277 264 -53333333.32457 278 264 5.066394805908e-07 279 264 -292913008.3249 280 264 -53333332.8979 281 264 6.556510925293e-06 282 264 19534202.10867 283 264 42666666.23299 284 264 -1.490116119385e-06 360 264 -9767101.054335 361 264 15999999.84525 362 264 19765832.91331 372 264 -26345045.8913 373 264 -13333333.17771 374 264 -16471527.35667 375 264 45108925.89256 376 264 13333333.33771 377 264 13177222.19231 387 264 -28555987.69793 388 264 -13333333.33771 389 264 -16471527.78319 390 264 -107413106.5112 391 264 -13333333.23104 392 264 -65886110.96157 393 264 -9767101.054335 394 264 10666666.5635 395 264 -13177221.94221 265 265 491115909.0416 266 265 -2.974887930942e-06 276 265 -53333333.32457 277 265 -59154777.5129 278 265 2.086162567139e-07 279 265 -53333332.68457 280 265 -42244300.58137 281 265 2.145767211914e-06 282 265 63999999.34949 283 265 19534202.10866 284 265 -2.384185791016e-06 360 265 10666666.5635 361 265 -9767101.054336 362 265 -10541666.62055 372 265 -13333333.23105 373 265 -73011454.71627 374 265 -52708332.94687 375 265 13333333.33771 376 265 25107965.68335 377 265 10541666.55379 387 265 -13333333.33771 388 265 -24555795.63051 389 265 -13177083.33766 390 265 -13333333.17771 391 265 -44745929.54446 392 265 -13177083.26329 393 265 15999999.84525 394 265 -9767101.054335 395 265 15812499.93082 266 266 565941879.2302 276 266 5.811452865601e-07 277 266 3.129243850708e-07 278 266 -9005963.440556 279 266 6.943941116333e-06 280 266 1.609325408936e-06 281 266 5277897.861165 282 266 -2.145767211914e-06 283 266 -1.54972076416e-06 284 266 52091205.62311 360 266 13177221.94221 361 266 -15812499.93082 362 266 -26045602.81156 372 266 -16471527.49884 373 266 -52708333.03581 374 266 -75439445.29917 375 266 -13177222.19232 376 266 -10541666.5538 377 266 -118970561.1562 387 266 -16471527.78319 388 266 -13177083.33766 389 266 -28297094.18124 390 266 -65886110.96157 391 266 -13177083.28808 392 266 -89840137.25117 393 266 -19765832.91331 394 266 10541666.62055 395 266 -26045602.81156 267 267 913791605.4334 268 267 7.748603820801e-06 269 267 -2.622604370117e-06 270 267 126048980.7912 271 267 -2.175569534302e-06 272 267 -1.490116119385e-06 285 267 -198223262.271 286 267 2.98023223877e-07 287 267 5.960464477539e-08 288 267 -75155545.7747 289 267 53333333.32457 290 267 -1.490116119385e-08 363 267 -88624220.55292 364 267 1.043081283569e-07 365 267 65886111.10029 366 267 -28555987.69793 367 267 -13333333.33771 368 267 16471527.78319 378 267 72174281.7049 379 267 1.728534698486e-06 380 267 1.221895217896e-06 381 267 -7556159.747413 382 267 -7.450580596924e-07 383 267 1.341104507446e-06 396 267 -88624220.55292 397 267 2.235174179077e-07 398 267 -65886111.10029 399 267 -28555987.69793 400 267 13333333.33771 401 267 -16471527.78319 268 268 785785459.402 269 268 -1.788139343262e-06 270 268 -2.086162567139e-06 271 268 -76617423.53181 272 268 5.066394805908e-07 285 268 3.576278686523e-07 286 268 36444678.54407 287 268 -4.172325134277e-07 288 268 53333333.32457 289 268 -59154777.5129 290 268 2.98023223877e-08 363 268 4.470348358154e-08 364 268 -29957235.32024 365 268 2.831220626831e-07 366 268 -13333333.33771 367 268 -24555795.63051 368 268 13177083.33766 378 268 1.728534698486e-06 379 268 40172745.1813 380 268 -5.960464477539e-08 381 268 -7.003545761108e-07 382 268 -58222760.85313 383 268 52708333.32467 396 268 1.9371509552e-07 397 268 -29957235.32024 398 268 -3.8743019104e-07 399 268 13333333.33771 400 268 -24555795.63051 401 268 13177083.33766 269 269 905507012.9075 270 269 -1.668930053711e-06 271 269 4.470348358154e-07 272 269 123977832.6588 285 269 1.192092895508e-07 286 269 -4.768371582031e-07 287 269 66375066.93519 288 269 4.470348358154e-08 289 269 -4.470348358154e-08 290 269 -9005963.440553 363 269 65886111.10029 364 269 3.8743019104e-07 365 269 -87588646.48668 366 269 16471527.78319 367 269 13177083.33766 368 269 -28297094.18124 378 269 8.642673492432e-07 379 269 1.788139343262e-07 380 269 -190352899.3709 381 269 1.475214958191e-06 382 269 52708333.32467 383 269 -73187955.0487 396 269 -65886111.10029 397 269 -2.831220626831e-07 398 269 -87588646.48668 399 269 -16471527.78319 400 269 13177083.33766 401 269 -28297094.18124 270 270 913791605.4334 271 270 7.748603820801e-06 272 270 -2.622604370117e-06 273 270 126048980.7912 274 270 -2.175569534302e-06 275 270 -1.490116119385e-06 285 270 -75155545.77471 286 270 -53333333.32457 287 270 5.066394805908e-07 288 270 -198223262.271 289 270 2.98023223877e-07 290 270 5.960464477539e-08 291 270 -75155545.7747 292 270 53333333.32457 293 270 -1.490116119385e-08 363 270 -28555987.69793 364 270 13333333.33771 365 270 16471527.78319 366 270 -88624220.55292 367 270 1.043081283569e-07 368 270 65886111.10029 369 270 -28555987.69793 370 270 -13333333.33771 371 270 16471527.78319 378 270 -7556159.747413 379 270 -3.278255462646e-07 380 270 -1.206994056702e-06 381 270 72174281.7049 382 270 1.728534698486e-06 383 270 1.221895217896e-06 384 270 -7556159.747413 385 270 -7.450580596924e-07 386 270 1.341104507446e-06 396 270 -28555987.69793 397 270 -13333333.33771 398 270 -16471527.78319 399 270 -88624220.55292 400 270 2.235174179077e-07 401 270 -65886111.10029 402 270 -28555987.69793 403 270 13333333.33771 404 270 -16471527.78319 271 271 785785459.402 272 271 -1.788139343262e-06 273 271 -2.086162567139e-06 274 271 -76617423.53181 275 271 5.066394805908e-07 285 271 -53333333.32457 286 271 -59154777.5129 287 271 2.086162567139e-07 288 271 3.576278686523e-07 289 271 36444678.54407 290 271 -4.172325134277e-07 291 271 53333333.32457 292 271 -59154777.5129 293 271 2.98023223877e-08 363 271 13333333.33771 364 271 -24555795.63051 365 271 -13177083.33766 366 271 4.470348358154e-08 367 271 -29957235.32024 368 271 2.831220626831e-07 369 271 -13333333.33771 370 271 -24555795.63051 371 271 13177083.33766 378 271 -2.98023223877e-07 379 271 -58222760.85313 380 271 -52708333.32467 381 271 1.728534698486e-06 382 271 40172745.1813 383 271 -5.960464477539e-08 384 271 -7.003545761108e-07 385 271 -58222760.85313 386 271 52708333.32467 396 271 -13333333.33771 397 271 -24555795.63051 398 271 -13177083.33766 399 271 1.9371509552e-07 400 271 -29957235.32024 401 271 -3.8743019104e-07 402 271 13333333.33771 403 271 -24555795.63051 404 271 13177083.33766 272 272 905507012.9075 273 272 -1.668930053711e-06 274 272 4.470348358154e-07 275 272 123977832.6588 285 272 5.811452865601e-07 286 272 3.129243850708e-07 287 272 -9005963.440556 288 272 1.192092895508e-07 289 272 -4.768371582031e-07 290 272 66375066.93519 291 272 4.470348358154e-08 292 272 -4.470348358154e-08 293 272 -9005963.440553 363 272 16471527.78319 364 272 -13177083.33766 365 272 -28297094.18124 366 272 65886111.10029 367 272 3.8743019104e-07 368 272 -87588646.48668 369 272 16471527.78319 370 272 13177083.33766 371 272 -28297094.18124 378 272 -9.983777999878e-07 379 272 -52708333.32467 380 272 -73187955.04869 381 272 8.642673492432e-07 382 272 1.788139343262e-07 383 272 -190352899.3709 384 272 1.475214958191e-06 385 272 52708333.32467 386 272 -73187955.0487 396 272 -16471527.78319 397 272 -13177083.33766 398 272 -28297094.18124 399 272 -65886111.10029 400 272 -2.831220626831e-07 401 272 -87588646.48668 402 272 -16471527.78319 403 272 13177083.33766 404 272 -28297094.18124 273 273 913791605.4334 274 273 7.748603820801e-06 275 273 -2.622604370117e-06 276 273 126048980.7912 277 273 -2.175569534302e-06 278 273 -1.490116119385e-06 288 273 -75155545.77471 289 273 -53333333.32457 290 273 5.066394805908e-07 291 273 -198223262.271 292 273 2.98023223877e-07 293 273 5.960464477539e-08 294 273 -75155545.7747 295 273 53333333.32457 296 273 -1.490116119385e-08 366 273 -28555987.69793 367 273 13333333.33771 368 273 16471527.78319 369 273 -88624220.55292 370 273 1.043081283569e-07 371 273 65886111.10029 372 273 -28555987.69793 373 273 -13333333.33771 374 273 16471527.78319 381 273 -7556159.747413 382 273 -3.278255462646e-07 383 273 -1.206994056702e-06 384 273 72174281.7049 385 273 1.728534698486e-06 386 273 1.221895217896e-06 387 273 -7556159.747413 388 273 -7.450580596924e-07 389 273 1.341104507446e-06 399 273 -28555987.69793 400 273 -13333333.33771 401 273 -16471527.78319 402 273 -88624220.55292 403 273 2.235174179077e-07 404 273 -65886111.10029 405 273 -28555987.69793 406 273 13333333.33771 407 273 -16471527.78319 274 274 785785459.402 275 274 -1.788139343262e-06 276 274 -2.086162567139e-06 277 274 -76617423.53181 278 274 5.066394805908e-07 288 274 -53333333.32457 289 274 -59154777.5129 290 274 2.086162567139e-07 291 274 3.576278686523e-07 292 274 36444678.54407 293 274 -4.172325134277e-07 294 274 53333333.32457 295 274 -59154777.5129 296 274 2.98023223877e-08 366 274 13333333.33771 367 274 -24555795.63051 368 274 -13177083.33766 369 274 4.470348358154e-08 370 274 -29957235.32024 371 274 2.831220626831e-07 372 274 -13333333.33771 373 274 -24555795.63051 374 274 13177083.33766 381 274 -2.98023223877e-07 382 274 -58222760.85313 383 274 -52708333.32467 384 274 1.728534698486e-06 385 274 40172745.1813 386 274 -5.960464477539e-08 387 274 -7.003545761108e-07 388 274 -58222760.85313 389 274 52708333.32467 399 274 -13333333.33771 400 274 -24555795.63051 401 274 -13177083.33766 402 274 1.9371509552e-07 403 274 -29957235.32024 404 274 -3.8743019104e-07 405 274 13333333.33771 406 274 -24555795.63051 407 274 13177083.33766 275 275 905507012.9075 276 275 -1.668930053711e-06 277 275 4.470348358154e-07 278 275 123977832.6588 288 275 5.811452865601e-07 289 275 3.129243850708e-07 290 275 -9005963.440556 291 275 1.192092895508e-07 292 275 -4.768371582031e-07 293 275 66375066.93519 294 275 4.470348358154e-08 295 275 -4.470348358154e-08 296 275 -9005963.440553 366 275 16471527.78319 367 275 -13177083.33766 368 275 -28297094.18124 369 275 65886111.10029 370 275 3.8743019104e-07 371 275 -87588646.48668 372 275 16471527.78319 373 275 13177083.33766 374 275 -28297094.18124 381 275 -9.983777999878e-07 382 275 -52708333.32467 383 275 -73187955.04869 384 275 8.642673492432e-07 385 275 1.788139343262e-07 386 275 -190352899.3709 387 275 1.475214958191e-06 388 275 52708333.32467 389 275 -73187955.0487 399 275 -16471527.78319 400 275 -13177083.33766 401 275 -28297094.18124 402 275 -65886111.10029 403 275 -2.831220626831e-07 404 275 -87588646.48668 405 275 -16471527.78319 406 275 13177083.33766 407 275 -28297094.18124 276 276 913791605.4334 277 276 7.748603820801e-06 278 276 -2.622604370117e-06 279 276 126048980.7912 280 276 -2.175569534302e-06 281 276 -1.490116119385e-06 291 276 -75155545.77471 292 276 -53333333.32457 293 276 5.066394805908e-07 294 276 -198223262.271 295 276 2.98023223877e-07 296 276 5.960464477539e-08 297 276 -75155545.7747 298 276 53333333.32457 299 276 -1.490116119385e-08 369 276 -28555987.69793 370 276 13333333.33771 371 276 16471527.78319 372 276 -88624220.55292 373 276 1.043081283569e-07 374 276 65886111.10029 375 276 -28555987.69793 376 276 -13333333.33771 377 276 16471527.78319 384 276 -7556159.747413 385 276 -3.278255462646e-07 386 276 -1.206994056702e-06 387 276 72174281.7049 388 276 1.728534698486e-06 389 276 1.221895217896e-06 390 276 -7556159.747413 391 276 -7.450580596924e-07 392 276 1.341104507446e-06 402 276 -28555987.69793 403 276 -13333333.33771 404 276 -16471527.78319 405 276 -88624220.55292 406 276 2.235174179077e-07 407 276 -65886111.10029 408 276 -28555987.69793 409 276 13333333.33771 410 276 -16471527.78319 277 277 785785459.402 278 277 -1.788139343262e-06 279 277 -2.086162567139e-06 280 277 -76617423.53181 281 277 5.066394805908e-07 291 277 -53333333.32457 292 277 -59154777.5129 293 277 2.086162567139e-07 294 277 3.576278686523e-07 295 277 36444678.54407 296 277 -4.172325134277e-07 297 277 53333333.32457 298 277 -59154777.5129 299 277 2.98023223877e-08 369 277 13333333.33771 370 277 -24555795.63051 371 277 -13177083.33766 372 277 4.470348358154e-08 373 277 -29957235.32024 374 277 2.831220626831e-07 375 277 -13333333.33771 376 277 -24555795.63051 377 277 13177083.33766 384 277 -2.98023223877e-07 385 277 -58222760.85313 386 277 -52708333.32467 387 277 1.728534698486e-06 388 277 40172745.1813 389 277 -5.960464477539e-08 390 277 -7.003545761108e-07 391 277 -58222760.85313 392 277 52708333.32467 402 277 -13333333.33771 403 277 -24555795.63051 404 277 -13177083.33766 405 277 1.9371509552e-07 406 277 -29957235.32024 407 277 -3.8743019104e-07 408 277 13333333.33771 409 277 -24555795.63051 410 277 13177083.33766 278 278 905507012.9075 279 278 -1.668930053711e-06 280 278 4.470348358154e-07 281 278 123977832.6588 291 278 5.811452865601e-07 292 278 3.129243850708e-07 293 278 -9005963.440556 294 278 1.192092895508e-07 295 278 -4.768371582031e-07 296 278 66375066.93519 297 278 4.470348358154e-08 298 278 -4.470348358154e-08 299 278 -9005963.440553 369 278 16471527.78319 370 278 -13177083.33766 371 278 -28297094.18124 372 278 65886111.10029 373 278 3.8743019104e-07 374 278 -87588646.48668 375 278 16471527.78319 376 278 13177083.33766 377 278 -28297094.18124 384 278 -9.983777999878e-07 385 278 -52708333.32467 386 278 -73187955.04869 387 278 8.642673492432e-07 388 278 1.788139343262e-07 389 278 -190352899.3709 390 278 1.475214958191e-06 391 278 52708333.32467 392 278 -73187955.0487 402 278 -16471527.78319 403 278 -13177083.33766 404 278 -28297094.18124 405 278 -65886111.10029 406 278 -2.831220626831e-07 407 278 -87588646.48668 408 278 -16471527.78319 409 278 13177083.33766 410 278 -28297094.18124 279 279 988947148.5376 280 279 53333332.25791 281 279 -9.298324584961e-06 282 279 31359232.67644 283 279 -53333332.8979 284 279 1.251697540283e-06 294 279 -75155545.77471 295 279 -53333333.32457 296 279 5.066394805908e-07 297 279 -198223262.271 298 279 2.98023223877e-07 299 279 5.960464477539e-08 300 279 -75155545.7747 301 279 53333333.32457 302 279 -1.490116119385e-08 372 279 -28555987.69793 373 279 13333333.33771 374 279 16471527.78319 375 279 -107413106.5112 376 279 -13333333.17771 377 279 65886110.96157 387 279 -7556159.747413 388 279 -3.278255462646e-07 389 279 -1.206994056702e-06 390 279 100730268.7541 391 279 13333333.07105 392 279 0.02774140238762 393 279 -26345045.89131 394 279 -13333333.23105 395 279 16471527.49884 405 279 -28555987.69793 406 279 -13333333.33771 407 279 -16471527.78319 408 279 -88624220.55292 409 279 2.235174179077e-07 410 279 -65886111.10029 411 279 -28555987.69793 412 279 13333333.33771 413 279 -16471527.78319 280 280 844940234.7245 281 280 -7.987022399902e-06 282 280 -53333332.68457 283 280 -155306402.5315 284 280 5.394220352173e-06 294 280 -53333333.32457 295 280 -59154777.5129 296 280 2.086162567139e-07 297 280 3.576278686523e-07 298 280 36444678.54407 299 280 -4.172325134277e-07 300 280 53333333.32457 301 280 -59154777.5129 302 280 2.98023223877e-08 372 280 13333333.33771 373 280 -24555795.63051 374 280 -13177083.33766 375 280 -13333333.23104 376 280 -44745929.54447 377 280 13177083.28808 387 280 -2.98023223877e-07 388 280 -58222760.85313 389 280 -52708333.32467 390 280 13333333.07105 391 280 64728540.28304 392 280 0.022192299366 393 280 -13333333.17771 394 280 -73011454.71628 395 280 52708333.03581 405 280 -13333333.33771 406 280 -24555795.63051 407 280 -13177083.33766 408 280 1.9371509552e-07 409 280 -29957235.32024 410 280 -3.8743019104e-07 411 280 13333333.33771 412 280 -24555795.63051 413 280 13177083.33766 281 281 914512974.9691 282 281 1.728534698486e-06 283 281 4.559755325317e-06 284 281 62880662.12465 294 281 5.811452865601e-07 295 281 3.129243850708e-07 296 281 -9005963.440556 297 281 1.192092895508e-07 298 281 -4.768371582031e-07 299 281 66375066.93519 300 281 4.470348358154e-08 301 281 -4.470348358154e-08 302 281 -9005963.440553 372 281 16471527.78319 373 281 -13177083.33766 374 281 -28297094.18124 375 281 65886110.96157 376 281 13177083.26329 377 281 -89840137.25118 387 281 -9.983777999878e-07 388 281 -52708333.32467 389 281 -73187955.04869 390 281 -0.0277450978756 391 281 -0.02219566702843 392 281 -162055805.4842 393 281 16471527.35667 394 281 52708332.94687 395 281 -75439445.29918 405 281 -16471527.78319 406 281 -13177083.33766 407 281 -28297094.18124 408 281 -65886111.10029 409 281 -2.831220626831e-07 410 281 -87588646.48668 411 281 -16471527.78319 412 281 13177083.33766 413 281 -28297094.18124 282 282 509154568.8248 283 282 25085639.27704 284 282 -5.960464477539e-07 297 282 -75155545.77471 298 282 -53333333.32457 299 282 5.066394805908e-07 300 282 -228025244.9359 301 282 -25085638.85037 302 282 7.152557373047e-07 303 282 -4082989.550575 304 282 42666666.23299 305 282 -1.251697540283e-06 375 282 -9767101.054335 376 282 15999999.84525 377 282 19765832.91331 390 282 -26345045.8913 391 282 -13333333.17771 392 282 -16471527.35667 393 282 37378109.13818 394 282 6271409.822349 395 282 11432222.19995 408 282 -28555987.69793 409 282 -13333333.33771 410 282 -16471527.78319 411 282 -87310926.38278 412 282 -6271409.715683 413 282 -57161110.99975 414 282 -11791159.78617 415 282 10666666.5635 416 282 -9687222.01637 283 283 472604990.7818 284 283 -2.652406692505e-06 297 283 -53333333.32457 298 283 -59154777.5129 299 283 2.086162567139e-07 300 283 -25085638.63704 301 283 9928432.40691 302 283 2.384185791016e-07 303 283 63999999.34949 304 283 -34822221.9043 305 283 -1.788139343262e-07 375 283 10666666.5635 376 283 -9767101.054336 377 283 -10541666.62055 390 283 -13333333.23105 391 283 -73011454.71627 392 283 -52708332.94687 393 283 6271409.822349 394 283 28240714.62293 395 283 9145833.226567 408 283 -13333333.33771 409 283 -24555795.63051 410 283 -13177083.33766 411 283 -6271409.66235 412 283 -27822507.01778 413 283 -6197916.627156 414 283 15999999.84526 415 283 -19475967.87838 416 283 18604166.53816 284 284 522045024.059 297 284 5.811452865601e-07 298 284 3.129243850708e-07 299 284 -9005963.440556 300 284 7.450580596924e-07 301 284 2.384185791016e-07 302 284 26229073.67805 303 284 -1.490116119385e-06 304 284 2.384185791016e-07 305 284 19851260.21887 375 284 13177221.94221 376 284 -15812499.93082 377 284 -26045602.81156 390 284 -16471527.49884 391 284 -52708333.03581 392 284 -75439445.29917 393 284 -11432222.19995 394 284 -9145833.22657 395 284 -109250165.6029 408 284 -16471527.78319 409 284 -13177083.33766 410 284 -28297094.18124 411 284 -57161110.99975 412 284 -6197916.651946 413 284 -74255038.56586 414 284 -14530833.02455 415 284 14729166.53156 416 284 -23758284.67089 285 285 913791605.4334 286 285 7.748603820801e-06 287 285 -2.622604370117e-06 288 285 126048980.7912 289 285 -2.175569534302e-06 290 285 -1.490116119385e-06 306 285 -198223262.271 307 285 2.98023223877e-07 308 285 5.960464477539e-08 309 285 -75155545.7747 310 285 53333333.32457 311 285 -1.490116119385e-08 378 285 -88624220.55292 379 285 1.043081283569e-07 380 285 65886111.10029 381 285 -28555987.69793 382 285 -13333333.33771 383 285 16471527.78319 396 285 72174281.7049 397 285 1.728534698486e-06 398 285 1.221895217896e-06 399 285 -7556159.747413 400 285 -7.450580596924e-07 401 285 1.341104507446e-06 417 285 -88624220.55292 418 285 2.235174179077e-07 419 285 -65886111.10029 420 285 -28555987.69793 421 285 13333333.33771 422 285 -16471527.78319 286 286 785785459.402 287 286 -1.788139343262e-06 288 286 -2.086162567139e-06 289 286 -76617423.53181 290 286 5.066394805908e-07 306 286 3.576278686523e-07 307 286 36444678.54407 308 286 -4.172325134277e-07 309 286 53333333.32457 310 286 -59154777.5129 311 286 2.98023223877e-08 378 286 4.470348358154e-08 379 286 -29957235.32024 380 286 2.831220626831e-07 381 286 -13333333.33771 382 286 -24555795.63051 383 286 13177083.33766 396 286 1.728534698486e-06 397 286 40172745.1813 398 286 -5.960464477539e-08 399 286 -7.003545761108e-07 400 286 -58222760.85313 401 286 52708333.32467 417 286 1.9371509552e-07 418 286 -29957235.32024 419 286 -3.8743019104e-07 420 286 13333333.33771 421 286 -24555795.63051 422 286 13177083.33766 287 287 905507012.9075 288 287 -1.668930053711e-06 289 287 4.470348358154e-07 290 287 123977832.6588 306 287 1.192092895508e-07 307 287 -4.768371582031e-07 308 287 66375066.93519 309 287 4.470348358154e-08 310 287 -4.470348358154e-08 311 287 -9005963.440553 378 287 65886111.10029 379 287 3.8743019104e-07 380 287 -87588646.48668 381 287 16471527.78319 382 287 13177083.33766 383 287 -28297094.18124 396 287 8.642673492432e-07 397 287 1.788139343262e-07 398 287 -190352899.3709 399 287 1.475214958191e-06 400 287 52708333.32467 401 287 -73187955.0487 417 287 -65886111.10029 418 287 -2.831220626831e-07 419 287 -87588646.48668 420 287 -16471527.78319 421 287 13177083.33766 422 287 -28297094.18124 288 288 913791605.4334 289 288 7.748603820801e-06 290 288 -2.622604370117e-06 291 288 126048980.7912 292 288 -2.175569534302e-06 293 288 -1.490116119385e-06 306 288 -75155545.77471 307 288 -53333333.32457 308 288 5.066394805908e-07 309 288 -198223262.271 310 288 2.98023223877e-07 311 288 5.960464477539e-08 312 288 -75155545.7747 313 288 53333333.32457 314 288 -1.490116119385e-08 378 288 -28555987.69793 379 288 13333333.33771 380 288 16471527.78319 381 288 -88624220.55292 382 288 1.043081283569e-07 383 288 65886111.10029 384 288 -28555987.69793 385 288 -13333333.33771 386 288 16471527.78319 396 288 -7556159.747413 397 288 -3.278255462646e-07 398 288 -1.206994056702e-06 399 288 72174281.7049 400 288 1.728534698486e-06 401 288 1.221895217896e-06 402 288 -7556159.747413 403 288 -7.450580596924e-07 404 288 1.341104507446e-06 417 288 -28555987.69793 418 288 -13333333.33771 419 288 -16471527.78319 420 288 -88624220.55292 421 288 2.235174179077e-07 422 288 -65886111.10029 423 288 -28555987.69793 424 288 13333333.33771 425 288 -16471527.78319 289 289 785785459.402 290 289 -1.788139343262e-06 291 289 -2.086162567139e-06 292 289 -76617423.53181 293 289 5.066394805908e-07 306 289 -53333333.32457 307 289 -59154777.5129 308 289 2.086162567139e-07 309 289 3.576278686523e-07 310 289 36444678.54407 311 289 -4.172325134277e-07 312 289 53333333.32457 313 289 -59154777.5129 314 289 2.98023223877e-08 378 289 13333333.33771 379 289 -24555795.63051 380 289 -13177083.33766 381 289 4.470348358154e-08 382 289 -29957235.32024 383 289 2.831220626831e-07 384 289 -13333333.33771 385 289 -24555795.63051 386 289 13177083.33766 396 289 -2.98023223877e-07 397 289 -58222760.85313 398 289 -52708333.32467 399 289 1.728534698486e-06 400 289 40172745.1813 401 289 -5.960464477539e-08 402 289 -7.003545761108e-07 403 289 -58222760.85313 404 289 52708333.32467 417 289 -13333333.33771 418 289 -24555795.63051 419 289 -13177083.33766 420 289 1.9371509552e-07 421 289 -29957235.32024 422 289 -3.8743019104e-07 423 289 13333333.33771 424 289 -24555795.63051 425 289 13177083.33766 290 290 905507012.9075 291 290 -1.668930053711e-06 292 290 4.470348358154e-07 293 290 123977832.6588 306 290 5.811452865601e-07 307 290 3.129243850708e-07 308 290 -9005963.440556 309 290 1.192092895508e-07 310 290 -4.768371582031e-07 311 290 66375066.93519 312 290 4.470348358154e-08 313 290 -4.470348358154e-08 314 290 -9005963.440553 378 290 16471527.78319 379 290 -13177083.33766 380 290 -28297094.18124 381 290 65886111.10029 382 290 3.8743019104e-07 383 290 -87588646.48668 384 290 16471527.78319 385 290 13177083.33766 386 290 -28297094.18124 396 290 -9.983777999878e-07 397 290 -52708333.32467 398 290 -73187955.04869 399 290 8.642673492432e-07 400 290 1.788139343262e-07 401 290 -190352899.3709 402 290 1.475214958191e-06 403 290 52708333.32467 404 290 -73187955.0487 417 290 -16471527.78319 418 290 -13177083.33766 419 290 -28297094.18124 420 290 -65886111.10029 421 290 -2.831220626831e-07 422 290 -87588646.48668 423 290 -16471527.78319 424 290 13177083.33766 425 290 -28297094.18124 291 291 913791605.4334 292 291 7.748603820801e-06 293 291 -2.622604370117e-06 294 291 126048980.7912 295 291 -2.175569534302e-06 296 291 -1.490116119385e-06 309 291 -75155545.77471 310 291 -53333333.32457 311 291 5.066394805908e-07 312 291 -198223262.271 313 291 2.98023223877e-07 314 291 5.960464477539e-08 315 291 -75155545.7747 316 291 53333333.32457 317 291 -1.490116119385e-08 381 291 -28555987.69793 382 291 13333333.33771 383 291 16471527.78319 384 291 -88624220.55292 385 291 1.043081283569e-07 386 291 65886111.10029 387 291 -28555987.69793 388 291 -13333333.33771 389 291 16471527.78319 399 291 -7556159.747413 400 291 -3.278255462646e-07 401 291 -1.206994056702e-06 402 291 72174281.7049 403 291 1.728534698486e-06 404 291 1.221895217896e-06 405 291 -7556159.747413 406 291 -7.450580596924e-07 407 291 1.341104507446e-06 420 291 -28555987.69793 421 291 -13333333.33771 422 291 -16471527.78319 423 291 -88624220.55292 424 291 2.235174179077e-07 425 291 -65886111.10029 426 291 -28555987.69793 427 291 13333333.33771 428 291 -16471527.78319 292 292 785785459.402 293 292 -1.788139343262e-06 294 292 -2.086162567139e-06 295 292 -76617423.53181 296 292 5.066394805908e-07 309 292 -53333333.32457 310 292 -59154777.5129 311 292 2.086162567139e-07 312 292 3.576278686523e-07 313 292 36444678.54407 314 292 -4.172325134277e-07 315 292 53333333.32457 316 292 -59154777.5129 317 292 2.98023223877e-08 381 292 13333333.33771 382 292 -24555795.63051 383 292 -13177083.33766 384 292 4.470348358154e-08 385 292 -29957235.32024 386 292 2.831220626831e-07 387 292 -13333333.33771 388 292 -24555795.63051 389 292 13177083.33766 399 292 -2.98023223877e-07 400 292 -58222760.85313 401 292 -52708333.32467 402 292 1.728534698486e-06 403 292 40172745.1813 404 292 -5.960464477539e-08 405 292 -7.003545761108e-07 406 292 -58222760.85313 407 292 52708333.32467 420 292 -13333333.33771 421 292 -24555795.63051 422 292 -13177083.33766 423 292 1.9371509552e-07 424 292 -29957235.32024 425 292 -3.8743019104e-07 426 292 13333333.33771 427 292 -24555795.63051 428 292 13177083.33766 293 293 905507012.9075 294 293 -1.668930053711e-06 295 293 4.470348358154e-07 296 293 123977832.6588 309 293 5.811452865601e-07 310 293 3.129243850708e-07 311 293 -9005963.440556 312 293 1.192092895508e-07 313 293 -4.768371582031e-07 314 293 66375066.93519 315 293 4.470348358154e-08 316 293 -4.470348358154e-08 317 293 -9005963.440553 381 293 16471527.78319 382 293 -13177083.33766 383 293 -28297094.18124 384 293 65886111.10029 385 293 3.8743019104e-07 386 293 -87588646.48668 387 293 16471527.78319 388 293 13177083.33766 389 293 -28297094.18124 399 293 -9.983777999878e-07 400 293 -52708333.32467 401 293 -73187955.04869 402 293 8.642673492432e-07 403 293 1.788139343262e-07 404 293 -190352899.3709 405 293 1.475214958191e-06 406 293 52708333.32467 407 293 -73187955.0487 420 293 -16471527.78319 421 293 -13177083.33766 422 293 -28297094.18124 423 293 -65886111.10029 424 293 -2.831220626831e-07 425 293 -87588646.48668 426 293 -16471527.78319 427 293 13177083.33766 428 293 -28297094.18124 294 294 913791605.4334 295 294 7.748603820801e-06 296 294 -2.622604370117e-06 297 294 126048980.7912 298 294 -2.175569534302e-06 299 294 -1.490116119385e-06 312 294 -75155545.77471 313 294 -53333333.32457 314 294 5.066394805908e-07 315 294 -198223262.271 316 294 2.98023223877e-07 317 294 5.960464477539e-08 318 294 -75155545.7747 319 294 53333333.32457 320 294 -1.490116119385e-08 384 294 -28555987.69793 385 294 13333333.33771 386 294 16471527.78319 387 294 -88624220.55292 388 294 1.043081283569e-07 389 294 65886111.10029 390 294 -28555987.69793 391 294 -13333333.33771 392 294 16471527.78319 402 294 -7556159.747413 403 294 -3.278255462646e-07 404 294 -1.206994056702e-06 405 294 72174281.7049 406 294 1.728534698486e-06 407 294 1.221895217896e-06 408 294 -7556159.747413 409 294 -7.450580596924e-07 410 294 1.341104507446e-06 423 294 -28555987.69793 424 294 -13333333.33771 425 294 -16471527.78319 426 294 -88624220.55292 427 294 2.235174179077e-07 428 294 -65886111.10029 429 294 -28555987.69793 430 294 13333333.33771 431 294 -16471527.78319 295 295 785785459.402 296 295 -1.788139343262e-06 297 295 -2.086162567139e-06 298 295 -76617423.53181 299 295 5.066394805908e-07 312 295 -53333333.32457 313 295 -59154777.5129 314 295 2.086162567139e-07 315 295 3.576278686523e-07 316 295 36444678.54407 317 295 -4.172325134277e-07 318 295 53333333.32457 319 295 -59154777.5129 320 295 2.98023223877e-08 384 295 13333333.33771 385 295 -24555795.63051 386 295 -13177083.33766 387 295 4.470348358154e-08 388 295 -29957235.32024 389 295 2.831220626831e-07 390 295 -13333333.33771 391 295 -24555795.63051 392 295 13177083.33766 402 295 -2.98023223877e-07 403 295 -58222760.85313 404 295 -52708333.32467 405 295 1.728534698486e-06 406 295 40172745.1813 407 295 -5.960464477539e-08 408 295 -7.003545761108e-07 409 295 -58222760.85313 410 295 52708333.32467 423 295 -13333333.33771 424 295 -24555795.63051 425 295 -13177083.33766 426 295 1.9371509552e-07 427 295 -29957235.32024 428 295 -3.8743019104e-07 429 295 13333333.33771 430 295 -24555795.63051 431 295 13177083.33766 296 296 905507012.9075 297 296 -1.668930053711e-06 298 296 4.470348358154e-07 299 296 123977832.6588 312 296 5.811452865601e-07 313 296 3.129243850708e-07 314 296 -9005963.440556 315 296 1.192092895508e-07 316 296 -4.768371582031e-07 317 296 66375066.93519 318 296 4.470348358154e-08 319 296 -4.470348358154e-08 320 296 -9005963.440553 384 296 16471527.78319 385 296 -13177083.33766 386 296 -28297094.18124 387 296 65886111.10029 388 296 3.8743019104e-07 389 296 -87588646.48668 390 296 16471527.78319 391 296 13177083.33766 392 296 -28297094.18124 402 296 -9.983777999878e-07 403 296 -52708333.32467 404 296 -73187955.04869 405 296 8.642673492432e-07 406 296 1.788139343262e-07 407 296 -190352899.3709 408 296 1.475214958191e-06 409 296 52708333.32467 410 296 -73187955.0487 423 296 -16471527.78319 424 296 -13177083.33766 425 296 -28297094.18124 426 296 -65886111.10029 427 296 -2.831220626831e-07 428 296 -87588646.48668 429 296 -16471527.78319 430 296 13177083.33766 431 296 -28297094.18124 297 297 913791605.4334 298 297 7.748603820801e-06 299 297 -2.622604370117e-06 300 297 126048980.7912 301 297 -2.175569534302e-06 302 297 -1.490116119385e-06 315 297 -75155545.77471 316 297 -53333333.32457 317 297 5.066394805908e-07 318 297 -198223262.271 319 297 2.98023223877e-07 320 297 5.960464477539e-08 321 297 -75155545.7747 322 297 53333333.32457 323 297 -1.490116119385e-08 387 297 -28555987.69793 388 297 13333333.33771 389 297 16471527.78319 390 297 -88624220.55292 391 297 1.043081283569e-07 392 297 65886111.10029 393 297 -28555987.69793 394 297 -13333333.33771 395 297 16471527.78319 405 297 -7556159.747413 406 297 -3.278255462646e-07 407 297 -1.206994056702e-06 408 297 72174281.7049 409 297 1.728534698486e-06 410 297 1.221895217896e-06 411 297 -7556159.747413 412 297 -7.450580596924e-07 413 297 1.341104507446e-06 426 297 -28555987.69793 427 297 -13333333.33771 428 297 -16471527.78319 429 297 -88624220.55292 430 297 2.235174179077e-07 431 297 -65886111.10029 432 297 -28555987.69793 433 297 13333333.33771 434 297 -16471527.78319 298 298 785785459.402 299 298 -1.788139343262e-06 300 298 -2.086162567139e-06 301 298 -76617423.53181 302 298 5.066394805908e-07 315 298 -53333333.32457 316 298 -59154777.5129 317 298 2.086162567139e-07 318 298 3.576278686523e-07 319 298 36444678.54407 320 298 -4.172325134277e-07 321 298 53333333.32457 322 298 -59154777.5129 323 298 2.98023223877e-08 387 298 13333333.33771 388 298 -24555795.63051 389 298 -13177083.33766 390 298 4.470348358154e-08 391 298 -29957235.32024 392 298 2.831220626831e-07 393 298 -13333333.33771 394 298 -24555795.63051 395 298 13177083.33766 405 298 -2.98023223877e-07 406 298 -58222760.85313 407 298 -52708333.32467 408 298 1.728534698486e-06 409 298 40172745.1813 410 298 -5.960464477539e-08 411 298 -7.003545761108e-07 412 298 -58222760.85313 413 298 52708333.32467 426 298 -13333333.33771 427 298 -24555795.63051 428 298 -13177083.33766 429 298 1.9371509552e-07 430 298 -29957235.32024 431 298 -3.8743019104e-07 432 298 13333333.33771 433 298 -24555795.63051 434 298 13177083.33766 299 299 905507012.9075 300 299 -1.668930053711e-06 301 299 4.470348358154e-07 302 299 123977832.6588 315 299 5.811452865601e-07 316 299 3.129243850708e-07 317 299 -9005963.440556 318 299 1.192092895508e-07 319 299 -4.768371582031e-07 320 299 66375066.93519 321 299 4.470348358154e-08 322 299 -4.470348358154e-08 323 299 -9005963.440553 387 299 16471527.78319 388 299 -13177083.33766 389 299 -28297094.18124 390 299 65886111.10029 391 299 3.8743019104e-07 392 299 -87588646.48668 393 299 16471527.78319 394 299 13177083.33766 395 299 -28297094.18124 405 299 -9.983777999878e-07 406 299 -52708333.32467 407 299 -73187955.04869 408 299 8.642673492432e-07 409 299 1.788139343262e-07 410 299 -190352899.3709 411 299 1.475214958191e-06 412 299 52708333.32467 413 299 -73187955.0487 426 299 -16471527.78319 427 299 -13177083.33766 428 299 -28297094.18124 429 299 -65886111.10029 430 299 -2.831220626831e-07 431 299 -87588646.48668 432 299 -16471527.78319 433 299 13177083.33766 434 299 -28297094.18124 300 300 886076107.088 301 300 29506578.58962 302 300 -4.172325134277e-06 303 300 -15650105.72171 304 300 -67995305.55008 305 300 -1.788139343262e-06 318 300 -75155545.77471 319 300 -53333333.32457 320 300 5.066394805908e-07 321 300 -169993346.4286 322 300 13585574.37073 323 300 1.579523086548e-06 324 300 -49437968.75893 325 300 49988791.22677 326 300 2.637505531311e-06 390 300 -28555987.69793 391 300 13333333.33771 392 300 16471527.78319 393 300 -87310926.38278 394 300 -6271409.66235 395 300 57161110.99975 408 300 -7556159.747413 409 300 -3.278255462646e-07 410 300 -1.206994056702e-06 411 300 87947441.63499 412 300 7376644.65104 413 300 0.02039501070976 414 300 -32923131.70809 415 300 -16998826.39589 416 300 16470833.12799 429 300 -28555987.69793 430 300 -13333333.33771 431 300 -16471527.78319 432 300 -80272721.40676 433 300 3396393.594356 434 300 -61522916.65699 435 300 -22126192.23639 436 300 12497197.81285 437 300 -12109027.78175 301 301 821417136.7999 302 301 5.125999450684e-06 303 301 -67995305.33675 304 301 -205861449.307 305 301 -3.56137752533e-06 318 301 -53333333.32457 319 301 -59154777.5129 320 301 2.086162567139e-07 321 301 13585574.37073 322 301 48420638.98572 323 301 8.940696716309e-07 324 301 49988791.22677 325 301 -80270449.84323 326 301 -2.548098564148e-06 390 301 13333333.33771 391 301 -24555795.63051 392 301 -13177083.33766 393 301 -6271409.715683 394 301 -27822507.01778 395 301 6197916.651945 408 301 -2.98023223877e-07 409 301 -58222760.85313 410 301 -52708333.32467 411 301 7376644.65104 412 301 71782699.055 413 301 0.01631674170494 414 301 -16998826.34256 415 301 -80475967.62785 416 301 52708333.09468 429 301 -13333333.33771 430 301 -24555795.63051 431 301 -13177083.33766 432 301 3396393.594355 433 301 -25669225.02627 434 301 3489583.332416 435 301 12497197.81285 436 301 -29834312.51126 437 301 16666666.67214 302 302 843458196.4419 303 302 1.192092895508e-07 304 302 -3.039836883545e-06 305 302 21637954.44543 318 302 5.811452865601e-07 319 302 3.129243850708e-07 320 302 -9005963.440556 321 302 6.85453414917e-07 322 302 1.072883605957e-06 323 302 73680450.86193 324 302 1.996755599976e-06 325 302 -2.592802047729e-06 326 302 -7752033.245933 390 302 16471527.78319 391 302 -13177083.33766 392 302 -28297094.18124 393 302 57161110.99975 394 302 6197916.627155 395 302 -74255038.56586 408 302 -9.983777999878e-07 409 302 -52708333.32467 410 302 -73187955.04869 411 302 -0.02039638161659 412 302 -0.01631587743759 413 302 -145326344.7753 414 302 16470833.02261 415 302 52708333.03516 416 302 -71952125.45461 429 302 -16471527.78319 430 302 -13177083.33766 431 302 -28297094.18124 432 302 -61522916.65613 433 302 3489583.333104 434 302 -82311580.01855 435 302 -12109027.78175 436 302 16666666.67214 437 302 -27982541.75396 303 303 531775095.0468 304 303 8503382.432196 321 303 -80370018.26376 322 303 -52907761.3966 323 303 -1.847743988037e-06 324 303 -113455777.5588 325 303 18108359.28725 326 303 1.311302185059e-06 327 303 68483060.18779 328 303 -18744593.63382 329 303 5.960464477539e-07 330 303 -42329538.80213 331 303 49035919.29823 332 303 1.922249794006e-06 393 303 -11791159.78616 394 303 15999999.84526 395 303 14530833.02455 411 303 -32923131.7081 412 303 -16998826.34256 413 303 -16470833.02261 414 303 14669982.03611 415 303 2125845.609096 416 303 12968611.10898 432 303 -29859204.61641 433 303 -13226940.35567 434 303 -16470833.33874 435 303 -76387958.09069 436 303 4527089.824043 437 303 -64843055.54491 438 303 -11712307.86994 439 303 -4686148.410764 440 303 8424305.555742 441 303 -24181082.63358 442 303 12258979.8306 443 303 -15950694.44968 304 304 626925818.4292 305 304 3.933906555176e-06 321 304 -52907761.3966 322 304 -54873071.8125 323 304 -8.642673492432e-07 324 304 18108359.28725 325 304 97871879.78123 326 304 3.337860107422e-06 327 304 2588739.696008 328 304 -35173186.25688 329 304 -3.695487976074e-06 330 304 49035919.29823 331 304 -49698043.59219 332 304 -1.505017280579e-06 393 304 10666666.5635 394 304 -19475967.87838 395 304 -14729166.53156 411 304 -16998826.39589 412 304 -80475967.62786 413 304 -52708333.03516 414 304 2125845.609096 415 304 38457662.89345 416 304 3874999.888226 432 304 -13226940.35567 433 304 -23484968.00046 434 304 -13177083.33766 435 304 4527089.824043 436 304 -23556043.72965 437 304 3489583.332417 438 304 647184.9243208 439 304 -37626369.49388 440 304 33333333.32786 441 304 12258979.8306 442 304 -26023208.832 443 304 16666666.67214 305 305 650521074.3426 321 305 -1.788139343262e-06 322 305 -7.748603820801e-07 323 305 -9261489.102506 324 305 1.117587089539e-06 325 305 3.337860107422e-06 326 305 131575339.2945 327 305 1.54972076416e-06 328 305 -3.75509262085e-06 329 305 90632596.10001 330 305 2.279877662659e-06 331 305 -1.594424247742e-06 332 305 13362532.26789 393 305 9687222.01637 394 305 -18604166.53816 395 305 -23758284.67089 411 305 -16470833.12799 412 305 -52708333.09468 413 305 -71952125.45462 414 305 -12968611.10898 415 305 -3874999.888222 416 305 -152766509.4438 432 305 -16470833.33874 433 305 -13177083.33766 434 305 -28359905.71829 435 305 -64843055.54491 436 305 3489583.333105 437 305 -95170201.65885 438 305 299305.5539342 439 305 33333333.32786 440 305 -54230045.43137 441 305 -15950694.44968 442 305 16666666.67214 443 305 -32922561.4056 306 306 456895802.7167 307 306 3.933906555176e-06 308 306 -1.668930053711e-06 309 306 63024490.39562 310 306 10666666.66491 311 306 -1.013278961182e-06 396 306 -88624220.55292 397 306 1.043081283569e-07 398 306 65886111.10029 399 306 -28555987.69793 400 306 -13333333.33771 401 306 16471527.78319 417 306 36087140.85245 418 306 8.344650268555e-07 419 306 -13177222.22006 420 306 -3778079.873706 421 306 2666666.667542 422 306 -3294305.556637 307 307 392892729.701 308 307 -7.152557373047e-07 309 307 -10666666.66491 310 307 -38308711.7659 311 307 3.8743019104e-07 396 307 4.470348358154e-08 397 307 -29957235.32024 398 307 2.831220626831e-07 399 307 -13333333.33771 400 307 -24555795.63051 401 307 13177083.33766 417 307 8.940696716309e-07 418 307 20086372.59065 419 307 -2.98023223877e-08 420 307 -2666666.667543 421 307 -29111380.42657 422 307 26354166.66234 308 308 452753506.4538 309 308 -8.940696716309e-07 310 308 1.490116119385e-07 311 308 61988916.32938 396 308 65886111.10029 397 308 3.8743019104e-07 398 308 -87588646.48668 399 308 16471527.78319 400 308 13177083.33766 401 308 -28297094.18124 417 308 13177222.22006 418 308 1.490116119385e-07 419 308 -95176449.68545 420 308 3294305.556638 421 308 26354166.66234 422 308 -36593977.52435 309 309 456895802.7167 310 309 3.933906555176e-06 311 309 -1.668930053711e-06 312 309 63024490.39562 313 309 10666666.66491 314 309 -1.013278961182e-06 396 309 -28555987.69793 397 309 13333333.33771 398 309 16471527.78319 399 309 -88624220.55292 400 309 1.043081283569e-07 401 309 65886111.10029 402 309 -28555987.69793 403 309 -13333333.33771 404 309 16471527.78319 417 309 -3778079.873706 418 309 -2666666.667542 419 309 -3294305.556638 420 309 36087140.85245 421 309 8.344650268555e-07 422 309 -13177222.22006 423 309 -3778079.873706 424 309 2666666.667542 425 309 -3294305.556637 310 310 392892729.701 311 310 -7.152557373047e-07 312 310 -10666666.66491 313 310 -38308711.7659 314 310 3.8743019104e-07 396 310 13333333.33771 397 310 -24555795.63051 398 310 -13177083.33766 399 310 4.470348358154e-08 400 310 -29957235.32024 401 310 2.831220626831e-07 402 310 -13333333.33771 403 310 -24555795.63051 404 310 13177083.33766 417 310 2666666.667542 418 310 -29111380.42657 419 310 -26354166.66234 420 310 8.940696716309e-07 421 310 20086372.59065 422 310 -2.98023223877e-08 423 310 -2666666.667543 424 310 -29111380.42657 425 310 26354166.66234 311 311 452753506.4538 312 311 -8.940696716309e-07 313 311 1.490116119385e-07 314 311 61988916.32938 396 311 16471527.78319 397 311 -13177083.33766 398 311 -28297094.18124 399 311 65886111.10029 400 311 3.8743019104e-07 401 311 -87588646.48668 402 311 16471527.78319 403 311 13177083.33766 404 311 -28297094.18124 417 311 3294305.556637 418 311 -26354166.66234 419 311 -36593977.52435 420 311 13177222.22006 421 311 1.490116119385e-07 422 311 -95176449.68545 423 311 3294305.556638 424 311 26354166.66234 425 311 -36593977.52435 312 312 456895802.7167 313 312 3.933906555176e-06 314 312 -1.668930053711e-06 315 312 63024490.39562 316 312 10666666.66491 317 312 -1.013278961182e-06 399 312 -28555987.69793 400 312 13333333.33771 401 312 16471527.78319 402 312 -88624220.55292 403 312 1.043081283569e-07 404 312 65886111.10029 405 312 -28555987.69793 406 312 -13333333.33771 407 312 16471527.78319 420 312 -3778079.873706 421 312 -2666666.667542 422 312 -3294305.556638 423 312 36087140.85245 424 312 8.344650268555e-07 425 312 -13177222.22006 426 312 -3778079.873706 427 312 2666666.667542 428 312 -3294305.556637 313 313 392892729.701 314 313 -7.152557373047e-07 315 313 -10666666.66491 316 313 -38308711.7659 317 313 3.8743019104e-07 399 313 13333333.33771 400 313 -24555795.63051 401 313 -13177083.33766 402 313 4.470348358154e-08 403 313 -29957235.32024 404 313 2.831220626831e-07 405 313 -13333333.33771 406 313 -24555795.63051 407 313 13177083.33766 420 313 2666666.667542 421 313 -29111380.42657 422 313 -26354166.66234 423 313 8.940696716309e-07 424 313 20086372.59065 425 313 -2.98023223877e-08 426 313 -2666666.667543 427 313 -29111380.42657 428 313 26354166.66234 314 314 452753506.4538 315 314 -8.940696716309e-07 316 314 1.490116119385e-07 317 314 61988916.32938 399 314 16471527.78319 400 314 -13177083.33766 401 314 -28297094.18124 402 314 65886111.10029 403 314 3.8743019104e-07 404 314 -87588646.48668 405 314 16471527.78319 406 314 13177083.33766 407 314 -28297094.18124 420 314 3294305.556637 421 314 -26354166.66234 422 314 -36593977.52435 423 314 13177222.22006 424 314 1.490116119385e-07 425 314 -95176449.68545 426 314 3294305.556638 427 314 26354166.66234 428 314 -36593977.52435 315 315 456895802.7167 316 315 3.933906555176e-06 317 315 -1.668930053711e-06 318 315 63024490.39562 319 315 10666666.66491 320 315 -1.013278961182e-06 402 315 -28555987.69793 403 315 13333333.33771 404 315 16471527.78319 405 315 -88624220.55292 406 315 1.043081283569e-07 407 315 65886111.10029 408 315 -28555987.69793 409 315 -13333333.33771 410 315 16471527.78319 423 315 -3778079.873706 424 315 -2666666.667542 425 315 -3294305.556638 426 315 36087140.85245 427 315 8.344650268555e-07 428 315 -13177222.22006 429 315 -3778079.873706 430 315 2666666.667542 431 315 -3294305.556637 316 316 392892729.701 317 316 -7.152557373047e-07 318 316 -10666666.66491 319 316 -38308711.7659 320 316 3.8743019104e-07 402 316 13333333.33771 403 316 -24555795.63051 404 316 -13177083.33766 405 316 4.470348358154e-08 406 316 -29957235.32024 407 316 2.831220626831e-07 408 316 -13333333.33771 409 316 -24555795.63051 410 316 13177083.33766 423 316 2666666.667542 424 316 -29111380.42657 425 316 -26354166.66234 426 316 8.940696716309e-07 427 316 20086372.59065 428 316 -2.98023223877e-08 429 316 -2666666.667543 430 316 -29111380.42657 431 316 26354166.66234 317 317 452753506.4538 318 317 -8.940696716309e-07 319 317 1.490116119385e-07 320 317 61988916.32938 402 317 16471527.78319 403 317 -13177083.33766 404 317 -28297094.18124 405 317 65886111.10029 406 317 3.8743019104e-07 407 317 -87588646.48668 408 317 16471527.78319 409 317 13177083.33766 410 317 -28297094.18124 423 317 3294305.556637 424 317 -26354166.66234 425 317 -36593977.52435 426 317 13177222.22006 427 317 1.490116119385e-07 428 317 -95176449.68545 429 317 3294305.556638 430 317 26354166.66234 431 317 -36593977.52435 318 318 456895802.7167 319 318 3.933906555176e-06 320 318 -1.668930053711e-06 321 318 63024490.39562 322 318 10666666.66491 323 318 -1.013278961182e-06 405 318 -28555987.69793 406 318 13333333.33771 407 318 16471527.78319 408 318 -88624220.55292 409 318 1.043081283569e-07 410 318 65886111.10029 411 318 -28555987.69793 412 318 -13333333.33771 413 318 16471527.78319 426 318 -3778079.873706 427 318 -2666666.667542 428 318 -3294305.556638 429 318 36087140.85245 430 318 8.344650268555e-07 431 318 -13177222.22006 432 318 -3778079.873706 433 318 2666666.667542 434 318 -3294305.556637 319 319 392892729.701 320 319 -7.152557373047e-07 321 319 -10666666.66491 322 319 -38308711.7659 323 319 3.8743019104e-07 405 319 13333333.33771 406 319 -24555795.63051 407 319 -13177083.33766 408 319 4.470348358154e-08 409 319 -29957235.32024 410 319 2.831220626831e-07 411 319 -13333333.33771 412 319 -24555795.63051 413 319 13177083.33766 426 319 2666666.667542 427 319 -29111380.42657 428 319 -26354166.66234 429 319 8.940696716309e-07 430 319 20086372.59065 431 319 -2.98023223877e-08 432 319 -2666666.667543 433 319 -29111380.42657 434 319 26354166.66234 320 320 452753506.4538 321 320 -8.940696716309e-07 322 320 1.490116119385e-07 323 320 61988916.32938 405 320 16471527.78319 406 320 -13177083.33766 407 320 -28297094.18124 408 320 65886111.10029 409 320 3.8743019104e-07 410 320 -87588646.48668 411 320 16471527.78319 412 320 13177083.33766 413 320 -28297094.18124 426 320 3294305.556637 427 320 -26354166.66234 428 320 -36593977.52435 429 320 13177222.22006 430 320 1.490116119385e-07 431 320 -95176449.68545 432 320 3294305.556638 433 320 26354166.66234 434 320 -36593977.52435 321 321 451672659.2548 322 321 425457.3069872 324 321 45227333.73336 325 321 -3769936.940774 326 321 5.960464477539e-07 408 321 -28555987.69793 409 321 13333333.33771 410 321 16471527.78319 411 321 -80272721.40676 412 321 3396393.594356 413 321 61522916.65613 414 321 -29859204.61641 415 321 -13226940.35567 416 321 16470833.33874 429 321 -3778079.873706 430 321 -2666666.667542 431 321 -3294305.556638 432 321 34782980.96289 433 321 106364.3267991 434 321 -13176944.44228 435 321 -9519773.826407 436 321 -942484.2356579 437 321 1067638.88752 322 322 397175038.8898 323 322 1.072883605957e-06 324 322 -25103270.2706 325 322 -58853543.86754 326 322 -1.341104507446e-06 408 322 13333333.33771 409 322 -24555795.63051 410 322 -13177083.33766 411 322 3396393.594355 412 322 -25669225.02627 413 322 -3489583.333104 414 322 -13226940.35567 415 322 -23484968.00045 416 322 13177083.33766 429 322 2666666.667542 430 322 -29111380.42657 431 322 -26354166.66234 432 322 106364.3267991 433 322 21158575.86493 434 322 2.682209014893e-07 435 322 -6275817.570742 436 322 -35539993.23945 437 322 29843749.99544 323 323 452492316.5668 325 323 -1.490116119385e-06 326 323 55187296.56271 408 323 16471527.78319 409 323 -13177083.33766 410 323 -28297094.18124 411 323 61522916.65699 412 323 -3489583.332416 413 323 -82311580.01855 414 323 16470833.33874 415 323 13177083.33766 416 323 -28359905.71829 429 323 3294305.556637 430 323 -26354166.66234 431 323 -36593977.52435 432 323 13176944.44228 433 323 3.8743019104e-07 434 323 -95237411.21973 435 323 7655972.222158 436 323 29843749.99475 437 323 -41740795.2267 324 324 444644489.1745 325 324 13081929.57058 326 324 9.536743164063e-07 327 324 -86994427.68368 328 324 -57630747.35091 329 324 -2.384185791016e-06 330 324 44204118.01812 331 324 1554937.536914 332 324 -1.192092895508e-06 411 324 -22126192.23639 412 324 12497197.81285 413 324 12109027.78176 414 324 -76387958.09069 415 324 4527089.824043 416 324 64843055.54491 432 324 -9519773.826409 433 324 -6275817.570743 434 324 -7655972.222158 435 324 15798034.7999 436 324 3270482.394257 437 324 -12968611.10898 438 324 -35347304.85947 439 324 -14407686.84483 440 324 20312500.00667 441 324 -14510689.24923 442 324 388734.3844201 443 324 1171666.664472 325 325 449754245.7917 326 325 4.64916229248e-06 327 325 -57630747.35091 328 325 -66447376.92277 329 325 -1.296401023865e-06 330 325 -19778395.79291 331 325 -57866988.0148 332 325 -2.086162567139e-06 411 325 12497197.81285 412 325 -29834312.51127 413 325 -16666666.67214 414 325 4527089.824043 415 325 -23556043.72965 416 325 -3489583.333103 432 325 -942484.2356579 433 325 -35539993.23945 434 325 -29843749.99475 435 325 3270482.394257 436 325 17075473.95481 437 325 9.536743164063e-07 438 325 -14407686.84483 439 325 -30210542.16671 440 325 16666666.67214 441 325 -4944598.950664 442 325 -40028465.77003 443 325 33333333.32786 326 326 513640710.6392 327 326 -3.159046173096e-06 328 326 -1.370906829834e-06 329 326 -3386801.062691 330 326 -1.907348632813e-06 331 326 -2.235174179077e-06 332 326 68569532.94435 411 326 12109027.78176 412 326 -16666666.67214 413 326 -27982541.75396 414 326 64843055.54491 415 326 -3489583.332416 416 326 -95170201.65886 432 326 -1067638.887521 433 326 -29843749.99544 434 326 -41740795.22671 435 326 12968611.10898 436 326 1.013278961182e-06 437 326 -125891389.0729 438 326 20312500.00667 439 326 16666666.67214 440 326 -37109894.74031 441 326 7551944.445205 442 326 33333333.32786 443 326 -51022200.11333 327 327 254849231.4225 328 327 61411260.29348 329 327 3.814697265625e-06 330 327 -66610780.59762 331 327 -6369252.63857 332 327 -1.132488250732e-06 414 327 -11712307.86995 415 327 647184.9243208 416 327 -299305.5539346 435 327 -35347304.85947 436 327 -14407686.84483 437 327 -20312500.00667 438 327 6046162.064774 439 327 15352815.08093 440 327 8124999.998666 441 327 -43850090.99987 442 327 -1592313.160427 443 327 -36263194.43806 328 328 228505477.8886 329 328 4.172325134277e-06 330 328 14964080.69126 331 328 42842168.62011 332 328 1.728534698486e-06 414 328 -4686148.410764 415 328 -37626369.49388 416 328 -33333333.32786 435 328 -14407686.84483 436 328 -30210542.16671 437 328 -16666666.67214 438 328 15352815.08093 439 328 -539776.3219635 440 328 6666666.665572 441 328 3741020.174657 442 328 -16486853.68196 443 328 3333333.334428 329 329 294920181.6058 331 329 1.788139343262e-06 332 329 70439578.90092 414 329 -8424305.555743 415 329 -33333333.32786 416 329 -54230045.43139 435 329 -20312500.00667 436 329 -16666666.67214 437 329 -37109894.74031 438 329 -8124999.998665 439 329 -6666666.665571 440 329 -80046343.42155 441 329 -36263194.43892 442 329 -3333333.334428 443 329 -54916494.1788 330 330 221377868.0526 331 330 -44221604.19657 332 330 -1.311302185059e-06 414 330 -24181082.63358 415 330 12258979.8306 416 330 15950694.44968 435 330 -14510689.24923 436 330 -4944598.950664 437 330 -7551944.445206 438 330 -43850090.99987 439 330 3741020.174657 440 330 36263194.43892 441 330 4221029.5472 442 330 -11055401.05459 443 330 -6380277.77673 331 331 221364529.6578 332 331 2.861022949219e-06 414 331 12258979.8306 415 331 -26023208.832 416 331 -16666666.67214 435 331 388734.38442 436 331 -40028465.77003 437 331 -33333333.32786 438 331 -1592313.160427 439 331 -16486853.68196 440 331 3333333.334428 441 331 -11055401.05459 442 331 4217694.948508 443 331 6666666.665572 332 332 265339467.0094 414 332 15950694.44968 415 332 -16666666.67214 416 332 -32922561.4056 435 332 -1171666.664473 436 332 -33333333.32786 437 332 -51022200.11334 438 332 36263194.43806 439 332 -3333333.334428 440 332 -54916494.1788 441 332 6380277.77673 442 332 -6666666.665571 443 332 -69994299.86354 333 333 571119749.839 334 333 53333333.32457 335 333 -6.198883056641e-06 336 333 -292913008.3249 337 333 -53333332.8979 338 333 6.556510925293e-06 339 333 19534202.10867 340 333 42666666.23299 341 333 -1.490116119385e-06 444 333 45108925.89256 445 333 13333333.33771 446 333 13177222.19231 447 333 -107413106.5112 448 333 -13333333.23104 449 333 -65886110.96157 450 333 -9767101.054335 451 333 10666666.5635 452 333 -13177221.94221 334 334 491115909.0416 335 334 -3.094097220493e-06 336 334 -53333332.68457 337 334 -42244300.58137 338 334 2.145767211914e-06 339 334 63999999.34949 340 334 19534202.10866 341 334 -2.384185791016e-06 444 334 13333333.33771 445 334 25107965.68335 446 334 10541666.55379 447 334 -13333333.17771 448 334 -44745929.54446 449 334 -13177083.26329 450 334 15999999.84525 451 334 -9767101.054335 452 334 15812499.93082 335 335 565941879.2302 336 335 6.943941116333e-06 337 335 1.609325408936e-06 338 335 5277897.861165 339 335 -2.145767211914e-06 340 335 -1.54972076416e-06 341 335 52091205.62311 444 335 -13177222.19232 445 335 -10541666.5538 446 335 -118970561.1562 447 335 -65886110.96157 448 335 -13177083.28808 449 335 -89840137.25117 450 335 -19765832.91331 451 335 10541666.62055 452 335 -26045602.81156 336 336 988947148.5376 337 336 53333332.25791 338 336 -9.298324584961e-06 339 336 31359232.67644 340 336 -53333332.8979 341 336 1.251697540283e-06 342 336 -198223262.271 343 336 2.98023223877e-07 344 336 5.960464477539e-08 345 336 -75155545.7747 346 336 53333333.32457 347 336 -1.490116119385e-08 444 336 -107413106.5112 445 336 -13333333.17771 446 336 65886110.96157 447 336 100730268.7541 448 336 13333333.07105 449 336 0.02774140238762 450 336 -26345045.89131 451 336 -13333333.23105 452 336 16471527.49884 453 336 -88624220.55292 454 336 2.235174179077e-07 455 336 -65886111.10029 456 336 -28555987.69793 457 336 13333333.33771 458 336 -16471527.78319 337 337 844940234.7245 338 337 -7.987022399902e-06 339 337 -53333332.68457 340 337 -155306402.5315 341 337 5.394220352173e-06 342 337 3.576278686523e-07 343 337 36444678.54407 344 337 -4.172325134277e-07 345 337 53333333.32457 346 337 -59154777.5129 347 337 2.98023223877e-08 444 337 -13333333.23104 445 337 -44745929.54447 446 337 13177083.28808 447 337 13333333.07105 448 337 64728540.28304 449 337 0.022192299366 450 337 -13333333.17771 451 337 -73011454.71628 452 337 52708333.03581 453 337 1.9371509552e-07 454 337 -29957235.32024 455 337 -3.8743019104e-07 456 337 13333333.33771 457 337 -24555795.63051 458 337 13177083.33766 338 338 914512974.9691 339 338 1.728534698486e-06 340 338 4.559755325317e-06 341 338 62880662.12465 342 338 1.192092895508e-07 343 338 -4.768371582031e-07 344 338 66375066.93519 345 338 4.470348358154e-08 346 338 -4.470348358154e-08 347 338 -9005963.440553 444 338 65886110.96157 445 338 13177083.26329 446 338 -89840137.25118 447 338 -0.0277450978756 448 338 -0.02219566702843 449 338 -162055805.4842 450 338 16471527.35667 451 338 52708332.94687 452 338 -75439445.29918 453 338 -65886111.10029 454 338 -2.831220626831e-07 455 338 -87588646.48668 456 338 -16471527.78319 457 338 13177083.33766 458 338 -28297094.18124 339 339 571119749.839 340 339 53333333.32457 341 339 -6.198883056641e-06 342 339 -75155545.77471 343 339 -53333333.32457 344 339 5.066394805908e-07 345 339 -292913008.3249 346 339 -53333332.8979 347 339 6.556510925293e-06 348 339 19534202.10867 349 339 42666666.23299 350 339 -1.490116119385e-06 444 339 -9767101.054335 445 339 15999999.84525 446 339 19765832.91331 447 339 -26345045.8913 448 339 -13333333.17771 449 339 -16471527.35667 450 339 45108925.89256 451 339 13333333.33771 452 339 13177222.19231 453 339 -28555987.69793 454 339 -13333333.33771 455 339 -16471527.78319 456 339 -107413106.5112 457 339 -13333333.23104 458 339 -65886110.96157 459 339 -9767101.054335 460 339 10666666.5635 461 339 -13177221.94221 340 340 491115909.0416 341 340 -2.974887930942e-06 342 340 -53333333.32457 343 340 -59154777.5129 344 340 2.086162567139e-07 345 340 -53333332.68457 346 340 -42244300.58137 347 340 2.145767211914e-06 348 340 63999999.34949 349 340 19534202.10866 350 340 -2.384185791016e-06 444 340 10666666.5635 445 340 -9767101.054336 446 340 -10541666.62055 447 340 -13333333.23105 448 340 -73011454.71627 449 340 -52708332.94687 450 340 13333333.33771 451 340 25107965.68335 452 340 10541666.55379 453 340 -13333333.33771 454 340 -24555795.63051 455 340 -13177083.33766 456 340 -13333333.17771 457 340 -44745929.54446 458 340 -13177083.26329 459 340 15999999.84525 460 340 -9767101.054335 461 340 15812499.93082 341 341 565941879.2302 342 341 5.811452865601e-07 343 341 3.129243850708e-07 344 341 -9005963.440556 345 341 6.943941116333e-06 346 341 1.609325408936e-06 347 341 5277897.861165 348 341 -2.145767211914e-06 349 341 -1.54972076416e-06 350 341 52091205.62311 444 341 13177221.94221 445 341 -15812499.93082 446 341 -26045602.81156 447 341 -16471527.49884 448 341 -52708333.03581 449 341 -75439445.29917 450 341 -13177222.19232 451 341 -10541666.5538 452 341 -118970561.1562 453 341 -16471527.78319 454 341 -13177083.33766 455 341 -28297094.18124 456 341 -65886110.96157 457 341 -13177083.28808 458 341 -89840137.25117 459 341 -19765832.91331 460 341 10541666.62055 461 341 -26045602.81156 342 342 913791605.4334 343 342 7.748603820801e-06 344 342 -2.622604370117e-06 345 342 126048980.7912 346 342 -2.175569534302e-06 347 342 -1.490116119385e-06 351 342 -198223262.271 352 342 2.98023223877e-07 353 342 5.960464477539e-08 354 342 -75155545.7747 355 342 53333333.32457 356 342 -1.490116119385e-08 447 342 -88624220.55292 448 342 1.043081283569e-07 449 342 65886111.10029 450 342 -28555987.69793 451 342 -13333333.33771 452 342 16471527.78319 453 342 72174281.7049 454 342 1.728534698486e-06 455 342 1.221895217896e-06 456 342 -7556159.747413 457 342 -7.450580596924e-07 458 342 1.341104507446e-06 462 342 -88624220.55292 463 342 2.235174179077e-07 464 342 -65886111.10029 465 342 -28555987.69793 466 342 13333333.33771 467 342 -16471527.78319 343 343 785785459.402 344 343 -1.788139343262e-06 345 343 -2.086162567139e-06 346 343 -76617423.53181 347 343 5.066394805908e-07 351 343 3.576278686523e-07 352 343 36444678.54407 353 343 -4.172325134277e-07 354 343 53333333.32457 355 343 -59154777.5129 356 343 2.98023223877e-08 447 343 4.470348358154e-08 448 343 -29957235.32024 449 343 2.831220626831e-07 450 343 -13333333.33771 451 343 -24555795.63051 452 343 13177083.33766 453 343 1.728534698486e-06 454 343 40172745.1813 455 343 -5.960464477539e-08 456 343 -7.003545761108e-07 457 343 -58222760.85313 458 343 52708333.32467 462 343 1.9371509552e-07 463 343 -29957235.32024 464 343 -3.8743019104e-07 465 343 13333333.33771 466 343 -24555795.63051 467 343 13177083.33766 344 344 905507012.9075 345 344 -1.668930053711e-06 346 344 4.470348358154e-07 347 344 123977832.6588 351 344 1.192092895508e-07 352 344 -4.768371582031e-07 353 344 66375066.93519 354 344 4.470348358154e-08 355 344 -4.470348358154e-08 356 344 -9005963.440553 447 344 65886111.10029 448 344 3.8743019104e-07 449 344 -87588646.48668 450 344 16471527.78319 451 344 13177083.33766 452 344 -28297094.18124 453 344 8.642673492432e-07 454 344 1.788139343262e-07 455 344 -190352899.3709 456 344 1.475214958191e-06 457 344 52708333.32467 458 344 -73187955.0487 462 344 -65886111.10029 463 344 -2.831220626831e-07 464 344 -87588646.48668 465 344 -16471527.78319 466 344 13177083.33766 467 344 -28297094.18124 345 345 988947148.5376 346 345 53333332.25791 347 345 -9.298324584961e-06 348 345 31359232.67644 349 345 -53333332.8979 350 345 1.251697540283e-06 351 345 -75155545.77471 352 345 -53333333.32457 353 345 5.066394805908e-07 354 345 -198223262.271 355 345 2.98023223877e-07 356 345 5.960464477539e-08 357 345 -75155545.7747 358 345 53333333.32457 359 345 -1.490116119385e-08 447 345 -28555987.69793 448 345 13333333.33771 449 345 16471527.78319 450 345 -107413106.5112 451 345 -13333333.17771 452 345 65886110.96157 453 345 -7556159.747413 454 345 -3.278255462646e-07 455 345 -1.206994056702e-06 456 345 100730268.7541 457 345 13333333.07105 458 345 0.02774140238762 459 345 -26345045.89131 460 345 -13333333.23105 461 345 16471527.49884 462 345 -28555987.69793 463 345 -13333333.33771 464 345 -16471527.78319 465 345 -88624220.55292 466 345 2.235174179077e-07 467 345 -65886111.10029 468 345 -28555987.69793 469 345 13333333.33771 470 345 -16471527.78319 346 346 844940234.7245 347 346 -7.987022399902e-06 348 346 -53333332.68457 349 346 -155306402.5315 350 346 5.394220352173e-06 351 346 -53333333.32457 352 346 -59154777.5129 353 346 2.086162567139e-07 354 346 3.576278686523e-07 355 346 36444678.54407 356 346 -4.172325134277e-07 357 346 53333333.32457 358 346 -59154777.5129 359 346 2.98023223877e-08 447 346 13333333.33771 448 346 -24555795.63051 449 346 -13177083.33766 450 346 -13333333.23104 451 346 -44745929.54447 452 346 13177083.28808 453 346 -2.98023223877e-07 454 346 -58222760.85313 455 346 -52708333.32467 456 346 13333333.07105 457 346 64728540.28304 458 346 0.022192299366 459 346 -13333333.17771 460 346 -73011454.71628 461 346 52708333.03581 462 346 -13333333.33771 463 346 -24555795.63051 464 346 -13177083.33766 465 346 1.9371509552e-07 466 346 -29957235.32024 467 346 -3.8743019104e-07 468 346 13333333.33771 469 346 -24555795.63051 470 346 13177083.33766 347 347 914512974.9691 348 347 1.728534698486e-06 349 347 4.559755325317e-06 350 347 62880662.12465 351 347 5.811452865601e-07 352 347 3.129243850708e-07 353 347 -9005963.440556 354 347 1.192092895508e-07 355 347 -4.768371582031e-07 356 347 66375066.93519 357 347 4.470348358154e-08 358 347 -4.470348358154e-08 359 347 -9005963.440553 447 347 16471527.78319 448 347 -13177083.33766 449 347 -28297094.18124 450 347 65886110.96157 451 347 13177083.26329 452 347 -89840137.25118 453 347 -9.983777999878e-07 454 347 -52708333.32467 455 347 -73187955.04869 456 347 -0.0277450978756 457 347 -0.02219566702843 458 347 -162055805.4842 459 347 16471527.35667 460 347 52708332.94687 461 347 -75439445.29918 462 347 -16471527.78319 463 347 -13177083.33766 464 347 -28297094.18124 465 347 -65886111.10029 466 347 -2.831220626831e-07 467 347 -87588646.48668 468 347 -16471527.78319 469 347 13177083.33766 470 347 -28297094.18124 348 348 571119749.839 349 348 53333333.32457 350 348 -6.198883056641e-06 354 348 -75155545.77471 355 348 -53333333.32457 356 348 5.066394805908e-07 357 348 -292913008.3249 358 348 -53333332.8979 359 348 6.556510925293e-06 360 348 19534202.10867 361 348 42666666.23299 362 348 -1.490116119385e-06 450 348 -9767101.054335 451 348 15999999.84525 452 348 19765832.91331 456 348 -26345045.8913 457 348 -13333333.17771 458 348 -16471527.35667 459 348 45108925.89256 460 348 13333333.33771 461 348 13177222.19231 465 348 -28555987.69793 466 348 -13333333.33771 467 348 -16471527.78319 468 348 -107413106.5112 469 348 -13333333.23104 470 348 -65886110.96157 471 348 -9767101.054335 472 348 10666666.5635 473 348 -13177221.94221 349 349 491115909.0416 350 349 -2.974887930942e-06 354 349 -53333333.32457 355 349 -59154777.5129 356 349 2.086162567139e-07 357 349 -53333332.68457 358 349 -42244300.58137 359 349 2.145767211914e-06 360 349 63999999.34949 361 349 19534202.10866 362 349 -2.384185791016e-06 450 349 10666666.5635 451 349 -9767101.054336 452 349 -10541666.62055 456 349 -13333333.23105 457 349 -73011454.71627 458 349 -52708332.94687 459 349 13333333.33771 460 349 25107965.68335 461 349 10541666.55379 465 349 -13333333.33771 466 349 -24555795.63051 467 349 -13177083.33766 468 349 -13333333.17771 469 349 -44745929.54446 470 349 -13177083.26329 471 349 15999999.84525 472 349 -9767101.054335 473 349 15812499.93082 350 350 565941879.2302 354 350 5.811452865601e-07 355 350 3.129243850708e-07 356 350 -9005963.440556 357 350 6.943941116333e-06 358 350 1.609325408936e-06 359 350 5277897.861165 360 350 -2.145767211914e-06 361 350 -1.54972076416e-06 362 350 52091205.62311 450 350 13177221.94221 451 350 -15812499.93082 452 350 -26045602.81156 456 350 -16471527.49884 457 350 -52708333.03581 458 350 -75439445.29917 459 350 -13177222.19232 460 350 -10541666.5538 461 350 -118970561.1562 465 350 -16471527.78319 466 350 -13177083.33766 467 350 -28297094.18124 468 350 -65886110.96157 469 350 -13177083.28808 470 350 -89840137.25117 471 350 -19765832.91331 472 350 10541666.62055 473 350 -26045602.81156 351 351 913791605.4334 352 351 7.748603820801e-06 353 351 -2.622604370117e-06 354 351 126048980.7912 355 351 -2.175569534302e-06 356 351 -1.490116119385e-06 363 351 -198223262.271 364 351 2.98023223877e-07 365 351 5.960464477539e-08 366 351 -75155545.7747 367 351 53333333.32457 368 351 -1.490116119385e-08 453 351 -88624220.55292 454 351 1.043081283569e-07 455 351 65886111.10029 456 351 -28555987.69793 457 351 -13333333.33771 458 351 16471527.78319 462 351 72174281.7049 463 351 1.728534698486e-06 464 351 1.221895217896e-06 465 351 -7556159.747413 466 351 -7.450580596924e-07 467 351 1.341104507446e-06 474 351 -88624220.55292 475 351 2.235174179077e-07 476 351 -65886111.10029 477 351 -28555987.69793 478 351 13333333.33771 479 351 -16471527.78319 352 352 785785459.402 353 352 -1.788139343262e-06 354 352 -2.086162567139e-06 355 352 -76617423.53181 356 352 5.066394805908e-07 363 352 3.576278686523e-07 364 352 36444678.54407 365 352 -4.172325134277e-07 366 352 53333333.32457 367 352 -59154777.5129 368 352 2.98023223877e-08 453 352 4.470348358154e-08 454 352 -29957235.32024 455 352 2.831220626831e-07 456 352 -13333333.33771 457 352 -24555795.63051 458 352 13177083.33766 462 352 1.728534698486e-06 463 352 40172745.1813 464 352 -5.960464477539e-08 465 352 -7.003545761108e-07 466 352 -58222760.85313 467 352 52708333.32467 474 352 1.9371509552e-07 475 352 -29957235.32024 476 352 -3.8743019104e-07 477 352 13333333.33771 478 352 -24555795.63051 479 352 13177083.33766 353 353 905507012.9075 354 353 -1.668930053711e-06 355 353 4.470348358154e-07 356 353 123977832.6588 363 353 1.192092895508e-07 364 353 -4.768371582031e-07 365 353 66375066.93519 366 353 4.470348358154e-08 367 353 -4.470348358154e-08 368 353 -9005963.440553 453 353 65886111.10029 454 353 3.8743019104e-07 455 353 -87588646.48668 456 353 16471527.78319 457 353 13177083.33766 458 353 -28297094.18124 462 353 8.642673492432e-07 463 353 1.788139343262e-07 464 353 -190352899.3709 465 353 1.475214958191e-06 466 353 52708333.32467 467 353 -73187955.0487 474 353 -65886111.10029 475 353 -2.831220626831e-07 476 353 -87588646.48668 477 353 -16471527.78319 478 353 13177083.33766 479 353 -28297094.18124 354 354 913791605.4334 355 354 7.748603820801e-06 356 354 -2.622604370117e-06 357 354 126048980.7912 358 354 -2.175569534302e-06 359 354 -1.490116119385e-06 363 354 -75155545.77471 364 354 -53333333.32457 365 354 5.066394805908e-07 366 354 -198223262.271 367 354 2.98023223877e-07 368 354 5.960464477539e-08 369 354 -75155545.7747 370 354 53333333.32457 371 354 -1.490116119385e-08 453 354 -28555987.69793 454 354 13333333.33771 455 354 16471527.78319 456 354 -88624220.55292 457 354 1.043081283569e-07 458 354 65886111.10029 459 354 -28555987.69793 460 354 -13333333.33771 461 354 16471527.78319 462 354 -7556159.747413 463 354 -3.278255462646e-07 464 354 -1.206994056702e-06 465 354 72174281.7049 466 354 1.728534698486e-06 467 354 1.221895217896e-06 468 354 -7556159.747413 469 354 -7.450580596924e-07 470 354 1.341104507446e-06 474 354 -28555987.69793 475 354 -13333333.33771 476 354 -16471527.78319 477 354 -88624220.55292 478 354 2.235174179077e-07 479 354 -65886111.10029 480 354 -28555987.69793 481 354 13333333.33771 482 354 -16471527.78319 355 355 785785459.402 356 355 -1.788139343262e-06 357 355 -2.086162567139e-06 358 355 -76617423.53181 359 355 5.066394805908e-07 363 355 -53333333.32457 364 355 -59154777.5129 365 355 2.086162567139e-07 366 355 3.576278686523e-07 367 355 36444678.54407 368 355 -4.172325134277e-07 369 355 53333333.32457 370 355 -59154777.5129 371 355 2.98023223877e-08 453 355 13333333.33771 454 355 -24555795.63051 455 355 -13177083.33766 456 355 4.470348358154e-08 457 355 -29957235.32024 458 355 2.831220626831e-07 459 355 -13333333.33771 460 355 -24555795.63051 461 355 13177083.33766 462 355 -2.98023223877e-07 463 355 -58222760.85313 464 355 -52708333.32467 465 355 1.728534698486e-06 466 355 40172745.1813 467 355 -5.960464477539e-08 468 355 -7.003545761108e-07 469 355 -58222760.85313 470 355 52708333.32467 474 355 -13333333.33771 475 355 -24555795.63051 476 355 -13177083.33766 477 355 1.9371509552e-07 478 355 -29957235.32024 479 355 -3.8743019104e-07 480 355 13333333.33771 481 355 -24555795.63051 482 355 13177083.33766 356 356 905507012.9075 357 356 -1.668930053711e-06 358 356 4.470348358154e-07 359 356 123977832.6588 363 356 5.811452865601e-07 364 356 3.129243850708e-07 365 356 -9005963.440556 366 356 1.192092895508e-07 367 356 -4.768371582031e-07 368 356 66375066.93519 369 356 4.470348358154e-08 370 356 -4.470348358154e-08 371 356 -9005963.440553 453 356 16471527.78319 454 356 -13177083.33766 455 356 -28297094.18124 456 356 65886111.10029 457 356 3.8743019104e-07 458 356 -87588646.48668 459 356 16471527.78319 460 356 13177083.33766 461 356 -28297094.18124 462 356 -9.983777999878e-07 463 356 -52708333.32467 464 356 -73187955.04869 465 356 8.642673492432e-07 466 356 1.788139343262e-07 467 356 -190352899.3709 468 356 1.475214958191e-06 469 356 52708333.32467 470 356 -73187955.0487 474 356 -16471527.78319 475 356 -13177083.33766 476 356 -28297094.18124 477 356 -65886111.10029 478 356 -2.831220626831e-07 479 356 -87588646.48668 480 356 -16471527.78319 481 356 13177083.33766 482 356 -28297094.18124 357 357 988947148.5376 358 357 53333332.25791 359 357 -9.298324584961e-06 360 357 31359232.67644 361 357 -53333332.8979 362 357 1.251697540283e-06 366 357 -75155545.77471 367 357 -53333333.32457 368 357 5.066394805908e-07 369 357 -198223262.271 370 357 2.98023223877e-07 371 357 5.960464477539e-08 372 357 -75155545.7747 373 357 53333333.32457 374 357 -1.490116119385e-08 456 357 -28555987.69793 457 357 13333333.33771 458 357 16471527.78319 459 357 -107413106.5112 460 357 -13333333.17771 461 357 65886110.96157 465 357 -7556159.747413 466 357 -3.278255462646e-07 467 357 -1.206994056702e-06 468 357 100730268.7541 469 357 13333333.07105 470 357 0.02774140238762 471 357 -26345045.89131 472 357 -13333333.23105 473 357 16471527.49884 477 357 -28555987.69793 478 357 -13333333.33771 479 357 -16471527.78319 480 357 -88624220.55292 481 357 2.235174179077e-07 482 357 -65886111.10029 483 357 -28555987.69793 484 357 13333333.33771 485 357 -16471527.78319 358 358 844940234.7245 359 358 -7.987022399902e-06 360 358 -53333332.68457 361 358 -155306402.5315 362 358 5.394220352173e-06 366 358 -53333333.32457 367 358 -59154777.5129 368 358 2.086162567139e-07 369 358 3.576278686523e-07 370 358 36444678.54407 371 358 -4.172325134277e-07 372 358 53333333.32457 373 358 -59154777.5129 374 358 2.98023223877e-08 456 358 13333333.33771 457 358 -24555795.63051 458 358 -13177083.33766 459 358 -13333333.23104 460 358 -44745929.54447 461 358 13177083.28808 465 358 -2.98023223877e-07 466 358 -58222760.85313 467 358 -52708333.32467 468 358 13333333.07105 469 358 64728540.28304 470 358 0.022192299366 471 358 -13333333.17771 472 358 -73011454.71628 473 358 52708333.03581 477 358 -13333333.33771 478 358 -24555795.63051 479 358 -13177083.33766 480 358 1.9371509552e-07 481 358 -29957235.32024 482 358 -3.8743019104e-07 483 358 13333333.33771 484 358 -24555795.63051 485 358 13177083.33766 359 359 914512974.9691 360 359 1.728534698486e-06 361 359 4.559755325317e-06 362 359 62880662.12465 366 359 5.811452865601e-07 367 359 3.129243850708e-07 368 359 -9005963.440556 369 359 1.192092895508e-07 370 359 -4.768371582031e-07 371 359 66375066.93519 372 359 4.470348358154e-08 373 359 -4.470348358154e-08 374 359 -9005963.440553 456 359 16471527.78319 457 359 -13177083.33766 458 359 -28297094.18124 459 359 65886110.96157 460 359 13177083.26329 461 359 -89840137.25118 465 359 -9.983777999878e-07 466 359 -52708333.32467 467 359 -73187955.04869 468 359 -0.0277450978756 469 359 -0.02219566702843 470 359 -162055805.4842 471 359 16471527.35667 472 359 52708332.94687 473 359 -75439445.29918 477 359 -16471527.78319 478 359 -13177083.33766 479 359 -28297094.18124 480 359 -65886111.10029 481 359 -2.831220626831e-07 482 359 -87588646.48668 483 359 -16471527.78319 484 359 13177083.33766 485 359 -28297094.18124 360 360 571119749.839 361 360 53333333.32457 362 360 -6.198883056641e-06 369 360 -75155545.77471 370 360 -53333333.32457 371 360 5.066394805908e-07 372 360 -292913008.3249 373 360 -53333332.8979 374 360 6.556510925293e-06 375 360 19534202.10867 376 360 42666666.23299 377 360 -1.490116119385e-06 459 360 -9767101.054335 460 360 15999999.84525 461 360 19765832.91331 468 360 -26345045.8913 469 360 -13333333.17771 470 360 -16471527.35667 471 360 45108925.89256 472 360 13333333.33771 473 360 13177222.19231 480 360 -28555987.69793 481 360 -13333333.33771 482 360 -16471527.78319 483 360 -107413106.5112 484 360 -13333333.23104 485 360 -65886110.96157 486 360 -9767101.054335 487 360 10666666.5635 488 360 -13177221.94221 361 361 491115909.0416 362 361 -2.974887930942e-06 369 361 -53333333.32457 370 361 -59154777.5129 371 361 2.086162567139e-07 372 361 -53333332.68457 373 361 -42244300.58137 374 361 2.145767211914e-06 375 361 63999999.34949 376 361 19534202.10866 377 361 -2.384185791016e-06 459 361 10666666.5635 460 361 -9767101.054336 461 361 -10541666.62055 468 361 -13333333.23105 469 361 -73011454.71627 470 361 -52708332.94687 471 361 13333333.33771 472 361 25107965.68335 473 361 10541666.55379 480 361 -13333333.33771 481 361 -24555795.63051 482 361 -13177083.33766 483 361 -13333333.17771 484 361 -44745929.54446 485 361 -13177083.26329 486 361 15999999.84525 487 361 -9767101.054335 488 361 15812499.93082 362 362 565941879.2302 369 362 5.811452865601e-07 370 362 3.129243850708e-07 371 362 -9005963.440556 372 362 6.943941116333e-06 373 362 1.609325408936e-06 374 362 5277897.861165 375 362 -2.145767211914e-06 376 362 -1.54972076416e-06 377 362 52091205.62311 459 362 13177221.94221 460 362 -15812499.93082 461 362 -26045602.81156 468 362 -16471527.49884 469 362 -52708333.03581 470 362 -75439445.29917 471 362 -13177222.19232 472 362 -10541666.5538 473 362 -118970561.1562 480 362 -16471527.78319 481 362 -13177083.33766 482 362 -28297094.18124 483 362 -65886110.96157 484 362 -13177083.28808 485 362 -89840137.25117 486 362 -19765832.91331 487 362 10541666.62055 488 362 -26045602.81156 363 363 913791605.4334 364 363 7.748603820801e-06 365 363 -2.622604370117e-06 366 363 126048980.7912 367 363 -2.175569534302e-06 368 363 -1.490116119385e-06 378 363 -198223262.271 379 363 2.98023223877e-07 380 363 5.960464477539e-08 381 363 -75155545.7747 382 363 53333333.32457 383 363 -1.490116119385e-08 462 363 -88624220.55292 463 363 1.043081283569e-07 464 363 65886111.10029 465 363 -28555987.69793 466 363 -13333333.33771 467 363 16471527.78319 474 363 72174281.7049 475 363 1.728534698486e-06 476 363 1.221895217896e-06 477 363 -7556159.747413 478 363 -7.450580596924e-07 479 363 1.341104507446e-06 489 363 -88624220.55292 490 363 2.235174179077e-07 491 363 -65886111.10029 492 363 -28555987.69793 493 363 13333333.33771 494 363 -16471527.78319 364 364 785785459.402 365 364 -1.788139343262e-06 366 364 -2.086162567139e-06 367 364 -76617423.53181 368 364 5.066394805908e-07 378 364 3.576278686523e-07 379 364 36444678.54407 380 364 -4.172325134277e-07 381 364 53333333.32457 382 364 -59154777.5129 383 364 2.98023223877e-08 462 364 4.470348358154e-08 463 364 -29957235.32024 464 364 2.831220626831e-07 465 364 -13333333.33771 466 364 -24555795.63051 467 364 13177083.33766 474 364 1.728534698486e-06 475 364 40172745.1813 476 364 -5.960464477539e-08 477 364 -7.003545761108e-07 478 364 -58222760.85313 479 364 52708333.32467 489 364 1.9371509552e-07 490 364 -29957235.32024 491 364 -3.8743019104e-07 492 364 13333333.33771 493 364 -24555795.63051 494 364 13177083.33766 365 365 905507012.9075 366 365 -1.668930053711e-06 367 365 4.470348358154e-07 368 365 123977832.6588 378 365 1.192092895508e-07 379 365 -4.768371582031e-07 380 365 66375066.93519 381 365 4.470348358154e-08 382 365 -4.470348358154e-08 383 365 -9005963.440553 462 365 65886111.10029 463 365 3.8743019104e-07 464 365 -87588646.48668 465 365 16471527.78319 466 365 13177083.33766 467 365 -28297094.18124 474 365 8.642673492432e-07 475 365 1.788139343262e-07 476 365 -190352899.3709 477 365 1.475214958191e-06 478 365 52708333.32467 479 365 -73187955.0487 489 365 -65886111.10029 490 365 -2.831220626831e-07 491 365 -87588646.48668 492 365 -16471527.78319 493 365 13177083.33766 494 365 -28297094.18124 366 366 913791605.4334 367 366 7.748603820801e-06 368 366 -2.622604370117e-06 369 366 126048980.7912 370 366 -2.175569534302e-06 371 366 -1.490116119385e-06 378 366 -75155545.77471 379 366 -53333333.32457 380 366 5.066394805908e-07 381 366 -198223262.271 382 366 2.98023223877e-07 383 366 5.960464477539e-08 384 366 -75155545.7747 385 366 53333333.32457 386 366 -1.490116119385e-08 462 366 -28555987.69793 463 366 13333333.33771 464 366 16471527.78319 465 366 -88624220.55292 466 366 1.043081283569e-07 467 366 65886111.10029 468 366 -28555987.69793 469 366 -13333333.33771 470 366 16471527.78319 474 366 -7556159.747413 475 366 -3.278255462646e-07 476 366 -1.206994056702e-06 477 366 72174281.7049 478 366 1.728534698486e-06 479 366 1.221895217896e-06 480 366 -7556159.747413 481 366 -7.450580596924e-07 482 366 1.341104507446e-06 489 366 -28555987.69793 490 366 -13333333.33771 491 366 -16471527.78319 492 366 -88624220.55292 493 366 2.235174179077e-07 494 366 -65886111.10029 495 366 -28555987.69793 496 366 13333333.33771 497 366 -16471527.78319 367 367 785785459.402 368 367 -1.788139343262e-06 369 367 -2.086162567139e-06 370 367 -76617423.53181 371 367 5.066394805908e-07 378 367 -53333333.32457 379 367 -59154777.5129 380 367 2.086162567139e-07 381 367 3.576278686523e-07 382 367 36444678.54407 383 367 -4.172325134277e-07 384 367 53333333.32457 385 367 -59154777.5129 386 367 2.98023223877e-08 462 367 13333333.33771 463 367 -24555795.63051 464 367 -13177083.33766 465 367 4.470348358154e-08 466 367 -29957235.32024 467 367 2.831220626831e-07 468 367 -13333333.33771 469 367 -24555795.63051 470 367 13177083.33766 474 367 -2.98023223877e-07 475 367 -58222760.85313 476 367 -52708333.32467 477 367 1.728534698486e-06 478 367 40172745.1813 479 367 -5.960464477539e-08 480 367 -7.003545761108e-07 481 367 -58222760.85313 482 367 52708333.32467 489 367 -13333333.33771 490 367 -24555795.63051 491 367 -13177083.33766 492 367 1.9371509552e-07 493 367 -29957235.32024 494 367 -3.8743019104e-07 495 367 13333333.33771 496 367 -24555795.63051 497 367 13177083.33766 368 368 905507012.9075 369 368 -1.668930053711e-06 370 368 4.470348358154e-07 371 368 123977832.6588 378 368 5.811452865601e-07 379 368 3.129243850708e-07 380 368 -9005963.440556 381 368 1.192092895508e-07 382 368 -4.768371582031e-07 383 368 66375066.93519 384 368 4.470348358154e-08 385 368 -4.470348358154e-08 386 368 -9005963.440553 462 368 16471527.78319 463 368 -13177083.33766 464 368 -28297094.18124 465 368 65886111.10029 466 368 3.8743019104e-07 467 368 -87588646.48668 468 368 16471527.78319 469 368 13177083.33766 470 368 -28297094.18124 474 368 -9.983777999878e-07 475 368 -52708333.32467 476 368 -73187955.04869 477 368 8.642673492432e-07 478 368 1.788139343262e-07 479 368 -190352899.3709 480 368 1.475214958191e-06 481 368 52708333.32467 482 368 -73187955.0487 489 368 -16471527.78319 490 368 -13177083.33766 491 368 -28297094.18124 492 368 -65886111.10029 493 368 -2.831220626831e-07 494 368 -87588646.48668 495 368 -16471527.78319 496 368 13177083.33766 497 368 -28297094.18124 369 369 913791605.4334 370 369 7.748603820801e-06 371 369 -2.622604370117e-06 372 369 126048980.7912 373 369 -2.175569534302e-06 374 369 -1.490116119385e-06 381 369 -75155545.77471 382 369 -53333333.32457 383 369 5.066394805908e-07 384 369 -198223262.271 385 369 2.98023223877e-07 386 369 5.960464477539e-08 387 369 -75155545.7747 388 369 53333333.32457 389 369 -1.490116119385e-08 465 369 -28555987.69793 466 369 13333333.33771 467 369 16471527.78319 468 369 -88624220.55292 469 369 1.043081283569e-07 470 369 65886111.10029 471 369 -28555987.69793 472 369 -13333333.33771 473 369 16471527.78319 477 369 -7556159.747413 478 369 -3.278255462646e-07 479 369 -1.206994056702e-06 480 369 72174281.7049 481 369 1.728534698486e-06 482 369 1.221895217896e-06 483 369 -7556159.747413 484 369 -7.450580596924e-07 485 369 1.341104507446e-06 492 369 -28555987.69793 493 369 -13333333.33771 494 369 -16471527.78319 495 369 -88624220.55292 496 369 2.235174179077e-07 497 369 -65886111.10029 498 369 -28555987.69793 499 369 13333333.33771 500 369 -16471527.78319 370 370 785785459.402 371 370 -1.788139343262e-06 372 370 -2.086162567139e-06 373 370 -76617423.53181 374 370 5.066394805908e-07 381 370 -53333333.32457 382 370 -59154777.5129 383 370 2.086162567139e-07 384 370 3.576278686523e-07 385 370 36444678.54407 386 370 -4.172325134277e-07 387 370 53333333.32457 388 370 -59154777.5129 389 370 2.98023223877e-08 465 370 13333333.33771 466 370 -24555795.63051 467 370 -13177083.33766 468 370 4.470348358154e-08 469 370 -29957235.32024 470 370 2.831220626831e-07 471 370 -13333333.33771 472 370 -24555795.63051 473 370 13177083.33766 477 370 -2.98023223877e-07 478 370 -58222760.85313 479 370 -52708333.32467 480 370 1.728534698486e-06 481 370 40172745.1813 482 370 -5.960464477539e-08 483 370 -7.003545761108e-07 484 370 -58222760.85313 485 370 52708333.32467 492 370 -13333333.33771 493 370 -24555795.63051 494 370 -13177083.33766 495 370 1.9371509552e-07 496 370 -29957235.32024 497 370 -3.8743019104e-07 498 370 13333333.33771 499 370 -24555795.63051 500 370 13177083.33766 371 371 905507012.9075 372 371 -1.668930053711e-06 373 371 4.470348358154e-07 374 371 123977832.6588 381 371 5.811452865601e-07 382 371 3.129243850708e-07 383 371 -9005963.440556 384 371 1.192092895508e-07 385 371 -4.768371582031e-07 386 371 66375066.93519 387 371 4.470348358154e-08 388 371 -4.470348358154e-08 389 371 -9005963.440553 465 371 16471527.78319 466 371 -13177083.33766 467 371 -28297094.18124 468 371 65886111.10029 469 371 3.8743019104e-07 470 371 -87588646.48668 471 371 16471527.78319 472 371 13177083.33766 473 371 -28297094.18124 477 371 -9.983777999878e-07 478 371 -52708333.32467 479 371 -73187955.04869 480 371 8.642673492432e-07 481 371 1.788139343262e-07 482 371 -190352899.3709 483 371 1.475214958191e-06 484 371 52708333.32467 485 371 -73187955.0487 492 371 -16471527.78319 493 371 -13177083.33766 494 371 -28297094.18124 495 371 -65886111.10029 496 371 -2.831220626831e-07 497 371 -87588646.48668 498 371 -16471527.78319 499 371 13177083.33766 500 371 -28297094.18124 372 372 988947148.5376 373 372 53333332.25791 374 372 -9.298324584961e-06 375 372 31359232.67644 376 372 -53333332.8979 377 372 1.251697540283e-06 384 372 -75155545.77471 385 372 -53333333.32457 386 372 5.066394805908e-07 387 372 -198223262.271 388 372 2.98023223877e-07 389 372 5.960464477539e-08 390 372 -75155545.7747 391 372 53333333.32457 392 372 -1.490116119385e-08 468 372 -28555987.69793 469 372 13333333.33771 470 372 16471527.78319 471 372 -107413106.5112 472 372 -13333333.17771 473 372 65886110.96157 480 372 -7556159.747413 481 372 -3.278255462646e-07 482 372 -1.206994056702e-06 483 372 100730268.7541 484 372 13333333.07105 485 372 0.02774140238762 486 372 -26345045.89131 487 372 -13333333.23105 488 372 16471527.49884 495 372 -28555987.69793 496 372 -13333333.33771 497 372 -16471527.78319 498 372 -88624220.55292 499 372 2.235174179077e-07 500 372 -65886111.10029 501 372 -28555987.69793 502 372 13333333.33771 503 372 -16471527.78319 373 373 844940234.7245 374 373 -7.987022399902e-06 375 373 -53333332.68457 376 373 -155306402.5315 377 373 5.394220352173e-06 384 373 -53333333.32457 385 373 -59154777.5129 386 373 2.086162567139e-07 387 373 3.576278686523e-07 388 373 36444678.54407 389 373 -4.172325134277e-07 390 373 53333333.32457 391 373 -59154777.5129 392 373 2.98023223877e-08 468 373 13333333.33771 469 373 -24555795.63051 470 373 -13177083.33766 471 373 -13333333.23104 472 373 -44745929.54447 473 373 13177083.28808 480 373 -2.98023223877e-07 481 373 -58222760.85313 482 373 -52708333.32467 483 373 13333333.07105 484 373 64728540.28304 485 373 0.022192299366 486 373 -13333333.17771 487 373 -73011454.71628 488 373 52708333.03581 495 373 -13333333.33771 496 373 -24555795.63051 497 373 -13177083.33766 498 373 1.9371509552e-07 499 373 -29957235.32024 500 373 -3.8743019104e-07 501 373 13333333.33771 502 373 -24555795.63051 503 373 13177083.33766 374 374 914512974.9691 375 374 1.728534698486e-06 376 374 4.559755325317e-06 377 374 62880662.12465 384 374 5.811452865601e-07 385 374 3.129243850708e-07 386 374 -9005963.440556 387 374 1.192092895508e-07 388 374 -4.768371582031e-07 389 374 66375066.93519 390 374 4.470348358154e-08 391 374 -4.470348358154e-08 392 374 -9005963.440553 468 374 16471527.78319 469 374 -13177083.33766 470 374 -28297094.18124 471 374 65886110.96157 472 374 13177083.26329 473 374 -89840137.25118 480 374 -9.983777999878e-07 481 374 -52708333.32467 482 374 -73187955.04869 483 374 -0.0277450978756 484 374 -0.02219566702843 485 374 -162055805.4842 486 374 16471527.35667 487 374 52708332.94687 488 374 -75439445.29918 495 374 -16471527.78319 496 374 -13177083.33766 497 374 -28297094.18124 498 374 -65886111.10029 499 374 -2.831220626831e-07 500 374 -87588646.48668 501 374 -16471527.78319 502 374 13177083.33766 503 374 -28297094.18124 375 375 571119749.839 376 375 53333333.32457 377 375 -6.198883056641e-06 387 375 -75155545.77471 388 375 -53333333.32457 389 375 5.066394805908e-07 390 375 -292913008.3249 391 375 -53333332.8979 392 375 6.556510925293e-06 393 375 19534202.10867 394 375 42666666.23299 395 375 -1.490116119385e-06 471 375 -9767101.054335 472 375 15999999.84525 473 375 19765832.91331 483 375 -26345045.8913 484 375 -13333333.17771 485 375 -16471527.35667 486 375 45108925.89256 487 375 13333333.33771 488 375 13177222.19231 498 375 -28555987.69793 499 375 -13333333.33771 500 375 -16471527.78319 501 375 -107413106.5112 502 375 -13333333.23104 503 375 -65886110.96157 504 375 -9767101.054335 505 375 10666666.5635 506 375 -13177221.94221 376 376 491115909.0416 377 376 -2.974887930942e-06 387 376 -53333333.32457 388 376 -59154777.5129 389 376 2.086162567139e-07 390 376 -53333332.68457 391 376 -42244300.58137 392 376 2.145767211914e-06 393 376 63999999.34949 394 376 19534202.10866 395 376 -2.384185791016e-06 471 376 10666666.5635 472 376 -9767101.054336 473 376 -10541666.62055 483 376 -13333333.23105 484 376 -73011454.71627 485 376 -52708332.94687 486 376 13333333.33771 487 376 25107965.68335 488 376 10541666.55379 498 376 -13333333.33771 499 376 -24555795.63051 500 376 -13177083.33766 501 376 -13333333.17771 502 376 -44745929.54446 503 376 -13177083.26329 504 376 15999999.84525 505 376 -9767101.054335 506 376 15812499.93082 377 377 565941879.2302 387 377 5.811452865601e-07 388 377 3.129243850708e-07 389 377 -9005963.440556 390 377 6.943941116333e-06 391 377 1.609325408936e-06 392 377 5277897.861165 393 377 -2.145767211914e-06 394 377 -1.54972076416e-06 395 377 52091205.62311 471 377 13177221.94221 472 377 -15812499.93082 473 377 -26045602.81156 483 377 -16471527.49884 484 377 -52708333.03581 485 377 -75439445.29917 486 377 -13177222.19232 487 377 -10541666.5538 488 377 -118970561.1562 498 377 -16471527.78319 499 377 -13177083.33766 500 377 -28297094.18124 501 377 -65886110.96157 502 377 -13177083.28808 503 377 -89840137.25117 504 377 -19765832.91331 505 377 10541666.62055 506 377 -26045602.81156 378 378 913791605.4334 379 378 7.748603820801e-06 380 378 -2.622604370117e-06 381 378 126048980.7912 382 378 -2.175569534302e-06 383 378 -1.490116119385e-06 396 378 -198223262.271 397 378 2.98023223877e-07 398 378 5.960464477539e-08 399 378 -75155545.7747 400 378 53333333.32457 401 378 -1.490116119385e-08 474 378 -88624220.55292 475 378 1.043081283569e-07 476 378 65886111.10029 477 378 -28555987.69793 478 378 -13333333.33771 479 378 16471527.78319 489 378 72174281.7049 490 378 1.728534698486e-06 491 378 1.221895217896e-06 492 378 -7556159.747413 493 378 -7.450580596924e-07 494 378 1.341104507446e-06 507 378 -88624220.55292 508 378 2.235174179077e-07 509 378 -65886111.10029 510 378 -28555987.69793 511 378 13333333.33771 512 378 -16471527.78319 379 379 785785459.402 380 379 -1.788139343262e-06 381 379 -2.086162567139e-06 382 379 -76617423.53181 383 379 5.066394805908e-07 396 379 3.576278686523e-07 397 379 36444678.54407 398 379 -4.172325134277e-07 399 379 53333333.32457 400 379 -59154777.5129 401 379 2.98023223877e-08 474 379 4.470348358154e-08 475 379 -29957235.32024 476 379 2.831220626831e-07 477 379 -13333333.33771 478 379 -24555795.63051 479 379 13177083.33766 489 379 1.728534698486e-06 490 379 40172745.1813 491 379 -5.960464477539e-08 492 379 -7.003545761108e-07 493 379 -58222760.85313 494 379 52708333.32467 507 379 1.9371509552e-07 508 379 -29957235.32024 509 379 -3.8743019104e-07 510 379 13333333.33771 511 379 -24555795.63051 512 379 13177083.33766 380 380 905507012.9075 381 380 -1.668930053711e-06 382 380 4.470348358154e-07 383 380 123977832.6588 396 380 1.192092895508e-07 397 380 -4.768371582031e-07 398 380 66375066.93519 399 380 4.470348358154e-08 400 380 -4.470348358154e-08 401 380 -9005963.440553 474 380 65886111.10029 475 380 3.8743019104e-07 476 380 -87588646.48668 477 380 16471527.78319 478 380 13177083.33766 479 380 -28297094.18124 489 380 8.642673492432e-07 490 380 1.788139343262e-07 491 380 -190352899.3709 492 380 1.475214958191e-06 493 380 52708333.32467 494 380 -73187955.0487 507 380 -65886111.10029 508 380 -2.831220626831e-07 509 380 -87588646.48668 510 380 -16471527.78319 511 380 13177083.33766 512 380 -28297094.18124 381 381 913791605.4334 382 381 7.748603820801e-06 383 381 -2.622604370117e-06 384 381 126048980.7912 385 381 -2.175569534302e-06 386 381 -1.490116119385e-06 396 381 -75155545.77471 397 381 -53333333.32457 398 381 5.066394805908e-07 399 381 -198223262.271 400 381 2.98023223877e-07 401 381 5.960464477539e-08 402 381 -75155545.7747 403 381 53333333.32457 404 381 -1.490116119385e-08 474 381 -28555987.69793 475 381 13333333.33771 476 381 16471527.78319 477 381 -88624220.55292 478 381 1.043081283569e-07 479 381 65886111.10029 480 381 -28555987.69793 481 381 -13333333.33771 482 381 16471527.78319 489 381 -7556159.747413 490 381 -3.278255462646e-07 491 381 -1.206994056702e-06 492 381 72174281.7049 493 381 1.728534698486e-06 494 381 1.221895217896e-06 495 381 -7556159.747413 496 381 -7.450580596924e-07 497 381 1.341104507446e-06 507 381 -28555987.69793 508 381 -13333333.33771 509 381 -16471527.78319 510 381 -88624220.55292 511 381 2.235174179077e-07 512 381 -65886111.10029 513 381 -28555987.69793 514 381 13333333.33771 515 381 -16471527.78319 382 382 785785459.402 383 382 -1.788139343262e-06 384 382 -2.086162567139e-06 385 382 -76617423.53181 386 382 5.066394805908e-07 396 382 -53333333.32457 397 382 -59154777.5129 398 382 2.086162567139e-07 399 382 3.576278686523e-07 400 382 36444678.54407 401 382 -4.172325134277e-07 402 382 53333333.32457 403 382 -59154777.5129 404 382 2.98023223877e-08 474 382 13333333.33771 475 382 -24555795.63051 476 382 -13177083.33766 477 382 4.470348358154e-08 478 382 -29957235.32024 479 382 2.831220626831e-07 480 382 -13333333.33771 481 382 -24555795.63051 482 382 13177083.33766 489 382 -2.98023223877e-07 490 382 -58222760.85313 491 382 -52708333.32467 492 382 1.728534698486e-06 493 382 40172745.1813 494 382 -5.960464477539e-08 495 382 -7.003545761108e-07 496 382 -58222760.85313 497 382 52708333.32467 507 382 -13333333.33771 508 382 -24555795.63051 509 382 -13177083.33766 510 382 1.9371509552e-07 511 382 -29957235.32024 512 382 -3.8743019104e-07 513 382 13333333.33771 514 382 -24555795.63051 515 382 13177083.33766 383 383 905507012.9075 384 383 -1.668930053711e-06 385 383 4.470348358154e-07 386 383 123977832.6588 396 383 5.811452865601e-07 397 383 3.129243850708e-07 398 383 -9005963.440556 399 383 1.192092895508e-07 400 383 -4.768371582031e-07 401 383 66375066.93519 402 383 4.470348358154e-08 403 383 -4.470348358154e-08 404 383 -9005963.440553 474 383 16471527.78319 475 383 -13177083.33766 476 383 -28297094.18124 477 383 65886111.10029 478 383 3.8743019104e-07 479 383 -87588646.48668 480 383 16471527.78319 481 383 13177083.33766 482 383 -28297094.18124 489 383 -9.983777999878e-07 490 383 -52708333.32467 491 383 -73187955.04869 492 383 8.642673492432e-07 493 383 1.788139343262e-07 494 383 -190352899.3709 495 383 1.475214958191e-06 496 383 52708333.32467 497 383 -73187955.0487 507 383 -16471527.78319 508 383 -13177083.33766 509 383 -28297094.18124 510 383 -65886111.10029 511 383 -2.831220626831e-07 512 383 -87588646.48668 513 383 -16471527.78319 514 383 13177083.33766 515 383 -28297094.18124 384 384 913791605.4334 385 384 7.748603820801e-06 386 384 -2.622604370117e-06 387 384 126048980.7912 388 384 -2.175569534302e-06 389 384 -1.490116119385e-06 399 384 -75155545.77471 400 384 -53333333.32457 401 384 5.066394805908e-07 402 384 -198223262.271 403 384 2.98023223877e-07 404 384 5.960464477539e-08 405 384 -75155545.7747 406 384 53333333.32457 407 384 -1.490116119385e-08 477 384 -28555987.69793 478 384 13333333.33771 479 384 16471527.78319 480 384 -88624220.55292 481 384 1.043081283569e-07 482 384 65886111.10029 483 384 -28555987.69793 484 384 -13333333.33771 485 384 16471527.78319 492 384 -7556159.747413 493 384 -3.278255462646e-07 494 384 -1.206994056702e-06 495 384 72174281.7049 496 384 1.728534698486e-06 497 384 1.221895217896e-06 498 384 -7556159.747413 499 384 -7.450580596924e-07 500 384 1.341104507446e-06 510 384 -28555987.69793 511 384 -13333333.33771 512 384 -16471527.78319 513 384 -88624220.55292 514 384 2.235174179077e-07 515 384 -65886111.10029 516 384 -28555987.69793 517 384 13333333.33771 518 384 -16471527.78319 385 385 785785459.402 386 385 -1.788139343262e-06 387 385 -2.086162567139e-06 388 385 -76617423.53181 389 385 5.066394805908e-07 399 385 -53333333.32457 400 385 -59154777.5129 401 385 2.086162567139e-07 402 385 3.576278686523e-07 403 385 36444678.54407 404 385 -4.172325134277e-07 405 385 53333333.32457 406 385 -59154777.5129 407 385 2.98023223877e-08 477 385 13333333.33771 478 385 -24555795.63051 479 385 -13177083.33766 480 385 4.470348358154e-08 481 385 -29957235.32024 482 385 2.831220626831e-07 483 385 -13333333.33771 484 385 -24555795.63051 485 385 13177083.33766 492 385 -2.98023223877e-07 493 385 -58222760.85313 494 385 -52708333.32467 495 385 1.728534698486e-06 496 385 40172745.1813 497 385 -5.960464477539e-08 498 385 -7.003545761108e-07 499 385 -58222760.85313 500 385 52708333.32467 510 385 -13333333.33771 511 385 -24555795.63051 512 385 -13177083.33766 513 385 1.9371509552e-07 514 385 -29957235.32024 515 385 -3.8743019104e-07 516 385 13333333.33771 517 385 -24555795.63051 518 385 13177083.33766 386 386 905507012.9075 387 386 -1.668930053711e-06 388 386 4.470348358154e-07 389 386 123977832.6588 399 386 5.811452865601e-07 400 386 3.129243850708e-07 401 386 -9005963.440556 402 386 1.192092895508e-07 403 386 -4.768371582031e-07 404 386 66375066.93519 405 386 4.470348358154e-08 406 386 -4.470348358154e-08 407 386 -9005963.440553 477 386 16471527.78319 478 386 -13177083.33766 479 386 -28297094.18124 480 386 65886111.10029 481 386 3.8743019104e-07 482 386 -87588646.48668 483 386 16471527.78319 484 386 13177083.33766 485 386 -28297094.18124 492 386 -9.983777999878e-07 493 386 -52708333.32467 494 386 -73187955.04869 495 386 8.642673492432e-07 496 386 1.788139343262e-07 497 386 -190352899.3709 498 386 1.475214958191e-06 499 386 52708333.32467 500 386 -73187955.0487 510 386 -16471527.78319 511 386 -13177083.33766 512 386 -28297094.18124 513 386 -65886111.10029 514 386 -2.831220626831e-07 515 386 -87588646.48668 516 386 -16471527.78319 517 386 13177083.33766 518 386 -28297094.18124 387 387 913791605.4334 388 387 7.748603820801e-06 389 387 -2.622604370117e-06 390 387 126048980.7912 391 387 -2.175569534302e-06 392 387 -1.490116119385e-06 402 387 -75155545.77471 403 387 -53333333.32457 404 387 5.066394805908e-07 405 387 -198223262.271 406 387 2.98023223877e-07 407 387 5.960464477539e-08 408 387 -75155545.7747 409 387 53333333.32457 410 387 -1.490116119385e-08 480 387 -28555987.69793 481 387 13333333.33771 482 387 16471527.78319 483 387 -88624220.55292 484 387 1.043081283569e-07 485 387 65886111.10029 486 387 -28555987.69793 487 387 -13333333.33771 488 387 16471527.78319 495 387 -7556159.747413 496 387 -3.278255462646e-07 497 387 -1.206994056702e-06 498 387 72174281.7049 499 387 1.728534698486e-06 500 387 1.221895217896e-06 501 387 -7556159.747413 502 387 -7.450580596924e-07 503 387 1.341104507446e-06 513 387 -28555987.69793 514 387 -13333333.33771 515 387 -16471527.78319 516 387 -88624220.55292 517 387 2.235174179077e-07 518 387 -65886111.10029 519 387 -28555987.69793 520 387 13333333.33771 521 387 -16471527.78319 388 388 785785459.402 389 388 -1.788139343262e-06 390 388 -2.086162567139e-06 391 388 -76617423.53181 392 388 5.066394805908e-07 402 388 -53333333.32457 403 388 -59154777.5129 404 388 2.086162567139e-07 405 388 3.576278686523e-07 406 388 36444678.54407 407 388 -4.172325134277e-07 408 388 53333333.32457 409 388 -59154777.5129 410 388 2.98023223877e-08 480 388 13333333.33771 481 388 -24555795.63051 482 388 -13177083.33766 483 388 4.470348358154e-08 484 388 -29957235.32024 485 388 2.831220626831e-07 486 388 -13333333.33771 487 388 -24555795.63051 488 388 13177083.33766 495 388 -2.98023223877e-07 496 388 -58222760.85313 497 388 -52708333.32467 498 388 1.728534698486e-06 499 388 40172745.1813 500 388 -5.960464477539e-08 501 388 -7.003545761108e-07 502 388 -58222760.85313 503 388 52708333.32467 513 388 -13333333.33771 514 388 -24555795.63051 515 388 -13177083.33766 516 388 1.9371509552e-07 517 388 -29957235.32024 518 388 -3.8743019104e-07 519 388 13333333.33771 520 388 -24555795.63051 521 388 13177083.33766 389 389 905507012.9075 390 389 -1.668930053711e-06 391 389 4.470348358154e-07 392 389 123977832.6588 402 389 5.811452865601e-07 403 389 3.129243850708e-07 404 389 -9005963.440556 405 389 1.192092895508e-07 406 389 -4.768371582031e-07 407 389 66375066.93519 408 389 4.470348358154e-08 409 389 -4.470348358154e-08 410 389 -9005963.440553 480 389 16471527.78319 481 389 -13177083.33766 482 389 -28297094.18124 483 389 65886111.10029 484 389 3.8743019104e-07 485 389 -87588646.48668 486 389 16471527.78319 487 389 13177083.33766 488 389 -28297094.18124 495 389 -9.983777999878e-07 496 389 -52708333.32467 497 389 -73187955.04869 498 389 8.642673492432e-07 499 389 1.788139343262e-07 500 389 -190352899.3709 501 389 1.475214958191e-06 502 389 52708333.32467 503 389 -73187955.0487 513 389 -16471527.78319 514 389 -13177083.33766 515 389 -28297094.18124 516 389 -65886111.10029 517 389 -2.831220626831e-07 518 389 -87588646.48668 519 389 -16471527.78319 520 389 13177083.33766 521 389 -28297094.18124 390 390 988947148.5376 391 390 53333332.25791 392 390 -9.298324584961e-06 393 390 31359232.67644 394 390 -53333332.8979 395 390 1.251697540283e-06 405 390 -75155545.77471 406 390 -53333333.32457 407 390 5.066394805908e-07 408 390 -198223262.271 409 390 2.98023223877e-07 410 390 5.960464477539e-08 411 390 -75155545.7747 412 390 53333333.32457 413 390 -1.490116119385e-08 483 390 -28555987.69793 484 390 13333333.33771 485 390 16471527.78319 486 390 -107413106.5112 487 390 -13333333.17771 488 390 65886110.96157 498 390 -7556159.747413 499 390 -3.278255462646e-07 500 390 -1.206994056702e-06 501 390 100730268.7541 502 390 13333333.07105 503 390 0.02774140238762 504 390 -26345045.89131 505 390 -13333333.23105 506 390 16471527.49884 516 390 -28555987.69793 517 390 -13333333.33771 518 390 -16471527.78319 519 390 -88624220.55292 520 390 2.235174179077e-07 521 390 -65886111.10029 522 390 -28555987.69793 523 390 13333333.33771 524 390 -16471527.78319 391 391 844940234.7245 392 391 -7.987022399902e-06 393 391 -53333332.68457 394 391 -155306402.5315 395 391 5.394220352173e-06 405 391 -53333333.32457 406 391 -59154777.5129 407 391 2.086162567139e-07 408 391 3.576278686523e-07 409 391 36444678.54407 410 391 -4.172325134277e-07 411 391 53333333.32457 412 391 -59154777.5129 413 391 2.98023223877e-08 483 391 13333333.33771 484 391 -24555795.63051 485 391 -13177083.33766 486 391 -13333333.23104 487 391 -44745929.54447 488 391 13177083.28808 498 391 -2.98023223877e-07 499 391 -58222760.85313 500 391 -52708333.32467 501 391 13333333.07105 502 391 64728540.28304 503 391 0.022192299366 504 391 -13333333.17771 505 391 -73011454.71628 506 391 52708333.03581 516 391 -13333333.33771 517 391 -24555795.63051 518 391 -13177083.33766 519 391 1.9371509552e-07 520 391 -29957235.32024 521 391 -3.8743019104e-07 522 391 13333333.33771 523 391 -24555795.63051 524 391 13177083.33766 392 392 914512974.9691 393 392 1.728534698486e-06 394 392 4.559755325317e-06 395 392 62880662.12465 405 392 5.811452865601e-07 406 392 3.129243850708e-07 407 392 -9005963.440556 408 392 1.192092895508e-07 409 392 -4.768371582031e-07 410 392 66375066.93519 411 392 4.470348358154e-08 412 392 -4.470348358154e-08 413 392 -9005963.440553 483 392 16471527.78319 484 392 -13177083.33766 485 392 -28297094.18124 486 392 65886110.96157 487 392 13177083.26329 488 392 -89840137.25118 498 392 -9.983777999878e-07 499 392 -52708333.32467 500 392 -73187955.04869 501 392 -0.0277450978756 502 392 -0.02219566702843 503 392 -162055805.4842 504 392 16471527.35667 505 392 52708332.94687 506 392 -75439445.29918 516 392 -16471527.78319 517 392 -13177083.33766 518 392 -28297094.18124 519 392 -65886111.10029 520 392 -2.831220626831e-07 521 392 -87588646.48668 522 392 -16471527.78319 523 392 13177083.33766 524 392 -28297094.18124 393 393 509154568.8248 394 393 25085639.27704 395 393 -5.960464477539e-07 408 393 -75155545.77471 409 393 -53333333.32457 410 393 5.066394805908e-07 411 393 -228025244.9359 412 393 -25085638.85037 413 393 7.152557373047e-07 414 393 -4082989.550575 415 393 42666666.23299 416 393 -1.251697540283e-06 486 393 -9767101.054335 487 393 15999999.84525 488 393 19765832.91331 501 393 -26345045.8913 502 393 -13333333.17771 503 393 -16471527.35667 504 393 37378109.13818 505 393 6271409.822349 506 393 11432222.19995 519 393 -28555987.69793 520 393 -13333333.33771 521 393 -16471527.78319 522 393 -87310926.38278 523 393 -6271409.715683 524 393 -57161110.99975 525 393 -11791159.78617 526 393 10666666.5635 527 393 -9687222.01637 394 394 472604990.7818 395 394 -2.652406692505e-06 408 394 -53333333.32457 409 394 -59154777.5129 410 394 2.086162567139e-07 411 394 -25085638.63704 412 394 9928432.40691 413 394 2.384185791016e-07 414 394 63999999.34949 415 394 -34822221.9043 416 394 -1.788139343262e-07 486 394 10666666.5635 487 394 -9767101.054336 488 394 -10541666.62055 501 394 -13333333.23105 502 394 -73011454.71627 503 394 -52708332.94687 504 394 6271409.822349 505 394 28240714.62293 506 394 9145833.226567 519 394 -13333333.33771 520 394 -24555795.63051 521 394 -13177083.33766 522 394 -6271409.66235 523 394 -27822507.01778 524 394 -6197916.627156 525 394 15999999.84526 526 394 -19475967.87838 527 394 18604166.53816 395 395 522045024.059 408 395 5.811452865601e-07 409 395 3.129243850708e-07 410 395 -9005963.440556 411 395 7.450580596924e-07 412 395 2.384185791016e-07 413 395 26229073.67805 414 395 -1.490116119385e-06 415 395 2.384185791016e-07 416 395 19851260.21887 486 395 13177221.94221 487 395 -15812499.93082 488 395 -26045602.81156 501 395 -16471527.49884 502 395 -52708333.03581 503 395 -75439445.29917 504 395 -11432222.19995 505 395 -9145833.22657 506 395 -109250165.6029 519 395 -16471527.78319 520 395 -13177083.33766 521 395 -28297094.18124 522 395 -57161110.99975 523 395 -6197916.651946 524 395 -74255038.56586 525 395 -14530833.02455 526 395 14729166.53156 527 395 -23758284.67089 396 396 913791605.4334 397 396 7.748603820801e-06 398 396 -2.622604370117e-06 399 396 126048980.7912 400 396 -2.175569534302e-06 401 396 -1.490116119385e-06 417 396 -198223262.271 418 396 2.98023223877e-07 419 396 5.960464477539e-08 420 396 -75155545.7747 421 396 53333333.32457 422 396 -1.490116119385e-08 489 396 -88624220.55292 490 396 1.043081283569e-07 491 396 65886111.10029 492 396 -28555987.69793 493 396 -13333333.33771 494 396 16471527.78319 507 396 72174281.7049 508 396 1.728534698486e-06 509 396 1.221895217896e-06 510 396 -7556159.747413 511 396 -7.450580596924e-07 512 396 1.341104507446e-06 528 396 -88624220.55292 529 396 2.235174179077e-07 530 396 -65886111.10029 531 396 -28555987.69793 532 396 13333333.33771 533 396 -16471527.78319 397 397 785785459.402 398 397 -1.788139343262e-06 399 397 -2.086162567139e-06 400 397 -76617423.53181 401 397 5.066394805908e-07 417 397 3.576278686523e-07 418 397 36444678.54407 419 397 -4.172325134277e-07 420 397 53333333.32457 421 397 -59154777.5129 422 397 2.98023223877e-08 489 397 4.470348358154e-08 490 397 -29957235.32024 491 397 2.831220626831e-07 492 397 -13333333.33771 493 397 -24555795.63051 494 397 13177083.33766 507 397 1.728534698486e-06 508 397 40172745.1813 509 397 -5.960464477539e-08 510 397 -7.003545761108e-07 511 397 -58222760.85313 512 397 52708333.32467 528 397 1.9371509552e-07 529 397 -29957235.32024 530 397 -3.8743019104e-07 531 397 13333333.33771 532 397 -24555795.63051 533 397 13177083.33766 398 398 905507012.9075 399 398 -1.668930053711e-06 400 398 4.470348358154e-07 401 398 123977832.6588 417 398 1.192092895508e-07 418 398 -4.768371582031e-07 419 398 66375066.93519 420 398 4.470348358154e-08 421 398 -4.470348358154e-08 422 398 -9005963.440553 489 398 65886111.10029 490 398 3.8743019104e-07 491 398 -87588646.48668 492 398 16471527.78319 493 398 13177083.33766 494 398 -28297094.18124 507 398 8.642673492432e-07 508 398 1.788139343262e-07 509 398 -190352899.3709 510 398 1.475214958191e-06 511 398 52708333.32467 512 398 -73187955.0487 528 398 -65886111.10029 529 398 -2.831220626831e-07 530 398 -87588646.48668 531 398 -16471527.78319 532 398 13177083.33766 533 398 -28297094.18124 399 399 913791605.4334 400 399 7.748603820801e-06 401 399 -2.622604370117e-06 402 399 126048980.7912 403 399 -2.175569534302e-06 404 399 -1.490116119385e-06 417 399 -75155545.77471 418 399 -53333333.32457 419 399 5.066394805908e-07 420 399 -198223262.271 421 399 2.98023223877e-07 422 399 5.960464477539e-08 423 399 -75155545.7747 424 399 53333333.32457 425 399 -1.490116119385e-08 489 399 -28555987.69793 490 399 13333333.33771 491 399 16471527.78319 492 399 -88624220.55292 493 399 1.043081283569e-07 494 399 65886111.10029 495 399 -28555987.69793 496 399 -13333333.33771 497 399 16471527.78319 507 399 -7556159.747413 508 399 -3.278255462646e-07 509 399 -1.206994056702e-06 510 399 72174281.7049 511 399 1.728534698486e-06 512 399 1.221895217896e-06 513 399 -7556159.747413 514 399 -7.450580596924e-07 515 399 1.341104507446e-06 528 399 -28555987.69793 529 399 -13333333.33771 530 399 -16471527.78319 531 399 -88624220.55292 532 399 2.235174179077e-07 533 399 -65886111.10029 534 399 -28555987.69793 535 399 13333333.33771 536 399 -16471527.78319 400 400 785785459.402 401 400 -1.788139343262e-06 402 400 -2.086162567139e-06 403 400 -76617423.53181 404 400 5.066394805908e-07 417 400 -53333333.32457 418 400 -59154777.5129 419 400 2.086162567139e-07 420 400 3.576278686523e-07 421 400 36444678.54407 422 400 -4.172325134277e-07 423 400 53333333.32457 424 400 -59154777.5129 425 400 2.98023223877e-08 489 400 13333333.33771 490 400 -24555795.63051 491 400 -13177083.33766 492 400 4.470348358154e-08 493 400 -29957235.32024 494 400 2.831220626831e-07 495 400 -13333333.33771 496 400 -24555795.63051 497 400 13177083.33766 507 400 -2.98023223877e-07 508 400 -58222760.85313 509 400 -52708333.32467 510 400 1.728534698486e-06 511 400 40172745.1813 512 400 -5.960464477539e-08 513 400 -7.003545761108e-07 514 400 -58222760.85313 515 400 52708333.32467 528 400 -13333333.33771 529 400 -24555795.63051 530 400 -13177083.33766 531 400 1.9371509552e-07 532 400 -29957235.32024 533 400 -3.8743019104e-07 534 400 13333333.33771 535 400 -24555795.63051 536 400 13177083.33766 401 401 905507012.9075 402 401 -1.668930053711e-06 403 401 4.470348358154e-07 404 401 123977832.6588 417 401 5.811452865601e-07 418 401 3.129243850708e-07 419 401 -9005963.440556 420 401 1.192092895508e-07 421 401 -4.768371582031e-07 422 401 66375066.93519 423 401 4.470348358154e-08 424 401 -4.470348358154e-08 425 401 -9005963.440553 489 401 16471527.78319 490 401 -13177083.33766 491 401 -28297094.18124 492 401 65886111.10029 493 401 3.8743019104e-07 494 401 -87588646.48668 495 401 16471527.78319 496 401 13177083.33766 497 401 -28297094.18124 507 401 -9.983777999878e-07 508 401 -52708333.32467 509 401 -73187955.04869 510 401 8.642673492432e-07 511 401 1.788139343262e-07 512 401 -190352899.3709 513 401 1.475214958191e-06 514 401 52708333.32467 515 401 -73187955.0487 528 401 -16471527.78319 529 401 -13177083.33766 530 401 -28297094.18124 531 401 -65886111.10029 532 401 -2.831220626831e-07 533 401 -87588646.48668 534 401 -16471527.78319 535 401 13177083.33766 536 401 -28297094.18124 402 402 913791605.4334 403 402 7.748603820801e-06 404 402 -2.622604370117e-06 405 402 126048980.7912 406 402 -2.175569534302e-06 407 402 -1.490116119385e-06 420 402 -75155545.77471 421 402 -53333333.32457 422 402 5.066394805908e-07 423 402 -198223262.271 424 402 2.98023223877e-07 425 402 5.960464477539e-08 426 402 -75155545.7747 427 402 53333333.32457 428 402 -1.490116119385e-08 492 402 -28555987.69793 493 402 13333333.33771 494 402 16471527.78319 495 402 -88624220.55292 496 402 1.043081283569e-07 497 402 65886111.10029 498 402 -28555987.69793 499 402 -13333333.33771 500 402 16471527.78319 510 402 -7556159.747413 511 402 -3.278255462646e-07 512 402 -1.206994056702e-06 513 402 72174281.7049 514 402 1.728534698486e-06 515 402 1.221895217896e-06 516 402 -7556159.747413 517 402 -7.450580596924e-07 518 402 1.341104507446e-06 531 402 -28555987.69793 532 402 -13333333.33771 533 402 -16471527.78319 534 402 -88624220.55292 535 402 2.235174179077e-07 536 402 -65886111.10029 537 402 -28555987.69793 538 402 13333333.33771 539 402 -16471527.78319 403 403 785785459.402 404 403 -1.788139343262e-06 405 403 -2.086162567139e-06 406 403 -76617423.53181 407 403 5.066394805908e-07 420 403 -53333333.32457 421 403 -59154777.5129 422 403 2.086162567139e-07 423 403 3.576278686523e-07 424 403 36444678.54407 425 403 -4.172325134277e-07 426 403 53333333.32457 427 403 -59154777.5129 428 403 2.98023223877e-08 492 403 13333333.33771 493 403 -24555795.63051 494 403 -13177083.33766 495 403 4.470348358154e-08 496 403 -29957235.32024 497 403 2.831220626831e-07 498 403 -13333333.33771 499 403 -24555795.63051 500 403 13177083.33766 510 403 -2.98023223877e-07 511 403 -58222760.85313 512 403 -52708333.32467 513 403 1.728534698486e-06 514 403 40172745.1813 515 403 -5.960464477539e-08 516 403 -7.003545761108e-07 517 403 -58222760.85313 518 403 52708333.32467 531 403 -13333333.33771 532 403 -24555795.63051 533 403 -13177083.33766 534 403 1.9371509552e-07 535 403 -29957235.32024 536 403 -3.8743019104e-07 537 403 13333333.33771 538 403 -24555795.63051 539 403 13177083.33766 404 404 905507012.9075 405 404 -1.668930053711e-06 406 404 4.470348358154e-07 407 404 123977832.6588 420 404 5.811452865601e-07 421 404 3.129243850708e-07 422 404 -9005963.440556 423 404 1.192092895508e-07 424 404 -4.768371582031e-07 425 404 66375066.93519 426 404 4.470348358154e-08 427 404 -4.470348358154e-08 428 404 -9005963.440553 492 404 16471527.78319 493 404 -13177083.33766 494 404 -28297094.18124 495 404 65886111.10029 496 404 3.8743019104e-07 497 404 -87588646.48668 498 404 16471527.78319 499 404 13177083.33766 500 404 -28297094.18124 510 404 -9.983777999878e-07 511 404 -52708333.32467 512 404 -73187955.04869 513 404 8.642673492432e-07 514 404 1.788139343262e-07 515 404 -190352899.3709 516 404 1.475214958191e-06 517 404 52708333.32467 518 404 -73187955.0487 531 404 -16471527.78319 532 404 -13177083.33766 533 404 -28297094.18124 534 404 -65886111.10029 535 404 -2.831220626831e-07 536 404 -87588646.48668 537 404 -16471527.78319 538 404 13177083.33766 539 404 -28297094.18124 405 405 913791605.4334 406 405 7.748603820801e-06 407 405 -2.622604370117e-06 408 405 126048980.7912 409 405 -2.175569534302e-06 410 405 -1.490116119385e-06 423 405 -75155545.77471 424 405 -53333333.32457 425 405 5.066394805908e-07 426 405 -198223262.271 427 405 2.98023223877e-07 428 405 5.960464477539e-08 429 405 -75155545.7747 430 405 53333333.32457 431 405 -1.490116119385e-08 495 405 -28555987.69793 496 405 13333333.33771 497 405 16471527.78319 498 405 -88624220.55292 499 405 1.043081283569e-07 500 405 65886111.10029 501 405 -28555987.69793 502 405 -13333333.33771 503 405 16471527.78319 513 405 -7556159.747413 514 405 -3.278255462646e-07 515 405 -1.206994056702e-06 516 405 72174281.7049 517 405 1.728534698486e-06 518 405 1.221895217896e-06 519 405 -7556159.747413 520 405 -7.450580596924e-07 521 405 1.341104507446e-06 534 405 -28555987.69793 535 405 -13333333.33771 536 405 -16471527.78319 537 405 -88624220.55292 538 405 2.235174179077e-07 539 405 -65886111.10029 540 405 -28555987.69793 541 405 13333333.33771 542 405 -16471527.78319 406 406 785785459.402 407 406 -1.788139343262e-06 408 406 -2.086162567139e-06 409 406 -76617423.53181 410 406 5.066394805908e-07 423 406 -53333333.32457 424 406 -59154777.5129 425 406 2.086162567139e-07 426 406 3.576278686523e-07 427 406 36444678.54407 428 406 -4.172325134277e-07 429 406 53333333.32457 430 406 -59154777.5129 431 406 2.98023223877e-08 495 406 13333333.33771 496 406 -24555795.63051 497 406 -13177083.33766 498 406 4.470348358154e-08 499 406 -29957235.32024 500 406 2.831220626831e-07 501 406 -13333333.33771 502 406 -24555795.63051 503 406 13177083.33766 513 406 -2.98023223877e-07 514 406 -58222760.85313 515 406 -52708333.32467 516 406 1.728534698486e-06 517 406 40172745.1813 518 406 -5.960464477539e-08 519 406 -7.003545761108e-07 520 406 -58222760.85313 521 406 52708333.32467 534 406 -13333333.33771 535 406 -24555795.63051 536 406 -13177083.33766 537 406 1.9371509552e-07 538 406 -29957235.32024 539 406 -3.8743019104e-07 540 406 13333333.33771 541 406 -24555795.63051 542 406 13177083.33766 407 407 905507012.9075 408 407 -1.668930053711e-06 409 407 4.470348358154e-07 410 407 123977832.6588 423 407 5.811452865601e-07 424 407 3.129243850708e-07 425 407 -9005963.440556 426 407 1.192092895508e-07 427 407 -4.768371582031e-07 428 407 66375066.93519 429 407 4.470348358154e-08 430 407 -4.470348358154e-08 431 407 -9005963.440553 495 407 16471527.78319 496 407 -13177083.33766 497 407 -28297094.18124 498 407 65886111.10029 499 407 3.8743019104e-07 500 407 -87588646.48668 501 407 16471527.78319 502 407 13177083.33766 503 407 -28297094.18124 513 407 -9.983777999878e-07 514 407 -52708333.32467 515 407 -73187955.04869 516 407 8.642673492432e-07 517 407 1.788139343262e-07 518 407 -190352899.3709 519 407 1.475214958191e-06 520 407 52708333.32467 521 407 -73187955.0487 534 407 -16471527.78319 535 407 -13177083.33766 536 407 -28297094.18124 537 407 -65886111.10029 538 407 -2.831220626831e-07 539 407 -87588646.48668 540 407 -16471527.78319 541 407 13177083.33766 542 407 -28297094.18124 408 408 913791605.4334 409 408 7.748603820801e-06 410 408 -2.622604370117e-06 411 408 126048980.7912 412 408 -2.175569534302e-06 413 408 -1.490116119385e-06 426 408 -75155545.77471 427 408 -53333333.32457 428 408 5.066394805908e-07 429 408 -198223262.271 430 408 2.98023223877e-07 431 408 5.960464477539e-08 432 408 -75155545.7747 433 408 53333333.32457 434 408 -1.490116119385e-08 498 408 -28555987.69793 499 408 13333333.33771 500 408 16471527.78319 501 408 -88624220.55292 502 408 1.043081283569e-07 503 408 65886111.10029 504 408 -28555987.69793 505 408 -13333333.33771 506 408 16471527.78319 516 408 -7556159.747413 517 408 -3.278255462646e-07 518 408 -1.206994056702e-06 519 408 72174281.7049 520 408 1.728534698486e-06 521 408 1.221895217896e-06 522 408 -7556159.747413 523 408 -7.450580596924e-07 524 408 1.341104507446e-06 537 408 -28555987.69793 538 408 -13333333.33771 539 408 -16471527.78319 540 408 -88624220.55292 541 408 2.235174179077e-07 542 408 -65886111.10029 543 408 -28555987.69793 544 408 13333333.33771 545 408 -16471527.78319 409 409 785785459.402 410 409 -1.788139343262e-06 411 409 -2.086162567139e-06 412 409 -76617423.53181 413 409 5.066394805908e-07 426 409 -53333333.32457 427 409 -59154777.5129 428 409 2.086162567139e-07 429 409 3.576278686523e-07 430 409 36444678.54407 431 409 -4.172325134277e-07 432 409 53333333.32457 433 409 -59154777.5129 434 409 2.98023223877e-08 498 409 13333333.33771 499 409 -24555795.63051 500 409 -13177083.33766 501 409 4.470348358154e-08 502 409 -29957235.32024 503 409 2.831220626831e-07 504 409 -13333333.33771 505 409 -24555795.63051 506 409 13177083.33766 516 409 -2.98023223877e-07 517 409 -58222760.85313 518 409 -52708333.32467 519 409 1.728534698486e-06 520 409 40172745.1813 521 409 -5.960464477539e-08 522 409 -7.003545761108e-07 523 409 -58222760.85313 524 409 52708333.32467 537 409 -13333333.33771 538 409 -24555795.63051 539 409 -13177083.33766 540 409 1.9371509552e-07 541 409 -29957235.32024 542 409 -3.8743019104e-07 543 409 13333333.33771 544 409 -24555795.63051 545 409 13177083.33766 410 410 905507012.9075 411 410 -1.668930053711e-06 412 410 4.470348358154e-07 413 410 123977832.6588 426 410 5.811452865601e-07 427 410 3.129243850708e-07 428 410 -9005963.440556 429 410 1.192092895508e-07 430 410 -4.768371582031e-07 431 410 66375066.93519 432 410 4.470348358154e-08 433 410 -4.470348358154e-08 434 410 -9005963.440553 498 410 16471527.78319 499 410 -13177083.33766 500 410 -28297094.18124 501 410 65886111.10029 502 410 3.8743019104e-07 503 410 -87588646.48668 504 410 16471527.78319 505 410 13177083.33766 506 410 -28297094.18124 516 410 -9.983777999878e-07 517 410 -52708333.32467 518 410 -73187955.04869 519 410 8.642673492432e-07 520 410 1.788139343262e-07 521 410 -190352899.3709 522 410 1.475214958191e-06 523 410 52708333.32467 524 410 -73187955.0487 537 410 -16471527.78319 538 410 -13177083.33766 539 410 -28297094.18124 540 410 -65886111.10029 541 410 -2.831220626831e-07 542 410 -87588646.48668 543 410 -16471527.78319 544 410 13177083.33766 545 410 -28297094.18124 411 411 886076107.088 412 411 29506578.58962 413 411 -4.172325134277e-06 414 411 -15650105.72171 415 411 -67995305.55008 416 411 -1.788139343262e-06 429 411 -75155545.77471 430 411 -53333333.32457 431 411 5.066394805908e-07 432 411 -169993346.4286 433 411 13585574.37073 434 411 1.579523086548e-06 435 411 -49437968.75893 436 411 49988791.22677 437 411 2.637505531311e-06 501 411 -28555987.69793 502 411 13333333.33771 503 411 16471527.78319 504 411 -87310926.38278 505 411 -6271409.66235 506 411 57161110.99975 519 411 -7556159.747413 520 411 -3.278255462646e-07 521 411 -1.206994056702e-06 522 411 87947441.63499 523 411 7376644.65104 524 411 0.02039501070976 525 411 -32923131.70809 526 411 -16998826.39589 527 411 16470833.12799 540 411 -28555987.69793 541 411 -13333333.33771 542 411 -16471527.78319 543 411 -80272721.40676 544 411 3396393.594356 545 411 -61522916.65699 546 411 -22126192.23639 547 411 12497197.81285 548 411 -12109027.78175 412 412 821417136.7999 413 412 5.125999450684e-06 414 412 -67995305.33675 415 412 -205861449.307 416 412 -3.56137752533e-06 429 412 -53333333.32457 430 412 -59154777.5129 431 412 2.086162567139e-07 432 412 13585574.37073 433 412 48420638.98572 434 412 8.940696716309e-07 435 412 49988791.22677 436 412 -80270449.84323 437 412 -2.548098564148e-06 501 412 13333333.33771 502 412 -24555795.63051 503 412 -13177083.33766 504 412 -6271409.715683 505 412 -27822507.01778 506 412 6197916.651945 519 412 -2.98023223877e-07 520 412 -58222760.85313 521 412 -52708333.32467 522 412 7376644.65104 523 412 71782699.055 524 412 0.01631674170494 525 412 -16998826.34256 526 412 -80475967.62785 527 412 52708333.09468 540 412 -13333333.33771 541 412 -24555795.63051 542 412 -13177083.33766 543 412 3396393.594355 544 412 -25669225.02627 545 412 3489583.332416 546 412 12497197.81285 547 412 -29834312.51126 548 412 16666666.67214 413 413 843458196.4419 414 413 1.192092895508e-07 415 413 -3.039836883545e-06 416 413 21637954.44543 429 413 5.811452865601e-07 430 413 3.129243850708e-07 431 413 -9005963.440556 432 413 6.85453414917e-07 433 413 1.072883605957e-06 434 413 73680450.86193 435 413 1.996755599976e-06 436 413 -2.592802047729e-06 437 413 -7752033.245933 501 413 16471527.78319 502 413 -13177083.33766 503 413 -28297094.18124 504 413 57161110.99975 505 413 6197916.627155 506 413 -74255038.56586 519 413 -9.983777999878e-07 520 413 -52708333.32467 521 413 -73187955.04869 522 413 -0.02039638161659 523 413 -0.01631587743759 524 413 -145326344.7753 525 413 16470833.02261 526 413 52708333.03516 527 413 -71952125.45461 540 413 -16471527.78319 541 413 -13177083.33766 542 413 -28297094.18124 543 413 -61522916.65613 544 413 3489583.333104 545 413 -82311580.01855 546 413 -12109027.78175 547 413 16666666.67214 548 413 -27982541.75396 414 414 531775095.0468 415 414 8503382.432196 432 414 -80370018.26376 433 414 -52907761.3966 434 414 -1.847743988037e-06 435 414 -113455777.5588 436 414 18108359.28725 437 414 1.311302185059e-06 438 414 68483060.18779 439 414 -18744593.63382 440 414 5.960464477539e-07 441 414 -42329538.80213 442 414 49035919.29823 443 414 1.922249794006e-06 504 414 -11791159.78616 505 414 15999999.84526 506 414 14530833.02455 522 414 -32923131.7081 523 414 -16998826.34256 524 414 -16470833.02261 525 414 14669982.03611 526 414 2125845.609096 527 414 12968611.10898 543 414 -29859204.61641 544 414 -13226940.35567 545 414 -16470833.33874 546 414 -76387958.09069 547 414 4527089.824043 548 414 -64843055.54491 549 414 -11712307.86994 550 414 -4686148.410764 551 414 8424305.555742 552 414 -24181082.63358 553 414 12258979.8306 554 414 -15950694.44968 415 415 626925818.4292 416 415 3.933906555176e-06 432 415 -52907761.3966 433 415 -54873071.8125 434 415 -8.642673492432e-07 435 415 18108359.28725 436 415 97871879.78123 437 415 3.337860107422e-06 438 415 2588739.696008 439 415 -35173186.25688 440 415 -3.695487976074e-06 441 415 49035919.29823 442 415 -49698043.59219 443 415 -1.505017280579e-06 504 415 10666666.5635 505 415 -19475967.87838 506 415 -14729166.53156 522 415 -16998826.39589 523 415 -80475967.62786 524 415 -52708333.03516 525 415 2125845.609096 526 415 38457662.89345 527 415 3874999.888226 543 415 -13226940.35567 544 415 -23484968.00046 545 415 -13177083.33766 546 415 4527089.824043 547 415 -23556043.72965 548 415 3489583.332417 549 415 647184.9243208 550 415 -37626369.49388 551 415 33333333.32786 552 415 12258979.8306 553 415 -26023208.832 554 415 16666666.67214 416 416 650521074.3426 432 416 -1.788139343262e-06 433 416 -7.748603820801e-07 434 416 -9261489.102506 435 416 1.117587089539e-06 436 416 3.337860107422e-06 437 416 131575339.2945 438 416 1.54972076416e-06 439 416 -3.75509262085e-06 440 416 90632596.10001 441 416 2.279877662659e-06 442 416 -1.594424247742e-06 443 416 13362532.26789 504 416 9687222.01637 505 416 -18604166.53816 506 416 -23758284.67089 522 416 -16470833.12799 523 416 -52708333.09468 524 416 -71952125.45462 525 416 -12968611.10898 526 416 -3874999.888222 527 416 -152766509.4438 543 416 -16470833.33874 544 416 -13177083.33766 545 416 -28359905.71829 546 416 -64843055.54491 547 416 3489583.333105 548 416 -95170201.65885 549 416 299305.5539342 550 416 33333333.32786 551 416 -54230045.43137 552 416 -15950694.44968 553 416 16666666.67214 554 416 -32922561.4056 417 417 456895802.7167 418 417 3.933906555176e-06 419 417 -1.668930053711e-06 420 417 63024490.39562 421 417 10666666.66491 422 417 -1.013278961182e-06 507 417 -88624220.55292 508 417 1.043081283569e-07 509 417 65886111.10029 510 417 -28555987.69793 511 417 -13333333.33771 512 417 16471527.78319 528 417 36087140.85245 529 417 8.344650268555e-07 530 417 -13177222.22006 531 417 -3778079.873706 532 417 2666666.667542 533 417 -3294305.556637 418 418 392892729.701 419 418 -7.152557373047e-07 420 418 -10666666.66491 421 418 -38308711.7659 422 418 3.8743019104e-07 507 418 4.470348358154e-08 508 418 -29957235.32024 509 418 2.831220626831e-07 510 418 -13333333.33771 511 418 -24555795.63051 512 418 13177083.33766 528 418 8.940696716309e-07 529 418 20086372.59065 530 418 -2.98023223877e-08 531 418 -2666666.667543 532 418 -29111380.42657 533 418 26354166.66234 419 419 452753506.4538 420 419 -8.940696716309e-07 421 419 1.490116119385e-07 422 419 61988916.32938 507 419 65886111.10029 508 419 3.8743019104e-07 509 419 -87588646.48668 510 419 16471527.78319 511 419 13177083.33766 512 419 -28297094.18124 528 419 13177222.22006 529 419 1.490116119385e-07 530 419 -95176449.68545 531 419 3294305.556638 532 419 26354166.66234 533 419 -36593977.52435 420 420 456895802.7167 421 420 3.933906555176e-06 422 420 -1.668930053711e-06 423 420 63024490.39562 424 420 10666666.66491 425 420 -1.013278961182e-06 507 420 -28555987.69793 508 420 13333333.33771 509 420 16471527.78319 510 420 -88624220.55292 511 420 1.043081283569e-07 512 420 65886111.10029 513 420 -28555987.69793 514 420 -13333333.33771 515 420 16471527.78319 528 420 -3778079.873706 529 420 -2666666.667542 530 420 -3294305.556638 531 420 36087140.85245 532 420 8.344650268555e-07 533 420 -13177222.22006 534 420 -3778079.873706 535 420 2666666.667542 536 420 -3294305.556637 421 421 392892729.701 422 421 -7.152557373047e-07 423 421 -10666666.66491 424 421 -38308711.7659 425 421 3.8743019104e-07 507 421 13333333.33771 508 421 -24555795.63051 509 421 -13177083.33766 510 421 4.470348358154e-08 511 421 -29957235.32024 512 421 2.831220626831e-07 513 421 -13333333.33771 514 421 -24555795.63051 515 421 13177083.33766 528 421 2666666.667542 529 421 -29111380.42657 530 421 -26354166.66234 531 421 8.940696716309e-07 532 421 20086372.59065 533 421 -2.98023223877e-08 534 421 -2666666.667543 535 421 -29111380.42657 536 421 26354166.66234 422 422 452753506.4538 423 422 -8.940696716309e-07 424 422 1.490116119385e-07 425 422 61988916.32938 507 422 16471527.78319 508 422 -13177083.33766 509 422 -28297094.18124 510 422 65886111.10029 511 422 3.8743019104e-07 512 422 -87588646.48668 513 422 16471527.78319 514 422 13177083.33766 515 422 -28297094.18124 528 422 3294305.556637 529 422 -26354166.66234 530 422 -36593977.52435 531 422 13177222.22006 532 422 1.490116119385e-07 533 422 -95176449.68545 534 422 3294305.556638 535 422 26354166.66234 536 422 -36593977.52435 423 423 456895802.7167 424 423 3.933906555176e-06 425 423 -1.668930053711e-06 426 423 63024490.39562 427 423 10666666.66491 428 423 -1.013278961182e-06 510 423 -28555987.69793 511 423 13333333.33771 512 423 16471527.78319 513 423 -88624220.55292 514 423 1.043081283569e-07 515 423 65886111.10029 516 423 -28555987.69793 517 423 -13333333.33771 518 423 16471527.78319 531 423 -3778079.873706 532 423 -2666666.667542 533 423 -3294305.556638 534 423 36087140.85245 535 423 8.344650268555e-07 536 423 -13177222.22006 537 423 -3778079.873706 538 423 2666666.667542 539 423 -3294305.556637 424 424 392892729.701 425 424 -7.152557373047e-07 426 424 -10666666.66491 427 424 -38308711.7659 428 424 3.8743019104e-07 510 424 13333333.33771 511 424 -24555795.63051 512 424 -13177083.33766 513 424 4.470348358154e-08 514 424 -29957235.32024 515 424 2.831220626831e-07 516 424 -13333333.33771 517 424 -24555795.63051 518 424 13177083.33766 531 424 2666666.667542 532 424 -29111380.42657 533 424 -26354166.66234 534 424 8.940696716309e-07 535 424 20086372.59065 536 424 -2.98023223877e-08 537 424 -2666666.667543 538 424 -29111380.42657 539 424 26354166.66234 425 425 452753506.4538 426 425 -8.940696716309e-07 427 425 1.490116119385e-07 428 425 61988916.32938 510 425 16471527.78319 511 425 -13177083.33766 512 425 -28297094.18124 513 425 65886111.10029 514 425 3.8743019104e-07 515 425 -87588646.48668 516 425 16471527.78319 517 425 13177083.33766 518 425 -28297094.18124 531 425 3294305.556637 532 425 -26354166.66234 533 425 -36593977.52435 534 425 13177222.22006 535 425 1.490116119385e-07 536 425 -95176449.68545 537 425 3294305.556638 538 425 26354166.66234 539 425 -36593977.52435 426 426 456895802.7167 427 426 3.933906555176e-06 428 426 -1.668930053711e-06 429 426 63024490.39562 430 426 10666666.66491 431 426 -1.013278961182e-06 513 426 -28555987.69793 514 426 13333333.33771 515 426 16471527.78319 516 426 -88624220.55292 517 426 1.043081283569e-07 518 426 65886111.10029 519 426 -28555987.69793 520 426 -13333333.33771 521 426 16471527.78319 534 426 -3778079.873706 535 426 -2666666.667542 536 426 -3294305.556638 537 426 36087140.85245 538 426 8.344650268555e-07 539 426 -13177222.22006 540 426 -3778079.873706 541 426 2666666.667542 542 426 -3294305.556637 427 427 392892729.701 428 427 -7.152557373047e-07 429 427 -10666666.66491 430 427 -38308711.7659 431 427 3.8743019104e-07 513 427 13333333.33771 514 427 -24555795.63051 515 427 -13177083.33766 516 427 4.470348358154e-08 517 427 -29957235.32024 518 427 2.831220626831e-07 519 427 -13333333.33771 520 427 -24555795.63051 521 427 13177083.33766 534 427 2666666.667542 535 427 -29111380.42657 536 427 -26354166.66234 537 427 8.940696716309e-07 538 427 20086372.59065 539 427 -2.98023223877e-08 540 427 -2666666.667543 541 427 -29111380.42657 542 427 26354166.66234 428 428 452753506.4538 429 428 -8.940696716309e-07 430 428 1.490116119385e-07 431 428 61988916.32938 513 428 16471527.78319 514 428 -13177083.33766 515 428 -28297094.18124 516 428 65886111.10029 517 428 3.8743019104e-07 518 428 -87588646.48668 519 428 16471527.78319 520 428 13177083.33766 521 428 -28297094.18124 534 428 3294305.556637 535 428 -26354166.66234 536 428 -36593977.52435 537 428 13177222.22006 538 428 1.490116119385e-07 539 428 -95176449.68545 540 428 3294305.556638 541 428 26354166.66234 542 428 -36593977.52435 429 429 456895802.7167 430 429 3.933906555176e-06 431 429 -1.668930053711e-06 432 429 63024490.39562 433 429 10666666.66491 434 429 -1.013278961182e-06 516 429 -28555987.69793 517 429 13333333.33771 518 429 16471527.78319 519 429 -88624220.55292 520 429 1.043081283569e-07 521 429 65886111.10029 522 429 -28555987.69793 523 429 -13333333.33771 524 429 16471527.78319 537 429 -3778079.873706 538 429 -2666666.667542 539 429 -3294305.556638 540 429 36087140.85245 541 429 8.344650268555e-07 542 429 -13177222.22006 543 429 -3778079.873706 544 429 2666666.667542 545 429 -3294305.556637 430 430 392892729.701 431 430 -7.152557373047e-07 432 430 -10666666.66491 433 430 -38308711.7659 434 430 3.8743019104e-07 516 430 13333333.33771 517 430 -24555795.63051 518 430 -13177083.33766 519 430 4.470348358154e-08 520 430 -29957235.32024 521 430 2.831220626831e-07 522 430 -13333333.33771 523 430 -24555795.63051 524 430 13177083.33766 537 430 2666666.667542 538 430 -29111380.42657 539 430 -26354166.66234 540 430 8.940696716309e-07 541 430 20086372.59065 542 430 -2.98023223877e-08 543 430 -2666666.667543 544 430 -29111380.42657 545 430 26354166.66234 431 431 452753506.4538 432 431 -8.940696716309e-07 433 431 1.490116119385e-07 434 431 61988916.32938 516 431 16471527.78319 517 431 -13177083.33766 518 431 -28297094.18124 519 431 65886111.10029 520 431 3.8743019104e-07 521 431 -87588646.48668 522 431 16471527.78319 523 431 13177083.33766 524 431 -28297094.18124 537 431 3294305.556637 538 431 -26354166.66234 539 431 -36593977.52435 540 431 13177222.22006 541 431 1.490116119385e-07 542 431 -95176449.68545 543 431 3294305.556638 544 431 26354166.66234 545 431 -36593977.52435 432 432 451672659.2548 433 432 425457.3069872 435 432 45227333.73336 436 432 -3769936.940774 437 432 5.960464477539e-07 519 432 -28555987.69793 520 432 13333333.33771 521 432 16471527.78319 522 432 -80272721.40676 523 432 3396393.594356 524 432 61522916.65613 525 432 -29859204.61641 526 432 -13226940.35567 527 432 16470833.33874 540 432 -3778079.873706 541 432 -2666666.667542 542 432 -3294305.556638 543 432 34782980.96289 544 432 106364.3267991 545 432 -13176944.44228 546 432 -9519773.826407 547 432 -942484.2356579 548 432 1067638.88752 433 433 397175038.8898 434 433 1.072883605957e-06 435 433 -25103270.2706 436 433 -58853543.86754 437 433 -1.341104507446e-06 519 433 13333333.33771 520 433 -24555795.63051 521 433 -13177083.33766 522 433 3396393.594355 523 433 -25669225.02627 524 433 -3489583.333104 525 433 -13226940.35567 526 433 -23484968.00045 527 433 13177083.33766 540 433 2666666.667542 541 433 -29111380.42657 542 433 -26354166.66234 543 433 106364.3267991 544 433 21158575.86493 545 433 2.682209014893e-07 546 433 -6275817.570742 547 433 -35539993.23945 548 433 29843749.99544 434 434 452492316.5668 436 434 -1.490116119385e-06 437 434 55187296.56271 519 434 16471527.78319 520 434 -13177083.33766 521 434 -28297094.18124 522 434 61522916.65699 523 434 -3489583.332416 524 434 -82311580.01855 525 434 16470833.33874 526 434 13177083.33766 527 434 -28359905.71829 540 434 3294305.556637 541 434 -26354166.66234 542 434 -36593977.52435 543 434 13176944.44228 544 434 3.8743019104e-07 545 434 -95237411.21973 546 434 7655972.222158 547 434 29843749.99475 548 434 -41740795.2267 435 435 444644489.1745 436 435 13081929.57058 437 435 9.536743164063e-07 438 435 -86994427.68368 439 435 -57630747.35091 440 435 -2.384185791016e-06 441 435 44204118.01812 442 435 1554937.536914 443 435 -1.192092895508e-06 522 435 -22126192.23639 523 435 12497197.81285 524 435 12109027.78176 525 435 -76387958.09069 526 435 4527089.824043 527 435 64843055.54491 543 435 -9519773.826409 544 435 -6275817.570743 545 435 -7655972.222158 546 435 15798034.7999 547 435 3270482.394257 548 435 -12968611.10898 549 435 -35347304.85947 550 435 -14407686.84483 551 435 20312500.00667 552 435 -14510689.24923 553 435 388734.3844201 554 435 1171666.664472 436 436 449754245.7917 437 436 4.64916229248e-06 438 436 -57630747.35091 439 436 -66447376.92277 440 436 -1.296401023865e-06 441 436 -19778395.79291 442 436 -57866988.0148 443 436 -2.086162567139e-06 522 436 12497197.81285 523 436 -29834312.51127 524 436 -16666666.67214 525 436 4527089.824043 526 436 -23556043.72965 527 436 -3489583.333103 543 436 -942484.2356579 544 436 -35539993.23945 545 436 -29843749.99475 546 436 3270482.394257 547 436 17075473.95481 548 436 9.536743164063e-07 549 436 -14407686.84483 550 436 -30210542.16671 551 436 16666666.67214 552 436 -4944598.950664 553 436 -40028465.77003 554 436 33333333.32786 437 437 513640710.6392 438 437 -3.159046173096e-06 439 437 -1.370906829834e-06 440 437 -3386801.062691 441 437 -1.907348632813e-06 442 437 -2.235174179077e-06 443 437 68569532.94435 522 437 12109027.78176 523 437 -16666666.67214 524 437 -27982541.75396 525 437 64843055.54491 526 437 -3489583.332416 527 437 -95170201.65886 543 437 -1067638.887521 544 437 -29843749.99544 545 437 -41740795.22671 546 437 12968611.10898 547 437 1.013278961182e-06 548 437 -125891389.0729 549 437 20312500.00667 550 437 16666666.67214 551 437 -37109894.74031 552 437 7551944.445205 553 437 33333333.32786 554 437 -51022200.11333 438 438 254849231.4225 439 438 61411260.29348 440 438 3.814697265625e-06 441 438 -66610780.59762 442 438 -6369252.63857 443 438 -1.132488250732e-06 525 438 -11712307.86995 526 438 647184.9243208 527 438 -299305.5539346 546 438 -35347304.85947 547 438 -14407686.84483 548 438 -20312500.00667 549 438 6046162.064774 550 438 15352815.08093 551 438 8124999.998666 552 438 -43850090.99987 553 438 -1592313.160427 554 438 -36263194.43806 439 439 228505477.8886 440 439 4.172325134277e-06 441 439 14964080.69126 442 439 42842168.62011 443 439 1.728534698486e-06 525 439 -4686148.410764 526 439 -37626369.49388 527 439 -33333333.32786 546 439 -14407686.84483 547 439 -30210542.16671 548 439 -16666666.67214 549 439 15352815.08093 550 439 -539776.3219635 551 439 6666666.665572 552 439 3741020.174657 553 439 -16486853.68196 554 439 3333333.334428 440 440 294920181.6058 442 440 1.788139343262e-06 443 440 70439578.90092 525 440 -8424305.555743 526 440 -33333333.32786 527 440 -54230045.43139 546 440 -20312500.00667 547 440 -16666666.67214 548 440 -37109894.74031 549 440 -8124999.998665 550 440 -6666666.665571 551 440 -80046343.42155 552 440 -36263194.43892 553 440 -3333333.334428 554 440 -54916494.1788 441 441 221377868.0526 442 441 -44221604.19657 443 441 -1.311302185059e-06 525 441 -24181082.63358 526 441 12258979.8306 527 441 15950694.44968 546 441 -14510689.24923 547 441 -4944598.950664 548 441 -7551944.445206 549 441 -43850090.99987 550 441 3741020.174657 551 441 36263194.43892 552 441 4221029.5472 553 441 -11055401.05459 554 441 -6380277.77673 442 442 221364529.6578 443 442 2.861022949219e-06 525 442 12258979.8306 526 442 -26023208.832 527 442 -16666666.67214 546 442 388734.38442 547 442 -40028465.77003 548 442 -33333333.32786 549 442 -1592313.160427 550 442 -16486853.68196 551 442 3333333.334428 552 442 -11055401.05459 553 442 4217694.948508 554 442 6666666.665572 443 443 265339467.0094 525 443 15950694.44968 526 443 -16666666.67214 527 443 -32922561.4056 546 443 -1171666.664473 547 443 -33333333.32786 548 443 -51022200.11334 549 443 36263194.43806 550 443 -3333333.334428 551 443 -54916494.1788 552 443 6380277.77673 553 443 -6666666.665571 554 443 -69994299.86354 444 444 571119749.839 445 444 53333333.32457 446 444 -6.198883056641e-06 447 444 -292913008.3249 448 444 -53333332.8979 449 444 6.556510925293e-06 450 444 19534202.10867 451 444 42666666.23299 452 444 -1.490116119385e-06 555 444 45108925.89256 556 444 13333333.33771 557 444 13177222.19231 558 444 -107413106.5112 559 444 -13333333.23104 560 444 -65886110.96157 561 444 -9767101.054335 562 444 10666666.5635 563 444 -13177221.94221 445 445 491115909.0416 446 445 -3.094097220493e-06 447 445 -53333332.68457 448 445 -42244300.58137 449 445 2.145767211914e-06 450 445 63999999.34949 451 445 19534202.10866 452 445 -2.384185791016e-06 555 445 13333333.33771 556 445 25107965.68335 557 445 10541666.55379 558 445 -13333333.17771 559 445 -44745929.54446 560 445 -13177083.26329 561 445 15999999.84525 562 445 -9767101.054335 563 445 15812499.93082 446 446 565941879.2302 447 446 6.943941116333e-06 448 446 1.609325408936e-06 449 446 5277897.861165 450 446 -2.145767211914e-06 451 446 -1.54972076416e-06 452 446 52091205.62311 555 446 -13177222.19232 556 446 -10541666.5538 557 446 -118970561.1562 558 446 -65886110.96157 559 446 -13177083.28808 560 446 -89840137.25117 561 446 -19765832.91331 562 446 10541666.62055 563 446 -26045602.81156 447 447 988947148.5376 448 447 53333332.25791 449 447 -9.298324584961e-06 450 447 31359232.67644 451 447 -53333332.8979 452 447 1.251697540283e-06 453 447 -198223262.271 454 447 2.98023223877e-07 455 447 5.960464477539e-08 456 447 -75155545.7747 457 447 53333333.32457 458 447 -1.490116119385e-08 555 447 -107413106.5112 556 447 -13333333.17771 557 447 65886110.96157 558 447 100730268.7541 559 447 13333333.07105 560 447 0.02774140238762 561 447 -26345045.89131 562 447 -13333333.23105 563 447 16471527.49884 564 447 -88624220.55292 565 447 2.235174179077e-07 566 447 -65886111.10029 567 447 -28555987.69793 568 447 13333333.33771 569 447 -16471527.78319 448 448 844940234.7245 449 448 -7.987022399902e-06 450 448 -53333332.68457 451 448 -155306402.5315 452 448 5.394220352173e-06 453 448 3.576278686523e-07 454 448 36444678.54407 455 448 -4.172325134277e-07 456 448 53333333.32457 457 448 -59154777.5129 458 448 2.98023223877e-08 555 448 -13333333.23104 556 448 -44745929.54447 557 448 13177083.28808 558 448 13333333.07105 559 448 64728540.28304 560 448 0.022192299366 561 448 -13333333.17771 562 448 -73011454.71628 563 448 52708333.03581 564 448 1.9371509552e-07 565 448 -29957235.32024 566 448 -3.8743019104e-07 567 448 13333333.33771 568 448 -24555795.63051 569 448 13177083.33766 449 449 914512974.9691 450 449 1.728534698486e-06 451 449 4.559755325317e-06 452 449 62880662.12465 453 449 1.192092895508e-07 454 449 -4.768371582031e-07 455 449 66375066.93519 456 449 4.470348358154e-08 457 449 -4.470348358154e-08 458 449 -9005963.440553 555 449 65886110.96157 556 449 13177083.26329 557 449 -89840137.25118 558 449 -0.0277450978756 559 449 -0.02219566702843 560 449 -162055805.4842 561 449 16471527.35667 562 449 52708332.94687 563 449 -75439445.29918 564 449 -65886111.10029 565 449 -2.831220626831e-07 566 449 -87588646.48668 567 449 -16471527.78319 568 449 13177083.33766 569 449 -28297094.18124 450 450 571119749.839 451 450 53333333.32457 452 450 -6.198883056641e-06 453 450 -75155545.77471 454 450 -53333333.32457 455 450 5.066394805908e-07 456 450 -292913008.3249 457 450 -53333332.8979 458 450 6.556510925293e-06 459 450 19534202.10867 460 450 42666666.23299 461 450 -1.490116119385e-06 555 450 -9767101.054335 556 450 15999999.84525 557 450 19765832.91331 558 450 -26345045.8913 559 450 -13333333.17771 560 450 -16471527.35667 561 450 45108925.89256 562 450 13333333.33771 563 450 13177222.19231 564 450 -28555987.69793 565 450 -13333333.33771 566 450 -16471527.78319 567 450 -107413106.5112 568 450 -13333333.23104 569 450 -65886110.96157 570 450 -9767101.054335 571 450 10666666.5635 572 450 -13177221.94221 451 451 491115909.0416 452 451 -2.974887930942e-06 453 451 -53333333.32457 454 451 -59154777.5129 455 451 2.086162567139e-07 456 451 -53333332.68457 457 451 -42244300.58137 458 451 2.145767211914e-06 459 451 63999999.34949 460 451 19534202.10866 461 451 -2.384185791016e-06 555 451 10666666.5635 556 451 -9767101.054336 557 451 -10541666.62055 558 451 -13333333.23105 559 451 -73011454.71627 560 451 -52708332.94687 561 451 13333333.33771 562 451 25107965.68335 563 451 10541666.55379 564 451 -13333333.33771 565 451 -24555795.63051 566 451 -13177083.33766 567 451 -13333333.17771 568 451 -44745929.54446 569 451 -13177083.26329 570 451 15999999.84525 571 451 -9767101.054335 572 451 15812499.93082 452 452 565941879.2302 453 452 5.811452865601e-07 454 452 3.129243850708e-07 455 452 -9005963.440556 456 452 6.943941116333e-06 457 452 1.609325408936e-06 458 452 5277897.861165 459 452 -2.145767211914e-06 460 452 -1.54972076416e-06 461 452 52091205.62311 555 452 13177221.94221 556 452 -15812499.93082 557 452 -26045602.81156 558 452 -16471527.49884 559 452 -52708333.03581 560 452 -75439445.29917 561 452 -13177222.19232 562 452 -10541666.5538 563 452 -118970561.1562 564 452 -16471527.78319 565 452 -13177083.33766 566 452 -28297094.18124 567 452 -65886110.96157 568 452 -13177083.28808 569 452 -89840137.25117 570 452 -19765832.91331 571 452 10541666.62055 572 452 -26045602.81156 453 453 913791605.4334 454 453 7.748603820801e-06 455 453 -2.622604370117e-06 456 453 126048980.7912 457 453 -2.175569534302e-06 458 453 -1.490116119385e-06 462 453 -198223262.271 463 453 2.98023223877e-07 464 453 5.960464477539e-08 465 453 -75155545.7747 466 453 53333333.32457 467 453 -1.490116119385e-08 558 453 -88624220.55292 559 453 1.043081283569e-07 560 453 65886111.10029 561 453 -28555987.69793 562 453 -13333333.33771 563 453 16471527.78319 564 453 72174281.7049 565 453 1.728534698486e-06 566 453 1.221895217896e-06 567 453 -7556159.747413 568 453 -7.450580596924e-07 569 453 1.341104507446e-06 573 453 -88624220.55292 574 453 2.235174179077e-07 575 453 -65886111.10029 576 453 -28555987.69793 577 453 13333333.33771 578 453 -16471527.78319 454 454 785785459.402 455 454 -1.788139343262e-06 456 454 -2.086162567139e-06 457 454 -76617423.53181 458 454 5.066394805908e-07 462 454 3.576278686523e-07 463 454 36444678.54407 464 454 -4.172325134277e-07 465 454 53333333.32457 466 454 -59154777.5129 467 454 2.98023223877e-08 558 454 4.470348358154e-08 559 454 -29957235.32024 560 454 2.831220626831e-07 561 454 -13333333.33771 562 454 -24555795.63051 563 454 13177083.33766 564 454 1.728534698486e-06 565 454 40172745.1813 566 454 -5.960464477539e-08 567 454 -7.003545761108e-07 568 454 -58222760.85313 569 454 52708333.32467 573 454 1.9371509552e-07 574 454 -29957235.32024 575 454 -3.8743019104e-07 576 454 13333333.33771 577 454 -24555795.63051 578 454 13177083.33766 455 455 905507012.9075 456 455 -1.668930053711e-06 457 455 4.470348358154e-07 458 455 123977832.6588 462 455 1.192092895508e-07 463 455 -4.768371582031e-07 464 455 66375066.93519 465 455 4.470348358154e-08 466 455 -4.470348358154e-08 467 455 -9005963.440553 558 455 65886111.10029 559 455 3.8743019104e-07 560 455 -87588646.48668 561 455 16471527.78319 562 455 13177083.33766 563 455 -28297094.18124 564 455 8.642673492432e-07 565 455 1.788139343262e-07 566 455 -190352899.3709 567 455 1.475214958191e-06 568 455 52708333.32467 569 455 -73187955.0487 573 455 -65886111.10029 574 455 -2.831220626831e-07 575 455 -87588646.48668 576 455 -16471527.78319 577 455 13177083.33766 578 455 -28297094.18124 456 456 988947148.5376 457 456 53333332.25791 458 456 -9.298324584961e-06 459 456 31359232.67644 460 456 -53333332.8979 461 456 1.251697540283e-06 462 456 -75155545.77471 463 456 -53333333.32457 464 456 5.066394805908e-07 465 456 -198223262.271 466 456 2.98023223877e-07 467 456 5.960464477539e-08 468 456 -75155545.7747 469 456 53333333.32457 470 456 -1.490116119385e-08 558 456 -28555987.69793 559 456 13333333.33771 560 456 16471527.78319 561 456 -107413106.5112 562 456 -13333333.17771 563 456 65886110.96157 564 456 -7556159.747413 565 456 -3.278255462646e-07 566 456 -1.206994056702e-06 567 456 100730268.7541 568 456 13333333.07105 569 456 0.02774140238762 570 456 -26345045.89131 571 456 -13333333.23105 572 456 16471527.49884 573 456 -28555987.69793 574 456 -13333333.33771 575 456 -16471527.78319 576 456 -88624220.55292 577 456 2.235174179077e-07 578 456 -65886111.10029 579 456 -28555987.69793 580 456 13333333.33771 581 456 -16471527.78319 457 457 844940234.7245 458 457 -7.987022399902e-06 459 457 -53333332.68457 460 457 -155306402.5315 461 457 5.394220352173e-06 462 457 -53333333.32457 463 457 -59154777.5129 464 457 2.086162567139e-07 465 457 3.576278686523e-07 466 457 36444678.54407 467 457 -4.172325134277e-07 468 457 53333333.32457 469 457 -59154777.5129 470 457 2.98023223877e-08 558 457 13333333.33771 559 457 -24555795.63051 560 457 -13177083.33766 561 457 -13333333.23104 562 457 -44745929.54447 563 457 13177083.28808 564 457 -2.98023223877e-07 565 457 -58222760.85313 566 457 -52708333.32467 567 457 13333333.07105 568 457 64728540.28304 569 457 0.022192299366 570 457 -13333333.17771 571 457 -73011454.71628 572 457 52708333.03581 573 457 -13333333.33771 574 457 -24555795.63051 575 457 -13177083.33766 576 457 1.9371509552e-07 577 457 -29957235.32024 578 457 -3.8743019104e-07 579 457 13333333.33771 580 457 -24555795.63051 581 457 13177083.33766 458 458 914512974.9691 459 458 1.728534698486e-06 460 458 4.559755325317e-06 461 458 62880662.12465 462 458 5.811452865601e-07 463 458 3.129243850708e-07 464 458 -9005963.440556 465 458 1.192092895508e-07 466 458 -4.768371582031e-07 467 458 66375066.93519 468 458 4.470348358154e-08 469 458 -4.470348358154e-08 470 458 -9005963.440553 558 458 16471527.78319 559 458 -13177083.33766 560 458 -28297094.18124 561 458 65886110.96157 562 458 13177083.26329 563 458 -89840137.25118 564 458 -9.983777999878e-07 565 458 -52708333.32467 566 458 -73187955.04869 567 458 -0.0277450978756 568 458 -0.02219566702843 569 458 -162055805.4842 570 458 16471527.35667 571 458 52708332.94687 572 458 -75439445.29918 573 458 -16471527.78319 574 458 -13177083.33766 575 458 -28297094.18124 576 458 -65886111.10029 577 458 -2.831220626831e-07 578 458 -87588646.48668 579 458 -16471527.78319 580 458 13177083.33766 581 458 -28297094.18124 459 459 571119749.839 460 459 53333333.32457 461 459 -6.198883056641e-06 465 459 -75155545.77471 466 459 -53333333.32457 467 459 5.066394805908e-07 468 459 -292913008.3249 469 459 -53333332.8979 470 459 6.556510925293e-06 471 459 19534202.10867 472 459 42666666.23299 473 459 -1.490116119385e-06 561 459 -9767101.054335 562 459 15999999.84525 563 459 19765832.91331 567 459 -26345045.8913 568 459 -13333333.17771 569 459 -16471527.35667 570 459 45108925.89256 571 459 13333333.33771 572 459 13177222.19231 576 459 -28555987.69793 577 459 -13333333.33771 578 459 -16471527.78319 579 459 -107413106.5112 580 459 -13333333.23104 581 459 -65886110.96157 582 459 -9767101.054335 583 459 10666666.5635 584 459 -13177221.94221 460 460 491115909.0416 461 460 -2.974887930942e-06 465 460 -53333333.32457 466 460 -59154777.5129 467 460 2.086162567139e-07 468 460 -53333332.68457 469 460 -42244300.58137 470 460 2.145767211914e-06 471 460 63999999.34949 472 460 19534202.10866 473 460 -2.384185791016e-06 561 460 10666666.5635 562 460 -9767101.054336 563 460 -10541666.62055 567 460 -13333333.23105 568 460 -73011454.71627 569 460 -52708332.94687 570 460 13333333.33771 571 460 25107965.68335 572 460 10541666.55379 576 460 -13333333.33771 577 460 -24555795.63051 578 460 -13177083.33766 579 460 -13333333.17771 580 460 -44745929.54446 581 460 -13177083.26329 582 460 15999999.84525 583 460 -9767101.054335 584 460 15812499.93082 461 461 565941879.2302 465 461 5.811452865601e-07 466 461 3.129243850708e-07 467 461 -9005963.440556 468 461 6.943941116333e-06 469 461 1.609325408936e-06 470 461 5277897.861165 471 461 -2.145767211914e-06 472 461 -1.54972076416e-06 473 461 52091205.62311 561 461 13177221.94221 562 461 -15812499.93082 563 461 -26045602.81156 567 461 -16471527.49884 568 461 -52708333.03581 569 461 -75439445.29917 570 461 -13177222.19232 571 461 -10541666.5538 572 461 -118970561.1562 576 461 -16471527.78319 577 461 -13177083.33766 578 461 -28297094.18124 579 461 -65886110.96157 580 461 -13177083.28808 581 461 -89840137.25117 582 461 -19765832.91331 583 461 10541666.62055 584 461 -26045602.81156 462 462 913791605.4334 463 462 7.748603820801e-06 464 462 -2.622604370117e-06 465 462 126048980.7912 466 462 -2.175569534302e-06 467 462 -1.490116119385e-06 474 462 -198223262.271 475 462 2.98023223877e-07 476 462 5.960464477539e-08 477 462 -75155545.7747 478 462 53333333.32457 479 462 -1.490116119385e-08 564 462 -88624220.55292 565 462 1.043081283569e-07 566 462 65886111.10029 567 462 -28555987.69793 568 462 -13333333.33771 569 462 16471527.78319 573 462 72174281.7049 574 462 1.728534698486e-06 575 462 1.221895217896e-06 576 462 -7556159.747413 577 462 -7.450580596924e-07 578 462 1.341104507446e-06 585 462 -88624220.55292 586 462 2.235174179077e-07 587 462 -65886111.10029 588 462 -28555987.69793 589 462 13333333.33771 590 462 -16471527.78319 463 463 785785459.402 464 463 -1.788139343262e-06 465 463 -2.086162567139e-06 466 463 -76617423.53181 467 463 5.066394805908e-07 474 463 3.576278686523e-07 475 463 36444678.54407 476 463 -4.172325134277e-07 477 463 53333333.32457 478 463 -59154777.5129 479 463 2.98023223877e-08 564 463 4.470348358154e-08 565 463 -29957235.32024 566 463 2.831220626831e-07 567 463 -13333333.33771 568 463 -24555795.63051 569 463 13177083.33766 573 463 1.728534698486e-06 574 463 40172745.1813 575 463 -5.960464477539e-08 576 463 -7.003545761108e-07 577 463 -58222760.85313 578 463 52708333.32467 585 463 1.9371509552e-07 586 463 -29957235.32024 587 463 -3.8743019104e-07 588 463 13333333.33771 589 463 -24555795.63051 590 463 13177083.33766 464 464 905507012.9075 465 464 -1.668930053711e-06 466 464 4.470348358154e-07 467 464 123977832.6588 474 464 1.192092895508e-07 475 464 -4.768371582031e-07 476 464 66375066.93519 477 464 4.470348358154e-08 478 464 -4.470348358154e-08 479 464 -9005963.440553 564 464 65886111.10029 565 464 3.8743019104e-07 566 464 -87588646.48668 567 464 16471527.78319 568 464 13177083.33766 569 464 -28297094.18124 573 464 8.642673492432e-07 574 464 1.788139343262e-07 575 464 -190352899.3709 576 464 1.475214958191e-06 577 464 52708333.32467 578 464 -73187955.0487 585 464 -65886111.10029 586 464 -2.831220626831e-07 587 464 -87588646.48668 588 464 -16471527.78319 589 464 13177083.33766 590 464 -28297094.18124 465 465 913791605.4334 466 465 7.748603820801e-06 467 465 -2.622604370117e-06 468 465 126048980.7912 469 465 -2.175569534302e-06 470 465 -1.490116119385e-06 474 465 -75155545.77471 475 465 -53333333.32457 476 465 5.066394805908e-07 477 465 -198223262.271 478 465 2.98023223877e-07 479 465 5.960464477539e-08 480 465 -75155545.7747 481 465 53333333.32457 482 465 -1.490116119385e-08 564 465 -28555987.69793 565 465 13333333.33771 566 465 16471527.78319 567 465 -88624220.55292 568 465 1.043081283569e-07 569 465 65886111.10029 570 465 -28555987.69793 571 465 -13333333.33771 572 465 16471527.78319 573 465 -7556159.747413 574 465 -3.278255462646e-07 575 465 -1.206994056702e-06 576 465 72174281.7049 577 465 1.728534698486e-06 578 465 1.221895217896e-06 579 465 -7556159.747413 580 465 -7.450580596924e-07 581 465 1.341104507446e-06 585 465 -28555987.69793 586 465 -13333333.33771 587 465 -16471527.78319 588 465 -88624220.55292 589 465 2.235174179077e-07 590 465 -65886111.10029 591 465 -28555987.69793 592 465 13333333.33771 593 465 -16471527.78319 466 466 785785459.402 467 466 -1.788139343262e-06 468 466 -2.086162567139e-06 469 466 -76617423.53181 470 466 5.066394805908e-07 474 466 -53333333.32457 475 466 -59154777.5129 476 466 2.086162567139e-07 477 466 3.576278686523e-07 478 466 36444678.54407 479 466 -4.172325134277e-07 480 466 53333333.32457 481 466 -59154777.5129 482 466 2.98023223877e-08 564 466 13333333.33771 565 466 -24555795.63051 566 466 -13177083.33766 567 466 4.470348358154e-08 568 466 -29957235.32024 569 466 2.831220626831e-07 570 466 -13333333.33771 571 466 -24555795.63051 572 466 13177083.33766 573 466 -2.98023223877e-07 574 466 -58222760.85313 575 466 -52708333.32467 576 466 1.728534698486e-06 577 466 40172745.1813 578 466 -5.960464477539e-08 579 466 -7.003545761108e-07 580 466 -58222760.85313 581 466 52708333.32467 585 466 -13333333.33771 586 466 -24555795.63051 587 466 -13177083.33766 588 466 1.9371509552e-07 589 466 -29957235.32024 590 466 -3.8743019104e-07 591 466 13333333.33771 592 466 -24555795.63051 593 466 13177083.33766 467 467 905507012.9075 468 467 -1.668930053711e-06 469 467 4.470348358154e-07 470 467 123977832.6588 474 467 5.811452865601e-07 475 467 3.129243850708e-07 476 467 -9005963.440556 477 467 1.192092895508e-07 478 467 -4.768371582031e-07 479 467 66375066.93519 480 467 4.470348358154e-08 481 467 -4.470348358154e-08 482 467 -9005963.440553 564 467 16471527.78319 565 467 -13177083.33766 566 467 -28297094.18124 567 467 65886111.10029 568 467 3.8743019104e-07 569 467 -87588646.48668 570 467 16471527.78319 571 467 13177083.33766 572 467 -28297094.18124 573 467 -9.983777999878e-07 574 467 -52708333.32467 575 467 -73187955.04869 576 467 8.642673492432e-07 577 467 1.788139343262e-07 578 467 -190352899.3709 579 467 1.475214958191e-06 580 467 52708333.32467 581 467 -73187955.0487 585 467 -16471527.78319 586 467 -13177083.33766 587 467 -28297094.18124 588 467 -65886111.10029 589 467 -2.831220626831e-07 590 467 -87588646.48668 591 467 -16471527.78319 592 467 13177083.33766 593 467 -28297094.18124 468 468 988947148.5376 469 468 53333332.25791 470 468 -9.298324584961e-06 471 468 31359232.67644 472 468 -53333332.8979 473 468 1.251697540283e-06 477 468 -75155545.77471 478 468 -53333333.32457 479 468 5.066394805908e-07 480 468 -198223262.271 481 468 2.98023223877e-07 482 468 5.960464477539e-08 483 468 -75155545.7747 484 468 53333333.32457 485 468 -1.490116119385e-08 567 468 -28555987.69793 568 468 13333333.33771 569 468 16471527.78319 570 468 -107413106.5112 571 468 -13333333.17771 572 468 65886110.96157 576 468 -7556159.747413 577 468 -3.278255462646e-07 578 468 -1.206994056702e-06 579 468 100730268.7541 580 468 13333333.07105 581 468 0.02774140238762 582 468 -26345045.89131 583 468 -13333333.23105 584 468 16471527.49884 588 468 -28555987.69793 589 468 -13333333.33771 590 468 -16471527.78319 591 468 -88624220.55292 592 468 2.235174179077e-07 593 468 -65886111.10029 594 468 -28555987.69793 595 468 13333333.33771 596 468 -16471527.78319 469 469 844940234.7245 470 469 -7.987022399902e-06 471 469 -53333332.68457 472 469 -155306402.5315 473 469 5.394220352173e-06 477 469 -53333333.32457 478 469 -59154777.5129 479 469 2.086162567139e-07 480 469 3.576278686523e-07 481 469 36444678.54407 482 469 -4.172325134277e-07 483 469 53333333.32457 484 469 -59154777.5129 485 469 2.98023223877e-08 567 469 13333333.33771 568 469 -24555795.63051 569 469 -13177083.33766 570 469 -13333333.23104 571 469 -44745929.54447 572 469 13177083.28808 576 469 -2.98023223877e-07 577 469 -58222760.85313 578 469 -52708333.32467 579 469 13333333.07105 580 469 64728540.28304 581 469 0.022192299366 582 469 -13333333.17771 583 469 -73011454.71628 584 469 52708333.03581 588 469 -13333333.33771 589 469 -24555795.63051 590 469 -13177083.33766 591 469 1.9371509552e-07 592 469 -29957235.32024 593 469 -3.8743019104e-07 594 469 13333333.33771 595 469 -24555795.63051 596 469 13177083.33766 470 470 914512974.9691 471 470 1.728534698486e-06 472 470 4.559755325317e-06 473 470 62880662.12465 477 470 5.811452865601e-07 478 470 3.129243850708e-07 479 470 -9005963.440556 480 470 1.192092895508e-07 481 470 -4.768371582031e-07 482 470 66375066.93519 483 470 4.470348358154e-08 484 470 -4.470348358154e-08 485 470 -9005963.440553 567 470 16471527.78319 568 470 -13177083.33766 569 470 -28297094.18124 570 470 65886110.96157 571 470 13177083.26329 572 470 -89840137.25118 576 470 -9.983777999878e-07 577 470 -52708333.32467 578 470 -73187955.04869 579 470 -0.0277450978756 580 470 -0.02219566702843 581 470 -162055805.4842 582 470 16471527.35667 583 470 52708332.94687 584 470 -75439445.29918 588 470 -16471527.78319 589 470 -13177083.33766 590 470 -28297094.18124 591 470 -65886111.10029 592 470 -2.831220626831e-07 593 470 -87588646.48668 594 470 -16471527.78319 595 470 13177083.33766 596 470 -28297094.18124 471 471 571119749.839 472 471 53333333.32457 473 471 -6.198883056641e-06 480 471 -75155545.77471 481 471 -53333333.32457 482 471 5.066394805908e-07 483 471 -292913008.3249 484 471 -53333332.8979 485 471 6.556510925293e-06 486 471 19534202.10867 487 471 42666666.23299 488 471 -1.490116119385e-06 570 471 -9767101.054335 571 471 15999999.84525 572 471 19765832.91331 579 471 -26345045.8913 580 471 -13333333.17771 581 471 -16471527.35667 582 471 45108925.89256 583 471 13333333.33771 584 471 13177222.19231 591 471 -28555987.69793 592 471 -13333333.33771 593 471 -16471527.78319 594 471 -107413106.5112 595 471 -13333333.23104 596 471 -65886110.96157 597 471 -9767101.054335 598 471 10666666.5635 599 471 -13177221.94221 472 472 491115909.0416 473 472 -2.974887930942e-06 480 472 -53333333.32457 481 472 -59154777.5129 482 472 2.086162567139e-07 483 472 -53333332.68457 484 472 -42244300.58137 485 472 2.145767211914e-06 486 472 63999999.34949 487 472 19534202.10866 488 472 -2.384185791016e-06 570 472 10666666.5635 571 472 -9767101.054336 572 472 -10541666.62055 579 472 -13333333.23105 580 472 -73011454.71627 581 472 -52708332.94687 582 472 13333333.33771 583 472 25107965.68335 584 472 10541666.55379 591 472 -13333333.33771 592 472 -24555795.63051 593 472 -13177083.33766 594 472 -13333333.17771 595 472 -44745929.54446 596 472 -13177083.26329 597 472 15999999.84525 598 472 -9767101.054335 599 472 15812499.93082 473 473 565941879.2302 480 473 5.811452865601e-07 481 473 3.129243850708e-07 482 473 -9005963.440556 483 473 6.943941116333e-06 484 473 1.609325408936e-06 485 473 5277897.861165 486 473 -2.145767211914e-06 487 473 -1.54972076416e-06 488 473 52091205.62311 570 473 13177221.94221 571 473 -15812499.93082 572 473 -26045602.81156 579 473 -16471527.49884 580 473 -52708333.03581 581 473 -75439445.29917 582 473 -13177222.19232 583 473 -10541666.5538 584 473 -118970561.1562 591 473 -16471527.78319 592 473 -13177083.33766 593 473 -28297094.18124 594 473 -65886110.96157 595 473 -13177083.28808 596 473 -89840137.25117 597 473 -19765832.91331 598 473 10541666.62055 599 473 -26045602.81156 474 474 913791605.4334 475 474 7.748603820801e-06 476 474 -2.622604370117e-06 477 474 126048980.7912 478 474 -2.175569534302e-06 479 474 -1.490116119385e-06 489 474 -198223262.271 490 474 2.98023223877e-07 491 474 5.960464477539e-08 492 474 -75155545.7747 493 474 53333333.32457 494 474 -1.490116119385e-08 573 474 -88624220.55292 574 474 1.043081283569e-07 575 474 65886111.10029 576 474 -28555987.69793 577 474 -13333333.33771 578 474 16471527.78319 585 474 72174281.7049 586 474 1.728534698486e-06 587 474 1.221895217896e-06 588 474 -7556159.747413 589 474 -7.450580596924e-07 590 474 1.341104507446e-06 600 474 -88624220.55292 601 474 2.235174179077e-07 602 474 -65886111.10029 603 474 -28555987.69793 604 474 13333333.33771 605 474 -16471527.78319 475 475 785785459.402 476 475 -1.788139343262e-06 477 475 -2.086162567139e-06 478 475 -76617423.53181 479 475 5.066394805908e-07 489 475 3.576278686523e-07 490 475 36444678.54407 491 475 -4.172325134277e-07 492 475 53333333.32457 493 475 -59154777.5129 494 475 2.98023223877e-08 573 475 4.470348358154e-08 574 475 -29957235.32024 575 475 2.831220626831e-07 576 475 -13333333.33771 577 475 -24555795.63051 578 475 13177083.33766 585 475 1.728534698486e-06 586 475 40172745.1813 587 475 -5.960464477539e-08 588 475 -7.003545761108e-07 589 475 -58222760.85313 590 475 52708333.32467 600 475 1.9371509552e-07 601 475 -29957235.32024 602 475 -3.8743019104e-07 603 475 13333333.33771 604 475 -24555795.63051 605 475 13177083.33766 476 476 905507012.9075 477 476 -1.668930053711e-06 478 476 4.470348358154e-07 479 476 123977832.6588 489 476 1.192092895508e-07 490 476 -4.768371582031e-07 491 476 66375066.93519 492 476 4.470348358154e-08 493 476 -4.470348358154e-08 494 476 -9005963.440553 573 476 65886111.10029 574 476 3.8743019104e-07 575 476 -87588646.48668 576 476 16471527.78319 577 476 13177083.33766 578 476 -28297094.18124 585 476 8.642673492432e-07 586 476 1.788139343262e-07 587 476 -190352899.3709 588 476 1.475214958191e-06 589 476 52708333.32467 590 476 -73187955.0487 600 476 -65886111.10029 601 476 -2.831220626831e-07 602 476 -87588646.48668 603 476 -16471527.78319 604 476 13177083.33766 605 476 -28297094.18124 477 477 913791605.4334 478 477 7.748603820801e-06 479 477 -2.622604370117e-06 480 477 126048980.7912 481 477 -2.175569534302e-06 482 477 -1.490116119385e-06 489 477 -75155545.77471 490 477 -53333333.32457 491 477 5.066394805908e-07 492 477 -198223262.271 493 477 2.98023223877e-07 494 477 5.960464477539e-08 495 477 -75155545.7747 496 477 53333333.32457 497 477 -1.490116119385e-08 573 477 -28555987.69793 574 477 13333333.33771 575 477 16471527.78319 576 477 -88624220.55292 577 477 1.043081283569e-07 578 477 65886111.10029 579 477 -28555987.69793 580 477 -13333333.33771 581 477 16471527.78319 585 477 -7556159.747413 586 477 -3.278255462646e-07 587 477 -1.206994056702e-06 588 477 72174281.7049 589 477 1.728534698486e-06 590 477 1.221895217896e-06 591 477 -7556159.747413 592 477 -7.450580596924e-07 593 477 1.341104507446e-06 600 477 -28555987.69793 601 477 -13333333.33771 602 477 -16471527.78319 603 477 -88624220.55292 604 477 2.235174179077e-07 605 477 -65886111.10029 606 477 -28555987.69793 607 477 13333333.33771 608 477 -16471527.78319 478 478 785785459.402 479 478 -1.788139343262e-06 480 478 -2.086162567139e-06 481 478 -76617423.53181 482 478 5.066394805908e-07 489 478 -53333333.32457 490 478 -59154777.5129 491 478 2.086162567139e-07 492 478 3.576278686523e-07 493 478 36444678.54407 494 478 -4.172325134277e-07 495 478 53333333.32457 496 478 -59154777.5129 497 478 2.98023223877e-08 573 478 13333333.33771 574 478 -24555795.63051 575 478 -13177083.33766 576 478 4.470348358154e-08 577 478 -29957235.32024 578 478 2.831220626831e-07 579 478 -13333333.33771 580 478 -24555795.63051 581 478 13177083.33766 585 478 -2.98023223877e-07 586 478 -58222760.85313 587 478 -52708333.32467 588 478 1.728534698486e-06 589 478 40172745.1813 590 478 -5.960464477539e-08 591 478 -7.003545761108e-07 592 478 -58222760.85313 593 478 52708333.32467 600 478 -13333333.33771 601 478 -24555795.63051 602 478 -13177083.33766 603 478 1.9371509552e-07 604 478 -29957235.32024 605 478 -3.8743019104e-07 606 478 13333333.33771 607 478 -24555795.63051 608 478 13177083.33766 479 479 905507012.9075 480 479 -1.668930053711e-06 481 479 4.470348358154e-07 482 479 123977832.6588 489 479 5.811452865601e-07 490 479 3.129243850708e-07 491 479 -9005963.440556 492 479 1.192092895508e-07 493 479 -4.768371582031e-07 494 479 66375066.93519 495 479 4.470348358154e-08 496 479 -4.470348358154e-08 497 479 -9005963.440553 573 479 16471527.78319 574 479 -13177083.33766 575 479 -28297094.18124 576 479 65886111.10029 577 479 3.8743019104e-07 578 479 -87588646.48668 579 479 16471527.78319 580 479 13177083.33766 581 479 -28297094.18124 585 479 -9.983777999878e-07 586 479 -52708333.32467 587 479 -73187955.04869 588 479 8.642673492432e-07 589 479 1.788139343262e-07 590 479 -190352899.3709 591 479 1.475214958191e-06 592 479 52708333.32467 593 479 -73187955.0487 600 479 -16471527.78319 601 479 -13177083.33766 602 479 -28297094.18124 603 479 -65886111.10029 604 479 -2.831220626831e-07 605 479 -87588646.48668 606 479 -16471527.78319 607 479 13177083.33766 608 479 -28297094.18124 480 480 913791605.4334 481 480 7.748603820801e-06 482 480 -2.622604370117e-06 483 480 126048980.7912 484 480 -2.175569534302e-06 485 480 -1.490116119385e-06 492 480 -75155545.77471 493 480 -53333333.32457 494 480 5.066394805908e-07 495 480 -198223262.271 496 480 2.98023223877e-07 497 480 5.960464477539e-08 498 480 -75155545.7747 499 480 53333333.32457 500 480 -1.490116119385e-08 576 480 -28555987.69793 577 480 13333333.33771 578 480 16471527.78319 579 480 -88624220.55292 580 480 1.043081283569e-07 581 480 65886111.10029 582 480 -28555987.69793 583 480 -13333333.33771 584 480 16471527.78319 588 480 -7556159.747413 589 480 -3.278255462646e-07 590 480 -1.206994056702e-06 591 480 72174281.7049 592 480 1.728534698486e-06 593 480 1.221895217896e-06 594 480 -7556159.747413 595 480 -7.450580596924e-07 596 480 1.341104507446e-06 603 480 -28555987.69793 604 480 -13333333.33771 605 480 -16471527.78319 606 480 -88624220.55292 607 480 2.235174179077e-07 608 480 -65886111.10029 609 480 -28555987.69793 610 480 13333333.33771 611 480 -16471527.78319 481 481 785785459.402 482 481 -1.788139343262e-06 483 481 -2.086162567139e-06 484 481 -76617423.53181 485 481 5.066394805908e-07 492 481 -53333333.32457 493 481 -59154777.5129 494 481 2.086162567139e-07 495 481 3.576278686523e-07 496 481 36444678.54407 497 481 -4.172325134277e-07 498 481 53333333.32457 499 481 -59154777.5129 500 481 2.98023223877e-08 576 481 13333333.33771 577 481 -24555795.63051 578 481 -13177083.33766 579 481 4.470348358154e-08 580 481 -29957235.32024 581 481 2.831220626831e-07 582 481 -13333333.33771 583 481 -24555795.63051 584 481 13177083.33766 588 481 -2.98023223877e-07 589 481 -58222760.85313 590 481 -52708333.32467 591 481 1.728534698486e-06 592 481 40172745.1813 593 481 -5.960464477539e-08 594 481 -7.003545761108e-07 595 481 -58222760.85313 596 481 52708333.32467 603 481 -13333333.33771 604 481 -24555795.63051 605 481 -13177083.33766 606 481 1.9371509552e-07 607 481 -29957235.32024 608 481 -3.8743019104e-07 609 481 13333333.33771 610 481 -24555795.63051 611 481 13177083.33766 482 482 905507012.9075 483 482 -1.668930053711e-06 484 482 4.470348358154e-07 485 482 123977832.6588 492 482 5.811452865601e-07 493 482 3.129243850708e-07 494 482 -9005963.440556 495 482 1.192092895508e-07 496 482 -4.768371582031e-07 497 482 66375066.93519 498 482 4.470348358154e-08 499 482 -4.470348358154e-08 500 482 -9005963.440553 576 482 16471527.78319 577 482 -13177083.33766 578 482 -28297094.18124 579 482 65886111.10029 580 482 3.8743019104e-07 581 482 -87588646.48668 582 482 16471527.78319 583 482 13177083.33766 584 482 -28297094.18124 588 482 -9.983777999878e-07 589 482 -52708333.32467 590 482 -73187955.04869 591 482 8.642673492432e-07 592 482 1.788139343262e-07 593 482 -190352899.3709 594 482 1.475214958191e-06 595 482 52708333.32467 596 482 -73187955.0487 603 482 -16471527.78319 604 482 -13177083.33766 605 482 -28297094.18124 606 482 -65886111.10029 607 482 -2.831220626831e-07 608 482 -87588646.48668 609 482 -16471527.78319 610 482 13177083.33766 611 482 -28297094.18124 483 483 988947148.5376 484 483 53333332.25791 485 483 -9.298324584961e-06 486 483 31359232.67644 487 483 -53333332.8979 488 483 1.251697540283e-06 495 483 -75155545.77471 496 483 -53333333.32457 497 483 5.066394805908e-07 498 483 -198223262.271 499 483 2.98023223877e-07 500 483 5.960464477539e-08 501 483 -75155545.7747 502 483 53333333.32457 503 483 -1.490116119385e-08 579 483 -28555987.69793 580 483 13333333.33771 581 483 16471527.78319 582 483 -107413106.5112 583 483 -13333333.17771 584 483 65886110.96157 591 483 -7556159.747413 592 483 -3.278255462646e-07 593 483 -1.206994056702e-06 594 483 100730268.7541 595 483 13333333.07105 596 483 0.02774140238762 597 483 -26345045.89131 598 483 -13333333.23105 599 483 16471527.49884 606 483 -28555987.69793 607 483 -13333333.33771 608 483 -16471527.78319 609 483 -88624220.55292 610 483 2.235174179077e-07 611 483 -65886111.10029 612 483 -28555987.69793 613 483 13333333.33771 614 483 -16471527.78319 484 484 844940234.7245 485 484 -7.987022399902e-06 486 484 -53333332.68457 487 484 -155306402.5315 488 484 5.394220352173e-06 495 484 -53333333.32457 496 484 -59154777.5129 497 484 2.086162567139e-07 498 484 3.576278686523e-07 499 484 36444678.54407 500 484 -4.172325134277e-07 501 484 53333333.32457 502 484 -59154777.5129 503 484 2.98023223877e-08 579 484 13333333.33771 580 484 -24555795.63051 581 484 -13177083.33766 582 484 -13333333.23104 583 484 -44745929.54447 584 484 13177083.28808 591 484 -2.98023223877e-07 592 484 -58222760.85313 593 484 -52708333.32467 594 484 13333333.07105 595 484 64728540.28304 596 484 0.022192299366 597 484 -13333333.17771 598 484 -73011454.71628 599 484 52708333.03581 606 484 -13333333.33771 607 484 -24555795.63051 608 484 -13177083.33766 609 484 1.9371509552e-07 610 484 -29957235.32024 611 484 -3.8743019104e-07 612 484 13333333.33771 613 484 -24555795.63051 614 484 13177083.33766 485 485 914512974.9691 486 485 1.728534698486e-06 487 485 4.559755325317e-06 488 485 62880662.12465 495 485 5.811452865601e-07 496 485 3.129243850708e-07 497 485 -9005963.440556 498 485 1.192092895508e-07 499 485 -4.768371582031e-07 500 485 66375066.93519 501 485 4.470348358154e-08 502 485 -4.470348358154e-08 503 485 -9005963.440553 579 485 16471527.78319 580 485 -13177083.33766 581 485 -28297094.18124 582 485 65886110.96157 583 485 13177083.26329 584 485 -89840137.25118 591 485 -9.983777999878e-07 592 485 -52708333.32467 593 485 -73187955.04869 594 485 -0.0277450978756 595 485 -0.02219566702843 596 485 -162055805.4842 597 485 16471527.35667 598 485 52708332.94687 599 485 -75439445.29918 606 485 -16471527.78319 607 485 -13177083.33766 608 485 -28297094.18124 609 485 -65886111.10029 610 485 -2.831220626831e-07 611 485 -87588646.48668 612 485 -16471527.78319 613 485 13177083.33766 614 485 -28297094.18124 486 486 571119749.839 487 486 53333333.32457 488 486 -6.198883056641e-06 498 486 -75155545.77471 499 486 -53333333.32457 500 486 5.066394805908e-07 501 486 -292913008.3249 502 486 -53333332.8979 503 486 6.556510925293e-06 504 486 19534202.10867 505 486 42666666.23299 506 486 -1.490116119385e-06 582 486 -9767101.054335 583 486 15999999.84525 584 486 19765832.91331 594 486 -26345045.8913 595 486 -13333333.17771 596 486 -16471527.35667 597 486 45108925.89256 598 486 13333333.33771 599 486 13177222.19231 609 486 -28555987.69793 610 486 -13333333.33771 611 486 -16471527.78319 612 486 -107413106.5112 613 486 -13333333.23104 614 486 -65886110.96157 615 486 -9767101.054335 616 486 10666666.5635 617 486 -13177221.94221 487 487 491115909.0416 488 487 -2.974887930942e-06 498 487 -53333333.32457 499 487 -59154777.5129 500 487 2.086162567139e-07 501 487 -53333332.68457 502 487 -42244300.58137 503 487 2.145767211914e-06 504 487 63999999.34949 505 487 19534202.10866 506 487 -2.384185791016e-06 582 487 10666666.5635 583 487 -9767101.054336 584 487 -10541666.62055 594 487 -13333333.23105 595 487 -73011454.71627 596 487 -52708332.94687 597 487 13333333.33771 598 487 25107965.68335 599 487 10541666.55379 609 487 -13333333.33771 610 487 -24555795.63051 611 487 -13177083.33766 612 487 -13333333.17771 613 487 -44745929.54446 614 487 -13177083.26329 615 487 15999999.84525 616 487 -9767101.054335 617 487 15812499.93082 488 488 565941879.2302 498 488 5.811452865601e-07 499 488 3.129243850708e-07 500 488 -9005963.440556 501 488 6.943941116333e-06 502 488 1.609325408936e-06 503 488 5277897.861165 504 488 -2.145767211914e-06 505 488 -1.54972076416e-06 506 488 52091205.62311 582 488 13177221.94221 583 488 -15812499.93082 584 488 -26045602.81156 594 488 -16471527.49884 595 488 -52708333.03581 596 488 -75439445.29917 597 488 -13177222.19232 598 488 -10541666.5538 599 488 -118970561.1562 609 488 -16471527.78319 610 488 -13177083.33766 611 488 -28297094.18124 612 488 -65886110.96157 613 488 -13177083.28808 614 488 -89840137.25117 615 488 -19765832.91331 616 488 10541666.62055 617 488 -26045602.81156 489 489 913791605.4334 490 489 7.748603820801e-06 491 489 -2.622604370117e-06 492 489 126048980.7912 493 489 -2.175569534302e-06 494 489 -1.490116119385e-06 507 489 -198223262.271 508 489 2.98023223877e-07 509 489 5.960464477539e-08 510 489 -75155545.7747 511 489 53333333.32457 512 489 -1.490116119385e-08 585 489 -88624220.55292 586 489 1.043081283569e-07 587 489 65886111.10029 588 489 -28555987.69793 589 489 -13333333.33771 590 489 16471527.78319 600 489 72174281.7049 601 489 1.728534698486e-06 602 489 1.221895217896e-06 603 489 -7556159.747413 604 489 -7.450580596924e-07 605 489 1.341104507446e-06 618 489 -88624220.55292 619 489 2.235174179077e-07 620 489 -65886111.10029 621 489 -28555987.69793 622 489 13333333.33771 623 489 -16471527.78319 490 490 785785459.402 491 490 -1.788139343262e-06 492 490 -2.086162567139e-06 493 490 -76617423.53181 494 490 5.066394805908e-07 507 490 3.576278686523e-07 508 490 36444678.54407 509 490 -4.172325134277e-07 510 490 53333333.32457 511 490 -59154777.5129 512 490 2.98023223877e-08 585 490 4.470348358154e-08 586 490 -29957235.32024 587 490 2.831220626831e-07 588 490 -13333333.33771 589 490 -24555795.63051 590 490 13177083.33766 600 490 1.728534698486e-06 601 490 40172745.1813 602 490 -5.960464477539e-08 603 490 -7.003545761108e-07 604 490 -58222760.85313 605 490 52708333.32467 618 490 1.9371509552e-07 619 490 -29957235.32024 620 490 -3.8743019104e-07 621 490 13333333.33771 622 490 -24555795.63051 623 490 13177083.33766 491 491 905507012.9075 492 491 -1.668930053711e-06 493 491 4.470348358154e-07 494 491 123977832.6588 507 491 1.192092895508e-07 508 491 -4.768371582031e-07 509 491 66375066.93519 510 491 4.470348358154e-08 511 491 -4.470348358154e-08 512 491 -9005963.440553 585 491 65886111.10029 586 491 3.8743019104e-07 587 491 -87588646.48668 588 491 16471527.78319 589 491 13177083.33766 590 491 -28297094.18124 600 491 8.642673492432e-07 601 491 1.788139343262e-07 602 491 -190352899.3709 603 491 1.475214958191e-06 604 491 52708333.32467 605 491 -73187955.0487 618 491 -65886111.10029 619 491 -2.831220626831e-07 620 491 -87588646.48668 621 491 -16471527.78319 622 491 13177083.33766 623 491 -28297094.18124 492 492 913791605.4334 493 492 7.748603820801e-06 494 492 -2.622604370117e-06 495 492 126048980.7912 496 492 -2.175569534302e-06 497 492 -1.490116119385e-06 507 492 -75155545.77471 508 492 -53333333.32457 509 492 5.066394805908e-07 510 492 -198223262.271 511 492 2.98023223877e-07 512 492 5.960464477539e-08 513 492 -75155545.7747 514 492 53333333.32457 515 492 -1.490116119385e-08 585 492 -28555987.69793 586 492 13333333.33771 587 492 16471527.78319 588 492 -88624220.55292 589 492 1.043081283569e-07 590 492 65886111.10029 591 492 -28555987.69793 592 492 -13333333.33771 593 492 16471527.78319 600 492 -7556159.747413 601 492 -3.278255462646e-07 602 492 -1.206994056702e-06 603 492 72174281.7049 604 492 1.728534698486e-06 605 492 1.221895217896e-06 606 492 -7556159.747413 607 492 -7.450580596924e-07 608 492 1.341104507446e-06 618 492 -28555987.69793 619 492 -13333333.33771 620 492 -16471527.78319 621 492 -88624220.55292 622 492 2.235174179077e-07 623 492 -65886111.10029 624 492 -28555987.69793 625 492 13333333.33771 626 492 -16471527.78319 493 493 785785459.402 494 493 -1.788139343262e-06 495 493 -2.086162567139e-06 496 493 -76617423.53181 497 493 5.066394805908e-07 507 493 -53333333.32457 508 493 -59154777.5129 509 493 2.086162567139e-07 510 493 3.576278686523e-07 511 493 36444678.54407 512 493 -4.172325134277e-07 513 493 53333333.32457 514 493 -59154777.5129 515 493 2.98023223877e-08 585 493 13333333.33771 586 493 -24555795.63051 587 493 -13177083.33766 588 493 4.470348358154e-08 589 493 -29957235.32024 590 493 2.831220626831e-07 591 493 -13333333.33771 592 493 -24555795.63051 593 493 13177083.33766 600 493 -2.98023223877e-07 601 493 -58222760.85313 602 493 -52708333.32467 603 493 1.728534698486e-06 604 493 40172745.1813 605 493 -5.960464477539e-08 606 493 -7.003545761108e-07 607 493 -58222760.85313 608 493 52708333.32467 618 493 -13333333.33771 619 493 -24555795.63051 620 493 -13177083.33766 621 493 1.9371509552e-07 622 493 -29957235.32024 623 493 -3.8743019104e-07 624 493 13333333.33771 625 493 -24555795.63051 626 493 13177083.33766 494 494 905507012.9075 495 494 -1.668930053711e-06 496 494 4.470348358154e-07 497 494 123977832.6588 507 494 5.811452865601e-07 508 494 3.129243850708e-07 509 494 -9005963.440556 510 494 1.192092895508e-07 511 494 -4.768371582031e-07 512 494 66375066.93519 513 494 4.470348358154e-08 514 494 -4.470348358154e-08 515 494 -9005963.440553 585 494 16471527.78319 586 494 -13177083.33766 587 494 -28297094.18124 588 494 65886111.10029 589 494 3.8743019104e-07 590 494 -87588646.48668 591 494 16471527.78319 592 494 13177083.33766 593 494 -28297094.18124 600 494 -9.983777999878e-07 601 494 -52708333.32467 602 494 -73187955.04869 603 494 8.642673492432e-07 604 494 1.788139343262e-07 605 494 -190352899.3709 606 494 1.475214958191e-06 607 494 52708333.32467 608 494 -73187955.0487 618 494 -16471527.78319 619 494 -13177083.33766 620 494 -28297094.18124 621 494 -65886111.10029 622 494 -2.831220626831e-07 623 494 -87588646.48668 624 494 -16471527.78319 625 494 13177083.33766 626 494 -28297094.18124 495 495 913791605.4334 496 495 7.748603820801e-06 497 495 -2.622604370117e-06 498 495 126048980.7912 499 495 -2.175569534302e-06 500 495 -1.490116119385e-06 510 495 -75155545.77471 511 495 -53333333.32457 512 495 5.066394805908e-07 513 495 -198223262.271 514 495 2.98023223877e-07 515 495 5.960464477539e-08 516 495 -75155545.7747 517 495 53333333.32457 518 495 -1.490116119385e-08 588 495 -28555987.69793 589 495 13333333.33771 590 495 16471527.78319 591 495 -88624220.55292 592 495 1.043081283569e-07 593 495 65886111.10029 594 495 -28555987.69793 595 495 -13333333.33771 596 495 16471527.78319 603 495 -7556159.747413 604 495 -3.278255462646e-07 605 495 -1.206994056702e-06 606 495 72174281.7049 607 495 1.728534698486e-06 608 495 1.221895217896e-06 609 495 -7556159.747413 610 495 -7.450580596924e-07 611 495 1.341104507446e-06 621 495 -28555987.69793 622 495 -13333333.33771 623 495 -16471527.78319 624 495 -88624220.55292 625 495 2.235174179077e-07 626 495 -65886111.10029 627 495 -28555987.69793 628 495 13333333.33771 629 495 -16471527.78319 496 496 785785459.402 497 496 -1.788139343262e-06 498 496 -2.086162567139e-06 499 496 -76617423.53181 500 496 5.066394805908e-07 510 496 -53333333.32457 511 496 -59154777.5129 512 496 2.086162567139e-07 513 496 3.576278686523e-07 514 496 36444678.54407 515 496 -4.172325134277e-07 516 496 53333333.32457 517 496 -59154777.5129 518 496 2.98023223877e-08 588 496 13333333.33771 589 496 -24555795.63051 590 496 -13177083.33766 591 496 4.470348358154e-08 592 496 -29957235.32024 593 496 2.831220626831e-07 594 496 -13333333.33771 595 496 -24555795.63051 596 496 13177083.33766 603 496 -2.98023223877e-07 604 496 -58222760.85313 605 496 -52708333.32467 606 496 1.728534698486e-06 607 496 40172745.1813 608 496 -5.960464477539e-08 609 496 -7.003545761108e-07 610 496 -58222760.85313 611 496 52708333.32467 621 496 -13333333.33771 622 496 -24555795.63051 623 496 -13177083.33766 624 496 1.9371509552e-07 625 496 -29957235.32024 626 496 -3.8743019104e-07 627 496 13333333.33771 628 496 -24555795.63051 629 496 13177083.33766 497 497 905507012.9075 498 497 -1.668930053711e-06 499 497 4.470348358154e-07 500 497 123977832.6588 510 497 5.811452865601e-07 511 497 3.129243850708e-07 512 497 -9005963.440556 513 497 1.192092895508e-07 514 497 -4.768371582031e-07 515 497 66375066.93519 516 497 4.470348358154e-08 517 497 -4.470348358154e-08 518 497 -9005963.440553 588 497 16471527.78319 589 497 -13177083.33766 590 497 -28297094.18124 591 497 65886111.10029 592 497 3.8743019104e-07 593 497 -87588646.48668 594 497 16471527.78319 595 497 13177083.33766 596 497 -28297094.18124 603 497 -9.983777999878e-07 604 497 -52708333.32467 605 497 -73187955.04869 606 497 8.642673492432e-07 607 497 1.788139343262e-07 608 497 -190352899.3709 609 497 1.475214958191e-06 610 497 52708333.32467 611 497 -73187955.0487 621 497 -16471527.78319 622 497 -13177083.33766 623 497 -28297094.18124 624 497 -65886111.10029 625 497 -2.831220626831e-07 626 497 -87588646.48668 627 497 -16471527.78319 628 497 13177083.33766 629 497 -28297094.18124 498 498 913791605.4334 499 498 7.748603820801e-06 500 498 -2.622604370117e-06 501 498 126048980.7912 502 498 -2.175569534302e-06 503 498 -1.490116119385e-06 513 498 -75155545.77471 514 498 -53333333.32457 515 498 5.066394805908e-07 516 498 -198223262.271 517 498 2.98023223877e-07 518 498 5.960464477539e-08 519 498 -75155545.7747 520 498 53333333.32457 521 498 -1.490116119385e-08 591 498 -28555987.69793 592 498 13333333.33771 593 498 16471527.78319 594 498 -88624220.55292 595 498 1.043081283569e-07 596 498 65886111.10029 597 498 -28555987.69793 598 498 -13333333.33771 599 498 16471527.78319 606 498 -7556159.747413 607 498 -3.278255462646e-07 608 498 -1.206994056702e-06 609 498 72174281.7049 610 498 1.728534698486e-06 611 498 1.221895217896e-06 612 498 -7556159.747413 613 498 -7.450580596924e-07 614 498 1.341104507446e-06 624 498 -28555987.69793 625 498 -13333333.33771 626 498 -16471527.78319 627 498 -88624220.55292 628 498 2.235174179077e-07 629 498 -65886111.10029 630 498 -28555987.69793 631 498 13333333.33771 632 498 -16471527.78319 499 499 785785459.402 500 499 -1.788139343262e-06 501 499 -2.086162567139e-06 502 499 -76617423.53181 503 499 5.066394805908e-07 513 499 -53333333.32457 514 499 -59154777.5129 515 499 2.086162567139e-07 516 499 3.576278686523e-07 517 499 36444678.54407 518 499 -4.172325134277e-07 519 499 53333333.32457 520 499 -59154777.5129 521 499 2.98023223877e-08 591 499 13333333.33771 592 499 -24555795.63051 593 499 -13177083.33766 594 499 4.470348358154e-08 595 499 -29957235.32024 596 499 2.831220626831e-07 597 499 -13333333.33771 598 499 -24555795.63051 599 499 13177083.33766 606 499 -2.98023223877e-07 607 499 -58222760.85313 608 499 -52708333.32467 609 499 1.728534698486e-06 610 499 40172745.1813 611 499 -5.960464477539e-08 612 499 -7.003545761108e-07 613 499 -58222760.85313 614 499 52708333.32467 624 499 -13333333.33771 625 499 -24555795.63051 626 499 -13177083.33766 627 499 1.9371509552e-07 628 499 -29957235.32024 629 499 -3.8743019104e-07 630 499 13333333.33771 631 499 -24555795.63051 632 499 13177083.33766 500 500 905507012.9075 501 500 -1.668930053711e-06 502 500 4.470348358154e-07 503 500 123977832.6588 513 500 5.811452865601e-07 514 500 3.129243850708e-07 515 500 -9005963.440556 516 500 1.192092895508e-07 517 500 -4.768371582031e-07 518 500 66375066.93519 519 500 4.470348358154e-08 520 500 -4.470348358154e-08 521 500 -9005963.440553 591 500 16471527.78319 592 500 -13177083.33766 593 500 -28297094.18124 594 500 65886111.10029 595 500 3.8743019104e-07 596 500 -87588646.48668 597 500 16471527.78319 598 500 13177083.33766 599 500 -28297094.18124 606 500 -9.983777999878e-07 607 500 -52708333.32467 608 500 -73187955.04869 609 500 8.642673492432e-07 610 500 1.788139343262e-07 611 500 -190352899.3709 612 500 1.475214958191e-06 613 500 52708333.32467 614 500 -73187955.0487 624 500 -16471527.78319 625 500 -13177083.33766 626 500 -28297094.18124 627 500 -65886111.10029 628 500 -2.831220626831e-07 629 500 -87588646.48668 630 500 -16471527.78319 631 500 13177083.33766 632 500 -28297094.18124 501 501 988947148.5376 502 501 53333332.25791 503 501 -9.298324584961e-06 504 501 31359232.67644 505 501 -53333332.8979 506 501 1.251697540283e-06 516 501 -75155545.77471 517 501 -53333333.32457 518 501 5.066394805908e-07 519 501 -198223262.271 520 501 2.98023223877e-07 521 501 5.960464477539e-08 522 501 -75155545.7747 523 501 53333333.32457 524 501 -1.490116119385e-08 594 501 -28555987.69793 595 501 13333333.33771 596 501 16471527.78319 597 501 -107413106.5112 598 501 -13333333.17771 599 501 65886110.96157 609 501 -7556159.747413 610 501 -3.278255462646e-07 611 501 -1.206994056702e-06 612 501 100730268.7541 613 501 13333333.07105 614 501 0.02774140238762 615 501 -26345045.89131 616 501 -13333333.23105 617 501 16471527.49884 627 501 -28555987.69793 628 501 -13333333.33771 629 501 -16471527.78319 630 501 -88624220.55292 631 501 2.235174179077e-07 632 501 -65886111.10029 633 501 -28555987.69793 634 501 13333333.33771 635 501 -16471527.78319 502 502 844940234.7245 503 502 -7.987022399902e-06 504 502 -53333332.68457 505 502 -155306402.5315 506 502 5.394220352173e-06 516 502 -53333333.32457 517 502 -59154777.5129 518 502 2.086162567139e-07 519 502 3.576278686523e-07 520 502 36444678.54407 521 502 -4.172325134277e-07 522 502 53333333.32457 523 502 -59154777.5129 524 502 2.98023223877e-08 594 502 13333333.33771 595 502 -24555795.63051 596 502 -13177083.33766 597 502 -13333333.23104 598 502 -44745929.54447 599 502 13177083.28808 609 502 -2.98023223877e-07 610 502 -58222760.85313 611 502 -52708333.32467 612 502 13333333.07105 613 502 64728540.28304 614 502 0.022192299366 615 502 -13333333.17771 616 502 -73011454.71628 617 502 52708333.03581 627 502 -13333333.33771 628 502 -24555795.63051 629 502 -13177083.33766 630 502 1.9371509552e-07 631 502 -29957235.32024 632 502 -3.8743019104e-07 633 502 13333333.33771 634 502 -24555795.63051 635 502 13177083.33766 503 503 914512974.9691 504 503 1.728534698486e-06 505 503 4.559755325317e-06 506 503 62880662.12465 516 503 5.811452865601e-07 517 503 3.129243850708e-07 518 503 -9005963.440556 519 503 1.192092895508e-07 520 503 -4.768371582031e-07 521 503 66375066.93519 522 503 4.470348358154e-08 523 503 -4.470348358154e-08 524 503 -9005963.440553 594 503 16471527.78319 595 503 -13177083.33766 596 503 -28297094.18124 597 503 65886110.96157 598 503 13177083.26329 599 503 -89840137.25118 609 503 -9.983777999878e-07 610 503 -52708333.32467 611 503 -73187955.04869 612 503 -0.0277450978756 613 503 -0.02219566702843 614 503 -162055805.4842 615 503 16471527.35667 616 503 52708332.94687 617 503 -75439445.29918 627 503 -16471527.78319 628 503 -13177083.33766 629 503 -28297094.18124 630 503 -65886111.10029 631 503 -2.831220626831e-07 632 503 -87588646.48668 633 503 -16471527.78319 634 503 13177083.33766 635 503 -28297094.18124 504 504 509154568.8248 505 504 25085639.27704 506 504 -5.960464477539e-07 519 504 -75155545.77471 520 504 -53333333.32457 521 504 5.066394805908e-07 522 504 -228025244.9359 523 504 -25085638.85037 524 504 7.152557373047e-07 525 504 -4082989.550575 526 504 42666666.23299 527 504 -1.251697540283e-06 597 504 -9767101.054335 598 504 15999999.84525 599 504 19765832.91331 612 504 -26345045.8913 613 504 -13333333.17771 614 504 -16471527.35667 615 504 37378109.13818 616 504 6271409.822349 617 504 11432222.19995 630 504 -28555987.69793 631 504 -13333333.33771 632 504 -16471527.78319 633 504 -87310926.38278 634 504 -6271409.715683 635 504 -57161110.99975 636 504 -11791159.78617 637 504 10666666.5635 638 504 -9687222.01637 505 505 472604990.7818 506 505 -2.652406692505e-06 519 505 -53333333.32457 520 505 -59154777.5129 521 505 2.086162567139e-07 522 505 -25085638.63704 523 505 9928432.40691 524 505 2.384185791016e-07 525 505 63999999.34949 526 505 -34822221.9043 527 505 -1.788139343262e-07 597 505 10666666.5635 598 505 -9767101.054336 599 505 -10541666.62055 612 505 -13333333.23105 613 505 -73011454.71627 614 505 -52708332.94687 615 505 6271409.822349 616 505 28240714.62293 617 505 9145833.226567 630 505 -13333333.33771 631 505 -24555795.63051 632 505 -13177083.33766 633 505 -6271409.66235 634 505 -27822507.01778 635 505 -6197916.627156 636 505 15999999.84526 637 505 -19475967.87838 638 505 18604166.53816 506 506 522045024.059 519 506 5.811452865601e-07 520 506 3.129243850708e-07 521 506 -9005963.440556 522 506 7.450580596924e-07 523 506 2.384185791016e-07 524 506 26229073.67805 525 506 -1.490116119385e-06 526 506 2.384185791016e-07 527 506 19851260.21887 597 506 13177221.94221 598 506 -15812499.93082 599 506 -26045602.81156 612 506 -16471527.49884 613 506 -52708333.03581 614 506 -75439445.29917 615 506 -11432222.19995 616 506 -9145833.22657 617 506 -109250165.6029 630 506 -16471527.78319 631 506 -13177083.33766 632 506 -28297094.18124 633 506 -57161110.99975 634 506 -6197916.651946 635 506 -74255038.56586 636 506 -14530833.02455 637 506 14729166.53156 638 506 -23758284.67089 507 507 913791605.4334 508 507 7.748603820801e-06 509 507 -2.622604370117e-06 510 507 126048980.7912 511 507 -2.175569534302e-06 512 507 -1.490116119385e-06 528 507 -198223262.271 529 507 2.98023223877e-07 530 507 5.960464477539e-08 531 507 -75155545.7747 532 507 53333333.32457 533 507 -1.490116119385e-08 600 507 -88624220.55292 601 507 1.043081283569e-07 602 507 65886111.10029 603 507 -28555987.69793 604 507 -13333333.33771 605 507 16471527.78319 618 507 72174281.7049 619 507 1.728534698486e-06 620 507 1.221895217896e-06 621 507 -7556159.747413 622 507 -7.450580596924e-07 623 507 1.341104507446e-06 639 507 -88624220.55292 640 507 2.235174179077e-07 641 507 -65886111.10029 642 507 -28555987.69793 643 507 13333333.33771 644 507 -16471527.78319 508 508 785785459.402 509 508 -1.788139343262e-06 510 508 -2.086162567139e-06 511 508 -76617423.53181 512 508 5.066394805908e-07 528 508 3.576278686523e-07 529 508 36444678.54407 530 508 -4.172325134277e-07 531 508 53333333.32457 532 508 -59154777.5129 533 508 2.98023223877e-08 600 508 4.470348358154e-08 601 508 -29957235.32024 602 508 2.831220626831e-07 603 508 -13333333.33771 604 508 -24555795.63051 605 508 13177083.33766 618 508 1.728534698486e-06 619 508 40172745.1813 620 508 -5.960464477539e-08 621 508 -7.003545761108e-07 622 508 -58222760.85313 623 508 52708333.32467 639 508 1.9371509552e-07 640 508 -29957235.32024 641 508 -3.8743019104e-07 642 508 13333333.33771 643 508 -24555795.63051 644 508 13177083.33766 509 509 905507012.9075 510 509 -1.668930053711e-06 511 509 4.470348358154e-07 512 509 123977832.6588 528 509 1.192092895508e-07 529 509 -4.768371582031e-07 530 509 66375066.93519 531 509 4.470348358154e-08 532 509 -4.470348358154e-08 533 509 -9005963.440553 600 509 65886111.10029 601 509 3.8743019104e-07 602 509 -87588646.48668 603 509 16471527.78319 604 509 13177083.33766 605 509 -28297094.18124 618 509 8.642673492432e-07 619 509 1.788139343262e-07 620 509 -190352899.3709 621 509 1.475214958191e-06 622 509 52708333.32467 623 509 -73187955.0487 639 509 -65886111.10029 640 509 -2.831220626831e-07 641 509 -87588646.48668 642 509 -16471527.78319 643 509 13177083.33766 644 509 -28297094.18124 510 510 913791605.4334 511 510 7.748603820801e-06 512 510 -2.622604370117e-06 513 510 126048980.7912 514 510 -2.175569534302e-06 515 510 -1.490116119385e-06 528 510 -75155545.77471 529 510 -53333333.32457 530 510 5.066394805908e-07 531 510 -198223262.271 532 510 2.98023223877e-07 533 510 5.960464477539e-08 534 510 -75155545.7747 535 510 53333333.32457 536 510 -1.490116119385e-08 600 510 -28555987.69793 601 510 13333333.33771 602 510 16471527.78319 603 510 -88624220.55292 604 510 1.043081283569e-07 605 510 65886111.10029 606 510 -28555987.69793 607 510 -13333333.33771 608 510 16471527.78319 618 510 -7556159.747413 619 510 -3.278255462646e-07 620 510 -1.206994056702e-06 621 510 72174281.7049 622 510 1.728534698486e-06 623 510 1.221895217896e-06 624 510 -7556159.747413 625 510 -7.450580596924e-07 626 510 1.341104507446e-06 639 510 -28555987.69793 640 510 -13333333.33771 641 510 -16471527.78319 642 510 -88624220.55292 643 510 2.235174179077e-07 644 510 -65886111.10029 645 510 -28555987.69793 646 510 13333333.33771 647 510 -16471527.78319 511 511 785785459.402 512 511 -1.788139343262e-06 513 511 -2.086162567139e-06 514 511 -76617423.53181 515 511 5.066394805908e-07 528 511 -53333333.32457 529 511 -59154777.5129 530 511 2.086162567139e-07 531 511 3.576278686523e-07 532 511 36444678.54407 533 511 -4.172325134277e-07 534 511 53333333.32457 535 511 -59154777.5129 536 511 2.98023223877e-08 600 511 13333333.33771 601 511 -24555795.63051 602 511 -13177083.33766 603 511 4.470348358154e-08 604 511 -29957235.32024 605 511 2.831220626831e-07 606 511 -13333333.33771 607 511 -24555795.63051 608 511 13177083.33766 618 511 -2.98023223877e-07 619 511 -58222760.85313 620 511 -52708333.32467 621 511 1.728534698486e-06 622 511 40172745.1813 623 511 -5.960464477539e-08 624 511 -7.003545761108e-07 625 511 -58222760.85313 626 511 52708333.32467 639 511 -13333333.33771 640 511 -24555795.63051 641 511 -13177083.33766 642 511 1.9371509552e-07 643 511 -29957235.32024 644 511 -3.8743019104e-07 645 511 13333333.33771 646 511 -24555795.63051 647 511 13177083.33766 512 512 905507012.9075 513 512 -1.668930053711e-06 514 512 4.470348358154e-07 515 512 123977832.6588 528 512 5.811452865601e-07 529 512 3.129243850708e-07 530 512 -9005963.440556 531 512 1.192092895508e-07 532 512 -4.768371582031e-07 533 512 66375066.93519 534 512 4.470348358154e-08 535 512 -4.470348358154e-08 536 512 -9005963.440553 600 512 16471527.78319 601 512 -13177083.33766 602 512 -28297094.18124 603 512 65886111.10029 604 512 3.8743019104e-07 605 512 -87588646.48668 606 512 16471527.78319 607 512 13177083.33766 608 512 -28297094.18124 618 512 -9.983777999878e-07 619 512 -52708333.32467 620 512 -73187955.04869 621 512 8.642673492432e-07 622 512 1.788139343262e-07 623 512 -190352899.3709 624 512 1.475214958191e-06 625 512 52708333.32467 626 512 -73187955.0487 639 512 -16471527.78319 640 512 -13177083.33766 641 512 -28297094.18124 642 512 -65886111.10029 643 512 -2.831220626831e-07 644 512 -87588646.48668 645 512 -16471527.78319 646 512 13177083.33766 647 512 -28297094.18124 513 513 913791605.4334 514 513 7.748603820801e-06 515 513 -2.622604370117e-06 516 513 126048980.7912 517 513 -2.175569534302e-06 518 513 -1.490116119385e-06 531 513 -75155545.77471 532 513 -53333333.32457 533 513 5.066394805908e-07 534 513 -198223262.271 535 513 2.98023223877e-07 536 513 5.960464477539e-08 537 513 -75155545.7747 538 513 53333333.32457 539 513 -1.490116119385e-08 603 513 -28555987.69793 604 513 13333333.33771 605 513 16471527.78319 606 513 -88624220.55292 607 513 1.043081283569e-07 608 513 65886111.10029 609 513 -28555987.69793 610 513 -13333333.33771 611 513 16471527.78319 621 513 -7556159.747413 622 513 -3.278255462646e-07 623 513 -1.206994056702e-06 624 513 72174281.7049 625 513 1.728534698486e-06 626 513 1.221895217896e-06 627 513 -7556159.747413 628 513 -7.450580596924e-07 629 513 1.341104507446e-06 642 513 -28555987.69793 643 513 -13333333.33771 644 513 -16471527.78319 645 513 -88624220.55292 646 513 2.235174179077e-07 647 513 -65886111.10029 648 513 -28555987.69793 649 513 13333333.33771 650 513 -16471527.78319 514 514 785785459.402 515 514 -1.788139343262e-06 516 514 -2.086162567139e-06 517 514 -76617423.53181 518 514 5.066394805908e-07 531 514 -53333333.32457 532 514 -59154777.5129 533 514 2.086162567139e-07 534 514 3.576278686523e-07 535 514 36444678.54407 536 514 -4.172325134277e-07 537 514 53333333.32457 538 514 -59154777.5129 539 514 2.98023223877e-08 603 514 13333333.33771 604 514 -24555795.63051 605 514 -13177083.33766 606 514 4.470348358154e-08 607 514 -29957235.32024 608 514 2.831220626831e-07 609 514 -13333333.33771 610 514 -24555795.63051 611 514 13177083.33766 621 514 -2.98023223877e-07 622 514 -58222760.85313 623 514 -52708333.32467 624 514 1.728534698486e-06 625 514 40172745.1813 626 514 -5.960464477539e-08 627 514 -7.003545761108e-07 628 514 -58222760.85313 629 514 52708333.32467 642 514 -13333333.33771 643 514 -24555795.63051 644 514 -13177083.33766 645 514 1.9371509552e-07 646 514 -29957235.32024 647 514 -3.8743019104e-07 648 514 13333333.33771 649 514 -24555795.63051 650 514 13177083.33766 515 515 905507012.9075 516 515 -1.668930053711e-06 517 515 4.470348358154e-07 518 515 123977832.6588 531 515 5.811452865601e-07 532 515 3.129243850708e-07 533 515 -9005963.440556 534 515 1.192092895508e-07 535 515 -4.768371582031e-07 536 515 66375066.93519 537 515 4.470348358154e-08 538 515 -4.470348358154e-08 539 515 -9005963.440553 603 515 16471527.78319 604 515 -13177083.33766 605 515 -28297094.18124 606 515 65886111.10029 607 515 3.8743019104e-07 608 515 -87588646.48668 609 515 16471527.78319 610 515 13177083.33766 611 515 -28297094.18124 621 515 -9.983777999878e-07 622 515 -52708333.32467 623 515 -73187955.04869 624 515 8.642673492432e-07 625 515 1.788139343262e-07 626 515 -190352899.3709 627 515 1.475214958191e-06 628 515 52708333.32467 629 515 -73187955.0487 642 515 -16471527.78319 643 515 -13177083.33766 644 515 -28297094.18124 645 515 -65886111.10029 646 515 -2.831220626831e-07 647 515 -87588646.48668 648 515 -16471527.78319 649 515 13177083.33766 650 515 -28297094.18124 516 516 913791605.4334 517 516 7.748603820801e-06 518 516 -2.622604370117e-06 519 516 126048980.7912 520 516 -2.175569534302e-06 521 516 -1.490116119385e-06 534 516 -75155545.77471 535 516 -53333333.32457 536 516 5.066394805908e-07 537 516 -198223262.271 538 516 2.98023223877e-07 539 516 5.960464477539e-08 540 516 -75155545.7747 541 516 53333333.32457 542 516 -1.490116119385e-08 606 516 -28555987.69793 607 516 13333333.33771 608 516 16471527.78319 609 516 -88624220.55292 610 516 1.043081283569e-07 611 516 65886111.10029 612 516 -28555987.69793 613 516 -13333333.33771 614 516 16471527.78319 624 516 -7556159.747413 625 516 -3.278255462646e-07 626 516 -1.206994056702e-06 627 516 72174281.7049 628 516 1.728534698486e-06 629 516 1.221895217896e-06 630 516 -7556159.747413 631 516 -7.450580596924e-07 632 516 1.341104507446e-06 645 516 -28555987.69793 646 516 -13333333.33771 647 516 -16471527.78319 648 516 -88624220.55292 649 516 2.235174179077e-07 650 516 -65886111.10029 651 516 -28555987.69793 652 516 13333333.33771 653 516 -16471527.78319 517 517 785785459.402 518 517 -1.788139343262e-06 519 517 -2.086162567139e-06 520 517 -76617423.53181 521 517 5.066394805908e-07 534 517 -53333333.32457 535 517 -59154777.5129 536 517 2.086162567139e-07 537 517 3.576278686523e-07 538 517 36444678.54407 539 517 -4.172325134277e-07 540 517 53333333.32457 541 517 -59154777.5129 542 517 2.98023223877e-08 606 517 13333333.33771 607 517 -24555795.63051 608 517 -13177083.33766 609 517 4.470348358154e-08 610 517 -29957235.32024 611 517 2.831220626831e-07 612 517 -13333333.33771 613 517 -24555795.63051 614 517 13177083.33766 624 517 -2.98023223877e-07 625 517 -58222760.85313 626 517 -52708333.32467 627 517 1.728534698486e-06 628 517 40172745.1813 629 517 -5.960464477539e-08 630 517 -7.003545761108e-07 631 517 -58222760.85313 632 517 52708333.32467 645 517 -13333333.33771 646 517 -24555795.63051 647 517 -13177083.33766 648 517 1.9371509552e-07 649 517 -29957235.32024 650 517 -3.8743019104e-07 651 517 13333333.33771 652 517 -24555795.63051 653 517 13177083.33766 518 518 905507012.9075 519 518 -1.668930053711e-06 520 518 4.470348358154e-07 521 518 123977832.6588 534 518 5.811452865601e-07 535 518 3.129243850708e-07 536 518 -9005963.440556 537 518 1.192092895508e-07 538 518 -4.768371582031e-07 539 518 66375066.93519 540 518 4.470348358154e-08 541 518 -4.470348358154e-08 542 518 -9005963.440553 606 518 16471527.78319 607 518 -13177083.33766 608 518 -28297094.18124 609 518 65886111.10029 610 518 3.8743019104e-07 611 518 -87588646.48668 612 518 16471527.78319 613 518 13177083.33766 614 518 -28297094.18124 624 518 -9.983777999878e-07 625 518 -52708333.32467 626 518 -73187955.04869 627 518 8.642673492432e-07 628 518 1.788139343262e-07 629 518 -190352899.3709 630 518 1.475214958191e-06 631 518 52708333.32467 632 518 -73187955.0487 645 518 -16471527.78319 646 518 -13177083.33766 647 518 -28297094.18124 648 518 -65886111.10029 649 518 -2.831220626831e-07 650 518 -87588646.48668 651 518 -16471527.78319 652 518 13177083.33766 653 518 -28297094.18124 519 519 913791605.4334 520 519 7.748603820801e-06 521 519 -2.622604370117e-06 522 519 126048980.7912 523 519 -2.175569534302e-06 524 519 -1.490116119385e-06 537 519 -75155545.77471 538 519 -53333333.32457 539 519 5.066394805908e-07 540 519 -198223262.271 541 519 2.98023223877e-07 542 519 5.960464477539e-08 543 519 -75155545.7747 544 519 53333333.32457 545 519 -1.490116119385e-08 609 519 -28555987.69793 610 519 13333333.33771 611 519 16471527.78319 612 519 -88624220.55292 613 519 1.043081283569e-07 614 519 65886111.10029 615 519 -28555987.69793 616 519 -13333333.33771 617 519 16471527.78319 627 519 -7556159.747413 628 519 -3.278255462646e-07 629 519 -1.206994056702e-06 630 519 72174281.7049 631 519 1.728534698486e-06 632 519 1.221895217896e-06 633 519 -7556159.747413 634 519 -7.450580596924e-07 635 519 1.341104507446e-06 648 519 -28555987.69793 649 519 -13333333.33771 650 519 -16471527.78319 651 519 -88624220.55292 652 519 2.235174179077e-07 653 519 -65886111.10029 654 519 -28555987.69793 655 519 13333333.33771 656 519 -16471527.78319 520 520 785785459.402 521 520 -1.788139343262e-06 522 520 -2.086162567139e-06 523 520 -76617423.53181 524 520 5.066394805908e-07 537 520 -53333333.32457 538 520 -59154777.5129 539 520 2.086162567139e-07 540 520 3.576278686523e-07 541 520 36444678.54407 542 520 -4.172325134277e-07 543 520 53333333.32457 544 520 -59154777.5129 545 520 2.98023223877e-08 609 520 13333333.33771 610 520 -24555795.63051 611 520 -13177083.33766 612 520 4.470348358154e-08 613 520 -29957235.32024 614 520 2.831220626831e-07 615 520 -13333333.33771 616 520 -24555795.63051 617 520 13177083.33766 627 520 -2.98023223877e-07 628 520 -58222760.85313 629 520 -52708333.32467 630 520 1.728534698486e-06 631 520 40172745.1813 632 520 -5.960464477539e-08 633 520 -7.003545761108e-07 634 520 -58222760.85313 635 520 52708333.32467 648 520 -13333333.33771 649 520 -24555795.63051 650 520 -13177083.33766 651 520 1.9371509552e-07 652 520 -29957235.32024 653 520 -3.8743019104e-07 654 520 13333333.33771 655 520 -24555795.63051 656 520 13177083.33766 521 521 905507012.9075 522 521 -1.668930053711e-06 523 521 4.470348358154e-07 524 521 123977832.6588 537 521 5.811452865601e-07 538 521 3.129243850708e-07 539 521 -9005963.440556 540 521 1.192092895508e-07 541 521 -4.768371582031e-07 542 521 66375066.93519 543 521 4.470348358154e-08 544 521 -4.470348358154e-08 545 521 -9005963.440553 609 521 16471527.78319 610 521 -13177083.33766 611 521 -28297094.18124 612 521 65886111.10029 613 521 3.8743019104e-07 614 521 -87588646.48668 615 521 16471527.78319 616 521 13177083.33766 617 521 -28297094.18124 627 521 -9.983777999878e-07 628 521 -52708333.32467 629 521 -73187955.04869 630 521 8.642673492432e-07 631 521 1.788139343262e-07 632 521 -190352899.3709 633 521 1.475214958191e-06 634 521 52708333.32467 635 521 -73187955.0487 648 521 -16471527.78319 649 521 -13177083.33766 650 521 -28297094.18124 651 521 -65886111.10029 652 521 -2.831220626831e-07 653 521 -87588646.48668 654 521 -16471527.78319 655 521 13177083.33766 656 521 -28297094.18124 522 522 886076107.088 523 522 29506578.58962 524 522 -4.172325134277e-06 525 522 -15650105.72171 526 522 -67995305.55008 527 522 -1.788139343262e-06 540 522 -75155545.77471 541 522 -53333333.32457 542 522 5.066394805908e-07 543 522 -169993346.4286 544 522 13585574.37073 545 522 1.579523086548e-06 546 522 -49437968.75893 547 522 49988791.22677 548 522 2.637505531311e-06 612 522 -28555987.69793 613 522 13333333.33771 614 522 16471527.78319 615 522 -87310926.38278 616 522 -6271409.66235 617 522 57161110.99975 630 522 -7556159.747413 631 522 -3.278255462646e-07 632 522 -1.206994056702e-06 633 522 87947441.63499 634 522 7376644.65104 635 522 0.02039501070976 636 522 -32923131.70809 637 522 -16998826.39589 638 522 16470833.12799 651 522 -28555987.69793 652 522 -13333333.33771 653 522 -16471527.78319 654 522 -80272721.40676 655 522 3396393.594356 656 522 -61522916.65699 657 522 -22126192.23639 658 522 12497197.81285 659 522 -12109027.78175 523 523 821417136.7999 524 523 5.125999450684e-06 525 523 -67995305.33675 526 523 -205861449.307 527 523 -3.56137752533e-06 540 523 -53333333.32457 541 523 -59154777.5129 542 523 2.086162567139e-07 543 523 13585574.37073 544 523 48420638.98572 545 523 8.940696716309e-07 546 523 49988791.22677 547 523 -80270449.84323 548 523 -2.548098564148e-06 612 523 13333333.33771 613 523 -24555795.63051 614 523 -13177083.33766 615 523 -6271409.715683 616 523 -27822507.01778 617 523 6197916.651945 630 523 -2.98023223877e-07 631 523 -58222760.85313 632 523 -52708333.32467 633 523 7376644.65104 634 523 71782699.055 635 523 0.01631674170494 636 523 -16998826.34256 637 523 -80475967.62785 638 523 52708333.09468 651 523 -13333333.33771 652 523 -24555795.63051 653 523 -13177083.33766 654 523 3396393.594355 655 523 -25669225.02627 656 523 3489583.332416 657 523 12497197.81285 658 523 -29834312.51126 659 523 16666666.67214 524 524 843458196.4419 525 524 1.192092895508e-07 526 524 -3.039836883545e-06 527 524 21637954.44543 540 524 5.811452865601e-07 541 524 3.129243850708e-07 542 524 -9005963.440556 543 524 6.85453414917e-07 544 524 1.072883605957e-06 545 524 73680450.86193 546 524 1.996755599976e-06 547 524 -2.592802047729e-06 548 524 -7752033.245933 612 524 16471527.78319 613 524 -13177083.33766 614 524 -28297094.18124 615 524 57161110.99975 616 524 6197916.627155 617 524 -74255038.56586 630 524 -9.983777999878e-07 631 524 -52708333.32467 632 524 -73187955.04869 633 524 -0.02039638161659 634 524 -0.01631587743759 635 524 -145326344.7753 636 524 16470833.02261 637 524 52708333.03516 638 524 -71952125.45461 651 524 -16471527.78319 652 524 -13177083.33766 653 524 -28297094.18124 654 524 -61522916.65613 655 524 3489583.333104 656 524 -82311580.01855 657 524 -12109027.78175 658 524 16666666.67214 659 524 -27982541.75396 525 525 531775095.0468 526 525 8503382.432196 543 525 -80370018.26376 544 525 -52907761.3966 545 525 -1.847743988037e-06 546 525 -113455777.5588 547 525 18108359.28725 548 525 1.311302185059e-06 549 525 68483060.18779 550 525 -18744593.63382 551 525 5.960464477539e-07 552 525 -42329538.80213 553 525 49035919.29823 554 525 1.922249794006e-06 615 525 -11791159.78616 616 525 15999999.84526 617 525 14530833.02455 633 525 -32923131.7081 634 525 -16998826.34256 635 525 -16470833.02261 636 525 14669982.03611 637 525 2125845.609096 638 525 12968611.10898 654 525 -29859204.61641 655 525 -13226940.35567 656 525 -16470833.33874 657 525 -76387958.09069 658 525 4527089.824043 659 525 -64843055.54491 660 525 -11712307.86994 661 525 -4686148.410764 662 525 8424305.555742 663 525 -24181082.63358 664 525 12258979.8306 665 525 -15950694.44968 526 526 626925818.4292 527 526 3.933906555176e-06 543 526 -52907761.3966 544 526 -54873071.8125 545 526 -8.642673492432e-07 546 526 18108359.28725 547 526 97871879.78123 548 526 3.337860107422e-06 549 526 2588739.696008 550 526 -35173186.25688 551 526 -3.695487976074e-06 552 526 49035919.29823 553 526 -49698043.59219 554 526 -1.505017280579e-06 615 526 10666666.5635 616 526 -19475967.87838 617 526 -14729166.53156 633 526 -16998826.39589 634 526 -80475967.62786 635 526 -52708333.03516 636 526 2125845.609096 637 526 38457662.89345 638 526 3874999.888226 654 526 -13226940.35567 655 526 -23484968.00046 656 526 -13177083.33766 657 526 4527089.824043 658 526 -23556043.72965 659 526 3489583.332417 660 526 647184.9243208 661 526 -37626369.49388 662 526 33333333.32786 663 526 12258979.8306 664 526 -26023208.832 665 526 16666666.67214 527 527 650521074.3426 543 527 -1.788139343262e-06 544 527 -7.748603820801e-07 545 527 -9261489.102506 546 527 1.117587089539e-06 547 527 3.337860107422e-06 548 527 131575339.2945 549 527 1.54972076416e-06 550 527 -3.75509262085e-06 551 527 90632596.10001 552 527 2.279877662659e-06 553 527 -1.594424247742e-06 554 527 13362532.26789 615 527 9687222.01637 616 527 -18604166.53816 617 527 -23758284.67089 633 527 -16470833.12799 634 527 -52708333.09468 635 527 -71952125.45462 636 527 -12968611.10898 637 527 -3874999.888222 638 527 -152766509.4438 654 527 -16470833.33874 655 527 -13177083.33766 656 527 -28359905.71829 657 527 -64843055.54491 658 527 3489583.333105 659 527 -95170201.65885 660 527 299305.5539342 661 527 33333333.32786 662 527 -54230045.43137 663 527 -15950694.44968 664 527 16666666.67214 665 527 -32922561.4056 528 528 456895802.7167 529 528 3.933906555176e-06 530 528 -1.668930053711e-06 531 528 63024490.39562 532 528 10666666.66491 533 528 -1.013278961182e-06 618 528 -88624220.55292 619 528 1.043081283569e-07 620 528 65886111.10029 621 528 -28555987.69793 622 528 -13333333.33771 623 528 16471527.78319 639 528 36087140.85245 640 528 8.344650268555e-07 641 528 -13177222.22006 642 528 -3778079.873706 643 528 2666666.667542 644 528 -3294305.556637 529 529 392892729.701 530 529 -7.152557373047e-07 531 529 -10666666.66491 532 529 -38308711.7659 533 529 3.8743019104e-07 618 529 4.470348358154e-08 619 529 -29957235.32024 620 529 2.831220626831e-07 621 529 -13333333.33771 622 529 -24555795.63051 623 529 13177083.33766 639 529 8.940696716309e-07 640 529 20086372.59065 641 529 -2.98023223877e-08 642 529 -2666666.667543 643 529 -29111380.42657 644 529 26354166.66234 530 530 452753506.4538 531 530 -8.940696716309e-07 532 530 1.490116119385e-07 533 530 61988916.32938 618 530 65886111.10029 619 530 3.8743019104e-07 620 530 -87588646.48668 621 530 16471527.78319 622 530 13177083.33766 623 530 -28297094.18124 639 530 13177222.22006 640 530 1.490116119385e-07 641 530 -95176449.68545 642 530 3294305.556638 643 530 26354166.66234 644 530 -36593977.52435 531 531 456895802.7167 532 531 3.933906555176e-06 533 531 -1.668930053711e-06 534 531 63024490.39562 535 531 10666666.66491 536 531 -1.013278961182e-06 618 531 -28555987.69793 619 531 13333333.33771 620 531 16471527.78319 621 531 -88624220.55292 622 531 1.043081283569e-07 623 531 65886111.10029 624 531 -28555987.69793 625 531 -13333333.33771 626 531 16471527.78319 639 531 -3778079.873706 640 531 -2666666.667542 641 531 -3294305.556638 642 531 36087140.85245 643 531 8.344650268555e-07 644 531 -13177222.22006 645 531 -3778079.873706 646 531 2666666.667542 647 531 -3294305.556637 532 532 392892729.701 533 532 -7.152557373047e-07 534 532 -10666666.66491 535 532 -38308711.7659 536 532 3.8743019104e-07 618 532 13333333.33771 619 532 -24555795.63051 620 532 -13177083.33766 621 532 4.470348358154e-08 622 532 -29957235.32024 623 532 2.831220626831e-07 624 532 -13333333.33771 625 532 -24555795.63051 626 532 13177083.33766 639 532 2666666.667542 640 532 -29111380.42657 641 532 -26354166.66234 642 532 8.940696716309e-07 643 532 20086372.59065 644 532 -2.98023223877e-08 645 532 -2666666.667543 646 532 -29111380.42657 647 532 26354166.66234 533 533 452753506.4538 534 533 -8.940696716309e-07 535 533 1.490116119385e-07 536 533 61988916.32938 618 533 16471527.78319 619 533 -13177083.33766 620 533 -28297094.18124 621 533 65886111.10029 622 533 3.8743019104e-07 623 533 -87588646.48668 624 533 16471527.78319 625 533 13177083.33766 626 533 -28297094.18124 639 533 3294305.556637 640 533 -26354166.66234 641 533 -36593977.52435 642 533 13177222.22006 643 533 1.490116119385e-07 644 533 -95176449.68545 645 533 3294305.556638 646 533 26354166.66234 647 533 -36593977.52435 534 534 456895802.7167 535 534 3.933906555176e-06 536 534 -1.668930053711e-06 537 534 63024490.39562 538 534 10666666.66491 539 534 -1.013278961182e-06 621 534 -28555987.69793 622 534 13333333.33771 623 534 16471527.78319 624 534 -88624220.55292 625 534 1.043081283569e-07 626 534 65886111.10029 627 534 -28555987.69793 628 534 -13333333.33771 629 534 16471527.78319 642 534 -3778079.873706 643 534 -2666666.667542 644 534 -3294305.556638 645 534 36087140.85245 646 534 8.344650268555e-07 647 534 -13177222.22006 648 534 -3778079.873706 649 534 2666666.667542 650 534 -3294305.556637 535 535 392892729.701 536 535 -7.152557373047e-07 537 535 -10666666.66491 538 535 -38308711.7659 539 535 3.8743019104e-07 621 535 13333333.33771 622 535 -24555795.63051 623 535 -13177083.33766 624 535 4.470348358154e-08 625 535 -29957235.32024 626 535 2.831220626831e-07 627 535 -13333333.33771 628 535 -24555795.63051 629 535 13177083.33766 642 535 2666666.667542 643 535 -29111380.42657 644 535 -26354166.66234 645 535 8.940696716309e-07 646 535 20086372.59065 647 535 -2.98023223877e-08 648 535 -2666666.667543 649 535 -29111380.42657 650 535 26354166.66234 536 536 452753506.4538 537 536 -8.940696716309e-07 538 536 1.490116119385e-07 539 536 61988916.32938 621 536 16471527.78319 622 536 -13177083.33766 623 536 -28297094.18124 624 536 65886111.10029 625 536 3.8743019104e-07 626 536 -87588646.48668 627 536 16471527.78319 628 536 13177083.33766 629 536 -28297094.18124 642 536 3294305.556637 643 536 -26354166.66234 644 536 -36593977.52435 645 536 13177222.22006 646 536 1.490116119385e-07 647 536 -95176449.68545 648 536 3294305.556638 649 536 26354166.66234 650 536 -36593977.52435 537 537 456895802.7167 538 537 3.933906555176e-06 539 537 -1.668930053711e-06 540 537 63024490.39562 541 537 10666666.66491 542 537 -1.013278961182e-06 624 537 -28555987.69793 625 537 13333333.33771 626 537 16471527.78319 627 537 -88624220.55292 628 537 1.043081283569e-07 629 537 65886111.10029 630 537 -28555987.69793 631 537 -13333333.33771 632 537 16471527.78319 645 537 -3778079.873706 646 537 -2666666.667542 647 537 -3294305.556638 648 537 36087140.85245 649 537 8.344650268555e-07 650 537 -13177222.22006 651 537 -3778079.873706 652 537 2666666.667542 653 537 -3294305.556637 538 538 392892729.701 539 538 -7.152557373047e-07 540 538 -10666666.66491 541 538 -38308711.7659 542 538 3.8743019104e-07 624 538 13333333.33771 625 538 -24555795.63051 626 538 -13177083.33766 627 538 4.470348358154e-08 628 538 -29957235.32024 629 538 2.831220626831e-07 630 538 -13333333.33771 631 538 -24555795.63051 632 538 13177083.33766 645 538 2666666.667542 646 538 -29111380.42657 647 538 -26354166.66234 648 538 8.940696716309e-07 649 538 20086372.59065 650 538 -2.98023223877e-08 651 538 -2666666.667543 652 538 -29111380.42657 653 538 26354166.66234 539 539 452753506.4538 540 539 -8.940696716309e-07 541 539 1.490116119385e-07 542 539 61988916.32938 624 539 16471527.78319 625 539 -13177083.33766 626 539 -28297094.18124 627 539 65886111.10029 628 539 3.8743019104e-07 629 539 -87588646.48668 630 539 16471527.78319 631 539 13177083.33766 632 539 -28297094.18124 645 539 3294305.556637 646 539 -26354166.66234 647 539 -36593977.52435 648 539 13177222.22006 649 539 1.490116119385e-07 650 539 -95176449.68545 651 539 3294305.556638 652 539 26354166.66234 653 539 -36593977.52435 540 540 456895802.7167 541 540 3.933906555176e-06 542 540 -1.668930053711e-06 543 540 63024490.39562 544 540 10666666.66491 545 540 -1.013278961182e-06 627 540 -28555987.69793 628 540 13333333.33771 629 540 16471527.78319 630 540 -88624220.55292 631 540 1.043081283569e-07 632 540 65886111.10029 633 540 -28555987.69793 634 540 -13333333.33771 635 540 16471527.78319 648 540 -3778079.873706 649 540 -2666666.667542 650 540 -3294305.556638 651 540 36087140.85245 652 540 8.344650268555e-07 653 540 -13177222.22006 654 540 -3778079.873706 655 540 2666666.667542 656 540 -3294305.556637 541 541 392892729.701 542 541 -7.152557373047e-07 543 541 -10666666.66491 544 541 -38308711.7659 545 541 3.8743019104e-07 627 541 13333333.33771 628 541 -24555795.63051 629 541 -13177083.33766 630 541 4.470348358154e-08 631 541 -29957235.32024 632 541 2.831220626831e-07 633 541 -13333333.33771 634 541 -24555795.63051 635 541 13177083.33766 648 541 2666666.667542 649 541 -29111380.42657 650 541 -26354166.66234 651 541 8.940696716309e-07 652 541 20086372.59065 653 541 -2.98023223877e-08 654 541 -2666666.667543 655 541 -29111380.42657 656 541 26354166.66234 542 542 452753506.4538 543 542 -8.940696716309e-07 544 542 1.490116119385e-07 545 542 61988916.32938 627 542 16471527.78319 628 542 -13177083.33766 629 542 -28297094.18124 630 542 65886111.10029 631 542 3.8743019104e-07 632 542 -87588646.48668 633 542 16471527.78319 634 542 13177083.33766 635 542 -28297094.18124 648 542 3294305.556637 649 542 -26354166.66234 650 542 -36593977.52435 651 542 13177222.22006 652 542 1.490116119385e-07 653 542 -95176449.68545 654 542 3294305.556638 655 542 26354166.66234 656 542 -36593977.52435 543 543 451672659.2548 544 543 425457.3069872 546 543 45227333.73336 547 543 -3769936.940774 548 543 5.960464477539e-07 630 543 -28555987.69793 631 543 13333333.33771 632 543 16471527.78319 633 543 -80272721.40676 634 543 3396393.594356 635 543 61522916.65613 636 543 -29859204.61641 637 543 -13226940.35567 638 543 16470833.33874 651 543 -3778079.873706 652 543 -2666666.667542 653 543 -3294305.556638 654 543 34782980.96289 655 543 106364.3267991 656 543 -13176944.44228 657 543 -9519773.826407 658 543 -942484.2356579 659 543 1067638.88752 544 544 397175038.8898 545 544 1.072883605957e-06 546 544 -25103270.2706 547 544 -58853543.86754 548 544 -1.341104507446e-06 630 544 13333333.33771 631 544 -24555795.63051 632 544 -13177083.33766 633 544 3396393.594355 634 544 -25669225.02627 635 544 -3489583.333104 636 544 -13226940.35567 637 544 -23484968.00045 638 544 13177083.33766 651 544 2666666.667542 652 544 -29111380.42657 653 544 -26354166.66234 654 544 106364.3267991 655 544 21158575.86493 656 544 2.682209014893e-07 657 544 -6275817.570742 658 544 -35539993.23945 659 544 29843749.99544 545 545 452492316.5668 547 545 -1.490116119385e-06 548 545 55187296.56271 630 545 16471527.78319 631 545 -13177083.33766 632 545 -28297094.18124 633 545 61522916.65699 634 545 -3489583.332416 635 545 -82311580.01855 636 545 16470833.33874 637 545 13177083.33766 638 545 -28359905.71829 651 545 3294305.556637 652 545 -26354166.66234 653 545 -36593977.52435 654 545 13176944.44228 655 545 3.8743019104e-07 656 545 -95237411.21973 657 545 7655972.222158 658 545 29843749.99475 659 545 -41740795.2267 546 546 444644489.1745 547 546 13081929.57058 548 546 9.536743164063e-07 549 546 -86994427.68368 550 546 -57630747.35091 551 546 -2.384185791016e-06 552 546 44204118.01812 553 546 1554937.536914 554 546 -1.192092895508e-06 633 546 -22126192.23639 634 546 12497197.81285 635 546 12109027.78176 636 546 -76387958.09069 637 546 4527089.824043 638 546 64843055.54491 654 546 -9519773.826409 655 546 -6275817.570743 656 546 -7655972.222158 657 546 15798034.7999 658 546 3270482.394257 659 546 -12968611.10898 660 546 -35347304.85947 661 546 -14407686.84483 662 546 20312500.00667 663 546 -14510689.24923 664 546 388734.3844201 665 546 1171666.664472 547 547 449754245.7917 548 547 4.64916229248e-06 549 547 -57630747.35091 550 547 -66447376.92277 551 547 -1.296401023865e-06 552 547 -19778395.79291 553 547 -57866988.0148 554 547 -2.086162567139e-06 633 547 12497197.81285 634 547 -29834312.51127 635 547 -16666666.67214 636 547 4527089.824043 637 547 -23556043.72965 638 547 -3489583.333103 654 547 -942484.2356579 655 547 -35539993.23945 656 547 -29843749.99475 657 547 3270482.394257 658 547 17075473.95481 659 547 9.536743164063e-07 660 547 -14407686.84483 661 547 -30210542.16671 662 547 16666666.67214 663 547 -4944598.950664 664 547 -40028465.77003 665 547 33333333.32786 548 548 513640710.6392 549 548 -3.159046173096e-06 550 548 -1.370906829834e-06 551 548 -3386801.062691 552 548 -1.907348632813e-06 553 548 -2.235174179077e-06 554 548 68569532.94435 633 548 12109027.78176 634 548 -16666666.67214 635 548 -27982541.75396 636 548 64843055.54491 637 548 -3489583.332416 638 548 -95170201.65886 654 548 -1067638.887521 655 548 -29843749.99544 656 548 -41740795.22671 657 548 12968611.10898 658 548 1.013278961182e-06 659 548 -125891389.0729 660 548 20312500.00667 661 548 16666666.67214 662 548 -37109894.74031 663 548 7551944.445205 664 548 33333333.32786 665 548 -51022200.11333 549 549 254849231.4225 550 549 61411260.29348 551 549 3.814697265625e-06 552 549 -66610780.59762 553 549 -6369252.63857 554 549 -1.132488250732e-06 636 549 -11712307.86995 637 549 647184.9243208 638 549 -299305.5539346 657 549 -35347304.85947 658 549 -14407686.84483 659 549 -20312500.00667 660 549 6046162.064774 661 549 15352815.08093 662 549 8124999.998666 663 549 -43850090.99987 664 549 -1592313.160427 665 549 -36263194.43806 550 550 228505477.8886 551 550 4.172325134277e-06 552 550 14964080.69126 553 550 42842168.62011 554 550 1.728534698486e-06 636 550 -4686148.410764 637 550 -37626369.49388 638 550 -33333333.32786 657 550 -14407686.84483 658 550 -30210542.16671 659 550 -16666666.67214 660 550 15352815.08093 661 550 -539776.3219635 662 550 6666666.665572 663 550 3741020.174657 664 550 -16486853.68196 665 550 3333333.334428 551 551 294920181.6058 553 551 1.788139343262e-06 554 551 70439578.90092 636 551 -8424305.555743 637 551 -33333333.32786 638 551 -54230045.43139 657 551 -20312500.00667 658 551 -16666666.67214 659 551 -37109894.74031 660 551 -8124999.998665 661 551 -6666666.665571 662 551 -80046343.42155 663 551 -36263194.43892 664 551 -3333333.334428 665 551 -54916494.1788 552 552 221377868.0526 553 552 -44221604.19657 554 552 -1.311302185059e-06 636 552 -24181082.63358 637 552 12258979.8306 638 552 15950694.44968 657 552 -14510689.24923 658 552 -4944598.950664 659 552 -7551944.445206 660 552 -43850090.99987 661 552 3741020.174657 662 552 36263194.43892 663 552 4221029.5472 664 552 -11055401.05459 665 552 -6380277.77673 553 553 221364529.6578 554 553 2.861022949219e-06 636 553 12258979.8306 637 553 -26023208.832 638 553 -16666666.67214 657 553 388734.38442 658 553 -40028465.77003 659 553 -33333333.32786 660 553 -1592313.160427 661 553 -16486853.68196 662 553 3333333.334428 663 553 -11055401.05459 664 553 4217694.948508 665 553 6666666.665572 554 554 265339467.0094 636 554 15950694.44968 637 554 -16666666.67214 638 554 -32922561.4056 657 554 -1171666.664473 658 554 -33333333.32786 659 554 -51022200.11334 660 554 36263194.43806 661 554 -3333333.334428 662 554 -54916494.1788 663 554 6380277.77673 664 554 -6666666.665571 665 554 -69994299.86354 555 555 583376284.5667 556 555 43333333.32621 557 555 -18054493.30016 558 555 -212203317.245 559 555 -43342510.83425 560 555 16396980.83364 561 555 11333216.7726 562 555 34675844.16901 563 555 12517770.08628 666 555 -10929001.68405 667 555 8333333.33607 668 555 3726516.388097 669 555 -69036918.95254 670 555 -8338077.039497 671 555 -55624567.39871 672 555 7014515.850343 673 555 6671410.372285 674 555 -6514983.987003 556 556 518362818.9365 557 556 40035087.57113 558 556 -43347099.58827 559 556 -8506300.789178 560 556 23165903.31214 561 556 52013766.25352 562 556 11333216.7726 563 556 -14999325.89734 666 556 8333333.336069 667 556 -23434958.63979 668 556 30221022.26397 669 556 -8340448.891212 670 556 -29855098.36736 671 556 -1182917.166231 672 556 10007115.55843 673 556 7014515.850342 674 556 7818288.469344 557 557 777948189.0547 558 557 15568224.60039 559 557 18499461.34631 560 557 73162839.64451 561 557 18776655.12942 562 557 -9999550.598229 563 557 30221911.39361 666 557 -21803668.18463 667 557 9797097.079457 668 557 -178746028.6722 669 557 -56043408.3313 670 557 -3514321.011405 671 557 -61172289.98812 672 557 -9772475.980504 673 557 5212192.312896 674 557 18705375.60092 558 558 939476176.8883 559 558 43356277.09631 560 558 -18771852.99502 561 558 49283631.66647 562 558 -43342510.83425 563 558 -16337221.96865 564 558 -128333063.0188 565 558 1.341104507446e-07 566 558 3194474.194728 567 558 -60367995.80692 568 558 43333333.32622 569 558 16319451.87991 666 558 -99681629.70551 667 558 -8340448.891213 668 558 71607514.53236 669 558 -8298175.66356 670 558 8345192.594641 671 558 -9379478.645899 672 558 2423001.606932 673 558 -8338077.0395 674 558 7795396.873343 675 558 -69751628.43939 676 558 1.266598701477e-06 677 558 -62205540.42245 678 558 -11071939.81576 679 558 8333333.336071 680 558 -7790968.444033 559 559 822460198.9193 560 559 51648672.72297 561 559 -43347099.58827 562 559 -102400547.2501 563 559 -28003452.87548 564 559 -1.192092895508e-07 565 559 62334645.32605 566 559 16666488.1637 567 559 43333333.32622 568 559 -47367367.71582 569 559 -9166577.415131 666 559 -8338077.039499 667 559 -60499809.12032 668 559 22021029.70742 669 559 8345192.594641 670 559 -30804628.63791 671 559 25829490.35962 672 559 -8340448.891214 673 559 -26752986.0284 674 559 37056208.64825 675 559 7.376074790955e-07 676 559 -33084756.09483 677 559 8333242.6046 678 559 8333333.336071 679 559 -8571815.80988 680 559 8177128.701754 560 560 1105469191.389 561 560 -16346107.01282 562 560 -32013997.77403 563 560 114586890.8952 564 560 2361140.861532 565 560 16666488.1637 566 560 141192013.134 567 560 16319451.87971 568 560 -9166577.414967 569 560 -5461644.444274 666 560 72026355.46494 667 560 24359692.24116 668 560 -142891518.6627 669 560 -9370405.180087 670 560 25836749.05321 671 560 -291361037.6863 672 560 7797611.087997 673 560 35054390.19536 674 560 3229564.966024 675 560 -62622207.08884 676 560 8333242.6046 677 560 -93040173.76232 678 560 -7790968.444033 679 560 8177128.701754 680 560 382463.4398733 561 561 583376284.5667 562 561 43333333.32621 563 561 -18054493.30016 564 561 -58492995.80723 565 561 -43333333.32622 566 561 -14930548.11496 567 561 -212203317.245 568 561 -43342510.83425 569 561 16396980.83364 570 561 11333216.7726 571 561 34675844.16901 572 561 12517770.08628 666 561 -50448491.13742 667 561 10007115.55843 668 561 28536410.43085 669 561 -85645347.16108 670 561 -8340448.891212 671 561 -24130997.54348 672 561 -10929001.68405 673 561 8333333.33607 674 561 3726516.388097 675 561 -38845377.32488 676 561 -8333333.33607 677 561 -23415968.44916 678 561 -69036918.95254 679 561 -8338077.039497 680 561 -55624567.39871 681 561 7014515.850343 682 561 6671410.372285 683 561 -6514983.987003 562 562 518362818.9365 563 562 40035087.57113 564 562 -43333333.32622 565 562 -45492367.71613 566 562 -7499910.748575 567 562 -43347099.58827 568 562 -8506300.789178 569 562 23165903.31214 570 562 52013766.25352 571 562 11333216.7726 572 562 -14999325.89734 666 562 6671410.372285 667 562 -50448491.13742 668 562 -15218991.7376 669 562 -8338077.039498 670 562 -114821334.7964 671 562 -67065236.07198 672 562 8333333.336069 673 562 -23434958.63979 674 562 30221022.26397 675 562 -8333333.33607 676 562 -36345253.319 677 562 -16510371.30635 678 562 -8340448.891212 679 562 -29855098.36736 680 562 -1182917.166231 681 562 10007115.55843 682 562 7014515.850342 683 562 7818288.469344 563 563 777948189.0547 564 563 -14930548.11516 565 563 -7499910.748739 566 563 -461644.445098 567 563 15568224.60039 568 563 18499461.34631 569 563 73162839.64451 570 563 18776655.12942 571 563 -9999550.598229 572 563 30221911.39361 666 563 19024273.62057 667 563 -22828487.60639 668 563 -134529309.6998 669 563 -24124138.5141 670 563 -65063417.79147 671 563 -231619365.082 672 563 -21803668.18463 673 563 9797097.079457 674 563 -178746028.6722 675 563 -23415968.44916 676 563 -16510371.30635 677 563 -73680036.58444 678 563 -56043408.3313 679 563 -3514321.011405 680 563 -61172289.98812 681 563 -9772475.980504 682 563 5212192.312896 683 563 18705375.60092 564 564 866359460.9496 565 564 1.430511474609e-06 566 564 -5555615.056281 567 564 107138445.2518 568 564 -2.831220626831e-07 569 564 -1388903.764753 573 564 -128333063.0188 574 564 1.341104507446e-07 575 564 3194474.194728 576 564 -60367995.80692 577 564 43333333.32622 578 564 16319451.87991 669 564 -77407961.77148 670 564 -1.184642314911e-06 671 564 64983348.44575 672 564 -12048523.14942 673 564 -8333333.336071 674 564 8485420.4502 675 564 -27191273.16515 676 564 2.98023223877e-07 677 564 -2777808.023288 678 564 20509800.90325 679 564 -2.242624759674e-06 680 564 -694452.0061662 684 564 -69751628.43939 685 564 1.266598701477e-06 686 564 -62205540.42245 687 564 -11071939.81576 688 564 8333333.336071 689 564 -7790968.444033 565 565 762354436.272 566 565 66665952.62197 567 565 -6.556510925293e-07 568 565 -57528006.93644 569 565 -33666309.64427 573 565 -1.192092895508e-07 574 565 62334645.32605 575 565 16666488.1637 576 565 43333333.32622 577 565 -47367367.71582 578 565 -9166577.415131 669 565 -1.601874828339e-06 670 565 -40741089.4269 671 565 8333242.604601 672 565 -8333333.336071 673 565 -9548399.143536 674 565 9010462.03536 675 565 2.384185791016e-07 676 565 -47192265.20236 677 565 33332970.40198 678 565 -1.728534698486e-06 679 565 -11156823.43448 680 565 34208514.79074 684 565 7.376074790955e-07 685 565 -33084756.09483 686 565 8333242.6046 687 565 8333333.336071 688 565 -8571815.80988 689 565 8177128.701754 566 566 1066134474.818 567 566 -1388903.764753 568 566 -32999642.97771 569 566 113328361.2626 573 566 2361140.861532 574 566 16666488.1637 575 566 141192013.134 576 566 16319451.87971 577 566 -9166577.414967 578 566 -5461644.444274 669 566 65400015.11214 670 566 8333242.604601 671 566 -113457062.6479 672 566 8485420.4502 673 566 9010462.03536 674 566 -2221758.783205 675 566 -2777808.023289 676 566 33332970.40198 677 566 -311771151.9111 678 566 -694452.006166 679 566 34541848.12385 680 566 21543906.17081 684 566 -62622207.08884 685 566 8333242.6046 686 566 -93040173.76232 687 566 -7790968.444033 688 566 8177128.701754 689 566 382463.4398733 567 567 939476176.8883 568 567 43356277.09631 569 567 -18771852.99502 570 567 49283631.66647 571 567 -43342510.83425 572 567 -16337221.96865 573 567 -58492995.80723 574 567 -43333333.32622 575 567 -14930548.11496 576 567 -128333063.0188 577 567 1.341104507446e-07 578 567 3194474.194728 579 567 -60367995.80692 580 567 43333333.32622 581 567 16319451.87991 669 567 -41696960.65915 670 567 8333333.336071 671 567 24110420.45533 672 567 -99681629.70551 673 567 -8340448.891213 674 567 71607514.53236 675 567 -94333949.07787 676 567 1.773238182068e-06 677 567 -694452.0061627 678 567 -8298175.66356 679 567 8345192.594641 680 567 -9379478.645899 681 567 2423001.606932 682 567 -8338077.0395 683 567 7795396.873343 684 567 -38845377.32488 685 567 -8333333.33607 686 567 -23415968.44916 687 567 -69751628.43939 688 567 1.266598701477e-06 689 567 -62205540.42245 690 567 -11071939.81576 691 567 8333333.336071 692 567 -7790968.444033 568 568 822460198.9193 569 568 51648672.72297 570 568 -43347099.58827 571 568 -102400547.2501 572 568 -28003452.87548 573 568 -43333333.32622 574 568 -45492367.71613 575 568 -7499910.748575 576 568 -1.192092895508e-07 577 568 62334645.32605 578 568 16666488.1637 579 568 43333333.32622 580 568 -47367367.71582 581 568 -9166577.415131 669 568 8333333.336071 670 568 -39196836.65327 671 568 -17343704.63996 672 568 -8338077.039499 673 568 -60499809.12032 674 568 22021029.70742 675 568 2.175569534302e-06 676 568 -126000573.4156 677 568 -67541485.19271 678 568 8345192.594641 679 568 -30804628.63791 680 568 25829490.35962 681 568 -8340448.891214 682 568 -26752986.0284 683 568 37056208.64825 684 568 -8333333.33607 685 568 -36345253.319 686 568 -16510371.30635 687 568 7.376074790955e-07 688 568 -33084756.09483 689 568 8333242.6046 690 568 8333333.336071 691 568 -8571815.80988 692 568 8177128.701754 569 569 1105469191.389 570 569 -16346107.01282 571 569 -32013997.77403 572 569 114586890.8952 573 569 -14930548.11516 574 569 -7499910.748739 575 569 -461644.445098 576 569 2361140.861532 577 569 16666488.1637 578 569 141192013.134 579 569 16319451.87971 580 569 -9166577.414967 581 569 -5461644.444274 669 569 24110420.45533 670 569 -17343704.63996 671 569 -81284258.80916 672 569 72026355.46494 673 569 24359692.24116 674 569 -142891518.6627 675 569 -694452.0061623 676 569 -67874818.52582 677 569 -284706093.7789 678 569 -9370405.180087 679 569 25836749.05321 680 569 -291361037.6863 681 569 7797611.087997 682 569 35054390.19536 683 569 3229564.966024 684 569 -23415968.44916 685 569 -16510371.30635 686 569 -73680036.58444 687 569 -62622207.08884 688 569 8333242.6046 689 569 -93040173.76232 690 569 -7790968.444033 691 569 8177128.701754 692 569 382463.4398733 570 570 583376284.5667 571 570 43333333.32621 572 570 -18054493.30016 576 570 -58492995.80723 577 570 -43333333.32622 578 570 -14930548.11496 579 570 -212203317.245 580 570 -43342510.83425 581 570 16396980.83364 582 570 11333216.7726 583 570 34675844.16901 584 570 12517770.08628 672 570 -50448491.13742 673 570 10007115.55843 674 570 28536410.43085 678 570 -85645347.16108 679 570 -8340448.891212 680 570 -24130997.54348 681 570 -10929001.68405 682 570 8333333.33607 683 570 3726516.388097 687 570 -38845377.32488 688 570 -8333333.33607 689 570 -23415968.44916 690 570 -69036918.95254 691 570 -8338077.039497 692 570 -55624567.39871 693 570 7014515.850343 694 570 6671410.372285 695 570 -6514983.987003 571 571 518362818.9365 572 571 40035087.57113 576 571 -43333333.32622 577 571 -45492367.71613 578 571 -7499910.748575 579 571 -43347099.58827 580 571 -8506300.789178 581 571 23165903.31214 582 571 52013766.25352 583 571 11333216.7726 584 571 -14999325.89734 672 571 6671410.372285 673 571 -50448491.13742 674 571 -15218991.7376 678 571 -8338077.039498 679 571 -114821334.7964 680 571 -67065236.07198 681 571 8333333.336069 682 571 -23434958.63979 683 571 30221022.26397 687 571 -8333333.33607 688 571 -36345253.319 689 571 -16510371.30635 690 571 -8340448.891212 691 571 -29855098.36736 692 571 -1182917.166231 693 571 10007115.55843 694 571 7014515.850342 695 571 7818288.469344 572 572 777948189.0547 576 572 -14930548.11516 577 572 -7499910.748739 578 572 -461644.445098 579 572 15568224.60039 580 572 18499461.34631 581 572 73162839.64451 582 572 18776655.12942 583 572 -9999550.598229 584 572 30221911.39361 672 572 19024273.62057 673 572 -22828487.60639 674 572 -134529309.6998 678 572 -24124138.5141 679 572 -65063417.79147 680 572 -231619365.082 681 572 -21803668.18463 682 572 9797097.079457 683 572 -178746028.6722 687 572 -23415968.44916 688 572 -16510371.30635 689 572 -73680036.58444 690 572 -56043408.3313 691 572 -3514321.011405 692 572 -61172289.98812 693 572 -9772475.980504 694 572 5212192.312896 695 572 18705375.60092 573 573 866359460.9496 574 573 1.430511474609e-06 575 573 -5555615.056281 576 573 107138445.2518 577 573 -2.831220626831e-07 578 573 -1388903.764753 585 573 -128333063.0188 586 573 1.341104507446e-07 587 573 3194474.194728 588 573 -60367995.80692 589 573 43333333.32622 590 573 16319451.87991 675 573 -77407961.77148 676 573 -1.184642314911e-06 677 573 64983348.44575 678 573 -12048523.14942 679 573 -8333333.336071 680 573 8485420.4502 684 573 -27191273.16515 685 573 2.98023223877e-07 686 573 -2777808.023288 687 573 20509800.90325 688 573 -2.242624759674e-06 689 573 -694452.0061662 696 573 -69751628.43939 697 573 1.266598701477e-06 698 573 -62205540.42245 699 573 -11071939.81576 700 573 8333333.336071 701 573 -7790968.444033 574 574 762354436.272 575 574 66665952.62197 576 574 -6.556510925293e-07 577 574 -57528006.93644 578 574 -33666309.64427 585 574 -1.192092895508e-07 586 574 62334645.32605 587 574 16666488.1637 588 574 43333333.32622 589 574 -47367367.71582 590 574 -9166577.415131 675 574 -1.601874828339e-06 676 574 -40741089.4269 677 574 8333242.604601 678 574 -8333333.336071 679 574 -9548399.143536 680 574 9010462.03536 684 574 2.384185791016e-07 685 574 -47192265.20236 686 574 33332970.40198 687 574 -1.728534698486e-06 688 574 -11156823.43448 689 574 34208514.79074 696 574 7.376074790955e-07 697 574 -33084756.09483 698 574 8333242.6046 699 574 8333333.336071 700 574 -8571815.80988 701 574 8177128.701754 575 575 1066134474.818 576 575 -1388903.764753 577 575 -32999642.97771 578 575 113328361.2626 585 575 2361140.861532 586 575 16666488.1637 587 575 141192013.134 588 575 16319451.87971 589 575 -9166577.414967 590 575 -5461644.444274 675 575 65400015.11214 676 575 8333242.604601 677 575 -113457062.6479 678 575 8485420.4502 679 575 9010462.03536 680 575 -2221758.783205 684 575 -2777808.023289 685 575 33332970.40198 686 575 -311771151.9111 687 575 -694452.006166 688 575 34541848.12385 689 575 21543906.17081 696 575 -62622207.08884 697 575 8333242.6046 698 575 -93040173.76232 699 575 -7790968.444033 700 575 8177128.701754 701 575 382463.4398733 576 576 866359460.9496 577 576 1.430511474609e-06 578 576 -5555615.056281 579 576 107138445.2518 580 576 -2.831220626831e-07 581 576 -1388903.764753 585 576 -58492995.80723 586 576 -43333333.32622 587 576 -14930548.11496 588 576 -128333063.0188 589 576 1.341104507446e-07 590 576 3194474.194728 591 576 -60367995.80692 592 576 43333333.32622 593 576 16319451.87991 675 576 -41696960.65915 676 576 8333333.336071 677 576 24110420.45533 678 576 -77407961.77148 679 576 -1.184642314911e-06 680 576 64983348.44575 681 576 -12048523.14942 682 576 -8333333.336071 683 576 8485420.4502 684 576 -94333949.07787 685 576 1.773238182068e-06 686 576 -694452.0061627 687 576 -27191273.16515 688 576 2.98023223877e-07 689 576 -2777808.023288 690 576 20509800.90325 691 576 -2.242624759674e-06 692 576 -694452.0061662 696 576 -38845377.32488 697 576 -8333333.33607 698 576 -23415968.44916 699 576 -69751628.43939 700 576 1.266598701477e-06 701 576 -62205540.42245 702 576 -11071939.81576 703 576 8333333.336071 704 576 -7790968.444033 577 577 762354436.272 578 577 66665952.62197 579 577 -6.556510925293e-07 580 577 -57528006.93644 581 577 -33666309.64427 585 577 -43333333.32622 586 577 -45492367.71613 587 577 -7499910.748575 588 577 -1.192092895508e-07 589 577 62334645.32605 590 577 16666488.1637 591 577 43333333.32622 592 577 -47367367.71582 593 577 -9166577.415131 675 577 8333333.336071 676 577 -39196836.65327 677 577 -17343704.63996 678 577 -1.601874828339e-06 679 577 -40741089.4269 680 577 8333242.604601 681 577 -8333333.336071 682 577 -9548399.143536 683 577 9010462.03536 684 577 2.175569534302e-06 685 577 -126000573.4156 686 577 -67541485.19271 687 577 2.384185791016e-07 688 577 -47192265.20236 689 577 33332970.40198 690 577 -1.728534698486e-06 691 577 -11156823.43448 692 577 34208514.79074 696 577 -8333333.33607 697 577 -36345253.319 698 577 -16510371.30635 699 577 7.376074790955e-07 700 577 -33084756.09483 701 577 8333242.6046 702 577 8333333.336071 703 577 -8571815.80988 704 577 8177128.701754 578 578 1066134474.818 579 578 -1388903.764753 580 578 -32999642.97771 581 578 113328361.2626 585 578 -14930548.11516 586 578 -7499910.748739 587 578 -461644.445098 588 578 2361140.861532 589 578 16666488.1637 590 578 141192013.134 591 578 16319451.87971 592 578 -9166577.414967 593 578 -5461644.444274 675 578 24110420.45533 676 578 -17343704.63996 677 578 -81284258.80916 678 578 65400015.11214 679 578 8333242.604601 680 578 -113457062.6479 681 578 8485420.4502 682 578 9010462.03536 683 578 -2221758.783205 684 578 -694452.0061623 685 578 -67874818.52582 686 578 -284706093.7789 687 578 -2777808.023289 688 578 33332970.40198 689 578 -311771151.9111 690 578 -694452.006166 691 578 34541848.12385 692 578 21543906.17081 696 578 -23415968.44916 697 578 -16510371.30635 698 578 -73680036.58444 699 578 -62622207.08884 700 578 8333242.6046 701 578 -93040173.76232 702 578 -7790968.444033 703 578 8177128.701754 704 578 382463.4398733 579 579 939476176.8883 580 579 43356277.09631 581 579 -18771852.99502 582 579 49283631.66647 583 579 -43342510.83425 584 579 -16337221.96865 588 579 -58492995.80723 589 579 -43333333.32622 590 579 -14930548.11496 591 579 -128333063.0188 592 579 1.341104507446e-07 593 579 3194474.194728 594 579 -60367995.80692 595 579 43333333.32622 596 579 16319451.87991 678 579 -41696960.65915 679 579 8333333.336071 680 579 24110420.45533 681 579 -99681629.70551 682 579 -8340448.891213 683 579 71607514.53236 687 579 -94333949.07787 688 579 1.773238182068e-06 689 579 -694452.0061627 690 579 -8298175.66356 691 579 8345192.594641 692 579 -9379478.645899 693 579 2423001.606932 694 579 -8338077.0395 695 579 7795396.873343 699 579 -38845377.32488 700 579 -8333333.33607 701 579 -23415968.44916 702 579 -69751628.43939 703 579 1.266598701477e-06 704 579 -62205540.42245 705 579 -11071939.81576 706 579 8333333.336071 707 579 -7790968.444033 580 580 822460198.9193 581 580 51648672.72297 582 580 -43347099.58827 583 580 -102400547.2501 584 580 -28003452.87548 588 580 -43333333.32622 589 580 -45492367.71613 590 580 -7499910.748575 591 580 -1.192092895508e-07 592 580 62334645.32605 593 580 16666488.1637 594 580 43333333.32622 595 580 -47367367.71582 596 580 -9166577.415131 678 580 8333333.336071 679 580 -39196836.65327 680 580 -17343704.63996 681 580 -8338077.039499 682 580 -60499809.12032 683 580 22021029.70742 687 580 2.175569534302e-06 688 580 -126000573.4156 689 580 -67541485.19271 690 580 8345192.594641 691 580 -30804628.63791 692 580 25829490.35962 693 580 -8340448.891214 694 580 -26752986.0284 695 580 37056208.64825 699 580 -8333333.33607 700 580 -36345253.319 701 580 -16510371.30635 702 580 7.376074790955e-07 703 580 -33084756.09483 704 580 8333242.6046 705 580 8333333.336071 706 580 -8571815.80988 707 580 8177128.701754 581 581 1105469191.389 582 581 -16346107.01282 583 581 -32013997.77403 584 581 114586890.8952 588 581 -14930548.11516 589 581 -7499910.748739 590 581 -461644.445098 591 581 2361140.861532 592 581 16666488.1637 593 581 141192013.134 594 581 16319451.87971 595 581 -9166577.414967 596 581 -5461644.444274 678 581 24110420.45533 679 581 -17343704.63996 680 581 -81284258.80916 681 581 72026355.46494 682 581 24359692.24116 683 581 -142891518.6627 687 581 -694452.0061623 688 581 -67874818.52582 689 581 -284706093.7789 690 581 -9370405.180087 691 581 25836749.05321 692 581 -291361037.6863 693 581 7797611.087997 694 581 35054390.19536 695 581 3229564.966024 699 581 -23415968.44916 700 581 -16510371.30635 701 581 -73680036.58444 702 581 -62622207.08884 703 581 8333242.6046 704 581 -93040173.76232 705 581 -7790968.444033 706 581 8177128.701754 707 581 382463.4398733 582 582 583376284.5667 583 582 43333333.32621 584 582 -18054493.30016 591 582 -58492995.80723 592 582 -43333333.32622 593 582 -14930548.11496 594 582 -212203317.245 595 582 -43342510.83425 596 582 16396980.83364 597 582 11333216.7726 598 582 34675844.16901 599 582 12517770.08628 681 582 -50448491.13742 682 582 10007115.55843 683 582 28536410.43085 690 582 -85645347.16108 691 582 -8340448.891212 692 582 -24130997.54348 693 582 -10929001.68405 694 582 8333333.33607 695 582 3726516.388097 702 582 -38845377.32488 703 582 -8333333.33607 704 582 -23415968.44916 705 582 -69036918.95254 706 582 -8338077.039497 707 582 -55624567.39871 708 582 7014515.850343 709 582 6671410.372285 710 582 -6514983.987003 583 583 518362818.9365 584 583 40035087.57113 591 583 -43333333.32622 592 583 -45492367.71613 593 583 -7499910.748575 594 583 -43347099.58827 595 583 -8506300.789178 596 583 23165903.31214 597 583 52013766.25352 598 583 11333216.7726 599 583 -14999325.89734 681 583 6671410.372285 682 583 -50448491.13742 683 583 -15218991.7376 690 583 -8338077.039498 691 583 -114821334.7964 692 583 -67065236.07198 693 583 8333333.336069 694 583 -23434958.63979 695 583 30221022.26397 702 583 -8333333.33607 703 583 -36345253.319 704 583 -16510371.30635 705 583 -8340448.891212 706 583 -29855098.36736 707 583 -1182917.166231 708 583 10007115.55843 709 583 7014515.850342 710 583 7818288.469344 584 584 777948189.0547 591 584 -14930548.11516 592 584 -7499910.748739 593 584 -461644.445098 594 584 15568224.60039 595 584 18499461.34631 596 584 73162839.64451 597 584 18776655.12942 598 584 -9999550.598229 599 584 30221911.39361 681 584 19024273.62057 682 584 -22828487.60639 683 584 -134529309.6998 690 584 -24124138.5141 691 584 -65063417.79147 692 584 -231619365.082 693 584 -21803668.18463 694 584 9797097.079457 695 584 -178746028.6722 702 584 -23415968.44916 703 584 -16510371.30635 704 584 -73680036.58444 705 584 -56043408.3313 706 584 -3514321.011405 707 584 -61172289.98812 708 584 -9772475.980504 709 584 5212192.312896 710 584 18705375.60092 585 585 866359460.9496 586 585 1.430511474609e-06 587 585 -5555615.056281 588 585 107138445.2518 589 585 -2.831220626831e-07 590 585 -1388903.764753 600 585 -128333063.0188 601 585 1.341104507446e-07 602 585 3194474.194728 603 585 -60367995.80692 604 585 43333333.32622 605 585 16319451.87991 684 585 -77407961.77148 685 585 -1.184642314911e-06 686 585 64983348.44575 687 585 -12048523.14942 688 585 -8333333.336071 689 585 8485420.4502 696 585 -27191273.16515 697 585 2.98023223877e-07 698 585 -2777808.023288 699 585 20509800.90325 700 585 -2.242624759674e-06 701 585 -694452.0061662 711 585 -69751628.43939 712 585 1.266598701477e-06 713 585 -62205540.42245 714 585 -11071939.81576 715 585 8333333.336071 716 585 -7790968.444033 586 586 762354436.272 587 586 66665952.62197 588 586 -6.556510925293e-07 589 586 -57528006.93644 590 586 -33666309.64427 600 586 -1.192092895508e-07 601 586 62334645.32605 602 586 16666488.1637 603 586 43333333.32622 604 586 -47367367.71582 605 586 -9166577.415131 684 586 -1.601874828339e-06 685 586 -40741089.4269 686 586 8333242.604601 687 586 -8333333.336071 688 586 -9548399.143536 689 586 9010462.03536 696 586 2.384185791016e-07 697 586 -47192265.20236 698 586 33332970.40198 699 586 -1.728534698486e-06 700 586 -11156823.43448 701 586 34208514.79074 711 586 7.376074790955e-07 712 586 -33084756.09483 713 586 8333242.6046 714 586 8333333.336071 715 586 -8571815.80988 716 586 8177128.701754 587 587 1066134474.818 588 587 -1388903.764753 589 587 -32999642.97771 590 587 113328361.2626 600 587 2361140.861532 601 587 16666488.1637 602 587 141192013.134 603 587 16319451.87971 604 587 -9166577.414967 605 587 -5461644.444274 684 587 65400015.11214 685 587 8333242.604601 686 587 -113457062.6479 687 587 8485420.4502 688 587 9010462.03536 689 587 -2221758.783205 696 587 -2777808.023289 697 587 33332970.40198 698 587 -311771151.9111 699 587 -694452.006166 700 587 34541848.12385 701 587 21543906.17081 711 587 -62622207.08884 712 587 8333242.6046 713 587 -93040173.76232 714 587 -7790968.444033 715 587 8177128.701754 716 587 382463.4398733 588 588 866359460.9496 589 588 1.430511474609e-06 590 588 -5555615.056281 591 588 107138445.2518 592 588 -2.831220626831e-07 593 588 -1388903.764753 600 588 -58492995.80723 601 588 -43333333.32622 602 588 -14930548.11496 603 588 -128333063.0188 604 588 1.341104507446e-07 605 588 3194474.194728 606 588 -60367995.80692 607 588 43333333.32622 608 588 16319451.87991 684 588 -41696960.65915 685 588 8333333.336071 686 588 24110420.45533 687 588 -77407961.77148 688 588 -1.184642314911e-06 689 588 64983348.44575 690 588 -12048523.14942 691 588 -8333333.336071 692 588 8485420.4502 696 588 -94333949.07787 697 588 1.773238182068e-06 698 588 -694452.0061627 699 588 -27191273.16515 700 588 2.98023223877e-07 701 588 -2777808.023288 702 588 20509800.90325 703 588 -2.242624759674e-06 704 588 -694452.0061662 711 588 -38845377.32488 712 588 -8333333.33607 713 588 -23415968.44916 714 588 -69751628.43939 715 588 1.266598701477e-06 716 588 -62205540.42245 717 588 -11071939.81576 718 588 8333333.336071 719 588 -7790968.444033 589 589 762354436.272 590 589 66665952.62197 591 589 -6.556510925293e-07 592 589 -57528006.93644 593 589 -33666309.64427 600 589 -43333333.32622 601 589 -45492367.71613 602 589 -7499910.748575 603 589 -1.192092895508e-07 604 589 62334645.32605 605 589 16666488.1637 606 589 43333333.32622 607 589 -47367367.71582 608 589 -9166577.415131 684 589 8333333.336071 685 589 -39196836.65327 686 589 -17343704.63996 687 589 -1.601874828339e-06 688 589 -40741089.4269 689 589 8333242.604601 690 589 -8333333.336071 691 589 -9548399.143536 692 589 9010462.03536 696 589 2.175569534302e-06 697 589 -126000573.4156 698 589 -67541485.19271 699 589 2.384185791016e-07 700 589 -47192265.20236 701 589 33332970.40198 702 589 -1.728534698486e-06 703 589 -11156823.43448 704 589 34208514.79074 711 589 -8333333.33607 712 589 -36345253.319 713 589 -16510371.30635 714 589 7.376074790955e-07 715 589 -33084756.09483 716 589 8333242.6046 717 589 8333333.336071 718 589 -8571815.80988 719 589 8177128.701754 590 590 1066134474.818 591 590 -1388903.764753 592 590 -32999642.97771 593 590 113328361.2626 600 590 -14930548.11516 601 590 -7499910.748739 602 590 -461644.445098 603 590 2361140.861532 604 590 16666488.1637 605 590 141192013.134 606 590 16319451.87971 607 590 -9166577.414967 608 590 -5461644.444274 684 590 24110420.45533 685 590 -17343704.63996 686 590 -81284258.80916 687 590 65400015.11214 688 590 8333242.604601 689 590 -113457062.6479 690 590 8485420.4502 691 590 9010462.03536 692 590 -2221758.783205 696 590 -694452.0061623 697 590 -67874818.52582 698 590 -284706093.7789 699 590 -2777808.023289 700 590 33332970.40198 701 590 -311771151.9111 702 590 -694452.006166 703 590 34541848.12385 704 590 21543906.17081 711 590 -23415968.44916 712 590 -16510371.30635 713 590 -73680036.58444 714 590 -62622207.08884 715 590 8333242.6046 716 590 -93040173.76232 717 590 -7790968.444033 718 590 8177128.701754 719 590 382463.4398733 591 591 866359460.9496 592 591 1.430511474609e-06 593 591 -5555615.056281 594 591 107138445.2518 595 591 -2.831220626831e-07 596 591 -1388903.764753 603 591 -58492995.80723 604 591 -43333333.32622 605 591 -14930548.11496 606 591 -128333063.0188 607 591 1.341104507446e-07 608 591 3194474.194728 609 591 -60367995.80692 610 591 43333333.32622 611 591 16319451.87991 687 591 -41696960.65915 688 591 8333333.336071 689 591 24110420.45533 690 591 -77407961.77148 691 591 -1.184642314911e-06 692 591 64983348.44575 693 591 -12048523.14942 694 591 -8333333.336071 695 591 8485420.4502 699 591 -94333949.07787 700 591 1.773238182068e-06 701 591 -694452.0061627 702 591 -27191273.16515 703 591 2.98023223877e-07 704 591 -2777808.023288 705 591 20509800.90325 706 591 -2.242624759674e-06 707 591 -694452.0061662 714 591 -38845377.32488 715 591 -8333333.33607 716 591 -23415968.44916 717 591 -69751628.43939 718 591 1.266598701477e-06 719 591 -62205540.42245 720 591 -11071939.81576 721 591 8333333.336071 722 591 -7790968.444033 592 592 762354436.272 593 592 66665952.62197 594 592 -6.556510925293e-07 595 592 -57528006.93644 596 592 -33666309.64427 603 592 -43333333.32622 604 592 -45492367.71613 605 592 -7499910.748575 606 592 -1.192092895508e-07 607 592 62334645.32605 608 592 16666488.1637 609 592 43333333.32622 610 592 -47367367.71582 611 592 -9166577.415131 687 592 8333333.336071 688 592 -39196836.65327 689 592 -17343704.63996 690 592 -1.601874828339e-06 691 592 -40741089.4269 692 592 8333242.604601 693 592 -8333333.336071 694 592 -9548399.143536 695 592 9010462.03536 699 592 2.175569534302e-06 700 592 -126000573.4156 701 592 -67541485.19271 702 592 2.384185791016e-07 703 592 -47192265.20236 704 592 33332970.40198 705 592 -1.728534698486e-06 706 592 -11156823.43448 707 592 34208514.79074 714 592 -8333333.33607 715 592 -36345253.319 716 592 -16510371.30635 717 592 7.376074790955e-07 718 592 -33084756.09483 719 592 8333242.6046 720 592 8333333.336071 721 592 -8571815.80988 722 592 8177128.701754 593 593 1066134474.818 594 593 -1388903.764753 595 593 -32999642.97771 596 593 113328361.2626 603 593 -14930548.11516 604 593 -7499910.748739 605 593 -461644.445098 606 593 2361140.861532 607 593 16666488.1637 608 593 141192013.134 609 593 16319451.87971 610 593 -9166577.414967 611 593 -5461644.444274 687 593 24110420.45533 688 593 -17343704.63996 689 593 -81284258.80916 690 593 65400015.11214 691 593 8333242.604601 692 593 -113457062.6479 693 593 8485420.4502 694 593 9010462.03536 695 593 -2221758.783205 699 593 -694452.0061623 700 593 -67874818.52582 701 593 -284706093.7789 702 593 -2777808.023289 703 593 33332970.40198 704 593 -311771151.9111 705 593 -694452.006166 706 593 34541848.12385 707 593 21543906.17081 714 593 -23415968.44916 715 593 -16510371.30635 716 593 -73680036.58444 717 593 -62622207.08884 718 593 8333242.6046 719 593 -93040173.76232 720 593 -7790968.444033 721 593 8177128.701754 722 593 382463.4398733 594 594 939476176.8883 595 594 43356277.09631 596 594 -18771852.99502 597 594 49283631.66647 598 594 -43342510.83425 599 594 -16337221.96865 606 594 -58492995.80723 607 594 -43333333.32622 608 594 -14930548.11496 609 594 -128333063.0188 610 594 1.341104507446e-07 611 594 3194474.194728 612 594 -60367995.80692 613 594 43333333.32622 614 594 16319451.87991 690 594 -41696960.65915 691 594 8333333.336071 692 594 24110420.45533 693 594 -99681629.70551 694 594 -8340448.891213 695 594 71607514.53236 702 594 -94333949.07787 703 594 1.773238182068e-06 704 594 -694452.0061627 705 594 -8298175.66356 706 594 8345192.594641 707 594 -9379478.645899 708 594 2423001.606932 709 594 -8338077.0395 710 594 7795396.873343 717 594 -38845377.32488 718 594 -8333333.33607 719 594 -23415968.44916 720 594 -69751628.43939 721 594 1.266598701477e-06 722 594 -62205540.42245 723 594 -11071939.81576 724 594 8333333.336071 725 594 -7790968.444033 595 595 822460198.9193 596 595 51648672.72297 597 595 -43347099.58827 598 595 -102400547.2501 599 595 -28003452.87548 606 595 -43333333.32622 607 595 -45492367.71613 608 595 -7499910.748575 609 595 -1.192092895508e-07 610 595 62334645.32605 611 595 16666488.1637 612 595 43333333.32622 613 595 -47367367.71582 614 595 -9166577.415131 690 595 8333333.336071 691 595 -39196836.65327 692 595 -17343704.63996 693 595 -8338077.039499 694 595 -60499809.12032 695 595 22021029.70742 702 595 2.175569534302e-06 703 595 -126000573.4156 704 595 -67541485.19271 705 595 8345192.594641 706 595 -30804628.63791 707 595 25829490.35962 708 595 -8340448.891214 709 595 -26752986.0284 710 595 37056208.64825 717 595 -8333333.33607 718 595 -36345253.319 719 595 -16510371.30635 720 595 7.376074790955e-07 721 595 -33084756.09483 722 595 8333242.6046 723 595 8333333.336071 724 595 -8571815.80988 725 595 8177128.701754 596 596 1105469191.389 597 596 -16346107.01282 598 596 -32013997.77403 599 596 114586890.8952 606 596 -14930548.11516 607 596 -7499910.748739 608 596 -461644.445098 609 596 2361140.861532 610 596 16666488.1637 611 596 141192013.134 612 596 16319451.87971 613 596 -9166577.414967 614 596 -5461644.444274 690 596 24110420.45533 691 596 -17343704.63996 692 596 -81284258.80916 693 596 72026355.46494 694 596 24359692.24116 695 596 -142891518.6627 702 596 -694452.0061623 703 596 -67874818.52582 704 596 -284706093.7789 705 596 -9370405.180087 706 596 25836749.05321 707 596 -291361037.6863 708 596 7797611.087997 709 596 35054390.19536 710 596 3229564.966024 717 596 -23415968.44916 718 596 -16510371.30635 719 596 -73680036.58444 720 596 -62622207.08884 721 596 8333242.6046 722 596 -93040173.76232 723 596 -7790968.444033 724 596 8177128.701754 725 596 382463.4398733 597 597 583376284.5667 598 597 43333333.32621 599 597 -18054493.30016 609 597 -58492995.80723 610 597 -43333333.32622 611 597 -14930548.11496 612 597 -212203317.245 613 597 -43342510.83425 614 597 16396980.83364 615 597 11333216.7726 616 597 34675844.16901 617 597 12517770.08628 693 597 -50448491.13742 694 597 10007115.55843 695 597 28536410.43085 705 597 -85645347.16108 706 597 -8340448.891212 707 597 -24130997.54348 708 597 -10929001.68405 709 597 8333333.33607 710 597 3726516.388097 720 597 -38845377.32488 721 597 -8333333.33607 722 597 -23415968.44916 723 597 -69036918.95254 724 597 -8338077.039497 725 597 -55624567.39871 726 597 7014515.850343 727 597 6671410.372285 728 597 -6514983.987003 598 598 518362818.9365 599 598 40035087.57113 609 598 -43333333.32622 610 598 -45492367.71613 611 598 -7499910.748575 612 598 -43347099.58827 613 598 -8506300.789178 614 598 23165903.31214 615 598 52013766.25352 616 598 11333216.7726 617 598 -14999325.89734 693 598 6671410.372285 694 598 -50448491.13742 695 598 -15218991.7376 705 598 -8338077.039498 706 598 -114821334.7964 707 598 -67065236.07198 708 598 8333333.336069 709 598 -23434958.63979 710 598 30221022.26397 720 598 -8333333.33607 721 598 -36345253.319 722 598 -16510371.30635 723 598 -8340448.891212 724 598 -29855098.36736 725 598 -1182917.166231 726 598 10007115.55843 727 598 7014515.850342 728 598 7818288.469344 599 599 777948189.0547 609 599 -14930548.11516 610 599 -7499910.748739 611 599 -461644.445098 612 599 15568224.60039 613 599 18499461.34631 614 599 73162839.64451 615 599 18776655.12942 616 599 -9999550.598229 617 599 30221911.39361 693 599 19024273.62057 694 599 -22828487.60639 695 599 -134529309.6998 705 599 -24124138.5141 706 599 -65063417.79147 707 599 -231619365.082 708 599 -21803668.18463 709 599 9797097.079457 710 599 -178746028.6722 720 599 -23415968.44916 721 599 -16510371.30635 722 599 -73680036.58444 723 599 -56043408.3313 724 599 -3514321.011405 725 599 -61172289.98812 726 599 -9772475.980504 727 599 5212192.312896 728 599 18705375.60092 600 600 866359460.9496 601 600 1.430511474609e-06 602 600 -5555615.056281 603 600 107138445.2518 604 600 -2.831220626831e-07 605 600 -1388903.764753 618 600 -128333063.0188 619 600 1.341104507446e-07 620 600 3194474.194728 621 600 -60367995.80692 622 600 43333333.32622 623 600 16319451.87991 696 600 -77407961.77148 697 600 -1.184642314911e-06 698 600 64983348.44575 699 600 -12048523.14942 700 600 -8333333.336071 701 600 8485420.4502 711 600 -27191273.16515 712 600 2.98023223877e-07 713 600 -2777808.023288 714 600 20509800.90325 715 600 -2.242624759674e-06 716 600 -694452.0061662 729 600 -69751628.43939 730 600 1.266598701477e-06 731 600 -62205540.42245 732 600 -11071939.81576 733 600 8333333.336071 734 600 -7790968.444033 601 601 762354436.272 602 601 66665952.62197 603 601 -6.556510925293e-07 604 601 -57528006.93644 605 601 -33666309.64427 618 601 -1.192092895508e-07 619 601 62334645.32605 620 601 16666488.1637 621 601 43333333.32622 622 601 -47367367.71582 623 601 -9166577.415131 696 601 -1.601874828339e-06 697 601 -40741089.4269 698 601 8333242.604601 699 601 -8333333.336071 700 601 -9548399.143536 701 601 9010462.03536 711 601 2.384185791016e-07 712 601 -47192265.20236 713 601 33332970.40198 714 601 -1.728534698486e-06 715 601 -11156823.43448 716 601 34208514.79074 729 601 7.376074790955e-07 730 601 -33084756.09483 731 601 8333242.6046 732 601 8333333.336071 733 601 -8571815.80988 734 601 8177128.701754 602 602 1066134474.818 603 602 -1388903.764753 604 602 -32999642.97771 605 602 113328361.2626 618 602 2361140.861532 619 602 16666488.1637 620 602 141192013.134 621 602 16319451.87971 622 602 -9166577.414967 623 602 -5461644.444274 696 602 65400015.11214 697 602 8333242.604601 698 602 -113457062.6479 699 602 8485420.4502 700 602 9010462.03536 701 602 -2221758.783205 711 602 -2777808.023289 712 602 33332970.40198 713 602 -311771151.9111 714 602 -694452.006166 715 602 34541848.12385 716 602 21543906.17081 729 602 -62622207.08884 730 602 8333242.6046 731 602 -93040173.76232 732 602 -7790968.444033 733 602 8177128.701754 734 602 382463.4398733 603 603 866359460.9496 604 603 1.430511474609e-06 605 603 -5555615.056281 606 603 107138445.2518 607 603 -2.831220626831e-07 608 603 -1388903.764753 618 603 -58492995.80723 619 603 -43333333.32622 620 603 -14930548.11496 621 603 -128333063.0188 622 603 1.341104507446e-07 623 603 3194474.194728 624 603 -60367995.80692 625 603 43333333.32622 626 603 16319451.87991 696 603 -41696960.65915 697 603 8333333.336071 698 603 24110420.45533 699 603 -77407961.77148 700 603 -1.184642314911e-06 701 603 64983348.44575 702 603 -12048523.14942 703 603 -8333333.336071 704 603 8485420.4502 711 603 -94333949.07787 712 603 1.773238182068e-06 713 603 -694452.0061627 714 603 -27191273.16515 715 603 2.98023223877e-07 716 603 -2777808.023288 717 603 20509800.90325 718 603 -2.242624759674e-06 719 603 -694452.0061662 729 603 -38845377.32488 730 603 -8333333.33607 731 603 -23415968.44916 732 603 -69751628.43939 733 603 1.266598701477e-06 734 603 -62205540.42245 735 603 -11071939.81576 736 603 8333333.336071 737 603 -7790968.444033 604 604 762354436.272 605 604 66665952.62197 606 604 -6.556510925293e-07 607 604 -57528006.93644 608 604 -33666309.64427 618 604 -43333333.32622 619 604 -45492367.71613 620 604 -7499910.748575 621 604 -1.192092895508e-07 622 604 62334645.32605 623 604 16666488.1637 624 604 43333333.32622 625 604 -47367367.71582 626 604 -9166577.415131 696 604 8333333.336071 697 604 -39196836.65327 698 604 -17343704.63996 699 604 -1.601874828339e-06 700 604 -40741089.4269 701 604 8333242.604601 702 604 -8333333.336071 703 604 -9548399.143536 704 604 9010462.03536 711 604 2.175569534302e-06 712 604 -126000573.4156 713 604 -67541485.19271 714 604 2.384185791016e-07 715 604 -47192265.20236 716 604 33332970.40198 717 604 -1.728534698486e-06 718 604 -11156823.43448 719 604 34208514.79074 729 604 -8333333.33607 730 604 -36345253.319 731 604 -16510371.30635 732 604 7.376074790955e-07 733 604 -33084756.09483 734 604 8333242.6046 735 604 8333333.336071 736 604 -8571815.80988 737 604 8177128.701754 605 605 1066134474.818 606 605 -1388903.764753 607 605 -32999642.97771 608 605 113328361.2626 618 605 -14930548.11516 619 605 -7499910.748739 620 605 -461644.445098 621 605 2361140.861532 622 605 16666488.1637 623 605 141192013.134 624 605 16319451.87971 625 605 -9166577.414967 626 605 -5461644.444274 696 605 24110420.45533 697 605 -17343704.63996 698 605 -81284258.80916 699 605 65400015.11214 700 605 8333242.604601 701 605 -113457062.6479 702 605 8485420.4502 703 605 9010462.03536 704 605 -2221758.783205 711 605 -694452.0061623 712 605 -67874818.52582 713 605 -284706093.7789 714 605 -2777808.023289 715 605 33332970.40198 716 605 -311771151.9111 717 605 -694452.006166 718 605 34541848.12385 719 605 21543906.17081 729 605 -23415968.44916 730 605 -16510371.30635 731 605 -73680036.58444 732 605 -62622207.08884 733 605 8333242.6046 734 605 -93040173.76232 735 605 -7790968.444033 736 605 8177128.701754 737 605 382463.4398733 606 606 866359460.9496 607 606 1.430511474609e-06 608 606 -5555615.056281 609 606 107138445.2518 610 606 -2.831220626831e-07 611 606 -1388903.764753 621 606 -58492995.80723 622 606 -43333333.32622 623 606 -14930548.11496 624 606 -128333063.0188 625 606 1.341104507446e-07 626 606 3194474.194728 627 606 -60367995.80692 628 606 43333333.32622 629 606 16319451.87991 699 606 -41696960.65915 700 606 8333333.336071 701 606 24110420.45533 702 606 -77407961.77148 703 606 -1.184642314911e-06 704 606 64983348.44575 705 606 -12048523.14942 706 606 -8333333.336071 707 606 8485420.4502 714 606 -94333949.07787 715 606 1.773238182068e-06 716 606 -694452.0061627 717 606 -27191273.16515 718 606 2.98023223877e-07 719 606 -2777808.023288 720 606 20509800.90325 721 606 -2.242624759674e-06 722 606 -694452.0061662 732 606 -38845377.32488 733 606 -8333333.33607 734 606 -23415968.44916 735 606 -69751628.43939 736 606 1.266598701477e-06 737 606 -62205540.42245 738 606 -11071939.81576 739 606 8333333.336071 740 606 -7790968.444033 607 607 762354436.272 608 607 66665952.62197 609 607 -6.556510925293e-07 610 607 -57528006.93644 611 607 -33666309.64427 621 607 -43333333.32622 622 607 -45492367.71613 623 607 -7499910.748575 624 607 -1.192092895508e-07 625 607 62334645.32605 626 607 16666488.1637 627 607 43333333.32622 628 607 -47367367.71582 629 607 -9166577.415131 699 607 8333333.336071 700 607 -39196836.65327 701 607 -17343704.63996 702 607 -1.601874828339e-06 703 607 -40741089.4269 704 607 8333242.604601 705 607 -8333333.336071 706 607 -9548399.143536 707 607 9010462.03536 714 607 2.175569534302e-06 715 607 -126000573.4156 716 607 -67541485.19271 717 607 2.384185791016e-07 718 607 -47192265.20236 719 607 33332970.40198 720 607 -1.728534698486e-06 721 607 -11156823.43448 722 607 34208514.79074 732 607 -8333333.33607 733 607 -36345253.319 734 607 -16510371.30635 735 607 7.376074790955e-07 736 607 -33084756.09483 737 607 8333242.6046 738 607 8333333.336071 739 607 -8571815.80988 740 607 8177128.701754 608 608 1066134474.818 609 608 -1388903.764753 610 608 -32999642.97771 611 608 113328361.2626 621 608 -14930548.11516 622 608 -7499910.748739 623 608 -461644.445098 624 608 2361140.861532 625 608 16666488.1637 626 608 141192013.134 627 608 16319451.87971 628 608 -9166577.414967 629 608 -5461644.444274 699 608 24110420.45533 700 608 -17343704.63996 701 608 -81284258.80916 702 608 65400015.11214 703 608 8333242.604601 704 608 -113457062.6479 705 608 8485420.4502 706 608 9010462.03536 707 608 -2221758.783205 714 608 -694452.0061623 715 608 -67874818.52582 716 608 -284706093.7789 717 608 -2777808.023289 718 608 33332970.40198 719 608 -311771151.9111 720 608 -694452.006166 721 608 34541848.12385 722 608 21543906.17081 732 608 -23415968.44916 733 608 -16510371.30635 734 608 -73680036.58444 735 608 -62622207.08884 736 608 8333242.6046 737 608 -93040173.76232 738 608 -7790968.444033 739 608 8177128.701754 740 608 382463.4398733 609 609 866359460.9496 610 609 1.430511474609e-06 611 609 -5555615.056281 612 609 107138445.2518 613 609 -2.831220626831e-07 614 609 -1388903.764753 624 609 -58492995.80723 625 609 -43333333.32622 626 609 -14930548.11496 627 609 -128333063.0188 628 609 1.341104507446e-07 629 609 3194474.194728 630 609 -60367995.80692 631 609 43333333.32622 632 609 16319451.87991 702 609 -41696960.65915 703 609 8333333.336071 704 609 24110420.45533 705 609 -77407961.77148 706 609 -1.184642314911e-06 707 609 64983348.44575 708 609 -12048523.14942 709 609 -8333333.336071 710 609 8485420.4502 717 609 -94333949.07787 718 609 1.773238182068e-06 719 609 -694452.0061627 720 609 -27191273.16515 721 609 2.98023223877e-07 722 609 -2777808.023288 723 609 20509800.90325 724 609 -2.242624759674e-06 725 609 -694452.0061662 735 609 -38845377.32488 736 609 -8333333.33607 737 609 -23415968.44916 738 609 -69751628.43939 739 609 1.266598701477e-06 740 609 -62205540.42245 741 609 -11071939.81576 742 609 8333333.336071 743 609 -7790968.444033 610 610 762354436.272 611 610 66665952.62197 612 610 -6.556510925293e-07 613 610 -57528006.93644 614 610 -33666309.64427 624 610 -43333333.32622 625 610 -45492367.71613 626 610 -7499910.748575 627 610 -1.192092895508e-07 628 610 62334645.32605 629 610 16666488.1637 630 610 43333333.32622 631 610 -47367367.71582 632 610 -9166577.415131 702 610 8333333.336071 703 610 -39196836.65327 704 610 -17343704.63996 705 610 -1.601874828339e-06 706 610 -40741089.4269 707 610 8333242.604601 708 610 -8333333.336071 709 610 -9548399.143536 710 610 9010462.03536 717 610 2.175569534302e-06 718 610 -126000573.4156 719 610 -67541485.19271 720 610 2.384185791016e-07 721 610 -47192265.20236 722 610 33332970.40198 723 610 -1.728534698486e-06 724 610 -11156823.43448 725 610 34208514.79074 735 610 -8333333.33607 736 610 -36345253.319 737 610 -16510371.30635 738 610 7.376074790955e-07 739 610 -33084756.09483 740 610 8333242.6046 741 610 8333333.336071 742 610 -8571815.80988 743 610 8177128.701754 611 611 1066134474.818 612 611 -1388903.764753 613 611 -32999642.97771 614 611 113328361.2626 624 611 -14930548.11516 625 611 -7499910.748739 626 611 -461644.445098 627 611 2361140.861532 628 611 16666488.1637 629 611 141192013.134 630 611 16319451.87971 631 611 -9166577.414967 632 611 -5461644.444274 702 611 24110420.45533 703 611 -17343704.63996 704 611 -81284258.80916 705 611 65400015.11214 706 611 8333242.604601 707 611 -113457062.6479 708 611 8485420.4502 709 611 9010462.03536 710 611 -2221758.783205 717 611 -694452.0061623 718 611 -67874818.52582 719 611 -284706093.7789 720 611 -2777808.023289 721 611 33332970.40198 722 611 -311771151.9111 723 611 -694452.006166 724 611 34541848.12385 725 611 21543906.17081 735 611 -23415968.44916 736 611 -16510371.30635 737 611 -73680036.58444 738 611 -62622207.08884 739 611 8333242.6046 740 611 -93040173.76232 741 611 -7790968.444033 742 611 8177128.701754 743 611 382463.4398733 612 612 939476176.8883 613 612 43356277.09631 614 612 -18771852.99502 615 612 49283631.66647 616 612 -43342510.83425 617 612 -16337221.96865 627 612 -58492995.80723 628 612 -43333333.32622 629 612 -14930548.11496 630 612 -128333063.0188 631 612 1.341104507446e-07 632 612 3194474.194728 633 612 -60367995.80692 634 612 43333333.32622 635 612 16319451.87991 705 612 -41696960.65915 706 612 8333333.336071 707 612 24110420.45533 708 612 -99681629.70551 709 612 -8340448.891213 710 612 71607514.53236 720 612 -94333949.07787 721 612 1.773238182068e-06 722 612 -694452.0061627 723 612 -8298175.66356 724 612 8345192.594641 725 612 -9379478.645899 726 612 2423001.606932 727 612 -8338077.0395 728 612 7795396.873343 738 612 -38845377.32488 739 612 -8333333.33607 740 612 -23415968.44916 741 612 -69751628.43939 742 612 1.266598701477e-06 743 612 -62205540.42245 744 612 -11071939.81576 745 612 8333333.336071 746 612 -7790968.444033 613 613 822460198.9193 614 613 51648672.72297 615 613 -43347099.58827 616 613 -102400547.2501 617 613 -28003452.87548 627 613 -43333333.32622 628 613 -45492367.71613 629 613 -7499910.748575 630 613 -1.192092895508e-07 631 613 62334645.32605 632 613 16666488.1637 633 613 43333333.32622 634 613 -47367367.71582 635 613 -9166577.415131 705 613 8333333.336071 706 613 -39196836.65327 707 613 -17343704.63996 708 613 -8338077.039499 709 613 -60499809.12032 710 613 22021029.70742 720 613 2.175569534302e-06 721 613 -126000573.4156 722 613 -67541485.19271 723 613 8345192.594641 724 613 -30804628.63791 725 613 25829490.35962 726 613 -8340448.891214 727 613 -26752986.0284 728 613 37056208.64825 738 613 -8333333.33607 739 613 -36345253.319 740 613 -16510371.30635 741 613 7.376074790955e-07 742 613 -33084756.09483 743 613 8333242.6046 744 613 8333333.336071 745 613 -8571815.80988 746 613 8177128.701754 614 614 1105469191.389 615 614 -16346107.01282 616 614 -32013997.77403 617 614 114586890.8952 627 614 -14930548.11516 628 614 -7499910.748739 629 614 -461644.445098 630 614 2361140.861532 631 614 16666488.1637 632 614 141192013.134 633 614 16319451.87971 634 614 -9166577.414967 635 614 -5461644.444274 705 614 24110420.45533 706 614 -17343704.63996 707 614 -81284258.80916 708 614 72026355.46494 709 614 24359692.24116 710 614 -142891518.6627 720 614 -694452.0061623 721 614 -67874818.52582 722 614 -284706093.7789 723 614 -9370405.180087 724 614 25836749.05321 725 614 -291361037.6863 726 614 7797611.087997 727 614 35054390.19536 728 614 3229564.966024 738 614 -23415968.44916 739 614 -16510371.30635 740 614 -73680036.58444 741 614 -62622207.08884 742 614 8333242.6046 743 614 -93040173.76232 744 614 -7790968.444033 745 614 8177128.701754 746 614 382463.4398733 615 615 537237674.144 616 615 19682635.03509 617 615 7278853.935812 630 615 -58492995.80723 631 615 -43333333.32622 632 615 -14930548.11496 633 615 -149236272.2809 634 615 -19708334.49086 635 615 1086095.150343 636 615 2489297.126623 637 615 34692366.11674 638 615 1688899.488625 708 615 -50448491.13742 709 615 10007115.55843 710 615 28536410.43085 723 615 -85645347.16108 724 615 -8340448.891212 725 615 -24130997.54348 726 615 -17836755.62729 727 615 3212976.44109 728 615 14418636.61301 741 615 -38845377.32488 742 615 -8333333.33607 743 615 -23415968.44916 744 615 -63830259.57109 745 615 -3226694.96361 746 615 -53519044.21609 747 615 -9616209.125473 748 615 6680385.191377 749 615 -8036218.454271 616 616 508863262.8828 617 616 40926260.08717 630 616 -43333333.32622 631 616 -45492367.71613 632 616 -7499910.748575 633 616 -19721184.21874 634 616 43866664.97233 635 616 10904977.14742 636 616 52038549.1751 637 616 -23555678.03985 638 616 -4314117.219295 708 616 6671410.372285 709 616 -50448491.13742 710 616 -15218991.7376 723 616 -8338077.039498 724 616 -114821334.7964 725 616 -67065236.07198 726 616 3212976.44109 727 616 -22134058.05942 728 616 29194228.99637 741 616 -8333333.33607 742 616 -36345253.319 743 616 -16510371.30635 744 616 -3233554.224871 745 616 -26925105.42998 746 616 514296.7345483 747 616 10020577.78707 748 616 -15548197.20502 749 616 16207412.72304 617 617 756010396.5891 630 617 -14930548.11516 631 617 -7499910.748739 632 617 -461644.445098 633 617 5268569.693425 634 617 10241225.80364 635 617 113931482.3872 636 617 2533349.232938 637 617 -3659305.027546 638 617 32683100.83748 708 617 19024273.62057 709 617 -22828487.60639 710 617 -134529309.6998 723 617 -24124138.5141 724 617 -65063417.79147 725 617 -231619365.082 726 617 -7213954.829688 727 617 11901763.34317 728 617 -175634313.754 741 617 -23415968.44916 742 617 -16510371.30635 743 617 -73680036.58444 744 617 -51436656.57492 745 617 190595.229853 746 617 -74752245.15073 747 617 -12054327.68141 748 617 12991927.13824 749 617 -19711236.25505 618 618 866359460.9496 619 618 1.430511474609e-06 620 618 -5555615.056281 621 618 107138445.2518 622 618 -2.831220626831e-07 623 618 -1388903.764753 639 618 -128333063.0188 640 618 1.341104507446e-07 641 618 3194474.194728 642 618 -60367995.80692 643 618 43333333.32622 644 618 16319451.87991 711 618 -77407961.77148 712 618 -1.184642314911e-06 713 618 64983348.44575 714 618 -12048523.14942 715 618 -8333333.336071 716 618 8485420.4502 729 618 -27191273.16515 730 618 2.98023223877e-07 731 618 -2777808.023288 732 618 20509800.90325 733 618 -2.242624759674e-06 734 618 -694452.0061662 750 618 -69751628.43939 751 618 1.266598701477e-06 752 618 -62205540.42245 753 618 -11071939.81576 754 618 8333333.336071 755 618 -7790968.444033 619 619 762354436.272 620 619 66665952.62197 621 619 -6.556510925293e-07 622 619 -57528006.93644 623 619 -33666309.64427 639 619 -1.192092895508e-07 640 619 62334645.32605 641 619 16666488.1637 642 619 43333333.32622 643 619 -47367367.71582 644 619 -9166577.415131 711 619 -1.601874828339e-06 712 619 -40741089.4269 713 619 8333242.604601 714 619 -8333333.336071 715 619 -9548399.143536 716 619 9010462.03536 729 619 2.384185791016e-07 730 619 -47192265.20236 731 619 33332970.40198 732 619 -1.728534698486e-06 733 619 -11156823.43448 734 619 34208514.79074 750 619 7.376074790955e-07 751 619 -33084756.09483 752 619 8333242.6046 753 619 8333333.336071 754 619 -8571815.80988 755 619 8177128.701754 620 620 1066134474.818 621 620 -1388903.764753 622 620 -32999642.97771 623 620 113328361.2626 639 620 2361140.861532 640 620 16666488.1637 641 620 141192013.134 642 620 16319451.87971 643 620 -9166577.414967 644 620 -5461644.444274 711 620 65400015.11214 712 620 8333242.604601 713 620 -113457062.6479 714 620 8485420.4502 715 620 9010462.03536 716 620 -2221758.783205 729 620 -2777808.023289 730 620 33332970.40198 731 620 -311771151.9111 732 620 -694452.006166 733 620 34541848.12385 734 620 21543906.17081 750 620 -62622207.08884 751 620 8333242.6046 752 620 -93040173.76232 753 620 -7790968.444033 754 620 8177128.701754 755 620 382463.4398733 621 621 866359460.9496 622 621 1.430511474609e-06 623 621 -5555615.056281 624 621 107138445.2518 625 621 -2.831220626831e-07 626 621 -1388903.764753 639 621 -58492995.80723 640 621 -43333333.32622 641 621 -14930548.11496 642 621 -128333063.0188 643 621 1.341104507446e-07 644 621 3194474.194728 645 621 -60367995.80692 646 621 43333333.32622 647 621 16319451.87991 711 621 -41696960.65915 712 621 8333333.336071 713 621 24110420.45533 714 621 -77407961.77148 715 621 -1.184642314911e-06 716 621 64983348.44575 717 621 -12048523.14942 718 621 -8333333.336071 719 621 8485420.4502 729 621 -94333949.07787 730 621 1.773238182068e-06 731 621 -694452.0061627 732 621 -27191273.16515 733 621 2.98023223877e-07 734 621 -2777808.023288 735 621 20509800.90325 736 621 -2.242624759674e-06 737 621 -694452.0061662 750 621 -38845377.32488 751 621 -8333333.33607 752 621 -23415968.44916 753 621 -69751628.43939 754 621 1.266598701477e-06 755 621 -62205540.42245 756 621 -11071939.81576 757 621 8333333.336071 758 621 -7790968.444033 622 622 762354436.272 623 622 66665952.62197 624 622 -6.556510925293e-07 625 622 -57528006.93644 626 622 -33666309.64427 639 622 -43333333.32622 640 622 -45492367.71613 641 622 -7499910.748575 642 622 -1.192092895508e-07 643 622 62334645.32605 644 622 16666488.1637 645 622 43333333.32622 646 622 -47367367.71582 647 622 -9166577.415131 711 622 8333333.336071 712 622 -39196836.65327 713 622 -17343704.63996 714 622 -1.601874828339e-06 715 622 -40741089.4269 716 622 8333242.604601 717 622 -8333333.336071 718 622 -9548399.143536 719 622 9010462.03536 729 622 2.175569534302e-06 730 622 -126000573.4156 731 622 -67541485.19271 732 622 2.384185791016e-07 733 622 -47192265.20236 734 622 33332970.40198 735 622 -1.728534698486e-06 736 622 -11156823.43448 737 622 34208514.79074 750 622 -8333333.33607 751 622 -36345253.319 752 622 -16510371.30635 753 622 7.376074790955e-07 754 622 -33084756.09483 755 622 8333242.6046 756 622 8333333.336071 757 622 -8571815.80988 758 622 8177128.701754 623 623 1066134474.818 624 623 -1388903.764753 625 623 -32999642.97771 626 623 113328361.2626 639 623 -14930548.11516 640 623 -7499910.748739 641 623 -461644.445098 642 623 2361140.861532 643 623 16666488.1637 644 623 141192013.134 645 623 16319451.87971 646 623 -9166577.414967 647 623 -5461644.444274 711 623 24110420.45533 712 623 -17343704.63996 713 623 -81284258.80916 714 623 65400015.11214 715 623 8333242.604601 716 623 -113457062.6479 717 623 8485420.4502 718 623 9010462.03536 719 623 -2221758.783205 729 623 -694452.0061623 730 623 -67874818.52582 731 623 -284706093.7789 732 623 -2777808.023289 733 623 33332970.40198 734 623 -311771151.9111 735 623 -694452.006166 736 623 34541848.12385 737 623 21543906.17081 750 623 -23415968.44916 751 623 -16510371.30635 752 623 -73680036.58444 753 623 -62622207.08884 754 623 8333242.6046 755 623 -93040173.76232 756 623 -7790968.444033 757 623 8177128.701754 758 623 382463.4398733 624 624 866359460.9496 625 624 1.430511474609e-06 626 624 -5555615.056281 627 624 107138445.2518 628 624 -2.831220626831e-07 629 624 -1388903.764753 642 624 -58492995.80723 643 624 -43333333.32622 644 624 -14930548.11496 645 624 -128333063.0188 646 624 1.341104507446e-07 647 624 3194474.194728 648 624 -60367995.80692 649 624 43333333.32622 650 624 16319451.87991 714 624 -41696960.65915 715 624 8333333.336071 716 624 24110420.45533 717 624 -77407961.77148 718 624 -1.184642314911e-06 719 624 64983348.44575 720 624 -12048523.14942 721 624 -8333333.336071 722 624 8485420.4502 732 624 -94333949.07787 733 624 1.773238182068e-06 734 624 -694452.0061627 735 624 -27191273.16515 736 624 2.98023223877e-07 737 624 -2777808.023288 738 624 20509800.90325 739 624 -2.242624759674e-06 740 624 -694452.0061662 753 624 -38845377.32488 754 624 -8333333.33607 755 624 -23415968.44916 756 624 -69751628.43939 757 624 1.266598701477e-06 758 624 -62205540.42245 759 624 -11071939.81576 760 624 8333333.336071 761 624 -7790968.444033 625 625 762354436.272 626 625 66665952.62197 627 625 -6.556510925293e-07 628 625 -57528006.93644 629 625 -33666309.64427 642 625 -43333333.32622 643 625 -45492367.71613 644 625 -7499910.748575 645 625 -1.192092895508e-07 646 625 62334645.32605 647 625 16666488.1637 648 625 43333333.32622 649 625 -47367367.71582 650 625 -9166577.415131 714 625 8333333.336071 715 625 -39196836.65327 716 625 -17343704.63996 717 625 -1.601874828339e-06 718 625 -40741089.4269 719 625 8333242.604601 720 625 -8333333.336071 721 625 -9548399.143536 722 625 9010462.03536 732 625 2.175569534302e-06 733 625 -126000573.4156 734 625 -67541485.19271 735 625 2.384185791016e-07 736 625 -47192265.20236 737 625 33332970.40198 738 625 -1.728534698486e-06 739 625 -11156823.43448 740 625 34208514.79074 753 625 -8333333.33607 754 625 -36345253.319 755 625 -16510371.30635 756 625 7.376074790955e-07 757 625 -33084756.09483 758 625 8333242.6046 759 625 8333333.336071 760 625 -8571815.80988 761 625 8177128.701754 626 626 1066134474.818 627 626 -1388903.764753 628 626 -32999642.97771 629 626 113328361.2626 642 626 -14930548.11516 643 626 -7499910.748739 644 626 -461644.445098 645 626 2361140.861532 646 626 16666488.1637 647 626 141192013.134 648 626 16319451.87971 649 626 -9166577.414967 650 626 -5461644.444274 714 626 24110420.45533 715 626 -17343704.63996 716 626 -81284258.80916 717 626 65400015.11214 718 626 8333242.604601 719 626 -113457062.6479 720 626 8485420.4502 721 626 9010462.03536 722 626 -2221758.783205 732 626 -694452.0061623 733 626 -67874818.52582 734 626 -284706093.7789 735 626 -2777808.023289 736 626 33332970.40198 737 626 -311771151.9111 738 626 -694452.006166 739 626 34541848.12385 740 626 21543906.17081 753 626 -23415968.44916 754 626 -16510371.30635 755 626 -73680036.58444 756 626 -62622207.08884 757 626 8333242.6046 758 626 -93040173.76232 759 626 -7790968.444033 760 626 8177128.701754 761 626 382463.4398733 627 627 866359460.9496 628 627 1.430511474609e-06 629 627 -5555615.056281 630 627 107138445.2518 631 627 -2.831220626831e-07 632 627 -1388903.764753 645 627 -58492995.80723 646 627 -43333333.32622 647 627 -14930548.11496 648 627 -128333063.0188 649 627 1.341104507446e-07 650 627 3194474.194728 651 627 -60367995.80692 652 627 43333333.32622 653 627 16319451.87991 717 627 -41696960.65915 718 627 8333333.336071 719 627 24110420.45533 720 627 -77407961.77148 721 627 -1.184642314911e-06 722 627 64983348.44575 723 627 -12048523.14942 724 627 -8333333.336071 725 627 8485420.4502 735 627 -94333949.07787 736 627 1.773238182068e-06 737 627 -694452.0061627 738 627 -27191273.16515 739 627 2.98023223877e-07 740 627 -2777808.023288 741 627 20509800.90325 742 627 -2.242624759674e-06 743 627 -694452.0061662 756 627 -38845377.32488 757 627 -8333333.33607 758 627 -23415968.44916 759 627 -69751628.43939 760 627 1.266598701477e-06 761 627 -62205540.42245 762 627 -11071939.81576 763 627 8333333.336071 764 627 -7790968.444033 628 628 762354436.272 629 628 66665952.62197 630 628 -6.556510925293e-07 631 628 -57528006.93644 632 628 -33666309.64427 645 628 -43333333.32622 646 628 -45492367.71613 647 628 -7499910.748575 648 628 -1.192092895508e-07 649 628 62334645.32605 650 628 16666488.1637 651 628 43333333.32622 652 628 -47367367.71582 653 628 -9166577.415131 717 628 8333333.336071 718 628 -39196836.65327 719 628 -17343704.63996 720 628 -1.601874828339e-06 721 628 -40741089.4269 722 628 8333242.604601 723 628 -8333333.336071 724 628 -9548399.143536 725 628 9010462.03536 735 628 2.175569534302e-06 736 628 -126000573.4156 737 628 -67541485.19271 738 628 2.384185791016e-07 739 628 -47192265.20236 740 628 33332970.40198 741 628 -1.728534698486e-06 742 628 -11156823.43448 743 628 34208514.79074 756 628 -8333333.33607 757 628 -36345253.319 758 628 -16510371.30635 759 628 7.376074790955e-07 760 628 -33084756.09483 761 628 8333242.6046 762 628 8333333.336071 763 628 -8571815.80988 764 628 8177128.701754 629 629 1066134474.818 630 629 -1388903.764753 631 629 -32999642.97771 632 629 113328361.2626 645 629 -14930548.11516 646 629 -7499910.748739 647 629 -461644.445098 648 629 2361140.861532 649 629 16666488.1637 650 629 141192013.134 651 629 16319451.87971 652 629 -9166577.414967 653 629 -5461644.444274 717 629 24110420.45533 718 629 -17343704.63996 719 629 -81284258.80916 720 629 65400015.11214 721 629 8333242.604601 722 629 -113457062.6479 723 629 8485420.4502 724 629 9010462.03536 725 629 -2221758.783205 735 629 -694452.0061623 736 629 -67874818.52582 737 629 -284706093.7789 738 629 -2777808.023289 739 629 33332970.40198 740 629 -311771151.9111 741 629 -694452.006166 742 629 34541848.12385 743 629 21543906.17081 756 629 -23415968.44916 757 629 -16510371.30635 758 629 -73680036.58444 759 629 -62622207.08884 760 629 8333242.6046 761 629 -93040173.76232 762 629 -7790968.444033 763 629 8177128.701754 764 629 382463.4398733 630 630 866359460.9496 631 630 1.430511474609e-06 632 630 -5555615.056281 633 630 107138445.2518 634 630 -2.831220626831e-07 635 630 -1388903.764753 648 630 -58492995.80723 649 630 -43333333.32622 650 630 -14930548.11496 651 630 -128333063.0188 652 630 1.341104507446e-07 653 630 3194474.194728 654 630 -60367995.80692 655 630 43333333.32622 656 630 16319451.87991 720 630 -41696960.65915 721 630 8333333.336071 722 630 24110420.45533 723 630 -77407961.77148 724 630 -1.184642314911e-06 725 630 64983348.44575 726 630 -12048523.14942 727 630 -8333333.336071 728 630 8485420.4502 738 630 -94333949.07787 739 630 1.773238182068e-06 740 630 -694452.0061627 741 630 -27191273.16515 742 630 2.98023223877e-07 743 630 -2777808.023288 744 630 20509800.90325 745 630 -2.242624759674e-06 746 630 -694452.0061662 759 630 -38845377.32488 760 630 -8333333.33607 761 630 -23415968.44916 762 630 -69751628.43939 763 630 1.266598701477e-06 764 630 -62205540.42245 765 630 -11071939.81576 766 630 8333333.336071 767 630 -7790968.444033 631 631 762354436.272 632 631 66665952.62197 633 631 -6.556510925293e-07 634 631 -57528006.93644 635 631 -33666309.64427 648 631 -43333333.32622 649 631 -45492367.71613 650 631 -7499910.748575 651 631 -1.192092895508e-07 652 631 62334645.32605 653 631 16666488.1637 654 631 43333333.32622 655 631 -47367367.71582 656 631 -9166577.415131 720 631 8333333.336071 721 631 -39196836.65327 722 631 -17343704.63996 723 631 -1.601874828339e-06 724 631 -40741089.4269 725 631 8333242.604601 726 631 -8333333.336071 727 631 -9548399.143536 728 631 9010462.03536 738 631 2.175569534302e-06 739 631 -126000573.4156 740 631 -67541485.19271 741 631 2.384185791016e-07 742 631 -47192265.20236 743 631 33332970.40198 744 631 -1.728534698486e-06 745 631 -11156823.43448 746 631 34208514.79074 759 631 -8333333.33607 760 631 -36345253.319 761 631 -16510371.30635 762 631 7.376074790955e-07 763 631 -33084756.09483 764 631 8333242.6046 765 631 8333333.336071 766 631 -8571815.80988 767 631 8177128.701754 632 632 1066134474.818 633 632 -1388903.764753 634 632 -32999642.97771 635 632 113328361.2626 648 632 -14930548.11516 649 632 -7499910.748739 650 632 -461644.445098 651 632 2361140.861532 652 632 16666488.1637 653 632 141192013.134 654 632 16319451.87971 655 632 -9166577.414967 656 632 -5461644.444274 720 632 24110420.45533 721 632 -17343704.63996 722 632 -81284258.80916 723 632 65400015.11214 724 632 8333242.604601 725 632 -113457062.6479 726 632 8485420.4502 727 632 9010462.03536 728 632 -2221758.783205 738 632 -694452.0061623 739 632 -67874818.52582 740 632 -284706093.7789 741 632 -2777808.023289 742 632 33332970.40198 743 632 -311771151.9111 744 632 -694452.006166 745 632 34541848.12385 746 632 21543906.17081 759 632 -23415968.44916 760 632 -16510371.30635 761 632 -73680036.58444 762 632 -62622207.08884 763 632 8333242.6046 764 632 -93040173.76232 765 632 -7790968.444033 766 632 8177128.701754 767 632 382463.4398733 633 633 858993812.0537 634 633 23572935.22651 635 633 -5596605.68986 636 633 4618634.835751 637 633 -55643925.7906 638 633 -3070485.761489 651 633 -58492995.80723 652 633 -43333333.32622 653 633 -14930548.11496 654 633 -98216097.07436 655 633 11347340.27138 656 633 719973.8304573 657 633 -33795235.93693 658 633 40444834.51144 659 633 2624699.350195 723 633 -41696960.65915 724 633 8333333.336071 725 633 24110420.45533 726 633 -71415955.0593 727 633 -3233554.224872 728 633 56726300.63859 741 633 -94333949.07787 742 633 1.773238182068e-06 743 633 -694452.0061627 744 633 -13774447.66423 745 633 4191171.176221 746 633 -2780612.645988 747 633 -30223428.17772 748 633 -11020580.63135 749 633 14420581.05462 762 633 -38845377.32488 763 633 -8333333.33607 764 633 -23415968.44916 765 633 -64986646.84972 766 633 2436242.286385 767 633 -58542682.88204 768 633 -16011865.17978 769 633 7626721.393617 770 633 -9769737.878529 634 634 808466815.7419 635 634 38960608.67833 636 634 -55656775.51848 637 634 -150135338.7036 638 634 -6430096.965576 651 634 -43333333.32622 652 634 -45492367.71613 653 634 -7499910.748575 654 634 11347340.27138 655 634 78782999.63319 656 634 9628847.797338 657 634 40444834.51144 658 634 -59951104.04053 659 634 -2777534.348236 723 634 8333333.336071 724 634 -39196836.65327 725 634 -17343704.63996 726 634 -3226694.963612 727 634 -34510800.91818 728 634 10096086.08607 741 634 2.175569534302e-06 742 634 -126000573.4156 743 634 -67541485.19271 744 634 4191171.17622 745 634 -21799184.55042 746 634 19581709.58125 747 634 -11027439.89261 748 634 -60138740.99675 749 634 47821580.90675 762 634 -8333333.33607 763 634 -36345253.319 764 634 -16510371.30635 765 634 2436242.286385 766 634 -31339965.69435 767 634 8706676.127155 768 634 7626721.393617 769 634 -21957274.44509 770 634 15232588.38105 635 635 1060138391.827 636 635 -3081602.172603 637 635 -6448721.730348 638 635 65923719.58454 651 635 -14930548.11516 652 635 -7499910.748739 653 635 -461644.445098 654 635 4886640.496438 655 635 9628847.797338 656 635 164674627.3592 657 635 2624699.349784 658 635 -2777534.348236 659 635 9639493.762348 723 635 24110420.45533 724 635 -17343704.63996 725 635 -81284258.80916 726 635 54643912.99742 727 635 10440765.17629 728 635 -94980766.45259 741 635 -694452.0061623 742 635 -67874818.52582 743 635 -284706093.7789 744 635 -2762465.644181 745 635 19596227.63998 746 635 -269985712.4852 747 635 14428412.5018 748 635 47817257.06168 749 635 -68547849.10008 762 635 -23415968.44916 763 635 -16510371.30635 764 635 -73680036.58444 765 635 -56459349.54655 766 635 8706676.128006 767 635 -92583202.06042 768 635 -9769737.878529 769 635 15232588.38105 770 635 -24335094.043 636 636 509824422.991 637 636 7091706.43505 638 636 -233419.5339228 654 636 -59049926.58522 655 636 -42965317.60158 656 636 -2258246.676834 657 636 -59241455.91135 658 636 15132295.57647 659 636 798361.610166 660 636 74246775.76258 661 636 -15390441.52608 662 636 58526.0984211 663 636 -25108448.92089 664 636 39749983.45952 665 636 516364.7746233 726 636 -18540701.9006 727 636 10020577.78707 728 636 14561779.53718 744 636 -45939787.20181 745 636 -11027439.89261 746 636 -17526028.04609 747 636 -61800142.29096 748 636 1513948.569663 749 636 12440251.97284 765 636 -26368729.20533 766 636 -8242806.906906 767 636 -17075883.20919 768 636 -74906791.02692 769 636 3256684.855284 770 636 -62343936.77239 771 636 -25367014.53987 772 636 -3090096.028045 773 636 8972625.494148 774 636 -22671270.46426 775 636 7569131.615548 776 636 -15173808.97594 637 637 589020111.9775 638 637 7899561.014866 654 637 -42965317.60158 655 637 -38102021.6452 656 637 -637598.5609377 657 637 15132295.57647 658 637 112031420.9635 659 637 2220214.855314 660 637 1942891.804407 661 637 -9986366.234935 662 637 -309424.0944229 663 637 39749983.45952 664 637 -31492829.01886 665 637 -337101.3112045 726 637 6680385.191377 727 637 -24472689.98014 728 637 -16861073.14158 744 637 -11020580.63135 745 637 -75855100.02084 746 637 -54351585.25286 747 637 1513948.569662 748 637 -45007225.02585 749 637 7591760.11537 765 637 -8242806.906906 766 637 -22147088.59928 767 637 -13065785.2468 768 637 3256684.855284 769 637 -42318700.05597 770 637 5034943.242021 771 637 243237.3063829 772 637 -41573854.45411 773 637 33177819.90803 774 637 7569131.615548 775 637 -24219778.49355 776 637 16496295.54634 638 638 736638462.5419 654 638 -2258246.67704 655 638 -637598.5611018 656 638 9368572.827382 657 638 798361.6101658 658 638 2220214.855314 659 638 191399411.2569 660 638 58526.09842288 661 638 -309424.0944231 662 638 123526648.2913 663 638 516364.7744184 664 638 -337101.3112046 665 638 34538216.12317 726 638 9707853.024785 727 638 -20743439.00053 728 638 -43509883.65538 744 638 -17515712.64747 745 638 -54353721.05939 746 638 -110458139.831 747 638 -12663636.91192 748 638 487449.3652666 749 638 -284041735.68 765 638 -17075883.20919 766 638 -13065785.2468 767 638 -38056298.36311 768 638 -62343936.77198 769 638 5034943.242873 770 638 -135317416.4032 771 638 847625.4925454 772 638 33177819.90803 773 638 -81733152.47406 774 638 -15173808.97594 775 638 16496295.54634 776 638 -41801871.2726 639 639 437007897.1408 640 639 1.788139343262e-06 641 639 -694474.1951501 642 639 54557514.29287 643 639 8666666.665243 644 639 2430548.117623 729 639 -77407961.77148 730 639 -1.184642314911e-06 731 639 64983348.44575 732 639 -12048523.14942 733 639 -8333333.336071 734 639 8485420.4502 750 639 -13658136.58254 751 639 5.662441253662e-07 752 639 -13107792.89912 753 639 10254900.45163 754 639 1666666.667213 755 639 -1974864.892506 640 640 385005384.802 641 640 33332976.31099 642 640 -8666666.665243 643 640 -27775711.80126 644 640 -16666488.15549 729 640 -1.601874828339e-06 730 640 -40741089.4269 731 640 8333242.604601 732 640 -8333333.336071 733 640 -9548399.143536 734 640 9010462.03536 750 640 5.960464477539e-08 751 640 -23658632.60114 752 640 16666485.20099 753 640 -1666666.667215 754 640 -5578411.717238 755 640 17187590.72873 641 641 543275681.852 642 641 -3819451.88135 643 641 -16666488.15549 644 641 59299625.07651 729 641 65400015.11214 730 641 8333242.604601 731 641 -113457062.6479 732 641 8485420.4502 733 641 9010462.03536 734 641 -2221758.783205 750 641 12413318.2078 751 641 16666485.20099 752 641 -156052242.6221 753 641 1280412.88634 754 641 17187590.72856 755 641 10771953.08541 642 642 437007897.1408 643 642 1.788139343262e-06 644 642 -694474.1951501 645 642 54557514.29287 646 642 8666666.665243 647 642 2430548.117623 729 642 -41696960.65915 730 642 8333333.336071 731 642 24110420.45533 732 642 -77407961.77148 733 642 -1.184642314911e-06 734 642 64983348.44575 735 642 -12048523.14942 736 642 -8333333.336071 737 642 8485420.4502 750 642 -47166974.53894 751 642 -1666666.667213 752 642 -5099864.893531 753 642 -13658136.58254 754 642 5.662441253662e-07 755 642 -13107792.89912 756 642 10254900.45163 757 642 1666666.667213 758 642 -1974864.892506 643 643 385005384.802 644 643 33332976.31099 645 643 -8666666.665243 646 643 -27775711.80126 647 643 -16666488.15549 729 643 8333333.336071 730 643 -39196836.65327 731 643 -17343704.63996 732 643 -1.601874828339e-06 733 643 -40741089.4269 734 643 8333242.604601 735 643 -8333333.336071 736 643 -9548399.143536 737 643 9010462.03536 750 643 1666666.667215 751 643 -63000286.7078 752 643 -33854075.92972 753 643 5.960464477539e-08 754 643 -23658632.60114 755 643 16666485.20099 756 643 -1666666.667215 757 643 -5578411.717238 758 643 17187590.72873 644 644 543275681.852 645 644 -3819451.88135 646 644 -16666488.15549 647 644 59299625.07651 729 644 24110420.45533 730 644 -17343704.63996 731 644 -81284258.80916 732 644 65400015.11214 733 644 8333242.604601 734 644 -113457062.6479 735 644 8485420.4502 736 644 9010462.03536 737 644 -2221758.783205 750 644 4405412.887368 751 644 -33854075.92955 752 644 -142353046.8894 753 644 12413318.2078 754 644 16666485.20099 755 644 -156052242.6221 756 644 1280412.88634 757 644 17187590.72856 758 644 10771953.08541 645 645 437007897.1408 646 645 1.788139343262e-06 647 645 -694474.1951501 648 645 54557514.29287 649 645 8666666.665243 650 645 2430548.117623 732 645 -41696960.65915 733 645 8333333.336071 734 645 24110420.45533 735 645 -77407961.77148 736 645 -1.184642314911e-06 737 645 64983348.44575 738 645 -12048523.14942 739 645 -8333333.336071 740 645 8485420.4502 753 645 -47166974.53894 754 645 -1666666.667213 755 645 -5099864.893531 756 645 -13658136.58254 757 645 5.662441253662e-07 758 645 -13107792.89912 759 645 10254900.45163 760 645 1666666.667213 761 645 -1974864.892506 646 646 385005384.802 647 646 33332976.31099 648 646 -8666666.665243 649 646 -27775711.80126 650 646 -16666488.15549 732 646 8333333.336071 733 646 -39196836.65327 734 646 -17343704.63996 735 646 -1.601874828339e-06 736 646 -40741089.4269 737 646 8333242.604601 738 646 -8333333.336071 739 646 -9548399.143536 740 646 9010462.03536 753 646 1666666.667215 754 646 -63000286.7078 755 646 -33854075.92972 756 646 5.960464477539e-08 757 646 -23658632.60114 758 646 16666485.20099 759 646 -1666666.667215 760 646 -5578411.717238 761 646 17187590.72873 647 647 543275681.852 648 647 -3819451.88135 649 647 -16666488.15549 650 647 59299625.07651 732 647 24110420.45533 733 647 -17343704.63996 734 647 -81284258.80916 735 647 65400015.11214 736 647 8333242.604601 737 647 -113457062.6479 738 647 8485420.4502 739 647 9010462.03536 740 647 -2221758.783205 753 647 4405412.887368 754 647 -33854075.92955 755 647 -142353046.8894 756 647 12413318.2078 757 647 16666485.20099 758 647 -156052242.6221 759 647 1280412.88634 760 647 17187590.72856 761 647 10771953.08541 648 648 437007897.1408 649 648 1.788139343262e-06 650 648 -694474.1951501 651 648 54557514.29287 652 648 8666666.665243 653 648 2430548.117623 735 648 -41696960.65915 736 648 8333333.336071 737 648 24110420.45533 738 648 -77407961.77148 739 648 -1.184642314911e-06 740 648 64983348.44575 741 648 -12048523.14942 742 648 -8333333.336071 743 648 8485420.4502 756 648 -47166974.53894 757 648 -1666666.667213 758 648 -5099864.893531 759 648 -13658136.58254 760 648 5.662441253662e-07 761 648 -13107792.89912 762 648 10254900.45163 763 648 1666666.667213 764 648 -1974864.892506 649 649 385005384.802 650 649 33332976.31099 651 649 -8666666.665243 652 649 -27775711.80126 653 649 -16666488.15549 735 649 8333333.336071 736 649 -39196836.65327 737 649 -17343704.63996 738 649 -1.601874828339e-06 739 649 -40741089.4269 740 649 8333242.604601 741 649 -8333333.336071 742 649 -9548399.143536 743 649 9010462.03536 756 649 1666666.667215 757 649 -63000286.7078 758 649 -33854075.92972 759 649 5.960464477539e-08 760 649 -23658632.60114 761 649 16666485.20099 762 649 -1666666.667215 763 649 -5578411.717238 764 649 17187590.72873 650 650 543275681.852 651 650 -3819451.88135 652 650 -16666488.15549 653 650 59299625.07651 735 650 24110420.45533 736 650 -17343704.63996 737 650 -81284258.80916 738 650 65400015.11214 739 650 8333242.604601 740 650 -113457062.6479 741 650 8485420.4502 742 650 9010462.03536 743 650 -2221758.783205 756 650 4405412.887368 757 650 -33854075.92955 758 650 -142353046.8894 759 650 12413318.2078 760 650 16666485.20099 761 650 -156052242.6221 762 650 1280412.88634 763 650 17187590.72856 764 650 10771953.08541 651 651 437007897.1408 652 651 1.788139343262e-06 653 651 -694474.1951501 654 651 54557514.29287 655 651 8666666.665243 656 651 2430548.117623 738 651 -41696960.65915 739 651 8333333.336071 740 651 24110420.45533 741 651 -77407961.77148 742 651 -1.184642314911e-06 743 651 64983348.44575 744 651 -12048523.14942 745 651 -8333333.336071 746 651 8485420.4502 759 651 -47166974.53894 760 651 -1666666.667213 761 651 -5099864.893531 762 651 -13658136.58254 763 651 5.662441253662e-07 764 651 -13107792.89912 765 651 10254900.45163 766 651 1666666.667213 767 651 -1974864.892506 652 652 385005384.802 653 652 33332976.31099 654 652 -8666666.665243 655 652 -27775711.80126 656 652 -16666488.15549 738 652 8333333.336071 739 652 -39196836.65327 740 652 -17343704.63996 741 652 -1.601874828339e-06 742 652 -40741089.4269 743 652 8333242.604601 744 652 -8333333.336071 745 652 -9548399.143536 746 652 9010462.03536 759 652 1666666.667215 760 652 -63000286.7078 761 652 -33854075.92972 762 652 5.960464477539e-08 763 652 -23658632.60114 764 652 16666485.20099 765 652 -1666666.667215 766 652 -5578411.717238 767 652 17187590.72873 653 653 543275681.852 654 653 -3819451.88135 655 653 -16666488.15549 656 653 59299625.07651 738 653 24110420.45533 739 653 -17343704.63996 740 653 -81284258.80916 741 653 65400015.11214 742 653 8333242.604601 743 653 -113457062.6479 744 653 8485420.4502 745 653 9010462.03536 746 653 -2221758.783205 759 653 4405412.887368 760 653 -33854075.92955 761 653 -142353046.8894 762 653 12413318.2078 763 653 16666485.20099 764 653 -156052242.6221 765 653 1280412.88634 766 653 17187590.72856 767 653 10771953.08541 654 654 447412022.0987 655 654 367932.9627128 656 654 -13022116.19691 657 654 49415165.36624 658 654 -3416622.293492 659 654 -439610.9536436 741 654 -41696960.65915 742 654 8333333.336071 743 654 24110420.45533 744 654 -72955365.59794 745 654 2436242.286385 746 654 61378150.43314 747 654 -22540576.42629 748 654 -8242806.906905 749 654 14824116.80129 762 654 -47166974.53894 763 654 -1666666.667213 764 654 -5099864.893531 765 654 -19040600.32219 766 654 90519.34075832 767 654 -19268094.90535 768 654 -13147418.28847 769 654 -950621.3890942 770 654 1450272.108583 655 655 403364363.9692 656 655 20195692.56007 657 655 -20749955.62398 658 655 -35151580.14884 659 655 -3353876.225841 741 655 8333333.336071 742 655 -39196836.65327 743 655 -17343704.63996 744 655 2436242.286384 745 655 -39308684.44256 746 655 894176.12852 747 655 -8242806.906905 748 655 -18318935.82024 749 655 12455048.09491 762 655 1666666.667215 763 655 -63000286.7078 764 655 -33854075.92972 765 655 90519.34075797 766 655 -27318088.15734 767 655 10111276.76934 768 655 -4283954.723522 769 655 -29405064.05177 770 655 27737279.5769 656 656 582349612.129 657 656 -1689610.95344 658 656 -3353876.225841 659 656 79771026.4956 741 656 24110420.45533 742 656 -17343704.63996 743 656 -81284258.80916 744 656 59294817.09957 745 656 894176.1292076 746 656 -113833118.7223 747 656 14824116.80129 748 656 12455048.09491 749 656 -27847890.95234 762 656 4405412.887368 763 656 -33854075.92955 764 656 -142353046.8894 765 656 6252460.646014 766 656 10111276.76934 767 656 -168050028.8542 768 656 7205272.109613 769 656 27737279.57605 770 656 -44092711.32715 657 657 423348866.0204 658 657 11032466.66264 659 657 326585.5522151 660 657 -62232004.47076 661 657 -46916683.19291 662 657 -525301.8919845 663 657 51948761.9348 664 657 1057042.066345 665 657 131933.0004746 744 657 -22730594.34878 745 657 7626721.393617 746 657 12364984.35096 747 657 -76547391.72184 748 657 3256684.855286 749 657 63175507.65185 765 657 -24944296.75828 766 657 -4283954.723523 767 657 -8940005.667694 768 657 -48889704.10442 769 657 2464794.383752 770 657 -12359093.76876 771 657 -30483492.68905 772 657 -9097535.056593 773 657 20047718.8134 774 657 -23754733.9178 775 657 33289.14746143 776 657 1855888.619689 658 658 428928472.3575 659 658 5287278.179705 660 658 -46916683.19291 661 658 -45414162.35006 662 658 -337101.3112045 663 658 -16276291.26414 664 658 -30998949.77914 665 658 -1038981.149731 744 658 7626721.393617 745 658 -28676003.61409 746 658 -18100744.96323 747 658 3256684.855286 748 658 -43959300.75089 749 658 -2777556.756613 765 658 -950621.3890945 766 658 -41201942.52158 767 658 -31116887.08018 768 658 2464794.383752 769 658 -46644595.36138 770 658 2691531.008842 771 658 -9097535.056593 772 658 -27149361.82785 773 658 16496295.54634 774 658 -3300044.186967 775 658 -39719009.46437 776 658 32807362.24483 659 659 584145228.2337 660 659 -525301.8919851 661 659 -337101.3112046 662 659 20616882.79198 663 659 -284733.6661254 664 659 -1038981.149731 665 659 99612216.13263 744 659 12364984.35096 745 659 -18100744.96323 746 659 -42251705.16035 747 659 63175507.65144 748 659 -2777556.755926 749 659 -139692351.5897 765 659 -1935005.666458 766 659 -31116887.08087 767 659 -75551053.91331 768 659 12744795.11601 769 659 2691531.008842 770 659 -234152588.3109 771 659 20047718.8134 772 659 16496295.54634 773 659 -44731454.6069 774 659 7819499.733824 775 659 32807362.24483 776 659 -69888082.52598 660 660 244685203.3475 661 660 50057108.18705 662 660 288696.1236947 663 660 -36054766.3116 664 660 -5083316.798544 665 660 178079.6698694 747 660 -26617014.5403 748 660 243237.3063828 749 660 -792652.2819211 768 660 -31733492.68947 769 660 -9097535.056593 770 660 -20577281.19994 771 660 -33148818.76463 772 660 9756762.696902 773 660 8271124.504546 774 660 -44282340.66884 775 660 -902464.9466921 776 660 -35651191.02268 661 661 223293345.3624 662 661 309424.094425 663 661 12250016.53194 664 661 52752391.55036 665 661 337101.3112057 747 661 -3090096.028045 748 661 -42823854.45454 749 661 -33488846.74768 768 661 -9097535.056593 769 661 -28399361.82827 770 661 -16837037.79794 771 661 9756762.696902 772 661 -37254478.85706 773 661 6822180.085395 774 661 2430868.387736 775 661 -27303971.52336 776 661 3503704.460225 662 662 339666962.7326 663 662 178079.6698721 664 662 337101.3112057 665 662 104576728.3915 747 662 -8917652.283731 748 662 -33488846.74768 749 662 -85066485.80853 768 662 -20577281.19995 769 662 -16837037.79794 770 662 -48064787.94135 771 662 -7978875.492785 772 662 -6511153.245748 773 662 -148788236.3624 774 662 -35651191.02354 775 662 -3162962.208631 776 662 -80164934.32299 663 663 212848619.9699 664 663 -35723708.72732 665 663 423622.5554408 747 663 -23921270.46468 748 663 7569131.615548 749 663 15685913.25641 768 663 -27504733.91658 769 663 -3300044.186967 770 663 -8117722.489783 771 663 -44282340.66884 772 663 2430868.387737 773 663 35833531.18791 774 663 -29604988.28668 775 663 -6699955.816318 776 663 -5953388.621477 664 664 213373553.9199 665 664 1038981.149734 747 664 7569131.615548 748 664 -25469778.49398 749 664 -16837037.79794 768 664 33289.14746112 769 664 -43469009.46316 770 664 -33859304.41089 771 664 -902464.9466912 772 664 -27303971.52336 773 664 3503704.460225 774 664 -6699955.816318 775 664 -29070573.85628 776 664 7192637.7486 665 665 304297283.8121 747 665 15685913.25641 748 665 -16837037.79794 749 665 -45135204.60706 768 665 -1737444.709049 769 665 -33859304.41089 770 665 -79888082.52274 771 665 35833531.18684 772 665 -3162962.208631 773 665 -80164934.32299 774 665 6390500.265385 775 665 -6140695.582542 776 665 -128980667.4453 666 666 544597009.4256 667 666 33333333.32786 668 666 -31989118.31313 669 666 -132114372.9571 670 666 -33352308.14156 671 666 31970539.06385 672 666 1216456.507315 673 666 26685641.47599 674 666 25851320.01324 777 666 -10929001.68405 778 666 8333333.33607 779 666 3726516.388097 780 666 -69036918.95254 781 666 -8338077.039497 782 666 -55624567.39871 783 666 7014515.850343 784 666 6671410.372285 785 666 -6514983.987003 667 667 494573181.6273 668 667 83368386.85484 669 667 -33361795.54841 670 667 24612909.30639 671 667 46187594.51733 672 667 40028462.21399 673 667 1216456.507311 674 667 -29021109.31684 777 667 8333333.336069 778 667 -23434958.63979 779 667 30221022.26397 780 667 -8340448.891212 781 667 -29855098.36736 782 667 -1182917.166231 783 667 10007115.55843 784 667 7014515.850342 785 667 7818288.469344 668 668 853850595.3707 669 668 31961249.43922 670 668 37180558.07827 671 668 139399647.4134 672 668 38776980.01986 673 668 -19347406.21122 674 668 3243884.01951 777 668 -21803668.18463 778 668 9797097.079457 779 668 -178746028.6722 780 668 -56043408.3313 781 668 -3514321.011405 782 668 -61172289.98812 783 668 -9772475.980504 784 668 5212192.312896 785 668 18705375.60092 669 669 847901916.7151 670 669 33380770.36212 671 669 -37498286.23383 672 669 39751697.94156 673 669 -33352308.14156 674 669 -32448557.35788 675 669 -59718971.98211 676 669 -9.387731552124e-07 677 669 5555616.043855 678 669 -46856498.79532 679 669 33333333.32786 680 669 32430570.67332 777 669 -99681629.70551 778 669 -8340448.891213 779 669 71607514.53236 780 669 -8298175.66356 781 669 8345192.594641 782 669 -9379478.645899 783 669 2423001.606932 784 669 -8338077.0395 785 669 7795396.873343 786 669 -69751628.43939 787 669 1.266598701477e-06 788 669 -62205540.42245 789 669 -11071939.81576 790 669 8333333.336071 791 669 -7790968.444033 670 670 757876104.862 671 670 103333663.8687 672 670 -33361795.54842 673 670 -76952252.54226 674 670 -55347988.6005 675 670 -8.344650268555e-07 676 670 86948517.3239 677 670 33332970.40197 678 670 33333333.32786 679 670 -36856002.77671 680 670 -18166485.20082 777 670 -8338077.039499 778 670 -60499809.12032 779 670 22021029.70742 780 670 8345192.594641 781 670 -30804628.63791 782 670 25829490.35962 783 670 -8340448.891214 784 670 -26752986.0284 785 670 37056208.64825 786 670 7.376074790955e-07 787 670 -33084756.09483 788 670 8333242.6046 789 670 8333333.336071 790 670 -8571815.80988 791 670 8177128.701754 671 671 1184141501.437 672 671 -32874217.36655 673 671 -64688121.35194 674 671 93077437.24068 675 671 5555616.043855 676 671 33332970.40197 677 671 212606082.8355 678 671 32847237.33971 679 671 -18499818.53394 680 671 -5320118.38549 777 671 72026355.46494 778 671 24359692.24116 779 671 -142891518.6627 780 671 -9370405.180087 781 671 25836749.05321 782 671 -291361037.6863 783 671 7797611.087997 784 671 35054390.19536 785 671 3229564.966024 786 671 -62622207.08884 787 671 8333242.6046 788 671 -93040173.76232 789 671 -7790968.444033 790 671 8177128.701754 791 671 382463.4398733 672 672 544597009.4256 673 672 33333333.32786 674 672 -31989118.31313 675 672 -43106498.79594 676 672 -33333333.32786 677 672 -30069429.31642 678 672 -132114372.9571 679 672 -33352308.14156 680 672 31970539.06385 681 672 1216456.507315 682 672 26685641.47599 683 672 25851320.01324 777 672 -50448491.13742 778 672 10007115.55843 779 672 28536410.43085 780 672 -85645347.16108 781 672 -8340448.891212 782 672 -24130997.54348 783 672 -10929001.68405 784 672 8333333.33607 785 672 3726516.388097 786 672 -38845377.32488 787 672 -8333333.33607 788 672 -23415968.44916 789 672 -69036918.95254 790 672 -8338077.039497 791 672 -55624567.39871 792 672 7014515.850343 793 672 6671410.372285 794 672 -6514983.987003 673 673 494573181.6273 674 673 83368386.85484 675 673 -33333333.32786 676 673 -33106002.77733 677 673 -15166485.20115 678 673 -33361795.54841 679 673 24612909.30639 680 673 46187594.51733 681 673 40028462.21399 682 673 1216456.507311 683 673 -29021109.31684 777 673 6671410.372285 778 673 -50448491.13742 779 673 -15218991.7376 780 673 -8338077.039498 781 673 -114821334.7964 782 673 -67065236.07198 783 673 8333333.336069 784 673 -23434958.63979 785 673 30221022.26397 786 673 -8333333.33607 787 673 -36345253.319 788 673 -16510371.30635 789 673 -8340448.891212 790 673 -29855098.36736 791 673 -1182917.166231 792 673 10007115.55843 793 673 7014515.850342 794 673 7818288.469344 674 674 853850595.3707 675 674 -29652762.65002 676 674 -14833151.86804 677 674 4679881.612865 678 674 31961249.43922 679 674 37180558.07827 680 674 139399647.4134 681 674 38776980.01986 682 674 -19347406.21122 683 674 3243884.01951 777 674 19024273.62057 778 674 -22828487.60639 779 674 -134529309.6998 780 674 -24124138.5141 781 674 -65063417.79147 782 674 -231619365.082 783 674 -21803668.18463 784 674 9797097.079457 785 674 -178746028.6722 786 674 -23415968.44916 787 674 -16510371.30635 788 674 -73680036.58444 789 674 -56043408.3313 790 674 -3514321.011405 791 674 -61172289.98812 792 674 -9772475.980504 793 674 5212192.312896 794 674 18705375.60092 675 675 829135740.1102 676 675 1.847743988037e-06 677 675 -11111232.08774 678 675 86951912.01811 679 675 -3.8743019104e-07 680 675 -2777808.023304 684 675 -59718971.98211 685 675 -9.387731552124e-07 686 675 5555616.043855 687 675 -46856498.79532 688 675 33333333.32786 689 675 32430570.67332 780 675 -77407961.77148 781 675 -1.184642314911e-06 782 675 64983348.44575 783 675 -12048523.14942 784 675 -8333333.336071 785 675 8485420.4502 786 675 -27191273.16515 787 675 2.98023223877e-07 788 675 -2777808.023288 789 675 20509800.90325 790 675 -2.242624759674e-06 791 675 -694452.0061662 795 675 -69751628.43939 796 675 1.266598701477e-06 797 675 -62205540.42245 798 675 -11071939.81576 799 675 8333333.336071 800 675 -7790968.444033 676 676 749131772.0008 677 676 133331881.5422 678 676 -1.639127731323e-07 679 676 -39714585.27039 680 676 -66665940.77111 684 676 -8.344650268555e-07 685 676 86948517.3239 686 676 33332970.40197 687 676 33333333.32786 688 676 -36856002.77671 689 676 -18166485.20082 780 676 -1.601874828339e-06 781 676 -40741089.4269 782 676 8333242.604601 783 676 -8333333.336071 784 676 -9548399.143536 785 676 9010462.03536 786 676 2.384185791016e-07 787 676 -47192265.20236 788 676 33332970.40198 789 676 -1.728534698486e-06 790 676 -11156823.43448 791 676 34208514.79074 795 676 7.376074790955e-07 796 676 -33084756.09483 797 676 8333242.6046 798 676 8333333.336071 799 676 -8571815.80988 800 676 8177128.701754 677 677 1253984280.216 678 677 -2777808.023304 679 677 -66665940.77111 680 677 99276180.49554 684 677 5555616.043855 685 677 33332970.40197 686 677 212606082.8355 687 677 32847237.33971 688 677 -18499818.53394 689 677 -5320118.38549 780 677 65400015.11214 781 677 8333242.604601 782 677 -113457062.6479 783 677 8485420.4502 784 677 9010462.03536 785 677 -2221758.783205 786 677 -2777808.023289 787 677 33332970.40198 788 677 -311771151.9111 789 677 -694452.006166 790 677 34541848.12385 791 677 21543906.17081 795 677 -62622207.08884 796 677 8333242.6046 797 677 -93040173.76232 798 677 -7790968.444033 799 677 8177128.701754 800 677 382463.4398733 678 678 847901916.7151 679 678 33380770.36212 680 678 -37498286.23383 681 678 39751697.94156 682 678 -33352308.14156 683 678 -32448557.35788 684 678 -43106498.79594 685 678 -33333333.32786 686 678 -30069429.31642 687 678 -59718971.98211 688 678 -9.387731552124e-07 689 678 5555616.043855 690 678 -46856498.79532 691 678 33333333.32786 692 678 32430570.67332 780 678 -41696960.65915 781 678 8333333.336071 782 678 24110420.45533 783 678 -99681629.70551 784 678 -8340448.891213 785 678 71607514.53236 786 678 -94333949.07787 787 678 1.773238182068e-06 788 678 -694452.0061627 789 678 -8298175.66356 790 678 8345192.594641 791 678 -9379478.645899 792 678 2423001.606932 793 678 -8338077.0395 794 678 7795396.873343 795 678 -38845377.32488 796 678 -8333333.33607 797 678 -23415968.44916 798 678 -69751628.43939 799 678 1.266598701477e-06 800 678 -62205540.42245 801 678 -11071939.81576 802 678 8333333.336071 803 678 -7790968.444033 679 679 757876104.862 680 679 103333663.8687 681 679 -33361795.54842 682 679 -76952252.54226 683 679 -55347988.6005 684 679 -33333333.32786 685 679 -33106002.77733 686 679 -15166485.20115 687 679 -8.344650268555e-07 688 679 86948517.3239 689 679 33332970.40197 690 679 33333333.32786 691 679 -36856002.77671 692 679 -18166485.20082 780 679 8333333.336071 781 679 -39196836.65327 782 679 -17343704.63996 783 679 -8338077.039499 784 679 -60499809.12032 785 679 22021029.70742 786 679 2.175569534302e-06 787 679 -126000573.4156 788 679 -67541485.19271 789 679 8345192.594641 790 679 -30804628.63791 791 679 25829490.35962 792 679 -8340448.891214 793 679 -26752986.0284 794 679 37056208.64825 795 679 -8333333.33607 796 679 -36345253.319 797 679 -16510371.30635 798 679 7.376074790955e-07 799 679 -33084756.09483 800 679 8333242.6046 801 679 8333333.336071 802 679 -8571815.80988 803 679 8177128.701754 680 680 1184141501.437 681 680 -32874217.36655 682 680 -64688121.35194 683 680 93077437.24068 684 680 -29652762.65002 685 680 -14833151.86804 686 680 4679881.612865 687 680 5555616.043855 688 680 33332970.40197 689 680 212606082.8355 690 680 32847237.33971 691 680 -18499818.53394 692 680 -5320118.38549 780 680 24110420.45533 781 680 -17343704.63996 782 680 -81284258.80916 783 680 72026355.46494 784 680 24359692.24116 785 680 -142891518.6627 786 680 -694452.0061623 787 680 -67874818.52582 788 680 -284706093.7789 789 680 -9370405.180087 790 680 25836749.05321 791 680 -291361037.6863 792 680 7797611.087997 793 680 35054390.19536 794 680 3229564.966024 795 680 -23415968.44916 796 680 -16510371.30635 797 680 -73680036.58444 798 680 -62622207.08884 799 680 8333242.6046 800 680 -93040173.76232 801 680 -7790968.444033 802 680 8177128.701754 803 680 382463.4398733 681 681 544597009.4256 682 681 33333333.32786 683 681 -31989118.31313 687 681 -43106498.79594 688 681 -33333333.32786 689 681 -30069429.31642 690 681 -132114372.9571 691 681 -33352308.14156 692 681 31970539.06385 693 681 1216456.507315 694 681 26685641.47599 695 681 25851320.01324 783 681 -50448491.13742 784 681 10007115.55843 785 681 28536410.43085 789 681 -85645347.16108 790 681 -8340448.891212 791 681 -24130997.54348 792 681 -10929001.68405 793 681 8333333.33607 794 681 3726516.388097 798 681 -38845377.32488 799 681 -8333333.33607 800 681 -23415968.44916 801 681 -69036918.95254 802 681 -8338077.039497 803 681 -55624567.39871 804 681 7014515.850343 805 681 6671410.372285 806 681 -6514983.987003 682 682 494573181.6273 683 682 83368386.85484 687 682 -33333333.32786 688 682 -33106002.77733 689 682 -15166485.20115 690 682 -33361795.54841 691 682 24612909.30639 692 682 46187594.51733 693 682 40028462.21399 694 682 1216456.507311 695 682 -29021109.31684 783 682 6671410.372285 784 682 -50448491.13742 785 682 -15218991.7376 789 682 -8338077.039498 790 682 -114821334.7964 791 682 -67065236.07198 792 682 8333333.336069 793 682 -23434958.63979 794 682 30221022.26397 798 682 -8333333.33607 799 682 -36345253.319 800 682 -16510371.30635 801 682 -8340448.891212 802 682 -29855098.36736 803 682 -1182917.166231 804 682 10007115.55843 805 682 7014515.850342 806 682 7818288.469344 683 683 853850595.3707 687 683 -29652762.65002 688 683 -14833151.86804 689 683 4679881.612865 690 683 31961249.43922 691 683 37180558.07827 692 683 139399647.4134 693 683 38776980.01986 694 683 -19347406.21122 695 683 3243884.01951 783 683 19024273.62057 784 683 -22828487.60639 785 683 -134529309.6998 789 683 -24124138.5141 790 683 -65063417.79147 791 683 -231619365.082 792 683 -21803668.18463 793 683 9797097.079457 794 683 -178746028.6722 798 683 -23415968.44916 799 683 -16510371.30635 800 683 -73680036.58444 801 683 -56043408.3313 802 683 -3514321.011405 803 683 -61172289.98812 804 683 -9772475.980504 805 683 5212192.312896 806 683 18705375.60092 684 684 829135740.1102 685 684 1.847743988037e-06 686 684 -11111232.08774 687 684 86951912.01811 688 684 -3.8743019104e-07 689 684 -2777808.023304 696 684 -59718971.98211 697 684 -9.387731552124e-07 698 684 5555616.043855 699 684 -46856498.79532 700 684 33333333.32786 701 684 32430570.67332 786 684 -77407961.77148 787 684 -1.184642314911e-06 788 684 64983348.44575 789 684 -12048523.14942 790 684 -8333333.336071 791 684 8485420.4502 795 684 -27191273.16515 796 684 2.98023223877e-07 797 684 -2777808.023288 798 684 20509800.90325 799 684 -2.242624759674e-06 800 684 -694452.0061662 807 684 -69751628.43939 808 684 1.266598701477e-06 809 684 -62205540.42245 810 684 -11071939.81576 811 684 8333333.336071 812 684 -7790968.444033 685 685 749131772.0008 686 685 133331881.5422 687 685 -1.639127731323e-07 688 685 -39714585.27039 689 685 -66665940.77111 696 685 -8.344650268555e-07 697 685 86948517.3239 698 685 33332970.40197 699 685 33333333.32786 700 685 -36856002.77671 701 685 -18166485.20082 786 685 -1.601874828339e-06 787 685 -40741089.4269 788 685 8333242.604601 789 685 -8333333.336071 790 685 -9548399.143536 791 685 9010462.03536 795 685 2.384185791016e-07 796 685 -47192265.20236 797 685 33332970.40198 798 685 -1.728534698486e-06 799 685 -11156823.43448 800 685 34208514.79074 807 685 7.376074790955e-07 808 685 -33084756.09483 809 685 8333242.6046 810 685 8333333.336071 811 685 -8571815.80988 812 685 8177128.701754 686 686 1253984280.216 687 686 -2777808.023304 688 686 -66665940.77111 689 686 99276180.49554 696 686 5555616.043855 697 686 33332970.40197 698 686 212606082.8355 699 686 32847237.33971 700 686 -18499818.53394 701 686 -5320118.38549 786 686 65400015.11214 787 686 8333242.604601 788 686 -113457062.6479 789 686 8485420.4502 790 686 9010462.03536 791 686 -2221758.783205 795 686 -2777808.023289 796 686 33332970.40198 797 686 -311771151.9111 798 686 -694452.006166 799 686 34541848.12385 800 686 21543906.17081 807 686 -62622207.08884 808 686 8333242.6046 809 686 -93040173.76232 810 686 -7790968.444033 811 686 8177128.701754 812 686 382463.4398733 687 687 829135740.1102 688 687 1.847743988037e-06 689 687 -11111232.08774 690 687 86951912.01811 691 687 -3.8743019104e-07 692 687 -2777808.023304 696 687 -43106498.79594 697 687 -33333333.32786 698 687 -30069429.31642 699 687 -59718971.98211 700 687 -9.387731552124e-07 701 687 5555616.043855 702 687 -46856498.79532 703 687 33333333.32786 704 687 32430570.67332 786 687 -41696960.65915 787 687 8333333.336071 788 687 24110420.45533 789 687 -77407961.77148 790 687 -1.184642314911e-06 791 687 64983348.44575 792 687 -12048523.14942 793 687 -8333333.336071 794 687 8485420.4502 795 687 -94333949.07787 796 687 1.773238182068e-06 797 687 -694452.0061627 798 687 -27191273.16515 799 687 2.98023223877e-07 800 687 -2777808.023288 801 687 20509800.90325 802 687 -2.242624759674e-06 803 687 -694452.0061662 807 687 -38845377.32488 808 687 -8333333.33607 809 687 -23415968.44916 810 687 -69751628.43939 811 687 1.266598701477e-06 812 687 -62205540.42245 813 687 -11071939.81576 814 687 8333333.336071 815 687 -7790968.444033 688 688 749131772.0008 689 688 133331881.5422 690 688 -1.639127731323e-07 691 688 -39714585.27039 692 688 -66665940.77111 696 688 -33333333.32786 697 688 -33106002.77733 698 688 -15166485.20115 699 688 -8.344650268555e-07 700 688 86948517.3239 701 688 33332970.40197 702 688 33333333.32786 703 688 -36856002.77671 704 688 -18166485.20082 786 688 8333333.336071 787 688 -39196836.65327 788 688 -17343704.63996 789 688 -1.601874828339e-06 790 688 -40741089.4269 791 688 8333242.604601 792 688 -8333333.336071 793 688 -9548399.143536 794 688 9010462.03536 795 688 2.175569534302e-06 796 688 -126000573.4156 797 688 -67541485.19271 798 688 2.384185791016e-07 799 688 -47192265.20236 800 688 33332970.40198 801 688 -1.728534698486e-06 802 688 -11156823.43448 803 688 34208514.79074 807 688 -8333333.33607 808 688 -36345253.319 809 688 -16510371.30635 810 688 7.376074790955e-07 811 688 -33084756.09483 812 688 8333242.6046 813 688 8333333.336071 814 688 -8571815.80988 815 688 8177128.701754 689 689 1253984280.216 690 689 -2777808.023304 691 689 -66665940.77111 692 689 99276180.49554 696 689 -29652762.65002 697 689 -14833151.86804 698 689 4679881.612865 699 689 5555616.043855 700 689 33332970.40197 701 689 212606082.8355 702 689 32847237.33971 703 689 -18499818.53394 704 689 -5320118.38549 786 689 24110420.45533 787 689 -17343704.63996 788 689 -81284258.80916 789 689 65400015.11214 790 689 8333242.604601 791 689 -113457062.6479 792 689 8485420.4502 793 689 9010462.03536 794 689 -2221758.783205 795 689 -694452.0061623 796 689 -67874818.52582 797 689 -284706093.7789 798 689 -2777808.023289 799 689 33332970.40198 800 689 -311771151.9111 801 689 -694452.006166 802 689 34541848.12385 803 689 21543906.17081 807 689 -23415968.44916 808 689 -16510371.30635 809 689 -73680036.58444 810 689 -62622207.08884 811 689 8333242.6046 812 689 -93040173.76232 813 689 -7790968.444033 814 689 8177128.701754 815 689 382463.4398733 690 690 847901916.7151 691 690 33380770.36212 692 690 -37498286.23383 693 690 39751697.94156 694 690 -33352308.14156 695 690 -32448557.35788 699 690 -43106498.79594 700 690 -33333333.32786 701 690 -30069429.31642 702 690 -59718971.98211 703 690 -9.387731552124e-07 704 690 5555616.043855 705 690 -46856498.79532 706 690 33333333.32786 707 690 32430570.67332 789 690 -41696960.65915 790 690 8333333.336071 791 690 24110420.45533 792 690 -99681629.70551 793 690 -8340448.891213 794 690 71607514.53236 798 690 -94333949.07787 799 690 1.773238182068e-06 800 690 -694452.0061627 801 690 -8298175.66356 802 690 8345192.594641 803 690 -9379478.645899 804 690 2423001.606932 805 690 -8338077.0395 806 690 7795396.873343 810 690 -38845377.32488 811 690 -8333333.33607 812 690 -23415968.44916 813 690 -69751628.43939 814 690 1.266598701477e-06 815 690 -62205540.42245 816 690 -11071939.81576 817 690 8333333.336071 818 690 -7790968.444033 691 691 757876104.862 692 691 103333663.8687 693 691 -33361795.54842 694 691 -76952252.54226 695 691 -55347988.6005 699 691 -33333333.32786 700 691 -33106002.77733 701 691 -15166485.20115 702 691 -8.344650268555e-07 703 691 86948517.3239 704 691 33332970.40197 705 691 33333333.32786 706 691 -36856002.77671 707 691 -18166485.20082 789 691 8333333.336071 790 691 -39196836.65327 791 691 -17343704.63996 792 691 -8338077.039499 793 691 -60499809.12032 794 691 22021029.70742 798 691 2.175569534302e-06 799 691 -126000573.4156 800 691 -67541485.19271 801 691 8345192.594641 802 691 -30804628.63791 803 691 25829490.35962 804 691 -8340448.891214 805 691 -26752986.0284 806 691 37056208.64825 810 691 -8333333.33607 811 691 -36345253.319 812 691 -16510371.30635 813 691 7.376074790955e-07 814 691 -33084756.09483 815 691 8333242.6046 816 691 8333333.336071 817 691 -8571815.80988 818 691 8177128.701754 692 692 1184141501.437 693 692 -32874217.36655 694 692 -64688121.35194 695 692 93077437.24068 699 692 -29652762.65002 700 692 -14833151.86804 701 692 4679881.612865 702 692 5555616.043855 703 692 33332970.40197 704 692 212606082.8355 705 692 32847237.33971 706 692 -18499818.53394 707 692 -5320118.38549 789 692 24110420.45533 790 692 -17343704.63996 791 692 -81284258.80916 792 692 72026355.46494 793 692 24359692.24116 794 692 -142891518.6627 798 692 -694452.0061623 799 692 -67874818.52582 800 692 -284706093.7789 801 692 -9370405.180087 802 692 25836749.05321 803 692 -291361037.6863 804 692 7797611.087997 805 692 35054390.19536 806 692 3229564.966024 810 692 -23415968.44916 811 692 -16510371.30635 812 692 -73680036.58444 813 692 -62622207.08884 814 692 8333242.6046 815 692 -93040173.76232 816 692 -7790968.444033 817 692 8177128.701754 818 692 382463.4398733 693 693 544597009.4256 694 693 33333333.32786 695 693 -31989118.31313 702 693 -43106498.79594 703 693 -33333333.32786 704 693 -30069429.31642 705 693 -132114372.9571 706 693 -33352308.14156 707 693 31970539.06385 708 693 1216456.507315 709 693 26685641.47599 710 693 25851320.01324 792 693 -50448491.13742 793 693 10007115.55843 794 693 28536410.43085 801 693 -85645347.16108 802 693 -8340448.891212 803 693 -24130997.54348 804 693 -10929001.68405 805 693 8333333.33607 806 693 3726516.388097 813 693 -38845377.32488 814 693 -8333333.33607 815 693 -23415968.44916 816 693 -69036918.95254 817 693 -8338077.039497 818 693 -55624567.39871 819 693 7014515.850343 820 693 6671410.372285 821 693 -6514983.987003 694 694 494573181.6273 695 694 83368386.85484 702 694 -33333333.32786 703 694 -33106002.77733 704 694 -15166485.20115 705 694 -33361795.54841 706 694 24612909.30639 707 694 46187594.51733 708 694 40028462.21399 709 694 1216456.507311 710 694 -29021109.31684 792 694 6671410.372285 793 694 -50448491.13742 794 694 -15218991.7376 801 694 -8338077.039498 802 694 -114821334.7964 803 694 -67065236.07198 804 694 8333333.336069 805 694 -23434958.63979 806 694 30221022.26397 813 694 -8333333.33607 814 694 -36345253.319 815 694 -16510371.30635 816 694 -8340448.891212 817 694 -29855098.36736 818 694 -1182917.166231 819 694 10007115.55843 820 694 7014515.850342 821 694 7818288.469344 695 695 853850595.3707 702 695 -29652762.65002 703 695 -14833151.86804 704 695 4679881.612865 705 695 31961249.43922 706 695 37180558.07827 707 695 139399647.4134 708 695 38776980.01986 709 695 -19347406.21122 710 695 3243884.01951 792 695 19024273.62057 793 695 -22828487.60639 794 695 -134529309.6998 801 695 -24124138.5141 802 695 -65063417.79147 803 695 -231619365.082 804 695 -21803668.18463 805 695 9797097.079457 806 695 -178746028.6722 813 695 -23415968.44916 814 695 -16510371.30635 815 695 -73680036.58444 816 695 -56043408.3313 817 695 -3514321.011405 818 695 -61172289.98812 819 695 -9772475.980504 820 695 5212192.312896 821 695 18705375.60092 696 696 829135740.1102 697 696 1.847743988037e-06 698 696 -11111232.08774 699 696 86951912.01811 700 696 -3.8743019104e-07 701 696 -2777808.023304 711 696 -59718971.98211 712 696 -9.387731552124e-07 713 696 5555616.043855 714 696 -46856498.79532 715 696 33333333.32786 716 696 32430570.67332 795 696 -77407961.77148 796 696 -1.184642314911e-06 797 696 64983348.44575 798 696 -12048523.14942 799 696 -8333333.336071 800 696 8485420.4502 807 696 -27191273.16515 808 696 2.98023223877e-07 809 696 -2777808.023288 810 696 20509800.90325 811 696 -2.242624759674e-06 812 696 -694452.0061662 822 696 -69751628.43939 823 696 1.266598701477e-06 824 696 -62205540.42245 825 696 -11071939.81576 826 696 8333333.336071 827 696 -7790968.444033 697 697 749131772.0008 698 697 133331881.5422 699 697 -1.639127731323e-07 700 697 -39714585.27039 701 697 -66665940.77111 711 697 -8.344650268555e-07 712 697 86948517.3239 713 697 33332970.40197 714 697 33333333.32786 715 697 -36856002.77671 716 697 -18166485.20082 795 697 -1.601874828339e-06 796 697 -40741089.4269 797 697 8333242.604601 798 697 -8333333.336071 799 697 -9548399.143536 800 697 9010462.03536 807 697 2.384185791016e-07 808 697 -47192265.20236 809 697 33332970.40198 810 697 -1.728534698486e-06 811 697 -11156823.43448 812 697 34208514.79074 822 697 7.376074790955e-07 823 697 -33084756.09483 824 697 8333242.6046 825 697 8333333.336071 826 697 -8571815.80988 827 697 8177128.701754 698 698 1253984280.216 699 698 -2777808.023304 700 698 -66665940.77111 701 698 99276180.49554 711 698 5555616.043855 712 698 33332970.40197 713 698 212606082.8355 714 698 32847237.33971 715 698 -18499818.53394 716 698 -5320118.38549 795 698 65400015.11214 796 698 8333242.604601 797 698 -113457062.6479 798 698 8485420.4502 799 698 9010462.03536 800 698 -2221758.783205 807 698 -2777808.023289 808 698 33332970.40198 809 698 -311771151.9111 810 698 -694452.006166 811 698 34541848.12385 812 698 21543906.17081 822 698 -62622207.08884 823 698 8333242.6046 824 698 -93040173.76232 825 698 -7790968.444033 826 698 8177128.701754 827 698 382463.4398733 699 699 829135740.1102 700 699 1.847743988037e-06 701 699 -11111232.08774 702 699 86951912.01811 703 699 -3.8743019104e-07 704 699 -2777808.023304 711 699 -43106498.79594 712 699 -33333333.32786 713 699 -30069429.31642 714 699 -59718971.98211 715 699 -9.387731552124e-07 716 699 5555616.043855 717 699 -46856498.79532 718 699 33333333.32786 719 699 32430570.67332 795 699 -41696960.65915 796 699 8333333.336071 797 699 24110420.45533 798 699 -77407961.77148 799 699 -1.184642314911e-06 800 699 64983348.44575 801 699 -12048523.14942 802 699 -8333333.336071 803 699 8485420.4502 807 699 -94333949.07787 808 699 1.773238182068e-06 809 699 -694452.0061627 810 699 -27191273.16515 811 699 2.98023223877e-07 812 699 -2777808.023288 813 699 20509800.90325 814 699 -2.242624759674e-06 815 699 -694452.0061662 822 699 -38845377.32488 823 699 -8333333.33607 824 699 -23415968.44916 825 699 -69751628.43939 826 699 1.266598701477e-06 827 699 -62205540.42245 828 699 -11071939.81576 829 699 8333333.336071 830 699 -7790968.444033 700 700 749131772.0008 701 700 133331881.5422 702 700 -1.639127731323e-07 703 700 -39714585.27039 704 700 -66665940.77111 711 700 -33333333.32786 712 700 -33106002.77733 713 700 -15166485.20115 714 700 -8.344650268555e-07 715 700 86948517.3239 716 700 33332970.40197 717 700 33333333.32786 718 700 -36856002.77671 719 700 -18166485.20082 795 700 8333333.336071 796 700 -39196836.65327 797 700 -17343704.63996 798 700 -1.601874828339e-06 799 700 -40741089.4269 800 700 8333242.604601 801 700 -8333333.336071 802 700 -9548399.143536 803 700 9010462.03536 807 700 2.175569534302e-06 808 700 -126000573.4156 809 700 -67541485.19271 810 700 2.384185791016e-07 811 700 -47192265.20236 812 700 33332970.40198 813 700 -1.728534698486e-06 814 700 -11156823.43448 815 700 34208514.79074 822 700 -8333333.33607 823 700 -36345253.319 824 700 -16510371.30635 825 700 7.376074790955e-07 826 700 -33084756.09483 827 700 8333242.6046 828 700 8333333.336071 829 700 -8571815.80988 830 700 8177128.701754 701 701 1253984280.216 702 701 -2777808.023304 703 701 -66665940.77111 704 701 99276180.49554 711 701 -29652762.65002 712 701 -14833151.86804 713 701 4679881.612865 714 701 5555616.043855 715 701 33332970.40197 716 701 212606082.8355 717 701 32847237.33971 718 701 -18499818.53394 719 701 -5320118.38549 795 701 24110420.45533 796 701 -17343704.63996 797 701 -81284258.80916 798 701 65400015.11214 799 701 8333242.604601 800 701 -113457062.6479 801 701 8485420.4502 802 701 9010462.03536 803 701 -2221758.783205 807 701 -694452.0061623 808 701 -67874818.52582 809 701 -284706093.7789 810 701 -2777808.023289 811 701 33332970.40198 812 701 -311771151.9111 813 701 -694452.006166 814 701 34541848.12385 815 701 21543906.17081 822 701 -23415968.44916 823 701 -16510371.30635 824 701 -73680036.58444 825 701 -62622207.08884 826 701 8333242.6046 827 701 -93040173.76232 828 701 -7790968.444033 829 701 8177128.701754 830 701 382463.4398733 702 702 829135740.1102 703 702 1.847743988037e-06 704 702 -11111232.08774 705 702 86951912.01811 706 702 -3.8743019104e-07 707 702 -2777808.023304 714 702 -43106498.79594 715 702 -33333333.32786 716 702 -30069429.31642 717 702 -59718971.98211 718 702 -9.387731552124e-07 719 702 5555616.043855 720 702 -46856498.79532 721 702 33333333.32786 722 702 32430570.67332 798 702 -41696960.65915 799 702 8333333.336071 800 702 24110420.45533 801 702 -77407961.77148 802 702 -1.184642314911e-06 803 702 64983348.44575 804 702 -12048523.14942 805 702 -8333333.336071 806 702 8485420.4502 810 702 -94333949.07787 811 702 1.773238182068e-06 812 702 -694452.0061627 813 702 -27191273.16515 814 702 2.98023223877e-07 815 702 -2777808.023288 816 702 20509800.90325 817 702 -2.242624759674e-06 818 702 -694452.0061662 825 702 -38845377.32488 826 702 -8333333.33607 827 702 -23415968.44916 828 702 -69751628.43939 829 702 1.266598701477e-06 830 702 -62205540.42245 831 702 -11071939.81576 832 702 8333333.336071 833 702 -7790968.444033 703 703 749131772.0008 704 703 133331881.5422 705 703 -1.639127731323e-07 706 703 -39714585.27039 707 703 -66665940.77111 714 703 -33333333.32786 715 703 -33106002.77733 716 703 -15166485.20115 717 703 -8.344650268555e-07 718 703 86948517.3239 719 703 33332970.40197 720 703 33333333.32786 721 703 -36856002.77671 722 703 -18166485.20082 798 703 8333333.336071 799 703 -39196836.65327 800 703 -17343704.63996 801 703 -1.601874828339e-06 802 703 -40741089.4269 803 703 8333242.604601 804 703 -8333333.336071 805 703 -9548399.143536 806 703 9010462.03536 810 703 2.175569534302e-06 811 703 -126000573.4156 812 703 -67541485.19271 813 703 2.384185791016e-07 814 703 -47192265.20236 815 703 33332970.40198 816 703 -1.728534698486e-06 817 703 -11156823.43448 818 703 34208514.79074 825 703 -8333333.33607 826 703 -36345253.319 827 703 -16510371.30635 828 703 7.376074790955e-07 829 703 -33084756.09483 830 703 8333242.6046 831 703 8333333.336071 832 703 -8571815.80988 833 703 8177128.701754 704 704 1253984280.216 705 704 -2777808.023304 706 704 -66665940.77111 707 704 99276180.49554 714 704 -29652762.65002 715 704 -14833151.86804 716 704 4679881.612865 717 704 5555616.043855 718 704 33332970.40197 719 704 212606082.8355 720 704 32847237.33971 721 704 -18499818.53394 722 704 -5320118.38549 798 704 24110420.45533 799 704 -17343704.63996 800 704 -81284258.80916 801 704 65400015.11214 802 704 8333242.604601 803 704 -113457062.6479 804 704 8485420.4502 805 704 9010462.03536 806 704 -2221758.783205 810 704 -694452.0061623 811 704 -67874818.52582 812 704 -284706093.7789 813 704 -2777808.023289 814 704 33332970.40198 815 704 -311771151.9111 816 704 -694452.006166 817 704 34541848.12385 818 704 21543906.17081 825 704 -23415968.44916 826 704 -16510371.30635 827 704 -73680036.58444 828 704 -62622207.08884 829 704 8333242.6046 830 704 -93040173.76232 831 704 -7790968.444033 832 704 8177128.701754 833 704 382463.4398733 705 705 847901916.7151 706 705 33380770.36212 707 705 -37498286.23383 708 705 39751697.94156 709 705 -33352308.14156 710 705 -32448557.35788 717 705 -43106498.79594 718 705 -33333333.32786 719 705 -30069429.31642 720 705 -59718971.98211 721 705 -9.387731552124e-07 722 705 5555616.043855 723 705 -46856498.79532 724 705 33333333.32786 725 705 32430570.67332 801 705 -41696960.65915 802 705 8333333.336071 803 705 24110420.45533 804 705 -99681629.70551 805 705 -8340448.891213 806 705 71607514.53236 813 705 -94333949.07787 814 705 1.773238182068e-06 815 705 -694452.0061627 816 705 -8298175.66356 817 705 8345192.594641 818 705 -9379478.645899 819 705 2423001.606932 820 705 -8338077.0395 821 705 7795396.873343 828 705 -38845377.32488 829 705 -8333333.33607 830 705 -23415968.44916 831 705 -69751628.43939 832 705 1.266598701477e-06 833 705 -62205540.42245 834 705 -11071939.81576 835 705 8333333.336071 836 705 -7790968.444033 706 706 757876104.862 707 706 103333663.8687 708 706 -33361795.54842 709 706 -76952252.54226 710 706 -55347988.6005 717 706 -33333333.32786 718 706 -33106002.77733 719 706 -15166485.20115 720 706 -8.344650268555e-07 721 706 86948517.3239 722 706 33332970.40197 723 706 33333333.32786 724 706 -36856002.77671 725 706 -18166485.20082 801 706 8333333.336071 802 706 -39196836.65327 803 706 -17343704.63996 804 706 -8338077.039499 805 706 -60499809.12032 806 706 22021029.70742 813 706 2.175569534302e-06 814 706 -126000573.4156 815 706 -67541485.19271 816 706 8345192.594641 817 706 -30804628.63791 818 706 25829490.35962 819 706 -8340448.891214 820 706 -26752986.0284 821 706 37056208.64825 828 706 -8333333.33607 829 706 -36345253.319 830 706 -16510371.30635 831 706 7.376074790955e-07 832 706 -33084756.09483 833 706 8333242.6046 834 706 8333333.336071 835 706 -8571815.80988 836 706 8177128.701754 707 707 1184141501.437 708 707 -32874217.36655 709 707 -64688121.35194 710 707 93077437.24068 717 707 -29652762.65002 718 707 -14833151.86804 719 707 4679881.612865 720 707 5555616.043855 721 707 33332970.40197 722 707 212606082.8355 723 707 32847237.33971 724 707 -18499818.53394 725 707 -5320118.38549 801 707 24110420.45533 802 707 -17343704.63996 803 707 -81284258.80916 804 707 72026355.46494 805 707 24359692.24116 806 707 -142891518.6627 813 707 -694452.0061623 814 707 -67874818.52582 815 707 -284706093.7789 816 707 -9370405.180087 817 707 25836749.05321 818 707 -291361037.6863 819 707 7797611.087997 820 707 35054390.19536 821 707 3229564.966024 828 707 -23415968.44916 829 707 -16510371.30635 830 707 -73680036.58444 831 707 -62622207.08884 832 707 8333242.6046 833 707 -93040173.76232 834 707 -7790968.444033 835 707 8177128.701754 836 707 382463.4398733 708 708 544597009.4256 709 708 33333333.32786 710 708 -31989118.31313 720 708 -43106498.79594 721 708 -33333333.32786 722 708 -30069429.31642 723 708 -132114372.9571 724 708 -33352308.14156 725 708 31970539.06385 726 708 1216456.507315 727 708 26685641.47599 728 708 25851320.01324 804 708 -50448491.13742 805 708 10007115.55843 806 708 28536410.43085 816 708 -85645347.16108 817 708 -8340448.891212 818 708 -24130997.54348 819 708 -10929001.68405 820 708 8333333.33607 821 708 3726516.388097 831 708 -38845377.32488 832 708 -8333333.33607 833 708 -23415968.44916 834 708 -69036918.95254 835 708 -8338077.039497 836 708 -55624567.39871 837 708 7014515.850343 838 708 6671410.372285 839 708 -6514983.987003 709 709 494573181.6273 710 709 83368386.85484 720 709 -33333333.32786 721 709 -33106002.77733 722 709 -15166485.20115 723 709 -33361795.54841 724 709 24612909.30639 725 709 46187594.51733 726 709 40028462.21399 727 709 1216456.507311 728 709 -29021109.31684 804 709 6671410.372285 805 709 -50448491.13742 806 709 -15218991.7376 816 709 -8338077.039498 817 709 -114821334.7964 818 709 -67065236.07198 819 709 8333333.336069 820 709 -23434958.63979 821 709 30221022.26397 831 709 -8333333.33607 832 709 -36345253.319 833 709 -16510371.30635 834 709 -8340448.891212 835 709 -29855098.36736 836 709 -1182917.166231 837 709 10007115.55843 838 709 7014515.850342 839 709 7818288.469344 710 710 853850595.3707 720 710 -29652762.65002 721 710 -14833151.86804 722 710 4679881.612865 723 710 31961249.43922 724 710 37180558.07827 725 710 139399647.4134 726 710 38776980.01986 727 710 -19347406.21122 728 710 3243884.01951 804 710 19024273.62057 805 710 -22828487.60639 806 710 -134529309.6998 816 710 -24124138.5141 817 710 -65063417.79147 818 710 -231619365.082 819 710 -21803668.18463 820 710 9797097.079457 821 710 -178746028.6722 831 710 -23415968.44916 832 710 -16510371.30635 833 710 -73680036.58444 834 710 -56043408.3313 835 710 -3514321.011405 836 710 -61172289.98812 837 710 -9772475.980504 838 710 5212192.312896 839 710 18705375.60092 711 711 829135740.1102 712 711 1.847743988037e-06 713 711 -11111232.08774 714 711 86951912.01811 715 711 -3.8743019104e-07 716 711 -2777808.023304 729 711 -59718971.98211 730 711 -9.387731552124e-07 731 711 5555616.043855 732 711 -46856498.79532 733 711 33333333.32786 734 711 32430570.67332 807 711 -77407961.77148 808 711 -1.184642314911e-06 809 711 64983348.44575 810 711 -12048523.14942 811 711 -8333333.336071 812 711 8485420.4502 822 711 -27191273.16515 823 711 2.98023223877e-07 824 711 -2777808.023288 825 711 20509800.90325 826 711 -2.242624759674e-06 827 711 -694452.0061662 840 711 -69751628.43939 841 711 1.266598701477e-06 842 711 -62205540.42245 843 711 -11071939.81576 844 711 8333333.336071 845 711 -7790968.444033 712 712 749131772.0008 713 712 133331881.5422 714 712 -1.639127731323e-07 715 712 -39714585.27039 716 712 -66665940.77111 729 712 -8.344650268555e-07 730 712 86948517.3239 731 712 33332970.40197 732 712 33333333.32786 733 712 -36856002.77671 734 712 -18166485.20082 807 712 -1.601874828339e-06 808 712 -40741089.4269 809 712 8333242.604601 810 712 -8333333.336071 811 712 -9548399.143536 812 712 9010462.03536 822 712 2.384185791016e-07 823 712 -47192265.20236 824 712 33332970.40198 825 712 -1.728534698486e-06 826 712 -11156823.43448 827 712 34208514.79074 840 712 7.376074790955e-07 841 712 -33084756.09483 842 712 8333242.6046 843 712 8333333.336071 844 712 -8571815.80988 845 712 8177128.701754 713 713 1253984280.216 714 713 -2777808.023304 715 713 -66665940.77111 716 713 99276180.49554 729 713 5555616.043855 730 713 33332970.40197 731 713 212606082.8355 732 713 32847237.33971 733 713 -18499818.53394 734 713 -5320118.38549 807 713 65400015.11214 808 713 8333242.604601 809 713 -113457062.6479 810 713 8485420.4502 811 713 9010462.03536 812 713 -2221758.783205 822 713 -2777808.023289 823 713 33332970.40198 824 713 -311771151.9111 825 713 -694452.006166 826 713 34541848.12385 827 713 21543906.17081 840 713 -62622207.08884 841 713 8333242.6046 842 713 -93040173.76232 843 713 -7790968.444033 844 713 8177128.701754 845 713 382463.4398733 714 714 829135740.1102 715 714 1.847743988037e-06 716 714 -11111232.08774 717 714 86951912.01811 718 714 -3.8743019104e-07 719 714 -2777808.023304 729 714 -43106498.79594 730 714 -33333333.32786 731 714 -30069429.31642 732 714 -59718971.98211 733 714 -9.387731552124e-07 734 714 5555616.043855 735 714 -46856498.79532 736 714 33333333.32786 737 714 32430570.67332 807 714 -41696960.65915 808 714 8333333.336071 809 714 24110420.45533 810 714 -77407961.77148 811 714 -1.184642314911e-06 812 714 64983348.44575 813 714 -12048523.14942 814 714 -8333333.336071 815 714 8485420.4502 822 714 -94333949.07787 823 714 1.773238182068e-06 824 714 -694452.0061627 825 714 -27191273.16515 826 714 2.98023223877e-07 827 714 -2777808.023288 828 714 20509800.90325 829 714 -2.242624759674e-06 830 714 -694452.0061662 840 714 -38845377.32488 841 714 -8333333.33607 842 714 -23415968.44916 843 714 -69751628.43939 844 714 1.266598701477e-06 845 714 -62205540.42245 846 714 -11071939.81576 847 714 8333333.336071 848 714 -7790968.444033 715 715 749131772.0008 716 715 133331881.5422 717 715 -1.639127731323e-07 718 715 -39714585.27039 719 715 -66665940.77111 729 715 -33333333.32786 730 715 -33106002.77733 731 715 -15166485.20115 732 715 -8.344650268555e-07 733 715 86948517.3239 734 715 33332970.40197 735 715 33333333.32786 736 715 -36856002.77671 737 715 -18166485.20082 807 715 8333333.336071 808 715 -39196836.65327 809 715 -17343704.63996 810 715 -1.601874828339e-06 811 715 -40741089.4269 812 715 8333242.604601 813 715 -8333333.336071 814 715 -9548399.143536 815 715 9010462.03536 822 715 2.175569534302e-06 823 715 -126000573.4156 824 715 -67541485.19271 825 715 2.384185791016e-07 826 715 -47192265.20236 827 715 33332970.40198 828 715 -1.728534698486e-06 829 715 -11156823.43448 830 715 34208514.79074 840 715 -8333333.33607 841 715 -36345253.319 842 715 -16510371.30635 843 715 7.376074790955e-07 844 715 -33084756.09483 845 715 8333242.6046 846 715 8333333.336071 847 715 -8571815.80988 848 715 8177128.701754 716 716 1253984280.216 717 716 -2777808.023304 718 716 -66665940.77111 719 716 99276180.49554 729 716 -29652762.65002 730 716 -14833151.86804 731 716 4679881.612865 732 716 5555616.043855 733 716 33332970.40197 734 716 212606082.8355 735 716 32847237.33971 736 716 -18499818.53394 737 716 -5320118.38549 807 716 24110420.45533 808 716 -17343704.63996 809 716 -81284258.80916 810 716 65400015.11214 811 716 8333242.604601 812 716 -113457062.6479 813 716 8485420.4502 814 716 9010462.03536 815 716 -2221758.783205 822 716 -694452.0061623 823 716 -67874818.52582 824 716 -284706093.7789 825 716 -2777808.023289 826 716 33332970.40198 827 716 -311771151.9111 828 716 -694452.006166 829 716 34541848.12385 830 716 21543906.17081 840 716 -23415968.44916 841 716 -16510371.30635 842 716 -73680036.58444 843 716 -62622207.08884 844 716 8333242.6046 845 716 -93040173.76232 846 716 -7790968.444033 847 716 8177128.701754 848 716 382463.4398733 717 717 829135740.1102 718 717 1.847743988037e-06 719 717 -11111232.08774 720 717 86951912.01811 721 717 -3.8743019104e-07 722 717 -2777808.023304 732 717 -43106498.79594 733 717 -33333333.32786 734 717 -30069429.31642 735 717 -59718971.98211 736 717 -9.387731552124e-07 737 717 5555616.043855 738 717 -46856498.79532 739 717 33333333.32786 740 717 32430570.67332 810 717 -41696960.65915 811 717 8333333.336071 812 717 24110420.45533 813 717 -77407961.77148 814 717 -1.184642314911e-06 815 717 64983348.44575 816 717 -12048523.14942 817 717 -8333333.336071 818 717 8485420.4502 825 717 -94333949.07787 826 717 1.773238182068e-06 827 717 -694452.0061627 828 717 -27191273.16515 829 717 2.98023223877e-07 830 717 -2777808.023288 831 717 20509800.90325 832 717 -2.242624759674e-06 833 717 -694452.0061662 843 717 -38845377.32488 844 717 -8333333.33607 845 717 -23415968.44916 846 717 -69751628.43939 847 717 1.266598701477e-06 848 717 -62205540.42245 849 717 -11071939.81576 850 717 8333333.336071 851 717 -7790968.444033 718 718 749131772.0008 719 718 133331881.5422 720 718 -1.639127731323e-07 721 718 -39714585.27039 722 718 -66665940.77111 732 718 -33333333.32786 733 718 -33106002.77733 734 718 -15166485.20115 735 718 -8.344650268555e-07 736 718 86948517.3239 737 718 33332970.40197 738 718 33333333.32786 739 718 -36856002.77671 740 718 -18166485.20082 810 718 8333333.336071 811 718 -39196836.65327 812 718 -17343704.63996 813 718 -1.601874828339e-06 814 718 -40741089.4269 815 718 8333242.604601 816 718 -8333333.336071 817 718 -9548399.143536 818 718 9010462.03536 825 718 2.175569534302e-06 826 718 -126000573.4156 827 718 -67541485.19271 828 718 2.384185791016e-07 829 718 -47192265.20236 830 718 33332970.40198 831 718 -1.728534698486e-06 832 718 -11156823.43448 833 718 34208514.79074 843 718 -8333333.33607 844 718 -36345253.319 845 718 -16510371.30635 846 718 7.376074790955e-07 847 718 -33084756.09483 848 718 8333242.6046 849 718 8333333.336071 850 718 -8571815.80988 851 718 8177128.701754 719 719 1253984280.216 720 719 -2777808.023304 721 719 -66665940.77111 722 719 99276180.49554 732 719 -29652762.65002 733 719 -14833151.86804 734 719 4679881.612865 735 719 5555616.043855 736 719 33332970.40197 737 719 212606082.8355 738 719 32847237.33971 739 719 -18499818.53394 740 719 -5320118.38549 810 719 24110420.45533 811 719 -17343704.63996 812 719 -81284258.80916 813 719 65400015.11214 814 719 8333242.604601 815 719 -113457062.6479 816 719 8485420.4502 817 719 9010462.03536 818 719 -2221758.783205 825 719 -694452.0061623 826 719 -67874818.52582 827 719 -284706093.7789 828 719 -2777808.023289 829 719 33332970.40198 830 719 -311771151.9111 831 719 -694452.006166 832 719 34541848.12385 833 719 21543906.17081 843 719 -23415968.44916 844 719 -16510371.30635 845 719 -73680036.58444 846 719 -62622207.08884 847 719 8333242.6046 848 719 -93040173.76232 849 719 -7790968.444033 850 719 8177128.701754 851 719 382463.4398733 720 720 829135740.1102 721 720 1.847743988037e-06 722 720 -11111232.08774 723 720 86951912.01811 724 720 -3.8743019104e-07 725 720 -2777808.023304 735 720 -43106498.79594 736 720 -33333333.32786 737 720 -30069429.31642 738 720 -59718971.98211 739 720 -9.387731552124e-07 740 720 5555616.043855 741 720 -46856498.79532 742 720 33333333.32786 743 720 32430570.67332 813 720 -41696960.65915 814 720 8333333.336071 815 720 24110420.45533 816 720 -77407961.77148 817 720 -1.184642314911e-06 818 720 64983348.44575 819 720 -12048523.14942 820 720 -8333333.336071 821 720 8485420.4502 828 720 -94333949.07787 829 720 1.773238182068e-06 830 720 -694452.0061627 831 720 -27191273.16515 832 720 2.98023223877e-07 833 720 -2777808.023288 834 720 20509800.90325 835 720 -2.242624759674e-06 836 720 -694452.0061662 846 720 -38845377.32488 847 720 -8333333.33607 848 720 -23415968.44916 849 720 -69751628.43939 850 720 1.266598701477e-06 851 720 -62205540.42245 852 720 -11071939.81576 853 720 8333333.336071 854 720 -7790968.444033 721 721 749131772.0008 722 721 133331881.5422 723 721 -1.639127731323e-07 724 721 -39714585.27039 725 721 -66665940.77111 735 721 -33333333.32786 736 721 -33106002.77733 737 721 -15166485.20115 738 721 -8.344650268555e-07 739 721 86948517.3239 740 721 33332970.40197 741 721 33333333.32786 742 721 -36856002.77671 743 721 -18166485.20082 813 721 8333333.336071 814 721 -39196836.65327 815 721 -17343704.63996 816 721 -1.601874828339e-06 817 721 -40741089.4269 818 721 8333242.604601 819 721 -8333333.336071 820 721 -9548399.143536 821 721 9010462.03536 828 721 2.175569534302e-06 829 721 -126000573.4156 830 721 -67541485.19271 831 721 2.384185791016e-07 832 721 -47192265.20236 833 721 33332970.40198 834 721 -1.728534698486e-06 835 721 -11156823.43448 836 721 34208514.79074 846 721 -8333333.33607 847 721 -36345253.319 848 721 -16510371.30635 849 721 7.376074790955e-07 850 721 -33084756.09483 851 721 8333242.6046 852 721 8333333.336071 853 721 -8571815.80988 854 721 8177128.701754 722 722 1253984280.216 723 722 -2777808.023304 724 722 -66665940.77111 725 722 99276180.49554 735 722 -29652762.65002 736 722 -14833151.86804 737 722 4679881.612865 738 722 5555616.043855 739 722 33332970.40197 740 722 212606082.8355 741 722 32847237.33971 742 722 -18499818.53394 743 722 -5320118.38549 813 722 24110420.45533 814 722 -17343704.63996 815 722 -81284258.80916 816 722 65400015.11214 817 722 8333242.604601 818 722 -113457062.6479 819 722 8485420.4502 820 722 9010462.03536 821 722 -2221758.783205 828 722 -694452.0061623 829 722 -67874818.52582 830 722 -284706093.7789 831 722 -2777808.023289 832 722 33332970.40198 833 722 -311771151.9111 834 722 -694452.006166 835 722 34541848.12385 836 722 21543906.17081 846 722 -23415968.44916 847 722 -16510371.30635 848 722 -73680036.58444 849 722 -62622207.08884 850 722 8333242.6046 851 722 -93040173.76232 852 722 -7790968.444033 853 722 8177128.701754 854 722 382463.4398733 723 723 847901916.7151 724 723 33380770.36212 725 723 -37498286.23383 726 723 39751697.94156 727 723 -33352308.14156 728 723 -32448557.35788 738 723 -43106498.79594 739 723 -33333333.32786 740 723 -30069429.31642 741 723 -59718971.98211 742 723 -9.387731552124e-07 743 723 5555616.043855 744 723 -46856498.79532 745 723 33333333.32786 746 723 32430570.67332 816 723 -41696960.65915 817 723 8333333.336071 818 723 24110420.45533 819 723 -99681629.70551 820 723 -8340448.891213 821 723 71607514.53236 831 723 -94333949.07787 832 723 1.773238182068e-06 833 723 -694452.0061627 834 723 -8298175.66356 835 723 8345192.594641 836 723 -9379478.645899 837 723 2423001.606932 838 723 -8338077.0395 839 723 7795396.873343 849 723 -38845377.32488 850 723 -8333333.33607 851 723 -23415968.44916 852 723 -69751628.43939 853 723 1.266598701477e-06 854 723 -62205540.42245 855 723 -11071939.81576 856 723 8333333.336071 857 723 -7790968.444033 724 724 757876104.862 725 724 103333663.8687 726 724 -33361795.54842 727 724 -76952252.54226 728 724 -55347988.6005 738 724 -33333333.32786 739 724 -33106002.77733 740 724 -15166485.20115 741 724 -8.344650268555e-07 742 724 86948517.3239 743 724 33332970.40197 744 724 33333333.32786 745 724 -36856002.77671 746 724 -18166485.20082 816 724 8333333.336071 817 724 -39196836.65327 818 724 -17343704.63996 819 724 -8338077.039499 820 724 -60499809.12032 821 724 22021029.70742 831 724 2.175569534302e-06 832 724 -126000573.4156 833 724 -67541485.19271 834 724 8345192.594641 835 724 -30804628.63791 836 724 25829490.35962 837 724 -8340448.891214 838 724 -26752986.0284 839 724 37056208.64825 849 724 -8333333.33607 850 724 -36345253.319 851 724 -16510371.30635 852 724 7.376074790955e-07 853 724 -33084756.09483 854 724 8333242.6046 855 724 8333333.336071 856 724 -8571815.80988 857 724 8177128.701754 725 725 1184141501.437 726 725 -32874217.36655 727 725 -64688121.35194 728 725 93077437.24068 738 725 -29652762.65002 739 725 -14833151.86804 740 725 4679881.612865 741 725 5555616.043855 742 725 33332970.40197 743 725 212606082.8355 744 725 32847237.33971 745 725 -18499818.53394 746 725 -5320118.38549 816 725 24110420.45533 817 725 -17343704.63996 818 725 -81284258.80916 819 725 72026355.46494 820 725 24359692.24116 821 725 -142891518.6627 831 725 -694452.0061623 832 725 -67874818.52582 833 725 -284706093.7789 834 725 -9370405.180087 835 725 25836749.05321 836 725 -291361037.6863 837 725 7797611.087997 838 725 35054390.19536 839 725 3229564.966024 849 725 -23415968.44916 850 725 -16510371.30635 851 725 -73680036.58444 852 725 -62622207.08884 853 725 8333242.6046 854 725 -93040173.76232 855 725 -7790968.444033 856 725 8177128.701754 857 725 382463.4398733 726 726 464940542.775 727 726 12851905.75803 728 726 20656400.75291 741 726 -43106498.79594 742 726 -33333333.32786 743 726 -30069429.31642 744 726 -91182430.47 745 726 -12906779.84809 746 726 1000330.122879 747 726 5007090.268645 748 726 26721540.75234 749 726 5008750.65625 819 726 -50448491.13742 820 726 10007115.55843 821 726 28536410.43085 834 726 -85645347.16108 835 726 -8340448.891212 836 726 -24130997.54348 837 726 -17836755.62729 838 726 3212976.44109 839 726 14418636.61301 852 726 -38845377.32488 853 726 -8333333.33607 854 726 -23415968.44916 855 726 -63830259.57109 856 726 -3226694.96361 857 726 -53519044.21609 858 726 -9616209.125473 859 726 6680385.191377 860 726 -8036218.454271 727 727 447751333.0549 728 727 87198301.12591 741 727 -33333333.32786 742 727 -33106002.77733 743 727 -15166485.20115 744 727 -12934216.89311 745 727 56438186.02174 746 727 21414546.77539 747 727 40082311.12852 748 727 -18720862.03784 749 727 -7408308.537561 819 727 6671410.372285 820 727 -50448491.13742 821 727 -15218991.7376 834 727 -8338077.039498 835 727 -114821334.7964 836 727 -67065236.07198 837 727 3212976.44109 838 727 -22134058.05942 839 727 29194228.99637 852 727 -8333333.33607 853 727 -36345253.319 854 727 -16510371.30635 855 727 -3233554.224871 856 727 -26925105.42998 857 727 514296.7345483 858 727 10020577.78707 859 727 -15548197.20502 860 727 16207412.72304 728 728 727562919.3276 741 728 -29652762.65002 742 728 -14833151.86804 743 728 4679881.612865 744 728 11828695.56078 745 728 21078811.80228 746 728 138693973.3806 747 728 7513125.984376 748 728 -6071073.243682 749 728 37080193.02289 819 728 19024273.62057 820 728 -22828487.60639 821 728 -134529309.6998 834 728 -24124138.5141 835 728 -65063417.79147 836 728 -231619365.082 837 728 -7213954.829688 838 728 11901763.34317 839 728 -175634313.754 852 728 -23415968.44916 853 728 -16510371.30635 854 728 -73680036.58444 855 728 -51436656.57492 856 728 190595.229853 857 728 -74752245.15073 858 728 -12054327.68141 859 728 12991927.13824 860 728 -19711236.25505 729 729 829135740.1102 730 729 1.847743988037e-06 731 729 -11111232.08774 732 729 86951912.01811 733 729 -3.8743019104e-07 734 729 -2777808.023304 750 729 -59718971.98211 751 729 -9.387731552124e-07 752 729 5555616.043855 753 729 -46856498.79532 754 729 33333333.32786 755 729 32430570.67332 822 729 -77407961.77148 823 729 -1.184642314911e-06 824 729 64983348.44575 825 729 -12048523.14942 826 729 -8333333.336071 827 729 8485420.4502 840 729 -27191273.16515 841 729 2.98023223877e-07 842 729 -2777808.023288 843 729 20509800.90325 844 729 -2.242624759674e-06 845 729 -694452.0061662 861 729 -69751628.43939 862 729 1.266598701477e-06 863 729 -62205540.42245 864 729 -11071939.81576 865 729 8333333.336071 866 729 -7790968.444033 730 730 749131772.0008 731 730 133331881.5422 732 730 -1.639127731323e-07 733 730 -39714585.27039 734 730 -66665940.77111 750 730 -8.344650268555e-07 751 730 86948517.3239 752 730 33332970.40197 753 730 33333333.32786 754 730 -36856002.77671 755 730 -18166485.20082 822 730 -1.601874828339e-06 823 730 -40741089.4269 824 730 8333242.604601 825 730 -8333333.336071 826 730 -9548399.143536 827 730 9010462.03536 840 730 2.384185791016e-07 841 730 -47192265.20236 842 730 33332970.40198 843 730 -1.728534698486e-06 844 730 -11156823.43448 845 730 34208514.79074 861 730 7.376074790955e-07 862 730 -33084756.09483 863 730 8333242.6046 864 730 8333333.336071 865 730 -8571815.80988 866 730 8177128.701754 731 731 1253984280.216 732 731 -2777808.023304 733 731 -66665940.77111 734 731 99276180.49554 750 731 5555616.043855 751 731 33332970.40197 752 731 212606082.8355 753 731 32847237.33971 754 731 -18499818.53394 755 731 -5320118.38549 822 731 65400015.11214 823 731 8333242.604601 824 731 -113457062.6479 825 731 8485420.4502 826 731 9010462.03536 827 731 -2221758.783205 840 731 -2777808.023289 841 731 33332970.40198 842 731 -311771151.9111 843 731 -694452.006166 844 731 34541848.12385 845 731 21543906.17081 861 731 -62622207.08884 862 731 8333242.6046 863 731 -93040173.76232 864 731 -7790968.444033 865 731 8177128.701754 866 731 382463.4398733 732 732 829135740.1102 733 732 1.847743988037e-06 734 732 -11111232.08774 735 732 86951912.01811 736 732 -3.8743019104e-07 737 732 -2777808.023304 750 732 -43106498.79594 751 732 -33333333.32786 752 732 -30069429.31642 753 732 -59718971.98211 754 732 -9.387731552124e-07 755 732 5555616.043855 756 732 -46856498.79532 757 732 33333333.32786 758 732 32430570.67332 822 732 -41696960.65915 823 732 8333333.336071 824 732 24110420.45533 825 732 -77407961.77148 826 732 -1.184642314911e-06 827 732 64983348.44575 828 732 -12048523.14942 829 732 -8333333.336071 830 732 8485420.4502 840 732 -94333949.07787 841 732 1.773238182068e-06 842 732 -694452.0061627 843 732 -27191273.16515 844 732 2.98023223877e-07 845 732 -2777808.023288 846 732 20509800.90325 847 732 -2.242624759674e-06 848 732 -694452.0061662 861 732 -38845377.32488 862 732 -8333333.33607 863 732 -23415968.44916 864 732 -69751628.43939 865 732 1.266598701477e-06 866 732 -62205540.42245 867 732 -11071939.81576 868 732 8333333.336071 869 732 -7790968.444033 733 733 749131772.0008 734 733 133331881.5422 735 733 -1.639127731323e-07 736 733 -39714585.27039 737 733 -66665940.77111 750 733 -33333333.32786 751 733 -33106002.77733 752 733 -15166485.20115 753 733 -8.344650268555e-07 754 733 86948517.3239 755 733 33332970.40197 756 733 33333333.32786 757 733 -36856002.77671 758 733 -18166485.20082 822 733 8333333.336071 823 733 -39196836.65327 824 733 -17343704.63996 825 733 -1.601874828339e-06 826 733 -40741089.4269 827 733 8333242.604601 828 733 -8333333.336071 829 733 -9548399.143536 830 733 9010462.03536 840 733 2.175569534302e-06 841 733 -126000573.4156 842 733 -67541485.19271 843 733 2.384185791016e-07 844 733 -47192265.20236 845 733 33332970.40198 846 733 -1.728534698486e-06 847 733 -11156823.43448 848 733 34208514.79074 861 733 -8333333.33607 862 733 -36345253.319 863 733 -16510371.30635 864 733 7.376074790955e-07 865 733 -33084756.09483 866 733 8333242.6046 867 733 8333333.336071 868 733 -8571815.80988 869 733 8177128.701754 734 734 1253984280.216 735 734 -2777808.023304 736 734 -66665940.77111 737 734 99276180.49554 750 734 -29652762.65002 751 734 -14833151.86804 752 734 4679881.612865 753 734 5555616.043855 754 734 33332970.40197 755 734 212606082.8355 756 734 32847237.33971 757 734 -18499818.53394 758 734 -5320118.38549 822 734 24110420.45533 823 734 -17343704.63996 824 734 -81284258.80916 825 734 65400015.11214 826 734 8333242.604601 827 734 -113457062.6479 828 734 8485420.4502 829 734 9010462.03536 830 734 -2221758.783205 840 734 -694452.0061623 841 734 -67874818.52582 842 734 -284706093.7789 843 734 -2777808.023289 844 734 33332970.40198 845 734 -311771151.9111 846 734 -694452.006166 847 734 34541848.12385 848 734 21543906.17081 861 734 -23415968.44916 862 734 -16510371.30635 863 734 -73680036.58444 864 734 -62622207.08884 865 734 8333242.6046 866 734 -93040173.76232 867 734 -7790968.444033 868 734 8177128.701754 869 734 382463.4398733 735 735 829135740.1102 736 735 1.847743988037e-06 737 735 -11111232.08774 738 735 86951912.01811 739 735 -3.8743019104e-07 740 735 -2777808.023304 753 735 -43106498.79594 754 735 -33333333.32786 755 735 -30069429.31642 756 735 -59718971.98211 757 735 -9.387731552124e-07 758 735 5555616.043855 759 735 -46856498.79532 760 735 33333333.32786 761 735 32430570.67332 825 735 -41696960.65915 826 735 8333333.336071 827 735 24110420.45533 828 735 -77407961.77148 829 735 -1.184642314911e-06 830 735 64983348.44575 831 735 -12048523.14942 832 735 -8333333.336071 833 735 8485420.4502 843 735 -94333949.07787 844 735 1.773238182068e-06 845 735 -694452.0061627 846 735 -27191273.16515 847 735 2.98023223877e-07 848 735 -2777808.023288 849 735 20509800.90325 850 735 -2.242624759674e-06 851 735 -694452.0061662 864 735 -38845377.32488 865 735 -8333333.33607 866 735 -23415968.44916 867 735 -69751628.43939 868 735 1.266598701477e-06 869 735 -62205540.42245 870 735 -11071939.81576 871 735 8333333.336071 872 735 -7790968.444033 736 736 749131772.0008 737 736 133331881.5422 738 736 -1.639127731323e-07 739 736 -39714585.27039 740 736 -66665940.77111 753 736 -33333333.32786 754 736 -33106002.77733 755 736 -15166485.20115 756 736 -8.344650268555e-07 757 736 86948517.3239 758 736 33332970.40197 759 736 33333333.32786 760 736 -36856002.77671 761 736 -18166485.20082 825 736 8333333.336071 826 736 -39196836.65327 827 736 -17343704.63996 828 736 -1.601874828339e-06 829 736 -40741089.4269 830 736 8333242.604601 831 736 -8333333.336071 832 736 -9548399.143536 833 736 9010462.03536 843 736 2.175569534302e-06 844 736 -126000573.4156 845 736 -67541485.19271 846 736 2.384185791016e-07 847 736 -47192265.20236 848 736 33332970.40198 849 736 -1.728534698486e-06 850 736 -11156823.43448 851 736 34208514.79074 864 736 -8333333.33607 865 736 -36345253.319 866 736 -16510371.30635 867 736 7.376074790955e-07 868 736 -33084756.09483 869 736 8333242.6046 870 736 8333333.336071 871 736 -8571815.80988 872 736 8177128.701754 737 737 1253984280.216 738 737 -2777808.023304 739 737 -66665940.77111 740 737 99276180.49554 753 737 -29652762.65002 754 737 -14833151.86804 755 737 4679881.612865 756 737 5555616.043855 757 737 33332970.40197 758 737 212606082.8355 759 737 32847237.33971 760 737 -18499818.53394 761 737 -5320118.38549 825 737 24110420.45533 826 737 -17343704.63996 827 737 -81284258.80916 828 737 65400015.11214 829 737 8333242.604601 830 737 -113457062.6479 831 737 8485420.4502 832 737 9010462.03536 833 737 -2221758.783205 843 737 -694452.0061623 844 737 -67874818.52582 845 737 -284706093.7789 846 737 -2777808.023289 847 737 33332970.40198 848 737 -311771151.9111 849 737 -694452.006166 850 737 34541848.12385 851 737 21543906.17081 864 737 -23415968.44916 865 737 -16510371.30635 866 737 -73680036.58444 867 737 -62622207.08884 868 737 8333242.6046 869 737 -93040173.76232 870 737 -7790968.444033 871 737 8177128.701754 872 737 382463.4398733 738 738 829135740.1102 739 738 1.847743988037e-06 740 738 -11111232.08774 741 738 86951912.01811 742 738 -3.8743019104e-07 743 738 -2777808.023304 756 738 -43106498.79594 757 738 -33333333.32786 758 738 -30069429.31642 759 738 -59718971.98211 760 738 -9.387731552124e-07 761 738 5555616.043855 762 738 -46856498.79532 763 738 33333333.32786 764 738 32430570.67332 828 738 -41696960.65915 829 738 8333333.336071 830 738 24110420.45533 831 738 -77407961.77148 832 738 -1.184642314911e-06 833 738 64983348.44575 834 738 -12048523.14942 835 738 -8333333.336071 836 738 8485420.4502 846 738 -94333949.07787 847 738 1.773238182068e-06 848 738 -694452.0061627 849 738 -27191273.16515 850 738 2.98023223877e-07 851 738 -2777808.023288 852 738 20509800.90325 853 738 -2.242624759674e-06 854 738 -694452.0061662 867 738 -38845377.32488 868 738 -8333333.33607 869 738 -23415968.44916 870 738 -69751628.43939 871 738 1.266598701477e-06 872 738 -62205540.42245 873 738 -11071939.81576 874 738 8333333.336071 875 738 -7790968.444033 739 739 749131772.0008 740 739 133331881.5422 741 739 -1.639127731323e-07 742 739 -39714585.27039 743 739 -66665940.77111 756 739 -33333333.32786 757 739 -33106002.77733 758 739 -15166485.20115 759 739 -8.344650268555e-07 760 739 86948517.3239 761 739 33332970.40197 762 739 33333333.32786 763 739 -36856002.77671 764 739 -18166485.20082 828 739 8333333.336071 829 739 -39196836.65327 830 739 -17343704.63996 831 739 -1.601874828339e-06 832 739 -40741089.4269 833 739 8333242.604601 834 739 -8333333.336071 835 739 -9548399.143536 836 739 9010462.03536 846 739 2.175569534302e-06 847 739 -126000573.4156 848 739 -67541485.19271 849 739 2.384185791016e-07 850 739 -47192265.20236 851 739 33332970.40198 852 739 -1.728534698486e-06 853 739 -11156823.43448 854 739 34208514.79074 867 739 -8333333.33607 868 739 -36345253.319 869 739 -16510371.30635 870 739 7.376074790955e-07 871 739 -33084756.09483 872 739 8333242.6046 873 739 8333333.336071 874 739 -8571815.80988 875 739 8177128.701754 740 740 1253984280.216 741 740 -2777808.023304 742 740 -66665940.77111 743 740 99276180.49554 756 740 -29652762.65002 757 740 -14833151.86804 758 740 4679881.612865 759 740 5555616.043855 760 740 33332970.40197 761 740 212606082.8355 762 740 32847237.33971 763 740 -18499818.53394 764 740 -5320118.38549 828 740 24110420.45533 829 740 -17343704.63996 830 740 -81284258.80916 831 740 65400015.11214 832 740 8333242.604601 833 740 -113457062.6479 834 740 8485420.4502 835 740 9010462.03536 836 740 -2221758.783205 846 740 -694452.0061623 847 740 -67874818.52582 848 740 -284706093.7789 849 740 -2777808.023289 850 740 33332970.40198 851 740 -311771151.9111 852 740 -694452.006166 853 740 34541848.12385 854 740 21543906.17081 867 740 -23415968.44916 868 740 -16510371.30635 869 740 -73680036.58444 870 740 -62622207.08884 871 740 8333242.6046 872 740 -93040173.76232 873 740 -7790968.444033 874 740 8177128.701754 875 740 382463.4398733 741 741 829135740.1102 742 741 1.847743988037e-06 743 741 -11111232.08774 744 741 86951912.01811 745 741 -3.8743019104e-07 746 741 -2777808.023304 759 741 -43106498.79594 760 741 -33333333.32786 761 741 -30069429.31642 762 741 -59718971.98211 763 741 -9.387731552124e-07 764 741 5555616.043855 765 741 -46856498.79532 766 741 33333333.32786 767 741 32430570.67332 831 741 -41696960.65915 832 741 8333333.336071 833 741 24110420.45533 834 741 -77407961.77148 835 741 -1.184642314911e-06 836 741 64983348.44575 837 741 -12048523.14942 838 741 -8333333.336071 839 741 8485420.4502 849 741 -94333949.07787 850 741 1.773238182068e-06 851 741 -694452.0061627 852 741 -27191273.16515 853 741 2.98023223877e-07 854 741 -2777808.023288 855 741 20509800.90325 856 741 -2.242624759674e-06 857 741 -694452.0061662 870 741 -38845377.32488 871 741 -8333333.33607 872 741 -23415968.44916 873 741 -69751628.43939 874 741 1.266598701477e-06 875 741 -62205540.42245 876 741 -11071939.81576 877 741 8333333.336071 878 741 -7790968.444033 742 742 749131772.0008 743 742 133331881.5422 744 742 -1.639127731323e-07 745 742 -39714585.27039 746 742 -66665940.77111 759 742 -33333333.32786 760 742 -33106002.77733 761 742 -15166485.20115 762 742 -8.344650268555e-07 763 742 86948517.3239 764 742 33332970.40197 765 742 33333333.32786 766 742 -36856002.77671 767 742 -18166485.20082 831 742 8333333.336071 832 742 -39196836.65327 833 742 -17343704.63996 834 742 -1.601874828339e-06 835 742 -40741089.4269 836 742 8333242.604601 837 742 -8333333.336071 838 742 -9548399.143536 839 742 9010462.03536 849 742 2.175569534302e-06 850 742 -126000573.4156 851 742 -67541485.19271 852 742 2.384185791016e-07 853 742 -47192265.20236 854 742 33332970.40198 855 742 -1.728534698486e-06 856 742 -11156823.43448 857 742 34208514.79074 870 742 -8333333.33607 871 742 -36345253.319 872 742 -16510371.30635 873 742 7.376074790955e-07 874 742 -33084756.09483 875 742 8333242.6046 876 742 8333333.336071 877 742 -8571815.80988 878 742 8177128.701754 743 743 1253984280.216 744 743 -2777808.023304 745 743 -66665940.77111 746 743 99276180.49554 759 743 -29652762.65002 760 743 -14833151.86804 761 743 4679881.612865 762 743 5555616.043855 763 743 33332970.40197 764 743 212606082.8355 765 743 32847237.33971 766 743 -18499818.53394 767 743 -5320118.38549 831 743 24110420.45533 832 743 -17343704.63996 833 743 -81284258.80916 834 743 65400015.11214 835 743 8333242.604601 836 743 -113457062.6479 837 743 8485420.4502 838 743 9010462.03536 839 743 -2221758.783205 849 743 -694452.0061623 850 743 -67874818.52582 851 743 -284706093.7789 852 743 -2777808.023289 853 743 33332970.40198 854 743 -311771151.9111 855 743 -694452.006166 856 743 34541848.12385 857 743 21543906.17081 870 743 -23415968.44916 871 743 -16510371.30635 872 743 -73680036.58444 873 743 -62622207.08884 874 743 8333242.6046 875 743 -93040173.76232 876 743 -7790968.444033 877 743 8177128.701754 878 743 382463.4398733 744 744 738198115.7453 745 744 16764684.69662 746 744 -11083193.77549 747 744 17410783.23705 748 744 -44082322.50369 749 744 -5980744.701169 762 744 -43106498.79594 763 744 -33333333.32786 764 744 -30069429.31642 765 744 -49479493.54265 766 744 9744969.140738 767 744 462601.7693525 768 744 -18806142.95809 769 744 30506885.55944 770 744 4773826.27592 834 744 -41696960.65915 835 744 8333333.336071 836 744 24110420.45533 837 744 -71415955.0593 838 744 -3233554.224872 839 744 56726300.63859 852 744 -94333949.07787 853 744 1.773238182068e-06 854 744 -694452.0061627 855 744 -13774447.66423 856 744 4191171.176221 857 744 -2780612.645988 858 744 -30223428.17772 859 744 -11020580.63135 860 744 14420581.05462 873 744 -38845377.32488 874 744 -8333333.33607 875 744 -23415968.44916 876 744 -64986646.84972 877 744 2436242.286385 878 744 -58542682.88204 879 744 -16011865.17978 880 744 7626721.393617 881 744 -9769737.878529 745 745 706099168.2163 746 745 78358244.93297 747 745 -44109759.54871 748 745 -102250467.9801 749 745 -12402588.68539 762 745 -33333333.32786 763 745 -33106002.77733 764 745 -15166485.20115 765 745 9744969.140738 766 745 85107231.01254 767 745 19035037.8372 768 745 30506885.55944 769 745 -42587780.00762 770 745 -5736313.161515 834 745 8333333.336071 835 745 -39196836.65327 836 745 -17343704.63996 837 745 -3226694.963612 838 745 -34510800.91818 839 745 10096086.08607 852 745 2.175569534302e-06 853 745 -126000573.4156 854 745 -67541485.19271 855 745 4191171.17622 856 745 -21799184.55042 857 745 19581709.58125 858 745 -11027439.89261 859 745 -60138740.99675 860 745 47821580.90675 873 745 -8333333.33607 874 745 -36345253.319 875 745 -16510371.30635 876 745 2436242.286385 877 745 -31339965.69435 878 745 8706676.127155 879 745 7626721.393617 880 745 -21957274.44509 881 745 15232588.38105 746 746 1035512900.925 747 746 -6401786.696301 748 746 -13737849.54833 749 746 94620592.77045 762 746 -29652762.65002 763 746 -14833151.86804 764 746 4679881.612865 765 746 10879268.43431 766 746 19368371.17048 767 746 190912775.2159 768 746 5607159.608706 769 746 -5736313.161515 770 746 23303137.82117 834 746 24110420.45533 835 746 -17343704.63996 836 746 -81284258.80916 837 746 54643912.99742 838 746 10440765.17629 839 746 -94980766.45259 852 746 -694452.0061623 853 746 -67874818.52582 854 746 -284706093.7789 855 746 -2762465.644181 856 746 19596227.63998 857 746 -269985712.4852 858 746 14428412.5018 859 746 47817257.06168 860 746 -68547849.10008 873 746 -23415968.44916 874 746 -16510371.30635 875 746 -73680036.58444 876 746 -56459349.54655 877 746 8706676.128006 878 746 -92583202.06042 879 746 -9769737.878529 880 746 15232588.38105 881 746 -24335094.043 747 747 476719092.606 748 747 6055794.275668 749 747 3719896.783943 765 747 -39139835.15421 766 747 -32971227.61138 767 747 -4711866.146783 768 747 -5046854.985 769 747 13026739.41472 770 747 829808.4249002 771 747 79313608.52165 772 747 -12360384.10609 773 747 -98386.911798 774 747 -7403415.117131 775 747 30276526.44728 776 747 815875.2272372 837 747 -18540701.9006 838 747 10020577.78707 839 747 14561779.53718 855 747 -45939787.20181 856 747 -11027439.89261 857 747 -17526028.04609 858 747 -61800142.29096 859 747 1513948.569663 860 747 12440251.97284 876 747 -26368729.20533 877 747 -8242806.906906 878 747 -17075883.20919 879 747 -74906791.02692 880 747 3256684.855284 881 747 -62343936.77239 882 747 -25367014.53987 883 747 -3090096.028045 884 747 8972625.494148 885 747 -22671270.46426 886 747 7569131.615548 887 747 -15173808.97594 748 748 543890761.6333 749 748 19481880.11059 765 748 -32971227.61138 766 748 -22253272.73831 767 748 -1388140.969734 768 748 13026739.41472 769 748 125305508.8346 770 748 4348106.303911 771 748 972949.2250522 772 748 14486248.89663 773 748 -622053.6789891 774 748 30276526.44728 775 748 -13597447.23127 776 748 -681484.5028543 837 748 6680385.191377 838 748 -24472689.98014 839 748 -16861073.14158 855 748 -11020580.63135 856 748 -75855100.02084 857 748 -54351585.25286 858 748 1513948.569662 859 748 -45007225.02585 860 748 7591760.11537 876 748 -8242806.906906 877 748 -22147088.59928 878 748 -13065785.2468 879 748 3256684.855284 880 748 -42318700.05597 881 748 5034943.242021 882 748 243237.3063829 883 748 -41573854.45411 884 748 33177819.90803 885 748 7569131.615548 886 748 -24219778.49355 887 748 16496295.54634 749 749 794285488.9012 765 749 -4295199.48039 766 749 -1054807.636619 767 749 24668357.59631 768 749 2496475.091293 769 749 4681439.637189 770 749 244277825.254 771 749 318279.7548032 772 749 -622053.6789894 773 749 155151834.6146 774 749 1232541.89363 775 749 -681484.5028543 776 749 54876959.51256 837 749 9707853.024785 838 749 -20743439.00053 839 749 -43509883.65538 855 749 -17515712.64747 856 749 -54353721.05939 857 749 -110458139.831 858 749 -12663636.91192 859 749 487449.3652666 860 749 -284041735.68 876 749 -17075883.20919 877 749 -13065785.2468 878 749 -38056298.36311 879 749 -62343936.77198 880 749 5034943.242873 881 749 -135317416.4032 882 749 847625.4925454 883 749 33177819.90803 884 749 -81733152.47406 885 749 -15173808.97594 886 749 16496295.54634 887 749 -41801871.2726 750 750 414567870.0551 751 750 7.152557373047e-07 752 750 -5555616.043871 753 750 43538456.00902 754 750 6666666.665572 755 750 3819429.321339 840 750 -77407961.77148 841 750 -1.184642314911e-06 842 750 64983348.44575 843 750 -12048523.14942 844 750 -8333333.336071 845 750 8485420.4502 861 750 -13658136.58254 862 750 5.662441253662e-07 863 750 -13107792.89912 864 750 10254900.45163 865 750 1666666.667213 866 750 -1974864.892506 751 751 374565886.0004 752 751 66665940.77111 753 751 -6666666.665572 754 751 -19794792.63523 755 751 -32999637.05228 840 751 -1.601874828339e-06 841 751 -40741089.4269 842 751 8333242.604601 843 751 -8333333.336071 844 751 -9548399.143536 845 751 9010462.03536 861 751 5.960464477539e-08 862 751 -23658632.60114 863 751 16666485.20099 864 751 -1666666.667215 865 751 -5578411.717238 866 751 17187590.72873 752 752 626992140.1079 753 752 -8680570.676608 754 752 -33666303.71883 755 752 49804756.91433 840 752 65400015.11214 841 752 8333242.604601 842 752 -113457062.6479 843 752 8485420.4502 844 752 9010462.03536 845 752 -2221758.783205 861 752 12413318.2078 862 752 16666485.20099 863 752 -156052242.6221 864 752 1280412.88634 865 752 17187590.72856 866 752 10771953.08541 753 753 414567870.0551 754 753 7.152557373047e-07 755 753 -5555616.043871 756 753 43538456.00902 757 753 6666666.665572 758 753 3819429.321339 840 753 -41696960.65915 841 753 8333333.336071 842 753 24110420.45533 843 753 -77407961.77148 844 753 -1.184642314911e-06 845 753 64983348.44575 846 753 -12048523.14942 847 753 -8333333.336071 848 753 8485420.4502 861 753 -47166974.53894 862 753 -1666666.667213 863 753 -5099864.893531 864 753 -13658136.58254 865 753 5.662441253662e-07 866 753 -13107792.89912 867 753 10254900.45163 868 753 1666666.667213 869 753 -1974864.892506 754 754 374565886.0004 755 754 66665940.77111 756 754 -6666666.665572 757 754 -19794792.63523 758 754 -32999637.05228 840 754 8333333.336071 841 754 -39196836.65327 842 754 -17343704.63996 843 754 -1.601874828339e-06 844 754 -40741089.4269 845 754 8333242.604601 846 754 -8333333.336071 847 754 -9548399.143536 848 754 9010462.03536 861 754 1666666.667215 862 754 -63000286.7078 863 754 -33854075.92972 864 754 5.960464477539e-08 865 754 -23658632.60114 866 754 16666485.20099 867 754 -1666666.667215 868 754 -5578411.717238 869 754 17187590.72873 755 755 626992140.1079 756 755 -8680570.676608 757 755 -33666303.71883 758 755 49804756.91433 840 755 24110420.45533 841 755 -17343704.63996 842 755 -81284258.80916 843 755 65400015.11214 844 755 8333242.604601 845 755 -113457062.6479 846 755 8485420.4502 847 755 9010462.03536 848 755 -2221758.783205 861 755 4405412.887368 862 755 -33854075.92955 863 755 -142353046.8894 864 755 12413318.2078 865 755 16666485.20099 866 755 -156052242.6221 867 755 1280412.88634 868 755 17187590.72856 869 755 10771953.08541 756 756 414567870.0551 757 756 7.152557373047e-07 758 756 -5555616.043871 759 756 43538456.00902 760 756 6666666.665572 761 756 3819429.321339 843 756 -41696960.65915 844 756 8333333.336071 845 756 24110420.45533 846 756 -77407961.77148 847 756 -1.184642314911e-06 848 756 64983348.44575 849 756 -12048523.14942 850 756 -8333333.336071 851 756 8485420.4502 864 756 -47166974.53894 865 756 -1666666.667213 866 756 -5099864.893531 867 756 -13658136.58254 868 756 5.662441253662e-07 869 756 -13107792.89912 870 756 10254900.45163 871 756 1666666.667213 872 756 -1974864.892506 757 757 374565886.0004 758 757 66665940.77111 759 757 -6666666.665572 760 757 -19794792.63523 761 757 -32999637.05228 843 757 8333333.336071 844 757 -39196836.65327 845 757 -17343704.63996 846 757 -1.601874828339e-06 847 757 -40741089.4269 848 757 8333242.604601 849 757 -8333333.336071 850 757 -9548399.143536 851 757 9010462.03536 864 757 1666666.667215 865 757 -63000286.7078 866 757 -33854075.92972 867 757 5.960464477539e-08 868 757 -23658632.60114 869 757 16666485.20099 870 757 -1666666.667215 871 757 -5578411.717238 872 757 17187590.72873 758 758 626992140.1079 759 758 -8680570.676608 760 758 -33666303.71883 761 758 49804756.91433 843 758 24110420.45533 844 758 -17343704.63996 845 758 -81284258.80916 846 758 65400015.11214 847 758 8333242.604601 848 758 -113457062.6479 849 758 8485420.4502 850 758 9010462.03536 851 758 -2221758.783205 864 758 4405412.887368 865 758 -33854075.92955 866 758 -142353046.8894 867 758 12413318.2078 868 758 16666485.20099 869 758 -156052242.6221 870 758 1280412.88634 871 758 17187590.72856 872 758 10771953.08541 759 759 414567870.0551 760 759 7.152557373047e-07 761 759 -5555616.043871 762 759 43538456.00902 763 759 6666666.665572 764 759 3819429.321339 846 759 -41696960.65915 847 759 8333333.336071 848 759 24110420.45533 849 759 -77407961.77148 850 759 -1.184642314911e-06 851 759 64983348.44575 852 759 -12048523.14942 853 759 -8333333.336071 854 759 8485420.4502 867 759 -47166974.53894 868 759 -1666666.667213 869 759 -5099864.893531 870 759 -13658136.58254 871 759 5.662441253662e-07 872 759 -13107792.89912 873 759 10254900.45163 874 759 1666666.667213 875 759 -1974864.892506 760 760 374565886.0004 761 760 66665940.77111 762 760 -6666666.665572 763 760 -19794792.63523 764 760 -32999637.05228 846 760 8333333.336071 847 760 -39196836.65327 848 760 -17343704.63996 849 760 -1.601874828339e-06 850 760 -40741089.4269 851 760 8333242.604601 852 760 -8333333.336071 853 760 -9548399.143536 854 760 9010462.03536 867 760 1666666.667215 868 760 -63000286.7078 869 760 -33854075.92972 870 760 5.960464477539e-08 871 760 -23658632.60114 872 760 16666485.20099 873 760 -1666666.667215 874 760 -5578411.717238 875 760 17187590.72873 761 761 626992140.1079 762 761 -8680570.676608 763 761 -33666303.71883 764 761 49804756.91433 846 761 24110420.45533 847 761 -17343704.63996 848 761 -81284258.80916 849 761 65400015.11214 850 761 8333242.604601 851 761 -113457062.6479 852 761 8485420.4502 853 761 9010462.03536 854 761 -2221758.783205 867 761 4405412.887368 868 761 -33854075.92955 869 761 -142353046.8894 870 761 12413318.2078 871 761 16666485.20099 872 761 -156052242.6221 873 761 1280412.88634 874 761 17187590.72856 875 761 10771953.08541 762 762 414567870.0551 763 762 7.152557373047e-07 764 762 -5555616.043871 765 762 43538456.00902 766 762 6666666.665572 767 762 3819429.321339 849 762 -41696960.65915 850 762 8333333.336071 851 762 24110420.45533 852 762 -77407961.77148 853 762 -1.184642314911e-06 854 762 64983348.44575 855 762 -12048523.14942 856 762 -8333333.336071 857 762 8485420.4502 870 762 -47166974.53894 871 762 -1666666.667213 872 762 -5099864.893531 873 762 -13658136.58254 874 762 5.662441253662e-07 875 762 -13107792.89912 876 762 10254900.45163 877 762 1666666.667213 878 762 -1974864.892506 763 763 374565886.0004 764 763 66665940.77111 765 763 -6666666.665572 766 763 -19794792.63523 767 763 -32999637.05228 849 763 8333333.336071 850 763 -39196836.65327 851 763 -17343704.63996 852 763 -1.601874828339e-06 853 763 -40741089.4269 854 763 8333242.604601 855 763 -8333333.336071 856 763 -9548399.143536 857 763 9010462.03536 870 763 1666666.667215 871 763 -63000286.7078 872 763 -33854075.92972 873 763 5.960464477539e-08 874 763 -23658632.60114 875 763 16666485.20099 876 763 -1666666.667215 877 763 -5578411.717238 878 763 17187590.72873 764 764 626992140.1079 765 764 -8680570.676608 766 764 -33666303.71883 767 764 49804756.91433 849 764 24110420.45533 850 764 -17343704.63996 851 764 -81284258.80916 852 764 65400015.11214 853 764 8333242.604601 854 764 -113457062.6479 855 764 8485420.4502 856 764 9010462.03536 857 764 -2221758.783205 870 764 4405412.887368 871 764 -33854075.92955 872 764 -142353046.8894 873 764 12413318.2078 874 764 16666485.20099 875 764 -156052242.6221 876 764 1280412.88634 877 764 17187590.72856 878 764 10771953.08541 765 765 394527858.8554 766 765 362077.3628545 767 765 -30197935.16775 768 765 50114720.96038 769 765 -3802485.554504 770 765 -2219467.11486 852 765 -41696960.65915 853 765 8333333.336071 854 765 24110420.45533 855 765 -72955365.59794 856 765 2436242.286385 857 765 61378150.43314 858 765 -22540576.42629 859 765 -8242806.906905 860 765 14824116.80129 873 765 -47166974.53894 874 765 -1666666.667213 875 765 -5099864.893531 876 765 -19040600.32219 877 765 90519.34075832 878 765 -19268094.90535 879 765 -13147418.28847 880 765 -950621.3890942 881 765 1450272.108583 766 766 361417907.5311 767 766 40445107.05745 768 766 -17135818.88565 769 766 -14915862.06077 770 766 -6592548.338528 852 766 8333333.336071 853 766 -39196836.65327 854 766 -17343704.63996 855 766 2436242.286384 856 766 -39308684.44256 857 766 894176.12852 858 766 -8242806.906905 859 766 -18318935.82024 860 766 12455048.09491 873 766 1666666.667215 874 766 -63000286.7078 875 766 -33854075.92972 876 766 90519.34075797 877 766 -27318088.15734 878 766 10111276.76934 879 766 -4283954.723522 880 766 -29405064.05177 881 766 27737279.5769 767 767 582973911.8654 768 767 -4302800.447853 769 767 -6925881.671807 770 767 97507539.01388 852 767 24110420.45533 853 767 -17343704.63996 854 767 -81284258.80916 855 767 59294817.09957 856 767 894176.1292076 857 767 -113833118.7223 858 767 14824116.80129 859 767 12455048.09491 860 767 -27847890.95234 873 767 4405412.887368 874 767 -33854075.92955 875 767 -142353046.8894 876 767 6252460.646014 877 767 10111276.76934 878 767 -168050028.8542 879 767 7205272.109613 880 767 27737279.57605 881 767 -44092711.32715 768 768 394608735.3681 769 768 9859177.530151 770 768 -3395263.967743 771 768 -38652304.00089 772 768 -36390140.20844 773 768 -1059124.772573 774 768 57326064.36126 775 768 133156.5897796 776 768 -1013112.177398 855 768 -22730594.34878 856 768 7626721.393617 857 768 12364984.35096 858 768 -76547391.72184 859 768 3256684.855286 860 768 63175507.65185 876 768 -24944296.75828 877 768 -4283954.723523 878 768 -8940005.667694 879 768 -48889704.10442 880 768 2464794.383752 881 768 -12359093.76876 882 768 -30483492.68905 883 768 -9097535.056593 884 768 20047718.8134 885 768 -23754733.9178 886 768 33289.14746143 887 768 1855888.619689 769 769 403589170.3359 770 769 10766124.03009 771 769 -36390140.20844 772 769 -25315780.56268 773 769 -681484.5028545 774 769 -13200176.74136 775 769 -6531037.793588 776 769 -2103884.331085 855 769 7626721.393617 856 769 -28676003.61409 857 769 -18100744.96323 858 769 3256684.855286 859 769 -43959300.75089 860 769 -2777556.756613 876 769 -950621.3890945 877 769 -41201942.52158 878 769 -31116887.08018 879 769 2464794.383752 880 769 -46644595.36138 881 769 2691531.008842 882 769 -9097535.056593 883 769 -27149361.82785 884 769 16496295.54634 885 769 -3300044.186967 886 769 -39719009.46437 887 769 32807362.24483 770 770 637169785.0564 771 770 -1059124.772573 772 770 -681484.5028545 773 770 43158626.18115 774 770 -1429778.844 775 770 -2103884.331085 776 770 126701003.3288 855 770 12364984.35096 856 770 -18100744.96323 857 770 -42251705.16035 858 770 63175507.65144 859 770 -2777556.755926 860 770 -139692351.5897 876 770 -1935005.666458 877 770 -31116887.08087 878 770 -75551053.91331 879 770 12744795.11601 880 770 2691531.008842 881 770 -234152588.3109 882 770 20047718.8134 883 770 16496295.54634 884 770 -44731454.6069 885 770 7819499.733824 886 770 32807362.24483 887 770 -69888082.52598 771 771 233968058.0878 772 771 39027050.76838 773 771 584498.0232363 774 771 -5566029.282941 775 771 -3609859.784988 776 771 156346.9945345 858 771 -26617014.5403 859 771 243237.3063828 860 771 -792652.2819211 879 771 -31733492.68947 880 771 -9097535.056593 881 771 -20577281.19994 882 771 -33148818.76463 883 771 9756762.696902 884 771 8271124.504546 885 771 -44282340.66884 886 771 -902464.9466921 887 771 -35651191.02268 772 772 217545417.7261 773 772 622053.6789918 774 772 9723473.546155 775 772 62347447.26551 776 772 681484.5028564 858 772 -3090096.028045 859 772 -42823854.45454 860 772 -33488846.74768 879 772 -9097535.056593 880 772 -28399361.82827 881 772 -16837037.79794 882 772 9756762.696902 883 772 -37254478.85706 884 772 6822180.085395 885 772 2430868.387736 886 772 -27303971.52336 887 772 3503704.460225 773 773 382349276.3928 774 773 573013.6611362 775 773 681484.5028564 776 773 136842485.0131 858 773 -8917652.283731 859 773 -33488846.74768 860 773 -85066485.80853 879 773 -20577281.19995 880 773 -16837037.79794 881 773 -48064787.94135 882 773 -7978875.492785 883 773 -6511153.245748 884 773 -148788236.3624 885 773 -35651191.02354 886 773 -3162962.208631 887 773 -80164934.32299 774 774 201270046.7132 775 774 -26799823.25207 776 774 -1209110.043552 858 774 -23921270.46468 859 774 7569131.615548 860 774 15685913.25641 879 774 -27504733.91658 880 774 -3300044.186967 881 774 -8117722.489783 882 774 -44282340.66884 883 774 2430868.387737 884 774 35833531.18791 885 774 -29604988.28668 886 774 -6699955.816318 887 774 -5953388.621477 775 775 203407704.4337 776 775 2103884.331091 858 775 7569131.615548 859 775 -25469778.49398 860 775 -16837037.79794 879 775 33289.14746112 880 775 -43469009.46316 881 775 -33859304.41089 882 775 -902464.9466912 883 775 -27303971.52336 884 775 3503704.460225 885 775 -6699955.816318 886 775 -29070573.85628 887 775 7192637.7486 776 776 336583996.6104 858 776 15685913.25641 859 776 -16837037.79794 860 776 -45135204.60706 879 776 -1737444.709049 880 776 -33859304.41089 881 776 -79888082.52274 882 776 35833531.18684 883 776 -3162962.208631 884 776 -80164934.32299 885 776 6390500.265385 886 776 -6140695.582542 887 776 -128980667.4453 777 777 511307203.7006 778 777 31944444.4392 779 777 -38471552.3926 780 777 -129270221.6954 781 777 -31963408.23791 782 777 32202213.44983 783 777 -74245.33507569 784 777 25574519.35007 785 777 23212035.46926 888 777 -2535056.171221 889 777 7638888.891397 890 777 2916127.642058 891 777 -61266506.56961 892 777 -7643634.032713 893 777 -48493965.33591 894 777 6429332.410642 895 777 6115856.254433 896 777 -5472930.844082 778 778 463366668.0891 779 778 73645353.45811 780 778 -31972890.13727 781 778 20929276.84229 782 778 44576929.53758 783 778 38361779.02511 784 778 -74245.33508131 785 778 -29688226.0277 888 778 7638888.891396 889 778 -13999375.77193 890 778 27304194.09764 891 778 -7646006.603371 892 778 -25348555.65241 893 778 -585233.2815705 894 778 9173784.381649 895 778 6429332.410642 896 778 6567824.782935 779 779 790000669.0394 780 779 29067543.97844 781 779 35319743.0838 782 779 126505653.3816 783 779 34818053.20388 784 779 -19792150.68513 785 779 -197987.5602046 888 779 -19488671.82916 889 779 9380576.980452 890 779 -143900824.6786 891 779 -48878084.71163 892 779 -2722347.244235 893 779 -50690307.28013 894 779 -8209396.266123 895 779 4378549.855291 896 779 17144886.42838 780 780 798779840.2986 781 780 31991853.93598 782 780 -35934840.90099 783 780 33796428.38625 784 780 -31963408.23791 785 780 -31487513.88132 786 780 -60300895.02916 787 780 -1.370906829834e-06 788 780 6886635.866331 789 780 -45730271.10628 790 780 31944444.4392 791 780 31469922.85153 888 780 -88160408.62987 889 780 -7646006.603366 890 780 63145912.64445 891 780 3615653.321898 892 780 7650751.744684 893 780 -8598044.452827 894 780 3117023.124192 895 780 -7643634.032712 896 780 6521862.080229 897 780 -61096866.41184 898 780 -1.631677150726e-06 899 780 -54526141.60101 900 780 -10000259.54407 901 780 7638888.891397 902 780 -6517820.126831 781 781 712503944.5236 782 781 99028842.16786 783 781 -31972890.13727 784 781 -78046374.58557 785 781 -54292558.27614 787 781 80255500.90366 788 781 31944073.6884 789 781 31944444.4392 790 781 -36146431.06068 791 781 -17722036.84414 888 781 -7643634.032709 889 781 -52242457.71267 890 781 19687387.29713 891 781 7650751.744683 892 781 -17015851.08971 893 781 23676848.33746 894 781 -7646006.603369 895 781 -23628404.39615 896 781 31972114.21773 897 781 -1.691281795502e-06 898 781 -27485540.44924 899 781 7638794.112417 900 781 7638888.891397 901 781 -7708463.340222 902 781 6996575.169565 782 782 1098010379.249 783 782 -31114364.95125 784 782 -60743490.00346 785 782 77736775.05345 786 782 3761635.866845 787 782 31944073.6884 788 782 195560564.8714 789 782 31087978.40657 790 782 -17416481.28817 791 782 -7301392.713971 888 782 63530032.02016 889 782 21831451.86013 890 782 -122407379.4408 891 782 -8589356.089042 892 782 23683798.94222 893 782 -237160382.7964 894 782 6523883.056929 895 782 30136961.89646 896 782 5350330.44263 897 782 -54908086.04521 898 782 7638794.112417 899 782 -77707668.15051 900 782 -6517820.126831 901 782 6996575.169565 902 782 748003.7541653 783 783 511307203.7006 784 783 31944444.4392 785 783 -38471552.3926 786 783 -42136521.10687 787 783 -31944444.4392 788 783 -28425910.47196 789 783 -129270221.6954 790 783 -31963408.23791 791 783 32202213.44983 792 783 -74245.33507569 793 783 25574519.35007 794 783 23212035.46926 888 783 -44000691.65356 889 783 9173784.381649 890 783 25410834.91903 891 783 -74169151.35949 892 783 -7646006.603371 893 783 -21497320.34861 894 783 -2535056.171221 895 783 7638888.891397 896 783 2916127.642058 897 783 -34336197.05207 898 783 -7638888.891398 899 783 -20840736.7982 900 783 -61266506.56961 901 783 -7643634.032713 902 783 -48493965.33591 903 783 6429332.410642 904 783 6115856.254433 905 783 -5472930.844082 784 784 463366668.0891 785 784 73645353.45811 786 784 -31944444.4392 787 784 -32552681.06127 788 784 -14222036.84425 789 784 -31972890.13727 790 784 20929276.84229 791 784 44576929.53758 792 784 38361779.02511 793 784 -74245.33508131 794 784 -29688226.0277 888 784 6115856.254433 889 784 -44000691.65356 890 784 -13552018.01794 891 784 -7643634.032713 892 784 -100914578.8798 893 784 -59481123.99205 894 784 7638888.891396 895 784 -13999375.77193 896 784 27304194.09764 897 784 -7638888.891398 898 784 -32044400.84822 899 784 -14635369.28198 900 784 -7646006.603371 901 784 -25348555.65241 902 784 -585233.2815705 903 784 9173784.381649 904 784 6429332.410642 905 784 6567824.782935 785 785 790000669.0394 786 785 -28807854.91693 787 785 -14527592.40022 788 785 2281940.617786 789 785 29067543.97844 790 785 35319743.0838 791 785 126505653.3816 792 785 34818053.20388 793 785 -19792150.68513 794 785 -197987.5602046 888 785 16940556.61269 889 785 -20328027.02691 890 785 -117335177.7428 891 785 -21490653.15616 892 785 -57645971.82207 893 785 -200746134.8472 894 785 -19488671.82916 895 785 9380576.980452 896 785 -143900824.6786 897 785 -20840736.7982 898 785 -14635369.28198 899 785 -64147829.60048 900 785 -48878084.71163 901 785 -2722347.244235 902 785 -50690307.28013 903 785 -8209396.266123 904 785 4378549.855291 905 785 17144886.42838 786 786 783245798.6586 787 786 2.861022949219e-06 788 786 -10648271.7332 789 786 80258968.78408 790 786 -4.023313522339e-07 791 786 -2662067.934612 795 786 -60300895.02916 796 786 -1.370906829834e-06 797 786 6886635.866331 798 786 -45730271.10628 799 786 31944444.4392 800 786 31469922.85153 891 786 -67815699.74408 892 786 2.041459083557e-06 893 786 57072469.49195 894 786 -10820592.87768 895 786 -7638888.891398 896 786 7154402.099879 897 786 -12957512.05534 898 786 5.960464477539e-08 899 786 -2546327.890928 900 786 19546554.40623 901 786 -1.84029340744e-06 902 786 -636581.9730468 906 786 -61096866.41184 907 786 -1.631677150726e-06 908 786 -54526141.60101 909 786 -10000259.54407 910 786 7638888.891397 911 786 -6517820.126831 787 787 706575078.3316 788 787 127776294.6906 789 787 -1.341104507446e-07 790 787 -41129747.07642 791 787 -65138147.34512 796 787 80255500.90366 797 787 31944073.6884 798 787 31944444.4392 799 787 -36146431.06068 800 787 -17722036.84414 891 787 2.004206180573e-06 892 787 -34204373.78147 893 787 7638794.112417 894 787 -7638888.891398 895 787 -8528796.673826 896 787 7760464.058704 897 787 2.98023223877e-08 898 787 -31291881.67713 899 787 30555176.43461 900 787 -1.668930053711e-06 901 787 -9481179.15318 902 787 29361300.66432 906 787 -1.691281795502e-06 907 787 -27485540.44924 908 787 7638794.112417 909 787 7638888.891397 910 787 -7708463.340222 911 787 6996575.169565 788 788 1171487488.319 789 788 -2662067.934612 790 788 -62638147.34553 791 788 86952958.72131 795 788 3761635.866845 796 788 31944073.6884 797 788 195560564.8714 798 788 31087978.40657 799 788 -17416481.28817 800 788 -7301392.713971 891 788 57454413.93615 892 788 7638794.112417 893 788 -95624557.03646 894 788 7154402.099879 895 788 7760464.058704 896 788 -1439551.802109 897 788 -2546327.890927 898 788 30555176.43461 899 788 -253876265.6798 900 788 -636581.9730468 901 788 29666856.21968 902 788 21737561.15826 906 788 -54908086.04521 907 788 7638794.112417 908 788 -77707668.15051 909 788 -6517820.126831 910 788 6996575.169565 911 788 748003.7541653 789 789 798779840.2986 790 789 31991853.93598 791 789 -35934840.90099 792 789 33796428.38625 793 789 -31963408.23791 794 789 -31487513.88132 795 789 -42136521.10687 796 789 -31944444.4392 797 789 -28425910.47196 798 789 -60300895.02916 799 789 -1.370906829834e-06 800 789 6886635.866331 801 789 -45730271.10628 802 789 31944444.4392 803 789 31469922.85153 891 789 -36875280.38624 892 789 7638888.891399 893 789 21477318.77125 894 789 -88160408.62987 895 789 -7646006.603366 896 789 63145912.64445 897 789 -81234695.57722 898 789 1.624226570129e-06 899 789 -636581.9730444 900 789 3615653.321898 901 789 7650751.744684 902 789 -8598044.452827 903 789 3117023.124192 904 789 -7643634.032712 905 789 6521862.080229 906 789 -34336197.05207 907 789 -7638888.891398 908 789 -20840736.7982 909 789 -61096866.41184 910 789 -1.631677150726e-06 911 789 -54526141.60101 912 789 -10000259.54407 913 789 7638888.891397 914 789 -6517820.126831 790 790 712503944.5236 791 790 99028842.16786 792 790 -31972890.13727 793 790 -78046374.58557 794 790 -54292558.27614 795 790 -31944444.4392 796 790 -32552681.06127 797 790 -14222036.84425 799 790 80255500.90366 800 790 31944073.6884 801 790 31944444.4392 802 790 -36146431.06068 803 790 -17722036.84414 891 790 7638888.891399 892 790 -34583484.18238 893 790 -15399258.17112 894 790 -7643634.032709 895 790 -52242457.71267 896 790 19687387.29713 897 790 1.564621925354e-06 898 790 -110262429.1366 899 790 -59916477.09895 900 790 7650751.744683 901 790 -17015851.08971 902 790 23676848.33746 903 790 -7646006.603369 904 790 -23628404.39615 905 790 31972114.21773 906 790 -7638888.891398 907 790 -32044400.84822 908 790 -14635369.28198 909 790 -1.691281795502e-06 910 790 -27485540.44924 911 790 7638794.112417 912 790 7638888.891397 913 790 -7708463.340222 914 790 6996575.169565 791 791 1098010379.249 792 791 -31114364.95125 793 791 -60743490.00346 794 791 77736775.05345 795 791 -28807854.91693 796 791 -14527592.40022 797 791 2281940.617786 798 791 3761635.866845 799 791 31944073.6884 800 791 195560564.8714 801 791 31087978.40657 802 791 -17416481.28817 803 791 -7301392.713971 891 791 21477318.77125 892 791 -15399258.17112 893 791 -70918718.4916 894 791 63530032.02016 895 791 21831451.86013 896 791 -122407379.4408 897 791 -636581.9730439 898 791 -60222032.6543 899 791 -247012438.7976 900 791 -8589356.089042 901 791 23683798.94222 902 791 -237160382.7964 903 791 6523883.056929 904 791 30136961.89646 905 791 5350330.44263 906 791 -20840736.7982 907 791 -14635369.28198 908 791 -64147829.60048 909 791 -54908086.04521 910 791 7638794.112417 911 791 -77707668.15051 912 791 -6517820.126831 913 791 6996575.169565 914 791 748003.7541653 792 792 511307203.7006 793 792 31944444.4392 794 792 -38471552.3926 798 792 -42136521.10687 799 792 -31944444.4392 800 792 -28425910.47196 801 792 -129270221.6954 802 792 -31963408.23791 803 792 32202213.44983 804 792 -74245.33507569 805 792 25574519.35007 806 792 23212035.46926 894 792 -44000691.65356 895 792 9173784.381649 896 792 25410834.91903 900 792 -74169151.35949 901 792 -7646006.603371 902 792 -21497320.34861 903 792 -2535056.171221 904 792 7638888.891397 905 792 2916127.642058 909 792 -34336197.05207 910 792 -7638888.891398 911 792 -20840736.7982 912 792 -61266506.56961 913 792 -7643634.032713 914 792 -48493965.33591 915 792 6429332.410642 916 792 6115856.254433 917 792 -5472930.844082 793 793 463366668.0891 794 793 73645353.45811 798 793 -31944444.4392 799 793 -32552681.06127 800 793 -14222036.84425 801 793 -31972890.13727 802 793 20929276.84229 803 793 44576929.53758 804 793 38361779.02511 805 793 -74245.33508131 806 793 -29688226.0277 894 793 6115856.254433 895 793 -44000691.65356 896 793 -13552018.01794 900 793 -7643634.032713 901 793 -100914578.8798 902 793 -59481123.99205 903 793 7638888.891396 904 793 -13999375.77193 905 793 27304194.09764 909 793 -7638888.891398 910 793 -32044400.84822 911 793 -14635369.28198 912 793 -7646006.603371 913 793 -25348555.65241 914 793 -585233.2815705 915 793 9173784.381649 916 793 6429332.410642 917 793 6567824.782935 794 794 790000669.0394 798 794 -28807854.91693 799 794 -14527592.40022 800 794 2281940.617786 801 794 29067543.97844 802 794 35319743.0838 803 794 126505653.3816 804 794 34818053.20388 805 794 -19792150.68513 806 794 -197987.5602046 894 794 16940556.61269 895 794 -20328027.02691 896 794 -117335177.7428 900 794 -21490653.15616 901 794 -57645971.82207 902 794 -200746134.8472 903 794 -19488671.82916 904 794 9380576.980452 905 794 -143900824.6786 909 794 -20840736.7982 910 794 -14635369.28198 911 794 -64147829.60048 912 794 -48878084.71163 913 794 -2722347.244235 914 794 -50690307.28013 915 794 -8209396.266123 916 794 4378549.855291 917 794 17144886.42838 795 795 783245798.6586 796 795 2.861022949219e-06 797 795 -10648271.7332 798 795 80258968.78408 799 795 -4.023313522339e-07 800 795 -2662067.934612 807 795 -60300895.02916 808 795 -1.370906829834e-06 809 795 6886635.866331 810 795 -45730271.10628 811 795 31944444.4392 812 795 31469922.85153 897 795 -67815699.74408 898 795 2.041459083557e-06 899 795 57072469.49195 900 795 -10820592.87768 901 795 -7638888.891398 902 795 7154402.099879 906 795 -12957512.05534 907 795 5.960464477539e-08 908 795 -2546327.890928 909 795 19546554.40623 910 795 -1.84029340744e-06 911 795 -636581.9730468 918 795 -61096866.41184 919 795 -1.631677150726e-06 920 795 -54526141.60101 921 795 -10000259.54407 922 795 7638888.891397 923 795 -6517820.126831 796 796 706575078.3316 797 796 127776294.6906 798 796 -1.341104507446e-07 799 796 -41129747.07642 800 796 -65138147.34512 808 796 80255500.90366 809 796 31944073.6884 810 796 31944444.4392 811 796 -36146431.06068 812 796 -17722036.84414 897 796 2.004206180573e-06 898 796 -34204373.78147 899 796 7638794.112417 900 796 -7638888.891398 901 796 -8528796.673826 902 796 7760464.058704 906 796 2.98023223877e-08 907 796 -31291881.67713 908 796 30555176.43461 909 796 -1.668930053711e-06 910 796 -9481179.15318 911 796 29361300.66432 918 796 -1.691281795502e-06 919 796 -27485540.44924 920 796 7638794.112417 921 796 7638888.891397 922 796 -7708463.340222 923 796 6996575.169565 797 797 1171487488.319 798 797 -2662067.934612 799 797 -62638147.34553 800 797 86952958.72131 807 797 3761635.866845 808 797 31944073.6884 809 797 195560564.8714 810 797 31087978.40657 811 797 -17416481.28817 812 797 -7301392.713971 897 797 57454413.93615 898 797 7638794.112417 899 797 -95624557.03646 900 797 7154402.099879 901 797 7760464.058704 902 797 -1439551.802109 906 797 -2546327.890927 907 797 30555176.43461 908 797 -253876265.6798 909 797 -636581.9730468 910 797 29666856.21968 911 797 21737561.15826 918 797 -54908086.04521 919 797 7638794.112417 920 797 -77707668.15051 921 797 -6517820.126831 922 797 6996575.169565 923 797 748003.7541653 798 798 783245798.6586 799 798 2.861022949219e-06 800 798 -10648271.7332 801 798 80258968.78408 802 798 -4.023313522339e-07 803 798 -2662067.934612 807 798 -42136521.10687 808 798 -31944444.4392 809 798 -28425910.47196 810 798 -60300895.02916 811 798 -1.370906829834e-06 812 798 6886635.866331 813 798 -45730271.10628 814 798 31944444.4392 815 798 31469922.85153 897 798 -36875280.38624 898 798 7638888.891399 899 798 21477318.77125 900 798 -67815699.74408 901 798 2.041459083557e-06 902 798 57072469.49195 903 798 -10820592.87768 904 798 -7638888.891398 905 798 7154402.099879 906 798 -81234695.57722 907 798 1.624226570129e-06 908 798 -636581.9730444 909 798 -12957512.05534 910 798 5.960464477539e-08 911 798 -2546327.890928 912 798 19546554.40623 913 798 -1.84029340744e-06 914 798 -636581.9730468 918 798 -34336197.05207 919 798 -7638888.891398 920 798 -20840736.7982 921 798 -61096866.41184 922 798 -1.631677150726e-06 923 798 -54526141.60101 924 798 -10000259.54407 925 798 7638888.891397 926 798 -6517820.126831 799 799 706575078.3316 800 799 127776294.6906 801 799 -1.341104507446e-07 802 799 -41129747.07642 803 799 -65138147.34512 807 799 -31944444.4392 808 799 -32552681.06127 809 799 -14222036.84425 811 799 80255500.90366 812 799 31944073.6884 813 799 31944444.4392 814 799 -36146431.06068 815 799 -17722036.84414 897 799 7638888.891399 898 799 -34583484.18238 899 799 -15399258.17112 900 799 2.004206180573e-06 901 799 -34204373.78147 902 799 7638794.112417 903 799 -7638888.891398 904 799 -8528796.673826 905 799 7760464.058704 906 799 1.564621925354e-06 907 799 -110262429.1366 908 799 -59916477.09895 909 799 2.98023223877e-08 910 799 -31291881.67713 911 799 30555176.43461 912 799 -1.668930053711e-06 913 799 -9481179.15318 914 799 29361300.66432 918 799 -7638888.891398 919 799 -32044400.84822 920 799 -14635369.28198 921 799 -1.691281795502e-06 922 799 -27485540.44924 923 799 7638794.112417 924 799 7638888.891397 925 799 -7708463.340222 926 799 6996575.169565 800 800 1171487488.319 801 800 -2662067.934612 802 800 -62638147.34553 803 800 86952958.72131 807 800 -28807854.91693 808 800 -14527592.40022 809 800 2281940.617786 810 800 3761635.866845 811 800 31944073.6884 812 800 195560564.8714 813 800 31087978.40657 814 800 -17416481.28817 815 800 -7301392.713971 897 800 21477318.77125 898 800 -15399258.17112 899 800 -70918718.4916 900 800 57454413.93615 901 800 7638794.112417 902 800 -95624557.03646 903 800 7154402.099879 904 800 7760464.058704 905 800 -1439551.802109 906 800 -636581.9730439 907 800 -60222032.6543 908 800 -247012438.7976 909 800 -2546327.890927 910 800 30555176.43461 911 800 -253876265.6798 912 800 -636581.9730468 913 800 29666856.21968 914 800 21737561.15826 918 800 -20840736.7982 919 800 -14635369.28198 920 800 -64147829.60048 921 800 -54908086.04521 922 800 7638794.112417 923 800 -77707668.15051 924 800 -6517820.126831 925 800 6996575.169565 926 800 748003.7541653 801 801 798779840.2986 802 801 31991853.93598 803 801 -35934840.90099 804 801 33796428.38625 805 801 -31963408.23791 806 801 -31487513.88132 810 801 -42136521.10687 811 801 -31944444.4392 812 801 -28425910.47196 813 801 -60300895.02916 814 801 -1.370906829834e-06 815 801 6886635.866331 816 801 -45730271.10628 817 801 31944444.4392 818 801 31469922.85153 900 801 -36875280.38624 901 801 7638888.891399 902 801 21477318.77125 903 801 -88160408.62987 904 801 -7646006.603366 905 801 63145912.64445 909 801 -81234695.57722 910 801 1.624226570129e-06 911 801 -636581.9730444 912 801 3615653.321898 913 801 7650751.744684 914 801 -8598044.452827 915 801 3117023.124192 916 801 -7643634.032712 917 801 6521862.080229 921 801 -34336197.05207 922 801 -7638888.891398 923 801 -20840736.7982 924 801 -61096866.41184 925 801 -1.631677150726e-06 926 801 -54526141.60101 927 801 -10000259.54407 928 801 7638888.891397 929 801 -6517820.126831 802 802 712503944.5236 803 802 99028842.16786 804 802 -31972890.13727 805 802 -78046374.58557 806 802 -54292558.27614 810 802 -31944444.4392 811 802 -32552681.06127 812 802 -14222036.84425 814 802 80255500.90366 815 802 31944073.6884 816 802 31944444.4392 817 802 -36146431.06068 818 802 -17722036.84414 900 802 7638888.891399 901 802 -34583484.18238 902 802 -15399258.17112 903 802 -7643634.032709 904 802 -52242457.71267 905 802 19687387.29713 909 802 1.564621925354e-06 910 802 -110262429.1366 911 802 -59916477.09895 912 802 7650751.744683 913 802 -17015851.08971 914 802 23676848.33746 915 802 -7646006.603369 916 802 -23628404.39615 917 802 31972114.21773 921 802 -7638888.891398 922 802 -32044400.84822 923 802 -14635369.28198 924 802 -1.691281795502e-06 925 802 -27485540.44924 926 802 7638794.112417 927 802 7638888.891397 928 802 -7708463.340222 929 802 6996575.169565 803 803 1098010379.249 804 803 -31114364.95125 805 803 -60743490.00346 806 803 77736775.05345 810 803 -28807854.91693 811 803 -14527592.40022 812 803 2281940.617786 813 803 3761635.866845 814 803 31944073.6884 815 803 195560564.8714 816 803 31087978.40657 817 803 -17416481.28817 818 803 -7301392.713971 900 803 21477318.77125 901 803 -15399258.17112 902 803 -70918718.4916 903 803 63530032.02016 904 803 21831451.86013 905 803 -122407379.4408 909 803 -636581.9730439 910 803 -60222032.6543 911 803 -247012438.7976 912 803 -8589356.089042 913 803 23683798.94222 914 803 -237160382.7964 915 803 6523883.056929 916 803 30136961.89646 917 803 5350330.44263 921 803 -20840736.7982 922 803 -14635369.28198 923 803 -64147829.60048 924 803 -54908086.04521 925 803 7638794.112417 926 803 -77707668.15051 927 803 -6517820.126831 928 803 6996575.169565 929 803 748003.7541653 804 804 511307203.7006 805 804 31944444.4392 806 804 -38471552.3926 813 804 -42136521.10687 814 804 -31944444.4392 815 804 -28425910.47196 816 804 -129270221.6954 817 804 -31963408.23791 818 804 32202213.44983 819 804 -74245.33507569 820 804 25574519.35007 821 804 23212035.46926 903 804 -44000691.65356 904 804 9173784.381649 905 804 25410834.91903 912 804 -74169151.35949 913 804 -7646006.603371 914 804 -21497320.34861 915 804 -2535056.171221 916 804 7638888.891397 917 804 2916127.642058 924 804 -34336197.05207 925 804 -7638888.891398 926 804 -20840736.7982 927 804 -61266506.56961 928 804 -7643634.032713 929 804 -48493965.33591 930 804 6429332.410642 931 804 6115856.254433 932 804 -5472930.844082 805 805 463366668.0891 806 805 73645353.45811 813 805 -31944444.4392 814 805 -32552681.06127 815 805 -14222036.84425 816 805 -31972890.13727 817 805 20929276.84229 818 805 44576929.53758 819 805 38361779.02511 820 805 -74245.33508131 821 805 -29688226.0277 903 805 6115856.254433 904 805 -44000691.65356 905 805 -13552018.01794 912 805 -7643634.032713 913 805 -100914578.8798 914 805 -59481123.99205 915 805 7638888.891396 916 805 -13999375.77193 917 805 27304194.09764 924 805 -7638888.891398 925 805 -32044400.84822 926 805 -14635369.28198 927 805 -7646006.603371 928 805 -25348555.65241 929 805 -585233.2815705 930 805 9173784.381649 931 805 6429332.410642 932 805 6567824.782935 806 806 790000669.0394 813 806 -28807854.91693 814 806 -14527592.40022 815 806 2281940.617786 816 806 29067543.97844 817 806 35319743.0838 818 806 126505653.3816 819 806 34818053.20388 820 806 -19792150.68513 821 806 -197987.5602046 903 806 16940556.61269 904 806 -20328027.02691 905 806 -117335177.7428 912 806 -21490653.15616 913 806 -57645971.82207 914 806 -200746134.8472 915 806 -19488671.82916 916 806 9380576.980452 917 806 -143900824.6786 924 806 -20840736.7982 925 806 -14635369.28198 926 806 -64147829.60048 927 806 -48878084.71163 928 806 -2722347.244235 929 806 -50690307.28013 930 806 -8209396.266123 931 806 4378549.855291 932 806 17144886.42838 807 807 783245798.6586 808 807 2.861022949219e-06 809 807 -10648271.7332 810 807 80258968.78408 811 807 -4.023313522339e-07 812 807 -2662067.934612 822 807 -60300895.02916 823 807 -1.370906829834e-06 824 807 6886635.866331 825 807 -45730271.10628 826 807 31944444.4392 827 807 31469922.85153 906 807 -67815699.74408 907 807 2.041459083557e-06 908 807 57072469.49195 909 807 -10820592.87768 910 807 -7638888.891398 911 807 7154402.099879 918 807 -12957512.05534 919 807 5.960464477539e-08 920 807 -2546327.890928 921 807 19546554.40623 922 807 -1.84029340744e-06 923 807 -636581.9730468 933 807 -61096866.41184 934 807 -1.631677150726e-06 935 807 -54526141.60101 936 807 -10000259.54407 937 807 7638888.891397 938 807 -6517820.126831 808 808 706575078.3316 809 808 127776294.6906 810 808 -1.341104507446e-07 811 808 -41129747.07642 812 808 -65138147.34512 823 808 80255500.90366 824 808 31944073.6884 825 808 31944444.4392 826 808 -36146431.06068 827 808 -17722036.84414 906 808 2.004206180573e-06 907 808 -34204373.78147 908 808 7638794.112417 909 808 -7638888.891398 910 808 -8528796.673826 911 808 7760464.058704 918 808 2.98023223877e-08 919 808 -31291881.67713 920 808 30555176.43461 921 808 -1.668930053711e-06 922 808 -9481179.15318 923 808 29361300.66432 933 808 -1.691281795502e-06 934 808 -27485540.44924 935 808 7638794.112417 936 808 7638888.891397 937 808 -7708463.340222 938 808 6996575.169565 809 809 1171487488.319 810 809 -2662067.934612 811 809 -62638147.34553 812 809 86952958.72131 822 809 3761635.866845 823 809 31944073.6884 824 809 195560564.8714 825 809 31087978.40657 826 809 -17416481.28817 827 809 -7301392.713971 906 809 57454413.93615 907 809 7638794.112417 908 809 -95624557.03646 909 809 7154402.099879 910 809 7760464.058704 911 809 -1439551.802109 918 809 -2546327.890927 919 809 30555176.43461 920 809 -253876265.6798 921 809 -636581.9730468 922 809 29666856.21968 923 809 21737561.15826 933 809 -54908086.04521 934 809 7638794.112417 935 809 -77707668.15051 936 809 -6517820.126831 937 809 6996575.169565 938 809 748003.7541653 810 810 783245798.6586 811 810 2.861022949219e-06 812 810 -10648271.7332 813 810 80258968.78408 814 810 -4.023313522339e-07 815 810 -2662067.934612 822 810 -42136521.10687 823 810 -31944444.4392 824 810 -28425910.47196 825 810 -60300895.02916 826 810 -1.370906829834e-06 827 810 6886635.866331 828 810 -45730271.10628 829 810 31944444.4392 830 810 31469922.85153 906 810 -36875280.38624 907 810 7638888.891399 908 810 21477318.77125 909 810 -67815699.74408 910 810 2.041459083557e-06 911 810 57072469.49195 912 810 -10820592.87768 913 810 -7638888.891398 914 810 7154402.099879 918 810 -81234695.57722 919 810 1.624226570129e-06 920 810 -636581.9730444 921 810 -12957512.05534 922 810 5.960464477539e-08 923 810 -2546327.890928 924 810 19546554.40623 925 810 -1.84029340744e-06 926 810 -636581.9730468 933 810 -34336197.05207 934 810 -7638888.891398 935 810 -20840736.7982 936 810 -61096866.41184 937 810 -1.631677150726e-06 938 810 -54526141.60101 939 810 -10000259.54407 940 810 7638888.891397 941 810 -6517820.126831 811 811 706575078.3316 812 811 127776294.6906 813 811 -1.341104507446e-07 814 811 -41129747.07642 815 811 -65138147.34512 822 811 -31944444.4392 823 811 -32552681.06127 824 811 -14222036.84425 826 811 80255500.90366 827 811 31944073.6884 828 811 31944444.4392 829 811 -36146431.06068 830 811 -17722036.84414 906 811 7638888.891399 907 811 -34583484.18238 908 811 -15399258.17112 909 811 2.004206180573e-06 910 811 -34204373.78147 911 811 7638794.112417 912 811 -7638888.891398 913 811 -8528796.673826 914 811 7760464.058704 918 811 1.564621925354e-06 919 811 -110262429.1366 920 811 -59916477.09895 921 811 2.98023223877e-08 922 811 -31291881.67713 923 811 30555176.43461 924 811 -1.668930053711e-06 925 811 -9481179.15318 926 811 29361300.66432 933 811 -7638888.891398 934 811 -32044400.84822 935 811 -14635369.28198 936 811 -1.691281795502e-06 937 811 -27485540.44924 938 811 7638794.112417 939 811 7638888.891397 940 811 -7708463.340222 941 811 6996575.169565 812 812 1171487488.319 813 812 -2662067.934612 814 812 -62638147.34553 815 812 86952958.72131 822 812 -28807854.91693 823 812 -14527592.40022 824 812 2281940.617786 825 812 3761635.866845 826 812 31944073.6884 827 812 195560564.8714 828 812 31087978.40657 829 812 -17416481.28817 830 812 -7301392.713971 906 812 21477318.77125 907 812 -15399258.17112 908 812 -70918718.4916 909 812 57454413.93615 910 812 7638794.112417 911 812 -95624557.03646 912 812 7154402.099879 913 812 7760464.058704 914 812 -1439551.802109 918 812 -636581.9730439 919 812 -60222032.6543 920 812 -247012438.7976 921 812 -2546327.890927 922 812 30555176.43461 923 812 -253876265.6798 924 812 -636581.9730468 925 812 29666856.21968 926 812 21737561.15826 933 812 -20840736.7982 934 812 -14635369.28198 935 812 -64147829.60048 936 812 -54908086.04521 937 812 7638794.112417 938 812 -77707668.15051 939 812 -6517820.126831 940 812 6996575.169565 941 812 748003.7541653 813 813 783245798.6586 814 813 2.861022949219e-06 815 813 -10648271.7332 816 813 80258968.78408 817 813 -4.023313522339e-07 818 813 -2662067.934612 825 813 -42136521.10687 826 813 -31944444.4392 827 813 -28425910.47196 828 813 -60300895.02916 829 813 -1.370906829834e-06 830 813 6886635.866331 831 813 -45730271.10628 832 813 31944444.4392 833 813 31469922.85153 909 813 -36875280.38624 910 813 7638888.891399 911 813 21477318.77125 912 813 -67815699.74408 913 813 2.041459083557e-06 914 813 57072469.49195 915 813 -10820592.87768 916 813 -7638888.891398 917 813 7154402.099879 921 813 -81234695.57722 922 813 1.624226570129e-06 923 813 -636581.9730444 924 813 -12957512.05534 925 813 5.960464477539e-08 926 813 -2546327.890928 927 813 19546554.40623 928 813 -1.84029340744e-06 929 813 -636581.9730468 936 813 -34336197.05207 937 813 -7638888.891398 938 813 -20840736.7982 939 813 -61096866.41184 940 813 -1.631677150726e-06 941 813 -54526141.60101 942 813 -10000259.54407 943 813 7638888.891397 944 813 -6517820.126831 814 814 706575078.3316 815 814 127776294.6906 816 814 -1.341104507446e-07 817 814 -41129747.07642 818 814 -65138147.34512 825 814 -31944444.4392 826 814 -32552681.06127 827 814 -14222036.84425 829 814 80255500.90366 830 814 31944073.6884 831 814 31944444.4392 832 814 -36146431.06068 833 814 -17722036.84414 909 814 7638888.891399 910 814 -34583484.18238 911 814 -15399258.17112 912 814 2.004206180573e-06 913 814 -34204373.78147 914 814 7638794.112417 915 814 -7638888.891398 916 814 -8528796.673826 917 814 7760464.058704 921 814 1.564621925354e-06 922 814 -110262429.1366 923 814 -59916477.09895 924 814 2.98023223877e-08 925 814 -31291881.67713 926 814 30555176.43461 927 814 -1.668930053711e-06 928 814 -9481179.15318 929 814 29361300.66432 936 814 -7638888.891398 937 814 -32044400.84822 938 814 -14635369.28198 939 814 -1.691281795502e-06 940 814 -27485540.44924 941 814 7638794.112417 942 814 7638888.891397 943 814 -7708463.340222 944 814 6996575.169565 815 815 1171487488.319 816 815 -2662067.934612 817 815 -62638147.34553 818 815 86952958.72131 825 815 -28807854.91693 826 815 -14527592.40022 827 815 2281940.617786 828 815 3761635.866845 829 815 31944073.6884 830 815 195560564.8714 831 815 31087978.40657 832 815 -17416481.28817 833 815 -7301392.713971 909 815 21477318.77125 910 815 -15399258.17112 911 815 -70918718.4916 912 815 57454413.93615 913 815 7638794.112417 914 815 -95624557.03646 915 815 7154402.099879 916 815 7760464.058704 917 815 -1439551.802109 921 815 -636581.9730439 922 815 -60222032.6543 923 815 -247012438.7976 924 815 -2546327.890927 925 815 30555176.43461 926 815 -253876265.6798 927 815 -636581.9730468 928 815 29666856.21968 929 815 21737561.15826 936 815 -20840736.7982 937 815 -14635369.28198 938 815 -64147829.60048 939 815 -54908086.04521 940 815 7638794.112417 941 815 -77707668.15051 942 815 -6517820.126831 943 815 6996575.169565 944 815 748003.7541653 816 816 798779840.2986 817 816 31991853.93598 818 816 -35934840.90099 819 816 33796428.38625 820 816 -31963408.23791 821 816 -31487513.88132 828 816 -42136521.10687 829 816 -31944444.4392 830 816 -28425910.47196 831 816 -60300895.02916 832 816 -1.370906829834e-06 833 816 6886635.866331 834 816 -45730271.10628 835 816 31944444.4392 836 816 31469922.85153 912 816 -36875280.38624 913 816 7638888.891399 914 816 21477318.77125 915 816 -88160408.62987 916 816 -7646006.603366 917 816 63145912.64445 924 816 -81234695.57722 925 816 1.624226570129e-06 926 816 -636581.9730444 927 816 3615653.321898 928 816 7650751.744684 929 816 -8598044.452827 930 816 3117023.124192 931 816 -7643634.032712 932 816 6521862.080229 939 816 -34336197.05207 940 816 -7638888.891398 941 816 -20840736.7982 942 816 -61096866.41184 943 816 -1.631677150726e-06 944 816 -54526141.60101 945 816 -10000259.54407 946 816 7638888.891397 947 816 -6517820.126831 817 817 712503944.5236 818 817 99028842.16786 819 817 -31972890.13727 820 817 -78046374.58557 821 817 -54292558.27614 828 817 -31944444.4392 829 817 -32552681.06127 830 817 -14222036.84425 832 817 80255500.90366 833 817 31944073.6884 834 817 31944444.4392 835 817 -36146431.06068 836 817 -17722036.84414 912 817 7638888.891399 913 817 -34583484.18238 914 817 -15399258.17112 915 817 -7643634.032709 916 817 -52242457.71267 917 817 19687387.29713 924 817 1.564621925354e-06 925 817 -110262429.1366 926 817 -59916477.09895 927 817 7650751.744683 928 817 -17015851.08971 929 817 23676848.33746 930 817 -7646006.603369 931 817 -23628404.39615 932 817 31972114.21773 939 817 -7638888.891398 940 817 -32044400.84822 941 817 -14635369.28198 942 817 -1.691281795502e-06 943 817 -27485540.44924 944 817 7638794.112417 945 817 7638888.891397 946 817 -7708463.340222 947 817 6996575.169565 818 818 1098010379.249 819 818 -31114364.95125 820 818 -60743490.00346 821 818 77736775.05345 828 818 -28807854.91693 829 818 -14527592.40022 830 818 2281940.617786 831 818 3761635.866845 832 818 31944073.6884 833 818 195560564.8714 834 818 31087978.40657 835 818 -17416481.28817 836 818 -7301392.713971 912 818 21477318.77125 913 818 -15399258.17112 914 818 -70918718.4916 915 818 63530032.02016 916 818 21831451.86013 917 818 -122407379.4408 924 818 -636581.9730439 925 818 -60222032.6543 926 818 -247012438.7976 927 818 -8589356.089042 928 818 23683798.94222 929 818 -237160382.7964 930 818 6523883.056929 931 818 30136961.89646 932 818 5350330.44263 939 818 -20840736.7982 940 818 -14635369.28198 941 818 -64147829.60048 942 818 -54908086.04521 943 818 7638794.112417 944 818 -77707668.15051 945 818 -6517820.126831 946 818 6996575.169565 947 818 748003.7541653 819 819 511307203.7006 820 819 31944444.4392 821 819 -38471552.3926 831 819 -42136521.10687 832 819 -31944444.4392 833 819 -28425910.47196 834 819 -129270221.6954 835 819 -31963408.23791 836 819 32202213.44983 837 819 -74245.33507569 838 819 25574519.35007 839 819 23212035.46926 915 819 -44000691.65356 916 819 9173784.381649 917 819 25410834.91903 927 819 -74169151.35949 928 819 -7646006.603371 929 819 -21497320.34861 930 819 -2535056.171221 931 819 7638888.891397 932 819 2916127.642058 942 819 -34336197.05207 943 819 -7638888.891398 944 819 -20840736.7982 945 819 -61266506.56961 946 819 -7643634.032713 947 819 -48493965.33591 948 819 6429332.410642 949 819 6115856.254433 950 819 -5472930.844082 820 820 463366668.0891 821 820 73645353.45811 831 820 -31944444.4392 832 820 -32552681.06127 833 820 -14222036.84425 834 820 -31972890.13727 835 820 20929276.84229 836 820 44576929.53758 837 820 38361779.02511 838 820 -74245.33508131 839 820 -29688226.0277 915 820 6115856.254433 916 820 -44000691.65356 917 820 -13552018.01794 927 820 -7643634.032713 928 820 -100914578.8798 929 820 -59481123.99205 930 820 7638888.891396 931 820 -13999375.77193 932 820 27304194.09764 942 820 -7638888.891398 943 820 -32044400.84822 944 820 -14635369.28198 945 820 -7646006.603371 946 820 -25348555.65241 947 820 -585233.2815705 948 820 9173784.381649 949 820 6429332.410642 950 820 6567824.782935 821 821 790000669.0394 831 821 -28807854.91693 832 821 -14527592.40022 833 821 2281940.617786 834 821 29067543.97844 835 821 35319743.0838 836 821 126505653.3816 837 821 34818053.20388 838 821 -19792150.68513 839 821 -197987.5602046 915 821 16940556.61269 916 821 -20328027.02691 917 821 -117335177.7428 927 821 -21490653.15616 928 821 -57645971.82207 929 821 -200746134.8472 930 821 -19488671.82916 931 821 9380576.980452 932 821 -143900824.6786 942 821 -20840736.7982 943 821 -14635369.28198 944 821 -64147829.60048 945 821 -48878084.71163 946 821 -2722347.244235 947 821 -50690307.28013 948 821 -8209396.266123 949 821 4378549.855291 950 821 17144886.42838 822 822 783245798.6586 823 822 2.861022949219e-06 824 822 -10648271.7332 825 822 80258968.78408 826 822 -4.023313522339e-07 827 822 -2662067.934612 840 822 -60300895.02916 841 822 -1.370906829834e-06 842 822 6886635.866331 843 822 -45730271.10628 844 822 31944444.4392 845 822 31469922.85153 918 822 -67815699.74408 919 822 2.041459083557e-06 920 822 57072469.49195 921 822 -10820592.87768 922 822 -7638888.891398 923 822 7154402.099879 933 822 -12957512.05534 934 822 5.960464477539e-08 935 822 -2546327.890928 936 822 19546554.40623 937 822 -1.84029340744e-06 938 822 -636581.9730468 951 822 -61096866.41184 952 822 -1.631677150726e-06 953 822 -54526141.60101 954 822 -10000259.54407 955 822 7638888.891397 956 822 -6517820.126831 823 823 706575078.3316 824 823 127776294.6906 825 823 -1.341104507446e-07 826 823 -41129747.07642 827 823 -65138147.34512 841 823 80255500.90366 842 823 31944073.6884 843 823 31944444.4392 844 823 -36146431.06068 845 823 -17722036.84414 918 823 2.004206180573e-06 919 823 -34204373.78147 920 823 7638794.112417 921 823 -7638888.891398 922 823 -8528796.673826 923 823 7760464.058704 933 823 2.98023223877e-08 934 823 -31291881.67713 935 823 30555176.43461 936 823 -1.668930053711e-06 937 823 -9481179.15318 938 823 29361300.66432 951 823 -1.691281795502e-06 952 823 -27485540.44924 953 823 7638794.112417 954 823 7638888.891397 955 823 -7708463.340222 956 823 6996575.169565 824 824 1171487488.319 825 824 -2662067.934612 826 824 -62638147.34553 827 824 86952958.72131 840 824 3761635.866845 841 824 31944073.6884 842 824 195560564.8714 843 824 31087978.40657 844 824 -17416481.28817 845 824 -7301392.713971 918 824 57454413.93615 919 824 7638794.112417 920 824 -95624557.03646 921 824 7154402.099879 922 824 7760464.058704 923 824 -1439551.802109 933 824 -2546327.890927 934 824 30555176.43461 935 824 -253876265.6798 936 824 -636581.9730468 937 824 29666856.21968 938 824 21737561.15826 951 824 -54908086.04521 952 824 7638794.112417 953 824 -77707668.15051 954 824 -6517820.126831 955 824 6996575.169565 956 824 748003.7541653 825 825 783245798.6586 826 825 2.861022949219e-06 827 825 -10648271.7332 828 825 80258968.78408 829 825 -4.023313522339e-07 830 825 -2662067.934612 840 825 -42136521.10687 841 825 -31944444.4392 842 825 -28425910.47196 843 825 -60300895.02916 844 825 -1.370906829834e-06 845 825 6886635.866331 846 825 -45730271.10628 847 825 31944444.4392 848 825 31469922.85153 918 825 -36875280.38624 919 825 7638888.891399 920 825 21477318.77125 921 825 -67815699.74408 922 825 2.041459083557e-06 923 825 57072469.49195 924 825 -10820592.87768 925 825 -7638888.891398 926 825 7154402.099879 933 825 -81234695.57722 934 825 1.624226570129e-06 935 825 -636581.9730444 936 825 -12957512.05534 937 825 5.960464477539e-08 938 825 -2546327.890928 939 825 19546554.40623 940 825 -1.84029340744e-06 941 825 -636581.9730468 951 825 -34336197.05207 952 825 -7638888.891398 953 825 -20840736.7982 954 825 -61096866.41184 955 825 -1.631677150726e-06 956 825 -54526141.60101 957 825 -10000259.54407 958 825 7638888.891397 959 825 -6517820.126831 826 826 706575078.3316 827 826 127776294.6906 828 826 -1.341104507446e-07 829 826 -41129747.07642 830 826 -65138147.34512 840 826 -31944444.4392 841 826 -32552681.06127 842 826 -14222036.84425 844 826 80255500.90366 845 826 31944073.6884 846 826 31944444.4392 847 826 -36146431.06068 848 826 -17722036.84414 918 826 7638888.891399 919 826 -34583484.18238 920 826 -15399258.17112 921 826 2.004206180573e-06 922 826 -34204373.78147 923 826 7638794.112417 924 826 -7638888.891398 925 826 -8528796.673826 926 826 7760464.058704 933 826 1.564621925354e-06 934 826 -110262429.1366 935 826 -59916477.09895 936 826 2.98023223877e-08 937 826 -31291881.67713 938 826 30555176.43461 939 826 -1.668930053711e-06 940 826 -9481179.15318 941 826 29361300.66432 951 826 -7638888.891398 952 826 -32044400.84822 953 826 -14635369.28198 954 826 -1.691281795502e-06 955 826 -27485540.44924 956 826 7638794.112417 957 826 7638888.891397 958 826 -7708463.340222 959 826 6996575.169565 827 827 1171487488.319 828 827 -2662067.934612 829 827 -62638147.34553 830 827 86952958.72131 840 827 -28807854.91693 841 827 -14527592.40022 842 827 2281940.617786 843 827 3761635.866845 844 827 31944073.6884 845 827 195560564.8714 846 827 31087978.40657 847 827 -17416481.28817 848 827 -7301392.713971 918 827 21477318.77125 919 827 -15399258.17112 920 827 -70918718.4916 921 827 57454413.93615 922 827 7638794.112417 923 827 -95624557.03646 924 827 7154402.099879 925 827 7760464.058704 926 827 -1439551.802109 933 827 -636581.9730439 934 827 -60222032.6543 935 827 -247012438.7976 936 827 -2546327.890927 937 827 30555176.43461 938 827 -253876265.6798 939 827 -636581.9730468 940 827 29666856.21968 941 827 21737561.15826 951 827 -20840736.7982 952 827 -14635369.28198 953 827 -64147829.60048 954 827 -54908086.04521 955 827 7638794.112417 956 827 -77707668.15051 957 827 -6517820.126831 958 827 6996575.169565 959 827 748003.7541653 828 828 783245798.6586 829 828 2.861022949219e-06 830 828 -10648271.7332 831 828 80258968.78408 832 828 -4.023313522339e-07 833 828 -2662067.934612 843 828 -42136521.10687 844 828 -31944444.4392 845 828 -28425910.47196 846 828 -60300895.02916 847 828 -1.370906829834e-06 848 828 6886635.866331 849 828 -45730271.10628 850 828 31944444.4392 851 828 31469922.85153 921 828 -36875280.38624 922 828 7638888.891399 923 828 21477318.77125 924 828 -67815699.74408 925 828 2.041459083557e-06 926 828 57072469.49195 927 828 -10820592.87768 928 828 -7638888.891398 929 828 7154402.099879 936 828 -81234695.57722 937 828 1.624226570129e-06 938 828 -636581.9730444 939 828 -12957512.05534 940 828 5.960464477539e-08 941 828 -2546327.890928 942 828 19546554.40623 943 828 -1.84029340744e-06 944 828 -636581.9730468 954 828 -34336197.05207 955 828 -7638888.891398 956 828 -20840736.7982 957 828 -61096866.41184 958 828 -1.631677150726e-06 959 828 -54526141.60101 960 828 -10000259.54407 961 828 7638888.891397 962 828 -6517820.126831 829 829 706575078.3316 830 829 127776294.6906 831 829 -1.341104507446e-07 832 829 -41129747.07642 833 829 -65138147.34512 843 829 -31944444.4392 844 829 -32552681.06127 845 829 -14222036.84425 847 829 80255500.90366 848 829 31944073.6884 849 829 31944444.4392 850 829 -36146431.06068 851 829 -17722036.84414 921 829 7638888.891399 922 829 -34583484.18238 923 829 -15399258.17112 924 829 2.004206180573e-06 925 829 -34204373.78147 926 829 7638794.112417 927 829 -7638888.891398 928 829 -8528796.673826 929 829 7760464.058704 936 829 1.564621925354e-06 937 829 -110262429.1366 938 829 -59916477.09895 939 829 2.98023223877e-08 940 829 -31291881.67713 941 829 30555176.43461 942 829 -1.668930053711e-06 943 829 -9481179.15318 944 829 29361300.66432 954 829 -7638888.891398 955 829 -32044400.84822 956 829 -14635369.28198 957 829 -1.691281795502e-06 958 829 -27485540.44924 959 829 7638794.112417 960 829 7638888.891397 961 829 -7708463.340222 962 829 6996575.169565 830 830 1171487488.319 831 830 -2662067.934612 832 830 -62638147.34553 833 830 86952958.72131 843 830 -28807854.91693 844 830 -14527592.40022 845 830 2281940.617786 846 830 3761635.866845 847 830 31944073.6884 848 830 195560564.8714 849 830 31087978.40657 850 830 -17416481.28817 851 830 -7301392.713971 921 830 21477318.77125 922 830 -15399258.17112 923 830 -70918718.4916 924 830 57454413.93615 925 830 7638794.112417 926 830 -95624557.03646 927 830 7154402.099879 928 830 7760464.058704 929 830 -1439551.802109 936 830 -636581.9730439 937 830 -60222032.6543 938 830 -247012438.7976 939 830 -2546327.890927 940 830 30555176.43461 941 830 -253876265.6798 942 830 -636581.9730468 943 830 29666856.21968 944 830 21737561.15826 954 830 -20840736.7982 955 830 -14635369.28198 956 830 -64147829.60048 957 830 -54908086.04521 958 830 7638794.112417 959 830 -77707668.15051 960 830 -6517820.126831 961 830 6996575.169565 962 830 748003.7541653 831 831 783245798.6586 832 831 2.861022949219e-06 833 831 -10648271.7332 834 831 80258968.78408 835 831 -4.023313522339e-07 836 831 -2662067.934612 846 831 -42136521.10687 847 831 -31944444.4392 848 831 -28425910.47196 849 831 -60300895.02916 850 831 -1.370906829834e-06 851 831 6886635.866331 852 831 -45730271.10628 853 831 31944444.4392 854 831 31469922.85153 924 831 -36875280.38624 925 831 7638888.891399 926 831 21477318.77125 927 831 -67815699.74408 928 831 2.041459083557e-06 929 831 57072469.49195 930 831 -10820592.87768 931 831 -7638888.891398 932 831 7154402.099879 939 831 -81234695.57722 940 831 1.624226570129e-06 941 831 -636581.9730444 942 831 -12957512.05534 943 831 5.960464477539e-08 944 831 -2546327.890928 945 831 19546554.40623 946 831 -1.84029340744e-06 947 831 -636581.9730468 957 831 -34336197.05207 958 831 -7638888.891398 959 831 -20840736.7982 960 831 -61096866.41184 961 831 -1.631677150726e-06 962 831 -54526141.60101 963 831 -10000259.54407 964 831 7638888.891397 965 831 -6517820.126831 832 832 706575078.3316 833 832 127776294.6906 834 832 -1.341104507446e-07 835 832 -41129747.07642 836 832 -65138147.34512 846 832 -31944444.4392 847 832 -32552681.06127 848 832 -14222036.84425 850 832 80255500.90366 851 832 31944073.6884 852 832 31944444.4392 853 832 -36146431.06068 854 832 -17722036.84414 924 832 7638888.891399 925 832 -34583484.18238 926 832 -15399258.17112 927 832 2.004206180573e-06 928 832 -34204373.78147 929 832 7638794.112417 930 832 -7638888.891398 931 832 -8528796.673826 932 832 7760464.058704 939 832 1.564621925354e-06 940 832 -110262429.1366 941 832 -59916477.09895 942 832 2.98023223877e-08 943 832 -31291881.67713 944 832 30555176.43461 945 832 -1.668930053711e-06 946 832 -9481179.15318 947 832 29361300.66432 957 832 -7638888.891398 958 832 -32044400.84822 959 832 -14635369.28198 960 832 -1.691281795502e-06 961 832 -27485540.44924 962 832 7638794.112417 963 832 7638888.891397 964 832 -7708463.340222 965 832 6996575.169565 833 833 1171487488.319 834 833 -2662067.934612 835 833 -62638147.34553 836 833 86952958.72131 846 833 -28807854.91693 847 833 -14527592.40022 848 833 2281940.617786 849 833 3761635.866845 850 833 31944073.6884 851 833 195560564.8714 852 833 31087978.40657 853 833 -17416481.28817 854 833 -7301392.713971 924 833 21477318.77125 925 833 -15399258.17112 926 833 -70918718.4916 927 833 57454413.93615 928 833 7638794.112417 929 833 -95624557.03646 930 833 7154402.099879 931 833 7760464.058704 932 833 -1439551.802109 939 833 -636581.9730439 940 833 -60222032.6543 941 833 -247012438.7976 942 833 -2546327.890927 943 833 30555176.43461 944 833 -253876265.6798 945 833 -636581.9730468 946 833 29666856.21968 947 833 21737561.15826 957 833 -20840736.7982 958 833 -14635369.28198 959 833 -64147829.60048 960 833 -54908086.04521 961 833 7638794.112417 962 833 -77707668.15051 963 833 -6517820.126831 964 833 6996575.169565 965 833 748003.7541653 834 834 798779840.2986 835 834 31991853.93598 836 834 -35934840.90099 837 834 33796428.38625 838 834 -31963408.23791 839 834 -31487513.88132 849 834 -42136521.10687 850 834 -31944444.4392 851 834 -28425910.47196 852 834 -60300895.02916 853 834 -1.370906829834e-06 854 834 6886635.866331 855 834 -45730271.10628 856 834 31944444.4392 857 834 31469922.85153 927 834 -36875280.38624 928 834 7638888.891399 929 834 21477318.77125 930 834 -88160408.62987 931 834 -7646006.603366 932 834 63145912.64445 942 834 -81234695.57722 943 834 1.624226570129e-06 944 834 -636581.9730444 945 834 3615653.321898 946 834 7650751.744684 947 834 -8598044.452827 948 834 3117023.124192 949 834 -7643634.032712 950 834 6521862.080229 960 834 -34336197.05207 961 834 -7638888.891398 962 834 -20840736.7982 963 834 -61096866.41184 964 834 -1.631677150726e-06 965 834 -54526141.60101 966 834 -10000259.54407 967 834 7638888.891397 968 834 -6517820.126831 835 835 712503944.5236 836 835 99028842.16786 837 835 -31972890.13727 838 835 -78046374.58557 839 835 -54292558.27614 849 835 -31944444.4392 850 835 -32552681.06127 851 835 -14222036.84425 853 835 80255500.90366 854 835 31944073.6884 855 835 31944444.4392 856 835 -36146431.06068 857 835 -17722036.84414 927 835 7638888.891399 928 835 -34583484.18238 929 835 -15399258.17112 930 835 -7643634.032709 931 835 -52242457.71267 932 835 19687387.29713 942 835 1.564621925354e-06 943 835 -110262429.1366 944 835 -59916477.09895 945 835 7650751.744683 946 835 -17015851.08971 947 835 23676848.33746 948 835 -7646006.603369 949 835 -23628404.39615 950 835 31972114.21773 960 835 -7638888.891398 961 835 -32044400.84822 962 835 -14635369.28198 963 835 -1.691281795502e-06 964 835 -27485540.44924 965 835 7638794.112417 966 835 7638888.891397 967 835 -7708463.340222 968 835 6996575.169565 836 836 1098010379.249 837 836 -31114364.95125 838 836 -60743490.00346 839 836 77736775.05345 849 836 -28807854.91693 850 836 -14527592.40022 851 836 2281940.617786 852 836 3761635.866845 853 836 31944073.6884 854 836 195560564.8714 855 836 31087978.40657 856 836 -17416481.28817 857 836 -7301392.713971 927 836 21477318.77125 928 836 -15399258.17112 929 836 -70918718.4916 930 836 63530032.02016 931 836 21831451.86013 932 836 -122407379.4408 942 836 -636581.9730439 943 836 -60222032.6543 944 836 -247012438.7976 945 836 -8589356.089042 946 836 23683798.94222 947 836 -237160382.7964 948 836 6523883.056929 949 836 30136961.89646 950 836 5350330.44263 960 836 -20840736.7982 961 836 -14635369.28198 962 836 -64147829.60048 963 836 -54908086.04521 964 836 7638794.112417 965 836 -77707668.15051 966 836 -6517820.126831 967 836 6996575.169565 968 836 748003.7541653 837 837 421581687.6543 838 837 6785907.782109 839 837 7841193.266554 852 837 -42136521.10687 853 837 -31944444.4392 854 837 -28425910.47196 855 837 -79796686.86909 856 837 -6849309.631483 857 837 3534798.038794 858 837 -5594967.08466 859 837 25618957.40074 860 837 1676068.417707 930 837 -44000691.65356 931 837 9173784.381649 932 837 25410834.91903 945 837 -74169151.35949 946 837 -7646006.603371 947 837 -21497320.34861 948 837 -8042181.826519 949 837 145867.1889037 950 837 11655806.43098 963 837 -34336197.05207 964 837 -7638888.891398 965 837 -20840736.7982 966 837 -46993816.04493 967 837 -164542.081198 968 837 -41727721.81694 969 837 -9829239.428922 970 837 6129786.005412 971 837 -4979066.640203 838 838 419099416.1247 839 838 75912796.59245 852 838 -31944444.4392 853 838 -32552681.06127 854 838 -14222036.84425 855 838 -6881010.556171 856 838 59218360.02186 857 838 21640366.11732 858 838 38428436.1011 859 838 -39868779.51983 860 838 -12146433.61666 930 838 6115856.254433 931 838 -44000691.65356 932 838 -13552018.01794 945 838 -7643634.032713 946 838 -100914578.8798 947 838 -59481123.99205 948 838 145867.1889033 949 838 -4368145.660696 950 838 26571164.39647 963 838 -7638888.891398 964 838 -32044400.84822 965 838 -14635369.28198 966 838 -173879.5273452 967 838 -14404613.18541 968 838 4846854.379944 969 838 9194679.008118 970 838 -21638847.13778 971 838 14725306.89276 839 839 651397439.371 852 839 -28807854.91693 853 839 -14527592.40022 854 839 2281940.617786 855 839 9222793.691471 856 839 19439582.74236 857 839 123496454.0281 858 839 2514102.62656 859 839 -10870425.29035 860 839 19353900.20941 930 839 16940556.61269 931 839 -20328027.02691 932 839 -117335177.7428 945 839 -21490653.15616 946 839 -57645971.82207 947 839 -200746134.8472 948 839 -5288514.808431 949 839 13035968.8684 950 839 -130215372.7727 963 839 -20840736.7982 964 839 -14635369.28198 965 839 -64147829.60048 966 839 -39819358.2705 967 839 4553577.796946 968 839 -52810527.24323 969 839 -7468599.960305 970 839 12732043.03141 971 839 -14401697.43494 840 840 783245798.6586 841 840 2.861022949219e-06 842 840 -10648271.7332 843 840 80258968.78408 844 840 -4.023313522339e-07 845 840 -2662067.934612 861 840 -60300895.02916 862 840 -1.370906829834e-06 863 840 6886635.866331 864 840 -45730271.10628 865 840 31944444.4392 866 840 31469922.85153 933 840 -67815699.74408 934 840 2.041459083557e-06 935 840 57072469.49195 936 840 -10820592.87768 937 840 -7638888.891398 938 840 7154402.099879 951 840 -12957512.05534 952 840 5.960464477539e-08 953 840 -2546327.890928 954 840 19546554.40623 955 840 -1.84029340744e-06 956 840 -636581.9730468 972 840 -61096866.41184 973 840 -1.631677150726e-06 974 840 -54526141.60101 975 840 -10000259.54407 976 840 7638888.891397 977 840 -6517820.126831 841 841 706575078.3316 842 841 127776294.6906 843 841 -1.341104507446e-07 844 841 -41129747.07642 845 841 -65138147.34512 862 841 80255500.90366 863 841 31944073.6884 864 841 31944444.4392 865 841 -36146431.06068 866 841 -17722036.84414 933 841 2.004206180573e-06 934 841 -34204373.78147 935 841 7638794.112417 936 841 -7638888.891398 937 841 -8528796.673826 938 841 7760464.058704 951 841 2.98023223877e-08 952 841 -31291881.67713 953 841 30555176.43461 954 841 -1.668930053711e-06 955 841 -9481179.15318 956 841 29361300.66432 972 841 -1.691281795502e-06 973 841 -27485540.44924 974 841 7638794.112417 975 841 7638888.891397 976 841 -7708463.340222 977 841 6996575.169565 842 842 1171487488.319 843 842 -2662067.934612 844 842 -62638147.34553 845 842 86952958.72131 861 842 3761635.866845 862 842 31944073.6884 863 842 195560564.8714 864 842 31087978.40657 865 842 -17416481.28817 866 842 -7301392.713971 933 842 57454413.93615 934 842 7638794.112417 935 842 -95624557.03646 936 842 7154402.099879 937 842 7760464.058704 938 842 -1439551.802109 951 842 -2546327.890927 952 842 30555176.43461 953 842 -253876265.6798 954 842 -636581.9730468 955 842 29666856.21968 956 842 21737561.15826 972 842 -54908086.04521 973 842 7638794.112417 974 842 -77707668.15051 975 842 -6517820.126831 976 842 6996575.169565 977 842 748003.7541653 843 843 783245798.6586 844 843 2.861022949219e-06 845 843 -10648271.7332 846 843 80258968.78408 847 843 -4.023313522339e-07 848 843 -2662067.934612 861 843 -42136521.10687 862 843 -31944444.4392 863 843 -28425910.47196 864 843 -60300895.02916 865 843 -1.370906829834e-06 866 843 6886635.866331 867 843 -45730271.10628 868 843 31944444.4392 869 843 31469922.85153 933 843 -36875280.38624 934 843 7638888.891399 935 843 21477318.77125 936 843 -67815699.74408 937 843 2.041459083557e-06 938 843 57072469.49195 939 843 -10820592.87768 940 843 -7638888.891398 941 843 7154402.099879 951 843 -81234695.57722 952 843 1.624226570129e-06 953 843 -636581.9730444 954 843 -12957512.05534 955 843 5.960464477539e-08 956 843 -2546327.890928 957 843 19546554.40623 958 843 -1.84029340744e-06 959 843 -636581.9730468 972 843 -34336197.05207 973 843 -7638888.891398 974 843 -20840736.7982 975 843 -61096866.41184 976 843 -1.631677150726e-06 977 843 -54526141.60101 978 843 -10000259.54407 979 843 7638888.891397 980 843 -6517820.126831 844 844 706575078.3316 845 844 127776294.6906 846 844 -1.341104507446e-07 847 844 -41129747.07642 848 844 -65138147.34512 861 844 -31944444.4392 862 844 -32552681.06127 863 844 -14222036.84425 865 844 80255500.90366 866 844 31944073.6884 867 844 31944444.4392 868 844 -36146431.06068 869 844 -17722036.84414 933 844 7638888.891399 934 844 -34583484.18238 935 844 -15399258.17112 936 844 2.004206180573e-06 937 844 -34204373.78147 938 844 7638794.112417 939 844 -7638888.891398 940 844 -8528796.673826 941 844 7760464.058704 951 844 1.564621925354e-06 952 844 -110262429.1366 953 844 -59916477.09895 954 844 2.98023223877e-08 955 844 -31291881.67713 956 844 30555176.43461 957 844 -1.668930053711e-06 958 844 -9481179.15318 959 844 29361300.66432 972 844 -7638888.891398 973 844 -32044400.84822 974 844 -14635369.28198 975 844 -1.691281795502e-06 976 844 -27485540.44924 977 844 7638794.112417 978 844 7638888.891397 979 844 -7708463.340222 980 844 6996575.169565 845 845 1171487488.319 846 845 -2662067.934612 847 845 -62638147.34553 848 845 86952958.72131 861 845 -28807854.91693 862 845 -14527592.40022 863 845 2281940.617786 864 845 3761635.866845 865 845 31944073.6884 866 845 195560564.8714 867 845 31087978.40657 868 845 -17416481.28817 869 845 -7301392.713971 933 845 21477318.77125 934 845 -15399258.17112 935 845 -70918718.4916 936 845 57454413.93615 937 845 7638794.112417 938 845 -95624557.03646 939 845 7154402.099879 940 845 7760464.058704 941 845 -1439551.802109 951 845 -636581.9730439 952 845 -60222032.6543 953 845 -247012438.7976 954 845 -2546327.890927 955 845 30555176.43461 956 845 -253876265.6798 957 845 -636581.9730468 958 845 29666856.21968 959 845 21737561.15826 972 845 -20840736.7982 973 845 -14635369.28198 974 845 -64147829.60048 975 845 -54908086.04521 976 845 7638794.112417 977 845 -77707668.15051 978 845 -6517820.126831 979 845 6996575.169565 980 845 748003.7541653 846 846 783245798.6586 847 846 2.861022949219e-06 848 846 -10648271.7332 849 846 80258968.78408 850 846 -4.023313522339e-07 851 846 -2662067.934612 864 846 -42136521.10687 865 846 -31944444.4392 866 846 -28425910.47196 867 846 -60300895.02916 868 846 -1.370906829834e-06 869 846 6886635.866331 870 846 -45730271.10628 871 846 31944444.4392 872 846 31469922.85153 936 846 -36875280.38624 937 846 7638888.891399 938 846 21477318.77125 939 846 -67815699.74408 940 846 2.041459083557e-06 941 846 57072469.49195 942 846 -10820592.87768 943 846 -7638888.891398 944 846 7154402.099879 954 846 -81234695.57722 955 846 1.624226570129e-06 956 846 -636581.9730444 957 846 -12957512.05534 958 846 5.960464477539e-08 959 846 -2546327.890928 960 846 19546554.40623 961 846 -1.84029340744e-06 962 846 -636581.9730468 975 846 -34336197.05207 976 846 -7638888.891398 977 846 -20840736.7982 978 846 -61096866.41184 979 846 -1.631677150726e-06 980 846 -54526141.60101 981 846 -10000259.54407 982 846 7638888.891397 983 846 -6517820.126831 847 847 706575078.3316 848 847 127776294.6906 849 847 -1.341104507446e-07 850 847 -41129747.07642 851 847 -65138147.34512 864 847 -31944444.4392 865 847 -32552681.06127 866 847 -14222036.84425 868 847 80255500.90366 869 847 31944073.6884 870 847 31944444.4392 871 847 -36146431.06068 872 847 -17722036.84414 936 847 7638888.891399 937 847 -34583484.18238 938 847 -15399258.17112 939 847 2.004206180573e-06 940 847 -34204373.78147 941 847 7638794.112417 942 847 -7638888.891398 943 847 -8528796.673826 944 847 7760464.058704 954 847 1.564621925354e-06 955 847 -110262429.1366 956 847 -59916477.09895 957 847 2.98023223877e-08 958 847 -31291881.67713 959 847 30555176.43461 960 847 -1.668930053711e-06 961 847 -9481179.15318 962 847 29361300.66432 975 847 -7638888.891398 976 847 -32044400.84822 977 847 -14635369.28198 978 847 -1.691281795502e-06 979 847 -27485540.44924 980 847 7638794.112417 981 847 7638888.891397 982 847 -7708463.340222 983 847 6996575.169565 848 848 1171487488.319 849 848 -2662067.934612 850 848 -62638147.34553 851 848 86952958.72131 864 848 -28807854.91693 865 848 -14527592.40022 866 848 2281940.617786 867 848 3761635.866845 868 848 31944073.6884 869 848 195560564.8714 870 848 31087978.40657 871 848 -17416481.28817 872 848 -7301392.713971 936 848 21477318.77125 937 848 -15399258.17112 938 848 -70918718.4916 939 848 57454413.93615 940 848 7638794.112417 941 848 -95624557.03646 942 848 7154402.099879 943 848 7760464.058704 944 848 -1439551.802109 954 848 -636581.9730439 955 848 -60222032.6543 956 848 -247012438.7976 957 848 -2546327.890927 958 848 30555176.43461 959 848 -253876265.6798 960 848 -636581.9730468 961 848 29666856.21968 962 848 21737561.15826 975 848 -20840736.7982 976 848 -14635369.28198 977 848 -64147829.60048 978 848 -54908086.04521 979 848 7638794.112417 980 848 -77707668.15051 981 848 -6517820.126831 982 848 6996575.169565 983 848 748003.7541653 849 849 783245798.6586 850 849 2.861022949219e-06 851 849 -10648271.7332 852 849 80258968.78408 853 849 -4.023313522339e-07 854 849 -2662067.934612 867 849 -42136521.10687 868 849 -31944444.4392 869 849 -28425910.47196 870 849 -60300895.02916 871 849 -1.370906829834e-06 872 849 6886635.866331 873 849 -45730271.10628 874 849 31944444.4392 875 849 31469922.85153 939 849 -36875280.38624 940 849 7638888.891399 941 849 21477318.77125 942 849 -67815699.74408 943 849 2.041459083557e-06 944 849 57072469.49195 945 849 -10820592.87768 946 849 -7638888.891398 947 849 7154402.099879 957 849 -81234695.57722 958 849 1.624226570129e-06 959 849 -636581.9730444 960 849 -12957512.05534 961 849 5.960464477539e-08 962 849 -2546327.890928 963 849 19546554.40623 964 849 -1.84029340744e-06 965 849 -636581.9730468 978 849 -34336197.05207 979 849 -7638888.891398 980 849 -20840736.7982 981 849 -61096866.41184 982 849 -1.631677150726e-06 983 849 -54526141.60101 984 849 -10000259.54407 985 849 7638888.891397 986 849 -6517820.126831 850 850 706575078.3316 851 850 127776294.6906 852 850 -1.341104507446e-07 853 850 -41129747.07642 854 850 -65138147.34512 867 850 -31944444.4392 868 850 -32552681.06127 869 850 -14222036.84425 871 850 80255500.90366 872 850 31944073.6884 873 850 31944444.4392 874 850 -36146431.06068 875 850 -17722036.84414 939 850 7638888.891399 940 850 -34583484.18238 941 850 -15399258.17112 942 850 2.004206180573e-06 943 850 -34204373.78147 944 850 7638794.112417 945 850 -7638888.891398 946 850 -8528796.673826 947 850 7760464.058704 957 850 1.564621925354e-06 958 850 -110262429.1366 959 850 -59916477.09895 960 850 2.98023223877e-08 961 850 -31291881.67713 962 850 30555176.43461 963 850 -1.668930053711e-06 964 850 -9481179.15318 965 850 29361300.66432 978 850 -7638888.891398 979 850 -32044400.84822 980 850 -14635369.28198 981 850 -1.691281795502e-06 982 850 -27485540.44924 983 850 7638794.112417 984 850 7638888.891397 985 850 -7708463.340222 986 850 6996575.169565 851 851 1171487488.319 852 851 -2662067.934612 853 851 -62638147.34553 854 851 86952958.72131 867 851 -28807854.91693 868 851 -14527592.40022 869 851 2281940.617786 870 851 3761635.866845 871 851 31944073.6884 872 851 195560564.8714 873 851 31087978.40657 874 851 -17416481.28817 875 851 -7301392.713971 939 851 21477318.77125 940 851 -15399258.17112 941 851 -70918718.4916 942 851 57454413.93615 943 851 7638794.112417 944 851 -95624557.03646 945 851 7154402.099879 946 851 7760464.058704 947 851 -1439551.802109 957 851 -636581.9730439 958 851 -60222032.6543 959 851 -247012438.7976 960 851 -2546327.890927 961 851 30555176.43461 962 851 -253876265.6798 963 851 -636581.9730468 964 851 29666856.21968 965 851 21737561.15826 978 851 -20840736.7982 979 851 -14635369.28198 980 851 -64147829.60048 981 851 -54908086.04521 982 851 7638794.112417 983 851 -77707668.15051 984 851 -6517820.126831 985 851 6996575.169565 986 851 748003.7541653 852 852 783245798.6586 853 852 2.861022949219e-06 854 852 -10648271.7332 855 852 80258968.78408 856 852 -4.023313522339e-07 857 852 -2662067.934612 870 852 -42136521.10687 871 852 -31944444.4392 872 852 -28425910.47196 873 852 -60300895.02916 874 852 -1.370906829834e-06 875 852 6886635.866331 876 852 -45730271.10628 877 852 31944444.4392 878 852 31469922.85153 942 852 -36875280.38624 943 852 7638888.891399 944 852 21477318.77125 945 852 -67815699.74408 946 852 2.041459083557e-06 947 852 57072469.49195 948 852 -10820592.87768 949 852 -7638888.891398 950 852 7154402.099879 960 852 -81234695.57722 961 852 1.624226570129e-06 962 852 -636581.9730444 963 852 -12957512.05534 964 852 5.960464477539e-08 965 852 -2546327.890928 966 852 19546554.40623 967 852 -1.84029340744e-06 968 852 -636581.9730468 981 852 -34336197.05207 982 852 -7638888.891398 983 852 -20840736.7982 984 852 -61096866.41184 985 852 -1.631677150726e-06 986 852 -54526141.60101 987 852 -10000259.54407 988 852 7638888.891397 989 852 -6517820.126831 853 853 706575078.3316 854 853 127776294.6906 855 853 -1.341104507446e-07 856 853 -41129747.07642 857 853 -65138147.34512 870 853 -31944444.4392 871 853 -32552681.06127 872 853 -14222036.84425 874 853 80255500.90366 875 853 31944073.6884 876 853 31944444.4392 877 853 -36146431.06068 878 853 -17722036.84414 942 853 7638888.891399 943 853 -34583484.18238 944 853 -15399258.17112 945 853 2.004206180573e-06 946 853 -34204373.78147 947 853 7638794.112417 948 853 -7638888.891398 949 853 -8528796.673826 950 853 7760464.058704 960 853 1.564621925354e-06 961 853 -110262429.1366 962 853 -59916477.09895 963 853 2.98023223877e-08 964 853 -31291881.67713 965 853 30555176.43461 966 853 -1.668930053711e-06 967 853 -9481179.15318 968 853 29361300.66432 981 853 -7638888.891398 982 853 -32044400.84822 983 853 -14635369.28198 984 853 -1.691281795502e-06 985 853 -27485540.44924 986 853 7638794.112417 987 853 7638888.891397 988 853 -7708463.340222 989 853 6996575.169565 854 854 1171487488.319 855 854 -2662067.934612 856 854 -62638147.34553 857 854 86952958.72131 870 854 -28807854.91693 871 854 -14527592.40022 872 854 2281940.617786 873 854 3761635.866845 874 854 31944073.6884 875 854 195560564.8714 876 854 31087978.40657 877 854 -17416481.28817 878 854 -7301392.713971 942 854 21477318.77125 943 854 -15399258.17112 944 854 -70918718.4916 945 854 57454413.93615 946 854 7638794.112417 947 854 -95624557.03646 948 854 7154402.099879 949 854 7760464.058704 950 854 -1439551.802109 960 854 -636581.9730439 961 854 -60222032.6543 962 854 -247012438.7976 963 854 -2546327.890927 964 854 30555176.43461 965 854 -253876265.6798 966 854 -636581.9730468 967 854 29666856.21968 968 854 21737561.15826 981 854 -20840736.7982 982 854 -14635369.28198 983 854 -64147829.60048 984 854 -54908086.04521 985 854 7638794.112417 986 854 -77707668.15051 987 854 -6517820.126831 988 854 6996575.169565 989 854 748003.7541653 855 855 672093135.7221 856 855 13234981.24506 857 855 -10472451.03689 858 855 2713245.605375 859 855 -45406565.53451 860 855 -6467542.23253 873 855 -42136521.10687 874 855 -31944444.4392 875 855 -28425910.47196 876 855 -47252648.26046 877 855 11696243.19932 878 855 2625796.579181 879 855 -17427995.66092 880 855 27356351.64631 881 855 5094898.82678 945 855 -36875280.38624 946 855 7638888.891399 947 855 21477318.77125 948 855 -54114504.27018 949 855 -173879.5273432 950 855 44902247.92658 963 855 -81234695.57722 964 855 1.624226570129e-06 965 855 -636581.9730444 966 855 -876482.9019934 967 855 2519526.915563 968 855 -2460507.026248 969 855 -27045633.06006 970 855 -11723510.74027 971 855 12416379.47746 984 855 -34336197.05207 985 855 -7638888.891398 986 855 -20840736.7982 987 855 -53125239.25827 988 855 3404183.289858 989 855 -48696407.07857 990 855 -13272078.15617 991 855 5973680.062196 992 855 -6110175.711185 856 856 658656781.071 857 856 76687183.50347 858 856 -45438266.4592 859 856 -113708638.183 860 856 -13866021.06147 873 856 -31944444.4392 874 856 -32552681.06127 875 856 -14222036.84425 876 856 11696243.19932 877 856 77523891.37046 878 856 18276020.97343 879 856 27356351.64631 880 856 -49140307.97396 881 856 -6257304.511357 945 856 7638888.891399 946 856 -34583484.18238 947 856 -15399258.17112 948 856 -164542.0811964 949 856 -21525301.41066 950 856 5061950.597479 963 856 1.564621925354e-06 964 856 -110262429.1366 965 856 -59916477.09895 966 856 2519526.915562 967 856 673695.8703558 968 856 18791643.5427 969 856 -11732848.18642 970 856 -55420678.77829 971 856 41466871.49251 984 856 -7638888.891398 985 856 -32044400.84822 986 856 -14635369.28198 987 856 3404183.289858 988 856 -24476237.66492 989 856 9715809.309978 990 856 5973680.062196 991 856 -23241274.51146 992 856 14956061.60352 857 857 928696529.4313 858 857 -6090298.663802 859 857 -12648739.68516 860 857 70585514.17612 873 857 -28807854.91693 874 857 -14527592.40022 875 857 2281940.617786 876 857 8702185.467069 877 857 17970465.41792 878 857 170894335.6621 879 857 4331009.936854 880 857 -6257304.511357 881 857 18316932.36521 945 857 21477318.77125 946 857 -15399258.17112 947 857 -70918718.4916 948 857 42993884.38014 949 857 5382550.883186 950 857 -71799029.17722 963 857 -636581.9730439 964 857 -60222032.6543 965 857 -247012438.7976 966 857 -2443130.228498 967 857 18805545.65999 968 857 -201210190.2793 969 857 12423412.7955 970 857 41458540.64078 971 857 -52321022.26258 984 857 -20840736.7982 985 857 -14635369.28198 986 857 -64147829.60048 987 857 -46786684.85391 988 857 9715809.311131 989 857 -73933522.36379 990 857 -6110175.711185 991 857 14956061.60352 992 857 -21004210.79327 858 858 458048502.1176 859 858 7221161.637984 860 858 -4162749.187164 876 858 -38665742.94727 877 858 -31344098.53733 878 858 -4065866.490514 879 858 9293647.217087 880 858 15820050.87655 881 858 2615912.244499 882 858 79369122.72938 883 858 -13009632.81335 884 858 270546.9858633 885 858 -2386124.678085 886 858 28322349.19425 887 858 1140574.705732 948 858 -17822239.3706 949 858 9194679.008118 950 858 9770196.805889 966 858 -41046754.09296 967 858 -11732848.18642 968 858 -15622467.2995 969 858 -55034990.49984 970 858 2099749.686162 971 858 10931445.7583 987 858 -23479926.51996 988 858 -7417253.056677 989 858 -14997301.90306 990 858 -65005495.31362 991 858 4667669.592739 992 858 -54435157.05621 993 858 -28235802.42725 994 858 -3405845.891125 995 858 10910713.0034 996 858 -20886441.98794 997 858 6593848.847203 998 858 -13257984.86388 859 859 539593713.555 860 859 14603363.45522 876 859 -31344098.53733 877 859 -20535883.40964 878 859 -786872.1150392 879 859 15820050.87655 880 859 131165149.8624 881 859 4782395.446402 882 859 -231855.0376756 883 859 17238152.64816 884 859 -607975.0375446 885 859 28322349.19425 886 859 -11106031.9936 887 859 -680548.4017037 948 859 6129786.005412 949 859 -29631847.07945 950 859 -18404535.59174 966 859 -11723510.74027 967 859 -69421799.81119 968 859 -48221146.21121 969 859 2099749.686162 970 859 -30476016.89128 971 859 7201253.461998 987 859 -7417253.056677 988 859 -18611925.28141 989 859 -11356377.95096 990 859 4667669.592739 991 859 -36620614.93688 992 859 6659742.089658 993 859 -350290.3345659 994 859 -43084517.47741 995 859 33184890.09814 996 859 6593848.847203 997 859 -23664928.73455 998 859 16496735.37374 860 860 765181880.4553 876 860 -4447810.935477 877 860 -1092427.67101 878 860 21841944.23782 879 860 1088134.466972 880 860 4476839.890896 881 860 245902987.7379 882 860 -111397.4585147 883 860 -607975.0375448 884 860 160000503.5775 885 860 758630.2607686 886 860 -680548.4017037 887 860 57873757.49777 948 860 6513464.53726 949 860 -21008507.25432 950 860 -35716363.94607 966 860 -15612123.92226 967 860 -48226237.0269 968 860 -89657345.01698 969 860 -11047443.12698 970 860 2590596.573928 971 860 -256503983.8706 987 860 -14997301.90306 988 860 -11356377.95096 989 860 -32461726.1069 990 860 -54435157.05583 991 860 6659742.090811 992 860 -127235156.8213 993 860 2785713.002169 994 860 33184890.09814 995 860 -87010159.53147 996 860 -13257984.86388 997 860 16496735.37374 998 860 -42112998.60584 861 861 391154149.3294 862 861 -2.026557922363e-06 863 861 2488364.132116 864 861 40072192.7253 865 861 6388888.887839 866 861 5613410.477452 951 861 -67815699.74408 952 861 2.041459083557e-06 953 861 57072469.49195 954 861 -10820592.87768 955 861 -7638888.891398 956 861 7154402.099879 972 861 -6536047.694301 973 861 -2.086162567139e-07 974 861 -11516358.3887 975 861 9773277.203117 976 861 1527777.778279 977 861 -1685513.209194 862 862 352818789.1659 863 862 63888147.34533 864 862 -6388888.887841 865 862 -20622165.20495 866 862 -32249629.22817 951 862 2.004206180573e-06 952 862 -34204373.78147 953 862 7638794.112417 954 862 -7638888.891398 955 862 -8528796.673826 956 862 7760464.058704 972 862 4.768371582031e-07 973 862 -15703232.5052 974 862 15277588.21731 975 862 -1527777.77828 976 862 -4740589.576589 977 862 14757039.22107 863 863 584493744.1599 864 863 -6365756.187247 865 863 -31638518.11715 866 863 43323701.58267 951 863 57454413.93615 952 863 7638794.112417 953 863 -95624557.03646 954 863 7154402.099879 955 863 7760464.058704 956 863 -1439551.802109 972 863 10879752.71874 973 863 15277588.21731 974 863 -127090910.6176 975 863 1048931.236148 976 863 14757039.22092 977 863 10868780.57913 864 864 391154149.3294 865 864 -2.026557922363e-06 866 864 2488364.132116 867 864 40072192.7253 868 864 6388888.887839 869 864 5613410.477452 951 864 -36875280.38624 952 864 7638888.891399 953 864 21477318.77125 954 864 -67815699.74408 955 864 2.041459083557e-06 956 864 57072469.49195 957 864 -10820592.87768 958 864 -7638888.891398 959 864 7154402.099879 972 864 -40617347.78861 973 864 -1527777.778279 974 864 -4550096.543467 975 864 -6536047.694301 976 864 -2.086162567139e-07 977 864 -11516358.3887 978 864 9773277.203117 979 864 1527777.778279 980 864 -1685513.209194 865 865 352818789.1659 866 865 63888147.34533 867 865 -6388888.887841 868 865 -20622165.20495 869 865 -32249629.22817 951 865 7638888.891399 952 865 -34583484.18238 953 865 -15399258.17112 954 865 2.004206180573e-06 955 865 -34204373.78147 956 865 7638794.112417 957 865 -7638888.891398 958 865 -8528796.673826 959 865 7760464.058704 972 865 1527777.77828 973 865 -55131214.56832 974 865 -30034627.43839 975 865 4.768371582031e-07 976 865 -15703232.5052 977 865 15277588.21731 978 865 -1527777.77828 979 865 -4740589.576589 980 865 14757039.22107 866 866 584493744.1599 867 866 -6365756.187247 868 866 -31638518.11715 869 866 43323701.58267 951 866 21477318.77125 952 866 -15399258.17112 953 866 -70918718.4916 954 866 57454413.93615 955 866 7638794.112417 956 866 -95624557.03646 957 866 7154402.099879 958 866 7760464.058704 959 866 -1439551.802109 972 866 3913514.570423 973 866 -30034627.43824 974 866 -123506219.3988 975 866 10879752.71874 976 866 15277588.21731 977 866 -127090910.6176 978 866 1048931.236148 979 866 14757039.22092 980 866 10868780.57913 867 867 391154149.3294 868 867 -2.026557922363e-06 869 867 2488364.132116 870 867 40072192.7253 871 867 6388888.887839 872 867 5613410.477452 954 867 -36875280.38624 955 867 7638888.891399 956 867 21477318.77125 957 867 -67815699.74408 958 867 2.041459083557e-06 959 867 57072469.49195 960 867 -10820592.87768 961 867 -7638888.891398 962 867 7154402.099879 975 867 -40617347.78861 976 867 -1527777.778279 977 867 -4550096.543467 978 867 -6536047.694301 979 867 -2.086162567139e-07 980 867 -11516358.3887 981 867 9773277.203117 982 867 1527777.778279 983 867 -1685513.209194 868 868 352818789.1659 869 868 63888147.34533 870 868 -6388888.887841 871 868 -20622165.20495 872 868 -32249629.22817 954 868 7638888.891399 955 868 -34583484.18238 956 868 -15399258.17112 957 868 2.004206180573e-06 958 868 -34204373.78147 959 868 7638794.112417 960 868 -7638888.891398 961 868 -8528796.673826 962 868 7760464.058704 975 868 1527777.77828 976 868 -55131214.56832 977 868 -30034627.43839 978 868 4.768371582031e-07 979 868 -15703232.5052 980 868 15277588.21731 981 868 -1527777.77828 982 868 -4740589.576589 983 868 14757039.22107 869 869 584493744.1599 870 869 -6365756.187247 871 869 -31638518.11715 872 869 43323701.58267 954 869 21477318.77125 955 869 -15399258.17112 956 869 -70918718.4916 957 869 57454413.93615 958 869 7638794.112417 959 869 -95624557.03646 960 869 7154402.099879 961 869 7760464.058704 962 869 -1439551.802109 975 869 3913514.570423 976 869 -30034627.43824 977 869 -123506219.3988 978 869 10879752.71874 979 869 15277588.21731 980 869 -127090910.6176 981 869 1048931.236148 982 869 14757039.22092 983 869 10868780.57913 870 870 391154149.3294 871 870 -2.026557922363e-06 872 870 2488364.132116 873 870 40072192.7253 874 870 6388888.887839 875 870 5613410.477452 957 870 -36875280.38624 958 870 7638888.891399 959 870 21477318.77125 960 870 -67815699.74408 961 870 2.041459083557e-06 962 870 57072469.49195 963 870 -10820592.87768 964 870 -7638888.891398 965 870 7154402.099879 978 870 -40617347.78861 979 870 -1527777.778279 980 870 -4550096.543467 981 870 -6536047.694301 982 870 -2.086162567139e-07 983 870 -11516358.3887 984 870 9773277.203117 985 870 1527777.778279 986 870 -1685513.209194 871 871 352818789.1659 872 871 63888147.34533 873 871 -6388888.887841 874 871 -20622165.20495 875 871 -32249629.22817 957 871 7638888.891399 958 871 -34583484.18238 959 871 -15399258.17112 960 871 2.004206180573e-06 961 871 -34204373.78147 962 871 7638794.112417 963 871 -7638888.891398 964 871 -8528796.673826 965 871 7760464.058704 978 871 1527777.77828 979 871 -55131214.56832 980 871 -30034627.43839 981 871 4.768371582031e-07 982 871 -15703232.5052 983 871 15277588.21731 984 871 -1527777.77828 985 871 -4740589.576589 986 871 14757039.22107 872 872 584493744.1599 873 872 -6365756.187247 874 872 -31638518.11715 875 872 43323701.58267 957 872 21477318.77125 958 872 -15399258.17112 959 872 -70918718.4916 960 872 57454413.93615 961 872 7638794.112417 962 872 -95624557.03646 963 872 7154402.099879 964 872 7760464.058704 965 872 -1439551.802109 978 872 3913514.570423 979 872 -30034627.43824 980 872 -123506219.3988 981 872 10879752.71874 982 872 15277588.21731 983 872 -127090910.6176 984 872 1048931.236148 985 872 14757039.22092 986 872 10868780.57913 873 873 391154149.3294 874 873 -2.026557922363e-06 875 873 2488364.132116 876 873 40072192.7253 877 873 6388888.887839 878 873 5613410.477452 960 873 -36875280.38624 961 873 7638888.891399 962 873 21477318.77125 963 873 -67815699.74408 964 873 2.041459083557e-06 965 873 57072469.49195 966 873 -10820592.87768 967 873 -7638888.891398 968 873 7154402.099879 981 873 -40617347.78861 982 873 -1527777.778279 983 873 -4550096.543467 984 873 -6536047.694301 985 873 -2.086162567139e-07 986 873 -11516358.3887 987 873 9773277.203117 988 873 1527777.778279 989 873 -1685513.209194 874 874 352818789.1659 875 874 63888147.34533 876 874 -6388888.887841 877 874 -20622165.20495 878 874 -32249629.22817 960 874 7638888.891399 961 874 -34583484.18238 962 874 -15399258.17112 963 874 2.004206180573e-06 964 874 -34204373.78147 965 874 7638794.112417 966 874 -7638888.891398 967 874 -8528796.673826 968 874 7760464.058704 981 874 1527777.77828 982 874 -55131214.56832 983 874 -30034627.43839 984 874 4.768371582031e-07 985 874 -15703232.5052 986 874 15277588.21731 987 874 -1527777.77828 988 874 -4740589.576589 989 874 14757039.22107 875 875 584493744.1599 876 875 -6365756.187247 877 875 -31638518.11715 878 875 43323701.58267 960 875 21477318.77125 961 875 -15399258.17112 962 875 -70918718.4916 963 875 57454413.93615 964 875 7638794.112417 965 875 -95624557.03646 966 875 7154402.099879 967 875 7760464.058704 968 875 -1439551.802109 981 875 3913514.570423 982 875 -30034627.43824 983 875 -123506219.3988 984 875 10879752.71874 985 875 15277588.21731 986 875 -127090910.6176 987 875 1048931.236148 988 875 14757039.22092 989 875 10868780.57913 876 876 368805865.5583 877 876 600413.9845734 878 876 -21068127.21853 879 876 42393842.6661 880 876 -6508114.19792 881 876 -130691.7535722 963 876 -36875280.38624 964 876 7638888.891399 965 876 21477318.77125 966 876 -60781458.00658 967 876 3404183.289861 968 876 51519565.1286 969 876 -20120523.74107 970 876 -7417253.056677 971 876 12996448.10614 984 876 -40617347.78861 985 876 -1527777.778279 986 876 -4550096.543467 987 876 -11601369.55203 988 876 221678.9263838 989 876 -17131637.01904 990 876 -13469946.66151 991 876 -2319720.272684 992 876 3638957.111577 877 877 339022561.8246 878 877 38990819.562 879 877 -19285891.9736 880 877 -19618734.88413 881 877 -6813857.903571 963 877 7638888.891399 964 877 -34583484.18238 965 877 -15399258.17112 966 877 3404183.28986 967 877 -32132456.41324 968 877 -1221690.688151 969 877 -7417253.056677 970 877 -15252522.50252 971 877 11039455.38973 984 877 1527777.77828 985 877 -55131214.56832 986 877 -30034627.43839 987 877 221678.9263841 988 877 -18190823.38574 989 877 9390127.87436 990 877 -5375275.829243 991 877 -28175425.08385 992 877 26225993.03356 878 878 535213861.8177 879 878 -2908469.530896 880 878 -6508302.348066 881 878 88356185.77556 963 878 21477318.77125 964 878 -15399258.17112 965 878 -70918718.4916 966 878 49609842.90663 967 878 -1221690.687148 968 878 -94350105.69262 969 878 12996448.10614 970 878 11039455.38973 971 878 -23503318.69652 984 878 3913514.570423 985 878 -30034627.43824 986 878 -123506219.3988 987 878 5263918.532836 988 878 9390127.87436 989 878 -137859693.4611 990 878 8664790.445306 991 878 26225993.03241 992 878 -39104413.95542 879 879 380111399.5452 880 879 13154777.29419 881 879 5043109.696474 882 879 -38195245.0425 883 879 -35566539.68415 884 879 -1046925.294216 885 879 52825684.13076 886 879 -1478748.159299 887 879 1270918.503642 966 879 -19678307.32513 967 879 5973680.062196 968 879 8212046.515743 969 879 -66802346.00857 970 879 4667669.592741 971 879 55459287.37057 987 879 -24485575.13151 988 879 -5375275.829244 989 879 -10605487.33072 990 879 -49124876.9151 991 879 4192169.39349 992 879 -10562709.25846 993 879 -30912229.02827 994 879 -8683928.935591 995 879 20053820.70261 996 879 -25803993.24156 997 879 -774314.2835916 998 879 4143597.555308 880 880 399639718.9945 881 880 11083533.93817 882 880 -35566539.68415 883 880 -24534452.13025 884 880 -680548.401704 885 880 -14256525.93498 886 880 -8510041.012748 887 880 -2114218.56793 966 880 5973680.062196 967 880 -29647503.68042 968 880 -18377271.74076 969 880 4667669.59274 970 880 -38417465.63183 971 880 -4277757.90847 987 880 -2319720.272685 988 880 -39191053.55385 989 880 -29503173.62402 990 880 4192169.39349 991 880 -41616248.08588 992 880 2859416.535212 993 880 -8683928.935591 994 880 -27424598.87467 995 880 16496735.37374 996 880 -3829869.84015 997 880 -40510457.82348 998 880 32802051.3643 881 881 622335345.1548 882 881 -1046925.294216 883 881 -680548.4017041 884 881 44445337.36111 885 881 90362.94827753 886 881 -2114218.56793 887 881 124646765.8875 966 881 8212046.515743 967 881 -18377271.74076 968 881 -38087488.57717 969 881 55459287.37019 970 881 -4277757.907468 971 881 -132026758.6745 987 881 -4433820.663462 988 881 -29503173.62502 989 881 -68479423.20874 990 881 11416179.62681 991 881 2859416.535213 992 881 -223309439.3091 993 881 20053820.70261 994 881 16496735.37374 995 881 -45872668.74596 996 881 9343319.780678 997 881 32802051.3643 998 881 -70377095.21823 882 882 234270043.8785 883 882 38565188.36471 884 882 585934.4949026 885 882 735926.9097565 886 882 -2766793.642892 887 882 572388.2578264 969 882 -29485802.42768 970 882 -350290.3345662 971 882 -2760814.77204 990 882 -32162229.02869 991 882 -8683928.935592 992 882 -20571179.31073 993 882 -38762530.87567 994 882 9516957.004243 995 882 8271694.402195 996 882 -42487619.48068 997 882 -482737.734086 998 882 -33689700.31943 883 883 218536430.6391 884 883 607975.0375481 885 883 10010984.13279 886 883 64939717.31805 887 883 680548.401706 969 883 -3405845.891125 970 883 -44334517.47785 971 883 -33481776.55758 990 883 -8683928.935592 991 883 -28674598.8751 992 883 -16836597.97054 993 883 9516957.004243 994 883 -42533607.49829 995 883 6815109.89529 996 883 2572817.822473 997 883 -27355457.96149 998 883 3503264.632831 884 884 390867135.2015 885 884 190443.8134477 886 884 680548.401706 887 884 141166619.7936 969 884 -10885814.77346 970 884 -33481776.55758 971 884 -90343492.86596 990 884 -20571179.31073 991 884 -16836597.97054 992 884 -49206002.08042 993 884 -7978305.595135 994 884 -6518223.435853 995 884 -159924632.0765 996 884 -33689700.32068 997 884 -3163402.036025 998 884 -81587691.14437 885 885 195388756.0715 886 885 -24076807.39206 887 885 2849451.866921 969 885 -22136441.98836 970 885 6593848.847203 971 885 13695487.3672 990 885 -29553993.24035 991 885 -3829869.840151 992 885 -9718902.442414 993 885 -42487619.48068 994 885 2572817.822474 995 885 33888771.89179 996 885 -32072854.387 997 885 -5336796.829526 998 885 -5139245.705715 886 886 201240598.1223 887 886 2114218.567935 969 886 6593848.847203 970 886 -24914928.73497 971 886 -16836597.97054 990 886 -774314.283592 991 886 -44260457.82227 992 886 -33864615.29142 993 886 -482737.7340849 994 886 -27355457.96149 995 886 3503264.632831 996 886 -5336796.829526 997 886 -29720064.57765 998 886 7197948.62913 887 887 333817503.3118 969 887 13695487.3672 970 887 -16836597.97054 971 887 -45446331.9403 990 887 -4137235.77266 991 887 -33864615.29142 992 887 -80377095.215 993 887 33888771.89035 994 887 -3163402.036025 995 887 -81587691.14436 996 887 5642143.181403 997 887 -6135384.702013 998 887 -129257972.624 888 888 484267631.2317 889 888 30555555.55053 890 888 -29327125.67035 891 888 -126348953.9595 892 888 -30574536.11578 893 888 29308540.81618 894 888 -1130543.633331 895 888 24463425.00568 896 888 23698547.70003 999 888 -2535056.171221 1000 888 7638888.891397 1001 888 2916127.642058 1002 888 -61266506.56961 1003 888 -7643634.032713 1004 888 -48493965.33591 1005 888 6429332.410642 1006 888 6115856.254433 1007 888 -5472930.844082 889 889 438410352.8514 890 889 76423912.27372 891 889 -30584026.39841 892 889 17322849.63857 893 889 42340370.58254 894 889 36695137.50852 895 889 -1130543.633336 896 889 -26604449.03234 999 889 7638888.891396 1000 889 -13999375.77193 1001 889 27304194.09764 1002 889 -7646006.603371 1003 889 -25348555.65241 1004 889 -585233.2815705 1005 889 9173784.381649 1006 889 6429332.410642 1007 889 6567824.782935 890 890 742817650.6667 891 890 29299248.38909 892 890 34083332.0161 893 890 113817630.1747 894 890 35547821.55005 895 890 -17736299.3549 896 890 -3014783.022215 999 890 -19488671.82916 1000 890 9380576.980452 1001 890 -143900824.6786 1002 890 -48878084.71163 1003 890 -2722347.244235 1004 890 -50690307.28013 1005 890 -8209396.266123 1006 890 4378549.855291 1007 890 17144886.42838 891 891 754814074.6264 892 891 30603006.96366 893 891 -34373319.31429 894 891 31201368.0013 895 891 -30574536.11579 896 891 -29746017.20074 897 891 -60726571.61129 898 891 6.407499313354e-07 899 891 5092655.779359 900 891 -44447793.81348 901 891 30555555.55054 902 891 29728025.052 999 891 -88160408.62987 1000 891 -7646006.603366 1001 891 63145912.64445 1002 891 3615653.321898 1003 891 7650751.744684 1004 891 -8598044.452827 1005 891 3117023.124192 1006 891 -7643634.032712 1007 891 6521862.080229 1008 891 -61096866.41184 1009 891 -1.631677150726e-06 1010 891 -54526141.60101 1011 891 -10000259.54407 1012 891 7638888.891397 1013 891 -6517820.126831 892 892 672288057.0206 893 892 94722479.88535 894 892 -30584026.39841 895 892 -75780342.02739 896 892 -50736841.1372 897 892 8.642673492432e-07 898 892 73718732.1729 899 892 30555176.43462 900 892 30555555.55054 901 892 -35280609.00258 902 892 -16652588.21716 999 892 -7643634.032709 1000 892 -52242457.71267 1001 892 19687387.29713 1002 892 7650751.744683 1003 892 -17015851.08971 1004 892 23676848.33746 1005 892 -7646006.603369 1006 892 -23628404.39615 1007 892 31972114.21773 1008 892 -1.691281795502e-06 1009 892 -27485540.44924 1010 892 7638794.112417 1011 892 7638888.891397 1012 892 -7708463.340222 1013 892 6996575.169565 893 893 1025629032.871 894 893 -30136957.7193 895 893 -59299198.1827 896 893 71356723.1218 897 893 5092655.779359 898 893 30555176.43462 899 893 178931711.3263 900 893 30109969.49619 901 893 -16958143.77251 902 893 -8866000.069825 999 893 63530032.02016 1000 893 21831451.86013 1001 893 -122407379.4408 1002 893 -8589356.089042 1003 893 23683798.94222 1004 893 -237160382.7964 1005 893 6523883.056929 1006 893 30136961.89646 1007 893 5350330.44263 1008 893 -54908086.04521 1009 893 7638794.112417 1010 893 -77707668.15051 1011 893 -6517820.126831 1012 893 6996575.169565 1013 893 748003.7541653 894 894 484267631.2317 895 894 30555555.55053 896 894 -29327125.67035 897 894 -41010293.81404 898 894 -30555555.55054 899 894 -27563641.60526 900 894 -126348953.9595 901 894 -30574536.11578 902 894 29308540.81618 903 894 -1130543.633331 904 894 24463425.00568 905 894 23698547.70003 999 894 -44000691.65356 1000 894 9173784.381649 1001 894 25410834.91903 1002 894 -74169151.35949 1003 894 -7646006.603371 1004 894 -21497320.34861 1005 894 -2535056.171221 1006 894 7638888.891397 1007 894 2916127.642058 1008 894 -34336197.05207 1009 894 -7638888.891398 1010 894 -20840736.7982 1011 894 -61266506.56961 1012 894 -7643634.032713 1013 894 -48493965.33591 1014 894 6429332.410642 1015 894 6115856.254433 1016 894 -5472930.844082 895 895 438410352.8514 896 895 76423912.27372 897 895 -30555555.55054 898 895 -31843109.00315 899 895 -13902588.21746 900 895 -30584026.39841 901 895 17322849.63857 902 895 42340370.58254 903 895 36695137.50852 904 895 -1130543.633336 905 895 -26604449.03234 999 895 6115856.254433 1000 895 -44000691.65356 1001 895 -13552018.01794 1002 895 -7643634.032713 1003 895 -100914578.8798 1004 895 -59481123.99205 1005 895 7638888.891396 1006 895 -13999375.77193 1007 895 27304194.09764 1008 895 -7638888.891398 1009 895 -32044400.84822 1010 895 -14635369.28198 1011 895 -7646006.603371 1012 895 -25348555.65241 1013 895 -585233.2815705 1014 895 9173784.381649 1015 895 6429332.410642 1016 895 6567824.782935 896 896 742817650.6667 897 896 -27181697.16107 898 896 -13597032.66211 899 896 300666.5953339 900 896 29299248.38909 901 896 34083332.0161 902 896 113817630.1747 903 896 35547821.55005 904 896 -17736299.3549 905 896 -3014783.022215 999 896 16940556.61269 1000 896 -20328027.02691 1001 896 -117335177.7428 1002 896 -21490653.15616 1003 896 -57645971.82207 1004 896 -200746134.8472 1005 896 -19488671.82916 1006 896 9380576.980452 1007 896 -143900824.6786 1008 896 -20840736.7982 1009 896 -14635369.28198 1010 896 -64147829.60048 1011 896 -48878084.71163 1012 896 -2722347.244235 1013 896 -50690307.28013 1014 896 -8209396.266123 1015 896 4378549.855291 1016 896 17144886.42838 897 897 736105860.3775 898 897 -2.98023223877e-07 899 897 -10185311.55874 900 897 73722278.29235 901 897 -3.725290298462e-07 902 897 -2546327.890939 906 897 -60726571.61129 907 897 6.407499313354e-07 908 897 5092655.779359 909 897 -44447793.81348 910 897 30555555.55054 911 897 29728025.052 1002 897 -67815699.74408 1003 897 2.041459083557e-06 1004 897 57072469.49195 1005 897 -10820592.87768 1006 897 -7638888.891398 1007 897 7154402.099879 1008 897 -12957512.05534 1009 897 5.960464477539e-08 1010 897 -2546327.890928 1011 897 19546554.40623 1012 897 -1.84029340744e-06 1013 897 -636581.9730468 1017 897 -61096866.41184 1018 897 -1.631677150726e-06 1019 897 -54526141.60101 1020 897 -10000259.54407 1021 897 7638888.891397 1022 897 -6517820.126831 898 898 662768381.9265 899 898 122220705.6783 900 898 -2.682209014893e-07 901 898 -42388655.88811 902 898 -61110352.83913 906 898 8.642673492432e-07 907 898 73718732.1729 908 898 30555176.43462 909 898 30555555.55054 910 898 -35280609.00258 911 898 -16652588.21716 1002 898 2.004206180573e-06 1003 898 -34204373.78147 1004 898 7638794.112417 1005 898 -7638888.891398 1006 898 -8528796.673826 1007 898 7760464.058704 1008 898 2.98023223877e-08 1009 898 -31291881.67713 1010 898 30555176.43461 1011 898 -1.668930053711e-06 1012 898 -9481179.15318 1013 898 29361300.66432 1017 898 -1.691281795502e-06 1018 898 -27485540.44924 1019 898 7638794.112417 1020 898 7638888.891397 1021 898 -7708463.340222 1022 898 6996575.169565 899 899 1085657360.643 900 899 -2546327.890939 901 899 -61110352.83913 902 899 75046406.47269 906 899 5092655.779359 907 899 30555176.43462 908 899 178931711.3263 909 899 30109969.49619 910 899 -16958143.77251 911 899 -8866000.069825 1002 899 57454413.93615 1003 899 7638794.112417 1004 899 -95624557.03646 1005 899 7154402.099879 1006 899 7760464.058704 1007 899 -1439551.802109 1008 899 -2546327.890927 1009 899 30555176.43461 1010 899 -253876265.6798 1011 899 -636581.9730468 1012 899 29666856.21968 1013 899 21737561.15826 1017 899 -54908086.04521 1018 899 7638794.112417 1019 899 -77707668.15051 1020 899 -6517820.126831 1021 899 6996575.169565 1022 899 748003.7541653 900 900 754814074.6264 901 900 30603006.96366 902 900 -34373319.31429 903 900 31201368.0013 904 900 -30574536.11579 905 900 -29746017.20074 906 900 -41010293.81404 907 900 -30555555.55054 908 900 -27563641.60526 909 900 -60726571.61129 910 900 6.407499313354e-07 911 900 5092655.779359 912 900 -44447793.81348 913 900 30555555.55054 914 900 29728025.052 1002 900 -36875280.38624 1003 900 7638888.891399 1004 900 21477318.77125 1005 900 -88160408.62987 1006 900 -7646006.603366 1007 900 63145912.64445 1008 900 -81234695.57722 1009 900 1.624226570129e-06 1010 900 -636581.9730444 1011 900 3615653.321898 1012 900 7650751.744684 1013 900 -8598044.452827 1014 900 3117023.124192 1015 900 -7643634.032712 1016 900 6521862.080229 1017 900 -34336197.05207 1018 900 -7638888.891398 1019 900 -20840736.7982 1020 900 -61096866.41184 1021 900 -1.631677150726e-06 1022 900 -54526141.60101 1023 900 -10000259.54407 1024 900 7638888.891397 1025 900 -6517820.126831 901 901 672288057.0206 902 901 94722479.88535 903 901 -30584026.39841 904 901 -75780342.02739 905 901 -50736841.1372 906 901 -30555555.55054 907 901 -31843109.00315 908 901 -13902588.21746 909 901 8.642673492432e-07 910 901 73718732.1729 911 901 30555176.43462 912 901 30555555.55054 913 901 -35280609.00258 914 901 -16652588.21716 1002 901 7638888.891399 1003 901 -34583484.18238 1004 901 -15399258.17112 1005 901 -7643634.032709 1006 901 -52242457.71267 1007 901 19687387.29713 1008 901 1.564621925354e-06 1009 901 -110262429.1366 1010 901 -59916477.09895 1011 901 7650751.744683 1012 901 -17015851.08971 1013 901 23676848.33746 1014 901 -7646006.603369 1015 901 -23628404.39615 1016 901 31972114.21773 1017 901 -7638888.891398 1018 901 -32044400.84822 1019 901 -14635369.28198 1020 901 -1.691281795502e-06 1021 901 -27485540.44924 1022 901 7638794.112417 1023 901 7638888.891397 1024 901 -7708463.340222 1025 901 6996575.169565 902 902 1025629032.871 903 902 -30136957.7193 904 902 -59299198.1827 905 902 71356723.1218 906 902 -27181697.16107 907 902 -13597032.66211 908 902 300666.5953339 909 902 5092655.779359 910 902 30555176.43462 911 902 178931711.3263 912 902 30109969.49619 913 902 -16958143.77251 914 902 -8866000.069825 1002 902 21477318.77125 1003 902 -15399258.17112 1004 902 -70918718.4916 1005 902 63530032.02016 1006 902 21831451.86013 1007 902 -122407379.4408 1008 902 -636581.9730439 1009 902 -60222032.6543 1010 902 -247012438.7976 1011 902 -8589356.089042 1012 902 23683798.94222 1013 902 -237160382.7964 1014 902 6523883.056929 1015 902 30136961.89646 1016 902 5350330.44263 1017 902 -20840736.7982 1018 902 -14635369.28198 1019 902 -64147829.60048 1020 902 -54908086.04521 1021 902 7638794.112417 1022 902 -77707668.15051 1023 902 -6517820.126831 1024 902 6996575.169565 1025 902 748003.7541653 903 903 484267631.2317 904 903 30555555.55053 905 903 -29327125.67035 909 903 -41010293.81404 910 903 -30555555.55054 911 903 -27563641.60526 912 903 -126348953.9595 913 903 -30574536.11578 914 903 29308540.81618 915 903 -1130543.633331 916 903 24463425.00568 917 903 23698547.70003 1005 903 -44000691.65356 1006 903 9173784.381649 1007 903 25410834.91903 1011 903 -74169151.35949 1012 903 -7646006.603371 1013 903 -21497320.34861 1014 903 -2535056.171221 1015 903 7638888.891397 1016 903 2916127.642058 1020 903 -34336197.05207 1021 903 -7638888.891398 1022 903 -20840736.7982 1023 903 -61266506.56961 1024 903 -7643634.032713 1025 903 -48493965.33591 1026 903 6429332.410642 1027 903 6115856.254433 1028 903 -5472930.844082 904 904 438410352.8514 905 904 76423912.27372 909 904 -30555555.55054 910 904 -31843109.00315 911 904 -13902588.21746 912 904 -30584026.39841 913 904 17322849.63857 914 904 42340370.58254 915 904 36695137.50852 916 904 -1130543.633336 917 904 -26604449.03234 1005 904 6115856.254433 1006 904 -44000691.65356 1007 904 -13552018.01794 1011 904 -7643634.032713 1012 904 -100914578.8798 1013 904 -59481123.99205 1014 904 7638888.891396 1015 904 -13999375.77193 1016 904 27304194.09764 1020 904 -7638888.891398 1021 904 -32044400.84822 1022 904 -14635369.28198 1023 904 -7646006.603371 1024 904 -25348555.65241 1025 904 -585233.2815705 1026 904 9173784.381649 1027 904 6429332.410642 1028 904 6567824.782935 905 905 742817650.6667 909 905 -27181697.16107 910 905 -13597032.66211 911 905 300666.5953339 912 905 29299248.38909 913 905 34083332.0161 914 905 113817630.1747 915 905 35547821.55005 916 905 -17736299.3549 917 905 -3014783.022215 1005 905 16940556.61269 1006 905 -20328027.02691 1007 905 -117335177.7428 1011 905 -21490653.15616 1012 905 -57645971.82207 1013 905 -200746134.8472 1014 905 -19488671.82916 1015 905 9380576.980452 1016 905 -143900824.6786 1020 905 -20840736.7982 1021 905 -14635369.28198 1022 905 -64147829.60048 1023 905 -48878084.71163 1024 905 -2722347.244235 1025 905 -50690307.28013 1026 905 -8209396.266123 1027 905 4378549.855291 1028 905 17144886.42838 906 906 736105860.3775 907 906 -2.98023223877e-07 908 906 -10185311.55874 909 906 73722278.29235 910 906 -3.725290298462e-07 911 906 -2546327.890939 918 906 -60726571.61129 919 906 6.407499313354e-07 920 906 5092655.779359 921 906 -44447793.81348 922 906 30555555.55054 923 906 29728025.052 1008 906 -67815699.74408 1009 906 2.041459083557e-06 1010 906 57072469.49195 1011 906 -10820592.87768 1012 906 -7638888.891398 1013 906 7154402.099879 1017 906 -12957512.05534 1018 906 5.960464477539e-08 1019 906 -2546327.890928 1020 906 19546554.40623 1021 906 -1.84029340744e-06 1022 906 -636581.9730468 1029 906 -61096866.41184 1030 906 -1.631677150726e-06 1031 906 -54526141.60101 1032 906 -10000259.54407 1033 906 7638888.891397 1034 906 -6517820.126831 907 907 662768381.9265 908 907 122220705.6783 909 907 -2.682209014893e-07 910 907 -42388655.88811 911 907 -61110352.83913 918 907 8.642673492432e-07 919 907 73718732.1729 920 907 30555176.43462 921 907 30555555.55054 922 907 -35280609.00258 923 907 -16652588.21716 1008 907 2.004206180573e-06 1009 907 -34204373.78147 1010 907 7638794.112417 1011 907 -7638888.891398 1012 907 -8528796.673826 1013 907 7760464.058704 1017 907 2.98023223877e-08 1018 907 -31291881.67713 1019 907 30555176.43461 1020 907 -1.668930053711e-06 1021 907 -9481179.15318 1022 907 29361300.66432 1029 907 -1.691281795502e-06 1030 907 -27485540.44924 1031 907 7638794.112417 1032 907 7638888.891397 1033 907 -7708463.340222 1034 907 6996575.169565 908 908 1085657360.643 909 908 -2546327.890939 910 908 -61110352.83913 911 908 75046406.47269 918 908 5092655.779359 919 908 30555176.43462 920 908 178931711.3263 921 908 30109969.49619 922 908 -16958143.77251 923 908 -8866000.069825 1008 908 57454413.93615 1009 908 7638794.112417 1010 908 -95624557.03646 1011 908 7154402.099879 1012 908 7760464.058704 1013 908 -1439551.802109 1017 908 -2546327.890927 1018 908 30555176.43461 1019 908 -253876265.6798 1020 908 -636581.9730468 1021 908 29666856.21968 1022 908 21737561.15826 1029 908 -54908086.04521 1030 908 7638794.112417 1031 908 -77707668.15051 1032 908 -6517820.126831 1033 908 6996575.169565 1034 908 748003.7541653 909 909 736105860.3775 910 909 -2.98023223877e-07 911 909 -10185311.55874 912 909 73722278.29235 913 909 -3.725290298462e-07 914 909 -2546327.890939 918 909 -41010293.81404 919 909 -30555555.55054 920 909 -27563641.60526 921 909 -60726571.61129 922 909 6.407499313354e-07 923 909 5092655.779359 924 909 -44447793.81348 925 909 30555555.55054 926 909 29728025.052 1008 909 -36875280.38624 1009 909 7638888.891399 1010 909 21477318.77125 1011 909 -67815699.74408 1012 909 2.041459083557e-06 1013 909 57072469.49195 1014 909 -10820592.87768 1015 909 -7638888.891398 1016 909 7154402.099879 1017 909 -81234695.57722 1018 909 1.624226570129e-06 1019 909 -636581.9730444 1020 909 -12957512.05534 1021 909 5.960464477539e-08 1022 909 -2546327.890928 1023 909 19546554.40623 1024 909 -1.84029340744e-06 1025 909 -636581.9730468 1029 909 -34336197.05207 1030 909 -7638888.891398 1031 909 -20840736.7982 1032 909 -61096866.41184 1033 909 -1.631677150726e-06 1034 909 -54526141.60101 1035 909 -10000259.54407 1036 909 7638888.891397 1037 909 -6517820.126831 910 910 662768381.9265 911 910 122220705.6783 912 910 -2.682209014893e-07 913 910 -42388655.88811 914 910 -61110352.83913 918 910 -30555555.55054 919 910 -31843109.00315 920 910 -13902588.21746 921 910 8.642673492432e-07 922 910 73718732.1729 923 910 30555176.43462 924 910 30555555.55054 925 910 -35280609.00258 926 910 -16652588.21716 1008 910 7638888.891399 1009 910 -34583484.18238 1010 910 -15399258.17112 1011 910 2.004206180573e-06 1012 910 -34204373.78147 1013 910 7638794.112417 1014 910 -7638888.891398 1015 910 -8528796.673826 1016 910 7760464.058704 1017 910 1.564621925354e-06 1018 910 -110262429.1366 1019 910 -59916477.09895 1020 910 2.98023223877e-08 1021 910 -31291881.67713 1022 910 30555176.43461 1023 910 -1.668930053711e-06 1024 910 -9481179.15318 1025 910 29361300.66432 1029 910 -7638888.891398 1030 910 -32044400.84822 1031 910 -14635369.28198 1032 910 -1.691281795502e-06 1033 910 -27485540.44924 1034 910 7638794.112417 1035 910 7638888.891397 1036 910 -7708463.340222 1037 910 6996575.169565 911 911 1085657360.643 912 911 -2546327.890939 913 911 -61110352.83913 914 911 75046406.47269 918 911 -27181697.16107 919 911 -13597032.66211 920 911 300666.5953339 921 911 5092655.779359 922 911 30555176.43462 923 911 178931711.3263 924 911 30109969.49619 925 911 -16958143.77251 926 911 -8866000.069825 1008 911 21477318.77125 1009 911 -15399258.17112 1010 911 -70918718.4916 1011 911 57454413.93615 1012 911 7638794.112417 1013 911 -95624557.03646 1014 911 7154402.099879 1015 911 7760464.058704 1016 911 -1439551.802109 1017 911 -636581.9730439 1018 911 -60222032.6543 1019 911 -247012438.7976 1020 911 -2546327.890927 1021 911 30555176.43461 1022 911 -253876265.6798 1023 911 -636581.9730468 1024 911 29666856.21968 1025 911 21737561.15826 1029 911 -20840736.7982 1030 911 -14635369.28198 1031 911 -64147829.60048 1032 911 -54908086.04521 1033 911 7638794.112417 1034 911 -77707668.15051 1035 911 -6517820.126831 1036 911 6996575.169565 1037 911 748003.7541653 912 912 754814074.6264 913 912 30603006.96366 914 912 -34373319.31429 915 912 31201368.0013 916 912 -30574536.11579 917 912 -29746017.20074 921 912 -41010293.81404 922 912 -30555555.55054 923 912 -27563641.60526 924 912 -60726571.61129 925 912 6.407499313354e-07 926 912 5092655.779359 927 912 -44447793.81348 928 912 30555555.55054 929 912 29728025.052 1011 912 -36875280.38624 1012 912 7638888.891399 1013 912 21477318.77125 1014 912 -88160408.62987 1015 912 -7646006.603366 1016 912 63145912.64445 1020 912 -81234695.57722 1021 912 1.624226570129e-06 1022 912 -636581.9730444 1023 912 3615653.321898 1024 912 7650751.744684 1025 912 -8598044.452827 1026 912 3117023.124192 1027 912 -7643634.032712 1028 912 6521862.080229 1032 912 -34336197.05207 1033 912 -7638888.891398 1034 912 -20840736.7982 1035 912 -61096866.41184 1036 912 -1.631677150726e-06 1037 912 -54526141.60101 1038 912 -10000259.54407 1039 912 7638888.891397 1040 912 -6517820.126831 913 913 672288057.0206 914 913 94722479.88535 915 913 -30584026.39841 916 913 -75780342.02739 917 913 -50736841.1372 921 913 -30555555.55054 922 913 -31843109.00315 923 913 -13902588.21746 924 913 8.642673492432e-07 925 913 73718732.1729 926 913 30555176.43462 927 913 30555555.55054 928 913 -35280609.00258 929 913 -16652588.21716 1011 913 7638888.891399 1012 913 -34583484.18238 1013 913 -15399258.17112 1014 913 -7643634.032709 1015 913 -52242457.71267 1016 913 19687387.29713 1020 913 1.564621925354e-06 1021 913 -110262429.1366 1022 913 -59916477.09895 1023 913 7650751.744683 1024 913 -17015851.08971 1025 913 23676848.33746 1026 913 -7646006.603369 1027 913 -23628404.39615 1028 913 31972114.21773 1032 913 -7638888.891398 1033 913 -32044400.84822 1034 913 -14635369.28198 1035 913 -1.691281795502e-06 1036 913 -27485540.44924 1037 913 7638794.112417 1038 913 7638888.891397 1039 913 -7708463.340222 1040 913 6996575.169565 914 914 1025629032.871 915 914 -30136957.7193 916 914 -59299198.1827 917 914 71356723.1218 921 914 -27181697.16107 922 914 -13597032.66211 923 914 300666.5953339 924 914 5092655.779359 925 914 30555176.43462 926 914 178931711.3263 927 914 30109969.49619 928 914 -16958143.77251 929 914 -8866000.069825 1011 914 21477318.77125 1012 914 -15399258.17112 1013 914 -70918718.4916 1014 914 63530032.02016 1015 914 21831451.86013 1016 914 -122407379.4408 1020 914 -636581.9730439 1021 914 -60222032.6543 1022 914 -247012438.7976 1023 914 -8589356.089042 1024 914 23683798.94222 1025 914 -237160382.7964 1026 914 6523883.056929 1027 914 30136961.89646 1028 914 5350330.44263 1032 914 -20840736.7982 1033 914 -14635369.28198 1034 914 -64147829.60048 1035 914 -54908086.04521 1036 914 7638794.112417 1037 914 -77707668.15051 1038 914 -6517820.126831 1039 914 6996575.169565 1040 914 748003.7541653 915 915 484267631.2317 916 915 30555555.55053 917 915 -29327125.67035 924 915 -41010293.81404 925 915 -30555555.55054 926 915 -27563641.60526 927 915 -126348953.9595 928 915 -30574536.11578 929 915 29308540.81618 930 915 -1130543.633331 931 915 24463425.00568 932 915 23698547.70003 1014 915 -44000691.65356 1015 915 9173784.381649 1016 915 25410834.91903 1023 915 -74169151.35949 1024 915 -7646006.603371 1025 915 -21497320.34861 1026 915 -2535056.171221 1027 915 7638888.891397 1028 915 2916127.642058 1035 915 -34336197.05207 1036 915 -7638888.891398 1037 915 -20840736.7982 1038 915 -61266506.56961 1039 915 -7643634.032713 1040 915 -48493965.33591 1041 915 6429332.410642 1042 915 6115856.254433 1043 915 -5472930.844082 916 916 438410352.8514 917 916 76423912.27372 924 916 -30555555.55054 925 916 -31843109.00315 926 916 -13902588.21746 927 916 -30584026.39841 928 916 17322849.63857 929 916 42340370.58254 930 916 36695137.50852 931 916 -1130543.633336 932 916 -26604449.03234 1014 916 6115856.254433 1015 916 -44000691.65356 1016 916 -13552018.01794 1023 916 -7643634.032713 1024 916 -100914578.8798 1025 916 -59481123.99205 1026 916 7638888.891396 1027 916 -13999375.77193 1028 916 27304194.09764 1035 916 -7638888.891398 1036 916 -32044400.84822 1037 916 -14635369.28198 1038 916 -7646006.603371 1039 916 -25348555.65241 1040 916 -585233.2815705 1041 916 9173784.381649 1042 916 6429332.410642 1043 916 6567824.782935 917 917 742817650.6667 924 917 -27181697.16107 925 917 -13597032.66211 926 917 300666.5953339 927 917 29299248.38909 928 917 34083332.0161 929 917 113817630.1747 930 917 35547821.55005 931 917 -17736299.3549 932 917 -3014783.022215 1014 917 16940556.61269 1015 917 -20328027.02691 1016 917 -117335177.7428 1023 917 -21490653.15616 1024 917 -57645971.82207 1025 917 -200746134.8472 1026 917 -19488671.82916 1027 917 9380576.980452 1028 917 -143900824.6786 1035 917 -20840736.7982 1036 917 -14635369.28198 1037 917 -64147829.60048 1038 917 -48878084.71163 1039 917 -2722347.244235 1040 917 -50690307.28013 1041 917 -8209396.266123 1042 917 4378549.855291 1043 917 17144886.42838 918 918 736105860.3775 919 918 -2.98023223877e-07 920 918 -10185311.55874 921 918 73722278.29235 922 918 -3.725290298462e-07 923 918 -2546327.890939 933 918 -60726571.61129 934 918 6.407499313354e-07 935 918 5092655.779359 936 918 -44447793.81348 937 918 30555555.55054 938 918 29728025.052 1017 918 -67815699.74408 1018 918 2.041459083557e-06 1019 918 57072469.49195 1020 918 -10820592.87768 1021 918 -7638888.891398 1022 918 7154402.099879 1029 918 -12957512.05534 1030 918 5.960464477539e-08 1031 918 -2546327.890928 1032 918 19546554.40623 1033 918 -1.84029340744e-06 1034 918 -636581.9730468 1044 918 -61096866.41184 1045 918 -1.631677150726e-06 1046 918 -54526141.60101 1047 918 -10000259.54407 1048 918 7638888.891397 1049 918 -6517820.126831 919 919 662768381.9265 920 919 122220705.6783 921 919 -2.682209014893e-07 922 919 -42388655.88811 923 919 -61110352.83913 933 919 8.642673492432e-07 934 919 73718732.1729 935 919 30555176.43462 936 919 30555555.55054 937 919 -35280609.00258 938 919 -16652588.21716 1017 919 2.004206180573e-06 1018 919 -34204373.78147 1019 919 7638794.112417 1020 919 -7638888.891398 1021 919 -8528796.673826 1022 919 7760464.058704 1029 919 2.98023223877e-08 1030 919 -31291881.67713 1031 919 30555176.43461 1032 919 -1.668930053711e-06 1033 919 -9481179.15318 1034 919 29361300.66432 1044 919 -1.691281795502e-06 1045 919 -27485540.44924 1046 919 7638794.112417 1047 919 7638888.891397 1048 919 -7708463.340222 1049 919 6996575.169565 920 920 1085657360.643 921 920 -2546327.890939 922 920 -61110352.83913 923 920 75046406.47269 933 920 5092655.779359 934 920 30555176.43462 935 920 178931711.3263 936 920 30109969.49619 937 920 -16958143.77251 938 920 -8866000.069825 1017 920 57454413.93615 1018 920 7638794.112417 1019 920 -95624557.03646 1020 920 7154402.099879 1021 920 7760464.058704 1022 920 -1439551.802109 1029 920 -2546327.890927 1030 920 30555176.43461 1031 920 -253876265.6798 1032 920 -636581.9730468 1033 920 29666856.21968 1034 920 21737561.15826 1044 920 -54908086.04521 1045 920 7638794.112417 1046 920 -77707668.15051 1047 920 -6517820.126831 1048 920 6996575.169565 1049 920 748003.7541653 921 921 736105860.3775 922 921 -2.98023223877e-07 923 921 -10185311.55874 924 921 73722278.29235 925 921 -3.725290298462e-07 926 921 -2546327.890939 933 921 -41010293.81404 934 921 -30555555.55054 935 921 -27563641.60526 936 921 -60726571.61129 937 921 6.407499313354e-07 938 921 5092655.779359 939 921 -44447793.81348 940 921 30555555.55054 941 921 29728025.052 1017 921 -36875280.38624 1018 921 7638888.891399 1019 921 21477318.77125 1020 921 -67815699.74408 1021 921 2.041459083557e-06 1022 921 57072469.49195 1023 921 -10820592.87768 1024 921 -7638888.891398 1025 921 7154402.099879 1029 921 -81234695.57722 1030 921 1.624226570129e-06 1031 921 -636581.9730444 1032 921 -12957512.05534 1033 921 5.960464477539e-08 1034 921 -2546327.890928 1035 921 19546554.40623 1036 921 -1.84029340744e-06 1037 921 -636581.9730468 1044 921 -34336197.05207 1045 921 -7638888.891398 1046 921 -20840736.7982 1047 921 -61096866.41184 1048 921 -1.631677150726e-06 1049 921 -54526141.60101 1050 921 -10000259.54407 1051 921 7638888.891397 1052 921 -6517820.126831 922 922 662768381.9265 923 922 122220705.6783 924 922 -2.682209014893e-07 925 922 -42388655.88811 926 922 -61110352.83913 933 922 -30555555.55054 934 922 -31843109.00315 935 922 -13902588.21746 936 922 8.642673492432e-07 937 922 73718732.1729 938 922 30555176.43462 939 922 30555555.55054 940 922 -35280609.00258 941 922 -16652588.21716 1017 922 7638888.891399 1018 922 -34583484.18238 1019 922 -15399258.17112 1020 922 2.004206180573e-06 1021 922 -34204373.78147 1022 922 7638794.112417 1023 922 -7638888.891398 1024 922 -8528796.673826 1025 922 7760464.058704 1029 922 1.564621925354e-06 1030 922 -110262429.1366 1031 922 -59916477.09895 1032 922 2.98023223877e-08 1033 922 -31291881.67713 1034 922 30555176.43461 1035 922 -1.668930053711e-06 1036 922 -9481179.15318 1037 922 29361300.66432 1044 922 -7638888.891398 1045 922 -32044400.84822 1046 922 -14635369.28198 1047 922 -1.691281795502e-06 1048 922 -27485540.44924 1049 922 7638794.112417 1050 922 7638888.891397 1051 922 -7708463.340222 1052 922 6996575.169565 923 923 1085657360.643 924 923 -2546327.890939 925 923 -61110352.83913 926 923 75046406.47269 933 923 -27181697.16107 934 923 -13597032.66211 935 923 300666.5953339 936 923 5092655.779359 937 923 30555176.43462 938 923 178931711.3263 939 923 30109969.49619 940 923 -16958143.77251 941 923 -8866000.069825 1017 923 21477318.77125 1018 923 -15399258.17112 1019 923 -70918718.4916 1020 923 57454413.93615 1021 923 7638794.112417 1022 923 -95624557.03646 1023 923 7154402.099879 1024 923 7760464.058704 1025 923 -1439551.802109 1029 923 -636581.9730439 1030 923 -60222032.6543 1031 923 -247012438.7976 1032 923 -2546327.890927 1033 923 30555176.43461 1034 923 -253876265.6798 1035 923 -636581.9730468 1036 923 29666856.21968 1037 923 21737561.15826 1044 923 -20840736.7982 1045 923 -14635369.28198 1046 923 -64147829.60048 1047 923 -54908086.04521 1048 923 7638794.112417 1049 923 -77707668.15051 1050 923 -6517820.126831 1051 923 6996575.169565 1052 923 748003.7541653 924 924 736105860.3775 925 924 -2.98023223877e-07 926 924 -10185311.55874 927 924 73722278.29235 928 924 -3.725290298462e-07 929 924 -2546327.890939 936 924 -41010293.81404 937 924 -30555555.55054 938 924 -27563641.60526 939 924 -60726571.61129 940 924 6.407499313354e-07 941 924 5092655.779359 942 924 -44447793.81348 943 924 30555555.55054 944 924 29728025.052 1020 924 -36875280.38624 1021 924 7638888.891399 1022 924 21477318.77125 1023 924 -67815699.74408 1024 924 2.041459083557e-06 1025 924 57072469.49195 1026 924 -10820592.87768 1027 924 -7638888.891398 1028 924 7154402.099879 1032 924 -81234695.57722 1033 924 1.624226570129e-06 1034 924 -636581.9730444 1035 924 -12957512.05534 1036 924 5.960464477539e-08 1037 924 -2546327.890928 1038 924 19546554.40623 1039 924 -1.84029340744e-06 1040 924 -636581.9730468 1047 924 -34336197.05207 1048 924 -7638888.891398 1049 924 -20840736.7982 1050 924 -61096866.41184 1051 924 -1.631677150726e-06 1052 924 -54526141.60101 1053 924 -10000259.54407 1054 924 7638888.891397 1055 924 -6517820.126831 925 925 662768381.9265 926 925 122220705.6783 927 925 -2.682209014893e-07 928 925 -42388655.88811 929 925 -61110352.83913 936 925 -30555555.55054 937 925 -31843109.00315 938 925 -13902588.21746 939 925 8.642673492432e-07 940 925 73718732.1729 941 925 30555176.43462 942 925 30555555.55054 943 925 -35280609.00258 944 925 -16652588.21716 1020 925 7638888.891399 1021 925 -34583484.18238 1022 925 -15399258.17112 1023 925 2.004206180573e-06 1024 925 -34204373.78147 1025 925 7638794.112417 1026 925 -7638888.891398 1027 925 -8528796.673826 1028 925 7760464.058704 1032 925 1.564621925354e-06 1033 925 -110262429.1366 1034 925 -59916477.09895 1035 925 2.98023223877e-08 1036 925 -31291881.67713 1037 925 30555176.43461 1038 925 -1.668930053711e-06 1039 925 -9481179.15318 1040 925 29361300.66432 1047 925 -7638888.891398 1048 925 -32044400.84822 1049 925 -14635369.28198 1050 925 -1.691281795502e-06 1051 925 -27485540.44924 1052 925 7638794.112417 1053 925 7638888.891397 1054 925 -7708463.340222 1055 925 6996575.169565 926 926 1085657360.643 927 926 -2546327.890939 928 926 -61110352.83913 929 926 75046406.47269 936 926 -27181697.16107 937 926 -13597032.66211 938 926 300666.5953339 939 926 5092655.779359 940 926 30555176.43462 941 926 178931711.3263 942 926 30109969.49619 943 926 -16958143.77251 944 926 -8866000.069825 1020 926 21477318.77125 1021 926 -15399258.17112 1022 926 -70918718.4916 1023 926 57454413.93615 1024 926 7638794.112417 1025 926 -95624557.03646 1026 926 7154402.099879 1027 926 7760464.058704 1028 926 -1439551.802109 1032 926 -636581.9730439 1033 926 -60222032.6543 1034 926 -247012438.7976 1035 926 -2546327.890927 1036 926 30555176.43461 1037 926 -253876265.6798 1038 926 -636581.9730468 1039 926 29666856.21968 1040 926 21737561.15826 1047 926 -20840736.7982 1048 926 -14635369.28198 1049 926 -64147829.60048 1050 926 -54908086.04521 1051 926 7638794.112417 1052 926 -77707668.15051 1053 926 -6517820.126831 1054 926 6996575.169565 1055 926 748003.7541653 927 927 754814074.6264 928 927 30603006.96366 929 927 -34373319.31429 930 927 31201368.0013 931 927 -30574536.11579 932 927 -29746017.20074 939 927 -41010293.81404 940 927 -30555555.55054 941 927 -27563641.60526 942 927 -60726571.61129 943 927 6.407499313354e-07 944 927 5092655.779359 945 927 -44447793.81348 946 927 30555555.55054 947 927 29728025.052 1023 927 -36875280.38624 1024 927 7638888.891399 1025 927 21477318.77125 1026 927 -88160408.62987 1027 927 -7646006.603366 1028 927 63145912.64445 1035 927 -81234695.57722 1036 927 1.624226570129e-06 1037 927 -636581.9730444 1038 927 3615653.321898 1039 927 7650751.744684 1040 927 -8598044.452827 1041 927 3117023.124192 1042 927 -7643634.032712 1043 927 6521862.080229 1050 927 -34336197.05207 1051 927 -7638888.891398 1052 927 -20840736.7982 1053 927 -61096866.41184 1054 927 -1.631677150726e-06 1055 927 -54526141.60101 1056 927 -10000259.54407 1057 927 7638888.891397 1058 927 -6517820.126831 928 928 672288057.0206 929 928 94722479.88535 930 928 -30584026.39841 931 928 -75780342.02739 932 928 -50736841.1372 939 928 -30555555.55054 940 928 -31843109.00315 941 928 -13902588.21746 942 928 8.642673492432e-07 943 928 73718732.1729 944 928 30555176.43462 945 928 30555555.55054 946 928 -35280609.00258 947 928 -16652588.21716 1023 928 7638888.891399 1024 928 -34583484.18238 1025 928 -15399258.17112 1026 928 -7643634.032709 1027 928 -52242457.71267 1028 928 19687387.29713 1035 928 1.564621925354e-06 1036 928 -110262429.1366 1037 928 -59916477.09895 1038 928 7650751.744683 1039 928 -17015851.08971 1040 928 23676848.33746 1041 928 -7646006.603369 1042 928 -23628404.39615 1043 928 31972114.21773 1050 928 -7638888.891398 1051 928 -32044400.84822 1052 928 -14635369.28198 1053 928 -1.691281795502e-06 1054 928 -27485540.44924 1055 928 7638794.112417 1056 928 7638888.891397 1057 928 -7708463.340222 1058 928 6996575.169565 929 929 1025629032.871 930 929 -30136957.7193 931 929 -59299198.1827 932 929 71356723.1218 939 929 -27181697.16107 940 929 -13597032.66211 941 929 300666.5953339 942 929 5092655.779359 943 929 30555176.43462 944 929 178931711.3263 945 929 30109969.49619 946 929 -16958143.77251 947 929 -8866000.069825 1023 929 21477318.77125 1024 929 -15399258.17112 1025 929 -70918718.4916 1026 929 63530032.02016 1027 929 21831451.86013 1028 929 -122407379.4408 1035 929 -636581.9730439 1036 929 -60222032.6543 1037 929 -247012438.7976 1038 929 -8589356.089042 1039 929 23683798.94222 1040 929 -237160382.7964 1041 929 6523883.056929 1042 929 30136961.89646 1043 929 5350330.44263 1050 929 -20840736.7982 1051 929 -14635369.28198 1052 929 -64147829.60048 1053 929 -54908086.04521 1054 929 7638794.112417 1055 929 -77707668.15051 1056 929 -6517820.126831 1057 929 6996575.169565 1058 929 748003.7541653 930 930 484267631.2317 931 930 30555555.55053 932 930 -29327125.67035 942 930 -41010293.81404 943 930 -30555555.55054 944 930 -27563641.60526 945 930 -126348953.9595 946 930 -30574536.11578 947 930 29308540.81618 948 930 -1130543.633331 949 930 24463425.00568 950 930 23698547.70003 1026 930 -44000691.65356 1027 930 9173784.381649 1028 930 25410834.91903 1038 930 -74169151.35949 1039 930 -7646006.603371 1040 930 -21497320.34861 1041 930 -2535056.171221 1042 930 7638888.891397 1043 930 2916127.642058 1053 930 -34336197.05207 1054 930 -7638888.891398 1055 930 -20840736.7982 1056 930 -61266506.56961 1057 930 -7643634.032713 1058 930 -48493965.33591 1059 930 6429332.410642 1060 930 6115856.254433 1061 930 -5472930.844082 931 931 438410352.8514 932 931 76423912.27372 942 931 -30555555.55054 943 931 -31843109.00315 944 931 -13902588.21746 945 931 -30584026.39841 946 931 17322849.63857 947 931 42340370.58254 948 931 36695137.50852 949 931 -1130543.633336 950 931 -26604449.03234 1026 931 6115856.254433 1027 931 -44000691.65356 1028 931 -13552018.01794 1038 931 -7643634.032713 1039 931 -100914578.8798 1040 931 -59481123.99205 1041 931 7638888.891396 1042 931 -13999375.77193 1043 931 27304194.09764 1053 931 -7638888.891398 1054 931 -32044400.84822 1055 931 -14635369.28198 1056 931 -7646006.603371 1057 931 -25348555.65241 1058 931 -585233.2815705 1059 931 9173784.381649 1060 931 6429332.410642 1061 931 6567824.782935 932 932 742817650.6667 942 932 -27181697.16107 943 932 -13597032.66211 944 932 300666.5953339 945 932 29299248.38909 946 932 34083332.0161 947 932 113817630.1747 948 932 35547821.55005 949 932 -17736299.3549 950 932 -3014783.022215 1026 932 16940556.61269 1027 932 -20328027.02691 1028 932 -117335177.7428 1038 932 -21490653.15616 1039 932 -57645971.82207 1040 932 -200746134.8472 1041 932 -19488671.82916 1042 932 9380576.980452 1043 932 -143900824.6786 1053 932 -20840736.7982 1054 932 -14635369.28198 1055 932 -64147829.60048 1056 932 -48878084.71163 1057 932 -2722347.244235 1058 932 -50690307.28013 1059 932 -8209396.266123 1060 932 4378549.855291 1061 932 17144886.42838 933 933 736105860.3775 934 933 -2.98023223877e-07 935 933 -10185311.55874 936 933 73722278.29235 937 933 -3.725290298462e-07 938 933 -2546327.890939 951 933 -60726571.61129 952 933 6.407499313354e-07 953 933 5092655.779359 954 933 -44447793.81348 955 933 30555555.55054 956 933 29728025.052 1029 933 -67815699.74408 1030 933 2.041459083557e-06 1031 933 57072469.49195 1032 933 -10820592.87768 1033 933 -7638888.891398 1034 933 7154402.099879 1044 933 -12957512.05534 1045 933 5.960464477539e-08 1046 933 -2546327.890928 1047 933 19546554.40623 1048 933 -1.84029340744e-06 1049 933 -636581.9730468 1062 933 -61096866.41184 1063 933 -1.631677150726e-06 1064 933 -54526141.60101 1065 933 -10000259.54407 1066 933 7638888.891397 1067 933 -6517820.126831 934 934 662768381.9265 935 934 122220705.6783 936 934 -2.682209014893e-07 937 934 -42388655.88811 938 934 -61110352.83913 951 934 8.642673492432e-07 952 934 73718732.1729 953 934 30555176.43462 954 934 30555555.55054 955 934 -35280609.00258 956 934 -16652588.21716 1029 934 2.004206180573e-06 1030 934 -34204373.78147 1031 934 7638794.112417 1032 934 -7638888.891398 1033 934 -8528796.673826 1034 934 7760464.058704 1044 934 2.98023223877e-08 1045 934 -31291881.67713 1046 934 30555176.43461 1047 934 -1.668930053711e-06 1048 934 -9481179.15318 1049 934 29361300.66432 1062 934 -1.691281795502e-06 1063 934 -27485540.44924 1064 934 7638794.112417 1065 934 7638888.891397 1066 934 -7708463.340222 1067 934 6996575.169565 935 935 1085657360.643 936 935 -2546327.890939 937 935 -61110352.83913 938 935 75046406.47269 951 935 5092655.779359 952 935 30555176.43462 953 935 178931711.3263 954 935 30109969.49619 955 935 -16958143.77251 956 935 -8866000.069825 1029 935 57454413.93615 1030 935 7638794.112417 1031 935 -95624557.03646 1032 935 7154402.099879 1033 935 7760464.058704 1034 935 -1439551.802109 1044 935 -2546327.890927 1045 935 30555176.43461 1046 935 -253876265.6798 1047 935 -636581.9730468 1048 935 29666856.21968 1049 935 21737561.15826 1062 935 -54908086.04521 1063 935 7638794.112417 1064 935 -77707668.15051 1065 935 -6517820.126831 1066 935 6996575.169565 1067 935 748003.7541653 936 936 736105860.3775 937 936 -2.98023223877e-07 938 936 -10185311.55874 939 936 73722278.29235 940 936 -3.725290298462e-07 941 936 -2546327.890939 951 936 -41010293.81404 952 936 -30555555.55054 953 936 -27563641.60526 954 936 -60726571.61129 955 936 6.407499313354e-07 956 936 5092655.779359 957 936 -44447793.81348 958 936 30555555.55054 959 936 29728025.052 1029 936 -36875280.38624 1030 936 7638888.891399 1031 936 21477318.77125 1032 936 -67815699.74408 1033 936 2.041459083557e-06 1034 936 57072469.49195 1035 936 -10820592.87768 1036 936 -7638888.891398 1037 936 7154402.099879 1044 936 -81234695.57722 1045 936 1.624226570129e-06 1046 936 -636581.9730444 1047 936 -12957512.05534 1048 936 5.960464477539e-08 1049 936 -2546327.890928 1050 936 19546554.40623 1051 936 -1.84029340744e-06 1052 936 -636581.9730468 1062 936 -34336197.05207 1063 936 -7638888.891398 1064 936 -20840736.7982 1065 936 -61096866.41184 1066 936 -1.631677150726e-06 1067 936 -54526141.60101 1068 936 -10000259.54407 1069 936 7638888.891397 1070 936 -6517820.126831 937 937 662768381.9265 938 937 122220705.6783 939 937 -2.682209014893e-07 940 937 -42388655.88811 941 937 -61110352.83913 951 937 -30555555.55054 952 937 -31843109.00315 953 937 -13902588.21746 954 937 8.642673492432e-07 955 937 73718732.1729 956 937 30555176.43462 957 937 30555555.55054 958 937 -35280609.00258 959 937 -16652588.21716 1029 937 7638888.891399 1030 937 -34583484.18238 1031 937 -15399258.17112 1032 937 2.004206180573e-06 1033 937 -34204373.78147 1034 937 7638794.112417 1035 937 -7638888.891398 1036 937 -8528796.673826 1037 937 7760464.058704 1044 937 1.564621925354e-06 1045 937 -110262429.1366 1046 937 -59916477.09895 1047 937 2.98023223877e-08 1048 937 -31291881.67713 1049 937 30555176.43461 1050 937 -1.668930053711e-06 1051 937 -9481179.15318 1052 937 29361300.66432 1062 937 -7638888.891398 1063 937 -32044400.84822 1064 937 -14635369.28198 1065 937 -1.691281795502e-06 1066 937 -27485540.44924 1067 937 7638794.112417 1068 937 7638888.891397 1069 937 -7708463.340222 1070 937 6996575.169565 938 938 1085657360.643 939 938 -2546327.890939 940 938 -61110352.83913 941 938 75046406.47269 951 938 -27181697.16107 952 938 -13597032.66211 953 938 300666.5953339 954 938 5092655.779359 955 938 30555176.43462 956 938 178931711.3263 957 938 30109969.49619 958 938 -16958143.77251 959 938 -8866000.069825 1029 938 21477318.77125 1030 938 -15399258.17112 1031 938 -70918718.4916 1032 938 57454413.93615 1033 938 7638794.112417 1034 938 -95624557.03646 1035 938 7154402.099879 1036 938 7760464.058704 1037 938 -1439551.802109 1044 938 -636581.9730439 1045 938 -60222032.6543 1046 938 -247012438.7976 1047 938 -2546327.890927 1048 938 30555176.43461 1049 938 -253876265.6798 1050 938 -636581.9730468 1051 938 29666856.21968 1052 938 21737561.15826 1062 938 -20840736.7982 1063 938 -14635369.28198 1064 938 -64147829.60048 1065 938 -54908086.04521 1066 938 7638794.112417 1067 938 -77707668.15051 1068 938 -6517820.126831 1069 938 6996575.169565 1070 938 748003.7541653 939 939 736105860.3775 940 939 -2.98023223877e-07 941 939 -10185311.55874 942 939 73722278.29235 943 939 -3.725290298462e-07 944 939 -2546327.890939 954 939 -41010293.81404 955 939 -30555555.55054 956 939 -27563641.60526 957 939 -60726571.61129 958 939 6.407499313354e-07 959 939 5092655.779359 960 939 -44447793.81348 961 939 30555555.55054 962 939 29728025.052 1032 939 -36875280.38624 1033 939 7638888.891399 1034 939 21477318.77125 1035 939 -67815699.74408 1036 939 2.041459083557e-06 1037 939 57072469.49195 1038 939 -10820592.87768 1039 939 -7638888.891398 1040 939 7154402.099879 1047 939 -81234695.57722 1048 939 1.624226570129e-06 1049 939 -636581.9730444 1050 939 -12957512.05534 1051 939 5.960464477539e-08 1052 939 -2546327.890928 1053 939 19546554.40623 1054 939 -1.84029340744e-06 1055 939 -636581.9730468 1065 939 -34336197.05207 1066 939 -7638888.891398 1067 939 -20840736.7982 1068 939 -61096866.41184 1069 939 -1.631677150726e-06 1070 939 -54526141.60101 1071 939 -10000259.54407 1072 939 7638888.891397 1073 939 -6517820.126831 940 940 662768381.9265 941 940 122220705.6783 942 940 -2.682209014893e-07 943 940 -42388655.88811 944 940 -61110352.83913 954 940 -30555555.55054 955 940 -31843109.00315 956 940 -13902588.21746 957 940 8.642673492432e-07 958 940 73718732.1729 959 940 30555176.43462 960 940 30555555.55054 961 940 -35280609.00258 962 940 -16652588.21716 1032 940 7638888.891399 1033 940 -34583484.18238 1034 940 -15399258.17112 1035 940 2.004206180573e-06 1036 940 -34204373.78147 1037 940 7638794.112417 1038 940 -7638888.891398 1039 940 -8528796.673826 1040 940 7760464.058704 1047 940 1.564621925354e-06 1048 940 -110262429.1366 1049 940 -59916477.09895 1050 940 2.98023223877e-08 1051 940 -31291881.67713 1052 940 30555176.43461 1053 940 -1.668930053711e-06 1054 940 -9481179.15318 1055 940 29361300.66432 1065 940 -7638888.891398 1066 940 -32044400.84822 1067 940 -14635369.28198 1068 940 -1.691281795502e-06 1069 940 -27485540.44924 1070 940 7638794.112417 1071 940 7638888.891397 1072 940 -7708463.340222 1073 940 6996575.169565 941 941 1085657360.643 942 941 -2546327.890939 943 941 -61110352.83913 944 941 75046406.47269 954 941 -27181697.16107 955 941 -13597032.66211 956 941 300666.5953339 957 941 5092655.779359 958 941 30555176.43462 959 941 178931711.3263 960 941 30109969.49619 961 941 -16958143.77251 962 941 -8866000.069825 1032 941 21477318.77125 1033 941 -15399258.17112 1034 941 -70918718.4916 1035 941 57454413.93615 1036 941 7638794.112417 1037 941 -95624557.03646 1038 941 7154402.099879 1039 941 7760464.058704 1040 941 -1439551.802109 1047 941 -636581.9730439 1048 941 -60222032.6543 1049 941 -247012438.7976 1050 941 -2546327.890927 1051 941 30555176.43461 1052 941 -253876265.6798 1053 941 -636581.9730468 1054 941 29666856.21968 1055 941 21737561.15826 1065 941 -20840736.7982 1066 941 -14635369.28198 1067 941 -64147829.60048 1068 941 -54908086.04521 1069 941 7638794.112417 1070 941 -77707668.15051 1071 941 -6517820.126831 1072 941 6996575.169565 1073 941 748003.7541653 942 942 736105860.3775 943 942 -2.98023223877e-07 944 942 -10185311.55874 945 942 73722278.29235 946 942 -3.725290298462e-07 947 942 -2546327.890939 957 942 -41010293.81404 958 942 -30555555.55054 959 942 -27563641.60526 960 942 -60726571.61129 961 942 6.407499313354e-07 962 942 5092655.779359 963 942 -44447793.81348 964 942 30555555.55054 965 942 29728025.052 1035 942 -36875280.38624 1036 942 7638888.891399 1037 942 21477318.77125 1038 942 -67815699.74408 1039 942 2.041459083557e-06 1040 942 57072469.49195 1041 942 -10820592.87768 1042 942 -7638888.891398 1043 942 7154402.099879 1050 942 -81234695.57722 1051 942 1.624226570129e-06 1052 942 -636581.9730444 1053 942 -12957512.05534 1054 942 5.960464477539e-08 1055 942 -2546327.890928 1056 942 19546554.40623 1057 942 -1.84029340744e-06 1058 942 -636581.9730468 1068 942 -34336197.05207 1069 942 -7638888.891398 1070 942 -20840736.7982 1071 942 -61096866.41184 1072 942 -1.631677150726e-06 1073 942 -54526141.60101 1074 942 -10000259.54407 1075 942 7638888.891397 1076 942 -6517820.126831 943 943 662768381.9265 944 943 122220705.6783 945 943 -2.682209014893e-07 946 943 -42388655.88811 947 943 -61110352.83913 957 943 -30555555.55054 958 943 -31843109.00315 959 943 -13902588.21746 960 943 8.642673492432e-07 961 943 73718732.1729 962 943 30555176.43462 963 943 30555555.55054 964 943 -35280609.00258 965 943 -16652588.21716 1035 943 7638888.891399 1036 943 -34583484.18238 1037 943 -15399258.17112 1038 943 2.004206180573e-06 1039 943 -34204373.78147 1040 943 7638794.112417 1041 943 -7638888.891398 1042 943 -8528796.673826 1043 943 7760464.058704 1050 943 1.564621925354e-06 1051 943 -110262429.1366 1052 943 -59916477.09895 1053 943 2.98023223877e-08 1054 943 -31291881.67713 1055 943 30555176.43461 1056 943 -1.668930053711e-06 1057 943 -9481179.15318 1058 943 29361300.66432 1068 943 -7638888.891398 1069 943 -32044400.84822 1070 943 -14635369.28198 1071 943 -1.691281795502e-06 1072 943 -27485540.44924 1073 943 7638794.112417 1074 943 7638888.891397 1075 943 -7708463.340222 1076 943 6996575.169565 944 944 1085657360.643 945 944 -2546327.890939 946 944 -61110352.83913 947 944 75046406.47269 957 944 -27181697.16107 958 944 -13597032.66211 959 944 300666.5953339 960 944 5092655.779359 961 944 30555176.43462 962 944 178931711.3263 963 944 30109969.49619 964 944 -16958143.77251 965 944 -8866000.069825 1035 944 21477318.77125 1036 944 -15399258.17112 1037 944 -70918718.4916 1038 944 57454413.93615 1039 944 7638794.112417 1040 944 -95624557.03646 1041 944 7154402.099879 1042 944 7760464.058704 1043 944 -1439551.802109 1050 944 -636581.9730439 1051 944 -60222032.6543 1052 944 -247012438.7976 1053 944 -2546327.890927 1054 944 30555176.43461 1055 944 -253876265.6798 1056 944 -636581.9730468 1057 944 29666856.21968 1058 944 21737561.15826 1068 944 -20840736.7982 1069 944 -14635369.28198 1070 944 -64147829.60048 1071 944 -54908086.04521 1072 944 7638794.112417 1073 944 -77707668.15051 1074 944 -6517820.126831 1075 944 6996575.169565 1076 944 748003.7541653 945 945 754814074.6264 946 945 30603006.96366 947 945 -34373319.31429 948 945 31201368.0013 949 945 -30574536.11579 950 945 -29746017.20074 960 945 -41010293.81404 961 945 -30555555.55054 962 945 -27563641.60526 963 945 -60726571.61129 964 945 6.407499313354e-07 965 945 5092655.779359 966 945 -44447793.81348 967 945 30555555.55054 968 945 29728025.052 1038 945 -36875280.38624 1039 945 7638888.891399 1040 945 21477318.77125 1041 945 -88160408.62987 1042 945 -7646006.603366 1043 945 63145912.64445 1053 945 -81234695.57722 1054 945 1.624226570129e-06 1055 945 -636581.9730444 1056 945 3615653.321898 1057 945 7650751.744684 1058 945 -8598044.452827 1059 945 3117023.124192 1060 945 -7643634.032712 1061 945 6521862.080229 1071 945 -34336197.05207 1072 945 -7638888.891398 1073 945 -20840736.7982 1074 945 -61096866.41184 1075 945 -1.631677150726e-06 1076 945 -54526141.60101 1077 945 -10000259.54407 1078 945 7638888.891397 1079 945 -6517820.126831 946 946 672288057.0206 947 946 94722479.88535 948 946 -30584026.39841 949 946 -75780342.02739 950 946 -50736841.1372 960 946 -30555555.55054 961 946 -31843109.00315 962 946 -13902588.21746 963 946 8.642673492432e-07 964 946 73718732.1729 965 946 30555176.43462 966 946 30555555.55054 967 946 -35280609.00258 968 946 -16652588.21716 1038 946 7638888.891399 1039 946 -34583484.18238 1040 946 -15399258.17112 1041 946 -7643634.032709 1042 946 -52242457.71267 1043 946 19687387.29713 1053 946 1.564621925354e-06 1054 946 -110262429.1366 1055 946 -59916477.09895 1056 946 7650751.744683 1057 946 -17015851.08971 1058 946 23676848.33746 1059 946 -7646006.603369 1060 946 -23628404.39615 1061 946 31972114.21773 1071 946 -7638888.891398 1072 946 -32044400.84822 1073 946 -14635369.28198 1074 946 -1.691281795502e-06 1075 946 -27485540.44924 1076 946 7638794.112417 1077 946 7638888.891397 1078 946 -7708463.340222 1079 946 6996575.169565 947 947 1025629032.871 948 947 -30136957.7193 949 947 -59299198.1827 950 947 71356723.1218 960 947 -27181697.16107 961 947 -13597032.66211 962 947 300666.5953339 963 947 5092655.779359 964 947 30555176.43462 965 947 178931711.3263 966 947 30109969.49619 967 947 -16958143.77251 968 947 -8866000.069825 1038 947 21477318.77125 1039 947 -15399258.17112 1040 947 -70918718.4916 1041 947 63530032.02016 1042 947 21831451.86013 1043 947 -122407379.4408 1053 947 -636581.9730439 1054 947 -60222032.6543 1055 947 -247012438.7976 1056 947 -8589356.089042 1057 947 23683798.94222 1058 947 -237160382.7964 1059 947 6523883.056929 1060 947 30136961.89646 1061 947 5350330.44263 1071 947 -20840736.7982 1072 947 -14635369.28198 1073 947 -64147829.60048 1074 947 -54908086.04521 1075 947 7638794.112417 1076 947 -77707668.15051 1077 947 -6517820.126831 1078 947 6996575.169565 1079 947 748003.7541653 948 948 391747552.9943 949 948 583468.7553267 950 948 18460786.39383 963 948 -41010293.81404 964 948 -30555555.55054 965 948 -27563641.60526 966 948 -64957552.15474 967 948 -658168.3244648 968 948 1387084.494149 969 948 -17226091.21786 970 948 24519144.00957 971 948 4595388.140829 1041 948 -44000691.65356 1042 948 9173784.381649 1043 948 25410834.91903 1056 948 -74169151.35949 1057 948 -7646006.603371 1058 948 -21497320.34861 1059 948 -8042181.826519 1060 948 145867.1889037 1061 948 11655806.43098 1074 948 -34336197.05207 1075 948 -7638888.891398 1076 948 -20840736.7982 1077 948 -46993816.04493 1078 948 -164542.081198 1079 948 -41727721.81694 1080 948 -9829239.428922 1081 948 6129786.005412 1082 948 -4979066.640203 949 949 406443697.6504 950 949 83812259.76818 963 949 -30555555.55054 964 949 -31843109.00315 965 949 -13902588.21746 966 949 -695518.1090343 967 949 65399259.21915 968 949 20008238.14593 969 949 36778716.01435 970 949 -64464522.03 971 949 -11043214.84394 1041 949 6115856.254433 1042 949 -44000691.65356 1043 949 -13552018.01794 1056 949 -7643634.032713 1057 949 -100914578.8798 1058 949 -59481123.99205 1059 949 145867.1889033 1060 949 -4368145.660696 1061 949 26571164.39647 1074 949 -7638888.891398 1075 949 -32044400.84822 1076 949 -14635369.28198 1077 949 -173879.5273452 1078 949 -14404613.18541 1079 949 4846854.379944 1080 949 9194679.008118 1081 949 -21638847.13778 1082 949 14725306.89276 950 950 609581923.258 963 950 -27181697.16107 964 950 -13597032.66211 965 950 300666.5953339 966 950 11311019.93814 967 950 19699845.86993 968 950 116805122.9509 969 950 6893082.211243 970 950 -9814986.833818 971 950 1302187.56453 1041 950 16940556.61269 1042 950 -20328027.02691 1043 950 -117335177.7428 1056 950 -21490653.15616 1057 950 -57645971.82207 1058 950 -200746134.8472 1059 950 -5288514.808431 1060 950 13035968.8684 1061 950 -130215372.7727 1074 950 -20840736.7982 1075 950 -14635369.28198 1076 950 -64147829.60048 1077 950 -39819358.2705 1078 950 4553577.796946 1079 950 -52810527.24323 1080 950 -7468599.960305 1081 950 12732043.03141 1082 950 -14401697.43494 951 951 736105860.3775 952 951 -2.98023223877e-07 953 951 -10185311.55874 954 951 73722278.29235 955 951 -3.725290298462e-07 956 951 -2546327.890939 972 951 -60726571.61129 973 951 6.407499313354e-07 974 951 5092655.779359 975 951 -44447793.81348 976 951 30555555.55054 977 951 29728025.052 1044 951 -67815699.74408 1045 951 2.041459083557e-06 1046 951 57072469.49195 1047 951 -10820592.87768 1048 951 -7638888.891398 1049 951 7154402.099879 1062 951 -12957512.05534 1063 951 5.960464477539e-08 1064 951 -2546327.890928 1065 951 19546554.40623 1066 951 -1.84029340744e-06 1067 951 -636581.9730468 1083 951 -61096866.41184 1084 951 -1.631677150726e-06 1085 951 -54526141.60101 1086 951 -10000259.54407 1087 951 7638888.891397 1088 951 -6517820.126831 952 952 662768381.9265 953 952 122220705.6783 954 952 -2.682209014893e-07 955 952 -42388655.88811 956 952 -61110352.83913 972 952 8.642673492432e-07 973 952 73718732.1729 974 952 30555176.43462 975 952 30555555.55054 976 952 -35280609.00258 977 952 -16652588.21716 1044 952 2.004206180573e-06 1045 952 -34204373.78147 1046 952 7638794.112417 1047 952 -7638888.891398 1048 952 -8528796.673826 1049 952 7760464.058704 1062 952 2.98023223877e-08 1063 952 -31291881.67713 1064 952 30555176.43461 1065 952 -1.668930053711e-06 1066 952 -9481179.15318 1067 952 29361300.66432 1083 952 -1.691281795502e-06 1084 952 -27485540.44924 1085 952 7638794.112417 1086 952 7638888.891397 1087 952 -7708463.340222 1088 952 6996575.169565 953 953 1085657360.643 954 953 -2546327.890939 955 953 -61110352.83913 956 953 75046406.47269 972 953 5092655.779359 973 953 30555176.43462 974 953 178931711.3263 975 953 30109969.49619 976 953 -16958143.77251 977 953 -8866000.069825 1044 953 57454413.93615 1045 953 7638794.112417 1046 953 -95624557.03646 1047 953 7154402.099879 1048 953 7760464.058704 1049 953 -1439551.802109 1062 953 -2546327.890927 1063 953 30555176.43461 1064 953 -253876265.6798 1065 953 -636581.9730468 1066 953 29666856.21968 1067 953 21737561.15826 1083 953 -54908086.04521 1084 953 7638794.112417 1085 953 -77707668.15051 1086 953 -6517820.126831 1087 953 6996575.169565 1088 953 748003.7541653 954 954 736105860.3775 955 954 -2.98023223877e-07 956 954 -10185311.55874 957 954 73722278.29235 958 954 -3.725290298462e-07 959 954 -2546327.890939 972 954 -41010293.81404 973 954 -30555555.55054 974 954 -27563641.60526 975 954 -60726571.61129 976 954 6.407499313354e-07 977 954 5092655.779359 978 954 -44447793.81348 979 954 30555555.55054 980 954 29728025.052 1044 954 -36875280.38624 1045 954 7638888.891399 1046 954 21477318.77125 1047 954 -67815699.74408 1048 954 2.041459083557e-06 1049 954 57072469.49195 1050 954 -10820592.87768 1051 954 -7638888.891398 1052 954 7154402.099879 1062 954 -81234695.57722 1063 954 1.624226570129e-06 1064 954 -636581.9730444 1065 954 -12957512.05534 1066 954 5.960464477539e-08 1067 954 -2546327.890928 1068 954 19546554.40623 1069 954 -1.84029340744e-06 1070 954 -636581.9730468 1083 954 -34336197.05207 1084 954 -7638888.891398 1085 954 -20840736.7982 1086 954 -61096866.41184 1087 954 -1.631677150726e-06 1088 954 -54526141.60101 1089 954 -10000259.54407 1090 954 7638888.891397 1091 954 -6517820.126831 955 955 662768381.9265 956 955 122220705.6783 957 955 -2.682209014893e-07 958 955 -42388655.88811 959 955 -61110352.83913 972 955 -30555555.55054 973 955 -31843109.00315 974 955 -13902588.21746 975 955 8.642673492432e-07 976 955 73718732.1729 977 955 30555176.43462 978 955 30555555.55054 979 955 -35280609.00258 980 955 -16652588.21716 1044 955 7638888.891399 1045 955 -34583484.18238 1046 955 -15399258.17112 1047 955 2.004206180573e-06 1048 955 -34204373.78147 1049 955 7638794.112417 1050 955 -7638888.891398 1051 955 -8528796.673826 1052 955 7760464.058704 1062 955 1.564621925354e-06 1063 955 -110262429.1366 1064 955 -59916477.09895 1065 955 2.98023223877e-08 1066 955 -31291881.67713 1067 955 30555176.43461 1068 955 -1.668930053711e-06 1069 955 -9481179.15318 1070 955 29361300.66432 1083 955 -7638888.891398 1084 955 -32044400.84822 1085 955 -14635369.28198 1086 955 -1.691281795502e-06 1087 955 -27485540.44924 1088 955 7638794.112417 1089 955 7638888.891397 1090 955 -7708463.340222 1091 955 6996575.169565 956 956 1085657360.643 957 956 -2546327.890939 958 956 -61110352.83913 959 956 75046406.47269 972 956 -27181697.16107 973 956 -13597032.66211 974 956 300666.5953339 975 956 5092655.779359 976 956 30555176.43462 977 956 178931711.3263 978 956 30109969.49619 979 956 -16958143.77251 980 956 -8866000.069825 1044 956 21477318.77125 1045 956 -15399258.17112 1046 956 -70918718.4916 1047 956 57454413.93615 1048 956 7638794.112417 1049 956 -95624557.03646 1050 956 7154402.099879 1051 956 7760464.058704 1052 956 -1439551.802109 1062 956 -636581.9730439 1063 956 -60222032.6543 1064 956 -247012438.7976 1065 956 -2546327.890927 1066 956 30555176.43461 1067 956 -253876265.6798 1068 956 -636581.9730468 1069 956 29666856.21968 1070 956 21737561.15826 1083 956 -20840736.7982 1084 956 -14635369.28198 1085 956 -64147829.60048 1086 956 -54908086.04521 1087 956 7638794.112417 1088 956 -77707668.15051 1089 956 -6517820.126831 1090 956 6996575.169565 1091 956 748003.7541653 957 957 736105860.3775 958 957 -2.98023223877e-07 959 957 -10185311.55874 960 957 73722278.29235 961 957 -3.725290298462e-07 962 957 -2546327.890939 975 957 -41010293.81404 976 957 -30555555.55054 977 957 -27563641.60526 978 957 -60726571.61129 979 957 6.407499313354e-07 980 957 5092655.779359 981 957 -44447793.81348 982 957 30555555.55054 983 957 29728025.052 1047 957 -36875280.38624 1048 957 7638888.891399 1049 957 21477318.77125 1050 957 -67815699.74408 1051 957 2.041459083557e-06 1052 957 57072469.49195 1053 957 -10820592.87768 1054 957 -7638888.891398 1055 957 7154402.099879 1065 957 -81234695.57722 1066 957 1.624226570129e-06 1067 957 -636581.9730444 1068 957 -12957512.05534 1069 957 5.960464477539e-08 1070 957 -2546327.890928 1071 957 19546554.40623 1072 957 -1.84029340744e-06 1073 957 -636581.9730468 1086 957 -34336197.05207 1087 957 -7638888.891398 1088 957 -20840736.7982 1089 957 -61096866.41184 1090 957 -1.631677150726e-06 1091 957 -54526141.60101 1092 957 -10000259.54407 1093 957 7638888.891397 1094 957 -6517820.126831 958 958 662768381.9265 959 958 122220705.6783 960 958 -2.682209014893e-07 961 958 -42388655.88811 962 958 -61110352.83913 975 958 -30555555.55054 976 958 -31843109.00315 977 958 -13902588.21746 978 958 8.642673492432e-07 979 958 73718732.1729 980 958 30555176.43462 981 958 30555555.55054 982 958 -35280609.00258 983 958 -16652588.21716 1047 958 7638888.891399 1048 958 -34583484.18238 1049 958 -15399258.17112 1050 958 2.004206180573e-06 1051 958 -34204373.78147 1052 958 7638794.112417 1053 958 -7638888.891398 1054 958 -8528796.673826 1055 958 7760464.058704 1065 958 1.564621925354e-06 1066 958 -110262429.1366 1067 958 -59916477.09895 1068 958 2.98023223877e-08 1069 958 -31291881.67713 1070 958 30555176.43461 1071 958 -1.668930053711e-06 1072 958 -9481179.15318 1073 958 29361300.66432 1086 958 -7638888.891398 1087 958 -32044400.84822 1088 958 -14635369.28198 1089 958 -1.691281795502e-06 1090 958 -27485540.44924 1091 958 7638794.112417 1092 958 7638888.891397 1093 958 -7708463.340222 1094 958 6996575.169565 959 959 1085657360.643 960 959 -2546327.890939 961 959 -61110352.83913 962 959 75046406.47269 975 959 -27181697.16107 976 959 -13597032.66211 977 959 300666.5953339 978 959 5092655.779359 979 959 30555176.43462 980 959 178931711.3263 981 959 30109969.49619 982 959 -16958143.77251 983 959 -8866000.069825 1047 959 21477318.77125 1048 959 -15399258.17112 1049 959 -70918718.4916 1050 959 57454413.93615 1051 959 7638794.112417 1052 959 -95624557.03646 1053 959 7154402.099879 1054 959 7760464.058704 1055 959 -1439551.802109 1065 959 -636581.9730439 1066 959 -60222032.6543 1067 959 -247012438.7976 1068 959 -2546327.890927 1069 959 30555176.43461 1070 959 -253876265.6798 1071 959 -636581.9730468 1072 959 29666856.21968 1073 959 21737561.15826 1086 959 -20840736.7982 1087 959 -14635369.28198 1088 959 -64147829.60048 1089 959 -54908086.04521 1090 959 7638794.112417 1091 959 -77707668.15051 1092 959 -6517820.126831 1093 959 6996575.169565 1094 959 748003.7541653 960 960 736105860.3775 961 960 -2.98023223877e-07 962 960 -10185311.55874 963 960 73722278.29235 964 960 -3.725290298462e-07 965 960 -2546327.890939 978 960 -41010293.81404 979 960 -30555555.55054 980 960 -27563641.60526 981 960 -60726571.61129 982 960 6.407499313354e-07 983 960 5092655.779359 984 960 -44447793.81348 985 960 30555555.55054 986 960 29728025.052 1050 960 -36875280.38624 1051 960 7638888.891399 1052 960 21477318.77125 1053 960 -67815699.74408 1054 960 2.041459083557e-06 1055 960 57072469.49195 1056 960 -10820592.87768 1057 960 -7638888.891398 1058 960 7154402.099879 1068 960 -81234695.57722 1069 960 1.624226570129e-06 1070 960 -636581.9730444 1071 960 -12957512.05534 1072 960 5.960464477539e-08 1073 960 -2546327.890928 1074 960 19546554.40623 1075 960 -1.84029340744e-06 1076 960 -636581.9730468 1089 960 -34336197.05207 1090 960 -7638888.891398 1091 960 -20840736.7982 1092 960 -61096866.41184 1093 960 -1.631677150726e-06 1094 960 -54526141.60101 1095 960 -10000259.54407 1096 960 7638888.891397 1097 960 -6517820.126831 961 961 662768381.9265 962 961 122220705.6783 963 961 -2.682209014893e-07 964 961 -42388655.88811 965 961 -61110352.83913 978 961 -30555555.55054 979 961 -31843109.00315 980 961 -13902588.21746 981 961 8.642673492432e-07 982 961 73718732.1729 983 961 30555176.43462 984 961 30555555.55054 985 961 -35280609.00258 986 961 -16652588.21716 1050 961 7638888.891399 1051 961 -34583484.18238 1052 961 -15399258.17112 1053 961 2.004206180573e-06 1054 961 -34204373.78147 1055 961 7638794.112417 1056 961 -7638888.891398 1057 961 -8528796.673826 1058 961 7760464.058704 1068 961 1.564621925354e-06 1069 961 -110262429.1366 1070 961 -59916477.09895 1071 961 2.98023223877e-08 1072 961 -31291881.67713 1073 961 30555176.43461 1074 961 -1.668930053711e-06 1075 961 -9481179.15318 1076 961 29361300.66432 1089 961 -7638888.891398 1090 961 -32044400.84822 1091 961 -14635369.28198 1092 961 -1.691281795502e-06 1093 961 -27485540.44924 1094 961 7638794.112417 1095 961 7638888.891397 1096 961 -7708463.340222 1097 961 6996575.169565 962 962 1085657360.643 963 962 -2546327.890939 964 962 -61110352.83913 965 962 75046406.47269 978 962 -27181697.16107 979 962 -13597032.66211 980 962 300666.5953339 981 962 5092655.779359 982 962 30555176.43462 983 962 178931711.3263 984 962 30109969.49619 985 962 -16958143.77251 986 962 -8866000.069825 1050 962 21477318.77125 1051 962 -15399258.17112 1052 962 -70918718.4916 1053 962 57454413.93615 1054 962 7638794.112417 1055 962 -95624557.03646 1056 962 7154402.099879 1057 962 7760464.058704 1058 962 -1439551.802109 1068 962 -636581.9730439 1069 962 -60222032.6543 1070 962 -247012438.7976 1071 962 -2546327.890927 1072 962 30555176.43461 1073 962 -253876265.6798 1074 962 -636581.9730468 1075 962 29666856.21968 1076 962 21737561.15826 1089 962 -20840736.7982 1090 962 -14635369.28198 1091 962 -64147829.60048 1092 962 -54908086.04521 1093 962 7638794.112417 1094 962 -77707668.15051 1095 962 -6517820.126831 1096 962 6996575.169565 1097 962 748003.7541653 963 963 736105860.3775 964 963 -2.98023223877e-07 965 963 -10185311.55874 966 963 73722278.29235 967 963 -3.725290298462e-07 968 963 -2546327.890939 981 963 -41010293.81404 982 963 -30555555.55054 983 963 -27563641.60526 984 963 -60726571.61129 985 963 6.407499313354e-07 986 963 5092655.779359 987 963 -44447793.81348 988 963 30555555.55054 989 963 29728025.052 1053 963 -36875280.38624 1054 963 7638888.891399 1055 963 21477318.77125 1056 963 -67815699.74408 1057 963 2.041459083557e-06 1058 963 57072469.49195 1059 963 -10820592.87768 1060 963 -7638888.891398 1061 963 7154402.099879 1071 963 -81234695.57722 1072 963 1.624226570129e-06 1073 963 -636581.9730444 1074 963 -12957512.05534 1075 963 5.960464477539e-08 1076 963 -2546327.890928 1077 963 19546554.40623 1078 963 -1.84029340744e-06 1079 963 -636581.9730468 1092 963 -34336197.05207 1093 963 -7638888.891398 1094 963 -20840736.7982 1095 963 -61096866.41184 1096 963 -1.631677150726e-06 1097 963 -54526141.60101 1098 963 -10000259.54407 1099 963 7638888.891397 1100 963 -6517820.126831 964 964 662768381.9265 965 964 122220705.6783 966 964 -2.682209014893e-07 967 964 -42388655.88811 968 964 -61110352.83913 981 964 -30555555.55054 982 964 -31843109.00315 983 964 -13902588.21746 984 964 8.642673492432e-07 985 964 73718732.1729 986 964 30555176.43462 987 964 30555555.55054 988 964 -35280609.00258 989 964 -16652588.21716 1053 964 7638888.891399 1054 964 -34583484.18238 1055 964 -15399258.17112 1056 964 2.004206180573e-06 1057 964 -34204373.78147 1058 964 7638794.112417 1059 964 -7638888.891398 1060 964 -8528796.673826 1061 964 7760464.058704 1071 964 1.564621925354e-06 1072 964 -110262429.1366 1073 964 -59916477.09895 1074 964 2.98023223877e-08 1075 964 -31291881.67713 1076 964 30555176.43461 1077 964 -1.668930053711e-06 1078 964 -9481179.15318 1079 964 29361300.66432 1092 964 -7638888.891398 1093 964 -32044400.84822 1094 964 -14635369.28198 1095 964 -1.691281795502e-06 1096 964 -27485540.44924 1097 964 7638794.112417 1098 964 7638888.891397 1099 964 -7708463.340222 1100 964 6996575.169565 965 965 1085657360.643 966 965 -2546327.890939 967 965 -61110352.83913 968 965 75046406.47269 981 965 -27181697.16107 982 965 -13597032.66211 983 965 300666.5953339 984 965 5092655.779359 985 965 30555176.43462 986 965 178931711.3263 987 965 30109969.49619 988 965 -16958143.77251 989 965 -8866000.069825 1053 965 21477318.77125 1054 965 -15399258.17112 1055 965 -70918718.4916 1056 965 57454413.93615 1057 965 7638794.112417 1058 965 -95624557.03646 1059 965 7154402.099879 1060 965 7760464.058704 1061 965 -1439551.802109 1071 965 -636581.9730439 1072 965 -60222032.6543 1073 965 -247012438.7976 1074 965 -2546327.890927 1075 965 30555176.43461 1076 965 -253876265.6798 1077 965 -636581.9730468 1078 965 29666856.21968 1079 965 21737561.15826 1092 965 -20840736.7982 1093 965 -14635369.28198 1094 965 -64147829.60048 1095 965 -54908086.04521 1096 965 7638794.112417 1097 965 -77707668.15051 1098 965 -6517820.126831 1099 965 6996575.169565 1100 965 748003.7541653 966 966 618356973.1438 967 966 10078107.65728 968 966 -9804310.999607 969 966 -11503867.92228 970 966 -46894042.93799 971 966 -6199331.236185 984 966 -41010293.81404 985 966 -30555555.55054 986 966 -27563641.60526 987 966 -42028446.52583 988 966 13616733.15273 989 966 872010.5456597 990 966 -16600070.15644 991 966 23894720.23701 992 966 3821797.162853 1056 966 -36875280.38624 1057 966 7638888.891399 1058 966 21477318.77125 1059 966 -54114504.27018 1060 966 -173879.5273432 1061 966 44902247.92658 1074 966 -81234695.57722 1075 966 1.624226570129e-06 1076 966 -636581.9730444 1077 966 -876482.9019934 1078 966 2519526.915563 1079 966 -2460507.026248 1080 966 -27045633.06006 1081 966 -11723510.74027 1082 966 12416379.47746 1095 966 -34336197.05207 1096 966 -7638888.891398 1097 966 -20840736.7982 1098 966 -53125239.25827 1099 966 3404183.289858 1100 966 -48696407.07857 1101 966 -13272078.15617 1102 966 5973680.062196 1103 966 -6110175.711185 967 967 624557688.2301 968 967 75196749.74012 969 967 -46931392.72256 970 967 -125004050.7393 971 967 -12917601.41412 984 967 -30555555.55054 985 967 -31843109.00315 986 967 -13902588.21746 987 967 13616733.15273 988 967 72567559.79109 989 967 16835459.46007 990 967 23894720.23701 991 967 -56476855.55795 992 967 -6842420.271103 1056 967 7638888.891399 1057 967 -34583484.18238 1058 967 -15399258.17112 1059 967 -164542.0811964 1060 967 -21525301.41066 1061 967 5061950.597479 1074 967 1.564621925354e-06 1075 967 -110262429.1366 1076 967 -59916477.09895 1077 967 2519526.915562 1078 967 673695.8703558 1079 967 18791643.5427 1080 967 -11732848.18642 1081 967 -55420678.77829 1082 967 41466871.49251 1095 967 -7638888.891398 1096 967 -32044400.84822 1097 967 -14635369.28198 1098 967 3404183.289858 1099 967 -24476237.66492 1100 967 9715809.309978 1101 967 5973680.062196 1102 967 -23241274.51146 1103 967 14956061.60352 968 968 853460318.6126 969 968 -6587303.084687 970 968 -14142186.07844 971 968 48525682.42527 984 968 -27181697.16107 985 968 -13597032.66211 986 968 300666.5953339 987 968 10420621.6552 988 968 17141015.01558 989 968 158859271.764 990 968 4585686.05124 991 968 -6842420.271103 992 968 13285136.71385 1056 968 21477318.77125 1057 968 -15399258.17112 1058 968 -70918718.4916 1059 968 42993884.38014 1060 968 5382550.883186 1061 968 -71799029.17722 1074 968 -636581.9730439 1075 968 -60222032.6543 1076 968 -247012438.7976 1077 968 -2443130.228498 1078 968 18805545.65999 1079 968 -201210190.2793 1080 968 12423412.7955 1081 968 41458540.64078 1082 968 -52321022.26258 1095 968 -20840736.7982 1096 968 -14635369.28198 1097 968 -64147829.60048 1098 968 -46786684.85391 1099 968 9715809.311131 1100 968 -73933522.36379 1101 968 -6110175.711185 1102 968 14956061.60352 1103 968 -21004210.79327 969 969 442875011.6958 970 969 8398998.740506 971 969 3587449.702806 987 969 -37900199.70542 988 969 -29669012.21209 989 969 -4192679.813966 990 969 23914388.45506 991 969 18670678.36176 992 969 1284371.73895 993 969 79386790.30619 994 969 -13623383.55779 995 969 -141175.7616777 996 969 2420595.755201 997 969 26375395.37582 998 969 684032.7841115 1059 969 -17822239.3706 1060 969 9194679.008118 1061 969 9770196.805889 1077 969 -41046754.09296 1078 969 -11732848.18642 1079 969 -15622467.2995 1080 969 -55034990.49984 1081 969 2099749.686162 1082 969 10931445.7583 1098 969 -23479926.51996 1099 969 -7417253.056677 1100 969 -14997301.90306 1101 969 -65005495.31362 1102 969 4667669.592739 1103 969 -54435157.05621 1104 969 -28235802.42725 1105 969 -3405845.891125 1106 969 10910713.0034 1107 969 -20886441.98794 1108 969 6593848.847203 1109 969 -13257984.86388 970 970 541110906.0816 971 970 22621038.86925 987 970 -29669012.21209 988 970 -18428194.76081 989 970 -786622.899826 990 970 18670678.36176 991 970 137453909.9061 992 970 4611190.584816 993 970 -1401161.337575 994 970 19991930.1348 995 970 -593772.9185854 996 970 26375395.37582 997 970 -8693351.225763 998 970 -679725.193279 1059 970 6129786.005412 1060 970 -29631847.07945 1061 970 -18404535.59174 1077 970 -11723510.74027 1078 970 -69421799.81119 1079 970 -48221146.21121 1080 970 2099749.686162 1081 970 -30476016.89128 1082 970 7201253.461998 1098 970 -7417253.056677 1099 970 -18611925.28141 1100 970 -11356377.95096 1101 970 4667669.592739 1102 970 -36620614.93688 1103 970 6659742.089658 1104 970 -350290.3345659 1105 970 -43084517.47741 1106 970 33184890.09814 1107 970 6593848.847203 1108 970 -23664928.73455 1109 970 16496735.37374 971 971 742023994.5875 987 971 -3810735.369772 988 971 -481067.3444712 989 971 19538445.84481 990 971 2812149.516478 991 971 4916746.140321 992 971 248223025.1829 993 971 240768.6827077 994 971 -593772.9185855 995 971 164839361.9377 996 971 1065977.228305 997 971 -679725.193279 998 971 60791642.10178 1059 971 6513464.53726 1060 971 -21008507.25432 1061 971 -35716363.94607 1077 971 -15612123.92226 1078 971 -48226237.0269 1079 971 -89657345.01698 1080 971 -11047443.12698 1081 971 2590596.573928 1082 971 -256503983.8706 1098 971 -14997301.90306 1099 971 -11356377.95096 1100 971 -32461726.1069 1101 971 -54435157.05583 1102 971 6659742.090811 1103 971 -127235156.8213 1104 971 2785713.002169 1105 971 33184890.09814 1106 971 -87010159.53147 1107 971 -13257984.86388 1108 971 16496735.37374 1109 971 -42112998.60584 972 972 368052930.1888 973 972 -5.960464477539e-07 974 972 -5092655.779371 975 972 36918430.8128 976 972 6111111.110107 977 972 3501141.609773 1062 972 -67815699.74408 1063 972 2.041459083557e-06 1064 972 57072469.49195 1065 972 -10820592.87768 1066 972 -7638888.891398 1067 972 7154402.099879 1083 972 -6536047.694301 1084 972 -2.086162567139e-07 1085 972 -11516358.3887 1086 972 9773277.203117 1087 972 1527777.778279 1088 972 -1685513.209194 973 973 331384190.9633 974 973 61110352.83914 975 973 -6111111.110108 976 973 -21137036.27743 977 973 -30249620.86406 1062 973 2.004206180573e-06 1063 973 -34204373.78147 1064 973 7638794.112417 1065 973 -7638888.891398 1066 973 -8528796.673826 1067 973 7760464.058704 1083 973 4.768371582031e-07 1084 973 -15703232.5052 1085 973 15277588.21731 1086 973 -1527777.77828 1087 973 -4740589.576589 1088 973 14757039.22107 974 974 542828680.3217 975 974 -7957191.721679 976 974 -30860731.97507 977 974 37675981.01402 1062 974 57454413.93615 1063 974 7638794.112417 1064 974 -95624557.03646 1065 974 7154402.099879 1066 974 7760464.058704 1067 974 -1439551.802109 1083 974 10879752.71874 1084 974 15277588.21731 1085 974 -127090910.6176 1086 974 1048931.236148 1087 974 14757039.22092 1088 974 10868780.57913 975 975 368052930.1888 976 975 -5.960464477539e-07 977 975 -5092655.779371 978 975 36918430.8128 979 975 6111111.110107 980 975 3501141.609773 1062 975 -36875280.38624 1063 975 7638888.891399 1064 975 21477318.77125 1065 975 -67815699.74408 1066 975 2.041459083557e-06 1067 975 57072469.49195 1068 975 -10820592.87768 1069 975 -7638888.891398 1070 975 7154402.099879 1083 975 -40617347.78861 1084 975 -1527777.778279 1085 975 -4550096.543467 1086 975 -6536047.694301 1087 975 -2.086162567139e-07 1088 975 -11516358.3887 1089 975 9773277.203117 1090 975 1527777.778279 1091 975 -1685513.209194 976 976 331384190.9633 977 976 61110352.83914 978 976 -6111111.110108 979 976 -21137036.27743 980 976 -30249620.86406 1062 976 7638888.891399 1063 976 -34583484.18238 1064 976 -15399258.17112 1065 976 2.004206180573e-06 1066 976 -34204373.78147 1067 976 7638794.112417 1068 976 -7638888.891398 1069 976 -8528796.673826 1070 976 7760464.058704 1083 976 1527777.77828 1084 976 -55131214.56832 1085 976 -30034627.43839 1086 976 4.768371582031e-07 1087 976 -15703232.5052 1088 976 15277588.21731 1089 976 -1527777.77828 1090 976 -4740589.576589 1091 976 14757039.22107 977 977 542828680.3217 978 977 -7957191.721679 979 977 -30860731.97507 980 977 37675981.01402 1062 977 21477318.77125 1063 977 -15399258.17112 1064 977 -70918718.4916 1065 977 57454413.93615 1066 977 7638794.112417 1067 977 -95624557.03646 1068 977 7154402.099879 1069 977 7760464.058704 1070 977 -1439551.802109 1083 977 3913514.570423 1084 977 -30034627.43824 1085 977 -123506219.3988 1086 977 10879752.71874 1087 977 15277588.21731 1088 977 -127090910.6176 1089 977 1048931.236148 1090 977 14757039.22092 1091 977 10868780.57913 978 978 368052930.1888 979 978 -5.960464477539e-07 980 978 -5092655.779371 981 978 36918430.8128 982 978 6111111.110107 983 978 3501141.609773 1065 978 -36875280.38624 1066 978 7638888.891399 1067 978 21477318.77125 1068 978 -67815699.74408 1069 978 2.041459083557e-06 1070 978 57072469.49195 1071 978 -10820592.87768 1072 978 -7638888.891398 1073 978 7154402.099879 1086 978 -40617347.78861 1087 978 -1527777.778279 1088 978 -4550096.543467 1089 978 -6536047.694301 1090 978 -2.086162567139e-07 1091 978 -11516358.3887 1092 978 9773277.203117 1093 978 1527777.778279 1094 978 -1685513.209194 979 979 331384190.9633 980 979 61110352.83914 981 979 -6111111.110108 982 979 -21137036.27743 983 979 -30249620.86406 1065 979 7638888.891399 1066 979 -34583484.18238 1067 979 -15399258.17112 1068 979 2.004206180573e-06 1069 979 -34204373.78147 1070 979 7638794.112417 1071 979 -7638888.891398 1072 979 -8528796.673826 1073 979 7760464.058704 1086 979 1527777.77828 1087 979 -55131214.56832 1088 979 -30034627.43839 1089 979 4.768371582031e-07 1090 979 -15703232.5052 1091 979 15277588.21731 1092 979 -1527777.77828 1093 979 -4740589.576589 1094 979 14757039.22107 980 980 542828680.3217 981 980 -7957191.721679 982 980 -30860731.97507 983 980 37675981.01402 1065 980 21477318.77125 1066 980 -15399258.17112 1067 980 -70918718.4916 1068 980 57454413.93615 1069 980 7638794.112417 1070 980 -95624557.03646 1071 980 7154402.099879 1072 980 7760464.058704 1073 980 -1439551.802109 1086 980 3913514.570423 1087 980 -30034627.43824 1088 980 -123506219.3988 1089 980 10879752.71874 1090 980 15277588.21731 1091 980 -127090910.6176 1092 980 1048931.236148 1093 980 14757039.22092 1094 980 10868780.57913 981 981 368052930.1888 982 981 -5.960464477539e-07 983 981 -5092655.779371 984 981 36918430.8128 985 981 6111111.110107 986 981 3501141.609773 1068 981 -36875280.38624 1069 981 7638888.891399 1070 981 21477318.77125 1071 981 -67815699.74408 1072 981 2.041459083557e-06 1073 981 57072469.49195 1074 981 -10820592.87768 1075 981 -7638888.891398 1076 981 7154402.099879 1089 981 -40617347.78861 1090 981 -1527777.778279 1091 981 -4550096.543467 1092 981 -6536047.694301 1093 981 -2.086162567139e-07 1094 981 -11516358.3887 1095 981 9773277.203117 1096 981 1527777.778279 1097 981 -1685513.209194 982 982 331384190.9633 983 982 61110352.83914 984 982 -6111111.110108 985 982 -21137036.27743 986 982 -30249620.86406 1068 982 7638888.891399 1069 982 -34583484.18238 1070 982 -15399258.17112 1071 982 2.004206180573e-06 1072 982 -34204373.78147 1073 982 7638794.112417 1074 982 -7638888.891398 1075 982 -8528796.673826 1076 982 7760464.058704 1089 982 1527777.77828 1090 982 -55131214.56832 1091 982 -30034627.43839 1092 982 4.768371582031e-07 1093 982 -15703232.5052 1094 982 15277588.21731 1095 982 -1527777.77828 1096 982 -4740589.576589 1097 982 14757039.22107 983 983 542828680.3217 984 983 -7957191.721679 985 983 -30860731.97507 986 983 37675981.01402 1068 983 21477318.77125 1069 983 -15399258.17112 1070 983 -70918718.4916 1071 983 57454413.93615 1072 983 7638794.112417 1073 983 -95624557.03646 1074 983 7154402.099879 1075 983 7760464.058704 1076 983 -1439551.802109 1089 983 3913514.570423 1090 983 -30034627.43824 1091 983 -123506219.3988 1092 983 10879752.71874 1093 983 15277588.21731 1094 983 -127090910.6176 1095 983 1048931.236148 1096 983 14757039.22092 1097 983 10868780.57913 984 984 368052930.1888 985 984 -5.960464477539e-07 986 984 -5092655.779371 987 984 36918430.8128 988 984 6111111.110107 989 984 3501141.609773 1071 984 -36875280.38624 1072 984 7638888.891399 1073 984 21477318.77125 1074 984 -67815699.74408 1075 984 2.041459083557e-06 1076 984 57072469.49195 1077 984 -10820592.87768 1078 984 -7638888.891398 1079 984 7154402.099879 1092 984 -40617347.78861 1093 984 -1527777.778279 1094 984 -4550096.543467 1095 984 -6536047.694301 1096 984 -2.086162567139e-07 1097 984 -11516358.3887 1098 984 9773277.203117 1099 984 1527777.778279 1100 984 -1685513.209194 985 985 331384190.9633 986 985 61110352.83914 987 985 -6111111.110108 988 985 -21137036.27743 989 985 -30249620.86406 1071 985 7638888.891399 1072 985 -34583484.18238 1073 985 -15399258.17112 1074 985 2.004206180573e-06 1075 985 -34204373.78147 1076 985 7638794.112417 1077 985 -7638888.891398 1078 985 -8528796.673826 1079 985 7760464.058704 1092 985 1527777.77828 1093 985 -55131214.56832 1094 985 -30034627.43839 1095 985 4.768371582031e-07 1096 985 -15703232.5052 1097 985 15277588.21731 1098 985 -1527777.77828 1099 985 -4740589.576589 1100 985 14757039.22107 986 986 542828680.3217 987 986 -7957191.721679 988 986 -30860731.97507 989 986 37675981.01402 1071 986 21477318.77125 1072 986 -15399258.17112 1073 986 -70918718.4916 1074 986 57454413.93615 1075 986 7638794.112417 1076 986 -95624557.03646 1077 986 7154402.099879 1078 986 7760464.058704 1079 986 -1439551.802109 1092 986 3913514.570423 1093 986 -30034627.43824 1094 986 -123506219.3988 1095 986 10879752.71874 1096 986 15277588.21731 1097 986 -127090910.6176 1098 986 1048931.236148 1099 986 14757039.22092 1100 986 10868780.57913 987 987 349156585.9481 988 987 886715.7050995 989 987 -27554881.40078 990 987 34686442.2226 991 987 -9278881.086166 992 987 -2735560.435943 1074 987 -36875280.38624 1075 987 7638888.891399 1076 987 21477318.77125 1077 987 -60781458.00658 1078 987 3404183.289861 1079 987 51519565.1286 1080 987 -20120523.74107 1081 987 -7417253.056677 1082 987 12996448.10614 1095 987 -40617347.78861 1096 987 -1527777.778279 1097 987 -4550096.543467 1098 987 -11601369.55203 1099 987 221678.9263838 1100 987 -17131637.01904 1101 987 -13469946.66151 1102 987 -2319720.272684 1103 987 3638957.111577 988 988 322798770.6263 989 988 37560511.47895 990 988 -21501103.30638 991 988 -24135471.43778 992 988 -6401583.40246 1074 988 7638888.891399 1075 988 -34583484.18238 1076 988 -15399258.17112 1077 988 3404183.28986 1078 988 -32132456.41324 1079 988 -1221690.688151 1080 988 -7417253.056677 1081 988 -15252522.50252 1082 988 11039455.38973 1095 988 1527777.77828 1096 988 -55131214.56832 1097 988 -30034627.43839 1098 988 221678.9263841 1099 988 -18190823.38574 1100 988 9390127.87436 1101 988 -5375275.829243 1102 988 -28175425.08385 1103 988 26225993.03356 989 989 503393397.4494 990 989 -4645282.657855 991 989 -6707138.957965 992 989 79758954.50096 1074 989 21477318.77125 1075 989 -15399258.17112 1076 989 -70918718.4916 1077 989 49609842.90663 1078 989 -1221690.687148 1079 989 -94350105.69262 1080 989 12996448.10614 1081 989 11039455.38973 1082 989 -23503318.69652 1095 989 3913514.570423 1096 989 -30034627.43824 1097 989 -123506219.3988 1098 989 5263918.532836 1099 989 9390127.87436 1100 989 -137859693.4611 1101 989 8664790.445306 1102 989 26225993.03241 1103 989 -39104413.95542 990 990 366758257.2118 991 990 16768677.5657 992 990 -2112503.704189 993 990 -37682552.38635 994 990 -34735715.72525 995 990 -1034717.215718 996 990 48319481.61887 997 990 -3097257.132841 998 990 -1133109.766727 1077 990 -19678307.32513 1078 990 5973680.062196 1079 990 8212046.515743 1080 990 -66802346.00857 1081 990 4667669.592741 1082 990 55459287.37057 1098 990 -24485575.13151 1099 990 -5375275.829244 1100 990 -10605487.33072 1101 990 -49124876.9151 1102 990 4192169.39349 1103 990 -10562709.25846 1104 990 -30912229.02827 1105 990 -8683928.935591 1106 990 20053820.70261 1107 990 -25803993.24156 1108 990 -774314.2835916 1109 990 4143597.555308 991 991 396792772.5139 992 991 11437666.13523 993 991 -34735715.72525 994 991 -23732031.77885 995 991 -679725.1932795 996 991 -15319479.35305 997 991 -10506376.67983 998 991 -2125127.853192 1077 991 5973680.062196 1078 991 -29647503.68042 1079 991 -18377271.74076 1080 991 4667669.59274 1081 991 -38417465.63183 1082 991 -4277757.90847 1098 991 -2319720.272685 1099 991 -39191053.55385 1100 991 -29503173.62402 1101 991 4192169.39349 1102 991 -41616248.08588 1103 991 2859416.535212 1104 991 -8683928.935591 1105 991 -27424598.87467 1106 991 16496735.37374 1107 991 -3829869.84015 1108 991 -40510457.82348 1109 991 32802051.3643 992 992 608782949.2713 993 992 -1034717.215718 994 992 -679725.1932796 995 992 45752961.54869 996 992 -1515054.211112 997 992 -2125127.853192 998 992 122586164.6905 1077 992 8212046.515743 1078 992 -18377271.74076 1079 992 -38087488.57717 1080 992 55459287.37019 1081 992 -4277757.907468 1082 992 -132026758.6745 1098 992 -4433820.663462 1099 992 -29503173.62502 1100 992 -68479423.20874 1101 992 11416179.62681 1102 992 2859416.535213 1103 992 -223309439.3091 1104 992 20053820.70261 1105 992 16496735.37374 1106 992 -45872668.74596 1107 992 9343319.780678 1108 992 32802051.3643 1109 992 -70377095.21823 993 993 234609876.3001 994 993 38067827.99822 995 993 586777.6138301 996 993 6982249.404681 997 993 -1930950.93539 998 993 207170.9191803 1080 993 -29485802.42768 1081 993 -350290.3345662 1082 993 -2760814.77204 1101 993 -32162229.02869 1102 993 -8683928.935592 1103 993 -20571179.31073 1104 993 -38762530.87567 1105 993 9516957.004243 1106 993 8271694.402195 1107 993 -42487619.48068 1108 993 -482737.734086 1109 993 -33689700.31943 994 994 219525569.817 995 994 593772.9185901 996 994 10291271.28482 997 994 67510895.4516 998 994 679725.1932815 1080 994 -3405845.891125 1081 994 -44334517.47785 1082 994 -33481776.55758 1101 994 -8683928.935592 1102 994 -28674598.8751 1103 994 -16836597.97054 1104 994 9516957.004243 1105 994 -42533607.49829 1106 994 6815109.89529 1107 994 2572817.822473 1108 994 -27355457.96149 1109 994 3503264.632831 995 995 399394804.6128 996 995 589115.3635656 997 995 679725.1932814 998 995 145469841.5664 1080 995 -10885814.77346 1081 995 -33481776.55758 1082 995 -90343492.86596 1101 995 -20571179.31073 1102 995 -16836597.97054 1103 995 -49206002.08042 1104 995 -7978305.595135 1105 995 -6518223.435853 1106 995 -159924632.0765 1107 995 -33689700.32068 1108 995 -3163402.036025 1109 995 -81587691.14437 996 996 189779491.4148 997 996 -21347187.30759 998 996 -903927.2691454 1080 996 -22136441.98836 1081 996 6593848.847203 1082 996 13695487.3672 1101 996 -29553993.24035 1102 996 -3829869.840151 1103 996 -9718902.442414 1104 996 -42487619.48068 1105 996 2572817.822474 1106 996 33888771.89179 1107 996 -32072854.387 1108 996 -5336796.829526 1109 996 -5139245.705715 997 997 199190650.6476 998 997 2125127.853197 1080 997 6593848.847203 1081 997 -24914928.73497 1082 997 -16836597.97054 1101 997 -774314.283592 1102 997 -44260457.82227 1103 997 -33864615.29142 1104 997 -482737.7340849 1105 997 -27355457.96149 1106 997 3503264.632831 1107 997 -5336796.829526 1108 997 -29720064.57765 1109 997 7197948.62913 998 998 331157200.1575 1080 998 13695487.3672 1081 998 -16836597.97054 1082 998 -45446331.9403 1101 998 -4137235.77266 1102 998 -33864615.29142 1103 998 -80377095.215 1104 998 33888771.89035 1105 998 -3163402.036025 1106 998 -81587691.14436 1107 998 5642143.181403 1108 998 -6135384.702013 1109 998 -129257972.624 999 999 460369459.7115 1000 999 30555555.55053 1001 999 -36969735.5824 1002 999 -133707927.5673 1003 999 -30577597.78773 1004 999 30839786.14823 1005 999 -4378484.728122 1006 999 24466486.67763 1007 999 22175044.36675 1110 999 18346673.71113 1111 999 7638888.891398 1112 999 1385379.035684 1113 999 -55802716.54489 1114 999 -7645254.369757 1115 999 -40856339.07483 1116 999 6123446.608564 1117 999 6117476.591476 1118 999 -3944940.585509 1000 1000 414508539.3263 1001 1000 70321276.71584 1002 1000 -30588618.90633 1003 1000 9973548.859403 1004 1000 42647671.20218 1005 1000 36699730.01644 1006 1000 -4378484.728126 1007 1000 -28439541.86765 1110 1000 7638888.891397 1111 1000 6880428.6391 1112 1000 26085656.47845 1113 1000 -7648437.108936 1114 1000 -19879647.51159 1115 1000 942630.1669732 1116 1000 9176214.887214 1117 1000 6123446.608565 1118 1000 4734398.284357 1001 1001 679047623.5514 1002 1001 27774811.43114 1003 1001 33778935.02398 1004 1001 94229239.45832 1005 1001 33262566.55012 1006 1001 -18959694.57843 1007 1001 -11675959.27499 1110 1001 -17965238.89317 1111 1001 10605384.60401 1112 1001 -88238208.0348 1113 1001 -41241201.16555 1114 1001 -1194514.850572 1115 1001 -36101396.81649 1116 1001 -5917410.878264 1117 1001 3156265.522905 1118 1001 16329190.95617 1002 1002 721009953.5089 1003 1002 30610661.14353 1004 1002 -34376411.47656 1005 1002 22252951.07536 1006 1002 -30577597.78774 1007 1002 -30132237.29345 1008 1002 -69150427.22048 1009 1002 7.599592208862e-07 1010 1002 6620438.369471 1011 1002 -46611023.324 1012 1002 30555555.55054 1013 1002 30109970.69972 1110 1002 -79032837.45136 1111 1002 -7648437.10893 1112 1002 55511888.47871 1113 1002 34928101.59242 1114 1002 7654802.58729 1115 1002 -8598678.217522 1116 1002 5149787.278365 1117 1002 -7645254.369755 1118 1002 4611926.752539 1119 1002 -53208020.04453 1120 1002 -1.534819602966e-06 1121 1002 -46887250.21518 1122 1002 -9746784.424485 1123 1002 7638888.891396 1124 1002 -4608097.279433 1003 1003 638480136.047 1004 1003 94719923.44838 1005 1003 -30588618.90634 1006 1003 -84734829.23983 1007 1003 -51960954.36765 1008 1003 5.662441253662e-07 1009 1003 65294942.0157 1010 1003 30555147.55986 1011 1003 30555555.55054 1012 1003 -37443799.05029 1013 1003 -16958129.33543 1110 1003 -7645254.369751 1111 1003 -43109768.41806 1112 1003 18161862.49682 1113 1003 7654802.587289 1114 1003 14294589.76961 1115 1003 23676298.37333 1116 1003 -7648437.108933 1117 1003 -21598853.37172 1118 1003 25862479.31684 1119 1003 -1.318752765656e-06 1120 1003 -19596660.10607 1121 1003 7638779.123661 1122 1003 7638888.891396 1123 1003 -7454967.735663 1124 1003 5468804.885664 1004 1004 935442848.8393 1005 1004 -29761426.14538 1006 1004 -58081061.81704 1007 1004 47500235.97878 1008 1004 3564882.814418 1009 1004 30555147.55986 1010 1004 156468480.0912 1011 1004 29728026.25477 1012 1004 -16652573.77948 1013 1004 -14634539.26698 1110 1004 55896750.56943 1111 1004 20307057.29599 1112 1004 -98048385.90041 1113 1004 -8588615.841047 1114 1004 23684348.15878 1115 1004 -153682668.3423 1116 1004 4613841.489092 1117 1004 24026705.92618 1118 1004 10774189.69233 1119 1004 -47269194.65938 1120 1004 7638779.123661 1121 1004 -56670545.31551 1122 1004 -4608097.279433 1123 1004 5468804.885664 1124 1004 1423975.212606 1005 1005 460369459.7115 1006 1005 30555555.55053 1007 1005 -36969735.5824 1008 1005 -43173523.32456 1009 1005 -30555555.55054 1010 1005 -27181695.95754 1011 1005 -133707927.5673 1012 1005 -30577597.78773 1013 1005 30839786.14823 1014 1005 -4378484.728122 1015 1005 24466486.67763 1016 1005 22175044.36675 1110 1005 -37437760.48235 1111 1005 9176214.887214 1112 1005 23123609.08966 1113 1005 -61598018.00238 1114 1005 -7648437.108935 1115 1005 -19592039.58835 1116 1005 18346673.71113 1117 1005 7638888.891398 1118 1005 1385379.035684 1119 1005 -30645221.93135 1120 1005 -7638888.891397 1121 1005 -18931013.9508 1122 1005 -55802716.54489 1123 1005 -7645254.369757 1124 1005 -40856339.07483 1125 1005 6123446.608564 1126 1005 6117476.591476 1127 1005 -3944940.585509 1006 1006 414508539.3263 1007 1006 70321276.71584 1008 1006 -30555555.55054 1009 1006 -34006299.05085 1010 1006 -13597018.22442 1011 1006 -30588618.90633 1012 1006 9973548.859403 1013 1006 42647671.20218 1014 1006 36699730.01644 1015 1006 -4378484.728126 1016 1006 -28439541.86765 1110 1006 6117476.591476 1111 1006 -37437760.48236 1112 1006 -12332056.26767 1113 1006 -7645254.369756 1114 1006 -88346658.65246 1115 1006 -53374653.70739 1116 1006 7638888.891397 1117 1006 6880428.6391 1118 1006 26085656.47845 1119 1006 -7638888.891397 1120 1006 -28353405.24253 1121 1006 -13107584.00933 1122 1006 -7648437.108936 1123 1006 -19879647.51159 1124 1006 942630.1669732 1125 1006 9176214.887214 1126 1006 6123446.608565 1127 1006 4734398.284357 1007 1007 679047623.5514 1008 1007 -27563640.40249 1009 1007 -13902573.78038 1010 1007 -5467872.601825 1011 1007 27774811.43114 1012 1007 33778935.02398 1013 1007 94229239.45832 1014 1007 33262566.55012 1015 1007 -18959694.57843 1016 1007 -11675959.27499 1110 1007 15415739.3931 1111 1007 -18498084.4015 1112 1007 -99834027.95294 1113 1007 -19583892.11655 1114 1007 -51538880.44741 1115 1007 -167219957.723 1116 1007 -17965238.89317 1117 1007 10605384.60401 1118 1007 -88238208.0348 1119 1007 -18931013.9508 1120 1007 -13107584.00933 1121 1007 -54305191.47237 1122 1007 -41241201.16555 1123 1007 -1194514.850572 1124 1007 -36101396.81649 1125 1007 -5917410.878264 1126 1007 3156265.522905 1127 1007 16329190.95617 1008 1008 703328029.7947 1009 1008 3.576278686523e-07 1010 1008 -10185321.18392 1011 1008 65298758.21399 1012 1008 -4.023313522339e-07 1013 1008 -2546330.297233 1017 1008 -69150427.22048 1018 1008 7.599592208862e-07 1019 1008 6620438.369471 1020 1008 -46611023.324 1021 1008 30555555.55054 1022 1008 30109970.69972 1113 1008 -59010186.71026 1114 1008 1.542270183563e-06 1115 1008 49433583.10251 1116 1008 -10337951.09135 1117 1008 -7638888.891398 1118 1008 5244680.501577 1119 1008 20431686.98312 1120 1008 -9.238719940186e-07 1121 1008 -2546332.887312 1122 1008 21018908.28051 1123 1008 -2.346932888031e-06 1124 1008 -636583.222144 1128 1008 -53208020.04453 1129 1008 -1.534819602966e-06 1130 1008 -46887250.21518 1131 1008 -9746784.424485 1132 1008 7638888.891396 1133 1008 -4608097.279433 1009 1009 629990235.6412 1010 1009 122220590.1792 1011 1009 -5.662441253662e-07 1012 1009 -50812162.49284 1013 1009 -62332517.31162 1017 1009 5.662441253662e-07 1018 1009 65294942.0157 1019 1009 30555147.55986 1020 1009 30555555.55054 1021 1009 -37443799.05029 1022 1009 -16958129.33543 1113 1009 1.035630702972e-06 1114 1009 -25398826.77179 1115 1009 7638779.123661 1116 1009 -7638888.891398 1117 1009 -8046134.402525 1118 1009 6232693.774803 1119 1009 -9.536743164063e-07 1120 1009 2097153.481574 1121 1009 30555116.47959 1122 1009 -2.235174179077e-06 1123 1009 -8008818.28482 1124 1009 23250219.53173 1128 1009 -1.318752765656e-06 1129 1009 -19596660.10607 1130 1009 7638779.123661 1131 1009 7638888.891396 1132 1009 -7454967.735663 1133 1009 5468804.885664 1010 1010 998249229.7754 1011 1010 -2546330.297234 1012 1010 -59888072.86758 1013 1010 52583448.20272 1017 1010 3564882.814418 1018 1010 30555147.55986 1019 1010 156468480.0912 1020 1010 29728026.25477 1021 1010 -16652573.77948 1022 1010 -14634539.26698 1113 1010 49815527.5467 1114 1010 7638779.12366 1115 1010 -72142989.75742 1116 1010 5244680.501577 1117 1010 6232693.774804 1118 1010 -152469.232357 1119 1010 -2546332.887312 1120 1010 30555116.47959 1121 1010 -164838704.0269 1122 1010 -636583.2221438 1123 1010 23555775.08708 1124 1010 25663714.57989 1128 1010 -47269194.65938 1129 1010 7638779.123661 1130 1010 -56670545.31551 1131 1010 -4608097.279433 1132 1010 5468804.885664 1133 1010 1423975.212606 1011 1011 721009953.5089 1012 1011 30610661.14353 1013 1011 -34376411.47656 1014 1011 22252951.07536 1015 1011 -30577597.78774 1016 1011 -30132237.29345 1017 1011 -43173523.32456 1018 1011 -30555555.55054 1019 1011 -27181695.95754 1020 1011 -69150427.22048 1021 1011 7.599592208862e-07 1022 1011 6620438.369471 1023 1011 -46611023.324 1024 1011 30555555.55054 1025 1011 30109970.69972 1113 1011 -32955138.59878 1114 1011 7638888.891398 1115 1011 19567597.17295 1116 1011 -79032837.45136 1117 1011 -7648437.10893 1118 1011 55511888.47871 1119 1011 -66012341.70521 1120 1011 2.853572368622e-06 1121 1011 -636583.2221378 1122 1011 34928101.59242 1123 1011 7654802.58729 1124 1011 -8598678.217522 1125 1011 5149787.278365 1126 1011 -7645254.369755 1127 1011 4611926.752539 1128 1011 -30645221.93135 1129 1011 -7638888.891397 1130 1011 -18931013.9508 1131 1011 -53208020.04453 1132 1011 -1.534819602966e-06 1133 1011 -46887250.21518 1134 1011 -9746784.424485 1135 1011 7638888.891396 1136 1011 -4608097.279433 1012 1012 638480136.047 1013 1012 94719923.44838 1014 1012 -30588618.90634 1015 1012 -84734829.23983 1016 1012 -51960954.36765 1017 1012 -30555555.55054 1018 1012 -34006299.05085 1019 1012 -13597018.22442 1020 1012 5.662441253662e-07 1021 1012 65294942.0157 1022 1012 30555147.55986 1023 1012 30555555.55054 1024 1012 -37443799.05029 1025 1012 -16958129.33543 1113 1012 7638888.891398 1114 1012 -30663321.90996 1115 1012 -13871472.89847 1116 1012 -7645254.369751 1117 1012 -43109768.41806 1118 1012 18161862.49682 1119 1012 2.995133399963e-06 1120 1012 -95040068.27054 1121 1012 -53805336.01132 1122 1012 7654802.587289 1123 1012 14294589.76961 1124 1012 23676298.37333 1125 1012 -7648437.108933 1126 1012 -21598853.37172 1127 1012 25862479.31684 1128 1012 -7638888.891397 1129 1012 -28353405.24253 1130 1012 -13107584.00933 1131 1012 -1.318752765656e-06 1132 1012 -19596660.10607 1133 1012 7638779.123661 1134 1012 7638888.891396 1135 1012 -7454967.735663 1136 1012 5468804.885664 1013 1013 935442848.8393 1014 1013 -29761426.14538 1015 1013 -58081061.81704 1016 1013 47500235.97878 1017 1013 -27563640.40249 1018 1013 -13902573.78038 1019 1013 -5467872.601825 1020 1013 3564882.814418 1021 1013 30555147.55986 1022 1013 156468480.0912 1023 1013 29728026.25477 1024 1013 -16652573.77948 1025 1013 -14634539.26698 1113 1013 19567597.17295 1114 1013 -13871472.89847 1115 1013 -60464969.25217 1116 1013 55896750.56943 1117 1013 20307057.29599 1118 1013 -98048385.90041 1119 1013 -636583.2221379 1120 1013 -54110891.56668 1121 1013 -206419618.7154 1122 1013 -8588615.841047 1123 1013 23684348.15878 1124 1013 -153682668.3423 1125 1013 4613841.489092 1126 1013 24026705.92618 1127 1013 10774189.69233 1128 1013 -18931013.9508 1129 1013 -13107584.00933 1130 1013 -54305191.47237 1131 1013 -47269194.65938 1132 1013 7638779.123661 1133 1013 -56670545.31551 1134 1013 -4608097.279433 1135 1013 5468804.885664 1136 1013 1423975.212606 1014 1014 460369459.7115 1015 1014 30555555.55053 1016 1014 -36969735.5824 1020 1014 -43173523.32456 1021 1014 -30555555.55054 1022 1014 -27181695.95754 1023 1014 -133707927.5673 1024 1014 -30577597.78773 1025 1014 30839786.14823 1026 1014 -4378484.728122 1027 1014 24466486.67763 1028 1014 22175044.36675 1116 1014 -37437760.48235 1117 1014 9176214.887214 1118 1014 23123609.08966 1122 1014 -61598018.00238 1123 1014 -7648437.108935 1124 1014 -19592039.58835 1125 1014 18346673.71113 1126 1014 7638888.891398 1127 1014 1385379.035684 1131 1014 -30645221.93135 1132 1014 -7638888.891397 1133 1014 -18931013.9508 1134 1014 -55802716.54489 1135 1014 -7645254.369757 1136 1014 -40856339.07483 1137 1014 6123446.608564 1138 1014 6117476.591476 1139 1014 -3944940.585509 1015 1015 414508539.3263 1016 1015 70321276.71584 1020 1015 -30555555.55054 1021 1015 -34006299.05085 1022 1015 -13597018.22442 1023 1015 -30588618.90633 1024 1015 9973548.859403 1025 1015 42647671.20218 1026 1015 36699730.01644 1027 1015 -4378484.728126 1028 1015 -28439541.86765 1116 1015 6117476.591476 1117 1015 -37437760.48236 1118 1015 -12332056.26767 1122 1015 -7645254.369756 1123 1015 -88346658.65246 1124 1015 -53374653.70739 1125 1015 7638888.891397 1126 1015 6880428.6391 1127 1015 26085656.47845 1131 1015 -7638888.891397 1132 1015 -28353405.24253 1133 1015 -13107584.00933 1134 1015 -7648437.108936 1135 1015 -19879647.51159 1136 1015 942630.1669732 1137 1015 9176214.887214 1138 1015 6123446.608565 1139 1015 4734398.284357 1016 1016 679047623.5514 1020 1016 -27563640.40249 1021 1016 -13902573.78038 1022 1016 -5467872.601825 1023 1016 27774811.43114 1024 1016 33778935.02398 1025 1016 94229239.45832 1026 1016 33262566.55012 1027 1016 -18959694.57843 1028 1016 -11675959.27499 1116 1016 15415739.3931 1117 1016 -18498084.4015 1118 1016 -99834027.95294 1122 1016 -19583892.11655 1123 1016 -51538880.44741 1124 1016 -167219957.723 1125 1016 -17965238.89317 1126 1016 10605384.60401 1127 1016 -88238208.0348 1131 1016 -18931013.9508 1132 1016 -13107584.00933 1133 1016 -54305191.47237 1134 1016 -41241201.16555 1135 1016 -1194514.850572 1136 1016 -36101396.81649 1137 1016 -5917410.878264 1138 1016 3156265.522905 1139 1016 16329190.95617 1017 1017 703328029.7947 1018 1017 3.576278686523e-07 1019 1017 -10185321.18392 1020 1017 65298758.21399 1021 1017 -4.023313522339e-07 1022 1017 -2546330.297233 1029 1017 -69150427.22048 1030 1017 7.599592208862e-07 1031 1017 6620438.369471 1032 1017 -46611023.324 1033 1017 30555555.55054 1034 1017 30109970.69972 1119 1017 -59010186.71026 1120 1017 1.542270183563e-06 1121 1017 49433583.10251 1122 1017 -10337951.09135 1123 1017 -7638888.891398 1124 1017 5244680.501577 1128 1017 20431686.98312 1129 1017 -9.238719940186e-07 1130 1017 -2546332.887312 1131 1017 21018908.28051 1132 1017 -2.346932888031e-06 1133 1017 -636583.222144 1140 1017 -53208020.04453 1141 1017 -1.534819602966e-06 1142 1017 -46887250.21518 1143 1017 -9746784.424485 1144 1017 7638888.891396 1145 1017 -4608097.279433 1018 1018 629990235.6412 1019 1018 122220590.1792 1020 1018 -5.662441253662e-07 1021 1018 -50812162.49284 1022 1018 -62332517.31162 1029 1018 5.662441253662e-07 1030 1018 65294942.0157 1031 1018 30555147.55986 1032 1018 30555555.55054 1033 1018 -37443799.05029 1034 1018 -16958129.33543 1119 1018 1.035630702972e-06 1120 1018 -25398826.77179 1121 1018 7638779.123661 1122 1018 -7638888.891398 1123 1018 -8046134.402525 1124 1018 6232693.774803 1128 1018 -9.536743164063e-07 1129 1018 2097153.481574 1130 1018 30555116.47959 1131 1018 -2.235174179077e-06 1132 1018 -8008818.28482 1133 1018 23250219.53173 1140 1018 -1.318752765656e-06 1141 1018 -19596660.10607 1142 1018 7638779.123661 1143 1018 7638888.891396 1144 1018 -7454967.735663 1145 1018 5468804.885664 1019 1019 998249229.7754 1020 1019 -2546330.297234 1021 1019 -59888072.86758 1022 1019 52583448.20272 1029 1019 3564882.814418 1030 1019 30555147.55986 1031 1019 156468480.0912 1032 1019 29728026.25477 1033 1019 -16652573.77948 1034 1019 -14634539.26698 1119 1019 49815527.5467 1120 1019 7638779.12366 1121 1019 -72142989.75742 1122 1019 5244680.501577 1123 1019 6232693.774804 1124 1019 -152469.232357 1128 1019 -2546332.887312 1129 1019 30555116.47959 1130 1019 -164838704.0269 1131 1019 -636583.2221438 1132 1019 23555775.08708 1133 1019 25663714.57989 1140 1019 -47269194.65938 1141 1019 7638779.123661 1142 1019 -56670545.31551 1143 1019 -4608097.279433 1144 1019 5468804.885664 1145 1019 1423975.212606 1020 1020 703328029.7947 1021 1020 3.576278686523e-07 1022 1020 -10185321.18392 1023 1020 65298758.21399 1024 1020 -4.023313522339e-07 1025 1020 -2546330.297233 1029 1020 -43173523.32456 1030 1020 -30555555.55054 1031 1020 -27181695.95754 1032 1020 -69150427.22048 1033 1020 7.599592208862e-07 1034 1020 6620438.369471 1035 1020 -46611023.324 1036 1020 30555555.55054 1037 1020 30109970.69972 1119 1020 -32955138.59878 1120 1020 7638888.891398 1121 1020 19567597.17295 1122 1020 -59010186.71026 1123 1020 1.542270183563e-06 1124 1020 49433583.10251 1125 1020 -10337951.09135 1126 1020 -7638888.891398 1127 1020 5244680.501577 1128 1020 -66012341.70521 1129 1020 2.853572368622e-06 1130 1020 -636583.2221378 1131 1020 20431686.98312 1132 1020 -9.238719940186e-07 1133 1020 -2546332.887312 1134 1020 21018908.28051 1135 1020 -2.346932888031e-06 1136 1020 -636583.222144 1140 1020 -30645221.93135 1141 1020 -7638888.891397 1142 1020 -18931013.9508 1143 1020 -53208020.04453 1144 1020 -1.534819602966e-06 1145 1020 -46887250.21518 1146 1020 -9746784.424485 1147 1020 7638888.891396 1148 1020 -4608097.279433 1021 1021 629990235.6412 1022 1021 122220590.1792 1023 1021 -5.662441253662e-07 1024 1021 -50812162.49284 1025 1021 -62332517.31162 1029 1021 -30555555.55054 1030 1021 -34006299.05085 1031 1021 -13597018.22442 1032 1021 5.662441253662e-07 1033 1021 65294942.0157 1034 1021 30555147.55986 1035 1021 30555555.55054 1036 1021 -37443799.05029 1037 1021 -16958129.33543 1119 1021 7638888.891398 1120 1021 -30663321.90996 1121 1021 -13871472.89847 1122 1021 1.035630702972e-06 1123 1021 -25398826.77179 1124 1021 7638779.123661 1125 1021 -7638888.891398 1126 1021 -8046134.402525 1127 1021 6232693.774803 1128 1021 2.995133399963e-06 1129 1021 -95040068.27054 1130 1021 -53805336.01132 1131 1021 -9.536743164063e-07 1132 1021 2097153.481574 1133 1021 30555116.47959 1134 1021 -2.235174179077e-06 1135 1021 -8008818.28482 1136 1021 23250219.53173 1140 1021 -7638888.891397 1141 1021 -28353405.24253 1142 1021 -13107584.00933 1143 1021 -1.318752765656e-06 1144 1021 -19596660.10607 1145 1021 7638779.123661 1146 1021 7638888.891396 1147 1021 -7454967.735663 1148 1021 5468804.885664 1022 1022 998249229.7754 1023 1022 -2546330.297234 1024 1022 -59888072.86758 1025 1022 52583448.20272 1029 1022 -27563640.40249 1030 1022 -13902573.78038 1031 1022 -5467872.601825 1032 1022 3564882.814418 1033 1022 30555147.55986 1034 1022 156468480.0912 1035 1022 29728026.25477 1036 1022 -16652573.77948 1037 1022 -14634539.26698 1119 1022 19567597.17295 1120 1022 -13871472.89847 1121 1022 -60464969.25217 1122 1022 49815527.5467 1123 1022 7638779.12366 1124 1022 -72142989.75742 1125 1022 5244680.501577 1126 1022 6232693.774804 1127 1022 -152469.232357 1128 1022 -636583.2221379 1129 1022 -54110891.56668 1130 1022 -206419618.7154 1131 1022 -2546332.887312 1132 1022 30555116.47959 1133 1022 -164838704.0269 1134 1022 -636583.2221438 1135 1022 23555775.08708 1136 1022 25663714.57989 1140 1022 -18931013.9508 1141 1022 -13107584.00933 1142 1022 -54305191.47237 1143 1022 -47269194.65938 1144 1022 7638779.123661 1145 1022 -56670545.31551 1146 1022 -4608097.279433 1147 1022 5468804.885664 1148 1022 1423975.212606 1023 1023 721009953.5089 1024 1023 30610661.14353 1025 1023 -34376411.47656 1026 1023 22252951.07536 1027 1023 -30577597.78774 1028 1023 -30132237.29345 1032 1023 -43173523.32456 1033 1023 -30555555.55054 1034 1023 -27181695.95754 1035 1023 -69150427.22048 1036 1023 7.599592208862e-07 1037 1023 6620438.369471 1038 1023 -46611023.324 1039 1023 30555555.55054 1040 1023 30109970.69972 1122 1023 -32955138.59878 1123 1023 7638888.891398 1124 1023 19567597.17295 1125 1023 -79032837.45136 1126 1023 -7648437.10893 1127 1023 55511888.47871 1131 1023 -66012341.70521 1132 1023 2.853572368622e-06 1133 1023 -636583.2221378 1134 1023 34928101.59242 1135 1023 7654802.58729 1136 1023 -8598678.217522 1137 1023 5149787.278365 1138 1023 -7645254.369755 1139 1023 4611926.752539 1143 1023 -30645221.93135 1144 1023 -7638888.891397 1145 1023 -18931013.9508 1146 1023 -53208020.04453 1147 1023 -1.534819602966e-06 1148 1023 -46887250.21518 1149 1023 -9746784.424485 1150 1023 7638888.891396 1151 1023 -4608097.279433 1024 1024 638480136.047 1025 1024 94719923.44838 1026 1024 -30588618.90634 1027 1024 -84734829.23983 1028 1024 -51960954.36765 1032 1024 -30555555.55054 1033 1024 -34006299.05085 1034 1024 -13597018.22442 1035 1024 5.662441253662e-07 1036 1024 65294942.0157 1037 1024 30555147.55986 1038 1024 30555555.55054 1039 1024 -37443799.05029 1040 1024 -16958129.33543 1122 1024 7638888.891398 1123 1024 -30663321.90996 1124 1024 -13871472.89847 1125 1024 -7645254.369751 1126 1024 -43109768.41806 1127 1024 18161862.49682 1131 1024 2.995133399963e-06 1132 1024 -95040068.27054 1133 1024 -53805336.01132 1134 1024 7654802.587289 1135 1024 14294589.76961 1136 1024 23676298.37333 1137 1024 -7648437.108933 1138 1024 -21598853.37172 1139 1024 25862479.31684 1143 1024 -7638888.891397 1144 1024 -28353405.24253 1145 1024 -13107584.00933 1146 1024 -1.318752765656e-06 1147 1024 -19596660.10607 1148 1024 7638779.123661 1149 1024 7638888.891396 1150 1024 -7454967.735663 1151 1024 5468804.885664 1025 1025 935442848.8393 1026 1025 -29761426.14538 1027 1025 -58081061.81704 1028 1025 47500235.97878 1032 1025 -27563640.40249 1033 1025 -13902573.78038 1034 1025 -5467872.601825 1035 1025 3564882.814418 1036 1025 30555147.55986 1037 1025 156468480.0912 1038 1025 29728026.25477 1039 1025 -16652573.77948 1040 1025 -14634539.26698 1122 1025 19567597.17295 1123 1025 -13871472.89847 1124 1025 -60464969.25217 1125 1025 55896750.56943 1126 1025 20307057.29599 1127 1025 -98048385.90041 1131 1025 -636583.2221379 1132 1025 -54110891.56668 1133 1025 -206419618.7154 1134 1025 -8588615.841047 1135 1025 23684348.15878 1136 1025 -153682668.3423 1137 1025 4613841.489092 1138 1025 24026705.92618 1139 1025 10774189.69233 1143 1025 -18931013.9508 1144 1025 -13107584.00933 1145 1025 -54305191.47237 1146 1025 -47269194.65938 1147 1025 7638779.123661 1148 1025 -56670545.31551 1149 1025 -4608097.279433 1150 1025 5468804.885664 1151 1025 1423975.212606 1026 1026 460369459.7115 1027 1026 30555555.55053 1028 1026 -36969735.5824 1035 1026 -43173523.32456 1036 1026 -30555555.55054 1037 1026 -27181695.95754 1038 1026 -133707927.5673 1039 1026 -30577597.78773 1040 1026 30839786.14823 1041 1026 -4378484.728122 1042 1026 24466486.67763 1043 1026 22175044.36675 1125 1026 -37437760.48235 1126 1026 9176214.887214 1127 1026 23123609.08966 1134 1026 -61598018.00238 1135 1026 -7648437.108935 1136 1026 -19592039.58835 1137 1026 18346673.71113 1138 1026 7638888.891398 1139 1026 1385379.035684 1146 1026 -30645221.93135 1147 1026 -7638888.891397 1148 1026 -18931013.9508 1149 1026 -55802716.54489 1150 1026 -7645254.369757 1151 1026 -40856339.07483 1152 1026 6123446.608564 1153 1026 6117476.591476 1154 1026 -3944940.585509 1027 1027 414508539.3263 1028 1027 70321276.71584 1035 1027 -30555555.55054 1036 1027 -34006299.05085 1037 1027 -13597018.22442 1038 1027 -30588618.90633 1039 1027 9973548.859403 1040 1027 42647671.20218 1041 1027 36699730.01644 1042 1027 -4378484.728126 1043 1027 -28439541.86765 1125 1027 6117476.591476 1126 1027 -37437760.48236 1127 1027 -12332056.26767 1134 1027 -7645254.369756 1135 1027 -88346658.65246 1136 1027 -53374653.70739 1137 1027 7638888.891397 1138 1027 6880428.6391 1139 1027 26085656.47845 1146 1027 -7638888.891397 1147 1027 -28353405.24253 1148 1027 -13107584.00933 1149 1027 -7648437.108936 1150 1027 -19879647.51159 1151 1027 942630.1669732 1152 1027 9176214.887214 1153 1027 6123446.608565 1154 1027 4734398.284357 1028 1028 679047623.5514 1035 1028 -27563640.40249 1036 1028 -13902573.78038 1037 1028 -5467872.601825 1038 1028 27774811.43114 1039 1028 33778935.02398 1040 1028 94229239.45832 1041 1028 33262566.55012 1042 1028 -18959694.57843 1043 1028 -11675959.27499 1125 1028 15415739.3931 1126 1028 -18498084.4015 1127 1028 -99834027.95294 1134 1028 -19583892.11655 1135 1028 -51538880.44741 1136 1028 -167219957.723 1137 1028 -17965238.89317 1138 1028 10605384.60401 1139 1028 -88238208.0348 1146 1028 -18931013.9508 1147 1028 -13107584.00933 1148 1028 -54305191.47237 1149 1028 -41241201.16555 1150 1028 -1194514.850572 1151 1028 -36101396.81649 1152 1028 -5917410.878264 1153 1028 3156265.522905 1154 1028 16329190.95617 1029 1029 703328029.7947 1030 1029 3.576278686523e-07 1031 1029 -10185321.18392 1032 1029 65298758.21399 1033 1029 -4.023313522339e-07 1034 1029 -2546330.297233 1044 1029 -69150427.22048 1045 1029 7.599592208862e-07 1046 1029 6620438.369471 1047 1029 -46611023.324 1048 1029 30555555.55054 1049 1029 30109970.69972 1128 1029 -59010186.71026 1129 1029 1.542270183563e-06 1130 1029 49433583.10251 1131 1029 -10337951.09135 1132 1029 -7638888.891398 1133 1029 5244680.501577 1140 1029 20431686.98312 1141 1029 -9.238719940186e-07 1142 1029 -2546332.887312 1143 1029 21018908.28051 1144 1029 -2.346932888031e-06 1145 1029 -636583.222144 1155 1029 -53208020.04453 1156 1029 -1.534819602966e-06 1157 1029 -46887250.21518 1158 1029 -9746784.424485 1159 1029 7638888.891396 1160 1029 -4608097.279433 1030 1030 629990235.6412 1031 1030 122220590.1792 1032 1030 -5.662441253662e-07 1033 1030 -50812162.49284 1034 1030 -62332517.31162 1044 1030 5.662441253662e-07 1045 1030 65294942.0157 1046 1030 30555147.55986 1047 1030 30555555.55054 1048 1030 -37443799.05029 1049 1030 -16958129.33543 1128 1030 1.035630702972e-06 1129 1030 -25398826.77179 1130 1030 7638779.123661 1131 1030 -7638888.891398 1132 1030 -8046134.402525 1133 1030 6232693.774803 1140 1030 -9.536743164063e-07 1141 1030 2097153.481574 1142 1030 30555116.47959 1143 1030 -2.235174179077e-06 1144 1030 -8008818.28482 1145 1030 23250219.53173 1155 1030 -1.318752765656e-06 1156 1030 -19596660.10607 1157 1030 7638779.123661 1158 1030 7638888.891396 1159 1030 -7454967.735663 1160 1030 5468804.885664 1031 1031 998249229.7754 1032 1031 -2546330.297234 1033 1031 -59888072.86758 1034 1031 52583448.20272 1044 1031 3564882.814418 1045 1031 30555147.55986 1046 1031 156468480.0912 1047 1031 29728026.25477 1048 1031 -16652573.77948 1049 1031 -14634539.26698 1128 1031 49815527.5467 1129 1031 7638779.12366 1130 1031 -72142989.75742 1131 1031 5244680.501577 1132 1031 6232693.774804 1133 1031 -152469.232357 1140 1031 -2546332.887312 1141 1031 30555116.47959 1142 1031 -164838704.0269 1143 1031 -636583.2221438 1144 1031 23555775.08708 1145 1031 25663714.57989 1155 1031 -47269194.65938 1156 1031 7638779.123661 1157 1031 -56670545.31551 1158 1031 -4608097.279433 1159 1031 5468804.885664 1160 1031 1423975.212606 1032 1032 703328029.7947 1033 1032 3.576278686523e-07 1034 1032 -10185321.18392 1035 1032 65298758.21399 1036 1032 -4.023313522339e-07 1037 1032 -2546330.297233 1044 1032 -43173523.32456 1045 1032 -30555555.55054 1046 1032 -27181695.95754 1047 1032 -69150427.22048 1048 1032 7.599592208862e-07 1049 1032 6620438.369471 1050 1032 -46611023.324 1051 1032 30555555.55054 1052 1032 30109970.69972 1128 1032 -32955138.59878 1129 1032 7638888.891398 1130 1032 19567597.17295 1131 1032 -59010186.71026 1132 1032 1.542270183563e-06 1133 1032 49433583.10251 1134 1032 -10337951.09135 1135 1032 -7638888.891398 1136 1032 5244680.501577 1140 1032 -66012341.70521 1141 1032 2.853572368622e-06 1142 1032 -636583.2221378 1143 1032 20431686.98312 1144 1032 -9.238719940186e-07 1145 1032 -2546332.887312 1146 1032 21018908.28051 1147 1032 -2.346932888031e-06 1148 1032 -636583.222144 1155 1032 -30645221.93135 1156 1032 -7638888.891397 1157 1032 -18931013.9508 1158 1032 -53208020.04453 1159 1032 -1.534819602966e-06 1160 1032 -46887250.21518 1161 1032 -9746784.424485 1162 1032 7638888.891396 1163 1032 -4608097.279433 1033 1033 629990235.6412 1034 1033 122220590.1792 1035 1033 -5.662441253662e-07 1036 1033 -50812162.49284 1037 1033 -62332517.31162 1044 1033 -30555555.55054 1045 1033 -34006299.05085 1046 1033 -13597018.22442 1047 1033 5.662441253662e-07 1048 1033 65294942.0157 1049 1033 30555147.55986 1050 1033 30555555.55054 1051 1033 -37443799.05029 1052 1033 -16958129.33543 1128 1033 7638888.891398 1129 1033 -30663321.90996 1130 1033 -13871472.89847 1131 1033 1.035630702972e-06 1132 1033 -25398826.77179 1133 1033 7638779.123661 1134 1033 -7638888.891398 1135 1033 -8046134.402525 1136 1033 6232693.774803 1140 1033 2.995133399963e-06 1141 1033 -95040068.27054 1142 1033 -53805336.01132 1143 1033 -9.536743164063e-07 1144 1033 2097153.481574 1145 1033 30555116.47959 1146 1033 -2.235174179077e-06 1147 1033 -8008818.28482 1148 1033 23250219.53173 1155 1033 -7638888.891397 1156 1033 -28353405.24253 1157 1033 -13107584.00933 1158 1033 -1.318752765656e-06 1159 1033 -19596660.10607 1160 1033 7638779.123661 1161 1033 7638888.891396 1162 1033 -7454967.735663 1163 1033 5468804.885664 1034 1034 998249229.7754 1035 1034 -2546330.297234 1036 1034 -59888072.86758 1037 1034 52583448.20272 1044 1034 -27563640.40249 1045 1034 -13902573.78038 1046 1034 -5467872.601825 1047 1034 3564882.814418 1048 1034 30555147.55986 1049 1034 156468480.0912 1050 1034 29728026.25477 1051 1034 -16652573.77948 1052 1034 -14634539.26698 1128 1034 19567597.17295 1129 1034 -13871472.89847 1130 1034 -60464969.25217 1131 1034 49815527.5467 1132 1034 7638779.12366 1133 1034 -72142989.75742 1134 1034 5244680.501577 1135 1034 6232693.774804 1136 1034 -152469.232357 1140 1034 -636583.2221379 1141 1034 -54110891.56668 1142 1034 -206419618.7154 1143 1034 -2546332.887312 1144 1034 30555116.47959 1145 1034 -164838704.0269 1146 1034 -636583.2221438 1147 1034 23555775.08708 1148 1034 25663714.57989 1155 1034 -18931013.9508 1156 1034 -13107584.00933 1157 1034 -54305191.47237 1158 1034 -47269194.65938 1159 1034 7638779.123661 1160 1034 -56670545.31551 1161 1034 -4608097.279433 1162 1034 5468804.885664 1163 1034 1423975.212606 1035 1035 703328029.7947 1036 1035 3.576278686523e-07 1037 1035 -10185321.18392 1038 1035 65298758.21399 1039 1035 -4.023313522339e-07 1040 1035 -2546330.297233 1047 1035 -43173523.32456 1048 1035 -30555555.55054 1049 1035 -27181695.95754 1050 1035 -69150427.22048 1051 1035 7.599592208862e-07 1052 1035 6620438.369471 1053 1035 -46611023.324 1054 1035 30555555.55054 1055 1035 30109970.69972 1131 1035 -32955138.59878 1132 1035 7638888.891398 1133 1035 19567597.17295 1134 1035 -59010186.71026 1135 1035 1.542270183563e-06 1136 1035 49433583.10251 1137 1035 -10337951.09135 1138 1035 -7638888.891398 1139 1035 5244680.501577 1143 1035 -66012341.70521 1144 1035 2.853572368622e-06 1145 1035 -636583.2221378 1146 1035 20431686.98312 1147 1035 -9.238719940186e-07 1148 1035 -2546332.887312 1149 1035 21018908.28051 1150 1035 -2.346932888031e-06 1151 1035 -636583.222144 1158 1035 -30645221.93135 1159 1035 -7638888.891397 1160 1035 -18931013.9508 1161 1035 -53208020.04453 1162 1035 -1.534819602966e-06 1163 1035 -46887250.21518 1164 1035 -9746784.424485 1165 1035 7638888.891396 1166 1035 -4608097.279433 1036 1036 629990235.6412 1037 1036 122220590.1792 1038 1036 -5.662441253662e-07 1039 1036 -50812162.49284 1040 1036 -62332517.31162 1047 1036 -30555555.55054 1048 1036 -34006299.05085 1049 1036 -13597018.22442 1050 1036 5.662441253662e-07 1051 1036 65294942.0157 1052 1036 30555147.55986 1053 1036 30555555.55054 1054 1036 -37443799.05029 1055 1036 -16958129.33543 1131 1036 7638888.891398 1132 1036 -30663321.90996 1133 1036 -13871472.89847 1134 1036 1.035630702972e-06 1135 1036 -25398826.77179 1136 1036 7638779.123661 1137 1036 -7638888.891398 1138 1036 -8046134.402525 1139 1036 6232693.774803 1143 1036 2.995133399963e-06 1144 1036 -95040068.27054 1145 1036 -53805336.01132 1146 1036 -9.536743164063e-07 1147 1036 2097153.481574 1148 1036 30555116.47959 1149 1036 -2.235174179077e-06 1150 1036 -8008818.28482 1151 1036 23250219.53173 1158 1036 -7638888.891397 1159 1036 -28353405.24253 1160 1036 -13107584.00933 1161 1036 -1.318752765656e-06 1162 1036 -19596660.10607 1163 1036 7638779.123661 1164 1036 7638888.891396 1165 1036 -7454967.735663 1166 1036 5468804.885664 1037 1037 998249229.7754 1038 1037 -2546330.297234 1039 1037 -59888072.86758 1040 1037 52583448.20272 1047 1037 -27563640.40249 1048 1037 -13902573.78038 1049 1037 -5467872.601825 1050 1037 3564882.814418 1051 1037 30555147.55986 1052 1037 156468480.0912 1053 1037 29728026.25477 1054 1037 -16652573.77948 1055 1037 -14634539.26698 1131 1037 19567597.17295 1132 1037 -13871472.89847 1133 1037 -60464969.25217 1134 1037 49815527.5467 1135 1037 7638779.12366 1136 1037 -72142989.75742 1137 1037 5244680.501577 1138 1037 6232693.774804 1139 1037 -152469.232357 1143 1037 -636583.2221379 1144 1037 -54110891.56668 1145 1037 -206419618.7154 1146 1037 -2546332.887312 1147 1037 30555116.47959 1148 1037 -164838704.0269 1149 1037 -636583.2221438 1150 1037 23555775.08708 1151 1037 25663714.57989 1158 1037 -18931013.9508 1159 1037 -13107584.00933 1160 1037 -54305191.47237 1161 1037 -47269194.65938 1162 1037 7638779.123661 1163 1037 -56670545.31551 1164 1037 -4608097.279433 1165 1037 5468804.885664 1166 1037 1423975.212606 1038 1038 721009953.5089 1039 1038 30610661.14353 1040 1038 -34376411.47656 1041 1038 22252951.07536 1042 1038 -30577597.78774 1043 1038 -30132237.29345 1050 1038 -43173523.32456 1051 1038 -30555555.55054 1052 1038 -27181695.95754 1053 1038 -69150427.22048 1054 1038 7.599592208862e-07 1055 1038 6620438.369471 1056 1038 -46611023.324 1057 1038 30555555.55054 1058 1038 30109970.69972 1134 1038 -32955138.59878 1135 1038 7638888.891398 1136 1038 19567597.17295 1137 1038 -79032837.45136 1138 1038 -7648437.10893 1139 1038 55511888.47871 1146 1038 -66012341.70521 1147 1038 2.853572368622e-06 1148 1038 -636583.2221378 1149 1038 34928101.59242 1150 1038 7654802.58729 1151 1038 -8598678.217522 1152 1038 5149787.278365 1153 1038 -7645254.369755 1154 1038 4611926.752539 1161 1038 -30645221.93135 1162 1038 -7638888.891397 1163 1038 -18931013.9508 1164 1038 -53208020.04453 1165 1038 -1.534819602966e-06 1166 1038 -46887250.21518 1167 1038 -9746784.424485 1168 1038 7638888.891396 1169 1038 -4608097.279433 1039 1039 638480136.047 1040 1039 94719923.44838 1041 1039 -30588618.90634 1042 1039 -84734829.23983 1043 1039 -51960954.36765 1050 1039 -30555555.55054 1051 1039 -34006299.05085 1052 1039 -13597018.22442 1053 1039 5.662441253662e-07 1054 1039 65294942.0157 1055 1039 30555147.55986 1056 1039 30555555.55054 1057 1039 -37443799.05029 1058 1039 -16958129.33543 1134 1039 7638888.891398 1135 1039 -30663321.90996 1136 1039 -13871472.89847 1137 1039 -7645254.369751 1138 1039 -43109768.41806 1139 1039 18161862.49682 1146 1039 2.995133399963e-06 1147 1039 -95040068.27054 1148 1039 -53805336.01132 1149 1039 7654802.587289 1150 1039 14294589.76961 1151 1039 23676298.37333 1152 1039 -7648437.108933 1153 1039 -21598853.37172 1154 1039 25862479.31684 1161 1039 -7638888.891397 1162 1039 -28353405.24253 1163 1039 -13107584.00933 1164 1039 -1.318752765656e-06 1165 1039 -19596660.10607 1166 1039 7638779.123661 1167 1039 7638888.891396 1168 1039 -7454967.735663 1169 1039 5468804.885664 1040 1040 935442848.8393 1041 1040 -29761426.14538 1042 1040 -58081061.81704 1043 1040 47500235.97878 1050 1040 -27563640.40249 1051 1040 -13902573.78038 1052 1040 -5467872.601825 1053 1040 3564882.814418 1054 1040 30555147.55986 1055 1040 156468480.0912 1056 1040 29728026.25477 1057 1040 -16652573.77948 1058 1040 -14634539.26698 1134 1040 19567597.17295 1135 1040 -13871472.89847 1136 1040 -60464969.25217 1137 1040 55896750.56943 1138 1040 20307057.29599 1139 1040 -98048385.90041 1146 1040 -636583.2221379 1147 1040 -54110891.56668 1148 1040 -206419618.7154 1149 1040 -8588615.841047 1150 1040 23684348.15878 1151 1040 -153682668.3423 1152 1040 4613841.489092 1153 1040 24026705.92618 1154 1040 10774189.69233 1161 1040 -18931013.9508 1162 1040 -13107584.00933 1163 1040 -54305191.47237 1164 1040 -47269194.65938 1165 1040 7638779.123661 1166 1040 -56670545.31551 1167 1040 -4608097.279433 1168 1040 5468804.885664 1169 1040 1423975.212606 1041 1041 460369459.7115 1042 1041 30555555.55053 1043 1041 -36969735.5824 1053 1041 -43173523.32456 1054 1041 -30555555.55054 1055 1041 -27181695.95754 1056 1041 -133707927.5673 1057 1041 -30577597.78773 1058 1041 30839786.14823 1059 1041 -4378484.728122 1060 1041 24466486.67763 1061 1041 22175044.36675 1137 1041 -37437760.48235 1138 1041 9176214.887214 1139 1041 23123609.08966 1149 1041 -61598018.00238 1150 1041 -7648437.108935 1151 1041 -19592039.58835 1152 1041 18346673.71113 1153 1041 7638888.891398 1154 1041 1385379.035684 1164 1041 -30645221.93135 1165 1041 -7638888.891397 1166 1041 -18931013.9508 1167 1041 -55802716.54489 1168 1041 -7645254.369757 1169 1041 -40856339.07483 1170 1041 6123446.608564 1171 1041 6117476.591476 1172 1041 -3944940.585509 1042 1042 414508539.3263 1043 1042 70321276.71584 1053 1042 -30555555.55054 1054 1042 -34006299.05085 1055 1042 -13597018.22442 1056 1042 -30588618.90633 1057 1042 9973548.859403 1058 1042 42647671.20218 1059 1042 36699730.01644 1060 1042 -4378484.728126 1061 1042 -28439541.86765 1137 1042 6117476.591476 1138 1042 -37437760.48236 1139 1042 -12332056.26767 1149 1042 -7645254.369756 1150 1042 -88346658.65246 1151 1042 -53374653.70739 1152 1042 7638888.891397 1153 1042 6880428.6391 1154 1042 26085656.47845 1164 1042 -7638888.891397 1165 1042 -28353405.24253 1166 1042 -13107584.00933 1167 1042 -7648437.108936 1168 1042 -19879647.51159 1169 1042 942630.1669732 1170 1042 9176214.887214 1171 1042 6123446.608565 1172 1042 4734398.284357 1043 1043 679047623.5514 1053 1043 -27563640.40249 1054 1043 -13902573.78038 1055 1043 -5467872.601825 1056 1043 27774811.43114 1057 1043 33778935.02398 1058 1043 94229239.45832 1059 1043 33262566.55012 1060 1043 -18959694.57843 1061 1043 -11675959.27499 1137 1043 15415739.3931 1138 1043 -18498084.4015 1139 1043 -99834027.95294 1149 1043 -19583892.11655 1150 1043 -51538880.44741 1151 1043 -167219957.723 1152 1043 -17965238.89317 1153 1043 10605384.60401 1154 1043 -88238208.0348 1164 1043 -18931013.9508 1165 1043 -13107584.00933 1166 1043 -54305191.47237 1167 1043 -41241201.16555 1168 1043 -1194514.850572 1169 1043 -36101396.81649 1170 1043 -5917410.878264 1171 1043 3156265.522905 1172 1043 16329190.95617 1044 1044 703328029.7947 1045 1044 3.576278686523e-07 1046 1044 -10185321.18392 1047 1044 65298758.21399 1048 1044 -4.023313522339e-07 1049 1044 -2546330.297233 1062 1044 -69150427.22048 1063 1044 7.599592208862e-07 1064 1044 6620438.369471 1065 1044 -46611023.324 1066 1044 30555555.55054 1067 1044 30109970.69972 1140 1044 -59010186.71026 1141 1044 1.542270183563e-06 1142 1044 49433583.10251 1143 1044 -10337951.09135 1144 1044 -7638888.891398 1145 1044 5244680.501577 1155 1044 20431686.98312 1156 1044 -9.238719940186e-07 1157 1044 -2546332.887312 1158 1044 21018908.28051 1159 1044 -2.346932888031e-06 1160 1044 -636583.222144 1173 1044 -53208020.04453 1174 1044 -1.534819602966e-06 1175 1044 -46887250.21518 1176 1044 -9746784.424485 1177 1044 7638888.891396 1178 1044 -4608097.279433 1045 1045 629990235.6412 1046 1045 122220590.1792 1047 1045 -5.662441253662e-07 1048 1045 -50812162.49284 1049 1045 -62332517.31162 1062 1045 5.662441253662e-07 1063 1045 65294942.0157 1064 1045 30555147.55986 1065 1045 30555555.55054 1066 1045 -37443799.05029 1067 1045 -16958129.33543 1140 1045 1.035630702972e-06 1141 1045 -25398826.77179 1142 1045 7638779.123661 1143 1045 -7638888.891398 1144 1045 -8046134.402525 1145 1045 6232693.774803 1155 1045 -9.536743164063e-07 1156 1045 2097153.481574 1157 1045 30555116.47959 1158 1045 -2.235174179077e-06 1159 1045 -8008818.28482 1160 1045 23250219.53173 1173 1045 -1.318752765656e-06 1174 1045 -19596660.10607 1175 1045 7638779.123661 1176 1045 7638888.891396 1177 1045 -7454967.735663 1178 1045 5468804.885664 1046 1046 998249229.7754 1047 1046 -2546330.297234 1048 1046 -59888072.86758 1049 1046 52583448.20272 1062 1046 3564882.814418 1063 1046 30555147.55986 1064 1046 156468480.0912 1065 1046 29728026.25477 1066 1046 -16652573.77948 1067 1046 -14634539.26698 1140 1046 49815527.5467 1141 1046 7638779.12366 1142 1046 -72142989.75742 1143 1046 5244680.501577 1144 1046 6232693.774804 1145 1046 -152469.232357 1155 1046 -2546332.887312 1156 1046 30555116.47959 1157 1046 -164838704.0269 1158 1046 -636583.2221438 1159 1046 23555775.08708 1160 1046 25663714.57989 1173 1046 -47269194.65938 1174 1046 7638779.123661 1175 1046 -56670545.31551 1176 1046 -4608097.279433 1177 1046 5468804.885664 1178 1046 1423975.212606 1047 1047 703328029.7947 1048 1047 3.576278686523e-07 1049 1047 -10185321.18392 1050 1047 65298758.21399 1051 1047 -4.023313522339e-07 1052 1047 -2546330.297233 1062 1047 -43173523.32456 1063 1047 -30555555.55054 1064 1047 -27181695.95754 1065 1047 -69150427.22048 1066 1047 7.599592208862e-07 1067 1047 6620438.369471 1068 1047 -46611023.324 1069 1047 30555555.55054 1070 1047 30109970.69972 1140 1047 -32955138.59878 1141 1047 7638888.891398 1142 1047 19567597.17295 1143 1047 -59010186.71026 1144 1047 1.542270183563e-06 1145 1047 49433583.10251 1146 1047 -10337951.09135 1147 1047 -7638888.891398 1148 1047 5244680.501577 1155 1047 -66012341.70521 1156 1047 2.853572368622e-06 1157 1047 -636583.2221378 1158 1047 20431686.98312 1159 1047 -9.238719940186e-07 1160 1047 -2546332.887312 1161 1047 21018908.28051 1162 1047 -2.346932888031e-06 1163 1047 -636583.222144 1173 1047 -30645221.93135 1174 1047 -7638888.891397 1175 1047 -18931013.9508 1176 1047 -53208020.04453 1177 1047 -1.534819602966e-06 1178 1047 -46887250.21518 1179 1047 -9746784.424485 1180 1047 7638888.891396 1181 1047 -4608097.279433 1048 1048 629990235.6412 1049 1048 122220590.1792 1050 1048 -5.662441253662e-07 1051 1048 -50812162.49284 1052 1048 -62332517.31162 1062 1048 -30555555.55054 1063 1048 -34006299.05085 1064 1048 -13597018.22442 1065 1048 5.662441253662e-07 1066 1048 65294942.0157 1067 1048 30555147.55986 1068 1048 30555555.55054 1069 1048 -37443799.05029 1070 1048 -16958129.33543 1140 1048 7638888.891398 1141 1048 -30663321.90996 1142 1048 -13871472.89847 1143 1048 1.035630702972e-06 1144 1048 -25398826.77179 1145 1048 7638779.123661 1146 1048 -7638888.891398 1147 1048 -8046134.402525 1148 1048 6232693.774803 1155 1048 2.995133399963e-06 1156 1048 -95040068.27054 1157 1048 -53805336.01132 1158 1048 -9.536743164063e-07 1159 1048 2097153.481574 1160 1048 30555116.47959 1161 1048 -2.235174179077e-06 1162 1048 -8008818.28482 1163 1048 23250219.53173 1173 1048 -7638888.891397 1174 1048 -28353405.24253 1175 1048 -13107584.00933 1176 1048 -1.318752765656e-06 1177 1048 -19596660.10607 1178 1048 7638779.123661 1179 1048 7638888.891396 1180 1048 -7454967.735663 1181 1048 5468804.885664 1049 1049 998249229.7754 1050 1049 -2546330.297234 1051 1049 -59888072.86758 1052 1049 52583448.20272 1062 1049 -27563640.40249 1063 1049 -13902573.78038 1064 1049 -5467872.601825 1065 1049 3564882.814418 1066 1049 30555147.55986 1067 1049 156468480.0912 1068 1049 29728026.25477 1069 1049 -16652573.77948 1070 1049 -14634539.26698 1140 1049 19567597.17295 1141 1049 -13871472.89847 1142 1049 -60464969.25217 1143 1049 49815527.5467 1144 1049 7638779.12366 1145 1049 -72142989.75742 1146 1049 5244680.501577 1147 1049 6232693.774804 1148 1049 -152469.232357 1155 1049 -636583.2221379 1156 1049 -54110891.56668 1157 1049 -206419618.7154 1158 1049 -2546332.887312 1159 1049 30555116.47959 1160 1049 -164838704.0269 1161 1049 -636583.2221438 1162 1049 23555775.08708 1163 1049 25663714.57989 1173 1049 -18931013.9508 1174 1049 -13107584.00933 1175 1049 -54305191.47237 1176 1049 -47269194.65938 1177 1049 7638779.123661 1178 1049 -56670545.31551 1179 1049 -4608097.279433 1180 1049 5468804.885664 1181 1049 1423975.212606 1050 1050 703328029.7947 1051 1050 3.576278686523e-07 1052 1050 -10185321.18392 1053 1050 65298758.21399 1054 1050 -4.023313522339e-07 1055 1050 -2546330.297233 1065 1050 -43173523.32456 1066 1050 -30555555.55054 1067 1050 -27181695.95754 1068 1050 -69150427.22048 1069 1050 7.599592208862e-07 1070 1050 6620438.369471 1071 1050 -46611023.324 1072 1050 30555555.55054 1073 1050 30109970.69972 1143 1050 -32955138.59878 1144 1050 7638888.891398 1145 1050 19567597.17295 1146 1050 -59010186.71026 1147 1050 1.542270183563e-06 1148 1050 49433583.10251 1149 1050 -10337951.09135 1150 1050 -7638888.891398 1151 1050 5244680.501577 1158 1050 -66012341.70521 1159 1050 2.853572368622e-06 1160 1050 -636583.2221378 1161 1050 20431686.98312 1162 1050 -9.238719940186e-07 1163 1050 -2546332.887312 1164 1050 21018908.28051 1165 1050 -2.346932888031e-06 1166 1050 -636583.222144 1176 1050 -30645221.93135 1177 1050 -7638888.891397 1178 1050 -18931013.9508 1179 1050 -53208020.04453 1180 1050 -1.534819602966e-06 1181 1050 -46887250.21518 1182 1050 -9746784.424485 1183 1050 7638888.891396 1184 1050 -4608097.279433 1051 1051 629990235.6412 1052 1051 122220590.1792 1053 1051 -5.662441253662e-07 1054 1051 -50812162.49284 1055 1051 -62332517.31162 1065 1051 -30555555.55054 1066 1051 -34006299.05085 1067 1051 -13597018.22442 1068 1051 5.662441253662e-07 1069 1051 65294942.0157 1070 1051 30555147.55986 1071 1051 30555555.55054 1072 1051 -37443799.05029 1073 1051 -16958129.33543 1143 1051 7638888.891398 1144 1051 -30663321.90996 1145 1051 -13871472.89847 1146 1051 1.035630702972e-06 1147 1051 -25398826.77179 1148 1051 7638779.123661 1149 1051 -7638888.891398 1150 1051 -8046134.402525 1151 1051 6232693.774803 1158 1051 2.995133399963e-06 1159 1051 -95040068.27054 1160 1051 -53805336.01132 1161 1051 -9.536743164063e-07 1162 1051 2097153.481574 1163 1051 30555116.47959 1164 1051 -2.235174179077e-06 1165 1051 -8008818.28482 1166 1051 23250219.53173 1176 1051 -7638888.891397 1177 1051 -28353405.24253 1178 1051 -13107584.00933 1179 1051 -1.318752765656e-06 1180 1051 -19596660.10607 1181 1051 7638779.123661 1182 1051 7638888.891396 1183 1051 -7454967.735663 1184 1051 5468804.885664 1052 1052 998249229.7754 1053 1052 -2546330.297234 1054 1052 -59888072.86758 1055 1052 52583448.20272 1065 1052 -27563640.40249 1066 1052 -13902573.78038 1067 1052 -5467872.601825 1068 1052 3564882.814418 1069 1052 30555147.55986 1070 1052 156468480.0912 1071 1052 29728026.25477 1072 1052 -16652573.77948 1073 1052 -14634539.26698 1143 1052 19567597.17295 1144 1052 -13871472.89847 1145 1052 -60464969.25217 1146 1052 49815527.5467 1147 1052 7638779.12366 1148 1052 -72142989.75742 1149 1052 5244680.501577 1150 1052 6232693.774804 1151 1052 -152469.232357 1158 1052 -636583.2221379 1159 1052 -54110891.56668 1160 1052 -206419618.7154 1161 1052 -2546332.887312 1162 1052 30555116.47959 1163 1052 -164838704.0269 1164 1052 -636583.2221438 1165 1052 23555775.08708 1166 1052 25663714.57989 1176 1052 -18931013.9508 1177 1052 -13107584.00933 1178 1052 -54305191.47237 1179 1052 -47269194.65938 1180 1052 7638779.123661 1181 1052 -56670545.31551 1182 1052 -4608097.279433 1183 1052 5468804.885664 1184 1052 1423975.212606 1053 1053 703328029.7947 1054 1053 3.576278686523e-07 1055 1053 -10185321.18392 1056 1053 65298758.21399 1057 1053 -4.023313522339e-07 1058 1053 -2546330.297233 1068 1053 -43173523.32456 1069 1053 -30555555.55054 1070 1053 -27181695.95754 1071 1053 -69150427.22048 1072 1053 7.599592208862e-07 1073 1053 6620438.369471 1074 1053 -46611023.324 1075 1053 30555555.55054 1076 1053 30109970.69972 1146 1053 -32955138.59878 1147 1053 7638888.891398 1148 1053 19567597.17295 1149 1053 -59010186.71026 1150 1053 1.542270183563e-06 1151 1053 49433583.10251 1152 1053 -10337951.09135 1153 1053 -7638888.891398 1154 1053 5244680.501577 1161 1053 -66012341.70521 1162 1053 2.853572368622e-06 1163 1053 -636583.2221378 1164 1053 20431686.98312 1165 1053 -9.238719940186e-07 1166 1053 -2546332.887312 1167 1053 21018908.28051 1168 1053 -2.346932888031e-06 1169 1053 -636583.222144 1179 1053 -30645221.93135 1180 1053 -7638888.891397 1181 1053 -18931013.9508 1182 1053 -53208020.04453 1183 1053 -1.534819602966e-06 1184 1053 -46887250.21518 1185 1053 -9746784.424485 1186 1053 7638888.891396 1187 1053 -4608097.279433 1054 1054 629990235.6412 1055 1054 122220590.1792 1056 1054 -5.662441253662e-07 1057 1054 -50812162.49284 1058 1054 -62332517.31162 1068 1054 -30555555.55054 1069 1054 -34006299.05085 1070 1054 -13597018.22442 1071 1054 5.662441253662e-07 1072 1054 65294942.0157 1073 1054 30555147.55986 1074 1054 30555555.55054 1075 1054 -37443799.05029 1076 1054 -16958129.33543 1146 1054 7638888.891398 1147 1054 -30663321.90996 1148 1054 -13871472.89847 1149 1054 1.035630702972e-06 1150 1054 -25398826.77179 1151 1054 7638779.123661 1152 1054 -7638888.891398 1153 1054 -8046134.402525 1154 1054 6232693.774803 1161 1054 2.995133399963e-06 1162 1054 -95040068.27054 1163 1054 -53805336.01132 1164 1054 -9.536743164063e-07 1165 1054 2097153.481574 1166 1054 30555116.47959 1167 1054 -2.235174179077e-06 1168 1054 -8008818.28482 1169 1054 23250219.53173 1179 1054 -7638888.891397 1180 1054 -28353405.24253 1181 1054 -13107584.00933 1182 1054 -1.318752765656e-06 1183 1054 -19596660.10607 1184 1054 7638779.123661 1185 1054 7638888.891396 1186 1054 -7454967.735663 1187 1054 5468804.885664 1055 1055 998249229.7754 1056 1055 -2546330.297234 1057 1055 -59888072.86758 1058 1055 52583448.20272 1068 1055 -27563640.40249 1069 1055 -13902573.78038 1070 1055 -5467872.601825 1071 1055 3564882.814418 1072 1055 30555147.55986 1073 1055 156468480.0912 1074 1055 29728026.25477 1075 1055 -16652573.77948 1076 1055 -14634539.26698 1146 1055 19567597.17295 1147 1055 -13871472.89847 1148 1055 -60464969.25217 1149 1055 49815527.5467 1150 1055 7638779.12366 1151 1055 -72142989.75742 1152 1055 5244680.501577 1153 1055 6232693.774804 1154 1055 -152469.232357 1161 1055 -636583.2221379 1162 1055 -54110891.56668 1163 1055 -206419618.7154 1164 1055 -2546332.887312 1165 1055 30555116.47959 1166 1055 -164838704.0269 1167 1055 -636583.2221438 1168 1055 23555775.08708 1169 1055 25663714.57989 1179 1055 -18931013.9508 1180 1055 -13107584.00933 1181 1055 -54305191.47237 1182 1055 -47269194.65938 1183 1055 7638779.123661 1184 1055 -56670545.31551 1185 1055 -4608097.279433 1186 1055 5468804.885664 1187 1055 1423975.212606 1056 1056 721009953.5089 1057 1056 30610661.14353 1058 1056 -34376411.47656 1059 1056 22252951.07536 1060 1056 -30577597.78774 1061 1056 -30132237.29345 1071 1056 -43173523.32456 1072 1056 -30555555.55054 1073 1056 -27181695.95754 1074 1056 -69150427.22048 1075 1056 7.599592208862e-07 1076 1056 6620438.369471 1077 1056 -46611023.324 1078 1056 30555555.55054 1079 1056 30109970.69972 1149 1056 -32955138.59878 1150 1056 7638888.891398 1151 1056 19567597.17295 1152 1056 -79032837.45136 1153 1056 -7648437.10893 1154 1056 55511888.47871 1164 1056 -66012341.70521 1165 1056 2.853572368622e-06 1166 1056 -636583.2221378 1167 1056 34928101.59242 1168 1056 7654802.58729 1169 1056 -8598678.217522 1170 1056 5149787.278365 1171 1056 -7645254.369755 1172 1056 4611926.752539 1182 1056 -30645221.93135 1183 1056 -7638888.891397 1184 1056 -18931013.9508 1185 1056 -53208020.04453 1186 1056 -1.534819602966e-06 1187 1056 -46887250.21518 1188 1056 -9746784.424485 1189 1056 7638888.891396 1190 1056 -4608097.279433 1057 1057 638480136.047 1058 1057 94719923.44838 1059 1057 -30588618.90634 1060 1057 -84734829.23983 1061 1057 -51960954.36765 1071 1057 -30555555.55054 1072 1057 -34006299.05085 1073 1057 -13597018.22442 1074 1057 5.662441253662e-07 1075 1057 65294942.0157 1076 1057 30555147.55986 1077 1057 30555555.55054 1078 1057 -37443799.05029 1079 1057 -16958129.33543 1149 1057 7638888.891398 1150 1057 -30663321.90996 1151 1057 -13871472.89847 1152 1057 -7645254.369751 1153 1057 -43109768.41806 1154 1057 18161862.49682 1164 1057 2.995133399963e-06 1165 1057 -95040068.27054 1166 1057 -53805336.01132 1167 1057 7654802.587289 1168 1057 14294589.76961 1169 1057 23676298.37333 1170 1057 -7648437.108933 1171 1057 -21598853.37172 1172 1057 25862479.31684 1182 1057 -7638888.891397 1183 1057 -28353405.24253 1184 1057 -13107584.00933 1185 1057 -1.318752765656e-06 1186 1057 -19596660.10607 1187 1057 7638779.123661 1188 1057 7638888.891396 1189 1057 -7454967.735663 1190 1057 5468804.885664 1058 1058 935442848.8393 1059 1058 -29761426.14538 1060 1058 -58081061.81704 1061 1058 47500235.97878 1071 1058 -27563640.40249 1072 1058 -13902573.78038 1073 1058 -5467872.601825 1074 1058 3564882.814418 1075 1058 30555147.55986 1076 1058 156468480.0912 1077 1058 29728026.25477 1078 1058 -16652573.77948 1079 1058 -14634539.26698 1149 1058 19567597.17295 1150 1058 -13871472.89847 1151 1058 -60464969.25217 1152 1058 55896750.56943 1153 1058 20307057.29599 1154 1058 -98048385.90041 1164 1058 -636583.2221379 1165 1058 -54110891.56668 1166 1058 -206419618.7154 1167 1058 -8588615.841047 1168 1058 23684348.15878 1169 1058 -153682668.3423 1170 1058 4613841.489092 1171 1058 24026705.92618 1172 1058 10774189.69233 1182 1058 -18931013.9508 1183 1058 -13107584.00933 1184 1058 -54305191.47237 1185 1058 -47269194.65938 1186 1058 7638779.123661 1187 1058 -56670545.31551 1188 1058 -4608097.279433 1189 1058 5468804.885664 1190 1058 1423975.212606 1059 1059 367439587.8674 1060 1059 -6444670.14594 1061 1059 6702162.32163 1074 1059 -43173523.32456 1075 1059 -30555555.55054 1076 1059 -27181695.95754 1077 1059 -57214134.66201 1078 1059 6324640.430005 1079 1059 3976848.141463 1080 1059 -42286740.95386 1081 1059 24564474.15636 1082 1059 1550068.294194 1152 1059 -37437760.48235 1153 1059 9176214.887214 1154 1059 23123609.08966 1167 1059 -61598018.00238 1168 1059 -7648437.108935 1169 1059 -19592039.58835 1170 1059 18456352.87299 1171 1059 -3515413.057224 1172 1059 9204137.171611 1185 1059 -30645221.93135 1186 1059 -7638888.891397 1187 1059 -18931013.9508 1188 1059 -30340144.80161 1189 1059 3467943.693614 1190 1059 -30119546.23577 1191 1059 -19821700.11939 1192 1059 6158580.476729 1193 1059 -1921392.690481 1060 1060 419218508.677 1061 1060 80031030.37421 1074 1060 -30555555.55054 1075 1060 -34006299.05085 1076 1060 -13597018.22442 1077 1060 6264625.572038 1078 1060 70122596.35682 1079 1060 21137034.96597 1080 1060 36846711.23454 1081 1060 -123581836.7408 1082 1060 -19765521.80219 1152 1060 6117476.591476 1153 1060 -37437760.48236 1154 1060 -12332056.26767 1167 1060 -7645254.369756 1168 1060 -88346658.65246 1169 1060 -53374653.70739 1170 1060 -3515413.057224 1171 1060 45200470.13904 1172 1060 28178112.40107 1185 1060 -7638888.891397 1186 1060 -28353405.24253 1187 1060 -13107584.00933 1188 1060 3444209.011808 1189 1060 692072.0501018 1190 1060 9579154.834703 1191 1060 9237870.715094 1192 1060 -53141210.27589 1193 1060 10606269.5228 1061 1061 548014788.7711 1074 1061 -27563640.40249 1075 1061 -13902573.78038 1076 1061 -5467872.601825 1077 1061 9316353.373012 1078 1061 18981174.69952 1079 1061 100137434.615 1080 1061 2325102.441291 1081 1061 -18561981.68092 1082 1061 -31469546.75673 1152 1061 15415739.3931 1153 1061 -18498084.4015 1154 1061 -99834027.95294 1167 1061 -19583892.11655 1168 1061 -51538880.44741 1169 1061 -167219957.723 1170 1061 -3159598.760604 1171 1061 18338796.75477 1172 1061 -61684899.57103 1185 1061 -18931013.9508 1186 1061 -13107584.00933 1187 1061 -54305191.47237 1188 1061 -28213514.83563 1189 1061 9298506.145881 1190 1061 -27781546.3564 1191 1061 -2882089.035722 1192 1061 9831110.118881 1193 1061 -19538356.82854 1062 1062 703328029.7947 1063 1062 3.576278686523e-07 1064 1062 -10185321.18392 1065 1062 65298758.21399 1066 1062 -4.023313522339e-07 1067 1062 -2546330.297233 1083 1062 -69150427.22048 1084 1062 7.599592208862e-07 1085 1062 6620438.369471 1086 1062 -46611023.324 1087 1062 30555555.55054 1088 1062 30109970.69972 1155 1062 -59010186.71026 1156 1062 1.542270183563e-06 1157 1062 49433583.10251 1158 1062 -10337951.09135 1159 1062 -7638888.891398 1160 1062 5244680.501577 1173 1062 20431686.98312 1174 1062 -9.238719940186e-07 1175 1062 -2546332.887312 1176 1062 21018908.28051 1177 1062 -2.346932888031e-06 1178 1062 -636583.222144 1194 1062 -53208020.04453 1195 1062 -1.534819602966e-06 1196 1062 -46887250.21518 1197 1062 -9746784.424485 1198 1062 7638888.891396 1199 1062 -4608097.279433 1063 1063 629990235.6412 1064 1063 122220590.1792 1065 1063 -5.662441253662e-07 1066 1063 -50812162.49284 1067 1063 -62332517.31162 1083 1063 5.662441253662e-07 1084 1063 65294942.0157 1085 1063 30555147.55986 1086 1063 30555555.55054 1087 1063 -37443799.05029 1088 1063 -16958129.33543 1155 1063 1.035630702972e-06 1156 1063 -25398826.77179 1157 1063 7638779.123661 1158 1063 -7638888.891398 1159 1063 -8046134.402525 1160 1063 6232693.774803 1173 1063 -9.536743164063e-07 1174 1063 2097153.481574 1175 1063 30555116.47959 1176 1063 -2.235174179077e-06 1177 1063 -8008818.28482 1178 1063 23250219.53173 1194 1063 -1.318752765656e-06 1195 1063 -19596660.10607 1196 1063 7638779.123661 1197 1063 7638888.891396 1198 1063 -7454967.735663 1199 1063 5468804.885664 1064 1064 998249229.7754 1065 1064 -2546330.297234 1066 1064 -59888072.86758 1067 1064 52583448.20272 1083 1064 3564882.814418 1084 1064 30555147.55986 1085 1064 156468480.0912 1086 1064 29728026.25477 1087 1064 -16652573.77948 1088 1064 -14634539.26698 1155 1064 49815527.5467 1156 1064 7638779.12366 1157 1064 -72142989.75742 1158 1064 5244680.501577 1159 1064 6232693.774804 1160 1064 -152469.232357 1173 1064 -2546332.887312 1174 1064 30555116.47959 1175 1064 -164838704.0269 1176 1064 -636583.2221438 1177 1064 23555775.08708 1178 1064 25663714.57989 1194 1064 -47269194.65938 1195 1064 7638779.123661 1196 1064 -56670545.31551 1197 1064 -4608097.279433 1198 1064 5468804.885664 1199 1064 1423975.212606 1065 1065 703328029.7947 1066 1065 3.576278686523e-07 1067 1065 -10185321.18392 1068 1065 65298758.21399 1069 1065 -4.023313522339e-07 1070 1065 -2546330.297233 1083 1065 -43173523.32456 1084 1065 -30555555.55054 1085 1065 -27181695.95754 1086 1065 -69150427.22048 1087 1065 7.599592208862e-07 1088 1065 6620438.369471 1089 1065 -46611023.324 1090 1065 30555555.55054 1091 1065 30109970.69972 1155 1065 -32955138.59878 1156 1065 7638888.891398 1157 1065 19567597.17295 1158 1065 -59010186.71026 1159 1065 1.542270183563e-06 1160 1065 49433583.10251 1161 1065 -10337951.09135 1162 1065 -7638888.891398 1163 1065 5244680.501577 1173 1065 -66012341.70521 1174 1065 2.853572368622e-06 1175 1065 -636583.2221378 1176 1065 20431686.98312 1177 1065 -9.238719940186e-07 1178 1065 -2546332.887312 1179 1065 21018908.28051 1180 1065 -2.346932888031e-06 1181 1065 -636583.222144 1194 1065 -30645221.93135 1195 1065 -7638888.891397 1196 1065 -18931013.9508 1197 1065 -53208020.04453 1198 1065 -1.534819602966e-06 1199 1065 -46887250.21518 1200 1065 -9746784.424485 1201 1065 7638888.891396 1202 1065 -4608097.279433 1066 1066 629990235.6412 1067 1066 122220590.1792 1068 1066 -5.662441253662e-07 1069 1066 -50812162.49284 1070 1066 -62332517.31162 1083 1066 -30555555.55054 1084 1066 -34006299.05085 1085 1066 -13597018.22442 1086 1066 5.662441253662e-07 1087 1066 65294942.0157 1088 1066 30555147.55986 1089 1066 30555555.55054 1090 1066 -37443799.05029 1091 1066 -16958129.33543 1155 1066 7638888.891398 1156 1066 -30663321.90996 1157 1066 -13871472.89847 1158 1066 1.035630702972e-06 1159 1066 -25398826.77179 1160 1066 7638779.123661 1161 1066 -7638888.891398 1162 1066 -8046134.402525 1163 1066 6232693.774803 1173 1066 2.995133399963e-06 1174 1066 -95040068.27054 1175 1066 -53805336.01132 1176 1066 -9.536743164063e-07 1177 1066 2097153.481574 1178 1066 30555116.47959 1179 1066 -2.235174179077e-06 1180 1066 -8008818.28482 1181 1066 23250219.53173 1194 1066 -7638888.891397 1195 1066 -28353405.24253 1196 1066 -13107584.00933 1197 1066 -1.318752765656e-06 1198 1066 -19596660.10607 1199 1066 7638779.123661 1200 1066 7638888.891396 1201 1066 -7454967.735663 1202 1066 5468804.885664 1067 1067 998249229.7754 1068 1067 -2546330.297234 1069 1067 -59888072.86758 1070 1067 52583448.20272 1083 1067 -27563640.40249 1084 1067 -13902573.78038 1085 1067 -5467872.601825 1086 1067 3564882.814418 1087 1067 30555147.55986 1088 1067 156468480.0912 1089 1067 29728026.25477 1090 1067 -16652573.77948 1091 1067 -14634539.26698 1155 1067 19567597.17295 1156 1067 -13871472.89847 1157 1067 -60464969.25217 1158 1067 49815527.5467 1159 1067 7638779.12366 1160 1067 -72142989.75742 1161 1067 5244680.501577 1162 1067 6232693.774804 1163 1067 -152469.232357 1173 1067 -636583.2221379 1174 1067 -54110891.56668 1175 1067 -206419618.7154 1176 1067 -2546332.887312 1177 1067 30555116.47959 1178 1067 -164838704.0269 1179 1067 -636583.2221438 1180 1067 23555775.08708 1181 1067 25663714.57989 1194 1067 -18931013.9508 1195 1067 -13107584.00933 1196 1067 -54305191.47237 1197 1067 -47269194.65938 1198 1067 7638779.123661 1199 1067 -56670545.31551 1200 1067 -4608097.279433 1201 1067 5468804.885664 1202 1067 1423975.212606 1068 1068 703328029.7947 1069 1068 3.576278686523e-07 1070 1068 -10185321.18392 1071 1068 65298758.21399 1072 1068 -4.023313522339e-07 1073 1068 -2546330.297233 1086 1068 -43173523.32456 1087 1068 -30555555.55054 1088 1068 -27181695.95754 1089 1068 -69150427.22048 1090 1068 7.599592208862e-07 1091 1068 6620438.369471 1092 1068 -46611023.324 1093 1068 30555555.55054 1094 1068 30109970.69972 1158 1068 -32955138.59878 1159 1068 7638888.891398 1160 1068 19567597.17295 1161 1068 -59010186.71026 1162 1068 1.542270183563e-06 1163 1068 49433583.10251 1164 1068 -10337951.09135 1165 1068 -7638888.891398 1166 1068 5244680.501577 1176 1068 -66012341.70521 1177 1068 2.853572368622e-06 1178 1068 -636583.2221378 1179 1068 20431686.98312 1180 1068 -9.238719940186e-07 1181 1068 -2546332.887312 1182 1068 21018908.28051 1183 1068 -2.346932888031e-06 1184 1068 -636583.222144 1197 1068 -30645221.93135 1198 1068 -7638888.891397 1199 1068 -18931013.9508 1200 1068 -53208020.04453 1201 1068 -1.534819602966e-06 1202 1068 -46887250.21518 1203 1068 -9746784.424485 1204 1068 7638888.891396 1205 1068 -4608097.279433 1069 1069 629990235.6412 1070 1069 122220590.1792 1071 1069 -5.662441253662e-07 1072 1069 -50812162.49284 1073 1069 -62332517.31162 1086 1069 -30555555.55054 1087 1069 -34006299.05085 1088 1069 -13597018.22442 1089 1069 5.662441253662e-07 1090 1069 65294942.0157 1091 1069 30555147.55986 1092 1069 30555555.55054 1093 1069 -37443799.05029 1094 1069 -16958129.33543 1158 1069 7638888.891398 1159 1069 -30663321.90996 1160 1069 -13871472.89847 1161 1069 1.035630702972e-06 1162 1069 -25398826.77179 1163 1069 7638779.123661 1164 1069 -7638888.891398 1165 1069 -8046134.402525 1166 1069 6232693.774803 1176 1069 2.995133399963e-06 1177 1069 -95040068.27054 1178 1069 -53805336.01132 1179 1069 -9.536743164063e-07 1180 1069 2097153.481574 1181 1069 30555116.47959 1182 1069 -2.235174179077e-06 1183 1069 -8008818.28482 1184 1069 23250219.53173 1197 1069 -7638888.891397 1198 1069 -28353405.24253 1199 1069 -13107584.00933 1200 1069 -1.318752765656e-06 1201 1069 -19596660.10607 1202 1069 7638779.123661 1203 1069 7638888.891396 1204 1069 -7454967.735663 1205 1069 5468804.885664 1070 1070 998249229.7754 1071 1070 -2546330.297234 1072 1070 -59888072.86758 1073 1070 52583448.20272 1086 1070 -27563640.40249 1087 1070 -13902573.78038 1088 1070 -5467872.601825 1089 1070 3564882.814418 1090 1070 30555147.55986 1091 1070 156468480.0912 1092 1070 29728026.25477 1093 1070 -16652573.77948 1094 1070 -14634539.26698 1158 1070 19567597.17295 1159 1070 -13871472.89847 1160 1070 -60464969.25217 1161 1070 49815527.5467 1162 1070 7638779.12366 1163 1070 -72142989.75742 1164 1070 5244680.501577 1165 1070 6232693.774804 1166 1070 -152469.232357 1176 1070 -636583.2221379 1177 1070 -54110891.56668 1178 1070 -206419618.7154 1179 1070 -2546332.887312 1180 1070 30555116.47959 1181 1070 -164838704.0269 1182 1070 -636583.2221438 1183 1070 23555775.08708 1184 1070 25663714.57989 1197 1070 -18931013.9508 1198 1070 -13107584.00933 1199 1070 -54305191.47237 1200 1070 -47269194.65938 1201 1070 7638779.123661 1202 1070 -56670545.31551 1203 1070 -4608097.279433 1204 1070 5468804.885664 1205 1070 1423975.212606 1071 1071 703328029.7947 1072 1071 3.576278686523e-07 1073 1071 -10185321.18392 1074 1071 65298758.21399 1075 1071 -4.023313522339e-07 1076 1071 -2546330.297233 1089 1071 -43173523.32456 1090 1071 -30555555.55054 1091 1071 -27181695.95754 1092 1071 -69150427.22048 1093 1071 7.599592208862e-07 1094 1071 6620438.369471 1095 1071 -46611023.324 1096 1071 30555555.55054 1097 1071 30109970.69972 1161 1071 -32955138.59878 1162 1071 7638888.891398 1163 1071 19567597.17295 1164 1071 -59010186.71026 1165 1071 1.542270183563e-06 1166 1071 49433583.10251 1167 1071 -10337951.09135 1168 1071 -7638888.891398 1169 1071 5244680.501577 1179 1071 -66012341.70521 1180 1071 2.853572368622e-06 1181 1071 -636583.2221378 1182 1071 20431686.98312 1183 1071 -9.238719940186e-07 1184 1071 -2546332.887312 1185 1071 21018908.28051 1186 1071 -2.346932888031e-06 1187 1071 -636583.222144 1200 1071 -30645221.93135 1201 1071 -7638888.891397 1202 1071 -18931013.9508 1203 1071 -53208020.04453 1204 1071 -1.534819602966e-06 1205 1071 -46887250.21518 1206 1071 -9746784.424485 1207 1071 7638888.891396 1208 1071 -4608097.279433 1072 1072 629990235.6412 1073 1072 122220590.1792 1074 1072 -5.662441253662e-07 1075 1072 -50812162.49284 1076 1072 -62332517.31162 1089 1072 -30555555.55054 1090 1072 -34006299.05085 1091 1072 -13597018.22442 1092 1072 5.662441253662e-07 1093 1072 65294942.0157 1094 1072 30555147.55986 1095 1072 30555555.55054 1096 1072 -37443799.05029 1097 1072 -16958129.33543 1161 1072 7638888.891398 1162 1072 -30663321.90996 1163 1072 -13871472.89847 1164 1072 1.035630702972e-06 1165 1072 -25398826.77179 1166 1072 7638779.123661 1167 1072 -7638888.891398 1168 1072 -8046134.402525 1169 1072 6232693.774803 1179 1072 2.995133399963e-06 1180 1072 -95040068.27054 1181 1072 -53805336.01132 1182 1072 -9.536743164063e-07 1183 1072 2097153.481574 1184 1072 30555116.47959 1185 1072 -2.235174179077e-06 1186 1072 -8008818.28482 1187 1072 23250219.53173 1200 1072 -7638888.891397 1201 1072 -28353405.24253 1202 1072 -13107584.00933 1203 1072 -1.318752765656e-06 1204 1072 -19596660.10607 1205 1072 7638779.123661 1206 1072 7638888.891396 1207 1072 -7454967.735663 1208 1072 5468804.885664 1073 1073 998249229.7754 1074 1073 -2546330.297234 1075 1073 -59888072.86758 1076 1073 52583448.20272 1089 1073 -27563640.40249 1090 1073 -13902573.78038 1091 1073 -5467872.601825 1092 1073 3564882.814418 1093 1073 30555147.55986 1094 1073 156468480.0912 1095 1073 29728026.25477 1096 1073 -16652573.77948 1097 1073 -14634539.26698 1161 1073 19567597.17295 1162 1073 -13871472.89847 1163 1073 -60464969.25217 1164 1073 49815527.5467 1165 1073 7638779.12366 1166 1073 -72142989.75742 1167 1073 5244680.501577 1168 1073 6232693.774804 1169 1073 -152469.232357 1179 1073 -636583.2221379 1180 1073 -54110891.56668 1181 1073 -206419618.7154 1182 1073 -2546332.887312 1183 1073 30555116.47959 1184 1073 -164838704.0269 1185 1073 -636583.2221438 1186 1073 23555775.08708 1187 1073 25663714.57989 1200 1073 -18931013.9508 1201 1073 -13107584.00933 1202 1073 -54305191.47237 1203 1073 -47269194.65938 1204 1073 7638779.123661 1205 1073 -56670545.31551 1206 1073 -4608097.279433 1207 1073 5468804.885664 1208 1073 1423975.212606 1074 1074 703328029.7947 1075 1074 3.576278686523e-07 1076 1074 -10185321.18392 1077 1074 65298758.21399 1078 1074 -4.023313522339e-07 1079 1074 -2546330.297233 1092 1074 -43173523.32456 1093 1074 -30555555.55054 1094 1074 -27181695.95754 1095 1074 -69150427.22048 1096 1074 7.599592208862e-07 1097 1074 6620438.369471 1098 1074 -46611023.324 1099 1074 30555555.55054 1100 1074 30109970.69972 1164 1074 -32955138.59878 1165 1074 7638888.891398 1166 1074 19567597.17295 1167 1074 -59010186.71026 1168 1074 1.542270183563e-06 1169 1074 49433583.10251 1170 1074 -10337951.09135 1171 1074 -7638888.891398 1172 1074 5244680.501577 1182 1074 -66012341.70521 1183 1074 2.853572368622e-06 1184 1074 -636583.2221378 1185 1074 20431686.98312 1186 1074 -9.238719940186e-07 1187 1074 -2546332.887312 1188 1074 21018908.28051 1189 1074 -2.346932888031e-06 1190 1074 -636583.222144 1203 1074 -30645221.93135 1204 1074 -7638888.891397 1205 1074 -18931013.9508 1206 1074 -53208020.04453 1207 1074 -1.534819602966e-06 1208 1074 -46887250.21518 1209 1074 -9746784.424485 1210 1074 7638888.891396 1211 1074 -4608097.279433 1075 1075 629990235.6412 1076 1075 122220590.1792 1077 1075 -5.662441253662e-07 1078 1075 -50812162.49284 1079 1075 -62332517.31162 1092 1075 -30555555.55054 1093 1075 -34006299.05085 1094 1075 -13597018.22442 1095 1075 5.662441253662e-07 1096 1075 65294942.0157 1097 1075 30555147.55986 1098 1075 30555555.55054 1099 1075 -37443799.05029 1100 1075 -16958129.33543 1164 1075 7638888.891398 1165 1075 -30663321.90996 1166 1075 -13871472.89847 1167 1075 1.035630702972e-06 1168 1075 -25398826.77179 1169 1075 7638779.123661 1170 1075 -7638888.891398 1171 1075 -8046134.402525 1172 1075 6232693.774803 1182 1075 2.995133399963e-06 1183 1075 -95040068.27054 1184 1075 -53805336.01132 1185 1075 -9.536743164063e-07 1186 1075 2097153.481574 1187 1075 30555116.47959 1188 1075 -2.235174179077e-06 1189 1075 -8008818.28482 1190 1075 23250219.53173 1203 1075 -7638888.891397 1204 1075 -28353405.24253 1205 1075 -13107584.00933 1206 1075 -1.318752765656e-06 1207 1075 -19596660.10607 1208 1075 7638779.123661 1209 1075 7638888.891396 1210 1075 -7454967.735663 1211 1075 5468804.885664 1076 1076 998249229.7754 1077 1076 -2546330.297234 1078 1076 -59888072.86758 1079 1076 52583448.20272 1092 1076 -27563640.40249 1093 1076 -13902573.78038 1094 1076 -5467872.601825 1095 1076 3564882.814418 1096 1076 30555147.55986 1097 1076 156468480.0912 1098 1076 29728026.25477 1099 1076 -16652573.77948 1100 1076 -14634539.26698 1164 1076 19567597.17295 1165 1076 -13871472.89847 1166 1076 -60464969.25217 1167 1076 49815527.5467 1168 1076 7638779.12366 1169 1076 -72142989.75742 1170 1076 5244680.501577 1171 1076 6232693.774804 1172 1076 -152469.232357 1182 1076 -636583.2221379 1183 1076 -54110891.56668 1184 1076 -206419618.7154 1185 1076 -2546332.887312 1186 1076 30555116.47959 1187 1076 -164838704.0269 1188 1076 -636583.2221438 1189 1076 23555775.08708 1190 1076 25663714.57989 1203 1076 -18931013.9508 1204 1076 -13107584.00933 1205 1076 -54305191.47237 1206 1076 -47269194.65938 1207 1076 7638779.123661 1208 1076 -56670545.31551 1209 1076 -4608097.279433 1210 1076 5468804.885664 1211 1076 1423975.212606 1077 1077 570501723.1357 1078 1077 9079022.427935 1079 1077 -9274929.964965 1080 1077 -31839728.53513 1081 1077 -51458572.29585 1082 1077 -7127824.323312 1095 1077 -43173523.32456 1096 1077 -30555555.55054 1097 1077 -27181695.95754 1098 1077 -46568529.59302 1099 1077 16027965.13575 1100 1077 2967342.757803 1101 1077 -20904300.89722 1102 1077 20086959.16013 1103 1077 4112201.618113 1167 1077 -32955138.59878 1168 1077 7638888.891398 1169 1077 19567597.17295 1170 1077 -37020168.145 1171 1077 3444209.011809 1172 1077 33605164.82544 1185 1077 -66012341.70521 1186 1077 2.853572368622e-06 1187 1077 -636583.2221378 1188 1077 28568367.61238 1189 1077 2250538.971708 1190 1077 -2147300.291512 1191 1077 -25990848.25866 1192 1077 -14160162.85565 1193 1077 10214737.96898 1206 1077 -30645221.93135 1207 1077 -7638888.891397 1208 1077 -18931013.9508 1209 1077 -42000541.15558 1210 1077 4593894.893531 1211 1077 -39062848.24116 1212 1077 -12782232.44445 1213 1077 3871519.978604 1214 1077 -2550174.723511 1078 1078 602206739.2136 1079 1078 78107882.18832 1080 1078 -51518587.15382 1081 1078 -149270648.6277 1082 1078 -15352296.85928 1095 1078 -30555555.55054 1096 1078 -34006299.05085 1097 1078 -13597018.22442 1098 1078 16027965.13575 1099 1078 61070693.25451 1100 1078 16474762.21805 1101 1078 20086959.16013 1102 1078 -72377878.58954 1103 1078 -8079345.074944 1167 1078 7638888.891398 1168 1078 -30663321.90996 1169 1078 -13871472.89847 1170 1078 3467943.693615 1171 1078 -5987951.293276 1172 1078 553673.964687 1185 1078 2.995133399963e-06 1186 1078 -95040068.27054 1187 1078 -53805336.01132 1188 1078 2250538.971707 1189 1078 43780387.67943 1190 1078 20402730.74043 1191 1078 -14183897.53746 1192 1078 -56594197.06368 1193 1078 34727712.16061 1206 1078 -7638888.891397 1207 1078 -28353405.24253 1208 1078 -13107584.00933 1209 1078 4593894.893531 1210 1078 -17139975.40311 1211 1078 10863138.72183 1212 1078 3871519.978604 1213 1078 -28839593.123 1214 1078 14284805.5813 1079 1079 752156033.5716 1080 1079 -6757025.137261 1081 1079 -14149789.86418 1082 1079 17937302.5459 1095 1079 -27563640.40249 1096 1079 -13902573.78038 1097 1079 -5467872.601825 1098 1079 8696509.423527 1099 1079 16169206.66254 1100 1079 132992729.5666 1101 1079 3348312.728221 1102 1079 -8079345.074944 1103 1079 2933439.403798 1167 1079 19567597.17295 1168 1079 -13871472.89847 1169 1079 -60464969.25217 1170 1079 31699133.42531 1171 1079 894158.2412029 1172 1079 -45594941.93873 1185 1079 -636583.2221379 1186 1079 -54110891.56668 1187 1079 -206419618.7154 1188 1079 -2127175.46838 1189 1079 20418832.32509 1190 1079 -110189348.5657 1191 1079 10220712.09006 1192 1079 34700515.9782 1193 1079 -36988737.34261 1206 1079 -18931013.9508 1207 1079 -13107584.00933 1208 1079 -54305191.47237 1209 1079 -37153126.01612 1210 1079 10863138.72329 1211 1079 -51173139.66418 1212 1079 -2550174.723511 1213 1079 14284805.5813 1214 1079 -18432385.38669 1080 1080 441900073.546 1081 1080 10150442.22681 1082 1080 -3907142.848424 1098 1080 -39682007.72661 1099 1080 -29098948.8429 1100 1080 -3693457.663771 1101 1080 32090689.3218 1102 1080 22812216.28582 1103 1080 3150441.404939 1104 1080 77149508.19 1105 1080 -14804593.1609 1106 1080 213770.8266398 1107 1080 4228979.174319 1108 1080 25612759.41044 1109 1080 1029422.0867 1170 1080 -26928306.79151 1171 1080 9237870.715094 1172 1080 5198285.296003 1188 1080 -38329908.16593 1189 1080 -14183897.53746 1190 1080 -14013967.79219 1191 1080 -25957044.68394 1192 1080 3016827.972827 1193 1080 9482743.61017 1209 1080 -20891328.62495 1210 1080 -7095495.010489 1211 1080 -13022180.51333 1212 1080 -52119203.19171 1213 1080 6820581.445927 1214 1080 -46618553.49094 1215 1080 -28126911.39166 1216 1080 -4001073.446638 1217 1080 12806770.0787 1218 1080 -18753093.0123 1219 1080 6205185.860737 1220 1080 -11366986.07681 1081 1081 580486288.2643 1082 1081 22691862.99995 1098 1081 -29098948.8429 1099 1081 -17363440.96438 1100 1081 -73698.46132895 1101 1081 22812216.28582 1102 1081 142916154.0449 1103 1081 5377779.606667 1104 1081 -2582370.940681 1105 1081 17900862.83321 1106 1081 -606809.4308197 1107 1081 25612759.41044 1108 1081 -9526605.793109 1109 1081 -711679.6250324 1170 1081 6158580.476729 1171 1081 -60247816.94801 1172 1081 -22683651.68266 1188 1081 -14160162.85565 1189 1081 -68933256.97095 1190 1081 -42828570.94811 1191 1081 3016827.972827 1192 1081 23366674.83819 1193 1081 9832075.434784 1209 1081 -7095495.010489 1210 1081 -14494911.61067 1211 1081 -9604397.379856 1212 1081 6820581.445928 1213 1081 -25052049.96819 1214 1081 8435776.588031 1215 1081 -945517.8900795 1216 1081 -42892980.14588 1217 1081 33178246.2864 1218 1081 6205185.860737 1219 1081 -22851455.05649 1220 1081 16480334.95681 1082 1082 715157788.3498 1098 1082 -4075402.108717 1099 1082 -379254.0172859 1100 1082 14849046.76255 1101 1082 1622663.627413 1102 1082 5072224.051161 1103 1082 239843057.1136 1104 1082 -168173.6177378 1105 1082 -606809.4308198 1106 1082 161890430.9423 1107 1082 647477.6417536 1108 1082 -711679.6250324 1109 1082 59287315.75331 1170 1082 3465523.530669 1171 1082 -24063482.84713 1172 1082 -38489307.95421 1188 1082 -13999817.14035 1189 1082 -42845108.80891 1190 1082 -69892897.09532 1191 1082 -9440589.720055 1192 1082 7633351.086299 1193 1082 -195780653.0959 1209 1082 -13022180.51333 1210 1082 -9604397.379856 1211 1082 -25668168.01612 1212 1082 -46618553.49056 1213 1082 8435776.589485 1214 1082 -108413832.6808 1215 1082 4681770.077847 1216 1082 33178246.2864 1217 1082 -85160955.10089 1218 1082 -11366986.07681 1219 1082 16480334.95681 1220 1082 -39542975.02213 1083 1083 351205681.5641 1084 1083 7.748603820801e-07 1085 1083 2546228.295676 1086 1083 32592087.44026 1087 1083 6111111.110108 1088 1083 5410862.629475 1173 1083 -59010186.71026 1174 1083 1.542270183563e-06 1175 1083 49433583.10251 1176 1083 -10337951.09135 1177 1083 -7638888.891398 1178 1083 5244680.501577 1194 1083 10158551.82493 1195 1083 -1.639127731323e-06 1196 1083 -9988583.109361 1197 1083 10509454.14025 1198 1083 1527777.778278 1199 1083 -1303569.389173 1084 1084 314536784.4873 1085 1084 61110295.08961 1086 1084 -6111111.110107 1087 1084 -25463372.91316 1088 1084 -30860703.10031 1173 1084 1.035630702972e-06 1174 1084 -25398826.77179 1175 1084 7638779.123661 1176 1084 -7638888.891398 1177 1084 -8046134.402525 1178 1084 6232693.774803 1194 1084 -1.132488250732e-06 1195 1084 991285.0741574 1196 1084 15277558.23979 1197 1084 -1527777.77828 1198 1084 -4004409.142409 1199 1084 11701498.65478 1085 1085 497902392.6657 1086 1085 -6047470.701977 1087 1085 -30249591.9893 1088 1085 26138946.32338 1173 1085 49815527.5467 1174 1085 7638779.12366 1175 1085 -72142989.75742 1176 1085 5244680.501577 1177 1085 6232693.774804 1178 1085 -152469.232357 1194 1085 9351972.443016 1195 1085 15277558.23979 1196 1085 -82572129.79111 1197 1085 666986.1670292 1198 1085 11701498.65463 1199 1085 12831857.28995 1086 1086 351205681.5641 1087 1086 7.748603820801e-07 1088 1086 2546228.295676 1089 1086 32592087.44026 1090 1086 6111111.110108 1091 1086 5410862.629475 1173 1086 -32955138.59878 1174 1086 7638888.891398 1175 1086 19567597.17295 1176 1086 -59010186.71026 1177 1086 1.542270183563e-06 1178 1086 49433583.10251 1179 1086 -10337951.09135 1180 1086 -7638888.891398 1181 1086 5244680.501577 1194 1086 -33006170.85261 1195 1086 -1527777.778278 1196 1086 -4168152.723444 1197 1086 10158551.82493 1198 1086 -1.639127731323e-06 1199 1086 -9988583.109361 1200 1086 10509454.14025 1201 1086 1527777.778278 1202 1086 -1303569.389173 1087 1087 314536784.4873 1088 1087 61110295.08961 1089 1087 -6111111.110107 1090 1087 -25463372.91316 1091 1087 -30860703.10031 1173 1087 7638888.891398 1174 1087 -30663321.90996 1175 1087 -13871472.89847 1176 1087 1.035630702972e-06 1177 1087 -25398826.77179 1178 1087 7638779.123661 1179 1087 -7638888.891398 1180 1087 -8046134.402525 1181 1087 6232693.774803 1194 1087 1527777.778281 1195 1087 -47520034.13527 1196 1087 -26979056.89458 1197 1087 -1.132488250732e-06 1198 1087 991285.0741574 1199 1087 15277558.23979 1200 1087 -1527777.77828 1201 1087 -4004409.142409 1202 1087 11701498.65478 1088 1088 497902392.6657 1089 1088 -6047470.701977 1090 1088 -30249591.9893 1091 1088 26138946.32338 1173 1088 19567597.17295 1174 1088 -13871472.89847 1175 1088 -60464969.25217 1176 1088 49815527.5467 1177 1088 7638779.12366 1178 1088 -72142989.75742 1179 1088 5244680.501577 1180 1088 6232693.774804 1181 1088 -152469.232357 1194 1088 3531569.501306 1195 1088 -26979056.89443 1196 1088 -103209809.3577 1197 1088 9351972.443016 1198 1088 15277558.23979 1199 1088 -82572129.79111 1200 1088 666986.1670292 1201 1088 11701498.65463 1202 1088 12831857.28995 1089 1089 351205681.5641 1090 1089 7.748603820801e-07 1091 1089 2546228.295676 1092 1089 32592087.44026 1093 1089 6111111.110108 1094 1089 5410862.629475 1176 1089 -32955138.59878 1177 1089 7638888.891398 1178 1089 19567597.17295 1179 1089 -59010186.71026 1180 1089 1.542270183563e-06 1181 1089 49433583.10251 1182 1089 -10337951.09135 1183 1089 -7638888.891398 1184 1089 5244680.501577 1197 1089 -33006170.85261 1198 1089 -1527777.778278 1199 1089 -4168152.723444 1200 1089 10158551.82493 1201 1089 -1.639127731323e-06 1202 1089 -9988583.109361 1203 1089 10509454.14025 1204 1089 1527777.778278 1205 1089 -1303569.389173 1090 1090 314536784.4873 1091 1090 61110295.08961 1092 1090 -6111111.110107 1093 1090 -25463372.91316 1094 1090 -30860703.10031 1176 1090 7638888.891398 1177 1090 -30663321.90996 1178 1090 -13871472.89847 1179 1090 1.035630702972e-06 1180 1090 -25398826.77179 1181 1090 7638779.123661 1182 1090 -7638888.891398 1183 1090 -8046134.402525 1184 1090 6232693.774803 1197 1090 1527777.778281 1198 1090 -47520034.13527 1199 1090 -26979056.89458 1200 1090 -1.132488250732e-06 1201 1090 991285.0741574 1202 1090 15277558.23979 1203 1090 -1527777.77828 1204 1090 -4004409.142409 1205 1090 11701498.65478 1091 1091 497902392.6657 1092 1091 -6047470.701977 1093 1091 -30249591.9893 1094 1091 26138946.32338 1176 1091 19567597.17295 1177 1091 -13871472.89847 1178 1091 -60464969.25217 1179 1091 49815527.5467 1180 1091 7638779.12366 1181 1091 -72142989.75742 1182 1091 5244680.501577 1183 1091 6232693.774804 1184 1091 -152469.232357 1197 1091 3531569.501306 1198 1091 -26979056.89443 1199 1091 -103209809.3577 1200 1091 9351972.443016 1201 1091 15277558.23979 1202 1091 -82572129.79111 1203 1091 666986.1670292 1204 1091 11701498.65463 1205 1091 12831857.28995 1092 1092 351205681.5641 1093 1092 7.748603820801e-07 1094 1092 2546228.295676 1095 1092 32592087.44026 1096 1092 6111111.110108 1097 1092 5410862.629475 1179 1092 -32955138.59878 1180 1092 7638888.891398 1181 1092 19567597.17295 1182 1092 -59010186.71026 1183 1092 1.542270183563e-06 1184 1092 49433583.10251 1185 1092 -10337951.09135 1186 1092 -7638888.891398 1187 1092 5244680.501577 1200 1092 -33006170.85261 1201 1092 -1527777.778278 1202 1092 -4168152.723444 1203 1092 10158551.82493 1204 1092 -1.639127731323e-06 1205 1092 -9988583.109361 1206 1092 10509454.14025 1207 1092 1527777.778278 1208 1092 -1303569.389173 1093 1093 314536784.4873 1094 1093 61110295.08961 1095 1093 -6111111.110107 1096 1093 -25463372.91316 1097 1093 -30860703.10031 1179 1093 7638888.891398 1180 1093 -30663321.90996 1181 1093 -13871472.89847 1182 1093 1.035630702972e-06 1183 1093 -25398826.77179 1184 1093 7638779.123661 1185 1093 -7638888.891398 1186 1093 -8046134.402525 1187 1093 6232693.774803 1200 1093 1527777.778281 1201 1093 -47520034.13527 1202 1093 -26979056.89458 1203 1093 -1.132488250732e-06 1204 1093 991285.0741574 1205 1093 15277558.23979 1206 1093 -1527777.77828 1207 1093 -4004409.142409 1208 1093 11701498.65478 1094 1094 497902392.6657 1095 1094 -6047470.701977 1096 1094 -30249591.9893 1097 1094 26138946.32338 1179 1094 19567597.17295 1180 1094 -13871472.89847 1181 1094 -60464969.25217 1182 1094 49815527.5467 1183 1094 7638779.12366 1184 1094 -72142989.75742 1185 1094 5244680.501577 1186 1094 6232693.774804 1187 1094 -152469.232357 1200 1094 3531569.501306 1201 1094 -26979056.89443 1202 1094 -103209809.3577 1203 1094 9351972.443016 1204 1094 15277558.23979 1205 1094 -82572129.79111 1206 1094 666986.1670292 1207 1094 11701498.65463 1208 1094 12831857.28995 1095 1095 351205681.5641 1096 1095 7.748603820801e-07 1097 1095 2546228.295676 1098 1095 32592087.44026 1099 1095 6111111.110108 1100 1095 5410862.629475 1182 1095 -32955138.59878 1183 1095 7638888.891398 1184 1095 19567597.17295 1185 1095 -59010186.71026 1186 1095 1.542270183563e-06 1187 1095 49433583.10251 1188 1095 -10337951.09135 1189 1095 -7638888.891398 1190 1095 5244680.501577 1203 1095 -33006170.85261 1204 1095 -1527777.778278 1205 1095 -4168152.723444 1206 1095 10158551.82493 1207 1095 -1.639127731323e-06 1208 1095 -9988583.109361 1209 1095 10509454.14025 1210 1095 1527777.778278 1211 1095 -1303569.389173 1096 1096 314536784.4873 1097 1096 61110295.08961 1098 1096 -6111111.110107 1099 1096 -25463372.91316 1100 1096 -30860703.10031 1182 1096 7638888.891398 1183 1096 -30663321.90996 1184 1096 -13871472.89847 1185 1096 1.035630702972e-06 1186 1096 -25398826.77179 1187 1096 7638779.123661 1188 1096 -7638888.891398 1189 1096 -8046134.402525 1190 1096 6232693.774803 1203 1096 1527777.778281 1204 1096 -47520034.13527 1205 1096 -26979056.89458 1206 1096 -1.132488250732e-06 1207 1096 991285.0741574 1208 1096 15277558.23979 1209 1096 -1527777.77828 1210 1096 -4004409.142409 1211 1096 11701498.65478 1097 1097 497902392.6657 1098 1097 -6047470.701977 1099 1097 -30249591.9893 1100 1097 26138946.32338 1182 1097 19567597.17295 1183 1097 -13871472.89847 1184 1097 -60464969.25217 1185 1097 49815527.5467 1186 1097 7638779.12366 1187 1097 -72142989.75742 1188 1097 5244680.501577 1189 1097 6232693.774804 1190 1097 -152469.232357 1203 1097 3531569.501306 1204 1097 -26979056.89443 1205 1097 -103209809.3577 1206 1097 9351972.443016 1207 1097 15277558.23979 1208 1097 -82572129.79111 1209 1097 666986.1670292 1210 1097 11701498.65463 1211 1097 12831857.28995 1098 1098 329940847.3278 1099 1098 1456924.130812 1100 1098 -19798695.49209 1101 1098 24338728.1477 1102 1098 -12830384.86409 1103 1098 -864078.4856287 1185 1098 -32955138.59878 1186 1098 7638888.891398 1187 1098 19567597.17295 1188 1098 -49351204.34845 1189 1098 4593894.893533 1190 1098 42055901.74692 1191 1098 -17990259.17954 1192 1098 -7095495.010488 1193 1098 11152125.05017 1206 1098 -33006170.85261 1207 1098 -1527777.778278 1208 1098 -4168152.723444 1209 1098 5365690.855964 1210 1098 543513.6403558 1211 1098 -15538450.00238 1212 1098 -13153927.34598 1213 1098 -4153024.636518 1214 1098 5714867.644173 1099 1099 306429729.3792 1100 1099 37967868.48639 1101 1099 -25052607.08431 1102 1099 -33219707.43372 1103 1099 -6855655.362866 1185 1099 7638888.891398 1186 1099 -30663321.90996 1187 1099 -13871472.89847 1188 1099 4593894.893532 1189 1099 -24490638.59597 1190 1099 -3129916.831349 1191 1099 -7095495.010488 1192 1099 -11593842.16527 1193 1099 9735880.404272 1206 1099 1527777.778281 1207 1099 -47520034.13527 1208 1099 -26979056.89458 1209 1099 543513.6403558 1210 1099 304716.0104512 1211 1099 9614323.658581 1212 1099 -7208580.193077 1213 1099 -27127888.67338 1214 1099 24630242.56153 1100 1100 452213403.8995 1101 1100 -3537689.596304 1102 1100 -6550099.807361 1103 1100 65800685.44065 1185 1100 19567597.17295 1186 1100 -13871472.89847 1187 1100 -60464969.25217 1188 1100 40146179.52533 1189 1100 -3129916.830046 1190 1100 -70774908.17847 1191 1100 11152125.05017 1192 1100 9735880.404273 1193 1100 -17931982.82838 1206 1100 3531569.501306 1207 1100 -26979056.89443 1208 1100 -103209809.3577 1209 1100 3801549.994444 1210 1100 9614323.658581 1211 1100 -92723636.11364 1212 1100 9976812.088386 1213 1100 24630242.56008 1214 1100 -31137386.18803 1101 1101 356383026.0183 1102 1101 22618374.71874 1103 1101 6237540.301439 1104 1101 -41476020.81817 1105 1101 -35498351.69063 1106 1101 -1071272.357701 1107 1101 40984741.8607 1108 1101 -4966591.38975 1109 1101 1039334.186828 1188 1101 -18882906.05781 1189 1101 3871519.978604 1190 1101 4133158.612019 1191 1101 -54068831.66446 1192 1101 6820581.445929 1193 1101 47998113.16057 1209 1101 -23405666.92726 1210 1101 -7208580.193078 1211 1101 -12349021.24194 1212 1101 -35108767.53211 1213 1101 7322809.363781 1214 1101 -8657494.534025 1215 1101 -31579805.97947 1216 1101 -9072591.922057 1217 1101 20035097.26683 1218 1101 -25782266.15658 1219 1101 -1733738.673178 1220 1101 6374035.624927 1102 1102 398814687.378 1103 1102 12508809.5241 1104 1102 -35498351.69063 1105 1102 -26665980.79029 1106 1102 -711679.625033 1107 1102 -17188813.60996 1108 1102 -18050410.97621 1109 1102 -2239909.067908 1188 1102 3871519.978604 1189 1102 -34940266.73636 1190 1102 -19048527.76298 1191 1102 6820581.445929 1192 1102 -27001678.44094 1193 1102 -5557278.965151 1209 1102 -4153024.636519 1210 1102 -37379628.25466 1211 1102 -28043368.541 1212 1102 7322809.363781 1213 1102 -21246056.35551 1214 1102 3425746.803933 1215 1102 -9072591.922058 1216 1102 -27661472.41918 1217 1102 16480334.95681 1218 1102 -4789294.229737 1219 1102 -40599142.11104 1220 1102 32743093.50838 1103 1103 579837473.3427 1104 1103 -1071272.357701 1105 1103 -711679.6250329 1106 1103 42147940.75612 1107 1103 -106499.146321 1108 1103 -2239909.067908 1109 1103 113215706.9648 1188 1103 4133158.612019 1189 1103 -19048527.76298 1190 1103 -34700848.35564 1191 1103 47998113.16019 1192 1103 -5557278.963848 1193 1103 -113612841.9415 1209 1103 -6941243.464199 1210 1103 -28043368.5423 1211 1103 -58475358.40478 1212 1103 10265838.7962 1213 1103 3425746.803932 1214 1103 -187302696.7748 1215 1103 20035097.26683 1216 1103 16480334.95681 1217 1103 -44352992.38482 1218 1103 10809868.96153 1219 1103 32743093.50838 1220 1103 -65097246.98569 1104 1104 234347158.4154 1105 1104 39249037.60132 1106 1104 613775.4689543 1107 1104 8275717.835673 1108 1104 -1168314.970011 1109 1104 625670.506485 1191 1104 -29376911.3921 1192 1104 -945517.8900799 1193 1104 -4684202.140556 1212 1104 -32829805.9799 1213 1104 -9072591.922058 1214 1104 -20589902.74651 1215 1104 -36371421.91044 1216 1104 10112184.55976 1217 1104 8285359.548615 1218 1104 -39320042.52865 1219 1104 -94074.74761934 1220 1104 -31761254.66155 1105 1105 219116637.1178 1106 1105 606809.4308238 1107 1105 11053907.2502 1108 1105 67944844.46223 1109 1105 711679.6250347 1191 1105 -4001073.446639 1192 1105 -44142980.14633 1193 1105 -33488420.36932 1212 1105 -9072591.922058 1213 1105 -28911472.41961 1214 1105 -16852998.38747 1215 1105 10112184.55976 1216 1105 -40225144.82899 1217 1105 6821753.707027 1218 1105 2961480.80894 1219 1105 -24618584.41616 1220 1105 3519665.049753 1106 1106 395677068.9393 1107 1106 243726.0621074 1108 1106 711679.6250346 1109 1106 142408195.6901 1191 1106 -12809202.1416 1192 1106 -33488420.36932 1193 1106 -88494288.4354 1212 1106 -20589902.74651 1213 1106 -16852998.38747 1214 1106 -47686325.71928 1215 1106 -7964640.448716 1216 1106 -6511579.624115 1217 1106 -155107169.8382 1218 1106 -31761254.66318 1219 1106 -3147001.619103 1220 1106 -76440700.83665 1107 1107 184012379.3245 1108 1107 -19477853.05068 1109 1107 3034739.887406 1191 1107 -20003093.01273 1192 1107 6205185.860737 1193 1107 11767041.70857 1212 1107 -29532266.15537 1213 1107 -4789294.229737 1214 1107 -11307908.81661 1215 1107 -39320042.52865 1216 1107 2961480.80894 1217 1107 31997773.10585 1218 1107 -27395507.40129 1219 1107 -4377372.43994 1220 1107 -4314128.22028 1108 1108 197133990.5023 1109 1108 2239909.067913 1191 1108 6205185.860737 1192 1108 -24101455.05692 1193 1108 -16852998.38747 1212 1108 -1733738.673178 1213 1108 -44349142.10983 1214 1108 -33923573.14734 1215 1108 -94074.74761849 1216 1108 -24618584.41616 1217 1108 3519665.049753 1218 1108 -4377372.43994 1219 1108 -23181727.51512 1220 1108 7256906.485048 1109 1109 318426963.4457 1191 1109 11767041.70857 1192 1109 -16852998.38747 1193 1109 -42876308.35659 1212 1109 -6490131.035622 1213 1109 -33923573.14734 1214 1109 -75097246.98247 1215 1109 31997773.10404 1216 1109 -3147001.619103 1217 1109 -76440700.83665 1218 1109 4939482.889311 1219 1109 -6076426.846095 1220 1109 -115588168.0857 1110 1110 442585385.072 1111 1110 30555555.55053 1112 1110 -29342262.45851 1113 1110 -140989212.5199 1114 1110 -30581017.46395 1115 1110 29317331.52637 1116 1110 -7397842.697824 1117 1110 24469906.35385 1118 1110 23704691.59905 1221 1110 18346673.71113 1222 1110 7638888.891398 1223 1110 1385379.035684 1224 1110 -55802716.54489 1225 1110 -7645254.369757 1226 1110 -40856339.07483 1227 1110 6123446.608564 1228 1110 6117476.591476 1229 1110 -3944940.585509 1111 1111 396720404.8065 1112 1111 76436047.94083 1113 1111 -30593748.42066 1114 1111 2703063.542514 1115 1111 42347550.95634 1116 1111 36704859.53077 1117 1111 -7397842.697831 1118 1111 -26611659.38366 1221 1111 7638888.891397 1222 1111 6880428.6391 1223 1111 26085656.47845 1224 1111 -7648437.108936 1225 1111 -19879647.51159 1226 1111 942630.1669732 1227 1111 9176214.887214 1228 1111 6123446.608565 1229 1111 4734398.284357 1112 1112 631577008.7377 1113 1112 29304866.06029 1114 1112 34088108.93947 1115 1112 74852155.60434 1116 1112 35557037.39857 1117 1112 -17741106.25578 1118 1112 -19727580.52753 1221 1112 -17965238.89317 1222 1112 10605384.60401 1223 1112 -88238208.0348 1224 1112 -41241201.16555 1225 1112 -1194514.850572 1226 1112 -36101396.81649 1227 1112 -5917410.878264 1228 1112 3156265.522905 1229 1112 16329190.95617 1113 1113 692250148.1146 1114 1113 30619210.33408 1115 1113 -34372600.90029 1116 1113 16585727.58665 1117 1113 -30581017.46396 1118 1113 -29752163.59795 1119 1113 -77421519.48389 1120 1113 -5.513429641724e-07 1121 1113 5092665.772129 1122 1113 -48621476.67428 1123 1113 30555555.55054 1124 1113 29728027.55019 1221 1113 -79032837.45136 1222 1113 -7648437.10893 1223 1113 55511888.47871 1224 1113 34928101.59242 1225 1113 7654802.58729 1226 1113 -8598678.217522 1227 1113 5149787.278365 1228 1113 -7645254.369755 1229 1113 4611926.752539 1230 1113 -53208020.04453 1231 1113 -1.534819602966e-06 1232 1113 -46887250.21518 1233 1113 -9746784.424485 1234 1113 7638888.891396 1235 1113 -4608097.279433 1114 1114 609716100.864 1115 1114 94722882.73185 1116 1114 -30593748.42066 1117 1114 -90408834.961 1118 1114 -50742009.05798 1119 1114 -7.450580596924e-07 1120 1114 57023920.20371 1121 1114 30555116.4796 1122 1114 30555555.55054 1123 1114 -39454209.9235 1124 1114 -16652558.23965 1221 1114 -7645254.369751 1222 1114 -43109768.41806 1223 1114 18161862.49682 1224 1114 7654802.587289 1225 1114 14294589.76961 1226 1114 23676298.37333 1227 1114 -7648437.108933 1228 1114 -21598853.37172 1229 1114 25862479.31684 1230 1114 -1.318752765656e-06 1231 1114 -19596660.10607 1232 1114 7638779.123661 1233 1114 7638888.891396 1234 1114 -7454967.735663 1235 1114 5468804.885664 1115 1115 858703305.1038 1116 1115 -30146176.06602 1117 1115 -59306688.68559 1118 1115 32394301.37033 1119 1115 5092665.772129 1120 1115 30555116.4796 1121 1115 134412647.088 1122 1115 30109971.99439 1123 1115 -16958113.795 1124 1115 -19995669.80713 1221 1115 55896750.56943 1222 1115 20307057.29599 1223 1115 -98048385.90041 1224 1115 -8588615.841047 1225 1115 23684348.15878 1226 1115 -153682668.3423 1227 1115 4613841.489092 1228 1115 24026705.92618 1229 1115 10774189.69233 1230 1115 -47269194.65938 1231 1115 7638779.123661 1232 1115 -56670545.31551 1233 1115 -4608097.279433 1234 1115 5468804.885664 1235 1115 1423975.212606 1116 1116 442585385.072 1117 1116 30555555.55053 1118 1116 -29342262.45851 1119 1116 -45183976.67484 1120 1116 -30555555.55054 1121 1116 -27563639.10707 1122 1116 -140989212.5199 1123 1116 -30581017.46395 1124 1116 29317331.52637 1125 1116 -7397842.697824 1126 1116 24469906.35385 1127 1116 23704691.59905 1221 1116 -37437760.48235 1222 1116 9176214.887214 1223 1116 23123609.08966 1224 1116 -61598018.00238 1225 1116 -7648437.108935 1226 1116 -19592039.58835 1227 1116 18346673.71113 1228 1116 7638888.891398 1229 1116 1385379.035684 1230 1116 -30645221.93135 1231 1116 -7638888.891397 1232 1116 -18931013.9508 1233 1116 -55802716.54489 1234 1116 -7645254.369757 1235 1116 -40856339.07483 1236 1116 6123446.608564 1237 1116 6117476.591476 1238 1116 -3944940.585509 1117 1117 396720404.8065 1118 1117 76436047.94083 1119 1117 -30555555.55054 1120 1117 -36016709.92406 1121 1117 -13902558.23995 1122 1117 -30593748.42066 1123 1117 2703063.542514 1124 1117 42347550.95634 1125 1117 36704859.53077 1126 1117 -7397842.697831 1127 1117 -26611659.38366 1221 1117 6117476.591476 1222 1117 -37437760.48236 1223 1117 -12332056.26767 1224 1117 -7645254.369756 1225 1117 -88346658.65246 1226 1117 -53374653.70739 1227 1117 7638888.891397 1228 1117 6880428.6391 1229 1117 26085656.47845 1230 1117 -7638888.891397 1231 1117 -28353405.24253 1232 1117 -13107584.00933 1233 1117 -7648437.108936 1234 1117 -19879647.51159 1235 1117 942630.1669732 1236 1117 9176214.887214 1237 1117 6123446.608565 1238 1117 4734398.284357 1118 1118 631577008.7377 1119 1118 -27181694.66288 1120 1118 -13597002.68459 1121 1118 -10829003.14197 1122 1118 29304866.06029 1123 1118 34088108.93947 1124 1118 74852155.60434 1125 1118 35557037.39857 1126 1118 -17741106.25578 1127 1118 -19727580.52753 1221 1118 15415739.3931 1222 1118 -18498084.4015 1223 1118 -99834027.95294 1224 1118 -19583892.11655 1225 1118 -51538880.44741 1226 1118 -167219957.723 1227 1118 -17965238.89317 1228 1118 10605384.60401 1229 1118 -88238208.0348 1230 1118 -18931013.9508 1231 1118 -13107584.00933 1232 1118 -54305191.47237 1233 1118 -41241201.16555 1234 1118 -1194514.850572 1235 1118 -36101396.81649 1236 1118 -5917410.878264 1237 1118 3156265.522905 1238 1118 16329190.95617 1119 1119 669327989.9306 1120 1119 -1.430511474609e-06 1121 1119 -10185331.54429 1122 1119 57028027.11004 1123 1119 9.089708328247e-07 1124 1119 -2546332.887327 1128 1119 -77421519.48389 1129 1119 -5.513429641724e-07 1130 1119 5092665.772129 1131 1119 -48621476.67428 1132 1119 30555555.55054 1133 1119 29728027.55019 1224 1119 -59010186.71026 1225 1119 1.542270183563e-06 1226 1119 49433583.10251 1227 1119 -10337951.09135 1228 1119 -7638888.891398 1229 1119 5244680.501577 1230 1119 20431686.98312 1231 1119 -9.238719940186e-07 1232 1119 -2546332.887312 1233 1119 21018908.28051 1234 1119 -2.346932888031e-06 1235 1119 -636583.222144 1239 1119 -53208020.04453 1240 1119 -1.534819602966e-06 1241 1119 -46887250.21518 1242 1119 -9746784.424485 1243 1119 7638888.891396 1244 1119 -4608097.279433 1120 1120 595989855.9605 1121 1120 122220465.8582 1122 1120 1.132488250732e-06 1123 1120 -59082879.09408 1124 1120 -61110232.92908 1128 1120 -7.450580596924e-07 1129 1120 57023920.20371 1130 1120 30555116.4796 1131 1120 30555555.55054 1132 1120 -39454209.9235 1133 1120 -16652558.23965 1224 1120 1.035630702972e-06 1225 1120 -25398826.77179 1226 1120 7638779.123661 1227 1120 -7638888.891398 1228 1120 -8046134.402525 1229 1120 6232693.774803 1230 1120 -9.536743164063e-07 1231 1120 2097153.481574 1232 1120 30555116.47959 1233 1120 -2.235174179077e-06 1234 1120 -8008818.28482 1235 1120 23250219.53173 1239 1120 -1.318752765656e-06 1240 1120 -19596660.10607 1241 1120 7638779.123661 1242 1120 7638888.891396 1243 1120 -7454967.735663 1244 1120 5468804.885664 1121 1121 907581829.653 1122 1121 -2546332.887327 1123 1121 -61110232.92908 1124 1121 30527909.01414 1128 1121 5092665.772129 1129 1121 30555116.4796 1130 1121 134412647.088 1131 1121 30109971.99439 1132 1121 -16958113.795 1133 1121 -19995669.80713 1224 1121 49815527.5467 1225 1121 7638779.12366 1226 1121 -72142989.75742 1227 1121 5244680.501577 1228 1121 6232693.774804 1229 1121 -152469.232357 1230 1121 -2546332.887312 1231 1121 30555116.47959 1232 1121 -164838704.0269 1233 1121 -636583.2221438 1234 1121 23555775.08708 1235 1121 25663714.57989 1239 1121 -47269194.65938 1240 1121 7638779.123661 1241 1121 -56670545.31551 1242 1121 -4608097.279433 1243 1121 5468804.885664 1244 1121 1423975.212606 1122 1122 692250148.1146 1123 1122 30619210.33408 1124 1122 -34372600.90029 1125 1122 16585727.58665 1126 1122 -30581017.46396 1127 1122 -29752163.59795 1128 1122 -45183976.67484 1129 1122 -30555555.55054 1130 1122 -27563639.10707 1131 1122 -77421519.48389 1132 1122 -5.513429641724e-07 1133 1122 5092665.772129 1134 1122 -48621476.67428 1135 1122 30555555.55054 1136 1122 29728027.55019 1224 1122 -32955138.59878 1225 1122 7638888.891398 1226 1122 19567597.17295 1227 1122 -79032837.45136 1228 1122 -7648437.10893 1229 1122 55511888.47871 1230 1122 -66012341.70521 1231 1122 2.853572368622e-06 1232 1122 -636583.2221378 1233 1122 34928101.59242 1234 1122 7654802.58729 1235 1122 -8598678.217522 1236 1122 5149787.278365 1237 1122 -7645254.369755 1238 1122 4611926.752539 1239 1122 -30645221.93135 1240 1122 -7638888.891397 1241 1122 -18931013.9508 1242 1122 -53208020.04453 1243 1122 -1.534819602966e-06 1244 1122 -46887250.21518 1245 1122 -9746784.424485 1246 1122 7638888.891396 1247 1122 -4608097.279433 1123 1123 609716100.864 1124 1123 94722882.73185 1125 1123 -30593748.42066 1126 1123 -90408834.961 1127 1123 -50742009.05798 1128 1123 -30555555.55054 1129 1123 -36016709.92406 1130 1123 -13902558.23995 1131 1123 -7.450580596924e-07 1132 1123 57023920.20371 1133 1123 30555116.4796 1134 1123 30555555.55054 1135 1123 -39454209.9235 1136 1123 -16652558.23965 1224 1123 7638888.891398 1225 1123 -30663321.90996 1226 1123 -13871472.89847 1227 1123 -7645254.369751 1228 1123 -43109768.41806 1229 1123 18161862.49682 1230 1123 2.995133399963e-06 1231 1123 -95040068.27054 1232 1123 -53805336.01132 1233 1123 7654802.587289 1234 1123 14294589.76961 1235 1123 23676298.37333 1236 1123 -7648437.108933 1237 1123 -21598853.37172 1238 1123 25862479.31684 1239 1123 -7638888.891397 1240 1123 -28353405.24253 1241 1123 -13107584.00933 1242 1123 -1.318752765656e-06 1243 1123 -19596660.10607 1244 1123 7638779.123661 1245 1123 7638888.891396 1246 1123 -7454967.735663 1247 1123 5468804.885664 1124 1124 858703305.1038 1125 1124 -30146176.06602 1126 1124 -59306688.68559 1127 1124 32394301.37033 1128 1124 -27181694.66288 1129 1124 -13597002.68459 1130 1124 -10829003.14197 1131 1124 5092665.772129 1132 1124 30555116.4796 1133 1124 134412647.088 1134 1124 30109971.99439 1135 1124 -16958113.795 1136 1124 -19995669.80713 1224 1124 19567597.17295 1225 1124 -13871472.89847 1226 1124 -60464969.25217 1227 1124 55896750.56943 1228 1124 20307057.29599 1229 1124 -98048385.90041 1230 1124 -636583.2221379 1231 1124 -54110891.56668 1232 1124 -206419618.7154 1233 1124 -8588615.841047 1234 1124 23684348.15878 1235 1124 -153682668.3423 1236 1124 4613841.489092 1237 1124 24026705.92618 1238 1124 10774189.69233 1239 1124 -18931013.9508 1240 1124 -13107584.00933 1241 1124 -54305191.47237 1242 1124 -47269194.65938 1243 1124 7638779.123661 1244 1124 -56670545.31551 1245 1124 -4608097.279433 1246 1124 5468804.885664 1247 1124 1423975.212606 1125 1125 442585385.072 1126 1125 30555555.55053 1127 1125 -29342262.45851 1131 1125 -45183976.67484 1132 1125 -30555555.55054 1133 1125 -27563639.10707 1134 1125 -140989212.5199 1135 1125 -30581017.46395 1136 1125 29317331.52637 1137 1125 -7397842.697824 1138 1125 24469906.35385 1139 1125 23704691.59905 1227 1125 -37437760.48235 1228 1125 9176214.887214 1229 1125 23123609.08966 1233 1125 -61598018.00238 1234 1125 -7648437.108935 1235 1125 -19592039.58835 1236 1125 18346673.71113 1237 1125 7638888.891398 1238 1125 1385379.035684 1242 1125 -30645221.93135 1243 1125 -7638888.891397 1244 1125 -18931013.9508 1245 1125 -55802716.54489 1246 1125 -7645254.369757 1247 1125 -40856339.07483 1248 1125 6123446.608564 1249 1125 6117476.591476 1250 1125 -3944940.585509 1126 1126 396720404.8065 1127 1126 76436047.94083 1131 1126 -30555555.55054 1132 1126 -36016709.92406 1133 1126 -13902558.23995 1134 1126 -30593748.42066 1135 1126 2703063.542514 1136 1126 42347550.95634 1137 1126 36704859.53077 1138 1126 -7397842.697831 1139 1126 -26611659.38366 1227 1126 6117476.591476 1228 1126 -37437760.48236 1229 1126 -12332056.26767 1233 1126 -7645254.369756 1234 1126 -88346658.65246 1235 1126 -53374653.70739 1236 1126 7638888.891397 1237 1126 6880428.6391 1238 1126 26085656.47845 1242 1126 -7638888.891397 1243 1126 -28353405.24253 1244 1126 -13107584.00933 1245 1126 -7648437.108936 1246 1126 -19879647.51159 1247 1126 942630.1669732 1248 1126 9176214.887214 1249 1126 6123446.608565 1250 1126 4734398.284357 1127 1127 631577008.7377 1131 1127 -27181694.66288 1132 1127 -13597002.68459 1133 1127 -10829003.14197 1134 1127 29304866.06029 1135 1127 34088108.93947 1136 1127 74852155.60434 1137 1127 35557037.39857 1138 1127 -17741106.25578 1139 1127 -19727580.52753 1227 1127 15415739.3931 1228 1127 -18498084.4015 1229 1127 -99834027.95294 1233 1127 -19583892.11655 1234 1127 -51538880.44741 1235 1127 -167219957.723 1236 1127 -17965238.89317 1237 1127 10605384.60401 1238 1127 -88238208.0348 1242 1127 -18931013.9508 1243 1127 -13107584.00933 1244 1127 -54305191.47237 1245 1127 -41241201.16555 1246 1127 -1194514.850572 1247 1127 -36101396.81649 1248 1127 -5917410.878264 1249 1127 3156265.522905 1250 1127 16329190.95617 1128 1128 669327989.9306 1129 1128 -1.430511474609e-06 1130 1128 -10185331.54429 1131 1128 57028027.11004 1132 1128 9.089708328247e-07 1133 1128 -2546332.887327 1140 1128 -77421519.48389 1141 1128 -5.513429641724e-07 1142 1128 5092665.772129 1143 1128 -48621476.67428 1144 1128 30555555.55054 1145 1128 29728027.55019 1230 1128 -59010186.71026 1231 1128 1.542270183563e-06 1232 1128 49433583.10251 1233 1128 -10337951.09135 1234 1128 -7638888.891398 1235 1128 5244680.501577 1239 1128 20431686.98312 1240 1128 -9.238719940186e-07 1241 1128 -2546332.887312 1242 1128 21018908.28051 1243 1128 -2.346932888031e-06 1244 1128 -636583.222144 1251 1128 -53208020.04453 1252 1128 -1.534819602966e-06 1253 1128 -46887250.21518 1254 1128 -9746784.424485 1255 1128 7638888.891396 1256 1128 -4608097.279433 1129 1129 595989855.9605 1130 1129 122220465.8582 1131 1129 1.132488250732e-06 1132 1129 -59082879.09408 1133 1129 -61110232.92908 1140 1129 -7.450580596924e-07 1141 1129 57023920.20371 1142 1129 30555116.4796 1143 1129 30555555.55054 1144 1129 -39454209.9235 1145 1129 -16652558.23965 1230 1129 1.035630702972e-06 1231 1129 -25398826.77179 1232 1129 7638779.123661 1233 1129 -7638888.891398 1234 1129 -8046134.402525 1235 1129 6232693.774803 1239 1129 -9.536743164063e-07 1240 1129 2097153.481574 1241 1129 30555116.47959 1242 1129 -2.235174179077e-06 1243 1129 -8008818.28482 1244 1129 23250219.53173 1251 1129 -1.318752765656e-06 1252 1129 -19596660.10607 1253 1129 7638779.123661 1254 1129 7638888.891396 1255 1129 -7454967.735663 1256 1129 5468804.885664 1130 1130 907581829.653 1131 1130 -2546332.887327 1132 1130 -61110232.92908 1133 1130 30527909.01414 1140 1130 5092665.772129 1141 1130 30555116.4796 1142 1130 134412647.088 1143 1130 30109971.99439 1144 1130 -16958113.795 1145 1130 -19995669.80713 1230 1130 49815527.5467 1231 1130 7638779.12366 1232 1130 -72142989.75742 1233 1130 5244680.501577 1234 1130 6232693.774804 1235 1130 -152469.232357 1239 1130 -2546332.887312 1240 1130 30555116.47959 1241 1130 -164838704.0269 1242 1130 -636583.2221438 1243 1130 23555775.08708 1244 1130 25663714.57989 1251 1130 -47269194.65938 1252 1130 7638779.123661 1253 1130 -56670545.31551 1254 1130 -4608097.279433 1255 1130 5468804.885664 1256 1130 1423975.212606 1131 1131 669327989.9306 1132 1131 -1.430511474609e-06 1133 1131 -10185331.54429 1134 1131 57028027.11004 1135 1131 9.089708328247e-07 1136 1131 -2546332.887327 1140 1131 -45183976.67484 1141 1131 -30555555.55054 1142 1131 -27563639.10707 1143 1131 -77421519.48389 1144 1131 -5.513429641724e-07 1145 1131 5092665.772129 1146 1131 -48621476.67428 1147 1131 30555555.55054 1148 1131 29728027.55019 1230 1131 -32955138.59878 1231 1131 7638888.891398 1232 1131 19567597.17295 1233 1131 -59010186.71026 1234 1131 1.542270183563e-06 1235 1131 49433583.10251 1236 1131 -10337951.09135 1237 1131 -7638888.891398 1238 1131 5244680.501577 1239 1131 -66012341.70521 1240 1131 2.853572368622e-06 1241 1131 -636583.2221378 1242 1131 20431686.98312 1243 1131 -9.238719940186e-07 1244 1131 -2546332.887312 1245 1131 21018908.28051 1246 1131 -2.346932888031e-06 1247 1131 -636583.222144 1251 1131 -30645221.93135 1252 1131 -7638888.891397 1253 1131 -18931013.9508 1254 1131 -53208020.04453 1255 1131 -1.534819602966e-06 1256 1131 -46887250.21518 1257 1131 -9746784.424485 1258 1131 7638888.891396 1259 1131 -4608097.279433 1132 1132 595989855.9605 1133 1132 122220465.8582 1134 1132 1.132488250732e-06 1135 1132 -59082879.09408 1136 1132 -61110232.92908 1140 1132 -30555555.55054 1141 1132 -36016709.92406 1142 1132 -13902558.23995 1143 1132 -7.450580596924e-07 1144 1132 57023920.20371 1145 1132 30555116.4796 1146 1132 30555555.55054 1147 1132 -39454209.9235 1148 1132 -16652558.23965 1230 1132 7638888.891398 1231 1132 -30663321.90996 1232 1132 -13871472.89847 1233 1132 1.035630702972e-06 1234 1132 -25398826.77179 1235 1132 7638779.123661 1236 1132 -7638888.891398 1237 1132 -8046134.402525 1238 1132 6232693.774803 1239 1132 2.995133399963e-06 1240 1132 -95040068.27054 1241 1132 -53805336.01132 1242 1132 -9.536743164063e-07 1243 1132 2097153.481574 1244 1132 30555116.47959 1245 1132 -2.235174179077e-06 1246 1132 -8008818.28482 1247 1132 23250219.53173 1251 1132 -7638888.891397 1252 1132 -28353405.24253 1253 1132 -13107584.00933 1254 1132 -1.318752765656e-06 1255 1132 -19596660.10607 1256 1132 7638779.123661 1257 1132 7638888.891396 1258 1132 -7454967.735663 1259 1132 5468804.885664 1133 1133 907581829.653 1134 1133 -2546332.887327 1135 1133 -61110232.92908 1136 1133 30527909.01414 1140 1133 -27181694.66288 1141 1133 -13597002.68459 1142 1133 -10829003.14197 1143 1133 5092665.772129 1144 1133 30555116.4796 1145 1133 134412647.088 1146 1133 30109971.99439 1147 1133 -16958113.795 1148 1133 -19995669.80713 1230 1133 19567597.17295 1231 1133 -13871472.89847 1232 1133 -60464969.25217 1233 1133 49815527.5467 1234 1133 7638779.12366 1235 1133 -72142989.75742 1236 1133 5244680.501577 1237 1133 6232693.774804 1238 1133 -152469.232357 1239 1133 -636583.2221379 1240 1133 -54110891.56668 1241 1133 -206419618.7154 1242 1133 -2546332.887312 1243 1133 30555116.47959 1244 1133 -164838704.0269 1245 1133 -636583.2221438 1246 1133 23555775.08708 1247 1133 25663714.57989 1251 1133 -18931013.9508 1252 1133 -13107584.00933 1253 1133 -54305191.47237 1254 1133 -47269194.65938 1255 1133 7638779.123661 1256 1133 -56670545.31551 1257 1133 -4608097.279433 1258 1133 5468804.885664 1259 1133 1423975.212606 1134 1134 692250148.1146 1135 1134 30619210.33408 1136 1134 -34372600.90029 1137 1134 16585727.58665 1138 1134 -30581017.46396 1139 1134 -29752163.59795 1143 1134 -45183976.67484 1144 1134 -30555555.55054 1145 1134 -27563639.10707 1146 1134 -77421519.48389 1147 1134 -5.513429641724e-07 1148 1134 5092665.772129 1149 1134 -48621476.67428 1150 1134 30555555.55054 1151 1134 29728027.55019 1233 1134 -32955138.59878 1234 1134 7638888.891398 1235 1134 19567597.17295 1236 1134 -79032837.45136 1237 1134 -7648437.10893 1238 1134 55511888.47871 1242 1134 -66012341.70521 1243 1134 2.853572368622e-06 1244 1134 -636583.2221378 1245 1134 34928101.59242 1246 1134 7654802.58729 1247 1134 -8598678.217522 1248 1134 5149787.278365 1249 1134 -7645254.369755 1250 1134 4611926.752539 1254 1134 -30645221.93135 1255 1134 -7638888.891397 1256 1134 -18931013.9508 1257 1134 -53208020.04453 1258 1134 -1.534819602966e-06 1259 1134 -46887250.21518 1260 1134 -9746784.424485 1261 1134 7638888.891396 1262 1134 -4608097.279433 1135 1135 609716100.864 1136 1135 94722882.73185 1137 1135 -30593748.42066 1138 1135 -90408834.961 1139 1135 -50742009.05798 1143 1135 -30555555.55054 1144 1135 -36016709.92406 1145 1135 -13902558.23995 1146 1135 -7.450580596924e-07 1147 1135 57023920.20371 1148 1135 30555116.4796 1149 1135 30555555.55054 1150 1135 -39454209.9235 1151 1135 -16652558.23965 1233 1135 7638888.891398 1234 1135 -30663321.90996 1235 1135 -13871472.89847 1236 1135 -7645254.369751 1237 1135 -43109768.41806 1238 1135 18161862.49682 1242 1135 2.995133399963e-06 1243 1135 -95040068.27054 1244 1135 -53805336.01132 1245 1135 7654802.587289 1246 1135 14294589.76961 1247 1135 23676298.37333 1248 1135 -7648437.108933 1249 1135 -21598853.37172 1250 1135 25862479.31684 1254 1135 -7638888.891397 1255 1135 -28353405.24253 1256 1135 -13107584.00933 1257 1135 -1.318752765656e-06 1258 1135 -19596660.10607 1259 1135 7638779.123661 1260 1135 7638888.891396 1261 1135 -7454967.735663 1262 1135 5468804.885664 1136 1136 858703305.1038 1137 1136 -30146176.06602 1138 1136 -59306688.68559 1139 1136 32394301.37033 1143 1136 -27181694.66288 1144 1136 -13597002.68459 1145 1136 -10829003.14197 1146 1136 5092665.772129 1147 1136 30555116.4796 1148 1136 134412647.088 1149 1136 30109971.99439 1150 1136 -16958113.795 1151 1136 -19995669.80713 1233 1136 19567597.17295 1234 1136 -13871472.89847 1235 1136 -60464969.25217 1236 1136 55896750.56943 1237 1136 20307057.29599 1238 1136 -98048385.90041 1242 1136 -636583.2221379 1243 1136 -54110891.56668 1244 1136 -206419618.7154 1245 1136 -8588615.841047 1246 1136 23684348.15878 1247 1136 -153682668.3423 1248 1136 4613841.489092 1249 1136 24026705.92618 1250 1136 10774189.69233 1254 1136 -18931013.9508 1255 1136 -13107584.00933 1256 1136 -54305191.47237 1257 1136 -47269194.65938 1258 1136 7638779.123661 1259 1136 -56670545.31551 1260 1136 -4608097.279433 1261 1136 5468804.885664 1262 1136 1423975.212606 1137 1137 442585385.072 1138 1137 30555555.55053 1139 1137 -29342262.45851 1146 1137 -45183976.67484 1147 1137 -30555555.55054 1148 1137 -27563639.10707 1149 1137 -140989212.5199 1150 1137 -30581017.46395 1151 1137 29317331.52637 1152 1137 -7397842.697824 1153 1137 24469906.35385 1154 1137 23704691.59905 1236 1137 -37437760.48235 1237 1137 9176214.887214 1238 1137 23123609.08966 1245 1137 -61598018.00238 1246 1137 -7648437.108935 1247 1137 -19592039.58835 1248 1137 18346673.71113 1249 1137 7638888.891398 1250 1137 1385379.035684 1257 1137 -30645221.93135 1258 1137 -7638888.891397 1259 1137 -18931013.9508 1260 1137 -55802716.54489 1261 1137 -7645254.369757 1262 1137 -40856339.07483 1263 1137 6123446.608564 1264 1137 6117476.591476 1265 1137 -3944940.585509 1138 1138 396720404.8065 1139 1138 76436047.94083 1146 1138 -30555555.55054 1147 1138 -36016709.92406 1148 1138 -13902558.23995 1149 1138 -30593748.42066 1150 1138 2703063.542514 1151 1138 42347550.95634 1152 1138 36704859.53077 1153 1138 -7397842.697831 1154 1138 -26611659.38366 1236 1138 6117476.591476 1237 1138 -37437760.48236 1238 1138 -12332056.26767 1245 1138 -7645254.369756 1246 1138 -88346658.65246 1247 1138 -53374653.70739 1248 1138 7638888.891397 1249 1138 6880428.6391 1250 1138 26085656.47845 1257 1138 -7638888.891397 1258 1138 -28353405.24253 1259 1138 -13107584.00933 1260 1138 -7648437.108936 1261 1138 -19879647.51159 1262 1138 942630.1669732 1263 1138 9176214.887214 1264 1138 6123446.608565 1265 1138 4734398.284357 1139 1139 631577008.7377 1146 1139 -27181694.66288 1147 1139 -13597002.68459 1148 1139 -10829003.14197 1149 1139 29304866.06029 1150 1139 34088108.93947 1151 1139 74852155.60434 1152 1139 35557037.39857 1153 1139 -17741106.25578 1154 1139 -19727580.52753 1236 1139 15415739.3931 1237 1139 -18498084.4015 1238 1139 -99834027.95294 1245 1139 -19583892.11655 1246 1139 -51538880.44741 1247 1139 -167219957.723 1248 1139 -17965238.89317 1249 1139 10605384.60401 1250 1139 -88238208.0348 1257 1139 -18931013.9508 1258 1139 -13107584.00933 1259 1139 -54305191.47237 1260 1139 -41241201.16555 1261 1139 -1194514.850572 1262 1139 -36101396.81649 1263 1139 -5917410.878264 1264 1139 3156265.522905 1265 1139 16329190.95617 1140 1140 669327989.9306 1141 1140 -1.430511474609e-06 1142 1140 -10185331.54429 1143 1140 57028027.11004 1144 1140 9.089708328247e-07 1145 1140 -2546332.887327 1155 1140 -77421519.48389 1156 1140 -5.513429641724e-07 1157 1140 5092665.772129 1158 1140 -48621476.67428 1159 1140 30555555.55054 1160 1140 29728027.55019 1239 1140 -59010186.71026 1240 1140 1.542270183563e-06 1241 1140 49433583.10251 1242 1140 -10337951.09135 1243 1140 -7638888.891398 1244 1140 5244680.501577 1251 1140 20431686.98312 1252 1140 -9.238719940186e-07 1253 1140 -2546332.887312 1254 1140 21018908.28051 1255 1140 -2.346932888031e-06 1256 1140 -636583.222144 1266 1140 -53208020.04453 1267 1140 -1.534819602966e-06 1268 1140 -46887250.21518 1269 1140 -9746784.424485 1270 1140 7638888.891396 1271 1140 -4608097.279433 1141 1141 595989855.9605 1142 1141 122220465.8582 1143 1141 1.132488250732e-06 1144 1141 -59082879.09408 1145 1141 -61110232.92908 1155 1141 -7.450580596924e-07 1156 1141 57023920.20371 1157 1141 30555116.4796 1158 1141 30555555.55054 1159 1141 -39454209.9235 1160 1141 -16652558.23965 1239 1141 1.035630702972e-06 1240 1141 -25398826.77179 1241 1141 7638779.123661 1242 1141 -7638888.891398 1243 1141 -8046134.402525 1244 1141 6232693.774803 1251 1141 -9.536743164063e-07 1252 1141 2097153.481574 1253 1141 30555116.47959 1254 1141 -2.235174179077e-06 1255 1141 -8008818.28482 1256 1141 23250219.53173 1266 1141 -1.318752765656e-06 1267 1141 -19596660.10607 1268 1141 7638779.123661 1269 1141 7638888.891396 1270 1141 -7454967.735663 1271 1141 5468804.885664 1142 1142 907581829.653 1143 1142 -2546332.887327 1144 1142 -61110232.92908 1145 1142 30527909.01414 1155 1142 5092665.772129 1156 1142 30555116.4796 1157 1142 134412647.088 1158 1142 30109971.99439 1159 1142 -16958113.795 1160 1142 -19995669.80713 1239 1142 49815527.5467 1240 1142 7638779.12366 1241 1142 -72142989.75742 1242 1142 5244680.501577 1243 1142 6232693.774804 1244 1142 -152469.232357 1251 1142 -2546332.887312 1252 1142 30555116.47959 1253 1142 -164838704.0269 1254 1142 -636583.2221438 1255 1142 23555775.08708 1256 1142 25663714.57989 1266 1142 -47269194.65938 1267 1142 7638779.123661 1268 1142 -56670545.31551 1269 1142 -4608097.279433 1270 1142 5468804.885664 1271 1142 1423975.212606 1143 1143 669327989.9306 1144 1143 -1.430511474609e-06 1145 1143 -10185331.54429 1146 1143 57028027.11004 1147 1143 9.089708328247e-07 1148 1143 -2546332.887327 1155 1143 -45183976.67484 1156 1143 -30555555.55054 1157 1143 -27563639.10707 1158 1143 -77421519.48389 1159 1143 -5.513429641724e-07 1160 1143 5092665.772129 1161 1143 -48621476.67428 1162 1143 30555555.55054 1163 1143 29728027.55019 1239 1143 -32955138.59878 1240 1143 7638888.891398 1241 1143 19567597.17295 1242 1143 -59010186.71026 1243 1143 1.542270183563e-06 1244 1143 49433583.10251 1245 1143 -10337951.09135 1246 1143 -7638888.891398 1247 1143 5244680.501577 1251 1143 -66012341.70521 1252 1143 2.853572368622e-06 1253 1143 -636583.2221378 1254 1143 20431686.98312 1255 1143 -9.238719940186e-07 1256 1143 -2546332.887312 1257 1143 21018908.28051 1258 1143 -2.346932888031e-06 1259 1143 -636583.222144 1266 1143 -30645221.93135 1267 1143 -7638888.891397 1268 1143 -18931013.9508 1269 1143 -53208020.04453 1270 1143 -1.534819602966e-06 1271 1143 -46887250.21518 1272 1143 -9746784.424485 1273 1143 7638888.891396 1274 1143 -4608097.279433 1144 1144 595989855.9605 1145 1144 122220465.8582 1146 1144 1.132488250732e-06 1147 1144 -59082879.09408 1148 1144 -61110232.92908 1155 1144 -30555555.55054 1156 1144 -36016709.92406 1157 1144 -13902558.23995 1158 1144 -7.450580596924e-07 1159 1144 57023920.20371 1160 1144 30555116.4796 1161 1144 30555555.55054 1162 1144 -39454209.9235 1163 1144 -16652558.23965 1239 1144 7638888.891398 1240 1144 -30663321.90996 1241 1144 -13871472.89847 1242 1144 1.035630702972e-06 1243 1144 -25398826.77179 1244 1144 7638779.123661 1245 1144 -7638888.891398 1246 1144 -8046134.402525 1247 1144 6232693.774803 1251 1144 2.995133399963e-06 1252 1144 -95040068.27054 1253 1144 -53805336.01132 1254 1144 -9.536743164063e-07 1255 1144 2097153.481574 1256 1144 30555116.47959 1257 1144 -2.235174179077e-06 1258 1144 -8008818.28482 1259 1144 23250219.53173 1266 1144 -7638888.891397 1267 1144 -28353405.24253 1268 1144 -13107584.00933 1269 1144 -1.318752765656e-06 1270 1144 -19596660.10607 1271 1144 7638779.123661 1272 1144 7638888.891396 1273 1144 -7454967.735663 1274 1144 5468804.885664 1145 1145 907581829.653 1146 1145 -2546332.887327 1147 1145 -61110232.92908 1148 1145 30527909.01414 1155 1145 -27181694.66288 1156 1145 -13597002.68459 1157 1145 -10829003.14197 1158 1145 5092665.772129 1159 1145 30555116.4796 1160 1145 134412647.088 1161 1145 30109971.99439 1162 1145 -16958113.795 1163 1145 -19995669.80713 1239 1145 19567597.17295 1240 1145 -13871472.89847 1241 1145 -60464969.25217 1242 1145 49815527.5467 1243 1145 7638779.12366 1244 1145 -72142989.75742 1245 1145 5244680.501577 1246 1145 6232693.774804 1247 1145 -152469.232357 1251 1145 -636583.2221379 1252 1145 -54110891.56668 1253 1145 -206419618.7154 1254 1145 -2546332.887312 1255 1145 30555116.47959 1256 1145 -164838704.0269 1257 1145 -636583.2221438 1258 1145 23555775.08708 1259 1145 25663714.57989 1266 1145 -18931013.9508 1267 1145 -13107584.00933 1268 1145 -54305191.47237 1269 1145 -47269194.65938 1270 1145 7638779.123661 1271 1145 -56670545.31551 1272 1145 -4608097.279433 1273 1145 5468804.885664 1274 1145 1423975.212606 1146 1146 669327989.9306 1147 1146 -1.430511474609e-06 1148 1146 -10185331.54429 1149 1146 57028027.11004 1150 1146 9.089708328247e-07 1151 1146 -2546332.887327 1158 1146 -45183976.67484 1159 1146 -30555555.55054 1160 1146 -27563639.10707 1161 1146 -77421519.48389 1162 1146 -5.513429641724e-07 1163 1146 5092665.772129 1164 1146 -48621476.67428 1165 1146 30555555.55054 1166 1146 29728027.55019 1242 1146 -32955138.59878 1243 1146 7638888.891398 1244 1146 19567597.17295 1245 1146 -59010186.71026 1246 1146 1.542270183563e-06 1247 1146 49433583.10251 1248 1146 -10337951.09135 1249 1146 -7638888.891398 1250 1146 5244680.501577 1254 1146 -66012341.70521 1255 1146 2.853572368622e-06 1256 1146 -636583.2221378 1257 1146 20431686.98312 1258 1146 -9.238719940186e-07 1259 1146 -2546332.887312 1260 1146 21018908.28051 1261 1146 -2.346932888031e-06 1262 1146 -636583.222144 1269 1146 -30645221.93135 1270 1146 -7638888.891397 1271 1146 -18931013.9508 1272 1146 -53208020.04453 1273 1146 -1.534819602966e-06 1274 1146 -46887250.21518 1275 1146 -9746784.424485 1276 1146 7638888.891396 1277 1146 -4608097.279433 1147 1147 595989855.9605 1148 1147 122220465.8582 1149 1147 1.132488250732e-06 1150 1147 -59082879.09408 1151 1147 -61110232.92908 1158 1147 -30555555.55054 1159 1147 -36016709.92406 1160 1147 -13902558.23995 1161 1147 -7.450580596924e-07 1162 1147 57023920.20371 1163 1147 30555116.4796 1164 1147 30555555.55054 1165 1147 -39454209.9235 1166 1147 -16652558.23965 1242 1147 7638888.891398 1243 1147 -30663321.90996 1244 1147 -13871472.89847 1245 1147 1.035630702972e-06 1246 1147 -25398826.77179 1247 1147 7638779.123661 1248 1147 -7638888.891398 1249 1147 -8046134.402525 1250 1147 6232693.774803 1254 1147 2.995133399963e-06 1255 1147 -95040068.27054 1256 1147 -53805336.01132 1257 1147 -9.536743164063e-07 1258 1147 2097153.481574 1259 1147 30555116.47959 1260 1147 -2.235174179077e-06 1261 1147 -8008818.28482 1262 1147 23250219.53173 1269 1147 -7638888.891397 1270 1147 -28353405.24253 1271 1147 -13107584.00933 1272 1147 -1.318752765656e-06 1273 1147 -19596660.10607 1274 1147 7638779.123661 1275 1147 7638888.891396 1276 1147 -7454967.735663 1277 1147 5468804.885664 1148 1148 907581829.653 1149 1148 -2546332.887327 1150 1148 -61110232.92908 1151 1148 30527909.01414 1158 1148 -27181694.66288 1159 1148 -13597002.68459 1160 1148 -10829003.14197 1161 1148 5092665.772129 1162 1148 30555116.4796 1163 1148 134412647.088 1164 1148 30109971.99439 1165 1148 -16958113.795 1166 1148 -19995669.80713 1242 1148 19567597.17295 1243 1148 -13871472.89847 1244 1148 -60464969.25217 1245 1148 49815527.5467 1246 1148 7638779.12366 1247 1148 -72142989.75742 1248 1148 5244680.501577 1249 1148 6232693.774804 1250 1148 -152469.232357 1254 1148 -636583.2221379 1255 1148 -54110891.56668 1256 1148 -206419618.7154 1257 1148 -2546332.887312 1258 1148 30555116.47959 1259 1148 -164838704.0269 1260 1148 -636583.2221438 1261 1148 23555775.08708 1262 1148 25663714.57989 1269 1148 -18931013.9508 1270 1148 -13107584.00933 1271 1148 -54305191.47237 1272 1148 -47269194.65938 1273 1148 7638779.123661 1274 1148 -56670545.31551 1275 1148 -4608097.279433 1276 1148 5468804.885664 1277 1148 1423975.212606 1149 1149 692250148.1146 1150 1149 30619210.33408 1151 1149 -34372600.90029 1152 1149 16585727.58665 1153 1149 -30581017.46396 1154 1149 -29752163.59795 1161 1149 -45183976.67484 1162 1149 -30555555.55054 1163 1149 -27563639.10707 1164 1149 -77421519.48389 1165 1149 -5.513429641724e-07 1166 1149 5092665.772129 1167 1149 -48621476.67428 1168 1149 30555555.55054 1169 1149 29728027.55019 1245 1149 -32955138.59878 1246 1149 7638888.891398 1247 1149 19567597.17295 1248 1149 -79032837.45136 1249 1149 -7648437.10893 1250 1149 55511888.47871 1257 1149 -66012341.70521 1258 1149 2.853572368622e-06 1259 1149 -636583.2221378 1260 1149 34928101.59242 1261 1149 7654802.58729 1262 1149 -8598678.217522 1263 1149 5149787.278365 1264 1149 -7645254.369755 1265 1149 4611926.752539 1272 1149 -30645221.93135 1273 1149 -7638888.891397 1274 1149 -18931013.9508 1275 1149 -53208020.04453 1276 1149 -1.534819602966e-06 1277 1149 -46887250.21518 1278 1149 -9746784.424485 1279 1149 7638888.891396 1280 1149 -4608097.279433 1150 1150 609716100.864 1151 1150 94722882.73185 1152 1150 -30593748.42066 1153 1150 -90408834.961 1154 1150 -50742009.05798 1161 1150 -30555555.55054 1162 1150 -36016709.92406 1163 1150 -13902558.23995 1164 1150 -7.450580596924e-07 1165 1150 57023920.20371 1166 1150 30555116.4796 1167 1150 30555555.55054 1168 1150 -39454209.9235 1169 1150 -16652558.23965 1245 1150 7638888.891398 1246 1150 -30663321.90996 1247 1150 -13871472.89847 1248 1150 -7645254.369751 1249 1150 -43109768.41806 1250 1150 18161862.49682 1257 1150 2.995133399963e-06 1258 1150 -95040068.27054 1259 1150 -53805336.01132 1260 1150 7654802.587289 1261 1150 14294589.76961 1262 1150 23676298.37333 1263 1150 -7648437.108933 1264 1150 -21598853.37172 1265 1150 25862479.31684 1272 1150 -7638888.891397 1273 1150 -28353405.24253 1274 1150 -13107584.00933 1275 1150 -1.318752765656e-06 1276 1150 -19596660.10607 1277 1150 7638779.123661 1278 1150 7638888.891396 1279 1150 -7454967.735663 1280 1150 5468804.885664 1151 1151 858703305.1038 1152 1151 -30146176.06602 1153 1151 -59306688.68559 1154 1151 32394301.37033 1161 1151 -27181694.66288 1162 1151 -13597002.68459 1163 1151 -10829003.14197 1164 1151 5092665.772129 1165 1151 30555116.4796 1166 1151 134412647.088 1167 1151 30109971.99439 1168 1151 -16958113.795 1169 1151 -19995669.80713 1245 1151 19567597.17295 1246 1151 -13871472.89847 1247 1151 -60464969.25217 1248 1151 55896750.56943 1249 1151 20307057.29599 1250 1151 -98048385.90041 1257 1151 -636583.2221379 1258 1151 -54110891.56668 1259 1151 -206419618.7154 1260 1151 -8588615.841047 1261 1151 23684348.15878 1262 1151 -153682668.3423 1263 1151 4613841.489092 1264 1151 24026705.92618 1265 1151 10774189.69233 1272 1151 -18931013.9508 1273 1151 -13107584.00933 1274 1151 -54305191.47237 1275 1151 -47269194.65938 1276 1151 7638779.123661 1277 1151 -56670545.31551 1278 1151 -4608097.279433 1279 1151 5468804.885664 1280 1151 1423975.212606 1152 1152 442585385.072 1153 1152 30555555.55053 1154 1152 -29342262.45851 1164 1152 -45183976.67484 1165 1152 -30555555.55054 1166 1152 -27563639.10707 1167 1152 -140989212.5199 1168 1152 -30581017.46395 1169 1152 29317331.52637 1170 1152 -7397842.697824 1171 1152 24469906.35385 1172 1152 23704691.59905 1248 1152 -37437760.48235 1249 1152 9176214.887214 1250 1152 23123609.08966 1260 1152 -61598018.00238 1261 1152 -7648437.108935 1262 1152 -19592039.58835 1263 1152 18346673.71113 1264 1152 7638888.891398 1265 1152 1385379.035684 1275 1152 -30645221.93135 1276 1152 -7638888.891397 1277 1152 -18931013.9508 1278 1152 -55802716.54489 1279 1152 -7645254.369757 1280 1152 -40856339.07483 1281 1152 6123446.608564 1282 1152 6117476.591476 1283 1152 -3944940.585509 1153 1153 396720404.8065 1154 1153 76436047.94083 1164 1153 -30555555.55054 1165 1153 -36016709.92406 1166 1153 -13902558.23995 1167 1153 -30593748.42066 1168 1153 2703063.542514 1169 1153 42347550.95634 1170 1153 36704859.53077 1171 1153 -7397842.697831 1172 1153 -26611659.38366 1248 1153 6117476.591476 1249 1153 -37437760.48236 1250 1153 -12332056.26767 1260 1153 -7645254.369756 1261 1153 -88346658.65246 1262 1153 -53374653.70739 1263 1153 7638888.891397 1264 1153 6880428.6391 1265 1153 26085656.47845 1275 1153 -7638888.891397 1276 1153 -28353405.24253 1277 1153 -13107584.00933 1278 1153 -7648437.108936 1279 1153 -19879647.51159 1280 1153 942630.1669732 1281 1153 9176214.887214 1282 1153 6123446.608565 1283 1153 4734398.284357 1154 1154 631577008.7377 1164 1154 -27181694.66288 1165 1154 -13597002.68459 1166 1154 -10829003.14197 1167 1154 29304866.06029 1168 1154 34088108.93947 1169 1154 74852155.60434 1170 1154 35557037.39857 1171 1154 -17741106.25578 1172 1154 -19727580.52753 1248 1154 15415739.3931 1249 1154 -18498084.4015 1250 1154 -99834027.95294 1260 1154 -19583892.11655 1261 1154 -51538880.44741 1262 1154 -167219957.723 1263 1154 -17965238.89317 1264 1154 10605384.60401 1265 1154 -88238208.0348 1275 1154 -18931013.9508 1276 1154 -13107584.00933 1277 1154 -54305191.47237 1278 1154 -41241201.16555 1279 1154 -1194514.850572 1280 1154 -36101396.81649 1281 1154 -5917410.878264 1282 1154 3156265.522905 1283 1154 16329190.95617 1155 1155 669327989.9306 1156 1155 -1.430511474609e-06 1157 1155 -10185331.54429 1158 1155 57028027.11004 1159 1155 9.089708328247e-07 1160 1155 -2546332.887327 1173 1155 -77421519.48389 1174 1155 -5.513429641724e-07 1175 1155 5092665.772129 1176 1155 -48621476.67428 1177 1155 30555555.55054 1178 1155 29728027.55019 1251 1155 -59010186.71026 1252 1155 1.542270183563e-06 1253 1155 49433583.10251 1254 1155 -10337951.09135 1255 1155 -7638888.891398 1256 1155 5244680.501577 1266 1155 20431686.98312 1267 1155 -9.238719940186e-07 1268 1155 -2546332.887312 1269 1155 21018908.28051 1270 1155 -2.346932888031e-06 1271 1155 -636583.222144 1284 1155 -53208020.04453 1285 1155 -1.534819602966e-06 1286 1155 -46887250.21518 1287 1155 -9746784.424485 1288 1155 7638888.891396 1289 1155 -4608097.279433 1156 1156 595989855.9605 1157 1156 122220465.8582 1158 1156 1.132488250732e-06 1159 1156 -59082879.09408 1160 1156 -61110232.92908 1173 1156 -7.450580596924e-07 1174 1156 57023920.20371 1175 1156 30555116.4796 1176 1156 30555555.55054 1177 1156 -39454209.9235 1178 1156 -16652558.23965 1251 1156 1.035630702972e-06 1252 1156 -25398826.77179 1253 1156 7638779.123661 1254 1156 -7638888.891398 1255 1156 -8046134.402525 1256 1156 6232693.774803 1266 1156 -9.536743164063e-07 1267 1156 2097153.481574 1268 1156 30555116.47959 1269 1156 -2.235174179077e-06 1270 1156 -8008818.28482 1271 1156 23250219.53173 1284 1156 -1.318752765656e-06 1285 1156 -19596660.10607 1286 1156 7638779.123661 1287 1156 7638888.891396 1288 1156 -7454967.735663 1289 1156 5468804.885664 1157 1157 907581829.653 1158 1157 -2546332.887327 1159 1157 -61110232.92908 1160 1157 30527909.01414 1173 1157 5092665.772129 1174 1157 30555116.4796 1175 1157 134412647.088 1176 1157 30109971.99439 1177 1157 -16958113.795 1178 1157 -19995669.80713 1251 1157 49815527.5467 1252 1157 7638779.12366 1253 1157 -72142989.75742 1254 1157 5244680.501577 1255 1157 6232693.774804 1256 1157 -152469.232357 1266 1157 -2546332.887312 1267 1157 30555116.47959 1268 1157 -164838704.0269 1269 1157 -636583.2221438 1270 1157 23555775.08708 1271 1157 25663714.57989 1284 1157 -47269194.65938 1285 1157 7638779.123661 1286 1157 -56670545.31551 1287 1157 -4608097.279433 1288 1157 5468804.885664 1289 1157 1423975.212606 1158 1158 669327989.9306 1159 1158 -1.430511474609e-06 1160 1158 -10185331.54429 1161 1158 57028027.11004 1162 1158 9.089708328247e-07 1163 1158 -2546332.887327 1173 1158 -45183976.67484 1174 1158 -30555555.55054 1175 1158 -27563639.10707 1176 1158 -77421519.48389 1177 1158 -5.513429641724e-07 1178 1158 5092665.772129 1179 1158 -48621476.67428 1180 1158 30555555.55054 1181 1158 29728027.55019 1251 1158 -32955138.59878 1252 1158 7638888.891398 1253 1158 19567597.17295 1254 1158 -59010186.71026 1255 1158 1.542270183563e-06 1256 1158 49433583.10251 1257 1158 -10337951.09135 1258 1158 -7638888.891398 1259 1158 5244680.501577 1266 1158 -66012341.70521 1267 1158 2.853572368622e-06 1268 1158 -636583.2221378 1269 1158 20431686.98312 1270 1158 -9.238719940186e-07 1271 1158 -2546332.887312 1272 1158 21018908.28051 1273 1158 -2.346932888031e-06 1274 1158 -636583.222144 1284 1158 -30645221.93135 1285 1158 -7638888.891397 1286 1158 -18931013.9508 1287 1158 -53208020.04453 1288 1158 -1.534819602966e-06 1289 1158 -46887250.21518 1290 1158 -9746784.424485 1291 1158 7638888.891396 1292 1158 -4608097.279433 1159 1159 595989855.9605 1160 1159 122220465.8582 1161 1159 1.132488250732e-06 1162 1159 -59082879.09408 1163 1159 -61110232.92908 1173 1159 -30555555.55054 1174 1159 -36016709.92406 1175 1159 -13902558.23995 1176 1159 -7.450580596924e-07 1177 1159 57023920.20371 1178 1159 30555116.4796 1179 1159 30555555.55054 1180 1159 -39454209.9235 1181 1159 -16652558.23965 1251 1159 7638888.891398 1252 1159 -30663321.90996 1253 1159 -13871472.89847 1254 1159 1.035630702972e-06 1255 1159 -25398826.77179 1256 1159 7638779.123661 1257 1159 -7638888.891398 1258 1159 -8046134.402525 1259 1159 6232693.774803 1266 1159 2.995133399963e-06 1267 1159 -95040068.27054 1268 1159 -53805336.01132 1269 1159 -9.536743164063e-07 1270 1159 2097153.481574 1271 1159 30555116.47959 1272 1159 -2.235174179077e-06 1273 1159 -8008818.28482 1274 1159 23250219.53173 1284 1159 -7638888.891397 1285 1159 -28353405.24253 1286 1159 -13107584.00933 1287 1159 -1.318752765656e-06 1288 1159 -19596660.10607 1289 1159 7638779.123661 1290 1159 7638888.891396 1291 1159 -7454967.735663 1292 1159 5468804.885664 1160 1160 907581829.653 1161 1160 -2546332.887327 1162 1160 -61110232.92908 1163 1160 30527909.01414 1173 1160 -27181694.66288 1174 1160 -13597002.68459 1175 1160 -10829003.14197 1176 1160 5092665.772129 1177 1160 30555116.4796 1178 1160 134412647.088 1179 1160 30109971.99439 1180 1160 -16958113.795 1181 1160 -19995669.80713 1251 1160 19567597.17295 1252 1160 -13871472.89847 1253 1160 -60464969.25217 1254 1160 49815527.5467 1255 1160 7638779.12366 1256 1160 -72142989.75742 1257 1160 5244680.501577 1258 1160 6232693.774804 1259 1160 -152469.232357 1266 1160 -636583.2221379 1267 1160 -54110891.56668 1268 1160 -206419618.7154 1269 1160 -2546332.887312 1270 1160 30555116.47959 1271 1160 -164838704.0269 1272 1160 -636583.2221438 1273 1160 23555775.08708 1274 1160 25663714.57989 1284 1160 -18931013.9508 1285 1160 -13107584.00933 1286 1160 -54305191.47237 1287 1160 -47269194.65938 1288 1160 7638779.123661 1289 1160 -56670545.31551 1290 1160 -4608097.279433 1291 1160 5468804.885664 1292 1160 1423975.212606 1161 1161 669327989.9306 1162 1161 -1.430511474609e-06 1163 1161 -10185331.54429 1164 1161 57028027.11004 1165 1161 9.089708328247e-07 1166 1161 -2546332.887327 1176 1161 -45183976.67484 1177 1161 -30555555.55054 1178 1161 -27563639.10707 1179 1161 -77421519.48389 1180 1161 -5.513429641724e-07 1181 1161 5092665.772129 1182 1161 -48621476.67428 1183 1161 30555555.55054 1184 1161 29728027.55019 1254 1161 -32955138.59878 1255 1161 7638888.891398 1256 1161 19567597.17295 1257 1161 -59010186.71026 1258 1161 1.542270183563e-06 1259 1161 49433583.10251 1260 1161 -10337951.09135 1261 1161 -7638888.891398 1262 1161 5244680.501577 1269 1161 -66012341.70521 1270 1161 2.853572368622e-06 1271 1161 -636583.2221378 1272 1161 20431686.98312 1273 1161 -9.238719940186e-07 1274 1161 -2546332.887312 1275 1161 21018908.28051 1276 1161 -2.346932888031e-06 1277 1161 -636583.222144 1287 1161 -30645221.93135 1288 1161 -7638888.891397 1289 1161 -18931013.9508 1290 1161 -53208020.04453 1291 1161 -1.534819602966e-06 1292 1161 -46887250.21518 1293 1161 -9746784.424485 1294 1161 7638888.891396 1295 1161 -4608097.279433 1162 1162 595989855.9605 1163 1162 122220465.8582 1164 1162 1.132488250732e-06 1165 1162 -59082879.09408 1166 1162 -61110232.92908 1176 1162 -30555555.55054 1177 1162 -36016709.92406 1178 1162 -13902558.23995 1179 1162 -7.450580596924e-07 1180 1162 57023920.20371 1181 1162 30555116.4796 1182 1162 30555555.55054 1183 1162 -39454209.9235 1184 1162 -16652558.23965 1254 1162 7638888.891398 1255 1162 -30663321.90996 1256 1162 -13871472.89847 1257 1162 1.035630702972e-06 1258 1162 -25398826.77179 1259 1162 7638779.123661 1260 1162 -7638888.891398 1261 1162 -8046134.402525 1262 1162 6232693.774803 1269 1162 2.995133399963e-06 1270 1162 -95040068.27054 1271 1162 -53805336.01132 1272 1162 -9.536743164063e-07 1273 1162 2097153.481574 1274 1162 30555116.47959 1275 1162 -2.235174179077e-06 1276 1162 -8008818.28482 1277 1162 23250219.53173 1287 1162 -7638888.891397 1288 1162 -28353405.24253 1289 1162 -13107584.00933 1290 1162 -1.318752765656e-06 1291 1162 -19596660.10607 1292 1162 7638779.123661 1293 1162 7638888.891396 1294 1162 -7454967.735663 1295 1162 5468804.885664 1163 1163 907581829.653 1164 1163 -2546332.887327 1165 1163 -61110232.92908 1166 1163 30527909.01414 1176 1163 -27181694.66288 1177 1163 -13597002.68459 1178 1163 -10829003.14197 1179 1163 5092665.772129 1180 1163 30555116.4796 1181 1163 134412647.088 1182 1163 30109971.99439 1183 1163 -16958113.795 1184 1163 -19995669.80713 1254 1163 19567597.17295 1255 1163 -13871472.89847 1256 1163 -60464969.25217 1257 1163 49815527.5467 1258 1163 7638779.12366 1259 1163 -72142989.75742 1260 1163 5244680.501577 1261 1163 6232693.774804 1262 1163 -152469.232357 1269 1163 -636583.2221379 1270 1163 -54110891.56668 1271 1163 -206419618.7154 1272 1163 -2546332.887312 1273 1163 30555116.47959 1274 1163 -164838704.0269 1275 1163 -636583.2221438 1276 1163 23555775.08708 1277 1163 25663714.57989 1287 1163 -18931013.9508 1288 1163 -13107584.00933 1289 1163 -54305191.47237 1290 1163 -47269194.65938 1291 1163 7638779.123661 1292 1163 -56670545.31551 1293 1163 -4608097.279433 1294 1163 5468804.885664 1295 1163 1423975.212606 1164 1164 669327989.9306 1165 1164 -1.430511474609e-06 1166 1164 -10185331.54429 1167 1164 57028027.11004 1168 1164 9.089708328247e-07 1169 1164 -2546332.887327 1179 1164 -45183976.67484 1180 1164 -30555555.55054 1181 1164 -27563639.10707 1182 1164 -77421519.48389 1183 1164 -5.513429641724e-07 1184 1164 5092665.772129 1185 1164 -48621476.67428 1186 1164 30555555.55054 1187 1164 29728027.55019 1257 1164 -32955138.59878 1258 1164 7638888.891398 1259 1164 19567597.17295 1260 1164 -59010186.71026 1261 1164 1.542270183563e-06 1262 1164 49433583.10251 1263 1164 -10337951.09135 1264 1164 -7638888.891398 1265 1164 5244680.501577 1272 1164 -66012341.70521 1273 1164 2.853572368622e-06 1274 1164 -636583.2221378 1275 1164 20431686.98312 1276 1164 -9.238719940186e-07 1277 1164 -2546332.887312 1278 1164 21018908.28051 1279 1164 -2.346932888031e-06 1280 1164 -636583.222144 1290 1164 -30645221.93135 1291 1164 -7638888.891397 1292 1164 -18931013.9508 1293 1164 -53208020.04453 1294 1164 -1.534819602966e-06 1295 1164 -46887250.21518 1296 1164 -9746784.424485 1297 1164 7638888.891396 1298 1164 -4608097.279433 1165 1165 595989855.9605 1166 1165 122220465.8582 1167 1165 1.132488250732e-06 1168 1165 -59082879.09408 1169 1165 -61110232.92908 1179 1165 -30555555.55054 1180 1165 -36016709.92406 1181 1165 -13902558.23995 1182 1165 -7.450580596924e-07 1183 1165 57023920.20371 1184 1165 30555116.4796 1185 1165 30555555.55054 1186 1165 -39454209.9235 1187 1165 -16652558.23965 1257 1165 7638888.891398 1258 1165 -30663321.90996 1259 1165 -13871472.89847 1260 1165 1.035630702972e-06 1261 1165 -25398826.77179 1262 1165 7638779.123661 1263 1165 -7638888.891398 1264 1165 -8046134.402525 1265 1165 6232693.774803 1272 1165 2.995133399963e-06 1273 1165 -95040068.27054 1274 1165 -53805336.01132 1275 1165 -9.536743164063e-07 1276 1165 2097153.481574 1277 1165 30555116.47959 1278 1165 -2.235174179077e-06 1279 1165 -8008818.28482 1280 1165 23250219.53173 1290 1165 -7638888.891397 1291 1165 -28353405.24253 1292 1165 -13107584.00933 1293 1165 -1.318752765656e-06 1294 1165 -19596660.10607 1295 1165 7638779.123661 1296 1165 7638888.891396 1297 1165 -7454967.735663 1298 1165 5468804.885664 1166 1166 907581829.653 1167 1166 -2546332.887327 1168 1166 -61110232.92908 1169 1166 30527909.01414 1179 1166 -27181694.66288 1180 1166 -13597002.68459 1181 1166 -10829003.14197 1182 1166 5092665.772129 1183 1166 30555116.4796 1184 1166 134412647.088 1185 1166 30109971.99439 1186 1166 -16958113.795 1187 1166 -19995669.80713 1257 1166 19567597.17295 1258 1166 -13871472.89847 1259 1166 -60464969.25217 1260 1166 49815527.5467 1261 1166 7638779.12366 1262 1166 -72142989.75742 1263 1166 5244680.501577 1264 1166 6232693.774804 1265 1166 -152469.232357 1272 1166 -636583.2221379 1273 1166 -54110891.56668 1274 1166 -206419618.7154 1275 1166 -2546332.887312 1276 1166 30555116.47959 1277 1166 -164838704.0269 1278 1166 -636583.2221438 1279 1166 23555775.08708 1280 1166 25663714.57989 1290 1166 -18931013.9508 1291 1166 -13107584.00933 1292 1166 -54305191.47237 1293 1166 -47269194.65938 1294 1166 7638779.123661 1295 1166 -56670545.31551 1296 1166 -4608097.279433 1297 1166 5468804.885664 1298 1166 1423975.212606 1167 1167 692250148.1146 1168 1167 30619210.33408 1169 1167 -34372600.90029 1170 1167 16585727.58665 1171 1167 -30581017.46396 1172 1167 -29752163.59795 1182 1167 -45183976.67484 1183 1167 -30555555.55054 1184 1167 -27563639.10707 1185 1167 -77421519.48389 1186 1167 -5.513429641724e-07 1187 1167 5092665.772129 1188 1167 -48621476.67428 1189 1167 30555555.55054 1190 1167 29728027.55019 1260 1167 -32955138.59878 1261 1167 7638888.891398 1262 1167 19567597.17295 1263 1167 -79032837.45136 1264 1167 -7648437.10893 1265 1167 55511888.47871 1275 1167 -66012341.70521 1276 1167 2.853572368622e-06 1277 1167 -636583.2221378 1278 1167 34928101.59242 1279 1167 7654802.58729 1280 1167 -8598678.217522 1281 1167 5149787.278365 1282 1167 -7645254.369755 1283 1167 4611926.752539 1293 1167 -30645221.93135 1294 1167 -7638888.891397 1295 1167 -18931013.9508 1296 1167 -53208020.04453 1297 1167 -1.534819602966e-06 1298 1167 -46887250.21518 1299 1167 -9746784.424485 1300 1167 7638888.891396 1301 1167 -4608097.279433 1168 1168 609716100.864 1169 1168 94722882.73185 1170 1168 -30593748.42066 1171 1168 -90408834.961 1172 1168 -50742009.05798 1182 1168 -30555555.55054 1183 1168 -36016709.92406 1184 1168 -13902558.23995 1185 1168 -7.450580596924e-07 1186 1168 57023920.20371 1187 1168 30555116.4796 1188 1168 30555555.55054 1189 1168 -39454209.9235 1190 1168 -16652558.23965 1260 1168 7638888.891398 1261 1168 -30663321.90996 1262 1168 -13871472.89847 1263 1168 -7645254.369751 1264 1168 -43109768.41806 1265 1168 18161862.49682 1275 1168 2.995133399963e-06 1276 1168 -95040068.27054 1277 1168 -53805336.01132 1278 1168 7654802.587289 1279 1168 14294589.76961 1280 1168 23676298.37333 1281 1168 -7648437.108933 1282 1168 -21598853.37172 1283 1168 25862479.31684 1293 1168 -7638888.891397 1294 1168 -28353405.24253 1295 1168 -13107584.00933 1296 1168 -1.318752765656e-06 1297 1168 -19596660.10607 1298 1168 7638779.123661 1299 1168 7638888.891396 1300 1168 -7454967.735663 1301 1168 5468804.885664 1169 1169 858703305.1038 1170 1169 -30146176.06602 1171 1169 -59306688.68559 1172 1169 32394301.37033 1182 1169 -27181694.66288 1183 1169 -13597002.68459 1184 1169 -10829003.14197 1185 1169 5092665.772129 1186 1169 30555116.4796 1187 1169 134412647.088 1188 1169 30109971.99439 1189 1169 -16958113.795 1190 1169 -19995669.80713 1260 1169 19567597.17295 1261 1169 -13871472.89847 1262 1169 -60464969.25217 1263 1169 55896750.56943 1264 1169 20307057.29599 1265 1169 -98048385.90041 1275 1169 -636583.2221379 1276 1169 -54110891.56668 1277 1169 -206419618.7154 1278 1169 -8588615.841047 1279 1169 23684348.15878 1280 1169 -153682668.3423 1281 1169 4613841.489092 1282 1169 24026705.92618 1283 1169 10774189.69233 1293 1169 -18931013.9508 1294 1169 -13107584.00933 1295 1169 -54305191.47237 1296 1169 -47269194.65938 1297 1169 7638779.123661 1298 1169 -56670545.31551 1299 1169 -4608097.279433 1300 1169 5468804.885664 1301 1169 1423975.212606 1170 1170 364985426.4907 1171 1170 -14061652.22197 1172 1170 17814269.07624 1185 1170 -45183976.67484 1186 1170 -30555555.55054 1187 1170 -27563639.10707 1188 1170 -45058067.96334 1189 1170 13871774.76762 1190 1170 2014135.925476 1191 1170 -77987935.00936 1192 1170 24634321.89478 1193 1170 4614449.669165 1263 1170 -37437760.48235 1264 1170 9176214.887214 1265 1170 23123609.08966 1278 1170 -61598018.00238 1279 1170 -7648437.108935 1280 1170 -19592039.58835 1281 1170 18456352.87299 1282 1170 -3515413.057224 1283 1170 9204137.171611 1296 1170 -30645221.93135 1297 1170 -7638888.891397 1298 1170 -18931013.9508 1299 1170 -30340144.80161 1300 1170 3467943.693614 1301 1170 -30119546.23577 1302 1170 -19821700.11939 1303 1170 6158580.476729 1304 1170 -1921392.690481 1171 1171 471961895.5022 1172 1171 97697867.88863 1185 1171 -30555555.55054 1186 1171 -36016709.92406 1187 1171 -13902558.23995 1188 1171 13776836.04045 1189 1171 79070799.38238 1190 1171 20523124.61285 1191 1171 36951482.84217 1192 1171 -211265975.5697 1193 1171 -25405019.46708 1263 1171 6117476.591476 1264 1171 -37437760.48236 1265 1171 -12332056.26767 1278 1171 -7645254.369756 1279 1171 -88346658.65246 1280 1171 -53374653.70739 1281 1171 -3515413.057224 1282 1171 45200470.13904 1283 1171 28178112.40107 1296 1171 -7638888.891397 1297 1171 -28353405.24253 1298 1171 -13107584.00933 1299 1171 3444209.011808 1300 1171 692072.0501018 1301 1171 9579154.834703 1302 1171 9237870.715094 1303 1171 -53141210.27589 1304 1171 10606269.5228 1172 1172 529687108.5978 1185 1172 -27181694.66288 1186 1172 -13597002.68459 1187 1172 -10829003.14197 1188 1172 11928338.42634 1189 1172 20213350.09205 1190 1172 92347177.78475 1191 1172 6921674.503748 1192 1172 -24162117.07483 1193 1172 -74689786.13132 1263 1172 15415739.3931 1264 1172 -18498084.4015 1265 1172 -99834027.95294 1278 1172 -19583892.11655 1279 1172 -51538880.44741 1280 1172 -167219957.723 1281 1172 -3159598.760604 1282 1172 18338796.75477 1283 1172 -61684899.57103 1296 1172 -18931013.9508 1297 1172 -13107584.00933 1298 1172 -54305191.47237 1299 1172 -28213514.83563 1300 1172 9298506.145881 1301 1172 -27781546.3564 1302 1172 -2882089.035722 1303 1172 9831110.118881 1304 1172 -19538356.82854 1173 1173 669327989.9306 1174 1173 -1.430511474609e-06 1175 1173 -10185331.54429 1176 1173 57028027.11004 1177 1173 9.089708328247e-07 1178 1173 -2546332.887327 1194 1173 -77421519.48389 1195 1173 -5.513429641724e-07 1196 1173 5092665.772129 1197 1173 -48621476.67428 1198 1173 30555555.55054 1199 1173 29728027.55019 1266 1173 -59010186.71026 1267 1173 1.542270183563e-06 1268 1173 49433583.10251 1269 1173 -10337951.09135 1270 1173 -7638888.891398 1271 1173 5244680.501577 1284 1173 20431686.98312 1285 1173 -9.238719940186e-07 1286 1173 -2546332.887312 1287 1173 21018908.28051 1288 1173 -2.346932888031e-06 1289 1173 -636583.222144 1305 1173 -53208020.04453 1306 1173 -1.534819602966e-06 1307 1173 -46887250.21518 1308 1173 -9746784.424485 1309 1173 7638888.891396 1310 1173 -4608097.279433 1174 1174 595989855.9605 1175 1174 122220465.8582 1176 1174 1.132488250732e-06 1177 1174 -59082879.09408 1178 1174 -61110232.92908 1194 1174 -7.450580596924e-07 1195 1174 57023920.20371 1196 1174 30555116.4796 1197 1174 30555555.55054 1198 1174 -39454209.9235 1199 1174 -16652558.23965 1266 1174 1.035630702972e-06 1267 1174 -25398826.77179 1268 1174 7638779.123661 1269 1174 -7638888.891398 1270 1174 -8046134.402525 1271 1174 6232693.774803 1284 1174 -9.536743164063e-07 1285 1174 2097153.481574 1286 1174 30555116.47959 1287 1174 -2.235174179077e-06 1288 1174 -8008818.28482 1289 1174 23250219.53173 1305 1174 -1.318752765656e-06 1306 1174 -19596660.10607 1307 1174 7638779.123661 1308 1174 7638888.891396 1309 1174 -7454967.735663 1310 1174 5468804.885664 1175 1175 907581829.653 1176 1175 -2546332.887327 1177 1175 -61110232.92908 1178 1175 30527909.01414 1194 1175 5092665.772129 1195 1175 30555116.4796 1196 1175 134412647.088 1197 1175 30109971.99439 1198 1175 -16958113.795 1199 1175 -19995669.80713 1266 1175 49815527.5467 1267 1175 7638779.12366 1268 1175 -72142989.75742 1269 1175 5244680.501577 1270 1175 6232693.774804 1271 1175 -152469.232357 1284 1175 -2546332.887312 1285 1175 30555116.47959 1286 1175 -164838704.0269 1287 1175 -636583.2221438 1288 1175 23555775.08708 1289 1175 25663714.57989 1305 1175 -47269194.65938 1306 1175 7638779.123661 1307 1175 -56670545.31551 1308 1175 -4608097.279433 1309 1175 5468804.885664 1310 1175 1423975.212606 1176 1176 669327989.9306 1177 1176 -1.430511474609e-06 1178 1176 -10185331.54429 1179 1176 57028027.11004 1180 1176 9.089708328247e-07 1181 1176 -2546332.887327 1194 1176 -45183976.67484 1195 1176 -30555555.55054 1196 1176 -27563639.10707 1197 1176 -77421519.48389 1198 1176 -5.513429641724e-07 1199 1176 5092665.772129 1200 1176 -48621476.67428 1201 1176 30555555.55054 1202 1176 29728027.55019 1266 1176 -32955138.59878 1267 1176 7638888.891398 1268 1176 19567597.17295 1269 1176 -59010186.71026 1270 1176 1.542270183563e-06 1271 1176 49433583.10251 1272 1176 -10337951.09135 1273 1176 -7638888.891398 1274 1176 5244680.501577 1284 1176 -66012341.70521 1285 1176 2.853572368622e-06 1286 1176 -636583.2221378 1287 1176 20431686.98312 1288 1176 -9.238719940186e-07 1289 1176 -2546332.887312 1290 1176 21018908.28051 1291 1176 -2.346932888031e-06 1292 1176 -636583.222144 1305 1176 -30645221.93135 1306 1176 -7638888.891397 1307 1176 -18931013.9508 1308 1176 -53208020.04453 1309 1176 -1.534819602966e-06 1310 1176 -46887250.21518 1311 1176 -9746784.424485 1312 1176 7638888.891396 1313 1176 -4608097.279433 1177 1177 595989855.9605 1178 1177 122220465.8582 1179 1177 1.132488250732e-06 1180 1177 -59082879.09408 1181 1177 -61110232.92908 1194 1177 -30555555.55054 1195 1177 -36016709.92406 1196 1177 -13902558.23995 1197 1177 -7.450580596924e-07 1198 1177 57023920.20371 1199 1177 30555116.4796 1200 1177 30555555.55054 1201 1177 -39454209.9235 1202 1177 -16652558.23965 1266 1177 7638888.891398 1267 1177 -30663321.90996 1268 1177 -13871472.89847 1269 1177 1.035630702972e-06 1270 1177 -25398826.77179 1271 1177 7638779.123661 1272 1177 -7638888.891398 1273 1177 -8046134.402525 1274 1177 6232693.774803 1284 1177 2.995133399963e-06 1285 1177 -95040068.27054 1286 1177 -53805336.01132 1287 1177 -9.536743164063e-07 1288 1177 2097153.481574 1289 1177 30555116.47959 1290 1177 -2.235174179077e-06 1291 1177 -8008818.28482 1292 1177 23250219.53173 1305 1177 -7638888.891397 1306 1177 -28353405.24253 1307 1177 -13107584.00933 1308 1177 -1.318752765656e-06 1309 1177 -19596660.10607 1310 1177 7638779.123661 1311 1177 7638888.891396 1312 1177 -7454967.735663 1313 1177 5468804.885664 1178 1178 907581829.653 1179 1178 -2546332.887327 1180 1178 -61110232.92908 1181 1178 30527909.01414 1194 1178 -27181694.66288 1195 1178 -13597002.68459 1196 1178 -10829003.14197 1197 1178 5092665.772129 1198 1178 30555116.4796 1199 1178 134412647.088 1200 1178 30109971.99439 1201 1178 -16958113.795 1202 1178 -19995669.80713 1266 1178 19567597.17295 1267 1178 -13871472.89847 1268 1178 -60464969.25217 1269 1178 49815527.5467 1270 1178 7638779.12366 1271 1178 -72142989.75742 1272 1178 5244680.501577 1273 1178 6232693.774804 1274 1178 -152469.232357 1284 1178 -636583.2221379 1285 1178 -54110891.56668 1286 1178 -206419618.7154 1287 1178 -2546332.887312 1288 1178 30555116.47959 1289 1178 -164838704.0269 1290 1178 -636583.2221438 1291 1178 23555775.08708 1292 1178 25663714.57989 1305 1178 -18931013.9508 1306 1178 -13107584.00933 1307 1178 -54305191.47237 1308 1178 -47269194.65938 1309 1178 7638779.123661 1310 1178 -56670545.31551 1311 1178 -4608097.279433 1312 1178 5468804.885664 1313 1178 1423975.212606 1179 1179 669327989.9306 1180 1179 -1.430511474609e-06 1181 1179 -10185331.54429 1182 1179 57028027.11004 1183 1179 9.089708328247e-07 1184 1179 -2546332.887327 1197 1179 -45183976.67484 1198 1179 -30555555.55054 1199 1179 -27563639.10707 1200 1179 -77421519.48389 1201 1179 -5.513429641724e-07 1202 1179 5092665.772129 1203 1179 -48621476.67428 1204 1179 30555555.55054 1205 1179 29728027.55019 1269 1179 -32955138.59878 1270 1179 7638888.891398 1271 1179 19567597.17295 1272 1179 -59010186.71026 1273 1179 1.542270183563e-06 1274 1179 49433583.10251 1275 1179 -10337951.09135 1276 1179 -7638888.891398 1277 1179 5244680.501577 1287 1179 -66012341.70521 1288 1179 2.853572368622e-06 1289 1179 -636583.2221378 1290 1179 20431686.98312 1291 1179 -9.238719940186e-07 1292 1179 -2546332.887312 1293 1179 21018908.28051 1294 1179 -2.346932888031e-06 1295 1179 -636583.222144 1308 1179 -30645221.93135 1309 1179 -7638888.891397 1310 1179 -18931013.9508 1311 1179 -53208020.04453 1312 1179 -1.534819602966e-06 1313 1179 -46887250.21518 1314 1179 -9746784.424485 1315 1179 7638888.891396 1316 1179 -4608097.279433 1180 1180 595989855.9605 1181 1180 122220465.8582 1182 1180 1.132488250732e-06 1183 1180 -59082879.09408 1184 1180 -61110232.92908 1197 1180 -30555555.55054 1198 1180 -36016709.92406 1199 1180 -13902558.23995 1200 1180 -7.450580596924e-07 1201 1180 57023920.20371 1202 1180 30555116.4796 1203 1180 30555555.55054 1204 1180 -39454209.9235 1205 1180 -16652558.23965 1269 1180 7638888.891398 1270 1180 -30663321.90996 1271 1180 -13871472.89847 1272 1180 1.035630702972e-06 1273 1180 -25398826.77179 1274 1180 7638779.123661 1275 1180 -7638888.891398 1276 1180 -8046134.402525 1277 1180 6232693.774803 1287 1180 2.995133399963e-06 1288 1180 -95040068.27054 1289 1180 -53805336.01132 1290 1180 -9.536743164063e-07 1291 1180 2097153.481574 1292 1180 30555116.47959 1293 1180 -2.235174179077e-06 1294 1180 -8008818.28482 1295 1180 23250219.53173 1308 1180 -7638888.891397 1309 1180 -28353405.24253 1310 1180 -13107584.00933 1311 1180 -1.318752765656e-06 1312 1180 -19596660.10607 1313 1180 7638779.123661 1314 1180 7638888.891396 1315 1180 -7454967.735663 1316 1180 5468804.885664 1181 1181 907581829.653 1182 1181 -2546332.887327 1183 1181 -61110232.92908 1184 1181 30527909.01414 1197 1181 -27181694.66288 1198 1181 -13597002.68459 1199 1181 -10829003.14197 1200 1181 5092665.772129 1201 1181 30555116.4796 1202 1181 134412647.088 1203 1181 30109971.99439 1204 1181 -16958113.795 1205 1181 -19995669.80713 1269 1181 19567597.17295 1270 1181 -13871472.89847 1271 1181 -60464969.25217 1272 1181 49815527.5467 1273 1181 7638779.12366 1274 1181 -72142989.75742 1275 1181 5244680.501577 1276 1181 6232693.774804 1277 1181 -152469.232357 1287 1181 -636583.2221379 1288 1181 -54110891.56668 1289 1181 -206419618.7154 1290 1181 -2546332.887312 1291 1181 30555116.47959 1292 1181 -164838704.0269 1293 1181 -636583.2221438 1294 1181 23555775.08708 1295 1181 25663714.57989 1308 1181 -18931013.9508 1309 1181 -13107584.00933 1310 1181 -54305191.47237 1311 1181 -47269194.65938 1312 1181 7638779.123661 1313 1181 -56670545.31551 1314 1181 -4608097.279433 1315 1181 5468804.885664 1316 1181 1423975.212606 1182 1182 669327989.9306 1183 1182 -1.430511474609e-06 1184 1182 -10185331.54429 1185 1182 57028027.11004 1186 1182 9.089708328247e-07 1187 1182 -2546332.887327 1200 1182 -45183976.67484 1201 1182 -30555555.55054 1202 1182 -27563639.10707 1203 1182 -77421519.48389 1204 1182 -5.513429641724e-07 1205 1182 5092665.772129 1206 1182 -48621476.67428 1207 1182 30555555.55054 1208 1182 29728027.55019 1272 1182 -32955138.59878 1273 1182 7638888.891398 1274 1182 19567597.17295 1275 1182 -59010186.71026 1276 1182 1.542270183563e-06 1277 1182 49433583.10251 1278 1182 -10337951.09135 1279 1182 -7638888.891398 1280 1182 5244680.501577 1290 1182 -66012341.70521 1291 1182 2.853572368622e-06 1292 1182 -636583.2221378 1293 1182 20431686.98312 1294 1182 -9.238719940186e-07 1295 1182 -2546332.887312 1296 1182 21018908.28051 1297 1182 -2.346932888031e-06 1298 1182 -636583.222144 1311 1182 -30645221.93135 1312 1182 -7638888.891397 1313 1182 -18931013.9508 1314 1182 -53208020.04453 1315 1182 -1.534819602966e-06 1316 1182 -46887250.21518 1317 1182 -9746784.424485 1318 1182 7638888.891396 1319 1182 -4608097.279433 1183 1183 595989855.9605 1184 1183 122220465.8582 1185 1183 1.132488250732e-06 1186 1183 -59082879.09408 1187 1183 -61110232.92908 1200 1183 -30555555.55054 1201 1183 -36016709.92406 1202 1183 -13902558.23995 1203 1183 -7.450580596924e-07 1204 1183 57023920.20371 1205 1183 30555116.4796 1206 1183 30555555.55054 1207 1183 -39454209.9235 1208 1183 -16652558.23965 1272 1183 7638888.891398 1273 1183 -30663321.90996 1274 1183 -13871472.89847 1275 1183 1.035630702972e-06 1276 1183 -25398826.77179 1277 1183 7638779.123661 1278 1183 -7638888.891398 1279 1183 -8046134.402525 1280 1183 6232693.774803 1290 1183 2.995133399963e-06 1291 1183 -95040068.27054 1292 1183 -53805336.01132 1293 1183 -9.536743164063e-07 1294 1183 2097153.481574 1295 1183 30555116.47959 1296 1183 -2.235174179077e-06 1297 1183 -8008818.28482 1298 1183 23250219.53173 1311 1183 -7638888.891397 1312 1183 -28353405.24253 1313 1183 -13107584.00933 1314 1183 -1.318752765656e-06 1315 1183 -19596660.10607 1316 1183 7638779.123661 1317 1183 7638888.891396 1318 1183 -7454967.735663 1319 1183 5468804.885664 1184 1184 907581829.653 1185 1184 -2546332.887327 1186 1184 -61110232.92908 1187 1184 30527909.01414 1200 1184 -27181694.66288 1201 1184 -13597002.68459 1202 1184 -10829003.14197 1203 1184 5092665.772129 1204 1184 30555116.4796 1205 1184 134412647.088 1206 1184 30109971.99439 1207 1184 -16958113.795 1208 1184 -19995669.80713 1272 1184 19567597.17295 1273 1184 -13871472.89847 1274 1184 -60464969.25217 1275 1184 49815527.5467 1276 1184 7638779.12366 1277 1184 -72142989.75742 1278 1184 5244680.501577 1279 1184 6232693.774804 1280 1184 -152469.232357 1290 1184 -636583.2221379 1291 1184 -54110891.56668 1292 1184 -206419618.7154 1293 1184 -2546332.887312 1294 1184 30555116.47959 1295 1184 -164838704.0269 1296 1184 -636583.2221438 1297 1184 23555775.08708 1298 1184 25663714.57989 1311 1184 -18931013.9508 1312 1184 -13107584.00933 1313 1184 -54305191.47237 1314 1184 -47269194.65938 1315 1184 7638779.123661 1316 1184 -56670545.31551 1317 1184 -4608097.279433 1318 1184 5468804.885664 1319 1184 1423975.212606 1185 1185 669327989.9306 1186 1185 -1.430511474609e-06 1187 1185 -10185331.54429 1188 1185 57028027.11004 1189 1185 9.089708328247e-07 1190 1185 -2546332.887327 1203 1185 -45183976.67484 1204 1185 -30555555.55054 1205 1185 -27563639.10707 1206 1185 -77421519.48389 1207 1185 -5.513429641724e-07 1208 1185 5092665.772129 1209 1185 -48621476.67428 1210 1185 30555555.55054 1211 1185 29728027.55019 1275 1185 -32955138.59878 1276 1185 7638888.891398 1277 1185 19567597.17295 1278 1185 -59010186.71026 1279 1185 1.542270183563e-06 1280 1185 49433583.10251 1281 1185 -10337951.09135 1282 1185 -7638888.891398 1283 1185 5244680.501577 1293 1185 -66012341.70521 1294 1185 2.853572368622e-06 1295 1185 -636583.2221378 1296 1185 20431686.98312 1297 1185 -9.238719940186e-07 1298 1185 -2546332.887312 1299 1185 21018908.28051 1300 1185 -2.346932888031e-06 1301 1185 -636583.222144 1314 1185 -30645221.93135 1315 1185 -7638888.891397 1316 1185 -18931013.9508 1317 1185 -53208020.04453 1318 1185 -1.534819602966e-06 1319 1185 -46887250.21518 1320 1185 -9746784.424485 1321 1185 7638888.891396 1322 1185 -4608097.279433 1186 1186 595989855.9605 1187 1186 122220465.8582 1188 1186 1.132488250732e-06 1189 1186 -59082879.09408 1190 1186 -61110232.92908 1203 1186 -30555555.55054 1204 1186 -36016709.92406 1205 1186 -13902558.23995 1206 1186 -7.450580596924e-07 1207 1186 57023920.20371 1208 1186 30555116.4796 1209 1186 30555555.55054 1210 1186 -39454209.9235 1211 1186 -16652558.23965 1275 1186 7638888.891398 1276 1186 -30663321.90996 1277 1186 -13871472.89847 1278 1186 1.035630702972e-06 1279 1186 -25398826.77179 1280 1186 7638779.123661 1281 1186 -7638888.891398 1282 1186 -8046134.402525 1283 1186 6232693.774803 1293 1186 2.995133399963e-06 1294 1186 -95040068.27054 1295 1186 -53805336.01132 1296 1186 -9.536743164063e-07 1297 1186 2097153.481574 1298 1186 30555116.47959 1299 1186 -2.235174179077e-06 1300 1186 -8008818.28482 1301 1186 23250219.53173 1314 1186 -7638888.891397 1315 1186 -28353405.24253 1316 1186 -13107584.00933 1317 1186 -1.318752765656e-06 1318 1186 -19596660.10607 1319 1186 7638779.123661 1320 1186 7638888.891396 1321 1186 -7454967.735663 1322 1186 5468804.885664 1187 1187 907581829.653 1188 1187 -2546332.887327 1189 1187 -61110232.92908 1190 1187 30527909.01414 1203 1187 -27181694.66288 1204 1187 -13597002.68459 1205 1187 -10829003.14197 1206 1187 5092665.772129 1207 1187 30555116.4796 1208 1187 134412647.088 1209 1187 30109971.99439 1210 1187 -16958113.795 1211 1187 -19995669.80713 1275 1187 19567597.17295 1276 1187 -13871472.89847 1277 1187 -60464969.25217 1278 1187 49815527.5467 1279 1187 7638779.12366 1280 1187 -72142989.75742 1281 1187 5244680.501577 1282 1187 6232693.774804 1283 1187 -152469.232357 1293 1187 -636583.2221379 1294 1187 -54110891.56668 1295 1187 -206419618.7154 1296 1187 -2546332.887312 1297 1187 30555116.47959 1298 1187 -164838704.0269 1299 1187 -636583.2221438 1300 1187 23555775.08708 1301 1187 25663714.57989 1314 1187 -18931013.9508 1315 1187 -13107584.00933 1316 1187 -54305191.47237 1317 1187 -47269194.65938 1318 1187 7638779.123661 1319 1187 -56670545.31551 1320 1187 -4608097.279433 1321 1187 5468804.885664 1322 1187 1423975.212606 1188 1188 535720103.1431 1189 1188 9002155.882396 1190 1188 -8544977.115715 1191 1188 -52832367.09619 1192 1188 -56640651.3947 1193 1188 -7377596.330818 1206 1188 -45183976.67484 1207 1188 -30555555.55054 1208 1188 -27563639.10707 1209 1188 -48262168.01736 1210 1188 18375579.56507 1211 1188 1211801.457708 1212 1188 -26550326.20373 1213 1188 15486079.90679 1214 1188 2784023.331262 1278 1188 -32955138.59878 1279 1188 7638888.891398 1280 1188 19567597.17295 1281 1188 -37020168.145 1282 1188 3444209.011809 1283 1188 33605164.82544 1296 1188 -66012341.70521 1297 1188 2.853572368622e-06 1298 1188 -636583.2221378 1299 1188 28568367.61238 1300 1188 2250538.971708 1301 1188 -2147300.291512 1302 1188 -25990848.25866 1303 1188 -14160162.85565 1304 1188 10214737.96898 1317 1188 -30645221.93135 1318 1188 -7638888.891397 1319 1188 -18931013.9508 1320 1188 -42000541.15558 1321 1188 4593894.893531 1322 1188 -39062848.24116 1323 1188 -12782232.44445 1324 1188 3871519.978604 1325 1188 -2550174.723511 1189 1189 596568183.3813 1190 1189 81646308.40731 1191 1189 -56735590.12188 1192 1189 -175245762.256 1193 1189 -15673702.24174 1206 1189 -30555555.55054 1207 1189 -36016709.92406 1208 1189 -13902558.23995 1209 1189 18375579.56507 1210 1189 51180094.94358 1211 1189 15313665.99873 1212 1189 15486079.90679 1213 1189 -90779768.88629 1214 1189 -9527444.358657 1278 1189 7638888.891398 1279 1189 -30663321.90996 1280 1189 -13871472.89847 1281 1189 3467943.693615 1282 1189 -5987951.293276 1283 1189 553673.964687 1296 1189 2.995133399963e-06 1297 1189 -95040068.27054 1298 1189 -53805336.01132 1299 1189 2250538.971707 1300 1189 43780387.67943 1301 1189 20402730.74043 1302 1189 -14183897.53746 1303 1189 -56594197.06368 1304 1189 34727712.16061 1317 1189 -7638888.891397 1318 1189 -28353405.24253 1319 1189 -13107584.00933 1320 1189 4593894.893531 1321 1189 -17139975.40311 1322 1189 10863138.72183 1323 1189 3871519.978604 1324 1189 -28839593.123 1325 1189 14284805.5813 1190 1190 683100293.2876 1191 1190 -7775098.943489 1192 1190 -16899506.96192 1193 1190 -11605546.9316 1206 1190 -27181694.66288 1207 1190 -13597002.68459 1208 1190 -10829003.14197 1209 1190 10760412.56725 1210 1190 15619221.55424 1211 1190 114614098.8367 1212 1190 3547912.219649 1213 1190 -9527444.358657 1214 1190 -8186598.713413 1278 1190 19567597.17295 1279 1190 -13871472.89847 1280 1190 -60464969.25217 1281 1190 31699133.42531 1282 1190 894158.2412029 1283 1190 -45594941.93873 1296 1190 -636583.2221379 1297 1190 -54110891.56668 1298 1190 -206419618.7154 1299 1190 -2127175.46838 1300 1190 20418832.32509 1301 1190 -110189348.5657 1302 1190 10220712.09006 1303 1190 34700515.9782 1304 1190 -36988737.34261 1317 1190 -18931013.9508 1318 1190 -13107584.00933 1319 1190 -54305191.47237 1320 1190 -37153126.01612 1321 1190 10863138.72329 1322 1190 -51173139.66418 1323 1190 -2550174.723511 1324 1190 14284805.5813 1325 1190 -18432385.38669 1191 1191 451174699.773 1192 1191 12686634.78714 1193 1191 2008579.463539 1209 1191 -40983224.80108 1210 1191 -28381980.02797 1211 1191 -3931083.146571 1212 1191 42151750.35842 1213 1191 27710564.3627 1214 1191 1252478.644547 1215 1191 73565600.69527 1216 1191 -16623616.68045 1217 1191 -19413.59080505 1218 1191 6725960.251957 1219 1191 24392504.83829 1220 1191 778974.1791444 1281 1191 -26928306.79151 1282 1191 9237870.715094 1283 1191 5198285.296003 1299 1191 -38329908.16593 1300 1191 -14183897.53746 1301 1191 -14013967.79219 1302 1191 -26091846.39063 1303 1191 3329117.509553 1304 1191 9108174.376875 1320 1191 -20891328.62495 1321 1191 -7095495.010489 1322 1191 -13022180.51333 1323 1191 -50466960.84116 1324 1191 7039307.107296 1325 1191 -45843812.67481 1326 1191 -28142572.64797 1327 1191 -4313362.983367 1328 1191 13754255.97847 1329 1191 -17754872.39901 1330 1191 5986460.19937 1331 1191 -10422976.89274 1192 1192 650089192.2842 1193 1192 37908240.51927 1209 1192 -28381980.02797 1210 1192 -15397556.75659 1211 1192 110188.2710273 1212 1192 27710564.3627 1213 1192 149985457.4504 1214 1192 5622912.023309 1215 1192 -4401394.460237 1216 1192 14632289.89103 1217 1192 -627668.483343 1218 1192 24392504.83829 1219 1192 -10983160.87137 1220 1192 -764021.4159333 1281 1192 6158580.476729 1282 1192 -60247816.94801 1283 1192 -22683651.68266 1299 1192 -14160162.85565 1300 1192 -68933256.97095 1301 1192 -42828570.94811 1302 1192 3329117.509553 1303 1192 24036725.11853 1304 1192 9835814.33498 1320 1192 -7095495.010489 1321 1192 -14494911.61067 1322 1192 -9604397.379856 1323 1192 7039307.107296 1324 1192 -23617557.97339 1325 1192 8445393.906125 1326 1192 -1257807.426807 1327 1192 -42838204.03708 1328 1192 33174507.3862 1329 1192 5986460.19937 1330 1192 -22510773.43959 1331 1192 16470717.63872 1193 1193 701486591.9163 1209 1193 -3549138.702378 1210 1193 415743.8263821 1211 1193 10879567.07286 1212 1193 2398311.977692 1213 1193 5928467.578815 1214 1193 231150405.9677 1215 1193 -19413.59080088 1216 1193 -627668.4833433 1217 1193 157368763.5337 1218 1193 778974.1787681 1219 1193 -764021.4159333 1220 1193 56915295.69757 1281 1193 3465523.530669 1282 1193 -24063482.84713 1283 1193 -38489307.95421 1299 1193 -13999817.14035 1300 1193 -42845108.80891 1301 1193 -69892897.09532 1302 1193 -9051270.064587 1303 1193 7637089.986494 1304 1193 -193866763.3494 1320 1193 -13022180.51333 1321 1193 -9604397.379856 1322 1193 -25668168.01612 1323 1193 -45461868.23006 1324 1193 8445393.907579 1325 1193 -105803535.3494 1326 1193 5629255.977809 1327 1193 33174507.3862 1328 1193 -84266685.12418 1329 1193 -10422976.89274 1330 1193 16470717.63872 1331 1193 -38294765.40783 1194 1194 334663994.9653 1195 1194 -1.788139343262e-07 1196 1194 -5092665.772147 1197 1194 28571305.22165 1198 1194 6111111.110108 1199 1194 3501139.111579 1284 1194 -59010186.71026 1285 1194 1.542270183563e-06 1286 1194 49433583.10251 1287 1194 -10337951.09135 1288 1194 -7638888.891398 1289 1194 5244680.501577 1305 1194 10158551.82493 1306 1194 -1.639127731323e-06 1307 1194 -9988583.109361 1308 1194 10509454.14025 1309 1194 1527777.778278 1310 1194 -1303569.389173 1195 1195 297994927.9803 1196 1195 61110232.92908 1197 1195 -6111111.110106 1198 1195 -29484147.88041 1199 1195 -30249560.90903 1284 1195 1.035630702972e-06 1285 1195 -25398826.77179 1286 1195 7638779.123661 1287 1195 -7638888.891398 1288 1195 -8046134.402525 1289 1195 6232693.774803 1305 1195 -1.132488250732e-06 1306 1195 991285.0741574 1307 1195 15277558.23979 1308 1195 -1527777.77828 1309 1195 -4004409.142409 1310 1195 11701498.65478 1196 1196 453790914.8265 1197 1196 -7957194.219873 1198 1196 -30860672.02004 1199 1196 15416732.28475 1284 1196 49815527.5467 1285 1196 7638779.12366 1286 1196 -72142989.75742 1287 1196 5244680.501577 1288 1196 6232693.774804 1289 1196 -152469.232357 1305 1196 9351972.443016 1306 1196 15277558.23979 1307 1196 -82572129.79111 1308 1196 666986.1670292 1309 1196 11701498.65463 1310 1196 12831857.28995 1197 1197 334663994.9653 1198 1197 -1.788139343262e-07 1199 1197 -5092665.772147 1200 1197 28571305.22165 1201 1197 6111111.110108 1202 1197 3501139.111579 1284 1197 -32955138.59878 1285 1197 7638888.891398 1286 1197 19567597.17295 1287 1197 -59010186.71026 1288 1197 1.542270183563e-06 1289 1197 49433583.10251 1290 1197 -10337951.09135 1291 1197 -7638888.891398 1292 1197 5244680.501577 1305 1197 -33006170.85261 1306 1197 -1527777.778278 1307 1197 -4168152.723444 1308 1197 10158551.82493 1309 1197 -1.639127731323e-06 1310 1197 -9988583.109361 1311 1197 10509454.14025 1312 1197 1527777.778278 1313 1197 -1303569.389173 1198 1198 297994927.9803 1199 1198 61110232.92908 1200 1198 -6111111.110106 1201 1198 -29484147.88041 1202 1198 -30249560.90903 1284 1198 7638888.891398 1285 1198 -30663321.90996 1286 1198 -13871472.89847 1287 1198 1.035630702972e-06 1288 1198 -25398826.77179 1289 1198 7638779.123661 1290 1198 -7638888.891398 1291 1198 -8046134.402525 1292 1198 6232693.774803 1305 1198 1527777.778281 1306 1198 -47520034.13527 1307 1198 -26979056.89458 1308 1198 -1.132488250732e-06 1309 1198 991285.0741574 1310 1198 15277558.23979 1311 1198 -1527777.77828 1312 1198 -4004409.142409 1313 1198 11701498.65478 1199 1199 453790914.8265 1200 1199 -7957194.219873 1201 1199 -30860672.02004 1202 1199 15416732.28475 1284 1199 19567597.17295 1285 1199 -13871472.89847 1286 1199 -60464969.25217 1287 1199 49815527.5467 1288 1199 7638779.12366 1289 1199 -72142989.75742 1290 1199 5244680.501577 1291 1199 6232693.774804 1292 1199 -152469.232357 1305 1199 3531569.501306 1306 1199 -26979056.89443 1307 1199 -103209809.3577 1308 1199 9351972.443016 1309 1199 15277558.23979 1310 1199 -82572129.79111 1311 1199 666986.1670292 1312 1199 11701498.65463 1313 1199 12831857.28995 1200 1200 334663994.9653 1201 1200 -1.788139343262e-07 1202 1200 -5092665.772147 1203 1200 28571305.22165 1204 1200 6111111.110108 1205 1200 3501139.111579 1287 1200 -32955138.59878 1288 1200 7638888.891398 1289 1200 19567597.17295 1290 1200 -59010186.71026 1291 1200 1.542270183563e-06 1292 1200 49433583.10251 1293 1200 -10337951.09135 1294 1200 -7638888.891398 1295 1200 5244680.501577 1308 1200 -33006170.85261 1309 1200 -1527777.778278 1310 1200 -4168152.723444 1311 1200 10158551.82493 1312 1200 -1.639127731323e-06 1313 1200 -9988583.109361 1314 1200 10509454.14025 1315 1200 1527777.778278 1316 1200 -1303569.389173 1201 1201 297994927.9803 1202 1201 61110232.92908 1203 1201 -6111111.110106 1204 1201 -29484147.88041 1205 1201 -30249560.90903 1287 1201 7638888.891398 1288 1201 -30663321.90996 1289 1201 -13871472.89847 1290 1201 1.035630702972e-06 1291 1201 -25398826.77179 1292 1201 7638779.123661 1293 1201 -7638888.891398 1294 1201 -8046134.402525 1295 1201 6232693.774803 1308 1201 1527777.778281 1309 1201 -47520034.13527 1310 1201 -26979056.89458 1311 1201 -1.132488250732e-06 1312 1201 991285.0741574 1313 1201 15277558.23979 1314 1201 -1527777.77828 1315 1201 -4004409.142409 1316 1201 11701498.65478 1202 1202 453790914.8265 1203 1202 -7957194.219873 1204 1202 -30860672.02004 1205 1202 15416732.28475 1287 1202 19567597.17295 1288 1202 -13871472.89847 1289 1202 -60464969.25217 1290 1202 49815527.5467 1291 1202 7638779.12366 1292 1202 -72142989.75742 1293 1202 5244680.501577 1294 1202 6232693.774804 1295 1202 -152469.232357 1308 1202 3531569.501306 1309 1202 -26979056.89443 1310 1202 -103209809.3577 1311 1202 9351972.443016 1312 1202 15277558.23979 1313 1202 -82572129.79111 1314 1202 666986.1670292 1315 1202 11701498.65463 1316 1202 12831857.28995 1203 1203 334663994.9653 1204 1203 -1.788139343262e-07 1205 1203 -5092665.772147 1206 1203 28571305.22165 1207 1203 6111111.110108 1208 1203 3501139.111579 1290 1203 -32955138.59878 1291 1203 7638888.891398 1292 1203 19567597.17295 1293 1203 -59010186.71026 1294 1203 1.542270183563e-06 1295 1203 49433583.10251 1296 1203 -10337951.09135 1297 1203 -7638888.891398 1298 1203 5244680.501577 1311 1203 -33006170.85261 1312 1203 -1527777.778278 1313 1203 -4168152.723444 1314 1203 10158551.82493 1315 1203 -1.639127731323e-06 1316 1203 -9988583.109361 1317 1203 10509454.14025 1318 1203 1527777.778278 1319 1203 -1303569.389173 1204 1204 297994927.9803 1205 1204 61110232.92908 1206 1204 -6111111.110106 1207 1204 -29484147.88041 1208 1204 -30249560.90903 1290 1204 7638888.891398 1291 1204 -30663321.90996 1292 1204 -13871472.89847 1293 1204 1.035630702972e-06 1294 1204 -25398826.77179 1295 1204 7638779.123661 1296 1204 -7638888.891398 1297 1204 -8046134.402525 1298 1204 6232693.774803 1311 1204 1527777.778281 1312 1204 -47520034.13527 1313 1204 -26979056.89458 1314 1204 -1.132488250732e-06 1315 1204 991285.0741574 1316 1204 15277558.23979 1317 1204 -1527777.77828 1318 1204 -4004409.142409 1319 1204 11701498.65478 1205 1205 453790914.8265 1206 1205 -7957194.219873 1207 1205 -30860672.02004 1208 1205 15416732.28475 1290 1205 19567597.17295 1291 1205 -13871472.89847 1292 1205 -60464969.25217 1293 1205 49815527.5467 1294 1205 7638779.12366 1295 1205 -72142989.75742 1296 1205 5244680.501577 1297 1205 6232693.774804 1298 1205 -152469.232357 1311 1205 3531569.501306 1312 1205 -26979056.89443 1313 1205 -103209809.3577 1314 1205 9351972.443016 1315 1205 15277558.23979 1316 1205 -82572129.79111 1317 1205 666986.1670292 1318 1205 11701498.65463 1319 1205 12831857.28995 1206 1206 334663994.9653 1207 1206 -1.788139343262e-07 1208 1206 -5092665.772147 1209 1206 28571305.22165 1210 1206 6111111.110108 1211 1206 3501139.111579 1293 1206 -32955138.59878 1294 1206 7638888.891398 1295 1206 19567597.17295 1296 1206 -59010186.71026 1297 1206 1.542270183563e-06 1298 1206 49433583.10251 1299 1206 -10337951.09135 1300 1206 -7638888.891398 1301 1206 5244680.501577 1314 1206 -33006170.85261 1315 1206 -1527777.778278 1316 1206 -4168152.723444 1317 1206 10158551.82493 1318 1206 -1.639127731323e-06 1319 1206 -9988583.109361 1320 1206 10509454.14025 1321 1206 1527777.778278 1322 1206 -1303569.389173 1207 1207 297994927.9803 1208 1207 61110232.92908 1209 1207 -6111111.110106 1210 1207 -29484147.88041 1211 1207 -30249560.90903 1293 1207 7638888.891398 1294 1207 -30663321.90996 1295 1207 -13871472.89847 1296 1207 1.035630702972e-06 1297 1207 -25398826.77179 1298 1207 7638779.123661 1299 1207 -7638888.891398 1300 1207 -8046134.402525 1301 1207 6232693.774803 1314 1207 1527777.778281 1315 1207 -47520034.13527 1316 1207 -26979056.89458 1317 1207 -1.132488250732e-06 1318 1207 991285.0741574 1319 1207 15277558.23979 1320 1207 -1527777.77828 1321 1207 -4004409.142409 1322 1207 11701498.65478 1208 1208 453790914.8265 1209 1208 -7957194.219873 1210 1208 -30860672.02004 1211 1208 15416732.28475 1293 1208 19567597.17295 1294 1208 -13871472.89847 1295 1208 -60464969.25217 1296 1208 49815527.5467 1297 1208 7638779.12366 1298 1208 -72142989.75742 1299 1208 5244680.501577 1300 1208 6232693.774804 1301 1208 -152469.232357 1314 1208 3531569.501306 1315 1208 -26979056.89443 1316 1208 -103209809.3577 1317 1208 9351972.443016 1318 1208 15277558.23979 1319 1208 -82572129.79111 1320 1208 666986.1670292 1321 1208 11701498.65463 1322 1208 12831857.28995 1209 1209 316858494.2791 1210 1209 2174054.560357 1211 1209 -27293244.44437 1212 1209 13697255.5974 1213 1209 -16612098.53789 1214 1209 -3598584.9718 1296 1209 -32955138.59878 1297 1209 7638888.891398 1298 1209 19567597.17295 1299 1209 -49351204.34845 1300 1209 4593894.893533 1301 1209 42055901.74692 1302 1209 -17990259.17954 1303 1209 -7095495.010488 1304 1209 11152125.05017 1317 1209 -33006170.85261 1318 1209 -1527777.778278 1319 1209 -4168152.723444 1320 1209 5365690.855964 1321 1209 543513.6403558 1322 1209 -15538450.00238 1323 1209 -13153927.34598 1324 1209 -4153024.636518 1325 1209 5714867.644173 1210 1210 296614594.907 1211 1210 38457294.61539 1212 1210 -28834320.7581 1213 1210 -42198589.68467 1214 1210 -6673474.180954 1296 1210 7638888.891398 1297 1210 -30663321.90996 1298 1210 -13871472.89847 1299 1210 4593894.893532 1300 1210 -24490638.59597 1301 1210 -3129916.831349 1302 1210 -7095495.010488 1303 1210 -11593842.16527 1304 1210 9735880.404272 1317 1210 1527777.778281 1318 1210 -47520034.13527 1319 1210 -26979056.89458 1320 1210 543513.6403558 1321 1210 304716.0104512 1322 1210 9614323.658581 1323 1210 -7208580.193077 1324 1210 -27127888.67338 1325 1210 24630242.56153 1211 1211 416827404.7037 1212 1211 -5508307.193711 1213 1211 -6979029.73646 1214 1211 52285028.52362 1296 1211 19567597.17295 1297 1211 -13871472.89847 1298 1211 -60464969.25217 1299 1211 40146179.52533 1300 1211 -3129916.830046 1301 1211 -70774908.17847 1302 1211 11152125.05017 1303 1211 9735880.404273 1304 1211 -17931982.82838 1317 1211 3531569.501306 1318 1211 -26979056.89443 1319 1211 -103209809.3577 1320 1211 3801549.994444 1321 1211 9614323.658581 1322 1211 -92723636.11364 1323 1211 9976812.088386 1324 1211 24630242.56008 1325 1211 -31137386.18803 1212 1212 348089344.3927 1213 1212 30384868.90779 1214 1212 -532757.0458715 1215 1212 -47381817.51693 1216 1212 -36718606.26279 1217 1212 -1130748.042973 1218 1212 29348240.34016 1219 1212 -8028586.156387 1220 1212 -302189.6915584 1299 1212 -18882906.05781 1300 1212 3871519.978604 1301 1212 4133158.612019 1302 1212 -52416589.31391 1303 1212 7039307.107297 1304 1212 46863131.75478 1320 1212 -23405666.92726 1321 1212 -7208580.193078 1322 1212 -12349021.24194 1323 1212 -31165922.35193 1324 1212 7885422.472098 1325 1212 -8621462.035699 1326 1212 -31982048.32961 1327 1212 -9291317.583428 1328 1212 20024245.33947 1329 1212 -25975111.33797 1330 1212 -2296351.781493 1331 1212 7483836.459745 1213 1213 403682108.9628 1214 1213 13770445.11113 1215 1213 -36718606.26279 1216 1213 -31273577.53471 1217 1213 -764021.4159336 1218 1213 -20250808.3766 1219 1213 -30061183.33955 1220 1213 -2428417.178885 1299 1213 3871519.978604 1300 1213 -34940266.73636 1301 1213 -19048527.76298 1302 1213 7039307.107298 1303 1213 -25567186.44614 1304 1213 -5547661.647057 1320 1213 -4153024.636519 1321 1213 -37379628.25466 1322 1213 -28043368.541 1323 1213 7885422.472099 1324 1213 -17228485.8815 1325 1213 3460477.176094 1326 1213 -9291317.583428 1327 1213 -27845964.41357 1328 1213 16470717.63872 1329 1213 -5351907.338053 1330 1213 -40866712.58626 1331 1213 32708363.13622 1214 1214 547608641.2762 1215 1214 -1130748.042973 1216 1214 -764021.4159337 1217 1214 36624879.03423 1218 1214 -1066078.580326 1219 1214 -2428417.178885 1220 1214 98796169.1597 1299 1214 4133158.612019 1300 1214 -19048527.76298 1301 1214 -34700848.35564 1302 1214 47245076.19879 1303 1214 -5547661.645754 1304 1214 -111002544.6101 1320 1214 -6941243.464199 1321 1214 -28043368.5423 1322 1214 -58475358.40478 1323 1214 10301871.29453 1324 1214 3460477.176094 1325 1214 -179825744.4227 1326 1214 20024245.33947 1327 1214 16470717.63872 1328 1214 -43629956.38181 1329 1214 11537725.35197 1330 1214 32708363.13622 1331 1214 -62574199.34102 1215 1215 234181065.9089 1216 1215 41068061.12088 1217 1215 655987.6646829 1218 1215 10431514.53318 1219 1215 51939.60213825 1220 1215 494173.9690943 1302 1215 -29392572.6484 1303 1215 -1257807.426808 1304 1215 -5646438.46269 1323 1215 -33232048.33004 1324 1215 -9291317.583429 1325 1215 -20600754.67387 1326 1215 -35105760.6537 1327 1215 10424474.09649 1328 1215 8292734.7597 1329 1215 -37667800.1781 1330 1215 124650.9137491 1331 1215 -30795541.62314 1216 1216 218635210.0587 1217 1216 627668.4833469 1218 1216 12274161.82235 1219 1216 68802441.20539 1220 1216 764021.4159354 1302 1216 -4313362.983367 1303 1216 -44088204.03752 1304 1216 -33492159.26951 1323 1216 -9291317.583429 1324 1216 -29095964.41399 1325 1216 -16862615.70556 1326 1216 10424474.09649 1327 1216 -39029920.93737 1328 1216 6825492.607223 1329 1216 3180206.470309 1330 1216 -23184092.42136 1331 1216 3529282.367847 1217 1217 390198736.3446 1218 1217 494173.9690994 1219 1217 764021.4159352 1220 1217 137931257.4087 1302 1217 -13771438.46354 1303 1217 -33492159.26951 1304 1217 -87600018.45868 1323 1217 -20600754.67387 1324 1217 -16862615.70556 1325 1217 -46963289.71627 1326 1217 -7957265.237631 1327 1217 -6507840.72392 1328 1217 -152668106.4805 1329 1217 -30795541.62496 1330 1217 -3137384.301009 1331 1217 -73830403.50521 1218 1218 175996103.0724 1219 1218 -16415858.28404 1220 1218 1320708.210737 1302 1218 -19004872.39944 1303 1218 5986460.19937 1304 1218 10801328.66978 1323 1218 -29725111.33676 1324 1218 -5351907.338053 1325 1218 -12107830.2037 1326 1218 -37667800.1781 1327 1218 3180206.47031 1328 1218 31053763.92235 1329 1218 -24853125.18453 1330 1218 -3814759.331626 1331 1218 -3896151.277573 1219 1219 194743721.2032 1220 1219 2428417.178889 1302 1219 5986460.19937 1303 1219 -23760773.44002 1304 1219 -16862615.70556 1323 1219 -2296351.781494 1324 1219 -44616712.58506 1325 1219 -33958303.5195 1326 1219 124650.9137499 1327 1219 -23184092.42136 1328 1219 3529282.367847 1329 1219 -3814759.331626 1330 1219 -19689330.6524 1331 1219 7291636.857209 1220 1220 299695459.5944 1302 1220 10801328.66978 1303 1220 -16862615.70556 1304 1220 -41628098.7423 1323 1220 -7671996.867094 1324 1220 -33958303.5195 1325 1220 -72574199.3378 1326 1220 31053763.92035 1327 1220 -3137384.301009 1328 1220 -73830403.50521 1329 1220 4593570.943256 1330 1220 -6041696.473933 1331 1220 -108636389.3449 1221 1221 392409175.4658 1222 1221 33611111.10558 1223 1221 -18921677.97532 1224 1221 -173081388.0675 1225 1221 -33624506.06547 1226 1221 14444361.39273 1227 1221 1431297.732108 1228 1221 26902283.84436 1229 1221 9655347.358825 1332 1221 35932670.30059 1333 1221 9166666.669679 1334 1221 9311563.653784 1335 1221 -72925641.46158 1336 1221 -9166747.055676 1337 1221 -43478968.03166 1338 1221 -7497354.851903 1339 1221 7333413.72174 1340 1221 -9080099.689708 1222 1222 341973871.613 1223 1222 30282406.91647 1224 1222 -33631203.54542 1225 1222 -15065409.46899 1226 1222 19484896.97789 1227 1222 40353425.76654 1228 1222 1431297.732101 1229 1222 -13443330.95707 1332 1222 9166666.669678 1333 1222 22181563.40434 1334 1222 5180609.664774 1335 1222 -9166787.248676 1336 1222 -29841516.44517 1337 1222 -9524419.110191 1338 1222 11000120.58261 1339 1222 -7497354.8519 1340 1222 10895952.52268 1223 1223 443104893.4996 1224 1223 12205703.10143 1225 1223 15281564.4366 1226 1223 34188531.48329 1227 1223 14483021.03824 1228 1223 -8962220.638046 1229 1223 3816793.952288 1332 1223 -7806863.548506 1333 1223 -8513909.758068 1334 1223 -68673244.4318 1335 1223 -43444243.01831 1336 1223 -9329934.937092 1337 1223 -59307696.78438 1338 1223 -13620149.53456 1339 1223 7263968.348454 1340 1223 -19992946.27174 1224 1224 662031295.7794 1225 1224 33644598.50531 1226 1224 -15598790.43683 1227 1224 6223512.930091 1228 1224 -33624506.06548 1229 1224 -13793087.22804 1230 1224 -109230745.6082 1231 1224 1.281499862671e-06 1232 1224 3425959.474268 1233 1224 -51177807.60464 1234 1224 33611111.10559 1235 1224 13790517.64469 1332 1224 -71369389.94283 1333 1224 -9166787.24867 1334 1224 42147892.99313 1335 1224 76553135.92261 1336 1224 9166867.634673 1337 1224 781226.2244361 1338 1224 -18699525.19313 1339 1224 -9166747.055676 1340 1224 11379035.3452 1341 1224 -59172122.54065 1342 1224 4.395842552185e-07 1343 1224 -42928937.05631 1344 1224 -19947608.24497 1345 1224 9166666.669675 1346 1224 -11378935.65847 1225 1225 571259805.1183 1226 1225 43075945.84504 1227 1225 -33631203.54543 1228 1225 -111441208.5227 1229 1225 -23958771.83004 1230 1225 9.387731552124e-07 1231 1225 38659326.41933 1232 1225 13888687.59834 1233 1225 33611111.10559 1234 1225 -41093760.8976 1235 1225 -7791566.021395 1332 1225 -9166747.055672 1333 1225 -28285264.92641 1334 1225 7788270.809731 1335 1225 9166867.634673 1336 1225 51801215.86321 1337 1225 -2152764.494718 1338 1225 -9166787.248675 1339 1225 -50782746.60544 1340 1225 35402941.77273 1341 1225 4.619359970093e-07 1342 1225 -18838452.02672 1343 1225 -694433.1761459 1344 1225 9166666.669675 1345 1225 -17197404.95283 1346 1225 8940966.590895 1226 1226 679585775.4118 1227 1226 -13412427.57498 1228 1226 -26066650.19218 1229 1226 3548849.435559 1230 1226 1203737.252411 1231 1226 13888687.59834 1232 1226 83675565.4165 1233 1226 13408573.19995 1234 1226 -7486010.465602 1235 1226 -15846293.82194 1332 1226 42113167.97979 1333 1226 7593861.729456 1334 1226 -55157692.73435 1335 1226 781320.0962051 1336 1226 -2152689.398522 1337 1226 -91946096.11431 1338 1226 11379085.18856 1339 1226 35569610.71641 1340 1226 -53430905.74636 1341 1226 -42894214.83411 1342 1226 -694433.1761459 1343 1226 -55531090.78464 1344 1226 -11378935.65847 1345 1226 8940966.590895 1346 1226 -20295098.63508 1227 1227 392409175.4658 1228 1227 33611111.10558 1229 1227 -18921677.97532 1230 1227 -49447220.48372 1231 1227 -33611111.10559 1232 1227 -12251149.01771 1233 1227 -173081388.0675 1234 1227 -33624506.06547 1235 1227 14444361.39273 1236 1227 1431297.732108 1237 1227 26902283.84436 1238 1227 9655347.358825 1332 1227 -4579449.609996 1333 1227 11000120.58261 1334 1227 12057631.64322 1335 1227 -14225493.76444 1336 1227 -9166787.248675 1337 1227 -10019112.65448 1338 1227 35932670.30059 1339 1227 9166666.669679 1340 1227 9311563.653784 1341 1227 -18482764.4945 1342 1227 -9166666.669676 1343 1227 -10076852.32471 1344 1227 -72925641.46158 1345 1227 -9166747.055676 1346 1227 -43478968.03166 1347 1227 -7497354.851903 1348 1227 7333413.72174 1349 1227 -9080099.689708 1228 1228 341973871.613 1229 1228 30282406.91647 1230 1228 -33611111.10559 1231 1228 -39363173.77667 1232 1228 -6097121.576942 1233 1228 -33631203.54542 1234 1228 -15065409.46899 1235 1228 19484896.97789 1236 1228 40353425.76654 1237 1228 1431297.732101 1238 1228 -13443330.95707 1332 1228 7333413.72174 1333 1228 -4579449.61 1334 1228 -6430626.286135 1335 1228 -9166747.055675 1336 1228 -46308715.17675 1337 1228 -32902986.62891 1338 1228 9166666.669678 1339 1228 22181563.40434 1340 1228 5180609.664774 1341 1228 -9166666.669676 1342 1228 -15732561.20235 1343 1228 -8246533.414749 1344 1228 -9166787.248676 1345 1228 -29841516.44517 1346 1228 -9524419.110191 1347 1228 11000120.58261 1348 1228 -7497354.8519 1349 1228 10895952.52268 1229 1229 443104893.4996 1230 1229 -12633093.46245 1231 1229 -6402677.132734 1232 1229 -11231394.83281 1233 1229 12205703.10143 1234 1229 15281564.4366 1235 1229 34188531.48329 1236 1229 14483021.03824 1237 1229 -8962220.638046 1238 1229 3816793.952288 1332 1229 8038421.095477 1333 1229 -9645939.429201 1334 1229 -12211865.62666 1335 1229 -10019068.77473 1336 1229 -33069655.68813 1337 1229 -41500155.26984 1338 1229 -7806863.548506 1339 1229 -8513909.758068 1340 1229 -68673244.4318 1341 1229 -10076852.32471 1342 1229 -8246533.414749 1343 1229 -16388848.63381 1344 1229 -43444243.01831 1345 1229 -9329934.937092 1346 1229 -59307696.78438 1347 1229 -13620149.53456 1348 1229 7263968.348454 1349 1229 -19992946.27174 1230 1230 645455824.6572 1231 1230 3.814697265625e-06 1232 1230 -4629696.72672 1233 1230 69286959.53708 1234 1230 -2.101063728333e-06 1235 1230 -1157424.182251 1239 1230 -109230745.6082 1240 1230 1.281499862671e-06 1241 1230 3425959.474268 1242 1230 -51177807.60464 1243 1230 33611111.10559 1244 1230 13790517.64469 1335 1230 -58783069.51046 1336 1230 1.639127731323e-06 1337 1230 42697451.81849 1338 1230 -19844426.42677 1339 1230 -9166666.669679 1340 1230 11321064.34898 1341 1230 57430602.85087 1342 1230 3.8743019104e-06 1343 1230 231485.2378496 1344 1230 -6249019.844286 1345 1230 -7.443130016327e-06 1346 1230 57871.30949415 1350 1230 -59172122.54065 1351 1230 4.395842552185e-07 1352 1230 -42928937.05631 1353 1230 -19947608.24497 1354 1230 9166666.669675 1355 1230 -11378935.65847 1231 1231 564783451.0405 1232 1231 55554750.36598 1233 1231 -3.129243850708e-06 1234 1231 -58435019.09619 1235 1231 -28666264.07173 1239 1231 9.387731552124e-07 1240 1231 38659326.41933 1241 1231 13888687.59834 1242 1231 33611111.10559 1243 1231 -41093760.8976 1244 1231 -7791566.021395 1335 1231 6.034970283508e-07 1336 1231 -18449398.9965 1337 1231 -694433.1761458 1338 1231 -9166666.669679 1339 1231 -17094223.13462 1340 1231 8871522.146427 1341 1231 4.231929779053e-06 1342 1231 35428976.52455 1343 1231 -2777732.703215 1344 1231 -7.599592208862e-06 1345 1231 -41082283.77936 1346 1231 35638866.34597 1350 1231 4.619359970093e-07 1351 1231 -18838452.02672 1352 1231 -694433.1761459 1353 1231 9166666.669675 1354 1231 -17197404.95283 1355 1231 8940966.590895 1232 1232 756192654.5709 1233 1232 -1157424.182251 1234 1232 -26888486.29425 1235 1232 51063391.07047 1239 1232 1203737.252411 1240 1232 13888687.59834 1241 1232 83675565.4165 1242 1232 13408573.19995 1243 1232 -7486010.465602 1244 1232 -15846293.82194 1335 1232 42662729.59629 1336 1232 -694433.1761458 1337 1232 -54493616.03735 1338 1232 11321064.34898 1339 1232 8871522.146428 1340 1232 -20019947.11985 1341 1232 231485.2378493 1342 1232 -2777732.703215 1343 1232 -110039912.4136 1344 1232 57871.30949473 1345 1232 35611088.56821 1346 1232 -53128242.27036 1350 1232 -42894214.83411 1351 1232 -694433.1761459 1352 1232 -55531090.78464 1353 1232 -11378935.65847 1354 1232 8940966.590895 1355 1232 -20295098.63508 1233 1233 662031295.7794 1234 1233 33644598.50531 1235 1233 -15598790.43683 1236 1233 6223512.930091 1237 1233 -33624506.06548 1238 1233 -13793087.22804 1239 1233 -49447220.48372 1240 1233 -33611111.10559 1241 1233 -12251149.01771 1242 1233 -109230745.6082 1243 1233 1.281499862671e-06 1244 1233 3425959.474268 1245 1233 -51177807.60464 1246 1233 33611111.10559 1247 1233 13790517.64469 1335 1233 -18391419.7975 1336 1233 9166666.669678 1337 1233 10018981.01522 1338 1233 -71369389.94283 1339 1233 -9166787.24867 1340 1233 42147892.99313 1341 1233 -413319.0876746 1342 1233 3.017485141754e-06 1343 1233 57871.30948708 1344 1233 76553135.92261 1345 1233 9166867.634673 1346 1233 781226.2244361 1347 1233 -18699525.19313 1348 1233 -9166747.055676 1349 1233 11379035.3452 1350 1233 -18482764.4945 1351 1233 -9166666.669676 1352 1233 -10076852.32471 1353 1233 -59172122.54065 1354 1233 4.395842552185e-07 1355 1233 -42928937.05631 1356 1233 -19947608.24497 1357 1233 9166666.669675 1358 1233 -11378935.65847 1234 1234 571259805.1183 1235 1234 43075945.84504 1236 1234 -33631203.54543 1237 1234 -111441208.5227 1238 1234 -23958771.83004 1239 1234 -33611111.10559 1240 1234 -39363173.77667 1241 1234 -6097121.576942 1242 1234 9.387731552124e-07 1243 1234 38659326.41933 1244 1234 13888687.59834 1245 1234 33611111.10559 1246 1234 -41093760.8976 1247 1234 -7791566.021395 1335 1234 9166666.669678 1336 1234 -15641216.50536 1337 1234 -8177088.970282 1338 1234 -9166747.055672 1339 1234 -28285264.92641 1340 1234 7788270.809731 1341 1234 4.06801700592e-06 1342 1234 -35246583.02275 1343 1234 -32861133.64276 1344 1234 9166867.634673 1345 1234 51801215.86321 1346 1234 -2152764.494718 1347 1234 -9166787.248675 1348 1234 -50782746.60544 1349 1234 35402941.77273 1350 1234 -9166666.669676 1351 1234 -15732561.20235 1352 1234 -8246533.414749 1353 1234 4.619359970093e-07 1354 1234 -18838452.02672 1355 1234 -694433.1761459 1356 1234 9166666.669675 1357 1234 -17197404.95283 1358 1234 8940966.590895 1235 1235 679585775.4118 1236 1235 -13412427.57498 1237 1235 -26066650.19218 1238 1235 3548849.435559 1239 1235 -12633093.46245 1240 1235 -6402677.132734 1241 1235 -11231394.83281 1242 1235 1203737.252411 1243 1235 13888687.59834 1244 1235 83675565.4165 1245 1235 13408573.19995 1246 1235 -7486010.465602 1247 1235 -15846293.82194 1335 1235 10018981.01522 1336 1235 -8177088.970282 1337 1235 -16145262.77514 1338 1235 42113167.97979 1339 1235 7593861.729456 1340 1235 -55157692.73435 1341 1235 57871.30948763 1342 1235 -32833355.865 1343 1235 -37566373.58606 1344 1235 781320.0962051 1345 1235 -2152689.398522 1346 1235 -91946096.11431 1347 1235 11379085.18856 1348 1235 35569610.71641 1349 1235 -53430905.74636 1350 1235 -10076852.32471 1351 1235 -8246533.414749 1352 1235 -16388848.63381 1353 1235 -42894214.83411 1354 1235 -694433.1761459 1355 1235 -55531090.78464 1356 1235 -11378935.65847 1357 1235 8940966.590895 1358 1235 -20295098.63508 1236 1236 392409175.4658 1237 1236 33611111.10558 1238 1236 -18921677.97532 1242 1236 -49447220.48372 1243 1236 -33611111.10559 1244 1236 -12251149.01771 1245 1236 -173081388.0675 1246 1236 -33624506.06547 1247 1236 14444361.39273 1248 1236 1431297.732108 1249 1236 26902283.84436 1250 1236 9655347.358825 1338 1236 -4579449.609996 1339 1236 11000120.58261 1340 1236 12057631.64322 1344 1236 -14225493.76444 1345 1236 -9166787.248675 1346 1236 -10019112.65448 1347 1236 35932670.30059 1348 1236 9166666.669679 1349 1236 9311563.653784 1353 1236 -18482764.4945 1354 1236 -9166666.669676 1355 1236 -10076852.32471 1356 1236 -72925641.46158 1357 1236 -9166747.055676 1358 1236 -43478968.03166 1359 1236 -7497354.851903 1360 1236 7333413.72174 1361 1236 -9080099.689708 1237 1237 341973871.613 1238 1237 30282406.91647 1242 1237 -33611111.10559 1243 1237 -39363173.77667 1244 1237 -6097121.576942 1245 1237 -33631203.54542 1246 1237 -15065409.46899 1247 1237 19484896.97789 1248 1237 40353425.76654 1249 1237 1431297.732101 1250 1237 -13443330.95707 1338 1237 7333413.72174 1339 1237 -4579449.61 1340 1237 -6430626.286135 1344 1237 -9166747.055675 1345 1237 -46308715.17675 1346 1237 -32902986.62891 1347 1237 9166666.669678 1348 1237 22181563.40434 1349 1237 5180609.664774 1353 1237 -9166666.669676 1354 1237 -15732561.20235 1355 1237 -8246533.414749 1356 1237 -9166787.248676 1357 1237 -29841516.44517 1358 1237 -9524419.110191 1359 1237 11000120.58261 1360 1237 -7497354.8519 1361 1237 10895952.52268 1238 1238 443104893.4996 1242 1238 -12633093.46245 1243 1238 -6402677.132734 1244 1238 -11231394.83281 1245 1238 12205703.10143 1246 1238 15281564.4366 1247 1238 34188531.48329 1248 1238 14483021.03824 1249 1238 -8962220.638046 1250 1238 3816793.952288 1338 1238 8038421.095477 1339 1238 -9645939.429201 1340 1238 -12211865.62666 1344 1238 -10019068.77473 1345 1238 -33069655.68813 1346 1238 -41500155.26984 1347 1238 -7806863.548506 1348 1238 -8513909.758068 1349 1238 -68673244.4318 1353 1238 -10076852.32471 1354 1238 -8246533.414749 1355 1238 -16388848.63381 1356 1238 -43444243.01831 1357 1238 -9329934.937092 1358 1238 -59307696.78438 1359 1238 -13620149.53456 1360 1238 7263968.348454 1361 1238 -19992946.27174 1239 1239 645455824.6572 1240 1239 3.814697265625e-06 1241 1239 -4629696.72672 1242 1239 69286959.53708 1243 1239 -2.101063728333e-06 1244 1239 -1157424.182251 1251 1239 -109230745.6082 1252 1239 1.281499862671e-06 1253 1239 3425959.474268 1254 1239 -51177807.60464 1255 1239 33611111.10559 1256 1239 13790517.64469 1341 1239 -58783069.51046 1342 1239 1.639127731323e-06 1343 1239 42697451.81849 1344 1239 -19844426.42677 1345 1239 -9166666.669679 1346 1239 11321064.34898 1350 1239 57430602.85087 1351 1239 3.8743019104e-06 1352 1239 231485.2378496 1353 1239 -6249019.844286 1354 1239 -7.443130016327e-06 1355 1239 57871.30949415 1362 1239 -59172122.54065 1363 1239 4.395842552185e-07 1364 1239 -42928937.05631 1365 1239 -19947608.24497 1366 1239 9166666.669675 1367 1239 -11378935.65847 1240 1240 564783451.0405 1241 1240 55554750.36598 1242 1240 -3.129243850708e-06 1243 1240 -58435019.09619 1244 1240 -28666264.07173 1251 1240 9.387731552124e-07 1252 1240 38659326.41933 1253 1240 13888687.59834 1254 1240 33611111.10559 1255 1240 -41093760.8976 1256 1240 -7791566.021395 1341 1240 6.034970283508e-07 1342 1240 -18449398.9965 1343 1240 -694433.1761458 1344 1240 -9166666.669679 1345 1240 -17094223.13462 1346 1240 8871522.146427 1350 1240 4.231929779053e-06 1351 1240 35428976.52455 1352 1240 -2777732.703215 1353 1240 -7.599592208862e-06 1354 1240 -41082283.77936 1355 1240 35638866.34597 1362 1240 4.619359970093e-07 1363 1240 -18838452.02672 1364 1240 -694433.1761459 1365 1240 9166666.669675 1366 1240 -17197404.95283 1367 1240 8940966.590895 1241 1241 756192654.5709 1242 1241 -1157424.182251 1243 1241 -26888486.29425 1244 1241 51063391.07047 1251 1241 1203737.252411 1252 1241 13888687.59834 1253 1241 83675565.4165 1254 1241 13408573.19995 1255 1241 -7486010.465602 1256 1241 -15846293.82194 1341 1241 42662729.59629 1342 1241 -694433.1761458 1343 1241 -54493616.03735 1344 1241 11321064.34898 1345 1241 8871522.146428 1346 1241 -20019947.11985 1350 1241 231485.2378493 1351 1241 -2777732.703215 1352 1241 -110039912.4136 1353 1241 57871.30949473 1354 1241 35611088.56821 1355 1241 -53128242.27036 1362 1241 -42894214.83411 1363 1241 -694433.1761459 1364 1241 -55531090.78464 1365 1241 -11378935.65847 1366 1241 8940966.590895 1367 1241 -20295098.63508 1242 1242 645455824.6572 1243 1242 3.814697265625e-06 1244 1242 -4629696.72672 1245 1242 69286959.53708 1246 1242 -2.101063728333e-06 1247 1242 -1157424.182251 1251 1242 -49447220.48372 1252 1242 -33611111.10559 1253 1242 -12251149.01771 1254 1242 -109230745.6082 1255 1242 1.281499862671e-06 1256 1242 3425959.474268 1257 1242 -51177807.60464 1258 1242 33611111.10559 1259 1242 13790517.64469 1341 1242 -18391419.7975 1342 1242 9166666.669678 1343 1242 10018981.01522 1344 1242 -58783069.51046 1345 1242 1.639127731323e-06 1346 1242 42697451.81849 1347 1242 -19844426.42677 1348 1242 -9166666.669679 1349 1242 11321064.34898 1350 1242 -413319.0876746 1351 1242 3.017485141754e-06 1352 1242 57871.30948708 1353 1242 57430602.85087 1354 1242 3.8743019104e-06 1355 1242 231485.2378496 1356 1242 -6249019.844286 1357 1242 -7.443130016327e-06 1358 1242 57871.30949415 1362 1242 -18482764.4945 1363 1242 -9166666.669676 1364 1242 -10076852.32471 1365 1242 -59172122.54065 1366 1242 4.395842552185e-07 1367 1242 -42928937.05631 1368 1242 -19947608.24497 1369 1242 9166666.669675 1370 1242 -11378935.65847 1243 1243 564783451.0405 1244 1243 55554750.36598 1245 1243 -3.129243850708e-06 1246 1243 -58435019.09619 1247 1243 -28666264.07173 1251 1243 -33611111.10559 1252 1243 -39363173.77667 1253 1243 -6097121.576942 1254 1243 9.387731552124e-07 1255 1243 38659326.41933 1256 1243 13888687.59834 1257 1243 33611111.10559 1258 1243 -41093760.8976 1259 1243 -7791566.021395 1341 1243 9166666.669678 1342 1243 -15641216.50536 1343 1243 -8177088.970282 1344 1243 6.034970283508e-07 1345 1243 -18449398.9965 1346 1243 -694433.1761458 1347 1243 -9166666.669679 1348 1243 -17094223.13462 1349 1243 8871522.146427 1350 1243 4.06801700592e-06 1351 1243 -35246583.02275 1352 1243 -32861133.64276 1353 1243 4.231929779053e-06 1354 1243 35428976.52455 1355 1243 -2777732.703215 1356 1243 -7.599592208862e-06 1357 1243 -41082283.77936 1358 1243 35638866.34597 1362 1243 -9166666.669676 1363 1243 -15732561.20235 1364 1243 -8246533.414749 1365 1243 4.619359970093e-07 1366 1243 -18838452.02672 1367 1243 -694433.1761459 1368 1243 9166666.669675 1369 1243 -17197404.95283 1370 1243 8940966.590895 1244 1244 756192654.5709 1245 1244 -1157424.182251 1246 1244 -26888486.29425 1247 1244 51063391.07047 1251 1244 -12633093.46245 1252 1244 -6402677.132734 1253 1244 -11231394.83281 1254 1244 1203737.252411 1255 1244 13888687.59834 1256 1244 83675565.4165 1257 1244 13408573.19995 1258 1244 -7486010.465602 1259 1244 -15846293.82194 1341 1244 10018981.01522 1342 1244 -8177088.970282 1343 1244 -16145262.77514 1344 1244 42662729.59629 1345 1244 -694433.1761458 1346 1244 -54493616.03735 1347 1244 11321064.34898 1348 1244 8871522.146428 1349 1244 -20019947.11985 1350 1244 57871.30948763 1351 1244 -32833355.865 1352 1244 -37566373.58606 1353 1244 231485.2378493 1354 1244 -2777732.703215 1355 1244 -110039912.4136 1356 1244 57871.30949473 1357 1244 35611088.56821 1358 1244 -53128242.27036 1362 1244 -10076852.32471 1363 1244 -8246533.414749 1364 1244 -16388848.63381 1365 1244 -42894214.83411 1366 1244 -694433.1761459 1367 1244 -55531090.78464 1368 1244 -11378935.65847 1369 1244 8940966.590895 1370 1244 -20295098.63508 1245 1245 662031295.7794 1246 1245 33644598.50531 1247 1245 -15598790.43683 1248 1245 6223512.930091 1249 1245 -33624506.06548 1250 1245 -13793087.22804 1254 1245 -49447220.48372 1255 1245 -33611111.10559 1256 1245 -12251149.01771 1257 1245 -109230745.6082 1258 1245 1.281499862671e-06 1259 1245 3425959.474268 1260 1245 -51177807.60464 1261 1245 33611111.10559 1262 1245 13790517.64469 1344 1245 -18391419.7975 1345 1245 9166666.669678 1346 1245 10018981.01522 1347 1245 -71369389.94283 1348 1245 -9166787.24867 1349 1245 42147892.99313 1353 1245 -413319.0876746 1354 1245 3.017485141754e-06 1355 1245 57871.30948708 1356 1245 76553135.92261 1357 1245 9166867.634673 1358 1245 781226.2244361 1359 1245 -18699525.19313 1360 1245 -9166747.055676 1361 1245 11379035.3452 1365 1245 -18482764.4945 1366 1245 -9166666.669676 1367 1245 -10076852.32471 1368 1245 -59172122.54065 1369 1245 4.395842552185e-07 1370 1245 -42928937.05631 1371 1245 -19947608.24497 1372 1245 9166666.669675 1373 1245 -11378935.65847 1246 1246 571259805.1183 1247 1246 43075945.84504 1248 1246 -33631203.54543 1249 1246 -111441208.5227 1250 1246 -23958771.83004 1254 1246 -33611111.10559 1255 1246 -39363173.77667 1256 1246 -6097121.576942 1257 1246 9.387731552124e-07 1258 1246 38659326.41933 1259 1246 13888687.59834 1260 1246 33611111.10559 1261 1246 -41093760.8976 1262 1246 -7791566.021395 1344 1246 9166666.669678 1345 1246 -15641216.50536 1346 1246 -8177088.970282 1347 1246 -9166747.055672 1348 1246 -28285264.92641 1349 1246 7788270.809731 1353 1246 4.06801700592e-06 1354 1246 -35246583.02275 1355 1246 -32861133.64276 1356 1246 9166867.634673 1357 1246 51801215.86321 1358 1246 -2152764.494718 1359 1246 -9166787.248675 1360 1246 -50782746.60544 1361 1246 35402941.77273 1365 1246 -9166666.669676 1366 1246 -15732561.20235 1367 1246 -8246533.414749 1368 1246 4.619359970093e-07 1369 1246 -18838452.02672 1370 1246 -694433.1761459 1371 1246 9166666.669675 1372 1246 -17197404.95283 1373 1246 8940966.590895 1247 1247 679585775.4118 1248 1247 -13412427.57498 1249 1247 -26066650.19218 1250 1247 3548849.435559 1254 1247 -12633093.46245 1255 1247 -6402677.132734 1256 1247 -11231394.83281 1257 1247 1203737.252411 1258 1247 13888687.59834 1259 1247 83675565.4165 1260 1247 13408573.19995 1261 1247 -7486010.465602 1262 1247 -15846293.82194 1344 1247 10018981.01522 1345 1247 -8177088.970282 1346 1247 -16145262.77514 1347 1247 42113167.97979 1348 1247 7593861.729456 1349 1247 -55157692.73435 1353 1247 57871.30948763 1354 1247 -32833355.865 1355 1247 -37566373.58606 1356 1247 781320.0962051 1357 1247 -2152689.398522 1358 1247 -91946096.11431 1359 1247 11379085.18856 1360 1247 35569610.71641 1361 1247 -53430905.74636 1365 1247 -10076852.32471 1366 1247 -8246533.414749 1367 1247 -16388848.63381 1368 1247 -42894214.83411 1369 1247 -694433.1761459 1370 1247 -55531090.78464 1371 1247 -11378935.65847 1372 1247 8940966.590895 1373 1247 -20295098.63508 1248 1248 392409175.4658 1249 1248 33611111.10558 1250 1248 -18921677.97532 1257 1248 -49447220.48372 1258 1248 -33611111.10559 1259 1248 -12251149.01771 1260 1248 -173081388.0675 1261 1248 -33624506.06547 1262 1248 14444361.39273 1263 1248 1431297.732108 1264 1248 26902283.84436 1265 1248 9655347.358825 1347 1248 -4579449.609996 1348 1248 11000120.58261 1349 1248 12057631.64322 1356 1248 -14225493.76444 1357 1248 -9166787.248675 1358 1248 -10019112.65448 1359 1248 35932670.30059 1360 1248 9166666.669679 1361 1248 9311563.653784 1368 1248 -18482764.4945 1369 1248 -9166666.669676 1370 1248 -10076852.32471 1371 1248 -72925641.46158 1372 1248 -9166747.055676 1373 1248 -43478968.03166 1374 1248 -7497354.851903 1375 1248 7333413.72174 1376 1248 -9080099.689708 1249 1249 341973871.613 1250 1249 30282406.91647 1257 1249 -33611111.10559 1258 1249 -39363173.77667 1259 1249 -6097121.576942 1260 1249 -33631203.54542 1261 1249 -15065409.46899 1262 1249 19484896.97789 1263 1249 40353425.76654 1264 1249 1431297.732101 1265 1249 -13443330.95707 1347 1249 7333413.72174 1348 1249 -4579449.61 1349 1249 -6430626.286135 1356 1249 -9166747.055675 1357 1249 -46308715.17675 1358 1249 -32902986.62891 1359 1249 9166666.669678 1360 1249 22181563.40434 1361 1249 5180609.664774 1368 1249 -9166666.669676 1369 1249 -15732561.20235 1370 1249 -8246533.414749 1371 1249 -9166787.248676 1372 1249 -29841516.44517 1373 1249 -9524419.110191 1374 1249 11000120.58261 1375 1249 -7497354.8519 1376 1249 10895952.52268 1250 1250 443104893.4996 1257 1250 -12633093.46245 1258 1250 -6402677.132734 1259 1250 -11231394.83281 1260 1250 12205703.10143 1261 1250 15281564.4366 1262 1250 34188531.48329 1263 1250 14483021.03824 1264 1250 -8962220.638046 1265 1250 3816793.952288 1347 1250 8038421.095477 1348 1250 -9645939.429201 1349 1250 -12211865.62666 1356 1250 -10019068.77473 1357 1250 -33069655.68813 1358 1250 -41500155.26984 1359 1250 -7806863.548506 1360 1250 -8513909.758068 1361 1250 -68673244.4318 1368 1250 -10076852.32471 1369 1250 -8246533.414749 1370 1250 -16388848.63381 1371 1250 -43444243.01831 1372 1250 -9329934.937092 1373 1250 -59307696.78438 1374 1250 -13620149.53456 1375 1250 7263968.348454 1376 1250 -19992946.27174 1251 1251 645455824.6572 1252 1251 3.814697265625e-06 1253 1251 -4629696.72672 1254 1251 69286959.53708 1255 1251 -2.101063728333e-06 1256 1251 -1157424.182251 1266 1251 -109230745.6082 1267 1251 1.281499862671e-06 1268 1251 3425959.474268 1269 1251 -51177807.60464 1270 1251 33611111.10559 1271 1251 13790517.64469 1350 1251 -58783069.51046 1351 1251 1.639127731323e-06 1352 1251 42697451.81849 1353 1251 -19844426.42677 1354 1251 -9166666.669679 1355 1251 11321064.34898 1362 1251 57430602.85087 1363 1251 3.8743019104e-06 1364 1251 231485.2378496 1365 1251 -6249019.844286 1366 1251 -7.443130016327e-06 1367 1251 57871.30949415 1377 1251 -59172122.54065 1378 1251 4.395842552185e-07 1379 1251 -42928937.05631 1380 1251 -19947608.24497 1381 1251 9166666.669675 1382 1251 -11378935.65847 1252 1252 564783451.0405 1253 1252 55554750.36598 1254 1252 -3.129243850708e-06 1255 1252 -58435019.09619 1256 1252 -28666264.07173 1266 1252 9.387731552124e-07 1267 1252 38659326.41933 1268 1252 13888687.59834 1269 1252 33611111.10559 1270 1252 -41093760.8976 1271 1252 -7791566.021395 1350 1252 6.034970283508e-07 1351 1252 -18449398.9965 1352 1252 -694433.1761458 1353 1252 -9166666.669679 1354 1252 -17094223.13462 1355 1252 8871522.146427 1362 1252 4.231929779053e-06 1363 1252 35428976.52455 1364 1252 -2777732.703215 1365 1252 -7.599592208862e-06 1366 1252 -41082283.77936 1367 1252 35638866.34597 1377 1252 4.619359970093e-07 1378 1252 -18838452.02672 1379 1252 -694433.1761459 1380 1252 9166666.669675 1381 1252 -17197404.95283 1382 1252 8940966.590895 1253 1253 756192654.5709 1254 1253 -1157424.182251 1255 1253 -26888486.29425 1256 1253 51063391.07047 1266 1253 1203737.252411 1267 1253 13888687.59834 1268 1253 83675565.4165 1269 1253 13408573.19995 1270 1253 -7486010.465602 1271 1253 -15846293.82194 1350 1253 42662729.59629 1351 1253 -694433.1761458 1352 1253 -54493616.03735 1353 1253 11321064.34898 1354 1253 8871522.146428 1355 1253 -20019947.11985 1362 1253 231485.2378493 1363 1253 -2777732.703215 1364 1253 -110039912.4136 1365 1253 57871.30949473 1366 1253 35611088.56821 1367 1253 -53128242.27036 1377 1253 -42894214.83411 1378 1253 -694433.1761459 1379 1253 -55531090.78464 1380 1253 -11378935.65847 1381 1253 8940966.590895 1382 1253 -20295098.63508 1254 1254 645455824.6572 1255 1254 3.814697265625e-06 1256 1254 -4629696.72672 1257 1254 69286959.53708 1258 1254 -2.101063728333e-06 1259 1254 -1157424.182251 1266 1254 -49447220.48372 1267 1254 -33611111.10559 1268 1254 -12251149.01771 1269 1254 -109230745.6082 1270 1254 1.281499862671e-06 1271 1254 3425959.474268 1272 1254 -51177807.60464 1273 1254 33611111.10559 1274 1254 13790517.64469 1350 1254 -18391419.7975 1351 1254 9166666.669678 1352 1254 10018981.01522 1353 1254 -58783069.51046 1354 1254 1.639127731323e-06 1355 1254 42697451.81849 1356 1254 -19844426.42677 1357 1254 -9166666.669679 1358 1254 11321064.34898 1362 1254 -413319.0876746 1363 1254 3.017485141754e-06 1364 1254 57871.30948708 1365 1254 57430602.85087 1366 1254 3.8743019104e-06 1367 1254 231485.2378496 1368 1254 -6249019.844286 1369 1254 -7.443130016327e-06 1370 1254 57871.30949415 1377 1254 -18482764.4945 1378 1254 -9166666.669676 1379 1254 -10076852.32471 1380 1254 -59172122.54065 1381 1254 4.395842552185e-07 1382 1254 -42928937.05631 1383 1254 -19947608.24497 1384 1254 9166666.669675 1385 1254 -11378935.65847 1255 1255 564783451.0405 1256 1255 55554750.36598 1257 1255 -3.129243850708e-06 1258 1255 -58435019.09619 1259 1255 -28666264.07173 1266 1255 -33611111.10559 1267 1255 -39363173.77667 1268 1255 -6097121.576942 1269 1255 9.387731552124e-07 1270 1255 38659326.41933 1271 1255 13888687.59834 1272 1255 33611111.10559 1273 1255 -41093760.8976 1274 1255 -7791566.021395 1350 1255 9166666.669678 1351 1255 -15641216.50536 1352 1255 -8177088.970282 1353 1255 6.034970283508e-07 1354 1255 -18449398.9965 1355 1255 -694433.1761458 1356 1255 -9166666.669679 1357 1255 -17094223.13462 1358 1255 8871522.146427 1362 1255 4.06801700592e-06 1363 1255 -35246583.02275 1364 1255 -32861133.64276 1365 1255 4.231929779053e-06 1366 1255 35428976.52455 1367 1255 -2777732.703215 1368 1255 -7.599592208862e-06 1369 1255 -41082283.77936 1370 1255 35638866.34597 1377 1255 -9166666.669676 1378 1255 -15732561.20235 1379 1255 -8246533.414749 1380 1255 4.619359970093e-07 1381 1255 -18838452.02672 1382 1255 -694433.1761459 1383 1255 9166666.669675 1384 1255 -17197404.95283 1385 1255 8940966.590895 1256 1256 756192654.5709 1257 1256 -1157424.182251 1258 1256 -26888486.29425 1259 1256 51063391.07047 1266 1256 -12633093.46245 1267 1256 -6402677.132734 1268 1256 -11231394.83281 1269 1256 1203737.252411 1270 1256 13888687.59834 1271 1256 83675565.4165 1272 1256 13408573.19995 1273 1256 -7486010.465602 1274 1256 -15846293.82194 1350 1256 10018981.01522 1351 1256 -8177088.970282 1352 1256 -16145262.77514 1353 1256 42662729.59629 1354 1256 -694433.1761458 1355 1256 -54493616.03735 1356 1256 11321064.34898 1357 1256 8871522.146428 1358 1256 -20019947.11985 1362 1256 57871.30948763 1363 1256 -32833355.865 1364 1256 -37566373.58606 1365 1256 231485.2378493 1366 1256 -2777732.703215 1367 1256 -110039912.4136 1368 1256 57871.30949473 1369 1256 35611088.56821 1370 1256 -53128242.27036 1377 1256 -10076852.32471 1378 1256 -8246533.414749 1379 1256 -16388848.63381 1380 1256 -42894214.83411 1381 1256 -694433.1761459 1382 1256 -55531090.78464 1383 1256 -11378935.65847 1384 1256 8940966.590895 1385 1256 -20295098.63508 1257 1257 645455824.6572 1258 1257 3.814697265625e-06 1259 1257 -4629696.72672 1260 1257 69286959.53708 1261 1257 -2.101063728333e-06 1262 1257 -1157424.182251 1269 1257 -49447220.48372 1270 1257 -33611111.10559 1271 1257 -12251149.01771 1272 1257 -109230745.6082 1273 1257 1.281499862671e-06 1274 1257 3425959.474268 1275 1257 -51177807.60464 1276 1257 33611111.10559 1277 1257 13790517.64469 1353 1257 -18391419.7975 1354 1257 9166666.669678 1355 1257 10018981.01522 1356 1257 -58783069.51046 1357 1257 1.639127731323e-06 1358 1257 42697451.81849 1359 1257 -19844426.42677 1360 1257 -9166666.669679 1361 1257 11321064.34898 1365 1257 -413319.0876746 1366 1257 3.017485141754e-06 1367 1257 57871.30948708 1368 1257 57430602.85087 1369 1257 3.8743019104e-06 1370 1257 231485.2378496 1371 1257 -6249019.844286 1372 1257 -7.443130016327e-06 1373 1257 57871.30949415 1380 1257 -18482764.4945 1381 1257 -9166666.669676 1382 1257 -10076852.32471 1383 1257 -59172122.54065 1384 1257 4.395842552185e-07 1385 1257 -42928937.05631 1386 1257 -19947608.24497 1387 1257 9166666.669675 1388 1257 -11378935.65847 1258 1258 564783451.0405 1259 1258 55554750.36598 1260 1258 -3.129243850708e-06 1261 1258 -58435019.09619 1262 1258 -28666264.07173 1269 1258 -33611111.10559 1270 1258 -39363173.77667 1271 1258 -6097121.576942 1272 1258 9.387731552124e-07 1273 1258 38659326.41933 1274 1258 13888687.59834 1275 1258 33611111.10559 1276 1258 -41093760.8976 1277 1258 -7791566.021395 1353 1258 9166666.669678 1354 1258 -15641216.50536 1355 1258 -8177088.970282 1356 1258 6.034970283508e-07 1357 1258 -18449398.9965 1358 1258 -694433.1761458 1359 1258 -9166666.669679 1360 1258 -17094223.13462 1361 1258 8871522.146427 1365 1258 4.06801700592e-06 1366 1258 -35246583.02275 1367 1258 -32861133.64276 1368 1258 4.231929779053e-06 1369 1258 35428976.52455 1370 1258 -2777732.703215 1371 1258 -7.599592208862e-06 1372 1258 -41082283.77936 1373 1258 35638866.34597 1380 1258 -9166666.669676 1381 1258 -15732561.20235 1382 1258 -8246533.414749 1383 1258 4.619359970093e-07 1384 1258 -18838452.02672 1385 1258 -694433.1761459 1386 1258 9166666.669675 1387 1258 -17197404.95283 1388 1258 8940966.590895 1259 1259 756192654.5709 1260 1259 -1157424.182251 1261 1259 -26888486.29425 1262 1259 51063391.07047 1269 1259 -12633093.46245 1270 1259 -6402677.132734 1271 1259 -11231394.83281 1272 1259 1203737.252411 1273 1259 13888687.59834 1274 1259 83675565.4165 1275 1259 13408573.19995 1276 1259 -7486010.465602 1277 1259 -15846293.82194 1353 1259 10018981.01522 1354 1259 -8177088.970282 1355 1259 -16145262.77514 1356 1259 42662729.59629 1357 1259 -694433.1761458 1358 1259 -54493616.03735 1359 1259 11321064.34898 1360 1259 8871522.146428 1361 1259 -20019947.11985 1365 1259 57871.30948763 1366 1259 -32833355.865 1367 1259 -37566373.58606 1368 1259 231485.2378493 1369 1259 -2777732.703215 1370 1259 -110039912.4136 1371 1259 57871.30949473 1372 1259 35611088.56821 1373 1259 -53128242.27036 1380 1259 -10076852.32471 1381 1259 -8246533.414749 1382 1259 -16388848.63381 1383 1259 -42894214.83411 1384 1259 -694433.1761459 1385 1259 -55531090.78464 1386 1259 -11378935.65847 1387 1259 8940966.590895 1388 1259 -20295098.63508 1260 1260 662031295.7794 1261 1260 33644598.50531 1262 1260 -15598790.43683 1263 1260 6223512.930091 1264 1260 -33624506.06548 1265 1260 -13793087.22804 1272 1260 -49447220.48372 1273 1260 -33611111.10559 1274 1260 -12251149.01771 1275 1260 -109230745.6082 1276 1260 1.281499862671e-06 1277 1260 3425959.474268 1278 1260 -51177807.60464 1279 1260 33611111.10559 1280 1260 13790517.64469 1356 1260 -18391419.7975 1357 1260 9166666.669678 1358 1260 10018981.01522 1359 1260 -71369389.94283 1360 1260 -9166787.24867 1361 1260 42147892.99313 1368 1260 -413319.0876746 1369 1260 3.017485141754e-06 1370 1260 57871.30948708 1371 1260 76553135.92261 1372 1260 9166867.634673 1373 1260 781226.2244361 1374 1260 -18699525.19313 1375 1260 -9166747.055676 1376 1260 11379035.3452 1383 1260 -18482764.4945 1384 1260 -9166666.669676 1385 1260 -10076852.32471 1386 1260 -59172122.54065 1387 1260 4.395842552185e-07 1388 1260 -42928937.05631 1389 1260 -19947608.24497 1390 1260 9166666.669675 1391 1260 -11378935.65847 1261 1261 571259805.1183 1262 1261 43075945.84504 1263 1261 -33631203.54543 1264 1261 -111441208.5227 1265 1261 -23958771.83004 1272 1261 -33611111.10559 1273 1261 -39363173.77667 1274 1261 -6097121.576942 1275 1261 9.387731552124e-07 1276 1261 38659326.41933 1277 1261 13888687.59834 1278 1261 33611111.10559 1279 1261 -41093760.8976 1280 1261 -7791566.021395 1356 1261 9166666.669678 1357 1261 -15641216.50536 1358 1261 -8177088.970282 1359 1261 -9166747.055672 1360 1261 -28285264.92641 1361 1261 7788270.809731 1368 1261 4.06801700592e-06 1369 1261 -35246583.02275 1370 1261 -32861133.64276 1371 1261 9166867.634673 1372 1261 51801215.86321 1373 1261 -2152764.494718 1374 1261 -9166787.248675 1375 1261 -50782746.60544 1376 1261 35402941.77273 1383 1261 -9166666.669676 1384 1261 -15732561.20235 1385 1261 -8246533.414749 1386 1261 4.619359970093e-07 1387 1261 -18838452.02672 1388 1261 -694433.1761459 1389 1261 9166666.669675 1390 1261 -17197404.95283 1391 1261 8940966.590895 1262 1262 679585775.4118 1263 1262 -13412427.57498 1264 1262 -26066650.19218 1265 1262 3548849.435559 1272 1262 -12633093.46245 1273 1262 -6402677.132734 1274 1262 -11231394.83281 1275 1262 1203737.252411 1276 1262 13888687.59834 1277 1262 83675565.4165 1278 1262 13408573.19995 1279 1262 -7486010.465602 1280 1262 -15846293.82194 1356 1262 10018981.01522 1357 1262 -8177088.970282 1358 1262 -16145262.77514 1359 1262 42113167.97979 1360 1262 7593861.729456 1361 1262 -55157692.73435 1368 1262 57871.30948763 1369 1262 -32833355.865 1370 1262 -37566373.58606 1371 1262 781320.0962051 1372 1262 -2152689.398522 1373 1262 -91946096.11431 1374 1262 11379085.18856 1375 1262 35569610.71641 1376 1262 -53430905.74636 1383 1262 -10076852.32471 1384 1262 -8246533.414749 1385 1262 -16388848.63381 1386 1262 -42894214.83411 1387 1262 -694433.1761459 1388 1262 -55531090.78464 1389 1262 -11378935.65847 1390 1262 8940966.590895 1391 1262 -20295098.63508 1263 1263 392409175.4658 1264 1263 33611111.10558 1265 1263 -18921677.97532 1275 1263 -49447220.48372 1276 1263 -33611111.10559 1277 1263 -12251149.01771 1278 1263 -173081388.0675 1279 1263 -33624506.06547 1280 1263 14444361.39273 1281 1263 1431297.732108 1282 1263 26902283.84436 1283 1263 9655347.358825 1359 1263 -4579449.609996 1360 1263 11000120.58261 1361 1263 12057631.64322 1371 1263 -14225493.76444 1372 1263 -9166787.248675 1373 1263 -10019112.65448 1374 1263 35932670.30059 1375 1263 9166666.669679 1376 1263 9311563.653784 1386 1263 -18482764.4945 1387 1263 -9166666.669676 1388 1263 -10076852.32471 1389 1263 -72925641.46158 1390 1263 -9166747.055676 1391 1263 -43478968.03166 1392 1263 -7497354.851903 1393 1263 7333413.72174 1394 1263 -9080099.689708 1264 1264 341973871.613 1265 1264 30282406.91647 1275 1264 -33611111.10559 1276 1264 -39363173.77667 1277 1264 -6097121.576942 1278 1264 -33631203.54542 1279 1264 -15065409.46899 1280 1264 19484896.97789 1281 1264 40353425.76654 1282 1264 1431297.732101 1283 1264 -13443330.95707 1359 1264 7333413.72174 1360 1264 -4579449.61 1361 1264 -6430626.286135 1371 1264 -9166747.055675 1372 1264 -46308715.17675 1373 1264 -32902986.62891 1374 1264 9166666.669678 1375 1264 22181563.40434 1376 1264 5180609.664774 1386 1264 -9166666.669676 1387 1264 -15732561.20235 1388 1264 -8246533.414749 1389 1264 -9166787.248676 1390 1264 -29841516.44517 1391 1264 -9524419.110191 1392 1264 11000120.58261 1393 1264 -7497354.8519 1394 1264 10895952.52268 1265 1265 443104893.4996 1275 1265 -12633093.46245 1276 1265 -6402677.132734 1277 1265 -11231394.83281 1278 1265 12205703.10143 1279 1265 15281564.4366 1280 1265 34188531.48329 1281 1265 14483021.03824 1282 1265 -8962220.638046 1283 1265 3816793.952288 1359 1265 8038421.095477 1360 1265 -9645939.429201 1361 1265 -12211865.62666 1371 1265 -10019068.77473 1372 1265 -33069655.68813 1373 1265 -41500155.26984 1374 1265 -7806863.548506 1375 1265 -8513909.758068 1376 1265 -68673244.4318 1386 1265 -10076852.32471 1387 1265 -8246533.414749 1388 1265 -16388848.63381 1389 1265 -43444243.01831 1390 1265 -9329934.937092 1391 1265 -59307696.78438 1392 1265 -13620149.53456 1393 1265 7263968.348454 1394 1265 -19992946.27174 1266 1266 645455824.6572 1267 1266 3.814697265625e-06 1268 1266 -4629696.72672 1269 1266 69286959.53708 1270 1266 -2.101063728333e-06 1271 1266 -1157424.182251 1284 1266 -109230745.6082 1285 1266 1.281499862671e-06 1286 1266 3425959.474268 1287 1266 -51177807.60464 1288 1266 33611111.10559 1289 1266 13790517.64469 1362 1266 -58783069.51046 1363 1266 1.639127731323e-06 1364 1266 42697451.81849 1365 1266 -19844426.42677 1366 1266 -9166666.669679 1367 1266 11321064.34898 1377 1266 57430602.85087 1378 1266 3.8743019104e-06 1379 1266 231485.2378496 1380 1266 -6249019.844286 1381 1266 -7.443130016327e-06 1382 1266 57871.30949415 1395 1266 -59172122.54065 1396 1266 4.395842552185e-07 1397 1266 -42928937.05631 1398 1266 -19947608.24497 1399 1266 9166666.669675 1400 1266 -11378935.65847 1267 1267 564783451.0405 1268 1267 55554750.36598 1269 1267 -3.129243850708e-06 1270 1267 -58435019.09619 1271 1267 -28666264.07173 1284 1267 9.387731552124e-07 1285 1267 38659326.41933 1286 1267 13888687.59834 1287 1267 33611111.10559 1288 1267 -41093760.8976 1289 1267 -7791566.021395 1362 1267 6.034970283508e-07 1363 1267 -18449398.9965 1364 1267 -694433.1761458 1365 1267 -9166666.669679 1366 1267 -17094223.13462 1367 1267 8871522.146427 1377 1267 4.231929779053e-06 1378 1267 35428976.52455 1379 1267 -2777732.703215 1380 1267 -7.599592208862e-06 1381 1267 -41082283.77936 1382 1267 35638866.34597 1395 1267 4.619359970093e-07 1396 1267 -18838452.02672 1397 1267 -694433.1761459 1398 1267 9166666.669675 1399 1267 -17197404.95283 1400 1267 8940966.590895 1268 1268 756192654.5709 1269 1268 -1157424.182251 1270 1268 -26888486.29425 1271 1268 51063391.07047 1284 1268 1203737.252411 1285 1268 13888687.59834 1286 1268 83675565.4165 1287 1268 13408573.19995 1288 1268 -7486010.465602 1289 1268 -15846293.82194 1362 1268 42662729.59629 1363 1268 -694433.1761458 1364 1268 -54493616.03735 1365 1268 11321064.34898 1366 1268 8871522.146428 1367 1268 -20019947.11985 1377 1268 231485.2378493 1378 1268 -2777732.703215 1379 1268 -110039912.4136 1380 1268 57871.30949473 1381 1268 35611088.56821 1382 1268 -53128242.27036 1395 1268 -42894214.83411 1396 1268 -694433.1761459 1397 1268 -55531090.78464 1398 1268 -11378935.65847 1399 1268 8940966.590895 1400 1268 -20295098.63508 1269 1269 645455824.6572 1270 1269 3.814697265625e-06 1271 1269 -4629696.72672 1272 1269 69286959.53708 1273 1269 -2.101063728333e-06 1274 1269 -1157424.182251 1284 1269 -49447220.48372 1285 1269 -33611111.10559 1286 1269 -12251149.01771 1287 1269 -109230745.6082 1288 1269 1.281499862671e-06 1289 1269 3425959.474268 1290 1269 -51177807.60464 1291 1269 33611111.10559 1292 1269 13790517.64469 1362 1269 -18391419.7975 1363 1269 9166666.669678 1364 1269 10018981.01522 1365 1269 -58783069.51046 1366 1269 1.639127731323e-06 1367 1269 42697451.81849 1368 1269 -19844426.42677 1369 1269 -9166666.669679 1370 1269 11321064.34898 1377 1269 -413319.0876746 1378 1269 3.017485141754e-06 1379 1269 57871.30948708 1380 1269 57430602.85087 1381 1269 3.8743019104e-06 1382 1269 231485.2378496 1383 1269 -6249019.844286 1384 1269 -7.443130016327e-06 1385 1269 57871.30949415 1395 1269 -18482764.4945 1396 1269 -9166666.669676 1397 1269 -10076852.32471 1398 1269 -59172122.54065 1399 1269 4.395842552185e-07 1400 1269 -42928937.05631 1401 1269 -19947608.24497 1402 1269 9166666.669675 1403 1269 -11378935.65847 1270 1270 564783451.0405 1271 1270 55554750.36598 1272 1270 -3.129243850708e-06 1273 1270 -58435019.09619 1274 1270 -28666264.07173 1284 1270 -33611111.10559 1285 1270 -39363173.77667 1286 1270 -6097121.576942 1287 1270 9.387731552124e-07 1288 1270 38659326.41933 1289 1270 13888687.59834 1290 1270 33611111.10559 1291 1270 -41093760.8976 1292 1270 -7791566.021395 1362 1270 9166666.669678 1363 1270 -15641216.50536 1364 1270 -8177088.970282 1365 1270 6.034970283508e-07 1366 1270 -18449398.9965 1367 1270 -694433.1761458 1368 1270 -9166666.669679 1369 1270 -17094223.13462 1370 1270 8871522.146427 1377 1270 4.06801700592e-06 1378 1270 -35246583.02275 1379 1270 -32861133.64276 1380 1270 4.231929779053e-06 1381 1270 35428976.52455 1382 1270 -2777732.703215 1383 1270 -7.599592208862e-06 1384 1270 -41082283.77936 1385 1270 35638866.34597 1395 1270 -9166666.669676 1396 1270 -15732561.20235 1397 1270 -8246533.414749 1398 1270 4.619359970093e-07 1399 1270 -18838452.02672 1400 1270 -694433.1761459 1401 1270 9166666.669675 1402 1270 -17197404.95283 1403 1270 8940966.590895 1271 1271 756192654.5709 1272 1271 -1157424.182251 1273 1271 -26888486.29425 1274 1271 51063391.07047 1284 1271 -12633093.46245 1285 1271 -6402677.132734 1286 1271 -11231394.83281 1287 1271 1203737.252411 1288 1271 13888687.59834 1289 1271 83675565.4165 1290 1271 13408573.19995 1291 1271 -7486010.465602 1292 1271 -15846293.82194 1362 1271 10018981.01522 1363 1271 -8177088.970282 1364 1271 -16145262.77514 1365 1271 42662729.59629 1366 1271 -694433.1761458 1367 1271 -54493616.03735 1368 1271 11321064.34898 1369 1271 8871522.146428 1370 1271 -20019947.11985 1377 1271 57871.30948763 1378 1271 -32833355.865 1379 1271 -37566373.58606 1380 1271 231485.2378493 1381 1271 -2777732.703215 1382 1271 -110039912.4136 1383 1271 57871.30949473 1384 1271 35611088.56821 1385 1271 -53128242.27036 1395 1271 -10076852.32471 1396 1271 -8246533.414749 1397 1271 -16388848.63381 1398 1271 -42894214.83411 1399 1271 -694433.1761459 1400 1271 -55531090.78464 1401 1271 -11378935.65847 1402 1271 8940966.590895 1403 1271 -20295098.63508 1272 1272 645455824.6572 1273 1272 3.814697265625e-06 1274 1272 -4629696.72672 1275 1272 69286959.53708 1276 1272 -2.101063728333e-06 1277 1272 -1157424.182251 1287 1272 -49447220.48372 1288 1272 -33611111.10559 1289 1272 -12251149.01771 1290 1272 -109230745.6082 1291 1272 1.281499862671e-06 1292 1272 3425959.474268 1293 1272 -51177807.60464 1294 1272 33611111.10559 1295 1272 13790517.64469 1365 1272 -18391419.7975 1366 1272 9166666.669678 1367 1272 10018981.01522 1368 1272 -58783069.51046 1369 1272 1.639127731323e-06 1370 1272 42697451.81849 1371 1272 -19844426.42677 1372 1272 -9166666.669679 1373 1272 11321064.34898 1380 1272 -413319.0876746 1381 1272 3.017485141754e-06 1382 1272 57871.30948708 1383 1272 57430602.85087 1384 1272 3.8743019104e-06 1385 1272 231485.2378496 1386 1272 -6249019.844286 1387 1272 -7.443130016327e-06 1388 1272 57871.30949415 1398 1272 -18482764.4945 1399 1272 -9166666.669676 1400 1272 -10076852.32471 1401 1272 -59172122.54065 1402 1272 4.395842552185e-07 1403 1272 -42928937.05631 1404 1272 -19947608.24497 1405 1272 9166666.669675 1406 1272 -11378935.65847 1273 1273 564783451.0405 1274 1273 55554750.36598 1275 1273 -3.129243850708e-06 1276 1273 -58435019.09619 1277 1273 -28666264.07173 1287 1273 -33611111.10559 1288 1273 -39363173.77667 1289 1273 -6097121.576942 1290 1273 9.387731552124e-07 1291 1273 38659326.41933 1292 1273 13888687.59834 1293 1273 33611111.10559 1294 1273 -41093760.8976 1295 1273 -7791566.021395 1365 1273 9166666.669678 1366 1273 -15641216.50536 1367 1273 -8177088.970282 1368 1273 6.034970283508e-07 1369 1273 -18449398.9965 1370 1273 -694433.1761458 1371 1273 -9166666.669679 1372 1273 -17094223.13462 1373 1273 8871522.146427 1380 1273 4.06801700592e-06 1381 1273 -35246583.02275 1382 1273 -32861133.64276 1383 1273 4.231929779053e-06 1384 1273 35428976.52455 1385 1273 -2777732.703215 1386 1273 -7.599592208862e-06 1387 1273 -41082283.77936 1388 1273 35638866.34597 1398 1273 -9166666.669676 1399 1273 -15732561.20235 1400 1273 -8246533.414749 1401 1273 4.619359970093e-07 1402 1273 -18838452.02672 1403 1273 -694433.1761459 1404 1273 9166666.669675 1405 1273 -17197404.95283 1406 1273 8940966.590895 1274 1274 756192654.5709 1275 1274 -1157424.182251 1276 1274 -26888486.29425 1277 1274 51063391.07047 1287 1274 -12633093.46245 1288 1274 -6402677.132734 1289 1274 -11231394.83281 1290 1274 1203737.252411 1291 1274 13888687.59834 1292 1274 83675565.4165 1293 1274 13408573.19995 1294 1274 -7486010.465602 1295 1274 -15846293.82194 1365 1274 10018981.01522 1366 1274 -8177088.970282 1367 1274 -16145262.77514 1368 1274 42662729.59629 1369 1274 -694433.1761458 1370 1274 -54493616.03735 1371 1274 11321064.34898 1372 1274 8871522.146428 1373 1274 -20019947.11985 1380 1274 57871.30948763 1381 1274 -32833355.865 1382 1274 -37566373.58606 1383 1274 231485.2378493 1384 1274 -2777732.703215 1385 1274 -110039912.4136 1386 1274 57871.30949473 1387 1274 35611088.56821 1388 1274 -53128242.27036 1398 1274 -10076852.32471 1399 1274 -8246533.414749 1400 1274 -16388848.63381 1401 1274 -42894214.83411 1402 1274 -694433.1761459 1403 1274 -55531090.78464 1404 1274 -11378935.65847 1405 1274 8940966.590895 1406 1274 -20295098.63508 1275 1275 645455824.6572 1276 1275 3.814697265625e-06 1277 1275 -4629696.72672 1278 1275 69286959.53708 1279 1275 -2.101063728333e-06 1280 1275 -1157424.182251 1290 1275 -49447220.48372 1291 1275 -33611111.10559 1292 1275 -12251149.01771 1293 1275 -109230745.6082 1294 1275 1.281499862671e-06 1295 1275 3425959.474268 1296 1275 -51177807.60464 1297 1275 33611111.10559 1298 1275 13790517.64469 1368 1275 -18391419.7975 1369 1275 9166666.669678 1370 1275 10018981.01522 1371 1275 -58783069.51046 1372 1275 1.639127731323e-06 1373 1275 42697451.81849 1374 1275 -19844426.42677 1375 1275 -9166666.669679 1376 1275 11321064.34898 1383 1275 -413319.0876746 1384 1275 3.017485141754e-06 1385 1275 57871.30948708 1386 1275 57430602.85087 1387 1275 3.8743019104e-06 1388 1275 231485.2378496 1389 1275 -6249019.844286 1390 1275 -7.443130016327e-06 1391 1275 57871.30949415 1401 1275 -18482764.4945 1402 1275 -9166666.669676 1403 1275 -10076852.32471 1404 1275 -59172122.54065 1405 1275 4.395842552185e-07 1406 1275 -42928937.05631 1407 1275 -19947608.24497 1408 1275 9166666.669675 1409 1275 -11378935.65847 1276 1276 564783451.0405 1277 1276 55554750.36598 1278 1276 -3.129243850708e-06 1279 1276 -58435019.09619 1280 1276 -28666264.07173 1290 1276 -33611111.10559 1291 1276 -39363173.77667 1292 1276 -6097121.576942 1293 1276 9.387731552124e-07 1294 1276 38659326.41933 1295 1276 13888687.59834 1296 1276 33611111.10559 1297 1276 -41093760.8976 1298 1276 -7791566.021395 1368 1276 9166666.669678 1369 1276 -15641216.50536 1370 1276 -8177088.970282 1371 1276 6.034970283508e-07 1372 1276 -18449398.9965 1373 1276 -694433.1761458 1374 1276 -9166666.669679 1375 1276 -17094223.13462 1376 1276 8871522.146427 1383 1276 4.06801700592e-06 1384 1276 -35246583.02275 1385 1276 -32861133.64276 1386 1276 4.231929779053e-06 1387 1276 35428976.52455 1388 1276 -2777732.703215 1389 1276 -7.599592208862e-06 1390 1276 -41082283.77936 1391 1276 35638866.34597 1401 1276 -9166666.669676 1402 1276 -15732561.20235 1403 1276 -8246533.414749 1404 1276 4.619359970093e-07 1405 1276 -18838452.02672 1406 1276 -694433.1761459 1407 1276 9166666.669675 1408 1276 -17197404.95283 1409 1276 8940966.590895 1277 1277 756192654.5709 1278 1277 -1157424.182251 1279 1277 -26888486.29425 1280 1277 51063391.07047 1290 1277 -12633093.46245 1291 1277 -6402677.132734 1292 1277 -11231394.83281 1293 1277 1203737.252411 1294 1277 13888687.59834 1295 1277 83675565.4165 1296 1277 13408573.19995 1297 1277 -7486010.465602 1298 1277 -15846293.82194 1368 1277 10018981.01522 1369 1277 -8177088.970282 1370 1277 -16145262.77514 1371 1277 42662729.59629 1372 1277 -694433.1761458 1373 1277 -54493616.03735 1374 1277 11321064.34898 1375 1277 8871522.146428 1376 1277 -20019947.11985 1383 1277 57871.30948763 1384 1277 -32833355.865 1385 1277 -37566373.58606 1386 1277 231485.2378493 1387 1277 -2777732.703215 1388 1277 -110039912.4136 1389 1277 57871.30949473 1390 1277 35611088.56821 1391 1277 -53128242.27036 1401 1277 -10076852.32471 1402 1277 -8246533.414749 1403 1277 -16388848.63381 1404 1277 -42894214.83411 1405 1277 -694433.1761459 1406 1277 -55531090.78464 1407 1277 -11378935.65847 1408 1277 8940966.590895 1409 1277 -20295098.63508 1278 1278 662031295.7794 1279 1278 33644598.50531 1280 1278 -15598790.43683 1281 1278 6223512.930091 1282 1278 -33624506.06548 1283 1278 -13793087.22804 1293 1278 -49447220.48372 1294 1278 -33611111.10559 1295 1278 -12251149.01771 1296 1278 -109230745.6082 1297 1278 1.281499862671e-06 1298 1278 3425959.474268 1299 1278 -51177807.60464 1300 1278 33611111.10559 1301 1278 13790517.64469 1371 1278 -18391419.7975 1372 1278 9166666.669678 1373 1278 10018981.01522 1374 1278 -71369389.94283 1375 1278 -9166787.24867 1376 1278 42147892.99313 1386 1278 -413319.0876746 1387 1278 3.017485141754e-06 1388 1278 57871.30948708 1389 1278 76553135.92261 1390 1278 9166867.634673 1391 1278 781226.2244361 1392 1278 -18699525.19313 1393 1278 -9166747.055676 1394 1278 11379035.3452 1404 1278 -18482764.4945 1405 1278 -9166666.669676 1406 1278 -10076852.32471 1407 1278 -59172122.54065 1408 1278 4.395842552185e-07 1409 1278 -42928937.05631 1410 1278 -19947608.24497 1411 1278 9166666.669675 1412 1278 -11378935.65847 1279 1279 571259805.1183 1280 1279 43075945.84504 1281 1279 -33631203.54543 1282 1279 -111441208.5227 1283 1279 -23958771.83004 1293 1279 -33611111.10559 1294 1279 -39363173.77667 1295 1279 -6097121.576942 1296 1279 9.387731552124e-07 1297 1279 38659326.41933 1298 1279 13888687.59834 1299 1279 33611111.10559 1300 1279 -41093760.8976 1301 1279 -7791566.021395 1371 1279 9166666.669678 1372 1279 -15641216.50536 1373 1279 -8177088.970282 1374 1279 -9166747.055672 1375 1279 -28285264.92641 1376 1279 7788270.809731 1386 1279 4.06801700592e-06 1387 1279 -35246583.02275 1388 1279 -32861133.64276 1389 1279 9166867.634673 1390 1279 51801215.86321 1391 1279 -2152764.494718 1392 1279 -9166787.248675 1393 1279 -50782746.60544 1394 1279 35402941.77273 1404 1279 -9166666.669676 1405 1279 -15732561.20235 1406 1279 -8246533.414749 1407 1279 4.619359970093e-07 1408 1279 -18838452.02672 1409 1279 -694433.1761459 1410 1279 9166666.669675 1411 1279 -17197404.95283 1412 1279 8940966.590895 1280 1280 679585775.4118 1281 1280 -13412427.57498 1282 1280 -26066650.19218 1283 1280 3548849.435559 1293 1280 -12633093.46245 1294 1280 -6402677.132734 1295 1280 -11231394.83281 1296 1280 1203737.252411 1297 1280 13888687.59834 1298 1280 83675565.4165 1299 1280 13408573.19995 1300 1280 -7486010.465602 1301 1280 -15846293.82194 1371 1280 10018981.01522 1372 1280 -8177088.970282 1373 1280 -16145262.77514 1374 1280 42113167.97979 1375 1280 7593861.729456 1376 1280 -55157692.73435 1386 1280 57871.30948763 1387 1280 -32833355.865 1388 1280 -37566373.58606 1389 1280 781320.0962051 1390 1280 -2152689.398522 1391 1280 -91946096.11431 1392 1280 11379085.18856 1393 1280 35569610.71641 1394 1280 -53430905.74636 1404 1280 -10076852.32471 1405 1280 -8246533.414749 1406 1280 -16388848.63381 1407 1280 -42894214.83411 1408 1280 -694433.1761459 1409 1280 -55531090.78464 1410 1280 -11378935.65847 1411 1280 8940966.590895 1412 1280 -20295098.63508 1281 1281 585665704.3843 1282 1281 -24667941.68432 1283 1281 -312397.5657639 1296 1281 -49447220.48372 1297 1281 -33611111.10559 1298 1281 -12251149.01771 1299 1281 -51062855.9649 1300 1281 24550979.49731 1301 1281 2614802.455998 1302 1281 -390940047.3902 1303 1281 27005851.07148 1304 1281 -140787.7808927 1374 1281 -4579449.609996 1375 1281 11000120.58261 1376 1281 12057631.64322 1389 1281 -14225493.76444 1390 1281 -9166787.248675 1391 1281 -10019112.65448 1392 1281 163714858.8002 1393 1281 -8207285.558244 1394 1281 4241855.317219 1407 1281 -18482764.4945 1408 1281 -9166666.669676 1409 1281 -10076852.32471 1410 1281 -23632031.88637 1411 1281 8204207.520878 1412 1281 -22609970.36319 1413 1281 -160108670.9846 1414 1281 7336411.37311 1415 1281 -520782.4807296 1282 1282 1212925807.182 1283 1282 33470955.69176 1296 1282 -33611111.10559 1297 1282 -39363173.77667 1298 1282 -6097121.576942 1299 1282 24492498.40383 1300 1282 81068219.8035 1301 1282 10079426.66136 1302 1282 40508776.6072 1303 1282 -1042750551.21 1304 1282 -9476246.029013 1374 1282 7333413.72174 1375 1282 -4579449.61 1376 1282 -6430626.286135 1389 1282 -9166747.055675 1390 1282 -46308715.17675 1391 1282 -32902986.62891 1392 1282 -8207285.558244 1393 1282 423632934.9284 1394 1282 -1353225.115187 1407 1282 -9166666.669676 1408 1282 -15732561.20235 1409 1282 -8246533.414749 1410 1282 8202668.502206 1411 1282 11650696.80984 1412 1282 7172753.555873 1413 1282 11004617.05965 1414 1282 -425976457.6889 1415 1282 20227336.59943 1283 1283 619229339.1181 1296 1283 -12633093.46245 1297 1283 -6402677.132734 1298 1283 -11231394.83281 1299 1283 3766004.901116 1300 1283 8616807.386232 1301 1283 46987078.10111 1302 1283 -211181.6713378 1303 1283 -8860767.282742 1304 1283 -390696289.2204 1374 1283 8038421.095477 1375 1283 -9645939.429201 1376 1283 -12211865.62666 1389 1283 -10019068.77473 1390 1283 -33069655.68813 1391 1283 -41500155.26984 1392 1283 -4768610.272799 1393 1283 -8558910.345734 1394 1283 99719621.84851 1407 1283 -10076852.32471 1408 1283 -8246533.414749 1409 1283 -16388848.63381 1410 1283 -22783562.29616 1411 1283 7202053.220155 1412 1283 -21366221.56937 1413 1283 -781173.7210934 1414 1283 20019063.72315 1415 1283 -161088669.2548 1284 1284 645455824.6572 1285 1284 3.814697265625e-06 1286 1284 -4629696.72672 1287 1284 69286959.53708 1288 1284 -2.101063728333e-06 1289 1284 -1157424.182251 1305 1284 -109230745.6082 1306 1284 1.281499862671e-06 1307 1284 3425959.474268 1308 1284 -51177807.60464 1309 1284 33611111.10559 1310 1284 13790517.64469 1377 1284 -58783069.51046 1378 1284 1.639127731323e-06 1379 1284 42697451.81849 1380 1284 -19844426.42677 1381 1284 -9166666.669679 1382 1284 11321064.34898 1395 1284 57430602.85087 1396 1284 3.8743019104e-06 1397 1284 231485.2378496 1398 1284 -6249019.844286 1399 1284 -7.443130016327e-06 1400 1284 57871.30949415 1416 1284 -59172122.54065 1417 1284 4.395842552185e-07 1418 1284 -42928937.05631 1419 1284 -19947608.24497 1420 1284 9166666.669675 1421 1284 -11378935.65847 1285 1285 564783451.0405 1286 1285 55554750.36598 1287 1285 -3.129243850708e-06 1288 1285 -58435019.09619 1289 1285 -28666264.07173 1305 1285 9.387731552124e-07 1306 1285 38659326.41933 1307 1285 13888687.59834 1308 1285 33611111.10559 1309 1285 -41093760.8976 1310 1285 -7791566.021395 1377 1285 6.034970283508e-07 1378 1285 -18449398.9965 1379 1285 -694433.1761458 1380 1285 -9166666.669679 1381 1285 -17094223.13462 1382 1285 8871522.146427 1395 1285 4.231929779053e-06 1396 1285 35428976.52455 1397 1285 -2777732.703215 1398 1285 -7.599592208862e-06 1399 1285 -41082283.77936 1400 1285 35638866.34597 1416 1285 4.619359970093e-07 1417 1285 -18838452.02672 1418 1285 -694433.1761459 1419 1285 9166666.669675 1420 1285 -17197404.95283 1421 1285 8940966.590895 1286 1286 756192654.5709 1287 1286 -1157424.182251 1288 1286 -26888486.29425 1289 1286 51063391.07047 1305 1286 1203737.252411 1306 1286 13888687.59834 1307 1286 83675565.4165 1308 1286 13408573.19995 1309 1286 -7486010.465602 1310 1286 -15846293.82194 1377 1286 42662729.59629 1378 1286 -694433.1761458 1379 1286 -54493616.03735 1380 1286 11321064.34898 1381 1286 8871522.146428 1382 1286 -20019947.11985 1395 1286 231485.2378493 1396 1286 -2777732.703215 1397 1286 -110039912.4136 1398 1286 57871.30949473 1399 1286 35611088.56821 1400 1286 -53128242.27036 1416 1286 -42894214.83411 1417 1286 -694433.1761459 1418 1286 -55531090.78464 1419 1286 -11378935.65847 1420 1286 8940966.590895 1421 1286 -20295098.63508 1287 1287 645455824.6572 1288 1287 3.814697265625e-06 1289 1287 -4629696.72672 1290 1287 69286959.53708 1291 1287 -2.101063728333e-06 1292 1287 -1157424.182251 1305 1287 -49447220.48372 1306 1287 -33611111.10559 1307 1287 -12251149.01771 1308 1287 -109230745.6082 1309 1287 1.281499862671e-06 1310 1287 3425959.474268 1311 1287 -51177807.60464 1312 1287 33611111.10559 1313 1287 13790517.64469 1377 1287 -18391419.7975 1378 1287 9166666.669678 1379 1287 10018981.01522 1380 1287 -58783069.51046 1381 1287 1.639127731323e-06 1382 1287 42697451.81849 1383 1287 -19844426.42677 1384 1287 -9166666.669679 1385 1287 11321064.34898 1395 1287 -413319.0876746 1396 1287 3.017485141754e-06 1397 1287 57871.30948708 1398 1287 57430602.85087 1399 1287 3.8743019104e-06 1400 1287 231485.2378496 1401 1287 -6249019.844286 1402 1287 -7.443130016327e-06 1403 1287 57871.30949415 1416 1287 -18482764.4945 1417 1287 -9166666.669676 1418 1287 -10076852.32471 1419 1287 -59172122.54065 1420 1287 4.395842552185e-07 1421 1287 -42928937.05631 1422 1287 -19947608.24497 1423 1287 9166666.669675 1424 1287 -11378935.65847 1288 1288 564783451.0405 1289 1288 55554750.36598 1290 1288 -3.129243850708e-06 1291 1288 -58435019.09619 1292 1288 -28666264.07173 1305 1288 -33611111.10559 1306 1288 -39363173.77667 1307 1288 -6097121.576942 1308 1288 9.387731552124e-07 1309 1288 38659326.41933 1310 1288 13888687.59834 1311 1288 33611111.10559 1312 1288 -41093760.8976 1313 1288 -7791566.021395 1377 1288 9166666.669678 1378 1288 -15641216.50536 1379 1288 -8177088.970282 1380 1288 6.034970283508e-07 1381 1288 -18449398.9965 1382 1288 -694433.1761458 1383 1288 -9166666.669679 1384 1288 -17094223.13462 1385 1288 8871522.146427 1395 1288 4.06801700592e-06 1396 1288 -35246583.02275 1397 1288 -32861133.64276 1398 1288 4.231929779053e-06 1399 1288 35428976.52455 1400 1288 -2777732.703215 1401 1288 -7.599592208862e-06 1402 1288 -41082283.77936 1403 1288 35638866.34597 1416 1288 -9166666.669676 1417 1288 -15732561.20235 1418 1288 -8246533.414749 1419 1288 4.619359970093e-07 1420 1288 -18838452.02672 1421 1288 -694433.1761459 1422 1288 9166666.669675 1423 1288 -17197404.95283 1424 1288 8940966.590895 1289 1289 756192654.5709 1290 1289 -1157424.182251 1291 1289 -26888486.29425 1292 1289 51063391.07047 1305 1289 -12633093.46245 1306 1289 -6402677.132734 1307 1289 -11231394.83281 1308 1289 1203737.252411 1309 1289 13888687.59834 1310 1289 83675565.4165 1311 1289 13408573.19995 1312 1289 -7486010.465602 1313 1289 -15846293.82194 1377 1289 10018981.01522 1378 1289 -8177088.970282 1379 1289 -16145262.77514 1380 1289 42662729.59629 1381 1289 -694433.1761458 1382 1289 -54493616.03735 1383 1289 11321064.34898 1384 1289 8871522.146428 1385 1289 -20019947.11985 1395 1289 57871.30948763 1396 1289 -32833355.865 1397 1289 -37566373.58606 1398 1289 231485.2378493 1399 1289 -2777732.703215 1400 1289 -110039912.4136 1401 1289 57871.30949473 1402 1289 35611088.56821 1403 1289 -53128242.27036 1416 1289 -10076852.32471 1417 1289 -8246533.414749 1418 1289 -16388848.63381 1419 1289 -42894214.83411 1420 1289 -694433.1761459 1421 1289 -55531090.78464 1422 1289 -11378935.65847 1423 1289 8940966.590895 1424 1289 -20295098.63508 1290 1290 645455824.6572 1291 1290 3.814697265625e-06 1292 1290 -4629696.72672 1293 1290 69286959.53708 1294 1290 -2.101063728333e-06 1295 1290 -1157424.182251 1308 1290 -49447220.48372 1309 1290 -33611111.10559 1310 1290 -12251149.01771 1311 1290 -109230745.6082 1312 1290 1.281499862671e-06 1313 1290 3425959.474268 1314 1290 -51177807.60464 1315 1290 33611111.10559 1316 1290 13790517.64469 1380 1290 -18391419.7975 1381 1290 9166666.669678 1382 1290 10018981.01522 1383 1290 -58783069.51046 1384 1290 1.639127731323e-06 1385 1290 42697451.81849 1386 1290 -19844426.42677 1387 1290 -9166666.669679 1388 1290 11321064.34898 1398 1290 -413319.0876746 1399 1290 3.017485141754e-06 1400 1290 57871.30948708 1401 1290 57430602.85087 1402 1290 3.8743019104e-06 1403 1290 231485.2378496 1404 1290 -6249019.844286 1405 1290 -7.443130016327e-06 1406 1290 57871.30949415 1419 1290 -18482764.4945 1420 1290 -9166666.669676 1421 1290 -10076852.32471 1422 1290 -59172122.54065 1423 1290 4.395842552185e-07 1424 1290 -42928937.05631 1425 1290 -19947608.24497 1426 1290 9166666.669675 1427 1290 -11378935.65847 1291 1291 564783451.0405 1292 1291 55554750.36598 1293 1291 -3.129243850708e-06 1294 1291 -58435019.09619 1295 1291 -28666264.07173 1308 1291 -33611111.10559 1309 1291 -39363173.77667 1310 1291 -6097121.576942 1311 1291 9.387731552124e-07 1312 1291 38659326.41933 1313 1291 13888687.59834 1314 1291 33611111.10559 1315 1291 -41093760.8976 1316 1291 -7791566.021395 1380 1291 9166666.669678 1381 1291 -15641216.50536 1382 1291 -8177088.970282 1383 1291 6.034970283508e-07 1384 1291 -18449398.9965 1385 1291 -694433.1761458 1386 1291 -9166666.669679 1387 1291 -17094223.13462 1388 1291 8871522.146427 1398 1291 4.06801700592e-06 1399 1291 -35246583.02275 1400 1291 -32861133.64276 1401 1291 4.231929779053e-06 1402 1291 35428976.52455 1403 1291 -2777732.703215 1404 1291 -7.599592208862e-06 1405 1291 -41082283.77936 1406 1291 35638866.34597 1419 1291 -9166666.669676 1420 1291 -15732561.20235 1421 1291 -8246533.414749 1422 1291 4.619359970093e-07 1423 1291 -18838452.02672 1424 1291 -694433.1761459 1425 1291 9166666.669675 1426 1291 -17197404.95283 1427 1291 8940966.590895 1292 1292 756192654.5709 1293 1292 -1157424.182251 1294 1292 -26888486.29425 1295 1292 51063391.07047 1308 1292 -12633093.46245 1309 1292 -6402677.132734 1310 1292 -11231394.83281 1311 1292 1203737.252411 1312 1292 13888687.59834 1313 1292 83675565.4165 1314 1292 13408573.19995 1315 1292 -7486010.465602 1316 1292 -15846293.82194 1380 1292 10018981.01522 1381 1292 -8177088.970282 1382 1292 -16145262.77514 1383 1292 42662729.59629 1384 1292 -694433.1761458 1385 1292 -54493616.03735 1386 1292 11321064.34898 1387 1292 8871522.146428 1388 1292 -20019947.11985 1398 1292 57871.30948763 1399 1292 -32833355.865 1400 1292 -37566373.58606 1401 1292 231485.2378493 1402 1292 -2777732.703215 1403 1292 -110039912.4136 1404 1292 57871.30949473 1405 1292 35611088.56821 1406 1292 -53128242.27036 1419 1292 -10076852.32471 1420 1292 -8246533.414749 1421 1292 -16388848.63381 1422 1292 -42894214.83411 1423 1292 -694433.1761459 1424 1292 -55531090.78464 1425 1292 -11378935.65847 1426 1292 8940966.590895 1427 1292 -20295098.63508 1293 1293 645455824.6572 1294 1293 3.814697265625e-06 1295 1293 -4629696.72672 1296 1293 69286959.53708 1297 1293 -2.101063728333e-06 1298 1293 -1157424.182251 1311 1293 -49447220.48372 1312 1293 -33611111.10559 1313 1293 -12251149.01771 1314 1293 -109230745.6082 1315 1293 1.281499862671e-06 1316 1293 3425959.474268 1317 1293 -51177807.60464 1318 1293 33611111.10559 1319 1293 13790517.64469 1383 1293 -18391419.7975 1384 1293 9166666.669678 1385 1293 10018981.01522 1386 1293 -58783069.51046 1387 1293 1.639127731323e-06 1388 1293 42697451.81849 1389 1293 -19844426.42677 1390 1293 -9166666.669679 1391 1293 11321064.34898 1401 1293 -413319.0876746 1402 1293 3.017485141754e-06 1403 1293 57871.30948708 1404 1293 57430602.85087 1405 1293 3.8743019104e-06 1406 1293 231485.2378496 1407 1293 -6249019.844286 1408 1293 -7.443130016327e-06 1409 1293 57871.30949415 1422 1293 -18482764.4945 1423 1293 -9166666.669676 1424 1293 -10076852.32471 1425 1293 -59172122.54065 1426 1293 4.395842552185e-07 1427 1293 -42928937.05631 1428 1293 -19947608.24497 1429 1293 9166666.669675 1430 1293 -11378935.65847 1294 1294 564783451.0405 1295 1294 55554750.36598 1296 1294 -3.129243850708e-06 1297 1294 -58435019.09619 1298 1294 -28666264.07173 1311 1294 -33611111.10559 1312 1294 -39363173.77667 1313 1294 -6097121.576942 1314 1294 9.387731552124e-07 1315 1294 38659326.41933 1316 1294 13888687.59834 1317 1294 33611111.10559 1318 1294 -41093760.8976 1319 1294 -7791566.021395 1383 1294 9166666.669678 1384 1294 -15641216.50536 1385 1294 -8177088.970282 1386 1294 6.034970283508e-07 1387 1294 -18449398.9965 1388 1294 -694433.1761458 1389 1294 -9166666.669679 1390 1294 -17094223.13462 1391 1294 8871522.146427 1401 1294 4.06801700592e-06 1402 1294 -35246583.02275 1403 1294 -32861133.64276 1404 1294 4.231929779053e-06 1405 1294 35428976.52455 1406 1294 -2777732.703215 1407 1294 -7.599592208862e-06 1408 1294 -41082283.77936 1409 1294 35638866.34597 1422 1294 -9166666.669676 1423 1294 -15732561.20235 1424 1294 -8246533.414749 1425 1294 4.619359970093e-07 1426 1294 -18838452.02672 1427 1294 -694433.1761459 1428 1294 9166666.669675 1429 1294 -17197404.95283 1430 1294 8940966.590895 1295 1295 756192654.5709 1296 1295 -1157424.182251 1297 1295 -26888486.29425 1298 1295 51063391.07047 1311 1295 -12633093.46245 1312 1295 -6402677.132734 1313 1295 -11231394.83281 1314 1295 1203737.252411 1315 1295 13888687.59834 1316 1295 83675565.4165 1317 1295 13408573.19995 1318 1295 -7486010.465602 1319 1295 -15846293.82194 1383 1295 10018981.01522 1384 1295 -8177088.970282 1385 1295 -16145262.77514 1386 1295 42662729.59629 1387 1295 -694433.1761458 1388 1295 -54493616.03735 1389 1295 11321064.34898 1390 1295 8871522.146428 1391 1295 -20019947.11985 1401 1295 57871.30948763 1402 1295 -32833355.865 1403 1295 -37566373.58606 1404 1295 231485.2378493 1405 1295 -2777732.703215 1406 1295 -110039912.4136 1407 1295 57871.30949473 1408 1295 35611088.56821 1409 1295 -53128242.27036 1422 1295 -10076852.32471 1423 1295 -8246533.414749 1424 1295 -16388848.63381 1425 1295 -42894214.83411 1426 1295 -694433.1761459 1427 1295 -55531090.78464 1428 1295 -11378935.65847 1429 1295 8940966.590895 1430 1295 -20295098.63508 1296 1296 645455824.6572 1297 1296 3.814697265625e-06 1298 1296 -4629696.72672 1299 1296 69286959.53708 1300 1296 -2.101063728333e-06 1301 1296 -1157424.182251 1314 1296 -49447220.48372 1315 1296 -33611111.10559 1316 1296 -12251149.01771 1317 1296 -109230745.6082 1318 1296 1.281499862671e-06 1319 1296 3425959.474268 1320 1296 -51177807.60464 1321 1296 33611111.10559 1322 1296 13790517.64469 1386 1296 -18391419.7975 1387 1296 9166666.669678 1388 1296 10018981.01522 1389 1296 -58783069.51046 1390 1296 1.639127731323e-06 1391 1296 42697451.81849 1392 1296 -19844426.42677 1393 1296 -9166666.669679 1394 1296 11321064.34898 1404 1296 -413319.0876746 1405 1296 3.017485141754e-06 1406 1296 57871.30948708 1407 1296 57430602.85087 1408 1296 3.8743019104e-06 1409 1296 231485.2378496 1410 1296 -6249019.844286 1411 1296 -7.443130016327e-06 1412 1296 57871.30949415 1425 1296 -18482764.4945 1426 1296 -9166666.669676 1427 1296 -10076852.32471 1428 1296 -59172122.54065 1429 1296 4.395842552185e-07 1430 1296 -42928937.05631 1431 1296 -19947608.24497 1432 1296 9166666.669675 1433 1296 -11378935.65847 1297 1297 564783451.0405 1298 1297 55554750.36598 1299 1297 -3.129243850708e-06 1300 1297 -58435019.09619 1301 1297 -28666264.07173 1314 1297 -33611111.10559 1315 1297 -39363173.77667 1316 1297 -6097121.576942 1317 1297 9.387731552124e-07 1318 1297 38659326.41933 1319 1297 13888687.59834 1320 1297 33611111.10559 1321 1297 -41093760.8976 1322 1297 -7791566.021395 1386 1297 9166666.669678 1387 1297 -15641216.50536 1388 1297 -8177088.970282 1389 1297 6.034970283508e-07 1390 1297 -18449398.9965 1391 1297 -694433.1761458 1392 1297 -9166666.669679 1393 1297 -17094223.13462 1394 1297 8871522.146427 1404 1297 4.06801700592e-06 1405 1297 -35246583.02275 1406 1297 -32861133.64276 1407 1297 4.231929779053e-06 1408 1297 35428976.52455 1409 1297 -2777732.703215 1410 1297 -7.599592208862e-06 1411 1297 -41082283.77936 1412 1297 35638866.34597 1425 1297 -9166666.669676 1426 1297 -15732561.20235 1427 1297 -8246533.414749 1428 1297 4.619359970093e-07 1429 1297 -18838452.02672 1430 1297 -694433.1761459 1431 1297 9166666.669675 1432 1297 -17197404.95283 1433 1297 8940966.590895 1298 1298 756192654.5709 1299 1298 -1157424.182251 1300 1298 -26888486.29425 1301 1298 51063391.07047 1314 1298 -12633093.46245 1315 1298 -6402677.132734 1316 1298 -11231394.83281 1317 1298 1203737.252411 1318 1298 13888687.59834 1319 1298 83675565.4165 1320 1298 13408573.19995 1321 1298 -7486010.465602 1322 1298 -15846293.82194 1386 1298 10018981.01522 1387 1298 -8177088.970282 1388 1298 -16145262.77514 1389 1298 42662729.59629 1390 1298 -694433.1761458 1391 1298 -54493616.03735 1392 1298 11321064.34898 1393 1298 8871522.146428 1394 1298 -20019947.11985 1404 1298 57871.30948763 1405 1298 -32833355.865 1406 1298 -37566373.58606 1407 1298 231485.2378493 1408 1298 -2777732.703215 1409 1298 -110039912.4136 1410 1298 57871.30949473 1411 1298 35611088.56821 1412 1298 -53128242.27036 1425 1298 -10076852.32471 1426 1298 -8246533.414749 1427 1298 -16388848.63381 1428 1298 -42894214.83411 1429 1298 -694433.1761459 1430 1298 -55531090.78464 1431 1298 -11378935.65847 1432 1298 8940966.590895 1433 1298 -20295098.63508 1299 1299 491276950.9903 1300 1299 14806601.51898 1301 1299 -3818422.289607 1302 1299 -87383385.7527 1303 1299 -70035624.56997 1304 1299 -3641118.236221 1317 1299 -49447220.48372 1318 1299 -33611111.10559 1319 1299 -12251149.01771 1320 1299 -77292831.94718 1321 1299 21747857.93987 1322 1299 1956544.273544 1323 1299 -42699882.91731 1324 1299 8988666.707287 1325 1299 1797596.462234 1389 1299 -18391419.7975 1390 1299 9166666.669678 1391 1299 10018981.01522 1392 1299 -23153309.42759 1393 1299 8202668.502207 1394 1299 22268765.65392 1407 1299 -413319.0876746 1408 1299 3.017485141754e-06 1409 1299 57871.30948708 1410 1299 68265937.74305 1411 1299 4972552.434569 1412 1299 136620.1412261 1413 1299 -38378504.19399 1414 1299 -20393185.43893 1415 1299 10904728.81155 1428 1299 -18482764.4945 1429 1299 -9166666.669676 1430 1299 -10076852.32471 1431 1299 -43384348.52402 1432 1299 6143828.422977 1433 1299 -32706624.47957 1434 1299 -20160575.07792 1435 1299 1074136.079187 1436 1299 -602925.9311655 1300 1300 604598995.5615 1301 1300 37277012.53792 1302 1300 -70094105.66344 1303 1300 -231857593.3807 1304 1300 -8143757.767629 1317 1300 -33611111.10559 1318 1300 -39363173.77667 1319 1300 -6097121.576942 1320 1300 21747857.93987 1321 1300 17898117.69298 1322 1300 7160931.803441 1323 1300 8988666.707287 1324 1300 -131315860.0499 1325 1300 -4390886.091072 1389 1300 9166666.669678 1390 1300 -15641216.50536 1391 1300 -8177088.970282 1392 1300 8204207.520877 1393 1300 12129419.26863 1394 1300 -8118315.333891 1407 1300 4.06801700592e-06 1408 1300 -35246583.02275 1409 1300 -32861133.64276 1410 1300 4972552.434566 1411 1300 107051190.7071 1412 1300 -2079037.895958 1413 1300 -20394724.45761 1414 1300 -79470228.63097 1415 1300 34698117.36652 1428 1300 -9166666.669676 1429 1300 -15732561.20235 1430 1300 -8246533.414749 1431 1300 6143828.422977 1432 1300 -19857535.41586 1433 1300 7819016.563107 1434 1300 1074136.079187 1435 1300 -47330788.05857 1436 1300 16965426.97932 1301 1301 497207159.3263 1302 1301 -3258224.345824 1303 1301 -6887687.832126 1304 1301 -52377574.72795 1317 1301 -12633093.46245 1318 1301 -6402677.132734 1319 1301 -11231394.83281 1320 1301 3519044.273286 1321 1301 6855376.247936 1322 1301 49759463.96313 1323 1301 1033707.572752 1324 1301 -4390886.091072 1325 1301 -28228693.45994 1389 1301 10018981.01522 1390 1301 -8177088.970282 1391 1301 -16145262.77514 1392 1301 22442357.5869 1393 1301 -8144741.575046 1394 1301 -20089628.3459 1407 1301 57871.30948763 1408 1301 -32833355.865 1409 1301 -37566373.58606 1410 1301 136807.9549443 1411 1301 -2078887.551707 1412 1301 -39053108.69402 1413 1301 10904842.27205 1414 1301 34696841.30973 1415 1301 -46645425.83998 1428 1301 -10076852.32471 1429 1301 -8246533.414749 1430 1301 -16388848.63381 1431 1301 -32880235.58879 1432 1301 7819016.564698 1433 1301 -47680406.12059 1434 1301 -602925.9311654 1435 1301 16965426.97932 1436 1301 -27359753.63154 1302 1302 748427414.7551 1303 1302 16631311.86316 1304 1302 -1850042.970848 1320 1302 -46717612.54642 1321 1302 -29761853.78616 1322 1302 -1504257.272989 1323 1302 44119848.09802 1324 1302 36257674.87884 1325 1302 2822647.309645 1326 1302 66901986.07731 1327 1302 -19503336.17053 1328 1302 -18746.55804789 1329 1302 3782927.556693 1330 1302 25961532.27095 1331 1302 339249.9533962 1392 1302 -159624729.0253 1393 1302 11004617.05965 1394 1302 572723.0303333 1410 1302 -37538860.21074 1411 1302 -20394724.45761 1412 1302 -10492248.91842 1413 1302 145746193.545 1414 1302 4821174.303457 1415 1302 8338174.490712 1431 1302 -18861959.6269 1432 1302 -7862576.000248 1433 1302 -10622738.80081 1434 1302 -37300727.61412 1435 1302 10723804.48332 1436 1302 -41832926.99883 1437 1302 -23212197.68204 1438 1302 -5350103.986268 1439 1302 14197971.68996 1440 1302 -16690161.87378 1441 1302 7057808.597695 1442 1302 -10194843.38188 1303 1303 1480675841.238 1304 1303 8331896.126548 1320 1303 -29761853.78616 1321 1303 -13233472.25669 1322 1303 290066.0256773 1323 1303 36257674.87883 1324 1303 161203877.6836 1325 1303 2812011.040772 1326 1303 -6058891.728297 1327 1303 2376956.410093 1328 1303 -290381.0699252 1329 1303 25961532.27095 1330 1303 -18223927.68573 1331 1303 -360456.5943326 1392 1303 7336411.373109 1393 1303 -425492515.7295 1394 1303 -13147629.82044 1410 1303 -20393185.43894 1411 1303 -78630584.64773 1412 1303 -33781578.76871 1413 1303 4821174.303456 1414 1303 434483682.2102 1415 1303 -3492649.630975 1431 1303 -7862576.000248 1432 1303 -8819552.279667 1433 1303 -8595373.465755 1434 1303 10723804.48332 1435 1303 -5466319.193666 1436 1303 7947549.067445 1437 1303 -1683437.318397 1438 1303 -40801616.79024 1439 1303 33347935.147 1440 1303 7057808.597695 1441 1303 -22755536.05731 1442 1303 16684907.19053 1304 1304 944103154.1131 1320 1304 -1886201.717729 1321 1304 -15489.53011546 1322 1304 4179508.007112 1323 1304 1676813.9765 1324 1304 2506455.485267 1325 1304 209445391.5281 1326 1304 -18746.55804396 1327 1304 -290381.0699252 1328 1304 139488909.5392 1329 1304 339249.9532249 1330 1304 -360456.5943326 1331 1304 47699916.22173 1392 1304 381815.353556 1393 1304 -13300618.50896 1394 1304 -159798157.3631 1410 1304 -10492174.57703 1411 1304 -33783025.80027 1412 1304 -44406375.21794 1413 1304 -8362936.617657 1414 1304 -3856634.052932 1415 1304 13357391.99385 1431 1304 -10622738.80081 1432 1304 -8595373.465755 1433 1304 -15817835.62473 1434 1304 -41832926.99887 1435 1304 7947549.069036 1436 1304 -79830320.55011 1437 1304 6072971.68928 1438 1304 33347935.147 1439 1304 -72413820.75204 1440 1304 -10194843.38188 1441 1304 16684907.19053 1442 1304 -34377395.78682 1305 1305 319632302.4806 1306 1305 2.861022949219e-06 1307 1305 3240707.191283 1308 1305 33898420.42483 1309 1305 6722222.221118 1310 1305 2980315.686967 1395 1305 -58783069.51046 1396 1305 1.639127731323e-06 1397 1305 42697451.81849 1398 1305 -19844426.42677 1399 1305 -9166666.669679 1400 1305 11321064.34898 1416 1305 28714906.85473 1417 1305 5.364418029785e-07 1418 1305 -8530229.601834 1419 1305 -3124509.92214 1420 1305 1833333.333932 1421 1305 -2241064.345998 1306 1306 279296115.6723 1307 1306 27777375.18299 1308 1306 -6722222.221118 1309 1306 -29962568.8918 1310 1306 -14194243.147 1395 1306 6.034970283508e-07 1396 1306 -18449398.9965 1397 1306 -694433.1761458 1398 1306 -9166666.669679 1399 1306 -17094223.13462 1400 1306 8871522.146427 1416 1306 8.940696716309e-07 1417 1306 17714093.69157 1418 1306 -1388866.351609 1419 1306 -1833333.333939 1420 1306 -20541141.88968 1421 1306 17812488.72854 1307 1307 369841367.6909 1308 1307 -2228017.645512 1309 1307 -13583132.03599 1310 1307 23544870.61869 1395 1307 42662729.59629 1396 1307 -694433.1761458 1397 1307 -54493616.03735 1398 1307 11321064.34898 1399 1307 8871522.146428 1400 1307 -20019947.11985 1416 1307 8588103.728686 1417 1307 -1388866.351609 1418 1307 -55021008.39532 1419 1307 2298935.655493 1420 1307 17812488.72855 1421 1307 -26564121.13518 1308 1308 319632302.4806 1309 1308 2.861022949219e-06 1310 1308 3240707.191283 1311 1308 33898420.42483 1312 1308 6722222.221118 1313 1308 2980315.686967 1395 1308 -18391419.7975 1396 1308 9166666.669678 1397 1308 10018981.01522 1398 1308 -58783069.51046 1399 1308 1.639127731323e-06 1400 1308 42697451.81849 1401 1308 -19844426.42677 1402 1308 -9166666.669679 1403 1308 11321064.34898 1416 1308 -206659.5438359 1417 1308 -1833333.333934 1418 1308 -1980647.67925 1419 1308 28714906.85473 1420 1308 5.364418029785e-07 1421 1308 -8530229.601834 1422 1308 -3124509.92214 1423 1308 1833333.333932 1424 1308 -2241064.345998 1309 1309 279296115.6723 1310 1309 27777375.18299 1311 1309 -6722222.221118 1312 1309 -29962568.8918 1313 1309 -14194243.147 1395 1309 9166666.669678 1396 1309 -15641216.50536 1397 1309 -8177088.970282 1398 1309 6.034970283508e-07 1399 1309 -18449398.9965 1400 1309 -694433.1761458 1401 1309 -9166666.669679 1402 1309 -17094223.13462 1403 1309 8871522.146427 1416 1309 1833333.333937 1417 1309 -17623291.51138 1418 1309 -16423622.37693 1419 1309 8.940696716309e-07 1420 1309 17714093.69157 1421 1309 -1388866.351609 1422 1309 -1833333.333939 1423 1309 -20541141.88968 1424 1309 17812488.72854 1310 1310 369841367.6909 1311 1310 -2228017.645512 1312 1310 -13583132.03599 1313 1310 23544870.61869 1395 1310 10018981.01522 1396 1310 -8177088.970282 1397 1310 -16145262.77514 1398 1310 42662729.59629 1399 1310 -694433.1761458 1400 1310 -54493616.03735 1401 1310 11321064.34898 1402 1310 8871522.146428 1403 1310 -20019947.11985 1416 1310 2038518.988737 1417 1310 -16423622.37695 1418 1310 -18783186.79303 1419 1310 8588103.728686 1420 1310 -1388866.351609 1421 1310 -55021008.39532 1422 1310 2298935.655493 1423 1310 17812488.72855 1424 1310 -26564121.13518 1311 1311 319632302.4806 1312 1311 2.861022949219e-06 1313 1311 3240707.191283 1314 1311 33898420.42483 1315 1311 6722222.221118 1316 1311 2980315.686967 1398 1311 -18391419.7975 1399 1311 9166666.669678 1400 1311 10018981.01522 1401 1311 -58783069.51046 1402 1311 1.639127731323e-06 1403 1311 42697451.81849 1404 1311 -19844426.42677 1405 1311 -9166666.669679 1406 1311 11321064.34898 1419 1311 -206659.5438359 1420 1311 -1833333.333934 1421 1311 -1980647.67925 1422 1311 28714906.85473 1423 1311 5.364418029785e-07 1424 1311 -8530229.601834 1425 1311 -3124509.92214 1426 1311 1833333.333932 1427 1311 -2241064.345998 1312 1312 279296115.6723 1313 1312 27777375.18299 1314 1312 -6722222.221118 1315 1312 -29962568.8918 1316 1312 -14194243.147 1398 1312 9166666.669678 1399 1312 -15641216.50536 1400 1312 -8177088.970282 1401 1312 6.034970283508e-07 1402 1312 -18449398.9965 1403 1312 -694433.1761458 1404 1312 -9166666.669679 1405 1312 -17094223.13462 1406 1312 8871522.146427 1419 1312 1833333.333937 1420 1312 -17623291.51138 1421 1312 -16423622.37693 1422 1312 8.940696716309e-07 1423 1312 17714093.69157 1424 1312 -1388866.351609 1425 1312 -1833333.333939 1426 1312 -20541141.88968 1427 1312 17812488.72854 1313 1313 369841367.6909 1314 1313 -2228017.645512 1315 1313 -13583132.03599 1316 1313 23544870.61869 1398 1313 10018981.01522 1399 1313 -8177088.970282 1400 1313 -16145262.77514 1401 1313 42662729.59629 1402 1313 -694433.1761458 1403 1313 -54493616.03735 1404 1313 11321064.34898 1405 1313 8871522.146428 1406 1313 -20019947.11985 1419 1313 2038518.988737 1420 1313 -16423622.37695 1421 1313 -18783186.79303 1422 1313 8588103.728686 1423 1313 -1388866.351609 1424 1313 -55021008.39532 1425 1313 2298935.655493 1426 1313 17812488.72855 1427 1313 -26564121.13518 1314 1314 319632302.4806 1315 1314 2.861022949219e-06 1316 1314 3240707.191283 1317 1314 33898420.42483 1318 1314 6722222.221118 1319 1314 2980315.686967 1401 1314 -18391419.7975 1402 1314 9166666.669678 1403 1314 10018981.01522 1404 1314 -58783069.51046 1405 1314 1.639127731323e-06 1406 1314 42697451.81849 1407 1314 -19844426.42677 1408 1314 -9166666.669679 1409 1314 11321064.34898 1422 1314 -206659.5438359 1423 1314 -1833333.333934 1424 1314 -1980647.67925 1425 1314 28714906.85473 1426 1314 5.364418029785e-07 1427 1314 -8530229.601834 1428 1314 -3124509.92214 1429 1314 1833333.333932 1430 1314 -2241064.345998 1315 1315 279296115.6723 1316 1315 27777375.18299 1317 1315 -6722222.221118 1318 1315 -29962568.8918 1319 1315 -14194243.147 1401 1315 9166666.669678 1402 1315 -15641216.50536 1403 1315 -8177088.970282 1404 1315 6.034970283508e-07 1405 1315 -18449398.9965 1406 1315 -694433.1761458 1407 1315 -9166666.669679 1408 1315 -17094223.13462 1409 1315 8871522.146427 1422 1315 1833333.333937 1423 1315 -17623291.51138 1424 1315 -16423622.37693 1425 1315 8.940696716309e-07 1426 1315 17714093.69157 1427 1315 -1388866.351609 1428 1315 -1833333.333939 1429 1315 -20541141.88968 1430 1315 17812488.72854 1316 1316 369841367.6909 1317 1316 -2228017.645512 1318 1316 -13583132.03599 1319 1316 23544870.61869 1401 1316 10018981.01522 1402 1316 -8177088.970282 1403 1316 -16145262.77514 1404 1316 42662729.59629 1405 1316 -694433.1761458 1406 1316 -54493616.03735 1407 1316 11321064.34898 1408 1316 8871522.146428 1409 1316 -20019947.11985 1422 1316 2038518.988737 1423 1316 -16423622.37695 1424 1316 -18783186.79303 1425 1316 8588103.728686 1426 1316 -1388866.351609 1427 1316 -55021008.39532 1428 1316 2298935.655493 1429 1316 17812488.72855 1430 1316 -26564121.13518 1317 1317 319632302.4806 1318 1317 2.861022949219e-06 1319 1317 3240707.191283 1320 1317 33898420.42483 1321 1317 6722222.221118 1322 1317 2980315.686967 1404 1317 -18391419.7975 1405 1317 9166666.669678 1406 1317 10018981.01522 1407 1317 -58783069.51046 1408 1317 1.639127731323e-06 1409 1317 42697451.81849 1410 1317 -19844426.42677 1411 1317 -9166666.669679 1412 1317 11321064.34898 1425 1317 -206659.5438359 1426 1317 -1833333.333934 1427 1317 -1980647.67925 1428 1317 28714906.85473 1429 1317 5.364418029785e-07 1430 1317 -8530229.601834 1431 1317 -3124509.92214 1432 1317 1833333.333932 1433 1317 -2241064.345998 1318 1318 279296115.6723 1319 1318 27777375.18299 1320 1318 -6722222.221118 1321 1318 -29962568.8918 1322 1318 -14194243.147 1404 1318 9166666.669678 1405 1318 -15641216.50536 1406 1318 -8177088.970282 1407 1318 6.034970283508e-07 1408 1318 -18449398.9965 1409 1318 -694433.1761458 1410 1318 -9166666.669679 1411 1318 -17094223.13462 1412 1318 8871522.146427 1425 1318 1833333.333937 1426 1318 -17623291.51138 1427 1318 -16423622.37693 1428 1318 8.940696716309e-07 1429 1318 17714093.69157 1430 1318 -1388866.351609 1431 1318 -1833333.333939 1432 1318 -20541141.88968 1433 1318 17812488.72854 1319 1319 369841367.6909 1320 1319 -2228017.645512 1321 1319 -13583132.03599 1322 1319 23544870.61869 1404 1319 10018981.01522 1405 1319 -8177088.970282 1406 1319 -16145262.77514 1407 1319 42662729.59629 1408 1319 -694433.1761458 1409 1319 -54493616.03735 1410 1319 11321064.34898 1411 1319 8871522.146428 1412 1319 -20019947.11985 1425 1319 2038518.988737 1426 1319 -16423622.37695 1427 1319 -18783186.79303 1428 1319 8588103.728686 1429 1319 -1388866.351609 1430 1319 -55021008.39532 1431 1319 2298935.655493 1432 1319 17812488.72855 1433 1319 -26564121.13518 1320 1320 292706109.3267 1321 1320 3849993.374101 1322 1320 -6845642.411734 1323 1320 -1362952.211621 1324 1320 -22724886.41228 1325 1320 4466.524408698 1407 1320 -18391419.7975 1408 1320 9166666.669678 1409 1320 10018981.01522 1410 1320 -42844315.11718 1411 1320 6143828.42298 1412 1320 32439903.28737 1413 1320 -19056485.08992 1414 1320 -7862576.000246 1415 1320 10773788.984 1428 1320 -206659.5438359 1429 1320 -1833333.333934 1430 1320 -1980647.67925 1431 1320 28878510.79233 1432 1320 1304325.673737 1433 1320 -8034871.658814 1434 1320 -18263780.54944 1435 1320 -6918911.432209 1436 1320 8066734.94041 1321 1321 275777719.2542 1322 1321 17498346.56299 1323 1321 -36169330.85452 1324 1321 -59332709.45945 1325 1321 -3269090.779215 1407 1321 9166666.669678 1408 1321 -15641216.50536 1409 1321 -8177088.970282 1410 1321 6143828.422979 1411 1321 -19317502.00901 1412 1321 -8396261.212014 1413 1321 -7862576.000246 1414 1321 -9014077.742685 1415 1321 8522682.095422 1428 1321 1833333.333937 1429 1321 -17623291.51138 1430 1321 -16423622.37693 1431 1321 1304325.673737 1432 1321 25172041.03341 1433 1321 -904397.1795395 1434 1321 -10585578.10008 1435 1321 -33460102.57053 1436 1321 25378687.64334 1322 1322 306182737.1243 1323 1322 -1419144.586472 1324 1322 -2963535.22371 1325 1322 32321915.28632 1407 1322 10018981.01522 1408 1322 -8177088.970282 1409 1322 -16145262.77514 1410 1322 32613514.40058 1411 1322 -8396261.210409 1412 1322 -46240317.03562 1413 1322 10773788.984 1414 1322 8522682.095422 1415 1322 -16336570.1928 1428 1322 2038518.988737 1429 1322 -16423622.37695 1430 1322 -18783186.79303 1431 1322 9082906.116151 1432 1322 -904397.1795395 1433 1322 -52999059.66538 1434 1322 12398123.82872 1435 1322 25378687.64175 1436 1322 -35853335.01949 1323 1323 351474505.4045 1324 1323 43278658.3616 1325 1323 5396404.4899 1326 1323 -61121044.65449 1327 1323 -41260689.94024 1328 1323 -528805.6021204 1329 1323 15684474.19606 1330 1323 -11094979.15296 1331 1323 -186753.6278738 1410 1323 -19715237.85133 1411 1323 1074136.079186 1412 1323 524851.8469836 1413 1323 -37144610.97898 1414 1323 10723804.48332 1415 1323 41672628.54298 1431 1323 -17529221.15356 1432 1323 -10585578.10008 1433 1323 -12149931.72292 1434 1323 -1095063.644689 1435 1323 13148490.57674 1436 1323 -8461748.97526 1437 1323 -34526661.87963 1438 1323 -11275524.74166 1439 1323 20339184.40592 1440 1323 -25557949.75669 1441 1323 -3085328.297506 1442 1323 8108904.791231 1324 1324 428079692.8527 1325 1324 6359867.73056 1326 1324 -41260689.94024 1327 1324 -42562917.26492 1328 1324 -360456.5943327 1329 1324 -24539423.5952 1330 1324 -49977135.84681 1331 1324 -1151445.306695 1410 1324 1074136.079186 1411 1324 -46885450.83199 1412 1324 -16367906.36496 1413 1324 10723804.48332 1414 1324 -5310202.55853 1415 1324 -8267728.707675 1431 1324 -6918911.432211 1432 1324 -32725543.17465 1433 1324 -25072701.23725 1434 1324 13148490.57674 1435 1324 22270764.74516 1436 1324 -368264.4629124 1437 1324 -11275524.74166 1438 1324 -29444223.55951 1439 1324 16684907.19053 1440 1324 -6751994.965377 1441 1324 -43474089.88536 1442 1324 33391693.58226 1325 1325 502747367.9195 1326 1325 -528805.6021202 1327 1325 -360456.5943328 1328 1325 23360926.64254 1329 1325 -533975.8500424 1330 1325 -1151445.306695 1331 1325 76606286.52403 1410 1325 524851.8469835 1411 1325 -16367906.36496 1412 1325 -26172187.69396 1413 1325 41672628.54301 1414 1325 -8267728.706071 1415 1325 -79414009.52307 1431 1325 -7922709.501298 1432 1325 -25072701.23886 1433 1325 -33894509.96379 1434 1325 8239362.133108 1435 1325 -368264.4629123 1436 1325 -122620538.7512 1437 1325 20339184.40592 1438 1325 16684907.19053 1439 1325 -41066083.28901 1440 1325 12197515.90567 1441 1325 33391693.58226 1442 1325 -58349324.81867 1326 1326 234754680.5278 1327 1326 46392225.05501 1328 1326 308098.4098136 1329 1326 3111044.699987 1330 1326 927356.613524 1331 1326 239453.7503519 1413 1326 -23117500.71233 1414 1326 -1683437.318397 1415 1326 -6070778.306718 1434 1326 -34431964.90992 1435 1326 -11275524.74166 1436 1326 -20285815.60742 1437 1326 -18665832.59106 1438 1326 12683437.32201 1439 1326 8109435.714787 1440 1326 -34533186.62789 1441 1326 275524.7380462 1442 1326 -30502841.80065 1327 1327 217352626.8751 1328 1327 290381.0699289 1329 1327 14371801.05576 1330 1327 66480000.63031 1331 1327 360456.594335 1413 1327 -5350103.986268 1414 1327 -40706919.82054 1415 1327 -33318731.50871 1434 1327 -11275524.74166 1435 1327 -29349526.58979 1436 1327 -16648426.15375 1437 1327 12683437.32201 1438 1327 -23420163.4902 1439 1327 6652064.846425 1440 1327 3942191.405917 1441 1327 -17271874.94068 1442 1327 3315092.816032 1328 1328 364529562.5681 1329 1328 239453.750356 1330 1328 360456.5943349 1331 1328 122345045.6517 1413 1328 -14195778.30738 1414 1328 -33318731.50871 1415 1328 -72161295.49948 1434 1328 -20285815.60742 1435 1328 -16648426.15375 1436 1328 -40813558.03643 1437 1328 -8140564.282544 1438 1328 -6681268.484718 1439 1328 -121188010.0031 1440 1328 -30502841.80265 1441 1328 -3351573.852824 1442 1328 -61166429.37081 1329 1329 172214886.8966 1330 1329 -15793909.73151 1331 1329 649716.5911349 1413 1329 -16595464.90406 1414 1329 7057808.597695 1415 1329 10161406.6248 1434 1329 -25273858.84771 1435 1329 -6751994.965378 1436 1329 -12142484.09433 1437 1329 -34533186.62789 1438 1329 3942191.405919 1439 1329 30478408.18933 1440 1329 -12139913.87007 1441 1329 -4248005.038235 1442 1329 -4104552.942003 1330 1330 196514396.2516 1331 1330 1151445.306701 1413 1330 7057808.597695 1414 1330 -22660839.0876 1415 1330 -16648426.15375 1434 1330 -3085328.297507 1435 1330 -43189998.97639 1436 1330 -33274973.07346 1437 1330 275524.7380478 1438 1330 -17271874.94068 1439 1330 3315092.816032 1440 1330 -4248005.038235 1441 1330 -5419711.245076 1442 1330 6608306.41117 1331 1331 272797640.5341 1413 1331 10161406.6248 1414 1331 -16648426.15375 1415 1331 -34124870.53423 1434 1331 -8088595.202104 1435 1331 -33274973.07346 1436 1331 -57591749.06139 1437 1331 30478408.18734 1438 1331 -3351573.852824 1439 1331 -61166429.37081 1440 1331 4037947.05666 1441 1331 -6725026.919973 1442 1331 -83230082.36618 1332 1332 383498024.544 1333 1332 36666666.66064 1334 1332 2662179.892796 1335 1332 -204675200.5845 1336 1332 -36666988.20463 1337 1332 -2662156.039165 1338 1332 11810466.31493 1339 1332 29333654.8725 1340 1332 -2152800.8684 1443 1332 35932670.30059 1444 1332 9166666.669679 1445 1332 9311563.653784 1446 1332 -72925641.46158 1447 1332 -9166747.055676 1448 1332 -43478968.03166 1449 1332 -7497354.851903 1450 1332 7333413.72174 1451 1332 -9080099.689708 1333 1333 328493596.9861 1334 1333 -6944376.434009 1335 1333 -36667148.97662 1336 1333 -32338700.60373 1337 1333 -3847226.785359 1338 1333 44000482.30876 1339 1333 11810466.31493 1340 1333 2416693.76713 1443 1333 9166666.669678 1444 1333 22181563.40434 1445 1333 5180609.664774 1446 1333 -9166787.248676 1447 1333 -29841516.44517 1448 1333 -9524419.110191 1449 1333 11000120.58261 1450 1333 -7497354.8519 1451 1333 10895952.52268 1334 1334 364686604.8413 1335 1334 -2662144.112346 1336 1334 -3097217.751863 1337 1334 -5157813.372203 1338 1334 -3229201.302601 1339 1334 1611129.178087 1340 1334 31494576.83983 1443 1334 -7806863.548506 1444 1334 -8513909.758068 1445 1334 -68673244.4318 1446 1334 -43444243.01831 1447 1334 -9329934.937092 1448 1334 -59307696.78438 1449 1334 -13620149.53456 1450 1334 7263968.348454 1451 1334 -19992946.27174 1335 1335 665854880.679 1336 1335 36667470.52063 1337 1335 3125090.734117 1338 1335 18070347.2503 1339 1335 -36666988.20464 1340 1335 2702571.265064 1341 1335 -140008022.8906 1342 1335 2.577900886536e-06 1343 1335 -462970.4754454 1344 1335 -52702268.47617 1345 1335 36666666.66064 1346 1335 -2702548.174055 1443 1335 -71369389.94283 1444 1335 -9166787.24867 1445 1335 42147892.99313 1446 1335 76553135.92261 1447 1335 9166867.634673 1448 1335 781226.2244361 1449 1335 -18699525.19313 1450 1335 -9166747.055676 1451 1335 11379035.3452 1452 1335 -59172122.54065 1453 1335 4.395842552185e-07 1454 1335 -42928937.05631 1455 1335 -19947608.24497 1456 1335 9166666.669675 1457 1335 -11378935.65847 1336 1336 566847200.4901 1337 1336 -8610909.306622 1338 1336 -36667148.97663 1339 1336 -110262538.3357 1340 1336 4611016.915367 1341 1336 2.831220626831e-06 1342 1336 21326659.08566 1343 1336 -2777732.703214 1344 1336 36666666.66064 1345 1336 -41701455.31301 1346 1336 1513866.351594 1443 1336 -9166747.055672 1444 1336 -28285264.92641 1445 1336 7788270.809731 1446 1336 9166867.634673 1447 1336 51801215.86321 1448 1336 -2152764.494718 1449 1336 -9166787.248675 1450 1336 -50782746.60544 1451 1336 35402941.77273 1452 1336 4.619359970093e-07 1453 1336 -18838452.02672 1454 1336 -694433.1761459 1455 1336 9166666.669675 1456 1336 -17197404.95283 1457 1336 8940966.590895 1337 1337 591261848.0956 1338 1337 2737305.032771 1339 1337 5388803.421584 1340 1337 33925571.74906 1341 1337 -462970.4754449 1342 1337 -2777732.703214 1343 1337 35690216.05203 1344 1337 -2737270.396254 1345 1337 1541644.129353 1346 1337 -8945289.261872 1443 1337 42113167.97979 1444 1337 7593861.729456 1445 1337 -55157692.73435 1446 1337 781320.0962051 1447 1337 -2152689.398522 1448 1337 -91946096.11431 1449 1337 11379085.18856 1450 1337 35569610.71641 1451 1337 -53430905.74636 1452 1337 -42894214.83411 1453 1337 -694433.1761459 1454 1337 -55531090.78464 1455 1337 -11378935.65847 1456 1337 8940966.590895 1457 1337 -20295098.63508 1338 1338 383498024.544 1339 1338 36666666.66064 1340 1338 2662179.892796 1341 1338 -52678594.23377 1342 1338 -36666666.66064 1343 1338 2505785.158418 1344 1338 -204675200.5845 1345 1338 -36666988.20463 1346 1338 -2662156.039165 1347 1338 11810466.31493 1348 1338 29333654.8725 1349 1338 -2152800.8684 1443 1338 -4579449.609996 1444 1338 11000120.58261 1445 1338 12057631.64322 1446 1338 -14225493.76444 1447 1338 -9166787.248675 1448 1338 -10019112.65448 1449 1338 35932670.30059 1450 1338 9166666.669679 1451 1338 9311563.653784 1452 1338 -18482764.4945 1453 1338 -9166666.669676 1454 1338 -10076852.32471 1455 1338 -72925641.46158 1456 1338 -9166747.055676 1457 1338 -43478968.03166 1458 1338 -7497354.851903 1459 1338 7333413.72174 1460 1338 -9080099.689708 1339 1339 328493596.9861 1340 1339 -6944376.43401 1341 1339 -36666666.66065 1342 1339 -41677781.0706 1343 1339 1263866.351621 1344 1339 -36667148.97662 1345 1339 -32338700.60373 1346 1339 -3847226.785359 1347 1339 44000482.30876 1348 1339 11810466.31493 1349 1339 2416693.76713 1443 1339 7333413.72174 1444 1339 -4579449.61 1445 1339 -6430626.286135 1446 1339 -9166747.055675 1447 1339 -46308715.17675 1448 1339 -32902986.62891 1449 1339 9166666.669678 1450 1339 22181563.40434 1451 1339 5180609.664774 1452 1339 -9166666.669676 1453 1339 -15732561.20235 1454 1339 -8246533.414749 1455 1339 -9166787.248676 1456 1339 -29841516.44517 1457 1339 -9524419.110191 1458 1339 11000120.58261 1459 1339 -7497354.8519 1460 1339 10895952.52268 1340 1340 364686604.8413 1341 1340 2471062.936219 1342 1340 1236088.573861 1343 1340 -8882157.948759 1344 1340 -2662144.112346 1345 1340 -3097217.751863 1346 1340 -5157813.372203 1347 1340 -3229201.302601 1348 1340 1611129.178087 1349 1340 31494576.83983 1443 1340 8038421.095477 1444 1340 -9645939.429201 1445 1340 -12211865.62666 1446 1340 -10019068.77473 1447 1340 -33069655.68813 1448 1340 -41500155.26984 1449 1340 -7806863.548506 1450 1340 -8513909.758068 1451 1340 -68673244.4318 1452 1340 -10076852.32471 1453 1340 -8246533.414749 1454 1340 -16388848.63381 1455 1340 -43444243.01831 1456 1340 -9329934.937092 1457 1340 -59307696.78438 1458 1340 -13620149.53456 1459 1340 7263968.348454 1460 1340 -19992946.27174 1341 1341 613328698.917 1342 1341 1.621246337891e-05 1343 1341 925940.9508365 1344 1341 82577683.23799 1345 1341 -7.659196853638e-06 1346 1341 231485.2378237 1350 1341 -140008022.8906 1351 1341 2.577900886536e-06 1352 1341 -462970.4754454 1353 1341 -52702268.47617 1354 1341 36666666.66064 1355 1341 -2702548.174055 1446 1341 -58783069.51046 1447 1341 1.639127731323e-06 1448 1341 42697451.81849 1449 1341 -19844426.42677 1450 1341 -9166666.669679 1451 1341 11321064.34898 1452 1341 57430602.85087 1453 1341 3.8743019104e-06 1454 1341 231485.2378496 1455 1341 -6249019.844286 1456 1341 -7.443130016327e-06 1457 1341 57871.30949415 1461 1341 -59172122.54065 1462 1341 4.395842552185e-07 1463 1341 -42928937.05631 1464 1341 -19947608.24497 1465 1341 9166666.669675 1466 1341 -11378935.65847 1342 1342 525322193.6551 1343 1342 -11110930.80738 1344 1342 -7.525086402893e-06 1345 1342 -56755372.43366 1346 1342 5555465.403692 1350 1342 2.831220626831e-06 1351 1342 21326659.08566 1352 1342 -2777732.703214 1353 1342 36666666.66064 1354 1342 -41701455.31301 1355 1342 1513866.351594 1446 1342 6.034970283508e-07 1447 1342 -18449398.9965 1448 1342 -694433.1761458 1449 1342 -9166666.669679 1450 1342 -17094223.13462 1451 1342 8871522.146427 1452 1342 4.231929779053e-06 1453 1342 35428976.52455 1454 1342 -2777732.703215 1455 1342 -7.599592208862e-06 1456 1342 -41082283.77936 1457 1342 35638866.34597 1461 1342 4.619359970093e-07 1462 1342 -18838452.02672 1463 1342 -694433.1761459 1464 1342 9166666.669675 1465 1342 -17197404.95283 1466 1342 8940966.590895 1343 1343 582790450.9006 1344 1343 231485.2378239 1345 1343 5555465.403692 1346 1343 74350397.96411 1350 1343 -462970.4754449 1351 1343 -2777732.703214 1352 1343 35690216.05203 1353 1343 -2737270.396254 1354 1343 1541644.129353 1355 1343 -8945289.261872 1446 1343 42662729.59629 1447 1343 -694433.1761458 1448 1343 -54493616.03735 1449 1343 11321064.34898 1450 1343 8871522.146428 1451 1343 -20019947.11985 1452 1343 231485.2378493 1453 1343 -2777732.703215 1454 1343 -110039912.4136 1455 1343 57871.30949473 1456 1343 35611088.56821 1457 1343 -53128242.27036 1461 1343 -42894214.83411 1462 1343 -694433.1761459 1463 1343 -55531090.78464 1464 1343 -11378935.65847 1465 1343 8940966.590895 1466 1343 -20295098.63508 1344 1344 665854880.679 1345 1344 36667470.52063 1346 1344 3125090.734117 1347 1344 18070347.2503 1348 1344 -36666988.20464 1349 1344 2702571.265064 1350 1344 -52678594.23377 1351 1344 -36666666.66064 1352 1344 2505785.158418 1353 1344 -140008022.8906 1354 1344 2.577900886536e-06 1355 1344 -462970.4754454 1356 1344 -52702268.47617 1357 1344 36666666.66064 1358 1344 -2702548.174055 1446 1344 -18391419.7975 1447 1344 9166666.669678 1448 1344 10018981.01522 1449 1344 -71369389.94283 1450 1344 -9166787.24867 1451 1344 42147892.99313 1452 1344 -413319.0876746 1453 1344 3.017485141754e-06 1454 1344 57871.30948708 1455 1344 76553135.92261 1456 1344 9166867.634673 1457 1344 781226.2244361 1458 1344 -18699525.19313 1459 1344 -9166747.055676 1460 1344 11379035.3452 1461 1344 -18482764.4945 1462 1344 -9166666.669676 1463 1344 -10076852.32471 1464 1344 -59172122.54065 1465 1344 4.395842552185e-07 1466 1344 -42928937.05631 1467 1344 -19947608.24497 1468 1344 9166666.669675 1469 1344 -11378935.65847 1345 1345 566847200.4901 1346 1345 -8610909.306622 1347 1345 -36667148.97663 1348 1345 -110262538.3357 1349 1345 4611016.915367 1350 1345 -36666666.66065 1351 1345 -41677781.0706 1352 1345 1263866.351621 1353 1345 2.831220626831e-06 1354 1345 21326659.08566 1355 1345 -2777732.703214 1356 1345 36666666.66064 1357 1345 -41701455.31301 1358 1345 1513866.351594 1446 1345 9166666.669678 1447 1345 -15641216.50536 1448 1345 -8177088.970282 1449 1345 -9166747.055672 1450 1345 -28285264.92641 1451 1345 7788270.809731 1452 1345 4.06801700592e-06 1453 1345 -35246583.02275 1454 1345 -32861133.64276 1455 1345 9166867.634673 1456 1345 51801215.86321 1457 1345 -2152764.494718 1458 1345 -9166787.248675 1459 1345 -50782746.60544 1460 1345 35402941.77273 1461 1345 -9166666.669676 1462 1345 -15732561.20235 1463 1345 -8246533.414749 1464 1345 4.619359970093e-07 1465 1345 -18838452.02672 1466 1345 -694433.1761459 1467 1345 9166666.669675 1468 1345 -17197404.95283 1469 1345 8940966.590895 1346 1346 591261848.0956 1347 1346 2737305.032771 1348 1346 5388803.421584 1349 1346 33925571.74906 1350 1346 2471062.936219 1351 1346 1236088.573861 1352 1346 -8882157.948759 1353 1346 -462970.4754449 1354 1346 -2777732.703214 1355 1346 35690216.05203 1356 1346 -2737270.396254 1357 1346 1541644.129353 1358 1346 -8945289.261872 1446 1346 10018981.01522 1447 1346 -8177088.970282 1448 1346 -16145262.77514 1449 1346 42113167.97979 1450 1346 7593861.729456 1451 1346 -55157692.73435 1452 1346 57871.30948763 1453 1346 -32833355.865 1454 1346 -37566373.58606 1455 1346 781320.0962051 1456 1346 -2152689.398522 1457 1346 -91946096.11431 1458 1346 11379085.18856 1459 1346 35569610.71641 1460 1346 -53430905.74636 1461 1346 -10076852.32471 1462 1346 -8246533.414749 1463 1346 -16388848.63381 1464 1346 -42894214.83411 1465 1346 -694433.1761459 1466 1346 -55531090.78464 1467 1346 -11378935.65847 1468 1346 8940966.590895 1469 1346 -20295098.63508 1347 1347 383498024.544 1348 1347 36666666.66064 1349 1347 2662179.892796 1353 1347 -52678594.23377 1354 1347 -36666666.66064 1355 1347 2505785.158418 1356 1347 -204675200.5845 1357 1347 -36666988.20463 1358 1347 -2662156.039165 1359 1347 11810466.31493 1360 1347 29333654.8725 1361 1347 -2152800.8684 1449 1347 -4579449.609996 1450 1347 11000120.58261 1451 1347 12057631.64322 1455 1347 -14225493.76444 1456 1347 -9166787.248675 1457 1347 -10019112.65448 1458 1347 35932670.30059 1459 1347 9166666.669679 1460 1347 9311563.653784 1464 1347 -18482764.4945 1465 1347 -9166666.669676 1466 1347 -10076852.32471 1467 1347 -72925641.46158 1468 1347 -9166747.055676 1469 1347 -43478968.03166 1470 1347 -7497354.851903 1471 1347 7333413.72174 1472 1347 -9080099.689708 1348 1348 328493596.9861 1349 1348 -6944376.43401 1353 1348 -36666666.66065 1354 1348 -41677781.0706 1355 1348 1263866.351621 1356 1348 -36667148.97662 1357 1348 -32338700.60373 1358 1348 -3847226.785359 1359 1348 44000482.30876 1360 1348 11810466.31493 1361 1348 2416693.76713 1449 1348 7333413.72174 1450 1348 -4579449.61 1451 1348 -6430626.286135 1455 1348 -9166747.055675 1456 1348 -46308715.17675 1457 1348 -32902986.62891 1458 1348 9166666.669678 1459 1348 22181563.40434 1460 1348 5180609.664774 1464 1348 -9166666.669676 1465 1348 -15732561.20235 1466 1348 -8246533.414749 1467 1348 -9166787.248676 1468 1348 -29841516.44517 1469 1348 -9524419.110191 1470 1348 11000120.58261 1471 1348 -7497354.8519 1472 1348 10895952.52268 1349 1349 364686604.8413 1353 1349 2471062.936219 1354 1349 1236088.573861 1355 1349 -8882157.948759 1356 1349 -2662144.112346 1357 1349 -3097217.751863 1358 1349 -5157813.372203 1359 1349 -3229201.302601 1360 1349 1611129.178087 1361 1349 31494576.83983 1449 1349 8038421.095477 1450 1349 -9645939.429201 1451 1349 -12211865.62666 1455 1349 -10019068.77473 1456 1349 -33069655.68813 1457 1349 -41500155.26984 1458 1349 -7806863.548506 1459 1349 -8513909.758068 1460 1349 -68673244.4318 1464 1349 -10076852.32471 1465 1349 -8246533.414749 1466 1349 -16388848.63381 1467 1349 -43444243.01831 1468 1349 -9329934.937092 1469 1349 -59307696.78438 1470 1349 -13620149.53456 1471 1349 7263968.348454 1472 1349 -19992946.27174 1350 1350 613328698.917 1351 1350 1.621246337891e-05 1352 1350 925940.9508365 1353 1350 82577683.23799 1354 1350 -7.659196853638e-06 1355 1350 231485.2378237 1362 1350 -140008022.8906 1363 1350 2.577900886536e-06 1364 1350 -462970.4754454 1365 1350 -52702268.47617 1366 1350 36666666.66064 1367 1350 -2702548.174055 1452 1350 -58783069.51046 1453 1350 1.639127731323e-06 1454 1350 42697451.81849 1455 1350 -19844426.42677 1456 1350 -9166666.669679 1457 1350 11321064.34898 1461 1350 57430602.85087 1462 1350 3.8743019104e-06 1463 1350 231485.2378496 1464 1350 -6249019.844286 1465 1350 -7.443130016327e-06 1466 1350 57871.30949415 1473 1350 -59172122.54065 1474 1350 4.395842552185e-07 1475 1350 -42928937.05631 1476 1350 -19947608.24497 1477 1350 9166666.669675 1478 1350 -11378935.65847 1351 1351 525322193.6551 1352 1351 -11110930.80738 1353 1351 -7.525086402893e-06 1354 1351 -56755372.43366 1355 1351 5555465.403692 1362 1351 2.831220626831e-06 1363 1351 21326659.08566 1364 1351 -2777732.703214 1365 1351 36666666.66064 1366 1351 -41701455.31301 1367 1351 1513866.351594 1452 1351 6.034970283508e-07 1453 1351 -18449398.9965 1454 1351 -694433.1761458 1455 1351 -9166666.669679 1456 1351 -17094223.13462 1457 1351 8871522.146427 1461 1351 4.231929779053e-06 1462 1351 35428976.52455 1463 1351 -2777732.703215 1464 1351 -7.599592208862e-06 1465 1351 -41082283.77936 1466 1351 35638866.34597 1473 1351 4.619359970093e-07 1474 1351 -18838452.02672 1475 1351 -694433.1761459 1476 1351 9166666.669675 1477 1351 -17197404.95283 1478 1351 8940966.590895 1352 1352 582790450.9006 1353 1352 231485.2378239 1354 1352 5555465.403692 1355 1352 74350397.96411 1362 1352 -462970.4754449 1363 1352 -2777732.703214 1364 1352 35690216.05203 1365 1352 -2737270.396254 1366 1352 1541644.129353 1367 1352 -8945289.261872 1452 1352 42662729.59629 1453 1352 -694433.1761458 1454 1352 -54493616.03735 1455 1352 11321064.34898 1456 1352 8871522.146428 1457 1352 -20019947.11985 1461 1352 231485.2378493 1462 1352 -2777732.703215 1463 1352 -110039912.4136 1464 1352 57871.30949473 1465 1352 35611088.56821 1466 1352 -53128242.27036 1473 1352 -42894214.83411 1474 1352 -694433.1761459 1475 1352 -55531090.78464 1476 1352 -11378935.65847 1477 1352 8940966.590895 1478 1352 -20295098.63508 1353 1353 613328698.917 1354 1353 1.621246337891e-05 1355 1353 925940.9508365 1356 1353 82577683.23799 1357 1353 -7.659196853638e-06 1358 1353 231485.2378237 1362 1353 -52678594.23377 1363 1353 -36666666.66064 1364 1353 2505785.158418 1365 1353 -140008022.8906 1366 1353 2.577900886536e-06 1367 1353 -462970.4754454 1368 1353 -52702268.47617 1369 1353 36666666.66064 1370 1353 -2702548.174055 1452 1353 -18391419.7975 1453 1353 9166666.669678 1454 1353 10018981.01522 1455 1353 -58783069.51046 1456 1353 1.639127731323e-06 1457 1353 42697451.81849 1458 1353 -19844426.42677 1459 1353 -9166666.669679 1460 1353 11321064.34898 1461 1353 -413319.0876746 1462 1353 3.017485141754e-06 1463 1353 57871.30948708 1464 1353 57430602.85087 1465 1353 3.8743019104e-06 1466 1353 231485.2378496 1467 1353 -6249019.844286 1468 1353 -7.443130016327e-06 1469 1353 57871.30949415 1473 1353 -18482764.4945 1474 1353 -9166666.669676 1475 1353 -10076852.32471 1476 1353 -59172122.54065 1477 1353 4.395842552185e-07 1478 1353 -42928937.05631 1479 1353 -19947608.24497 1480 1353 9166666.669675 1481 1353 -11378935.65847 1354 1354 525322193.6551 1355 1354 -11110930.80738 1356 1354 -7.525086402893e-06 1357 1354 -56755372.43366 1358 1354 5555465.403692 1362 1354 -36666666.66065 1363 1354 -41677781.0706 1364 1354 1263866.351621 1365 1354 2.831220626831e-06 1366 1354 21326659.08566 1367 1354 -2777732.703214 1368 1354 36666666.66064 1369 1354 -41701455.31301 1370 1354 1513866.351594 1452 1354 9166666.669678 1453 1354 -15641216.50536 1454 1354 -8177088.970282 1455 1354 6.034970283508e-07 1456 1354 -18449398.9965 1457 1354 -694433.1761458 1458 1354 -9166666.669679 1459 1354 -17094223.13462 1460 1354 8871522.146427 1461 1354 4.06801700592e-06 1462 1354 -35246583.02275 1463 1354 -32861133.64276 1464 1354 4.231929779053e-06 1465 1354 35428976.52455 1466 1354 -2777732.703215 1467 1354 -7.599592208862e-06 1468 1354 -41082283.77936 1469 1354 35638866.34597 1473 1354 -9166666.669676 1474 1354 -15732561.20235 1475 1354 -8246533.414749 1476 1354 4.619359970093e-07 1477 1354 -18838452.02672 1478 1354 -694433.1761459 1479 1354 9166666.669675 1480 1354 -17197404.95283 1481 1354 8940966.590895 1355 1355 582790450.9006 1356 1355 231485.2378239 1357 1355 5555465.403692 1358 1355 74350397.96411 1362 1355 2471062.936219 1363 1355 1236088.573861 1364 1355 -8882157.948759 1365 1355 -462970.4754449 1366 1355 -2777732.703214 1367 1355 35690216.05203 1368 1355 -2737270.396254 1369 1355 1541644.129353 1370 1355 -8945289.261872 1452 1355 10018981.01522 1453 1355 -8177088.970282 1454 1355 -16145262.77514 1455 1355 42662729.59629 1456 1355 -694433.1761458 1457 1355 -54493616.03735 1458 1355 11321064.34898 1459 1355 8871522.146428 1460 1355 -20019947.11985 1461 1355 57871.30948763 1462 1355 -32833355.865 1463 1355 -37566373.58606 1464 1355 231485.2378493 1465 1355 -2777732.703215 1466 1355 -110039912.4136 1467 1355 57871.30949473 1468 1355 35611088.56821 1469 1355 -53128242.27036 1473 1355 -10076852.32471 1474 1355 -8246533.414749 1475 1355 -16388848.63381 1476 1355 -42894214.83411 1477 1355 -694433.1761459 1478 1355 -55531090.78464 1479 1355 -11378935.65847 1480 1355 8940966.590895 1481 1355 -20295098.63508 1356 1356 665854880.679 1357 1356 36667470.52063 1358 1356 3125090.734117 1359 1356 18070347.2503 1360 1356 -36666988.20464 1361 1356 2702571.265064 1365 1356 -52678594.23377 1366 1356 -36666666.66064 1367 1356 2505785.158418 1368 1356 -140008022.8906 1369 1356 2.577900886536e-06 1370 1356 -462970.4754454 1371 1356 -52702268.47617 1372 1356 36666666.66064 1373 1356 -2702548.174055 1455 1356 -18391419.7975 1456 1356 9166666.669678 1457 1356 10018981.01522 1458 1356 -71369389.94283 1459 1356 -9166787.24867 1460 1356 42147892.99313 1464 1356 -413319.0876746 1465 1356 3.017485141754e-06 1466 1356 57871.30948708 1467 1356 76553135.92261 1468 1356 9166867.634673 1469 1356 781226.2244361 1470 1356 -18699525.19313 1471 1356 -9166747.055676 1472 1356 11379035.3452 1476 1356 -18482764.4945 1477 1356 -9166666.669676 1478 1356 -10076852.32471 1479 1356 -59172122.54065 1480 1356 4.395842552185e-07 1481 1356 -42928937.05631 1482 1356 -19947608.24497 1483 1356 9166666.669675 1484 1356 -11378935.65847 1357 1357 566847200.4901 1358 1357 -8610909.306622 1359 1357 -36667148.97663 1360 1357 -110262538.3357 1361 1357 4611016.915367 1365 1357 -36666666.66065 1366 1357 -41677781.0706 1367 1357 1263866.351621 1368 1357 2.831220626831e-06 1369 1357 21326659.08566 1370 1357 -2777732.703214 1371 1357 36666666.66064 1372 1357 -41701455.31301 1373 1357 1513866.351594 1455 1357 9166666.669678 1456 1357 -15641216.50536 1457 1357 -8177088.970282 1458 1357 -9166747.055672 1459 1357 -28285264.92641 1460 1357 7788270.809731 1464 1357 4.06801700592e-06 1465 1357 -35246583.02275 1466 1357 -32861133.64276 1467 1357 9166867.634673 1468 1357 51801215.86321 1469 1357 -2152764.494718 1470 1357 -9166787.248675 1471 1357 -50782746.60544 1472 1357 35402941.77273 1476 1357 -9166666.669676 1477 1357 -15732561.20235 1478 1357 -8246533.414749 1479 1357 4.619359970093e-07 1480 1357 -18838452.02672 1481 1357 -694433.1761459 1482 1357 9166666.669675 1483 1357 -17197404.95283 1484 1357 8940966.590895 1358 1358 591261848.0956 1359 1358 2737305.032771 1360 1358 5388803.421584 1361 1358 33925571.74906 1365 1358 2471062.936219 1366 1358 1236088.573861 1367 1358 -8882157.948759 1368 1358 -462970.4754449 1369 1358 -2777732.703214 1370 1358 35690216.05203 1371 1358 -2737270.396254 1372 1358 1541644.129353 1373 1358 -8945289.261872 1455 1358 10018981.01522 1456 1358 -8177088.970282 1457 1358 -16145262.77514 1458 1358 42113167.97979 1459 1358 7593861.729456 1460 1358 -55157692.73435 1464 1358 57871.30948763 1465 1358 -32833355.865 1466 1358 -37566373.58606 1467 1358 781320.0962051 1468 1358 -2152689.398522 1469 1358 -91946096.11431 1470 1358 11379085.18856 1471 1358 35569610.71641 1472 1358 -53430905.74636 1476 1358 -10076852.32471 1477 1358 -8246533.414749 1478 1358 -16388848.63381 1479 1358 -42894214.83411 1480 1358 -694433.1761459 1481 1358 -55531090.78464 1482 1358 -11378935.65847 1483 1358 8940966.590895 1484 1358 -20295098.63508 1359 1359 383498024.544 1360 1359 36666666.66064 1361 1359 2662179.892796 1368 1359 -52678594.23377 1369 1359 -36666666.66064 1370 1359 2505785.158418 1371 1359 -204675200.5845 1372 1359 -36666988.20463 1373 1359 -2662156.039165 1374 1359 11810466.31493 1375 1359 29333654.8725 1376 1359 -2152800.8684 1458 1359 -4579449.609996 1459 1359 11000120.58261 1460 1359 12057631.64322 1467 1359 -14225493.76444 1468 1359 -9166787.248675 1469 1359 -10019112.65448 1470 1359 35932670.30059 1471 1359 9166666.669679 1472 1359 9311563.653784 1479 1359 -18482764.4945 1480 1359 -9166666.669676 1481 1359 -10076852.32471 1482 1359 -72925641.46158 1483 1359 -9166747.055676 1484 1359 -43478968.03166 1485 1359 -7497354.851903 1486 1359 7333413.72174 1487 1359 -9080099.689708 1360 1360 328493596.9861 1361 1360 -6944376.43401 1368 1360 -36666666.66065 1369 1360 -41677781.0706 1370 1360 1263866.351621 1371 1360 -36667148.97662 1372 1360 -32338700.60373 1373 1360 -3847226.785359 1374 1360 44000482.30876 1375 1360 11810466.31493 1376 1360 2416693.76713 1458 1360 7333413.72174 1459 1360 -4579449.61 1460 1360 -6430626.286135 1467 1360 -9166747.055675 1468 1360 -46308715.17675 1469 1360 -32902986.62891 1470 1360 9166666.669678 1471 1360 22181563.40434 1472 1360 5180609.664774 1479 1360 -9166666.669676 1480 1360 -15732561.20235 1481 1360 -8246533.414749 1482 1360 -9166787.248676 1483 1360 -29841516.44517 1484 1360 -9524419.110191 1485 1360 11000120.58261 1486 1360 -7497354.8519 1487 1360 10895952.52268 1361 1361 364686604.8413 1368 1361 2471062.936219 1369 1361 1236088.573861 1370 1361 -8882157.948759 1371 1361 -2662144.112346 1372 1361 -3097217.751863 1373 1361 -5157813.372203 1374 1361 -3229201.302601 1375 1361 1611129.178087 1376 1361 31494576.83983 1458 1361 8038421.095477 1459 1361 -9645939.429201 1460 1361 -12211865.62666 1467 1361 -10019068.77473 1468 1361 -33069655.68813 1469 1361 -41500155.26984 1470 1361 -7806863.548506 1471 1361 -8513909.758068 1472 1361 -68673244.4318 1479 1361 -10076852.32471 1480 1361 -8246533.414749 1481 1361 -16388848.63381 1482 1361 -43444243.01831 1483 1361 -9329934.937092 1484 1361 -59307696.78438 1485 1361 -13620149.53456 1486 1361 7263968.348454 1487 1361 -19992946.27174 1362 1362 613328698.917 1363 1362 1.621246337891e-05 1364 1362 925940.9508365 1365 1362 82577683.23799 1366 1362 -7.659196853638e-06 1367 1362 231485.2378237 1377 1362 -140008022.8906 1378 1362 2.577900886536e-06 1379 1362 -462970.4754454 1380 1362 -52702268.47617 1381 1362 36666666.66064 1382 1362 -2702548.174055 1461 1362 -58783069.51046 1462 1362 1.639127731323e-06 1463 1362 42697451.81849 1464 1362 -19844426.42677 1465 1362 -9166666.669679 1466 1362 11321064.34898 1473 1362 57430602.85087 1474 1362 3.8743019104e-06 1475 1362 231485.2378496 1476 1362 -6249019.844286 1477 1362 -7.443130016327e-06 1478 1362 57871.30949415 1488 1362 -59172122.54065 1489 1362 4.395842552185e-07 1490 1362 -42928937.05631 1491 1362 -19947608.24497 1492 1362 9166666.669675 1493 1362 -11378935.65847 1363 1363 525322193.6551 1364 1363 -11110930.80738 1365 1363 -7.525086402893e-06 1366 1363 -56755372.43366 1367 1363 5555465.403692 1377 1363 2.831220626831e-06 1378 1363 21326659.08566 1379 1363 -2777732.703214 1380 1363 36666666.66064 1381 1363 -41701455.31301 1382 1363 1513866.351594 1461 1363 6.034970283508e-07 1462 1363 -18449398.9965 1463 1363 -694433.1761458 1464 1363 -9166666.669679 1465 1363 -17094223.13462 1466 1363 8871522.146427 1473 1363 4.231929779053e-06 1474 1363 35428976.52455 1475 1363 -2777732.703215 1476 1363 -7.599592208862e-06 1477 1363 -41082283.77936 1478 1363 35638866.34597 1488 1363 4.619359970093e-07 1489 1363 -18838452.02672 1490 1363 -694433.1761459 1491 1363 9166666.669675 1492 1363 -17197404.95283 1493 1363 8940966.590895 1364 1364 582790450.9006 1365 1364 231485.2378239 1366 1364 5555465.403692 1367 1364 74350397.96411 1377 1364 -462970.4754449 1378 1364 -2777732.703214 1379 1364 35690216.05203 1380 1364 -2737270.396254 1381 1364 1541644.129353 1382 1364 -8945289.261872 1461 1364 42662729.59629 1462 1364 -694433.1761458 1463 1364 -54493616.03735 1464 1364 11321064.34898 1465 1364 8871522.146428 1466 1364 -20019947.11985 1473 1364 231485.2378493 1474 1364 -2777732.703215 1475 1364 -110039912.4136 1476 1364 57871.30949473 1477 1364 35611088.56821 1478 1364 -53128242.27036 1488 1364 -42894214.83411 1489 1364 -694433.1761459 1490 1364 -55531090.78464 1491 1364 -11378935.65847 1492 1364 8940966.590895 1493 1364 -20295098.63508 1365 1365 613328698.917 1366 1365 1.621246337891e-05 1367 1365 925940.9508365 1368 1365 82577683.23799 1369 1365 -7.659196853638e-06 1370 1365 231485.2378237 1377 1365 -52678594.23377 1378 1365 -36666666.66064 1379 1365 2505785.158418 1380 1365 -140008022.8906 1381 1365 2.577900886536e-06 1382 1365 -462970.4754454 1383 1365 -52702268.47617 1384 1365 36666666.66064 1385 1365 -2702548.174055 1461 1365 -18391419.7975 1462 1365 9166666.669678 1463 1365 10018981.01522 1464 1365 -58783069.51046 1465 1365 1.639127731323e-06 1466 1365 42697451.81849 1467 1365 -19844426.42677 1468 1365 -9166666.669679 1469 1365 11321064.34898 1473 1365 -413319.0876746 1474 1365 3.017485141754e-06 1475 1365 57871.30948708 1476 1365 57430602.85087 1477 1365 3.8743019104e-06 1478 1365 231485.2378496 1479 1365 -6249019.844286 1480 1365 -7.443130016327e-06 1481 1365 57871.30949415 1488 1365 -18482764.4945 1489 1365 -9166666.669676 1490 1365 -10076852.32471 1491 1365 -59172122.54065 1492 1365 4.395842552185e-07 1493 1365 -42928937.05631 1494 1365 -19947608.24497 1495 1365 9166666.669675 1496 1365 -11378935.65847 1366 1366 525322193.6551 1367 1366 -11110930.80738 1368 1366 -7.525086402893e-06 1369 1366 -56755372.43366 1370 1366 5555465.403692 1377 1366 -36666666.66065 1378 1366 -41677781.0706 1379 1366 1263866.351621 1380 1366 2.831220626831e-06 1381 1366 21326659.08566 1382 1366 -2777732.703214 1383 1366 36666666.66064 1384 1366 -41701455.31301 1385 1366 1513866.351594 1461 1366 9166666.669678 1462 1366 -15641216.50536 1463 1366 -8177088.970282 1464 1366 6.034970283508e-07 1465 1366 -18449398.9965 1466 1366 -694433.1761458 1467 1366 -9166666.669679 1468 1366 -17094223.13462 1469 1366 8871522.146427 1473 1366 4.06801700592e-06 1474 1366 -35246583.02275 1475 1366 -32861133.64276 1476 1366 4.231929779053e-06 1477 1366 35428976.52455 1478 1366 -2777732.703215 1479 1366 -7.599592208862e-06 1480 1366 -41082283.77936 1481 1366 35638866.34597 1488 1366 -9166666.669676 1489 1366 -15732561.20235 1490 1366 -8246533.414749 1491 1366 4.619359970093e-07 1492 1366 -18838452.02672 1493 1366 -694433.1761459 1494 1366 9166666.669675 1495 1366 -17197404.95283 1496 1366 8940966.590895 1367 1367 582790450.9006 1368 1367 231485.2378239 1369 1367 5555465.403692 1370 1367 74350397.96411 1377 1367 2471062.936219 1378 1367 1236088.573861 1379 1367 -8882157.948759 1380 1367 -462970.4754449 1381 1367 -2777732.703214 1382 1367 35690216.05203 1383 1367 -2737270.396254 1384 1367 1541644.129353 1385 1367 -8945289.261872 1461 1367 10018981.01522 1462 1367 -8177088.970282 1463 1367 -16145262.77514 1464 1367 42662729.59629 1465 1367 -694433.1761458 1466 1367 -54493616.03735 1467 1367 11321064.34898 1468 1367 8871522.146428 1469 1367 -20019947.11985 1473 1367 57871.30948763 1474 1367 -32833355.865 1475 1367 -37566373.58606 1476 1367 231485.2378493 1477 1367 -2777732.703215 1478 1367 -110039912.4136 1479 1367 57871.30949473 1480 1367 35611088.56821 1481 1367 -53128242.27036 1488 1367 -10076852.32471 1489 1367 -8246533.414749 1490 1367 -16388848.63381 1491 1367 -42894214.83411 1492 1367 -694433.1761459 1493 1367 -55531090.78464 1494 1367 -11378935.65847 1495 1367 8940966.590895 1496 1367 -20295098.63508 1368 1368 613328698.917 1369 1368 1.621246337891e-05 1370 1368 925940.9508365 1371 1368 82577683.23799 1372 1368 -7.659196853638e-06 1373 1368 231485.2378237 1380 1368 -52678594.23377 1381 1368 -36666666.66064 1382 1368 2505785.158418 1383 1368 -140008022.8906 1384 1368 2.577900886536e-06 1385 1368 -462970.4754454 1386 1368 -52702268.47617 1387 1368 36666666.66064 1388 1368 -2702548.174055 1464 1368 -18391419.7975 1465 1368 9166666.669678 1466 1368 10018981.01522 1467 1368 -58783069.51046 1468 1368 1.639127731323e-06 1469 1368 42697451.81849 1470 1368 -19844426.42677 1471 1368 -9166666.669679 1472 1368 11321064.34898 1476 1368 -413319.0876746 1477 1368 3.017485141754e-06 1478 1368 57871.30948708 1479 1368 57430602.85087 1480 1368 3.8743019104e-06 1481 1368 231485.2378496 1482 1368 -6249019.844286 1483 1368 -7.443130016327e-06 1484 1368 57871.30949415 1491 1368 -18482764.4945 1492 1368 -9166666.669676 1493 1368 -10076852.32471 1494 1368 -59172122.54065 1495 1368 4.395842552185e-07 1496 1368 -42928937.05631 1497 1368 -19947608.24497 1498 1368 9166666.669675 1499 1368 -11378935.65847 1369 1369 525322193.6551 1370 1369 -11110930.80738 1371 1369 -7.525086402893e-06 1372 1369 -56755372.43366 1373 1369 5555465.403692 1380 1369 -36666666.66065 1381 1369 -41677781.0706 1382 1369 1263866.351621 1383 1369 2.831220626831e-06 1384 1369 21326659.08566 1385 1369 -2777732.703214 1386 1369 36666666.66064 1387 1369 -41701455.31301 1388 1369 1513866.351594 1464 1369 9166666.669678 1465 1369 -15641216.50536 1466 1369 -8177088.970282 1467 1369 6.034970283508e-07 1468 1369 -18449398.9965 1469 1369 -694433.1761458 1470 1369 -9166666.669679 1471 1369 -17094223.13462 1472 1369 8871522.146427 1476 1369 4.06801700592e-06 1477 1369 -35246583.02275 1478 1369 -32861133.64276 1479 1369 4.231929779053e-06 1480 1369 35428976.52455 1481 1369 -2777732.703215 1482 1369 -7.599592208862e-06 1483 1369 -41082283.77936 1484 1369 35638866.34597 1491 1369 -9166666.669676 1492 1369 -15732561.20235 1493 1369 -8246533.414749 1494 1369 4.619359970093e-07 1495 1369 -18838452.02672 1496 1369 -694433.1761459 1497 1369 9166666.669675 1498 1369 -17197404.95283 1499 1369 8940966.590895 1370 1370 582790450.9006 1371 1370 231485.2378239 1372 1370 5555465.403692 1373 1370 74350397.96411 1380 1370 2471062.936219 1381 1370 1236088.573861 1382 1370 -8882157.948759 1383 1370 -462970.4754449 1384 1370 -2777732.703214 1385 1370 35690216.05203 1386 1370 -2737270.396254 1387 1370 1541644.129353 1388 1370 -8945289.261872 1464 1370 10018981.01522 1465 1370 -8177088.970282 1466 1370 -16145262.77514 1467 1370 42662729.59629 1468 1370 -694433.1761458 1469 1370 -54493616.03735 1470 1370 11321064.34898 1471 1370 8871522.146428 1472 1370 -20019947.11985 1476 1370 57871.30948763 1477 1370 -32833355.865 1478 1370 -37566373.58606 1479 1370 231485.2378493 1480 1370 -2777732.703215 1481 1370 -110039912.4136 1482 1370 57871.30949473 1483 1370 35611088.56821 1484 1370 -53128242.27036 1491 1370 -10076852.32471 1492 1370 -8246533.414749 1493 1370 -16388848.63381 1494 1370 -42894214.83411 1495 1370 -694433.1761459 1496 1370 -55531090.78464 1497 1370 -11378935.65847 1498 1370 8940966.590895 1499 1370 -20295098.63508 1371 1371 665854880.679 1372 1371 36667470.52063 1373 1371 3125090.734117 1374 1371 18070347.2503 1375 1371 -36666988.20464 1376 1371 2702571.265064 1383 1371 -52678594.23377 1384 1371 -36666666.66064 1385 1371 2505785.158418 1386 1371 -140008022.8906 1387 1371 2.577900886536e-06 1388 1371 -462970.4754454 1389 1371 -52702268.47617 1390 1371 36666666.66064 1391 1371 -2702548.174055 1467 1371 -18391419.7975 1468 1371 9166666.669678 1469 1371 10018981.01522 1470 1371 -71369389.94283 1471 1371 -9166787.24867 1472 1371 42147892.99313 1479 1371 -413319.0876746 1480 1371 3.017485141754e-06 1481 1371 57871.30948708 1482 1371 76553135.92261 1483 1371 9166867.634673 1484 1371 781226.2244361 1485 1371 -18699525.19313 1486 1371 -9166747.055676 1487 1371 11379035.3452 1494 1371 -18482764.4945 1495 1371 -9166666.669676 1496 1371 -10076852.32471 1497 1371 -59172122.54065 1498 1371 4.395842552185e-07 1499 1371 -42928937.05631 1500 1371 -19947608.24497 1501 1371 9166666.669675 1502 1371 -11378935.65847 1372 1372 566847200.4901 1373 1372 -8610909.306622 1374 1372 -36667148.97663 1375 1372 -110262538.3357 1376 1372 4611016.915367 1383 1372 -36666666.66065 1384 1372 -41677781.0706 1385 1372 1263866.351621 1386 1372 2.831220626831e-06 1387 1372 21326659.08566 1388 1372 -2777732.703214 1389 1372 36666666.66064 1390 1372 -41701455.31301 1391 1372 1513866.351594 1467 1372 9166666.669678 1468 1372 -15641216.50536 1469 1372 -8177088.970282 1470 1372 -9166747.055672 1471 1372 -28285264.92641 1472 1372 7788270.809731 1479 1372 4.06801700592e-06 1480 1372 -35246583.02275 1481 1372 -32861133.64276 1482 1372 9166867.634673 1483 1372 51801215.86321 1484 1372 -2152764.494718 1485 1372 -9166787.248675 1486 1372 -50782746.60544 1487 1372 35402941.77273 1494 1372 -9166666.669676 1495 1372 -15732561.20235 1496 1372 -8246533.414749 1497 1372 4.619359970093e-07 1498 1372 -18838452.02672 1499 1372 -694433.1761459 1500 1372 9166666.669675 1501 1372 -17197404.95283 1502 1372 8940966.590895 1373 1373 591261848.0956 1374 1373 2737305.032771 1375 1373 5388803.421584 1376 1373 33925571.74906 1383 1373 2471062.936219 1384 1373 1236088.573861 1385 1373 -8882157.948759 1386 1373 -462970.4754449 1387 1373 -2777732.703214 1388 1373 35690216.05203 1389 1373 -2737270.396254 1390 1373 1541644.129353 1391 1373 -8945289.261872 1467 1373 10018981.01522 1468 1373 -8177088.970282 1469 1373 -16145262.77514 1470 1373 42113167.97979 1471 1373 7593861.729456 1472 1373 -55157692.73435 1479 1373 57871.30948763 1480 1373 -32833355.865 1481 1373 -37566373.58606 1482 1373 781320.0962051 1483 1373 -2152689.398522 1484 1373 -91946096.11431 1485 1373 11379085.18856 1486 1373 35569610.71641 1487 1373 -53430905.74636 1494 1373 -10076852.32471 1495 1373 -8246533.414749 1496 1373 -16388848.63381 1497 1373 -42894214.83411 1498 1373 -694433.1761459 1499 1373 -55531090.78464 1500 1373 -11378935.65847 1501 1373 8940966.590895 1502 1373 -20295098.63508 1374 1374 383498024.544 1375 1374 36666666.66064 1376 1374 2662179.892796 1386 1374 -52678594.23377 1387 1374 -36666666.66064 1388 1374 2505785.158418 1389 1374 -204675200.5845 1390 1374 -36666988.20463 1391 1374 -2662156.039165 1392 1374 11810466.31493 1393 1374 29333654.8725 1394 1374 -2152800.8684 1470 1374 -4579449.609996 1471 1374 11000120.58261 1472 1374 12057631.64322 1482 1374 -14225493.76444 1483 1374 -9166787.248675 1484 1374 -10019112.65448 1485 1374 35932670.30059 1486 1374 9166666.669679 1487 1374 9311563.653784 1497 1374 -18482764.4945 1498 1374 -9166666.669676 1499 1374 -10076852.32471 1500 1374 -72925641.46158 1501 1374 -9166747.055676 1502 1374 -43478968.03166 1503 1374 -7497354.851903 1504 1374 7333413.72174 1505 1374 -9080099.689708 1375 1375 328493596.9861 1376 1375 -6944376.43401 1386 1375 -36666666.66065 1387 1375 -41677781.0706 1388 1375 1263866.351621 1389 1375 -36667148.97662 1390 1375 -32338700.60373 1391 1375 -3847226.785359 1392 1375 44000482.30876 1393 1375 11810466.31493 1394 1375 2416693.76713 1470 1375 7333413.72174 1471 1375 -4579449.61 1472 1375 -6430626.286135 1482 1375 -9166747.055675 1483 1375 -46308715.17675 1484 1375 -32902986.62891 1485 1375 9166666.669678 1486 1375 22181563.40434 1487 1375 5180609.664774 1497 1375 -9166666.669676 1498 1375 -15732561.20235 1499 1375 -8246533.414749 1500 1375 -9166787.248676 1501 1375 -29841516.44517 1502 1375 -9524419.110191 1503 1375 11000120.58261 1504 1375 -7497354.8519 1505 1375 10895952.52268 1376 1376 364686604.8413 1386 1376 2471062.936219 1387 1376 1236088.573861 1388 1376 -8882157.948759 1389 1376 -2662144.112346 1390 1376 -3097217.751863 1391 1376 -5157813.372203 1392 1376 -3229201.302601 1393 1376 1611129.178087 1394 1376 31494576.83983 1470 1376 8038421.095477 1471 1376 -9645939.429201 1472 1376 -12211865.62666 1482 1376 -10019068.77473 1483 1376 -33069655.68813 1484 1376 -41500155.26984 1485 1376 -7806863.548506 1486 1376 -8513909.758068 1487 1376 -68673244.4318 1497 1376 -10076852.32471 1498 1376 -8246533.414749 1499 1376 -16388848.63381 1500 1376 -43444243.01831 1501 1376 -9329934.937092 1502 1376 -59307696.78438 1503 1376 -13620149.53456 1504 1376 7263968.348454 1505 1376 -19992946.27174 1377 1377 613328698.917 1378 1377 1.621246337891e-05 1379 1377 925940.9508365 1380 1377 82577683.23799 1381 1377 -7.659196853638e-06 1382 1377 231485.2378237 1395 1377 -140008022.8906 1396 1377 2.577900886536e-06 1397 1377 -462970.4754454 1398 1377 -52702268.47617 1399 1377 36666666.66064 1400 1377 -2702548.174055 1473 1377 -58783069.51046 1474 1377 1.639127731323e-06 1475 1377 42697451.81849 1476 1377 -19844426.42677 1477 1377 -9166666.669679 1478 1377 11321064.34898 1488 1377 57430602.85087 1489 1377 3.8743019104e-06 1490 1377 231485.2378496 1491 1377 -6249019.844286 1492 1377 -7.443130016327e-06 1493 1377 57871.30949415 1506 1377 -59172122.54065 1507 1377 4.395842552185e-07 1508 1377 -42928937.05631 1509 1377 -19947608.24497 1510 1377 9166666.669675 1511 1377 -11378935.65847 1378 1378 525322193.6551 1379 1378 -11110930.80738 1380 1378 -7.525086402893e-06 1381 1378 -56755372.43366 1382 1378 5555465.403692 1395 1378 2.831220626831e-06 1396 1378 21326659.08566 1397 1378 -2777732.703214 1398 1378 36666666.66064 1399 1378 -41701455.31301 1400 1378 1513866.351594 1473 1378 6.034970283508e-07 1474 1378 -18449398.9965 1475 1378 -694433.1761458 1476 1378 -9166666.669679 1477 1378 -17094223.13462 1478 1378 8871522.146427 1488 1378 4.231929779053e-06 1489 1378 35428976.52455 1490 1378 -2777732.703215 1491 1378 -7.599592208862e-06 1492 1378 -41082283.77936 1493 1378 35638866.34597 1506 1378 4.619359970093e-07 1507 1378 -18838452.02672 1508 1378 -694433.1761459 1509 1378 9166666.669675 1510 1378 -17197404.95283 1511 1378 8940966.590895 1379 1379 582790450.9006 1380 1379 231485.2378239 1381 1379 5555465.403692 1382 1379 74350397.96411 1395 1379 -462970.4754449 1396 1379 -2777732.703214 1397 1379 35690216.05203 1398 1379 -2737270.396254 1399 1379 1541644.129353 1400 1379 -8945289.261872 1473 1379 42662729.59629 1474 1379 -694433.1761458 1475 1379 -54493616.03735 1476 1379 11321064.34898 1477 1379 8871522.146428 1478 1379 -20019947.11985 1488 1379 231485.2378493 1489 1379 -2777732.703215 1490 1379 -110039912.4136 1491 1379 57871.30949473 1492 1379 35611088.56821 1493 1379 -53128242.27036 1506 1379 -42894214.83411 1507 1379 -694433.1761459 1508 1379 -55531090.78464 1509 1379 -11378935.65847 1510 1379 8940966.590895 1511 1379 -20295098.63508 1380 1380 613328698.917 1381 1380 1.621246337891e-05 1382 1380 925940.9508365 1383 1380 82577683.23799 1384 1380 -7.659196853638e-06 1385 1380 231485.2378237 1395 1380 -52678594.23377 1396 1380 -36666666.66064 1397 1380 2505785.158418 1398 1380 -140008022.8906 1399 1380 2.577900886536e-06 1400 1380 -462970.4754454 1401 1380 -52702268.47617 1402 1380 36666666.66064 1403 1380 -2702548.174055 1473 1380 -18391419.7975 1474 1380 9166666.669678 1475 1380 10018981.01522 1476 1380 -58783069.51046 1477 1380 1.639127731323e-06 1478 1380 42697451.81849 1479 1380 -19844426.42677 1480 1380 -9166666.669679 1481 1380 11321064.34898 1488 1380 -413319.0876746 1489 1380 3.017485141754e-06 1490 1380 57871.30948708 1491 1380 57430602.85087 1492 1380 3.8743019104e-06 1493 1380 231485.2378496 1494 1380 -6249019.844286 1495 1380 -7.443130016327e-06 1496 1380 57871.30949415 1506 1380 -18482764.4945 1507 1380 -9166666.669676 1508 1380 -10076852.32471 1509 1380 -59172122.54065 1510 1380 4.395842552185e-07 1511 1380 -42928937.05631 1512 1380 -19947608.24497 1513 1380 9166666.669675 1514 1380 -11378935.65847 1381 1381 525322193.6551 1382 1381 -11110930.80738 1383 1381 -7.525086402893e-06 1384 1381 -56755372.43366 1385 1381 5555465.403692 1395 1381 -36666666.66065 1396 1381 -41677781.0706 1397 1381 1263866.351621 1398 1381 2.831220626831e-06 1399 1381 21326659.08566 1400 1381 -2777732.703214 1401 1381 36666666.66064 1402 1381 -41701455.31301 1403 1381 1513866.351594 1473 1381 9166666.669678 1474 1381 -15641216.50536 1475 1381 -8177088.970282 1476 1381 6.034970283508e-07 1477 1381 -18449398.9965 1478 1381 -694433.1761458 1479 1381 -9166666.669679 1480 1381 -17094223.13462 1481 1381 8871522.146427 1488 1381 4.06801700592e-06 1489 1381 -35246583.02275 1490 1381 -32861133.64276 1491 1381 4.231929779053e-06 1492 1381 35428976.52455 1493 1381 -2777732.703215 1494 1381 -7.599592208862e-06 1495 1381 -41082283.77936 1496 1381 35638866.34597 1506 1381 -9166666.669676 1507 1381 -15732561.20235 1508 1381 -8246533.414749 1509 1381 4.619359970093e-07 1510 1381 -18838452.02672 1511 1381 -694433.1761459 1512 1381 9166666.669675 1513 1381 -17197404.95283 1514 1381 8940966.590895 1382 1382 582790450.9006 1383 1382 231485.2378239 1384 1382 5555465.403692 1385 1382 74350397.96411 1395 1382 2471062.936219 1396 1382 1236088.573861 1397 1382 -8882157.948759 1398 1382 -462970.4754449 1399 1382 -2777732.703214 1400 1382 35690216.05203 1401 1382 -2737270.396254 1402 1382 1541644.129353 1403 1382 -8945289.261872 1473 1382 10018981.01522 1474 1382 -8177088.970282 1475 1382 -16145262.77514 1476 1382 42662729.59629 1477 1382 -694433.1761458 1478 1382 -54493616.03735 1479 1382 11321064.34898 1480 1382 8871522.146428 1481 1382 -20019947.11985 1488 1382 57871.30948763 1489 1382 -32833355.865 1490 1382 -37566373.58606 1491 1382 231485.2378493 1492 1382 -2777732.703215 1493 1382 -110039912.4136 1494 1382 57871.30949473 1495 1382 35611088.56821 1496 1382 -53128242.27036 1506 1382 -10076852.32471 1507 1382 -8246533.414749 1508 1382 -16388848.63381 1509 1382 -42894214.83411 1510 1382 -694433.1761459 1511 1382 -55531090.78464 1512 1382 -11378935.65847 1513 1382 8940966.590895 1514 1382 -20295098.63508 1383 1383 613328698.917 1384 1383 1.621246337891e-05 1385 1383 925940.9508365 1386 1383 82577683.23799 1387 1383 -7.659196853638e-06 1388 1383 231485.2378237 1398 1383 -52678594.23377 1399 1383 -36666666.66064 1400 1383 2505785.158418 1401 1383 -140008022.8906 1402 1383 2.577900886536e-06 1403 1383 -462970.4754454 1404 1383 -52702268.47617 1405 1383 36666666.66064 1406 1383 -2702548.174055 1476 1383 -18391419.7975 1477 1383 9166666.669678 1478 1383 10018981.01522 1479 1383 -58783069.51046 1480 1383 1.639127731323e-06 1481 1383 42697451.81849 1482 1383 -19844426.42677 1483 1383 -9166666.669679 1484 1383 11321064.34898 1491 1383 -413319.0876746 1492 1383 3.017485141754e-06 1493 1383 57871.30948708 1494 1383 57430602.85087 1495 1383 3.8743019104e-06 1496 1383 231485.2378496 1497 1383 -6249019.844286 1498 1383 -7.443130016327e-06 1499 1383 57871.30949415 1509 1383 -18482764.4945 1510 1383 -9166666.669676 1511 1383 -10076852.32471 1512 1383 -59172122.54065 1513 1383 4.395842552185e-07 1514 1383 -42928937.05631 1515 1383 -19947608.24497 1516 1383 9166666.669675 1517 1383 -11378935.65847 1384 1384 525322193.6551 1385 1384 -11110930.80738 1386 1384 -7.525086402893e-06 1387 1384 -56755372.43366 1388 1384 5555465.403692 1398 1384 -36666666.66065 1399 1384 -41677781.0706 1400 1384 1263866.351621 1401 1384 2.831220626831e-06 1402 1384 21326659.08566 1403 1384 -2777732.703214 1404 1384 36666666.66064 1405 1384 -41701455.31301 1406 1384 1513866.351594 1476 1384 9166666.669678 1477 1384 -15641216.50536 1478 1384 -8177088.970282 1479 1384 6.034970283508e-07 1480 1384 -18449398.9965 1481 1384 -694433.1761458 1482 1384 -9166666.669679 1483 1384 -17094223.13462 1484 1384 8871522.146427 1491 1384 4.06801700592e-06 1492 1384 -35246583.02275 1493 1384 -32861133.64276 1494 1384 4.231929779053e-06 1495 1384 35428976.52455 1496 1384 -2777732.703215 1497 1384 -7.599592208862e-06 1498 1384 -41082283.77936 1499 1384 35638866.34597 1509 1384 -9166666.669676 1510 1384 -15732561.20235 1511 1384 -8246533.414749 1512 1384 4.619359970093e-07 1513 1384 -18838452.02672 1514 1384 -694433.1761459 1515 1384 9166666.669675 1516 1384 -17197404.95283 1517 1384 8940966.590895 1385 1385 582790450.9006 1386 1385 231485.2378239 1387 1385 5555465.403692 1388 1385 74350397.96411 1398 1385 2471062.936219 1399 1385 1236088.573861 1400 1385 -8882157.948759 1401 1385 -462970.4754449 1402 1385 -2777732.703214 1403 1385 35690216.05203 1404 1385 -2737270.396254 1405 1385 1541644.129353 1406 1385 -8945289.261872 1476 1385 10018981.01522 1477 1385 -8177088.970282 1478 1385 -16145262.77514 1479 1385 42662729.59629 1480 1385 -694433.1761458 1481 1385 -54493616.03735 1482 1385 11321064.34898 1483 1385 8871522.146428 1484 1385 -20019947.11985 1491 1385 57871.30948763 1492 1385 -32833355.865 1493 1385 -37566373.58606 1494 1385 231485.2378493 1495 1385 -2777732.703215 1496 1385 -110039912.4136 1497 1385 57871.30949473 1498 1385 35611088.56821 1499 1385 -53128242.27036 1509 1385 -10076852.32471 1510 1385 -8246533.414749 1511 1385 -16388848.63381 1512 1385 -42894214.83411 1513 1385 -694433.1761459 1514 1385 -55531090.78464 1515 1385 -11378935.65847 1516 1385 8940966.590895 1517 1385 -20295098.63508 1386 1386 613328698.917 1387 1386 1.621246337891e-05 1388 1386 925940.9508365 1389 1386 82577683.23799 1390 1386 -7.659196853638e-06 1391 1386 231485.2378237 1401 1386 -52678594.23377 1402 1386 -36666666.66064 1403 1386 2505785.158418 1404 1386 -140008022.8906 1405 1386 2.577900886536e-06 1406 1386 -462970.4754454 1407 1386 -52702268.47617 1408 1386 36666666.66064 1409 1386 -2702548.174055 1479 1386 -18391419.7975 1480 1386 9166666.669678 1481 1386 10018981.01522 1482 1386 -58783069.51046 1483 1386 1.639127731323e-06 1484 1386 42697451.81849 1485 1386 -19844426.42677 1486 1386 -9166666.669679 1487 1386 11321064.34898 1494 1386 -413319.0876746 1495 1386 3.017485141754e-06 1496 1386 57871.30948708 1497 1386 57430602.85087 1498 1386 3.8743019104e-06 1499 1386 231485.2378496 1500 1386 -6249019.844286 1501 1386 -7.443130016327e-06 1502 1386 57871.30949415 1512 1386 -18482764.4945 1513 1386 -9166666.669676 1514 1386 -10076852.32471 1515 1386 -59172122.54065 1516 1386 4.395842552185e-07 1517 1386 -42928937.05631 1518 1386 -19947608.24497 1519 1386 9166666.669675 1520 1386 -11378935.65847 1387 1387 525322193.6551 1388 1387 -11110930.80738 1389 1387 -7.525086402893e-06 1390 1387 -56755372.43366 1391 1387 5555465.403692 1401 1387 -36666666.66065 1402 1387 -41677781.0706 1403 1387 1263866.351621 1404 1387 2.831220626831e-06 1405 1387 21326659.08566 1406 1387 -2777732.703214 1407 1387 36666666.66064 1408 1387 -41701455.31301 1409 1387 1513866.351594 1479 1387 9166666.669678 1480 1387 -15641216.50536 1481 1387 -8177088.970282 1482 1387 6.034970283508e-07 1483 1387 -18449398.9965 1484 1387 -694433.1761458 1485 1387 -9166666.669679 1486 1387 -17094223.13462 1487 1387 8871522.146427 1494 1387 4.06801700592e-06 1495 1387 -35246583.02275 1496 1387 -32861133.64276 1497 1387 4.231929779053e-06 1498 1387 35428976.52455 1499 1387 -2777732.703215 1500 1387 -7.599592208862e-06 1501 1387 -41082283.77936 1502 1387 35638866.34597 1512 1387 -9166666.669676 1513 1387 -15732561.20235 1514 1387 -8246533.414749 1515 1387 4.619359970093e-07 1516 1387 -18838452.02672 1517 1387 -694433.1761459 1518 1387 9166666.669675 1519 1387 -17197404.95283 1520 1387 8940966.590895 1388 1388 582790450.9006 1389 1388 231485.2378239 1390 1388 5555465.403692 1391 1388 74350397.96411 1401 1388 2471062.936219 1402 1388 1236088.573861 1403 1388 -8882157.948759 1404 1388 -462970.4754449 1405 1388 -2777732.703214 1406 1388 35690216.05203 1407 1388 -2737270.396254 1408 1388 1541644.129353 1409 1388 -8945289.261872 1479 1388 10018981.01522 1480 1388 -8177088.970282 1481 1388 -16145262.77514 1482 1388 42662729.59629 1483 1388 -694433.1761458 1484 1388 -54493616.03735 1485 1388 11321064.34898 1486 1388 8871522.146428 1487 1388 -20019947.11985 1494 1388 57871.30948763 1495 1388 -32833355.865 1496 1388 -37566373.58606 1497 1388 231485.2378493 1498 1388 -2777732.703215 1499 1388 -110039912.4136 1500 1388 57871.30949473 1501 1388 35611088.56821 1502 1388 -53128242.27036 1512 1388 -10076852.32471 1513 1388 -8246533.414749 1514 1388 -16388848.63381 1515 1388 -42894214.83411 1516 1388 -694433.1761459 1517 1388 -55531090.78464 1518 1388 -11378935.65847 1519 1388 8940966.590895 1520 1388 -20295098.63508 1389 1389 665854880.679 1390 1389 36667470.52063 1391 1389 3125090.734117 1392 1389 18070347.2503 1393 1389 -36666988.20464 1394 1389 2702571.265064 1404 1389 -52678594.23377 1405 1389 -36666666.66064 1406 1389 2505785.158418 1407 1389 -140008022.8906 1408 1389 2.577900886536e-06 1409 1389 -462970.4754454 1410 1389 -52702268.47617 1411 1389 36666666.66064 1412 1389 -2702548.174055 1482 1389 -18391419.7975 1483 1389 9166666.669678 1484 1389 10018981.01522 1485 1389 -71369389.94283 1486 1389 -9166787.24867 1487 1389 42147892.99313 1497 1389 -413319.0876746 1498 1389 3.017485141754e-06 1499 1389 57871.30948708 1500 1389 76553135.92261 1501 1389 9166867.634673 1502 1389 781226.2244361 1503 1389 -18699525.19313 1504 1389 -9166747.055676 1505 1389 11379035.3452 1515 1389 -18482764.4945 1516 1389 -9166666.669676 1517 1389 -10076852.32471 1518 1389 -59172122.54065 1519 1389 4.395842552185e-07 1520 1389 -42928937.05631 1521 1389 -19947608.24497 1522 1389 9166666.669675 1523 1389 -11378935.65847 1390 1390 566847200.4901 1391 1390 -8610909.306622 1392 1390 -36667148.97663 1393 1390 -110262538.3357 1394 1390 4611016.915367 1404 1390 -36666666.66065 1405 1390 -41677781.0706 1406 1390 1263866.351621 1407 1390 2.831220626831e-06 1408 1390 21326659.08566 1409 1390 -2777732.703214 1410 1390 36666666.66064 1411 1390 -41701455.31301 1412 1390 1513866.351594 1482 1390 9166666.669678 1483 1390 -15641216.50536 1484 1390 -8177088.970282 1485 1390 -9166747.055672 1486 1390 -28285264.92641 1487 1390 7788270.809731 1497 1390 4.06801700592e-06 1498 1390 -35246583.02275 1499 1390 -32861133.64276 1500 1390 9166867.634673 1501 1390 51801215.86321 1502 1390 -2152764.494718 1503 1390 -9166787.248675 1504 1390 -50782746.60544 1505 1390 35402941.77273 1515 1390 -9166666.669676 1516 1390 -15732561.20235 1517 1390 -8246533.414749 1518 1390 4.619359970093e-07 1519 1390 -18838452.02672 1520 1390 -694433.1761459 1521 1390 9166666.669675 1522 1390 -17197404.95283 1523 1390 8940966.590895 1391 1391 591261848.0956 1392 1391 2737305.032771 1393 1391 5388803.421584 1394 1391 33925571.74906 1404 1391 2471062.936219 1405 1391 1236088.573861 1406 1391 -8882157.948759 1407 1391 -462970.4754449 1408 1391 -2777732.703214 1409 1391 35690216.05203 1410 1391 -2737270.396254 1411 1391 1541644.129353 1412 1391 -8945289.261872 1482 1391 10018981.01522 1483 1391 -8177088.970282 1484 1391 -16145262.77514 1485 1391 42113167.97979 1486 1391 7593861.729456 1487 1391 -55157692.73435 1497 1391 57871.30948763 1498 1391 -32833355.865 1499 1391 -37566373.58606 1500 1391 781320.0962051 1501 1391 -2152689.398522 1502 1391 -91946096.11431 1503 1391 11379085.18856 1504 1391 35569610.71641 1505 1391 -53430905.74636 1515 1391 -10076852.32471 1516 1391 -8246533.414749 1517 1391 -16388848.63381 1518 1391 -42894214.83411 1519 1391 -694433.1761459 1520 1391 -55531090.78464 1521 1391 -11378935.65847 1522 1391 8940966.590895 1523 1391 -20295098.63508 1392 1392 826502950.7467 1393 1392 -32829142.2168 1394 1392 -1574339.432285 1407 1392 -52678594.23377 1408 1392 -36666666.66064 1409 1392 2505785.158418 1410 1392 -43717734.4447 1411 1392 32816830.06734 1412 1392 -231059.6481135 1413 1392 -637569397.5693 1414 1392 29345645.47798 1415 1392 -416821.6161519 1485 1392 -4579449.609996 1486 1392 11000120.58261 1487 1392 12057631.64322 1500 1392 -14225493.76444 1501 1392 -9166787.248675 1502 1392 -10019112.65448 1503 1392 163714858.8002 1504 1392 -8207285.558244 1505 1392 4241855.317219 1518 1392 -18482764.4945 1519 1392 -9166666.669676 1520 1392 -10076852.32471 1521 1392 -23632031.88637 1522 1392 8204207.520878 1523 1392 -22609970.36319 1524 1392 -160108670.9846 1525 1392 7336411.37311 1526 1392 -520782.4807296 1393 1393 1866175254.747 1394 1393 -20243144.64085 1407 1393 -36666666.66065 1408 1393 -41677781.0706 1409 1393 1263866.351621 1410 1393 32810673.99266 1411 1393 97413180.27061 1412 1393 -1903194.680072 1413 1393 44018468.21692 1414 1393 -1701040543.862 1415 1393 13714990.87775 1485 1393 7333413.72174 1486 1393 -4579449.61 1487 1393 -6430626.286135 1500 1393 -9166747.055675 1501 1393 -46308715.17675 1502 1393 -32902986.62891 1503 1393 -8207285.558244 1504 1393 423632934.9284 1505 1393 -1353225.115187 1518 1393 -9166666.669676 1519 1393 -15732561.20235 1520 1393 -8246533.414749 1521 1393 8202668.502206 1522 1393 11650696.80984 1523 1393 7172753.555873 1524 1393 11004617.05965 1525 1393 -425976457.6889 1526 1393 20227336.59943 1394 1394 856594529.5136 1407 1394 2471062.936219 1408 1394 1236088.573861 1409 1394 -8882157.948759 1410 1394 -1133759.188307 1411 1394 -1875517.295844 1412 1394 50029495.24259 1413 1394 -625232.4242272 1414 1394 13603538.44251 1415 1394 -636713913.8918 1485 1394 8038421.095477 1486 1394 -9645939.429201 1487 1394 -12211865.62666 1500 1394 -10019068.77473 1501 1394 -33069655.68813 1502 1394 -41500155.26984 1503 1394 -4768610.272799 1504 1394 -8558910.345734 1505 1394 99719621.84851 1518 1394 -10076852.32471 1519 1394 -8246533.414749 1520 1394 -16388848.63381 1521 1394 -22783562.29616 1522 1394 7202053.220155 1523 1394 -21366221.56937 1524 1394 -781173.7210934 1525 1394 20019063.72315 1526 1394 -161088669.2548 1395 1395 613328698.917 1396 1395 1.621246337891e-05 1397 1395 925940.9508365 1398 1395 82577683.23799 1399 1395 -7.659196853638e-06 1400 1395 231485.2378237 1416 1395 -140008022.8906 1417 1395 2.577900886536e-06 1418 1395 -462970.4754454 1419 1395 -52702268.47617 1420 1395 36666666.66064 1421 1395 -2702548.174055 1488 1395 -58783069.51046 1489 1395 1.639127731323e-06 1490 1395 42697451.81849 1491 1395 -19844426.42677 1492 1395 -9166666.669679 1493 1395 11321064.34898 1506 1395 57430602.85087 1507 1395 3.8743019104e-06 1508 1395 231485.2378496 1509 1395 -6249019.844286 1510 1395 -7.443130016327e-06 1511 1395 57871.30949415 1527 1395 -59172122.54065 1528 1395 4.395842552185e-07 1529 1395 -42928937.05631 1530 1395 -19947608.24497 1531 1395 9166666.669675 1532 1395 -11378935.65847 1396 1396 525322193.6551 1397 1396 -11110930.80738 1398 1396 -7.525086402893e-06 1399 1396 -56755372.43366 1400 1396 5555465.403692 1416 1396 2.831220626831e-06 1417 1396 21326659.08566 1418 1396 -2777732.703214 1419 1396 36666666.66064 1420 1396 -41701455.31301 1421 1396 1513866.351594 1488 1396 6.034970283508e-07 1489 1396 -18449398.9965 1490 1396 -694433.1761458 1491 1396 -9166666.669679 1492 1396 -17094223.13462 1493 1396 8871522.146427 1506 1396 4.231929779053e-06 1507 1396 35428976.52455 1508 1396 -2777732.703215 1509 1396 -7.599592208862e-06 1510 1396 -41082283.77936 1511 1396 35638866.34597 1527 1396 4.619359970093e-07 1528 1396 -18838452.02672 1529 1396 -694433.1761459 1530 1396 9166666.669675 1531 1396 -17197404.95283 1532 1396 8940966.590895 1397 1397 582790450.9006 1398 1397 231485.2378239 1399 1397 5555465.403692 1400 1397 74350397.96411 1416 1397 -462970.4754449 1417 1397 -2777732.703214 1418 1397 35690216.05203 1419 1397 -2737270.396254 1420 1397 1541644.129353 1421 1397 -8945289.261872 1488 1397 42662729.59629 1489 1397 -694433.1761458 1490 1397 -54493616.03735 1491 1397 11321064.34898 1492 1397 8871522.146428 1493 1397 -20019947.11985 1506 1397 231485.2378493 1507 1397 -2777732.703215 1508 1397 -110039912.4136 1509 1397 57871.30949473 1510 1397 35611088.56821 1511 1397 -53128242.27036 1527 1397 -42894214.83411 1528 1397 -694433.1761459 1529 1397 -55531090.78464 1530 1397 -11378935.65847 1531 1397 8940966.590895 1532 1397 -20295098.63508 1398 1398 613328698.917 1399 1398 1.621246337891e-05 1400 1398 925940.9508365 1401 1398 82577683.23799 1402 1398 -7.659196853638e-06 1403 1398 231485.2378237 1416 1398 -52678594.23377 1417 1398 -36666666.66064 1418 1398 2505785.158418 1419 1398 -140008022.8906 1420 1398 2.577900886536e-06 1421 1398 -462970.4754454 1422 1398 -52702268.47617 1423 1398 36666666.66064 1424 1398 -2702548.174055 1488 1398 -18391419.7975 1489 1398 9166666.669678 1490 1398 10018981.01522 1491 1398 -58783069.51046 1492 1398 1.639127731323e-06 1493 1398 42697451.81849 1494 1398 -19844426.42677 1495 1398 -9166666.669679 1496 1398 11321064.34898 1506 1398 -413319.0876746 1507 1398 3.017485141754e-06 1508 1398 57871.30948708 1509 1398 57430602.85087 1510 1398 3.8743019104e-06 1511 1398 231485.2378496 1512 1398 -6249019.844286 1513 1398 -7.443130016327e-06 1514 1398 57871.30949415 1527 1398 -18482764.4945 1528 1398 -9166666.669676 1529 1398 -10076852.32471 1530 1398 -59172122.54065 1531 1398 4.395842552185e-07 1532 1398 -42928937.05631 1533 1398 -19947608.24497 1534 1398 9166666.669675 1535 1398 -11378935.65847 1399 1399 525322193.6551 1400 1399 -11110930.80738 1401 1399 -7.525086402893e-06 1402 1399 -56755372.43366 1403 1399 5555465.403692 1416 1399 -36666666.66065 1417 1399 -41677781.0706 1418 1399 1263866.351621 1419 1399 2.831220626831e-06 1420 1399 21326659.08566 1421 1399 -2777732.703214 1422 1399 36666666.66064 1423 1399 -41701455.31301 1424 1399 1513866.351594 1488 1399 9166666.669678 1489 1399 -15641216.50536 1490 1399 -8177088.970282 1491 1399 6.034970283508e-07 1492 1399 -18449398.9965 1493 1399 -694433.1761458 1494 1399 -9166666.669679 1495 1399 -17094223.13462 1496 1399 8871522.146427 1506 1399 4.06801700592e-06 1507 1399 -35246583.02275 1508 1399 -32861133.64276 1509 1399 4.231929779053e-06 1510 1399 35428976.52455 1511 1399 -2777732.703215 1512 1399 -7.599592208862e-06 1513 1399 -41082283.77936 1514 1399 35638866.34597 1527 1399 -9166666.669676 1528 1399 -15732561.20235 1529 1399 -8246533.414749 1530 1399 4.619359970093e-07 1531 1399 -18838452.02672 1532 1399 -694433.1761459 1533 1399 9166666.669675 1534 1399 -17197404.95283 1535 1399 8940966.590895 1400 1400 582790450.9006 1401 1400 231485.2378239 1402 1400 5555465.403692 1403 1400 74350397.96411 1416 1400 2471062.936219 1417 1400 1236088.573861 1418 1400 -8882157.948759 1419 1400 -462970.4754449 1420 1400 -2777732.703214 1421 1400 35690216.05203 1422 1400 -2737270.396254 1423 1400 1541644.129353 1424 1400 -8945289.261872 1488 1400 10018981.01522 1489 1400 -8177088.970282 1490 1400 -16145262.77514 1491 1400 42662729.59629 1492 1400 -694433.1761458 1493 1400 -54493616.03735 1494 1400 11321064.34898 1495 1400 8871522.146428 1496 1400 -20019947.11985 1506 1400 57871.30948763 1507 1400 -32833355.865 1508 1400 -37566373.58606 1509 1400 231485.2378493 1510 1400 -2777732.703215 1511 1400 -110039912.4136 1512 1400 57871.30949473 1513 1400 35611088.56821 1514 1400 -53128242.27036 1527 1400 -10076852.32471 1528 1400 -8246533.414749 1529 1400 -16388848.63381 1530 1400 -42894214.83411 1531 1400 -694433.1761459 1532 1400 -55531090.78464 1533 1400 -11378935.65847 1534 1400 8940966.590895 1535 1400 -20295098.63508 1401 1401 613328698.917 1402 1401 1.621246337891e-05 1403 1401 925940.9508365 1404 1401 82577683.23799 1405 1401 -7.659196853638e-06 1406 1401 231485.2378237 1419 1401 -52678594.23377 1420 1401 -36666666.66064 1421 1401 2505785.158418 1422 1401 -140008022.8906 1423 1401 2.577900886536e-06 1424 1401 -462970.4754454 1425 1401 -52702268.47617 1426 1401 36666666.66064 1427 1401 -2702548.174055 1491 1401 -18391419.7975 1492 1401 9166666.669678 1493 1401 10018981.01522 1494 1401 -58783069.51046 1495 1401 1.639127731323e-06 1496 1401 42697451.81849 1497 1401 -19844426.42677 1498 1401 -9166666.669679 1499 1401 11321064.34898 1509 1401 -413319.0876746 1510 1401 3.017485141754e-06 1511 1401 57871.30948708 1512 1401 57430602.85087 1513 1401 3.8743019104e-06 1514 1401 231485.2378496 1515 1401 -6249019.844286 1516 1401 -7.443130016327e-06 1517 1401 57871.30949415 1530 1401 -18482764.4945 1531 1401 -9166666.669676 1532 1401 -10076852.32471 1533 1401 -59172122.54065 1534 1401 4.395842552185e-07 1535 1401 -42928937.05631 1536 1401 -19947608.24497 1537 1401 9166666.669675 1538 1401 -11378935.65847 1402 1402 525322193.6551 1403 1402 -11110930.80738 1404 1402 -7.525086402893e-06 1405 1402 -56755372.43366 1406 1402 5555465.403692 1419 1402 -36666666.66065 1420 1402 -41677781.0706 1421 1402 1263866.351621 1422 1402 2.831220626831e-06 1423 1402 21326659.08566 1424 1402 -2777732.703214 1425 1402 36666666.66064 1426 1402 -41701455.31301 1427 1402 1513866.351594 1491 1402 9166666.669678 1492 1402 -15641216.50536 1493 1402 -8177088.970282 1494 1402 6.034970283508e-07 1495 1402 -18449398.9965 1496 1402 -694433.1761458 1497 1402 -9166666.669679 1498 1402 -17094223.13462 1499 1402 8871522.146427 1509 1402 4.06801700592e-06 1510 1402 -35246583.02275 1511 1402 -32861133.64276 1512 1402 4.231929779053e-06 1513 1402 35428976.52455 1514 1402 -2777732.703215 1515 1402 -7.599592208862e-06 1516 1402 -41082283.77936 1517 1402 35638866.34597 1530 1402 -9166666.669676 1531 1402 -15732561.20235 1532 1402 -8246533.414749 1533 1402 4.619359970093e-07 1534 1402 -18838452.02672 1535 1402 -694433.1761459 1536 1402 9166666.669675 1537 1402 -17197404.95283 1538 1402 8940966.590895 1403 1403 582790450.9006 1404 1403 231485.2378239 1405 1403 5555465.403692 1406 1403 74350397.96411 1419 1403 2471062.936219 1420 1403 1236088.573861 1421 1403 -8882157.948759 1422 1403 -462970.4754449 1423 1403 -2777732.703214 1424 1403 35690216.05203 1425 1403 -2737270.396254 1426 1403 1541644.129353 1427 1403 -8945289.261872 1491 1403 10018981.01522 1492 1403 -8177088.970282 1493 1403 -16145262.77514 1494 1403 42662729.59629 1495 1403 -694433.1761458 1496 1403 -54493616.03735 1497 1403 11321064.34898 1498 1403 8871522.146428 1499 1403 -20019947.11985 1509 1403 57871.30948763 1510 1403 -32833355.865 1511 1403 -37566373.58606 1512 1403 231485.2378493 1513 1403 -2777732.703215 1514 1403 -110039912.4136 1515 1403 57871.30949473 1516 1403 35611088.56821 1517 1403 -53128242.27036 1530 1403 -10076852.32471 1531 1403 -8246533.414749 1532 1403 -16388848.63381 1533 1403 -42894214.83411 1534 1403 -694433.1761459 1535 1403 -55531090.78464 1536 1403 -11378935.65847 1537 1403 8940966.590895 1538 1403 -20295098.63508 1404 1404 613328698.917 1405 1404 1.621246337891e-05 1406 1404 925940.9508365 1407 1404 82577683.23799 1408 1404 -7.659196853638e-06 1409 1404 231485.2378237 1422 1404 -52678594.23377 1423 1404 -36666666.66064 1424 1404 2505785.158418 1425 1404 -140008022.8906 1426 1404 2.577900886536e-06 1427 1404 -462970.4754454 1428 1404 -52702268.47617 1429 1404 36666666.66064 1430 1404 -2702548.174055 1494 1404 -18391419.7975 1495 1404 9166666.669678 1496 1404 10018981.01522 1497 1404 -58783069.51046 1498 1404 1.639127731323e-06 1499 1404 42697451.81849 1500 1404 -19844426.42677 1501 1404 -9166666.669679 1502 1404 11321064.34898 1512 1404 -413319.0876746 1513 1404 3.017485141754e-06 1514 1404 57871.30948708 1515 1404 57430602.85087 1516 1404 3.8743019104e-06 1517 1404 231485.2378496 1518 1404 -6249019.844286 1519 1404 -7.443130016327e-06 1520 1404 57871.30949415 1533 1404 -18482764.4945 1534 1404 -9166666.669676 1535 1404 -10076852.32471 1536 1404 -59172122.54065 1537 1404 4.395842552185e-07 1538 1404 -42928937.05631 1539 1404 -19947608.24497 1540 1404 9166666.669675 1541 1404 -11378935.65847 1405 1405 525322193.6551 1406 1405 -11110930.80738 1407 1405 -7.525086402893e-06 1408 1405 -56755372.43366 1409 1405 5555465.403692 1422 1405 -36666666.66065 1423 1405 -41677781.0706 1424 1405 1263866.351621 1425 1405 2.831220626831e-06 1426 1405 21326659.08566 1427 1405 -2777732.703214 1428 1405 36666666.66064 1429 1405 -41701455.31301 1430 1405 1513866.351594 1494 1405 9166666.669678 1495 1405 -15641216.50536 1496 1405 -8177088.970282 1497 1405 6.034970283508e-07 1498 1405 -18449398.9965 1499 1405 -694433.1761458 1500 1405 -9166666.669679 1501 1405 -17094223.13462 1502 1405 8871522.146427 1512 1405 4.06801700592e-06 1513 1405 -35246583.02275 1514 1405 -32861133.64276 1515 1405 4.231929779053e-06 1516 1405 35428976.52455 1517 1405 -2777732.703215 1518 1405 -7.599592208862e-06 1519 1405 -41082283.77936 1520 1405 35638866.34597 1533 1405 -9166666.669676 1534 1405 -15732561.20235 1535 1405 -8246533.414749 1536 1405 4.619359970093e-07 1537 1405 -18838452.02672 1538 1405 -694433.1761459 1539 1405 9166666.669675 1540 1405 -17197404.95283 1541 1405 8940966.590895 1406 1406 582790450.9006 1407 1406 231485.2378239 1408 1406 5555465.403692 1409 1406 74350397.96411 1422 1406 2471062.936219 1423 1406 1236088.573861 1424 1406 -8882157.948759 1425 1406 -462970.4754449 1426 1406 -2777732.703214 1427 1406 35690216.05203 1428 1406 -2737270.396254 1429 1406 1541644.129353 1430 1406 -8945289.261872 1494 1406 10018981.01522 1495 1406 -8177088.970282 1496 1406 -16145262.77514 1497 1406 42662729.59629 1498 1406 -694433.1761458 1499 1406 -54493616.03735 1500 1406 11321064.34898 1501 1406 8871522.146428 1502 1406 -20019947.11985 1512 1406 57871.30948763 1513 1406 -32833355.865 1514 1406 -37566373.58606 1515 1406 231485.2378493 1516 1406 -2777732.703215 1517 1406 -110039912.4136 1518 1406 57871.30949473 1519 1406 35611088.56821 1520 1406 -53128242.27036 1533 1406 -10076852.32471 1534 1406 -8246533.414749 1535 1406 -16388848.63381 1536 1406 -42894214.83411 1537 1406 -694433.1761459 1538 1406 -55531090.78464 1539 1406 -11378935.65847 1540 1406 8940966.590895 1541 1406 -20295098.63508 1407 1407 613328698.917 1408 1407 1.621246337891e-05 1409 1407 925940.9508365 1410 1407 82577683.23799 1411 1407 -7.659196853638e-06 1412 1407 231485.2378237 1425 1407 -52678594.23377 1426 1407 -36666666.66064 1427 1407 2505785.158418 1428 1407 -140008022.8906 1429 1407 2.577900886536e-06 1430 1407 -462970.4754454 1431 1407 -52702268.47617 1432 1407 36666666.66064 1433 1407 -2702548.174055 1497 1407 -18391419.7975 1498 1407 9166666.669678 1499 1407 10018981.01522 1500 1407 -58783069.51046 1501 1407 1.639127731323e-06 1502 1407 42697451.81849 1503 1407 -19844426.42677 1504 1407 -9166666.669679 1505 1407 11321064.34898 1515 1407 -413319.0876746 1516 1407 3.017485141754e-06 1517 1407 57871.30948708 1518 1407 57430602.85087 1519 1407 3.8743019104e-06 1520 1407 231485.2378496 1521 1407 -6249019.844286 1522 1407 -7.443130016327e-06 1523 1407 57871.30949415 1536 1407 -18482764.4945 1537 1407 -9166666.669676 1538 1407 -10076852.32471 1539 1407 -59172122.54065 1540 1407 4.395842552185e-07 1541 1407 -42928937.05631 1542 1407 -19947608.24497 1543 1407 9166666.669675 1544 1407 -11378935.65847 1408 1408 525322193.6551 1409 1408 -11110930.80738 1410 1408 -7.525086402893e-06 1411 1408 -56755372.43366 1412 1408 5555465.403692 1425 1408 -36666666.66065 1426 1408 -41677781.0706 1427 1408 1263866.351621 1428 1408 2.831220626831e-06 1429 1408 21326659.08566 1430 1408 -2777732.703214 1431 1408 36666666.66064 1432 1408 -41701455.31301 1433 1408 1513866.351594 1497 1408 9166666.669678 1498 1408 -15641216.50536 1499 1408 -8177088.970282 1500 1408 6.034970283508e-07 1501 1408 -18449398.9965 1502 1408 -694433.1761458 1503 1408 -9166666.669679 1504 1408 -17094223.13462 1505 1408 8871522.146427 1515 1408 4.06801700592e-06 1516 1408 -35246583.02275 1517 1408 -32861133.64276 1518 1408 4.231929779053e-06 1519 1408 35428976.52455 1520 1408 -2777732.703215 1521 1408 -7.599592208862e-06 1522 1408 -41082283.77936 1523 1408 35638866.34597 1536 1408 -9166666.669676 1537 1408 -15732561.20235 1538 1408 -8246533.414749 1539 1408 4.619359970093e-07 1540 1408 -18838452.02672 1541 1408 -694433.1761459 1542 1408 9166666.669675 1543 1408 -17197404.95283 1544 1408 8940966.590895 1409 1409 582790450.9006 1410 1409 231485.2378239 1411 1409 5555465.403692 1412 1409 74350397.96411 1425 1409 2471062.936219 1426 1409 1236088.573861 1427 1409 -8882157.948759 1428 1409 -462970.4754449 1429 1409 -2777732.703214 1430 1409 35690216.05203 1431 1409 -2737270.396254 1432 1409 1541644.129353 1433 1409 -8945289.261872 1497 1409 10018981.01522 1498 1409 -8177088.970282 1499 1409 -16145262.77514 1500 1409 42662729.59629 1501 1409 -694433.1761458 1502 1409 -54493616.03735 1503 1409 11321064.34898 1504 1409 8871522.146428 1505 1409 -20019947.11985 1515 1409 57871.30948763 1516 1409 -32833355.865 1517 1409 -37566373.58606 1518 1409 231485.2378493 1519 1409 -2777732.703215 1520 1409 -110039912.4136 1521 1409 57871.30949473 1522 1409 35611088.56821 1523 1409 -53128242.27036 1536 1409 -10076852.32471 1537 1409 -8246533.414749 1538 1409 -16388848.63381 1539 1409 -42894214.83411 1540 1409 -694433.1761459 1541 1409 -55531090.78464 1542 1409 -11378935.65847 1543 1409 8940966.590895 1544 1409 -20295098.63508 1410 1410 519155644.6527 1411 1410 19890209.72848 1412 1410 546852.3808991 1413 1410 -113344502.1932 1414 1410 -81572741.71556 1415 1410 807745.8307167 1428 1410 -52678594.23377 1429 1410 -36666666.66064 1430 1410 2505785.158418 1431 1410 -87908611.13882 1432 1410 24575313.67981 1433 1410 -99414.6025005 1434 1410 -55777752.70527 1435 1410 4296544.314628 1436 1410 -121425.9460867 1500 1410 -18391419.7975 1501 1410 9166666.669678 1502 1410 10018981.01522 1503 1410 -23153309.42759 1504 1410 8202668.502207 1505 1410 22268765.65392 1518 1410 -413319.0876746 1519 1410 3.017485141754e-06 1520 1410 57871.30948708 1521 1410 68265937.74305 1522 1410 4972552.434569 1523 1410 136620.1412261 1524 1410 -38378504.19399 1525 1410 -20393185.43893 1526 1410 10904728.81155 1539 1410 -18482764.4945 1540 1410 -9166666.669676 1541 1410 -10076852.32471 1542 1410 -43384348.52402 1543 1410 6143828.422977 1544 1410 -32706624.47957 1545 1410 -20160575.07792 1546 1410 1074136.079187 1547 1410 -602925.9311655 1411 1411 674296656.4325 1412 1411 -8315854.013774 1413 1411 -81578897.79024 1414 1411 -277711399.8602 1415 1411 1775953.352355 1428 1411 -36666666.66065 1429 1411 -41677781.0706 1430 1411 1263866.351621 1431 1411 24575313.67981 1432 1411 6198641.247472 1433 1411 -1140600.40519 1434 1411 4296544.314628 1435 1411 -164458604.5744 1436 1411 1195041.228134 1500 1411 9166666.669678 1501 1411 -15641216.50536 1502 1411 -8177088.970282 1503 1411 8204207.520877 1504 1411 12129419.26863 1505 1411 -8118315.333891 1518 1411 4.06801700592e-06 1519 1411 -35246583.02275 1520 1411 -32861133.64276 1521 1411 4972552.434566 1522 1411 107051190.7071 1523 1411 -2079037.895958 1524 1411 -20394724.45761 1525 1411 -79470228.63097 1526 1411 34698117.36652 1539 1411 -9166666.669676 1540 1411 -15732561.20235 1541 1411 -8246533.414749 1542 1411 6143828.422977 1543 1411 -19857535.41586 1544 1411 7819016.563107 1545 1411 1074136.079187 1546 1411 -47330788.05857 1547 1411 16965426.97932 1412 1412 500032615.4741 1413 1412 842545.5277112 1414 1412 1886963.445041 1415 1412 -79462997.91567 1428 1412 2471062.936219 1429 1412 1236088.573861 1430 1412 -8882157.948759 1431 1412 -967470.1579145 1432 1412 -1168378.182963 1433 1412 37621796.60312 1434 1412 -190870.3904854 1435 1412 1195041.228134 1436 1412 -43133554.29443 1500 1412 10018981.01522 1501 1412 -8177088.970282 1502 1412 -16145262.77514 1503 1412 22442357.5869 1504 1412 -8144741.575046 1505 1412 -20089628.3459 1518 1412 57871.30948763 1519 1412 -32833355.865 1520 1412 -37566373.58606 1521 1412 136807.9549443 1522 1412 -2078887.551707 1523 1412 -39053108.69402 1524 1412 10904842.27205 1525 1412 34696841.30973 1526 1412 -46645425.83998 1539 1412 -10076852.32471 1540 1412 -8246533.414749 1541 1412 -16388848.63381 1542 1412 -32880235.58879 1543 1412 7819016.564698 1544 1412 -47680406.12059 1545 1412 -602925.9311654 1546 1412 16965426.97932 1547 1412 -27359753.63154 1413 1413 992997068.4552 1414 1413 19284697.20432 1415 1413 -396746.4756725 1431 1413 -51863016.28236 1432 1413 -31450303.98549 1433 1413 319461.4773361 1434 1413 43461620.04061 1435 1413 42895217.91215 1436 1413 -251152.4671109 1437 1413 62501966.85689 1438 1413 -21400415.93453 1439 1413 21747.87620521 1440 1413 -46253.50102974 1441 1413 28231234.37687 1442 1413 -49512.40302987 1503 1413 -159624729.0253 1504 1413 11004617.05965 1505 1413 572723.0303333 1521 1413 -37538860.21074 1522 1413 -20394724.45761 1523 1413 -10492248.91842 1524 1413 145746193.545 1525 1413 4821174.303457 1526 1413 8338174.490712 1542 1413 -18861959.6269 1543 1413 -7862576.000248 1544 1413 -10622738.80081 1545 1413 -37300727.61412 1546 1413 10723804.48332 1547 1413 -41832926.99883 1548 1413 -23212197.68204 1549 1413 -5350103.986268 1550 1413 14197971.68996 1551 1413 -16690161.87378 1552 1413 7057808.597695 1553 1413 -10194843.38188 1414 1414 2147947022.547 1415 1414 -14974133.4238 1431 1414 -31450303.98549 1432 1414 -11693386.9132 1433 1414 -131493.8517104 1434 1414 42895217.91215 1435 1414 170799253.6597 1436 1414 -626470.3880802 1437 1414 -6733749.270272 1438 1414 -7855709.541271 1439 1414 58407.27655116 1440 1414 28231234.37687 1441 1414 -24307750.22323 1442 1414 72962.07354513 1503 1414 7336411.373109 1504 1414 -425492515.7295 1505 1414 -13147629.82044 1521 1414 -20393185.43894 1522 1414 -78630584.64773 1523 1414 -33781578.76871 1524 1414 4821174.303456 1525 1414 434483682.2102 1526 1414 -3492649.630975 1542 1414 -7862576.000248 1543 1414 -8819552.279667 1544 1414 -8595373.465755 1545 1414 10723804.48332 1546 1414 -5466319.193666 1547 1414 7947549.067445 1548 1414 -1683437.318397 1549 1414 -40801616.79024 1550 1414 33347935.147 1551 1414 7057808.597695 1552 1414 -22755536.05731 1553 1414 16684907.19053 1415 1415 1146795686.782 1431 1415 284739.2551368 1432 1415 -159271.6294699 1433 1415 -378483.2995525 1434 1415 -390041.3559778 1435 1415 -654248.1658537 1436 1415 194450799.0864 1437 1415 -12974.3460083 1438 1415 58407.27655098 1439 1415 124613403.906 1440 1415 -84234.62522937 1441 1415 72962.07354511 1442 1415 40395467.48366 1503 1415 381815.353556 1504 1415 -13300618.50896 1505 1415 -159798157.3631 1521 1415 -10492174.57703 1522 1415 -33783025.80027 1523 1415 -44406375.21794 1524 1415 -8362936.617657 1525 1415 -3856634.052932 1526 1415 13357391.99385 1542 1415 -10622738.80081 1543 1415 -8595373.465755 1544 1415 -15817835.62473 1545 1415 -41832926.99887 1546 1415 7947549.069036 1547 1415 -79830320.55011 1548 1415 6072971.68928 1549 1415 33347935.147 1550 1415 -72413820.75204 1551 1415 -10194843.38188 1552 1415 16684907.19053 1553 1415 -34377395.78682 1416 1416 306664349.4585 1417 1416 7.62939453125e-06 1418 1416 462970.475417 1419 1416 41289236.1897 1420 1416 7333333.332126 1421 1416 -318285.1588368 1506 1416 -58783069.51046 1507 1416 1.639127731323e-06 1508 1416 42697451.81849 1509 1416 -19844426.42677 1510 1416 -9166666.669679 1511 1416 11321064.34898 1527 1416 28714906.85473 1528 1416 5.364418029785e-07 1529 1416 -8530229.601834 1530 1416 -3124509.92214 1531 1416 1833333.333932 1532 1416 -2241064.345998 1417 1417 262661096.8276 1418 1417 -5555465.403687 1419 1417 -7333333.332131 1420 1417 -28377291.64613 1421 1417 2749954.924074 1506 1417 6.034970283508e-07 1507 1417 -18449398.9965 1508 1417 -694433.1761458 1509 1417 -9166666.669679 1510 1417 -17094223.13462 1511 1417 8871522.146427 1527 1417 8.940696716309e-07 1528 1417 17714093.69157 1529 1417 -1388866.351609 1530 1417 -1833333.333939 1531 1417 -20541141.88968 1532 1417 17812488.72854 1418 1418 291395225.4503 1419 1418 723381.5076579 1420 1418 2805510.47962 1421 1418 37176251.17061 1506 1418 42662729.59629 1507 1418 -694433.1761458 1508 1418 -54493616.03735 1509 1418 11321064.34898 1510 1418 8871522.146428 1511 1418 -20019947.11985 1527 1418 8588103.728686 1528 1418 -1388866.351609 1529 1418 -55021008.39532 1530 1418 2298935.655493 1531 1418 17812488.72855 1532 1418 -26564121.13518 1419 1419 306664349.4585 1420 1419 7.62939453125e-06 1421 1419 462970.475417 1422 1419 41289236.1897 1423 1419 7333333.332126 1424 1419 -318285.1588368 1506 1419 -18391419.7975 1507 1419 9166666.669678 1508 1419 10018981.01522 1509 1419 -58783069.51046 1510 1419 1.639127731323e-06 1511 1419 42697451.81849 1512 1419 -19844426.42677 1513 1419 -9166666.669679 1514 1419 11321064.34898 1527 1419 -206659.5438359 1528 1419 -1833333.333934 1529 1419 -1980647.67925 1530 1419 28714906.85473 1531 1419 5.364418029785e-07 1532 1419 -8530229.601834 1533 1419 -3124509.92214 1534 1419 1833333.333932 1535 1419 -2241064.345998 1420 1420 262661096.8276 1421 1420 -5555465.403687 1422 1420 -7333333.332131 1423 1420 -28377291.64613 1424 1420 2749954.924074 1506 1420 9166666.669678 1507 1420 -15641216.50536 1508 1420 -8177088.970282 1509 1420 6.034970283508e-07 1510 1420 -18449398.9965 1511 1420 -694433.1761458 1512 1420 -9166666.669679 1513 1420 -17094223.13462 1514 1420 8871522.146427 1527 1420 1833333.333937 1528 1420 -17623291.51138 1529 1420 -16423622.37693 1530 1420 8.940696716309e-07 1531 1420 17714093.69157 1532 1420 -1388866.351609 1533 1420 -1833333.333939 1534 1420 -20541141.88968 1535 1420 17812488.72854 1421 1421 291395225.4503 1422 1421 723381.5076579 1423 1421 2805510.47962 1424 1421 37176251.17061 1506 1421 10018981.01522 1507 1421 -8177088.970282 1508 1421 -16145262.77514 1509 1421 42662729.59629 1510 1421 -694433.1761458 1511 1421 -54493616.03735 1512 1421 11321064.34898 1513 1421 8871522.146428 1514 1421 -20019947.11985 1527 1421 2038518.988737 1528 1421 -16423622.37695 1529 1421 -18783186.79303 1530 1421 8588103.728686 1531 1421 -1388866.351609 1532 1421 -55021008.39532 1533 1421 2298935.655493 1534 1421 17812488.72855 1535 1421 -26564121.13518 1422 1422 306664349.4585 1423 1422 7.62939453125e-06 1424 1422 462970.475417 1425 1422 41289236.1897 1426 1422 7333333.332126 1427 1422 -318285.1588368 1509 1422 -18391419.7975 1510 1422 9166666.669678 1511 1422 10018981.01522 1512 1422 -58783069.51046 1513 1422 1.639127731323e-06 1514 1422 42697451.81849 1515 1422 -19844426.42677 1516 1422 -9166666.669679 1517 1422 11321064.34898 1530 1422 -206659.5438359 1531 1422 -1833333.333934 1532 1422 -1980647.67925 1533 1422 28714906.85473 1534 1422 5.364418029785e-07 1535 1422 -8530229.601834 1536 1422 -3124509.92214 1537 1422 1833333.333932 1538 1422 -2241064.345998 1423 1423 262661096.8276 1424 1423 -5555465.403687 1425 1423 -7333333.332131 1426 1423 -28377291.64613 1427 1423 2749954.924074 1509 1423 9166666.669678 1510 1423 -15641216.50536 1511 1423 -8177088.970282 1512 1423 6.034970283508e-07 1513 1423 -18449398.9965 1514 1423 -694433.1761458 1515 1423 -9166666.669679 1516 1423 -17094223.13462 1517 1423 8871522.146427 1530 1423 1833333.333937 1531 1423 -17623291.51138 1532 1423 -16423622.37693 1533 1423 8.940696716309e-07 1534 1423 17714093.69157 1535 1423 -1388866.351609 1536 1423 -1833333.333939 1537 1423 -20541141.88968 1538 1423 17812488.72854 1424 1424 291395225.4503 1425 1424 723381.5076579 1426 1424 2805510.47962 1427 1424 37176251.17061 1509 1424 10018981.01522 1510 1424 -8177088.970282 1511 1424 -16145262.77514 1512 1424 42662729.59629 1513 1424 -694433.1761458 1514 1424 -54493616.03735 1515 1424 11321064.34898 1516 1424 8871522.146428 1517 1424 -20019947.11985 1530 1424 2038518.988737 1531 1424 -16423622.37695 1532 1424 -18783186.79303 1533 1424 8588103.728686 1534 1424 -1388866.351609 1535 1424 -55021008.39532 1536 1424 2298935.655493 1537 1424 17812488.72855 1538 1424 -26564121.13518 1425 1425 306664349.4585 1426 1425 7.62939453125e-06 1427 1425 462970.475417 1428 1425 41289236.1897 1429 1425 7333333.332126 1430 1425 -318285.1588368 1512 1425 -18391419.7975 1513 1425 9166666.669678 1514 1425 10018981.01522 1515 1425 -58783069.51046 1516 1425 1.639127731323e-06 1517 1425 42697451.81849 1518 1425 -19844426.42677 1519 1425 -9166666.669679 1520 1425 11321064.34898 1533 1425 -206659.5438359 1534 1425 -1833333.333934 1535 1425 -1980647.67925 1536 1425 28714906.85473 1537 1425 5.364418029785e-07 1538 1425 -8530229.601834 1539 1425 -3124509.92214 1540 1425 1833333.333932 1541 1425 -2241064.345998 1426 1426 262661096.8276 1427 1426 -5555465.403687 1428 1426 -7333333.332131 1429 1426 -28377291.64613 1430 1426 2749954.924074 1512 1426 9166666.669678 1513 1426 -15641216.50536 1514 1426 -8177088.970282 1515 1426 6.034970283508e-07 1516 1426 -18449398.9965 1517 1426 -694433.1761458 1518 1426 -9166666.669679 1519 1426 -17094223.13462 1520 1426 8871522.146427 1533 1426 1833333.333937 1534 1426 -17623291.51138 1535 1426 -16423622.37693 1536 1426 8.940696716309e-07 1537 1426 17714093.69157 1538 1426 -1388866.351609 1539 1426 -1833333.333939 1540 1426 -20541141.88968 1541 1426 17812488.72854 1427 1427 291395225.4503 1428 1427 723381.5076579 1429 1427 2805510.47962 1430 1427 37176251.17061 1512 1427 10018981.01522 1513 1427 -8177088.970282 1514 1427 -16145262.77514 1515 1427 42662729.59629 1516 1427 -694433.1761458 1517 1427 -54493616.03735 1518 1427 11321064.34898 1519 1427 8871522.146428 1520 1427 -20019947.11985 1533 1427 2038518.988737 1534 1427 -16423622.37695 1535 1427 -18783186.79303 1536 1427 8588103.728686 1537 1427 -1388866.351609 1538 1427 -55021008.39532 1539 1427 2298935.655493 1540 1427 17812488.72855 1541 1427 -26564121.13518 1428 1428 306664349.4585 1429 1428 7.62939453125e-06 1430 1428 462970.475417 1431 1428 41289236.1897 1432 1428 7333333.332126 1433 1428 -318285.1588368 1515 1428 -18391419.7975 1516 1428 9166666.669678 1517 1428 10018981.01522 1518 1428 -58783069.51046 1519 1428 1.639127731323e-06 1520 1428 42697451.81849 1521 1428 -19844426.42677 1522 1428 -9166666.669679 1523 1428 11321064.34898 1536 1428 -206659.5438359 1537 1428 -1833333.333934 1538 1428 -1980647.67925 1539 1428 28714906.85473 1540 1428 5.364418029785e-07 1541 1428 -8530229.601834 1542 1428 -3124509.92214 1543 1428 1833333.333932 1544 1428 -2241064.345998 1429 1429 262661096.8276 1430 1429 -5555465.403687 1431 1429 -7333333.332131 1432 1429 -28377291.64613 1433 1429 2749954.924074 1515 1429 9166666.669678 1516 1429 -15641216.50536 1517 1429 -8177088.970282 1518 1429 6.034970283508e-07 1519 1429 -18449398.9965 1520 1429 -694433.1761458 1521 1429 -9166666.669679 1522 1429 -17094223.13462 1523 1429 8871522.146427 1536 1429 1833333.333937 1537 1429 -17623291.51138 1538 1429 -16423622.37693 1539 1429 8.940696716309e-07 1540 1429 17714093.69157 1541 1429 -1388866.351609 1542 1429 -1833333.333939 1543 1429 -20541141.88968 1544 1429 17812488.72854 1430 1430 291395225.4503 1431 1430 723381.5076579 1432 1430 2805510.47962 1433 1430 37176251.17061 1515 1430 10018981.01522 1516 1430 -8177088.970282 1517 1430 -16145262.77514 1518 1430 42662729.59629 1519 1430 -694433.1761458 1520 1430 -54493616.03735 1521 1430 11321064.34898 1522 1430 8871522.146428 1523 1430 -20019947.11985 1536 1430 2038518.988737 1537 1430 -16423622.37695 1538 1430 -18783186.79303 1539 1430 8588103.728686 1540 1430 -1388866.351609 1541 1430 -55021008.39532 1542 1430 2298935.655493 1543 1430 17812488.72855 1544 1430 -26564121.13518 1431 1431 307321293.6177 1432 1431 5217302.692383 1433 1431 2443291.135431 1434 1431 -12283347.92522 1435 1431 -27675645.7152 1436 1431 392217.5447181 1518 1431 -18391419.7975 1519 1431 9166666.669678 1520 1431 10018981.01522 1521 1431 -42844315.11718 1522 1431 6143828.42298 1523 1431 32439903.28737 1524 1431 -19056485.08992 1525 1431 -7862576.000246 1526 1431 10773788.984 1539 1431 -206659.5438359 1540 1431 -1833333.333934 1541 1431 -1980647.67925 1542 1431 28878510.79233 1543 1431 1304325.673737 1544 1431 -8034871.658814 1545 1431 -18263780.54944 1546 1431 -6918911.432209 1547 1431 8066734.94041 1432 1432 292495414.5893 1433 1432 -3617588.716354 1434 1432 -42342312.37946 1435 1432 -73068635.97963 1436 1432 598083.9198294 1518 1432 9166666.669678 1519 1432 -15641216.50536 1520 1432 -8177088.970282 1521 1432 6143828.422979 1522 1432 -19317502.00901 1523 1432 -8396261.212014 1524 1432 -7862576.000246 1525 1432 -9014077.742685 1526 1432 8522682.095422 1539 1432 1833333.333937 1540 1432 -17623291.51138 1541 1432 -16423622.37693 1542 1432 1304325.673737 1543 1432 25172041.03341 1544 1432 -904397.1795395 1545 1432 -10585578.10008 1546 1432 -33460102.57053 1547 1432 25378687.64334 1433 1433 299489762.7903 1434 1433 565828.6557986 1435 1433 625861.6976026 1436 1433 18644724.62356 1518 1433 10018981.01522 1519 1433 -8177088.970282 1520 1433 -16145262.77514 1521 1433 32613514.40058 1522 1433 -8396261.210409 1523 1433 -46240317.03562 1524 1433 10773788.984 1525 1433 8522682.095422 1526 1433 -16336570.1928 1539 1433 2038518.988737 1540 1433 -16423622.37695 1541 1433 -18783186.79303 1542 1433 9082906.116151 1543 1433 -904397.1795395 1544 1433 -52999059.66538 1545 1433 12398123.82872 1546 1433 25378687.64175 1547 1433 -35853335.01949 1434 1434 358811430.7903 1435 1434 52593962.28105 1436 1434 -97551.46225023 1437 1434 -71392253.48931 1438 1434 -45102098.94442 1439 1434 106737.5969375 1440 1434 9275019.197588 1441 1434 -12341313.18395 1442 1434 144785.8447827 1521 1434 -19715237.85133 1522 1434 1074136.079186 1523 1434 524851.8469836 1524 1434 -37144610.97898 1525 1434 10723804.48332 1526 1434 41672628.54298 1542 1434 -17529221.15356 1543 1434 -10585578.10008 1544 1434 -12149931.72292 1545 1434 -1095063.644689 1546 1434 13148490.57674 1547 1434 -8461748.97526 1548 1434 -34526661.87963 1549 1434 -11275524.74166 1550 1434 20339184.40592 1551 1434 -25557949.75669 1552 1434 -3085328.297506 1553 1434 8108904.791231 1435 1435 452274744.3036 1436 1435 -1473057.85089 1437 1435 -45102098.94442 1438 1435 -51062500.21883 1439 1435 72962.07354495 1440 1435 -27007979.8482 1441 1435 -62389541.28179 1442 1435 233441.0174853 1521 1435 1074136.079186 1522 1435 -46885450.83199 1523 1435 -16367906.36496 1524 1435 10723804.48332 1525 1435 -5310202.55853 1526 1435 -8267728.707675 1542 1435 -6918911.432211 1543 1435 -32725543.17465 1544 1435 -25072701.23725 1545 1435 13148490.57674 1546 1435 22270764.74516 1547 1435 -368264.4629124 1548 1435 -11275524.74166 1549 1435 -29444223.55951 1550 1435 16684907.19053 1551 1435 -6751994.965377 1552 1435 -43474089.88536 1553 1435 33391693.58226 1436 1436 478029006.2153 1437 1436 106737.5969376 1438 1436 72962.07354495 1439 1436 13640717.48805 1440 1436 179508.0669963 1441 1436 233441.0174853 1442 1436 63954215.97093 1521 1436 524851.8469835 1522 1436 -16367906.36496 1523 1436 -26172187.69396 1524 1436 41672628.54301 1525 1436 -8267728.706071 1526 1436 -79414009.52307 1542 1436 -7922709.501298 1543 1436 -25072701.23886 1544 1436 -33894509.96379 1545 1436 8239362.133108 1546 1436 -368264.4629123 1547 1436 -122620538.7512 1548 1436 20339184.40592 1549 1436 16684907.19053 1550 1436 -41066083.28901 1551 1436 12197515.90567 1552 1436 33391693.58226 1553 1436 -58349324.81867 1437 1437 235659396.7196 1438 1437 50733749.26305 1439 1437 -62257.13548279 1440 1437 -5082746.465364 1441 1437 1102098.951645 1442 1437 -31506.11544451 1524 1437 -23117500.71233 1525 1437 -1683437.318397 1526 1437 -6070778.306718 1545 1437 -34431964.90992 1546 1437 -11275524.74166 1547 1437 -20285815.60742 1548 1437 -18665832.59106 1549 1437 12683437.32201 1550 1437 8109435.714787 1551 1437 -34533186.62789 1552 1437 275524.7380462 1553 1437 -30502841.80065 1438 1438 216642073.1324 1439 1438 -58407.27654648 1440 1438 15768765.6159 1441 1438 63962500.24948 1442 1438 -72962.07354212 1524 1438 -5350103.986268 1525 1438 -40706919.82054 1526 1438 -33318731.50871 1545 1438 -11275524.74166 1546 1438 -29349526.58979 1547 1438 -16648426.15375 1548 1438 12683437.32201 1549 1438 -23420163.4902 1550 1438 6652064.846425 1551 1438 3942191.405917 1552 1438 -17271874.94068 1553 1438 3315092.816032 1439 1439 342775232.3518 1440 1439 -66228.3376576 1441 1439 -72962.0735423 1442 1439 110134282.579 1524 1439 -14195778.30738 1525 1439 -33318731.50871 1526 1439 -72161295.49948 1545 1439 -20285815.60742 1546 1439 -16648426.15375 1547 1439 -40813558.03643 1548 1439 -8140564.282544 1549 1439 -6681268.484718 1550 1439 -121188010.0031 1551 1439 -30502841.80265 1552 1439 -3351573.852824 1553 1439 -61166429.37081 1440 1440 173317617.147 1441 1440 -16992020.14457 1442 1440 40399.34029067 1524 1440 -16595464.90406 1525 1440 7057808.597695 1526 1440 10161406.6248 1545 1440 -25273858.84771 1546 1440 -6751994.965378 1547 1440 -12142484.09433 1548 1440 -34533186.62789 1549 1440 3942191.405919 1550 1440 30478408.18933 1551 1440 -12139913.87007 1552 1440 -4248005.038235 1553 1440 -4104552.942003 1441 1441 200198427.6337 1442 1441 -233441.0174782 1524 1441 7057808.597695 1525 1441 -22660839.0876 1526 1441 -16648426.15375 1545 1441 -3085328.297507 1546 1441 -43189998.97639 1547 1441 -33274973.07346 1548 1441 275524.7380478 1549 1441 -17271874.94068 1550 1441 3315092.816032 1551 1441 -4248005.038235 1552 1441 -5419711.245076 1553 1441 6608306.41117 1442 1442 258752397.6415 1524 1442 10161406.6248 1525 1442 -16648426.15375 1526 1442 -34124870.53423 1545 1442 -8088595.202104 1546 1442 -33274973.07346 1547 1442 -57591749.06139 1548 1442 30478408.18734 1549 1442 -3351573.852824 1550 1442 -61166429.37081 1551 1442 4037947.05666 1552 1442 -6725026.919973 1553 1442 -83230082.36618 1443 1443 383498024.544 1444 1443 36666666.66064 1445 1443 2662179.892796 1446 1443 -204675200.5845 1447 1443 -36666988.20463 1448 1443 -2662156.039165 1449 1443 11810466.31493 1450 1443 29333654.8725 1451 1443 -2152800.8684 1554 1443 35932670.30059 1555 1443 9166666.669679 1556 1443 9311563.653784 1557 1443 -72925641.46158 1558 1443 -9166747.055676 1559 1443 -43478968.03166 1560 1443 -7497354.851903 1561 1443 7333413.72174 1562 1443 -9080099.689708 1444 1444 328493596.9861 1445 1444 -6944376.434009 1446 1444 -36667148.97662 1447 1444 -32338700.60373 1448 1444 -3847226.785359 1449 1444 44000482.30876 1450 1444 11810466.31493 1451 1444 2416693.76713 1554 1444 9166666.669678 1555 1444 22181563.40434 1556 1444 5180609.664774 1557 1444 -9166787.248676 1558 1444 -29841516.44517 1559 1444 -9524419.110191 1560 1444 11000120.58261 1561 1444 -7497354.8519 1562 1444 10895952.52268 1445 1445 364686604.8413 1446 1445 -2662144.112346 1447 1445 -3097217.751863 1448 1445 -5157813.372203 1449 1445 -3229201.302601 1450 1445 1611129.178087 1451 1445 31494576.83983 1554 1445 -7806863.548506 1555 1445 -8513909.758068 1556 1445 -68673244.4318 1557 1445 -43444243.01831 1558 1445 -9329934.937092 1559 1445 -59307696.78438 1560 1445 -13620149.53456 1561 1445 7263968.348454 1562 1445 -19992946.27174 1446 1446 665854880.679 1447 1446 36667470.52063 1448 1446 3125090.734117 1449 1446 18070347.2503 1450 1446 -36666988.20464 1451 1446 2702571.265064 1452 1446 -140008022.8906 1453 1446 2.577900886536e-06 1454 1446 -462970.4754454 1455 1446 -52702268.47617 1456 1446 36666666.66064 1457 1446 -2702548.174055 1554 1446 -71369389.94283 1555 1446 -9166787.24867 1556 1446 42147892.99313 1557 1446 76553135.92261 1558 1446 9166867.634673 1559 1446 781226.2244361 1560 1446 -18699525.19313 1561 1446 -9166747.055676 1562 1446 11379035.3452 1563 1446 -59172122.54065 1564 1446 4.395842552185e-07 1565 1446 -42928937.05631 1566 1446 -19947608.24497 1567 1446 9166666.669675 1568 1446 -11378935.65847 1447 1447 566847200.4901 1448 1447 -8610909.306622 1449 1447 -36667148.97663 1450 1447 -110262538.3357 1451 1447 4611016.915367 1452 1447 2.831220626831e-06 1453 1447 21326659.08566 1454 1447 -2777732.703214 1455 1447 36666666.66064 1456 1447 -41701455.31301 1457 1447 1513866.351594 1554 1447 -9166747.055672 1555 1447 -28285264.92641 1556 1447 7788270.809731 1557 1447 9166867.634673 1558 1447 51801215.86321 1559 1447 -2152764.494718 1560 1447 -9166787.248675 1561 1447 -50782746.60544 1562 1447 35402941.77273 1563 1447 4.619359970093e-07 1564 1447 -18838452.02672 1565 1447 -694433.1761459 1566 1447 9166666.669675 1567 1447 -17197404.95283 1568 1447 8940966.590895 1448 1448 591261848.0956 1449 1448 2737305.032771 1450 1448 5388803.421584 1451 1448 33925571.74906 1452 1448 -462970.4754449 1453 1448 -2777732.703214 1454 1448 35690216.05203 1455 1448 -2737270.396254 1456 1448 1541644.129353 1457 1448 -8945289.261872 1554 1448 42113167.97979 1555 1448 7593861.729456 1556 1448 -55157692.73435 1557 1448 781320.0962051 1558 1448 -2152689.398522 1559 1448 -91946096.11431 1560 1448 11379085.18856 1561 1448 35569610.71641 1562 1448 -53430905.74636 1563 1448 -42894214.83411 1564 1448 -694433.1761459 1565 1448 -55531090.78464 1566 1448 -11378935.65847 1567 1448 8940966.590895 1568 1448 -20295098.63508 1449 1449 383498024.544 1450 1449 36666666.66064 1451 1449 2662179.892796 1452 1449 -52678594.23377 1453 1449 -36666666.66064 1454 1449 2505785.158418 1455 1449 -204675200.5845 1456 1449 -36666988.20463 1457 1449 -2662156.039165 1458 1449 11810466.31493 1459 1449 29333654.8725 1460 1449 -2152800.8684 1554 1449 -4579449.609996 1555 1449 11000120.58261 1556 1449 12057631.64322 1557 1449 -14225493.76444 1558 1449 -9166787.248675 1559 1449 -10019112.65448 1560 1449 35932670.30059 1561 1449 9166666.669679 1562 1449 9311563.653784 1563 1449 -18482764.4945 1564 1449 -9166666.669676 1565 1449 -10076852.32471 1566 1449 -72925641.46158 1567 1449 -9166747.055676 1568 1449 -43478968.03166 1569 1449 -7497354.851903 1570 1449 7333413.72174 1571 1449 -9080099.689708 1450 1450 328493596.9861 1451 1450 -6944376.43401 1452 1450 -36666666.66065 1453 1450 -41677781.0706 1454 1450 1263866.351621 1455 1450 -36667148.97662 1456 1450 -32338700.60373 1457 1450 -3847226.785359 1458 1450 44000482.30876 1459 1450 11810466.31493 1460 1450 2416693.76713 1554 1450 7333413.72174 1555 1450 -4579449.61 1556 1450 -6430626.286135 1557 1450 -9166747.055675 1558 1450 -46308715.17675 1559 1450 -32902986.62891 1560 1450 9166666.669678 1561 1450 22181563.40434 1562 1450 5180609.664774 1563 1450 -9166666.669676 1564 1450 -15732561.20235 1565 1450 -8246533.414749 1566 1450 -9166787.248676 1567 1450 -29841516.44517 1568 1450 -9524419.110191 1569 1450 11000120.58261 1570 1450 -7497354.8519 1571 1450 10895952.52268 1451 1451 364686604.8413 1452 1451 2471062.936219 1453 1451 1236088.573861 1454 1451 -8882157.948759 1455 1451 -2662144.112346 1456 1451 -3097217.751863 1457 1451 -5157813.372203 1458 1451 -3229201.302601 1459 1451 1611129.178087 1460 1451 31494576.83983 1554 1451 8038421.095477 1555 1451 -9645939.429201 1556 1451 -12211865.62666 1557 1451 -10019068.77473 1558 1451 -33069655.68813 1559 1451 -41500155.26984 1560 1451 -7806863.548506 1561 1451 -8513909.758068 1562 1451 -68673244.4318 1563 1451 -10076852.32471 1564 1451 -8246533.414749 1565 1451 -16388848.63381 1566 1451 -43444243.01831 1567 1451 -9329934.937092 1568 1451 -59307696.78438 1569 1451 -13620149.53456 1570 1451 7263968.348454 1571 1451 -19992946.27174 1452 1452 613328698.917 1453 1452 1.621246337891e-05 1454 1452 925940.9508365 1455 1452 82577683.23799 1456 1452 -7.659196853638e-06 1457 1452 231485.2378237 1461 1452 -140008022.8906 1462 1452 2.577900886536e-06 1463 1452 -462970.4754454 1464 1452 -52702268.47617 1465 1452 36666666.66064 1466 1452 -2702548.174055 1557 1452 -58783069.51046 1558 1452 1.639127731323e-06 1559 1452 42697451.81849 1560 1452 -19844426.42677 1561 1452 -9166666.669679 1562 1452 11321064.34898 1563 1452 57430602.85087 1564 1452 3.8743019104e-06 1565 1452 231485.2378496 1566 1452 -6249019.844286 1567 1452 -7.443130016327e-06 1568 1452 57871.30949415 1572 1452 -59172122.54065 1573 1452 4.395842552185e-07 1574 1452 -42928937.05631 1575 1452 -19947608.24497 1576 1452 9166666.669675 1577 1452 -11378935.65847 1453 1453 525322193.6551 1454 1453 -11110930.80738 1455 1453 -7.525086402893e-06 1456 1453 -56755372.43366 1457 1453 5555465.403692 1461 1453 2.831220626831e-06 1462 1453 21326659.08566 1463 1453 -2777732.703214 1464 1453 36666666.66064 1465 1453 -41701455.31301 1466 1453 1513866.351594 1557 1453 6.034970283508e-07 1558 1453 -18449398.9965 1559 1453 -694433.1761458 1560 1453 -9166666.669679 1561 1453 -17094223.13462 1562 1453 8871522.146427 1563 1453 4.231929779053e-06 1564 1453 35428976.52455 1565 1453 -2777732.703215 1566 1453 -7.599592208862e-06 1567 1453 -41082283.77936 1568 1453 35638866.34597 1572 1453 4.619359970093e-07 1573 1453 -18838452.02672 1574 1453 -694433.1761459 1575 1453 9166666.669675 1576 1453 -17197404.95283 1577 1453 8940966.590895 1454 1454 582790450.9006 1455 1454 231485.2378239 1456 1454 5555465.403692 1457 1454 74350397.96411 1461 1454 -462970.4754449 1462 1454 -2777732.703214 1463 1454 35690216.05203 1464 1454 -2737270.396254 1465 1454 1541644.129353 1466 1454 -8945289.261872 1557 1454 42662729.59629 1558 1454 -694433.1761458 1559 1454 -54493616.03735 1560 1454 11321064.34898 1561 1454 8871522.146428 1562 1454 -20019947.11985 1563 1454 231485.2378493 1564 1454 -2777732.703215 1565 1454 -110039912.4136 1566 1454 57871.30949473 1567 1454 35611088.56821 1568 1454 -53128242.27036 1572 1454 -42894214.83411 1573 1454 -694433.1761459 1574 1454 -55531090.78464 1575 1454 -11378935.65847 1576 1454 8940966.590895 1577 1454 -20295098.63508 1455 1455 665854880.679 1456 1455 36667470.52063 1457 1455 3125090.734117 1458 1455 18070347.2503 1459 1455 -36666988.20464 1460 1455 2702571.265064 1461 1455 -52678594.23377 1462 1455 -36666666.66064 1463 1455 2505785.158418 1464 1455 -140008022.8906 1465 1455 2.577900886536e-06 1466 1455 -462970.4754454 1467 1455 -52702268.47617 1468 1455 36666666.66064 1469 1455 -2702548.174055 1557 1455 -18391419.7975 1558 1455 9166666.669678 1559 1455 10018981.01522 1560 1455 -71369389.94283 1561 1455 -9166787.24867 1562 1455 42147892.99313 1563 1455 -413319.0876746 1564 1455 3.017485141754e-06 1565 1455 57871.30948708 1566 1455 76553135.92261 1567 1455 9166867.634673 1568 1455 781226.2244361 1569 1455 -18699525.19313 1570 1455 -9166747.055676 1571 1455 11379035.3452 1572 1455 -18482764.4945 1573 1455 -9166666.669676 1574 1455 -10076852.32471 1575 1455 -59172122.54065 1576 1455 4.395842552185e-07 1577 1455 -42928937.05631 1578 1455 -19947608.24497 1579 1455 9166666.669675 1580 1455 -11378935.65847 1456 1456 566847200.4901 1457 1456 -8610909.306622 1458 1456 -36667148.97663 1459 1456 -110262538.3357 1460 1456 4611016.915367 1461 1456 -36666666.66065 1462 1456 -41677781.0706 1463 1456 1263866.351621 1464 1456 2.831220626831e-06 1465 1456 21326659.08566 1466 1456 -2777732.703214 1467 1456 36666666.66064 1468 1456 -41701455.31301 1469 1456 1513866.351594 1557 1456 9166666.669678 1558 1456 -15641216.50536 1559 1456 -8177088.970282 1560 1456 -9166747.055672 1561 1456 -28285264.92641 1562 1456 7788270.809731 1563 1456 4.06801700592e-06 1564 1456 -35246583.02275 1565 1456 -32861133.64276 1566 1456 9166867.634673 1567 1456 51801215.86321 1568 1456 -2152764.494718 1569 1456 -9166787.248675 1570 1456 -50782746.60544 1571 1456 35402941.77273 1572 1456 -9166666.669676 1573 1456 -15732561.20235 1574 1456 -8246533.414749 1575 1456 4.619359970093e-07 1576 1456 -18838452.02672 1577 1456 -694433.1761459 1578 1456 9166666.669675 1579 1456 -17197404.95283 1580 1456 8940966.590895 1457 1457 591261848.0956 1458 1457 2737305.032771 1459 1457 5388803.421584 1460 1457 33925571.74906 1461 1457 2471062.936219 1462 1457 1236088.573861 1463 1457 -8882157.948759 1464 1457 -462970.4754449 1465 1457 -2777732.703214 1466 1457 35690216.05203 1467 1457 -2737270.396254 1468 1457 1541644.129353 1469 1457 -8945289.261872 1557 1457 10018981.01522 1558 1457 -8177088.970282 1559 1457 -16145262.77514 1560 1457 42113167.97979 1561 1457 7593861.729456 1562 1457 -55157692.73435 1563 1457 57871.30948763 1564 1457 -32833355.865 1565 1457 -37566373.58606 1566 1457 781320.0962051 1567 1457 -2152689.398522 1568 1457 -91946096.11431 1569 1457 11379085.18856 1570 1457 35569610.71641 1571 1457 -53430905.74636 1572 1457 -10076852.32471 1573 1457 -8246533.414749 1574 1457 -16388848.63381 1575 1457 -42894214.83411 1576 1457 -694433.1761459 1577 1457 -55531090.78464 1578 1457 -11378935.65847 1579 1457 8940966.590895 1580 1457 -20295098.63508 1458 1458 383498024.544 1459 1458 36666666.66064 1460 1458 2662179.892796 1464 1458 -52678594.23377 1465 1458 -36666666.66064 1466 1458 2505785.158418 1467 1458 -204675200.5845 1468 1458 -36666988.20463 1469 1458 -2662156.039165 1470 1458 11810466.31493 1471 1458 29333654.8725 1472 1458 -2152800.8684 1560 1458 -4579449.609996 1561 1458 11000120.58261 1562 1458 12057631.64322 1566 1458 -14225493.76444 1567 1458 -9166787.248675 1568 1458 -10019112.65448 1569 1458 35932670.30059 1570 1458 9166666.669679 1571 1458 9311563.653784 1575 1458 -18482764.4945 1576 1458 -9166666.669676 1577 1458 -10076852.32471 1578 1458 -72925641.46158 1579 1458 -9166747.055676 1580 1458 -43478968.03166 1581 1458 -7497354.851903 1582 1458 7333413.72174 1583 1458 -9080099.689708 1459 1459 328493596.9861 1460 1459 -6944376.43401 1464 1459 -36666666.66065 1465 1459 -41677781.0706 1466 1459 1263866.351621 1467 1459 -36667148.97662 1468 1459 -32338700.60373 1469 1459 -3847226.785359 1470 1459 44000482.30876 1471 1459 11810466.31493 1472 1459 2416693.76713 1560 1459 7333413.72174 1561 1459 -4579449.61 1562 1459 -6430626.286135 1566 1459 -9166747.055675 1567 1459 -46308715.17675 1568 1459 -32902986.62891 1569 1459 9166666.669678 1570 1459 22181563.40434 1571 1459 5180609.664774 1575 1459 -9166666.669676 1576 1459 -15732561.20235 1577 1459 -8246533.414749 1578 1459 -9166787.248676 1579 1459 -29841516.44517 1580 1459 -9524419.110191 1581 1459 11000120.58261 1582 1459 -7497354.8519 1583 1459 10895952.52268 1460 1460 364686604.8413 1464 1460 2471062.936219 1465 1460 1236088.573861 1466 1460 -8882157.948759 1467 1460 -2662144.112346 1468 1460 -3097217.751863 1469 1460 -5157813.372203 1470 1460 -3229201.302601 1471 1460 1611129.178087 1472 1460 31494576.83983 1560 1460 8038421.095477 1561 1460 -9645939.429201 1562 1460 -12211865.62666 1566 1460 -10019068.77473 1567 1460 -33069655.68813 1568 1460 -41500155.26984 1569 1460 -7806863.548506 1570 1460 -8513909.758068 1571 1460 -68673244.4318 1575 1460 -10076852.32471 1576 1460 -8246533.414749 1577 1460 -16388848.63381 1578 1460 -43444243.01831 1579 1460 -9329934.937092 1580 1460 -59307696.78438 1581 1460 -13620149.53456 1582 1460 7263968.348454 1583 1460 -19992946.27174 1461 1461 613328698.917 1462 1461 1.621246337891e-05 1463 1461 925940.9508365 1464 1461 82577683.23799 1465 1461 -7.659196853638e-06 1466 1461 231485.2378237 1473 1461 -140008022.8906 1474 1461 2.577900886536e-06 1475 1461 -462970.4754454 1476 1461 -52702268.47617 1477 1461 36666666.66064 1478 1461 -2702548.174055 1563 1461 -58783069.51046 1564 1461 1.639127731323e-06 1565 1461 42697451.81849 1566 1461 -19844426.42677 1567 1461 -9166666.669679 1568 1461 11321064.34898 1572 1461 57430602.85087 1573 1461 3.8743019104e-06 1574 1461 231485.2378496 1575 1461 -6249019.844286 1576 1461 -7.443130016327e-06 1577 1461 57871.30949415 1584 1461 -59172122.54065 1585 1461 4.395842552185e-07 1586 1461 -42928937.05631 1587 1461 -19947608.24497 1588 1461 9166666.669675 1589 1461 -11378935.65847 1462 1462 525322193.6551 1463 1462 -11110930.80738 1464 1462 -7.525086402893e-06 1465 1462 -56755372.43366 1466 1462 5555465.403692 1473 1462 2.831220626831e-06 1474 1462 21326659.08566 1475 1462 -2777732.703214 1476 1462 36666666.66064 1477 1462 -41701455.31301 1478 1462 1513866.351594 1563 1462 6.034970283508e-07 1564 1462 -18449398.9965 1565 1462 -694433.1761458 1566 1462 -9166666.669679 1567 1462 -17094223.13462 1568 1462 8871522.146427 1572 1462 4.231929779053e-06 1573 1462 35428976.52455 1574 1462 -2777732.703215 1575 1462 -7.599592208862e-06 1576 1462 -41082283.77936 1577 1462 35638866.34597 1584 1462 4.619359970093e-07 1585 1462 -18838452.02672 1586 1462 -694433.1761459 1587 1462 9166666.669675 1588 1462 -17197404.95283 1589 1462 8940966.590895 1463 1463 582790450.9006 1464 1463 231485.2378239 1465 1463 5555465.403692 1466 1463 74350397.96411 1473 1463 -462970.4754449 1474 1463 -2777732.703214 1475 1463 35690216.05203 1476 1463 -2737270.396254 1477 1463 1541644.129353 1478 1463 -8945289.261872 1563 1463 42662729.59629 1564 1463 -694433.1761458 1565 1463 -54493616.03735 1566 1463 11321064.34898 1567 1463 8871522.146428 1568 1463 -20019947.11985 1572 1463 231485.2378493 1573 1463 -2777732.703215 1574 1463 -110039912.4136 1575 1463 57871.30949473 1576 1463 35611088.56821 1577 1463 -53128242.27036 1584 1463 -42894214.83411 1585 1463 -694433.1761459 1586 1463 -55531090.78464 1587 1463 -11378935.65847 1588 1463 8940966.590895 1589 1463 -20295098.63508 1464 1464 613328698.917 1465 1464 1.621246337891e-05 1466 1464 925940.9508365 1467 1464 82577683.23799 1468 1464 -7.659196853638e-06 1469 1464 231485.2378237 1473 1464 -52678594.23377 1474 1464 -36666666.66064 1475 1464 2505785.158418 1476 1464 -140008022.8906 1477 1464 2.577900886536e-06 1478 1464 -462970.4754454 1479 1464 -52702268.47617 1480 1464 36666666.66064 1481 1464 -2702548.174055 1563 1464 -18391419.7975 1564 1464 9166666.669678 1565 1464 10018981.01522 1566 1464 -58783069.51046 1567 1464 1.639127731323e-06 1568 1464 42697451.81849 1569 1464 -19844426.42677 1570 1464 -9166666.669679 1571 1464 11321064.34898 1572 1464 -413319.0876746 1573 1464 3.017485141754e-06 1574 1464 57871.30948708 1575 1464 57430602.85087 1576 1464 3.8743019104e-06 1577 1464 231485.2378496 1578 1464 -6249019.844286 1579 1464 -7.443130016327e-06 1580 1464 57871.30949415 1584 1464 -18482764.4945 1585 1464 -9166666.669676 1586 1464 -10076852.32471 1587 1464 -59172122.54065 1588 1464 4.395842552185e-07 1589 1464 -42928937.05631 1590 1464 -19947608.24497 1591 1464 9166666.669675 1592 1464 -11378935.65847 1465 1465 525322193.6551 1466 1465 -11110930.80738 1467 1465 -7.525086402893e-06 1468 1465 -56755372.43366 1469 1465 5555465.403692 1473 1465 -36666666.66065 1474 1465 -41677781.0706 1475 1465 1263866.351621 1476 1465 2.831220626831e-06 1477 1465 21326659.08566 1478 1465 -2777732.703214 1479 1465 36666666.66064 1480 1465 -41701455.31301 1481 1465 1513866.351594 1563 1465 9166666.669678 1564 1465 -15641216.50536 1565 1465 -8177088.970282 1566 1465 6.034970283508e-07 1567 1465 -18449398.9965 1568 1465 -694433.1761458 1569 1465 -9166666.669679 1570 1465 -17094223.13462 1571 1465 8871522.146427 1572 1465 4.06801700592e-06 1573 1465 -35246583.02275 1574 1465 -32861133.64276 1575 1465 4.231929779053e-06 1576 1465 35428976.52455 1577 1465 -2777732.703215 1578 1465 -7.599592208862e-06 1579 1465 -41082283.77936 1580 1465 35638866.34597 1584 1465 -9166666.669676 1585 1465 -15732561.20235 1586 1465 -8246533.414749 1587 1465 4.619359970093e-07 1588 1465 -18838452.02672 1589 1465 -694433.1761459 1590 1465 9166666.669675 1591 1465 -17197404.95283 1592 1465 8940966.590895 1466 1466 582790450.9006 1467 1466 231485.2378239 1468 1466 5555465.403692 1469 1466 74350397.96411 1473 1466 2471062.936219 1474 1466 1236088.573861 1475 1466 -8882157.948759 1476 1466 -462970.4754449 1477 1466 -2777732.703214 1478 1466 35690216.05203 1479 1466 -2737270.396254 1480 1466 1541644.129353 1481 1466 -8945289.261872 1563 1466 10018981.01522 1564 1466 -8177088.970282 1565 1466 -16145262.77514 1566 1466 42662729.59629 1567 1466 -694433.1761458 1568 1466 -54493616.03735 1569 1466 11321064.34898 1570 1466 8871522.146428 1571 1466 -20019947.11985 1572 1466 57871.30948763 1573 1466 -32833355.865 1574 1466 -37566373.58606 1575 1466 231485.2378493 1576 1466 -2777732.703215 1577 1466 -110039912.4136 1578 1466 57871.30949473 1579 1466 35611088.56821 1580 1466 -53128242.27036 1584 1466 -10076852.32471 1585 1466 -8246533.414749 1586 1466 -16388848.63381 1587 1466 -42894214.83411 1588 1466 -694433.1761459 1589 1466 -55531090.78464 1590 1466 -11378935.65847 1591 1466 8940966.590895 1592 1466 -20295098.63508 1467 1467 665854880.679 1468 1467 36667470.52063 1469 1467 3125090.734117 1470 1467 18070347.2503 1471 1467 -36666988.20464 1472 1467 2702571.265064 1476 1467 -52678594.23377 1477 1467 -36666666.66064 1478 1467 2505785.158418 1479 1467 -140008022.8906 1480 1467 2.577900886536e-06 1481 1467 -462970.4754454 1482 1467 -52702268.47617 1483 1467 36666666.66064 1484 1467 -2702548.174055 1566 1467 -18391419.7975 1567 1467 9166666.669678 1568 1467 10018981.01522 1569 1467 -71369389.94283 1570 1467 -9166787.24867 1571 1467 42147892.99313 1575 1467 -413319.0876746 1576 1467 3.017485141754e-06 1577 1467 57871.30948708 1578 1467 76553135.92261 1579 1467 9166867.634673 1580 1467 781226.2244361 1581 1467 -18699525.19313 1582 1467 -9166747.055676 1583 1467 11379035.3452 1587 1467 -18482764.4945 1588 1467 -9166666.669676 1589 1467 -10076852.32471 1590 1467 -59172122.54065 1591 1467 4.395842552185e-07 1592 1467 -42928937.05631 1593 1467 -19947608.24497 1594 1467 9166666.669675 1595 1467 -11378935.65847 1468 1468 566847200.4901 1469 1468 -8610909.306622 1470 1468 -36667148.97663 1471 1468 -110262538.3357 1472 1468 4611016.915367 1476 1468 -36666666.66065 1477 1468 -41677781.0706 1478 1468 1263866.351621 1479 1468 2.831220626831e-06 1480 1468 21326659.08566 1481 1468 -2777732.703214 1482 1468 36666666.66064 1483 1468 -41701455.31301 1484 1468 1513866.351594 1566 1468 9166666.669678 1567 1468 -15641216.50536 1568 1468 -8177088.970282 1569 1468 -9166747.055672 1570 1468 -28285264.92641 1571 1468 7788270.809731 1575 1468 4.06801700592e-06 1576 1468 -35246583.02275 1577 1468 -32861133.64276 1578 1468 9166867.634673 1579 1468 51801215.86321 1580 1468 -2152764.494718 1581 1468 -9166787.248675 1582 1468 -50782746.60544 1583 1468 35402941.77273 1587 1468 -9166666.669676 1588 1468 -15732561.20235 1589 1468 -8246533.414749 1590 1468 4.619359970093e-07 1591 1468 -18838452.02672 1592 1468 -694433.1761459 1593 1468 9166666.669675 1594 1468 -17197404.95283 1595 1468 8940966.590895 1469 1469 591261848.0956 1470 1469 2737305.032771 1471 1469 5388803.421584 1472 1469 33925571.74906 1476 1469 2471062.936219 1477 1469 1236088.573861 1478 1469 -8882157.948759 1479 1469 -462970.4754449 1480 1469 -2777732.703214 1481 1469 35690216.05203 1482 1469 -2737270.396254 1483 1469 1541644.129353 1484 1469 -8945289.261872 1566 1469 10018981.01522 1567 1469 -8177088.970282 1568 1469 -16145262.77514 1569 1469 42113167.97979 1570 1469 7593861.729456 1571 1469 -55157692.73435 1575 1469 57871.30948763 1576 1469 -32833355.865 1577 1469 -37566373.58606 1578 1469 781320.0962051 1579 1469 -2152689.398522 1580 1469 -91946096.11431 1581 1469 11379085.18856 1582 1469 35569610.71641 1583 1469 -53430905.74636 1587 1469 -10076852.32471 1588 1469 -8246533.414749 1589 1469 -16388848.63381 1590 1469 -42894214.83411 1591 1469 -694433.1761459 1592 1469 -55531090.78464 1593 1469 -11378935.65847 1594 1469 8940966.590895 1595 1469 -20295098.63508 1470 1470 383498024.544 1471 1470 36666666.66064 1472 1470 2662179.892796 1479 1470 -52678594.23377 1480 1470 -36666666.66064 1481 1470 2505785.158418 1482 1470 -204675200.5845 1483 1470 -36666988.20463 1484 1470 -2662156.039165 1485 1470 11810466.31493 1486 1470 29333654.8725 1487 1470 -2152800.8684 1569 1470 -4579449.609996 1570 1470 11000120.58261 1571 1470 12057631.64322 1578 1470 -14225493.76444 1579 1470 -9166787.248675 1580 1470 -10019112.65448 1581 1470 35932670.30059 1582 1470 9166666.669679 1583 1470 9311563.653784 1590 1470 -18482764.4945 1591 1470 -9166666.669676 1592 1470 -10076852.32471 1593 1470 -72925641.46158 1594 1470 -9166747.055676 1595 1470 -43478968.03166 1596 1470 -7497354.851903 1597 1470 7333413.72174 1598 1470 -9080099.689708 1471 1471 328493596.9861 1472 1471 -6944376.43401 1479 1471 -36666666.66065 1480 1471 -41677781.0706 1481 1471 1263866.351621 1482 1471 -36667148.97662 1483 1471 -32338700.60373 1484 1471 -3847226.785359 1485 1471 44000482.30876 1486 1471 11810466.31493 1487 1471 2416693.76713 1569 1471 7333413.72174 1570 1471 -4579449.61 1571 1471 -6430626.286135 1578 1471 -9166747.055675 1579 1471 -46308715.17675 1580 1471 -32902986.62891 1581 1471 9166666.669678 1582 1471 22181563.40434 1583 1471 5180609.664774 1590 1471 -9166666.669676 1591 1471 -15732561.20235 1592 1471 -8246533.414749 1593 1471 -9166787.248676 1594 1471 -29841516.44517 1595 1471 -9524419.110191 1596 1471 11000120.58261 1597 1471 -7497354.8519 1598 1471 10895952.52268 1472 1472 364686604.8413 1479 1472 2471062.936219 1480 1472 1236088.573861 1481 1472 -8882157.948759 1482 1472 -2662144.112346 1483 1472 -3097217.751863 1484 1472 -5157813.372203 1485 1472 -3229201.302601 1486 1472 1611129.178087 1487 1472 31494576.83983 1569 1472 8038421.095477 1570 1472 -9645939.429201 1571 1472 -12211865.62666 1578 1472 -10019068.77473 1579 1472 -33069655.68813 1580 1472 -41500155.26984 1581 1472 -7806863.548506 1582 1472 -8513909.758068 1583 1472 -68673244.4318 1590 1472 -10076852.32471 1591 1472 -8246533.414749 1592 1472 -16388848.63381 1593 1472 -43444243.01831 1594 1472 -9329934.937092 1595 1472 -59307696.78438 1596 1472 -13620149.53456 1597 1472 7263968.348454 1598 1472 -19992946.27174 1473 1473 613328698.917 1474 1473 1.621246337891e-05 1475 1473 925940.9508365 1476 1473 82577683.23799 1477 1473 -7.659196853638e-06 1478 1473 231485.2378237 1488 1473 -140008022.8906 1489 1473 2.577900886536e-06 1490 1473 -462970.4754454 1491 1473 -52702268.47617 1492 1473 36666666.66064 1493 1473 -2702548.174055 1572 1473 -58783069.51046 1573 1473 1.639127731323e-06 1574 1473 42697451.81849 1575 1473 -19844426.42677 1576 1473 -9166666.669679 1577 1473 11321064.34898 1584 1473 57430602.85087 1585 1473 3.8743019104e-06 1586 1473 231485.2378496 1587 1473 -6249019.844286 1588 1473 -7.443130016327e-06 1589 1473 57871.30949415 1599 1473 -59172122.54065 1600 1473 4.395842552185e-07 1601 1473 -42928937.05631 1602 1473 -19947608.24497 1603 1473 9166666.669675 1604 1473 -11378935.65847 1474 1474 525322193.6551 1475 1474 -11110930.80738 1476 1474 -7.525086402893e-06 1477 1474 -56755372.43366 1478 1474 5555465.403692 1488 1474 2.831220626831e-06 1489 1474 21326659.08566 1490 1474 -2777732.703214 1491 1474 36666666.66064 1492 1474 -41701455.31301 1493 1474 1513866.351594 1572 1474 6.034970283508e-07 1573 1474 -18449398.9965 1574 1474 -694433.1761458 1575 1474 -9166666.669679 1576 1474 -17094223.13462 1577 1474 8871522.146427 1584 1474 4.231929779053e-06 1585 1474 35428976.52455 1586 1474 -2777732.703215 1587 1474 -7.599592208862e-06 1588 1474 -41082283.77936 1589 1474 35638866.34597 1599 1474 4.619359970093e-07 1600 1474 -18838452.02672 1601 1474 -694433.1761459 1602 1474 9166666.669675 1603 1474 -17197404.95283 1604 1474 8940966.590895 1475 1475 582790450.9006 1476 1475 231485.2378239 1477 1475 5555465.403692 1478 1475 74350397.96411 1488 1475 -462970.4754449 1489 1475 -2777732.703214 1490 1475 35690216.05203 1491 1475 -2737270.396254 1492 1475 1541644.129353 1493 1475 -8945289.261872 1572 1475 42662729.59629 1573 1475 -694433.1761458 1574 1475 -54493616.03735 1575 1475 11321064.34898 1576 1475 8871522.146428 1577 1475 -20019947.11985 1584 1475 231485.2378493 1585 1475 -2777732.703215 1586 1475 -110039912.4136 1587 1475 57871.30949473 1588 1475 35611088.56821 1589 1475 -53128242.27036 1599 1475 -42894214.83411 1600 1475 -694433.1761459 1601 1475 -55531090.78464 1602 1475 -11378935.65847 1603 1475 8940966.590895 1604 1475 -20295098.63508 1476 1476 613328698.917 1477 1476 1.621246337891e-05 1478 1476 925940.9508365 1479 1476 82577683.23799 1480 1476 -7.659196853638e-06 1481 1476 231485.2378237 1488 1476 -52678594.23377 1489 1476 -36666666.66064 1490 1476 2505785.158418 1491 1476 -140008022.8906 1492 1476 2.577900886536e-06 1493 1476 -462970.4754454 1494 1476 -52702268.47617 1495 1476 36666666.66064 1496 1476 -2702548.174055 1572 1476 -18391419.7975 1573 1476 9166666.669678 1574 1476 10018981.01522 1575 1476 -58783069.51046 1576 1476 1.639127731323e-06 1577 1476 42697451.81849 1578 1476 -19844426.42677 1579 1476 -9166666.669679 1580 1476 11321064.34898 1584 1476 -413319.0876746 1585 1476 3.017485141754e-06 1586 1476 57871.30948708 1587 1476 57430602.85087 1588 1476 3.8743019104e-06 1589 1476 231485.2378496 1590 1476 -6249019.844286 1591 1476 -7.443130016327e-06 1592 1476 57871.30949415 1599 1476 -18482764.4945 1600 1476 -9166666.669676 1601 1476 -10076852.32471 1602 1476 -59172122.54065 1603 1476 4.395842552185e-07 1604 1476 -42928937.05631 1605 1476 -19947608.24497 1606 1476 9166666.669675 1607 1476 -11378935.65847 1477 1477 525322193.6551 1478 1477 -11110930.80738 1479 1477 -7.525086402893e-06 1480 1477 -56755372.43366 1481 1477 5555465.403692 1488 1477 -36666666.66065 1489 1477 -41677781.0706 1490 1477 1263866.351621 1491 1477 2.831220626831e-06 1492 1477 21326659.08566 1493 1477 -2777732.703214 1494 1477 36666666.66064 1495 1477 -41701455.31301 1496 1477 1513866.351594 1572 1477 9166666.669678 1573 1477 -15641216.50536 1574 1477 -8177088.970282 1575 1477 6.034970283508e-07 1576 1477 -18449398.9965 1577 1477 -694433.1761458 1578 1477 -9166666.669679 1579 1477 -17094223.13462 1580 1477 8871522.146427 1584 1477 4.06801700592e-06 1585 1477 -35246583.02275 1586 1477 -32861133.64276 1587 1477 4.231929779053e-06 1588 1477 35428976.52455 1589 1477 -2777732.703215 1590 1477 -7.599592208862e-06 1591 1477 -41082283.77936 1592 1477 35638866.34597 1599 1477 -9166666.669676 1600 1477 -15732561.20235 1601 1477 -8246533.414749 1602 1477 4.619359970093e-07 1603 1477 -18838452.02672 1604 1477 -694433.1761459 1605 1477 9166666.669675 1606 1477 -17197404.95283 1607 1477 8940966.590895 1478 1478 582790450.9006 1479 1478 231485.2378239 1480 1478 5555465.403692 1481 1478 74350397.96411 1488 1478 2471062.936219 1489 1478 1236088.573861 1490 1478 -8882157.948759 1491 1478 -462970.4754449 1492 1478 -2777732.703214 1493 1478 35690216.05203 1494 1478 -2737270.396254 1495 1478 1541644.129353 1496 1478 -8945289.261872 1572 1478 10018981.01522 1573 1478 -8177088.970282 1574 1478 -16145262.77514 1575 1478 42662729.59629 1576 1478 -694433.1761458 1577 1478 -54493616.03735 1578 1478 11321064.34898 1579 1478 8871522.146428 1580 1478 -20019947.11985 1584 1478 57871.30948763 1585 1478 -32833355.865 1586 1478 -37566373.58606 1587 1478 231485.2378493 1588 1478 -2777732.703215 1589 1478 -110039912.4136 1590 1478 57871.30949473 1591 1478 35611088.56821 1592 1478 -53128242.27036 1599 1478 -10076852.32471 1600 1478 -8246533.414749 1601 1478 -16388848.63381 1602 1478 -42894214.83411 1603 1478 -694433.1761459 1604 1478 -55531090.78464 1605 1478 -11378935.65847 1606 1478 8940966.590895 1607 1478 -20295098.63508 1479 1479 613328698.917 1480 1479 1.621246337891e-05 1481 1479 925940.9508365 1482 1479 82577683.23799 1483 1479 -7.659196853638e-06 1484 1479 231485.2378237 1491 1479 -52678594.23377 1492 1479 -36666666.66064 1493 1479 2505785.158418 1494 1479 -140008022.8906 1495 1479 2.577900886536e-06 1496 1479 -462970.4754454 1497 1479 -52702268.47617 1498 1479 36666666.66064 1499 1479 -2702548.174055 1575 1479 -18391419.7975 1576 1479 9166666.669678 1577 1479 10018981.01522 1578 1479 -58783069.51046 1579 1479 1.639127731323e-06 1580 1479 42697451.81849 1581 1479 -19844426.42677 1582 1479 -9166666.669679 1583 1479 11321064.34898 1587 1479 -413319.0876746 1588 1479 3.017485141754e-06 1589 1479 57871.30948708 1590 1479 57430602.85087 1591 1479 3.8743019104e-06 1592 1479 231485.2378496 1593 1479 -6249019.844286 1594 1479 -7.443130016327e-06 1595 1479 57871.30949415 1602 1479 -18482764.4945 1603 1479 -9166666.669676 1604 1479 -10076852.32471 1605 1479 -59172122.54065 1606 1479 4.395842552185e-07 1607 1479 -42928937.05631 1608 1479 -19947608.24497 1609 1479 9166666.669675 1610 1479 -11378935.65847 1480 1480 525322193.6551 1481 1480 -11110930.80738 1482 1480 -7.525086402893e-06 1483 1480 -56755372.43366 1484 1480 5555465.403692 1491 1480 -36666666.66065 1492 1480 -41677781.0706 1493 1480 1263866.351621 1494 1480 2.831220626831e-06 1495 1480 21326659.08566 1496 1480 -2777732.703214 1497 1480 36666666.66064 1498 1480 -41701455.31301 1499 1480 1513866.351594 1575 1480 9166666.669678 1576 1480 -15641216.50536 1577 1480 -8177088.970282 1578 1480 6.034970283508e-07 1579 1480 -18449398.9965 1580 1480 -694433.1761458 1581 1480 -9166666.669679 1582 1480 -17094223.13462 1583 1480 8871522.146427 1587 1480 4.06801700592e-06 1588 1480 -35246583.02275 1589 1480 -32861133.64276 1590 1480 4.231929779053e-06 1591 1480 35428976.52455 1592 1480 -2777732.703215 1593 1480 -7.599592208862e-06 1594 1480 -41082283.77936 1595 1480 35638866.34597 1602 1480 -9166666.669676 1603 1480 -15732561.20235 1604 1480 -8246533.414749 1605 1480 4.619359970093e-07 1606 1480 -18838452.02672 1607 1480 -694433.1761459 1608 1480 9166666.669675 1609 1480 -17197404.95283 1610 1480 8940966.590895 1481 1481 582790450.9006 1482 1481 231485.2378239 1483 1481 5555465.403692 1484 1481 74350397.96411 1491 1481 2471062.936219 1492 1481 1236088.573861 1493 1481 -8882157.948759 1494 1481 -462970.4754449 1495 1481 -2777732.703214 1496 1481 35690216.05203 1497 1481 -2737270.396254 1498 1481 1541644.129353 1499 1481 -8945289.261872 1575 1481 10018981.01522 1576 1481 -8177088.970282 1577 1481 -16145262.77514 1578 1481 42662729.59629 1579 1481 -694433.1761458 1580 1481 -54493616.03735 1581 1481 11321064.34898 1582 1481 8871522.146428 1583 1481 -20019947.11985 1587 1481 57871.30948763 1588 1481 -32833355.865 1589 1481 -37566373.58606 1590 1481 231485.2378493 1591 1481 -2777732.703215 1592 1481 -110039912.4136 1593 1481 57871.30949473 1594 1481 35611088.56821 1595 1481 -53128242.27036 1602 1481 -10076852.32471 1603 1481 -8246533.414749 1604 1481 -16388848.63381 1605 1481 -42894214.83411 1606 1481 -694433.1761459 1607 1481 -55531090.78464 1608 1481 -11378935.65847 1609 1481 8940966.590895 1610 1481 -20295098.63508 1482 1482 665854880.679 1483 1482 36667470.52063 1484 1482 3125090.734117 1485 1482 18070347.2503 1486 1482 -36666988.20464 1487 1482 2702571.265064 1494 1482 -52678594.23377 1495 1482 -36666666.66064 1496 1482 2505785.158418 1497 1482 -140008022.8906 1498 1482 2.577900886536e-06 1499 1482 -462970.4754454 1500 1482 -52702268.47617 1501 1482 36666666.66064 1502 1482 -2702548.174055 1578 1482 -18391419.7975 1579 1482 9166666.669678 1580 1482 10018981.01522 1581 1482 -71369389.94283 1582 1482 -9166787.24867 1583 1482 42147892.99313 1590 1482 -413319.0876746 1591 1482 3.017485141754e-06 1592 1482 57871.30948708 1593 1482 76553135.92261 1594 1482 9166867.634673 1595 1482 781226.2244361 1596 1482 -18699525.19313 1597 1482 -9166747.055676 1598 1482 11379035.3452 1605 1482 -18482764.4945 1606 1482 -9166666.669676 1607 1482 -10076852.32471 1608 1482 -59172122.54065 1609 1482 4.395842552185e-07 1610 1482 -42928937.05631 1611 1482 -19947608.24497 1612 1482 9166666.669675 1613 1482 -11378935.65847 1483 1483 566847200.4901 1484 1483 -8610909.306622 1485 1483 -36667148.97663 1486 1483 -110262538.3357 1487 1483 4611016.915367 1494 1483 -36666666.66065 1495 1483 -41677781.0706 1496 1483 1263866.351621 1497 1483 2.831220626831e-06 1498 1483 21326659.08566 1499 1483 -2777732.703214 1500 1483 36666666.66064 1501 1483 -41701455.31301 1502 1483 1513866.351594 1578 1483 9166666.669678 1579 1483 -15641216.50536 1580 1483 -8177088.970282 1581 1483 -9166747.055672 1582 1483 -28285264.92641 1583 1483 7788270.809731 1590 1483 4.06801700592e-06 1591 1483 -35246583.02275 1592 1483 -32861133.64276 1593 1483 9166867.634673 1594 1483 51801215.86321 1595 1483 -2152764.494718 1596 1483 -9166787.248675 1597 1483 -50782746.60544 1598 1483 35402941.77273 1605 1483 -9166666.669676 1606 1483 -15732561.20235 1607 1483 -8246533.414749 1608 1483 4.619359970093e-07 1609 1483 -18838452.02672 1610 1483 -694433.1761459 1611 1483 9166666.669675 1612 1483 -17197404.95283 1613 1483 8940966.590895 1484 1484 591261848.0956 1485 1484 2737305.032771 1486 1484 5388803.421584 1487 1484 33925571.74906 1494 1484 2471062.936219 1495 1484 1236088.573861 1496 1484 -8882157.948759 1497 1484 -462970.4754449 1498 1484 -2777732.703214 1499 1484 35690216.05203 1500 1484 -2737270.396254 1501 1484 1541644.129353 1502 1484 -8945289.261872 1578 1484 10018981.01522 1579 1484 -8177088.970282 1580 1484 -16145262.77514 1581 1484 42113167.97979 1582 1484 7593861.729456 1583 1484 -55157692.73435 1590 1484 57871.30948763 1591 1484 -32833355.865 1592 1484 -37566373.58606 1593 1484 781320.0962051 1594 1484 -2152689.398522 1595 1484 -91946096.11431 1596 1484 11379085.18856 1597 1484 35569610.71641 1598 1484 -53430905.74636 1605 1484 -10076852.32471 1606 1484 -8246533.414749 1607 1484 -16388848.63381 1608 1484 -42894214.83411 1609 1484 -694433.1761459 1610 1484 -55531090.78464 1611 1484 -11378935.65847 1612 1484 8940966.590895 1613 1484 -20295098.63508 1485 1485 383498024.544 1486 1485 36666666.66064 1487 1485 2662179.892796 1497 1485 -52678594.23377 1498 1485 -36666666.66064 1499 1485 2505785.158418 1500 1485 -204675200.5845 1501 1485 -36666988.20463 1502 1485 -2662156.039165 1503 1485 11810466.31493 1504 1485 29333654.8725 1505 1485 -2152800.8684 1581 1485 -4579449.609996 1582 1485 11000120.58261 1583 1485 12057631.64322 1593 1485 -14225493.76444 1594 1485 -9166787.248675 1595 1485 -10019112.65448 1596 1485 35932670.30059 1597 1485 9166666.669679 1598 1485 9311563.653784 1608 1485 -18482764.4945 1609 1485 -9166666.669676 1610 1485 -10076852.32471 1611 1485 -72925641.46158 1612 1485 -9166747.055676 1613 1485 -43478968.03166 1614 1485 -7497354.851903 1615 1485 7333413.72174 1616 1485 -9080099.689708 1486 1486 328493596.9861 1487 1486 -6944376.43401 1497 1486 -36666666.66065 1498 1486 -41677781.0706 1499 1486 1263866.351621 1500 1486 -36667148.97662 1501 1486 -32338700.60373 1502 1486 -3847226.785359 1503 1486 44000482.30876 1504 1486 11810466.31493 1505 1486 2416693.76713 1581 1486 7333413.72174 1582 1486 -4579449.61 1583 1486 -6430626.286135 1593 1486 -9166747.055675 1594 1486 -46308715.17675 1595 1486 -32902986.62891 1596 1486 9166666.669678 1597 1486 22181563.40434 1598 1486 5180609.664774 1608 1486 -9166666.669676 1609 1486 -15732561.20235 1610 1486 -8246533.414749 1611 1486 -9166787.248676 1612 1486 -29841516.44517 1613 1486 -9524419.110191 1614 1486 11000120.58261 1615 1486 -7497354.8519 1616 1486 10895952.52268 1487 1487 364686604.8413 1497 1487 2471062.936219 1498 1487 1236088.573861 1499 1487 -8882157.948759 1500 1487 -2662144.112346 1501 1487 -3097217.751863 1502 1487 -5157813.372203 1503 1487 -3229201.302601 1504 1487 1611129.178087 1505 1487 31494576.83983 1581 1487 8038421.095477 1582 1487 -9645939.429201 1583 1487 -12211865.62666 1593 1487 -10019068.77473 1594 1487 -33069655.68813 1595 1487 -41500155.26984 1596 1487 -7806863.548506 1597 1487 -8513909.758068 1598 1487 -68673244.4318 1608 1487 -10076852.32471 1609 1487 -8246533.414749 1610 1487 -16388848.63381 1611 1487 -43444243.01831 1612 1487 -9329934.937092 1613 1487 -59307696.78438 1614 1487 -13620149.53456 1615 1487 7263968.348454 1616 1487 -19992946.27174 1488 1488 613328698.917 1489 1488 1.621246337891e-05 1490 1488 925940.9508365 1491 1488 82577683.23799 1492 1488 -7.659196853638e-06 1493 1488 231485.2378237 1506 1488 -140008022.8906 1507 1488 2.577900886536e-06 1508 1488 -462970.4754454 1509 1488 -52702268.47617 1510 1488 36666666.66064 1511 1488 -2702548.174055 1584 1488 -58783069.51046 1585 1488 1.639127731323e-06 1586 1488 42697451.81849 1587 1488 -19844426.42677 1588 1488 -9166666.669679 1589 1488 11321064.34898 1599 1488 57430602.85087 1600 1488 3.8743019104e-06 1601 1488 231485.2378496 1602 1488 -6249019.844286 1603 1488 -7.443130016327e-06 1604 1488 57871.30949415 1617 1488 -59172122.54065 1618 1488 4.395842552185e-07 1619 1488 -42928937.05631 1620 1488 -19947608.24497 1621 1488 9166666.669675 1622 1488 -11378935.65847 1489 1489 525322193.6551 1490 1489 -11110930.80738 1491 1489 -7.525086402893e-06 1492 1489 -56755372.43366 1493 1489 5555465.403692 1506 1489 2.831220626831e-06 1507 1489 21326659.08566 1508 1489 -2777732.703214 1509 1489 36666666.66064 1510 1489 -41701455.31301 1511 1489 1513866.351594 1584 1489 6.034970283508e-07 1585 1489 -18449398.9965 1586 1489 -694433.1761458 1587 1489 -9166666.669679 1588 1489 -17094223.13462 1589 1489 8871522.146427 1599 1489 4.231929779053e-06 1600 1489 35428976.52455 1601 1489 -2777732.703215 1602 1489 -7.599592208862e-06 1603 1489 -41082283.77936 1604 1489 35638866.34597 1617 1489 4.619359970093e-07 1618 1489 -18838452.02672 1619 1489 -694433.1761459 1620 1489 9166666.669675 1621 1489 -17197404.95283 1622 1489 8940966.590895 1490 1490 582790450.9006 1491 1490 231485.2378239 1492 1490 5555465.403692 1493 1490 74350397.96411 1506 1490 -462970.4754449 1507 1490 -2777732.703214 1508 1490 35690216.05203 1509 1490 -2737270.396254 1510 1490 1541644.129353 1511 1490 -8945289.261872 1584 1490 42662729.59629 1585 1490 -694433.1761458 1586 1490 -54493616.03735 1587 1490 11321064.34898 1588 1490 8871522.146428 1589 1490 -20019947.11985 1599 1490 231485.2378493 1600 1490 -2777732.703215 1601 1490 -110039912.4136 1602 1490 57871.30949473 1603 1490 35611088.56821 1604 1490 -53128242.27036 1617 1490 -42894214.83411 1618 1490 -694433.1761459 1619 1490 -55531090.78464 1620 1490 -11378935.65847 1621 1490 8940966.590895 1622 1490 -20295098.63508 1491 1491 613328698.917 1492 1491 1.621246337891e-05 1493 1491 925940.9508365 1494 1491 82577683.23799 1495 1491 -7.659196853638e-06 1496 1491 231485.2378237 1506 1491 -52678594.23377 1507 1491 -36666666.66064 1508 1491 2505785.158418 1509 1491 -140008022.8906 1510 1491 2.577900886536e-06 1511 1491 -462970.4754454 1512 1491 -52702268.47617 1513 1491 36666666.66064 1514 1491 -2702548.174055 1584 1491 -18391419.7975 1585 1491 9166666.669678 1586 1491 10018981.01522 1587 1491 -58783069.51046 1588 1491 1.639127731323e-06 1589 1491 42697451.81849 1590 1491 -19844426.42677 1591 1491 -9166666.669679 1592 1491 11321064.34898 1599 1491 -413319.0876746 1600 1491 3.017485141754e-06 1601 1491 57871.30948708 1602 1491 57430602.85087 1603 1491 3.8743019104e-06 1604 1491 231485.2378496 1605 1491 -6249019.844286 1606 1491 -7.443130016327e-06 1607 1491 57871.30949415 1617 1491 -18482764.4945 1618 1491 -9166666.669676 1619 1491 -10076852.32471 1620 1491 -59172122.54065 1621 1491 4.395842552185e-07 1622 1491 -42928937.05631 1623 1491 -19947608.24497 1624 1491 9166666.669675 1625 1491 -11378935.65847 1492 1492 525322193.6551 1493 1492 -11110930.80738 1494 1492 -7.525086402893e-06 1495 1492 -56755372.43366 1496 1492 5555465.403692 1506 1492 -36666666.66065 1507 1492 -41677781.0706 1508 1492 1263866.351621 1509 1492 2.831220626831e-06 1510 1492 21326659.08566 1511 1492 -2777732.703214 1512 1492 36666666.66064 1513 1492 -41701455.31301 1514 1492 1513866.351594 1584 1492 9166666.669678 1585 1492 -15641216.50536 1586 1492 -8177088.970282 1587 1492 6.034970283508e-07 1588 1492 -18449398.9965 1589 1492 -694433.1761458 1590 1492 -9166666.669679 1591 1492 -17094223.13462 1592 1492 8871522.146427 1599 1492 4.06801700592e-06 1600 1492 -35246583.02275 1601 1492 -32861133.64276 1602 1492 4.231929779053e-06 1603 1492 35428976.52455 1604 1492 -2777732.703215 1605 1492 -7.599592208862e-06 1606 1492 -41082283.77936 1607 1492 35638866.34597 1617 1492 -9166666.669676 1618 1492 -15732561.20235 1619 1492 -8246533.414749 1620 1492 4.619359970093e-07 1621 1492 -18838452.02672 1622 1492 -694433.1761459 1623 1492 9166666.669675 1624 1492 -17197404.95283 1625 1492 8940966.590895 1493 1493 582790450.9006 1494 1493 231485.2378239 1495 1493 5555465.403692 1496 1493 74350397.96411 1506 1493 2471062.936219 1507 1493 1236088.573861 1508 1493 -8882157.948759 1509 1493 -462970.4754449 1510 1493 -2777732.703214 1511 1493 35690216.05203 1512 1493 -2737270.396254 1513 1493 1541644.129353 1514 1493 -8945289.261872 1584 1493 10018981.01522 1585 1493 -8177088.970282 1586 1493 -16145262.77514 1587 1493 42662729.59629 1588 1493 -694433.1761458 1589 1493 -54493616.03735 1590 1493 11321064.34898 1591 1493 8871522.146428 1592 1493 -20019947.11985 1599 1493 57871.30948763 1600 1493 -32833355.865 1601 1493 -37566373.58606 1602 1493 231485.2378493 1603 1493 -2777732.703215 1604 1493 -110039912.4136 1605 1493 57871.30949473 1606 1493 35611088.56821 1607 1493 -53128242.27036 1617 1493 -10076852.32471 1618 1493 -8246533.414749 1619 1493 -16388848.63381 1620 1493 -42894214.83411 1621 1493 -694433.1761459 1622 1493 -55531090.78464 1623 1493 -11378935.65847 1624 1493 8940966.590895 1625 1493 -20295098.63508 1494 1494 613328698.917 1495 1494 1.621246337891e-05 1496 1494 925940.9508365 1497 1494 82577683.23799 1498 1494 -7.659196853638e-06 1499 1494 231485.2378237 1509 1494 -52678594.23377 1510 1494 -36666666.66064 1511 1494 2505785.158418 1512 1494 -140008022.8906 1513 1494 2.577900886536e-06 1514 1494 -462970.4754454 1515 1494 -52702268.47617 1516 1494 36666666.66064 1517 1494 -2702548.174055 1587 1494 -18391419.7975 1588 1494 9166666.669678 1589 1494 10018981.01522 1590 1494 -58783069.51046 1591 1494 1.639127731323e-06 1592 1494 42697451.81849 1593 1494 -19844426.42677 1594 1494 -9166666.669679 1595 1494 11321064.34898 1602 1494 -413319.0876746 1603 1494 3.017485141754e-06 1604 1494 57871.30948708 1605 1494 57430602.85087 1606 1494 3.8743019104e-06 1607 1494 231485.2378496 1608 1494 -6249019.844286 1609 1494 -7.443130016327e-06 1610 1494 57871.30949415 1620 1494 -18482764.4945 1621 1494 -9166666.669676 1622 1494 -10076852.32471 1623 1494 -59172122.54065 1624 1494 4.395842552185e-07 1625 1494 -42928937.05631 1626 1494 -19947608.24497 1627 1494 9166666.669675 1628 1494 -11378935.65847 1495 1495 525322193.6551 1496 1495 -11110930.80738 1497 1495 -7.525086402893e-06 1498 1495 -56755372.43366 1499 1495 5555465.403692 1509 1495 -36666666.66065 1510 1495 -41677781.0706 1511 1495 1263866.351621 1512 1495 2.831220626831e-06 1513 1495 21326659.08566 1514 1495 -2777732.703214 1515 1495 36666666.66064 1516 1495 -41701455.31301 1517 1495 1513866.351594 1587 1495 9166666.669678 1588 1495 -15641216.50536 1589 1495 -8177088.970282 1590 1495 6.034970283508e-07 1591 1495 -18449398.9965 1592 1495 -694433.1761458 1593 1495 -9166666.669679 1594 1495 -17094223.13462 1595 1495 8871522.146427 1602 1495 4.06801700592e-06 1603 1495 -35246583.02275 1604 1495 -32861133.64276 1605 1495 4.231929779053e-06 1606 1495 35428976.52455 1607 1495 -2777732.703215 1608 1495 -7.599592208862e-06 1609 1495 -41082283.77936 1610 1495 35638866.34597 1620 1495 -9166666.669676 1621 1495 -15732561.20235 1622 1495 -8246533.414749 1623 1495 4.619359970093e-07 1624 1495 -18838452.02672 1625 1495 -694433.1761459 1626 1495 9166666.669675 1627 1495 -17197404.95283 1628 1495 8940966.590895 1496 1496 582790450.9006 1497 1496 231485.2378239 1498 1496 5555465.403692 1499 1496 74350397.96411 1509 1496 2471062.936219 1510 1496 1236088.573861 1511 1496 -8882157.948759 1512 1496 -462970.4754449 1513 1496 -2777732.703214 1514 1496 35690216.05203 1515 1496 -2737270.396254 1516 1496 1541644.129353 1517 1496 -8945289.261872 1587 1496 10018981.01522 1588 1496 -8177088.970282 1589 1496 -16145262.77514 1590 1496 42662729.59629 1591 1496 -694433.1761458 1592 1496 -54493616.03735 1593 1496 11321064.34898 1594 1496 8871522.146428 1595 1496 -20019947.11985 1602 1496 57871.30948763 1603 1496 -32833355.865 1604 1496 -37566373.58606 1605 1496 231485.2378493 1606 1496 -2777732.703215 1607 1496 -110039912.4136 1608 1496 57871.30949473 1609 1496 35611088.56821 1610 1496 -53128242.27036 1620 1496 -10076852.32471 1621 1496 -8246533.414749 1622 1496 -16388848.63381 1623 1496 -42894214.83411 1624 1496 -694433.1761459 1625 1496 -55531090.78464 1626 1496 -11378935.65847 1627 1496 8940966.590895 1628 1496 -20295098.63508 1497 1497 613328698.917 1498 1497 1.621246337891e-05 1499 1497 925940.9508365 1500 1497 82577683.23799 1501 1497 -7.659196853638e-06 1502 1497 231485.2378237 1512 1497 -52678594.23377 1513 1497 -36666666.66064 1514 1497 2505785.158418 1515 1497 -140008022.8906 1516 1497 2.577900886536e-06 1517 1497 -462970.4754454 1518 1497 -52702268.47617 1519 1497 36666666.66064 1520 1497 -2702548.174055 1590 1497 -18391419.7975 1591 1497 9166666.669678 1592 1497 10018981.01522 1593 1497 -58783069.51046 1594 1497 1.639127731323e-06 1595 1497 42697451.81849 1596 1497 -19844426.42677 1597 1497 -9166666.669679 1598 1497 11321064.34898 1605 1497 -413319.0876746 1606 1497 3.017485141754e-06 1607 1497 57871.30948708 1608 1497 57430602.85087 1609 1497 3.8743019104e-06 1610 1497 231485.2378496 1611 1497 -6249019.844286 1612 1497 -7.443130016327e-06 1613 1497 57871.30949415 1623 1497 -18482764.4945 1624 1497 -9166666.669676 1625 1497 -10076852.32471 1626 1497 -59172122.54065 1627 1497 4.395842552185e-07 1628 1497 -42928937.05631 1629 1497 -19947608.24497 1630 1497 9166666.669675 1631 1497 -11378935.65847 1498 1498 525322193.6551 1499 1498 -11110930.80738 1500 1498 -7.525086402893e-06 1501 1498 -56755372.43366 1502 1498 5555465.403692 1512 1498 -36666666.66065 1513 1498 -41677781.0706 1514 1498 1263866.351621 1515 1498 2.831220626831e-06 1516 1498 21326659.08566 1517 1498 -2777732.703214 1518 1498 36666666.66064 1519 1498 -41701455.31301 1520 1498 1513866.351594 1590 1498 9166666.669678 1591 1498 -15641216.50536 1592 1498 -8177088.970282 1593 1498 6.034970283508e-07 1594 1498 -18449398.9965 1595 1498 -694433.1761458 1596 1498 -9166666.669679 1597 1498 -17094223.13462 1598 1498 8871522.146427 1605 1498 4.06801700592e-06 1606 1498 -35246583.02275 1607 1498 -32861133.64276 1608 1498 4.231929779053e-06 1609 1498 35428976.52455 1610 1498 -2777732.703215 1611 1498 -7.599592208862e-06 1612 1498 -41082283.77936 1613 1498 35638866.34597 1623 1498 -9166666.669676 1624 1498 -15732561.20235 1625 1498 -8246533.414749 1626 1498 4.619359970093e-07 1627 1498 -18838452.02672 1628 1498 -694433.1761459 1629 1498 9166666.669675 1630 1498 -17197404.95283 1631 1498 8940966.590895 1499 1499 582790450.9006 1500 1499 231485.2378239 1501 1499 5555465.403692 1502 1499 74350397.96411 1512 1499 2471062.936219 1513 1499 1236088.573861 1514 1499 -8882157.948759 1515 1499 -462970.4754449 1516 1499 -2777732.703214 1517 1499 35690216.05203 1518 1499 -2737270.396254 1519 1499 1541644.129353 1520 1499 -8945289.261872 1590 1499 10018981.01522 1591 1499 -8177088.970282 1592 1499 -16145262.77514 1593 1499 42662729.59629 1594 1499 -694433.1761458 1595 1499 -54493616.03735 1596 1499 11321064.34898 1597 1499 8871522.146428 1598 1499 -20019947.11985 1605 1499 57871.30948763 1606 1499 -32833355.865 1607 1499 -37566373.58606 1608 1499 231485.2378493 1609 1499 -2777732.703215 1610 1499 -110039912.4136 1611 1499 57871.30949473 1612 1499 35611088.56821 1613 1499 -53128242.27036 1623 1499 -10076852.32471 1624 1499 -8246533.414749 1625 1499 -16388848.63381 1626 1499 -42894214.83411 1627 1499 -694433.1761459 1628 1499 -55531090.78464 1629 1499 -11378935.65847 1630 1499 8940966.590895 1631 1499 -20295098.63508 1500 1500 665854880.679 1501 1500 36667470.52063 1502 1500 3125090.734117 1503 1500 18070347.2503 1504 1500 -36666988.20464 1505 1500 2702571.265064 1515 1500 -52678594.23377 1516 1500 -36666666.66064 1517 1500 2505785.158418 1518 1500 -140008022.8906 1519 1500 2.577900886536e-06 1520 1500 -462970.4754454 1521 1500 -52702268.47617 1522 1500 36666666.66064 1523 1500 -2702548.174055 1593 1500 -18391419.7975 1594 1500 9166666.669678 1595 1500 10018981.01522 1596 1500 -71369389.94283 1597 1500 -9166787.24867 1598 1500 42147892.99313 1608 1500 -413319.0876746 1609 1500 3.017485141754e-06 1610 1500 57871.30948708 1611 1500 76553135.92261 1612 1500 9166867.634673 1613 1500 781226.2244361 1614 1500 -18699525.19313 1615 1500 -9166747.055676 1616 1500 11379035.3452 1626 1500 -18482764.4945 1627 1500 -9166666.669676 1628 1500 -10076852.32471 1629 1500 -59172122.54065 1630 1500 4.395842552185e-07 1631 1500 -42928937.05631 1632 1500 -19947608.24497 1633 1500 9166666.669675 1634 1500 -11378935.65847 1501 1501 566847200.4901 1502 1501 -8610909.306622 1503 1501 -36667148.97663 1504 1501 -110262538.3357 1505 1501 4611016.915367 1515 1501 -36666666.66065 1516 1501 -41677781.0706 1517 1501 1263866.351621 1518 1501 2.831220626831e-06 1519 1501 21326659.08566 1520 1501 -2777732.703214 1521 1501 36666666.66064 1522 1501 -41701455.31301 1523 1501 1513866.351594 1593 1501 9166666.669678 1594 1501 -15641216.50536 1595 1501 -8177088.970282 1596 1501 -9166747.055672 1597 1501 -28285264.92641 1598 1501 7788270.809731 1608 1501 4.06801700592e-06 1609 1501 -35246583.02275 1610 1501 -32861133.64276 1611 1501 9166867.634673 1612 1501 51801215.86321 1613 1501 -2152764.494718 1614 1501 -9166787.248675 1615 1501 -50782746.60544 1616 1501 35402941.77273 1626 1501 -9166666.669676 1627 1501 -15732561.20235 1628 1501 -8246533.414749 1629 1501 4.619359970093e-07 1630 1501 -18838452.02672 1631 1501 -694433.1761459 1632 1501 9166666.669675 1633 1501 -17197404.95283 1634 1501 8940966.590895 1502 1502 591261848.0956 1503 1502 2737305.032771 1504 1502 5388803.421584 1505 1502 33925571.74906 1515 1502 2471062.936219 1516 1502 1236088.573861 1517 1502 -8882157.948759 1518 1502 -462970.4754449 1519 1502 -2777732.703214 1520 1502 35690216.05203 1521 1502 -2737270.396254 1522 1502 1541644.129353 1523 1502 -8945289.261872 1593 1502 10018981.01522 1594 1502 -8177088.970282 1595 1502 -16145262.77514 1596 1502 42113167.97979 1597 1502 7593861.729456 1598 1502 -55157692.73435 1608 1502 57871.30948763 1609 1502 -32833355.865 1610 1502 -37566373.58606 1611 1502 781320.0962051 1612 1502 -2152689.398522 1613 1502 -91946096.11431 1614 1502 11379085.18856 1615 1502 35569610.71641 1616 1502 -53430905.74636 1626 1502 -10076852.32471 1627 1502 -8246533.414749 1628 1502 -16388848.63381 1629 1502 -42894214.83411 1630 1502 -694433.1761459 1631 1502 -55531090.78464 1632 1502 -11378935.65847 1633 1502 8940966.590895 1634 1502 -20295098.63508 1503 1503 826502950.7467 1504 1503 -32829142.2168 1505 1503 -1574339.432285 1518 1503 -52678594.23377 1519 1503 -36666666.66064 1520 1503 2505785.158418 1521 1503 -43717734.4447 1522 1503 32816830.06734 1523 1503 -231059.6481135 1524 1503 -637569397.5693 1525 1503 29345645.47798 1526 1503 -416821.6161519 1596 1503 -4579449.609996 1597 1503 11000120.58261 1598 1503 12057631.64322 1611 1503 -14225493.76444 1612 1503 -9166787.248675 1613 1503 -10019112.65448 1614 1503 163714858.8002 1615 1503 -8207285.558244 1616 1503 4241855.317219 1629 1503 -18482764.4945 1630 1503 -9166666.669676 1631 1503 -10076852.32471 1632 1503 -23632031.88637 1633 1503 8204207.520878 1634 1503 -22609970.36319 1635 1503 -160108670.9846 1636 1503 7336411.37311 1637 1503 -520782.4807296 1504 1504 1866175254.747 1505 1504 -20243144.64085 1518 1504 -36666666.66065 1519 1504 -41677781.0706 1520 1504 1263866.351621 1521 1504 32810673.99266 1522 1504 97413180.27061 1523 1504 -1903194.680072 1524 1504 44018468.21692 1525 1504 -1701040543.862 1526 1504 13714990.87775 1596 1504 7333413.72174 1597 1504 -4579449.61 1598 1504 -6430626.286135 1611 1504 -9166747.055675 1612 1504 -46308715.17675 1613 1504 -32902986.62891 1614 1504 -8207285.558244 1615 1504 423632934.9284 1616 1504 -1353225.115187 1629 1504 -9166666.669676 1630 1504 -15732561.20235 1631 1504 -8246533.414749 1632 1504 8202668.502206 1633 1504 11650696.80984 1634 1504 7172753.555873 1635 1504 11004617.05965 1636 1504 -425976457.6889 1637 1504 20227336.59943 1505 1505 856594529.5136 1518 1505 2471062.936219 1519 1505 1236088.573861 1520 1505 -8882157.948759 1521 1505 -1133759.188307 1522 1505 -1875517.295844 1523 1505 50029495.24259 1524 1505 -625232.4242272 1525 1505 13603538.44251 1526 1505 -636713913.8918 1596 1505 8038421.095477 1597 1505 -9645939.429201 1598 1505 -12211865.62666 1611 1505 -10019068.77473 1612 1505 -33069655.68813 1613 1505 -41500155.26984 1614 1505 -4768610.272799 1615 1505 -8558910.345734 1616 1505 99719621.84851 1629 1505 -10076852.32471 1630 1505 -8246533.414749 1631 1505 -16388848.63381 1632 1505 -22783562.29616 1633 1505 7202053.220155 1634 1505 -21366221.56937 1635 1505 -781173.7210934 1636 1505 20019063.72315 1637 1505 -161088669.2548 1506 1506 613328698.917 1507 1506 1.621246337891e-05 1508 1506 925940.9508365 1509 1506 82577683.23799 1510 1506 -7.659196853638e-06 1511 1506 231485.2378237 1527 1506 -140008022.8906 1528 1506 2.577900886536e-06 1529 1506 -462970.4754454 1530 1506 -52702268.47617 1531 1506 36666666.66064 1532 1506 -2702548.174055 1599 1506 -58783069.51046 1600 1506 1.639127731323e-06 1601 1506 42697451.81849 1602 1506 -19844426.42677 1603 1506 -9166666.669679 1604 1506 11321064.34898 1617 1506 57430602.85087 1618 1506 3.8743019104e-06 1619 1506 231485.2378496 1620 1506 -6249019.844286 1621 1506 -7.443130016327e-06 1622 1506 57871.30949415 1638 1506 -59172122.54065 1639 1506 4.395842552185e-07 1640 1506 -42928937.05631 1641 1506 -19947608.24497 1642 1506 9166666.669675 1643 1506 -11378935.65847 1507 1507 525322193.6551 1508 1507 -11110930.80738 1509 1507 -7.525086402893e-06 1510 1507 -56755372.43366 1511 1507 5555465.403692 1527 1507 2.831220626831e-06 1528 1507 21326659.08566 1529 1507 -2777732.703214 1530 1507 36666666.66064 1531 1507 -41701455.31301 1532 1507 1513866.351594 1599 1507 6.034970283508e-07 1600 1507 -18449398.9965 1601 1507 -694433.1761458 1602 1507 -9166666.669679 1603 1507 -17094223.13462 1604 1507 8871522.146427 1617 1507 4.231929779053e-06 1618 1507 35428976.52455 1619 1507 -2777732.703215 1620 1507 -7.599592208862e-06 1621 1507 -41082283.77936 1622 1507 35638866.34597 1638 1507 4.619359970093e-07 1639 1507 -18838452.02672 1640 1507 -694433.1761459 1641 1507 9166666.669675 1642 1507 -17197404.95283 1643 1507 8940966.590895 1508 1508 582790450.9006 1509 1508 231485.2378239 1510 1508 5555465.403692 1511 1508 74350397.96411 1527 1508 -462970.4754449 1528 1508 -2777732.703214 1529 1508 35690216.05203 1530 1508 -2737270.396254 1531 1508 1541644.129353 1532 1508 -8945289.261872 1599 1508 42662729.59629 1600 1508 -694433.1761458 1601 1508 -54493616.03735 1602 1508 11321064.34898 1603 1508 8871522.146428 1604 1508 -20019947.11985 1617 1508 231485.2378493 1618 1508 -2777732.703215 1619 1508 -110039912.4136 1620 1508 57871.30949473 1621 1508 35611088.56821 1622 1508 -53128242.27036 1638 1508 -42894214.83411 1639 1508 -694433.1761459 1640 1508 -55531090.78464 1641 1508 -11378935.65847 1642 1508 8940966.590895 1643 1508 -20295098.63508 1509 1509 613328698.917 1510 1509 1.621246337891e-05 1511 1509 925940.9508365 1512 1509 82577683.23799 1513 1509 -7.659196853638e-06 1514 1509 231485.2378237 1527 1509 -52678594.23377 1528 1509 -36666666.66064 1529 1509 2505785.158418 1530 1509 -140008022.8906 1531 1509 2.577900886536e-06 1532 1509 -462970.4754454 1533 1509 -52702268.47617 1534 1509 36666666.66064 1535 1509 -2702548.174055 1599 1509 -18391419.7975 1600 1509 9166666.669678 1601 1509 10018981.01522 1602 1509 -58783069.51046 1603 1509 1.639127731323e-06 1604 1509 42697451.81849 1605 1509 -19844426.42677 1606 1509 -9166666.669679 1607 1509 11321064.34898 1617 1509 -413319.0876746 1618 1509 3.017485141754e-06 1619 1509 57871.30948708 1620 1509 57430602.85087 1621 1509 3.8743019104e-06 1622 1509 231485.2378496 1623 1509 -6249019.844286 1624 1509 -7.443130016327e-06 1625 1509 57871.30949415 1638 1509 -18482764.4945 1639 1509 -9166666.669676 1640 1509 -10076852.32471 1641 1509 -59172122.54065 1642 1509 4.395842552185e-07 1643 1509 -42928937.05631 1644 1509 -19947608.24497 1645 1509 9166666.669675 1646 1509 -11378935.65847 1510 1510 525322193.6551 1511 1510 -11110930.80738 1512 1510 -7.525086402893e-06 1513 1510 -56755372.43366 1514 1510 5555465.403692 1527 1510 -36666666.66065 1528 1510 -41677781.0706 1529 1510 1263866.351621 1530 1510 2.831220626831e-06 1531 1510 21326659.08566 1532 1510 -2777732.703214 1533 1510 36666666.66064 1534 1510 -41701455.31301 1535 1510 1513866.351594 1599 1510 9166666.669678 1600 1510 -15641216.50536 1601 1510 -8177088.970282 1602 1510 6.034970283508e-07 1603 1510 -18449398.9965 1604 1510 -694433.1761458 1605 1510 -9166666.669679 1606 1510 -17094223.13462 1607 1510 8871522.146427 1617 1510 4.06801700592e-06 1618 1510 -35246583.02275 1619 1510 -32861133.64276 1620 1510 4.231929779053e-06 1621 1510 35428976.52455 1622 1510 -2777732.703215 1623 1510 -7.599592208862e-06 1624 1510 -41082283.77936 1625 1510 35638866.34597 1638 1510 -9166666.669676 1639 1510 -15732561.20235 1640 1510 -8246533.414749 1641 1510 4.619359970093e-07 1642 1510 -18838452.02672 1643 1510 -694433.1761459 1644 1510 9166666.669675 1645 1510 -17197404.95283 1646 1510 8940966.590895 1511 1511 582790450.9006 1512 1511 231485.2378239 1513 1511 5555465.403692 1514 1511 74350397.96411 1527 1511 2471062.936219 1528 1511 1236088.573861 1529 1511 -8882157.948759 1530 1511 -462970.4754449 1531 1511 -2777732.703214 1532 1511 35690216.05203 1533 1511 -2737270.396254 1534 1511 1541644.129353 1535 1511 -8945289.261872 1599 1511 10018981.01522 1600 1511 -8177088.970282 1601 1511 -16145262.77514 1602 1511 42662729.59629 1603 1511 -694433.1761458 1604 1511 -54493616.03735 1605 1511 11321064.34898 1606 1511 8871522.146428 1607 1511 -20019947.11985 1617 1511 57871.30948763 1618 1511 -32833355.865 1619 1511 -37566373.58606 1620 1511 231485.2378493 1621 1511 -2777732.703215 1622 1511 -110039912.4136 1623 1511 57871.30949473 1624 1511 35611088.56821 1625 1511 -53128242.27036 1638 1511 -10076852.32471 1639 1511 -8246533.414749 1640 1511 -16388848.63381 1641 1511 -42894214.83411 1642 1511 -694433.1761459 1643 1511 -55531090.78464 1644 1511 -11378935.65847 1645 1511 8940966.590895 1646 1511 -20295098.63508 1512 1512 613328698.917 1513 1512 1.621246337891e-05 1514 1512 925940.9508365 1515 1512 82577683.23799 1516 1512 -7.659196853638e-06 1517 1512 231485.2378237 1530 1512 -52678594.23377 1531 1512 -36666666.66064 1532 1512 2505785.158418 1533 1512 -140008022.8906 1534 1512 2.577900886536e-06 1535 1512 -462970.4754454 1536 1512 -52702268.47617 1537 1512 36666666.66064 1538 1512 -2702548.174055 1602 1512 -18391419.7975 1603 1512 9166666.669678 1604 1512 10018981.01522 1605 1512 -58783069.51046 1606 1512 1.639127731323e-06 1607 1512 42697451.81849 1608 1512 -19844426.42677 1609 1512 -9166666.669679 1610 1512 11321064.34898 1620 1512 -413319.0876746 1621 1512 3.017485141754e-06 1622 1512 57871.30948708 1623 1512 57430602.85087 1624 1512 3.8743019104e-06 1625 1512 231485.2378496 1626 1512 -6249019.844286 1627 1512 -7.443130016327e-06 1628 1512 57871.30949415 1641 1512 -18482764.4945 1642 1512 -9166666.669676 1643 1512 -10076852.32471 1644 1512 -59172122.54065 1645 1512 4.395842552185e-07 1646 1512 -42928937.05631 1647 1512 -19947608.24497 1648 1512 9166666.669675 1649 1512 -11378935.65847 1513 1513 525322193.6551 1514 1513 -11110930.80738 1515 1513 -7.525086402893e-06 1516 1513 -56755372.43366 1517 1513 5555465.403692 1530 1513 -36666666.66065 1531 1513 -41677781.0706 1532 1513 1263866.351621 1533 1513 2.831220626831e-06 1534 1513 21326659.08566 1535 1513 -2777732.703214 1536 1513 36666666.66064 1537 1513 -41701455.31301 1538 1513 1513866.351594 1602 1513 9166666.669678 1603 1513 -15641216.50536 1604 1513 -8177088.970282 1605 1513 6.034970283508e-07 1606 1513 -18449398.9965 1607 1513 -694433.1761458 1608 1513 -9166666.669679 1609 1513 -17094223.13462 1610 1513 8871522.146427 1620 1513 4.06801700592e-06 1621 1513 -35246583.02275 1622 1513 -32861133.64276 1623 1513 4.231929779053e-06 1624 1513 35428976.52455 1625 1513 -2777732.703215 1626 1513 -7.599592208862e-06 1627 1513 -41082283.77936 1628 1513 35638866.34597 1641 1513 -9166666.669676 1642 1513 -15732561.20235 1643 1513 -8246533.414749 1644 1513 4.619359970093e-07 1645 1513 -18838452.02672 1646 1513 -694433.1761459 1647 1513 9166666.669675 1648 1513 -17197404.95283 1649 1513 8940966.590895 1514 1514 582790450.9006 1515 1514 231485.2378239 1516 1514 5555465.403692 1517 1514 74350397.96411 1530 1514 2471062.936219 1531 1514 1236088.573861 1532 1514 -8882157.948759 1533 1514 -462970.4754449 1534 1514 -2777732.703214 1535 1514 35690216.05203 1536 1514 -2737270.396254 1537 1514 1541644.129353 1538 1514 -8945289.261872 1602 1514 10018981.01522 1603 1514 -8177088.970282 1604 1514 -16145262.77514 1605 1514 42662729.59629 1606 1514 -694433.1761458 1607 1514 -54493616.03735 1608 1514 11321064.34898 1609 1514 8871522.146428 1610 1514 -20019947.11985 1620 1514 57871.30948763 1621 1514 -32833355.865 1622 1514 -37566373.58606 1623 1514 231485.2378493 1624 1514 -2777732.703215 1625 1514 -110039912.4136 1626 1514 57871.30949473 1627 1514 35611088.56821 1628 1514 -53128242.27036 1641 1514 -10076852.32471 1642 1514 -8246533.414749 1643 1514 -16388848.63381 1644 1514 -42894214.83411 1645 1514 -694433.1761459 1646 1514 -55531090.78464 1647 1514 -11378935.65847 1648 1514 8940966.590895 1649 1514 -20295098.63508 1515 1515 613328698.917 1516 1515 1.621246337891e-05 1517 1515 925940.9508365 1518 1515 82577683.23799 1519 1515 -7.659196853638e-06 1520 1515 231485.2378237 1533 1515 -52678594.23377 1534 1515 -36666666.66064 1535 1515 2505785.158418 1536 1515 -140008022.8906 1537 1515 2.577900886536e-06 1538 1515 -462970.4754454 1539 1515 -52702268.47617 1540 1515 36666666.66064 1541 1515 -2702548.174055 1605 1515 -18391419.7975 1606 1515 9166666.669678 1607 1515 10018981.01522 1608 1515 -58783069.51046 1609 1515 1.639127731323e-06 1610 1515 42697451.81849 1611 1515 -19844426.42677 1612 1515 -9166666.669679 1613 1515 11321064.34898 1623 1515 -413319.0876746 1624 1515 3.017485141754e-06 1625 1515 57871.30948708 1626 1515 57430602.85087 1627 1515 3.8743019104e-06 1628 1515 231485.2378496 1629 1515 -6249019.844286 1630 1515 -7.443130016327e-06 1631 1515 57871.30949415 1644 1515 -18482764.4945 1645 1515 -9166666.669676 1646 1515 -10076852.32471 1647 1515 -59172122.54065 1648 1515 4.395842552185e-07 1649 1515 -42928937.05631 1650 1515 -19947608.24497 1651 1515 9166666.669675 1652 1515 -11378935.65847 1516 1516 525322193.6551 1517 1516 -11110930.80738 1518 1516 -7.525086402893e-06 1519 1516 -56755372.43366 1520 1516 5555465.403692 1533 1516 -36666666.66065 1534 1516 -41677781.0706 1535 1516 1263866.351621 1536 1516 2.831220626831e-06 1537 1516 21326659.08566 1538 1516 -2777732.703214 1539 1516 36666666.66064 1540 1516 -41701455.31301 1541 1516 1513866.351594 1605 1516 9166666.669678 1606 1516 -15641216.50536 1607 1516 -8177088.970282 1608 1516 6.034970283508e-07 1609 1516 -18449398.9965 1610 1516 -694433.1761458 1611 1516 -9166666.669679 1612 1516 -17094223.13462 1613 1516 8871522.146427 1623 1516 4.06801700592e-06 1624 1516 -35246583.02275 1625 1516 -32861133.64276 1626 1516 4.231929779053e-06 1627 1516 35428976.52455 1628 1516 -2777732.703215 1629 1516 -7.599592208862e-06 1630 1516 -41082283.77936 1631 1516 35638866.34597 1644 1516 -9166666.669676 1645 1516 -15732561.20235 1646 1516 -8246533.414749 1647 1516 4.619359970093e-07 1648 1516 -18838452.02672 1649 1516 -694433.1761459 1650 1516 9166666.669675 1651 1516 -17197404.95283 1652 1516 8940966.590895 1517 1517 582790450.9006 1518 1517 231485.2378239 1519 1517 5555465.403692 1520 1517 74350397.96411 1533 1517 2471062.936219 1534 1517 1236088.573861 1535 1517 -8882157.948759 1536 1517 -462970.4754449 1537 1517 -2777732.703214 1538 1517 35690216.05203 1539 1517 -2737270.396254 1540 1517 1541644.129353 1541 1517 -8945289.261872 1605 1517 10018981.01522 1606 1517 -8177088.970282 1607 1517 -16145262.77514 1608 1517 42662729.59629 1609 1517 -694433.1761458 1610 1517 -54493616.03735 1611 1517 11321064.34898 1612 1517 8871522.146428 1613 1517 -20019947.11985 1623 1517 57871.30948763 1624 1517 -32833355.865 1625 1517 -37566373.58606 1626 1517 231485.2378493 1627 1517 -2777732.703215 1628 1517 -110039912.4136 1629 1517 57871.30949473 1630 1517 35611088.56821 1631 1517 -53128242.27036 1644 1517 -10076852.32471 1645 1517 -8246533.414749 1646 1517 -16388848.63381 1647 1517 -42894214.83411 1648 1517 -694433.1761459 1649 1517 -55531090.78464 1650 1517 -11378935.65847 1651 1517 8940966.590895 1652 1517 -20295098.63508 1518 1518 613328698.917 1519 1518 1.621246337891e-05 1520 1518 925940.9508365 1521 1518 82577683.23799 1522 1518 -7.659196853638e-06 1523 1518 231485.2378237 1536 1518 -52678594.23377 1537 1518 -36666666.66064 1538 1518 2505785.158418 1539 1518 -140008022.8906 1540 1518 2.577900886536e-06 1541 1518 -462970.4754454 1542 1518 -52702268.47617 1543 1518 36666666.66064 1544 1518 -2702548.174055 1608 1518 -18391419.7975 1609 1518 9166666.669678 1610 1518 10018981.01522 1611 1518 -58783069.51046 1612 1518 1.639127731323e-06 1613 1518 42697451.81849 1614 1518 -19844426.42677 1615 1518 -9166666.669679 1616 1518 11321064.34898 1626 1518 -413319.0876746 1627 1518 3.017485141754e-06 1628 1518 57871.30948708 1629 1518 57430602.85087 1630 1518 3.8743019104e-06 1631 1518 231485.2378496 1632 1518 -6249019.844286 1633 1518 -7.443130016327e-06 1634 1518 57871.30949415 1647 1518 -18482764.4945 1648 1518 -9166666.669676 1649 1518 -10076852.32471 1650 1518 -59172122.54065 1651 1518 4.395842552185e-07 1652 1518 -42928937.05631 1653 1518 -19947608.24497 1654 1518 9166666.669675 1655 1518 -11378935.65847 1519 1519 525322193.6551 1520 1519 -11110930.80738 1521 1519 -7.525086402893e-06 1522 1519 -56755372.43366 1523 1519 5555465.403692 1536 1519 -36666666.66065 1537 1519 -41677781.0706 1538 1519 1263866.351621 1539 1519 2.831220626831e-06 1540 1519 21326659.08566 1541 1519 -2777732.703214 1542 1519 36666666.66064 1543 1519 -41701455.31301 1544 1519 1513866.351594 1608 1519 9166666.669678 1609 1519 -15641216.50536 1610 1519 -8177088.970282 1611 1519 6.034970283508e-07 1612 1519 -18449398.9965 1613 1519 -694433.1761458 1614 1519 -9166666.669679 1615 1519 -17094223.13462 1616 1519 8871522.146427 1626 1519 4.06801700592e-06 1627 1519 -35246583.02275 1628 1519 -32861133.64276 1629 1519 4.231929779053e-06 1630 1519 35428976.52455 1631 1519 -2777732.703215 1632 1519 -7.599592208862e-06 1633 1519 -41082283.77936 1634 1519 35638866.34597 1647 1519 -9166666.669676 1648 1519 -15732561.20235 1649 1519 -8246533.414749 1650 1519 4.619359970093e-07 1651 1519 -18838452.02672 1652 1519 -694433.1761459 1653 1519 9166666.669675 1654 1519 -17197404.95283 1655 1519 8940966.590895 1520 1520 582790450.9006 1521 1520 231485.2378239 1522 1520 5555465.403692 1523 1520 74350397.96411 1536 1520 2471062.936219 1537 1520 1236088.573861 1538 1520 -8882157.948759 1539 1520 -462970.4754449 1540 1520 -2777732.703214 1541 1520 35690216.05203 1542 1520 -2737270.396254 1543 1520 1541644.129353 1544 1520 -8945289.261872 1608 1520 10018981.01522 1609 1520 -8177088.970282 1610 1520 -16145262.77514 1611 1520 42662729.59629 1612 1520 -694433.1761458 1613 1520 -54493616.03735 1614 1520 11321064.34898 1615 1520 8871522.146428 1616 1520 -20019947.11985 1626 1520 57871.30948763 1627 1520 -32833355.865 1628 1520 -37566373.58606 1629 1520 231485.2378493 1630 1520 -2777732.703215 1631 1520 -110039912.4136 1632 1520 57871.30949473 1633 1520 35611088.56821 1634 1520 -53128242.27036 1647 1520 -10076852.32471 1648 1520 -8246533.414749 1649 1520 -16388848.63381 1650 1520 -42894214.83411 1651 1520 -694433.1761459 1652 1520 -55531090.78464 1653 1520 -11378935.65847 1654 1520 8940966.590895 1655 1520 -20295098.63508 1521 1521 519155644.6527 1522 1521 19890209.72848 1523 1521 546852.3808991 1524 1521 -113344502.1932 1525 1521 -81572741.71556 1526 1521 807745.8307167 1539 1521 -52678594.23377 1540 1521 -36666666.66064 1541 1521 2505785.158418 1542 1521 -87908611.13882 1543 1521 24575313.67981 1544 1521 -99414.6025005 1545 1521 -55777752.70527 1546 1521 4296544.314628 1547 1521 -121425.9460867 1611 1521 -18391419.7975 1612 1521 9166666.669678 1613 1521 10018981.01522 1614 1521 -23153309.42759 1615 1521 8202668.502207 1616 1521 22268765.65392 1629 1521 -413319.0876746 1630 1521 3.017485141754e-06 1631 1521 57871.30948708 1632 1521 68265937.74305 1633 1521 4972552.434569 1634 1521 136620.1412261 1635 1521 -38378504.19399 1636 1521 -20393185.43893 1637 1521 10904728.81155 1650 1521 -18482764.4945 1651 1521 -9166666.669676 1652 1521 -10076852.32471 1653 1521 -43384348.52402 1654 1521 6143828.422977 1655 1521 -32706624.47957 1656 1521 -20160575.07792 1657 1521 1074136.079187 1658 1521 -602925.9311655 1522 1522 674296656.4325 1523 1522 -8315854.013774 1524 1522 -81578897.79024 1525 1522 -277711399.8602 1526 1522 1775953.352355 1539 1522 -36666666.66065 1540 1522 -41677781.0706 1541 1522 1263866.351621 1542 1522 24575313.67981 1543 1522 6198641.247472 1544 1522 -1140600.40519 1545 1522 4296544.314628 1546 1522 -164458604.5744 1547 1522 1195041.228134 1611 1522 9166666.669678 1612 1522 -15641216.50536 1613 1522 -8177088.970282 1614 1522 8204207.520877 1615 1522 12129419.26863 1616 1522 -8118315.333891 1629 1522 4.06801700592e-06 1630 1522 -35246583.02275 1631 1522 -32861133.64276 1632 1522 4972552.434566 1633 1522 107051190.7071 1634 1522 -2079037.895958 1635 1522 -20394724.45761 1636 1522 -79470228.63097 1637 1522 34698117.36652 1650 1522 -9166666.669676 1651 1522 -15732561.20235 1652 1522 -8246533.414749 1653 1522 6143828.422977 1654 1522 -19857535.41586 1655 1522 7819016.563107 1656 1522 1074136.079187 1657 1522 -47330788.05857 1658 1522 16965426.97932 1523 1523 500032615.4741 1524 1523 842545.5277112 1525 1523 1886963.445041 1526 1523 -79462997.91567 1539 1523 2471062.936219 1540 1523 1236088.573861 1541 1523 -8882157.948759 1542 1523 -967470.1579145 1543 1523 -1168378.182963 1544 1523 37621796.60312 1545 1523 -190870.3904854 1546 1523 1195041.228134 1547 1523 -43133554.29443 1611 1523 10018981.01522 1612 1523 -8177088.970282 1613 1523 -16145262.77514 1614 1523 22442357.5869 1615 1523 -8144741.575046 1616 1523 -20089628.3459 1629 1523 57871.30948763 1630 1523 -32833355.865 1631 1523 -37566373.58606 1632 1523 136807.9549443 1633 1523 -2078887.551707 1634 1523 -39053108.69402 1635 1523 10904842.27205 1636 1523 34696841.30973 1637 1523 -46645425.83998 1650 1523 -10076852.32471 1651 1523 -8246533.414749 1652 1523 -16388848.63381 1653 1523 -32880235.58879 1654 1523 7819016.564698 1655 1523 -47680406.12059 1656 1523 -602925.9311654 1657 1523 16965426.97932 1658 1523 -27359753.63154 1524 1524 992997068.4552 1525 1524 19284697.20432 1526 1524 -396746.4756725 1542 1524 -51863016.28236 1543 1524 -31450303.98549 1544 1524 319461.4773361 1545 1524 43461620.04061 1546 1524 42895217.91215 1547 1524 -251152.4671109 1548 1524 62501966.85689 1549 1524 -21400415.93453 1550 1524 21747.87620521 1551 1524 -46253.50102974 1552 1524 28231234.37687 1553 1524 -49512.40302987 1614 1524 -159624729.0253 1615 1524 11004617.05965 1616 1524 572723.0303333 1632 1524 -37538860.21074 1633 1524 -20394724.45761 1634 1524 -10492248.91842 1635 1524 145746193.545 1636 1524 4821174.303457 1637 1524 8338174.490712 1653 1524 -18861959.6269 1654 1524 -7862576.000248 1655 1524 -10622738.80081 1656 1524 -37300727.61412 1657 1524 10723804.48332 1658 1524 -41832926.99883 1659 1524 -23212197.68204 1660 1524 -5350103.986268 1661 1524 14197971.68996 1662 1524 -16690161.87378 1663 1524 7057808.597695 1664 1524 -10194843.38188 1525 1525 2147947022.547 1526 1525 -14974133.4238 1542 1525 -31450303.98549 1543 1525 -11693386.9132 1544 1525 -131493.8517104 1545 1525 42895217.91215 1546 1525 170799253.6597 1547 1525 -626470.3880802 1548 1525 -6733749.270272 1549 1525 -7855709.541271 1550 1525 58407.27655116 1551 1525 28231234.37687 1552 1525 -24307750.22323 1553 1525 72962.07354513 1614 1525 7336411.373109 1615 1525 -425492515.7295 1616 1525 -13147629.82044 1632 1525 -20393185.43894 1633 1525 -78630584.64773 1634 1525 -33781578.76871 1635 1525 4821174.303456 1636 1525 434483682.2102 1637 1525 -3492649.630975 1653 1525 -7862576.000248 1654 1525 -8819552.279667 1655 1525 -8595373.465755 1656 1525 10723804.48332 1657 1525 -5466319.193666 1658 1525 7947549.067445 1659 1525 -1683437.318397 1660 1525 -40801616.79024 1661 1525 33347935.147 1662 1525 7057808.597695 1663 1525 -22755536.05731 1664 1525 16684907.19053 1526 1526 1146795686.782 1542 1526 284739.2551368 1543 1526 -159271.6294699 1544 1526 -378483.2995525 1545 1526 -390041.3559778 1546 1526 -654248.1658537 1547 1526 194450799.0864 1548 1526 -12974.3460083 1549 1526 58407.27655098 1550 1526 124613403.906 1551 1526 -84234.62522937 1552 1526 72962.07354511 1553 1526 40395467.48366 1614 1526 381815.353556 1615 1526 -13300618.50896 1616 1526 -159798157.3631 1632 1526 -10492174.57703 1633 1526 -33783025.80027 1634 1526 -44406375.21794 1635 1526 -8362936.617657 1636 1526 -3856634.052932 1637 1526 13357391.99385 1653 1526 -10622738.80081 1654 1526 -8595373.465755 1655 1526 -15817835.62473 1656 1526 -41832926.99887 1657 1526 7947549.069036 1658 1526 -79830320.55011 1659 1526 6072971.68928 1660 1526 33347935.147 1661 1526 -72413820.75204 1662 1526 -10194843.38188 1663 1526 16684907.19053 1664 1526 -34377395.78682 1527 1527 306664349.4585 1528 1527 7.62939453125e-06 1529 1527 462970.475417 1530 1527 41289236.1897 1531 1527 7333333.332126 1532 1527 -318285.1588368 1617 1527 -58783069.51046 1618 1527 1.639127731323e-06 1619 1527 42697451.81849 1620 1527 -19844426.42677 1621 1527 -9166666.669679 1622 1527 11321064.34898 1638 1527 28714906.85473 1639 1527 5.364418029785e-07 1640 1527 -8530229.601834 1641 1527 -3124509.92214 1642 1527 1833333.333932 1643 1527 -2241064.345998 1528 1528 262661096.8276 1529 1528 -5555465.403687 1530 1528 -7333333.332131 1531 1528 -28377291.64613 1532 1528 2749954.924074 1617 1528 6.034970283508e-07 1618 1528 -18449398.9965 1619 1528 -694433.1761458 1620 1528 -9166666.669679 1621 1528 -17094223.13462 1622 1528 8871522.146427 1638 1528 8.940696716309e-07 1639 1528 17714093.69157 1640 1528 -1388866.351609 1641 1528 -1833333.333939 1642 1528 -20541141.88968 1643 1528 17812488.72854 1529 1529 291395225.4503 1530 1529 723381.5076579 1531 1529 2805510.47962 1532 1529 37176251.17061 1617 1529 42662729.59629 1618 1529 -694433.1761458 1619 1529 -54493616.03735 1620 1529 11321064.34898 1621 1529 8871522.146428 1622 1529 -20019947.11985 1638 1529 8588103.728686 1639 1529 -1388866.351609 1640 1529 -55021008.39532 1641 1529 2298935.655493 1642 1529 17812488.72855 1643 1529 -26564121.13518 1530 1530 306664349.4585 1531 1530 7.62939453125e-06 1532 1530 462970.475417 1533 1530 41289236.1897 1534 1530 7333333.332126 1535 1530 -318285.1588368 1617 1530 -18391419.7975 1618 1530 9166666.669678 1619 1530 10018981.01522 1620 1530 -58783069.51046 1621 1530 1.639127731323e-06 1622 1530 42697451.81849 1623 1530 -19844426.42677 1624 1530 -9166666.669679 1625 1530 11321064.34898 1638 1530 -206659.5438359 1639 1530 -1833333.333934 1640 1530 -1980647.67925 1641 1530 28714906.85473 1642 1530 5.364418029785e-07 1643 1530 -8530229.601834 1644 1530 -3124509.92214 1645 1530 1833333.333932 1646 1530 -2241064.345998 1531 1531 262661096.8276 1532 1531 -5555465.403687 1533 1531 -7333333.332131 1534 1531 -28377291.64613 1535 1531 2749954.924074 1617 1531 9166666.669678 1618 1531 -15641216.50536 1619 1531 -8177088.970282 1620 1531 6.034970283508e-07 1621 1531 -18449398.9965 1622 1531 -694433.1761458 1623 1531 -9166666.669679 1624 1531 -17094223.13462 1625 1531 8871522.146427 1638 1531 1833333.333937 1639 1531 -17623291.51138 1640 1531 -16423622.37693 1641 1531 8.940696716309e-07 1642 1531 17714093.69157 1643 1531 -1388866.351609 1644 1531 -1833333.333939 1645 1531 -20541141.88968 1646 1531 17812488.72854 1532 1532 291395225.4503 1533 1532 723381.5076579 1534 1532 2805510.47962 1535 1532 37176251.17061 1617 1532 10018981.01522 1618 1532 -8177088.970282 1619 1532 -16145262.77514 1620 1532 42662729.59629 1621 1532 -694433.1761458 1622 1532 -54493616.03735 1623 1532 11321064.34898 1624 1532 8871522.146428 1625 1532 -20019947.11985 1638 1532 2038518.988737 1639 1532 -16423622.37695 1640 1532 -18783186.79303 1641 1532 8588103.728686 1642 1532 -1388866.351609 1643 1532 -55021008.39532 1644 1532 2298935.655493 1645 1532 17812488.72855 1646 1532 -26564121.13518 1533 1533 306664349.4585 1534 1533 7.62939453125e-06 1535 1533 462970.475417 1536 1533 41289236.1897 1537 1533 7333333.332126 1538 1533 -318285.1588368 1620 1533 -18391419.7975 1621 1533 9166666.669678 1622 1533 10018981.01522 1623 1533 -58783069.51046 1624 1533 1.639127731323e-06 1625 1533 42697451.81849 1626 1533 -19844426.42677 1627 1533 -9166666.669679 1628 1533 11321064.34898 1641 1533 -206659.5438359 1642 1533 -1833333.333934 1643 1533 -1980647.67925 1644 1533 28714906.85473 1645 1533 5.364418029785e-07 1646 1533 -8530229.601834 1647 1533 -3124509.92214 1648 1533 1833333.333932 1649 1533 -2241064.345998 1534 1534 262661096.8276 1535 1534 -5555465.403687 1536 1534 -7333333.332131 1537 1534 -28377291.64613 1538 1534 2749954.924074 1620 1534 9166666.669678 1621 1534 -15641216.50536 1622 1534 -8177088.970282 1623 1534 6.034970283508e-07 1624 1534 -18449398.9965 1625 1534 -694433.1761458 1626 1534 -9166666.669679 1627 1534 -17094223.13462 1628 1534 8871522.146427 1641 1534 1833333.333937 1642 1534 -17623291.51138 1643 1534 -16423622.37693 1644 1534 8.940696716309e-07 1645 1534 17714093.69157 1646 1534 -1388866.351609 1647 1534 -1833333.333939 1648 1534 -20541141.88968 1649 1534 17812488.72854 1535 1535 291395225.4503 1536 1535 723381.5076579 1537 1535 2805510.47962 1538 1535 37176251.17061 1620 1535 10018981.01522 1621 1535 -8177088.970282 1622 1535 -16145262.77514 1623 1535 42662729.59629 1624 1535 -694433.1761458 1625 1535 -54493616.03735 1626 1535 11321064.34898 1627 1535 8871522.146428 1628 1535 -20019947.11985 1641 1535 2038518.988737 1642 1535 -16423622.37695 1643 1535 -18783186.79303 1644 1535 8588103.728686 1645 1535 -1388866.351609 1646 1535 -55021008.39532 1647 1535 2298935.655493 1648 1535 17812488.72855 1649 1535 -26564121.13518 1536 1536 306664349.4585 1537 1536 7.62939453125e-06 1538 1536 462970.475417 1539 1536 41289236.1897 1540 1536 7333333.332126 1541 1536 -318285.1588368 1623 1536 -18391419.7975 1624 1536 9166666.669678 1625 1536 10018981.01522 1626 1536 -58783069.51046 1627 1536 1.639127731323e-06 1628 1536 42697451.81849 1629 1536 -19844426.42677 1630 1536 -9166666.669679 1631 1536 11321064.34898 1644 1536 -206659.5438359 1645 1536 -1833333.333934 1646 1536 -1980647.67925 1647 1536 28714906.85473 1648 1536 5.364418029785e-07 1649 1536 -8530229.601834 1650 1536 -3124509.92214 1651 1536 1833333.333932 1652 1536 -2241064.345998 1537 1537 262661096.8276 1538 1537 -5555465.403687 1539 1537 -7333333.332131 1540 1537 -28377291.64613 1541 1537 2749954.924074 1623 1537 9166666.669678 1624 1537 -15641216.50536 1625 1537 -8177088.970282 1626 1537 6.034970283508e-07 1627 1537 -18449398.9965 1628 1537 -694433.1761458 1629 1537 -9166666.669679 1630 1537 -17094223.13462 1631 1537 8871522.146427 1644 1537 1833333.333937 1645 1537 -17623291.51138 1646 1537 -16423622.37693 1647 1537 8.940696716309e-07 1648 1537 17714093.69157 1649 1537 -1388866.351609 1650 1537 -1833333.333939 1651 1537 -20541141.88968 1652 1537 17812488.72854 1538 1538 291395225.4503 1539 1538 723381.5076579 1540 1538 2805510.47962 1541 1538 37176251.17061 1623 1538 10018981.01522 1624 1538 -8177088.970282 1625 1538 -16145262.77514 1626 1538 42662729.59629 1627 1538 -694433.1761458 1628 1538 -54493616.03735 1629 1538 11321064.34898 1630 1538 8871522.146428 1631 1538 -20019947.11985 1644 1538 2038518.988737 1645 1538 -16423622.37695 1646 1538 -18783186.79303 1647 1538 8588103.728686 1648 1538 -1388866.351609 1649 1538 -55021008.39532 1650 1538 2298935.655493 1651 1538 17812488.72855 1652 1538 -26564121.13518 1539 1539 306664349.4585 1540 1539 7.62939453125e-06 1541 1539 462970.475417 1542 1539 41289236.1897 1543 1539 7333333.332126 1544 1539 -318285.1588368 1626 1539 -18391419.7975 1627 1539 9166666.669678 1628 1539 10018981.01522 1629 1539 -58783069.51046 1630 1539 1.639127731323e-06 1631 1539 42697451.81849 1632 1539 -19844426.42677 1633 1539 -9166666.669679 1634 1539 11321064.34898 1647 1539 -206659.5438359 1648 1539 -1833333.333934 1649 1539 -1980647.67925 1650 1539 28714906.85473 1651 1539 5.364418029785e-07 1652 1539 -8530229.601834 1653 1539 -3124509.92214 1654 1539 1833333.333932 1655 1539 -2241064.345998 1540 1540 262661096.8276 1541 1540 -5555465.403687 1542 1540 -7333333.332131 1543 1540 -28377291.64613 1544 1540 2749954.924074 1626 1540 9166666.669678 1627 1540 -15641216.50536 1628 1540 -8177088.970282 1629 1540 6.034970283508e-07 1630 1540 -18449398.9965 1631 1540 -694433.1761458 1632 1540 -9166666.669679 1633 1540 -17094223.13462 1634 1540 8871522.146427 1647 1540 1833333.333937 1648 1540 -17623291.51138 1649 1540 -16423622.37693 1650 1540 8.940696716309e-07 1651 1540 17714093.69157 1652 1540 -1388866.351609 1653 1540 -1833333.333939 1654 1540 -20541141.88968 1655 1540 17812488.72854 1541 1541 291395225.4503 1542 1541 723381.5076579 1543 1541 2805510.47962 1544 1541 37176251.17061 1626 1541 10018981.01522 1627 1541 -8177088.970282 1628 1541 -16145262.77514 1629 1541 42662729.59629 1630 1541 -694433.1761458 1631 1541 -54493616.03735 1632 1541 11321064.34898 1633 1541 8871522.146428 1634 1541 -20019947.11985 1647 1541 2038518.988737 1648 1541 -16423622.37695 1649 1541 -18783186.79303 1650 1541 8588103.728686 1651 1541 -1388866.351609 1652 1541 -55021008.39532 1653 1541 2298935.655493 1654 1541 17812488.72855 1655 1541 -26564121.13518 1542 1542 307321293.6177 1543 1542 5217302.692383 1544 1542 2443291.135431 1545 1542 -12283347.92522 1546 1542 -27675645.7152 1547 1542 392217.5447181 1629 1542 -18391419.7975 1630 1542 9166666.669678 1631 1542 10018981.01522 1632 1542 -42844315.11718 1633 1542 6143828.42298 1634 1542 32439903.28737 1635 1542 -19056485.08992 1636 1542 -7862576.000246 1637 1542 10773788.984 1650 1542 -206659.5438359 1651 1542 -1833333.333934 1652 1542 -1980647.67925 1653 1542 28878510.79233 1654 1542 1304325.673737 1655 1542 -8034871.658814 1656 1542 -18263780.54944 1657 1542 -6918911.432209 1658 1542 8066734.94041 1543 1543 292495414.5893 1544 1543 -3617588.716354 1545 1543 -42342312.37946 1546 1543 -73068635.97963 1547 1543 598083.9198294 1629 1543 9166666.669678 1630 1543 -15641216.50536 1631 1543 -8177088.970282 1632 1543 6143828.422979 1633 1543 -19317502.00901 1634 1543 -8396261.212014 1635 1543 -7862576.000246 1636 1543 -9014077.742685 1637 1543 8522682.095422 1650 1543 1833333.333937 1651 1543 -17623291.51138 1652 1543 -16423622.37693 1653 1543 1304325.673737 1654 1543 25172041.03341 1655 1543 -904397.1795395 1656 1543 -10585578.10008 1657 1543 -33460102.57053 1658 1543 25378687.64334 1544 1544 299489762.7903 1545 1544 565828.6557986 1546 1544 625861.6976026 1547 1544 18644724.62356 1629 1544 10018981.01522 1630 1544 -8177088.970282 1631 1544 -16145262.77514 1632 1544 32613514.40058 1633 1544 -8396261.210409 1634 1544 -46240317.03562 1635 1544 10773788.984 1636 1544 8522682.095422 1637 1544 -16336570.1928 1650 1544 2038518.988737 1651 1544 -16423622.37695 1652 1544 -18783186.79303 1653 1544 9082906.116151 1654 1544 -904397.1795395 1655 1544 -52999059.66538 1656 1544 12398123.82872 1657 1544 25378687.64175 1658 1544 -35853335.01949 1545 1545 358811430.7903 1546 1545 52593962.28105 1547 1545 -97551.46225023 1548 1545 -71392253.48931 1549 1545 -45102098.94442 1550 1545 106737.5969375 1551 1545 9275019.197588 1552 1545 -12341313.18395 1553 1545 144785.8447827 1632 1545 -19715237.85133 1633 1545 1074136.079186 1634 1545 524851.8469836 1635 1545 -37144610.97898 1636 1545 10723804.48332 1637 1545 41672628.54298 1653 1545 -17529221.15356 1654 1545 -10585578.10008 1655 1545 -12149931.72292 1656 1545 -1095063.644689 1657 1545 13148490.57674 1658 1545 -8461748.97526 1659 1545 -34526661.87963 1660 1545 -11275524.74166 1661 1545 20339184.40592 1662 1545 -25557949.75669 1663 1545 -3085328.297506 1664 1545 8108904.791231 1546 1546 452274744.3036 1547 1546 -1473057.85089 1548 1546 -45102098.94442 1549 1546 -51062500.21883 1550 1546 72962.07354495 1551 1546 -27007979.8482 1552 1546 -62389541.28179 1553 1546 233441.0174853 1632 1546 1074136.079186 1633 1546 -46885450.83199 1634 1546 -16367906.36496 1635 1546 10723804.48332 1636 1546 -5310202.55853 1637 1546 -8267728.707675 1653 1546 -6918911.432211 1654 1546 -32725543.17465 1655 1546 -25072701.23725 1656 1546 13148490.57674 1657 1546 22270764.74516 1658 1546 -368264.4629124 1659 1546 -11275524.74166 1660 1546 -29444223.55951 1661 1546 16684907.19053 1662 1546 -6751994.965377 1663 1546 -43474089.88536 1664 1546 33391693.58226 1547 1547 478029006.2153 1548 1547 106737.5969376 1549 1547 72962.07354495 1550 1547 13640717.48805 1551 1547 179508.0669963 1552 1547 233441.0174853 1553 1547 63954215.97093 1632 1547 524851.8469835 1633 1547 -16367906.36496 1634 1547 -26172187.69396 1635 1547 41672628.54301 1636 1547 -8267728.706071 1637 1547 -79414009.52307 1653 1547 -7922709.501298 1654 1547 -25072701.23886 1655 1547 -33894509.96379 1656 1547 8239362.133108 1657 1547 -368264.4629123 1658 1547 -122620538.7512 1659 1547 20339184.40592 1660 1547 16684907.19053 1661 1547 -41066083.28901 1662 1547 12197515.90567 1663 1547 33391693.58226 1664 1547 -58349324.81867 1548 1548 235659396.7196 1549 1548 50733749.26305 1550 1548 -62257.13548279 1551 1548 -5082746.465364 1552 1548 1102098.951645 1553 1548 -31506.11544451 1635 1548 -23117500.71233 1636 1548 -1683437.318397 1637 1548 -6070778.306718 1656 1548 -34431964.90992 1657 1548 -11275524.74166 1658 1548 -20285815.60742 1659 1548 -18665832.59106 1660 1548 12683437.32201 1661 1548 8109435.714787 1662 1548 -34533186.62789 1663 1548 275524.7380462 1664 1548 -30502841.80065 1549 1549 216642073.1324 1550 1549 -58407.27654648 1551 1549 15768765.6159 1552 1549 63962500.24948 1553 1549 -72962.07354212 1635 1549 -5350103.986268 1636 1549 -40706919.82054 1637 1549 -33318731.50871 1656 1549 -11275524.74166 1657 1549 -29349526.58979 1658 1549 -16648426.15375 1659 1549 12683437.32201 1660 1549 -23420163.4902 1661 1549 6652064.846425 1662 1549 3942191.405917 1663 1549 -17271874.94068 1664 1549 3315092.816032 1550 1550 342775232.3518 1551 1550 -66228.3376576 1552 1550 -72962.0735423 1553 1550 110134282.579 1635 1550 -14195778.30738 1636 1550 -33318731.50871 1637 1550 -72161295.49948 1656 1550 -20285815.60742 1657 1550 -16648426.15375 1658 1550 -40813558.03643 1659 1550 -8140564.282544 1660 1550 -6681268.484718 1661 1550 -121188010.0031 1662 1550 -30502841.80265 1663 1550 -3351573.852824 1664 1550 -61166429.37081 1551 1551 173317617.147 1552 1551 -16992020.14457 1553 1551 40399.34029067 1635 1551 -16595464.90406 1636 1551 7057808.597695 1637 1551 10161406.6248 1656 1551 -25273858.84771 1657 1551 -6751994.965378 1658 1551 -12142484.09433 1659 1551 -34533186.62789 1660 1551 3942191.405919 1661 1551 30478408.18933 1662 1551 -12139913.87007 1663 1551 -4248005.038235 1664 1551 -4104552.942003 1552 1552 200198427.6337 1553 1552 -233441.0174782 1635 1552 7057808.597695 1636 1552 -22660839.0876 1637 1552 -16648426.15375 1656 1552 -3085328.297507 1657 1552 -43189998.97639 1658 1552 -33274973.07346 1659 1552 275524.7380478 1660 1552 -17271874.94068 1661 1552 3315092.816032 1662 1552 -4248005.038235 1663 1552 -5419711.245076 1664 1552 6608306.41117 1553 1553 258752397.6415 1635 1553 10161406.6248 1636 1553 -16648426.15375 1637 1553 -34124870.53423 1656 1553 -8088595.202104 1657 1553 -33274973.07346 1658 1553 -57591749.06139 1659 1553 30478408.18734 1660 1553 -3351573.852824 1661 1553 -61166429.37081 1662 1553 4037947.05666 1663 1553 -6725026.919973 1664 1553 -83230082.36618 1554 1554 385435299.3209 1555 1554 36666666.66064 1556 1554 3703838.61297 1557 1554 -203986384.4368 1558 1554 -36666980.60238 1559 1554 -2870486.454752 1560 1554 12104621.19738 1561 1554 29333647.27025 1562 1554 -1944469.225024 1665 1554 33963705.33589 1666 1554 9166666.669679 1667 1554 9519894.71657 1668 1554 -73633660.33315 1669 1554 -9166743.277268 1670 1554 -44520628.22528 1671 1554 -7828204.348046 1672 1554 7333409.943332 1673 1554 -9288430.506837 1555 1555 330430928.8169 1556 1555 -6111047.842687 1557 1555 -36667137.57325 1558 1555 -31649934.0022 1559 1555 -3888890.401321 1560 1555 44000470.90538 1561 1555 12104621.19738 1562 1555 2666690.447648 1665 1555 9166666.669679 1666 1555 20212626.84424 1667 1555 5347275.319281 1668 1555 -9166781.581064 1669 1555 -30549559.96733 1670 1555 -9732749.59088 1671 1555 11000114.915 1672 1555 -7828204.348045 1673 1555 11145949.53617 1556 1556 369852862.7392 1557 1556 -2453810.375638 1558 1556 -3055549.140985 1559 1556 -3321169.645782 1560 1556 -2916703.837537 1561 1556 1777793.631766 1562 1556 32278989.8597 1665 1556 -8015196.919944 1666 1556 -8680575.648187 1667 1556 -73923722.2424 1668 1556 -44485903.34313 1669 1556 -9538266.413314 1670 1556 -61195846.2912 1671 1556 -13932645.76025 1672 1556 7430633.02411 1673 1556 -20875211.59479 1557 1557 668782112.6068 1558 1557 36667451.515 1559 1557 3125095.269694 1560 1557 18742492.4051 1561 1557 -36666980.60238 1562 1557 2754656.266036 1563 1557 -139221200.1674 1564 1557 1.877546310425e-06 1565 1557 -671303.7191255 1566 1557 -52506158.07532 1567 1557 36666666.66064 1568 1557 -2754631.485001 1665 1557 -72039530.38171 1666 1557 -9166781.581061 1667 1557 43189554.83944 1668 1557 73599694.87993 1669 1557 9166858.188655 1670 1557 781226.7976368 1671 1557 -19443104.86928 1672 1557 -9166743.27727 1673 1557 11639449.48452 1674 1557 -59964405.70834 1675 1557 7.525086402893e-07 1676 1557 -43970603.67818 1677 1557 -20163436.42398 1678 1557 9166666.669676 1679 1557 -11639352.31406 1558 1558 569774528.2723 1559 1558 -8610907.219653 1560 1558 -36667137.57325 1561 1558 -109590390.9887 1562 1558 4777683.581345 1563 1558 1.594424247742e-06 1564 1558 22113465.72052 1565 1558 -2777733.240903 1566 1558 36666666.66064 1567 1558 -41505354.61226 1568 1558 1555533.287118 1665 1558 -9166743.277267 1666 1558 -28955430.01587 1667 1558 7996602.428466 1668 1558 9166858.188655 1669 1558 48847822.54786 1670 1558 -2152764.803778 1671 1558 -9166781.581064 1672 1558 -51526325.20493 1673 1558 36236271.0855 1674 1558 3.725290298462e-07 1675 1558 -19630743.20649 1676 1558 -694433.4439167 1677 1558 9166666.669676 1678 1558 -17413237.96253 1679 1558 9149300.058182 1559 1559 599068063.3379 1560 1559 2685224.212055 1561 1559 5222138.335127 1562 1559 35717984.23851 1563 1559 -254637.0525279 1564 1559 -2777733.240903 1565 1559 37788315.6602 1566 1559 -2685187.040499 1567 1559 1499977.731517 1568 1559 -8422346.095089 1665 1559 43154829.95728 1666 1559 7802192.5578 1667 1559 -56944833.0873 1668 1559 781318.4370322 1669 1559 -2152691.493423 1670 1559 -99821807.80486 1671 1559 11639498.06975 1672 1559 36402939.91804 1673 1559 -55413772.21342 1674 1559 -43935881.45598 1675 1559 -694433.4439167 1676 1559 -57643892.87044 1677 1559 -11639352.31406 1678 1559 9149300.058182 1679 1559 -20870649.36111 1560 1560 385435299.3209 1561 1560 36666666.66064 1562 1560 3703838.61297 1563 1560 -52482483.83292 1564 1560 -36666666.66064 1565 1560 2453701.847473 1566 1560 -203986384.4368 1567 1560 -36666980.60238 1568 1560 -2870486.454752 1569 1560 12104621.19738 1570 1560 29333647.27025 1571 1560 -1944469.225024 1665 1560 -4839277.140465 1666 1560 11000114.915 1667 1560 12370128.70975 1668 1560 -14860172.33131 1669 1560 -9166781.581062 1670 1560 -10279526.39882 1671 1560 33963705.33589 1672 1560 9166666.669679 1673 1560 9519894.71657 1674 1560 -18663081.30986 1675 1560 -9166666.669677 1676 1560 -10337268.9803 1677 1560 -73633660.33315 1678 1560 -9166743.277268 1679 1560 -44520628.22528 1680 1560 -7828204.348046 1681 1560 7333409.943332 1682 1560 -9288430.506837 1561 1561 330430928.8169 1562 1561 -6111047.842687 1563 1561 -36666666.66065 1564 1561 -41481680.36985 1565 1561 1222199.953785 1566 1561 -36667137.57325 1567 1561 -31649934.0022 1568 1561 -3888890.401321 1569 1561 44000470.90538 1570 1561 12104621.19738 1571 1561 2666690.447648 1665 1561 7333409.943332 1666 1561 -4839277.140466 1667 1561 -6597291.372073 1668 1561 -9166743.277267 1669 1561 -46943392.66696 1670 1561 -33736315.15602 1671 1561 9166666.669679 1672 1561 20212626.84424 1673 1561 5347275.319281 1674 1561 -9166666.669677 1675 1561 -15912882.8484 1676 1561 -8454866.614265 1677 1561 -9166781.581064 1678 1561 -30549559.96733 1679 1561 -9732749.59088 1680 1561 11000114.915 1681 1561 -7828204.348045 1682 1561 11145949.53617 1562 1562 369852862.7392 1563 1562 2523146.291974 1564 1562 1277755.509386 1565 1562 -8359214.781975 1566 1562 -2453810.375638 1567 1562 -3055549.140985 1568 1562 -3321169.645782 1569 1562 -2916703.837537 1570 1562 1777793.631766 1571 1562 32278989.8597 1665 1562 8246752.473166 1666 1562 -9895937.05811 1667 1562 -12904739.04124 1668 1562 -10279483.49692 1669 1562 -33902984.10692 1670 1562 -43192618.77883 1671 1562 -8015196.919944 1672 1562 -8680575.648187 1673 1562 -73923722.2424 1674 1562 -10337268.9803 1675 1562 -8454866.614265 1676 1562 -16869702.39011 1677 1562 -44485903.34313 1678 1562 -9538266.413314 1679 1562 -61195846.2912 1680 1562 -13932645.76025 1681 1562 7430633.02411 1682 1562 -20875211.59479 1563 1563 616485232.3769 1564 1563 1.227855682373e-05 1565 1563 925940.7716047 1566 1563 83364435.48308 1567 1563 -6.437301635742e-06 1568 1563 231485.1930161 1572 1563 -139221200.1674 1573 1563 1.877546310425e-06 1574 1563 -671303.7191255 1575 1563 -52506158.07532 1576 1563 36666666.66064 1577 1563 -2754631.485001 1668 1563 -59565882.98117 1669 1563 4.91738319397e-07 1670 1563 43739118.52961 1671 1563 -20057887.18154 1672 1563 -9166666.669679 1673 1563 11581481.02689 1674 1563 54280296.46473 1675 1563 3.09944152832e-06 1676 1563 231485.1485852 1677 1563 -7107625.989141 1678 1563 -6.146728992462e-06 1679 1563 57871.2871768 1683 1563 -59964405.70834 1684 1563 7.525086402893e-07 1685 1563 -43970603.67818 1686 1563 -20163436.42398 1687 1563 9166666.669676 1688 1563 -11639352.31406 1564 1564 528478804.7157 1565 1564 -11110932.95814 1566 1564 -5.766749382019e-06 1567 1564 -55968623.50036 1568 1564 5722133.145708 1572 1564 1.594424247742e-06 1573 1564 22113465.72052 1574 1564 -2777733.240903 1575 1564 36666666.66064 1576 1564 -41505354.61226 1577 1564 1555533.287118 1668 1564 -5.811452865601e-07 1669 1564 -19232220.47929 1670 1564 -694433.4439163 1671 1564 -9166666.669679 1672 1564 -17307688.72007 1673 1564 9079855.613715 1674 1564 3.635883331299e-06 1675 1564 32278708.78388 1676 1564 -2777733.774297 1677 1564 -5.349516868591e-06 1678 1564 -41940891.5735 1679 1564 36472200.21471 1683 1564 3.725290298462e-07 1684 1564 -19630743.20649 1685 1564 -694433.4439167 1686 1564 9166666.669676 1687 1564 -17413237.96253 1688 1564 9149300.058182 1565 1565 591208016.6774 1566 1565 231485.1930168 1567 1565 5388799.81243 1568 1565 76448462.46728 1572 1565 -254637.0525279 1573 1565 -2777733.240903 1574 1565 37788315.6602 1575 1565 -2685187.040499 1576 1565 1499977.731517 1577 1565 -8422346.095089 1668 1565 43704396.30741 1669 1565 -694433.4439163 1670 1565 -56581165.5979 1671 1565 11581481.02689 1672 1565 9079855.613715 1673 1565 -20589184.71456 1674 1565 231485.148585 1675 1565 -2777733.774298 1676 1565 -118440658.1206 1677 1565 57871.28717716 1678 1565 36444422.43695 1679 1565 -55417829.51533 1683 1565 -43935881.45598 1684 1565 -694433.4439167 1685 1565 -57643892.87044 1686 1565 -11639352.31406 1687 1565 9149300.058182 1688 1565 -20870649.36111 1566 1566 668782112.6068 1567 1566 36667451.515 1568 1566 3125095.269694 1569 1566 18742492.4051 1570 1566 -36666980.60238 1571 1566 2754656.266036 1572 1566 -52482483.83292 1573 1566 -36666666.66064 1574 1566 2453701.847473 1575 1566 -139221200.1674 1576 1566 1.877546310425e-06 1577 1566 -671303.7191255 1578 1566 -52506158.07532 1579 1566 36666666.66064 1580 1566 -2754631.485001 1668 1566 -18569369.18862 1669 1566 9166666.669678 1670 1566 10279397.69313 1671 1566 -72039530.38171 1672 1566 -9166781.581061 1673 1566 43189554.83944 1674 1566 -1129879.778007 1675 1566 2.369284629822e-06 1676 1566 57871.28717239 1677 1566 73599694.87993 1678 1566 9166858.188655 1679 1566 781226.7976368 1680 1566 -19443104.86928 1681 1566 -9166743.27727 1682 1566 11639449.48452 1683 1566 -18663081.30986 1684 1566 -9166666.669677 1685 1566 -10337268.9803 1686 1566 -59964405.70834 1687 1566 7.525086402893e-07 1688 1566 -43970603.67818 1689 1566 -20163436.42398 1690 1566 9166666.669676 1691 1566 -11639352.31406 1567 1567 569774528.2723 1568 1567 -8610907.219653 1569 1567 -36667137.57325 1570 1567 -109590390.9887 1571 1567 4777683.581345 1572 1567 -36666666.66065 1573 1567 -41481680.36985 1574 1567 1222199.953785 1575 1567 1.594424247742e-06 1576 1567 22113465.72052 1577 1567 -2777733.240903 1578 1567 36666666.66064 1579 1567 -41505354.61226 1580 1567 1555533.287118 1668 1567 9166666.669678 1669 1567 -15819170.72716 1670 1567 -8385422.169798 1671 1567 -9166743.277267 1672 1567 -28955430.01587 1673 1567 7996602.428466 1674 1567 2.913177013397e-06 1675 1567 -35963145.36236 1676 1567 -33694466.44041 1677 1567 9166858.188655 1678 1567 48847822.54786 1679 1567 -2152764.803778 1680 1567 -9166781.581064 1681 1567 -51526325.20493 1682 1567 36236271.0855 1683 1567 -9166666.669677 1684 1567 -15912882.8484 1685 1567 -8454866.614265 1686 1567 3.725290298462e-07 1687 1567 -19630743.20649 1688 1567 -694433.4439167 1689 1567 9166666.669676 1690 1567 -17413237.96253 1691 1567 9149300.058182 1568 1568 599068063.3379 1569 1568 2685224.212055 1570 1568 5222138.335127 1571 1568 35717984.23851 1572 1568 2523146.291974 1573 1568 1277755.509386 1574 1568 -8359214.781975 1575 1568 -254637.0525279 1576 1568 -2777733.240903 1577 1568 37788315.6602 1578 1568 -2685187.040499 1579 1568 1499977.731517 1580 1568 -8422346.095089 1668 1568 10279397.69313 1669 1568 -8385422.169798 1670 1568 -16619803.40013 1671 1568 43154829.95728 1672 1568 7802192.5578 1673 1568 -56944833.0873 1674 1568 57871.28717278 1675 1568 -33666688.66265 1676 1568 -39477172.9523 1677 1568 781318.4370322 1678 1568 -2152691.493423 1679 1568 -99821807.80486 1680 1568 11639498.06975 1681 1568 36402939.91804 1682 1568 -55413772.21342 1683 1568 -10337268.9803 1684 1568 -8454866.614265 1685 1568 -16869702.39011 1686 1568 -43935881.45598 1687 1568 -694433.4439167 1688 1568 -57643892.87044 1689 1568 -11639352.31406 1690 1568 9149300.058182 1691 1568 -20870649.36111 1569 1569 385435299.3209 1570 1569 36666666.66064 1571 1569 3703838.61297 1575 1569 -52482483.83292 1576 1569 -36666666.66064 1577 1569 2453701.847473 1578 1569 -203986384.4368 1579 1569 -36666980.60238 1580 1569 -2870486.454752 1581 1569 12104621.19738 1582 1569 29333647.27025 1583 1569 -1944469.225024 1671 1569 -4839277.140465 1672 1569 11000114.915 1673 1569 12370128.70975 1677 1569 -14860172.33131 1678 1569 -9166781.581062 1679 1569 -10279526.39882 1680 1569 33963705.33589 1681 1569 9166666.669679 1682 1569 9519894.71657 1686 1569 -18663081.30986 1687 1569 -9166666.669677 1688 1569 -10337268.9803 1689 1569 -73633660.33315 1690 1569 -9166743.277268 1691 1569 -44520628.22528 1692 1569 -7828204.348046 1693 1569 7333409.943332 1694 1569 -9288430.506837 1570 1570 330430928.8169 1571 1570 -6111047.842687 1575 1570 -36666666.66065 1576 1570 -41481680.36985 1577 1570 1222199.953785 1578 1570 -36667137.57325 1579 1570 -31649934.0022 1580 1570 -3888890.401321 1581 1570 44000470.90538 1582 1570 12104621.19738 1583 1570 2666690.447648 1671 1570 7333409.943332 1672 1570 -4839277.140466 1673 1570 -6597291.372073 1677 1570 -9166743.277267 1678 1570 -46943392.66696 1679 1570 -33736315.15602 1680 1570 9166666.669679 1681 1570 20212626.84424 1682 1570 5347275.319281 1686 1570 -9166666.669677 1687 1570 -15912882.8484 1688 1570 -8454866.614265 1689 1570 -9166781.581064 1690 1570 -30549559.96733 1691 1570 -9732749.59088 1692 1570 11000114.915 1693 1570 -7828204.348045 1694 1570 11145949.53617 1571 1571 369852862.7392 1575 1571 2523146.291974 1576 1571 1277755.509386 1577 1571 -8359214.781975 1578 1571 -2453810.375638 1579 1571 -3055549.140985 1580 1571 -3321169.645782 1581 1571 -2916703.837537 1582 1571 1777793.631766 1583 1571 32278989.8597 1671 1571 8246752.473166 1672 1571 -9895937.05811 1673 1571 -12904739.04124 1677 1571 -10279483.49692 1678 1571 -33902984.10692 1679 1571 -43192618.77883 1680 1571 -8015196.919944 1681 1571 -8680575.648187 1682 1571 -73923722.2424 1686 1571 -10337268.9803 1687 1571 -8454866.614265 1688 1571 -16869702.39011 1689 1571 -44485903.34313 1690 1571 -9538266.413314 1691 1571 -61195846.2912 1692 1571 -13932645.76025 1693 1571 7430633.02411 1694 1571 -20875211.59479 1572 1572 616485232.3769 1573 1572 1.227855682373e-05 1574 1572 925940.7716047 1575 1572 83364435.48308 1576 1572 -6.437301635742e-06 1577 1572 231485.1930161 1584 1572 -139221200.1674 1585 1572 1.877546310425e-06 1586 1572 -671303.7191255 1587 1572 -52506158.07532 1588 1572 36666666.66064 1589 1572 -2754631.485001 1674 1572 -59565882.98117 1675 1572 4.91738319397e-07 1676 1572 43739118.52961 1677 1572 -20057887.18154 1678 1572 -9166666.669679 1679 1572 11581481.02689 1683 1572 54280296.46473 1684 1572 3.09944152832e-06 1685 1572 231485.1485852 1686 1572 -7107625.989141 1687 1572 -6.146728992462e-06 1688 1572 57871.2871768 1695 1572 -59964405.70834 1696 1572 7.525086402893e-07 1697 1572 -43970603.67818 1698 1572 -20163436.42398 1699 1572 9166666.669676 1700 1572 -11639352.31406 1573 1573 528478804.7157 1574 1573 -11110932.95814 1575 1573 -5.766749382019e-06 1576 1573 -55968623.50036 1577 1573 5722133.145708 1584 1573 1.594424247742e-06 1585 1573 22113465.72052 1586 1573 -2777733.240903 1587 1573 36666666.66064 1588 1573 -41505354.61226 1589 1573 1555533.287118 1674 1573 -5.811452865601e-07 1675 1573 -19232220.47929 1676 1573 -694433.4439163 1677 1573 -9166666.669679 1678 1573 -17307688.72007 1679 1573 9079855.613715 1683 1573 3.635883331299e-06 1684 1573 32278708.78388 1685 1573 -2777733.774297 1686 1573 -5.349516868591e-06 1687 1573 -41940891.5735 1688 1573 36472200.21471 1695 1573 3.725290298462e-07 1696 1573 -19630743.20649 1697 1573 -694433.4439167 1698 1573 9166666.669676 1699 1573 -17413237.96253 1700 1573 9149300.058182 1574 1574 591208016.6774 1575 1574 231485.1930168 1576 1574 5388799.81243 1577 1574 76448462.46728 1584 1574 -254637.0525279 1585 1574 -2777733.240903 1586 1574 37788315.6602 1587 1574 -2685187.040499 1588 1574 1499977.731517 1589 1574 -8422346.095089 1674 1574 43704396.30741 1675 1574 -694433.4439163 1676 1574 -56581165.5979 1677 1574 11581481.02689 1678 1574 9079855.613715 1679 1574 -20589184.71456 1683 1574 231485.148585 1684 1574 -2777733.774298 1685 1574 -118440658.1206 1686 1574 57871.28717716 1687 1574 36444422.43695 1688 1574 -55417829.51533 1695 1574 -43935881.45598 1696 1574 -694433.4439167 1697 1574 -57643892.87044 1698 1574 -11639352.31406 1699 1574 9149300.058182 1700 1574 -20870649.36111 1575 1575 616485232.3769 1576 1575 1.227855682373e-05 1577 1575 925940.7716047 1578 1575 83364435.48308 1579 1575 -6.437301635742e-06 1580 1575 231485.1930161 1584 1575 -52482483.83292 1585 1575 -36666666.66064 1586 1575 2453701.847473 1587 1575 -139221200.1674 1588 1575 1.877546310425e-06 1589 1575 -671303.7191255 1590 1575 -52506158.07532 1591 1575 36666666.66064 1592 1575 -2754631.485001 1674 1575 -18569369.18862 1675 1575 9166666.669678 1676 1575 10279397.69313 1677 1575 -59565882.98117 1678 1575 4.91738319397e-07 1679 1575 43739118.52961 1680 1575 -20057887.18154 1681 1575 -9166666.669679 1682 1575 11581481.02689 1683 1575 -1129879.778007 1684 1575 2.369284629822e-06 1685 1575 57871.28717239 1686 1575 54280296.46473 1687 1575 3.09944152832e-06 1688 1575 231485.1485852 1689 1575 -7107625.989141 1690 1575 -6.146728992462e-06 1691 1575 57871.2871768 1695 1575 -18663081.30986 1696 1575 -9166666.669677 1697 1575 -10337268.9803 1698 1575 -59964405.70834 1699 1575 7.525086402893e-07 1700 1575 -43970603.67818 1701 1575 -20163436.42398 1702 1575 9166666.669676 1703 1575 -11639352.31406 1576 1576 528478804.7157 1577 1576 -11110932.95814 1578 1576 -5.766749382019e-06 1579 1576 -55968623.50036 1580 1576 5722133.145708 1584 1576 -36666666.66065 1585 1576 -41481680.36985 1586 1576 1222199.953785 1587 1576 1.594424247742e-06 1588 1576 22113465.72052 1589 1576 -2777733.240903 1590 1576 36666666.66064 1591 1576 -41505354.61226 1592 1576 1555533.287118 1674 1576 9166666.669678 1675 1576 -15819170.72716 1676 1576 -8385422.169798 1677 1576 -5.811452865601e-07 1678 1576 -19232220.47929 1679 1576 -694433.4439163 1680 1576 -9166666.669679 1681 1576 -17307688.72007 1682 1576 9079855.613715 1683 1576 2.913177013397e-06 1684 1576 -35963145.36236 1685 1576 -33694466.44041 1686 1576 3.635883331299e-06 1687 1576 32278708.78388 1688 1576 -2777733.774297 1689 1576 -5.349516868591e-06 1690 1576 -41940891.5735 1691 1576 36472200.21471 1695 1576 -9166666.669677 1696 1576 -15912882.8484 1697 1576 -8454866.614265 1698 1576 3.725290298462e-07 1699 1576 -19630743.20649 1700 1576 -694433.4439167 1701 1576 9166666.669676 1702 1576 -17413237.96253 1703 1576 9149300.058182 1577 1577 591208016.6774 1578 1577 231485.1930168 1579 1577 5388799.81243 1580 1577 76448462.46728 1584 1577 2523146.291974 1585 1577 1277755.509386 1586 1577 -8359214.781975 1587 1577 -254637.0525279 1588 1577 -2777733.240903 1589 1577 37788315.6602 1590 1577 -2685187.040499 1591 1577 1499977.731517 1592 1577 -8422346.095089 1674 1577 10279397.69313 1675 1577 -8385422.169798 1676 1577 -16619803.40013 1677 1577 43704396.30741 1678 1577 -694433.4439163 1679 1577 -56581165.5979 1680 1577 11581481.02689 1681 1577 9079855.613715 1682 1577 -20589184.71456 1683 1577 57871.28717278 1684 1577 -33666688.66265 1685 1577 -39477172.9523 1686 1577 231485.148585 1687 1577 -2777733.774298 1688 1577 -118440658.1206 1689 1577 57871.28717716 1690 1577 36444422.43695 1691 1577 -55417829.51533 1695 1577 -10337268.9803 1696 1577 -8454866.614265 1697 1577 -16869702.39011 1698 1577 -43935881.45598 1699 1577 -694433.4439167 1700 1577 -57643892.87044 1701 1577 -11639352.31406 1702 1577 9149300.058182 1703 1577 -20870649.36111 1578 1578 668782112.6068 1579 1578 36667451.515 1580 1578 3125095.269694 1581 1578 18742492.4051 1582 1578 -36666980.60238 1583 1578 2754656.266036 1587 1578 -52482483.83292 1588 1578 -36666666.66064 1589 1578 2453701.847473 1590 1578 -139221200.1674 1591 1578 1.877546310425e-06 1592 1578 -671303.7191255 1593 1578 -52506158.07532 1594 1578 36666666.66064 1595 1578 -2754631.485001 1677 1578 -18569369.18862 1678 1578 9166666.669678 1679 1578 10279397.69313 1680 1578 -72039530.38171 1681 1578 -9166781.581061 1682 1578 43189554.83944 1686 1578 -1129879.778007 1687 1578 2.369284629822e-06 1688 1578 57871.28717239 1689 1578 73599694.87993 1690 1578 9166858.188655 1691 1578 781226.7976368 1692 1578 -19443104.86928 1693 1578 -9166743.27727 1694 1578 11639449.48452 1698 1578 -18663081.30986 1699 1578 -9166666.669677 1700 1578 -10337268.9803 1701 1578 -59964405.70834 1702 1578 7.525086402893e-07 1703 1578 -43970603.67818 1704 1578 -20163436.42398 1705 1578 9166666.669676 1706 1578 -11639352.31406 1579 1579 569774528.2723 1580 1579 -8610907.219653 1581 1579 -36667137.57325 1582 1579 -109590390.9887 1583 1579 4777683.581345 1587 1579 -36666666.66065 1588 1579 -41481680.36985 1589 1579 1222199.953785 1590 1579 1.594424247742e-06 1591 1579 22113465.72052 1592 1579 -2777733.240903 1593 1579 36666666.66064 1594 1579 -41505354.61226 1595 1579 1555533.287118 1677 1579 9166666.669678 1678 1579 -15819170.72716 1679 1579 -8385422.169798 1680 1579 -9166743.277267 1681 1579 -28955430.01587 1682 1579 7996602.428466 1686 1579 2.913177013397e-06 1687 1579 -35963145.36236 1688 1579 -33694466.44041 1689 1579 9166858.188655 1690 1579 48847822.54786 1691 1579 -2152764.803778 1692 1579 -9166781.581064 1693 1579 -51526325.20493 1694 1579 36236271.0855 1698 1579 -9166666.669677 1699 1579 -15912882.8484 1700 1579 -8454866.614265 1701 1579 3.725290298462e-07 1702 1579 -19630743.20649 1703 1579 -694433.4439167 1704 1579 9166666.669676 1705 1579 -17413237.96253 1706 1579 9149300.058182 1580 1580 599068063.3379 1581 1580 2685224.212055 1582 1580 5222138.335127 1583 1580 35717984.23851 1587 1580 2523146.291974 1588 1580 1277755.509386 1589 1580 -8359214.781975 1590 1580 -254637.0525279 1591 1580 -2777733.240903 1592 1580 37788315.6602 1593 1580 -2685187.040499 1594 1580 1499977.731517 1595 1580 -8422346.095089 1677 1580 10279397.69313 1678 1580 -8385422.169798 1679 1580 -16619803.40013 1680 1580 43154829.95728 1681 1580 7802192.5578 1682 1580 -56944833.0873 1686 1580 57871.28717278 1687 1580 -33666688.66265 1688 1580 -39477172.9523 1689 1580 781318.4370322 1690 1580 -2152691.493423 1691 1580 -99821807.80486 1692 1580 11639498.06975 1693 1580 36402939.91804 1694 1580 -55413772.21342 1698 1580 -10337268.9803 1699 1580 -8454866.614265 1700 1580 -16869702.39011 1701 1580 -43935881.45598 1702 1580 -694433.4439167 1703 1580 -57643892.87044 1704 1580 -11639352.31406 1705 1580 9149300.058182 1706 1580 -20870649.36111 1581 1581 385435299.3209 1582 1581 36666666.66064 1583 1581 3703838.61297 1590 1581 -52482483.83292 1591 1581 -36666666.66064 1592 1581 2453701.847473 1593 1581 -203986384.4368 1594 1581 -36666980.60238 1595 1581 -2870486.454752 1596 1581 12104621.19738 1597 1581 29333647.27025 1598 1581 -1944469.225024 1680 1581 -4839277.140465 1681 1581 11000114.915 1682 1581 12370128.70975 1689 1581 -14860172.33131 1690 1581 -9166781.581062 1691 1581 -10279526.39882 1692 1581 33963705.33589 1693 1581 9166666.669679 1694 1581 9519894.71657 1701 1581 -18663081.30986 1702 1581 -9166666.669677 1703 1581 -10337268.9803 1704 1581 -73633660.33315 1705 1581 -9166743.277268 1706 1581 -44520628.22528 1707 1581 -7828204.348046 1708 1581 7333409.943332 1709 1581 -9288430.506837 1582 1582 330430928.8169 1583 1582 -6111047.842687 1590 1582 -36666666.66065 1591 1582 -41481680.36985 1592 1582 1222199.953785 1593 1582 -36667137.57325 1594 1582 -31649934.0022 1595 1582 -3888890.401321 1596 1582 44000470.90538 1597 1582 12104621.19738 1598 1582 2666690.447648 1680 1582 7333409.943332 1681 1582 -4839277.140466 1682 1582 -6597291.372073 1689 1582 -9166743.277267 1690 1582 -46943392.66696 1691 1582 -33736315.15602 1692 1582 9166666.669679 1693 1582 20212626.84424 1694 1582 5347275.319281 1701 1582 -9166666.669677 1702 1582 -15912882.8484 1703 1582 -8454866.614265 1704 1582 -9166781.581064 1705 1582 -30549559.96733 1706 1582 -9732749.59088 1707 1582 11000114.915 1708 1582 -7828204.348045 1709 1582 11145949.53617 1583 1583 369852862.7392 1590 1583 2523146.291974 1591 1583 1277755.509386 1592 1583 -8359214.781975 1593 1583 -2453810.375638 1594 1583 -3055549.140985 1595 1583 -3321169.645782 1596 1583 -2916703.837537 1597 1583 1777793.631766 1598 1583 32278989.8597 1680 1583 8246752.473166 1681 1583 -9895937.05811 1682 1583 -12904739.04124 1689 1583 -10279483.49692 1690 1583 -33902984.10692 1691 1583 -43192618.77883 1692 1583 -8015196.919944 1693 1583 -8680575.648187 1694 1583 -73923722.2424 1701 1583 -10337268.9803 1702 1583 -8454866.614265 1703 1583 -16869702.39011 1704 1583 -44485903.34313 1705 1583 -9538266.413314 1706 1583 -61195846.2912 1707 1583 -13932645.76025 1708 1583 7430633.02411 1709 1583 -20875211.59479 1584 1584 616485232.3769 1585 1584 1.227855682373e-05 1586 1584 925940.7716047 1587 1584 83364435.48308 1588 1584 -6.437301635742e-06 1589 1584 231485.1930161 1599 1584 -139221200.1674 1600 1584 1.877546310425e-06 1601 1584 -671303.7191255 1602 1584 -52506158.07532 1603 1584 36666666.66064 1604 1584 -2754631.485001 1683 1584 -59565882.98117 1684 1584 4.91738319397e-07 1685 1584 43739118.52961 1686 1584 -20057887.18154 1687 1584 -9166666.669679 1688 1584 11581481.02689 1695 1584 54280296.46473 1696 1584 3.09944152832e-06 1697 1584 231485.1485852 1698 1584 -7107625.989141 1699 1584 -6.146728992462e-06 1700 1584 57871.2871768 1710 1584 -59964405.70834 1711 1584 7.525086402893e-07 1712 1584 -43970603.67818 1713 1584 -20163436.42398 1714 1584 9166666.669676 1715 1584 -11639352.31406 1585 1585 528478804.7157 1586 1585 -11110932.95814 1587 1585 -5.766749382019e-06 1588 1585 -55968623.50036 1589 1585 5722133.145708 1599 1585 1.594424247742e-06 1600 1585 22113465.72052 1601 1585 -2777733.240903 1602 1585 36666666.66064 1603 1585 -41505354.61226 1604 1585 1555533.287118 1683 1585 -5.811452865601e-07 1684 1585 -19232220.47929 1685 1585 -694433.4439163 1686 1585 -9166666.669679 1687 1585 -17307688.72007 1688 1585 9079855.613715 1695 1585 3.635883331299e-06 1696 1585 32278708.78388 1697 1585 -2777733.774297 1698 1585 -5.349516868591e-06 1699 1585 -41940891.5735 1700 1585 36472200.21471 1710 1585 3.725290298462e-07 1711 1585 -19630743.20649 1712 1585 -694433.4439167 1713 1585 9166666.669676 1714 1585 -17413237.96253 1715 1585 9149300.058182 1586 1586 591208016.6774 1587 1586 231485.1930168 1588 1586 5388799.81243 1589 1586 76448462.46728 1599 1586 -254637.0525279 1600 1586 -2777733.240903 1601 1586 37788315.6602 1602 1586 -2685187.040499 1603 1586 1499977.731517 1604 1586 -8422346.095089 1683 1586 43704396.30741 1684 1586 -694433.4439163 1685 1586 -56581165.5979 1686 1586 11581481.02689 1687 1586 9079855.613715 1688 1586 -20589184.71456 1695 1586 231485.148585 1696 1586 -2777733.774298 1697 1586 -118440658.1206 1698 1586 57871.28717716 1699 1586 36444422.43695 1700 1586 -55417829.51533 1710 1586 -43935881.45598 1711 1586 -694433.4439167 1712 1586 -57643892.87044 1713 1586 -11639352.31406 1714 1586 9149300.058182 1715 1586 -20870649.36111 1587 1587 616485232.3769 1588 1587 1.227855682373e-05 1589 1587 925940.7716047 1590 1587 83364435.48308 1591 1587 -6.437301635742e-06 1592 1587 231485.1930161 1599 1587 -52482483.83292 1600 1587 -36666666.66064 1601 1587 2453701.847473 1602 1587 -139221200.1674 1603 1587 1.877546310425e-06 1604 1587 -671303.7191255 1605 1587 -52506158.07532 1606 1587 36666666.66064 1607 1587 -2754631.485001 1683 1587 -18569369.18862 1684 1587 9166666.669678 1685 1587 10279397.69313 1686 1587 -59565882.98117 1687 1587 4.91738319397e-07 1688 1587 43739118.52961 1689 1587 -20057887.18154 1690 1587 -9166666.669679 1691 1587 11581481.02689 1695 1587 -1129879.778007 1696 1587 2.369284629822e-06 1697 1587 57871.28717239 1698 1587 54280296.46473 1699 1587 3.09944152832e-06 1700 1587 231485.1485852 1701 1587 -7107625.989141 1702 1587 -6.146728992462e-06 1703 1587 57871.2871768 1710 1587 -18663081.30986 1711 1587 -9166666.669677 1712 1587 -10337268.9803 1713 1587 -59964405.70834 1714 1587 7.525086402893e-07 1715 1587 -43970603.67818 1716 1587 -20163436.42398 1717 1587 9166666.669676 1718 1587 -11639352.31406 1588 1588 528478804.7157 1589 1588 -11110932.95814 1590 1588 -5.766749382019e-06 1591 1588 -55968623.50036 1592 1588 5722133.145708 1599 1588 -36666666.66065 1600 1588 -41481680.36985 1601 1588 1222199.953785 1602 1588 1.594424247742e-06 1603 1588 22113465.72052 1604 1588 -2777733.240903 1605 1588 36666666.66064 1606 1588 -41505354.61226 1607 1588 1555533.287118 1683 1588 9166666.669678 1684 1588 -15819170.72716 1685 1588 -8385422.169798 1686 1588 -5.811452865601e-07 1687 1588 -19232220.47929 1688 1588 -694433.4439163 1689 1588 -9166666.669679 1690 1588 -17307688.72007 1691 1588 9079855.613715 1695 1588 2.913177013397e-06 1696 1588 -35963145.36236 1697 1588 -33694466.44041 1698 1588 3.635883331299e-06 1699 1588 32278708.78388 1700 1588 -2777733.774297 1701 1588 -5.349516868591e-06 1702 1588 -41940891.5735 1703 1588 36472200.21471 1710 1588 -9166666.669677 1711 1588 -15912882.8484 1712 1588 -8454866.614265 1713 1588 3.725290298462e-07 1714 1588 -19630743.20649 1715 1588 -694433.4439167 1716 1588 9166666.669676 1717 1588 -17413237.96253 1718 1588 9149300.058182 1589 1589 591208016.6774 1590 1589 231485.1930168 1591 1589 5388799.81243 1592 1589 76448462.46728 1599 1589 2523146.291974 1600 1589 1277755.509386 1601 1589 -8359214.781975 1602 1589 -254637.0525279 1603 1589 -2777733.240903 1604 1589 37788315.6602 1605 1589 -2685187.040499 1606 1589 1499977.731517 1607 1589 -8422346.095089 1683 1589 10279397.69313 1684 1589 -8385422.169798 1685 1589 -16619803.40013 1686 1589 43704396.30741 1687 1589 -694433.4439163 1688 1589 -56581165.5979 1689 1589 11581481.02689 1690 1589 9079855.613715 1691 1589 -20589184.71456 1695 1589 57871.28717278 1696 1589 -33666688.66265 1697 1589 -39477172.9523 1698 1589 231485.148585 1699 1589 -2777733.774298 1700 1589 -118440658.1206 1701 1589 57871.28717716 1702 1589 36444422.43695 1703 1589 -55417829.51533 1710 1589 -10337268.9803 1711 1589 -8454866.614265 1712 1589 -16869702.39011 1713 1589 -43935881.45598 1714 1589 -694433.4439167 1715 1589 -57643892.87044 1716 1589 -11639352.31406 1717 1589 9149300.058182 1718 1589 -20870649.36111 1590 1590 616485232.3769 1591 1590 1.227855682373e-05 1592 1590 925940.7716047 1593 1590 83364435.48308 1594 1590 -6.437301635742e-06 1595 1590 231485.1930161 1602 1590 -52482483.83292 1603 1590 -36666666.66064 1604 1590 2453701.847473 1605 1590 -139221200.1674 1606 1590 1.877546310425e-06 1607 1590 -671303.7191255 1608 1590 -52506158.07532 1609 1590 36666666.66064 1610 1590 -2754631.485001 1686 1590 -18569369.18862 1687 1590 9166666.669678 1688 1590 10279397.69313 1689 1590 -59565882.98117 1690 1590 4.91738319397e-07 1691 1590 43739118.52961 1692 1590 -20057887.18154 1693 1590 -9166666.669679 1694 1590 11581481.02689 1698 1590 -1129879.778007 1699 1590 2.369284629822e-06 1700 1590 57871.28717239 1701 1590 54280296.46473 1702 1590 3.09944152832e-06 1703 1590 231485.1485852 1704 1590 -7107625.989141 1705 1590 -6.146728992462e-06 1706 1590 57871.2871768 1713 1590 -18663081.30986 1714 1590 -9166666.669677 1715 1590 -10337268.9803 1716 1590 -59964405.70834 1717 1590 7.525086402893e-07 1718 1590 -43970603.67818 1719 1590 -20163436.42398 1720 1590 9166666.669676 1721 1590 -11639352.31406 1591 1591 528478804.7157 1592 1591 -11110932.95814 1593 1591 -5.766749382019e-06 1594 1591 -55968623.50036 1595 1591 5722133.145708 1602 1591 -36666666.66065 1603 1591 -41481680.36985 1604 1591 1222199.953785 1605 1591 1.594424247742e-06 1606 1591 22113465.72052 1607 1591 -2777733.240903 1608 1591 36666666.66064 1609 1591 -41505354.61226 1610 1591 1555533.287118 1686 1591 9166666.669678 1687 1591 -15819170.72716 1688 1591 -8385422.169798 1689 1591 -5.811452865601e-07 1690 1591 -19232220.47929 1691 1591 -694433.4439163 1692 1591 -9166666.669679 1693 1591 -17307688.72007 1694 1591 9079855.613715 1698 1591 2.913177013397e-06 1699 1591 -35963145.36236 1700 1591 -33694466.44041 1701 1591 3.635883331299e-06 1702 1591 32278708.78388 1703 1591 -2777733.774297 1704 1591 -5.349516868591e-06 1705 1591 -41940891.5735 1706 1591 36472200.21471 1713 1591 -9166666.669677 1714 1591 -15912882.8484 1715 1591 -8454866.614265 1716 1591 3.725290298462e-07 1717 1591 -19630743.20649 1718 1591 -694433.4439167 1719 1591 9166666.669676 1720 1591 -17413237.96253 1721 1591 9149300.058182 1592 1592 591208016.6774 1593 1592 231485.1930168 1594 1592 5388799.81243 1595 1592 76448462.46728 1602 1592 2523146.291974 1603 1592 1277755.509386 1604 1592 -8359214.781975 1605 1592 -254637.0525279 1606 1592 -2777733.240903 1607 1592 37788315.6602 1608 1592 -2685187.040499 1609 1592 1499977.731517 1610 1592 -8422346.095089 1686 1592 10279397.69313 1687 1592 -8385422.169798 1688 1592 -16619803.40013 1689 1592 43704396.30741 1690 1592 -694433.4439163 1691 1592 -56581165.5979 1692 1592 11581481.02689 1693 1592 9079855.613715 1694 1592 -20589184.71456 1698 1592 57871.28717278 1699 1592 -33666688.66265 1700 1592 -39477172.9523 1701 1592 231485.148585 1702 1592 -2777733.774298 1703 1592 -118440658.1206 1704 1592 57871.28717716 1705 1592 36444422.43695 1706 1592 -55417829.51533 1713 1592 -10337268.9803 1714 1592 -8454866.614265 1715 1592 -16869702.39011 1716 1592 -43935881.45598 1717 1592 -694433.4439167 1718 1592 -57643892.87044 1719 1592 -11639352.31406 1720 1592 9149300.058182 1721 1592 -20870649.36111 1593 1593 668782112.6068 1594 1593 36667451.515 1595 1593 3125095.269694 1596 1593 18742492.4051 1597 1593 -36666980.60238 1598 1593 2754656.266036 1605 1593 -52482483.83292 1606 1593 -36666666.66064 1607 1593 2453701.847473 1608 1593 -139221200.1674 1609 1593 1.877546310425e-06 1610 1593 -671303.7191255 1611 1593 -52506158.07532 1612 1593 36666666.66064 1613 1593 -2754631.485001 1689 1593 -18569369.18862 1690 1593 9166666.669678 1691 1593 10279397.69313 1692 1593 -72039530.38171 1693 1593 -9166781.581061 1694 1593 43189554.83944 1701 1593 -1129879.778007 1702 1593 2.369284629822e-06 1703 1593 57871.28717239 1704 1593 73599694.87993 1705 1593 9166858.188655 1706 1593 781226.7976368 1707 1593 -19443104.86928 1708 1593 -9166743.27727 1709 1593 11639449.48452 1716 1593 -18663081.30986 1717 1593 -9166666.669677 1718 1593 -10337268.9803 1719 1593 -59964405.70834 1720 1593 7.525086402893e-07 1721 1593 -43970603.67818 1722 1593 -20163436.42398 1723 1593 9166666.669676 1724 1593 -11639352.31406 1594 1594 569774528.2723 1595 1594 -8610907.219653 1596 1594 -36667137.57325 1597 1594 -109590390.9887 1598 1594 4777683.581345 1605 1594 -36666666.66065 1606 1594 -41481680.36985 1607 1594 1222199.953785 1608 1594 1.594424247742e-06 1609 1594 22113465.72052 1610 1594 -2777733.240903 1611 1594 36666666.66064 1612 1594 -41505354.61226 1613 1594 1555533.287118 1689 1594 9166666.669678 1690 1594 -15819170.72716 1691 1594 -8385422.169798 1692 1594 -9166743.277267 1693 1594 -28955430.01587 1694 1594 7996602.428466 1701 1594 2.913177013397e-06 1702 1594 -35963145.36236 1703 1594 -33694466.44041 1704 1594 9166858.188655 1705 1594 48847822.54786 1706 1594 -2152764.803778 1707 1594 -9166781.581064 1708 1594 -51526325.20493 1709 1594 36236271.0855 1716 1594 -9166666.669677 1717 1594 -15912882.8484 1718 1594 -8454866.614265 1719 1594 3.725290298462e-07 1720 1594 -19630743.20649 1721 1594 -694433.4439167 1722 1594 9166666.669676 1723 1594 -17413237.96253 1724 1594 9149300.058182 1595 1595 599068063.3379 1596 1595 2685224.212055 1597 1595 5222138.335127 1598 1595 35717984.23851 1605 1595 2523146.291974 1606 1595 1277755.509386 1607 1595 -8359214.781975 1608 1595 -254637.0525279 1609 1595 -2777733.240903 1610 1595 37788315.6602 1611 1595 -2685187.040499 1612 1595 1499977.731517 1613 1595 -8422346.095089 1689 1595 10279397.69313 1690 1595 -8385422.169798 1691 1595 -16619803.40013 1692 1595 43154829.95728 1693 1595 7802192.5578 1694 1595 -56944833.0873 1701 1595 57871.28717278 1702 1595 -33666688.66265 1703 1595 -39477172.9523 1704 1595 781318.4370322 1705 1595 -2152691.493423 1706 1595 -99821807.80486 1707 1595 11639498.06975 1708 1595 36402939.91804 1709 1595 -55413772.21342 1716 1595 -10337268.9803 1717 1595 -8454866.614265 1718 1595 -16869702.39011 1719 1595 -43935881.45598 1720 1595 -694433.4439167 1721 1595 -57643892.87044 1722 1595 -11639352.31406 1723 1595 9149300.058182 1724 1595 -20870649.36111 1596 1596 385435299.3209 1597 1596 36666666.66064 1598 1596 3703838.61297 1608 1596 -52482483.83292 1609 1596 -36666666.66064 1610 1596 2453701.847473 1611 1596 -203986384.4368 1612 1596 -36666980.60238 1613 1596 -2870486.454752 1614 1596 12104621.19738 1615 1596 29333647.27025 1616 1596 -1944469.225024 1692 1596 -4839277.140465 1693 1596 11000114.915 1694 1596 12370128.70975 1704 1596 -14860172.33131 1705 1596 -9166781.581062 1706 1596 -10279526.39882 1707 1596 33963705.33589 1708 1596 9166666.669679 1709 1596 9519894.71657 1719 1596 -18663081.30986 1720 1596 -9166666.669677 1721 1596 -10337268.9803 1722 1596 -73633660.33315 1723 1596 -9166743.277268 1724 1596 -44520628.22528 1725 1596 -7828204.348046 1726 1596 7333409.943332 1727 1596 -9288430.506837 1597 1597 330430928.8169 1598 1597 -6111047.842687 1608 1597 -36666666.66065 1609 1597 -41481680.36985 1610 1597 1222199.953785 1611 1597 -36667137.57325 1612 1597 -31649934.0022 1613 1597 -3888890.401321 1614 1597 44000470.90538 1615 1597 12104621.19738 1616 1597 2666690.447648 1692 1597 7333409.943332 1693 1597 -4839277.140466 1694 1597 -6597291.372073 1704 1597 -9166743.277267 1705 1597 -46943392.66696 1706 1597 -33736315.15602 1707 1597 9166666.669679 1708 1597 20212626.84424 1709 1597 5347275.319281 1719 1597 -9166666.669677 1720 1597 -15912882.8484 1721 1597 -8454866.614265 1722 1597 -9166781.581064 1723 1597 -30549559.96733 1724 1597 -9732749.59088 1725 1597 11000114.915 1726 1597 -7828204.348045 1727 1597 11145949.53617 1598 1598 369852862.7392 1608 1598 2523146.291974 1609 1598 1277755.509386 1610 1598 -8359214.781975 1611 1598 -2453810.375638 1612 1598 -3055549.140985 1613 1598 -3321169.645782 1614 1598 -2916703.837537 1615 1598 1777793.631766 1616 1598 32278989.8597 1692 1598 8246752.473166 1693 1598 -9895937.05811 1694 1598 -12904739.04124 1704 1598 -10279483.49692 1705 1598 -33902984.10692 1706 1598 -43192618.77883 1707 1598 -8015196.919944 1708 1598 -8680575.648187 1709 1598 -73923722.2424 1719 1598 -10337268.9803 1720 1598 -8454866.614265 1721 1598 -16869702.39011 1722 1598 -44485903.34313 1723 1598 -9538266.413314 1724 1598 -61195846.2912 1725 1598 -13932645.76025 1726 1598 7430633.02411 1727 1598 -20875211.59479 1599 1599 616485232.3769 1600 1599 1.227855682373e-05 1601 1599 925940.7716047 1602 1599 83364435.48308 1603 1599 -6.437301635742e-06 1604 1599 231485.1930161 1617 1599 -139221200.1674 1618 1599 1.877546310425e-06 1619 1599 -671303.7191255 1620 1599 -52506158.07532 1621 1599 36666666.66064 1622 1599 -2754631.485001 1695 1599 -59565882.98117 1696 1599 4.91738319397e-07 1697 1599 43739118.52961 1698 1599 -20057887.18154 1699 1599 -9166666.669679 1700 1599 11581481.02689 1710 1599 54280296.46473 1711 1599 3.09944152832e-06 1712 1599 231485.1485852 1713 1599 -7107625.989141 1714 1599 -6.146728992462e-06 1715 1599 57871.2871768 1728 1599 -59964405.70834 1729 1599 7.525086402893e-07 1730 1599 -43970603.67818 1731 1599 -20163436.42398 1732 1599 9166666.669676 1733 1599 -11639352.31406 1600 1600 528478804.7157 1601 1600 -11110932.95814 1602 1600 -5.766749382019e-06 1603 1600 -55968623.50036 1604 1600 5722133.145708 1617 1600 1.594424247742e-06 1618 1600 22113465.72052 1619 1600 -2777733.240903 1620 1600 36666666.66064 1621 1600 -41505354.61226 1622 1600 1555533.287118 1695 1600 -5.811452865601e-07 1696 1600 -19232220.47929 1697 1600 -694433.4439163 1698 1600 -9166666.669679 1699 1600 -17307688.72007 1700 1600 9079855.613715 1710 1600 3.635883331299e-06 1711 1600 32278708.78388 1712 1600 -2777733.774297 1713 1600 -5.349516868591e-06 1714 1600 -41940891.5735 1715 1600 36472200.21471 1728 1600 3.725290298462e-07 1729 1600 -19630743.20649 1730 1600 -694433.4439167 1731 1600 9166666.669676 1732 1600 -17413237.96253 1733 1600 9149300.058182 1601 1601 591208016.6774 1602 1601 231485.1930168 1603 1601 5388799.81243 1604 1601 76448462.46728 1617 1601 -254637.0525279 1618 1601 -2777733.240903 1619 1601 37788315.6602 1620 1601 -2685187.040499 1621 1601 1499977.731517 1622 1601 -8422346.095089 1695 1601 43704396.30741 1696 1601 -694433.4439163 1697 1601 -56581165.5979 1698 1601 11581481.02689 1699 1601 9079855.613715 1700 1601 -20589184.71456 1710 1601 231485.148585 1711 1601 -2777733.774298 1712 1601 -118440658.1206 1713 1601 57871.28717716 1714 1601 36444422.43695 1715 1601 -55417829.51533 1728 1601 -43935881.45598 1729 1601 -694433.4439167 1730 1601 -57643892.87044 1731 1601 -11639352.31406 1732 1601 9149300.058182 1733 1601 -20870649.36111 1602 1602 616485232.3769 1603 1602 1.227855682373e-05 1604 1602 925940.7716047 1605 1602 83364435.48308 1606 1602 -6.437301635742e-06 1607 1602 231485.1930161 1617 1602 -52482483.83292 1618 1602 -36666666.66064 1619 1602 2453701.847473 1620 1602 -139221200.1674 1621 1602 1.877546310425e-06 1622 1602 -671303.7191255 1623 1602 -52506158.07532 1624 1602 36666666.66064 1625 1602 -2754631.485001 1695 1602 -18569369.18862 1696 1602 9166666.669678 1697 1602 10279397.69313 1698 1602 -59565882.98117 1699 1602 4.91738319397e-07 1700 1602 43739118.52961 1701 1602 -20057887.18154 1702 1602 -9166666.669679 1703 1602 11581481.02689 1710 1602 -1129879.778007 1711 1602 2.369284629822e-06 1712 1602 57871.28717239 1713 1602 54280296.46473 1714 1602 3.09944152832e-06 1715 1602 231485.1485852 1716 1602 -7107625.989141 1717 1602 -6.146728992462e-06 1718 1602 57871.2871768 1728 1602 -18663081.30986 1729 1602 -9166666.669677 1730 1602 -10337268.9803 1731 1602 -59964405.70834 1732 1602 7.525086402893e-07 1733 1602 -43970603.67818 1734 1602 -20163436.42398 1735 1602 9166666.669676 1736 1602 -11639352.31406 1603 1603 528478804.7157 1604 1603 -11110932.95814 1605 1603 -5.766749382019e-06 1606 1603 -55968623.50036 1607 1603 5722133.145708 1617 1603 -36666666.66065 1618 1603 -41481680.36985 1619 1603 1222199.953785 1620 1603 1.594424247742e-06 1621 1603 22113465.72052 1622 1603 -2777733.240903 1623 1603 36666666.66064 1624 1603 -41505354.61226 1625 1603 1555533.287118 1695 1603 9166666.669678 1696 1603 -15819170.72716 1697 1603 -8385422.169798 1698 1603 -5.811452865601e-07 1699 1603 -19232220.47929 1700 1603 -694433.4439163 1701 1603 -9166666.669679 1702 1603 -17307688.72007 1703 1603 9079855.613715 1710 1603 2.913177013397e-06 1711 1603 -35963145.36236 1712 1603 -33694466.44041 1713 1603 3.635883331299e-06 1714 1603 32278708.78388 1715 1603 -2777733.774297 1716 1603 -5.349516868591e-06 1717 1603 -41940891.5735 1718 1603 36472200.21471 1728 1603 -9166666.669677 1729 1603 -15912882.8484 1730 1603 -8454866.614265 1731 1603 3.725290298462e-07 1732 1603 -19630743.20649 1733 1603 -694433.4439167 1734 1603 9166666.669676 1735 1603 -17413237.96253 1736 1603 9149300.058182 1604 1604 591208016.6774 1605 1604 231485.1930168 1606 1604 5388799.81243 1607 1604 76448462.46728 1617 1604 2523146.291974 1618 1604 1277755.509386 1619 1604 -8359214.781975 1620 1604 -254637.0525279 1621 1604 -2777733.240903 1622 1604 37788315.6602 1623 1604 -2685187.040499 1624 1604 1499977.731517 1625 1604 -8422346.095089 1695 1604 10279397.69313 1696 1604 -8385422.169798 1697 1604 -16619803.40013 1698 1604 43704396.30741 1699 1604 -694433.4439163 1700 1604 -56581165.5979 1701 1604 11581481.02689 1702 1604 9079855.613715 1703 1604 -20589184.71456 1710 1604 57871.28717278 1711 1604 -33666688.66265 1712 1604 -39477172.9523 1713 1604 231485.148585 1714 1604 -2777733.774298 1715 1604 -118440658.1206 1716 1604 57871.28717716 1717 1604 36444422.43695 1718 1604 -55417829.51533 1728 1604 -10337268.9803 1729 1604 -8454866.614265 1730 1604 -16869702.39011 1731 1604 -43935881.45598 1732 1604 -694433.4439167 1733 1604 -57643892.87044 1734 1604 -11639352.31406 1735 1604 9149300.058182 1736 1604 -20870649.36111 1605 1605 616485232.3769 1606 1605 1.227855682373e-05 1607 1605 925940.7716047 1608 1605 83364435.48308 1609 1605 -6.437301635742e-06 1610 1605 231485.1930161 1620 1605 -52482483.83292 1621 1605 -36666666.66064 1622 1605 2453701.847473 1623 1605 -139221200.1674 1624 1605 1.877546310425e-06 1625 1605 -671303.7191255 1626 1605 -52506158.07532 1627 1605 36666666.66064 1628 1605 -2754631.485001 1698 1605 -18569369.18862 1699 1605 9166666.669678 1700 1605 10279397.69313 1701 1605 -59565882.98117 1702 1605 4.91738319397e-07 1703 1605 43739118.52961 1704 1605 -20057887.18154 1705 1605 -9166666.669679 1706 1605 11581481.02689 1713 1605 -1129879.778007 1714 1605 2.369284629822e-06 1715 1605 57871.28717239 1716 1605 54280296.46473 1717 1605 3.09944152832e-06 1718 1605 231485.1485852 1719 1605 -7107625.989141 1720 1605 -6.146728992462e-06 1721 1605 57871.2871768 1731 1605 -18663081.30986 1732 1605 -9166666.669677 1733 1605 -10337268.9803 1734 1605 -59964405.70834 1735 1605 7.525086402893e-07 1736 1605 -43970603.67818 1737 1605 -20163436.42398 1738 1605 9166666.669676 1739 1605 -11639352.31406 1606 1606 528478804.7157 1607 1606 -11110932.95814 1608 1606 -5.766749382019e-06 1609 1606 -55968623.50036 1610 1606 5722133.145708 1620 1606 -36666666.66065 1621 1606 -41481680.36985 1622 1606 1222199.953785 1623 1606 1.594424247742e-06 1624 1606 22113465.72052 1625 1606 -2777733.240903 1626 1606 36666666.66064 1627 1606 -41505354.61226 1628 1606 1555533.287118 1698 1606 9166666.669678 1699 1606 -15819170.72716 1700 1606 -8385422.169798 1701 1606 -5.811452865601e-07 1702 1606 -19232220.47929 1703 1606 -694433.4439163 1704 1606 -9166666.669679 1705 1606 -17307688.72007 1706 1606 9079855.613715 1713 1606 2.913177013397e-06 1714 1606 -35963145.36236 1715 1606 -33694466.44041 1716 1606 3.635883331299e-06 1717 1606 32278708.78388 1718 1606 -2777733.774297 1719 1606 -5.349516868591e-06 1720 1606 -41940891.5735 1721 1606 36472200.21471 1731 1606 -9166666.669677 1732 1606 -15912882.8484 1733 1606 -8454866.614265 1734 1606 3.725290298462e-07 1735 1606 -19630743.20649 1736 1606 -694433.4439167 1737 1606 9166666.669676 1738 1606 -17413237.96253 1739 1606 9149300.058182 1607 1607 591208016.6774 1608 1607 231485.1930168 1609 1607 5388799.81243 1610 1607 76448462.46728 1620 1607 2523146.291974 1621 1607 1277755.509386 1622 1607 -8359214.781975 1623 1607 -254637.0525279 1624 1607 -2777733.240903 1625 1607 37788315.6602 1626 1607 -2685187.040499 1627 1607 1499977.731517 1628 1607 -8422346.095089 1698 1607 10279397.69313 1699 1607 -8385422.169798 1700 1607 -16619803.40013 1701 1607 43704396.30741 1702 1607 -694433.4439163 1703 1607 -56581165.5979 1704 1607 11581481.02689 1705 1607 9079855.613715 1706 1607 -20589184.71456 1713 1607 57871.28717278 1714 1607 -33666688.66265 1715 1607 -39477172.9523 1716 1607 231485.148585 1717 1607 -2777733.774298 1718 1607 -118440658.1206 1719 1607 57871.28717716 1720 1607 36444422.43695 1721 1607 -55417829.51533 1731 1607 -10337268.9803 1732 1607 -8454866.614265 1733 1607 -16869702.39011 1734 1607 -43935881.45598 1735 1607 -694433.4439167 1736 1607 -57643892.87044 1737 1607 -11639352.31406 1738 1607 9149300.058182 1739 1607 -20870649.36111 1608 1608 616485232.3769 1609 1608 1.227855682373e-05 1610 1608 925940.7716047 1611 1608 83364435.48308 1612 1608 -6.437301635742e-06 1613 1608 231485.1930161 1623 1608 -52482483.83292 1624 1608 -36666666.66064 1625 1608 2453701.847473 1626 1608 -139221200.1674 1627 1608 1.877546310425e-06 1628 1608 -671303.7191255 1629 1608 -52506158.07532 1630 1608 36666666.66064 1631 1608 -2754631.485001 1701 1608 -18569369.18862 1702 1608 9166666.669678 1703 1608 10279397.69313 1704 1608 -59565882.98117 1705 1608 4.91738319397e-07 1706 1608 43739118.52961 1707 1608 -20057887.18154 1708 1608 -9166666.669679 1709 1608 11581481.02689 1716 1608 -1129879.778007 1717 1608 2.369284629822e-06 1718 1608 57871.28717239 1719 1608 54280296.46473 1720 1608 3.09944152832e-06 1721 1608 231485.1485852 1722 1608 -7107625.989141 1723 1608 -6.146728992462e-06 1724 1608 57871.2871768 1734 1608 -18663081.30986 1735 1608 -9166666.669677 1736 1608 -10337268.9803 1737 1608 -59964405.70834 1738 1608 7.525086402893e-07 1739 1608 -43970603.67818 1740 1608 -20163436.42398 1741 1608 9166666.669676 1742 1608 -11639352.31406 1609 1609 528478804.7157 1610 1609 -11110932.95814 1611 1609 -5.766749382019e-06 1612 1609 -55968623.50036 1613 1609 5722133.145708 1623 1609 -36666666.66065 1624 1609 -41481680.36985 1625 1609 1222199.953785 1626 1609 1.594424247742e-06 1627 1609 22113465.72052 1628 1609 -2777733.240903 1629 1609 36666666.66064 1630 1609 -41505354.61226 1631 1609 1555533.287118 1701 1609 9166666.669678 1702 1609 -15819170.72716 1703 1609 -8385422.169798 1704 1609 -5.811452865601e-07 1705 1609 -19232220.47929 1706 1609 -694433.4439163 1707 1609 -9166666.669679 1708 1609 -17307688.72007 1709 1609 9079855.613715 1716 1609 2.913177013397e-06 1717 1609 -35963145.36236 1718 1609 -33694466.44041 1719 1609 3.635883331299e-06 1720 1609 32278708.78388 1721 1609 -2777733.774297 1722 1609 -5.349516868591e-06 1723 1609 -41940891.5735 1724 1609 36472200.21471 1734 1609 -9166666.669677 1735 1609 -15912882.8484 1736 1609 -8454866.614265 1737 1609 3.725290298462e-07 1738 1609 -19630743.20649 1739 1609 -694433.4439167 1740 1609 9166666.669676 1741 1609 -17413237.96253 1742 1609 9149300.058182 1610 1610 591208016.6774 1611 1610 231485.1930168 1612 1610 5388799.81243 1613 1610 76448462.46728 1623 1610 2523146.291974 1624 1610 1277755.509386 1625 1610 -8359214.781975 1626 1610 -254637.0525279 1627 1610 -2777733.240903 1628 1610 37788315.6602 1629 1610 -2685187.040499 1630 1610 1499977.731517 1631 1610 -8422346.095089 1701 1610 10279397.69313 1702 1610 -8385422.169798 1703 1610 -16619803.40013 1704 1610 43704396.30741 1705 1610 -694433.4439163 1706 1610 -56581165.5979 1707 1610 11581481.02689 1708 1610 9079855.613715 1709 1610 -20589184.71456 1716 1610 57871.28717278 1717 1610 -33666688.66265 1718 1610 -39477172.9523 1719 1610 231485.148585 1720 1610 -2777733.774298 1721 1610 -118440658.1206 1722 1610 57871.28717716 1723 1610 36444422.43695 1724 1610 -55417829.51533 1734 1610 -10337268.9803 1735 1610 -8454866.614265 1736 1610 -16869702.39011 1737 1610 -43935881.45598 1738 1610 -694433.4439167 1739 1610 -57643892.87044 1740 1610 -11639352.31406 1741 1610 9149300.058182 1742 1610 -20870649.36111 1611 1611 668782112.6068 1612 1611 36667451.515 1613 1611 3125095.269694 1614 1611 18742492.4051 1615 1611 -36666980.60238 1616 1611 2754656.266036 1626 1611 -52482483.83292 1627 1611 -36666666.66064 1628 1611 2453701.847473 1629 1611 -139221200.1674 1630 1611 1.877546310425e-06 1631 1611 -671303.7191255 1632 1611 -52506158.07532 1633 1611 36666666.66064 1634 1611 -2754631.485001 1704 1611 -18569369.18862 1705 1611 9166666.669678 1706 1611 10279397.69313 1707 1611 -72039530.38171 1708 1611 -9166781.581061 1709 1611 43189554.83944 1719 1611 -1129879.778007 1720 1611 2.369284629822e-06 1721 1611 57871.28717239 1722 1611 73599694.87993 1723 1611 9166858.188655 1724 1611 781226.7976368 1725 1611 -19443104.86928 1726 1611 -9166743.27727 1727 1611 11639449.48452 1737 1611 -18663081.30986 1738 1611 -9166666.669677 1739 1611 -10337268.9803 1740 1611 -59964405.70834 1741 1611 7.525086402893e-07 1742 1611 -43970603.67818 1743 1611 -20163436.42398 1744 1611 9166666.669676 1745 1611 -11639352.31406 1612 1612 569774528.2723 1613 1612 -8610907.219653 1614 1612 -36667137.57325 1615 1612 -109590390.9887 1616 1612 4777683.581345 1626 1612 -36666666.66065 1627 1612 -41481680.36985 1628 1612 1222199.953785 1629 1612 1.594424247742e-06 1630 1612 22113465.72052 1631 1612 -2777733.240903 1632 1612 36666666.66064 1633 1612 -41505354.61226 1634 1612 1555533.287118 1704 1612 9166666.669678 1705 1612 -15819170.72716 1706 1612 -8385422.169798 1707 1612 -9166743.277267 1708 1612 -28955430.01587 1709 1612 7996602.428466 1719 1612 2.913177013397e-06 1720 1612 -35963145.36236 1721 1612 -33694466.44041 1722 1612 9166858.188655 1723 1612 48847822.54786 1724 1612 -2152764.803778 1725 1612 -9166781.581064 1726 1612 -51526325.20493 1727 1612 36236271.0855 1737 1612 -9166666.669677 1738 1612 -15912882.8484 1739 1612 -8454866.614265 1740 1612 3.725290298462e-07 1741 1612 -19630743.20649 1742 1612 -694433.4439167 1743 1612 9166666.669676 1744 1612 -17413237.96253 1745 1612 9149300.058182 1613 1613 599068063.3379 1614 1613 2685224.212055 1615 1613 5222138.335127 1616 1613 35717984.23851 1626 1613 2523146.291974 1627 1613 1277755.509386 1628 1613 -8359214.781975 1629 1613 -254637.0525279 1630 1613 -2777733.240903 1631 1613 37788315.6602 1632 1613 -2685187.040499 1633 1613 1499977.731517 1634 1613 -8422346.095089 1704 1613 10279397.69313 1705 1613 -8385422.169798 1706 1613 -16619803.40013 1707 1613 43154829.95728 1708 1613 7802192.5578 1709 1613 -56944833.0873 1719 1613 57871.28717278 1720 1613 -33666688.66265 1721 1613 -39477172.9523 1722 1613 781318.4370322 1723 1613 -2152691.493423 1724 1613 -99821807.80486 1725 1613 11639498.06975 1726 1613 36402939.91804 1727 1613 -55413772.21342 1737 1613 -10337268.9803 1738 1613 -8454866.614265 1739 1613 -16869702.39011 1740 1613 -43935881.45598 1741 1613 -694433.4439167 1742 1613 -57643892.87044 1743 1613 -11639352.31406 1744 1613 9149300.058182 1745 1613 -20870649.36111 1614 1614 655735355.2101 1615 1614 -31117212.66892 1616 1614 -17334.85400189 1629 1614 -52482483.83292 1630 1614 -36666666.66064 1631 1614 2453701.847473 1632 1614 -47267674.59853 1633 1614 31108306.68764 1634 1614 -538116.1871277 1635 1614 -460334096.3009 1636 1614 29342239.3098 1637 1614 -116.4260834567 1707 1614 -4839277.140465 1708 1614 11000114.915 1709 1614 12370128.70975 1722 1614 -14860172.33131 1723 1614 -9166781.581062 1724 1614 -10279526.39882 1725 1614 84600329.791 1726 1614 -7355166.008999 1727 1614 4551627.348748 1740 1614 -18663081.30986 1741 1614 -9166666.669677 1742 1614 -10337268.9803 1743 1614 -26443017.83902 1744 1614 7353613.14478 1745 1614 -24169752.6984 1746 1614 -81188509.12609 1747 1614 7334886.199962 1748 1614 -937425.4063848 1615 1615 1399825463.238 1616 1615 -15271235.38801 1629 1615 -36666666.66065 1630 1615 -41481680.36985 1631 1615 1222199.953785 1632 1615 31103853.69702 1633 1615 94613187.18359 1634 1615 -2022211.413523 1635 1615 44013358.96467 1636 1615 -1228972986.18 1637 1615 10408237.60212 1707 1615 7333409.943332 1708 1615 -4839277.140466 1709 1615 -6597291.372073 1722 1615 -9166743.277267 1723 1615 -46943392.66696 1724 1615 -33736315.15602 1725 1615 -7355166.008999 1726 1615 212115402.7313 1727 1615 562018.4294399 1740 1615 -9166666.669677 1741 1615 -15912882.8484 1742 1615 -8454866.614265 1743 1615 7352836.71267 1744 1615 9214022.79247 1745 1615 6548490.870986 1746 1615 11002329.29994 1747 1615 -215027600.8237 1748 1615 18640210.33911 1616 1616 686859776.2503 1629 1616 2523146.291974 1630 1616 1277755.509386 1631 1616 -8359214.781975 1632 1616 -815841.7076854 1633 1616 -1743802.481929 1634 1616 49749735.57039 1635 1616 -174.6391257197 1636 1616 10298292.41346 1637 1616 -458918700.2564 1707 1616 8246752.473166 1708 1616 -9895937.05811 1709 1616 -12904739.04124 1722 1616 -10279483.49692 1723 1616 -33902984.10692 1724 1616 -43192618.77883 1725 1616 -5083833.776419 1726 1616 -7145049.724392 1727 1616 16202036.69247 1740 1616 -10337268.9803 1741 1616 -8454866.614265 1742 1616 -16869702.39011 1743 1616 -24343354.24807 1744 1616 6577036.690483 1745 1616 -24287985.05901 1746 1616 -1406138.109577 1747 1616 18265170.55897 1748 1616 -82663599.30531 1617 1617 616485232.3769 1618 1617 1.227855682373e-05 1619 1617 925940.7716047 1620 1617 83364435.48308 1621 1617 -6.437301635742e-06 1622 1617 231485.1930161 1638 1617 -139221200.1674 1639 1617 1.877546310425e-06 1640 1617 -671303.7191255 1641 1617 -52506158.07532 1642 1617 36666666.66064 1643 1617 -2754631.485001 1710 1617 -59565882.98117 1711 1617 4.91738319397e-07 1712 1617 43739118.52961 1713 1617 -20057887.18154 1714 1617 -9166666.669679 1715 1617 11581481.02689 1728 1617 54280296.46473 1729 1617 3.09944152832e-06 1730 1617 231485.1485852 1731 1617 -7107625.989141 1732 1617 -6.146728992462e-06 1733 1617 57871.2871768 1749 1617 -59964405.70834 1750 1617 7.525086402893e-07 1751 1617 -43970603.67818 1752 1617 -20163436.42398 1753 1617 9166666.669676 1754 1617 -11639352.31406 1618 1618 528478804.7157 1619 1618 -11110932.95814 1620 1618 -5.766749382019e-06 1621 1618 -55968623.50036 1622 1618 5722133.145708 1638 1618 1.594424247742e-06 1639 1618 22113465.72052 1640 1618 -2777733.240903 1641 1618 36666666.66064 1642 1618 -41505354.61226 1643 1618 1555533.287118 1710 1618 -5.811452865601e-07 1711 1618 -19232220.47929 1712 1618 -694433.4439163 1713 1618 -9166666.669679 1714 1618 -17307688.72007 1715 1618 9079855.613715 1728 1618 3.635883331299e-06 1729 1618 32278708.78388 1730 1618 -2777733.774297 1731 1618 -5.349516868591e-06 1732 1618 -41940891.5735 1733 1618 36472200.21471 1749 1618 3.725290298462e-07 1750 1618 -19630743.20649 1751 1618 -694433.4439167 1752 1618 9166666.669676 1753 1618 -17413237.96253 1754 1618 9149300.058182 1619 1619 591208016.6774 1620 1619 231485.1930168 1621 1619 5388799.81243 1622 1619 76448462.46728 1638 1619 -254637.0525279 1639 1619 -2777733.240903 1640 1619 37788315.6602 1641 1619 -2685187.040499 1642 1619 1499977.731517 1643 1619 -8422346.095089 1710 1619 43704396.30741 1711 1619 -694433.4439163 1712 1619 -56581165.5979 1713 1619 11581481.02689 1714 1619 9079855.613715 1715 1619 -20589184.71456 1728 1619 231485.148585 1729 1619 -2777733.774298 1730 1619 -118440658.1206 1731 1619 57871.28717716 1732 1619 36444422.43695 1733 1619 -55417829.51533 1749 1619 -43935881.45598 1750 1619 -694433.4439167 1751 1619 -57643892.87044 1752 1619 -11639352.31406 1753 1619 9149300.058182 1754 1619 -20870649.36111 1620 1620 616485232.3769 1621 1620 1.227855682373e-05 1622 1620 925940.7716047 1623 1620 83364435.48308 1624 1620 -6.437301635742e-06 1625 1620 231485.1930161 1638 1620 -52482483.83292 1639 1620 -36666666.66064 1640 1620 2453701.847473 1641 1620 -139221200.1674 1642 1620 1.877546310425e-06 1643 1620 -671303.7191255 1644 1620 -52506158.07532 1645 1620 36666666.66064 1646 1620 -2754631.485001 1710 1620 -18569369.18862 1711 1620 9166666.669678 1712 1620 10279397.69313 1713 1620 -59565882.98117 1714 1620 4.91738319397e-07 1715 1620 43739118.52961 1716 1620 -20057887.18154 1717 1620 -9166666.669679 1718 1620 11581481.02689 1728 1620 -1129879.778007 1729 1620 2.369284629822e-06 1730 1620 57871.28717239 1731 1620 54280296.46473 1732 1620 3.09944152832e-06 1733 1620 231485.1485852 1734 1620 -7107625.989141 1735 1620 -6.146728992462e-06 1736 1620 57871.2871768 1749 1620 -18663081.30986 1750 1620 -9166666.669677 1751 1620 -10337268.9803 1752 1620 -59964405.70834 1753 1620 7.525086402893e-07 1754 1620 -43970603.67818 1755 1620 -20163436.42398 1756 1620 9166666.669676 1757 1620 -11639352.31406 1621 1621 528478804.7157 1622 1621 -11110932.95814 1623 1621 -5.766749382019e-06 1624 1621 -55968623.50036 1625 1621 5722133.145708 1638 1621 -36666666.66065 1639 1621 -41481680.36985 1640 1621 1222199.953785 1641 1621 1.594424247742e-06 1642 1621 22113465.72052 1643 1621 -2777733.240903 1644 1621 36666666.66064 1645 1621 -41505354.61226 1646 1621 1555533.287118 1710 1621 9166666.669678 1711 1621 -15819170.72716 1712 1621 -8385422.169798 1713 1621 -5.811452865601e-07 1714 1621 -19232220.47929 1715 1621 -694433.4439163 1716 1621 -9166666.669679 1717 1621 -17307688.72007 1718 1621 9079855.613715 1728 1621 2.913177013397e-06 1729 1621 -35963145.36236 1730 1621 -33694466.44041 1731 1621 3.635883331299e-06 1732 1621 32278708.78388 1733 1621 -2777733.774297 1734 1621 -5.349516868591e-06 1735 1621 -41940891.5735 1736 1621 36472200.21471 1749 1621 -9166666.669677 1750 1621 -15912882.8484 1751 1621 -8454866.614265 1752 1621 3.725290298462e-07 1753 1621 -19630743.20649 1754 1621 -694433.4439167 1755 1621 9166666.669676 1756 1621 -17413237.96253 1757 1621 9149300.058182 1622 1622 591208016.6774 1623 1622 231485.1930168 1624 1622 5388799.81243 1625 1622 76448462.46728 1638 1622 2523146.291974 1639 1622 1277755.509386 1640 1622 -8359214.781975 1641 1622 -254637.0525279 1642 1622 -2777733.240903 1643 1622 37788315.6602 1644 1622 -2685187.040499 1645 1622 1499977.731517 1646 1622 -8422346.095089 1710 1622 10279397.69313 1711 1622 -8385422.169798 1712 1622 -16619803.40013 1713 1622 43704396.30741 1714 1622 -694433.4439163 1715 1622 -56581165.5979 1716 1622 11581481.02689 1717 1622 9079855.613715 1718 1622 -20589184.71456 1728 1622 57871.28717278 1729 1622 -33666688.66265 1730 1622 -39477172.9523 1731 1622 231485.148585 1732 1622 -2777733.774298 1733 1622 -118440658.1206 1734 1622 57871.28717716 1735 1622 36444422.43695 1736 1622 -55417829.51533 1749 1622 -10337268.9803 1750 1622 -8454866.614265 1751 1622 -16869702.39011 1752 1622 -43935881.45598 1753 1622 -694433.4439167 1754 1622 -57643892.87044 1755 1622 -11639352.31406 1756 1622 9149300.058182 1757 1622 -20870649.36111 1623 1623 616485232.3769 1624 1623 1.227855682373e-05 1625 1623 925940.7716047 1626 1623 83364435.48308 1627 1623 -6.437301635742e-06 1628 1623 231485.1930161 1641 1623 -52482483.83292 1642 1623 -36666666.66064 1643 1623 2453701.847473 1644 1623 -139221200.1674 1645 1623 1.877546310425e-06 1646 1623 -671303.7191255 1647 1623 -52506158.07532 1648 1623 36666666.66064 1649 1623 -2754631.485001 1713 1623 -18569369.18862 1714 1623 9166666.669678 1715 1623 10279397.69313 1716 1623 -59565882.98117 1717 1623 4.91738319397e-07 1718 1623 43739118.52961 1719 1623 -20057887.18154 1720 1623 -9166666.669679 1721 1623 11581481.02689 1731 1623 -1129879.778007 1732 1623 2.369284629822e-06 1733 1623 57871.28717239 1734 1623 54280296.46473 1735 1623 3.09944152832e-06 1736 1623 231485.1485852 1737 1623 -7107625.989141 1738 1623 -6.146728992462e-06 1739 1623 57871.2871768 1752 1623 -18663081.30986 1753 1623 -9166666.669677 1754 1623 -10337268.9803 1755 1623 -59964405.70834 1756 1623 7.525086402893e-07 1757 1623 -43970603.67818 1758 1623 -20163436.42398 1759 1623 9166666.669676 1760 1623 -11639352.31406 1624 1624 528478804.7157 1625 1624 -11110932.95814 1626 1624 -5.766749382019e-06 1627 1624 -55968623.50036 1628 1624 5722133.145708 1641 1624 -36666666.66065 1642 1624 -41481680.36985 1643 1624 1222199.953785 1644 1624 1.594424247742e-06 1645 1624 22113465.72052 1646 1624 -2777733.240903 1647 1624 36666666.66064 1648 1624 -41505354.61226 1649 1624 1555533.287118 1713 1624 9166666.669678 1714 1624 -15819170.72716 1715 1624 -8385422.169798 1716 1624 -5.811452865601e-07 1717 1624 -19232220.47929 1718 1624 -694433.4439163 1719 1624 -9166666.669679 1720 1624 -17307688.72007 1721 1624 9079855.613715 1731 1624 2.913177013397e-06 1732 1624 -35963145.36236 1733 1624 -33694466.44041 1734 1624 3.635883331299e-06 1735 1624 32278708.78388 1736 1624 -2777733.774297 1737 1624 -5.349516868591e-06 1738 1624 -41940891.5735 1739 1624 36472200.21471 1752 1624 -9166666.669677 1753 1624 -15912882.8484 1754 1624 -8454866.614265 1755 1624 3.725290298462e-07 1756 1624 -19630743.20649 1757 1624 -694433.4439167 1758 1624 9166666.669676 1759 1624 -17413237.96253 1760 1624 9149300.058182 1625 1625 591208016.6774 1626 1625 231485.1930168 1627 1625 5388799.81243 1628 1625 76448462.46728 1641 1625 2523146.291974 1642 1625 1277755.509386 1643 1625 -8359214.781975 1644 1625 -254637.0525279 1645 1625 -2777733.240903 1646 1625 37788315.6602 1647 1625 -2685187.040499 1648 1625 1499977.731517 1649 1625 -8422346.095089 1713 1625 10279397.69313 1714 1625 -8385422.169798 1715 1625 -16619803.40013 1716 1625 43704396.30741 1717 1625 -694433.4439163 1718 1625 -56581165.5979 1719 1625 11581481.02689 1720 1625 9079855.613715 1721 1625 -20589184.71456 1731 1625 57871.28717278 1732 1625 -33666688.66265 1733 1625 -39477172.9523 1734 1625 231485.148585 1735 1625 -2777733.774298 1736 1625 -118440658.1206 1737 1625 57871.28717716 1738 1625 36444422.43695 1739 1625 -55417829.51533 1752 1625 -10337268.9803 1753 1625 -8454866.614265 1754 1625 -16869702.39011 1755 1625 -43935881.45598 1756 1625 -694433.4439167 1757 1625 -57643892.87044 1758 1625 -11639352.31406 1759 1625 9149300.058182 1760 1625 -20870649.36111 1626 1626 616485232.3769 1627 1626 1.227855682373e-05 1628 1626 925940.7716047 1629 1626 83364435.48308 1630 1626 -6.437301635742e-06 1631 1626 231485.1930161 1644 1626 -52482483.83292 1645 1626 -36666666.66064 1646 1626 2453701.847473 1647 1626 -139221200.1674 1648 1626 1.877546310425e-06 1649 1626 -671303.7191255 1650 1626 -52506158.07532 1651 1626 36666666.66064 1652 1626 -2754631.485001 1716 1626 -18569369.18862 1717 1626 9166666.669678 1718 1626 10279397.69313 1719 1626 -59565882.98117 1720 1626 4.91738319397e-07 1721 1626 43739118.52961 1722 1626 -20057887.18154 1723 1626 -9166666.669679 1724 1626 11581481.02689 1734 1626 -1129879.778007 1735 1626 2.369284629822e-06 1736 1626 57871.28717239 1737 1626 54280296.46473 1738 1626 3.09944152832e-06 1739 1626 231485.1485852 1740 1626 -7107625.989141 1741 1626 -6.146728992462e-06 1742 1626 57871.2871768 1755 1626 -18663081.30986 1756 1626 -9166666.669677 1757 1626 -10337268.9803 1758 1626 -59964405.70834 1759 1626 7.525086402893e-07 1760 1626 -43970603.67818 1761 1626 -20163436.42398 1762 1626 9166666.669676 1763 1626 -11639352.31406 1627 1627 528478804.7157 1628 1627 -11110932.95814 1629 1627 -5.766749382019e-06 1630 1627 -55968623.50036 1631 1627 5722133.145708 1644 1627 -36666666.66065 1645 1627 -41481680.36985 1646 1627 1222199.953785 1647 1627 1.594424247742e-06 1648 1627 22113465.72052 1649 1627 -2777733.240903 1650 1627 36666666.66064 1651 1627 -41505354.61226 1652 1627 1555533.287118 1716 1627 9166666.669678 1717 1627 -15819170.72716 1718 1627 -8385422.169798 1719 1627 -5.811452865601e-07 1720 1627 -19232220.47929 1721 1627 -694433.4439163 1722 1627 -9166666.669679 1723 1627 -17307688.72007 1724 1627 9079855.613715 1734 1627 2.913177013397e-06 1735 1627 -35963145.36236 1736 1627 -33694466.44041 1737 1627 3.635883331299e-06 1738 1627 32278708.78388 1739 1627 -2777733.774297 1740 1627 -5.349516868591e-06 1741 1627 -41940891.5735 1742 1627 36472200.21471 1755 1627 -9166666.669677 1756 1627 -15912882.8484 1757 1627 -8454866.614265 1758 1627 3.725290298462e-07 1759 1627 -19630743.20649 1760 1627 -694433.4439167 1761 1627 9166666.669676 1762 1627 -17413237.96253 1763 1627 9149300.058182 1628 1628 591208016.6774 1629 1628 231485.1930168 1630 1628 5388799.81243 1631 1628 76448462.46728 1644 1628 2523146.291974 1645 1628 1277755.509386 1646 1628 -8359214.781975 1647 1628 -254637.0525279 1648 1628 -2777733.240903 1649 1628 37788315.6602 1650 1628 -2685187.040499 1651 1628 1499977.731517 1652 1628 -8422346.095089 1716 1628 10279397.69313 1717 1628 -8385422.169798 1718 1628 -16619803.40013 1719 1628 43704396.30741 1720 1628 -694433.4439163 1721 1628 -56581165.5979 1722 1628 11581481.02689 1723 1628 9079855.613715 1724 1628 -20589184.71456 1734 1628 57871.28717278 1735 1628 -33666688.66265 1736 1628 -39477172.9523 1737 1628 231485.148585 1738 1628 -2777733.774298 1739 1628 -118440658.1206 1740 1628 57871.28717716 1741 1628 36444422.43695 1742 1628 -55417829.51533 1755 1628 -10337268.9803 1756 1628 -8454866.614265 1757 1628 -16869702.39011 1758 1628 -43935881.45598 1759 1628 -694433.4439167 1760 1628 -57643892.87044 1761 1628 -11639352.31406 1762 1628 9149300.058182 1763 1628 -20870649.36111 1629 1629 616485232.3769 1630 1629 1.227855682373e-05 1631 1629 925940.7716047 1632 1629 83364435.48308 1633 1629 -6.437301635742e-06 1634 1629 231485.1930161 1647 1629 -52482483.83292 1648 1629 -36666666.66064 1649 1629 2453701.847473 1650 1629 -139221200.1674 1651 1629 1.877546310425e-06 1652 1629 -671303.7191255 1653 1629 -52506158.07532 1654 1629 36666666.66064 1655 1629 -2754631.485001 1719 1629 -18569369.18862 1720 1629 9166666.669678 1721 1629 10279397.69313 1722 1629 -59565882.98117 1723 1629 4.91738319397e-07 1724 1629 43739118.52961 1725 1629 -20057887.18154 1726 1629 -9166666.669679 1727 1629 11581481.02689 1737 1629 -1129879.778007 1738 1629 2.369284629822e-06 1739 1629 57871.28717239 1740 1629 54280296.46473 1741 1629 3.09944152832e-06 1742 1629 231485.1485852 1743 1629 -7107625.989141 1744 1629 -6.146728992462e-06 1745 1629 57871.2871768 1758 1629 -18663081.30986 1759 1629 -9166666.669677 1760 1629 -10337268.9803 1761 1629 -59964405.70834 1762 1629 7.525086402893e-07 1763 1629 -43970603.67818 1764 1629 -20163436.42398 1765 1629 9166666.669676 1766 1629 -11639352.31406 1630 1630 528478804.7157 1631 1630 -11110932.95814 1632 1630 -5.766749382019e-06 1633 1630 -55968623.50036 1634 1630 5722133.145708 1647 1630 -36666666.66065 1648 1630 -41481680.36985 1649 1630 1222199.953785 1650 1630 1.594424247742e-06 1651 1630 22113465.72052 1652 1630 -2777733.240903 1653 1630 36666666.66064 1654 1630 -41505354.61226 1655 1630 1555533.287118 1719 1630 9166666.669678 1720 1630 -15819170.72716 1721 1630 -8385422.169798 1722 1630 -5.811452865601e-07 1723 1630 -19232220.47929 1724 1630 -694433.4439163 1725 1630 -9166666.669679 1726 1630 -17307688.72007 1727 1630 9079855.613715 1737 1630 2.913177013397e-06 1738 1630 -35963145.36236 1739 1630 -33694466.44041 1740 1630 3.635883331299e-06 1741 1630 32278708.78388 1742 1630 -2777733.774297 1743 1630 -5.349516868591e-06 1744 1630 -41940891.5735 1745 1630 36472200.21471 1758 1630 -9166666.669677 1759 1630 -15912882.8484 1760 1630 -8454866.614265 1761 1630 3.725290298462e-07 1762 1630 -19630743.20649 1763 1630 -694433.4439167 1764 1630 9166666.669676 1765 1630 -17413237.96253 1766 1630 9149300.058182 1631 1631 591208016.6774 1632 1631 231485.1930168 1633 1631 5388799.81243 1634 1631 76448462.46728 1647 1631 2523146.291974 1648 1631 1277755.509386 1649 1631 -8359214.781975 1650 1631 -254637.0525279 1651 1631 -2777733.240903 1652 1631 37788315.6602 1653 1631 -2685187.040499 1654 1631 1499977.731517 1655 1631 -8422346.095089 1719 1631 10279397.69313 1720 1631 -8385422.169798 1721 1631 -16619803.40013 1722 1631 43704396.30741 1723 1631 -694433.4439163 1724 1631 -56581165.5979 1725 1631 11581481.02689 1726 1631 9079855.613715 1727 1631 -20589184.71456 1737 1631 57871.28717278 1738 1631 -33666688.66265 1739 1631 -39477172.9523 1740 1631 231485.148585 1741 1631 -2777733.774298 1742 1631 -118440658.1206 1743 1631 57871.28717716 1744 1631 36444422.43695 1745 1631 -55417829.51533 1758 1631 -10337268.9803 1759 1631 -8454866.614265 1760 1631 -16869702.39011 1761 1631 -43935881.45598 1762 1631 -694433.4439167 1763 1631 -57643892.87044 1764 1631 -11639352.31406 1765 1631 9149300.058182 1766 1631 -20870649.36111 1632 1632 519928912.9843 1633 1632 18284601.12091 1634 1632 578761.350884 1635 1632 -108612258.8245 1636 1632 -79935938.68238 1637 1632 842556.2480698 1650 1632 -52482483.83292 1651 1632 -36666666.66064 1652 1632 2453701.847473 1653 1632 -87335209.48903 1654 1632 24505093.74398 1655 1632 -363621.4604582 1656 1632 -53017905.4468 1657 1632 6042390.120481 1658 1632 -241842.5188305 1722 1632 -18569369.18862 1723 1632 9166666.669678 1724 1632 10279397.69313 1725 1632 -25959619.6135 1726 1632 7352836.71267 1727 1632 23833951.37777 1740 1632 -1129879.778007 1741 1632 2.369284629822e-06 1742 1632 57871.28717239 1743 1632 64236492.00143 1744 1632 4188504.580192 1745 1632 152313.04164 1746 1632 -37094686.27921 1747 1632 -19583073.02575 1748 1632 11156605.99291 1761 1632 -18663081.30986 1762 1632 -9166666.669677 1763 1632 -10337268.9803 1764 1632 -44289186.74016 1765 1632 6104008.873161 1766 1632 -34010528.30258 1767 1632 -19096765.45373 1768 1632 1937722.859732 1769 1632 -1131791.351039 1633 1633 665160657.0974 1634 1633 -8200338.494416 1635 1633 -79940391.673 1636 1633 -270574059.2863 1637 1633 1895212.372046 1650 1633 -36666666.66065 1651 1633 -41481680.36985 1652 1633 1222199.953785 1653 1633 24505093.74398 1654 1633 9926729.013553 1655 1633 -1216504.30871 1656 1633 6042390.120481 1657 1633 -158099197.3255 1658 1633 1154465.064861 1722 1633 9166666.669678 1723 1633 -15819170.72716 1724 1633 -8385422.169798 1725 1633 7353613.144779 1726 1633 9697421.018002 1727 1633 -7489184.963696 1740 1633 2.913177013397e-06 1741 1633 -35963145.36236 1742 1633 -33694466.44041 1743 1633 4188504.58019 1744 1633 98121188.26052 1745 1633 -2022071.160098 1746 1633 -19583849.45786 1747 1633 -77002617.67255 1748 1633 35507242.60329 1761 1633 -9166666.669677 1762 1633 -15912882.8484 1763 1633 -8454866.614265 1764 1633 6104008.87316 1765 1633 -19204445.69136 1766 1633 7593833.975638 1767 1633 1937722.859732 1768 1633 -44482443.33833 1769 1633 16945375.52141 1634 1634 503970173.8716 1635 1634 773170.0166806 1636 1634 1673626.128399 1637 1634 -74740651.99144 1650 1634 2523146.291974 1651 1634 1277755.509386 1652 1634 -8359214.781975 1653 1634 -710843.6826246 1654 1634 -1160948.753164 1655 1634 40441461.7719 1656 1634 -102953.6298271 1657 1634 1154465.064861 1658 1634 -40229865.61205 1722 1634 10279397.69313 1723 1634 -8385422.169798 1724 1634 -16619803.40013 1725 1634 24007552.92743 1726 1634 -7516245.690184 1727 1634 -22998923.12425 1740 1634 57871.28717278 1741 1634 -33666688.66265 1742 1634 -39477172.9523 1743 1634 152496.3906114 1744 1634 -2021924.433862 1745 1634 -48932710.54889 1746 1634 11156707.58288 1747 1634 35506599.20027 1748 1634 -47133838.53141 1761 1634 -10337268.9803 1762 1634 -8454866.614265 1763 1634 -16869702.39011 1764 1634 -34184139.41185 1765 1634 7593833.977188 1766 1634 -49430632.70391 1767 1634 -1131791.351039 1768 1634 16945375.52141 1769 1634 -26713473.31342 1635 1635 817622030.6816 1636 1635 18728335.5089 1637 1635 650261.4885132 1653 1635 -52289155.99191 1654 1635 -31796218.63405 1655 1635 272335.4986461 1656 1635 40696773.02407 1657 1635 41799857.02722 1658 1635 -451578.6953159 1659 1635 62907192.10629 1660 1635 -21190039.75704 1661 1635 -30718.70653248 1662 1635 -302984.9272958 1663 1635 28385098.56329 1664 1635 -102183.8516526 1725 1635 -80695196.04604 1726 1635 11002329.29994 1727 1635 1197745.226308 1743 1635 -36237740.37331 1744 1635 -19583849.45786 1745 1635 -10761203.52545 1746 1635 64918240.7767 1747 1635 4545607.815533 1748 1635 8549143.250188 1764 1635 -19361814.47454 1765 1635 -8033003.905469 1766 1635 -10880711.7551 1767 1635 -39542928.89608 1768 1635 10179332.65207 1769 1635 -42870672.366 1770 1635 -23152016.19972 1771 1635 -5245000.469661 1772 1635 13937363.65238 1773 1635 -16961001.23544 1774 1635 7134584.065443 1775 1635 -10455553.37126 1636 1636 1676043355.975 1637 1636 -10405897.15394 1653 1636 -31796218.63405 1654 1636 -13283312.79656 1655 1636 -157557.8164433 1656 1636 41799857.02722 1657 1636 168116723.4543 1658 1636 -653824.0004528 1659 1636 -6523373.092781 1660 1636 -7507584.898842 1661 1636 58208.02223074 1662 1636 28385098.56329 1663 1636 -24134636.49954 1664 1636 72437.49368545 1725 1636 7334886.199962 1726 1636 -214534287.7436 1727 1636 -14727925.53035 1743 1636 -19583073.02575 1744 1636 -76145671.76667 1745 1636 -34635700.01357 1746 1636 4545607.815532 1747 1636 220786408.8697 1748 1636 -1651487.677043 1764 1636 -8033003.905469 1765 1636 -9894458.669336 1766 1636 -8796010.290028 1767 1636 10179332.65207 1768 1636 -7663163.946107 1769 1636 7746290.39215 1770 1636 -1578333.801791 1771 1636 -40769835.26372 1772 1636 33347835.72267 1773 1636 7134584.065443 1774 1636 -22811447.92863 1775 1636 16684645.6024 1637 1637 973553864.9319 1653 1637 341779.9431477 1654 1637 -102002.2608421 1655 1637 -512623.6482486 1656 1637 -173800.9175837 1657 1637 -598268.4449064 1658 1637 194191502.4522 1659 1637 38725.73790348 1660 1637 58208.02223065 1661 1637 125019736.2969 1662 1637 -32739.40715139 1663 1637 72437.49368545 1664 1637 40573538.2614 1725 1637 798496.8175386 1726 1637 -15047477.02744 1727 1637 -81348097.7585 1743 1637 -10761121.78541 1744 1637 -34636394.9925 1745 1637 -44848649.44901 1746 1637 -8568634.524779 1747 1637 -2347417.099454 1748 1637 -70370912.58102 1764 1637 -10880711.7551 1765 1637 -8796010.290028 1766 1637 -16660073.13599 1767 1637 -42870672.36604 1768 1637 7746290.393699 1769 1637 -82268491.96201 1770 1637 5812363.651645 1771 1637 33347835.72267 1772 1637 -72589611.80809 1773 1637 -10455553.37126 1774 1637 16684645.6024 1775 1637 -34667380.50116 1638 1638 308237881.34 1639 1638 6.914138793945e-06 1640 1638 -578696.2806914 1641 1638 41681428.60013 1642 1638 7333333.332127 1643 1638 -578701.847993 1728 1638 -59565882.98117 1729 1638 4.91738319397e-07 1730 1638 43739118.52961 1731 1638 -20057887.18154 1732 1638 -9166666.669679 1733 1638 11581481.02689 1749 1638 27139753.66166 1750 1638 8.344650268555e-07 1751 1638 -8738562.979764 1752 1638 -3553812.994569 1753 1638 1833333.333932 1754 1638 -2293147.690507 1639 1639 264234667.5094 1640 1639 -5555466.479065 1641 1639 -7333333.33213 1642 1639 -27985100.89159 1643 1639 2833288.795082 1728 1639 -5.811452865601e-07 1729 1639 -19232220.47929 1730 1639 -694433.4439163 1731 1639 -9166666.669679 1732 1639 -17307688.72007 1733 1639 9079855.613715 1749 1639 8.940696716309e-07 1750 1639 16138959.82123 1751 1639 -1388866.887151 1752 1639 -1833333.333938 1753 1639 -20970445.78675 1754 1639 18229155.66291 1640 1640 295591382.0761 1641 1640 462964.8185019 1642 1640 2722177.683989 1643 1640 38222126.85654 1728 1640 43704396.30741 1729 1640 -694433.4439163 1730 1640 -56581165.5979 1731 1640 11581481.02689 1732 1640 9079855.613715 1733 1640 -20589184.71456 1749 1640 8796437.017353 1750 1640 -1388866.887151 1751 1640 -59221381.24884 1752 1640 2351018.977684 1753 1640 18229155.66292 1754 1640 -27708914.75766 1641 1641 308237881.34 1642 1641 6.914138793945e-06 1643 1641 -578696.2806914 1644 1641 41681428.60013 1645 1641 7333333.332127 1646 1641 -578701.847993 1728 1641 -18569369.18862 1729 1641 9166666.669678 1730 1641 10279397.69313 1731 1641 -59565882.98117 1732 1641 4.91738319397e-07 1733 1641 43739118.52961 1734 1641 -20057887.18154 1735 1641 -9166666.669679 1736 1641 11581481.02689 1749 1641 -564939.8890041 1750 1641 -1833333.333934 1751 1641 -2032731.023757 1752 1641 27139753.66166 1753 1641 8.344650268555e-07 1754 1641 -8738562.979764 1755 1641 -3553812.994569 1756 1641 1833333.333932 1757 1641 -2293147.690507 1642 1642 264234667.5094 1643 1642 -5555466.479065 1644 1642 -7333333.33213 1645 1642 -27985100.89159 1646 1642 2833288.795082 1728 1642 9166666.669678 1729 1642 -15819170.72716 1730 1642 -8385422.169798 1731 1642 -5.811452865601e-07 1732 1642 -19232220.47929 1733 1642 -694433.4439163 1734 1642 -9166666.669679 1735 1642 -17307688.72007 1736 1642 9079855.613715 1749 1642 1833333.333937 1750 1642 -17981572.68118 1751 1642 -16840288.77576 1752 1642 8.940696716309e-07 1753 1642 16138959.82123 1754 1642 -1388866.887151 1755 1642 -1833333.333938 1756 1642 -20970445.78675 1757 1642 18229155.66291 1643 1643 295591382.0761 1644 1643 462964.8185019 1645 1643 2722177.683989 1646 1643 38222126.85654 1728 1643 10279397.69313 1729 1643 -8385422.169798 1730 1643 -16619803.40013 1731 1643 43704396.30741 1732 1643 -694433.4439163 1733 1643 -56581165.5979 1734 1643 11581481.02689 1735 1643 9079855.613715 1736 1643 -20589184.71456 1749 1643 2090602.31093 1750 1643 -16840288.77577 1751 1643 -19738586.47615 1752 1643 8796437.017353 1753 1643 -1388866.887151 1754 1643 -59221381.24884 1755 1643 2351018.977684 1756 1643 18229155.66292 1757 1643 -27708914.75766 1644 1644 308237881.34 1645 1644 6.914138793945e-06 1646 1644 -578696.2806914 1647 1644 41681428.60013 1648 1644 7333333.332127 1649 1644 -578701.847993 1731 1644 -18569369.18862 1732 1644 9166666.669678 1733 1644 10279397.69313 1734 1644 -59565882.98117 1735 1644 4.91738319397e-07 1736 1644 43739118.52961 1737 1644 -20057887.18154 1738 1644 -9166666.669679 1739 1644 11581481.02689 1752 1644 -564939.8890041 1753 1644 -1833333.333934 1754 1644 -2032731.023757 1755 1644 27139753.66166 1756 1644 8.344650268555e-07 1757 1644 -8738562.979764 1758 1644 -3553812.994569 1759 1644 1833333.333932 1760 1644 -2293147.690507 1645 1645 264234667.5094 1646 1645 -5555466.479065 1647 1645 -7333333.33213 1648 1645 -27985100.89159 1649 1645 2833288.795082 1731 1645 9166666.669678 1732 1645 -15819170.72716 1733 1645 -8385422.169798 1734 1645 -5.811452865601e-07 1735 1645 -19232220.47929 1736 1645 -694433.4439163 1737 1645 -9166666.669679 1738 1645 -17307688.72007 1739 1645 9079855.613715 1752 1645 1833333.333937 1753 1645 -17981572.68118 1754 1645 -16840288.77576 1755 1645 8.940696716309e-07 1756 1645 16138959.82123 1757 1645 -1388866.887151 1758 1645 -1833333.333938 1759 1645 -20970445.78675 1760 1645 18229155.66291 1646 1646 295591382.0761 1647 1646 462964.8185019 1648 1646 2722177.683989 1649 1646 38222126.85654 1731 1646 10279397.69313 1732 1646 -8385422.169798 1733 1646 -16619803.40013 1734 1646 43704396.30741 1735 1646 -694433.4439163 1736 1646 -56581165.5979 1737 1646 11581481.02689 1738 1646 9079855.613715 1739 1646 -20589184.71456 1752 1646 2090602.31093 1753 1646 -16840288.77577 1754 1646 -19738586.47615 1755 1646 8796437.017353 1756 1646 -1388866.887151 1757 1646 -59221381.24884 1758 1646 2351018.977684 1759 1646 18229155.66292 1760 1646 -27708914.75766 1647 1647 308237881.34 1648 1647 6.914138793945e-06 1649 1647 -578696.2806914 1650 1647 41681428.60013 1651 1647 7333333.332127 1652 1647 -578701.847993 1734 1647 -18569369.18862 1735 1647 9166666.669678 1736 1647 10279397.69313 1737 1647 -59565882.98117 1738 1647 4.91738319397e-07 1739 1647 43739118.52961 1740 1647 -20057887.18154 1741 1647 -9166666.669679 1742 1647 11581481.02689 1755 1647 -564939.8890041 1756 1647 -1833333.333934 1757 1647 -2032731.023757 1758 1647 27139753.66166 1759 1647 8.344650268555e-07 1760 1647 -8738562.979764 1761 1647 -3553812.994569 1762 1647 1833333.333932 1763 1647 -2293147.690507 1648 1648 264234667.5094 1649 1648 -5555466.479065 1650 1648 -7333333.33213 1651 1648 -27985100.89159 1652 1648 2833288.795082 1734 1648 9166666.669678 1735 1648 -15819170.72716 1736 1648 -8385422.169798 1737 1648 -5.811452865601e-07 1738 1648 -19232220.47929 1739 1648 -694433.4439163 1740 1648 -9166666.669679 1741 1648 -17307688.72007 1742 1648 9079855.613715 1755 1648 1833333.333937 1756 1648 -17981572.68118 1757 1648 -16840288.77576 1758 1648 8.940696716309e-07 1759 1648 16138959.82123 1760 1648 -1388866.887151 1761 1648 -1833333.333938 1762 1648 -20970445.78675 1763 1648 18229155.66291 1649 1649 295591382.0761 1650 1649 462964.8185019 1651 1649 2722177.683989 1652 1649 38222126.85654 1734 1649 10279397.69313 1735 1649 -8385422.169798 1736 1649 -16619803.40013 1737 1649 43704396.30741 1738 1649 -694433.4439163 1739 1649 -56581165.5979 1740 1649 11581481.02689 1741 1649 9079855.613715 1742 1649 -20589184.71456 1755 1649 2090602.31093 1756 1649 -16840288.77577 1757 1649 -19738586.47615 1758 1649 8796437.017353 1759 1649 -1388866.887151 1760 1649 -59221381.24884 1761 1649 2351018.977684 1762 1649 18229155.66292 1763 1649 -27708914.75766 1650 1650 308237881.34 1651 1650 6.914138793945e-06 1652 1650 -578696.2806914 1653 1650 41681428.60013 1654 1650 7333333.332127 1655 1650 -578701.847993 1737 1650 -18569369.18862 1738 1650 9166666.669678 1739 1650 10279397.69313 1740 1650 -59565882.98117 1741 1650 4.91738319397e-07 1742 1650 43739118.52961 1743 1650 -20057887.18154 1744 1650 -9166666.669679 1745 1650 11581481.02689 1758 1650 -564939.8890041 1759 1650 -1833333.333934 1760 1650 -2032731.023757 1761 1650 27139753.66166 1762 1650 8.344650268555e-07 1763 1650 -8738562.979764 1764 1650 -3553812.994569 1765 1650 1833333.333932 1766 1650 -2293147.690507 1651 1651 264234667.5094 1652 1651 -5555466.479065 1653 1651 -7333333.33213 1654 1651 -27985100.89159 1655 1651 2833288.795082 1737 1651 9166666.669678 1738 1651 -15819170.72716 1739 1651 -8385422.169798 1740 1651 -5.811452865601e-07 1741 1651 -19232220.47929 1742 1651 -694433.4439163 1743 1651 -9166666.669679 1744 1651 -17307688.72007 1745 1651 9079855.613715 1758 1651 1833333.333937 1759 1651 -17981572.68118 1760 1651 -16840288.77576 1761 1651 8.940696716309e-07 1762 1651 16138959.82123 1763 1651 -1388866.887151 1764 1651 -1833333.333938 1765 1651 -20970445.78675 1766 1651 18229155.66291 1652 1652 295591382.0761 1653 1652 462964.8185019 1654 1652 2722177.683989 1655 1652 38222126.85654 1737 1652 10279397.69313 1738 1652 -8385422.169798 1739 1652 -16619803.40013 1740 1652 43704396.30741 1741 1652 -694433.4439163 1742 1652 -56581165.5979 1743 1652 11581481.02689 1744 1652 9079855.613715 1745 1652 -20589184.71456 1758 1652 2090602.31093 1759 1652 -16840288.77577 1760 1652 -19738586.47615 1761 1652 8796437.017353 1762 1652 -1388866.887151 1763 1652 -59221381.24884 1764 1652 2351018.977684 1765 1652 18229155.66292 1766 1652 -27708914.75766 1653 1653 308244166.1959 1654 1653 4871351.472134 1655 1653 1406582.11241 1656 1653 -10447476.5428 1657 1653 -26913559.91057 1658 1653 73592.73784202 1740 1653 -18569369.18862 1741 1653 9166666.669678 1742 1653 10279397.69313 1743 1653 -43745996.76765 1744 1653 6104008.873162 1745 1653 33740166.13061 1746 1653 -19561074.78605 1747 1653 -8033003.905467 1748 1653 11036649.36321 1761 1653 -564939.8890041 1762 1653 -1833333.333934 1763 1653 -2032731.023757 1764 1653 26998047.5617 1765 1653 1133879.491557 1766 1653 -8240761.134482 1767 1653 -17935124.94805 1768 1653 -6538217.79499 1769 1653 7751167.860229 1654 1654 292254523.9123 1655 1654 -3601986.849327 1656 1654 -41580226.57483 1657 1654 -72059889.92846 1658 1654 642782.4478399 1740 1654 9166666.669678 1741 1654 -15819170.72716 1742 1654 -8385422.169798 1743 1654 6104008.873161 1744 1654 -18661255.71884 1745 1654 -8204777.132884 1746 1654 -8033003.905467 1747 1654 -10093718.98084 1748 1654 8738711.937952 1761 1654 1833333.333937 1762 1654 -17981572.68118 1763 1654 -16840288.77576 1764 1654 1133879.491557 1765 1654 22716537.18088 1766 1654 -896701.0799925 1767 1654 -10204884.46286 1768 1654 -33539277.09052 1769 1654 25588477.22048 1655 1655 302953037.7494 1656 1655 351370.5155727 1657 1655 587226.8922934 1658 1655 20245262.55732 1740 1655 10279397.69313 1741 1655 -8385422.169798 1742 1655 -16619803.40013 1743 1655 33913777.24376 1744 1655 -8204777.131321 1745 1655 -47982126.11052 1746 1655 11036649.36321 1747 1655 8738711.937952 1748 1655 -17191433.96669 1761 1655 2090602.31093 1762 1655 -16840288.77577 1763 1655 -19738586.47615 1764 1655 9293683.307081 1765 1655 -896701.0799924 1766 1655 -57522894.85793 1767 1655 12186723.41529 1768 1655 25588477.21893 1769 1655 -36621043.23569 1656 1656 357883920.7142 1657 1656 50622446.80118 1658 1656 -1122193.194315 1659 1656 -70732318.24906 1660 1656 -44948234.758 1661 1656 106149.4816659 1662 1656 10592868.24227 1663 1656 -11936232.61605 1664 1656 -169683.3667107 1743 1656 -18648271.66148 1744 1656 1937722.859731 1745 1656 1037653.094121 1746 1656 -39388390.54376 1747 1656 10179332.65207 1748 1656 42718216.5088 1764 1656 -17192674.13802 1765 1656 -10204884.46286 1766 1656 -11944665.46985 1767 1656 -3554898.16184 1768 1656 12169908.16824 1769 1656 -8661629.199202 1770 1656 -34339167.90781 1771 1656 -11198749.27391 1772 1656 20338891.08329 1773 1656 -25326488.68513 1774 1656 -2883329.94327 1775 1656 7795422.871771 1657 1657 448577823.0671 1658 1657 -1447402.958279 1659 1657 -44948234.758 1660 1657 -50545636.4952 1661 1657 72437.4936852 1662 1657 -26602899.28031 1663 1657 -61013961.03033 1664 1657 231541.9523678 1743 1657 1937722.859731 1744 1657 -44033949.54609 1745 1657 -16387957.82287 1746 1657 10179332.65207 1747 1657 -7508625.593797 1748 1657 -8052320.716373 1764 1657 -6538217.794992 1765 1657 -32796826.2805 1766 1657 -25279578.32671 1767 1657 12169908.16824 1768 1657 18431664.65015 1769 1657 -355535.3905276 1770 1657 -11198749.27391 1771 1657 -29328260.43077 1772 1657 16684645.6024 1773 1657 -6549996.611141 1774 1657 -43213893.89705 1775 1657 33390746.65407 1658 1658 479608110.2915 1659 1658 106149.481666 1660 1658 72437.49368523 1661 1658 14162538.26573 1662 1658 -30794.47784716 1663 1658 231541.9523679 1664 1658 65291416.69021 1743 1658 1037653.094121 1744 1658 -16387957.82287 1745 1658 -25517489.86743 1746 1658 42718216.50883 1747 1658 -8052320.714809 1748 1658 -81856389.68918 1764 1658 -7613276.581476 1765 1658 -25279578.32828 1766 1658 -34641174.40895 1767 1658 8456148.575766 1768 1658 -355535.3905277 1769 1658 -127182615.0065 1770 1658 20338891.08329 1771 1658 16684645.6024 1772 1658 -41184193.0033 1773 1658 11988200.65286 1774 1658 33390746.65407 1775 1658 -58817847.61943 1659 1659 235538262.3794 1660 1659 50523373.08556 1661 1659 -61873.88594103 1662 1659 -5458590.79643 1663 1659 948234.7652241 1664 1659 -83001.33362576 1746 1659 -23057319.23001 1747 1659 -1578333.801791 1748 1659 -5810553.011053 1767 1659 -34244470.9381 1768 1659 -11198749.27391 1769 1659 -20286108.93005 1770 1659 -19010104.98257 1771 1659 12578333.8054 1772 1659 8109627.085772 1773 1659 -35004771.5089 1774 1659 198749.2702979 1775 1659 -30762965.14467 1660 1660 216578039.3992 1661 1660 -58208.02222538 1662 1660 15614901.42948 1663 1660 63729727.43504 1664 1660 -72437.49368215 1746 1660 -5245000.469662 1747 1660 -40675138.29401 1748 1660 -33318830.93304 1767 1660 -11198749.27391 1768 1660 -29233563.46106 1769 1660 -16648687.74188 1770 1660 12578333.8054 1771 1660 -23736035.9259 1772 1660 6652164.270755 1773 1660 3865415.938169 1774 1660 -17671928.9786 1775 1660 3315354.404162 1661 1661 343126475.7188 1662 1661 -13556.88918927 1663 1661 -72437.49368227 1664 1661 110370037.5592 1746 1661 -13935553.01177 1747 1661 -33318830.93304 1748 1661 -72337086.55553 1767 1661 -20286108.93005 1768 1661 -16648687.74188 1769 1661 -40931667.75071 1770 1661 -8140372.91156 1771 1661 -6681169.060388 1772 1661 -121769794.7049 1773 1661 -30762965.14663 1774 1661 -3351312.264694 1775 1661 -61805895.41435 1662 1662 173768707.4958 1663 1662 -17397100.71246 1664 1662 -478464.7814124 1746 1662 -16866304.26572 1747 1662 7134584.065443 1748 1662 10421529.96893 1767 1662 -25042397.77615 1768 1662 -6549996.611143 1769 1662 -11935132.68054 1770 1662 -35004771.5089 1771 1662 3865415.938171 1772 1662 30739118.17856 1773 1662 -12765314.33514 1774 1662 -4450003.392471 1775 1662 -4207737.689143 1663 1663 200018870.1092 1664 1663 -231541.9523607 1746 1663 7134584.065443 1747 1663 -22716750.95892 1748 1663 -16648687.74188 1767 1663 -2883329.943272 1768 1663 -42929802.98808 1769 1663 -33275920.00165 1770 1663 198749.2702997 1771 1663 -17671928.9786 1772 1663 3315354.404162 1773 1663 -4450003.392471 1774 1663 -6360304.960321 1775 1663 6609253.339359 1664 1664 260031674.1941 1746 1664 10421529.96893 1747 1664 -16648687.74188 1748 1664 -34414855.24857 1767 1664 -7777077.121665 1768 1664 -33275920.00165 1769 1664 -58060271.86214 1770 1664 30739118.17662 1771 1664 -3351312.264694 1772 1664 -61805895.41435 1773 1664 4143095.64282 1774 1664 -6724079.991783 1775 1664 -84862411.83735 1665 1665 387435706.2613 1666 1665 36666666.66065 1667 1665 2662175.186034 1668 1665 -203296779.618 1669 1665 -36666973.09101 1670 1665 -2662152.453524 1671 1665 12401143.47877 1672 1665 29333639.75888 1673 1665 -2152799.783064 1776 1665 33963705.33589 1777 1665 9166666.669679 1778 1665 9519894.71657 1779 1665 -73633660.33315 1780 1665 -9166743.277268 1781 1665 -44520628.22528 1782 1665 -7828204.348046 1783 1665 7333409.943332 1784 1665 -9288430.506837 1666 1666 332431392.3218 1667 1666 -6944376.976808 1668 1666 -36667126.30619 1669 1666 -30960378.23954 1670 1666 -3847226.047119 1671 1666 44000459.63831 1672 1666 12401143.47877 1673 1666 2416692.493345 1776 1666 9166666.669679 1777 1666 20212626.84424 1778 1666 5347275.319281 1779 1666 -9166781.581064 1780 1666 -30549559.96733 1781 1666 -9732749.59088 1782 1666 11000114.915 1783 1666 -7828204.348045 1784 1666 11145949.53617 1667 1667 375187471.1352 1668 1667 -2662141.087263 1669 1667 -3097217.438217 1670 1667 -1482420.858694 1671 1667 -3229199.674597 1672 1667 1611128.328897 1673 1667 33069715.94339 1776 1667 -8015196.919944 1777 1667 -8680575.648187 1778 1667 -73923722.2424 1779 1667 -44485903.34313 1780 1667 -9538266.413314 1781 1667 -61195846.2912 1782 1667 -13932645.76025 1783 1667 7430633.02411 1784 1667 -20875211.59479 1668 1668 671761428.9985 1669 1668 36667432.73655 1670 1668 3125088.651632 1671 1668 19448570.31785 1672 1668 -36666973.09101 1673 1668 2702570.135099 1674 1668 -138432799.5 1675 1668 1.490116119385e-07 1676 1668 -462970.296923 1677 1668 -52308469.44899 1678 1668 36666666.66065 1679 1668 -2702548.129425 1776 1668 -72039530.38171 1777 1668 -9166781.581061 1778 1668 43189554.83944 1779 1668 73599694.87993 1780 1668 9166858.188655 1781 1668 781226.7976368 1782 1668 -19443104.86928 1783 1668 -9166743.27727 1784 1668 11639449.48452 1785 1668 -59964405.70834 1786 1668 7.525086402893e-07 1787 1668 -43970603.67818 1788 1668 -20163436.42398 1789 1668 9166666.669676 1790 1668 -11639352.31406 1669 1669 572753939.719 1670 1669 -8610914.043003 1671 1669 -36667126.30619 1672 1669 -108884310.9615 1673 1669 4611018.689007 1674 1669 -5.960464477539e-08 1675 1669 22901850.42796 1676 1669 -2777733.774299 1677 1669 36666666.66064 1678 1669 -41307675.60857 1679 1669 1513866.887135 1776 1669 -9166743.277267 1777 1669 -28955430.01587 1778 1669 7996602.428466 1779 1669 9166858.188655 1780 1669 48847822.54786 1781 1669 -2152764.803778 1782 1669 -9166781.581064 1783 1669 -51526325.20493 1784 1669 36236271.0855 1785 1669 3.725290298462e-07 1786 1669 -19630743.20649 1787 1669 -694433.4439167 1788 1669 9166666.669676 1789 1669 -17413237.96253 1790 1669 9149300.058182 1670 1670 607013167.9741 1671 1670 2737303.360137 1672 1670 5388804.78494 1673 1670 37600883.93994 1674 1670 -462970.2969232 1675 1670 -2777733.774298 1676 1670 39890623.87246 1677 1670 -2737270.351624 1678 1670 1541644.664895 1679 1670 -7895194.184061 1776 1670 43154829.95728 1777 1670 7802192.5578 1778 1670 -56944833.0873 1779 1670 781318.4370322 1780 1670 -2152691.493423 1781 1670 -99821807.80486 1782 1670 11639498.06975 1783 1670 36402939.91804 1784 1670 -55413772.21342 1785 1670 -43935881.45598 1786 1670 -694433.4439167 1787 1670 -57643892.87044 1788 1670 -11639352.31406 1789 1670 9149300.058182 1790 1670 -20870649.36111 1671 1671 387435706.2613 1672 1671 36666666.66065 1673 1671 2662175.186035 1674 1671 -52284795.20658 1675 1671 -36666666.66065 1676 1671 2505785.203048 1677 1671 -203296779.618 1678 1671 -36666973.09101 1679 1671 -2662152.453524 1680 1671 12401143.47877 1681 1671 29333639.75888 1682 1671 -2152799.783064 1776 1671 -4839277.140465 1777 1671 11000114.915 1778 1671 12370128.70975 1779 1671 -14860172.33131 1780 1671 -9166781.581062 1781 1671 -10279526.39882 1782 1671 33963705.33589 1783 1671 9166666.669679 1784 1671 9519894.71657 1785 1671 -18663081.30986 1786 1671 -9166666.669677 1787 1671 -10337268.9803 1788 1671 -73633660.33315 1789 1671 -9166743.277268 1790 1671 -44520628.22528 1791 1671 -7828204.348046 1792 1671 7333409.943332 1793 1671 -9288430.506837 1672 1672 332431392.3218 1673 1672 -6944376.976808 1674 1672 -36666666.66065 1675 1672 -41284001.36615 1676 1672 1263866.887163 1677 1672 -36667126.30619 1678 1672 -30960378.23954 1679 1672 -3847226.047119 1680 1672 44000459.63831 1681 1672 12401143.47877 1682 1672 2416692.493345 1776 1672 7333409.943332 1777 1672 -4839277.140466 1778 1672 -6597291.372073 1779 1672 -9166743.277267 1780 1672 -46943392.66696 1781 1672 -33736315.15602 1782 1672 9166666.669679 1783 1672 20212626.84424 1784 1672 5347275.319281 1785 1672 -9166666.669677 1786 1672 -15912882.8484 1787 1672 -8454866.614265 1788 1672 -9166781.581064 1789 1672 -30549559.96733 1790 1672 -9732749.59088 1791 1672 11000114.915 1792 1672 -7828204.348045 1793 1672 11145949.53617 1673 1673 375187471.1352 1674 1673 2471062.980849 1675 1673 1236089.109403 1676 1673 -7832062.870945 1677 1673 -2662141.087263 1678 1673 -3097217.438217 1679 1673 -1482420.858694 1680 1673 -3229199.674597 1681 1673 1611128.328897 1682 1673 33069715.94339 1776 1673 8246752.473166 1777 1673 -9895937.05811 1778 1673 -12904739.04124 1779 1673 -10279483.49692 1780 1673 -33902984.10692 1781 1673 -43192618.77883 1782 1673 -8015196.919944 1783 1673 -8680575.648187 1784 1673 -73923722.2424 1785 1673 -10337268.9803 1786 1673 -8454866.614265 1787 1673 -16869702.39011 1788 1673 -44485903.34313 1789 1673 -9538266.413314 1790 1673 -61195846.2912 1791 1673 -13932645.76025 1792 1673 7430633.02411 1793 1673 -20875211.59479 1674 1674 619629140.0329 1675 1674 1.168251037598e-05 1676 1674 925940.5938052 1677 1674 84152766.23505 1678 1674 -4.991888999939e-06 1679 1674 231485.148566 1683 1674 -138432799.5 1684 1674 1.490116119385e-07 1685 1674 -462970.296923 1686 1674 -52308469.44899 1687 1674 36666666.66065 1688 1674 -2702548.129425 1779 1674 -59565882.98117 1780 1674 4.91738319397e-07 1781 1674 43739118.52961 1782 1674 -20057887.18154 1783 1674 -9166666.669679 1784 1674 11581481.02689 1785 1674 54280296.46473 1786 1674 3.09944152832e-06 1787 1674 231485.1485852 1788 1674 -7107625.989141 1789 1674 -6.146728992462e-06 1790 1674 57871.2871768 1794 1674 -59964405.70834 1795 1674 7.525086402893e-07 1796 1674 -43970603.67818 1797 1674 -20163436.42398 1798 1674 9166666.669676 1799 1674 -11639352.31406 1675 1675 531622789.3528 1676 1675 -11110935.09172 1677 1675 -4.798173904419e-06 1678 1675 -55180296.03374 1679 1675 5555467.545859 1683 1675 -5.960464477539e-08 1684 1675 22901850.42796 1685 1675 -2777733.774299 1686 1675 36666666.66064 1687 1675 -41307675.60857 1688 1675 1513866.887135 1779 1675 -5.811452865601e-07 1780 1675 -19232220.47929 1781 1675 -694433.4439163 1782 1675 -9166666.669679 1783 1675 -17307688.72007 1784 1675 9079855.613715 1785 1675 3.635883331299e-06 1786 1675 32278708.78388 1787 1675 -2777733.774297 1788 1675 -5.349516868591e-06 1789 1675 -41940891.5735 1790 1675 36472200.21471 1794 1675 3.725290298462e-07 1795 1675 -19630743.20649 1796 1675 -694433.4439167 1797 1675 9166666.669676 1798 1675 -17413237.96253 1799 1675 9149300.058182 1676 1676 599591912.5003 1677 1676 231485.1485663 1678 1676 5555467.545859 1679 1676 78550735.85485 1683 1676 -462970.2969232 1684 1676 -2777733.774298 1685 1676 39890623.87246 1686 1676 -2737270.351624 1687 1676 1541644.664895 1688 1676 -7895194.184061 1779 1676 43704396.30741 1780 1676 -694433.4439163 1781 1676 -56581165.5979 1782 1676 11581481.02689 1783 1676 9079855.613715 1784 1676 -20589184.71456 1785 1676 231485.148585 1786 1676 -2777733.774298 1787 1676 -118440658.1206 1788 1676 57871.28717716 1789 1676 36444422.43695 1790 1676 -55417829.51533 1794 1676 -43935881.45598 1795 1676 -694433.4439167 1796 1676 -57643892.87044 1797 1676 -11639352.31406 1798 1676 9149300.058182 1799 1676 -20870649.36111 1677 1677 671761428.9985 1678 1677 36667432.73655 1679 1677 3125088.651632 1680 1677 19448570.31785 1681 1677 -36666973.09101 1682 1677 2702570.135099 1683 1677 -52284795.20658 1684 1677 -36666666.66065 1685 1677 2505785.203048 1686 1677 -138432799.5 1687 1677 1.490116119385e-07 1688 1677 -462970.296923 1689 1677 -52308469.44899 1690 1677 36666666.66065 1691 1677 -2702548.129425 1779 1677 -18569369.18862 1780 1677 9166666.669678 1781 1677 10279397.69313 1782 1677 -72039530.38171 1783 1677 -9166781.581061 1784 1677 43189554.83944 1785 1677 -1129879.778007 1786 1677 2.369284629822e-06 1787 1677 57871.28717239 1788 1677 73599694.87993 1789 1677 9166858.188655 1790 1677 781226.7976368 1791 1677 -19443104.86928 1792 1677 -9166743.27727 1793 1677 11639449.48452 1794 1677 -18663081.30986 1795 1677 -9166666.669677 1796 1677 -10337268.9803 1797 1677 -59964405.70834 1798 1677 7.525086402893e-07 1799 1677 -43970603.67818 1800 1677 -20163436.42398 1801 1677 9166666.669676 1802 1677 -11639352.31406 1678 1678 572753939.719 1679 1678 -8610914.043003 1680 1678 -36667126.30619 1681 1678 -108884310.9615 1682 1678 4611018.689007 1683 1678 -36666666.66065 1684 1678 -41284001.36615 1685 1678 1263866.887163 1686 1678 -5.960464477539e-08 1687 1678 22901850.42796 1688 1678 -2777733.774299 1689 1678 36666666.66064 1690 1678 -41307675.60857 1691 1678 1513866.887135 1779 1678 9166666.669678 1780 1678 -15819170.72716 1781 1678 -8385422.169798 1782 1678 -9166743.277267 1783 1678 -28955430.01587 1784 1678 7996602.428466 1785 1678 2.913177013397e-06 1786 1678 -35963145.36236 1787 1678 -33694466.44041 1788 1678 9166858.188655 1789 1678 48847822.54786 1790 1678 -2152764.803778 1791 1678 -9166781.581064 1792 1678 -51526325.20493 1793 1678 36236271.0855 1794 1678 -9166666.669677 1795 1678 -15912882.8484 1796 1678 -8454866.614265 1797 1678 3.725290298462e-07 1798 1678 -19630743.20649 1799 1678 -694433.4439167 1800 1678 9166666.669676 1801 1678 -17413237.96253 1802 1678 9149300.058182 1679 1679 607013167.9741 1680 1679 2737303.360137 1681 1679 5388804.78494 1682 1679 37600883.93994 1683 1679 2471062.980849 1684 1679 1236089.109403 1685 1679 -7832062.870945 1686 1679 -462970.2969232 1687 1679 -2777733.774298 1688 1679 39890623.87246 1689 1679 -2737270.351624 1690 1679 1541644.664895 1691 1679 -7895194.184061 1779 1679 10279397.69313 1780 1679 -8385422.169798 1781 1679 -16619803.40013 1782 1679 43154829.95728 1783 1679 7802192.5578 1784 1679 -56944833.0873 1785 1679 57871.28717278 1786 1679 -33666688.66265 1787 1679 -39477172.9523 1788 1679 781318.4370322 1789 1679 -2152691.493423 1790 1679 -99821807.80486 1791 1679 11639498.06975 1792 1679 36402939.91804 1793 1679 -55413772.21342 1794 1679 -10337268.9803 1795 1679 -8454866.614265 1796 1679 -16869702.39011 1797 1679 -43935881.45598 1798 1679 -694433.4439167 1799 1679 -57643892.87044 1800 1679 -11639352.31406 1801 1679 9149300.058182 1802 1679 -20870649.36111 1680 1680 387435706.2613 1681 1680 36666666.66065 1682 1680 2662175.186035 1686 1680 -52284795.20658 1687 1680 -36666666.66065 1688 1680 2505785.203048 1689 1680 -203296779.618 1690 1680 -36666973.09101 1691 1680 -2662152.453524 1692 1680 12401143.47877 1693 1680 29333639.75888 1694 1680 -2152799.783064 1782 1680 -4839277.140465 1783 1680 11000114.915 1784 1680 12370128.70975 1788 1680 -14860172.33131 1789 1680 -9166781.581062 1790 1680 -10279526.39882 1791 1680 33963705.33589 1792 1680 9166666.669679 1793 1680 9519894.71657 1797 1680 -18663081.30986 1798 1680 -9166666.669677 1799 1680 -10337268.9803 1800 1680 -73633660.33315 1801 1680 -9166743.277268 1802 1680 -44520628.22528 1803 1680 -7828204.348046 1804 1680 7333409.943332 1805 1680 -9288430.506837 1681 1681 332431392.3218 1682 1681 -6944376.976808 1686 1681 -36666666.66065 1687 1681 -41284001.36615 1688 1681 1263866.887163 1689 1681 -36667126.30619 1690 1681 -30960378.23954 1691 1681 -3847226.047119 1692 1681 44000459.63831 1693 1681 12401143.47877 1694 1681 2416692.493345 1782 1681 7333409.943332 1783 1681 -4839277.140466 1784 1681 -6597291.372073 1788 1681 -9166743.277267 1789 1681 -46943392.66696 1790 1681 -33736315.15602 1791 1681 9166666.669679 1792 1681 20212626.84424 1793 1681 5347275.319281 1797 1681 -9166666.669677 1798 1681 -15912882.8484 1799 1681 -8454866.614265 1800 1681 -9166781.581064 1801 1681 -30549559.96733 1802 1681 -9732749.59088 1803 1681 11000114.915 1804 1681 -7828204.348045 1805 1681 11145949.53617 1682 1682 375187471.1352 1686 1682 2471062.980849 1687 1682 1236089.109403 1688 1682 -7832062.870945 1689 1682 -2662141.087263 1690 1682 -3097217.438217 1691 1682 -1482420.858694 1692 1682 -3229199.674597 1693 1682 1611128.328897 1694 1682 33069715.94339 1782 1682 8246752.473166 1783 1682 -9895937.05811 1784 1682 -12904739.04124 1788 1682 -10279483.49692 1789 1682 -33902984.10692 1790 1682 -43192618.77883 1791 1682 -8015196.919944 1792 1682 -8680575.648187 1793 1682 -73923722.2424 1797 1682 -10337268.9803 1798 1682 -8454866.614265 1799 1682 -16869702.39011 1800 1682 -44485903.34313 1801 1682 -9538266.413314 1802 1682 -61195846.2912 1803 1682 -13932645.76025 1804 1682 7430633.02411 1805 1682 -20875211.59479 1683 1683 619629140.0329 1684 1683 1.168251037598e-05 1685 1683 925940.5938052 1686 1683 84152766.23505 1687 1683 -4.991888999939e-06 1688 1683 231485.148566 1695 1683 -138432799.5 1696 1683 1.490116119385e-07 1697 1683 -462970.296923 1698 1683 -52308469.44899 1699 1683 36666666.66065 1700 1683 -2702548.129425 1785 1683 -59565882.98117 1786 1683 4.91738319397e-07 1787 1683 43739118.52961 1788 1683 -20057887.18154 1789 1683 -9166666.669679 1790 1683 11581481.02689 1794 1683 54280296.46473 1795 1683 3.09944152832e-06 1796 1683 231485.1485852 1797 1683 -7107625.989141 1798 1683 -6.146728992462e-06 1799 1683 57871.2871768 1806 1683 -59964405.70834 1807 1683 7.525086402893e-07 1808 1683 -43970603.67818 1809 1683 -20163436.42398 1810 1683 9166666.669676 1811 1683 -11639352.31406 1684 1684 531622789.3528 1685 1684 -11110935.09172 1686 1684 -4.798173904419e-06 1687 1684 -55180296.03374 1688 1684 5555467.545859 1695 1684 -5.960464477539e-08 1696 1684 22901850.42796 1697 1684 -2777733.774299 1698 1684 36666666.66064 1699 1684 -41307675.60857 1700 1684 1513866.887135 1785 1684 -5.811452865601e-07 1786 1684 -19232220.47929 1787 1684 -694433.4439163 1788 1684 -9166666.669679 1789 1684 -17307688.72007 1790 1684 9079855.613715 1794 1684 3.635883331299e-06 1795 1684 32278708.78388 1796 1684 -2777733.774297 1797 1684 -5.349516868591e-06 1798 1684 -41940891.5735 1799 1684 36472200.21471 1806 1684 3.725290298462e-07 1807 1684 -19630743.20649 1808 1684 -694433.4439167 1809 1684 9166666.669676 1810 1684 -17413237.96253 1811 1684 9149300.058182 1685 1685 599591912.5003 1686 1685 231485.1485663 1687 1685 5555467.545859 1688 1685 78550735.85485 1695 1685 -462970.2969232 1696 1685 -2777733.774298 1697 1685 39890623.87246 1698 1685 -2737270.351624 1699 1685 1541644.664895 1700 1685 -7895194.184061 1785 1685 43704396.30741 1786 1685 -694433.4439163 1787 1685 -56581165.5979 1788 1685 11581481.02689 1789 1685 9079855.613715 1790 1685 -20589184.71456 1794 1685 231485.148585 1795 1685 -2777733.774298 1796 1685 -118440658.1206 1797 1685 57871.28717716 1798 1685 36444422.43695 1799 1685 -55417829.51533 1806 1685 -43935881.45598 1807 1685 -694433.4439167 1808 1685 -57643892.87044 1809 1685 -11639352.31406 1810 1685 9149300.058182 1811 1685 -20870649.36111 1686 1686 619629140.0329 1687 1686 1.168251037598e-05 1688 1686 925940.5938052 1689 1686 84152766.23505 1690 1686 -4.991888999939e-06 1691 1686 231485.148566 1695 1686 -52284795.20658 1696 1686 -36666666.66065 1697 1686 2505785.203048 1698 1686 -138432799.5 1699 1686 1.490116119385e-07 1700 1686 -462970.296923 1701 1686 -52308469.44899 1702 1686 36666666.66065 1703 1686 -2702548.129425 1785 1686 -18569369.18862 1786 1686 9166666.669678 1787 1686 10279397.69313 1788 1686 -59565882.98117 1789 1686 4.91738319397e-07 1790 1686 43739118.52961 1791 1686 -20057887.18154 1792 1686 -9166666.669679 1793 1686 11581481.02689 1794 1686 -1129879.778007 1795 1686 2.369284629822e-06 1796 1686 57871.28717239 1797 1686 54280296.46473 1798 1686 3.09944152832e-06 1799 1686 231485.1485852 1800 1686 -7107625.989141 1801 1686 -6.146728992462e-06 1802 1686 57871.2871768 1806 1686 -18663081.30986 1807 1686 -9166666.669677 1808 1686 -10337268.9803 1809 1686 -59964405.70834 1810 1686 7.525086402893e-07 1811 1686 -43970603.67818 1812 1686 -20163436.42398 1813 1686 9166666.669676 1814 1686 -11639352.31406 1687 1687 531622789.3528 1688 1687 -11110935.09172 1689 1687 -4.798173904419e-06 1690 1687 -55180296.03374 1691 1687 5555467.545859 1695 1687 -36666666.66065 1696 1687 -41284001.36615 1697 1687 1263866.887163 1698 1687 -5.960464477539e-08 1699 1687 22901850.42796 1700 1687 -2777733.774299 1701 1687 36666666.66064 1702 1687 -41307675.60857 1703 1687 1513866.887135 1785 1687 9166666.669678 1786 1687 -15819170.72716 1787 1687 -8385422.169798 1788 1687 -5.811452865601e-07 1789 1687 -19232220.47929 1790 1687 -694433.4439163 1791 1687 -9166666.669679 1792 1687 -17307688.72007 1793 1687 9079855.613715 1794 1687 2.913177013397e-06 1795 1687 -35963145.36236 1796 1687 -33694466.44041 1797 1687 3.635883331299e-06 1798 1687 32278708.78388 1799 1687 -2777733.774297 1800 1687 -5.349516868591e-06 1801 1687 -41940891.5735 1802 1687 36472200.21471 1806 1687 -9166666.669677 1807 1687 -15912882.8484 1808 1687 -8454866.614265 1809 1687 3.725290298462e-07 1810 1687 -19630743.20649 1811 1687 -694433.4439167 1812 1687 9166666.669676 1813 1687 -17413237.96253 1814 1687 9149300.058182 1688 1688 599591912.5003 1689 1688 231485.1485663 1690 1688 5555467.545859 1691 1688 78550735.85485 1695 1688 2471062.980849 1696 1688 1236089.109403 1697 1688 -7832062.870945 1698 1688 -462970.2969232 1699 1688 -2777733.774298 1700 1688 39890623.87246 1701 1688 -2737270.351624 1702 1688 1541644.664895 1703 1688 -7895194.184061 1785 1688 10279397.69313 1786 1688 -8385422.169798 1787 1688 -16619803.40013 1788 1688 43704396.30741 1789 1688 -694433.4439163 1790 1688 -56581165.5979 1791 1688 11581481.02689 1792 1688 9079855.613715 1793 1688 -20589184.71456 1794 1688 57871.28717278 1795 1688 -33666688.66265 1796 1688 -39477172.9523 1797 1688 231485.148585 1798 1688 -2777733.774298 1799 1688 -118440658.1206 1800 1688 57871.28717716 1801 1688 36444422.43695 1802 1688 -55417829.51533 1806 1688 -10337268.9803 1807 1688 -8454866.614265 1808 1688 -16869702.39011 1809 1688 -43935881.45598 1810 1688 -694433.4439167 1811 1688 -57643892.87044 1812 1688 -11639352.31406 1813 1688 9149300.058182 1814 1688 -20870649.36111 1689 1689 671761428.9985 1690 1689 36667432.73655 1691 1689 3125088.651632 1692 1689 19448570.31785 1693 1689 -36666973.09101 1694 1689 2702570.135099 1698 1689 -52284795.20658 1699 1689 -36666666.66065 1700 1689 2505785.203048 1701 1689 -138432799.5 1702 1689 1.490116119385e-07 1703 1689 -462970.296923 1704 1689 -52308469.44899 1705 1689 36666666.66065 1706 1689 -2702548.129425 1788 1689 -18569369.18862 1789 1689 9166666.669678 1790 1689 10279397.69313 1791 1689 -72039530.38171 1792 1689 -9166781.581061 1793 1689 43189554.83944 1797 1689 -1129879.778007 1798 1689 2.369284629822e-06 1799 1689 57871.28717239 1800 1689 73599694.87993 1801 1689 9166858.188655 1802 1689 781226.7976368 1803 1689 -19443104.86928 1804 1689 -9166743.27727 1805 1689 11639449.48452 1809 1689 -18663081.30986 1810 1689 -9166666.669677 1811 1689 -10337268.9803 1812 1689 -59964405.70834 1813 1689 7.525086402893e-07 1814 1689 -43970603.67818 1815 1689 -20163436.42398 1816 1689 9166666.669676 1817 1689 -11639352.31406 1690 1690 572753939.719 1691 1690 -8610914.043003 1692 1690 -36667126.30619 1693 1690 -108884310.9615 1694 1690 4611018.689007 1698 1690 -36666666.66065 1699 1690 -41284001.36615 1700 1690 1263866.887163 1701 1690 -5.960464477539e-08 1702 1690 22901850.42796 1703 1690 -2777733.774299 1704 1690 36666666.66064 1705 1690 -41307675.60857 1706 1690 1513866.887135 1788 1690 9166666.669678 1789 1690 -15819170.72716 1790 1690 -8385422.169798 1791 1690 -9166743.277267 1792 1690 -28955430.01587 1793 1690 7996602.428466 1797 1690 2.913177013397e-06 1798 1690 -35963145.36236 1799 1690 -33694466.44041 1800 1690 9166858.188655 1801 1690 48847822.54786 1802 1690 -2152764.803778 1803 1690 -9166781.581064 1804 1690 -51526325.20493 1805 1690 36236271.0855 1809 1690 -9166666.669677 1810 1690 -15912882.8484 1811 1690 -8454866.614265 1812 1690 3.725290298462e-07 1813 1690 -19630743.20649 1814 1690 -694433.4439167 1815 1690 9166666.669676 1816 1690 -17413237.96253 1817 1690 9149300.058182 1691 1691 607013167.9741 1692 1691 2737303.360137 1693 1691 5388804.78494 1694 1691 37600883.93994 1698 1691 2471062.980849 1699 1691 1236089.109403 1700 1691 -7832062.870945 1701 1691 -462970.2969232 1702 1691 -2777733.774298 1703 1691 39890623.87246 1704 1691 -2737270.351624 1705 1691 1541644.664895 1706 1691 -7895194.184061 1788 1691 10279397.69313 1789 1691 -8385422.169798 1790 1691 -16619803.40013 1791 1691 43154829.95728 1792 1691 7802192.5578 1793 1691 -56944833.0873 1797 1691 57871.28717278 1798 1691 -33666688.66265 1799 1691 -39477172.9523 1800 1691 781318.4370322 1801 1691 -2152691.493423 1802 1691 -99821807.80486 1803 1691 11639498.06975 1804 1691 36402939.91804 1805 1691 -55413772.21342 1809 1691 -10337268.9803 1810 1691 -8454866.614265 1811 1691 -16869702.39011 1812 1691 -43935881.45598 1813 1691 -694433.4439167 1814 1691 -57643892.87044 1815 1691 -11639352.31406 1816 1691 9149300.058182 1817 1691 -20870649.36111 1692 1692 387435706.2613 1693 1692 36666666.66065 1694 1692 2662175.186035 1701 1692 -52284795.20658 1702 1692 -36666666.66065 1703 1692 2505785.203048 1704 1692 -203296779.618 1705 1692 -36666973.09101 1706 1692 -2662152.453524 1707 1692 12401143.47877 1708 1692 29333639.75888 1709 1692 -2152799.783064 1791 1692 -4839277.140465 1792 1692 11000114.915 1793 1692 12370128.70975 1800 1692 -14860172.33131 1801 1692 -9166781.581062 1802 1692 -10279526.39882 1803 1692 33963705.33589 1804 1692 9166666.669679 1805 1692 9519894.71657 1812 1692 -18663081.30986 1813 1692 -9166666.669677 1814 1692 -10337268.9803 1815 1692 -73633660.33315 1816 1692 -9166743.277268 1817 1692 -44520628.22528 1818 1692 -7828204.348046 1819 1692 7333409.943332 1820 1692 -9288430.506837 1693 1693 332431392.3218 1694 1693 -6944376.976808 1701 1693 -36666666.66065 1702 1693 -41284001.36615 1703 1693 1263866.887163 1704 1693 -36667126.30619 1705 1693 -30960378.23954 1706 1693 -3847226.047119 1707 1693 44000459.63831 1708 1693 12401143.47877 1709 1693 2416692.493345 1791 1693 7333409.943332 1792 1693 -4839277.140466 1793 1693 -6597291.372073 1800 1693 -9166743.277267 1801 1693 -46943392.66696 1802 1693 -33736315.15602 1803 1693 9166666.669679 1804 1693 20212626.84424 1805 1693 5347275.319281 1812 1693 -9166666.669677 1813 1693 -15912882.8484 1814 1693 -8454866.614265 1815 1693 -9166781.581064 1816 1693 -30549559.96733 1817 1693 -9732749.59088 1818 1693 11000114.915 1819 1693 -7828204.348045 1820 1693 11145949.53617 1694 1694 375187471.1352 1701 1694 2471062.980849 1702 1694 1236089.109403 1703 1694 -7832062.870945 1704 1694 -2662141.087263 1705 1694 -3097217.438217 1706 1694 -1482420.858694 1707 1694 -3229199.674597 1708 1694 1611128.328897 1709 1694 33069715.94339 1791 1694 8246752.473166 1792 1694 -9895937.05811 1793 1694 -12904739.04124 1800 1694 -10279483.49692 1801 1694 -33902984.10692 1802 1694 -43192618.77883 1803 1694 -8015196.919944 1804 1694 -8680575.648187 1805 1694 -73923722.2424 1812 1694 -10337268.9803 1813 1694 -8454866.614265 1814 1694 -16869702.39011 1815 1694 -44485903.34313 1816 1694 -9538266.413314 1817 1694 -61195846.2912 1818 1694 -13932645.76025 1819 1694 7430633.02411 1820 1694 -20875211.59479 1695 1695 619629140.0329 1696 1695 1.168251037598e-05 1697 1695 925940.5938052 1698 1695 84152766.23505 1699 1695 -4.991888999939e-06 1700 1695 231485.148566 1710 1695 -138432799.5 1711 1695 1.490116119385e-07 1712 1695 -462970.296923 1713 1695 -52308469.44899 1714 1695 36666666.66065 1715 1695 -2702548.129425 1794 1695 -59565882.98117 1795 1695 4.91738319397e-07 1796 1695 43739118.52961 1797 1695 -20057887.18154 1798 1695 -9166666.669679 1799 1695 11581481.02689 1806 1695 54280296.46473 1807 1695 3.09944152832e-06 1808 1695 231485.1485852 1809 1695 -7107625.989141 1810 1695 -6.146728992462e-06 1811 1695 57871.2871768 1821 1695 -59964405.70834 1822 1695 7.525086402893e-07 1823 1695 -43970603.67818 1824 1695 -20163436.42398 1825 1695 9166666.669676 1826 1695 -11639352.31406 1696 1696 531622789.3528 1697 1696 -11110935.09172 1698 1696 -4.798173904419e-06 1699 1696 -55180296.03374 1700 1696 5555467.545859 1710 1696 -5.960464477539e-08 1711 1696 22901850.42796 1712 1696 -2777733.774299 1713 1696 36666666.66064 1714 1696 -41307675.60857 1715 1696 1513866.887135 1794 1696 -5.811452865601e-07 1795 1696 -19232220.47929 1796 1696 -694433.4439163 1797 1696 -9166666.669679 1798 1696 -17307688.72007 1799 1696 9079855.613715 1806 1696 3.635883331299e-06 1807 1696 32278708.78388 1808 1696 -2777733.774297 1809 1696 -5.349516868591e-06 1810 1696 -41940891.5735 1811 1696 36472200.21471 1821 1696 3.725290298462e-07 1822 1696 -19630743.20649 1823 1696 -694433.4439167 1824 1696 9166666.669676 1825 1696 -17413237.96253 1826 1696 9149300.058182 1697 1697 599591912.5003 1698 1697 231485.1485663 1699 1697 5555467.545859 1700 1697 78550735.85485 1710 1697 -462970.2969232 1711 1697 -2777733.774298 1712 1697 39890623.87246 1713 1697 -2737270.351624 1714 1697 1541644.664895 1715 1697 -7895194.184061 1794 1697 43704396.30741 1795 1697 -694433.4439163 1796 1697 -56581165.5979 1797 1697 11581481.02689 1798 1697 9079855.613715 1799 1697 -20589184.71456 1806 1697 231485.148585 1807 1697 -2777733.774298 1808 1697 -118440658.1206 1809 1697 57871.28717716 1810 1697 36444422.43695 1811 1697 -55417829.51533 1821 1697 -43935881.45598 1822 1697 -694433.4439167 1823 1697 -57643892.87044 1824 1697 -11639352.31406 1825 1697 9149300.058182 1826 1697 -20870649.36111 1698 1698 619629140.0329 1699 1698 1.168251037598e-05 1700 1698 925940.5938052 1701 1698 84152766.23505 1702 1698 -4.991888999939e-06 1703 1698 231485.148566 1710 1698 -52284795.20658 1711 1698 -36666666.66065 1712 1698 2505785.203048 1713 1698 -138432799.5 1714 1698 1.490116119385e-07 1715 1698 -462970.296923 1716 1698 -52308469.44899 1717 1698 36666666.66065 1718 1698 -2702548.129425 1794 1698 -18569369.18862 1795 1698 9166666.669678 1796 1698 10279397.69313 1797 1698 -59565882.98117 1798 1698 4.91738319397e-07 1799 1698 43739118.52961 1800 1698 -20057887.18154 1801 1698 -9166666.669679 1802 1698 11581481.02689 1806 1698 -1129879.778007 1807 1698 2.369284629822e-06 1808 1698 57871.28717239 1809 1698 54280296.46473 1810 1698 3.09944152832e-06 1811 1698 231485.1485852 1812 1698 -7107625.989141 1813 1698 -6.146728992462e-06 1814 1698 57871.2871768 1821 1698 -18663081.30986 1822 1698 -9166666.669677 1823 1698 -10337268.9803 1824 1698 -59964405.70834 1825 1698 7.525086402893e-07 1826 1698 -43970603.67818 1827 1698 -20163436.42398 1828 1698 9166666.669676 1829 1698 -11639352.31406 1699 1699 531622789.3528 1700 1699 -11110935.09172 1701 1699 -4.798173904419e-06 1702 1699 -55180296.03374 1703 1699 5555467.545859 1710 1699 -36666666.66065 1711 1699 -41284001.36615 1712 1699 1263866.887163 1713 1699 -5.960464477539e-08 1714 1699 22901850.42796 1715 1699 -2777733.774299 1716 1699 36666666.66064 1717 1699 -41307675.60857 1718 1699 1513866.887135 1794 1699 9166666.669678 1795 1699 -15819170.72716 1796 1699 -8385422.169798 1797 1699 -5.811452865601e-07 1798 1699 -19232220.47929 1799 1699 -694433.4439163 1800 1699 -9166666.669679 1801 1699 -17307688.72007 1802 1699 9079855.613715 1806 1699 2.913177013397e-06 1807 1699 -35963145.36236 1808 1699 -33694466.44041 1809 1699 3.635883331299e-06 1810 1699 32278708.78388 1811 1699 -2777733.774297 1812 1699 -5.349516868591e-06 1813 1699 -41940891.5735 1814 1699 36472200.21471 1821 1699 -9166666.669677 1822 1699 -15912882.8484 1823 1699 -8454866.614265 1824 1699 3.725290298462e-07 1825 1699 -19630743.20649 1826 1699 -694433.4439167 1827 1699 9166666.669676 1828 1699 -17413237.96253 1829 1699 9149300.058182 1700 1700 599591912.5003 1701 1700 231485.1485663 1702 1700 5555467.545859 1703 1700 78550735.85485 1710 1700 2471062.980849 1711 1700 1236089.109403 1712 1700 -7832062.870945 1713 1700 -462970.2969232 1714 1700 -2777733.774298 1715 1700 39890623.87246 1716 1700 -2737270.351624 1717 1700 1541644.664895 1718 1700 -7895194.184061 1794 1700 10279397.69313 1795 1700 -8385422.169798 1796 1700 -16619803.40013 1797 1700 43704396.30741 1798 1700 -694433.4439163 1799 1700 -56581165.5979 1800 1700 11581481.02689 1801 1700 9079855.613715 1802 1700 -20589184.71456 1806 1700 57871.28717278 1807 1700 -33666688.66265 1808 1700 -39477172.9523 1809 1700 231485.148585 1810 1700 -2777733.774298 1811 1700 -118440658.1206 1812 1700 57871.28717716 1813 1700 36444422.43695 1814 1700 -55417829.51533 1821 1700 -10337268.9803 1822 1700 -8454866.614265 1823 1700 -16869702.39011 1824 1700 -43935881.45598 1825 1700 -694433.4439167 1826 1700 -57643892.87044 1827 1700 -11639352.31406 1828 1700 9149300.058182 1829 1700 -20870649.36111 1701 1701 619629140.0329 1702 1701 1.168251037598e-05 1703 1701 925940.5938052 1704 1701 84152766.23505 1705 1701 -4.991888999939e-06 1706 1701 231485.148566 1713 1701 -52284795.20658 1714 1701 -36666666.66065 1715 1701 2505785.203048 1716 1701 -138432799.5 1717 1701 1.490116119385e-07 1718 1701 -462970.296923 1719 1701 -52308469.44899 1720 1701 36666666.66065 1721 1701 -2702548.129425 1797 1701 -18569369.18862 1798 1701 9166666.669678 1799 1701 10279397.69313 1800 1701 -59565882.98117 1801 1701 4.91738319397e-07 1802 1701 43739118.52961 1803 1701 -20057887.18154 1804 1701 -9166666.669679 1805 1701 11581481.02689 1809 1701 -1129879.778007 1810 1701 2.369284629822e-06 1811 1701 57871.28717239 1812 1701 54280296.46473 1813 1701 3.09944152832e-06 1814 1701 231485.1485852 1815 1701 -7107625.989141 1816 1701 -6.146728992462e-06 1817 1701 57871.2871768 1824 1701 -18663081.30986 1825 1701 -9166666.669677 1826 1701 -10337268.9803 1827 1701 -59964405.70834 1828 1701 7.525086402893e-07 1829 1701 -43970603.67818 1830 1701 -20163436.42398 1831 1701 9166666.669676 1832 1701 -11639352.31406 1702 1702 531622789.3528 1703 1702 -11110935.09172 1704 1702 -4.798173904419e-06 1705 1702 -55180296.03374 1706 1702 5555467.545859 1713 1702 -36666666.66065 1714 1702 -41284001.36615 1715 1702 1263866.887163 1716 1702 -5.960464477539e-08 1717 1702 22901850.42796 1718 1702 -2777733.774299 1719 1702 36666666.66064 1720 1702 -41307675.60857 1721 1702 1513866.887135 1797 1702 9166666.669678 1798 1702 -15819170.72716 1799 1702 -8385422.169798 1800 1702 -5.811452865601e-07 1801 1702 -19232220.47929 1802 1702 -694433.4439163 1803 1702 -9166666.669679 1804 1702 -17307688.72007 1805 1702 9079855.613715 1809 1702 2.913177013397e-06 1810 1702 -35963145.36236 1811 1702 -33694466.44041 1812 1702 3.635883331299e-06 1813 1702 32278708.78388 1814 1702 -2777733.774297 1815 1702 -5.349516868591e-06 1816 1702 -41940891.5735 1817 1702 36472200.21471 1824 1702 -9166666.669677 1825 1702 -15912882.8484 1826 1702 -8454866.614265 1827 1702 3.725290298462e-07 1828 1702 -19630743.20649 1829 1702 -694433.4439167 1830 1702 9166666.669676 1831 1702 -17413237.96253 1832 1702 9149300.058182 1703 1703 599591912.5003 1704 1703 231485.1485663 1705 1703 5555467.545859 1706 1703 78550735.85485 1713 1703 2471062.980849 1714 1703 1236089.109403 1715 1703 -7832062.870945 1716 1703 -462970.2969232 1717 1703 -2777733.774298 1718 1703 39890623.87246 1719 1703 -2737270.351624 1720 1703 1541644.664895 1721 1703 -7895194.184061 1797 1703 10279397.69313 1798 1703 -8385422.169798 1799 1703 -16619803.40013 1800 1703 43704396.30741 1801 1703 -694433.4439163 1802 1703 -56581165.5979 1803 1703 11581481.02689 1804 1703 9079855.613715 1805 1703 -20589184.71456 1809 1703 57871.28717278 1810 1703 -33666688.66265 1811 1703 -39477172.9523 1812 1703 231485.148585 1813 1703 -2777733.774298 1814 1703 -118440658.1206 1815 1703 57871.28717716 1816 1703 36444422.43695 1817 1703 -55417829.51533 1824 1703 -10337268.9803 1825 1703 -8454866.614265 1826 1703 -16869702.39011 1827 1703 -43935881.45598 1828 1703 -694433.4439167 1829 1703 -57643892.87044 1830 1703 -11639352.31406 1831 1703 9149300.058182 1832 1703 -20870649.36111 1704 1704 671761428.9985 1705 1704 36667432.73655 1706 1704 3125088.651632 1707 1704 19448570.31785 1708 1704 -36666973.09101 1709 1704 2702570.135099 1716 1704 -52284795.20658 1717 1704 -36666666.66065 1718 1704 2505785.203048 1719 1704 -138432799.5 1720 1704 1.490116119385e-07 1721 1704 -462970.296923 1722 1704 -52308469.44899 1723 1704 36666666.66065 1724 1704 -2702548.129425 1800 1704 -18569369.18862 1801 1704 9166666.669678 1802 1704 10279397.69313 1803 1704 -72039530.38171 1804 1704 -9166781.581061 1805 1704 43189554.83944 1812 1704 -1129879.778007 1813 1704 2.369284629822e-06 1814 1704 57871.28717239 1815 1704 73599694.87993 1816 1704 9166858.188655 1817 1704 781226.7976368 1818 1704 -19443104.86928 1819 1704 -9166743.27727 1820 1704 11639449.48452 1827 1704 -18663081.30986 1828 1704 -9166666.669677 1829 1704 -10337268.9803 1830 1704 -59964405.70834 1831 1704 7.525086402893e-07 1832 1704 -43970603.67818 1833 1704 -20163436.42398 1834 1704 9166666.669676 1835 1704 -11639352.31406 1705 1705 572753939.719 1706 1705 -8610914.043003 1707 1705 -36667126.30619 1708 1705 -108884310.9615 1709 1705 4611018.689007 1716 1705 -36666666.66065 1717 1705 -41284001.36615 1718 1705 1263866.887163 1719 1705 -5.960464477539e-08 1720 1705 22901850.42796 1721 1705 -2777733.774299 1722 1705 36666666.66064 1723 1705 -41307675.60857 1724 1705 1513866.887135 1800 1705 9166666.669678 1801 1705 -15819170.72716 1802 1705 -8385422.169798 1803 1705 -9166743.277267 1804 1705 -28955430.01587 1805 1705 7996602.428466 1812 1705 2.913177013397e-06 1813 1705 -35963145.36236 1814 1705 -33694466.44041 1815 1705 9166858.188655 1816 1705 48847822.54786 1817 1705 -2152764.803778 1818 1705 -9166781.581064 1819 1705 -51526325.20493 1820 1705 36236271.0855 1827 1705 -9166666.669677 1828 1705 -15912882.8484 1829 1705 -8454866.614265 1830 1705 3.725290298462e-07 1831 1705 -19630743.20649 1832 1705 -694433.4439167 1833 1705 9166666.669676 1834 1705 -17413237.96253 1835 1705 9149300.058182 1706 1706 607013167.9741 1707 1706 2737303.360137 1708 1706 5388804.78494 1709 1706 37600883.93994 1716 1706 2471062.980849 1717 1706 1236089.109403 1718 1706 -7832062.870945 1719 1706 -462970.2969232 1720 1706 -2777733.774298 1721 1706 39890623.87246 1722 1706 -2737270.351624 1723 1706 1541644.664895 1724 1706 -7895194.184061 1800 1706 10279397.69313 1801 1706 -8385422.169798 1802 1706 -16619803.40013 1803 1706 43154829.95728 1804 1706 7802192.5578 1805 1706 -56944833.0873 1812 1706 57871.28717278 1813 1706 -33666688.66265 1814 1706 -39477172.9523 1815 1706 781318.4370322 1816 1706 -2152691.493423 1817 1706 -99821807.80486 1818 1706 11639498.06975 1819 1706 36402939.91804 1820 1706 -55413772.21342 1827 1706 -10337268.9803 1828 1706 -8454866.614265 1829 1706 -16869702.39011 1830 1706 -43935881.45598 1831 1706 -694433.4439167 1832 1706 -57643892.87044 1833 1706 -11639352.31406 1834 1706 9149300.058182 1835 1706 -20870649.36111 1707 1707 387435706.2613 1708 1707 36666666.66065 1709 1707 2662175.186035 1719 1707 -52284795.20658 1720 1707 -36666666.66065 1721 1707 2505785.203048 1722 1707 -203296779.618 1723 1707 -36666973.09101 1724 1707 -2662152.453524 1725 1707 12401143.47877 1726 1707 29333639.75888 1727 1707 -2152799.783064 1803 1707 -4839277.140465 1804 1707 11000114.915 1805 1707 12370128.70975 1815 1707 -14860172.33131 1816 1707 -9166781.581062 1817 1707 -10279526.39882 1818 1707 33963705.33589 1819 1707 9166666.669679 1820 1707 9519894.71657 1830 1707 -18663081.30986 1831 1707 -9166666.669677 1832 1707 -10337268.9803 1833 1707 -73633660.33315 1834 1707 -9166743.277268 1835 1707 -44520628.22528 1836 1707 -7828204.348046 1837 1707 7333409.943332 1838 1707 -9288430.506837 1708 1708 332431392.3218 1709 1708 -6944376.976808 1719 1708 -36666666.66065 1720 1708 -41284001.36615 1721 1708 1263866.887163 1722 1708 -36667126.30619 1723 1708 -30960378.23954 1724 1708 -3847226.047119 1725 1708 44000459.63831 1726 1708 12401143.47877 1727 1708 2416692.493345 1803 1708 7333409.943332 1804 1708 -4839277.140466 1805 1708 -6597291.372073 1815 1708 -9166743.277267 1816 1708 -46943392.66696 1817 1708 -33736315.15602 1818 1708 9166666.669679 1819 1708 20212626.84424 1820 1708 5347275.319281 1830 1708 -9166666.669677 1831 1708 -15912882.8484 1832 1708 -8454866.614265 1833 1708 -9166781.581064 1834 1708 -30549559.96733 1835 1708 -9732749.59088 1836 1708 11000114.915 1837 1708 -7828204.348045 1838 1708 11145949.53617 1709 1709 375187471.1352 1719 1709 2471062.980849 1720 1709 1236089.109403 1721 1709 -7832062.870945 1722 1709 -2662141.087263 1723 1709 -3097217.438217 1724 1709 -1482420.858694 1725 1709 -3229199.674597 1726 1709 1611128.328897 1727 1709 33069715.94339 1803 1709 8246752.473166 1804 1709 -9895937.05811 1805 1709 -12904739.04124 1815 1709 -10279483.49692 1816 1709 -33902984.10692 1817 1709 -43192618.77883 1818 1709 -8015196.919944 1819 1709 -8680575.648187 1820 1709 -73923722.2424 1830 1709 -10337268.9803 1831 1709 -8454866.614265 1832 1709 -16869702.39011 1833 1709 -44485903.34313 1834 1709 -9538266.413314 1835 1709 -61195846.2912 1836 1709 -13932645.76025 1837 1709 7430633.02411 1838 1709 -20875211.59479 1710 1710 619629140.0329 1711 1710 1.168251037598e-05 1712 1710 925940.5938052 1713 1710 84152766.23505 1714 1710 -4.991888999939e-06 1715 1710 231485.148566 1728 1710 -138432799.5 1729 1710 1.490116119385e-07 1730 1710 -462970.296923 1731 1710 -52308469.44899 1732 1710 36666666.66065 1733 1710 -2702548.129425 1806 1710 -59565882.98117 1807 1710 4.91738319397e-07 1808 1710 43739118.52961 1809 1710 -20057887.18154 1810 1710 -9166666.669679 1811 1710 11581481.02689 1821 1710 54280296.46473 1822 1710 3.09944152832e-06 1823 1710 231485.1485852 1824 1710 -7107625.989141 1825 1710 -6.146728992462e-06 1826 1710 57871.2871768 1839 1710 -59964405.70834 1840 1710 7.525086402893e-07 1841 1710 -43970603.67818 1842 1710 -20163436.42398 1843 1710 9166666.669676 1844 1710 -11639352.31406 1711 1711 531622789.3528 1712 1711 -11110935.09172 1713 1711 -4.798173904419e-06 1714 1711 -55180296.03374 1715 1711 5555467.545859 1728 1711 -5.960464477539e-08 1729 1711 22901850.42796 1730 1711 -2777733.774299 1731 1711 36666666.66064 1732 1711 -41307675.60857 1733 1711 1513866.887135 1806 1711 -5.811452865601e-07 1807 1711 -19232220.47929 1808 1711 -694433.4439163 1809 1711 -9166666.669679 1810 1711 -17307688.72007 1811 1711 9079855.613715 1821 1711 3.635883331299e-06 1822 1711 32278708.78388 1823 1711 -2777733.774297 1824 1711 -5.349516868591e-06 1825 1711 -41940891.5735 1826 1711 36472200.21471 1839 1711 3.725290298462e-07 1840 1711 -19630743.20649 1841 1711 -694433.4439167 1842 1711 9166666.669676 1843 1711 -17413237.96253 1844 1711 9149300.058182 1712 1712 599591912.5003 1713 1712 231485.1485663 1714 1712 5555467.545859 1715 1712 78550735.85485 1728 1712 -462970.2969232 1729 1712 -2777733.774298 1730 1712 39890623.87246 1731 1712 -2737270.351624 1732 1712 1541644.664895 1733 1712 -7895194.184061 1806 1712 43704396.30741 1807 1712 -694433.4439163 1808 1712 -56581165.5979 1809 1712 11581481.02689 1810 1712 9079855.613715 1811 1712 -20589184.71456 1821 1712 231485.148585 1822 1712 -2777733.774298 1823 1712 -118440658.1206 1824 1712 57871.28717716 1825 1712 36444422.43695 1826 1712 -55417829.51533 1839 1712 -43935881.45598 1840 1712 -694433.4439167 1841 1712 -57643892.87044 1842 1712 -11639352.31406 1843 1712 9149300.058182 1844 1712 -20870649.36111 1713 1713 619629140.0329 1714 1713 1.168251037598e-05 1715 1713 925940.5938052 1716 1713 84152766.23505 1717 1713 -4.991888999939e-06 1718 1713 231485.148566 1728 1713 -52284795.20658 1729 1713 -36666666.66065 1730 1713 2505785.203048 1731 1713 -138432799.5 1732 1713 1.490116119385e-07 1733 1713 -462970.296923 1734 1713 -52308469.44899 1735 1713 36666666.66065 1736 1713 -2702548.129425 1806 1713 -18569369.18862 1807 1713 9166666.669678 1808 1713 10279397.69313 1809 1713 -59565882.98117 1810 1713 4.91738319397e-07 1811 1713 43739118.52961 1812 1713 -20057887.18154 1813 1713 -9166666.669679 1814 1713 11581481.02689 1821 1713 -1129879.778007 1822 1713 2.369284629822e-06 1823 1713 57871.28717239 1824 1713 54280296.46473 1825 1713 3.09944152832e-06 1826 1713 231485.1485852 1827 1713 -7107625.989141 1828 1713 -6.146728992462e-06 1829 1713 57871.2871768 1839 1713 -18663081.30986 1840 1713 -9166666.669677 1841 1713 -10337268.9803 1842 1713 -59964405.70834 1843 1713 7.525086402893e-07 1844 1713 -43970603.67818 1845 1713 -20163436.42398 1846 1713 9166666.669676 1847 1713 -11639352.31406 1714 1714 531622789.3528 1715 1714 -11110935.09172 1716 1714 -4.798173904419e-06 1717 1714 -55180296.03374 1718 1714 5555467.545859 1728 1714 -36666666.66065 1729 1714 -41284001.36615 1730 1714 1263866.887163 1731 1714 -5.960464477539e-08 1732 1714 22901850.42796 1733 1714 -2777733.774299 1734 1714 36666666.66064 1735 1714 -41307675.60857 1736 1714 1513866.887135 1806 1714 9166666.669678 1807 1714 -15819170.72716 1808 1714 -8385422.169798 1809 1714 -5.811452865601e-07 1810 1714 -19232220.47929 1811 1714 -694433.4439163 1812 1714 -9166666.669679 1813 1714 -17307688.72007 1814 1714 9079855.613715 1821 1714 2.913177013397e-06 1822 1714 -35963145.36236 1823 1714 -33694466.44041 1824 1714 3.635883331299e-06 1825 1714 32278708.78388 1826 1714 -2777733.774297 1827 1714 -5.349516868591e-06 1828 1714 -41940891.5735 1829 1714 36472200.21471 1839 1714 -9166666.669677 1840 1714 -15912882.8484 1841 1714 -8454866.614265 1842 1714 3.725290298462e-07 1843 1714 -19630743.20649 1844 1714 -694433.4439167 1845 1714 9166666.669676 1846 1714 -17413237.96253 1847 1714 9149300.058182 1715 1715 599591912.5003 1716 1715 231485.1485663 1717 1715 5555467.545859 1718 1715 78550735.85485 1728 1715 2471062.980849 1729 1715 1236089.109403 1730 1715 -7832062.870945 1731 1715 -462970.2969232 1732 1715 -2777733.774298 1733 1715 39890623.87246 1734 1715 -2737270.351624 1735 1715 1541644.664895 1736 1715 -7895194.184061 1806 1715 10279397.69313 1807 1715 -8385422.169798 1808 1715 -16619803.40013 1809 1715 43704396.30741 1810 1715 -694433.4439163 1811 1715 -56581165.5979 1812 1715 11581481.02689 1813 1715 9079855.613715 1814 1715 -20589184.71456 1821 1715 57871.28717278 1822 1715 -33666688.66265 1823 1715 -39477172.9523 1824 1715 231485.148585 1825 1715 -2777733.774298 1826 1715 -118440658.1206 1827 1715 57871.28717716 1828 1715 36444422.43695 1829 1715 -55417829.51533 1839 1715 -10337268.9803 1840 1715 -8454866.614265 1841 1715 -16869702.39011 1842 1715 -43935881.45598 1843 1715 -694433.4439167 1844 1715 -57643892.87044 1845 1715 -11639352.31406 1846 1715 9149300.058182 1847 1715 -20870649.36111 1716 1716 619629140.0329 1717 1716 1.168251037598e-05 1718 1716 925940.5938052 1719 1716 84152766.23505 1720 1716 -4.991888999939e-06 1721 1716 231485.148566 1731 1716 -52284795.20658 1732 1716 -36666666.66065 1733 1716 2505785.203048 1734 1716 -138432799.5 1735 1716 1.490116119385e-07 1736 1716 -462970.296923 1737 1716 -52308469.44899 1738 1716 36666666.66065 1739 1716 -2702548.129425 1809 1716 -18569369.18862 1810 1716 9166666.669678 1811 1716 10279397.69313 1812 1716 -59565882.98117 1813 1716 4.91738319397e-07 1814 1716 43739118.52961 1815 1716 -20057887.18154 1816 1716 -9166666.669679 1817 1716 11581481.02689 1824 1716 -1129879.778007 1825 1716 2.369284629822e-06 1826 1716 57871.28717239 1827 1716 54280296.46473 1828 1716 3.09944152832e-06 1829 1716 231485.1485852 1830 1716 -7107625.989141 1831 1716 -6.146728992462e-06 1832 1716 57871.2871768 1842 1716 -18663081.30986 1843 1716 -9166666.669677 1844 1716 -10337268.9803 1845 1716 -59964405.70834 1846 1716 7.525086402893e-07 1847 1716 -43970603.67818 1848 1716 -20163436.42398 1849 1716 9166666.669676 1850 1716 -11639352.31406 1717 1717 531622789.3528 1718 1717 -11110935.09172 1719 1717 -4.798173904419e-06 1720 1717 -55180296.03374 1721 1717 5555467.545859 1731 1717 -36666666.66065 1732 1717 -41284001.36615 1733 1717 1263866.887163 1734 1717 -5.960464477539e-08 1735 1717 22901850.42796 1736 1717 -2777733.774299 1737 1717 36666666.66064 1738 1717 -41307675.60857 1739 1717 1513866.887135 1809 1717 9166666.669678 1810 1717 -15819170.72716 1811 1717 -8385422.169798 1812 1717 -5.811452865601e-07 1813 1717 -19232220.47929 1814 1717 -694433.4439163 1815 1717 -9166666.669679 1816 1717 -17307688.72007 1817 1717 9079855.613715 1824 1717 2.913177013397e-06 1825 1717 -35963145.36236 1826 1717 -33694466.44041 1827 1717 3.635883331299e-06 1828 1717 32278708.78388 1829 1717 -2777733.774297 1830 1717 -5.349516868591e-06 1831 1717 -41940891.5735 1832 1717 36472200.21471 1842 1717 -9166666.669677 1843 1717 -15912882.8484 1844 1717 -8454866.614265 1845 1717 3.725290298462e-07 1846 1717 -19630743.20649 1847 1717 -694433.4439167 1848 1717 9166666.669676 1849 1717 -17413237.96253 1850 1717 9149300.058182 1718 1718 599591912.5003 1719 1718 231485.1485663 1720 1718 5555467.545859 1721 1718 78550735.85485 1731 1718 2471062.980849 1732 1718 1236089.109403 1733 1718 -7832062.870945 1734 1718 -462970.2969232 1735 1718 -2777733.774298 1736 1718 39890623.87246 1737 1718 -2737270.351624 1738 1718 1541644.664895 1739 1718 -7895194.184061 1809 1718 10279397.69313 1810 1718 -8385422.169798 1811 1718 -16619803.40013 1812 1718 43704396.30741 1813 1718 -694433.4439163 1814 1718 -56581165.5979 1815 1718 11581481.02689 1816 1718 9079855.613715 1817 1718 -20589184.71456 1824 1718 57871.28717278 1825 1718 -33666688.66265 1826 1718 -39477172.9523 1827 1718 231485.148585 1828 1718 -2777733.774298 1829 1718 -118440658.1206 1830 1718 57871.28717716 1831 1718 36444422.43695 1832 1718 -55417829.51533 1842 1718 -10337268.9803 1843 1718 -8454866.614265 1844 1718 -16869702.39011 1845 1718 -43935881.45598 1846 1718 -694433.4439167 1847 1718 -57643892.87044 1848 1718 -11639352.31406 1849 1718 9149300.058182 1850 1718 -20870649.36111 1719 1719 619629140.0329 1720 1719 1.168251037598e-05 1721 1719 925940.5938052 1722 1719 84152766.23505 1723 1719 -4.991888999939e-06 1724 1719 231485.148566 1734 1719 -52284795.20658 1735 1719 -36666666.66065 1736 1719 2505785.203048 1737 1719 -138432799.5 1738 1719 1.490116119385e-07 1739 1719 -462970.296923 1740 1719 -52308469.44899 1741 1719 36666666.66065 1742 1719 -2702548.129425 1812 1719 -18569369.18862 1813 1719 9166666.669678 1814 1719 10279397.69313 1815 1719 -59565882.98117 1816 1719 4.91738319397e-07 1817 1719 43739118.52961 1818 1719 -20057887.18154 1819 1719 -9166666.669679 1820 1719 11581481.02689 1827 1719 -1129879.778007 1828 1719 2.369284629822e-06 1829 1719 57871.28717239 1830 1719 54280296.46473 1831 1719 3.09944152832e-06 1832 1719 231485.1485852 1833 1719 -7107625.989141 1834 1719 -6.146728992462e-06 1835 1719 57871.2871768 1845 1719 -18663081.30986 1846 1719 -9166666.669677 1847 1719 -10337268.9803 1848 1719 -59964405.70834 1849 1719 7.525086402893e-07 1850 1719 -43970603.67818 1851 1719 -20163436.42398 1852 1719 9166666.669676 1853 1719 -11639352.31406 1720 1720 531622789.3528 1721 1720 -11110935.09172 1722 1720 -4.798173904419e-06 1723 1720 -55180296.03374 1724 1720 5555467.545859 1734 1720 -36666666.66065 1735 1720 -41284001.36615 1736 1720 1263866.887163 1737 1720 -5.960464477539e-08 1738 1720 22901850.42796 1739 1720 -2777733.774299 1740 1720 36666666.66064 1741 1720 -41307675.60857 1742 1720 1513866.887135 1812 1720 9166666.669678 1813 1720 -15819170.72716 1814 1720 -8385422.169798 1815 1720 -5.811452865601e-07 1816 1720 -19232220.47929 1817 1720 -694433.4439163 1818 1720 -9166666.669679 1819 1720 -17307688.72007 1820 1720 9079855.613715 1827 1720 2.913177013397e-06 1828 1720 -35963145.36236 1829 1720 -33694466.44041 1830 1720 3.635883331299e-06 1831 1720 32278708.78388 1832 1720 -2777733.774297 1833 1720 -5.349516868591e-06 1834 1720 -41940891.5735 1835 1720 36472200.21471 1845 1720 -9166666.669677 1846 1720 -15912882.8484 1847 1720 -8454866.614265 1848 1720 3.725290298462e-07 1849 1720 -19630743.20649 1850 1720 -694433.4439167 1851 1720 9166666.669676 1852 1720 -17413237.96253 1853 1720 9149300.058182 1721 1721 599591912.5003 1722 1721 231485.1485663 1723 1721 5555467.545859 1724 1721 78550735.85485 1734 1721 2471062.980849 1735 1721 1236089.109403 1736 1721 -7832062.870945 1737 1721 -462970.2969232 1738 1721 -2777733.774298 1739 1721 39890623.87246 1740 1721 -2737270.351624 1741 1721 1541644.664895 1742 1721 -7895194.184061 1812 1721 10279397.69313 1813 1721 -8385422.169798 1814 1721 -16619803.40013 1815 1721 43704396.30741 1816 1721 -694433.4439163 1817 1721 -56581165.5979 1818 1721 11581481.02689 1819 1721 9079855.613715 1820 1721 -20589184.71456 1827 1721 57871.28717278 1828 1721 -33666688.66265 1829 1721 -39477172.9523 1830 1721 231485.148585 1831 1721 -2777733.774298 1832 1721 -118440658.1206 1833 1721 57871.28717716 1834 1721 36444422.43695 1835 1721 -55417829.51533 1845 1721 -10337268.9803 1846 1721 -8454866.614265 1847 1721 -16869702.39011 1848 1721 -43935881.45598 1849 1721 -694433.4439167 1850 1721 -57643892.87044 1851 1721 -11639352.31406 1852 1721 9149300.058182 1853 1721 -20870649.36111 1722 1722 671761428.9985 1723 1722 36667432.73655 1724 1722 3125088.651632 1725 1722 19448570.31785 1726 1722 -36666973.09101 1727 1722 2702570.135099 1737 1722 -52284795.20658 1738 1722 -36666666.66065 1739 1722 2505785.203048 1740 1722 -138432799.5 1741 1722 1.490116119385e-07 1742 1722 -462970.296923 1743 1722 -52308469.44899 1744 1722 36666666.66065 1745 1722 -2702548.129425 1815 1722 -18569369.18862 1816 1722 9166666.669678 1817 1722 10279397.69313 1818 1722 -72039530.38171 1819 1722 -9166781.581061 1820 1722 43189554.83944 1830 1722 -1129879.778007 1831 1722 2.369284629822e-06 1832 1722 57871.28717239 1833 1722 73599694.87993 1834 1722 9166858.188655 1835 1722 781226.7976368 1836 1722 -19443104.86928 1837 1722 -9166743.27727 1838 1722 11639449.48452 1848 1722 -18663081.30986 1849 1722 -9166666.669677 1850 1722 -10337268.9803 1851 1722 -59964405.70834 1852 1722 7.525086402893e-07 1853 1722 -43970603.67818 1854 1722 -20163436.42398 1855 1722 9166666.669676 1856 1722 -11639352.31406 1723 1723 572753939.719 1724 1723 -8610914.043003 1725 1723 -36667126.30619 1726 1723 -108884310.9615 1727 1723 4611018.689007 1737 1723 -36666666.66065 1738 1723 -41284001.36615 1739 1723 1263866.887163 1740 1723 -5.960464477539e-08 1741 1723 22901850.42796 1742 1723 -2777733.774299 1743 1723 36666666.66064 1744 1723 -41307675.60857 1745 1723 1513866.887135 1815 1723 9166666.669678 1816 1723 -15819170.72716 1817 1723 -8385422.169798 1818 1723 -9166743.277267 1819 1723 -28955430.01587 1820 1723 7996602.428466 1830 1723 2.913177013397e-06 1831 1723 -35963145.36236 1832 1723 -33694466.44041 1833 1723 9166858.188655 1834 1723 48847822.54786 1835 1723 -2152764.803778 1836 1723 -9166781.581064 1837 1723 -51526325.20493 1838 1723 36236271.0855 1848 1723 -9166666.669677 1849 1723 -15912882.8484 1850 1723 -8454866.614265 1851 1723 3.725290298462e-07 1852 1723 -19630743.20649 1853 1723 -694433.4439167 1854 1723 9166666.669676 1855 1723 -17413237.96253 1856 1723 9149300.058182 1724 1724 607013167.9741 1725 1724 2737303.360137 1726 1724 5388804.78494 1727 1724 37600883.93994 1737 1724 2471062.980849 1738 1724 1236089.109403 1739 1724 -7832062.870945 1740 1724 -462970.2969232 1741 1724 -2777733.774298 1742 1724 39890623.87246 1743 1724 -2737270.351624 1744 1724 1541644.664895 1745 1724 -7895194.184061 1815 1724 10279397.69313 1816 1724 -8385422.169798 1817 1724 -16619803.40013 1818 1724 43154829.95728 1819 1724 7802192.5578 1820 1724 -56944833.0873 1830 1724 57871.28717278 1831 1724 -33666688.66265 1832 1724 -39477172.9523 1833 1724 781318.4370322 1834 1724 -2152691.493423 1835 1724 -99821807.80486 1836 1724 11639498.06975 1837 1724 36402939.91804 1838 1724 -55413772.21342 1848 1724 -10337268.9803 1849 1724 -8454866.614265 1850 1724 -16869702.39011 1851 1724 -43935881.45598 1852 1724 -694433.4439167 1853 1724 -57643892.87044 1854 1724 -11639352.31406 1855 1724 9149300.058182 1856 1724 -20870649.36111 1725 1725 498363702.219 1726 1725 -28869531.02742 1727 1725 -1239775.021335 1740 1725 -52284795.20658 1741 1725 -36666666.66065 1742 1725 2505785.203048 1743 1725 -52009283.16359 1744 1725 28863804.2588 1745 1725 -287932.3683392 1746 1725 -294718966.1837 1747 1725 29339060.09713 1748 1725 -277851.0500069 1818 1725 -4839277.140465 1819 1725 11000114.915 1820 1725 12370128.70975 1833 1725 -14860172.33131 1834 1725 -9166781.581062 1835 1725 -10279526.39882 1836 1725 73338606.72416 1837 1725 -7080721.947104 1838 1725 4620199.485418 1851 1725 -18663081.30986 1852 1725 -9166666.669677 1853 1725 -10337268.9803 1854 1725 -27228255.66332 1855 1725 7079394.610295 1856 1725 -24516102.56983 1857 1725 -69564509.4735 1858 1725 7334660.672553 1859 1725 -1076310.000064 1726 1726 966174720.2427 1727 1726 -12914947.41583 1740 1726 -36666666.66065 1741 1726 -41284001.36615 1742 1726 1263866.887163 1743 1726 28860940.8745 1744 1726 90863993.22883 1745 1726 -2003561.139996 1746 1726 44008590.1457 1747 1726 -788071173.1609 1748 1726 6655116.515009 1818 1726 7333409.943332 1819 1726 -4839277.140466 1820 1726 -6597291.372073 1833 1726 -9166743.277267 1834 1726 -46943392.66696 1835 1726 -33736315.15602 1836 1726 -7080721.947105 1837 1726 181183500.3014 1838 1726 835990.2504258 1851 1726 -9166666.669677 1852 1726 -15912882.8484 1853 1726 -8454866.614265 1854 1726 7078730.941889 1855 1726 8550937.821368 1856 1726 6326759.532925 1857 1726 11001991.00883 1858 1726 -183855574.6612 1859 1726 18420659.28497 1727 1727 530415847.6868 1740 1727 2471062.980849 1741 1727 1236089.109403 1742 1727 -7832062.870945 1743 1727 -1051786.06317 1744 1727 -1892360.826072 1745 1727 49178308.71143 1746 1727 -416776.5750104 1747 1727 6544119.890423 1748 1727 -292565036.1794 1818 1727 8246752.473166 1819 1727 -9895937.05811 1820 1727 -12904739.04124 1833 1727 -10279483.49692 1834 1727 -33902984.10692 1835 1727 -43192618.77883 1836 1727 -5154149.08713 1837 1727 -6926837.903859 1838 1727 4243293.054075 1851 1727 -10337268.9803 1852 1727 -8454866.614265 1853 1727 -16869702.39011 1854 1727 -24689705.53948 1855 1727 6382974.380012 1856 1727 -24906443.9538 1857 1727 -1614465.000096 1858 1727 17990055.19208 1859 1727 -71214293.40827 1728 1728 619629140.0329 1729 1728 1.168251037598e-05 1730 1728 925940.5938052 1731 1728 84152766.23505 1732 1728 -4.991888999939e-06 1733 1728 231485.148566 1749 1728 -138432799.5 1750 1728 1.490116119385e-07 1751 1728 -462970.296923 1752 1728 -52308469.44899 1753 1728 36666666.66065 1754 1728 -2702548.129425 1821 1728 -59565882.98117 1822 1728 4.91738319397e-07 1823 1728 43739118.52961 1824 1728 -20057887.18154 1825 1728 -9166666.669679 1826 1728 11581481.02689 1839 1728 54280296.46473 1840 1728 3.09944152832e-06 1841 1728 231485.1485852 1842 1728 -7107625.989141 1843 1728 -6.146728992462e-06 1844 1728 57871.2871768 1860 1728 -59964405.70834 1861 1728 7.525086402893e-07 1862 1728 -43970603.67818 1863 1728 -20163436.42398 1864 1728 9166666.669676 1865 1728 -11639352.31406 1729 1729 531622789.3528 1730 1729 -11110935.09172 1731 1729 -4.798173904419e-06 1732 1729 -55180296.03374 1733 1729 5555467.545859 1749 1729 -5.960464477539e-08 1750 1729 22901850.42796 1751 1729 -2777733.774299 1752 1729 36666666.66064 1753 1729 -41307675.60857 1754 1729 1513866.887135 1821 1729 -5.811452865601e-07 1822 1729 -19232220.47929 1823 1729 -694433.4439163 1824 1729 -9166666.669679 1825 1729 -17307688.72007 1826 1729 9079855.613715 1839 1729 3.635883331299e-06 1840 1729 32278708.78388 1841 1729 -2777733.774297 1842 1729 -5.349516868591e-06 1843 1729 -41940891.5735 1844 1729 36472200.21471 1860 1729 3.725290298462e-07 1861 1729 -19630743.20649 1862 1729 -694433.4439167 1863 1729 9166666.669676 1864 1729 -17413237.96253 1865 1729 9149300.058182 1730 1730 599591912.5003 1731 1730 231485.1485663 1732 1730 5555467.545859 1733 1730 78550735.85485 1749 1730 -462970.2969232 1750 1730 -2777733.774298 1751 1730 39890623.87246 1752 1730 -2737270.351624 1753 1730 1541644.664895 1754 1730 -7895194.184061 1821 1730 43704396.30741 1822 1730 -694433.4439163 1823 1730 -56581165.5979 1824 1730 11581481.02689 1825 1730 9079855.613715 1826 1730 -20589184.71456 1839 1730 231485.148585 1840 1730 -2777733.774298 1841 1730 -118440658.1206 1842 1730 57871.28717716 1843 1730 36444422.43695 1844 1730 -55417829.51533 1860 1730 -43935881.45598 1861 1730 -694433.4439167 1862 1730 -57643892.87044 1863 1730 -11639352.31406 1864 1730 9149300.058182 1865 1730 -20870649.36111 1731 1731 619629140.0329 1732 1731 1.168251037598e-05 1733 1731 925940.5938052 1734 1731 84152766.23505 1735 1731 -4.991888999939e-06 1736 1731 231485.148566 1749 1731 -52284795.20658 1750 1731 -36666666.66065 1751 1731 2505785.203048 1752 1731 -138432799.5 1753 1731 1.490116119385e-07 1754 1731 -462970.296923 1755 1731 -52308469.44899 1756 1731 36666666.66065 1757 1731 -2702548.129425 1821 1731 -18569369.18862 1822 1731 9166666.669678 1823 1731 10279397.69313 1824 1731 -59565882.98117 1825 1731 4.91738319397e-07 1826 1731 43739118.52961 1827 1731 -20057887.18154 1828 1731 -9166666.669679 1829 1731 11581481.02689 1839 1731 -1129879.778007 1840 1731 2.369284629822e-06 1841 1731 57871.28717239 1842 1731 54280296.46473 1843 1731 3.09944152832e-06 1844 1731 231485.1485852 1845 1731 -7107625.989141 1846 1731 -6.146728992462e-06 1847 1731 57871.2871768 1860 1731 -18663081.30986 1861 1731 -9166666.669677 1862 1731 -10337268.9803 1863 1731 -59964405.70834 1864 1731 7.525086402893e-07 1865 1731 -43970603.67818 1866 1731 -20163436.42398 1867 1731 9166666.669676 1868 1731 -11639352.31406 1732 1732 531622789.3528 1733 1732 -11110935.09172 1734 1732 -4.798173904419e-06 1735 1732 -55180296.03374 1736 1732 5555467.545859 1749 1732 -36666666.66065 1750 1732 -41284001.36615 1751 1732 1263866.887163 1752 1732 -5.960464477539e-08 1753 1732 22901850.42796 1754 1732 -2777733.774299 1755 1732 36666666.66064 1756 1732 -41307675.60857 1757 1732 1513866.887135 1821 1732 9166666.669678 1822 1732 -15819170.72716 1823 1732 -8385422.169798 1824 1732 -5.811452865601e-07 1825 1732 -19232220.47929 1826 1732 -694433.4439163 1827 1732 -9166666.669679 1828 1732 -17307688.72007 1829 1732 9079855.613715 1839 1732 2.913177013397e-06 1840 1732 -35963145.36236 1841 1732 -33694466.44041 1842 1732 3.635883331299e-06 1843 1732 32278708.78388 1844 1732 -2777733.774297 1845 1732 -5.349516868591e-06 1846 1732 -41940891.5735 1847 1732 36472200.21471 1860 1732 -9166666.669677 1861 1732 -15912882.8484 1862 1732 -8454866.614265 1863 1732 3.725290298462e-07 1864 1732 -19630743.20649 1865 1732 -694433.4439167 1866 1732 9166666.669676 1867 1732 -17413237.96253 1868 1732 9149300.058182 1733 1733 599591912.5003 1734 1733 231485.1485663 1735 1733 5555467.545859 1736 1733 78550735.85485 1749 1733 2471062.980849 1750 1733 1236089.109403 1751 1733 -7832062.870945 1752 1733 -462970.2969232 1753 1733 -2777733.774298 1754 1733 39890623.87246 1755 1733 -2737270.351624 1756 1733 1541644.664895 1757 1733 -7895194.184061 1821 1733 10279397.69313 1822 1733 -8385422.169798 1823 1733 -16619803.40013 1824 1733 43704396.30741 1825 1733 -694433.4439163 1826 1733 -56581165.5979 1827 1733 11581481.02689 1828 1733 9079855.613715 1829 1733 -20589184.71456 1839 1733 57871.28717278 1840 1733 -33666688.66265 1841 1733 -39477172.9523 1842 1733 231485.148585 1843 1733 -2777733.774298 1844 1733 -118440658.1206 1845 1733 57871.28717716 1846 1733 36444422.43695 1847 1733 -55417829.51533 1860 1733 -10337268.9803 1861 1733 -8454866.614265 1862 1733 -16869702.39011 1863 1733 -43935881.45598 1864 1733 -694433.4439167 1865 1733 -57643892.87044 1866 1733 -11639352.31406 1867 1733 9149300.058182 1868 1733 -20870649.36111 1734 1734 619629140.0329 1735 1734 1.168251037598e-05 1736 1734 925940.5938052 1737 1734 84152766.23505 1738 1734 -4.991888999939e-06 1739 1734 231485.148566 1752 1734 -52284795.20658 1753 1734 -36666666.66065 1754 1734 2505785.203048 1755 1734 -138432799.5 1756 1734 1.490116119385e-07 1757 1734 -462970.296923 1758 1734 -52308469.44899 1759 1734 36666666.66065 1760 1734 -2702548.129425 1824 1734 -18569369.18862 1825 1734 9166666.669678 1826 1734 10279397.69313 1827 1734 -59565882.98117 1828 1734 4.91738319397e-07 1829 1734 43739118.52961 1830 1734 -20057887.18154 1831 1734 -9166666.669679 1832 1734 11581481.02689 1842 1734 -1129879.778007 1843 1734 2.369284629822e-06 1844 1734 57871.28717239 1845 1734 54280296.46473 1846 1734 3.09944152832e-06 1847 1734 231485.1485852 1848 1734 -7107625.989141 1849 1734 -6.146728992462e-06 1850 1734 57871.2871768 1863 1734 -18663081.30986 1864 1734 -9166666.669677 1865 1734 -10337268.9803 1866 1734 -59964405.70834 1867 1734 7.525086402893e-07 1868 1734 -43970603.67818 1869 1734 -20163436.42398 1870 1734 9166666.669676 1871 1734 -11639352.31406 1735 1735 531622789.3528 1736 1735 -11110935.09172 1737 1735 -4.798173904419e-06 1738 1735 -55180296.03374 1739 1735 5555467.545859 1752 1735 -36666666.66065 1753 1735 -41284001.36615 1754 1735 1263866.887163 1755 1735 -5.960464477539e-08 1756 1735 22901850.42796 1757 1735 -2777733.774299 1758 1735 36666666.66064 1759 1735 -41307675.60857 1760 1735 1513866.887135 1824 1735 9166666.669678 1825 1735 -15819170.72716 1826 1735 -8385422.169798 1827 1735 -5.811452865601e-07 1828 1735 -19232220.47929 1829 1735 -694433.4439163 1830 1735 -9166666.669679 1831 1735 -17307688.72007 1832 1735 9079855.613715 1842 1735 2.913177013397e-06 1843 1735 -35963145.36236 1844 1735 -33694466.44041 1845 1735 3.635883331299e-06 1846 1735 32278708.78388 1847 1735 -2777733.774297 1848 1735 -5.349516868591e-06 1849 1735 -41940891.5735 1850 1735 36472200.21471 1863 1735 -9166666.669677 1864 1735 -15912882.8484 1865 1735 -8454866.614265 1866 1735 3.725290298462e-07 1867 1735 -19630743.20649 1868 1735 -694433.4439167 1869 1735 9166666.669676 1870 1735 -17413237.96253 1871 1735 9149300.058182 1736 1736 599591912.5003 1737 1736 231485.1485663 1738 1736 5555467.545859 1739 1736 78550735.85485 1752 1736 2471062.980849 1753 1736 1236089.109403 1754 1736 -7832062.870945 1755 1736 -462970.2969232 1756 1736 -2777733.774298 1757 1736 39890623.87246 1758 1736 -2737270.351624 1759 1736 1541644.664895 1760 1736 -7895194.184061 1824 1736 10279397.69313 1825 1736 -8385422.169798 1826 1736 -16619803.40013 1827 1736 43704396.30741 1828 1736 -694433.4439163 1829 1736 -56581165.5979 1830 1736 11581481.02689 1831 1736 9079855.613715 1832 1736 -20589184.71456 1842 1736 57871.28717278 1843 1736 -33666688.66265 1844 1736 -39477172.9523 1845 1736 231485.148585 1846 1736 -2777733.774298 1847 1736 -118440658.1206 1848 1736 57871.28717716 1849 1736 36444422.43695 1850 1736 -55417829.51533 1863 1736 -10337268.9803 1864 1736 -8454866.614265 1865 1736 -16869702.39011 1866 1736 -43935881.45598 1867 1736 -694433.4439167 1868 1736 -57643892.87044 1869 1736 -11639352.31406 1870 1736 9149300.058182 1871 1736 -20870649.36111 1737 1737 619629140.0329 1738 1737 1.168251037598e-05 1739 1737 925940.5938052 1740 1737 84152766.23505 1741 1737 -4.991888999939e-06 1742 1737 231485.148566 1755 1737 -52284795.20658 1756 1737 -36666666.66065 1757 1737 2505785.203048 1758 1737 -138432799.5 1759 1737 1.490116119385e-07 1760 1737 -462970.296923 1761 1737 -52308469.44899 1762 1737 36666666.66065 1763 1737 -2702548.129425 1827 1737 -18569369.18862 1828 1737 9166666.669678 1829 1737 10279397.69313 1830 1737 -59565882.98117 1831 1737 4.91738319397e-07 1832 1737 43739118.52961 1833 1737 -20057887.18154 1834 1737 -9166666.669679 1835 1737 11581481.02689 1845 1737 -1129879.778007 1846 1737 2.369284629822e-06 1847 1737 57871.28717239 1848 1737 54280296.46473 1849 1737 3.09944152832e-06 1850 1737 231485.1485852 1851 1737 -7107625.989141 1852 1737 -6.146728992462e-06 1853 1737 57871.2871768 1866 1737 -18663081.30986 1867 1737 -9166666.669677 1868 1737 -10337268.9803 1869 1737 -59964405.70834 1870 1737 7.525086402893e-07 1871 1737 -43970603.67818 1872 1737 -20163436.42398 1873 1737 9166666.669676 1874 1737 -11639352.31406 1738 1738 531622789.3528 1739 1738 -11110935.09172 1740 1738 -4.798173904419e-06 1741 1738 -55180296.03374 1742 1738 5555467.545859 1755 1738 -36666666.66065 1756 1738 -41284001.36615 1757 1738 1263866.887163 1758 1738 -5.960464477539e-08 1759 1738 22901850.42796 1760 1738 -2777733.774299 1761 1738 36666666.66064 1762 1738 -41307675.60857 1763 1738 1513866.887135 1827 1738 9166666.669678 1828 1738 -15819170.72716 1829 1738 -8385422.169798 1830 1738 -5.811452865601e-07 1831 1738 -19232220.47929 1832 1738 -694433.4439163 1833 1738 -9166666.669679 1834 1738 -17307688.72007 1835 1738 9079855.613715 1845 1738 2.913177013397e-06 1846 1738 -35963145.36236 1847 1738 -33694466.44041 1848 1738 3.635883331299e-06 1849 1738 32278708.78388 1850 1738 -2777733.774297 1851 1738 -5.349516868591e-06 1852 1738 -41940891.5735 1853 1738 36472200.21471 1866 1738 -9166666.669677 1867 1738 -15912882.8484 1868 1738 -8454866.614265 1869 1738 3.725290298462e-07 1870 1738 -19630743.20649 1871 1738 -694433.4439167 1872 1738 9166666.669676 1873 1738 -17413237.96253 1874 1738 9149300.058182 1739 1739 599591912.5003 1740 1739 231485.1485663 1741 1739 5555467.545859 1742 1739 78550735.85485 1755 1739 2471062.980849 1756 1739 1236089.109403 1757 1739 -7832062.870945 1758 1739 -462970.2969232 1759 1739 -2777733.774298 1760 1739 39890623.87246 1761 1739 -2737270.351624 1762 1739 1541644.664895 1763 1739 -7895194.184061 1827 1739 10279397.69313 1828 1739 -8385422.169798 1829 1739 -16619803.40013 1830 1739 43704396.30741 1831 1739 -694433.4439163 1832 1739 -56581165.5979 1833 1739 11581481.02689 1834 1739 9079855.613715 1835 1739 -20589184.71456 1845 1739 57871.28717278 1846 1739 -33666688.66265 1847 1739 -39477172.9523 1848 1739 231485.148585 1849 1739 -2777733.774298 1850 1739 -118440658.1206 1851 1739 57871.28717716 1852 1739 36444422.43695 1853 1739 -55417829.51533 1866 1739 -10337268.9803 1867 1739 -8454866.614265 1868 1739 -16869702.39011 1869 1739 -43935881.45598 1870 1739 -694433.4439167 1871 1739 -57643892.87044 1872 1739 -11639352.31406 1873 1739 9149300.058182 1874 1739 -20870649.36111 1740 1740 619629140.0329 1741 1740 1.168251037598e-05 1742 1740 925940.5938052 1743 1740 84152766.23505 1744 1740 -4.991888999939e-06 1745 1740 231485.148566 1758 1740 -52284795.20658 1759 1740 -36666666.66065 1760 1740 2505785.203048 1761 1740 -138432799.5 1762 1740 1.490116119385e-07 1763 1740 -462970.296923 1764 1740 -52308469.44899 1765 1740 36666666.66065 1766 1740 -2702548.129425 1830 1740 -18569369.18862 1831 1740 9166666.669678 1832 1740 10279397.69313 1833 1740 -59565882.98117 1834 1740 4.91738319397e-07 1835 1740 43739118.52961 1836 1740 -20057887.18154 1837 1740 -9166666.669679 1838 1740 11581481.02689 1848 1740 -1129879.778007 1849 1740 2.369284629822e-06 1850 1740 57871.28717239 1851 1740 54280296.46473 1852 1740 3.09944152832e-06 1853 1740 231485.1485852 1854 1740 -7107625.989141 1855 1740 -6.146728992462e-06 1856 1740 57871.2871768 1869 1740 -18663081.30986 1870 1740 -9166666.669677 1871 1740 -10337268.9803 1872 1740 -59964405.70834 1873 1740 7.525086402893e-07 1874 1740 -43970603.67818 1875 1740 -20163436.42398 1876 1740 9166666.669676 1877 1740 -11639352.31406 1741 1741 531622789.3528 1742 1741 -11110935.09172 1743 1741 -4.798173904419e-06 1744 1741 -55180296.03374 1745 1741 5555467.545859 1758 1741 -36666666.66065 1759 1741 -41284001.36615 1760 1741 1263866.887163 1761 1741 -5.960464477539e-08 1762 1741 22901850.42796 1763 1741 -2777733.774299 1764 1741 36666666.66064 1765 1741 -41307675.60857 1766 1741 1513866.887135 1830 1741 9166666.669678 1831 1741 -15819170.72716 1832 1741 -8385422.169798 1833 1741 -5.811452865601e-07 1834 1741 -19232220.47929 1835 1741 -694433.4439163 1836 1741 -9166666.669679 1837 1741 -17307688.72007 1838 1741 9079855.613715 1848 1741 2.913177013397e-06 1849 1741 -35963145.36236 1850 1741 -33694466.44041 1851 1741 3.635883331299e-06 1852 1741 32278708.78388 1853 1741 -2777733.774297 1854 1741 -5.349516868591e-06 1855 1741 -41940891.5735 1856 1741 36472200.21471 1869 1741 -9166666.669677 1870 1741 -15912882.8484 1871 1741 -8454866.614265 1872 1741 3.725290298462e-07 1873 1741 -19630743.20649 1874 1741 -694433.4439167 1875 1741 9166666.669676 1876 1741 -17413237.96253 1877 1741 9149300.058182 1742 1742 599591912.5003 1743 1742 231485.1485663 1744 1742 5555467.545859 1745 1742 78550735.85485 1758 1742 2471062.980849 1759 1742 1236089.109403 1760 1742 -7832062.870945 1761 1742 -462970.2969232 1762 1742 -2777733.774298 1763 1742 39890623.87246 1764 1742 -2737270.351624 1765 1742 1541644.664895 1766 1742 -7895194.184061 1830 1742 10279397.69313 1831 1742 -8385422.169798 1832 1742 -16619803.40013 1833 1742 43704396.30741 1834 1742 -694433.4439163 1835 1742 -56581165.5979 1836 1742 11581481.02689 1837 1742 9079855.613715 1838 1742 -20589184.71456 1848 1742 57871.28717278 1849 1742 -33666688.66265 1850 1742 -39477172.9523 1851 1742 231485.148585 1852 1742 -2777733.774298 1853 1742 -118440658.1206 1854 1742 57871.28717716 1855 1742 36444422.43695 1856 1742 -55417829.51533 1869 1742 -10337268.9803 1870 1742 -8454866.614265 1871 1742 -16869702.39011 1872 1742 -43935881.45598 1873 1742 -694433.4439167 1874 1742 -57643892.87044 1875 1742 -11639352.31406 1876 1742 9149300.058182 1877 1742 -20870649.36111 1743 1743 522558998.0903 1744 1743 17303939.58594 1745 1743 260660.847523 1746 1743 -103844000.8346 1747 1743 -78331807.37615 1748 1743 634712.287186 1761 1743 -52284795.20658 1762 1743 -36666666.66065 1763 1743 2505785.203048 1764 1743 -86773795.75742 1765 1743 24416035.48061 1766 1743 -106696.56214 1767 1743 -50334865.85163 1768 1743 7750891.435108 1769 1743 -153554.2915443 1833 1743 -18569369.18862 1834 1743 9166666.669678 1835 1743 10279397.69313 1836 1743 -26744866.17423 1837 1743 7078730.941889 1838 1743 24182037.32326 1851 1743 -1129879.778007 1852 1743 2.369284629822e-06 1853 1743 57871.28717239 1854 1743 64705026.32284 1855 1743 4462384.823563 1856 1743 82004.83090511 1857 1743 -37200947.50606 1858 1743 -19582847.49834 1859 1743 11295490.58659 1872 1743 -18663081.30986 1873 1743 -9166666.669677 1874 1743 -10337268.9803 1875 1743 -44289186.74016 1876 1743 6104008.873161 1877 1743 -34010528.30258 1878 1743 -19096765.45373 1879 1743 1937722.859732 1880 1743 -1131791.351039 1744 1744 657850299.5685 1745 1744 -8367157.575223 1746 1744 -78334670.76046 1747 1744 -263473356.7747 1748 1744 1658370.316677 1761 1744 -36666666.66065 1762 1744 -41284001.36615 1763 1744 1263866.887163 1764 1744 24416035.48061 1765 1744 13565168.38836 1766 1744 -1207997.421921 1767 1744 7750891.435108 1768 1744 -151877577.34 1769 1744 1114835.39655 1833 1744 9166666.669678 1834 1744 -15819170.72716 1835 1744 -8385422.169798 1836 1744 7079394.610294 1837 1744 9034327.310477 1838 1744 -7293747.370667 1851 1744 2.913177013397e-06 1852 1744 -35963145.36236 1853 1744 -33694466.44041 1854 1744 4462384.823561 1855 1744 98466467.05465 1856 1744 -2078317.714271 1857 1744 -19583511.16675 1858 1744 -77107776.22533 1859 1744 35701381.40565 1872 1744 -9166666.669677 1873 1744 -15912882.8484 1874 1744 -8454866.614265 1875 1744 6104008.87316 1876 1744 -19204445.69136 1877 1744 7593833.975638 1878 1744 1937722.859732 1879 1744 -44482443.33833 1880 1744 16945375.52141 1745 1745 509610127.4935 1746 1745 600026.7011092 1747 1745 1686238.457855 1748 1745 -69778405.6964 1761 1745 2471062.980849 1762 1745 1236089.109403 1763 1745 -7832062.870945 1764 1745 -974752.1175541 1765 1745 -1235775.199694 1766 1745 43298672.25768 1767 1745 -222998.7359433 1768 1745 1114835.39655 1769 1745 -37381370.73265 1833 1745 10279397.69313 1834 1745 -8385422.169798 1835 1745 -16619803.40013 1836 1745 24355640.29292 1837 1745 -7293127.174127 1838 1745 -23617405.31616 1851 1745 57871.28717278 1852 1745 -33666688.66265 1853 1745 -39477172.9523 1854 1745 221075.6272578 1855 1745 -1967061.036964 1856 1745 -49157691.6544 1857 1745 11365034.4734 1858 1745 35728612.04915 1859 1745 -47418304.47711 1872 1745 -10337268.9803 1873 1745 -8454866.614265 1874 1745 -16869702.39011 1875 1745 -34184139.41185 1876 1745 7593833.977188 1877 1745 -49430632.70391 1878 1745 -1131791.351039 1879 1745 16945375.52141 1880 1745 -26713473.31342 1746 1746 654493853.2633 1747 1746 18112754.50314 1748 1746 -212467.253144 1764 1746 -52690570.14122 1765 1746 -32132015.60604 1766 1746 329236.32717 1767 1746 37843199.73853 1768 1746 40666870.3651 1769 1746 -165830.6701221 1770 1746 63443900.22534 1771 1746 -20910325.11828 1772 1746 3494.874451399 1773 1746 -649271.3369567 1774 1746 28588796.47085 1775 1746 -68238.95990977 1836 1746 -69068054.42203 1837 1746 11001991.00883 1838 1746 1406080.670902 1854 1746 -36340853.80447 1855 1746 -19583511.16675 1856 1746 -10969538.97004 1857 1746 53015005.13881 1858 1746 4510797.120458 1859 1746 8583928.59339 1875 1746 -19361814.47454 1876 1746 -8033003.905469 1877 1746 -10880711.7551 1878 1746 -39698995.2683 1879 1746 10154153.16224 1880 1746 -42940020.97 1881 1746 -23132978.83525 1882 1746 -5210189.774588 1883 1746 13850494.97586 1884 1746 -17052409.61077 1885 1746 7159763.555271 1886 1746 -10542454.76729 1747 1747 1235787256.67 1748 1747 -7606192.875332 1764 1747 -32132015.60604 1765 1747 -14821146.93907 1766 1747 -100707.8152143 1767 1747 40666870.3651 1768 1747 165409922.2218 1769 1747 -598000.6034298 1770 1747 -6243658.454024 1771 1747 -7045608.663929 1772 1747 57944.23317599 1773 1747 28588796.47085 1774 1747 -23907748.62226 1775 1747 71744.56828891 1836 1747 7334660.672553 1837 1747 -183359119.6098 1838 1747 -14946460.79994 1854 1747 -19582847.49834 1855 1747 -76247682.52375 1856 1747 -34857716.91352 1857 1747 4510797.120457 1858 1747 189247624.3669 1859 1747 -1376922.17004 1875 1747 -8033003.905469 1876 1747 -9894458.669336 1877 1747 -8796010.290028 1878 1747 10154153.16224 1879 1747 -7795400.909588 1880 1747 7746375.742142 1881 1747 -1543523.106716 1882 1747 -40759864.32944 1883 1747 33347803.1152 1884 1747 7159763.555271 1885 1747 -22831199.60156 1886 1747 16684560.25241 1748 1748 812898545.1978 1764 1748 294514.104971 1765 1748 -128485.5929738 1766 1748 -622458.5944218 1767 1748 -269997.3367721 1768 1748 -625778.3812032 1769 1748 194040329.5774 1770 1748 3494.874454618 1771 1748 57944.23317578 1772 1748 125559935.8517 1773 1748 -68238.95987599 1774 1748 71744.56828886 1775 1748 40808809.12515 1836 1748 937387.1139347 1837 1748 -15321557.93441 1838 1748 -69890413.27102 1854 1748 -10900012.08181 1855 1748 -34830525.94038 1856 1748 -45124721.27286 1857 1748 -8603293.626011 1858 1748 -2128201.542135 1859 1748 -82804048.59254 1875 1748 -10880711.7551 1876 1748 -8796010.290028 1877 1748 -16660073.13599 1878 1748 -42974743.19225 1879 1748 7746375.743692 1880 1748 -82481035.57895 1881 1748 5725494.97511 1882 1748 33347803.1152 1883 1748 -72648657.74928 1884 1748 -10542454.76729 1885 1748 16684560.25241 1886 1748 -34764653.8035 1749 1749 309814570.0165 1750 1749 6.437301635742e-06 1751 1749 462970.2969034 1752 1749 42076777.68823 1753 1749 7333333.332127 1754 1749 -318285.203467 1839 1749 -59565882.98117 1840 1749 4.91738319397e-07 1841 1749 43739118.52961 1842 1749 -20057887.18154 1843 1749 -9166666.669679 1844 1749 11581481.02689 1860 1749 27139753.66166 1861 1749 8.344650268555e-07 1862 1749 -8738562.979764 1863 1749 -3553812.994569 1864 1749 1833333.333932 1865 1749 -2293147.690507 1750 1750 265811394.6764 1751 1750 -5555467.545855 1752 1750 -7333333.332131 1753 1750 -27589753.44616 1754 1750 2749955.995158 1839 1750 -5.811452865601e-07 1840 1750 -19232220.47929 1841 1750 -694433.4439163 1842 1750 -9166666.669679 1843 1750 -17307688.72007 1844 1750 9079855.613715 1860 1750 8.940696716309e-07 1861 1750 16138959.82123 1862 1750 -1388866.887151 1863 1750 -1833333.333938 1864 1750 -20970445.78675 1865 1750 18229155.66291 1751 1751 299795956.2502 1752 1751 723381.4630278 1753 1751 2805511.550704 1754 1751 39276420.11598 1839 1751 43704396.30741 1840 1751 -694433.4439163 1841 1751 -56581165.5979 1842 1751 11581481.02689 1843 1751 9079855.613715 1844 1751 -20589184.71456 1860 1751 8796437.017353 1861 1751 -1388866.887151 1862 1751 -59221381.24884 1863 1751 2351018.977684 1864 1751 18229155.66292 1865 1751 -27708914.75766 1752 1752 309814570.0165 1753 1752 6.437301635742e-06 1754 1752 462970.2969034 1755 1752 42076777.68823 1756 1752 7333333.332127 1757 1752 -318285.203467 1839 1752 -18569369.18862 1840 1752 9166666.669678 1841 1752 10279397.69313 1842 1752 -59565882.98117 1843 1752 4.91738319397e-07 1844 1752 43739118.52961 1845 1752 -20057887.18154 1846 1752 -9166666.669679 1847 1752 11581481.02689 1860 1752 -564939.8890041 1861 1752 -1833333.333934 1862 1752 -2032731.023757 1863 1752 27139753.66166 1864 1752 8.344650268555e-07 1865 1752 -8738562.979764 1866 1752 -3553812.994569 1867 1752 1833333.333932 1868 1752 -2293147.690507 1753 1753 265811394.6764 1754 1753 -5555467.545855 1755 1753 -7333333.332131 1756 1753 -27589753.44616 1757 1753 2749955.995158 1839 1753 9166666.669678 1840 1753 -15819170.72716 1841 1753 -8385422.169798 1842 1753 -5.811452865601e-07 1843 1753 -19232220.47929 1844 1753 -694433.4439163 1845 1753 -9166666.669679 1846 1753 -17307688.72007 1847 1753 9079855.613715 1860 1753 1833333.333937 1861 1753 -17981572.68118 1862 1753 -16840288.77576 1863 1753 8.940696716309e-07 1864 1753 16138959.82123 1865 1753 -1388866.887151 1866 1753 -1833333.333938 1867 1753 -20970445.78675 1868 1753 18229155.66291 1754 1754 299795956.2502 1755 1754 723381.4630278 1756 1754 2805511.550704 1757 1754 39276420.11598 1839 1754 10279397.69313 1840 1754 -8385422.169798 1841 1754 -16619803.40013 1842 1754 43704396.30741 1843 1754 -694433.4439163 1844 1754 -56581165.5979 1845 1754 11581481.02689 1846 1754 9079855.613715 1847 1754 -20589184.71456 1860 1754 2090602.31093 1861 1754 -16840288.77577 1862 1754 -19738586.47615 1863 1754 8796437.017353 1864 1754 -1388866.887151 1865 1754 -59221381.24884 1866 1754 2351018.977684 1867 1754 18229155.66292 1868 1754 -27708914.75766 1755 1755 309814570.0165 1756 1755 6.437301635742e-06 1757 1755 462970.2969034 1758 1755 42076777.68823 1759 1755 7333333.332127 1760 1755 -318285.203467 1842 1755 -18569369.18862 1843 1755 9166666.669678 1844 1755 10279397.69313 1845 1755 -59565882.98117 1846 1755 4.91738319397e-07 1847 1755 43739118.52961 1848 1755 -20057887.18154 1849 1755 -9166666.669679 1850 1755 11581481.02689 1863 1755 -564939.8890041 1864 1755 -1833333.333934 1865 1755 -2032731.023757 1866 1755 27139753.66166 1867 1755 8.344650268555e-07 1868 1755 -8738562.979764 1869 1755 -3553812.994569 1870 1755 1833333.333932 1871 1755 -2293147.690507 1756 1756 265811394.6764 1757 1756 -5555467.545855 1758 1756 -7333333.332131 1759 1756 -27589753.44616 1760 1756 2749955.995158 1842 1756 9166666.669678 1843 1756 -15819170.72716 1844 1756 -8385422.169798 1845 1756 -5.811452865601e-07 1846 1756 -19232220.47929 1847 1756 -694433.4439163 1848 1756 -9166666.669679 1849 1756 -17307688.72007 1850 1756 9079855.613715 1863 1756 1833333.333937 1864 1756 -17981572.68118 1865 1756 -16840288.77576 1866 1756 8.940696716309e-07 1867 1756 16138959.82123 1868 1756 -1388866.887151 1869 1756 -1833333.333938 1870 1756 -20970445.78675 1871 1756 18229155.66291 1757 1757 299795956.2502 1758 1757 723381.4630278 1759 1757 2805511.550704 1760 1757 39276420.11598 1842 1757 10279397.69313 1843 1757 -8385422.169798 1844 1757 -16619803.40013 1845 1757 43704396.30741 1846 1757 -694433.4439163 1847 1757 -56581165.5979 1848 1757 11581481.02689 1849 1757 9079855.613715 1850 1757 -20589184.71456 1863 1757 2090602.31093 1864 1757 -16840288.77577 1865 1757 -19738586.47615 1866 1757 8796437.017353 1867 1757 -1388866.887151 1868 1757 -59221381.24884 1869 1757 2351018.977684 1870 1757 18229155.66292 1871 1757 -27708914.75766 1758 1758 309814570.0165 1759 1758 6.437301635742e-06 1760 1758 462970.2969034 1761 1758 42076777.68823 1762 1758 7333333.332127 1763 1758 -318285.203467 1845 1758 -18569369.18862 1846 1758 9166666.669678 1847 1758 10279397.69313 1848 1758 -59565882.98117 1849 1758 4.91738319397e-07 1850 1758 43739118.52961 1851 1758 -20057887.18154 1852 1758 -9166666.669679 1853 1758 11581481.02689 1866 1758 -564939.8890041 1867 1758 -1833333.333934 1868 1758 -2032731.023757 1869 1758 27139753.66166 1870 1758 8.344650268555e-07 1871 1758 -8738562.979764 1872 1758 -3553812.994569 1873 1758 1833333.333932 1874 1758 -2293147.690507 1759 1759 265811394.6764 1760 1759 -5555467.545855 1761 1759 -7333333.332131 1762 1759 -27589753.44616 1763 1759 2749955.995158 1845 1759 9166666.669678 1846 1759 -15819170.72716 1847 1759 -8385422.169798 1848 1759 -5.811452865601e-07 1849 1759 -19232220.47929 1850 1759 -694433.4439163 1851 1759 -9166666.669679 1852 1759 -17307688.72007 1853 1759 9079855.613715 1866 1759 1833333.333937 1867 1759 -17981572.68118 1868 1759 -16840288.77576 1869 1759 8.940696716309e-07 1870 1759 16138959.82123 1871 1759 -1388866.887151 1872 1759 -1833333.333938 1873 1759 -20970445.78675 1874 1759 18229155.66291 1760 1760 299795956.2502 1761 1760 723381.4630278 1762 1760 2805511.550704 1763 1760 39276420.11598 1845 1760 10279397.69313 1846 1760 -8385422.169798 1847 1760 -16619803.40013 1848 1760 43704396.30741 1849 1760 -694433.4439163 1850 1760 -56581165.5979 1851 1760 11581481.02689 1852 1760 9079855.613715 1853 1760 -20589184.71456 1866 1760 2090602.31093 1867 1760 -16840288.77577 1868 1760 -19738586.47615 1869 1760 8796437.017353 1870 1760 -1388866.887151 1871 1760 -59221381.24884 1872 1760 2351018.977684 1873 1760 18229155.66292 1874 1760 -27708914.75766 1761 1761 309814570.0165 1762 1761 6.437301635742e-06 1763 1761 462970.2969034 1764 1761 42076777.68823 1765 1761 7333333.332127 1766 1761 -318285.203467 1848 1761 -18569369.18862 1849 1761 9166666.669678 1850 1761 10279397.69313 1851 1761 -59565882.98117 1852 1761 4.91738319397e-07 1853 1761 43739118.52961 1854 1761 -20057887.18154 1855 1761 -9166666.669679 1856 1761 11581481.02689 1869 1761 -564939.8890041 1870 1761 -1833333.333934 1871 1761 -2032731.023757 1872 1761 27139753.66166 1873 1761 8.344650268555e-07 1874 1761 -8738562.979764 1875 1761 -3553812.994569 1876 1761 1833333.333932 1877 1761 -2293147.690507 1762 1762 265811394.6764 1763 1762 -5555467.545855 1764 1762 -7333333.332131 1765 1762 -27589753.44616 1766 1762 2749955.995158 1848 1762 9166666.669678 1849 1762 -15819170.72716 1850 1762 -8385422.169798 1851 1762 -5.811452865601e-07 1852 1762 -19232220.47929 1853 1762 -694433.4439163 1854 1762 -9166666.669679 1855 1762 -17307688.72007 1856 1762 9079855.613715 1869 1762 1833333.333937 1870 1762 -17981572.68118 1871 1762 -16840288.77576 1872 1762 8.940696716309e-07 1873 1762 16138959.82123 1874 1762 -1388866.887151 1875 1762 -1833333.333938 1876 1762 -20970445.78675 1877 1762 18229155.66291 1763 1763 299795956.2502 1764 1763 723381.4630278 1765 1763 2805511.550704 1766 1763 39276420.11598 1848 1763 10279397.69313 1849 1763 -8385422.169798 1850 1763 -16619803.40013 1851 1763 43704396.30741 1852 1763 -694433.4439163 1853 1763 -56581165.5979 1854 1763 11581481.02689 1855 1763 9079855.613715 1856 1763 -20589184.71456 1869 1763 2090602.31093 1870 1763 -16840288.77577 1871 1763 -19738586.47615 1872 1763 8796437.017353 1873 1763 -1388866.887151 1874 1763 -59221381.24884 1875 1763 2351018.977684 1876 1763 18229155.66292 1877 1763 -27708914.75766 1764 1764 309250160.3896 1765 1764 4535517.963994 1766 1764 2453066.565954 1767 1764 -8612767.502989 1768 1764 -26152871.16708 1769 1764 379949.2240047 1851 1764 -18569369.18862 1852 1764 9166666.669678 1853 1764 10279397.69313 1854 1764 -43745996.76765 1855 1764 6104008.873162 1856 1764 33740166.13061 1857 1764 -19561074.78605 1858 1764 -8033003.905467 1859 1764 11036649.36321 1872 1764 -564939.8890041 1873 1764 -1833333.333934 1874 1764 -2032731.023757 1875 1764 26998047.5617 1876 1764 1133879.491557 1877 1764 -8240761.134482 1878 1764 -17935124.94805 1879 1764 -6538217.79499 1880 1764 7751167.860229 1765 1765 292124118.8748 1766 1765 -3586804.318186 1767 1765 -40819537.83134 1768 1765 -71029376.04212 1769 1765 603908.8952657 1851 1765 9166666.669678 1852 1765 -15819170.72716 1853 1765 -8385422.169798 1854 1765 6104008.873161 1855 1765 -18661255.71884 1856 1765 -8204777.132884 1857 1765 -8033003.905467 1858 1765 -10093718.98084 1859 1765 8738711.937952 1872 1765 1833333.333937 1873 1765 -17981572.68118 1874 1765 -16840288.77576 1875 1765 1133879.491557 1876 1765 22716537.18088 1877 1765 -896701.0799925 1878 1765 -10204884.46286 1879 1765 -33539277.09052 1880 1765 25588477.22048 1766 1766 306596341.2044 1767 1766 553560.3350853 1768 1766 631686.6730388 1769 1766 21856446.47305 1851 1766 10279397.69313 1852 1766 -8385422.169798 1853 1766 -16619803.40013 1854 1766 33913777.24376 1855 1766 -8204777.131321 1856 1766 -47982126.11052 1857 1766 11036649.36321 1858 1766 8738711.937952 1859 1766 -17191433.96669 1872 1766 2090602.31093 1873 1766 -16840288.77577 1874 1766 -19738586.47615 1875 1766 9293683.307081 1876 1766 -896701.0799924 1877 1766 -57522894.85793 1878 1766 12186723.41529 1879 1766 25588477.21893 1880 1766 -36621043.23569 1767 1767 356868400.0533 1768 1767 48547468.5066 1769 1767 -63096.8105123 1770 1767 -69856382.4367 1771 1767 -44744536.85045 1772 1767 105372.1511744 1773 1767 12337681.15014 1774 1767 -11401155.62501 1775 1767 36049.28577423 1854 1767 -18648271.66148 1855 1767 1937722.859731 1856 1767 1037653.094121 1857 1767 -39544456.91598 1858 1767 10154153.16225 1859 1767 42822479.01589 1875 1767 -17192674.13802 1876 1767 -10204884.46286 1877 1767 -11944665.46985 1878 1767 -3912651.53854 1879 1767 12104000.90406 1880 1767 -8661308.958427 1881 1767 -34277798.50532 1882 1767 -11173569.78409 1883 1767 20338795.24285 1884 1767 -25252826.21741 1885 1767 -2817422.679089 1886 1767 7690935.964348 1768 1768 444796097.3529 1769 1768 -1421522.296491 1770 1768 -44744536.85045 1771 1768 -49860415.28467 1772 1768 71744.56828867 1773 1768 -26067822.28927 1774 1768 -59193385.75724 1775 1768 229034.039838 1854 1768 1937722.859731 1855 1768 -44033949.54609 1856 1768 -16387957.82287 1857 1768 10154153.16225 1858 1768 -7640862.557279 1859 1768 -8052235.36638 1875 1768 -6538217.794992 1876 1768 -32796826.2805 1877 1768 -25279578.32671 1878 1768 12104000.90406 1879 1768 18064676.36711 1880 1768 -355226.5980296 1881 1768 -11173569.78409 1882 1768 -29290720.43702 1883 1768 16684560.25241 1884 1768 -6484089.34696 1885 1768 -43130996.523 1886 1768 33390437.86157 1769 1769 481548525.3653 1770 1769 105372.1511744 1771 1769 71744.56828868 1772 1769 14856142.46274 1773 1769 105493.7302044 1774 1769 229034.0398379 1775 1769 67067300.58928 1854 1769 1037653.094121 1855 1769 -16387957.82287 1856 1769 -25517489.86743 1857 1769 42787756.79371 1858 1769 -8052235.364817 1859 1769 -82068933.30612 1875 1769 -7613276.581476 1876 1769 -25279578.32828 1877 1769 -34641174.40895 1878 1769 8456468.81654 1879 1769 -355226.5980297 1880 1769 -127782018.4958 1881 1769 20338795.24285 1882 1769 16684560.25241 1883 1769 -41224174.63896 1884 1769 11918435.96766 1885 1769 33390437.86157 1886 1769 -58976019.88741 1770 1770 235380342.1393 1771 1770 50243658.4468 1772 1770 -61365.24479413 1773 1770 -5955738.729899 1774 1770 744536.8576738 1775 1770 -47501.78083324 1857 1770 -23038281.86555 1858 1770 -1543523.106717 1859 1770 -5723810.576489 1878 1770 -34183101.53561 1879 1770 -11173569.78409 1880 1770 -20286204.77049 1881 1770 -19123839.31674 1882 1770 12543523.11033 1883 1770 8109690.206757 1884 1770 -35160837.88112 1885 1770 173569.7804715 1886 1770 -30849674.85978 1771 1771 216494851.0432 1772 1771 -57944.23316944 1773 1771 15411203.52193 1774 1771 63423294.1034 1775 1771 -71744.56828511 1857 1771 -5210189.774589 1858 1771 -40665167.35974 1859 1771 -33318863.54052 1878 1771 -11173569.78409 1879 1771 -29196023.4673 1880 1771 -16648773.09187 1881 1771 12543523.11033 1882 1771 -23840703.82989 1883 1771 6652196.878227 1884 1771 3840236.448343 1885 1771 -17804165.94208 1886 1771 3315439.754154 1772 1772 343596377.1744 1773 1772 -47501.78082988 1774 1772 -71744.56828505 1775 1772 110686534.3726 1857 1772 -13848810.57722 1858 1772 -33318863.54052 1859 1772 -72396132.49673 1878 1772 -20286204.77049 1879 1772 -16648773.09187 1880 1772 -40971649.38638 1881 1772 -8140309.790574 1882 1772 -6681136.452916 1883 1772 -121963274.0163 1884 1772 -30849674.86172 1885 1772 -3351226.914701 1886 1772 -62018439.03128 1773 1773 174382480.4459 1774 1773 -17932177.70351 1775 1773 -128641.8784312 1857 1773 -16957712.64106 1858 1773 7159763.555271 1859 1773 10508239.68408 1878 1773 -24968735.30843 1879 1773 -6484089.346963 1880 1773 -11866008.47688 1881 1773 -35160837.88111 1882 1773 3840236.448346 1883 1773 30826019.57453 1884 1773 -12970289.93401 1885 1773 -4515910.656654 1886 1773 -4242139.670585 1774 1774 199792991.8053 1775 1774 -229034.0398293 1857 1774 7159763.555271 1858 1774 -22736502.63185 1859 1774 -16648773.09187 1878 1774 -2817422.679091 1879 1774 -42846905.61403 1880 1774 -33276228.79415 1881 1774 173569.7804737 1882 1774 -17804165.94208 1883 1774 3315439.754155 1884 1774 -4515910.656654 1885 1774 -6670001.576668 1886 1774 6609562.131857 1775 1775 261744426.6576 1857 1775 10508239.68408 1858 1775 -16648773.09187 1859 1775 -34512128.55092 1878 1775 -7673230.695789 1879 1775 -33276228.79415 1880 1775 -58218444.13013 1881 1775 30826019.57261 1882 1775 -3351226.914701 1883 1775 -62018439.03128 1884 1775 4178138.10581 1885 1775 -6723771.199285 1886 1775 -85404523.65996 1776 1776 387435706.2613 1777 1776 36666666.66065 1778 1776 2662175.186034 1779 1776 -203296779.618 1780 1776 -36666973.09101 1781 1776 -2662152.453524 1782 1776 12401143.47877 1783 1776 29333639.75888 1784 1776 -2152799.783064 1887 1776 33963705.33589 1888 1776 9166666.669679 1889 1776 9519894.71657 1890 1776 -73633660.33315 1891 1776 -9166743.277268 1892 1776 -44520628.22528 1893 1776 -7828204.348046 1894 1776 7333409.943332 1895 1776 -9288430.506837 1777 1777 332431392.3218 1778 1777 -6944376.976808 1779 1777 -36667126.30619 1780 1777 -30960378.23954 1781 1777 -3847226.047119 1782 1777 44000459.63831 1783 1777 12401143.47877 1784 1777 2416692.493345 1887 1777 9166666.669679 1888 1777 20212626.84424 1889 1777 5347275.319281 1890 1777 -9166781.581064 1891 1777 -30549559.96733 1892 1777 -9732749.59088 1893 1777 11000114.915 1894 1777 -7828204.348045 1895 1777 11145949.53617 1778 1778 375187471.1352 1779 1778 -2662141.087263 1780 1778 -3097217.438217 1781 1778 -1482420.858694 1782 1778 -3229199.674597 1783 1778 1611128.328897 1784 1778 33069715.94339 1887 1778 -8015196.919944 1888 1778 -8680575.648187 1889 1778 -73923722.2424 1890 1778 -44485903.34313 1891 1778 -9538266.413314 1892 1778 -61195846.2912 1893 1778 -13932645.76025 1894 1778 7430633.02411 1895 1778 -20875211.59479 1779 1779 671761428.9985 1780 1779 36667432.73655 1781 1779 3125088.651632 1782 1779 19448570.31785 1783 1779 -36666973.09101 1784 1779 2702570.135099 1785 1779 -138432799.5 1786 1779 1.490116119385e-07 1787 1779 -462970.296923 1788 1779 -52308469.44899 1789 1779 36666666.66065 1790 1779 -2702548.129425 1887 1779 -72039530.38171 1888 1779 -9166781.581061 1889 1779 43189554.83944 1890 1779 73599694.87993 1891 1779 9166858.188655 1892 1779 781226.7976368 1893 1779 -19443104.86928 1894 1779 -9166743.27727 1895 1779 11639449.48452 1896 1779 -59964405.70834 1897 1779 7.525086402893e-07 1898 1779 -43970603.67818 1899 1779 -20163436.42398 1900 1779 9166666.669676 1901 1779 -11639352.31406 1780 1780 572753939.719 1781 1780 -8610914.043003 1782 1780 -36667126.30619 1783 1780 -108884310.9615 1784 1780 4611018.689007 1785 1780 -5.960464477539e-08 1786 1780 22901850.42796 1787 1780 -2777733.774299 1788 1780 36666666.66064 1789 1780 -41307675.60857 1790 1780 1513866.887135 1887 1780 -9166743.277267 1888 1780 -28955430.01587 1889 1780 7996602.428466 1890 1780 9166858.188655 1891 1780 48847822.54786 1892 1780 -2152764.803778 1893 1780 -9166781.581064 1894 1780 -51526325.20493 1895 1780 36236271.0855 1896 1780 3.725290298462e-07 1897 1780 -19630743.20649 1898 1780 -694433.4439167 1899 1780 9166666.669676 1900 1780 -17413237.96253 1901 1780 9149300.058182 1781 1781 607013167.9741 1782 1781 2737303.360137 1783 1781 5388804.78494 1784 1781 37600883.93994 1785 1781 -462970.2969232 1786 1781 -2777733.774298 1787 1781 39890623.87246 1788 1781 -2737270.351624 1789 1781 1541644.664895 1790 1781 -7895194.184061 1887 1781 43154829.95728 1888 1781 7802192.5578 1889 1781 -56944833.0873 1890 1781 781318.4370322 1891 1781 -2152691.493423 1892 1781 -99821807.80486 1893 1781 11639498.06975 1894 1781 36402939.91804 1895 1781 -55413772.21342 1896 1781 -43935881.45598 1897 1781 -694433.4439167 1898 1781 -57643892.87044 1899 1781 -11639352.31406 1900 1781 9149300.058182 1901 1781 -20870649.36111 1782 1782 387435706.2613 1783 1782 36666666.66065 1784 1782 2662175.186035 1785 1782 -52284795.20658 1786 1782 -36666666.66065 1787 1782 2505785.203048 1788 1782 -203296779.618 1789 1782 -36666973.09101 1790 1782 -2662152.453524 1791 1782 12401143.47877 1792 1782 29333639.75888 1793 1782 -2152799.783064 1887 1782 -4839277.140465 1888 1782 11000114.915 1889 1782 12370128.70975 1890 1782 -14860172.33131 1891 1782 -9166781.581062 1892 1782 -10279526.39882 1893 1782 33963705.33589 1894 1782 9166666.669679 1895 1782 9519894.71657 1896 1782 -18663081.30986 1897 1782 -9166666.669677 1898 1782 -10337268.9803 1899 1782 -73633660.33315 1900 1782 -9166743.277268 1901 1782 -44520628.22528 1902 1782 -7828204.348046 1903 1782 7333409.943332 1904 1782 -9288430.506837 1783 1783 332431392.3218 1784 1783 -6944376.976808 1785 1783 -36666666.66065 1786 1783 -41284001.36615 1787 1783 1263866.887163 1788 1783 -36667126.30619 1789 1783 -30960378.23954 1790 1783 -3847226.047119 1791 1783 44000459.63831 1792 1783 12401143.47877 1793 1783 2416692.493345 1887 1783 7333409.943332 1888 1783 -4839277.140466 1889 1783 -6597291.372073 1890 1783 -9166743.277267 1891 1783 -46943392.66696 1892 1783 -33736315.15602 1893 1783 9166666.669679 1894 1783 20212626.84424 1895 1783 5347275.319281 1896 1783 -9166666.669677 1897 1783 -15912882.8484 1898 1783 -8454866.614265 1899 1783 -9166781.581064 1900 1783 -30549559.96733 1901 1783 -9732749.59088 1902 1783 11000114.915 1903 1783 -7828204.348045 1904 1783 11145949.53617 1784 1784 375187471.1352 1785 1784 2471062.980849 1786 1784 1236089.109403 1787 1784 -7832062.870945 1788 1784 -2662141.087263 1789 1784 -3097217.438217 1790 1784 -1482420.858694 1791 1784 -3229199.674597 1792 1784 1611128.328897 1793 1784 33069715.94339 1887 1784 8246752.473166 1888 1784 -9895937.05811 1889 1784 -12904739.04124 1890 1784 -10279483.49692 1891 1784 -33902984.10692 1892 1784 -43192618.77883 1893 1784 -8015196.919944 1894 1784 -8680575.648187 1895 1784 -73923722.2424 1896 1784 -10337268.9803 1897 1784 -8454866.614265 1898 1784 -16869702.39011 1899 1784 -44485903.34313 1900 1784 -9538266.413314 1901 1784 -61195846.2912 1902 1784 -13932645.76025 1903 1784 7430633.02411 1904 1784 -20875211.59479 1785 1785 619629140.0329 1786 1785 1.168251037598e-05 1787 1785 925940.5938052 1788 1785 84152766.23505 1789 1785 -4.991888999939e-06 1790 1785 231485.148566 1794 1785 -138432799.5 1795 1785 1.490116119385e-07 1796 1785 -462970.296923 1797 1785 -52308469.44899 1798 1785 36666666.66065 1799 1785 -2702548.129425 1890 1785 -59565882.98117 1891 1785 4.91738319397e-07 1892 1785 43739118.52961 1893 1785 -20057887.18154 1894 1785 -9166666.669679 1895 1785 11581481.02689 1896 1785 54280296.46473 1897 1785 3.09944152832e-06 1898 1785 231485.1485852 1899 1785 -7107625.989141 1900 1785 -6.146728992462e-06 1901 1785 57871.2871768 1905 1785 -59964405.70834 1906 1785 7.525086402893e-07 1907 1785 -43970603.67818 1908 1785 -20163436.42398 1909 1785 9166666.669676 1910 1785 -11639352.31406 1786 1786 531622789.3528 1787 1786 -11110935.09172 1788 1786 -4.798173904419e-06 1789 1786 -55180296.03374 1790 1786 5555467.545859 1794 1786 -5.960464477539e-08 1795 1786 22901850.42796 1796 1786 -2777733.774299 1797 1786 36666666.66064 1798 1786 -41307675.60857 1799 1786 1513866.887135 1890 1786 -5.811452865601e-07 1891 1786 -19232220.47929 1892 1786 -694433.4439163 1893 1786 -9166666.669679 1894 1786 -17307688.72007 1895 1786 9079855.613715 1896 1786 3.635883331299e-06 1897 1786 32278708.78388 1898 1786 -2777733.774297 1899 1786 -5.349516868591e-06 1900 1786 -41940891.5735 1901 1786 36472200.21471 1905 1786 3.725290298462e-07 1906 1786 -19630743.20649 1907 1786 -694433.4439167 1908 1786 9166666.669676 1909 1786 -17413237.96253 1910 1786 9149300.058182 1787 1787 599591912.5003 1788 1787 231485.1485663 1789 1787 5555467.545859 1790 1787 78550735.85485 1794 1787 -462970.2969232 1795 1787 -2777733.774298 1796 1787 39890623.87246 1797 1787 -2737270.351624 1798 1787 1541644.664895 1799 1787 -7895194.184061 1890 1787 43704396.30741 1891 1787 -694433.4439163 1892 1787 -56581165.5979 1893 1787 11581481.02689 1894 1787 9079855.613715 1895 1787 -20589184.71456 1896 1787 231485.148585 1897 1787 -2777733.774298 1898 1787 -118440658.1206 1899 1787 57871.28717716 1900 1787 36444422.43695 1901 1787 -55417829.51533 1905 1787 -43935881.45598 1906 1787 -694433.4439167 1907 1787 -57643892.87044 1908 1787 -11639352.31406 1909 1787 9149300.058182 1910 1787 -20870649.36111 1788 1788 671761428.9985 1789 1788 36667432.73655 1790 1788 3125088.651632 1791 1788 19448570.31785 1792 1788 -36666973.09101 1793 1788 2702570.135099 1794 1788 -52284795.20658 1795 1788 -36666666.66065 1796 1788 2505785.203048 1797 1788 -138432799.5 1798 1788 1.490116119385e-07 1799 1788 -462970.296923 1800 1788 -52308469.44899 1801 1788 36666666.66065 1802 1788 -2702548.129425 1890 1788 -18569369.18862 1891 1788 9166666.669678 1892 1788 10279397.69313 1893 1788 -72039530.38171 1894 1788 -9166781.581061 1895 1788 43189554.83944 1896 1788 -1129879.778007 1897 1788 2.369284629822e-06 1898 1788 57871.28717239 1899 1788 73599694.87993 1900 1788 9166858.188655 1901 1788 781226.7976368 1902 1788 -19443104.86928 1903 1788 -9166743.27727 1904 1788 11639449.48452 1905 1788 -18663081.30986 1906 1788 -9166666.669677 1907 1788 -10337268.9803 1908 1788 -59964405.70834 1909 1788 7.525086402893e-07 1910 1788 -43970603.67818 1911 1788 -20163436.42398 1912 1788 9166666.669676 1913 1788 -11639352.31406 1789 1789 572753939.719 1790 1789 -8610914.043003 1791 1789 -36667126.30619 1792 1789 -108884310.9615 1793 1789 4611018.689007 1794 1789 -36666666.66065 1795 1789 -41284001.36615 1796 1789 1263866.887163 1797 1789 -5.960464477539e-08 1798 1789 22901850.42796 1799 1789 -2777733.774299 1800 1789 36666666.66064 1801 1789 -41307675.60857 1802 1789 1513866.887135 1890 1789 9166666.669678 1891 1789 -15819170.72716 1892 1789 -8385422.169798 1893 1789 -9166743.277267 1894 1789 -28955430.01587 1895 1789 7996602.428466 1896 1789 2.913177013397e-06 1897 1789 -35963145.36236 1898 1789 -33694466.44041 1899 1789 9166858.188655 1900 1789 48847822.54786 1901 1789 -2152764.803778 1902 1789 -9166781.581064 1903 1789 -51526325.20493 1904 1789 36236271.0855 1905 1789 -9166666.669677 1906 1789 -15912882.8484 1907 1789 -8454866.614265 1908 1789 3.725290298462e-07 1909 1789 -19630743.20649 1910 1789 -694433.4439167 1911 1789 9166666.669676 1912 1789 -17413237.96253 1913 1789 9149300.058182 1790 1790 607013167.9741 1791 1790 2737303.360137 1792 1790 5388804.78494 1793 1790 37600883.93994 1794 1790 2471062.980849 1795 1790 1236089.109403 1796 1790 -7832062.870945 1797 1790 -462970.2969232 1798 1790 -2777733.774298 1799 1790 39890623.87246 1800 1790 -2737270.351624 1801 1790 1541644.664895 1802 1790 -7895194.184061 1890 1790 10279397.69313 1891 1790 -8385422.169798 1892 1790 -16619803.40013 1893 1790 43154829.95728 1894 1790 7802192.5578 1895 1790 -56944833.0873 1896 1790 57871.28717278 1897 1790 -33666688.66265 1898 1790 -39477172.9523 1899 1790 781318.4370322 1900 1790 -2152691.493423 1901 1790 -99821807.80486 1902 1790 11639498.06975 1903 1790 36402939.91804 1904 1790 -55413772.21342 1905 1790 -10337268.9803 1906 1790 -8454866.614265 1907 1790 -16869702.39011 1908 1790 -43935881.45598 1909 1790 -694433.4439167 1910 1790 -57643892.87044 1911 1790 -11639352.31406 1912 1790 9149300.058182 1913 1790 -20870649.36111 1791 1791 387435706.2613 1792 1791 36666666.66065 1793 1791 2662175.186035 1797 1791 -52284795.20658 1798 1791 -36666666.66065 1799 1791 2505785.203048 1800 1791 -203296779.618 1801 1791 -36666973.09101 1802 1791 -2662152.453524 1803 1791 12401143.47877 1804 1791 29333639.75888 1805 1791 -2152799.783064 1893 1791 -4839277.140465 1894 1791 11000114.915 1895 1791 12370128.70975 1899 1791 -14860172.33131 1900 1791 -9166781.581062 1901 1791 -10279526.39882 1902 1791 33963705.33589 1903 1791 9166666.669679 1904 1791 9519894.71657 1908 1791 -18663081.30986 1909 1791 -9166666.669677 1910 1791 -10337268.9803 1911 1791 -73633660.33315 1912 1791 -9166743.277268 1913 1791 -44520628.22528 1914 1791 -7828204.348046 1915 1791 7333409.943332 1916 1791 -9288430.506837 1792 1792 332431392.3218 1793 1792 -6944376.976808 1797 1792 -36666666.66065 1798 1792 -41284001.36615 1799 1792 1263866.887163 1800 1792 -36667126.30619 1801 1792 -30960378.23954 1802 1792 -3847226.047119 1803 1792 44000459.63831 1804 1792 12401143.47877 1805 1792 2416692.493345 1893 1792 7333409.943332 1894 1792 -4839277.140466 1895 1792 -6597291.372073 1899 1792 -9166743.277267 1900 1792 -46943392.66696 1901 1792 -33736315.15602 1902 1792 9166666.669679 1903 1792 20212626.84424 1904 1792 5347275.319281 1908 1792 -9166666.669677 1909 1792 -15912882.8484 1910 1792 -8454866.614265 1911 1792 -9166781.581064 1912 1792 -30549559.96733 1913 1792 -9732749.59088 1914 1792 11000114.915 1915 1792 -7828204.348045 1916 1792 11145949.53617 1793 1793 375187471.1352 1797 1793 2471062.980849 1798 1793 1236089.109403 1799 1793 -7832062.870945 1800 1793 -2662141.087263 1801 1793 -3097217.438217 1802 1793 -1482420.858694 1803 1793 -3229199.674597 1804 1793 1611128.328897 1805 1793 33069715.94339 1893 1793 8246752.473166 1894 1793 -9895937.05811 1895 1793 -12904739.04124 1899 1793 -10279483.49692 1900 1793 -33902984.10692 1901 1793 -43192618.77883 1902 1793 -8015196.919944 1903 1793 -8680575.648187 1904 1793 -73923722.2424 1908 1793 -10337268.9803 1909 1793 -8454866.614265 1910 1793 -16869702.39011 1911 1793 -44485903.34313 1912 1793 -9538266.413314 1913 1793 -61195846.2912 1914 1793 -13932645.76025 1915 1793 7430633.02411 1916 1793 -20875211.59479 1794 1794 619629140.0329 1795 1794 1.168251037598e-05 1796 1794 925940.5938052 1797 1794 84152766.23505 1798 1794 -4.991888999939e-06 1799 1794 231485.148566 1806 1794 -138432799.5 1807 1794 1.490116119385e-07 1808 1794 -462970.296923 1809 1794 -52308469.44899 1810 1794 36666666.66065 1811 1794 -2702548.129425 1896 1794 -59565882.98117 1897 1794 4.91738319397e-07 1898 1794 43739118.52961 1899 1794 -20057887.18154 1900 1794 -9166666.669679 1901 1794 11581481.02689 1905 1794 54280296.46473 1906 1794 3.09944152832e-06 1907 1794 231485.1485852 1908 1794 -7107625.989141 1909 1794 -6.146728992462e-06 1910 1794 57871.2871768 1917 1794 -59964405.70834 1918 1794 7.525086402893e-07 1919 1794 -43970603.67818 1920 1794 -20163436.42398 1921 1794 9166666.669676 1922 1794 -11639352.31406 1795 1795 531622789.3528 1796 1795 -11110935.09172 1797 1795 -4.798173904419e-06 1798 1795 -55180296.03374 1799 1795 5555467.545859 1806 1795 -5.960464477539e-08 1807 1795 22901850.42796 1808 1795 -2777733.774299 1809 1795 36666666.66064 1810 1795 -41307675.60857 1811 1795 1513866.887135 1896 1795 -5.811452865601e-07 1897 1795 -19232220.47929 1898 1795 -694433.4439163 1899 1795 -9166666.669679 1900 1795 -17307688.72007 1901 1795 9079855.613715 1905 1795 3.635883331299e-06 1906 1795 32278708.78388 1907 1795 -2777733.774297 1908 1795 -5.349516868591e-06 1909 1795 -41940891.5735 1910 1795 36472200.21471 1917 1795 3.725290298462e-07 1918 1795 -19630743.20649 1919 1795 -694433.4439167 1920 1795 9166666.669676 1921 1795 -17413237.96253 1922 1795 9149300.058182 1796 1796 599591912.5003 1797 1796 231485.1485663 1798 1796 5555467.545859 1799 1796 78550735.85485 1806 1796 -462970.2969232 1807 1796 -2777733.774298 1808 1796 39890623.87246 1809 1796 -2737270.351624 1810 1796 1541644.664895 1811 1796 -7895194.184061 1896 1796 43704396.30741 1897 1796 -694433.4439163 1898 1796 -56581165.5979 1899 1796 11581481.02689 1900 1796 9079855.613715 1901 1796 -20589184.71456 1905 1796 231485.148585 1906 1796 -2777733.774298 1907 1796 -118440658.1206 1908 1796 57871.28717716 1909 1796 36444422.43695 1910 1796 -55417829.51533 1917 1796 -43935881.45598 1918 1796 -694433.4439167 1919 1796 -57643892.87044 1920 1796 -11639352.31406 1921 1796 9149300.058182 1922 1796 -20870649.36111 1797 1797 619629140.0329 1798 1797 1.168251037598e-05 1799 1797 925940.5938052 1800 1797 84152766.23505 1801 1797 -4.991888999939e-06 1802 1797 231485.148566 1806 1797 -52284795.20658 1807 1797 -36666666.66065 1808 1797 2505785.203048 1809 1797 -138432799.5 1810 1797 1.490116119385e-07 1811 1797 -462970.296923 1812 1797 -52308469.44899 1813 1797 36666666.66065 1814 1797 -2702548.129425 1896 1797 -18569369.18862 1897 1797 9166666.669678 1898 1797 10279397.69313 1899 1797 -59565882.98117 1900 1797 4.91738319397e-07 1901 1797 43739118.52961 1902 1797 -20057887.18154 1903 1797 -9166666.669679 1904 1797 11581481.02689 1905 1797 -1129879.778007 1906 1797 2.369284629822e-06 1907 1797 57871.28717239 1908 1797 54280296.46473 1909 1797 3.09944152832e-06 1910 1797 231485.1485852 1911 1797 -7107625.989141 1912 1797 -6.146728992462e-06 1913 1797 57871.2871768 1917 1797 -18663081.30986 1918 1797 -9166666.669677 1919 1797 -10337268.9803 1920 1797 -59964405.70834 1921 1797 7.525086402893e-07 1922 1797 -43970603.67818 1923 1797 -20163436.42398 1924 1797 9166666.669676 1925 1797 -11639352.31406 1798 1798 531622789.3528 1799 1798 -11110935.09172 1800 1798 -4.798173904419e-06 1801 1798 -55180296.03374 1802 1798 5555467.545859 1806 1798 -36666666.66065 1807 1798 -41284001.36615 1808 1798 1263866.887163 1809 1798 -5.960464477539e-08 1810 1798 22901850.42796 1811 1798 -2777733.774299 1812 1798 36666666.66064 1813 1798 -41307675.60857 1814 1798 1513866.887135 1896 1798 9166666.669678 1897 1798 -15819170.72716 1898 1798 -8385422.169798 1899 1798 -5.811452865601e-07 1900 1798 -19232220.47929 1901 1798 -694433.4439163 1902 1798 -9166666.669679 1903 1798 -17307688.72007 1904 1798 9079855.613715 1905 1798 2.913177013397e-06 1906 1798 -35963145.36236 1907 1798 -33694466.44041 1908 1798 3.635883331299e-06 1909 1798 32278708.78388 1910 1798 -2777733.774297 1911 1798 -5.349516868591e-06 1912 1798 -41940891.5735 1913 1798 36472200.21471 1917 1798 -9166666.669677 1918 1798 -15912882.8484 1919 1798 -8454866.614265 1920 1798 3.725290298462e-07 1921 1798 -19630743.20649 1922 1798 -694433.4439167 1923 1798 9166666.669676 1924 1798 -17413237.96253 1925 1798 9149300.058182 1799 1799 599591912.5003 1800 1799 231485.1485663 1801 1799 5555467.545859 1802 1799 78550735.85485 1806 1799 2471062.980849 1807 1799 1236089.109403 1808 1799 -7832062.870945 1809 1799 -462970.2969232 1810 1799 -2777733.774298 1811 1799 39890623.87246 1812 1799 -2737270.351624 1813 1799 1541644.664895 1814 1799 -7895194.184061 1896 1799 10279397.69313 1897 1799 -8385422.169798 1898 1799 -16619803.40013 1899 1799 43704396.30741 1900 1799 -694433.4439163 1901 1799 -56581165.5979 1902 1799 11581481.02689 1903 1799 9079855.613715 1904 1799 -20589184.71456 1905 1799 57871.28717278 1906 1799 -33666688.66265 1907 1799 -39477172.9523 1908 1799 231485.148585 1909 1799 -2777733.774298 1910 1799 -118440658.1206 1911 1799 57871.28717716 1912 1799 36444422.43695 1913 1799 -55417829.51533 1917 1799 -10337268.9803 1918 1799 -8454866.614265 1919 1799 -16869702.39011 1920 1799 -43935881.45598 1921 1799 -694433.4439167 1922 1799 -57643892.87044 1923 1799 -11639352.31406 1924 1799 9149300.058182 1925 1799 -20870649.36111 1800 1800 671761428.9985 1801 1800 36667432.73655 1802 1800 3125088.651632 1803 1800 19448570.31785 1804 1800 -36666973.09101 1805 1800 2702570.135099 1809 1800 -52284795.20658 1810 1800 -36666666.66065 1811 1800 2505785.203048 1812 1800 -138432799.5 1813 1800 1.490116119385e-07 1814 1800 -462970.296923 1815 1800 -52308469.44899 1816 1800 36666666.66065 1817 1800 -2702548.129425 1899 1800 -18569369.18862 1900 1800 9166666.669678 1901 1800 10279397.69313 1902 1800 -72039530.38171 1903 1800 -9166781.581061 1904 1800 43189554.83944 1908 1800 -1129879.778007 1909 1800 2.369284629822e-06 1910 1800 57871.28717239 1911 1800 73599694.87993 1912 1800 9166858.188655 1913 1800 781226.7976368 1914 1800 -19443104.86928 1915 1800 -9166743.27727 1916 1800 11639449.48452 1920 1800 -18663081.30986 1921 1800 -9166666.669677 1922 1800 -10337268.9803 1923 1800 -59964405.70834 1924 1800 7.525086402893e-07 1925 1800 -43970603.67818 1926 1800 -20163436.42398 1927 1800 9166666.669676 1928 1800 -11639352.31406 1801 1801 572753939.719 1802 1801 -8610914.043003 1803 1801 -36667126.30619 1804 1801 -108884310.9615 1805 1801 4611018.689007 1809 1801 -36666666.66065 1810 1801 -41284001.36615 1811 1801 1263866.887163 1812 1801 -5.960464477539e-08 1813 1801 22901850.42796 1814 1801 -2777733.774299 1815 1801 36666666.66064 1816 1801 -41307675.60857 1817 1801 1513866.887135 1899 1801 9166666.669678 1900 1801 -15819170.72716 1901 1801 -8385422.169798 1902 1801 -9166743.277267 1903 1801 -28955430.01587 1904 1801 7996602.428466 1908 1801 2.913177013397e-06 1909 1801 -35963145.36236 1910 1801 -33694466.44041 1911 1801 9166858.188655 1912 1801 48847822.54786 1913 1801 -2152764.803778 1914 1801 -9166781.581064 1915 1801 -51526325.20493 1916 1801 36236271.0855 1920 1801 -9166666.669677 1921 1801 -15912882.8484 1922 1801 -8454866.614265 1923 1801 3.725290298462e-07 1924 1801 -19630743.20649 1925 1801 -694433.4439167 1926 1801 9166666.669676 1927 1801 -17413237.96253 1928 1801 9149300.058182 1802 1802 607013167.9741 1803 1802 2737303.360137 1804 1802 5388804.78494 1805 1802 37600883.93994 1809 1802 2471062.980849 1810 1802 1236089.109403 1811 1802 -7832062.870945 1812 1802 -462970.2969232 1813 1802 -2777733.774298 1814 1802 39890623.87246 1815 1802 -2737270.351624 1816 1802 1541644.664895 1817 1802 -7895194.184061 1899 1802 10279397.69313 1900 1802 -8385422.169798 1901 1802 -16619803.40013 1902 1802 43154829.95728 1903 1802 7802192.5578 1904 1802 -56944833.0873 1908 1802 57871.28717278 1909 1802 -33666688.66265 1910 1802 -39477172.9523 1911 1802 781318.4370322 1912 1802 -2152691.493423 1913 1802 -99821807.80486 1914 1802 11639498.06975 1915 1802 36402939.91804 1916 1802 -55413772.21342 1920 1802 -10337268.9803 1921 1802 -8454866.614265 1922 1802 -16869702.39011 1923 1802 -43935881.45598 1924 1802 -694433.4439167 1925 1802 -57643892.87044 1926 1802 -11639352.31406 1927 1802 9149300.058182 1928 1802 -20870649.36111 1803 1803 387435706.2613 1804 1803 36666666.66065 1805 1803 2662175.186035 1812 1803 -52284795.20658 1813 1803 -36666666.66065 1814 1803 2505785.203048 1815 1803 -203296779.618 1816 1803 -36666973.09101 1817 1803 -2662152.453524 1818 1803 12401143.47877 1819 1803 29333639.75888 1820 1803 -2152799.783064 1902 1803 -4839277.140465 1903 1803 11000114.915 1904 1803 12370128.70975 1911 1803 -14860172.33131 1912 1803 -9166781.581062 1913 1803 -10279526.39882 1914 1803 33963705.33589 1915 1803 9166666.669679 1916 1803 9519894.71657 1923 1803 -18663081.30986 1924 1803 -9166666.669677 1925 1803 -10337268.9803 1926 1803 -73633660.33315 1927 1803 -9166743.277268 1928 1803 -44520628.22528 1929 1803 -7828204.348046 1930 1803 7333409.943332 1931 1803 -9288430.506837 1804 1804 332431392.3218 1805 1804 -6944376.976808 1812 1804 -36666666.66065 1813 1804 -41284001.36615 1814 1804 1263866.887163 1815 1804 -36667126.30619 1816 1804 -30960378.23954 1817 1804 -3847226.047119 1818 1804 44000459.63831 1819 1804 12401143.47877 1820 1804 2416692.493345 1902 1804 7333409.943332 1903 1804 -4839277.140466 1904 1804 -6597291.372073 1911 1804 -9166743.277267 1912 1804 -46943392.66696 1913 1804 -33736315.15602 1914 1804 9166666.669679 1915 1804 20212626.84424 1916 1804 5347275.319281 1923 1804 -9166666.669677 1924 1804 -15912882.8484 1925 1804 -8454866.614265 1926 1804 -9166781.581064 1927 1804 -30549559.96733 1928 1804 -9732749.59088 1929 1804 11000114.915 1930 1804 -7828204.348045 1931 1804 11145949.53617 1805 1805 375187471.1352 1812 1805 2471062.980849 1813 1805 1236089.109403 1814 1805 -7832062.870945 1815 1805 -2662141.087263 1816 1805 -3097217.438217 1817 1805 -1482420.858694 1818 1805 -3229199.674597 1819 1805 1611128.328897 1820 1805 33069715.94339 1902 1805 8246752.473166 1903 1805 -9895937.05811 1904 1805 -12904739.04124 1911 1805 -10279483.49692 1912 1805 -33902984.10692 1913 1805 -43192618.77883 1914 1805 -8015196.919944 1915 1805 -8680575.648187 1916 1805 -73923722.2424 1923 1805 -10337268.9803 1924 1805 -8454866.614265 1925 1805 -16869702.39011 1926 1805 -44485903.34313 1927 1805 -9538266.413314 1928 1805 -61195846.2912 1929 1805 -13932645.76025 1930 1805 7430633.02411 1931 1805 -20875211.59479 1806 1806 619629140.0329 1807 1806 1.168251037598e-05 1808 1806 925940.5938052 1809 1806 84152766.23505 1810 1806 -4.991888999939e-06 1811 1806 231485.148566 1821 1806 -138432799.5 1822 1806 1.490116119385e-07 1823 1806 -462970.296923 1824 1806 -52308469.44899 1825 1806 36666666.66065 1826 1806 -2702548.129425 1905 1806 -59565882.98117 1906 1806 4.91738319397e-07 1907 1806 43739118.52961 1908 1806 -20057887.18154 1909 1806 -9166666.669679 1910 1806 11581481.02689 1917 1806 54280296.46473 1918 1806 3.09944152832e-06 1919 1806 231485.1485852 1920 1806 -7107625.989141 1921 1806 -6.146728992462e-06 1922 1806 57871.2871768 1932 1806 -59964405.70834 1933 1806 7.525086402893e-07 1934 1806 -43970603.67818 1935 1806 -20163436.42398 1936 1806 9166666.669676 1937 1806 -11639352.31406 1807 1807 531622789.3528 1808 1807 -11110935.09172 1809 1807 -4.798173904419e-06 1810 1807 -55180296.03374 1811 1807 5555467.545859 1821 1807 -5.960464477539e-08 1822 1807 22901850.42796 1823 1807 -2777733.774299 1824 1807 36666666.66064 1825 1807 -41307675.60857 1826 1807 1513866.887135 1905 1807 -5.811452865601e-07 1906 1807 -19232220.47929 1907 1807 -694433.4439163 1908 1807 -9166666.669679 1909 1807 -17307688.72007 1910 1807 9079855.613715 1917 1807 3.635883331299e-06 1918 1807 32278708.78388 1919 1807 -2777733.774297 1920 1807 -5.349516868591e-06 1921 1807 -41940891.5735 1922 1807 36472200.21471 1932 1807 3.725290298462e-07 1933 1807 -19630743.20649 1934 1807 -694433.4439167 1935 1807 9166666.669676 1936 1807 -17413237.96253 1937 1807 9149300.058182 1808 1808 599591912.5003 1809 1808 231485.1485663 1810 1808 5555467.545859 1811 1808 78550735.85485 1821 1808 -462970.2969232 1822 1808 -2777733.774298 1823 1808 39890623.87246 1824 1808 -2737270.351624 1825 1808 1541644.664895 1826 1808 -7895194.184061 1905 1808 43704396.30741 1906 1808 -694433.4439163 1907 1808 -56581165.5979 1908 1808 11581481.02689 1909 1808 9079855.613715 1910 1808 -20589184.71456 1917 1808 231485.148585 1918 1808 -2777733.774298 1919 1808 -118440658.1206 1920 1808 57871.28717716 1921 1808 36444422.43695 1922 1808 -55417829.51533 1932 1808 -43935881.45598 1933 1808 -694433.4439167 1934 1808 -57643892.87044 1935 1808 -11639352.31406 1936 1808 9149300.058182 1937 1808 -20870649.36111 1809 1809 619629140.0329 1810 1809 1.168251037598e-05 1811 1809 925940.5938052 1812 1809 84152766.23505 1813 1809 -4.991888999939e-06 1814 1809 231485.148566 1821 1809 -52284795.20658 1822 1809 -36666666.66065 1823 1809 2505785.203048 1824 1809 -138432799.5 1825 1809 1.490116119385e-07 1826 1809 -462970.296923 1827 1809 -52308469.44899 1828 1809 36666666.66065 1829 1809 -2702548.129425 1905 1809 -18569369.18862 1906 1809 9166666.669678 1907 1809 10279397.69313 1908 1809 -59565882.98117 1909 1809 4.91738319397e-07 1910 1809 43739118.52961 1911 1809 -20057887.18154 1912 1809 -9166666.669679 1913 1809 11581481.02689 1917 1809 -1129879.778007 1918 1809 2.369284629822e-06 1919 1809 57871.28717239 1920 1809 54280296.46473 1921 1809 3.09944152832e-06 1922 1809 231485.1485852 1923 1809 -7107625.989141 1924 1809 -6.146728992462e-06 1925 1809 57871.2871768 1932 1809 -18663081.30986 1933 1809 -9166666.669677 1934 1809 -10337268.9803 1935 1809 -59964405.70834 1936 1809 7.525086402893e-07 1937 1809 -43970603.67818 1938 1809 -20163436.42398 1939 1809 9166666.669676 1940 1809 -11639352.31406 1810 1810 531622789.3528 1811 1810 -11110935.09172 1812 1810 -4.798173904419e-06 1813 1810 -55180296.03374 1814 1810 5555467.545859 1821 1810 -36666666.66065 1822 1810 -41284001.36615 1823 1810 1263866.887163 1824 1810 -5.960464477539e-08 1825 1810 22901850.42796 1826 1810 -2777733.774299 1827 1810 36666666.66064 1828 1810 -41307675.60857 1829 1810 1513866.887135 1905 1810 9166666.669678 1906 1810 -15819170.72716 1907 1810 -8385422.169798 1908 1810 -5.811452865601e-07 1909 1810 -19232220.47929 1910 1810 -694433.4439163 1911 1810 -9166666.669679 1912 1810 -17307688.72007 1913 1810 9079855.613715 1917 1810 2.913177013397e-06 1918 1810 -35963145.36236 1919 1810 -33694466.44041 1920 1810 3.635883331299e-06 1921 1810 32278708.78388 1922 1810 -2777733.774297 1923 1810 -5.349516868591e-06 1924 1810 -41940891.5735 1925 1810 36472200.21471 1932 1810 -9166666.669677 1933 1810 -15912882.8484 1934 1810 -8454866.614265 1935 1810 3.725290298462e-07 1936 1810 -19630743.20649 1937 1810 -694433.4439167 1938 1810 9166666.669676 1939 1810 -17413237.96253 1940 1810 9149300.058182 1811 1811 599591912.5003 1812 1811 231485.1485663 1813 1811 5555467.545859 1814 1811 78550735.85485 1821 1811 2471062.980849 1822 1811 1236089.109403 1823 1811 -7832062.870945 1824 1811 -462970.2969232 1825 1811 -2777733.774298 1826 1811 39890623.87246 1827 1811 -2737270.351624 1828 1811 1541644.664895 1829 1811 -7895194.184061 1905 1811 10279397.69313 1906 1811 -8385422.169798 1907 1811 -16619803.40013 1908 1811 43704396.30741 1909 1811 -694433.4439163 1910 1811 -56581165.5979 1911 1811 11581481.02689 1912 1811 9079855.613715 1913 1811 -20589184.71456 1917 1811 57871.28717278 1918 1811 -33666688.66265 1919 1811 -39477172.9523 1920 1811 231485.148585 1921 1811 -2777733.774298 1922 1811 -118440658.1206 1923 1811 57871.28717716 1924 1811 36444422.43695 1925 1811 -55417829.51533 1932 1811 -10337268.9803 1933 1811 -8454866.614265 1934 1811 -16869702.39011 1935 1811 -43935881.45598 1936 1811 -694433.4439167 1937 1811 -57643892.87044 1938 1811 -11639352.31406 1939 1811 9149300.058182 1940 1811 -20870649.36111 1812 1812 619629140.0329 1813 1812 1.168251037598e-05 1814 1812 925940.5938052 1815 1812 84152766.23505 1816 1812 -4.991888999939e-06 1817 1812 231485.148566 1824 1812 -52284795.20658 1825 1812 -36666666.66065 1826 1812 2505785.203048 1827 1812 -138432799.5 1828 1812 1.490116119385e-07 1829 1812 -462970.296923 1830 1812 -52308469.44899 1831 1812 36666666.66065 1832 1812 -2702548.129425 1908 1812 -18569369.18862 1909 1812 9166666.669678 1910 1812 10279397.69313 1911 1812 -59565882.98117 1912 1812 4.91738319397e-07 1913 1812 43739118.52961 1914 1812 -20057887.18154 1915 1812 -9166666.669679 1916 1812 11581481.02689 1920 1812 -1129879.778007 1921 1812 2.369284629822e-06 1922 1812 57871.28717239 1923 1812 54280296.46473 1924 1812 3.09944152832e-06 1925 1812 231485.1485852 1926 1812 -7107625.989141 1927 1812 -6.146728992462e-06 1928 1812 57871.2871768 1935 1812 -18663081.30986 1936 1812 -9166666.669677 1937 1812 -10337268.9803 1938 1812 -59964405.70834 1939 1812 7.525086402893e-07 1940 1812 -43970603.67818 1941 1812 -20163436.42398 1942 1812 9166666.669676 1943 1812 -11639352.31406 1813 1813 531622789.3528 1814 1813 -11110935.09172 1815 1813 -4.798173904419e-06 1816 1813 -55180296.03374 1817 1813 5555467.545859 1824 1813 -36666666.66065 1825 1813 -41284001.36615 1826 1813 1263866.887163 1827 1813 -5.960464477539e-08 1828 1813 22901850.42796 1829 1813 -2777733.774299 1830 1813 36666666.66064 1831 1813 -41307675.60857 1832 1813 1513866.887135 1908 1813 9166666.669678 1909 1813 -15819170.72716 1910 1813 -8385422.169798 1911 1813 -5.811452865601e-07 1912 1813 -19232220.47929 1913 1813 -694433.4439163 1914 1813 -9166666.669679 1915 1813 -17307688.72007 1916 1813 9079855.613715 1920 1813 2.913177013397e-06 1921 1813 -35963145.36236 1922 1813 -33694466.44041 1923 1813 3.635883331299e-06 1924 1813 32278708.78388 1925 1813 -2777733.774297 1926 1813 -5.349516868591e-06 1927 1813 -41940891.5735 1928 1813 36472200.21471 1935 1813 -9166666.669677 1936 1813 -15912882.8484 1937 1813 -8454866.614265 1938 1813 3.725290298462e-07 1939 1813 -19630743.20649 1940 1813 -694433.4439167 1941 1813 9166666.669676 1942 1813 -17413237.96253 1943 1813 9149300.058182 1814 1814 599591912.5003 1815 1814 231485.1485663 1816 1814 5555467.545859 1817 1814 78550735.85485 1824 1814 2471062.980849 1825 1814 1236089.109403 1826 1814 -7832062.870945 1827 1814 -462970.2969232 1828 1814 -2777733.774298 1829 1814 39890623.87246 1830 1814 -2737270.351624 1831 1814 1541644.664895 1832 1814 -7895194.184061 1908 1814 10279397.69313 1909 1814 -8385422.169798 1910 1814 -16619803.40013 1911 1814 43704396.30741 1912 1814 -694433.4439163 1913 1814 -56581165.5979 1914 1814 11581481.02689 1915 1814 9079855.613715 1916 1814 -20589184.71456 1920 1814 57871.28717278 1921 1814 -33666688.66265 1922 1814 -39477172.9523 1923 1814 231485.148585 1924 1814 -2777733.774298 1925 1814 -118440658.1206 1926 1814 57871.28717716 1927 1814 36444422.43695 1928 1814 -55417829.51533 1935 1814 -10337268.9803 1936 1814 -8454866.614265 1937 1814 -16869702.39011 1938 1814 -43935881.45598 1939 1814 -694433.4439167 1940 1814 -57643892.87044 1941 1814 -11639352.31406 1942 1814 9149300.058182 1943 1814 -20870649.36111 1815 1815 671761428.9985 1816 1815 36667432.73655 1817 1815 3125088.651632 1818 1815 19448570.31785 1819 1815 -36666973.09101 1820 1815 2702570.135099 1827 1815 -52284795.20658 1828 1815 -36666666.66065 1829 1815 2505785.203048 1830 1815 -138432799.5 1831 1815 1.490116119385e-07 1832 1815 -462970.296923 1833 1815 -52308469.44899 1834 1815 36666666.66065 1835 1815 -2702548.129425 1911 1815 -18569369.18862 1912 1815 9166666.669678 1913 1815 10279397.69313 1914 1815 -72039530.38171 1915 1815 -9166781.581061 1916 1815 43189554.83944 1923 1815 -1129879.778007 1924 1815 2.369284629822e-06 1925 1815 57871.28717239 1926 1815 73599694.87993 1927 1815 9166858.188655 1928 1815 781226.7976368 1929 1815 -19443104.86928 1930 1815 -9166743.27727 1931 1815 11639449.48452 1938 1815 -18663081.30986 1939 1815 -9166666.669677 1940 1815 -10337268.9803 1941 1815 -59964405.70834 1942 1815 7.525086402893e-07 1943 1815 -43970603.67818 1944 1815 -20163436.42398 1945 1815 9166666.669676 1946 1815 -11639352.31406 1816 1816 572753939.719 1817 1816 -8610914.043003 1818 1816 -36667126.30619 1819 1816 -108884310.9615 1820 1816 4611018.689007 1827 1816 -36666666.66065 1828 1816 -41284001.36615 1829 1816 1263866.887163 1830 1816 -5.960464477539e-08 1831 1816 22901850.42796 1832 1816 -2777733.774299 1833 1816 36666666.66064 1834 1816 -41307675.60857 1835 1816 1513866.887135 1911 1816 9166666.669678 1912 1816 -15819170.72716 1913 1816 -8385422.169798 1914 1816 -9166743.277267 1915 1816 -28955430.01587 1916 1816 7996602.428466 1923 1816 2.913177013397e-06 1924 1816 -35963145.36236 1925 1816 -33694466.44041 1926 1816 9166858.188655 1927 1816 48847822.54786 1928 1816 -2152764.803778 1929 1816 -9166781.581064 1930 1816 -51526325.20493 1931 1816 36236271.0855 1938 1816 -9166666.669677 1939 1816 -15912882.8484 1940 1816 -8454866.614265 1941 1816 3.725290298462e-07 1942 1816 -19630743.20649 1943 1816 -694433.4439167 1944 1816 9166666.669676 1945 1816 -17413237.96253 1946 1816 9149300.058182 1817 1817 607013167.9741 1818 1817 2737303.360137 1819 1817 5388804.78494 1820 1817 37600883.93994 1827 1817 2471062.980849 1828 1817 1236089.109403 1829 1817 -7832062.870945 1830 1817 -462970.2969232 1831 1817 -2777733.774298 1832 1817 39890623.87246 1833 1817 -2737270.351624 1834 1817 1541644.664895 1835 1817 -7895194.184061 1911 1817 10279397.69313 1912 1817 -8385422.169798 1913 1817 -16619803.40013 1914 1817 43154829.95728 1915 1817 7802192.5578 1916 1817 -56944833.0873 1923 1817 57871.28717278 1924 1817 -33666688.66265 1925 1817 -39477172.9523 1926 1817 781318.4370322 1927 1817 -2152691.493423 1928 1817 -99821807.80486 1929 1817 11639498.06975 1930 1817 36402939.91804 1931 1817 -55413772.21342 1938 1817 -10337268.9803 1939 1817 -8454866.614265 1940 1817 -16869702.39011 1941 1817 -43935881.45598 1942 1817 -694433.4439167 1943 1817 -57643892.87044 1944 1817 -11639352.31406 1945 1817 9149300.058182 1946 1817 -20870649.36111 1818 1818 387435706.2613 1819 1818 36666666.66065 1820 1818 2662175.186035 1830 1818 -52284795.20658 1831 1818 -36666666.66065 1832 1818 2505785.203048 1833 1818 -203296779.618 1834 1818 -36666973.09101 1835 1818 -2662152.453524 1836 1818 12401143.47877 1837 1818 29333639.75888 1838 1818 -2152799.783064 1914 1818 -4839277.140465 1915 1818 11000114.915 1916 1818 12370128.70975 1926 1818 -14860172.33131 1927 1818 -9166781.581062 1928 1818 -10279526.39882 1929 1818 33963705.33589 1930 1818 9166666.669679 1931 1818 9519894.71657 1941 1818 -18663081.30986 1942 1818 -9166666.669677 1943 1818 -10337268.9803 1944 1818 -73633660.33315 1945 1818 -9166743.277268 1946 1818 -44520628.22528 1947 1818 -7828204.348046 1948 1818 7333409.943332 1949 1818 -9288430.506837 1819 1819 332431392.3218 1820 1819 -6944376.976808 1830 1819 -36666666.66065 1831 1819 -41284001.36615 1832 1819 1263866.887163 1833 1819 -36667126.30619 1834 1819 -30960378.23954 1835 1819 -3847226.047119 1836 1819 44000459.63831 1837 1819 12401143.47877 1838 1819 2416692.493345 1914 1819 7333409.943332 1915 1819 -4839277.140466 1916 1819 -6597291.372073 1926 1819 -9166743.277267 1927 1819 -46943392.66696 1928 1819 -33736315.15602 1929 1819 9166666.669679 1930 1819 20212626.84424 1931 1819 5347275.319281 1941 1819 -9166666.669677 1942 1819 -15912882.8484 1943 1819 -8454866.614265 1944 1819 -9166781.581064 1945 1819 -30549559.96733 1946 1819 -9732749.59088 1947 1819 11000114.915 1948 1819 -7828204.348045 1949 1819 11145949.53617 1820 1820 375187471.1352 1830 1820 2471062.980849 1831 1820 1236089.109403 1832 1820 -7832062.870945 1833 1820 -2662141.087263 1834 1820 -3097217.438217 1835 1820 -1482420.858694 1836 1820 -3229199.674597 1837 1820 1611128.328897 1838 1820 33069715.94339 1914 1820 8246752.473166 1915 1820 -9895937.05811 1916 1820 -12904739.04124 1926 1820 -10279483.49692 1927 1820 -33902984.10692 1928 1820 -43192618.77883 1929 1820 -8015196.919944 1930 1820 -8680575.648187 1931 1820 -73923722.2424 1941 1820 -10337268.9803 1942 1820 -8454866.614265 1943 1820 -16869702.39011 1944 1820 -44485903.34313 1945 1820 -9538266.413314 1946 1820 -61195846.2912 1947 1820 -13932645.76025 1948 1820 7430633.02411 1949 1820 -20875211.59479 1821 1821 619629140.0329 1822 1821 1.168251037598e-05 1823 1821 925940.5938052 1824 1821 84152766.23505 1825 1821 -4.991888999939e-06 1826 1821 231485.148566 1839 1821 -138432799.5 1840 1821 1.490116119385e-07 1841 1821 -462970.296923 1842 1821 -52308469.44899 1843 1821 36666666.66065 1844 1821 -2702548.129425 1917 1821 -59565882.98117 1918 1821 4.91738319397e-07 1919 1821 43739118.52961 1920 1821 -20057887.18154 1921 1821 -9166666.669679 1922 1821 11581481.02689 1932 1821 54280296.46473 1933 1821 3.09944152832e-06 1934 1821 231485.1485852 1935 1821 -7107625.989141 1936 1821 -6.146728992462e-06 1937 1821 57871.2871768 1950 1821 -59964405.70834 1951 1821 7.525086402893e-07 1952 1821 -43970603.67818 1953 1821 -20163436.42398 1954 1821 9166666.669676 1955 1821 -11639352.31406 1822 1822 531622789.3528 1823 1822 -11110935.09172 1824 1822 -4.798173904419e-06 1825 1822 -55180296.03374 1826 1822 5555467.545859 1839 1822 -5.960464477539e-08 1840 1822 22901850.42796 1841 1822 -2777733.774299 1842 1822 36666666.66064 1843 1822 -41307675.60857 1844 1822 1513866.887135 1917 1822 -5.811452865601e-07 1918 1822 -19232220.47929 1919 1822 -694433.4439163 1920 1822 -9166666.669679 1921 1822 -17307688.72007 1922 1822 9079855.613715 1932 1822 3.635883331299e-06 1933 1822 32278708.78388 1934 1822 -2777733.774297 1935 1822 -5.349516868591e-06 1936 1822 -41940891.5735 1937 1822 36472200.21471 1950 1822 3.725290298462e-07 1951 1822 -19630743.20649 1952 1822 -694433.4439167 1953 1822 9166666.669676 1954 1822 -17413237.96253 1955 1822 9149300.058182 1823 1823 599591912.5003 1824 1823 231485.1485663 1825 1823 5555467.545859 1826 1823 78550735.85485 1839 1823 -462970.2969232 1840 1823 -2777733.774298 1841 1823 39890623.87246 1842 1823 -2737270.351624 1843 1823 1541644.664895 1844 1823 -7895194.184061 1917 1823 43704396.30741 1918 1823 -694433.4439163 1919 1823 -56581165.5979 1920 1823 11581481.02689 1921 1823 9079855.613715 1922 1823 -20589184.71456 1932 1823 231485.148585 1933 1823 -2777733.774298 1934 1823 -118440658.1206 1935 1823 57871.28717716 1936 1823 36444422.43695 1937 1823 -55417829.51533 1950 1823 -43935881.45598 1951 1823 -694433.4439167 1952 1823 -57643892.87044 1953 1823 -11639352.31406 1954 1823 9149300.058182 1955 1823 -20870649.36111 1824 1824 619629140.0329 1825 1824 1.168251037598e-05 1826 1824 925940.5938052 1827 1824 84152766.23505 1828 1824 -4.991888999939e-06 1829 1824 231485.148566 1839 1824 -52284795.20658 1840 1824 -36666666.66065 1841 1824 2505785.203048 1842 1824 -138432799.5 1843 1824 1.490116119385e-07 1844 1824 -462970.296923 1845 1824 -52308469.44899 1846 1824 36666666.66065 1847 1824 -2702548.129425 1917 1824 -18569369.18862 1918 1824 9166666.669678 1919 1824 10279397.69313 1920 1824 -59565882.98117 1921 1824 4.91738319397e-07 1922 1824 43739118.52961 1923 1824 -20057887.18154 1924 1824 -9166666.669679 1925 1824 11581481.02689 1932 1824 -1129879.778007 1933 1824 2.369284629822e-06 1934 1824 57871.28717239 1935 1824 54280296.46473 1936 1824 3.09944152832e-06 1937 1824 231485.1485852 1938 1824 -7107625.989141 1939 1824 -6.146728992462e-06 1940 1824 57871.2871768 1950 1824 -18663081.30986 1951 1824 -9166666.669677 1952 1824 -10337268.9803 1953 1824 -59964405.70834 1954 1824 7.525086402893e-07 1955 1824 -43970603.67818 1956 1824 -20163436.42398 1957 1824 9166666.669676 1958 1824 -11639352.31406 1825 1825 531622789.3528 1826 1825 -11110935.09172 1827 1825 -4.798173904419e-06 1828 1825 -55180296.03374 1829 1825 5555467.545859 1839 1825 -36666666.66065 1840 1825 -41284001.36615 1841 1825 1263866.887163 1842 1825 -5.960464477539e-08 1843 1825 22901850.42796 1844 1825 -2777733.774299 1845 1825 36666666.66064 1846 1825 -41307675.60857 1847 1825 1513866.887135 1917 1825 9166666.669678 1918 1825 -15819170.72716 1919 1825 -8385422.169798 1920 1825 -5.811452865601e-07 1921 1825 -19232220.47929 1922 1825 -694433.4439163 1923 1825 -9166666.669679 1924 1825 -17307688.72007 1925 1825 9079855.613715 1932 1825 2.913177013397e-06 1933 1825 -35963145.36236 1934 1825 -33694466.44041 1935 1825 3.635883331299e-06 1936 1825 32278708.78388 1937 1825 -2777733.774297 1938 1825 -5.349516868591e-06 1939 1825 -41940891.5735 1940 1825 36472200.21471 1950 1825 -9166666.669677 1951 1825 -15912882.8484 1952 1825 -8454866.614265 1953 1825 3.725290298462e-07 1954 1825 -19630743.20649 1955 1825 -694433.4439167 1956 1825 9166666.669676 1957 1825 -17413237.96253 1958 1825 9149300.058182 1826 1826 599591912.5003 1827 1826 231485.1485663 1828 1826 5555467.545859 1829 1826 78550735.85485 1839 1826 2471062.980849 1840 1826 1236089.109403 1841 1826 -7832062.870945 1842 1826 -462970.2969232 1843 1826 -2777733.774298 1844 1826 39890623.87246 1845 1826 -2737270.351624 1846 1826 1541644.664895 1847 1826 -7895194.184061 1917 1826 10279397.69313 1918 1826 -8385422.169798 1919 1826 -16619803.40013 1920 1826 43704396.30741 1921 1826 -694433.4439163 1922 1826 -56581165.5979 1923 1826 11581481.02689 1924 1826 9079855.613715 1925 1826 -20589184.71456 1932 1826 57871.28717278 1933 1826 -33666688.66265 1934 1826 -39477172.9523 1935 1826 231485.148585 1936 1826 -2777733.774298 1937 1826 -118440658.1206 1938 1826 57871.28717716 1939 1826 36444422.43695 1940 1826 -55417829.51533 1950 1826 -10337268.9803 1951 1826 -8454866.614265 1952 1826 -16869702.39011 1953 1826 -43935881.45598 1954 1826 -694433.4439167 1955 1826 -57643892.87044 1956 1826 -11639352.31406 1957 1826 9149300.058182 1958 1826 -20870649.36111 1827 1827 619629140.0329 1828 1827 1.168251037598e-05 1829 1827 925940.5938052 1830 1827 84152766.23505 1831 1827 -4.991888999939e-06 1832 1827 231485.148566 1842 1827 -52284795.20658 1843 1827 -36666666.66065 1844 1827 2505785.203048 1845 1827 -138432799.5 1846 1827 1.490116119385e-07 1847 1827 -462970.296923 1848 1827 -52308469.44899 1849 1827 36666666.66065 1850 1827 -2702548.129425 1920 1827 -18569369.18862 1921 1827 9166666.669678 1922 1827 10279397.69313 1923 1827 -59565882.98117 1924 1827 4.91738319397e-07 1925 1827 43739118.52961 1926 1827 -20057887.18154 1927 1827 -9166666.669679 1928 1827 11581481.02689 1935 1827 -1129879.778007 1936 1827 2.369284629822e-06 1937 1827 57871.28717239 1938 1827 54280296.46473 1939 1827 3.09944152832e-06 1940 1827 231485.1485852 1941 1827 -7107625.989141 1942 1827 -6.146728992462e-06 1943 1827 57871.2871768 1953 1827 -18663081.30986 1954 1827 -9166666.669677 1955 1827 -10337268.9803 1956 1827 -59964405.70834 1957 1827 7.525086402893e-07 1958 1827 -43970603.67818 1959 1827 -20163436.42398 1960 1827 9166666.669676 1961 1827 -11639352.31406 1828 1828 531622789.3528 1829 1828 -11110935.09172 1830 1828 -4.798173904419e-06 1831 1828 -55180296.03374 1832 1828 5555467.545859 1842 1828 -36666666.66065 1843 1828 -41284001.36615 1844 1828 1263866.887163 1845 1828 -5.960464477539e-08 1846 1828 22901850.42796 1847 1828 -2777733.774299 1848 1828 36666666.66064 1849 1828 -41307675.60857 1850 1828 1513866.887135 1920 1828 9166666.669678 1921 1828 -15819170.72716 1922 1828 -8385422.169798 1923 1828 -5.811452865601e-07 1924 1828 -19232220.47929 1925 1828 -694433.4439163 1926 1828 -9166666.669679 1927 1828 -17307688.72007 1928 1828 9079855.613715 1935 1828 2.913177013397e-06 1936 1828 -35963145.36236 1937 1828 -33694466.44041 1938 1828 3.635883331299e-06 1939 1828 32278708.78388 1940 1828 -2777733.774297 1941 1828 -5.349516868591e-06 1942 1828 -41940891.5735 1943 1828 36472200.21471 1953 1828 -9166666.669677 1954 1828 -15912882.8484 1955 1828 -8454866.614265 1956 1828 3.725290298462e-07 1957 1828 -19630743.20649 1958 1828 -694433.4439167 1959 1828 9166666.669676 1960 1828 -17413237.96253 1961 1828 9149300.058182 1829 1829 599591912.5003 1830 1829 231485.1485663 1831 1829 5555467.545859 1832 1829 78550735.85485 1842 1829 2471062.980849 1843 1829 1236089.109403 1844 1829 -7832062.870945 1845 1829 -462970.2969232 1846 1829 -2777733.774298 1847 1829 39890623.87246 1848 1829 -2737270.351624 1849 1829 1541644.664895 1850 1829 -7895194.184061 1920 1829 10279397.69313 1921 1829 -8385422.169798 1922 1829 -16619803.40013 1923 1829 43704396.30741 1924 1829 -694433.4439163 1925 1829 -56581165.5979 1926 1829 11581481.02689 1927 1829 9079855.613715 1928 1829 -20589184.71456 1935 1829 57871.28717278 1936 1829 -33666688.66265 1937 1829 -39477172.9523 1938 1829 231485.148585 1939 1829 -2777733.774298 1940 1829 -118440658.1206 1941 1829 57871.28717716 1942 1829 36444422.43695 1943 1829 -55417829.51533 1953 1829 -10337268.9803 1954 1829 -8454866.614265 1955 1829 -16869702.39011 1956 1829 -43935881.45598 1957 1829 -694433.4439167 1958 1829 -57643892.87044 1959 1829 -11639352.31406 1960 1829 9149300.058182 1961 1829 -20870649.36111 1830 1830 619629140.0329 1831 1830 1.168251037598e-05 1832 1830 925940.5938052 1833 1830 84152766.23505 1834 1830 -4.991888999939e-06 1835 1830 231485.148566 1845 1830 -52284795.20658 1846 1830 -36666666.66065 1847 1830 2505785.203048 1848 1830 -138432799.5 1849 1830 1.490116119385e-07 1850 1830 -462970.296923 1851 1830 -52308469.44899 1852 1830 36666666.66065 1853 1830 -2702548.129425 1923 1830 -18569369.18862 1924 1830 9166666.669678 1925 1830 10279397.69313 1926 1830 -59565882.98117 1927 1830 4.91738319397e-07 1928 1830 43739118.52961 1929 1830 -20057887.18154 1930 1830 -9166666.669679 1931 1830 11581481.02689 1938 1830 -1129879.778007 1939 1830 2.369284629822e-06 1940 1830 57871.28717239 1941 1830 54280296.46473 1942 1830 3.09944152832e-06 1943 1830 231485.1485852 1944 1830 -7107625.989141 1945 1830 -6.146728992462e-06 1946 1830 57871.2871768 1956 1830 -18663081.30986 1957 1830 -9166666.669677 1958 1830 -10337268.9803 1959 1830 -59964405.70834 1960 1830 7.525086402893e-07 1961 1830 -43970603.67818 1962 1830 -20163436.42398 1963 1830 9166666.669676 1964 1830 -11639352.31406 1831 1831 531622789.3528 1832 1831 -11110935.09172 1833 1831 -4.798173904419e-06 1834 1831 -55180296.03374 1835 1831 5555467.545859 1845 1831 -36666666.66065 1846 1831 -41284001.36615 1847 1831 1263866.887163 1848 1831 -5.960464477539e-08 1849 1831 22901850.42796 1850 1831 -2777733.774299 1851 1831 36666666.66064 1852 1831 -41307675.60857 1853 1831 1513866.887135 1923 1831 9166666.669678 1924 1831 -15819170.72716 1925 1831 -8385422.169798 1926 1831 -5.811452865601e-07 1927 1831 -19232220.47929 1928 1831 -694433.4439163 1929 1831 -9166666.669679 1930 1831 -17307688.72007 1931 1831 9079855.613715 1938 1831 2.913177013397e-06 1939 1831 -35963145.36236 1940 1831 -33694466.44041 1941 1831 3.635883331299e-06 1942 1831 32278708.78388 1943 1831 -2777733.774297 1944 1831 -5.349516868591e-06 1945 1831 -41940891.5735 1946 1831 36472200.21471 1956 1831 -9166666.669677 1957 1831 -15912882.8484 1958 1831 -8454866.614265 1959 1831 3.725290298462e-07 1960 1831 -19630743.20649 1961 1831 -694433.4439167 1962 1831 9166666.669676 1963 1831 -17413237.96253 1964 1831 9149300.058182 1832 1832 599591912.5003 1833 1832 231485.1485663 1834 1832 5555467.545859 1835 1832 78550735.85485 1845 1832 2471062.980849 1846 1832 1236089.109403 1847 1832 -7832062.870945 1848 1832 -462970.2969232 1849 1832 -2777733.774298 1850 1832 39890623.87246 1851 1832 -2737270.351624 1852 1832 1541644.664895 1853 1832 -7895194.184061 1923 1832 10279397.69313 1924 1832 -8385422.169798 1925 1832 -16619803.40013 1926 1832 43704396.30741 1927 1832 -694433.4439163 1928 1832 -56581165.5979 1929 1832 11581481.02689 1930 1832 9079855.613715 1931 1832 -20589184.71456 1938 1832 57871.28717278 1939 1832 -33666688.66265 1940 1832 -39477172.9523 1941 1832 231485.148585 1942 1832 -2777733.774298 1943 1832 -118440658.1206 1944 1832 57871.28717716 1945 1832 36444422.43695 1946 1832 -55417829.51533 1956 1832 -10337268.9803 1957 1832 -8454866.614265 1958 1832 -16869702.39011 1959 1832 -43935881.45598 1960 1832 -694433.4439167 1961 1832 -57643892.87044 1962 1832 -11639352.31406 1963 1832 9149300.058182 1964 1832 -20870649.36111 1833 1833 671761428.9985 1834 1833 36667432.73655 1835 1833 3125088.651632 1836 1833 19448570.31785 1837 1833 -36666973.09101 1838 1833 2702570.135099 1848 1833 -52284795.20658 1849 1833 -36666666.66065 1850 1833 2505785.203048 1851 1833 -138432799.5 1852 1833 1.490116119385e-07 1853 1833 -462970.296923 1854 1833 -52308469.44899 1855 1833 36666666.66065 1856 1833 -2702548.129425 1926 1833 -18569369.18862 1927 1833 9166666.669678 1928 1833 10279397.69313 1929 1833 -72039530.38171 1930 1833 -9166781.581061 1931 1833 43189554.83944 1941 1833 -1129879.778007 1942 1833 2.369284629822e-06 1943 1833 57871.28717239 1944 1833 73599694.87993 1945 1833 9166858.188655 1946 1833 781226.7976368 1947 1833 -19443104.86928 1948 1833 -9166743.27727 1949 1833 11639449.48452 1959 1833 -18663081.30986 1960 1833 -9166666.669677 1961 1833 -10337268.9803 1962 1833 -59964405.70834 1963 1833 7.525086402893e-07 1964 1833 -43970603.67818 1965 1833 -20163436.42398 1966 1833 9166666.669676 1967 1833 -11639352.31406 1834 1834 572753939.719 1835 1834 -8610914.043003 1836 1834 -36667126.30619 1837 1834 -108884310.9615 1838 1834 4611018.689007 1848 1834 -36666666.66065 1849 1834 -41284001.36615 1850 1834 1263866.887163 1851 1834 -5.960464477539e-08 1852 1834 22901850.42796 1853 1834 -2777733.774299 1854 1834 36666666.66064 1855 1834 -41307675.60857 1856 1834 1513866.887135 1926 1834 9166666.669678 1927 1834 -15819170.72716 1928 1834 -8385422.169798 1929 1834 -9166743.277267 1930 1834 -28955430.01587 1931 1834 7996602.428466 1941 1834 2.913177013397e-06 1942 1834 -35963145.36236 1943 1834 -33694466.44041 1944 1834 9166858.188655 1945 1834 48847822.54786 1946 1834 -2152764.803778 1947 1834 -9166781.581064 1948 1834 -51526325.20493 1949 1834 36236271.0855 1959 1834 -9166666.669677 1960 1834 -15912882.8484 1961 1834 -8454866.614265 1962 1834 3.725290298462e-07 1963 1834 -19630743.20649 1964 1834 -694433.4439167 1965 1834 9166666.669676 1966 1834 -17413237.96253 1967 1834 9149300.058182 1835 1835 607013167.9741 1836 1835 2737303.360137 1837 1835 5388804.78494 1838 1835 37600883.93994 1848 1835 2471062.980849 1849 1835 1236089.109403 1850 1835 -7832062.870945 1851 1835 -462970.2969232 1852 1835 -2777733.774298 1853 1835 39890623.87246 1854 1835 -2737270.351624 1855 1835 1541644.664895 1856 1835 -7895194.184061 1926 1835 10279397.69313 1927 1835 -8385422.169798 1928 1835 -16619803.40013 1929 1835 43154829.95728 1930 1835 7802192.5578 1931 1835 -56944833.0873 1941 1835 57871.28717278 1942 1835 -33666688.66265 1943 1835 -39477172.9523 1944 1835 781318.4370322 1945 1835 -2152691.493423 1946 1835 -99821807.80486 1947 1835 11639498.06975 1948 1835 36402939.91804 1949 1835 -55413772.21342 1959 1835 -10337268.9803 1960 1835 -8454866.614265 1961 1835 -16869702.39011 1962 1835 -43935881.45598 1963 1835 -694433.4439167 1964 1835 -57643892.87044 1965 1835 -11639352.31406 1966 1835 9149300.058182 1967 1835 -20870649.36111 1836 1836 460873125.4361 1837 1836 -27780651.28176 1838 1836 -1243230.409633 1851 1836 -52284795.20658 1852 1836 -36666666.66065 1853 1836 2505785.203048 1854 1836 -54494915.13083 1855 1836 27775705.0022 1856 1836 -284486.8047392 1857 1836 -253893652.0179 1858 1836 29338279.60807 1859 1836 -277841.1803685 1929 1836 -4839277.140465 1930 1836 11000114.915 1931 1836 12370128.70975 1944 1836 -14860172.33131 1945 1836 -9166781.581062 1946 1836 -10279526.39882 1947 1836 64920055.70775 1948 1836 -6810686.593768 1949 1836 4688786.852337 1962 1836 -18663081.30986 1963 1836 -9166666.669677 1964 1836 -10337268.9803 1965 1836 -28004319.24308 1966 1836 6809529.72167 1967 1836 -24862467.02138 1968 1836 -60799172.28945 1969 1836 7334490.207843 1970 1836 -1215195.31154 1837 1837 860522545.6296 1838 1837 -12063310.05486 1851 1837 -36666666.66065 1852 1837 -41284001.36615 1853 1837 1263866.887163 1854 1837 27773231.86242 1855 1837 88863699.5249 1856 1837 -2000807.444541 1857 1837 44007419.41211 1858 1837 -679569599.4282 1859 1837 5800626.008788 1929 1837 7333409.943332 1930 1837 -4839277.140466 1931 1837 -6597291.372073 1944 1837 -9166743.277267 1945 1837 -46943392.66696 1946 1837 -33736315.15602 1947 1837 -6810686.593769 1948 1837 157857373.3892 1949 1837 1049845.884691 1962 1837 -9166666.669677 1963 1837 -15912882.8484 1964 1837 -8454866.614265 1965 1837 6808951.285619 1966 1837 7895373.789088 1967 1837 6105067.934335 1968 1837 11001735.31176 1969 1837 -160303161.1289 1970 1837 18261345.26948 1838 1838 492262051.6588 1851 1838 2471062.980849 1852 1838 1236089.109403 1853 1838 -7832062.870945 1854 1838 -1048345.411919 1855 1838 -1889626.655437 1856 1838 48405140.97272 1857 1838 -416761.7705528 1858 1838 5689599.184121 1859 1838 -251373791.3042 1929 1838 8246752.473166 1930 1838 -9895937.05811 1931 1838 -12904739.04124 1944 1838 -10279483.49692 1945 1838 -33902984.10692 1946 1838 -43192618.77883 1947 1838 -5224449.190063 1948 1838 -6768692.222871 1949 1838 -4871347.006253 1962 1838 -10337268.9803 1963 1838 -8454866.614265 1964 1838 -16869702.39011 1965 1838 -25036071.0635 1966 1838 6188978.792547 1967 1838 -25523699.80167 1968 1838 -1822792.96731 1969 1838 17775180.12884 1970 1838 -62627137.26573 1839 1839 619629140.0329 1840 1839 1.168251037598e-05 1841 1839 925940.5938052 1842 1839 84152766.23505 1843 1839 -4.991888999939e-06 1844 1839 231485.148566 1860 1839 -138432799.5 1861 1839 1.490116119385e-07 1862 1839 -462970.296923 1863 1839 -52308469.44899 1864 1839 36666666.66065 1865 1839 -2702548.129425 1932 1839 -59565882.98117 1933 1839 4.91738319397e-07 1934 1839 43739118.52961 1935 1839 -20057887.18154 1936 1839 -9166666.669679 1937 1839 11581481.02689 1950 1839 54280296.46473 1951 1839 3.09944152832e-06 1952 1839 231485.1485852 1953 1839 -7107625.989141 1954 1839 -6.146728992462e-06 1955 1839 57871.2871768 1971 1839 -59964405.70834 1972 1839 7.525086402893e-07 1973 1839 -43970603.67818 1974 1839 -20163436.42398 1975 1839 9166666.669676 1976 1839 -11639352.31406 1840 1840 531622789.3528 1841 1840 -11110935.09172 1842 1840 -4.798173904419e-06 1843 1840 -55180296.03374 1844 1840 5555467.545859 1860 1840 -5.960464477539e-08 1861 1840 22901850.42796 1862 1840 -2777733.774299 1863 1840 36666666.66064 1864 1840 -41307675.60857 1865 1840 1513866.887135 1932 1840 -5.811452865601e-07 1933 1840 -19232220.47929 1934 1840 -694433.4439163 1935 1840 -9166666.669679 1936 1840 -17307688.72007 1937 1840 9079855.613715 1950 1840 3.635883331299e-06 1951 1840 32278708.78388 1952 1840 -2777733.774297 1953 1840 -5.349516868591e-06 1954 1840 -41940891.5735 1955 1840 36472200.21471 1971 1840 3.725290298462e-07 1972 1840 -19630743.20649 1973 1840 -694433.4439167 1974 1840 9166666.669676 1975 1840 -17413237.96253 1976 1840 9149300.058182 1841 1841 599591912.5003 1842 1841 231485.1485663 1843 1841 5555467.545859 1844 1841 78550735.85485 1860 1841 -462970.2969232 1861 1841 -2777733.774298 1862 1841 39890623.87246 1863 1841 -2737270.351624 1864 1841 1541644.664895 1865 1841 -7895194.184061 1932 1841 43704396.30741 1933 1841 -694433.4439163 1934 1841 -56581165.5979 1935 1841 11581481.02689 1936 1841 9079855.613715 1937 1841 -20589184.71456 1950 1841 231485.148585 1951 1841 -2777733.774298 1952 1841 -118440658.1206 1953 1841 57871.28717716 1954 1841 36444422.43695 1955 1841 -55417829.51533 1971 1841 -43935881.45598 1972 1841 -694433.4439167 1973 1841 -57643892.87044 1974 1841 -11639352.31406 1975 1841 9149300.058182 1976 1841 -20870649.36111 1842 1842 619629140.0329 1843 1842 1.168251037598e-05 1844 1842 925940.5938052 1845 1842 84152766.23505 1846 1842 -4.991888999939e-06 1847 1842 231485.148566 1860 1842 -52284795.20658 1861 1842 -36666666.66065 1862 1842 2505785.203048 1863 1842 -138432799.5 1864 1842 1.490116119385e-07 1865 1842 -462970.296923 1866 1842 -52308469.44899 1867 1842 36666666.66065 1868 1842 -2702548.129425 1932 1842 -18569369.18862 1933 1842 9166666.669678 1934 1842 10279397.69313 1935 1842 -59565882.98117 1936 1842 4.91738319397e-07 1937 1842 43739118.52961 1938 1842 -20057887.18154 1939 1842 -9166666.669679 1940 1842 11581481.02689 1950 1842 -1129879.778007 1951 1842 2.369284629822e-06 1952 1842 57871.28717239 1953 1842 54280296.46473 1954 1842 3.09944152832e-06 1955 1842 231485.1485852 1956 1842 -7107625.989141 1957 1842 -6.146728992462e-06 1958 1842 57871.2871768 1971 1842 -18663081.30986 1972 1842 -9166666.669677 1973 1842 -10337268.9803 1974 1842 -59964405.70834 1975 1842 7.525086402893e-07 1976 1842 -43970603.67818 1977 1842 -20163436.42398 1978 1842 9166666.669676 1979 1842 -11639352.31406 1843 1843 531622789.3528 1844 1843 -11110935.09172 1845 1843 -4.798173904419e-06 1846 1843 -55180296.03374 1847 1843 5555467.545859 1860 1843 -36666666.66065 1861 1843 -41284001.36615 1862 1843 1263866.887163 1863 1843 -5.960464477539e-08 1864 1843 22901850.42796 1865 1843 -2777733.774299 1866 1843 36666666.66064 1867 1843 -41307675.60857 1868 1843 1513866.887135 1932 1843 9166666.669678 1933 1843 -15819170.72716 1934 1843 -8385422.169798 1935 1843 -5.811452865601e-07 1936 1843 -19232220.47929 1937 1843 -694433.4439163 1938 1843 -9166666.669679 1939 1843 -17307688.72007 1940 1843 9079855.613715 1950 1843 2.913177013397e-06 1951 1843 -35963145.36236 1952 1843 -33694466.44041 1953 1843 3.635883331299e-06 1954 1843 32278708.78388 1955 1843 -2777733.774297 1956 1843 -5.349516868591e-06 1957 1843 -41940891.5735 1958 1843 36472200.21471 1971 1843 -9166666.669677 1972 1843 -15912882.8484 1973 1843 -8454866.614265 1974 1843 3.725290298462e-07 1975 1843 -19630743.20649 1976 1843 -694433.4439167 1977 1843 9166666.669676 1978 1843 -17413237.96253 1979 1843 9149300.058182 1844 1844 599591912.5003 1845 1844 231485.1485663 1846 1844 5555467.545859 1847 1844 78550735.85485 1860 1844 2471062.980849 1861 1844 1236089.109403 1862 1844 -7832062.870945 1863 1844 -462970.2969232 1864 1844 -2777733.774298 1865 1844 39890623.87246 1866 1844 -2737270.351624 1867 1844 1541644.664895 1868 1844 -7895194.184061 1932 1844 10279397.69313 1933 1844 -8385422.169798 1934 1844 -16619803.40013 1935 1844 43704396.30741 1936 1844 -694433.4439163 1937 1844 -56581165.5979 1938 1844 11581481.02689 1939 1844 9079855.613715 1940 1844 -20589184.71456 1950 1844 57871.28717278 1951 1844 -33666688.66265 1952 1844 -39477172.9523 1953 1844 231485.148585 1954 1844 -2777733.774298 1955 1844 -118440658.1206 1956 1844 57871.28717716 1957 1844 36444422.43695 1958 1844 -55417829.51533 1971 1844 -10337268.9803 1972 1844 -8454866.614265 1973 1844 -16869702.39011 1974 1844 -43935881.45598 1975 1844 -694433.4439167 1976 1844 -57643892.87044 1977 1844 -11639352.31406 1978 1844 9149300.058182 1979 1844 -20870649.36111 1845 1845 619629140.0329 1846 1845 1.168251037598e-05 1847 1845 925940.5938052 1848 1845 84152766.23505 1849 1845 -4.991888999939e-06 1850 1845 231485.148566 1863 1845 -52284795.20658 1864 1845 -36666666.66065 1865 1845 2505785.203048 1866 1845 -138432799.5 1867 1845 1.490116119385e-07 1868 1845 -462970.296923 1869 1845 -52308469.44899 1870 1845 36666666.66065 1871 1845 -2702548.129425 1935 1845 -18569369.18862 1936 1845 9166666.669678 1937 1845 10279397.69313 1938 1845 -59565882.98117 1939 1845 4.91738319397e-07 1940 1845 43739118.52961 1941 1845 -20057887.18154 1942 1845 -9166666.669679 1943 1845 11581481.02689 1953 1845 -1129879.778007 1954 1845 2.369284629822e-06 1955 1845 57871.28717239 1956 1845 54280296.46473 1957 1845 3.09944152832e-06 1958 1845 231485.1485852 1959 1845 -7107625.989141 1960 1845 -6.146728992462e-06 1961 1845 57871.2871768 1974 1845 -18663081.30986 1975 1845 -9166666.669677 1976 1845 -10337268.9803 1977 1845 -59964405.70834 1978 1845 7.525086402893e-07 1979 1845 -43970603.67818 1980 1845 -20163436.42398 1981 1845 9166666.669676 1982 1845 -11639352.31406 1846 1846 531622789.3528 1847 1846 -11110935.09172 1848 1846 -4.798173904419e-06 1849 1846 -55180296.03374 1850 1846 5555467.545859 1863 1846 -36666666.66065 1864 1846 -41284001.36615 1865 1846 1263866.887163 1866 1846 -5.960464477539e-08 1867 1846 22901850.42796 1868 1846 -2777733.774299 1869 1846 36666666.66064 1870 1846 -41307675.60857 1871 1846 1513866.887135 1935 1846 9166666.669678 1936 1846 -15819170.72716 1937 1846 -8385422.169798 1938 1846 -5.811452865601e-07 1939 1846 -19232220.47929 1940 1846 -694433.4439163 1941 1846 -9166666.669679 1942 1846 -17307688.72007 1943 1846 9079855.613715 1953 1846 2.913177013397e-06 1954 1846 -35963145.36236 1955 1846 -33694466.44041 1956 1846 3.635883331299e-06 1957 1846 32278708.78388 1958 1846 -2777733.774297 1959 1846 -5.349516868591e-06 1960 1846 -41940891.5735 1961 1846 36472200.21471 1974 1846 -9166666.669677 1975 1846 -15912882.8484 1976 1846 -8454866.614265 1977 1846 3.725290298462e-07 1978 1846 -19630743.20649 1979 1846 -694433.4439167 1980 1846 9166666.669676 1981 1846 -17413237.96253 1982 1846 9149300.058182 1847 1847 599591912.5003 1848 1847 231485.1485663 1849 1847 5555467.545859 1850 1847 78550735.85485 1863 1847 2471062.980849 1864 1847 1236089.109403 1865 1847 -7832062.870945 1866 1847 -462970.2969232 1867 1847 -2777733.774298 1868 1847 39890623.87246 1869 1847 -2737270.351624 1870 1847 1541644.664895 1871 1847 -7895194.184061 1935 1847 10279397.69313 1936 1847 -8385422.169798 1937 1847 -16619803.40013 1938 1847 43704396.30741 1939 1847 -694433.4439163 1940 1847 -56581165.5979 1941 1847 11581481.02689 1942 1847 9079855.613715 1943 1847 -20589184.71456 1953 1847 57871.28717278 1954 1847 -33666688.66265 1955 1847 -39477172.9523 1956 1847 231485.148585 1957 1847 -2777733.774298 1958 1847 -118440658.1206 1959 1847 57871.28717716 1960 1847 36444422.43695 1961 1847 -55417829.51533 1974 1847 -10337268.9803 1975 1847 -8454866.614265 1976 1847 -16869702.39011 1977 1847 -43935881.45598 1978 1847 -694433.4439167 1979 1847 -57643892.87044 1980 1847 -11639352.31406 1981 1847 9149300.058182 1982 1847 -20870649.36111 1848 1848 619629140.0329 1849 1848 1.168251037598e-05 1850 1848 925940.5938052 1851 1848 84152766.23505 1852 1848 -4.991888999939e-06 1853 1848 231485.148566 1866 1848 -52284795.20658 1867 1848 -36666666.66065 1868 1848 2505785.203048 1869 1848 -138432799.5 1870 1848 1.490116119385e-07 1871 1848 -462970.296923 1872 1848 -52308469.44899 1873 1848 36666666.66065 1874 1848 -2702548.129425 1938 1848 -18569369.18862 1939 1848 9166666.669678 1940 1848 10279397.69313 1941 1848 -59565882.98117 1942 1848 4.91738319397e-07 1943 1848 43739118.52961 1944 1848 -20057887.18154 1945 1848 -9166666.669679 1946 1848 11581481.02689 1956 1848 -1129879.778007 1957 1848 2.369284629822e-06 1958 1848 57871.28717239 1959 1848 54280296.46473 1960 1848 3.09944152832e-06 1961 1848 231485.1485852 1962 1848 -7107625.989141 1963 1848 -6.146728992462e-06 1964 1848 57871.2871768 1977 1848 -18663081.30986 1978 1848 -9166666.669677 1979 1848 -10337268.9803 1980 1848 -59964405.70834 1981 1848 7.525086402893e-07 1982 1848 -43970603.67818 1983 1848 -20163436.42398 1984 1848 9166666.669676 1985 1848 -11639352.31406 1849 1849 531622789.3528 1850 1849 -11110935.09172 1851 1849 -4.798173904419e-06 1852 1849 -55180296.03374 1853 1849 5555467.545859 1866 1849 -36666666.66065 1867 1849 -41284001.36615 1868 1849 1263866.887163 1869 1849 -5.960464477539e-08 1870 1849 22901850.42796 1871 1849 -2777733.774299 1872 1849 36666666.66064 1873 1849 -41307675.60857 1874 1849 1513866.887135 1938 1849 9166666.669678 1939 1849 -15819170.72716 1940 1849 -8385422.169798 1941 1849 -5.811452865601e-07 1942 1849 -19232220.47929 1943 1849 -694433.4439163 1944 1849 -9166666.669679 1945 1849 -17307688.72007 1946 1849 9079855.613715 1956 1849 2.913177013397e-06 1957 1849 -35963145.36236 1958 1849 -33694466.44041 1959 1849 3.635883331299e-06 1960 1849 32278708.78388 1961 1849 -2777733.774297 1962 1849 -5.349516868591e-06 1963 1849 -41940891.5735 1964 1849 36472200.21471 1977 1849 -9166666.669677 1978 1849 -15912882.8484 1979 1849 -8454866.614265 1980 1849 3.725290298462e-07 1981 1849 -19630743.20649 1982 1849 -694433.4439167 1983 1849 9166666.669676 1984 1849 -17413237.96253 1985 1849 9149300.058182 1850 1850 599591912.5003 1851 1850 231485.1485663 1852 1850 5555467.545859 1853 1850 78550735.85485 1866 1850 2471062.980849 1867 1850 1236089.109403 1868 1850 -7832062.870945 1869 1850 -462970.2969232 1870 1850 -2777733.774298 1871 1850 39890623.87246 1872 1850 -2737270.351624 1873 1850 1541644.664895 1874 1850 -7895194.184061 1938 1850 10279397.69313 1939 1850 -8385422.169798 1940 1850 -16619803.40013 1941 1850 43704396.30741 1942 1850 -694433.4439163 1943 1850 -56581165.5979 1944 1850 11581481.02689 1945 1850 9079855.613715 1946 1850 -20589184.71456 1956 1850 57871.28717278 1957 1850 -33666688.66265 1958 1850 -39477172.9523 1959 1850 231485.148585 1960 1850 -2777733.774298 1961 1850 -118440658.1206 1962 1850 57871.28717716 1963 1850 36444422.43695 1964 1850 -55417829.51533 1977 1850 -10337268.9803 1978 1850 -8454866.614265 1979 1850 -16869702.39011 1980 1850 -43935881.45598 1981 1850 -694433.4439167 1982 1850 -57643892.87044 1983 1850 -11639352.31406 1984 1850 9149300.058182 1985 1850 -20870649.36111 1851 1851 619629140.0329 1852 1851 1.168251037598e-05 1853 1851 925940.5938052 1854 1851 84152766.23505 1855 1851 -4.991888999939e-06 1856 1851 231485.148566 1869 1851 -52284795.20658 1870 1851 -36666666.66065 1871 1851 2505785.203048 1872 1851 -138432799.5 1873 1851 1.490116119385e-07 1874 1851 -462970.296923 1875 1851 -52308469.44899 1876 1851 36666666.66065 1877 1851 -2702548.129425 1941 1851 -18569369.18862 1942 1851 9166666.669678 1943 1851 10279397.69313 1944 1851 -59565882.98117 1945 1851 4.91738319397e-07 1946 1851 43739118.52961 1947 1851 -20057887.18154 1948 1851 -9166666.669679 1949 1851 11581481.02689 1959 1851 -1129879.778007 1960 1851 2.369284629822e-06 1961 1851 57871.28717239 1962 1851 54280296.46473 1963 1851 3.09944152832e-06 1964 1851 231485.1485852 1965 1851 -7107625.989141 1966 1851 -6.146728992462e-06 1967 1851 57871.2871768 1980 1851 -18663081.30986 1981 1851 -9166666.669677 1982 1851 -10337268.9803 1983 1851 -59964405.70834 1984 1851 7.525086402893e-07 1985 1851 -43970603.67818 1986 1851 -20163436.42398 1987 1851 9166666.669676 1988 1851 -11639352.31406 1852 1852 531622789.3528 1853 1852 -11110935.09172 1854 1852 -4.798173904419e-06 1855 1852 -55180296.03374 1856 1852 5555467.545859 1869 1852 -36666666.66065 1870 1852 -41284001.36615 1871 1852 1263866.887163 1872 1852 -5.960464477539e-08 1873 1852 22901850.42796 1874 1852 -2777733.774299 1875 1852 36666666.66064 1876 1852 -41307675.60857 1877 1852 1513866.887135 1941 1852 9166666.669678 1942 1852 -15819170.72716 1943 1852 -8385422.169798 1944 1852 -5.811452865601e-07 1945 1852 -19232220.47929 1946 1852 -694433.4439163 1947 1852 -9166666.669679 1948 1852 -17307688.72007 1949 1852 9079855.613715 1959 1852 2.913177013397e-06 1960 1852 -35963145.36236 1961 1852 -33694466.44041 1962 1852 3.635883331299e-06 1963 1852 32278708.78388 1964 1852 -2777733.774297 1965 1852 -5.349516868591e-06 1966 1852 -41940891.5735 1967 1852 36472200.21471 1980 1852 -9166666.669677 1981 1852 -15912882.8484 1982 1852 -8454866.614265 1983 1852 3.725290298462e-07 1984 1852 -19630743.20649 1985 1852 -694433.4439167 1986 1852 9166666.669676 1987 1852 -17413237.96253 1988 1852 9149300.058182 1853 1853 599591912.5003 1854 1853 231485.1485663 1855 1853 5555467.545859 1856 1853 78550735.85485 1869 1853 2471062.980849 1870 1853 1236089.109403 1871 1853 -7832062.870945 1872 1853 -462970.2969232 1873 1853 -2777733.774298 1874 1853 39890623.87246 1875 1853 -2737270.351624 1876 1853 1541644.664895 1877 1853 -7895194.184061 1941 1853 10279397.69313 1942 1853 -8385422.169798 1943 1853 -16619803.40013 1944 1853 43704396.30741 1945 1853 -694433.4439163 1946 1853 -56581165.5979 1947 1853 11581481.02689 1948 1853 9079855.613715 1949 1853 -20589184.71456 1959 1853 57871.28717278 1960 1853 -33666688.66265 1961 1853 -39477172.9523 1962 1853 231485.148585 1963 1853 -2777733.774298 1964 1853 -118440658.1206 1965 1853 57871.28717716 1966 1853 36444422.43695 1967 1853 -55417829.51533 1980 1853 -10337268.9803 1981 1853 -8454866.614265 1982 1853 -16869702.39011 1983 1853 -43935881.45598 1984 1853 -694433.4439167 1985 1853 -57643892.87044 1986 1853 -11639352.31406 1987 1853 9149300.058182 1988 1853 -20870649.36111 1854 1854 525679167.9811 1855 1854 18390868.10895 1856 1854 257230.0209704 1857 1854 -103629435.2263 1858 1854 -78331026.88709 1859 1854 634702.4175476 1872 1854 -52284795.20658 1873 1854 -36666666.66065 1874 1854 2505785.203048 1875 1854 -86773795.75742 1876 1854 24416035.48061 1877 1854 -106696.56214 1878 1854 -50334865.85163 1879 1854 7750891.435108 1880 1854 -153554.2915443 1944 1854 -18569369.18862 1945 1854 9166666.669678 1946 1854 10279397.69313 1947 1854 -27520936.3574 1948 1854 6808951.285619 1949 1854 24530109.1485 1962 1854 -1129879.778007 1963 1854 2.369284629822e-06 1964 1854 57871.28717239 1965 1854 65159811.72745 1966 1854 4731994.015123 1967 1854 11710.09029299 1968 1854 -37308949.32533 1969 1854 -19582677.03363 1970 1854 11434375.89806 1983 1854 -18663081.30986 1984 1854 -9166666.669677 1985 1854 -10337268.9803 1986 1854 -44289186.74016 1987 1854 6104008.873161 1988 1854 -34010528.30258 1989 1854 -19096765.45373 1990 1854 1937722.859732 1991 1854 -1131791.351039 1855 1855 660481314.2789 1856 1855 -8369902.192371 1857 1855 -78333500.02687 1858 1855 -263254974.2493 1859 1855 1658380.723923 1872 1855 -36666666.66065 1873 1855 -41284001.36615 1874 1855 1263866.887163 1875 1855 24416035.48061 1876 1855 13565168.38836 1877 1855 -1207997.421921 1878 1855 7750891.435108 1879 1855 -151877577.34 1880 1855 1114835.39655 1944 1855 9166666.669678 1945 1855 -15819170.72716 1946 1855 -8385422.169798 1947 1855 6809529.721669 1948 1855 8378756.674785 1949 1855 -7098393.156867 1962 1855 2.913177013397e-06 1963 1855 -35963145.36236 1964 1855 -33694466.44041 1965 1855 4731994.015121 1966 1855 98799919.06592 1967 1855 -2134553.493147 1968 1855 -19583255.46968 1969 1855 -77214944.19873 1970 1855 35895592.87145 1983 1855 -9166666.669677 1984 1855 -15912882.8484 1985 1855 -8454866.614265 1986 1855 6104008.87316 1987 1855 -19204445.69136 1988 1855 7593833.975638 1989 1855 1937722.859732 1990 1855 -44482443.33833 1991 1855 16945375.52141 1856 1856 512079213.2787 1857 1856 600011.8966515 1858 1856 1686229.320647 1859 1856 -69210047.65795 1872 1856 2471062.980849 1873 1856 1236089.109403 1874 1856 -7832062.870945 1875 1856 -974752.1175541 1876 1856 -1235775.199694 1877 1856 43298672.25768 1878 1856 -222998.7359433 1879 1856 1114835.39655 1880 1856 -37381370.73265 1944 1856 10279397.69313 1945 1856 -8385422.169798 1946 1856 -16619803.40013 1947 1856 24703713.19063 1948 1856 -7070068.954014 1949 1856 -24234678.77313 1962 1856 57871.28717278 1963 1856 -33666688.66265 1964 1856 -39477172.9523 1965 1856 289668.3564975 1966 1856 -1912186.845125 1967 1856 -49396343.76105 1968 1856 11573362.44061 1969 1856 35950674.48827 1970 1856 -47707143.17434 1983 1856 -10337268.9803 1984 1856 -8454866.614265 1985 1856 -16869702.39011 1986 1856 -34184139.41185 1987 1856 7593833.977188 1988 1856 -49430632.70391 1989 1856 -1131791.351039 1990 1856 16945375.52141 1991 1856 -26713473.31342 1857 1857 614839050.8983 1858 1857 17973732.66542 1859 1857 -212215.4261644 1875 1857 -52690570.14122 1876 1857 -32132015.60604 1877 1857 329236.32717 1878 1857 37598828.59377 1879 1857 40566555.84207 1880 1857 -165449.1983437 1881 1857 63708429.49975 1882 1857 -20771303.28056 1883 1857 3243.047472715 1884 1857 -826617.3637437 1885 1857 28689110.99388 1886 1857 -68620.43168689 1947 1857 -60299571.71085 1948 1857 11001735.31176 1949 1857 1614415.106212 1965 1857 -36445705.69433 1966 1857 -19583255.46968 1967 1857 -11177873.40535 1968 1857 43966363.06476 1969 1857 4476096.649079 1970 1857 8618713.609176 1986 1857 -19361814.47454 1987 1857 -8033003.905469 1988 1857 -10880711.7551 1989 1857 -39854510.3119 1990 1857 10129174.62529 1991 1857 -43009370.51522 1992 1857 -23114447.75168 1993 1857 -5175489.303206 1994 1857 13763626.62675 1995 1857 -17144369.31473 1996 1857 7184742.092224 1997 1857 -10629355.22208 1858 1858 1128106300.08 1859 1858 -6751433.635311 1875 1858 -32132015.60604 1876 1858 -14821146.93907 1877 1858 -100707.8152143 1878 1858 40566555.84207 1879 1858 165260852.6832 1880 1858 -597661.00714 1881 1858 -6104636.616306 1882 1858 -6816946.093491 1883 1858 57814.32573971 1884 1858 28689110.99387 1885 1858 -23798451.81077 1886 1858 71404.97200041 1947 1858 7334490.207843 1948 1858 -159803560.5503 1949 1858 -15105006.04105 1965 1858 -19582677.03363 1966 1858 -76351700.56774 1967 1858 -35079784.41579 1968 1858 4476096.649078 1969 1858 165324453.0163 1970 1858 -1162457.000333 1986 1858 -8033003.905469 1987 1858 -9894458.669336 1988 1858 -8796010.290028 1989 1858 10129174.62529 1990 1858 -7927094.714724 1991 1858 7746460.193937 1992 1858 -1508822.635335 1993 1858 -40750200.27463 1994 1858 33347770.76796 1995 1858 7184742.092224 1996 1858 -22851494.43284 1997 1858 16684475.80062 1859 1859 773869008.0752 1875 1859 294514.104971 1876 1859 -128485.5929738 1877 1859 -622458.5944218 1878 1859 -269615.8649938 1879 1859 -625438.7849135 1880 1859 194200855.2863 1881 1859 3243.047475696 1882 1859 57814.32573968 1883 1859 125828358.2539 1884 1859 -68620.4316531 1885 1859 71404.97200043 1886 1859 40924167.25486 1947 1859 1076276.737474 1948 1859 -15535652.09754 1949 1859 -61294869.05612 1965 1859 -11038901.70535 1966 1859 -35024734.46458 1967 1859 -45405160.15834 1968 1859 -8637953.054657 1969 1859 -1969136.388931 1970 1859 -92387282.40012 1986 1859 -10880711.7551 1987 1859 -8796010.290028 1988 1859 -16660073.13599 1989 1859 -43078814.95968 1990 1859 7746460.195486 1991 1859 -82693280.69379 1992 1859 5638626.62599 1993 1859 33347770.76796 1994 1859 -72707925.46305 1995 1859 -10629355.22208 1996 1859 16684475.80062 1997 1859 -34862225.60797 1860 1860 309814570.0165 1861 1860 6.437301635742e-06 1862 1860 462970.2969034 1863 1860 42076777.68823 1864 1860 7333333.332127 1865 1860 -318285.203467 1950 1860 -59565882.98117 1951 1860 4.91738319397e-07 1952 1860 43739118.52961 1953 1860 -20057887.18154 1954 1860 -9166666.669679 1955 1860 11581481.02689 1971 1860 27139753.66166 1972 1860 8.344650268555e-07 1973 1860 -8738562.979764 1974 1860 -3553812.994569 1975 1860 1833333.333932 1976 1860 -2293147.690507 1861 1861 265811394.6764 1862 1861 -5555467.545855 1863 1861 -7333333.332131 1864 1861 -27589753.44616 1865 1861 2749955.995158 1950 1861 -5.811452865601e-07 1951 1861 -19232220.47929 1952 1861 -694433.4439163 1953 1861 -9166666.669679 1954 1861 -17307688.72007 1955 1861 9079855.613715 1971 1861 8.940696716309e-07 1972 1861 16138959.82123 1973 1861 -1388866.887151 1974 1861 -1833333.333938 1975 1861 -20970445.78675 1976 1861 18229155.66291 1862 1862 299795956.2502 1863 1862 723381.4630278 1864 1862 2805511.550704 1865 1862 39276420.11598 1950 1862 43704396.30741 1951 1862 -694433.4439163 1952 1862 -56581165.5979 1953 1862 11581481.02689 1954 1862 9079855.613715 1955 1862 -20589184.71456 1971 1862 8796437.017353 1972 1862 -1388866.887151 1973 1862 -59221381.24884 1974 1862 2351018.977684 1975 1862 18229155.66292 1976 1862 -27708914.75766 1863 1863 309814570.0165 1864 1863 6.437301635742e-06 1865 1863 462970.2969034 1866 1863 42076777.68823 1867 1863 7333333.332127 1868 1863 -318285.203467 1950 1863 -18569369.18862 1951 1863 9166666.669678 1952 1863 10279397.69313 1953 1863 -59565882.98117 1954 1863 4.91738319397e-07 1955 1863 43739118.52961 1956 1863 -20057887.18154 1957 1863 -9166666.669679 1958 1863 11581481.02689 1971 1863 -564939.8890041 1972 1863 -1833333.333934 1973 1863 -2032731.023757 1974 1863 27139753.66166 1975 1863 8.344650268555e-07 1976 1863 -8738562.979764 1977 1863 -3553812.994569 1978 1863 1833333.333932 1979 1863 -2293147.690507 1864 1864 265811394.6764 1865 1864 -5555467.545855 1866 1864 -7333333.332131 1867 1864 -27589753.44616 1868 1864 2749955.995158 1950 1864 9166666.669678 1951 1864 -15819170.72716 1952 1864 -8385422.169798 1953 1864 -5.811452865601e-07 1954 1864 -19232220.47929 1955 1864 -694433.4439163 1956 1864 -9166666.669679 1957 1864 -17307688.72007 1958 1864 9079855.613715 1971 1864 1833333.333937 1972 1864 -17981572.68118 1973 1864 -16840288.77576 1974 1864 8.940696716309e-07 1975 1864 16138959.82123 1976 1864 -1388866.887151 1977 1864 -1833333.333938 1978 1864 -20970445.78675 1979 1864 18229155.66291 1865 1865 299795956.2502 1866 1865 723381.4630278 1867 1865 2805511.550704 1868 1865 39276420.11598 1950 1865 10279397.69313 1951 1865 -8385422.169798 1952 1865 -16619803.40013 1953 1865 43704396.30741 1954 1865 -694433.4439163 1955 1865 -56581165.5979 1956 1865 11581481.02689 1957 1865 9079855.613715 1958 1865 -20589184.71456 1971 1865 2090602.31093 1972 1865 -16840288.77577 1973 1865 -19738586.47615 1974 1865 8796437.017353 1975 1865 -1388866.887151 1976 1865 -59221381.24884 1977 1865 2351018.977684 1978 1865 18229155.66292 1979 1865 -27708914.75766 1866 1866 309814570.0165 1867 1866 6.437301635742e-06 1868 1866 462970.2969034 1869 1866 42076777.68823 1870 1866 7333333.332127 1871 1866 -318285.203467 1953 1866 -18569369.18862 1954 1866 9166666.669678 1955 1866 10279397.69313 1956 1866 -59565882.98117 1957 1866 4.91738319397e-07 1958 1866 43739118.52961 1959 1866 -20057887.18154 1960 1866 -9166666.669679 1961 1866 11581481.02689 1974 1866 -564939.8890041 1975 1866 -1833333.333934 1976 1866 -2032731.023757 1977 1866 27139753.66166 1978 1866 8.344650268555e-07 1979 1866 -8738562.979764 1980 1866 -3553812.994569 1981 1866 1833333.333932 1982 1866 -2293147.690507 1867 1867 265811394.6764 1868 1867 -5555467.545855 1869 1867 -7333333.332131 1870 1867 -27589753.44616 1871 1867 2749955.995158 1953 1867 9166666.669678 1954 1867 -15819170.72716 1955 1867 -8385422.169798 1956 1867 -5.811452865601e-07 1957 1867 -19232220.47929 1958 1867 -694433.4439163 1959 1867 -9166666.669679 1960 1867 -17307688.72007 1961 1867 9079855.613715 1974 1867 1833333.333937 1975 1867 -17981572.68118 1976 1867 -16840288.77576 1977 1867 8.940696716309e-07 1978 1867 16138959.82123 1979 1867 -1388866.887151 1980 1867 -1833333.333938 1981 1867 -20970445.78675 1982 1867 18229155.66291 1868 1868 299795956.2502 1869 1868 723381.4630278 1870 1868 2805511.550704 1871 1868 39276420.11598 1953 1868 10279397.69313 1954 1868 -8385422.169798 1955 1868 -16619803.40013 1956 1868 43704396.30741 1957 1868 -694433.4439163 1958 1868 -56581165.5979 1959 1868 11581481.02689 1960 1868 9079855.613715 1961 1868 -20589184.71456 1974 1868 2090602.31093 1975 1868 -16840288.77577 1976 1868 -19738586.47615 1977 1868 8796437.017353 1978 1868 -1388866.887151 1979 1868 -59221381.24884 1980 1868 2351018.977684 1981 1868 18229155.66292 1982 1868 -27708914.75766 1869 1869 309814570.0165 1870 1869 6.437301635742e-06 1871 1869 462970.2969034 1872 1869 42076777.68823 1873 1869 7333333.332127 1874 1869 -318285.203467 1956 1869 -18569369.18862 1957 1869 9166666.669678 1958 1869 10279397.69313 1959 1869 -59565882.98117 1960 1869 4.91738319397e-07 1961 1869 43739118.52961 1962 1869 -20057887.18154 1963 1869 -9166666.669679 1964 1869 11581481.02689 1977 1869 -564939.8890041 1978 1869 -1833333.333934 1979 1869 -2032731.023757 1980 1869 27139753.66166 1981 1869 8.344650268555e-07 1982 1869 -8738562.979764 1983 1869 -3553812.994569 1984 1869 1833333.333932 1985 1869 -2293147.690507 1870 1870 265811394.6764 1871 1870 -5555467.545855 1872 1870 -7333333.332131 1873 1870 -27589753.44616 1874 1870 2749955.995158 1956 1870 9166666.669678 1957 1870 -15819170.72716 1958 1870 -8385422.169798 1959 1870 -5.811452865601e-07 1960 1870 -19232220.47929 1961 1870 -694433.4439163 1962 1870 -9166666.669679 1963 1870 -17307688.72007 1964 1870 9079855.613715 1977 1870 1833333.333937 1978 1870 -17981572.68118 1979 1870 -16840288.77576 1980 1870 8.940696716309e-07 1981 1870 16138959.82123 1982 1870 -1388866.887151 1983 1870 -1833333.333938 1984 1870 -20970445.78675 1985 1870 18229155.66291 1871 1871 299795956.2502 1872 1871 723381.4630278 1873 1871 2805511.550704 1874 1871 39276420.11598 1956 1871 10279397.69313 1957 1871 -8385422.169798 1958 1871 -16619803.40013 1959 1871 43704396.30741 1960 1871 -694433.4439163 1961 1871 -56581165.5979 1962 1871 11581481.02689 1963 1871 9079855.613715 1964 1871 -20589184.71456 1977 1871 2090602.31093 1978 1871 -16840288.77577 1979 1871 -19738586.47615 1980 1871 8796437.017353 1981 1871 -1388866.887151 1982 1871 -59221381.24884 1983 1871 2351018.977684 1984 1871 18229155.66292 1985 1871 -27708914.75766 1872 1872 309814570.0165 1873 1872 6.437301635742e-06 1874 1872 462970.2969034 1875 1872 42076777.68823 1876 1872 7333333.332127 1877 1872 -318285.203467 1959 1872 -18569369.18862 1960 1872 9166666.669678 1961 1872 10279397.69313 1962 1872 -59565882.98117 1963 1872 4.91738319397e-07 1964 1872 43739118.52961 1965 1872 -20057887.18154 1966 1872 -9166666.669679 1967 1872 11581481.02689 1980 1872 -564939.8890041 1981 1872 -1833333.333934 1982 1872 -2032731.023757 1983 1872 27139753.66166 1984 1872 8.344650268555e-07 1985 1872 -8738562.979764 1986 1872 -3553812.994569 1987 1872 1833333.333932 1988 1872 -2293147.690507 1873 1873 265811394.6764 1874 1873 -5555467.545855 1875 1873 -7333333.332131 1876 1873 -27589753.44616 1877 1873 2749955.995158 1959 1873 9166666.669678 1960 1873 -15819170.72716 1961 1873 -8385422.169798 1962 1873 -5.811452865601e-07 1963 1873 -19232220.47929 1964 1873 -694433.4439163 1965 1873 -9166666.669679 1966 1873 -17307688.72007 1967 1873 9079855.613715 1980 1873 1833333.333937 1981 1873 -17981572.68118 1982 1873 -16840288.77576 1983 1873 8.940696716309e-07 1984 1873 16138959.82123 1985 1873 -1388866.887151 1986 1873 -1833333.333938 1987 1873 -20970445.78675 1988 1873 18229155.66291 1874 1874 299795956.2502 1875 1874 723381.4630278 1876 1874 2805511.550704 1877 1874 39276420.11598 1959 1874 10279397.69313 1960 1874 -8385422.169798 1961 1874 -16619803.40013 1962 1874 43704396.30741 1963 1874 -694433.4439163 1964 1874 -56581165.5979 1965 1874 11581481.02689 1966 1874 9079855.613715 1967 1874 -20589184.71456 1980 1874 2090602.31093 1981 1874 -16840288.77577 1982 1874 -19738586.47615 1983 1874 8796437.017353 1984 1874 -1388866.887151 1985 1874 -59221381.24884 1986 1874 2351018.977684 1987 1874 18229155.66292 1988 1874 -27708914.75766 1875 1875 309250160.3896 1876 1875 4535517.963994 1877 1875 2453066.565954 1878 1875 -8612767.502989 1879 1875 -26152871.16708 1880 1875 379949.2240047 1962 1875 -18569369.18862 1963 1875 9166666.669678 1964 1875 10279397.69313 1965 1875 -43745996.76765 1966 1875 6104008.873162 1967 1875 33740166.13061 1968 1875 -19561074.78605 1969 1875 -8033003.905467 1970 1875 11036649.36321 1983 1875 -564939.8890041 1984 1875 -1833333.333934 1985 1875 -2032731.023757 1986 1875 26998047.5617 1987 1875 1133879.491557 1988 1875 -8240761.134482 1989 1875 -17935124.94805 1990 1875 -6538217.79499 1991 1875 7751167.860229 1876 1876 292124118.8748 1877 1876 -3586804.318186 1878 1876 -40819537.83134 1879 1876 -71029376.04212 1880 1876 603908.8952657 1962 1876 9166666.669678 1963 1876 -15819170.72716 1964 1876 -8385422.169798 1965 1876 6104008.873161 1966 1876 -18661255.71884 1967 1876 -8204777.132884 1968 1876 -8033003.905467 1969 1876 -10093718.98084 1970 1876 8738711.937952 1983 1876 1833333.333937 1984 1876 -17981572.68118 1985 1876 -16840288.77576 1986 1876 1133879.491557 1987 1876 22716537.18088 1988 1876 -896701.0799925 1989 1876 -10204884.46286 1990 1876 -33539277.09052 1991 1876 25588477.22048 1877 1877 306596341.2044 1878 1877 553560.3350853 1879 1877 631686.6730388 1880 1877 21856446.47305 1962 1877 10279397.69313 1963 1877 -8385422.169798 1964 1877 -16619803.40013 1965 1877 33913777.24376 1966 1877 -8204777.131321 1967 1877 -47982126.11052 1968 1877 11036649.36321 1969 1877 8738711.937952 1970 1877 -17191433.96669 1983 1877 2090602.31093 1984 1877 -16840288.77577 1985 1877 -19738586.47615 1986 1877 9293683.307081 1987 1877 -896701.0799924 1988 1877 -57522894.85793 1989 1877 12186723.41529 1990 1877 25588477.21893 1991 1877 -36621043.23569 1878 1878 356577161.9201 1879 1878 48285232.25239 1880 1878 -61822.7503829 1881 1878 -69422617.35248 1882 1878 -44644222.32742 1883 1878 104990.6793973 1884 1878 13197101.10136 1885 1878 -11138919.37081 1886 1878 34775.22564381 1965 1878 -18648271.66148 1966 1878 1937722.859731 1967 1878 1037653.094121 1968 1878 -39699971.95958 1969 1878 10129174.62529 1970 1878 42926740.58175 1986 1878 -17192674.13802 1987 1878 -10204884.46286 1988 1878 -11944665.46985 1989 1878 -4268705.881667 1990 1878 12038787.22767 1991 1878 -8660992.155141 1992 1878 -34216980.43145 1993 1878 -11148591.24713 1994 1878 20338700.34364 1995 1878 -25180862.7833 1996 1878 -2752209.002696 1997 1878 7586452.49441 1879 1879 444468254.4959 1880 1879 -1420293.818771 1881 1879 -44644222.32742 1882 1879 -49521951.80655 1883 1879 71404.97200023 1884 1879 -25805586.03507 1885 1879 -58297361.08229 1886 1879 227805.5621212 1965 1879 1937722.859731 1966 1879 -44033949.54609 1967 1879 -16387957.82287 1968 1879 10129174.62529 1969 1879 -7772556.362414 1970 1879 -8052150.914586 1986 1879 -6538217.794992 1987 1879 -32796826.2805 1988 1879 -25279578.32671 1989 1879 12038787.22767 1990 1879 17699553.83801 1991 1879 -354921.1380877 1992 1879 -11148591.24713 1993 1879 -29253723.60161 1994 1879 16684475.80062 1995 1879 -6418875.670566 1996 1879 -43049964.90291 1997 1879 33390132.40162 1880 1880 482183166.7639 1881 1880 104990.6793971 1882 1880 71404.97200023 1883 1880 15200667.25909 1884 1880 104219.6700739 1885 1880 227805.5621212 1886 1880 67947810.70532 1965 1880 1037653.094121 1966 1880 -16387957.82287 1967 1880 -25517489.86743 1968 1880 42857296.13735 1969 1880 -8052150.913023 1970 1880 -82281178.42096 1986 1880 -7613276.581476 1987 1880 -25279578.32828 1988 1880 -34641174.40895 1989 1880 8456785.619827 1990 1880 -354921.1380879 1991 1880 -128380449.7493 1992 1880 20338700.34364 1993 1880 16684475.80062 1994 1880 -41264454.77674 1995 1880 11848674.71994 1996 1880 33390132.40162 1997 1880 -59135164.39133 1881 1881 235305206.8043 1882 1881 50104636.60908 1883 1881 -61113.41781354 1884 1881 -6200109.874661 1885 1881 644222.3346426 1886 1881 -47120.30905524 1968 1881 -23019750.78198 1969 1881 -1508822.635337 1970 1881 -5637067.814509 1989 1881 -34122283.46173 1990 1881 -11148591.24713 1991 1881 -20286299.6697 1992 1881 -19237067.37006 1993 1881 12508822.63895 1994 1881 8109753.000327 1995 1881 -35316352.92472 1996 1881 148591.2435152 1997 1881 -30936385.51612 1882 1882 216455582.4122 1883 1882 -57814.32572985 1884 1882 15310888.9989 1885 1882 63274224.56474 1886 1882 -71404.97199523 1968 1882 -5175489.303208 1969 1882 -40655503.30493 1970 1882 -33318895.88775 1989 1882 -11148591.24713 1990 1882 -29159026.6319 1991 1882 -16648857.54366 1992 1882 12508822.63895 1993 1882 -23945064.85445 1994 1882 6652229.225463 1995 1882 3815257.911386 1996 1882 -17935859.74721 1997 1882 3315524.205949 1883 1883 343833005.2774 1884 1883 -47120.30905163 1885 1883 -71404.97199523 1886 1883 110847060.0814 1968 1883 -13762067.81526 1969 1883 -33318895.88775 1970 1883 -72455400.21049 1989 1883 -20286299.6697 1990 1883 -16648857.54366 1991 1883 -41011929.52416 1992 1883 -8140246.997005 1993 1883 -6681104.10568 1994 1883 -122156531.5552 1995 1883 -30936385.51804 1996 1883 -3351142.462907 1997 1883 -62230684.14613 1884 1884 174702353.4237 1885 1884 -18194413.95771 1886 1884 -127367.818301 1968 1884 -17049672.34501 1969 1884 7184742.092225 1970 1884 10594950.34044 1989 1884 -24896771.87432 1990 1884 -6418875.670569 1991 1884 -11796880.83574 1992 1884 -35316352.92472 1993 1884 3815257.911389 1994 1884 30912920.02928 1995 1884 -13173566.49931 1996 1884 -4581124.333045 1997 1884 -4276545.089515 1885 1885 199694315.615 1886 1885 -227805.5621098 1968 1885 7184742.092225 1969 1885 -22756797.46313 1970 1885 -16648857.54366 1989 1885 -2752209.002698 1990 1885 -42765873.99394 1991 1885 -33276534.25409 1992 1885 148591.2435185 1993 1885 -17935859.74721 1994 1885 3315524.205949 1995 1885 -4581124.333044 1996 1885 -6977832.439091 1997 1885 6609867.591799 1886 1886 262608234.7228 1968 1886 10594950.34044 1969 1886 -16648857.54366 1970 1886 -34609700.35539 1989 1886 -7569380.832428 1990 1886 -33276534.25409 1991 1886 -58377588.63405 1992 1886 30912920.02737 1993 1886 -3351142.462907 1994 1886 -62230684.14613 1995 1886 4213177.131314 1996 1886 -6723465.739343 1997 1886 -85945663.24674 1887 1887 389420334.4506 1888 1887 36666666.66065 1889 1887 3703834.305166 1890 1887 -202591396.4212 1891 1887 -36666966.01295 1892 1887 -2870483.022002 1893 1887 12702400.63006 1894 1887 29333632.68082 1895 1887 -1944468.073742 1998 1887 31947394.33292 1999 1887 9166666.669681 2000 1887 9728225.899101 2001 1887 -74358253.63036 2002 1887 -9166739.758898 2003 1887 -45562288.72778 2004 1887 -8166156.136015 2005 1887 7333406.424962 2006 1887 -9496761.446847 1888 1888 334416074.7194 1889 1888 -6111048.190243 1890 1888 -36667115.68909 1891 1888 -30255041.75127 1892 1888 -3888889.819054 1893 1888 44000449.02122 1894 1888 12702400.63006 1895 1888 2666689.342343 1998 1888 9166666.66968 1999 1888 18196342.83202 2000 1888 5513941.008134 2001 1888 -9166776.303507 2002 1888 -31274176.50627 2003 1888 -9941080.210835 2004 1888 11000109.63744 2005 1888 -8166156.136015 2006 1888 11395946.69513 1889 1889 380479993.5812 1890 1889 -2453807.380415 1891 1889 -3055548.927153 1892 1889 398412.8916247 1893 1889 -2916702.110613 1894 1889 1777792.894895 1895 1889 33873068.34682 1998 1889 -8223530.275229 1999 1889 -8847241.586827 2000 1889 -79300461.72417 2001 1889 -45527563.96779 2002 1889 -9746597.980308 2003 1889 -63128188.69225 2004 1889 -14245142.17027 2005 1889 7597297.796754 2006 1889 -21776416.36271 1890 1890 674759689.9124 1891 1890 36667415.0414 1892 1890 3125092.975185 1893 1890 20137287.77529 1894 1890 -36666966.01295 1895 1890 2754655.071165 1896 1890 -137627039.3558 1897 1890 -2.235174179077e-07 1898 1890 -671303.5447711 1899 1890 -52107624.53367 1900 1890 36666666.66065 1901 1890 -2754631.441411 1998 1890 -72726245.22972 1999 1890 -9166776.303506 2000 1890 44231216.90386 2001 1890 70575234.21716 2002 1890 9166849.392726 2003 1890 781227.3439141 2004 1890 -20203256.3538 2005 1890 -9166739.758899 2006 1890 11899863.74724 2007 1890 -60775629.25067 2008 1890 -1.214444637299e-06 2009 1890 -45012270.30212 2010 1890 -20383999.6175 2011 1890 9166666.669679 2012 1890 -11899768.97017 1891 1891 575752291.8369 1892 1891 -8610912.053949 1893 1891 -36667115.6891 1894 1891 -108195591.755 1895 1891 4777685.365654 1896 1891 4.470348358154e-07 1897 1891 23707595.23204 1898 1891 -2777734.286976 1899 1891 36666666.66065 1900 1891 -41106839.94217 1901 1891 1555533.810155 1998 1891 -9166739.758897 1999 1891 -29642168.10562 2000 1891 8204934.122165 2001 1891 9166849.392726 2002 1891 45823407.30156 2003 1891 -2152765.098743 2004 1891 -9166776.303508 2005 1891 -52286475.83204 2006 1891 37069600.58987 2007 1891 -1.445412635803e-06 2008 1891 -20441974.38895 2009 1891 -694433.6992576 2010 1891 9166666.669678 2011 1891 -17633805.76247 2012 1891 9357633.519253 1892 1892 615008779.2968 1893 1892 2685222.441543 1894 1892 5222139.640517 1895 1892 39437488.39575 1896 1892 -254636.8781728 1897 1892 -2777734.286976 1898 1892 42039227.65673 1899 1892 -2685186.996909 1900 1892 1499978.254554 1901 1892 -7359624.812662 1998 1892 44196492.14387 1999 1892 8010523.495484 2000 1892 -58776166.2905 2001 1892 781316.8545274 2002 1892 -2152693.49136 2003 1892 -107886912.3736 2004 1892 11899911.13577 2005 1892 37236269.31883 2006 1892 -57440830.58835 2007 1892 -44977548.07992 2008 1892 -694433.6992576 2009 1892 -59807200.44138 2010 1892 -11899768.97017 2011 1892 9357633.519253 2012 1892 -21458826.37861 1893 1893 389420334.4506 1894 1893 36666666.66065 1895 1893 3703834.305166 1896 1893 -52083950.29126 1897 1893 -36666666.66065 1898 1893 2453701.89106 1899 1893 -202591396.4212 1900 1893 -36666966.01295 1901 1893 -2870483.022002 1902 1893 12702400.63006 1903 1893 29333632.68082 1904 1893 -1944468.073742 1998 1893 -5106206.927443 1999 1893 11000109.63744 2000 1893 12682625.90274 2001 1893 -15511422.68773 2002 1893 -9166776.303506 2003 1893 -10539940.2691 2004 1893 31947394.33292 2005 1893 9166666.669681 2006 1893 9728225.899101 2007 1893 -18848133.13973 2008 1893 -9166666.66968 2009 1893 -10597685.63642 2010 1893 -74358253.63036 2011 1893 -9166739.758898 2012 1893 -45562288.72778 2013 1893 -8166156.136015 2014 1893 7333406.424962 2015 1893 -9496761.446847 1894 1894 334416074.7194 1895 1894 -6111048.190243 1896 1894 -36666666.66065 1897 1894 -41083165.69975 1898 1894 1222200.476822 1899 1894 -36667115.68909 1900 1894 -30255041.75127 1901 1894 -3888889.819054 1902 1894 44000449.02122 1903 1894 12702400.63006 1904 1894 2666689.342343 1998 1894 7333406.424962 1999 1894 -5106206.927443 2000 1894 -6763956.526763 2001 1894 -9166739.758897 2002 1894 -47594642.16596 2003 1894 -34569643.89832 2004 1894 9166666.66968 2005 1894 18196342.83202 2006 1894 5513941.008134 2007 1894 -9166666.669679 2008 1894 -16097939.2847 2009 1894 -8663199.819997 2010 1894 -9166776.303507 2011 1894 -31274176.50627 2012 1894 -9941080.210835 2013 1894 11000109.63744 2014 1894 -8166156.136015 2015 1894 11395946.69513 1895 1895 380479993.5812 1896 1895 2523146.335561 1897 1895 1277756.032423 1898 1895 -7296493.499545 1899 1895 -2453807.380415 1900 1895 -3055548.927153 1901 1895 398412.8916247 1902 1895 -2916702.110613 1903 1895 1777792.894895 1904 1895 33873068.34682 1998 1895 8455083.935158 1999 1895 -10145934.79014 2000 1895 -13616551.80652 2001 1895 -10539898.30291 2002 1895 -34736312.74845 2003 1895 -44929274.14549 2004 1895 -8223530.275229 2005 1895 -8847241.586827 2006 1895 -79300461.72417 2007 1895 -10597685.63642 2008 1895 -8663199.819997 2009 1895 -17363182.43788 2010 1895 -45527563.96779 2011 1895 -9746597.980308 2012 1895 -63128188.69225 2013 1895 -14245142.17027 2014 1895 7597297.796754 2015 1895 -21776416.36271 1896 1896 622861433.7406 1897 1896 1.120567321777e-05 1898 1896 925940.4229136 1899 1896 84958459.17911 1900 1896 -5.066394805908e-06 1901 1896 231485.1058435 1905 1896 -137627039.3558 1906 1896 -2.235174179077e-07 1907 1896 -671303.5447711 1908 1896 -52107624.53367 1909 1896 36666666.66065 1910 1896 -2754631.441411 2001 1896 -60367636.82651 2002 1896 1.877546310425e-06 2003 1896 44780785.23866 2004 1896 -20276082.95081 2005 1896 -9166666.66968 2006 1896 11841897.70428 2007 1896 51054233.83102 2008 1896 1.788139343262e-06 2009 1896 231485.0634618 2010 1896 -7985170.87927 2011 1896 -2.771615982056e-06 2012 1896 57871.2658952 2016 1896 -60775629.25067 2017 1896 -1.214444637299e-06 2018 1896 -45012270.30212 2019 1896 -20383999.6175 2020 1896 9166666.669679 2021 1896 -11899768.97017 1897 1897 534855157.0519 1898 1897 -11110937.14243 1899 1897 -3.457069396973e-06 1900 1897 -54374606.24745 1901 1897 5722135.237857 1905 1897 4.470348358154e-07 1906 1897 23707595.23204 1907 1897 -2777734.286976 1908 1897 36666666.66065 1909 1897 -41106839.94217 1910 1897 1555533.810155 2001 1897 1.169741153717e-06 2002 1897 -20033981.96478 2003 1897 -694433.6992575 2004 1897 -9166666.66968 2005 1897 -17525889.09577 2006 1897 9288189.074786 2007 1897 1.966953277588e-06 2008 1897 29052683.00161 2009 1897 -2777734.795662 2010 1897 -2.190470695496e-06 2011 1897 -42818438.03636 2012 1897 37305534.05859 2016 1897 -1.445412635803e-06 2017 1897 -20441974.38895 2018 1897 -694433.6992576 2019 1897 9166666.669678 2020 1897 -17633805.76247 2021 1897 9357633.519253 1898 1898 608211498.9432 1899 1898 231485.105844 1900 1898 5388801.904579 1901 1898 80699306.16691 1905 1898 -254636.8781728 1906 1898 -2777734.286976 1907 1898 42039227.65673 1908 1898 -2685186.996909 1909 1898 1499978.254554 1910 1898 -7359624.812662 2001 1898 44746063.01646 2002 1898 -694433.6992574 2003 1898 -58719220.64359 2004 1898 11841897.70428 2005 1898 9288189.074786 2006 1898 -21171048.60074 2007 1898 231485.0634617 2008 1898 -2777734.795662 2009 1898 -127043423.7988 2010 1898 57871.26589543 2011 1898 37277756.28083 2012 1898 -57757921.43384 2016 1898 -44977548.07992 2017 1898 -694433.6992576 2018 1898 -59807200.44138 2019 1898 -11899768.97017 2020 1898 9357633.519253 2021 1898 -21458826.37861 1899 1899 674759689.9124 1900 1899 36667415.0414 1901 1899 3125092.975185 1902 1899 20137287.77529 1903 1899 -36666966.01295 1904 1899 2754655.071165 1905 1899 -52083950.29126 1906 1899 -36666666.66065 1907 1899 2453701.89106 1908 1899 -137627039.3558 1909 1899 -2.235174179077e-07 1910 1899 -671303.5447711 1911 1899 -52107624.53367 1912 1899 36666666.66065 1913 1899 -2754631.441411 2001 1899 -18752053.59425 2002 1899 9166666.66968 2003 1899 10539814.37052 2004 1899 -72726245.22972 2005 1899 -9166776.303506 2006 1899 44231216.90386 2007 1899 -1865379.213624 2008 1899 8.79168510437e-07 2009 1899 57871.26589221 2010 1899 70575234.21716 2011 1899 9166849.392726 2012 1899 781227.3439141 2013 1899 -20203256.3538 2014 1899 -9166739.758899 2015 1899 11899863.74724 2016 1899 -18848133.13973 2017 1899 -9166666.66968 2018 1899 -10597685.63642 2019 1899 -60775629.25067 2020 1899 -1.214444637299e-06 2021 1899 -45012270.30212 2022 1899 -20383999.6175 2023 1899 9166666.669679 2024 1899 -11899768.97017 1900 1900 575752291.8369 1901 1900 -8610912.053949 1902 1900 -36667115.6891 1903 1900 -108195591.755 1904 1900 4777685.365654 1905 1900 -36666666.66065 1906 1900 -41083165.69975 1907 1900 1222200.476822 1908 1900 4.470348358154e-07 1909 1900 23707595.23204 1910 1900 -2777734.286976 1911 1900 36666666.66065 1912 1900 -41106839.94217 1913 1900 1555533.810155 2001 1900 9166666.66968 2002 1900 -16001859.73922 2003 1900 -8593755.37553 2004 1900 -9166739.758897 2005 1900 -29642168.10562 2006 1900 8204934.122165 2007 1900 1.229345798492e-06 2008 1900 -36698646.37071 2009 1900 -34527799.26293 2010 1900 9166849.392726 2011 1900 45823407.30156 2012 1900 -2152765.098743 2013 1900 -9166776.303508 2014 1900 -52286475.83204 2015 1900 37069600.58987 2016 1900 -9166666.669679 2017 1900 -16097939.2847 2018 1900 -8663199.819997 2019 1900 -1.445412635803e-06 2020 1900 -20441974.38895 2021 1900 -694433.6992576 2022 1900 9166666.669678 2023 1900 -17633805.76247 2024 1900 9357633.519253 1901 1901 615008779.2968 1902 1901 2685222.441543 1903 1901 5222139.640517 1904 1901 39437488.39575 1905 1901 2523146.335561 1906 1901 1277756.032423 1907 1901 -7296493.499545 1908 1901 -254636.8781728 1909 1901 -2777734.286976 1910 1901 42039227.65673 1911 1901 -2685186.996909 1912 1901 1499978.254554 1913 1901 -7359624.812662 2001 1901 10539814.37052 2002 1901 -8593755.37553 2003 1901 -17106970.31658 2004 1901 44196492.14387 2005 1901 8010523.495484 2006 1901 -58776166.2905 2007 1901 57871.26589252 2008 1901 -34500021.48517 2009 1901 -41438476.99211 2010 1901 781316.8545274 2011 1901 -2152693.49136 2012 1901 -107886912.3736 2013 1901 11899911.13577 2014 1901 37236269.31883 2015 1901 -57440830.58835 2016 1901 -10597685.63642 2017 1901 -8663199.819997 2018 1901 -17363182.43788 2019 1901 -44977548.07992 2020 1901 -694433.6992576 2021 1901 -59807200.44138 2022 1901 -11899768.97017 2023 1901 9357633.519253 2024 1901 -21458826.37861 1902 1902 389420334.4506 1903 1902 36666666.66065 1904 1902 3703834.305166 1908 1902 -52083950.29126 1909 1902 -36666666.66065 1910 1902 2453701.89106 1911 1902 -202591396.4212 1912 1902 -36666966.01295 1913 1902 -2870483.022002 1914 1902 12702400.63006 1915 1902 29333632.68082 1916 1902 -1944468.073742 2004 1902 -5106206.927443 2005 1902 11000109.63744 2006 1902 12682625.90274 2010 1902 -15511422.68773 2011 1902 -9166776.303506 2012 1902 -10539940.2691 2013 1902 31947394.33292 2014 1902 9166666.669681 2015 1902 9728225.899101 2019 1902 -18848133.13973 2020 1902 -9166666.66968 2021 1902 -10597685.63642 2022 1902 -74358253.63036 2023 1902 -9166739.758898 2024 1902 -45562288.72778 2025 1902 -8166156.136015 2026 1902 7333406.424962 2027 1902 -9496761.446847 1903 1903 334416074.7194 1904 1903 -6111048.190243 1908 1903 -36666666.66065 1909 1903 -41083165.69975 1910 1903 1222200.476822 1911 1903 -36667115.68909 1912 1903 -30255041.75127 1913 1903 -3888889.819054 1914 1903 44000449.02122 1915 1903 12702400.63006 1916 1903 2666689.342343 2004 1903 7333406.424962 2005 1903 -5106206.927443 2006 1903 -6763956.526763 2010 1903 -9166739.758897 2011 1903 -47594642.16596 2012 1903 -34569643.89832 2013 1903 9166666.66968 2014 1903 18196342.83202 2015 1903 5513941.008134 2019 1903 -9166666.669679 2020 1903 -16097939.2847 2021 1903 -8663199.819997 2022 1903 -9166776.303507 2023 1903 -31274176.50627 2024 1903 -9941080.210835 2025 1903 11000109.63744 2026 1903 -8166156.136015 2027 1903 11395946.69513 1904 1904 380479993.5812 1908 1904 2523146.335561 1909 1904 1277756.032423 1910 1904 -7296493.499545 1911 1904 -2453807.380415 1912 1904 -3055548.927153 1913 1904 398412.8916247 1914 1904 -2916702.110613 1915 1904 1777792.894895 1916 1904 33873068.34682 2004 1904 8455083.935158 2005 1904 -10145934.79014 2006 1904 -13616551.80652 2010 1904 -10539898.30291 2011 1904 -34736312.74845 2012 1904 -44929274.14549 2013 1904 -8223530.275229 2014 1904 -8847241.586827 2015 1904 -79300461.72417 2019 1904 -10597685.63642 2020 1904 -8663199.819997 2021 1904 -17363182.43788 2022 1904 -45527563.96779 2023 1904 -9746597.980308 2024 1904 -63128188.69225 2025 1904 -14245142.17027 2026 1904 7597297.796754 2027 1904 -21776416.36271 1905 1905 622861433.7406 1906 1905 1.120567321777e-05 1907 1905 925940.4229136 1908 1905 84958459.17911 1909 1905 -5.066394805908e-06 1910 1905 231485.1058435 1917 1905 -137627039.3558 1918 1905 -2.235174179077e-07 1919 1905 -671303.5447711 1920 1905 -52107624.53367 1921 1905 36666666.66065 1922 1905 -2754631.441411 2007 1905 -60367636.82651 2008 1905 1.877546310425e-06 2009 1905 44780785.23866 2010 1905 -20276082.95081 2011 1905 -9166666.66968 2012 1905 11841897.70428 2016 1905 51054233.83102 2017 1905 1.788139343262e-06 2018 1905 231485.0634618 2019 1905 -7985170.87927 2020 1905 -2.771615982056e-06 2021 1905 57871.2658952 2028 1905 -60775629.25067 2029 1905 -1.214444637299e-06 2030 1905 -45012270.30212 2031 1905 -20383999.6175 2032 1905 9166666.669679 2033 1905 -11899768.97017 1906 1906 534855157.0519 1907 1906 -11110937.14243 1908 1906 -3.457069396973e-06 1909 1906 -54374606.24745 1910 1906 5722135.237857 1917 1906 4.470348358154e-07 1918 1906 23707595.23204 1919 1906 -2777734.286976 1920 1906 36666666.66065 1921 1906 -41106839.94217 1922 1906 1555533.810155 2007 1906 1.169741153717e-06 2008 1906 -20033981.96478 2009 1906 -694433.6992575 2010 1906 -9166666.66968 2011 1906 -17525889.09577 2012 1906 9288189.074786 2016 1906 1.966953277588e-06 2017 1906 29052683.00161 2018 1906 -2777734.795662 2019 1906 -2.190470695496e-06 2020 1906 -42818438.03636 2021 1906 37305534.05859 2028 1906 -1.445412635803e-06 2029 1906 -20441974.38895 2030 1906 -694433.6992576 2031 1906 9166666.669678 2032 1906 -17633805.76247 2033 1906 9357633.519253 1907 1907 608211498.9432 1908 1907 231485.105844 1909 1907 5388801.904579 1910 1907 80699306.16691 1917 1907 -254636.8781728 1918 1907 -2777734.286976 1919 1907 42039227.65673 1920 1907 -2685186.996909 1921 1907 1499978.254554 1922 1907 -7359624.812662 2007 1907 44746063.01646 2008 1907 -694433.6992574 2009 1907 -58719220.64359 2010 1907 11841897.70428 2011 1907 9288189.074786 2012 1907 -21171048.60074 2016 1907 231485.0634617 2017 1907 -2777734.795662 2018 1907 -127043423.7988 2019 1907 57871.26589543 2020 1907 37277756.28083 2021 1907 -57757921.43384 2028 1907 -44977548.07992 2029 1907 -694433.6992576 2030 1907 -59807200.44138 2031 1907 -11899768.97017 2032 1907 9357633.519253 2033 1907 -21458826.37861 1908 1908 622861433.7406 1909 1908 1.120567321777e-05 1910 1908 925940.4229136 1911 1908 84958459.17911 1912 1908 -5.066394805908e-06 1913 1908 231485.1058435 1917 1908 -52083950.29126 1918 1908 -36666666.66065 1919 1908 2453701.89106 1920 1908 -137627039.3558 1921 1908 -2.235174179077e-07 1922 1908 -671303.5447711 1923 1908 -52107624.53367 1924 1908 36666666.66065 1925 1908 -2754631.441411 2007 1908 -18752053.59425 2008 1908 9166666.66968 2009 1908 10539814.37052 2010 1908 -60367636.82651 2011 1908 1.877546310425e-06 2012 1908 44780785.23866 2013 1908 -20276082.95081 2014 1908 -9166666.66968 2015 1908 11841897.70428 2016 1908 -1865379.213624 2017 1908 8.79168510437e-07 2018 1908 57871.26589221 2019 1908 51054233.83102 2020 1908 1.788139343262e-06 2021 1908 231485.0634618 2022 1908 -7985170.87927 2023 1908 -2.771615982056e-06 2024 1908 57871.2658952 2028 1908 -18848133.13973 2029 1908 -9166666.66968 2030 1908 -10597685.63642 2031 1908 -60775629.25067 2032 1908 -1.214444637299e-06 2033 1908 -45012270.30212 2034 1908 -20383999.6175 2035 1908 9166666.669679 2036 1908 -11899768.97017 1909 1909 534855157.0519 1910 1909 -11110937.14243 1911 1909 -3.457069396973e-06 1912 1909 -54374606.24745 1913 1909 5722135.237857 1917 1909 -36666666.66065 1918 1909 -41083165.69975 1919 1909 1222200.476822 1920 1909 4.470348358154e-07 1921 1909 23707595.23204 1922 1909 -2777734.286976 1923 1909 36666666.66065 1924 1909 -41106839.94217 1925 1909 1555533.810155 2007 1909 9166666.66968 2008 1909 -16001859.73922 2009 1909 -8593755.37553 2010 1909 1.169741153717e-06 2011 1909 -20033981.96478 2012 1909 -694433.6992575 2013 1909 -9166666.66968 2014 1909 -17525889.09577 2015 1909 9288189.074786 2016 1909 1.229345798492e-06 2017 1909 -36698646.37071 2018 1909 -34527799.26293 2019 1909 1.966953277588e-06 2020 1909 29052683.00161 2021 1909 -2777734.795662 2022 1909 -2.190470695496e-06 2023 1909 -42818438.03636 2024 1909 37305534.05859 2028 1909 -9166666.669679 2029 1909 -16097939.2847 2030 1909 -8663199.819997 2031 1909 -1.445412635803e-06 2032 1909 -20441974.38895 2033 1909 -694433.6992576 2034 1909 9166666.669678 2035 1909 -17633805.76247 2036 1909 9357633.519253 1910 1910 608211498.9432 1911 1910 231485.105844 1912 1910 5388801.904579 1913 1910 80699306.16691 1917 1910 2523146.335561 1918 1910 1277756.032423 1919 1910 -7296493.499545 1920 1910 -254636.8781728 1921 1910 -2777734.286976 1922 1910 42039227.65673 1923 1910 -2685186.996909 1924 1910 1499978.254554 1925 1910 -7359624.812662 2007 1910 10539814.37052 2008 1910 -8593755.37553 2009 1910 -17106970.31658 2010 1910 44746063.01646 2011 1910 -694433.6992574 2012 1910 -58719220.64359 2013 1910 11841897.70428 2014 1910 9288189.074786 2015 1910 -21171048.60074 2016 1910 57871.26589252 2017 1910 -34500021.48517 2018 1910 -41438476.99211 2019 1910 231485.0634617 2020 1910 -2777734.795662 2021 1910 -127043423.7988 2022 1910 57871.26589543 2023 1910 37277756.28083 2024 1910 -57757921.43384 2028 1910 -10597685.63642 2029 1910 -8663199.819997 2030 1910 -17363182.43788 2031 1910 -44977548.07992 2032 1910 -694433.6992576 2033 1910 -59807200.44138 2034 1910 -11899768.97017 2035 1910 9357633.519253 2036 1910 -21458826.37861 1911 1911 674759689.9124 1912 1911 36667415.0414 1913 1911 3125092.975185 1914 1911 20137287.77529 1915 1911 -36666966.01295 1916 1911 2754655.071165 1920 1911 -52083950.29126 1921 1911 -36666666.66065 1922 1911 2453701.89106 1923 1911 -137627039.3558 1924 1911 -2.235174179077e-07 1925 1911 -671303.5447711 1926 1911 -52107624.53367 1927 1911 36666666.66065 1928 1911 -2754631.441411 2010 1911 -18752053.59425 2011 1911 9166666.66968 2012 1911 10539814.37052 2013 1911 -72726245.22972 2014 1911 -9166776.303506 2015 1911 44231216.90386 2019 1911 -1865379.213624 2020 1911 8.79168510437e-07 2021 1911 57871.26589221 2022 1911 70575234.21716 2023 1911 9166849.392726 2024 1911 781227.3439141 2025 1911 -20203256.3538 2026 1911 -9166739.758899 2027 1911 11899863.74724 2031 1911 -18848133.13973 2032 1911 -9166666.66968 2033 1911 -10597685.63642 2034 1911 -60775629.25067 2035 1911 -1.214444637299e-06 2036 1911 -45012270.30212 2037 1911 -20383999.6175 2038 1911 9166666.669679 2039 1911 -11899768.97017 1912 1912 575752291.8369 1913 1912 -8610912.053949 1914 1912 -36667115.6891 1915 1912 -108195591.755 1916 1912 4777685.365654 1920 1912 -36666666.66065 1921 1912 -41083165.69975 1922 1912 1222200.476822 1923 1912 4.470348358154e-07 1924 1912 23707595.23204 1925 1912 -2777734.286976 1926 1912 36666666.66065 1927 1912 -41106839.94217 1928 1912 1555533.810155 2010 1912 9166666.66968 2011 1912 -16001859.73922 2012 1912 -8593755.37553 2013 1912 -9166739.758897 2014 1912 -29642168.10562 2015 1912 8204934.122165 2019 1912 1.229345798492e-06 2020 1912 -36698646.37071 2021 1912 -34527799.26293 2022 1912 9166849.392726 2023 1912 45823407.30156 2024 1912 -2152765.098743 2025 1912 -9166776.303508 2026 1912 -52286475.83204 2027 1912 37069600.58987 2031 1912 -9166666.669679 2032 1912 -16097939.2847 2033 1912 -8663199.819997 2034 1912 -1.445412635803e-06 2035 1912 -20441974.38895 2036 1912 -694433.6992576 2037 1912 9166666.669678 2038 1912 -17633805.76247 2039 1912 9357633.519253 1913 1913 615008779.2968 1914 1913 2685222.441543 1915 1913 5222139.640517 1916 1913 39437488.39575 1920 1913 2523146.335561 1921 1913 1277756.032423 1922 1913 -7296493.499545 1923 1913 -254636.8781728 1924 1913 -2777734.286976 1925 1913 42039227.65673 1926 1913 -2685186.996909 1927 1913 1499978.254554 1928 1913 -7359624.812662 2010 1913 10539814.37052 2011 1913 -8593755.37553 2012 1913 -17106970.31658 2013 1913 44196492.14387 2014 1913 8010523.495484 2015 1913 -58776166.2905 2019 1913 57871.26589252 2020 1913 -34500021.48517 2021 1913 -41438476.99211 2022 1913 781316.8545274 2023 1913 -2152693.49136 2024 1913 -107886912.3736 2025 1913 11899911.13577 2026 1913 37236269.31883 2027 1913 -57440830.58835 2031 1913 -10597685.63642 2032 1913 -8663199.819997 2033 1913 -17363182.43788 2034 1913 -44977548.07992 2035 1913 -694433.6992576 2036 1913 -59807200.44138 2037 1913 -11899768.97017 2038 1913 9357633.519253 2039 1913 -21458826.37861 1914 1914 389420334.4506 1915 1914 36666666.66065 1916 1914 3703834.305166 1923 1914 -52083950.29126 1924 1914 -36666666.66065 1925 1914 2453701.89106 1926 1914 -202591396.4212 1927 1914 -36666966.01295 1928 1914 -2870483.022002 1929 1914 12702400.63006 1930 1914 29333632.68082 1931 1914 -1944468.073742 2013 1914 -5106206.927443 2014 1914 11000109.63744 2015 1914 12682625.90274 2022 1914 -15511422.68773 2023 1914 -9166776.303506 2024 1914 -10539940.2691 2025 1914 31947394.33292 2026 1914 9166666.669681 2027 1914 9728225.899101 2034 1914 -18848133.13973 2035 1914 -9166666.66968 2036 1914 -10597685.63642 2037 1914 -74358253.63036 2038 1914 -9166739.758898 2039 1914 -45562288.72778 2040 1914 -8166156.136015 2041 1914 7333406.424962 2042 1914 -9496761.446847 1915 1915 334416074.7194 1916 1915 -6111048.190243 1923 1915 -36666666.66065 1924 1915 -41083165.69975 1925 1915 1222200.476822 1926 1915 -36667115.68909 1927 1915 -30255041.75127 1928 1915 -3888889.819054 1929 1915 44000449.02122 1930 1915 12702400.63006 1931 1915 2666689.342343 2013 1915 7333406.424962 2014 1915 -5106206.927443 2015 1915 -6763956.526763 2022 1915 -9166739.758897 2023 1915 -47594642.16596 2024 1915 -34569643.89832 2025 1915 9166666.66968 2026 1915 18196342.83202 2027 1915 5513941.008134 2034 1915 -9166666.669679 2035 1915 -16097939.2847 2036 1915 -8663199.819997 2037 1915 -9166776.303507 2038 1915 -31274176.50627 2039 1915 -9941080.210835 2040 1915 11000109.63744 2041 1915 -8166156.136015 2042 1915 11395946.69513 1916 1916 380479993.5812 1923 1916 2523146.335561 1924 1916 1277756.032423 1925 1916 -7296493.499545 1926 1916 -2453807.380415 1927 1916 -3055548.927153 1928 1916 398412.8916247 1929 1916 -2916702.110613 1930 1916 1777792.894895 1931 1916 33873068.34682 2013 1916 8455083.935158 2014 1916 -10145934.79014 2015 1916 -13616551.80652 2022 1916 -10539898.30291 2023 1916 -34736312.74845 2024 1916 -44929274.14549 2025 1916 -8223530.275229 2026 1916 -8847241.586827 2027 1916 -79300461.72417 2034 1916 -10597685.63642 2035 1916 -8663199.819997 2036 1916 -17363182.43788 2037 1916 -45527563.96779 2038 1916 -9746597.980308 2039 1916 -63128188.69225 2040 1916 -14245142.17027 2041 1916 7597297.796754 2042 1916 -21776416.36271 1917 1917 622861433.7406 1918 1917 1.120567321777e-05 1919 1917 925940.4229136 1920 1917 84958459.17911 1921 1917 -5.066394805908e-06 1922 1917 231485.1058435 1932 1917 -137627039.3558 1933 1917 -2.235174179077e-07 1934 1917 -671303.5447711 1935 1917 -52107624.53367 1936 1917 36666666.66065 1937 1917 -2754631.441411 2016 1917 -60367636.82651 2017 1917 1.877546310425e-06 2018 1917 44780785.23866 2019 1917 -20276082.95081 2020 1917 -9166666.66968 2021 1917 11841897.70428 2028 1917 51054233.83102 2029 1917 1.788139343262e-06 2030 1917 231485.0634618 2031 1917 -7985170.87927 2032 1917 -2.771615982056e-06 2033 1917 57871.2658952 2043 1917 -60775629.25067 2044 1917 -1.214444637299e-06 2045 1917 -45012270.30212 2046 1917 -20383999.6175 2047 1917 9166666.669679 2048 1917 -11899768.97017 1918 1918 534855157.0519 1919 1918 -11110937.14243 1920 1918 -3.457069396973e-06 1921 1918 -54374606.24745 1922 1918 5722135.237857 1932 1918 4.470348358154e-07 1933 1918 23707595.23204 1934 1918 -2777734.286976 1935 1918 36666666.66065 1936 1918 -41106839.94217 1937 1918 1555533.810155 2016 1918 1.169741153717e-06 2017 1918 -20033981.96478 2018 1918 -694433.6992575 2019 1918 -9166666.66968 2020 1918 -17525889.09577 2021 1918 9288189.074786 2028 1918 1.966953277588e-06 2029 1918 29052683.00161 2030 1918 -2777734.795662 2031 1918 -2.190470695496e-06 2032 1918 -42818438.03636 2033 1918 37305534.05859 2043 1918 -1.445412635803e-06 2044 1918 -20441974.38895 2045 1918 -694433.6992576 2046 1918 9166666.669678 2047 1918 -17633805.76247 2048 1918 9357633.519253 1919 1919 608211498.9432 1920 1919 231485.105844 1921 1919 5388801.904579 1922 1919 80699306.16691 1932 1919 -254636.8781728 1933 1919 -2777734.286976 1934 1919 42039227.65673 1935 1919 -2685186.996909 1936 1919 1499978.254554 1937 1919 -7359624.812662 2016 1919 44746063.01646 2017 1919 -694433.6992574 2018 1919 -58719220.64359 2019 1919 11841897.70428 2020 1919 9288189.074786 2021 1919 -21171048.60074 2028 1919 231485.0634617 2029 1919 -2777734.795662 2030 1919 -127043423.7988 2031 1919 57871.26589543 2032 1919 37277756.28083 2033 1919 -57757921.43384 2043 1919 -44977548.07992 2044 1919 -694433.6992576 2045 1919 -59807200.44138 2046 1919 -11899768.97017 2047 1919 9357633.519253 2048 1919 -21458826.37861 1920 1920 622861433.7406 1921 1920 1.120567321777e-05 1922 1920 925940.4229136 1923 1920 84958459.17911 1924 1920 -5.066394805908e-06 1925 1920 231485.1058435 1932 1920 -52083950.29126 1933 1920 -36666666.66065 1934 1920 2453701.89106 1935 1920 -137627039.3558 1936 1920 -2.235174179077e-07 1937 1920 -671303.5447711 1938 1920 -52107624.53367 1939 1920 36666666.66065 1940 1920 -2754631.441411 2016 1920 -18752053.59425 2017 1920 9166666.66968 2018 1920 10539814.37052 2019 1920 -60367636.82651 2020 1920 1.877546310425e-06 2021 1920 44780785.23866 2022 1920 -20276082.95081 2023 1920 -9166666.66968 2024 1920 11841897.70428 2028 1920 -1865379.213624 2029 1920 8.79168510437e-07 2030 1920 57871.26589221 2031 1920 51054233.83102 2032 1920 1.788139343262e-06 2033 1920 231485.0634618 2034 1920 -7985170.87927 2035 1920 -2.771615982056e-06 2036 1920 57871.2658952 2043 1920 -18848133.13973 2044 1920 -9166666.66968 2045 1920 -10597685.63642 2046 1920 -60775629.25067 2047 1920 -1.214444637299e-06 2048 1920 -45012270.30212 2049 1920 -20383999.6175 2050 1920 9166666.669679 2051 1920 -11899768.97017 1921 1921 534855157.0519 1922 1921 -11110937.14243 1923 1921 -3.457069396973e-06 1924 1921 -54374606.24745 1925 1921 5722135.237857 1932 1921 -36666666.66065 1933 1921 -41083165.69975 1934 1921 1222200.476822 1935 1921 4.470348358154e-07 1936 1921 23707595.23204 1937 1921 -2777734.286976 1938 1921 36666666.66065 1939 1921 -41106839.94217 1940 1921 1555533.810155 2016 1921 9166666.66968 2017 1921 -16001859.73922 2018 1921 -8593755.37553 2019 1921 1.169741153717e-06 2020 1921 -20033981.96478 2021 1921 -694433.6992575 2022 1921 -9166666.66968 2023 1921 -17525889.09577 2024 1921 9288189.074786 2028 1921 1.229345798492e-06 2029 1921 -36698646.37071 2030 1921 -34527799.26293 2031 1921 1.966953277588e-06 2032 1921 29052683.00161 2033 1921 -2777734.795662 2034 1921 -2.190470695496e-06 2035 1921 -42818438.03636 2036 1921 37305534.05859 2043 1921 -9166666.669679 2044 1921 -16097939.2847 2045 1921 -8663199.819997 2046 1921 -1.445412635803e-06 2047 1921 -20441974.38895 2048 1921 -694433.6992576 2049 1921 9166666.669678 2050 1921 -17633805.76247 2051 1921 9357633.519253 1922 1922 608211498.9432 1923 1922 231485.105844 1924 1922 5388801.904579 1925 1922 80699306.16691 1932 1922 2523146.335561 1933 1922 1277756.032423 1934 1922 -7296493.499545 1935 1922 -254636.8781728 1936 1922 -2777734.286976 1937 1922 42039227.65673 1938 1922 -2685186.996909 1939 1922 1499978.254554 1940 1922 -7359624.812662 2016 1922 10539814.37052 2017 1922 -8593755.37553 2018 1922 -17106970.31658 2019 1922 44746063.01646 2020 1922 -694433.6992574 2021 1922 -58719220.64359 2022 1922 11841897.70428 2023 1922 9288189.074786 2024 1922 -21171048.60074 2028 1922 57871.26589252 2029 1922 -34500021.48517 2030 1922 -41438476.99211 2031 1922 231485.0634617 2032 1922 -2777734.795662 2033 1922 -127043423.7988 2034 1922 57871.26589543 2035 1922 37277756.28083 2036 1922 -57757921.43384 2043 1922 -10597685.63642 2044 1922 -8663199.819997 2045 1922 -17363182.43788 2046 1922 -44977548.07992 2047 1922 -694433.6992576 2048 1922 -59807200.44138 2049 1922 -11899768.97017 2050 1922 9357633.519253 2051 1922 -21458826.37861 1923 1923 622861433.7406 1924 1923 1.120567321777e-05 1925 1923 925940.4229136 1926 1923 84958459.17911 1927 1923 -5.066394805908e-06 1928 1923 231485.1058435 1935 1923 -52083950.29126 1936 1923 -36666666.66065 1937 1923 2453701.89106 1938 1923 -137627039.3558 1939 1923 -2.235174179077e-07 1940 1923 -671303.5447711 1941 1923 -52107624.53367 1942 1923 36666666.66065 1943 1923 -2754631.441411 2019 1923 -18752053.59425 2020 1923 9166666.66968 2021 1923 10539814.37052 2022 1923 -60367636.82651 2023 1923 1.877546310425e-06 2024 1923 44780785.23866 2025 1923 -20276082.95081 2026 1923 -9166666.66968 2027 1923 11841897.70428 2031 1923 -1865379.213624 2032 1923 8.79168510437e-07 2033 1923 57871.26589221 2034 1923 51054233.83102 2035 1923 1.788139343262e-06 2036 1923 231485.0634618 2037 1923 -7985170.87927 2038 1923 -2.771615982056e-06 2039 1923 57871.2658952 2046 1923 -18848133.13973 2047 1923 -9166666.66968 2048 1923 -10597685.63642 2049 1923 -60775629.25067 2050 1923 -1.214444637299e-06 2051 1923 -45012270.30212 2052 1923 -20383999.6175 2053 1923 9166666.669679 2054 1923 -11899768.97017 1924 1924 534855157.0519 1925 1924 -11110937.14243 1926 1924 -3.457069396973e-06 1927 1924 -54374606.24745 1928 1924 5722135.237857 1935 1924 -36666666.66065 1936 1924 -41083165.69975 1937 1924 1222200.476822 1938 1924 4.470348358154e-07 1939 1924 23707595.23204 1940 1924 -2777734.286976 1941 1924 36666666.66065 1942 1924 -41106839.94217 1943 1924 1555533.810155 2019 1924 9166666.66968 2020 1924 -16001859.73922 2021 1924 -8593755.37553 2022 1924 1.169741153717e-06 2023 1924 -20033981.96478 2024 1924 -694433.6992575 2025 1924 -9166666.66968 2026 1924 -17525889.09577 2027 1924 9288189.074786 2031 1924 1.229345798492e-06 2032 1924 -36698646.37071 2033 1924 -34527799.26293 2034 1924 1.966953277588e-06 2035 1924 29052683.00161 2036 1924 -2777734.795662 2037 1924 -2.190470695496e-06 2038 1924 -42818438.03636 2039 1924 37305534.05859 2046 1924 -9166666.669679 2047 1924 -16097939.2847 2048 1924 -8663199.819997 2049 1924 -1.445412635803e-06 2050 1924 -20441974.38895 2051 1924 -694433.6992576 2052 1924 9166666.669678 2053 1924 -17633805.76247 2054 1924 9357633.519253 1925 1925 608211498.9432 1926 1925 231485.105844 1927 1925 5388801.904579 1928 1925 80699306.16691 1935 1925 2523146.335561 1936 1925 1277756.032423 1937 1925 -7296493.499545 1938 1925 -254636.8781728 1939 1925 -2777734.286976 1940 1925 42039227.65673 1941 1925 -2685186.996909 1942 1925 1499978.254554 1943 1925 -7359624.812662 2019 1925 10539814.37052 2020 1925 -8593755.37553 2021 1925 -17106970.31658 2022 1925 44746063.01646 2023 1925 -694433.6992574 2024 1925 -58719220.64359 2025 1925 11841897.70428 2026 1925 9288189.074786 2027 1925 -21171048.60074 2031 1925 57871.26589252 2032 1925 -34500021.48517 2033 1925 -41438476.99211 2034 1925 231485.0634617 2035 1925 -2777734.795662 2036 1925 -127043423.7988 2037 1925 57871.26589543 2038 1925 37277756.28083 2039 1925 -57757921.43384 2046 1925 -10597685.63642 2047 1925 -8663199.819997 2048 1925 -17363182.43788 2049 1925 -44977548.07992 2050 1925 -694433.6992576 2051 1925 -59807200.44138 2052 1925 -11899768.97017 2053 1925 9357633.519253 2054 1925 -21458826.37861 1926 1926 674759689.9124 1927 1926 36667415.0414 1928 1926 3125092.975185 1929 1926 20137287.77529 1930 1926 -36666966.01295 1931 1926 2754655.071165 1938 1926 -52083950.29126 1939 1926 -36666666.66065 1940 1926 2453701.89106 1941 1926 -137627039.3558 1942 1926 -2.235174179077e-07 1943 1926 -671303.5447711 1944 1926 -52107624.53367 1945 1926 36666666.66065 1946 1926 -2754631.441411 2022 1926 -18752053.59425 2023 1926 9166666.66968 2024 1926 10539814.37052 2025 1926 -72726245.22972 2026 1926 -9166776.303506 2027 1926 44231216.90386 2034 1926 -1865379.213624 2035 1926 8.79168510437e-07 2036 1926 57871.26589221 2037 1926 70575234.21716 2038 1926 9166849.392726 2039 1926 781227.3439141 2040 1926 -20203256.3538 2041 1926 -9166739.758899 2042 1926 11899863.74724 2049 1926 -18848133.13973 2050 1926 -9166666.66968 2051 1926 -10597685.63642 2052 1926 -60775629.25067 2053 1926 -1.214444637299e-06 2054 1926 -45012270.30212 2055 1926 -20383999.6175 2056 1926 9166666.669679 2057 1926 -11899768.97017 1927 1927 575752291.8369 1928 1927 -8610912.053949 1929 1927 -36667115.6891 1930 1927 -108195591.755 1931 1927 4777685.365654 1938 1927 -36666666.66065 1939 1927 -41083165.69975 1940 1927 1222200.476822 1941 1927 4.470348358154e-07 1942 1927 23707595.23204 1943 1927 -2777734.286976 1944 1927 36666666.66065 1945 1927 -41106839.94217 1946 1927 1555533.810155 2022 1927 9166666.66968 2023 1927 -16001859.73922 2024 1927 -8593755.37553 2025 1927 -9166739.758897 2026 1927 -29642168.10562 2027 1927 8204934.122165 2034 1927 1.229345798492e-06 2035 1927 -36698646.37071 2036 1927 -34527799.26293 2037 1927 9166849.392726 2038 1927 45823407.30156 2039 1927 -2152765.098743 2040 1927 -9166776.303508 2041 1927 -52286475.83204 2042 1927 37069600.58987 2049 1927 -9166666.669679 2050 1927 -16097939.2847 2051 1927 -8663199.819997 2052 1927 -1.445412635803e-06 2053 1927 -20441974.38895 2054 1927 -694433.6992576 2055 1927 9166666.669678 2056 1927 -17633805.76247 2057 1927 9357633.519253 1928 1928 615008779.2968 1929 1928 2685222.441543 1930 1928 5222139.640517 1931 1928 39437488.39575 1938 1928 2523146.335561 1939 1928 1277756.032423 1940 1928 -7296493.499545 1941 1928 -254636.8781728 1942 1928 -2777734.286976 1943 1928 42039227.65673 1944 1928 -2685186.996909 1945 1928 1499978.254554 1946 1928 -7359624.812662 2022 1928 10539814.37052 2023 1928 -8593755.37553 2024 1928 -17106970.31658 2025 1928 44196492.14387 2026 1928 8010523.495484 2027 1928 -58776166.2905 2034 1928 57871.26589252 2035 1928 -34500021.48517 2036 1928 -41438476.99211 2037 1928 781316.8545274 2038 1928 -2152693.49136 2039 1928 -107886912.3736 2040 1928 11899911.13577 2041 1928 37236269.31883 2042 1928 -57440830.58835 2049 1928 -10597685.63642 2050 1928 -8663199.819997 2051 1928 -17363182.43788 2052 1928 -44977548.07992 2053 1928 -694433.6992576 2054 1928 -59807200.44138 2055 1928 -11899768.97017 2056 1928 9357633.519253 2057 1928 -21458826.37861 1929 1929 389420334.4506 1930 1929 36666666.66065 1931 1929 3703834.305166 1941 1929 -52083950.29126 1942 1929 -36666666.66065 1943 1929 2453701.89106 1944 1929 -202591396.4212 1945 1929 -36666966.01295 1946 1929 -2870483.022002 1947 1929 12702400.63006 1948 1929 29333632.68082 1949 1929 -1944468.073742 2025 1929 -5106206.927443 2026 1929 11000109.63744 2027 1929 12682625.90274 2037 1929 -15511422.68773 2038 1929 -9166776.303506 2039 1929 -10539940.2691 2040 1929 31947394.33292 2041 1929 9166666.669681 2042 1929 9728225.899101 2052 1929 -18848133.13973 2053 1929 -9166666.66968 2054 1929 -10597685.63642 2055 1929 -74358253.63036 2056 1929 -9166739.758898 2057 1929 -45562288.72778 2058 1929 -8166156.136015 2059 1929 7333406.424962 2060 1929 -9496761.446847 1930 1930 334416074.7194 1931 1930 -6111048.190243 1941 1930 -36666666.66065 1942 1930 -41083165.69975 1943 1930 1222200.476822 1944 1930 -36667115.68909 1945 1930 -30255041.75127 1946 1930 -3888889.819054 1947 1930 44000449.02122 1948 1930 12702400.63006 1949 1930 2666689.342343 2025 1930 7333406.424962 2026 1930 -5106206.927443 2027 1930 -6763956.526763 2037 1930 -9166739.758897 2038 1930 -47594642.16596 2039 1930 -34569643.89832 2040 1930 9166666.66968 2041 1930 18196342.83202 2042 1930 5513941.008134 2052 1930 -9166666.669679 2053 1930 -16097939.2847 2054 1930 -8663199.819997 2055 1930 -9166776.303507 2056 1930 -31274176.50627 2057 1930 -9941080.210835 2058 1930 11000109.63744 2059 1930 -8166156.136015 2060 1930 11395946.69513 1931 1931 380479993.5812 1941 1931 2523146.335561 1942 1931 1277756.032423 1943 1931 -7296493.499545 1944 1931 -2453807.380415 1945 1931 -3055548.927153 1946 1931 398412.8916247 1947 1931 -2916702.110613 1948 1931 1777792.894895 1949 1931 33873068.34682 2025 1931 8455083.935158 2026 1931 -10145934.79014 2027 1931 -13616551.80652 2037 1931 -10539898.30291 2038 1931 -34736312.74845 2039 1931 -44929274.14549 2040 1931 -8223530.275229 2041 1931 -8847241.586827 2042 1931 -79300461.72417 2052 1931 -10597685.63642 2053 1931 -8663199.819997 2054 1931 -17363182.43788 2055 1931 -45527563.96779 2056 1931 -9746597.980308 2057 1931 -63128188.69225 2058 1931 -14245142.17027 2059 1931 7597297.796754 2060 1931 -21776416.36271 1932 1932 622861433.7406 1933 1932 1.120567321777e-05 1934 1932 925940.4229136 1935 1932 84958459.17911 1936 1932 -5.066394805908e-06 1937 1932 231485.1058435 1950 1932 -137627039.3558 1951 1932 -2.235174179077e-07 1952 1932 -671303.5447711 1953 1932 -52107624.53367 1954 1932 36666666.66065 1955 1932 -2754631.441411 2028 1932 -60367636.82651 2029 1932 1.877546310425e-06 2030 1932 44780785.23866 2031 1932 -20276082.95081 2032 1932 -9166666.66968 2033 1932 11841897.70428 2043 1932 51054233.83102 2044 1932 1.788139343262e-06 2045 1932 231485.0634618 2046 1932 -7985170.87927 2047 1932 -2.771615982056e-06 2048 1932 57871.2658952 2061 1932 -60775629.25067 2062 1932 -1.214444637299e-06 2063 1932 -45012270.30212 2064 1932 -20383999.6175 2065 1932 9166666.669679 2066 1932 -11899768.97017 1933 1933 534855157.0519 1934 1933 -11110937.14243 1935 1933 -3.457069396973e-06 1936 1933 -54374606.24745 1937 1933 5722135.237857 1950 1933 4.470348358154e-07 1951 1933 23707595.23204 1952 1933 -2777734.286976 1953 1933 36666666.66065 1954 1933 -41106839.94217 1955 1933 1555533.810155 2028 1933 1.169741153717e-06 2029 1933 -20033981.96478 2030 1933 -694433.6992575 2031 1933 -9166666.66968 2032 1933 -17525889.09577 2033 1933 9288189.074786 2043 1933 1.966953277588e-06 2044 1933 29052683.00161 2045 1933 -2777734.795662 2046 1933 -2.190470695496e-06 2047 1933 -42818438.03636 2048 1933 37305534.05859 2061 1933 -1.445412635803e-06 2062 1933 -20441974.38895 2063 1933 -694433.6992576 2064 1933 9166666.669678 2065 1933 -17633805.76247 2066 1933 9357633.519253 1934 1934 608211498.9432 1935 1934 231485.105844 1936 1934 5388801.904579 1937 1934 80699306.16691 1950 1934 -254636.8781728 1951 1934 -2777734.286976 1952 1934 42039227.65673 1953 1934 -2685186.996909 1954 1934 1499978.254554 1955 1934 -7359624.812662 2028 1934 44746063.01646 2029 1934 -694433.6992574 2030 1934 -58719220.64359 2031 1934 11841897.70428 2032 1934 9288189.074786 2033 1934 -21171048.60074 2043 1934 231485.0634617 2044 1934 -2777734.795662 2045 1934 -127043423.7988 2046 1934 57871.26589543 2047 1934 37277756.28083 2048 1934 -57757921.43384 2061 1934 -44977548.07992 2062 1934 -694433.6992576 2063 1934 -59807200.44138 2064 1934 -11899768.97017 2065 1934 9357633.519253 2066 1934 -21458826.37861 1935 1935 622861433.7406 1936 1935 1.120567321777e-05 1937 1935 925940.4229136 1938 1935 84958459.17911 1939 1935 -5.066394805908e-06 1940 1935 231485.1058435 1950 1935 -52083950.29126 1951 1935 -36666666.66065 1952 1935 2453701.89106 1953 1935 -137627039.3558 1954 1935 -2.235174179077e-07 1955 1935 -671303.5447711 1956 1935 -52107624.53367 1957 1935 36666666.66065 1958 1935 -2754631.441411 2028 1935 -18752053.59425 2029 1935 9166666.66968 2030 1935 10539814.37052 2031 1935 -60367636.82651 2032 1935 1.877546310425e-06 2033 1935 44780785.23866 2034 1935 -20276082.95081 2035 1935 -9166666.66968 2036 1935 11841897.70428 2043 1935 -1865379.213624 2044 1935 8.79168510437e-07 2045 1935 57871.26589221 2046 1935 51054233.83102 2047 1935 1.788139343262e-06 2048 1935 231485.0634618 2049 1935 -7985170.87927 2050 1935 -2.771615982056e-06 2051 1935 57871.2658952 2061 1935 -18848133.13973 2062 1935 -9166666.66968 2063 1935 -10597685.63642 2064 1935 -60775629.25067 2065 1935 -1.214444637299e-06 2066 1935 -45012270.30212 2067 1935 -20383999.6175 2068 1935 9166666.669679 2069 1935 -11899768.97017 1936 1936 534855157.0519 1937 1936 -11110937.14243 1938 1936 -3.457069396973e-06 1939 1936 -54374606.24745 1940 1936 5722135.237857 1950 1936 -36666666.66065 1951 1936 -41083165.69975 1952 1936 1222200.476822 1953 1936 4.470348358154e-07 1954 1936 23707595.23204 1955 1936 -2777734.286976 1956 1936 36666666.66065 1957 1936 -41106839.94217 1958 1936 1555533.810155 2028 1936 9166666.66968 2029 1936 -16001859.73922 2030 1936 -8593755.37553 2031 1936 1.169741153717e-06 2032 1936 -20033981.96478 2033 1936 -694433.6992575 2034 1936 -9166666.66968 2035 1936 -17525889.09577 2036 1936 9288189.074786 2043 1936 1.229345798492e-06 2044 1936 -36698646.37071 2045 1936 -34527799.26293 2046 1936 1.966953277588e-06 2047 1936 29052683.00161 2048 1936 -2777734.795662 2049 1936 -2.190470695496e-06 2050 1936 -42818438.03636 2051 1936 37305534.05859 2061 1936 -9166666.669679 2062 1936 -16097939.2847 2063 1936 -8663199.819997 2064 1936 -1.445412635803e-06 2065 1936 -20441974.38895 2066 1936 -694433.6992576 2067 1936 9166666.669678 2068 1936 -17633805.76247 2069 1936 9357633.519253 1937 1937 608211498.9432 1938 1937 231485.105844 1939 1937 5388801.904579 1940 1937 80699306.16691 1950 1937 2523146.335561 1951 1937 1277756.032423 1952 1937 -7296493.499545 1953 1937 -254636.8781728 1954 1937 -2777734.286976 1955 1937 42039227.65673 1956 1937 -2685186.996909 1957 1937 1499978.254554 1958 1937 -7359624.812662 2028 1937 10539814.37052 2029 1937 -8593755.37553 2030 1937 -17106970.31658 2031 1937 44746063.01646 2032 1937 -694433.6992574 2033 1937 -58719220.64359 2034 1937 11841897.70428 2035 1937 9288189.074786 2036 1937 -21171048.60074 2043 1937 57871.26589252 2044 1937 -34500021.48517 2045 1937 -41438476.99211 2046 1937 231485.0634617 2047 1937 -2777734.795662 2048 1937 -127043423.7988 2049 1937 57871.26589543 2050 1937 37277756.28083 2051 1937 -57757921.43384 2061 1937 -10597685.63642 2062 1937 -8663199.819997 2063 1937 -17363182.43788 2064 1937 -44977548.07992 2065 1937 -694433.6992576 2066 1937 -59807200.44138 2067 1937 -11899768.97017 2068 1937 9357633.519253 2069 1937 -21458826.37861 1938 1938 622861433.7406 1939 1938 1.120567321777e-05 1940 1938 925940.4229136 1941 1938 84958459.17911 1942 1938 -5.066394805908e-06 1943 1938 231485.1058435 1953 1938 -52083950.29126 1954 1938 -36666666.66065 1955 1938 2453701.89106 1956 1938 -137627039.3558 1957 1938 -2.235174179077e-07 1958 1938 -671303.5447711 1959 1938 -52107624.53367 1960 1938 36666666.66065 1961 1938 -2754631.441411 2031 1938 -18752053.59425 2032 1938 9166666.66968 2033 1938 10539814.37052 2034 1938 -60367636.82651 2035 1938 1.877546310425e-06 2036 1938 44780785.23866 2037 1938 -20276082.95081 2038 1938 -9166666.66968 2039 1938 11841897.70428 2046 1938 -1865379.213624 2047 1938 8.79168510437e-07 2048 1938 57871.26589221 2049 1938 51054233.83102 2050 1938 1.788139343262e-06 2051 1938 231485.0634618 2052 1938 -7985170.87927 2053 1938 -2.771615982056e-06 2054 1938 57871.2658952 2064 1938 -18848133.13973 2065 1938 -9166666.66968 2066 1938 -10597685.63642 2067 1938 -60775629.25067 2068 1938 -1.214444637299e-06 2069 1938 -45012270.30212 2070 1938 -20383999.6175 2071 1938 9166666.669679 2072 1938 -11899768.97017 1939 1939 534855157.0519 1940 1939 -11110937.14243 1941 1939 -3.457069396973e-06 1942 1939 -54374606.24745 1943 1939 5722135.237857 1953 1939 -36666666.66065 1954 1939 -41083165.69975 1955 1939 1222200.476822 1956 1939 4.470348358154e-07 1957 1939 23707595.23204 1958 1939 -2777734.286976 1959 1939 36666666.66065 1960 1939 -41106839.94217 1961 1939 1555533.810155 2031 1939 9166666.66968 2032 1939 -16001859.73922 2033 1939 -8593755.37553 2034 1939 1.169741153717e-06 2035 1939 -20033981.96478 2036 1939 -694433.6992575 2037 1939 -9166666.66968 2038 1939 -17525889.09577 2039 1939 9288189.074786 2046 1939 1.229345798492e-06 2047 1939 -36698646.37071 2048 1939 -34527799.26293 2049 1939 1.966953277588e-06 2050 1939 29052683.00161 2051 1939 -2777734.795662 2052 1939 -2.190470695496e-06 2053 1939 -42818438.03636 2054 1939 37305534.05859 2064 1939 -9166666.669679 2065 1939 -16097939.2847 2066 1939 -8663199.819997 2067 1939 -1.445412635803e-06 2068 1939 -20441974.38895 2069 1939 -694433.6992576 2070 1939 9166666.669678 2071 1939 -17633805.76247 2072 1939 9357633.519253 1940 1940 608211498.9432 1941 1940 231485.105844 1942 1940 5388801.904579 1943 1940 80699306.16691 1953 1940 2523146.335561 1954 1940 1277756.032423 1955 1940 -7296493.499545 1956 1940 -254636.8781728 1957 1940 -2777734.286976 1958 1940 42039227.65673 1959 1940 -2685186.996909 1960 1940 1499978.254554 1961 1940 -7359624.812662 2031 1940 10539814.37052 2032 1940 -8593755.37553 2033 1940 -17106970.31658 2034 1940 44746063.01646 2035 1940 -694433.6992574 2036 1940 -58719220.64359 2037 1940 11841897.70428 2038 1940 9288189.074786 2039 1940 -21171048.60074 2046 1940 57871.26589252 2047 1940 -34500021.48517 2048 1940 -41438476.99211 2049 1940 231485.0634617 2050 1940 -2777734.795662 2051 1940 -127043423.7988 2052 1940 57871.26589543 2053 1940 37277756.28083 2054 1940 -57757921.43384 2064 1940 -10597685.63642 2065 1940 -8663199.819997 2066 1940 -17363182.43788 2067 1940 -44977548.07992 2068 1940 -694433.6992576 2069 1940 -59807200.44138 2070 1940 -11899768.97017 2071 1940 9357633.519253 2072 1940 -21458826.37861 1941 1941 622861433.7406 1942 1941 1.120567321777e-05 1943 1941 925940.4229136 1944 1941 84958459.17911 1945 1941 -5.066394805908e-06 1946 1941 231485.1058435 1956 1941 -52083950.29126 1957 1941 -36666666.66065 1958 1941 2453701.89106 1959 1941 -137627039.3558 1960 1941 -2.235174179077e-07 1961 1941 -671303.5447711 1962 1941 -52107624.53367 1963 1941 36666666.66065 1964 1941 -2754631.441411 2034 1941 -18752053.59425 2035 1941 9166666.66968 2036 1941 10539814.37052 2037 1941 -60367636.82651 2038 1941 1.877546310425e-06 2039 1941 44780785.23866 2040 1941 -20276082.95081 2041 1941 -9166666.66968 2042 1941 11841897.70428 2049 1941 -1865379.213624 2050 1941 8.79168510437e-07 2051 1941 57871.26589221 2052 1941 51054233.83102 2053 1941 1.788139343262e-06 2054 1941 231485.0634618 2055 1941 -7985170.87927 2056 1941 -2.771615982056e-06 2057 1941 57871.2658952 2067 1941 -18848133.13973 2068 1941 -9166666.66968 2069 1941 -10597685.63642 2070 1941 -60775629.25067 2071 1941 -1.214444637299e-06 2072 1941 -45012270.30212 2073 1941 -20383999.6175 2074 1941 9166666.669679 2075 1941 -11899768.97017 1942 1942 534855157.0519 1943 1942 -11110937.14243 1944 1942 -3.457069396973e-06 1945 1942 -54374606.24745 1946 1942 5722135.237857 1956 1942 -36666666.66065 1957 1942 -41083165.69975 1958 1942 1222200.476822 1959 1942 4.470348358154e-07 1960 1942 23707595.23204 1961 1942 -2777734.286976 1962 1942 36666666.66065 1963 1942 -41106839.94217 1964 1942 1555533.810155 2034 1942 9166666.66968 2035 1942 -16001859.73922 2036 1942 -8593755.37553 2037 1942 1.169741153717e-06 2038 1942 -20033981.96478 2039 1942 -694433.6992575 2040 1942 -9166666.66968 2041 1942 -17525889.09577 2042 1942 9288189.074786 2049 1942 1.229345798492e-06 2050 1942 -36698646.37071 2051 1942 -34527799.26293 2052 1942 1.966953277588e-06 2053 1942 29052683.00161 2054 1942 -2777734.795662 2055 1942 -2.190470695496e-06 2056 1942 -42818438.03636 2057 1942 37305534.05859 2067 1942 -9166666.669679 2068 1942 -16097939.2847 2069 1942 -8663199.819997 2070 1942 -1.445412635803e-06 2071 1942 -20441974.38895 2072 1942 -694433.6992576 2073 1942 9166666.669678 2074 1942 -17633805.76247 2075 1942 9357633.519253 1943 1943 608211498.9432 1944 1943 231485.105844 1945 1943 5388801.904579 1946 1943 80699306.16691 1956 1943 2523146.335561 1957 1943 1277756.032423 1958 1943 -7296493.499545 1959 1943 -254636.8781728 1960 1943 -2777734.286976 1961 1943 42039227.65673 1962 1943 -2685186.996909 1963 1943 1499978.254554 1964 1943 -7359624.812662 2034 1943 10539814.37052 2035 1943 -8593755.37553 2036 1943 -17106970.31658 2037 1943 44746063.01646 2038 1943 -694433.6992574 2039 1943 -58719220.64359 2040 1943 11841897.70428 2041 1943 9288189.074786 2042 1943 -21171048.60074 2049 1943 57871.26589252 2050 1943 -34500021.48517 2051 1943 -41438476.99211 2052 1943 231485.0634617 2053 1943 -2777734.795662 2054 1943 -127043423.7988 2055 1943 57871.26589543 2056 1943 37277756.28083 2057 1943 -57757921.43384 2067 1943 -10597685.63642 2068 1943 -8663199.819997 2069 1943 -17363182.43788 2070 1943 -44977548.07992 2071 1943 -694433.6992576 2072 1943 -59807200.44138 2073 1943 -11899768.97017 2074 1943 9357633.519253 2075 1943 -21458826.37861 1944 1944 674759689.9124 1945 1944 36667415.0414 1946 1944 3125092.975185 1947 1944 20137287.77529 1948 1944 -36666966.01295 1949 1944 2754655.071165 1959 1944 -52083950.29126 1960 1944 -36666666.66065 1961 1944 2453701.89106 1962 1944 -137627039.3558 1963 1944 -2.235174179077e-07 1964 1944 -671303.5447711 1965 1944 -52107624.53367 1966 1944 36666666.66065 1967 1944 -2754631.441411 2037 1944 -18752053.59425 2038 1944 9166666.66968 2039 1944 10539814.37052 2040 1944 -72726245.22972 2041 1944 -9166776.303506 2042 1944 44231216.90386 2052 1944 -1865379.213624 2053 1944 8.79168510437e-07 2054 1944 57871.26589221 2055 1944 70575234.21716 2056 1944 9166849.392726 2057 1944 781227.3439141 2058 1944 -20203256.3538 2059 1944 -9166739.758899 2060 1944 11899863.74724 2070 1944 -18848133.13973 2071 1944 -9166666.66968 2072 1944 -10597685.63642 2073 1944 -60775629.25067 2074 1944 -1.214444637299e-06 2075 1944 -45012270.30212 2076 1944 -20383999.6175 2077 1944 9166666.669679 2078 1944 -11899768.97017 1945 1945 575752291.8369 1946 1945 -8610912.053949 1947 1945 -36667115.6891 1948 1945 -108195591.755 1949 1945 4777685.365654 1959 1945 -36666666.66065 1960 1945 -41083165.69975 1961 1945 1222200.476822 1962 1945 4.470348358154e-07 1963 1945 23707595.23204 1964 1945 -2777734.286976 1965 1945 36666666.66065 1966 1945 -41106839.94217 1967 1945 1555533.810155 2037 1945 9166666.66968 2038 1945 -16001859.73922 2039 1945 -8593755.37553 2040 1945 -9166739.758897 2041 1945 -29642168.10562 2042 1945 8204934.122165 2052 1945 1.229345798492e-06 2053 1945 -36698646.37071 2054 1945 -34527799.26293 2055 1945 9166849.392726 2056 1945 45823407.30156 2057 1945 -2152765.098743 2058 1945 -9166776.303508 2059 1945 -52286475.83204 2060 1945 37069600.58987 2070 1945 -9166666.669679 2071 1945 -16097939.2847 2072 1945 -8663199.819997 2073 1945 -1.445412635803e-06 2074 1945 -20441974.38895 2075 1945 -694433.6992576 2076 1945 9166666.669678 2077 1945 -17633805.76247 2078 1945 9357633.519253 1946 1946 615008779.2968 1947 1946 2685222.441543 1948 1946 5222139.640517 1949 1946 39437488.39575 1959 1946 2523146.335561 1960 1946 1277756.032423 1961 1946 -7296493.499545 1962 1946 -254636.8781728 1963 1946 -2777734.286976 1964 1946 42039227.65673 1965 1946 -2685186.996909 1966 1946 1499978.254554 1967 1946 -7359624.812662 2037 1946 10539814.37052 2038 1946 -8593755.37553 2039 1946 -17106970.31658 2040 1946 44196492.14387 2041 1946 8010523.495484 2042 1946 -58776166.2905 2052 1946 57871.26589252 2053 1946 -34500021.48517 2054 1946 -41438476.99211 2055 1946 781316.8545274 2056 1946 -2152693.49136 2057 1946 -107886912.3736 2058 1946 11899911.13577 2059 1946 37236269.31883 2060 1946 -57440830.58835 2070 1946 -10597685.63642 2071 1946 -8663199.819997 2072 1946 -17363182.43788 2073 1946 -44977548.07992 2074 1946 -694433.6992576 2075 1946 -59807200.44138 2076 1946 -11899768.97017 2077 1946 9357633.519253 2078 1946 -21458826.37861 1947 1947 434012491.322 1948 1947 -26709105.05296 1949 1947 -725793.543576 1962 1947 -52083950.29126 1963 1947 -36666666.66065 1964 1947 2453701.89106 1965 1947 -56549866.20531 1966 1947 26704759.61057 1967 1947 -385264.5612573 1968 1947 -222386913.2778 1969 1947 29337678.77091 1970 1947 -277833.5794091 2040 1947 -5106206.927443 2041 1947 11000109.63744 2042 1947 12682625.90274 2055 1947 -15511422.68773 2056 1947 -9166776.303506 2057 1947 -10539940.2691 2058 1947 57002220.2306 2059 1947 -6544915.940513 2060 1947 4861555.215121 2073 1947 -18848133.13973 2074 1947 -9166666.66968 2075 1947 -10597685.63642 2076 1947 -29177118.41547 2077 1947 6543892.420132 2078 1947 -25729678.71087 2079 1947 -53961140.25394 2080 1947 7334356.856125 2081 1947 -1354081.113647 1948 1948 781040484.4929 1949 1948 -10574395.88396 1962 1948 -36666666.66065 1963 1948 -41083165.69975 1964 1948 1222200.476822 1965 1948 26702586.88937 1966 1948 87287357.54424 1967 1948 -1789762.243781 1968 1948 44006518.15637 1969 1948 -595920035.2594 1970 1948 5142261.375664 2040 1948 7333406.424962 2041 1948 -5106206.927443 2042 1948 -6763956.526763 2055 1948 -9166739.758897 2056 1948 -47594642.16596 2057 1948 -34569643.89832 2058 1948 -6544915.940513 2059 1948 138242633.1703 2060 1948 1389850.346674 2073 1948 -9166666.669679 2074 1948 -16097939.2847 2075 1948 -8663199.819997 2076 1948 6543380.659941 2077 1948 6841374.023334 2078 1948 5925066.094897 2079 1948 11001535.28419 2080 1948 -141887020.0092 2081 1948 18142632.26191 1949 1949 467013145.2305 1962 1949 2523146.335561 1963 1949 1277756.032423 1964 1949 -7296493.499545 1965 1949 -940793.6136686 1966 1949 -1678594.911864 1967 1949 48688638.16036 1968 1949 -416750.3691136 1969 1949 5031214.44564 1970 1949 -219498646.7591 2040 1949 8455083.935158 2041 1949 -10145934.79014 2042 1949 -13616551.80652 2055 1949 -10539898.30291 2056 1949 -34736312.74845 2057 1949 -44929274.14549 2058 1949 -5398901.65238 2059 1949 -6817695.611917 2060 1949 -15837053.95701 2073 1949 -10597685.63642 2074 1949 -8663199.819997 2075 1949 -17363182.43788 2076 1949 -25903283.59124 2077 1949 5953357.675215 2078 1949 -27221579.91443 2079 1949 -2031121.67047 2080 1949 17600907.9829 2081 1949 -55970494.25524 1950 1950 622861433.7406 1951 1950 1.120567321777e-05 1952 1950 925940.4229136 1953 1950 84958459.17911 1954 1950 -5.066394805908e-06 1955 1950 231485.1058435 1971 1950 -137627039.3558 1972 1950 -2.235174179077e-07 1973 1950 -671303.5447711 1974 1950 -52107624.53367 1975 1950 36666666.66065 1976 1950 -2754631.441411 2043 1950 -60367636.82651 2044 1950 1.877546310425e-06 2045 1950 44780785.23866 2046 1950 -20276082.95081 2047 1950 -9166666.66968 2048 1950 11841897.70428 2061 1950 51054233.83102 2062 1950 1.788139343262e-06 2063 1950 231485.0634618 2064 1950 -7985170.87927 2065 1950 -2.771615982056e-06 2066 1950 57871.2658952 2082 1950 -60775629.25067 2083 1950 -1.214444637299e-06 2084 1950 -45012270.30212 2085 1950 -20383999.6175 2086 1950 9166666.669679 2087 1950 -11899768.97017 1951 1951 534855157.0519 1952 1951 -11110937.14243 1953 1951 -3.457069396973e-06 1954 1951 -54374606.24745 1955 1951 5722135.237857 1971 1951 4.470348358154e-07 1972 1951 23707595.23204 1973 1951 -2777734.286976 1974 1951 36666666.66065 1975 1951 -41106839.94217 1976 1951 1555533.810155 2043 1951 1.169741153717e-06 2044 1951 -20033981.96478 2045 1951 -694433.6992575 2046 1951 -9166666.66968 2047 1951 -17525889.09577 2048 1951 9288189.074786 2061 1951 1.966953277588e-06 2062 1951 29052683.00161 2063 1951 -2777734.795662 2064 1951 -2.190470695496e-06 2065 1951 -42818438.03636 2066 1951 37305534.05859 2082 1951 -1.445412635803e-06 2083 1951 -20441974.38895 2084 1951 -694433.6992576 2085 1951 9166666.669678 2086 1951 -17633805.76247 2087 1951 9357633.519253 1952 1952 608211498.9432 1953 1952 231485.105844 1954 1952 5388801.904579 1955 1952 80699306.16691 1971 1952 -254636.8781728 1972 1952 -2777734.286976 1973 1952 42039227.65673 1974 1952 -2685186.996909 1975 1952 1499978.254554 1976 1952 -7359624.812662 2043 1952 44746063.01646 2044 1952 -694433.6992574 2045 1952 -58719220.64359 2046 1952 11841897.70428 2047 1952 9288189.074786 2048 1952 -21171048.60074 2061 1952 231485.0634617 2062 1952 -2777734.795662 2063 1952 -127043423.7988 2064 1952 57871.26589543 2065 1952 37277756.28083 2066 1952 -57757921.43384 2082 1952 -44977548.07992 2083 1952 -694433.6992576 2084 1952 -59807200.44138 2085 1952 -11899768.97017 2086 1952 9357633.519253 2087 1952 -21458826.37861 1953 1953 622861433.7406 1954 1953 1.120567321777e-05 1955 1953 925940.4229136 1956 1953 84958459.17911 1957 1953 -5.066394805908e-06 1958 1953 231485.1058435 1971 1953 -52083950.29126 1972 1953 -36666666.66065 1973 1953 2453701.89106 1974 1953 -137627039.3558 1975 1953 -2.235174179077e-07 1976 1953 -671303.5447711 1977 1953 -52107624.53367 1978 1953 36666666.66065 1979 1953 -2754631.441411 2043 1953 -18752053.59425 2044 1953 9166666.66968 2045 1953 10539814.37052 2046 1953 -60367636.82651 2047 1953 1.877546310425e-06 2048 1953 44780785.23866 2049 1953 -20276082.95081 2050 1953 -9166666.66968 2051 1953 11841897.70428 2061 1953 -1865379.213624 2062 1953 8.79168510437e-07 2063 1953 57871.26589221 2064 1953 51054233.83102 2065 1953 1.788139343262e-06 2066 1953 231485.0634618 2067 1953 -7985170.87927 2068 1953 -2.771615982056e-06 2069 1953 57871.2658952 2082 1953 -18848133.13973 2083 1953 -9166666.66968 2084 1953 -10597685.63642 2085 1953 -60775629.25067 2086 1953 -1.214444637299e-06 2087 1953 -45012270.30212 2088 1953 -20383999.6175 2089 1953 9166666.669679 2090 1953 -11899768.97017 1954 1954 534855157.0519 1955 1954 -11110937.14243 1956 1954 -3.457069396973e-06 1957 1954 -54374606.24745 1958 1954 5722135.237857 1971 1954 -36666666.66065 1972 1954 -41083165.69975 1973 1954 1222200.476822 1974 1954 4.470348358154e-07 1975 1954 23707595.23204 1976 1954 -2777734.286976 1977 1954 36666666.66065 1978 1954 -41106839.94217 1979 1954 1555533.810155 2043 1954 9166666.66968 2044 1954 -16001859.73922 2045 1954 -8593755.37553 2046 1954 1.169741153717e-06 2047 1954 -20033981.96478 2048 1954 -694433.6992575 2049 1954 -9166666.66968 2050 1954 -17525889.09577 2051 1954 9288189.074786 2061 1954 1.229345798492e-06 2062 1954 -36698646.37071 2063 1954 -34527799.26293 2064 1954 1.966953277588e-06 2065 1954 29052683.00161 2066 1954 -2777734.795662 2067 1954 -2.190470695496e-06 2068 1954 -42818438.03636 2069 1954 37305534.05859 2082 1954 -9166666.669679 2083 1954 -16097939.2847 2084 1954 -8663199.819997 2085 1954 -1.445412635803e-06 2086 1954 -20441974.38895 2087 1954 -694433.6992576 2088 1954 9166666.669678 2089 1954 -17633805.76247 2090 1954 9357633.519253 1955 1955 608211498.9432 1956 1955 231485.105844 1957 1955 5388801.904579 1958 1955 80699306.16691 1971 1955 2523146.335561 1972 1955 1277756.032423 1973 1955 -7296493.499545 1974 1955 -254636.8781728 1975 1955 -2777734.286976 1976 1955 42039227.65673 1977 1955 -2685186.996909 1978 1955 1499978.254554 1979 1955 -7359624.812662 2043 1955 10539814.37052 2044 1955 -8593755.37553 2045 1955 -17106970.31658 2046 1955 44746063.01646 2047 1955 -694433.6992574 2048 1955 -58719220.64359 2049 1955 11841897.70428 2050 1955 9288189.074786 2051 1955 -21171048.60074 2061 1955 57871.26589252 2062 1955 -34500021.48517 2063 1955 -41438476.99211 2064 1955 231485.0634617 2065 1955 -2777734.795662 2066 1955 -127043423.7988 2067 1955 57871.26589543 2068 1955 37277756.28083 2069 1955 -57757921.43384 2082 1955 -10597685.63642 2083 1955 -8663199.819997 2084 1955 -17363182.43788 2085 1955 -44977548.07992 2086 1955 -694433.6992576 2087 1955 -59807200.44138 2088 1955 -11899768.97017 2089 1955 9357633.519253 2090 1955 -21458826.37861 1956 1956 622861433.7406 1957 1956 1.120567321777e-05 1958 1956 925940.4229136 1959 1956 84958459.17911 1960 1956 -5.066394805908e-06 1961 1956 231485.1058435 1974 1956 -52083950.29126 1975 1956 -36666666.66065 1976 1956 2453701.89106 1977 1956 -137627039.3558 1978 1956 -2.235174179077e-07 1979 1956 -671303.5447711 1980 1956 -52107624.53367 1981 1956 36666666.66065 1982 1956 -2754631.441411 2046 1956 -18752053.59425 2047 1956 9166666.66968 2048 1956 10539814.37052 2049 1956 -60367636.82651 2050 1956 1.877546310425e-06 2051 1956 44780785.23866 2052 1956 -20276082.95081 2053 1956 -9166666.66968 2054 1956 11841897.70428 2064 1956 -1865379.213624 2065 1956 8.79168510437e-07 2066 1956 57871.26589221 2067 1956 51054233.83102 2068 1956 1.788139343262e-06 2069 1956 231485.0634618 2070 1956 -7985170.87927 2071 1956 -2.771615982056e-06 2072 1956 57871.2658952 2085 1956 -18848133.13973 2086 1956 -9166666.66968 2087 1956 -10597685.63642 2088 1956 -60775629.25067 2089 1956 -1.214444637299e-06 2090 1956 -45012270.30212 2091 1956 -20383999.6175 2092 1956 9166666.669679 2093 1956 -11899768.97017 1957 1957 534855157.0519 1958 1957 -11110937.14243 1959 1957 -3.457069396973e-06 1960 1957 -54374606.24745 1961 1957 5722135.237857 1974 1957 -36666666.66065 1975 1957 -41083165.69975 1976 1957 1222200.476822 1977 1957 4.470348358154e-07 1978 1957 23707595.23204 1979 1957 -2777734.286976 1980 1957 36666666.66065 1981 1957 -41106839.94217 1982 1957 1555533.810155 2046 1957 9166666.66968 2047 1957 -16001859.73922 2048 1957 -8593755.37553 2049 1957 1.169741153717e-06 2050 1957 -20033981.96478 2051 1957 -694433.6992575 2052 1957 -9166666.66968 2053 1957 -17525889.09577 2054 1957 9288189.074786 2064 1957 1.229345798492e-06 2065 1957 -36698646.37071 2066 1957 -34527799.26293 2067 1957 1.966953277588e-06 2068 1957 29052683.00161 2069 1957 -2777734.795662 2070 1957 -2.190470695496e-06 2071 1957 -42818438.03636 2072 1957 37305534.05859 2085 1957 -9166666.669679 2086 1957 -16097939.2847 2087 1957 -8663199.819997 2088 1957 -1.445412635803e-06 2089 1957 -20441974.38895 2090 1957 -694433.6992576 2091 1957 9166666.669678 2092 1957 -17633805.76247 2093 1957 9357633.519253 1958 1958 608211498.9432 1959 1958 231485.105844 1960 1958 5388801.904579 1961 1958 80699306.16691 1974 1958 2523146.335561 1975 1958 1277756.032423 1976 1958 -7296493.499545 1977 1958 -254636.8781728 1978 1958 -2777734.286976 1979 1958 42039227.65673 1980 1958 -2685186.996909 1981 1958 1499978.254554 1982 1958 -7359624.812662 2046 1958 10539814.37052 2047 1958 -8593755.37553 2048 1958 -17106970.31658 2049 1958 44746063.01646 2050 1958 -694433.6992574 2051 1958 -58719220.64359 2052 1958 11841897.70428 2053 1958 9288189.074786 2054 1958 -21171048.60074 2064 1958 57871.26589252 2065 1958 -34500021.48517 2066 1958 -41438476.99211 2067 1958 231485.0634617 2068 1958 -2777734.795662 2069 1958 -127043423.7988 2070 1958 57871.26589543 2071 1958 37277756.28083 2072 1958 -57757921.43384 2085 1958 -10597685.63642 2086 1958 -8663199.819997 2087 1958 -17363182.43788 2088 1958 -44977548.07992 2089 1958 -694433.6992576 2090 1958 -59807200.44138 2091 1958 -11899768.97017 2092 1958 9357633.519253 2093 1958 -21458826.37861 1959 1959 622861433.7406 1960 1959 1.120567321777e-05 1961 1959 925940.4229136 1962 1959 84958459.17911 1963 1959 -5.066394805908e-06 1964 1959 231485.1058435 1977 1959 -52083950.29126 1978 1959 -36666666.66065 1979 1959 2453701.89106 1980 1959 -137627039.3558 1981 1959 -2.235174179077e-07 1982 1959 -671303.5447711 1983 1959 -52107624.53367 1984 1959 36666666.66065 1985 1959 -2754631.441411 2049 1959 -18752053.59425 2050 1959 9166666.66968 2051 1959 10539814.37052 2052 1959 -60367636.82651 2053 1959 1.877546310425e-06 2054 1959 44780785.23866 2055 1959 -20276082.95081 2056 1959 -9166666.66968 2057 1959 11841897.70428 2067 1959 -1865379.213624 2068 1959 8.79168510437e-07 2069 1959 57871.26589221 2070 1959 51054233.83102 2071 1959 1.788139343262e-06 2072 1959 231485.0634618 2073 1959 -7985170.87927 2074 1959 -2.771615982056e-06 2075 1959 57871.2658952 2088 1959 -18848133.13973 2089 1959 -9166666.66968 2090 1959 -10597685.63642 2091 1959 -60775629.25067 2092 1959 -1.214444637299e-06 2093 1959 -45012270.30212 2094 1959 -20383999.6175 2095 1959 9166666.669679 2096 1959 -11899768.97017 1960 1960 534855157.0519 1961 1960 -11110937.14243 1962 1960 -3.457069396973e-06 1963 1960 -54374606.24745 1964 1960 5722135.237857 1977 1960 -36666666.66065 1978 1960 -41083165.69975 1979 1960 1222200.476822 1980 1960 4.470348358154e-07 1981 1960 23707595.23204 1982 1960 -2777734.286976 1983 1960 36666666.66065 1984 1960 -41106839.94217 1985 1960 1555533.810155 2049 1960 9166666.66968 2050 1960 -16001859.73922 2051 1960 -8593755.37553 2052 1960 1.169741153717e-06 2053 1960 -20033981.96478 2054 1960 -694433.6992575 2055 1960 -9166666.66968 2056 1960 -17525889.09577 2057 1960 9288189.074786 2067 1960 1.229345798492e-06 2068 1960 -36698646.37071 2069 1960 -34527799.26293 2070 1960 1.966953277588e-06 2071 1960 29052683.00161 2072 1960 -2777734.795662 2073 1960 -2.190470695496e-06 2074 1960 -42818438.03636 2075 1960 37305534.05859 2088 1960 -9166666.669679 2089 1960 -16097939.2847 2090 1960 -8663199.819997 2091 1960 -1.445412635803e-06 2092 1960 -20441974.38895 2093 1960 -694433.6992576 2094 1960 9166666.669678 2095 1960 -17633805.76247 2096 1960 9357633.519253 1961 1961 608211498.9432 1962 1961 231485.105844 1963 1961 5388801.904579 1964 1961 80699306.16691 1977 1961 2523146.335561 1978 1961 1277756.032423 1979 1961 -7296493.499545 1980 1961 -254636.8781728 1981 1961 -2777734.286976 1982 1961 42039227.65673 1983 1961 -2685186.996909 1984 1961 1499978.254554 1985 1961 -7359624.812662 2049 1961 10539814.37052 2050 1961 -8593755.37553 2051 1961 -17106970.31658 2052 1961 44746063.01646 2053 1961 -694433.6992574 2054 1961 -58719220.64359 2055 1961 11841897.70428 2056 1961 9288189.074786 2057 1961 -21171048.60074 2067 1961 57871.26589252 2068 1961 -34500021.48517 2069 1961 -41438476.99211 2070 1961 231485.0634617 2071 1961 -2777734.795662 2072 1961 -127043423.7988 2073 1961 57871.26589543 2074 1961 37277756.28083 2075 1961 -57757921.43384 2088 1961 -10597685.63642 2089 1961 -8663199.819997 2090 1961 -17363182.43788 2091 1961 -44977548.07992 2092 1961 -694433.6992576 2093 1961 -59807200.44138 2094 1961 -11899768.97017 2095 1961 9357633.519253 2096 1961 -21458826.37861 1962 1962 622861433.7406 1963 1962 1.120567321777e-05 1964 1962 925940.4229136 1965 1962 84958459.17911 1966 1962 -5.066394805908e-06 1967 1962 231485.1058435 1980 1962 -52083950.29126 1981 1962 -36666666.66065 1982 1962 2453701.89106 1983 1962 -137627039.3558 1984 1962 -2.235174179077e-07 1985 1962 -671303.5447711 1986 1962 -52107624.53367 1987 1962 36666666.66065 1988 1962 -2754631.441411 2052 1962 -18752053.59425 2053 1962 9166666.66968 2054 1962 10539814.37052 2055 1962 -60367636.82651 2056 1962 1.877546310425e-06 2057 1962 44780785.23866 2058 1962 -20276082.95081 2059 1962 -9166666.66968 2060 1962 11841897.70428 2070 1962 -1865379.213624 2071 1962 8.79168510437e-07 2072 1962 57871.26589221 2073 1962 51054233.83102 2074 1962 1.788139343262e-06 2075 1962 231485.0634618 2076 1962 -7985170.87927 2077 1962 -2.771615982056e-06 2078 1962 57871.2658952 2091 1962 -18848133.13973 2092 1962 -9166666.66968 2093 1962 -10597685.63642 2094 1962 -60775629.25067 2095 1962 -1.214444637299e-06 2096 1962 -45012270.30212 2097 1962 -20383999.6175 2098 1962 9166666.669679 2099 1962 -11899768.97017 1963 1963 534855157.0519 1964 1963 -11110937.14243 1965 1963 -3.457069396973e-06 1966 1963 -54374606.24745 1967 1963 5722135.237857 1980 1963 -36666666.66065 1981 1963 -41083165.69975 1982 1963 1222200.476822 1983 1963 4.470348358154e-07 1984 1963 23707595.23204 1985 1963 -2777734.286976 1986 1963 36666666.66065 1987 1963 -41106839.94217 1988 1963 1555533.810155 2052 1963 9166666.66968 2053 1963 -16001859.73922 2054 1963 -8593755.37553 2055 1963 1.169741153717e-06 2056 1963 -20033981.96478 2057 1963 -694433.6992575 2058 1963 -9166666.66968 2059 1963 -17525889.09577 2060 1963 9288189.074786 2070 1963 1.229345798492e-06 2071 1963 -36698646.37071 2072 1963 -34527799.26293 2073 1963 1.966953277588e-06 2074 1963 29052683.00161 2075 1963 -2777734.795662 2076 1963 -2.190470695496e-06 2077 1963 -42818438.03636 2078 1963 37305534.05859 2091 1963 -9166666.669679 2092 1963 -16097939.2847 2093 1963 -8663199.819997 2094 1963 -1.445412635803e-06 2095 1963 -20441974.38895 2096 1963 -694433.6992576 2097 1963 9166666.669678 2098 1963 -17633805.76247 2099 1963 9357633.519253 1964 1964 608211498.9432 1965 1964 231485.105844 1966 1964 5388801.904579 1967 1964 80699306.16691 1980 1964 2523146.335561 1981 1964 1277756.032423 1982 1964 -7296493.499545 1983 1964 -254636.8781728 1984 1964 -2777734.286976 1985 1964 42039227.65673 1986 1964 -2685186.996909 1987 1964 1499978.254554 1988 1964 -7359624.812662 2052 1964 10539814.37052 2053 1964 -8593755.37553 2054 1964 -17106970.31658 2055 1964 44746063.01646 2056 1964 -694433.6992574 2057 1964 -58719220.64359 2058 1964 11841897.70428 2059 1964 9288189.074786 2060 1964 -21171048.60074 2070 1964 57871.26589252 2071 1964 -34500021.48517 2072 1964 -41438476.99211 2073 1964 231485.0634617 2074 1964 -2777734.795662 2075 1964 -127043423.7988 2076 1964 57871.26589543 2077 1964 37277756.28083 2078 1964 -57757921.43384 2091 1964 -10597685.63642 2092 1964 -8663199.819997 2093 1964 -17363182.43788 2094 1964 -44977548.07992 2095 1964 -694433.6992576 2096 1964 -59807200.44138 2097 1964 -11899768.97017 2098 1964 9357633.519253 2099 1964 -21458826.37861 1965 1965 525841223.8952 1966 1965 16637726.52648 1967 1965 1326933.388722 1968 1965 -99403447.86785 1969 1965 -76875437.99681 1970 1965 1088428.388042 1983 1965 -52083950.29126 1984 1965 -36666666.66065 1985 1965 2453701.89106 1986 1965 -86403605.12191 1987 1965 24246660.24538 1988 1965 -369310.9342484 1989 1965 -48005004.3171 1990 1965 9288464.335591 1991 1965 -271921.0998234 2055 1965 -18752053.59425 2056 1965 9166666.66968 2057 1965 10539814.37052 2058 1965 -28689005.84703 2059 1965 6543380.659943 2060 1965 25399000.74626 2073 1965 -1865379.213624 2074 1965 8.79168510437e-07 2075 1965 57871.26589221 2076 1965 60544850.76444 2077 1965 3603652.033654 2078 1965 165256.0848025 2079 1965 -36046786.41637 2080 1965 -18861624.24183 2081 1965 11409584.46838 2094 1965 -18848133.13973 2095 1965 -9166666.66968 2096 1965 -10597685.63642 2097 1965 -45324581.42976 2098 1965 6015914.059347 2099 1965 -35313654.50317 2100 1965 -18251664.62718 2101 1965 2698677.488894 2102 1965 -1659648.850827 1966 1966 652167491.1058 1967 1966 -7436833.74596 1968 1966 -76877610.71801 1969 1966 -257026253.9904 1970 1966 1869729.751142 1983 1966 -36666666.66065 1984 1966 -41083165.69975 1985 1966 1222200.476822 1986 1966 24246660.24538 1987 1966 16665770.31957 1988 1966 -1278060.764028 1989 1966 9288464.335591 1990 1966 -146283568.3526 1991 1966 1079447.946065 2055 1966 9166666.66968 2056 1966 -16001859.73922 2057 1966 -8593755.37553 2058 1966 6543892.420133 2059 1966 7329486.591774 2060 1966 -6861432.291434 2073 1966 1.229345798492e-06 2074 1966 -36698646.37071 2075 1966 -34527799.26293 2076 1966 3603652.033653 2077 1966 90110247.58946 2078 1966 -1973524.931692 2079 1966 -18862136.00203 2080 1966 -74966289.42761 2081 1966 36320757.18761 2094 1966 -9166666.669679 2095 1966 -16097939.2847 2096 1966 -8663199.819997 2097 1966 6015914.059347 2098 1966 -18890115.44135 2099 1966 7371512.847656 2100 1966 2698677.488894 2101 1966 -42017637.42113 2102 1966 16927872.0975 1967 1967 515818492.9784 1968 1967 1157900.733316 1969 1967 1814231.538681 1970 1967 -65036963.58215 1983 1967 2523146.335561 1984 1967 1277756.032423 1985 1967 -7296493.499545 1986 1967 -716533.1564142 1987 1967 -1222505.208481 1988 1967 45936875.78449 1989 1967 -133032.2108206 1990 1967 1079447.946065 1991 1967 -34793738.56316 2055 1967 10539814.37052 2056 1967 -8593755.37553 2057 1967 -17106970.31658 2058 1967 25572605.62664 2059 1967 -6888721.711543 2060 1967 -25919946.39859 2073 1967 57871.26589252 2074 1967 -34500021.48517 2075 1967 -41438476.99211 2076 1967 165435.1762095 2077 1967 -1973381.627549 2078 1967 -58670256.12405 2079 1967 11409680.57863 2080 1967 36320340.74991 2081 1967 -47859546.84135 2094 1967 -10597685.63642 2095 1967 -8663199.819997 2096 1967 -17363182.43788 2097 1967 -35487265.61249 2098 1967 7371512.849165 2099 1967 -51354101.90813 2100 1967 -1659648.850827 2101 1967 16927872.0975 2102 1967 -26241528.32399 1968 1968 584821571.4308 1969 1968 17544222.98078 1970 1968 313065.1993893 1986 1968 -52986235.77516 1987 1968 -32422879.68721 1988 1968 281349.1550519 1989 1968 35144313.475 1990 1968 39593841.83951 1991 1968 -575114.6272513 1992 1968 63970939.87151 1993 1968 -20632720.36621 1994 1968 2992.521678209 1995 1968 -1006153.553093 1996 1968 28788627.79476 1997 1968 -68998.16852388 2058 1968 -53458391.75147 2059 1968 11001535.28419 2060 1968 1822748.871423 2076 1968 -35172500.00353 2077 1968 -18862136.00203 2078 1968 -11029051.06911 2079 1968 35790640.60615 2080 1968 4298038.396794 2081 1968 8759735.736302 2097 1968 -19804774.09007 2098 1968 -8176439.889684 2099 1968 -11139057.95335 2100 1968 -41703527.98086 2101 1968 9670377.580278 2102 1968 -43908768.3245 2103 1968 -23096419.85021 2104 1968 -5140898.074326 2105 1968 13676758.60085 2106 1968 -17236872.81083 2107 1968 7209522.704775 2108 1968 -10716254.75056 1969 1969 1044581457.601 1970 1969 -5662855.094209 1986 1969 -32422879.68721 1987 1969 -16131420.91587 1988 1969 -129055.109933 1989 1969 39593841.83951 1990 1969 162931143.787 1991 1969 -626977.6637532 1992 1969 -5966053.701947 1993 1969 -6589505.676626 1994 1969 57685.45135477 1995 1969 28788627.79476 1996 1969 -23691311.24204 1997 1969 71068.93951069 2058 1969 7334356.856125 2059 1969 -141384271.5067 2060 1969 -15223117.05093 2076 1969 -18861624.24184 2077 1969 -74092003.01479 2078 1969 -35487648.98173 2079 1969 4298038.396793 2080 1969 144981214.6301 2081 1969 -898589.0163781 2097 1969 -8176439.889684 2098 1969 -10839297.49869 2099 1969 -8997766.816414 2100 1969 9670377.580277 2101 1969 -9734323.79071 2102 1969 7544152.626836 2103 1969 -1474231.406454 2104 1969 -40740840.42931 2105 1969 33347738.67704 2106 1969 7209522.704775 2107 1969 -22872324.27073 2108 1969 16684392.2326 1970 1970 745776634.0428 1986 1970 350793.5995534 1987 1970 -73499.55433191 1988 1970 -634662.7282902 1989 1970 -366781.293952 1990 1970 -571422.1082071 1991 1970 194003600.4649 1992 1970 2992.521681309 1993 1970 57685.45135468 1994 1970 126095896.7256 1995 1970 -68998.16849005 1996 1970 71068.9395107 1997 1970 41038339.97883 2058 1970 1215165.914282 2059 1970 -15709313.95751 2060 1970 -54629831.58199 2076 1970 -11028968.11405 2077 1970 -35488091.42098 2078 1970 -45528116.40711 2079 1970 -8774708.705263 2080 1970 -1927368.836544 2081 1970 -102472943.4706 2097 1970 -11139057.95335 2098 1970 -8997766.816414 2099 1970 -17461344.76991 2100 1970 -43908768.32454 2101 1970 7544152.628345 2102 1970 -84665181.10733 2103 1970 5551758.600068 2104 1970 33347738.67704 2105 1970 -72767413.37603 2106 1970 -10716254.75056 2107 1970 16684392.2326 2108 1970 -34960091.63584 1971 1971 311425982.0218 1972 1971 4.053115844727e-06 1973 1971 -578696.4550389 1974 1971 42478440.44814 1975 1971 7333333.332128 1976 1971 -578701.8915792 2061 1971 -60367636.82651 2062 1971 1.877546310425e-06 2063 1971 44780785.23866 2064 1971 -20276082.95081 2065 1971 -9166666.66968 2066 1971 11841897.70428 2082 1971 25526722.3448 2083 1971 -5.960464477539e-08 2084 1971 -8946896.355626 2085 1971 -3992585.439634 2086 1971 1833333.333934 2087 1971 -2345231.034498 1972 1972 267422843.6775 1973 1972 -5555468.571212 1974 1972 -7333333.332131 1975 1972 -27188092.26514 1976 1972 2833289.841157 2061 1972 1.169741153717e-06 2062 1972 -20033981.96478 2063 1972 -694433.6992575 2064 1972 -9166666.66968 2065 1972 -17525889.09577 2066 1972 9288189.074786 2082 1972 6.556510925293e-07 2083 1972 14525946.9301 2084 1972 -1388867.397833 2085 1972 -1833333.333937 2086 1972 -21409219.01818 2087 1972 18645822.58485 1973 1973 304093123.209 1974 1973 462964.7749153 1975 1973 2722178.730064 1976 1973 40347548.70635 2061 1973 44746063.01646 2062 1973 -694433.6992574 2063 1973 -58719220.64359 2064 1973 11841897.70428 2065 1973 9288189.074786 2066 1973 -21171048.60074 2082 1973 9004770.308089 2083 1973 -1388867.397833 2084 1973 -63522764.08798 2085 1973 2403102.300394 2086 1973 18645822.58486 2087 1973 -28878960.71692 1974 1974 311425982.0218 1975 1974 4.053115844727e-06 1976 1974 -578696.4550389 1977 1974 42478440.44814 1978 1974 7333333.332128 1979 1974 -578701.8915792 2061 1974 -18752053.59425 2062 1974 9166666.66968 2063 1974 10539814.37052 2064 1974 -60367636.82651 2065 1974 1.877546310425e-06 2066 1974 44780785.23866 2067 1974 -20276082.95081 2068 1974 -9166666.66968 2069 1974 11841897.70428 2082 1974 -932689.6068121 2083 1974 -1833333.333935 2084 1974 -2084814.367748 2085 1974 25526722.3448 2086 1974 -5.960464477539e-08 2087 1974 -8946896.355626 2088 1974 -3992585.439634 2089 1974 1833333.333934 2090 1974 -2345231.034498 1975 1975 267422843.6775 1976 1975 -5555468.571212 1977 1975 -7333333.332131 1978 1975 -27188092.26514 1979 1975 2833289.841157 2061 1975 9166666.66968 2062 1975 -16001859.73922 2063 1975 -8593755.37553 2064 1975 1.169741153717e-06 2065 1975 -20033981.96478 2066 1975 -694433.6992575 2067 1975 -9166666.66968 2068 1975 -17525889.09577 2069 1975 9288189.074786 2082 1975 1833333.333937 2083 1975 -18349323.18536 2084 1975 -17256955.18702 2085 1975 6.556510925293e-07 2086 1975 14525946.9301 2087 1975 -1388867.397833 2088 1975 -1833333.333937 2089 1975 -21409219.01818 2090 1975 18645822.58485 1976 1976 304093123.209 1977 1976 462964.7749153 1978 1976 2722178.730064 1979 1976 40347548.70635 2061 1976 10539814.37052 2062 1976 -8593755.37553 2063 1976 -17106970.31658 2064 1976 44746063.01646 2065 1976 -694433.6992574 2066 1976 -58719220.64359 2067 1976 11841897.70428 2068 1976 9288189.074786 2069 1976 -21171048.60074 2082 1976 2142685.63364 2083 1976 -17256955.18703 2084 1976 -20719238.49606 2085 1976 9004770.308089 2086 1976 -1388867.397833 2087 1976 -63522764.08798 2088 1976 2403102.300394 2089 1976 18645822.58486 2090 1976 -28878960.71692 1977 1977 311425982.0218 1978 1977 4.053115844727e-06 1979 1977 -578696.4550389 1980 1977 42478440.44814 1981 1977 7333333.332128 1982 1977 -578701.8915792 2064 1977 -18752053.59425 2065 1977 9166666.66968 2066 1977 10539814.37052 2067 1977 -60367636.82651 2068 1977 1.877546310425e-06 2069 1977 44780785.23866 2070 1977 -20276082.95081 2071 1977 -9166666.66968 2072 1977 11841897.70428 2085 1977 -932689.6068121 2086 1977 -1833333.333935 2087 1977 -2084814.367748 2088 1977 25526722.3448 2089 1977 -5.960464477539e-08 2090 1977 -8946896.355626 2091 1977 -3992585.439634 2092 1977 1833333.333934 2093 1977 -2345231.034498 1978 1978 267422843.6775 1979 1978 -5555468.571212 1980 1978 -7333333.332131 1981 1978 -27188092.26514 1982 1978 2833289.841157 2064 1978 9166666.66968 2065 1978 -16001859.73922 2066 1978 -8593755.37553 2067 1978 1.169741153717e-06 2068 1978 -20033981.96478 2069 1978 -694433.6992575 2070 1978 -9166666.66968 2071 1978 -17525889.09577 2072 1978 9288189.074786 2085 1978 1833333.333937 2086 1978 -18349323.18536 2087 1978 -17256955.18702 2088 1978 6.556510925293e-07 2089 1978 14525946.9301 2090 1978 -1388867.397833 2091 1978 -1833333.333937 2092 1978 -21409219.01818 2093 1978 18645822.58485 1979 1979 304093123.209 1980 1979 462964.7749153 1981 1979 2722178.730064 1982 1979 40347548.70635 2064 1979 10539814.37052 2065 1979 -8593755.37553 2066 1979 -17106970.31658 2067 1979 44746063.01646 2068 1979 -694433.6992574 2069 1979 -58719220.64359 2070 1979 11841897.70428 2071 1979 9288189.074786 2072 1979 -21171048.60074 2085 1979 2142685.63364 2086 1979 -17256955.18703 2087 1979 -20719238.49606 2088 1979 9004770.308089 2089 1979 -1388867.397833 2090 1979 -63522764.08798 2091 1979 2403102.300394 2092 1979 18645822.58486 2093 1979 -28878960.71692 1980 1980 311425982.0218 1981 1980 4.053115844727e-06 1982 1980 -578696.4550389 1983 1980 42478440.44814 1984 1980 7333333.332128 1985 1980 -578701.8915792 2067 1980 -18752053.59425 2068 1980 9166666.66968 2069 1980 10539814.37052 2070 1980 -60367636.82651 2071 1980 1.877546310425e-06 2072 1980 44780785.23866 2073 1980 -20276082.95081 2074 1980 -9166666.66968 2075 1980 11841897.70428 2088 1980 -932689.6068121 2089 1980 -1833333.333935 2090 1980 -2084814.367748 2091 1980 25526722.3448 2092 1980 -5.960464477539e-08 2093 1980 -8946896.355626 2094 1980 -3992585.439634 2095 1980 1833333.333934 2096 1980 -2345231.034498 1981 1981 267422843.6775 1982 1981 -5555468.571212 1983 1981 -7333333.332131 1984 1981 -27188092.26514 1985 1981 2833289.841157 2067 1981 9166666.66968 2068 1981 -16001859.73922 2069 1981 -8593755.37553 2070 1981 1.169741153717e-06 2071 1981 -20033981.96478 2072 1981 -694433.6992575 2073 1981 -9166666.66968 2074 1981 -17525889.09577 2075 1981 9288189.074786 2088 1981 1833333.333937 2089 1981 -18349323.18536 2090 1981 -17256955.18702 2091 1981 6.556510925293e-07 2092 1981 14525946.9301 2093 1981 -1388867.397833 2094 1981 -1833333.333937 2095 1981 -21409219.01818 2096 1981 18645822.58485 1982 1982 304093123.209 1983 1982 462964.7749153 1984 1982 2722178.730064 1985 1982 40347548.70635 2067 1982 10539814.37052 2068 1982 -8593755.37553 2069 1982 -17106970.31658 2070 1982 44746063.01646 2071 1982 -694433.6992574 2072 1982 -58719220.64359 2073 1982 11841897.70428 2074 1982 9288189.074786 2075 1982 -21171048.60074 2088 1982 2142685.63364 2089 1982 -17256955.18703 2090 1982 -20719238.49606 2091 1982 9004770.308089 2092 1982 -1388867.397833 2093 1982 -63522764.08798 2094 1982 2403102.300394 2095 1982 18645822.58486 2096 1982 -28878960.71692 1983 1983 311425982.0218 1984 1983 4.053115844727e-06 1985 1983 -578696.4550389 1986 1983 42478440.44814 1987 1983 7333333.332128 1988 1983 -578701.8915792 2070 1983 -18752053.59425 2071 1983 9166666.66968 2072 1983 10539814.37052 2073 1983 -60367636.82651 2074 1983 1.877546310425e-06 2075 1983 44780785.23866 2076 1983 -20276082.95081 2077 1983 -9166666.66968 2078 1983 11841897.70428 2091 1983 -932689.6068121 2092 1983 -1833333.333935 2093 1983 -2084814.367748 2094 1983 25526722.3448 2095 1983 -5.960464477539e-08 2096 1983 -8946896.355626 2097 1983 -3992585.439634 2098 1983 1833333.333934 2099 1983 -2345231.034498 1984 1984 267422843.6775 1985 1984 -5555468.571212 1986 1984 -7333333.332131 1987 1984 -27188092.26514 1988 1984 2833289.841157 2070 1984 9166666.66968 2071 1984 -16001859.73922 2072 1984 -8593755.37553 2073 1984 1.169741153717e-06 2074 1984 -20033981.96478 2075 1984 -694433.6992575 2076 1984 -9166666.66968 2077 1984 -17525889.09577 2078 1984 9288189.074786 2091 1984 1833333.333937 2092 1984 -18349323.18536 2093 1984 -17256955.18702 2094 1984 6.556510925293e-07 2095 1984 14525946.9301 2096 1984 -1388867.397833 2097 1984 -1833333.333937 2098 1984 -21409219.01818 2099 1984 18645822.58485 1985 1985 304093123.209 1986 1985 462964.7749153 1987 1985 2722178.730064 1988 1985 40347548.70635 2070 1985 10539814.37052 2071 1985 -8593755.37553 2072 1985 -17106970.31658 2073 1985 44746063.01646 2074 1985 -694433.6992574 2075 1985 -58719220.64359 2076 1985 11841897.70428 2077 1985 9288189.074786 2078 1985 -21171048.60074 2091 1985 2142685.63364 2092 1985 -17256955.18703 2093 1985 -20719238.49606 2094 1985 9004770.308089 2095 1985 -1388867.397833 2096 1985 -63522764.08798 2097 1985 2403102.300394 2098 1985 18645822.58486 2099 1985 -28878960.71692 1986 1986 310336649.2785 1987 1986 4244617.814256 1988 1986 1415596.36294 1989 1986 -6796753.083789 1990 1986 -25401731.70095 1991 1986 61254.30470198 2073 1986 -18752053.59425 2074 1986 9166666.66968 2075 1986 10539814.37052 2076 1986 -44778234.89159 2077 1986 6015914.059352 2078 1986 35041206.59625 2079 1986 -20008769.25006 2080 1986 -8176439.889681 2081 1986 11299136.49846 2094 1986 -932689.6068121 2095 1986 -1833333.333935 2096 1986 -2084814.367748 2097 1986 25141334.84086 2098 1986 990425.5084367 2099 1986 -8447023.847856 2100 1986 -17627581.50065 2101 1986 -6163233.013846 2102 1986 7435569.639298 1987 1987 292196010.7903 1988 1987 -3573485.612244 1989 1987 -40068398.3652 1990 1987 -69914556.7746 1991 1987 647333.3904552 2073 1987 9166666.66968 2074 1987 -16001859.73922 2075 1987 -8593755.37553 2076 1987 6015914.059351 2077 1987 -18343768.90317 2078 1987 -8010431.594268 2079 1987 -8176439.889681 2080 1987 -11043292.65868 2081 1987 8953622.07837 2094 1987 1833333.333937 2095 1987 -18349323.18536 2096 1987 -17256955.18702 2097 1987 990425.5084375 2098 1987 20357950.52274 2099 1987 -890124.6000073 2100 1987 -9829899.681717 2101 1987 -33577700.03881 2102 1987 25797644.67844 1988 1988 310269932.1323 1989 1988 339032.0824319 1990 1988 591777.8349088 1991 1988 23495587.48335 2073 1988 10539814.37052 2074 1988 -8593755.37553 2075 1988 -17106970.31658 2076 1988 35214817.70936 2077 1988 -8010431.592745 2078 1988 -49897177.80632 2079 1988 11299136.49846 2080 1988 8953622.07837 2081 1988 -18005331.86323 2094 1988 2142685.63364 2095 1988 -17256955.18703 2096 1988 -20719238.49606 2097 1988 9504087.260305 2098 1988 -890124.6000072 2099 1988 -62094149.98014 2100 1988 11975291.86111 2101 1988 25797644.67693 2102 1988 -37398448.87766 1989 1989 356132315.0052 1990 1989 46610232.79847 1991 1989 -1088457.435502 1992 1989 -68991042.43081 1993 1989 -44544705.52654 1994 1989 104612.942561 1995 1989 14049779.30499 1996 1989 -10879435.08183 1997 1989 33514.80409205 2076 1989 -17800014.26928 2077 1989 2698677.488893 2078 1989 1551462.261342 2079 1989 -41550567.91137 2080 1989 9670377.580283 2081 1989 43763453.88329 2097 1989 -16877239.2765 2098 1989 -9829899.681722 2099 1989 -11739430.35753 2100 1989 -5864347.079577 2101 1989 11272333.02856 2102 1989 -8862175.675498 2103 1989 -34156706.14972 2104 1989 -11123810.63458 2105 1989 20338606.37075 2106 1989 -25110571.33565 2107 1989 -2687677.781431 2108 1989 7481972.406576 1990 1990 441394973.0897 1991 1990 -1397462.91879 1992 1990 -44544705.52654 1993 1990 -49185644.57119 1994 1990 71068.93951051 1995 1990 -25546101.74609 1996 1990 -57408739.22477 1997 1990 226590.3065475 2076 1990 2698677.488893 2077 1990 -41565987.06324 2078 1990 -16405461.24678 2079 1990 9670377.580283 2080 1990 -9581363.721229 2081 1990 -7837791.815088 2097 1990 -6163233.01385 2098 1990 -32827357.81467 2099 1990 -25487077.53535 2100 1990 11272333.02856 2101 1990 14803293.44955 2102 1990 -343891.8558928 2103 1990 -11123810.63458 2104 1990 -29217261.77281 2105 1990 16684392.2326 2106 1990 -6354344.449302 2107 1990 -42970769.09971 2108 1990 33389830.22049 1991 1991 483682368.7122 1992 1991 104612.942561 1993 1991 71068.93951043 1994 1991 15544006.64969 1995 1991 102959.2485223 1996 1991 226590.3065475 1997 1991 68824463.12898 2076 1991 1551462.261342 2077 1991 -16405461.24678 2078 1991 -25037127.36958 2079 1991 43763453.88333 2080 1991 -7837791.813566 2081 1991 -84257287.58871 2097 1991 -7303874.802406 2098 1991 -25487077.53687 2099 1991 -35397536.2799 2100 1991 8672268.766067 2101 1991 -343891.8558926 2102 1991 -131666276.7598 2103 1991 20338606.37075 2104 1991 16684392.2326 2105 1991 -41305029.13792 2106 1991 11778916.85432 2107 1991 33389830.22049 2108 1991 -59295265.58963 1992 1992 235232090.372 1993 1992 49966053.69473 1994 1992 -60862.89202046 1995 1992 -6442290.85687 1996 1992 544705.5337606 1997 1992 -46742.57221824 2079 1992 -23001722.8805 2080 1992 -1474231.406455 2081 1992 -5550324.72933 2100 1992 -34062009.18001 2101 1992 -11123810.63458 2102 1992 -20286393.64259 2103 1992 -19349792.24124 2104 1992 12474231.41007 2105 1992 8109815.470699 2106 1992 -35471324.17617 2107 1992 123810.6309668 2108 1992 -31023097.09878 1993 1993 216417535.9348 1994 1993 -57685.45134497 1995 1993 15211372.19802 1996 1993 63127311.26884 1997 1993 -71068.9395045 2079 1993 -5140898.074327 2080 1993 -40646143.4596 2081 1993 -33318927.97868 2100 1993 -11123810.63458 2101 1993 -29122564.8031 2102 1993 -16648941.11168 2103 1993 12474231.41007 2104 1993 -24049121.66948 2105 1993 6652261.316389 2106 1993 3790477.298838 2107 1993 -18067018.54574 2108 1993 3315607.773964 1994 1994 344070517.3109 1995 1994 -46742.57221502 1996 1994 -71068.9395045 1997 1994 111008771.196 2079 1994 -13675324.7301 2080 1994 -33318927.97868 2081 1994 -72514888.12347 2100 1994 -20286393.64259 2101 1994 -16648941.11168 2102 1994 -41052503.88534 2103 1994 -8140184.526632 2104 1994 -6681072.014753 2105 1994 -122349568.8948 2106 1994 -31023097.10068 2107 1994 -3351058.894892 2108 1994 -62442635.03753 1995 1995 175028968.1491 1996 1995 -18453898.24669 1997 1995 -126107.3967482 2079 1995 -17142175.84111 2080 1995 7209522.704776 2081 1995 10681661.92314 2100 1995 -24826480.42668 2101 1995 -6354344.449306 2102 1995 -11727749.81249 2103 1995 -35471324.17617 2104 1995 3790477.298842 2105 1995 30999819.5577 2106 1995 -13375171.0781 2107 1995 -4645655.554312 2108 1995 -4310953.890546 1996 1996 199603042.2421 1997 1996 -226590.3065325 2079 1996 7209522.704776 2080 1996 -22777627.30101 2081 1996 -16648941.11168 2100 1996 -2687677.781434 2101 1996 -42686678.19075 2102 1996 -33276836.43523 2103 1996 123810.63097 2104 1996 -18067018.54574 2105 1996 3315607.773964 2106 1996 -4645655.554311 2107 1996 -7283827.484575 2108 1996 6610169.772934 1997 1997 263475900.4805 2079 1997 10681661.92314 2080 1997 -16648941.11168 2081 1997 -34707566.38326 2100 1997 -7465527.586963 2101 1997 -33276836.43523 2102 1997 -58537689.83235 2103 1997 30999819.55581 2104 1997 -3351058.894892 2105 1997 -62442635.03753 2106 1997 4248212.774715 2107 1997 -6723163.558209 2108 1997 -86485846.13902 1998 1998 391468094.7324 1999 1998 36666666.66066 2000 1998 2662170.757228 2001 1998 -201885224.5025 2002 1998 -36666959.01753 2003 1998 -2662149.068675 2004 1998 13006025.1815 2005 1998 29333625.68539 2006 1998 -2152798.772422 2109 1998 31947394.33292 2110 1998 9166666.669681 2111 1998 9728225.899101 2112 1998 -74358253.63036 2113 1998 -9166739.758898 2114 1998 -45562288.72778 2115 1998 -8166156.136015 2116 1998 7333406.424962 2117 1998 -9496761.446847 1999 1999 336463888.7559 2000 1999 -6944377.543016 2001 1999 -36667105.19596 2002 1999 -29548916.09098 2003 1999 -3847225.37168 2004 1999 44000438.52809 2005 1999 13006025.1815 2006 1999 2416691.307227 2109 1999 9166666.66968 2110 1999 18196342.83202 2111 1999 5513941.008134 2112 1999 -9166776.303507 2113 1999 -31274176.50627 2114 1999 -9941080.210835 2115 1999 11000109.63744 2116 1999 -8166156.136015 2117 1999 11395946.69513 2000 2000 385940866.4962 2001 2000 -2662138.224395 2002 2000 -3097217.158151 2003 2000 2281351.682023 2004 2000 -3229198.158633 2005 2000 1611127.538151 2006 2000 34682733.81733 2109 2000 -8223530.275229 2110 2000 -8847241.586827 2111 2000 -79300461.72417 2112 2000 -45527563.96779 2113 2000 -9746597.980308 2114 2000 -63128188.69225 2115 2000 -14245142.17027 2116 2000 7597297.796754 2117 2000 -21776416.36271 2001 2001 677810035.2011 2002 2001 36667397.55284 2003 2001 3125086.662505 2004 2001 20859938.00677 2005 2001 -36666959.01753 2006 2001 2702569.081896 2007 2001 -136819701.2443 2008 2001 9.089708328247e-07 2009 2001 -462970.1266867 2010 2001 -51905201.38891 2011 2001 36666666.66065 2012 2001 -2702548.086863 2109 2001 -72726245.22972 2110 2001 -9166776.303506 2111 2001 44231216.90386 2112 2001 70575234.21716 2113 2001 9166849.392726 2114 2001 781227.3439141 2115 2001 -20203256.3538 2116 2001 -9166739.758899 2117 2001 11899863.74724 2118 2001 -60775629.25067 2119 2001 -1.214444637299e-06 2120 2001 -45012270.30212 2121 2001 -20383999.6175 2122 2001 9166666.669679 2123 2001 -11899768.97017 2002 2002 578802727.5875 2003 2002 -8610918.562153 2004 2002 -36667105.19596 2005 2002 -107472939.8429 2006 2002 4611020.401354 2007 2002 9.685754776001e-07 2008 2002 24514918.12315 2009 2002 -2777734.795656 2010 2002 36666666.66065 2011 2002 -40904425.97421 2012 2002 1513867.397816 2109 2002 -9166739.758897 2110 2002 -29642168.10562 2111 2002 8204934.122165 2112 2002 9166849.392726 2113 2002 45823407.30156 2114 2002 -2152765.098743 2115 2002 -9166776.303508 2116 2002 -52286475.83204 2117 2002 37069600.58987 2118 2002 -1.445412635803e-06 2119 2002 -20441974.38895 2120 2002 -694433.6992576 2121 2002 9166666.669678 2122 2002 -17633805.76247 2123 2002 9357633.519253 2003 2003 623143279.9755 2004 2003 2737301.801614 2005 2003 5388806.115241 2006 2003 41364580.11227 2007 2003 -462970.1266864 2008 2003 -2777734.795656 2009 2003 44192040.0554 2010 2003 -2737270.309063 2011 2003 1541645.175575 2012 2003 -6819846.696327 2109 2003 44196492.14387 2110 2003 8010523.495484 2111 2003 -58776166.2905 2112 2003 781316.8545274 2113 2003 -2152693.49136 2114 2003 -107886912.3736 2115 2003 11899911.13577 2116 2003 37236269.31883 2117 2003 -57440830.58835 2118 2003 -44977548.07992 2119 2003 -694433.6992576 2120 2003 -59807200.44138 2121 2003 -11899768.97017 2122 2003 9357633.519253 2123 2003 -21458826.37861 2004 2004 391468094.7324 2005 2004 36666666.66066 2006 2004 2662170.757228 2007 2004 -51881527.1465 2008 2004 -36666666.66065 2009 2004 2505785.245605 2010 2004 -201885224.5025 2011 2004 -36666959.01753 2012 2004 -2662149.068675 2013 2004 13006025.1815 2014 2004 29333625.68539 2015 2004 -2152798.772422 2109 2004 -5106206.927443 2110 2004 11000109.63744 2111 2004 12682625.90274 2112 2004 -15511422.68773 2113 2004 -9166776.303506 2114 2004 -10539940.2691 2115 2004 31947394.33292 2116 2004 9166666.669681 2117 2004 9728225.899101 2118 2004 -18848133.13973 2119 2004 -9166666.66968 2120 2004 -10597685.63642 2121 2004 -74358253.63036 2122 2004 -9166739.758898 2123 2004 -45562288.72778 2124 2004 -8166156.136015 2125 2004 7333406.424962 2126 2004 -9496761.446847 2005 2005 336463888.7559 2006 2005 -6944377.543016 2007 2005 -36666666.66065 2008 2005 -40880751.7318 2009 2005 1263867.397843 2010 2005 -36667105.19596 2011 2005 -29548916.09098 2012 2005 -3847225.37168 2013 2005 44000438.52809 2014 2005 13006025.1815 2015 2005 2416691.307227 2109 2005 7333406.424962 2110 2005 -5106206.927443 2111 2005 -6763956.526763 2112 2005 -9166739.758897 2113 2005 -47594642.16596 2114 2005 -34569643.89832 2115 2005 9166666.66968 2116 2005 18196342.83202 2117 2005 5513941.008134 2118 2005 -9166666.669679 2119 2005 -16097939.2847 2120 2005 -8663199.819997 2121 2005 -9166776.303507 2122 2005 -31274176.50627 2123 2005 -9941080.210835 2124 2005 11000109.63744 2125 2005 -8166156.136015 2126 2005 11395946.69513 2006 2006 385940866.4962 2007 2006 2471063.023406 2008 2006 1236089.620084 2009 2006 -6756715.38321 2010 2006 -2662138.224395 2011 2006 -3097217.158151 2012 2006 2281351.682023 2013 2006 -3229198.158633 2014 2006 1611127.538151 2015 2006 34682733.81733 2109 2006 8455083.935158 2110 2006 -10145934.79014 2111 2006 -13616551.80652 2112 2006 -10539898.30291 2113 2006 -34736312.74845 2114 2006 -44929274.14549 2115 2006 -8223530.275229 2116 2006 -8847241.586827 2117 2006 -79300461.72417 2118 2006 -10597685.63642 2119 2006 -8663199.819997 2120 2006 -17363182.43788 2121 2006 -45527563.96779 2122 2006 -9746597.980308 2123 2006 -63128188.69225 2124 2006 -14245142.17027 2125 2006 7597297.796754 2126 2006 -21776416.36271 2007 2007 626081101.6128 2008 2007 7.033348083496e-06 2009 2007 925940.2533548 2010 2007 85765730.61463 2011 2007 -3.814697265625e-06 2012 2007 231485.0634534 2016 2007 -136819701.2443 2017 2007 9.089708328247e-07 2018 2007 -462970.1266867 2019 2007 -51905201.38891 2020 2007 36666666.66065 2021 2007 -2702548.086863 2112 2007 -60367636.82651 2113 2007 1.877546310425e-06 2114 2007 44780785.23866 2115 2007 -20276082.95081 2116 2007 -9166666.66968 2117 2007 11841897.70428 2118 2007 51054233.83102 2119 2007 1.788139343262e-06 2120 2007 231485.0634618 2121 2007 -7985170.87927 2122 2007 -2.771615982056e-06 2123 2007 57871.2658952 2127 2007 -60775629.25067 2128 2007 -1.214444637299e-06 2129 2007 -45012270.30212 2130 2007 -20383999.6175 2131 2007 9166666.669679 2132 2007 -11899768.97017 2008 2008 538074898.3386 2009 2008 -11110939.17715 2010 2008 -2.861022949219e-06 2011 2008 -53567337.94508 2012 2008 5555469.588581 2016 2008 9.685754776001e-07 2017 2008 24514918.12315 2018 2008 -2777734.795656 2019 2008 36666666.66065 2020 2008 -40904425.97421 2021 2008 1513867.397816 2112 2008 1.169741153717e-06 2113 2008 -20033981.96478 2114 2008 -694433.6992575 2115 2008 -9166666.66968 2116 2008 -17525889.09577 2117 2008 9288189.074786 2118 2008 1.966953277588e-06 2119 2008 29052683.00161 2120 2008 -2777734.795662 2121 2008 -2.190470695496e-06 2122 2008 -42818438.03636 2123 2008 37305534.05859 2127 2008 -1.445412635803e-06 2128 2008 -20441974.38895 2129 2008 -694433.6992576 2130 2008 9166666.669678 2131 2008 -17633805.76247 2132 2008 9357633.519253 2009 2009 616797415.4266 2010 2009 231485.0634536 2011 2009 5555469.588581 2012 2009 82852085.35441 2016 2009 -462970.1266864 2017 2009 -2777734.795656 2018 2009 44192040.0554 2019 2009 -2737270.309063 2020 2009 1541645.175575 2021 2009 -6819846.696327 2112 2009 44746063.01646 2113 2009 -694433.6992574 2114 2009 -58719220.64359 2115 2009 11841897.70428 2116 2009 9288189.074786 2117 2009 -21171048.60074 2118 2009 231485.0634617 2119 2009 -2777734.795662 2120 2009 -127043423.7988 2121 2009 57871.26589543 2122 2009 37277756.28083 2123 2009 -57757921.43384 2127 2009 -44977548.07992 2128 2009 -694433.6992576 2129 2009 -59807200.44138 2130 2009 -11899768.97017 2131 2009 9357633.519253 2132 2009 -21458826.37861 2010 2010 677810035.2011 2011 2010 36667397.55284 2012 2010 3125086.662505 2013 2010 20859938.00677 2014 2010 -36666959.01753 2015 2010 2702569.081896 2016 2010 -51881527.1465 2017 2010 -36666666.66065 2018 2010 2505785.245605 2019 2010 -136819701.2443 2020 2010 9.089708328247e-07 2021 2010 -462970.1266867 2022 2010 -51905201.38891 2023 2010 36666666.66065 2024 2010 -2702548.086863 2112 2010 -18752053.59425 2113 2010 9166666.66968 2114 2010 10539814.37052 2115 2010 -72726245.22972 2116 2010 -9166776.303506 2117 2010 44231216.90386 2118 2010 -1865379.213624 2119 2010 8.79168510437e-07 2120 2010 57871.26589221 2121 2010 70575234.21716 2122 2010 9166849.392726 2123 2010 781227.3439141 2124 2010 -20203256.3538 2125 2010 -9166739.758899 2126 2010 11899863.74724 2127 2010 -18848133.13973 2128 2010 -9166666.66968 2129 2010 -10597685.63642 2130 2010 -60775629.25067 2131 2010 -1.214444637299e-06 2132 2010 -45012270.30212 2133 2010 -20383999.6175 2134 2010 9166666.669679 2135 2010 -11899768.97017 2011 2011 578802727.5875 2012 2011 -8610918.562153 2013 2011 -36667105.19596 2014 2011 -107472939.8429 2015 2011 4611020.401354 2016 2011 -36666666.66065 2017 2011 -40880751.7318 2018 2011 1263867.397843 2019 2011 9.685754776001e-07 2020 2011 24514918.12315 2021 2011 -2777734.795656 2022 2011 36666666.66065 2023 2011 -40904425.97421 2024 2011 1513867.397816 2112 2011 9166666.66968 2113 2011 -16001859.73922 2114 2011 -8593755.37553 2115 2011 -9166739.758897 2116 2011 -29642168.10562 2117 2011 8204934.122165 2118 2011 1.229345798492e-06 2119 2011 -36698646.37071 2120 2011 -34527799.26293 2121 2011 9166849.392726 2122 2011 45823407.30156 2123 2011 -2152765.098743 2124 2011 -9166776.303508 2125 2011 -52286475.83204 2126 2011 37069600.58987 2127 2011 -9166666.669679 2128 2011 -16097939.2847 2129 2011 -8663199.819997 2130 2011 -1.445412635803e-06 2131 2011 -20441974.38895 2132 2011 -694433.6992576 2133 2011 9166666.669678 2134 2011 -17633805.76247 2135 2011 9357633.519253 2012 2012 623143279.9755 2013 2012 2737301.801614 2014 2012 5388806.115241 2015 2012 41364580.11227 2016 2012 2471063.023406 2017 2012 1236089.620084 2018 2012 -6756715.38321 2019 2012 -462970.1266864 2020 2012 -2777734.795656 2021 2012 44192040.0554 2022 2012 -2737270.309063 2023 2012 1541645.175575 2024 2012 -6819846.696327 2112 2012 10539814.37052 2113 2012 -8593755.37553 2114 2012 -17106970.31658 2115 2012 44196492.14387 2116 2012 8010523.495484 2117 2012 -58776166.2905 2118 2012 57871.26589252 2119 2012 -34500021.48517 2120 2012 -41438476.99211 2121 2012 781316.8545274 2122 2012 -2152693.49136 2123 2012 -107886912.3736 2124 2012 11899911.13577 2125 2012 37236269.31883 2126 2012 -57440830.58835 2127 2012 -10597685.63642 2128 2012 -8663199.819997 2129 2012 -17363182.43788 2130 2012 -44977548.07992 2131 2012 -694433.6992576 2132 2012 -59807200.44138 2133 2012 -11899768.97017 2134 2012 9357633.519253 2135 2012 -21458826.37861 2013 2013 391468094.7324 2014 2013 36666666.66066 2015 2013 2662170.757228 2019 2013 -51881527.1465 2020 2013 -36666666.66065 2021 2013 2505785.245605 2022 2013 -201885224.5025 2023 2013 -36666959.01753 2024 2013 -2662149.068675 2025 2013 13006025.1815 2026 2013 29333625.68539 2027 2013 -2152798.772422 2115 2013 -5106206.927443 2116 2013 11000109.63744 2117 2013 12682625.90274 2121 2013 -15511422.68773 2122 2013 -9166776.303506 2123 2013 -10539940.2691 2124 2013 31947394.33292 2125 2013 9166666.669681 2126 2013 9728225.899101 2130 2013 -18848133.13973 2131 2013 -9166666.66968 2132 2013 -10597685.63642 2133 2013 -74358253.63036 2134 2013 -9166739.758898 2135 2013 -45562288.72778 2136 2013 -8166156.136015 2137 2013 7333406.424962 2138 2013 -9496761.446847 2014 2014 336463888.7559 2015 2014 -6944377.543016 2019 2014 -36666666.66065 2020 2014 -40880751.7318 2021 2014 1263867.397843 2022 2014 -36667105.19596 2023 2014 -29548916.09098 2024 2014 -3847225.37168 2025 2014 44000438.52809 2026 2014 13006025.1815 2027 2014 2416691.307227 2115 2014 7333406.424962 2116 2014 -5106206.927443 2117 2014 -6763956.526763 2121 2014 -9166739.758897 2122 2014 -47594642.16596 2123 2014 -34569643.89832 2124 2014 9166666.66968 2125 2014 18196342.83202 2126 2014 5513941.008134 2130 2014 -9166666.669679 2131 2014 -16097939.2847 2132 2014 -8663199.819997 2133 2014 -9166776.303507 2134 2014 -31274176.50627 2135 2014 -9941080.210835 2136 2014 11000109.63744 2137 2014 -8166156.136015 2138 2014 11395946.69513 2015 2015 385940866.4962 2019 2015 2471063.023406 2020 2015 1236089.620084 2021 2015 -6756715.38321 2022 2015 -2662138.224395 2023 2015 -3097217.158151 2024 2015 2281351.682023 2025 2015 -3229198.158633 2026 2015 1611127.538151 2027 2015 34682733.81733 2115 2015 8455083.935158 2116 2015 -10145934.79014 2117 2015 -13616551.80652 2121 2015 -10539898.30291 2122 2015 -34736312.74845 2123 2015 -44929274.14549 2124 2015 -8223530.275229 2125 2015 -8847241.586827 2126 2015 -79300461.72417 2130 2015 -10597685.63642 2131 2015 -8663199.819997 2132 2015 -17363182.43788 2133 2015 -45527563.96779 2134 2015 -9746597.980308 2135 2015 -63128188.69225 2136 2015 -14245142.17027 2137 2015 7597297.796754 2138 2015 -21776416.36271 2016 2016 626081101.6128 2017 2016 7.033348083496e-06 2018 2016 925940.2533548 2019 2016 85765730.61463 2020 2016 -3.814697265625e-06 2021 2016 231485.0634534 2028 2016 -136819701.2443 2029 2016 9.089708328247e-07 2030 2016 -462970.1266867 2031 2016 -51905201.38891 2032 2016 36666666.66065 2033 2016 -2702548.086863 2118 2016 -60367636.82651 2119 2016 1.877546310425e-06 2120 2016 44780785.23866 2121 2016 -20276082.95081 2122 2016 -9166666.66968 2123 2016 11841897.70428 2127 2016 51054233.83102 2128 2016 1.788139343262e-06 2129 2016 231485.0634618 2130 2016 -7985170.87927 2131 2016 -2.771615982056e-06 2132 2016 57871.2658952 2139 2016 -60775629.25067 2140 2016 -1.214444637299e-06 2141 2016 -45012270.30212 2142 2016 -20383999.6175 2143 2016 9166666.669679 2144 2016 -11899768.97017 2017 2017 538074898.3386 2018 2017 -11110939.17715 2019 2017 -2.861022949219e-06 2020 2017 -53567337.94508 2021 2017 5555469.588581 2028 2017 9.685754776001e-07 2029 2017 24514918.12315 2030 2017 -2777734.795656 2031 2017 36666666.66065 2032 2017 -40904425.97421 2033 2017 1513867.397816 2118 2017 1.169741153717e-06 2119 2017 -20033981.96478 2120 2017 -694433.6992575 2121 2017 -9166666.66968 2122 2017 -17525889.09577 2123 2017 9288189.074786 2127 2017 1.966953277588e-06 2128 2017 29052683.00161 2129 2017 -2777734.795662 2130 2017 -2.190470695496e-06 2131 2017 -42818438.03636 2132 2017 37305534.05859 2139 2017 -1.445412635803e-06 2140 2017 -20441974.38895 2141 2017 -694433.6992576 2142 2017 9166666.669678 2143 2017 -17633805.76247 2144 2017 9357633.519253 2018 2018 616797415.4266 2019 2018 231485.0634536 2020 2018 5555469.588581 2021 2018 82852085.35441 2028 2018 -462970.1266864 2029 2018 -2777734.795656 2030 2018 44192040.0554 2031 2018 -2737270.309063 2032 2018 1541645.175575 2033 2018 -6819846.696327 2118 2018 44746063.01646 2119 2018 -694433.6992574 2120 2018 -58719220.64359 2121 2018 11841897.70428 2122 2018 9288189.074786 2123 2018 -21171048.60074 2127 2018 231485.0634617 2128 2018 -2777734.795662 2129 2018 -127043423.7988 2130 2018 57871.26589543 2131 2018 37277756.28083 2132 2018 -57757921.43384 2139 2018 -44977548.07992 2140 2018 -694433.6992576 2141 2018 -59807200.44138 2142 2018 -11899768.97017 2143 2018 9357633.519253 2144 2018 -21458826.37861 2019 2019 626081101.6128 2020 2019 7.033348083496e-06 2021 2019 925940.2533548 2022 2019 85765730.61463 2023 2019 -3.814697265625e-06 2024 2019 231485.0634534 2028 2019 -51881527.1465 2029 2019 -36666666.66065 2030 2019 2505785.245605 2031 2019 -136819701.2443 2032 2019 9.089708328247e-07 2033 2019 -462970.1266867 2034 2019 -51905201.38891 2035 2019 36666666.66065 2036 2019 -2702548.086863 2118 2019 -18752053.59425 2119 2019 9166666.66968 2120 2019 10539814.37052 2121 2019 -60367636.82651 2122 2019 1.877546310425e-06 2123 2019 44780785.23866 2124 2019 -20276082.95081 2125 2019 -9166666.66968 2126 2019 11841897.70428 2127 2019 -1865379.213624 2128 2019 8.79168510437e-07 2129 2019 57871.26589221 2130 2019 51054233.83102 2131 2019 1.788139343262e-06 2132 2019 231485.0634618 2133 2019 -7985170.87927 2134 2019 -2.771615982056e-06 2135 2019 57871.2658952 2139 2019 -18848133.13973 2140 2019 -9166666.66968 2141 2019 -10597685.63642 2142 2019 -60775629.25067 2143 2019 -1.214444637299e-06 2144 2019 -45012270.30212 2145 2019 -20383999.6175 2146 2019 9166666.669679 2147 2019 -11899768.97017 2020 2020 538074898.3386 2021 2020 -11110939.17715 2022 2020 -2.861022949219e-06 2023 2020 -53567337.94508 2024 2020 5555469.588581 2028 2020 -36666666.66065 2029 2020 -40880751.7318 2030 2020 1263867.397843 2031 2020 9.685754776001e-07 2032 2020 24514918.12315 2033 2020 -2777734.795656 2034 2020 36666666.66065 2035 2020 -40904425.97421 2036 2020 1513867.397816 2118 2020 9166666.66968 2119 2020 -16001859.73922 2120 2020 -8593755.37553 2121 2020 1.169741153717e-06 2122 2020 -20033981.96478 2123 2020 -694433.6992575 2124 2020 -9166666.66968 2125 2020 -17525889.09577 2126 2020 9288189.074786 2127 2020 1.229345798492e-06 2128 2020 -36698646.37071 2129 2020 -34527799.26293 2130 2020 1.966953277588e-06 2131 2020 29052683.00161 2132 2020 -2777734.795662 2133 2020 -2.190470695496e-06 2134 2020 -42818438.03636 2135 2020 37305534.05859 2139 2020 -9166666.669679 2140 2020 -16097939.2847 2141 2020 -8663199.819997 2142 2020 -1.445412635803e-06 2143 2020 -20441974.38895 2144 2020 -694433.6992576 2145 2020 9166666.669678 2146 2020 -17633805.76247 2147 2020 9357633.519253 2021 2021 616797415.4266 2022 2021 231485.0634536 2023 2021 5555469.588581 2024 2021 82852085.35441 2028 2021 2471063.023406 2029 2021 1236089.620084 2030 2021 -6756715.38321 2031 2021 -462970.1266864 2032 2021 -2777734.795656 2033 2021 44192040.0554 2034 2021 -2737270.309063 2035 2021 1541645.175575 2036 2021 -6819846.696327 2118 2021 10539814.37052 2119 2021 -8593755.37553 2120 2021 -17106970.31658 2121 2021 44746063.01646 2122 2021 -694433.6992574 2123 2021 -58719220.64359 2124 2021 11841897.70428 2125 2021 9288189.074786 2126 2021 -21171048.60074 2127 2021 57871.26589252 2128 2021 -34500021.48517 2129 2021 -41438476.99211 2130 2021 231485.0634617 2131 2021 -2777734.795662 2132 2021 -127043423.7988 2133 2021 57871.26589543 2134 2021 37277756.28083 2135 2021 -57757921.43384 2139 2021 -10597685.63642 2140 2021 -8663199.819997 2141 2021 -17363182.43788 2142 2021 -44977548.07992 2143 2021 -694433.6992576 2144 2021 -59807200.44138 2145 2021 -11899768.97017 2146 2021 9357633.519253 2147 2021 -21458826.37861 2022 2022 677810035.2011 2023 2022 36667397.55284 2024 2022 3125086.662505 2025 2022 20859938.00677 2026 2022 -36666959.01753 2027 2022 2702569.081896 2031 2022 -51881527.1465 2032 2022 -36666666.66065 2033 2022 2505785.245605 2034 2022 -136819701.2443 2035 2022 9.089708328247e-07 2036 2022 -462970.1266867 2037 2022 -51905201.38891 2038 2022 36666666.66065 2039 2022 -2702548.086863 2121 2022 -18752053.59425 2122 2022 9166666.66968 2123 2022 10539814.37052 2124 2022 -72726245.22972 2125 2022 -9166776.303506 2126 2022 44231216.90386 2130 2022 -1865379.213624 2131 2022 8.79168510437e-07 2132 2022 57871.26589221 2133 2022 70575234.21716 2134 2022 9166849.392726 2135 2022 781227.3439141 2136 2022 -20203256.3538 2137 2022 -9166739.758899 2138 2022 11899863.74724 2142 2022 -18848133.13973 2143 2022 -9166666.66968 2144 2022 -10597685.63642 2145 2022 -60775629.25067 2146 2022 -1.214444637299e-06 2147 2022 -45012270.30212 2148 2022 -20383999.6175 2149 2022 9166666.669679 2150 2022 -11899768.97017 2023 2023 578802727.5875 2024 2023 -8610918.562153 2025 2023 -36667105.19596 2026 2023 -107472939.8429 2027 2023 4611020.401354 2031 2023 -36666666.66065 2032 2023 -40880751.7318 2033 2023 1263867.397843 2034 2023 9.685754776001e-07 2035 2023 24514918.12315 2036 2023 -2777734.795656 2037 2023 36666666.66065 2038 2023 -40904425.97421 2039 2023 1513867.397816 2121 2023 9166666.66968 2122 2023 -16001859.73922 2123 2023 -8593755.37553 2124 2023 -9166739.758897 2125 2023 -29642168.10562 2126 2023 8204934.122165 2130 2023 1.229345798492e-06 2131 2023 -36698646.37071 2132 2023 -34527799.26293 2133 2023 9166849.392726 2134 2023 45823407.30156 2135 2023 -2152765.098743 2136 2023 -9166776.303508 2137 2023 -52286475.83204 2138 2023 37069600.58987 2142 2023 -9166666.669679 2143 2023 -16097939.2847 2144 2023 -8663199.819997 2145 2023 -1.445412635803e-06 2146 2023 -20441974.38895 2147 2023 -694433.6992576 2148 2023 9166666.669678 2149 2023 -17633805.76247 2150 2023 9357633.519253 2024 2024 623143279.9755 2025 2024 2737301.801614 2026 2024 5388806.115241 2027 2024 41364580.11227 2031 2024 2471063.023406 2032 2024 1236089.620084 2033 2024 -6756715.38321 2034 2024 -462970.1266864 2035 2024 -2777734.795656 2036 2024 44192040.0554 2037 2024 -2737270.309063 2038 2024 1541645.175575 2039 2024 -6819846.696327 2121 2024 10539814.37052 2122 2024 -8593755.37553 2123 2024 -17106970.31658 2124 2024 44196492.14387 2125 2024 8010523.495484 2126 2024 -58776166.2905 2130 2024 57871.26589252 2131 2024 -34500021.48517 2132 2024 -41438476.99211 2133 2024 781316.8545274 2134 2024 -2152693.49136 2135 2024 -107886912.3736 2136 2024 11899911.13577 2137 2024 37236269.31883 2138 2024 -57440830.58835 2142 2024 -10597685.63642 2143 2024 -8663199.819997 2144 2024 -17363182.43788 2145 2024 -44977548.07992 2146 2024 -694433.6992576 2147 2024 -59807200.44138 2148 2024 -11899768.97017 2149 2024 9357633.519253 2150 2024 -21458826.37861 2025 2025 391468094.7324 2026 2025 36666666.66066 2027 2025 2662170.757228 2034 2025 -51881527.1465 2035 2025 -36666666.66065 2036 2025 2505785.245605 2037 2025 -201885224.5025 2038 2025 -36666959.01753 2039 2025 -2662149.068675 2040 2025 13006025.1815 2041 2025 29333625.68539 2042 2025 -2152798.772422 2124 2025 -5106206.927443 2125 2025 11000109.63744 2126 2025 12682625.90274 2133 2025 -15511422.68773 2134 2025 -9166776.303506 2135 2025 -10539940.2691 2136 2025 31947394.33292 2137 2025 9166666.669681 2138 2025 9728225.899101 2145 2025 -18848133.13973 2146 2025 -9166666.66968 2147 2025 -10597685.63642 2148 2025 -74358253.63036 2149 2025 -9166739.758898 2150 2025 -45562288.72778 2151 2025 -8166156.136015 2152 2025 7333406.424962 2153 2025 -9496761.446847 2026 2026 336463888.7559 2027 2026 -6944377.543016 2034 2026 -36666666.66065 2035 2026 -40880751.7318 2036 2026 1263867.397843 2037 2026 -36667105.19596 2038 2026 -29548916.09098 2039 2026 -3847225.37168 2040 2026 44000438.52809 2041 2026 13006025.1815 2042 2026 2416691.307227 2124 2026 7333406.424962 2125 2026 -5106206.927443 2126 2026 -6763956.526763 2133 2026 -9166739.758897 2134 2026 -47594642.16596 2135 2026 -34569643.89832 2136 2026 9166666.66968 2137 2026 18196342.83202 2138 2026 5513941.008134 2145 2026 -9166666.669679 2146 2026 -16097939.2847 2147 2026 -8663199.819997 2148 2026 -9166776.303507 2149 2026 -31274176.50627 2150 2026 -9941080.210835 2151 2026 11000109.63744 2152 2026 -8166156.136015 2153 2026 11395946.69513 2027 2027 385940866.4962 2034 2027 2471063.023406 2035 2027 1236089.620084 2036 2027 -6756715.38321 2037 2027 -2662138.224395 2038 2027 -3097217.158151 2039 2027 2281351.682023 2040 2027 -3229198.158633 2041 2027 1611127.538151 2042 2027 34682733.81733 2124 2027 8455083.935158 2125 2027 -10145934.79014 2126 2027 -13616551.80652 2133 2027 -10539898.30291 2134 2027 -34736312.74845 2135 2027 -44929274.14549 2136 2027 -8223530.275229 2137 2027 -8847241.586827 2138 2027 -79300461.72417 2145 2027 -10597685.63642 2146 2027 -8663199.819997 2147 2027 -17363182.43788 2148 2027 -45527563.96779 2149 2027 -9746597.980308 2150 2027 -63128188.69225 2151 2027 -14245142.17027 2152 2027 7597297.796754 2153 2027 -21776416.36271 2028 2028 626081101.6128 2029 2028 7.033348083496e-06 2030 2028 925940.2533548 2031 2028 85765730.61463 2032 2028 -3.814697265625e-06 2033 2028 231485.0634534 2043 2028 -136819701.2443 2044 2028 9.089708328247e-07 2045 2028 -462970.1266867 2046 2028 -51905201.38891 2047 2028 36666666.66065 2048 2028 -2702548.086863 2127 2028 -60367636.82651 2128 2028 1.877546310425e-06 2129 2028 44780785.23866 2130 2028 -20276082.95081 2131 2028 -9166666.66968 2132 2028 11841897.70428 2139 2028 51054233.83102 2140 2028 1.788139343262e-06 2141 2028 231485.0634618 2142 2028 -7985170.87927 2143 2028 -2.771615982056e-06 2144 2028 57871.2658952 2154 2028 -60775629.25067 2155 2028 -1.214444637299e-06 2156 2028 -45012270.30212 2157 2028 -20383999.6175 2158 2028 9166666.669679 2159 2028 -11899768.97017 2029 2029 538074898.3386 2030 2029 -11110939.17715 2031 2029 -2.861022949219e-06 2032 2029 -53567337.94508 2033 2029 5555469.588581 2043 2029 9.685754776001e-07 2044 2029 24514918.12315 2045 2029 -2777734.795656 2046 2029 36666666.66065 2047 2029 -40904425.97421 2048 2029 1513867.397816 2127 2029 1.169741153717e-06 2128 2029 -20033981.96478 2129 2029 -694433.6992575 2130 2029 -9166666.66968 2131 2029 -17525889.09577 2132 2029 9288189.074786 2139 2029 1.966953277588e-06 2140 2029 29052683.00161 2141 2029 -2777734.795662 2142 2029 -2.190470695496e-06 2143 2029 -42818438.03636 2144 2029 37305534.05859 2154 2029 -1.445412635803e-06 2155 2029 -20441974.38895 2156 2029 -694433.6992576 2157 2029 9166666.669678 2158 2029 -17633805.76247 2159 2029 9357633.519253 2030 2030 616797415.4266 2031 2030 231485.0634536 2032 2030 5555469.588581 2033 2030 82852085.35441 2043 2030 -462970.1266864 2044 2030 -2777734.795656 2045 2030 44192040.0554 2046 2030 -2737270.309063 2047 2030 1541645.175575 2048 2030 -6819846.696327 2127 2030 44746063.01646 2128 2030 -694433.6992574 2129 2030 -58719220.64359 2130 2030 11841897.70428 2131 2030 9288189.074786 2132 2030 -21171048.60074 2139 2030 231485.0634617 2140 2030 -2777734.795662 2141 2030 -127043423.7988 2142 2030 57871.26589543 2143 2030 37277756.28083 2144 2030 -57757921.43384 2154 2030 -44977548.07992 2155 2030 -694433.6992576 2156 2030 -59807200.44138 2157 2030 -11899768.97017 2158 2030 9357633.519253 2159 2030 -21458826.37861 2031 2031 626081101.6128 2032 2031 7.033348083496e-06 2033 2031 925940.2533548 2034 2031 85765730.61463 2035 2031 -3.814697265625e-06 2036 2031 231485.0634534 2043 2031 -51881527.1465 2044 2031 -36666666.66065 2045 2031 2505785.245605 2046 2031 -136819701.2443 2047 2031 9.089708328247e-07 2048 2031 -462970.1266867 2049 2031 -51905201.38891 2050 2031 36666666.66065 2051 2031 -2702548.086863 2127 2031 -18752053.59425 2128 2031 9166666.66968 2129 2031 10539814.37052 2130 2031 -60367636.82651 2131 2031 1.877546310425e-06 2132 2031 44780785.23866 2133 2031 -20276082.95081 2134 2031 -9166666.66968 2135 2031 11841897.70428 2139 2031 -1865379.213624 2140 2031 8.79168510437e-07 2141 2031 57871.26589221 2142 2031 51054233.83102 2143 2031 1.788139343262e-06 2144 2031 231485.0634618 2145 2031 -7985170.87927 2146 2031 -2.771615982056e-06 2147 2031 57871.2658952 2154 2031 -18848133.13973 2155 2031 -9166666.66968 2156 2031 -10597685.63642 2157 2031 -60775629.25067 2158 2031 -1.214444637299e-06 2159 2031 -45012270.30212 2160 2031 -20383999.6175 2161 2031 9166666.669679 2162 2031 -11899768.97017 2032 2032 538074898.3386 2033 2032 -11110939.17715 2034 2032 -2.861022949219e-06 2035 2032 -53567337.94508 2036 2032 5555469.588581 2043 2032 -36666666.66065 2044 2032 -40880751.7318 2045 2032 1263867.397843 2046 2032 9.685754776001e-07 2047 2032 24514918.12315 2048 2032 -2777734.795656 2049 2032 36666666.66065 2050 2032 -40904425.97421 2051 2032 1513867.397816 2127 2032 9166666.66968 2128 2032 -16001859.73922 2129 2032 -8593755.37553 2130 2032 1.169741153717e-06 2131 2032 -20033981.96478 2132 2032 -694433.6992575 2133 2032 -9166666.66968 2134 2032 -17525889.09577 2135 2032 9288189.074786 2139 2032 1.229345798492e-06 2140 2032 -36698646.37071 2141 2032 -34527799.26293 2142 2032 1.966953277588e-06 2143 2032 29052683.00161 2144 2032 -2777734.795662 2145 2032 -2.190470695496e-06 2146 2032 -42818438.03636 2147 2032 37305534.05859 2154 2032 -9166666.669679 2155 2032 -16097939.2847 2156 2032 -8663199.819997 2157 2032 -1.445412635803e-06 2158 2032 -20441974.38895 2159 2032 -694433.6992576 2160 2032 9166666.669678 2161 2032 -17633805.76247 2162 2032 9357633.519253 2033 2033 616797415.4266 2034 2033 231485.0634536 2035 2033 5555469.588581 2036 2033 82852085.35441 2043 2033 2471063.023406 2044 2033 1236089.620084 2045 2033 -6756715.38321 2046 2033 -462970.1266864 2047 2033 -2777734.795656 2048 2033 44192040.0554 2049 2033 -2737270.309063 2050 2033 1541645.175575 2051 2033 -6819846.696327 2127 2033 10539814.37052 2128 2033 -8593755.37553 2129 2033 -17106970.31658 2130 2033 44746063.01646 2131 2033 -694433.6992574 2132 2033 -58719220.64359 2133 2033 11841897.70428 2134 2033 9288189.074786 2135 2033 -21171048.60074 2139 2033 57871.26589252 2140 2033 -34500021.48517 2141 2033 -41438476.99211 2142 2033 231485.0634617 2143 2033 -2777734.795662 2144 2033 -127043423.7988 2145 2033 57871.26589543 2146 2033 37277756.28083 2147 2033 -57757921.43384 2154 2033 -10597685.63642 2155 2033 -8663199.819997 2156 2033 -17363182.43788 2157 2033 -44977548.07992 2158 2033 -694433.6992576 2159 2033 -59807200.44138 2160 2033 -11899768.97017 2161 2033 9357633.519253 2162 2033 -21458826.37861 2034 2034 626081101.6128 2035 2034 7.033348083496e-06 2036 2034 925940.2533548 2037 2034 85765730.61463 2038 2034 -3.814697265625e-06 2039 2034 231485.0634534 2046 2034 -51881527.1465 2047 2034 -36666666.66065 2048 2034 2505785.245605 2049 2034 -136819701.2443 2050 2034 9.089708328247e-07 2051 2034 -462970.1266867 2052 2034 -51905201.38891 2053 2034 36666666.66065 2054 2034 -2702548.086863 2130 2034 -18752053.59425 2131 2034 9166666.66968 2132 2034 10539814.37052 2133 2034 -60367636.82651 2134 2034 1.877546310425e-06 2135 2034 44780785.23866 2136 2034 -20276082.95081 2137 2034 -9166666.66968 2138 2034 11841897.70428 2142 2034 -1865379.213624 2143 2034 8.79168510437e-07 2144 2034 57871.26589221 2145 2034 51054233.83102 2146 2034 1.788139343262e-06 2147 2034 231485.0634618 2148 2034 -7985170.87927 2149 2034 -2.771615982056e-06 2150 2034 57871.2658952 2157 2034 -18848133.13973 2158 2034 -9166666.66968 2159 2034 -10597685.63642 2160 2034 -60775629.25067 2161 2034 -1.214444637299e-06 2162 2034 -45012270.30212 2163 2034 -20383999.6175 2164 2034 9166666.669679 2165 2034 -11899768.97017 2035 2035 538074898.3386 2036 2035 -11110939.17715 2037 2035 -2.861022949219e-06 2038 2035 -53567337.94508 2039 2035 5555469.588581 2046 2035 -36666666.66065 2047 2035 -40880751.7318 2048 2035 1263867.397843 2049 2035 9.685754776001e-07 2050 2035 24514918.12315 2051 2035 -2777734.795656 2052 2035 36666666.66065 2053 2035 -40904425.97421 2054 2035 1513867.397816 2130 2035 9166666.66968 2131 2035 -16001859.73922 2132 2035 -8593755.37553 2133 2035 1.169741153717e-06 2134 2035 -20033981.96478 2135 2035 -694433.6992575 2136 2035 -9166666.66968 2137 2035 -17525889.09577 2138 2035 9288189.074786 2142 2035 1.229345798492e-06 2143 2035 -36698646.37071 2144 2035 -34527799.26293 2145 2035 1.966953277588e-06 2146 2035 29052683.00161 2147 2035 -2777734.795662 2148 2035 -2.190470695496e-06 2149 2035 -42818438.03636 2150 2035 37305534.05859 2157 2035 -9166666.669679 2158 2035 -16097939.2847 2159 2035 -8663199.819997 2160 2035 -1.445412635803e-06 2161 2035 -20441974.38895 2162 2035 -694433.6992576 2163 2035 9166666.669678 2164 2035 -17633805.76247 2165 2035 9357633.519253 2036 2036 616797415.4266 2037 2036 231485.0634536 2038 2036 5555469.588581 2039 2036 82852085.35441 2046 2036 2471063.023406 2047 2036 1236089.620084 2048 2036 -6756715.38321 2049 2036 -462970.1266864 2050 2036 -2777734.795656 2051 2036 44192040.0554 2052 2036 -2737270.309063 2053 2036 1541645.175575 2054 2036 -6819846.696327 2130 2036 10539814.37052 2131 2036 -8593755.37553 2132 2036 -17106970.31658 2133 2036 44746063.01646 2134 2036 -694433.6992574 2135 2036 -58719220.64359 2136 2036 11841897.70428 2137 2036 9288189.074786 2138 2036 -21171048.60074 2142 2036 57871.26589252 2143 2036 -34500021.48517 2144 2036 -41438476.99211 2145 2036 231485.0634617 2146 2036 -2777734.795662 2147 2036 -127043423.7988 2148 2036 57871.26589543 2149 2036 37277756.28083 2150 2036 -57757921.43384 2157 2036 -10597685.63642 2158 2036 -8663199.819997 2159 2036 -17363182.43788 2160 2036 -44977548.07992 2161 2036 -694433.6992576 2162 2036 -59807200.44138 2163 2036 -11899768.97017 2164 2036 9357633.519253 2165 2036 -21458826.37861 2037 2037 677810035.2011 2038 2037 36667397.55284 2039 2037 3125086.662505 2040 2037 20859938.00677 2041 2037 -36666959.01753 2042 2037 2702569.081896 2049 2037 -51881527.1465 2050 2037 -36666666.66065 2051 2037 2505785.245605 2052 2037 -136819701.2443 2053 2037 9.089708328247e-07 2054 2037 -462970.1266867 2055 2037 -51905201.38891 2056 2037 36666666.66065 2057 2037 -2702548.086863 2133 2037 -18752053.59425 2134 2037 9166666.66968 2135 2037 10539814.37052 2136 2037 -72726245.22972 2137 2037 -9166776.303506 2138 2037 44231216.90386 2145 2037 -1865379.213624 2146 2037 8.79168510437e-07 2147 2037 57871.26589221 2148 2037 70575234.21716 2149 2037 9166849.392726 2150 2037 781227.3439141 2151 2037 -20203256.3538 2152 2037 -9166739.758899 2153 2037 11899863.74724 2160 2037 -18848133.13973 2161 2037 -9166666.66968 2162 2037 -10597685.63642 2163 2037 -60775629.25067 2164 2037 -1.214444637299e-06 2165 2037 -45012270.30212 2166 2037 -20383999.6175 2167 2037 9166666.669679 2168 2037 -11899768.97017 2038 2038 578802727.5875 2039 2038 -8610918.562153 2040 2038 -36667105.19596 2041 2038 -107472939.8429 2042 2038 4611020.401354 2049 2038 -36666666.66065 2050 2038 -40880751.7318 2051 2038 1263867.397843 2052 2038 9.685754776001e-07 2053 2038 24514918.12315 2054 2038 -2777734.795656 2055 2038 36666666.66065 2056 2038 -40904425.97421 2057 2038 1513867.397816 2133 2038 9166666.66968 2134 2038 -16001859.73922 2135 2038 -8593755.37553 2136 2038 -9166739.758897 2137 2038 -29642168.10562 2138 2038 8204934.122165 2145 2038 1.229345798492e-06 2146 2038 -36698646.37071 2147 2038 -34527799.26293 2148 2038 9166849.392726 2149 2038 45823407.30156 2150 2038 -2152765.098743 2151 2038 -9166776.303508 2152 2038 -52286475.83204 2153 2038 37069600.58987 2160 2038 -9166666.669679 2161 2038 -16097939.2847 2162 2038 -8663199.819997 2163 2038 -1.445412635803e-06 2164 2038 -20441974.38895 2165 2038 -694433.6992576 2166 2038 9166666.669678 2167 2038 -17633805.76247 2168 2038 9357633.519253 2039 2039 623143279.9755 2040 2039 2737301.801614 2041 2039 5388806.115241 2042 2039 41364580.11227 2049 2039 2471063.023406 2050 2039 1236089.620084 2051 2039 -6756715.38321 2052 2039 -462970.1266864 2053 2039 -2777734.795656 2054 2039 44192040.0554 2055 2039 -2737270.309063 2056 2039 1541645.175575 2057 2039 -6819846.696327 2133 2039 10539814.37052 2134 2039 -8593755.37553 2135 2039 -17106970.31658 2136 2039 44196492.14387 2137 2039 8010523.495484 2138 2039 -58776166.2905 2145 2039 57871.26589252 2146 2039 -34500021.48517 2147 2039 -41438476.99211 2148 2039 781316.8545274 2149 2039 -2152693.49136 2150 2039 -107886912.3736 2151 2039 11899911.13577 2152 2039 37236269.31883 2153 2039 -57440830.58835 2160 2039 -10597685.63642 2161 2039 -8663199.819997 2162 2039 -17363182.43788 2163 2039 -44977548.07992 2164 2039 -694433.6992576 2165 2039 -59807200.44138 2166 2039 -11899768.97017 2167 2039 9357633.519253 2168 2039 -21458826.37861 2040 2040 391468094.7324 2041 2040 36666666.66066 2042 2040 2662170.757228 2052 2040 -51881527.1465 2053 2040 -36666666.66065 2054 2040 2505785.245605 2055 2040 -201885224.5025 2056 2040 -36666959.01753 2057 2040 -2662149.068675 2058 2040 13006025.1815 2059 2040 29333625.68539 2060 2040 -2152798.772422 2136 2040 -5106206.927443 2137 2040 11000109.63744 2138 2040 12682625.90274 2148 2040 -15511422.68773 2149 2040 -9166776.303506 2150 2040 -10539940.2691 2151 2040 31947394.33292 2152 2040 9166666.669681 2153 2040 9728225.899101 2163 2040 -18848133.13973 2164 2040 -9166666.66968 2165 2040 -10597685.63642 2166 2040 -74358253.63036 2167 2040 -9166739.758898 2168 2040 -45562288.72778 2169 2040 -8166156.136015 2170 2040 7333406.424962 2171 2040 -9496761.446847 2041 2041 336463888.7559 2042 2041 -6944377.543016 2052 2041 -36666666.66065 2053 2041 -40880751.7318 2054 2041 1263867.397843 2055 2041 -36667105.19596 2056 2041 -29548916.09098 2057 2041 -3847225.37168 2058 2041 44000438.52809 2059 2041 13006025.1815 2060 2041 2416691.307227 2136 2041 7333406.424962 2137 2041 -5106206.927443 2138 2041 -6763956.526763 2148 2041 -9166739.758897 2149 2041 -47594642.16596 2150 2041 -34569643.89832 2151 2041 9166666.66968 2152 2041 18196342.83202 2153 2041 5513941.008134 2163 2041 -9166666.669679 2164 2041 -16097939.2847 2165 2041 -8663199.819997 2166 2041 -9166776.303507 2167 2041 -31274176.50627 2168 2041 -9941080.210835 2169 2041 11000109.63744 2170 2041 -8166156.136015 2171 2041 11395946.69513 2042 2042 385940866.4962 2052 2042 2471063.023406 2053 2042 1236089.620084 2054 2042 -6756715.38321 2055 2042 -2662138.224395 2056 2042 -3097217.158151 2057 2042 2281351.682023 2058 2042 -3229198.158633 2059 2042 1611127.538151 2060 2042 34682733.81733 2136 2042 8455083.935158 2137 2042 -10145934.79014 2138 2042 -13616551.80652 2148 2042 -10539898.30291 2149 2042 -34736312.74845 2150 2042 -44929274.14549 2151 2042 -8223530.275229 2152 2042 -8847241.586827 2153 2042 -79300461.72417 2163 2042 -10597685.63642 2164 2042 -8663199.819997 2165 2042 -17363182.43788 2166 2042 -45527563.96779 2167 2042 -9746597.980308 2168 2042 -63128188.69225 2169 2042 -14245142.17027 2170 2042 7597297.796754 2171 2042 -21776416.36271 2043 2043 626081101.6128 2044 2043 7.033348083496e-06 2045 2043 925940.2533548 2046 2043 85765730.61463 2047 2043 -3.814697265625e-06 2048 2043 231485.0634534 2061 2043 -136819701.2443 2062 2043 9.089708328247e-07 2063 2043 -462970.1266867 2064 2043 -51905201.38891 2065 2043 36666666.66065 2066 2043 -2702548.086863 2139 2043 -60367636.82651 2140 2043 1.877546310425e-06 2141 2043 44780785.23866 2142 2043 -20276082.95081 2143 2043 -9166666.66968 2144 2043 11841897.70428 2154 2043 51054233.83102 2155 2043 1.788139343262e-06 2156 2043 231485.0634618 2157 2043 -7985170.87927 2158 2043 -2.771615982056e-06 2159 2043 57871.2658952 2172 2043 -60775629.25067 2173 2043 -1.214444637299e-06 2174 2043 -45012270.30212 2175 2043 -20383999.6175 2176 2043 9166666.669679 2177 2043 -11899768.97017 2044 2044 538074898.3386 2045 2044 -11110939.17715 2046 2044 -2.861022949219e-06 2047 2044 -53567337.94508 2048 2044 5555469.588581 2061 2044 9.685754776001e-07 2062 2044 24514918.12315 2063 2044 -2777734.795656 2064 2044 36666666.66065 2065 2044 -40904425.97421 2066 2044 1513867.397816 2139 2044 1.169741153717e-06 2140 2044 -20033981.96478 2141 2044 -694433.6992575 2142 2044 -9166666.66968 2143 2044 -17525889.09577 2144 2044 9288189.074786 2154 2044 1.966953277588e-06 2155 2044 29052683.00161 2156 2044 -2777734.795662 2157 2044 -2.190470695496e-06 2158 2044 -42818438.03636 2159 2044 37305534.05859 2172 2044 -1.445412635803e-06 2173 2044 -20441974.38895 2174 2044 -694433.6992576 2175 2044 9166666.669678 2176 2044 -17633805.76247 2177 2044 9357633.519253 2045 2045 616797415.4266 2046 2045 231485.0634536 2047 2045 5555469.588581 2048 2045 82852085.35441 2061 2045 -462970.1266864 2062 2045 -2777734.795656 2063 2045 44192040.0554 2064 2045 -2737270.309063 2065 2045 1541645.175575 2066 2045 -6819846.696327 2139 2045 44746063.01646 2140 2045 -694433.6992574 2141 2045 -58719220.64359 2142 2045 11841897.70428 2143 2045 9288189.074786 2144 2045 -21171048.60074 2154 2045 231485.0634617 2155 2045 -2777734.795662 2156 2045 -127043423.7988 2157 2045 57871.26589543 2158 2045 37277756.28083 2159 2045 -57757921.43384 2172 2045 -44977548.07992 2173 2045 -694433.6992576 2174 2045 -59807200.44138 2175 2045 -11899768.97017 2176 2045 9357633.519253 2177 2045 -21458826.37861 2046 2046 626081101.6128 2047 2046 7.033348083496e-06 2048 2046 925940.2533548 2049 2046 85765730.61463 2050 2046 -3.814697265625e-06 2051 2046 231485.0634534 2061 2046 -51881527.1465 2062 2046 -36666666.66065 2063 2046 2505785.245605 2064 2046 -136819701.2443 2065 2046 9.089708328247e-07 2066 2046 -462970.1266867 2067 2046 -51905201.38891 2068 2046 36666666.66065 2069 2046 -2702548.086863 2139 2046 -18752053.59425 2140 2046 9166666.66968 2141 2046 10539814.37052 2142 2046 -60367636.82651 2143 2046 1.877546310425e-06 2144 2046 44780785.23866 2145 2046 -20276082.95081 2146 2046 -9166666.66968 2147 2046 11841897.70428 2154 2046 -1865379.213624 2155 2046 8.79168510437e-07 2156 2046 57871.26589221 2157 2046 51054233.83102 2158 2046 1.788139343262e-06 2159 2046 231485.0634618 2160 2046 -7985170.87927 2161 2046 -2.771615982056e-06 2162 2046 57871.2658952 2172 2046 -18848133.13973 2173 2046 -9166666.66968 2174 2046 -10597685.63642 2175 2046 -60775629.25067 2176 2046 -1.214444637299e-06 2177 2046 -45012270.30212 2178 2046 -20383999.6175 2179 2046 9166666.669679 2180 2046 -11899768.97017 2047 2047 538074898.3386 2048 2047 -11110939.17715 2049 2047 -2.861022949219e-06 2050 2047 -53567337.94508 2051 2047 5555469.588581 2061 2047 -36666666.66065 2062 2047 -40880751.7318 2063 2047 1263867.397843 2064 2047 9.685754776001e-07 2065 2047 24514918.12315 2066 2047 -2777734.795656 2067 2047 36666666.66065 2068 2047 -40904425.97421 2069 2047 1513867.397816 2139 2047 9166666.66968 2140 2047 -16001859.73922 2141 2047 -8593755.37553 2142 2047 1.169741153717e-06 2143 2047 -20033981.96478 2144 2047 -694433.6992575 2145 2047 -9166666.66968 2146 2047 -17525889.09577 2147 2047 9288189.074786 2154 2047 1.229345798492e-06 2155 2047 -36698646.37071 2156 2047 -34527799.26293 2157 2047 1.966953277588e-06 2158 2047 29052683.00161 2159 2047 -2777734.795662 2160 2047 -2.190470695496e-06 2161 2047 -42818438.03636 2162 2047 37305534.05859 2172 2047 -9166666.669679 2173 2047 -16097939.2847 2174 2047 -8663199.819997 2175 2047 -1.445412635803e-06 2176 2047 -20441974.38895 2177 2047 -694433.6992576 2178 2047 9166666.669678 2179 2047 -17633805.76247 2180 2047 9357633.519253 2048 2048 616797415.4266 2049 2048 231485.0634536 2050 2048 5555469.588581 2051 2048 82852085.35441 2061 2048 2471063.023406 2062 2048 1236089.620084 2063 2048 -6756715.38321 2064 2048 -462970.1266864 2065 2048 -2777734.795656 2066 2048 44192040.0554 2067 2048 -2737270.309063 2068 2048 1541645.175575 2069 2048 -6819846.696327 2139 2048 10539814.37052 2140 2048 -8593755.37553 2141 2048 -17106970.31658 2142 2048 44746063.01646 2143 2048 -694433.6992574 2144 2048 -58719220.64359 2145 2048 11841897.70428 2146 2048 9288189.074786 2147 2048 -21171048.60074 2154 2048 57871.26589252 2155 2048 -34500021.48517 2156 2048 -41438476.99211 2157 2048 231485.0634617 2158 2048 -2777734.795662 2159 2048 -127043423.7988 2160 2048 57871.26589543 2161 2048 37277756.28083 2162 2048 -57757921.43384 2172 2048 -10597685.63642 2173 2048 -8663199.819997 2174 2048 -17363182.43788 2175 2048 -44977548.07992 2176 2048 -694433.6992576 2177 2048 -59807200.44138 2178 2048 -11899768.97017 2179 2048 9357633.519253 2180 2048 -21458826.37861 2049 2049 626081101.6128 2050 2049 7.033348083496e-06 2051 2049 925940.2533548 2052 2049 85765730.61463 2053 2049 -3.814697265625e-06 2054 2049 231485.0634534 2064 2049 -51881527.1465 2065 2049 -36666666.66065 2066 2049 2505785.245605 2067 2049 -136819701.2443 2068 2049 9.089708328247e-07 2069 2049 -462970.1266867 2070 2049 -51905201.38891 2071 2049 36666666.66065 2072 2049 -2702548.086863 2142 2049 -18752053.59425 2143 2049 9166666.66968 2144 2049 10539814.37052 2145 2049 -60367636.82651 2146 2049 1.877546310425e-06 2147 2049 44780785.23866 2148 2049 -20276082.95081 2149 2049 -9166666.66968 2150 2049 11841897.70428 2157 2049 -1865379.213624 2158 2049 8.79168510437e-07 2159 2049 57871.26589221 2160 2049 51054233.83102 2161 2049 1.788139343262e-06 2162 2049 231485.0634618 2163 2049 -7985170.87927 2164 2049 -2.771615982056e-06 2165 2049 57871.2658952 2175 2049 -18848133.13973 2176 2049 -9166666.66968 2177 2049 -10597685.63642 2178 2049 -60775629.25067 2179 2049 -1.214444637299e-06 2180 2049 -45012270.30212 2181 2049 -20383999.6175 2182 2049 9166666.669679 2183 2049 -11899768.97017 2050 2050 538074898.3386 2051 2050 -11110939.17715 2052 2050 -2.861022949219e-06 2053 2050 -53567337.94508 2054 2050 5555469.588581 2064 2050 -36666666.66065 2065 2050 -40880751.7318 2066 2050 1263867.397843 2067 2050 9.685754776001e-07 2068 2050 24514918.12315 2069 2050 -2777734.795656 2070 2050 36666666.66065 2071 2050 -40904425.97421 2072 2050 1513867.397816 2142 2050 9166666.66968 2143 2050 -16001859.73922 2144 2050 -8593755.37553 2145 2050 1.169741153717e-06 2146 2050 -20033981.96478 2147 2050 -694433.6992575 2148 2050 -9166666.66968 2149 2050 -17525889.09577 2150 2050 9288189.074786 2157 2050 1.229345798492e-06 2158 2050 -36698646.37071 2159 2050 -34527799.26293 2160 2050 1.966953277588e-06 2161 2050 29052683.00161 2162 2050 -2777734.795662 2163 2050 -2.190470695496e-06 2164 2050 -42818438.03636 2165 2050 37305534.05859 2175 2050 -9166666.669679 2176 2050 -16097939.2847 2177 2050 -8663199.819997 2178 2050 -1.445412635803e-06 2179 2050 -20441974.38895 2180 2050 -694433.6992576 2181 2050 9166666.669678 2182 2050 -17633805.76247 2183 2050 9357633.519253 2051 2051 616797415.4266 2052 2051 231485.0634536 2053 2051 5555469.588581 2054 2051 82852085.35441 2064 2051 2471063.023406 2065 2051 1236089.620084 2066 2051 -6756715.38321 2067 2051 -462970.1266864 2068 2051 -2777734.795656 2069 2051 44192040.0554 2070 2051 -2737270.309063 2071 2051 1541645.175575 2072 2051 -6819846.696327 2142 2051 10539814.37052 2143 2051 -8593755.37553 2144 2051 -17106970.31658 2145 2051 44746063.01646 2146 2051 -694433.6992574 2147 2051 -58719220.64359 2148 2051 11841897.70428 2149 2051 9288189.074786 2150 2051 -21171048.60074 2157 2051 57871.26589252 2158 2051 -34500021.48517 2159 2051 -41438476.99211 2160 2051 231485.0634617 2161 2051 -2777734.795662 2162 2051 -127043423.7988 2163 2051 57871.26589543 2164 2051 37277756.28083 2165 2051 -57757921.43384 2175 2051 -10597685.63642 2176 2051 -8663199.819997 2177 2051 -17363182.43788 2178 2051 -44977548.07992 2179 2051 -694433.6992576 2180 2051 -59807200.44138 2181 2051 -11899768.97017 2182 2051 9357633.519253 2183 2051 -21458826.37861 2052 2052 626081101.6128 2053 2052 7.033348083496e-06 2054 2052 925940.2533548 2055 2052 85765730.61463 2056 2052 -3.814697265625e-06 2057 2052 231485.0634534 2067 2052 -51881527.1465 2068 2052 -36666666.66065 2069 2052 2505785.245605 2070 2052 -136819701.2443 2071 2052 9.089708328247e-07 2072 2052 -462970.1266867 2073 2052 -51905201.38891 2074 2052 36666666.66065 2075 2052 -2702548.086863 2145 2052 -18752053.59425 2146 2052 9166666.66968 2147 2052 10539814.37052 2148 2052 -60367636.82651 2149 2052 1.877546310425e-06 2150 2052 44780785.23866 2151 2052 -20276082.95081 2152 2052 -9166666.66968 2153 2052 11841897.70428 2160 2052 -1865379.213624 2161 2052 8.79168510437e-07 2162 2052 57871.26589221 2163 2052 51054233.83102 2164 2052 1.788139343262e-06 2165 2052 231485.0634618 2166 2052 -7985170.87927 2167 2052 -2.771615982056e-06 2168 2052 57871.2658952 2178 2052 -18848133.13973 2179 2052 -9166666.66968 2180 2052 -10597685.63642 2181 2052 -60775629.25067 2182 2052 -1.214444637299e-06 2183 2052 -45012270.30212 2184 2052 -20383999.6175 2185 2052 9166666.669679 2186 2052 -11899768.97017 2053 2053 538074898.3386 2054 2053 -11110939.17715 2055 2053 -2.861022949219e-06 2056 2053 -53567337.94508 2057 2053 5555469.588581 2067 2053 -36666666.66065 2068 2053 -40880751.7318 2069 2053 1263867.397843 2070 2053 9.685754776001e-07 2071 2053 24514918.12315 2072 2053 -2777734.795656 2073 2053 36666666.66065 2074 2053 -40904425.97421 2075 2053 1513867.397816 2145 2053 9166666.66968 2146 2053 -16001859.73922 2147 2053 -8593755.37553 2148 2053 1.169741153717e-06 2149 2053 -20033981.96478 2150 2053 -694433.6992575 2151 2053 -9166666.66968 2152 2053 -17525889.09577 2153 2053 9288189.074786 2160 2053 1.229345798492e-06 2161 2053 -36698646.37071 2162 2053 -34527799.26293 2163 2053 1.966953277588e-06 2164 2053 29052683.00161 2165 2053 -2777734.795662 2166 2053 -2.190470695496e-06 2167 2053 -42818438.03636 2168 2053 37305534.05859 2178 2053 -9166666.669679 2179 2053 -16097939.2847 2180 2053 -8663199.819997 2181 2053 -1.445412635803e-06 2182 2053 -20441974.38895 2183 2053 -694433.6992576 2184 2053 9166666.669678 2185 2053 -17633805.76247 2186 2053 9357633.519253 2054 2054 616797415.4266 2055 2054 231485.0634536 2056 2054 5555469.588581 2057 2054 82852085.35441 2067 2054 2471063.023406 2068 2054 1236089.620084 2069 2054 -6756715.38321 2070 2054 -462970.1266864 2071 2054 -2777734.795656 2072 2054 44192040.0554 2073 2054 -2737270.309063 2074 2054 1541645.175575 2075 2054 -6819846.696327 2145 2054 10539814.37052 2146 2054 -8593755.37553 2147 2054 -17106970.31658 2148 2054 44746063.01646 2149 2054 -694433.6992574 2150 2054 -58719220.64359 2151 2054 11841897.70428 2152 2054 9288189.074786 2153 2054 -21171048.60074 2160 2054 57871.26589252 2161 2054 -34500021.48517 2162 2054 -41438476.99211 2163 2054 231485.0634617 2164 2054 -2777734.795662 2165 2054 -127043423.7988 2166 2054 57871.26589543 2167 2054 37277756.28083 2168 2054 -57757921.43384 2178 2054 -10597685.63642 2179 2054 -8663199.819997 2180 2054 -17363182.43788 2181 2054 -44977548.07992 2182 2054 -694433.6992576 2183 2054 -59807200.44138 2184 2054 -11899768.97017 2185 2054 9357633.519253 2186 2054 -21458826.37861 2055 2055 677810035.2011 2056 2055 36667397.55284 2057 2055 3125086.662505 2058 2055 20859938.00677 2059 2055 -36666959.01753 2060 2055 2702569.081896 2070 2055 -51881527.1465 2071 2055 -36666666.66065 2072 2055 2505785.245605 2073 2055 -136819701.2443 2074 2055 9.089708328247e-07 2075 2055 -462970.1266867 2076 2055 -51905201.38891 2077 2055 36666666.66065 2078 2055 -2702548.086863 2148 2055 -18752053.59425 2149 2055 9166666.66968 2150 2055 10539814.37052 2151 2055 -72726245.22972 2152 2055 -9166776.303506 2153 2055 44231216.90386 2163 2055 -1865379.213624 2164 2055 8.79168510437e-07 2165 2055 57871.26589221 2166 2055 70575234.21716 2167 2055 9166849.392726 2168 2055 781227.3439141 2169 2055 -20203256.3538 2170 2055 -9166739.758899 2171 2055 11899863.74724 2181 2055 -18848133.13973 2182 2055 -9166666.66968 2183 2055 -10597685.63642 2184 2055 -60775629.25067 2185 2055 -1.214444637299e-06 2186 2055 -45012270.30212 2187 2055 -20383999.6175 2188 2055 9166666.669679 2189 2055 -11899768.97017 2056 2056 578802727.5875 2057 2056 -8610918.562153 2058 2056 -36667105.19596 2059 2056 -107472939.8429 2060 2056 4611020.401354 2070 2056 -36666666.66065 2071 2056 -40880751.7318 2072 2056 1263867.397843 2073 2056 9.685754776001e-07 2074 2056 24514918.12315 2075 2056 -2777734.795656 2076 2056 36666666.66065 2077 2056 -40904425.97421 2078 2056 1513867.397816 2148 2056 9166666.66968 2149 2056 -16001859.73922 2150 2056 -8593755.37553 2151 2056 -9166739.758897 2152 2056 -29642168.10562 2153 2056 8204934.122165 2163 2056 1.229345798492e-06 2164 2056 -36698646.37071 2165 2056 -34527799.26293 2166 2056 9166849.392726 2167 2056 45823407.30156 2168 2056 -2152765.098743 2169 2056 -9166776.303508 2170 2056 -52286475.83204 2171 2056 37069600.58987 2181 2056 -9166666.669679 2182 2056 -16097939.2847 2183 2056 -8663199.819997 2184 2056 -1.445412635803e-06 2185 2056 -20441974.38895 2186 2056 -694433.6992576 2187 2056 9166666.669678 2188 2056 -17633805.76247 2189 2056 9357633.519253 2057 2057 623143279.9755 2058 2057 2737301.801614 2059 2057 5388806.115241 2060 2057 41364580.11227 2070 2057 2471063.023406 2071 2057 1236089.620084 2072 2057 -6756715.38321 2073 2057 -462970.1266864 2074 2057 -2777734.795656 2075 2057 44192040.0554 2076 2057 -2737270.309063 2077 2057 1541645.175575 2078 2057 -6819846.696327 2148 2057 10539814.37052 2149 2057 -8593755.37553 2150 2057 -17106970.31658 2151 2057 44196492.14387 2152 2057 8010523.495484 2153 2057 -58776166.2905 2163 2057 57871.26589252 2164 2057 -34500021.48517 2165 2057 -41438476.99211 2166 2057 781316.8545274 2167 2057 -2152693.49136 2168 2057 -107886912.3736 2169 2057 11899911.13577 2170 2057 37236269.31883 2171 2057 -57440830.58835 2181 2057 -10597685.63642 2182 2057 -8663199.819997 2183 2057 -17363182.43788 2184 2057 -44977548.07992 2185 2057 -694433.6992576 2186 2057 -59807200.44138 2187 2057 -11899768.97017 2188 2057 9357633.519253 2189 2057 -21458826.37861 2058 2058 413691226.2239 2059 2058 -25654363.10696 2060 2058 -1249967.365095 2073 2058 -51881527.1465 2074 2058 -36666666.66065 2075 2058 2505785.245605 2076 2058 -58524091.22636 2077 2058 25650494.38754 2078 2058 -277763.3969709 2079 2058 -197317189.9008 2080 2058 29337202.04795 2081 2058 -277827.545884 2151 2058 -5106206.927443 2152 2058 11000109.63744 2153 2058 12682625.90274 2166 2058 -15511422.68773 2167 2058 -9166776.303506 2168 2058 -10539940.2691 2169 2058 51842225.42953 2170 2058 -6283286.62687 2171 2058 4930170.635181 2184 2058 -18848133.13973 2185 2058 -9166666.66968 2186 2058 -10597685.63642 2187 2058 -29935699.6739 2188 2058 6282370.253291 2189 2058 -26076070.50321 2190 2058 -48484471.3307 2191 2058 7334249.709323 2192 2058 -1492967.268152 2059 2059 718836304.435 2060 2059 -10887577.70192 2073 2059 -36666666.66065 2074 2059 -40880751.7318 2075 2059 1263867.397843 2076 2059 25648560.02782 2077 2059 85784924.743 2078 2059 -1995425.504626 2079 2059 44005803.07192 2080 2059 -529439181.6462 2081 2059 4619396.074007 2151 2059 7333406.424962 2152 2059 -5106206.927443 2153 2059 -6763956.526763 2166 2059 -9166739.758897 2167 2059 -47594642.16596 2168 2059 -34569643.89832 2169 2059 -6283286.626871 2170 2059 123653332.6419 2171 2059 1534582.009726 2184 2059 -9166666.669679 2185 2059 -16097939.2847 2186 2059 -8663199.819997 2187 2059 6281912.066501 2188 2059 6199889.665017 2189 2059 5703411.089823 2190 2059 11001374.56398 2191 2059 -127098142.2588 2192 2059 18052588.31743 2060 2060 448560260.3527 2073 2060 2471063.023406 2074 2060 1236089.620084 2075 2060 -6756715.38321 2076 2060 -1041628.778 2077 2060 -1884267.879154 2078 2060 49098005.46007 2079 2060 -416741.3188259 2080 2060 4508335.130453 2081 2060 -194057181.3232 2151 2060 8455083.935158 2152 2060 -10145934.79014 2153 2060 -13616551.80652 2166 2060 -10539898.30291 2167 2060 -34736312.74845 2168 2060 -44929274.14549 2169 2060 -5469173.745564 2170 2060 -6728616.358724 2171 2060 -21692368.26691 2184 2060 -10597685.63642 2185 2060 -8663199.819997 2186 2060 -17363182.43788 2187 2060 -26249676.05648 2188 2060 5759429.388185 2189 2060 -27836926.26943 2190 2060 -2239450.902228 2191 2060 17455306.08699 2192 2060 -50678252.62041 2061 2061 626081101.6128 2062 2061 7.033348083496e-06 2063 2061 925940.2533548 2064 2061 85765730.61463 2065 2061 -3.814697265625e-06 2066 2061 231485.0634534 2082 2061 -136819701.2443 2083 2061 9.089708328247e-07 2084 2061 -462970.1266867 2085 2061 -51905201.38891 2086 2061 36666666.66065 2087 2061 -2702548.086863 2154 2061 -60367636.82651 2155 2061 1.877546310425e-06 2156 2061 44780785.23866 2157 2061 -20276082.95081 2158 2061 -9166666.66968 2159 2061 11841897.70428 2172 2061 51054233.83102 2173 2061 1.788139343262e-06 2174 2061 231485.0634618 2175 2061 -7985170.87927 2176 2061 -2.771615982056e-06 2177 2061 57871.2658952 2193 2061 -60775629.25067 2194 2061 -1.214444637299e-06 2195 2061 -45012270.30212 2196 2061 -20383999.6175 2197 2061 9166666.669679 2198 2061 -11899768.97017 2062 2062 538074898.3386 2063 2062 -11110939.17715 2064 2062 -2.861022949219e-06 2065 2062 -53567337.94508 2066 2062 5555469.588581 2082 2062 9.685754776001e-07 2083 2062 24514918.12315 2084 2062 -2777734.795656 2085 2062 36666666.66065 2086 2062 -40904425.97421 2087 2062 1513867.397816 2154 2062 1.169741153717e-06 2155 2062 -20033981.96478 2156 2062 -694433.6992575 2157 2062 -9166666.66968 2158 2062 -17525889.09577 2159 2062 9288189.074786 2172 2062 1.966953277588e-06 2173 2062 29052683.00161 2174 2062 -2777734.795662 2175 2062 -2.190470695496e-06 2176 2062 -42818438.03636 2177 2062 37305534.05859 2193 2062 -1.445412635803e-06 2194 2062 -20441974.38895 2195 2062 -694433.6992576 2196 2062 9166666.669678 2197 2062 -17633805.76247 2198 2062 9357633.519253 2063 2063 616797415.4266 2064 2063 231485.0634536 2065 2063 5555469.588581 2066 2063 82852085.35441 2082 2063 -462970.1266864 2083 2063 -2777734.795656 2084 2063 44192040.0554 2085 2063 -2737270.309063 2086 2063 1541645.175575 2087 2063 -6819846.696327 2154 2063 44746063.01646 2155 2063 -694433.6992574 2156 2063 -58719220.64359 2157 2063 11841897.70428 2158 2063 9288189.074786 2159 2063 -21171048.60074 2172 2063 231485.0634617 2173 2063 -2777734.795662 2174 2063 -127043423.7988 2175 2063 57871.26589543 2176 2063 37277756.28083 2177 2063 -57757921.43384 2193 2063 -44977548.07992 2194 2063 -694433.6992576 2195 2063 -59807200.44138 2196 2063 -11899768.97017 2197 2063 9357633.519253 2198 2063 -21458826.37861 2064 2064 626081101.6128 2065 2064 7.033348083496e-06 2066 2064 925940.2533548 2067 2064 85765730.61463 2068 2064 -3.814697265625e-06 2069 2064 231485.0634534 2082 2064 -51881527.1465 2083 2064 -36666666.66065 2084 2064 2505785.245605 2085 2064 -136819701.2443 2086 2064 9.089708328247e-07 2087 2064 -462970.1266867 2088 2064 -51905201.38891 2089 2064 36666666.66065 2090 2064 -2702548.086863 2154 2064 -18752053.59425 2155 2064 9166666.66968 2156 2064 10539814.37052 2157 2064 -60367636.82651 2158 2064 1.877546310425e-06 2159 2064 44780785.23866 2160 2064 -20276082.95081 2161 2064 -9166666.66968 2162 2064 11841897.70428 2172 2064 -1865379.213624 2173 2064 8.79168510437e-07 2174 2064 57871.26589221 2175 2064 51054233.83102 2176 2064 1.788139343262e-06 2177 2064 231485.0634618 2178 2064 -7985170.87927 2179 2064 -2.771615982056e-06 2180 2064 57871.2658952 2193 2064 -18848133.13973 2194 2064 -9166666.66968 2195 2064 -10597685.63642 2196 2064 -60775629.25067 2197 2064 -1.214444637299e-06 2198 2064 -45012270.30212 2199 2064 -20383999.6175 2200 2064 9166666.669679 2201 2064 -11899768.97017 2065 2065 538074898.3386 2066 2065 -11110939.17715 2067 2065 -2.861022949219e-06 2068 2065 -53567337.94508 2069 2065 5555469.588581 2082 2065 -36666666.66065 2083 2065 -40880751.7318 2084 2065 1263867.397843 2085 2065 9.685754776001e-07 2086 2065 24514918.12315 2087 2065 -2777734.795656 2088 2065 36666666.66065 2089 2065 -40904425.97421 2090 2065 1513867.397816 2154 2065 9166666.66968 2155 2065 -16001859.73922 2156 2065 -8593755.37553 2157 2065 1.169741153717e-06 2158 2065 -20033981.96478 2159 2065 -694433.6992575 2160 2065 -9166666.66968 2161 2065 -17525889.09577 2162 2065 9288189.074786 2172 2065 1.229345798492e-06 2173 2065 -36698646.37071 2174 2065 -34527799.26293 2175 2065 1.966953277588e-06 2176 2065 29052683.00161 2177 2065 -2777734.795662 2178 2065 -2.190470695496e-06 2179 2065 -42818438.03636 2180 2065 37305534.05859 2193 2065 -9166666.669679 2194 2065 -16097939.2847 2195 2065 -8663199.819997 2196 2065 -1.445412635803e-06 2197 2065 -20441974.38895 2198 2065 -694433.6992576 2199 2065 9166666.669678 2200 2065 -17633805.76247 2201 2065 9357633.519253 2066 2066 616797415.4266 2067 2066 231485.0634536 2068 2066 5555469.588581 2069 2066 82852085.35441 2082 2066 2471063.023406 2083 2066 1236089.620084 2084 2066 -6756715.38321 2085 2066 -462970.1266864 2086 2066 -2777734.795656 2087 2066 44192040.0554 2088 2066 -2737270.309063 2089 2066 1541645.175575 2090 2066 -6819846.696327 2154 2066 10539814.37052 2155 2066 -8593755.37553 2156 2066 -17106970.31658 2157 2066 44746063.01646 2158 2066 -694433.6992574 2159 2066 -58719220.64359 2160 2066 11841897.70428 2161 2066 9288189.074786 2162 2066 -21171048.60074 2172 2066 57871.26589252 2173 2066 -34500021.48517 2174 2066 -41438476.99211 2175 2066 231485.0634617 2176 2066 -2777734.795662 2177 2066 -127043423.7988 2178 2066 57871.26589543 2179 2066 37277756.28083 2180 2066 -57757921.43384 2193 2066 -10597685.63642 2194 2066 -8663199.819997 2195 2066 -17363182.43788 2196 2066 -44977548.07992 2197 2066 -694433.6992576 2198 2066 -59807200.44138 2199 2066 -11899768.97017 2200 2066 9357633.519253 2201 2066 -21458826.37861 2067 2067 626081101.6128 2068 2067 7.033348083496e-06 2069 2067 925940.2533548 2070 2067 85765730.61463 2071 2067 -3.814697265625e-06 2072 2067 231485.0634534 2085 2067 -51881527.1465 2086 2067 -36666666.66065 2087 2067 2505785.245605 2088 2067 -136819701.2443 2089 2067 9.089708328247e-07 2090 2067 -462970.1266867 2091 2067 -51905201.38891 2092 2067 36666666.66065 2093 2067 -2702548.086863 2157 2067 -18752053.59425 2158 2067 9166666.66968 2159 2067 10539814.37052 2160 2067 -60367636.82651 2161 2067 1.877546310425e-06 2162 2067 44780785.23866 2163 2067 -20276082.95081 2164 2067 -9166666.66968 2165 2067 11841897.70428 2175 2067 -1865379.213624 2176 2067 8.79168510437e-07 2177 2067 57871.26589221 2178 2067 51054233.83102 2179 2067 1.788139343262e-06 2180 2067 231485.0634618 2181 2067 -7985170.87927 2182 2067 -2.771615982056e-06 2183 2067 57871.2658952 2196 2067 -18848133.13973 2197 2067 -9166666.66968 2198 2067 -10597685.63642 2199 2067 -60775629.25067 2200 2067 -1.214444637299e-06 2201 2067 -45012270.30212 2202 2067 -20383999.6175 2203 2067 9166666.669679 2204 2067 -11899768.97017 2068 2068 538074898.3386 2069 2068 -11110939.17715 2070 2068 -2.861022949219e-06 2071 2068 -53567337.94508 2072 2068 5555469.588581 2085 2068 -36666666.66065 2086 2068 -40880751.7318 2087 2068 1263867.397843 2088 2068 9.685754776001e-07 2089 2068 24514918.12315 2090 2068 -2777734.795656 2091 2068 36666666.66065 2092 2068 -40904425.97421 2093 2068 1513867.397816 2157 2068 9166666.66968 2158 2068 -16001859.73922 2159 2068 -8593755.37553 2160 2068 1.169741153717e-06 2161 2068 -20033981.96478 2162 2068 -694433.6992575 2163 2068 -9166666.66968 2164 2068 -17525889.09577 2165 2068 9288189.074786 2175 2068 1.229345798492e-06 2176 2068 -36698646.37071 2177 2068 -34527799.26293 2178 2068 1.966953277588e-06 2179 2068 29052683.00161 2180 2068 -2777734.795662 2181 2068 -2.190470695496e-06 2182 2068 -42818438.03636 2183 2068 37305534.05859 2196 2068 -9166666.669679 2197 2068 -16097939.2847 2198 2068 -8663199.819997 2199 2068 -1.445412635803e-06 2200 2068 -20441974.38895 2201 2068 -694433.6992576 2202 2068 9166666.669678 2203 2068 -17633805.76247 2204 2068 9357633.519253 2069 2069 616797415.4266 2070 2069 231485.0634536 2071 2069 5555469.588581 2072 2069 82852085.35441 2085 2069 2471063.023406 2086 2069 1236089.620084 2087 2069 -6756715.38321 2088 2069 -462970.1266864 2089 2069 -2777734.795656 2090 2069 44192040.0554 2091 2069 -2737270.309063 2092 2069 1541645.175575 2093 2069 -6819846.696327 2157 2069 10539814.37052 2158 2069 -8593755.37553 2159 2069 -17106970.31658 2160 2069 44746063.01646 2161 2069 -694433.6992574 2162 2069 -58719220.64359 2163 2069 11841897.70428 2164 2069 9288189.074786 2165 2069 -21171048.60074 2175 2069 57871.26589252 2176 2069 -34500021.48517 2177 2069 -41438476.99211 2178 2069 231485.0634617 2179 2069 -2777734.795662 2180 2069 -127043423.7988 2181 2069 57871.26589543 2182 2069 37277756.28083 2183 2069 -57757921.43384 2196 2069 -10597685.63642 2197 2069 -8663199.819997 2198 2069 -17363182.43788 2199 2069 -44977548.07992 2200 2069 -694433.6992576 2201 2069 -59807200.44138 2202 2069 -11899768.97017 2203 2069 9357633.519253 2204 2069 -21458826.37861 2070 2070 626081101.6128 2071 2070 7.033348083496e-06 2072 2070 925940.2533548 2073 2070 85765730.61463 2074 2070 -3.814697265625e-06 2075 2070 231485.0634534 2088 2070 -51881527.1465 2089 2070 -36666666.66065 2090 2070 2505785.245605 2091 2070 -136819701.2443 2092 2070 9.089708328247e-07 2093 2070 -462970.1266867 2094 2070 -51905201.38891 2095 2070 36666666.66065 2096 2070 -2702548.086863 2160 2070 -18752053.59425 2161 2070 9166666.66968 2162 2070 10539814.37052 2163 2070 -60367636.82651 2164 2070 1.877546310425e-06 2165 2070 44780785.23866 2166 2070 -20276082.95081 2167 2070 -9166666.66968 2168 2070 11841897.70428 2178 2070 -1865379.213624 2179 2070 8.79168510437e-07 2180 2070 57871.26589221 2181 2070 51054233.83102 2182 2070 1.788139343262e-06 2183 2070 231485.0634618 2184 2070 -7985170.87927 2185 2070 -2.771615982056e-06 2186 2070 57871.2658952 2199 2070 -18848133.13973 2200 2070 -9166666.66968 2201 2070 -10597685.63642 2202 2070 -60775629.25067 2203 2070 -1.214444637299e-06 2204 2070 -45012270.30212 2205 2070 -20383999.6175 2206 2070 9166666.669679 2207 2070 -11899768.97017 2071 2071 538074898.3386 2072 2071 -11110939.17715 2073 2071 -2.861022949219e-06 2074 2071 -53567337.94508 2075 2071 5555469.588581 2088 2071 -36666666.66065 2089 2071 -40880751.7318 2090 2071 1263867.397843 2091 2071 9.685754776001e-07 2092 2071 24514918.12315 2093 2071 -2777734.795656 2094 2071 36666666.66065 2095 2071 -40904425.97421 2096 2071 1513867.397816 2160 2071 9166666.66968 2161 2071 -16001859.73922 2162 2071 -8593755.37553 2163 2071 1.169741153717e-06 2164 2071 -20033981.96478 2165 2071 -694433.6992575 2166 2071 -9166666.66968 2167 2071 -17525889.09577 2168 2071 9288189.074786 2178 2071 1.229345798492e-06 2179 2071 -36698646.37071 2180 2071 -34527799.26293 2181 2071 1.966953277588e-06 2182 2071 29052683.00161 2183 2071 -2777734.795662 2184 2071 -2.190470695496e-06 2185 2071 -42818438.03636 2186 2071 37305534.05859 2199 2071 -9166666.669679 2200 2071 -16097939.2847 2201 2071 -8663199.819997 2202 2071 -1.445412635803e-06 2203 2071 -20441974.38895 2204 2071 -694433.6992576 2205 2071 9166666.669678 2206 2071 -17633805.76247 2207 2071 9357633.519253 2072 2072 616797415.4266 2073 2072 231485.0634536 2074 2072 5555469.588581 2075 2072 82852085.35441 2088 2072 2471063.023406 2089 2072 1236089.620084 2090 2072 -6756715.38321 2091 2072 -462970.1266864 2092 2072 -2777734.795656 2093 2072 44192040.0554 2094 2072 -2737270.309063 2095 2072 1541645.175575 2096 2072 -6819846.696327 2160 2072 10539814.37052 2161 2072 -8593755.37553 2162 2072 -17106970.31658 2163 2072 44746063.01646 2164 2072 -694433.6992574 2165 2072 -58719220.64359 2166 2072 11841897.70428 2167 2072 9288189.074786 2168 2072 -21171048.60074 2178 2072 57871.26589252 2179 2072 -34500021.48517 2180 2072 -41438476.99211 2181 2072 231485.0634617 2182 2072 -2777734.795662 2183 2072 -127043423.7988 2184 2072 57871.26589543 2185 2072 37277756.28083 2186 2072 -57757921.43384 2199 2072 -10597685.63642 2200 2072 -8663199.819997 2201 2072 -17363182.43788 2202 2072 -44977548.07992 2203 2072 -694433.6992576 2204 2072 -59807200.44138 2205 2072 -11899768.97017 2206 2072 9357633.519253 2207 2072 -21458826.37861 2073 2073 626081101.6128 2074 2073 7.033348083496e-06 2075 2073 925940.2533548 2076 2073 85765730.61463 2077 2073 -3.814697265625e-06 2078 2073 231485.0634534 2091 2073 -51881527.1465 2092 2073 -36666666.66065 2093 2073 2505785.245605 2094 2073 -136819701.2443 2095 2073 9.089708328247e-07 2096 2073 -462970.1266867 2097 2073 -51905201.38891 2098 2073 36666666.66065 2099 2073 -2702548.086863 2163 2073 -18752053.59425 2164 2073 9166666.66968 2165 2073 10539814.37052 2166 2073 -60367636.82651 2167 2073 1.877546310425e-06 2168 2073 44780785.23866 2169 2073 -20276082.95081 2170 2073 -9166666.66968 2171 2073 11841897.70428 2181 2073 -1865379.213624 2182 2073 8.79168510437e-07 2183 2073 57871.26589221 2184 2073 51054233.83102 2185 2073 1.788139343262e-06 2186 2073 231485.0634618 2187 2073 -7985170.87927 2188 2073 -2.771615982056e-06 2189 2073 57871.2658952 2202 2073 -18848133.13973 2203 2073 -9166666.66968 2204 2073 -10597685.63642 2205 2073 -60775629.25067 2206 2073 -1.214444637299e-06 2207 2073 -45012270.30212 2208 2073 -20383999.6175 2209 2073 9166666.669679 2210 2073 -11899768.97017 2074 2074 538074898.3386 2075 2074 -11110939.17715 2076 2074 -2.861022949219e-06 2077 2074 -53567337.94508 2078 2074 5555469.588581 2091 2074 -36666666.66065 2092 2074 -40880751.7318 2093 2074 1263867.397843 2094 2074 9.685754776001e-07 2095 2074 24514918.12315 2096 2074 -2777734.795656 2097 2074 36666666.66065 2098 2074 -40904425.97421 2099 2074 1513867.397816 2163 2074 9166666.66968 2164 2074 -16001859.73922 2165 2074 -8593755.37553 2166 2074 1.169741153717e-06 2167 2074 -20033981.96478 2168 2074 -694433.6992575 2169 2074 -9166666.66968 2170 2074 -17525889.09577 2171 2074 9288189.074786 2181 2074 1.229345798492e-06 2182 2074 -36698646.37071 2183 2074 -34527799.26293 2184 2074 1.966953277588e-06 2185 2074 29052683.00161 2186 2074 -2777734.795662 2187 2074 -2.190470695496e-06 2188 2074 -42818438.03636 2189 2074 37305534.05859 2202 2074 -9166666.669679 2203 2074 -16097939.2847 2204 2074 -8663199.819997 2205 2074 -1.445412635803e-06 2206 2074 -20441974.38895 2207 2074 -694433.6992576 2208 2074 9166666.669678 2209 2074 -17633805.76247 2210 2074 9357633.519253 2075 2075 616797415.4266 2076 2075 231485.0634536 2077 2075 5555469.588581 2078 2075 82852085.35441 2091 2075 2471063.023406 2092 2075 1236089.620084 2093 2075 -6756715.38321 2094 2075 -462970.1266864 2095 2075 -2777734.795656 2096 2075 44192040.0554 2097 2075 -2737270.309063 2098 2075 1541645.175575 2099 2075 -6819846.696327 2163 2075 10539814.37052 2164 2075 -8593755.37553 2165 2075 -17106970.31658 2166 2075 44746063.01646 2167 2075 -694433.6992574 2168 2075 -58719220.64359 2169 2075 11841897.70428 2170 2075 9288189.074786 2171 2075 -21171048.60074 2181 2075 57871.26589252 2182 2075 -34500021.48517 2183 2075 -41438476.99211 2184 2075 231485.0634617 2185 2075 -2777734.795662 2186 2075 -127043423.7988 2187 2075 57871.26589543 2188 2075 37277756.28083 2189 2075 -57757921.43384 2202 2075 -10597685.63642 2203 2075 -8663199.819997 2204 2075 -17363182.43788 2205 2075 -44977548.07992 2206 2075 -694433.6992576 2207 2075 -59807200.44138 2208 2075 -11899768.97017 2209 2075 9357633.519253 2210 2075 -21458826.37861 2076 2076 526252665.2804 2077 2076 14939345.36446 2078 2076 312503.9972225 2079 2076 -95232869.048 2080 2076 -75446271.56808 2081 2076 604979.855709 2094 2076 -51881527.1465 2095 2076 -36666666.66065 2096 2076 2505785.245605 2097 2076 -86033365.36057 2098 2076 24063656.22554 2099 2076 -110868.0321211 2100 2076 -45738405.09723 2101 2076 10794709.95026 2102 2076 -181650.9566633 2166 2076 -18752053.59425 2167 2076 9166666.66968 2168 2076 10539814.37052 2169 2076 -29447591.25609 2170 2076 6281912.066503 2171 2076 25747045.84724 2184 2076 -1865379.213624 2185 2076 8.79168510437e-07 2186 2076 57871.26589221 2187 2076 60972868.35786 2188 2076 3865013.480293 2189 2076 94987.35611238 2190 2076 -36158131.46173 2191 2076 -18861517.09503 2192 2076 11548470.62288 2205 2076 -18848133.13973 2206 2076 -9166666.66968 2207 2076 -10597685.63642 2208 2076 -45324581.42976 2209 2076 6015914.059347 2210 2076 -35313654.50317 2211 2076 -18251664.62718 2212 2076 2698677.488894 2213 2076 -1659648.850827 2077 2077 644278102.7769 2078 2077 -8172915.912315 2079 2077 -75448205.92779 2080 2077 -250909777.5561 2081 2077 1581997.404667 2094 2077 -36666666.66065 2095 2077 -40880751.7318 2096 2077 1263867.397843 2097 2077 24063656.22554 2098 2077 19704498.54099 2099 2077 -1263948.6007 2100 2077 10794709.95026 2101 2077 -140802296.2262 2102 2077 1044821.700929 2166 2077 9166666.66968 2167 2077 -16001859.73922 2168 2077 -8593755.37553 2169 2077 6282370.253292 2170 2077 6687998.082834 2171 2077 -6666183.334191 2184 2077 1.229345798492e-06 2185 2077 -36698646.37071 2186 2077 -34527799.26293 2187 2077 3865013.480291 2188 2077 90420643.57345 2189 2077 -2029739.902148 2190 2077 -18861975.28182 2191 2077 -75077109.76366 2192 2077 36515053.21218 2205 2077 -9166666.669679 2206 2077 -16097939.2847 2207 2077 -8663199.819997 2208 2077 6015914.059347 2209 2077 -18890115.44135 2210 2077 7371512.847656 2211 2077 2698677.488894 2212 2077 -42017637.42113 2213 2077 16927872.0975 2078 2078 520022806.6022 2079 2078 570282.5175709 2080 2078 1609822.801136 2081 2078 -60894553.27404 2094 2078 2471063.023406 2095 2078 1236089.620084 2096 2078 -6756715.38321 2097 2078 -978923.5875342 2098 2078 -1291726.378473 2099 2078 48623486.51979 2100 2078 -251095.4010623 2101 2078 1044821.700929 2102 2078 -32250770.90951 2166 2078 10539814.37052 2167 2078 -8593755.37553 2168 2078 -17106970.31658 2169 2078 25920651.40051 2170 2078 -6665741.874855 2171 2078 -26535303.82191 2184 2078 57871.26589252 2185 2078 -34500021.48517 2186 2078 -41438476.99211 2187 2078 234053.9607636 2188 2078 -1918486.590656 2189 2078 -58935888.16644 2190 2078 11618009.81039 2191 2078 36542460.89336 2192 2078 -48156991.67162 2205 2078 -10597685.63642 2206 2078 -8663199.819997 2207 2078 -17363182.43788 2208 2078 -35487265.61249 2209 2078 7371512.849165 2210 2078 -51354101.90813 2211 2078 -1659648.850827 2212 2078 16927872.0975 2213 2078 -26241528.32399 2079 2079 561277452.4122 2080 2079 17123133.77783 2081 2079 -203432.5875025 2097 2079 -53262133.98087 2098 2079 -32705759.54262 2099 2079 337518.2011556 2100 2079 32720092.49217 2101 2079 38632242.24836 2102 2079 -151553.4188327 2103 2079 64231443.64297 2104 2079 -20494572.48629 2105 2079 2743.280364752 2106 2079 -1187850.072857 2107 2079 28887358.8586 2108 2079 -69372.22938187 2169 2079 -47978573.2119 2170 2079 11001374.56398 2171 2079 2031082.172367 2187 2079 -35280692.66549 2188 2079 -18861975.28183 2189 2079 -11237384.37005 2190 2079 30022383.98719 2191 2079 4263555.44703 2192 2079 8794520.109826 2208 2079 -19804774.09007 2209 2079 -8176439.889684 2210 2079 -11139057.95335 2211 2079 -41857962.82082 2212 2079 9645791.927615 2213 2079 -43978119.70779 2214 2079 -23078892.07815 2215 2079 -5106415.12456 2216 2079 13589890.89401 2217 2079 -17329912.71843 2218 2079 7234108.357436 2219 2079 -10803153.36729 2080 2080 978283183.6999 2081 2080 -5543467.713303 2097 2080 -32705759.54262 2098 2080 -17400227.63301 2099 2080 -74400.58715915 2100 2080 38632242.24836 2101 2080 160644520.1659 2102 2080 -573223.656266 2103 2080 -5827905.822031 2104 2080 -6363276.830221 2105 2080 57557.59449947 2106 2080 28887358.8586 2107 2080 -23586294.65532 2108 2080 70736.41377275 2169 2080 7334249.709323 2170 2080 -126592244.14 2171 2080 -15312676.91506 2187 2080 -18861517.09504 2188 2080 -74199670.96744 2189 2080 -35709774.04968 2190 2080 4263555.447029 2191 2080 129813207.8779 2192 2080 -753234.9707085 2208 2080 -8176439.889684 2209 2080 -10839297.49869 2210 2080 -8997766.816414 2211 2080 9645791.927616 2212 2080 -9864955.562426 2213 2080 7544235.325179 2214 2080 -1439748.456689 2215 2080 -40731782.17156 2216 2080 33347706.83858 2217 2080 7234108.357436 2218 2080 -22893681.13543 2219 2080 16684309.53426 2081 2081 724177116.0154 2097 2081 302795.9789559 2098 2081 -102178.3649187 2099 2081 -626812.8042064 2100 2081 -255720.0854817 2101 2081 -601001.4340393 2102 2081 193831384.4324 2103 2081 2743.280367732 2104 2081 57557.5944995 2105 2081 126362557.5082 2106 2081 -69372.22934835 2107 2081 70736.41377272 2108 2081 41151344.23183 2169 2081 1354054.781578 2170 2081 -15854425.87662 2171 2081 -49329190.9703 2187 2081 -11167856.98135 2188 2081 -35682388.19982 2189 2081 -45817154.88165 2190 2081 -8809368.776172 2191 2081 -1837472.387429 2192 2081 -108785896.0355 2208 2081 -11139057.95335 2209 2081 -8997766.816414 2210 2081 -17461344.76991 2211 2081 -44012841.93004 2212 2081 7544235.326688 2213 2081 -84876841.96464 2214 2081 5464890.893211 2215 2081 33347706.83858 2216 2081 -72827119.94061 2217 2081 -10803153.36729 2218 2081 16684309.53426 2219 2081 -35058247.69784 2082 2082 313040550.8064 2083 2082 3.218650817871e-06 2084 2082 462970.1266764 2085 2082 42883259.87802 2086 2082 7333333.332129 2087 2082 -318285.2460207 2172 2082 -60367636.82651 2173 2082 1.877546310425e-06 2174 2082 44780785.23866 2175 2082 -20276082.95081 2176 2082 -9166666.66968 2177 2082 11841897.70428 2193 2082 25526722.3448 2194 2082 -5.960464477539e-08 2195 2082 -8946896.355626 2196 2082 -3992585.439634 2197 2082 1833333.333934 2198 2082 -2345231.034498 2083 2083 269037449.1693 2084 2083 -5555469.588573 2085 2083 -7333333.332131 2086 2083 -26783274.40183 2087 2083 2749957.016519 2172 2083 1.169741153717e-06 2173 2083 -20033981.96478 2174 2083 -694433.6992575 2175 2083 -9166666.66968 2176 2083 -17525889.09577 2177 2083 9288189.074786 2193 2083 6.556510925293e-07 2194 2083 14525946.9301 2195 2083 -1388867.397833 2196 2083 -1833333.333937 2197 2083 -21409219.01818 2198 2083 18645822.58485 2084 2084 308398707.7133 2085 2084 723381.420473 2086 2084 2805512.572065 2087 2084 41427094.86576 2172 2084 44746063.01646 2173 2084 -694433.6992574 2174 2084 -58719220.64359 2175 2084 11841897.70428 2176 2084 9288189.074786 2177 2084 -21171048.60074 2193 2084 9004770.308089 2194 2084 -1388867.397833 2195 2084 -63522764.08798 2196 2084 2403102.300394 2197 2084 18645822.58486 2198 2084 -28878960.71692 2085 2085 313040550.8064 2086 2085 3.218650817871e-06 2087 2085 462970.1266764 2088 2085 42883259.87802 2089 2085 7333333.332129 2090 2085 -318285.2460207 2172 2085 -18752053.59425 2173 2085 9166666.66968 2174 2085 10539814.37052 2175 2085 -60367636.82651 2176 2085 1.877546310425e-06 2177 2085 44780785.23866 2178 2085 -20276082.95081 2179 2085 -9166666.66968 2180 2085 11841897.70428 2193 2085 -932689.6068121 2194 2085 -1833333.333935 2195 2085 -2084814.367748 2196 2085 25526722.3448 2197 2085 -5.960464477539e-08 2198 2085 -8946896.355626 2199 2085 -3992585.439634 2200 2085 1833333.333934 2201 2085 -2345231.034498 2086 2086 269037449.1693 2087 2086 -5555469.588573 2088 2086 -7333333.332131 2089 2086 -26783274.40183 2090 2086 2749957.016519 2172 2086 9166666.66968 2173 2086 -16001859.73922 2174 2086 -8593755.37553 2175 2086 1.169741153717e-06 2176 2086 -20033981.96478 2177 2086 -694433.6992575 2178 2086 -9166666.66968 2179 2086 -17525889.09577 2180 2086 9288189.074786 2193 2086 1833333.333937 2194 2086 -18349323.18536 2195 2086 -17256955.18702 2196 2086 6.556510925293e-07 2197 2086 14525946.9301 2198 2086 -1388867.397833 2199 2086 -1833333.333937 2200 2086 -21409219.01818 2201 2086 18645822.58485 2087 2087 308398707.7133 2088 2087 723381.420473 2089 2087 2805512.572065 2090 2087 41427094.86576 2172 2087 10539814.37052 2173 2087 -8593755.37553 2174 2087 -17106970.31658 2175 2087 44746063.01646 2176 2087 -694433.6992574 2177 2087 -58719220.64359 2178 2087 11841897.70428 2179 2087 9288189.074786 2180 2087 -21171048.60074 2193 2087 2142685.63364 2194 2087 -17256955.18703 2195 2087 -20719238.49606 2196 2087 9004770.308089 2197 2087 -1388867.397833 2198 2087 -63522764.08798 2199 2087 2403102.300394 2200 2087 18645822.58486 2201 2087 -28878960.71692 2088 2088 313040550.8064 2089 2088 3.218650817871e-06 2090 2088 462970.1266764 2091 2088 42883259.87802 2092 2088 7333333.332129 2093 2088 -318285.2460207 2175 2088 -18752053.59425 2176 2088 9166666.66968 2177 2088 10539814.37052 2178 2088 -60367636.82651 2179 2088 1.877546310425e-06 2180 2088 44780785.23866 2181 2088 -20276082.95081 2182 2088 -9166666.66968 2183 2088 11841897.70428 2196 2088 -932689.6068121 2197 2088 -1833333.333935 2198 2088 -2084814.367748 2199 2088 25526722.3448 2200 2088 -5.960464477539e-08 2201 2088 -8946896.355626 2202 2088 -3992585.439634 2203 2088 1833333.333934 2204 2088 -2345231.034498 2089 2089 269037449.1693 2090 2089 -5555469.588573 2091 2089 -7333333.332131 2092 2089 -26783274.40183 2093 2089 2749957.016519 2175 2089 9166666.66968 2176 2089 -16001859.73922 2177 2089 -8593755.37553 2178 2089 1.169741153717e-06 2179 2089 -20033981.96478 2180 2089 -694433.6992575 2181 2089 -9166666.66968 2182 2089 -17525889.09577 2183 2089 9288189.074786 2196 2089 1833333.333937 2197 2089 -18349323.18536 2198 2089 -17256955.18702 2199 2089 6.556510925293e-07 2200 2089 14525946.9301 2201 2089 -1388867.397833 2202 2089 -1833333.333937 2203 2089 -21409219.01818 2204 2089 18645822.58485 2090 2090 308398707.7133 2091 2090 723381.420473 2092 2090 2805512.572065 2093 2090 41427094.86576 2175 2090 10539814.37052 2176 2090 -8593755.37553 2177 2090 -17106970.31658 2178 2090 44746063.01646 2179 2090 -694433.6992574 2180 2090 -58719220.64359 2181 2090 11841897.70428 2182 2090 9288189.074786 2183 2090 -21171048.60074 2196 2090 2142685.63364 2197 2090 -17256955.18703 2198 2090 -20719238.49606 2199 2090 9004770.308089 2200 2090 -1388867.397833 2201 2090 -63522764.08798 2202 2090 2403102.300394 2203 2090 18645822.58486 2204 2090 -28878960.71692 2091 2091 313040550.8064 2092 2091 3.218650817871e-06 2093 2091 462970.1266764 2094 2091 42883259.87802 2095 2091 7333333.332129 2096 2091 -318285.2460207 2178 2091 -18752053.59425 2179 2091 9166666.66968 2180 2091 10539814.37052 2181 2091 -60367636.82651 2182 2091 1.877546310425e-06 2183 2091 44780785.23866 2184 2091 -20276082.95081 2185 2091 -9166666.66968 2186 2091 11841897.70428 2199 2091 -932689.6068121 2200 2091 -1833333.333935 2201 2091 -2084814.367748 2202 2091 25526722.3448 2203 2091 -5.960464477539e-08 2204 2091 -8946896.355626 2205 2091 -3992585.439634 2206 2091 1833333.333934 2207 2091 -2345231.034498 2092 2092 269037449.1693 2093 2092 -5555469.588573 2094 2092 -7333333.332131 2095 2092 -26783274.40183 2096 2092 2749957.016519 2178 2092 9166666.66968 2179 2092 -16001859.73922 2180 2092 -8593755.37553 2181 2092 1.169741153717e-06 2182 2092 -20033981.96478 2183 2092 -694433.6992575 2184 2092 -9166666.66968 2185 2092 -17525889.09577 2186 2092 9288189.074786 2199 2092 1833333.333937 2200 2092 -18349323.18536 2201 2092 -17256955.18702 2202 2092 6.556510925293e-07 2203 2092 14525946.9301 2204 2092 -1388867.397833 2205 2092 -1833333.333937 2206 2092 -21409219.01818 2207 2092 18645822.58485 2093 2093 308398707.7133 2094 2093 723381.420473 2095 2093 2805512.572065 2096 2093 41427094.86576 2178 2093 10539814.37052 2179 2093 -8593755.37553 2180 2093 -17106970.31658 2181 2093 44746063.01646 2182 2093 -694433.6992574 2183 2093 -58719220.64359 2184 2093 11841897.70428 2185 2093 9288189.074786 2186 2093 -21171048.60074 2199 2093 2142685.63364 2200 2093 -17256955.18703 2201 2093 -20719238.49606 2202 2093 9004770.308089 2203 2093 -1388867.397833 2204 2093 -63522764.08798 2205 2093 2403102.300394 2206 2093 18645822.58486 2207 2093 -28878960.71692 2094 2094 313040550.8064 2095 2094 3.218650817871e-06 2096 2094 462970.1266764 2097 2094 42883259.87802 2098 2094 7333333.332129 2099 2094 -318285.2460207 2181 2094 -18752053.59425 2182 2094 9166666.66968 2183 2094 10539814.37052 2184 2094 -60367636.82651 2185 2094 1.877546310425e-06 2186 2094 44780785.23866 2187 2094 -20276082.95081 2188 2094 -9166666.66968 2189 2094 11841897.70428 2202 2094 -932689.6068121 2203 2094 -1833333.333935 2204 2094 -2084814.367748 2205 2094 25526722.3448 2206 2094 -5.960464477539e-08 2207 2094 -8946896.355626 2208 2094 -3992585.439634 2209 2094 1833333.333934 2210 2094 -2345231.034498 2095 2095 269037449.1693 2096 2095 -5555469.588573 2097 2095 -7333333.332131 2098 2095 -26783274.40183 2099 2095 2749957.016519 2181 2095 9166666.66968 2182 2095 -16001859.73922 2183 2095 -8593755.37553 2184 2095 1.169741153717e-06 2185 2095 -20033981.96478 2186 2095 -694433.6992575 2187 2095 -9166666.66968 2188 2095 -17525889.09577 2189 2095 9288189.074786 2202 2095 1833333.333937 2203 2095 -18349323.18536 2204 2095 -17256955.18702 2205 2095 6.556510925293e-07 2206 2095 14525946.9301 2207 2095 -1388867.397833 2208 2095 -1833333.333937 2209 2095 -21409219.01818 2210 2095 18645822.58485 2096 2096 308398707.7133 2097 2096 723381.420473 2098 2096 2805512.572065 2099 2096 41427094.86576 2181 2096 10539814.37052 2182 2096 -8593755.37553 2183 2096 -17106970.31658 2184 2096 44746063.01646 2185 2096 -694433.6992574 2186 2096 -58719220.64359 2187 2096 11841897.70428 2188 2096 9288189.074786 2189 2096 -21171048.60074 2202 2096 2142685.63364 2203 2096 -17256955.18703 2204 2096 -20719238.49606 2205 2096 9004770.308089 2206 2096 -1388867.397833 2207 2096 -63522764.08798 2208 2096 2403102.300394 2209 2096 18645822.58486 2210 2096 -28878960.71692 2097 2097 311501301.9278 2098 2097 3961702.031803 2099 2097 2461349.04567 2100 2097 -4984022.060376 2101 2097 -24652932.04324 2102 2097 367556.3402904 2184 2097 -18752053.59425 2185 2097 9166666.66968 2186 2097 10539814.37052 2187 2097 -44778234.89159 2188 2097 6015914.059352 2189 2097 35041206.59625 2190 2097 -20008769.25006 2191 2097 -8176439.889681 2192 2097 11299136.49846 2205 2097 -932689.6068121 2206 2097 -1833333.333935 2207 2097 -2084814.367748 2208 2097 25141334.84086 2209 2097 990425.5084367 2210 2097 -8447023.847856 2211 2097 -17627581.50065 2212 2097 -6163233.013846 2213 2097 7435569.639298 2098 2098 292367764.6648 2099 2098 -3560498.398243 2100 2098 -39319598.70751 2101 2098 -68784496.1816 2102 2098 607245.3940165 2184 2098 9166666.66968 2185 2098 -16001859.73922 2186 2098 -8593755.37553 2187 2098 6015914.059351 2188 2098 -18343768.90317 2189 2098 -8010431.594268 2190 2098 -8176439.889681 2191 2098 -11043292.65868 2192 2098 8953622.07837 2205 2098 1833333.333937 2206 2098 -18349323.18536 2207 2098 -17256955.18702 2208 2098 990425.5084375 2209 2098 20357950.52274 2210 2098 -890124.6000073 2211 2098 -9829899.681717 2212 2098 -33577700.03881 2213 2098 25797644.67844 2099 2099 314119300.5055 2100 2099 541167.4513703 2101 2099 635023.1717897 2102 2099 25143014.98303 2184 2099 10539814.37052 2185 2099 -8593755.37553 2186 2099 -17106970.31658 2187 2099 35214817.70936 2188 2099 -8010431.592745 2189 2099 -49897177.80632 2190 2099 11299136.49846 2191 2099 8953622.07837 2192 2099 -18005331.86323 2205 2099 2142685.63364 2206 2099 -17256955.18703 2207 2099 -20719238.49606 2208 2099 9504087.260305 2209 2099 -890124.6000072 2210 2099 -62094149.98014 2211 2099 11975291.86111 2212 2099 25797644.67693 2213 2099 -37398448.87766 2100 2100 355741984.4135 2101 2100 44961279.6782 2102 2100 -31969.75969148 2103 2100 -68561627.83958 2104 2100 -44445974.46271 2105 2100 104238.8817037 2106 2100 14895822.78727 2107 2100 -10622658.7066 2108 2100 32267.80197597 2187 2100 -17800014.26928 2188 2100 2698677.488893 2189 2100 1551462.261342 2190 2100 -41705002.75133 2191 2100 9645791.927622 2192 2100 43867713.61109 2208 2100 -16877239.2765 2209 2100 -9829899.681722 2210 2100 -11739430.35753 2211 2100 -6217083.919647 2212 2100 11208473.36773 2213 2100 -8861865.582222 2214 2100 -34096968.27949 2215 2100 -11099224.98192 2216 2100 20338513.3096 2217 2100 -25041925.40459 2218 2100 -2623818.120598 2219 2100 7377495.646649 2101 2101 438394979.9803 2102 2101 -1374967.912862 2103 2101 -44445974.46271 2104 2101 -48851461.31784 2105 2101 70736.41377251 2106 2101 -25289325.37086 2107 2101 -56527401.72481 2108 2101 225388.0604518 2187 2101 2698677.488893 2188 2101 -41565987.06324 2189 2101 -16405461.24678 2190 2101 9645791.927621 2191 2101 -9711995.492945 2192 2101 -7837709.116745 2208 2101 -6163233.01385 2209 2101 -32827357.81467 2210 2101 -25487077.53535 2211 2101 11208473.36773 2212 2101 14441813.25705 2213 2101 -343592.9009723 2214 2101 -11099224.98192 2215 2101 -29181326.97082 2216 2101 16684309.53426 2217 2101 -6290484.78847 2218 2101 -42893379.81621 2219 2101 33389531.26557 2102 2102 485223127.0891 2103 2102 104238.8817039 2104 2102 70736.41377254 2105 2102 15886177.56931 2106 2102 101712.2464065 2107 2102 225388.0604519 2108 2102 69697319.35776 2187 2102 1551462.261342 2188 2102 -16405461.24678 2189 2102 -25037127.36958 2190 2102 43832991.38891 2191 2102 -7837709.115223 2192 2102 -84468948.44602 2208 2102 -7303874.802406 2209 2102 -25487077.53687 2210 2102 -35397536.2799 2211 2102 8672578.859343 2212 2102 -343592.9009723 2213 2102 -132262809.834 2214 2102 20338513.3096 2215 2102 16684309.53426 2216 2102 -41345893.53323 2217 2102 11709162.31661 2218 2102 33389531.26557 2219 2102 -59456308.27283 2103 2103 235160980.54 2104 2103 49827905.81482 2105 2103 -60613.6507082 2106 2103 -6682311.508679 2107 2103 445974.4699243 2108 2103 -46368.51136041 2190 2103 -22984195.10845 2191 2103 -1439748.456691 2192 2103 -5463581.325088 2211 2103 -34002271.30978 2212 2103 -11099224.98192 2213 2103 -20286486.70374 2214 2103 -19462016.98302 2215 2103 12439748.46031 2216 2103 8109877.622006 2217 2103 -35625759.01613 2218 2103 99224.97830465 2219 2103 -31109809.59318 2104 2104 216380701.0278 2105 2104 -57557.59448934 2106 2104 15112641.13419 2107 2104 62982521.95492 2108 2104 -70736.41376597 2190 2104 -5106415.124563 2191 2104 -40637085.20186 2192 2104 -33318959.81713 2211 2104 -11099224.98192 2212 2104 -29086630.00111 2213 2104 -16649023.81002 2214 2104 12439748.46031 2215 2104 -24152876.89695 2216 2104 6652293.15484 2217 2104 3765891.646176 2218 2104 -18197650.31745 2219 2104 3315690.472307 2105 2105 344308907.0334 2106 2105 -46368.51135737 2107 2105 -70736.41376615 2108 2105 111171650.7816 2190 2105 -13588581.32587 2191 2105 -33318959.81713 2192 2105 -72574594.68805 2211 2105 -20286486.70374 2212 2105 -16649023.81002 2213 2105 -41093368.28065 2214 2105 -8140122.375325 2215 2105 -6681040.176303 2216 2105 -122542387.5828 2217 2105 -31109809.59507 2218 2105 -3350976.196549 2219 2105 -62654295.89483 2106 2106 175362217.5958 2107 2106 -18710674.62192 2108 2106 -124860.3946307 2190 2106 -17235215.74871 2191 2106 7234108.357437 2192 2106 10768374.41758 2211 2106 -24757834.49561 2212 2106 -6290484.788473 2213 2106 -11658615.46133 2214 2106 -35625759.01613 2215 2106 3765891.64618 2216 2106 31086718.17438 2217 2106 -13575130.14034 2218 2106 -4709515.215144 2219 2106 -4345366.019486 2107 2107 199519053.2267 2108 2107 -225388.0604351 2190 2107 7234108.357437 2191 2107 -22798984.16571 2192 2107 -16649023.81002 2211 2107 -2623818.120601 2212 2107 -42609288.90724 2213 2107 -33277135.39015 2214 2107 99224.97830848 2215 2107 -18197650.31745 2216 2107 3315690.472307 2217 2107 -4709515.215143 2218 2107 -7588016.01039 2219 2107 6610468.727854 2108 2108 264347362.4329 2190 2108 10768374.41758 2191 2108 -16649023.81002 2192 2108 -34805722.44525 2211 2108 -7361671.013591 2212 2108 -33277135.39015 2213 2108 -58698732.51554 2214 2108 31086718.17251 2215 2108 -3350976.196549 2216 2108 -62654295.89483 2217 2108 4283245.090209 2218 2108 -6722864.603289 2219 2108 -87025087.54648 2109 2109 391468094.7324 2110 2109 36666666.66066 2111 2109 2662170.757228 2112 2109 -201885224.5025 2113 2109 -36666959.01753 2114 2109 -2662149.068675 2115 2109 13006025.1815 2116 2109 29333625.68539 2117 2109 -2152798.772422 2220 2109 31947394.33292 2221 2109 9166666.669681 2222 2109 9728225.899101 2223 2109 -74358253.63036 2224 2109 -9166739.758898 2225 2109 -45562288.72778 2226 2109 -8166156.136015 2227 2109 7333406.424962 2228 2109 -9496761.446847 2110 2110 336463888.7559 2111 2110 -6944377.543016 2112 2110 -36667105.19596 2113 2110 -29548916.09098 2114 2110 -3847225.37168 2115 2110 44000438.52809 2116 2110 13006025.1815 2117 2110 2416691.307227 2220 2110 9166666.66968 2221 2110 18196342.83202 2222 2110 5513941.008134 2223 2110 -9166776.303507 2224 2110 -31274176.50627 2225 2110 -9941080.210835 2226 2110 11000109.63744 2227 2110 -8166156.136015 2228 2110 11395946.69513 2111 2111 385940866.4962 2112 2111 -2662138.224395 2113 2111 -3097217.158151 2114 2111 2281351.682023 2115 2111 -3229198.158633 2116 2111 1611127.538151 2117 2111 34682733.81733 2220 2111 -8223530.275229 2221 2111 -8847241.586827 2222 2111 -79300461.72417 2223 2111 -45527563.96779 2224 2111 -9746597.980308 2225 2111 -63128188.69225 2226 2111 -14245142.17027 2227 2111 7597297.796754 2228 2111 -21776416.36271 2112 2112 677810035.2011 2113 2112 36667397.55284 2114 2112 3125086.662505 2115 2112 20859938.00677 2116 2112 -36666959.01753 2117 2112 2702569.081896 2118 2112 -136819701.2443 2119 2112 9.089708328247e-07 2120 2112 -462970.1266867 2121 2112 -51905201.38891 2122 2112 36666666.66065 2123 2112 -2702548.086863 2220 2112 -72726245.22972 2221 2112 -9166776.303506 2222 2112 44231216.90386 2223 2112 70575234.21716 2224 2112 9166849.392726 2225 2112 781227.3439141 2226 2112 -20203256.3538 2227 2112 -9166739.758899 2228 2112 11899863.74724 2229 2112 -60775629.25067 2230 2112 -1.214444637299e-06 2231 2112 -45012270.30212 2232 2112 -20383999.6175 2233 2112 9166666.669679 2234 2112 -11899768.97017 2113 2113 578802727.5875 2114 2113 -8610918.562153 2115 2113 -36667105.19596 2116 2113 -107472939.8429 2117 2113 4611020.401354 2118 2113 9.685754776001e-07 2119 2113 24514918.12315 2120 2113 -2777734.795656 2121 2113 36666666.66065 2122 2113 -40904425.97421 2123 2113 1513867.397816 2220 2113 -9166739.758897 2221 2113 -29642168.10562 2222 2113 8204934.122165 2223 2113 9166849.392726 2224 2113 45823407.30156 2225 2113 -2152765.098743 2226 2113 -9166776.303508 2227 2113 -52286475.83204 2228 2113 37069600.58987 2229 2113 -1.445412635803e-06 2230 2113 -20441974.38895 2231 2113 -694433.6992576 2232 2113 9166666.669678 2233 2113 -17633805.76247 2234 2113 9357633.519253 2114 2114 623143279.9755 2115 2114 2737301.801614 2116 2114 5388806.115241 2117 2114 41364580.11227 2118 2114 -462970.1266864 2119 2114 -2777734.795656 2120 2114 44192040.0554 2121 2114 -2737270.309063 2122 2114 1541645.175575 2123 2114 -6819846.696327 2220 2114 44196492.14387 2221 2114 8010523.495484 2222 2114 -58776166.2905 2223 2114 781316.8545274 2224 2114 -2152693.49136 2225 2114 -107886912.3736 2226 2114 11899911.13577 2227 2114 37236269.31883 2228 2114 -57440830.58835 2229 2114 -44977548.07992 2230 2114 -694433.6992576 2231 2114 -59807200.44138 2232 2114 -11899768.97017 2233 2114 9357633.519253 2234 2114 -21458826.37861 2115 2115 391468094.7324 2116 2115 36666666.66066 2117 2115 2662170.757228 2118 2115 -51881527.1465 2119 2115 -36666666.66065 2120 2115 2505785.245605 2121 2115 -201885224.5025 2122 2115 -36666959.01753 2123 2115 -2662149.068675 2124 2115 13006025.1815 2125 2115 29333625.68539 2126 2115 -2152798.772422 2220 2115 -5106206.927443 2221 2115 11000109.63744 2222 2115 12682625.90274 2223 2115 -15511422.68773 2224 2115 -9166776.303506 2225 2115 -10539940.2691 2226 2115 31947394.33292 2227 2115 9166666.669681 2228 2115 9728225.899101 2229 2115 -18848133.13973 2230 2115 -9166666.66968 2231 2115 -10597685.63642 2232 2115 -74358253.63036 2233 2115 -9166739.758898 2234 2115 -45562288.72778 2235 2115 -8166156.136015 2236 2115 7333406.424962 2237 2115 -9496761.446847 2116 2116 336463888.7559 2117 2116 -6944377.543016 2118 2116 -36666666.66065 2119 2116 -40880751.7318 2120 2116 1263867.397843 2121 2116 -36667105.19596 2122 2116 -29548916.09098 2123 2116 -3847225.37168 2124 2116 44000438.52809 2125 2116 13006025.1815 2126 2116 2416691.307227 2220 2116 7333406.424962 2221 2116 -5106206.927443 2222 2116 -6763956.526763 2223 2116 -9166739.758897 2224 2116 -47594642.16596 2225 2116 -34569643.89832 2226 2116 9166666.66968 2227 2116 18196342.83202 2228 2116 5513941.008134 2229 2116 -9166666.669679 2230 2116 -16097939.2847 2231 2116 -8663199.819997 2232 2116 -9166776.303507 2233 2116 -31274176.50627 2234 2116 -9941080.210835 2235 2116 11000109.63744 2236 2116 -8166156.136015 2237 2116 11395946.69513 2117 2117 385940866.4962 2118 2117 2471063.023406 2119 2117 1236089.620084 2120 2117 -6756715.38321 2121 2117 -2662138.224395 2122 2117 -3097217.158151 2123 2117 2281351.682023 2124 2117 -3229198.158633 2125 2117 1611127.538151 2126 2117 34682733.81733 2220 2117 8455083.935158 2221 2117 -10145934.79014 2222 2117 -13616551.80652 2223 2117 -10539898.30291 2224 2117 -34736312.74845 2225 2117 -44929274.14549 2226 2117 -8223530.275229 2227 2117 -8847241.586827 2228 2117 -79300461.72417 2229 2117 -10597685.63642 2230 2117 -8663199.819997 2231 2117 -17363182.43788 2232 2117 -45527563.96779 2233 2117 -9746597.980308 2234 2117 -63128188.69225 2235 2117 -14245142.17027 2236 2117 7597297.796754 2237 2117 -21776416.36271 2118 2118 626081101.6128 2119 2118 7.033348083496e-06 2120 2118 925940.2533548 2121 2118 85765730.61463 2122 2118 -3.814697265625e-06 2123 2118 231485.0634534 2127 2118 -136819701.2443 2128 2118 9.089708328247e-07 2129 2118 -462970.1266867 2130 2118 -51905201.38891 2131 2118 36666666.66065 2132 2118 -2702548.086863 2223 2118 -60367636.82651 2224 2118 1.877546310425e-06 2225 2118 44780785.23866 2226 2118 -20276082.95081 2227 2118 -9166666.66968 2228 2118 11841897.70428 2229 2118 51054233.83102 2230 2118 1.788139343262e-06 2231 2118 231485.0634618 2232 2118 -7985170.87927 2233 2118 -2.771615982056e-06 2234 2118 57871.2658952 2238 2118 -60775629.25067 2239 2118 -1.214444637299e-06 2240 2118 -45012270.30212 2241 2118 -20383999.6175 2242 2118 9166666.669679 2243 2118 -11899768.97017 2119 2119 538074898.3386 2120 2119 -11110939.17715 2121 2119 -2.861022949219e-06 2122 2119 -53567337.94508 2123 2119 5555469.588581 2127 2119 9.685754776001e-07 2128 2119 24514918.12315 2129 2119 -2777734.795656 2130 2119 36666666.66065 2131 2119 -40904425.97421 2132 2119 1513867.397816 2223 2119 1.169741153717e-06 2224 2119 -20033981.96478 2225 2119 -694433.6992575 2226 2119 -9166666.66968 2227 2119 -17525889.09577 2228 2119 9288189.074786 2229 2119 1.966953277588e-06 2230 2119 29052683.00161 2231 2119 -2777734.795662 2232 2119 -2.190470695496e-06 2233 2119 -42818438.03636 2234 2119 37305534.05859 2238 2119 -1.445412635803e-06 2239 2119 -20441974.38895 2240 2119 -694433.6992576 2241 2119 9166666.669678 2242 2119 -17633805.76247 2243 2119 9357633.519253 2120 2120 616797415.4266 2121 2120 231485.0634536 2122 2120 5555469.588581 2123 2120 82852085.35441 2127 2120 -462970.1266864 2128 2120 -2777734.795656 2129 2120 44192040.0554 2130 2120 -2737270.309063 2131 2120 1541645.175575 2132 2120 -6819846.696327 2223 2120 44746063.01646 2224 2120 -694433.6992574 2225 2120 -58719220.64359 2226 2120 11841897.70428 2227 2120 9288189.074786 2228 2120 -21171048.60074 2229 2120 231485.0634617 2230 2120 -2777734.795662 2231 2120 -127043423.7988 2232 2120 57871.26589543 2233 2120 37277756.28083 2234 2120 -57757921.43384 2238 2120 -44977548.07992 2239 2120 -694433.6992576 2240 2120 -59807200.44138 2241 2120 -11899768.97017 2242 2120 9357633.519253 2243 2120 -21458826.37861 2121 2121 677810035.2011 2122 2121 36667397.55284 2123 2121 3125086.662505 2124 2121 20859938.00677 2125 2121 -36666959.01753 2126 2121 2702569.081896 2127 2121 -51881527.1465 2128 2121 -36666666.66065 2129 2121 2505785.245605 2130 2121 -136819701.2443 2131 2121 9.089708328247e-07 2132 2121 -462970.1266867 2133 2121 -51905201.38891 2134 2121 36666666.66065 2135 2121 -2702548.086863 2223 2121 -18752053.59425 2224 2121 9166666.66968 2225 2121 10539814.37052 2226 2121 -72726245.22972 2227 2121 -9166776.303506 2228 2121 44231216.90386 2229 2121 -1865379.213624 2230 2121 8.79168510437e-07 2231 2121 57871.26589221 2232 2121 70575234.21716 2233 2121 9166849.392726 2234 2121 781227.3439141 2235 2121 -20203256.3538 2236 2121 -9166739.758899 2237 2121 11899863.74724 2238 2121 -18848133.13973 2239 2121 -9166666.66968 2240 2121 -10597685.63642 2241 2121 -60775629.25067 2242 2121 -1.214444637299e-06 2243 2121 -45012270.30212 2244 2121 -20383999.6175 2245 2121 9166666.669679 2246 2121 -11899768.97017 2122 2122 578802727.5875 2123 2122 -8610918.562153 2124 2122 -36667105.19596 2125 2122 -107472939.8429 2126 2122 4611020.401354 2127 2122 -36666666.66065 2128 2122 -40880751.7318 2129 2122 1263867.397843 2130 2122 9.685754776001e-07 2131 2122 24514918.12315 2132 2122 -2777734.795656 2133 2122 36666666.66065 2134 2122 -40904425.97421 2135 2122 1513867.397816 2223 2122 9166666.66968 2224 2122 -16001859.73922 2225 2122 -8593755.37553 2226 2122 -9166739.758897 2227 2122 -29642168.10562 2228 2122 8204934.122165 2229 2122 1.229345798492e-06 2230 2122 -36698646.37071 2231 2122 -34527799.26293 2232 2122 9166849.392726 2233 2122 45823407.30156 2234 2122 -2152765.098743 2235 2122 -9166776.303508 2236 2122 -52286475.83204 2237 2122 37069600.58987 2238 2122 -9166666.669679 2239 2122 -16097939.2847 2240 2122 -8663199.819997 2241 2122 -1.445412635803e-06 2242 2122 -20441974.38895 2243 2122 -694433.6992576 2244 2122 9166666.669678 2245 2122 -17633805.76247 2246 2122 9357633.519253 2123 2123 623143279.9755 2124 2123 2737301.801614 2125 2123 5388806.115241 2126 2123 41364580.11227 2127 2123 2471063.023406 2128 2123 1236089.620084 2129 2123 -6756715.38321 2130 2123 -462970.1266864 2131 2123 -2777734.795656 2132 2123 44192040.0554 2133 2123 -2737270.309063 2134 2123 1541645.175575 2135 2123 -6819846.696327 2223 2123 10539814.37052 2224 2123 -8593755.37553 2225 2123 -17106970.31658 2226 2123 44196492.14387 2227 2123 8010523.495484 2228 2123 -58776166.2905 2229 2123 57871.26589252 2230 2123 -34500021.48517 2231 2123 -41438476.99211 2232 2123 781316.8545274 2233 2123 -2152693.49136 2234 2123 -107886912.3736 2235 2123 11899911.13577 2236 2123 37236269.31883 2237 2123 -57440830.58835 2238 2123 -10597685.63642 2239 2123 -8663199.819997 2240 2123 -17363182.43788 2241 2123 -44977548.07992 2242 2123 -694433.6992576 2243 2123 -59807200.44138 2244 2123 -11899768.97017 2245 2123 9357633.519253 2246 2123 -21458826.37861 2124 2124 391468094.7324 2125 2124 36666666.66066 2126 2124 2662170.757228 2130 2124 -51881527.1465 2131 2124 -36666666.66065 2132 2124 2505785.245605 2133 2124 -201885224.5025 2134 2124 -36666959.01753 2135 2124 -2662149.068675 2136 2124 13006025.1815 2137 2124 29333625.68539 2138 2124 -2152798.772422 2226 2124 -5106206.927443 2227 2124 11000109.63744 2228 2124 12682625.90274 2232 2124 -15511422.68773 2233 2124 -9166776.303506 2234 2124 -10539940.2691 2235 2124 31947394.33292 2236 2124 9166666.669681 2237 2124 9728225.899101 2241 2124 -18848133.13973 2242 2124 -9166666.66968 2243 2124 -10597685.63642 2244 2124 -74358253.63036 2245 2124 -9166739.758898 2246 2124 -45562288.72778 2247 2124 -8166156.136015 2248 2124 7333406.424962 2249 2124 -9496761.446847 2125 2125 336463888.7559 2126 2125 -6944377.543016 2130 2125 -36666666.66065 2131 2125 -40880751.7318 2132 2125 1263867.397843 2133 2125 -36667105.19596 2134 2125 -29548916.09098 2135 2125 -3847225.37168 2136 2125 44000438.52809 2137 2125 13006025.1815 2138 2125 2416691.307227 2226 2125 7333406.424962 2227 2125 -5106206.927443 2228 2125 -6763956.526763 2232 2125 -9166739.758897 2233 2125 -47594642.16596 2234 2125 -34569643.89832 2235 2125 9166666.66968 2236 2125 18196342.83202 2237 2125 5513941.008134 2241 2125 -9166666.669679 2242 2125 -16097939.2847 2243 2125 -8663199.819997 2244 2125 -9166776.303507 2245 2125 -31274176.50627 2246 2125 -9941080.210835 2247 2125 11000109.63744 2248 2125 -8166156.136015 2249 2125 11395946.69513 2126 2126 385940866.4962 2130 2126 2471063.023406 2131 2126 1236089.620084 2132 2126 -6756715.38321 2133 2126 -2662138.224395 2134 2126 -3097217.158151 2135 2126 2281351.682023 2136 2126 -3229198.158633 2137 2126 1611127.538151 2138 2126 34682733.81733 2226 2126 8455083.935158 2227 2126 -10145934.79014 2228 2126 -13616551.80652 2232 2126 -10539898.30291 2233 2126 -34736312.74845 2234 2126 -44929274.14549 2235 2126 -8223530.275229 2236 2126 -8847241.586827 2237 2126 -79300461.72417 2241 2126 -10597685.63642 2242 2126 -8663199.819997 2243 2126 -17363182.43788 2244 2126 -45527563.96779 2245 2126 -9746597.980308 2246 2126 -63128188.69225 2247 2126 -14245142.17027 2248 2126 7597297.796754 2249 2126 -21776416.36271 2127 2127 626081101.6128 2128 2127 7.033348083496e-06 2129 2127 925940.2533548 2130 2127 85765730.61463 2131 2127 -3.814697265625e-06 2132 2127 231485.0634534 2139 2127 -136819701.2443 2140 2127 9.089708328247e-07 2141 2127 -462970.1266867 2142 2127 -51905201.38891 2143 2127 36666666.66065 2144 2127 -2702548.086863 2229 2127 -60367636.82651 2230 2127 1.877546310425e-06 2231 2127 44780785.23866 2232 2127 -20276082.95081 2233 2127 -9166666.66968 2234 2127 11841897.70428 2238 2127 51054233.83102 2239 2127 1.788139343262e-06 2240 2127 231485.0634618 2241 2127 -7985170.87927 2242 2127 -2.771615982056e-06 2243 2127 57871.2658952 2250 2127 -60775629.25067 2251 2127 -1.214444637299e-06 2252 2127 -45012270.30212 2253 2127 -20383999.6175 2254 2127 9166666.669679 2255 2127 -11899768.97017 2128 2128 538074898.3386 2129 2128 -11110939.17715 2130 2128 -2.861022949219e-06 2131 2128 -53567337.94508 2132 2128 5555469.588581 2139 2128 9.685754776001e-07 2140 2128 24514918.12315 2141 2128 -2777734.795656 2142 2128 36666666.66065 2143 2128 -40904425.97421 2144 2128 1513867.397816 2229 2128 1.169741153717e-06 2230 2128 -20033981.96478 2231 2128 -694433.6992575 2232 2128 -9166666.66968 2233 2128 -17525889.09577 2234 2128 9288189.074786 2238 2128 1.966953277588e-06 2239 2128 29052683.00161 2240 2128 -2777734.795662 2241 2128 -2.190470695496e-06 2242 2128 -42818438.03636 2243 2128 37305534.05859 2250 2128 -1.445412635803e-06 2251 2128 -20441974.38895 2252 2128 -694433.6992576 2253 2128 9166666.669678 2254 2128 -17633805.76247 2255 2128 9357633.519253 2129 2129 616797415.4266 2130 2129 231485.0634536 2131 2129 5555469.588581 2132 2129 82852085.35441 2139 2129 -462970.1266864 2140 2129 -2777734.795656 2141 2129 44192040.0554 2142 2129 -2737270.309063 2143 2129 1541645.175575 2144 2129 -6819846.696327 2229 2129 44746063.01646 2230 2129 -694433.6992574 2231 2129 -58719220.64359 2232 2129 11841897.70428 2233 2129 9288189.074786 2234 2129 -21171048.60074 2238 2129 231485.0634617 2239 2129 -2777734.795662 2240 2129 -127043423.7988 2241 2129 57871.26589543 2242 2129 37277756.28083 2243 2129 -57757921.43384 2250 2129 -44977548.07992 2251 2129 -694433.6992576 2252 2129 -59807200.44138 2253 2129 -11899768.97017 2254 2129 9357633.519253 2255 2129 -21458826.37861 2130 2130 626081101.6128 2131 2130 7.033348083496e-06 2132 2130 925940.2533548 2133 2130 85765730.61463 2134 2130 -3.814697265625e-06 2135 2130 231485.0634534 2139 2130 -51881527.1465 2140 2130 -36666666.66065 2141 2130 2505785.245605 2142 2130 -136819701.2443 2143 2130 9.089708328247e-07 2144 2130 -462970.1266867 2145 2130 -51905201.38891 2146 2130 36666666.66065 2147 2130 -2702548.086863 2229 2130 -18752053.59425 2230 2130 9166666.66968 2231 2130 10539814.37052 2232 2130 -60367636.82651 2233 2130 1.877546310425e-06 2234 2130 44780785.23866 2235 2130 -20276082.95081 2236 2130 -9166666.66968 2237 2130 11841897.70428 2238 2130 -1865379.213624 2239 2130 8.79168510437e-07 2240 2130 57871.26589221 2241 2130 51054233.83102 2242 2130 1.788139343262e-06 2243 2130 231485.0634618 2244 2130 -7985170.87927 2245 2130 -2.771615982056e-06 2246 2130 57871.2658952 2250 2130 -18848133.13973 2251 2130 -9166666.66968 2252 2130 -10597685.63642 2253 2130 -60775629.25067 2254 2130 -1.214444637299e-06 2255 2130 -45012270.30212 2256 2130 -20383999.6175 2257 2130 9166666.669679 2258 2130 -11899768.97017 2131 2131 538074898.3386 2132 2131 -11110939.17715 2133 2131 -2.861022949219e-06 2134 2131 -53567337.94508 2135 2131 5555469.588581 2139 2131 -36666666.66065 2140 2131 -40880751.7318 2141 2131 1263867.397843 2142 2131 9.685754776001e-07 2143 2131 24514918.12315 2144 2131 -2777734.795656 2145 2131 36666666.66065 2146 2131 -40904425.97421 2147 2131 1513867.397816 2229 2131 9166666.66968 2230 2131 -16001859.73922 2231 2131 -8593755.37553 2232 2131 1.169741153717e-06 2233 2131 -20033981.96478 2234 2131 -694433.6992575 2235 2131 -9166666.66968 2236 2131 -17525889.09577 2237 2131 9288189.074786 2238 2131 1.229345798492e-06 2239 2131 -36698646.37071 2240 2131 -34527799.26293 2241 2131 1.966953277588e-06 2242 2131 29052683.00161 2243 2131 -2777734.795662 2244 2131 -2.190470695496e-06 2245 2131 -42818438.03636 2246 2131 37305534.05859 2250 2131 -9166666.669679 2251 2131 -16097939.2847 2252 2131 -8663199.819997 2253 2131 -1.445412635803e-06 2254 2131 -20441974.38895 2255 2131 -694433.6992576 2256 2131 9166666.669678 2257 2131 -17633805.76247 2258 2131 9357633.519253 2132 2132 616797415.4266 2133 2132 231485.0634536 2134 2132 5555469.588581 2135 2132 82852085.35441 2139 2132 2471063.023406 2140 2132 1236089.620084 2141 2132 -6756715.38321 2142 2132 -462970.1266864 2143 2132 -2777734.795656 2144 2132 44192040.0554 2145 2132 -2737270.309063 2146 2132 1541645.175575 2147 2132 -6819846.696327 2229 2132 10539814.37052 2230 2132 -8593755.37553 2231 2132 -17106970.31658 2232 2132 44746063.01646 2233 2132 -694433.6992574 2234 2132 -58719220.64359 2235 2132 11841897.70428 2236 2132 9288189.074786 2237 2132 -21171048.60074 2238 2132 57871.26589252 2239 2132 -34500021.48517 2240 2132 -41438476.99211 2241 2132 231485.0634617 2242 2132 -2777734.795662 2243 2132 -127043423.7988 2244 2132 57871.26589543 2245 2132 37277756.28083 2246 2132 -57757921.43384 2250 2132 -10597685.63642 2251 2132 -8663199.819997 2252 2132 -17363182.43788 2253 2132 -44977548.07992 2254 2132 -694433.6992576 2255 2132 -59807200.44138 2256 2132 -11899768.97017 2257 2132 9357633.519253 2258 2132 -21458826.37861 2133 2133 677810035.2011 2134 2133 36667397.55284 2135 2133 3125086.662505 2136 2133 20859938.00677 2137 2133 -36666959.01753 2138 2133 2702569.081896 2142 2133 -51881527.1465 2143 2133 -36666666.66065 2144 2133 2505785.245605 2145 2133 -136819701.2443 2146 2133 9.089708328247e-07 2147 2133 -462970.1266867 2148 2133 -51905201.38891 2149 2133 36666666.66065 2150 2133 -2702548.086863 2232 2133 -18752053.59425 2233 2133 9166666.66968 2234 2133 10539814.37052 2235 2133 -72726245.22972 2236 2133 -9166776.303506 2237 2133 44231216.90386 2241 2133 -1865379.213624 2242 2133 8.79168510437e-07 2243 2133 57871.26589221 2244 2133 70575234.21716 2245 2133 9166849.392726 2246 2133 781227.3439141 2247 2133 -20203256.3538 2248 2133 -9166739.758899 2249 2133 11899863.74724 2253 2133 -18848133.13973 2254 2133 -9166666.66968 2255 2133 -10597685.63642 2256 2133 -60775629.25067 2257 2133 -1.214444637299e-06 2258 2133 -45012270.30212 2259 2133 -20383999.6175 2260 2133 9166666.669679 2261 2133 -11899768.97017 2134 2134 578802727.5875 2135 2134 -8610918.562153 2136 2134 -36667105.19596 2137 2134 -107472939.8429 2138 2134 4611020.401354 2142 2134 -36666666.66065 2143 2134 -40880751.7318 2144 2134 1263867.397843 2145 2134 9.685754776001e-07 2146 2134 24514918.12315 2147 2134 -2777734.795656 2148 2134 36666666.66065 2149 2134 -40904425.97421 2150 2134 1513867.397816 2232 2134 9166666.66968 2233 2134 -16001859.73922 2234 2134 -8593755.37553 2235 2134 -9166739.758897 2236 2134 -29642168.10562 2237 2134 8204934.122165 2241 2134 1.229345798492e-06 2242 2134 -36698646.37071 2243 2134 -34527799.26293 2244 2134 9166849.392726 2245 2134 45823407.30156 2246 2134 -2152765.098743 2247 2134 -9166776.303508 2248 2134 -52286475.83204 2249 2134 37069600.58987 2253 2134 -9166666.669679 2254 2134 -16097939.2847 2255 2134 -8663199.819997 2256 2134 -1.445412635803e-06 2257 2134 -20441974.38895 2258 2134 -694433.6992576 2259 2134 9166666.669678 2260 2134 -17633805.76247 2261 2134 9357633.519253 2135 2135 623143279.9755 2136 2135 2737301.801614 2137 2135 5388806.115241 2138 2135 41364580.11227 2142 2135 2471063.023406 2143 2135 1236089.620084 2144 2135 -6756715.38321 2145 2135 -462970.1266864 2146 2135 -2777734.795656 2147 2135 44192040.0554 2148 2135 -2737270.309063 2149 2135 1541645.175575 2150 2135 -6819846.696327 2232 2135 10539814.37052 2233 2135 -8593755.37553 2234 2135 -17106970.31658 2235 2135 44196492.14387 2236 2135 8010523.495484 2237 2135 -58776166.2905 2241 2135 57871.26589252 2242 2135 -34500021.48517 2243 2135 -41438476.99211 2244 2135 781316.8545274 2245 2135 -2152693.49136 2246 2135 -107886912.3736 2247 2135 11899911.13577 2248 2135 37236269.31883 2249 2135 -57440830.58835 2253 2135 -10597685.63642 2254 2135 -8663199.819997 2255 2135 -17363182.43788 2256 2135 -44977548.07992 2257 2135 -694433.6992576 2258 2135 -59807200.44138 2259 2135 -11899768.97017 2260 2135 9357633.519253 2261 2135 -21458826.37861 2136 2136 391468094.7324 2137 2136 36666666.66066 2138 2136 2662170.757228 2145 2136 -51881527.1465 2146 2136 -36666666.66065 2147 2136 2505785.245605 2148 2136 -201885224.5025 2149 2136 -36666959.01753 2150 2136 -2662149.068675 2151 2136 13006025.1815 2152 2136 29333625.68539 2153 2136 -2152798.772422 2235 2136 -5106206.927443 2236 2136 11000109.63744 2237 2136 12682625.90274 2244 2136 -15511422.68773 2245 2136 -9166776.303506 2246 2136 -10539940.2691 2247 2136 31947394.33292 2248 2136 9166666.669681 2249 2136 9728225.899101 2256 2136 -18848133.13973 2257 2136 -9166666.66968 2258 2136 -10597685.63642 2259 2136 -74358253.63036 2260 2136 -9166739.758898 2261 2136 -45562288.72778 2262 2136 -8166156.136015 2263 2136 7333406.424962 2264 2136 -9496761.446847 2137 2137 336463888.7559 2138 2137 -6944377.543016 2145 2137 -36666666.66065 2146 2137 -40880751.7318 2147 2137 1263867.397843 2148 2137 -36667105.19596 2149 2137 -29548916.09098 2150 2137 -3847225.37168 2151 2137 44000438.52809 2152 2137 13006025.1815 2153 2137 2416691.307227 2235 2137 7333406.424962 2236 2137 -5106206.927443 2237 2137 -6763956.526763 2244 2137 -9166739.758897 2245 2137 -47594642.16596 2246 2137 -34569643.89832 2247 2137 9166666.66968 2248 2137 18196342.83202 2249 2137 5513941.008134 2256 2137 -9166666.669679 2257 2137 -16097939.2847 2258 2137 -8663199.819997 2259 2137 -9166776.303507 2260 2137 -31274176.50627 2261 2137 -9941080.210835 2262 2137 11000109.63744 2263 2137 -8166156.136015 2264 2137 11395946.69513 2138 2138 385940866.4962 2145 2138 2471063.023406 2146 2138 1236089.620084 2147 2138 -6756715.38321 2148 2138 -2662138.224395 2149 2138 -3097217.158151 2150 2138 2281351.682023 2151 2138 -3229198.158633 2152 2138 1611127.538151 2153 2138 34682733.81733 2235 2138 8455083.935158 2236 2138 -10145934.79014 2237 2138 -13616551.80652 2244 2138 -10539898.30291 2245 2138 -34736312.74845 2246 2138 -44929274.14549 2247 2138 -8223530.275229 2248 2138 -8847241.586827 2249 2138 -79300461.72417 2256 2138 -10597685.63642 2257 2138 -8663199.819997 2258 2138 -17363182.43788 2259 2138 -45527563.96779 2260 2138 -9746597.980308 2261 2138 -63128188.69225 2262 2138 -14245142.17027 2263 2138 7597297.796754 2264 2138 -21776416.36271 2139 2139 626081101.6128 2140 2139 7.033348083496e-06 2141 2139 925940.2533548 2142 2139 85765730.61463 2143 2139 -3.814697265625e-06 2144 2139 231485.0634534 2154 2139 -136819701.2443 2155 2139 9.089708328247e-07 2156 2139 -462970.1266867 2157 2139 -51905201.38891 2158 2139 36666666.66065 2159 2139 -2702548.086863 2238 2139 -60367636.82651 2239 2139 1.877546310425e-06 2240 2139 44780785.23866 2241 2139 -20276082.95081 2242 2139 -9166666.66968 2243 2139 11841897.70428 2250 2139 51054233.83102 2251 2139 1.788139343262e-06 2252 2139 231485.0634618 2253 2139 -7985170.87927 2254 2139 -2.771615982056e-06 2255 2139 57871.2658952 2265 2139 -60775629.25067 2266 2139 -1.214444637299e-06 2267 2139 -45012270.30212 2268 2139 -20383999.6175 2269 2139 9166666.669679 2270 2139 -11899768.97017 2140 2140 538074898.3386 2141 2140 -11110939.17715 2142 2140 -2.861022949219e-06 2143 2140 -53567337.94508 2144 2140 5555469.588581 2154 2140 9.685754776001e-07 2155 2140 24514918.12315 2156 2140 -2777734.795656 2157 2140 36666666.66065 2158 2140 -40904425.97421 2159 2140 1513867.397816 2238 2140 1.169741153717e-06 2239 2140 -20033981.96478 2240 2140 -694433.6992575 2241 2140 -9166666.66968 2242 2140 -17525889.09577 2243 2140 9288189.074786 2250 2140 1.966953277588e-06 2251 2140 29052683.00161 2252 2140 -2777734.795662 2253 2140 -2.190470695496e-06 2254 2140 -42818438.03636 2255 2140 37305534.05859 2265 2140 -1.445412635803e-06 2266 2140 -20441974.38895 2267 2140 -694433.6992576 2268 2140 9166666.669678 2269 2140 -17633805.76247 2270 2140 9357633.519253 2141 2141 616797415.4266 2142 2141 231485.0634536 2143 2141 5555469.588581 2144 2141 82852085.35441 2154 2141 -462970.1266864 2155 2141 -2777734.795656 2156 2141 44192040.0554 2157 2141 -2737270.309063 2158 2141 1541645.175575 2159 2141 -6819846.696327 2238 2141 44746063.01646 2239 2141 -694433.6992574 2240 2141 -58719220.64359 2241 2141 11841897.70428 2242 2141 9288189.074786 2243 2141 -21171048.60074 2250 2141 231485.0634617 2251 2141 -2777734.795662 2252 2141 -127043423.7988 2253 2141 57871.26589543 2254 2141 37277756.28083 2255 2141 -57757921.43384 2265 2141 -44977548.07992 2266 2141 -694433.6992576 2267 2141 -59807200.44138 2268 2141 -11899768.97017 2269 2141 9357633.519253 2270 2141 -21458826.37861 2142 2142 626081101.6128 2143 2142 7.033348083496e-06 2144 2142 925940.2533548 2145 2142 85765730.61463 2146 2142 -3.814697265625e-06 2147 2142 231485.0634534 2154 2142 -51881527.1465 2155 2142 -36666666.66065 2156 2142 2505785.245605 2157 2142 -136819701.2443 2158 2142 9.089708328247e-07 2159 2142 -462970.1266867 2160 2142 -51905201.38891 2161 2142 36666666.66065 2162 2142 -2702548.086863 2238 2142 -18752053.59425 2239 2142 9166666.66968 2240 2142 10539814.37052 2241 2142 -60367636.82651 2242 2142 1.877546310425e-06 2243 2142 44780785.23866 2244 2142 -20276082.95081 2245 2142 -9166666.66968 2246 2142 11841897.70428 2250 2142 -1865379.213624 2251 2142 8.79168510437e-07 2252 2142 57871.26589221 2253 2142 51054233.83102 2254 2142 1.788139343262e-06 2255 2142 231485.0634618 2256 2142 -7985170.87927 2257 2142 -2.771615982056e-06 2258 2142 57871.2658952 2265 2142 -18848133.13973 2266 2142 -9166666.66968 2267 2142 -10597685.63642 2268 2142 -60775629.25067 2269 2142 -1.214444637299e-06 2270 2142 -45012270.30212 2271 2142 -20383999.6175 2272 2142 9166666.669679 2273 2142 -11899768.97017 2143 2143 538074898.3386 2144 2143 -11110939.17715 2145 2143 -2.861022949219e-06 2146 2143 -53567337.94508 2147 2143 5555469.588581 2154 2143 -36666666.66065 2155 2143 -40880751.7318 2156 2143 1263867.397843 2157 2143 9.685754776001e-07 2158 2143 24514918.12315 2159 2143 -2777734.795656 2160 2143 36666666.66065 2161 2143 -40904425.97421 2162 2143 1513867.397816 2238 2143 9166666.66968 2239 2143 -16001859.73922 2240 2143 -8593755.37553 2241 2143 1.169741153717e-06 2242 2143 -20033981.96478 2243 2143 -694433.6992575 2244 2143 -9166666.66968 2245 2143 -17525889.09577 2246 2143 9288189.074786 2250 2143 1.229345798492e-06 2251 2143 -36698646.37071 2252 2143 -34527799.26293 2253 2143 1.966953277588e-06 2254 2143 29052683.00161 2255 2143 -2777734.795662 2256 2143 -2.190470695496e-06 2257 2143 -42818438.03636 2258 2143 37305534.05859 2265 2143 -9166666.669679 2266 2143 -16097939.2847 2267 2143 -8663199.819997 2268 2143 -1.445412635803e-06 2269 2143 -20441974.38895 2270 2143 -694433.6992576 2271 2143 9166666.669678 2272 2143 -17633805.76247 2273 2143 9357633.519253 2144 2144 616797415.4266 2145 2144 231485.0634536 2146 2144 5555469.588581 2147 2144 82852085.35441 2154 2144 2471063.023406 2155 2144 1236089.620084 2156 2144 -6756715.38321 2157 2144 -462970.1266864 2158 2144 -2777734.795656 2159 2144 44192040.0554 2160 2144 -2737270.309063 2161 2144 1541645.175575 2162 2144 -6819846.696327 2238 2144 10539814.37052 2239 2144 -8593755.37553 2240 2144 -17106970.31658 2241 2144 44746063.01646 2242 2144 -694433.6992574 2243 2144 -58719220.64359 2244 2144 11841897.70428 2245 2144 9288189.074786 2246 2144 -21171048.60074 2250 2144 57871.26589252 2251 2144 -34500021.48517 2252 2144 -41438476.99211 2253 2144 231485.0634617 2254 2144 -2777734.795662 2255 2144 -127043423.7988 2256 2144 57871.26589543 2257 2144 37277756.28083 2258 2144 -57757921.43384 2265 2144 -10597685.63642 2266 2144 -8663199.819997 2267 2144 -17363182.43788 2268 2144 -44977548.07992 2269 2144 -694433.6992576 2270 2144 -59807200.44138 2271 2144 -11899768.97017 2272 2144 9357633.519253 2273 2144 -21458826.37861 2145 2145 626081101.6128 2146 2145 7.033348083496e-06 2147 2145 925940.2533548 2148 2145 85765730.61463 2149 2145 -3.814697265625e-06 2150 2145 231485.0634534 2157 2145 -51881527.1465 2158 2145 -36666666.66065 2159 2145 2505785.245605 2160 2145 -136819701.2443 2161 2145 9.089708328247e-07 2162 2145 -462970.1266867 2163 2145 -51905201.38891 2164 2145 36666666.66065 2165 2145 -2702548.086863 2241 2145 -18752053.59425 2242 2145 9166666.66968 2243 2145 10539814.37052 2244 2145 -60367636.82651 2245 2145 1.877546310425e-06 2246 2145 44780785.23866 2247 2145 -20276082.95081 2248 2145 -9166666.66968 2249 2145 11841897.70428 2253 2145 -1865379.213624 2254 2145 8.79168510437e-07 2255 2145 57871.26589221 2256 2145 51054233.83102 2257 2145 1.788139343262e-06 2258 2145 231485.0634618 2259 2145 -7985170.87927 2260 2145 -2.771615982056e-06 2261 2145 57871.2658952 2268 2145 -18848133.13973 2269 2145 -9166666.66968 2270 2145 -10597685.63642 2271 2145 -60775629.25067 2272 2145 -1.214444637299e-06 2273 2145 -45012270.30212 2274 2145 -20383999.6175 2275 2145 9166666.669679 2276 2145 -11899768.97017 2146 2146 538074898.3386 2147 2146 -11110939.17715 2148 2146 -2.861022949219e-06 2149 2146 -53567337.94508 2150 2146 5555469.588581 2157 2146 -36666666.66065 2158 2146 -40880751.7318 2159 2146 1263867.397843 2160 2146 9.685754776001e-07 2161 2146 24514918.12315 2162 2146 -2777734.795656 2163 2146 36666666.66065 2164 2146 -40904425.97421 2165 2146 1513867.397816 2241 2146 9166666.66968 2242 2146 -16001859.73922 2243 2146 -8593755.37553 2244 2146 1.169741153717e-06 2245 2146 -20033981.96478 2246 2146 -694433.6992575 2247 2146 -9166666.66968 2248 2146 -17525889.09577 2249 2146 9288189.074786 2253 2146 1.229345798492e-06 2254 2146 -36698646.37071 2255 2146 -34527799.26293 2256 2146 1.966953277588e-06 2257 2146 29052683.00161 2258 2146 -2777734.795662 2259 2146 -2.190470695496e-06 2260 2146 -42818438.03636 2261 2146 37305534.05859 2268 2146 -9166666.669679 2269 2146 -16097939.2847 2270 2146 -8663199.819997 2271 2146 -1.445412635803e-06 2272 2146 -20441974.38895 2273 2146 -694433.6992576 2274 2146 9166666.669678 2275 2146 -17633805.76247 2276 2146 9357633.519253 2147 2147 616797415.4266 2148 2147 231485.0634536 2149 2147 5555469.588581 2150 2147 82852085.35441 2157 2147 2471063.023406 2158 2147 1236089.620084 2159 2147 -6756715.38321 2160 2147 -462970.1266864 2161 2147 -2777734.795656 2162 2147 44192040.0554 2163 2147 -2737270.309063 2164 2147 1541645.175575 2165 2147 -6819846.696327 2241 2147 10539814.37052 2242 2147 -8593755.37553 2243 2147 -17106970.31658 2244 2147 44746063.01646 2245 2147 -694433.6992574 2246 2147 -58719220.64359 2247 2147 11841897.70428 2248 2147 9288189.074786 2249 2147 -21171048.60074 2253 2147 57871.26589252 2254 2147 -34500021.48517 2255 2147 -41438476.99211 2256 2147 231485.0634617 2257 2147 -2777734.795662 2258 2147 -127043423.7988 2259 2147 57871.26589543 2260 2147 37277756.28083 2261 2147 -57757921.43384 2268 2147 -10597685.63642 2269 2147 -8663199.819997 2270 2147 -17363182.43788 2271 2147 -44977548.07992 2272 2147 -694433.6992576 2273 2147 -59807200.44138 2274 2147 -11899768.97017 2275 2147 9357633.519253 2276 2147 -21458826.37861 2148 2148 677810035.2011 2149 2148 36667397.55284 2150 2148 3125086.662505 2151 2148 20859938.00677 2152 2148 -36666959.01753 2153 2148 2702569.081896 2160 2148 -51881527.1465 2161 2148 -36666666.66065 2162 2148 2505785.245605 2163 2148 -136819701.2443 2164 2148 9.089708328247e-07 2165 2148 -462970.1266867 2166 2148 -51905201.38891 2167 2148 36666666.66065 2168 2148 -2702548.086863 2244 2148 -18752053.59425 2245 2148 9166666.66968 2246 2148 10539814.37052 2247 2148 -72726245.22972 2248 2148 -9166776.303506 2249 2148 44231216.90386 2256 2148 -1865379.213624 2257 2148 8.79168510437e-07 2258 2148 57871.26589221 2259 2148 70575234.21716 2260 2148 9166849.392726 2261 2148 781227.3439141 2262 2148 -20203256.3538 2263 2148 -9166739.758899 2264 2148 11899863.74724 2271 2148 -18848133.13973 2272 2148 -9166666.66968 2273 2148 -10597685.63642 2274 2148 -60775629.25067 2275 2148 -1.214444637299e-06 2276 2148 -45012270.30212 2277 2148 -20383999.6175 2278 2148 9166666.669679 2279 2148 -11899768.97017 2149 2149 578802727.5875 2150 2149 -8610918.562153 2151 2149 -36667105.19596 2152 2149 -107472939.8429 2153 2149 4611020.401354 2160 2149 -36666666.66065 2161 2149 -40880751.7318 2162 2149 1263867.397843 2163 2149 9.685754776001e-07 2164 2149 24514918.12315 2165 2149 -2777734.795656 2166 2149 36666666.66065 2167 2149 -40904425.97421 2168 2149 1513867.397816 2244 2149 9166666.66968 2245 2149 -16001859.73922 2246 2149 -8593755.37553 2247 2149 -9166739.758897 2248 2149 -29642168.10562 2249 2149 8204934.122165 2256 2149 1.229345798492e-06 2257 2149 -36698646.37071 2258 2149 -34527799.26293 2259 2149 9166849.392726 2260 2149 45823407.30156 2261 2149 -2152765.098743 2262 2149 -9166776.303508 2263 2149 -52286475.83204 2264 2149 37069600.58987 2271 2149 -9166666.669679 2272 2149 -16097939.2847 2273 2149 -8663199.819997 2274 2149 -1.445412635803e-06 2275 2149 -20441974.38895 2276 2149 -694433.6992576 2277 2149 9166666.669678 2278 2149 -17633805.76247 2279 2149 9357633.519253 2150 2150 623143279.9755 2151 2150 2737301.801614 2152 2150 5388806.115241 2153 2150 41364580.11227 2160 2150 2471063.023406 2161 2150 1236089.620084 2162 2150 -6756715.38321 2163 2150 -462970.1266864 2164 2150 -2777734.795656 2165 2150 44192040.0554 2166 2150 -2737270.309063 2167 2150 1541645.175575 2168 2150 -6819846.696327 2244 2150 10539814.37052 2245 2150 -8593755.37553 2246 2150 -17106970.31658 2247 2150 44196492.14387 2248 2150 8010523.495484 2249 2150 -58776166.2905 2256 2150 57871.26589252 2257 2150 -34500021.48517 2258 2150 -41438476.99211 2259 2150 781316.8545274 2260 2150 -2152693.49136 2261 2150 -107886912.3736 2262 2150 11899911.13577 2263 2150 37236269.31883 2264 2150 -57440830.58835 2271 2150 -10597685.63642 2272 2150 -8663199.819997 2273 2150 -17363182.43788 2274 2150 -44977548.07992 2275 2150 -694433.6992576 2276 2150 -59807200.44138 2277 2150 -11899768.97017 2278 2150 9357633.519253 2279 2150 -21458826.37861 2151 2151 391468094.7324 2152 2151 36666666.66066 2153 2151 2662170.757228 2163 2151 -51881527.1465 2164 2151 -36666666.66065 2165 2151 2505785.245605 2166 2151 -201885224.5025 2167 2151 -36666959.01753 2168 2151 -2662149.068675 2169 2151 13006025.1815 2170 2151 29333625.68539 2171 2151 -2152798.772422 2247 2151 -5106206.927443 2248 2151 11000109.63744 2249 2151 12682625.90274 2259 2151 -15511422.68773 2260 2151 -9166776.303506 2261 2151 -10539940.2691 2262 2151 31947394.33292 2263 2151 9166666.669681 2264 2151 9728225.899101 2274 2151 -18848133.13973 2275 2151 -9166666.66968 2276 2151 -10597685.63642 2277 2151 -74358253.63036 2278 2151 -9166739.758898 2279 2151 -45562288.72778 2280 2151 -8166156.136015 2281 2151 7333406.424962 2282 2151 -9496761.446847 2152 2152 336463888.7559 2153 2152 -6944377.543016 2163 2152 -36666666.66065 2164 2152 -40880751.7318 2165 2152 1263867.397843 2166 2152 -36667105.19596 2167 2152 -29548916.09098 2168 2152 -3847225.37168 2169 2152 44000438.52809 2170 2152 13006025.1815 2171 2152 2416691.307227 2247 2152 7333406.424962 2248 2152 -5106206.927443 2249 2152 -6763956.526763 2259 2152 -9166739.758897 2260 2152 -47594642.16596 2261 2152 -34569643.89832 2262 2152 9166666.66968 2263 2152 18196342.83202 2264 2152 5513941.008134 2274 2152 -9166666.669679 2275 2152 -16097939.2847 2276 2152 -8663199.819997 2277 2152 -9166776.303507 2278 2152 -31274176.50627 2279 2152 -9941080.210835 2280 2152 11000109.63744 2281 2152 -8166156.136015 2282 2152 11395946.69513 2153 2153 385940866.4962 2163 2153 2471063.023406 2164 2153 1236089.620084 2165 2153 -6756715.38321 2166 2153 -2662138.224395 2167 2153 -3097217.158151 2168 2153 2281351.682023 2169 2153 -3229198.158633 2170 2153 1611127.538151 2171 2153 34682733.81733 2247 2153 8455083.935158 2248 2153 -10145934.79014 2249 2153 -13616551.80652 2259 2153 -10539898.30291 2260 2153 -34736312.74845 2261 2153 -44929274.14549 2262 2153 -8223530.275229 2263 2153 -8847241.586827 2264 2153 -79300461.72417 2274 2153 -10597685.63642 2275 2153 -8663199.819997 2276 2153 -17363182.43788 2277 2153 -45527563.96779 2278 2153 -9746597.980308 2279 2153 -63128188.69225 2280 2153 -14245142.17027 2281 2153 7597297.796754 2282 2153 -21776416.36271 2154 2154 626081101.6128 2155 2154 7.033348083496e-06 2156 2154 925940.2533548 2157 2154 85765730.61463 2158 2154 -3.814697265625e-06 2159 2154 231485.0634534 2172 2154 -136819701.2443 2173 2154 9.089708328247e-07 2174 2154 -462970.1266867 2175 2154 -51905201.38891 2176 2154 36666666.66065 2177 2154 -2702548.086863 2250 2154 -60367636.82651 2251 2154 1.877546310425e-06 2252 2154 44780785.23866 2253 2154 -20276082.95081 2254 2154 -9166666.66968 2255 2154 11841897.70428 2265 2154 51054233.83102 2266 2154 1.788139343262e-06 2267 2154 231485.0634618 2268 2154 -7985170.87927 2269 2154 -2.771615982056e-06 2270 2154 57871.2658952 2283 2154 -60775629.25067 2284 2154 -1.214444637299e-06 2285 2154 -45012270.30212 2286 2154 -20383999.6175 2287 2154 9166666.669679 2288 2154 -11899768.97017 2155 2155 538074898.3386 2156 2155 -11110939.17715 2157 2155 -2.861022949219e-06 2158 2155 -53567337.94508 2159 2155 5555469.588581 2172 2155 9.685754776001e-07 2173 2155 24514918.12315 2174 2155 -2777734.795656 2175 2155 36666666.66065 2176 2155 -40904425.97421 2177 2155 1513867.397816 2250 2155 1.169741153717e-06 2251 2155 -20033981.96478 2252 2155 -694433.6992575 2253 2155 -9166666.66968 2254 2155 -17525889.09577 2255 2155 9288189.074786 2265 2155 1.966953277588e-06 2266 2155 29052683.00161 2267 2155 -2777734.795662 2268 2155 -2.190470695496e-06 2269 2155 -42818438.03636 2270 2155 37305534.05859 2283 2155 -1.445412635803e-06 2284 2155 -20441974.38895 2285 2155 -694433.6992576 2286 2155 9166666.669678 2287 2155 -17633805.76247 2288 2155 9357633.519253 2156 2156 616797415.4266 2157 2156 231485.0634536 2158 2156 5555469.588581 2159 2156 82852085.35441 2172 2156 -462970.1266864 2173 2156 -2777734.795656 2174 2156 44192040.0554 2175 2156 -2737270.309063 2176 2156 1541645.175575 2177 2156 -6819846.696327 2250 2156 44746063.01646 2251 2156 -694433.6992574 2252 2156 -58719220.64359 2253 2156 11841897.70428 2254 2156 9288189.074786 2255 2156 -21171048.60074 2265 2156 231485.0634617 2266 2156 -2777734.795662 2267 2156 -127043423.7988 2268 2156 57871.26589543 2269 2156 37277756.28083 2270 2156 -57757921.43384 2283 2156 -44977548.07992 2284 2156 -694433.6992576 2285 2156 -59807200.44138 2286 2156 -11899768.97017 2287 2156 9357633.519253 2288 2156 -21458826.37861 2157 2157 626081101.6128 2158 2157 7.033348083496e-06 2159 2157 925940.2533548 2160 2157 85765730.61463 2161 2157 -3.814697265625e-06 2162 2157 231485.0634534 2172 2157 -51881527.1465 2173 2157 -36666666.66065 2174 2157 2505785.245605 2175 2157 -136819701.2443 2176 2157 9.089708328247e-07 2177 2157 -462970.1266867 2178 2157 -51905201.38891 2179 2157 36666666.66065 2180 2157 -2702548.086863 2250 2157 -18752053.59425 2251 2157 9166666.66968 2252 2157 10539814.37052 2253 2157 -60367636.82651 2254 2157 1.877546310425e-06 2255 2157 44780785.23866 2256 2157 -20276082.95081 2257 2157 -9166666.66968 2258 2157 11841897.70428 2265 2157 -1865379.213624 2266 2157 8.79168510437e-07 2267 2157 57871.26589221 2268 2157 51054233.83102 2269 2157 1.788139343262e-06 2270 2157 231485.0634618 2271 2157 -7985170.87927 2272 2157 -2.771615982056e-06 2273 2157 57871.2658952 2283 2157 -18848133.13973 2284 2157 -9166666.66968 2285 2157 -10597685.63642 2286 2157 -60775629.25067 2287 2157 -1.214444637299e-06 2288 2157 -45012270.30212 2289 2157 -20383999.6175 2290 2157 9166666.669679 2291 2157 -11899768.97017 2158 2158 538074898.3386 2159 2158 -11110939.17715 2160 2158 -2.861022949219e-06 2161 2158 -53567337.94508 2162 2158 5555469.588581 2172 2158 -36666666.66065 2173 2158 -40880751.7318 2174 2158 1263867.397843 2175 2158 9.685754776001e-07 2176 2158 24514918.12315 2177 2158 -2777734.795656 2178 2158 36666666.66065 2179 2158 -40904425.97421 2180 2158 1513867.397816 2250 2158 9166666.66968 2251 2158 -16001859.73922 2252 2158 -8593755.37553 2253 2158 1.169741153717e-06 2254 2158 -20033981.96478 2255 2158 -694433.6992575 2256 2158 -9166666.66968 2257 2158 -17525889.09577 2258 2158 9288189.074786 2265 2158 1.229345798492e-06 2266 2158 -36698646.37071 2267 2158 -34527799.26293 2268 2158 1.966953277588e-06 2269 2158 29052683.00161 2270 2158 -2777734.795662 2271 2158 -2.190470695496e-06 2272 2158 -42818438.03636 2273 2158 37305534.05859 2283 2158 -9166666.669679 2284 2158 -16097939.2847 2285 2158 -8663199.819997 2286 2158 -1.445412635803e-06 2287 2158 -20441974.38895 2288 2158 -694433.6992576 2289 2158 9166666.669678 2290 2158 -17633805.76247 2291 2158 9357633.519253 2159 2159 616797415.4266 2160 2159 231485.0634536 2161 2159 5555469.588581 2162 2159 82852085.35441 2172 2159 2471063.023406 2173 2159 1236089.620084 2174 2159 -6756715.38321 2175 2159 -462970.1266864 2176 2159 -2777734.795656 2177 2159 44192040.0554 2178 2159 -2737270.309063 2179 2159 1541645.175575 2180 2159 -6819846.696327 2250 2159 10539814.37052 2251 2159 -8593755.37553 2252 2159 -17106970.31658 2253 2159 44746063.01646 2254 2159 -694433.6992574 2255 2159 -58719220.64359 2256 2159 11841897.70428 2257 2159 9288189.074786 2258 2159 -21171048.60074 2265 2159 57871.26589252 2266 2159 -34500021.48517 2267 2159 -41438476.99211 2268 2159 231485.0634617 2269 2159 -2777734.795662 2270 2159 -127043423.7988 2271 2159 57871.26589543 2272 2159 37277756.28083 2273 2159 -57757921.43384 2283 2159 -10597685.63642 2284 2159 -8663199.819997 2285 2159 -17363182.43788 2286 2159 -44977548.07992 2287 2159 -694433.6992576 2288 2159 -59807200.44138 2289 2159 -11899768.97017 2290 2159 9357633.519253 2291 2159 -21458826.37861 2160 2160 626081101.6128 2161 2160 7.033348083496e-06 2162 2160 925940.2533548 2163 2160 85765730.61463 2164 2160 -3.814697265625e-06 2165 2160 231485.0634534 2175 2160 -51881527.1465 2176 2160 -36666666.66065 2177 2160 2505785.245605 2178 2160 -136819701.2443 2179 2160 9.089708328247e-07 2180 2160 -462970.1266867 2181 2160 -51905201.38891 2182 2160 36666666.66065 2183 2160 -2702548.086863 2253 2160 -18752053.59425 2254 2160 9166666.66968 2255 2160 10539814.37052 2256 2160 -60367636.82651 2257 2160 1.877546310425e-06 2258 2160 44780785.23866 2259 2160 -20276082.95081 2260 2160 -9166666.66968 2261 2160 11841897.70428 2268 2160 -1865379.213624 2269 2160 8.79168510437e-07 2270 2160 57871.26589221 2271 2160 51054233.83102 2272 2160 1.788139343262e-06 2273 2160 231485.0634618 2274 2160 -7985170.87927 2275 2160 -2.771615982056e-06 2276 2160 57871.2658952 2286 2160 -18848133.13973 2287 2160 -9166666.66968 2288 2160 -10597685.63642 2289 2160 -60775629.25067 2290 2160 -1.214444637299e-06 2291 2160 -45012270.30212 2292 2160 -20383999.6175 2293 2160 9166666.669679 2294 2160 -11899768.97017 2161 2161 538074898.3386 2162 2161 -11110939.17715 2163 2161 -2.861022949219e-06 2164 2161 -53567337.94508 2165 2161 5555469.588581 2175 2161 -36666666.66065 2176 2161 -40880751.7318 2177 2161 1263867.397843 2178 2161 9.685754776001e-07 2179 2161 24514918.12315 2180 2161 -2777734.795656 2181 2161 36666666.66065 2182 2161 -40904425.97421 2183 2161 1513867.397816 2253 2161 9166666.66968 2254 2161 -16001859.73922 2255 2161 -8593755.37553 2256 2161 1.169741153717e-06 2257 2161 -20033981.96478 2258 2161 -694433.6992575 2259 2161 -9166666.66968 2260 2161 -17525889.09577 2261 2161 9288189.074786 2268 2161 1.229345798492e-06 2269 2161 -36698646.37071 2270 2161 -34527799.26293 2271 2161 1.966953277588e-06 2272 2161 29052683.00161 2273 2161 -2777734.795662 2274 2161 -2.190470695496e-06 2275 2161 -42818438.03636 2276 2161 37305534.05859 2286 2161 -9166666.669679 2287 2161 -16097939.2847 2288 2161 -8663199.819997 2289 2161 -1.445412635803e-06 2290 2161 -20441974.38895 2291 2161 -694433.6992576 2292 2161 9166666.669678 2293 2161 -17633805.76247 2294 2161 9357633.519253 2162 2162 616797415.4266 2163 2162 231485.0634536 2164 2162 5555469.588581 2165 2162 82852085.35441 2175 2162 2471063.023406 2176 2162 1236089.620084 2177 2162 -6756715.38321 2178 2162 -462970.1266864 2179 2162 -2777734.795656 2180 2162 44192040.0554 2181 2162 -2737270.309063 2182 2162 1541645.175575 2183 2162 -6819846.696327 2253 2162 10539814.37052 2254 2162 -8593755.37553 2255 2162 -17106970.31658 2256 2162 44746063.01646 2257 2162 -694433.6992574 2258 2162 -58719220.64359 2259 2162 11841897.70428 2260 2162 9288189.074786 2261 2162 -21171048.60074 2268 2162 57871.26589252 2269 2162 -34500021.48517 2270 2162 -41438476.99211 2271 2162 231485.0634617 2272 2162 -2777734.795662 2273 2162 -127043423.7988 2274 2162 57871.26589543 2275 2162 37277756.28083 2276 2162 -57757921.43384 2286 2162 -10597685.63642 2287 2162 -8663199.819997 2288 2162 -17363182.43788 2289 2162 -44977548.07992 2290 2162 -694433.6992576 2291 2162 -59807200.44138 2292 2162 -11899768.97017 2293 2162 9357633.519253 2294 2162 -21458826.37861 2163 2163 626081101.6128 2164 2163 7.033348083496e-06 2165 2163 925940.2533548 2166 2163 85765730.61463 2167 2163 -3.814697265625e-06 2168 2163 231485.0634534 2178 2163 -51881527.1465 2179 2163 -36666666.66065 2180 2163 2505785.245605 2181 2163 -136819701.2443 2182 2163 9.089708328247e-07 2183 2163 -462970.1266867 2184 2163 -51905201.38891 2185 2163 36666666.66065 2186 2163 -2702548.086863 2256 2163 -18752053.59425 2257 2163 9166666.66968 2258 2163 10539814.37052 2259 2163 -60367636.82651 2260 2163 1.877546310425e-06 2261 2163 44780785.23866 2262 2163 -20276082.95081 2263 2163 -9166666.66968 2264 2163 11841897.70428 2271 2163 -1865379.213624 2272 2163 8.79168510437e-07 2273 2163 57871.26589221 2274 2163 51054233.83102 2275 2163 1.788139343262e-06 2276 2163 231485.0634618 2277 2163 -7985170.87927 2278 2163 -2.771615982056e-06 2279 2163 57871.2658952 2289 2163 -18848133.13973 2290 2163 -9166666.66968 2291 2163 -10597685.63642 2292 2163 -60775629.25067 2293 2163 -1.214444637299e-06 2294 2163 -45012270.30212 2295 2163 -20383999.6175 2296 2163 9166666.669679 2297 2163 -11899768.97017 2164 2164 538074898.3386 2165 2164 -11110939.17715 2166 2164 -2.861022949219e-06 2167 2164 -53567337.94508 2168 2164 5555469.588581 2178 2164 -36666666.66065 2179 2164 -40880751.7318 2180 2164 1263867.397843 2181 2164 9.685754776001e-07 2182 2164 24514918.12315 2183 2164 -2777734.795656 2184 2164 36666666.66065 2185 2164 -40904425.97421 2186 2164 1513867.397816 2256 2164 9166666.66968 2257 2164 -16001859.73922 2258 2164 -8593755.37553 2259 2164 1.169741153717e-06 2260 2164 -20033981.96478 2261 2164 -694433.6992575 2262 2164 -9166666.66968 2263 2164 -17525889.09577 2264 2164 9288189.074786 2271 2164 1.229345798492e-06 2272 2164 -36698646.37071 2273 2164 -34527799.26293 2274 2164 1.966953277588e-06 2275 2164 29052683.00161 2276 2164 -2777734.795662 2277 2164 -2.190470695496e-06 2278 2164 -42818438.03636 2279 2164 37305534.05859 2289 2164 -9166666.669679 2290 2164 -16097939.2847 2291 2164 -8663199.819997 2292 2164 -1.445412635803e-06 2293 2164 -20441974.38895 2294 2164 -694433.6992576 2295 2164 9166666.669678 2296 2164 -17633805.76247 2297 2164 9357633.519253 2165 2165 616797415.4266 2166 2165 231485.0634536 2167 2165 5555469.588581 2168 2165 82852085.35441 2178 2165 2471063.023406 2179 2165 1236089.620084 2180 2165 -6756715.38321 2181 2165 -462970.1266864 2182 2165 -2777734.795656 2183 2165 44192040.0554 2184 2165 -2737270.309063 2185 2165 1541645.175575 2186 2165 -6819846.696327 2256 2165 10539814.37052 2257 2165 -8593755.37553 2258 2165 -17106970.31658 2259 2165 44746063.01646 2260 2165 -694433.6992574 2261 2165 -58719220.64359 2262 2165 11841897.70428 2263 2165 9288189.074786 2264 2165 -21171048.60074 2271 2165 57871.26589252 2272 2165 -34500021.48517 2273 2165 -41438476.99211 2274 2165 231485.0634617 2275 2165 -2777734.795662 2276 2165 -127043423.7988 2277 2165 57871.26589543 2278 2165 37277756.28083 2279 2165 -57757921.43384 2289 2165 -10597685.63642 2290 2165 -8663199.819997 2291 2165 -17363182.43788 2292 2165 -44977548.07992 2293 2165 -694433.6992576 2294 2165 -59807200.44138 2295 2165 -11899768.97017 2296 2165 9357633.519253 2297 2165 -21458826.37861 2166 2166 677810035.2011 2167 2166 36667397.55284 2168 2166 3125086.662505 2169 2166 20859938.00677 2170 2166 -36666959.01753 2171 2166 2702569.081896 2181 2166 -51881527.1465 2182 2166 -36666666.66065 2183 2166 2505785.245605 2184 2166 -136819701.2443 2185 2166 9.089708328247e-07 2186 2166 -462970.1266867 2187 2166 -51905201.38891 2188 2166 36666666.66065 2189 2166 -2702548.086863 2259 2166 -18752053.59425 2260 2166 9166666.66968 2261 2166 10539814.37052 2262 2166 -72726245.22972 2263 2166 -9166776.303506 2264 2166 44231216.90386 2274 2166 -1865379.213624 2275 2166 8.79168510437e-07 2276 2166 57871.26589221 2277 2166 70575234.21716 2278 2166 9166849.392726 2279 2166 781227.3439141 2280 2166 -20203256.3538 2281 2166 -9166739.758899 2282 2166 11899863.74724 2292 2166 -18848133.13973 2293 2166 -9166666.66968 2294 2166 -10597685.63642 2295 2166 -60775629.25067 2296 2166 -1.214444637299e-06 2297 2166 -45012270.30212 2298 2166 -20383999.6175 2299 2166 9166666.669679 2300 2166 -11899768.97017 2167 2167 578802727.5875 2168 2167 -8610918.562153 2169 2167 -36667105.19596 2170 2167 -107472939.8429 2171 2167 4611020.401354 2181 2167 -36666666.66065 2182 2167 -40880751.7318 2183 2167 1263867.397843 2184 2167 9.685754776001e-07 2185 2167 24514918.12315 2186 2167 -2777734.795656 2187 2167 36666666.66065 2188 2167 -40904425.97421 2189 2167 1513867.397816 2259 2167 9166666.66968 2260 2167 -16001859.73922 2261 2167 -8593755.37553 2262 2167 -9166739.758897 2263 2167 -29642168.10562 2264 2167 8204934.122165 2274 2167 1.229345798492e-06 2275 2167 -36698646.37071 2276 2167 -34527799.26293 2277 2167 9166849.392726 2278 2167 45823407.30156 2279 2167 -2152765.098743 2280 2167 -9166776.303508 2281 2167 -52286475.83204 2282 2167 37069600.58987 2292 2167 -9166666.669679 2293 2167 -16097939.2847 2294 2167 -8663199.819997 2295 2167 -1.445412635803e-06 2296 2167 -20441974.38895 2297 2167 -694433.6992576 2298 2167 9166666.669678 2299 2167 -17633805.76247 2300 2167 9357633.519253 2168 2168 623143279.9755 2169 2168 2737301.801614 2170 2168 5388806.115241 2171 2168 41364580.11227 2181 2168 2471063.023406 2182 2168 1236089.620084 2183 2168 -6756715.38321 2184 2168 -462970.1266864 2185 2168 -2777734.795656 2186 2168 44192040.0554 2187 2168 -2737270.309063 2188 2168 1541645.175575 2189 2168 -6819846.696327 2259 2168 10539814.37052 2260 2168 -8593755.37553 2261 2168 -17106970.31658 2262 2168 44196492.14387 2263 2168 8010523.495484 2264 2168 -58776166.2905 2274 2168 57871.26589252 2275 2168 -34500021.48517 2276 2168 -41438476.99211 2277 2168 781316.8545274 2278 2168 -2152693.49136 2279 2168 -107886912.3736 2280 2168 11899911.13577 2281 2168 37236269.31883 2282 2168 -57440830.58835 2292 2168 -10597685.63642 2293 2168 -8663199.819997 2294 2168 -17363182.43788 2295 2168 -44977548.07992 2296 2168 -694433.6992576 2297 2168 -59807200.44138 2298 2168 -11899768.97017 2299 2168 9357633.519253 2300 2168 -21458826.37861 2169 2169 396493735.9168 2170 2169 -24615960.06481 2171 2169 -1253254.124483 2184 2169 -51881527.1465 2185 2169 -36666666.66065 2186 2169 2505785.245605 2187 2169 -60876355.65992 2188 2169 24612478.72648 2189 2169 -274481.5008204 2190 2169 -176880452.1819 2191 2169 29336814.66686 2192 2169 -277822.6407411 2262 2169 -5106206.927443 2263 2169 11000109.63744 2264 2169 12682625.90274 2277 2169 -15511422.68773 2278 2169 -9166776.303506 2279 2169 -10539940.2691 2280 2169 47665090.09198 2281 2169 -6025687.958198 2282 2169 4998799.242218 2295 2169 -18848133.13973 2296 2169 -9166666.66968 2297 2169 -10597685.63642 2298 2169 -30685926.23396 2299 2169 6024859.53953 2300 2169 -26422475.28228 2301 2169 -44005330.74077 2302 2169 7334161.754413 2303 2169 -1631853.686012 2170 2170 667488218.5831 2171 2170 -10464919.5182 2184 2170 -36666666.66065 2185 2170 -40880751.7318 2186 2170 1263867.397843 2187 2170 24610738.05731 2188 2170 83897643.7762 2189 2170 -1992796.476061 2190 2170 44005222.00029 2191 2170 -475316831.8494 2192 2170 4194074.09632 2262 2170 7333406.424962 2263 2170 -5106206.927443 2264 2170 -6763956.526763 2277 2170 -9166739.758897 2278 2170 -47594642.16596 2279 2170 -34569643.89832 2280 2170 -6025687.958199 2281 2170 111708208.2815 2282 2170 1658363.194039 2295 2170 -9166666.669679 2296 2170 -16097939.2847 2297 2170 -8663199.819997 2298 2170 6024445.330197 2299 2170 5565061.370466 2300 2170 5481763.258292 2301 2170 11001242.63162 2302 2170 -114966410.9115 2303 2170 17983542.55927 2171 2171 430799078.9239 2184 2171 2471063.023406 2185 2171 1236089.620084 2186 2171 -6756715.38321 2187 2171 -1038349.313469 2188 2171 -1881646.106394 2189 2171 48412119.65877 2190 2171 -416733.9611113 2191 2171 4083003.025873 2192 2171 -173244826.151 2262 2171 8455083.935158 2263 2171 -10145934.79014 2264 2171 -13616551.80652 2277 2171 -10539898.30291 2278 2171 -34736312.74845 2279 2171 -44929274.14549 2280 2171 -5539432.672724 2281 2171 -6660470.145771 2282 2171 -26564808.1013 2295 2171 -10597685.63642 2296 2171 -8663199.819997 2297 2171 -17363182.43788 2298 2171 -26596081.38737 2299 2171 5565517.502875 2300 2171 -28451527.40463 2301 2171 -2447780.529017 2302 2171 17330703.15128 2303 2171 -46386468.4713 2172 2172 626081101.6128 2173 2172 7.033348083496e-06 2174 2172 925940.2533548 2175 2172 85765730.61463 2176 2172 -3.814697265625e-06 2177 2172 231485.0634534 2193 2172 -136819701.2443 2194 2172 9.089708328247e-07 2195 2172 -462970.1266867 2196 2172 -51905201.38891 2197 2172 36666666.66065 2198 2172 -2702548.086863 2265 2172 -60367636.82651 2266 2172 1.877546310425e-06 2267 2172 44780785.23866 2268 2172 -20276082.95081 2269 2172 -9166666.66968 2270 2172 11841897.70428 2283 2172 51054233.83102 2284 2172 1.788139343262e-06 2285 2172 231485.0634618 2286 2172 -7985170.87927 2287 2172 -2.771615982056e-06 2288 2172 57871.2658952 2304 2172 -60775629.25067 2305 2172 -1.214444637299e-06 2306 2172 -45012270.30212 2307 2172 -20383999.6175 2308 2172 9166666.669679 2309 2172 -11899768.97017 2173 2173 538074898.3386 2174 2173 -11110939.17715 2175 2173 -2.861022949219e-06 2176 2173 -53567337.94508 2177 2173 5555469.588581 2193 2173 9.685754776001e-07 2194 2173 24514918.12315 2195 2173 -2777734.795656 2196 2173 36666666.66065 2197 2173 -40904425.97421 2198 2173 1513867.397816 2265 2173 1.169741153717e-06 2266 2173 -20033981.96478 2267 2173 -694433.6992575 2268 2173 -9166666.66968 2269 2173 -17525889.09577 2270 2173 9288189.074786 2283 2173 1.966953277588e-06 2284 2173 29052683.00161 2285 2173 -2777734.795662 2286 2173 -2.190470695496e-06 2287 2173 -42818438.03636 2288 2173 37305534.05859 2304 2173 -1.445412635803e-06 2305 2173 -20441974.38895 2306 2173 -694433.6992576 2307 2173 9166666.669678 2308 2173 -17633805.76247 2309 2173 9357633.519253 2174 2174 616797415.4266 2175 2174 231485.0634536 2176 2174 5555469.588581 2177 2174 82852085.35441 2193 2174 -462970.1266864 2194 2174 -2777734.795656 2195 2174 44192040.0554 2196 2174 -2737270.309063 2197 2174 1541645.175575 2198 2174 -6819846.696327 2265 2174 44746063.01646 2266 2174 -694433.6992574 2267 2174 -58719220.64359 2268 2174 11841897.70428 2269 2174 9288189.074786 2270 2174 -21171048.60074 2283 2174 231485.0634617 2284 2174 -2777734.795662 2285 2174 -127043423.7988 2286 2174 57871.26589543 2287 2174 37277756.28083 2288 2174 -57757921.43384 2304 2174 -44977548.07992 2305 2174 -694433.6992576 2306 2174 -59807200.44138 2307 2174 -11899768.97017 2308 2174 9357633.519253 2309 2174 -21458826.37861 2175 2175 626081101.6128 2176 2175 7.033348083496e-06 2177 2175 925940.2533548 2178 2175 85765730.61463 2179 2175 -3.814697265625e-06 2180 2175 231485.0634534 2193 2175 -51881527.1465 2194 2175 -36666666.66065 2195 2175 2505785.245605 2196 2175 -136819701.2443 2197 2175 9.089708328247e-07 2198 2175 -462970.1266867 2199 2175 -51905201.38891 2200 2175 36666666.66065 2201 2175 -2702548.086863 2265 2175 -18752053.59425 2266 2175 9166666.66968 2267 2175 10539814.37052 2268 2175 -60367636.82651 2269 2175 1.877546310425e-06 2270 2175 44780785.23866 2271 2175 -20276082.95081 2272 2175 -9166666.66968 2273 2175 11841897.70428 2283 2175 -1865379.213624 2284 2175 8.79168510437e-07 2285 2175 57871.26589221 2286 2175 51054233.83102 2287 2175 1.788139343262e-06 2288 2175 231485.0634618 2289 2175 -7985170.87927 2290 2175 -2.771615982056e-06 2291 2175 57871.2658952 2304 2175 -18848133.13973 2305 2175 -9166666.66968 2306 2175 -10597685.63642 2307 2175 -60775629.25067 2308 2175 -1.214444637299e-06 2309 2175 -45012270.30212 2310 2175 -20383999.6175 2311 2175 9166666.669679 2312 2175 -11899768.97017 2176 2176 538074898.3386 2177 2176 -11110939.17715 2178 2176 -2.861022949219e-06 2179 2176 -53567337.94508 2180 2176 5555469.588581 2193 2176 -36666666.66065 2194 2176 -40880751.7318 2195 2176 1263867.397843 2196 2176 9.685754776001e-07 2197 2176 24514918.12315 2198 2176 -2777734.795656 2199 2176 36666666.66065 2200 2176 -40904425.97421 2201 2176 1513867.397816 2265 2176 9166666.66968 2266 2176 -16001859.73922 2267 2176 -8593755.37553 2268 2176 1.169741153717e-06 2269 2176 -20033981.96478 2270 2176 -694433.6992575 2271 2176 -9166666.66968 2272 2176 -17525889.09577 2273 2176 9288189.074786 2283 2176 1.229345798492e-06 2284 2176 -36698646.37071 2285 2176 -34527799.26293 2286 2176 1.966953277588e-06 2287 2176 29052683.00161 2288 2176 -2777734.795662 2289 2176 -2.190470695496e-06 2290 2176 -42818438.03636 2291 2176 37305534.05859 2304 2176 -9166666.669679 2305 2176 -16097939.2847 2306 2176 -8663199.819997 2307 2176 -1.445412635803e-06 2308 2176 -20441974.38895 2309 2176 -694433.6992576 2310 2176 9166666.669678 2311 2176 -17633805.76247 2312 2176 9357633.519253 2177 2177 616797415.4266 2178 2177 231485.0634536 2179 2177 5555469.588581 2180 2177 82852085.35441 2193 2177 2471063.023406 2194 2177 1236089.620084 2195 2177 -6756715.38321 2196 2177 -462970.1266864 2197 2177 -2777734.795656 2198 2177 44192040.0554 2199 2177 -2737270.309063 2200 2177 1541645.175575 2201 2177 -6819846.696327 2265 2177 10539814.37052 2266 2177 -8593755.37553 2267 2177 -17106970.31658 2268 2177 44746063.01646 2269 2177 -694433.6992574 2270 2177 -58719220.64359 2271 2177 11841897.70428 2272 2177 9288189.074786 2273 2177 -21171048.60074 2283 2177 57871.26589252 2284 2177 -34500021.48517 2285 2177 -41438476.99211 2286 2177 231485.0634617 2287 2177 -2777734.795662 2288 2177 -127043423.7988 2289 2177 57871.26589543 2290 2177 37277756.28083 2291 2177 -57757921.43384 2304 2177 -10597685.63642 2305 2177 -8663199.819997 2306 2177 -17363182.43788 2307 2177 -44977548.07992 2308 2177 -694433.6992576 2309 2177 -59807200.44138 2310 2177 -11899768.97017 2311 2177 9357633.519253 2312 2177 -21458826.37861 2178 2178 626081101.6128 2179 2178 7.033348083496e-06 2180 2178 925940.2533548 2181 2178 85765730.61463 2182 2178 -3.814697265625e-06 2183 2178 231485.0634534 2196 2178 -51881527.1465 2197 2178 -36666666.66065 2198 2178 2505785.245605 2199 2178 -136819701.2443 2200 2178 9.089708328247e-07 2201 2178 -462970.1266867 2202 2178 -51905201.38891 2203 2178 36666666.66065 2204 2178 -2702548.086863 2268 2178 -18752053.59425 2269 2178 9166666.66968 2270 2178 10539814.37052 2271 2178 -60367636.82651 2272 2178 1.877546310425e-06 2273 2178 44780785.23866 2274 2178 -20276082.95081 2275 2178 -9166666.66968 2276 2178 11841897.70428 2286 2178 -1865379.213624 2287 2178 8.79168510437e-07 2288 2178 57871.26589221 2289 2178 51054233.83102 2290 2178 1.788139343262e-06 2291 2178 231485.0634618 2292 2178 -7985170.87927 2293 2178 -2.771615982056e-06 2294 2178 57871.2658952 2307 2178 -18848133.13973 2308 2178 -9166666.66968 2309 2178 -10597685.63642 2310 2178 -60775629.25067 2311 2178 -1.214444637299e-06 2312 2178 -45012270.30212 2313 2178 -20383999.6175 2314 2178 9166666.669679 2315 2178 -11899768.97017 2179 2179 538074898.3386 2180 2179 -11110939.17715 2181 2179 -2.861022949219e-06 2182 2179 -53567337.94508 2183 2179 5555469.588581 2196 2179 -36666666.66065 2197 2179 -40880751.7318 2198 2179 1263867.397843 2199 2179 9.685754776001e-07 2200 2179 24514918.12315 2201 2179 -2777734.795656 2202 2179 36666666.66065 2203 2179 -40904425.97421 2204 2179 1513867.397816 2268 2179 9166666.66968 2269 2179 -16001859.73922 2270 2179 -8593755.37553 2271 2179 1.169741153717e-06 2272 2179 -20033981.96478 2273 2179 -694433.6992575 2274 2179 -9166666.66968 2275 2179 -17525889.09577 2276 2179 9288189.074786 2286 2179 1.229345798492e-06 2287 2179 -36698646.37071 2288 2179 -34527799.26293 2289 2179 1.966953277588e-06 2290 2179 29052683.00161 2291 2179 -2777734.795662 2292 2179 -2.190470695496e-06 2293 2179 -42818438.03636 2294 2179 37305534.05859 2307 2179 -9166666.669679 2308 2179 -16097939.2847 2309 2179 -8663199.819997 2310 2179 -1.445412635803e-06 2311 2179 -20441974.38895 2312 2179 -694433.6992576 2313 2179 9166666.669678 2314 2179 -17633805.76247 2315 2179 9357633.519253 2180 2180 616797415.4266 2181 2180 231485.0634536 2182 2180 5555469.588581 2183 2180 82852085.35441 2196 2180 2471063.023406 2197 2180 1236089.620084 2198 2180 -6756715.38321 2199 2180 -462970.1266864 2200 2180 -2777734.795656 2201 2180 44192040.0554 2202 2180 -2737270.309063 2203 2180 1541645.175575 2204 2180 -6819846.696327 2268 2180 10539814.37052 2269 2180 -8593755.37553 2270 2180 -17106970.31658 2271 2180 44746063.01646 2272 2180 -694433.6992574 2273 2180 -58719220.64359 2274 2180 11841897.70428 2275 2180 9288189.074786 2276 2180 -21171048.60074 2286 2180 57871.26589252 2287 2180 -34500021.48517 2288 2180 -41438476.99211 2289 2180 231485.0634617 2290 2180 -2777734.795662 2291 2180 -127043423.7988 2292 2180 57871.26589543 2293 2180 37277756.28083 2294 2180 -57757921.43384 2307 2180 -10597685.63642 2308 2180 -8663199.819997 2309 2180 -17363182.43788 2310 2180 -44977548.07992 2311 2180 -694433.6992576 2312 2180 -59807200.44138 2313 2180 -11899768.97017 2314 2180 9357633.519253 2315 2180 -21458826.37861 2181 2181 626081101.6128 2182 2181 7.033348083496e-06 2183 2181 925940.2533548 2184 2181 85765730.61463 2185 2181 -3.814697265625e-06 2186 2181 231485.0634534 2199 2181 -51881527.1465 2200 2181 -36666666.66065 2201 2181 2505785.245605 2202 2181 -136819701.2443 2203 2181 9.089708328247e-07 2204 2181 -462970.1266867 2205 2181 -51905201.38891 2206 2181 36666666.66065 2207 2181 -2702548.086863 2271 2181 -18752053.59425 2272 2181 9166666.66968 2273 2181 10539814.37052 2274 2181 -60367636.82651 2275 2181 1.877546310425e-06 2276 2181 44780785.23866 2277 2181 -20276082.95081 2278 2181 -9166666.66968 2279 2181 11841897.70428 2289 2181 -1865379.213624 2290 2181 8.79168510437e-07 2291 2181 57871.26589221 2292 2181 51054233.83102 2293 2181 1.788139343262e-06 2294 2181 231485.0634618 2295 2181 -7985170.87927 2296 2181 -2.771615982056e-06 2297 2181 57871.2658952 2310 2181 -18848133.13973 2311 2181 -9166666.66968 2312 2181 -10597685.63642 2313 2181 -60775629.25067 2314 2181 -1.214444637299e-06 2315 2181 -45012270.30212 2316 2181 -20383999.6175 2317 2181 9166666.669679 2318 2181 -11899768.97017 2182 2182 538074898.3386 2183 2182 -11110939.17715 2184 2182 -2.861022949219e-06 2185 2182 -53567337.94508 2186 2182 5555469.588581 2199 2182 -36666666.66065 2200 2182 -40880751.7318 2201 2182 1263867.397843 2202 2182 9.685754776001e-07 2203 2182 24514918.12315 2204 2182 -2777734.795656 2205 2182 36666666.66065 2206 2182 -40904425.97421 2207 2182 1513867.397816 2271 2182 9166666.66968 2272 2182 -16001859.73922 2273 2182 -8593755.37553 2274 2182 1.169741153717e-06 2275 2182 -20033981.96478 2276 2182 -694433.6992575 2277 2182 -9166666.66968 2278 2182 -17525889.09577 2279 2182 9288189.074786 2289 2182 1.229345798492e-06 2290 2182 -36698646.37071 2291 2182 -34527799.26293 2292 2182 1.966953277588e-06 2293 2182 29052683.00161 2294 2182 -2777734.795662 2295 2182 -2.190470695496e-06 2296 2182 -42818438.03636 2297 2182 37305534.05859 2310 2182 -9166666.669679 2311 2182 -16097939.2847 2312 2182 -8663199.819997 2313 2182 -1.445412635803e-06 2314 2182 -20441974.38895 2315 2182 -694433.6992576 2316 2182 9166666.669678 2317 2182 -17633805.76247 2318 2182 9357633.519253 2183 2183 616797415.4266 2184 2183 231485.0634536 2185 2183 5555469.588581 2186 2183 82852085.35441 2199 2183 2471063.023406 2200 2183 1236089.620084 2201 2183 -6756715.38321 2202 2183 -462970.1266864 2203 2183 -2777734.795656 2204 2183 44192040.0554 2205 2183 -2737270.309063 2206 2183 1541645.175575 2207 2183 -6819846.696327 2271 2183 10539814.37052 2272 2183 -8593755.37553 2273 2183 -17106970.31658 2274 2183 44746063.01646 2275 2183 -694433.6992574 2276 2183 -58719220.64359 2277 2183 11841897.70428 2278 2183 9288189.074786 2279 2183 -21171048.60074 2289 2183 57871.26589252 2290 2183 -34500021.48517 2291 2183 -41438476.99211 2292 2183 231485.0634617 2293 2183 -2777734.795662 2294 2183 -127043423.7988 2295 2183 57871.26589543 2296 2183 37277756.28083 2297 2183 -57757921.43384 2310 2183 -10597685.63642 2311 2183 -8663199.819997 2312 2183 -17363182.43788 2313 2183 -44977548.07992 2314 2183 -694433.6992576 2315 2183 -59807200.44138 2316 2183 -11899768.97017 2317 2183 9357633.519253 2318 2183 -21458826.37861 2184 2184 626081101.6128 2185 2184 7.033348083496e-06 2186 2184 925940.2533548 2187 2184 85765730.61463 2188 2184 -3.814697265625e-06 2189 2184 231485.0634534 2202 2184 -51881527.1465 2203 2184 -36666666.66065 2204 2184 2505785.245605 2205 2184 -136819701.2443 2206 2184 9.089708328247e-07 2207 2184 -462970.1266867 2208 2184 -51905201.38891 2209 2184 36666666.66065 2210 2184 -2702548.086863 2274 2184 -18752053.59425 2275 2184 9166666.66968 2276 2184 10539814.37052 2277 2184 -60367636.82651 2278 2184 1.877546310425e-06 2279 2184 44780785.23866 2280 2184 -20276082.95081 2281 2184 -9166666.66968 2282 2184 11841897.70428 2292 2184 -1865379.213624 2293 2184 8.79168510437e-07 2294 2184 57871.26589221 2295 2184 51054233.83102 2296 2184 1.788139343262e-06 2297 2184 231485.0634618 2298 2184 -7985170.87927 2299 2184 -2.771615982056e-06 2300 2184 57871.2658952 2313 2184 -18848133.13973 2314 2184 -9166666.66968 2315 2184 -10597685.63642 2316 2184 -60775629.25067 2317 2184 -1.214444637299e-06 2318 2184 -45012270.30212 2319 2184 -20383999.6175 2320 2184 9166666.669679 2321 2184 -11899768.97017 2185 2185 538074898.3386 2186 2185 -11110939.17715 2187 2185 -2.861022949219e-06 2188 2185 -53567337.94508 2189 2185 5555469.588581 2202 2185 -36666666.66065 2203 2185 -40880751.7318 2204 2185 1263867.397843 2205 2185 9.685754776001e-07 2206 2185 24514918.12315 2207 2185 -2777734.795656 2208 2185 36666666.66065 2209 2185 -40904425.97421 2210 2185 1513867.397816 2274 2185 9166666.66968 2275 2185 -16001859.73922 2276 2185 -8593755.37553 2277 2185 1.169741153717e-06 2278 2185 -20033981.96478 2279 2185 -694433.6992575 2280 2185 -9166666.66968 2281 2185 -17525889.09577 2282 2185 9288189.074786 2292 2185 1.229345798492e-06 2293 2185 -36698646.37071 2294 2185 -34527799.26293 2295 2185 1.966953277588e-06 2296 2185 29052683.00161 2297 2185 -2777734.795662 2298 2185 -2.190470695496e-06 2299 2185 -42818438.03636 2300 2185 37305534.05859 2313 2185 -9166666.669679 2314 2185 -16097939.2847 2315 2185 -8663199.819997 2316 2185 -1.445412635803e-06 2317 2185 -20441974.38895 2318 2185 -694433.6992576 2319 2185 9166666.669678 2320 2185 -17633805.76247 2321 2185 9357633.519253 2186 2186 616797415.4266 2187 2186 231485.0634536 2188 2186 5555469.588581 2189 2186 82852085.35441 2202 2186 2471063.023406 2203 2186 1236089.620084 2204 2186 -6756715.38321 2205 2186 -462970.1266864 2206 2186 -2777734.795656 2207 2186 44192040.0554 2208 2186 -2737270.309063 2209 2186 1541645.175575 2210 2186 -6819846.696327 2274 2186 10539814.37052 2275 2186 -8593755.37553 2276 2186 -17106970.31658 2277 2186 44746063.01646 2278 2186 -694433.6992574 2279 2186 -58719220.64359 2280 2186 11841897.70428 2281 2186 9288189.074786 2282 2186 -21171048.60074 2292 2186 57871.26589252 2293 2186 -34500021.48517 2294 2186 -41438476.99211 2295 2186 231485.0634617 2296 2186 -2777734.795662 2297 2186 -127043423.7988 2298 2186 57871.26589543 2299 2186 37277756.28083 2300 2186 -57757921.43384 2313 2186 -10597685.63642 2314 2186 -8663199.819997 2315 2186 -17363182.43788 2316 2186 -44977548.07992 2317 2186 -694433.6992576 2318 2186 -59807200.44138 2319 2186 -11899768.97017 2320 2186 9357633.519253 2321 2186 -21458826.37861 2187 2187 529269027.9738 2188 2187 15976779.95389 2189 2187 309229.3959292 2190 2187 -95009984.98826 2191 2187 -75445884.18699 2192 2187 604974.9505656 2205 2187 -51881527.1465 2206 2187 -36666666.66065 2207 2187 2505785.245605 2208 2187 -86033365.36057 2209 2187 24063656.22554 2210 2187 -110868.0321211 2211 2187 -45738405.09723 2212 2187 10794709.95026 2213 2187 -181650.9566633 2277 2187 -18752053.59425 2278 2187 9166666.66968 2279 2187 10539814.37052 2280 2187 -30197821.22333 2281 2187 6024445.330198 2282 2187 26095078.18734 2295 2187 -1865379.213624 2296 2187 8.79168510437e-07 2297 2187 57871.26589221 2298 2187 61387852.24502 2299 2187 4122392.261682 2300 2187 24731.18804856 2301 2187 -36271111.37421 2302 2187 -18861429.14012 2303 2187 11687357.04074 2316 2187 -18848133.13973 2317 2187 -9166666.66968 2318 2187 -10597685.63642 2319 2187 -45324581.42976 2320 2187 6015914.059347 2321 2187 -35313654.50317 2322 2187 -18251664.62718 2323 2187 2698677.488894 2324 2187 -1659648.850827 2188 2188 646827584.356 2189 2188 -8175535.550103 2190 2188 -75447624.85616 2191 2188 -250684995.8489 2192 2188 1581995.23501 2205 2188 -36666666.66065 2206 2188 -40880751.7318 2207 2188 1263867.397843 2208 2188 24063656.22554 2209 2188 19704498.54099 2210 2188 -1263948.6007 2211 2188 10794709.95026 2212 2188 -140802296.2262 2213 2188 1044821.700929 2277 2188 9166666.66968 2278 2188 -16001859.73922 2279 2188 -8593755.37553 2280 2188 6024859.539531 2281 2188 6053166.381108 2282 2188 -6470970.256034 2295 2188 1.229345798492e-06 2296 2188 -36698646.37071 2297 2188 -34527799.26293 2298 2188 4122392.261681 2299 2188 90719798.19174 2300 2188 -2085944.824517 2301 2188 -18861843.34945 2302 2188 -75189658.67279 2303 2188 36709375.12006 2316 2188 -9166666.669679 2317 2188 -16097939.2847 2318 2188 -8663199.819997 2319 2188 6015914.059347 2320 2188 -18890115.44135 2321 2188 7371512.847656 2322 2188 2698677.488894 2323 2188 -42017637.42113 2324 2188 16927872.0975 2189 2189 522481518.7437 2190 2189 570275.1598561 2191 2189 1609813.358331 2192 2189 -60302093.42892 2205 2189 2471063.023406 2206 2189 1236089.620084 2207 2189 -6756715.38321 2208 2189 -978923.5875342 2209 2189 -1291726.378473 2210 2189 48623486.51979 2211 2189 -251095.4010623 2212 2189 1044821.700929 2213 2189 -32250770.90951 2277 2189 10539814.37052 2278 2189 -8593755.37553 2279 2189 -17106970.31658 2280 2189 26268684.29243 2281 2189 -6442789.689586 2282 2189 -27149914.04291 2295 2189 57871.26589252 2296 2189 -34500021.48517 2297 2189 -41438476.99211 2298 2189 302685.3268968 2299 2189 -1863581.488333 2300 2189 -59214836.48893 2301 2189 11826339.43718 2302 2189 36764598.70127 2303 2189 -48458702.44161 2316 2189 -10597685.63642 2317 2189 -8663199.819997 2318 2189 -17363182.43788 2319 2189 -35487265.61249 2320 2189 7371512.849165 2321 2189 -51354101.90813 2322 2189 -1659648.850827 2323 2189 16927872.0975 2324 2189 -26241528.32399 2190 2190 542046808.038 2191 2190 16985417.11376 2192 2190 -203184.6143076 2208 2190 -53262133.98087 2209 2190 -32705759.54262 2210 2190 337518.2011556 2211 2190 32482202.95367 2212 2190 38534285.18882 2213 2190 -151182.9762473 2214 2190 64489952.93444 2215 2190 -20356855.82223 2216 2190 2495.307171345 2217 2190 -1371677.705903 2218 2190 28985315.91813 2219 2190 -69742.67196767 2280 2190 -43496281.76604 2281 2190 11001242.63162 2282 2190 2239415.141139 2298 2190 -35390519.45059 2299 2190 -18861843.34945 2300 2190 -11445717.33882 2301 2190 25247473.61597 2302 2190 4229179.830355 2303 2190 8829304.168334 2319 2190 -19804774.09007 2320 2190 -8176439.889684 2321 2190 -11139057.95335 2322 2190 -42011868.47821 2323 2190 9621398.332572 2324 2190 -44047471.98855 2325 2190 -23061861.42779 2326 2190 -5072039.507889 2327 2190 13503023.50219 2328 2190 -17423481.8086 2329 2190 7258501.952479 2330 2190 -10890051.08655 2191 2191 925016566.7777 2192 2191 -5117964.511316 2208 2191 -32705759.54262 2209 2191 -17400227.63301 2210 2191 -74400.58715915 2211 2191 38534285.18882 2212 2191 160501823.252 2213 2191 -572894.5814486 2214 2191 -5690189.15797 2215 2191 -6138249.160739 2216 2191 57430.73998052 2217 2191 28985315.91813 2218 2191 -23483370.46853 2219 2191 70407.33895533 2280 2191 7334161.754413 2281 2191 -114457361.9368 2282 2191 -15381325.04617 2298 2191 -18861429.14012 2299 2191 -74309066.74917 2300 2191 -35931916.41689 2301 2191 4229179.830354 2302 2191 117298061.0399 2303 2191 -628830.5409434 2319 2191 -8176439.889684 2320 2191 -10839297.49869 2321 2191 -8997766.816414 2322 2191 9621398.332572 2323 2191 -9995068.119689 2324 2191 7544317.16766 2325 2191 -1405372.840019 2326 2191 -40723022.92627 2327 2191 33347675.24885 2328 2191 7258501.952479 2329 2191 -22915557.21458 2330 2191 16684227.69178 2192 2192 705606013.3235 2208 2192 302795.9789559 2209 2192 -102178.3649187 2210 2192 -626812.8042064 2211 2192 -255349.6428957 2212 2192 -600672.359222 2213 2192 193995415.907 2214 2192 2495.307174325 2215 2192 57430.73998049 2216 2192 126628346.7421 2217 2192 -69742.6719339 2218 2192 70407.33895537 2219 2192 41263196.59584 2280 2192 1492943.427426 2281 2192 -15978626.85393 2282 2192 -45029004.53869 2298 2192 -11306745.62719 2299 2192 -35876711.49758 2300 2192 -46110457.31193 2301 2192 -8844029.162097 2302 2192 -1768543.01006 2303 2192 -114110745.5777 2319 2192 -11139057.95335 2320 2192 -8997766.816414 2321 2192 -17461344.76991 2322 2192 -44116916.43301 2323 2192 7544317.169169 2324 2192 -85088216.89009 2325 2192 5378023.50137 2326 2192 33347675.24885 2327 2192 -72887043.63418 2328 2192 -10890051.08655 2329 2192 16684227.69178 2330 2192 -35156689.69169 2193 2193 313040550.8064 2194 2193 3.218650817871e-06 2195 2193 462970.1266764 2196 2193 42883259.87802 2197 2193 7333333.332129 2198 2193 -318285.2460207 2283 2193 -60367636.82651 2284 2193 1.877546310425e-06 2285 2193 44780785.23866 2286 2193 -20276082.95081 2287 2193 -9166666.66968 2288 2193 11841897.70428 2304 2193 25526722.3448 2305 2193 -5.960464477539e-08 2306 2193 -8946896.355626 2307 2193 -3992585.439634 2308 2193 1833333.333934 2309 2193 -2345231.034498 2194 2194 269037449.1693 2195 2194 -5555469.588573 2196 2194 -7333333.332131 2197 2194 -26783274.40183 2198 2194 2749957.016519 2283 2194 1.169741153717e-06 2284 2194 -20033981.96478 2285 2194 -694433.6992575 2286 2194 -9166666.66968 2287 2194 -17525889.09577 2288 2194 9288189.074786 2304 2194 6.556510925293e-07 2305 2194 14525946.9301 2306 2194 -1388867.397833 2307 2194 -1833333.333937 2308 2194 -21409219.01818 2309 2194 18645822.58485 2195 2195 308398707.7133 2196 2195 723381.420473 2197 2195 2805512.572065 2198 2195 41427094.86576 2283 2195 44746063.01646 2284 2195 -694433.6992574 2285 2195 -58719220.64359 2286 2195 11841897.70428 2287 2195 9288189.074786 2288 2195 -21171048.60074 2304 2195 9004770.308089 2305 2195 -1388867.397833 2306 2195 -63522764.08798 2307 2195 2403102.300394 2308 2195 18645822.58486 2309 2195 -28878960.71692 2196 2196 313040550.8064 2197 2196 3.218650817871e-06 2198 2196 462970.1266764 2199 2196 42883259.87802 2200 2196 7333333.332129 2201 2196 -318285.2460207 2283 2196 -18752053.59425 2284 2196 9166666.66968 2285 2196 10539814.37052 2286 2196 -60367636.82651 2287 2196 1.877546310425e-06 2288 2196 44780785.23866 2289 2196 -20276082.95081 2290 2196 -9166666.66968 2291 2196 11841897.70428 2304 2196 -932689.6068121 2305 2196 -1833333.333935 2306 2196 -2084814.367748 2307 2196 25526722.3448 2308 2196 -5.960464477539e-08 2309 2196 -8946896.355626 2310 2196 -3992585.439634 2311 2196 1833333.333934 2312 2196 -2345231.034498 2197 2197 269037449.1693 2198 2197 -5555469.588573 2199 2197 -7333333.332131 2200 2197 -26783274.40183 2201 2197 2749957.016519 2283 2197 9166666.66968 2284 2197 -16001859.73922 2285 2197 -8593755.37553 2286 2197 1.169741153717e-06 2287 2197 -20033981.96478 2288 2197 -694433.6992575 2289 2197 -9166666.66968 2290 2197 -17525889.09577 2291 2197 9288189.074786 2304 2197 1833333.333937 2305 2197 -18349323.18536 2306 2197 -17256955.18702 2307 2197 6.556510925293e-07 2308 2197 14525946.9301 2309 2197 -1388867.397833 2310 2197 -1833333.333937 2311 2197 -21409219.01818 2312 2197 18645822.58485 2198 2198 308398707.7133 2199 2198 723381.420473 2200 2198 2805512.572065 2201 2198 41427094.86576 2283 2198 10539814.37052 2284 2198 -8593755.37553 2285 2198 -17106970.31658 2286 2198 44746063.01646 2287 2198 -694433.6992574 2288 2198 -58719220.64359 2289 2198 11841897.70428 2290 2198 9288189.074786 2291 2198 -21171048.60074 2304 2198 2142685.63364 2305 2198 -17256955.18703 2306 2198 -20719238.49606 2307 2198 9004770.308089 2308 2198 -1388867.397833 2309 2198 -63522764.08798 2310 2198 2403102.300394 2311 2198 18645822.58486 2312 2198 -28878960.71692 2199 2199 313040550.8064 2200 2199 3.218650817871e-06 2201 2199 462970.1266764 2202 2199 42883259.87802 2203 2199 7333333.332129 2204 2199 -318285.2460207 2286 2199 -18752053.59425 2287 2199 9166666.66968 2288 2199 10539814.37052 2289 2199 -60367636.82651 2290 2199 1.877546310425e-06 2291 2199 44780785.23866 2292 2199 -20276082.95081 2293 2199 -9166666.66968 2294 2199 11841897.70428 2307 2199 -932689.6068121 2308 2199 -1833333.333935 2309 2199 -2084814.367748 2310 2199 25526722.3448 2311 2199 -5.960464477539e-08 2312 2199 -8946896.355626 2313 2199 -3992585.439634 2314 2199 1833333.333934 2315 2199 -2345231.034498 2200 2200 269037449.1693 2201 2200 -5555469.588573 2202 2200 -7333333.332131 2203 2200 -26783274.40183 2204 2200 2749957.016519 2286 2200 9166666.66968 2287 2200 -16001859.73922 2288 2200 -8593755.37553 2289 2200 1.169741153717e-06 2290 2200 -20033981.96478 2291 2200 -694433.6992575 2292 2200 -9166666.66968 2293 2200 -17525889.09577 2294 2200 9288189.074786 2307 2200 1833333.333937 2308 2200 -18349323.18536 2309 2200 -17256955.18702 2310 2200 6.556510925293e-07 2311 2200 14525946.9301 2312 2200 -1388867.397833 2313 2200 -1833333.333937 2314 2200 -21409219.01818 2315 2200 18645822.58485 2201 2201 308398707.7133 2202 2201 723381.420473 2203 2201 2805512.572065 2204 2201 41427094.86576 2286 2201 10539814.37052 2287 2201 -8593755.37553 2288 2201 -17106970.31658 2289 2201 44746063.01646 2290 2201 -694433.6992574 2291 2201 -58719220.64359 2292 2201 11841897.70428 2293 2201 9288189.074786 2294 2201 -21171048.60074 2307 2201 2142685.63364 2308 2201 -17256955.18703 2309 2201 -20719238.49606 2310 2201 9004770.308089 2311 2201 -1388867.397833 2312 2201 -63522764.08798 2313 2201 2403102.300394 2314 2201 18645822.58486 2315 2201 -28878960.71692 2202 2202 313040550.8064 2203 2202 3.218650817871e-06 2204 2202 462970.1266764 2205 2202 42883259.87802 2206 2202 7333333.332129 2207 2202 -318285.2460207 2289 2202 -18752053.59425 2290 2202 9166666.66968 2291 2202 10539814.37052 2292 2202 -60367636.82651 2293 2202 1.877546310425e-06 2294 2202 44780785.23866 2295 2202 -20276082.95081 2296 2202 -9166666.66968 2297 2202 11841897.70428 2310 2202 -932689.6068121 2311 2202 -1833333.333935 2312 2202 -2084814.367748 2313 2202 25526722.3448 2314 2202 -5.960464477539e-08 2315 2202 -8946896.355626 2316 2202 -3992585.439634 2317 2202 1833333.333934 2318 2202 -2345231.034498 2203 2203 269037449.1693 2204 2203 -5555469.588573 2205 2203 -7333333.332131 2206 2203 -26783274.40183 2207 2203 2749957.016519 2289 2203 9166666.66968 2290 2203 -16001859.73922 2291 2203 -8593755.37553 2292 2203 1.169741153717e-06 2293 2203 -20033981.96478 2294 2203 -694433.6992575 2295 2203 -9166666.66968 2296 2203 -17525889.09577 2297 2203 9288189.074786 2310 2203 1833333.333937 2311 2203 -18349323.18536 2312 2203 -17256955.18702 2313 2203 6.556510925293e-07 2314 2203 14525946.9301 2315 2203 -1388867.397833 2316 2203 -1833333.333937 2317 2203 -21409219.01818 2318 2203 18645822.58485 2204 2204 308398707.7133 2205 2204 723381.420473 2206 2204 2805512.572065 2207 2204 41427094.86576 2289 2204 10539814.37052 2290 2204 -8593755.37553 2291 2204 -17106970.31658 2292 2204 44746063.01646 2293 2204 -694433.6992574 2294 2204 -58719220.64359 2295 2204 11841897.70428 2296 2204 9288189.074786 2297 2204 -21171048.60074 2310 2204 2142685.63364 2311 2204 -17256955.18703 2312 2204 -20719238.49606 2313 2204 9004770.308089 2314 2204 -1388867.397833 2315 2204 -63522764.08798 2316 2204 2403102.300394 2317 2204 18645822.58486 2318 2204 -28878960.71692 2205 2205 313040550.8064 2206 2205 3.218650817871e-06 2207 2205 462970.1266764 2208 2205 42883259.87802 2209 2205 7333333.332129 2210 2205 -318285.2460207 2292 2205 -18752053.59425 2293 2205 9166666.66968 2294 2205 10539814.37052 2295 2205 -60367636.82651 2296 2205 1.877546310425e-06 2297 2205 44780785.23866 2298 2205 -20276082.95081 2299 2205 -9166666.66968 2300 2205 11841897.70428 2313 2205 -932689.6068121 2314 2205 -1833333.333935 2315 2205 -2084814.367748 2316 2205 25526722.3448 2317 2205 -5.960464477539e-08 2318 2205 -8946896.355626 2319 2205 -3992585.439634 2320 2205 1833333.333934 2321 2205 -2345231.034498 2206 2206 269037449.1693 2207 2206 -5555469.588573 2208 2206 -7333333.332131 2209 2206 -26783274.40183 2210 2206 2749957.016519 2292 2206 9166666.66968 2293 2206 -16001859.73922 2294 2206 -8593755.37553 2295 2206 1.169741153717e-06 2296 2206 -20033981.96478 2297 2206 -694433.6992575 2298 2206 -9166666.66968 2299 2206 -17525889.09577 2300 2206 9288189.074786 2313 2206 1833333.333937 2314 2206 -18349323.18536 2315 2206 -17256955.18702 2316 2206 6.556510925293e-07 2317 2206 14525946.9301 2318 2206 -1388867.397833 2319 2206 -1833333.333937 2320 2206 -21409219.01818 2321 2206 18645822.58485 2207 2207 308398707.7133 2208 2207 723381.420473 2209 2207 2805512.572065 2210 2207 41427094.86576 2292 2207 10539814.37052 2293 2207 -8593755.37553 2294 2207 -17106970.31658 2295 2207 44746063.01646 2296 2207 -694433.6992574 2297 2207 -58719220.64359 2298 2207 11841897.70428 2299 2207 9288189.074786 2300 2207 -21171048.60074 2313 2207 2142685.63364 2314 2207 -17256955.18703 2315 2207 -20719238.49606 2316 2207 9004770.308089 2317 2207 -1388867.397833 2318 2207 -63522764.08798 2319 2207 2403102.300394 2320 2207 18645822.58486 2321 2207 -28878960.71692 2208 2208 311501301.9278 2209 2208 3961702.031803 2210 2208 2461349.04567 2211 2208 -4984022.060376 2212 2208 -24652932.04324 2213 2208 367556.3402904 2295 2208 -18752053.59425 2296 2208 9166666.66968 2297 2208 10539814.37052 2298 2208 -44778234.89159 2299 2208 6015914.059352 2300 2208 35041206.59625 2301 2208 -20008769.25006 2302 2208 -8176439.889681 2303 2208 11299136.49846 2316 2208 -932689.6068121 2317 2208 -1833333.333935 2318 2208 -2084814.367748 2319 2208 25141334.84086 2320 2208 990425.5084367 2321 2208 -8447023.847856 2322 2208 -17627581.50065 2323 2208 -6163233.013846 2324 2208 7435569.639298 2209 2209 292367764.6648 2210 2209 -3560498.398243 2211 2209 -39319598.70751 2212 2209 -68784496.1816 2213 2209 607245.3940165 2295 2209 9166666.66968 2296 2209 -16001859.73922 2297 2209 -8593755.37553 2298 2209 6015914.059351 2299 2209 -18343768.90317 2300 2209 -8010431.594268 2301 2209 -8176439.889681 2302 2209 -11043292.65868 2303 2209 8953622.07837 2316 2209 1833333.333937 2317 2209 -18349323.18536 2318 2209 -17256955.18702 2319 2209 990425.5084375 2320 2209 20357950.52274 2321 2209 -890124.6000073 2322 2209 -9829899.681717 2323 2209 -33577700.03881 2324 2209 25797644.67844 2210 2210 314119300.5055 2211 2210 541167.4513703 2212 2210 635023.1717897 2213 2210 25143014.98303 2295 2210 10539814.37052 2296 2210 -8593755.37553 2297 2210 -17106970.31658 2298 2210 35214817.70936 2299 2210 -8010431.592745 2300 2210 -49897177.80632 2301 2210 11299136.49846 2302 2210 8953622.07837 2303 2210 -18005331.86323 2316 2210 2142685.63364 2317 2210 -17256955.18703 2318 2210 -20719238.49606 2319 2210 9504087.260305 2320 2210 -890124.6000072 2321 2210 -62094149.98014 2322 2210 11975291.86111 2323 2210 25797644.67693 2324 2210 -37398448.87766 2211 2211 355470652.7224 2212 2211 44707168.10431 2213 2211 -30735.96254444 2214 2211 -68134344.3616 2215 2211 -44348017.40317 2216 2211 103868.4391181 2217 2211 15735336.29641 2218 2211 -10368547.13271 2219 2211 31034.00482726 2298 2211 -17800014.26928 2299 2211 2698677.488893 2300 2211 1551462.261342 2301 2211 -41858908.40872 2302 2211 9621398.332578 2303 2211 43971972.44142 2319 2211 -16877239.2765 2320 2211 -9829899.681722 2321 2211 -11739430.35753 2322 2211 -6568201.151123 2323 2211 11145274.60427 2324 2211 -8861558.763805 2325 2211 -34037759.59183 2326 2211 -11074831.38688 2327 2211 20338421.14593 2328 2211 -24974899.08211 2329 2211 -2560619.357143 2330 2211 7273022.161583 2212 2212 438088992.7212 2213 2212 -1373778.468112 2214 2212 -44348017.40317 2215 2212 -48519370.46442 2216 2212 70407.33895519 2217 2212 -25035213.79697 2218 2212 -55653232.64768 2219 2212 224198.6157019 2298 2212 2698677.488893 2299 2212 -41565987.06324 2300 2212 -16405461.24678 2301 2212 9621398.332577 2302 2212 -9842108.050208 2303 2212 -7837627.274264 2319 2212 -6163233.01385 2320 2212 -32827357.81467 2321 2212 -25487077.53535 2322 2212 11145274.60427 2323 2212 14082110.90991 2324 2212 -343297.1207862 2325 2212 -11074831.38688 2326 2212 -29145911.38329 2327 2212 16684227.69178 2328 2212 -6227286.025014 2329 2212 -42817768.37808 2330 2212 33389235.48538 2213 2213 485869158.3822 2214 2213 103868.4391181 2215 2213 70407.33895515 2216 2213 16227196.59995 2217 2213 100478.4492579 2218 2213 224198.6157018 2219 2213 70566439.57932 2298 2213 1551462.261342 2299 2213 -16405461.24678 2300 2213 -25037127.36958 2301 2213 43902527.99702 2302 2213 -7837627.272742 2303 2213 -84680323.37147 2319 2213 -7303874.802406 2320 2213 -25487077.53687 2321 2213 -35397536.2799 2322 2213 8672885.677761 2323 2213 -343297.120786 2324 2213 -132858416.3097 2325 2213 20338421.14593 2326 2213 16684227.69178 2327 2213 -41387043.8604 2328 2213 11639411.05376 2329 2213 33389235.48538 2330 2213 -59618277.55449 2214 2214 235091865.188 2215 2214 49690189.15075 2216 2214 -60365.67751312 2217 2214 -6920201.047179 2218 2214 348017.4103893 2219 2214 -45998.06877485 2301 2214 -22967164.45808 2302 2214 -1405372.84002 2303 2214 -5376837.60583 2322 2214 -33943062.62212 2323 2214 -11074831.38688 2324 2214 -20286578.86741 2325 2214 -19573744.60313 2326 2214 12405372.84363 2327 2214 8109939.458298 2328 2214 -35779664.67352 2329 2214 74831.38326172 2330 2214 -31196522.98505 2215 2215 216345067.2978 2216 2215 -57430.73996973 2217 2215 15014684.07465 2218 2215 62839825.04097 2219 2215 -70407.33894855 2301 2215 -5072039.507891 2302 2215 -40628325.95656 2303 2215 -33318991.40687 2322 2215 -11074831.38688 2323 2215 -29051214.41358 2324 2215 -16649105.6525 2325 2215 12405372.84363 2326 2215 -24256333.11199 2327 2215 6652324.744578 2328 2215 3741498.051133 2329 2215 -18327762.87472 2330 2215 3315772.314788 2216 2216 344548168.3047 2217 2216 -45998.06877142 2218 2216 -70407.33894849 2219 2216 111335682.2562 2301 2216 -13501837.60663 2302 2216 -33318991.40687 2303 2216 -72634518.38162 2322 2216 -20286578.86741 2323 2216 -16649105.6525 2324 2216 -41134518.60782 2325 2216 -8140060.539033 2326 2216 -6681008.586565 2327 2216 -122734989.1419 2328 2216 -31196522.98692 2329 2216 -3350894.354068 2330 2216 -62865670.82029 2217 2217 175701997.0157 2218 2217 -18964786.19581 2219 2217 -123626.5974838 2301 2217 -17328784.83888 2302 2217 7258501.95248 2303 2217 10855087.80949 2322 2217 -24690808.17314 2323 2217 -6227286.025018 2324 2217 -11589477.83532 2325 2217 -35779664.67352 2326 2217 3741498.051137 2327 2217 31173615.89359 2328 2217 -13773469.59399 2329 2217 -4772713.978599 2330 2217 -4379781.423286 2218 2218 199442232.6343 2219 2218 -224198.6156853 2301 2218 7258501.95248 2302 2218 -22820860.24487 2303 2218 -16649105.6525 2322 2218 -2560619.357146 2323 2218 -42533677.46912 2324 2218 -33277431.17033 2325 2218 74831.38326509 2326 2218 -18327762.87471 2327 2218 3315772.314788 2328 2218 -4772713.978598 2329 2218 -7890426.690841 2330 2218 6610764.50804 2219 2219 265222560.3927 2301 2219 10855087.80949 2302 2219 -16649105.6525 2303 2219 -34904164.4391 2322 2219 -7257811.165357 2323 2219 -33277431.17033 2324 2219 -58860701.79721 2325 2219 31173615.89173 2326 2219 -3350894.354067 2327 2219 -62865670.82028 2328 2219 4318274.130842 2329 2219 -6722568.823102 2330 2219 -87563402.35548 2220 2220 391468094.7324 2221 2220 36666666.66066 2222 2220 2662170.757228 2223 2220 -201885224.5025 2224 2220 -36666959.01753 2225 2220 -2662149.068675 2226 2220 13006025.1815 2227 2220 29333625.68539 2228 2220 -2152798.772422 2331 2220 31947394.33292 2332 2220 9166666.669681 2333 2220 9728225.899101 2334 2220 -74358253.63036 2335 2220 -9166739.758898 2336 2220 -45562288.72778 2337 2220 -8166156.136015 2338 2220 7333406.424962 2339 2220 -9496761.446847 2221 2221 336463888.7559 2222 2221 -6944377.543016 2223 2221 -36667105.19596 2224 2221 -29548916.09098 2225 2221 -3847225.37168 2226 2221 44000438.52809 2227 2221 13006025.1815 2228 2221 2416691.307227 2331 2221 9166666.66968 2332 2221 18196342.83202 2333 2221 5513941.008134 2334 2221 -9166776.303507 2335 2221 -31274176.50627 2336 2221 -9941080.210835 2337 2221 11000109.63744 2338 2221 -8166156.136015 2339 2221 11395946.69513 2222 2222 385940866.4962 2223 2222 -2662138.224395 2224 2222 -3097217.158151 2225 2222 2281351.682023 2226 2222 -3229198.158633 2227 2222 1611127.538151 2228 2222 34682733.81733 2331 2222 -8223530.275229 2332 2222 -8847241.586827 2333 2222 -79300461.72417 2334 2222 -45527563.96779 2335 2222 -9746597.980308 2336 2222 -63128188.69225 2337 2222 -14245142.17027 2338 2222 7597297.796754 2339 2222 -21776416.36271 2223 2223 677810035.2011 2224 2223 36667397.55284 2225 2223 3125086.662505 2226 2223 20859938.00677 2227 2223 -36666959.01753 2228 2223 2702569.081896 2229 2223 -136819701.2443 2230 2223 9.089708328247e-07 2231 2223 -462970.1266867 2232 2223 -51905201.38891 2233 2223 36666666.66065 2234 2223 -2702548.086863 2331 2223 -72726245.22972 2332 2223 -9166776.303506 2333 2223 44231216.90386 2334 2223 70575234.21716 2335 2223 9166849.392726 2336 2223 781227.3439141 2337 2223 -20203256.3538 2338 2223 -9166739.758899 2339 2223 11899863.74724 2340 2223 -60775629.25067 2341 2223 -1.214444637299e-06 2342 2223 -45012270.30212 2343 2223 -20383999.6175 2344 2223 9166666.669679 2345 2223 -11899768.97017 2224 2224 578802727.5875 2225 2224 -8610918.562153 2226 2224 -36667105.19596 2227 2224 -107472939.8429 2228 2224 4611020.401354 2229 2224 9.685754776001e-07 2230 2224 24514918.12315 2231 2224 -2777734.795656 2232 2224 36666666.66065 2233 2224 -40904425.97421 2234 2224 1513867.397816 2331 2224 -9166739.758897 2332 2224 -29642168.10562 2333 2224 8204934.122165 2334 2224 9166849.392726 2335 2224 45823407.30156 2336 2224 -2152765.098743 2337 2224 -9166776.303508 2338 2224 -52286475.83204 2339 2224 37069600.58987 2340 2224 -1.445412635803e-06 2341 2224 -20441974.38895 2342 2224 -694433.6992576 2343 2224 9166666.669678 2344 2224 -17633805.76247 2345 2224 9357633.519253 2225 2225 623143279.9755 2226 2225 2737301.801614 2227 2225 5388806.115241 2228 2225 41364580.11227 2229 2225 -462970.1266864 2230 2225 -2777734.795656 2231 2225 44192040.0554 2232 2225 -2737270.309063 2233 2225 1541645.175575 2234 2225 -6819846.696327 2331 2225 44196492.14387 2332 2225 8010523.495484 2333 2225 -58776166.2905 2334 2225 781316.8545274 2335 2225 -2152693.49136 2336 2225 -107886912.3736 2337 2225 11899911.13577 2338 2225 37236269.31883 2339 2225 -57440830.58835 2340 2225 -44977548.07992 2341 2225 -694433.6992576 2342 2225 -59807200.44138 2343 2225 -11899768.97017 2344 2225 9357633.519253 2345 2225 -21458826.37861 2226 2226 391468094.7324 2227 2226 36666666.66066 2228 2226 2662170.757228 2229 2226 -51881527.1465 2230 2226 -36666666.66065 2231 2226 2505785.245605 2232 2226 -201885224.5025 2233 2226 -36666959.01753 2234 2226 -2662149.068675 2235 2226 13006025.1815 2236 2226 29333625.68539 2237 2226 -2152798.772422 2331 2226 -5106206.927443 2332 2226 11000109.63744 2333 2226 12682625.90274 2334 2226 -15511422.68773 2335 2226 -9166776.303506 2336 2226 -10539940.2691 2337 2226 31947394.33292 2338 2226 9166666.669681 2339 2226 9728225.899101 2340 2226 -18848133.13973 2341 2226 -9166666.66968 2342 2226 -10597685.63642 2343 2226 -74358253.63036 2344 2226 -9166739.758898 2345 2226 -45562288.72778 2346 2226 -8166156.136015 2347 2226 7333406.424962 2348 2226 -9496761.446847 2227 2227 336463888.7559 2228 2227 -6944377.543016 2229 2227 -36666666.66065 2230 2227 -40880751.7318 2231 2227 1263867.397843 2232 2227 -36667105.19596 2233 2227 -29548916.09098 2234 2227 -3847225.37168 2235 2227 44000438.52809 2236 2227 13006025.1815 2237 2227 2416691.307227 2331 2227 7333406.424962 2332 2227 -5106206.927443 2333 2227 -6763956.526763 2334 2227 -9166739.758897 2335 2227 -47594642.16596 2336 2227 -34569643.89832 2337 2227 9166666.66968 2338 2227 18196342.83202 2339 2227 5513941.008134 2340 2227 -9166666.669679 2341 2227 -16097939.2847 2342 2227 -8663199.819997 2343 2227 -9166776.303507 2344 2227 -31274176.50627 2345 2227 -9941080.210835 2346 2227 11000109.63744 2347 2227 -8166156.136015 2348 2227 11395946.69513 2228 2228 385940866.4962 2229 2228 2471063.023406 2230 2228 1236089.620084 2231 2228 -6756715.38321 2232 2228 -2662138.224395 2233 2228 -3097217.158151 2234 2228 2281351.682023 2235 2228 -3229198.158633 2236 2228 1611127.538151 2237 2228 34682733.81733 2331 2228 8455083.935158 2332 2228 -10145934.79014 2333 2228 -13616551.80652 2334 2228 -10539898.30291 2335 2228 -34736312.74845 2336 2228 -44929274.14549 2337 2228 -8223530.275229 2338 2228 -8847241.586827 2339 2228 -79300461.72417 2340 2228 -10597685.63642 2341 2228 -8663199.819997 2342 2228 -17363182.43788 2343 2228 -45527563.96779 2344 2228 -9746597.980308 2345 2228 -63128188.69225 2346 2228 -14245142.17027 2347 2228 7597297.796754 2348 2228 -21776416.36271 2229 2229 626081101.6128 2230 2229 7.033348083496e-06 2231 2229 925940.2533548 2232 2229 85765730.61463 2233 2229 -3.814697265625e-06 2234 2229 231485.0634534 2238 2229 -136819701.2443 2239 2229 9.089708328247e-07 2240 2229 -462970.1266867 2241 2229 -51905201.38891 2242 2229 36666666.66065 2243 2229 -2702548.086863 2334 2229 -60367636.82651 2335 2229 1.877546310425e-06 2336 2229 44780785.23866 2337 2229 -20276082.95081 2338 2229 -9166666.66968 2339 2229 11841897.70428 2340 2229 51054233.83102 2341 2229 1.788139343262e-06 2342 2229 231485.0634618 2343 2229 -7985170.87927 2344 2229 -2.771615982056e-06 2345 2229 57871.2658952 2349 2229 -60775629.25067 2350 2229 -1.214444637299e-06 2351 2229 -45012270.30212 2352 2229 -20383999.6175 2353 2229 9166666.669679 2354 2229 -11899768.97017 2230 2230 538074898.3386 2231 2230 -11110939.17715 2232 2230 -2.861022949219e-06 2233 2230 -53567337.94508 2234 2230 5555469.588581 2238 2230 9.685754776001e-07 2239 2230 24514918.12315 2240 2230 -2777734.795656 2241 2230 36666666.66065 2242 2230 -40904425.97421 2243 2230 1513867.397816 2334 2230 1.169741153717e-06 2335 2230 -20033981.96478 2336 2230 -694433.6992575 2337 2230 -9166666.66968 2338 2230 -17525889.09577 2339 2230 9288189.074786 2340 2230 1.966953277588e-06 2341 2230 29052683.00161 2342 2230 -2777734.795662 2343 2230 -2.190470695496e-06 2344 2230 -42818438.03636 2345 2230 37305534.05859 2349 2230 -1.445412635803e-06 2350 2230 -20441974.38895 2351 2230 -694433.6992576 2352 2230 9166666.669678 2353 2230 -17633805.76247 2354 2230 9357633.519253 2231 2231 616797415.4266 2232 2231 231485.0634536 2233 2231 5555469.588581 2234 2231 82852085.35441 2238 2231 -462970.1266864 2239 2231 -2777734.795656 2240 2231 44192040.0554 2241 2231 -2737270.309063 2242 2231 1541645.175575 2243 2231 -6819846.696327 2334 2231 44746063.01646 2335 2231 -694433.6992574 2336 2231 -58719220.64359 2337 2231 11841897.70428 2338 2231 9288189.074786 2339 2231 -21171048.60074 2340 2231 231485.0634617 2341 2231 -2777734.795662 2342 2231 -127043423.7988 2343 2231 57871.26589543 2344 2231 37277756.28083 2345 2231 -57757921.43384 2349 2231 -44977548.07992 2350 2231 -694433.6992576 2351 2231 -59807200.44138 2352 2231 -11899768.97017 2353 2231 9357633.519253 2354 2231 -21458826.37861 2232 2232 677810035.2011 2233 2232 36667397.55284 2234 2232 3125086.662505 2235 2232 20859938.00677 2236 2232 -36666959.01753 2237 2232 2702569.081896 2238 2232 -51881527.1465 2239 2232 -36666666.66065 2240 2232 2505785.245605 2241 2232 -136819701.2443 2242 2232 9.089708328247e-07 2243 2232 -462970.1266867 2244 2232 -51905201.38891 2245 2232 36666666.66065 2246 2232 -2702548.086863 2334 2232 -18752053.59425 2335 2232 9166666.66968 2336 2232 10539814.37052 2337 2232 -72726245.22972 2338 2232 -9166776.303506 2339 2232 44231216.90386 2340 2232 -1865379.213624 2341 2232 8.79168510437e-07 2342 2232 57871.26589221 2343 2232 70575234.21716 2344 2232 9166849.392726 2345 2232 781227.3439141 2346 2232 -20203256.3538 2347 2232 -9166739.758899 2348 2232 11899863.74724 2349 2232 -18848133.13973 2350 2232 -9166666.66968 2351 2232 -10597685.63642 2352 2232 -60775629.25067 2353 2232 -1.214444637299e-06 2354 2232 -45012270.30212 2355 2232 -20383999.6175 2356 2232 9166666.669679 2357 2232 -11899768.97017 2233 2233 578802727.5875 2234 2233 -8610918.562153 2235 2233 -36667105.19596 2236 2233 -107472939.8429 2237 2233 4611020.401354 2238 2233 -36666666.66065 2239 2233 -40880751.7318 2240 2233 1263867.397843 2241 2233 9.685754776001e-07 2242 2233 24514918.12315 2243 2233 -2777734.795656 2244 2233 36666666.66065 2245 2233 -40904425.97421 2246 2233 1513867.397816 2334 2233 9166666.66968 2335 2233 -16001859.73922 2336 2233 -8593755.37553 2337 2233 -9166739.758897 2338 2233 -29642168.10562 2339 2233 8204934.122165 2340 2233 1.229345798492e-06 2341 2233 -36698646.37071 2342 2233 -34527799.26293 2343 2233 9166849.392726 2344 2233 45823407.30156 2345 2233 -2152765.098743 2346 2233 -9166776.303508 2347 2233 -52286475.83204 2348 2233 37069600.58987 2349 2233 -9166666.669679 2350 2233 -16097939.2847 2351 2233 -8663199.819997 2352 2233 -1.445412635803e-06 2353 2233 -20441974.38895 2354 2233 -694433.6992576 2355 2233 9166666.669678 2356 2233 -17633805.76247 2357 2233 9357633.519253 2234 2234 623143279.9755 2235 2234 2737301.801614 2236 2234 5388806.115241 2237 2234 41364580.11227 2238 2234 2471063.023406 2239 2234 1236089.620084 2240 2234 -6756715.38321 2241 2234 -462970.1266864 2242 2234 -2777734.795656 2243 2234 44192040.0554 2244 2234 -2737270.309063 2245 2234 1541645.175575 2246 2234 -6819846.696327 2334 2234 10539814.37052 2335 2234 -8593755.37553 2336 2234 -17106970.31658 2337 2234 44196492.14387 2338 2234 8010523.495484 2339 2234 -58776166.2905 2340 2234 57871.26589252 2341 2234 -34500021.48517 2342 2234 -41438476.99211 2343 2234 781316.8545274 2344 2234 -2152693.49136 2345 2234 -107886912.3736 2346 2234 11899911.13577 2347 2234 37236269.31883 2348 2234 -57440830.58835 2349 2234 -10597685.63642 2350 2234 -8663199.819997 2351 2234 -17363182.43788 2352 2234 -44977548.07992 2353 2234 -694433.6992576 2354 2234 -59807200.44138 2355 2234 -11899768.97017 2356 2234 9357633.519253 2357 2234 -21458826.37861 2235 2235 391468094.7324 2236 2235 36666666.66066 2237 2235 2662170.757228 2241 2235 -51881527.1465 2242 2235 -36666666.66065 2243 2235 2505785.245605 2244 2235 -201885224.5025 2245 2235 -36666959.01753 2246 2235 -2662149.068675 2247 2235 13006025.1815 2248 2235 29333625.68539 2249 2235 -2152798.772422 2337 2235 -5106206.927443 2338 2235 11000109.63744 2339 2235 12682625.90274 2343 2235 -15511422.68773 2344 2235 -9166776.303506 2345 2235 -10539940.2691 2346 2235 31947394.33292 2347 2235 9166666.669681 2348 2235 9728225.899101 2352 2235 -18848133.13973 2353 2235 -9166666.66968 2354 2235 -10597685.63642 2355 2235 -74358253.63036 2356 2235 -9166739.758898 2357 2235 -45562288.72778 2358 2235 -8166156.136015 2359 2235 7333406.424962 2360 2235 -9496761.446847 2236 2236 336463888.7559 2237 2236 -6944377.543016 2241 2236 -36666666.66065 2242 2236 -40880751.7318 2243 2236 1263867.397843 2244 2236 -36667105.19596 2245 2236 -29548916.09098 2246 2236 -3847225.37168 2247 2236 44000438.52809 2248 2236 13006025.1815 2249 2236 2416691.307227 2337 2236 7333406.424962 2338 2236 -5106206.927443 2339 2236 -6763956.526763 2343 2236 -9166739.758897 2344 2236 -47594642.16596 2345 2236 -34569643.89832 2346 2236 9166666.66968 2347 2236 18196342.83202 2348 2236 5513941.008134 2352 2236 -9166666.669679 2353 2236 -16097939.2847 2354 2236 -8663199.819997 2355 2236 -9166776.303507 2356 2236 -31274176.50627 2357 2236 -9941080.210835 2358 2236 11000109.63744 2359 2236 -8166156.136015 2360 2236 11395946.69513 2237 2237 385940866.4962 2241 2237 2471063.023406 2242 2237 1236089.620084 2243 2237 -6756715.38321 2244 2237 -2662138.224395 2245 2237 -3097217.158151 2246 2237 2281351.682023 2247 2237 -3229198.158633 2248 2237 1611127.538151 2249 2237 34682733.81733 2337 2237 8455083.935158 2338 2237 -10145934.79014 2339 2237 -13616551.80652 2343 2237 -10539898.30291 2344 2237 -34736312.74845 2345 2237 -44929274.14549 2346 2237 -8223530.275229 2347 2237 -8847241.586827 2348 2237 -79300461.72417 2352 2237 -10597685.63642 2353 2237 -8663199.819997 2354 2237 -17363182.43788 2355 2237 -45527563.96779 2356 2237 -9746597.980308 2357 2237 -63128188.69225 2358 2237 -14245142.17027 2359 2237 7597297.796754 2360 2237 -21776416.36271 2238 2238 626081101.6128 2239 2238 7.033348083496e-06 2240 2238 925940.2533548 2241 2238 85765730.61463 2242 2238 -3.814697265625e-06 2243 2238 231485.0634534 2250 2238 -136819701.2443 2251 2238 9.089708328247e-07 2252 2238 -462970.1266867 2253 2238 -51905201.38891 2254 2238 36666666.66065 2255 2238 -2702548.086863 2340 2238 -60367636.82651 2341 2238 1.877546310425e-06 2342 2238 44780785.23866 2343 2238 -20276082.95081 2344 2238 -9166666.66968 2345 2238 11841897.70428 2349 2238 51054233.83102 2350 2238 1.788139343262e-06 2351 2238 231485.0634618 2352 2238 -7985170.87927 2353 2238 -2.771615982056e-06 2354 2238 57871.2658952 2361 2238 -60775629.25067 2362 2238 -1.214444637299e-06 2363 2238 -45012270.30212 2364 2238 -20383999.6175 2365 2238 9166666.669679 2366 2238 -11899768.97017 2239 2239 538074898.3386 2240 2239 -11110939.17715 2241 2239 -2.861022949219e-06 2242 2239 -53567337.94508 2243 2239 5555469.588581 2250 2239 9.685754776001e-07 2251 2239 24514918.12315 2252 2239 -2777734.795656 2253 2239 36666666.66065 2254 2239 -40904425.97421 2255 2239 1513867.397816 2340 2239 1.169741153717e-06 2341 2239 -20033981.96478 2342 2239 -694433.6992575 2343 2239 -9166666.66968 2344 2239 -17525889.09577 2345 2239 9288189.074786 2349 2239 1.966953277588e-06 2350 2239 29052683.00161 2351 2239 -2777734.795662 2352 2239 -2.190470695496e-06 2353 2239 -42818438.03636 2354 2239 37305534.05859 2361 2239 -1.445412635803e-06 2362 2239 -20441974.38895 2363 2239 -694433.6992576 2364 2239 9166666.669678 2365 2239 -17633805.76247 2366 2239 9357633.519253 2240 2240 616797415.4266 2241 2240 231485.0634536 2242 2240 5555469.588581 2243 2240 82852085.35441 2250 2240 -462970.1266864 2251 2240 -2777734.795656 2252 2240 44192040.0554 2253 2240 -2737270.309063 2254 2240 1541645.175575 2255 2240 -6819846.696327 2340 2240 44746063.01646 2341 2240 -694433.6992574 2342 2240 -58719220.64359 2343 2240 11841897.70428 2344 2240 9288189.074786 2345 2240 -21171048.60074 2349 2240 231485.0634617 2350 2240 -2777734.795662 2351 2240 -127043423.7988 2352 2240 57871.26589543 2353 2240 37277756.28083 2354 2240 -57757921.43384 2361 2240 -44977548.07992 2362 2240 -694433.6992576 2363 2240 -59807200.44138 2364 2240 -11899768.97017 2365 2240 9357633.519253 2366 2240 -21458826.37861 2241 2241 626081101.6128 2242 2241 7.033348083496e-06 2243 2241 925940.2533548 2244 2241 85765730.61463 2245 2241 -3.814697265625e-06 2246 2241 231485.0634534 2250 2241 -51881527.1465 2251 2241 -36666666.66065 2252 2241 2505785.245605 2253 2241 -136819701.2443 2254 2241 9.089708328247e-07 2255 2241 -462970.1266867 2256 2241 -51905201.38891 2257 2241 36666666.66065 2258 2241 -2702548.086863 2340 2241 -18752053.59425 2341 2241 9166666.66968 2342 2241 10539814.37052 2343 2241 -60367636.82651 2344 2241 1.877546310425e-06 2345 2241 44780785.23866 2346 2241 -20276082.95081 2347 2241 -9166666.66968 2348 2241 11841897.70428 2349 2241 -1865379.213624 2350 2241 8.79168510437e-07 2351 2241 57871.26589221 2352 2241 51054233.83102 2353 2241 1.788139343262e-06 2354 2241 231485.0634618 2355 2241 -7985170.87927 2356 2241 -2.771615982056e-06 2357 2241 57871.2658952 2361 2241 -18848133.13973 2362 2241 -9166666.66968 2363 2241 -10597685.63642 2364 2241 -60775629.25067 2365 2241 -1.214444637299e-06 2366 2241 -45012270.30212 2367 2241 -20383999.6175 2368 2241 9166666.669679 2369 2241 -11899768.97017 2242 2242 538074898.3386 2243 2242 -11110939.17715 2244 2242 -2.861022949219e-06 2245 2242 -53567337.94508 2246 2242 5555469.588581 2250 2242 -36666666.66065 2251 2242 -40880751.7318 2252 2242 1263867.397843 2253 2242 9.685754776001e-07 2254 2242 24514918.12315 2255 2242 -2777734.795656 2256 2242 36666666.66065 2257 2242 -40904425.97421 2258 2242 1513867.397816 2340 2242 9166666.66968 2341 2242 -16001859.73922 2342 2242 -8593755.37553 2343 2242 1.169741153717e-06 2344 2242 -20033981.96478 2345 2242 -694433.6992575 2346 2242 -9166666.66968 2347 2242 -17525889.09577 2348 2242 9288189.074786 2349 2242 1.229345798492e-06 2350 2242 -36698646.37071 2351 2242 -34527799.26293 2352 2242 1.966953277588e-06 2353 2242 29052683.00161 2354 2242 -2777734.795662 2355 2242 -2.190470695496e-06 2356 2242 -42818438.03636 2357 2242 37305534.05859 2361 2242 -9166666.669679 2362 2242 -16097939.2847 2363 2242 -8663199.819997 2364 2242 -1.445412635803e-06 2365 2242 -20441974.38895 2366 2242 -694433.6992576 2367 2242 9166666.669678 2368 2242 -17633805.76247 2369 2242 9357633.519253 2243 2243 616797415.4266 2244 2243 231485.0634536 2245 2243 5555469.588581 2246 2243 82852085.35441 2250 2243 2471063.023406 2251 2243 1236089.620084 2252 2243 -6756715.38321 2253 2243 -462970.1266864 2254 2243 -2777734.795656 2255 2243 44192040.0554 2256 2243 -2737270.309063 2257 2243 1541645.175575 2258 2243 -6819846.696327 2340 2243 10539814.37052 2341 2243 -8593755.37553 2342 2243 -17106970.31658 2343 2243 44746063.01646 2344 2243 -694433.6992574 2345 2243 -58719220.64359 2346 2243 11841897.70428 2347 2243 9288189.074786 2348 2243 -21171048.60074 2349 2243 57871.26589252 2350 2243 -34500021.48517 2351 2243 -41438476.99211 2352 2243 231485.0634617 2353 2243 -2777734.795662 2354 2243 -127043423.7988 2355 2243 57871.26589543 2356 2243 37277756.28083 2357 2243 -57757921.43384 2361 2243 -10597685.63642 2362 2243 -8663199.819997 2363 2243 -17363182.43788 2364 2243 -44977548.07992 2365 2243 -694433.6992576 2366 2243 -59807200.44138 2367 2243 -11899768.97017 2368 2243 9357633.519253 2369 2243 -21458826.37861 2244 2244 677810035.2011 2245 2244 36667397.55284 2246 2244 3125086.662505 2247 2244 20859938.00677 2248 2244 -36666959.01753 2249 2244 2702569.081896 2253 2244 -51881527.1465 2254 2244 -36666666.66065 2255 2244 2505785.245605 2256 2244 -136819701.2443 2257 2244 9.089708328247e-07 2258 2244 -462970.1266867 2259 2244 -51905201.38891 2260 2244 36666666.66065 2261 2244 -2702548.086863 2343 2244 -18752053.59425 2344 2244 9166666.66968 2345 2244 10539814.37052 2346 2244 -72726245.22972 2347 2244 -9166776.303506 2348 2244 44231216.90386 2352 2244 -1865379.213624 2353 2244 8.79168510437e-07 2354 2244 57871.26589221 2355 2244 70575234.21716 2356 2244 9166849.392726 2357 2244 781227.3439141 2358 2244 -20203256.3538 2359 2244 -9166739.758899 2360 2244 11899863.74724 2364 2244 -18848133.13973 2365 2244 -9166666.66968 2366 2244 -10597685.63642 2367 2244 -60775629.25067 2368 2244 -1.214444637299e-06 2369 2244 -45012270.30212 2370 2244 -20383999.6175 2371 2244 9166666.669679 2372 2244 -11899768.97017 2245 2245 578802727.5875 2246 2245 -8610918.562153 2247 2245 -36667105.19596 2248 2245 -107472939.8429 2249 2245 4611020.401354 2253 2245 -36666666.66065 2254 2245 -40880751.7318 2255 2245 1263867.397843 2256 2245 9.685754776001e-07 2257 2245 24514918.12315 2258 2245 -2777734.795656 2259 2245 36666666.66065 2260 2245 -40904425.97421 2261 2245 1513867.397816 2343 2245 9166666.66968 2344 2245 -16001859.73922 2345 2245 -8593755.37553 2346 2245 -9166739.758897 2347 2245 -29642168.10562 2348 2245 8204934.122165 2352 2245 1.229345798492e-06 2353 2245 -36698646.37071 2354 2245 -34527799.26293 2355 2245 9166849.392726 2356 2245 45823407.30156 2357 2245 -2152765.098743 2358 2245 -9166776.303508 2359 2245 -52286475.83204 2360 2245 37069600.58987 2364 2245 -9166666.669679 2365 2245 -16097939.2847 2366 2245 -8663199.819997 2367 2245 -1.445412635803e-06 2368 2245 -20441974.38895 2369 2245 -694433.6992576 2370 2245 9166666.669678 2371 2245 -17633805.76247 2372 2245 9357633.519253 2246 2246 623143279.9755 2247 2246 2737301.801614 2248 2246 5388806.115241 2249 2246 41364580.11227 2253 2246 2471063.023406 2254 2246 1236089.620084 2255 2246 -6756715.38321 2256 2246 -462970.1266864 2257 2246 -2777734.795656 2258 2246 44192040.0554 2259 2246 -2737270.309063 2260 2246 1541645.175575 2261 2246 -6819846.696327 2343 2246 10539814.37052 2344 2246 -8593755.37553 2345 2246 -17106970.31658 2346 2246 44196492.14387 2347 2246 8010523.495484 2348 2246 -58776166.2905 2352 2246 57871.26589252 2353 2246 -34500021.48517 2354 2246 -41438476.99211 2355 2246 781316.8545274 2356 2246 -2152693.49136 2357 2246 -107886912.3736 2358 2246 11899911.13577 2359 2246 37236269.31883 2360 2246 -57440830.58835 2364 2246 -10597685.63642 2365 2246 -8663199.819997 2366 2246 -17363182.43788 2367 2246 -44977548.07992 2368 2246 -694433.6992576 2369 2246 -59807200.44138 2370 2246 -11899768.97017 2371 2246 9357633.519253 2372 2246 -21458826.37861 2247 2247 391468094.7324 2248 2247 36666666.66066 2249 2247 2662170.757228 2256 2247 -51881527.1465 2257 2247 -36666666.66065 2258 2247 2505785.245605 2259 2247 -201885224.5025 2260 2247 -36666959.01753 2261 2247 -2662149.068675 2262 2247 13006025.1815 2263 2247 29333625.68539 2264 2247 -2152798.772422 2346 2247 -5106206.927443 2347 2247 11000109.63744 2348 2247 12682625.90274 2355 2247 -15511422.68773 2356 2247 -9166776.303506 2357 2247 -10539940.2691 2358 2247 31947394.33292 2359 2247 9166666.669681 2360 2247 9728225.899101 2367 2247 -18848133.13973 2368 2247 -9166666.66968 2369 2247 -10597685.63642 2370 2247 -74358253.63036 2371 2247 -9166739.758898 2372 2247 -45562288.72778 2373 2247 -8166156.136015 2374 2247 7333406.424962 2375 2247 -9496761.446847 2248 2248 336463888.7559 2249 2248 -6944377.543016 2256 2248 -36666666.66065 2257 2248 -40880751.7318 2258 2248 1263867.397843 2259 2248 -36667105.19596 2260 2248 -29548916.09098 2261 2248 -3847225.37168 2262 2248 44000438.52809 2263 2248 13006025.1815 2264 2248 2416691.307227 2346 2248 7333406.424962 2347 2248 -5106206.927443 2348 2248 -6763956.526763 2355 2248 -9166739.758897 2356 2248 -47594642.16596 2357 2248 -34569643.89832 2358 2248 9166666.66968 2359 2248 18196342.83202 2360 2248 5513941.008134 2367 2248 -9166666.669679 2368 2248 -16097939.2847 2369 2248 -8663199.819997 2370 2248 -9166776.303507 2371 2248 -31274176.50627 2372 2248 -9941080.210835 2373 2248 11000109.63744 2374 2248 -8166156.136015 2375 2248 11395946.69513 2249 2249 385940866.4962 2256 2249 2471063.023406 2257 2249 1236089.620084 2258 2249 -6756715.38321 2259 2249 -2662138.224395 2260 2249 -3097217.158151 2261 2249 2281351.682023 2262 2249 -3229198.158633 2263 2249 1611127.538151 2264 2249 34682733.81733 2346 2249 8455083.935158 2347 2249 -10145934.79014 2348 2249 -13616551.80652 2355 2249 -10539898.30291 2356 2249 -34736312.74845 2357 2249 -44929274.14549 2358 2249 -8223530.275229 2359 2249 -8847241.586827 2360 2249 -79300461.72417 2367 2249 -10597685.63642 2368 2249 -8663199.819997 2369 2249 -17363182.43788 2370 2249 -45527563.96779 2371 2249 -9746597.980308 2372 2249 -63128188.69225 2373 2249 -14245142.17027 2374 2249 7597297.796754 2375 2249 -21776416.36271 2250 2250 626081101.6128 2251 2250 7.033348083496e-06 2252 2250 925940.2533548 2253 2250 85765730.61463 2254 2250 -3.814697265625e-06 2255 2250 231485.0634534 2265 2250 -136819701.2443 2266 2250 9.089708328247e-07 2267 2250 -462970.1266867 2268 2250 -51905201.38891 2269 2250 36666666.66065 2270 2250 -2702548.086863 2349 2250 -60367636.82651 2350 2250 1.877546310425e-06 2351 2250 44780785.23866 2352 2250 -20276082.95081 2353 2250 -9166666.66968 2354 2250 11841897.70428 2361 2250 51054233.83102 2362 2250 1.788139343262e-06 2363 2250 231485.0634618 2364 2250 -7985170.87927 2365 2250 -2.771615982056e-06 2366 2250 57871.2658952 2376 2250 -60775629.25067 2377 2250 -1.214444637299e-06 2378 2250 -45012270.30212 2379 2250 -20383999.6175 2380 2250 9166666.669679 2381 2250 -11899768.97017 2251 2251 538074898.3386 2252 2251 -11110939.17715 2253 2251 -2.861022949219e-06 2254 2251 -53567337.94508 2255 2251 5555469.588581 2265 2251 9.685754776001e-07 2266 2251 24514918.12315 2267 2251 -2777734.795656 2268 2251 36666666.66065 2269 2251 -40904425.97421 2270 2251 1513867.397816 2349 2251 1.169741153717e-06 2350 2251 -20033981.96478 2351 2251 -694433.6992575 2352 2251 -9166666.66968 2353 2251 -17525889.09577 2354 2251 9288189.074786 2361 2251 1.966953277588e-06 2362 2251 29052683.00161 2363 2251 -2777734.795662 2364 2251 -2.190470695496e-06 2365 2251 -42818438.03636 2366 2251 37305534.05859 2376 2251 -1.445412635803e-06 2377 2251 -20441974.38895 2378 2251 -694433.6992576 2379 2251 9166666.669678 2380 2251 -17633805.76247 2381 2251 9357633.519253 2252 2252 616797415.4266 2253 2252 231485.0634536 2254 2252 5555469.588581 2255 2252 82852085.35441 2265 2252 -462970.1266864 2266 2252 -2777734.795656 2267 2252 44192040.0554 2268 2252 -2737270.309063 2269 2252 1541645.175575 2270 2252 -6819846.696327 2349 2252 44746063.01646 2350 2252 -694433.6992574 2351 2252 -58719220.64359 2352 2252 11841897.70428 2353 2252 9288189.074786 2354 2252 -21171048.60074 2361 2252 231485.0634617 2362 2252 -2777734.795662 2363 2252 -127043423.7988 2364 2252 57871.26589543 2365 2252 37277756.28083 2366 2252 -57757921.43384 2376 2252 -44977548.07992 2377 2252 -694433.6992576 2378 2252 -59807200.44138 2379 2252 -11899768.97017 2380 2252 9357633.519253 2381 2252 -21458826.37861 2253 2253 626081101.6128 2254 2253 7.033348083496e-06 2255 2253 925940.2533548 2256 2253 85765730.61463 2257 2253 -3.814697265625e-06 2258 2253 231485.0634534 2265 2253 -51881527.1465 2266 2253 -36666666.66065 2267 2253 2505785.245605 2268 2253 -136819701.2443 2269 2253 9.089708328247e-07 2270 2253 -462970.1266867 2271 2253 -51905201.38891 2272 2253 36666666.66065 2273 2253 -2702548.086863 2349 2253 -18752053.59425 2350 2253 9166666.66968 2351 2253 10539814.37052 2352 2253 -60367636.82651 2353 2253 1.877546310425e-06 2354 2253 44780785.23866 2355 2253 -20276082.95081 2356 2253 -9166666.66968 2357 2253 11841897.70428 2361 2253 -1865379.213624 2362 2253 8.79168510437e-07 2363 2253 57871.26589221 2364 2253 51054233.83102 2365 2253 1.788139343262e-06 2366 2253 231485.0634618 2367 2253 -7985170.87927 2368 2253 -2.771615982056e-06 2369 2253 57871.2658952 2376 2253 -18848133.13973 2377 2253 -9166666.66968 2378 2253 -10597685.63642 2379 2253 -60775629.25067 2380 2253 -1.214444637299e-06 2381 2253 -45012270.30212 2382 2253 -20383999.6175 2383 2253 9166666.669679 2384 2253 -11899768.97017 2254 2254 538074898.3386 2255 2254 -11110939.17715 2256 2254 -2.861022949219e-06 2257 2254 -53567337.94508 2258 2254 5555469.588581 2265 2254 -36666666.66065 2266 2254 -40880751.7318 2267 2254 1263867.397843 2268 2254 9.685754776001e-07 2269 2254 24514918.12315 2270 2254 -2777734.795656 2271 2254 36666666.66065 2272 2254 -40904425.97421 2273 2254 1513867.397816 2349 2254 9166666.66968 2350 2254 -16001859.73922 2351 2254 -8593755.37553 2352 2254 1.169741153717e-06 2353 2254 -20033981.96478 2354 2254 -694433.6992575 2355 2254 -9166666.66968 2356 2254 -17525889.09577 2357 2254 9288189.074786 2361 2254 1.229345798492e-06 2362 2254 -36698646.37071 2363 2254 -34527799.26293 2364 2254 1.966953277588e-06 2365 2254 29052683.00161 2366 2254 -2777734.795662 2367 2254 -2.190470695496e-06 2368 2254 -42818438.03636 2369 2254 37305534.05859 2376 2254 -9166666.669679 2377 2254 -16097939.2847 2378 2254 -8663199.819997 2379 2254 -1.445412635803e-06 2380 2254 -20441974.38895 2381 2254 -694433.6992576 2382 2254 9166666.669678 2383 2254 -17633805.76247 2384 2254 9357633.519253 2255 2255 616797415.4266 2256 2255 231485.0634536 2257 2255 5555469.588581 2258 2255 82852085.35441 2265 2255 2471063.023406 2266 2255 1236089.620084 2267 2255 -6756715.38321 2268 2255 -462970.1266864 2269 2255 -2777734.795656 2270 2255 44192040.0554 2271 2255 -2737270.309063 2272 2255 1541645.175575 2273 2255 -6819846.696327 2349 2255 10539814.37052 2350 2255 -8593755.37553 2351 2255 -17106970.31658 2352 2255 44746063.01646 2353 2255 -694433.6992574 2354 2255 -58719220.64359 2355 2255 11841897.70428 2356 2255 9288189.074786 2357 2255 -21171048.60074 2361 2255 57871.26589252 2362 2255 -34500021.48517 2363 2255 -41438476.99211 2364 2255 231485.0634617 2365 2255 -2777734.795662 2366 2255 -127043423.7988 2367 2255 57871.26589543 2368 2255 37277756.28083 2369 2255 -57757921.43384 2376 2255 -10597685.63642 2377 2255 -8663199.819997 2378 2255 -17363182.43788 2379 2255 -44977548.07992 2380 2255 -694433.6992576 2381 2255 -59807200.44138 2382 2255 -11899768.97017 2383 2255 9357633.519253 2384 2255 -21458826.37861 2256 2256 626081101.6128 2257 2256 7.033348083496e-06 2258 2256 925940.2533548 2259 2256 85765730.61463 2260 2256 -3.814697265625e-06 2261 2256 231485.0634534 2268 2256 -51881527.1465 2269 2256 -36666666.66065 2270 2256 2505785.245605 2271 2256 -136819701.2443 2272 2256 9.089708328247e-07 2273 2256 -462970.1266867 2274 2256 -51905201.38891 2275 2256 36666666.66065 2276 2256 -2702548.086863 2352 2256 -18752053.59425 2353 2256 9166666.66968 2354 2256 10539814.37052 2355 2256 -60367636.82651 2356 2256 1.877546310425e-06 2357 2256 44780785.23866 2358 2256 -20276082.95081 2359 2256 -9166666.66968 2360 2256 11841897.70428 2364 2256 -1865379.213624 2365 2256 8.79168510437e-07 2366 2256 57871.26589221 2367 2256 51054233.83102 2368 2256 1.788139343262e-06 2369 2256 231485.0634618 2370 2256 -7985170.87927 2371 2256 -2.771615982056e-06 2372 2256 57871.2658952 2379 2256 -18848133.13973 2380 2256 -9166666.66968 2381 2256 -10597685.63642 2382 2256 -60775629.25067 2383 2256 -1.214444637299e-06 2384 2256 -45012270.30212 2385 2256 -20383999.6175 2386 2256 9166666.669679 2387 2256 -11899768.97017 2257 2257 538074898.3386 2258 2257 -11110939.17715 2259 2257 -2.861022949219e-06 2260 2257 -53567337.94508 2261 2257 5555469.588581 2268 2257 -36666666.66065 2269 2257 -40880751.7318 2270 2257 1263867.397843 2271 2257 9.685754776001e-07 2272 2257 24514918.12315 2273 2257 -2777734.795656 2274 2257 36666666.66065 2275 2257 -40904425.97421 2276 2257 1513867.397816 2352 2257 9166666.66968 2353 2257 -16001859.73922 2354 2257 -8593755.37553 2355 2257 1.169741153717e-06 2356 2257 -20033981.96478 2357 2257 -694433.6992575 2358 2257 -9166666.66968 2359 2257 -17525889.09577 2360 2257 9288189.074786 2364 2257 1.229345798492e-06 2365 2257 -36698646.37071 2366 2257 -34527799.26293 2367 2257 1.966953277588e-06 2368 2257 29052683.00161 2369 2257 -2777734.795662 2370 2257 -2.190470695496e-06 2371 2257 -42818438.03636 2372 2257 37305534.05859 2379 2257 -9166666.669679 2380 2257 -16097939.2847 2381 2257 -8663199.819997 2382 2257 -1.445412635803e-06 2383 2257 -20441974.38895 2384 2257 -694433.6992576 2385 2257 9166666.669678 2386 2257 -17633805.76247 2387 2257 9357633.519253 2258 2258 616797415.4266 2259 2258 231485.0634536 2260 2258 5555469.588581 2261 2258 82852085.35441 2268 2258 2471063.023406 2269 2258 1236089.620084 2270 2258 -6756715.38321 2271 2258 -462970.1266864 2272 2258 -2777734.795656 2273 2258 44192040.0554 2274 2258 -2737270.309063 2275 2258 1541645.175575 2276 2258 -6819846.696327 2352 2258 10539814.37052 2353 2258 -8593755.37553 2354 2258 -17106970.31658 2355 2258 44746063.01646 2356 2258 -694433.6992574 2357 2258 -58719220.64359 2358 2258 11841897.70428 2359 2258 9288189.074786 2360 2258 -21171048.60074 2364 2258 57871.26589252 2365 2258 -34500021.48517 2366 2258 -41438476.99211 2367 2258 231485.0634617 2368 2258 -2777734.795662 2369 2258 -127043423.7988 2370 2258 57871.26589543 2371 2258 37277756.28083 2372 2258 -57757921.43384 2379 2258 -10597685.63642 2380 2258 -8663199.819997 2381 2258 -17363182.43788 2382 2258 -44977548.07992 2383 2258 -694433.6992576 2384 2258 -59807200.44138 2385 2258 -11899768.97017 2386 2258 9357633.519253 2387 2258 -21458826.37861 2259 2259 677810035.2011 2260 2259 36667397.55284 2261 2259 3125086.662505 2262 2259 20859938.00677 2263 2259 -36666959.01753 2264 2259 2702569.081896 2271 2259 -51881527.1465 2272 2259 -36666666.66065 2273 2259 2505785.245605 2274 2259 -136819701.2443 2275 2259 9.089708328247e-07 2276 2259 -462970.1266867 2277 2259 -51905201.38891 2278 2259 36666666.66065 2279 2259 -2702548.086863 2355 2259 -18752053.59425 2356 2259 9166666.66968 2357 2259 10539814.37052 2358 2259 -72726245.22972 2359 2259 -9166776.303506 2360 2259 44231216.90386 2367 2259 -1865379.213624 2368 2259 8.79168510437e-07 2369 2259 57871.26589221 2370 2259 70575234.21716 2371 2259 9166849.392726 2372 2259 781227.3439141 2373 2259 -20203256.3538 2374 2259 -9166739.758899 2375 2259 11899863.74724 2382 2259 -18848133.13973 2383 2259 -9166666.66968 2384 2259 -10597685.63642 2385 2259 -60775629.25067 2386 2259 -1.214444637299e-06 2387 2259 -45012270.30212 2388 2259 -20383999.6175 2389 2259 9166666.669679 2390 2259 -11899768.97017 2260 2260 578802727.5875 2261 2260 -8610918.562153 2262 2260 -36667105.19596 2263 2260 -107472939.8429 2264 2260 4611020.401354 2271 2260 -36666666.66065 2272 2260 -40880751.7318 2273 2260 1263867.397843 2274 2260 9.685754776001e-07 2275 2260 24514918.12315 2276 2260 -2777734.795656 2277 2260 36666666.66065 2278 2260 -40904425.97421 2279 2260 1513867.397816 2355 2260 9166666.66968 2356 2260 -16001859.73922 2357 2260 -8593755.37553 2358 2260 -9166739.758897 2359 2260 -29642168.10562 2360 2260 8204934.122165 2367 2260 1.229345798492e-06 2368 2260 -36698646.37071 2369 2260 -34527799.26293 2370 2260 9166849.392726 2371 2260 45823407.30156 2372 2260 -2152765.098743 2373 2260 -9166776.303508 2374 2260 -52286475.83204 2375 2260 37069600.58987 2382 2260 -9166666.669679 2383 2260 -16097939.2847 2384 2260 -8663199.819997 2385 2260 -1.445412635803e-06 2386 2260 -20441974.38895 2387 2260 -694433.6992576 2388 2260 9166666.669678 2389 2260 -17633805.76247 2390 2260 9357633.519253 2261 2261 623143279.9755 2262 2261 2737301.801614 2263 2261 5388806.115241 2264 2261 41364580.11227 2271 2261 2471063.023406 2272 2261 1236089.620084 2273 2261 -6756715.38321 2274 2261 -462970.1266864 2275 2261 -2777734.795656 2276 2261 44192040.0554 2277 2261 -2737270.309063 2278 2261 1541645.175575 2279 2261 -6819846.696327 2355 2261 10539814.37052 2356 2261 -8593755.37553 2357 2261 -17106970.31658 2358 2261 44196492.14387 2359 2261 8010523.495484 2360 2261 -58776166.2905 2367 2261 57871.26589252 2368 2261 -34500021.48517 2369 2261 -41438476.99211 2370 2261 781316.8545274 2371 2261 -2152693.49136 2372 2261 -107886912.3736 2373 2261 11899911.13577 2374 2261 37236269.31883 2375 2261 -57440830.58835 2382 2261 -10597685.63642 2383 2261 -8663199.819997 2384 2261 -17363182.43788 2385 2261 -44977548.07992 2386 2261 -694433.6992576 2387 2261 -59807200.44138 2388 2261 -11899768.97017 2389 2261 9357633.519253 2390 2261 -21458826.37861 2262 2262 391468094.7324 2263 2262 36666666.66066 2264 2262 2662170.757228 2274 2262 -51881527.1465 2275 2262 -36666666.66065 2276 2262 2505785.245605 2277 2262 -201885224.5025 2278 2262 -36666959.01753 2279 2262 -2662149.068675 2280 2262 13006025.1815 2281 2262 29333625.68539 2282 2262 -2152798.772422 2358 2262 -5106206.927443 2359 2262 11000109.63744 2360 2262 12682625.90274 2370 2262 -15511422.68773 2371 2262 -9166776.303506 2372 2262 -10539940.2691 2373 2262 31947394.33292 2374 2262 9166666.669681 2375 2262 9728225.899101 2385 2262 -18848133.13973 2386 2262 -9166666.66968 2387 2262 -10597685.63642 2388 2262 -74358253.63036 2389 2262 -9166739.758898 2390 2262 -45562288.72778 2391 2262 -8166156.136015 2392 2262 7333406.424962 2393 2262 -9496761.446847 2263 2263 336463888.7559 2264 2263 -6944377.543016 2274 2263 -36666666.66065 2275 2263 -40880751.7318 2276 2263 1263867.397843 2277 2263 -36667105.19596 2278 2263 -29548916.09098 2279 2263 -3847225.37168 2280 2263 44000438.52809 2281 2263 13006025.1815 2282 2263 2416691.307227 2358 2263 7333406.424962 2359 2263 -5106206.927443 2360 2263 -6763956.526763 2370 2263 -9166739.758897 2371 2263 -47594642.16596 2372 2263 -34569643.89832 2373 2263 9166666.66968 2374 2263 18196342.83202 2375 2263 5513941.008134 2385 2263 -9166666.669679 2386 2263 -16097939.2847 2387 2263 -8663199.819997 2388 2263 -9166776.303507 2389 2263 -31274176.50627 2390 2263 -9941080.210835 2391 2263 11000109.63744 2392 2263 -8166156.136015 2393 2263 11395946.69513 2264 2264 385940866.4962 2274 2264 2471063.023406 2275 2264 1236089.620084 2276 2264 -6756715.38321 2277 2264 -2662138.224395 2278 2264 -3097217.158151 2279 2264 2281351.682023 2280 2264 -3229198.158633 2281 2264 1611127.538151 2282 2264 34682733.81733 2358 2264 8455083.935158 2359 2264 -10145934.79014 2360 2264 -13616551.80652 2370 2264 -10539898.30291 2371 2264 -34736312.74845 2372 2264 -44929274.14549 2373 2264 -8223530.275229 2374 2264 -8847241.586827 2375 2264 -79300461.72417 2385 2264 -10597685.63642 2386 2264 -8663199.819997 2387 2264 -17363182.43788 2388 2264 -45527563.96779 2389 2264 -9746597.980308 2390 2264 -63128188.69225 2391 2264 -14245142.17027 2392 2264 7597297.796754 2393 2264 -21776416.36271 2265 2265 626081101.6128 2266 2265 7.033348083496e-06 2267 2265 925940.2533548 2268 2265 85765730.61463 2269 2265 -3.814697265625e-06 2270 2265 231485.0634534 2283 2265 -136819701.2443 2284 2265 9.089708328247e-07 2285 2265 -462970.1266867 2286 2265 -51905201.38891 2287 2265 36666666.66065 2288 2265 -2702548.086863 2361 2265 -60367636.82651 2362 2265 1.877546310425e-06 2363 2265 44780785.23866 2364 2265 -20276082.95081 2365 2265 -9166666.66968 2366 2265 11841897.70428 2376 2265 51054233.83102 2377 2265 1.788139343262e-06 2378 2265 231485.0634618 2379 2265 -7985170.87927 2380 2265 -2.771615982056e-06 2381 2265 57871.2658952 2394 2265 -60775629.25067 2395 2265 -1.214444637299e-06 2396 2265 -45012270.30212 2397 2265 -20383999.6175 2398 2265 9166666.669679 2399 2265 -11899768.97017 2266 2266 538074898.3386 2267 2266 -11110939.17715 2268 2266 -2.861022949219e-06 2269 2266 -53567337.94508 2270 2266 5555469.588581 2283 2266 9.685754776001e-07 2284 2266 24514918.12315 2285 2266 -2777734.795656 2286 2266 36666666.66065 2287 2266 -40904425.97421 2288 2266 1513867.397816 2361 2266 1.169741153717e-06 2362 2266 -20033981.96478 2363 2266 -694433.6992575 2364 2266 -9166666.66968 2365 2266 -17525889.09577 2366 2266 9288189.074786 2376 2266 1.966953277588e-06 2377 2266 29052683.00161 2378 2266 -2777734.795662 2379 2266 -2.190470695496e-06 2380 2266 -42818438.03636 2381 2266 37305534.05859 2394 2266 -1.445412635803e-06 2395 2266 -20441974.38895 2396 2266 -694433.6992576 2397 2266 9166666.669678 2398 2266 -17633805.76247 2399 2266 9357633.519253 2267 2267 616797415.4266 2268 2267 231485.0634536 2269 2267 5555469.588581 2270 2267 82852085.35441 2283 2267 -462970.1266864 2284 2267 -2777734.795656 2285 2267 44192040.0554 2286 2267 -2737270.309063 2287 2267 1541645.175575 2288 2267 -6819846.696327 2361 2267 44746063.01646 2362 2267 -694433.6992574 2363 2267 -58719220.64359 2364 2267 11841897.70428 2365 2267 9288189.074786 2366 2267 -21171048.60074 2376 2267 231485.0634617 2377 2267 -2777734.795662 2378 2267 -127043423.7988 2379 2267 57871.26589543 2380 2267 37277756.28083 2381 2267 -57757921.43384 2394 2267 -44977548.07992 2395 2267 -694433.6992576 2396 2267 -59807200.44138 2397 2267 -11899768.97017 2398 2267 9357633.519253 2399 2267 -21458826.37861 2268 2268 626081101.6128 2269 2268 7.033348083496e-06 2270 2268 925940.2533548 2271 2268 85765730.61463 2272 2268 -3.814697265625e-06 2273 2268 231485.0634534 2283 2268 -51881527.1465 2284 2268 -36666666.66065 2285 2268 2505785.245605 2286 2268 -136819701.2443 2287 2268 9.089708328247e-07 2288 2268 -462970.1266867 2289 2268 -51905201.38891 2290 2268 36666666.66065 2291 2268 -2702548.086863 2361 2268 -18752053.59425 2362 2268 9166666.66968 2363 2268 10539814.37052 2364 2268 -60367636.82651 2365 2268 1.877546310425e-06 2366 2268 44780785.23866 2367 2268 -20276082.95081 2368 2268 -9166666.66968 2369 2268 11841897.70428 2376 2268 -1865379.213624 2377 2268 8.79168510437e-07 2378 2268 57871.26589221 2379 2268 51054233.83102 2380 2268 1.788139343262e-06 2381 2268 231485.0634618 2382 2268 -7985170.87927 2383 2268 -2.771615982056e-06 2384 2268 57871.2658952 2394 2268 -18848133.13973 2395 2268 -9166666.66968 2396 2268 -10597685.63642 2397 2268 -60775629.25067 2398 2268 -1.214444637299e-06 2399 2268 -45012270.30212 2400 2268 -20383999.6175 2401 2268 9166666.669679 2402 2268 -11899768.97017 2269 2269 538074898.3386 2270 2269 -11110939.17715 2271 2269 -2.861022949219e-06 2272 2269 -53567337.94508 2273 2269 5555469.588581 2283 2269 -36666666.66065 2284 2269 -40880751.7318 2285 2269 1263867.397843 2286 2269 9.685754776001e-07 2287 2269 24514918.12315 2288 2269 -2777734.795656 2289 2269 36666666.66065 2290 2269 -40904425.97421 2291 2269 1513867.397816 2361 2269 9166666.66968 2362 2269 -16001859.73922 2363 2269 -8593755.37553 2364 2269 1.169741153717e-06 2365 2269 -20033981.96478 2366 2269 -694433.6992575 2367 2269 -9166666.66968 2368 2269 -17525889.09577 2369 2269 9288189.074786 2376 2269 1.229345798492e-06 2377 2269 -36698646.37071 2378 2269 -34527799.26293 2379 2269 1.966953277588e-06 2380 2269 29052683.00161 2381 2269 -2777734.795662 2382 2269 -2.190470695496e-06 2383 2269 -42818438.03636 2384 2269 37305534.05859 2394 2269 -9166666.669679 2395 2269 -16097939.2847 2396 2269 -8663199.819997 2397 2269 -1.445412635803e-06 2398 2269 -20441974.38895 2399 2269 -694433.6992576 2400 2269 9166666.669678 2401 2269 -17633805.76247 2402 2269 9357633.519253 2270 2270 616797415.4266 2271 2270 231485.0634536 2272 2270 5555469.588581 2273 2270 82852085.35441 2283 2270 2471063.023406 2284 2270 1236089.620084 2285 2270 -6756715.38321 2286 2270 -462970.1266864 2287 2270 -2777734.795656 2288 2270 44192040.0554 2289 2270 -2737270.309063 2290 2270 1541645.175575 2291 2270 -6819846.696327 2361 2270 10539814.37052 2362 2270 -8593755.37553 2363 2270 -17106970.31658 2364 2270 44746063.01646 2365 2270 -694433.6992574 2366 2270 -58719220.64359 2367 2270 11841897.70428 2368 2270 9288189.074786 2369 2270 -21171048.60074 2376 2270 57871.26589252 2377 2270 -34500021.48517 2378 2270 -41438476.99211 2379 2270 231485.0634617 2380 2270 -2777734.795662 2381 2270 -127043423.7988 2382 2270 57871.26589543 2383 2270 37277756.28083 2384 2270 -57757921.43384 2394 2270 -10597685.63642 2395 2270 -8663199.819997 2396 2270 -17363182.43788 2397 2270 -44977548.07992 2398 2270 -694433.6992576 2399 2270 -59807200.44138 2400 2270 -11899768.97017 2401 2270 9357633.519253 2402 2270 -21458826.37861 2271 2271 626081101.6128 2272 2271 7.033348083496e-06 2273 2271 925940.2533548 2274 2271 85765730.61463 2275 2271 -3.814697265625e-06 2276 2271 231485.0634534 2286 2271 -51881527.1465 2287 2271 -36666666.66065 2288 2271 2505785.245605 2289 2271 -136819701.2443 2290 2271 9.089708328247e-07 2291 2271 -462970.1266867 2292 2271 -51905201.38891 2293 2271 36666666.66065 2294 2271 -2702548.086863 2364 2271 -18752053.59425 2365 2271 9166666.66968 2366 2271 10539814.37052 2367 2271 -60367636.82651 2368 2271 1.877546310425e-06 2369 2271 44780785.23866 2370 2271 -20276082.95081 2371 2271 -9166666.66968 2372 2271 11841897.70428 2379 2271 -1865379.213624 2380 2271 8.79168510437e-07 2381 2271 57871.26589221 2382 2271 51054233.83102 2383 2271 1.788139343262e-06 2384 2271 231485.0634618 2385 2271 -7985170.87927 2386 2271 -2.771615982056e-06 2387 2271 57871.2658952 2397 2271 -18848133.13973 2398 2271 -9166666.66968 2399 2271 -10597685.63642 2400 2271 -60775629.25067 2401 2271 -1.214444637299e-06 2402 2271 -45012270.30212 2403 2271 -20383999.6175 2404 2271 9166666.669679 2405 2271 -11899768.97017 2272 2272 538074898.3386 2273 2272 -11110939.17715 2274 2272 -2.861022949219e-06 2275 2272 -53567337.94508 2276 2272 5555469.588581 2286 2272 -36666666.66065 2287 2272 -40880751.7318 2288 2272 1263867.397843 2289 2272 9.685754776001e-07 2290 2272 24514918.12315 2291 2272 -2777734.795656 2292 2272 36666666.66065 2293 2272 -40904425.97421 2294 2272 1513867.397816 2364 2272 9166666.66968 2365 2272 -16001859.73922 2366 2272 -8593755.37553 2367 2272 1.169741153717e-06 2368 2272 -20033981.96478 2369 2272 -694433.6992575 2370 2272 -9166666.66968 2371 2272 -17525889.09577 2372 2272 9288189.074786 2379 2272 1.229345798492e-06 2380 2272 -36698646.37071 2381 2272 -34527799.26293 2382 2272 1.966953277588e-06 2383 2272 29052683.00161 2384 2272 -2777734.795662 2385 2272 -2.190470695496e-06 2386 2272 -42818438.03636 2387 2272 37305534.05859 2397 2272 -9166666.669679 2398 2272 -16097939.2847 2399 2272 -8663199.819997 2400 2272 -1.445412635803e-06 2401 2272 -20441974.38895 2402 2272 -694433.6992576 2403 2272 9166666.669678 2404 2272 -17633805.76247 2405 2272 9357633.519253 2273 2273 616797415.4266 2274 2273 231485.0634536 2275 2273 5555469.588581 2276 2273 82852085.35441 2286 2273 2471063.023406 2287 2273 1236089.620084 2288 2273 -6756715.38321 2289 2273 -462970.1266864 2290 2273 -2777734.795656 2291 2273 44192040.0554 2292 2273 -2737270.309063 2293 2273 1541645.175575 2294 2273 -6819846.696327 2364 2273 10539814.37052 2365 2273 -8593755.37553 2366 2273 -17106970.31658 2367 2273 44746063.01646 2368 2273 -694433.6992574 2369 2273 -58719220.64359 2370 2273 11841897.70428 2371 2273 9288189.074786 2372 2273 -21171048.60074 2379 2273 57871.26589252 2380 2273 -34500021.48517 2381 2273 -41438476.99211 2382 2273 231485.0634617 2383 2273 -2777734.795662 2384 2273 -127043423.7988 2385 2273 57871.26589543 2386 2273 37277756.28083 2387 2273 -57757921.43384 2397 2273 -10597685.63642 2398 2273 -8663199.819997 2399 2273 -17363182.43788 2400 2273 -44977548.07992 2401 2273 -694433.6992576 2402 2273 -59807200.44138 2403 2273 -11899768.97017 2404 2273 9357633.519253 2405 2273 -21458826.37861 2274 2274 626081101.6128 2275 2274 7.033348083496e-06 2276 2274 925940.2533548 2277 2274 85765730.61463 2278 2274 -3.814697265625e-06 2279 2274 231485.0634534 2289 2274 -51881527.1465 2290 2274 -36666666.66065 2291 2274 2505785.245605 2292 2274 -136819701.2443 2293 2274 9.089708328247e-07 2294 2274 -462970.1266867 2295 2274 -51905201.38891 2296 2274 36666666.66065 2297 2274 -2702548.086863 2367 2274 -18752053.59425 2368 2274 9166666.66968 2369 2274 10539814.37052 2370 2274 -60367636.82651 2371 2274 1.877546310425e-06 2372 2274 44780785.23866 2373 2274 -20276082.95081 2374 2274 -9166666.66968 2375 2274 11841897.70428 2382 2274 -1865379.213624 2383 2274 8.79168510437e-07 2384 2274 57871.26589221 2385 2274 51054233.83102 2386 2274 1.788139343262e-06 2387 2274 231485.0634618 2388 2274 -7985170.87927 2389 2274 -2.771615982056e-06 2390 2274 57871.2658952 2400 2274 -18848133.13973 2401 2274 -9166666.66968 2402 2274 -10597685.63642 2403 2274 -60775629.25067 2404 2274 -1.214444637299e-06 2405 2274 -45012270.30212 2406 2274 -20383999.6175 2407 2274 9166666.669679 2408 2274 -11899768.97017 2275 2275 538074898.3386 2276 2275 -11110939.17715 2277 2275 -2.861022949219e-06 2278 2275 -53567337.94508 2279 2275 5555469.588581 2289 2275 -36666666.66065 2290 2275 -40880751.7318 2291 2275 1263867.397843 2292 2275 9.685754776001e-07 2293 2275 24514918.12315 2294 2275 -2777734.795656 2295 2275 36666666.66065 2296 2275 -40904425.97421 2297 2275 1513867.397816 2367 2275 9166666.66968 2368 2275 -16001859.73922 2369 2275 -8593755.37553 2370 2275 1.169741153717e-06 2371 2275 -20033981.96478 2372 2275 -694433.6992575 2373 2275 -9166666.66968 2374 2275 -17525889.09577 2375 2275 9288189.074786 2382 2275 1.229345798492e-06 2383 2275 -36698646.37071 2384 2275 -34527799.26293 2385 2275 1.966953277588e-06 2386 2275 29052683.00161 2387 2275 -2777734.795662 2388 2275 -2.190470695496e-06 2389 2275 -42818438.03636 2390 2275 37305534.05859 2400 2275 -9166666.669679 2401 2275 -16097939.2847 2402 2275 -8663199.819997 2403 2275 -1.445412635803e-06 2404 2275 -20441974.38895 2405 2275 -694433.6992576 2406 2275 9166666.669678 2407 2275 -17633805.76247 2408 2275 9357633.519253 2276 2276 616797415.4266 2277 2276 231485.0634536 2278 2276 5555469.588581 2279 2276 82852085.35441 2289 2276 2471063.023406 2290 2276 1236089.620084 2291 2276 -6756715.38321 2292 2276 -462970.1266864 2293 2276 -2777734.795656 2294 2276 44192040.0554 2295 2276 -2737270.309063 2296 2276 1541645.175575 2297 2276 -6819846.696327 2367 2276 10539814.37052 2368 2276 -8593755.37553 2369 2276 -17106970.31658 2370 2276 44746063.01646 2371 2276 -694433.6992574 2372 2276 -58719220.64359 2373 2276 11841897.70428 2374 2276 9288189.074786 2375 2276 -21171048.60074 2382 2276 57871.26589252 2383 2276 -34500021.48517 2384 2276 -41438476.99211 2385 2276 231485.0634617 2386 2276 -2777734.795662 2387 2276 -127043423.7988 2388 2276 57871.26589543 2389 2276 37277756.28083 2390 2276 -57757921.43384 2400 2276 -10597685.63642 2401 2276 -8663199.819997 2402 2276 -17363182.43788 2403 2276 -44977548.07992 2404 2276 -694433.6992576 2405 2276 -59807200.44138 2406 2276 -11899768.97017 2407 2276 9357633.519253 2408 2276 -21458826.37861 2277 2277 677810035.2011 2278 2277 36667397.55284 2279 2277 3125086.662505 2280 2277 20859938.00677 2281 2277 -36666959.01753 2282 2277 2702569.081896 2292 2277 -51881527.1465 2293 2277 -36666666.66065 2294 2277 2505785.245605 2295 2277 -136819701.2443 2296 2277 9.089708328247e-07 2297 2277 -462970.1266867 2298 2277 -51905201.38891 2299 2277 36666666.66065 2300 2277 -2702548.086863 2370 2277 -18752053.59425 2371 2277 9166666.66968 2372 2277 10539814.37052 2373 2277 -72726245.22972 2374 2277 -9166776.303506 2375 2277 44231216.90386 2385 2277 -1865379.213624 2386 2277 8.79168510437e-07 2387 2277 57871.26589221 2388 2277 70575234.21716 2389 2277 9166849.392726 2390 2277 781227.3439141 2391 2277 -20203256.3538 2392 2277 -9166739.758899 2393 2277 11899863.74724 2403 2277 -18848133.13973 2404 2277 -9166666.66968 2405 2277 -10597685.63642 2406 2277 -60775629.25067 2407 2277 -1.214444637299e-06 2408 2277 -45012270.30212 2409 2277 -20383999.6175 2410 2277 9166666.669679 2411 2277 -11899768.97017 2278 2278 578802727.5875 2279 2278 -8610918.562153 2280 2278 -36667105.19596 2281 2278 -107472939.8429 2282 2278 4611020.401354 2292 2278 -36666666.66065 2293 2278 -40880751.7318 2294 2278 1263867.397843 2295 2278 9.685754776001e-07 2296 2278 24514918.12315 2297 2278 -2777734.795656 2298 2278 36666666.66065 2299 2278 -40904425.97421 2300 2278 1513867.397816 2370 2278 9166666.66968 2371 2278 -16001859.73922 2372 2278 -8593755.37553 2373 2278 -9166739.758897 2374 2278 -29642168.10562 2375 2278 8204934.122165 2385 2278 1.229345798492e-06 2386 2278 -36698646.37071 2387 2278 -34527799.26293 2388 2278 9166849.392726 2389 2278 45823407.30156 2390 2278 -2152765.098743 2391 2278 -9166776.303508 2392 2278 -52286475.83204 2393 2278 37069600.58987 2403 2278 -9166666.669679 2404 2278 -16097939.2847 2405 2278 -8663199.819997 2406 2278 -1.445412635803e-06 2407 2278 -20441974.38895 2408 2278 -694433.6992576 2409 2278 9166666.669678 2410 2278 -17633805.76247 2411 2278 9357633.519253 2279 2279 623143279.9755 2280 2279 2737301.801614 2281 2279 5388806.115241 2282 2279 41364580.11227 2292 2279 2471063.023406 2293 2279 1236089.620084 2294 2279 -6756715.38321 2295 2279 -462970.1266864 2296 2279 -2777734.795656 2297 2279 44192040.0554 2298 2279 -2737270.309063 2299 2279 1541645.175575 2300 2279 -6819846.696327 2370 2279 10539814.37052 2371 2279 -8593755.37553 2372 2279 -17106970.31658 2373 2279 44196492.14387 2374 2279 8010523.495484 2375 2279 -58776166.2905 2385 2279 57871.26589252 2386 2279 -34500021.48517 2387 2279 -41438476.99211 2388 2279 781316.8545274 2389 2279 -2152693.49136 2390 2279 -107886912.3736 2391 2279 11899911.13577 2392 2279 37236269.31883 2393 2279 -57440830.58835 2403 2279 -10597685.63642 2404 2279 -8663199.819997 2405 2279 -17363182.43788 2406 2279 -44977548.07992 2407 2279 -694433.6992576 2408 2279 -59807200.44138 2409 2279 -11899768.97017 2410 2279 9357633.519253 2411 2279 -21458826.37861 2280 2280 407563929.055 2281 2280 -25145238.89341 2282 2280 -2293234.224282 2295 2280 -51881527.1465 2296 2280 -36666666.66065 2297 2280 2505785.245605 2298 2280 -59676961.47535 2299 2280 25141515.70066 2300 2280 -67823.50352038 2301 2280 -189595094.0897 2302 2280 29337056.52127 2303 2280 -694488.2655304 2373 2280 -5106206.927443 2374 2280 11000109.63744 2375 2280 12682625.90274 2388 2280 -15511422.68773 2389 2280 -9166776.303506 2390 2280 -10539940.2691 2391 2280 57002220.2306 2392 2280 -6544915.940513 2393 2280 4861555.215121 2406 2280 -18848133.13973 2407 2280 -9166666.66968 2408 2280 -10597685.63642 2409 2280 -29177118.41547 2410 2280 6543892.420132 2411 2280 -25729678.71087 2412 2280 -53961140.25394 2413 2280 7334356.856125 2414 2280 -1354081.113647 2281 2281 699802921.116 2282 2281 -11146138.11235 2295 2281 -36666666.66065 2296 2281 -40880751.7318 2297 2281 1263867.397843 2298 2281 25139654.10429 2299 2281 84860300.43415 2300 2281 -1661075.16402 2301 2281 44005584.78191 2302 2281 -509039245.6252 2303 2281 4042794.265653 2373 2281 7333406.424962 2374 2281 -5106206.927443 2375 2281 -6763956.526763 2388 2281 -9166739.758897 2389 2281 -47594642.16596 2390 2281 -34569643.89832 2391 2281 -6544915.940513 2392 2281 138242633.1703 2393 2281 1389850.346674 2406 2281 -9166666.669679 2407 2281 -16097939.2847 2408 2281 -8663199.819997 2409 2281 6543380.659941 2410 2281 6841374.023334 2411 2281 5925066.094897 2412 2281 11001535.28419 2413 2281 -141887020.0092 2414 2281 18142632.26191 2282 2282 442159068.8707 2295 2282 2471063.023406 2296 2282 1236089.620084 2297 2282 -6756715.38321 2298 2282 -1248352.367417 2299 2282 -1800051.757736 2300 2282 48763257.37113 2301 2282 -1041732.398296 2302 2282 3931461.602197 2303 2282 -186142766.0369 2373 2282 8455083.935158 2374 2282 -10145934.79014 2375 2282 -13616551.80652 2388 2282 -10539898.30291 2389 2282 -34736312.74845 2390 2282 -44929274.14549 2391 2282 -5398901.65238 2392 2282 -6817695.611917 2393 2282 -15837053.95701 2406 2282 -10597685.63642 2407 2282 -8663199.819997 2408 2282 -17363182.43788 2409 2282 -25903283.59124 2410 2282 5953357.675215 2411 2282 -27221579.91443 2412 2282 -2031121.67047 2413 2282 17600907.9829 2414 2282 -55970494.25524 2283 2283 626081101.6128 2284 2283 7.033348083496e-06 2285 2283 925940.2533548 2286 2283 85765730.61463 2287 2283 -3.814697265625e-06 2288 2283 231485.0634534 2304 2283 -136819701.2443 2305 2283 9.089708328247e-07 2306 2283 -462970.1266867 2307 2283 -51905201.38891 2308 2283 36666666.66065 2309 2283 -2702548.086863 2376 2283 -60367636.82651 2377 2283 1.877546310425e-06 2378 2283 44780785.23866 2379 2283 -20276082.95081 2380 2283 -9166666.66968 2381 2283 11841897.70428 2394 2283 51054233.83102 2395 2283 1.788139343262e-06 2396 2283 231485.0634618 2397 2283 -7985170.87927 2398 2283 -2.771615982056e-06 2399 2283 57871.2658952 2415 2283 -60775629.25067 2416 2283 -1.214444637299e-06 2417 2283 -45012270.30212 2418 2283 -20383999.6175 2419 2283 9166666.669679 2420 2283 -11899768.97017 2284 2284 538074898.3386 2285 2284 -11110939.17715 2286 2284 -2.861022949219e-06 2287 2284 -53567337.94508 2288 2284 5555469.588581 2304 2284 9.685754776001e-07 2305 2284 24514918.12315 2306 2284 -2777734.795656 2307 2284 36666666.66065 2308 2284 -40904425.97421 2309 2284 1513867.397816 2376 2284 1.169741153717e-06 2377 2284 -20033981.96478 2378 2284 -694433.6992575 2379 2284 -9166666.66968 2380 2284 -17525889.09577 2381 2284 9288189.074786 2394 2284 1.966953277588e-06 2395 2284 29052683.00161 2396 2284 -2777734.795662 2397 2284 -2.190470695496e-06 2398 2284 -42818438.03636 2399 2284 37305534.05859 2415 2284 -1.445412635803e-06 2416 2284 -20441974.38895 2417 2284 -694433.6992576 2418 2284 9166666.669678 2419 2284 -17633805.76247 2420 2284 9357633.519253 2285 2285 616797415.4266 2286 2285 231485.0634536 2287 2285 5555469.588581 2288 2285 82852085.35441 2304 2285 -462970.1266864 2305 2285 -2777734.795656 2306 2285 44192040.0554 2307 2285 -2737270.309063 2308 2285 1541645.175575 2309 2285 -6819846.696327 2376 2285 44746063.01646 2377 2285 -694433.6992574 2378 2285 -58719220.64359 2379 2285 11841897.70428 2380 2285 9288189.074786 2381 2285 -21171048.60074 2394 2285 231485.0634617 2395 2285 -2777734.795662 2396 2285 -127043423.7988 2397 2285 57871.26589543 2398 2285 37277756.28083 2399 2285 -57757921.43384 2415 2285 -44977548.07992 2416 2285 -694433.6992576 2417 2285 -59807200.44138 2418 2285 -11899768.97017 2419 2285 9357633.519253 2420 2285 -21458826.37861 2286 2286 626081101.6128 2287 2286 7.033348083496e-06 2288 2286 925940.2533548 2289 2286 85765730.61463 2290 2286 -3.814697265625e-06 2291 2286 231485.0634534 2304 2286 -51881527.1465 2305 2286 -36666666.66065 2306 2286 2505785.245605 2307 2286 -136819701.2443 2308 2286 9.089708328247e-07 2309 2286 -462970.1266867 2310 2286 -51905201.38891 2311 2286 36666666.66065 2312 2286 -2702548.086863 2376 2286 -18752053.59425 2377 2286 9166666.66968 2378 2286 10539814.37052 2379 2286 -60367636.82651 2380 2286 1.877546310425e-06 2381 2286 44780785.23866 2382 2286 -20276082.95081 2383 2286 -9166666.66968 2384 2286 11841897.70428 2394 2286 -1865379.213624 2395 2286 8.79168510437e-07 2396 2286 57871.26589221 2397 2286 51054233.83102 2398 2286 1.788139343262e-06 2399 2286 231485.0634618 2400 2286 -7985170.87927 2401 2286 -2.771615982056e-06 2402 2286 57871.2658952 2415 2286 -18848133.13973 2416 2286 -9166666.66968 2417 2286 -10597685.63642 2418 2286 -60775629.25067 2419 2286 -1.214444637299e-06 2420 2286 -45012270.30212 2421 2286 -20383999.6175 2422 2286 9166666.669679 2423 2286 -11899768.97017 2287 2287 538074898.3386 2288 2287 -11110939.17715 2289 2287 -2.861022949219e-06 2290 2287 -53567337.94508 2291 2287 5555469.588581 2304 2287 -36666666.66065 2305 2287 -40880751.7318 2306 2287 1263867.397843 2307 2287 9.685754776001e-07 2308 2287 24514918.12315 2309 2287 -2777734.795656 2310 2287 36666666.66065 2311 2287 -40904425.97421 2312 2287 1513867.397816 2376 2287 9166666.66968 2377 2287 -16001859.73922 2378 2287 -8593755.37553 2379 2287 1.169741153717e-06 2380 2287 -20033981.96478 2381 2287 -694433.6992575 2382 2287 -9166666.66968 2383 2287 -17525889.09577 2384 2287 9288189.074786 2394 2287 1.229345798492e-06 2395 2287 -36698646.37071 2396 2287 -34527799.26293 2397 2287 1.966953277588e-06 2398 2287 29052683.00161 2399 2287 -2777734.795662 2400 2287 -2.190470695496e-06 2401 2287 -42818438.03636 2402 2287 37305534.05859 2415 2287 -9166666.669679 2416 2287 -16097939.2847 2417 2287 -8663199.819997 2418 2287 -1.445412635803e-06 2419 2287 -20441974.38895 2420 2287 -694433.6992576 2421 2287 9166666.669678 2422 2287 -17633805.76247 2423 2287 9357633.519253 2288 2288 616797415.4266 2289 2288 231485.0634536 2290 2288 5555469.588581 2291 2288 82852085.35441 2304 2288 2471063.023406 2305 2288 1236089.620084 2306 2288 -6756715.38321 2307 2288 -462970.1266864 2308 2288 -2777734.795656 2309 2288 44192040.0554 2310 2288 -2737270.309063 2311 2288 1541645.175575 2312 2288 -6819846.696327 2376 2288 10539814.37052 2377 2288 -8593755.37553 2378 2288 -17106970.31658 2379 2288 44746063.01646 2380 2288 -694433.6992574 2381 2288 -58719220.64359 2382 2288 11841897.70428 2383 2288 9288189.074786 2384 2288 -21171048.60074 2394 2288 57871.26589252 2395 2288 -34500021.48517 2396 2288 -41438476.99211 2397 2288 231485.0634617 2398 2288 -2777734.795662 2399 2288 -127043423.7988 2400 2288 57871.26589543 2401 2288 37277756.28083 2402 2288 -57757921.43384 2415 2288 -10597685.63642 2416 2288 -8663199.819997 2417 2288 -17363182.43788 2418 2288 -44977548.07992 2419 2288 -694433.6992576 2420 2288 -59807200.44138 2421 2288 -11899768.97017 2422 2288 9357633.519253 2423 2288 -21458826.37861 2289 2289 626081101.6128 2290 2289 7.033348083496e-06 2291 2289 925940.2533548 2292 2289 85765730.61463 2293 2289 -3.814697265625e-06 2294 2289 231485.0634534 2307 2289 -51881527.1465 2308 2289 -36666666.66065 2309 2289 2505785.245605 2310 2289 -136819701.2443 2311 2289 9.089708328247e-07 2312 2289 -462970.1266867 2313 2289 -51905201.38891 2314 2289 36666666.66065 2315 2289 -2702548.086863 2379 2289 -18752053.59425 2380 2289 9166666.66968 2381 2289 10539814.37052 2382 2289 -60367636.82651 2383 2289 1.877546310425e-06 2384 2289 44780785.23866 2385 2289 -20276082.95081 2386 2289 -9166666.66968 2387 2289 11841897.70428 2397 2289 -1865379.213624 2398 2289 8.79168510437e-07 2399 2289 57871.26589221 2400 2289 51054233.83102 2401 2289 1.788139343262e-06 2402 2289 231485.0634618 2403 2289 -7985170.87927 2404 2289 -2.771615982056e-06 2405 2289 57871.2658952 2418 2289 -18848133.13973 2419 2289 -9166666.66968 2420 2289 -10597685.63642 2421 2289 -60775629.25067 2422 2289 -1.214444637299e-06 2423 2289 -45012270.30212 2424 2289 -20383999.6175 2425 2289 9166666.669679 2426 2289 -11899768.97017 2290 2290 538074898.3386 2291 2290 -11110939.17715 2292 2290 -2.861022949219e-06 2293 2290 -53567337.94508 2294 2290 5555469.588581 2307 2290 -36666666.66065 2308 2290 -40880751.7318 2309 2290 1263867.397843 2310 2290 9.685754776001e-07 2311 2290 24514918.12315 2312 2290 -2777734.795656 2313 2290 36666666.66065 2314 2290 -40904425.97421 2315 2290 1513867.397816 2379 2290 9166666.66968 2380 2290 -16001859.73922 2381 2290 -8593755.37553 2382 2290 1.169741153717e-06 2383 2290 -20033981.96478 2384 2290 -694433.6992575 2385 2290 -9166666.66968 2386 2290 -17525889.09577 2387 2290 9288189.074786 2397 2290 1.229345798492e-06 2398 2290 -36698646.37071 2399 2290 -34527799.26293 2400 2290 1.966953277588e-06 2401 2290 29052683.00161 2402 2290 -2777734.795662 2403 2290 -2.190470695496e-06 2404 2290 -42818438.03636 2405 2290 37305534.05859 2418 2290 -9166666.669679 2419 2290 -16097939.2847 2420 2290 -8663199.819997 2421 2290 -1.445412635803e-06 2422 2290 -20441974.38895 2423 2290 -694433.6992576 2424 2290 9166666.669678 2425 2290 -17633805.76247 2426 2290 9357633.519253 2291 2291 616797415.4266 2292 2291 231485.0634536 2293 2291 5555469.588581 2294 2291 82852085.35441 2307 2291 2471063.023406 2308 2291 1236089.620084 2309 2291 -6756715.38321 2310 2291 -462970.1266864 2311 2291 -2777734.795656 2312 2291 44192040.0554 2313 2291 -2737270.309063 2314 2291 1541645.175575 2315 2291 -6819846.696327 2379 2291 10539814.37052 2380 2291 -8593755.37553 2381 2291 -17106970.31658 2382 2291 44746063.01646 2383 2291 -694433.6992574 2384 2291 -58719220.64359 2385 2291 11841897.70428 2386 2291 9288189.074786 2387 2291 -21171048.60074 2397 2291 57871.26589252 2398 2291 -34500021.48517 2399 2291 -41438476.99211 2400 2291 231485.0634617 2401 2291 -2777734.795662 2402 2291 -127043423.7988 2403 2291 57871.26589543 2404 2291 37277756.28083 2405 2291 -57757921.43384 2418 2291 -10597685.63642 2419 2291 -8663199.819997 2420 2291 -17363182.43788 2421 2291 -44977548.07992 2422 2291 -694433.6992576 2423 2291 -59807200.44138 2424 2291 -11899768.97017 2425 2291 9357633.519253 2426 2291 -21458826.37861 2292 2292 626081101.6128 2293 2292 7.033348083496e-06 2294 2292 925940.2533548 2295 2292 85765730.61463 2296 2292 -3.814697265625e-06 2297 2292 231485.0634534 2310 2292 -51881527.1465 2311 2292 -36666666.66065 2312 2292 2505785.245605 2313 2292 -136819701.2443 2314 2292 9.089708328247e-07 2315 2292 -462970.1266867 2316 2292 -51905201.38891 2317 2292 36666666.66065 2318 2292 -2702548.086863 2382 2292 -18752053.59425 2383 2292 9166666.66968 2384 2292 10539814.37052 2385 2292 -60367636.82651 2386 2292 1.877546310425e-06 2387 2292 44780785.23866 2388 2292 -20276082.95081 2389 2292 -9166666.66968 2390 2292 11841897.70428 2400 2292 -1865379.213624 2401 2292 8.79168510437e-07 2402 2292 57871.26589221 2403 2292 51054233.83102 2404 2292 1.788139343262e-06 2405 2292 231485.0634618 2406 2292 -7985170.87927 2407 2292 -2.771615982056e-06 2408 2292 57871.2658952 2421 2292 -18848133.13973 2422 2292 -9166666.66968 2423 2292 -10597685.63642 2424 2292 -60775629.25067 2425 2292 -1.214444637299e-06 2426 2292 -45012270.30212 2427 2292 -20383999.6175 2428 2292 9166666.669679 2429 2292 -11899768.97017 2293 2293 538074898.3386 2294 2293 -11110939.17715 2295 2293 -2.861022949219e-06 2296 2293 -53567337.94508 2297 2293 5555469.588581 2310 2293 -36666666.66065 2311 2293 -40880751.7318 2312 2293 1263867.397843 2313 2293 9.685754776001e-07 2314 2293 24514918.12315 2315 2293 -2777734.795656 2316 2293 36666666.66065 2317 2293 -40904425.97421 2318 2293 1513867.397816 2382 2293 9166666.66968 2383 2293 -16001859.73922 2384 2293 -8593755.37553 2385 2293 1.169741153717e-06 2386 2293 -20033981.96478 2387 2293 -694433.6992575 2388 2293 -9166666.66968 2389 2293 -17525889.09577 2390 2293 9288189.074786 2400 2293 1.229345798492e-06 2401 2293 -36698646.37071 2402 2293 -34527799.26293 2403 2293 1.966953277588e-06 2404 2293 29052683.00161 2405 2293 -2777734.795662 2406 2293 -2.190470695496e-06 2407 2293 -42818438.03636 2408 2293 37305534.05859 2421 2293 -9166666.669679 2422 2293 -16097939.2847 2423 2293 -8663199.819997 2424 2293 -1.445412635803e-06 2425 2293 -20441974.38895 2426 2293 -694433.6992576 2427 2293 9166666.669678 2428 2293 -17633805.76247 2429 2293 9357633.519253 2294 2294 616797415.4266 2295 2294 231485.0634536 2296 2294 5555469.588581 2297 2294 82852085.35441 2310 2294 2471063.023406 2311 2294 1236089.620084 2312 2294 -6756715.38321 2313 2294 -462970.1266864 2314 2294 -2777734.795656 2315 2294 44192040.0554 2316 2294 -2737270.309063 2317 2294 1541645.175575 2318 2294 -6819846.696327 2382 2294 10539814.37052 2383 2294 -8593755.37553 2384 2294 -17106970.31658 2385 2294 44746063.01646 2386 2294 -694433.6992574 2387 2294 -58719220.64359 2388 2294 11841897.70428 2389 2294 9288189.074786 2390 2294 -21171048.60074 2400 2294 57871.26589252 2401 2294 -34500021.48517 2402 2294 -41438476.99211 2403 2294 231485.0634617 2404 2294 -2777734.795662 2405 2294 -127043423.7988 2406 2294 57871.26589543 2407 2294 37277756.28083 2408 2294 -57757921.43384 2421 2294 -10597685.63642 2422 2294 -8663199.819997 2423 2294 -17363182.43788 2424 2294 -44977548.07992 2425 2294 -694433.6992576 2426 2294 -59807200.44138 2427 2294 -11899768.97017 2428 2294 9357633.519253 2429 2294 -21458826.37861 2295 2295 626081101.6128 2296 2295 7.033348083496e-06 2297 2295 925940.2533548 2298 2295 85765730.61463 2299 2295 -3.814697265625e-06 2300 2295 231485.0634534 2313 2295 -51881527.1465 2314 2295 -36666666.66065 2315 2295 2505785.245605 2316 2295 -136819701.2443 2317 2295 9.089708328247e-07 2318 2295 -462970.1266867 2319 2295 -51905201.38891 2320 2295 36666666.66065 2321 2295 -2702548.086863 2385 2295 -18752053.59425 2386 2295 9166666.66968 2387 2295 10539814.37052 2388 2295 -60367636.82651 2389 2295 1.877546310425e-06 2390 2295 44780785.23866 2391 2295 -20276082.95081 2392 2295 -9166666.66968 2393 2295 11841897.70428 2403 2295 -1865379.213624 2404 2295 8.79168510437e-07 2405 2295 57871.26589221 2406 2295 51054233.83102 2407 2295 1.788139343262e-06 2408 2295 231485.0634618 2409 2295 -7985170.87927 2410 2295 -2.771615982056e-06 2411 2295 57871.2658952 2424 2295 -18848133.13973 2425 2295 -9166666.66968 2426 2295 -10597685.63642 2427 2295 -60775629.25067 2428 2295 -1.214444637299e-06 2429 2295 -45012270.30212 2430 2295 -20383999.6175 2431 2295 9166666.669679 2432 2295 -11899768.97017 2296 2296 538074898.3386 2297 2296 -11110939.17715 2298 2296 -2.861022949219e-06 2299 2296 -53567337.94508 2300 2296 5555469.588581 2313 2296 -36666666.66065 2314 2296 -40880751.7318 2315 2296 1263867.397843 2316 2296 9.685754776001e-07 2317 2296 24514918.12315 2318 2296 -2777734.795656 2319 2296 36666666.66065 2320 2296 -40904425.97421 2321 2296 1513867.397816 2385 2296 9166666.66968 2386 2296 -16001859.73922 2387 2296 -8593755.37553 2388 2296 1.169741153717e-06 2389 2296 -20033981.96478 2390 2296 -694433.6992575 2391 2296 -9166666.66968 2392 2296 -17525889.09577 2393 2296 9288189.074786 2403 2296 1.229345798492e-06 2404 2296 -36698646.37071 2405 2296 -34527799.26293 2406 2296 1.966953277588e-06 2407 2296 29052683.00161 2408 2296 -2777734.795662 2409 2296 -2.190470695496e-06 2410 2296 -42818438.03636 2411 2296 37305534.05859 2424 2296 -9166666.669679 2425 2296 -16097939.2847 2426 2296 -8663199.819997 2427 2296 -1.445412635803e-06 2428 2296 -20441974.38895 2429 2296 -694433.6992576 2430 2296 9166666.669678 2431 2296 -17633805.76247 2432 2296 9357633.519253 2297 2297 616797415.4266 2298 2297 231485.0634536 2299 2297 5555469.588581 2300 2297 82852085.35441 2313 2297 2471063.023406 2314 2297 1236089.620084 2315 2297 -6756715.38321 2316 2297 -462970.1266864 2317 2297 -2777734.795656 2318 2297 44192040.0554 2319 2297 -2737270.309063 2320 2297 1541645.175575 2321 2297 -6819846.696327 2385 2297 10539814.37052 2386 2297 -8593755.37553 2387 2297 -17106970.31658 2388 2297 44746063.01646 2389 2297 -694433.6992574 2390 2297 -58719220.64359 2391 2297 11841897.70428 2392 2297 9288189.074786 2393 2297 -21171048.60074 2403 2297 57871.26589252 2404 2297 -34500021.48517 2405 2297 -41438476.99211 2406 2297 231485.0634617 2407 2297 -2777734.795662 2408 2297 -127043423.7988 2409 2297 57871.26589543 2410 2297 37277756.28083 2411 2297 -57757921.43384 2424 2297 -10597685.63642 2425 2297 -8663199.819997 2426 2297 -17363182.43788 2427 2297 -44977548.07992 2428 2297 -694433.6992576 2429 2297 -59807200.44138 2430 2297 -11899768.97017 2431 2297 9357633.519253 2432 2297 -21458826.37861 2298 2298 527732996.6747 2299 2298 15448105.76131 2300 2298 1352554.552373 2301 2298 -95118417.26927 2302 2298 -75446126.04139 2303 2298 1021640.575356 2316 2298 -51881527.1465 2317 2298 -36666666.66065 2318 2298 2505785.245605 2319 2298 -86033365.36057 2320 2298 24063656.22554 2321 2298 -110868.0321211 2322 2298 -45738405.09723 2323 2298 10794709.95026 2324 2298 -181650.9566633 2388 2298 -18752053.59425 2389 2298 9166666.66968 2390 2298 10539814.37052 2391 2298 -28689005.84703 2392 2298 6543380.659943 2393 2298 25399000.74626 2406 2298 -1865379.213624 2407 2298 8.79168510437e-07 2408 2298 57871.26589221 2409 2298 60544850.76444 2410 2298 3603652.033654 2411 2298 165256.0848025 2412 2298 -36046786.41637 2413 2298 -18861624.24183 2414 2298 11409584.46838 2427 2298 -18848133.13973 2428 2298 -9166666.66968 2429 2298 -10597685.63642 2430 2298 -45324581.42976 2431 2298 6015914.059347 2432 2298 -35313654.50317 2433 2298 -18251664.62718 2434 2298 2698677.488894 2435 2298 -1659648.850827 2299 2299 645529474.5711 2300 2299 -7340875.469264 2301 2299 -75447987.63776 2302 2299 -250794612.1175 2303 2299 1665730.961277 2316 2299 -36666666.66065 2317 2299 -40880751.7318 2318 2299 1263867.397843 2319 2299 24063656.22554 2320 2299 19704498.54099 2321 2299 -1263948.6007 2322 2299 10794709.95026 2323 2299 -140802296.2262 2324 2299 1044821.700929 2388 2299 9166666.66968 2389 2299 -16001859.73922 2390 2299 -8593755.37553 2391 2299 6543892.420133 2392 2299 7329486.591774 2393 2299 -6861432.291434 2406 2299 1.229345798492e-06 2407 2299 -36698646.37071 2408 2299 -34527799.26293 2409 2299 3603652.033653 2410 2299 90110247.58946 2411 2299 -1973524.931692 2412 2299 -18862136.00203 2413 2299 -74966289.42761 2414 2299 36320757.18761 2427 2299 -9166666.669679 2428 2299 -16097939.2847 2429 2299 -8663199.819997 2430 2299 6015914.059347 2431 2299 -18890115.44135 2432 2299 7371512.847656 2433 2299 2698677.488894 2434 2299 -42017637.42113 2435 2299 16927872.0975 2300 2300 521231498.0717 2301 2300 1195273.597041 2302 2300 1943417.199096 2303 2300 -60590062.19069 2316 2300 2471063.023406 2317 2300 1236089.620084 2318 2300 -6756715.38321 2319 2300 -978923.5875342 2320 2300 -1291726.378473 2321 2300 48623486.51979 2322 2300 -251095.4010623 2323 2300 1044821.700929 2324 2300 -32250770.90951 2388 2300 10539814.37052 2389 2300 -8593755.37553 2390 2300 -17106970.31658 2391 2300 25572605.62664 2392 2300 -6888721.711543 2393 2300 -25919946.39859 2406 2300 57871.26589252 2407 2300 -34500021.48517 2408 2300 -41438476.99211 2409 2300 165435.1762095 2410 2300 -1973381.627549 2411 2300 -58670256.12405 2412 2300 11409680.57863 2413 2300 36320340.74991 2414 2300 -47859546.84135 2427 2300 -10597685.63642 2428 2300 -8663199.819997 2429 2300 -17363182.43788 2430 2300 -35487265.61249 2431 2300 7371512.849165 2432 2300 -51354101.90813 2433 2300 -1659648.850827 2434 2300 16927872.0975 2435 2300 -26241528.32399 2301 2301 554169247.361 2302 2301 17054543.77992 2303 2301 -724142.721697 2319 2301 -53262133.98087 2320 2301 -32705759.54262 2321 2301 337518.2011556 2322 2301 32602470.69165 2323 2301 38583743.86768 2324 2301 -359703.7745384 2325 2301 64359455.48084 2326 2301 -20425982.4884 2327 2301 54703.41451001 2328 2301 -1281086.858114 2329 2301 28935857.23927 2330 2301 -17471.873625 2391 2301 -53458391.75147 2392 2301 11001535.28419 2393 2301 1822748.871423 2409 2301 -35172500.00353 2410 2301 -18862136.00203 2411 2301 -11029051.06911 2412 2301 35790640.60615 2413 2301 4298038.396794 2414 2301 8759735.736302 2430 2301 -19804774.09007 2431 2301 -8176439.889684 2432 2301 -11139057.95335 2433 2301 -41703527.98086 2434 2301 9670377.580278 2435 2301 -43908768.3245 2436 2301 -23096419.85021 2437 2301 -5140898.074326 2438 2301 13676758.60085 2439 2301 -17236872.81083 2440 2301 7209522.704775 2441 2301 -10716254.75056 2302 2302 958321698.0947 2303 2302 -5799304.02044 2319 2302 -32705759.54262 2320 2302 -17400227.63301 2321 2302 -74400.58715915 2322 2302 38583743.86768 2323 2302 160574469.7587 2324 2302 -573061.2585385 2325 2302 -5759315.824143 2326 2302 -6251510.530391 2327 2302 57494.78903285 2328 2302 28935857.23927 2329 2302 -23536130.61164 2330 2302 70574.01604483 2391 2302 7334356.856125 2392 2302 -141384271.5067 2393 2302 -15223117.05093 2409 2302 -18861624.24184 2410 2302 -74092003.01479 2411 2302 -35487648.98173 2412 2302 4298038.396793 2413 2302 144981214.6301 2414 2302 -898589.0163781 2430 2302 -8176439.889684 2431 2302 -10839297.49869 2432 2302 -8997766.816414 2433 2302 9670377.580277 2434 2302 -9734323.79071 2435 2302 7544152.626836 2436 2302 -1474231.406454 2437 2302 -40740840.42931 2438 2302 33347738.67704 2439 2302 7209522.704775 2440 2302 -22872324.27073 2441 2302 16684392.2326 2303 2303 717409238.0425 2319 2303 302795.9789559 2320 2303 -102178.3649187 2321 2303 -626812.8042064 2322 2303 -568037.1078372 2323 2303 -600839.0363119 2324 2303 193914115.0064 2325 2303 -49463.25213635 2326 2303 57494.78903276 2327 2303 126494909.3007 2328 2303 -121638.5402918 2329 2303 70574.01604487 2330 2303 41206555.57713 2391 2303 1215165.914282 2392 2303 -15709313.95751 2393 2303 -54629831.58199 2409 2303 -11028968.11405 2410 2303 -35488091.42098 2411 2303 -45528116.40711 2412 2303 -8774708.705263 2413 2303 -1927368.836544 2414 2303 -102472943.4706 2430 2303 -11139057.95335 2431 2303 -8997766.816414 2432 2303 -17461344.76991 2433 2303 -43908768.32454 2434 2303 7544152.628345 2435 2303 -84665181.10733 2436 2303 5551758.600068 2437 2303 33347738.67704 2438 2303 -72767413.37603 2439 2303 -10716254.75056 2440 2303 16684392.2326 2441 2303 -34960091.63584 2304 2304 313040550.8064 2305 2304 3.218650817871e-06 2306 2304 462970.1266764 2307 2304 42883259.87802 2308 2304 7333333.332129 2309 2304 -318285.2460207 2394 2304 -60367636.82651 2395 2304 1.877546310425e-06 2396 2304 44780785.23866 2397 2304 -20276082.95081 2398 2304 -9166666.66968 2399 2304 11841897.70428 2415 2304 25526722.3448 2416 2304 -5.960464477539e-08 2417 2304 -8946896.355626 2418 2304 -3992585.439634 2419 2304 1833333.333934 2420 2304 -2345231.034498 2305 2305 269037449.1693 2306 2305 -5555469.588573 2307 2305 -7333333.332131 2308 2305 -26783274.40183 2309 2305 2749957.016519 2394 2305 1.169741153717e-06 2395 2305 -20033981.96478 2396 2305 -694433.6992575 2397 2305 -9166666.66968 2398 2305 -17525889.09577 2399 2305 9288189.074786 2415 2305 6.556510925293e-07 2416 2305 14525946.9301 2417 2305 -1388867.397833 2418 2305 -1833333.333937 2419 2305 -21409219.01818 2420 2305 18645822.58485 2306 2306 308398707.7133 2307 2306 723381.420473 2308 2306 2805512.572065 2309 2306 41427094.86576 2394 2306 44746063.01646 2395 2306 -694433.6992574 2396 2306 -58719220.64359 2397 2306 11841897.70428 2398 2306 9288189.074786 2399 2306 -21171048.60074 2415 2306 9004770.308089 2416 2306 -1388867.397833 2417 2306 -63522764.08798 2418 2306 2403102.300394 2419 2306 18645822.58486 2420 2306 -28878960.71692 2307 2307 313040550.8064 2308 2307 3.218650817871e-06 2309 2307 462970.1266764 2310 2307 42883259.87802 2311 2307 7333333.332129 2312 2307 -318285.2460207 2394 2307 -18752053.59425 2395 2307 9166666.66968 2396 2307 10539814.37052 2397 2307 -60367636.82651 2398 2307 1.877546310425e-06 2399 2307 44780785.23866 2400 2307 -20276082.95081 2401 2307 -9166666.66968 2402 2307 11841897.70428 2415 2307 -932689.6068121 2416 2307 -1833333.333935 2417 2307 -2084814.367748 2418 2307 25526722.3448 2419 2307 -5.960464477539e-08 2420 2307 -8946896.355626 2421 2307 -3992585.439634 2422 2307 1833333.333934 2423 2307 -2345231.034498 2308 2308 269037449.1693 2309 2308 -5555469.588573 2310 2308 -7333333.332131 2311 2308 -26783274.40183 2312 2308 2749957.016519 2394 2308 9166666.66968 2395 2308 -16001859.73922 2396 2308 -8593755.37553 2397 2308 1.169741153717e-06 2398 2308 -20033981.96478 2399 2308 -694433.6992575 2400 2308 -9166666.66968 2401 2308 -17525889.09577 2402 2308 9288189.074786 2415 2308 1833333.333937 2416 2308 -18349323.18536 2417 2308 -17256955.18702 2418 2308 6.556510925293e-07 2419 2308 14525946.9301 2420 2308 -1388867.397833 2421 2308 -1833333.333937 2422 2308 -21409219.01818 2423 2308 18645822.58485 2309 2309 308398707.7133 2310 2309 723381.420473 2311 2309 2805512.572065 2312 2309 41427094.86576 2394 2309 10539814.37052 2395 2309 -8593755.37553 2396 2309 -17106970.31658 2397 2309 44746063.01646 2398 2309 -694433.6992574 2399 2309 -58719220.64359 2400 2309 11841897.70428 2401 2309 9288189.074786 2402 2309 -21171048.60074 2415 2309 2142685.63364 2416 2309 -17256955.18703 2417 2309 -20719238.49606 2418 2309 9004770.308089 2419 2309 -1388867.397833 2420 2309 -63522764.08798 2421 2309 2403102.300394 2422 2309 18645822.58486 2423 2309 -28878960.71692 2310 2310 313040550.8064 2311 2310 3.218650817871e-06 2312 2310 462970.1266764 2313 2310 42883259.87802 2314 2310 7333333.332129 2315 2310 -318285.2460207 2397 2310 -18752053.59425 2398 2310 9166666.66968 2399 2310 10539814.37052 2400 2310 -60367636.82651 2401 2310 1.877546310425e-06 2402 2310 44780785.23866 2403 2310 -20276082.95081 2404 2310 -9166666.66968 2405 2310 11841897.70428 2418 2310 -932689.6068121 2419 2310 -1833333.333935 2420 2310 -2084814.367748 2421 2310 25526722.3448 2422 2310 -5.960464477539e-08 2423 2310 -8946896.355626 2424 2310 -3992585.439634 2425 2310 1833333.333934 2426 2310 -2345231.034498 2311 2311 269037449.1693 2312 2311 -5555469.588573 2313 2311 -7333333.332131 2314 2311 -26783274.40183 2315 2311 2749957.016519 2397 2311 9166666.66968 2398 2311 -16001859.73922 2399 2311 -8593755.37553 2400 2311 1.169741153717e-06 2401 2311 -20033981.96478 2402 2311 -694433.6992575 2403 2311 -9166666.66968 2404 2311 -17525889.09577 2405 2311 9288189.074786 2418 2311 1833333.333937 2419 2311 -18349323.18536 2420 2311 -17256955.18702 2421 2311 6.556510925293e-07 2422 2311 14525946.9301 2423 2311 -1388867.397833 2424 2311 -1833333.333937 2425 2311 -21409219.01818 2426 2311 18645822.58485 2312 2312 308398707.7133 2313 2312 723381.420473 2314 2312 2805512.572065 2315 2312 41427094.86576 2397 2312 10539814.37052 2398 2312 -8593755.37553 2399 2312 -17106970.31658 2400 2312 44746063.01646 2401 2312 -694433.6992574 2402 2312 -58719220.64359 2403 2312 11841897.70428 2404 2312 9288189.074786 2405 2312 -21171048.60074 2418 2312 2142685.63364 2419 2312 -17256955.18703 2420 2312 -20719238.49606 2421 2312 9004770.308089 2422 2312 -1388867.397833 2423 2312 -63522764.08798 2424 2312 2403102.300394 2425 2312 18645822.58486 2426 2312 -28878960.71692 2313 2313 313040550.8064 2314 2313 3.218650817871e-06 2315 2313 462970.1266764 2316 2313 42883259.87802 2317 2313 7333333.332129 2318 2313 -318285.2460207 2400 2313 -18752053.59425 2401 2313 9166666.66968 2402 2313 10539814.37052 2403 2313 -60367636.82651 2404 2313 1.877546310425e-06 2405 2313 44780785.23866 2406 2313 -20276082.95081 2407 2313 -9166666.66968 2408 2313 11841897.70428 2421 2313 -932689.6068121 2422 2313 -1833333.333935 2423 2313 -2084814.367748 2424 2313 25526722.3448 2425 2313 -5.960464477539e-08 2426 2313 -8946896.355626 2427 2313 -3992585.439634 2428 2313 1833333.333934 2429 2313 -2345231.034498 2314 2314 269037449.1693 2315 2314 -5555469.588573 2316 2314 -7333333.332131 2317 2314 -26783274.40183 2318 2314 2749957.016519 2400 2314 9166666.66968 2401 2314 -16001859.73922 2402 2314 -8593755.37553 2403 2314 1.169741153717e-06 2404 2314 -20033981.96478 2405 2314 -694433.6992575 2406 2314 -9166666.66968 2407 2314 -17525889.09577 2408 2314 9288189.074786 2421 2314 1833333.333937 2422 2314 -18349323.18536 2423 2314 -17256955.18702 2424 2314 6.556510925293e-07 2425 2314 14525946.9301 2426 2314 -1388867.397833 2427 2314 -1833333.333937 2428 2314 -21409219.01818 2429 2314 18645822.58485 2315 2315 308398707.7133 2316 2315 723381.420473 2317 2315 2805512.572065 2318 2315 41427094.86576 2400 2315 10539814.37052 2401 2315 -8593755.37553 2402 2315 -17106970.31658 2403 2315 44746063.01646 2404 2315 -694433.6992574 2405 2315 -58719220.64359 2406 2315 11841897.70428 2407 2315 9288189.074786 2408 2315 -21171048.60074 2421 2315 2142685.63364 2422 2315 -17256955.18703 2423 2315 -20719238.49606 2424 2315 9004770.308089 2425 2315 -1388867.397833 2426 2315 -63522764.08798 2427 2315 2403102.300394 2428 2315 18645822.58486 2429 2315 -28878960.71692 2316 2316 313040550.8064 2317 2316 3.218650817871e-06 2318 2316 462970.1266764 2319 2316 42883259.87802 2320 2316 7333333.332129 2321 2316 -318285.2460207 2403 2316 -18752053.59425 2404 2316 9166666.66968 2405 2316 10539814.37052 2406 2316 -60367636.82651 2407 2316 1.877546310425e-06 2408 2316 44780785.23866 2409 2316 -20276082.95081 2410 2316 -9166666.66968 2411 2316 11841897.70428 2424 2316 -932689.6068121 2425 2316 -1833333.333935 2426 2316 -2084814.367748 2427 2316 25526722.3448 2428 2316 -5.960464477539e-08 2429 2316 -8946896.355626 2430 2316 -3992585.439634 2431 2316 1833333.333934 2432 2316 -2345231.034498 2317 2317 269037449.1693 2318 2317 -5555469.588573 2319 2317 -7333333.332131 2320 2317 -26783274.40183 2321 2317 2749957.016519 2403 2317 9166666.66968 2404 2317 -16001859.73922 2405 2317 -8593755.37553 2406 2317 1.169741153717e-06 2407 2317 -20033981.96478 2408 2317 -694433.6992575 2409 2317 -9166666.66968 2410 2317 -17525889.09577 2411 2317 9288189.074786 2424 2317 1833333.333937 2425 2317 -18349323.18536 2426 2317 -17256955.18702 2427 2317 6.556510925293e-07 2428 2317 14525946.9301 2429 2317 -1388867.397833 2430 2317 -1833333.333937 2431 2317 -21409219.01818 2432 2317 18645822.58485 2318 2318 308398707.7133 2319 2318 723381.420473 2320 2318 2805512.572065 2321 2318 41427094.86576 2403 2318 10539814.37052 2404 2318 -8593755.37553 2405 2318 -17106970.31658 2406 2318 44746063.01646 2407 2318 -694433.6992574 2408 2318 -58719220.64359 2409 2318 11841897.70428 2410 2318 9288189.074786 2411 2318 -21171048.60074 2424 2318 2142685.63364 2425 2318 -17256955.18703 2426 2318 -20719238.49606 2427 2318 9004770.308089 2428 2318 -1388867.397833 2429 2318 -63522764.08798 2430 2318 2403102.300394 2431 2318 18645822.58486 2432 2318 -28878960.71692 2319 2319 311501301.9278 2320 2319 3961702.031803 2321 2319 2461349.04567 2322 2319 -4984022.060376 2323 2319 -24652932.04324 2324 2319 367556.3402904 2406 2319 -18752053.59425 2407 2319 9166666.66968 2408 2319 10539814.37052 2409 2319 -44778234.89159 2410 2319 6015914.059352 2411 2319 35041206.59625 2412 2319 -20008769.25006 2413 2319 -8176439.889681 2414 2319 11299136.49846 2427 2319 -932689.6068121 2428 2319 -1833333.333935 2429 2319 -2084814.367748 2430 2319 25141334.84086 2431 2319 990425.5084367 2432 2319 -8447023.847856 2433 2319 -17627581.50065 2434 2319 -6163233.013846 2435 2319 7435569.639298 2320 2320 292367764.6648 2321 2320 -3560498.398243 2322 2320 -39319598.70751 2323 2320 -68784496.1816 2324 2320 607245.3940165 2406 2320 9166666.66968 2407 2320 -16001859.73922 2408 2320 -8593755.37553 2409 2320 6015914.059351 2410 2320 -18343768.90317 2411 2320 -8010431.594268 2412 2320 -8176439.889681 2413 2320 -11043292.65868 2414 2320 8953622.07837 2427 2320 1833333.333937 2428 2320 -18349323.18536 2429 2320 -17256955.18702 2430 2320 990425.5084375 2431 2320 20357950.52274 2432 2320 -890124.6000073 2433 2320 -9829899.681717 2434 2320 -33577700.03881 2435 2320 25797644.67844 2321 2321 314119300.5055 2322 2321 541167.4513703 2323 2321 635023.1717897 2324 2321 25143014.98303 2406 2321 10539814.37052 2407 2321 -8593755.37553 2408 2321 -17106970.31658 2409 2321 35214817.70936 2410 2321 -8010431.592745 2411 2321 -49897177.80632 2412 2321 11299136.49846 2413 2321 8953622.07837 2414 2321 -18005331.86323 2427 2321 2142685.63364 2428 2321 -17256955.18703 2429 2321 -20719238.49606 2430 2321 9504087.260305 2431 2321 -890124.6000072 2432 2321 -62094149.98014 2433 2321 11975291.86111 2434 2321 25797644.67693 2435 2321 -37398448.87766 2322 2322 355610367.635 2323 2322 44835876.15348 2324 2322 -31361.04836392 2325 2322 -68349309.06932 2326 2322 -44397476.08203 2327 2322 104055.9041087 2328 2322 15311530.47477 2329 2322 -10497255.18188 2330 2322 344159.0905987 2409 2322 -17800014.26928 2410 2322 2698677.488893 2411 2322 1551462.261342 2412 2322 -41550567.91137 2413 2322 9670377.580283 2414 2322 43763453.88329 2430 2322 -16877239.2765 2431 2322 -9829899.681722 2432 2322 -11739430.35753 2433 2322 -5864347.079577 2434 2322 11272333.02856 2435 2322 -8862175.675498 2436 2322 -34156706.14972 2437 2322 -11123810.63458 2438 2322 20338606.37075 2439 2322 -25110571.33565 2440 2322 -2687677.781431 2441 2322 7481972.406576 2323 2323 438246431.0147 2324 2323 -1374381.127417 2325 2323 -44397476.08203 2326 2323 -48686713.94084 2327 2323 70574.01604466 2328 2323 -25163921.84615 2329 2323 -56094761.85019 2330 2323 224801.2750072 2409 2323 2698677.488893 2410 2323 -41565987.06324 2411 2323 -16405461.24678 2412 2323 9670377.580283 2413 2323 -9581363.721229 2414 2323 -7837791.815088 2430 2323 -6163233.01385 2431 2323 -32827357.81467 2432 2323 -25487077.53535 2433 2323 11272333.02856 2434 2323 14803293.44955 2435 2323 -343891.8558928 2436 2323 -11123810.63458 2437 2323 -29217261.77281 2438 2323 16684392.2326 2439 2323 -6354344.449302 2440 2323 -42970769.09971 2441 2323 33389830.22049 2324 2324 485548459.258 2325 2324 104055.9041089 2326 2324 70574.01604465 2327 2324 16055972.24793 2328 2324 309436.8683792 2329 2324 224801.2750072 2330 2324 70129562.94617 2409 2324 1551462.261342 2410 2324 -16405461.24678 2411 2324 -25037127.36958 2412 2324 43763453.88333 2413 2324 -7837791.813566 2414 2324 -84257287.58871 2430 2324 -7303874.802406 2431 2324 -25487077.53687 2432 2324 -35397536.2799 2433 2324 8672268.766067 2434 2324 -343891.8558926 2435 2324 -131666276.7598 2436 2324 20338606.37075 2437 2324 16684392.2326 2438 2324 -41305029.13792 2439 2324 11778916.85432 2440 2324 33389830.22049 2441 2324 -59295265.58963 2325 2325 235127665.6719 2326 2325 49759315.81692 2327 2325 -60490.45165706 2328 2325 -6799933.309191 2329 2325 397476.0892505 2330 2325 5897.799686611 2412 2325 -23001722.8805 2413 2325 -1474231.406455 2414 2325 -5550324.72933 2433 2325 -34062009.18001 2434 2325 -11123810.63458 2435 2325 -20286393.64259 2436 2325 -19349792.24124 2437 2325 12474231.41007 2438 2325 8109815.470699 2439 2325 -35471324.17617 2440 2325 123810.6309668 2441 2325 -31023097.09878 2326 2326 216363631.6977 2327 2326 -57494.78902459 2328 2326 15064142.75351 2329 2326 62912471.54766 2330 2326 -70574.01603854 2412 2326 -5140898.074327 2413 2326 -40646143.4596 2414 2326 -33318927.97868 2433 2326 -11123810.63458 2434 2326 -29122564.8031 2435 2326 -16648941.11168 2436 2326 12474231.41007 2437 2326 -24049121.66948 2438 2326 6652261.316389 2439 2326 3790477.298838 2440 2326 -18067018.54574 2441 2326 3315607.773964 2327 2327 344429080.4936 2328 2327 -98268.86695981 2329 2327 -70574.0160386 2330 2327 111254381.3556 2412 2327 -13675324.7301 2413 2327 -33318927.97868 2414 2327 -72514888.12347 2433 2327 -20286393.64259 2434 2327 -16648941.11168 2435 2327 -41052503.88534 2436 2327 -8140184.526632 2437 2327 -6681072.014753 2438 2327 -122349568.8948 2439 2327 -31023097.10068 2440 2327 -3351058.894892 2441 2327 -62442635.03753 2328 2328 175536156.3728 2329 2328 -18836078.14664 2330 2328 396581.649942 2412 2328 -17142175.84111 2413 2328 7209522.704776 2414 2328 10681661.92314 2433 2328 -24826480.42668 2434 2328 -6354344.449306 2435 2328 -11727749.81249 2436 2328 -35471324.17617 2437 2328 3790477.298842 2438 2328 30999819.5577 2439 2328 -13375171.0781 2440 2328 -4645655.554312 2441 2328 -4310953.890546 2329 2329 199485087.5944 2330 2329 -224801.2749909 2412 2329 7209522.704776 2413 2329 -22777627.30101 2414 2329 -16648941.11168 2433 2329 -2687677.781434 2434 2329 -42686678.19075 2435 2329 -33276836.43523 2436 2329 123810.63097 2437 2329 -18067018.54574 2438 2329 3315607.773964 2439 2329 -4645655.554311 2440 2329 -7283827.484575 2441 2329 6610169.772934 2330 2330 264787277.9352 2412 2330 10681661.92314 2413 2330 -16648941.11168 2414 2330 -34707566.38326 2433 2330 -7465527.586963 2434 2330 -33276836.43523 2435 2330 -58537689.83235 2436 2330 30999819.55581 2437 2330 -3351058.894892 2438 2330 -62442635.03753 2439 2330 4248212.774715 2440 2330 -6723163.558209 2441 2330 -86485846.13902 2331 2331 434188482.4496 2332 2331 42222222.21529 2333 2331 14004257.85694 2334 2331 -237961315.0134 2335 2331 -42232516.70149 2336 2331 -11962465.89917 2337 2331 7955780.401528 2338 2331 33788072.25843 2339 2331 -8749455.084514 2442 2331 66125098.41489 2443 2331 11944444.44837 2444 2331 15207852.8515 2445 2331 -93269248.17781 2446 2331 -11949381.52693 2447 2331 -52618980.4305 2448 2331 -17054654.84265 2449 2331 9560492.637254 2450 2331 -13448143.98712 2332 2332 370839207.457 2333 2332 -27831791.96622 2334 2332 -42237663.94459 2335 2332 -39482381.812 2336 2332 -16655123.83823 2337 2332 50682108.38765 2338 2332 7955780.401527 2339 2332 11010768.51444 2442 2332 11944444.44837 2443 2332 48201681.39244 2444 2332 -5082672.97723 2445 2332 -11951850.06621 2446 2332 -37114294.87206 2447 2332 -16826932.79813 2448 2332 14340738.95588 2449 2332 -17054654.84265 2450 2332 16137388.124 2333 2333 400035038.4858 2334 2333 -10941569.92029 2335 2333 -13223756.5556 2336 2333 -11892250.19807 2337 2333 -13124182.62677 2338 2333 7340512.342961 2339 2333 21215414.40408 2442 2333 -3762599.703372 2443 2333 -20258812.61341 2444 2333 -38071476.41094 2445 2333 -52354091.66514 2446 2333 -15346414.53585 2447 2333 -72544459.24024 2448 2333 -20172215.98068 2449 2333 10758258.74933 2450 2333 -45479079.58041 2334 2334 753320607.0872 2335 2334 42247958.4308 2336 2334 13425270.63193 2337 2334 10687201.53391 2338 2334 -42232516.7015 2339 2334 11747147.69675 2340 2334 -163051082.2809 2341 2334 4.857778549194e-06 2342 2334 -2497714.891996 2343 2334 -63439558.95712 2344 2334 42222222.21529 2345 2334 -11747692.6104 2442 2334 -83208406.42019 2443 2334 -11951850.06621 2444 2334 42498171.10922 2445 2334 125282026.2887 2446 2334 11956787.14478 2447 2334 5935098.98454 2448 2334 -32275376.32772 2449 2334 -11949381.52693 2450 2334 17028332.3953 2451 2334 -71083613.53293 2452 2334 2.801418304443e-06 2453 2334 -48425475.84218 2454 2334 -29334356.73017 2455 2334 11944444.44836 2456 2334 -17021299.52369 2335 2335 639301177.7705 2336 2335 -37037050.15144 2337 2335 -42237663.9446 2338 2335 -137109995.2621 2339 2335 20238494.1063 2340 2335 3.516674041748e-06 2341 2335 22728141.58569 2342 2335 -11944266.20381 2343 2335 42222222.21529 2344 2335 -50772020.36985 2345 2335 6611021.990771 2442 2335 -11949381.52693 2443 2335 -27053453.11441 2444 2335 3626698.329752 2445 2335 11956787.14477 2446 2335 93024319.31714 2447 2335 -16362810.24847 2448 2335 -11951850.06621 2449 2335 -74090485.10009 2450 2335 46808583.40323 2451 2335 2.488493919373e-06 2452 2335 -18527661.31289 2453 2335 -5277700.460655 2454 2335 11944444.44836 2455 2335 -25750784.24113 2456 2335 12385378.01131 2336 2336 644924144.2682 2337 2336 11642708.57308 2338 2336 22769593.39294 2339 2336 12096388.9117 2340 2336 -1483826.003273 2341 2336 -11944266.20381 2342 2336 36217937.62672 2343 2336 -11643525.94355 2344 2336 6527688.657292 2345 2336 -17639683.8315 2442 2336 42233282.34386 2443 2336 2150097.608279 2444 2336 -45715547.88649 2445 2336 5939995.986973 2446 2336 -16358892.70393 2447 2336 -51790570.05088 2448 2336 17031848.8311 2449 2336 48076086.23075 2450 2336 -90703859.27092 2451 2336 -48161586.95346 2452 2336 -5277700.460655 2453 2336 -56307063.72196 2454 2336 -17021299.52369 2455 2336 12385378.01131 2456 2336 -35357225.93349 2337 2337 434188482.4496 2338 2337 42222222.21529 2339 2337 14004257.85694 2340 2337 -62903012.53369 2341 2337 -42222222.21529 2342 2337 10648140.71925 2343 2337 -237961315.0134 2344 2337 -42232516.70149 2345 2337 -11962465.89917 2346 2337 7955780.401528 2347 2337 33788072.25843 2348 2337 -8749455.084514 2442 2337 1810230.00851 2443 2337 14340738.95588 2444 2337 8290807.874965 2445 2337 -3359294.569133 2446 2337 -11951850.06621 2447 2337 -6689786.134111 2448 2337 66125098.41489 2449 2337 11944444.44837 2450 2337 15207852.8515 2451 2337 -19644494.8084 2452 2337 -11944444.44837 2453 2337 -7125466.187114 2454 2337 -93269248.17781 2455 2337 -11949381.52693 2456 2337 -52618980.4305 2457 2337 -17054654.84265 2458 2337 9560492.637254 2459 2337 -13448143.98712 2338 2338 370839207.457 2339 2338 -27831791.96622 2340 2338 -42222222.21529 2341 2338 -50235473.94641 2342 2338 5333244.213044 2343 2338 -42237663.94459 2344 2338 -39482381.812 2345 2338 -16655123.83823 2346 2338 50682108.38765 2347 2338 7955780.401527 2348 2338 11010768.51444 2442 2338 9560492.637254 2443 2338 1810230.008509 2444 2338 -4421798.559475 2445 2338 -11949381.52693 2446 2338 -45174403.34149 2447 2338 -27804612.20634 2448 2338 11944444.44837 2449 2338 48201681.39244 2450 2338 -5082672.97723 2451 2338 -11944444.44836 2452 2338 -16060922.31935 2453 2338 -7107677.550651 2454 2338 -11951850.06621 2455 2338 -37114294.87206 2456 2338 -16826932.79813 2457 2338 14340738.95588 2458 2338 -17054654.84265 2459 2338 16137388.124 2339 2339 400035038.4858 2340 2339 10752307.38609 2341 2339 5416577.546522 2342 2339 -16208893.36898 2343 2339 -10941569.92029 2344 2339 -13223756.5556 2345 2339 -11892250.19807 2346 2339 -13124182.62677 2347 2339 7340512.342961 2348 2339 21215414.40408 2442 2339 5527205.249977 2443 2339 -6632697.839212 2444 2339 4827280.022694 2445 2339 -6688405.732252 2446 2339 -29072115.16194 2447 2339 -13594307.9147 2448 2339 -3762599.703372 2449 2339 -20258812.61341 2450 2339 -38071476.41094 2451 2339 -7125466.187114 2452 2339 -7107677.550651 2453 2339 -9517594.142065 2454 2339 -52354091.66514 2455 2339 -15346414.53585 2456 2339 -72544459.24024 2457 2339 -20172215.98068 2458 2339 10758258.74933 2459 2339 -45479079.58041 2340 2340 701224018.4261 2341 2340 1.215934753418e-05 2342 2340 3981540.895231 2343 2340 85654059.23587 2344 2340 -7.361173629761e-06 2345 2340 995385.2243004 2349 2340 -163051082.2809 2350 2340 4.857778549194e-06 2351 2340 -2497714.891996 2352 2340 -63439558.95712 2353 2340 42222222.21529 2354 2340 -11747692.6104 2445 2340 -68569574.7737 2446 2340 9.983777999878e-07 2447 2340 46666190.80873 2448 2340 -28443492.38882 2449 2340 -11944444.44837 2450 2340 16581478.26512 2451 2340 103049709.0446 2452 2340 8.106231689453e-06 2453 2340 1759285.033469 2454 2340 -19975421.90891 2455 2340 -1.013278961182e-05 2456 2340 439821.2585936 2460 2340 -71083613.53293 2461 2340 2.801418304443e-06 2462 2340 -48425475.84218 2463 2340 -29334356.73017 2464 2340 11944444.44836 2465 2340 -17021299.52369 2341 2341 599883709.7778 2342 2341 -47777064.79172 2343 2341 -8.612871170044e-06 2344 2341 -74790087.48109 2345 2341 24294087.95135 2349 2341 3.516674041748e-06 2350 2341 22728141.58569 2351 2341 -11944266.20381 2352 2341 42222222.21529 2353 2341 -50772020.36985 2354 2341 6611021.990771 2445 2341 -8.195638656616e-07 2446 2341 -16013622.55363 2447 2341 -5277700.460655 2448 2341 -11944444.44837 2449 2341 -24859919.89976 2450 2341 11857600.23336 2451 2341 7.987022399902e-06 2452 2341 74381129.14638 2453 2341 -21110801.83222 2454 2341 -9.581446647644e-06 2455 2341 -65364229.15794 2456 2341 48591512.02092 2460 2341 2.488493919373e-06 2461 2341 -18527661.31289 2462 2341 -5277700.460655 2463 2341 11944444.44836 2464 2341 -25750784.24113 2465 2341 12385378.01131 2342 2342 657670929.3001 2343 2342 995385.2243 2344 2342 23482976.84037 2345 2342 60454947.39636 2349 2342 -1483826.003273 2350 2342 -11944266.20381 2351 2342 36217937.62672 2352 2342 -11643525.94355 2353 2342 6527688.657292 2354 2342 -17639683.8315 2445 2342 46402301.92001 2446 2342 -5277700.460655 2447 2342 -49602960.36391 2448 2342 16581478.26512 2449 2342 11857600.23336 2450 2342 -32981587.68983 2451 2342 1759285.033468 2452 2342 -21110801.83222 2453 2342 -68142578.48796 2454 2342 439821.258594 2455 2342 48380400.90995 2456 2342 -100781580.1802 2460 2342 -48161586.95346 2461 2342 -5277700.460655 2462 2342 -56307063.72196 2463 2342 -17021299.52369 2464 2342 12385378.01131 2465 2342 -35357225.93349 2343 2343 753320607.0872 2344 2343 42247958.4308 2345 2343 13425270.63193 2346 2343 10687201.53391 2347 2343 -42232516.7015 2348 2343 11747147.69675 2349 2343 -62903012.53369 2350 2343 -42222222.21529 2351 2343 10648140.71925 2352 2343 -163051082.2809 2353 2343 4.857778549194e-06 2354 2343 -2497714.891996 2355 2343 -63439558.95712 2356 2343 42222222.21529 2357 2343 -11747692.6104 2445 2343 -19278339.76952 2446 2343 11944444.44837 2447 2343 6685644.928532 2448 2343 -83208406.42019 2449 2343 -11951850.06621 2450 2343 42498171.10922 2451 2343 17734607.15466 2452 2343 1.817941665649e-06 2453 2343 439821.2585785 2454 2343 125282026.2887 2455 2343 11956787.14478 2456 2343 5935098.98454 2457 2343 -32275376.32772 2458 2343 -11949381.52693 2459 2343 17028332.3953 2460 2343 -19644494.8084 2461 2343 -11944444.44837 2462 2343 -7125466.187114 2463 2343 -71083613.53293 2464 2343 2.801418304443e-06 2465 2343 -48425475.84218 2466 2343 -29334356.73017 2467 2343 11944444.44836 2468 2343 -17021299.52369 2344 2344 639301177.7705 2345 2344 -37037050.15144 2346 2344 -42237663.9446 2347 2344 -137109995.2621 2348 2344 20238494.1063 2349 2344 -42222222.21529 2350 2344 -50235473.94641 2351 2344 5333244.213044 2352 2344 3.516674041748e-06 2353 2344 22728141.58569 2354 2344 -11944266.20381 2355 2344 42222222.21529 2356 2344 -50772020.36985 2357 2344 6611021.990771 2445 2344 11944444.44837 2446 2344 -15694767.28047 2447 2344 -6579899.772699 2448 2344 -11949381.52693 2449 2344 -27053453.11441 2450 2344 3626698.329752 2451 2344 3.322958946228e-06 2452 2344 -27654200.09436 2453 2344 -27480710.1887 2454 2344 11956787.14477 2455 2344 93024319.31714 2456 2344 -16362810.24847 2457 2344 -11951850.06621 2458 2344 -74090485.10009 2459 2344 46808583.40323 2460 2344 -11944444.44836 2461 2344 -16060922.31935 2462 2344 -7107677.550651 2463 2344 2.488493919373e-06 2464 2344 -18527661.31289 2465 2344 -5277700.460655 2466 2344 11944444.44836 2467 2344 -25750784.24113 2468 2344 12385378.01131 2345 2345 644924144.2682 2346 2345 11642708.57308 2347 2345 22769593.39294 2348 2345 12096388.9117 2349 2345 10752307.38609 2350 2345 5416577.546522 2351 2345 -16208893.36898 2352 2345 -1483826.003273 2353 2345 -11944266.20381 2354 2345 36217937.62672 2355 2345 -11643525.94355 2356 2345 6527688.657292 2357 2345 -17639683.8315 2445 2345 6685644.928532 2446 2345 -6579899.772699 2447 2345 -8541180.705052 2448 2345 42233282.34386 2449 2345 2150097.608279 2450 2345 -45715547.88649 2451 2345 439821.2585788 2452 2345 -27269599.07773 2453 2345 -221502.6772963 2454 2345 5939995.986973 2455 2345 -16358892.70393 2456 2345 -51790570.05088 2457 2345 17031848.8311 2458 2345 48076086.23075 2459 2345 -90703859.27092 2460 2345 -7125466.187114 2461 2345 -7107677.550651 2462 2345 -9517594.142065 2463 2345 -48161586.95346 2464 2345 -5277700.460655 2465 2345 -56307063.72196 2466 2345 -17021299.52369 2467 2345 12385378.01131 2468 2345 -35357225.93349 2346 2346 434188482.4496 2347 2346 42222222.21529 2348 2346 14004257.85694 2352 2346 -62903012.53369 2353 2346 -42222222.21529 2354 2346 10648140.71925 2355 2346 -237961315.0134 2356 2346 -42232516.70149 2357 2346 -11962465.89917 2358 2346 7955780.401528 2359 2346 33788072.25843 2360 2346 -8749455.084514 2448 2346 1810230.00851 2449 2346 14340738.95588 2450 2346 8290807.874965 2454 2346 -3359294.569133 2455 2346 -11951850.06621 2456 2346 -6689786.134111 2457 2346 66125098.41489 2458 2346 11944444.44837 2459 2346 15207852.8515 2463 2346 -19644494.8084 2464 2346 -11944444.44837 2465 2346 -7125466.187114 2466 2346 -93269248.17781 2467 2346 -11949381.52693 2468 2346 -52618980.4305 2469 2346 -17054654.84265 2470 2346 9560492.637254 2471 2346 -13448143.98712 2347 2347 370839207.457 2348 2347 -27831791.96622 2352 2347 -42222222.21529 2353 2347 -50235473.94641 2354 2347 5333244.213044 2355 2347 -42237663.94459 2356 2347 -39482381.812 2357 2347 -16655123.83823 2358 2347 50682108.38765 2359 2347 7955780.401527 2360 2347 11010768.51444 2448 2347 9560492.637254 2449 2347 1810230.008509 2450 2347 -4421798.559475 2454 2347 -11949381.52693 2455 2347 -45174403.34149 2456 2347 -27804612.20634 2457 2347 11944444.44837 2458 2347 48201681.39244 2459 2347 -5082672.97723 2463 2347 -11944444.44836 2464 2347 -16060922.31935 2465 2347 -7107677.550651 2466 2347 -11951850.06621 2467 2347 -37114294.87206 2468 2347 -16826932.79813 2469 2347 14340738.95588 2470 2347 -17054654.84265 2471 2347 16137388.124 2348 2348 400035038.4858 2352 2348 10752307.38609 2353 2348 5416577.546522 2354 2348 -16208893.36898 2355 2348 -10941569.92029 2356 2348 -13223756.5556 2357 2348 -11892250.19807 2358 2348 -13124182.62677 2359 2348 7340512.342961 2360 2348 21215414.40408 2448 2348 5527205.249977 2449 2348 -6632697.839212 2450 2348 4827280.022694 2454 2348 -6688405.732252 2455 2348 -29072115.16194 2456 2348 -13594307.9147 2457 2348 -3762599.703372 2458 2348 -20258812.61341 2459 2348 -38071476.41094 2463 2348 -7125466.187114 2464 2348 -7107677.550651 2465 2348 -9517594.142065 2466 2348 -52354091.66514 2467 2348 -15346414.53585 2468 2348 -72544459.24024 2469 2348 -20172215.98068 2470 2348 10758258.74933 2471 2348 -45479079.58041 2349 2349 701224018.4261 2350 2349 1.215934753418e-05 2351 2349 3981540.895231 2352 2349 85654059.23587 2353 2349 -7.361173629761e-06 2354 2349 995385.2243004 2361 2349 -163051082.2809 2362 2349 4.857778549194e-06 2363 2349 -2497714.891996 2364 2349 -63439558.95712 2365 2349 42222222.21529 2366 2349 -11747692.6104 2451 2349 -68569574.7737 2452 2349 9.983777999878e-07 2453 2349 46666190.80873 2454 2349 -28443492.38882 2455 2349 -11944444.44837 2456 2349 16581478.26512 2460 2349 103049709.0446 2461 2349 8.106231689453e-06 2462 2349 1759285.033469 2463 2349 -19975421.90891 2464 2349 -1.013278961182e-05 2465 2349 439821.2585936 2472 2349 -71083613.53293 2473 2349 2.801418304443e-06 2474 2349 -48425475.84218 2475 2349 -29334356.73017 2476 2349 11944444.44836 2477 2349 -17021299.52369 2350 2350 599883709.7778 2351 2350 -47777064.79172 2352 2350 -8.612871170044e-06 2353 2350 -74790087.48109 2354 2350 24294087.95135 2361 2350 3.516674041748e-06 2362 2350 22728141.58569 2363 2350 -11944266.20381 2364 2350 42222222.21529 2365 2350 -50772020.36985 2366 2350 6611021.990771 2451 2350 -8.195638656616e-07 2452 2350 -16013622.55363 2453 2350 -5277700.460655 2454 2350 -11944444.44837 2455 2350 -24859919.89976 2456 2350 11857600.23336 2460 2350 7.987022399902e-06 2461 2350 74381129.14638 2462 2350 -21110801.83222 2463 2350 -9.581446647644e-06 2464 2350 -65364229.15794 2465 2350 48591512.02092 2472 2350 2.488493919373e-06 2473 2350 -18527661.31289 2474 2350 -5277700.460655 2475 2350 11944444.44836 2476 2350 -25750784.24113 2477 2350 12385378.01131 2351 2351 657670929.3001 2352 2351 995385.2243 2353 2351 23482976.84037 2354 2351 60454947.39636 2361 2351 -1483826.003273 2362 2351 -11944266.20381 2363 2351 36217937.62672 2364 2351 -11643525.94355 2365 2351 6527688.657292 2366 2351 -17639683.8315 2451 2351 46402301.92001 2452 2351 -5277700.460655 2453 2351 -49602960.36391 2454 2351 16581478.26512 2455 2351 11857600.23336 2456 2351 -32981587.68983 2460 2351 1759285.033468 2461 2351 -21110801.83222 2462 2351 -68142578.48796 2463 2351 439821.258594 2464 2351 48380400.90995 2465 2351 -100781580.1802 2472 2351 -48161586.95346 2473 2351 -5277700.460655 2474 2351 -56307063.72196 2475 2351 -17021299.52369 2476 2351 12385378.01131 2477 2351 -35357225.93349 2352 2352 701224018.4261 2353 2352 1.215934753418e-05 2354 2352 3981540.895231 2355 2352 85654059.23587 2356 2352 -7.361173629761e-06 2357 2352 995385.2243004 2361 2352 -62903012.53369 2362 2352 -42222222.21529 2363 2352 10648140.71925 2364 2352 -163051082.2809 2365 2352 4.857778549194e-06 2366 2352 -2497714.891996 2367 2352 -63439558.95712 2368 2352 42222222.21529 2369 2352 -11747692.6104 2451 2352 -19278339.76952 2452 2352 11944444.44837 2453 2352 6685644.928532 2454 2352 -68569574.7737 2455 2352 9.983777999878e-07 2456 2352 46666190.80873 2457 2352 -28443492.38882 2458 2352 -11944444.44837 2459 2352 16581478.26512 2460 2352 17734607.15466 2461 2352 1.817941665649e-06 2462 2352 439821.2585785 2463 2352 103049709.0446 2464 2352 8.106231689453e-06 2465 2352 1759285.033469 2466 2352 -19975421.90891 2467 2352 -1.013278961182e-05 2468 2352 439821.2585936 2472 2352 -19644494.8084 2473 2352 -11944444.44837 2474 2352 -7125466.187114 2475 2352 -71083613.53293 2476 2352 2.801418304443e-06 2477 2352 -48425475.84218 2478 2352 -29334356.73017 2479 2352 11944444.44836 2480 2352 -17021299.52369 2353 2353 599883709.7778 2354 2353 -47777064.79172 2355 2353 -8.612871170044e-06 2356 2353 -74790087.48109 2357 2353 24294087.95135 2361 2353 -42222222.21529 2362 2353 -50235473.94641 2363 2353 5333244.213044 2364 2353 3.516674041748e-06 2365 2353 22728141.58569 2366 2353 -11944266.20381 2367 2353 42222222.21529 2368 2353 -50772020.36985 2369 2353 6611021.990771 2451 2353 11944444.44837 2452 2353 -15694767.28047 2453 2353 -6579899.772699 2454 2353 -8.195638656616e-07 2455 2353 -16013622.55363 2456 2353 -5277700.460655 2457 2353 -11944444.44837 2458 2353 -24859919.89976 2459 2353 11857600.23336 2460 2353 3.322958946228e-06 2461 2353 -27654200.09436 2462 2353 -27480710.1887 2463 2353 7.987022399902e-06 2464 2353 74381129.14638 2465 2353 -21110801.83222 2466 2353 -9.581446647644e-06 2467 2353 -65364229.15794 2468 2353 48591512.02092 2472 2353 -11944444.44836 2473 2353 -16060922.31935 2474 2353 -7107677.550651 2475 2353 2.488493919373e-06 2476 2353 -18527661.31289 2477 2353 -5277700.460655 2478 2353 11944444.44836 2479 2353 -25750784.24113 2480 2353 12385378.01131 2354 2354 657670929.3001 2355 2354 995385.2243 2356 2354 23482976.84037 2357 2354 60454947.39636 2361 2354 10752307.38609 2362 2354 5416577.546522 2363 2354 -16208893.36898 2364 2354 -1483826.003273 2365 2354 -11944266.20381 2366 2354 36217937.62672 2367 2354 -11643525.94355 2368 2354 6527688.657292 2369 2354 -17639683.8315 2451 2354 6685644.928532 2452 2354 -6579899.772699 2453 2354 -8541180.705052 2454 2354 46402301.92001 2455 2354 -5277700.460655 2456 2354 -49602960.36391 2457 2354 16581478.26512 2458 2354 11857600.23336 2459 2354 -32981587.68983 2460 2354 439821.2585788 2461 2354 -27269599.07773 2462 2354 -221502.6772963 2463 2354 1759285.033468 2464 2354 -21110801.83222 2465 2354 -68142578.48796 2466 2354 439821.258594 2467 2354 48380400.90995 2468 2354 -100781580.1802 2472 2354 -7125466.187114 2473 2354 -7107677.550651 2474 2354 -9517594.142065 2475 2354 -48161586.95346 2476 2354 -5277700.460655 2477 2354 -56307063.72196 2478 2354 -17021299.52369 2479 2354 12385378.01131 2480 2354 -35357225.93349 2355 2355 753320607.0872 2356 2355 42247958.4308 2357 2355 13425270.63193 2358 2355 10687201.53391 2359 2355 -42232516.7015 2360 2355 11747147.69675 2364 2355 -62903012.53369 2365 2355 -42222222.21529 2366 2355 10648140.71925 2367 2355 -163051082.2809 2368 2355 4.857778549194e-06 2369 2355 -2497714.891996 2370 2355 -63439558.95712 2371 2355 42222222.21529 2372 2355 -11747692.6104 2454 2355 -19278339.76952 2455 2355 11944444.44837 2456 2355 6685644.928532 2457 2355 -83208406.42019 2458 2355 -11951850.06621 2459 2355 42498171.10922 2463 2355 17734607.15466 2464 2355 1.817941665649e-06 2465 2355 439821.2585785 2466 2355 125282026.2887 2467 2355 11956787.14478 2468 2355 5935098.98454 2469 2355 -32275376.32772 2470 2355 -11949381.52693 2471 2355 17028332.3953 2475 2355 -19644494.8084 2476 2355 -11944444.44837 2477 2355 -7125466.187114 2478 2355 -71083613.53293 2479 2355 2.801418304443e-06 2480 2355 -48425475.84218 2481 2355 -29334356.73017 2482 2355 11944444.44836 2483 2355 -17021299.52369 2356 2356 639301177.7705 2357 2356 -37037050.15144 2358 2356 -42237663.9446 2359 2356 -137109995.2621 2360 2356 20238494.1063 2364 2356 -42222222.21529 2365 2356 -50235473.94641 2366 2356 5333244.213044 2367 2356 3.516674041748e-06 2368 2356 22728141.58569 2369 2356 -11944266.20381 2370 2356 42222222.21529 2371 2356 -50772020.36985 2372 2356 6611021.990771 2454 2356 11944444.44837 2455 2356 -15694767.28047 2456 2356 -6579899.772699 2457 2356 -11949381.52693 2458 2356 -27053453.11441 2459 2356 3626698.329752 2463 2356 3.322958946228e-06 2464 2356 -27654200.09436 2465 2356 -27480710.1887 2466 2356 11956787.14477 2467 2356 93024319.31714 2468 2356 -16362810.24847 2469 2356 -11951850.06621 2470 2356 -74090485.10009 2471 2356 46808583.40323 2475 2356 -11944444.44836 2476 2356 -16060922.31935 2477 2356 -7107677.550651 2478 2356 2.488493919373e-06 2479 2356 -18527661.31289 2480 2356 -5277700.460655 2481 2356 11944444.44836 2482 2356 -25750784.24113 2483 2356 12385378.01131 2357 2357 644924144.2682 2358 2357 11642708.57308 2359 2357 22769593.39294 2360 2357 12096388.9117 2364 2357 10752307.38609 2365 2357 5416577.546522 2366 2357 -16208893.36898 2367 2357 -1483826.003273 2368 2357 -11944266.20381 2369 2357 36217937.62672 2370 2357 -11643525.94355 2371 2357 6527688.657292 2372 2357 -17639683.8315 2454 2357 6685644.928532 2455 2357 -6579899.772699 2456 2357 -8541180.705052 2457 2357 42233282.34386 2458 2357 2150097.608279 2459 2357 -45715547.88649 2463 2357 439821.2585788 2464 2357 -27269599.07773 2465 2357 -221502.6772963 2466 2357 5939995.986973 2467 2357 -16358892.70393 2468 2357 -51790570.05088 2469 2357 17031848.8311 2470 2357 48076086.23075 2471 2357 -90703859.27092 2475 2357 -7125466.187114 2476 2357 -7107677.550651 2477 2357 -9517594.142065 2478 2357 -48161586.95346 2479 2357 -5277700.460655 2480 2357 -56307063.72196 2481 2357 -17021299.52369 2482 2357 12385378.01131 2483 2357 -35357225.93349 2358 2358 434188482.4496 2359 2358 42222222.21529 2360 2358 14004257.85694 2367 2358 -62903012.53369 2368 2358 -42222222.21529 2369 2358 10648140.71925 2370 2358 -237961315.0134 2371 2358 -42232516.70149 2372 2358 -11962465.89917 2373 2358 7955780.401528 2374 2358 33788072.25843 2375 2358 -8749455.084514 2457 2358 1810230.00851 2458 2358 14340738.95588 2459 2358 8290807.874965 2466 2358 -3359294.569133 2467 2358 -11951850.06621 2468 2358 -6689786.134111 2469 2358 66125098.41489 2470 2358 11944444.44837 2471 2358 15207852.8515 2478 2358 -19644494.8084 2479 2358 -11944444.44837 2480 2358 -7125466.187114 2481 2358 -93269248.17781 2482 2358 -11949381.52693 2483 2358 -52618980.4305 2484 2358 -17054654.84265 2485 2358 9560492.637254 2486 2358 -13448143.98712 2359 2359 370839207.457 2360 2359 -27831791.96622 2367 2359 -42222222.21529 2368 2359 -50235473.94641 2369 2359 5333244.213044 2370 2359 -42237663.94459 2371 2359 -39482381.812 2372 2359 -16655123.83823 2373 2359 50682108.38765 2374 2359 7955780.401527 2375 2359 11010768.51444 2457 2359 9560492.637254 2458 2359 1810230.008509 2459 2359 -4421798.559475 2466 2359 -11949381.52693 2467 2359 -45174403.34149 2468 2359 -27804612.20634 2469 2359 11944444.44837 2470 2359 48201681.39244 2471 2359 -5082672.97723 2478 2359 -11944444.44836 2479 2359 -16060922.31935 2480 2359 -7107677.550651 2481 2359 -11951850.06621 2482 2359 -37114294.87206 2483 2359 -16826932.79813 2484 2359 14340738.95588 2485 2359 -17054654.84265 2486 2359 16137388.124 2360 2360 400035038.4858 2367 2360 10752307.38609 2368 2360 5416577.546522 2369 2360 -16208893.36898 2370 2360 -10941569.92029 2371 2360 -13223756.5556 2372 2360 -11892250.19807 2373 2360 -13124182.62677 2374 2360 7340512.342961 2375 2360 21215414.40408 2457 2360 5527205.249977 2458 2360 -6632697.839212 2459 2360 4827280.022694 2466 2360 -6688405.732252 2467 2360 -29072115.16194 2468 2360 -13594307.9147 2469 2360 -3762599.703372 2470 2360 -20258812.61341 2471 2360 -38071476.41094 2478 2360 -7125466.187114 2479 2360 -7107677.550651 2480 2360 -9517594.142065 2481 2360 -52354091.66514 2482 2360 -15346414.53585 2483 2360 -72544459.24024 2484 2360 -20172215.98068 2485 2360 10758258.74933 2486 2360 -45479079.58041 2361 2361 701224018.4261 2362 2361 1.215934753418e-05 2363 2361 3981540.895231 2364 2361 85654059.23587 2365 2361 -7.361173629761e-06 2366 2361 995385.2243004 2376 2361 -163051082.2809 2377 2361 4.857778549194e-06 2378 2361 -2497714.891996 2379 2361 -63439558.95712 2380 2361 42222222.21529 2381 2361 -11747692.6104 2460 2361 -68569574.7737 2461 2361 9.983777999878e-07 2462 2361 46666190.80873 2463 2361 -28443492.38882 2464 2361 -11944444.44837 2465 2361 16581478.26512 2472 2361 103049709.0446 2473 2361 8.106231689453e-06 2474 2361 1759285.033469 2475 2361 -19975421.90891 2476 2361 -1.013278961182e-05 2477 2361 439821.2585936 2487 2361 -71083613.53293 2488 2361 2.801418304443e-06 2489 2361 -48425475.84218 2490 2361 -29334356.73017 2491 2361 11944444.44836 2492 2361 -17021299.52369 2362 2362 599883709.7778 2363 2362 -47777064.79172 2364 2362 -8.612871170044e-06 2365 2362 -74790087.48109 2366 2362 24294087.95135 2376 2362 3.516674041748e-06 2377 2362 22728141.58569 2378 2362 -11944266.20381 2379 2362 42222222.21529 2380 2362 -50772020.36985 2381 2362 6611021.990771 2460 2362 -8.195638656616e-07 2461 2362 -16013622.55363 2462 2362 -5277700.460655 2463 2362 -11944444.44837 2464 2362 -24859919.89976 2465 2362 11857600.23336 2472 2362 7.987022399902e-06 2473 2362 74381129.14638 2474 2362 -21110801.83222 2475 2362 -9.581446647644e-06 2476 2362 -65364229.15794 2477 2362 48591512.02092 2487 2362 2.488493919373e-06 2488 2362 -18527661.31289 2489 2362 -5277700.460655 2490 2362 11944444.44836 2491 2362 -25750784.24113 2492 2362 12385378.01131 2363 2363 657670929.3001 2364 2363 995385.2243 2365 2363 23482976.84037 2366 2363 60454947.39636 2376 2363 -1483826.003273 2377 2363 -11944266.20381 2378 2363 36217937.62672 2379 2363 -11643525.94355 2380 2363 6527688.657292 2381 2363 -17639683.8315 2460 2363 46402301.92001 2461 2363 -5277700.460655 2462 2363 -49602960.36391 2463 2363 16581478.26512 2464 2363 11857600.23336 2465 2363 -32981587.68983 2472 2363 1759285.033468 2473 2363 -21110801.83222 2474 2363 -68142578.48796 2475 2363 439821.258594 2476 2363 48380400.90995 2477 2363 -100781580.1802 2487 2363 -48161586.95346 2488 2363 -5277700.460655 2489 2363 -56307063.72196 2490 2363 -17021299.52369 2491 2363 12385378.01131 2492 2363 -35357225.93349 2364 2364 701224018.4261 2365 2364 1.215934753418e-05 2366 2364 3981540.895231 2367 2364 85654059.23587 2368 2364 -7.361173629761e-06 2369 2364 995385.2243004 2376 2364 -62903012.53369 2377 2364 -42222222.21529 2378 2364 10648140.71925 2379 2364 -163051082.2809 2380 2364 4.857778549194e-06 2381 2364 -2497714.891996 2382 2364 -63439558.95712 2383 2364 42222222.21529 2384 2364 -11747692.6104 2460 2364 -19278339.76952 2461 2364 11944444.44837 2462 2364 6685644.928532 2463 2364 -68569574.7737 2464 2364 9.983777999878e-07 2465 2364 46666190.80873 2466 2364 -28443492.38882 2467 2364 -11944444.44837 2468 2364 16581478.26512 2472 2364 17734607.15466 2473 2364 1.817941665649e-06 2474 2364 439821.2585785 2475 2364 103049709.0446 2476 2364 8.106231689453e-06 2477 2364 1759285.033469 2478 2364 -19975421.90891 2479 2364 -1.013278961182e-05 2480 2364 439821.2585936 2487 2364 -19644494.8084 2488 2364 -11944444.44837 2489 2364 -7125466.187114 2490 2364 -71083613.53293 2491 2364 2.801418304443e-06 2492 2364 -48425475.84218 2493 2364 -29334356.73017 2494 2364 11944444.44836 2495 2364 -17021299.52369 2365 2365 599883709.7778 2366 2365 -47777064.79172 2367 2365 -8.612871170044e-06 2368 2365 -74790087.48109 2369 2365 24294087.95135 2376 2365 -42222222.21529 2377 2365 -50235473.94641 2378 2365 5333244.213044 2379 2365 3.516674041748e-06 2380 2365 22728141.58569 2381 2365 -11944266.20381 2382 2365 42222222.21529 2383 2365 -50772020.36985 2384 2365 6611021.990771 2460 2365 11944444.44837 2461 2365 -15694767.28047 2462 2365 -6579899.772699 2463 2365 -8.195638656616e-07 2464 2365 -16013622.55363 2465 2365 -5277700.460655 2466 2365 -11944444.44837 2467 2365 -24859919.89976 2468 2365 11857600.23336 2472 2365 3.322958946228e-06 2473 2365 -27654200.09436 2474 2365 -27480710.1887 2475 2365 7.987022399902e-06 2476 2365 74381129.14638 2477 2365 -21110801.83222 2478 2365 -9.581446647644e-06 2479 2365 -65364229.15794 2480 2365 48591512.02092 2487 2365 -11944444.44836 2488 2365 -16060922.31935 2489 2365 -7107677.550651 2490 2365 2.488493919373e-06 2491 2365 -18527661.31289 2492 2365 -5277700.460655 2493 2365 11944444.44836 2494 2365 -25750784.24113 2495 2365 12385378.01131 2366 2366 657670929.3001 2367 2366 995385.2243 2368 2366 23482976.84037 2369 2366 60454947.39636 2376 2366 10752307.38609 2377 2366 5416577.546522 2378 2366 -16208893.36898 2379 2366 -1483826.003273 2380 2366 -11944266.20381 2381 2366 36217937.62672 2382 2366 -11643525.94355 2383 2366 6527688.657292 2384 2366 -17639683.8315 2460 2366 6685644.928532 2461 2366 -6579899.772699 2462 2366 -8541180.705052 2463 2366 46402301.92001 2464 2366 -5277700.460655 2465 2366 -49602960.36391 2466 2366 16581478.26512 2467 2366 11857600.23336 2468 2366 -32981587.68983 2472 2366 439821.2585788 2473 2366 -27269599.07773 2474 2366 -221502.6772963 2475 2366 1759285.033468 2476 2366 -21110801.83222 2477 2366 -68142578.48796 2478 2366 439821.258594 2479 2366 48380400.90995 2480 2366 -100781580.1802 2487 2366 -7125466.187114 2488 2366 -7107677.550651 2489 2366 -9517594.142065 2490 2366 -48161586.95346 2491 2366 -5277700.460655 2492 2366 -56307063.72196 2493 2366 -17021299.52369 2494 2366 12385378.01131 2495 2366 -35357225.93349 2367 2367 701224018.4261 2368 2367 1.215934753418e-05 2369 2367 3981540.895231 2370 2367 85654059.23587 2371 2367 -7.361173629761e-06 2372 2367 995385.2243004 2379 2367 -62903012.53369 2380 2367 -42222222.21529 2381 2367 10648140.71925 2382 2367 -163051082.2809 2383 2367 4.857778549194e-06 2384 2367 -2497714.891996 2385 2367 -63439558.95712 2386 2367 42222222.21529 2387 2367 -11747692.6104 2463 2367 -19278339.76952 2464 2367 11944444.44837 2465 2367 6685644.928532 2466 2367 -68569574.7737 2467 2367 9.983777999878e-07 2468 2367 46666190.80873 2469 2367 -28443492.38882 2470 2367 -11944444.44837 2471 2367 16581478.26512 2475 2367 17734607.15466 2476 2367 1.817941665649e-06 2477 2367 439821.2585785 2478 2367 103049709.0446 2479 2367 8.106231689453e-06 2480 2367 1759285.033469 2481 2367 -19975421.90891 2482 2367 -1.013278961182e-05 2483 2367 439821.2585936 2490 2367 -19644494.8084 2491 2367 -11944444.44837 2492 2367 -7125466.187114 2493 2367 -71083613.53293 2494 2367 2.801418304443e-06 2495 2367 -48425475.84218 2496 2367 -29334356.73017 2497 2367 11944444.44836 2498 2367 -17021299.52369 2368 2368 599883709.7778 2369 2368 -47777064.79172 2370 2368 -8.612871170044e-06 2371 2368 -74790087.48109 2372 2368 24294087.95135 2379 2368 -42222222.21529 2380 2368 -50235473.94641 2381 2368 5333244.213044 2382 2368 3.516674041748e-06 2383 2368 22728141.58569 2384 2368 -11944266.20381 2385 2368 42222222.21529 2386 2368 -50772020.36985 2387 2368 6611021.990771 2463 2368 11944444.44837 2464 2368 -15694767.28047 2465 2368 -6579899.772699 2466 2368 -8.195638656616e-07 2467 2368 -16013622.55363 2468 2368 -5277700.460655 2469 2368 -11944444.44837 2470 2368 -24859919.89976 2471 2368 11857600.23336 2475 2368 3.322958946228e-06 2476 2368 -27654200.09436 2477 2368 -27480710.1887 2478 2368 7.987022399902e-06 2479 2368 74381129.14638 2480 2368 -21110801.83222 2481 2368 -9.581446647644e-06 2482 2368 -65364229.15794 2483 2368 48591512.02092 2490 2368 -11944444.44836 2491 2368 -16060922.31935 2492 2368 -7107677.550651 2493 2368 2.488493919373e-06 2494 2368 -18527661.31289 2495 2368 -5277700.460655 2496 2368 11944444.44836 2497 2368 -25750784.24113 2498 2368 12385378.01131 2369 2369 657670929.3001 2370 2369 995385.2243 2371 2369 23482976.84037 2372 2369 60454947.39636 2379 2369 10752307.38609 2380 2369 5416577.546522 2381 2369 -16208893.36898 2382 2369 -1483826.003273 2383 2369 -11944266.20381 2384 2369 36217937.62672 2385 2369 -11643525.94355 2386 2369 6527688.657292 2387 2369 -17639683.8315 2463 2369 6685644.928532 2464 2369 -6579899.772699 2465 2369 -8541180.705052 2466 2369 46402301.92001 2467 2369 -5277700.460655 2468 2369 -49602960.36391 2469 2369 16581478.26512 2470 2369 11857600.23336 2471 2369 -32981587.68983 2475 2369 439821.2585788 2476 2369 -27269599.07773 2477 2369 -221502.6772963 2478 2369 1759285.033468 2479 2369 -21110801.83222 2480 2369 -68142578.48796 2481 2369 439821.258594 2482 2369 48380400.90995 2483 2369 -100781580.1802 2490 2369 -7125466.187114 2491 2369 -7107677.550651 2492 2369 -9517594.142065 2493 2369 -48161586.95346 2494 2369 -5277700.460655 2495 2369 -56307063.72196 2496 2369 -17021299.52369 2497 2369 12385378.01131 2498 2369 -35357225.93349 2370 2370 753320607.0872 2371 2370 42247958.4308 2372 2370 13425270.63193 2373 2370 10687201.53391 2374 2370 -42232516.7015 2375 2370 11747147.69675 2382 2370 -62903012.53369 2383 2370 -42222222.21529 2384 2370 10648140.71925 2385 2370 -163051082.2809 2386 2370 4.857778549194e-06 2387 2370 -2497714.891996 2388 2370 -63439558.95712 2389 2370 42222222.21529 2390 2370 -11747692.6104 2466 2370 -19278339.76952 2467 2370 11944444.44837 2468 2370 6685644.928532 2469 2370 -83208406.42019 2470 2370 -11951850.06621 2471 2370 42498171.10922 2478 2370 17734607.15466 2479 2370 1.817941665649e-06 2480 2370 439821.2585785 2481 2370 125282026.2887 2482 2370 11956787.14478 2483 2370 5935098.98454 2484 2370 -32275376.32772 2485 2370 -11949381.52693 2486 2370 17028332.3953 2493 2370 -19644494.8084 2494 2370 -11944444.44837 2495 2370 -7125466.187114 2496 2370 -71083613.53293 2497 2370 2.801418304443e-06 2498 2370 -48425475.84218 2499 2370 -29334356.73017 2500 2370 11944444.44836 2501 2370 -17021299.52369 2371 2371 639301177.7705 2372 2371 -37037050.15144 2373 2371 -42237663.9446 2374 2371 -137109995.2621 2375 2371 20238494.1063 2382 2371 -42222222.21529 2383 2371 -50235473.94641 2384 2371 5333244.213044 2385 2371 3.516674041748e-06 2386 2371 22728141.58569 2387 2371 -11944266.20381 2388 2371 42222222.21529 2389 2371 -50772020.36985 2390 2371 6611021.990771 2466 2371 11944444.44837 2467 2371 -15694767.28047 2468 2371 -6579899.772699 2469 2371 -11949381.52693 2470 2371 -27053453.11441 2471 2371 3626698.329752 2478 2371 3.322958946228e-06 2479 2371 -27654200.09436 2480 2371 -27480710.1887 2481 2371 11956787.14477 2482 2371 93024319.31714 2483 2371 -16362810.24847 2484 2371 -11951850.06621 2485 2371 -74090485.10009 2486 2371 46808583.40323 2493 2371 -11944444.44836 2494 2371 -16060922.31935 2495 2371 -7107677.550651 2496 2371 2.488493919373e-06 2497 2371 -18527661.31289 2498 2371 -5277700.460655 2499 2371 11944444.44836 2500 2371 -25750784.24113 2501 2371 12385378.01131 2372 2372 644924144.2682 2373 2372 11642708.57308 2374 2372 22769593.39294 2375 2372 12096388.9117 2382 2372 10752307.38609 2383 2372 5416577.546522 2384 2372 -16208893.36898 2385 2372 -1483826.003273 2386 2372 -11944266.20381 2387 2372 36217937.62672 2388 2372 -11643525.94355 2389 2372 6527688.657292 2390 2372 -17639683.8315 2466 2372 6685644.928532 2467 2372 -6579899.772699 2468 2372 -8541180.705052 2469 2372 42233282.34386 2470 2372 2150097.608279 2471 2372 -45715547.88649 2478 2372 439821.2585788 2479 2372 -27269599.07773 2480 2372 -221502.6772963 2481 2372 5939995.986973 2482 2372 -16358892.70393 2483 2372 -51790570.05088 2484 2372 17031848.8311 2485 2372 48076086.23075 2486 2372 -90703859.27092 2493 2372 -7125466.187114 2494 2372 -7107677.550651 2495 2372 -9517594.142065 2496 2372 -48161586.95346 2497 2372 -5277700.460655 2498 2372 -56307063.72196 2499 2372 -17021299.52369 2500 2372 12385378.01131 2501 2372 -35357225.93349 2373 2373 434188482.4496 2374 2373 42222222.21529 2375 2373 14004257.85694 2385 2373 -62903012.53369 2386 2373 -42222222.21529 2387 2373 10648140.71925 2388 2373 -237961315.0134 2389 2373 -42232516.70149 2390 2373 -11962465.89917 2391 2373 7955780.401528 2392 2373 33788072.25843 2393 2373 -8749455.084514 2469 2373 1810230.00851 2470 2373 14340738.95588 2471 2373 8290807.874965 2481 2373 -3359294.569133 2482 2373 -11951850.06621 2483 2373 -6689786.134111 2484 2373 66125098.41489 2485 2373 11944444.44837 2486 2373 15207852.8515 2496 2373 -19644494.8084 2497 2373 -11944444.44837 2498 2373 -7125466.187114 2499 2373 -93269248.17781 2500 2373 -11949381.52693 2501 2373 -52618980.4305 2502 2373 -17054654.84265 2503 2373 9560492.637254 2504 2373 -13448143.98712 2374 2374 370839207.457 2375 2374 -27831791.96622 2385 2374 -42222222.21529 2386 2374 -50235473.94641 2387 2374 5333244.213044 2388 2374 -42237663.94459 2389 2374 -39482381.812 2390 2374 -16655123.83823 2391 2374 50682108.38765 2392 2374 7955780.401527 2393 2374 11010768.51444 2469 2374 9560492.637254 2470 2374 1810230.008509 2471 2374 -4421798.559475 2481 2374 -11949381.52693 2482 2374 -45174403.34149 2483 2374 -27804612.20634 2484 2374 11944444.44837 2485 2374 48201681.39244 2486 2374 -5082672.97723 2496 2374 -11944444.44836 2497 2374 -16060922.31935 2498 2374 -7107677.550651 2499 2374 -11951850.06621 2500 2374 -37114294.87206 2501 2374 -16826932.79813 2502 2374 14340738.95588 2503 2374 -17054654.84265 2504 2374 16137388.124 2375 2375 400035038.4858 2385 2375 10752307.38609 2386 2375 5416577.546522 2387 2375 -16208893.36898 2388 2375 -10941569.92029 2389 2375 -13223756.5556 2390 2375 -11892250.19807 2391 2375 -13124182.62677 2392 2375 7340512.342961 2393 2375 21215414.40408 2469 2375 5527205.249977 2470 2375 -6632697.839212 2471 2375 4827280.022694 2481 2375 -6688405.732252 2482 2375 -29072115.16194 2483 2375 -13594307.9147 2484 2375 -3762599.703372 2485 2375 -20258812.61341 2486 2375 -38071476.41094 2496 2375 -7125466.187114 2497 2375 -7107677.550651 2498 2375 -9517594.142065 2499 2375 -52354091.66514 2500 2375 -15346414.53585 2501 2375 -72544459.24024 2502 2375 -20172215.98068 2503 2375 10758258.74933 2504 2375 -45479079.58041 2376 2376 701224018.4261 2377 2376 1.215934753418e-05 2378 2376 3981540.895231 2379 2376 85654059.23587 2380 2376 -7.361173629761e-06 2381 2376 995385.2243004 2394 2376 -163051082.2809 2395 2376 4.857778549194e-06 2396 2376 -2497714.891996 2397 2376 -63439558.95712 2398 2376 42222222.21529 2399 2376 -11747692.6104 2472 2376 -68569574.7737 2473 2376 9.983777999878e-07 2474 2376 46666190.80873 2475 2376 -28443492.38882 2476 2376 -11944444.44837 2477 2376 16581478.26512 2487 2376 103049709.0446 2488 2376 8.106231689453e-06 2489 2376 1759285.033469 2490 2376 -19975421.90891 2491 2376 -1.013278961182e-05 2492 2376 439821.2585936 2505 2376 -71083613.53293 2506 2376 2.801418304443e-06 2507 2376 -48425475.84218 2508 2376 -29334356.73017 2509 2376 11944444.44836 2510 2376 -17021299.52369 2377 2377 599883709.7778 2378 2377 -47777064.79172 2379 2377 -8.612871170044e-06 2380 2377 -74790087.48109 2381 2377 24294087.95135 2394 2377 3.516674041748e-06 2395 2377 22728141.58569 2396 2377 -11944266.20381 2397 2377 42222222.21529 2398 2377 -50772020.36985 2399 2377 6611021.990771 2472 2377 -8.195638656616e-07 2473 2377 -16013622.55363 2474 2377 -5277700.460655 2475 2377 -11944444.44837 2476 2377 -24859919.89976 2477 2377 11857600.23336 2487 2377 7.987022399902e-06 2488 2377 74381129.14638 2489 2377 -21110801.83222 2490 2377 -9.581446647644e-06 2491 2377 -65364229.15794 2492 2377 48591512.02092 2505 2377 2.488493919373e-06 2506 2377 -18527661.31289 2507 2377 -5277700.460655 2508 2377 11944444.44836 2509 2377 -25750784.24113 2510 2377 12385378.01131 2378 2378 657670929.3001 2379 2378 995385.2243 2380 2378 23482976.84037 2381 2378 60454947.39636 2394 2378 -1483826.003273 2395 2378 -11944266.20381 2396 2378 36217937.62672 2397 2378 -11643525.94355 2398 2378 6527688.657292 2399 2378 -17639683.8315 2472 2378 46402301.92001 2473 2378 -5277700.460655 2474 2378 -49602960.36391 2475 2378 16581478.26512 2476 2378 11857600.23336 2477 2378 -32981587.68983 2487 2378 1759285.033468 2488 2378 -21110801.83222 2489 2378 -68142578.48796 2490 2378 439821.258594 2491 2378 48380400.90995 2492 2378 -100781580.1802 2505 2378 -48161586.95346 2506 2378 -5277700.460655 2507 2378 -56307063.72196 2508 2378 -17021299.52369 2509 2378 12385378.01131 2510 2378 -35357225.93349 2379 2379 701224018.4261 2380 2379 1.215934753418e-05 2381 2379 3981540.895231 2382 2379 85654059.23587 2383 2379 -7.361173629761e-06 2384 2379 995385.2243004 2394 2379 -62903012.53369 2395 2379 -42222222.21529 2396 2379 10648140.71925 2397 2379 -163051082.2809 2398 2379 4.857778549194e-06 2399 2379 -2497714.891996 2400 2379 -63439558.95712 2401 2379 42222222.21529 2402 2379 -11747692.6104 2472 2379 -19278339.76952 2473 2379 11944444.44837 2474 2379 6685644.928532 2475 2379 -68569574.7737 2476 2379 9.983777999878e-07 2477 2379 46666190.80873 2478 2379 -28443492.38882 2479 2379 -11944444.44837 2480 2379 16581478.26512 2487 2379 17734607.15466 2488 2379 1.817941665649e-06 2489 2379 439821.2585785 2490 2379 103049709.0446 2491 2379 8.106231689453e-06 2492 2379 1759285.033469 2493 2379 -19975421.90891 2494 2379 -1.013278961182e-05 2495 2379 439821.2585936 2505 2379 -19644494.8084 2506 2379 -11944444.44837 2507 2379 -7125466.187114 2508 2379 -71083613.53293 2509 2379 2.801418304443e-06 2510 2379 -48425475.84218 2511 2379 -29334356.73017 2512 2379 11944444.44836 2513 2379 -17021299.52369 2380 2380 599883709.7778 2381 2380 -47777064.79172 2382 2380 -8.612871170044e-06 2383 2380 -74790087.48109 2384 2380 24294087.95135 2394 2380 -42222222.21529 2395 2380 -50235473.94641 2396 2380 5333244.213044 2397 2380 3.516674041748e-06 2398 2380 22728141.58569 2399 2380 -11944266.20381 2400 2380 42222222.21529 2401 2380 -50772020.36985 2402 2380 6611021.990771 2472 2380 11944444.44837 2473 2380 -15694767.28047 2474 2380 -6579899.772699 2475 2380 -8.195638656616e-07 2476 2380 -16013622.55363 2477 2380 -5277700.460655 2478 2380 -11944444.44837 2479 2380 -24859919.89976 2480 2380 11857600.23336 2487 2380 3.322958946228e-06 2488 2380 -27654200.09436 2489 2380 -27480710.1887 2490 2380 7.987022399902e-06 2491 2380 74381129.14638 2492 2380 -21110801.83222 2493 2380 -9.581446647644e-06 2494 2380 -65364229.15794 2495 2380 48591512.02092 2505 2380 -11944444.44836 2506 2380 -16060922.31935 2507 2380 -7107677.550651 2508 2380 2.488493919373e-06 2509 2380 -18527661.31289 2510 2380 -5277700.460655 2511 2380 11944444.44836 2512 2380 -25750784.24113 2513 2380 12385378.01131 2381 2381 657670929.3001 2382 2381 995385.2243 2383 2381 23482976.84037 2384 2381 60454947.39636 2394 2381 10752307.38609 2395 2381 5416577.546522 2396 2381 -16208893.36898 2397 2381 -1483826.003273 2398 2381 -11944266.20381 2399 2381 36217937.62672 2400 2381 -11643525.94355 2401 2381 6527688.657292 2402 2381 -17639683.8315 2472 2381 6685644.928532 2473 2381 -6579899.772699 2474 2381 -8541180.705052 2475 2381 46402301.92001 2476 2381 -5277700.460655 2477 2381 -49602960.36391 2478 2381 16581478.26512 2479 2381 11857600.23336 2480 2381 -32981587.68983 2487 2381 439821.2585788 2488 2381 -27269599.07773 2489 2381 -221502.6772963 2490 2381 1759285.033468 2491 2381 -21110801.83222 2492 2381 -68142578.48796 2493 2381 439821.258594 2494 2381 48380400.90995 2495 2381 -100781580.1802 2505 2381 -7125466.187114 2506 2381 -7107677.550651 2507 2381 -9517594.142065 2508 2381 -48161586.95346 2509 2381 -5277700.460655 2510 2381 -56307063.72196 2511 2381 -17021299.52369 2512 2381 12385378.01131 2513 2381 -35357225.93349 2382 2382 701224018.4261 2383 2382 1.215934753418e-05 2384 2382 3981540.895231 2385 2382 85654059.23587 2386 2382 -7.361173629761e-06 2387 2382 995385.2243004 2397 2382 -62903012.53369 2398 2382 -42222222.21529 2399 2382 10648140.71925 2400 2382 -163051082.2809 2401 2382 4.857778549194e-06 2402 2382 -2497714.891996 2403 2382 -63439558.95712 2404 2382 42222222.21529 2405 2382 -11747692.6104 2475 2382 -19278339.76952 2476 2382 11944444.44837 2477 2382 6685644.928532 2478 2382 -68569574.7737 2479 2382 9.983777999878e-07 2480 2382 46666190.80873 2481 2382 -28443492.38882 2482 2382 -11944444.44837 2483 2382 16581478.26512 2490 2382 17734607.15466 2491 2382 1.817941665649e-06 2492 2382 439821.2585785 2493 2382 103049709.0446 2494 2382 8.106231689453e-06 2495 2382 1759285.033469 2496 2382 -19975421.90891 2497 2382 -1.013278961182e-05 2498 2382 439821.2585936 2508 2382 -19644494.8084 2509 2382 -11944444.44837 2510 2382 -7125466.187114 2511 2382 -71083613.53293 2512 2382 2.801418304443e-06 2513 2382 -48425475.84218 2514 2382 -29334356.73017 2515 2382 11944444.44836 2516 2382 -17021299.52369 2383 2383 599883709.7778 2384 2383 -47777064.79172 2385 2383 -8.612871170044e-06 2386 2383 -74790087.48109 2387 2383 24294087.95135 2397 2383 -42222222.21529 2398 2383 -50235473.94641 2399 2383 5333244.213044 2400 2383 3.516674041748e-06 2401 2383 22728141.58569 2402 2383 -11944266.20381 2403 2383 42222222.21529 2404 2383 -50772020.36985 2405 2383 6611021.990771 2475 2383 11944444.44837 2476 2383 -15694767.28047 2477 2383 -6579899.772699 2478 2383 -8.195638656616e-07 2479 2383 -16013622.55363 2480 2383 -5277700.460655 2481 2383 -11944444.44837 2482 2383 -24859919.89976 2483 2383 11857600.23336 2490 2383 3.322958946228e-06 2491 2383 -27654200.09436 2492 2383 -27480710.1887 2493 2383 7.987022399902e-06 2494 2383 74381129.14638 2495 2383 -21110801.83222 2496 2383 -9.581446647644e-06 2497 2383 -65364229.15794 2498 2383 48591512.02092 2508 2383 -11944444.44836 2509 2383 -16060922.31935 2510 2383 -7107677.550651 2511 2383 2.488493919373e-06 2512 2383 -18527661.31289 2513 2383 -5277700.460655 2514 2383 11944444.44836 2515 2383 -25750784.24113 2516 2383 12385378.01131 2384 2384 657670929.3001 2385 2384 995385.2243 2386 2384 23482976.84037 2387 2384 60454947.39636 2397 2384 10752307.38609 2398 2384 5416577.546522 2399 2384 -16208893.36898 2400 2384 -1483826.003273 2401 2384 -11944266.20381 2402 2384 36217937.62672 2403 2384 -11643525.94355 2404 2384 6527688.657292 2405 2384 -17639683.8315 2475 2384 6685644.928532 2476 2384 -6579899.772699 2477 2384 -8541180.705052 2478 2384 46402301.92001 2479 2384 -5277700.460655 2480 2384 -49602960.36391 2481 2384 16581478.26512 2482 2384 11857600.23336 2483 2384 -32981587.68983 2490 2384 439821.2585788 2491 2384 -27269599.07773 2492 2384 -221502.6772963 2493 2384 1759285.033468 2494 2384 -21110801.83222 2495 2384 -68142578.48796 2496 2384 439821.258594 2497 2384 48380400.90995 2498 2384 -100781580.1802 2508 2384 -7125466.187114 2509 2384 -7107677.550651 2510 2384 -9517594.142065 2511 2384 -48161586.95346 2512 2384 -5277700.460655 2513 2384 -56307063.72196 2514 2384 -17021299.52369 2515 2384 12385378.01131 2516 2384 -35357225.93349 2385 2385 701224018.4261 2386 2385 1.215934753418e-05 2387 2385 3981540.895231 2388 2385 85654059.23587 2389 2385 -7.361173629761e-06 2390 2385 995385.2243004 2400 2385 -62903012.53369 2401 2385 -42222222.21529 2402 2385 10648140.71925 2403 2385 -163051082.2809 2404 2385 4.857778549194e-06 2405 2385 -2497714.891996 2406 2385 -63439558.95712 2407 2385 42222222.21529 2408 2385 -11747692.6104 2478 2385 -19278339.76952 2479 2385 11944444.44837 2480 2385 6685644.928532 2481 2385 -68569574.7737 2482 2385 9.983777999878e-07 2483 2385 46666190.80873 2484 2385 -28443492.38882 2485 2385 -11944444.44837 2486 2385 16581478.26512 2493 2385 17734607.15466 2494 2385 1.817941665649e-06 2495 2385 439821.2585785 2496 2385 103049709.0446 2497 2385 8.106231689453e-06 2498 2385 1759285.033469 2499 2385 -19975421.90891 2500 2385 -1.013278961182e-05 2501 2385 439821.2585936 2511 2385 -19644494.8084 2512 2385 -11944444.44837 2513 2385 -7125466.187114 2514 2385 -71083613.53293 2515 2385 2.801418304443e-06 2516 2385 -48425475.84218 2517 2385 -29334356.73017 2518 2385 11944444.44836 2519 2385 -17021299.52369 2386 2386 599883709.7778 2387 2386 -47777064.79172 2388 2386 -8.612871170044e-06 2389 2386 -74790087.48109 2390 2386 24294087.95135 2400 2386 -42222222.21529 2401 2386 -50235473.94641 2402 2386 5333244.213044 2403 2386 3.516674041748e-06 2404 2386 22728141.58569 2405 2386 -11944266.20381 2406 2386 42222222.21529 2407 2386 -50772020.36985 2408 2386 6611021.990771 2478 2386 11944444.44837 2479 2386 -15694767.28047 2480 2386 -6579899.772699 2481 2386 -8.195638656616e-07 2482 2386 -16013622.55363 2483 2386 -5277700.460655 2484 2386 -11944444.44837 2485 2386 -24859919.89976 2486 2386 11857600.23336 2493 2386 3.322958946228e-06 2494 2386 -27654200.09436 2495 2386 -27480710.1887 2496 2386 7.987022399902e-06 2497 2386 74381129.14638 2498 2386 -21110801.83222 2499 2386 -9.581446647644e-06 2500 2386 -65364229.15794 2501 2386 48591512.02092 2511 2386 -11944444.44836 2512 2386 -16060922.31935 2513 2386 -7107677.550651 2514 2386 2.488493919373e-06 2515 2386 -18527661.31289 2516 2386 -5277700.460655 2517 2386 11944444.44836 2518 2386 -25750784.24113 2519 2386 12385378.01131 2387 2387 657670929.3001 2388 2387 995385.2243 2389 2387 23482976.84037 2390 2387 60454947.39636 2400 2387 10752307.38609 2401 2387 5416577.546522 2402 2387 -16208893.36898 2403 2387 -1483826.003273 2404 2387 -11944266.20381 2405 2387 36217937.62672 2406 2387 -11643525.94355 2407 2387 6527688.657292 2408 2387 -17639683.8315 2478 2387 6685644.928532 2479 2387 -6579899.772699 2480 2387 -8541180.705052 2481 2387 46402301.92001 2482 2387 -5277700.460655 2483 2387 -49602960.36391 2484 2387 16581478.26512 2485 2387 11857600.23336 2486 2387 -32981587.68983 2493 2387 439821.2585788 2494 2387 -27269599.07773 2495 2387 -221502.6772963 2496 2387 1759285.033468 2497 2387 -21110801.83222 2498 2387 -68142578.48796 2499 2387 439821.258594 2500 2387 48380400.90995 2501 2387 -100781580.1802 2511 2387 -7125466.187114 2512 2387 -7107677.550651 2513 2387 -9517594.142065 2514 2387 -48161586.95346 2515 2387 -5277700.460655 2516 2387 -56307063.72196 2517 2387 -17021299.52369 2518 2387 12385378.01131 2519 2387 -35357225.93349 2388 2388 753320607.0872 2389 2388 42247958.4308 2390 2388 13425270.63193 2391 2388 10687201.53391 2392 2388 -42232516.7015 2393 2388 11747147.69675 2403 2388 -62903012.53369 2404 2388 -42222222.21529 2405 2388 10648140.71925 2406 2388 -163051082.2809 2407 2388 4.857778549194e-06 2408 2388 -2497714.891996 2409 2388 -63439558.95712 2410 2388 42222222.21529 2411 2388 -11747692.6104 2481 2388 -19278339.76952 2482 2388 11944444.44837 2483 2388 6685644.928532 2484 2388 -83208406.42019 2485 2388 -11951850.06621 2486 2388 42498171.10922 2496 2388 17734607.15466 2497 2388 1.817941665649e-06 2498 2388 439821.2585785 2499 2388 125282026.2887 2500 2388 11956787.14478 2501 2388 5935098.98454 2502 2388 -32275376.32772 2503 2388 -11949381.52693 2504 2388 17028332.3953 2514 2388 -19644494.8084 2515 2388 -11944444.44837 2516 2388 -7125466.187114 2517 2388 -71083613.53293 2518 2388 2.801418304443e-06 2519 2388 -48425475.84218 2520 2388 -29334356.73017 2521 2388 11944444.44836 2522 2388 -17021299.52369 2389 2389 639301177.7705 2390 2389 -37037050.15144 2391 2389 -42237663.9446 2392 2389 -137109995.2621 2393 2389 20238494.1063 2403 2389 -42222222.21529 2404 2389 -50235473.94641 2405 2389 5333244.213044 2406 2389 3.516674041748e-06 2407 2389 22728141.58569 2408 2389 -11944266.20381 2409 2389 42222222.21529 2410 2389 -50772020.36985 2411 2389 6611021.990771 2481 2389 11944444.44837 2482 2389 -15694767.28047 2483 2389 -6579899.772699 2484 2389 -11949381.52693 2485 2389 -27053453.11441 2486 2389 3626698.329752 2496 2389 3.322958946228e-06 2497 2389 -27654200.09436 2498 2389 -27480710.1887 2499 2389 11956787.14477 2500 2389 93024319.31714 2501 2389 -16362810.24847 2502 2389 -11951850.06621 2503 2389 -74090485.10009 2504 2389 46808583.40323 2514 2389 -11944444.44836 2515 2389 -16060922.31935 2516 2389 -7107677.550651 2517 2389 2.488493919373e-06 2518 2389 -18527661.31289 2519 2389 -5277700.460655 2520 2389 11944444.44836 2521 2389 -25750784.24113 2522 2389 12385378.01131 2390 2390 644924144.2682 2391 2390 11642708.57308 2392 2390 22769593.39294 2393 2390 12096388.9117 2403 2390 10752307.38609 2404 2390 5416577.546522 2405 2390 -16208893.36898 2406 2390 -1483826.003273 2407 2390 -11944266.20381 2408 2390 36217937.62672 2409 2390 -11643525.94355 2410 2390 6527688.657292 2411 2390 -17639683.8315 2481 2390 6685644.928532 2482 2390 -6579899.772699 2483 2390 -8541180.705052 2484 2390 42233282.34386 2485 2390 2150097.608279 2486 2390 -45715547.88649 2496 2390 439821.2585788 2497 2390 -27269599.07773 2498 2390 -221502.6772963 2499 2390 5939995.986973 2500 2390 -16358892.70393 2501 2390 -51790570.05088 2502 2390 17031848.8311 2503 2390 48076086.23075 2504 2390 -90703859.27092 2514 2390 -7125466.187114 2515 2390 -7107677.550651 2516 2390 -9517594.142065 2517 2390 -48161586.95346 2518 2390 -5277700.460655 2519 2390 -56307063.72196 2520 2390 -17021299.52369 2521 2390 12385378.01131 2522 2390 -35357225.93349 2391 2391 420142253.8812 2392 2391 -26639487.106 2393 2391 -3084379.120139 2406 2391 -62903012.53369 2407 2391 -42222222.21529 2408 2391 10648140.71925 2409 2391 -80812305.28421 2410 2391 26543754.57092 2411 2391 -1611502.173259 2412 2391 -184325621.8369 2413 2391 33873510.30732 2414 2391 -775000.5169595 2484 2391 1810230.00851 2485 2391 14340738.95588 2486 2391 8290807.874965 2499 2391 -3359294.569133 2500 2391 -11951850.06621 2501 2391 -6689786.134111 2502 2391 64793825.45948 2503 2391 -6243722.738426 2504 2391 3816806.707693 2517 2391 -19644494.8084 2518 2391 -11944444.44837 2519 2391 -7125466.187114 2520 2391 -40605721.95413 2521 2391 6202186.078868 2522 2391 -30034628.76677 2523 2391 -39948167.4897 2524 2391 9597092.218255 2525 2391 -2839054.908176 2392 2392 697040023.4809 2393 2392 -38830126.79588 2406 2392 -42222222.21529 2407 2392 -50235473.94641 2408 2392 5333244.213044 2409 2392 26495888.30338 2410 2392 86950457.68356 2411 2392 -8406841.802013 2412 2392 50810265.46097 2413 2392 -493856496.1955 2414 2392 14658602.99375 2484 2392 9560492.637254 2485 2392 1810230.008509 2486 2392 -4421798.559475 2499 2392 -11949381.52693 2500 2392 -45174403.34149 2501 2392 -27804612.20634 2502 2392 -6243722.738427 2503 2392 116187740.7912 2504 2392 -12029230.86321 2517 2392 -11944444.44836 2518 2392 -16060922.31935 2519 2392 -7107677.550651 2520 2392 6181417.749088 2521 2392 7479412.380062 2522 2392 1270358.056493 2523 2392 14395638.32738 2524 2392 -101195680.8723 2525 2392 22521951.86899 2393 2393 422801090.7216 2406 2393 10752307.38609 2407 2393 5416577.546522 2408 2393 -16208893.36898 2409 2393 -3959442.819955 2410 2393 -7686435.131428 2411 2393 37418239.63636 2412 2393 -1162500.775438 2413 2393 14148198.27724 2414 2393 -182004117.2064 2484 2393 5527205.249977 2485 2393 -6632697.839212 2486 2393 4827280.022694 2499 2393 -6688405.732252 2500 2393 -29072115.16194 2501 2393 -13594307.9147 2502 2393 -7974098.476532 2503 2393 -21433087.28757 2504 2393 -5368828.40544 2517 2393 -7125466.187114 2518 2393 -7107677.550651 2519 2393 -9517594.142065 2520 2393 -31352634.6121 2521 2393 1500021.740722 2522 2393 -29608611.91299 2523 2393 -4258582.362264 2524 2393 21389042.21735 2525 2393 -45280933.25655 2394 2394 701224018.4261 2395 2394 1.215934753418e-05 2396 2394 3981540.895231 2397 2394 85654059.23587 2398 2394 -7.361173629761e-06 2399 2394 995385.2243004 2415 2394 -163051082.2809 2416 2394 4.857778549194e-06 2417 2394 -2497714.891996 2418 2394 -63439558.95712 2419 2394 42222222.21529 2420 2394 -11747692.6104 2487 2394 -68569574.7737 2488 2394 9.983777999878e-07 2489 2394 46666190.80873 2490 2394 -28443492.38882 2491 2394 -11944444.44837 2492 2394 16581478.26512 2505 2394 103049709.0446 2506 2394 8.106231689453e-06 2507 2394 1759285.033469 2508 2394 -19975421.90891 2509 2394 -1.013278961182e-05 2510 2394 439821.2585936 2526 2394 -71083613.53293 2527 2394 2.801418304443e-06 2528 2394 -48425475.84218 2529 2394 -29334356.73017 2530 2394 11944444.44836 2531 2394 -17021299.52369 2395 2395 599883709.7778 2396 2395 -47777064.79172 2397 2395 -8.612871170044e-06 2398 2395 -74790087.48109 2399 2395 24294087.95135 2415 2395 3.516674041748e-06 2416 2395 22728141.58569 2417 2395 -11944266.20381 2418 2395 42222222.21529 2419 2395 -50772020.36985 2420 2395 6611021.990771 2487 2395 -8.195638656616e-07 2488 2395 -16013622.55363 2489 2395 -5277700.460655 2490 2395 -11944444.44837 2491 2395 -24859919.89976 2492 2395 11857600.23336 2505 2395 7.987022399902e-06 2506 2395 74381129.14638 2507 2395 -21110801.83222 2508 2395 -9.581446647644e-06 2509 2395 -65364229.15794 2510 2395 48591512.02092 2526 2395 2.488493919373e-06 2527 2395 -18527661.31289 2528 2395 -5277700.460655 2529 2395 11944444.44836 2530 2395 -25750784.24113 2531 2395 12385378.01131 2396 2396 657670929.3001 2397 2396 995385.2243 2398 2396 23482976.84037 2399 2396 60454947.39636 2415 2396 -1483826.003273 2416 2396 -11944266.20381 2417 2396 36217937.62672 2418 2396 -11643525.94355 2419 2396 6527688.657292 2420 2396 -17639683.8315 2487 2396 46402301.92001 2488 2396 -5277700.460655 2489 2396 -49602960.36391 2490 2396 16581478.26512 2491 2396 11857600.23336 2492 2396 -32981587.68983 2505 2396 1759285.033468 2506 2396 -21110801.83222 2507 2396 -68142578.48796 2508 2396 439821.258594 2509 2396 48380400.90995 2510 2396 -100781580.1802 2526 2396 -48161586.95346 2527 2396 -5277700.460655 2528 2396 -56307063.72196 2529 2396 -17021299.52369 2530 2396 12385378.01131 2531 2396 -35357225.93349 2397 2397 701224018.4261 2398 2397 1.215934753418e-05 2399 2397 3981540.895231 2400 2397 85654059.23587 2401 2397 -7.361173629761e-06 2402 2397 995385.2243004 2415 2397 -62903012.53369 2416 2397 -42222222.21529 2417 2397 10648140.71925 2418 2397 -163051082.2809 2419 2397 4.857778549194e-06 2420 2397 -2497714.891996 2421 2397 -63439558.95712 2422 2397 42222222.21529 2423 2397 -11747692.6104 2487 2397 -19278339.76952 2488 2397 11944444.44837 2489 2397 6685644.928532 2490 2397 -68569574.7737 2491 2397 9.983777999878e-07 2492 2397 46666190.80873 2493 2397 -28443492.38882 2494 2397 -11944444.44837 2495 2397 16581478.26512 2505 2397 17734607.15466 2506 2397 1.817941665649e-06 2507 2397 439821.2585785 2508 2397 103049709.0446 2509 2397 8.106231689453e-06 2510 2397 1759285.033469 2511 2397 -19975421.90891 2512 2397 -1.013278961182e-05 2513 2397 439821.2585936 2526 2397 -19644494.8084 2527 2397 -11944444.44837 2528 2397 -7125466.187114 2529 2397 -71083613.53293 2530 2397 2.801418304443e-06 2531 2397 -48425475.84218 2532 2397 -29334356.73017 2533 2397 11944444.44836 2534 2397 -17021299.52369 2398 2398 599883709.7778 2399 2398 -47777064.79172 2400 2398 -8.612871170044e-06 2401 2398 -74790087.48109 2402 2398 24294087.95135 2415 2398 -42222222.21529 2416 2398 -50235473.94641 2417 2398 5333244.213044 2418 2398 3.516674041748e-06 2419 2398 22728141.58569 2420 2398 -11944266.20381 2421 2398 42222222.21529 2422 2398 -50772020.36985 2423 2398 6611021.990771 2487 2398 11944444.44837 2488 2398 -15694767.28047 2489 2398 -6579899.772699 2490 2398 -8.195638656616e-07 2491 2398 -16013622.55363 2492 2398 -5277700.460655 2493 2398 -11944444.44837 2494 2398 -24859919.89976 2495 2398 11857600.23336 2505 2398 3.322958946228e-06 2506 2398 -27654200.09436 2507 2398 -27480710.1887 2508 2398 7.987022399902e-06 2509 2398 74381129.14638 2510 2398 -21110801.83222 2511 2398 -9.581446647644e-06 2512 2398 -65364229.15794 2513 2398 48591512.02092 2526 2398 -11944444.44836 2527 2398 -16060922.31935 2528 2398 -7107677.550651 2529 2398 2.488493919373e-06 2530 2398 -18527661.31289 2531 2398 -5277700.460655 2532 2398 11944444.44836 2533 2398 -25750784.24113 2534 2398 12385378.01131 2399 2399 657670929.3001 2400 2399 995385.2243 2401 2399 23482976.84037 2402 2399 60454947.39636 2415 2399 10752307.38609 2416 2399 5416577.546522 2417 2399 -16208893.36898 2418 2399 -1483826.003273 2419 2399 -11944266.20381 2420 2399 36217937.62672 2421 2399 -11643525.94355 2422 2399 6527688.657292 2423 2399 -17639683.8315 2487 2399 6685644.928532 2488 2399 -6579899.772699 2489 2399 -8541180.705052 2490 2399 46402301.92001 2491 2399 -5277700.460655 2492 2399 -49602960.36391 2493 2399 16581478.26512 2494 2399 11857600.23336 2495 2399 -32981587.68983 2505 2399 439821.2585788 2506 2399 -27269599.07773 2507 2399 -221502.6772963 2508 2399 1759285.033468 2509 2399 -21110801.83222 2510 2399 -68142578.48796 2511 2399 439821.258594 2512 2399 48380400.90995 2513 2399 -100781580.1802 2526 2399 -7125466.187114 2527 2399 -7107677.550651 2528 2399 -9517594.142065 2529 2399 -48161586.95346 2530 2399 -5277700.460655 2531 2399 -56307063.72196 2532 2399 -17021299.52369 2533 2399 12385378.01131 2534 2399 -35357225.93349 2400 2400 701224018.4261 2401 2400 1.215934753418e-05 2402 2400 3981540.895231 2403 2400 85654059.23587 2404 2400 -7.361173629761e-06 2405 2400 995385.2243004 2418 2400 -62903012.53369 2419 2400 -42222222.21529 2420 2400 10648140.71925 2421 2400 -163051082.2809 2422 2400 4.857778549194e-06 2423 2400 -2497714.891996 2424 2400 -63439558.95712 2425 2400 42222222.21529 2426 2400 -11747692.6104 2490 2400 -19278339.76952 2491 2400 11944444.44837 2492 2400 6685644.928532 2493 2400 -68569574.7737 2494 2400 9.983777999878e-07 2495 2400 46666190.80873 2496 2400 -28443492.38882 2497 2400 -11944444.44837 2498 2400 16581478.26512 2508 2400 17734607.15466 2509 2400 1.817941665649e-06 2510 2400 439821.2585785 2511 2400 103049709.0446 2512 2400 8.106231689453e-06 2513 2400 1759285.033469 2514 2400 -19975421.90891 2515 2400 -1.013278961182e-05 2516 2400 439821.2585936 2529 2400 -19644494.8084 2530 2400 -11944444.44837 2531 2400 -7125466.187114 2532 2400 -71083613.53293 2533 2400 2.801418304443e-06 2534 2400 -48425475.84218 2535 2400 -29334356.73017 2536 2400 11944444.44836 2537 2400 -17021299.52369 2401 2401 599883709.7778 2402 2401 -47777064.79172 2403 2401 -8.612871170044e-06 2404 2401 -74790087.48109 2405 2401 24294087.95135 2418 2401 -42222222.21529 2419 2401 -50235473.94641 2420 2401 5333244.213044 2421 2401 3.516674041748e-06 2422 2401 22728141.58569 2423 2401 -11944266.20381 2424 2401 42222222.21529 2425 2401 -50772020.36985 2426 2401 6611021.990771 2490 2401 11944444.44837 2491 2401 -15694767.28047 2492 2401 -6579899.772699 2493 2401 -8.195638656616e-07 2494 2401 -16013622.55363 2495 2401 -5277700.460655 2496 2401 -11944444.44837 2497 2401 -24859919.89976 2498 2401 11857600.23336 2508 2401 3.322958946228e-06 2509 2401 -27654200.09436 2510 2401 -27480710.1887 2511 2401 7.987022399902e-06 2512 2401 74381129.14638 2513 2401 -21110801.83222 2514 2401 -9.581446647644e-06 2515 2401 -65364229.15794 2516 2401 48591512.02092 2529 2401 -11944444.44836 2530 2401 -16060922.31935 2531 2401 -7107677.550651 2532 2401 2.488493919373e-06 2533 2401 -18527661.31289 2534 2401 -5277700.460655 2535 2401 11944444.44836 2536 2401 -25750784.24113 2537 2401 12385378.01131 2402 2402 657670929.3001 2403 2402 995385.2243 2404 2402 23482976.84037 2405 2402 60454947.39636 2418 2402 10752307.38609 2419 2402 5416577.546522 2420 2402 -16208893.36898 2421 2402 -1483826.003273 2422 2402 -11944266.20381 2423 2402 36217937.62672 2424 2402 -11643525.94355 2425 2402 6527688.657292 2426 2402 -17639683.8315 2490 2402 6685644.928532 2491 2402 -6579899.772699 2492 2402 -8541180.705052 2493 2402 46402301.92001 2494 2402 -5277700.460655 2495 2402 -49602960.36391 2496 2402 16581478.26512 2497 2402 11857600.23336 2498 2402 -32981587.68983 2508 2402 439821.2585788 2509 2402 -27269599.07773 2510 2402 -221502.6772963 2511 2402 1759285.033468 2512 2402 -21110801.83222 2513 2402 -68142578.48796 2514 2402 439821.258594 2515 2402 48380400.90995 2516 2402 -100781580.1802 2529 2402 -7125466.187114 2530 2402 -7107677.550651 2531 2402 -9517594.142065 2532 2402 -48161586.95346 2533 2402 -5277700.460655 2534 2402 -56307063.72196 2535 2402 -17021299.52369 2536 2402 12385378.01131 2537 2402 -35357225.93349 2403 2403 701224018.4261 2404 2403 1.215934753418e-05 2405 2403 3981540.895231 2406 2403 85654059.23587 2407 2403 -7.361173629761e-06 2408 2403 995385.2243004 2421 2403 -62903012.53369 2422 2403 -42222222.21529 2423 2403 10648140.71925 2424 2403 -163051082.2809 2425 2403 4.857778549194e-06 2426 2403 -2497714.891996 2427 2403 -63439558.95712 2428 2403 42222222.21529 2429 2403 -11747692.6104 2493 2403 -19278339.76952 2494 2403 11944444.44837 2495 2403 6685644.928532 2496 2403 -68569574.7737 2497 2403 9.983777999878e-07 2498 2403 46666190.80873 2499 2403 -28443492.38882 2500 2403 -11944444.44837 2501 2403 16581478.26512 2511 2403 17734607.15466 2512 2403 1.817941665649e-06 2513 2403 439821.2585785 2514 2403 103049709.0446 2515 2403 8.106231689453e-06 2516 2403 1759285.033469 2517 2403 -19975421.90891 2518 2403 -1.013278961182e-05 2519 2403 439821.2585936 2532 2403 -19644494.8084 2533 2403 -11944444.44837 2534 2403 -7125466.187114 2535 2403 -71083613.53293 2536 2403 2.801418304443e-06 2537 2403 -48425475.84218 2538 2403 -29334356.73017 2539 2403 11944444.44836 2540 2403 -17021299.52369 2404 2404 599883709.7778 2405 2404 -47777064.79172 2406 2404 -8.612871170044e-06 2407 2404 -74790087.48109 2408 2404 24294087.95135 2421 2404 -42222222.21529 2422 2404 -50235473.94641 2423 2404 5333244.213044 2424 2404 3.516674041748e-06 2425 2404 22728141.58569 2426 2404 -11944266.20381 2427 2404 42222222.21529 2428 2404 -50772020.36985 2429 2404 6611021.990771 2493 2404 11944444.44837 2494 2404 -15694767.28047 2495 2404 -6579899.772699 2496 2404 -8.195638656616e-07 2497 2404 -16013622.55363 2498 2404 -5277700.460655 2499 2404 -11944444.44837 2500 2404 -24859919.89976 2501 2404 11857600.23336 2511 2404 3.322958946228e-06 2512 2404 -27654200.09436 2513 2404 -27480710.1887 2514 2404 7.987022399902e-06 2515 2404 74381129.14638 2516 2404 -21110801.83222 2517 2404 -9.581446647644e-06 2518 2404 -65364229.15794 2519 2404 48591512.02092 2532 2404 -11944444.44836 2533 2404 -16060922.31935 2534 2404 -7107677.550651 2535 2404 2.488493919373e-06 2536 2404 -18527661.31289 2537 2404 -5277700.460655 2538 2404 11944444.44836 2539 2404 -25750784.24113 2540 2404 12385378.01131 2405 2405 657670929.3001 2406 2405 995385.2243 2407 2405 23482976.84037 2408 2405 60454947.39636 2421 2405 10752307.38609 2422 2405 5416577.546522 2423 2405 -16208893.36898 2424 2405 -1483826.003273 2425 2405 -11944266.20381 2426 2405 36217937.62672 2427 2405 -11643525.94355 2428 2405 6527688.657292 2429 2405 -17639683.8315 2493 2405 6685644.928532 2494 2405 -6579899.772699 2495 2405 -8541180.705052 2496 2405 46402301.92001 2497 2405 -5277700.460655 2498 2405 -49602960.36391 2499 2405 16581478.26512 2500 2405 11857600.23336 2501 2405 -32981587.68983 2511 2405 439821.2585788 2512 2405 -27269599.07773 2513 2405 -221502.6772963 2514 2405 1759285.033468 2515 2405 -21110801.83222 2516 2405 -68142578.48796 2517 2405 439821.258594 2518 2405 48380400.90995 2519 2405 -100781580.1802 2532 2405 -7125466.187114 2533 2405 -7107677.550651 2534 2405 -9517594.142065 2535 2405 -48161586.95346 2536 2405 -5277700.460655 2537 2405 -56307063.72196 2538 2405 -17021299.52369 2539 2405 12385378.01131 2540 2405 -35357225.93349 2406 2406 701224018.4261 2407 2406 1.215934753418e-05 2408 2406 3981540.895231 2409 2406 85654059.23587 2410 2406 -7.361173629761e-06 2411 2406 995385.2243004 2424 2406 -62903012.53369 2425 2406 -42222222.21529 2426 2406 10648140.71925 2427 2406 -163051082.2809 2428 2406 4.857778549194e-06 2429 2406 -2497714.891996 2430 2406 -63439558.95712 2431 2406 42222222.21529 2432 2406 -11747692.6104 2496 2406 -19278339.76952 2497 2406 11944444.44837 2498 2406 6685644.928532 2499 2406 -68569574.7737 2500 2406 9.983777999878e-07 2501 2406 46666190.80873 2502 2406 -28443492.38882 2503 2406 -11944444.44837 2504 2406 16581478.26512 2514 2406 17734607.15466 2515 2406 1.817941665649e-06 2516 2406 439821.2585785 2517 2406 103049709.0446 2518 2406 8.106231689453e-06 2519 2406 1759285.033469 2520 2406 -19975421.90891 2521 2406 -1.013278961182e-05 2522 2406 439821.2585936 2535 2406 -19644494.8084 2536 2406 -11944444.44837 2537 2406 -7125466.187114 2538 2406 -71083613.53293 2539 2406 2.801418304443e-06 2540 2406 -48425475.84218 2541 2406 -29334356.73017 2542 2406 11944444.44836 2543 2406 -17021299.52369 2407 2407 599883709.7778 2408 2407 -47777064.79172 2409 2407 -8.612871170044e-06 2410 2407 -74790087.48109 2411 2407 24294087.95135 2424 2407 -42222222.21529 2425 2407 -50235473.94641 2426 2407 5333244.213044 2427 2407 3.516674041748e-06 2428 2407 22728141.58569 2429 2407 -11944266.20381 2430 2407 42222222.21529 2431 2407 -50772020.36985 2432 2407 6611021.990771 2496 2407 11944444.44837 2497 2407 -15694767.28047 2498 2407 -6579899.772699 2499 2407 -8.195638656616e-07 2500 2407 -16013622.55363 2501 2407 -5277700.460655 2502 2407 -11944444.44837 2503 2407 -24859919.89976 2504 2407 11857600.23336 2514 2407 3.322958946228e-06 2515 2407 -27654200.09436 2516 2407 -27480710.1887 2517 2407 7.987022399902e-06 2518 2407 74381129.14638 2519 2407 -21110801.83222 2520 2407 -9.581446647644e-06 2521 2407 -65364229.15794 2522 2407 48591512.02092 2535 2407 -11944444.44836 2536 2407 -16060922.31935 2537 2407 -7107677.550651 2538 2407 2.488493919373e-06 2539 2407 -18527661.31289 2540 2407 -5277700.460655 2541 2407 11944444.44836 2542 2407 -25750784.24113 2543 2407 12385378.01131 2408 2408 657670929.3001 2409 2408 995385.2243 2410 2408 23482976.84037 2411 2408 60454947.39636 2424 2408 10752307.38609 2425 2408 5416577.546522 2426 2408 -16208893.36898 2427 2408 -1483826.003273 2428 2408 -11944266.20381 2429 2408 36217937.62672 2430 2408 -11643525.94355 2431 2408 6527688.657292 2432 2408 -17639683.8315 2496 2408 6685644.928532 2497 2408 -6579899.772699 2498 2408 -8541180.705052 2499 2408 46402301.92001 2500 2408 -5277700.460655 2501 2408 -49602960.36391 2502 2408 16581478.26512 2503 2408 11857600.23336 2504 2408 -32981587.68983 2514 2408 439821.2585788 2515 2408 -27269599.07773 2516 2408 -221502.6772963 2517 2408 1759285.033468 2518 2408 -21110801.83222 2519 2408 -68142578.48796 2520 2408 439821.258594 2521 2408 48380400.90995 2522 2408 -100781580.1802 2535 2408 -7125466.187114 2536 2408 -7107677.550651 2537 2408 -9517594.142065 2538 2408 -48161586.95346 2539 2408 -5277700.460655 2540 2408 -56307063.72196 2541 2408 -17021299.52369 2542 2408 12385378.01131 2543 2408 -35357225.93349 2409 2409 577704024.4718 2410 2409 14809283.69956 2411 2409 3094500.267067 2412 2409 -105944549.6383 2413 2409 -83930476.14658 2414 2409 3150475.677939 2427 2409 -62903012.53369 2428 2409 -42222222.21529 2429 2409 10648140.71925 2430 2409 -109457388.1912 2431 2409 27063170.45869 2432 2409 -1117736.826287 2433 2409 -51031357.23621 2434 2409 15562133.68496 2435 2409 -1196914.486729 2499 2409 -19278339.76952 2500 2409 11944444.44837 2501 2409 6685644.928532 2502 2409 -37684606.37654 2503 2409 6181417.749088 2504 2409 27601891.30902 2517 2409 17734607.15466 2518 2409 1.817941665649e-06 2519 2409 439821.2585785 2520 2409 100394552.2472 2521 2409 3668856.730091 2522 2409 1425389.136151 2523 2409 -41726819.0919 2524 2409 -22707301.49767 2525 2409 13201184.57836 2538 2409 -19644494.8084 2539 2409 -11944444.44837 2540 2409 -7125466.187114 2541 2409 -53972480.23384 2542 2409 7388118.740806 2543 2409 -38810328.02163 2544 2409 -20564060.7256 2545 2409 5468908.277692 2546 2409 -3388482.255547 2410 2410 695909943.6538 2411 2410 -32875937.83832 2412 2410 -83978342.41412 2413 2410 -281568044.39 2414 2410 6945565.151227 2427 2410 -42222222.21529 2428 2410 -50235473.94641 2429 2410 5333244.213044 2430 2410 27063170.45869 2431 2410 17779793.06391 2432 2410 -5838198.671549 2433 2410 15562133.68496 2434 2410 -153504656.347 2435 2410 4087799.174187 2499 2410 11944444.44837 2500 2410 -15694767.28047 2501 2410 -6579899.772699 2502 2410 6202186.078866 2503 2410 10400527.95768 2504 2410 -8330322.108782 2517 2410 3.322958946228e-06 2518 2410 -27654200.09436 2519 2410 -27480710.1887 2520 2410 3668856.730088 2521 2410 127661417.7545 2522 2410 -14307167.86992 2523 2410 -22728069.82745 2524 2410 -90171091.60634 2525 2410 40873449.4208 2538 2410 -11944444.44836 2539 2410 -16060922.31935 2540 2410 -7107677.550651 2541 2410 7388118.740805 2542 2410 -16117915.41583 2543 2410 4565046.721977 2544 2410 5468908.277692 2545 2410 -47104690.59973 2546 2410 18391008.29112 2411 2411 523190943.6465 2412 2411 3044920.380945 2413 2411 6593211.907962 2414 2411 -75050515.58456 2427 2411 10752307.38609 2428 2411 5416577.546522 2429 2411 -16208893.36898 2430 2411 -3583014.60366 2431 2411 -5754865.33823 2432 2411 33100739.46664 2433 2411 -988581.1530332 2434 2411 4087799.174186 2435 2411 -39212679.04904 2499 2411 6685644.928532 2500 2411 -6579899.772699 2501 2411 -8541180.705052 2502 2411 28919897.15434 2503 2411 -8527088.580187 2504 2411 -21818970.37266 2517 2411 439821.2585788 2518 2411 -27269599.07773 2519 2411 -221502.6772963 2520 2411 1435183.211197 2521 2411 -14299331.64391 2522 2411 -21850651.32956 2523 2411 13207656.47459 2524 2411 40863132.02543 2525 2411 -57780083.98817 2538 2411 -7125466.187114 2539 2411 -7107677.550651 2540 2411 -9517594.142065 2541 2411 -40129772.46506 2542 2411 4565046.723341 2543 2411 -50119670.15696 2544 2411 -3388482.255547 2545 2411 18391008.29112 2546 2411 -29461390.90537 2412 2412 566952139.5686 2413 2412 18738912.23931 2414 2412 963971.4140308 2430 2412 -64315355.09417 2431 2412 -38220064.14765 2432 2412 1370583.552858 2433 2412 13585633.50306 2434 2412 42269697.51059 2435 2412 -1370603.487074 2436 2412 60660323.14971 2437 2412 -23180190.42236 2438 2412 -44826.00110793 2439 2412 -8118600.276353 2440 2412 33559721.77326 2441 2412 -357100.6393677 2502 2412 -36868564.84551 2503 2412 14395638.32738 2504 2412 2665799.7449 2520 2412 -36372847.98441 2521 2412 -22728069.82745 2522 2412 -10527281.18303 2523 2412 50575003.33921 2524 2412 4932035.917719 2525 2412 9249992.645587 2541 2412 -23862844.19582 2542 2412 -10997981.99709 2543 2412 -11215149.57021 2544 2412 -42543957.73714 2545 2412 11150657.82588 2546 2412 -46865917.20518 2547 2412 -16084851.82021 2548 2412 -6374221.316074 2549 2412 13044420.75426 2550 2412 -17415384.18459 2551 2412 9621941.06963 2552 2412 -11469087.40889 2413 2413 971271979.9936 2414 2413 -16529874.51391 2430 2413 -38220064.14765 2431 2413 -25081526.54831 2432 2413 -273324.5491264 2433 2413 42269697.51059 2434 2413 161486942.6946 2435 2413 -2422759.372724 2436 2413 -6291301.536248 2437 2413 -20728017.24709 2438 2413 245188.837259 2439 2413 33559721.77326 2440 2413 -33030868.93149 2441 2413 298208.6664563 2502 2413 9597092.218255 2503 2413 -98116078.22816 2504 2413 -11165823.77878 2520 2413 -22707301.49767 2521 2413 -84817120.49885 2522 2413 -35087282.09087 2523 2413 4932035.917718 2524 2413 137487222.3673 2525 2413 -5791200.564033 2541 2413 -10997981.99709 2542 2413 -13468644.62109 2543 2413 -9555687.152061 2544 2413 11150657.82588 2545 2413 -432390.2942711 2546 2413 6161256.991149 2547 2413 -1596443.536727 2548 2413 -39150114.66293 2549 2413 33441094.01512 2550 2413 9621941.06963 2551 2413 -24076321.49047 2552 2413 16796952.25561 2414 2414 693246339.4045 2430 2414 1474750.219706 2431 2414 -189991.215648 2432 2414 -7392450.986293 2433 2414 -953936.8204754 2434 2414 -2339426.039404 2435 2414 173827673.356 2436 2414 59340.66554439 2437 2414 245188.8372588 2438 2414 108763262.0371 2439 2414 -252933.9725203 2440 2414 298208.6664563 2441 2414 31260393.98142 2502 2414 1777199.829934 2503 2414 -11879639.33914 2504 2414 -37068659.53871 2520 2414 -10523959.04784 2521 2414 -35102025.71722 2522 2414 -43502827.70152 2523 2414 -9298340.6847 2524 2414 -7662986.54061 2525 2414 -71378006.24346 2541 2414 -11215149.57021 2542 2414 -9555687.152061 2543 2414 -16816432.49076 2544 2414 -46865917.20544 2545 2414 6161256.992512 2546 2414 -69024564.22655 2547 2414 4919420.753295 2548 2414 33441094.01512 2549 2414 -58433218.49776 2550 2414 -11469087.40889 2551 2414 16796952.25561 2552 2414 -30638817.77715 2415 2415 349558986.0455 2416 2415 9.059906005859e-06 2417 2415 -543951.774193 2418 2415 42572716.26631 2419 2415 8444444.443056 2420 2415 -2002307.387935 2505 2415 -68569574.7737 2506 2415 9.983777999878e-07 2507 2415 46666190.80873 2508 2415 -28443492.38882 2509 2415 -11944444.44837 2510 2415 16581478.26512 2526 2415 51507364.21225 2527 2415 2.384185791016e-06 2528 2415 -9262857.481274 2529 2415 -9987710.954453 2530 2415 2388888.889668 2531 2415 -3140367.149584 2416 2416 298888831.7214 2417 2416 -23888532.39585 2418 2416 -8444444.44306 2419 2416 -37649357.09217 2420 2416 12027599.53125 2505 2416 -8.195638656616e-07 2506 2416 -16013622.55363 2507 2416 -5277700.460655 2508 2416 -11944444.44837 2509 2416 -24859919.89976 2510 2416 11857600.23336 2526 2416 1.788139343262e-06 2527 2416 37173074.26313 2528 2416 -10555400.91611 2529 2416 -2388888.889678 2530 2416 -32682114.57897 2531 2416 24242978.23266 2417 2417 326027402.8699 2418 2417 2476859.277995 2419 2417 11860932.86461 2420 2417 29549304.7605 2505 2417 46402301.92001 2506 2417 -5277700.460655 2507 2417 -49602960.36391 2508 2417 16581478.26512 2509 2417 11857600.23336 2510 2417 -32981587.68983 2526 2417 9702698.071164 2527 2417 -10555400.91611 2528 2417 -34117930.07082 2529 2417 3580188.408178 2530 2417 24242978.23277 2531 2417 -50390790.09008 2418 2418 349558986.0455 2419 2418 9.059906005859e-06 2420 2418 -543951.774193 2421 2418 42572716.26631 2422 2418 8444444.443056 2423 2418 -2002307.387935 2505 2418 -19278339.76952 2506 2418 11944444.44837 2507 2418 6685644.928532 2508 2418 -68569574.7737 2509 2418 9.983777999878e-07 2510 2418 46666190.80873 2511 2418 -28443492.38882 2512 2418 -11944444.44837 2513 2418 16581478.26512 2526 2418 8867303.577332 2527 2418 -2388888.889672 2528 2418 -1161200.482275 2529 2418 51507364.21225 2530 2418 2.384185791016e-06 2531 2418 -9262857.481274 2532 2418 -9987710.954453 2533 2418 2388888.889668 2534 2418 -3140367.149584 2419 2419 298888831.7214 2420 2419 -23888532.39585 2421 2419 -8444444.44306 2422 2419 -37649357.09217 2423 2419 12027599.53125 2505 2419 11944444.44837 2506 2419 -15694767.28047 2507 2419 -6579899.772699 2508 2419 -8.195638656616e-07 2509 2419 -16013622.55363 2510 2419 -5277700.460655 2511 2419 -11944444.44837 2512 2419 -24859919.89976 2513 2419 11857600.23336 2526 2419 2388888.889675 2527 2419 -13827100.04718 2528 2419 -13687577.31655 2529 2419 1.788139343262e-06 2530 2419 37173074.26313 2531 2419 -10555400.91611 2532 2419 -2388888.889678 2533 2419 -32682114.57897 2534 2419 24242978.23266 2420 2420 326027402.8699 2421 2420 2476859.277995 2422 2420 11860932.86461 2423 2420 29549304.7605 2505 2420 6685644.928532 2506 2420 -6579899.772699 2507 2420 -8541180.705052 2508 2420 46402301.92001 2509 2420 -5277700.460655 2510 2420 -49602960.36391 2511 2420 16581478.26512 2512 2420 11857600.23336 2513 2420 -32981587.68983 2526 2420 1601021.740854 2527 2420 -13687577.31666 2528 2420 -110751.3386485 2529 2420 9702698.071164 2530 2420 -10555400.91611 2531 2420 -34117930.07082 2532 2420 3580188.408178 2533 2420 24242978.23277 2534 2420 -50390790.09008 2421 2421 349558986.0455 2422 2421 9.059906005859e-06 2423 2421 -543951.774193 2424 2421 42572716.26631 2425 2421 8444444.443056 2426 2421 -2002307.387935 2508 2421 -19278339.76952 2509 2421 11944444.44837 2510 2421 6685644.928532 2511 2421 -68569574.7737 2512 2421 9.983777999878e-07 2513 2421 46666190.80873 2514 2421 -28443492.38882 2515 2421 -11944444.44837 2516 2421 16581478.26512 2529 2421 8867303.577332 2530 2421 -2388888.889672 2531 2421 -1161200.482275 2532 2421 51507364.21225 2533 2421 2.384185791016e-06 2534 2421 -9262857.481274 2535 2421 -9987710.954453 2536 2421 2388888.889668 2537 2421 -3140367.149584 2422 2422 298888831.7214 2423 2422 -23888532.39585 2424 2422 -8444444.44306 2425 2422 -37649357.09217 2426 2422 12027599.53125 2508 2422 11944444.44837 2509 2422 -15694767.28047 2510 2422 -6579899.772699 2511 2422 -8.195638656616e-07 2512 2422 -16013622.55363 2513 2422 -5277700.460655 2514 2422 -11944444.44837 2515 2422 -24859919.89976 2516 2422 11857600.23336 2529 2422 2388888.889675 2530 2422 -13827100.04718 2531 2422 -13687577.31655 2532 2422 1.788139343262e-06 2533 2422 37173074.26313 2534 2422 -10555400.91611 2535 2422 -2388888.889678 2536 2422 -32682114.57897 2537 2422 24242978.23266 2423 2423 326027402.8699 2424 2423 2476859.277995 2425 2423 11860932.86461 2426 2423 29549304.7605 2508 2423 6685644.928532 2509 2423 -6579899.772699 2510 2423 -8541180.705052 2511 2423 46402301.92001 2512 2423 -5277700.460655 2513 2423 -49602960.36391 2514 2423 16581478.26512 2515 2423 11857600.23336 2516 2423 -32981587.68983 2529 2423 1601021.740854 2530 2423 -13687577.31666 2531 2423 -110751.3386485 2532 2423 9702698.071164 2533 2423 -10555400.91611 2534 2423 -34117930.07082 2535 2423 3580188.408178 2536 2423 24242978.23277 2537 2423 -50390790.09008 2424 2424 349558986.0455 2425 2424 9.059906005859e-06 2426 2424 -543951.774193 2427 2424 42572716.26631 2428 2424 8444444.443056 2429 2424 -2002307.387935 2511 2424 -19278339.76952 2512 2424 11944444.44837 2513 2424 6685644.928532 2514 2424 -68569574.7737 2515 2424 9.983777999878e-07 2516 2424 46666190.80873 2517 2424 -28443492.38882 2518 2424 -11944444.44837 2519 2424 16581478.26512 2532 2424 8867303.577332 2533 2424 -2388888.889672 2534 2424 -1161200.482275 2535 2424 51507364.21225 2536 2424 2.384185791016e-06 2537 2424 -9262857.481274 2538 2424 -9987710.954453 2539 2424 2388888.889668 2540 2424 -3140367.149584 2425 2425 298888831.7214 2426 2425 -23888532.39585 2427 2425 -8444444.44306 2428 2425 -37649357.09217 2429 2425 12027599.53125 2511 2425 11944444.44837 2512 2425 -15694767.28047 2513 2425 -6579899.772699 2514 2425 -8.195638656616e-07 2515 2425 -16013622.55363 2516 2425 -5277700.460655 2517 2425 -11944444.44837 2518 2425 -24859919.89976 2519 2425 11857600.23336 2532 2425 2388888.889675 2533 2425 -13827100.04718 2534 2425 -13687577.31655 2535 2425 1.788139343262e-06 2536 2425 37173074.26313 2537 2425 -10555400.91611 2538 2425 -2388888.889678 2539 2425 -32682114.57897 2540 2425 24242978.23266 2426 2426 326027402.8699 2427 2426 2476859.277995 2428 2426 11860932.86461 2429 2426 29549304.7605 2511 2426 6685644.928532 2512 2426 -6579899.772699 2513 2426 -8541180.705052 2514 2426 46402301.92001 2515 2426 -5277700.460655 2516 2426 -49602960.36391 2517 2426 16581478.26512 2518 2426 11857600.23336 2519 2426 -32981587.68983 2532 2426 1601021.740854 2533 2426 -13687577.31666 2534 2426 -110751.3386485 2535 2426 9702698.071164 2536 2426 -10555400.91611 2537 2426 -34117930.07082 2538 2426 3580188.408178 2539 2426 24242978.23277 2540 2426 -50390790.09008 2427 2427 349558986.0455 2428 2427 9.059906005859e-06 2429 2427 -543951.774193 2430 2427 42572716.26631 2431 2427 8444444.443056 2432 2427 -2002307.387935 2514 2427 -19278339.76952 2515 2427 11944444.44837 2516 2427 6685644.928532 2517 2427 -68569574.7737 2518 2427 9.983777999878e-07 2519 2427 46666190.80873 2520 2427 -28443492.38882 2521 2427 -11944444.44837 2522 2427 16581478.26512 2535 2427 8867303.577332 2536 2427 -2388888.889672 2537 2427 -1161200.482275 2538 2427 51507364.21225 2539 2427 2.384185791016e-06 2540 2427 -9262857.481274 2541 2427 -9987710.954453 2542 2427 2388888.889668 2543 2427 -3140367.149584 2428 2428 298888831.7214 2429 2428 -23888532.39585 2430 2428 -8444444.44306 2431 2428 -37649357.09217 2432 2428 12027599.53125 2514 2428 11944444.44837 2515 2428 -15694767.28047 2516 2428 -6579899.772699 2517 2428 -8.195638656616e-07 2518 2428 -16013622.55363 2519 2428 -5277700.460655 2520 2428 -11944444.44837 2521 2428 -24859919.89976 2522 2428 11857600.23336 2535 2428 2388888.889675 2536 2428 -13827100.04718 2537 2428 -13687577.31655 2538 2428 1.788139343262e-06 2539 2428 37173074.26313 2540 2428 -10555400.91611 2541 2428 -2388888.889678 2542 2428 -32682114.57897 2543 2428 24242978.23266 2429 2429 326027402.8699 2430 2429 2476859.277995 2431 2429 11860932.86461 2432 2429 29549304.7605 2514 2429 6685644.928532 2515 2429 -6579899.772699 2516 2429 -8541180.705052 2517 2429 46402301.92001 2518 2429 -5277700.460655 2519 2429 -49602960.36391 2520 2429 16581478.26512 2521 2429 11857600.23336 2522 2429 -32981587.68983 2535 2429 1601021.740854 2536 2429 -13687577.31666 2537 2429 -110751.3386485 2538 2429 9702698.071164 2539 2429 -10555400.91611 2540 2429 -34117930.07082 2541 2429 3580188.408178 2542 2429 24242978.23277 2543 2429 -50390790.09008 2430 2430 338387026.2375 2431 2430 4002989.89494 2432 2430 8095074.275888 2433 2430 -7811370.442606 2434 2430 -26623873.97821 2435 2430 735412.3287755 2517 2430 -19278339.76952 2518 2430 11944444.44837 2519 2430 6685644.928532 2520 2430 -50741082.54401 2521 2430 7388118.740808 2522 2430 36735505.29832 2523 2430 -25119857.43912 2524 2430 -10997981.99708 2525 2430 12490405.99313 2538 2430 8867303.577332 2539 2430 -2388888.889672 2540 2430 -1161200.482275 2541 2430 49274982.41504 2542 2430 946667.844034 2543 2430 -5436326.485142 2544 2430 -17697231.04585 2545 2430 -6892360.146446 2546 2430 7053192.97001 2431 2431 314292766.6033 2432 2431 -15162162.93871 2433 2431 -43512762.86433 2434 2431 -82633585.83811 2435 2431 2718397.970699 2517 2431 11944444.44837 2518 2431 -15694767.28047 2519 2431 -6579899.772699 2520 2431 7388118.740806 2521 2431 -12886517.72598 2522 2431 -9803008.83127 2523 2431 -10997981.99708 2524 2431 -14725657.86439 2525 2431 9409590.631944 2538 2431 2388888.889675 2539 2431 -13827100.04718 2540 2431 -13687577.31655 2541 2431 946667.8440332 2542 2431 41753994.66988 2543 2431 -6670249.398894 2544 2431 -11670137.92579 2545 2431 -39314176.55796 2546 2431 27331144.68747 2432 2432 308833935.2489 2433 2432 1735412.328609 2434 2432 2635064.637379 2435 2432 16044341.52492 2517 2432 6685644.928532 2518 2432 -6579899.772699 2519 2432 -8541180.705052 2520 2432 38054949.74529 2521 2432 -9803008.829802 2522 2432 -41502609.65066 2523 2432 12490405.99313 2524 2432 9409590.631944 2525 2432 -20168467.80624 2538 2432 1601021.740854 2539 2432 -13687577.31666 2540 2432 -110751.3386485 2541 2432 13528673.51174 2542 2432 -6670249.398894 2543 2432 -36116433.14522 2544 2432 12190137.41431 2545 2432 27331144.6861 2546 2432 -39411823.5038 2433 2433 373838541.6067 2434 2433 48035465.6548 2435 2433 -2482772.715053 2436 2433 -83825989.15247 2437 2433 -50884722.65732 2438 2433 441510.4716972 2439 2433 9076442.48639 2440 2433 -11469811.3287 2441 2433 -196076.5565655 2520 2433 -17884984.01273 2521 2433 5468908.277692 2522 2433 2357351.079676 2523 2433 -41674209.10964 2524 2433 11150657.82588 2525 2433 45875749.446 2541 2433 -13208817.04483 2542 2433 -11670137.9258 2543 2433 -10510695.91586 2544 2433 21472381.83449 2545 2433 12233311.84361 2546 2433 -9870324.609983 2547 2433 -38009199.00617 2548 2433 -14266947.8271 2549 2433 20505912.60161 2550 2433 -22191462.63102 2551 2433 -2915792.194291 2552 2433 6759229.62113 2434 2434 462970610.9071 2435 2434 -5629292.266559 2436 2434 -50884722.65732 2437 2434 -61421139.76003 2438 2434 298208.6664561 2439 2434 -28358700.21481 2440 2434 -73066270.8917 2441 2434 947645.8279781 2520 2434 5468908.277692 2521 2434 -44425613.88687 2522 2434 -14942325.05316 2523 2434 11150657.82588 2524 2434 437358.3332224 2525 2434 -8206798.562099 2541 2434 -6892360.14645 2542 2434 -34825762.55696 2543 2434 -24967466.415 2544 2434 12233311.84362 2545 2434 44502443.09594 2546 2434 -2427077.199588 2547 2434 -14266947.8271 2548 2434 -31799002.04856 2549 2434 16796952.25561 2550 2434 -7693569.973637 2551 2434 -45385712.90668 2552 2434 33746714.97422 2435 2435 468748108.3725 2436 2435 441510.4716972 2437 2435 298208.666456 2438 2435 2870123.152872 2439 2435 206701.2211432 2440 2435 947645.8279782 2441 2435 54607501.34905 2520 2435 2357351.079676 2521 2435 -14942325.05316 2522 2435 -22317186.33773 2523 2435 45875749.44626 2524 2435 -8206798.560631 2525 2435 -66705234.55323 2541 2435 -6165418.138362 2542 2435 -24967466.41647 2543 2435 -27442719.50107 2544 2435 8678008.720305 2545 2435 -2427077.199588 2546 2435 -90144206.98683 2547 2435 20505912.60161 2548 2435 16796952.25561 2549 2435 -38361498.33524 2550 2435 11424229.62437 2551 2435 33746714.97422 2552 2435 -52352594.20565 2436 2436 242431625.3468 2437 2436 56957968.1946 2438 2436 -256099.9245906 2439 2436 -20745205.30394 2440 2436 218055.9989742 2441 2436 -244751.2126476 2523 2436 -15532526.23864 2524 2436 -1596443.536728 2525 2436 -4915301.465078 2544 2436 -37456873.4246 2545 2436 -14266947.8271 2546 2436 -20119087.41174 2547 2436 1886789.833553 2548 2436 15929776.87477 2549 2436 8012986.650805 2550 2436 -35343901.79311 2551 2436 -66385.51093899 2552 2436 -31728597.77399 2437 2437 220903299.0939 2438 2437 -245188.8372518 2439 2437 17106944.88509 2440 2437 59766611.95339 2441 2437 -298208.6664508 2523 2437 -6374221.316075 2524 2437 -38597789.08137 2525 2437 -33225572.6406 2544 2437 -14266947.8271 2545 2437 -31246676.46699 2546 2437 -16536381.08867 2547 2437 15929776.87477 2548 2437 -4162530.666617 2549 2437 6558905.978311 2550 2437 4711392.268407 2551 2437 -12439515.40783 2552 2437 3203047.750956 2438 2438 322120822.9046 2439 2438 -140584.5459949 2440 2438 -298208.666451 2441 2438 95634469.34586 2523 2438 -13040301.46591 2524 2438 -33225572.6406 2525 2438 -56960350.28025 2544 2438 -20119087.41174 2545 2438 -16536381.08867 2546 2438 -36888630.11772 2547 2438 -8237013.346527 2548 2438 -6774427.352831 2549 2438 -86181752.3906 2550 2438 -31728597.77583 2551 2438 -3463618.9179 2552 2438 -50493298.20557 2439 2439 181839442.0347 2440 2439 -22307966.44354 2441 2439 -1035404.925042 2523 2439 -16863058.60302 2524 2439 9621941.069631 2525 2439 11196190.37633 2544 2439 -20534485.88739 2545 2439 -7693569.973641 2546 2439 -11068548.15372 2547 2439 -35343901.79311 2548 2439 4711392.268411 2549 2439 31561679.99333 2550 2439 1883306.743505 2551 2439 -6639763.364401 2552 2439 -4754877.771325 2440 2440 208382606.8106 2441 2440 -947645.8279632 2523 2440 9621941.069631 2524 2440 -23523995.9089 2525 2440 -16536381.08867 2544 2440 -2915792.194294 2545 2440 -43728736.16307 2546 2440 -32919951.68149 2547 2440 -66385.51093579 2548 2440 -12439515.40783 2549 2440 3203047.750956 2550 2440 -6639763.3644 2551 2440 8834107.939769 2552 2440 6253285.019201 2441 2441 250636512.4991 2523 2441 11196190.37633 2524 2441 -16536381.08867 2525 2441 -29165949.55963 2544 2441 -6667437.039326 2545 2441 -32919951.68149 2546 2441 -47933989.55597 2547 2441 31561679.99162 2548 2441 -3463618.9179 2549 2441 -50493298.20557 2550 2441 4311233.338298 2551 2441 -7080048.311942 2552 2441 -61361801.45222 2442 2442 490945057.4196 2443 2442 47777777.76993 2444 2442 20252298.79464 2445 2442 -273863949.3497 2446 2442 -47797526.08415 2447 2442 -20243754.66502 2448 2442 3432365.726058 2449 2442 38241970.53018 2450 2442 -16369382.67653 2553 2442 66125098.41489 2554 2442 11944444.44837 2555 2442 15207852.8515 2556 2442 -93269248.17781 2557 2442 -11949381.52693 2558 2442 -52618980.4305 2559 2442 -17054654.84265 2560 2442 9560492.637254 2561 2442 -13448143.98712 2443 2443 419251389.3651 2444 2443 -52793537.14673 2445 2443 -47807400.24127 2446 2443 -49244136.23734 2447 2443 -29248441.87035 2448 2443 57362955.79526 2449 2443 3432365.726057 2450 2443 18376374.28788 2553 2443 11944444.44837 2554 2443 48201681.39244 2555 2443 -5082672.97723 2556 2443 -11951850.06621 2557 2443 -37114294.87206 2558 2443 -16826932.79813 2559 2443 14340738.95588 2560 2443 -17054654.84265 2561 2443 16137388.124 2444 2444 451566531.4722 2445 2444 -20239482.6002 2446 2444 -23545205.99654 2447 2444 -25609721.67724 2448 2444 -24554074.0148 2449 2444 12250916.19192 2450 2444 9152975.269492 2553 2444 -3762599.703372 2554 2444 -20258812.61341 2555 2444 -38071476.41094 2556 2444 -52354091.66514 2557 2444 -15346414.53585 2558 2444 -72544459.24024 2559 2444 -20172215.98068 2560 2444 10758258.74933 2561 2444 -45479079.58041 2445 2445 840410334.4004 2446 2445 47827148.55553 2447 2445 23749508.53569 2448 2445 8066610.522678 2449 2445 -47797526.08417 2450 2445 20547636.30415 2451 2445 -188931397.8084 2452 2445 6.824731826782e-06 2453 2445 -3518570.065188 2454 2445 -74622903.1185 2455 2445 47777777.76992 2456 2445 -20539364.73579 2553 2445 -83208406.42019 2554 2445 -11951850.06621 2555 2445 42498171.10922 2556 2445 125282026.2887 2557 2445 11956787.14478 2558 2445 5935098.98454 2559 2445 -32275376.32772 2560 2445 -11949381.52693 2561 2445 17028332.3953 2562 2445 -71083613.53293 2563 2445 2.801418304443e-06 2564 2445 -48425475.84218 2565 2445 -29334356.73017 2566 2445 11944444.44836 2567 2445 -17021299.52369 2446 2446 711379506.5777 2447 2446 -65443950.97306 2448 2446 -47807400.24129 2449 2446 -159193824.4844 2450 2446 35050823.25634 2451 2446 6.347894668579e-06 2452 2446 21292410.96829 2453 2446 -21110801.83222 2454 2446 47777777.76992 2455 2446 -60288613.16939 2456 2446 11505400.91601 2553 2446 -11949381.52693 2554 2446 -27053453.11441 2555 2446 3626698.329752 2556 2446 11956787.14477 2557 2446 93024319.31714 2558 2446 -16362810.24847 2559 2446 -11951850.06621 2560 2446 -74090485.10009 2561 2446 46808583.40323 2562 2446 2.488493919373e-06 2563 2446 -18527661.31289 2564 2446 -5277700.460655 2565 2446 11944444.44836 2566 2446 -25750784.24113 2567 2446 12385378.01131 2447 2447 697590331.8784 2448 2447 20815660.97705 2449 2447 40965061.2198 2450 2447 2966205.148247 2451 2447 -3518570.065188 2452 2447 -21110801.83222 2453 2447 29179895.04537 2454 2447 -20803253.6245 2455 2447 11716512.02698 2456 2447 -27523507.01255 2553 2447 42233282.34386 2554 2447 2150097.608279 2555 2447 -45715547.88649 2556 2447 5939995.986973 2557 2447 -16358892.70393 2558 2447 -51790570.05088 2559 2447 17031848.8311 2560 2447 48076086.23075 2561 2447 -90703859.27092 2562 2447 -48161586.95346 2563 2447 -5277700.460655 2564 2447 -56307063.72196 2565 2447 -17021299.52369 2566 2447 12385378.01131 2567 2447 -35357225.93349 2448 2448 490945057.4196 2449 2448 47777777.76993 2450 2448 20252298.79464 2451 2448 -73573484.51406 2452 2448 -47777777.76993 2453 2448 19043968.59104 2454 2448 -273863949.3497 2455 2448 -47797526.08415 2456 2448 -20243754.66502 2457 2448 3432365.726058 2458 2448 38241970.53018 2459 2448 -16369382.67653 2553 2448 1810230.00851 2554 2448 14340738.95588 2555 2448 8290807.874965 2556 2448 -3359294.569133 2557 2448 -11951850.06621 2558 2448 -6689786.134111 2559 2448 66125098.41489 2560 2448 11944444.44837 2561 2448 15207852.8515 2562 2448 -19644494.8084 2563 2448 -11944444.44837 2564 2448 -7125466.187114 2565 2448 -93269248.17781 2566 2448 -11949381.52693 2567 2448 -52618980.4305 2568 2448 -17054654.84265 2569 2448 9560492.637254 2570 2448 -13448143.98712 2449 2449 419251389.3651 2450 2449 -52793537.14673 2451 2449 -47777777.76993 2452 2449 -59239194.56492 2453 2449 9605400.916215 2454 2449 -47807400.24127 2455 2449 -49244136.23734 2456 2449 -29248441.87035 2457 2449 57362955.79526 2458 2449 3432365.726057 2459 2449 18376374.28788 2553 2449 9560492.637254 2554 2449 1810230.008509 2555 2449 -4421798.559475 2556 2449 -11949381.52693 2557 2449 -45174403.34149 2558 2449 -27804612.20634 2559 2449 11944444.44837 2560 2449 48201681.39244 2561 2449 -5082672.97723 2562 2449 -11944444.44836 2563 2449 -16060922.31935 2564 2449 -7107677.550651 2565 2449 -11951850.06621 2566 2449 -37114294.87206 2567 2449 -16826932.79813 2568 2449 14340738.95588 2569 2449 -17054654.84265 2570 2449 16137388.124 2450 2450 451566531.4722 2451 2450 18780079.70233 2452 2450 9394289.805242 2453 2450 -24725057.40063 2454 2450 -20239482.6002 2455 2450 -23545205.99654 2456 2450 -25609721.67724 2457 2450 -24554074.0148 2458 2450 12250916.19192 2459 2450 9152975.269492 2553 2450 5527205.249977 2554 2450 -6632697.839212 2555 2450 4827280.022694 2556 2450 -6688405.732252 2557 2450 -29072115.16194 2558 2450 -13594307.9147 2559 2450 -3762599.703372 2560 2450 -20258812.61341 2561 2450 -38071476.41094 2562 2450 -7125466.187114 2563 2450 -7107677.550651 2564 2450 -9517594.142065 2565 2450 -52354091.66514 2566 2450 -15346414.53585 2567 2450 -72544459.24024 2568 2450 -20172215.98068 2569 2450 10758258.74933 2570 2450 -45479079.58041 2451 2451 773558827.9862 2452 2451 2.658367156982e-05 2453 2451 7037140.130311 2454 2451 85893349.16099 2455 2451 -1.427531242371e-05 2456 2451 1759285.033452 2460 2451 -188931397.8084 2461 2451 6.824731826782e-06 2462 2451 -3518570.065188 2463 2451 -74622903.1185 2464 2451 47777777.76992 2465 2451 -20539364.73579 2556 2451 -68569574.7737 2557 2451 9.983777999878e-07 2558 2451 46666190.80873 2559 2451 -28443492.38882 2560 2451 -11944444.44837 2561 2451 16581478.26512 2562 2451 103049709.0446 2563 2451 8.106231689453e-06 2564 2451 1759285.033469 2565 2451 -19975421.90891 2566 2451 -1.013278961182e-05 2567 2451 439821.2585936 2571 2451 -71083613.53293 2572 2451 2.801418304443e-06 2573 2451 -48425475.84218 2574 2451 -29334356.73017 2575 2451 11944444.44836 2576 2451 -17021299.52369 2452 2452 658884508.4497 2453 2452 -84443207.28729 2454 2452 -1.427531242371e-05 2455 2452 -95661879.74567 2456 2452 42221603.64364 2460 2452 6.347894668579e-06 2461 2452 21292410.96829 2462 2452 -21110801.83222 2463 2452 47777777.76992 2464 2452 -60288613.16939 2465 2452 11505400.91601 2556 2452 -8.195638656616e-07 2557 2452 -16013622.55363 2558 2452 -5277700.460655 2559 2452 -11944444.44837 2560 2452 -24859919.89976 2561 2452 11857600.23336 2562 2452 7.987022399902e-06 2563 2452 74381129.14638 2564 2452 -21110801.83222 2565 2452 -9.581446647644e-06 2566 2452 -65364229.15794 2567 2452 48591512.02092 2571 2452 2.488493919373e-06 2572 2452 -18527661.31289 2573 2452 -5277700.460655 2574 2452 11944444.44836 2575 2452 -25750784.24113 2576 2452 12385378.01131 2453 2453 691056331.5443 2454 2453 1759285.033452 2455 2453 42221603.64364 2456 2453 38993777.49737 2460 2453 -3518570.065188 2461 2453 -21110801.83222 2462 2453 29179895.04537 2463 2453 -20803253.6245 2464 2453 11716512.02698 2465 2453 -27523507.01255 2556 2453 46402301.92001 2557 2453 -5277700.460655 2558 2453 -49602960.36391 2559 2453 16581478.26512 2560 2453 11857600.23336 2561 2453 -32981587.68983 2562 2453 1759285.033468 2563 2453 -21110801.83222 2564 2453 -68142578.48796 2565 2453 439821.258594 2566 2453 48380400.90995 2567 2453 -100781580.1802 2571 2453 -48161586.95346 2572 2453 -5277700.460655 2573 2453 -56307063.72196 2574 2453 -17021299.52369 2575 2453 12385378.01131 2576 2453 -35357225.93349 2454 2454 840410334.4004 2455 2454 47827148.55553 2456 2454 23749508.53569 2457 2454 8066610.522678 2458 2454 -47797526.08417 2459 2454 20547636.30415 2460 2454 -73573484.51406 2461 2454 -47777777.76993 2462 2454 19043968.59104 2463 2454 -188931397.8084 2464 2454 6.824731826782e-06 2465 2454 -3518570.065188 2466 2454 -74622903.1185 2467 2454 47777777.76992 2468 2454 -20539364.73579 2556 2454 -19278339.76952 2557 2454 11944444.44837 2558 2454 6685644.928532 2559 2454 -83208406.42019 2560 2454 -11951850.06621 2561 2454 42498171.10922 2562 2454 17734607.15466 2563 2454 1.817941665649e-06 2564 2454 439821.2585785 2565 2454 125282026.2887 2566 2454 11956787.14478 2567 2454 5935098.98454 2568 2454 -32275376.32772 2569 2454 -11949381.52693 2570 2454 17028332.3953 2571 2454 -19644494.8084 2572 2454 -11944444.44837 2573 2454 -7125466.187114 2574 2454 -71083613.53293 2575 2454 2.801418304443e-06 2576 2454 -48425475.84218 2577 2454 -29334356.73017 2578 2454 11944444.44836 2579 2454 -17021299.52369 2455 2455 711379506.5777 2456 2455 -65443950.97306 2457 2455 -47807400.24129 2458 2455 -159193824.4844 2459 2455 35050823.25634 2460 2455 -47777777.76993 2461 2455 -59239194.56492 2462 2455 9605400.916215 2463 2455 6.347894668579e-06 2464 2455 21292410.96829 2465 2455 -21110801.83222 2466 2455 47777777.76992 2467 2455 -60288613.16939 2468 2455 11505400.91601 2556 2455 11944444.44837 2557 2455 -15694767.28047 2558 2455 -6579899.772699 2559 2455 -11949381.52693 2560 2455 -27053453.11441 2561 2455 3626698.329752 2562 2455 3.322958946228e-06 2563 2455 -27654200.09436 2564 2455 -27480710.1887 2565 2455 11956787.14477 2566 2455 93024319.31714 2567 2455 -16362810.24847 2568 2455 -11951850.06621 2569 2455 -74090485.10009 2570 2455 46808583.40323 2571 2455 -11944444.44836 2572 2455 -16060922.31935 2573 2455 -7107677.550651 2574 2455 2.488493919373e-06 2575 2455 -18527661.31289 2576 2455 -5277700.460655 2577 2455 11944444.44836 2578 2455 -25750784.24113 2579 2455 12385378.01131 2456 2456 697590331.8784 2457 2456 20815660.97705 2458 2456 40965061.2198 2459 2456 2966205.148247 2460 2456 18780079.70233 2461 2456 9394289.805242 2462 2456 -24725057.40063 2463 2456 -3518570.065188 2464 2456 -21110801.83222 2465 2456 29179895.04537 2466 2456 -20803253.6245 2467 2456 11716512.02698 2468 2456 -27523507.01255 2556 2456 6685644.928532 2557 2456 -6579899.772699 2558 2456 -8541180.705052 2559 2456 42233282.34386 2560 2456 2150097.608279 2561 2456 -45715547.88649 2562 2456 439821.2585788 2563 2456 -27269599.07773 2564 2456 -221502.6772963 2565 2456 5939995.986973 2566 2456 -16358892.70393 2567 2456 -51790570.05088 2568 2456 17031848.8311 2569 2456 48076086.23075 2570 2456 -90703859.27092 2571 2456 -7125466.187114 2572 2456 -7107677.550651 2573 2456 -9517594.142065 2574 2456 -48161586.95346 2575 2456 -5277700.460655 2576 2456 -56307063.72196 2577 2456 -17021299.52369 2578 2456 12385378.01131 2579 2456 -35357225.93349 2457 2457 490945057.4196 2458 2457 47777777.76993 2459 2457 20252298.79464 2463 2457 -73573484.51406 2464 2457 -47777777.76993 2465 2457 19043968.59104 2466 2457 -273863949.3497 2467 2457 -47797526.08415 2468 2457 -20243754.66502 2469 2457 3432365.726058 2470 2457 38241970.53018 2471 2457 -16369382.67653 2559 2457 1810230.00851 2560 2457 14340738.95588 2561 2457 8290807.874965 2565 2457 -3359294.569133 2566 2457 -11951850.06621 2567 2457 -6689786.134111 2568 2457 66125098.41489 2569 2457 11944444.44837 2570 2457 15207852.8515 2574 2457 -19644494.8084 2575 2457 -11944444.44837 2576 2457 -7125466.187114 2577 2457 -93269248.17781 2578 2457 -11949381.52693 2579 2457 -52618980.4305 2580 2457 -17054654.84265 2581 2457 9560492.637254 2582 2457 -13448143.98712 2458 2458 419251389.3651 2459 2458 -52793537.14673 2463 2458 -47777777.76993 2464 2458 -59239194.56492 2465 2458 9605400.916215 2466 2458 -47807400.24127 2467 2458 -49244136.23734 2468 2458 -29248441.87035 2469 2458 57362955.79526 2470 2458 3432365.726057 2471 2458 18376374.28788 2559 2458 9560492.637254 2560 2458 1810230.008509 2561 2458 -4421798.559475 2565 2458 -11949381.52693 2566 2458 -45174403.34149 2567 2458 -27804612.20634 2568 2458 11944444.44837 2569 2458 48201681.39244 2570 2458 -5082672.97723 2574 2458 -11944444.44836 2575 2458 -16060922.31935 2576 2458 -7107677.550651 2577 2458 -11951850.06621 2578 2458 -37114294.87206 2579 2458 -16826932.79813 2580 2458 14340738.95588 2581 2458 -17054654.84265 2582 2458 16137388.124 2459 2459 451566531.4722 2463 2459 18780079.70233 2464 2459 9394289.805242 2465 2459 -24725057.40063 2466 2459 -20239482.6002 2467 2459 -23545205.99654 2468 2459 -25609721.67724 2469 2459 -24554074.0148 2470 2459 12250916.19192 2471 2459 9152975.269492 2559 2459 5527205.249977 2560 2459 -6632697.839212 2561 2459 4827280.022694 2565 2459 -6688405.732252 2566 2459 -29072115.16194 2567 2459 -13594307.9147 2568 2459 -3762599.703372 2569 2459 -20258812.61341 2570 2459 -38071476.41094 2574 2459 -7125466.187114 2575 2459 -7107677.550651 2576 2459 -9517594.142065 2577 2459 -52354091.66514 2578 2459 -15346414.53585 2579 2459 -72544459.24024 2580 2459 -20172215.98068 2581 2459 10758258.74933 2582 2459 -45479079.58041 2460 2460 773558827.9862 2461 2460 2.658367156982e-05 2462 2460 7037140.130311 2463 2460 85893349.16099 2464 2460 -1.427531242371e-05 2465 2460 1759285.033452 2472 2460 -188931397.8084 2473 2460 6.824731826782e-06 2474 2460 -3518570.065188 2475 2460 -74622903.1185 2476 2460 47777777.76992 2477 2460 -20539364.73579 2562 2460 -68569574.7737 2563 2460 9.983777999878e-07 2564 2460 46666190.80873 2565 2460 -28443492.38882 2566 2460 -11944444.44837 2567 2460 16581478.26512 2571 2460 103049709.0446 2572 2460 8.106231689453e-06 2573 2460 1759285.033469 2574 2460 -19975421.90891 2575 2460 -1.013278961182e-05 2576 2460 439821.2585936 2583 2460 -71083613.53293 2584 2460 2.801418304443e-06 2585 2460 -48425475.84218 2586 2460 -29334356.73017 2587 2460 11944444.44836 2588 2460 -17021299.52369 2461 2461 658884508.4497 2462 2461 -84443207.28729 2463 2461 -1.427531242371e-05 2464 2461 -95661879.74567 2465 2461 42221603.64364 2472 2461 6.347894668579e-06 2473 2461 21292410.96829 2474 2461 -21110801.83222 2475 2461 47777777.76992 2476 2461 -60288613.16939 2477 2461 11505400.91601 2562 2461 -8.195638656616e-07 2563 2461 -16013622.55363 2564 2461 -5277700.460655 2565 2461 -11944444.44837 2566 2461 -24859919.89976 2567 2461 11857600.23336 2571 2461 7.987022399902e-06 2572 2461 74381129.14638 2573 2461 -21110801.83222 2574 2461 -9.581446647644e-06 2575 2461 -65364229.15794 2576 2461 48591512.02092 2583 2461 2.488493919373e-06 2584 2461 -18527661.31289 2585 2461 -5277700.460655 2586 2461 11944444.44836 2587 2461 -25750784.24113 2588 2461 12385378.01131 2462 2462 691056331.5443 2463 2462 1759285.033452 2464 2462 42221603.64364 2465 2462 38993777.49737 2472 2462 -3518570.065188 2473 2462 -21110801.83222 2474 2462 29179895.04537 2475 2462 -20803253.6245 2476 2462 11716512.02698 2477 2462 -27523507.01255 2562 2462 46402301.92001 2563 2462 -5277700.460655 2564 2462 -49602960.36391 2565 2462 16581478.26512 2566 2462 11857600.23336 2567 2462 -32981587.68983 2571 2462 1759285.033468 2572 2462 -21110801.83222 2573 2462 -68142578.48796 2574 2462 439821.258594 2575 2462 48380400.90995 2576 2462 -100781580.1802 2583 2462 -48161586.95346 2584 2462 -5277700.460655 2585 2462 -56307063.72196 2586 2462 -17021299.52369 2587 2462 12385378.01131 2588 2462 -35357225.93349 2463 2463 773558827.9862 2464 2463 2.658367156982e-05 2465 2463 7037140.130311 2466 2463 85893349.16099 2467 2463 -1.427531242371e-05 2468 2463 1759285.033452 2472 2463 -73573484.51406 2473 2463 -47777777.76993 2474 2463 19043968.59104 2475 2463 -188931397.8084 2476 2463 6.824731826782e-06 2477 2463 -3518570.065188 2478 2463 -74622903.1185 2479 2463 47777777.76992 2480 2463 -20539364.73579 2562 2463 -19278339.76952 2563 2463 11944444.44837 2564 2463 6685644.928532 2565 2463 -68569574.7737 2566 2463 9.983777999878e-07 2567 2463 46666190.80873 2568 2463 -28443492.38882 2569 2463 -11944444.44837 2570 2463 16581478.26512 2571 2463 17734607.15466 2572 2463 1.817941665649e-06 2573 2463 439821.2585785 2574 2463 103049709.0446 2575 2463 8.106231689453e-06 2576 2463 1759285.033469 2577 2463 -19975421.90891 2578 2463 -1.013278961182e-05 2579 2463 439821.2585936 2583 2463 -19644494.8084 2584 2463 -11944444.44837 2585 2463 -7125466.187114 2586 2463 -71083613.53293 2587 2463 2.801418304443e-06 2588 2463 -48425475.84218 2589 2463 -29334356.73017 2590 2463 11944444.44836 2591 2463 -17021299.52369 2464 2464 658884508.4497 2465 2464 -84443207.28729 2466 2464 -1.427531242371e-05 2467 2464 -95661879.74567 2468 2464 42221603.64364 2472 2464 -47777777.76993 2473 2464 -59239194.56492 2474 2464 9605400.916215 2475 2464 6.347894668579e-06 2476 2464 21292410.96829 2477 2464 -21110801.83222 2478 2464 47777777.76992 2479 2464 -60288613.16939 2480 2464 11505400.91601 2562 2464 11944444.44837 2563 2464 -15694767.28047 2564 2464 -6579899.772699 2565 2464 -8.195638656616e-07 2566 2464 -16013622.55363 2567 2464 -5277700.460655 2568 2464 -11944444.44837 2569 2464 -24859919.89976 2570 2464 11857600.23336 2571 2464 3.322958946228e-06 2572 2464 -27654200.09436 2573 2464 -27480710.1887 2574 2464 7.987022399902e-06 2575 2464 74381129.14638 2576 2464 -21110801.83222 2577 2464 -9.581446647644e-06 2578 2464 -65364229.15794 2579 2464 48591512.02092 2583 2464 -11944444.44836 2584 2464 -16060922.31935 2585 2464 -7107677.550651 2586 2464 2.488493919373e-06 2587 2464 -18527661.31289 2588 2464 -5277700.460655 2589 2464 11944444.44836 2590 2464 -25750784.24113 2591 2464 12385378.01131 2465 2465 691056331.5443 2466 2465 1759285.033452 2467 2465 42221603.64364 2468 2465 38993777.49737 2472 2465 18780079.70233 2473 2465 9394289.805242 2474 2465 -24725057.40063 2475 2465 -3518570.065188 2476 2465 -21110801.83222 2477 2465 29179895.04537 2478 2465 -20803253.6245 2479 2465 11716512.02698 2480 2465 -27523507.01255 2562 2465 6685644.928532 2563 2465 -6579899.772699 2564 2465 -8541180.705052 2565 2465 46402301.92001 2566 2465 -5277700.460655 2567 2465 -49602960.36391 2568 2465 16581478.26512 2569 2465 11857600.23336 2570 2465 -32981587.68983 2571 2465 439821.2585788 2572 2465 -27269599.07773 2573 2465 -221502.6772963 2574 2465 1759285.033468 2575 2465 -21110801.83222 2576 2465 -68142578.48796 2577 2465 439821.258594 2578 2465 48380400.90995 2579 2465 -100781580.1802 2583 2465 -7125466.187114 2584 2465 -7107677.550651 2585 2465 -9517594.142065 2586 2465 -48161586.95346 2587 2465 -5277700.460655 2588 2465 -56307063.72196 2589 2465 -17021299.52369 2590 2465 12385378.01131 2591 2465 -35357225.93349 2466 2466 840410334.4004 2467 2466 47827148.55553 2468 2466 23749508.53569 2469 2466 8066610.522678 2470 2466 -47797526.08417 2471 2466 20547636.30415 2475 2466 -73573484.51406 2476 2466 -47777777.76993 2477 2466 19043968.59104 2478 2466 -188931397.8084 2479 2466 6.824731826782e-06 2480 2466 -3518570.065188 2481 2466 -74622903.1185 2482 2466 47777777.76992 2483 2466 -20539364.73579 2565 2466 -19278339.76952 2566 2466 11944444.44837 2567 2466 6685644.928532 2568 2466 -83208406.42019 2569 2466 -11951850.06621 2570 2466 42498171.10922 2574 2466 17734607.15466 2575 2466 1.817941665649e-06 2576 2466 439821.2585785 2577 2466 125282026.2887 2578 2466 11956787.14478 2579 2466 5935098.98454 2580 2466 -32275376.32772 2581 2466 -11949381.52693 2582 2466 17028332.3953 2586 2466 -19644494.8084 2587 2466 -11944444.44837 2588 2466 -7125466.187114 2589 2466 -71083613.53293 2590 2466 2.801418304443e-06 2591 2466 -48425475.84218 2592 2466 -29334356.73017 2593 2466 11944444.44836 2594 2466 -17021299.52369 2467 2467 711379506.5777 2468 2467 -65443950.97306 2469 2467 -47807400.24129 2470 2467 -159193824.4844 2471 2467 35050823.25634 2475 2467 -47777777.76993 2476 2467 -59239194.56492 2477 2467 9605400.916215 2478 2467 6.347894668579e-06 2479 2467 21292410.96829 2480 2467 -21110801.83222 2481 2467 47777777.76992 2482 2467 -60288613.16939 2483 2467 11505400.91601 2565 2467 11944444.44837 2566 2467 -15694767.28047 2567 2467 -6579899.772699 2568 2467 -11949381.52693 2569 2467 -27053453.11441 2570 2467 3626698.329752 2574 2467 3.322958946228e-06 2575 2467 -27654200.09436 2576 2467 -27480710.1887 2577 2467 11956787.14477 2578 2467 93024319.31714 2579 2467 -16362810.24847 2580 2467 -11951850.06621 2581 2467 -74090485.10009 2582 2467 46808583.40323 2586 2467 -11944444.44836 2587 2467 -16060922.31935 2588 2467 -7107677.550651 2589 2467 2.488493919373e-06 2590 2467 -18527661.31289 2591 2467 -5277700.460655 2592 2467 11944444.44836 2593 2467 -25750784.24113 2594 2467 12385378.01131 2468 2468 697590331.8784 2469 2468 20815660.97705 2470 2468 40965061.2198 2471 2468 2966205.148247 2475 2468 18780079.70233 2476 2468 9394289.805242 2477 2468 -24725057.40063 2478 2468 -3518570.065188 2479 2468 -21110801.83222 2480 2468 29179895.04537 2481 2468 -20803253.6245 2482 2468 11716512.02698 2483 2468 -27523507.01255 2565 2468 6685644.928532 2566 2468 -6579899.772699 2567 2468 -8541180.705052 2568 2468 42233282.34386 2569 2468 2150097.608279 2570 2468 -45715547.88649 2574 2468 439821.2585788 2575 2468 -27269599.07773 2576 2468 -221502.6772963 2577 2468 5939995.986973 2578 2468 -16358892.70393 2579 2468 -51790570.05088 2580 2468 17031848.8311 2581 2468 48076086.23075 2582 2468 -90703859.27092 2586 2468 -7125466.187114 2587 2468 -7107677.550651 2588 2468 -9517594.142065 2589 2468 -48161586.95346 2590 2468 -5277700.460655 2591 2468 -56307063.72196 2592 2468 -17021299.52369 2593 2468 12385378.01131 2594 2468 -35357225.93349 2469 2469 490945057.4196 2470 2469 47777777.76993 2471 2469 20252298.79464 2478 2469 -73573484.51406 2479 2469 -47777777.76993 2480 2469 19043968.59104 2481 2469 -273863949.3497 2482 2469 -47797526.08415 2483 2469 -20243754.66502 2484 2469 3432365.726058 2485 2469 38241970.53018 2486 2469 -16369382.67653 2568 2469 1810230.00851 2569 2469 14340738.95588 2570 2469 8290807.874965 2577 2469 -3359294.569133 2578 2469 -11951850.06621 2579 2469 -6689786.134111 2580 2469 66125098.41489 2581 2469 11944444.44837 2582 2469 15207852.8515 2589 2469 -19644494.8084 2590 2469 -11944444.44837 2591 2469 -7125466.187114 2592 2469 -93269248.17781 2593 2469 -11949381.52693 2594 2469 -52618980.4305 2595 2469 -17054654.84265 2596 2469 9560492.637254 2597 2469 -13448143.98712 2470 2470 419251389.3651 2471 2470 -52793537.14673 2478 2470 -47777777.76993 2479 2470 -59239194.56492 2480 2470 9605400.916215 2481 2470 -47807400.24127 2482 2470 -49244136.23734 2483 2470 -29248441.87035 2484 2470 57362955.79526 2485 2470 3432365.726057 2486 2470 18376374.28788 2568 2470 9560492.637254 2569 2470 1810230.008509 2570 2470 -4421798.559475 2577 2470 -11949381.52693 2578 2470 -45174403.34149 2579 2470 -27804612.20634 2580 2470 11944444.44837 2581 2470 48201681.39244 2582 2470 -5082672.97723 2589 2470 -11944444.44836 2590 2470 -16060922.31935 2591 2470 -7107677.550651 2592 2470 -11951850.06621 2593 2470 -37114294.87206 2594 2470 -16826932.79813 2595 2470 14340738.95588 2596 2470 -17054654.84265 2597 2470 16137388.124 2471 2471 451566531.4722 2478 2471 18780079.70233 2479 2471 9394289.805242 2480 2471 -24725057.40063 2481 2471 -20239482.6002 2482 2471 -23545205.99654 2483 2471 -25609721.67724 2484 2471 -24554074.0148 2485 2471 12250916.19192 2486 2471 9152975.269492 2568 2471 5527205.249977 2569 2471 -6632697.839212 2570 2471 4827280.022694 2577 2471 -6688405.732252 2578 2471 -29072115.16194 2579 2471 -13594307.9147 2580 2471 -3762599.703372 2581 2471 -20258812.61341 2582 2471 -38071476.41094 2589 2471 -7125466.187114 2590 2471 -7107677.550651 2591 2471 -9517594.142065 2592 2471 -52354091.66514 2593 2471 -15346414.53585 2594 2471 -72544459.24024 2595 2471 -20172215.98068 2596 2471 10758258.74933 2597 2471 -45479079.58041 2472 2472 773558827.9862 2473 2472 2.658367156982e-05 2474 2472 7037140.130311 2475 2472 85893349.16099 2476 2472 -1.427531242371e-05 2477 2472 1759285.033452 2487 2472 -188931397.8084 2488 2472 6.824731826782e-06 2489 2472 -3518570.065188 2490 2472 -74622903.1185 2491 2472 47777777.76992 2492 2472 -20539364.73579 2571 2472 -68569574.7737 2572 2472 9.983777999878e-07 2573 2472 46666190.80873 2574 2472 -28443492.38882 2575 2472 -11944444.44837 2576 2472 16581478.26512 2583 2472 103049709.0446 2584 2472 8.106231689453e-06 2585 2472 1759285.033469 2586 2472 -19975421.90891 2587 2472 -1.013278961182e-05 2588 2472 439821.2585936 2598 2472 -71083613.53293 2599 2472 2.801418304443e-06 2600 2472 -48425475.84218 2601 2472 -29334356.73017 2602 2472 11944444.44836 2603 2472 -17021299.52369 2473 2473 658884508.4497 2474 2473 -84443207.28729 2475 2473 -1.427531242371e-05 2476 2473 -95661879.74567 2477 2473 42221603.64364 2487 2473 6.347894668579e-06 2488 2473 21292410.96829 2489 2473 -21110801.83222 2490 2473 47777777.76992 2491 2473 -60288613.16939 2492 2473 11505400.91601 2571 2473 -8.195638656616e-07 2572 2473 -16013622.55363 2573 2473 -5277700.460655 2574 2473 -11944444.44837 2575 2473 -24859919.89976 2576 2473 11857600.23336 2583 2473 7.987022399902e-06 2584 2473 74381129.14638 2585 2473 -21110801.83222 2586 2473 -9.581446647644e-06 2587 2473 -65364229.15794 2588 2473 48591512.02092 2598 2473 2.488493919373e-06 2599 2473 -18527661.31289 2600 2473 -5277700.460655 2601 2473 11944444.44836 2602 2473 -25750784.24113 2603 2473 12385378.01131 2474 2474 691056331.5443 2475 2474 1759285.033452 2476 2474 42221603.64364 2477 2474 38993777.49737 2487 2474 -3518570.065188 2488 2474 -21110801.83222 2489 2474 29179895.04537 2490 2474 -20803253.6245 2491 2474 11716512.02698 2492 2474 -27523507.01255 2571 2474 46402301.92001 2572 2474 -5277700.460655 2573 2474 -49602960.36391 2574 2474 16581478.26512 2575 2474 11857600.23336 2576 2474 -32981587.68983 2583 2474 1759285.033468 2584 2474 -21110801.83222 2585 2474 -68142578.48796 2586 2474 439821.258594 2587 2474 48380400.90995 2588 2474 -100781580.1802 2598 2474 -48161586.95346 2599 2474 -5277700.460655 2600 2474 -56307063.72196 2601 2474 -17021299.52369 2602 2474 12385378.01131 2603 2474 -35357225.93349 2475 2475 773558827.9862 2476 2475 2.658367156982e-05 2477 2475 7037140.130311 2478 2475 85893349.16099 2479 2475 -1.427531242371e-05 2480 2475 1759285.033452 2487 2475 -73573484.51406 2488 2475 -47777777.76993 2489 2475 19043968.59104 2490 2475 -188931397.8084 2491 2475 6.824731826782e-06 2492 2475 -3518570.065188 2493 2475 -74622903.1185 2494 2475 47777777.76992 2495 2475 -20539364.73579 2571 2475 -19278339.76952 2572 2475 11944444.44837 2573 2475 6685644.928532 2574 2475 -68569574.7737 2575 2475 9.983777999878e-07 2576 2475 46666190.80873 2577 2475 -28443492.38882 2578 2475 -11944444.44837 2579 2475 16581478.26512 2583 2475 17734607.15466 2584 2475 1.817941665649e-06 2585 2475 439821.2585785 2586 2475 103049709.0446 2587 2475 8.106231689453e-06 2588 2475 1759285.033469 2589 2475 -19975421.90891 2590 2475 -1.013278961182e-05 2591 2475 439821.2585936 2598 2475 -19644494.8084 2599 2475 -11944444.44837 2600 2475 -7125466.187114 2601 2475 -71083613.53293 2602 2475 2.801418304443e-06 2603 2475 -48425475.84218 2604 2475 -29334356.73017 2605 2475 11944444.44836 2606 2475 -17021299.52369 2476 2476 658884508.4497 2477 2476 -84443207.28729 2478 2476 -1.427531242371e-05 2479 2476 -95661879.74567 2480 2476 42221603.64364 2487 2476 -47777777.76993 2488 2476 -59239194.56492 2489 2476 9605400.916215 2490 2476 6.347894668579e-06 2491 2476 21292410.96829 2492 2476 -21110801.83222 2493 2476 47777777.76992 2494 2476 -60288613.16939 2495 2476 11505400.91601 2571 2476 11944444.44837 2572 2476 -15694767.28047 2573 2476 -6579899.772699 2574 2476 -8.195638656616e-07 2575 2476 -16013622.55363 2576 2476 -5277700.460655 2577 2476 -11944444.44837 2578 2476 -24859919.89976 2579 2476 11857600.23336 2583 2476 3.322958946228e-06 2584 2476 -27654200.09436 2585 2476 -27480710.1887 2586 2476 7.987022399902e-06 2587 2476 74381129.14638 2588 2476 -21110801.83222 2589 2476 -9.581446647644e-06 2590 2476 -65364229.15794 2591 2476 48591512.02092 2598 2476 -11944444.44836 2599 2476 -16060922.31935 2600 2476 -7107677.550651 2601 2476 2.488493919373e-06 2602 2476 -18527661.31289 2603 2476 -5277700.460655 2604 2476 11944444.44836 2605 2476 -25750784.24113 2606 2476 12385378.01131 2477 2477 691056331.5443 2478 2477 1759285.033452 2479 2477 42221603.64364 2480 2477 38993777.49737 2487 2477 18780079.70233 2488 2477 9394289.805242 2489 2477 -24725057.40063 2490 2477 -3518570.065188 2491 2477 -21110801.83222 2492 2477 29179895.04537 2493 2477 -20803253.6245 2494 2477 11716512.02698 2495 2477 -27523507.01255 2571 2477 6685644.928532 2572 2477 -6579899.772699 2573 2477 -8541180.705052 2574 2477 46402301.92001 2575 2477 -5277700.460655 2576 2477 -49602960.36391 2577 2477 16581478.26512 2578 2477 11857600.23336 2579 2477 -32981587.68983 2583 2477 439821.2585788 2584 2477 -27269599.07773 2585 2477 -221502.6772963 2586 2477 1759285.033468 2587 2477 -21110801.83222 2588 2477 -68142578.48796 2589 2477 439821.258594 2590 2477 48380400.90995 2591 2477 -100781580.1802 2598 2477 -7125466.187114 2599 2477 -7107677.550651 2600 2477 -9517594.142065 2601 2477 -48161586.95346 2602 2477 -5277700.460655 2603 2477 -56307063.72196 2604 2477 -17021299.52369 2605 2477 12385378.01131 2606 2477 -35357225.93349 2478 2478 773558827.9862 2479 2478 2.658367156982e-05 2480 2478 7037140.130311 2481 2478 85893349.16099 2482 2478 -1.427531242371e-05 2483 2478 1759285.033452 2490 2478 -73573484.51406 2491 2478 -47777777.76993 2492 2478 19043968.59104 2493 2478 -188931397.8084 2494 2478 6.824731826782e-06 2495 2478 -3518570.065188 2496 2478 -74622903.1185 2497 2478 47777777.76992 2498 2478 -20539364.73579 2574 2478 -19278339.76952 2575 2478 11944444.44837 2576 2478 6685644.928532 2577 2478 -68569574.7737 2578 2478 9.983777999878e-07 2579 2478 46666190.80873 2580 2478 -28443492.38882 2581 2478 -11944444.44837 2582 2478 16581478.26512 2586 2478 17734607.15466 2587 2478 1.817941665649e-06 2588 2478 439821.2585785 2589 2478 103049709.0446 2590 2478 8.106231689453e-06 2591 2478 1759285.033469 2592 2478 -19975421.90891 2593 2478 -1.013278961182e-05 2594 2478 439821.2585936 2601 2478 -19644494.8084 2602 2478 -11944444.44837 2603 2478 -7125466.187114 2604 2478 -71083613.53293 2605 2478 2.801418304443e-06 2606 2478 -48425475.84218 2607 2478 -29334356.73017 2608 2478 11944444.44836 2609 2478 -17021299.52369 2479 2479 658884508.4497 2480 2479 -84443207.28729 2481 2479 -1.427531242371e-05 2482 2479 -95661879.74567 2483 2479 42221603.64364 2490 2479 -47777777.76993 2491 2479 -59239194.56492 2492 2479 9605400.916215 2493 2479 6.347894668579e-06 2494 2479 21292410.96829 2495 2479 -21110801.83222 2496 2479 47777777.76992 2497 2479 -60288613.16939 2498 2479 11505400.91601 2574 2479 11944444.44837 2575 2479 -15694767.28047 2576 2479 -6579899.772699 2577 2479 -8.195638656616e-07 2578 2479 -16013622.55363 2579 2479 -5277700.460655 2580 2479 -11944444.44837 2581 2479 -24859919.89976 2582 2479 11857600.23336 2586 2479 3.322958946228e-06 2587 2479 -27654200.09436 2588 2479 -27480710.1887 2589 2479 7.987022399902e-06 2590 2479 74381129.14638 2591 2479 -21110801.83222 2592 2479 -9.581446647644e-06 2593 2479 -65364229.15794 2594 2479 48591512.02092 2601 2479 -11944444.44836 2602 2479 -16060922.31935 2603 2479 -7107677.550651 2604 2479 2.488493919373e-06 2605 2479 -18527661.31289 2606 2479 -5277700.460655 2607 2479 11944444.44836 2608 2479 -25750784.24113 2609 2479 12385378.01131 2480 2480 691056331.5443 2481 2480 1759285.033452 2482 2480 42221603.64364 2483 2480 38993777.49737 2490 2480 18780079.70233 2491 2480 9394289.805242 2492 2480 -24725057.40063 2493 2480 -3518570.065188 2494 2480 -21110801.83222 2495 2480 29179895.04537 2496 2480 -20803253.6245 2497 2480 11716512.02698 2498 2480 -27523507.01255 2574 2480 6685644.928532 2575 2480 -6579899.772699 2576 2480 -8541180.705052 2577 2480 46402301.92001 2578 2480 -5277700.460655 2579 2480 -49602960.36391 2580 2480 16581478.26512 2581 2480 11857600.23336 2582 2480 -32981587.68983 2586 2480 439821.2585788 2587 2480 -27269599.07773 2588 2480 -221502.6772963 2589 2480 1759285.033468 2590 2480 -21110801.83222 2591 2480 -68142578.48796 2592 2480 439821.258594 2593 2480 48380400.90995 2594 2480 -100781580.1802 2601 2480 -7125466.187114 2602 2480 -7107677.550651 2603 2480 -9517594.142065 2604 2480 -48161586.95346 2605 2480 -5277700.460655 2606 2480 -56307063.72196 2607 2480 -17021299.52369 2608 2480 12385378.01131 2609 2480 -35357225.93349 2481 2481 840410334.4004 2482 2481 47827148.55553 2483 2481 23749508.53569 2484 2481 8066610.522678 2485 2481 -47797526.08417 2486 2481 20547636.30415 2493 2481 -73573484.51406 2494 2481 -47777777.76993 2495 2481 19043968.59104 2496 2481 -188931397.8084 2497 2481 6.824731826782e-06 2498 2481 -3518570.065188 2499 2481 -74622903.1185 2500 2481 47777777.76992 2501 2481 -20539364.73579 2577 2481 -19278339.76952 2578 2481 11944444.44837 2579 2481 6685644.928532 2580 2481 -83208406.42019 2581 2481 -11951850.06621 2582 2481 42498171.10922 2589 2481 17734607.15466 2590 2481 1.817941665649e-06 2591 2481 439821.2585785 2592 2481 125282026.2887 2593 2481 11956787.14478 2594 2481 5935098.98454 2595 2481 -32275376.32772 2596 2481 -11949381.52693 2597 2481 17028332.3953 2604 2481 -19644494.8084 2605 2481 -11944444.44837 2606 2481 -7125466.187114 2607 2481 -71083613.53293 2608 2481 2.801418304443e-06 2609 2481 -48425475.84218 2610 2481 -29334356.73017 2611 2481 11944444.44836 2612 2481 -17021299.52369 2482 2482 711379506.5777 2483 2482 -65443950.97306 2484 2482 -47807400.24129 2485 2482 -159193824.4844 2486 2482 35050823.25634 2493 2482 -47777777.76993 2494 2482 -59239194.56492 2495 2482 9605400.916215 2496 2482 6.347894668579e-06 2497 2482 21292410.96829 2498 2482 -21110801.83222 2499 2482 47777777.76992 2500 2482 -60288613.16939 2501 2482 11505400.91601 2577 2482 11944444.44837 2578 2482 -15694767.28047 2579 2482 -6579899.772699 2580 2482 -11949381.52693 2581 2482 -27053453.11441 2582 2482 3626698.329752 2589 2482 3.322958946228e-06 2590 2482 -27654200.09436 2591 2482 -27480710.1887 2592 2482 11956787.14477 2593 2482 93024319.31714 2594 2482 -16362810.24847 2595 2482 -11951850.06621 2596 2482 -74090485.10009 2597 2482 46808583.40323 2604 2482 -11944444.44836 2605 2482 -16060922.31935 2606 2482 -7107677.550651 2607 2482 2.488493919373e-06 2608 2482 -18527661.31289 2609 2482 -5277700.460655 2610 2482 11944444.44836 2611 2482 -25750784.24113 2612 2482 12385378.01131 2483 2483 697590331.8784 2484 2483 20815660.97705 2485 2483 40965061.2198 2486 2483 2966205.148247 2493 2483 18780079.70233 2494 2483 9394289.805242 2495 2483 -24725057.40063 2496 2483 -3518570.065188 2497 2483 -21110801.83222 2498 2483 29179895.04537 2499 2483 -20803253.6245 2500 2483 11716512.02698 2501 2483 -27523507.01255 2577 2483 6685644.928532 2578 2483 -6579899.772699 2579 2483 -8541180.705052 2580 2483 42233282.34386 2581 2483 2150097.608279 2582 2483 -45715547.88649 2589 2483 439821.2585788 2590 2483 -27269599.07773 2591 2483 -221502.6772963 2592 2483 5939995.986973 2593 2483 -16358892.70393 2594 2483 -51790570.05088 2595 2483 17031848.8311 2596 2483 48076086.23075 2597 2483 -90703859.27092 2604 2483 -7125466.187114 2605 2483 -7107677.550651 2606 2483 -9517594.142065 2607 2483 -48161586.95346 2608 2483 -5277700.460655 2609 2483 -56307063.72196 2610 2483 -17021299.52369 2611 2483 12385378.01131 2612 2483 -35357225.93349 2484 2484 490945057.4196 2485 2484 47777777.76993 2486 2484 20252298.79464 2496 2484 -73573484.51406 2497 2484 -47777777.76993 2498 2484 19043968.59104 2499 2484 -273863949.3497 2500 2484 -47797526.08415 2501 2484 -20243754.66502 2502 2484 3432365.726058 2503 2484 38241970.53018 2504 2484 -16369382.67653 2580 2484 1810230.00851 2581 2484 14340738.95588 2582 2484 8290807.874965 2592 2484 -3359294.569133 2593 2484 -11951850.06621 2594 2484 -6689786.134111 2595 2484 66125098.41489 2596 2484 11944444.44837 2597 2484 15207852.8515 2607 2484 -19644494.8084 2608 2484 -11944444.44837 2609 2484 -7125466.187114 2610 2484 -93269248.17781 2611 2484 -11949381.52693 2612 2484 -52618980.4305 2613 2484 -17054654.84265 2614 2484 9560492.637254 2615 2484 -13448143.98712 2485 2485 419251389.3651 2486 2485 -52793537.14673 2496 2485 -47777777.76993 2497 2485 -59239194.56492 2498 2485 9605400.916215 2499 2485 -47807400.24127 2500 2485 -49244136.23734 2501 2485 -29248441.87035 2502 2485 57362955.79526 2503 2485 3432365.726057 2504 2485 18376374.28788 2580 2485 9560492.637254 2581 2485 1810230.008509 2582 2485 -4421798.559475 2592 2485 -11949381.52693 2593 2485 -45174403.34149 2594 2485 -27804612.20634 2595 2485 11944444.44837 2596 2485 48201681.39244 2597 2485 -5082672.97723 2607 2485 -11944444.44836 2608 2485 -16060922.31935 2609 2485 -7107677.550651 2610 2485 -11951850.06621 2611 2485 -37114294.87206 2612 2485 -16826932.79813 2613 2485 14340738.95588 2614 2485 -17054654.84265 2615 2485 16137388.124 2486 2486 451566531.4722 2496 2486 18780079.70233 2497 2486 9394289.805242 2498 2486 -24725057.40063 2499 2486 -20239482.6002 2500 2486 -23545205.99654 2501 2486 -25609721.67724 2502 2486 -24554074.0148 2503 2486 12250916.19192 2504 2486 9152975.269492 2580 2486 5527205.249977 2581 2486 -6632697.839212 2582 2486 4827280.022694 2592 2486 -6688405.732252 2593 2486 -29072115.16194 2594 2486 -13594307.9147 2595 2486 -3762599.703372 2596 2486 -20258812.61341 2597 2486 -38071476.41094 2607 2486 -7125466.187114 2608 2486 -7107677.550651 2609 2486 -9517594.142065 2610 2486 -52354091.66514 2611 2486 -15346414.53585 2612 2486 -72544459.24024 2613 2486 -20172215.98068 2614 2486 10758258.74933 2615 2486 -45479079.58041 2487 2487 773558827.9862 2488 2487 2.658367156982e-05 2489 2487 7037140.130311 2490 2487 85893349.16099 2491 2487 -1.427531242371e-05 2492 2487 1759285.033452 2505 2487 -188931397.8084 2506 2487 6.824731826782e-06 2507 2487 -3518570.065188 2508 2487 -74622903.1185 2509 2487 47777777.76992 2510 2487 -20539364.73579 2583 2487 -68569574.7737 2584 2487 9.983777999878e-07 2585 2487 46666190.80873 2586 2487 -28443492.38882 2587 2487 -11944444.44837 2588 2487 16581478.26512 2598 2487 103049709.0446 2599 2487 8.106231689453e-06 2600 2487 1759285.033469 2601 2487 -19975421.90891 2602 2487 -1.013278961182e-05 2603 2487 439821.2585936 2616 2487 -71083613.53293 2617 2487 2.801418304443e-06 2618 2487 -48425475.84218 2619 2487 -29334356.73017 2620 2487 11944444.44836 2621 2487 -17021299.52369 2488 2488 658884508.4497 2489 2488 -84443207.28729 2490 2488 -1.427531242371e-05 2491 2488 -95661879.74567 2492 2488 42221603.64364 2505 2488 6.347894668579e-06 2506 2488 21292410.96829 2507 2488 -21110801.83222 2508 2488 47777777.76992 2509 2488 -60288613.16939 2510 2488 11505400.91601 2583 2488 -8.195638656616e-07 2584 2488 -16013622.55363 2585 2488 -5277700.460655 2586 2488 -11944444.44837 2587 2488 -24859919.89976 2588 2488 11857600.23336 2598 2488 7.987022399902e-06 2599 2488 74381129.14638 2600 2488 -21110801.83222 2601 2488 -9.581446647644e-06 2602 2488 -65364229.15794 2603 2488 48591512.02092 2616 2488 2.488493919373e-06 2617 2488 -18527661.31289 2618 2488 -5277700.460655 2619 2488 11944444.44836 2620 2488 -25750784.24113 2621 2488 12385378.01131 2489 2489 691056331.5443 2490 2489 1759285.033452 2491 2489 42221603.64364 2492 2489 38993777.49737 2505 2489 -3518570.065188 2506 2489 -21110801.83222 2507 2489 29179895.04537 2508 2489 -20803253.6245 2509 2489 11716512.02698 2510 2489 -27523507.01255 2583 2489 46402301.92001 2584 2489 -5277700.460655 2585 2489 -49602960.36391 2586 2489 16581478.26512 2587 2489 11857600.23336 2588 2489 -32981587.68983 2598 2489 1759285.033468 2599 2489 -21110801.83222 2600 2489 -68142578.48796 2601 2489 439821.258594 2602 2489 48380400.90995 2603 2489 -100781580.1802 2616 2489 -48161586.95346 2617 2489 -5277700.460655 2618 2489 -56307063.72196 2619 2489 -17021299.52369 2620 2489 12385378.01131 2621 2489 -35357225.93349 2490 2490 773558827.9862 2491 2490 2.658367156982e-05 2492 2490 7037140.130311 2493 2490 85893349.16099 2494 2490 -1.427531242371e-05 2495 2490 1759285.033452 2505 2490 -73573484.51406 2506 2490 -47777777.76993 2507 2490 19043968.59104 2508 2490 -188931397.8084 2509 2490 6.824731826782e-06 2510 2490 -3518570.065188 2511 2490 -74622903.1185 2512 2490 47777777.76992 2513 2490 -20539364.73579 2583 2490 -19278339.76952 2584 2490 11944444.44837 2585 2490 6685644.928532 2586 2490 -68569574.7737 2587 2490 9.983777999878e-07 2588 2490 46666190.80873 2589 2490 -28443492.38882 2590 2490 -11944444.44837 2591 2490 16581478.26512 2598 2490 17734607.15466 2599 2490 1.817941665649e-06 2600 2490 439821.2585785 2601 2490 103049709.0446 2602 2490 8.106231689453e-06 2603 2490 1759285.033469 2604 2490 -19975421.90891 2605 2490 -1.013278961182e-05 2606 2490 439821.2585936 2616 2490 -19644494.8084 2617 2490 -11944444.44837 2618 2490 -7125466.187114 2619 2490 -71083613.53293 2620 2490 2.801418304443e-06 2621 2490 -48425475.84218 2622 2490 -29334356.73017 2623 2490 11944444.44836 2624 2490 -17021299.52369 2491 2491 658884508.4497 2492 2491 -84443207.28729 2493 2491 -1.427531242371e-05 2494 2491 -95661879.74567 2495 2491 42221603.64364 2505 2491 -47777777.76993 2506 2491 -59239194.56492 2507 2491 9605400.916215 2508 2491 6.347894668579e-06 2509 2491 21292410.96829 2510 2491 -21110801.83222 2511 2491 47777777.76992 2512 2491 -60288613.16939 2513 2491 11505400.91601 2583 2491 11944444.44837 2584 2491 -15694767.28047 2585 2491 -6579899.772699 2586 2491 -8.195638656616e-07 2587 2491 -16013622.55363 2588 2491 -5277700.460655 2589 2491 -11944444.44837 2590 2491 -24859919.89976 2591 2491 11857600.23336 2598 2491 3.322958946228e-06 2599 2491 -27654200.09436 2600 2491 -27480710.1887 2601 2491 7.987022399902e-06 2602 2491 74381129.14638 2603 2491 -21110801.83222 2604 2491 -9.581446647644e-06 2605 2491 -65364229.15794 2606 2491 48591512.02092 2616 2491 -11944444.44836 2617 2491 -16060922.31935 2618 2491 -7107677.550651 2619 2491 2.488493919373e-06 2620 2491 -18527661.31289 2621 2491 -5277700.460655 2622 2491 11944444.44836 2623 2491 -25750784.24113 2624 2491 12385378.01131 2492 2492 691056331.5443 2493 2492 1759285.033452 2494 2492 42221603.64364 2495 2492 38993777.49737 2505 2492 18780079.70233 2506 2492 9394289.805242 2507 2492 -24725057.40063 2508 2492 -3518570.065188 2509 2492 -21110801.83222 2510 2492 29179895.04537 2511 2492 -20803253.6245 2512 2492 11716512.02698 2513 2492 -27523507.01255 2583 2492 6685644.928532 2584 2492 -6579899.772699 2585 2492 -8541180.705052 2586 2492 46402301.92001 2587 2492 -5277700.460655 2588 2492 -49602960.36391 2589 2492 16581478.26512 2590 2492 11857600.23336 2591 2492 -32981587.68983 2598 2492 439821.2585788 2599 2492 -27269599.07773 2600 2492 -221502.6772963 2601 2492 1759285.033468 2602 2492 -21110801.83222 2603 2492 -68142578.48796 2604 2492 439821.258594 2605 2492 48380400.90995 2606 2492 -100781580.1802 2616 2492 -7125466.187114 2617 2492 -7107677.550651 2618 2492 -9517594.142065 2619 2492 -48161586.95346 2620 2492 -5277700.460655 2621 2492 -56307063.72196 2622 2492 -17021299.52369 2623 2492 12385378.01131 2624 2492 -35357225.93349 2493 2493 773558827.9862 2494 2493 2.658367156982e-05 2495 2493 7037140.130311 2496 2493 85893349.16099 2497 2493 -1.427531242371e-05 2498 2493 1759285.033452 2508 2493 -73573484.51406 2509 2493 -47777777.76993 2510 2493 19043968.59104 2511 2493 -188931397.8084 2512 2493 6.824731826782e-06 2513 2493 -3518570.065188 2514 2493 -74622903.1185 2515 2493 47777777.76992 2516 2493 -20539364.73579 2586 2493 -19278339.76952 2587 2493 11944444.44837 2588 2493 6685644.928532 2589 2493 -68569574.7737 2590 2493 9.983777999878e-07 2591 2493 46666190.80873 2592 2493 -28443492.38882 2593 2493 -11944444.44837 2594 2493 16581478.26512 2601 2493 17734607.15466 2602 2493 1.817941665649e-06 2603 2493 439821.2585785 2604 2493 103049709.0446 2605 2493 8.106231689453e-06 2606 2493 1759285.033469 2607 2493 -19975421.90891 2608 2493 -1.013278961182e-05 2609 2493 439821.2585936 2619 2493 -19644494.8084 2620 2493 -11944444.44837 2621 2493 -7125466.187114 2622 2493 -71083613.53293 2623 2493 2.801418304443e-06 2624 2493 -48425475.84218 2625 2493 -29334356.73017 2626 2493 11944444.44836 2627 2493 -17021299.52369 2494 2494 658884508.4497 2495 2494 -84443207.28729 2496 2494 -1.427531242371e-05 2497 2494 -95661879.74567 2498 2494 42221603.64364 2508 2494 -47777777.76993 2509 2494 -59239194.56492 2510 2494 9605400.916215 2511 2494 6.347894668579e-06 2512 2494 21292410.96829 2513 2494 -21110801.83222 2514 2494 47777777.76992 2515 2494 -60288613.16939 2516 2494 11505400.91601 2586 2494 11944444.44837 2587 2494 -15694767.28047 2588 2494 -6579899.772699 2589 2494 -8.195638656616e-07 2590 2494 -16013622.55363 2591 2494 -5277700.460655 2592 2494 -11944444.44837 2593 2494 -24859919.89976 2594 2494 11857600.23336 2601 2494 3.322958946228e-06 2602 2494 -27654200.09436 2603 2494 -27480710.1887 2604 2494 7.987022399902e-06 2605 2494 74381129.14638 2606 2494 -21110801.83222 2607 2494 -9.581446647644e-06 2608 2494 -65364229.15794 2609 2494 48591512.02092 2619 2494 -11944444.44836 2620 2494 -16060922.31935 2621 2494 -7107677.550651 2622 2494 2.488493919373e-06 2623 2494 -18527661.31289 2624 2494 -5277700.460655 2625 2494 11944444.44836 2626 2494 -25750784.24113 2627 2494 12385378.01131 2495 2495 691056331.5443 2496 2495 1759285.033452 2497 2495 42221603.64364 2498 2495 38993777.49737 2508 2495 18780079.70233 2509 2495 9394289.805242 2510 2495 -24725057.40063 2511 2495 -3518570.065188 2512 2495 -21110801.83222 2513 2495 29179895.04537 2514 2495 -20803253.6245 2515 2495 11716512.02698 2516 2495 -27523507.01255 2586 2495 6685644.928532 2587 2495 -6579899.772699 2588 2495 -8541180.705052 2589 2495 46402301.92001 2590 2495 -5277700.460655 2591 2495 -49602960.36391 2592 2495 16581478.26512 2593 2495 11857600.23336 2594 2495 -32981587.68983 2601 2495 439821.2585788 2602 2495 -27269599.07773 2603 2495 -221502.6772963 2604 2495 1759285.033468 2605 2495 -21110801.83222 2606 2495 -68142578.48796 2607 2495 439821.258594 2608 2495 48380400.90995 2609 2495 -100781580.1802 2619 2495 -7125466.187114 2620 2495 -7107677.550651 2621 2495 -9517594.142065 2622 2495 -48161586.95346 2623 2495 -5277700.460655 2624 2495 -56307063.72196 2625 2495 -17021299.52369 2626 2495 12385378.01131 2627 2495 -35357225.93349 2496 2496 773558827.9862 2497 2496 2.658367156982e-05 2498 2496 7037140.130311 2499 2496 85893349.16099 2500 2496 -1.427531242371e-05 2501 2496 1759285.033452 2511 2496 -73573484.51406 2512 2496 -47777777.76993 2513 2496 19043968.59104 2514 2496 -188931397.8084 2515 2496 6.824731826782e-06 2516 2496 -3518570.065188 2517 2496 -74622903.1185 2518 2496 47777777.76992 2519 2496 -20539364.73579 2589 2496 -19278339.76952 2590 2496 11944444.44837 2591 2496 6685644.928532 2592 2496 -68569574.7737 2593 2496 9.983777999878e-07 2594 2496 46666190.80873 2595 2496 -28443492.38882 2596 2496 -11944444.44837 2597 2496 16581478.26512 2604 2496 17734607.15466 2605 2496 1.817941665649e-06 2606 2496 439821.2585785 2607 2496 103049709.0446 2608 2496 8.106231689453e-06 2609 2496 1759285.033469 2610 2496 -19975421.90891 2611 2496 -1.013278961182e-05 2612 2496 439821.2585936 2622 2496 -19644494.8084 2623 2496 -11944444.44837 2624 2496 -7125466.187114 2625 2496 -71083613.53293 2626 2496 2.801418304443e-06 2627 2496 -48425475.84218 2628 2496 -29334356.73017 2629 2496 11944444.44836 2630 2496 -17021299.52369 2497 2497 658884508.4497 2498 2497 -84443207.28729 2499 2497 -1.427531242371e-05 2500 2497 -95661879.74567 2501 2497 42221603.64364 2511 2497 -47777777.76993 2512 2497 -59239194.56492 2513 2497 9605400.916215 2514 2497 6.347894668579e-06 2515 2497 21292410.96829 2516 2497 -21110801.83222 2517 2497 47777777.76992 2518 2497 -60288613.16939 2519 2497 11505400.91601 2589 2497 11944444.44837 2590 2497 -15694767.28047 2591 2497 -6579899.772699 2592 2497 -8.195638656616e-07 2593 2497 -16013622.55363 2594 2497 -5277700.460655 2595 2497 -11944444.44837 2596 2497 -24859919.89976 2597 2497 11857600.23336 2604 2497 3.322958946228e-06 2605 2497 -27654200.09436 2606 2497 -27480710.1887 2607 2497 7.987022399902e-06 2608 2497 74381129.14638 2609 2497 -21110801.83222 2610 2497 -9.581446647644e-06 2611 2497 -65364229.15794 2612 2497 48591512.02092 2622 2497 -11944444.44836 2623 2497 -16060922.31935 2624 2497 -7107677.550651 2625 2497 2.488493919373e-06 2626 2497 -18527661.31289 2627 2497 -5277700.460655 2628 2497 11944444.44836 2629 2497 -25750784.24113 2630 2497 12385378.01131 2498 2498 691056331.5443 2499 2498 1759285.033452 2500 2498 42221603.64364 2501 2498 38993777.49737 2511 2498 18780079.70233 2512 2498 9394289.805242 2513 2498 -24725057.40063 2514 2498 -3518570.065188 2515 2498 -21110801.83222 2516 2498 29179895.04537 2517 2498 -20803253.6245 2518 2498 11716512.02698 2519 2498 -27523507.01255 2589 2498 6685644.928532 2590 2498 -6579899.772699 2591 2498 -8541180.705052 2592 2498 46402301.92001 2593 2498 -5277700.460655 2594 2498 -49602960.36391 2595 2498 16581478.26512 2596 2498 11857600.23336 2597 2498 -32981587.68983 2604 2498 439821.2585788 2605 2498 -27269599.07773 2606 2498 -221502.6772963 2607 2498 1759285.033468 2608 2498 -21110801.83222 2609 2498 -68142578.48796 2610 2498 439821.258594 2611 2498 48380400.90995 2612 2498 -100781580.1802 2622 2498 -7125466.187114 2623 2498 -7107677.550651 2624 2498 -9517594.142065 2625 2498 -48161586.95346 2626 2498 -5277700.460655 2627 2498 -56307063.72196 2628 2498 -17021299.52369 2629 2498 12385378.01131 2630 2498 -35357225.93349 2499 2499 840410334.4004 2500 2499 47827148.55553 2501 2499 23749508.53569 2502 2499 8066610.522678 2503 2499 -47797526.08417 2504 2499 20547636.30415 2514 2499 -73573484.51406 2515 2499 -47777777.76993 2516 2499 19043968.59104 2517 2499 -188931397.8084 2518 2499 6.824731826782e-06 2519 2499 -3518570.065188 2520 2499 -74622903.1185 2521 2499 47777777.76992 2522 2499 -20539364.73579 2592 2499 -19278339.76952 2593 2499 11944444.44837 2594 2499 6685644.928532 2595 2499 -83208406.42019 2596 2499 -11951850.06621 2597 2499 42498171.10922 2607 2499 17734607.15466 2608 2499 1.817941665649e-06 2609 2499 439821.2585785 2610 2499 125282026.2887 2611 2499 11956787.14478 2612 2499 5935098.98454 2613 2499 -32275376.32772 2614 2499 -11949381.52693 2615 2499 17028332.3953 2625 2499 -19644494.8084 2626 2499 -11944444.44837 2627 2499 -7125466.187114 2628 2499 -71083613.53293 2629 2499 2.801418304443e-06 2630 2499 -48425475.84218 2631 2499 -29334356.73017 2632 2499 11944444.44836 2633 2499 -17021299.52369 2500 2500 711379506.5777 2501 2500 -65443950.97306 2502 2500 -47807400.24129 2503 2500 -159193824.4844 2504 2500 35050823.25634 2514 2500 -47777777.76993 2515 2500 -59239194.56492 2516 2500 9605400.916215 2517 2500 6.347894668579e-06 2518 2500 21292410.96829 2519 2500 -21110801.83222 2520 2500 47777777.76992 2521 2500 -60288613.16939 2522 2500 11505400.91601 2592 2500 11944444.44837 2593 2500 -15694767.28047 2594 2500 -6579899.772699 2595 2500 -11949381.52693 2596 2500 -27053453.11441 2597 2500 3626698.329752 2607 2500 3.322958946228e-06 2608 2500 -27654200.09436 2609 2500 -27480710.1887 2610 2500 11956787.14477 2611 2500 93024319.31714 2612 2500 -16362810.24847 2613 2500 -11951850.06621 2614 2500 -74090485.10009 2615 2500 46808583.40323 2625 2500 -11944444.44836 2626 2500 -16060922.31935 2627 2500 -7107677.550651 2628 2500 2.488493919373e-06 2629 2500 -18527661.31289 2630 2500 -5277700.460655 2631 2500 11944444.44836 2632 2500 -25750784.24113 2633 2500 12385378.01131 2501 2501 697590331.8784 2502 2501 20815660.97705 2503 2501 40965061.2198 2504 2501 2966205.148247 2514 2501 18780079.70233 2515 2501 9394289.805242 2516 2501 -24725057.40063 2517 2501 -3518570.065188 2518 2501 -21110801.83222 2519 2501 29179895.04537 2520 2501 -20803253.6245 2521 2501 11716512.02698 2522 2501 -27523507.01255 2592 2501 6685644.928532 2593 2501 -6579899.772699 2594 2501 -8541180.705052 2595 2501 42233282.34386 2596 2501 2150097.608279 2597 2501 -45715547.88649 2607 2501 439821.2585788 2608 2501 -27269599.07773 2609 2501 -221502.6772963 2610 2501 5939995.986973 2611 2501 -16358892.70393 2612 2501 -51790570.05088 2613 2501 17031848.8311 2614 2501 48076086.23075 2615 2501 -90703859.27092 2625 2501 -7125466.187114 2626 2501 -7107677.550651 2627 2501 -9517594.142065 2628 2501 -48161586.95346 2629 2501 -5277700.460655 2630 2501 -56307063.72196 2631 2501 -17021299.52369 2632 2501 12385378.01131 2633 2501 -35357225.93349 2502 2502 414827357.504 2503 2502 -20340871.50549 2504 2502 -9724189.681112 2517 2502 -73573484.51406 2518 2502 -47777777.76993 2519 2502 19043968.59104 2520 2502 -113444843.5246 2521 2502 20210194.63973 2522 2502 -1877986.414888 2523 2502 -111796877.2832 2524 2502 38352899.08171 2525 2502 -2121078.875016 2595 2502 1810230.00851 2596 2502 14340738.95588 2597 2502 8290807.874965 2610 2502 -3359294.569133 2611 2502 -11951850.06621 2612 2502 -6689786.134111 2613 2502 55048606.88105 2614 2502 -3993837.276312 2615 2502 4300879.130003 2628 2502 -19644494.8084 2629 2502 -11944444.44837 2630 2502 -7125466.187114 2631 2502 -46850477.23879 2632 2502 3967148.114668 2633 2502 -32629853.81604 2634 2502 -26982829.38238 2635 2502 9582244.720342 2636 2502 -3892991.07326 2503 2503 564039483.2591 2504 2503 -65106018.41226 2517 2503 -47777777.76993 2518 2503 -59239194.56492 2519 2503 9605400.916215 2520 2503 20144856.20685 2521 2503 80868506.6064 2522 2503 -14973710.12356 2523 2503 57529348.62257 2524 2503 -302396208.1114 2525 2503 17278369.45958 2595 2503 9560492.637254 2596 2503 1810230.008509 2597 2503 -4421798.559475 2610 2503 -11949381.52693 2611 2503 -45174403.34149 2612 2503 -27804612.20634 2613 2503 -3993837.276313 2614 2503 82661789.79505 2615 2503 -10169382.16459 2628 2503 -11944444.44836 2629 2503 -16060922.31935 2630 2503 -7107677.550651 2631 2503 3953803.533843 2632 2503 2200024.266784 2633 2503 -395237.0216989 2634 2503 14373367.08051 2635 2503 -65414977.51864 2636 2503 21026558.24452 2504 2504 423445398.9633 2517 2504 18780079.70233 2518 2504 9394289.805242 2519 2504 -24725057.40063 2520 2504 -7679074.462877 2521 2504 -14123216.23606 2522 2504 36715829.09565 2523 2504 -3181618.312524 2524 2504 16437776.1764 2525 2504 -107525675.2604 2595 2504 5527205.249977 2596 2504 -6632697.839212 2597 2504 4827280.022694 2610 2504 -6688405.732252 2611 2504 -29072115.16194 2612 2504 -13594307.9147 2613 2504 -8545064.987078 2614 2504 -20005612.70897 2615 2504 -20483373.72889 2628 2504 -7125466.187114 2629 2504 -7107677.550651 2630 2504 -9517594.142065 2631 2504 -33948397.04199 2632 2504 39261.12256241 2633 2504 -34318631.6447 2634 2504 -5839486.60989 2635 2504 19470618.25085 2636 2504 -33522063.55007 2505 2505 773558827.9862 2506 2505 2.658367156982e-05 2507 2505 7037140.130311 2508 2505 85893349.16099 2509 2505 -1.427531242371e-05 2510 2505 1759285.033452 2526 2505 -188931397.8084 2527 2505 6.824731826782e-06 2528 2505 -3518570.065188 2529 2505 -74622903.1185 2530 2505 47777777.76992 2531 2505 -20539364.73579 2598 2505 -68569574.7737 2599 2505 9.983777999878e-07 2600 2505 46666190.80873 2601 2505 -28443492.38882 2602 2505 -11944444.44837 2603 2505 16581478.26512 2616 2505 103049709.0446 2617 2505 8.106231689453e-06 2618 2505 1759285.033469 2619 2505 -19975421.90891 2620 2505 -1.013278961182e-05 2621 2505 439821.2585936 2637 2505 -71083613.53293 2638 2505 2.801418304443e-06 2639 2505 -48425475.84218 2640 2505 -29334356.73017 2641 2505 11944444.44836 2642 2505 -17021299.52369 2506 2506 658884508.4497 2507 2506 -84443207.28729 2508 2506 -1.427531242371e-05 2509 2506 -95661879.74567 2510 2506 42221603.64364 2526 2506 6.347894668579e-06 2527 2506 21292410.96829 2528 2506 -21110801.83222 2529 2506 47777777.76992 2530 2506 -60288613.16939 2531 2506 11505400.91601 2598 2506 -8.195638656616e-07 2599 2506 -16013622.55363 2600 2506 -5277700.460655 2601 2506 -11944444.44837 2602 2506 -24859919.89976 2603 2506 11857600.23336 2616 2506 7.987022399902e-06 2617 2506 74381129.14638 2618 2506 -21110801.83222 2619 2506 -9.581446647644e-06 2620 2506 -65364229.15794 2621 2506 48591512.02092 2637 2506 2.488493919373e-06 2638 2506 -18527661.31289 2639 2506 -5277700.460655 2640 2506 11944444.44836 2641 2506 -25750784.24113 2642 2506 12385378.01131 2507 2507 691056331.5443 2508 2507 1759285.033452 2509 2507 42221603.64364 2510 2507 38993777.49737 2526 2507 -3518570.065188 2527 2507 -21110801.83222 2528 2507 29179895.04537 2529 2507 -20803253.6245 2530 2507 11716512.02698 2531 2507 -27523507.01255 2598 2507 46402301.92001 2599 2507 -5277700.460655 2600 2507 -49602960.36391 2601 2507 16581478.26512 2602 2507 11857600.23336 2603 2507 -32981587.68983 2616 2507 1759285.033468 2617 2507 -21110801.83222 2618 2507 -68142578.48796 2619 2507 439821.258594 2620 2507 48380400.90995 2621 2507 -100781580.1802 2637 2507 -48161586.95346 2638 2507 -5277700.460655 2639 2507 -56307063.72196 2640 2507 -17021299.52369 2641 2507 12385378.01131 2642 2507 -35357225.93349 2508 2508 773558827.9862 2509 2508 2.658367156982e-05 2510 2508 7037140.130311 2511 2508 85893349.16099 2512 2508 -1.427531242371e-05 2513 2508 1759285.033452 2526 2508 -73573484.51406 2527 2508 -47777777.76993 2528 2508 19043968.59104 2529 2508 -188931397.8084 2530 2508 6.824731826782e-06 2531 2508 -3518570.065188 2532 2508 -74622903.1185 2533 2508 47777777.76992 2534 2508 -20539364.73579 2598 2508 -19278339.76952 2599 2508 11944444.44837 2600 2508 6685644.928532 2601 2508 -68569574.7737 2602 2508 9.983777999878e-07 2603 2508 46666190.80873 2604 2508 -28443492.38882 2605 2508 -11944444.44837 2606 2508 16581478.26512 2616 2508 17734607.15466 2617 2508 1.817941665649e-06 2618 2508 439821.2585785 2619 2508 103049709.0446 2620 2508 8.106231689453e-06 2621 2508 1759285.033469 2622 2508 -19975421.90891 2623 2508 -1.013278961182e-05 2624 2508 439821.2585936 2637 2508 -19644494.8084 2638 2508 -11944444.44837 2639 2508 -7125466.187114 2640 2508 -71083613.53293 2641 2508 2.801418304443e-06 2642 2508 -48425475.84218 2643 2508 -29334356.73017 2644 2508 11944444.44836 2645 2508 -17021299.52369 2509 2509 658884508.4497 2510 2509 -84443207.28729 2511 2509 -1.427531242371e-05 2512 2509 -95661879.74567 2513 2509 42221603.64364 2526 2509 -47777777.76993 2527 2509 -59239194.56492 2528 2509 9605400.916215 2529 2509 6.347894668579e-06 2530 2509 21292410.96829 2531 2509 -21110801.83222 2532 2509 47777777.76992 2533 2509 -60288613.16939 2534 2509 11505400.91601 2598 2509 11944444.44837 2599 2509 -15694767.28047 2600 2509 -6579899.772699 2601 2509 -8.195638656616e-07 2602 2509 -16013622.55363 2603 2509 -5277700.460655 2604 2509 -11944444.44837 2605 2509 -24859919.89976 2606 2509 11857600.23336 2616 2509 3.322958946228e-06 2617 2509 -27654200.09436 2618 2509 -27480710.1887 2619 2509 7.987022399902e-06 2620 2509 74381129.14638 2621 2509 -21110801.83222 2622 2509 -9.581446647644e-06 2623 2509 -65364229.15794 2624 2509 48591512.02092 2637 2509 -11944444.44836 2638 2509 -16060922.31935 2639 2509 -7107677.550651 2640 2509 2.488493919373e-06 2641 2509 -18527661.31289 2642 2509 -5277700.460655 2643 2509 11944444.44836 2644 2509 -25750784.24113 2645 2509 12385378.01131 2510 2510 691056331.5443 2511 2510 1759285.033452 2512 2510 42221603.64364 2513 2510 38993777.49737 2526 2510 18780079.70233 2527 2510 9394289.805242 2528 2510 -24725057.40063 2529 2510 -3518570.065188 2530 2510 -21110801.83222 2531 2510 29179895.04537 2532 2510 -20803253.6245 2533 2510 11716512.02698 2534 2510 -27523507.01255 2598 2510 6685644.928532 2599 2510 -6579899.772699 2600 2510 -8541180.705052 2601 2510 46402301.92001 2602 2510 -5277700.460655 2603 2510 -49602960.36391 2604 2510 16581478.26512 2605 2510 11857600.23336 2606 2510 -32981587.68983 2616 2510 439821.2585788 2617 2510 -27269599.07773 2618 2510 -221502.6772963 2619 2510 1759285.033468 2620 2510 -21110801.83222 2621 2510 -68142578.48796 2622 2510 439821.258594 2623 2510 48380400.90995 2624 2510 -100781580.1802 2637 2510 -7125466.187114 2638 2510 -7107677.550651 2639 2510 -9517594.142065 2640 2510 -48161586.95346 2641 2510 -5277700.460655 2642 2510 -56307063.72196 2643 2510 -17021299.52369 2644 2510 12385378.01131 2645 2510 -35357225.93349 2511 2511 773558827.9862 2512 2511 2.658367156982e-05 2513 2511 7037140.130311 2514 2511 85893349.16099 2515 2511 -1.427531242371e-05 2516 2511 1759285.033452 2529 2511 -73573484.51406 2530 2511 -47777777.76993 2531 2511 19043968.59104 2532 2511 -188931397.8084 2533 2511 6.824731826782e-06 2534 2511 -3518570.065188 2535 2511 -74622903.1185 2536 2511 47777777.76992 2537 2511 -20539364.73579 2601 2511 -19278339.76952 2602 2511 11944444.44837 2603 2511 6685644.928532 2604 2511 -68569574.7737 2605 2511 9.983777999878e-07 2606 2511 46666190.80873 2607 2511 -28443492.38882 2608 2511 -11944444.44837 2609 2511 16581478.26512 2619 2511 17734607.15466 2620 2511 1.817941665649e-06 2621 2511 439821.2585785 2622 2511 103049709.0446 2623 2511 8.106231689453e-06 2624 2511 1759285.033469 2625 2511 -19975421.90891 2626 2511 -1.013278961182e-05 2627 2511 439821.2585936 2640 2511 -19644494.8084 2641 2511 -11944444.44837 2642 2511 -7125466.187114 2643 2511 -71083613.53293 2644 2511 2.801418304443e-06 2645 2511 -48425475.84218 2646 2511 -29334356.73017 2647 2511 11944444.44836 2648 2511 -17021299.52369 2512 2512 658884508.4497 2513 2512 -84443207.28729 2514 2512 -1.427531242371e-05 2515 2512 -95661879.74567 2516 2512 42221603.64364 2529 2512 -47777777.76993 2530 2512 -59239194.56492 2531 2512 9605400.916215 2532 2512 6.347894668579e-06 2533 2512 21292410.96829 2534 2512 -21110801.83222 2535 2512 47777777.76992 2536 2512 -60288613.16939 2537 2512 11505400.91601 2601 2512 11944444.44837 2602 2512 -15694767.28047 2603 2512 -6579899.772699 2604 2512 -8.195638656616e-07 2605 2512 -16013622.55363 2606 2512 -5277700.460655 2607 2512 -11944444.44837 2608 2512 -24859919.89976 2609 2512 11857600.23336 2619 2512 3.322958946228e-06 2620 2512 -27654200.09436 2621 2512 -27480710.1887 2622 2512 7.987022399902e-06 2623 2512 74381129.14638 2624 2512 -21110801.83222 2625 2512 -9.581446647644e-06 2626 2512 -65364229.15794 2627 2512 48591512.02092 2640 2512 -11944444.44836 2641 2512 -16060922.31935 2642 2512 -7107677.550651 2643 2512 2.488493919373e-06 2644 2512 -18527661.31289 2645 2512 -5277700.460655 2646 2512 11944444.44836 2647 2512 -25750784.24113 2648 2512 12385378.01131 2513 2513 691056331.5443 2514 2513 1759285.033452 2515 2513 42221603.64364 2516 2513 38993777.49737 2529 2513 18780079.70233 2530 2513 9394289.805242 2531 2513 -24725057.40063 2532 2513 -3518570.065188 2533 2513 -21110801.83222 2534 2513 29179895.04537 2535 2513 -20803253.6245 2536 2513 11716512.02698 2537 2513 -27523507.01255 2601 2513 6685644.928532 2602 2513 -6579899.772699 2603 2513 -8541180.705052 2604 2513 46402301.92001 2605 2513 -5277700.460655 2606 2513 -49602960.36391 2607 2513 16581478.26512 2608 2513 11857600.23336 2609 2513 -32981587.68983 2619 2513 439821.2585788 2620 2513 -27269599.07773 2621 2513 -221502.6772963 2622 2513 1759285.033468 2623 2513 -21110801.83222 2624 2513 -68142578.48796 2625 2513 439821.258594 2626 2513 48380400.90995 2627 2513 -100781580.1802 2640 2513 -7125466.187114 2641 2513 -7107677.550651 2642 2513 -9517594.142065 2643 2513 -48161586.95346 2644 2513 -5277700.460655 2645 2513 -56307063.72196 2646 2513 -17021299.52369 2647 2513 12385378.01131 2648 2513 -35357225.93349 2514 2514 773558827.9862 2515 2514 2.658367156982e-05 2516 2514 7037140.130311 2517 2514 85893349.16099 2518 2514 -1.427531242371e-05 2519 2514 1759285.033452 2532 2514 -73573484.51406 2533 2514 -47777777.76993 2534 2514 19043968.59104 2535 2514 -188931397.8084 2536 2514 6.824731826782e-06 2537 2514 -3518570.065188 2538 2514 -74622903.1185 2539 2514 47777777.76992 2540 2514 -20539364.73579 2604 2514 -19278339.76952 2605 2514 11944444.44837 2606 2514 6685644.928532 2607 2514 -68569574.7737 2608 2514 9.983777999878e-07 2609 2514 46666190.80873 2610 2514 -28443492.38882 2611 2514 -11944444.44837 2612 2514 16581478.26512 2622 2514 17734607.15466 2623 2514 1.817941665649e-06 2624 2514 439821.2585785 2625 2514 103049709.0446 2626 2514 8.106231689453e-06 2627 2514 1759285.033469 2628 2514 -19975421.90891 2629 2514 -1.013278961182e-05 2630 2514 439821.2585936 2643 2514 -19644494.8084 2644 2514 -11944444.44837 2645 2514 -7125466.187114 2646 2514 -71083613.53293 2647 2514 2.801418304443e-06 2648 2514 -48425475.84218 2649 2514 -29334356.73017 2650 2514 11944444.44836 2651 2514 -17021299.52369 2515 2515 658884508.4497 2516 2515 -84443207.28729 2517 2515 -1.427531242371e-05 2518 2515 -95661879.74567 2519 2515 42221603.64364 2532 2515 -47777777.76993 2533 2515 -59239194.56492 2534 2515 9605400.916215 2535 2515 6.347894668579e-06 2536 2515 21292410.96829 2537 2515 -21110801.83222 2538 2515 47777777.76992 2539 2515 -60288613.16939 2540 2515 11505400.91601 2604 2515 11944444.44837 2605 2515 -15694767.28047 2606 2515 -6579899.772699 2607 2515 -8.195638656616e-07 2608 2515 -16013622.55363 2609 2515 -5277700.460655 2610 2515 -11944444.44837 2611 2515 -24859919.89976 2612 2515 11857600.23336 2622 2515 3.322958946228e-06 2623 2515 -27654200.09436 2624 2515 -27480710.1887 2625 2515 7.987022399902e-06 2626 2515 74381129.14638 2627 2515 -21110801.83222 2628 2515 -9.581446647644e-06 2629 2515 -65364229.15794 2630 2515 48591512.02092 2643 2515 -11944444.44836 2644 2515 -16060922.31935 2645 2515 -7107677.550651 2646 2515 2.488493919373e-06 2647 2515 -18527661.31289 2648 2515 -5277700.460655 2649 2515 11944444.44836 2650 2515 -25750784.24113 2651 2515 12385378.01131 2516 2516 691056331.5443 2517 2516 1759285.033452 2518 2516 42221603.64364 2519 2516 38993777.49737 2532 2516 18780079.70233 2533 2516 9394289.805242 2534 2516 -24725057.40063 2535 2516 -3518570.065188 2536 2516 -21110801.83222 2537 2516 29179895.04537 2538 2516 -20803253.6245 2539 2516 11716512.02698 2540 2516 -27523507.01255 2604 2516 6685644.928532 2605 2516 -6579899.772699 2606 2516 -8541180.705052 2607 2516 46402301.92001 2608 2516 -5277700.460655 2609 2516 -49602960.36391 2610 2516 16581478.26512 2611 2516 11857600.23336 2612 2516 -32981587.68983 2622 2516 439821.2585788 2623 2516 -27269599.07773 2624 2516 -221502.6772963 2625 2516 1759285.033468 2626 2516 -21110801.83222 2627 2516 -68142578.48796 2628 2516 439821.258594 2629 2516 48380400.90995 2630 2516 -100781580.1802 2643 2516 -7125466.187114 2644 2516 -7107677.550651 2645 2516 -9517594.142065 2646 2516 -48161586.95346 2647 2516 -5277700.460655 2648 2516 -56307063.72196 2649 2516 -17021299.52369 2650 2516 12385378.01131 2651 2516 -35357225.93349 2517 2517 773558827.9862 2518 2517 2.658367156982e-05 2519 2517 7037140.130311 2520 2517 85893349.16099 2521 2517 -1.427531242371e-05 2522 2517 1759285.033452 2535 2517 -73573484.51406 2536 2517 -47777777.76993 2537 2517 19043968.59104 2538 2517 -188931397.8084 2539 2517 6.824731826782e-06 2540 2517 -3518570.065188 2541 2517 -74622903.1185 2542 2517 47777777.76992 2543 2517 -20539364.73579 2607 2517 -19278339.76952 2608 2517 11944444.44837 2609 2517 6685644.928532 2610 2517 -68569574.7737 2611 2517 9.983777999878e-07 2612 2517 46666190.80873 2613 2517 -28443492.38882 2614 2517 -11944444.44837 2615 2517 16581478.26512 2625 2517 17734607.15466 2626 2517 1.817941665649e-06 2627 2517 439821.2585785 2628 2517 103049709.0446 2629 2517 8.106231689453e-06 2630 2517 1759285.033469 2631 2517 -19975421.90891 2632 2517 -1.013278961182e-05 2633 2517 439821.2585936 2646 2517 -19644494.8084 2647 2517 -11944444.44837 2648 2517 -7125466.187114 2649 2517 -71083613.53293 2650 2517 2.801418304443e-06 2651 2517 -48425475.84218 2652 2517 -29334356.73017 2653 2517 11944444.44836 2654 2517 -17021299.52369 2518 2518 658884508.4497 2519 2518 -84443207.28729 2520 2518 -1.427531242371e-05 2521 2518 -95661879.74567 2522 2518 42221603.64364 2535 2518 -47777777.76993 2536 2518 -59239194.56492 2537 2518 9605400.916215 2538 2518 6.347894668579e-06 2539 2518 21292410.96829 2540 2518 -21110801.83222 2541 2518 47777777.76992 2542 2518 -60288613.16939 2543 2518 11505400.91601 2607 2518 11944444.44837 2608 2518 -15694767.28047 2609 2518 -6579899.772699 2610 2518 -8.195638656616e-07 2611 2518 -16013622.55363 2612 2518 -5277700.460655 2613 2518 -11944444.44837 2614 2518 -24859919.89976 2615 2518 11857600.23336 2625 2518 3.322958946228e-06 2626 2518 -27654200.09436 2627 2518 -27480710.1887 2628 2518 7.987022399902e-06 2629 2518 74381129.14638 2630 2518 -21110801.83222 2631 2518 -9.581446647644e-06 2632 2518 -65364229.15794 2633 2518 48591512.02092 2646 2518 -11944444.44836 2647 2518 -16060922.31935 2648 2518 -7107677.550651 2649 2518 2.488493919373e-06 2650 2518 -18527661.31289 2651 2518 -5277700.460655 2652 2518 11944444.44836 2653 2518 -25750784.24113 2654 2518 12385378.01131 2519 2519 691056331.5443 2520 2519 1759285.033452 2521 2519 42221603.64364 2522 2519 38993777.49737 2535 2519 18780079.70233 2536 2519 9394289.805242 2537 2519 -24725057.40063 2538 2519 -3518570.065188 2539 2519 -21110801.83222 2540 2519 29179895.04537 2541 2519 -20803253.6245 2542 2519 11716512.02698 2543 2519 -27523507.01255 2607 2519 6685644.928532 2608 2519 -6579899.772699 2609 2519 -8541180.705052 2610 2519 46402301.92001 2611 2519 -5277700.460655 2612 2519 -49602960.36391 2613 2519 16581478.26512 2614 2519 11857600.23336 2615 2519 -32981587.68983 2625 2519 439821.2585788 2626 2519 -27269599.07773 2627 2519 -221502.6772963 2628 2519 1759285.033468 2629 2519 -21110801.83222 2630 2519 -68142578.48796 2631 2519 439821.258594 2632 2519 48380400.90995 2633 2519 -100781580.1802 2646 2519 -7125466.187114 2647 2519 -7107677.550651 2648 2519 -9517594.142065 2649 2519 -48161586.95346 2650 2519 -5277700.460655 2651 2519 -56307063.72196 2652 2519 -17021299.52369 2653 2519 12385378.01131 2654 2519 -35357225.93349 2520 2520 661143350.3463 2521 2520 13618540.72033 2522 2520 5989102.104141 2523 2520 -101035987.8533 2524 2520 -87387069.812 2525 2520 5160549.700649 2538 2520 -73573484.51406 2539 2520 -47777777.76993 2540 2520 19043968.59104 2541 2520 -129151830.3037 2542 2520 28408228.69302 2543 2520 -1228671.263296 2544 2520 -50340940.25329 2545 2520 25215444.19182 2546 2520 -2240873.326595 2610 2520 -19278339.76952 2611 2520 11944444.44837 2612 2520 6685644.928532 2613 2520 -43931936.15608 2614 2520 3953803.533843 2615 2520 30281323.54341 2628 2520 17734607.15466 2629 2520 1.817941665649e-06 2630 2520 439821.2585785 2631 2520 98285811.20611 2632 2520 3290506.566172 2633 2520 1546926.362953 2634 2520 -39364297.46372 2635 2520 -21070750.36619 2636 2520 13769148.13469 2649 2520 -19644494.8084 2650 2520 -11944444.44837 2651 2520 -7125466.187114 2652 2520 -56246818.4596 2653 2520 6794385.619339 2654 2520 -40777663.34128 2655 2520 -19457886.36742 2656 2520 7032054.646846 2657 2520 -4791657.828043 2521 2521 750451146.4559 2522 2521 -58171951.50429 2523 2521 -87452408.24488 2524 2521 -290974733.7609 2525 2521 11075712.80635 2538 2521 -47777777.76993 2539 2521 -59239194.56492 2540 2521 9605400.916215 2541 2521 28408228.69302 2542 2521 28079220.69954 2543 2521 -11305000.42828 2544 2521 25215444.19182 2545 2521 -148367742.5811 2546 2521 6448432.317586 2610 2521 11944444.44837 2611 2521 -15694767.28047 2612 2521 -6579899.772699 2613 2521 3967148.114666 2614 2521 5118565.349512 2615 2521 -6805898.764872 2628 2521 3.322958946228e-06 2629 2521 -27654200.09436 2630 2521 -27480710.1887 2631 2521 3290506.566169 2632 2521 116187098.4075 2633 2521 -14193581.10448 2634 2521 -21084094.94702 2635 2521 -86047416.47364 2636 2521 42749757.90501 2649 2521 -11944444.44836 2650 2521 -16060922.31935 2651 2521 -7107677.550651 2652 2521 6794385.619338 2653 2521 -15664941.07429 2654 2521 3794011.966557 2655 2521 7032054.646846 2656 2521 -42086771.17886 2657 2521 18179794.31644 2522 2522 595375909.2707 2523 2522 5165533.582777 2524 2522 11082175.68687 2525 2522 -72701184.11614 2538 2522 18780079.70233 2539 2522 9394289.805242 2540 2522 -24725057.40063 2541 2522 -7034226.817899 2542 2522 -11305000.42828 2543 2522 38156861.57885 2544 2522 -2240873.326075 2545 2522 6448432.317585 2546 2522 -37981402.40673 2610 2522 6685644.928532 2611 2522 -6579899.772699 2612 2522 -8541180.705052 2613 2522 31599866.76936 2614 2522 -6795843.015341 2615 2522 -26535855.42407 2628 2522 439821.2585788 2629 2522 -27269599.07773 2630 2522 -221502.6772963 2631 2522 1556203.815474 2632 2522 -13341714.07747 2633 2522 -32667374.4372 2634 2522 13774810.33564 2635 2522 42743511.30837 2636 2522 -59721377.20001 2649 2522 -7125466.187114 2650 2522 -7107677.550651 2651 2522 -9517594.142065 2652 2522 -42097107.78484 2653 2522 4005123.078997 2654 2522 -52469144.20003 2655 2522 -4791657.828043 2656 2522 18179794.31644 2657 2522 -28734916.98485 2523 2523 523303156.7564 2524 2523 18508164.24143 2525 2523 -41775.96088886 2541 2523 -75675730.3705 2542 2523 -44546650.89538 2543 2523 2598546.349347 2544 2523 -16392499.20861 2545 2523 41849759.38176 2546 2523 -1875236.03192 2547 2523 58848606.59511 2548 2523 -24831769.03377 2549 2523 1359.619889617 2550 2523 -16689329.37432 2551 2523 38943555.92827 2552 2523 -555698.1348699 2613 2523 -23767663.79374 2614 2523 14373367.08051 2615 2523 4250012.242433 2631 2523 -33756445.01475 2632 2523 -21084094.94702 2633 2523 -11278021.84509 2634 2523 33974829.94332 2635 2523 4345910.00941 2636 2523 9803417.164491 2652 2523 -24574481.29388 2653 2523 -11253340.76984 2654 2523 -11852637.55666 2655 2523 -48054442.14957 2656 2523 9814966.021255 2657 2523 -49454271.31342 2658 2523 -15833393.4173 2659 2523 -6043520.287572 2660 2523 12381289.62259 2661 2523 -18260108.90285 2662 2523 9846712.893254 2663 2523 -12133677.20358 2524 2524 812493800.1257 2525 2524 -22728114.4994 2541 2524 -44546650.89538 2542 2524 -36336145.54889 2543 2524 -134262.3811041 2544 2524 41849759.38176 2545 2524 153232218.2128 2546 2524 -3929309.634979 2547 2524 -5720657.925795 2548 2524 -33546371.83474 2549 2524 427600.0767067 2550 2524 38943555.92827 2551 2524 -41911219.82108 2552 2524 512395.3812619 2613 2524 9582244.720342 2614 2524 -62199811.93 2615 2524 -12610438.76902 2631 2524 -21070750.3662 2632 2524 -80439564.02468 2633 2524 -37406752.97443 2634 2524 4345910.009409 2635 2524 96101627.0792 2636 2524 -3613158.842714 2652 2524 -11253340.76984 2653 2524 -15237473.62937 2654 2524 -10009880.35657 2655 2524 9814966.021255 2656 2524 -5324672.171355 2657 2524 5709888.680204 2658 2524 -1265742.508225 2659 2524 -38961976.03075 2660 2524 33439396.27524 2661 2524 9846712.893254 2662 2524 -24209833.92182 2663 2524 16792659.13732 2525 2525 620870306.405 2541 2525 2598546.349607 2542 2525 -134262.380896 2543 2525 -13607944.83238 2544 2525 -1875236.03192 2545 2525 -3929309.634979 2546 2525 153090382.0159 2547 2525 1359.619892359 2548 2525 427600.0767067 2549 2525 92846755.87184 2550 2525 -555698.1346104 2551 2525 512395.381262 2552 2525 21857597.94702 2613 2525 2833341.494955 2614 2525 -13745254.78106 2615 2525 -24948288.64704 2631 2525 -11274406.6552 2632 2525 -37415415.51588 2633 2525 -44767104.00273 2634 2525 -9800471.721178 2635 2525 -6318823.715466 2636 2525 -94950833.35383 2652 2525 -11852637.55666 2653 2525 -10009880.35657 2654 2525 -18339788.46327 2655 2525 -49454271.31368 2656 2525 5709888.681464 2657 2525 -74385394.46558 2658 2525 4256289.621493 2659 2525 33439396.27524 2660 2525 -58703814.84431 2661 2525 -12133677.20358 2662 2525 16792659.13732 2663 2525 -31295988.5666 2526 2526 386779413.9931 2527 2526 1.430511474609e-05 2528 2526 3518570.065155 2529 2526 42964164.89056 2530 2526 9555555.55398 2531 2526 -2418968.594168 2616 2526 -68569574.7737 2617 2526 9.983777999878e-07 2618 2526 46666190.80873 2619 2526 -28443492.38882 2620 2526 -11944444.44837 2621 2526 16581478.26512 2637 2526 51507364.21225 2638 2526 2.384185791016e-06 2639 2526 -9262857.481274 2640 2526 -9987710.954453 2641 2526 2388888.889668 2642 2526 -3140367.149584 2527 2527 329442254.2248 2528 2527 -42221603.64364 2529 2527 -9555555.55399 2530 2527 -47813449.56276 2531 2527 20899690.71075 2616 2527 -8.195638656616e-07 2617 2527 -16013622.55363 2618 2527 -5277700.460655 2619 2527 -11944444.44837 2620 2527 -24859919.89976 2621 2527 11857600.23336 2637 2527 1.788139343262e-06 2638 2527 37173074.26313 2639 2527 -10555400.91611 2640 2527 -2388888.889678 2641 2527 -32682114.57897 2642 2527 24242978.23266 2528 2528 345528165.7722 2529 2528 5497698.071198 2530 2528 21321912.9329 2531 2528 19543529.57553 2616 2528 46402301.92001 2617 2528 -5277700.460655 2618 2528 -49602960.36391 2619 2528 16581478.26512 2620 2528 11857600.23336 2621 2528 -32981587.68983 2637 2528 9702698.071164 2638 2528 -10555400.91611 2639 2528 -34117930.07082 2640 2528 3580188.408178 2641 2528 24242978.23277 2642 2528 -50390790.09008 2529 2529 386779413.9931 2530 2529 1.430511474609e-05 2531 2529 3518570.065155 2532 2529 42964164.89056 2533 2529 9555555.55398 2534 2529 -2418968.594168 2616 2529 -19278339.76952 2617 2529 11944444.44837 2618 2529 6685644.928532 2619 2529 -68569574.7737 2620 2529 9.983777999878e-07 2621 2529 46666190.80873 2622 2529 -28443492.38882 2623 2529 -11944444.44837 2624 2529 16581478.26512 2637 2529 8867303.577332 2638 2529 -2388888.889672 2639 2529 -1161200.482275 2640 2529 51507364.21225 2641 2529 2.384185791016e-06 2642 2529 -9262857.481274 2643 2529 -9987710.954453 2644 2529 2388888.889668 2645 2529 -3140367.149584 2530 2530 329442254.2248 2531 2530 -42221603.64364 2532 2530 -9555555.55399 2533 2530 -47813449.56276 2534 2530 20899690.71075 2616 2530 11944444.44837 2617 2530 -15694767.28047 2618 2530 -6579899.772699 2619 2530 -8.195638656616e-07 2620 2530 -16013622.55363 2621 2530 -5277700.460655 2622 2530 -11944444.44837 2623 2530 -24859919.89976 2624 2530 11857600.23336 2637 2530 2388888.889675 2638 2530 -13827100.04718 2639 2530 -13687577.31655 2640 2530 1.788139343262e-06 2641 2530 37173074.26313 2642 2530 -10555400.91611 2643 2530 -2388888.889678 2644 2530 -32682114.57897 2645 2530 24242978.23266 2531 2531 345528165.7722 2532 2531 5497698.071198 2533 2531 21321912.9329 2534 2531 19543529.57553 2616 2531 6685644.928532 2617 2531 -6579899.772699 2618 2531 -8541180.705052 2619 2531 46402301.92001 2620 2531 -5277700.460655 2621 2531 -49602960.36391 2622 2531 16581478.26512 2623 2531 11857600.23336 2624 2531 -32981587.68983 2637 2531 1601021.740854 2638 2531 -13687577.31666 2639 2531 -110751.3386485 2640 2531 9702698.071164 2641 2531 -10555400.91611 2642 2531 -34117930.07082 2643 2531 3580188.408178 2644 2531 24242978.23277 2645 2531 -50390790.09008 2532 2532 386779413.9931 2533 2532 1.430511474609e-05 2534 2532 3518570.065155 2535 2532 42964164.89056 2536 2532 9555555.55398 2537 2532 -2418968.594168 2619 2532 -19278339.76952 2620 2532 11944444.44837 2621 2532 6685644.928532 2622 2532 -68569574.7737 2623 2532 9.983777999878e-07 2624 2532 46666190.80873 2625 2532 -28443492.38882 2626 2532 -11944444.44837 2627 2532 16581478.26512 2640 2532 8867303.577332 2641 2532 -2388888.889672 2642 2532 -1161200.482275 2643 2532 51507364.21225 2644 2532 2.384185791016e-06 2645 2532 -9262857.481274 2646 2532 -9987710.954453 2647 2532 2388888.889668 2648 2532 -3140367.149584 2533 2533 329442254.2248 2534 2533 -42221603.64364 2535 2533 -9555555.55399 2536 2533 -47813449.56276 2537 2533 20899690.71075 2619 2533 11944444.44837 2620 2533 -15694767.28047 2621 2533 -6579899.772699 2622 2533 -8.195638656616e-07 2623 2533 -16013622.55363 2624 2533 -5277700.460655 2625 2533 -11944444.44837 2626 2533 -24859919.89976 2627 2533 11857600.23336 2640 2533 2388888.889675 2641 2533 -13827100.04718 2642 2533 -13687577.31655 2643 2533 1.788139343262e-06 2644 2533 37173074.26313 2645 2533 -10555400.91611 2646 2533 -2388888.889678 2647 2533 -32682114.57897 2648 2533 24242978.23266 2534 2534 345528165.7722 2535 2534 5497698.071198 2536 2534 21321912.9329 2537 2534 19543529.57553 2619 2534 6685644.928532 2620 2534 -6579899.772699 2621 2534 -8541180.705052 2622 2534 46402301.92001 2623 2534 -5277700.460655 2624 2534 -49602960.36391 2625 2534 16581478.26512 2626 2534 11857600.23336 2627 2534 -32981587.68983 2640 2534 1601021.740854 2641 2534 -13687577.31666 2642 2534 -110751.3386485 2643 2534 9702698.071164 2644 2534 -10555400.91611 2645 2534 -34117930.07082 2646 2534 3580188.408178 2647 2534 24242978.23277 2648 2534 -50390790.09008 2535 2535 386779413.9931 2536 2535 1.430511474609e-05 2537 2535 3518570.065155 2538 2535 42964164.89056 2539 2535 9555555.55398 2540 2535 -2418968.594168 2622 2535 -19278339.76952 2623 2535 11944444.44837 2624 2535 6685644.928532 2625 2535 -68569574.7737 2626 2535 9.983777999878e-07 2627 2535 46666190.80873 2628 2535 -28443492.38882 2629 2535 -11944444.44837 2630 2535 16581478.26512 2643 2535 8867303.577332 2644 2535 -2388888.889672 2645 2535 -1161200.482275 2646 2535 51507364.21225 2647 2535 2.384185791016e-06 2648 2535 -9262857.481274 2649 2535 -9987710.954453 2650 2535 2388888.889668 2651 2535 -3140367.149584 2536 2536 329442254.2248 2537 2536 -42221603.64364 2538 2536 -9555555.55399 2539 2536 -47813449.56276 2540 2536 20899690.71075 2622 2536 11944444.44837 2623 2536 -15694767.28047 2624 2536 -6579899.772699 2625 2536 -8.195638656616e-07 2626 2536 -16013622.55363 2627 2536 -5277700.460655 2628 2536 -11944444.44837 2629 2536 -24859919.89976 2630 2536 11857600.23336 2643 2536 2388888.889675 2644 2536 -13827100.04718 2645 2536 -13687577.31655 2646 2536 1.788139343262e-06 2647 2536 37173074.26313 2648 2536 -10555400.91611 2649 2536 -2388888.889678 2650 2536 -32682114.57897 2651 2536 24242978.23266 2537 2537 345528165.7722 2538 2537 5497698.071198 2539 2537 21321912.9329 2540 2537 19543529.57553 2622 2537 6685644.928532 2623 2537 -6579899.772699 2624 2537 -8541180.705052 2625 2537 46402301.92001 2626 2537 -5277700.460655 2627 2537 -49602960.36391 2628 2537 16581478.26512 2629 2537 11857600.23336 2630 2537 -32981587.68983 2643 2537 1601021.740854 2644 2537 -13687577.31666 2645 2537 -110751.3386485 2646 2537 9702698.071164 2647 2537 -10555400.91611 2648 2537 -34117930.07082 2649 2537 3580188.408178 2650 2537 24242978.23277 2651 2537 -50390790.09008 2538 2538 386779413.9931 2539 2538 1.430511474609e-05 2540 2538 3518570.065155 2541 2538 42964164.89056 2542 2538 9555555.55398 2543 2538 -2418968.594168 2625 2538 -19278339.76952 2626 2538 11944444.44837 2627 2538 6685644.928532 2628 2538 -68569574.7737 2629 2538 9.983777999878e-07 2630 2538 46666190.80873 2631 2538 -28443492.38882 2632 2538 -11944444.44837 2633 2538 16581478.26512 2646 2538 8867303.577332 2647 2538 -2388888.889672 2648 2538 -1161200.482275 2649 2538 51507364.21225 2650 2538 2.384185791016e-06 2651 2538 -9262857.481274 2652 2538 -9987710.954453 2653 2538 2388888.889668 2654 2538 -3140367.149584 2539 2539 329442254.2248 2540 2539 -42221603.64364 2541 2539 -9555555.55399 2542 2539 -47813449.56276 2543 2539 20899690.71075 2625 2539 11944444.44837 2626 2539 -15694767.28047 2627 2539 -6579899.772699 2628 2539 -8.195638656616e-07 2629 2539 -16013622.55363 2630 2539 -5277700.460655 2631 2539 -11944444.44837 2632 2539 -24859919.89976 2633 2539 11857600.23336 2646 2539 2388888.889675 2647 2539 -13827100.04718 2648 2539 -13687577.31655 2649 2539 1.788139343262e-06 2650 2539 37173074.26313 2651 2539 -10555400.91611 2652 2539 -2388888.889678 2653 2539 -32682114.57897 2654 2539 24242978.23266 2540 2540 345528165.7722 2541 2540 5497698.071198 2542 2540 21321912.9329 2543 2540 19543529.57553 2625 2540 6685644.928532 2626 2540 -6579899.772699 2627 2540 -8541180.705052 2628 2540 46402301.92001 2629 2540 -5277700.460655 2630 2540 -49602960.36391 2631 2540 16581478.26512 2632 2540 11857600.23336 2633 2540 -32981587.68983 2646 2540 1601021.740854 2647 2540 -13687577.31666 2648 2540 -110751.3386485 2649 2540 9702698.071164 2650 2540 -10555400.91611 2651 2540 -34117930.07082 2652 2540 3580188.408178 2653 2540 24242978.23277 2654 2540 -50390790.09008 2541 2541 379349533.0635 2542 2541 3231845.600422 2543 2541 17552178.32146 2544 2541 -3096942.010396 2545 2541 -25315645.61399 2546 2541 1661279.921644 2628 2541 -19278339.76952 2629 2541 11944444.44837 2630 2541 6685644.928532 2631 2541 -53038741.18321 2632 2541 6794385.61934 2633 2541 38726503.31135 2634 2541 -25901455.77751 2635 2541 -11253340.76984 2636 2541 13172362.45156 2649 2541 8867303.577332 2650 2541 -2388888.889672 2651 2541 -1161200.482275 2652 2541 47236392.63317 2653 2541 691259.3258688 2654 2541 -5677978.041664 2655 2541 -16560224.88716 2656 2541 -5787859.734054 2657 2541 6205223.388404 2542 2542 347028277.7135 2543 2542 -27578620.27532 2544 2542 -44426756.72196 2545 2542 -90902997.98104 2546 2542 4712791.457968 2628 2542 11944444.44837 2629 2542 -15694767.28047 2630 2542 -6579899.772699 2631 2542 6794385.619339 2632 2542 -12456863.79788 2633 2542 -9518488.031308 2634 2542 -11253340.76984 2635 2542 -16564448.113 2636 2542 10010952.98333 2649 2542 2388888.889675 2650 2542 -13827100.04718 2651 2542 -13687577.31655 2652 2542 691259.3258679 2653 2542 38658164.66062 2654 2542 -6807774.623089 2655 2542 -10565637.5134 2656 2542 -38790050.82896 2657 2542 27849453.42698 2543 2543 342455969.0481 2544 2543 3244613.254716 2545 2543 4712791.457968 2546 2543 13685204.04501 2628 2543 6685644.928532 2629 2543 -6579899.772699 2630 2543 -8541180.705052 2631 2543 40045947.75819 2632 2543 -9307376.918764 2633 2543 -43914271.4629 2634 2543 13172362.45156 2635 2543 10010952.98333 2636 2543 -21878387.08629 2649 2543 1601021.740854 2650 2543 -13687577.31666 2651 2543 -110751.3386485 2652 2543 13814799.73291 2653 2543 -6385552.400936 2654 2543 -41178317.44134 2655 2543 11606056.72181 2656 2543 27849453.42572 2657 2543 -40843933.05076 2544 2544 391504755.4749 2545 2544 44478671.07544 2546 2544 -2154209.15787 2547 2544 -96038662.69461 2548 2544 -56611999.61159 2549 2544 763746.3094749 2550 2544 9012742.663298 2551 2544 -10505118.31547 2552 2544 150847.8398809 2631 2544 -16732168.82767 2632 2544 7032054.646846 2633 2544 3593064.396935 2634 2544 -47208013.93552 2635 2544 9814966.02126 2636 2544 48565173.11467 2652 2544 -11955208.81899 2653 2544 -10565637.5134 2654 2544 -10039221.05324 2655 2544 17195056.37436 2656 2544 10108198.77753 2657 2544 -10287674.1737 2658 2544 -37340960.76096 2659 2544 -14042176.00348 2660 2544 20501045.02935 2661 2544 -21282931.01638 2662 2544 -2347405.92875 2663 2544 5951501.575213 2545 2545 475970703.4827 2546 2545 -9366290.969137 2547 2545 -56611999.61159 2548 2545 -71667219.81619 2549 2545 512395.3812617 2550 2545 -29616229.42344 2551 2545 -83616507.34594 2552 2545 1621981.447331 2631 2545 7032054.646846 2632 2545 -39361053.63912 2633 2545 -15153539.02783 2634 2545 9814966.02126 2635 2545 -4478243.957304 2636 2545 -7602611.317661 2652 2545 -5787859.734057 2653 2545 -34185034.7608 2654 2545 -25504713.23087 2655 2545 10108198.77753 2656 2545 36471076.67132 2657 2545 -2263035.801925 2658 2545 -14042176.00348 2659 2545 -31365153.36861 2660 2545 16792659.13732 2661 2545 -7125183.708097 2662 2545 -44405817.93066 2663 2545 33731240.24096 2546 2546 459767793.0897 2547 2546 763746.3094749 2548 2546 512395.3812617 2549 2546 -7898402.048094 2550 2546 678625.6175699 2551 2546 1621981.447331 2552 2546 45065635.89419 2631 2546 3593064.396935 2632 2546 -15153539.02783 2633 2546 -21466336.87887 2634 2546 48565173.11493 2635 2546 -7602611.316297 2636 2546 -72128252.56145 2652 2546 -5430054.386635 2653 2546 -25504713.23224 2654 2546 -28563890.20229 2655 2546 9316214.711972 2656 2546 -2263035.801925 2657 2546 -99246219.9555 2658 2546 20501045.02935 2659 2546 16792659.13732 2660 2546 -38451308.0134 2661 2546 10880390.46729 2662 2546 33731240.24096 2663 2546 -53008597.68228 2547 2547 249047517.3782 2548 2547 63053991.24971 2549 2547 -441174.4345524 2550 2547 -36755135.70683 2551 2547 -721333.7123261 2552 2547 -323931.4948134 2634 2547 -15281067.83574 2635 2547 -1265742.508225 2636 2547 -4258988.152521 2655 2547 -36788635.1794 2656 2547 -14042176.00348 2657 2547 -20123954.98399 2658 2547 1083005.849087 2659 2547 15599075.84627 2660 2547 8016395.560427 2661 2547 -36564465.6199 2662 2547 -291157.3345608 2663 2547 -32383452.42392 2548 2548 224984162.4938 2549 2548 -427600.076701 2550 2548 18389777.39565 2551 2548 55331754.72896 2552 2548 -512395.3812575 2634 2548 -6043520.287573 2635 2548 -38409650.44919 2636 2548 -33227270.38047 2655 2548 -14042176.00348 2656 2548 -30812827.78704 2657 2548 -16540674.20696 2658 2548 15599075.84627 2659 2548 -4902994.880355 2660 2548 6560603.718184 2661 2548 4486620.444786 2662 2548 -13425689.66935 2663 2548 3207340.869242 2549 2549 301195685.9049 2550 2549 -323931.4948108 2551 2549 -512395.3812577 2552 2549 80795495.12971 2634 2549 -12383988.15349 2635 2549 -33227270.38047 2636 2549 -57230946.62681 2655 2549 -20123954.98399 2656 2549 -16540674.20696 2657 2549 -36978439.79588 2658 2549 -8233604.436904 2659 2549 -6772729.612959 2660 2549 -87384024.26155 2661 2549 -32383452.42562 2662 2549 -3459325.799613 2663 2549 -51876356.74494 2550 2550 190566606.1483 2551 2550 -27717103.90048 2552 2550 -854551.5440485 2634 2550 -17707783.32128 2635 2550 9846712.893254 2636 2550 11851045.02652 2655 2550 -19625954.27276 2656 2550 -7125183.708099 2657 2550 -10556831.75541 2658 2550 -36564465.6199 2659 2550 4486620.444789 2660 2550 32226269.78763 2661 2550 830761.3487039 2662 2550 -7208149.629944 2663 2550 -5002705.280788 2551 2551 216330856.1685 2552 2551 -1621981.44732 2634 2551 9846712.893254 2635 2551 -23657508.34025 2636 2551 -16540674.20696 2655 2551 -2347405.928752 2656 2551 -42748841.18704 2657 2551 -32935426.41476 2658 2551 -291157.3345582 2659 2551 -13425689.66935 2660 2551 3207340.869243 2661 2551 -7208149.629943 2662 2551 6764597.331406 2663 2551 6268759.752466 2552 2552 241974294.3103 2634 2552 11851045.02652 2635 2552 -16540674.20696 2636 2552 -29823120.34908 2655 2552 -5891831.75217 2656 2552 -32935426.41476 2657 2552 -48589993.03259 2658 2552 32226269.78606 2659 2552 -3459325.799613 2660 2552 -51876356.74494 2661 2552 4591183.606526 2662 2552 -7064573.578677 2663 2552 -64557041.51398 2553 2553 498845612.8338 2554 2553 47777777.76994 2555 2553 25526818.17494 2556 2553 -270769575.0497 2557 2553 -47795571.28618 2558 2553 -21297878.33857 2559 2553 4724775.55691 2560 2553 38240015.7322 2561 2553 -15313498.75867 2664 2553 57272319.20769 2665 2553 11944444.44837 2666 2553 16262217.83282 2667 2553 -96920154.16551 2668 2553 -11948441.41665 2669 2553 -57894966.96635 2670 2553 -19430363.65776 2671 2553 9559552.526969 2672 2553 -14502802.0572 2554 2554 427154390.1247 2555 2554 -48570698.50186 2556 2554 -47804468.04431 2557 2554 -46156001.60459 2558 2554 -29458011.57407 2559 2554 57360023.5983 2560 2554 4724775.556911 2561 2554 19641491.59463 2664 2554 11944444.44837 2665 2554 39350079.73598 2666 2554 -4237631.002181 2667 2554 -11950439.90079 2668 2554 -40768202.4791 2669 2554 -17881456.80322 2670 2554 14339328.79045 2671 2554 -19430363.65775 2672 2554 17403019.36621 2555 2555 472661441.9387 2556 2555 -19183408.42037 2557 2555 -23333069.93135 2558 2555 -17381025.25039 2559 2555 -22970248.13801 2560 2555 13094327.72975 2561 2555 12599401.48509 2664 2555 -4818855.100867 2665 2555 -21102266.9381 2666 2555 -61666013.98076 2667 2555 -57630268.59944 2668 2555 -16401283.68257 2669 2555 -82291258.12151 2670 2555 -21754203.08579 2671 2555 11602012.9108 2672 2555 -51814303.08735 2556 2556 852898004.744 2557 2556 47822261.56058 2558 2556 23750813.775 2559 2556 10663984.89933 2560 2556 -47795571.28619 2561 2556 20811196.16841 2562 2556 -185415908.7468 2563 2556 4.678964614868e-06 2564 2556 -4574122.969536 2565 2556 -73761541.41083 2566 2556 47777777.76992 2567 2556 -20803252.962 2664 2556 -85740387.93072 2665 2556 -11950439.90077 2666 2556 47775096.06898 2667 2556 112006329.4708 2668 2556 11954436.86906 2669 2556 5935349.843305 2670 2556 -36979414.9719 2671 2556 -11948441.41664 2672 2556 18346879.03149 2673 2556 -74762019.75572 2674 2556 2.533197402954e-07 2675 2556 -53703252.3277 2676 2556 -30778677.45218 2677 2556 11944444.44836 2678 2556 -18340743.64572 2557 2557 723869819.0551 2558 2557 -65442952.40696 2559 2557 -47804468.04432 2560 2557 -156592606.5887 2561 2557 35894402.90473 2562 2557 5.662441253662e-06 2563 2557 24807818.43265 2564 2557 -21110817.73799 2565 2557 47777777.76992 2566 2557 -59427300.65882 2567 2557 11716519.98007 2664 2557 -11948441.41664 2665 2557 -29588436.2443 2666 2557 4682155.144749 2667 2557 11954436.86906 2668 2557 79749895.91067 2669 2557 -16362631.77783 2670 2557 -11950439.90078 2671 2557 -78792675.71048 2672 2557 51029508.03613 2673 2557 -8.195638656616e-07 2674 2557 -22206107.28377 2675 2557 -5277708.20877 2676 2557 11944444.44836 2677 2557 -27195128.92833 2678 2557 13440937.44126 2558 2558 730917912.008 2559 2558 20551278.88239 2560 2558 40119834.77044 2561 2558 9888833.293587 2562 2558 -2463011.858771 2563 2558 -21110817.73799 2564 2558 38554054.16679 2565 2558 -20539364.07277 2566 2558 11505408.86868 2567 2558 -25226633.25495 2664 2558 47510397.70207 2665 2558 3205506.989851 2666 2558 -52478548.16204 2667 2558 5939756.113784 2668 2558 -16359106.80793 2669 2558 -87179377.66603 2670 2558 18349946.72438 2671 2558 52296851.6274 2672 2558 -103249742.1615 2673 2558 -53439363.43899 2674 2558 -5277708.20877 2675 2558 -66116380.01208 2676 2558 -18340743.64572 2677 2558 13440937.44126 2678 2558 -39208792.08802 2559 2559 498845612.8338 2560 2559 47777777.76994 2561 2559 25526818.17494 2562 2559 -72712122.80639 2563 2559 -47777777.76993 2564 2559 18780080.36483 2565 2559 -270769575.0497 2566 2559 -47795571.28618 2567 2559 -21297878.33857 2568 2559 4724775.55691 2569 2559 38240015.7322 2570 2559 -15313498.75867 2664 2559 1532382.642161 2665 2559 14339328.79045 2666 2559 9874015.186731 2667 2559 -4845636.536104 2668 2559 -11950439.90078 2669 2559 -8009104.879749 2670 2559 57272319.20769 2671 2559 11944444.44837 2672 2559 16262217.83282 2673 2559 -20039396.92541 2674 2559 -11944444.44837 2675 2559 -8444910.309145 2676 2559 -96920154.16551 2677 2559 -11948441.41665 2678 2559 -57894966.96635 2679 2559 -19430363.65776 2680 2559 9559552.526969 2681 2559 -14502802.0572 2560 2560 427154390.1247 2561 2560 -48570698.50186 2562 2560 -47777777.76993 2563 2560 -58377882.05435 2564 2560 9394297.757917 2565 2560 -47804468.04431 2566 2560 -46156001.60459 2567 2560 -29458011.57407 2568 2560 57360023.5983 2569 2560 4724775.556911 2570 2560 19641491.59463 2664 2560 9559552.526969 2665 2560 1532382.642157 2666 2560 -5266148.137347 2667 2560 -11948441.41664 2668 2560 -46658897.27468 2669 2560 -32026328.33686 2670 2560 11944444.44837 2671 2560 39350079.73598 2672 2560 -4237631.002181 2673 2560 -11944444.44837 2674 2560 -16455848.40155 2675 2560 -8163229.232496 2676 2560 -11950439.90079 2677 2560 -40768202.4791 2678 2560 -17881456.80322 2679 2560 14339328.79045 2680 2560 -19430363.65775 2681 2560 17403019.36621 2561 2561 472661441.9387 2562 2561 19043969.25406 2563 2561 9605408.869306 2564 2561 -22428183.64302 2565 2561 -19183408.42037 2566 2561 -23333069.93135 2567 2561 -17381025.25039 2568 2561 -22970248.13801 2569 2561 13094327.72975 2570 2561 12599401.48509 2664 2561 6582676.791154 2665 2561 -7899222.206021 2666 2561 4086353.712421 2667 2561 -8007766.485252 2668 2561 -33293672.07046 2669 2561 -17559666.33271 2670 2561 -4818855.100867 2671 2561 -21102266.9381 2672 2561 -61666013.98076 2673 2561 -8444910.309145 2674 2561 -8163229.232496 2675 2561 -10570710.68328 2676 2561 -57630268.59944 2677 2561 -16401283.68257 2678 2561 -82291258.12151 2679 2561 -21754203.08579 2680 2561 11602012.9108 2681 2561 -51814303.08735 2562 2562 787899476.9604 2563 2562 2.861022949219e-05 2564 2562 7037134.828232 2565 2562 89408469.17376 2566 2562 -1.275539398193e-05 2567 2562 1759283.707933 2571 2562 -185415908.7468 2572 2562 4.678964614868e-06 2573 2562 -4574122.969536 2574 2562 -73761541.41083 2575 2562 47777777.76992 2576 2562 -20803252.962 2667 2562 -71968136.03531 2668 2562 4.157423973083e-06 2669 2562 51943969.87703 2670 2562 -29817851.87049 2671 2562 -11944444.44837 2672 2562 17900923.03284 2673 2562 88895212.80375 2674 2562 4.112720489502e-06 2675 2562 1759282.450699 2676 2562 -25612922.63328 2677 2562 -1.080334186554e-05 2678 2562 439820.6129002 2682 2562 -74762019.75572 2683 2562 2.533197402954e-07 2684 2562 -53703252.3277 2685 2562 -30778677.45218 2686 2562 11944444.44836 2687 2562 -18340743.64572 2563 2563 673225551.0007 2564 2563 -84443270.91034 2565 2563 -1.353025436401e-05 2566 2563 -92146776.52992 2567 2563 43066079.89948 2571 2563 5.662441253662e-06 2572 2563 24807818.43265 2573 2563 -21110817.73799 2574 2563 47777777.76992 2575 2563 -59427300.65882 2576 2563 11716519.98007 2667 2563 3.337860107422e-06 2668 2563 -19412223.56332 2669 2563 -5277708.208769 2670 2563 -11944444.44837 2671 2563 -26234303.34662 2672 2563 12913159.66331 2673 2563 4.351139068604e-06 2674 2563 60226824.62697 2675 2563 -21110832.82468 2676 2563 -9.95397567749e-06 2677 2563 -71001738.06458 2678 2563 52813749.73867 2682 2563 -8.195638656616e-07 2683 2563 -22206107.28377 2684 2563 -5277708.20877 2685 2563 11944444.44836 2686 2563 -27195128.92833 2687 2563 13440937.44126 2564 2564 729298788.5117 2565 2564 1759283.707934 2566 2564 41377191.01087 2567 2564 48367727.64837 2571 2564 -2463011.858771 2572 2564 -21110817.73799 2573 2564 38554054.16679 2574 2564 -20539364.07277 2575 2564 11505408.86868 2576 2564 -25226633.25495 2667 2564 51680080.98832 2668 2564 -5277708.208769 2669 2564 -58666023.42418 2670 2564 17900923.03284 2671 2564 12913159.66331 2672 2564 -36646590.5368 2673 2564 1759282.450699 2674 2564 -21110832.82468 2675 2564 -105887547.9636 2676 2564 439820.6129005 2677 2564 52602638.6277 2678 2564 -115814770.8741 2682 2564 -53439363.43899 2683 2564 -5277708.20877 2684 2564 -66116380.01208 2685 2564 -18340743.64572 2686 2564 13440937.44126 2687 2564 -39208792.08802 2565 2565 852898004.744 2566 2565 47822261.56058 2567 2565 23750813.775 2568 2565 10663984.89933 2569 2565 -47795571.28619 2570 2565 20811196.16841 2571 2565 -72712122.80639 2572 2565 -47777777.76993 2573 2565 18780080.36483 2574 2565 -185415908.7468 2575 2565 4.678964614868e-06 2576 2565 -4574122.969536 2577 2565 -73761541.41083 2578 2565 47777777.76992 2579 2565 -20803252.962 2667 2565 -19603280.6462 2668 2565 11944444.44837 2669 2565 8005089.696258 2670 2565 -85740387.93072 2671 2565 -11950439.90077 2672 2565 47775096.06898 2673 2565 16294780.8482 2674 2565 4.217028617859e-06 2675 2565 439820.6128852 2676 2565 112006329.4708 2677 2565 11954436.86906 2678 2565 5935349.843305 2679 2565 -36979414.9719 2680 2565 -11948441.41664 2681 2565 18346879.03149 2682 2565 -20039396.92541 2683 2565 -11944444.44837 2684 2565 -8444910.309145 2685 2565 -74762019.75572 2686 2565 2.533197402954e-07 2687 2565 -53703252.3277 2688 2565 -30778677.45218 2689 2565 11944444.44836 2690 2565 -18340743.64572 2566 2566 723869819.0551 2567 2566 -65442952.40696 2568 2566 -47804468.04432 2569 2566 -156592606.5887 2570 2566 35894402.90473 2571 2566 -47777777.76993 2572 2566 -58377882.05435 2573 2566 9394297.757917 2574 2566 5.662441253662e-06 2575 2566 24807818.43265 2576 2566 -21110817.73799 2577 2566 47777777.76992 2578 2566 -59427300.65882 2579 2566 11716519.98007 2667 2566 11944444.44837 2668 2566 -16019732.12234 2669 2566 -7635451.454545 2670 2566 -11948441.41664 2671 2566 -29588436.2443 2672 2566 4682155.144749 2673 2566 5.125999450684e-06 2674 2566 -29094034.58311 2675 2566 -31702916.914 2676 2566 11954436.86906 2677 2566 79749895.91067 2678 2566 -16362631.77783 2679 2566 -11950439.90078 2680 2566 -78792675.71048 2681 2566 51029508.03613 2682 2566 -11944444.44837 2683 2566 -16455848.40155 2684 2566 -8163229.232496 2685 2566 -8.195638656616e-07 2686 2566 -22206107.28377 2687 2566 -5277708.20877 2688 2566 11944444.44836 2689 2566 -27195128.92833 2690 2566 13440937.44126 2567 2567 730917912.008 2568 2567 20551278.88239 2569 2567 40119834.77044 2570 2567 9888833.293587 2571 2567 19043969.25406 2572 2567 9605408.869306 2573 2567 -22428183.64302 2574 2567 -2463011.858771 2575 2567 -21110817.73799 2576 2567 38554054.16679 2577 2567 -20539364.07277 2578 2567 11505408.86868 2579 2567 -25226633.25495 2667 2567 8005089.696258 2668 2567 -7635451.454545 2669 2567 -9407733.938713 2670 2567 47510397.70207 2671 2567 3205506.989851 2672 2567 -52478548.16204 2673 2567 439820.6128855 2674 2567 -31491805.80303 2675 2567 -4060894.923526 2676 2567 5939756.113784 2677 2567 -16359106.80793 2678 2567 -87179377.66603 2679 2567 18349946.72438 2680 2567 52296851.6274 2681 2567 -103249742.1615 2682 2567 -8444910.309145 2683 2567 -8163229.232496 2684 2567 -10570710.68328 2685 2567 -53439363.43899 2686 2567 -5277708.20877 2687 2567 -66116380.01208 2688 2567 -18340743.64572 2689 2567 13440937.44126 2690 2567 -39208792.08802 2568 2568 498845612.8338 2569 2568 47777777.76994 2570 2568 25526818.17494 2574 2568 -72712122.80639 2575 2568 -47777777.76993 2576 2568 18780080.36483 2577 2568 -270769575.0497 2578 2568 -47795571.28618 2579 2568 -21297878.33857 2580 2568 4724775.55691 2581 2568 38240015.7322 2582 2568 -15313498.75867 2670 2568 1532382.642161 2671 2568 14339328.79045 2672 2568 9874015.186731 2676 2568 -4845636.536104 2677 2568 -11950439.90078 2678 2568 -8009104.879749 2679 2568 57272319.20769 2680 2568 11944444.44837 2681 2568 16262217.83282 2685 2568 -20039396.92541 2686 2568 -11944444.44837 2687 2568 -8444910.309145 2688 2568 -96920154.16551 2689 2568 -11948441.41665 2690 2568 -57894966.96635 2691 2568 -19430363.65776 2692 2568 9559552.526969 2693 2568 -14502802.0572 2569 2569 427154390.1247 2570 2569 -48570698.50186 2574 2569 -47777777.76993 2575 2569 -58377882.05435 2576 2569 9394297.757917 2577 2569 -47804468.04431 2578 2569 -46156001.60459 2579 2569 -29458011.57407 2580 2569 57360023.5983 2581 2569 4724775.556911 2582 2569 19641491.59463 2670 2569 9559552.526969 2671 2569 1532382.642157 2672 2569 -5266148.137347 2676 2569 -11948441.41664 2677 2569 -46658897.27468 2678 2569 -32026328.33686 2679 2569 11944444.44837 2680 2569 39350079.73598 2681 2569 -4237631.002181 2685 2569 -11944444.44837 2686 2569 -16455848.40155 2687 2569 -8163229.232496 2688 2569 -11950439.90079 2689 2569 -40768202.4791 2690 2569 -17881456.80322 2691 2569 14339328.79045 2692 2569 -19430363.65775 2693 2569 17403019.36621 2570 2570 472661441.9387 2574 2570 19043969.25406 2575 2570 9605408.869306 2576 2570 -22428183.64302 2577 2570 -19183408.42037 2578 2570 -23333069.93135 2579 2570 -17381025.25039 2580 2570 -22970248.13801 2581 2570 13094327.72975 2582 2570 12599401.48509 2670 2570 6582676.791154 2671 2570 -7899222.206021 2672 2570 4086353.712421 2676 2570 -8007766.485252 2677 2570 -33293672.07046 2678 2570 -17559666.33271 2679 2570 -4818855.100867 2680 2570 -21102266.9381 2681 2570 -61666013.98076 2685 2570 -8444910.309145 2686 2570 -8163229.232496 2687 2570 -10570710.68328 2688 2570 -57630268.59944 2689 2570 -16401283.68257 2690 2570 -82291258.12151 2691 2570 -21754203.08579 2692 2570 11602012.9108 2693 2570 -51814303.08735 2571 2571 787899476.9604 2572 2571 2.861022949219e-05 2573 2571 7037134.828232 2574 2571 89408469.17376 2575 2571 -1.275539398193e-05 2576 2571 1759283.707933 2583 2571 -185415908.7468 2584 2571 4.678964614868e-06 2585 2571 -4574122.969536 2586 2571 -73761541.41083 2587 2571 47777777.76992 2588 2571 -20803252.962 2673 2571 -71968136.03531 2674 2571 4.157423973083e-06 2675 2571 51943969.87703 2676 2571 -29817851.87049 2677 2571 -11944444.44837 2678 2571 17900923.03284 2682 2571 88895212.80375 2683 2571 4.112720489502e-06 2684 2571 1759282.450699 2685 2571 -25612922.63328 2686 2571 -1.080334186554e-05 2687 2571 439820.6129002 2694 2571 -74762019.75572 2695 2571 2.533197402954e-07 2696 2571 -53703252.3277 2697 2571 -30778677.45218 2698 2571 11944444.44836 2699 2571 -18340743.64572 2572 2572 673225551.0007 2573 2572 -84443270.91034 2574 2572 -1.353025436401e-05 2575 2572 -92146776.52992 2576 2572 43066079.89948 2583 2572 5.662441253662e-06 2584 2572 24807818.43265 2585 2572 -21110817.73799 2586 2572 47777777.76992 2587 2572 -59427300.65882 2588 2572 11716519.98007 2673 2572 3.337860107422e-06 2674 2572 -19412223.56332 2675 2572 -5277708.208769 2676 2572 -11944444.44837 2677 2572 -26234303.34662 2678 2572 12913159.66331 2682 2572 4.351139068604e-06 2683 2572 60226824.62697 2684 2572 -21110832.82468 2685 2572 -9.95397567749e-06 2686 2572 -71001738.06458 2687 2572 52813749.73867 2694 2572 -8.195638656616e-07 2695 2572 -22206107.28377 2696 2572 -5277708.20877 2697 2572 11944444.44836 2698 2572 -27195128.92833 2699 2572 13440937.44126 2573 2573 729298788.5117 2574 2573 1759283.707934 2575 2573 41377191.01087 2576 2573 48367727.64837 2583 2573 -2463011.858771 2584 2573 -21110817.73799 2585 2573 38554054.16679 2586 2573 -20539364.07277 2587 2573 11505408.86868 2588 2573 -25226633.25495 2673 2573 51680080.98832 2674 2573 -5277708.208769 2675 2573 -58666023.42418 2676 2573 17900923.03284 2677 2573 12913159.66331 2678 2573 -36646590.5368 2682 2573 1759282.450699 2683 2573 -21110832.82468 2684 2573 -105887547.9636 2685 2573 439820.6129005 2686 2573 52602638.6277 2687 2573 -115814770.8741 2694 2573 -53439363.43899 2695 2573 -5277708.20877 2696 2573 -66116380.01208 2697 2573 -18340743.64572 2698 2573 13440937.44126 2699 2573 -39208792.08802 2574 2574 787899476.9604 2575 2574 2.861022949219e-05 2576 2574 7037134.828232 2577 2574 89408469.17376 2578 2574 -1.275539398193e-05 2579 2574 1759283.707933 2583 2574 -72712122.80639 2584 2574 -47777777.76993 2585 2574 18780080.36483 2586 2574 -185415908.7468 2587 2574 4.678964614868e-06 2588 2574 -4574122.969536 2589 2574 -73761541.41083 2590 2574 47777777.76992 2591 2574 -20803252.962 2673 2574 -19603280.6462 2674 2574 11944444.44837 2675 2574 8005089.696258 2676 2574 -71968136.03531 2677 2574 4.157423973083e-06 2678 2574 51943969.87703 2679 2574 -29817851.87049 2680 2574 -11944444.44837 2681 2574 17900923.03284 2682 2574 16294780.8482 2683 2574 4.217028617859e-06 2684 2574 439820.6128852 2685 2574 88895212.80375 2686 2574 4.112720489502e-06 2687 2574 1759282.450699 2688 2574 -25612922.63328 2689 2574 -1.080334186554e-05 2690 2574 439820.6129002 2694 2574 -20039396.92541 2695 2574 -11944444.44837 2696 2574 -8444910.309145 2697 2574 -74762019.75572 2698 2574 2.533197402954e-07 2699 2574 -53703252.3277 2700 2574 -30778677.45218 2701 2574 11944444.44836 2702 2574 -18340743.64572 2575 2575 673225551.0007 2576 2575 -84443270.91034 2577 2575 -1.353025436401e-05 2578 2575 -92146776.52992 2579 2575 43066079.89948 2583 2575 -47777777.76993 2584 2575 -58377882.05435 2585 2575 9394297.757917 2586 2575 5.662441253662e-06 2587 2575 24807818.43265 2588 2575 -21110817.73799 2589 2575 47777777.76992 2590 2575 -59427300.65882 2591 2575 11716519.98007 2673 2575 11944444.44837 2674 2575 -16019732.12234 2675 2575 -7635451.454545 2676 2575 3.337860107422e-06 2677 2575 -19412223.56332 2678 2575 -5277708.208769 2679 2575 -11944444.44837 2680 2575 -26234303.34662 2681 2575 12913159.66331 2682 2575 5.125999450684e-06 2683 2575 -29094034.58311 2684 2575 -31702916.914 2685 2575 4.351139068604e-06 2686 2575 60226824.62697 2687 2575 -21110832.82468 2688 2575 -9.95397567749e-06 2689 2575 -71001738.06458 2690 2575 52813749.73867 2694 2575 -11944444.44837 2695 2575 -16455848.40155 2696 2575 -8163229.232496 2697 2575 -8.195638656616e-07 2698 2575 -22206107.28377 2699 2575 -5277708.20877 2700 2575 11944444.44836 2701 2575 -27195128.92833 2702 2575 13440937.44126 2576 2576 729298788.5117 2577 2576 1759283.707934 2578 2576 41377191.01087 2579 2576 48367727.64837 2583 2576 19043969.25406 2584 2576 9605408.869306 2585 2576 -22428183.64302 2586 2576 -2463011.858771 2587 2576 -21110817.73799 2588 2576 38554054.16679 2589 2576 -20539364.07277 2590 2576 11505408.86868 2591 2576 -25226633.25495 2673 2576 8005089.696258 2674 2576 -7635451.454545 2675 2576 -9407733.938713 2676 2576 51680080.98832 2677 2576 -5277708.208769 2678 2576 -58666023.42418 2679 2576 17900923.03284 2680 2576 12913159.66331 2681 2576 -36646590.5368 2682 2576 439820.6128855 2683 2576 -31491805.80303 2684 2576 -4060894.923526 2685 2576 1759282.450699 2686 2576 -21110832.82468 2687 2576 -105887547.9636 2688 2576 439820.6129005 2689 2576 52602638.6277 2690 2576 -115814770.8741 2694 2576 -8444910.309145 2695 2576 -8163229.232496 2696 2576 -10570710.68328 2697 2576 -53439363.43899 2698 2576 -5277708.20877 2699 2576 -66116380.01208 2700 2576 -18340743.64572 2701 2576 13440937.44126 2702 2576 -39208792.08802 2577 2577 852898004.744 2578 2577 47822261.56058 2579 2577 23750813.775 2580 2577 10663984.89933 2581 2577 -47795571.28619 2582 2577 20811196.16841 2586 2577 -72712122.80639 2587 2577 -47777777.76993 2588 2577 18780080.36483 2589 2577 -185415908.7468 2590 2577 4.678964614868e-06 2591 2577 -4574122.969536 2592 2577 -73761541.41083 2593 2577 47777777.76992 2594 2577 -20803252.962 2676 2577 -19603280.6462 2677 2577 11944444.44837 2678 2577 8005089.696258 2679 2577 -85740387.93072 2680 2577 -11950439.90077 2681 2577 47775096.06898 2685 2577 16294780.8482 2686 2577 4.217028617859e-06 2687 2577 439820.6128852 2688 2577 112006329.4708 2689 2577 11954436.86906 2690 2577 5935349.843305 2691 2577 -36979414.9719 2692 2577 -11948441.41664 2693 2577 18346879.03149 2697 2577 -20039396.92541 2698 2577 -11944444.44837 2699 2577 -8444910.309145 2700 2577 -74762019.75572 2701 2577 2.533197402954e-07 2702 2577 -53703252.3277 2703 2577 -30778677.45218 2704 2577 11944444.44836 2705 2577 -18340743.64572 2578 2578 723869819.0551 2579 2578 -65442952.40696 2580 2578 -47804468.04432 2581 2578 -156592606.5887 2582 2578 35894402.90473 2586 2578 -47777777.76993 2587 2578 -58377882.05435 2588 2578 9394297.757917 2589 2578 5.662441253662e-06 2590 2578 24807818.43265 2591 2578 -21110817.73799 2592 2578 47777777.76992 2593 2578 -59427300.65882 2594 2578 11716519.98007 2676 2578 11944444.44837 2677 2578 -16019732.12234 2678 2578 -7635451.454545 2679 2578 -11948441.41664 2680 2578 -29588436.2443 2681 2578 4682155.144749 2685 2578 5.125999450684e-06 2686 2578 -29094034.58311 2687 2578 -31702916.914 2688 2578 11954436.86906 2689 2578 79749895.91067 2690 2578 -16362631.77783 2691 2578 -11950439.90078 2692 2578 -78792675.71048 2693 2578 51029508.03613 2697 2578 -11944444.44837 2698 2578 -16455848.40155 2699 2578 -8163229.232496 2700 2578 -8.195638656616e-07 2701 2578 -22206107.28377 2702 2578 -5277708.20877 2703 2578 11944444.44836 2704 2578 -27195128.92833 2705 2578 13440937.44126 2579 2579 730917912.008 2580 2579 20551278.88239 2581 2579 40119834.77044 2582 2579 9888833.293587 2586 2579 19043969.25406 2587 2579 9605408.869306 2588 2579 -22428183.64302 2589 2579 -2463011.858771 2590 2579 -21110817.73799 2591 2579 38554054.16679 2592 2579 -20539364.07277 2593 2579 11505408.86868 2594 2579 -25226633.25495 2676 2579 8005089.696258 2677 2579 -7635451.454545 2678 2579 -9407733.938713 2679 2579 47510397.70207 2680 2579 3205506.989851 2681 2579 -52478548.16204 2685 2579 439820.6128855 2686 2579 -31491805.80303 2687 2579 -4060894.923526 2688 2579 5939756.113784 2689 2579 -16359106.80793 2690 2579 -87179377.66603 2691 2579 18349946.72438 2692 2579 52296851.6274 2693 2579 -103249742.1615 2697 2579 -8444910.309145 2698 2579 -8163229.232496 2699 2579 -10570710.68328 2700 2579 -53439363.43899 2701 2579 -5277708.20877 2702 2579 -66116380.01208 2703 2579 -18340743.64572 2704 2579 13440937.44126 2705 2579 -39208792.08802 2580 2580 498845612.8338 2581 2580 47777777.76994 2582 2580 25526818.17494 2589 2580 -72712122.80639 2590 2580 -47777777.76993 2591 2580 18780080.36483 2592 2580 -270769575.0497 2593 2580 -47795571.28618 2594 2580 -21297878.33857 2595 2580 4724775.55691 2596 2580 38240015.7322 2597 2580 -15313498.75867 2679 2580 1532382.642161 2680 2580 14339328.79045 2681 2580 9874015.186731 2688 2580 -4845636.536104 2689 2580 -11950439.90078 2690 2580 -8009104.879749 2691 2580 57272319.20769 2692 2580 11944444.44837 2693 2580 16262217.83282 2700 2580 -20039396.92541 2701 2580 -11944444.44837 2702 2580 -8444910.309145 2703 2580 -96920154.16551 2704 2580 -11948441.41665 2705 2580 -57894966.96635 2706 2580 -19430363.65776 2707 2580 9559552.526969 2708 2580 -14502802.0572 2581 2581 427154390.1247 2582 2581 -48570698.50186 2589 2581 -47777777.76993 2590 2581 -58377882.05435 2591 2581 9394297.757917 2592 2581 -47804468.04431 2593 2581 -46156001.60459 2594 2581 -29458011.57407 2595 2581 57360023.5983 2596 2581 4724775.556911 2597 2581 19641491.59463 2679 2581 9559552.526969 2680 2581 1532382.642157 2681 2581 -5266148.137347 2688 2581 -11948441.41664 2689 2581 -46658897.27468 2690 2581 -32026328.33686 2691 2581 11944444.44837 2692 2581 39350079.73598 2693 2581 -4237631.002181 2700 2581 -11944444.44837 2701 2581 -16455848.40155 2702 2581 -8163229.232496 2703 2581 -11950439.90079 2704 2581 -40768202.4791 2705 2581 -17881456.80322 2706 2581 14339328.79045 2707 2581 -19430363.65775 2708 2581 17403019.36621 2582 2582 472661441.9387 2589 2582 19043969.25406 2590 2582 9605408.869306 2591 2582 -22428183.64302 2592 2582 -19183408.42037 2593 2582 -23333069.93135 2594 2582 -17381025.25039 2595 2582 -22970248.13801 2596 2582 13094327.72975 2597 2582 12599401.48509 2679 2582 6582676.791154 2680 2582 -7899222.206021 2681 2582 4086353.712421 2688 2582 -8007766.485252 2689 2582 -33293672.07046 2690 2582 -17559666.33271 2691 2582 -4818855.100867 2692 2582 -21102266.9381 2693 2582 -61666013.98076 2700 2582 -8444910.309145 2701 2582 -8163229.232496 2702 2582 -10570710.68328 2703 2582 -57630268.59944 2704 2582 -16401283.68257 2705 2582 -82291258.12151 2706 2582 -21754203.08579 2707 2582 11602012.9108 2708 2582 -51814303.08735 2583 2583 787899476.9604 2584 2583 2.861022949219e-05 2585 2583 7037134.828232 2586 2583 89408469.17376 2587 2583 -1.275539398193e-05 2588 2583 1759283.707933 2598 2583 -185415908.7468 2599 2583 4.678964614868e-06 2600 2583 -4574122.969536 2601 2583 -73761541.41083 2602 2583 47777777.76992 2603 2583 -20803252.962 2682 2583 -71968136.03531 2683 2583 4.157423973083e-06 2684 2583 51943969.87703 2685 2583 -29817851.87049 2686 2583 -11944444.44837 2687 2583 17900923.03284 2694 2583 88895212.80375 2695 2583 4.112720489502e-06 2696 2583 1759282.450699 2697 2583 -25612922.63328 2698 2583 -1.080334186554e-05 2699 2583 439820.6129002 2709 2583 -74762019.75572 2710 2583 2.533197402954e-07 2711 2583 -53703252.3277 2712 2583 -30778677.45218 2713 2583 11944444.44836 2714 2583 -18340743.64572 2584 2584 673225551.0007 2585 2584 -84443270.91034 2586 2584 -1.353025436401e-05 2587 2584 -92146776.52992 2588 2584 43066079.89948 2598 2584 5.662441253662e-06 2599 2584 24807818.43265 2600 2584 -21110817.73799 2601 2584 47777777.76992 2602 2584 -59427300.65882 2603 2584 11716519.98007 2682 2584 3.337860107422e-06 2683 2584 -19412223.56332 2684 2584 -5277708.208769 2685 2584 -11944444.44837 2686 2584 -26234303.34662 2687 2584 12913159.66331 2694 2584 4.351139068604e-06 2695 2584 60226824.62697 2696 2584 -21110832.82468 2697 2584 -9.95397567749e-06 2698 2584 -71001738.06458 2699 2584 52813749.73867 2709 2584 -8.195638656616e-07 2710 2584 -22206107.28377 2711 2584 -5277708.20877 2712 2584 11944444.44836 2713 2584 -27195128.92833 2714 2584 13440937.44126 2585 2585 729298788.5117 2586 2585 1759283.707934 2587 2585 41377191.01087 2588 2585 48367727.64837 2598 2585 -2463011.858771 2599 2585 -21110817.73799 2600 2585 38554054.16679 2601 2585 -20539364.07277 2602 2585 11505408.86868 2603 2585 -25226633.25495 2682 2585 51680080.98832 2683 2585 -5277708.208769 2684 2585 -58666023.42418 2685 2585 17900923.03284 2686 2585 12913159.66331 2687 2585 -36646590.5368 2694 2585 1759282.450699 2695 2585 -21110832.82468 2696 2585 -105887547.9636 2697 2585 439820.6129005 2698 2585 52602638.6277 2699 2585 -115814770.8741 2709 2585 -53439363.43899 2710 2585 -5277708.20877 2711 2585 -66116380.01208 2712 2585 -18340743.64572 2713 2585 13440937.44126 2714 2585 -39208792.08802 2586 2586 787899476.9604 2587 2586 2.861022949219e-05 2588 2586 7037134.828232 2589 2586 89408469.17376 2590 2586 -1.275539398193e-05 2591 2586 1759283.707933 2598 2586 -72712122.80639 2599 2586 -47777777.76993 2600 2586 18780080.36483 2601 2586 -185415908.7468 2602 2586 4.678964614868e-06 2603 2586 -4574122.969536 2604 2586 -73761541.41083 2605 2586 47777777.76992 2606 2586 -20803252.962 2682 2586 -19603280.6462 2683 2586 11944444.44837 2684 2586 8005089.696258 2685 2586 -71968136.03531 2686 2586 4.157423973083e-06 2687 2586 51943969.87703 2688 2586 -29817851.87049 2689 2586 -11944444.44837 2690 2586 17900923.03284 2694 2586 16294780.8482 2695 2586 4.217028617859e-06 2696 2586 439820.6128852 2697 2586 88895212.80375 2698 2586 4.112720489502e-06 2699 2586 1759282.450699 2700 2586 -25612922.63328 2701 2586 -1.080334186554e-05 2702 2586 439820.6129002 2709 2586 -20039396.92541 2710 2586 -11944444.44837 2711 2586 -8444910.309145 2712 2586 -74762019.75572 2713 2586 2.533197402954e-07 2714 2586 -53703252.3277 2715 2586 -30778677.45218 2716 2586 11944444.44836 2717 2586 -18340743.64572 2587 2587 673225551.0007 2588 2587 -84443270.91034 2589 2587 -1.353025436401e-05 2590 2587 -92146776.52992 2591 2587 43066079.89948 2598 2587 -47777777.76993 2599 2587 -58377882.05435 2600 2587 9394297.757917 2601 2587 5.662441253662e-06 2602 2587 24807818.43265 2603 2587 -21110817.73799 2604 2587 47777777.76992 2605 2587 -59427300.65882 2606 2587 11716519.98007 2682 2587 11944444.44837 2683 2587 -16019732.12234 2684 2587 -7635451.454545 2685 2587 3.337860107422e-06 2686 2587 -19412223.56332 2687 2587 -5277708.208769 2688 2587 -11944444.44837 2689 2587 -26234303.34662 2690 2587 12913159.66331 2694 2587 5.125999450684e-06 2695 2587 -29094034.58311 2696 2587 -31702916.914 2697 2587 4.351139068604e-06 2698 2587 60226824.62697 2699 2587 -21110832.82468 2700 2587 -9.95397567749e-06 2701 2587 -71001738.06458 2702 2587 52813749.73867 2709 2587 -11944444.44837 2710 2587 -16455848.40155 2711 2587 -8163229.232496 2712 2587 -8.195638656616e-07 2713 2587 -22206107.28377 2714 2587 -5277708.20877 2715 2587 11944444.44836 2716 2587 -27195128.92833 2717 2587 13440937.44126 2588 2588 729298788.5117 2589 2588 1759283.707934 2590 2588 41377191.01087 2591 2588 48367727.64837 2598 2588 19043969.25406 2599 2588 9605408.869306 2600 2588 -22428183.64302 2601 2588 -2463011.858771 2602 2588 -21110817.73799 2603 2588 38554054.16679 2604 2588 -20539364.07277 2605 2588 11505408.86868 2606 2588 -25226633.25495 2682 2588 8005089.696258 2683 2588 -7635451.454545 2684 2588 -9407733.938713 2685 2588 51680080.98832 2686 2588 -5277708.208769 2687 2588 -58666023.42418 2688 2588 17900923.03284 2689 2588 12913159.66331 2690 2588 -36646590.5368 2694 2588 439820.6128855 2695 2588 -31491805.80303 2696 2588 -4060894.923526 2697 2588 1759282.450699 2698 2588 -21110832.82468 2699 2588 -105887547.9636 2700 2588 439820.6129005 2701 2588 52602638.6277 2702 2588 -115814770.8741 2709 2588 -8444910.309145 2710 2588 -8163229.232496 2711 2588 -10570710.68328 2712 2588 -53439363.43899 2713 2588 -5277708.20877 2714 2588 -66116380.01208 2715 2588 -18340743.64572 2716 2588 13440937.44126 2717 2588 -39208792.08802 2589 2589 787899476.9604 2590 2589 2.861022949219e-05 2591 2589 7037134.828232 2592 2589 89408469.17376 2593 2589 -1.275539398193e-05 2594 2589 1759283.707933 2601 2589 -72712122.80639 2602 2589 -47777777.76993 2603 2589 18780080.36483 2604 2589 -185415908.7468 2605 2589 4.678964614868e-06 2606 2589 -4574122.969536 2607 2589 -73761541.41083 2608 2589 47777777.76992 2609 2589 -20803252.962 2685 2589 -19603280.6462 2686 2589 11944444.44837 2687 2589 8005089.696258 2688 2589 -71968136.03531 2689 2589 4.157423973083e-06 2690 2589 51943969.87703 2691 2589 -29817851.87049 2692 2589 -11944444.44837 2693 2589 17900923.03284 2697 2589 16294780.8482 2698 2589 4.217028617859e-06 2699 2589 439820.6128852 2700 2589 88895212.80375 2701 2589 4.112720489502e-06 2702 2589 1759282.450699 2703 2589 -25612922.63328 2704 2589 -1.080334186554e-05 2705 2589 439820.6129002 2712 2589 -20039396.92541 2713 2589 -11944444.44837 2714 2589 -8444910.309145 2715 2589 -74762019.75572 2716 2589 2.533197402954e-07 2717 2589 -53703252.3277 2718 2589 -30778677.45218 2719 2589 11944444.44836 2720 2589 -18340743.64572 2590 2590 673225551.0007 2591 2590 -84443270.91034 2592 2590 -1.353025436401e-05 2593 2590 -92146776.52992 2594 2590 43066079.89948 2601 2590 -47777777.76993 2602 2590 -58377882.05435 2603 2590 9394297.757917 2604 2590 5.662441253662e-06 2605 2590 24807818.43265 2606 2590 -21110817.73799 2607 2590 47777777.76992 2608 2590 -59427300.65882 2609 2590 11716519.98007 2685 2590 11944444.44837 2686 2590 -16019732.12234 2687 2590 -7635451.454545 2688 2590 3.337860107422e-06 2689 2590 -19412223.56332 2690 2590 -5277708.208769 2691 2590 -11944444.44837 2692 2590 -26234303.34662 2693 2590 12913159.66331 2697 2590 5.125999450684e-06 2698 2590 -29094034.58311 2699 2590 -31702916.914 2700 2590 4.351139068604e-06 2701 2590 60226824.62697 2702 2590 -21110832.82468 2703 2590 -9.95397567749e-06 2704 2590 -71001738.06458 2705 2590 52813749.73867 2712 2590 -11944444.44837 2713 2590 -16455848.40155 2714 2590 -8163229.232496 2715 2590 -8.195638656616e-07 2716 2590 -22206107.28377 2717 2590 -5277708.20877 2718 2590 11944444.44836 2719 2590 -27195128.92833 2720 2590 13440937.44126 2591 2591 729298788.5117 2592 2591 1759283.707934 2593 2591 41377191.01087 2594 2591 48367727.64837 2601 2591 19043969.25406 2602 2591 9605408.869306 2603 2591 -22428183.64302 2604 2591 -2463011.858771 2605 2591 -21110817.73799 2606 2591 38554054.16679 2607 2591 -20539364.07277 2608 2591 11505408.86868 2609 2591 -25226633.25495 2685 2591 8005089.696258 2686 2591 -7635451.454545 2687 2591 -9407733.938713 2688 2591 51680080.98832 2689 2591 -5277708.208769 2690 2591 -58666023.42418 2691 2591 17900923.03284 2692 2591 12913159.66331 2693 2591 -36646590.5368 2697 2591 439820.6128855 2698 2591 -31491805.80303 2699 2591 -4060894.923526 2700 2591 1759282.450699 2701 2591 -21110832.82468 2702 2591 -105887547.9636 2703 2591 439820.6129005 2704 2591 52602638.6277 2705 2591 -115814770.8741 2712 2591 -8444910.309145 2713 2591 -8163229.232496 2714 2591 -10570710.68328 2715 2591 -53439363.43899 2716 2591 -5277708.20877 2717 2591 -66116380.01208 2718 2591 -18340743.64572 2719 2591 13440937.44126 2720 2591 -39208792.08802 2592 2592 852898004.744 2593 2592 47822261.56058 2594 2592 23750813.775 2595 2592 10663984.89933 2596 2592 -47795571.28619 2597 2592 20811196.16841 2604 2592 -72712122.80639 2605 2592 -47777777.76993 2606 2592 18780080.36483 2607 2592 -185415908.7468 2608 2592 4.678964614868e-06 2609 2592 -4574122.969536 2610 2592 -73761541.41083 2611 2592 47777777.76992 2612 2592 -20803252.962 2688 2592 -19603280.6462 2689 2592 11944444.44837 2690 2592 8005089.696258 2691 2592 -85740387.93072 2692 2592 -11950439.90077 2693 2592 47775096.06898 2700 2592 16294780.8482 2701 2592 4.217028617859e-06 2702 2592 439820.6128852 2703 2592 112006329.4708 2704 2592 11954436.86906 2705 2592 5935349.843305 2706 2592 -36979414.9719 2707 2592 -11948441.41664 2708 2592 18346879.03149 2715 2592 -20039396.92541 2716 2592 -11944444.44837 2717 2592 -8444910.309145 2718 2592 -74762019.75572 2719 2592 2.533197402954e-07 2720 2592 -53703252.3277 2721 2592 -30778677.45218 2722 2592 11944444.44836 2723 2592 -18340743.64572 2593 2593 723869819.0551 2594 2593 -65442952.40696 2595 2593 -47804468.04432 2596 2593 -156592606.5887 2597 2593 35894402.90473 2604 2593 -47777777.76993 2605 2593 -58377882.05435 2606 2593 9394297.757917 2607 2593 5.662441253662e-06 2608 2593 24807818.43265 2609 2593 -21110817.73799 2610 2593 47777777.76992 2611 2593 -59427300.65882 2612 2593 11716519.98007 2688 2593 11944444.44837 2689 2593 -16019732.12234 2690 2593 -7635451.454545 2691 2593 -11948441.41664 2692 2593 -29588436.2443 2693 2593 4682155.144749 2700 2593 5.125999450684e-06 2701 2593 -29094034.58311 2702 2593 -31702916.914 2703 2593 11954436.86906 2704 2593 79749895.91067 2705 2593 -16362631.77783 2706 2593 -11950439.90078 2707 2593 -78792675.71048 2708 2593 51029508.03613 2715 2593 -11944444.44837 2716 2593 -16455848.40155 2717 2593 -8163229.232496 2718 2593 -8.195638656616e-07 2719 2593 -22206107.28377 2720 2593 -5277708.20877 2721 2593 11944444.44836 2722 2593 -27195128.92833 2723 2593 13440937.44126 2594 2594 730917912.008 2595 2594 20551278.88239 2596 2594 40119834.77044 2597 2594 9888833.293587 2604 2594 19043969.25406 2605 2594 9605408.869306 2606 2594 -22428183.64302 2607 2594 -2463011.858771 2608 2594 -21110817.73799 2609 2594 38554054.16679 2610 2594 -20539364.07277 2611 2594 11505408.86868 2612 2594 -25226633.25495 2688 2594 8005089.696258 2689 2594 -7635451.454545 2690 2594 -9407733.938713 2691 2594 47510397.70207 2692 2594 3205506.989851 2693 2594 -52478548.16204 2700 2594 439820.6128855 2701 2594 -31491805.80303 2702 2594 -4060894.923526 2703 2594 5939756.113784 2704 2594 -16359106.80793 2705 2594 -87179377.66603 2706 2594 18349946.72438 2707 2594 52296851.6274 2708 2594 -103249742.1615 2715 2594 -8444910.309145 2716 2594 -8163229.232496 2717 2594 -10570710.68328 2718 2594 -53439363.43899 2719 2594 -5277708.20877 2720 2594 -66116380.01208 2721 2594 -18340743.64572 2722 2594 13440937.44126 2723 2594 -39208792.08802 2595 2595 498845612.8338 2596 2595 47777777.76994 2597 2595 25526818.17494 2607 2595 -72712122.80639 2608 2595 -47777777.76993 2609 2595 18780080.36483 2610 2595 -270769575.0497 2611 2595 -47795571.28618 2612 2595 -21297878.33857 2613 2595 4724775.55691 2614 2595 38240015.7322 2615 2595 -15313498.75867 2691 2595 1532382.642161 2692 2595 14339328.79045 2693 2595 9874015.186731 2703 2595 -4845636.536104 2704 2595 -11950439.90078 2705 2595 -8009104.879749 2706 2595 57272319.20769 2707 2595 11944444.44837 2708 2595 16262217.83282 2718 2595 -20039396.92541 2719 2595 -11944444.44837 2720 2595 -8444910.309145 2721 2595 -96920154.16551 2722 2595 -11948441.41665 2723 2595 -57894966.96635 2724 2595 -19430363.65776 2725 2595 9559552.526969 2726 2595 -14502802.0572 2596 2596 427154390.1247 2597 2596 -48570698.50186 2607 2596 -47777777.76993 2608 2596 -58377882.05435 2609 2596 9394297.757917 2610 2596 -47804468.04431 2611 2596 -46156001.60459 2612 2596 -29458011.57407 2613 2596 57360023.5983 2614 2596 4724775.556911 2615 2596 19641491.59463 2691 2596 9559552.526969 2692 2596 1532382.642157 2693 2596 -5266148.137347 2703 2596 -11948441.41664 2704 2596 -46658897.27468 2705 2596 -32026328.33686 2706 2596 11944444.44837 2707 2596 39350079.73598 2708 2596 -4237631.002181 2718 2596 -11944444.44837 2719 2596 -16455848.40155 2720 2596 -8163229.232496 2721 2596 -11950439.90079 2722 2596 -40768202.4791 2723 2596 -17881456.80322 2724 2596 14339328.79045 2725 2596 -19430363.65775 2726 2596 17403019.36621 2597 2597 472661441.9387 2607 2597 19043969.25406 2608 2597 9605408.869306 2609 2597 -22428183.64302 2610 2597 -19183408.42037 2611 2597 -23333069.93135 2612 2597 -17381025.25039 2613 2597 -22970248.13801 2614 2597 13094327.72975 2615 2597 12599401.48509 2691 2597 6582676.791154 2692 2597 -7899222.206021 2693 2597 4086353.712421 2703 2597 -8007766.485252 2704 2597 -33293672.07046 2705 2597 -17559666.33271 2706 2597 -4818855.100867 2707 2597 -21102266.9381 2708 2597 -61666013.98076 2718 2597 -8444910.309145 2719 2597 -8163229.232496 2720 2597 -10570710.68328 2721 2597 -57630268.59944 2722 2597 -16401283.68257 2723 2597 -82291258.12151 2724 2597 -21754203.08579 2725 2597 11602012.9108 2726 2597 -51814303.08735 2598 2598 787899476.9604 2599 2598 2.861022949219e-05 2600 2598 7037134.828232 2601 2598 89408469.17376 2602 2598 -1.275539398193e-05 2603 2598 1759283.707933 2616 2598 -185415908.7468 2617 2598 4.678964614868e-06 2618 2598 -4574122.969536 2619 2598 -73761541.41083 2620 2598 47777777.76992 2621 2598 -20803252.962 2694 2598 -71968136.03531 2695 2598 4.157423973083e-06 2696 2598 51943969.87703 2697 2598 -29817851.87049 2698 2598 -11944444.44837 2699 2598 17900923.03284 2709 2598 88895212.80375 2710 2598 4.112720489502e-06 2711 2598 1759282.450699 2712 2598 -25612922.63328 2713 2598 -1.080334186554e-05 2714 2598 439820.6129002 2727 2598 -74762019.75572 2728 2598 2.533197402954e-07 2729 2598 -53703252.3277 2730 2598 -30778677.45218 2731 2598 11944444.44836 2732 2598 -18340743.64572 2599 2599 673225551.0007 2600 2599 -84443270.91034 2601 2599 -1.353025436401e-05 2602 2599 -92146776.52992 2603 2599 43066079.89948 2616 2599 5.662441253662e-06 2617 2599 24807818.43265 2618 2599 -21110817.73799 2619 2599 47777777.76992 2620 2599 -59427300.65882 2621 2599 11716519.98007 2694 2599 3.337860107422e-06 2695 2599 -19412223.56332 2696 2599 -5277708.208769 2697 2599 -11944444.44837 2698 2599 -26234303.34662 2699 2599 12913159.66331 2709 2599 4.351139068604e-06 2710 2599 60226824.62697 2711 2599 -21110832.82468 2712 2599 -9.95397567749e-06 2713 2599 -71001738.06458 2714 2599 52813749.73867 2727 2599 -8.195638656616e-07 2728 2599 -22206107.28377 2729 2599 -5277708.20877 2730 2599 11944444.44836 2731 2599 -27195128.92833 2732 2599 13440937.44126 2600 2600 729298788.5117 2601 2600 1759283.707934 2602 2600 41377191.01087 2603 2600 48367727.64837 2616 2600 -2463011.858771 2617 2600 -21110817.73799 2618 2600 38554054.16679 2619 2600 -20539364.07277 2620 2600 11505408.86868 2621 2600 -25226633.25495 2694 2600 51680080.98832 2695 2600 -5277708.208769 2696 2600 -58666023.42418 2697 2600 17900923.03284 2698 2600 12913159.66331 2699 2600 -36646590.5368 2709 2600 1759282.450699 2710 2600 -21110832.82468 2711 2600 -105887547.9636 2712 2600 439820.6129005 2713 2600 52602638.6277 2714 2600 -115814770.8741 2727 2600 -53439363.43899 2728 2600 -5277708.20877 2729 2600 -66116380.01208 2730 2600 -18340743.64572 2731 2600 13440937.44126 2732 2600 -39208792.08802 2601 2601 787899476.9604 2602 2601 2.861022949219e-05 2603 2601 7037134.828232 2604 2601 89408469.17376 2605 2601 -1.275539398193e-05 2606 2601 1759283.707933 2616 2601 -72712122.80639 2617 2601 -47777777.76993 2618 2601 18780080.36483 2619 2601 -185415908.7468 2620 2601 4.678964614868e-06 2621 2601 -4574122.969536 2622 2601 -73761541.41083 2623 2601 47777777.76992 2624 2601 -20803252.962 2694 2601 -19603280.6462 2695 2601 11944444.44837 2696 2601 8005089.696258 2697 2601 -71968136.03531 2698 2601 4.157423973083e-06 2699 2601 51943969.87703 2700 2601 -29817851.87049 2701 2601 -11944444.44837 2702 2601 17900923.03284 2709 2601 16294780.8482 2710 2601 4.217028617859e-06 2711 2601 439820.6128852 2712 2601 88895212.80375 2713 2601 4.112720489502e-06 2714 2601 1759282.450699 2715 2601 -25612922.63328 2716 2601 -1.080334186554e-05 2717 2601 439820.6129002 2727 2601 -20039396.92541 2728 2601 -11944444.44837 2729 2601 -8444910.309145 2730 2601 -74762019.75572 2731 2601 2.533197402954e-07 2732 2601 -53703252.3277 2733 2601 -30778677.45218 2734 2601 11944444.44836 2735 2601 -18340743.64572 2602 2602 673225551.0007 2603 2602 -84443270.91034 2604 2602 -1.353025436401e-05 2605 2602 -92146776.52992 2606 2602 43066079.89948 2616 2602 -47777777.76993 2617 2602 -58377882.05435 2618 2602 9394297.757917 2619 2602 5.662441253662e-06 2620 2602 24807818.43265 2621 2602 -21110817.73799 2622 2602 47777777.76992 2623 2602 -59427300.65882 2624 2602 11716519.98007 2694 2602 11944444.44837 2695 2602 -16019732.12234 2696 2602 -7635451.454545 2697 2602 3.337860107422e-06 2698 2602 -19412223.56332 2699 2602 -5277708.208769 2700 2602 -11944444.44837 2701 2602 -26234303.34662 2702 2602 12913159.66331 2709 2602 5.125999450684e-06 2710 2602 -29094034.58311 2711 2602 -31702916.914 2712 2602 4.351139068604e-06 2713 2602 60226824.62697 2714 2602 -21110832.82468 2715 2602 -9.95397567749e-06 2716 2602 -71001738.06458 2717 2602 52813749.73867 2727 2602 -11944444.44837 2728 2602 -16455848.40155 2729 2602 -8163229.232496 2730 2602 -8.195638656616e-07 2731 2602 -22206107.28377 2732 2602 -5277708.20877 2733 2602 11944444.44836 2734 2602 -27195128.92833 2735 2602 13440937.44126 2603 2603 729298788.5117 2604 2603 1759283.707934 2605 2603 41377191.01087 2606 2603 48367727.64837 2616 2603 19043969.25406 2617 2603 9605408.869306 2618 2603 -22428183.64302 2619 2603 -2463011.858771 2620 2603 -21110817.73799 2621 2603 38554054.16679 2622 2603 -20539364.07277 2623 2603 11505408.86868 2624 2603 -25226633.25495 2694 2603 8005089.696258 2695 2603 -7635451.454545 2696 2603 -9407733.938713 2697 2603 51680080.98832 2698 2603 -5277708.208769 2699 2603 -58666023.42418 2700 2603 17900923.03284 2701 2603 12913159.66331 2702 2603 -36646590.5368 2709 2603 439820.6128855 2710 2603 -31491805.80303 2711 2603 -4060894.923526 2712 2603 1759282.450699 2713 2603 -21110832.82468 2714 2603 -105887547.9636 2715 2603 439820.6129005 2716 2603 52602638.6277 2717 2603 -115814770.8741 2727 2603 -8444910.309145 2728 2603 -8163229.232496 2729 2603 -10570710.68328 2730 2603 -53439363.43899 2731 2603 -5277708.20877 2732 2603 -66116380.01208 2733 2603 -18340743.64572 2734 2603 13440937.44126 2735 2603 -39208792.08802 2604 2604 787899476.9604 2605 2604 2.861022949219e-05 2606 2604 7037134.828232 2607 2604 89408469.17376 2608 2604 -1.275539398193e-05 2609 2604 1759283.707933 2619 2604 -72712122.80639 2620 2604 -47777777.76993 2621 2604 18780080.36483 2622 2604 -185415908.7468 2623 2604 4.678964614868e-06 2624 2604 -4574122.969536 2625 2604 -73761541.41083 2626 2604 47777777.76992 2627 2604 -20803252.962 2697 2604 -19603280.6462 2698 2604 11944444.44837 2699 2604 8005089.696258 2700 2604 -71968136.03531 2701 2604 4.157423973083e-06 2702 2604 51943969.87703 2703 2604 -29817851.87049 2704 2604 -11944444.44837 2705 2604 17900923.03284 2712 2604 16294780.8482 2713 2604 4.217028617859e-06 2714 2604 439820.6128852 2715 2604 88895212.80375 2716 2604 4.112720489502e-06 2717 2604 1759282.450699 2718 2604 -25612922.63328 2719 2604 -1.080334186554e-05 2720 2604 439820.6129002 2730 2604 -20039396.92541 2731 2604 -11944444.44837 2732 2604 -8444910.309145 2733 2604 -74762019.75572 2734 2604 2.533197402954e-07 2735 2604 -53703252.3277 2736 2604 -30778677.45218 2737 2604 11944444.44836 2738 2604 -18340743.64572 2605 2605 673225551.0007 2606 2605 -84443270.91034 2607 2605 -1.353025436401e-05 2608 2605 -92146776.52992 2609 2605 43066079.89948 2619 2605 -47777777.76993 2620 2605 -58377882.05435 2621 2605 9394297.757917 2622 2605 5.662441253662e-06 2623 2605 24807818.43265 2624 2605 -21110817.73799 2625 2605 47777777.76992 2626 2605 -59427300.65882 2627 2605 11716519.98007 2697 2605 11944444.44837 2698 2605 -16019732.12234 2699 2605 -7635451.454545 2700 2605 3.337860107422e-06 2701 2605 -19412223.56332 2702 2605 -5277708.208769 2703 2605 -11944444.44837 2704 2605 -26234303.34662 2705 2605 12913159.66331 2712 2605 5.125999450684e-06 2713 2605 -29094034.58311 2714 2605 -31702916.914 2715 2605 4.351139068604e-06 2716 2605 60226824.62697 2717 2605 -21110832.82468 2718 2605 -9.95397567749e-06 2719 2605 -71001738.06458 2720 2605 52813749.73867 2730 2605 -11944444.44837 2731 2605 -16455848.40155 2732 2605 -8163229.232496 2733 2605 -8.195638656616e-07 2734 2605 -22206107.28377 2735 2605 -5277708.20877 2736 2605 11944444.44836 2737 2605 -27195128.92833 2738 2605 13440937.44126 2606 2606 729298788.5117 2607 2606 1759283.707934 2608 2606 41377191.01087 2609 2606 48367727.64837 2619 2606 19043969.25406 2620 2606 9605408.869306 2621 2606 -22428183.64302 2622 2606 -2463011.858771 2623 2606 -21110817.73799 2624 2606 38554054.16679 2625 2606 -20539364.07277 2626 2606 11505408.86868 2627 2606 -25226633.25495 2697 2606 8005089.696258 2698 2606 -7635451.454545 2699 2606 -9407733.938713 2700 2606 51680080.98832 2701 2606 -5277708.208769 2702 2606 -58666023.42418 2703 2606 17900923.03284 2704 2606 12913159.66331 2705 2606 -36646590.5368 2712 2606 439820.6128855 2713 2606 -31491805.80303 2714 2606 -4060894.923526 2715 2606 1759282.450699 2716 2606 -21110832.82468 2717 2606 -105887547.9636 2718 2606 439820.6129005 2719 2606 52602638.6277 2720 2606 -115814770.8741 2730 2606 -8444910.309145 2731 2606 -8163229.232496 2732 2606 -10570710.68328 2733 2606 -53439363.43899 2734 2606 -5277708.20877 2735 2606 -66116380.01208 2736 2606 -18340743.64572 2737 2606 13440937.44126 2738 2606 -39208792.08802 2607 2607 787899476.9604 2608 2607 2.861022949219e-05 2609 2607 7037134.828232 2610 2607 89408469.17376 2611 2607 -1.275539398193e-05 2612 2607 1759283.707933 2622 2607 -72712122.80639 2623 2607 -47777777.76993 2624 2607 18780080.36483 2625 2607 -185415908.7468 2626 2607 4.678964614868e-06 2627 2607 -4574122.969536 2628 2607 -73761541.41083 2629 2607 47777777.76992 2630 2607 -20803252.962 2700 2607 -19603280.6462 2701 2607 11944444.44837 2702 2607 8005089.696258 2703 2607 -71968136.03531 2704 2607 4.157423973083e-06 2705 2607 51943969.87703 2706 2607 -29817851.87049 2707 2607 -11944444.44837 2708 2607 17900923.03284 2715 2607 16294780.8482 2716 2607 4.217028617859e-06 2717 2607 439820.6128852 2718 2607 88895212.80375 2719 2607 4.112720489502e-06 2720 2607 1759282.450699 2721 2607 -25612922.63328 2722 2607 -1.080334186554e-05 2723 2607 439820.6129002 2733 2607 -20039396.92541 2734 2607 -11944444.44837 2735 2607 -8444910.309145 2736 2607 -74762019.75572 2737 2607 2.533197402954e-07 2738 2607 -53703252.3277 2739 2607 -30778677.45218 2740 2607 11944444.44836 2741 2607 -18340743.64572 2608 2608 673225551.0007 2609 2608 -84443270.91034 2610 2608 -1.353025436401e-05 2611 2608 -92146776.52992 2612 2608 43066079.89948 2622 2608 -47777777.76993 2623 2608 -58377882.05435 2624 2608 9394297.757917 2625 2608 5.662441253662e-06 2626 2608 24807818.43265 2627 2608 -21110817.73799 2628 2608 47777777.76992 2629 2608 -59427300.65882 2630 2608 11716519.98007 2700 2608 11944444.44837 2701 2608 -16019732.12234 2702 2608 -7635451.454545 2703 2608 3.337860107422e-06 2704 2608 -19412223.56332 2705 2608 -5277708.208769 2706 2608 -11944444.44837 2707 2608 -26234303.34662 2708 2608 12913159.66331 2715 2608 5.125999450684e-06 2716 2608 -29094034.58311 2717 2608 -31702916.914 2718 2608 4.351139068604e-06 2719 2608 60226824.62697 2720 2608 -21110832.82468 2721 2608 -9.95397567749e-06 2722 2608 -71001738.06458 2723 2608 52813749.73867 2733 2608 -11944444.44837 2734 2608 -16455848.40155 2735 2608 -8163229.232496 2736 2608 -8.195638656616e-07 2737 2608 -22206107.28377 2738 2608 -5277708.20877 2739 2608 11944444.44836 2740 2608 -27195128.92833 2741 2608 13440937.44126 2609 2609 729298788.5117 2610 2609 1759283.707934 2611 2609 41377191.01087 2612 2609 48367727.64837 2622 2609 19043969.25406 2623 2609 9605408.869306 2624 2609 -22428183.64302 2625 2609 -2463011.858771 2626 2609 -21110817.73799 2627 2609 38554054.16679 2628 2609 -20539364.07277 2629 2609 11505408.86868 2630 2609 -25226633.25495 2700 2609 8005089.696258 2701 2609 -7635451.454545 2702 2609 -9407733.938713 2703 2609 51680080.98832 2704 2609 -5277708.208769 2705 2609 -58666023.42418 2706 2609 17900923.03284 2707 2609 12913159.66331 2708 2609 -36646590.5368 2715 2609 439820.6128855 2716 2609 -31491805.80303 2717 2609 -4060894.923526 2718 2609 1759282.450699 2719 2609 -21110832.82468 2720 2609 -105887547.9636 2721 2609 439820.6129005 2722 2609 52602638.6277 2723 2609 -115814770.8741 2733 2609 -8444910.309145 2734 2609 -8163229.232496 2735 2609 -10570710.68328 2736 2609 -53439363.43899 2737 2609 -5277708.20877 2738 2609 -66116380.01208 2739 2609 -18340743.64572 2740 2609 13440937.44126 2741 2609 -39208792.08802 2610 2610 852898004.744 2611 2610 47822261.56058 2612 2610 23750813.775 2613 2610 10663984.89933 2614 2610 -47795571.28619 2615 2610 20811196.16841 2625 2610 -72712122.80639 2626 2610 -47777777.76993 2627 2610 18780080.36483 2628 2610 -185415908.7468 2629 2610 4.678964614868e-06 2630 2610 -4574122.969536 2631 2610 -73761541.41083 2632 2610 47777777.76992 2633 2610 -20803252.962 2703 2610 -19603280.6462 2704 2610 11944444.44837 2705 2610 8005089.696258 2706 2610 -85740387.93072 2707 2610 -11950439.90077 2708 2610 47775096.06898 2718 2610 16294780.8482 2719 2610 4.217028617859e-06 2720 2610 439820.6128852 2721 2610 112006329.4708 2722 2610 11954436.86906 2723 2610 5935349.843305 2724 2610 -36979414.9719 2725 2610 -11948441.41664 2726 2610 18346879.03149 2736 2610 -20039396.92541 2737 2610 -11944444.44837 2738 2610 -8444910.309145 2739 2610 -74762019.75572 2740 2610 2.533197402954e-07 2741 2610 -53703252.3277 2742 2610 -30778677.45218 2743 2610 11944444.44836 2744 2610 -18340743.64572 2611 2611 723869819.0551 2612 2611 -65442952.40696 2613 2611 -47804468.04432 2614 2611 -156592606.5887 2615 2611 35894402.90473 2625 2611 -47777777.76993 2626 2611 -58377882.05435 2627 2611 9394297.757917 2628 2611 5.662441253662e-06 2629 2611 24807818.43265 2630 2611 -21110817.73799 2631 2611 47777777.76992 2632 2611 -59427300.65882 2633 2611 11716519.98007 2703 2611 11944444.44837 2704 2611 -16019732.12234 2705 2611 -7635451.454545 2706 2611 -11948441.41664 2707 2611 -29588436.2443 2708 2611 4682155.144749 2718 2611 5.125999450684e-06 2719 2611 -29094034.58311 2720 2611 -31702916.914 2721 2611 11954436.86906 2722 2611 79749895.91067 2723 2611 -16362631.77783 2724 2611 -11950439.90078 2725 2611 -78792675.71048 2726 2611 51029508.03613 2736 2611 -11944444.44837 2737 2611 -16455848.40155 2738 2611 -8163229.232496 2739 2611 -8.195638656616e-07 2740 2611 -22206107.28377 2741 2611 -5277708.20877 2742 2611 11944444.44836 2743 2611 -27195128.92833 2744 2611 13440937.44126 2612 2612 730917912.008 2613 2612 20551278.88239 2614 2612 40119834.77044 2615 2612 9888833.293587 2625 2612 19043969.25406 2626 2612 9605408.869306 2627 2612 -22428183.64302 2628 2612 -2463011.858771 2629 2612 -21110817.73799 2630 2612 38554054.16679 2631 2612 -20539364.07277 2632 2612 11505408.86868 2633 2612 -25226633.25495 2703 2612 8005089.696258 2704 2612 -7635451.454545 2705 2612 -9407733.938713 2706 2612 47510397.70207 2707 2612 3205506.989851 2708 2612 -52478548.16204 2718 2612 439820.6128855 2719 2612 -31491805.80303 2720 2612 -4060894.923526 2721 2612 5939756.113784 2722 2612 -16359106.80793 2723 2612 -87179377.66603 2724 2612 18349946.72438 2725 2612 52296851.6274 2726 2612 -103249742.1615 2736 2612 -8444910.309145 2737 2612 -8163229.232496 2738 2612 -10570710.68328 2739 2612 -53439363.43899 2740 2612 -5277708.20877 2741 2612 -66116380.01208 2742 2612 -18340743.64572 2743 2612 13440937.44126 2744 2612 -39208792.08802 2613 2613 404739861.6568 2614 2613 -11848182.92845 2615 2613 -7247227.153557 2628 2613 -72712122.80639 2629 2613 -47777777.76993 2630 2613 18780080.36483 2631 2613 -131522618.6576 2632 2613 11758507.45862 2633 2613 -2246788.336919 2634 2613 -71992455.07851 2635 2613 38311897.68579 2636 2613 -2118024.903648 2706 2613 1532382.642161 2707 2613 14339328.79045 2708 2613 9874015.186731 2721 2613 -4845636.536104 2722 2613 -11950439.90078 2723 2613 -8009104.879749 2724 2613 45154799.16275 2725 2613 -1984038.076042 2726 2613 5318188.302819 2739 2613 -20039396.92541 2740 2613 -11944444.44837 2741 2613 -8444910.309145 2742 2613 -54446261.20618 2743 2613 1964829.816336 2744 2613 -37868990.52104 2745 2613 -20832796.07979 2746 2613 9574763.8184 2747 2613 -4947522.887458 2614 2614 486884655.0059 2615 2614 -56349720.67878 2628 2614 -47777777.76993 2629 2614 -58377882.05435 2630 2614 9394297.757917 2631 2614 11713669.72369 2632 2614 66482451.11392 2633 2614 -13793542.99022 2634 2614 57467846.52868 2635 2614 -199219967.4632 2636 2614 12610421.48169 2706 2614 9559552.526969 2707 2614 1532382.642157 2708 2614 -5266148.137347 2721 2614 -11948441.41664 2722 2614 -46658897.27468 2723 2614 -32026328.33686 2724 2614 -1984038.076043 2725 2614 60242385.44579 2726 2614 -8284128.881153 2739 2614 -11944444.44837 2740 2614 -16455848.40155 2741 2614 -8163229.232496 2742 2614 1955225.686481 2743 2614 -4515066.791966 2744 2614 -1847868.948734 2745 2614 14362145.7276 2746 2614 -47621864.56235 2747 2614 20366850.75772 2615 2615 414669440.4442 2628 2615 19043969.25406 2629 2615 9605408.869306 2630 2615 -22428183.64302 2631 2615 -6993796.082146 2632 2615 -12945585.99015 2633 2615 33760011.09959 2634 2615 -3177037.355472 2635 2615 11767430.40646 2636 2615 -64752367.82467 2706 2615 6582676.791154 2707 2615 -7899222.206021 2708 2615 4086353.712421 2721 2615 -8007766.485252 2722 2615 -33293672.07046 2723 2615 -17559666.33271 2724 2615 -9638402.083643 2725 2615 -20236111.15782 2726 2615 -45956057.35504 2739 2615 -8444910.309145 2740 2615 -8163229.232496 2741 2615 -10570710.68328 2742 2615 -39187801.2437 2743 2615 -1627591.468903 2744 2615 -43839955.45809 2745 2615 -7421284.331187 2746 2615 18388546.96739 2747 2615 -28765054.39688 2616 2616 787899476.9604 2617 2616 2.861022949219e-05 2618 2616 7037134.828232 2619 2616 89408469.17376 2620 2616 -1.275539398193e-05 2621 2616 1759283.707933 2637 2616 -185415908.7468 2638 2616 4.678964614868e-06 2639 2616 -4574122.969536 2640 2616 -73761541.41083 2641 2616 47777777.76992 2642 2616 -20803252.962 2709 2616 -71968136.03531 2710 2616 4.157423973083e-06 2711 2616 51943969.87703 2712 2616 -29817851.87049 2713 2616 -11944444.44837 2714 2616 17900923.03284 2727 2616 88895212.80375 2728 2616 4.112720489502e-06 2729 2616 1759282.450699 2730 2616 -25612922.63328 2731 2616 -1.080334186554e-05 2732 2616 439820.6129002 2748 2616 -74762019.75572 2749 2616 2.533197402954e-07 2750 2616 -53703252.3277 2751 2616 -30778677.45218 2752 2616 11944444.44836 2753 2616 -18340743.64572 2617 2617 673225551.0007 2618 2617 -84443270.91034 2619 2617 -1.353025436401e-05 2620 2617 -92146776.52992 2621 2617 43066079.89948 2637 2617 5.662441253662e-06 2638 2617 24807818.43265 2639 2617 -21110817.73799 2640 2617 47777777.76992 2641 2617 -59427300.65882 2642 2617 11716519.98007 2709 2617 3.337860107422e-06 2710 2617 -19412223.56332 2711 2617 -5277708.208769 2712 2617 -11944444.44837 2713 2617 -26234303.34662 2714 2617 12913159.66331 2727 2617 4.351139068604e-06 2728 2617 60226824.62697 2729 2617 -21110832.82468 2730 2617 -9.95397567749e-06 2731 2617 -71001738.06458 2732 2617 52813749.73867 2748 2617 -8.195638656616e-07 2749 2617 -22206107.28377 2750 2617 -5277708.20877 2751 2617 11944444.44836 2752 2617 -27195128.92833 2753 2617 13440937.44126 2618 2618 729298788.5117 2619 2618 1759283.707934 2620 2618 41377191.01087 2621 2618 48367727.64837 2637 2618 -2463011.858771 2638 2618 -21110817.73799 2639 2618 38554054.16679 2640 2618 -20539364.07277 2641 2618 11505408.86868 2642 2618 -25226633.25495 2709 2618 51680080.98832 2710 2618 -5277708.208769 2711 2618 -58666023.42418 2712 2618 17900923.03284 2713 2618 12913159.66331 2714 2618 -36646590.5368 2727 2618 1759282.450699 2728 2618 -21110832.82468 2729 2618 -105887547.9636 2730 2618 439820.6129005 2731 2618 52602638.6277 2732 2618 -115814770.8741 2748 2618 -53439363.43899 2749 2618 -5277708.20877 2750 2618 -66116380.01208 2751 2618 -18340743.64572 2752 2618 13440937.44126 2753 2618 -39208792.08802 2619 2619 787899476.9604 2620 2619 2.861022949219e-05 2621 2619 7037134.828232 2622 2619 89408469.17376 2623 2619 -1.275539398193e-05 2624 2619 1759283.707933 2637 2619 -72712122.80639 2638 2619 -47777777.76993 2639 2619 18780080.36483 2640 2619 -185415908.7468 2641 2619 4.678964614868e-06 2642 2619 -4574122.969536 2643 2619 -73761541.41083 2644 2619 47777777.76992 2645 2619 -20803252.962 2709 2619 -19603280.6462 2710 2619 11944444.44837 2711 2619 8005089.696258 2712 2619 -71968136.03531 2713 2619 4.157423973083e-06 2714 2619 51943969.87703 2715 2619 -29817851.87049 2716 2619 -11944444.44837 2717 2619 17900923.03284 2727 2619 16294780.8482 2728 2619 4.217028617859e-06 2729 2619 439820.6128852 2730 2619 88895212.80375 2731 2619 4.112720489502e-06 2732 2619 1759282.450699 2733 2619 -25612922.63328 2734 2619 -1.080334186554e-05 2735 2619 439820.6129002 2748 2619 -20039396.92541 2749 2619 -11944444.44837 2750 2619 -8444910.309145 2751 2619 -74762019.75572 2752 2619 2.533197402954e-07 2753 2619 -53703252.3277 2754 2619 -30778677.45218 2755 2619 11944444.44836 2756 2619 -18340743.64572 2620 2620 673225551.0007 2621 2620 -84443270.91034 2622 2620 -1.353025436401e-05 2623 2620 -92146776.52992 2624 2620 43066079.89948 2637 2620 -47777777.76993 2638 2620 -58377882.05435 2639 2620 9394297.757917 2640 2620 5.662441253662e-06 2641 2620 24807818.43265 2642 2620 -21110817.73799 2643 2620 47777777.76992 2644 2620 -59427300.65882 2645 2620 11716519.98007 2709 2620 11944444.44837 2710 2620 -16019732.12234 2711 2620 -7635451.454545 2712 2620 3.337860107422e-06 2713 2620 -19412223.56332 2714 2620 -5277708.208769 2715 2620 -11944444.44837 2716 2620 -26234303.34662 2717 2620 12913159.66331 2727 2620 5.125999450684e-06 2728 2620 -29094034.58311 2729 2620 -31702916.914 2730 2620 4.351139068604e-06 2731 2620 60226824.62697 2732 2620 -21110832.82468 2733 2620 -9.95397567749e-06 2734 2620 -71001738.06458 2735 2620 52813749.73867 2748 2620 -11944444.44837 2749 2620 -16455848.40155 2750 2620 -8163229.232496 2751 2620 -8.195638656616e-07 2752 2620 -22206107.28377 2753 2620 -5277708.20877 2754 2620 11944444.44836 2755 2620 -27195128.92833 2756 2620 13440937.44126 2621 2621 729298788.5117 2622 2621 1759283.707934 2623 2621 41377191.01087 2624 2621 48367727.64837 2637 2621 19043969.25406 2638 2621 9605408.869306 2639 2621 -22428183.64302 2640 2621 -2463011.858771 2641 2621 -21110817.73799 2642 2621 38554054.16679 2643 2621 -20539364.07277 2644 2621 11505408.86868 2645 2621 -25226633.25495 2709 2621 8005089.696258 2710 2621 -7635451.454545 2711 2621 -9407733.938713 2712 2621 51680080.98832 2713 2621 -5277708.208769 2714 2621 -58666023.42418 2715 2621 17900923.03284 2716 2621 12913159.66331 2717 2621 -36646590.5368 2727 2621 439820.6128855 2728 2621 -31491805.80303 2729 2621 -4060894.923526 2730 2621 1759282.450699 2731 2621 -21110832.82468 2732 2621 -105887547.9636 2733 2621 439820.6129005 2734 2621 52602638.6277 2735 2621 -115814770.8741 2748 2621 -8444910.309145 2749 2621 -8163229.232496 2750 2621 -10570710.68328 2751 2621 -53439363.43899 2752 2621 -5277708.20877 2753 2621 -66116380.01208 2754 2621 -18340743.64572 2755 2621 13440937.44126 2756 2621 -39208792.08802 2622 2622 787899476.9604 2623 2622 2.861022949219e-05 2624 2622 7037134.828232 2625 2622 89408469.17376 2626 2622 -1.275539398193e-05 2627 2622 1759283.707933 2640 2622 -72712122.80639 2641 2622 -47777777.76993 2642 2622 18780080.36483 2643 2622 -185415908.7468 2644 2622 4.678964614868e-06 2645 2622 -4574122.969536 2646 2622 -73761541.41083 2647 2622 47777777.76992 2648 2622 -20803252.962 2712 2622 -19603280.6462 2713 2622 11944444.44837 2714 2622 8005089.696258 2715 2622 -71968136.03531 2716 2622 4.157423973083e-06 2717 2622 51943969.87703 2718 2622 -29817851.87049 2719 2622 -11944444.44837 2720 2622 17900923.03284 2730 2622 16294780.8482 2731 2622 4.217028617859e-06 2732 2622 439820.6128852 2733 2622 88895212.80375 2734 2622 4.112720489502e-06 2735 2622 1759282.450699 2736 2622 -25612922.63328 2737 2622 -1.080334186554e-05 2738 2622 439820.6129002 2751 2622 -20039396.92541 2752 2622 -11944444.44837 2753 2622 -8444910.309145 2754 2622 -74762019.75572 2755 2622 2.533197402954e-07 2756 2622 -53703252.3277 2757 2622 -30778677.45218 2758 2622 11944444.44836 2759 2622 -18340743.64572 2623 2623 673225551.0007 2624 2623 -84443270.91034 2625 2623 -1.353025436401e-05 2626 2623 -92146776.52992 2627 2623 43066079.89948 2640 2623 -47777777.76993 2641 2623 -58377882.05435 2642 2623 9394297.757917 2643 2623 5.662441253662e-06 2644 2623 24807818.43265 2645 2623 -21110817.73799 2646 2623 47777777.76992 2647 2623 -59427300.65882 2648 2623 11716519.98007 2712 2623 11944444.44837 2713 2623 -16019732.12234 2714 2623 -7635451.454545 2715 2623 3.337860107422e-06 2716 2623 -19412223.56332 2717 2623 -5277708.208769 2718 2623 -11944444.44837 2719 2623 -26234303.34662 2720 2623 12913159.66331 2730 2623 5.125999450684e-06 2731 2623 -29094034.58311 2732 2623 -31702916.914 2733 2623 4.351139068604e-06 2734 2623 60226824.62697 2735 2623 -21110832.82468 2736 2623 -9.95397567749e-06 2737 2623 -71001738.06458 2738 2623 52813749.73867 2751 2623 -11944444.44837 2752 2623 -16455848.40155 2753 2623 -8163229.232496 2754 2623 -8.195638656616e-07 2755 2623 -22206107.28377 2756 2623 -5277708.20877 2757 2623 11944444.44836 2758 2623 -27195128.92833 2759 2623 13440937.44126 2624 2624 729298788.5117 2625 2624 1759283.707934 2626 2624 41377191.01087 2627 2624 48367727.64837 2640 2624 19043969.25406 2641 2624 9605408.869306 2642 2624 -22428183.64302 2643 2624 -2463011.858771 2644 2624 -21110817.73799 2645 2624 38554054.16679 2646 2624 -20539364.07277 2647 2624 11505408.86868 2648 2624 -25226633.25495 2712 2624 8005089.696258 2713 2624 -7635451.454545 2714 2624 -9407733.938713 2715 2624 51680080.98832 2716 2624 -5277708.208769 2717 2624 -58666023.42418 2718 2624 17900923.03284 2719 2624 12913159.66331 2720 2624 -36646590.5368 2730 2624 439820.6128855 2731 2624 -31491805.80303 2732 2624 -4060894.923526 2733 2624 1759282.450699 2734 2624 -21110832.82468 2735 2624 -105887547.9636 2736 2624 439820.6129005 2737 2624 52602638.6277 2738 2624 -115814770.8741 2751 2624 -8444910.309145 2752 2624 -8163229.232496 2753 2624 -10570710.68328 2754 2624 -53439363.43899 2755 2624 -5277708.20877 2756 2624 -66116380.01208 2757 2624 -18340743.64572 2758 2624 13440937.44126 2759 2624 -39208792.08802 2625 2625 787899476.9604 2626 2625 2.861022949219e-05 2627 2625 7037134.828232 2628 2625 89408469.17376 2629 2625 -1.275539398193e-05 2630 2625 1759283.707933 2643 2625 -72712122.80639 2644 2625 -47777777.76993 2645 2625 18780080.36483 2646 2625 -185415908.7468 2647 2625 4.678964614868e-06 2648 2625 -4574122.969536 2649 2625 -73761541.41083 2650 2625 47777777.76992 2651 2625 -20803252.962 2715 2625 -19603280.6462 2716 2625 11944444.44837 2717 2625 8005089.696258 2718 2625 -71968136.03531 2719 2625 4.157423973083e-06 2720 2625 51943969.87703 2721 2625 -29817851.87049 2722 2625 -11944444.44837 2723 2625 17900923.03284 2733 2625 16294780.8482 2734 2625 4.217028617859e-06 2735 2625 439820.6128852 2736 2625 88895212.80375 2737 2625 4.112720489502e-06 2738 2625 1759282.450699 2739 2625 -25612922.63328 2740 2625 -1.080334186554e-05 2741 2625 439820.6129002 2754 2625 -20039396.92541 2755 2625 -11944444.44837 2756 2625 -8444910.309145 2757 2625 -74762019.75572 2758 2625 2.533197402954e-07 2759 2625 -53703252.3277 2760 2625 -30778677.45218 2761 2625 11944444.44836 2762 2625 -18340743.64572 2626 2626 673225551.0007 2627 2626 -84443270.91034 2628 2626 -1.353025436401e-05 2629 2626 -92146776.52992 2630 2626 43066079.89948 2643 2626 -47777777.76993 2644 2626 -58377882.05435 2645 2626 9394297.757917 2646 2626 5.662441253662e-06 2647 2626 24807818.43265 2648 2626 -21110817.73799 2649 2626 47777777.76992 2650 2626 -59427300.65882 2651 2626 11716519.98007 2715 2626 11944444.44837 2716 2626 -16019732.12234 2717 2626 -7635451.454545 2718 2626 3.337860107422e-06 2719 2626 -19412223.56332 2720 2626 -5277708.208769 2721 2626 -11944444.44837 2722 2626 -26234303.34662 2723 2626 12913159.66331 2733 2626 5.125999450684e-06 2734 2626 -29094034.58311 2735 2626 -31702916.914 2736 2626 4.351139068604e-06 2737 2626 60226824.62697 2738 2626 -21110832.82468 2739 2626 -9.95397567749e-06 2740 2626 -71001738.06458 2741 2626 52813749.73867 2754 2626 -11944444.44837 2755 2626 -16455848.40155 2756 2626 -8163229.232496 2757 2626 -8.195638656616e-07 2758 2626 -22206107.28377 2759 2626 -5277708.20877 2760 2626 11944444.44836 2761 2626 -27195128.92833 2762 2626 13440937.44126 2627 2627 729298788.5117 2628 2627 1759283.707934 2629 2627 41377191.01087 2630 2627 48367727.64837 2643 2627 19043969.25406 2644 2627 9605408.869306 2645 2627 -22428183.64302 2646 2627 -2463011.858771 2647 2627 -21110817.73799 2648 2627 38554054.16679 2649 2627 -20539364.07277 2650 2627 11505408.86868 2651 2627 -25226633.25495 2715 2627 8005089.696258 2716 2627 -7635451.454545 2717 2627 -9407733.938713 2718 2627 51680080.98832 2719 2627 -5277708.208769 2720 2627 -58666023.42418 2721 2627 17900923.03284 2722 2627 12913159.66331 2723 2627 -36646590.5368 2733 2627 439820.6128855 2734 2627 -31491805.80303 2735 2627 -4060894.923526 2736 2627 1759282.450699 2737 2627 -21110832.82468 2738 2627 -105887547.9636 2739 2627 439820.6129005 2740 2627 52602638.6277 2741 2627 -115814770.8741 2754 2627 -8444910.309145 2755 2627 -8163229.232496 2756 2627 -10570710.68328 2757 2627 -53439363.43899 2758 2627 -5277708.20877 2759 2627 -66116380.01208 2760 2627 -18340743.64572 2761 2627 13440937.44126 2762 2627 -39208792.08802 2628 2628 787899476.9604 2629 2628 2.861022949219e-05 2630 2628 7037134.828232 2631 2628 89408469.17376 2632 2628 -1.275539398193e-05 2633 2628 1759283.707933 2646 2628 -72712122.80639 2647 2628 -47777777.76993 2648 2628 18780080.36483 2649 2628 -185415908.7468 2650 2628 4.678964614868e-06 2651 2628 -4574122.969536 2652 2628 -73761541.41083 2653 2628 47777777.76992 2654 2628 -20803252.962 2718 2628 -19603280.6462 2719 2628 11944444.44837 2720 2628 8005089.696258 2721 2628 -71968136.03531 2722 2628 4.157423973083e-06 2723 2628 51943969.87703 2724 2628 -29817851.87049 2725 2628 -11944444.44837 2726 2628 17900923.03284 2736 2628 16294780.8482 2737 2628 4.217028617859e-06 2738 2628 439820.6128852 2739 2628 88895212.80375 2740 2628 4.112720489502e-06 2741 2628 1759282.450699 2742 2628 -25612922.63328 2743 2628 -1.080334186554e-05 2744 2628 439820.6129002 2757 2628 -20039396.92541 2758 2628 -11944444.44837 2759 2628 -8444910.309145 2760 2628 -74762019.75572 2761 2628 2.533197402954e-07 2762 2628 -53703252.3277 2763 2628 -30778677.45218 2764 2628 11944444.44836 2765 2628 -18340743.64572 2629 2629 673225551.0007 2630 2629 -84443270.91034 2631 2629 -1.353025436401e-05 2632 2629 -92146776.52992 2633 2629 43066079.89948 2646 2629 -47777777.76993 2647 2629 -58377882.05435 2648 2629 9394297.757917 2649 2629 5.662441253662e-06 2650 2629 24807818.43265 2651 2629 -21110817.73799 2652 2629 47777777.76992 2653 2629 -59427300.65882 2654 2629 11716519.98007 2718 2629 11944444.44837 2719 2629 -16019732.12234 2720 2629 -7635451.454545 2721 2629 3.337860107422e-06 2722 2629 -19412223.56332 2723 2629 -5277708.208769 2724 2629 -11944444.44837 2725 2629 -26234303.34662 2726 2629 12913159.66331 2736 2629 5.125999450684e-06 2737 2629 -29094034.58311 2738 2629 -31702916.914 2739 2629 4.351139068604e-06 2740 2629 60226824.62697 2741 2629 -21110832.82468 2742 2629 -9.95397567749e-06 2743 2629 -71001738.06458 2744 2629 52813749.73867 2757 2629 -11944444.44837 2758 2629 -16455848.40155 2759 2629 -8163229.232496 2760 2629 -8.195638656616e-07 2761 2629 -22206107.28377 2762 2629 -5277708.20877 2763 2629 11944444.44836 2764 2629 -27195128.92833 2765 2629 13440937.44126 2630 2630 729298788.5117 2631 2630 1759283.707934 2632 2630 41377191.01087 2633 2630 48367727.64837 2646 2630 19043969.25406 2647 2630 9605408.869306 2648 2630 -22428183.64302 2649 2630 -2463011.858771 2650 2630 -21110817.73799 2651 2630 38554054.16679 2652 2630 -20539364.07277 2653 2630 11505408.86868 2654 2630 -25226633.25495 2718 2630 8005089.696258 2719 2630 -7635451.454545 2720 2630 -9407733.938713 2721 2630 51680080.98832 2722 2630 -5277708.208769 2723 2630 -58666023.42418 2724 2630 17900923.03284 2725 2630 12913159.66331 2726 2630 -36646590.5368 2736 2630 439820.6128855 2737 2630 -31491805.80303 2738 2630 -4060894.923526 2739 2630 1759282.450699 2740 2630 -21110832.82468 2741 2630 -105887547.9636 2742 2630 439820.6129005 2743 2630 52602638.6277 2744 2630 -115814770.8741 2757 2630 -8444910.309145 2758 2630 -8163229.232496 2759 2630 -10570710.68328 2760 2630 -53439363.43899 2761 2630 -5277708.20877 2762 2630 -66116380.01208 2763 2630 -18340743.64572 2764 2630 13440937.44126 2765 2630 -39208792.08802 2631 2631 680142840.8764 2632 2631 13175247.2066 2633 2631 6382789.174558 2634 2631 -82619272.09145 2635 2631 -81460003.59595 2636 2631 4837026.623929 2649 2631 -72712122.80639 2650 2631 -47777777.76993 2651 2631 18780080.36483 2652 2631 -131943732.0842 2653 2631 25894289.31629 2654 2631 -1690287.649399 2655 2631 -44746568.51674 2656 2631 30676797.34938 2657 2631 -2534802.781049 2721 2631 -19603280.6462 2722 2631 11944444.44837 2723 2631 8005089.696258 2724 2631 -51389094.80041 2725 2631 1955225.686484 2726 2631 35595150.68861 2739 2631 16294780.8482 2740 2631 4.217028617859e-06 2741 2631 439820.6128852 2742 2631 89751427.48146 2743 2631 3388998.455101 2744 2631 1627256.23664 2745 2631 -37804191.87041 2746 2631 -19718417.92848 2747 2631 14356015.6679 2760 2631 -20039396.92541 2761 2631 -11944444.44837 2762 2631 -8444910.309145 2763 2631 -60532186.86274 2764 2631 6145877.671103 2765 2631 -45375800.4239 2766 2631 -19078219.62127 2767 2631 8228316.115794 2768 2631 -6175963.728574 2632 2632 735751686.9788 2633 2632 -52100622.42778 2634 2632 -81504841.33087 2635 2632 -266648531.6403 2636 2632 10310073.83947 2649 2632 -47777777.76993 2650 2632 -58377882.05435 2651 2632 9394297.757917 2652 2632 25894289.31629 2653 2632 34891492.87158 2654 2632 -10707202.07691 2655 2632 30676797.34938 2656 2632 -128279685.5979 2657 2632 5700516.123451 2721 2632 11944444.44837 2722 2632 -16019732.12234 2723 2632 -7635451.454545 2724 2632 1964829.816337 2725 2632 -1457900.386174 2726 2632 -5080618.041869 2739 2632 5.125999450684e-06 2740 2632 -29094034.58311 2741 2632 -31702916.914 2742 2632 3388998.455098 2743 2632 100011639.1232 2744 2632 -13368588.23948 2745 2632 -19728022.05833 2746 2632 -83236811.85808 2747 2632 44683227.92718 2760 2632 -11944444.44837 2761 2632 -16455848.40155 2762 2632 -8163229.232496 2763 2632 6145877.671102 2764 2632 -17818422.88929 2765 2632 3275933.400212 2766 2632 8228316.115794 2767 2632 -38329051.2794 2768 2632 18012970.71223 2633 2633 621822217.5976 2634 2633 4840483.520374 2635 2633 10313958.28093 2636 2633 -53773245.36454 2649 2633 19043969.25406 2650 2633 9605408.869306 2651 2633 -22428183.64302 2652 2633 -6440287.64862 2653 2633 -10707202.07691 2654 2633 45832031.608 2655 2633 -2534802.780529 2656 2633 5700516.123451 2657 2633 -29032713.73637 2721 2633 8005089.696258 2722 2633 -7635451.454545 2723 2633 -9407733.938713 2724 2633 36913961.41127 2725 2633 -5283969.107957 2726 2633 -35687511.70929 2739 2633 439820.6128855 2740 2633 -31491805.80303 2741 2633 -4060894.923526 2742 2633 1636068.847779 2743 2633 -13361537.70386 2744 2633 -62110956.49564 2745 2633 14361165.99813 2746 2633 44679081.42414 2747 2633 -62517889.38316 2760 2633 -8444910.309145 2761 2633 -8163229.232496 2762 2633 -10570710.68328 2763 2633 -46695244.86759 2764 2633 3275933.401367 2765 2633 -60107504.48815 2766 2633 -6175963.728574 2767 2633 18012970.71223 2768 2633 -28603898.10301 2634 2634 495839808.9306 2635 2634 16337513.03765 2636 2634 47664.71513438 2652 2634 -75700660.41266 2653 2634 -45408902.36255 2654 2634 2674577.975484 2655 2634 -30456445.17167 2656 2634 36813695.54339 2657 2634 -1688029.935787 2658 2634 60889192.4204 2659 2634 -23523603.93206 2660 2634 -12036.74060798 2661 2634 -19031852.31565 2662 2634 39818292.51576 2663 2634 -574511.0673158 2724 2634 -17479931.67357 2725 2634 14362145.7276 2726 2634 5833486.609719 2742 2634 -31941173.76503 2743 2634 -19728022.05833 2744 2634 -12009716.04913 2745 2634 24089286.29196 2746 2634 3839092.775206 2747 2634 10350875.53811 2763 2634 -25149760.01167 2764 2634 -11436618.24716 2765 2634 -12495973.82755 2766 2634 -53221395.58403 2767 2634 8623814.868827 2768 2634 -52049556.20671 2769 2634 -15616531.23755 2770 2634 -5720032.851413 2771 2634 11718275.57488 2772 2634 -19138192.52839 2773 2634 10059619.78527 2774 2634 -12797947.19522 2635 2635 714233526.3379 2636 2635 -17784727.63113 2652 2635 -45408902.36255 2653 2635 -40143456.5852 2654 2635 121080.7303977 2655 2635 36813695.54338 2656 2635 141843299.2925 2657 2635 -3656369.598247 2658 2635 -4412492.824084 2659 2635 -31730042.91106 2660 2635 420993.0422516 2661 2635 39818292.51576 2662 2635 -41406510.74943 2663 2635 495848.037314 2724 2635 9574763.8184 2725 2635 -44269000.15613 2726 2635 -13244377.7058 2742 2635 -19718417.92848 2743 2635 -77373793.75269 2744 2635 -39681478.38126 2745 2635 3839092.775206 2746 2635 72806765.35626 2747 2635 -2276323.108396 2763 2635 -11436618.24716 2764 2635 -16666806.57997 2765 2635 -10481763.82233 2766 2635 8623814.868826 2767 2635 -9785420.099232 2768 2635 5243568.66829 2769 2635 -942255.0720671 2770 2635 -38793986.71761 2771 2635 33437788.15322 2772 2635 10059619.78527 2773 2635 -24375456.5589 2774 2635 16788670.00494 2636 2636 601702510.7098 2652 2636 2674577.975744 2653 2636 121080.7306057 2654 2636 -12802814.23482 2655 2636 -1688029.935786 2656 2636 -3656369.598247 2657 2636 151283500.6691 2658 2636 -12036.74060512 2659 2636 420993.0422515 2660 2636 94679889.0428 2661 2636 -574511.067056 2662 2636 495848.037314 2663 2636 22138037.08526 2724 2636 3888991.073146 2725 2636 -14800902.31119 2726 2636 -19824082.64697 2742 2636 -12006053.84798 2743 2636 -39687207.82015 2744 2636 -46883174.43545 2745 2636 -10308568.90294 2746 2636 -5821027.16094 2747 2636 -112164251.0942 2763 2636 -12495973.82755 2764 2636 -10481763.82233 2765 2636 -19781022.96801 2766 2636 -52049556.20697 2767 2636 5243568.669446 2768 2636 -79607627.60272 2769 2636 3593275.573656 2770 2636 33437788.15322 2771 2636 -58989344.86761 2772 2636 -12797947.19522 2773 2636 16788670.00494 2774 2636 -31971025.74039 2637 2637 393809815.9996 2638 2637 1.168251037598e-05 2639 2637 -1759210.362797 2640 2637 44686744.27678 2641 2637 9555555.553978 2642 2637 -3738413.701805 2727 2637 -71968136.03531 2728 2637 4.157423973083e-06 2729 2637 51943969.87703 2730 2637 -29817851.87049 2731 2637 -11944444.44837 2732 2637 17900923.03284 2748 2637 44430116.09181 2749 2637 1.907348632813e-06 2750 2637 -10318414.32804 2751 2637 -12806461.31664 2752 2637 2388888.889668 2753 2637 -3404256.361406 2638 2638 336472853.0197 2639 2638 -42221635.45517 2640 2638 -9555555.553992 2641 2638 -46090878.57506 2642 2638 21321928.83866 2727 2638 3.337860107422e-06 2728 2638 -19412223.56332 2729 2638 -5277708.208769 2730 2638 -11944444.44837 2731 2638 -26234303.34662 2732 2638 12913159.66331 2748 2638 2.861022949219e-06 2749 2638 30095922.00342 2750 2638 -10555416.41234 2751 2638 -2388888.889678 2752 2638 -35500869.03229 2753 2638 26354097.09154 2639 2639 364276267.6409 2640 2639 4178252.963561 2641 2639 20899706.61651 2642 2639 24137222.99725 2727 2639 51680080.98832 2728 2639 -5277708.208769 2729 2639 -58666023.42418 2730 2639 17900923.03284 2731 2639 12913159.66331 2732 2639 -36646590.5368 2748 2639 10758252.33516 2749 2639 -10555416.41234 2750 2639 -52990414.80866 2751 2639 3844076.974307 2752 2639 26354097.09164 2753 2639 -57907385.43707 2640 2640 393809815.9996 2641 2640 1.168251037598e-05 2642 2640 -1759210.362797 2643 2640 44686744.27678 2644 2640 9555555.553978 2645 2640 -3738413.701805 2727 2640 -19603280.6462 2728 2640 11944444.44837 2729 2640 8005089.696258 2730 2640 -71968136.03531 2731 2640 4.157423973083e-06 2732 2640 51943969.87703 2733 2640 -29817851.87049 2734 2640 -11944444.44837 2735 2640 17900923.03284 2748 2640 8147390.424101 2749 2640 -2388888.889671 2750 2640 -1425089.694098 2751 2640 44430116.09181 2752 2640 1.907348632813e-06 2753 2640 -10318414.32804 2754 2640 -12806461.31664 2755 2640 2388888.889668 2756 2640 -3404256.361406 2641 2641 336472853.0197 2642 2641 -42221635.45517 2643 2641 -9555555.553992 2644 2641 -46090878.57506 2645 2641 21321928.83866 2727 2641 11944444.44837 2728 2641 -16019732.12234 2729 2641 -7635451.454545 2730 2641 3.337860107422e-06 2731 2641 -19412223.56332 2732 2641 -5277708.208769 2733 2641 -11944444.44837 2734 2641 -26234303.34662 2735 2641 12913159.66331 2748 2641 2388888.889676 2749 2641 -14547017.29156 2750 2641 -15798680.67921 2751 2641 2.861022949219e-06 2752 2641 30095922.00342 2753 2641 -10555416.41234 2754 2641 -2388888.889678 2755 2641 -35500869.03229 2756 2641 26354097.09154 2642 2642 364276267.6409 2643 2642 4178252.963561 2644 2642 20899706.61651 2645 2642 24137222.99725 2727 2642 8005089.696258 2728 2642 -7635451.454545 2729 2642 -9407733.938713 2730 2642 51680080.98832 2731 2642 -5277708.208769 2732 2642 -58666023.42418 2733 2642 17900923.03284 2734 2642 12913159.66331 2735 2642 -36646590.5368 2748 2642 1864910.306983 2749 2642 -15798680.67931 2750 2642 -2030447.461764 2751 2642 10758252.33516 2752 2642 -10555416.41234 2753 2642 -52990414.80866 2754 2642 3844076.974307 2755 2642 26354097.09164 2756 2642 -57907385.43707 2643 2643 393809815.9996 2644 2643 1.168251037598e-05 2645 2643 -1759210.362797 2646 2643 44686744.27678 2647 2643 9555555.553978 2648 2643 -3738413.701805 2730 2643 -19603280.6462 2731 2643 11944444.44837 2732 2643 8005089.696258 2733 2643 -71968136.03531 2734 2643 4.157423973083e-06 2735 2643 51943969.87703 2736 2643 -29817851.87049 2737 2643 -11944444.44837 2738 2643 17900923.03284 2751 2643 8147390.424101 2752 2643 -2388888.889671 2753 2643 -1425089.694098 2754 2643 44430116.09181 2755 2643 1.907348632813e-06 2756 2643 -10318414.32804 2757 2643 -12806461.31664 2758 2643 2388888.889668 2759 2643 -3404256.361406 2644 2644 336472853.0197 2645 2644 -42221635.45517 2646 2644 -9555555.553992 2647 2644 -46090878.57506 2648 2644 21321928.83866 2730 2644 11944444.44837 2731 2644 -16019732.12234 2732 2644 -7635451.454545 2733 2644 3.337860107422e-06 2734 2644 -19412223.56332 2735 2644 -5277708.208769 2736 2644 -11944444.44837 2737 2644 -26234303.34662 2738 2644 12913159.66331 2751 2644 2388888.889676 2752 2644 -14547017.29156 2753 2644 -15798680.67921 2754 2644 2.861022949219e-06 2755 2644 30095922.00342 2756 2644 -10555416.41234 2757 2644 -2388888.889678 2758 2644 -35500869.03229 2759 2644 26354097.09154 2645 2645 364276267.6409 2646 2645 4178252.963561 2647 2645 20899706.61651 2648 2645 24137222.99725 2730 2645 8005089.696258 2731 2645 -7635451.454545 2732 2645 -9407733.938713 2733 2645 51680080.98832 2734 2645 -5277708.208769 2735 2645 -58666023.42418 2736 2645 17900923.03284 2737 2645 12913159.66331 2738 2645 -36646590.5368 2751 2645 1864910.306983 2752 2645 -15798680.67931 2753 2645 -2030447.461764 2754 2645 10758252.33516 2755 2645 -10555416.41234 2756 2645 -52990414.80866 2757 2645 3844076.974307 2758 2645 26354097.09164 2759 2645 -57907385.43707 2646 2646 393809815.9996 2647 2646 1.168251037598e-05 2648 2646 -1759210.362797 2649 2646 44686744.27678 2650 2646 9555555.553978 2651 2646 -3738413.701805 2733 2646 -19603280.6462 2734 2646 11944444.44837 2735 2646 8005089.696258 2736 2646 -71968136.03531 2737 2646 4.157423973083e-06 2738 2646 51943969.87703 2739 2646 -29817851.87049 2740 2646 -11944444.44837 2741 2646 17900923.03284 2754 2646 8147390.424101 2755 2646 -2388888.889671 2756 2646 -1425089.694098 2757 2646 44430116.09181 2758 2646 1.907348632813e-06 2759 2646 -10318414.32804 2760 2646 -12806461.31664 2761 2646 2388888.889668 2762 2646 -3404256.361406 2647 2647 336472853.0197 2648 2647 -42221635.45517 2649 2647 -9555555.553992 2650 2647 -46090878.57506 2651 2647 21321928.83866 2733 2647 11944444.44837 2734 2647 -16019732.12234 2735 2647 -7635451.454545 2736 2647 3.337860107422e-06 2737 2647 -19412223.56332 2738 2647 -5277708.208769 2739 2647 -11944444.44837 2740 2647 -26234303.34662 2741 2647 12913159.66331 2754 2647 2388888.889676 2755 2647 -14547017.29156 2756 2647 -15798680.67921 2757 2647 2.861022949219e-06 2758 2647 30095922.00342 2759 2647 -10555416.41234 2760 2647 -2388888.889678 2761 2647 -35500869.03229 2762 2647 26354097.09154 2648 2648 364276267.6409 2649 2648 4178252.963561 2650 2648 20899706.61651 2651 2648 24137222.99725 2733 2648 8005089.696258 2734 2648 -7635451.454545 2735 2648 -9407733.938713 2736 2648 51680080.98832 2737 2648 -5277708.208769 2738 2648 -58666023.42418 2739 2648 17900923.03284 2740 2648 12913159.66331 2741 2648 -36646590.5368 2754 2648 1864910.306983 2755 2648 -15798680.67931 2756 2648 -2030447.461764 2757 2648 10758252.33516 2758 2648 -10555416.41234 2759 2648 -52990414.80866 2760 2648 3844076.974307 2761 2648 26354097.09164 2762 2648 -57907385.43707 2649 2649 393809815.9996 2650 2649 1.168251037598e-05 2651 2649 -1759210.362797 2652 2649 44686744.27678 2653 2649 9555555.553978 2654 2649 -3738413.701805 2736 2649 -19603280.6462 2737 2649 11944444.44837 2738 2649 8005089.696258 2739 2649 -71968136.03531 2740 2649 4.157423973083e-06 2741 2649 51943969.87703 2742 2649 -29817851.87049 2743 2649 -11944444.44837 2744 2649 17900923.03284 2757 2649 8147390.424101 2758 2649 -2388888.889671 2759 2649 -1425089.694098 2760 2649 44430116.09181 2761 2649 1.907348632813e-06 2762 2649 -10318414.32804 2763 2649 -12806461.31664 2764 2649 2388888.889668 2765 2649 -3404256.361406 2650 2650 336472853.0197 2651 2650 -42221635.45517 2652 2650 -9555555.553992 2653 2650 -46090878.57506 2654 2650 21321928.83866 2736 2650 11944444.44837 2737 2650 -16019732.12234 2738 2650 -7635451.454545 2739 2650 3.337860107422e-06 2740 2650 -19412223.56332 2741 2650 -5277708.208769 2742 2650 -11944444.44837 2743 2650 -26234303.34662 2744 2650 12913159.66331 2757 2650 2388888.889676 2758 2650 -14547017.29156 2759 2650 -15798680.67921 2760 2650 2.861022949219e-06 2761 2650 30095922.00342 2762 2650 -10555416.41234 2763 2650 -2388888.889678 2764 2650 -35500869.03229 2765 2650 26354097.09154 2651 2651 364276267.6409 2652 2651 4178252.963561 2653 2651 20899706.61651 2654 2651 24137222.99725 2736 2651 8005089.696258 2737 2651 -7635451.454545 2738 2651 -9407733.938713 2739 2651 51680080.98832 2740 2651 -5277708.208769 2741 2651 -58666023.42418 2742 2651 17900923.03284 2743 2651 12913159.66331 2744 2651 -36646590.5368 2757 2651 1864910.306983 2758 2651 -15798680.67931 2759 2651 -2030447.461764 2760 2651 10758252.33516 2761 2651 -10555416.41234 2762 2651 -52990414.80866 2763 2651 3844076.974307 2764 2651 26354097.09164 2765 2651 -57907385.43707 2652 2652 384444228.8383 2653 2652 2369408.517209 2654 2652 14989331.54212 2655 2652 6285692.86603 2656 2652 -21077017.68688 2657 2652 1443044.794795 2739 2652 -19603280.6462 2740 2652 11944444.44837 2741 2652 8005089.696258 2742 2652 -57207507.5192 2743 2652 6145877.671107 2744 2652 43364477.33833 2745 2652 -26546695.73564 2746 2652 -11436618.24716 2747 2652 13848470.62555 2760 2652 8147390.424101 2761 2652 -2388888.889671 2762 2652 -1425089.694098 2763 2652 41725581.05413 2764 2652 507938.7214912 2765 2652 -6453256.604583 2766 2652 -15664036.02673 2767 2652 -4772753.704127 2768 2652 5360864.194452 2653 2653 348340478.4061 2654 2653 -25212175.28334 2655 2653 -40188128.79485 2656 2653 -83559603.38511 2657 2653 4659847.811131 2739 2653 11944444.44837 2740 2653 -16019732.12234 2741 2653 -7635451.454545 2742 2653 6145877.671106 2743 2653 -14493743.54572 2744 2653 -8981011.042271 2745 2653 -11436618.24716 2746 2653 -18063742.30393 2747 2653 10594625.07348 2760 2653 2388888.889676 2761 2653 -14547017.29156 2762 2653 -15798680.67921 2763 2653 507938.7214905 2764 2653 32293290.44228 2765 2653 -6540775.042003 2766 2653 -9550531.483474 2767 2653 -38317603.62825 2768 2653 28361293.14454 2654 2654 356913639.2484 2655 2654 3026378.127865 2656 2654 4659847.811131 2657 2654 21841839.16531 2739 2654 8005089.696258 2740 2654 -7635451.454545 2741 2654 -9407733.938713 2742 2654 44683921.78504 2743 2654 -8981011.041011 2744 2654 -51241692.90527 2745 2654 13848470.62555 2746 2654 10594625.07348 2747 2654 -23506184.8986 2760 2654 1864910.306983 2761 2654 -15798680.67931 2762 2654 -2030447.461764 2763 2654 14622854.50307 2764 2654 -6540775.042003 2765 2654 -55780885.41815 2766 2654 11025586.41696 2767 2654 28361293.14339 2768 2654 -42429184.57622 2655 2655 392073206.9466 2656 2655 36749235.99511 2657 2655 -1748582.371002 2658 2655 -92329333.78509 2659 2655 -55737263.0241 2660 2655 744933.3770267 2661 2655 15757620.62389 2662 2655 -8314337.068925 2663 2655 88992.47062683 2742 2655 -16305861.25464 2743 2655 8228316.115794 2744 2655 4847647.38616 2745 2655 -52398287.78342 2746 2655 8623814.868829 2747 2655 51247665.9983 2763 2655 -10942417.8914 2764 2655 -9550531.483475 2765 2655 -9564135.802965 2766 2655 13533800.67906 2767 2655 8346935.407593 2768 2655 -10722054.94328 2769 2655 -36706081.42304 2770 2655 -13829269.11147 2771 2655 20496497.26015 2772 2655 -20473238.80768 2773 2655 -1819265.797273 2774 2655 5144935.657537 2656 2656 462078895.6081 2657 2656 -8762241.479656 2658 2656 -55737263.0241 2659 2656 -68893066.30047 2660 2656 495848.0373137 2661 2656 -27425448.1769 2662 2656 -76605666.65403 2663 2656 1562399.106027 2742 2656 8228316.115794 2743 2656 -35556692.91277 2744 2656 -15320362.63205 2745 2656 8623814.868829 2746 2656 -8962312.29862 2747 2656 -7013375.774193 2763 2656 -4772753.704129 2764 2656 -33595985.49293 2765 2656 -26048429.06869 2766 2656 8346935.407594 2767 2656 29320533.57608 2768 2656 -2123394.363487 2769 2656 -13829269.11147 2770 2656 -30963414.8944 2771 2656 16788670.00494 2772 2656 -6597043.576619 2773 2656 -43534214.45849 2774 2656 33716891.83347 2657 2657 467651094.3303 2658 2657 744933.3770265 2659 2657 495848.0373138 2660 2657 -5348518.465777 2661 2657 616770.2483149 2662 2657 1562399.106027 2663 2657 51162592.60563 2742 2657 4847647.38616 2743 2657 -15320362.63205 2744 2657 -21210942.45867 2745 2657 51247665.99856 2746 2657 -7013375.772933 2747 2657 -77412673.46776 2763 2657 -4691080.247253 2764 2657 -26048429.06995 2765 2657 -29838202.88199 2766 2657 9937389.497775 2767 2657 -2123394.363487 2768 2657 -108036961.3792 2769 2657 20496497.26015 2770 2657 16788670.00494 2771 2657 -38558984.07588 2772 2657 10337713.43846 2773 2657 33716891.83347 2774 2657 -53721133.01946 2658 2658 248111582.7161 2659 2658 61745826.148 2660 2658 -427778.0740535 2661 2658 -39359813.45319 2662 2658 -1596070.29982 2663 2658 -305118.5623656 2745 2658 -15064205.65599 2746 2658 -942255.0720674 2747 2658 -3602557.756001 2766 2658 -36153755.84147 2767 2658 -13829269.11147 2768 2658 -20128502.75319 2769 2658 313818.0877385 2770 2658 15275588.41011 2771 2658 8019687.386086 2772 2658 -37751670.53939 2773 2658 -504064.2265737 2774 2658 -33038626.87689 2659 2659 224272484.7333 2660 2659 -420993.0422466 2661 2659 17515040.80815 2662 2659 53662252.3764 2663 2659 -495848.0373107 2745 2659 -5720032.851414 2746 2659 -38241661.13605 2747 2659 -33228878.5025 2766 2659 -13829269.11147 2767 2659 -30411089.31283 2768 2659 -16544663.33934 2769 2659 15275588.41011 2770 2659 -5623309.775096 2771 2659 6562211.840209 2772 2659 4273713.552772 2773 2659 -14379753.72514 2774 2659 3211330.001623 2660 2660 302308289.169 2661 2660 -305118.5623623 2662 2660 -495848.0373107 2663 2660 81191347.98248 2745 2660 -11727557.7571 2746 2660 -33228878.5025 2747 2660 -57516476.65011 2766 2660 -20128502.75319 2767 2660 -16544663.33934 2768 2660 -37086115.85837 2769 2660 -8230312.611246 2770 2660 -6771121.490934 2771 2660 -88571362.45583 2772 2660 -33038626.87847 2773 2660 -3455336.667233 2774 2660 -53241548.9 2661 2661 193187533.5258 2662 2661 -29907885.14702 2663 2661 -792696.1747975 2745 2661 -18585866.94682 2746 2661 10059619.78527 2747 2661 12506219.47975 2766 2661 -18816262.06405 2767 2661 -6597043.57662 2768 2661 -10043953.22886 2769 2661 -37751670.53939 2770 2661 4273713.552774 2771 2661 32890539.77888 2772 2661 -122944.6401992 2773 2661 -7736289.761419 2774 2661 -5251694.918494 2662 2662 214903413.4079 2663 2662 -1562399.106019 2745 2662 10059619.78527 2746 2662 -23823130.97733 2747 2662 -16544663.33934 2766 2662 -1819265.797274 2767 2662 -41877237.71487 2768 2662 -32949774.82225 2769 2662 -504064.2265722 2770 2662 -14379753.72514 2771 2662 3211330.001623 2772 2662 -7736289.761419 2773 2662 4803378.226877 2774 2662 6283108.159956 2663 2663 246983991.3423 2745 2663 12506219.47975 2746 2663 -16544663.33934 2747 2663 -30498157.52287 2766 2663 -5115064.336773 2767 2663 -32949774.82225 2768 2663 -49302528.36979 2769 2663 32890539.77744 2770 2663 -3455336.667232 2771 2663 -53241548.9 2772 2663 4869971.746511 2773 2663 -7050225.171186 2774 2663 -67695749.71523 2664 2664 508612796.7711 2665 2664 47777777.76993 2666 2664 20248388.26907 2667 2664 -267652150.2947 2668 2664 -47793765.64302 2669 2664 -20241471.08164 2670 2664 6087083.420696 2671 2664 38238210.08904 2672 2664 -16367807.61161 2775 2664 57272319.20769 2776 2664 11944444.44837 2777 2664 16262217.83282 2778 2664 -96920154.16551 2779 2664 -11948441.41665 2780 2664 -57894966.96635 2781 2664 -19430363.65776 2782 2664 9559552.526969 2783 2664 -14502802.0572 2665 2665 436923838.9196 2666 2665 -52790465.59624 2667 2665 -47801759.57957 2668 2665 -43044343.65972 2669 2665 -29246608.86722 2670 2665 57357315.13355 2671 2665 6087083.420705 2672 2665 18374525.78853 2775 2665 11944444.44837 2776 2665 39350079.73598 2777 2665 -4237631.002181 2778 2665 -11950439.90079 2779 2665 -40768202.4791 2780 2665 -17881456.80322 2781 2665 14339328.79045 2782 2665 -19430363.65775 2783 2665 17403019.36621 2666 2666 498731997.6738 2667 2666 -20238012.48793 2668 2666 -23543989.15986 2669 2666 -9089122.520285 2670 2666 -24551711.41742 2671 2666 12249683.85902 2672 2666 16232222.45521 2775 2666 -4818855.100867 2776 2666 -21102266.9381 2777 2666 -61666013.98076 2778 2666 -57630268.59944 2779 2666 -16401283.68257 2780 2666 -82291258.12151 2781 2666 -21754203.08579 2782 2666 11602012.9108 2783 2666 -51814303.08735 2667 2667 866925828.5346 2668 2667 47817747.45269 2669 2667 23749660.20008 2670 2667 14263474.74723 2671 2667 -47793765.64302 2672 2667 20546059.94785 2673 2667 -181853790.138 2674 2667 3.248453140259e-06 2675 2667 -3518564.899638 2676 2667 -72853540.65349 2677 2667 47777777.76992 2678 2667 -20539363.4444 2775 2667 -85740387.93072 2776 2667 -11950439.90077 2777 2667 47775096.06898 2778 2667 112006329.4708 2779 2667 11954436.86906 2780 2667 5935349.843305 2781 2667 -36979414.9719 2782 2667 -11948441.41664 2783 2667 18346879.03149 2784 2667 -74762019.75572 2785 2667 2.533197402954e-07 2786 2667 -53703252.3277 2787 2667 -30778677.45218 2788 2667 11944444.44836 2789 2667 -18340743.64572 2668 2668 737900094.3577 2669 2668 -65443918.48946 2670 2668 -47801759.57957 2671 2668 -152989568.1247 2672 2668 35049537.95506 2673 2668 3.069639205933e-06 2674 2668 28369859.6463 2675 2668 -21110832.82467 2676 2668 47777777.76992 2677 2668 -58519346.56511 2678 2668 11505416.41223 2775 2668 -11948441.41664 2776 2668 -29588436.2443 2777 2668 4682155.144749 2778 2668 11954436.86906 2779 2668 79749895.91067 2780 2668 -16362631.77783 2781 2668 -11950439.90078 2782 2668 -78792675.71048 2783 2668 51029508.03613 2784 2668 -8.195638656616e-07 2785 2668 -22206107.28377 2786 2668 -5277708.20877 2787 2668 11944444.44836 2788 2668 -27195128.92833 2789 2668 13440937.44126 2669 2669 768350518.5004 2670 2669 20813297.08829 2671 2669 40963180.50213 2672 2669 19484057.05595 2673 2669 -3518564.899638 2674 2669 -21110832.82467 2675 2669 48052583.38233 2676 2669 -20803252.33311 2677 2669 11716527.5232 2678 2669 -22805384.02253 2775 2669 47510397.70207 2776 2669 3205506.989851 2777 2669 -52478548.16204 2778 2669 5939756.113784 2779 2669 -16359106.80793 2780 2669 -87179377.66603 2781 2669 18349946.72438 2782 2669 52296851.6274 2783 2669 -103249742.1615 2784 2669 -53439363.43899 2785 2669 -5277708.20877 2786 2669 -66116380.01208 2787 2669 -18340743.64572 2788 2669 13440937.44126 2789 2669 -39208792.08802 2670 2670 508612796.7711 2671 2670 47777777.76993 2672 2670 20248388.26907 2673 2670 -71804122.04904 2674 2670 -47777777.76993 2675 2670 19043969.88243 2676 2670 -267652150.2947 2677 2670 -47793765.64302 2678 2670 -20241471.08164 2679 2670 6087083.420696 2680 2670 38238210.08904 2681 2670 -16367807.61161 2775 2670 1532382.642161 2776 2670 14339328.79045 2777 2670 9874015.186731 2778 2670 -4845636.536104 2779 2670 -11950439.90078 2780 2670 -8009104.879749 2781 2670 57272319.20769 2782 2670 11944444.44837 2783 2670 16262217.83282 2784 2670 -20039396.92541 2785 2670 -11944444.44837 2786 2670 -8444910.309145 2787 2670 -96920154.16551 2788 2670 -11948441.41665 2789 2670 -57894966.96635 2790 2670 -19430363.65776 2791 2670 9559552.526969 2792 2670 -14502802.0572 2671 2671 436923838.9196 2672 2671 -52790465.59624 2673 2671 -47777777.76993 2674 2671 -57469927.96065 2675 2671 9605416.412441 2676 2671 -47801759.57957 2677 2671 -43044343.65972 2678 2671 -29246608.86722 2679 2671 57357315.13355 2680 2671 6087083.420705 2681 2671 18374525.78853 2775 2671 9559552.526969 2776 2671 1532382.642157 2777 2671 -5266148.137347 2778 2671 -11948441.41664 2779 2671 -46658897.27468 2780 2671 -32026328.33686 2781 2671 11944444.44837 2782 2671 39350079.73598 2783 2671 -4237631.002181 2784 2671 -11944444.44837 2785 2671 -16455848.40155 2786 2671 -8163229.232496 2787 2671 -11950439.90079 2788 2671 -40768202.4791 2789 2671 -17881456.80322 2790 2671 14339328.79045 2791 2671 -19430363.65775 2792 2671 17403019.36621 2672 2672 498731997.6738 2673 2672 18780080.99371 2674 2672 9394305.301468 2675 2672 -20006934.4106 2676 2672 -20238012.48793 2677 2672 -23543989.15986 2678 2672 -9089122.520285 2679 2672 -24551711.41742 2680 2672 12249683.85902 2681 2672 16232222.45521 2775 2672 6582676.791154 2776 2672 -7899222.206021 2777 2672 4086353.712421 2778 2672 -8007766.485252 2779 2672 -33293672.07046 2780 2672 -17559666.33271 2781 2672 -4818855.100867 2782 2672 -21102266.9381 2783 2672 -61666013.98076 2784 2672 -8444910.309145 2785 2672 -8163229.232496 2786 2672 -10570710.68328 2787 2672 -57630268.59944 2788 2672 -16401283.68257 2789 2672 -82291258.12151 2790 2672 -21754203.08579 2791 2672 11602012.9108 2792 2672 -51814303.08735 2673 2673 801867013.5374 2674 2673 2.598762512207e-05 2675 2673 7037129.799195 2676 2673 92970237.73849 2677 2673 -1.010298728943e-05 2678 2673 1759282.450673 2682 2673 -181853790.138 2683 2673 3.248453140259e-06 2684 2673 -3518564.899638 2685 2673 -72853540.65349 2686 2673 47777777.76992 2687 2673 -20539363.4444 2778 2673 -71968136.03531 2779 2673 4.157423973083e-06 2780 2673 51943969.87703 2781 2673 -29817851.87049 2782 2673 -11944444.44837 2783 2673 17900923.03284 2784 2673 88895212.80375 2785 2673 4.112720489502e-06 2786 2673 1759282.450699 2787 2673 -25612922.63328 2788 2673 -1.080334186554e-05 2789 2673 439820.6129002 2793 2673 -74762019.75572 2794 2673 2.533197402954e-07 2795 2673 -53703252.3277 2796 2673 -30778677.45218 2797 2673 11944444.44836 2798 2673 -18340743.64572 2674 2674 687193460.8868 2675 2674 -84443331.25708 2676 2674 -1.019239425659e-05 2677 2674 -88585023.89729 2678 2674 42221665.62855 2682 2674 3.069639205933e-06 2683 2674 28369859.6463 2684 2674 -21110832.82467 2685 2674 47777777.76992 2686 2674 -58519346.56511 2687 2674 11505416.41223 2778 2674 3.337860107422e-06 2779 2674 -19412223.56332 2780 2674 -5277708.208769 2781 2674 -11944444.44837 2782 2674 -26234303.34662 2783 2674 12913159.66331 2784 2674 4.351139068604e-06 2785 2674 60226824.62697 2786 2674 -21110832.82468 2787 2674 -9.95397567749e-06 2788 2674 -71001738.06458 2789 2674 52813749.73867 2793 2674 -8.195638656616e-07 2794 2674 -22206107.28377 2795 2674 -5277708.20877 2796 2674 11944444.44836 2797 2674 -27195128.92833 2798 2674 13440937.44126 2675 2675 766546241.681 2676 2675 1759282.450673 2677 2675 42221665.62855 2678 2675 57866058.65466 2682 2675 -3518564.899638 2683 2675 -21110832.82467 2684 2675 48052583.38233 2685 2675 -20803252.33311 2686 2675 11716527.5232 2687 2675 -22805384.02253 2778 2675 51680080.98832 2779 2675 -5277708.208769 2780 2675 -58666023.42418 2781 2675 17900923.03284 2782 2675 12913159.66331 2783 2675 -36646590.5368 2784 2675 1759282.450699 2785 2675 -21110832.82468 2786 2675 -105887547.9636 2787 2675 439820.6129005 2788 2675 52602638.6277 2789 2675 -115814770.8741 2793 2675 -53439363.43899 2794 2675 -5277708.20877 2795 2675 -66116380.01208 2796 2675 -18340743.64572 2797 2675 13440937.44126 2798 2675 -39208792.08802 2676 2676 866925828.5346 2677 2676 47817747.45269 2678 2676 23749660.20008 2679 2676 14263474.74723 2680 2676 -47793765.64302 2681 2676 20546059.94785 2682 2676 -71804122.04904 2683 2676 -47777777.76993 2684 2676 19043969.88243 2685 2676 -181853790.138 2686 2676 3.248453140259e-06 2687 2676 -3518564.899638 2688 2676 -72853540.65349 2689 2676 47777777.76992 2690 2676 -20539363.4444 2778 2676 -19603280.6462 2779 2676 11944444.44837 2780 2676 8005089.696258 2781 2676 -85740387.93072 2782 2676 -11950439.90077 2783 2676 47775096.06898 2784 2676 16294780.8482 2785 2676 4.217028617859e-06 2786 2676 439820.6128852 2787 2676 112006329.4708 2788 2676 11954436.86906 2789 2676 5935349.843305 2790 2676 -36979414.9719 2791 2676 -11948441.41664 2792 2676 18346879.03149 2793 2676 -20039396.92541 2794 2676 -11944444.44837 2795 2676 -8444910.309145 2796 2676 -74762019.75572 2797 2676 2.533197402954e-07 2798 2676 -53703252.3277 2799 2676 -30778677.45218 2800 2676 11944444.44836 2801 2676 -18340743.64572 2677 2677 737900094.3577 2678 2677 -65443918.48946 2679 2677 -47801759.57957 2680 2677 -152989568.1247 2681 2677 35049537.95506 2682 2677 -47777777.76993 2683 2677 -57469927.96065 2684 2677 9605416.412441 2685 2677 3.069639205933e-06 2686 2677 28369859.6463 2687 2677 -21110832.82467 2688 2677 47777777.76992 2689 2677 -58519346.56511 2690 2677 11505416.41223 2778 2677 11944444.44837 2779 2677 -16019732.12234 2780 2677 -7635451.454545 2781 2677 -11948441.41664 2782 2677 -29588436.2443 2783 2677 4682155.144749 2784 2677 5.125999450684e-06 2785 2677 -29094034.58311 2786 2677 -31702916.914 2787 2677 11954436.86906 2788 2677 79749895.91067 2789 2677 -16362631.77783 2790 2677 -11950439.90078 2791 2677 -78792675.71048 2792 2677 51029508.03613 2793 2677 -11944444.44837 2794 2677 -16455848.40155 2795 2677 -8163229.232496 2796 2677 -8.195638656616e-07 2797 2677 -22206107.28377 2798 2677 -5277708.20877 2799 2677 11944444.44836 2800 2677 -27195128.92833 2801 2677 13440937.44126 2678 2678 768350518.5004 2679 2678 20813297.08829 2680 2678 40963180.50213 2681 2678 19484057.05595 2682 2678 18780080.99371 2683 2678 9394305.301468 2684 2678 -20006934.4106 2685 2678 -3518564.899638 2686 2678 -21110832.82467 2687 2678 48052583.38233 2688 2678 -20803252.33311 2689 2678 11716527.5232 2690 2678 -22805384.02253 2778 2678 8005089.696258 2779 2678 -7635451.454545 2780 2678 -9407733.938713 2781 2678 47510397.70207 2782 2678 3205506.989851 2783 2678 -52478548.16204 2784 2678 439820.6128855 2785 2678 -31491805.80303 2786 2678 -4060894.923526 2787 2678 5939756.113784 2788 2678 -16359106.80793 2789 2678 -87179377.66603 2790 2678 18349946.72438 2791 2678 52296851.6274 2792 2678 -103249742.1615 2793 2678 -8444910.309145 2794 2678 -8163229.232496 2795 2678 -10570710.68328 2796 2678 -53439363.43899 2797 2678 -5277708.20877 2798 2678 -66116380.01208 2799 2678 -18340743.64572 2800 2678 13440937.44126 2801 2678 -39208792.08802 2679 2679 508612796.7711 2680 2679 47777777.76993 2681 2679 20248388.26907 2685 2679 -71804122.04904 2686 2679 -47777777.76993 2687 2679 19043969.88243 2688 2679 -267652150.2947 2689 2679 -47793765.64302 2690 2679 -20241471.08164 2691 2679 6087083.420696 2692 2679 38238210.08904 2693 2679 -16367807.61161 2781 2679 1532382.642161 2782 2679 14339328.79045 2783 2679 9874015.186731 2787 2679 -4845636.536104 2788 2679 -11950439.90078 2789 2679 -8009104.879749 2790 2679 57272319.20769 2791 2679 11944444.44837 2792 2679 16262217.83282 2796 2679 -20039396.92541 2797 2679 -11944444.44837 2798 2679 -8444910.309145 2799 2679 -96920154.16551 2800 2679 -11948441.41665 2801 2679 -57894966.96635 2802 2679 -19430363.65776 2803 2679 9559552.526969 2804 2679 -14502802.0572 2680 2680 436923838.9196 2681 2680 -52790465.59624 2685 2680 -47777777.76993 2686 2680 -57469927.96065 2687 2680 9605416.412441 2688 2680 -47801759.57957 2689 2680 -43044343.65972 2690 2680 -29246608.86722 2691 2680 57357315.13355 2692 2680 6087083.420705 2693 2680 18374525.78853 2781 2680 9559552.526969 2782 2680 1532382.642157 2783 2680 -5266148.137347 2787 2680 -11948441.41664 2788 2680 -46658897.27468 2789 2680 -32026328.33686 2790 2680 11944444.44837 2791 2680 39350079.73598 2792 2680 -4237631.002181 2796 2680 -11944444.44837 2797 2680 -16455848.40155 2798 2680 -8163229.232496 2799 2680 -11950439.90079 2800 2680 -40768202.4791 2801 2680 -17881456.80322 2802 2680 14339328.79045 2803 2680 -19430363.65775 2804 2680 17403019.36621 2681 2681 498731997.6738 2685 2681 18780080.99371 2686 2681 9394305.301468 2687 2681 -20006934.4106 2688 2681 -20238012.48793 2689 2681 -23543989.15986 2690 2681 -9089122.520285 2691 2681 -24551711.41742 2692 2681 12249683.85902 2693 2681 16232222.45521 2781 2681 6582676.791154 2782 2681 -7899222.206021 2783 2681 4086353.712421 2787 2681 -8007766.485252 2788 2681 -33293672.07046 2789 2681 -17559666.33271 2790 2681 -4818855.100867 2791 2681 -21102266.9381 2792 2681 -61666013.98076 2796 2681 -8444910.309145 2797 2681 -8163229.232496 2798 2681 -10570710.68328 2799 2681 -57630268.59944 2800 2681 -16401283.68257 2801 2681 -82291258.12151 2802 2681 -21754203.08579 2803 2681 11602012.9108 2804 2681 -51814303.08735 2682 2682 801867013.5374 2683 2682 2.598762512207e-05 2684 2682 7037129.799195 2685 2682 92970237.73849 2686 2682 -1.010298728943e-05 2687 2682 1759282.450673 2694 2682 -181853790.138 2695 2682 3.248453140259e-06 2696 2682 -3518564.899638 2697 2682 -72853540.65349 2698 2682 47777777.76992 2699 2682 -20539363.4444 2784 2682 -71968136.03531 2785 2682 4.157423973083e-06 2786 2682 51943969.87703 2787 2682 -29817851.87049 2788 2682 -11944444.44837 2789 2682 17900923.03284 2793 2682 88895212.80375 2794 2682 4.112720489502e-06 2795 2682 1759282.450699 2796 2682 -25612922.63328 2797 2682 -1.080334186554e-05 2798 2682 439820.6129002 2805 2682 -74762019.75572 2806 2682 2.533197402954e-07 2807 2682 -53703252.3277 2808 2682 -30778677.45218 2809 2682 11944444.44836 2810 2682 -18340743.64572 2683 2683 687193460.8868 2684 2683 -84443331.25708 2685 2683 -1.019239425659e-05 2686 2683 -88585023.89729 2687 2683 42221665.62855 2694 2683 3.069639205933e-06 2695 2683 28369859.6463 2696 2683 -21110832.82467 2697 2683 47777777.76992 2698 2683 -58519346.56511 2699 2683 11505416.41223 2784 2683 3.337860107422e-06 2785 2683 -19412223.56332 2786 2683 -5277708.208769 2787 2683 -11944444.44837 2788 2683 -26234303.34662 2789 2683 12913159.66331 2793 2683 4.351139068604e-06 2794 2683 60226824.62697 2795 2683 -21110832.82468 2796 2683 -9.95397567749e-06 2797 2683 -71001738.06458 2798 2683 52813749.73867 2805 2683 -8.195638656616e-07 2806 2683 -22206107.28377 2807 2683 -5277708.20877 2808 2683 11944444.44836 2809 2683 -27195128.92833 2810 2683 13440937.44126 2684 2684 766546241.681 2685 2684 1759282.450673 2686 2684 42221665.62855 2687 2684 57866058.65466 2694 2684 -3518564.899638 2695 2684 -21110832.82467 2696 2684 48052583.38233 2697 2684 -20803252.33311 2698 2684 11716527.5232 2699 2684 -22805384.02253 2784 2684 51680080.98832 2785 2684 -5277708.208769 2786 2684 -58666023.42418 2787 2684 17900923.03284 2788 2684 12913159.66331 2789 2684 -36646590.5368 2793 2684 1759282.450699 2794 2684 -21110832.82468 2795 2684 -105887547.9636 2796 2684 439820.6129005 2797 2684 52602638.6277 2798 2684 -115814770.8741 2805 2684 -53439363.43899 2806 2684 -5277708.20877 2807 2684 -66116380.01208 2808 2684 -18340743.64572 2809 2684 13440937.44126 2810 2684 -39208792.08802 2685 2685 801867013.5374 2686 2685 2.598762512207e-05 2687 2685 7037129.799195 2688 2685 92970237.73849 2689 2685 -1.010298728943e-05 2690 2685 1759282.450673 2694 2685 -71804122.04904 2695 2685 -47777777.76993 2696 2685 19043969.88243 2697 2685 -181853790.138 2698 2685 3.248453140259e-06 2699 2685 -3518564.899638 2700 2685 -72853540.65349 2701 2685 47777777.76992 2702 2685 -20539363.4444 2784 2685 -19603280.6462 2785 2685 11944444.44837 2786 2685 8005089.696258 2787 2685 -71968136.03531 2788 2685 4.157423973083e-06 2789 2685 51943969.87703 2790 2685 -29817851.87049 2791 2685 -11944444.44837 2792 2685 17900923.03284 2793 2685 16294780.8482 2794 2685 4.217028617859e-06 2795 2685 439820.6128852 2796 2685 88895212.80375 2797 2685 4.112720489502e-06 2798 2685 1759282.450699 2799 2685 -25612922.63328 2800 2685 -1.080334186554e-05 2801 2685 439820.6129002 2805 2685 -20039396.92541 2806 2685 -11944444.44837 2807 2685 -8444910.309145 2808 2685 -74762019.75572 2809 2685 2.533197402954e-07 2810 2685 -53703252.3277 2811 2685 -30778677.45218 2812 2685 11944444.44836 2813 2685 -18340743.64572 2686 2686 687193460.8868 2687 2686 -84443331.25708 2688 2686 -1.019239425659e-05 2689 2686 -88585023.89729 2690 2686 42221665.62855 2694 2686 -47777777.76993 2695 2686 -57469927.96065 2696 2686 9605416.412441 2697 2686 3.069639205933e-06 2698 2686 28369859.6463 2699 2686 -21110832.82467 2700 2686 47777777.76992 2701 2686 -58519346.56511 2702 2686 11505416.41223 2784 2686 11944444.44837 2785 2686 -16019732.12234 2786 2686 -7635451.454545 2787 2686 3.337860107422e-06 2788 2686 -19412223.56332 2789 2686 -5277708.208769 2790 2686 -11944444.44837 2791 2686 -26234303.34662 2792 2686 12913159.66331 2793 2686 5.125999450684e-06 2794 2686 -29094034.58311 2795 2686 -31702916.914 2796 2686 4.351139068604e-06 2797 2686 60226824.62697 2798 2686 -21110832.82468 2799 2686 -9.95397567749e-06 2800 2686 -71001738.06458 2801 2686 52813749.73867 2805 2686 -11944444.44837 2806 2686 -16455848.40155 2807 2686 -8163229.232496 2808 2686 -8.195638656616e-07 2809 2686 -22206107.28377 2810 2686 -5277708.20877 2811 2686 11944444.44836 2812 2686 -27195128.92833 2813 2686 13440937.44126 2687 2687 766546241.681 2688 2687 1759282.450673 2689 2687 42221665.62855 2690 2687 57866058.65466 2694 2687 18780080.99371 2695 2687 9394305.301468 2696 2687 -20006934.4106 2697 2687 -3518564.899638 2698 2687 -21110832.82467 2699 2687 48052583.38233 2700 2687 -20803252.33311 2701 2687 11716527.5232 2702 2687 -22805384.02253 2784 2687 8005089.696258 2785 2687 -7635451.454545 2786 2687 -9407733.938713 2787 2687 51680080.98832 2788 2687 -5277708.208769 2789 2687 -58666023.42418 2790 2687 17900923.03284 2791 2687 12913159.66331 2792 2687 -36646590.5368 2793 2687 439820.6128855 2794 2687 -31491805.80303 2795 2687 -4060894.923526 2796 2687 1759282.450699 2797 2687 -21110832.82468 2798 2687 -105887547.9636 2799 2687 439820.6129005 2800 2687 52602638.6277 2801 2687 -115814770.8741 2805 2687 -8444910.309145 2806 2687 -8163229.232496 2807 2687 -10570710.68328 2808 2687 -53439363.43899 2809 2687 -5277708.20877 2810 2687 -66116380.01208 2811 2687 -18340743.64572 2812 2687 13440937.44126 2813 2687 -39208792.08802 2688 2688 866925828.5346 2689 2688 47817747.45269 2690 2688 23749660.20008 2691 2688 14263474.74723 2692 2688 -47793765.64302 2693 2688 20546059.94785 2697 2688 -71804122.04904 2698 2688 -47777777.76993 2699 2688 19043969.88243 2700 2688 -181853790.138 2701 2688 3.248453140259e-06 2702 2688 -3518564.899638 2703 2688 -72853540.65349 2704 2688 47777777.76992 2705 2688 -20539363.4444 2787 2688 -19603280.6462 2788 2688 11944444.44837 2789 2688 8005089.696258 2790 2688 -85740387.93072 2791 2688 -11950439.90077 2792 2688 47775096.06898 2796 2688 16294780.8482 2797 2688 4.217028617859e-06 2798 2688 439820.6128852 2799 2688 112006329.4708 2800 2688 11954436.86906 2801 2688 5935349.843305 2802 2688 -36979414.9719 2803 2688 -11948441.41664 2804 2688 18346879.03149 2808 2688 -20039396.92541 2809 2688 -11944444.44837 2810 2688 -8444910.309145 2811 2688 -74762019.75572 2812 2688 2.533197402954e-07 2813 2688 -53703252.3277 2814 2688 -30778677.45218 2815 2688 11944444.44836 2816 2688 -18340743.64572 2689 2689 737900094.3577 2690 2689 -65443918.48946 2691 2689 -47801759.57957 2692 2689 -152989568.1247 2693 2689 35049537.95506 2697 2689 -47777777.76993 2698 2689 -57469927.96065 2699 2689 9605416.412441 2700 2689 3.069639205933e-06 2701 2689 28369859.6463 2702 2689 -21110832.82467 2703 2689 47777777.76992 2704 2689 -58519346.56511 2705 2689 11505416.41223 2787 2689 11944444.44837 2788 2689 -16019732.12234 2789 2689 -7635451.454545 2790 2689 -11948441.41664 2791 2689 -29588436.2443 2792 2689 4682155.144749 2796 2689 5.125999450684e-06 2797 2689 -29094034.58311 2798 2689 -31702916.914 2799 2689 11954436.86906 2800 2689 79749895.91067 2801 2689 -16362631.77783 2802 2689 -11950439.90078 2803 2689 -78792675.71048 2804 2689 51029508.03613 2808 2689 -11944444.44837 2809 2689 -16455848.40155 2810 2689 -8163229.232496 2811 2689 -8.195638656616e-07 2812 2689 -22206107.28377 2813 2689 -5277708.20877 2814 2689 11944444.44836 2815 2689 -27195128.92833 2816 2689 13440937.44126 2690 2690 768350518.5004 2691 2690 20813297.08829 2692 2690 40963180.50213 2693 2690 19484057.05595 2697 2690 18780080.99371 2698 2690 9394305.301468 2699 2690 -20006934.4106 2700 2690 -3518564.899638 2701 2690 -21110832.82467 2702 2690 48052583.38233 2703 2690 -20803252.33311 2704 2690 11716527.5232 2705 2690 -22805384.02253 2787 2690 8005089.696258 2788 2690 -7635451.454545 2789 2690 -9407733.938713 2790 2690 47510397.70207 2791 2690 3205506.989851 2792 2690 -52478548.16204 2796 2690 439820.6128855 2797 2690 -31491805.80303 2798 2690 -4060894.923526 2799 2690 5939756.113784 2800 2690 -16359106.80793 2801 2690 -87179377.66603 2802 2690 18349946.72438 2803 2690 52296851.6274 2804 2690 -103249742.1615 2808 2690 -8444910.309145 2809 2690 -8163229.232496 2810 2690 -10570710.68328 2811 2690 -53439363.43899 2812 2690 -5277708.20877 2813 2690 -66116380.01208 2814 2690 -18340743.64572 2815 2690 13440937.44126 2816 2690 -39208792.08802 2691 2691 508612796.7711 2692 2691 47777777.76993 2693 2691 20248388.26907 2700 2691 -71804122.04904 2701 2691 -47777777.76993 2702 2691 19043969.88243 2703 2691 -267652150.2947 2704 2691 -47793765.64302 2705 2691 -20241471.08164 2706 2691 6087083.420696 2707 2691 38238210.08904 2708 2691 -16367807.61161 2790 2691 1532382.642161 2791 2691 14339328.79045 2792 2691 9874015.186731 2799 2691 -4845636.536104 2800 2691 -11950439.90078 2801 2691 -8009104.879749 2802 2691 57272319.20769 2803 2691 11944444.44837 2804 2691 16262217.83282 2811 2691 -20039396.92541 2812 2691 -11944444.44837 2813 2691 -8444910.309145 2814 2691 -96920154.16551 2815 2691 -11948441.41665 2816 2691 -57894966.96635 2817 2691 -19430363.65776 2818 2691 9559552.526969 2819 2691 -14502802.0572 2692 2692 436923838.9196 2693 2692 -52790465.59624 2700 2692 -47777777.76993 2701 2692 -57469927.96065 2702 2692 9605416.412441 2703 2692 -47801759.57957 2704 2692 -43044343.65972 2705 2692 -29246608.86722 2706 2692 57357315.13355 2707 2692 6087083.420705 2708 2692 18374525.78853 2790 2692 9559552.526969 2791 2692 1532382.642157 2792 2692 -5266148.137347 2799 2692 -11948441.41664 2800 2692 -46658897.27468 2801 2692 -32026328.33686 2802 2692 11944444.44837 2803 2692 39350079.73598 2804 2692 -4237631.002181 2811 2692 -11944444.44837 2812 2692 -16455848.40155 2813 2692 -8163229.232496 2814 2692 -11950439.90079 2815 2692 -40768202.4791 2816 2692 -17881456.80322 2817 2692 14339328.79045 2818 2692 -19430363.65775 2819 2692 17403019.36621 2693 2693 498731997.6738 2700 2693 18780080.99371 2701 2693 9394305.301468 2702 2693 -20006934.4106 2703 2693 -20238012.48793 2704 2693 -23543989.15986 2705 2693 -9089122.520285 2706 2693 -24551711.41742 2707 2693 12249683.85902 2708 2693 16232222.45521 2790 2693 6582676.791154 2791 2693 -7899222.206021 2792 2693 4086353.712421 2799 2693 -8007766.485252 2800 2693 -33293672.07046 2801 2693 -17559666.33271 2802 2693 -4818855.100867 2803 2693 -21102266.9381 2804 2693 -61666013.98076 2811 2693 -8444910.309145 2812 2693 -8163229.232496 2813 2693 -10570710.68328 2814 2693 -57630268.59944 2815 2693 -16401283.68257 2816 2693 -82291258.12151 2817 2693 -21754203.08579 2818 2693 11602012.9108 2819 2693 -51814303.08735 2694 2694 801867013.5374 2695 2694 2.598762512207e-05 2696 2694 7037129.799195 2697 2694 92970237.73849 2698 2694 -1.010298728943e-05 2699 2694 1759282.450673 2709 2694 -181853790.138 2710 2694 3.248453140259e-06 2711 2694 -3518564.899638 2712 2694 -72853540.65349 2713 2694 47777777.76992 2714 2694 -20539363.4444 2793 2694 -71968136.03531 2794 2694 4.157423973083e-06 2795 2694 51943969.87703 2796 2694 -29817851.87049 2797 2694 -11944444.44837 2798 2694 17900923.03284 2805 2694 88895212.80375 2806 2694 4.112720489502e-06 2807 2694 1759282.450699 2808 2694 -25612922.63328 2809 2694 -1.080334186554e-05 2810 2694 439820.6129002 2820 2694 -74762019.75572 2821 2694 2.533197402954e-07 2822 2694 -53703252.3277 2823 2694 -30778677.45218 2824 2694 11944444.44836 2825 2694 -18340743.64572 2695 2695 687193460.8868 2696 2695 -84443331.25708 2697 2695 -1.019239425659e-05 2698 2695 -88585023.89729 2699 2695 42221665.62855 2709 2695 3.069639205933e-06 2710 2695 28369859.6463 2711 2695 -21110832.82467 2712 2695 47777777.76992 2713 2695 -58519346.56511 2714 2695 11505416.41223 2793 2695 3.337860107422e-06 2794 2695 -19412223.56332 2795 2695 -5277708.208769 2796 2695 -11944444.44837 2797 2695 -26234303.34662 2798 2695 12913159.66331 2805 2695 4.351139068604e-06 2806 2695 60226824.62697 2807 2695 -21110832.82468 2808 2695 -9.95397567749e-06 2809 2695 -71001738.06458 2810 2695 52813749.73867 2820 2695 -8.195638656616e-07 2821 2695 -22206107.28377 2822 2695 -5277708.20877 2823 2695 11944444.44836 2824 2695 -27195128.92833 2825 2695 13440937.44126 2696 2696 766546241.681 2697 2696 1759282.450673 2698 2696 42221665.62855 2699 2696 57866058.65466 2709 2696 -3518564.899638 2710 2696 -21110832.82467 2711 2696 48052583.38233 2712 2696 -20803252.33311 2713 2696 11716527.5232 2714 2696 -22805384.02253 2793 2696 51680080.98832 2794 2696 -5277708.208769 2795 2696 -58666023.42418 2796 2696 17900923.03284 2797 2696 12913159.66331 2798 2696 -36646590.5368 2805 2696 1759282.450699 2806 2696 -21110832.82468 2807 2696 -105887547.9636 2808 2696 439820.6129005 2809 2696 52602638.6277 2810 2696 -115814770.8741 2820 2696 -53439363.43899 2821 2696 -5277708.20877 2822 2696 -66116380.01208 2823 2696 -18340743.64572 2824 2696 13440937.44126 2825 2696 -39208792.08802 2697 2697 801867013.5374 2698 2697 2.598762512207e-05 2699 2697 7037129.799195 2700 2697 92970237.73849 2701 2697 -1.010298728943e-05 2702 2697 1759282.450673 2709 2697 -71804122.04904 2710 2697 -47777777.76993 2711 2697 19043969.88243 2712 2697 -181853790.138 2713 2697 3.248453140259e-06 2714 2697 -3518564.899638 2715 2697 -72853540.65349 2716 2697 47777777.76992 2717 2697 -20539363.4444 2793 2697 -19603280.6462 2794 2697 11944444.44837 2795 2697 8005089.696258 2796 2697 -71968136.03531 2797 2697 4.157423973083e-06 2798 2697 51943969.87703 2799 2697 -29817851.87049 2800 2697 -11944444.44837 2801 2697 17900923.03284 2805 2697 16294780.8482 2806 2697 4.217028617859e-06 2807 2697 439820.6128852 2808 2697 88895212.80375 2809 2697 4.112720489502e-06 2810 2697 1759282.450699 2811 2697 -25612922.63328 2812 2697 -1.080334186554e-05 2813 2697 439820.6129002 2820 2697 -20039396.92541 2821 2697 -11944444.44837 2822 2697 -8444910.309145 2823 2697 -74762019.75572 2824 2697 2.533197402954e-07 2825 2697 -53703252.3277 2826 2697 -30778677.45218 2827 2697 11944444.44836 2828 2697 -18340743.64572 2698 2698 687193460.8868 2699 2698 -84443331.25708 2700 2698 -1.019239425659e-05 2701 2698 -88585023.89729 2702 2698 42221665.62855 2709 2698 -47777777.76993 2710 2698 -57469927.96065 2711 2698 9605416.412441 2712 2698 3.069639205933e-06 2713 2698 28369859.6463 2714 2698 -21110832.82467 2715 2698 47777777.76992 2716 2698 -58519346.56511 2717 2698 11505416.41223 2793 2698 11944444.44837 2794 2698 -16019732.12234 2795 2698 -7635451.454545 2796 2698 3.337860107422e-06 2797 2698 -19412223.56332 2798 2698 -5277708.208769 2799 2698 -11944444.44837 2800 2698 -26234303.34662 2801 2698 12913159.66331 2805 2698 5.125999450684e-06 2806 2698 -29094034.58311 2807 2698 -31702916.914 2808 2698 4.351139068604e-06 2809 2698 60226824.62697 2810 2698 -21110832.82468 2811 2698 -9.95397567749e-06 2812 2698 -71001738.06458 2813 2698 52813749.73867 2820 2698 -11944444.44837 2821 2698 -16455848.40155 2822 2698 -8163229.232496 2823 2698 -8.195638656616e-07 2824 2698 -22206107.28377 2825 2698 -5277708.20877 2826 2698 11944444.44836 2827 2698 -27195128.92833 2828 2698 13440937.44126 2699 2699 766546241.681 2700 2699 1759282.450673 2701 2699 42221665.62855 2702 2699 57866058.65466 2709 2699 18780080.99371 2710 2699 9394305.301468 2711 2699 -20006934.4106 2712 2699 -3518564.899638 2713 2699 -21110832.82467 2714 2699 48052583.38233 2715 2699 -20803252.33311 2716 2699 11716527.5232 2717 2699 -22805384.02253 2793 2699 8005089.696258 2794 2699 -7635451.454545 2795 2699 -9407733.938713 2796 2699 51680080.98832 2797 2699 -5277708.208769 2798 2699 -58666023.42418 2799 2699 17900923.03284 2800 2699 12913159.66331 2801 2699 -36646590.5368 2805 2699 439820.6128855 2806 2699 -31491805.80303 2807 2699 -4060894.923526 2808 2699 1759282.450699 2809 2699 -21110832.82468 2810 2699 -105887547.9636 2811 2699 439820.6129005 2812 2699 52602638.6277 2813 2699 -115814770.8741 2820 2699 -8444910.309145 2821 2699 -8163229.232496 2822 2699 -10570710.68328 2823 2699 -53439363.43899 2824 2699 -5277708.20877 2825 2699 -66116380.01208 2826 2699 -18340743.64572 2827 2699 13440937.44126 2828 2699 -39208792.08802 2700 2700 801867013.5374 2701 2700 2.598762512207e-05 2702 2700 7037129.799195 2703 2700 92970237.73849 2704 2700 -1.010298728943e-05 2705 2700 1759282.450673 2712 2700 -71804122.04904 2713 2700 -47777777.76993 2714 2700 19043969.88243 2715 2700 -181853790.138 2716 2700 3.248453140259e-06 2717 2700 -3518564.899638 2718 2700 -72853540.65349 2719 2700 47777777.76992 2720 2700 -20539363.4444 2796 2700 -19603280.6462 2797 2700 11944444.44837 2798 2700 8005089.696258 2799 2700 -71968136.03531 2800 2700 4.157423973083e-06 2801 2700 51943969.87703 2802 2700 -29817851.87049 2803 2700 -11944444.44837 2804 2700 17900923.03284 2808 2700 16294780.8482 2809 2700 4.217028617859e-06 2810 2700 439820.6128852 2811 2700 88895212.80375 2812 2700 4.112720489502e-06 2813 2700 1759282.450699 2814 2700 -25612922.63328 2815 2700 -1.080334186554e-05 2816 2700 439820.6129002 2823 2700 -20039396.92541 2824 2700 -11944444.44837 2825 2700 -8444910.309145 2826 2700 -74762019.75572 2827 2700 2.533197402954e-07 2828 2700 -53703252.3277 2829 2700 -30778677.45218 2830 2700 11944444.44836 2831 2700 -18340743.64572 2701 2701 687193460.8868 2702 2701 -84443331.25708 2703 2701 -1.019239425659e-05 2704 2701 -88585023.89729 2705 2701 42221665.62855 2712 2701 -47777777.76993 2713 2701 -57469927.96065 2714 2701 9605416.412441 2715 2701 3.069639205933e-06 2716 2701 28369859.6463 2717 2701 -21110832.82467 2718 2701 47777777.76992 2719 2701 -58519346.56511 2720 2701 11505416.41223 2796 2701 11944444.44837 2797 2701 -16019732.12234 2798 2701 -7635451.454545 2799 2701 3.337860107422e-06 2800 2701 -19412223.56332 2801 2701 -5277708.208769 2802 2701 -11944444.44837 2803 2701 -26234303.34662 2804 2701 12913159.66331 2808 2701 5.125999450684e-06 2809 2701 -29094034.58311 2810 2701 -31702916.914 2811 2701 4.351139068604e-06 2812 2701 60226824.62697 2813 2701 -21110832.82468 2814 2701 -9.95397567749e-06 2815 2701 -71001738.06458 2816 2701 52813749.73867 2823 2701 -11944444.44837 2824 2701 -16455848.40155 2825 2701 -8163229.232496 2826 2701 -8.195638656616e-07 2827 2701 -22206107.28377 2828 2701 -5277708.20877 2829 2701 11944444.44836 2830 2701 -27195128.92833 2831 2701 13440937.44126 2702 2702 766546241.681 2703 2702 1759282.450673 2704 2702 42221665.62855 2705 2702 57866058.65466 2712 2702 18780080.99371 2713 2702 9394305.301468 2714 2702 -20006934.4106 2715 2702 -3518564.899638 2716 2702 -21110832.82467 2717 2702 48052583.38233 2718 2702 -20803252.33311 2719 2702 11716527.5232 2720 2702 -22805384.02253 2796 2702 8005089.696258 2797 2702 -7635451.454545 2798 2702 -9407733.938713 2799 2702 51680080.98832 2800 2702 -5277708.208769 2801 2702 -58666023.42418 2802 2702 17900923.03284 2803 2702 12913159.66331 2804 2702 -36646590.5368 2808 2702 439820.6128855 2809 2702 -31491805.80303 2810 2702 -4060894.923526 2811 2702 1759282.450699 2812 2702 -21110832.82468 2813 2702 -105887547.9636 2814 2702 439820.6129005 2815 2702 52602638.6277 2816 2702 -115814770.8741 2823 2702 -8444910.309145 2824 2702 -8163229.232496 2825 2702 -10570710.68328 2826 2702 -53439363.43899 2827 2702 -5277708.20877 2828 2702 -66116380.01208 2829 2702 -18340743.64572 2830 2702 13440937.44126 2831 2702 -39208792.08802 2703 2703 866925828.5346 2704 2703 47817747.45269 2705 2703 23749660.20008 2706 2703 14263474.74723 2707 2703 -47793765.64302 2708 2703 20546059.94785 2715 2703 -71804122.04904 2716 2703 -47777777.76993 2717 2703 19043969.88243 2718 2703 -181853790.138 2719 2703 3.248453140259e-06 2720 2703 -3518564.899638 2721 2703 -72853540.65349 2722 2703 47777777.76992 2723 2703 -20539363.4444 2799 2703 -19603280.6462 2800 2703 11944444.44837 2801 2703 8005089.696258 2802 2703 -85740387.93072 2803 2703 -11950439.90077 2804 2703 47775096.06898 2811 2703 16294780.8482 2812 2703 4.217028617859e-06 2813 2703 439820.6128852 2814 2703 112006329.4708 2815 2703 11954436.86906 2816 2703 5935349.843305 2817 2703 -36979414.9719 2818 2703 -11948441.41664 2819 2703 18346879.03149 2826 2703 -20039396.92541 2827 2703 -11944444.44837 2828 2703 -8444910.309145 2829 2703 -74762019.75572 2830 2703 2.533197402954e-07 2831 2703 -53703252.3277 2832 2703 -30778677.45218 2833 2703 11944444.44836 2834 2703 -18340743.64572 2704 2704 737900094.3577 2705 2704 -65443918.48946 2706 2704 -47801759.57957 2707 2704 -152989568.1247 2708 2704 35049537.95506 2715 2704 -47777777.76993 2716 2704 -57469927.96065 2717 2704 9605416.412441 2718 2704 3.069639205933e-06 2719 2704 28369859.6463 2720 2704 -21110832.82467 2721 2704 47777777.76992 2722 2704 -58519346.56511 2723 2704 11505416.41223 2799 2704 11944444.44837 2800 2704 -16019732.12234 2801 2704 -7635451.454545 2802 2704 -11948441.41664 2803 2704 -29588436.2443 2804 2704 4682155.144749 2811 2704 5.125999450684e-06 2812 2704 -29094034.58311 2813 2704 -31702916.914 2814 2704 11954436.86906 2815 2704 79749895.91067 2816 2704 -16362631.77783 2817 2704 -11950439.90078 2818 2704 -78792675.71048 2819 2704 51029508.03613 2826 2704 -11944444.44837 2827 2704 -16455848.40155 2828 2704 -8163229.232496 2829 2704 -8.195638656616e-07 2830 2704 -22206107.28377 2831 2704 -5277708.20877 2832 2704 11944444.44836 2833 2704 -27195128.92833 2834 2704 13440937.44126 2705 2705 768350518.5004 2706 2705 20813297.08829 2707 2705 40963180.50213 2708 2705 19484057.05595 2715 2705 18780080.99371 2716 2705 9394305.301468 2717 2705 -20006934.4106 2718 2705 -3518564.899638 2719 2705 -21110832.82467 2720 2705 48052583.38233 2721 2705 -20803252.33311 2722 2705 11716527.5232 2723 2705 -22805384.02253 2799 2705 8005089.696258 2800 2705 -7635451.454545 2801 2705 -9407733.938713 2802 2705 47510397.70207 2803 2705 3205506.989851 2804 2705 -52478548.16204 2811 2705 439820.6128855 2812 2705 -31491805.80303 2813 2705 -4060894.923526 2814 2705 5939756.113784 2815 2705 -16359106.80793 2816 2705 -87179377.66603 2817 2705 18349946.72438 2818 2705 52296851.6274 2819 2705 -103249742.1615 2826 2705 -8444910.309145 2827 2705 -8163229.232496 2828 2705 -10570710.68328 2829 2705 -53439363.43899 2830 2705 -5277708.20877 2831 2705 -66116380.01208 2832 2705 -18340743.64572 2833 2705 13440937.44126 2834 2705 -39208792.08802 2706 2706 508612796.7711 2707 2706 47777777.76993 2708 2706 20248388.26907 2718 2706 -71804122.04904 2719 2706 -47777777.76993 2720 2706 19043969.88243 2721 2706 -267652150.2947 2722 2706 -47793765.64302 2723 2706 -20241471.08164 2724 2706 6087083.420696 2725 2706 38238210.08904 2726 2706 -16367807.61161 2802 2706 1532382.642161 2803 2706 14339328.79045 2804 2706 9874015.186731 2814 2706 -4845636.536104 2815 2706 -11950439.90078 2816 2706 -8009104.879749 2817 2706 57272319.20769 2818 2706 11944444.44837 2819 2706 16262217.83282 2829 2706 -20039396.92541 2830 2706 -11944444.44837 2831 2706 -8444910.309145 2832 2706 -96920154.16551 2833 2706 -11948441.41665 2834 2706 -57894966.96635 2835 2706 -19430363.65776 2836 2706 9559552.526969 2837 2706 -14502802.0572 2707 2707 436923838.9196 2708 2707 -52790465.59624 2718 2707 -47777777.76993 2719 2707 -57469927.96065 2720 2707 9605416.412441 2721 2707 -47801759.57957 2722 2707 -43044343.65972 2723 2707 -29246608.86722 2724 2707 57357315.13355 2725 2707 6087083.420705 2726 2707 18374525.78853 2802 2707 9559552.526969 2803 2707 1532382.642157 2804 2707 -5266148.137347 2814 2707 -11948441.41664 2815 2707 -46658897.27468 2816 2707 -32026328.33686 2817 2707 11944444.44837 2818 2707 39350079.73598 2819 2707 -4237631.002181 2829 2707 -11944444.44837 2830 2707 -16455848.40155 2831 2707 -8163229.232496 2832 2707 -11950439.90079 2833 2707 -40768202.4791 2834 2707 -17881456.80322 2835 2707 14339328.79045 2836 2707 -19430363.65775 2837 2707 17403019.36621 2708 2708 498731997.6738 2718 2708 18780080.99371 2719 2708 9394305.301468 2720 2708 -20006934.4106 2721 2708 -20238012.48793 2722 2708 -23543989.15986 2723 2708 -9089122.520285 2724 2708 -24551711.41742 2725 2708 12249683.85902 2726 2708 16232222.45521 2802 2708 6582676.791154 2803 2708 -7899222.206021 2804 2708 4086353.712421 2814 2708 -8007766.485252 2815 2708 -33293672.07046 2816 2708 -17559666.33271 2817 2708 -4818855.100867 2818 2708 -21102266.9381 2819 2708 -61666013.98076 2829 2708 -8444910.309145 2830 2708 -8163229.232496 2831 2708 -10570710.68328 2832 2708 -57630268.59944 2833 2708 -16401283.68257 2834 2708 -82291258.12151 2835 2708 -21754203.08579 2836 2708 11602012.9108 2837 2708 -51814303.08735 2709 2709 801867013.5374 2710 2709 2.598762512207e-05 2711 2709 7037129.799195 2712 2709 92970237.73849 2713 2709 -1.010298728943e-05 2714 2709 1759282.450673 2727 2709 -181853790.138 2728 2709 3.248453140259e-06 2729 2709 -3518564.899638 2730 2709 -72853540.65349 2731 2709 47777777.76992 2732 2709 -20539363.4444 2805 2709 -71968136.03531 2806 2709 4.157423973083e-06 2807 2709 51943969.87703 2808 2709 -29817851.87049 2809 2709 -11944444.44837 2810 2709 17900923.03284 2820 2709 88895212.80375 2821 2709 4.112720489502e-06 2822 2709 1759282.450699 2823 2709 -25612922.63328 2824 2709 -1.080334186554e-05 2825 2709 439820.6129002 2838 2709 -74762019.75572 2839 2709 2.533197402954e-07 2840 2709 -53703252.3277 2841 2709 -30778677.45218 2842 2709 11944444.44836 2843 2709 -18340743.64572 2710 2710 687193460.8868 2711 2710 -84443331.25708 2712 2710 -1.019239425659e-05 2713 2710 -88585023.89729 2714 2710 42221665.62855 2727 2710 3.069639205933e-06 2728 2710 28369859.6463 2729 2710 -21110832.82467 2730 2710 47777777.76992 2731 2710 -58519346.56511 2732 2710 11505416.41223 2805 2710 3.337860107422e-06 2806 2710 -19412223.56332 2807 2710 -5277708.208769 2808 2710 -11944444.44837 2809 2710 -26234303.34662 2810 2710 12913159.66331 2820 2710 4.351139068604e-06 2821 2710 60226824.62697 2822 2710 -21110832.82468 2823 2710 -9.95397567749e-06 2824 2710 -71001738.06458 2825 2710 52813749.73867 2838 2710 -8.195638656616e-07 2839 2710 -22206107.28377 2840 2710 -5277708.20877 2841 2710 11944444.44836 2842 2710 -27195128.92833 2843 2710 13440937.44126 2711 2711 766546241.681 2712 2711 1759282.450673 2713 2711 42221665.62855 2714 2711 57866058.65466 2727 2711 -3518564.899638 2728 2711 -21110832.82467 2729 2711 48052583.38233 2730 2711 -20803252.33311 2731 2711 11716527.5232 2732 2711 -22805384.02253 2805 2711 51680080.98832 2806 2711 -5277708.208769 2807 2711 -58666023.42418 2808 2711 17900923.03284 2809 2711 12913159.66331 2810 2711 -36646590.5368 2820 2711 1759282.450699 2821 2711 -21110832.82468 2822 2711 -105887547.9636 2823 2711 439820.6129005 2824 2711 52602638.6277 2825 2711 -115814770.8741 2838 2711 -53439363.43899 2839 2711 -5277708.20877 2840 2711 -66116380.01208 2841 2711 -18340743.64572 2842 2711 13440937.44126 2843 2711 -39208792.08802 2712 2712 801867013.5374 2713 2712 2.598762512207e-05 2714 2712 7037129.799195 2715 2712 92970237.73849 2716 2712 -1.010298728943e-05 2717 2712 1759282.450673 2727 2712 -71804122.04904 2728 2712 -47777777.76993 2729 2712 19043969.88243 2730 2712 -181853790.138 2731 2712 3.248453140259e-06 2732 2712 -3518564.899638 2733 2712 -72853540.65349 2734 2712 47777777.76992 2735 2712 -20539363.4444 2805 2712 -19603280.6462 2806 2712 11944444.44837 2807 2712 8005089.696258 2808 2712 -71968136.03531 2809 2712 4.157423973083e-06 2810 2712 51943969.87703 2811 2712 -29817851.87049 2812 2712 -11944444.44837 2813 2712 17900923.03284 2820 2712 16294780.8482 2821 2712 4.217028617859e-06 2822 2712 439820.6128852 2823 2712 88895212.80375 2824 2712 4.112720489502e-06 2825 2712 1759282.450699 2826 2712 -25612922.63328 2827 2712 -1.080334186554e-05 2828 2712 439820.6129002 2838 2712 -20039396.92541 2839 2712 -11944444.44837 2840 2712 -8444910.309145 2841 2712 -74762019.75572 2842 2712 2.533197402954e-07 2843 2712 -53703252.3277 2844 2712 -30778677.45218 2845 2712 11944444.44836 2846 2712 -18340743.64572 2713 2713 687193460.8868 2714 2713 -84443331.25708 2715 2713 -1.019239425659e-05 2716 2713 -88585023.89729 2717 2713 42221665.62855 2727 2713 -47777777.76993 2728 2713 -57469927.96065 2729 2713 9605416.412441 2730 2713 3.069639205933e-06 2731 2713 28369859.6463 2732 2713 -21110832.82467 2733 2713 47777777.76992 2734 2713 -58519346.56511 2735 2713 11505416.41223 2805 2713 11944444.44837 2806 2713 -16019732.12234 2807 2713 -7635451.454545 2808 2713 3.337860107422e-06 2809 2713 -19412223.56332 2810 2713 -5277708.208769 2811 2713 -11944444.44837 2812 2713 -26234303.34662 2813 2713 12913159.66331 2820 2713 5.125999450684e-06 2821 2713 -29094034.58311 2822 2713 -31702916.914 2823 2713 4.351139068604e-06 2824 2713 60226824.62697 2825 2713 -21110832.82468 2826 2713 -9.95397567749e-06 2827 2713 -71001738.06458 2828 2713 52813749.73867 2838 2713 -11944444.44837 2839 2713 -16455848.40155 2840 2713 -8163229.232496 2841 2713 -8.195638656616e-07 2842 2713 -22206107.28377 2843 2713 -5277708.20877 2844 2713 11944444.44836 2845 2713 -27195128.92833 2846 2713 13440937.44126 2714 2714 766546241.681 2715 2714 1759282.450673 2716 2714 42221665.62855 2717 2714 57866058.65466 2727 2714 18780080.99371 2728 2714 9394305.301468 2729 2714 -20006934.4106 2730 2714 -3518564.899638 2731 2714 -21110832.82467 2732 2714 48052583.38233 2733 2714 -20803252.33311 2734 2714 11716527.5232 2735 2714 -22805384.02253 2805 2714 8005089.696258 2806 2714 -7635451.454545 2807 2714 -9407733.938713 2808 2714 51680080.98832 2809 2714 -5277708.208769 2810 2714 -58666023.42418 2811 2714 17900923.03284 2812 2714 12913159.66331 2813 2714 -36646590.5368 2820 2714 439820.6128855 2821 2714 -31491805.80303 2822 2714 -4060894.923526 2823 2714 1759282.450699 2824 2714 -21110832.82468 2825 2714 -105887547.9636 2826 2714 439820.6129005 2827 2714 52602638.6277 2828 2714 -115814770.8741 2838 2714 -8444910.309145 2839 2714 -8163229.232496 2840 2714 -10570710.68328 2841 2714 -53439363.43899 2842 2714 -5277708.20877 2843 2714 -66116380.01208 2844 2714 -18340743.64572 2845 2714 13440937.44126 2846 2714 -39208792.08802 2715 2715 801867013.5374 2716 2715 2.598762512207e-05 2717 2715 7037129.799195 2718 2715 92970237.73849 2719 2715 -1.010298728943e-05 2720 2715 1759282.450673 2730 2715 -71804122.04904 2731 2715 -47777777.76993 2732 2715 19043969.88243 2733 2715 -181853790.138 2734 2715 3.248453140259e-06 2735 2715 -3518564.899638 2736 2715 -72853540.65349 2737 2715 47777777.76992 2738 2715 -20539363.4444 2808 2715 -19603280.6462 2809 2715 11944444.44837 2810 2715 8005089.696258 2811 2715 -71968136.03531 2812 2715 4.157423973083e-06 2813 2715 51943969.87703 2814 2715 -29817851.87049 2815 2715 -11944444.44837 2816 2715 17900923.03284 2823 2715 16294780.8482 2824 2715 4.217028617859e-06 2825 2715 439820.6128852 2826 2715 88895212.80375 2827 2715 4.112720489502e-06 2828 2715 1759282.450699 2829 2715 -25612922.63328 2830 2715 -1.080334186554e-05 2831 2715 439820.6129002 2841 2715 -20039396.92541 2842 2715 -11944444.44837 2843 2715 -8444910.309145 2844 2715 -74762019.75572 2845 2715 2.533197402954e-07 2846 2715 -53703252.3277 2847 2715 -30778677.45218 2848 2715 11944444.44836 2849 2715 -18340743.64572 2716 2716 687193460.8868 2717 2716 -84443331.25708 2718 2716 -1.019239425659e-05 2719 2716 -88585023.89729 2720 2716 42221665.62855 2730 2716 -47777777.76993 2731 2716 -57469927.96065 2732 2716 9605416.412441 2733 2716 3.069639205933e-06 2734 2716 28369859.6463 2735 2716 -21110832.82467 2736 2716 47777777.76992 2737 2716 -58519346.56511 2738 2716 11505416.41223 2808 2716 11944444.44837 2809 2716 -16019732.12234 2810 2716 -7635451.454545 2811 2716 3.337860107422e-06 2812 2716 -19412223.56332 2813 2716 -5277708.208769 2814 2716 -11944444.44837 2815 2716 -26234303.34662 2816 2716 12913159.66331 2823 2716 5.125999450684e-06 2824 2716 -29094034.58311 2825 2716 -31702916.914 2826 2716 4.351139068604e-06 2827 2716 60226824.62697 2828 2716 -21110832.82468 2829 2716 -9.95397567749e-06 2830 2716 -71001738.06458 2831 2716 52813749.73867 2841 2716 -11944444.44837 2842 2716 -16455848.40155 2843 2716 -8163229.232496 2844 2716 -8.195638656616e-07 2845 2716 -22206107.28377 2846 2716 -5277708.20877 2847 2716 11944444.44836 2848 2716 -27195128.92833 2849 2716 13440937.44126 2717 2717 766546241.681 2718 2717 1759282.450673 2719 2717 42221665.62855 2720 2717 57866058.65466 2730 2717 18780080.99371 2731 2717 9394305.301468 2732 2717 -20006934.4106 2733 2717 -3518564.899638 2734 2717 -21110832.82467 2735 2717 48052583.38233 2736 2717 -20803252.33311 2737 2717 11716527.5232 2738 2717 -22805384.02253 2808 2717 8005089.696258 2809 2717 -7635451.454545 2810 2717 -9407733.938713 2811 2717 51680080.98832 2812 2717 -5277708.208769 2813 2717 -58666023.42418 2814 2717 17900923.03284 2815 2717 12913159.66331 2816 2717 -36646590.5368 2823 2717 439820.6128855 2824 2717 -31491805.80303 2825 2717 -4060894.923526 2826 2717 1759282.450699 2827 2717 -21110832.82468 2828 2717 -105887547.9636 2829 2717 439820.6129005 2830 2717 52602638.6277 2831 2717 -115814770.8741 2841 2717 -8444910.309145 2842 2717 -8163229.232496 2843 2717 -10570710.68328 2844 2717 -53439363.43899 2845 2717 -5277708.20877 2846 2717 -66116380.01208 2847 2717 -18340743.64572 2848 2717 13440937.44126 2849 2717 -39208792.08802 2718 2718 801867013.5374 2719 2718 2.598762512207e-05 2720 2718 7037129.799195 2721 2718 92970237.73849 2722 2718 -1.010298728943e-05 2723 2718 1759282.450673 2733 2718 -71804122.04904 2734 2718 -47777777.76993 2735 2718 19043969.88243 2736 2718 -181853790.138 2737 2718 3.248453140259e-06 2738 2718 -3518564.899638 2739 2718 -72853540.65349 2740 2718 47777777.76992 2741 2718 -20539363.4444 2811 2718 -19603280.6462 2812 2718 11944444.44837 2813 2718 8005089.696258 2814 2718 -71968136.03531 2815 2718 4.157423973083e-06 2816 2718 51943969.87703 2817 2718 -29817851.87049 2818 2718 -11944444.44837 2819 2718 17900923.03284 2826 2718 16294780.8482 2827 2718 4.217028617859e-06 2828 2718 439820.6128852 2829 2718 88895212.80375 2830 2718 4.112720489502e-06 2831 2718 1759282.450699 2832 2718 -25612922.63328 2833 2718 -1.080334186554e-05 2834 2718 439820.6129002 2844 2718 -20039396.92541 2845 2718 -11944444.44837 2846 2718 -8444910.309145 2847 2718 -74762019.75572 2848 2718 2.533197402954e-07 2849 2718 -53703252.3277 2850 2718 -30778677.45218 2851 2718 11944444.44836 2852 2718 -18340743.64572 2719 2719 687193460.8868 2720 2719 -84443331.25708 2721 2719 -1.019239425659e-05 2722 2719 -88585023.89729 2723 2719 42221665.62855 2733 2719 -47777777.76993 2734 2719 -57469927.96065 2735 2719 9605416.412441 2736 2719 3.069639205933e-06 2737 2719 28369859.6463 2738 2719 -21110832.82467 2739 2719 47777777.76992 2740 2719 -58519346.56511 2741 2719 11505416.41223 2811 2719 11944444.44837 2812 2719 -16019732.12234 2813 2719 -7635451.454545 2814 2719 3.337860107422e-06 2815 2719 -19412223.56332 2816 2719 -5277708.208769 2817 2719 -11944444.44837 2818 2719 -26234303.34662 2819 2719 12913159.66331 2826 2719 5.125999450684e-06 2827 2719 -29094034.58311 2828 2719 -31702916.914 2829 2719 4.351139068604e-06 2830 2719 60226824.62697 2831 2719 -21110832.82468 2832 2719 -9.95397567749e-06 2833 2719 -71001738.06458 2834 2719 52813749.73867 2844 2719 -11944444.44837 2845 2719 -16455848.40155 2846 2719 -8163229.232496 2847 2719 -8.195638656616e-07 2848 2719 -22206107.28377 2849 2719 -5277708.20877 2850 2719 11944444.44836 2851 2719 -27195128.92833 2852 2719 13440937.44126 2720 2720 766546241.681 2721 2720 1759282.450673 2722 2720 42221665.62855 2723 2720 57866058.65466 2733 2720 18780080.99371 2734 2720 9394305.301468 2735 2720 -20006934.4106 2736 2720 -3518564.899638 2737 2720 -21110832.82467 2738 2720 48052583.38233 2739 2720 -20803252.33311 2740 2720 11716527.5232 2741 2720 -22805384.02253 2811 2720 8005089.696258 2812 2720 -7635451.454545 2813 2720 -9407733.938713 2814 2720 51680080.98832 2815 2720 -5277708.208769 2816 2720 -58666023.42418 2817 2720 17900923.03284 2818 2720 12913159.66331 2819 2720 -36646590.5368 2826 2720 439820.6128855 2827 2720 -31491805.80303 2828 2720 -4060894.923526 2829 2720 1759282.450699 2830 2720 -21110832.82468 2831 2720 -105887547.9636 2832 2720 439820.6129005 2833 2720 52602638.6277 2834 2720 -115814770.8741 2844 2720 -8444910.309145 2845 2720 -8163229.232496 2846 2720 -10570710.68328 2847 2720 -53439363.43899 2848 2720 -5277708.20877 2849 2720 -66116380.01208 2850 2720 -18340743.64572 2851 2720 13440937.44126 2852 2720 -39208792.08802 2721 2721 866925828.5346 2722 2721 47817747.45269 2723 2721 23749660.20008 2724 2721 14263474.74723 2725 2721 -47793765.64302 2726 2721 20546059.94785 2736 2721 -71804122.04904 2737 2721 -47777777.76993 2738 2721 19043969.88243 2739 2721 -181853790.138 2740 2721 3.248453140259e-06 2741 2721 -3518564.899638 2742 2721 -72853540.65349 2743 2721 47777777.76992 2744 2721 -20539363.4444 2814 2721 -19603280.6462 2815 2721 11944444.44837 2816 2721 8005089.696258 2817 2721 -85740387.93072 2818 2721 -11950439.90077 2819 2721 47775096.06898 2829 2721 16294780.8482 2830 2721 4.217028617859e-06 2831 2721 439820.6128852 2832 2721 112006329.4708 2833 2721 11954436.86906 2834 2721 5935349.843305 2835 2721 -36979414.9719 2836 2721 -11948441.41664 2837 2721 18346879.03149 2847 2721 -20039396.92541 2848 2721 -11944444.44837 2849 2721 -8444910.309145 2850 2721 -74762019.75572 2851 2721 2.533197402954e-07 2852 2721 -53703252.3277 2853 2721 -30778677.45218 2854 2721 11944444.44836 2855 2721 -18340743.64572 2722 2722 737900094.3577 2723 2722 -65443918.48946 2724 2722 -47801759.57957 2725 2722 -152989568.1247 2726 2722 35049537.95506 2736 2722 -47777777.76993 2737 2722 -57469927.96065 2738 2722 9605416.412441 2739 2722 3.069639205933e-06 2740 2722 28369859.6463 2741 2722 -21110832.82467 2742 2722 47777777.76992 2743 2722 -58519346.56511 2744 2722 11505416.41223 2814 2722 11944444.44837 2815 2722 -16019732.12234 2816 2722 -7635451.454545 2817 2722 -11948441.41664 2818 2722 -29588436.2443 2819 2722 4682155.144749 2829 2722 5.125999450684e-06 2830 2722 -29094034.58311 2831 2722 -31702916.914 2832 2722 11954436.86906 2833 2722 79749895.91067 2834 2722 -16362631.77783 2835 2722 -11950439.90078 2836 2722 -78792675.71048 2837 2722 51029508.03613 2847 2722 -11944444.44837 2848 2722 -16455848.40155 2849 2722 -8163229.232496 2850 2722 -8.195638656616e-07 2851 2722 -22206107.28377 2852 2722 -5277708.20877 2853 2722 11944444.44836 2854 2722 -27195128.92833 2855 2722 13440937.44126 2723 2723 768350518.5004 2724 2723 20813297.08829 2725 2723 40963180.50213 2726 2723 19484057.05595 2736 2723 18780080.99371 2737 2723 9394305.301468 2738 2723 -20006934.4106 2739 2723 -3518564.899638 2740 2723 -21110832.82467 2741 2723 48052583.38233 2742 2723 -20803252.33311 2743 2723 11716527.5232 2744 2723 -22805384.02253 2814 2723 8005089.696258 2815 2723 -7635451.454545 2816 2723 -9407733.938713 2817 2723 47510397.70207 2818 2723 3205506.989851 2819 2723 -52478548.16204 2829 2723 439820.6128855 2830 2723 -31491805.80303 2831 2723 -4060894.923526 2832 2723 5939756.113784 2833 2723 -16359106.80793 2834 2723 -87179377.66603 2835 2723 18349946.72438 2836 2723 52296851.6274 2837 2723 -103249742.1615 2847 2723 -8444910.309145 2848 2723 -8163229.232496 2849 2723 -10570710.68328 2850 2723 -53439363.43899 2851 2723 -5277708.20877 2852 2723 -66116380.01208 2853 2723 -18340743.64572 2854 2723 13440937.44126 2855 2723 -39208792.08802 2724 2724 411984836.6329 2725 2724 -7936152.30026 2726 2724 -12597657.48158 2739 2724 -71804122.04904 2740 2724 -47777777.76993 2741 2724 19043969.88243 2742 2724 -138080718.2873 2743 2724 7859319.261471 2744 2724 -1118612.233799 2745 2724 -59031787.7105 2746 2724 38299055.25473 2747 2724 -3172177.802272 2817 2724 1532382.642161 2818 2724 14339328.79045 2819 2724 9874015.186731 2832 2724 -4845636.536104 2833 2724 -11950439.90078 2834 2724 -8009104.879749 2835 2724 45154799.16275 2836 2724 -1984038.076042 2837 2724 5318188.302819 2850 2724 -20039396.92541 2851 2724 -11944444.44837 2852 2724 -8444910.309145 2853 2724 -54446261.20618 2854 2724 1964829.816336 2855 2724 -37868990.52104 2856 2724 -20832796.07979 2857 2724 9574763.8184 2858 2724 -4947522.887458 2725 2725 472335181.7353 2726 2725 -60215952.15695 2739 2725 -47777777.76993 2740 2725 -57469927.96065 2741 2725 9605416.412441 2742 2725 7820902.742076 2743 2725 61644059.27118 2744 2725 -13951237.99313 2745 2725 57448582.8821 2746 2725 -166188061.588 2747 2725 10078720.53082 2817 2725 9559552.526969 2818 2725 1532382.642157 2819 2725 -5266148.137347 2832 2725 -11948441.41664 2833 2725 -46658897.27468 2834 2725 -32026328.33686 2835 2725 -1984038.076043 2836 2725 60242385.44579 2837 2725 -8284128.881153 2850 2725 -11944444.44837 2851 2725 -16455848.40155 2852 2725 -8163229.232496 2853 2725 1955225.686481 2854 2725 -4515066.791966 2855 2725 -1847868.948734 2856 2725 14362145.7276 2857 2725 -47621864.56235 2858 2725 20366850.75772 2726 2726 433150810.8594 2739 2726 18780080.99371 2740 2726 9394305.301468 2741 2726 -20006934.4106 2742 2726 -7976747.091482 2743 2726 -13738986.98741 2744 2726 37185048.73447 2745 2726 -4758266.703408 2746 2726 9231286.830788 2747 2726 -50261826.68389 2817 2726 6582676.791154 2818 2726 -7899222.206021 2819 2726 4086353.712421 2832 2726 -8007766.485252 2833 2726 -33293672.07046 2834 2726 -17559666.33271 2835 2726 -9638402.083643 2836 2726 -20236111.15782 2837 2726 -45956057.35504 2850 2726 -8444910.309145 2851 2726 -8163229.232496 2852 2726 -10570710.68328 2853 2726 -39187801.2437 2854 2726 -1627591.468903 2855 2726 -43839955.45809 2856 2726 -7421284.331187 2857 2726 18388546.96739 2858 2726 -28765054.39688 2727 2727 801867013.5374 2728 2727 2.598762512207e-05 2729 2727 7037129.799195 2730 2727 92970237.73849 2731 2727 -1.010298728943e-05 2732 2727 1759282.450673 2748 2727 -181853790.138 2749 2727 3.248453140259e-06 2750 2727 -3518564.899638 2751 2727 -72853540.65349 2752 2727 47777777.76992 2753 2727 -20539363.4444 2820 2727 -71968136.03531 2821 2727 4.157423973083e-06 2822 2727 51943969.87703 2823 2727 -29817851.87049 2824 2727 -11944444.44837 2825 2727 17900923.03284 2838 2727 88895212.80375 2839 2727 4.112720489502e-06 2840 2727 1759282.450699 2841 2727 -25612922.63328 2842 2727 -1.080334186554e-05 2843 2727 439820.6129002 2859 2727 -74762019.75572 2860 2727 2.533197402954e-07 2861 2727 -53703252.3277 2862 2727 -30778677.45218 2863 2727 11944444.44836 2864 2727 -18340743.64572 2728 2728 687193460.8868 2729 2728 -84443331.25708 2730 2728 -1.019239425659e-05 2731 2728 -88585023.89729 2732 2728 42221665.62855 2748 2728 3.069639205933e-06 2749 2728 28369859.6463 2750 2728 -21110832.82467 2751 2728 47777777.76992 2752 2728 -58519346.56511 2753 2728 11505416.41223 2820 2728 3.337860107422e-06 2821 2728 -19412223.56332 2822 2728 -5277708.208769 2823 2728 -11944444.44837 2824 2728 -26234303.34662 2825 2728 12913159.66331 2838 2728 4.351139068604e-06 2839 2728 60226824.62697 2840 2728 -21110832.82468 2841 2728 -9.95397567749e-06 2842 2728 -71001738.06458 2843 2728 52813749.73867 2859 2728 -8.195638656616e-07 2860 2728 -22206107.28377 2861 2728 -5277708.20877 2862 2728 11944444.44836 2863 2728 -27195128.92833 2864 2728 13440937.44126 2729 2729 766546241.681 2730 2729 1759282.450673 2731 2729 42221665.62855 2732 2729 57866058.65466 2748 2729 -3518564.899638 2749 2729 -21110832.82467 2750 2729 48052583.38233 2751 2729 -20803252.33311 2752 2729 11716527.5232 2753 2729 -22805384.02253 2820 2729 51680080.98832 2821 2729 -5277708.208769 2822 2729 -58666023.42418 2823 2729 17900923.03284 2824 2729 12913159.66331 2825 2729 -36646590.5368 2838 2729 1759282.450699 2839 2729 -21110832.82468 2840 2729 -105887547.9636 2841 2729 439820.6129005 2842 2729 52602638.6277 2843 2729 -115814770.8741 2859 2729 -53439363.43899 2860 2729 -5277708.20877 2861 2729 -66116380.01208 2862 2729 -18340743.64572 2863 2729 13440937.44126 2864 2729 -39208792.08802 2730 2730 801867013.5374 2731 2730 2.598762512207e-05 2732 2730 7037129.799195 2733 2730 92970237.73849 2734 2730 -1.010298728943e-05 2735 2730 1759282.450673 2748 2730 -71804122.04904 2749 2730 -47777777.76993 2750 2730 19043969.88243 2751 2730 -181853790.138 2752 2730 3.248453140259e-06 2753 2730 -3518564.899638 2754 2730 -72853540.65349 2755 2730 47777777.76992 2756 2730 -20539363.4444 2820 2730 -19603280.6462 2821 2730 11944444.44837 2822 2730 8005089.696258 2823 2730 -71968136.03531 2824 2730 4.157423973083e-06 2825 2730 51943969.87703 2826 2730 -29817851.87049 2827 2730 -11944444.44837 2828 2730 17900923.03284 2838 2730 16294780.8482 2839 2730 4.217028617859e-06 2840 2730 439820.6128852 2841 2730 88895212.80375 2842 2730 4.112720489502e-06 2843 2730 1759282.450699 2844 2730 -25612922.63328 2845 2730 -1.080334186554e-05 2846 2730 439820.6129002 2859 2730 -20039396.92541 2860 2730 -11944444.44837 2861 2730 -8444910.309145 2862 2730 -74762019.75572 2863 2730 2.533197402954e-07 2864 2730 -53703252.3277 2865 2730 -30778677.45218 2866 2730 11944444.44836 2867 2730 -18340743.64572 2731 2731 687193460.8868 2732 2731 -84443331.25708 2733 2731 -1.019239425659e-05 2734 2731 -88585023.89729 2735 2731 42221665.62855 2748 2731 -47777777.76993 2749 2731 -57469927.96065 2750 2731 9605416.412441 2751 2731 3.069639205933e-06 2752 2731 28369859.6463 2753 2731 -21110832.82467 2754 2731 47777777.76992 2755 2731 -58519346.56511 2756 2731 11505416.41223 2820 2731 11944444.44837 2821 2731 -16019732.12234 2822 2731 -7635451.454545 2823 2731 3.337860107422e-06 2824 2731 -19412223.56332 2825 2731 -5277708.208769 2826 2731 -11944444.44837 2827 2731 -26234303.34662 2828 2731 12913159.66331 2838 2731 5.125999450684e-06 2839 2731 -29094034.58311 2840 2731 -31702916.914 2841 2731 4.351139068604e-06 2842 2731 60226824.62697 2843 2731 -21110832.82468 2844 2731 -9.95397567749e-06 2845 2731 -71001738.06458 2846 2731 52813749.73867 2859 2731 -11944444.44837 2860 2731 -16455848.40155 2861 2731 -8163229.232496 2862 2731 -8.195638656616e-07 2863 2731 -22206107.28377 2864 2731 -5277708.20877 2865 2731 11944444.44836 2866 2731 -27195128.92833 2867 2731 13440937.44126 2732 2732 766546241.681 2733 2732 1759282.450673 2734 2732 42221665.62855 2735 2732 57866058.65466 2748 2732 18780080.99371 2749 2732 9394305.301468 2750 2732 -20006934.4106 2751 2732 -3518564.899638 2752 2732 -21110832.82467 2753 2732 48052583.38233 2754 2732 -20803252.33311 2755 2732 11716527.5232 2756 2732 -22805384.02253 2820 2732 8005089.696258 2821 2732 -7635451.454545 2822 2732 -9407733.938713 2823 2732 51680080.98832 2824 2732 -5277708.208769 2825 2732 -58666023.42418 2826 2732 17900923.03284 2827 2732 12913159.66331 2828 2732 -36646590.5368 2838 2732 439820.6128855 2839 2732 -31491805.80303 2840 2732 -4060894.923526 2841 2732 1759282.450699 2842 2732 -21110832.82468 2843 2732 -105887547.9636 2844 2732 439820.6129005 2845 2732 52602638.6277 2846 2732 -115814770.8741 2859 2732 -8444910.309145 2860 2732 -8163229.232496 2861 2732 -10570710.68328 2862 2732 -53439363.43899 2863 2732 -5277708.20877 2864 2732 -66116380.01208 2865 2732 -18340743.64572 2866 2732 13440937.44126 2867 2732 -39208792.08802 2733 2733 801867013.5374 2734 2733 2.598762512207e-05 2735 2733 7037129.799195 2736 2733 92970237.73849 2737 2733 -1.010298728943e-05 2738 2733 1759282.450673 2751 2733 -71804122.04904 2752 2733 -47777777.76993 2753 2733 19043969.88243 2754 2733 -181853790.138 2755 2733 3.248453140259e-06 2756 2733 -3518564.899638 2757 2733 -72853540.65349 2758 2733 47777777.76992 2759 2733 -20539363.4444 2823 2733 -19603280.6462 2824 2733 11944444.44837 2825 2733 8005089.696258 2826 2733 -71968136.03531 2827 2733 4.157423973083e-06 2828 2733 51943969.87703 2829 2733 -29817851.87049 2830 2733 -11944444.44837 2831 2733 17900923.03284 2841 2733 16294780.8482 2842 2733 4.217028617859e-06 2843 2733 439820.6128852 2844 2733 88895212.80375 2845 2733 4.112720489502e-06 2846 2733 1759282.450699 2847 2733 -25612922.63328 2848 2733 -1.080334186554e-05 2849 2733 439820.6129002 2862 2733 -20039396.92541 2863 2733 -11944444.44837 2864 2733 -8444910.309145 2865 2733 -74762019.75572 2866 2733 2.533197402954e-07 2867 2733 -53703252.3277 2868 2733 -30778677.45218 2869 2733 11944444.44836 2870 2733 -18340743.64572 2734 2734 687193460.8868 2735 2734 -84443331.25708 2736 2734 -1.019239425659e-05 2737 2734 -88585023.89729 2738 2734 42221665.62855 2751 2734 -47777777.76993 2752 2734 -57469927.96065 2753 2734 9605416.412441 2754 2734 3.069639205933e-06 2755 2734 28369859.6463 2756 2734 -21110832.82467 2757 2734 47777777.76992 2758 2734 -58519346.56511 2759 2734 11505416.41223 2823 2734 11944444.44837 2824 2734 -16019732.12234 2825 2734 -7635451.454545 2826 2734 3.337860107422e-06 2827 2734 -19412223.56332 2828 2734 -5277708.208769 2829 2734 -11944444.44837 2830 2734 -26234303.34662 2831 2734 12913159.66331 2841 2734 5.125999450684e-06 2842 2734 -29094034.58311 2843 2734 -31702916.914 2844 2734 4.351139068604e-06 2845 2734 60226824.62697 2846 2734 -21110832.82468 2847 2734 -9.95397567749e-06 2848 2734 -71001738.06458 2849 2734 52813749.73867 2862 2734 -11944444.44837 2863 2734 -16455848.40155 2864 2734 -8163229.232496 2865 2734 -8.195638656616e-07 2866 2734 -22206107.28377 2867 2734 -5277708.20877 2868 2734 11944444.44836 2869 2734 -27195128.92833 2870 2734 13440937.44126 2735 2735 766546241.681 2736 2735 1759282.450673 2737 2735 42221665.62855 2738 2735 57866058.65466 2751 2735 18780080.99371 2752 2735 9394305.301468 2753 2735 -20006934.4106 2754 2735 -3518564.899638 2755 2735 -21110832.82467 2756 2735 48052583.38233 2757 2735 -20803252.33311 2758 2735 11716527.5232 2759 2735 -22805384.02253 2823 2735 8005089.696258 2824 2735 -7635451.454545 2825 2735 -9407733.938713 2826 2735 51680080.98832 2827 2735 -5277708.208769 2828 2735 -58666023.42418 2829 2735 17900923.03284 2830 2735 12913159.66331 2831 2735 -36646590.5368 2841 2735 439820.6128855 2842 2735 -31491805.80303 2843 2735 -4060894.923526 2844 2735 1759282.450699 2845 2735 -21110832.82468 2846 2735 -105887547.9636 2847 2735 439820.6129005 2848 2735 52602638.6277 2849 2735 -115814770.8741 2862 2735 -8444910.309145 2863 2735 -8163229.232496 2864 2735 -10570710.68328 2865 2735 -53439363.43899 2866 2735 -5277708.20877 2867 2735 -66116380.01208 2868 2735 -18340743.64572 2869 2735 13440937.44126 2870 2735 -39208792.08802 2736 2736 801867013.5374 2737 2736 2.598762512207e-05 2738 2736 7037129.799195 2739 2736 92970237.73849 2740 2736 -1.010298728943e-05 2741 2736 1759282.450673 2754 2736 -71804122.04904 2755 2736 -47777777.76993 2756 2736 19043969.88243 2757 2736 -181853790.138 2758 2736 3.248453140259e-06 2759 2736 -3518564.899638 2760 2736 -72853540.65349 2761 2736 47777777.76992 2762 2736 -20539363.4444 2826 2736 -19603280.6462 2827 2736 11944444.44837 2828 2736 8005089.696258 2829 2736 -71968136.03531 2830 2736 4.157423973083e-06 2831 2736 51943969.87703 2832 2736 -29817851.87049 2833 2736 -11944444.44837 2834 2736 17900923.03284 2844 2736 16294780.8482 2845 2736 4.217028617859e-06 2846 2736 439820.6128852 2847 2736 88895212.80375 2848 2736 4.112720489502e-06 2849 2736 1759282.450699 2850 2736 -25612922.63328 2851 2736 -1.080334186554e-05 2852 2736 439820.6129002 2865 2736 -20039396.92541 2866 2736 -11944444.44837 2867 2736 -8444910.309145 2868 2736 -74762019.75572 2869 2736 2.533197402954e-07 2870 2736 -53703252.3277 2871 2736 -30778677.45218 2872 2736 11944444.44836 2873 2736 -18340743.64572 2737 2737 687193460.8868 2738 2737 -84443331.25708 2739 2737 -1.019239425659e-05 2740 2737 -88585023.89729 2741 2737 42221665.62855 2754 2737 -47777777.76993 2755 2737 -57469927.96065 2756 2737 9605416.412441 2757 2737 3.069639205933e-06 2758 2737 28369859.6463 2759 2737 -21110832.82467 2760 2737 47777777.76992 2761 2737 -58519346.56511 2762 2737 11505416.41223 2826 2737 11944444.44837 2827 2737 -16019732.12234 2828 2737 -7635451.454545 2829 2737 3.337860107422e-06 2830 2737 -19412223.56332 2831 2737 -5277708.208769 2832 2737 -11944444.44837 2833 2737 -26234303.34662 2834 2737 12913159.66331 2844 2737 5.125999450684e-06 2845 2737 -29094034.58311 2846 2737 -31702916.914 2847 2737 4.351139068604e-06 2848 2737 60226824.62697 2849 2737 -21110832.82468 2850 2737 -9.95397567749e-06 2851 2737 -71001738.06458 2852 2737 52813749.73867 2865 2737 -11944444.44837 2866 2737 -16455848.40155 2867 2737 -8163229.232496 2868 2737 -8.195638656616e-07 2869 2737 -22206107.28377 2870 2737 -5277708.20877 2871 2737 11944444.44836 2872 2737 -27195128.92833 2873 2737 13440937.44126 2738 2738 766546241.681 2739 2738 1759282.450673 2740 2738 42221665.62855 2741 2738 57866058.65466 2754 2738 18780080.99371 2755 2738 9394305.301468 2756 2738 -20006934.4106 2757 2738 -3518564.899638 2758 2738 -21110832.82467 2759 2738 48052583.38233 2760 2738 -20803252.33311 2761 2738 11716527.5232 2762 2738 -22805384.02253 2826 2738 8005089.696258 2827 2738 -7635451.454545 2828 2738 -9407733.938713 2829 2738 51680080.98832 2830 2738 -5277708.208769 2831 2738 -58666023.42418 2832 2738 17900923.03284 2833 2738 12913159.66331 2834 2738 -36646590.5368 2844 2738 439820.6128855 2845 2738 -31491805.80303 2846 2738 -4060894.923526 2847 2738 1759282.450699 2848 2738 -21110832.82468 2849 2738 -105887547.9636 2850 2738 439820.6129005 2851 2738 52602638.6277 2852 2738 -115814770.8741 2865 2738 -8444910.309145 2866 2738 -8163229.232496 2867 2738 -10570710.68328 2868 2738 -53439363.43899 2869 2738 -5277708.20877 2870 2738 -66116380.01208 2871 2738 -18340743.64572 2872 2738 13440937.44126 2873 2738 -39208792.08802 2739 2739 801867013.5374 2740 2739 2.598762512207e-05 2741 2739 7037129.799195 2742 2739 92970237.73849 2743 2739 -1.010298728943e-05 2744 2739 1759282.450673 2757 2739 -71804122.04904 2758 2739 -47777777.76993 2759 2739 19043969.88243 2760 2739 -181853790.138 2761 2739 3.248453140259e-06 2762 2739 -3518564.899638 2763 2739 -72853540.65349 2764 2739 47777777.76992 2765 2739 -20539363.4444 2829 2739 -19603280.6462 2830 2739 11944444.44837 2831 2739 8005089.696258 2832 2739 -71968136.03531 2833 2739 4.157423973083e-06 2834 2739 51943969.87703 2835 2739 -29817851.87049 2836 2739 -11944444.44837 2837 2739 17900923.03284 2847 2739 16294780.8482 2848 2739 4.217028617859e-06 2849 2739 439820.6128852 2850 2739 88895212.80375 2851 2739 4.112720489502e-06 2852 2739 1759282.450699 2853 2739 -25612922.63328 2854 2739 -1.080334186554e-05 2855 2739 439820.6129002 2868 2739 -20039396.92541 2869 2739 -11944444.44837 2870 2739 -8444910.309145 2871 2739 -74762019.75572 2872 2739 2.533197402954e-07 2873 2739 -53703252.3277 2874 2739 -30778677.45218 2875 2739 11944444.44836 2876 2739 -18340743.64572 2740 2740 687193460.8868 2741 2740 -84443331.25708 2742 2740 -1.019239425659e-05 2743 2740 -88585023.89729 2744 2740 42221665.62855 2757 2740 -47777777.76993 2758 2740 -57469927.96065 2759 2740 9605416.412441 2760 2740 3.069639205933e-06 2761 2740 28369859.6463 2762 2740 -21110832.82467 2763 2740 47777777.76992 2764 2740 -58519346.56511 2765 2740 11505416.41223 2829 2740 11944444.44837 2830 2740 -16019732.12234 2831 2740 -7635451.454545 2832 2740 3.337860107422e-06 2833 2740 -19412223.56332 2834 2740 -5277708.208769 2835 2740 -11944444.44837 2836 2740 -26234303.34662 2837 2740 12913159.66331 2847 2740 5.125999450684e-06 2848 2740 -29094034.58311 2849 2740 -31702916.914 2850 2740 4.351139068604e-06 2851 2740 60226824.62697 2852 2740 -21110832.82468 2853 2740 -9.95397567749e-06 2854 2740 -71001738.06458 2855 2740 52813749.73867 2868 2740 -11944444.44837 2869 2740 -16455848.40155 2870 2740 -8163229.232496 2871 2740 -8.195638656616e-07 2872 2740 -22206107.28377 2873 2740 -5277708.20877 2874 2740 11944444.44836 2875 2740 -27195128.92833 2876 2740 13440937.44126 2741 2741 766546241.681 2742 2741 1759282.450673 2743 2741 42221665.62855 2744 2741 57866058.65466 2757 2741 18780080.99371 2758 2741 9394305.301468 2759 2741 -20006934.4106 2760 2741 -3518564.899638 2761 2741 -21110832.82467 2762 2741 48052583.38233 2763 2741 -20803252.33311 2764 2741 11716527.5232 2765 2741 -22805384.02253 2829 2741 8005089.696258 2830 2741 -7635451.454545 2831 2741 -9407733.938713 2832 2741 51680080.98832 2833 2741 -5277708.208769 2834 2741 -58666023.42418 2835 2741 17900923.03284 2836 2741 12913159.66331 2837 2741 -36646590.5368 2847 2741 439820.6128855 2848 2741 -31491805.80303 2849 2741 -4060894.923526 2850 2741 1759282.450699 2851 2741 -21110832.82468 2852 2741 -105887547.9636 2853 2741 439820.6129005 2854 2741 52602638.6277 2855 2741 -115814770.8741 2868 2741 -8444910.309145 2869 2741 -8163229.232496 2870 2741 -10570710.68328 2871 2741 -53439363.43899 2872 2741 -5277708.20877 2873 2741 -66116380.01208 2874 2741 -18340743.64572 2875 2741 13440937.44126 2876 2741 -39208792.08802 2742 2742 697335433.5606 2743 2742 13555993.81372 2744 2742 6525546.760922 2745 2742 -74181346.4655 2746 2742 -78873671.67505 2747 2742 4567537.813263 2760 2742 -71804122.04904 2761 2742 -47777777.76993 2762 2742 19043969.88243 2763 2742 -131767559.6882 2764 2742 24583510.6723 2765 2742 -724035.0559039 2766 2742 -42859393.5392 2767 2742 32913264.44696 2768 2742 -2392743.794803 2832 2742 -19603280.6462 2833 2742 11944444.44837 2834 2742 8005089.696258 2835 2742 -51389094.80041 2836 2742 1955225.686484 2837 2742 35595150.68861 2850 2742 16294780.8482 2851 2742 4.217028617859e-06 2852 2742 439820.6128852 2853 2742 89751427.48146 2854 2742 3388998.455101 2855 2742 1627256.23664 2856 2742 -37804191.87041 2857 2742 -19718417.92848 2858 2742 14356015.6679 2871 2742 -20039396.92541 2872 2742 -11944444.44837 2873 2742 -8444910.309145 2874 2742 -60532186.86274 2875 2742 6145877.671103 2876 2742 -45375800.4239 2877 2742 -19078219.62127 2878 2742 8228316.115794 2879 2742 -6175963.728574 2743 2743 738376280.1071 2744 2743 -53461134.90695 2745 2743 -78912088.19445 2746 2743 -255911826.3266 2747 2743 9575542.669736 2760 2743 -47777777.76993 2761 2743 -57469927.96065 2762 2743 9605416.412441 2763 2743 24583510.6723 2764 2743 39087496.12151 2765 2743 -11304599.7208 2766 2743 32913264.44696 2767 2743 -119862720.1338 2768 2743 5385216.157707 2832 2743 11944444.44837 2833 2743 -16019732.12234 2834 2743 -7635451.454545 2835 2743 1964829.816337 2836 2743 -1457900.386174 2837 2743 -5080618.041869 2850 2743 5.125999450684e-06 2851 2743 -29094034.58311 2852 2743 -31702916.914 2853 2743 3388998.455098 2854 2743 100011639.1232 2855 2743 -13368588.23948 2856 2743 -19728022.05833 2857 2743 -83236811.85808 2858 2743 44683227.92718 2871 2743 -11944444.44837 2872 2743 -16455848.40155 2873 2743 -8163229.232496 2874 2743 6145877.671102 2875 2743 -17818422.88929 2876 2743 3275933.400212 2877 2743 8228316.115794 2878 2743 -38329051.2794 2879 2743 18012970.71223 2744 2744 653768770.9707 2745 2744 4834182.270174 2746 2744 10420950.39671 2747 2744 -44643768.23168 2760 2744 18780080.99371 2761 2744 9394305.301468 2762 2744 -20006934.4106 2763 2744 -7321257.277044 2764 2744 -11515710.83187 2765 2744 53866482.54874 2766 2744 -2920521.572234 2767 2744 5385216.157707 2768 2744 -25206299.26693 2832 2744 8005089.696258 2833 2744 -7635451.454545 2834 2744 -9407733.938713 2835 2744 36913961.41127 2836 2744 -5283969.107957 2837 2744 -35687511.70929 2850 2744 439820.6128855 2851 2744 -31491805.80303 2852 2744 -4060894.923526 2853 2744 1636068.847779 2854 2744 -13361537.70386 2855 2744 -62110956.49564 2856 2744 14361165.99813 2857 2744 44679081.42414 2858 2744 -62517889.38316 2871 2744 -8444910.309145 2872 2744 -8163229.232496 2873 2744 -10570710.68328 2874 2744 -46695244.86759 2875 2744 3275933.401367 2876 2744 -60107504.48815 2877 2744 -6175963.728574 2878 2744 18012970.71223 2879 2744 -28603898.10301 2745 2745 489618492.9753 2746 2745 15356371.09326 2747 2745 -2554275.615559 2763 2745 -75484143.26592 2764 2745 -45746472.96609 2765 2745 2836938.039019 2766 2745 -36927445.63632 2767 2745 34495259.45832 2768 2745 -1076002.638337 2769 2745 61858293.65847 2770 2745 -22880131.39438 2771 2745 113380.0795472 2772 2745 -20251607.2672 2773 2745 40238479.12124 2774 2745 -451510.9862942 2835 2745 -17479931.67357 2836 2745 14362145.7276 2837 2745 5833486.609719 2853 2745 -31941173.76503 2854 2745 -19728022.05833 2855 2745 -12009716.04913 2856 2745 24089286.29196 2857 2745 3839092.775206 2858 2745 10350875.53811 2874 2745 -25149760.01167 2875 2745 -11436618.24716 2876 2745 -12495973.82755 2877 2745 -53221395.58403 2878 2745 8623814.868827 2879 2745 -52049556.20671 2880 2745 -15616531.23755 2881 2745 -5720032.851413 2882 2745 11718275.57488 2883 2745 -19138192.52839 2884 2745 10059619.78527 2885 2745 -12797947.19522 2746 2746 684488409.1365 2747 2746 -18295681.76298 2763 2746 -45746472.96609 2764 2746 -41552329.55583 2765 2746 331278.0576664 2766 2746 34495259.45832 2767 2746 136816456.2173 2768 2746 -3434058.65236 2769 2746 -3769020.286411 2770 2746 -30851528.21609 2771 2746 417819.3012418 2772 2746 40238479.12124 2773 2746 -41200663.37894 2774 2746 488013.3309756 2835 2746 9574763.8184 2836 2746 -44269000.15613 2837 2746 -13244377.7058 2853 2746 -19718417.92848 2854 2746 -77373793.75269 2855 2746 -39681478.38126 2856 2746 3839092.775206 2857 2746 72806765.35626 2858 2746 -2276323.108396 2874 2746 -11436618.24716 2875 2746 -16666806.57997 2876 2746 -10481763.82233 2877 2746 8623814.868826 2878 2746 -9785420.099232 2879 2746 5243568.66829 2880 2746 -942255.0720671 2881 2746 -38793986.71761 2882 2746 33437788.15322 2883 2746 10059619.78527 2884 2746 -24375456.5589 2885 2746 16788670.00494 2747 2747 600039923.4573 2763 2747 2573049.150303 2764 2747 120166.946694 2765 2747 -12151033.88324 2766 2747 -2131558.193719 2767 2747 -3645169.763436 2768 2747 150791187.3325 2769 2747 -150508.8092947 2770 2747 417819.3012417 2771 2747 95574403.5202 2772 2747 -715399.8750098 2773 2747 488013.3309756 2774 2747 22252331.25781 2835 2747 3888991.073146 2836 2747 -14800902.31119 2837 2747 -19824082.64697 2853 2747 -12006053.84798 2854 2747 -39687207.82015 2855 2747 -46883174.43545 2856 2747 -10308568.90294 2857 2747 -5821027.16094 2858 2747 -112164251.0942 2874 2747 -12495973.82755 2875 2747 -10481763.82233 2876 2747 -19781022.96801 2877 2747 -52049556.20697 2878 2747 5243568.669446 2879 2747 -79607627.60272 2880 2747 3593275.573656 2881 2747 33437788.15322 2882 2747 -58989344.86761 2883 2747 -12797947.19522 2884 2747 16788670.00494 2885 2747 -31971025.74039 2748 2748 400933506.7687 2749 2748 1.347064971924e-05 2750 2748 3518564.899597 2751 2748 46502609.17931 2752 2748 9555555.553979 2753 2748 -2418969.885557 2838 2748 -71968136.03531 2839 2748 4.157423973083e-06 2840 2748 51943969.87703 2841 2748 -29817851.87049 2842 2748 -11944444.44837 2843 2748 17900923.03284 2859 2748 44430116.09181 2860 2748 1.907348632813e-06 2861 2748 -10318414.32804 2862 2748 -12806461.31664 2863 2748 2388888.889668 2864 2748 -3404256.361406 2749 2749 343596730.4434 2750 2749 -42221665.62853 2751 2749 -9555555.55399 2752 2749 -44275021.63857 2753 2749 20899721.7032 2838 2749 3.337860107422e-06 2839 2749 -19412223.56332 2840 2749 -5277708.208769 2841 2749 -11944444.44837 2842 2749 -26234303.34662 2843 2749 12913159.66331 2859 2749 2.861022949219e-06 2860 2749 30095922.00342 2861 2749 -10555416.41234 2862 2749 -2388888.889678 2863 2749 -35500869.03229 2864 2749 26354097.09154 2750 2750 383273120.8405 2751 2750 5497696.779808 2752 2750 21321943.92535 2753 2750 28979670.15418 2838 2750 51680080.98832 2839 2750 -5277708.208769 2840 2750 -58666023.42418 2841 2750 17900923.03284 2842 2750 12913159.66331 2843 2750 -36646590.5368 2859 2750 10758252.33516 2860 2750 -10555416.41234 2861 2750 -52990414.80866 2862 2750 3844076.974307 2863 2750 26354097.09164 2864 2750 -57907385.43707 2751 2751 400933506.7687 2752 2751 1.347064971924e-05 2753 2751 3518564.899597 2754 2751 46502609.17931 2755 2751 9555555.553979 2756 2751 -2418969.885557 2838 2751 -19603280.6462 2839 2751 11944444.44837 2840 2751 8005089.696258 2841 2751 -71968136.03531 2842 2751 4.157423973083e-06 2843 2751 51943969.87703 2844 2751 -29817851.87049 2845 2751 -11944444.44837 2846 2751 17900923.03284 2859 2751 8147390.424101 2860 2751 -2388888.889671 2861 2751 -1425089.694098 2862 2751 44430116.09181 2863 2751 1.907348632813e-06 2864 2751 -10318414.32804 2865 2751 -12806461.31664 2866 2751 2388888.889668 2867 2751 -3404256.361406 2752 2752 343596730.4434 2753 2752 -42221665.62853 2754 2752 -9555555.55399 2755 2752 -44275021.63857 2756 2752 20899721.7032 2838 2752 11944444.44837 2839 2752 -16019732.12234 2840 2752 -7635451.454545 2841 2752 3.337860107422e-06 2842 2752 -19412223.56332 2843 2752 -5277708.208769 2844 2752 -11944444.44837 2845 2752 -26234303.34662 2846 2752 12913159.66331 2859 2752 2388888.889676 2860 2752 -14547017.29156 2861 2752 -15798680.67921 2862 2752 2.861022949219e-06 2863 2752 30095922.00342 2864 2752 -10555416.41234 2865 2752 -2388888.889678 2866 2752 -35500869.03229 2867 2752 26354097.09154 2753 2753 383273120.8405 2754 2753 5497696.779808 2755 2753 21321943.92535 2756 2753 28979670.15418 2838 2753 8005089.696258 2839 2753 -7635451.454545 2840 2753 -9407733.938713 2841 2753 51680080.98832 2842 2753 -5277708.208769 2843 2753 -58666023.42418 2844 2753 17900923.03284 2845 2753 12913159.66331 2846 2753 -36646590.5368 2859 2753 1864910.306983 2860 2753 -15798680.67931 2861 2753 -2030447.461764 2862 2753 10758252.33516 2863 2753 -10555416.41234 2864 2753 -52990414.80866 2865 2753 3844076.974307 2866 2753 26354097.09164 2867 2753 -57907385.43707 2754 2754 400933506.7687 2755 2754 1.347064971924e-05 2756 2754 3518564.899597 2757 2754 46502609.17931 2758 2754 9555555.553979 2759 2754 -2418969.885557 2841 2754 -19603280.6462 2842 2754 11944444.44837 2843 2754 8005089.696258 2844 2754 -71968136.03531 2845 2754 4.157423973083e-06 2846 2754 51943969.87703 2847 2754 -29817851.87049 2848 2754 -11944444.44837 2849 2754 17900923.03284 2862 2754 8147390.424101 2863 2754 -2388888.889671 2864 2754 -1425089.694098 2865 2754 44430116.09181 2866 2754 1.907348632813e-06 2867 2754 -10318414.32804 2868 2754 -12806461.31664 2869 2754 2388888.889668 2870 2754 -3404256.361406 2755 2755 343596730.4434 2756 2755 -42221665.62853 2757 2755 -9555555.55399 2758 2755 -44275021.63857 2759 2755 20899721.7032 2841 2755 11944444.44837 2842 2755 -16019732.12234 2843 2755 -7635451.454545 2844 2755 3.337860107422e-06 2845 2755 -19412223.56332 2846 2755 -5277708.208769 2847 2755 -11944444.44837 2848 2755 -26234303.34662 2849 2755 12913159.66331 2862 2755 2388888.889676 2863 2755 -14547017.29156 2864 2755 -15798680.67921 2865 2755 2.861022949219e-06 2866 2755 30095922.00342 2867 2755 -10555416.41234 2868 2755 -2388888.889678 2869 2755 -35500869.03229 2870 2755 26354097.09154 2756 2756 383273120.8405 2757 2756 5497696.779808 2758 2756 21321943.92535 2759 2756 28979670.15418 2841 2756 8005089.696258 2842 2756 -7635451.454545 2843 2756 -9407733.938713 2844 2756 51680080.98832 2845 2756 -5277708.208769 2846 2756 -58666023.42418 2847 2756 17900923.03284 2848 2756 12913159.66331 2849 2756 -36646590.5368 2862 2756 1864910.306983 2863 2756 -15798680.67931 2864 2756 -2030447.461764 2865 2756 10758252.33516 2866 2756 -10555416.41234 2867 2756 -52990414.80866 2868 2756 3844076.974307 2869 2756 26354097.09164 2870 2756 -57907385.43707 2757 2757 400933506.7687 2758 2757 1.347064971924e-05 2759 2757 3518564.899597 2760 2757 46502609.17931 2761 2757 9555555.553979 2762 2757 -2418969.885557 2844 2757 -19603280.6462 2845 2757 11944444.44837 2846 2757 8005089.696258 2847 2757 -71968136.03531 2848 2757 4.157423973083e-06 2849 2757 51943969.87703 2850 2757 -29817851.87049 2851 2757 -11944444.44837 2852 2757 17900923.03284 2865 2757 8147390.424101 2866 2757 -2388888.889671 2867 2757 -1425089.694098 2868 2757 44430116.09181 2869 2757 1.907348632813e-06 2870 2757 -10318414.32804 2871 2757 -12806461.31664 2872 2757 2388888.889668 2873 2757 -3404256.361406 2758 2758 343596730.4434 2759 2758 -42221665.62853 2760 2758 -9555555.55399 2761 2758 -44275021.63857 2762 2758 20899721.7032 2844 2758 11944444.44837 2845 2758 -16019732.12234 2846 2758 -7635451.454545 2847 2758 3.337860107422e-06 2848 2758 -19412223.56332 2849 2758 -5277708.208769 2850 2758 -11944444.44837 2851 2758 -26234303.34662 2852 2758 12913159.66331 2865 2758 2388888.889676 2866 2758 -14547017.29156 2867 2758 -15798680.67921 2868 2758 2.861022949219e-06 2869 2758 30095922.00342 2870 2758 -10555416.41234 2871 2758 -2388888.889678 2872 2758 -35500869.03229 2873 2758 26354097.09154 2759 2759 383273120.8405 2760 2759 5497696.779808 2761 2759 21321943.92535 2762 2759 28979670.15418 2844 2759 8005089.696258 2845 2759 -7635451.454545 2846 2759 -9407733.938713 2847 2759 51680080.98832 2848 2759 -5277708.208769 2849 2759 -58666023.42418 2850 2759 17900923.03284 2851 2759 12913159.66331 2852 2759 -36646590.5368 2865 2759 1864910.306983 2866 2759 -15798680.67931 2867 2759 -2030447.461764 2868 2759 10758252.33516 2869 2759 -10555416.41234 2870 2759 -52990414.80866 2871 2759 3844076.974307 2872 2759 26354097.09164 2873 2759 -57907385.43707 2760 2760 400933506.7687 2761 2760 1.347064971924e-05 2762 2760 3518564.899597 2763 2760 46502609.17931 2764 2760 9555555.553979 2765 2760 -2418969.885557 2847 2760 -19603280.6462 2848 2760 11944444.44837 2849 2760 8005089.696258 2850 2760 -71968136.03531 2851 2760 4.157423973083e-06 2852 2760 51943969.87703 2853 2760 -29817851.87049 2854 2760 -11944444.44837 2855 2760 17900923.03284 2868 2760 8147390.424101 2869 2760 -2388888.889671 2870 2760 -1425089.694098 2871 2760 44430116.09181 2872 2760 1.907348632813e-06 2873 2760 -10318414.32804 2874 2760 -12806461.31664 2875 2760 2388888.889668 2876 2760 -3404256.361406 2761 2761 343596730.4434 2762 2761 -42221665.62853 2763 2761 -9555555.55399 2764 2761 -44275021.63857 2765 2761 20899721.7032 2847 2761 11944444.44837 2848 2761 -16019732.12234 2849 2761 -7635451.454545 2850 2761 3.337860107422e-06 2851 2761 -19412223.56332 2852 2761 -5277708.208769 2853 2761 -11944444.44837 2854 2761 -26234303.34662 2855 2761 12913159.66331 2868 2761 2388888.889676 2869 2761 -14547017.29156 2870 2761 -15798680.67921 2871 2761 2.861022949219e-06 2872 2761 30095922.00342 2873 2761 -10555416.41234 2874 2761 -2388888.889678 2875 2761 -35500869.03229 2876 2761 26354097.09154 2762 2762 383273120.8405 2763 2762 5497696.779808 2764 2762 21321943.92535 2765 2762 28979670.15418 2847 2762 8005089.696258 2848 2762 -7635451.454545 2849 2762 -9407733.938713 2850 2762 51680080.98832 2851 2762 -5277708.208769 2852 2762 -58666023.42418 2853 2762 17900923.03284 2854 2762 12913159.66331 2855 2762 -36646590.5368 2868 2762 1864910.306983 2869 2762 -15798680.67931 2870 2762 -2030447.461764 2871 2762 10758252.33516 2872 2762 -10555416.41234 2873 2762 -52990414.80866 2874 2762 3844076.974307 2875 2762 26354097.09164 2876 2762 -57907385.43707 2763 2763 390528978.5414 2764 2763 2031754.88496 2765 2763 18978084.67473 2766 2763 10706126.81689 2767 2763 -19091014.80711 2768 2763 2131234.560147 2850 2763 -19603280.6462 2851 2763 11944444.44837 2852 2763 8005089.696258 2853 2763 -57207507.5192 2854 2763 6145877.671107 2855 2763 43364477.33833 2856 2763 -26546695.73564 2857 2763 -11436618.24716 2858 2763 13848470.62555 2871 2763 8147390.424101 2872 2763 -2388888.889671 2873 2763 -1425089.694098 2874 2763 41725581.05413 2875 2763 507938.7214912 2876 2763 -6453256.604583 2877 2763 -15664036.02673 2878 2763 -4772753.704127 2879 2763 5360864.194452 2764 2764 352799816.1126 2765 2764 -26163100.1551 2766 2764 -38202125.91508 2767 2764 -79908143.54456 2768 2764 4520172.591737 2850 2764 11944444.44837 2851 2764 -16019732.12234 2852 2764 -7635451.454545 2853 2764 6145877.671106 2854 2764 -14493743.54572 2855 2764 -8981011.042271 2856 2764 -11436618.24716 2857 2764 -18063742.30393 2858 2764 10594625.07348 2871 2764 2388888.889676 2872 2764 -14547017.29156 2873 2764 -15798680.67921 2874 2764 507938.7214905 2875 2764 32293290.44228 2876 2764 -6540775.042003 2877 2764 -9550531.483474 2878 2764 -38317603.62825 2879 2764 28361293.14454 2765 2765 373214203.523 2766 2765 3450679.004372 2767 2765 4731283.702813 2768 2765 25915984.15995 2850 2765 8005089.696258 2851 2765 -7635451.454545 2852 2765 -9407733.938713 2853 2765 44683921.78504 2854 2765 -8981011.041011 2855 2765 -51241692.90527 2856 2765 13848470.62555 2857 2765 10594625.07348 2858 2765 -23506184.8986 2871 2765 1864910.306983 2872 2765 -15798680.67931 2873 2765 -2030447.461764 2874 2765 14622854.50307 2875 2765 -6540775.042003 2876 2765 -55780885.41815 2877 2765 11025586.41696 2878 2765 28361293.14339 2879 2765 -42429184.57622 2766 2766 393308552.7541 2767 2766 33387741.61392 2768 2766 1069557.995636 2769 2766 -90523162.8112 2770 2766 -55317076.41861 2771 2766 735989.013558 2772 2766 18987277.35532 2773 2766 -7277063.18551 2774 2766 851409.3072543 2853 2766 -16305861.25464 2854 2766 8228316.115794 2855 2766 4847647.38616 2856 2766 -52398287.78342 2857 2766 8623814.868829 2858 2766 51247665.9983 2874 2766 -10942417.8914 2875 2766 -9550531.483475 2876 2766 -9564135.802965 2877 2766 13533800.67906 2878 2766 8346935.407593 2879 2766 -10722054.94328 2880 2766 -36706081.42304 2881 2766 -13829269.11147 2882 2766 20496497.26015 2883 2766 -20473238.80768 2884 2766 -1819265.797273 2885 2766 5144935.657537 2767 2767 456455484.3111 2768 2767 -8493577.449744 2769 2767 -55317076.41861 2770 2767 -67552496.70794 2771 2767 488013.3309754 2772 2767 -26388174.29348 2773 2767 -73256625.20248 2774 2767 1534234.021698 2853 2767 8228316.115794 2854 2767 -35556692.91277 2855 2767 -15320362.63205 2856 2767 8623814.868829 2857 2767 -8962312.29862 2858 2767 -7013375.774193 2874 2767 -4772753.704129 2875 2767 -33595985.49293 2876 2767 -26048429.06869 2877 2767 8346935.407594 2878 2767 29320533.57608 2879 2767 -2123394.363487 2880 2767 -13829269.11147 2881 2767 -30963414.8944 2882 2767 16788670.00494 2883 2767 -6597043.576619 2884 2767 -43534214.45849 2885 2767 33716891.83347 2768 2768 472314421.5349 2769 2768 735989.0135581 2770 2768 488013.3309754 2771 2768 -4099502.071191 2772 2768 1115298.196096 2773 2768 1534234.021698 2774 2768 54129421.48319 2853 2768 4847647.38616 2854 2768 -15320362.63205 2855 2768 -21210942.45867 2856 2768 51247665.99856 2857 2768 -7013375.772933 2858 2768 -77412673.46776 2874 2768 -4691080.247253 2875 2768 -26048429.06995 2876 2768 -29838202.88199 2877 2768 9937389.497775 2878 2768 -2123394.363487 2879 2768 -108036961.3792 2880 2768 20496497.26015 2881 2768 16788670.00494 2882 2768 -38558984.07588 2883 2768 10337713.43846 2884 2768 33716891.83347 2885 2768 -53721133.01946 2769 2769 247694807.0596 2770 2769 61102353.61032 2771 2769 -421250.4501109 2772 2769 -40613658.84548 2773 2769 -2016256.905298 2774 2769 -164229.7541515 2856 2769 -15064205.65599 2857 2769 -942255.0720674 2858 2769 -3602557.756001 2877 2769 -36153755.84147 2878 2769 -13829269.11147 2879 2769 -20128502.75319 2880 2769 313818.0877385 2881 2769 15275588.41011 2882 2769 8019687.386086 2883 2769 -37751670.53939 2884 2769 -504064.2265737 2885 2769 -33038626.87689 2770 2770 223946295.6199 2771 2770 -417819.3012383 2772 2770 17094854.20267 2773 2770 52874008.36546 2774 2770 -488013.3309731 2856 2770 -5720032.851414 2857 2770 -38241661.13605 2858 2770 -33228878.5025 2877 2770 -13829269.11147 2878 2770 -30411089.31283 2879 2770 -16544663.33934 2880 2770 15275588.41011 2881 2770 -5623309.775096 2882 2770 6562211.840209 2883 2770 4273713.552772 2884 2770 -14379753.72514 2885 2770 3211330.001623 2771 2771 302886642.9092 2772 2771 -428118.6429929 2773 2771 -488013.3309731 2774 2771 81415199.80545 2856 2771 -11727557.7571 2857 2771 -33228878.5025 2858 2771 -57516476.65011 2877 2771 -20128502.75319 2878 2771 -16544663.33934 2879 2771 -37086115.85837 2880 2771 -8230312.611246 2881 2771 -6771121.490934 2882 2771 -88571362.45583 2883 2771 -33038626.87847 2884 2771 -3455336.667233 2885 2771 -53241548.9 2772 2772 194640779.4635 2773 2772 -30945159.03043 2774 2772 555998.0993371 2856 2772 -18585866.94682 2857 2772 10059619.78527 2858 2772 12506219.47975 2877 2772 -18816262.06405 2878 2772 -6597043.57662 2879 2772 -10043953.22886 2880 2772 -37751670.53939 2881 2772 4273713.552774 2882 2772 32890539.77888 2883 2772 -122944.6401992 2884 2772 -7736289.761419 2885 2772 -5251694.918494 2773 2773 214346070.9221 2774 2773 -1534234.021693 2856 2773 10059619.78527 2857 2773 -23823130.97733 2858 2773 -16544663.33934 2877 2773 -1819265.797274 2878 2773 -41877237.71487 2879 2773 -32949774.82225 2880 2773 -504064.2265722 2881 2773 -14379753.72514 2882 2773 3211330.001623 2883 2773 -7736289.761419 2884 2773 4803378.226877 2885 2773 6283108.159956 2774 2774 249570489.3365 2856 2774 12506219.47975 2857 2774 -16544663.33934 2858 2774 -30498157.52287 2877 2774 -5115064.336773 2878 2774 -32949774.82225 2879 2774 -49302528.36979 2880 2774 32890539.77744 2881 2774 -3455336.667232 2882 2774 -53241548.9 2883 2774 4869971.746511 2884 2774 -7050225.171186 2885 2774 -67695749.71523 2775 2775 508612796.7711 2776 2775 47777777.76993 2777 2775 20248388.26907 2778 2775 -267652150.2947 2779 2775 -47793765.64302 2780 2775 -20241471.08164 2781 2775 6087083.420696 2782 2775 38238210.08904 2783 2775 -16367807.61161 2886 2775 57272319.20769 2887 2775 11944444.44837 2888 2775 16262217.83282 2889 2775 -96920154.16551 2890 2775 -11948441.41665 2891 2775 -57894966.96635 2892 2775 -19430363.65776 2893 2775 9559552.526969 2894 2775 -14502802.0572 2776 2776 436923838.9196 2777 2776 -52790465.59624 2778 2776 -47801759.57957 2779 2776 -43044343.65972 2780 2776 -29246608.86722 2781 2776 57357315.13355 2782 2776 6087083.420705 2783 2776 18374525.78853 2886 2776 11944444.44837 2887 2776 39350079.73598 2888 2776 -4237631.002181 2889 2776 -11950439.90079 2890 2776 -40768202.4791 2891 2776 -17881456.80322 2892 2776 14339328.79045 2893 2776 -19430363.65775 2894 2776 17403019.36621 2777 2777 498731997.6738 2778 2777 -20238012.48793 2779 2777 -23543989.15986 2780 2777 -9089122.520285 2781 2777 -24551711.41742 2782 2777 12249683.85902 2783 2777 16232222.45521 2886 2777 -4818855.100867 2887 2777 -21102266.9381 2888 2777 -61666013.98076 2889 2777 -57630268.59944 2890 2777 -16401283.68257 2891 2777 -82291258.12151 2892 2777 -21754203.08579 2893 2777 11602012.9108 2894 2777 -51814303.08735 2778 2778 866925828.5346 2779 2778 47817747.45269 2780 2778 23749660.20008 2781 2778 14263474.74723 2782 2778 -47793765.64302 2783 2778 20546059.94785 2784 2778 -181853790.138 2785 2778 3.248453140259e-06 2786 2778 -3518564.899638 2787 2778 -72853540.65349 2788 2778 47777777.76992 2789 2778 -20539363.4444 2886 2778 -85740387.93072 2887 2778 -11950439.90077 2888 2778 47775096.06898 2889 2778 112006329.4708 2890 2778 11954436.86906 2891 2778 5935349.843305 2892 2778 -36979414.9719 2893 2778 -11948441.41664 2894 2778 18346879.03149 2895 2778 -74762019.75572 2896 2778 2.533197402954e-07 2897 2778 -53703252.3277 2898 2778 -30778677.45218 2899 2778 11944444.44836 2900 2778 -18340743.64572 2779 2779 737900094.3577 2780 2779 -65443918.48946 2781 2779 -47801759.57957 2782 2779 -152989568.1247 2783 2779 35049537.95506 2784 2779 3.069639205933e-06 2785 2779 28369859.6463 2786 2779 -21110832.82467 2787 2779 47777777.76992 2788 2779 -58519346.56511 2789 2779 11505416.41223 2886 2779 -11948441.41664 2887 2779 -29588436.2443 2888 2779 4682155.144749 2889 2779 11954436.86906 2890 2779 79749895.91067 2891 2779 -16362631.77783 2892 2779 -11950439.90078 2893 2779 -78792675.71048 2894 2779 51029508.03613 2895 2779 -8.195638656616e-07 2896 2779 -22206107.28377 2897 2779 -5277708.20877 2898 2779 11944444.44836 2899 2779 -27195128.92833 2900 2779 13440937.44126 2780 2780 768350518.5004 2781 2780 20813297.08829 2782 2780 40963180.50213 2783 2780 19484057.05595 2784 2780 -3518564.899638 2785 2780 -21110832.82467 2786 2780 48052583.38233 2787 2780 -20803252.33311 2788 2780 11716527.5232 2789 2780 -22805384.02253 2886 2780 47510397.70207 2887 2780 3205506.989851 2888 2780 -52478548.16204 2889 2780 5939756.113784 2890 2780 -16359106.80793 2891 2780 -87179377.66603 2892 2780 18349946.72438 2893 2780 52296851.6274 2894 2780 -103249742.1615 2895 2780 -53439363.43899 2896 2780 -5277708.20877 2897 2780 -66116380.01208 2898 2780 -18340743.64572 2899 2780 13440937.44126 2900 2780 -39208792.08802 2781 2781 508612796.7711 2782 2781 47777777.76993 2783 2781 20248388.26907 2784 2781 -71804122.04904 2785 2781 -47777777.76993 2786 2781 19043969.88243 2787 2781 -267652150.2947 2788 2781 -47793765.64302 2789 2781 -20241471.08164 2790 2781 6087083.420696 2791 2781 38238210.08904 2792 2781 -16367807.61161 2886 2781 1532382.642161 2887 2781 14339328.79045 2888 2781 9874015.186731 2889 2781 -4845636.536104 2890 2781 -11950439.90078 2891 2781 -8009104.879749 2892 2781 57272319.20769 2893 2781 11944444.44837 2894 2781 16262217.83282 2895 2781 -20039396.92541 2896 2781 -11944444.44837 2897 2781 -8444910.309145 2898 2781 -96920154.16551 2899 2781 -11948441.41665 2900 2781 -57894966.96635 2901 2781 -19430363.65776 2902 2781 9559552.526969 2903 2781 -14502802.0572 2782 2782 436923838.9196 2783 2782 -52790465.59624 2784 2782 -47777777.76993 2785 2782 -57469927.96065 2786 2782 9605416.412441 2787 2782 -47801759.57957 2788 2782 -43044343.65972 2789 2782 -29246608.86722 2790 2782 57357315.13355 2791 2782 6087083.420705 2792 2782 18374525.78853 2886 2782 9559552.526969 2887 2782 1532382.642157 2888 2782 -5266148.137347 2889 2782 -11948441.41664 2890 2782 -46658897.27468 2891 2782 -32026328.33686 2892 2782 11944444.44837 2893 2782 39350079.73598 2894 2782 -4237631.002181 2895 2782 -11944444.44837 2896 2782 -16455848.40155 2897 2782 -8163229.232496 2898 2782 -11950439.90079 2899 2782 -40768202.4791 2900 2782 -17881456.80322 2901 2782 14339328.79045 2902 2782 -19430363.65775 2903 2782 17403019.36621 2783 2783 498731997.6738 2784 2783 18780080.99371 2785 2783 9394305.301468 2786 2783 -20006934.4106 2787 2783 -20238012.48793 2788 2783 -23543989.15986 2789 2783 -9089122.520285 2790 2783 -24551711.41742 2791 2783 12249683.85902 2792 2783 16232222.45521 2886 2783 6582676.791154 2887 2783 -7899222.206021 2888 2783 4086353.712421 2889 2783 -8007766.485252 2890 2783 -33293672.07046 2891 2783 -17559666.33271 2892 2783 -4818855.100867 2893 2783 -21102266.9381 2894 2783 -61666013.98076 2895 2783 -8444910.309145 2896 2783 -8163229.232496 2897 2783 -10570710.68328 2898 2783 -57630268.59944 2899 2783 -16401283.68257 2900 2783 -82291258.12151 2901 2783 -21754203.08579 2902 2783 11602012.9108 2903 2783 -51814303.08735 2784 2784 801867013.5374 2785 2784 2.598762512207e-05 2786 2784 7037129.799195 2787 2784 92970237.73849 2788 2784 -1.010298728943e-05 2789 2784 1759282.450673 2793 2784 -181853790.138 2794 2784 3.248453140259e-06 2795 2784 -3518564.899638 2796 2784 -72853540.65349 2797 2784 47777777.76992 2798 2784 -20539363.4444 2889 2784 -71968136.03531 2890 2784 4.157423973083e-06 2891 2784 51943969.87703 2892 2784 -29817851.87049 2893 2784 -11944444.44837 2894 2784 17900923.03284 2895 2784 88895212.80375 2896 2784 4.112720489502e-06 2897 2784 1759282.450699 2898 2784 -25612922.63328 2899 2784 -1.080334186554e-05 2900 2784 439820.6129002 2904 2784 -74762019.75572 2905 2784 2.533197402954e-07 2906 2784 -53703252.3277 2907 2784 -30778677.45218 2908 2784 11944444.44836 2909 2784 -18340743.64572 2785 2785 687193460.8868 2786 2785 -84443331.25708 2787 2785 -1.019239425659e-05 2788 2785 -88585023.89729 2789 2785 42221665.62855 2793 2785 3.069639205933e-06 2794 2785 28369859.6463 2795 2785 -21110832.82467 2796 2785 47777777.76992 2797 2785 -58519346.56511 2798 2785 11505416.41223 2889 2785 3.337860107422e-06 2890 2785 -19412223.56332 2891 2785 -5277708.208769 2892 2785 -11944444.44837 2893 2785 -26234303.34662 2894 2785 12913159.66331 2895 2785 4.351139068604e-06 2896 2785 60226824.62697 2897 2785 -21110832.82468 2898 2785 -9.95397567749e-06 2899 2785 -71001738.06458 2900 2785 52813749.73867 2904 2785 -8.195638656616e-07 2905 2785 -22206107.28377 2906 2785 -5277708.20877 2907 2785 11944444.44836 2908 2785 -27195128.92833 2909 2785 13440937.44126 2786 2786 766546241.681 2787 2786 1759282.450673 2788 2786 42221665.62855 2789 2786 57866058.65466 2793 2786 -3518564.899638 2794 2786 -21110832.82467 2795 2786 48052583.38233 2796 2786 -20803252.33311 2797 2786 11716527.5232 2798 2786 -22805384.02253 2889 2786 51680080.98832 2890 2786 -5277708.208769 2891 2786 -58666023.42418 2892 2786 17900923.03284 2893 2786 12913159.66331 2894 2786 -36646590.5368 2895 2786 1759282.450699 2896 2786 -21110832.82468 2897 2786 -105887547.9636 2898 2786 439820.6129005 2899 2786 52602638.6277 2900 2786 -115814770.8741 2904 2786 -53439363.43899 2905 2786 -5277708.20877 2906 2786 -66116380.01208 2907 2786 -18340743.64572 2908 2786 13440937.44126 2909 2786 -39208792.08802 2787 2787 866925828.5346 2788 2787 47817747.45269 2789 2787 23749660.20008 2790 2787 14263474.74723 2791 2787 -47793765.64302 2792 2787 20546059.94785 2793 2787 -71804122.04904 2794 2787 -47777777.76993 2795 2787 19043969.88243 2796 2787 -181853790.138 2797 2787 3.248453140259e-06 2798 2787 -3518564.899638 2799 2787 -72853540.65349 2800 2787 47777777.76992 2801 2787 -20539363.4444 2889 2787 -19603280.6462 2890 2787 11944444.44837 2891 2787 8005089.696258 2892 2787 -85740387.93072 2893 2787 -11950439.90077 2894 2787 47775096.06898 2895 2787 16294780.8482 2896 2787 4.217028617859e-06 2897 2787 439820.6128852 2898 2787 112006329.4708 2899 2787 11954436.86906 2900 2787 5935349.843305 2901 2787 -36979414.9719 2902 2787 -11948441.41664 2903 2787 18346879.03149 2904 2787 -20039396.92541 2905 2787 -11944444.44837 2906 2787 -8444910.309145 2907 2787 -74762019.75572 2908 2787 2.533197402954e-07 2909 2787 -53703252.3277 2910 2787 -30778677.45218 2911 2787 11944444.44836 2912 2787 -18340743.64572 2788 2788 737900094.3577 2789 2788 -65443918.48946 2790 2788 -47801759.57957 2791 2788 -152989568.1247 2792 2788 35049537.95506 2793 2788 -47777777.76993 2794 2788 -57469927.96065 2795 2788 9605416.412441 2796 2788 3.069639205933e-06 2797 2788 28369859.6463 2798 2788 -21110832.82467 2799 2788 47777777.76992 2800 2788 -58519346.56511 2801 2788 11505416.41223 2889 2788 11944444.44837 2890 2788 -16019732.12234 2891 2788 -7635451.454545 2892 2788 -11948441.41664 2893 2788 -29588436.2443 2894 2788 4682155.144749 2895 2788 5.125999450684e-06 2896 2788 -29094034.58311 2897 2788 -31702916.914 2898 2788 11954436.86906 2899 2788 79749895.91067 2900 2788 -16362631.77783 2901 2788 -11950439.90078 2902 2788 -78792675.71048 2903 2788 51029508.03613 2904 2788 -11944444.44837 2905 2788 -16455848.40155 2906 2788 -8163229.232496 2907 2788 -8.195638656616e-07 2908 2788 -22206107.28377 2909 2788 -5277708.20877 2910 2788 11944444.44836 2911 2788 -27195128.92833 2912 2788 13440937.44126 2789 2789 768350518.5004 2790 2789 20813297.08829 2791 2789 40963180.50213 2792 2789 19484057.05595 2793 2789 18780080.99371 2794 2789 9394305.301468 2795 2789 -20006934.4106 2796 2789 -3518564.899638 2797 2789 -21110832.82467 2798 2789 48052583.38233 2799 2789 -20803252.33311 2800 2789 11716527.5232 2801 2789 -22805384.02253 2889 2789 8005089.696258 2890 2789 -7635451.454545 2891 2789 -9407733.938713 2892 2789 47510397.70207 2893 2789 3205506.989851 2894 2789 -52478548.16204 2895 2789 439820.6128855 2896 2789 -31491805.80303 2897 2789 -4060894.923526 2898 2789 5939756.113784 2899 2789 -16359106.80793 2900 2789 -87179377.66603 2901 2789 18349946.72438 2902 2789 52296851.6274 2903 2789 -103249742.1615 2904 2789 -8444910.309145 2905 2789 -8163229.232496 2906 2789 -10570710.68328 2907 2789 -53439363.43899 2908 2789 -5277708.20877 2909 2789 -66116380.01208 2910 2789 -18340743.64572 2911 2789 13440937.44126 2912 2789 -39208792.08802 2790 2790 508612796.7711 2791 2790 47777777.76993 2792 2790 20248388.26907 2796 2790 -71804122.04904 2797 2790 -47777777.76993 2798 2790 19043969.88243 2799 2790 -267652150.2947 2800 2790 -47793765.64302 2801 2790 -20241471.08164 2802 2790 6087083.420696 2803 2790 38238210.08904 2804 2790 -16367807.61161 2892 2790 1532382.642161 2893 2790 14339328.79045 2894 2790 9874015.186731 2898 2790 -4845636.536104 2899 2790 -11950439.90078 2900 2790 -8009104.879749 2901 2790 57272319.20769 2902 2790 11944444.44837 2903 2790 16262217.83282 2907 2790 -20039396.92541 2908 2790 -11944444.44837 2909 2790 -8444910.309145 2910 2790 -96920154.16551 2911 2790 -11948441.41665 2912 2790 -57894966.96635 2913 2790 -19430363.65776 2914 2790 9559552.526969 2915 2790 -14502802.0572 2791 2791 436923838.9196 2792 2791 -52790465.59624 2796 2791 -47777777.76993 2797 2791 -57469927.96065 2798 2791 9605416.412441 2799 2791 -47801759.57957 2800 2791 -43044343.65972 2801 2791 -29246608.86722 2802 2791 57357315.13355 2803 2791 6087083.420705 2804 2791 18374525.78853 2892 2791 9559552.526969 2893 2791 1532382.642157 2894 2791 -5266148.137347 2898 2791 -11948441.41664 2899 2791 -46658897.27468 2900 2791 -32026328.33686 2901 2791 11944444.44837 2902 2791 39350079.73598 2903 2791 -4237631.002181 2907 2791 -11944444.44837 2908 2791 -16455848.40155 2909 2791 -8163229.232496 2910 2791 -11950439.90079 2911 2791 -40768202.4791 2912 2791 -17881456.80322 2913 2791 14339328.79045 2914 2791 -19430363.65775 2915 2791 17403019.36621 2792 2792 498731997.6738 2796 2792 18780080.99371 2797 2792 9394305.301468 2798 2792 -20006934.4106 2799 2792 -20238012.48793 2800 2792 -23543989.15986 2801 2792 -9089122.520285 2802 2792 -24551711.41742 2803 2792 12249683.85902 2804 2792 16232222.45521 2892 2792 6582676.791154 2893 2792 -7899222.206021 2894 2792 4086353.712421 2898 2792 -8007766.485252 2899 2792 -33293672.07046 2900 2792 -17559666.33271 2901 2792 -4818855.100867 2902 2792 -21102266.9381 2903 2792 -61666013.98076 2907 2792 -8444910.309145 2908 2792 -8163229.232496 2909 2792 -10570710.68328 2910 2792 -57630268.59944 2911 2792 -16401283.68257 2912 2792 -82291258.12151 2913 2792 -21754203.08579 2914 2792 11602012.9108 2915 2792 -51814303.08735 2793 2793 801867013.5374 2794 2793 2.598762512207e-05 2795 2793 7037129.799195 2796 2793 92970237.73849 2797 2793 -1.010298728943e-05 2798 2793 1759282.450673 2805 2793 -181853790.138 2806 2793 3.248453140259e-06 2807 2793 -3518564.899638 2808 2793 -72853540.65349 2809 2793 47777777.76992 2810 2793 -20539363.4444 2895 2793 -71968136.03531 2896 2793 4.157423973083e-06 2897 2793 51943969.87703 2898 2793 -29817851.87049 2899 2793 -11944444.44837 2900 2793 17900923.03284 2904 2793 88895212.80375 2905 2793 4.112720489502e-06 2906 2793 1759282.450699 2907 2793 -25612922.63328 2908 2793 -1.080334186554e-05 2909 2793 439820.6129002 2916 2793 -74762019.75572 2917 2793 2.533197402954e-07 2918 2793 -53703252.3277 2919 2793 -30778677.45218 2920 2793 11944444.44836 2921 2793 -18340743.64572 2794 2794 687193460.8868 2795 2794 -84443331.25708 2796 2794 -1.019239425659e-05 2797 2794 -88585023.89729 2798 2794 42221665.62855 2805 2794 3.069639205933e-06 2806 2794 28369859.6463 2807 2794 -21110832.82467 2808 2794 47777777.76992 2809 2794 -58519346.56511 2810 2794 11505416.41223 2895 2794 3.337860107422e-06 2896 2794 -19412223.56332 2897 2794 -5277708.208769 2898 2794 -11944444.44837 2899 2794 -26234303.34662 2900 2794 12913159.66331 2904 2794 4.351139068604e-06 2905 2794 60226824.62697 2906 2794 -21110832.82468 2907 2794 -9.95397567749e-06 2908 2794 -71001738.06458 2909 2794 52813749.73867 2916 2794 -8.195638656616e-07 2917 2794 -22206107.28377 2918 2794 -5277708.20877 2919 2794 11944444.44836 2920 2794 -27195128.92833 2921 2794 13440937.44126 2795 2795 766546241.681 2796 2795 1759282.450673 2797 2795 42221665.62855 2798 2795 57866058.65466 2805 2795 -3518564.899638 2806 2795 -21110832.82467 2807 2795 48052583.38233 2808 2795 -20803252.33311 2809 2795 11716527.5232 2810 2795 -22805384.02253 2895 2795 51680080.98832 2896 2795 -5277708.208769 2897 2795 -58666023.42418 2898 2795 17900923.03284 2899 2795 12913159.66331 2900 2795 -36646590.5368 2904 2795 1759282.450699 2905 2795 -21110832.82468 2906 2795 -105887547.9636 2907 2795 439820.6129005 2908 2795 52602638.6277 2909 2795 -115814770.8741 2916 2795 -53439363.43899 2917 2795 -5277708.20877 2918 2795 -66116380.01208 2919 2795 -18340743.64572 2920 2795 13440937.44126 2921 2795 -39208792.08802 2796 2796 801867013.5374 2797 2796 2.598762512207e-05 2798 2796 7037129.799195 2799 2796 92970237.73849 2800 2796 -1.010298728943e-05 2801 2796 1759282.450673 2805 2796 -71804122.04904 2806 2796 -47777777.76993 2807 2796 19043969.88243 2808 2796 -181853790.138 2809 2796 3.248453140259e-06 2810 2796 -3518564.899638 2811 2796 -72853540.65349 2812 2796 47777777.76992 2813 2796 -20539363.4444 2895 2796 -19603280.6462 2896 2796 11944444.44837 2897 2796 8005089.696258 2898 2796 -71968136.03531 2899 2796 4.157423973083e-06 2900 2796 51943969.87703 2901 2796 -29817851.87049 2902 2796 -11944444.44837 2903 2796 17900923.03284 2904 2796 16294780.8482 2905 2796 4.217028617859e-06 2906 2796 439820.6128852 2907 2796 88895212.80375 2908 2796 4.112720489502e-06 2909 2796 1759282.450699 2910 2796 -25612922.63328 2911 2796 -1.080334186554e-05 2912 2796 439820.6129002 2916 2796 -20039396.92541 2917 2796 -11944444.44837 2918 2796 -8444910.309145 2919 2796 -74762019.75572 2920 2796 2.533197402954e-07 2921 2796 -53703252.3277 2922 2796 -30778677.45218 2923 2796 11944444.44836 2924 2796 -18340743.64572 2797 2797 687193460.8868 2798 2797 -84443331.25708 2799 2797 -1.019239425659e-05 2800 2797 -88585023.89729 2801 2797 42221665.62855 2805 2797 -47777777.76993 2806 2797 -57469927.96065 2807 2797 9605416.412441 2808 2797 3.069639205933e-06 2809 2797 28369859.6463 2810 2797 -21110832.82467 2811 2797 47777777.76992 2812 2797 -58519346.56511 2813 2797 11505416.41223 2895 2797 11944444.44837 2896 2797 -16019732.12234 2897 2797 -7635451.454545 2898 2797 3.337860107422e-06 2899 2797 -19412223.56332 2900 2797 -5277708.208769 2901 2797 -11944444.44837 2902 2797 -26234303.34662 2903 2797 12913159.66331 2904 2797 5.125999450684e-06 2905 2797 -29094034.58311 2906 2797 -31702916.914 2907 2797 4.351139068604e-06 2908 2797 60226824.62697 2909 2797 -21110832.82468 2910 2797 -9.95397567749e-06 2911 2797 -71001738.06458 2912 2797 52813749.73867 2916 2797 -11944444.44837 2917 2797 -16455848.40155 2918 2797 -8163229.232496 2919 2797 -8.195638656616e-07 2920 2797 -22206107.28377 2921 2797 -5277708.20877 2922 2797 11944444.44836 2923 2797 -27195128.92833 2924 2797 13440937.44126 2798 2798 766546241.681 2799 2798 1759282.450673 2800 2798 42221665.62855 2801 2798 57866058.65466 2805 2798 18780080.99371 2806 2798 9394305.301468 2807 2798 -20006934.4106 2808 2798 -3518564.899638 2809 2798 -21110832.82467 2810 2798 48052583.38233 2811 2798 -20803252.33311 2812 2798 11716527.5232 2813 2798 -22805384.02253 2895 2798 8005089.696258 2896 2798 -7635451.454545 2897 2798 -9407733.938713 2898 2798 51680080.98832 2899 2798 -5277708.208769 2900 2798 -58666023.42418 2901 2798 17900923.03284 2902 2798 12913159.66331 2903 2798 -36646590.5368 2904 2798 439820.6128855 2905 2798 -31491805.80303 2906 2798 -4060894.923526 2907 2798 1759282.450699 2908 2798 -21110832.82468 2909 2798 -105887547.9636 2910 2798 439820.6129005 2911 2798 52602638.6277 2912 2798 -115814770.8741 2916 2798 -8444910.309145 2917 2798 -8163229.232496 2918 2798 -10570710.68328 2919 2798 -53439363.43899 2920 2798 -5277708.20877 2921 2798 -66116380.01208 2922 2798 -18340743.64572 2923 2798 13440937.44126 2924 2798 -39208792.08802 2799 2799 866925828.5346 2800 2799 47817747.45269 2801 2799 23749660.20008 2802 2799 14263474.74723 2803 2799 -47793765.64302 2804 2799 20546059.94785 2808 2799 -71804122.04904 2809 2799 -47777777.76993 2810 2799 19043969.88243 2811 2799 -181853790.138 2812 2799 3.248453140259e-06 2813 2799 -3518564.899638 2814 2799 -72853540.65349 2815 2799 47777777.76992 2816 2799 -20539363.4444 2898 2799 -19603280.6462 2899 2799 11944444.44837 2900 2799 8005089.696258 2901 2799 -85740387.93072 2902 2799 -11950439.90077 2903 2799 47775096.06898 2907 2799 16294780.8482 2908 2799 4.217028617859e-06 2909 2799 439820.6128852 2910 2799 112006329.4708 2911 2799 11954436.86906 2912 2799 5935349.843305 2913 2799 -36979414.9719 2914 2799 -11948441.41664 2915 2799 18346879.03149 2919 2799 -20039396.92541 2920 2799 -11944444.44837 2921 2799 -8444910.309145 2922 2799 -74762019.75572 2923 2799 2.533197402954e-07 2924 2799 -53703252.3277 2925 2799 -30778677.45218 2926 2799 11944444.44836 2927 2799 -18340743.64572 2800 2800 737900094.3577 2801 2800 -65443918.48946 2802 2800 -47801759.57957 2803 2800 -152989568.1247 2804 2800 35049537.95506 2808 2800 -47777777.76993 2809 2800 -57469927.96065 2810 2800 9605416.412441 2811 2800 3.069639205933e-06 2812 2800 28369859.6463 2813 2800 -21110832.82467 2814 2800 47777777.76992 2815 2800 -58519346.56511 2816 2800 11505416.41223 2898 2800 11944444.44837 2899 2800 -16019732.12234 2900 2800 -7635451.454545 2901 2800 -11948441.41664 2902 2800 -29588436.2443 2903 2800 4682155.144749 2907 2800 5.125999450684e-06 2908 2800 -29094034.58311 2909 2800 -31702916.914 2910 2800 11954436.86906 2911 2800 79749895.91067 2912 2800 -16362631.77783 2913 2800 -11950439.90078 2914 2800 -78792675.71048 2915 2800 51029508.03613 2919 2800 -11944444.44837 2920 2800 -16455848.40155 2921 2800 -8163229.232496 2922 2800 -8.195638656616e-07 2923 2800 -22206107.28377 2924 2800 -5277708.20877 2925 2800 11944444.44836 2926 2800 -27195128.92833 2927 2800 13440937.44126 2801 2801 768350518.5004 2802 2801 20813297.08829 2803 2801 40963180.50213 2804 2801 19484057.05595 2808 2801 18780080.99371 2809 2801 9394305.301468 2810 2801 -20006934.4106 2811 2801 -3518564.899638 2812 2801 -21110832.82467 2813 2801 48052583.38233 2814 2801 -20803252.33311 2815 2801 11716527.5232 2816 2801 -22805384.02253 2898 2801 8005089.696258 2899 2801 -7635451.454545 2900 2801 -9407733.938713 2901 2801 47510397.70207 2902 2801 3205506.989851 2903 2801 -52478548.16204 2907 2801 439820.6128855 2908 2801 -31491805.80303 2909 2801 -4060894.923526 2910 2801 5939756.113784 2911 2801 -16359106.80793 2912 2801 -87179377.66603 2913 2801 18349946.72438 2914 2801 52296851.6274 2915 2801 -103249742.1615 2919 2801 -8444910.309145 2920 2801 -8163229.232496 2921 2801 -10570710.68328 2922 2801 -53439363.43899 2923 2801 -5277708.20877 2924 2801 -66116380.01208 2925 2801 -18340743.64572 2926 2801 13440937.44126 2927 2801 -39208792.08802 2802 2802 508612796.7711 2803 2802 47777777.76993 2804 2802 20248388.26907 2811 2802 -71804122.04904 2812 2802 -47777777.76993 2813 2802 19043969.88243 2814 2802 -267652150.2947 2815 2802 -47793765.64302 2816 2802 -20241471.08164 2817 2802 6087083.420696 2818 2802 38238210.08904 2819 2802 -16367807.61161 2901 2802 1532382.642161 2902 2802 14339328.79045 2903 2802 9874015.186731 2910 2802 -4845636.536104 2911 2802 -11950439.90078 2912 2802 -8009104.879749 2913 2802 57272319.20769 2914 2802 11944444.44837 2915 2802 16262217.83282 2922 2802 -20039396.92541 2923 2802 -11944444.44837 2924 2802 -8444910.309145 2925 2802 -96920154.16551 2926 2802 -11948441.41665 2927 2802 -57894966.96635 2928 2802 -19430363.65776 2929 2802 9559552.526969 2930 2802 -14502802.0572 2803 2803 436923838.9196 2804 2803 -52790465.59624 2811 2803 -47777777.76993 2812 2803 -57469927.96065 2813 2803 9605416.412441 2814 2803 -47801759.57957 2815 2803 -43044343.65972 2816 2803 -29246608.86722 2817 2803 57357315.13355 2818 2803 6087083.420705 2819 2803 18374525.78853 2901 2803 9559552.526969 2902 2803 1532382.642157 2903 2803 -5266148.137347 2910 2803 -11948441.41664 2911 2803 -46658897.27468 2912 2803 -32026328.33686 2913 2803 11944444.44837 2914 2803 39350079.73598 2915 2803 -4237631.002181 2922 2803 -11944444.44837 2923 2803 -16455848.40155 2924 2803 -8163229.232496 2925 2803 -11950439.90079 2926 2803 -40768202.4791 2927 2803 -17881456.80322 2928 2803 14339328.79045 2929 2803 -19430363.65775 2930 2803 17403019.36621 2804 2804 498731997.6738 2811 2804 18780080.99371 2812 2804 9394305.301468 2813 2804 -20006934.4106 2814 2804 -20238012.48793 2815 2804 -23543989.15986 2816 2804 -9089122.520285 2817 2804 -24551711.41742 2818 2804 12249683.85902 2819 2804 16232222.45521 2901 2804 6582676.791154 2902 2804 -7899222.206021 2903 2804 4086353.712421 2910 2804 -8007766.485252 2911 2804 -33293672.07046 2912 2804 -17559666.33271 2913 2804 -4818855.100867 2914 2804 -21102266.9381 2915 2804 -61666013.98076 2922 2804 -8444910.309145 2923 2804 -8163229.232496 2924 2804 -10570710.68328 2925 2804 -57630268.59944 2926 2804 -16401283.68257 2927 2804 -82291258.12151 2928 2804 -21754203.08579 2929 2804 11602012.9108 2930 2804 -51814303.08735 2805 2805 801867013.5374 2806 2805 2.598762512207e-05 2807 2805 7037129.799195 2808 2805 92970237.73849 2809 2805 -1.010298728943e-05 2810 2805 1759282.450673 2820 2805 -181853790.138 2821 2805 3.248453140259e-06 2822 2805 -3518564.899638 2823 2805 -72853540.65349 2824 2805 47777777.76992 2825 2805 -20539363.4444 2904 2805 -71968136.03531 2905 2805 4.157423973083e-06 2906 2805 51943969.87703 2907 2805 -29817851.87049 2908 2805 -11944444.44837 2909 2805 17900923.03284 2916 2805 88895212.80375 2917 2805 4.112720489502e-06 2918 2805 1759282.450699 2919 2805 -25612922.63328 2920 2805 -1.080334186554e-05 2921 2805 439820.6129002 2931 2805 -74762019.75572 2932 2805 2.533197402954e-07 2933 2805 -53703252.3277 2934 2805 -30778677.45218 2935 2805 11944444.44836 2936 2805 -18340743.64572 2806 2806 687193460.8868 2807 2806 -84443331.25708 2808 2806 -1.019239425659e-05 2809 2806 -88585023.89729 2810 2806 42221665.62855 2820 2806 3.069639205933e-06 2821 2806 28369859.6463 2822 2806 -21110832.82467 2823 2806 47777777.76992 2824 2806 -58519346.56511 2825 2806 11505416.41223 2904 2806 3.337860107422e-06 2905 2806 -19412223.56332 2906 2806 -5277708.208769 2907 2806 -11944444.44837 2908 2806 -26234303.34662 2909 2806 12913159.66331 2916 2806 4.351139068604e-06 2917 2806 60226824.62697 2918 2806 -21110832.82468 2919 2806 -9.95397567749e-06 2920 2806 -71001738.06458 2921 2806 52813749.73867 2931 2806 -8.195638656616e-07 2932 2806 -22206107.28377 2933 2806 -5277708.20877 2934 2806 11944444.44836 2935 2806 -27195128.92833 2936 2806 13440937.44126 2807 2807 766546241.681 2808 2807 1759282.450673 2809 2807 42221665.62855 2810 2807 57866058.65466 2820 2807 -3518564.899638 2821 2807 -21110832.82467 2822 2807 48052583.38233 2823 2807 -20803252.33311 2824 2807 11716527.5232 2825 2807 -22805384.02253 2904 2807 51680080.98832 2905 2807 -5277708.208769 2906 2807 -58666023.42418 2907 2807 17900923.03284 2908 2807 12913159.66331 2909 2807 -36646590.5368 2916 2807 1759282.450699 2917 2807 -21110832.82468 2918 2807 -105887547.9636 2919 2807 439820.6129005 2920 2807 52602638.6277 2921 2807 -115814770.8741 2931 2807 -53439363.43899 2932 2807 -5277708.20877 2933 2807 -66116380.01208 2934 2807 -18340743.64572 2935 2807 13440937.44126 2936 2807 -39208792.08802 2808 2808 801867013.5374 2809 2808 2.598762512207e-05 2810 2808 7037129.799195 2811 2808 92970237.73849 2812 2808 -1.010298728943e-05 2813 2808 1759282.450673 2820 2808 -71804122.04904 2821 2808 -47777777.76993 2822 2808 19043969.88243 2823 2808 -181853790.138 2824 2808 3.248453140259e-06 2825 2808 -3518564.899638 2826 2808 -72853540.65349 2827 2808 47777777.76992 2828 2808 -20539363.4444 2904 2808 -19603280.6462 2905 2808 11944444.44837 2906 2808 8005089.696258 2907 2808 -71968136.03531 2908 2808 4.157423973083e-06 2909 2808 51943969.87703 2910 2808 -29817851.87049 2911 2808 -11944444.44837 2912 2808 17900923.03284 2916 2808 16294780.8482 2917 2808 4.217028617859e-06 2918 2808 439820.6128852 2919 2808 88895212.80375 2920 2808 4.112720489502e-06 2921 2808 1759282.450699 2922 2808 -25612922.63328 2923 2808 -1.080334186554e-05 2924 2808 439820.6129002 2931 2808 -20039396.92541 2932 2808 -11944444.44837 2933 2808 -8444910.309145 2934 2808 -74762019.75572 2935 2808 2.533197402954e-07 2936 2808 -53703252.3277 2937 2808 -30778677.45218 2938 2808 11944444.44836 2939 2808 -18340743.64572 2809 2809 687193460.8868 2810 2809 -84443331.25708 2811 2809 -1.019239425659e-05 2812 2809 -88585023.89729 2813 2809 42221665.62855 2820 2809 -47777777.76993 2821 2809 -57469927.96065 2822 2809 9605416.412441 2823 2809 3.069639205933e-06 2824 2809 28369859.6463 2825 2809 -21110832.82467 2826 2809 47777777.76992 2827 2809 -58519346.56511 2828 2809 11505416.41223 2904 2809 11944444.44837 2905 2809 -16019732.12234 2906 2809 -7635451.454545 2907 2809 3.337860107422e-06 2908 2809 -19412223.56332 2909 2809 -5277708.208769 2910 2809 -11944444.44837 2911 2809 -26234303.34662 2912 2809 12913159.66331 2916 2809 5.125999450684e-06 2917 2809 -29094034.58311 2918 2809 -31702916.914 2919 2809 4.351139068604e-06 2920 2809 60226824.62697 2921 2809 -21110832.82468 2922 2809 -9.95397567749e-06 2923 2809 -71001738.06458 2924 2809 52813749.73867 2931 2809 -11944444.44837 2932 2809 -16455848.40155 2933 2809 -8163229.232496 2934 2809 -8.195638656616e-07 2935 2809 -22206107.28377 2936 2809 -5277708.20877 2937 2809 11944444.44836 2938 2809 -27195128.92833 2939 2809 13440937.44126 2810 2810 766546241.681 2811 2810 1759282.450673 2812 2810 42221665.62855 2813 2810 57866058.65466 2820 2810 18780080.99371 2821 2810 9394305.301468 2822 2810 -20006934.4106 2823 2810 -3518564.899638 2824 2810 -21110832.82467 2825 2810 48052583.38233 2826 2810 -20803252.33311 2827 2810 11716527.5232 2828 2810 -22805384.02253 2904 2810 8005089.696258 2905 2810 -7635451.454545 2906 2810 -9407733.938713 2907 2810 51680080.98832 2908 2810 -5277708.208769 2909 2810 -58666023.42418 2910 2810 17900923.03284 2911 2810 12913159.66331 2912 2810 -36646590.5368 2916 2810 439820.6128855 2917 2810 -31491805.80303 2918 2810 -4060894.923526 2919 2810 1759282.450699 2920 2810 -21110832.82468 2921 2810 -105887547.9636 2922 2810 439820.6129005 2923 2810 52602638.6277 2924 2810 -115814770.8741 2931 2810 -8444910.309145 2932 2810 -8163229.232496 2933 2810 -10570710.68328 2934 2810 -53439363.43899 2935 2810 -5277708.20877 2936 2810 -66116380.01208 2937 2810 -18340743.64572 2938 2810 13440937.44126 2939 2810 -39208792.08802 2811 2811 801867013.5374 2812 2811 2.598762512207e-05 2813 2811 7037129.799195 2814 2811 92970237.73849 2815 2811 -1.010298728943e-05 2816 2811 1759282.450673 2823 2811 -71804122.04904 2824 2811 -47777777.76993 2825 2811 19043969.88243 2826 2811 -181853790.138 2827 2811 3.248453140259e-06 2828 2811 -3518564.899638 2829 2811 -72853540.65349 2830 2811 47777777.76992 2831 2811 -20539363.4444 2907 2811 -19603280.6462 2908 2811 11944444.44837 2909 2811 8005089.696258 2910 2811 -71968136.03531 2911 2811 4.157423973083e-06 2912 2811 51943969.87703 2913 2811 -29817851.87049 2914 2811 -11944444.44837 2915 2811 17900923.03284 2919 2811 16294780.8482 2920 2811 4.217028617859e-06 2921 2811 439820.6128852 2922 2811 88895212.80375 2923 2811 4.112720489502e-06 2924 2811 1759282.450699 2925 2811 -25612922.63328 2926 2811 -1.080334186554e-05 2927 2811 439820.6129002 2934 2811 -20039396.92541 2935 2811 -11944444.44837 2936 2811 -8444910.309145 2937 2811 -74762019.75572 2938 2811 2.533197402954e-07 2939 2811 -53703252.3277 2940 2811 -30778677.45218 2941 2811 11944444.44836 2942 2811 -18340743.64572 2812 2812 687193460.8868 2813 2812 -84443331.25708 2814 2812 -1.019239425659e-05 2815 2812 -88585023.89729 2816 2812 42221665.62855 2823 2812 -47777777.76993 2824 2812 -57469927.96065 2825 2812 9605416.412441 2826 2812 3.069639205933e-06 2827 2812 28369859.6463 2828 2812 -21110832.82467 2829 2812 47777777.76992 2830 2812 -58519346.56511 2831 2812 11505416.41223 2907 2812 11944444.44837 2908 2812 -16019732.12234 2909 2812 -7635451.454545 2910 2812 3.337860107422e-06 2911 2812 -19412223.56332 2912 2812 -5277708.208769 2913 2812 -11944444.44837 2914 2812 -26234303.34662 2915 2812 12913159.66331 2919 2812 5.125999450684e-06 2920 2812 -29094034.58311 2921 2812 -31702916.914 2922 2812 4.351139068604e-06 2923 2812 60226824.62697 2924 2812 -21110832.82468 2925 2812 -9.95397567749e-06 2926 2812 -71001738.06458 2927 2812 52813749.73867 2934 2812 -11944444.44837 2935 2812 -16455848.40155 2936 2812 -8163229.232496 2937 2812 -8.195638656616e-07 2938 2812 -22206107.28377 2939 2812 -5277708.20877 2940 2812 11944444.44836 2941 2812 -27195128.92833 2942 2812 13440937.44126 2813 2813 766546241.681 2814 2813 1759282.450673 2815 2813 42221665.62855 2816 2813 57866058.65466 2823 2813 18780080.99371 2824 2813 9394305.301468 2825 2813 -20006934.4106 2826 2813 -3518564.899638 2827 2813 -21110832.82467 2828 2813 48052583.38233 2829 2813 -20803252.33311 2830 2813 11716527.5232 2831 2813 -22805384.02253 2907 2813 8005089.696258 2908 2813 -7635451.454545 2909 2813 -9407733.938713 2910 2813 51680080.98832 2911 2813 -5277708.208769 2912 2813 -58666023.42418 2913 2813 17900923.03284 2914 2813 12913159.66331 2915 2813 -36646590.5368 2919 2813 439820.6128855 2920 2813 -31491805.80303 2921 2813 -4060894.923526 2922 2813 1759282.450699 2923 2813 -21110832.82468 2924 2813 -105887547.9636 2925 2813 439820.6129005 2926 2813 52602638.6277 2927 2813 -115814770.8741 2934 2813 -8444910.309145 2935 2813 -8163229.232496 2936 2813 -10570710.68328 2937 2813 -53439363.43899 2938 2813 -5277708.20877 2939 2813 -66116380.01208 2940 2813 -18340743.64572 2941 2813 13440937.44126 2942 2813 -39208792.08802 2814 2814 866925828.5346 2815 2814 47817747.45269 2816 2814 23749660.20008 2817 2814 14263474.74723 2818 2814 -47793765.64302 2819 2814 20546059.94785 2826 2814 -71804122.04904 2827 2814 -47777777.76993 2828 2814 19043969.88243 2829 2814 -181853790.138 2830 2814 3.248453140259e-06 2831 2814 -3518564.899638 2832 2814 -72853540.65349 2833 2814 47777777.76992 2834 2814 -20539363.4444 2910 2814 -19603280.6462 2911 2814 11944444.44837 2912 2814 8005089.696258 2913 2814 -85740387.93072 2914 2814 -11950439.90077 2915 2814 47775096.06898 2922 2814 16294780.8482 2923 2814 4.217028617859e-06 2924 2814 439820.6128852 2925 2814 112006329.4708 2926 2814 11954436.86906 2927 2814 5935349.843305 2928 2814 -36979414.9719 2929 2814 -11948441.41664 2930 2814 18346879.03149 2937 2814 -20039396.92541 2938 2814 -11944444.44837 2939 2814 -8444910.309145 2940 2814 -74762019.75572 2941 2814 2.533197402954e-07 2942 2814 -53703252.3277 2943 2814 -30778677.45218 2944 2814 11944444.44836 2945 2814 -18340743.64572 2815 2815 737900094.3577 2816 2815 -65443918.48946 2817 2815 -47801759.57957 2818 2815 -152989568.1247 2819 2815 35049537.95506 2826 2815 -47777777.76993 2827 2815 -57469927.96065 2828 2815 9605416.412441 2829 2815 3.069639205933e-06 2830 2815 28369859.6463 2831 2815 -21110832.82467 2832 2815 47777777.76992 2833 2815 -58519346.56511 2834 2815 11505416.41223 2910 2815 11944444.44837 2911 2815 -16019732.12234 2912 2815 -7635451.454545 2913 2815 -11948441.41664 2914 2815 -29588436.2443 2915 2815 4682155.144749 2922 2815 5.125999450684e-06 2923 2815 -29094034.58311 2924 2815 -31702916.914 2925 2815 11954436.86906 2926 2815 79749895.91067 2927 2815 -16362631.77783 2928 2815 -11950439.90078 2929 2815 -78792675.71048 2930 2815 51029508.03613 2937 2815 -11944444.44837 2938 2815 -16455848.40155 2939 2815 -8163229.232496 2940 2815 -8.195638656616e-07 2941 2815 -22206107.28377 2942 2815 -5277708.20877 2943 2815 11944444.44836 2944 2815 -27195128.92833 2945 2815 13440937.44126 2816 2816 768350518.5004 2817 2816 20813297.08829 2818 2816 40963180.50213 2819 2816 19484057.05595 2826 2816 18780080.99371 2827 2816 9394305.301468 2828 2816 -20006934.4106 2829 2816 -3518564.899638 2830 2816 -21110832.82467 2831 2816 48052583.38233 2832 2816 -20803252.33311 2833 2816 11716527.5232 2834 2816 -22805384.02253 2910 2816 8005089.696258 2911 2816 -7635451.454545 2912 2816 -9407733.938713 2913 2816 47510397.70207 2914 2816 3205506.989851 2915 2816 -52478548.16204 2922 2816 439820.6128855 2923 2816 -31491805.80303 2924 2816 -4060894.923526 2925 2816 5939756.113784 2926 2816 -16359106.80793 2927 2816 -87179377.66603 2928 2816 18349946.72438 2929 2816 52296851.6274 2930 2816 -103249742.1615 2937 2816 -8444910.309145 2938 2816 -8163229.232496 2939 2816 -10570710.68328 2940 2816 -53439363.43899 2941 2816 -5277708.20877 2942 2816 -66116380.01208 2943 2816 -18340743.64572 2944 2816 13440937.44126 2945 2816 -39208792.08802 2817 2817 508612796.7711 2818 2817 47777777.76993 2819 2817 20248388.26907 2829 2817 -71804122.04904 2830 2817 -47777777.76993 2831 2817 19043969.88243 2832 2817 -267652150.2947 2833 2817 -47793765.64302 2834 2817 -20241471.08164 2835 2817 6087083.420696 2836 2817 38238210.08904 2837 2817 -16367807.61161 2913 2817 1532382.642161 2914 2817 14339328.79045 2915 2817 9874015.186731 2925 2817 -4845636.536104 2926 2817 -11950439.90078 2927 2817 -8009104.879749 2928 2817 57272319.20769 2929 2817 11944444.44837 2930 2817 16262217.83282 2940 2817 -20039396.92541 2941 2817 -11944444.44837 2942 2817 -8444910.309145 2943 2817 -96920154.16551 2944 2817 -11948441.41665 2945 2817 -57894966.96635 2946 2817 -19430363.65776 2947 2817 9559552.526969 2948 2817 -14502802.0572 2818 2818 436923838.9196 2819 2818 -52790465.59624 2829 2818 -47777777.76993 2830 2818 -57469927.96065 2831 2818 9605416.412441 2832 2818 -47801759.57957 2833 2818 -43044343.65972 2834 2818 -29246608.86722 2835 2818 57357315.13355 2836 2818 6087083.420705 2837 2818 18374525.78853 2913 2818 9559552.526969 2914 2818 1532382.642157 2915 2818 -5266148.137347 2925 2818 -11948441.41664 2926 2818 -46658897.27468 2927 2818 -32026328.33686 2928 2818 11944444.44837 2929 2818 39350079.73598 2930 2818 -4237631.002181 2940 2818 -11944444.44837 2941 2818 -16455848.40155 2942 2818 -8163229.232496 2943 2818 -11950439.90079 2944 2818 -40768202.4791 2945 2818 -17881456.80322 2946 2818 14339328.79045 2947 2818 -19430363.65775 2948 2818 17403019.36621 2819 2819 498731997.6738 2829 2819 18780080.99371 2830 2819 9394305.301468 2831 2819 -20006934.4106 2832 2819 -20238012.48793 2833 2819 -23543989.15986 2834 2819 -9089122.520285 2835 2819 -24551711.41742 2836 2819 12249683.85902 2837 2819 16232222.45521 2913 2819 6582676.791154 2914 2819 -7899222.206021 2915 2819 4086353.712421 2925 2819 -8007766.485252 2926 2819 -33293672.07046 2927 2819 -17559666.33271 2928 2819 -4818855.100867 2929 2819 -21102266.9381 2930 2819 -61666013.98076 2940 2819 -8444910.309145 2941 2819 -8163229.232496 2942 2819 -10570710.68328 2943 2819 -57630268.59944 2944 2819 -16401283.68257 2945 2819 -82291258.12151 2946 2819 -21754203.08579 2947 2819 11602012.9108 2948 2819 -51814303.08735 2820 2820 801867013.5374 2821 2820 2.598762512207e-05 2822 2820 7037129.799195 2823 2820 92970237.73849 2824 2820 -1.010298728943e-05 2825 2820 1759282.450673 2838 2820 -181853790.138 2839 2820 3.248453140259e-06 2840 2820 -3518564.899638 2841 2820 -72853540.65349 2842 2820 47777777.76992 2843 2820 -20539363.4444 2916 2820 -71968136.03531 2917 2820 4.157423973083e-06 2918 2820 51943969.87703 2919 2820 -29817851.87049 2920 2820 -11944444.44837 2921 2820 17900923.03284 2931 2820 88895212.80375 2932 2820 4.112720489502e-06 2933 2820 1759282.450699 2934 2820 -25612922.63328 2935 2820 -1.080334186554e-05 2936 2820 439820.6129002 2949 2820 -74762019.75572 2950 2820 2.533197402954e-07 2951 2820 -53703252.3277 2952 2820 -30778677.45218 2953 2820 11944444.44836 2954 2820 -18340743.64572 2821 2821 687193460.8868 2822 2821 -84443331.25708 2823 2821 -1.019239425659e-05 2824 2821 -88585023.89729 2825 2821 42221665.62855 2838 2821 3.069639205933e-06 2839 2821 28369859.6463 2840 2821 -21110832.82467 2841 2821 47777777.76992 2842 2821 -58519346.56511 2843 2821 11505416.41223 2916 2821 3.337860107422e-06 2917 2821 -19412223.56332 2918 2821 -5277708.208769 2919 2821 -11944444.44837 2920 2821 -26234303.34662 2921 2821 12913159.66331 2931 2821 4.351139068604e-06 2932 2821 60226824.62697 2933 2821 -21110832.82468 2934 2821 -9.95397567749e-06 2935 2821 -71001738.06458 2936 2821 52813749.73867 2949 2821 -8.195638656616e-07 2950 2821 -22206107.28377 2951 2821 -5277708.20877 2952 2821 11944444.44836 2953 2821 -27195128.92833 2954 2821 13440937.44126 2822 2822 766546241.681 2823 2822 1759282.450673 2824 2822 42221665.62855 2825 2822 57866058.65466 2838 2822 -3518564.899638 2839 2822 -21110832.82467 2840 2822 48052583.38233 2841 2822 -20803252.33311 2842 2822 11716527.5232 2843 2822 -22805384.02253 2916 2822 51680080.98832 2917 2822 -5277708.208769 2918 2822 -58666023.42418 2919 2822 17900923.03284 2920 2822 12913159.66331 2921 2822 -36646590.5368 2931 2822 1759282.450699 2932 2822 -21110832.82468 2933 2822 -105887547.9636 2934 2822 439820.6129005 2935 2822 52602638.6277 2936 2822 -115814770.8741 2949 2822 -53439363.43899 2950 2822 -5277708.20877 2951 2822 -66116380.01208 2952 2822 -18340743.64572 2953 2822 13440937.44126 2954 2822 -39208792.08802 2823 2823 801867013.5374 2824 2823 2.598762512207e-05 2825 2823 7037129.799195 2826 2823 92970237.73849 2827 2823 -1.010298728943e-05 2828 2823 1759282.450673 2838 2823 -71804122.04904 2839 2823 -47777777.76993 2840 2823 19043969.88243 2841 2823 -181853790.138 2842 2823 3.248453140259e-06 2843 2823 -3518564.899638 2844 2823 -72853540.65349 2845 2823 47777777.76992 2846 2823 -20539363.4444 2916 2823 -19603280.6462 2917 2823 11944444.44837 2918 2823 8005089.696258 2919 2823 -71968136.03531 2920 2823 4.157423973083e-06 2921 2823 51943969.87703 2922 2823 -29817851.87049 2923 2823 -11944444.44837 2924 2823 17900923.03284 2931 2823 16294780.8482 2932 2823 4.217028617859e-06 2933 2823 439820.6128852 2934 2823 88895212.80375 2935 2823 4.112720489502e-06 2936 2823 1759282.450699 2937 2823 -25612922.63328 2938 2823 -1.080334186554e-05 2939 2823 439820.6129002 2949 2823 -20039396.92541 2950 2823 -11944444.44837 2951 2823 -8444910.309145 2952 2823 -74762019.75572 2953 2823 2.533197402954e-07 2954 2823 -53703252.3277 2955 2823 -30778677.45218 2956 2823 11944444.44836 2957 2823 -18340743.64572 2824 2824 687193460.8868 2825 2824 -84443331.25708 2826 2824 -1.019239425659e-05 2827 2824 -88585023.89729 2828 2824 42221665.62855 2838 2824 -47777777.76993 2839 2824 -57469927.96065 2840 2824 9605416.412441 2841 2824 3.069639205933e-06 2842 2824 28369859.6463 2843 2824 -21110832.82467 2844 2824 47777777.76992 2845 2824 -58519346.56511 2846 2824 11505416.41223 2916 2824 11944444.44837 2917 2824 -16019732.12234 2918 2824 -7635451.454545 2919 2824 3.337860107422e-06 2920 2824 -19412223.56332 2921 2824 -5277708.208769 2922 2824 -11944444.44837 2923 2824 -26234303.34662 2924 2824 12913159.66331 2931 2824 5.125999450684e-06 2932 2824 -29094034.58311 2933 2824 -31702916.914 2934 2824 4.351139068604e-06 2935 2824 60226824.62697 2936 2824 -21110832.82468 2937 2824 -9.95397567749e-06 2938 2824 -71001738.06458 2939 2824 52813749.73867 2949 2824 -11944444.44837 2950 2824 -16455848.40155 2951 2824 -8163229.232496 2952 2824 -8.195638656616e-07 2953 2824 -22206107.28377 2954 2824 -5277708.20877 2955 2824 11944444.44836 2956 2824 -27195128.92833 2957 2824 13440937.44126 2825 2825 766546241.681 2826 2825 1759282.450673 2827 2825 42221665.62855 2828 2825 57866058.65466 2838 2825 18780080.99371 2839 2825 9394305.301468 2840 2825 -20006934.4106 2841 2825 -3518564.899638 2842 2825 -21110832.82467 2843 2825 48052583.38233 2844 2825 -20803252.33311 2845 2825 11716527.5232 2846 2825 -22805384.02253 2916 2825 8005089.696258 2917 2825 -7635451.454545 2918 2825 -9407733.938713 2919 2825 51680080.98832 2920 2825 -5277708.208769 2921 2825 -58666023.42418 2922 2825 17900923.03284 2923 2825 12913159.66331 2924 2825 -36646590.5368 2931 2825 439820.6128855 2932 2825 -31491805.80303 2933 2825 -4060894.923526 2934 2825 1759282.450699 2935 2825 -21110832.82468 2936 2825 -105887547.9636 2937 2825 439820.6129005 2938 2825 52602638.6277 2939 2825 -115814770.8741 2949 2825 -8444910.309145 2950 2825 -8163229.232496 2951 2825 -10570710.68328 2952 2825 -53439363.43899 2953 2825 -5277708.20877 2954 2825 -66116380.01208 2955 2825 -18340743.64572 2956 2825 13440937.44126 2957 2825 -39208792.08802 2826 2826 801867013.5374 2827 2826 2.598762512207e-05 2828 2826 7037129.799195 2829 2826 92970237.73849 2830 2826 -1.010298728943e-05 2831 2826 1759282.450673 2841 2826 -71804122.04904 2842 2826 -47777777.76993 2843 2826 19043969.88243 2844 2826 -181853790.138 2845 2826 3.248453140259e-06 2846 2826 -3518564.899638 2847 2826 -72853540.65349 2848 2826 47777777.76992 2849 2826 -20539363.4444 2919 2826 -19603280.6462 2920 2826 11944444.44837 2921 2826 8005089.696258 2922 2826 -71968136.03531 2923 2826 4.157423973083e-06 2924 2826 51943969.87703 2925 2826 -29817851.87049 2926 2826 -11944444.44837 2927 2826 17900923.03284 2934 2826 16294780.8482 2935 2826 4.217028617859e-06 2936 2826 439820.6128852 2937 2826 88895212.80375 2938 2826 4.112720489502e-06 2939 2826 1759282.450699 2940 2826 -25612922.63328 2941 2826 -1.080334186554e-05 2942 2826 439820.6129002 2952 2826 -20039396.92541 2953 2826 -11944444.44837 2954 2826 -8444910.309145 2955 2826 -74762019.75572 2956 2826 2.533197402954e-07 2957 2826 -53703252.3277 2958 2826 -30778677.45218 2959 2826 11944444.44836 2960 2826 -18340743.64572 2827 2827 687193460.8868 2828 2827 -84443331.25708 2829 2827 -1.019239425659e-05 2830 2827 -88585023.89729 2831 2827 42221665.62855 2841 2827 -47777777.76993 2842 2827 -57469927.96065 2843 2827 9605416.412441 2844 2827 3.069639205933e-06 2845 2827 28369859.6463 2846 2827 -21110832.82467 2847 2827 47777777.76992 2848 2827 -58519346.56511 2849 2827 11505416.41223 2919 2827 11944444.44837 2920 2827 -16019732.12234 2921 2827 -7635451.454545 2922 2827 3.337860107422e-06 2923 2827 -19412223.56332 2924 2827 -5277708.208769 2925 2827 -11944444.44837 2926 2827 -26234303.34662 2927 2827 12913159.66331 2934 2827 5.125999450684e-06 2935 2827 -29094034.58311 2936 2827 -31702916.914 2937 2827 4.351139068604e-06 2938 2827 60226824.62697 2939 2827 -21110832.82468 2940 2827 -9.95397567749e-06 2941 2827 -71001738.06458 2942 2827 52813749.73867 2952 2827 -11944444.44837 2953 2827 -16455848.40155 2954 2827 -8163229.232496 2955 2827 -8.195638656616e-07 2956 2827 -22206107.28377 2957 2827 -5277708.20877 2958 2827 11944444.44836 2959 2827 -27195128.92833 2960 2827 13440937.44126 2828 2828 766546241.681 2829 2828 1759282.450673 2830 2828 42221665.62855 2831 2828 57866058.65466 2841 2828 18780080.99371 2842 2828 9394305.301468 2843 2828 -20006934.4106 2844 2828 -3518564.899638 2845 2828 -21110832.82467 2846 2828 48052583.38233 2847 2828 -20803252.33311 2848 2828 11716527.5232 2849 2828 -22805384.02253 2919 2828 8005089.696258 2920 2828 -7635451.454545 2921 2828 -9407733.938713 2922 2828 51680080.98832 2923 2828 -5277708.208769 2924 2828 -58666023.42418 2925 2828 17900923.03284 2926 2828 12913159.66331 2927 2828 -36646590.5368 2934 2828 439820.6128855 2935 2828 -31491805.80303 2936 2828 -4060894.923526 2937 2828 1759282.450699 2938 2828 -21110832.82468 2939 2828 -105887547.9636 2940 2828 439820.6129005 2941 2828 52602638.6277 2942 2828 -115814770.8741 2952 2828 -8444910.309145 2953 2828 -8163229.232496 2954 2828 -10570710.68328 2955 2828 -53439363.43899 2956 2828 -5277708.20877 2957 2828 -66116380.01208 2958 2828 -18340743.64572 2959 2828 13440937.44126 2960 2828 -39208792.08802 2829 2829 801867013.5374 2830 2829 2.598762512207e-05 2831 2829 7037129.799195 2832 2829 92970237.73849 2833 2829 -1.010298728943e-05 2834 2829 1759282.450673 2844 2829 -71804122.04904 2845 2829 -47777777.76993 2846 2829 19043969.88243 2847 2829 -181853790.138 2848 2829 3.248453140259e-06 2849 2829 -3518564.899638 2850 2829 -72853540.65349 2851 2829 47777777.76992 2852 2829 -20539363.4444 2922 2829 -19603280.6462 2923 2829 11944444.44837 2924 2829 8005089.696258 2925 2829 -71968136.03531 2926 2829 4.157423973083e-06 2927 2829 51943969.87703 2928 2829 -29817851.87049 2929 2829 -11944444.44837 2930 2829 17900923.03284 2937 2829 16294780.8482 2938 2829 4.217028617859e-06 2939 2829 439820.6128852 2940 2829 88895212.80375 2941 2829 4.112720489502e-06 2942 2829 1759282.450699 2943 2829 -25612922.63328 2944 2829 -1.080334186554e-05 2945 2829 439820.6129002 2955 2829 -20039396.92541 2956 2829 -11944444.44837 2957 2829 -8444910.309145 2958 2829 -74762019.75572 2959 2829 2.533197402954e-07 2960 2829 -53703252.3277 2961 2829 -30778677.45218 2962 2829 11944444.44836 2963 2829 -18340743.64572 2830 2830 687193460.8868 2831 2830 -84443331.25708 2832 2830 -1.019239425659e-05 2833 2830 -88585023.89729 2834 2830 42221665.62855 2844 2830 -47777777.76993 2845 2830 -57469927.96065 2846 2830 9605416.412441 2847 2830 3.069639205933e-06 2848 2830 28369859.6463 2849 2830 -21110832.82467 2850 2830 47777777.76992 2851 2830 -58519346.56511 2852 2830 11505416.41223 2922 2830 11944444.44837 2923 2830 -16019732.12234 2924 2830 -7635451.454545 2925 2830 3.337860107422e-06 2926 2830 -19412223.56332 2927 2830 -5277708.208769 2928 2830 -11944444.44837 2929 2830 -26234303.34662 2930 2830 12913159.66331 2937 2830 5.125999450684e-06 2938 2830 -29094034.58311 2939 2830 -31702916.914 2940 2830 4.351139068604e-06 2941 2830 60226824.62697 2942 2830 -21110832.82468 2943 2830 -9.95397567749e-06 2944 2830 -71001738.06458 2945 2830 52813749.73867 2955 2830 -11944444.44837 2956 2830 -16455848.40155 2957 2830 -8163229.232496 2958 2830 -8.195638656616e-07 2959 2830 -22206107.28377 2960 2830 -5277708.20877 2961 2830 11944444.44836 2962 2830 -27195128.92833 2963 2830 13440937.44126 2831 2831 766546241.681 2832 2831 1759282.450673 2833 2831 42221665.62855 2834 2831 57866058.65466 2844 2831 18780080.99371 2845 2831 9394305.301468 2846 2831 -20006934.4106 2847 2831 -3518564.899638 2848 2831 -21110832.82467 2849 2831 48052583.38233 2850 2831 -20803252.33311 2851 2831 11716527.5232 2852 2831 -22805384.02253 2922 2831 8005089.696258 2923 2831 -7635451.454545 2924 2831 -9407733.938713 2925 2831 51680080.98832 2926 2831 -5277708.208769 2927 2831 -58666023.42418 2928 2831 17900923.03284 2929 2831 12913159.66331 2930 2831 -36646590.5368 2937 2831 439820.6128855 2938 2831 -31491805.80303 2939 2831 -4060894.923526 2940 2831 1759282.450699 2941 2831 -21110832.82468 2942 2831 -105887547.9636 2943 2831 439820.6129005 2944 2831 52602638.6277 2945 2831 -115814770.8741 2955 2831 -8444910.309145 2956 2831 -8163229.232496 2957 2831 -10570710.68328 2958 2831 -53439363.43899 2959 2831 -5277708.20877 2960 2831 -66116380.01208 2961 2831 -18340743.64572 2962 2831 13440937.44126 2963 2831 -39208792.08802 2832 2832 866925828.5346 2833 2832 47817747.45269 2834 2832 23749660.20008 2835 2832 14263474.74723 2836 2832 -47793765.64302 2837 2832 20546059.94785 2847 2832 -71804122.04904 2848 2832 -47777777.76993 2849 2832 19043969.88243 2850 2832 -181853790.138 2851 2832 3.248453140259e-06 2852 2832 -3518564.899638 2853 2832 -72853540.65349 2854 2832 47777777.76992 2855 2832 -20539363.4444 2925 2832 -19603280.6462 2926 2832 11944444.44837 2927 2832 8005089.696258 2928 2832 -85740387.93072 2929 2832 -11950439.90077 2930 2832 47775096.06898 2940 2832 16294780.8482 2941 2832 4.217028617859e-06 2942 2832 439820.6128852 2943 2832 112006329.4708 2944 2832 11954436.86906 2945 2832 5935349.843305 2946 2832 -36979414.9719 2947 2832 -11948441.41664 2948 2832 18346879.03149 2958 2832 -20039396.92541 2959 2832 -11944444.44837 2960 2832 -8444910.309145 2961 2832 -74762019.75572 2962 2832 2.533197402954e-07 2963 2832 -53703252.3277 2964 2832 -30778677.45218 2965 2832 11944444.44836 2966 2832 -18340743.64572 2833 2833 737900094.3577 2834 2833 -65443918.48946 2835 2833 -47801759.57957 2836 2833 -152989568.1247 2837 2833 35049537.95506 2847 2833 -47777777.76993 2848 2833 -57469927.96065 2849 2833 9605416.412441 2850 2833 3.069639205933e-06 2851 2833 28369859.6463 2852 2833 -21110832.82467 2853 2833 47777777.76992 2854 2833 -58519346.56511 2855 2833 11505416.41223 2925 2833 11944444.44837 2926 2833 -16019732.12234 2927 2833 -7635451.454545 2928 2833 -11948441.41664 2929 2833 -29588436.2443 2930 2833 4682155.144749 2940 2833 5.125999450684e-06 2941 2833 -29094034.58311 2942 2833 -31702916.914 2943 2833 11954436.86906 2944 2833 79749895.91067 2945 2833 -16362631.77783 2946 2833 -11950439.90078 2947 2833 -78792675.71048 2948 2833 51029508.03613 2958 2833 -11944444.44837 2959 2833 -16455848.40155 2960 2833 -8163229.232496 2961 2833 -8.195638656616e-07 2962 2833 -22206107.28377 2963 2833 -5277708.20877 2964 2833 11944444.44836 2965 2833 -27195128.92833 2966 2833 13440937.44126 2834 2834 768350518.5004 2835 2834 20813297.08829 2836 2834 40963180.50213 2837 2834 19484057.05595 2847 2834 18780080.99371 2848 2834 9394305.301468 2849 2834 -20006934.4106 2850 2834 -3518564.899638 2851 2834 -21110832.82467 2852 2834 48052583.38233 2853 2834 -20803252.33311 2854 2834 11716527.5232 2855 2834 -22805384.02253 2925 2834 8005089.696258 2926 2834 -7635451.454545 2927 2834 -9407733.938713 2928 2834 47510397.70207 2929 2834 3205506.989851 2930 2834 -52478548.16204 2940 2834 439820.6128855 2941 2834 -31491805.80303 2942 2834 -4060894.923526 2943 2834 5939756.113784 2944 2834 -16359106.80793 2945 2834 -87179377.66603 2946 2834 18349946.72438 2947 2834 52296851.6274 2948 2834 -103249742.1615 2958 2834 -8444910.309145 2959 2834 -8163229.232496 2960 2834 -10570710.68328 2961 2834 -53439363.43899 2962 2834 -5277708.20877 2963 2834 -66116380.01208 2964 2834 -18340743.64572 2965 2834 13440937.44126 2966 2834 -39208792.08802 2835 2835 411984836.6329 2836 2835 -7936152.30026 2837 2835 -12597657.48158 2850 2835 -71804122.04904 2851 2835 -47777777.76993 2852 2835 19043969.88243 2853 2835 -138080718.2873 2854 2835 7859319.261471 2855 2835 -1118612.233799 2856 2835 -59031787.7105 2857 2835 38299055.25473 2858 2835 -3172177.802272 2928 2835 1532382.642161 2929 2835 14339328.79045 2930 2835 9874015.186731 2943 2835 -4845636.536104 2944 2835 -11950439.90078 2945 2835 -8009104.879749 2946 2835 45154799.16275 2947 2835 -1984038.076042 2948 2835 5318188.302819 2961 2835 -20039396.92541 2962 2835 -11944444.44837 2963 2835 -8444910.309145 2964 2835 -54446261.20618 2965 2835 1964829.816336 2966 2835 -37868990.52104 2967 2835 -20832796.07979 2968 2835 9574763.8184 2969 2835 -4947522.887458 2836 2836 472335181.7353 2837 2836 -60215952.15695 2850 2836 -47777777.76993 2851 2836 -57469927.96065 2852 2836 9605416.412441 2853 2836 7820902.742076 2854 2836 61644059.27118 2855 2836 -13951237.99313 2856 2836 57448582.8821 2857 2836 -166188061.588 2858 2836 10078720.53082 2928 2836 9559552.526969 2929 2836 1532382.642157 2930 2836 -5266148.137347 2943 2836 -11948441.41664 2944 2836 -46658897.27468 2945 2836 -32026328.33686 2946 2836 -1984038.076043 2947 2836 60242385.44579 2948 2836 -8284128.881153 2961 2836 -11944444.44837 2962 2836 -16455848.40155 2963 2836 -8163229.232496 2964 2836 1955225.686481 2965 2836 -4515066.791966 2966 2836 -1847868.948734 2967 2836 14362145.7276 2968 2836 -47621864.56235 2969 2836 20366850.75772 2837 2837 433150810.8594 2850 2837 18780080.99371 2851 2837 9394305.301468 2852 2837 -20006934.4106 2853 2837 -7976747.091482 2854 2837 -13738986.98741 2855 2837 37185048.73447 2856 2837 -4758266.703408 2857 2837 9231286.830788 2858 2837 -50261826.68389 2928 2837 6582676.791154 2929 2837 -7899222.206021 2930 2837 4086353.712421 2943 2837 -8007766.485252 2944 2837 -33293672.07046 2945 2837 -17559666.33271 2946 2837 -9638402.083643 2947 2837 -20236111.15782 2948 2837 -45956057.35504 2961 2837 -8444910.309145 2962 2837 -8163229.232496 2963 2837 -10570710.68328 2964 2837 -39187801.2437 2965 2837 -1627591.468903 2966 2837 -43839955.45809 2967 2837 -7421284.331187 2968 2837 18388546.96739 2969 2837 -28765054.39688 2838 2838 801867013.5374 2839 2838 2.598762512207e-05 2840 2838 7037129.799195 2841 2838 92970237.73849 2842 2838 -1.010298728943e-05 2843 2838 1759282.450673 2859 2838 -181853790.138 2860 2838 3.248453140259e-06 2861 2838 -3518564.899638 2862 2838 -72853540.65349 2863 2838 47777777.76992 2864 2838 -20539363.4444 2931 2838 -71968136.03531 2932 2838 4.157423973083e-06 2933 2838 51943969.87703 2934 2838 -29817851.87049 2935 2838 -11944444.44837 2936 2838 17900923.03284 2949 2838 88895212.80375 2950 2838 4.112720489502e-06 2951 2838 1759282.450699 2952 2838 -25612922.63328 2953 2838 -1.080334186554e-05 2954 2838 439820.6129002 2970 2838 -74762019.75572 2971 2838 2.533197402954e-07 2972 2838 -53703252.3277 2973 2838 -30778677.45218 2974 2838 11944444.44836 2975 2838 -18340743.64572 2839 2839 687193460.8868 2840 2839 -84443331.25708 2841 2839 -1.019239425659e-05 2842 2839 -88585023.89729 2843 2839 42221665.62855 2859 2839 3.069639205933e-06 2860 2839 28369859.6463 2861 2839 -21110832.82467 2862 2839 47777777.76992 2863 2839 -58519346.56511 2864 2839 11505416.41223 2931 2839 3.337860107422e-06 2932 2839 -19412223.56332 2933 2839 -5277708.208769 2934 2839 -11944444.44837 2935 2839 -26234303.34662 2936 2839 12913159.66331 2949 2839 4.351139068604e-06 2950 2839 60226824.62697 2951 2839 -21110832.82468 2952 2839 -9.95397567749e-06 2953 2839 -71001738.06458 2954 2839 52813749.73867 2970 2839 -8.195638656616e-07 2971 2839 -22206107.28377 2972 2839 -5277708.20877 2973 2839 11944444.44836 2974 2839 -27195128.92833 2975 2839 13440937.44126 2840 2840 766546241.681 2841 2840 1759282.450673 2842 2840 42221665.62855 2843 2840 57866058.65466 2859 2840 -3518564.899638 2860 2840 -21110832.82467 2861 2840 48052583.38233 2862 2840 -20803252.33311 2863 2840 11716527.5232 2864 2840 -22805384.02253 2931 2840 51680080.98832 2932 2840 -5277708.208769 2933 2840 -58666023.42418 2934 2840 17900923.03284 2935 2840 12913159.66331 2936 2840 -36646590.5368 2949 2840 1759282.450699 2950 2840 -21110832.82468 2951 2840 -105887547.9636 2952 2840 439820.6129005 2953 2840 52602638.6277 2954 2840 -115814770.8741 2970 2840 -53439363.43899 2971 2840 -5277708.20877 2972 2840 -66116380.01208 2973 2840 -18340743.64572 2974 2840 13440937.44126 2975 2840 -39208792.08802 2841 2841 801867013.5374 2842 2841 2.598762512207e-05 2843 2841 7037129.799195 2844 2841 92970237.73849 2845 2841 -1.010298728943e-05 2846 2841 1759282.450673 2859 2841 -71804122.04904 2860 2841 -47777777.76993 2861 2841 19043969.88243 2862 2841 -181853790.138 2863 2841 3.248453140259e-06 2864 2841 -3518564.899638 2865 2841 -72853540.65349 2866 2841 47777777.76992 2867 2841 -20539363.4444 2931 2841 -19603280.6462 2932 2841 11944444.44837 2933 2841 8005089.696258 2934 2841 -71968136.03531 2935 2841 4.157423973083e-06 2936 2841 51943969.87703 2937 2841 -29817851.87049 2938 2841 -11944444.44837 2939 2841 17900923.03284 2949 2841 16294780.8482 2950 2841 4.217028617859e-06 2951 2841 439820.6128852 2952 2841 88895212.80375 2953 2841 4.112720489502e-06 2954 2841 1759282.450699 2955 2841 -25612922.63328 2956 2841 -1.080334186554e-05 2957 2841 439820.6129002 2970 2841 -20039396.92541 2971 2841 -11944444.44837 2972 2841 -8444910.309145 2973 2841 -74762019.75572 2974 2841 2.533197402954e-07 2975 2841 -53703252.3277 2976 2841 -30778677.45218 2977 2841 11944444.44836 2978 2841 -18340743.64572 2842 2842 687193460.8868 2843 2842 -84443331.25708 2844 2842 -1.019239425659e-05 2845 2842 -88585023.89729 2846 2842 42221665.62855 2859 2842 -47777777.76993 2860 2842 -57469927.96065 2861 2842 9605416.412441 2862 2842 3.069639205933e-06 2863 2842 28369859.6463 2864 2842 -21110832.82467 2865 2842 47777777.76992 2866 2842 -58519346.56511 2867 2842 11505416.41223 2931 2842 11944444.44837 2932 2842 -16019732.12234 2933 2842 -7635451.454545 2934 2842 3.337860107422e-06 2935 2842 -19412223.56332 2936 2842 -5277708.208769 2937 2842 -11944444.44837 2938 2842 -26234303.34662 2939 2842 12913159.66331 2949 2842 5.125999450684e-06 2950 2842 -29094034.58311 2951 2842 -31702916.914 2952 2842 4.351139068604e-06 2953 2842 60226824.62697 2954 2842 -21110832.82468 2955 2842 -9.95397567749e-06 2956 2842 -71001738.06458 2957 2842 52813749.73867 2970 2842 -11944444.44837 2971 2842 -16455848.40155 2972 2842 -8163229.232496 2973 2842 -8.195638656616e-07 2974 2842 -22206107.28377 2975 2842 -5277708.20877 2976 2842 11944444.44836 2977 2842 -27195128.92833 2978 2842 13440937.44126 2843 2843 766546241.681 2844 2843 1759282.450673 2845 2843 42221665.62855 2846 2843 57866058.65466 2859 2843 18780080.99371 2860 2843 9394305.301468 2861 2843 -20006934.4106 2862 2843 -3518564.899638 2863 2843 -21110832.82467 2864 2843 48052583.38233 2865 2843 -20803252.33311 2866 2843 11716527.5232 2867 2843 -22805384.02253 2931 2843 8005089.696258 2932 2843 -7635451.454545 2933 2843 -9407733.938713 2934 2843 51680080.98832 2935 2843 -5277708.208769 2936 2843 -58666023.42418 2937 2843 17900923.03284 2938 2843 12913159.66331 2939 2843 -36646590.5368 2949 2843 439820.6128855 2950 2843 -31491805.80303 2951 2843 -4060894.923526 2952 2843 1759282.450699 2953 2843 -21110832.82468 2954 2843 -105887547.9636 2955 2843 439820.6129005 2956 2843 52602638.6277 2957 2843 -115814770.8741 2970 2843 -8444910.309145 2971 2843 -8163229.232496 2972 2843 -10570710.68328 2973 2843 -53439363.43899 2974 2843 -5277708.20877 2975 2843 -66116380.01208 2976 2843 -18340743.64572 2977 2843 13440937.44126 2978 2843 -39208792.08802 2844 2844 801867013.5374 2845 2844 2.598762512207e-05 2846 2844 7037129.799195 2847 2844 92970237.73849 2848 2844 -1.010298728943e-05 2849 2844 1759282.450673 2862 2844 -71804122.04904 2863 2844 -47777777.76993 2864 2844 19043969.88243 2865 2844 -181853790.138 2866 2844 3.248453140259e-06 2867 2844 -3518564.899638 2868 2844 -72853540.65349 2869 2844 47777777.76992 2870 2844 -20539363.4444 2934 2844 -19603280.6462 2935 2844 11944444.44837 2936 2844 8005089.696258 2937 2844 -71968136.03531 2938 2844 4.157423973083e-06 2939 2844 51943969.87703 2940 2844 -29817851.87049 2941 2844 -11944444.44837 2942 2844 17900923.03284 2952 2844 16294780.8482 2953 2844 4.217028617859e-06 2954 2844 439820.6128852 2955 2844 88895212.80375 2956 2844 4.112720489502e-06 2957 2844 1759282.450699 2958 2844 -25612922.63328 2959 2844 -1.080334186554e-05 2960 2844 439820.6129002 2973 2844 -20039396.92541 2974 2844 -11944444.44837 2975 2844 -8444910.309145 2976 2844 -74762019.75572 2977 2844 2.533197402954e-07 2978 2844 -53703252.3277 2979 2844 -30778677.45218 2980 2844 11944444.44836 2981 2844 -18340743.64572 2845 2845 687193460.8868 2846 2845 -84443331.25708 2847 2845 -1.019239425659e-05 2848 2845 -88585023.89729 2849 2845 42221665.62855 2862 2845 -47777777.76993 2863 2845 -57469927.96065 2864 2845 9605416.412441 2865 2845 3.069639205933e-06 2866 2845 28369859.6463 2867 2845 -21110832.82467 2868 2845 47777777.76992 2869 2845 -58519346.56511 2870 2845 11505416.41223 2934 2845 11944444.44837 2935 2845 -16019732.12234 2936 2845 -7635451.454545 2937 2845 3.337860107422e-06 2938 2845 -19412223.56332 2939 2845 -5277708.208769 2940 2845 -11944444.44837 2941 2845 -26234303.34662 2942 2845 12913159.66331 2952 2845 5.125999450684e-06 2953 2845 -29094034.58311 2954 2845 -31702916.914 2955 2845 4.351139068604e-06 2956 2845 60226824.62697 2957 2845 -21110832.82468 2958 2845 -9.95397567749e-06 2959 2845 -71001738.06458 2960 2845 52813749.73867 2973 2845 -11944444.44837 2974 2845 -16455848.40155 2975 2845 -8163229.232496 2976 2845 -8.195638656616e-07 2977 2845 -22206107.28377 2978 2845 -5277708.20877 2979 2845 11944444.44836 2980 2845 -27195128.92833 2981 2845 13440937.44126 2846 2846 766546241.681 2847 2846 1759282.450673 2848 2846 42221665.62855 2849 2846 57866058.65466 2862 2846 18780080.99371 2863 2846 9394305.301468 2864 2846 -20006934.4106 2865 2846 -3518564.899638 2866 2846 -21110832.82467 2867 2846 48052583.38233 2868 2846 -20803252.33311 2869 2846 11716527.5232 2870 2846 -22805384.02253 2934 2846 8005089.696258 2935 2846 -7635451.454545 2936 2846 -9407733.938713 2937 2846 51680080.98832 2938 2846 -5277708.208769 2939 2846 -58666023.42418 2940 2846 17900923.03284 2941 2846 12913159.66331 2942 2846 -36646590.5368 2952 2846 439820.6128855 2953 2846 -31491805.80303 2954 2846 -4060894.923526 2955 2846 1759282.450699 2956 2846 -21110832.82468 2957 2846 -105887547.9636 2958 2846 439820.6129005 2959 2846 52602638.6277 2960 2846 -115814770.8741 2973 2846 -8444910.309145 2974 2846 -8163229.232496 2975 2846 -10570710.68328 2976 2846 -53439363.43899 2977 2846 -5277708.20877 2978 2846 -66116380.01208 2979 2846 -18340743.64572 2980 2846 13440937.44126 2981 2846 -39208792.08802 2847 2847 801867013.5374 2848 2847 2.598762512207e-05 2849 2847 7037129.799195 2850 2847 92970237.73849 2851 2847 -1.010298728943e-05 2852 2847 1759282.450673 2865 2847 -71804122.04904 2866 2847 -47777777.76993 2867 2847 19043969.88243 2868 2847 -181853790.138 2869 2847 3.248453140259e-06 2870 2847 -3518564.899638 2871 2847 -72853540.65349 2872 2847 47777777.76992 2873 2847 -20539363.4444 2937 2847 -19603280.6462 2938 2847 11944444.44837 2939 2847 8005089.696258 2940 2847 -71968136.03531 2941 2847 4.157423973083e-06 2942 2847 51943969.87703 2943 2847 -29817851.87049 2944 2847 -11944444.44837 2945 2847 17900923.03284 2955 2847 16294780.8482 2956 2847 4.217028617859e-06 2957 2847 439820.6128852 2958 2847 88895212.80375 2959 2847 4.112720489502e-06 2960 2847 1759282.450699 2961 2847 -25612922.63328 2962 2847 -1.080334186554e-05 2963 2847 439820.6129002 2976 2847 -20039396.92541 2977 2847 -11944444.44837 2978 2847 -8444910.309145 2979 2847 -74762019.75572 2980 2847 2.533197402954e-07 2981 2847 -53703252.3277 2982 2847 -30778677.45218 2983 2847 11944444.44836 2984 2847 -18340743.64572 2848 2848 687193460.8868 2849 2848 -84443331.25708 2850 2848 -1.019239425659e-05 2851 2848 -88585023.89729 2852 2848 42221665.62855 2865 2848 -47777777.76993 2866 2848 -57469927.96065 2867 2848 9605416.412441 2868 2848 3.069639205933e-06 2869 2848 28369859.6463 2870 2848 -21110832.82467 2871 2848 47777777.76992 2872 2848 -58519346.56511 2873 2848 11505416.41223 2937 2848 11944444.44837 2938 2848 -16019732.12234 2939 2848 -7635451.454545 2940 2848 3.337860107422e-06 2941 2848 -19412223.56332 2942 2848 -5277708.208769 2943 2848 -11944444.44837 2944 2848 -26234303.34662 2945 2848 12913159.66331 2955 2848 5.125999450684e-06 2956 2848 -29094034.58311 2957 2848 -31702916.914 2958 2848 4.351139068604e-06 2959 2848 60226824.62697 2960 2848 -21110832.82468 2961 2848 -9.95397567749e-06 2962 2848 -71001738.06458 2963 2848 52813749.73867 2976 2848 -11944444.44837 2977 2848 -16455848.40155 2978 2848 -8163229.232496 2979 2848 -8.195638656616e-07 2980 2848 -22206107.28377 2981 2848 -5277708.20877 2982 2848 11944444.44836 2983 2848 -27195128.92833 2984 2848 13440937.44126 2849 2849 766546241.681 2850 2849 1759282.450673 2851 2849 42221665.62855 2852 2849 57866058.65466 2865 2849 18780080.99371 2866 2849 9394305.301468 2867 2849 -20006934.4106 2868 2849 -3518564.899638 2869 2849 -21110832.82467 2870 2849 48052583.38233 2871 2849 -20803252.33311 2872 2849 11716527.5232 2873 2849 -22805384.02253 2937 2849 8005089.696258 2938 2849 -7635451.454545 2939 2849 -9407733.938713 2940 2849 51680080.98832 2941 2849 -5277708.208769 2942 2849 -58666023.42418 2943 2849 17900923.03284 2944 2849 12913159.66331 2945 2849 -36646590.5368 2955 2849 439820.6128855 2956 2849 -31491805.80303 2957 2849 -4060894.923526 2958 2849 1759282.450699 2959 2849 -21110832.82468 2960 2849 -105887547.9636 2961 2849 439820.6129005 2962 2849 52602638.6277 2963 2849 -115814770.8741 2976 2849 -8444910.309145 2977 2849 -8163229.232496 2978 2849 -10570710.68328 2979 2849 -53439363.43899 2980 2849 -5277708.20877 2981 2849 -66116380.01208 2982 2849 -18340743.64572 2983 2849 13440937.44126 2984 2849 -39208792.08802 2850 2850 801867013.5374 2851 2850 2.598762512207e-05 2852 2850 7037129.799195 2853 2850 92970237.73849 2854 2850 -1.010298728943e-05 2855 2850 1759282.450673 2868 2850 -71804122.04904 2869 2850 -47777777.76993 2870 2850 19043969.88243 2871 2850 -181853790.138 2872 2850 3.248453140259e-06 2873 2850 -3518564.899638 2874 2850 -72853540.65349 2875 2850 47777777.76992 2876 2850 -20539363.4444 2940 2850 -19603280.6462 2941 2850 11944444.44837 2942 2850 8005089.696258 2943 2850 -71968136.03531 2944 2850 4.157423973083e-06 2945 2850 51943969.87703 2946 2850 -29817851.87049 2947 2850 -11944444.44837 2948 2850 17900923.03284 2958 2850 16294780.8482 2959 2850 4.217028617859e-06 2960 2850 439820.6128852 2961 2850 88895212.80375 2962 2850 4.112720489502e-06 2963 2850 1759282.450699 2964 2850 -25612922.63328 2965 2850 -1.080334186554e-05 2966 2850 439820.6129002 2979 2850 -20039396.92541 2980 2850 -11944444.44837 2981 2850 -8444910.309145 2982 2850 -74762019.75572 2983 2850 2.533197402954e-07 2984 2850 -53703252.3277 2985 2850 -30778677.45218 2986 2850 11944444.44836 2987 2850 -18340743.64572 2851 2851 687193460.8868 2852 2851 -84443331.25708 2853 2851 -1.019239425659e-05 2854 2851 -88585023.89729 2855 2851 42221665.62855 2868 2851 -47777777.76993 2869 2851 -57469927.96065 2870 2851 9605416.412441 2871 2851 3.069639205933e-06 2872 2851 28369859.6463 2873 2851 -21110832.82467 2874 2851 47777777.76992 2875 2851 -58519346.56511 2876 2851 11505416.41223 2940 2851 11944444.44837 2941 2851 -16019732.12234 2942 2851 -7635451.454545 2943 2851 3.337860107422e-06 2944 2851 -19412223.56332 2945 2851 -5277708.208769 2946 2851 -11944444.44837 2947 2851 -26234303.34662 2948 2851 12913159.66331 2958 2851 5.125999450684e-06 2959 2851 -29094034.58311 2960 2851 -31702916.914 2961 2851 4.351139068604e-06 2962 2851 60226824.62697 2963 2851 -21110832.82468 2964 2851 -9.95397567749e-06 2965 2851 -71001738.06458 2966 2851 52813749.73867 2979 2851 -11944444.44837 2980 2851 -16455848.40155 2981 2851 -8163229.232496 2982 2851 -8.195638656616e-07 2983 2851 -22206107.28377 2984 2851 -5277708.20877 2985 2851 11944444.44836 2986 2851 -27195128.92833 2987 2851 13440937.44126 2852 2852 766546241.681 2853 2852 1759282.450673 2854 2852 42221665.62855 2855 2852 57866058.65466 2868 2852 18780080.99371 2869 2852 9394305.301468 2870 2852 -20006934.4106 2871 2852 -3518564.899638 2872 2852 -21110832.82467 2873 2852 48052583.38233 2874 2852 -20803252.33311 2875 2852 11716527.5232 2876 2852 -22805384.02253 2940 2852 8005089.696258 2941 2852 -7635451.454545 2942 2852 -9407733.938713 2943 2852 51680080.98832 2944 2852 -5277708.208769 2945 2852 -58666023.42418 2946 2852 17900923.03284 2947 2852 12913159.66331 2948 2852 -36646590.5368 2958 2852 439820.6128855 2959 2852 -31491805.80303 2960 2852 -4060894.923526 2961 2852 1759282.450699 2962 2852 -21110832.82468 2963 2852 -105887547.9636 2964 2852 439820.6129005 2965 2852 52602638.6277 2966 2852 -115814770.8741 2979 2852 -8444910.309145 2980 2852 -8163229.232496 2981 2852 -10570710.68328 2982 2852 -53439363.43899 2983 2852 -5277708.20877 2984 2852 -66116380.01208 2985 2852 -18340743.64572 2986 2852 13440937.44126 2987 2852 -39208792.08802 2853 2853 697335433.5606 2854 2853 13555993.81372 2855 2853 6525546.760922 2856 2853 -74181346.4655 2857 2853 -78873671.67505 2858 2853 4567537.813263 2871 2853 -71804122.04904 2872 2853 -47777777.76993 2873 2853 19043969.88243 2874 2853 -131767559.6882 2875 2853 24583510.6723 2876 2853 -724035.0559039 2877 2853 -42859393.5392 2878 2853 32913264.44696 2879 2853 -2392743.794803 2943 2853 -19603280.6462 2944 2853 11944444.44837 2945 2853 8005089.696258 2946 2853 -51389094.80041 2947 2853 1955225.686484 2948 2853 35595150.68861 2961 2853 16294780.8482 2962 2853 4.217028617859e-06 2963 2853 439820.6128852 2964 2853 89751427.48146 2965 2853 3388998.455101 2966 2853 1627256.23664 2967 2853 -37804191.87041 2968 2853 -19718417.92848 2969 2853 14356015.6679 2982 2853 -20039396.92541 2983 2853 -11944444.44837 2984 2853 -8444910.309145 2985 2853 -60532186.86274 2986 2853 6145877.671103 2987 2853 -45375800.4239 2988 2853 -19078219.62127 2989 2853 8228316.115794 2990 2853 -6175963.728574 2854 2854 738376280.1071 2855 2854 -53461134.90695 2856 2854 -78912088.19445 2857 2854 -255911826.3266 2858 2854 9575542.669736 2871 2854 -47777777.76993 2872 2854 -57469927.96065 2873 2854 9605416.412441 2874 2854 24583510.6723 2875 2854 39087496.12151 2876 2854 -11304599.7208 2877 2854 32913264.44696 2878 2854 -119862720.1338 2879 2854 5385216.157707 2943 2854 11944444.44837 2944 2854 -16019732.12234 2945 2854 -7635451.454545 2946 2854 1964829.816337 2947 2854 -1457900.386174 2948 2854 -5080618.041869 2961 2854 5.125999450684e-06 2962 2854 -29094034.58311 2963 2854 -31702916.914 2964 2854 3388998.455098 2965 2854 100011639.1232 2966 2854 -13368588.23948 2967 2854 -19728022.05833 2968 2854 -83236811.85808 2969 2854 44683227.92718 2982 2854 -11944444.44837 2983 2854 -16455848.40155 2984 2854 -8163229.232496 2985 2854 6145877.671102 2986 2854 -17818422.88929 2987 2854 3275933.400212 2988 2854 8228316.115794 2989 2854 -38329051.2794 2990 2854 18012970.71223 2855 2855 653768770.9707 2856 2855 4834182.270174 2857 2855 10420950.39671 2858 2855 -44643768.23168 2871 2855 18780080.99371 2872 2855 9394305.301468 2873 2855 -20006934.4106 2874 2855 -7321257.277044 2875 2855 -11515710.83187 2876 2855 53866482.54874 2877 2855 -2920521.572234 2878 2855 5385216.157707 2879 2855 -25206299.26693 2943 2855 8005089.696258 2944 2855 -7635451.454545 2945 2855 -9407733.938713 2946 2855 36913961.41127 2947 2855 -5283969.107957 2948 2855 -35687511.70929 2961 2855 439820.6128855 2962 2855 -31491805.80303 2963 2855 -4060894.923526 2964 2855 1636068.847779 2965 2855 -13361537.70386 2966 2855 -62110956.49564 2967 2855 14361165.99813 2968 2855 44679081.42414 2969 2855 -62517889.38316 2982 2855 -8444910.309145 2983 2855 -8163229.232496 2984 2855 -10570710.68328 2985 2855 -46695244.86759 2986 2855 3275933.401367 2987 2855 -60107504.48815 2988 2855 -6175963.728574 2989 2855 18012970.71223 2990 2855 -28603898.10301 2856 2856 489618492.9753 2857 2856 15356371.09326 2858 2856 -2554275.615559 2874 2856 -75484143.26592 2875 2856 -45746472.96609 2876 2856 2836938.039019 2877 2856 -36927445.63632 2878 2856 34495259.45832 2879 2856 -1076002.638337 2880 2856 61858293.65847 2881 2856 -22880131.39438 2882 2856 113380.0795472 2883 2856 -20251607.2672 2884 2856 40238479.12124 2885 2856 -451510.9862942 2946 2856 -17479931.67357 2947 2856 14362145.7276 2948 2856 5833486.609719 2964 2856 -31941173.76503 2965 2856 -19728022.05833 2966 2856 -12009716.04913 2967 2856 24089286.29196 2968 2856 3839092.775206 2969 2856 10350875.53811 2985 2856 -25149760.01167 2986 2856 -11436618.24716 2987 2856 -12495973.82755 2988 2856 -53221395.58403 2989 2856 8623814.868827 2990 2856 -52049556.20671 2991 2856 -15616531.23755 2992 2856 -5720032.851413 2993 2856 11718275.57488 2994 2856 -19138192.52839 2995 2856 10059619.78527 2996 2856 -12797947.19522 2857 2857 684488409.1365 2858 2857 -18295681.76298 2874 2857 -45746472.96609 2875 2857 -41552329.55583 2876 2857 331278.0576664 2877 2857 34495259.45832 2878 2857 136816456.2173 2879 2857 -3434058.65236 2880 2857 -3769020.286411 2881 2857 -30851528.21609 2882 2857 417819.3012418 2883 2857 40238479.12124 2884 2857 -41200663.37894 2885 2857 488013.3309756 2946 2857 9574763.8184 2947 2857 -44269000.15613 2948 2857 -13244377.7058 2964 2857 -19718417.92848 2965 2857 -77373793.75269 2966 2857 -39681478.38126 2967 2857 3839092.775206 2968 2857 72806765.35626 2969 2857 -2276323.108396 2985 2857 -11436618.24716 2986 2857 -16666806.57997 2987 2857 -10481763.82233 2988 2857 8623814.868826 2989 2857 -9785420.099232 2990 2857 5243568.66829 2991 2857 -942255.0720671 2992 2857 -38793986.71761 2993 2857 33437788.15322 2994 2857 10059619.78527 2995 2857 -24375456.5589 2996 2857 16788670.00494 2858 2858 600039923.4573 2874 2858 2573049.150303 2875 2858 120166.946694 2876 2858 -12151033.88324 2877 2858 -2131558.193719 2878 2858 -3645169.763436 2879 2858 150791187.3325 2880 2858 -150508.8092947 2881 2858 417819.3012417 2882 2858 95574403.5202 2883 2858 -715399.8750098 2884 2858 488013.3309756 2885 2858 22252331.25781 2946 2858 3888991.073146 2947 2858 -14800902.31119 2948 2858 -19824082.64697 2964 2858 -12006053.84798 2965 2858 -39687207.82015 2966 2858 -46883174.43545 2967 2858 -10308568.90294 2968 2858 -5821027.16094 2969 2858 -112164251.0942 2985 2858 -12495973.82755 2986 2858 -10481763.82233 2987 2858 -19781022.96801 2988 2858 -52049556.20697 2989 2858 5243568.669446 2990 2858 -79607627.60272 2991 2858 3593275.573656 2992 2858 33437788.15322 2993 2858 -58989344.86761 2994 2858 -12797947.19522 2995 2858 16788670.00494 2996 2858 -31971025.74039 2859 2859 400933506.7687 2860 2859 1.347064971924e-05 2861 2859 3518564.899597 2862 2859 46502609.17931 2863 2859 9555555.553979 2864 2859 -2418969.885557 2949 2859 -71968136.03531 2950 2859 4.157423973083e-06 2951 2859 51943969.87703 2952 2859 -29817851.87049 2953 2859 -11944444.44837 2954 2859 17900923.03284 2970 2859 44430116.09181 2971 2859 1.907348632813e-06 2972 2859 -10318414.32804 2973 2859 -12806461.31664 2974 2859 2388888.889668 2975 2859 -3404256.361406 2860 2860 343596730.4434 2861 2860 -42221665.62853 2862 2860 -9555555.55399 2863 2860 -44275021.63857 2864 2860 20899721.7032 2949 2860 3.337860107422e-06 2950 2860 -19412223.56332 2951 2860 -5277708.208769 2952 2860 -11944444.44837 2953 2860 -26234303.34662 2954 2860 12913159.66331 2970 2860 2.861022949219e-06 2971 2860 30095922.00342 2972 2860 -10555416.41234 2973 2860 -2388888.889678 2974 2860 -35500869.03229 2975 2860 26354097.09154 2861 2861 383273120.8405 2862 2861 5497696.779808 2863 2861 21321943.92535 2864 2861 28979670.15418 2949 2861 51680080.98832 2950 2861 -5277708.208769 2951 2861 -58666023.42418 2952 2861 17900923.03284 2953 2861 12913159.66331 2954 2861 -36646590.5368 2970 2861 10758252.33516 2971 2861 -10555416.41234 2972 2861 -52990414.80866 2973 2861 3844076.974307 2974 2861 26354097.09164 2975 2861 -57907385.43707 2862 2862 400933506.7687 2863 2862 1.347064971924e-05 2864 2862 3518564.899597 2865 2862 46502609.17931 2866 2862 9555555.553979 2867 2862 -2418969.885557 2949 2862 -19603280.6462 2950 2862 11944444.44837 2951 2862 8005089.696258 2952 2862 -71968136.03531 2953 2862 4.157423973083e-06 2954 2862 51943969.87703 2955 2862 -29817851.87049 2956 2862 -11944444.44837 2957 2862 17900923.03284 2970 2862 8147390.424101 2971 2862 -2388888.889671 2972 2862 -1425089.694098 2973 2862 44430116.09181 2974 2862 1.907348632813e-06 2975 2862 -10318414.32804 2976 2862 -12806461.31664 2977 2862 2388888.889668 2978 2862 -3404256.361406 2863 2863 343596730.4434 2864 2863 -42221665.62853 2865 2863 -9555555.55399 2866 2863 -44275021.63857 2867 2863 20899721.7032 2949 2863 11944444.44837 2950 2863 -16019732.12234 2951 2863 -7635451.454545 2952 2863 3.337860107422e-06 2953 2863 -19412223.56332 2954 2863 -5277708.208769 2955 2863 -11944444.44837 2956 2863 -26234303.34662 2957 2863 12913159.66331 2970 2863 2388888.889676 2971 2863 -14547017.29156 2972 2863 -15798680.67921 2973 2863 2.861022949219e-06 2974 2863 30095922.00342 2975 2863 -10555416.41234 2976 2863 -2388888.889678 2977 2863 -35500869.03229 2978 2863 26354097.09154 2864 2864 383273120.8405 2865 2864 5497696.779808 2866 2864 21321943.92535 2867 2864 28979670.15418 2949 2864 8005089.696258 2950 2864 -7635451.454545 2951 2864 -9407733.938713 2952 2864 51680080.98832 2953 2864 -5277708.208769 2954 2864 -58666023.42418 2955 2864 17900923.03284 2956 2864 12913159.66331 2957 2864 -36646590.5368 2970 2864 1864910.306983 2971 2864 -15798680.67931 2972 2864 -2030447.461764 2973 2864 10758252.33516 2974 2864 -10555416.41234 2975 2864 -52990414.80866 2976 2864 3844076.974307 2977 2864 26354097.09164 2978 2864 -57907385.43707 2865 2865 400933506.7687 2866 2865 1.347064971924e-05 2867 2865 3518564.899597 2868 2865 46502609.17931 2869 2865 9555555.553979 2870 2865 -2418969.885557 2952 2865 -19603280.6462 2953 2865 11944444.44837 2954 2865 8005089.696258 2955 2865 -71968136.03531 2956 2865 4.157423973083e-06 2957 2865 51943969.87703 2958 2865 -29817851.87049 2959 2865 -11944444.44837 2960 2865 17900923.03284 2973 2865 8147390.424101 2974 2865 -2388888.889671 2975 2865 -1425089.694098 2976 2865 44430116.09181 2977 2865 1.907348632813e-06 2978 2865 -10318414.32804 2979 2865 -12806461.31664 2980 2865 2388888.889668 2981 2865 -3404256.361406 2866 2866 343596730.4434 2867 2866 -42221665.62853 2868 2866 -9555555.55399 2869 2866 -44275021.63857 2870 2866 20899721.7032 2952 2866 11944444.44837 2953 2866 -16019732.12234 2954 2866 -7635451.454545 2955 2866 3.337860107422e-06 2956 2866 -19412223.56332 2957 2866 -5277708.208769 2958 2866 -11944444.44837 2959 2866 -26234303.34662 2960 2866 12913159.66331 2973 2866 2388888.889676 2974 2866 -14547017.29156 2975 2866 -15798680.67921 2976 2866 2.861022949219e-06 2977 2866 30095922.00342 2978 2866 -10555416.41234 2979 2866 -2388888.889678 2980 2866 -35500869.03229 2981 2866 26354097.09154 2867 2867 383273120.8405 2868 2867 5497696.779808 2869 2867 21321943.92535 2870 2867 28979670.15418 2952 2867 8005089.696258 2953 2867 -7635451.454545 2954 2867 -9407733.938713 2955 2867 51680080.98832 2956 2867 -5277708.208769 2957 2867 -58666023.42418 2958 2867 17900923.03284 2959 2867 12913159.66331 2960 2867 -36646590.5368 2973 2867 1864910.306983 2974 2867 -15798680.67931 2975 2867 -2030447.461764 2976 2867 10758252.33516 2977 2867 -10555416.41234 2978 2867 -52990414.80866 2979 2867 3844076.974307 2980 2867 26354097.09164 2981 2867 -57907385.43707 2868 2868 400933506.7687 2869 2868 1.347064971924e-05 2870 2868 3518564.899597 2871 2868 46502609.17931 2872 2868 9555555.553979 2873 2868 -2418969.885557 2955 2868 -19603280.6462 2956 2868 11944444.44837 2957 2868 8005089.696258 2958 2868 -71968136.03531 2959 2868 4.157423973083e-06 2960 2868 51943969.87703 2961 2868 -29817851.87049 2962 2868 -11944444.44837 2963 2868 17900923.03284 2976 2868 8147390.424101 2977 2868 -2388888.889671 2978 2868 -1425089.694098 2979 2868 44430116.09181 2980 2868 1.907348632813e-06 2981 2868 -10318414.32804 2982 2868 -12806461.31664 2983 2868 2388888.889668 2984 2868 -3404256.361406 2869 2869 343596730.4434 2870 2869 -42221665.62853 2871 2869 -9555555.55399 2872 2869 -44275021.63857 2873 2869 20899721.7032 2955 2869 11944444.44837 2956 2869 -16019732.12234 2957 2869 -7635451.454545 2958 2869 3.337860107422e-06 2959 2869 -19412223.56332 2960 2869 -5277708.208769 2961 2869 -11944444.44837 2962 2869 -26234303.34662 2963 2869 12913159.66331 2976 2869 2388888.889676 2977 2869 -14547017.29156 2978 2869 -15798680.67921 2979 2869 2.861022949219e-06 2980 2869 30095922.00342 2981 2869 -10555416.41234 2982 2869 -2388888.889678 2983 2869 -35500869.03229 2984 2869 26354097.09154 2870 2870 383273120.8405 2871 2870 5497696.779808 2872 2870 21321943.92535 2873 2870 28979670.15418 2955 2870 8005089.696258 2956 2870 -7635451.454545 2957 2870 -9407733.938713 2958 2870 51680080.98832 2959 2870 -5277708.208769 2960 2870 -58666023.42418 2961 2870 17900923.03284 2962 2870 12913159.66331 2963 2870 -36646590.5368 2976 2870 1864910.306983 2977 2870 -15798680.67931 2978 2870 -2030447.461764 2979 2870 10758252.33516 2980 2870 -10555416.41234 2981 2870 -52990414.80866 2982 2870 3844076.974307 2983 2870 26354097.09164 2984 2870 -57907385.43707 2871 2871 400933506.7687 2872 2871 1.347064971924e-05 2873 2871 3518564.899597 2874 2871 46502609.17931 2875 2871 9555555.553979 2876 2871 -2418969.885557 2958 2871 -19603280.6462 2959 2871 11944444.44837 2960 2871 8005089.696258 2961 2871 -71968136.03531 2962 2871 4.157423973083e-06 2963 2871 51943969.87703 2964 2871 -29817851.87049 2965 2871 -11944444.44837 2966 2871 17900923.03284 2979 2871 8147390.424101 2980 2871 -2388888.889671 2981 2871 -1425089.694098 2982 2871 44430116.09181 2983 2871 1.907348632813e-06 2984 2871 -10318414.32804 2985 2871 -12806461.31664 2986 2871 2388888.889668 2987 2871 -3404256.361406 2872 2872 343596730.4434 2873 2872 -42221665.62853 2874 2872 -9555555.55399 2875 2872 -44275021.63857 2876 2872 20899721.7032 2958 2872 11944444.44837 2959 2872 -16019732.12234 2960 2872 -7635451.454545 2961 2872 3.337860107422e-06 2962 2872 -19412223.56332 2963 2872 -5277708.208769 2964 2872 -11944444.44837 2965 2872 -26234303.34662 2966 2872 12913159.66331 2979 2872 2388888.889676 2980 2872 -14547017.29156 2981 2872 -15798680.67921 2982 2872 2.861022949219e-06 2983 2872 30095922.00342 2984 2872 -10555416.41234 2985 2872 -2388888.889678 2986 2872 -35500869.03229 2987 2872 26354097.09154 2873 2873 383273120.8405 2874 2873 5497696.779808 2875 2873 21321943.92535 2876 2873 28979670.15418 2958 2873 8005089.696258 2959 2873 -7635451.454545 2960 2873 -9407733.938713 2961 2873 51680080.98832 2962 2873 -5277708.208769 2963 2873 -58666023.42418 2964 2873 17900923.03284 2965 2873 12913159.66331 2966 2873 -36646590.5368 2979 2873 1864910.306983 2980 2873 -15798680.67931 2981 2873 -2030447.461764 2982 2873 10758252.33516 2983 2873 -10555416.41234 2984 2873 -52990414.80866 2985 2873 3844076.974307 2986 2873 26354097.09164 2987 2873 -57907385.43707 2874 2874 390528978.5414 2875 2874 2031754.88496 2876 2874 18978084.67473 2877 2874 10706126.81689 2878 2874 -19091014.80711 2879 2874 2131234.560147 2961 2874 -19603280.6462 2962 2874 11944444.44837 2963 2874 8005089.696258 2964 2874 -57207507.5192 2965 2874 6145877.671107 2966 2874 43364477.33833 2967 2874 -26546695.73564 2968 2874 -11436618.24716 2969 2874 13848470.62555 2982 2874 8147390.424101 2983 2874 -2388888.889671 2984 2874 -1425089.694098 2985 2874 41725581.05413 2986 2874 507938.7214912 2987 2874 -6453256.604583 2988 2874 -15664036.02673 2989 2874 -4772753.704127 2990 2874 5360864.194452 2875 2875 352799816.1126 2876 2875 -26163100.1551 2877 2875 -38202125.91508 2878 2875 -79908143.54456 2879 2875 4520172.591737 2961 2875 11944444.44837 2962 2875 -16019732.12234 2963 2875 -7635451.454545 2964 2875 6145877.671106 2965 2875 -14493743.54572 2966 2875 -8981011.042271 2967 2875 -11436618.24716 2968 2875 -18063742.30393 2969 2875 10594625.07348 2982 2875 2388888.889676 2983 2875 -14547017.29156 2984 2875 -15798680.67921 2985 2875 507938.7214905 2986 2875 32293290.44228 2987 2875 -6540775.042003 2988 2875 -9550531.483474 2989 2875 -38317603.62825 2990 2875 28361293.14454 2876 2876 373214203.523 2877 2876 3450679.004372 2878 2876 4731283.702813 2879 2876 25915984.15995 2961 2876 8005089.696258 2962 2876 -7635451.454545 2963 2876 -9407733.938713 2964 2876 44683921.78504 2965 2876 -8981011.041011 2966 2876 -51241692.90527 2967 2876 13848470.62555 2968 2876 10594625.07348 2969 2876 -23506184.8986 2982 2876 1864910.306983 2983 2876 -15798680.67931 2984 2876 -2030447.461764 2985 2876 14622854.50307 2986 2876 -6540775.042003 2987 2876 -55780885.41815 2988 2876 11025586.41696 2989 2876 28361293.14339 2990 2876 -42429184.57622 2877 2877 393308552.7541 2878 2877 33387741.61392 2879 2877 1069557.995636 2880 2877 -90523162.8112 2881 2877 -55317076.41861 2882 2877 735989.013558 2883 2877 18987277.35532 2884 2877 -7277063.18551 2885 2877 851409.3072543 2964 2877 -16305861.25464 2965 2877 8228316.115794 2966 2877 4847647.38616 2967 2877 -52398287.78342 2968 2877 8623814.868829 2969 2877 51247665.9983 2985 2877 -10942417.8914 2986 2877 -9550531.483475 2987 2877 -9564135.802965 2988 2877 13533800.67906 2989 2877 8346935.407593 2990 2877 -10722054.94328 2991 2877 -36706081.42304 2992 2877 -13829269.11147 2993 2877 20496497.26015 2994 2877 -20473238.80768 2995 2877 -1819265.797273 2996 2877 5144935.657537 2878 2878 456455484.3111 2879 2878 -8493577.449744 2880 2878 -55317076.41861 2881 2878 -67552496.70794 2882 2878 488013.3309754 2883 2878 -26388174.29348 2884 2878 -73256625.20248 2885 2878 1534234.021698 2964 2878 8228316.115794 2965 2878 -35556692.91277 2966 2878 -15320362.63205 2967 2878 8623814.868829 2968 2878 -8962312.29862 2969 2878 -7013375.774193 2985 2878 -4772753.704129 2986 2878 -33595985.49293 2987 2878 -26048429.06869 2988 2878 8346935.407594 2989 2878 29320533.57608 2990 2878 -2123394.363487 2991 2878 -13829269.11147 2992 2878 -30963414.8944 2993 2878 16788670.00494 2994 2878 -6597043.576619 2995 2878 -43534214.45849 2996 2878 33716891.83347 2879 2879 472314421.5349 2880 2879 735989.0135581 2881 2879 488013.3309754 2882 2879 -4099502.071191 2883 2879 1115298.196096 2884 2879 1534234.021698 2885 2879 54129421.48319 2964 2879 4847647.38616 2965 2879 -15320362.63205 2966 2879 -21210942.45867 2967 2879 51247665.99856 2968 2879 -7013375.772933 2969 2879 -77412673.46776 2985 2879 -4691080.247253 2986 2879 -26048429.06995 2987 2879 -29838202.88199 2988 2879 9937389.497775 2989 2879 -2123394.363487 2990 2879 -108036961.3792 2991 2879 20496497.26015 2992 2879 16788670.00494 2993 2879 -38558984.07588 2994 2879 10337713.43846 2995 2879 33716891.83347 2996 2879 -53721133.01946 2880 2880 247694807.0596 2881 2880 61102353.61032 2882 2880 -421250.4501109 2883 2880 -40613658.84548 2884 2880 -2016256.905298 2885 2880 -164229.7541515 2967 2880 -15064205.65599 2968 2880 -942255.0720674 2969 2880 -3602557.756001 2988 2880 -36153755.84147 2989 2880 -13829269.11147 2990 2880 -20128502.75319 2991 2880 313818.0877385 2992 2880 15275588.41011 2993 2880 8019687.386086 2994 2880 -37751670.53939 2995 2880 -504064.2265737 2996 2880 -33038626.87689 2881 2881 223946295.6199 2882 2881 -417819.3012383 2883 2881 17094854.20267 2884 2881 52874008.36546 2885 2881 -488013.3309731 2967 2881 -5720032.851414 2968 2881 -38241661.13605 2969 2881 -33228878.5025 2988 2881 -13829269.11147 2989 2881 -30411089.31283 2990 2881 -16544663.33934 2991 2881 15275588.41011 2992 2881 -5623309.775096 2993 2881 6562211.840209 2994 2881 4273713.552772 2995 2881 -14379753.72514 2996 2881 3211330.001623 2882 2882 302886642.9092 2883 2882 -428118.6429929 2884 2882 -488013.3309731 2885 2882 81415199.80545 2967 2882 -11727557.7571 2968 2882 -33228878.5025 2969 2882 -57516476.65011 2988 2882 -20128502.75319 2989 2882 -16544663.33934 2990 2882 -37086115.85837 2991 2882 -8230312.611246 2992 2882 -6771121.490934 2993 2882 -88571362.45583 2994 2882 -33038626.87847 2995 2882 -3455336.667233 2996 2882 -53241548.9 2883 2883 194640779.4635 2884 2883 -30945159.03043 2885 2883 555998.0993371 2967 2883 -18585866.94682 2968 2883 10059619.78527 2969 2883 12506219.47975 2988 2883 -18816262.06405 2989 2883 -6597043.57662 2990 2883 -10043953.22886 2991 2883 -37751670.53939 2992 2883 4273713.552774 2993 2883 32890539.77888 2994 2883 -122944.6401992 2995 2883 -7736289.761419 2996 2883 -5251694.918494 2884 2884 214346070.9221 2885 2884 -1534234.021693 2967 2884 10059619.78527 2968 2884 -23823130.97733 2969 2884 -16544663.33934 2988 2884 -1819265.797274 2989 2884 -41877237.71487 2990 2884 -32949774.82225 2991 2884 -504064.2265722 2992 2884 -14379753.72514 2993 2884 3211330.001623 2994 2884 -7736289.761419 2995 2884 4803378.226877 2996 2884 6283108.159956 2885 2885 249570489.3365 2967 2885 12506219.47975 2968 2885 -16544663.33934 2969 2885 -30498157.52287 2988 2885 -5115064.336773 2989 2885 -32949774.82225 2990 2885 -49302528.36979 2991 2885 32890539.77744 2992 2885 -3455336.667232 2993 2885 -53241548.9 2994 2885 4869971.746511 2995 2885 -7050225.171186 2996 2885 -67695749.71523 2886 2886 572236993.7195 2887 2886 55138888.87983 2888 2886 31598553.4075 2889 2886 -313559939.9103 2890 2886 -55160226.61988 2891 2886 -24936017.84334 2892 2886 5063871.676501 2893 2886 44132448.84391 2894 2886 -17154449.80687 2997 2886 88021012.11513 2998 2886 15625000.00514 2999 2886 19639605.71133 3000 2886 -121308672.7549 3001 2886 -15631586.90535 3002 2886 -67766682.33182 3003 2886 -21749648.26534 3004 2886 12506586.90433 3005 2886 -17353145.19621 2887 2887 489500063.4635 2888 2887 -54040789.03059 2889 2887 -55170895.4899 2890 2887 -54338040.03216 2891 2887 -33960288.27187 2892 2887 66198673.26587 2893 2887 5063871.676508 2894 2887 23123283.37764 2997 2887 15625000.00514 2998 2887 64574885.68388 2999 2887 -6700809.891648 3000 2887 -15634880.35547 3001 2887 -47849941.99273 3002 2887 -21743418.55177 3003 2887 18759880.3565 3004 2887 -21749648.26534 3005 2887 20823318.70445 2888 2888 536232943.3 2889 2888 -21604750.06126 2890 2888 -26737943.81257 2891 2888 -22912436.09768 2892 2888 -25731674.71031 2893 2888 15415522.25176 2894 2888 13503657.80403 2997 2888 -4768139.577623 2998 2888 -26226783.67725 2999 2888 -45750138.7209 3000 2888 -67422475.35311 3001 2888 -19819673.42971 3002 2888 -93029560.64943 3003 2888 -26029717.79432 3004 2888 13882212.46963 3005 2888 -57999062.0409 2889 2889 979444958.5446 2890 2889 55192233.22997 2891 2889 27299034.62316 2892 2889 11141309.24956 2893 2889 -55160226.61988 2894 2889 24035972.54801 2895 2889 -215223928.4788 2896 2889 5.930662155151e-06 2897 2889 -5707514.57167 2898 2889 -85403197.39141 2899 2889 55138888.87983 2900 2889 -24029092.18165 2997 2889 -108451246.8934 2998 2889 -15634880.35547 2999 2889 54616251.09168 3000 2889 166227659.6012 3001 2889 15641467.2557 3002 2889 7711642.939084 3003 2889 -41196855.08124 3004 2889 -15631586.90536 3005 2889 21974855.62738 3006 2889 -92328809.14057 3007 2889 5.915760993958e-06 3008 2889 -62317692.40268 3009 2889 -38047023.33633 3010 2889 15625000.00513 3011 2889 -21965599.32574 2890 2890 830537689.1138 2891 2890 -75243257.69584 2892 2890 -55170895.48991 2893 2890 -181886245.1745 2894 2890 41627208.49512 2895 2890 2.861022949219e-06 2896 2890 27388705.35396 2897 2890 -24270537.56804 2898 2890 55138888.87983 2899 2890 -68860612.58955 2900 2890 13559921.56178 2997 2890 -15631586.90536 2998 2890 -34992516.13117 2999 2890 4591649.47589 3000 2890 15641467.2557 3001 2890 124030560.5447 3002 2890 -21261017.33538 3003 2890 -15634880.35547 3004 2890 -95897202.5708 3005 2890 60337907.00837 3006 2890 4.619359970093e-06 3007 2890 -23578405.83475 3008 2890 -6857560.807395 3009 2890 15625000.00513 3010 2890 -33359280.17771 3011 2890 15972183.1856 2891 2891 830564689.2359 2892 2891 23511634.95294 2893 2891 45765068.67361 2894 2891 8306087.457417 2895 2891 -2382861.794439 2896 2891 -24270537.56804 2897 2891 41183389.66318 2898 2891 -23501314.4034 2899 2891 13137699.33918 2900 2891 -29852819.54686 2997 2891 54272044.11297 2998 2891 2673044.969291 2999 2891 -58743091.68526 3000 2891 7718068.787606 3001 2891 -21255876.71511 3002 2891 -61506429.36468 3003 2891 21979483.77819 3004 2891 61984848.42173 3005 2891 -115922513.565 3006 2891 -61974810.45846 3007 2891 -6857560.807395 3008 2891 -71902237.78217 3009 2891 -21965599.32574 3010 2891 15972183.1856 3011 2891 -45381891.21762 2892 2892 572236993.7195 2893 2892 55138888.87983 2894 2892 31598553.4075 2895 2892 -84201296.24904 2896 2892 -55138888.87984 2897 2892 21478720.31087 2898 2892 -313559939.9103 2899 2892 -55160226.61988 2900 2892 -24936017.84334 2901 2892 5063871.676501 2902 2892 44132448.84391 2903 2892 -17154449.80687 2997 2892 2359203.743841 2998 2892 18759880.3565 2999 2892 10591538.29392 3000 2892 -4242975.331225 3001 2892 -15634880.35547 3002 2892 -8541442.446936 3003 2892 88021012.11513 3004 2892 15625000.00514 3005 2892 19639605.71133 3006 2892 -25660413.08922 3007 2892 -15625000.00513 3008 2892 -9107526.404853 3009 2892 -121308672.7549 3010 2892 -15631586.90535 3011 2892 -67766682.33182 3012 2892 -21749648.26534 3013 2892 12506586.90433 3014 2892 -17353145.19621 2893 2893 489500063.4635 2894 2893 -54040789.03059 2895 2893 -55138888.87984 2896 2893 -67658711.44716 2897 2893 10710616.00625 2898 2893 -55170895.4899 2899 2893 -54338040.03216 2900 2893 -33960288.27187 2901 2893 66198673.26587 2902 2893 5063871.676508 2903 2893 23123283.37764 2997 2893 12506586.90433 2998 2893 2359203.743842 2999 2893 -5648902.101029 3000 2893 -15631586.90535 3001 2893 -58943322.82077 3002 2893 -35645020.83586 3003 2893 15625000.00514 3004 2893 64574885.68388 3005 2893 -6700809.891648 3006 2893 -15625000.00513 3007 2893 -20972669.93059 3008 2893 -9114622.378198 3009 2893 -15634880.35547 3010 2893 -47849941.99273 3011 2893 -21743418.55177 3012 2893 18759880.3565 3013 2893 -21749648.26534 3014 2893 20823318.70445 2894 2894 536232943.3 2895 2894 22006498.08912 2896 2894 11132838.22885 2897 2894 -26647749.83379 2898 2894 -21604750.06126 2899 2894 -26737943.81257 2900 2894 -22912436.09768 2901 2894 -25731674.71031 2902 2894 15415522.25176 2903 2894 13503657.80403 2997 2894 7061025.529277 2998 2894 -8473353.151544 2999 2894 6291209.983575 3000 2894 -8539644.961234 3001 2894 -37291962.41402 3002 2894 -17378834.23163 3003 2894 -4768139.577623 3004 2894 -26226783.67725 3005 2894 -45750138.7209 3006 2894 -9107526.404853 3007 2894 -9114622.378198 3008 2894 -12350930.55863 3009 2894 -67422475.35311 3010 2894 -19819673.42971 3011 2894 -93029560.64943 3012 2894 -26029717.79432 3013 2894 13882212.46963 3014 2894 -57999062.0409 2895 2895 904416532.1423 2896 2895 2.086162567139e-05 2897 2895 8090376.36604 2898 2895 102079011.1406 2899 2895 -1.040101051331e-05 2900 2895 2022594.092512 2904 2895 -215223928.4788 2905 2895 5.930662155151e-06 2906 2895 -5707514.57167 2907 2895 -85403197.39141 2908 2895 55138888.87983 2909 2895 -24029092.18165 3000 2895 -89115968.74764 3001 2895 -2.875924110413e-06 3002 2895 60031786.74372 3003 2895 -36905217.31746 3004 2895 -15625000.00514 3005 2895 21394122.91072 3006 2895 137281674.8977 3007 2895 7.092952728271e-06 3008 2895 2285905.658981 3009 2895 -24872960.07894 3010 2895 -1.01625919342e-05 3011 2895 571476.4150351 3015 2895 -92328809.14057 3016 2895 5.915760993958e-06 3017 2895 -62317692.40268 3018 2895 -38047023.33633 3019 2895 15625000.00513 3020 2895 -21965599.32574 2896 2896 772075853.7925 2897 2896 -97082150.22431 2898 2896 -1.037120819092e-05 2899 2896 -107448453.121 2900 2896 49870936.22305 2904 2896 2.861022949219e-06 2905 2896 27388705.35396 2906 2896 -24270537.56804 2907 2896 55138888.87983 2908 2896 -68860612.58955 2909 2896 13559921.56178 3000 2896 -4.589557647705e-06 3001 2896 -20365565.44178 3002 2896 -6857560.807395 3003 2896 -15625000.00514 3004 2896 -32217474.15883 3005 2896 15286419.29648 3006 2896 6.973743438721e-06 3007 2896 99779729.64718 3008 2896 -27430243.21607 3009 2896 -8.568167686462e-06 3010 2896 -84247877.07676 3011 2896 62654357.71105 3015 2896 4.619359970093e-06 3016 2896 -23578405.83475 3017 2896 -6857560.807395 3018 2896 15625000.00513 3019 2896 -33359280.17771 3020 2896 15972183.1856 2897 2897 828665098.5173 2898 2897 2022594.092512 2899 2897 47211214.00126 2900 2897 52874910.70561 2904 2897 -2382861.794439 2905 2897 -24270537.56804 2906 2897 41183389.66318 2907 2897 -23501314.4034 2908 2897 13137699.33918 2909 2897 -29852819.54686 3000 2897 59688904.7995 3001 2897 -6857560.807395 3002 2897 -63334663.40088 3003 2897 21394122.91072 3004 2897 15286419.29648 3005 2897 -42337075.16724 3006 2897 2285905.658981 3007 2897 -27430243.21607 3008 2897 -82530234.81935 3009 2897 571476.4150354 3010 2897 62380052.15567 3011 2897 -128482138.2218 3015 2897 -61974810.45846 3016 2897 -6857560.807395 3017 2897 -71902237.78217 3018 2897 -21965599.32574 3019 2897 15972183.1856 3020 2897 -45381891.21762 2898 2898 979444958.5446 2899 2898 55192233.22997 2900 2898 27299034.62316 2901 2898 11141309.24956 2902 2898 -55160226.61988 2903 2898 24035972.54801 2904 2898 -84201296.24904 2905 2898 -55138888.87984 2906 2898 21478720.31087 2907 2898 -215223928.4788 2908 2898 5.930662155151e-06 2909 2898 -5707514.57167 2910 2898 -85403197.39141 2911 2898 55138888.87983 2912 2898 -24029092.18165 3000 2898 -25195798.91083 3001 2898 15625000.00513 3002 2898 8536049.989829 3003 2898 -108451246.8934 3004 2898 -15634880.35547 3005 2898 54616251.09168 3006 2898 23319097.20481 3007 2898 3.09944152832e-06 3008 2898 571476.4150216 3009 2898 166227659.6012 3010 2898 15641467.2557 3011 2898 7711642.939084 3012 2898 -41196855.08124 3013 2898 -15631586.90536 3014 2898 21974855.62738 3015 2898 -25660413.08922 3016 2898 -15625000.00513 3017 2898 -9107526.404853 3018 2898 -92328809.14057 3019 2898 5.915760993958e-06 3020 2898 -62317692.40268 3021 2898 -38047023.33633 3022 2898 15625000.00513 3023 2898 -21965599.32574 2899 2899 830537689.1138 2900 2899 -75243257.69584 2901 2899 -55170895.48991 2902 2899 -181886245.1745 2903 2899 41627208.49512 2904 2899 -55138888.87984 2905 2899 -67658711.44716 2906 2899 10710616.00625 2907 2899 2.861022949219e-06 2908 2899 27388705.35396 2909 2899 -24270537.56804 2910 2899 55138888.87983 2911 2899 -68860612.58955 2912 2899 13559921.56178 3000 2899 15625000.00513 3001 2899 -20508055.7522 3002 2899 -8428858.489084 3003 2899 -15631586.90536 3004 2899 -34992516.13117 3005 2899 4591649.47589 3006 2899 4.559755325317e-06 3007 2899 -36055819.793 3008 2899 -35224114.49497 3009 2899 15641467.2557 3010 2899 124030560.5447 3011 2899 -21261017.33538 3012 2899 -15634880.35547 3013 2899 -95897202.5708 3014 2899 60337907.00837 3015 2899 -15625000.00513 3016 2899 -20972669.93059 3017 2899 -9114622.378198 3018 2899 4.619359970093e-06 3019 2899 -23578405.83475 3020 2899 -6857560.807395 3021 2899 15625000.00513 3022 2899 -33359280.17771 3023 2899 15972183.1856 2900 2900 830564689.2359 2901 2900 23511634.95294 2902 2900 45765068.67361 2903 2900 8306087.457417 2904 2900 22006498.08912 2905 2900 11132838.22885 2906 2900 -26647749.83379 2907 2900 -2382861.794439 2908 2900 -24270537.56804 2909 2900 41183389.66318 2910 2900 -23501314.4034 2911 2900 13137699.33918 2912 2900 -29852819.54686 3000 2900 8536049.989829 3001 2900 -8428858.489084 3002 2900 -11111959.41625 3003 2900 54272044.11297 3004 2900 2673044.969291 3005 2900 -58743091.68526 3006 2900 571476.4150219 3007 2900 -34949808.93959 3008 2900 30014.53480115 3009 2900 7718068.787606 3010 2900 -21255876.71511 3011 2900 -61506429.36468 3012 2900 21979483.77819 3013 2900 61984848.42173 3014 2900 -115922513.565 3015 2900 -9107526.404853 3016 2900 -9114622.378198 3017 2900 -12350930.55863 3018 2900 -61974810.45846 3019 2900 -6857560.807395 3020 2900 -71902237.78217 3021 2900 -21965599.32574 3022 2900 15972183.1856 3023 2900 -45381891.21762 2901 2901 572236993.7195 2902 2901 55138888.87983 2903 2901 31598553.4075 2907 2901 -84201296.24904 2908 2901 -55138888.87984 2909 2901 21478720.31087 2910 2901 -313559939.9103 2911 2901 -55160226.61988 2912 2901 -24936017.84334 2913 2901 5063871.676501 2914 2901 44132448.84391 2915 2901 -17154449.80687 3003 2901 2359203.743841 3004 2901 18759880.3565 3005 2901 10591538.29392 3009 2901 -4242975.331225 3010 2901 -15634880.35547 3011 2901 -8541442.446936 3012 2901 88021012.11513 3013 2901 15625000.00514 3014 2901 19639605.71133 3018 2901 -25660413.08922 3019 2901 -15625000.00513 3020 2901 -9107526.404853 3021 2901 -121308672.7549 3022 2901 -15631586.90535 3023 2901 -67766682.33182 3024 2901 -21749648.26534 3025 2901 12506586.90433 3026 2901 -17353145.19621 2902 2902 489500063.4635 2903 2902 -54040789.03059 2907 2902 -55138888.87984 2908 2902 -67658711.44716 2909 2902 10710616.00625 2910 2902 -55170895.4899 2911 2902 -54338040.03216 2912 2902 -33960288.27187 2913 2902 66198673.26587 2914 2902 5063871.676508 2915 2902 23123283.37764 3003 2902 12506586.90433 3004 2902 2359203.743842 3005 2902 -5648902.101029 3009 2902 -15631586.90535 3010 2902 -58943322.82077 3011 2902 -35645020.83586 3012 2902 15625000.00514 3013 2902 64574885.68388 3014 2902 -6700809.891648 3018 2902 -15625000.00513 3019 2902 -20972669.93059 3020 2902 -9114622.378198 3021 2902 -15634880.35547 3022 2902 -47849941.99273 3023 2902 -21743418.55177 3024 2902 18759880.3565 3025 2902 -21749648.26534 3026 2902 20823318.70445 2903 2903 536232943.3 2907 2903 22006498.08912 2908 2903 11132838.22885 2909 2903 -26647749.83379 2910 2903 -21604750.06126 2911 2903 -26737943.81257 2912 2903 -22912436.09768 2913 2903 -25731674.71031 2914 2903 15415522.25176 2915 2903 13503657.80403 3003 2903 7061025.529277 3004 2903 -8473353.151544 3005 2903 6291209.983575 3009 2903 -8539644.961234 3010 2903 -37291962.41402 3011 2903 -17378834.23163 3012 2903 -4768139.577623 3013 2903 -26226783.67725 3014 2903 -45750138.7209 3018 2903 -9107526.404853 3019 2903 -9114622.378198 3020 2903 -12350930.55863 3021 2903 -67422475.35311 3022 2903 -19819673.42971 3023 2903 -93029560.64943 3024 2903 -26029717.79432 3025 2903 13882212.46963 3026 2903 -57999062.0409 2904 2904 904416532.1423 2905 2904 2.086162567139e-05 2906 2904 8090376.36604 2907 2904 102079011.1406 2908 2904 -1.040101051331e-05 2909 2904 2022594.092512 2916 2904 -215223928.4788 2917 2904 5.930662155151e-06 2918 2904 -5707514.57167 2919 2904 -85403197.39141 2920 2904 55138888.87983 2921 2904 -24029092.18165 3006 2904 -89115968.74764 3007 2904 -2.875924110413e-06 3008 2904 60031786.74372 3009 2904 -36905217.31746 3010 2904 -15625000.00514 3011 2904 21394122.91072 3015 2904 137281674.8977 3016 2904 7.092952728271e-06 3017 2904 2285905.658981 3018 2904 -24872960.07894 3019 2904 -1.01625919342e-05 3020 2904 571476.4150351 3027 2904 -92328809.14057 3028 2904 5.915760993958e-06 3029 2904 -62317692.40268 3030 2904 -38047023.33633 3031 2904 15625000.00513 3032 2904 -21965599.32574 2905 2905 772075853.7925 2906 2905 -97082150.22431 2907 2905 -1.037120819092e-05 2908 2905 -107448453.121 2909 2905 49870936.22305 2916 2905 2.861022949219e-06 2917 2905 27388705.35396 2918 2905 -24270537.56804 2919 2905 55138888.87983 2920 2905 -68860612.58955 2921 2905 13559921.56178 3006 2905 -4.589557647705e-06 3007 2905 -20365565.44178 3008 2905 -6857560.807395 3009 2905 -15625000.00514 3010 2905 -32217474.15883 3011 2905 15286419.29648 3015 2905 6.973743438721e-06 3016 2905 99779729.64718 3017 2905 -27430243.21607 3018 2905 -8.568167686462e-06 3019 2905 -84247877.07676 3020 2905 62654357.71105 3027 2905 4.619359970093e-06 3028 2905 -23578405.83475 3029 2905 -6857560.807395 3030 2905 15625000.00513 3031 2905 -33359280.17771 3032 2905 15972183.1856 2906 2906 828665098.5173 2907 2906 2022594.092512 2908 2906 47211214.00126 2909 2906 52874910.70561 2916 2906 -2382861.794439 2917 2906 -24270537.56804 2918 2906 41183389.66318 2919 2906 -23501314.4034 2920 2906 13137699.33918 2921 2906 -29852819.54686 3006 2906 59688904.7995 3007 2906 -6857560.807395 3008 2906 -63334663.40088 3009 2906 21394122.91072 3010 2906 15286419.29648 3011 2906 -42337075.16724 3015 2906 2285905.658981 3016 2906 -27430243.21607 3017 2906 -82530234.81935 3018 2906 571476.4150354 3019 2906 62380052.15567 3020 2906 -128482138.2218 3027 2906 -61974810.45846 3028 2906 -6857560.807395 3029 2906 -71902237.78217 3030 2906 -21965599.32574 3031 2906 15972183.1856 3032 2906 -45381891.21762 2907 2907 904416532.1423 2908 2907 2.086162567139e-05 2909 2907 8090376.36604 2910 2907 102079011.1406 2911 2907 -1.040101051331e-05 2912 2907 2022594.092512 2916 2907 -84201296.24904 2917 2907 -55138888.87984 2918 2907 21478720.31087 2919 2907 -215223928.4788 2920 2907 5.930662155151e-06 2921 2907 -5707514.57167 2922 2907 -85403197.39141 2923 2907 55138888.87983 2924 2907 -24029092.18165 3006 2907 -25195798.91083 3007 2907 15625000.00513 3008 2907 8536049.989829 3009 2907 -89115968.74764 3010 2907 -2.875924110413e-06 3011 2907 60031786.74372 3012 2907 -36905217.31746 3013 2907 -15625000.00514 3014 2907 21394122.91072 3015 2907 23319097.20481 3016 2907 3.09944152832e-06 3017 2907 571476.4150216 3018 2907 137281674.8977 3019 2907 7.092952728271e-06 3020 2907 2285905.658981 3021 2907 -24872960.07894 3022 2907 -1.01625919342e-05 3023 2907 571476.4150351 3027 2907 -25660413.08922 3028 2907 -15625000.00513 3029 2907 -9107526.404853 3030 2907 -92328809.14057 3031 2907 5.915760993958e-06 3032 2907 -62317692.40268 3033 2907 -38047023.33633 3034 2907 15625000.00513 3035 2907 -21965599.32574 2908 2908 772075853.7925 2909 2908 -97082150.22431 2910 2908 -1.037120819092e-05 2911 2908 -107448453.121 2912 2908 49870936.22305 2916 2908 -55138888.87984 2917 2908 -67658711.44716 2918 2908 10710616.00625 2919 2908 2.861022949219e-06 2920 2908 27388705.35396 2921 2908 -24270537.56804 2922 2908 55138888.87983 2923 2908 -68860612.58955 2924 2908 13559921.56178 3006 2908 15625000.00513 3007 2908 -20508055.7522 3008 2908 -8428858.489084 3009 2908 -4.589557647705e-06 3010 2908 -20365565.44178 3011 2908 -6857560.807395 3012 2908 -15625000.00514 3013 2908 -32217474.15883 3014 2908 15286419.29648 3015 2908 4.559755325317e-06 3016 2908 -36055819.793 3017 2908 -35224114.49497 3018 2908 6.973743438721e-06 3019 2908 99779729.64718 3020 2908 -27430243.21607 3021 2908 -8.568167686462e-06 3022 2908 -84247877.07676 3023 2908 62654357.71105 3027 2908 -15625000.00513 3028 2908 -20972669.93059 3029 2908 -9114622.378198 3030 2908 4.619359970093e-06 3031 2908 -23578405.83475 3032 2908 -6857560.807395 3033 2908 15625000.00513 3034 2908 -33359280.17771 3035 2908 15972183.1856 2909 2909 828665098.5173 2910 2909 2022594.092512 2911 2909 47211214.00126 2912 2909 52874910.70561 2916 2909 22006498.08912 2917 2909 11132838.22885 2918 2909 -26647749.83379 2919 2909 -2382861.794439 2920 2909 -24270537.56804 2921 2909 41183389.66318 2922 2909 -23501314.4034 2923 2909 13137699.33918 2924 2909 -29852819.54686 3006 2909 8536049.989829 3007 2909 -8428858.489084 3008 2909 -11111959.41625 3009 2909 59688904.7995 3010 2909 -6857560.807395 3011 2909 -63334663.40088 3012 2909 21394122.91072 3013 2909 15286419.29648 3014 2909 -42337075.16724 3015 2909 571476.4150219 3016 2909 -34949808.93959 3017 2909 30014.53480115 3018 2909 2285905.658981 3019 2909 -27430243.21607 3020 2909 -82530234.81935 3021 2909 571476.4150354 3022 2909 62380052.15567 3023 2909 -128482138.2218 3027 2909 -9107526.404853 3028 2909 -9114622.378198 3029 2909 -12350930.55863 3030 2909 -61974810.45846 3031 2909 -6857560.807395 3032 2909 -71902237.78217 3033 2909 -21965599.32574 3034 2909 15972183.1856 3035 2909 -45381891.21762 2910 2910 979444958.5446 2911 2910 55192233.22997 2912 2910 27299034.62316 2913 2910 11141309.24956 2914 2910 -55160226.61988 2915 2910 24035972.54801 2919 2910 -84201296.24904 2920 2910 -55138888.87984 2921 2910 21478720.31087 2922 2910 -215223928.4788 2923 2910 5.930662155151e-06 2924 2910 -5707514.57167 2925 2910 -85403197.39141 2926 2910 55138888.87983 2927 2910 -24029092.18165 3009 2910 -25195798.91083 3010 2910 15625000.00513 3011 2910 8536049.989829 3012 2910 -108451246.8934 3013 2910 -15634880.35547 3014 2910 54616251.09168 3018 2910 23319097.20481 3019 2910 3.09944152832e-06 3020 2910 571476.4150216 3021 2910 166227659.6012 3022 2910 15641467.2557 3023 2910 7711642.939084 3024 2910 -41196855.08124 3025 2910 -15631586.90536 3026 2910 21974855.62738 3030 2910 -25660413.08922 3031 2910 -15625000.00513 3032 2910 -9107526.404853 3033 2910 -92328809.14057 3034 2910 5.915760993958e-06 3035 2910 -62317692.40268 3036 2910 -38047023.33633 3037 2910 15625000.00513 3038 2910 -21965599.32574 2911 2911 830537689.1138 2912 2911 -75243257.69584 2913 2911 -55170895.48991 2914 2911 -181886245.1745 2915 2911 41627208.49512 2919 2911 -55138888.87984 2920 2911 -67658711.44716 2921 2911 10710616.00625 2922 2911 2.861022949219e-06 2923 2911 27388705.35396 2924 2911 -24270537.56804 2925 2911 55138888.87983 2926 2911 -68860612.58955 2927 2911 13559921.56178 3009 2911 15625000.00513 3010 2911 -20508055.7522 3011 2911 -8428858.489084 3012 2911 -15631586.90536 3013 2911 -34992516.13117 3014 2911 4591649.47589 3018 2911 4.559755325317e-06 3019 2911 -36055819.793 3020 2911 -35224114.49497 3021 2911 15641467.2557 3022 2911 124030560.5447 3023 2911 -21261017.33538 3024 2911 -15634880.35547 3025 2911 -95897202.5708 3026 2911 60337907.00837 3030 2911 -15625000.00513 3031 2911 -20972669.93059 3032 2911 -9114622.378198 3033 2911 4.619359970093e-06 3034 2911 -23578405.83475 3035 2911 -6857560.807395 3036 2911 15625000.00513 3037 2911 -33359280.17771 3038 2911 15972183.1856 2912 2912 830564689.2359 2913 2912 23511634.95294 2914 2912 45765068.67361 2915 2912 8306087.457417 2919 2912 22006498.08912 2920 2912 11132838.22885 2921 2912 -26647749.83379 2922 2912 -2382861.794439 2923 2912 -24270537.56804 2924 2912 41183389.66318 2925 2912 -23501314.4034 2926 2912 13137699.33918 2927 2912 -29852819.54686 3009 2912 8536049.989829 3010 2912 -8428858.489084 3011 2912 -11111959.41625 3012 2912 54272044.11297 3013 2912 2673044.969291 3014 2912 -58743091.68526 3018 2912 571476.4150219 3019 2912 -34949808.93959 3020 2912 30014.53480115 3021 2912 7718068.787606 3022 2912 -21255876.71511 3023 2912 -61506429.36468 3024 2912 21979483.77819 3025 2912 61984848.42173 3026 2912 -115922513.565 3030 2912 -9107526.404853 3031 2912 -9114622.378198 3032 2912 -12350930.55863 3033 2912 -61974810.45846 3034 2912 -6857560.807395 3035 2912 -71902237.78217 3036 2912 -21965599.32574 3037 2912 15972183.1856 3038 2912 -45381891.21762 2913 2913 572236993.7195 2914 2913 55138888.87983 2915 2913 31598553.4075 2922 2913 -84201296.24904 2923 2913 -55138888.87984 2924 2913 21478720.31087 2925 2913 -313559939.9103 2926 2913 -55160226.61988 2927 2913 -24936017.84334 2928 2913 5063871.676501 2929 2913 44132448.84391 2930 2913 -17154449.80687 3012 2913 2359203.743841 3013 2913 18759880.3565 3014 2913 10591538.29392 3021 2913 -4242975.331225 3022 2913 -15634880.35547 3023 2913 -8541442.446936 3024 2913 88021012.11513 3025 2913 15625000.00514 3026 2913 19639605.71133 3033 2913 -25660413.08922 3034 2913 -15625000.00513 3035 2913 -9107526.404853 3036 2913 -121308672.7549 3037 2913 -15631586.90535 3038 2913 -67766682.33182 3039 2913 -21749648.26534 3040 2913 12506586.90433 3041 2913 -17353145.19621 2914 2914 489500063.4635 2915 2914 -54040789.03059 2922 2914 -55138888.87984 2923 2914 -67658711.44716 2924 2914 10710616.00625 2925 2914 -55170895.4899 2926 2914 -54338040.03216 2927 2914 -33960288.27187 2928 2914 66198673.26587 2929 2914 5063871.676508 2930 2914 23123283.37764 3012 2914 12506586.90433 3013 2914 2359203.743842 3014 2914 -5648902.101029 3021 2914 -15631586.90535 3022 2914 -58943322.82077 3023 2914 -35645020.83586 3024 2914 15625000.00514 3025 2914 64574885.68388 3026 2914 -6700809.891648 3033 2914 -15625000.00513 3034 2914 -20972669.93059 3035 2914 -9114622.378198 3036 2914 -15634880.35547 3037 2914 -47849941.99273 3038 2914 -21743418.55177 3039 2914 18759880.3565 3040 2914 -21749648.26534 3041 2914 20823318.70445 2915 2915 536232943.3 2922 2915 22006498.08912 2923 2915 11132838.22885 2924 2915 -26647749.83379 2925 2915 -21604750.06126 2926 2915 -26737943.81257 2927 2915 -22912436.09768 2928 2915 -25731674.71031 2929 2915 15415522.25176 2930 2915 13503657.80403 3012 2915 7061025.529277 3013 2915 -8473353.151544 3014 2915 6291209.983575 3021 2915 -8539644.961234 3022 2915 -37291962.41402 3023 2915 -17378834.23163 3024 2915 -4768139.577623 3025 2915 -26226783.67725 3026 2915 -45750138.7209 3033 2915 -9107526.404853 3034 2915 -9114622.378198 3035 2915 -12350930.55863 3036 2915 -67422475.35311 3037 2915 -19819673.42971 3038 2915 -93029560.64943 3039 2915 -26029717.79432 3040 2915 13882212.46963 3041 2915 -57999062.0409 2916 2916 904416532.1423 2917 2916 2.086162567139e-05 2918 2916 8090376.36604 2919 2916 102079011.1406 2920 2916 -1.040101051331e-05 2921 2916 2022594.092512 2931 2916 -215223928.4788 2932 2916 5.930662155151e-06 2933 2916 -5707514.57167 2934 2916 -85403197.39141 2935 2916 55138888.87983 2936 2916 -24029092.18165 3015 2916 -89115968.74764 3016 2916 -2.875924110413e-06 3017 2916 60031786.74372 3018 2916 -36905217.31746 3019 2916 -15625000.00514 3020 2916 21394122.91072 3027 2916 137281674.8977 3028 2916 7.092952728271e-06 3029 2916 2285905.658981 3030 2916 -24872960.07894 3031 2916 -1.01625919342e-05 3032 2916 571476.4150351 3042 2916 -92328809.14057 3043 2916 5.915760993958e-06 3044 2916 -62317692.40268 3045 2916 -38047023.33633 3046 2916 15625000.00513 3047 2916 -21965599.32574 2917 2917 772075853.7925 2918 2917 -97082150.22431 2919 2917 -1.037120819092e-05 2920 2917 -107448453.121 2921 2917 49870936.22305 2931 2917 2.861022949219e-06 2932 2917 27388705.35396 2933 2917 -24270537.56804 2934 2917 55138888.87983 2935 2917 -68860612.58955 2936 2917 13559921.56178 3015 2917 -4.589557647705e-06 3016 2917 -20365565.44178 3017 2917 -6857560.807395 3018 2917 -15625000.00514 3019 2917 -32217474.15883 3020 2917 15286419.29648 3027 2917 6.973743438721e-06 3028 2917 99779729.64718 3029 2917 -27430243.21607 3030 2917 -8.568167686462e-06 3031 2917 -84247877.07676 3032 2917 62654357.71105 3042 2917 4.619359970093e-06 3043 2917 -23578405.83475 3044 2917 -6857560.807395 3045 2917 15625000.00513 3046 2917 -33359280.17771 3047 2917 15972183.1856 2918 2918 828665098.5173 2919 2918 2022594.092512 2920 2918 47211214.00126 2921 2918 52874910.70561 2931 2918 -2382861.794439 2932 2918 -24270537.56804 2933 2918 41183389.66318 2934 2918 -23501314.4034 2935 2918 13137699.33918 2936 2918 -29852819.54686 3015 2918 59688904.7995 3016 2918 -6857560.807395 3017 2918 -63334663.40088 3018 2918 21394122.91072 3019 2918 15286419.29648 3020 2918 -42337075.16724 3027 2918 2285905.658981 3028 2918 -27430243.21607 3029 2918 -82530234.81935 3030 2918 571476.4150354 3031 2918 62380052.15567 3032 2918 -128482138.2218 3042 2918 -61974810.45846 3043 2918 -6857560.807395 3044 2918 -71902237.78217 3045 2918 -21965599.32574 3046 2918 15972183.1856 3047 2918 -45381891.21762 2919 2919 904416532.1423 2920 2919 2.086162567139e-05 2921 2919 8090376.36604 2922 2919 102079011.1406 2923 2919 -1.040101051331e-05 2924 2919 2022594.092512 2931 2919 -84201296.24904 2932 2919 -55138888.87984 2933 2919 21478720.31087 2934 2919 -215223928.4788 2935 2919 5.930662155151e-06 2936 2919 -5707514.57167 2937 2919 -85403197.39141 2938 2919 55138888.87983 2939 2919 -24029092.18165 3015 2919 -25195798.91083 3016 2919 15625000.00513 3017 2919 8536049.989829 3018 2919 -89115968.74764 3019 2919 -2.875924110413e-06 3020 2919 60031786.74372 3021 2919 -36905217.31746 3022 2919 -15625000.00514 3023 2919 21394122.91072 3027 2919 23319097.20481 3028 2919 3.09944152832e-06 3029 2919 571476.4150216 3030 2919 137281674.8977 3031 2919 7.092952728271e-06 3032 2919 2285905.658981 3033 2919 -24872960.07894 3034 2919 -1.01625919342e-05 3035 2919 571476.4150351 3042 2919 -25660413.08922 3043 2919 -15625000.00513 3044 2919 -9107526.404853 3045 2919 -92328809.14057 3046 2919 5.915760993958e-06 3047 2919 -62317692.40268 3048 2919 -38047023.33633 3049 2919 15625000.00513 3050 2919 -21965599.32574 2920 2920 772075853.7925 2921 2920 -97082150.22431 2922 2920 -1.037120819092e-05 2923 2920 -107448453.121 2924 2920 49870936.22305 2931 2920 -55138888.87984 2932 2920 -67658711.44716 2933 2920 10710616.00625 2934 2920 2.861022949219e-06 2935 2920 27388705.35396 2936 2920 -24270537.56804 2937 2920 55138888.87983 2938 2920 -68860612.58955 2939 2920 13559921.56178 3015 2920 15625000.00513 3016 2920 -20508055.7522 3017 2920 -8428858.489084 3018 2920 -4.589557647705e-06 3019 2920 -20365565.44178 3020 2920 -6857560.807395 3021 2920 -15625000.00514 3022 2920 -32217474.15883 3023 2920 15286419.29648 3027 2920 4.559755325317e-06 3028 2920 -36055819.793 3029 2920 -35224114.49497 3030 2920 6.973743438721e-06 3031 2920 99779729.64718 3032 2920 -27430243.21607 3033 2920 -8.568167686462e-06 3034 2920 -84247877.07676 3035 2920 62654357.71105 3042 2920 -15625000.00513 3043 2920 -20972669.93059 3044 2920 -9114622.378198 3045 2920 4.619359970093e-06 3046 2920 -23578405.83475 3047 2920 -6857560.807395 3048 2920 15625000.00513 3049 2920 -33359280.17771 3050 2920 15972183.1856 2921 2921 828665098.5173 2922 2921 2022594.092512 2923 2921 47211214.00126 2924 2921 52874910.70561 2931 2921 22006498.08912 2932 2921 11132838.22885 2933 2921 -26647749.83379 2934 2921 -2382861.794439 2935 2921 -24270537.56804 2936 2921 41183389.66318 2937 2921 -23501314.4034 2938 2921 13137699.33918 2939 2921 -29852819.54686 3015 2921 8536049.989829 3016 2921 -8428858.489084 3017 2921 -11111959.41625 3018 2921 59688904.7995 3019 2921 -6857560.807395 3020 2921 -63334663.40088 3021 2921 21394122.91072 3022 2921 15286419.29648 3023 2921 -42337075.16724 3027 2921 571476.4150219 3028 2921 -34949808.93959 3029 2921 30014.53480115 3030 2921 2285905.658981 3031 2921 -27430243.21607 3032 2921 -82530234.81935 3033 2921 571476.4150354 3034 2921 62380052.15567 3035 2921 -128482138.2218 3042 2921 -9107526.404853 3043 2921 -9114622.378198 3044 2921 -12350930.55863 3045 2921 -61974810.45846 3046 2921 -6857560.807395 3047 2921 -71902237.78217 3048 2921 -21965599.32574 3049 2921 15972183.1856 3050 2921 -45381891.21762 2922 2922 904416532.1423 2923 2922 2.086162567139e-05 2924 2922 8090376.36604 2925 2922 102079011.1406 2926 2922 -1.040101051331e-05 2927 2922 2022594.092512 2934 2922 -84201296.24904 2935 2922 -55138888.87984 2936 2922 21478720.31087 2937 2922 -215223928.4788 2938 2922 5.930662155151e-06 2939 2922 -5707514.57167 2940 2922 -85403197.39141 2941 2922 55138888.87983 2942 2922 -24029092.18165 3018 2922 -25195798.91083 3019 2922 15625000.00513 3020 2922 8536049.989829 3021 2922 -89115968.74764 3022 2922 -2.875924110413e-06 3023 2922 60031786.74372 3024 2922 -36905217.31746 3025 2922 -15625000.00514 3026 2922 21394122.91072 3030 2922 23319097.20481 3031 2922 3.09944152832e-06 3032 2922 571476.4150216 3033 2922 137281674.8977 3034 2922 7.092952728271e-06 3035 2922 2285905.658981 3036 2922 -24872960.07894 3037 2922 -1.01625919342e-05 3038 2922 571476.4150351 3045 2922 -25660413.08922 3046 2922 -15625000.00513 3047 2922 -9107526.404853 3048 2922 -92328809.14057 3049 2922 5.915760993958e-06 3050 2922 -62317692.40268 3051 2922 -38047023.33633 3052 2922 15625000.00513 3053 2922 -21965599.32574 2923 2923 772075853.7925 2924 2923 -97082150.22431 2925 2923 -1.037120819092e-05 2926 2923 -107448453.121 2927 2923 49870936.22305 2934 2923 -55138888.87984 2935 2923 -67658711.44716 2936 2923 10710616.00625 2937 2923 2.861022949219e-06 2938 2923 27388705.35396 2939 2923 -24270537.56804 2940 2923 55138888.87983 2941 2923 -68860612.58955 2942 2923 13559921.56178 3018 2923 15625000.00513 3019 2923 -20508055.7522 3020 2923 -8428858.489084 3021 2923 -4.589557647705e-06 3022 2923 -20365565.44178 3023 2923 -6857560.807395 3024 2923 -15625000.00514 3025 2923 -32217474.15883 3026 2923 15286419.29648 3030 2923 4.559755325317e-06 3031 2923 -36055819.793 3032 2923 -35224114.49497 3033 2923 6.973743438721e-06 3034 2923 99779729.64718 3035 2923 -27430243.21607 3036 2923 -8.568167686462e-06 3037 2923 -84247877.07676 3038 2923 62654357.71105 3045 2923 -15625000.00513 3046 2923 -20972669.93059 3047 2923 -9114622.378198 3048 2923 4.619359970093e-06 3049 2923 -23578405.83475 3050 2923 -6857560.807395 3051 2923 15625000.00513 3052 2923 -33359280.17771 3053 2923 15972183.1856 2924 2924 828665098.5173 2925 2924 2022594.092512 2926 2924 47211214.00126 2927 2924 52874910.70561 2934 2924 22006498.08912 2935 2924 11132838.22885 2936 2924 -26647749.83379 2937 2924 -2382861.794439 2938 2924 -24270537.56804 2939 2924 41183389.66318 2940 2924 -23501314.4034 2941 2924 13137699.33918 2942 2924 -29852819.54686 3018 2924 8536049.989829 3019 2924 -8428858.489084 3020 2924 -11111959.41625 3021 2924 59688904.7995 3022 2924 -6857560.807395 3023 2924 -63334663.40088 3024 2924 21394122.91072 3025 2924 15286419.29648 3026 2924 -42337075.16724 3030 2924 571476.4150219 3031 2924 -34949808.93959 3032 2924 30014.53480115 3033 2924 2285905.658981 3034 2924 -27430243.21607 3035 2924 -82530234.81935 3036 2924 571476.4150354 3037 2924 62380052.15567 3038 2924 -128482138.2218 3045 2924 -9107526.404853 3046 2924 -9114622.378198 3047 2924 -12350930.55863 3048 2924 -61974810.45846 3049 2924 -6857560.807395 3050 2924 -71902237.78217 3051 2924 -21965599.32574 3052 2924 15972183.1856 3053 2924 -45381891.21762 2925 2925 979444958.5446 2926 2925 55192233.22997 2927 2925 27299034.62316 2928 2925 11141309.24956 2929 2925 -55160226.61988 2930 2925 24035972.54801 2937 2925 -84201296.24904 2938 2925 -55138888.87984 2939 2925 21478720.31087 2940 2925 -215223928.4788 2941 2925 5.930662155151e-06 2942 2925 -5707514.57167 2943 2925 -85403197.39141 2944 2925 55138888.87983 2945 2925 -24029092.18165 3021 2925 -25195798.91083 3022 2925 15625000.00513 3023 2925 8536049.989829 3024 2925 -108451246.8934 3025 2925 -15634880.35547 3026 2925 54616251.09168 3033 2925 23319097.20481 3034 2925 3.09944152832e-06 3035 2925 571476.4150216 3036 2925 166227659.6012 3037 2925 15641467.2557 3038 2925 7711642.939084 3039 2925 -41196855.08124 3040 2925 -15631586.90536 3041 2925 21974855.62738 3048 2925 -25660413.08922 3049 2925 -15625000.00513 3050 2925 -9107526.404853 3051 2925 -92328809.14057 3052 2925 5.915760993958e-06 3053 2925 -62317692.40268 3054 2925 -38047023.33633 3055 2925 15625000.00513 3056 2925 -21965599.32574 2926 2926 830537689.1138 2927 2926 -75243257.69584 2928 2926 -55170895.48991 2929 2926 -181886245.1745 2930 2926 41627208.49512 2937 2926 -55138888.87984 2938 2926 -67658711.44716 2939 2926 10710616.00625 2940 2926 2.861022949219e-06 2941 2926 27388705.35396 2942 2926 -24270537.56804 2943 2926 55138888.87983 2944 2926 -68860612.58955 2945 2926 13559921.56178 3021 2926 15625000.00513 3022 2926 -20508055.7522 3023 2926 -8428858.489084 3024 2926 -15631586.90536 3025 2926 -34992516.13117 3026 2926 4591649.47589 3033 2926 4.559755325317e-06 3034 2926 -36055819.793 3035 2926 -35224114.49497 3036 2926 15641467.2557 3037 2926 124030560.5447 3038 2926 -21261017.33538 3039 2926 -15634880.35547 3040 2926 -95897202.5708 3041 2926 60337907.00837 3048 2926 -15625000.00513 3049 2926 -20972669.93059 3050 2926 -9114622.378198 3051 2926 4.619359970093e-06 3052 2926 -23578405.83475 3053 2926 -6857560.807395 3054 2926 15625000.00513 3055 2926 -33359280.17771 3056 2926 15972183.1856 2927 2927 830564689.2359 2928 2927 23511634.95294 2929 2927 45765068.67361 2930 2927 8306087.457417 2937 2927 22006498.08912 2938 2927 11132838.22885 2939 2927 -26647749.83379 2940 2927 -2382861.794439 2941 2927 -24270537.56804 2942 2927 41183389.66318 2943 2927 -23501314.4034 2944 2927 13137699.33918 2945 2927 -29852819.54686 3021 2927 8536049.989829 3022 2927 -8428858.489084 3023 2927 -11111959.41625 3024 2927 54272044.11297 3025 2927 2673044.969291 3026 2927 -58743091.68526 3033 2927 571476.4150219 3034 2927 -34949808.93959 3035 2927 30014.53480115 3036 2927 7718068.787606 3037 2927 -21255876.71511 3038 2927 -61506429.36468 3039 2927 21979483.77819 3040 2927 61984848.42173 3041 2927 -115922513.565 3048 2927 -9107526.404853 3049 2927 -9114622.378198 3050 2927 -12350930.55863 3051 2927 -61974810.45846 3052 2927 -6857560.807395 3053 2927 -71902237.78217 3054 2927 -21965599.32574 3055 2927 15972183.1856 3056 2927 -45381891.21762 2928 2928 572236993.7195 2929 2928 55138888.87983 2930 2928 31598553.4075 2940 2928 -84201296.24904 2941 2928 -55138888.87984 2942 2928 21478720.31087 2943 2928 -313559939.9103 2944 2928 -55160226.61988 2945 2928 -24936017.84334 2946 2928 5063871.676501 2947 2928 44132448.84391 2948 2928 -17154449.80687 3024 2928 2359203.743841 3025 2928 18759880.3565 3026 2928 10591538.29392 3036 2928 -4242975.331225 3037 2928 -15634880.35547 3038 2928 -8541442.446936 3039 2928 88021012.11513 3040 2928 15625000.00514 3041 2928 19639605.71133 3051 2928 -25660413.08922 3052 2928 -15625000.00513 3053 2928 -9107526.404853 3054 2928 -121308672.7549 3055 2928 -15631586.90535 3056 2928 -67766682.33182 3057 2928 -21749648.26534 3058 2928 12506586.90433 3059 2928 -17353145.19621 2929 2929 489500063.4635 2930 2929 -54040789.03059 2940 2929 -55138888.87984 2941 2929 -67658711.44716 2942 2929 10710616.00625 2943 2929 -55170895.4899 2944 2929 -54338040.03216 2945 2929 -33960288.27187 2946 2929 66198673.26587 2947 2929 5063871.676508 2948 2929 23123283.37764 3024 2929 12506586.90433 3025 2929 2359203.743842 3026 2929 -5648902.101029 3036 2929 -15631586.90535 3037 2929 -58943322.82077 3038 2929 -35645020.83586 3039 2929 15625000.00514 3040 2929 64574885.68388 3041 2929 -6700809.891648 3051 2929 -15625000.00513 3052 2929 -20972669.93059 3053 2929 -9114622.378198 3054 2929 -15634880.35547 3055 2929 -47849941.99273 3056 2929 -21743418.55177 3057 2929 18759880.3565 3058 2929 -21749648.26534 3059 2929 20823318.70445 2930 2930 536232943.3 2940 2930 22006498.08912 2941 2930 11132838.22885 2942 2930 -26647749.83379 2943 2930 -21604750.06126 2944 2930 -26737943.81257 2945 2930 -22912436.09768 2946 2930 -25731674.71031 2947 2930 15415522.25176 2948 2930 13503657.80403 3024 2930 7061025.529277 3025 2930 -8473353.151544 3026 2930 6291209.983575 3036 2930 -8539644.961234 3037 2930 -37291962.41402 3038 2930 -17378834.23163 3039 2930 -4768139.577623 3040 2930 -26226783.67725 3041 2930 -45750138.7209 3051 2930 -9107526.404853 3052 2930 -9114622.378198 3053 2930 -12350930.55863 3054 2930 -67422475.35311 3055 2930 -19819673.42971 3056 2930 -93029560.64943 3057 2930 -26029717.79432 3058 2930 13882212.46963 3059 2930 -57999062.0409 2931 2931 904416532.1423 2932 2931 2.086162567139e-05 2933 2931 8090376.36604 2934 2931 102079011.1406 2935 2931 -1.040101051331e-05 2936 2931 2022594.092512 2949 2931 -215223928.4788 2950 2931 5.930662155151e-06 2951 2931 -5707514.57167 2952 2931 -85403197.39141 2953 2931 55138888.87983 2954 2931 -24029092.18165 3027 2931 -89115968.74764 3028 2931 -2.875924110413e-06 3029 2931 60031786.74372 3030 2931 -36905217.31746 3031 2931 -15625000.00514 3032 2931 21394122.91072 3042 2931 137281674.8977 3043 2931 7.092952728271e-06 3044 2931 2285905.658981 3045 2931 -24872960.07894 3046 2931 -1.01625919342e-05 3047 2931 571476.4150351 3060 2931 -92328809.14057 3061 2931 5.915760993958e-06 3062 2931 -62317692.40268 3063 2931 -38047023.33633 3064 2931 15625000.00513 3065 2931 -21965599.32574 2932 2932 772075853.7925 2933 2932 -97082150.22431 2934 2932 -1.037120819092e-05 2935 2932 -107448453.121 2936 2932 49870936.22305 2949 2932 2.861022949219e-06 2950 2932 27388705.35396 2951 2932 -24270537.56804 2952 2932 55138888.87983 2953 2932 -68860612.58955 2954 2932 13559921.56178 3027 2932 -4.589557647705e-06 3028 2932 -20365565.44178 3029 2932 -6857560.807395 3030 2932 -15625000.00514 3031 2932 -32217474.15883 3032 2932 15286419.29648 3042 2932 6.973743438721e-06 3043 2932 99779729.64718 3044 2932 -27430243.21607 3045 2932 -8.568167686462e-06 3046 2932 -84247877.07676 3047 2932 62654357.71105 3060 2932 4.619359970093e-06 3061 2932 -23578405.83475 3062 2932 -6857560.807395 3063 2932 15625000.00513 3064 2932 -33359280.17771 3065 2932 15972183.1856 2933 2933 828665098.5173 2934 2933 2022594.092512 2935 2933 47211214.00126 2936 2933 52874910.70561 2949 2933 -2382861.794439 2950 2933 -24270537.56804 2951 2933 41183389.66318 2952 2933 -23501314.4034 2953 2933 13137699.33918 2954 2933 -29852819.54686 3027 2933 59688904.7995 3028 2933 -6857560.807395 3029 2933 -63334663.40088 3030 2933 21394122.91072 3031 2933 15286419.29648 3032 2933 -42337075.16724 3042 2933 2285905.658981 3043 2933 -27430243.21607 3044 2933 -82530234.81935 3045 2933 571476.4150354 3046 2933 62380052.15567 3047 2933 -128482138.2218 3060 2933 -61974810.45846 3061 2933 -6857560.807395 3062 2933 -71902237.78217 3063 2933 -21965599.32574 3064 2933 15972183.1856 3065 2933 -45381891.21762 2934 2934 904416532.1423 2935 2934 2.086162567139e-05 2936 2934 8090376.36604 2937 2934 102079011.1406 2938 2934 -1.040101051331e-05 2939 2934 2022594.092512 2949 2934 -84201296.24904 2950 2934 -55138888.87984 2951 2934 21478720.31087 2952 2934 -215223928.4788 2953 2934 5.930662155151e-06 2954 2934 -5707514.57167 2955 2934 -85403197.39141 2956 2934 55138888.87983 2957 2934 -24029092.18165 3027 2934 -25195798.91083 3028 2934 15625000.00513 3029 2934 8536049.989829 3030 2934 -89115968.74764 3031 2934 -2.875924110413e-06 3032 2934 60031786.74372 3033 2934 -36905217.31746 3034 2934 -15625000.00514 3035 2934 21394122.91072 3042 2934 23319097.20481 3043 2934 3.09944152832e-06 3044 2934 571476.4150216 3045 2934 137281674.8977 3046 2934 7.092952728271e-06 3047 2934 2285905.658981 3048 2934 -24872960.07894 3049 2934 -1.01625919342e-05 3050 2934 571476.4150351 3060 2934 -25660413.08922 3061 2934 -15625000.00513 3062 2934 -9107526.404853 3063 2934 -92328809.14057 3064 2934 5.915760993958e-06 3065 2934 -62317692.40268 3066 2934 -38047023.33633 3067 2934 15625000.00513 3068 2934 -21965599.32574 2935 2935 772075853.7925 2936 2935 -97082150.22431 2937 2935 -1.037120819092e-05 2938 2935 -107448453.121 2939 2935 49870936.22305 2949 2935 -55138888.87984 2950 2935 -67658711.44716 2951 2935 10710616.00625 2952 2935 2.861022949219e-06 2953 2935 27388705.35396 2954 2935 -24270537.56804 2955 2935 55138888.87983 2956 2935 -68860612.58955 2957 2935 13559921.56178 3027 2935 15625000.00513 3028 2935 -20508055.7522 3029 2935 -8428858.489084 3030 2935 -4.589557647705e-06 3031 2935 -20365565.44178 3032 2935 -6857560.807395 3033 2935 -15625000.00514 3034 2935 -32217474.15883 3035 2935 15286419.29648 3042 2935 4.559755325317e-06 3043 2935 -36055819.793 3044 2935 -35224114.49497 3045 2935 6.973743438721e-06 3046 2935 99779729.64718 3047 2935 -27430243.21607 3048 2935 -8.568167686462e-06 3049 2935 -84247877.07676 3050 2935 62654357.71105 3060 2935 -15625000.00513 3061 2935 -20972669.93059 3062 2935 -9114622.378198 3063 2935 4.619359970093e-06 3064 2935 -23578405.83475 3065 2935 -6857560.807395 3066 2935 15625000.00513 3067 2935 -33359280.17771 3068 2935 15972183.1856 2936 2936 828665098.5173 2937 2936 2022594.092512 2938 2936 47211214.00126 2939 2936 52874910.70561 2949 2936 22006498.08912 2950 2936 11132838.22885 2951 2936 -26647749.83379 2952 2936 -2382861.794439 2953 2936 -24270537.56804 2954 2936 41183389.66318 2955 2936 -23501314.4034 2956 2936 13137699.33918 2957 2936 -29852819.54686 3027 2936 8536049.989829 3028 2936 -8428858.489084 3029 2936 -11111959.41625 3030 2936 59688904.7995 3031 2936 -6857560.807395 3032 2936 -63334663.40088 3033 2936 21394122.91072 3034 2936 15286419.29648 3035 2936 -42337075.16724 3042 2936 571476.4150219 3043 2936 -34949808.93959 3044 2936 30014.53480115 3045 2936 2285905.658981 3046 2936 -27430243.21607 3047 2936 -82530234.81935 3048 2936 571476.4150354 3049 2936 62380052.15567 3050 2936 -128482138.2218 3060 2936 -9107526.404853 3061 2936 -9114622.378198 3062 2936 -12350930.55863 3063 2936 -61974810.45846 3064 2936 -6857560.807395 3065 2936 -71902237.78217 3066 2936 -21965599.32574 3067 2936 15972183.1856 3068 2936 -45381891.21762 2937 2937 904416532.1423 2938 2937 2.086162567139e-05 2939 2937 8090376.36604 2940 2937 102079011.1406 2941 2937 -1.040101051331e-05 2942 2937 2022594.092512 2952 2937 -84201296.24904 2953 2937 -55138888.87984 2954 2937 21478720.31087 2955 2937 -215223928.4788 2956 2937 5.930662155151e-06 2957 2937 -5707514.57167 2958 2937 -85403197.39141 2959 2937 55138888.87983 2960 2937 -24029092.18165 3030 2937 -25195798.91083 3031 2937 15625000.00513 3032 2937 8536049.989829 3033 2937 -89115968.74764 3034 2937 -2.875924110413e-06 3035 2937 60031786.74372 3036 2937 -36905217.31746 3037 2937 -15625000.00514 3038 2937 21394122.91072 3045 2937 23319097.20481 3046 2937 3.09944152832e-06 3047 2937 571476.4150216 3048 2937 137281674.8977 3049 2937 7.092952728271e-06 3050 2937 2285905.658981 3051 2937 -24872960.07894 3052 2937 -1.01625919342e-05 3053 2937 571476.4150351 3063 2937 -25660413.08922 3064 2937 -15625000.00513 3065 2937 -9107526.404853 3066 2937 -92328809.14057 3067 2937 5.915760993958e-06 3068 2937 -62317692.40268 3069 2937 -38047023.33633 3070 2937 15625000.00513 3071 2937 -21965599.32574 2938 2938 772075853.7925 2939 2938 -97082150.22431 2940 2938 -1.037120819092e-05 2941 2938 -107448453.121 2942 2938 49870936.22305 2952 2938 -55138888.87984 2953 2938 -67658711.44716 2954 2938 10710616.00625 2955 2938 2.861022949219e-06 2956 2938 27388705.35396 2957 2938 -24270537.56804 2958 2938 55138888.87983 2959 2938 -68860612.58955 2960 2938 13559921.56178 3030 2938 15625000.00513 3031 2938 -20508055.7522 3032 2938 -8428858.489084 3033 2938 -4.589557647705e-06 3034 2938 -20365565.44178 3035 2938 -6857560.807395 3036 2938 -15625000.00514 3037 2938 -32217474.15883 3038 2938 15286419.29648 3045 2938 4.559755325317e-06 3046 2938 -36055819.793 3047 2938 -35224114.49497 3048 2938 6.973743438721e-06 3049 2938 99779729.64718 3050 2938 -27430243.21607 3051 2938 -8.568167686462e-06 3052 2938 -84247877.07676 3053 2938 62654357.71105 3063 2938 -15625000.00513 3064 2938 -20972669.93059 3065 2938 -9114622.378198 3066 2938 4.619359970093e-06 3067 2938 -23578405.83475 3068 2938 -6857560.807395 3069 2938 15625000.00513 3070 2938 -33359280.17771 3071 2938 15972183.1856 2939 2939 828665098.5173 2940 2939 2022594.092512 2941 2939 47211214.00126 2942 2939 52874910.70561 2952 2939 22006498.08912 2953 2939 11132838.22885 2954 2939 -26647749.83379 2955 2939 -2382861.794439 2956 2939 -24270537.56804 2957 2939 41183389.66318 2958 2939 -23501314.4034 2959 2939 13137699.33918 2960 2939 -29852819.54686 3030 2939 8536049.989829 3031 2939 -8428858.489084 3032 2939 -11111959.41625 3033 2939 59688904.7995 3034 2939 -6857560.807395 3035 2939 -63334663.40088 3036 2939 21394122.91072 3037 2939 15286419.29648 3038 2939 -42337075.16724 3045 2939 571476.4150219 3046 2939 -34949808.93959 3047 2939 30014.53480115 3048 2939 2285905.658981 3049 2939 -27430243.21607 3050 2939 -82530234.81935 3051 2939 571476.4150354 3052 2939 62380052.15567 3053 2939 -128482138.2218 3063 2939 -9107526.404853 3064 2939 -9114622.378198 3065 2939 -12350930.55863 3066 2939 -61974810.45846 3067 2939 -6857560.807395 3068 2939 -71902237.78217 3069 2939 -21965599.32574 3070 2939 15972183.1856 3071 2939 -45381891.21762 2940 2940 904416532.1423 2941 2940 2.086162567139e-05 2942 2940 8090376.36604 2943 2940 102079011.1406 2944 2940 -1.040101051331e-05 2945 2940 2022594.092512 2955 2940 -84201296.24904 2956 2940 -55138888.87984 2957 2940 21478720.31087 2958 2940 -215223928.4788 2959 2940 5.930662155151e-06 2960 2940 -5707514.57167 2961 2940 -85403197.39141 2962 2940 55138888.87983 2963 2940 -24029092.18165 3033 2940 -25195798.91083 3034 2940 15625000.00513 3035 2940 8536049.989829 3036 2940 -89115968.74764 3037 2940 -2.875924110413e-06 3038 2940 60031786.74372 3039 2940 -36905217.31746 3040 2940 -15625000.00514 3041 2940 21394122.91072 3048 2940 23319097.20481 3049 2940 3.09944152832e-06 3050 2940 571476.4150216 3051 2940 137281674.8977 3052 2940 7.092952728271e-06 3053 2940 2285905.658981 3054 2940 -24872960.07894 3055 2940 -1.01625919342e-05 3056 2940 571476.4150351 3066 2940 -25660413.08922 3067 2940 -15625000.00513 3068 2940 -9107526.404853 3069 2940 -92328809.14057 3070 2940 5.915760993958e-06 3071 2940 -62317692.40268 3072 2940 -38047023.33633 3073 2940 15625000.00513 3074 2940 -21965599.32574 2941 2941 772075853.7925 2942 2941 -97082150.22431 2943 2941 -1.037120819092e-05 2944 2941 -107448453.121 2945 2941 49870936.22305 2955 2941 -55138888.87984 2956 2941 -67658711.44716 2957 2941 10710616.00625 2958 2941 2.861022949219e-06 2959 2941 27388705.35396 2960 2941 -24270537.56804 2961 2941 55138888.87983 2962 2941 -68860612.58955 2963 2941 13559921.56178 3033 2941 15625000.00513 3034 2941 -20508055.7522 3035 2941 -8428858.489084 3036 2941 -4.589557647705e-06 3037 2941 -20365565.44178 3038 2941 -6857560.807395 3039 2941 -15625000.00514 3040 2941 -32217474.15883 3041 2941 15286419.29648 3048 2941 4.559755325317e-06 3049 2941 -36055819.793 3050 2941 -35224114.49497 3051 2941 6.973743438721e-06 3052 2941 99779729.64718 3053 2941 -27430243.21607 3054 2941 -8.568167686462e-06 3055 2941 -84247877.07676 3056 2941 62654357.71105 3066 2941 -15625000.00513 3067 2941 -20972669.93059 3068 2941 -9114622.378198 3069 2941 4.619359970093e-06 3070 2941 -23578405.83475 3071 2941 -6857560.807395 3072 2941 15625000.00513 3073 2941 -33359280.17771 3074 2941 15972183.1856 2942 2942 828665098.5173 2943 2942 2022594.092512 2944 2942 47211214.00126 2945 2942 52874910.70561 2955 2942 22006498.08912 2956 2942 11132838.22885 2957 2942 -26647749.83379 2958 2942 -2382861.794439 2959 2942 -24270537.56804 2960 2942 41183389.66318 2961 2942 -23501314.4034 2962 2942 13137699.33918 2963 2942 -29852819.54686 3033 2942 8536049.989829 3034 2942 -8428858.489084 3035 2942 -11111959.41625 3036 2942 59688904.7995 3037 2942 -6857560.807395 3038 2942 -63334663.40088 3039 2942 21394122.91072 3040 2942 15286419.29648 3041 2942 -42337075.16724 3048 2942 571476.4150219 3049 2942 -34949808.93959 3050 2942 30014.53480115 3051 2942 2285905.658981 3052 2942 -27430243.21607 3053 2942 -82530234.81935 3054 2942 571476.4150354 3055 2942 62380052.15567 3056 2942 -128482138.2218 3066 2942 -9107526.404853 3067 2942 -9114622.378198 3068 2942 -12350930.55863 3069 2942 -61974810.45846 3070 2942 -6857560.807395 3071 2942 -71902237.78217 3072 2942 -21965599.32574 3073 2942 15972183.1856 3074 2942 -45381891.21762 2943 2943 979444958.5446 2944 2943 55192233.22997 2945 2943 27299034.62316 2946 2943 11141309.24956 2947 2943 -55160226.61988 2948 2943 24035972.54801 2958 2943 -84201296.24904 2959 2943 -55138888.87984 2960 2943 21478720.31087 2961 2943 -215223928.4788 2962 2943 5.930662155151e-06 2963 2943 -5707514.57167 2964 2943 -85403197.39141 2965 2943 55138888.87983 2966 2943 -24029092.18165 3036 2943 -25195798.91083 3037 2943 15625000.00513 3038 2943 8536049.989829 3039 2943 -108451246.8934 3040 2943 -15634880.35547 3041 2943 54616251.09168 3051 2943 23319097.20481 3052 2943 3.09944152832e-06 3053 2943 571476.4150216 3054 2943 166227659.6012 3055 2943 15641467.2557 3056 2943 7711642.939084 3057 2943 -41196855.08124 3058 2943 -15631586.90536 3059 2943 21974855.62738 3069 2943 -25660413.08922 3070 2943 -15625000.00513 3071 2943 -9107526.404853 3072 2943 -92328809.14057 3073 2943 5.915760993958e-06 3074 2943 -62317692.40268 3075 2943 -38047023.33633 3076 2943 15625000.00513 3077 2943 -21965599.32574 2944 2944 830537689.1138 2945 2944 -75243257.69584 2946 2944 -55170895.48991 2947 2944 -181886245.1745 2948 2944 41627208.49512 2958 2944 -55138888.87984 2959 2944 -67658711.44716 2960 2944 10710616.00625 2961 2944 2.861022949219e-06 2962 2944 27388705.35396 2963 2944 -24270537.56804 2964 2944 55138888.87983 2965 2944 -68860612.58955 2966 2944 13559921.56178 3036 2944 15625000.00513 3037 2944 -20508055.7522 3038 2944 -8428858.489084 3039 2944 -15631586.90536 3040 2944 -34992516.13117 3041 2944 4591649.47589 3051 2944 4.559755325317e-06 3052 2944 -36055819.793 3053 2944 -35224114.49497 3054 2944 15641467.2557 3055 2944 124030560.5447 3056 2944 -21261017.33538 3057 2944 -15634880.35547 3058 2944 -95897202.5708 3059 2944 60337907.00837 3069 2944 -15625000.00513 3070 2944 -20972669.93059 3071 2944 -9114622.378198 3072 2944 4.619359970093e-06 3073 2944 -23578405.83475 3074 2944 -6857560.807395 3075 2944 15625000.00513 3076 2944 -33359280.17771 3077 2944 15972183.1856 2945 2945 830564689.2359 2946 2945 23511634.95294 2947 2945 45765068.67361 2948 2945 8306087.457417 2958 2945 22006498.08912 2959 2945 11132838.22885 2960 2945 -26647749.83379 2961 2945 -2382861.794439 2962 2945 -24270537.56804 2963 2945 41183389.66318 2964 2945 -23501314.4034 2965 2945 13137699.33918 2966 2945 -29852819.54686 3036 2945 8536049.989829 3037 2945 -8428858.489084 3038 2945 -11111959.41625 3039 2945 54272044.11297 3040 2945 2673044.969291 3041 2945 -58743091.68526 3051 2945 571476.4150219 3052 2945 -34949808.93959 3053 2945 30014.53480115 3054 2945 7718068.787606 3055 2945 -21255876.71511 3056 2945 -61506429.36468 3057 2945 21979483.77819 3058 2945 61984848.42173 3059 2945 -115922513.565 3069 2945 -9107526.404853 3070 2945 -9114622.378198 3071 2945 -12350930.55863 3072 2945 -61974810.45846 3073 2945 -6857560.807395 3074 2945 -71902237.78217 3075 2945 -21965599.32574 3076 2945 15972183.1856 3077 2945 -45381891.21762 2946 2946 471649908.3269 2947 2946 4090177.427809 2948 2946 -2249173.036816 2961 2946 -84201296.24904 2962 2946 -55138888.87984 2963 2946 21478720.31087 2964 2946 -194821525.5646 2965 2946 -4169934.661672 2966 2946 -3538592.307103 2967 2946 -41570569.89579 2968 2946 44190868.33773 2969 2946 -317590.9217181 3039 2946 2359203.743841 3040 2946 18759880.3565 3041 2946 10591538.29392 3054 2946 -4242975.331225 3055 2946 -15634880.35547 3056 2946 -8541442.446936 3057 2946 71156841.17391 3058 2946 4155152.359052 3059 2946 7042994.495851 3072 2946 -25660413.08922 3073 2946 -15625000.00513 3074 2946 -9107526.404853 3075 2946 -85661283.17682 3076 2946 -4175995.441555 3077 2946 -50365747.51323 3078 2946 -15271213.05259 3079 2946 12520843.08662 3080 2946 -8434357.784819 2947 2947 492388135.1167 2948 2947 -56289934.73763 2961 2947 -55138888.87984 2962 2947 -67658711.44716 2963 2947 10710616.00625 2964 2947 -4209813.278604 2965 2947 41607978.37358 2966 2947 -16842698.76085 2967 2947 66286302.50659 2968 2947 -122253331.0016 2969 2947 11767705.63164 3039 2947 12506586.90433 3040 2947 2359203.743842 3041 2947 -5648902.101029 3054 2947 -15631586.90535 3055 2947 -58943322.82077 3056 2947 -35645020.83586 3057 2947 4155152.359051 3058 2947 67360267.87028 3059 2947 -9155848.283368 3072 2947 -15625000.00513 3073 2947 -20972669.93059 3074 2947 -9114622.378198 3075 2947 -4186416.982811 3076 2947 -17320437.94929 3077 2947 -7812334.815313 3078 2947 18781264.62992 3079 2947 -29802880.64558 3080 2947 20359407.72444 2948 2948 461481303.1457 2961 2948 22006498.08912 2962 2948 11132838.22885 2963 2948 -26647749.83379 2964 2948 -6432474.979055 2965 2948 -14600300.1054 2966 2948 19559986.82562 2967 2948 -476386.3825763 2968 2948 10796323.33859 2969 2948 -30172091.94962 3039 2948 7061025.529277 3040 2948 -8473353.151544 3041 2948 6291209.983575 3054 2948 -8539644.961234 3055 2948 -37291962.41402 3056 2948 -17378834.23163 3057 2948 -12904614.21255 3058 2948 -25102929.94573 3059 2948 -43665037.20838 3072 2948 -9107526.404853 3073 2948 -9114622.378198 3074 2948 -12350930.55863 3075 2948 -52079515.31352 3076 2948 -7529299.332116 3077 2948 -59557746.72338 3078 2948 -12651536.67723 3079 2948 16986186.18761 3080 2948 -26191567.2139 2949 2949 904416532.1423 2950 2949 2.086162567139e-05 2951 2949 8090376.36604 2952 2949 102079011.1406 2953 2949 -1.040101051331e-05 2954 2949 2022594.092512 2970 2949 -215223928.4788 2971 2949 5.930662155151e-06 2972 2949 -5707514.57167 2973 2949 -85403197.39141 2974 2949 55138888.87983 2975 2949 -24029092.18165 3042 2949 -89115968.74764 3043 2949 -2.875924110413e-06 3044 2949 60031786.74372 3045 2949 -36905217.31746 3046 2949 -15625000.00514 3047 2949 21394122.91072 3060 2949 137281674.8977 3061 2949 7.092952728271e-06 3062 2949 2285905.658981 3063 2949 -24872960.07894 3064 2949 -1.01625919342e-05 3065 2949 571476.4150351 3081 2949 -92328809.14057 3082 2949 5.915760993958e-06 3083 2949 -62317692.40268 3084 2949 -38047023.33633 3085 2949 15625000.00513 3086 2949 -21965599.32574 2950 2950 772075853.7925 2951 2950 -97082150.22431 2952 2950 -1.037120819092e-05 2953 2950 -107448453.121 2954 2950 49870936.22305 2970 2950 2.861022949219e-06 2971 2950 27388705.35396 2972 2950 -24270537.56804 2973 2950 55138888.87983 2974 2950 -68860612.58955 2975 2950 13559921.56178 3042 2950 -4.589557647705e-06 3043 2950 -20365565.44178 3044 2950 -6857560.807395 3045 2950 -15625000.00514 3046 2950 -32217474.15883 3047 2950 15286419.29648 3060 2950 6.973743438721e-06 3061 2950 99779729.64718 3062 2950 -27430243.21607 3063 2950 -8.568167686462e-06 3064 2950 -84247877.07676 3065 2950 62654357.71105 3081 2950 4.619359970093e-06 3082 2950 -23578405.83475 3083 2950 -6857560.807395 3084 2950 15625000.00513 3085 2950 -33359280.17771 3086 2950 15972183.1856 2951 2951 828665098.5173 2952 2951 2022594.092512 2953 2951 47211214.00126 2954 2951 52874910.70561 2970 2951 -2382861.794439 2971 2951 -24270537.56804 2972 2951 41183389.66318 2973 2951 -23501314.4034 2974 2951 13137699.33918 2975 2951 -29852819.54686 3042 2951 59688904.7995 3043 2951 -6857560.807395 3044 2951 -63334663.40088 3045 2951 21394122.91072 3046 2951 15286419.29648 3047 2951 -42337075.16724 3060 2951 2285905.658981 3061 2951 -27430243.21607 3062 2951 -82530234.81935 3063 2951 571476.4150354 3064 2951 62380052.15567 3065 2951 -128482138.2218 3081 2951 -61974810.45846 3082 2951 -6857560.807395 3083 2951 -71902237.78217 3084 2951 -21965599.32574 3085 2951 15972183.1856 3086 2951 -45381891.21762 2952 2952 904416532.1423 2953 2952 2.086162567139e-05 2954 2952 8090376.36604 2955 2952 102079011.1406 2956 2952 -1.040101051331e-05 2957 2952 2022594.092512 2970 2952 -84201296.24904 2971 2952 -55138888.87984 2972 2952 21478720.31087 2973 2952 -215223928.4788 2974 2952 5.930662155151e-06 2975 2952 -5707514.57167 2976 2952 -85403197.39141 2977 2952 55138888.87983 2978 2952 -24029092.18165 3042 2952 -25195798.91083 3043 2952 15625000.00513 3044 2952 8536049.989829 3045 2952 -89115968.74764 3046 2952 -2.875924110413e-06 3047 2952 60031786.74372 3048 2952 -36905217.31746 3049 2952 -15625000.00514 3050 2952 21394122.91072 3060 2952 23319097.20481 3061 2952 3.09944152832e-06 3062 2952 571476.4150216 3063 2952 137281674.8977 3064 2952 7.092952728271e-06 3065 2952 2285905.658981 3066 2952 -24872960.07894 3067 2952 -1.01625919342e-05 3068 2952 571476.4150351 3081 2952 -25660413.08922 3082 2952 -15625000.00513 3083 2952 -9107526.404853 3084 2952 -92328809.14057 3085 2952 5.915760993958e-06 3086 2952 -62317692.40268 3087 2952 -38047023.33633 3088 2952 15625000.00513 3089 2952 -21965599.32574 2953 2953 772075853.7925 2954 2953 -97082150.22431 2955 2953 -1.037120819092e-05 2956 2953 -107448453.121 2957 2953 49870936.22305 2970 2953 -55138888.87984 2971 2953 -67658711.44716 2972 2953 10710616.00625 2973 2953 2.861022949219e-06 2974 2953 27388705.35396 2975 2953 -24270537.56804 2976 2953 55138888.87983 2977 2953 -68860612.58955 2978 2953 13559921.56178 3042 2953 15625000.00513 3043 2953 -20508055.7522 3044 2953 -8428858.489084 3045 2953 -4.589557647705e-06 3046 2953 -20365565.44178 3047 2953 -6857560.807395 3048 2953 -15625000.00514 3049 2953 -32217474.15883 3050 2953 15286419.29648 3060 2953 4.559755325317e-06 3061 2953 -36055819.793 3062 2953 -35224114.49497 3063 2953 6.973743438721e-06 3064 2953 99779729.64718 3065 2953 -27430243.21607 3066 2953 -8.568167686462e-06 3067 2953 -84247877.07676 3068 2953 62654357.71105 3081 2953 -15625000.00513 3082 2953 -20972669.93059 3083 2953 -9114622.378198 3084 2953 4.619359970093e-06 3085 2953 -23578405.83475 3086 2953 -6857560.807395 3087 2953 15625000.00513 3088 2953 -33359280.17771 3089 2953 15972183.1856 2954 2954 828665098.5173 2955 2954 2022594.092512 2956 2954 47211214.00126 2957 2954 52874910.70561 2970 2954 22006498.08912 2971 2954 11132838.22885 2972 2954 -26647749.83379 2973 2954 -2382861.794439 2974 2954 -24270537.56804 2975 2954 41183389.66318 2976 2954 -23501314.4034 2977 2954 13137699.33918 2978 2954 -29852819.54686 3042 2954 8536049.989829 3043 2954 -8428858.489084 3044 2954 -11111959.41625 3045 2954 59688904.7995 3046 2954 -6857560.807395 3047 2954 -63334663.40088 3048 2954 21394122.91072 3049 2954 15286419.29648 3050 2954 -42337075.16724 3060 2954 571476.4150219 3061 2954 -34949808.93959 3062 2954 30014.53480115 3063 2954 2285905.658981 3064 2954 -27430243.21607 3065 2954 -82530234.81935 3066 2954 571476.4150354 3067 2954 62380052.15567 3068 2954 -128482138.2218 3081 2954 -9107526.404853 3082 2954 -9114622.378198 3083 2954 -12350930.55863 3084 2954 -61974810.45846 3085 2954 -6857560.807395 3086 2954 -71902237.78217 3087 2954 -21965599.32574 3088 2954 15972183.1856 3089 2954 -45381891.21762 2955 2955 904416532.1423 2956 2955 2.086162567139e-05 2957 2955 8090376.36604 2958 2955 102079011.1406 2959 2955 -1.040101051331e-05 2960 2955 2022594.092512 2973 2955 -84201296.24904 2974 2955 -55138888.87984 2975 2955 21478720.31087 2976 2955 -215223928.4788 2977 2955 5.930662155151e-06 2978 2955 -5707514.57167 2979 2955 -85403197.39141 2980 2955 55138888.87983 2981 2955 -24029092.18165 3045 2955 -25195798.91083 3046 2955 15625000.00513 3047 2955 8536049.989829 3048 2955 -89115968.74764 3049 2955 -2.875924110413e-06 3050 2955 60031786.74372 3051 2955 -36905217.31746 3052 2955 -15625000.00514 3053 2955 21394122.91072 3063 2955 23319097.20481 3064 2955 3.09944152832e-06 3065 2955 571476.4150216 3066 2955 137281674.8977 3067 2955 7.092952728271e-06 3068 2955 2285905.658981 3069 2955 -24872960.07894 3070 2955 -1.01625919342e-05 3071 2955 571476.4150351 3084 2955 -25660413.08922 3085 2955 -15625000.00513 3086 2955 -9107526.404853 3087 2955 -92328809.14057 3088 2955 5.915760993958e-06 3089 2955 -62317692.40268 3090 2955 -38047023.33633 3091 2955 15625000.00513 3092 2955 -21965599.32574 2956 2956 772075853.7925 2957 2956 -97082150.22431 2958 2956 -1.037120819092e-05 2959 2956 -107448453.121 2960 2956 49870936.22305 2973 2956 -55138888.87984 2974 2956 -67658711.44716 2975 2956 10710616.00625 2976 2956 2.861022949219e-06 2977 2956 27388705.35396 2978 2956 -24270537.56804 2979 2956 55138888.87983 2980 2956 -68860612.58955 2981 2956 13559921.56178 3045 2956 15625000.00513 3046 2956 -20508055.7522 3047 2956 -8428858.489084 3048 2956 -4.589557647705e-06 3049 2956 -20365565.44178 3050 2956 -6857560.807395 3051 2956 -15625000.00514 3052 2956 -32217474.15883 3053 2956 15286419.29648 3063 2956 4.559755325317e-06 3064 2956 -36055819.793 3065 2956 -35224114.49497 3066 2956 6.973743438721e-06 3067 2956 99779729.64718 3068 2956 -27430243.21607 3069 2956 -8.568167686462e-06 3070 2956 -84247877.07676 3071 2956 62654357.71105 3084 2956 -15625000.00513 3085 2956 -20972669.93059 3086 2956 -9114622.378198 3087 2956 4.619359970093e-06 3088 2956 -23578405.83475 3089 2956 -6857560.807395 3090 2956 15625000.00513 3091 2956 -33359280.17771 3092 2956 15972183.1856 2957 2957 828665098.5173 2958 2957 2022594.092512 2959 2957 47211214.00126 2960 2957 52874910.70561 2973 2957 22006498.08912 2974 2957 11132838.22885 2975 2957 -26647749.83379 2976 2957 -2382861.794439 2977 2957 -24270537.56804 2978 2957 41183389.66318 2979 2957 -23501314.4034 2980 2957 13137699.33918 2981 2957 -29852819.54686 3045 2957 8536049.989829 3046 2957 -8428858.489084 3047 2957 -11111959.41625 3048 2957 59688904.7995 3049 2957 -6857560.807395 3050 2957 -63334663.40088 3051 2957 21394122.91072 3052 2957 15286419.29648 3053 2957 -42337075.16724 3063 2957 571476.4150219 3064 2957 -34949808.93959 3065 2957 30014.53480115 3066 2957 2285905.658981 3067 2957 -27430243.21607 3068 2957 -82530234.81935 3069 2957 571476.4150354 3070 2957 62380052.15567 3071 2957 -128482138.2218 3084 2957 -9107526.404853 3085 2957 -9114622.378198 3086 2957 -12350930.55863 3087 2957 -61974810.45846 3088 2957 -6857560.807395 3089 2957 -71902237.78217 3090 2957 -21965599.32574 3091 2957 15972183.1856 3092 2957 -45381891.21762 2958 2958 904416532.1423 2959 2958 2.086162567139e-05 2960 2958 8090376.36604 2961 2958 102079011.1406 2962 2958 -1.040101051331e-05 2963 2958 2022594.092512 2976 2958 -84201296.24904 2977 2958 -55138888.87984 2978 2958 21478720.31087 2979 2958 -215223928.4788 2980 2958 5.930662155151e-06 2981 2958 -5707514.57167 2982 2958 -85403197.39141 2983 2958 55138888.87983 2984 2958 -24029092.18165 3048 2958 -25195798.91083 3049 2958 15625000.00513 3050 2958 8536049.989829 3051 2958 -89115968.74764 3052 2958 -2.875924110413e-06 3053 2958 60031786.74372 3054 2958 -36905217.31746 3055 2958 -15625000.00514 3056 2958 21394122.91072 3066 2958 23319097.20481 3067 2958 3.09944152832e-06 3068 2958 571476.4150216 3069 2958 137281674.8977 3070 2958 7.092952728271e-06 3071 2958 2285905.658981 3072 2958 -24872960.07894 3073 2958 -1.01625919342e-05 3074 2958 571476.4150351 3087 2958 -25660413.08922 3088 2958 -15625000.00513 3089 2958 -9107526.404853 3090 2958 -92328809.14057 3091 2958 5.915760993958e-06 3092 2958 -62317692.40268 3093 2958 -38047023.33633 3094 2958 15625000.00513 3095 2958 -21965599.32574 2959 2959 772075853.7925 2960 2959 -97082150.22431 2961 2959 -1.037120819092e-05 2962 2959 -107448453.121 2963 2959 49870936.22305 2976 2959 -55138888.87984 2977 2959 -67658711.44716 2978 2959 10710616.00625 2979 2959 2.861022949219e-06 2980 2959 27388705.35396 2981 2959 -24270537.56804 2982 2959 55138888.87983 2983 2959 -68860612.58955 2984 2959 13559921.56178 3048 2959 15625000.00513 3049 2959 -20508055.7522 3050 2959 -8428858.489084 3051 2959 -4.589557647705e-06 3052 2959 -20365565.44178 3053 2959 -6857560.807395 3054 2959 -15625000.00514 3055 2959 -32217474.15883 3056 2959 15286419.29648 3066 2959 4.559755325317e-06 3067 2959 -36055819.793 3068 2959 -35224114.49497 3069 2959 6.973743438721e-06 3070 2959 99779729.64718 3071 2959 -27430243.21607 3072 2959 -8.568167686462e-06 3073 2959 -84247877.07676 3074 2959 62654357.71105 3087 2959 -15625000.00513 3088 2959 -20972669.93059 3089 2959 -9114622.378198 3090 2959 4.619359970093e-06 3091 2959 -23578405.83475 3092 2959 -6857560.807395 3093 2959 15625000.00513 3094 2959 -33359280.17771 3095 2959 15972183.1856 2960 2960 828665098.5173 2961 2960 2022594.092512 2962 2960 47211214.00126 2963 2960 52874910.70561 2976 2960 22006498.08912 2977 2960 11132838.22885 2978 2960 -26647749.83379 2979 2960 -2382861.794439 2980 2960 -24270537.56804 2981 2960 41183389.66318 2982 2960 -23501314.4034 2983 2960 13137699.33918 2984 2960 -29852819.54686 3048 2960 8536049.989829 3049 2960 -8428858.489084 3050 2960 -11111959.41625 3051 2960 59688904.7995 3052 2960 -6857560.807395 3053 2960 -63334663.40088 3054 2960 21394122.91072 3055 2960 15286419.29648 3056 2960 -42337075.16724 3066 2960 571476.4150219 3067 2960 -34949808.93959 3068 2960 30014.53480115 3069 2960 2285905.658981 3070 2960 -27430243.21607 3071 2960 -82530234.81935 3072 2960 571476.4150354 3073 2960 62380052.15567 3074 2960 -128482138.2218 3087 2960 -9107526.404853 3088 2960 -9114622.378198 3089 2960 -12350930.55863 3090 2960 -61974810.45846 3091 2960 -6857560.807395 3092 2960 -71902237.78217 3093 2960 -21965599.32574 3094 2960 15972183.1856 3095 2960 -45381891.21762 2961 2961 904416532.1423 2962 2961 2.086162567139e-05 2963 2961 8090376.36604 2964 2961 102079011.1406 2965 2961 -1.040101051331e-05 2966 2961 2022594.092512 2979 2961 -84201296.24904 2980 2961 -55138888.87984 2981 2961 21478720.31087 2982 2961 -215223928.4788 2983 2961 5.930662155151e-06 2984 2961 -5707514.57167 2985 2961 -85403197.39141 2986 2961 55138888.87983 2987 2961 -24029092.18165 3051 2961 -25195798.91083 3052 2961 15625000.00513 3053 2961 8536049.989829 3054 2961 -89115968.74764 3055 2961 -2.875924110413e-06 3056 2961 60031786.74372 3057 2961 -36905217.31746 3058 2961 -15625000.00514 3059 2961 21394122.91072 3069 2961 23319097.20481 3070 2961 3.09944152832e-06 3071 2961 571476.4150216 3072 2961 137281674.8977 3073 2961 7.092952728271e-06 3074 2961 2285905.658981 3075 2961 -24872960.07894 3076 2961 -1.01625919342e-05 3077 2961 571476.4150351 3090 2961 -25660413.08922 3091 2961 -15625000.00513 3092 2961 -9107526.404853 3093 2961 -92328809.14057 3094 2961 5.915760993958e-06 3095 2961 -62317692.40268 3096 2961 -38047023.33633 3097 2961 15625000.00513 3098 2961 -21965599.32574 2962 2962 772075853.7925 2963 2962 -97082150.22431 2964 2962 -1.037120819092e-05 2965 2962 -107448453.121 2966 2962 49870936.22305 2979 2962 -55138888.87984 2980 2962 -67658711.44716 2981 2962 10710616.00625 2982 2962 2.861022949219e-06 2983 2962 27388705.35396 2984 2962 -24270537.56804 2985 2962 55138888.87983 2986 2962 -68860612.58955 2987 2962 13559921.56178 3051 2962 15625000.00513 3052 2962 -20508055.7522 3053 2962 -8428858.489084 3054 2962 -4.589557647705e-06 3055 2962 -20365565.44178 3056 2962 -6857560.807395 3057 2962 -15625000.00514 3058 2962 -32217474.15883 3059 2962 15286419.29648 3069 2962 4.559755325317e-06 3070 2962 -36055819.793 3071 2962 -35224114.49497 3072 2962 6.973743438721e-06 3073 2962 99779729.64718 3074 2962 -27430243.21607 3075 2962 -8.568167686462e-06 3076 2962 -84247877.07676 3077 2962 62654357.71105 3090 2962 -15625000.00513 3091 2962 -20972669.93059 3092 2962 -9114622.378198 3093 2962 4.619359970093e-06 3094 2962 -23578405.83475 3095 2962 -6857560.807395 3096 2962 15625000.00513 3097 2962 -33359280.17771 3098 2962 15972183.1856 2963 2963 828665098.5173 2964 2963 2022594.092512 2965 2963 47211214.00126 2966 2963 52874910.70561 2979 2963 22006498.08912 2980 2963 11132838.22885 2981 2963 -26647749.83379 2982 2963 -2382861.794439 2983 2963 -24270537.56804 2984 2963 41183389.66318 2985 2963 -23501314.4034 2986 2963 13137699.33918 2987 2963 -29852819.54686 3051 2963 8536049.989829 3052 2963 -8428858.489084 3053 2963 -11111959.41625 3054 2963 59688904.7995 3055 2963 -6857560.807395 3056 2963 -63334663.40088 3057 2963 21394122.91072 3058 2963 15286419.29648 3059 2963 -42337075.16724 3069 2963 571476.4150219 3070 2963 -34949808.93959 3071 2963 30014.53480115 3072 2963 2285905.658981 3073 2963 -27430243.21607 3074 2963 -82530234.81935 3075 2963 571476.4150354 3076 2963 62380052.15567 3077 2963 -128482138.2218 3090 2963 -9107526.404853 3091 2963 -9114622.378198 3092 2963 -12350930.55863 3093 2963 -61974810.45846 3094 2963 -6857560.807395 3095 2963 -71902237.78217 3096 2963 -21965599.32574 3097 2963 15972183.1856 3098 2963 -45381891.21762 2964 2964 814075637.7522 2965 2964 19826669.68419 2966 2964 7801715.663611 2967 2964 -65761289.34655 2968 2964 -82916487.90402 2969 2964 5254868.213648 2982 2964 -84201296.24904 2983 2964 -55138888.87984 2984 2964 21478720.31087 2985 2964 -168878204.1951 2986 2964 23258599.89119 2987 2964 -2713120.011329 2988 2964 -50129008.36995 2989 2964 44041031.60725 2990 2964 -3923688.173615 3054 2964 -25195798.91083 3055 2964 15625000.00513 3056 2964 8536049.989829 3057 2964 -82406367.71958 3058 2964 -4186416.982814 3059 2964 47658528.22846 3072 2964 23319097.20481 3073 2964 3.09944152832e-06 3074 2964 571476.4150216 3075 2964 140289807.8107 3076 2964 6772533.290107 3077 2964 2258936.462364 3078 2964 -37259112.25684 3079 2964 -21706836.85395 3080 2964 16585652.20803 3093 2964 -25660413.08922 3094 2964 -15625000.00513 3095 2964 -9107526.404853 3096 2964 -80438815.71638 3097 2964 5389707.749941 3098 2964 -55764807.73549 3099 2964 -23249696.87928 3100 2964 13731012.79672 3101 2964 -10699392.80394 2965 2965 816271924.2702 2966 2965 -59395775.03478 2967 2965 -82956366.52095 2968 2965 -269665196.5266 2969 2965 11419191.28908 2982 2965 -55138888.87984 2983 2965 -67658711.44716 2984 2965 10710616.00625 2985 2965 23258599.89119 2986 2965 40051295.91808 2987 2965 -13759219.77655 2988 2965 44041031.60725 2989 2965 -117338097.1014 2990 2965 5266414.972266 3054 2965 15625000.00513 3055 2965 -20508055.7522 3056 2965 -8428858.489084 3057 2965 -4175995.441561 3058 2965 -14065522.49202 3059 2965 -990203.8002845 3072 2965 4.559755325317e-06 3073 2965 -36055819.793 3074 2965 -35224114.49497 3075 2965 6772533.290104 3076 2965 130991394.7564 3077 2965 -16346341.23076 3078 2965 -21717258.3952 3079 2965 -93858000.46159 3080 2965 51628535.64867 3093 2965 -15625000.00513 3094 2965 -20972669.93059 3095 2965 -9114622.378198 3096 2965 5389707.74994 3097 2965 -18709904.78939 3098 2965 551807.7684063 3099 2965 13731012.79672 3100 2965 -37422721.09417 3101 2965 17954931.21862 2966 2966 718413885.6964 2967 2966 4727899.785733 2968 2966 9730121.401043 2969 2966 -41602774.38176 2982 2966 22006498.08912 2983 2966 11132838.22885 2984 2966 -26647749.83379 2985 2966 -6141939.455212 2986 2966 -13336997.5544 2987 2966 45476816.52765 2988 2966 -2868132.617115 2989 2966 5266414.972266 2990 2966 -26328581.92312 3054 2966 8536049.989829 3055 2966 -8428858.489084 3056 2966 -11111959.41625 3057 2966 49372296.02875 3058 2966 -1256982.046803 3059 2966 -50877972.17063 3072 2966 571476.4150219 3073 2966 -34949808.93959 3074 2966 30014.53480115 3075 2966 2271788.22959 3076 2966 -16336059.44644 3077 2966 -52248020.85153 3078 2966 16592900.54232 3079 2966 51626293.67586 3080 2966 -71025741.42099 3093 2966 -9107526.404853 3094 2966 -9114622.378198 3095 2966 -12350930.55863 3096 2966 -57479217.4576 3097 2966 551807.7692189 3098 2966 -67478321.27656 3099 2966 -10699392.80394 3100 2966 17954931.21862 3101 2966 -29873867.65783 2967 2967 522699975.3476 2968 2967 14401653.43661 2969 2967 5480581.188058 2985 2967 -88453382.41505 2986 2967 -53657199.77512 2987 2967 2927126.633331 2988 2967 -82446521.24533 2989 2967 31900352.3773 2990 2967 -2622745.842299 2991 2967 63364875.38512 2992 2967 -23947462.52149 2993 2967 -309579.7647879 2994 2967 -33820950.3989 2995 2967 47972720.49706 2996 2967 -966478.9499935 3057 2967 -11503559.48192 3058 2967 18781264.62992 3059 2967 10589309.89512 3075 2967 -30633021.82547 3076 2967 -21717258.3952 3077 2967 -13945914.77582 3078 2967 49344074.06461 3079 2967 3326270.339925 3080 2967 12071955.85504 3096 2967 -31620669.8148 3097 2967 -15379874.43217 3098 2967 -14331642.3119 3099 2967 -70715365.81126 3100 2967 7245060.881563 3101 2967 -60340756.14738 3102 2967 -8245159.844818 3103 2967 -6206126.610077 3104 2967 9626373.964429 3105 2967 -23495676.93737 3106 2967 13950663.58603 3107 2967 -14935854.25772 2968 2968 692282026.6453 2969 2968 -10934150.66836 2985 2968 -53657199.77512 2986 2968 -54325438.18194 2987 2968 342360.8843877 2988 2968 31900352.3773 2989 2968 124141079.4718 2990 2968 -3927122.654523 2991 2968 -1891906.969555 2992 2968 -43813315.28894 2993 2968 468835.5341619 2994 2968 47972720.49706 2995 2968 -52353687.68695 2996 2968 533425.4164016 3057 2968 12520843.08662 3058 2968 -26035227.07491 3059 2968 -13303837.81403 3075 2968 -21706836.85395 3076 2968 -87231910.03023 3077 2968 -46041232.49696 3078 2968 3326270.339925 3079 2968 86203793.01102 3080 2968 -505092.831848 3096 2968 -15379874.43217 3097 2968 -23056649.34309 3098 2968 -11981607.60917 3099 2968 7245060.881562 3100 2968 -10705979.44983 3101 2968 3493527.891282 3102 2968 43873.39197527 3103 2968 -38645654.17828 3104 2968 33463119.42263 3105 2968 13950663.58603 3106 2968 -27397752.58572 3107 2968 16811021.49711 2969 2969 599530521.1754 2985 2969 3454904.411581 2986 2969 764583.1069877 2987 2969 -19025929.82132 2988 2969 -511634.7315344 2989 2969 -3504900.43237 2990 2969 126985993.5352 2991 2969 218198.0129062 2992 2969 468835.534162 2993 2969 83129752.20461 2994 2969 -438701.1717439 2995 2969 533425.4164016 2996 2969 11853562.38723 3057 2969 7059539.930081 3058 2969 -16128398.1209 3059 2969 -16144491.02544 3075 2969 -13940311.47962 3076 2969 -46044966.08591 3077 2969 -53356166.93734 3078 2969 -11912141.36324 3079 2969 -6708849.907338 3080 2969 -90858994.86437 3096 2969 -14331642.3119 3097 2969 -11981607.60917 3098 2969 -23323530.90453 3099 2969 -60340756.14772 3100 2969 3493527.892095 3101 2969 -76697228.99476 3102 2969 1501373.962777 3103 2969 33463119.42263 3104 2969 -47613841.53847 3105 2969 -14935854.25772 3106 2969 16811021.49711 3107 2969 -30324091.47117 2970 2970 451998787.7349 2971 2970 1.800060272217e-05 2972 2970 -4266443.760058 2973 2970 51007167.67192 2974 2970 11027777.77596 2975 2970 -4858928.64862 3060 2970 -89115968.74764 3061 2970 -2.875924110413e-06 3062 2970 60031786.74372 3063 2970 -36905217.31746 3064 2970 -15625000.00514 3065 2970 21394122.91072 3081 2970 68618264.38753 3082 2970 3.814697265625e-06 3083 2970 -11914911.75127 3084 2970 -12436480.03947 3085 2970 3125000.001022 3086 2970 -4050234.016128 2971 2971 385828448.56 2972 2971 -48541075.11215 2973 2971 -11027777.77597 2974 2971 -53756564.45888 2975 2971 24692759.77823 3060 2971 -4.589557647705e-06 3061 2971 -20365565.44178 3062 2971 -6857560.807395 3063 2971 -15625000.00514 3064 2971 -32217474.15883 3065 2971 15286419.29648 3081 2971 2.026557922363e-06 3082 2971 49867291.76226 3083 2971 -13715121.60804 3084 2971 -3125000.001031 3085 2971 -42123938.53837 3086 2971 31258602.46661 2972 2972 413773940.3619 2973 2972 4242633.849883 2974 2972 23848315.33392 2975 2972 26351220.95709 3060 2972 59688904.7995 3061 2972 -6857560.807395 3062 2972 -63334663.40088 3063 2972 21394122.91072 3064 2972 15286419.29648 3065 2972 -42337075.16724 3081 2972 12486407.68916 3082 2972 -13715121.60804 3083 2972 -41325312.23988 3084 2972 4621710.431164 3085 2972 31258602.46674 3086 2972 -64241069.11092 2973 2973 451998787.7349 2974 2973 1.800060272217e-05 2975 2973 -4266443.760058 2976 2973 51007167.67192 2977 2973 11027777.77596 2978 2973 -4858928.64862 3060 2973 -25195798.91083 3061 2973 15625000.00513 3062 2973 8536049.989829 3063 2973 -89115968.74764 3064 2973 -2.875924110413e-06 3065 2973 60031786.74372 3066 2973 -36905217.31746 3067 2973 -15625000.00514 3068 2973 21394122.91072 3081 2973 11659548.6024 3082 2973 -3125000.001025 3083 2973 -1478619.431957 3084 2973 68618264.38753 3085 2973 3.814697265625e-06 3086 2973 -11914911.75127 3087 2973 -12436480.03947 3088 2973 3125000.001022 3089 2973 -4050234.016128 2974 2974 385828448.56 2975 2974 -48541075.11215 2976 2974 -11027777.77597 2977 2974 -53756564.45888 2978 2974 24692759.77823 3060 2974 15625000.00513 3061 2974 -20508055.7522 3062 2974 -8428858.489084 3063 2974 -4.589557647705e-06 3064 2974 -20365565.44178 3065 2974 -6857560.807395 3066 2974 -15625000.00514 3067 2974 -32217474.15883 3068 2974 15286419.29648 3081 2974 3125000.001029 3082 2974 -18027909.8965 3083 2974 -17543480.85857 3084 2974 2.026557922363e-06 3085 2974 49867291.76226 3086 2974 -13715121.60804 3087 2974 -3125000.001031 3088 2974 -42123938.53837 3089 2974 31258602.46661 2975 2975 413773940.3619 2976 2975 4242633.849883 2977 2975 23848315.33392 2978 2975 26351220.95709 3060 2975 8536049.989829 3061 2975 -8428858.489084 3062 2975 -11111959.41625 3063 2975 59688904.7995 3064 2975 -6857560.807395 3065 2975 -63334663.40088 3066 2975 21394122.91072 3067 2975 15286419.29648 3068 2975 -42337075.16724 3081 2975 2050095.846979 3082 2975 -17543480.85871 3083 2975 15007.26739907 3084 2975 12486407.68916 3085 2975 -13715121.60804 3086 2975 -41325312.23988 3087 2975 4621710.431164 3088 2975 31258602.46674 3089 2975 -64241069.11092 2976 2976 451998787.7349 2977 2976 1.800060272217e-05 2978 2976 -4266443.760058 2979 2976 51007167.67192 2980 2976 11027777.77596 2981 2976 -4858928.64862 3063 2976 -25195798.91083 3064 2976 15625000.00513 3065 2976 8536049.989829 3066 2976 -89115968.74764 3067 2976 -2.875924110413e-06 3068 2976 60031786.74372 3069 2976 -36905217.31746 3070 2976 -15625000.00514 3071 2976 21394122.91072 3084 2976 11659548.6024 3085 2976 -3125000.001025 3086 2976 -1478619.431957 3087 2976 68618264.38753 3088 2976 3.814697265625e-06 3089 2976 -11914911.75127 3090 2976 -12436480.03947 3091 2976 3125000.001022 3092 2976 -4050234.016128 2977 2977 385828448.56 2978 2977 -48541075.11215 2979 2977 -11027777.77597 2980 2977 -53756564.45888 2981 2977 24692759.77823 3063 2977 15625000.00513 3064 2977 -20508055.7522 3065 2977 -8428858.489084 3066 2977 -4.589557647705e-06 3067 2977 -20365565.44178 3068 2977 -6857560.807395 3069 2977 -15625000.00514 3070 2977 -32217474.15883 3071 2977 15286419.29648 3084 2977 3125000.001029 3085 2977 -18027909.8965 3086 2977 -17543480.85857 3087 2977 2.026557922363e-06 3088 2977 49867291.76226 3089 2977 -13715121.60804 3090 2977 -3125000.001031 3091 2977 -42123938.53837 3092 2977 31258602.46661 2978 2978 413773940.3619 2979 2978 4242633.849883 2980 2978 23848315.33392 2981 2978 26351220.95709 3063 2978 8536049.989829 3064 2978 -8428858.489084 3065 2978 -11111959.41625 3066 2978 59688904.7995 3067 2978 -6857560.807395 3068 2978 -63334663.40088 3069 2978 21394122.91072 3070 2978 15286419.29648 3071 2978 -42337075.16724 3084 2978 2050095.846979 3085 2978 -17543480.85871 3086 2978 15007.26739907 3087 2978 12486407.68916 3088 2978 -13715121.60804 3089 2978 -41325312.23988 3090 2978 4621710.431164 3091 2978 31258602.46674 3092 2978 -64241069.11092 2979 2979 451998787.7349 2980 2979 1.800060272217e-05 2981 2979 -4266443.760058 2982 2979 51007167.67192 2983 2979 11027777.77596 2984 2979 -4858928.64862 3066 2979 -25195798.91083 3067 2979 15625000.00513 3068 2979 8536049.989829 3069 2979 -89115968.74764 3070 2979 -2.875924110413e-06 3071 2979 60031786.74372 3072 2979 -36905217.31746 3073 2979 -15625000.00514 3074 2979 21394122.91072 3087 2979 11659548.6024 3088 2979 -3125000.001025 3089 2979 -1478619.431957 3090 2979 68618264.38753 3091 2979 3.814697265625e-06 3092 2979 -11914911.75127 3093 2979 -12436480.03947 3094 2979 3125000.001022 3095 2979 -4050234.016128 2980 2980 385828448.56 2981 2980 -48541075.11215 2982 2980 -11027777.77597 2983 2980 -53756564.45888 2984 2980 24692759.77823 3066 2980 15625000.00513 3067 2980 -20508055.7522 3068 2980 -8428858.489084 3069 2980 -4.589557647705e-06 3070 2980 -20365565.44178 3071 2980 -6857560.807395 3072 2980 -15625000.00514 3073 2980 -32217474.15883 3074 2980 15286419.29648 3087 2980 3125000.001029 3088 2980 -18027909.8965 3089 2980 -17543480.85857 3090 2980 2.026557922363e-06 3091 2980 49867291.76226 3092 2980 -13715121.60804 3093 2980 -3125000.001031 3094 2980 -42123938.53837 3095 2980 31258602.46661 2981 2981 413773940.3619 2982 2981 4242633.849883 2983 2981 23848315.33392 2984 2981 26351220.95709 3066 2981 8536049.989829 3067 2981 -8428858.489084 3068 2981 -11111959.41625 3069 2981 59688904.7995 3070 2981 -6857560.807395 3071 2981 -63334663.40088 3072 2981 21394122.91072 3073 2981 15286419.29648 3074 2981 -42337075.16724 3087 2981 2050095.846979 3088 2981 -17543480.85871 3089 2981 15007.26739907 3090 2981 12486407.68916 3091 2981 -13715121.60804 3092 2981 -41325312.23988 3093 2981 4621710.431164 3094 2981 31258602.46674 3095 2981 -64241069.11092 2982 2982 451998787.7349 2983 2982 1.800060272217e-05 2984 2982 -4266443.760058 2985 2982 51007167.67192 2986 2982 11027777.77596 2987 2982 -4858928.64862 3069 2982 -25195798.91083 3070 2982 15625000.00513 3071 2982 8536049.989829 3072 2982 -89115968.74764 3073 2982 -2.875924110413e-06 3074 2982 60031786.74372 3075 2982 -36905217.31746 3076 2982 -15625000.00514 3077 2982 21394122.91072 3090 2982 11659548.6024 3091 2982 -3125000.001025 3092 2982 -1478619.431957 3093 2982 68618264.38753 3094 2982 3.814697265625e-06 3095 2982 -11914911.75127 3096 2982 -12436480.03947 3097 2982 3125000.001022 3098 2982 -4050234.016128 2983 2983 385828448.56 2984 2983 -48541075.11215 2985 2983 -11027777.77597 2986 2983 -53756564.45888 2987 2983 24692759.77823 3069 2983 15625000.00513 3070 2983 -20508055.7522 3071 2983 -8428858.489084 3072 2983 -4.589557647705e-06 3073 2983 -20365565.44178 3074 2983 -6857560.807395 3075 2983 -15625000.00514 3076 2983 -32217474.15883 3077 2983 15286419.29648 3090 2983 3125000.001029 3091 2983 -18027909.8965 3092 2983 -17543480.85857 3093 2983 2.026557922363e-06 3094 2983 49867291.76226 3095 2983 -13715121.60804 3096 2983 -3125000.001031 3097 2983 -42123938.53837 3098 2983 31258602.46661 2984 2984 413773940.3619 2985 2984 4242633.849883 2986 2984 23848315.33392 2987 2984 26351220.95709 3069 2984 8536049.989829 3070 2984 -8428858.489084 3071 2984 -11111959.41625 3072 2984 59688904.7995 3073 2984 -6857560.807395 3074 2984 -63334663.40088 3075 2984 21394122.91072 3076 2984 15286419.29648 3077 2984 -42337075.16724 3090 2984 2050095.846979 3091 2984 -17543480.85871 3092 2984 15007.26739907 3093 2984 12486407.68916 3094 2984 -13715121.60804 3095 2984 -41325312.23988 3096 2984 4621710.431164 3097 2984 31258602.46674 3098 2984 -64241069.11092 2985 2985 438788681.6926 2986 2985 1481949.882174 2987 2985 13588100.97986 2988 2985 20474398.84195 2989 2985 -15194461.1021 2990 2985 -402802.0502076 3072 2985 -25195798.91083 3073 2985 15625000.00513 3074 2985 8536049.989829 3075 2985 -76990580.01118 3076 2985 5389707.749938 3077 2985 53359584.60642 3078 2985 -33227083.91641 3079 2985 -15379874.43216 3080 2985 16168618.11479 3093 2985 11659548.6024 3094 2985 -3125000.001025 3095 2985 -1478619.431957 3096 2985 65173303.32689 3097 2985 245143.1226898 3098 2985 -6853012.901018 3099 2985 -10470930.81531 3100 2985 -2754976.444567 3101 2985 2783907.400167 2986 2986 390214539.491 2987 2986 -29785000.64378 2988 2986 -37250016.65403 2989 2986 -85787755.97384 2990 2986 5371400.418087 3072 2986 15625000.00513 3073 2986 -20508055.7522 3074 2986 -8428858.489084 3075 2986 5389707.749936 3076 2986 -15261669.08416 3077 2986 -8380483.89686 3078 2986 -15379874.43216 3079 2986 -24663063.44469 3080 2986 12419434.06551 3093 2986 3125000.001029 3094 2986 -18027909.8965 3095 2986 -17543480.85857 3096 2986 245143.1226879 3097 2986 50301515.94588 3098 2986 -8353117.277099 3099 2986 -9004976.44662 3100 2986 -40892359.49273 3101 2986 30286506.45611 2987 2987 397526973.6383 2988 2987 1945288.227182 2989 2987 4949178.195934 2990 2987 26284976.12498 3072 2987 8536049.989829 3073 2987 -8428858.489084 3074 2987 -11111959.41625 3075 2987 55073994.33073 3076 2987 -8380483.895913 3077 2987 -58283026.06258 3078 2987 16168618.11479 3079 2987 12419434.06551 3080 2987 -27607301.84214 3093 2987 2050095.846979 3094 2987 -17543480.85871 3095 2987 15007.26739907 3096 2987 17547750.98386 3097 2987 -8353117.277099 3098 2987 -45585142.3045 3099 2987 9398282.401154 3100 2987 30286506.4553 3101 2987 -41565022.24035 2988 2988 429105935.2957 2989 2988 28330900.92755 2990 2988 -6522740.616906 2991 2988 -102981106.0586 2992 2988 -62305057.2626 2993 2988 814337.0222015 2994 2988 23954189.43775 2995 2988 -4717210.995471 2996 2988 -1617533.951288 3075 2988 -20350067.7116 3076 2988 13731012.79672 3077 2988 8635850.257965 3078 2988 -69970751.18914 3079 2988 7245060.881565 3080 2988 59579729.9437 3096 2988 -5416277.961415 3097 2988 -9004976.44662 3098 2988 -7866787.042358 3099 2988 41507406.34697 3100 2988 5819458.255594 3101 2988 -12220682.65679 3102 2988 -40243202.98454 3103 2988 -17299336.42423 3104 2988 20535239.50393 3105 2988 -14105125.94333 3106 2988 -491219.0630247 3107 2988 2603177.771788 2989 2989 477376768.0381 2990 2989 -8908984.282613 2991 2989 -62305057.2626 2992 2989 -78288746.05932 2993 2989 533425.4164013 2994 2989 -26772766.5474 2995 2989 -82125360.47375 2996 2989 1664866.130393 3075 2989 13731012.79672 3076 2989 -34523091.92649 3077 2989 -15378402.12566 3078 2989 7245060.881565 3079 2989 -9961364.827704 3080 2989 -5438763.773985 3096 2989 -2754976.444568 3097 2989 -35837706.63884 3098 2989 -27447868.53434 3099 2989 5819458.255594 3100 2989 49505416.69587 3101 2989 -2326953.595817 3102 2989 -17299336.42423 3103 2989 -33678074.85341 3104 2989 16811021.49711 3105 2989 -6741219.065077 3106 2989 -44083197.89248 3107 2989 33780966.53269 2990 2990 473986237.116 2991 2990 814337.0222015 2992 2990 533425.4164014 2993 2990 -14081495.98514 2994 2990 -482985.3403653 2995 2990 1664866.130393 2996 2990 47760572.2029 3075 2990 8635850.257965 3076 2990 -15378402.12566 3077 2990 -22141523.21068 3078 2990 59579729.94404 3079 2990 -5438763.773037 3080 2990 -74711590.00242 3096 2990 -2281057.874872 3097 2990 -27447868.53529 3098 2990 -28085947.96329 3099 2990 11763414.56149 3100 2990 -2326953.595817 3101 2990 -81177544.1979 3102 2990 20535239.50393 3103 2990 16811021.49711 3104 2990 -36604413.73886 3105 2990 8666615.274795 3106 2990 33780966.53269 3107 2990 -46820366.06832 2991 2991 261715726.6238 2992 2991 68058573.62535 2993 2991 -459951.4843445 2994 2991 -62033253.06281 2995 2991 -3861609.393196 2996 2991 -572583.5507624 3078 2991 -7696548.733537 3079 2991 43873.39197519 3080 2991 -1538643.39493 3099 2991 -39694591.87325 3100 2991 -17299336.42423 3101 2991 -20089760.50942 3102 2991 20481159.87447 3103 2991 18706126.61418 3104 2991 8000767.237826 3105 2991 -43395797.04293 3106 2991 -1450663.581926 3107 2991 -35122363.33348 2992 2992 234492875.6532 2993 2992 -468835.5341598 2994 2992 18193946.15874 2995 2992 47675428.58254 2996 2992 -533425.4163997 3078 2992 -6206126.610078 3079 2992 -38097043.067 3080 2992 -33203547.23309 3099 2992 -17299336.42423 3100 2992 -33129463.74212 3101 2992 -16522311.84717 3102 2992 18706126.61418 3103 2992 12795716.69541 3104 2992 6536880.5708 3105 2992 4799336.420126 3106 2992 -11874987.66155 3107 2992 3188978.509455 2993 2993 290948033.7889 2994 2993 -44805.77306801 2995 2993 -533425.4163998 2996 2993 66847024.35831 3078 2993 -9663643.396415 3079 2993 -33203547.23309 3080 2993 -46150878.57506 3099 2993 -20089760.50942 3100 2993 -16522311.84717 3101 2993 -35141450.77543 3102 2993 -8249232.759505 3103 2993 -6796452.760343 3104 2993 -59405262.59501 3105 2993 -35122363.33466 3106 2993 -3477688.1594 3107 2993 -46784482.12185 2994 2994 211997616.0977 2995 2994 -39393900.1084 2996 2994 -3413716.048555 3078 2994 -22947065.82609 3079 2994 13950663.58603 3080 2994 14524128.39085 3099 2994 -12459292.61054 3100 2994 -6741219.065078 3101 2994 -8390398.615294 3102 2994 -43395797.04293 3103 2994 4799336.420127 3104 2994 34962619.29382 3105 2994 16190599.92148 3106 2994 -12008780.94108 3107 2994 -6087251.846918 2995 2995 226901221.6519 2996 2995 -1664866.130388 3078 2995 13950663.58603 3079 2995 -26849141.47444 3080 2995 -16522311.84717 3099 2995 -491219.0630252 3100 2995 -42437364.5597 3101 2995 -32885700.12302 3102 2995 -1450663.581925 3103 2995 -11874987.66155 3104 2995 3188978.509455 3105 2995 -12008780.94108 3106 2995 18549938.1376 3107 2995 6219033.460737 2996 2996 247132446.5815 3078 2996 14524128.39085 3079 2996 -16522311.84717 3080 2996 -28861128.50774 3099 2996 -2669843.056674 3100 2996 -32885700.12303 3101 2996 -42431477.18089 3102 2996 34962619.2928 3103 2996 -3477688.1594 3104 2996 -46784482.12185 3105 2996 5696741.206702 3106 2996 -7114299.870405 3107 2996 -48887060.34441 2997 2997 638651984.0764 2998 2997 62499999.98975 2999 2997 26315015.78297 3000 2997 -359433069.0472 3001 2997 -62526347.59063 3002 2997 -26303693.13048 3003 2997 4145599.03273 3004 2997 50026347.59267 3005 2997 -21269642.01197 3108 2997 88021012.11513 3109 2997 15625000.00514 3110 2997 19639605.71133 3111 2997 -121308672.7549 3112 2997 -15631586.90535 3113 2997 -67766682.33182 3114 2997 -21749648.26534 3115 2997 12506586.90433 3116 2997 -17353145.19621 2998 2998 544867478.3976 2999 2998 -68597520.2745 3000 2998 -62539521.39107 3001 2998 -65598146.14324 3002 2998 -38004027.78497 3003 2998 75039521.38901 3004 2998 4145599.032734 3005 2998 23877447.844 3108 2998 15625000.00514 3109 2998 64574885.68388 3110 2998 -6700809.891648 3111 2998 -15634880.35547 3112 2998 -47849941.99273 3113 2998 -21743418.55177 3114 2998 18759880.3565 3115 2998 -21749648.26534 3116 2998 20823318.70445 2999 2999 581180607.3115 3000 2999 -26298031.80422 3001 2999 -30593489.61466 3002 2999 -36647251.12535 3003 2999 -31904463.01796 3004 2999 15918298.56266 3005 2999 11054930.75394 3108 2999 -4768139.577623 3109 2999 -26226783.67725 3110 2999 -45750138.7209 3111 2999 -67422475.35311 3112 2999 -19819673.42971 3113 2999 -93029560.64943 3114 2999 -26029717.79432 3115 2999 13882212.46963 3116 2999 -57999062.0409 3000 3000 1094265961.25 3001 3000 62565868.99196 3002 3000 30858520.46735 3003 3000 9522774.467089 3004 3000 -62526347.59063 3005 3000 26698619.14673 3006 3000 -248524227.8966 3007 3000 5.185604095459e-06 3008 3000 -4571811.315691 3009 3000 -97883025.962 3010 3000 62499999.98974 3011 3000 -26687657.68648 3108 3000 -108451246.8934 3109 3000 -15634880.35547 3110 3000 54616251.09168 3111 3000 166227659.6012 3112 3000 15641467.2557 3113 3000 7711642.939084 3114 3000 -41196855.08124 3115 3000 -15631586.90536 3116 3000 21974855.62738 3117 3000 -92328809.14057 3118 3000 5.915760993958e-06 3119 3000 -62317692.40268 3120 3000 -38047023.33633 3121 3000 15625000.00513 3122 3000 -21965599.32574 3001 3001 925477565.1068 3002 3001 -85034510.41928 3003 3001 -62539521.39107 3004 3001 -209278615.3833 3005 3001 45543422.51828 3006 3001 4.678964614868e-06 3007 3001 26477385.19127 3008 3001 -27430243.21608 3009 3001 62499999.98974 3010 3001 -79132053.33673 3011 3001 14949496.6079 3108 3001 -15631586.90536 3109 3001 -34992516.13117 3110 3001 4591649.47589 3111 3001 15641467.2557 3112 3001 124030560.5447 3113 3001 -21261017.33538 3114 3001 -15634880.35547 3115 3001 -95897202.5708 3116 3001 60337907.00837 3117 3001 4.619359970093e-06 3118 3001 -23578405.83475 3119 3001 -6857560.807395 3120 3001 15625000.00513 3121 3001 -33359280.17771 3122 3001 15972183.1856 3002 3002 898921811.1224 3003 3002 27046981.82107 3004 3002 53228121.77035 3005 3002 1137131.864082 3006 3002 -4571811.315691 3007 3002 -27430243.21608 3008 3002 34500404.96993 3009 3002 -27030539.6307 3010 3002 15223802.16328 3011 3002 -36714051.95871 3108 3002 54272044.11297 3109 3002 2673044.969291 3110 3002 -58743091.68526 3111 3002 7718068.787606 3112 3002 -21255876.71511 3113 3002 -61506429.36468 3114 3002 21979483.77819 3115 3002 61984848.42173 3116 3002 -115922513.565 3117 3002 -61974810.45846 3118 3002 -6857560.807395 3119 3002 -71902237.78217 3120 3002 -21965599.32574 3121 3002 15972183.1856 3122 3002 -45381891.21762 3003 3003 638651984.0764 3004 3003 62499999.98975 3005 3003 26315015.78297 3006 3003 -96528642.2817 3007 3003 -62499999.98975 3008 3003 24744633.97173 3009 3003 -359433069.0472 3010 3003 -62526347.59063 3011 3003 -26303693.13048 3012 3003 4145599.03273 3013 3003 50026347.59267 3014 3003 -21269642.01197 3108 3003 2359203.743841 3109 3003 18759880.3565 3110 3003 10591538.29392 3111 3003 -4242975.331225 3112 3003 -15634880.35547 3113 3003 -8541442.446936 3114 3003 88021012.11513 3115 3003 15625000.00514 3116 3003 19639605.71133 3117 3003 -25660413.08922 3118 3003 -15625000.00513 3119 3003 -9107526.404853 3120 3003 -121308672.7549 3121 3003 -15631586.90535 3122 3003 -67766682.33182 3123 3003 -21749648.26534 3124 3003 12506586.90433 3125 3003 -17353145.19621 3004 3004 544867478.3976 3005 3004 -68597520.2745 3006 3004 -62499999.98975 3007 3004 -77777669.65641 3008 3004 12480746.60817 3009 3004 -62539521.39107 3010 3004 -65598146.14324 3011 3004 -38004027.78497 3012 3004 75039521.38901 3013 3004 4145599.032734 3014 3004 23877447.844 3108 3004 12506586.90433 3109 3004 2359203.743842 3110 3004 -5648902.101029 3111 3004 -15631586.90535 3112 3004 -58943322.82077 3113 3004 -35645020.83586 3114 3004 15625000.00514 3115 3004 64574885.68388 3116 3004 -6700809.891648 3117 3004 -15625000.00513 3118 3004 -20972669.93059 3119 3004 -9114622.378198 3120 3004 -15634880.35547 3121 3004 -47849941.99273 3122 3004 -21743418.55177 3123 3004 18759880.3565 3124 3004 -21749648.26534 3125 3004 20823318.70445 3005 3005 581180607.3115 3006 3005 24401752.02751 3007 3005 12206441.0528 3008 3005 -33102362.14451 3009 3005 -26298031.80422 3010 3005 -30593489.61466 3011 3005 -36647251.12535 3012 3005 -31904463.01796 3013 3005 15918298.56266 3014 3005 11054930.75394 3108 3005 7061025.529277 3109 3005 -8473353.151544 3110 3005 6291209.983575 3111 3005 -8539644.961234 3112 3005 -37291962.41402 3113 3005 -17378834.23163 3114 3005 -4768139.577623 3115 3005 -26226783.67725 3116 3005 -45750138.7209 3117 3005 -9107526.404853 3118 3005 -9114622.378198 3119 3005 -12350930.55863 3120 3005 -67422475.35311 3121 3005 -19819673.42971 3122 3005 -93029560.64943 3123 3005 -26029717.79432 3124 3005 13882212.46963 3125 3005 -57999062.0409 3006 3006 1006407425.409 3007 3006 2.30073928833e-05 3008 3006 9143622.631317 3009 3006 111257601.9543 3010 3006 -1.153349876404e-05 3011 3006 2285905.658962 3015 3006 -248524227.8966 3016 3006 5.185604095459e-06 3017 3006 -4571811.315691 3018 3006 -97883025.962 3019 3006 62499999.98974 3020 3006 -26687657.68648 3111 3006 -89115968.74764 3112 3006 -2.875924110413e-06 3113 3006 60031786.74372 3114 3006 -36905217.31746 3115 3006 -15625000.00514 3116 3006 21394122.91072 3117 3006 137281674.8977 3118 3006 7.092952728271e-06 3119 3006 2285905.658981 3120 3006 -24872960.07894 3121 3006 -1.01625919342e-05 3122 3006 571476.4150351 3126 3006 -92328809.14057 3127 3006 5.915760993958e-06 3128 3006 -62317692.40268 3129 3006 -38047023.33633 3130 3006 15625000.00513 3131 3006 -21965599.32574 3007 3007 856399644.4805 3008 3007 -109720972.8103 3009 3007 -1.239776611328e-05 3010 3007 -126242065.9199 3011 3007 54860486.40512 3015 3007 4.678964614868e-06 3016 3007 26477385.19127 3017 3007 -27430243.21608 3018 3007 62499999.98974 3019 3007 -79132053.33673 3020 3007 14949496.6079 3111 3007 -4.589557647705e-06 3112 3007 -20365565.44178 3113 3007 -6857560.807395 3114 3007 -15625000.00514 3115 3007 -32217474.15883 3116 3007 15286419.29648 3117 3007 6.973743438721e-06 3118 3007 99779729.64718 3119 3007 -27430243.21607 3120 3007 -8.568167686462e-06 3121 3007 -84247877.07676 3122 3007 62654357.71105 3126 3007 4.619359970093e-06 3127 3007 -23578405.83475 3128 3007 -6857560.807395 3129 3007 15625000.00513 3130 3007 -33359280.17771 3131 3007 15972183.1856 3008 3008 889294330.4544 3009 3008 2285905.658962 3010 3008 54860486.40512 3011 3008 48069959.95526 3015 3008 -4571811.315691 3016 3008 -27430243.21608 3017 3008 34500404.96993 3018 3008 -27030539.6307 3019 3008 15223802.16328 3020 3008 -36714051.95871 3111 3008 59688904.7995 3112 3008 -6857560.807395 3113 3008 -63334663.40088 3114 3008 21394122.91072 3115 3008 15286419.29648 3116 3008 -42337075.16724 3117 3008 2285905.658981 3118 3008 -27430243.21607 3119 3008 -82530234.81935 3120 3008 571476.4150354 3121 3008 62380052.15567 3122 3008 -128482138.2218 3126 3008 -61974810.45846 3127 3008 -6857560.807395 3128 3008 -71902237.78217 3129 3008 -21965599.32574 3130 3008 15972183.1856 3131 3008 -45381891.21762 3009 3009 1094265961.25 3010 3009 62565868.99196 3011 3009 30858520.46735 3012 3009 9522774.467089 3013 3009 -62526347.59063 3014 3009 26698619.14673 3015 3009 -96528642.2817 3016 3009 -62499999.98975 3017 3009 24744633.97173 3018 3009 -248524227.8966 3019 3009 5.185604095459e-06 3020 3009 -4571811.315691 3021 3009 -97883025.962 3022 3009 62499999.98974 3023 3009 -26687657.68648 3111 3009 -25195798.91083 3112 3009 15625000.00513 3113 3009 8536049.989829 3114 3009 -108451246.8934 3115 3009 -15634880.35547 3116 3009 54616251.09168 3117 3009 23319097.20481 3118 3009 3.09944152832e-06 3119 3009 571476.4150216 3120 3009 166227659.6012 3121 3009 15641467.2557 3122 3009 7711642.939084 3123 3009 -41196855.08124 3124 3009 -15631586.90536 3125 3009 21974855.62738 3126 3009 -25660413.08922 3127 3009 -15625000.00513 3128 3009 -9107526.404853 3129 3009 -92328809.14057 3130 3009 5.915760993958e-06 3131 3009 -62317692.40268 3132 3009 -38047023.33633 3133 3009 15625000.00513 3134 3009 -21965599.32574 3010 3010 925477565.1068 3011 3010 -85034510.41928 3012 3010 -62539521.39107 3013 3010 -209278615.3833 3014 3010 45543422.51828 3015 3010 -62499999.98975 3016 3010 -77777669.65641 3017 3010 12480746.60817 3018 3010 4.678964614868e-06 3019 3010 26477385.19127 3020 3010 -27430243.21608 3021 3010 62499999.98974 3022 3010 -79132053.33673 3023 3010 14949496.6079 3111 3010 15625000.00513 3112 3010 -20508055.7522 3113 3010 -8428858.489084 3114 3010 -15631586.90536 3115 3010 -34992516.13117 3116 3010 4591649.47589 3117 3010 4.559755325317e-06 3118 3010 -36055819.793 3119 3010 -35224114.49497 3120 3010 15641467.2557 3121 3010 124030560.5447 3122 3010 -21261017.33538 3123 3010 -15634880.35547 3124 3010 -95897202.5708 3125 3010 60337907.00837 3126 3010 -15625000.00513 3127 3010 -20972669.93059 3128 3010 -9114622.378198 3129 3010 4.619359970093e-06 3130 3010 -23578405.83475 3131 3010 -6857560.807395 3132 3010 15625000.00513 3133 3010 -33359280.17771 3134 3010 15972183.1856 3011 3011 898921811.1224 3012 3011 27046981.82107 3013 3011 53228121.77035 3014 3011 1137131.864082 3015 3011 24401752.02751 3016 3011 12206441.0528 3017 3011 -33102362.14451 3018 3011 -4571811.315691 3019 3011 -27430243.21608 3020 3011 34500404.96993 3021 3011 -27030539.6307 3022 3011 15223802.16328 3023 3011 -36714051.95871 3111 3011 8536049.989829 3112 3011 -8428858.489084 3113 3011 -11111959.41625 3114 3011 54272044.11297 3115 3011 2673044.969291 3116 3011 -58743091.68526 3117 3011 571476.4150219 3118 3011 -34949808.93959 3119 3011 30014.53480115 3120 3011 7718068.787606 3121 3011 -21255876.71511 3122 3011 -61506429.36468 3123 3011 21979483.77819 3124 3011 61984848.42173 3125 3011 -115922513.565 3126 3011 -9107526.404853 3127 3011 -9114622.378198 3128 3011 -12350930.55863 3129 3011 -61974810.45846 3130 3011 -6857560.807395 3131 3011 -71902237.78217 3132 3011 -21965599.32574 3133 3011 15972183.1856 3134 3011 -45381891.21762 3012 3012 638651984.0764 3013 3012 62499999.98975 3014 3012 26315015.78297 3018 3012 -96528642.2817 3019 3012 -62499999.98975 3020 3012 24744633.97173 3021 3012 -359433069.0472 3022 3012 -62526347.59063 3023 3012 -26303693.13048 3024 3012 4145599.03273 3025 3012 50026347.59267 3026 3012 -21269642.01197 3114 3012 2359203.743841 3115 3012 18759880.3565 3116 3012 10591538.29392 3120 3012 -4242975.331225 3121 3012 -15634880.35547 3122 3012 -8541442.446936 3123 3012 88021012.11513 3124 3012 15625000.00514 3125 3012 19639605.71133 3129 3012 -25660413.08922 3130 3012 -15625000.00513 3131 3012 -9107526.404853 3132 3012 -121308672.7549 3133 3012 -15631586.90535 3134 3012 -67766682.33182 3135 3012 -21749648.26534 3136 3012 12506586.90433 3137 3012 -17353145.19621 3013 3013 544867478.3976 3014 3013 -68597520.2745 3018 3013 -62499999.98975 3019 3013 -77777669.65641 3020 3013 12480746.60817 3021 3013 -62539521.39107 3022 3013 -65598146.14324 3023 3013 -38004027.78497 3024 3013 75039521.38901 3025 3013 4145599.032734 3026 3013 23877447.844 3114 3013 12506586.90433 3115 3013 2359203.743842 3116 3013 -5648902.101029 3120 3013 -15631586.90535 3121 3013 -58943322.82077 3122 3013 -35645020.83586 3123 3013 15625000.00514 3124 3013 64574885.68388 3125 3013 -6700809.891648 3129 3013 -15625000.00513 3130 3013 -20972669.93059 3131 3013 -9114622.378198 3132 3013 -15634880.35547 3133 3013 -47849941.99273 3134 3013 -21743418.55177 3135 3013 18759880.3565 3136 3013 -21749648.26534 3137 3013 20823318.70445 3014 3014 581180607.3115 3018 3014 24401752.02751 3019 3014 12206441.0528 3020 3014 -33102362.14451 3021 3014 -26298031.80422 3022 3014 -30593489.61466 3023 3014 -36647251.12535 3024 3014 -31904463.01796 3025 3014 15918298.56266 3026 3014 11054930.75394 3114 3014 7061025.529277 3115 3014 -8473353.151544 3116 3014 6291209.983575 3120 3014 -8539644.961234 3121 3014 -37291962.41402 3122 3014 -17378834.23163 3123 3014 -4768139.577623 3124 3014 -26226783.67725 3125 3014 -45750138.7209 3129 3014 -9107526.404853 3130 3014 -9114622.378198 3131 3014 -12350930.55863 3132 3014 -67422475.35311 3133 3014 -19819673.42971 3134 3014 -93029560.64943 3135 3014 -26029717.79432 3136 3014 13882212.46963 3137 3014 -57999062.0409 3015 3015 1006407425.409 3016 3015 2.30073928833e-05 3017 3015 9143622.631317 3018 3015 111257601.9543 3019 3015 -1.153349876404e-05 3020 3015 2285905.658962 3027 3015 -248524227.8966 3028 3015 5.185604095459e-06 3029 3015 -4571811.315691 3030 3015 -97883025.962 3031 3015 62499999.98974 3032 3015 -26687657.68648 3117 3015 -89115968.74764 3118 3015 -2.875924110413e-06 3119 3015 60031786.74372 3120 3015 -36905217.31746 3121 3015 -15625000.00514 3122 3015 21394122.91072 3126 3015 137281674.8977 3127 3015 7.092952728271e-06 3128 3015 2285905.658981 3129 3015 -24872960.07894 3130 3015 -1.01625919342e-05 3131 3015 571476.4150351 3138 3015 -92328809.14057 3139 3015 5.915760993958e-06 3140 3015 -62317692.40268 3141 3015 -38047023.33633 3142 3015 15625000.00513 3143 3015 -21965599.32574 3016 3016 856399644.4805 3017 3016 -109720972.8103 3018 3016 -1.239776611328e-05 3019 3016 -126242065.9199 3020 3016 54860486.40512 3027 3016 4.678964614868e-06 3028 3016 26477385.19127 3029 3016 -27430243.21608 3030 3016 62499999.98974 3031 3016 -79132053.33673 3032 3016 14949496.6079 3117 3016 -4.589557647705e-06 3118 3016 -20365565.44178 3119 3016 -6857560.807395 3120 3016 -15625000.00514 3121 3016 -32217474.15883 3122 3016 15286419.29648 3126 3016 6.973743438721e-06 3127 3016 99779729.64718 3128 3016 -27430243.21607 3129 3016 -8.568167686462e-06 3130 3016 -84247877.07676 3131 3016 62654357.71105 3138 3016 4.619359970093e-06 3139 3016 -23578405.83475 3140 3016 -6857560.807395 3141 3016 15625000.00513 3142 3016 -33359280.17771 3143 3016 15972183.1856 3017 3017 889294330.4544 3018 3017 2285905.658962 3019 3017 54860486.40512 3020 3017 48069959.95526 3027 3017 -4571811.315691 3028 3017 -27430243.21608 3029 3017 34500404.96993 3030 3017 -27030539.6307 3031 3017 15223802.16328 3032 3017 -36714051.95871 3117 3017 59688904.7995 3118 3017 -6857560.807395 3119 3017 -63334663.40088 3120 3017 21394122.91072 3121 3017 15286419.29648 3122 3017 -42337075.16724 3126 3017 2285905.658981 3127 3017 -27430243.21607 3128 3017 -82530234.81935 3129 3017 571476.4150354 3130 3017 62380052.15567 3131 3017 -128482138.2218 3138 3017 -61974810.45846 3139 3017 -6857560.807395 3140 3017 -71902237.78217 3141 3017 -21965599.32574 3142 3017 15972183.1856 3143 3017 -45381891.21762 3018 3018 1006407425.409 3019 3018 2.30073928833e-05 3020 3018 9143622.631317 3021 3018 111257601.9543 3022 3018 -1.153349876404e-05 3023 3018 2285905.658962 3027 3018 -96528642.2817 3028 3018 -62499999.98975 3029 3018 24744633.97173 3030 3018 -248524227.8966 3031 3018 5.185604095459e-06 3032 3018 -4571811.315691 3033 3018 -97883025.962 3034 3018 62499999.98974 3035 3018 -26687657.68648 3117 3018 -25195798.91083 3118 3018 15625000.00513 3119 3018 8536049.989829 3120 3018 -89115968.74764 3121 3018 -2.875924110413e-06 3122 3018 60031786.74372 3123 3018 -36905217.31746 3124 3018 -15625000.00514 3125 3018 21394122.91072 3126 3018 23319097.20481 3127 3018 3.09944152832e-06 3128 3018 571476.4150216 3129 3018 137281674.8977 3130 3018 7.092952728271e-06 3131 3018 2285905.658981 3132 3018 -24872960.07894 3133 3018 -1.01625919342e-05 3134 3018 571476.4150351 3138 3018 -25660413.08922 3139 3018 -15625000.00513 3140 3018 -9107526.404853 3141 3018 -92328809.14057 3142 3018 5.915760993958e-06 3143 3018 -62317692.40268 3144 3018 -38047023.33633 3145 3018 15625000.00513 3146 3018 -21965599.32574 3019 3019 856399644.4805 3020 3019 -109720972.8103 3021 3019 -1.239776611328e-05 3022 3019 -126242065.9199 3023 3019 54860486.40512 3027 3019 -62499999.98975 3028 3019 -77777669.65641 3029 3019 12480746.60817 3030 3019 4.678964614868e-06 3031 3019 26477385.19127 3032 3019 -27430243.21608 3033 3019 62499999.98974 3034 3019 -79132053.33673 3035 3019 14949496.6079 3117 3019 15625000.00513 3118 3019 -20508055.7522 3119 3019 -8428858.489084 3120 3019 -4.589557647705e-06 3121 3019 -20365565.44178 3122 3019 -6857560.807395 3123 3019 -15625000.00514 3124 3019 -32217474.15883 3125 3019 15286419.29648 3126 3019 4.559755325317e-06 3127 3019 -36055819.793 3128 3019 -35224114.49497 3129 3019 6.973743438721e-06 3130 3019 99779729.64718 3131 3019 -27430243.21607 3132 3019 -8.568167686462e-06 3133 3019 -84247877.07676 3134 3019 62654357.71105 3138 3019 -15625000.00513 3139 3019 -20972669.93059 3140 3019 -9114622.378198 3141 3019 4.619359970093e-06 3142 3019 -23578405.83475 3143 3019 -6857560.807395 3144 3019 15625000.00513 3145 3019 -33359280.17771 3146 3019 15972183.1856 3020 3020 889294330.4544 3021 3020 2285905.658962 3022 3020 54860486.40512 3023 3020 48069959.95526 3027 3020 24401752.02751 3028 3020 12206441.0528 3029 3020 -33102362.14451 3030 3020 -4571811.315691 3031 3020 -27430243.21608 3032 3020 34500404.96993 3033 3020 -27030539.6307 3034 3020 15223802.16328 3035 3020 -36714051.95871 3117 3020 8536049.989829 3118 3020 -8428858.489084 3119 3020 -11111959.41625 3120 3020 59688904.7995 3121 3020 -6857560.807395 3122 3020 -63334663.40088 3123 3020 21394122.91072 3124 3020 15286419.29648 3125 3020 -42337075.16724 3126 3020 571476.4150219 3127 3020 -34949808.93959 3128 3020 30014.53480115 3129 3020 2285905.658981 3130 3020 -27430243.21607 3131 3020 -82530234.81935 3132 3020 571476.4150354 3133 3020 62380052.15567 3134 3020 -128482138.2218 3138 3020 -9107526.404853 3139 3020 -9114622.378198 3140 3020 -12350930.55863 3141 3020 -61974810.45846 3142 3020 -6857560.807395 3143 3020 -71902237.78217 3144 3020 -21965599.32574 3145 3020 15972183.1856 3146 3020 -45381891.21762 3021 3021 1094265961.25 3022 3021 62565868.99196 3023 3021 30858520.46735 3024 3021 9522774.467089 3025 3021 -62526347.59063 3026 3021 26698619.14673 3030 3021 -96528642.2817 3031 3021 -62499999.98975 3032 3021 24744633.97173 3033 3021 -248524227.8966 3034 3021 5.185604095459e-06 3035 3021 -4571811.315691 3036 3021 -97883025.962 3037 3021 62499999.98974 3038 3021 -26687657.68648 3120 3021 -25195798.91083 3121 3021 15625000.00513 3122 3021 8536049.989829 3123 3021 -108451246.8934 3124 3021 -15634880.35547 3125 3021 54616251.09168 3129 3021 23319097.20481 3130 3021 3.09944152832e-06 3131 3021 571476.4150216 3132 3021 166227659.6012 3133 3021 15641467.2557 3134 3021 7711642.939084 3135 3021 -41196855.08124 3136 3021 -15631586.90536 3137 3021 21974855.62738 3141 3021 -25660413.08922 3142 3021 -15625000.00513 3143 3021 -9107526.404853 3144 3021 -92328809.14057 3145 3021 5.915760993958e-06 3146 3021 -62317692.40268 3147 3021 -38047023.33633 3148 3021 15625000.00513 3149 3021 -21965599.32574 3022 3022 925477565.1068 3023 3022 -85034510.41928 3024 3022 -62539521.39107 3025 3022 -209278615.3833 3026 3022 45543422.51828 3030 3022 -62499999.98975 3031 3022 -77777669.65641 3032 3022 12480746.60817 3033 3022 4.678964614868e-06 3034 3022 26477385.19127 3035 3022 -27430243.21608 3036 3022 62499999.98974 3037 3022 -79132053.33673 3038 3022 14949496.6079 3120 3022 15625000.00513 3121 3022 -20508055.7522 3122 3022 -8428858.489084 3123 3022 -15631586.90536 3124 3022 -34992516.13117 3125 3022 4591649.47589 3129 3022 4.559755325317e-06 3130 3022 -36055819.793 3131 3022 -35224114.49497 3132 3022 15641467.2557 3133 3022 124030560.5447 3134 3022 -21261017.33538 3135 3022 -15634880.35547 3136 3022 -95897202.5708 3137 3022 60337907.00837 3141 3022 -15625000.00513 3142 3022 -20972669.93059 3143 3022 -9114622.378198 3144 3022 4.619359970093e-06 3145 3022 -23578405.83475 3146 3022 -6857560.807395 3147 3022 15625000.00513 3148 3022 -33359280.17771 3149 3022 15972183.1856 3023 3023 898921811.1224 3024 3023 27046981.82107 3025 3023 53228121.77035 3026 3023 1137131.864082 3030 3023 24401752.02751 3031 3023 12206441.0528 3032 3023 -33102362.14451 3033 3023 -4571811.315691 3034 3023 -27430243.21608 3035 3023 34500404.96993 3036 3023 -27030539.6307 3037 3023 15223802.16328 3038 3023 -36714051.95871 3120 3023 8536049.989829 3121 3023 -8428858.489084 3122 3023 -11111959.41625 3123 3023 54272044.11297 3124 3023 2673044.969291 3125 3023 -58743091.68526 3129 3023 571476.4150219 3130 3023 -34949808.93959 3131 3023 30014.53480115 3132 3023 7718068.787606 3133 3023 -21255876.71511 3134 3023 -61506429.36468 3135 3023 21979483.77819 3136 3023 61984848.42173 3137 3023 -115922513.565 3141 3023 -9107526.404853 3142 3023 -9114622.378198 3143 3023 -12350930.55863 3144 3023 -61974810.45846 3145 3023 -6857560.807395 3146 3023 -71902237.78217 3147 3023 -21965599.32574 3148 3023 15972183.1856 3149 3023 -45381891.21762 3024 3024 638651984.0764 3025 3024 62499999.98975 3026 3024 26315015.78297 3033 3024 -96528642.2817 3034 3024 -62499999.98975 3035 3024 24744633.97173 3036 3024 -359433069.0472 3037 3024 -62526347.59063 3038 3024 -26303693.13048 3039 3024 4145599.03273 3040 3024 50026347.59267 3041 3024 -21269642.01197 3123 3024 2359203.743841 3124 3024 18759880.3565 3125 3024 10591538.29392 3132 3024 -4242975.331225 3133 3024 -15634880.35547 3134 3024 -8541442.446936 3135 3024 88021012.11513 3136 3024 15625000.00514 3137 3024 19639605.71133 3144 3024 -25660413.08922 3145 3024 -15625000.00513 3146 3024 -9107526.404853 3147 3024 -121308672.7549 3148 3024 -15631586.90535 3149 3024 -67766682.33182 3150 3024 -21749648.26534 3151 3024 12506586.90433 3152 3024 -17353145.19621 3025 3025 544867478.3976 3026 3025 -68597520.2745 3033 3025 -62499999.98975 3034 3025 -77777669.65641 3035 3025 12480746.60817 3036 3025 -62539521.39107 3037 3025 -65598146.14324 3038 3025 -38004027.78497 3039 3025 75039521.38901 3040 3025 4145599.032734 3041 3025 23877447.844 3123 3025 12506586.90433 3124 3025 2359203.743842 3125 3025 -5648902.101029 3132 3025 -15631586.90535 3133 3025 -58943322.82077 3134 3025 -35645020.83586 3135 3025 15625000.00514 3136 3025 64574885.68388 3137 3025 -6700809.891648 3144 3025 -15625000.00513 3145 3025 -20972669.93059 3146 3025 -9114622.378198 3147 3025 -15634880.35547 3148 3025 -47849941.99273 3149 3025 -21743418.55177 3150 3025 18759880.3565 3151 3025 -21749648.26534 3152 3025 20823318.70445 3026 3026 581180607.3115 3033 3026 24401752.02751 3034 3026 12206441.0528 3035 3026 -33102362.14451 3036 3026 -26298031.80422 3037 3026 -30593489.61466 3038 3026 -36647251.12535 3039 3026 -31904463.01796 3040 3026 15918298.56266 3041 3026 11054930.75394 3123 3026 7061025.529277 3124 3026 -8473353.151544 3125 3026 6291209.983575 3132 3026 -8539644.961234 3133 3026 -37291962.41402 3134 3026 -17378834.23163 3135 3026 -4768139.577623 3136 3026 -26226783.67725 3137 3026 -45750138.7209 3144 3026 -9107526.404853 3145 3026 -9114622.378198 3146 3026 -12350930.55863 3147 3026 -67422475.35311 3148 3026 -19819673.42971 3149 3026 -93029560.64943 3150 3026 -26029717.79432 3151 3026 13882212.46963 3152 3026 -57999062.0409 3027 3027 1006407425.409 3028 3027 2.30073928833e-05 3029 3027 9143622.631317 3030 3027 111257601.9543 3031 3027 -1.153349876404e-05 3032 3027 2285905.658962 3042 3027 -248524227.8966 3043 3027 5.185604095459e-06 3044 3027 -4571811.315691 3045 3027 -97883025.962 3046 3027 62499999.98974 3047 3027 -26687657.68648 3126 3027 -89115968.74764 3127 3027 -2.875924110413e-06 3128 3027 60031786.74372 3129 3027 -36905217.31746 3130 3027 -15625000.00514 3131 3027 21394122.91072 3138 3027 137281674.8977 3139 3027 7.092952728271e-06 3140 3027 2285905.658981 3141 3027 -24872960.07894 3142 3027 -1.01625919342e-05 3143 3027 571476.4150351 3153 3027 -92328809.14057 3154 3027 5.915760993958e-06 3155 3027 -62317692.40268 3156 3027 -38047023.33633 3157 3027 15625000.00513 3158 3027 -21965599.32574 3028 3028 856399644.4805 3029 3028 -109720972.8103 3030 3028 -1.239776611328e-05 3031 3028 -126242065.9199 3032 3028 54860486.40512 3042 3028 4.678964614868e-06 3043 3028 26477385.19127 3044 3028 -27430243.21608 3045 3028 62499999.98974 3046 3028 -79132053.33673 3047 3028 14949496.6079 3126 3028 -4.589557647705e-06 3127 3028 -20365565.44178 3128 3028 -6857560.807395 3129 3028 -15625000.00514 3130 3028 -32217474.15883 3131 3028 15286419.29648 3138 3028 6.973743438721e-06 3139 3028 99779729.64718 3140 3028 -27430243.21607 3141 3028 -8.568167686462e-06 3142 3028 -84247877.07676 3143 3028 62654357.71105 3153 3028 4.619359970093e-06 3154 3028 -23578405.83475 3155 3028 -6857560.807395 3156 3028 15625000.00513 3157 3028 -33359280.17771 3158 3028 15972183.1856 3029 3029 889294330.4544 3030 3029 2285905.658962 3031 3029 54860486.40512 3032 3029 48069959.95526 3042 3029 -4571811.315691 3043 3029 -27430243.21608 3044 3029 34500404.96993 3045 3029 -27030539.6307 3046 3029 15223802.16328 3047 3029 -36714051.95871 3126 3029 59688904.7995 3127 3029 -6857560.807395 3128 3029 -63334663.40088 3129 3029 21394122.91072 3130 3029 15286419.29648 3131 3029 -42337075.16724 3138 3029 2285905.658981 3139 3029 -27430243.21607 3140 3029 -82530234.81935 3141 3029 571476.4150354 3142 3029 62380052.15567 3143 3029 -128482138.2218 3153 3029 -61974810.45846 3154 3029 -6857560.807395 3155 3029 -71902237.78217 3156 3029 -21965599.32574 3157 3029 15972183.1856 3158 3029 -45381891.21762 3030 3030 1006407425.409 3031 3030 2.30073928833e-05 3032 3030 9143622.631317 3033 3030 111257601.9543 3034 3030 -1.153349876404e-05 3035 3030 2285905.658962 3042 3030 -96528642.2817 3043 3030 -62499999.98975 3044 3030 24744633.97173 3045 3030 -248524227.8966 3046 3030 5.185604095459e-06 3047 3030 -4571811.315691 3048 3030 -97883025.962 3049 3030 62499999.98974 3050 3030 -26687657.68648 3126 3030 -25195798.91083 3127 3030 15625000.00513 3128 3030 8536049.989829 3129 3030 -89115968.74764 3130 3030 -2.875924110413e-06 3131 3030 60031786.74372 3132 3030 -36905217.31746 3133 3030 -15625000.00514 3134 3030 21394122.91072 3138 3030 23319097.20481 3139 3030 3.09944152832e-06 3140 3030 571476.4150216 3141 3030 137281674.8977 3142 3030 7.092952728271e-06 3143 3030 2285905.658981 3144 3030 -24872960.07894 3145 3030 -1.01625919342e-05 3146 3030 571476.4150351 3153 3030 -25660413.08922 3154 3030 -15625000.00513 3155 3030 -9107526.404853 3156 3030 -92328809.14057 3157 3030 5.915760993958e-06 3158 3030 -62317692.40268 3159 3030 -38047023.33633 3160 3030 15625000.00513 3161 3030 -21965599.32574 3031 3031 856399644.4805 3032 3031 -109720972.8103 3033 3031 -1.239776611328e-05 3034 3031 -126242065.9199 3035 3031 54860486.40512 3042 3031 -62499999.98975 3043 3031 -77777669.65641 3044 3031 12480746.60817 3045 3031 4.678964614868e-06 3046 3031 26477385.19127 3047 3031 -27430243.21608 3048 3031 62499999.98974 3049 3031 -79132053.33673 3050 3031 14949496.6079 3126 3031 15625000.00513 3127 3031 -20508055.7522 3128 3031 -8428858.489084 3129 3031 -4.589557647705e-06 3130 3031 -20365565.44178 3131 3031 -6857560.807395 3132 3031 -15625000.00514 3133 3031 -32217474.15883 3134 3031 15286419.29648 3138 3031 4.559755325317e-06 3139 3031 -36055819.793 3140 3031 -35224114.49497 3141 3031 6.973743438721e-06 3142 3031 99779729.64718 3143 3031 -27430243.21607 3144 3031 -8.568167686462e-06 3145 3031 -84247877.07676 3146 3031 62654357.71105 3153 3031 -15625000.00513 3154 3031 -20972669.93059 3155 3031 -9114622.378198 3156 3031 4.619359970093e-06 3157 3031 -23578405.83475 3158 3031 -6857560.807395 3159 3031 15625000.00513 3160 3031 -33359280.17771 3161 3031 15972183.1856 3032 3032 889294330.4544 3033 3032 2285905.658962 3034 3032 54860486.40512 3035 3032 48069959.95526 3042 3032 24401752.02751 3043 3032 12206441.0528 3044 3032 -33102362.14451 3045 3032 -4571811.315691 3046 3032 -27430243.21608 3047 3032 34500404.96993 3048 3032 -27030539.6307 3049 3032 15223802.16328 3050 3032 -36714051.95871 3126 3032 8536049.989829 3127 3032 -8428858.489084 3128 3032 -11111959.41625 3129 3032 59688904.7995 3130 3032 -6857560.807395 3131 3032 -63334663.40088 3132 3032 21394122.91072 3133 3032 15286419.29648 3134 3032 -42337075.16724 3138 3032 571476.4150219 3139 3032 -34949808.93959 3140 3032 30014.53480115 3141 3032 2285905.658981 3142 3032 -27430243.21607 3143 3032 -82530234.81935 3144 3032 571476.4150354 3145 3032 62380052.15567 3146 3032 -128482138.2218 3153 3032 -9107526.404853 3154 3032 -9114622.378198 3155 3032 -12350930.55863 3156 3032 -61974810.45846 3157 3032 -6857560.807395 3158 3032 -71902237.78217 3159 3032 -21965599.32574 3160 3032 15972183.1856 3161 3032 -45381891.21762 3033 3033 1006407425.409 3034 3033 2.30073928833e-05 3035 3033 9143622.631317 3036 3033 111257601.9543 3037 3033 -1.153349876404e-05 3038 3033 2285905.658962 3045 3033 -96528642.2817 3046 3033 -62499999.98975 3047 3033 24744633.97173 3048 3033 -248524227.8966 3049 3033 5.185604095459e-06 3050 3033 -4571811.315691 3051 3033 -97883025.962 3052 3033 62499999.98974 3053 3033 -26687657.68648 3129 3033 -25195798.91083 3130 3033 15625000.00513 3131 3033 8536049.989829 3132 3033 -89115968.74764 3133 3033 -2.875924110413e-06 3134 3033 60031786.74372 3135 3033 -36905217.31746 3136 3033 -15625000.00514 3137 3033 21394122.91072 3141 3033 23319097.20481 3142 3033 3.09944152832e-06 3143 3033 571476.4150216 3144 3033 137281674.8977 3145 3033 7.092952728271e-06 3146 3033 2285905.658981 3147 3033 -24872960.07894 3148 3033 -1.01625919342e-05 3149 3033 571476.4150351 3156 3033 -25660413.08922 3157 3033 -15625000.00513 3158 3033 -9107526.404853 3159 3033 -92328809.14057 3160 3033 5.915760993958e-06 3161 3033 -62317692.40268 3162 3033 -38047023.33633 3163 3033 15625000.00513 3164 3033 -21965599.32574 3034 3034 856399644.4805 3035 3034 -109720972.8103 3036 3034 -1.239776611328e-05 3037 3034 -126242065.9199 3038 3034 54860486.40512 3045 3034 -62499999.98975 3046 3034 -77777669.65641 3047 3034 12480746.60817 3048 3034 4.678964614868e-06 3049 3034 26477385.19127 3050 3034 -27430243.21608 3051 3034 62499999.98974 3052 3034 -79132053.33673 3053 3034 14949496.6079 3129 3034 15625000.00513 3130 3034 -20508055.7522 3131 3034 -8428858.489084 3132 3034 -4.589557647705e-06 3133 3034 -20365565.44178 3134 3034 -6857560.807395 3135 3034 -15625000.00514 3136 3034 -32217474.15883 3137 3034 15286419.29648 3141 3034 4.559755325317e-06 3142 3034 -36055819.793 3143 3034 -35224114.49497 3144 3034 6.973743438721e-06 3145 3034 99779729.64718 3146 3034 -27430243.21607 3147 3034 -8.568167686462e-06 3148 3034 -84247877.07676 3149 3034 62654357.71105 3156 3034 -15625000.00513 3157 3034 -20972669.93059 3158 3034 -9114622.378198 3159 3034 4.619359970093e-06 3160 3034 -23578405.83475 3161 3034 -6857560.807395 3162 3034 15625000.00513 3163 3034 -33359280.17771 3164 3034 15972183.1856 3035 3035 889294330.4544 3036 3035 2285905.658962 3037 3035 54860486.40512 3038 3035 48069959.95526 3045 3035 24401752.02751 3046 3035 12206441.0528 3047 3035 -33102362.14451 3048 3035 -4571811.315691 3049 3035 -27430243.21608 3050 3035 34500404.96993 3051 3035 -27030539.6307 3052 3035 15223802.16328 3053 3035 -36714051.95871 3129 3035 8536049.989829 3130 3035 -8428858.489084 3131 3035 -11111959.41625 3132 3035 59688904.7995 3133 3035 -6857560.807395 3134 3035 -63334663.40088 3135 3035 21394122.91072 3136 3035 15286419.29648 3137 3035 -42337075.16724 3141 3035 571476.4150219 3142 3035 -34949808.93959 3143 3035 30014.53480115 3144 3035 2285905.658981 3145 3035 -27430243.21607 3146 3035 -82530234.81935 3147 3035 571476.4150354 3148 3035 62380052.15567 3149 3035 -128482138.2218 3156 3035 -9107526.404853 3157 3035 -9114622.378198 3158 3035 -12350930.55863 3159 3035 -61974810.45846 3160 3035 -6857560.807395 3161 3035 -71902237.78217 3162 3035 -21965599.32574 3163 3035 15972183.1856 3164 3035 -45381891.21762 3036 3036 1094265961.25 3037 3036 62565868.99196 3038 3036 30858520.46735 3039 3036 9522774.467089 3040 3036 -62526347.59063 3041 3036 26698619.14673 3048 3036 -96528642.2817 3049 3036 -62499999.98975 3050 3036 24744633.97173 3051 3036 -248524227.8966 3052 3036 5.185604095459e-06 3053 3036 -4571811.315691 3054 3036 -97883025.962 3055 3036 62499999.98974 3056 3036 -26687657.68648 3132 3036 -25195798.91083 3133 3036 15625000.00513 3134 3036 8536049.989829 3135 3036 -108451246.8934 3136 3036 -15634880.35547 3137 3036 54616251.09168 3144 3036 23319097.20481 3145 3036 3.09944152832e-06 3146 3036 571476.4150216 3147 3036 166227659.6012 3148 3036 15641467.2557 3149 3036 7711642.939084 3150 3036 -41196855.08124 3151 3036 -15631586.90536 3152 3036 21974855.62738 3159 3036 -25660413.08922 3160 3036 -15625000.00513 3161 3036 -9107526.404853 3162 3036 -92328809.14057 3163 3036 5.915760993958e-06 3164 3036 -62317692.40268 3165 3036 -38047023.33633 3166 3036 15625000.00513 3167 3036 -21965599.32574 3037 3037 925477565.1068 3038 3037 -85034510.41928 3039 3037 -62539521.39107 3040 3037 -209278615.3833 3041 3037 45543422.51828 3048 3037 -62499999.98975 3049 3037 -77777669.65641 3050 3037 12480746.60817 3051 3037 4.678964614868e-06 3052 3037 26477385.19127 3053 3037 -27430243.21608 3054 3037 62499999.98974 3055 3037 -79132053.33673 3056 3037 14949496.6079 3132 3037 15625000.00513 3133 3037 -20508055.7522 3134 3037 -8428858.489084 3135 3037 -15631586.90536 3136 3037 -34992516.13117 3137 3037 4591649.47589 3144 3037 4.559755325317e-06 3145 3037 -36055819.793 3146 3037 -35224114.49497 3147 3037 15641467.2557 3148 3037 124030560.5447 3149 3037 -21261017.33538 3150 3037 -15634880.35547 3151 3037 -95897202.5708 3152 3037 60337907.00837 3159 3037 -15625000.00513 3160 3037 -20972669.93059 3161 3037 -9114622.378198 3162 3037 4.619359970093e-06 3163 3037 -23578405.83475 3164 3037 -6857560.807395 3165 3037 15625000.00513 3166 3037 -33359280.17771 3167 3037 15972183.1856 3038 3038 898921811.1224 3039 3038 27046981.82107 3040 3038 53228121.77035 3041 3038 1137131.864082 3048 3038 24401752.02751 3049 3038 12206441.0528 3050 3038 -33102362.14451 3051 3038 -4571811.315691 3052 3038 -27430243.21608 3053 3038 34500404.96993 3054 3038 -27030539.6307 3055 3038 15223802.16328 3056 3038 -36714051.95871 3132 3038 8536049.989829 3133 3038 -8428858.489084 3134 3038 -11111959.41625 3135 3038 54272044.11297 3136 3038 2673044.969291 3137 3038 -58743091.68526 3144 3038 571476.4150219 3145 3038 -34949808.93959 3146 3038 30014.53480115 3147 3038 7718068.787606 3148 3038 -21255876.71511 3149 3038 -61506429.36468 3150 3038 21979483.77819 3151 3038 61984848.42173 3152 3038 -115922513.565 3159 3038 -9107526.404853 3160 3038 -9114622.378198 3161 3038 -12350930.55863 3162 3038 -61974810.45846 3163 3038 -6857560.807395 3164 3038 -71902237.78217 3165 3038 -21965599.32574 3166 3038 15972183.1856 3167 3038 -45381891.21762 3039 3039 638651984.0764 3040 3039 62499999.98975 3041 3039 26315015.78297 3051 3039 -96528642.2817 3052 3039 -62499999.98975 3053 3039 24744633.97173 3054 3039 -359433069.0472 3055 3039 -62526347.59063 3056 3039 -26303693.13048 3057 3039 4145599.03273 3058 3039 50026347.59267 3059 3039 -21269642.01197 3135 3039 2359203.743841 3136 3039 18759880.3565 3137 3039 10591538.29392 3147 3039 -4242975.331225 3148 3039 -15634880.35547 3149 3039 -8541442.446936 3150 3039 88021012.11513 3151 3039 15625000.00514 3152 3039 19639605.71133 3162 3039 -25660413.08922 3163 3039 -15625000.00513 3164 3039 -9107526.404853 3165 3039 -121308672.7549 3166 3039 -15631586.90535 3167 3039 -67766682.33182 3168 3039 -21749648.26534 3169 3039 12506586.90433 3170 3039 -17353145.19621 3040 3040 544867478.3976 3041 3040 -68597520.2745 3051 3040 -62499999.98975 3052 3040 -77777669.65641 3053 3040 12480746.60817 3054 3040 -62539521.39107 3055 3040 -65598146.14324 3056 3040 -38004027.78497 3057 3040 75039521.38901 3058 3040 4145599.032734 3059 3040 23877447.844 3135 3040 12506586.90433 3136 3040 2359203.743842 3137 3040 -5648902.101029 3147 3040 -15631586.90535 3148 3040 -58943322.82077 3149 3040 -35645020.83586 3150 3040 15625000.00514 3151 3040 64574885.68388 3152 3040 -6700809.891648 3162 3040 -15625000.00513 3163 3040 -20972669.93059 3164 3040 -9114622.378198 3165 3040 -15634880.35547 3166 3040 -47849941.99273 3167 3040 -21743418.55177 3168 3040 18759880.3565 3169 3040 -21749648.26534 3170 3040 20823318.70445 3041 3041 581180607.3115 3051 3041 24401752.02751 3052 3041 12206441.0528 3053 3041 -33102362.14451 3054 3041 -26298031.80422 3055 3041 -30593489.61466 3056 3041 -36647251.12535 3057 3041 -31904463.01796 3058 3041 15918298.56266 3059 3041 11054930.75394 3135 3041 7061025.529277 3136 3041 -8473353.151544 3137 3041 6291209.983575 3147 3041 -8539644.961234 3148 3041 -37291962.41402 3149 3041 -17378834.23163 3150 3041 -4768139.577623 3151 3041 -26226783.67725 3152 3041 -45750138.7209 3162 3041 -9107526.404853 3163 3041 -9114622.378198 3164 3041 -12350930.55863 3165 3041 -67422475.35311 3166 3041 -19819673.42971 3167 3041 -93029560.64943 3168 3041 -26029717.79432 3169 3041 13882212.46963 3170 3041 -57999062.0409 3042 3042 1006407425.409 3043 3042 2.30073928833e-05 3044 3042 9143622.631317 3045 3042 111257601.9543 3046 3042 -1.153349876404e-05 3047 3042 2285905.658962 3060 3042 -248524227.8966 3061 3042 5.185604095459e-06 3062 3042 -4571811.315691 3063 3042 -97883025.962 3064 3042 62499999.98974 3065 3042 -26687657.68648 3138 3042 -89115968.74764 3139 3042 -2.875924110413e-06 3140 3042 60031786.74372 3141 3042 -36905217.31746 3142 3042 -15625000.00514 3143 3042 21394122.91072 3153 3042 137281674.8977 3154 3042 7.092952728271e-06 3155 3042 2285905.658981 3156 3042 -24872960.07894 3157 3042 -1.01625919342e-05 3158 3042 571476.4150351 3171 3042 -92328809.14057 3172 3042 5.915760993958e-06 3173 3042 -62317692.40268 3174 3042 -38047023.33633 3175 3042 15625000.00513 3176 3042 -21965599.32574 3043 3043 856399644.4805 3044 3043 -109720972.8103 3045 3043 -1.239776611328e-05 3046 3043 -126242065.9199 3047 3043 54860486.40512 3060 3043 4.678964614868e-06 3061 3043 26477385.19127 3062 3043 -27430243.21608 3063 3043 62499999.98974 3064 3043 -79132053.33673 3065 3043 14949496.6079 3138 3043 -4.589557647705e-06 3139 3043 -20365565.44178 3140 3043 -6857560.807395 3141 3043 -15625000.00514 3142 3043 -32217474.15883 3143 3043 15286419.29648 3153 3043 6.973743438721e-06 3154 3043 99779729.64718 3155 3043 -27430243.21607 3156 3043 -8.568167686462e-06 3157 3043 -84247877.07676 3158 3043 62654357.71105 3171 3043 4.619359970093e-06 3172 3043 -23578405.83475 3173 3043 -6857560.807395 3174 3043 15625000.00513 3175 3043 -33359280.17771 3176 3043 15972183.1856 3044 3044 889294330.4544 3045 3044 2285905.658962 3046 3044 54860486.40512 3047 3044 48069959.95526 3060 3044 -4571811.315691 3061 3044 -27430243.21608 3062 3044 34500404.96993 3063 3044 -27030539.6307 3064 3044 15223802.16328 3065 3044 -36714051.95871 3138 3044 59688904.7995 3139 3044 -6857560.807395 3140 3044 -63334663.40088 3141 3044 21394122.91072 3142 3044 15286419.29648 3143 3044 -42337075.16724 3153 3044 2285905.658981 3154 3044 -27430243.21607 3155 3044 -82530234.81935 3156 3044 571476.4150354 3157 3044 62380052.15567 3158 3044 -128482138.2218 3171 3044 -61974810.45846 3172 3044 -6857560.807395 3173 3044 -71902237.78217 3174 3044 -21965599.32574 3175 3044 15972183.1856 3176 3044 -45381891.21762 3045 3045 1006407425.409 3046 3045 2.30073928833e-05 3047 3045 9143622.631317 3048 3045 111257601.9543 3049 3045 -1.153349876404e-05 3050 3045 2285905.658962 3060 3045 -96528642.2817 3061 3045 -62499999.98975 3062 3045 24744633.97173 3063 3045 -248524227.8966 3064 3045 5.185604095459e-06 3065 3045 -4571811.315691 3066 3045 -97883025.962 3067 3045 62499999.98974 3068 3045 -26687657.68648 3138 3045 -25195798.91083 3139 3045 15625000.00513 3140 3045 8536049.989829 3141 3045 -89115968.74764 3142 3045 -2.875924110413e-06 3143 3045 60031786.74372 3144 3045 -36905217.31746 3145 3045 -15625000.00514 3146 3045 21394122.91072 3153 3045 23319097.20481 3154 3045 3.09944152832e-06 3155 3045 571476.4150216 3156 3045 137281674.8977 3157 3045 7.092952728271e-06 3158 3045 2285905.658981 3159 3045 -24872960.07894 3160 3045 -1.01625919342e-05 3161 3045 571476.4150351 3171 3045 -25660413.08922 3172 3045 -15625000.00513 3173 3045 -9107526.404853 3174 3045 -92328809.14057 3175 3045 5.915760993958e-06 3176 3045 -62317692.40268 3177 3045 -38047023.33633 3178 3045 15625000.00513 3179 3045 -21965599.32574 3046 3046 856399644.4805 3047 3046 -109720972.8103 3048 3046 -1.239776611328e-05 3049 3046 -126242065.9199 3050 3046 54860486.40512 3060 3046 -62499999.98975 3061 3046 -77777669.65641 3062 3046 12480746.60817 3063 3046 4.678964614868e-06 3064 3046 26477385.19127 3065 3046 -27430243.21608 3066 3046 62499999.98974 3067 3046 -79132053.33673 3068 3046 14949496.6079 3138 3046 15625000.00513 3139 3046 -20508055.7522 3140 3046 -8428858.489084 3141 3046 -4.589557647705e-06 3142 3046 -20365565.44178 3143 3046 -6857560.807395 3144 3046 -15625000.00514 3145 3046 -32217474.15883 3146 3046 15286419.29648 3153 3046 4.559755325317e-06 3154 3046 -36055819.793 3155 3046 -35224114.49497 3156 3046 6.973743438721e-06 3157 3046 99779729.64718 3158 3046 -27430243.21607 3159 3046 -8.568167686462e-06 3160 3046 -84247877.07676 3161 3046 62654357.71105 3171 3046 -15625000.00513 3172 3046 -20972669.93059 3173 3046 -9114622.378198 3174 3046 4.619359970093e-06 3175 3046 -23578405.83475 3176 3046 -6857560.807395 3177 3046 15625000.00513 3178 3046 -33359280.17771 3179 3046 15972183.1856 3047 3047 889294330.4544 3048 3047 2285905.658962 3049 3047 54860486.40512 3050 3047 48069959.95526 3060 3047 24401752.02751 3061 3047 12206441.0528 3062 3047 -33102362.14451 3063 3047 -4571811.315691 3064 3047 -27430243.21608 3065 3047 34500404.96993 3066 3047 -27030539.6307 3067 3047 15223802.16328 3068 3047 -36714051.95871 3138 3047 8536049.989829 3139 3047 -8428858.489084 3140 3047 -11111959.41625 3141 3047 59688904.7995 3142 3047 -6857560.807395 3143 3047 -63334663.40088 3144 3047 21394122.91072 3145 3047 15286419.29648 3146 3047 -42337075.16724 3153 3047 571476.4150219 3154 3047 -34949808.93959 3155 3047 30014.53480115 3156 3047 2285905.658981 3157 3047 -27430243.21607 3158 3047 -82530234.81935 3159 3047 571476.4150354 3160 3047 62380052.15567 3161 3047 -128482138.2218 3171 3047 -9107526.404853 3172 3047 -9114622.378198 3173 3047 -12350930.55863 3174 3047 -61974810.45846 3175 3047 -6857560.807395 3176 3047 -71902237.78217 3177 3047 -21965599.32574 3178 3047 15972183.1856 3179 3047 -45381891.21762 3048 3048 1006407425.409 3049 3048 2.30073928833e-05 3050 3048 9143622.631317 3051 3048 111257601.9543 3052 3048 -1.153349876404e-05 3053 3048 2285905.658962 3063 3048 -96528642.2817 3064 3048 -62499999.98975 3065 3048 24744633.97173 3066 3048 -248524227.8966 3067 3048 5.185604095459e-06 3068 3048 -4571811.315691 3069 3048 -97883025.962 3070 3048 62499999.98974 3071 3048 -26687657.68648 3141 3048 -25195798.91083 3142 3048 15625000.00513 3143 3048 8536049.989829 3144 3048 -89115968.74764 3145 3048 -2.875924110413e-06 3146 3048 60031786.74372 3147 3048 -36905217.31746 3148 3048 -15625000.00514 3149 3048 21394122.91072 3156 3048 23319097.20481 3157 3048 3.09944152832e-06 3158 3048 571476.4150216 3159 3048 137281674.8977 3160 3048 7.092952728271e-06 3161 3048 2285905.658981 3162 3048 -24872960.07894 3163 3048 -1.01625919342e-05 3164 3048 571476.4150351 3174 3048 -25660413.08922 3175 3048 -15625000.00513 3176 3048 -9107526.404853 3177 3048 -92328809.14057 3178 3048 5.915760993958e-06 3179 3048 -62317692.40268 3180 3048 -38047023.33633 3181 3048 15625000.00513 3182 3048 -21965599.32574 3049 3049 856399644.4805 3050 3049 -109720972.8103 3051 3049 -1.239776611328e-05 3052 3049 -126242065.9199 3053 3049 54860486.40512 3063 3049 -62499999.98975 3064 3049 -77777669.65641 3065 3049 12480746.60817 3066 3049 4.678964614868e-06 3067 3049 26477385.19127 3068 3049 -27430243.21608 3069 3049 62499999.98974 3070 3049 -79132053.33673 3071 3049 14949496.6079 3141 3049 15625000.00513 3142 3049 -20508055.7522 3143 3049 -8428858.489084 3144 3049 -4.589557647705e-06 3145 3049 -20365565.44178 3146 3049 -6857560.807395 3147 3049 -15625000.00514 3148 3049 -32217474.15883 3149 3049 15286419.29648 3156 3049 4.559755325317e-06 3157 3049 -36055819.793 3158 3049 -35224114.49497 3159 3049 6.973743438721e-06 3160 3049 99779729.64718 3161 3049 -27430243.21607 3162 3049 -8.568167686462e-06 3163 3049 -84247877.07676 3164 3049 62654357.71105 3174 3049 -15625000.00513 3175 3049 -20972669.93059 3176 3049 -9114622.378198 3177 3049 4.619359970093e-06 3178 3049 -23578405.83475 3179 3049 -6857560.807395 3180 3049 15625000.00513 3181 3049 -33359280.17771 3182 3049 15972183.1856 3050 3050 889294330.4544 3051 3050 2285905.658962 3052 3050 54860486.40512 3053 3050 48069959.95526 3063 3050 24401752.02751 3064 3050 12206441.0528 3065 3050 -33102362.14451 3066 3050 -4571811.315691 3067 3050 -27430243.21608 3068 3050 34500404.96993 3069 3050 -27030539.6307 3070 3050 15223802.16328 3071 3050 -36714051.95871 3141 3050 8536049.989829 3142 3050 -8428858.489084 3143 3050 -11111959.41625 3144 3050 59688904.7995 3145 3050 -6857560.807395 3146 3050 -63334663.40088 3147 3050 21394122.91072 3148 3050 15286419.29648 3149 3050 -42337075.16724 3156 3050 571476.4150219 3157 3050 -34949808.93959 3158 3050 30014.53480115 3159 3050 2285905.658981 3160 3050 -27430243.21607 3161 3050 -82530234.81935 3162 3050 571476.4150354 3163 3050 62380052.15567 3164 3050 -128482138.2218 3174 3050 -9107526.404853 3175 3050 -9114622.378198 3176 3050 -12350930.55863 3177 3050 -61974810.45846 3178 3050 -6857560.807395 3179 3050 -71902237.78217 3180 3050 -21965599.32574 3181 3050 15972183.1856 3182 3050 -45381891.21762 3051 3051 1006407425.409 3052 3051 2.30073928833e-05 3053 3051 9143622.631317 3054 3051 111257601.9543 3055 3051 -1.153349876404e-05 3056 3051 2285905.658962 3066 3051 -96528642.2817 3067 3051 -62499999.98975 3068 3051 24744633.97173 3069 3051 -248524227.8966 3070 3051 5.185604095459e-06 3071 3051 -4571811.315691 3072 3051 -97883025.962 3073 3051 62499999.98974 3074 3051 -26687657.68648 3144 3051 -25195798.91083 3145 3051 15625000.00513 3146 3051 8536049.989829 3147 3051 -89115968.74764 3148 3051 -2.875924110413e-06 3149 3051 60031786.74372 3150 3051 -36905217.31746 3151 3051 -15625000.00514 3152 3051 21394122.91072 3159 3051 23319097.20481 3160 3051 3.09944152832e-06 3161 3051 571476.4150216 3162 3051 137281674.8977 3163 3051 7.092952728271e-06 3164 3051 2285905.658981 3165 3051 -24872960.07894 3166 3051 -1.01625919342e-05 3167 3051 571476.4150351 3177 3051 -25660413.08922 3178 3051 -15625000.00513 3179 3051 -9107526.404853 3180 3051 -92328809.14057 3181 3051 5.915760993958e-06 3182 3051 -62317692.40268 3183 3051 -38047023.33633 3184 3051 15625000.00513 3185 3051 -21965599.32574 3052 3052 856399644.4805 3053 3052 -109720972.8103 3054 3052 -1.239776611328e-05 3055 3052 -126242065.9199 3056 3052 54860486.40512 3066 3052 -62499999.98975 3067 3052 -77777669.65641 3068 3052 12480746.60817 3069 3052 4.678964614868e-06 3070 3052 26477385.19127 3071 3052 -27430243.21608 3072 3052 62499999.98974 3073 3052 -79132053.33673 3074 3052 14949496.6079 3144 3052 15625000.00513 3145 3052 -20508055.7522 3146 3052 -8428858.489084 3147 3052 -4.589557647705e-06 3148 3052 -20365565.44178 3149 3052 -6857560.807395 3150 3052 -15625000.00514 3151 3052 -32217474.15883 3152 3052 15286419.29648 3159 3052 4.559755325317e-06 3160 3052 -36055819.793 3161 3052 -35224114.49497 3162 3052 6.973743438721e-06 3163 3052 99779729.64718 3164 3052 -27430243.21607 3165 3052 -8.568167686462e-06 3166 3052 -84247877.07676 3167 3052 62654357.71105 3177 3052 -15625000.00513 3178 3052 -20972669.93059 3179 3052 -9114622.378198 3180 3052 4.619359970093e-06 3181 3052 -23578405.83475 3182 3052 -6857560.807395 3183 3052 15625000.00513 3184 3052 -33359280.17771 3185 3052 15972183.1856 3053 3053 889294330.4544 3054 3053 2285905.658962 3055 3053 54860486.40512 3056 3053 48069959.95526 3066 3053 24401752.02751 3067 3053 12206441.0528 3068 3053 -33102362.14451 3069 3053 -4571811.315691 3070 3053 -27430243.21608 3071 3053 34500404.96993 3072 3053 -27030539.6307 3073 3053 15223802.16328 3074 3053 -36714051.95871 3144 3053 8536049.989829 3145 3053 -8428858.489084 3146 3053 -11111959.41625 3147 3053 59688904.7995 3148 3053 -6857560.807395 3149 3053 -63334663.40088 3150 3053 21394122.91072 3151 3053 15286419.29648 3152 3053 -42337075.16724 3159 3053 571476.4150219 3160 3053 -34949808.93959 3161 3053 30014.53480115 3162 3053 2285905.658981 3163 3053 -27430243.21607 3164 3053 -82530234.81935 3165 3053 571476.4150354 3166 3053 62380052.15567 3167 3053 -128482138.2218 3177 3053 -9107526.404853 3178 3053 -9114622.378198 3179 3053 -12350930.55863 3180 3053 -61974810.45846 3181 3053 -6857560.807395 3182 3053 -71902237.78217 3183 3053 -21965599.32574 3184 3053 15972183.1856 3185 3053 -45381891.21762 3054 3054 1094265961.25 3055 3054 62565868.99196 3056 3054 30858520.46735 3057 3054 9522774.467089 3058 3054 -62526347.59063 3059 3054 26698619.14673 3069 3054 -96528642.2817 3070 3054 -62499999.98975 3071 3054 24744633.97173 3072 3054 -248524227.8966 3073 3054 5.185604095459e-06 3074 3054 -4571811.315691 3075 3054 -97883025.962 3076 3054 62499999.98974 3077 3054 -26687657.68648 3147 3054 -25195798.91083 3148 3054 15625000.00513 3149 3054 8536049.989829 3150 3054 -108451246.8934 3151 3054 -15634880.35547 3152 3054 54616251.09168 3162 3054 23319097.20481 3163 3054 3.09944152832e-06 3164 3054 571476.4150216 3165 3054 166227659.6012 3166 3054 15641467.2557 3167 3054 7711642.939084 3168 3054 -41196855.08124 3169 3054 -15631586.90536 3170 3054 21974855.62738 3180 3054 -25660413.08922 3181 3054 -15625000.00513 3182 3054 -9107526.404853 3183 3054 -92328809.14057 3184 3054 5.915760993958e-06 3185 3054 -62317692.40268 3186 3054 -38047023.33633 3187 3054 15625000.00513 3188 3054 -21965599.32574 3055 3055 925477565.1068 3056 3055 -85034510.41928 3057 3055 -62539521.39107 3058 3055 -209278615.3833 3059 3055 45543422.51828 3069 3055 -62499999.98975 3070 3055 -77777669.65641 3071 3055 12480746.60817 3072 3055 4.678964614868e-06 3073 3055 26477385.19127 3074 3055 -27430243.21608 3075 3055 62499999.98974 3076 3055 -79132053.33673 3077 3055 14949496.6079 3147 3055 15625000.00513 3148 3055 -20508055.7522 3149 3055 -8428858.489084 3150 3055 -15631586.90536 3151 3055 -34992516.13117 3152 3055 4591649.47589 3162 3055 4.559755325317e-06 3163 3055 -36055819.793 3164 3055 -35224114.49497 3165 3055 15641467.2557 3166 3055 124030560.5447 3167 3055 -21261017.33538 3168 3055 -15634880.35547 3169 3055 -95897202.5708 3170 3055 60337907.00837 3180 3055 -15625000.00513 3181 3055 -20972669.93059 3182 3055 -9114622.378198 3183 3055 4.619359970093e-06 3184 3055 -23578405.83475 3185 3055 -6857560.807395 3186 3055 15625000.00513 3187 3055 -33359280.17771 3188 3055 15972183.1856 3056 3056 898921811.1224 3057 3056 27046981.82107 3058 3056 53228121.77035 3059 3056 1137131.864082 3069 3056 24401752.02751 3070 3056 12206441.0528 3071 3056 -33102362.14451 3072 3056 -4571811.315691 3073 3056 -27430243.21608 3074 3056 34500404.96993 3075 3056 -27030539.6307 3076 3056 15223802.16328 3077 3056 -36714051.95871 3147 3056 8536049.989829 3148 3056 -8428858.489084 3149 3056 -11111959.41625 3150 3056 54272044.11297 3151 3056 2673044.969291 3152 3056 -58743091.68526 3162 3056 571476.4150219 3163 3056 -34949808.93959 3164 3056 30014.53480115 3165 3056 7718068.787606 3166 3056 -21255876.71511 3167 3056 -61506429.36468 3168 3056 21979483.77819 3169 3056 61984848.42173 3170 3056 -115922513.565 3180 3056 -9107526.404853 3181 3056 -9114622.378198 3182 3056 -12350930.55863 3183 3056 -61974810.45846 3184 3056 -6857560.807395 3185 3056 -71902237.78217 3186 3056 -21965599.32574 3187 3056 15972183.1856 3188 3056 -45381891.21762 3057 3057 548987475.0633 3058 3057 21307129.89102 3059 3057 -13524506.77974 3072 3057 -96528642.2817 3073 3057 -62499999.98975 3074 3057 24744633.97173 3075 3057 -261847081.0713 3076 3057 -21381581.86031 3077 3057 -1557764.62904 3078 3057 -19854283.06572 3079 3057 50074451.96109 3080 3057 -2748957.564787 3150 3057 2359203.743841 3151 3057 18759880.3565 3152 3057 10591538.29392 3165 3057 -4242975.331225 3166 3057 -15634880.35547 3167 3057 -8541442.446936 3168 3057 72114571.47739 3169 3057 6435466.693849 3170 3057 7686187.419515 3183 3057 -25660413.08922 3184 3057 -15625000.00513 3185 3057 -9107526.404853 3186 3057 -92399313.58557 3187 3057 -6452212.714836 3188 3057 -53750902.19951 3189 3057 -13992108.66804 3190 3057 12516746.0251 3191 3057 -9804889.104296 3058 3058 522858774.3376 3059 3058 -70680941.34799 3072 3058 -62499999.98975 3073 3058 -77777669.65641 3074 3058 12480746.60817 3075 3058 -21418807.84496 3076 3058 13597222.99385 3077 3058 -18755531.55843 3078 3058 75111677.94164 3079 3058 -69119469.18 3080 3058 7813396.322461 3150 3058 12506586.90433 3151 3058 2359203.743842 3152 3058 -5648902.101029 3165 3058 -15631586.90535 3166 3058 -58943322.82077 3167 3058 -35645020.83586 3168 3058 6435466.693849 3169 3058 63209679.55498 3170 3058 -8614720.744595 3183 3058 -15625000.00513 3184 3058 -20972669.93059 3185 3058 -9114622.378198 3186 3058 -6460585.725333 3187 3058 -23045188.60001 3188 3058 -9974370.842673 3189 3058 18775119.03765 3190 3058 -24428737.40027 3191 3058 20328376.47072 3059 3059 514034148.2162 3072 3059 24401752.02751 3073 3059 12206441.0528 3074 3059 -33102362.14451 3075 3059 -9098900.333417 3076 3059 -17656224.35797 3077 3059 2357965.756388 3078 3059 -4123436.347181 3079 3059 6715989.826741 3080 3059 -3679568.727652 3150 3059 7061025.529277 3151 3059 -8473353.151544 3152 3059 6291209.983575 3165 3059 -8539644.961234 3166 3059 -37291962.41402 3167 3059 -17378834.23163 3168 3059 -13632264.79997 3169 3059 -25112324.87446 3170 3059 -49245078.61255 3183 3059 -9107526.404853 3184 3059 -9114622.378198 3185 3059 -12350930.55863 3186 3059 -55464807.37002 3187 3059 -9418406.19857 3188 3059 -65296800.07247 3189 3059 -14707333.65644 3190 3059 16406778.36934 3191 3059 -26875661.04919 3060 3060 1006407425.409 3061 3060 2.30073928833e-05 3062 3060 9143622.631317 3063 3060 111257601.9543 3064 3060 -1.153349876404e-05 3065 3060 2285905.658962 3081 3060 -248524227.8966 3082 3060 5.185604095459e-06 3083 3060 -4571811.315691 3084 3060 -97883025.962 3085 3060 62499999.98974 3086 3060 -26687657.68648 3153 3060 -89115968.74764 3154 3060 -2.875924110413e-06 3155 3060 60031786.74372 3156 3060 -36905217.31746 3157 3060 -15625000.00514 3158 3060 21394122.91072 3171 3060 137281674.8977 3172 3060 7.092952728271e-06 3173 3060 2285905.658981 3174 3060 -24872960.07894 3175 3060 -1.01625919342e-05 3176 3060 571476.4150351 3192 3060 -92328809.14057 3193 3060 5.915760993958e-06 3194 3060 -62317692.40268 3195 3060 -38047023.33633 3196 3060 15625000.00513 3197 3060 -21965599.32574 3061 3061 856399644.4805 3062 3061 -109720972.8103 3063 3061 -1.239776611328e-05 3064 3061 -126242065.9199 3065 3061 54860486.40512 3081 3061 4.678964614868e-06 3082 3061 26477385.19127 3083 3061 -27430243.21608 3084 3061 62499999.98974 3085 3061 -79132053.33673 3086 3061 14949496.6079 3153 3061 -4.589557647705e-06 3154 3061 -20365565.44178 3155 3061 -6857560.807395 3156 3061 -15625000.00514 3157 3061 -32217474.15883 3158 3061 15286419.29648 3171 3061 6.973743438721e-06 3172 3061 99779729.64718 3173 3061 -27430243.21607 3174 3061 -8.568167686462e-06 3175 3061 -84247877.07676 3176 3061 62654357.71105 3192 3061 4.619359970093e-06 3193 3061 -23578405.83475 3194 3061 -6857560.807395 3195 3061 15625000.00513 3196 3061 -33359280.17771 3197 3061 15972183.1856 3062 3062 889294330.4544 3063 3062 2285905.658962 3064 3062 54860486.40512 3065 3062 48069959.95526 3081 3062 -4571811.315691 3082 3062 -27430243.21608 3083 3062 34500404.96993 3084 3062 -27030539.6307 3085 3062 15223802.16328 3086 3062 -36714051.95871 3153 3062 59688904.7995 3154 3062 -6857560.807395 3155 3062 -63334663.40088 3156 3062 21394122.91072 3157 3062 15286419.29648 3158 3062 -42337075.16724 3171 3062 2285905.658981 3172 3062 -27430243.21607 3173 3062 -82530234.81935 3174 3062 571476.4150354 3175 3062 62380052.15567 3176 3062 -128482138.2218 3192 3062 -61974810.45846 3193 3062 -6857560.807395 3194 3062 -71902237.78217 3195 3062 -21965599.32574 3196 3062 15972183.1856 3197 3062 -45381891.21762 3063 3063 1006407425.409 3064 3063 2.30073928833e-05 3065 3063 9143622.631317 3066 3063 111257601.9543 3067 3063 -1.153349876404e-05 3068 3063 2285905.658962 3081 3063 -96528642.2817 3082 3063 -62499999.98975 3083 3063 24744633.97173 3084 3063 -248524227.8966 3085 3063 5.185604095459e-06 3086 3063 -4571811.315691 3087 3063 -97883025.962 3088 3063 62499999.98974 3089 3063 -26687657.68648 3153 3063 -25195798.91083 3154 3063 15625000.00513 3155 3063 8536049.989829 3156 3063 -89115968.74764 3157 3063 -2.875924110413e-06 3158 3063 60031786.74372 3159 3063 -36905217.31746 3160 3063 -15625000.00514 3161 3063 21394122.91072 3171 3063 23319097.20481 3172 3063 3.09944152832e-06 3173 3063 571476.4150216 3174 3063 137281674.8977 3175 3063 7.092952728271e-06 3176 3063 2285905.658981 3177 3063 -24872960.07894 3178 3063 -1.01625919342e-05 3179 3063 571476.4150351 3192 3063 -25660413.08922 3193 3063 -15625000.00513 3194 3063 -9107526.404853 3195 3063 -92328809.14057 3196 3063 5.915760993958e-06 3197 3063 -62317692.40268 3198 3063 -38047023.33633 3199 3063 15625000.00513 3200 3063 -21965599.32574 3064 3064 856399644.4805 3065 3064 -109720972.8103 3066 3064 -1.239776611328e-05 3067 3064 -126242065.9199 3068 3064 54860486.40512 3081 3064 -62499999.98975 3082 3064 -77777669.65641 3083 3064 12480746.60817 3084 3064 4.678964614868e-06 3085 3064 26477385.19127 3086 3064 -27430243.21608 3087 3064 62499999.98974 3088 3064 -79132053.33673 3089 3064 14949496.6079 3153 3064 15625000.00513 3154 3064 -20508055.7522 3155 3064 -8428858.489084 3156 3064 -4.589557647705e-06 3157 3064 -20365565.44178 3158 3064 -6857560.807395 3159 3064 -15625000.00514 3160 3064 -32217474.15883 3161 3064 15286419.29648 3171 3064 4.559755325317e-06 3172 3064 -36055819.793 3173 3064 -35224114.49497 3174 3064 6.973743438721e-06 3175 3064 99779729.64718 3176 3064 -27430243.21607 3177 3064 -8.568167686462e-06 3178 3064 -84247877.07676 3179 3064 62654357.71105 3192 3064 -15625000.00513 3193 3064 -20972669.93059 3194 3064 -9114622.378198 3195 3064 4.619359970093e-06 3196 3064 -23578405.83475 3197 3064 -6857560.807395 3198 3064 15625000.00513 3199 3064 -33359280.17771 3200 3064 15972183.1856 3065 3065 889294330.4544 3066 3065 2285905.658962 3067 3065 54860486.40512 3068 3065 48069959.95526 3081 3065 24401752.02751 3082 3065 12206441.0528 3083 3065 -33102362.14451 3084 3065 -4571811.315691 3085 3065 -27430243.21608 3086 3065 34500404.96993 3087 3065 -27030539.6307 3088 3065 15223802.16328 3089 3065 -36714051.95871 3153 3065 8536049.989829 3154 3065 -8428858.489084 3155 3065 -11111959.41625 3156 3065 59688904.7995 3157 3065 -6857560.807395 3158 3065 -63334663.40088 3159 3065 21394122.91072 3160 3065 15286419.29648 3161 3065 -42337075.16724 3171 3065 571476.4150219 3172 3065 -34949808.93959 3173 3065 30014.53480115 3174 3065 2285905.658981 3175 3065 -27430243.21607 3176 3065 -82530234.81935 3177 3065 571476.4150354 3178 3065 62380052.15567 3179 3065 -128482138.2218 3192 3065 -9107526.404853 3193 3065 -9114622.378198 3194 3065 -12350930.55863 3195 3065 -61974810.45846 3196 3065 -6857560.807395 3197 3065 -71902237.78217 3198 3065 -21965599.32574 3199 3065 15972183.1856 3200 3065 -45381891.21762 3066 3066 1006407425.409 3067 3066 2.30073928833e-05 3068 3066 9143622.631317 3069 3066 111257601.9543 3070 3066 -1.153349876404e-05 3071 3066 2285905.658962 3084 3066 -96528642.2817 3085 3066 -62499999.98975 3086 3066 24744633.97173 3087 3066 -248524227.8966 3088 3066 5.185604095459e-06 3089 3066 -4571811.315691 3090 3066 -97883025.962 3091 3066 62499999.98974 3092 3066 -26687657.68648 3156 3066 -25195798.91083 3157 3066 15625000.00513 3158 3066 8536049.989829 3159 3066 -89115968.74764 3160 3066 -2.875924110413e-06 3161 3066 60031786.74372 3162 3066 -36905217.31746 3163 3066 -15625000.00514 3164 3066 21394122.91072 3174 3066 23319097.20481 3175 3066 3.09944152832e-06 3176 3066 571476.4150216 3177 3066 137281674.8977 3178 3066 7.092952728271e-06 3179 3066 2285905.658981 3180 3066 -24872960.07894 3181 3066 -1.01625919342e-05 3182 3066 571476.4150351 3195 3066 -25660413.08922 3196 3066 -15625000.00513 3197 3066 -9107526.404853 3198 3066 -92328809.14057 3199 3066 5.915760993958e-06 3200 3066 -62317692.40268 3201 3066 -38047023.33633 3202 3066 15625000.00513 3203 3066 -21965599.32574 3067 3067 856399644.4805 3068 3067 -109720972.8103 3069 3067 -1.239776611328e-05 3070 3067 -126242065.9199 3071 3067 54860486.40512 3084 3067 -62499999.98975 3085 3067 -77777669.65641 3086 3067 12480746.60817 3087 3067 4.678964614868e-06 3088 3067 26477385.19127 3089 3067 -27430243.21608 3090 3067 62499999.98974 3091 3067 -79132053.33673 3092 3067 14949496.6079 3156 3067 15625000.00513 3157 3067 -20508055.7522 3158 3067 -8428858.489084 3159 3067 -4.589557647705e-06 3160 3067 -20365565.44178 3161 3067 -6857560.807395 3162 3067 -15625000.00514 3163 3067 -32217474.15883 3164 3067 15286419.29648 3174 3067 4.559755325317e-06 3175 3067 -36055819.793 3176 3067 -35224114.49497 3177 3067 6.973743438721e-06 3178 3067 99779729.64718 3179 3067 -27430243.21607 3180 3067 -8.568167686462e-06 3181 3067 -84247877.07676 3182 3067 62654357.71105 3195 3067 -15625000.00513 3196 3067 -20972669.93059 3197 3067 -9114622.378198 3198 3067 4.619359970093e-06 3199 3067 -23578405.83475 3200 3067 -6857560.807395 3201 3067 15625000.00513 3202 3067 -33359280.17771 3203 3067 15972183.1856 3068 3068 889294330.4544 3069 3068 2285905.658962 3070 3068 54860486.40512 3071 3068 48069959.95526 3084 3068 24401752.02751 3085 3068 12206441.0528 3086 3068 -33102362.14451 3087 3068 -4571811.315691 3088 3068 -27430243.21608 3089 3068 34500404.96993 3090 3068 -27030539.6307 3091 3068 15223802.16328 3092 3068 -36714051.95871 3156 3068 8536049.989829 3157 3068 -8428858.489084 3158 3068 -11111959.41625 3159 3068 59688904.7995 3160 3068 -6857560.807395 3161 3068 -63334663.40088 3162 3068 21394122.91072 3163 3068 15286419.29648 3164 3068 -42337075.16724 3174 3068 571476.4150219 3175 3068 -34949808.93959 3176 3068 30014.53480115 3177 3068 2285905.658981 3178 3068 -27430243.21607 3179 3068 -82530234.81935 3180 3068 571476.4150354 3181 3068 62380052.15567 3182 3068 -128482138.2218 3195 3068 -9107526.404853 3196 3068 -9114622.378198 3197 3068 -12350930.55863 3198 3068 -61974810.45846 3199 3068 -6857560.807395 3200 3068 -71902237.78217 3201 3068 -21965599.32574 3202 3068 15972183.1856 3203 3068 -45381891.21762 3069 3069 1006407425.409 3070 3069 2.30073928833e-05 3071 3069 9143622.631317 3072 3069 111257601.9543 3073 3069 -1.153349876404e-05 3074 3069 2285905.658962 3087 3069 -96528642.2817 3088 3069 -62499999.98975 3089 3069 24744633.97173 3090 3069 -248524227.8966 3091 3069 5.185604095459e-06 3092 3069 -4571811.315691 3093 3069 -97883025.962 3094 3069 62499999.98974 3095 3069 -26687657.68648 3159 3069 -25195798.91083 3160 3069 15625000.00513 3161 3069 8536049.989829 3162 3069 -89115968.74764 3163 3069 -2.875924110413e-06 3164 3069 60031786.74372 3165 3069 -36905217.31746 3166 3069 -15625000.00514 3167 3069 21394122.91072 3177 3069 23319097.20481 3178 3069 3.09944152832e-06 3179 3069 571476.4150216 3180 3069 137281674.8977 3181 3069 7.092952728271e-06 3182 3069 2285905.658981 3183 3069 -24872960.07894 3184 3069 -1.01625919342e-05 3185 3069 571476.4150351 3198 3069 -25660413.08922 3199 3069 -15625000.00513 3200 3069 -9107526.404853 3201 3069 -92328809.14057 3202 3069 5.915760993958e-06 3203 3069 -62317692.40268 3204 3069 -38047023.33633 3205 3069 15625000.00513 3206 3069 -21965599.32574 3070 3070 856399644.4805 3071 3070 -109720972.8103 3072 3070 -1.239776611328e-05 3073 3070 -126242065.9199 3074 3070 54860486.40512 3087 3070 -62499999.98975 3088 3070 -77777669.65641 3089 3070 12480746.60817 3090 3070 4.678964614868e-06 3091 3070 26477385.19127 3092 3070 -27430243.21608 3093 3070 62499999.98974 3094 3070 -79132053.33673 3095 3070 14949496.6079 3159 3070 15625000.00513 3160 3070 -20508055.7522 3161 3070 -8428858.489084 3162 3070 -4.589557647705e-06 3163 3070 -20365565.44178 3164 3070 -6857560.807395 3165 3070 -15625000.00514 3166 3070 -32217474.15883 3167 3070 15286419.29648 3177 3070 4.559755325317e-06 3178 3070 -36055819.793 3179 3070 -35224114.49497 3180 3070 6.973743438721e-06 3181 3070 99779729.64718 3182 3070 -27430243.21607 3183 3070 -8.568167686462e-06 3184 3070 -84247877.07676 3185 3070 62654357.71105 3198 3070 -15625000.00513 3199 3070 -20972669.93059 3200 3070 -9114622.378198 3201 3070 4.619359970093e-06 3202 3070 -23578405.83475 3203 3070 -6857560.807395 3204 3070 15625000.00513 3205 3070 -33359280.17771 3206 3070 15972183.1856 3071 3071 889294330.4544 3072 3071 2285905.658962 3073 3071 54860486.40512 3074 3071 48069959.95526 3087 3071 24401752.02751 3088 3071 12206441.0528 3089 3071 -33102362.14451 3090 3071 -4571811.315691 3091 3071 -27430243.21608 3092 3071 34500404.96993 3093 3071 -27030539.6307 3094 3071 15223802.16328 3095 3071 -36714051.95871 3159 3071 8536049.989829 3160 3071 -8428858.489084 3161 3071 -11111959.41625 3162 3071 59688904.7995 3163 3071 -6857560.807395 3164 3071 -63334663.40088 3165 3071 21394122.91072 3166 3071 15286419.29648 3167 3071 -42337075.16724 3177 3071 571476.4150219 3178 3071 -34949808.93959 3179 3071 30014.53480115 3180 3071 2285905.658981 3181 3071 -27430243.21607 3182 3071 -82530234.81935 3183 3071 571476.4150354 3184 3071 62380052.15567 3185 3071 -128482138.2218 3198 3071 -9107526.404853 3199 3071 -9114622.378198 3200 3071 -12350930.55863 3201 3071 -61974810.45846 3202 3071 -6857560.807395 3203 3071 -71902237.78217 3204 3071 -21965599.32574 3205 3071 15972183.1856 3206 3071 -45381891.21762 3072 3072 1006407425.409 3073 3072 2.30073928833e-05 3074 3072 9143622.631317 3075 3072 111257601.9543 3076 3072 -1.153349876404e-05 3077 3072 2285905.658962 3090 3072 -96528642.2817 3091 3072 -62499999.98975 3092 3072 24744633.97173 3093 3072 -248524227.8966 3094 3072 5.185604095459e-06 3095 3072 -4571811.315691 3096 3072 -97883025.962 3097 3072 62499999.98974 3098 3072 -26687657.68648 3162 3072 -25195798.91083 3163 3072 15625000.00513 3164 3072 8536049.989829 3165 3072 -89115968.74764 3166 3072 -2.875924110413e-06 3167 3072 60031786.74372 3168 3072 -36905217.31746 3169 3072 -15625000.00514 3170 3072 21394122.91072 3180 3072 23319097.20481 3181 3072 3.09944152832e-06 3182 3072 571476.4150216 3183 3072 137281674.8977 3184 3072 7.092952728271e-06 3185 3072 2285905.658981 3186 3072 -24872960.07894 3187 3072 -1.01625919342e-05 3188 3072 571476.4150351 3201 3072 -25660413.08922 3202 3072 -15625000.00513 3203 3072 -9107526.404853 3204 3072 -92328809.14057 3205 3072 5.915760993958e-06 3206 3072 -62317692.40268 3207 3072 -38047023.33633 3208 3072 15625000.00513 3209 3072 -21965599.32574 3073 3073 856399644.4805 3074 3073 -109720972.8103 3075 3073 -1.239776611328e-05 3076 3073 -126242065.9199 3077 3073 54860486.40512 3090 3073 -62499999.98975 3091 3073 -77777669.65641 3092 3073 12480746.60817 3093 3073 4.678964614868e-06 3094 3073 26477385.19127 3095 3073 -27430243.21608 3096 3073 62499999.98974 3097 3073 -79132053.33673 3098 3073 14949496.6079 3162 3073 15625000.00513 3163 3073 -20508055.7522 3164 3073 -8428858.489084 3165 3073 -4.589557647705e-06 3166 3073 -20365565.44178 3167 3073 -6857560.807395 3168 3073 -15625000.00514 3169 3073 -32217474.15883 3170 3073 15286419.29648 3180 3073 4.559755325317e-06 3181 3073 -36055819.793 3182 3073 -35224114.49497 3183 3073 6.973743438721e-06 3184 3073 99779729.64718 3185 3073 -27430243.21607 3186 3073 -8.568167686462e-06 3187 3073 -84247877.07676 3188 3073 62654357.71105 3201 3073 -15625000.00513 3202 3073 -20972669.93059 3203 3073 -9114622.378198 3204 3073 4.619359970093e-06 3205 3073 -23578405.83475 3206 3073 -6857560.807395 3207 3073 15625000.00513 3208 3073 -33359280.17771 3209 3073 15972183.1856 3074 3074 889294330.4544 3075 3074 2285905.658962 3076 3074 54860486.40512 3077 3074 48069959.95526 3090 3074 24401752.02751 3091 3074 12206441.0528 3092 3074 -33102362.14451 3093 3074 -4571811.315691 3094 3074 -27430243.21608 3095 3074 34500404.96993 3096 3074 -27030539.6307 3097 3074 15223802.16328 3098 3074 -36714051.95871 3162 3074 8536049.989829 3163 3074 -8428858.489084 3164 3074 -11111959.41625 3165 3074 59688904.7995 3166 3074 -6857560.807395 3167 3074 -63334663.40088 3168 3074 21394122.91072 3169 3074 15286419.29648 3170 3074 -42337075.16724 3180 3074 571476.4150219 3181 3074 -34949808.93959 3182 3074 30014.53480115 3183 3074 2285905.658981 3184 3074 -27430243.21607 3185 3074 -82530234.81935 3186 3074 571476.4150354 3187 3074 62380052.15567 3188 3074 -128482138.2218 3201 3074 -9107526.404853 3202 3074 -9114622.378198 3203 3074 -12350930.55863 3204 3074 -61974810.45846 3205 3074 -6857560.807395 3206 3074 -71902237.78217 3207 3074 -21965599.32574 3208 3074 15972183.1856 3209 3074 -45381891.21762 3075 3075 954625585.2576 3076 3075 29678719.75277 3077 3075 9105132.755896 3078 3075 -47307070.82524 3079 3075 -84184102.99752 3080 3075 5164900.375931 3093 3075 -96528642.2817 3094 3075 -62499999.98975 3095 3075 24744633.97173 3096 3075 -208808375.5906 3097 3075 19521715.15921 3098 3075 -950281.2899645 3099 3075 -59636163.25621 3100 3075 56402475.93051 3101 3075 -4219483.641776 3165 3075 -25195798.91083 3166 3075 15625000.00513 3167 3075 8536049.989829 3168 3075 -89144937.54779 3169 3075 -6460585.725337 3170 3075 51127453.72743 3183 3075 23319097.20481 3184 3075 3.09944152832e-06 3185 3075 571476.4150216 3186 3075 140900154.1745 3187 3075 8091534.898148 3188 3075 2277246.826934 3189 3075 -36337710.48924 3190 3075 -20431230.61693 3191 3075 17381850.39246 3204 3075 -25660413.08922 3205 3075 -15625000.00513 3206 3075 -9107526.404853 3207 3075 -83880342.47951 3208 3075 4387679.506918 3209 3075 -58292492.12322 3210 3075 -24702531.44058 3211 3075 14412601.93721 3212 3075 -12457232.71543 3076 3076 902985704.5719 3077 3076 -67543036.76971 3078 3076 -84221328.98217 3079 3076 -272339828.8601 3080 3076 10901872.41377 3093 3076 -62499999.98975 3094 3076 -77777669.65641 3095 3076 12480746.60817 3096 3076 19521715.15921 3097 3076 41553709.10479 3098 3076 -16437185.11221 3099 3076 56402475.93051 3100 3076 -108772190.6724 3101 3076 4878966.421197 3165 3076 15625000.00513 3166 3076 -20508055.7522 3167 3076 -8428858.489084 3168 3076 -6452212.714842 3169 3076 -19790812.56221 3170 3076 965606.207854 3183 3076 4.559755325317e-06 3184 3076 -36055819.793 3185 3076 -35224114.49497 3186 3076 8091534.898145 3187 3076 124639359.3474 3188 3076 -16627910.42329 3189 3076 -20439603.62743 3190 3076 -92308791.06968 3191 3076 54241007.71012 3204 3076 -15625000.00513 3205 3076 -20972669.93059 3206 3076 -9114622.378198 3207 3076 4387679.506917 3208 3076 -20509034.904 3209 3076 -314146.4441922 3210 3076 14412601.93721 3211 3076 -35196657.91355 3212 3076 17824166.7884 3077 3077 813405107.3031 3078 3077 5167851.380775 3079 3077 10904504.6108 3080 3077 -27259503.15959 3093 3077 24401752.02751 3094 3077 12206441.0528 3095 3077 -33102362.14451 3096 3077 -8493684.066505 3097 3077 -16437185.1122 3098 3077 42009619.57762 3099 3077 -4219483.641101 3100 3077 4878966.421197 3101 3077 -25105860.06319 3165 3077 8536049.989829 3166 3077 -8428858.489084 3167 3077 -11111959.41625 3168 3077 52841358.89794 3169 3077 972051.0689625 3170 3077 -56618463.97163 3183 3077 571476.4150219 3184 3077 -34949808.93959 3185 3077 30014.53480115 3186 3077 2289414.3277 3187 3077 -15520953.90292 3188 3077 -63976344.06463 3189 3077 17388600.49754 3190 3077 54239559.45527 3191 3077 -75561570.76464 3204 3077 -9107526.404853 3205 3077 -9114622.378198 3206 3077 -12350930.55863 3207 3077 -60006901.8455 3208 3077 -39840.88786912 3209 3077 -71401065.72684 3210 3077 -12457232.71543 3211 3077 17824166.7884 3212 3077 -30882966.90637 3078 3078 563895329.5604 3079 3078 12094082.46684 3080 3078 350095.2308891 3096 3078 -100199889.2755 3097 3078 -61716139.93398 3098 3078 3694588.2501 3099 3078 -138007703.9904 3100 3078 26141729.8893 3101 3078 -1426197.341684 3102 3078 66091143.81331 3103 3078 -23810230.64342 3104 3078 -84364.06685483 3105 3078 -50572046.81022 3106 3078 56400209.26179 3107 3078 -835481.5495841 3168 3078 -10044859.78212 3169 3078 18775119.03765 3170 3078 12646043.37978 3186 3078 -29381178.05408 3187 3078 -20439603.62743 3188 3078 -14862571.67359 3189 3078 44407129.00917 3190 3078 2732061.517723 3191 3078 12772232.20442 3207 3078 -31931434.66587 3208 3078 -15470023.5297 3209 3078 -15179205.07113 3210 3078 -77039196.05297 3211 3078 5859266.438322 3212 3078 -63722944.41981 3213 3078 -7975427.310119 3214 3078 -5702105.11695 3215 3078 8764300.831026 3216 3078 -25052811.64063 3217 3078 14245285.28038 3218 3078 -15798966.36227 3079 3079 697591530.9292 3080 3079 -13690717.22567 3096 3079 -61716139.93398 3097 3079 -67571752.73443 3098 3079 958073.8792971 3099 3079 26141729.8893 3100 3079 104711137.1152 3101 3079 -3780060.244209 3102 3079 1189769.352479 3103 3079 -55490454.62227 3104 3079 514661.2980421 3105 3079 56400209.26179 3106 3079 -63735683.24105 3107 3079 567096.4529157 3168 3079 12516746.0251 3169 3079 -20481488.51436 3170 3079 -13323982.79472 3186 3079 -20431230.61693 3187 3079 -85352258.63453 3188 3079 -48907517.62925 3189 3079 2732061.517722 3190 3079 74751645.69339 3191 3079 384085.0688729 3207 3079 -15470023.5297 3208 3079 -24154401.16993 3209 3079 -12628280.16189 3210 3079 5859266.438323 3211 3079 -15691362.14432 3212 3079 2860835.284096 3213 3079 547894.8851028 3214 3079 -38358437.39327 3215 3079 33460909.06044 3216 3079 14245285.28038 3217 3079 -27731476.33361 3218 3079 16805961.40619 3080 3080 611810183.1273 3096 3080 3694588.250438 3097 3080 958073.8795674 3098 3080 -24420311.97772 3099 3080 -1426197.341683 3100 3080 -3780060.244208 3101 3080 101673342.4859 3102 3080 -84364.06685185 3103 3080 514661.2980419 3104 3080 71753512.71717 3105 3080 -835481.5492466 3106 3080 567096.4529157 3107 3080 910290.6188606 3168 3080 8430695.586522 3169 3080 -16696841.26379 3170 3080 -16349664.0201 3186 3080 -14857154.43812 3187 3080 -48910133.59817 3188 3080 -57010817.60422 3189 3080 -12583392.79142 3190 3080 -6914435.376953 3191 3080 -105490238.163 3207 3080 -15179205.07113 3208 3080 -12628280.16189 3209 3080 -24783666.57282 3210 3080 -63722944.42014 3211 3080 2860835.284773 3212 3080 -82669051.73675 3213 3080 639300.8292051 3214 3080 33460909.06044 3215 3080 -47849796.71078 3216 3080 -15798966.36227 3217 3080 16805961.40619 3218 3080 -31227507.85006 3081 3081 503203712.7044 3082 3081 1.287460327148e-05 3083 3081 4571811.315658 3084 3081 55651374.03849 3085 3081 12499999.99794 3086 3081 -3143071.475793 3171 3081 -89115968.74764 3172 3081 -2.875924110413e-06 3173 3081 60031786.74372 3174 3081 -36905217.31746 3175 3081 -15625000.00514 3176 3081 21394122.91072 3192 3081 68618264.38753 3193 3081 3.814697265625e-06 3194 3081 -11914911.75127 3195 3081 -12436480.03947 3196 3081 3125000.001022 3197 3081 -4050234.016128 3082 3082 428199822.2403 3083 3082 -54860486.40512 3084 3082 -12499999.99795 3085 3082 -63098459.89864 3086 3082 27155937.64705 3171 3082 -4.589557647705e-06 3172 3082 -20365565.44178 3173 3082 -6857560.807395 3174 3082 -15625000.00514 3175 3082 -32217474.15883 3176 3082 15286419.29648 3192 3082 2.026557922363e-06 3193 3082 49867291.76226 3194 3082 -13715121.60804 3195 3082 -3125000.001031 3196 3082 -42123938.53837 3197 3082 31258602.46661 3083 3083 444647165.2272 3084 3083 7143386.85585 3085 3083 27704548.75807 3086 3083 24095174.80784 3171 3083 59688904.7995 3172 3083 -6857560.807395 3173 3083 -63334663.40088 3174 3083 21394122.91072 3175 3083 15286419.29648 3176 3083 -42337075.16724 3192 3083 12486407.68916 3193 3083 -13715121.60804 3194 3083 -41325312.23988 3195 3083 4621710.431164 3196 3083 31258602.46674 3197 3083 -64241069.11092 3084 3084 503203712.7044 3085 3084 1.287460327148e-05 3086 3084 4571811.315658 3087 3084 55651374.03849 3088 3084 12499999.99794 3089 3084 -3143071.475793 3171 3084 -25195798.91083 3172 3084 15625000.00513 3173 3084 8536049.989829 3174 3084 -89115968.74764 3175 3084 -2.875924110413e-06 3176 3084 60031786.74372 3177 3084 -36905217.31746 3178 3084 -15625000.00514 3179 3084 21394122.91072 3192 3084 11659548.6024 3193 3084 -3125000.001025 3194 3084 -1478619.431957 3195 3084 68618264.38753 3196 3084 3.814697265625e-06 3197 3084 -11914911.75127 3198 3084 -12436480.03947 3199 3084 3125000.001022 3200 3084 -4050234.016128 3085 3085 428199822.2403 3086 3085 -54860486.40512 3087 3085 -12499999.99795 3088 3085 -63098459.89864 3089 3085 27155937.64705 3171 3085 15625000.00513 3172 3085 -20508055.7522 3173 3085 -8428858.489084 3174 3085 -4.589557647705e-06 3175 3085 -20365565.44178 3176 3085 -6857560.807395 3177 3085 -15625000.00514 3178 3085 -32217474.15883 3179 3085 15286419.29648 3192 3085 3125000.001029 3193 3085 -18027909.8965 3194 3085 -17543480.85857 3195 3085 2.026557922363e-06 3196 3085 49867291.76226 3197 3085 -13715121.60804 3198 3085 -3125000.001031 3199 3085 -42123938.53837 3200 3085 31258602.46661 3086 3086 444647165.2272 3087 3086 7143386.85585 3088 3086 27704548.75807 3089 3086 24095174.80784 3171 3086 8536049.989829 3172 3086 -8428858.489084 3173 3086 -11111959.41625 3174 3086 59688904.7995 3175 3086 -6857560.807395 3176 3086 -63334663.40088 3177 3086 21394122.91072 3178 3086 15286419.29648 3179 3086 -42337075.16724 3192 3086 2050095.846979 3193 3086 -17543480.85871 3194 3086 15007.26739907 3195 3086 12486407.68916 3196 3086 -13715121.60804 3197 3086 -41325312.23988 3198 3086 4621710.431164 3199 3086 31258602.46674 3200 3086 -64241069.11092 3087 3087 503203712.7044 3088 3087 1.287460327148e-05 3089 3087 4571811.315658 3090 3087 55651374.03849 3091 3087 12499999.99794 3092 3087 -3143071.475793 3174 3087 -25195798.91083 3175 3087 15625000.00513 3176 3087 8536049.989829 3177 3087 -89115968.74764 3178 3087 -2.875924110413e-06 3179 3087 60031786.74372 3180 3087 -36905217.31746 3181 3087 -15625000.00514 3182 3087 21394122.91072 3195 3087 11659548.6024 3196 3087 -3125000.001025 3197 3087 -1478619.431957 3198 3087 68618264.38753 3199 3087 3.814697265625e-06 3200 3087 -11914911.75127 3201 3087 -12436480.03947 3202 3087 3125000.001022 3203 3087 -4050234.016128 3088 3088 428199822.2403 3089 3088 -54860486.40512 3090 3088 -12499999.99795 3091 3088 -63098459.89864 3092 3088 27155937.64705 3174 3088 15625000.00513 3175 3088 -20508055.7522 3176 3088 -8428858.489084 3177 3088 -4.589557647705e-06 3178 3088 -20365565.44178 3179 3088 -6857560.807395 3180 3088 -15625000.00514 3181 3088 -32217474.15883 3182 3088 15286419.29648 3195 3088 3125000.001029 3196 3088 -18027909.8965 3197 3088 -17543480.85857 3198 3088 2.026557922363e-06 3199 3088 49867291.76226 3200 3088 -13715121.60804 3201 3088 -3125000.001031 3202 3088 -42123938.53837 3203 3088 31258602.46661 3089 3089 444647165.2272 3090 3089 7143386.85585 3091 3089 27704548.75807 3092 3089 24095174.80784 3174 3089 8536049.989829 3175 3089 -8428858.489084 3176 3089 -11111959.41625 3177 3089 59688904.7995 3178 3089 -6857560.807395 3179 3089 -63334663.40088 3180 3089 21394122.91072 3181 3089 15286419.29648 3182 3089 -42337075.16724 3195 3089 2050095.846979 3196 3089 -17543480.85871 3197 3089 15007.26739907 3198 3089 12486407.68916 3199 3089 -13715121.60804 3200 3089 -41325312.23988 3201 3089 4621710.431164 3202 3089 31258602.46674 3203 3089 -64241069.11092 3090 3090 503203712.7044 3091 3090 1.287460327148e-05 3092 3090 4571811.315658 3093 3090 55651374.03849 3094 3090 12499999.99794 3095 3090 -3143071.475793 3177 3090 -25195798.91083 3178 3090 15625000.00513 3179 3090 8536049.989829 3180 3090 -89115968.74764 3181 3090 -2.875924110413e-06 3182 3090 60031786.74372 3183 3090 -36905217.31746 3184 3090 -15625000.00514 3185 3090 21394122.91072 3198 3090 11659548.6024 3199 3090 -3125000.001025 3200 3090 -1478619.431957 3201 3090 68618264.38753 3202 3090 3.814697265625e-06 3203 3090 -11914911.75127 3204 3090 -12436480.03947 3205 3090 3125000.001022 3206 3090 -4050234.016128 3091 3091 428199822.2403 3092 3091 -54860486.40512 3093 3091 -12499999.99795 3094 3091 -63098459.89864 3095 3091 27155937.64705 3177 3091 15625000.00513 3178 3091 -20508055.7522 3179 3091 -8428858.489084 3180 3091 -4.589557647705e-06 3181 3091 -20365565.44178 3182 3091 -6857560.807395 3183 3091 -15625000.00514 3184 3091 -32217474.15883 3185 3091 15286419.29648 3198 3091 3125000.001029 3199 3091 -18027909.8965 3200 3091 -17543480.85857 3201 3091 2.026557922363e-06 3202 3091 49867291.76226 3203 3091 -13715121.60804 3204 3091 -3125000.001031 3205 3091 -42123938.53837 3206 3091 31258602.46661 3092 3092 444647165.2272 3093 3092 7143386.85585 3094 3092 27704548.75807 3095 3092 24095174.80784 3177 3092 8536049.989829 3178 3092 -8428858.489084 3179 3092 -11111959.41625 3180 3092 59688904.7995 3181 3092 -6857560.807395 3182 3092 -63334663.40088 3183 3092 21394122.91072 3184 3092 15286419.29648 3185 3092 -42337075.16724 3198 3092 2050095.846979 3199 3092 -17543480.85871 3200 3092 15007.26739907 3201 3092 12486407.68916 3202 3092 -13715121.60804 3203 3092 -41325312.23988 3204 3092 4621710.431164 3205 3092 31258602.46674 3206 3092 -64241069.11092 3093 3093 503203712.7044 3094 3093 1.287460327148e-05 3095 3093 4571811.315658 3096 3093 55651374.03849 3097 3093 12499999.99794 3098 3093 -3143071.475793 3180 3093 -25195798.91083 3181 3093 15625000.00513 3182 3093 8536049.989829 3183 3093 -89115968.74764 3184 3093 -2.875924110413e-06 3185 3093 60031786.74372 3186 3093 -36905217.31746 3187 3093 -15625000.00514 3188 3093 21394122.91072 3201 3093 11659548.6024 3202 3093 -3125000.001025 3203 3093 -1478619.431957 3204 3093 68618264.38753 3205 3093 3.814697265625e-06 3206 3093 -11914911.75127 3207 3093 -12436480.03947 3208 3093 3125000.001022 3209 3093 -4050234.016128 3094 3094 428199822.2403 3095 3094 -54860486.40512 3096 3094 -12499999.99795 3097 3094 -63098459.89864 3098 3094 27155937.64705 3180 3094 15625000.00513 3181 3094 -20508055.7522 3182 3094 -8428858.489084 3183 3094 -4.589557647705e-06 3184 3094 -20365565.44178 3185 3094 -6857560.807395 3186 3094 -15625000.00514 3187 3094 -32217474.15883 3188 3094 15286419.29648 3201 3094 3125000.001029 3202 3094 -18027909.8965 3203 3094 -17543480.85857 3204 3094 2.026557922363e-06 3205 3094 49867291.76226 3206 3094 -13715121.60804 3207 3094 -3125000.001031 3208 3094 -42123938.53837 3209 3094 31258602.46661 3095 3095 444647165.2272 3096 3095 7143386.85585 3097 3095 27704548.75807 3098 3095 24095174.80784 3180 3095 8536049.989829 3181 3095 -8428858.489084 3182 3095 -11111959.41625 3183 3095 59688904.7995 3184 3095 -6857560.807395 3185 3095 -63334663.40088 3186 3095 21394122.91072 3187 3095 15286419.29648 3188 3095 -42337075.16724 3201 3095 2050095.846979 3202 3095 -17543480.85871 3203 3095 15007.26739907 3204 3095 12486407.68916 3205 3095 -13715121.60804 3206 3095 -41325312.23988 3207 3095 4621710.431164 3208 3095 31258602.46674 3209 3095 -64241069.11092 3096 3096 492641702.9103 3097 3096 783851.8819454 3098 3096 23124528.25251 3099 3096 35525755.89285 3100 3096 -8589427.098965 3101 3096 875956.4485927 3183 3096 -25195798.91083 3184 3096 15625000.00513 3185 3096 8536049.989829 3186 3096 -80462204.18944 3187 3096 4387679.506916 3188 3096 55975129.38452 3189 3096 -33628141.01288 3190 3096 -15470023.52969 3191 3096 17035465.07834 3204 3096 11659548.6024 3205 3096 -3125000.001025 3206 3096 -1478619.431957 3207 3096 63165885.37219 3208 3096 154956.7695463 3209 3096 -7186249.992212 3210 3096 -9680868.333559 3211 3096 -1572612.750872 3212 3096 1692044.416381 3097 3097 431526412.2217 3098 3097 -34701568.81617 3099 3097 -33589427.09486 3100 3097 -86350313.34311 3101 3097 5606495.794132 3183 3097 15625000.00513 3184 3097 -20508055.7522 3185 3097 -8428858.489084 3186 3097 4387679.506913 3187 3097 -17090896.6139 3188 3097 -7874910.331907 3189 3097 -15470023.52969 3190 3097 -25851107.51693 3191 3097 13144289.29101 3204 3097 3125000.001029 3205 3097 -18027909.8965 3206 3097 -17543480.85857 3207 3097 154956.7695445 3208 3097 47507014.2381 3209 3097 -8588328.009523 3210 3097 -7822612.752924 3211 3097 -40170622.93066 3212 3097 30937121.7314 3098 3098 434974977.4793 3099 3098 2933248.114919 3100 3098 5606495.794132 3101 3098 31861370.7746 3183 3098 8536049.989829 3184 3098 -8428858.489084 3185 3098 -11111959.41625 3186 3098 57689539.10866 3187 3098 -7600604.775448 3188 3098 -62286030.28655 3189 3098 17035465.07834 3190 3098 13144289.29101 3191 3098 -29308216.83149 3204 3098 2050095.846979 3205 3098 -17543480.85871 3206 3098 15007.26739907 3207 3098 17900277.78144 3208 3098 -8039716.898502 3209 3098 -51569754.72927 3210 3098 8649301.362094 3211 3098 30937121.73073 3212 3098 -43449921.92941 3099 3099 471121932.3818 3100 3099 20233944.24908 3101 3099 -737926.2288754 3102 3099 -112418921.8 3103 3099 -68599790.71768 3104 3099 878928.1725117 3105 3099 33580044.0569 3106 3099 -588932.2563479 3107 3099 -171624.632228 3186 3099 -21742707.44264 3187 3099 14412601.93721 3188 3099 10306829.79205 3189 3099 -76324678.84597 3190 3099 5859266.438326 3191 3099 63055180.55904 3207 3099 -4475728.404087 3208 3099 -7822612.752925 3209 3099 -7244240.304203 3210 3099 39577919.69218 3211 3099 4372212.886619 3212 3099 -12821762.43463 3213 3099 -39228723.10362 3214 3099 -17004714.72989 3215 3099 20529332.26077 3216 3099 -12888553.538 3217 3099 183246.2206558 3218 3099 1555771.238536 3100 3100 493722084.1344 3101 3100 -9026222.936527 3102 3100 -68599790.71768 3103 3100 -86928261.36223 3104 3100 567096.4529154 3105 3100 -25588932.25224 3106 3100 -86217512.58703 3107 3100 1753724.512503 3186 3100 14412601.93721 3187 3100 -32236833.91562 3188 3100 -15509166.55588 3189 3100 5859266.438325 3190 3100 -14976844.93733 3191 3100 -4699928.603619 3207 3100 -1572612.750872 3208 3100 -34965483.00119 3209 3100 -28168781.0366 3210 3100 4372212.88662 3211 3100 42956376.60637 3212 3100 -2191021.741286 3213 3100 -17004714.72988 3214 3100 -33047443.13223 3215 3100 16805961.40619 3216 3100 -6066753.781397 3217 3100 -42812243.26214 3218 3100 33762936.53119 3101 3101 482504201.0121 3102 3101 878928.1725112 3103 3101 567096.4529154 3104 3101 -22282287.50233 3105 3101 514139.256546 3106 3101 1753724.512503 3107 3101 45122415.38576 3186 3101 10306829.79205 3187 3101 -15509166.55588 3188 3101 -22990102.91187 3189 3101 63055180.55938 3190 3101 -4699928.602806 3191 3101 -80763672.5181 3207 3101 -1315629.191991 3208 3101 -28168781.03741 3209 3101 -29569548.78415 3210 3101 12533862.5612 3211 3101 -2191021.741286 3212 3101 -89714782.17938 3213 3101 20529332.26077 3214 3101 16805961.40619 3215 3101 -36543474.64868 3216 3101 7962090.685931 3217 3101 33762936.53119 3218 3101 -47305010.00354 3102 3102 275061856.1274 3103 3102 73810230.63521 3104 3102 -487105.8403563 3105 3102 -85928078.14503 3106 3102 -6400209.270002 3107 3102 -307458.2653014 3189 3102 -7426816.19884 3190 3102 547894.8851027 3191 3102 -686306.8063924 3210 3102 -38680111.99234 3211 3102 -17004714.72989 3212 3102 -20095667.75257 3213 3102 19662816.22848 3214 3102 18202105.12106 3215 3102 8005635.510344 3216 3102 -44958888.03514 3217 3102 -1745285.276274 3218 3102 -35973660.95138 3103 3103 244299704.588 3104 3103 -514661.2980397 3105 3103 18599790.72589 3106 3103 40925011.39215 3107 3103 -567096.4529139 3189 3103 -5702105.11695 3190 3103 -37809826.28199 3191 3103 -33205757.59528 3210 3103 -17004714.72989 3211 3103 -32498832.02095 3212 3103 -16527371.93809 3213 3103 18202105.12106 3214 3103 11959888.79912 3215 3103 6539090.93299 3216 3103 4504714.725779 3217 3103 -13054230.49401 3218 3103 3194038.600379 3104 3104 279394070.5498 3105 3104 -307458.2652981 3106 3104 -567096.4529139 3107 3104 51950704.22376 3189 3104 -8811306.808046 3190 3104 -33205757.59528 3191 3104 -46386833.74737 3210 3104 -20095667.75257 3211 3104 -16527371.93809 3212 3104 -35080511.68526 3213 3104 -8244364.486988 3214 3104 -6794242.398153 3215 3104 -60632270.38613 3216 3104 -35973660.9524 3217 3104 -3472628.068476 3218 3104 -48308384.17547 3105 3105 232532080.9027 3106 3105 -49411067.73544 3107 3105 -742727.2202297 3189 3105 -24504200.52935 3190 3105 14245285.28038 3191 3105 15375426.00908 3210 3105 -11242720.20522 3211 3105 -6066753.781398 3212 3105 -7723395.426606 3213 3105 -44958888.03514 3214 3105 4504714.725781 3215 3105 35825731.39786 3216 3105 15899808.76754 3217 3105 -12683246.22476 3218 3105 -6411373.091219 3106 3106 238640184.4403 3107 3106 -1753724.512498 3189 3106 14245285.28038 3190 3106 -27182865.22233 3191 3106 -16527371.93809 3210 3106 183246.2206552 3211 3106 -41166409.92937 3212 3106 -32903730.12452 3213 3106 -1745285.276272 3214 3106 -13054230.49401 3215 3106 3194038.60038 3216 3106 -12683246.22476 3217 3106 16597505.64354 3218 3106 6237063.462234 3107 3107 247648589.7832 3189 3107 15375426.00909 3190 3107 -16527371.93809 3191 3107 -29764544.88664 3210 3107 -1659957.923597 3211 3107 -32903730.12452 3212 3107 -42916121.11612 3213 3107 35825731.39701 3214 3107 -3472628.068476 3215 3107 -48308384.17547 3216 3107 6058383.851178 3217 3107 -7096269.868909 3218 3107 -51826949.82756 3108 3108 648741877.3649 3109 3108 62499999.98976 3110 3108 33168324.30835 3111 3108 -355476071.9436 3112 3108 -62523716.6258 3113 3108 -27673319.58105 3114 3108 5797712.423909 3115 3108 50023716.62785 3116 3108 -19897668.89224 3219 3108 76701211.16396 3220 3108 15625000.00514 3221 3108 21009550.22758 3222 3108 -125983237.2565 3223 3108 -15630322.06463 3224 3108 -74621947.50591 3225 3108 -24799837.07904 3226 3108 12505322.06361 3227 3108 -18723479.73292 3109 3109 554960584.1326 3110 3109 -63110559.55319 3111 3109 -62535574.94383 3112 3109 -61649505.13883 3113 3109 -38276277.82281 3114 3109 75035574.94178 3115 3109 5797712.423912 3116 3109 25521217.55499 3219 3109 15625000.00514 3220 3109 53256630.69937 3221 3109 -5602780.460976 3222 3109 -15632983.09438 3223 3109 -52528524.54163 3224 3109 -23113573.91808 3225 3109 18757983.09541 3226 3109 -24799837.07904 3227 3109 22467775.67917 3110 3110 608122864.0228 3111 3110 -24925817.21738 3112 3110 -30317816.4155 3113 3110 -26125989.8053 3114 3110 -29846503.33835 3115 3110 17014145.03666 3116 3110 15460566.46375 3219 3110 -6140600.947398 3220 3110 -27322678.94813 3221 3110 -75919024.90121 3222 3110 -74277994.97009 3223 3110 -21190287.58241 3224 3110 -105509843.5958 3225 3110 -28085219.59939 3226 3110 14978517.11945 3227 3110 -66132898.87745 3111 3111 1110223097.916 3112 3111 62559291.5799 3113 3111 30860259.9917 3114 3111 12838043.85587 3115 3111 -62523716.6258 3116 3111 27041055.07434 3117 3111 -244029558.4996 3118 3111 2.473592758179e-06 3119 3111 -5943336.391493 3120 3111 -96781952.40796 3121 3111 62499999.98974 3122 3111 -27030538.9556 3219 3111 -111681734.2619 3220 3111 -15632983.09438 3221 3111 61472760.90482 3222 3111 149252626.5636 3223 3111 15638305.15389 3224 3111 7711980.245565 3225 3111 -47230742.81426 3226 3111 -15630322.06464 3227 3111 23688071.7797 3228 3111 -97033826.33989 3229 3111 1.400709152222e-06 3230 3111 -69175329.97466 3231 3111 -39900479.57507 3232 3111 15625000.00513 3233 3111 -23680008.71958 3112 3112 941438116.1313 3113 3112 -85033165.29872 3114 3112 -62535574.94383 3115 3112 -205958151.8641 3116 3112 46639478.37137 3117 3112 4.053115844727e-06 3118 3112 30971970.86735 3119 3112 -27430259.42623 3120 3112 62499999.98974 3121 3112 -78031030.26054 3122 3112 15223810.26862 3219 3112 -15630322.06464 3220 3112 -38227021.54706 3221 3112 5963051.430523 3222 3112 15638305.15389 3223 3112 107057171.8061 3224 3112 -21260770.12636 3225 3112 -15632983.09439 3226 3112 -101928593.64 3227 3112 65822290.07648 3228 3112 7.450580596924e-07 3229 3112 -28283463.80681 3230 3112 -6857568.701869 3231 3112 15625000.00513 3232 3112 -35212760.99956 3233 3112 17343714.91106 3113 3113 941510422.8134 3114 3113 26703431.18881 3115 3113 52129838.76531 3116 3113 9972799.741074 3117 3113 -3200280.836388 3118 3113 -27430259.42623 3119 3113 46485699.20007 3120 3113 -26687657.01071 3121 3113 14949504.71271 3122 3113 -33777948.97413 3219 3113 61128808.369 3220 3113 4044385.985747 3221 3113 -67372502.27695 3222 3113 7717756.425008 3223 3113 -21256149.23011 3224 3113 -106755752.9646 3225 3113 23692103.30976 3226 3113 67469018.6918 3227 3113 -132015307.5643 3228 3113 -68832448.03044 3229 3113 -6857568.701869 3230 3113 -84449189.35104 3231 3113 -23680008.71958 3232 3113 17343714.91106 3233 3113 -50324486.557 3114 3114 648741877.3649 3115 3114 62499999.98976 3116 3114 33168324.30835 3117 3114 -95427568.72765 3118 3114 -62499999.98975 3119 3114 24401752.70261 3120 3114 -355476071.9436 3121 3114 -62523716.6258 3122 3114 -27673319.58105 3123 3114 5797712.423909 3124 3114 50023716.62785 3125 3114 -19897668.89224 3219 3114 2016499.187392 3220 3114 18757983.09541 3221 3114 12648670.74487 3222 3114 -6124104.06778 3223 3114 -15632983.09438 3224 3114 -10255693.28227 3225 3114 76701211.16396 3226 3114 15625000.00514 3227 3114 21009550.22758 3228 3114 -26159485.64696 3229 3114 -15625000.00513 3230 3114 -10821935.79869 3231 3114 -125983237.2565 3232 3114 -15630322.06463 3233 3114 -74621947.50591 3234 3114 -24799837.07904 3235 3114 12505322.06361 3236 3114 -18723479.73292 3115 3115 554960584.1326 3116 3115 -63110559.55319 3117 3115 -62499999.98975 3118 3115 -76676646.58022 3119 3115 12206449.1576 3120 3115 -62535574.94383 3121 3115 -61649505.13883 3122 3115 -38276277.82281 3123 3115 75035574.94178 3124 3115 5797712.423912 3125 3115 25521217.55499 3219 3115 12505322.06361 3220 3115 2016499.187392 3221 3115 -6746002.447256 3222 3115 -15630322.06463 3223 3115 -60821954.89356 3224 3115 -41130474.11058 3225 3115 15625000.00514 3226 3115 53256630.69937 3227 3115 -5602780.460976 3228 3115 -15625000.00513 3229 3115 -21471767.07144 3230 3115 -10486146.20919 3231 3115 -15632983.09438 3232 3115 -52528524.54163 3233 3115 -23113573.91808 3234 3115 18757983.09541 3235 3115 -24799837.07904 3236 3115 22467775.67917 3116 3116 608122864.0228 3117 3116 24744634.64751 3118 3116 12480754.71352 3119 3116 -30166259.15992 3120 3116 -24925817.21738 3121 3116 -30317816.4155 3122 3116 -26125989.8053 3123 3116 -29846503.33835 3124 3116 17014145.03666 3125 3116 15460566.46375 3219 3116 8432447.163244 3220 3116 -10119003.67088 3221 3116 5377331.166378 3222 3116 -10253948.8687 3223 3116 -42777202.9092 3224 3116 -22397604.24035 3225 3116 -6140600.947398 3226 3116 -27322678.94813 3227 3116 -75919024.90121 3228 3116 -10821935.79869 3229 3116 -10486146.20919 3230 3116 -13681836.08202 3231 3116 -74277994.97009 3232 3116 -21190287.58241 3233 3116 -105509843.5958 3234 3116 -28085219.59939 3235 3116 14978517.11945 3236 3116 -66132898.87745 3117 3117 1024746089.754 3118 3117 2.086162567139e-05 3119 3117 9143617.227815 3120 3117 115751892.8599 3121 3117 -9.417533874512e-06 3122 3117 2285904.308086 3126 3117 -244029558.4996 3127 3117 2.473592758179e-06 3128 3117 -5943336.391493 3129 3117 -96781952.40796 3130 3117 62499999.98974 3131 3117 -27030538.9556 3222 3117 -93459816.96553 3223 3117 1.579523086548e-06 3224 3117 66889426.94725 3225 3117 -38668381.31079 3226 3117 -15625000.00514 3227 3117 23108532.96245 3228 3117 119183368.3243 3229 3117 4.112720489502e-06 3230 3117 2285903.027438 3231 3117 -32106344.47651 3232 3117 -9.387731552124e-06 3233 3117 571475.757148 3237 3117 -97033826.33989 3238 3117 1.400709152222e-06 3239 3117 -69175329.97466 3240 3117 -39900479.57507 3241 3117 15625000.00513 3242 3117 -23680008.71958 3118 3118 874738712.6486 3119 3118 -109721037.6509 3120 3118 -1.046061515808e-05 3121 3118 -121747792.2491 3122 3118 55957741.04746 3126 3118 4.053115844727e-06 3127 3118 30971970.86735 3128 3118 -27430259.42623 3129 3118 62499999.98974 3130 3118 -78031030.26054 3131 3118 15223810.26862 3222 3118 -6.705522537231e-07 3223 3118 -24709454.43242 3224 3118 -6857568.701869 3225 3118 -15625000.00514 3226 3118 -33980662.73527 3227 3118 16657951.02195 3228 3118 4.053115844727e-06 3229 3118 81681619.73861 3230 3118 -27430274.79396 3231 3118 -8.40425491333e-06 3232 3118 -91481269.86781 3233 3118 68140484.61019 3237 3118 7.450580596924e-07 3238 3118 -28283463.80681 3239 3118 -6857568.701869 3240 3118 15625000.00513 3241 3118 -35212760.99956 3242 3118 17343714.91106 3119 3119 938198180.6514 3120 3119 2285904.308086 3121 3119 53763296.60338 3122 3119 60055040.21296 3126 3119 -3200280.836388 3127 3119 -27430259.42623 3128 3119 46485699.20007 3129 3119 -26687657.01071 3130 3119 14949504.71271 3131 3119 -33777948.97413 3222 3119 66546545.00303 3223 3119 -6857568.701869 3224 3119 -74918497.68596 3225 3119 23108532.96245 3226 3119 16657951.02195 3227 3119 -47038891.18556 3228 3119 2285903.027438 3229 3119 -27430274.79396 3230 3119 -130792022.7266 3231 3119 571475.7571481 3232 3119 67866179.05482 3233 3119 -147771014.9835 3237 3119 -68832448.03044 3238 3119 -6857568.701869 3239 3119 -84449189.35104 3240 3119 -23680008.71958 3241 3119 17343714.91106 3242 3119 -50324486.557 3120 3120 1110223097.916 3121 3120 62559291.5799 3122 3120 30860259.9917 3123 3120 12838043.85587 3124 3120 -62523716.6258 3125 3120 27041055.07434 3126 3120 -95427568.72765 3127 3120 -62499999.98975 3128 3120 24401752.70261 3129 3120 -244029558.4996 3130 3120 2.473592758179e-06 3131 3120 -5943336.391493 3132 3120 -96781952.40796 3133 3120 62499999.98974 3134 3120 -27030538.9556 3222 3120 -25604579.22317 3223 3120 15625000.00514 3224 3120 10250460.04156 3225 3120 -111681734.2619 3226 3120 -15632983.09438 3227 3120 61472760.90482 3228 3120 21503247.52855 3229 3120 3.844499588013e-06 3230 3120 571475.7571353 3231 3120 149252626.5636 3232 3120 15638305.15389 3233 3120 7711980.245565 3234 3120 -47230742.81426 3235 3120 -15630322.06464 3236 3120 23688071.7797 3237 3120 -26159485.64696 3238 3120 -15625000.00513 3239 3120 -10821935.79869 3240 3120 -97033826.33989 3241 3120 1.400709152222e-06 3242 3120 -69175329.97466 3243 3120 -39900479.57507 3244 3120 15625000.00513 3245 3120 -23680008.71958 3121 3121 941438116.1313 3122 3121 -85033165.29872 3123 3121 -62535574.94383 3124 3121 -205958151.8641 3125 3121 46639478.37137 3126 3121 -62499999.98975 3127 3121 -76676646.58022 3128 3121 12206449.1576 3129 3121 4.053115844727e-06 3130 3121 30971970.86735 3131 3121 -27430259.42623 3132 3121 62499999.98974 3133 3121 -78031030.26054 3134 3121 15223810.26862 3222 3121 15625000.00514 3223 3121 -20916860.64765 3224 3121 -9800382.320076 3225 3121 -15630322.06464 3226 3121 -38227021.54706 3227 3121 5963051.430523 3228 3121 5.88595867157e-06 3229 3121 -37871677.86274 3230 3121 -40710209.81623 3231 3121 15638305.15389 3232 3121 107057171.8061 3233 3121 -21260770.12636 3234 3121 -15632983.09439 3235 3121 -101928593.64 3236 3121 65822290.07648 3237 3121 -15625000.00513 3238 3121 -21471767.07144 3239 3121 -10486146.20919 3240 3121 7.450580596924e-07 3241 3121 -28283463.80681 3242 3121 -6857568.701869 3243 3121 15625000.00513 3244 3121 -35212760.99956 3245 3121 17343714.91106 3122 3122 941510422.8134 3123 3122 26703431.18881 3124 3122 52129838.76531 3125 3122 9972799.741074 3126 3122 24744634.64751 3127 3122 12480754.71352 3128 3122 -30166259.15992 3129 3122 -3200280.836388 3130 3122 -27430259.42623 3131 3122 46485699.20007 3132 3122 -26687657.01071 3133 3122 14949504.71271 3134 3122 -33777948.97413 3222 3122 10250460.04156 3223 3122 -9800382.320076 3224 3122 -12202085.61857 3225 3122 61128808.369 3226 3122 4044385.985747 3227 3122 -67372502.27695 3228 3122 571475.7571355 3229 3122 -40435904.26086 3230 3122 -4812102.970013 3231 3122 7717756.425008 3232 3122 -21256149.23011 3233 3122 -106755752.9646 3234 3122 23692103.30976 3235 3122 67469018.6918 3236 3122 -132015307.5643 3237 3122 -10821935.79869 3238 3122 -10486146.20919 3239 3122 -13681836.08202 3240 3122 -68832448.03044 3241 3122 -6857568.701869 3242 3122 -84449189.35104 3243 3122 -23680008.71958 3244 3122 17343714.91106 3245 3122 -50324486.557 3123 3123 648741877.3649 3124 3123 62499999.98976 3125 3123 33168324.30835 3129 3123 -95427568.72765 3130 3123 -62499999.98975 3131 3123 24401752.70261 3132 3123 -355476071.9436 3133 3123 -62523716.6258 3134 3123 -27673319.58105 3135 3123 5797712.423909 3136 3123 50023716.62785 3137 3123 -19897668.89224 3225 3123 2016499.187392 3226 3123 18757983.09541 3227 3123 12648670.74487 3231 3123 -6124104.06778 3232 3123 -15632983.09438 3233 3123 -10255693.28227 3234 3123 76701211.16396 3235 3123 15625000.00514 3236 3123 21009550.22758 3240 3123 -26159485.64696 3241 3123 -15625000.00513 3242 3123 -10821935.79869 3243 3123 -125983237.2565 3244 3123 -15630322.06463 3245 3123 -74621947.50591 3246 3123 -24799837.07904 3247 3123 12505322.06361 3248 3123 -18723479.73292 3124 3124 554960584.1326 3125 3124 -63110559.55319 3129 3124 -62499999.98975 3130 3124 -76676646.58022 3131 3124 12206449.1576 3132 3124 -62535574.94383 3133 3124 -61649505.13883 3134 3124 -38276277.82281 3135 3124 75035574.94178 3136 3124 5797712.423912 3137 3124 25521217.55499 3225 3124 12505322.06361 3226 3124 2016499.187392 3227 3124 -6746002.447256 3231 3124 -15630322.06463 3232 3124 -60821954.89356 3233 3124 -41130474.11058 3234 3124 15625000.00514 3235 3124 53256630.69937 3236 3124 -5602780.460976 3240 3124 -15625000.00513 3241 3124 -21471767.07144 3242 3124 -10486146.20919 3243 3124 -15632983.09438 3244 3124 -52528524.54163 3245 3124 -23113573.91808 3246 3124 18757983.09541 3247 3124 -24799837.07904 3248 3124 22467775.67917 3125 3125 608122864.0228 3129 3125 24744634.64751 3130 3125 12480754.71352 3131 3125 -30166259.15992 3132 3125 -24925817.21738 3133 3125 -30317816.4155 3134 3125 -26125989.8053 3135 3125 -29846503.33835 3136 3125 17014145.03666 3137 3125 15460566.46375 3225 3125 8432447.163244 3226 3125 -10119003.67088 3227 3125 5377331.166378 3231 3125 -10253948.8687 3232 3125 -42777202.9092 3233 3125 -22397604.24035 3234 3125 -6140600.947398 3235 3125 -27322678.94813 3236 3125 -75919024.90121 3240 3125 -10821935.79869 3241 3125 -10486146.20919 3242 3125 -13681836.08202 3243 3125 -74277994.97009 3244 3125 -21190287.58241 3245 3125 -105509843.5958 3246 3125 -28085219.59939 3247 3125 14978517.11945 3248 3125 -66132898.87745 3126 3126 1024746089.754 3127 3126 2.086162567139e-05 3128 3126 9143617.227815 3129 3126 115751892.8599 3130 3126 -9.417533874512e-06 3131 3126 2285904.308086 3138 3126 -244029558.4996 3139 3126 2.473592758179e-06 3140 3126 -5943336.391493 3141 3126 -96781952.40796 3142 3126 62499999.98974 3143 3126 -27030538.9556 3228 3126 -93459816.96553 3229 3126 1.579523086548e-06 3230 3126 66889426.94725 3231 3126 -38668381.31079 3232 3126 -15625000.00514 3233 3126 23108532.96245 3237 3126 119183368.3243 3238 3126 4.112720489502e-06 3239 3126 2285903.027438 3240 3126 -32106344.47651 3241 3126 -9.387731552124e-06 3242 3126 571475.757148 3249 3126 -97033826.33989 3250 3126 1.400709152222e-06 3251 3126 -69175329.97466 3252 3126 -39900479.57507 3253 3126 15625000.00513 3254 3126 -23680008.71958 3127 3127 874738712.6486 3128 3127 -109721037.6509 3129 3127 -1.046061515808e-05 3130 3127 -121747792.2491 3131 3127 55957741.04746 3138 3127 4.053115844727e-06 3139 3127 30971970.86735 3140 3127 -27430259.42623 3141 3127 62499999.98974 3142 3127 -78031030.26054 3143 3127 15223810.26862 3228 3127 -6.705522537231e-07 3229 3127 -24709454.43242 3230 3127 -6857568.701869 3231 3127 -15625000.00514 3232 3127 -33980662.73527 3233 3127 16657951.02195 3237 3127 4.053115844727e-06 3238 3127 81681619.73861 3239 3127 -27430274.79396 3240 3127 -8.40425491333e-06 3241 3127 -91481269.86781 3242 3127 68140484.61019 3249 3127 7.450580596924e-07 3250 3127 -28283463.80681 3251 3127 -6857568.701869 3252 3127 15625000.00513 3253 3127 -35212760.99956 3254 3127 17343714.91106 3128 3128 938198180.6514 3129 3128 2285904.308086 3130 3128 53763296.60338 3131 3128 60055040.21296 3138 3128 -3200280.836388 3139 3128 -27430259.42623 3140 3128 46485699.20007 3141 3128 -26687657.01071 3142 3128 14949504.71271 3143 3128 -33777948.97413 3228 3128 66546545.00303 3229 3128 -6857568.701869 3230 3128 -74918497.68596 3231 3128 23108532.96245 3232 3128 16657951.02195 3233 3128 -47038891.18556 3237 3128 2285903.027438 3238 3128 -27430274.79396 3239 3128 -130792022.7266 3240 3128 571475.7571481 3241 3128 67866179.05482 3242 3128 -147771014.9835 3249 3128 -68832448.03044 3250 3128 -6857568.701869 3251 3128 -84449189.35104 3252 3128 -23680008.71958 3253 3128 17343714.91106 3254 3128 -50324486.557 3129 3129 1024746089.754 3130 3129 2.086162567139e-05 3131 3129 9143617.227815 3132 3129 115751892.8599 3133 3129 -9.417533874512e-06 3134 3129 2285904.308086 3138 3129 -95427568.72765 3139 3129 -62499999.98975 3140 3129 24401752.70261 3141 3129 -244029558.4996 3142 3129 2.473592758179e-06 3143 3129 -5943336.391493 3144 3129 -96781952.40796 3145 3129 62499999.98974 3146 3129 -27030538.9556 3228 3129 -25604579.22317 3229 3129 15625000.00514 3230 3129 10250460.04156 3231 3129 -93459816.96553 3232 3129 1.579523086548e-06 3233 3129 66889426.94725 3234 3129 -38668381.31079 3235 3129 -15625000.00514 3236 3129 23108532.96245 3237 3129 21503247.52855 3238 3129 3.844499588013e-06 3239 3129 571475.7571353 3240 3129 119183368.3243 3241 3129 4.112720489502e-06 3242 3129 2285903.027438 3243 3129 -32106344.47651 3244 3129 -9.387731552124e-06 3245 3129 571475.757148 3249 3129 -26159485.64696 3250 3129 -15625000.00513 3251 3129 -10821935.79869 3252 3129 -97033826.33989 3253 3129 1.400709152222e-06 3254 3129 -69175329.97466 3255 3129 -39900479.57507 3256 3129 15625000.00513 3257 3129 -23680008.71958 3130 3130 874738712.6486 3131 3130 -109721037.6509 3132 3130 -1.046061515808e-05 3133 3130 -121747792.2491 3134 3130 55957741.04746 3138 3130 -62499999.98975 3139 3130 -76676646.58022 3140 3130 12206449.1576 3141 3130 4.053115844727e-06 3142 3130 30971970.86735 3143 3130 -27430259.42623 3144 3130 62499999.98974 3145 3130 -78031030.26054 3146 3130 15223810.26862 3228 3130 15625000.00514 3229 3130 -20916860.64765 3230 3130 -9800382.320076 3231 3130 -6.705522537231e-07 3232 3130 -24709454.43242 3233 3130 -6857568.701869 3234 3130 -15625000.00514 3235 3130 -33980662.73527 3236 3130 16657951.02195 3237 3130 5.88595867157e-06 3238 3130 -37871677.86274 3239 3130 -40710209.81623 3240 3130 4.053115844727e-06 3241 3130 81681619.73861 3242 3130 -27430274.79396 3243 3130 -8.40425491333e-06 3244 3130 -91481269.86781 3245 3130 68140484.61019 3249 3130 -15625000.00513 3250 3130 -21471767.07144 3251 3130 -10486146.20919 3252 3130 7.450580596924e-07 3253 3130 -28283463.80681 3254 3130 -6857568.701869 3255 3130 15625000.00513 3256 3130 -35212760.99956 3257 3130 17343714.91106 3131 3131 938198180.6514 3132 3131 2285904.308086 3133 3131 53763296.60338 3134 3131 60055040.21296 3138 3131 24744634.64751 3139 3131 12480754.71352 3140 3131 -30166259.15992 3141 3131 -3200280.836388 3142 3131 -27430259.42623 3143 3131 46485699.20007 3144 3131 -26687657.01071 3145 3131 14949504.71271 3146 3131 -33777948.97413 3228 3131 10250460.04156 3229 3131 -9800382.320076 3230 3131 -12202085.61857 3231 3131 66546545.00303 3232 3131 -6857568.701869 3233 3131 -74918497.68596 3234 3131 23108532.96245 3235 3131 16657951.02195 3236 3131 -47038891.18556 3237 3131 571475.7571355 3238 3131 -40435904.26086 3239 3131 -4812102.970013 3240 3131 2285903.027438 3241 3131 -27430274.79396 3242 3131 -130792022.7266 3243 3131 571475.7571481 3244 3131 67866179.05482 3245 3131 -147771014.9835 3249 3131 -10821935.79869 3250 3131 -10486146.20919 3251 3131 -13681836.08202 3252 3131 -68832448.03044 3253 3131 -6857568.701869 3254 3131 -84449189.35104 3255 3131 -23680008.71958 3256 3131 17343714.91106 3257 3131 -50324486.557 3132 3132 1110223097.916 3133 3132 62559291.5799 3134 3132 30860259.9917 3135 3132 12838043.85587 3136 3132 -62523716.6258 3137 3132 27041055.07434 3141 3132 -95427568.72765 3142 3132 -62499999.98975 3143 3132 24401752.70261 3144 3132 -244029558.4996 3145 3132 2.473592758179e-06 3146 3132 -5943336.391493 3147 3132 -96781952.40796 3148 3132 62499999.98974 3149 3132 -27030538.9556 3231 3132 -25604579.22317 3232 3132 15625000.00514 3233 3132 10250460.04156 3234 3132 -111681734.2619 3235 3132 -15632983.09438 3236 3132 61472760.90482 3240 3132 21503247.52855 3241 3132 3.844499588013e-06 3242 3132 571475.7571353 3243 3132 149252626.5636 3244 3132 15638305.15389 3245 3132 7711980.245565 3246 3132 -47230742.81426 3247 3132 -15630322.06464 3248 3132 23688071.7797 3252 3132 -26159485.64696 3253 3132 -15625000.00513 3254 3132 -10821935.79869 3255 3132 -97033826.33989 3256 3132 1.400709152222e-06 3257 3132 -69175329.97466 3258 3132 -39900479.57507 3259 3132 15625000.00513 3260 3132 -23680008.71958 3133 3133 941438116.1313 3134 3133 -85033165.29872 3135 3133 -62535574.94383 3136 3133 -205958151.8641 3137 3133 46639478.37137 3141 3133 -62499999.98975 3142 3133 -76676646.58022 3143 3133 12206449.1576 3144 3133 4.053115844727e-06 3145 3133 30971970.86735 3146 3133 -27430259.42623 3147 3133 62499999.98974 3148 3133 -78031030.26054 3149 3133 15223810.26862 3231 3133 15625000.00514 3232 3133 -20916860.64765 3233 3133 -9800382.320076 3234 3133 -15630322.06464 3235 3133 -38227021.54706 3236 3133 5963051.430523 3240 3133 5.88595867157e-06 3241 3133 -37871677.86274 3242 3133 -40710209.81623 3243 3133 15638305.15389 3244 3133 107057171.8061 3245 3133 -21260770.12636 3246 3133 -15632983.09439 3247 3133 -101928593.64 3248 3133 65822290.07648 3252 3133 -15625000.00513 3253 3133 -21471767.07144 3254 3133 -10486146.20919 3255 3133 7.450580596924e-07 3256 3133 -28283463.80681 3257 3133 -6857568.701869 3258 3133 15625000.00513 3259 3133 -35212760.99956 3260 3133 17343714.91106 3134 3134 941510422.8134 3135 3134 26703431.18881 3136 3134 52129838.76531 3137 3134 9972799.741074 3141 3134 24744634.64751 3142 3134 12480754.71352 3143 3134 -30166259.15992 3144 3134 -3200280.836388 3145 3134 -27430259.42623 3146 3134 46485699.20007 3147 3134 -26687657.01071 3148 3134 14949504.71271 3149 3134 -33777948.97413 3231 3134 10250460.04156 3232 3134 -9800382.320076 3233 3134 -12202085.61857 3234 3134 61128808.369 3235 3134 4044385.985747 3236 3134 -67372502.27695 3240 3134 571475.7571355 3241 3134 -40435904.26086 3242 3134 -4812102.970013 3243 3134 7717756.425008 3244 3134 -21256149.23011 3245 3134 -106755752.9646 3246 3134 23692103.30976 3247 3134 67469018.6918 3248 3134 -132015307.5643 3252 3134 -10821935.79869 3253 3134 -10486146.20919 3254 3134 -13681836.08202 3255 3134 -68832448.03044 3256 3134 -6857568.701869 3257 3134 -84449189.35104 3258 3134 -23680008.71958 3259 3134 17343714.91106 3260 3134 -50324486.557 3135 3135 648741877.3649 3136 3135 62499999.98976 3137 3135 33168324.30835 3144 3135 -95427568.72765 3145 3135 -62499999.98975 3146 3135 24401752.70261 3147 3135 -355476071.9436 3148 3135 -62523716.6258 3149 3135 -27673319.58105 3150 3135 5797712.423909 3151 3135 50023716.62785 3152 3135 -19897668.89224 3234 3135 2016499.187392 3235 3135 18757983.09541 3236 3135 12648670.74487 3243 3135 -6124104.06778 3244 3135 -15632983.09438 3245 3135 -10255693.28227 3246 3135 76701211.16396 3247 3135 15625000.00514 3248 3135 21009550.22758 3255 3135 -26159485.64696 3256 3135 -15625000.00513 3257 3135 -10821935.79869 3258 3135 -125983237.2565 3259 3135 -15630322.06463 3260 3135 -74621947.50591 3261 3135 -24799837.07904 3262 3135 12505322.06361 3263 3135 -18723479.73292 3136 3136 554960584.1326 3137 3136 -63110559.55319 3144 3136 -62499999.98975 3145 3136 -76676646.58022 3146 3136 12206449.1576 3147 3136 -62535574.94383 3148 3136 -61649505.13883 3149 3136 -38276277.82281 3150 3136 75035574.94178 3151 3136 5797712.423912 3152 3136 25521217.55499 3234 3136 12505322.06361 3235 3136 2016499.187392 3236 3136 -6746002.447256 3243 3136 -15630322.06463 3244 3136 -60821954.89356 3245 3136 -41130474.11058 3246 3136 15625000.00514 3247 3136 53256630.69937 3248 3136 -5602780.460976 3255 3136 -15625000.00513 3256 3136 -21471767.07144 3257 3136 -10486146.20919 3258 3136 -15632983.09438 3259 3136 -52528524.54163 3260 3136 -23113573.91808 3261 3136 18757983.09541 3262 3136 -24799837.07904 3263 3136 22467775.67917 3137 3137 608122864.0228 3144 3137 24744634.64751 3145 3137 12480754.71352 3146 3137 -30166259.15992 3147 3137 -24925817.21738 3148 3137 -30317816.4155 3149 3137 -26125989.8053 3150 3137 -29846503.33835 3151 3137 17014145.03666 3152 3137 15460566.46375 3234 3137 8432447.163244 3235 3137 -10119003.67088 3236 3137 5377331.166378 3243 3137 -10253948.8687 3244 3137 -42777202.9092 3245 3137 -22397604.24035 3246 3137 -6140600.947398 3247 3137 -27322678.94813 3248 3137 -75919024.90121 3255 3137 -10821935.79869 3256 3137 -10486146.20919 3257 3137 -13681836.08202 3258 3137 -74277994.97009 3259 3137 -21190287.58241 3260 3137 -105509843.5958 3261 3137 -28085219.59939 3262 3137 14978517.11945 3263 3137 -66132898.87745 3138 3138 1024746089.754 3139 3138 2.086162567139e-05 3140 3138 9143617.227815 3141 3138 115751892.8599 3142 3138 -9.417533874512e-06 3143 3138 2285904.308086 3153 3138 -244029558.4996 3154 3138 2.473592758179e-06 3155 3138 -5943336.391493 3156 3138 -96781952.40796 3157 3138 62499999.98974 3158 3138 -27030538.9556 3237 3138 -93459816.96553 3238 3138 1.579523086548e-06 3239 3138 66889426.94725 3240 3138 -38668381.31079 3241 3138 -15625000.00514 3242 3138 23108532.96245 3249 3138 119183368.3243 3250 3138 4.112720489502e-06 3251 3138 2285903.027438 3252 3138 -32106344.47651 3253 3138 -9.387731552124e-06 3254 3138 571475.757148 3264 3138 -97033826.33989 3265 3138 1.400709152222e-06 3266 3138 -69175329.97466 3267 3138 -39900479.57507 3268 3138 15625000.00513 3269 3138 -23680008.71958 3139 3139 874738712.6486 3140 3139 -109721037.6509 3141 3139 -1.046061515808e-05 3142 3139 -121747792.2491 3143 3139 55957741.04746 3153 3139 4.053115844727e-06 3154 3139 30971970.86735 3155 3139 -27430259.42623 3156 3139 62499999.98974 3157 3139 -78031030.26054 3158 3139 15223810.26862 3237 3139 -6.705522537231e-07 3238 3139 -24709454.43242 3239 3139 -6857568.701869 3240 3139 -15625000.00514 3241 3139 -33980662.73527 3242 3139 16657951.02195 3249 3139 4.053115844727e-06 3250 3139 81681619.73861 3251 3139 -27430274.79396 3252 3139 -8.40425491333e-06 3253 3139 -91481269.86781 3254 3139 68140484.61019 3264 3139 7.450580596924e-07 3265 3139 -28283463.80681 3266 3139 -6857568.701869 3267 3139 15625000.00513 3268 3139 -35212760.99956 3269 3139 17343714.91106 3140 3140 938198180.6514 3141 3140 2285904.308086 3142 3140 53763296.60338 3143 3140 60055040.21296 3153 3140 -3200280.836388 3154 3140 -27430259.42623 3155 3140 46485699.20007 3156 3140 -26687657.01071 3157 3140 14949504.71271 3158 3140 -33777948.97413 3237 3140 66546545.00303 3238 3140 -6857568.701869 3239 3140 -74918497.68596 3240 3140 23108532.96245 3241 3140 16657951.02195 3242 3140 -47038891.18556 3249 3140 2285903.027438 3250 3140 -27430274.79396 3251 3140 -130792022.7266 3252 3140 571475.7571481 3253 3140 67866179.05482 3254 3140 -147771014.9835 3264 3140 -68832448.03044 3265 3140 -6857568.701869 3266 3140 -84449189.35104 3267 3140 -23680008.71958 3268 3140 17343714.91106 3269 3140 -50324486.557 3141 3141 1024746089.754 3142 3141 2.086162567139e-05 3143 3141 9143617.227815 3144 3141 115751892.8599 3145 3141 -9.417533874512e-06 3146 3141 2285904.308086 3153 3141 -95427568.72765 3154 3141 -62499999.98975 3155 3141 24401752.70261 3156 3141 -244029558.4996 3157 3141 2.473592758179e-06 3158 3141 -5943336.391493 3159 3141 -96781952.40796 3160 3141 62499999.98974 3161 3141 -27030538.9556 3237 3141 -25604579.22317 3238 3141 15625000.00514 3239 3141 10250460.04156 3240 3141 -93459816.96553 3241 3141 1.579523086548e-06 3242 3141 66889426.94725 3243 3141 -38668381.31079 3244 3141 -15625000.00514 3245 3141 23108532.96245 3249 3141 21503247.52855 3250 3141 3.844499588013e-06 3251 3141 571475.7571353 3252 3141 119183368.3243 3253 3141 4.112720489502e-06 3254 3141 2285903.027438 3255 3141 -32106344.47651 3256 3141 -9.387731552124e-06 3257 3141 571475.757148 3264 3141 -26159485.64696 3265 3141 -15625000.00513 3266 3141 -10821935.79869 3267 3141 -97033826.33989 3268 3141 1.400709152222e-06 3269 3141 -69175329.97466 3270 3141 -39900479.57507 3271 3141 15625000.00513 3272 3141 -23680008.71958 3142 3142 874738712.6486 3143 3142 -109721037.6509 3144 3142 -1.046061515808e-05 3145 3142 -121747792.2491 3146 3142 55957741.04746 3153 3142 -62499999.98975 3154 3142 -76676646.58022 3155 3142 12206449.1576 3156 3142 4.053115844727e-06 3157 3142 30971970.86735 3158 3142 -27430259.42623 3159 3142 62499999.98974 3160 3142 -78031030.26054 3161 3142 15223810.26862 3237 3142 15625000.00514 3238 3142 -20916860.64765 3239 3142 -9800382.320076 3240 3142 -6.705522537231e-07 3241 3142 -24709454.43242 3242 3142 -6857568.701869 3243 3142 -15625000.00514 3244 3142 -33980662.73527 3245 3142 16657951.02195 3249 3142 5.88595867157e-06 3250 3142 -37871677.86274 3251 3142 -40710209.81623 3252 3142 4.053115844727e-06 3253 3142 81681619.73861 3254 3142 -27430274.79396 3255 3142 -8.40425491333e-06 3256 3142 -91481269.86781 3257 3142 68140484.61019 3264 3142 -15625000.00513 3265 3142 -21471767.07144 3266 3142 -10486146.20919 3267 3142 7.450580596924e-07 3268 3142 -28283463.80681 3269 3142 -6857568.701869 3270 3142 15625000.00513 3271 3142 -35212760.99956 3272 3142 17343714.91106 3143 3143 938198180.6514 3144 3143 2285904.308086 3145 3143 53763296.60338 3146 3143 60055040.21296 3153 3143 24744634.64751 3154 3143 12480754.71352 3155 3143 -30166259.15992 3156 3143 -3200280.836388 3157 3143 -27430259.42623 3158 3143 46485699.20007 3159 3143 -26687657.01071 3160 3143 14949504.71271 3161 3143 -33777948.97413 3237 3143 10250460.04156 3238 3143 -9800382.320076 3239 3143 -12202085.61857 3240 3143 66546545.00303 3241 3143 -6857568.701869 3242 3143 -74918497.68596 3243 3143 23108532.96245 3244 3143 16657951.02195 3245 3143 -47038891.18556 3249 3143 571475.7571355 3250 3143 -40435904.26086 3251 3143 -4812102.970013 3252 3143 2285903.027438 3253 3143 -27430274.79396 3254 3143 -130792022.7266 3255 3143 571475.7571481 3256 3143 67866179.05482 3257 3143 -147771014.9835 3264 3143 -10821935.79869 3265 3143 -10486146.20919 3266 3143 -13681836.08202 3267 3143 -68832448.03044 3268 3143 -6857568.701869 3269 3143 -84449189.35104 3270 3143 -23680008.71958 3271 3143 17343714.91106 3272 3143 -50324486.557 3144 3144 1024746089.754 3145 3144 2.086162567139e-05 3146 3144 9143617.227815 3147 3144 115751892.8599 3148 3144 -9.417533874512e-06 3149 3144 2285904.308086 3156 3144 -95427568.72765 3157 3144 -62499999.98975 3158 3144 24401752.70261 3159 3144 -244029558.4996 3160 3144 2.473592758179e-06 3161 3144 -5943336.391493 3162 3144 -96781952.40796 3163 3144 62499999.98974 3164 3144 -27030538.9556 3240 3144 -25604579.22317 3241 3144 15625000.00514 3242 3144 10250460.04156 3243 3144 -93459816.96553 3244 3144 1.579523086548e-06 3245 3144 66889426.94725 3246 3144 -38668381.31079 3247 3144 -15625000.00514 3248 3144 23108532.96245 3252 3144 21503247.52855 3253 3144 3.844499588013e-06 3254 3144 571475.7571353 3255 3144 119183368.3243 3256 3144 4.112720489502e-06 3257 3144 2285903.027438 3258 3144 -32106344.47651 3259 3144 -9.387731552124e-06 3260 3144 571475.757148 3267 3144 -26159485.64696 3268 3144 -15625000.00513 3269 3144 -10821935.79869 3270 3144 -97033826.33989 3271 3144 1.400709152222e-06 3272 3144 -69175329.97466 3273 3144 -39900479.57507 3274 3144 15625000.00513 3275 3144 -23680008.71958 3145 3145 874738712.6486 3146 3145 -109721037.6509 3147 3145 -1.046061515808e-05 3148 3145 -121747792.2491 3149 3145 55957741.04746 3156 3145 -62499999.98975 3157 3145 -76676646.58022 3158 3145 12206449.1576 3159 3145 4.053115844727e-06 3160 3145 30971970.86735 3161 3145 -27430259.42623 3162 3145 62499999.98974 3163 3145 -78031030.26054 3164 3145 15223810.26862 3240 3145 15625000.00514 3241 3145 -20916860.64765 3242 3145 -9800382.320076 3243 3145 -6.705522537231e-07 3244 3145 -24709454.43242 3245 3145 -6857568.701869 3246 3145 -15625000.00514 3247 3145 -33980662.73527 3248 3145 16657951.02195 3252 3145 5.88595867157e-06 3253 3145 -37871677.86274 3254 3145 -40710209.81623 3255 3145 4.053115844727e-06 3256 3145 81681619.73861 3257 3145 -27430274.79396 3258 3145 -8.40425491333e-06 3259 3145 -91481269.86781 3260 3145 68140484.61019 3267 3145 -15625000.00513 3268 3145 -21471767.07144 3269 3145 -10486146.20919 3270 3145 7.450580596924e-07 3271 3145 -28283463.80681 3272 3145 -6857568.701869 3273 3145 15625000.00513 3274 3145 -35212760.99956 3275 3145 17343714.91106 3146 3146 938198180.6514 3147 3146 2285904.308086 3148 3146 53763296.60338 3149 3146 60055040.21296 3156 3146 24744634.64751 3157 3146 12480754.71352 3158 3146 -30166259.15992 3159 3146 -3200280.836388 3160 3146 -27430259.42623 3161 3146 46485699.20007 3162 3146 -26687657.01071 3163 3146 14949504.71271 3164 3146 -33777948.97413 3240 3146 10250460.04156 3241 3146 -9800382.320076 3242 3146 -12202085.61857 3243 3146 66546545.00303 3244 3146 -6857568.701869 3245 3146 -74918497.68596 3246 3146 23108532.96245 3247 3146 16657951.02195 3248 3146 -47038891.18556 3252 3146 571475.7571355 3253 3146 -40435904.26086 3254 3146 -4812102.970013 3255 3146 2285903.027438 3256 3146 -27430274.79396 3257 3146 -130792022.7266 3258 3146 571475.7571481 3259 3146 67866179.05482 3260 3146 -147771014.9835 3267 3146 -10821935.79869 3268 3146 -10486146.20919 3269 3146 -13681836.08202 3270 3146 -68832448.03044 3271 3146 -6857568.701869 3272 3146 -84449189.35104 3273 3146 -23680008.71958 3274 3146 17343714.91106 3275 3146 -50324486.557 3147 3147 1110223097.916 3148 3147 62559291.5799 3149 3147 30860259.9917 3150 3147 12838043.85587 3151 3147 -62523716.6258 3152 3147 27041055.07434 3159 3147 -95427568.72765 3160 3147 -62499999.98975 3161 3147 24401752.70261 3162 3147 -244029558.4996 3163 3147 2.473592758179e-06 3164 3147 -5943336.391493 3165 3147 -96781952.40796 3166 3147 62499999.98974 3167 3147 -27030538.9556 3243 3147 -25604579.22317 3244 3147 15625000.00514 3245 3147 10250460.04156 3246 3147 -111681734.2619 3247 3147 -15632983.09438 3248 3147 61472760.90482 3255 3147 21503247.52855 3256 3147 3.844499588013e-06 3257 3147 571475.7571353 3258 3147 149252626.5636 3259 3147 15638305.15389 3260 3147 7711980.245565 3261 3147 -47230742.81426 3262 3147 -15630322.06464 3263 3147 23688071.7797 3270 3147 -26159485.64696 3271 3147 -15625000.00513 3272 3147 -10821935.79869 3273 3147 -97033826.33989 3274 3147 1.400709152222e-06 3275 3147 -69175329.97466 3276 3147 -39900479.57507 3277 3147 15625000.00513 3278 3147 -23680008.71958 3148 3148 941438116.1313 3149 3148 -85033165.29872 3150 3148 -62535574.94383 3151 3148 -205958151.8641 3152 3148 46639478.37137 3159 3148 -62499999.98975 3160 3148 -76676646.58022 3161 3148 12206449.1576 3162 3148 4.053115844727e-06 3163 3148 30971970.86735 3164 3148 -27430259.42623 3165 3148 62499999.98974 3166 3148 -78031030.26054 3167 3148 15223810.26862 3243 3148 15625000.00514 3244 3148 -20916860.64765 3245 3148 -9800382.320076 3246 3148 -15630322.06464 3247 3148 -38227021.54706 3248 3148 5963051.430523 3255 3148 5.88595867157e-06 3256 3148 -37871677.86274 3257 3148 -40710209.81623 3258 3148 15638305.15389 3259 3148 107057171.8061 3260 3148 -21260770.12636 3261 3148 -15632983.09439 3262 3148 -101928593.64 3263 3148 65822290.07648 3270 3148 -15625000.00513 3271 3148 -21471767.07144 3272 3148 -10486146.20919 3273 3148 7.450580596924e-07 3274 3148 -28283463.80681 3275 3148 -6857568.701869 3276 3148 15625000.00513 3277 3148 -35212760.99956 3278 3148 17343714.91106 3149 3149 941510422.8134 3150 3149 26703431.18881 3151 3149 52129838.76531 3152 3149 9972799.741074 3159 3149 24744634.64751 3160 3149 12480754.71352 3161 3149 -30166259.15992 3162 3149 -3200280.836388 3163 3149 -27430259.42623 3164 3149 46485699.20007 3165 3149 -26687657.01071 3166 3149 14949504.71271 3167 3149 -33777948.97413 3243 3149 10250460.04156 3244 3149 -9800382.320076 3245 3149 -12202085.61857 3246 3149 61128808.369 3247 3149 4044385.985747 3248 3149 -67372502.27695 3255 3149 571475.7571355 3256 3149 -40435904.26086 3257 3149 -4812102.970013 3258 3149 7717756.425008 3259 3149 -21256149.23011 3260 3149 -106755752.9646 3261 3149 23692103.30976 3262 3149 67469018.6918 3263 3149 -132015307.5643 3270 3149 -10821935.79869 3271 3149 -10486146.20919 3272 3149 -13681836.08202 3273 3149 -68832448.03044 3274 3149 -6857568.701869 3275 3149 -84449189.35104 3276 3149 -23680008.71958 3277 3149 17343714.91106 3278 3149 -50324486.557 3150 3150 648741877.3649 3151 3150 62499999.98976 3152 3150 33168324.30835 3162 3150 -95427568.72765 3163 3150 -62499999.98975 3164 3150 24401752.70261 3165 3150 -355476071.9436 3166 3150 -62523716.6258 3167 3150 -27673319.58105 3168 3150 5797712.423909 3169 3150 50023716.62785 3170 3150 -19897668.89224 3246 3150 2016499.187392 3247 3150 18757983.09541 3248 3150 12648670.74487 3258 3150 -6124104.06778 3259 3150 -15632983.09438 3260 3150 -10255693.28227 3261 3150 76701211.16396 3262 3150 15625000.00514 3263 3150 21009550.22758 3273 3150 -26159485.64696 3274 3150 -15625000.00513 3275 3150 -10821935.79869 3276 3150 -125983237.2565 3277 3150 -15630322.06463 3278 3150 -74621947.50591 3279 3150 -24799837.07904 3280 3150 12505322.06361 3281 3150 -18723479.73292 3151 3151 554960584.1326 3152 3151 -63110559.55319 3162 3151 -62499999.98975 3163 3151 -76676646.58022 3164 3151 12206449.1576 3165 3151 -62535574.94383 3166 3151 -61649505.13883 3167 3151 -38276277.82281 3168 3151 75035574.94178 3169 3151 5797712.423912 3170 3151 25521217.55499 3246 3151 12505322.06361 3247 3151 2016499.187392 3248 3151 -6746002.447256 3258 3151 -15630322.06463 3259 3151 -60821954.89356 3260 3151 -41130474.11058 3261 3151 15625000.00514 3262 3151 53256630.69937 3263 3151 -5602780.460976 3273 3151 -15625000.00513 3274 3151 -21471767.07144 3275 3151 -10486146.20919 3276 3151 -15632983.09438 3277 3151 -52528524.54163 3278 3151 -23113573.91808 3279 3151 18757983.09541 3280 3151 -24799837.07904 3281 3151 22467775.67917 3152 3152 608122864.0228 3162 3152 24744634.64751 3163 3152 12480754.71352 3164 3152 -30166259.15992 3165 3152 -24925817.21738 3166 3152 -30317816.4155 3167 3152 -26125989.8053 3168 3152 -29846503.33835 3169 3152 17014145.03666 3170 3152 15460566.46375 3246 3152 8432447.163244 3247 3152 -10119003.67088 3248 3152 5377331.166378 3258 3152 -10253948.8687 3259 3152 -42777202.9092 3260 3152 -22397604.24035 3261 3152 -6140600.947398 3262 3152 -27322678.94813 3263 3152 -75919024.90121 3273 3152 -10821935.79869 3274 3152 -10486146.20919 3275 3152 -13681836.08202 3276 3152 -74277994.97009 3277 3152 -21190287.58241 3278 3152 -105509843.5958 3279 3152 -28085219.59939 3280 3152 14978517.11945 3281 3152 -66132898.87745 3153 3153 1024746089.754 3154 3153 2.086162567139e-05 3155 3153 9143617.227815 3156 3153 115751892.8599 3157 3153 -9.417533874512e-06 3158 3153 2285904.308086 3171 3153 -244029558.4996 3172 3153 2.473592758179e-06 3173 3153 -5943336.391493 3174 3153 -96781952.40796 3175 3153 62499999.98974 3176 3153 -27030538.9556 3249 3153 -93459816.96553 3250 3153 1.579523086548e-06 3251 3153 66889426.94725 3252 3153 -38668381.31079 3253 3153 -15625000.00514 3254 3153 23108532.96245 3264 3153 119183368.3243 3265 3153 4.112720489502e-06 3266 3153 2285903.027438 3267 3153 -32106344.47651 3268 3153 -9.387731552124e-06 3269 3153 571475.757148 3282 3153 -97033826.33989 3283 3153 1.400709152222e-06 3284 3153 -69175329.97466 3285 3153 -39900479.57507 3286 3153 15625000.00513 3287 3153 -23680008.71958 3154 3154 874738712.6486 3155 3154 -109721037.6509 3156 3154 -1.046061515808e-05 3157 3154 -121747792.2491 3158 3154 55957741.04746 3171 3154 4.053115844727e-06 3172 3154 30971970.86735 3173 3154 -27430259.42623 3174 3154 62499999.98974 3175 3154 -78031030.26054 3176 3154 15223810.26862 3249 3154 -6.705522537231e-07 3250 3154 -24709454.43242 3251 3154 -6857568.701869 3252 3154 -15625000.00514 3253 3154 -33980662.73527 3254 3154 16657951.02195 3264 3154 4.053115844727e-06 3265 3154 81681619.73861 3266 3154 -27430274.79396 3267 3154 -8.40425491333e-06 3268 3154 -91481269.86781 3269 3154 68140484.61019 3282 3154 7.450580596924e-07 3283 3154 -28283463.80681 3284 3154 -6857568.701869 3285 3154 15625000.00513 3286 3154 -35212760.99956 3287 3154 17343714.91106 3155 3155 938198180.6514 3156 3155 2285904.308086 3157 3155 53763296.60338 3158 3155 60055040.21296 3171 3155 -3200280.836388 3172 3155 -27430259.42623 3173 3155 46485699.20007 3174 3155 -26687657.01071 3175 3155 14949504.71271 3176 3155 -33777948.97413 3249 3155 66546545.00303 3250 3155 -6857568.701869 3251 3155 -74918497.68596 3252 3155 23108532.96245 3253 3155 16657951.02195 3254 3155 -47038891.18556 3264 3155 2285903.027438 3265 3155 -27430274.79396 3266 3155 -130792022.7266 3267 3155 571475.7571481 3268 3155 67866179.05482 3269 3155 -147771014.9835 3282 3155 -68832448.03044 3283 3155 -6857568.701869 3284 3155 -84449189.35104 3285 3155 -23680008.71958 3286 3155 17343714.91106 3287 3155 -50324486.557 3156 3156 1024746089.754 3157 3156 2.086162567139e-05 3158 3156 9143617.227815 3159 3156 115751892.8599 3160 3156 -9.417533874512e-06 3161 3156 2285904.308086 3171 3156 -95427568.72765 3172 3156 -62499999.98975 3173 3156 24401752.70261 3174 3156 -244029558.4996 3175 3156 2.473592758179e-06 3176 3156 -5943336.391493 3177 3156 -96781952.40796 3178 3156 62499999.98974 3179 3156 -27030538.9556 3249 3156 -25604579.22317 3250 3156 15625000.00514 3251 3156 10250460.04156 3252 3156 -93459816.96553 3253 3156 1.579523086548e-06 3254 3156 66889426.94725 3255 3156 -38668381.31079 3256 3156 -15625000.00514 3257 3156 23108532.96245 3264 3156 21503247.52855 3265 3156 3.844499588013e-06 3266 3156 571475.7571353 3267 3156 119183368.3243 3268 3156 4.112720489502e-06 3269 3156 2285903.027438 3270 3156 -32106344.47651 3271 3156 -9.387731552124e-06 3272 3156 571475.757148 3282 3156 -26159485.64696 3283 3156 -15625000.00513 3284 3156 -10821935.79869 3285 3156 -97033826.33989 3286 3156 1.400709152222e-06 3287 3156 -69175329.97466 3288 3156 -39900479.57507 3289 3156 15625000.00513 3290 3156 -23680008.71958 3157 3157 874738712.6486 3158 3157 -109721037.6509 3159 3157 -1.046061515808e-05 3160 3157 -121747792.2491 3161 3157 55957741.04746 3171 3157 -62499999.98975 3172 3157 -76676646.58022 3173 3157 12206449.1576 3174 3157 4.053115844727e-06 3175 3157 30971970.86735 3176 3157 -27430259.42623 3177 3157 62499999.98974 3178 3157 -78031030.26054 3179 3157 15223810.26862 3249 3157 15625000.00514 3250 3157 -20916860.64765 3251 3157 -9800382.320076 3252 3157 -6.705522537231e-07 3253 3157 -24709454.43242 3254 3157 -6857568.701869 3255 3157 -15625000.00514 3256 3157 -33980662.73527 3257 3157 16657951.02195 3264 3157 5.88595867157e-06 3265 3157 -37871677.86274 3266 3157 -40710209.81623 3267 3157 4.053115844727e-06 3268 3157 81681619.73861 3269 3157 -27430274.79396 3270 3157 -8.40425491333e-06 3271 3157 -91481269.86781 3272 3157 68140484.61019 3282 3157 -15625000.00513 3283 3157 -21471767.07144 3284 3157 -10486146.20919 3285 3157 7.450580596924e-07 3286 3157 -28283463.80681 3287 3157 -6857568.701869 3288 3157 15625000.00513 3289 3157 -35212760.99956 3290 3157 17343714.91106 3158 3158 938198180.6514 3159 3158 2285904.308086 3160 3158 53763296.60338 3161 3158 60055040.21296 3171 3158 24744634.64751 3172 3158 12480754.71352 3173 3158 -30166259.15992 3174 3158 -3200280.836388 3175 3158 -27430259.42623 3176 3158 46485699.20007 3177 3158 -26687657.01071 3178 3158 14949504.71271 3179 3158 -33777948.97413 3249 3158 10250460.04156 3250 3158 -9800382.320076 3251 3158 -12202085.61857 3252 3158 66546545.00303 3253 3158 -6857568.701869 3254 3158 -74918497.68596 3255 3158 23108532.96245 3256 3158 16657951.02195 3257 3158 -47038891.18556 3264 3158 571475.7571355 3265 3158 -40435904.26086 3266 3158 -4812102.970013 3267 3158 2285903.027438 3268 3158 -27430274.79396 3269 3158 -130792022.7266 3270 3158 571475.7571481 3271 3158 67866179.05482 3272 3158 -147771014.9835 3282 3158 -10821935.79869 3283 3158 -10486146.20919 3284 3158 -13681836.08202 3285 3158 -68832448.03044 3286 3158 -6857568.701869 3287 3158 -84449189.35104 3288 3158 -23680008.71958 3289 3158 17343714.91106 3290 3158 -50324486.557 3159 3159 1024746089.754 3160 3159 2.086162567139e-05 3161 3159 9143617.227815 3162 3159 115751892.8599 3163 3159 -9.417533874512e-06 3164 3159 2285904.308086 3174 3159 -95427568.72765 3175 3159 -62499999.98975 3176 3159 24401752.70261 3177 3159 -244029558.4996 3178 3159 2.473592758179e-06 3179 3159 -5943336.391493 3180 3159 -96781952.40796 3181 3159 62499999.98974 3182 3159 -27030538.9556 3252 3159 -25604579.22317 3253 3159 15625000.00514 3254 3159 10250460.04156 3255 3159 -93459816.96553 3256 3159 1.579523086548e-06 3257 3159 66889426.94725 3258 3159 -38668381.31079 3259 3159 -15625000.00514 3260 3159 23108532.96245 3267 3159 21503247.52855 3268 3159 3.844499588013e-06 3269 3159 571475.7571353 3270 3159 119183368.3243 3271 3159 4.112720489502e-06 3272 3159 2285903.027438 3273 3159 -32106344.47651 3274 3159 -9.387731552124e-06 3275 3159 571475.757148 3285 3159 -26159485.64696 3286 3159 -15625000.00513 3287 3159 -10821935.79869 3288 3159 -97033826.33989 3289 3159 1.400709152222e-06 3290 3159 -69175329.97466 3291 3159 -39900479.57507 3292 3159 15625000.00513 3293 3159 -23680008.71958 3160 3160 874738712.6486 3161 3160 -109721037.6509 3162 3160 -1.046061515808e-05 3163 3160 -121747792.2491 3164 3160 55957741.04746 3174 3160 -62499999.98975 3175 3160 -76676646.58022 3176 3160 12206449.1576 3177 3160 4.053115844727e-06 3178 3160 30971970.86735 3179 3160 -27430259.42623 3180 3160 62499999.98974 3181 3160 -78031030.26054 3182 3160 15223810.26862 3252 3160 15625000.00514 3253 3160 -20916860.64765 3254 3160 -9800382.320076 3255 3160 -6.705522537231e-07 3256 3160 -24709454.43242 3257 3160 -6857568.701869 3258 3160 -15625000.00514 3259 3160 -33980662.73527 3260 3160 16657951.02195 3267 3160 5.88595867157e-06 3268 3160 -37871677.86274 3269 3160 -40710209.81623 3270 3160 4.053115844727e-06 3271 3160 81681619.73861 3272 3160 -27430274.79396 3273 3160 -8.40425491333e-06 3274 3160 -91481269.86781 3275 3160 68140484.61019 3285 3160 -15625000.00513 3286 3160 -21471767.07144 3287 3160 -10486146.20919 3288 3160 7.450580596924e-07 3289 3160 -28283463.80681 3290 3160 -6857568.701869 3291 3160 15625000.00513 3292 3160 -35212760.99956 3293 3160 17343714.91106 3161 3161 938198180.6514 3162 3161 2285904.308086 3163 3161 53763296.60338 3164 3161 60055040.21296 3174 3161 24744634.64751 3175 3161 12480754.71352 3176 3161 -30166259.15992 3177 3161 -3200280.836388 3178 3161 -27430259.42623 3179 3161 46485699.20007 3180 3161 -26687657.01071 3181 3161 14949504.71271 3182 3161 -33777948.97413 3252 3161 10250460.04156 3253 3161 -9800382.320076 3254 3161 -12202085.61857 3255 3161 66546545.00303 3256 3161 -6857568.701869 3257 3161 -74918497.68596 3258 3161 23108532.96245 3259 3161 16657951.02195 3260 3161 -47038891.18556 3267 3161 571475.7571355 3268 3161 -40435904.26086 3269 3161 -4812102.970013 3270 3161 2285903.027438 3271 3161 -27430274.79396 3272 3161 -130792022.7266 3273 3161 571475.7571481 3274 3161 67866179.05482 3275 3161 -147771014.9835 3285 3161 -10821935.79869 3286 3161 -10486146.20919 3287 3161 -13681836.08202 3288 3161 -68832448.03044 3289 3161 -6857568.701869 3290 3161 -84449189.35104 3291 3161 -23680008.71958 3292 3161 17343714.91106 3293 3161 -50324486.557 3162 3162 1024746089.754 3163 3162 2.086162567139e-05 3164 3162 9143617.227815 3165 3162 115751892.8599 3166 3162 -9.417533874512e-06 3167 3162 2285904.308086 3177 3162 -95427568.72765 3178 3162 -62499999.98975 3179 3162 24401752.70261 3180 3162 -244029558.4996 3181 3162 2.473592758179e-06 3182 3162 -5943336.391493 3183 3162 -96781952.40796 3184 3162 62499999.98974 3185 3162 -27030538.9556 3255 3162 -25604579.22317 3256 3162 15625000.00514 3257 3162 10250460.04156 3258 3162 -93459816.96553 3259 3162 1.579523086548e-06 3260 3162 66889426.94725 3261 3162 -38668381.31079 3262 3162 -15625000.00514 3263 3162 23108532.96245 3270 3162 21503247.52855 3271 3162 3.844499588013e-06 3272 3162 571475.7571353 3273 3162 119183368.3243 3274 3162 4.112720489502e-06 3275 3162 2285903.027438 3276 3162 -32106344.47651 3277 3162 -9.387731552124e-06 3278 3162 571475.757148 3288 3162 -26159485.64696 3289 3162 -15625000.00513 3290 3162 -10821935.79869 3291 3162 -97033826.33989 3292 3162 1.400709152222e-06 3293 3162 -69175329.97466 3294 3162 -39900479.57507 3295 3162 15625000.00513 3296 3162 -23680008.71958 3163 3163 874738712.6486 3164 3163 -109721037.6509 3165 3163 -1.046061515808e-05 3166 3163 -121747792.2491 3167 3163 55957741.04746 3177 3163 -62499999.98975 3178 3163 -76676646.58022 3179 3163 12206449.1576 3180 3163 4.053115844727e-06 3181 3163 30971970.86735 3182 3163 -27430259.42623 3183 3163 62499999.98974 3184 3163 -78031030.26054 3185 3163 15223810.26862 3255 3163 15625000.00514 3256 3163 -20916860.64765 3257 3163 -9800382.320076 3258 3163 -6.705522537231e-07 3259 3163 -24709454.43242 3260 3163 -6857568.701869 3261 3163 -15625000.00514 3262 3163 -33980662.73527 3263 3163 16657951.02195 3270 3163 5.88595867157e-06 3271 3163 -37871677.86274 3272 3163 -40710209.81623 3273 3163 4.053115844727e-06 3274 3163 81681619.73861 3275 3163 -27430274.79396 3276 3163 -8.40425491333e-06 3277 3163 -91481269.86781 3278 3163 68140484.61019 3288 3163 -15625000.00513 3289 3163 -21471767.07144 3290 3163 -10486146.20919 3291 3163 7.450580596924e-07 3292 3163 -28283463.80681 3293 3163 -6857568.701869 3294 3163 15625000.00513 3295 3163 -35212760.99956 3296 3163 17343714.91106 3164 3164 938198180.6514 3165 3164 2285904.308086 3166 3164 53763296.60338 3167 3164 60055040.21296 3177 3164 24744634.64751 3178 3164 12480754.71352 3179 3164 -30166259.15992 3180 3164 -3200280.836388 3181 3164 -27430259.42623 3182 3164 46485699.20007 3183 3164 -26687657.01071 3184 3164 14949504.71271 3185 3164 -33777948.97413 3255 3164 10250460.04156 3256 3164 -9800382.320076 3257 3164 -12202085.61857 3258 3164 66546545.00303 3259 3164 -6857568.701869 3260 3164 -74918497.68596 3261 3164 23108532.96245 3262 3164 16657951.02195 3263 3164 -47038891.18556 3270 3164 571475.7571355 3271 3164 -40435904.26086 3272 3164 -4812102.970013 3273 3164 2285903.027438 3274 3164 -27430274.79396 3275 3164 -130792022.7266 3276 3164 571475.7571481 3277 3164 67866179.05482 3278 3164 -147771014.9835 3288 3164 -10821935.79869 3289 3164 -10486146.20919 3290 3164 -13681836.08202 3291 3164 -68832448.03044 3292 3164 -6857568.701869 3293 3164 -84449189.35104 3294 3164 -23680008.71958 3295 3164 17343714.91106 3296 3164 -50324486.557 3165 3165 1110223097.916 3166 3165 62559291.5799 3167 3165 30860259.9917 3168 3165 12838043.85587 3169 3165 -62523716.6258 3170 3165 27041055.07434 3180 3165 -95427568.72765 3181 3165 -62499999.98975 3182 3165 24401752.70261 3183 3165 -244029558.4996 3184 3165 2.473592758179e-06 3185 3165 -5943336.391493 3186 3165 -96781952.40796 3187 3165 62499999.98974 3188 3165 -27030538.9556 3258 3165 -25604579.22317 3259 3165 15625000.00514 3260 3165 10250460.04156 3261 3165 -111681734.2619 3262 3165 -15632983.09438 3263 3165 61472760.90482 3273 3165 21503247.52855 3274 3165 3.844499588013e-06 3275 3165 571475.7571353 3276 3165 149252626.5636 3277 3165 15638305.15389 3278 3165 7711980.245565 3279 3165 -47230742.81426 3280 3165 -15630322.06464 3281 3165 23688071.7797 3291 3165 -26159485.64696 3292 3165 -15625000.00513 3293 3165 -10821935.79869 3294 3165 -97033826.33989 3295 3165 1.400709152222e-06 3296 3165 -69175329.97466 3297 3165 -39900479.57507 3298 3165 15625000.00513 3299 3165 -23680008.71958 3166 3166 941438116.1313 3167 3166 -85033165.29872 3168 3166 -62535574.94383 3169 3166 -205958151.8641 3170 3166 46639478.37137 3180 3166 -62499999.98975 3181 3166 -76676646.58022 3182 3166 12206449.1576 3183 3166 4.053115844727e-06 3184 3166 30971970.86735 3185 3166 -27430259.42623 3186 3166 62499999.98974 3187 3166 -78031030.26054 3188 3166 15223810.26862 3258 3166 15625000.00514 3259 3166 -20916860.64765 3260 3166 -9800382.320076 3261 3166 -15630322.06464 3262 3166 -38227021.54706 3263 3166 5963051.430523 3273 3166 5.88595867157e-06 3274 3166 -37871677.86274 3275 3166 -40710209.81623 3276 3166 15638305.15389 3277 3166 107057171.8061 3278 3166 -21260770.12636 3279 3166 -15632983.09439 3280 3166 -101928593.64 3281 3166 65822290.07648 3291 3166 -15625000.00513 3292 3166 -21471767.07144 3293 3166 -10486146.20919 3294 3166 7.450580596924e-07 3295 3166 -28283463.80681 3296 3166 -6857568.701869 3297 3166 15625000.00513 3298 3166 -35212760.99956 3299 3166 17343714.91106 3167 3167 941510422.8134 3168 3167 26703431.18881 3169 3167 52129838.76531 3170 3167 9972799.741074 3180 3167 24744634.64751 3181 3167 12480754.71352 3182 3167 -30166259.15992 3183 3167 -3200280.836388 3184 3167 -27430259.42623 3185 3167 46485699.20007 3186 3167 -26687657.01071 3187 3167 14949504.71271 3188 3167 -33777948.97413 3258 3167 10250460.04156 3259 3167 -9800382.320076 3260 3167 -12202085.61857 3261 3167 61128808.369 3262 3167 4044385.985747 3263 3167 -67372502.27695 3273 3167 571475.7571355 3274 3167 -40435904.26086 3275 3167 -4812102.970013 3276 3167 7717756.425008 3277 3167 -21256149.23011 3278 3167 -106755752.9646 3279 3167 23692103.30976 3280 3167 67469018.6918 3281 3167 -132015307.5643 3291 3167 -10821935.79869 3292 3167 -10486146.20919 3293 3167 -13681836.08202 3294 3167 -68832448.03044 3295 3167 -6857568.701869 3296 3167 -84449189.35104 3297 3167 -23680008.71958 3298 3167 17343714.91106 3299 3167 -50324486.557 3168 3168 571856074.9736 3169 3168 29944782.78006 3170 3168 -10255414.39245 3183 3168 -95427568.72765 3184 3168 -62499999.98975 3185 3168 24401752.70261 3186 3168 -279335748.997 3187 3168 -30005441.58063 3188 3168 -2084718.233583 3189 3168 -9122767.138634 3190 3168 50060658.79238 3191 3168 -2747902.533834 3261 3168 2016499.187392 3262 3168 18757983.09541 3263 3168 12648670.74487 3276 3168 -6124104.06778 3277 3168 -15632983.09438 3278 3168 -10255693.28227 3279 3168 65053034.9571 3280 3168 8483480.368784 3281 3168 9019580.696071 3294 3168 -26159485.64696 3295 3168 -15625000.00513 3296 3168 -10821935.79869 3297 3168 -101009842.5111 3298 3168 -8497290.497413 3299 3168 -60569369.93287 3300 3168 -13454901.79217 3301 3168 12513810.13274 3302 3168 -11175576.39938 3169 3169 527903869.9296 3170 3169 -64299123.93581 3183 3169 -62499999.98975 3184 3169 -76676646.58022 3185 3169 12206449.1576 3186 3169 -30035770.98092 3187 3169 -47816.62481159 3188 3169 -17257158.96419 3189 3169 75090988.18857 3190 3169 -44413220.89433 3191 3169 6790513.35647 3261 3169 12505322.06361 3262 3169 2016499.187392 3263 3169 -6746002.447256 3276 3169 -15630322.06463 3277 3169 -60821954.89356 3278 3169 -41130474.11058 3279 3169 8483480.368782 3280 3169 52217536.42934 3281 3169 -7051287.02931 3294 3169 -15625000.00513 3295 3169 -21471767.07144 3296 3169 -10486146.20919 3297 3169 -8504195.561731 3298 3169 -30743336.81906 3299 3169 -11865024.08222 3300 3169 18770715.19911 3301 3169 -20875776.70625 3302 3169 20377905.34396 3170 3170 542654871.6366 3183 3170 24744634.64751 3184 3170 12480754.71352 3185 3170 -30166259.15992 3186 3170 -8254784.546585 3187 3170 -16158331.56487 3188 3170 2063603.639451 3189 3170 -4121853.80075 3190 3170 5692999.984857 3191 3170 10963074.71934 3261 3170 8432447.163244 3262 3170 -10119003.67088 3263 3170 5377331.166378 3276 3170 -10253948.8687 3277 3170 -42777202.9092 3278 3170 -22397604.24035 3279 3170 -15041312.00682 3280 3170 -26292746.72624 3281 3170 -76049227.32249 3294 3170 -10821935.79869 3295 3170 -10486146.20919 3296 3170 -13681836.08202 3297 3170 -62283371.84839 3298 3170 -11584369.2819 3299 3170 -77266599.98603 3300 3170 -16763364.59907 3301 3170 15907925.99552 3302 3170 -28458863.19837 3171 3171 1024746089.754 3172 3171 2.086162567139e-05 3173 3171 9143617.227815 3174 3171 115751892.8599 3175 3171 -9.417533874512e-06 3176 3171 2285904.308086 3192 3171 -244029558.4996 3193 3171 2.473592758179e-06 3194 3171 -5943336.391493 3195 3171 -96781952.40796 3196 3171 62499999.98974 3197 3171 -27030538.9556 3264 3171 -93459816.96553 3265 3171 1.579523086548e-06 3266 3171 66889426.94725 3267 3171 -38668381.31079 3268 3171 -15625000.00514 3269 3171 23108532.96245 3282 3171 119183368.3243 3283 3171 4.112720489502e-06 3284 3171 2285903.027438 3285 3171 -32106344.47651 3286 3171 -9.387731552124e-06 3287 3171 571475.757148 3303 3171 -97033826.33989 3304 3171 1.400709152222e-06 3305 3171 -69175329.97466 3306 3171 -39900479.57507 3307 3171 15625000.00513 3308 3171 -23680008.71958 3172 3172 874738712.6486 3173 3172 -109721037.6509 3174 3172 -1.046061515808e-05 3175 3172 -121747792.2491 3176 3172 55957741.04746 3192 3172 4.053115844727e-06 3193 3172 30971970.86735 3194 3172 -27430259.42623 3195 3172 62499999.98974 3196 3172 -78031030.26054 3197 3172 15223810.26862 3264 3172 -6.705522537231e-07 3265 3172 -24709454.43242 3266 3172 -6857568.701869 3267 3172 -15625000.00514 3268 3172 -33980662.73527 3269 3172 16657951.02195 3282 3172 4.053115844727e-06 3283 3172 81681619.73861 3284 3172 -27430274.79396 3285 3172 -8.40425491333e-06 3286 3172 -91481269.86781 3287 3172 68140484.61019 3303 3172 7.450580596924e-07 3304 3172 -28283463.80681 3305 3172 -6857568.701869 3306 3172 15625000.00513 3307 3172 -35212760.99956 3308 3172 17343714.91106 3173 3173 938198180.6514 3174 3173 2285904.308086 3175 3173 53763296.60338 3176 3173 60055040.21296 3192 3173 -3200280.836388 3193 3173 -27430259.42623 3194 3173 46485699.20007 3195 3173 -26687657.01071 3196 3173 14949504.71271 3197 3173 -33777948.97413 3264 3173 66546545.00303 3265 3173 -6857568.701869 3266 3173 -74918497.68596 3267 3173 23108532.96245 3268 3173 16657951.02195 3269 3173 -47038891.18556 3282 3173 2285903.027438 3283 3173 -27430274.79396 3284 3173 -130792022.7266 3285 3173 571475.7571481 3286 3173 67866179.05482 3287 3173 -147771014.9835 3303 3173 -68832448.03044 3304 3173 -6857568.701869 3305 3173 -84449189.35104 3306 3173 -23680008.71958 3307 3173 17343714.91106 3308 3173 -50324486.557 3174 3174 1024746089.754 3175 3174 2.086162567139e-05 3176 3174 9143617.227815 3177 3174 115751892.8599 3178 3174 -9.417533874512e-06 3179 3174 2285904.308086 3192 3174 -95427568.72765 3193 3174 -62499999.98975 3194 3174 24401752.70261 3195 3174 -244029558.4996 3196 3174 2.473592758179e-06 3197 3174 -5943336.391493 3198 3174 -96781952.40796 3199 3174 62499999.98974 3200 3174 -27030538.9556 3264 3174 -25604579.22317 3265 3174 15625000.00514 3266 3174 10250460.04156 3267 3174 -93459816.96553 3268 3174 1.579523086548e-06 3269 3174 66889426.94725 3270 3174 -38668381.31079 3271 3174 -15625000.00514 3272 3174 23108532.96245 3282 3174 21503247.52855 3283 3174 3.844499588013e-06 3284 3174 571475.7571353 3285 3174 119183368.3243 3286 3174 4.112720489502e-06 3287 3174 2285903.027438 3288 3174 -32106344.47651 3289 3174 -9.387731552124e-06 3290 3174 571475.757148 3303 3174 -26159485.64696 3304 3174 -15625000.00513 3305 3174 -10821935.79869 3306 3174 -97033826.33989 3307 3174 1.400709152222e-06 3308 3174 -69175329.97466 3309 3174 -39900479.57507 3310 3174 15625000.00513 3311 3174 -23680008.71958 3175 3175 874738712.6486 3176 3175 -109721037.6509 3177 3175 -1.046061515808e-05 3178 3175 -121747792.2491 3179 3175 55957741.04746 3192 3175 -62499999.98975 3193 3175 -76676646.58022 3194 3175 12206449.1576 3195 3175 4.053115844727e-06 3196 3175 30971970.86735 3197 3175 -27430259.42623 3198 3175 62499999.98974 3199 3175 -78031030.26054 3200 3175 15223810.26862 3264 3175 15625000.00514 3265 3175 -20916860.64765 3266 3175 -9800382.320076 3267 3175 -6.705522537231e-07 3268 3175 -24709454.43242 3269 3175 -6857568.701869 3270 3175 -15625000.00514 3271 3175 -33980662.73527 3272 3175 16657951.02195 3282 3175 5.88595867157e-06 3283 3175 -37871677.86274 3284 3175 -40710209.81623 3285 3175 4.053115844727e-06 3286 3175 81681619.73861 3287 3175 -27430274.79396 3288 3175 -8.40425491333e-06 3289 3175 -91481269.86781 3290 3175 68140484.61019 3303 3175 -15625000.00513 3304 3175 -21471767.07144 3305 3175 -10486146.20919 3306 3175 7.450580596924e-07 3307 3175 -28283463.80681 3308 3175 -6857568.701869 3309 3175 15625000.00513 3310 3175 -35212760.99956 3311 3175 17343714.91106 3176 3176 938198180.6514 3177 3176 2285904.308086 3178 3176 53763296.60338 3179 3176 60055040.21296 3192 3176 24744634.64751 3193 3176 12480754.71352 3194 3176 -30166259.15992 3195 3176 -3200280.836388 3196 3176 -27430259.42623 3197 3176 46485699.20007 3198 3176 -26687657.01071 3199 3176 14949504.71271 3200 3176 -33777948.97413 3264 3176 10250460.04156 3265 3176 -9800382.320076 3266 3176 -12202085.61857 3267 3176 66546545.00303 3268 3176 -6857568.701869 3269 3176 -74918497.68596 3270 3176 23108532.96245 3271 3176 16657951.02195 3272 3176 -47038891.18556 3282 3176 571475.7571355 3283 3176 -40435904.26086 3284 3176 -4812102.970013 3285 3176 2285903.027438 3286 3176 -27430274.79396 3287 3176 -130792022.7266 3288 3176 571475.7571481 3289 3176 67866179.05482 3290 3176 -147771014.9835 3303 3176 -10821935.79869 3304 3176 -10486146.20919 3305 3176 -13681836.08202 3306 3176 -68832448.03044 3307 3176 -6857568.701869 3308 3176 -84449189.35104 3309 3176 -23680008.71958 3310 3176 17343714.91106 3311 3176 -50324486.557 3177 3177 1024746089.754 3178 3177 2.086162567139e-05 3179 3177 9143617.227815 3180 3177 115751892.8599 3181 3177 -9.417533874512e-06 3182 3177 2285904.308086 3195 3177 -95427568.72765 3196 3177 -62499999.98975 3197 3177 24401752.70261 3198 3177 -244029558.4996 3199 3177 2.473592758179e-06 3200 3177 -5943336.391493 3201 3177 -96781952.40796 3202 3177 62499999.98974 3203 3177 -27030538.9556 3267 3177 -25604579.22317 3268 3177 15625000.00514 3269 3177 10250460.04156 3270 3177 -93459816.96553 3271 3177 1.579523086548e-06 3272 3177 66889426.94725 3273 3177 -38668381.31079 3274 3177 -15625000.00514 3275 3177 23108532.96245 3285 3177 21503247.52855 3286 3177 3.844499588013e-06 3287 3177 571475.7571353 3288 3177 119183368.3243 3289 3177 4.112720489502e-06 3290 3177 2285903.027438 3291 3177 -32106344.47651 3292 3177 -9.387731552124e-06 3293 3177 571475.757148 3306 3177 -26159485.64696 3307 3177 -15625000.00513 3308 3177 -10821935.79869 3309 3177 -97033826.33989 3310 3177 1.400709152222e-06 3311 3177 -69175329.97466 3312 3177 -39900479.57507 3313 3177 15625000.00513 3314 3177 -23680008.71958 3178 3178 874738712.6486 3179 3178 -109721037.6509 3180 3178 -1.046061515808e-05 3181 3178 -121747792.2491 3182 3178 55957741.04746 3195 3178 -62499999.98975 3196 3178 -76676646.58022 3197 3178 12206449.1576 3198 3178 4.053115844727e-06 3199 3178 30971970.86735 3200 3178 -27430259.42623 3201 3178 62499999.98974 3202 3178 -78031030.26054 3203 3178 15223810.26862 3267 3178 15625000.00514 3268 3178 -20916860.64765 3269 3178 -9800382.320076 3270 3178 -6.705522537231e-07 3271 3178 -24709454.43242 3272 3178 -6857568.701869 3273 3178 -15625000.00514 3274 3178 -33980662.73527 3275 3178 16657951.02195 3285 3178 5.88595867157e-06 3286 3178 -37871677.86274 3287 3178 -40710209.81623 3288 3178 4.053115844727e-06 3289 3178 81681619.73861 3290 3178 -27430274.79396 3291 3178 -8.40425491333e-06 3292 3178 -91481269.86781 3293 3178 68140484.61019 3306 3178 -15625000.00513 3307 3178 -21471767.07144 3308 3178 -10486146.20919 3309 3178 7.450580596924e-07 3310 3178 -28283463.80681 3311 3178 -6857568.701869 3312 3178 15625000.00513 3313 3178 -35212760.99956 3314 3178 17343714.91106 3179 3179 938198180.6514 3180 3179 2285904.308086 3181 3179 53763296.60338 3182 3179 60055040.21296 3195 3179 24744634.64751 3196 3179 12480754.71352 3197 3179 -30166259.15992 3198 3179 -3200280.836388 3199 3179 -27430259.42623 3200 3179 46485699.20007 3201 3179 -26687657.01071 3202 3179 14949504.71271 3203 3179 -33777948.97413 3267 3179 10250460.04156 3268 3179 -9800382.320076 3269 3179 -12202085.61857 3270 3179 66546545.00303 3271 3179 -6857568.701869 3272 3179 -74918497.68596 3273 3179 23108532.96245 3274 3179 16657951.02195 3275 3179 -47038891.18556 3285 3179 571475.7571355 3286 3179 -40435904.26086 3287 3179 -4812102.970013 3288 3179 2285903.027438 3289 3179 -27430274.79396 3290 3179 -130792022.7266 3291 3179 571475.7571481 3292 3179 67866179.05482 3293 3179 -147771014.9835 3306 3179 -10821935.79869 3307 3179 -10486146.20919 3308 3179 -13681836.08202 3309 3179 -68832448.03044 3310 3179 -6857568.701869 3311 3179 -84449189.35104 3312 3179 -23680008.71958 3313 3179 17343714.91106 3314 3179 -50324486.557 3180 3180 1024746089.754 3181 3180 2.086162567139e-05 3182 3180 9143617.227815 3183 3180 115751892.8599 3184 3180 -9.417533874512e-06 3185 3180 2285904.308086 3198 3180 -95427568.72765 3199 3180 -62499999.98975 3200 3180 24401752.70261 3201 3180 -244029558.4996 3202 3180 2.473592758179e-06 3203 3180 -5943336.391493 3204 3180 -96781952.40796 3205 3180 62499999.98974 3206 3180 -27030538.9556 3270 3180 -25604579.22317 3271 3180 15625000.00514 3272 3180 10250460.04156 3273 3180 -93459816.96553 3274 3180 1.579523086548e-06 3275 3180 66889426.94725 3276 3180 -38668381.31079 3277 3180 -15625000.00514 3278 3180 23108532.96245 3288 3180 21503247.52855 3289 3180 3.844499588013e-06 3290 3180 571475.7571353 3291 3180 119183368.3243 3292 3180 4.112720489502e-06 3293 3180 2285903.027438 3294 3180 -32106344.47651 3295 3180 -9.387731552124e-06 3296 3180 571475.757148 3309 3180 -26159485.64696 3310 3180 -15625000.00513 3311 3180 -10821935.79869 3312 3180 -97033826.33989 3313 3180 1.400709152222e-06 3314 3180 -69175329.97466 3315 3180 -39900479.57507 3316 3180 15625000.00513 3317 3180 -23680008.71958 3181 3181 874738712.6486 3182 3181 -109721037.6509 3183 3181 -1.046061515808e-05 3184 3181 -121747792.2491 3185 3181 55957741.04746 3198 3181 -62499999.98975 3199 3181 -76676646.58022 3200 3181 12206449.1576 3201 3181 4.053115844727e-06 3202 3181 30971970.86735 3203 3181 -27430259.42623 3204 3181 62499999.98974 3205 3181 -78031030.26054 3206 3181 15223810.26862 3270 3181 15625000.00514 3271 3181 -20916860.64765 3272 3181 -9800382.320076 3273 3181 -6.705522537231e-07 3274 3181 -24709454.43242 3275 3181 -6857568.701869 3276 3181 -15625000.00514 3277 3181 -33980662.73527 3278 3181 16657951.02195 3288 3181 5.88595867157e-06 3289 3181 -37871677.86274 3290 3181 -40710209.81623 3291 3181 4.053115844727e-06 3292 3181 81681619.73861 3293 3181 -27430274.79396 3294 3181 -8.40425491333e-06 3295 3181 -91481269.86781 3296 3181 68140484.61019 3309 3181 -15625000.00513 3310 3181 -21471767.07144 3311 3181 -10486146.20919 3312 3181 7.450580596924e-07 3313 3181 -28283463.80681 3314 3181 -6857568.701869 3315 3181 15625000.00513 3316 3181 -35212760.99956 3317 3181 17343714.91106 3182 3182 938198180.6514 3183 3182 2285904.308086 3184 3182 53763296.60338 3185 3182 60055040.21296 3198 3182 24744634.64751 3199 3182 12480754.71352 3200 3182 -30166259.15992 3201 3182 -3200280.836388 3202 3182 -27430259.42623 3203 3182 46485699.20007 3204 3182 -26687657.01071 3205 3182 14949504.71271 3206 3182 -33777948.97413 3270 3182 10250460.04156 3271 3182 -9800382.320076 3272 3182 -12202085.61857 3273 3182 66546545.00303 3274 3182 -6857568.701869 3275 3182 -74918497.68596 3276 3182 23108532.96245 3277 3182 16657951.02195 3278 3182 -47038891.18556 3288 3182 571475.7571355 3289 3182 -40435904.26086 3290 3182 -4812102.970013 3291 3182 2285903.027438 3292 3182 -27430274.79396 3293 3182 -130792022.7266 3294 3182 571475.7571481 3295 3182 67866179.05482 3296 3182 -147771014.9835 3309 3182 -10821935.79869 3310 3182 -10486146.20919 3311 3182 -13681836.08202 3312 3182 -68832448.03044 3313 3182 -6857568.701869 3314 3182 -84449189.35104 3315 3182 -23680008.71958 3316 3182 17343714.91106 3317 3182 -50324486.557 3183 3183 1024746089.754 3184 3183 2.086162567139e-05 3185 3183 9143617.227815 3186 3183 115751892.8599 3187 3183 -9.417533874512e-06 3188 3183 2285904.308086 3201 3183 -95427568.72765 3202 3183 -62499999.98975 3203 3183 24401752.70261 3204 3183 -244029558.4996 3205 3183 2.473592758179e-06 3206 3183 -5943336.391493 3207 3183 -96781952.40796 3208 3183 62499999.98974 3209 3183 -27030538.9556 3273 3183 -25604579.22317 3274 3183 15625000.00514 3275 3183 10250460.04156 3276 3183 -93459816.96553 3277 3183 1.579523086548e-06 3278 3183 66889426.94725 3279 3183 -38668381.31079 3280 3183 -15625000.00514 3281 3183 23108532.96245 3291 3183 21503247.52855 3292 3183 3.844499588013e-06 3293 3183 571475.7571353 3294 3183 119183368.3243 3295 3183 4.112720489502e-06 3296 3183 2285903.027438 3297 3183 -32106344.47651 3298 3183 -9.387731552124e-06 3299 3183 571475.757148 3312 3183 -26159485.64696 3313 3183 -15625000.00513 3314 3183 -10821935.79869 3315 3183 -97033826.33989 3316 3183 1.400709152222e-06 3317 3183 -69175329.97466 3318 3183 -39900479.57507 3319 3183 15625000.00513 3320 3183 -23680008.71958 3184 3184 874738712.6486 3185 3184 -109721037.6509 3186 3184 -1.046061515808e-05 3187 3184 -121747792.2491 3188 3184 55957741.04746 3201 3184 -62499999.98975 3202 3184 -76676646.58022 3203 3184 12206449.1576 3204 3184 4.053115844727e-06 3205 3184 30971970.86735 3206 3184 -27430259.42623 3207 3184 62499999.98974 3208 3184 -78031030.26054 3209 3184 15223810.26862 3273 3184 15625000.00514 3274 3184 -20916860.64765 3275 3184 -9800382.320076 3276 3184 -6.705522537231e-07 3277 3184 -24709454.43242 3278 3184 -6857568.701869 3279 3184 -15625000.00514 3280 3184 -33980662.73527 3281 3184 16657951.02195 3291 3184 5.88595867157e-06 3292 3184 -37871677.86274 3293 3184 -40710209.81623 3294 3184 4.053115844727e-06 3295 3184 81681619.73861 3296 3184 -27430274.79396 3297 3184 -8.40425491333e-06 3298 3184 -91481269.86781 3299 3184 68140484.61019 3312 3184 -15625000.00513 3313 3184 -21471767.07144 3314 3184 -10486146.20919 3315 3184 7.450580596924e-07 3316 3184 -28283463.80681 3317 3184 -6857568.701869 3318 3184 15625000.00513 3319 3184 -35212760.99956 3320 3184 17343714.91106 3185 3185 938198180.6514 3186 3185 2285904.308086 3187 3185 53763296.60338 3188 3185 60055040.21296 3201 3185 24744634.64751 3202 3185 12480754.71352 3203 3185 -30166259.15992 3204 3185 -3200280.836388 3205 3185 -27430259.42623 3206 3185 46485699.20007 3207 3185 -26687657.01071 3208 3185 14949504.71271 3209 3185 -33777948.97413 3273 3185 10250460.04156 3274 3185 -9800382.320076 3275 3185 -12202085.61857 3276 3185 66546545.00303 3277 3185 -6857568.701869 3278 3185 -74918497.68596 3279 3185 23108532.96245 3280 3185 16657951.02195 3281 3185 -47038891.18556 3291 3185 571475.7571355 3292 3185 -40435904.26086 3293 3185 -4812102.970013 3294 3185 2285903.027438 3295 3185 -27430274.79396 3296 3185 -130792022.7266 3297 3185 571475.7571481 3298 3185 67866179.05482 3299 3185 -147771014.9835 3312 3185 -10821935.79869 3313 3185 -10486146.20919 3314 3185 -13681836.08202 3315 3185 -68832448.03044 3316 3185 -6857568.701869 3317 3185 -84449189.35104 3318 3185 -23680008.71958 3319 3185 17343714.91106 3320 3185 -50324486.557 3186 3186 992511389.303 3187 3186 35119063.81891 3188 3186 9148842.328762 3189 3186 -29871813.60808 3190 3186 -79429052.75312 3191 3186 4942840.519856 3204 3186 -95427568.72765 3205 3186 -62499999.98975 3206 3186 24401752.70261 3207 3186 -213493975.2883 3208 3186 15647034.81436 3209 3186 -1463149.762763 3210 3186 -62618476.51791 3211 3186 58698725.1008 3212 3186 -4372518.931206 3276 3186 -25604579.22317 3277 3186 15625000.00514 3278 3186 10250460.04156 3279 3186 -97575268.52249 3280 3186 -8504195.56173 3281 3186 58021091.66608 3294 3186 21503247.52855 3295 3186 3.844499588013e-06 3296 3186 571475.7571353 3297 3186 132051494.7157 3298 3186 9477689.141959 3299 3186 2282727.085888 3300 3186 -35986362.149 3301 3186 -19319676.5803 3302 3186 18187125.68919 3315 3186 -26159485.64696 3316 3186 -15625000.00513 3317 3186 -10821935.79869 3318 3186 -89582178.40493 3319 3186 3452677.552407 3320 3186 -64250585.4472 3321 3186 -26470165.08373 3322 3186 14893505.44766 3323 3186 -14205410.0223 3187 3187 914984829.2003 3188 3187 -61105818.0354 3189 3187 -79459382.15342 3190 3187 -252787576.3809 3191 3187 10443239.78177 3204 3187 -62499999.98975 3205 3187 -76676646.58022 3206 3187 12206449.1576 3207 3187 15647034.81436 3208 3187 42833571.97188 3209 3187 -15208606.30983 3210 3187 58698725.1008 3211 3187 -97793792.46068 3212 3187 4402916.111798 3276 3187 15625000.00514 3277 3187 -20916860.64765 3278 3187 -9800382.320076 3279 3187 -8497290.497415 3280 3187 -27308762.83038 3281 3187 3191507.057319 3294 3187 5.88595867157e-06 3295 3187 -37871677.86274 3296 3187 -40710209.81623 3297 3187 9477689.141955 3298 3187 109752727.6785 3299 3187 -15866049.47295 3300 3187 -19326581.64461 3301 3187 -91511011.65031 3302 3187 56876286.44125 3315 3187 -15625000.00513 3316 3187 -21471767.07144 3317 3187 -10486146.20919 3318 3187 3452677.552406 3319 3187 -24850939.14401 3320 3187 -892452.6419469 3321 3187 14893505.44766 3322 3187 -33645005.25799 3323 3187 17715406.89793 3188 3188 861646857.7911 3189 3188 4945264.009223 3190 3188 10445336.85376 3191 3188 -7035870.455932 3204 3188 24744634.64751 3205 3188 12480754.71352 3206 3188 -30166259.15992 3207 3188 -7635024.761751 3208 3188 -15208606.30983 3209 3188 49654690.13772 3210 3188 -4372518.93053 3211 3188 4402916.111798 3212 3188 -20483455.54872 3276 3188 10250460.04156 3277 3188 -9800382.320076 3278 3188 -12202085.61857 3279 3188 59735093.58159 3280 3188 2922838.786602 3281 3188 -68107736.01619 3294 3188 571475.7571355 3295 3188 -40435904.26086 3296 3188 -4812102.970013 3297 3188 2294279.514953 3298 3188 -15856807.28418 3299 3188 -100567669.0549 3300 3188 18193455.55287 3301 3188 56875386.93533 3302 3188 -80811222.28552 3315 3188 -10821935.79869 3316 3188 -10486146.20919 3317 3188 -13681836.08202 3318 3188 -65964995.16965 3319 3188 -892452.6414047 3320 3188 -81785163.2726 3321 3188 -14205410.0223 3322 3188 17715406.89793 3323 3188 -32227642.79622 3189 3189 574782817.0468 3190 3189 9802196.101842 3191 3189 402791.3222623 3207 3189 -98180257.21191 3208 3189 -62016385.48823 3209 3189 3728150.838127 3210 3189 -154343775.7057 3211 3189 20854973.3041 3212 3189 -1249532.660522 3213 3189 68140235.52204 3214 3189 -21818726.25984 3215 3189 -103490.0609071 3216 3189 -55799918.28419 3217 3189 57546336.30698 3218 3189 -858274.0909733 3279 3189 -9327793.667405 3280 3189 18770715.19911 3281 3189 14702750.48531 3297 3189 -28699225.70619 3298 3189 -19326581.64462 3299 3189 -15770281.05553 3300 3189 39934892.99282 3301 3189 2177854.19997 3302 3189 13470020.49524 3318 3189 -32222410.0076 3319 3189 -15532299.34722 3320 3189 -16029085.59877 3321 3189 -83057758.80047 3322 3189 4596360.426188 3323 3189 -67109824.10549 3324 3189 -7768576.502317 3325 3189 -5210204.11628 3326 3189 7902397.597512 3327 3189 -26657122.19396 3328 3189 14524155.28285 3329 3189 -16661672.26316 3190 3190 684972887.8256 3191 3190 -12516121.50345 3207 3190 -62016385.48823 3208 3190 -68498112.25618 3209 3190 1098703.593309 3210 3190 20854973.30411 3211 3190 93705147.04257 3212 3190 -3583791.720977 3213 3190 3181273.736054 3214 3190 -53313429.18758 3215 3190 506062.6241023 3216 3190 57546336.30698 3217 3190 -64061175.52891 3218 3190 547642.7682184 3279 3190 12513810.13274 3280 3190 -16748668.58149 3281 3190 -13266641.09381 3297 3190 -19319676.5803 3298 3190 -84223875.20751 3299 3190 -51752701.14713 3300 3190 2177854.199968 3301 3190 64911621.45824 3302 3190 1186914.700328 3318 3190 -15532299.34722 3319 3190 -25137786.72497 3320 3190 -13282262.11058 3321 3190 4596360.426188 3322 3190 -20386045.03311 3323 3190 2220623.492421 3324 3190 1039795.885773 3325 3190 -38105284.24576 3326 3190 33458816.87333 3327 3190 14524155.28285 3328 3190 -28107955.55054 3329 3190 16801283.08314 3191 3191 632106309.024 3207 3191 3728150.838465 3208 3191 1098703.59358 3209 3191 -21737210.67115 3210 3191 -1249532.660522 3211 3191 -3583791.720977 3212 3191 100128059.1202 3213 3191 -103490.0609037 3214 3191 506062.624102 3215 3191 73682121.44694 3216 3191 -858274.0906357 3217 3191 547642.7682184 3218 3191 172238.4706765 3279 3191 9801833.656871 3280 3191 -17187848.41903 3281 3191 -17453241.53233 3297 3191 -15765058.67383 3298 3191 -51754546.12901 3299 3191 -61378858.43802 3300 3191 -13257132.27814 3301 3191 -7207016.094271 3302 3191 -120184450.9424 3318 3191 -16029085.59877 3319 3191 -13282262.11058 3320 3191 -26270313.32675 3321 3191 -67109824.10583 3322 3191 2220623.492963 3323 3191 -88573459.20302 3324 3191 -222602.4044776 3325 3191 33458816.87333 3326 3191 -48112195.40656 3327 3191 -16661672.26316 3328 3191 16801283.08314 3329 3191 -32155464.84456 3192 3192 512192460.3863 3193 3192 7.033348083496e-06 3194 3192 -2285830.273855 3195 3192 57853373.36857 3196 3192 12499999.99794 3197 3192 -4857481.874016 3282 3192 -93459816.96553 3283 3192 1.579523086548e-06 3284 3192 66889426.94725 3285 3192 -38668381.31079 3286 3192 -15625000.00514 3287 3192 23108532.96245 3303 3192 59569111.10081 3304 3192 1.192092895508e-07 3305 3192 -13286440.8446 3306 3192 -16053172.23825 3307 3192 3125000.001022 3308 3192 -4393116.289629 3193 3193 437188771.8336 3194 3193 -54860518.82542 3195 3193 -12499999.99795 3196 3193 -60896469.18594 3197 3193 27704564.96822 3282 3193 -6.705522537231e-07 3283 3193 -24709454.43242 3284 3193 -6857568.701869 3285 3193 -15625000.00514 3286 3193 -33980662.73527 3287 3193 16657951.02195 3303 3193 -5.960464477539e-08 3304 3193 40818236.80798 3305 3193 -13715137.39698 3306 3193 -3125000.001031 3307 3193 -45740634.9339 3308 3193 34001665.91618 3194 3194 468617531.6838 3195 3194 5428976.457627 3196 3194 27155953.8572 3197 3194 29967325.27615 3282 3194 66546545.00303 3283 3194 -6857568.701869 3284 3194 -74918497.68596 3285 3194 23108532.96245 3286 3194 16657951.02195 3287 3194 -47038891.18556 3303 3194 13857934.15094 3304 3194 -13715137.39698 3305 3194 -65456206.19348 3306 3194 4964592.046777 3307 3194 34001665.91632 3308 3194 -73885507.49175 3195 3195 512192460.3863 3196 3195 7.033348083496e-06 3197 3195 -2285830.273855 3198 3195 57853373.36857 3199 3195 12499999.99794 3200 3195 -4857481.874016 3282 3195 -25604579.22317 3283 3195 15625000.00514 3284 3195 10250460.04156 3285 3195 -93459816.96553 3286 3195 1.579523086548e-06 3287 3195 66889426.94725 3288 3195 -38668381.31079 3289 3195 -15625000.00514 3290 3195 23108532.96245 3303 3195 10751623.76428 3304 3195 -3125000.001025 3305 3195 -1821501.705457 3306 3195 59569111.10081 3307 3195 1.192092895508e-07 3308 3195 -13286440.8446 3309 3195 -16053172.23825 3310 3195 3125000.001022 3311 3195 -4393116.289629 3196 3196 437188771.8336 3197 3196 -54860518.82542 3198 3196 -12499999.99795 3199 3196 -60896469.18594 3200 3196 27704564.96822 3282 3196 15625000.00514 3283 3196 -20916860.64765 3284 3196 -9800382.320076 3285 3196 -6.705522537231e-07 3286 3196 -24709454.43242 3287 3196 -6857568.701869 3288 3196 -15625000.00514 3289 3196 -33980662.73527 3290 3196 16657951.02195 3303 3196 3125000.00103 3304 3196 -18935838.93137 3305 3196 -20286528.5192 3306 3196 -5.960464477539e-08 3307 3196 40818236.80798 3308 3196 -13715137.39698 3309 3196 -3125000.001031 3310 3196 -45740634.9339 3311 3196 34001665.91618 3197 3197 468617531.6838 3198 3197 5428976.457627 3199 3197 27155953.8572 3200 3197 29967325.27615 3282 3197 10250460.04156 3283 3197 -9800382.320076 3284 3197 -12202085.61857 3285 3197 66546545.00303 3286 3197 -6857568.701869 3287 3197 -74918497.68596 3288 3197 23108532.96245 3289 3197 16657951.02195 3290 3197 -47038891.18556 3303 3197 2392977.462593 3304 3197 -20286528.51934 3305 3197 -2406051.485007 3306 3197 13857934.15094 3307 3197 -13715137.39698 3308 3197 -65456206.19348 3309 3197 4964592.046777 3310 3197 34001665.91632 3311 3197 -73885507.49175 3198 3198 512192460.3863 3199 3198 7.033348083496e-06 3200 3198 -2285830.273855 3201 3198 57853373.36857 3202 3198 12499999.99794 3203 3198 -4857481.874016 3285 3198 -25604579.22317 3286 3198 15625000.00514 3287 3198 10250460.04156 3288 3198 -93459816.96553 3289 3198 1.579523086548e-06 3290 3198 66889426.94725 3291 3198 -38668381.31079 3292 3198 -15625000.00514 3293 3198 23108532.96245 3306 3198 10751623.76428 3307 3198 -3125000.001025 3308 3198 -1821501.705457 3309 3198 59569111.10081 3310 3198 1.192092895508e-07 3311 3198 -13286440.8446 3312 3198 -16053172.23825 3313 3198 3125000.001022 3314 3198 -4393116.289629 3199 3199 437188771.8336 3200 3199 -54860518.82542 3201 3199 -12499999.99795 3202 3199 -60896469.18594 3203 3199 27704564.96822 3285 3199 15625000.00514 3286 3199 -20916860.64765 3287 3199 -9800382.320076 3288 3199 -6.705522537231e-07 3289 3199 -24709454.43242 3290 3199 -6857568.701869 3291 3199 -15625000.00514 3292 3199 -33980662.73527 3293 3199 16657951.02195 3306 3199 3125000.00103 3307 3199 -18935838.93137 3308 3199 -20286528.5192 3309 3199 -5.960464477539e-08 3310 3199 40818236.80798 3311 3199 -13715137.39698 3312 3199 -3125000.001031 3313 3199 -45740634.9339 3314 3199 34001665.91618 3200 3200 468617531.6838 3201 3200 5428976.457627 3202 3200 27155953.8572 3203 3200 29967325.27615 3285 3200 10250460.04156 3286 3200 -9800382.320076 3287 3200 -12202085.61857 3288 3200 66546545.00303 3289 3200 -6857568.701869 3290 3200 -74918497.68596 3291 3200 23108532.96245 3292 3200 16657951.02195 3293 3200 -47038891.18556 3306 3200 2392977.462593 3307 3200 -20286528.51934 3308 3200 -2406051.485007 3309 3200 13857934.15094 3310 3200 -13715137.39698 3311 3200 -65456206.19348 3312 3200 4964592.046777 3313 3200 34001665.91632 3314 3200 -73885507.49175 3201 3201 512192460.3863 3202 3201 7.033348083496e-06 3203 3201 -2285830.273855 3204 3201 57853373.36857 3205 3201 12499999.99794 3206 3201 -4857481.874016 3288 3201 -25604579.22317 3289 3201 15625000.00514 3290 3201 10250460.04156 3291 3201 -93459816.96553 3292 3201 1.579523086548e-06 3293 3201 66889426.94725 3294 3201 -38668381.31079 3295 3201 -15625000.00514 3296 3201 23108532.96245 3309 3201 10751623.76428 3310 3201 -3125000.001025 3311 3201 -1821501.705457 3312 3201 59569111.10081 3313 3201 1.192092895508e-07 3314 3201 -13286440.8446 3315 3201 -16053172.23825 3316 3201 3125000.001022 3317 3201 -4393116.289629 3202 3202 437188771.8336 3203 3202 -54860518.82542 3204 3202 -12499999.99795 3205 3202 -60896469.18594 3206 3202 27704564.96822 3288 3202 15625000.00514 3289 3202 -20916860.64765 3290 3202 -9800382.320076 3291 3202 -6.705522537231e-07 3292 3202 -24709454.43242 3293 3202 -6857568.701869 3294 3202 -15625000.00514 3295 3202 -33980662.73527 3296 3202 16657951.02195 3309 3202 3125000.00103 3310 3202 -18935838.93137 3311 3202 -20286528.5192 3312 3202 -5.960464477539e-08 3313 3202 40818236.80798 3314 3202 -13715137.39698 3315 3202 -3125000.001031 3316 3202 -45740634.9339 3317 3202 34001665.91618 3203 3203 468617531.6838 3204 3203 5428976.457627 3205 3203 27155953.8572 3206 3203 29967325.27615 3288 3203 10250460.04156 3289 3203 -9800382.320076 3290 3203 -12202085.61857 3291 3203 66546545.00303 3292 3203 -6857568.701869 3293 3203 -74918497.68596 3294 3203 23108532.96245 3295 3203 16657951.02195 3296 3203 -47038891.18556 3309 3203 2392977.462593 3310 3203 -20286528.51934 3311 3203 -2406051.485007 3312 3203 13857934.15094 3313 3203 -13715137.39698 3314 3203 -65456206.19348 3315 3203 4964592.046777 3316 3203 34001665.91632 3317 3203 -73885507.49175 3204 3204 512192460.3863 3205 3204 7.033348083496e-06 3206 3204 -2285830.273855 3207 3204 57853373.36857 3208 3204 12499999.99794 3209 3204 -4857481.874016 3291 3204 -25604579.22317 3292 3204 15625000.00514 3293 3204 10250460.04156 3294 3204 -93459816.96553 3295 3204 1.579523086548e-06 3296 3204 66889426.94725 3297 3204 -38668381.31079 3298 3204 -15625000.00514 3299 3204 23108532.96245 3312 3204 10751623.76428 3313 3204 -3125000.001025 3314 3204 -1821501.705457 3315 3204 59569111.10081 3316 3204 1.192092895508e-07 3317 3204 -13286440.8446 3318 3204 -16053172.23825 3319 3204 3125000.001022 3320 3204 -4393116.289629 3205 3205 437188771.8336 3206 3205 -54860518.82542 3207 3205 -12499999.99795 3208 3205 -60896469.18594 3209 3205 27704564.96822 3291 3205 15625000.00514 3292 3205 -20916860.64765 3293 3205 -9800382.320076 3294 3205 -6.705522537231e-07 3295 3205 -24709454.43242 3296 3205 -6857568.701869 3297 3205 -15625000.00514 3298 3205 -33980662.73527 3299 3205 16657951.02195 3312 3205 3125000.00103 3313 3205 -18935838.93137 3314 3205 -20286528.5192 3315 3205 -5.960464477539e-08 3316 3205 40818236.80798 3317 3205 -13715137.39698 3318 3205 -3125000.001031 3319 3205 -45740634.9339 3320 3205 34001665.91618 3206 3206 468617531.6838 3207 3206 5428976.457627 3208 3206 27155953.8572 3209 3206 29967325.27615 3291 3206 10250460.04156 3292 3206 -9800382.320076 3293 3206 -12202085.61857 3294 3206 66546545.00303 3295 3206 -6857568.701869 3296 3206 -74918497.68596 3297 3206 23108532.96245 3298 3206 16657951.02195 3299 3206 -47038891.18556 3312 3206 2392977.462593 3313 3206 -20286528.51934 3314 3206 -2406051.485007 3315 3206 13857934.15094 3316 3206 -13715137.39698 3317 3206 -65456206.19348 3318 3206 4964592.046777 3319 3206 34001665.91632 3320 3206 -73885507.49175 3207 3207 501194760.8906 3208 3207 483471.9809724 3209 3207 19729280.16759 3210 3207 44528872.06075 3211 3207 -4114121.29889 3212 3207 635927.0856277 3294 3207 -25604579.22317 3295 3207 15625000.00514 3296 3207 10250460.04156 3297 3207 -86013553.03927 3298 3207 3452677.552412 3299 3207 62017904.11412 3300 3207 -34009408.60001 3301 3207 -15532299.34722 3302 3207 17899994.27348 3315 3207 10751623.76428 3316 3207 -3125000.001025 3317 3207 -1821501.705457 3318 3207 56563393.23584 3319 3207 92650.6663835 3320 3207 -8207569.820517 3321 3207 -9203173.996336 3322 3207 -513028.8756769 3323 3207 606407.5417179 3208 3208 437133202.0984 3209 3208 -31817886.27979 3210 3208 -29114121.29479 3211 3208 -77420340.95587 3212 3208 5468163.759479 3294 3208 15625000.00514 3295 3208 -20916860.64765 3296 3208 -9800382.320076 3297 3208 3452677.55241 3298 3208 -21282313.77832 3299 3208 -7081688.752109 3300 3208 -15532299.34722 3301 3208 -26924785.31737 3302 3208 13861835.12055 3315 3208 3125000.00103 3316 3208 -18935838.93137 3317 3208 -20286528.5192 3318 3208 92650.66638345 3319 3208 40212069.25493 3320 3208 -8282245.163074 3321 3208 -6763028.87773 3322 3208 -39667968.43887 3323 3208 31589009.6339 3209 3209 455080439.0651 3210 3209 2693218.751954 3211 3209 5468163.759479 3212 3209 41134895.59769 3294 3209 10250460.04156 3295 3209 -9800382.320076 3296 3209 -12202085.61857 3297 3209 63732313.83809 3298 3209 -7081688.751431 3299 3209 -72268828.96409 3300 3209 17899994.27348 3301 3209 13861835.12055 3302 3209 -31035642.9065 3315 3209 2392977.462593 3316 3209 -20286528.51934 3317 3209 -2406051.485007 3318 3209 18936249.61947 3319 3209 -8282245.163075 3320 3209 -69887100.3344 3321 3209 7906546.432157 3322 3209 31589009.63336 3323 3209 -45575484.98117 3210 3210 481849890.3224 3211 3210 15010015.02383 3212 3210 -426689.5447848 3213 3210 -107360334.9424 3214 3210 -67453663.6725 3215 3210 856135.6311209 3216 3210 41478841.44736 3217 3210 2004071.538552 3218 3210 -243668.8036907 3297 3210 -23450146.25553 3298 3210 14893505.44767 3299 3210 11987471.93075 3300 3210 -82373339.0086 3301 3210 4596360.426198 3302 3210 66525939.76111 3318 3210 -3847546.99128 3319 3210 -6763028.877732 3320 3210 -6615467.456925 3321 3210 37962745.80211 3322 3210 3192182.501996 3323 3210 -13435900.63133 3324 3210 -38261419.07277 3325 3210 -16725844.72742 3326 3210 20523831.22127 3327 3210 -11797802.80594 3328 3210 806825.2292982 3329 3210 509819.6200195 3211 3211 486564576.3674 3212 3211 -8519439.366185 3213 3211 -67453663.6725 3214 3211 -83396331.77573 3215 3211 547642.7682181 3216 3211 -22995928.45734 3217 3211 -78124241.55322 3218 3211 1684508.447692 3297 3211 14893505.44767 3298 3211 -30624986.4298 3299 3211 -15617926.44635 3300 3211 4596360.426197 3301 3211 -19701625.24124 3302 3211 -3968612.617741 3318 3211 -513028.8756778 3319 3211 -34312341.43383 3320 3211 -28888420.91165 3321 3211 3192182.501998 3322 3211 37009258.52328 3323 3211 -2072638.533522 3324 3211 -16725844.72742 3325 3211 -32459566.88009 3326 3211 16801283.08314 3327 3211 -5443174.772755 3328 3211 -41678246.87034 3329 3211 33746315.42611 3212 3212 495996266.0283 3213 3212 856135.6311208 3214 3212 547642.7682181 3215 3212 -19162917.77615 3216 3212 442095.0850828 3217 3212 1684508.447692 3218 3212 51813863.68401 3297 3212 11987471.93075 3298 3212 -15617926.44635 3299 3212 -24174259.25437 3300 3212 66525939.76145 3301 3212 -3968612.617063 3302 3212 -86748339.75803 3318 3212 -343974.3999875 3319 3212 -28888420.91233 3320 3212 -31293812.96768 3321 3212 13291252.14205 3322 3212 -2072638.533522 3323 3212 -98128494.52017 3324 3212 20523831.22127 3325 3212 16801283.08314 3326 3212 -36507076.17412 3327 3212 7259021.011803 3328 3212 33746315.42611 3329 3212 -47861372.87769 3213 3213 274109986.6413 3214 3213 71818726.25164 3215 3213 -467979.8463044 3216 3213 -89889442.78013 3217 3213 -7546336.315187 3218 3213 -284665.7239107 3300 3213 -7219965.39104 3301 3213 1039795.885773 3302 3213 166199.6820345 3321 3213 -37712807.96149 3322 3213 -16725844.72742 3323 3213 -20101168.79207 3324 3213 18907354.30941 3325 3213 17710204.12039 3326 3213 8010333.882971 3327 3213 -46474803.17729 3328 3213 -2024155.278742 3329 3213 -36825364.77294 3214 3214 243219901.3759 3215 3214 -506062.6240954 3216 3214 17453663.68071 3217 3214 38490304.02822 3218 3214 -547642.7682143 3300 3214 -5210204.116281 3301 3214 -37556673.13449 3302 3214 -33207849.78238 3321 3214 -16725844.72742 3322 3214 -31910955.76881 3323 3214 -16532050.26114 3324 3214 17710204.12039 3325 3214 11158124.54034 3326 3214 6541183.120091 3327 3214 4225844.723312 3328 3214 -14190717.85745 3329 3214 3198716.923426 3215 3215 280391387.7469 3216 3215 -284665.7239074 3217 3215 -547642.7682146 3218 3215 51757260.42444 3300 3215 -7958800.319788 3301 3215 -33207849.78238 3302 3215 -46649232.44314 3321 3215 -20101168.79207 3322 3215 -16532050.26114 3323 3215 -35044113.21069 3324 3215 -8239666.11436 3325 3215 -6792150.211052 3326 3215 -61832834.65378 3327 3215 -36825364.77378 3328 3215 -3467949.74543 3329 3215 -49807745.61347 3216 3216 238211408.5094 3217 3216 -52004071.53035 3218 3216 -670683.0487667 3300 3216 -26108511.08268 3301 3216 14524155.28285 3302 3216 16227129.83098 3321 3216 -10151969.47316 3322 3216 -5443174.772757 3323 3216 -7054937.323181 3324 3216 -46474803.17728 3325 3216 4225844.723317 3326 3216 36688437.29824 3327 3216 15734839.28688 3328 3216 -13306825.23341 3329 3216 -6736949.250256 3217 3217 237696001.9464 3218 3217 -1684508.447682 3300 3217 14524155.28285 3301 3217 -27559344.43926 3302 3217 -16532050.26114 3321 3217 806825.2292974 3322 3217 -40032413.53758 3323 3217 -32920351.2296 3324 3217 -2024155.278737 3325 3217 -14190717.85745 3326 3217 3198716.923426 3327 3217 -13306825.2334 3328 3217 14782031.38802 3329 3217 6253684.567311 3218 3218 253592341.1342 3300 3218 16227129.83098 3301 3218 -16532050.26114 3302 3218 -30692501.88114 3321 3218 -648617.8757846 3322 3218 -32920351.2296 3323 3218 -43472483.99027 3324 3218 36688437.29756 3325 3218 -3467949.745429 3326 3218 -49807745.61347 3327 3218 6418571.580917 3328 3218 -7079648.763832 3329 3218 -54695120.37178 3219 3219 661240911.694 3220 3219 62499999.98975 3221 3219 26309808.76172 3222 3219 -351489360.7944 3223 3219 -62521288.22773 3224 3219 -26300660.30375 3225 3219 7540034.174547 3226 3219 50021288.22979 3227 3219 -21267537.14313 3330 3219 76701211.16396 3331 3219 15625000.00514 3332 3219 21009550.22758 3333 3219 -125983237.2565 3334 3219 -15630322.06463 3335 3219 -74621947.50591 3336 3219 -24799837.07904 3337 3219 12505322.06361 3338 3219 -18723479.73292 3220 3220 567462589.8818 3221 3220 -68593390.60176 3222 3220 -62531932.34673 3223 3220 -57670510.07978 3224 3220 -38001573.29657 3225 3220 75031932.34468 3226 3220 7540034.174547 3227 3220 23874977.56666 3330 3220 15625000.00514 3331 3220 53256630.69937 3332 3220 -5602780.460976 3333 3220 -15632983.09438 3334 3220 -52528524.54163 3335 3220 -23113573.91808 3336 3220 18757983.09541 3337 3220 -24799837.07904 3338 3220 22467775.67917 3221 3221 641486746.383 3222 3221 -26296086.07475 3223 3221 -30591858.55204 3224 3221 -15523139.55333 3225 3221 -31901305.7147 3226 3221 15916651.71111 3227 3221 20106757.79879 3330 3221 -6140600.947398 3331 3221 -27322678.94813 3332 3221 -75919024.90121 3333 3221 -74277994.97009 3334 3221 -21190287.58241 3335 3221 -105509843.5958 3336 3221 -28085219.59939 3337 3221 14978517.11945 3338 3221 -66132898.87745 3222 3222 1128168022.401 3223 3222 62553220.58474 3224 3222 30858743.66929 3225 3222 17446621.74987 3226 3222 -62521288.22774 3227 3222 26696512.96211 3228 3222 -239474705.9488 3229 3222 2.950429916382e-06 3230 3222 -4571806.052598 3231 3222 -95620685.86526 3232 3222 62499999.98975 3233 3222 -26687656.37071 3330 3222 -111681734.2619 3331 3222 -15632983.09438 3332 3222 61472760.90482 3333 3222 149252626.5636 3334 3222 15638305.15389 3335 3222 7711980.245565 3336 3222 -47230742.81426 3337 3222 -15630322.06464 3338 3222 23688071.7797 3339 3222 -97033826.33989 3340 3222 1.400709152222e-06 3341 3222 -69175329.97466 3342 3222 -39900479.57507 3343 3222 15625000.00513 3344 3222 -23680008.71958 3223 3223 959386203.4543 3224 3223 -85034422.38434 3225 3223 -62531932.34674 3226 3223 -201344781.4455 3227 3223 45541679.93477 3228 3223 2.920627593994e-06 3229 3223 35526744.0481 3230 3223 -27430274.79396 3231 3223 62499999.98974 3232 3223 -76869811.57243 3233 3223 14949512.39685 3330 3223 -15630322.06464 3331 3223 -38227021.54706 3332 3223 5963051.430523 3333 3223 15638305.15389 3334 3223 107057171.8061 3335 3223 -21260770.12636 3336 3223 -15632983.09439 3337 3223 -101928593.64 3338 3223 65822290.07648 3339 3223 7.450580596924e-07 3340 3223 -28283463.80681 3341 3223 -6857568.701869 3342 3223 15625000.00513 3343 3223 -35212760.99956 3344 3223 17343714.91106 3224 3224 989397032.1941 3225 3224 27043823.20204 3226 3224 53225583.49043 3227 3224 22257684.43985 3228 3224 -4571806.052597 3229 3224 -27430274.79396 3230 3224 58631507.34796 3231 3224 -27030538.31493 3232 3224 15223817.95222 3233 3224 -30681326.51173 3330 3224 61128808.369 3331 3224 4044385.985747 3332 3224 -67372502.27695 3333 3224 7717756.425008 3334 3224 -21256149.23011 3335 3224 -106755752.9646 3336 3224 23692103.30976 3337 3224 67469018.6918 3338 3224 -132015307.5643 3339 3224 -68832448.03044 3340 3224 -6857568.701869 3341 3224 -84449189.35104 3342 3224 -23680008.71958 3343 3224 17343714.91106 3344 3224 -50324486.557 3225 3225 661240911.694 3226 3225 62499999.98975 3227 3225 26309808.76172 3228 3225 -94266302.18495 3229 3225 -62499999.98975 3230 3225 24744635.2875 3231 3225 -351489360.7944 3232 3225 -62521288.22773 3233 3225 -26300660.30375 3234 3225 7540034.174547 3235 3225 50021288.22979 3236 3225 -21267537.14313 3330 3225 2016499.187392 3331 3225 18757983.09541 3332 3225 12648670.74487 3333 3225 -6124104.06778 3334 3225 -15632983.09438 3335 3225 -10255693.28227 3336 3225 76701211.16396 3337 3225 15625000.00514 3338 3225 21009550.22758 3339 3225 -26159485.64696 3340 3225 -15625000.00513 3341 3225 -10821935.79869 3342 3225 -125983237.2565 3343 3225 -15630322.06463 3344 3225 -74621947.50591 3345 3225 -24799837.07904 3346 3225 12505322.06361 3347 3225 -18723479.73292 3226 3226 567462589.8818 3227 3226 -68593390.60176 3228 3226 -62499999.98975 3229 3226 -75515427.89211 3230 3226 12480762.39712 3231 3226 -62531932.34673 3232 3226 -57670510.07978 3233 3226 -38001573.29657 3234 3226 75031932.34468 3235 3226 7540034.174547 3236 3226 23874977.56666 3330 3226 12505322.06361 3331 3226 2016499.187392 3332 3226 -6746002.447256 3333 3226 -15630322.06463 3334 3226 -60821954.89356 3335 3226 -41130474.11058 3336 3226 15625000.00514 3337 3226 53256630.69937 3338 3226 -5602780.460976 3339 3226 -15625000.00513 3340 3226 -21471767.07144 3341 3226 -10486146.20919 3342 3226 -15632983.09438 3343 3226 -52528524.54163 3344 3226 -23113573.91808 3345 3226 18757983.09541 3346 3226 -24799837.07904 3347 3226 22467775.67917 3227 3227 641486746.383 3228 3227 24401753.34329 3229 3227 12206456.84174 3230 3227 -27069636.69752 3231 3227 -26296086.07475 3232 3227 -30591858.55204 3233 3227 -15523139.55333 3234 3227 -31901305.7147 3235 3227 15916651.71111 3236 3227 20106757.79879 3330 3227 8432447.163244 3331 3227 -10119003.67088 3332 3227 5377331.166378 3333 3227 -10253948.8687 3334 3227 -42777202.9092 3335 3227 -22397604.24035 3336 3227 -6140600.947398 3337 3227 -27322678.94813 3338 3227 -75919024.90121 3339 3227 -10821935.79869 3340 3227 -10486146.20919 3341 3227 -13681836.08202 3342 3227 -74277994.97009 3343 3227 -21190287.58241 3344 3227 -105509843.5958 3345 3227 -28085219.59939 3346 3227 14978517.11945 3347 3227 -66132898.87745 3228 3228 1042603210.19 3229 3228 2.193450927734e-05 3230 3228 9143612.105123 3231 3228 120306386.5889 3232 3228 -9.268522262573e-06 3233 3228 2285903.027413 3237 3228 -239474705.9488 3238 3228 2.950429916382e-06 3239 3228 -4571806.052598 3240 3228 -95620685.86526 3241 3228 62499999.98975 3242 3228 -26687656.37071 3333 3228 -93459816.96553 3334 3228 1.579523086548e-06 3335 3228 66889426.94725 3336 3228 -38668381.31079 3337 3228 -15625000.00514 3338 3228 23108532.96245 3339 3228 119183368.3243 3340 3228 4.112720489502e-06 3341 3228 2285903.027438 3342 3228 -32106344.47651 3343 3228 -9.387731552124e-06 3344 3228 571475.757148 3348 3228 -97033826.33989 3349 3228 1.400709152222e-06 3350 3228 -69175329.97466 3351 3228 -39900479.57507 3352 3228 15625000.00513 3353 3228 -23680008.71958 3229 3229 892596215.9216 3230 3229 -109721099.1218 3231 3229 -9.95397567749e-06 3232 3229 -117193314.8593 3233 3229 54860549.56089 3237 3229 2.920627593994e-06 3238 3229 35526744.0481 3239 3229 -27430274.79396 3240 3229 62499999.98974 3241 3229 -76869811.57243 3242 3229 14949512.39685 3333 3229 -6.705522537231e-07 3334 3229 -24709454.43242 3335 3229 -6857568.701869 3336 3229 -15625000.00514 3337 3229 -33980662.73527 3338 3229 16657951.02195 3339 3229 4.053115844727e-06 3340 3229 81681619.73861 3341 3229 -27430274.79396 3342 3229 -8.40425491333e-06 3343 3229 -91481269.86781 3344 3229 68140484.61019 3348 3229 7.450580596924e-07 3349 3229 -28283463.80681 3350 3229 -6857568.701869 3351 3229 15625000.00513 3352 3229 -35212760.99956 3353 3229 17343714.91106 3230 3230 985817875.0266 3231 3230 2285903.027413 3232 3230 54860549.56089 3233 3230 72200645.50821 3237 3230 -4571806.052597 3238 3230 -27430274.79396 3239 3230 58631507.34796 3240 3230 -27030538.31493 3241 3230 15223817.95222 3242 3230 -30681326.51173 3333 3230 66546545.00303 3334 3230 -6857568.701869 3335 3230 -74918497.68596 3336 3230 23108532.96245 3337 3230 16657951.02195 3338 3230 -47038891.18556 3339 3230 2285903.027438 3340 3230 -27430274.79396 3341 3230 -130792022.7266 3342 3230 571475.7571481 3343 3230 67866179.05482 3344 3230 -147771014.9835 3348 3230 -68832448.03044 3349 3230 -6857568.701869 3350 3230 -84449189.35104 3351 3230 -23680008.71958 3352 3230 17343714.91106 3353 3230 -50324486.557 3231 3231 1128168022.401 3232 3231 62553220.58474 3233 3231 30858743.66929 3234 3231 17446621.74987 3235 3231 -62521288.22774 3236 3231 26696512.96211 3237 3231 -94266302.18495 3238 3231 -62499999.98975 3239 3231 24744635.2875 3240 3231 -239474705.9488 3241 3231 2.950429916382e-06 3242 3231 -4571806.052598 3243 3231 -95620685.86526 3244 3231 62499999.98975 3245 3231 -26687656.37071 3333 3231 -25604579.22317 3334 3231 15625000.00514 3335 3231 10250460.04156 3336 3231 -111681734.2619 3337 3231 -15632983.09438 3338 3231 61472760.90482 3339 3231 21503247.52855 3340 3231 3.844499588013e-06 3341 3231 571475.7571353 3342 3231 149252626.5636 3343 3231 15638305.15389 3344 3231 7711980.245565 3345 3231 -47230742.81426 3346 3231 -15630322.06464 3347 3231 23688071.7797 3348 3231 -26159485.64696 3349 3231 -15625000.00513 3350 3231 -10821935.79869 3351 3231 -97033826.33989 3352 3231 1.400709152222e-06 3353 3231 -69175329.97466 3354 3231 -39900479.57507 3355 3231 15625000.00513 3356 3231 -23680008.71958 3232 3232 959386203.4543 3233 3232 -85034422.38434 3234 3232 -62531932.34674 3235 3232 -201344781.4455 3236 3232 45541679.93477 3237 3232 -62499999.98975 3238 3232 -75515427.89211 3239 3232 12480762.39712 3240 3232 2.920627593994e-06 3241 3232 35526744.0481 3242 3232 -27430274.79396 3243 3232 62499999.98974 3244 3232 -76869811.57243 3245 3232 14949512.39685 3333 3232 15625000.00514 3334 3232 -20916860.64765 3335 3232 -9800382.320076 3336 3232 -15630322.06464 3337 3232 -38227021.54706 3338 3232 5963051.430523 3339 3232 5.88595867157e-06 3340 3232 -37871677.86274 3341 3232 -40710209.81623 3342 3232 15638305.15389 3343 3232 107057171.8061 3344 3232 -21260770.12636 3345 3232 -15632983.09439 3346 3232 -101928593.64 3347 3232 65822290.07648 3348 3232 -15625000.00513 3349 3232 -21471767.07144 3350 3232 -10486146.20919 3351 3232 7.450580596924e-07 3352 3232 -28283463.80681 3353 3232 -6857568.701869 3354 3232 15625000.00513 3355 3232 -35212760.99956 3356 3232 17343714.91106 3233 3233 989397032.1941 3234 3233 27043823.20204 3235 3233 53225583.49043 3236 3233 22257684.43985 3237 3233 24401753.34329 3238 3233 12206456.84174 3239 3233 -27069636.69752 3240 3233 -4571806.052597 3241 3233 -27430274.79396 3242 3233 58631507.34796 3243 3233 -27030538.31493 3244 3233 15223817.95222 3245 3233 -30681326.51173 3333 3233 10250460.04156 3334 3233 -9800382.320076 3335 3233 -12202085.61857 3336 3233 61128808.369 3337 3233 4044385.985747 3338 3233 -67372502.27695 3339 3233 571475.7571355 3340 3233 -40435904.26086 3341 3233 -4812102.970013 3342 3233 7717756.425008 3343 3233 -21256149.23011 3344 3233 -106755752.9646 3345 3233 23692103.30976 3346 3233 67469018.6918 3347 3233 -132015307.5643 3348 3233 -10821935.79869 3349 3233 -10486146.20919 3350 3233 -13681836.08202 3351 3233 -68832448.03044 3352 3233 -6857568.701869 3353 3233 -84449189.35104 3354 3233 -23680008.71958 3355 3233 17343714.91106 3356 3233 -50324486.557 3234 3234 661240911.694 3235 3234 62499999.98975 3236 3234 26309808.76172 3240 3234 -94266302.18495 3241 3234 -62499999.98975 3242 3234 24744635.2875 3243 3234 -351489360.7944 3244 3234 -62521288.22773 3245 3234 -26300660.30375 3246 3234 7540034.174547 3247 3234 50021288.22979 3248 3234 -21267537.14313 3336 3234 2016499.187392 3337 3234 18757983.09541 3338 3234 12648670.74487 3342 3234 -6124104.06778 3343 3234 -15632983.09438 3344 3234 -10255693.28227 3345 3234 76701211.16396 3346 3234 15625000.00514 3347 3234 21009550.22758 3351 3234 -26159485.64696 3352 3234 -15625000.00513 3353 3234 -10821935.79869 3354 3234 -125983237.2565 3355 3234 -15630322.06463 3356 3234 -74621947.50591 3357 3234 -24799837.07904 3358 3234 12505322.06361 3359 3234 -18723479.73292 3235 3235 567462589.8818 3236 3235 -68593390.60176 3240 3235 -62499999.98975 3241 3235 -75515427.89211 3242 3235 12480762.39712 3243 3235 -62531932.34673 3244 3235 -57670510.07978 3245 3235 -38001573.29657 3246 3235 75031932.34468 3247 3235 7540034.174547 3248 3235 23874977.56666 3336 3235 12505322.06361 3337 3235 2016499.187392 3338 3235 -6746002.447256 3342 3235 -15630322.06463 3343 3235 -60821954.89356 3344 3235 -41130474.11058 3345 3235 15625000.00514 3346 3235 53256630.69937 3347 3235 -5602780.460976 3351 3235 -15625000.00513 3352 3235 -21471767.07144 3353 3235 -10486146.20919 3354 3235 -15632983.09438 3355 3235 -52528524.54163 3356 3235 -23113573.91808 3357 3235 18757983.09541 3358 3235 -24799837.07904 3359 3235 22467775.67917 3236 3236 641486746.383 3240 3236 24401753.34329 3241 3236 12206456.84174 3242 3236 -27069636.69752 3243 3236 -26296086.07475 3244 3236 -30591858.55204 3245 3236 -15523139.55333 3246 3236 -31901305.7147 3247 3236 15916651.71111 3248 3236 20106757.79879 3336 3236 8432447.163244 3337 3236 -10119003.67088 3338 3236 5377331.166378 3342 3236 -10253948.8687 3343 3236 -42777202.9092 3344 3236 -22397604.24035 3345 3236 -6140600.947398 3346 3236 -27322678.94813 3347 3236 -75919024.90121 3351 3236 -10821935.79869 3352 3236 -10486146.20919 3353 3236 -13681836.08202 3354 3236 -74277994.97009 3355 3236 -21190287.58241 3356 3236 -105509843.5958 3357 3236 -28085219.59939 3358 3236 14978517.11945 3359 3236 -66132898.87745 3237 3237 1042603210.19 3238 3237 2.193450927734e-05 3239 3237 9143612.105123 3240 3237 120306386.5889 3241 3237 -9.268522262573e-06 3242 3237 2285903.027413 3249 3237 -239474705.9488 3250 3237 2.950429916382e-06 3251 3237 -4571806.052598 3252 3237 -95620685.86526 3253 3237 62499999.98975 3254 3237 -26687656.37071 3339 3237 -93459816.96553 3340 3237 1.579523086548e-06 3341 3237 66889426.94725 3342 3237 -38668381.31079 3343 3237 -15625000.00514 3344 3237 23108532.96245 3348 3237 119183368.3243 3349 3237 4.112720489502e-06 3350 3237 2285903.027438 3351 3237 -32106344.47651 3352 3237 -9.387731552124e-06 3353 3237 571475.757148 3360 3237 -97033826.33989 3361 3237 1.400709152222e-06 3362 3237 -69175329.97466 3363 3237 -39900479.57507 3364 3237 15625000.00513 3365 3237 -23680008.71958 3238 3238 892596215.9216 3239 3238 -109721099.1218 3240 3238 -9.95397567749e-06 3241 3238 -117193314.8593 3242 3238 54860549.56089 3249 3238 2.920627593994e-06 3250 3238 35526744.0481 3251 3238 -27430274.79396 3252 3238 62499999.98974 3253 3238 -76869811.57243 3254 3238 14949512.39685 3339 3238 -6.705522537231e-07 3340 3238 -24709454.43242 3341 3238 -6857568.701869 3342 3238 -15625000.00514 3343 3238 -33980662.73527 3344 3238 16657951.02195 3348 3238 4.053115844727e-06 3349 3238 81681619.73861 3350 3238 -27430274.79396 3351 3238 -8.40425491333e-06 3352 3238 -91481269.86781 3353 3238 68140484.61019 3360 3238 7.450580596924e-07 3361 3238 -28283463.80681 3362 3238 -6857568.701869 3363 3238 15625000.00513 3364 3238 -35212760.99956 3365 3238 17343714.91106 3239 3239 985817875.0266 3240 3239 2285903.027413 3241 3239 54860549.56089 3242 3239 72200645.50821 3249 3239 -4571806.052597 3250 3239 -27430274.79396 3251 3239 58631507.34796 3252 3239 -27030538.31493 3253 3239 15223817.95222 3254 3239 -30681326.51173 3339 3239 66546545.00303 3340 3239 -6857568.701869 3341 3239 -74918497.68596 3342 3239 23108532.96245 3343 3239 16657951.02195 3344 3239 -47038891.18556 3348 3239 2285903.027438 3349 3239 -27430274.79396 3350 3239 -130792022.7266 3351 3239 571475.7571481 3352 3239 67866179.05482 3353 3239 -147771014.9835 3360 3239 -68832448.03044 3361 3239 -6857568.701869 3362 3239 -84449189.35104 3363 3239 -23680008.71958 3364 3239 17343714.91106 3365 3239 -50324486.557 3240 3240 1042603210.19 3241 3240 2.193450927734e-05 3242 3240 9143612.105123 3243 3240 120306386.5889 3244 3240 -9.268522262573e-06 3245 3240 2285903.027413 3249 3240 -94266302.18495 3250 3240 -62499999.98975 3251 3240 24744635.2875 3252 3240 -239474705.9488 3253 3240 2.950429916382e-06 3254 3240 -4571806.052598 3255 3240 -95620685.86526 3256 3240 62499999.98975 3257 3240 -26687656.37071 3339 3240 -25604579.22317 3340 3240 15625000.00514 3341 3240 10250460.04156 3342 3240 -93459816.96553 3343 3240 1.579523086548e-06 3344 3240 66889426.94725 3345 3240 -38668381.31079 3346 3240 -15625000.00514 3347 3240 23108532.96245 3348 3240 21503247.52855 3349 3240 3.844499588013e-06 3350 3240 571475.7571353 3351 3240 119183368.3243 3352 3240 4.112720489502e-06 3353 3240 2285903.027438 3354 3240 -32106344.47651 3355 3240 -9.387731552124e-06 3356 3240 571475.757148 3360 3240 -26159485.64696 3361 3240 -15625000.00513 3362 3240 -10821935.79869 3363 3240 -97033826.33989 3364 3240 1.400709152222e-06 3365 3240 -69175329.97466 3366 3240 -39900479.57507 3367 3240 15625000.00513 3368 3240 -23680008.71958 3241 3241 892596215.9216 3242 3241 -109721099.1218 3243 3241 -9.95397567749e-06 3244 3241 -117193314.8593 3245 3241 54860549.56089 3249 3241 -62499999.98975 3250 3241 -75515427.89211 3251 3241 12480762.39712 3252 3241 2.920627593994e-06 3253 3241 35526744.0481 3254 3241 -27430274.79396 3255 3241 62499999.98974 3256 3241 -76869811.57243 3257 3241 14949512.39685 3339 3241 15625000.00514 3340 3241 -20916860.64765 3341 3241 -9800382.320076 3342 3241 -6.705522537231e-07 3343 3241 -24709454.43242 3344 3241 -6857568.701869 3345 3241 -15625000.00514 3346 3241 -33980662.73527 3347 3241 16657951.02195 3348 3241 5.88595867157e-06 3349 3241 -37871677.86274 3350 3241 -40710209.81623 3351 3241 4.053115844727e-06 3352 3241 81681619.73861 3353 3241 -27430274.79396 3354 3241 -8.40425491333e-06 3355 3241 -91481269.86781 3356 3241 68140484.61019 3360 3241 -15625000.00513 3361 3241 -21471767.07144 3362 3241 -10486146.20919 3363 3241 7.450580596924e-07 3364 3241 -28283463.80681 3365 3241 -6857568.701869 3366 3241 15625000.00513 3367 3241 -35212760.99956 3368 3241 17343714.91106 3242 3242 985817875.0266 3243 3242 2285903.027413 3244 3242 54860549.56089 3245 3242 72200645.50821 3249 3242 24401753.34329 3250 3242 12206456.84174 3251 3242 -27069636.69752 3252 3242 -4571806.052597 3253 3242 -27430274.79396 3254 3242 58631507.34796 3255 3242 -27030538.31493 3256 3242 15223817.95222 3257 3242 -30681326.51173 3339 3242 10250460.04156 3340 3242 -9800382.320076 3341 3242 -12202085.61857 3342 3242 66546545.00303 3343 3242 -6857568.701869 3344 3242 -74918497.68596 3345 3242 23108532.96245 3346 3242 16657951.02195 3347 3242 -47038891.18556 3348 3242 571475.7571355 3349 3242 -40435904.26086 3350 3242 -4812102.970013 3351 3242 2285903.027438 3352 3242 -27430274.79396 3353 3242 -130792022.7266 3354 3242 571475.7571481 3355 3242 67866179.05482 3356 3242 -147771014.9835 3360 3242 -10821935.79869 3361 3242 -10486146.20919 3362 3242 -13681836.08202 3363 3242 -68832448.03044 3364 3242 -6857568.701869 3365 3242 -84449189.35104 3366 3242 -23680008.71958 3367 3242 17343714.91106 3368 3242 -50324486.557 3243 3243 1128168022.401 3244 3243 62553220.58474 3245 3243 30858743.66929 3246 3243 17446621.74987 3247 3243 -62521288.22774 3248 3243 26696512.96211 3252 3243 -94266302.18495 3253 3243 -62499999.98975 3254 3243 24744635.2875 3255 3243 -239474705.9488 3256 3243 2.950429916382e-06 3257 3243 -4571806.052598 3258 3243 -95620685.86526 3259 3243 62499999.98975 3260 3243 -26687656.37071 3342 3243 -25604579.22317 3343 3243 15625000.00514 3344 3243 10250460.04156 3345 3243 -111681734.2619 3346 3243 -15632983.09438 3347 3243 61472760.90482 3351 3243 21503247.52855 3352 3243 3.844499588013e-06 3353 3243 571475.7571353 3354 3243 149252626.5636 3355 3243 15638305.15389 3356 3243 7711980.245565 3357 3243 -47230742.81426 3358 3243 -15630322.06464 3359 3243 23688071.7797 3363 3243 -26159485.64696 3364 3243 -15625000.00513 3365 3243 -10821935.79869 3366 3243 -97033826.33989 3367 3243 1.400709152222e-06 3368 3243 -69175329.97466 3369 3243 -39900479.57507 3370 3243 15625000.00513 3371 3243 -23680008.71958 3244 3244 959386203.4543 3245 3244 -85034422.38434 3246 3244 -62531932.34674 3247 3244 -201344781.4455 3248 3244 45541679.93477 3252 3244 -62499999.98975 3253 3244 -75515427.89211 3254 3244 12480762.39712 3255 3244 2.920627593994e-06 3256 3244 35526744.0481 3257 3244 -27430274.79396 3258 3244 62499999.98974 3259 3244 -76869811.57243 3260 3244 14949512.39685 3342 3244 15625000.00514 3343 3244 -20916860.64765 3344 3244 -9800382.320076 3345 3244 -15630322.06464 3346 3244 -38227021.54706 3347 3244 5963051.430523 3351 3244 5.88595867157e-06 3352 3244 -37871677.86274 3353 3244 -40710209.81623 3354 3244 15638305.15389 3355 3244 107057171.8061 3356 3244 -21260770.12636 3357 3244 -15632983.09439 3358 3244 -101928593.64 3359 3244 65822290.07648 3363 3244 -15625000.00513 3364 3244 -21471767.07144 3365 3244 -10486146.20919 3366 3244 7.450580596924e-07 3367 3244 -28283463.80681 3368 3244 -6857568.701869 3369 3244 15625000.00513 3370 3244 -35212760.99956 3371 3244 17343714.91106 3245 3245 989397032.1941 3246 3245 27043823.20204 3247 3245 53225583.49043 3248 3245 22257684.43985 3252 3245 24401753.34329 3253 3245 12206456.84174 3254 3245 -27069636.69752 3255 3245 -4571806.052597 3256 3245 -27430274.79396 3257 3245 58631507.34796 3258 3245 -27030538.31493 3259 3245 15223817.95222 3260 3245 -30681326.51173 3342 3245 10250460.04156 3343 3245 -9800382.320076 3344 3245 -12202085.61857 3345 3245 61128808.369 3346 3245 4044385.985747 3347 3245 -67372502.27695 3351 3245 571475.7571355 3352 3245 -40435904.26086 3353 3245 -4812102.970013 3354 3245 7717756.425008 3355 3245 -21256149.23011 3356 3245 -106755752.9646 3357 3245 23692103.30976 3358 3245 67469018.6918 3359 3245 -132015307.5643 3363 3245 -10821935.79869 3364 3245 -10486146.20919 3365 3245 -13681836.08202 3366 3245 -68832448.03044 3367 3245 -6857568.701869 3368 3245 -84449189.35104 3369 3245 -23680008.71958 3370 3245 17343714.91106 3371 3245 -50324486.557 3246 3246 661240911.694 3247 3246 62499999.98975 3248 3246 26309808.76172 3255 3246 -94266302.18495 3256 3246 -62499999.98975 3257 3246 24744635.2875 3258 3246 -351489360.7944 3259 3246 -62521288.22773 3260 3246 -26300660.30375 3261 3246 7540034.174547 3262 3246 50021288.22979 3263 3246 -21267537.14313 3345 3246 2016499.187392 3346 3246 18757983.09541 3347 3246 12648670.74487 3354 3246 -6124104.06778 3355 3246 -15632983.09438 3356 3246 -10255693.28227 3357 3246 76701211.16396 3358 3246 15625000.00514 3359 3246 21009550.22758 3366 3246 -26159485.64696 3367 3246 -15625000.00513 3368 3246 -10821935.79869 3369 3246 -125983237.2565 3370 3246 -15630322.06463 3371 3246 -74621947.50591 3372 3246 -24799837.07904 3373 3246 12505322.06361 3374 3246 -18723479.73292 3247 3247 567462589.8818 3248 3247 -68593390.60176 3255 3247 -62499999.98975 3256 3247 -75515427.89211 3257 3247 12480762.39712 3258 3247 -62531932.34673 3259 3247 -57670510.07978 3260 3247 -38001573.29657 3261 3247 75031932.34468 3262 3247 7540034.174547 3263 3247 23874977.56666 3345 3247 12505322.06361 3346 3247 2016499.187392 3347 3247 -6746002.447256 3354 3247 -15630322.06463 3355 3247 -60821954.89356 3356 3247 -41130474.11058 3357 3247 15625000.00514 3358 3247 53256630.69937 3359 3247 -5602780.460976 3366 3247 -15625000.00513 3367 3247 -21471767.07144 3368 3247 -10486146.20919 3369 3247 -15632983.09438 3370 3247 -52528524.54163 3371 3247 -23113573.91808 3372 3247 18757983.09541 3373 3247 -24799837.07904 3374 3247 22467775.67917 3248 3248 641486746.383 3255 3248 24401753.34329 3256 3248 12206456.84174 3257 3248 -27069636.69752 3258 3248 -26296086.07475 3259 3248 -30591858.55204 3260 3248 -15523139.55333 3261 3248 -31901305.7147 3262 3248 15916651.71111 3263 3248 20106757.79879 3345 3248 8432447.163244 3346 3248 -10119003.67088 3347 3248 5377331.166378 3354 3248 -10253948.8687 3355 3248 -42777202.9092 3356 3248 -22397604.24035 3357 3248 -6140600.947398 3358 3248 -27322678.94813 3359 3248 -75919024.90121 3366 3248 -10821935.79869 3367 3248 -10486146.20919 3368 3248 -13681836.08202 3369 3248 -74277994.97009 3370 3248 -21190287.58241 3371 3248 -105509843.5958 3372 3248 -28085219.59939 3373 3248 14978517.11945 3374 3248 -66132898.87745 3249 3249 1042603210.19 3250 3249 2.193450927734e-05 3251 3249 9143612.105123 3252 3249 120306386.5889 3253 3249 -9.268522262573e-06 3254 3249 2285903.027413 3264 3249 -239474705.9488 3265 3249 2.950429916382e-06 3266 3249 -4571806.052598 3267 3249 -95620685.86526 3268 3249 62499999.98975 3269 3249 -26687656.37071 3348 3249 -93459816.96553 3349 3249 1.579523086548e-06 3350 3249 66889426.94725 3351 3249 -38668381.31079 3352 3249 -15625000.00514 3353 3249 23108532.96245 3360 3249 119183368.3243 3361 3249 4.112720489502e-06 3362 3249 2285903.027438 3363 3249 -32106344.47651 3364 3249 -9.387731552124e-06 3365 3249 571475.757148 3375 3249 -97033826.33989 3376 3249 1.400709152222e-06 3377 3249 -69175329.97466 3378 3249 -39900479.57507 3379 3249 15625000.00513 3380 3249 -23680008.71958 3250 3250 892596215.9216 3251 3250 -109721099.1218 3252 3250 -9.95397567749e-06 3253 3250 -117193314.8593 3254 3250 54860549.56089 3264 3250 2.920627593994e-06 3265 3250 35526744.0481 3266 3250 -27430274.79396 3267 3250 62499999.98974 3268 3250 -76869811.57243 3269 3250 14949512.39685 3348 3250 -6.705522537231e-07 3349 3250 -24709454.43242 3350 3250 -6857568.701869 3351 3250 -15625000.00514 3352 3250 -33980662.73527 3353 3250 16657951.02195 3360 3250 4.053115844727e-06 3361 3250 81681619.73861 3362 3250 -27430274.79396 3363 3250 -8.40425491333e-06 3364 3250 -91481269.86781 3365 3250 68140484.61019 3375 3250 7.450580596924e-07 3376 3250 -28283463.80681 3377 3250 -6857568.701869 3378 3250 15625000.00513 3379 3250 -35212760.99956 3380 3250 17343714.91106 3251 3251 985817875.0266 3252 3251 2285903.027413 3253 3251 54860549.56089 3254 3251 72200645.50821 3264 3251 -4571806.052597 3265 3251 -27430274.79396 3266 3251 58631507.34796 3267 3251 -27030538.31493 3268 3251 15223817.95222 3269 3251 -30681326.51173 3348 3251 66546545.00303 3349 3251 -6857568.701869 3350 3251 -74918497.68596 3351 3251 23108532.96245 3352 3251 16657951.02195 3353 3251 -47038891.18556 3360 3251 2285903.027438 3361 3251 -27430274.79396 3362 3251 -130792022.7266 3363 3251 571475.7571481 3364 3251 67866179.05482 3365 3251 -147771014.9835 3375 3251 -68832448.03044 3376 3251 -6857568.701869 3377 3251 -84449189.35104 3378 3251 -23680008.71958 3379 3251 17343714.91106 3380 3251 -50324486.557 3252 3252 1042603210.19 3253 3252 2.193450927734e-05 3254 3252 9143612.105123 3255 3252 120306386.5889 3256 3252 -9.268522262573e-06 3257 3252 2285903.027413 3264 3252 -94266302.18495 3265 3252 -62499999.98975 3266 3252 24744635.2875 3267 3252 -239474705.9488 3268 3252 2.950429916382e-06 3269 3252 -4571806.052598 3270 3252 -95620685.86526 3271 3252 62499999.98975 3272 3252 -26687656.37071 3348 3252 -25604579.22317 3349 3252 15625000.00514 3350 3252 10250460.04156 3351 3252 -93459816.96553 3352 3252 1.579523086548e-06 3353 3252 66889426.94725 3354 3252 -38668381.31079 3355 3252 -15625000.00514 3356 3252 23108532.96245 3360 3252 21503247.52855 3361 3252 3.844499588013e-06 3362 3252 571475.7571353 3363 3252 119183368.3243 3364 3252 4.112720489502e-06 3365 3252 2285903.027438 3366 3252 -32106344.47651 3367 3252 -9.387731552124e-06 3368 3252 571475.757148 3375 3252 -26159485.64696 3376 3252 -15625000.00513 3377 3252 -10821935.79869 3378 3252 -97033826.33989 3379 3252 1.400709152222e-06 3380 3252 -69175329.97466 3381 3252 -39900479.57507 3382 3252 15625000.00513 3383 3252 -23680008.71958 3253 3253 892596215.9216 3254 3253 -109721099.1218 3255 3253 -9.95397567749e-06 3256 3253 -117193314.8593 3257 3253 54860549.56089 3264 3253 -62499999.98975 3265 3253 -75515427.89211 3266 3253 12480762.39712 3267 3253 2.920627593994e-06 3268 3253 35526744.0481 3269 3253 -27430274.79396 3270 3253 62499999.98974 3271 3253 -76869811.57243 3272 3253 14949512.39685 3348 3253 15625000.00514 3349 3253 -20916860.64765 3350 3253 -9800382.320076 3351 3253 -6.705522537231e-07 3352 3253 -24709454.43242 3353 3253 -6857568.701869 3354 3253 -15625000.00514 3355 3253 -33980662.73527 3356 3253 16657951.02195 3360 3253 5.88595867157e-06 3361 3253 -37871677.86274 3362 3253 -40710209.81623 3363 3253 4.053115844727e-06 3364 3253 81681619.73861 3365 3253 -27430274.79396 3366 3253 -8.40425491333e-06 3367 3253 -91481269.86781 3368 3253 68140484.61019 3375 3253 -15625000.00513 3376 3253 -21471767.07144 3377 3253 -10486146.20919 3378 3253 7.450580596924e-07 3379 3253 -28283463.80681 3380 3253 -6857568.701869 3381 3253 15625000.00513 3382 3253 -35212760.99956 3383 3253 17343714.91106 3254 3254 985817875.0266 3255 3254 2285903.027413 3256 3254 54860549.56089 3257 3254 72200645.50821 3264 3254 24401753.34329 3265 3254 12206456.84174 3266 3254 -27069636.69752 3267 3254 -4571806.052597 3268 3254 -27430274.79396 3269 3254 58631507.34796 3270 3254 -27030538.31493 3271 3254 15223817.95222 3272 3254 -30681326.51173 3348 3254 10250460.04156 3349 3254 -9800382.320076 3350 3254 -12202085.61857 3351 3254 66546545.00303 3352 3254 -6857568.701869 3353 3254 -74918497.68596 3354 3254 23108532.96245 3355 3254 16657951.02195 3356 3254 -47038891.18556 3360 3254 571475.7571355 3361 3254 -40435904.26086 3362 3254 -4812102.970013 3363 3254 2285903.027438 3364 3254 -27430274.79396 3365 3254 -130792022.7266 3366 3254 571475.7571481 3367 3254 67866179.05482 3368 3254 -147771014.9835 3375 3254 -10821935.79869 3376 3254 -10486146.20919 3377 3254 -13681836.08202 3378 3254 -68832448.03044 3379 3254 -6857568.701869 3380 3254 -84449189.35104 3381 3254 -23680008.71958 3382 3254 17343714.91106 3383 3254 -50324486.557 3255 3255 1042603210.19 3256 3255 2.193450927734e-05 3257 3255 9143612.105123 3258 3255 120306386.5889 3259 3255 -9.268522262573e-06 3260 3255 2285903.027413 3267 3255 -94266302.18495 3268 3255 -62499999.98975 3269 3255 24744635.2875 3270 3255 -239474705.9488 3271 3255 2.950429916382e-06 3272 3255 -4571806.052598 3273 3255 -95620685.86526 3274 3255 62499999.98975 3275 3255 -26687656.37071 3351 3255 -25604579.22317 3352 3255 15625000.00514 3353 3255 10250460.04156 3354 3255 -93459816.96553 3355 3255 1.579523086548e-06 3356 3255 66889426.94725 3357 3255 -38668381.31079 3358 3255 -15625000.00514 3359 3255 23108532.96245 3363 3255 21503247.52855 3364 3255 3.844499588013e-06 3365 3255 571475.7571353 3366 3255 119183368.3243 3367 3255 4.112720489502e-06 3368 3255 2285903.027438 3369 3255 -32106344.47651 3370 3255 -9.387731552124e-06 3371 3255 571475.757148 3378 3255 -26159485.64696 3379 3255 -15625000.00513 3380 3255 -10821935.79869 3381 3255 -97033826.33989 3382 3255 1.400709152222e-06 3383 3255 -69175329.97466 3384 3255 -39900479.57507 3385 3255 15625000.00513 3386 3255 -23680008.71958 3256 3256 892596215.9216 3257 3256 -109721099.1218 3258 3256 -9.95397567749e-06 3259 3256 -117193314.8593 3260 3256 54860549.56089 3267 3256 -62499999.98975 3268 3256 -75515427.89211 3269 3256 12480762.39712 3270 3256 2.920627593994e-06 3271 3256 35526744.0481 3272 3256 -27430274.79396 3273 3256 62499999.98974 3274 3256 -76869811.57243 3275 3256 14949512.39685 3351 3256 15625000.00514 3352 3256 -20916860.64765 3353 3256 -9800382.320076 3354 3256 -6.705522537231e-07 3355 3256 -24709454.43242 3356 3256 -6857568.701869 3357 3256 -15625000.00514 3358 3256 -33980662.73527 3359 3256 16657951.02195 3363 3256 5.88595867157e-06 3364 3256 -37871677.86274 3365 3256 -40710209.81623 3366 3256 4.053115844727e-06 3367 3256 81681619.73861 3368 3256 -27430274.79396 3369 3256 -8.40425491333e-06 3370 3256 -91481269.86781 3371 3256 68140484.61019 3378 3256 -15625000.00513 3379 3256 -21471767.07144 3380 3256 -10486146.20919 3381 3256 7.450580596924e-07 3382 3256 -28283463.80681 3383 3256 -6857568.701869 3384 3256 15625000.00513 3385 3256 -35212760.99956 3386 3256 17343714.91106 3257 3257 985817875.0266 3258 3257 2285903.027413 3259 3257 54860549.56089 3260 3257 72200645.50821 3267 3257 24401753.34329 3268 3257 12206456.84174 3269 3257 -27069636.69752 3270 3257 -4571806.052597 3271 3257 -27430274.79396 3272 3257 58631507.34796 3273 3257 -27030538.31493 3274 3257 15223817.95222 3275 3257 -30681326.51173 3351 3257 10250460.04156 3352 3257 -9800382.320076 3353 3257 -12202085.61857 3354 3257 66546545.00303 3355 3257 -6857568.701869 3356 3257 -74918497.68596 3357 3257 23108532.96245 3358 3257 16657951.02195 3359 3257 -47038891.18556 3363 3257 571475.7571355 3364 3257 -40435904.26086 3365 3257 -4812102.970013 3366 3257 2285903.027438 3367 3257 -27430274.79396 3368 3257 -130792022.7266 3369 3257 571475.7571481 3370 3257 67866179.05482 3371 3257 -147771014.9835 3378 3257 -10821935.79869 3379 3257 -10486146.20919 3380 3257 -13681836.08202 3381 3257 -68832448.03044 3382 3257 -6857568.701869 3383 3257 -84449189.35104 3384 3257 -23680008.71958 3385 3257 17343714.91106 3386 3257 -50324486.557 3258 3258 1128168022.401 3259 3258 62553220.58474 3260 3258 30858743.66929 3261 3258 17446621.74987 3262 3258 -62521288.22774 3263 3258 26696512.96211 3270 3258 -94266302.18495 3271 3258 -62499999.98975 3272 3258 24744635.2875 3273 3258 -239474705.9488 3274 3258 2.950429916382e-06 3275 3258 -4571806.052598 3276 3258 -95620685.86526 3277 3258 62499999.98975 3278 3258 -26687656.37071 3354 3258 -25604579.22317 3355 3258 15625000.00514 3356 3258 10250460.04156 3357 3258 -111681734.2619 3358 3258 -15632983.09438 3359 3258 61472760.90482 3366 3258 21503247.52855 3367 3258 3.844499588013e-06 3368 3258 571475.7571353 3369 3258 149252626.5636 3370 3258 15638305.15389 3371 3258 7711980.245565 3372 3258 -47230742.81426 3373 3258 -15630322.06464 3374 3258 23688071.7797 3381 3258 -26159485.64696 3382 3258 -15625000.00513 3383 3258 -10821935.79869 3384 3258 -97033826.33989 3385 3258 1.400709152222e-06 3386 3258 -69175329.97466 3387 3258 -39900479.57507 3388 3258 15625000.00513 3389 3258 -23680008.71958 3259 3259 959386203.4543 3260 3259 -85034422.38434 3261 3259 -62531932.34674 3262 3259 -201344781.4455 3263 3259 45541679.93477 3270 3259 -62499999.98975 3271 3259 -75515427.89211 3272 3259 12480762.39712 3273 3259 2.920627593994e-06 3274 3259 35526744.0481 3275 3259 -27430274.79396 3276 3259 62499999.98974 3277 3259 -76869811.57243 3278 3259 14949512.39685 3354 3259 15625000.00514 3355 3259 -20916860.64765 3356 3259 -9800382.320076 3357 3259 -15630322.06464 3358 3259 -38227021.54706 3359 3259 5963051.430523 3366 3259 5.88595867157e-06 3367 3259 -37871677.86274 3368 3259 -40710209.81623 3369 3259 15638305.15389 3370 3259 107057171.8061 3371 3259 -21260770.12636 3372 3259 -15632983.09439 3373 3259 -101928593.64 3374 3259 65822290.07648 3381 3259 -15625000.00513 3382 3259 -21471767.07144 3383 3259 -10486146.20919 3384 3259 7.450580596924e-07 3385 3259 -28283463.80681 3386 3259 -6857568.701869 3387 3259 15625000.00513 3388 3259 -35212760.99956 3389 3259 17343714.91106 3260 3260 989397032.1941 3261 3260 27043823.20204 3262 3260 53225583.49043 3263 3260 22257684.43985 3270 3260 24401753.34329 3271 3260 12206456.84174 3272 3260 -27069636.69752 3273 3260 -4571806.052597 3274 3260 -27430274.79396 3275 3260 58631507.34796 3276 3260 -27030538.31493 3277 3260 15223817.95222 3278 3260 -30681326.51173 3354 3260 10250460.04156 3355 3260 -9800382.320076 3356 3260 -12202085.61857 3357 3260 61128808.369 3358 3260 4044385.985747 3359 3260 -67372502.27695 3366 3260 571475.7571355 3367 3260 -40435904.26086 3368 3260 -4812102.970013 3369 3260 7717756.425008 3370 3260 -21256149.23011 3371 3260 -106755752.9646 3372 3260 23692103.30976 3373 3260 67469018.6918 3374 3260 -132015307.5643 3381 3260 -10821935.79869 3382 3260 -10486146.20919 3383 3260 -13681836.08202 3384 3260 -68832448.03044 3385 3260 -6857568.701869 3386 3260 -84449189.35104 3387 3260 -23680008.71958 3388 3260 17343714.91106 3389 3260 -50324486.557 3261 3261 661240911.694 3262 3261 62499999.98975 3263 3261 26309808.76172 3273 3261 -94266302.18495 3274 3261 -62499999.98975 3275 3261 24744635.2875 3276 3261 -351489360.7944 3277 3261 -62521288.22773 3278 3261 -26300660.30375 3279 3261 7540034.174547 3280 3261 50021288.22979 3281 3261 -21267537.14313 3357 3261 2016499.187392 3358 3261 18757983.09541 3359 3261 12648670.74487 3369 3261 -6124104.06778 3370 3261 -15632983.09438 3371 3261 -10255693.28227 3372 3261 76701211.16396 3373 3261 15625000.00514 3374 3261 21009550.22758 3384 3261 -26159485.64696 3385 3261 -15625000.00513 3386 3261 -10821935.79869 3387 3261 -125983237.2565 3388 3261 -15630322.06463 3389 3261 -74621947.50591 3390 3261 -24799837.07904 3391 3261 12505322.06361 3392 3261 -18723479.73292 3262 3262 567462589.8818 3263 3262 -68593390.60176 3273 3262 -62499999.98975 3274 3262 -75515427.89211 3275 3262 12480762.39712 3276 3262 -62531932.34673 3277 3262 -57670510.07978 3278 3262 -38001573.29657 3279 3262 75031932.34468 3280 3262 7540034.174547 3281 3262 23874977.56666 3357 3262 12505322.06361 3358 3262 2016499.187392 3359 3262 -6746002.447256 3369 3262 -15630322.06463 3370 3262 -60821954.89356 3371 3262 -41130474.11058 3372 3262 15625000.00514 3373 3262 53256630.69937 3374 3262 -5602780.460976 3384 3262 -15625000.00513 3385 3262 -21471767.07144 3386 3262 -10486146.20919 3387 3262 -15632983.09438 3388 3262 -52528524.54163 3389 3262 -23113573.91808 3390 3262 18757983.09541 3391 3262 -24799837.07904 3392 3262 22467775.67917 3263 3263 641486746.383 3273 3263 24401753.34329 3274 3263 12206456.84174 3275 3263 -27069636.69752 3276 3263 -26296086.07475 3277 3263 -30591858.55204 3278 3263 -15523139.55333 3279 3263 -31901305.7147 3280 3263 15916651.71111 3281 3263 20106757.79879 3357 3263 8432447.163244 3358 3263 -10119003.67088 3359 3263 5377331.166378 3369 3263 -10253948.8687 3370 3263 -42777202.9092 3371 3263 -22397604.24035 3372 3263 -6140600.947398 3373 3263 -27322678.94813 3374 3263 -75919024.90121 3384 3263 -10821935.79869 3385 3263 -10486146.20919 3386 3263 -13681836.08202 3387 3263 -74277994.97009 3388 3263 -21190287.58241 3389 3263 -105509843.5958 3390 3263 -28085219.59939 3391 3263 14978517.11945 3392 3263 -66132898.87745 3264 3264 1042603210.19 3265 3264 2.193450927734e-05 3266 3264 9143612.105123 3267 3264 120306386.5889 3268 3264 -9.268522262573e-06 3269 3264 2285903.027413 3282 3264 -239474705.9488 3283 3264 2.950429916382e-06 3284 3264 -4571806.052598 3285 3264 -95620685.86526 3286 3264 62499999.98975 3287 3264 -26687656.37071 3360 3264 -93459816.96553 3361 3264 1.579523086548e-06 3362 3264 66889426.94725 3363 3264 -38668381.31079 3364 3264 -15625000.00514 3365 3264 23108532.96245 3375 3264 119183368.3243 3376 3264 4.112720489502e-06 3377 3264 2285903.027438 3378 3264 -32106344.47651 3379 3264 -9.387731552124e-06 3380 3264 571475.757148 3393 3264 -97033826.33989 3394 3264 1.400709152222e-06 3395 3264 -69175329.97466 3396 3264 -39900479.57507 3397 3264 15625000.00513 3398 3264 -23680008.71958 3265 3265 892596215.9216 3266 3265 -109721099.1218 3267 3265 -9.95397567749e-06 3268 3265 -117193314.8593 3269 3265 54860549.56089 3282 3265 2.920627593994e-06 3283 3265 35526744.0481 3284 3265 -27430274.79396 3285 3265 62499999.98974 3286 3265 -76869811.57243 3287 3265 14949512.39685 3360 3265 -6.705522537231e-07 3361 3265 -24709454.43242 3362 3265 -6857568.701869 3363 3265 -15625000.00514 3364 3265 -33980662.73527 3365 3265 16657951.02195 3375 3265 4.053115844727e-06 3376 3265 81681619.73861 3377 3265 -27430274.79396 3378 3265 -8.40425491333e-06 3379 3265 -91481269.86781 3380 3265 68140484.61019 3393 3265 7.450580596924e-07 3394 3265 -28283463.80681 3395 3265 -6857568.701869 3396 3265 15625000.00513 3397 3265 -35212760.99956 3398 3265 17343714.91106 3266 3266 985817875.0266 3267 3266 2285903.027413 3268 3266 54860549.56089 3269 3266 72200645.50821 3282 3266 -4571806.052597 3283 3266 -27430274.79396 3284 3266 58631507.34796 3285 3266 -27030538.31493 3286 3266 15223817.95222 3287 3266 -30681326.51173 3360 3266 66546545.00303 3361 3266 -6857568.701869 3362 3266 -74918497.68596 3363 3266 23108532.96245 3364 3266 16657951.02195 3365 3266 -47038891.18556 3375 3266 2285903.027438 3376 3266 -27430274.79396 3377 3266 -130792022.7266 3378 3266 571475.7571481 3379 3266 67866179.05482 3380 3266 -147771014.9835 3393 3266 -68832448.03044 3394 3266 -6857568.701869 3395 3266 -84449189.35104 3396 3266 -23680008.71958 3397 3266 17343714.91106 3398 3266 -50324486.557 3267 3267 1042603210.19 3268 3267 2.193450927734e-05 3269 3267 9143612.105123 3270 3267 120306386.5889 3271 3267 -9.268522262573e-06 3272 3267 2285903.027413 3282 3267 -94266302.18495 3283 3267 -62499999.98975 3284 3267 24744635.2875 3285 3267 -239474705.9488 3286 3267 2.950429916382e-06 3287 3267 -4571806.052598 3288 3267 -95620685.86526 3289 3267 62499999.98975 3290 3267 -26687656.37071 3360 3267 -25604579.22317 3361 3267 15625000.00514 3362 3267 10250460.04156 3363 3267 -93459816.96553 3364 3267 1.579523086548e-06 3365 3267 66889426.94725 3366 3267 -38668381.31079 3367 3267 -15625000.00514 3368 3267 23108532.96245 3375 3267 21503247.52855 3376 3267 3.844499588013e-06 3377 3267 571475.7571353 3378 3267 119183368.3243 3379 3267 4.112720489502e-06 3380 3267 2285903.027438 3381 3267 -32106344.47651 3382 3267 -9.387731552124e-06 3383 3267 571475.757148 3393 3267 -26159485.64696 3394 3267 -15625000.00513 3395 3267 -10821935.79869 3396 3267 -97033826.33989 3397 3267 1.400709152222e-06 3398 3267 -69175329.97466 3399 3267 -39900479.57507 3400 3267 15625000.00513 3401 3267 -23680008.71958 3268 3268 892596215.9216 3269 3268 -109721099.1218 3270 3268 -9.95397567749e-06 3271 3268 -117193314.8593 3272 3268 54860549.56089 3282 3268 -62499999.98975 3283 3268 -75515427.89211 3284 3268 12480762.39712 3285 3268 2.920627593994e-06 3286 3268 35526744.0481 3287 3268 -27430274.79396 3288 3268 62499999.98974 3289 3268 -76869811.57243 3290 3268 14949512.39685 3360 3268 15625000.00514 3361 3268 -20916860.64765 3362 3268 -9800382.320076 3363 3268 -6.705522537231e-07 3364 3268 -24709454.43242 3365 3268 -6857568.701869 3366 3268 -15625000.00514 3367 3268 -33980662.73527 3368 3268 16657951.02195 3375 3268 5.88595867157e-06 3376 3268 -37871677.86274 3377 3268 -40710209.81623 3378 3268 4.053115844727e-06 3379 3268 81681619.73861 3380 3268 -27430274.79396 3381 3268 -8.40425491333e-06 3382 3268 -91481269.86781 3383 3268 68140484.61019 3393 3268 -15625000.00513 3394 3268 -21471767.07144 3395 3268 -10486146.20919 3396 3268 7.450580596924e-07 3397 3268 -28283463.80681 3398 3268 -6857568.701869 3399 3268 15625000.00513 3400 3268 -35212760.99956 3401 3268 17343714.91106 3269 3269 985817875.0266 3270 3269 2285903.027413 3271 3269 54860549.56089 3272 3269 72200645.50821 3282 3269 24401753.34329 3283 3269 12206456.84174 3284 3269 -27069636.69752 3285 3269 -4571806.052597 3286 3269 -27430274.79396 3287 3269 58631507.34796 3288 3269 -27030538.31493 3289 3269 15223817.95222 3290 3269 -30681326.51173 3360 3269 10250460.04156 3361 3269 -9800382.320076 3362 3269 -12202085.61857 3363 3269 66546545.00303 3364 3269 -6857568.701869 3365 3269 -74918497.68596 3366 3269 23108532.96245 3367 3269 16657951.02195 3368 3269 -47038891.18556 3375 3269 571475.7571355 3376 3269 -40435904.26086 3377 3269 -4812102.970013 3378 3269 2285903.027438 3379 3269 -27430274.79396 3380 3269 -130792022.7266 3381 3269 571475.7571481 3382 3269 67866179.05482 3383 3269 -147771014.9835 3393 3269 -10821935.79869 3394 3269 -10486146.20919 3395 3269 -13681836.08202 3396 3269 -68832448.03044 3397 3269 -6857568.701869 3398 3269 -84449189.35104 3399 3269 -23680008.71958 3400 3269 17343714.91106 3401 3269 -50324486.557 3270 3270 1042603210.19 3271 3270 2.193450927734e-05 3272 3270 9143612.105123 3273 3270 120306386.5889 3274 3270 -9.268522262573e-06 3275 3270 2285903.027413 3285 3270 -94266302.18495 3286 3270 -62499999.98975 3287 3270 24744635.2875 3288 3270 -239474705.9488 3289 3270 2.950429916382e-06 3290 3270 -4571806.052598 3291 3270 -95620685.86526 3292 3270 62499999.98975 3293 3270 -26687656.37071 3363 3270 -25604579.22317 3364 3270 15625000.00514 3365 3270 10250460.04156 3366 3270 -93459816.96553 3367 3270 1.579523086548e-06 3368 3270 66889426.94725 3369 3270 -38668381.31079 3370 3270 -15625000.00514 3371 3270 23108532.96245 3378 3270 21503247.52855 3379 3270 3.844499588013e-06 3380 3270 571475.7571353 3381 3270 119183368.3243 3382 3270 4.112720489502e-06 3383 3270 2285903.027438 3384 3270 -32106344.47651 3385 3270 -9.387731552124e-06 3386 3270 571475.757148 3396 3270 -26159485.64696 3397 3270 -15625000.00513 3398 3270 -10821935.79869 3399 3270 -97033826.33989 3400 3270 1.400709152222e-06 3401 3270 -69175329.97466 3402 3270 -39900479.57507 3403 3270 15625000.00513 3404 3270 -23680008.71958 3271 3271 892596215.9216 3272 3271 -109721099.1218 3273 3271 -9.95397567749e-06 3274 3271 -117193314.8593 3275 3271 54860549.56089 3285 3271 -62499999.98975 3286 3271 -75515427.89211 3287 3271 12480762.39712 3288 3271 2.920627593994e-06 3289 3271 35526744.0481 3290 3271 -27430274.79396 3291 3271 62499999.98974 3292 3271 -76869811.57243 3293 3271 14949512.39685 3363 3271 15625000.00514 3364 3271 -20916860.64765 3365 3271 -9800382.320076 3366 3271 -6.705522537231e-07 3367 3271 -24709454.43242 3368 3271 -6857568.701869 3369 3271 -15625000.00514 3370 3271 -33980662.73527 3371 3271 16657951.02195 3378 3271 5.88595867157e-06 3379 3271 -37871677.86274 3380 3271 -40710209.81623 3381 3271 4.053115844727e-06 3382 3271 81681619.73861 3383 3271 -27430274.79396 3384 3271 -8.40425491333e-06 3385 3271 -91481269.86781 3386 3271 68140484.61019 3396 3271 -15625000.00513 3397 3271 -21471767.07144 3398 3271 -10486146.20919 3399 3271 7.450580596924e-07 3400 3271 -28283463.80681 3401 3271 -6857568.701869 3402 3271 15625000.00513 3403 3271 -35212760.99956 3404 3271 17343714.91106 3272 3272 985817875.0266 3273 3272 2285903.027413 3274 3272 54860549.56089 3275 3272 72200645.50821 3285 3272 24401753.34329 3286 3272 12206456.84174 3287 3272 -27069636.69752 3288 3272 -4571806.052597 3289 3272 -27430274.79396 3290 3272 58631507.34796 3291 3272 -27030538.31493 3292 3272 15223817.95222 3293 3272 -30681326.51173 3363 3272 10250460.04156 3364 3272 -9800382.320076 3365 3272 -12202085.61857 3366 3272 66546545.00303 3367 3272 -6857568.701869 3368 3272 -74918497.68596 3369 3272 23108532.96245 3370 3272 16657951.02195 3371 3272 -47038891.18556 3378 3272 571475.7571355 3379 3272 -40435904.26086 3380 3272 -4812102.970013 3381 3272 2285903.027438 3382 3272 -27430274.79396 3383 3272 -130792022.7266 3384 3272 571475.7571481 3385 3272 67866179.05482 3386 3272 -147771014.9835 3396 3272 -10821935.79869 3397 3272 -10486146.20919 3398 3272 -13681836.08202 3399 3272 -68832448.03044 3400 3272 -6857568.701869 3401 3272 -84449189.35104 3402 3272 -23680008.71958 3403 3272 17343714.91106 3404 3272 -50324486.557 3273 3273 1042603210.19 3274 3273 2.193450927734e-05 3275 3273 9143612.105123 3276 3273 120306386.5889 3277 3273 -9.268522262573e-06 3278 3273 2285903.027413 3288 3273 -94266302.18495 3289 3273 -62499999.98975 3290 3273 24744635.2875 3291 3273 -239474705.9488 3292 3273 2.950429916382e-06 3293 3273 -4571806.052598 3294 3273 -95620685.86526 3295 3273 62499999.98975 3296 3273 -26687656.37071 3366 3273 -25604579.22317 3367 3273 15625000.00514 3368 3273 10250460.04156 3369 3273 -93459816.96553 3370 3273 1.579523086548e-06 3371 3273 66889426.94725 3372 3273 -38668381.31079 3373 3273 -15625000.00514 3374 3273 23108532.96245 3381 3273 21503247.52855 3382 3273 3.844499588013e-06 3383 3273 571475.7571353 3384 3273 119183368.3243 3385 3273 4.112720489502e-06 3386 3273 2285903.027438 3387 3273 -32106344.47651 3388 3273 -9.387731552124e-06 3389 3273 571475.757148 3399 3273 -26159485.64696 3400 3273 -15625000.00513 3401 3273 -10821935.79869 3402 3273 -97033826.33989 3403 3273 1.400709152222e-06 3404 3273 -69175329.97466 3405 3273 -39900479.57507 3406 3273 15625000.00513 3407 3273 -23680008.71958 3274 3274 892596215.9216 3275 3274 -109721099.1218 3276 3274 -9.95397567749e-06 3277 3274 -117193314.8593 3278 3274 54860549.56089 3288 3274 -62499999.98975 3289 3274 -75515427.89211 3290 3274 12480762.39712 3291 3274 2.920627593994e-06 3292 3274 35526744.0481 3293 3274 -27430274.79396 3294 3274 62499999.98974 3295 3274 -76869811.57243 3296 3274 14949512.39685 3366 3274 15625000.00514 3367 3274 -20916860.64765 3368 3274 -9800382.320076 3369 3274 -6.705522537231e-07 3370 3274 -24709454.43242 3371 3274 -6857568.701869 3372 3274 -15625000.00514 3373 3274 -33980662.73527 3374 3274 16657951.02195 3381 3274 5.88595867157e-06 3382 3274 -37871677.86274 3383 3274 -40710209.81623 3384 3274 4.053115844727e-06 3385 3274 81681619.73861 3386 3274 -27430274.79396 3387 3274 -8.40425491333e-06 3388 3274 -91481269.86781 3389 3274 68140484.61019 3399 3274 -15625000.00513 3400 3274 -21471767.07144 3401 3274 -10486146.20919 3402 3274 7.450580596924e-07 3403 3274 -28283463.80681 3404 3274 -6857568.701869 3405 3274 15625000.00513 3406 3274 -35212760.99956 3407 3274 17343714.91106 3275 3275 985817875.0266 3276 3275 2285903.027413 3277 3275 54860549.56089 3278 3275 72200645.50821 3288 3275 24401753.34329 3289 3275 12206456.84174 3290 3275 -27069636.69752 3291 3275 -4571806.052597 3292 3275 -27430274.79396 3293 3275 58631507.34796 3294 3275 -27030538.31493 3295 3275 15223817.95222 3296 3275 -30681326.51173 3366 3275 10250460.04156 3367 3275 -9800382.320076 3368 3275 -12202085.61857 3369 3275 66546545.00303 3370 3275 -6857568.701869 3371 3275 -74918497.68596 3372 3275 23108532.96245 3373 3275 16657951.02195 3374 3275 -47038891.18556 3381 3275 571475.7571355 3382 3275 -40435904.26086 3383 3275 -4812102.970013 3384 3275 2285903.027438 3385 3275 -27430274.79396 3386 3275 -130792022.7266 3387 3275 571475.7571481 3388 3275 67866179.05482 3389 3275 -147771014.9835 3399 3275 -10821935.79869 3400 3275 -10486146.20919 3401 3275 -13681836.08202 3402 3275 -68832448.03044 3403 3275 -6857568.701869 3404 3275 -84449189.35104 3405 3275 -23680008.71958 3406 3275 17343714.91106 3407 3275 -50324486.557 3276 3276 1128168022.401 3277 3276 62553220.58474 3278 3276 30858743.66929 3279 3276 17446621.74987 3280 3276 -62521288.22774 3281 3276 26696512.96211 3291 3276 -94266302.18495 3292 3276 -62499999.98975 3293 3276 24744635.2875 3294 3276 -239474705.9488 3295 3276 2.950429916382e-06 3296 3276 -4571806.052598 3297 3276 -95620685.86526 3298 3276 62499999.98975 3299 3276 -26687656.37071 3369 3276 -25604579.22317 3370 3276 15625000.00514 3371 3276 10250460.04156 3372 3276 -111681734.2619 3373 3276 -15632983.09438 3374 3276 61472760.90482 3384 3276 21503247.52855 3385 3276 3.844499588013e-06 3386 3276 571475.7571353 3387 3276 149252626.5636 3388 3276 15638305.15389 3389 3276 7711980.245565 3390 3276 -47230742.81426 3391 3276 -15630322.06464 3392 3276 23688071.7797 3402 3276 -26159485.64696 3403 3276 -15625000.00513 3404 3276 -10821935.79869 3405 3276 -97033826.33989 3406 3276 1.400709152222e-06 3407 3276 -69175329.97466 3408 3276 -39900479.57507 3409 3276 15625000.00513 3410 3276 -23680008.71958 3277 3277 959386203.4543 3278 3277 -85034422.38434 3279 3277 -62531932.34674 3280 3277 -201344781.4455 3281 3277 45541679.93477 3291 3277 -62499999.98975 3292 3277 -75515427.89211 3293 3277 12480762.39712 3294 3277 2.920627593994e-06 3295 3277 35526744.0481 3296 3277 -27430274.79396 3297 3277 62499999.98974 3298 3277 -76869811.57243 3299 3277 14949512.39685 3369 3277 15625000.00514 3370 3277 -20916860.64765 3371 3277 -9800382.320076 3372 3277 -15630322.06464 3373 3277 -38227021.54706 3374 3277 5963051.430523 3384 3277 5.88595867157e-06 3385 3277 -37871677.86274 3386 3277 -40710209.81623 3387 3277 15638305.15389 3388 3277 107057171.8061 3389 3277 -21260770.12636 3390 3277 -15632983.09439 3391 3277 -101928593.64 3392 3277 65822290.07648 3402 3277 -15625000.00513 3403 3277 -21471767.07144 3404 3277 -10486146.20919 3405 3277 7.450580596924e-07 3406 3277 -28283463.80681 3407 3277 -6857568.701869 3408 3277 15625000.00513 3409 3277 -35212760.99956 3410 3277 17343714.91106 3278 3278 989397032.1941 3279 3278 27043823.20204 3280 3278 53225583.49043 3281 3278 22257684.43985 3291 3278 24401753.34329 3292 3278 12206456.84174 3293 3278 -27069636.69752 3294 3278 -4571806.052597 3295 3278 -27430274.79396 3296 3278 58631507.34796 3297 3278 -27030538.31493 3298 3278 15223817.95222 3299 3278 -30681326.51173 3369 3278 10250460.04156 3370 3278 -9800382.320076 3371 3278 -12202085.61857 3372 3278 61128808.369 3373 3278 4044385.985747 3374 3278 -67372502.27695 3384 3278 571475.7571355 3385 3278 -40435904.26086 3386 3278 -4812102.970013 3387 3278 7717756.425008 3388 3278 -21256149.23011 3389 3278 -106755752.9646 3390 3278 23692103.30976 3391 3278 67469018.6918 3392 3278 -132015307.5643 3402 3278 -10821935.79869 3403 3278 -10486146.20919 3404 3278 -13681836.08202 3405 3278 -68832448.03044 3406 3278 -6857568.701869 3407 3278 -84449189.35104 3408 3278 -23680008.71958 3409 3278 17343714.91106 3410 3278 -50324486.557 3279 3279 600178947.3725 3280 3279 37725262.55381 3281 3279 -13827796.63441 3294 3279 -94266302.18495 3295 3279 -62499999.98975 3296 3279 24744635.2875 3297 3279 -293151746.8795 3298 3279 -37775820.80688 3299 3279 -1256051.514156 3300 3279 -295864.016185 3301 3279 50050558.24487 3302 3279 -2747124.263025 3372 3279 2016499.187392 3373 3279 18757983.09541 3374 3279 12648670.74487 3387 3279 -6124104.06778 3388 3279 -15632983.09438 3389 3279 -10255693.28227 3390 3279 65666544.26174 3391 3279 10333339.53909 3392 3279 9670962.265862 3405 3279 -26159485.64696 3406 3279 -15625000.00513 3407 3279 -10821935.79869 3408 3279 -106870441.9849 3409 3279 -10344958.86108 3410 3279 -63962837.30182 3411 3279 -13431713.52885 3412 3279 12511619.32611 3413 3279 -12546378.89565 3280 3280 542232249.1086 3281 3280 -69126882.73255 3294 3280 -62499999.98975 3295 3280 -75515427.89211 3296 3280 12480762.39712 3297 3280 -37801099.93342 3298 3280 -10394286.81598 3299 3280 -18514480.73787 3300 3280 75075837.36731 3301 3280 -25066096.91336 3302 3280 6020484.825208 3372 3280 12505322.06361 3373 3280 2016499.187392 3374 3280 -6746002.447256 3387 3280 -15630322.06463 3388 3280 -60821954.89356 3389 3280 -41130474.11058 3390 3280 10333339.53908 3391 3280 49691553.75032 3392 3280 -6634440.888398 3405 3280 -15625000.00513 3406 3280 -21471767.07144 3407 3280 -10486146.20919 3408 3280 -10350768.52208 3409 3280 -35778359.74888 3410 3280 -14032597.42536 3411 3280 18767428.98916 3412 3280 -18538673.00316 3413 3280 20479811.65281 3281 3281 586937705.6795 3294 3281 24401753.34329 3295 3281 12206456.84174 3296 3281 -27069636.69752 3297 3281 -8797975.588425 3298 3281 -17415982.97645 3299 3281 6990733.835282 3300 3281 -4120686.394537 3301 3281 4922929.795991 3302 3281 23981262.18735 3372 3281 8432447.163244 3373 3281 -10119003.67088 3374 3281 5377331.166378 3387 3281 -10253948.8687 3388 3281 -42777202.9092 3389 3281 -22397604.24035 3390 3281 -15760902.34505 3391 3281 -26425457.75927 3392 3281 -82032786.80308 3405 3281 -10821935.79869 3406 3281 -10486146.20919 3407 3281 -13681836.08202 3408 3281 -65676910.20889 3409 3281 -13478401.78615 3410 3281 -82961365.51657 3411 3281 -18819568.34348 3412 3281 15461438.19274 3413 3281 -30710943.26928 3282 3282 1042603210.19 3283 3282 2.193450927734e-05 3284 3282 9143612.105123 3285 3282 120306386.5889 3286 3282 -9.268522262573e-06 3287 3282 2285903.027413 3303 3282 -239474705.9488 3304 3282 2.950429916382e-06 3305 3282 -4571806.052598 3306 3282 -95620685.86526 3307 3282 62499999.98975 3308 3282 -26687656.37071 3375 3282 -93459816.96553 3376 3282 1.579523086548e-06 3377 3282 66889426.94725 3378 3282 -38668381.31079 3379 3282 -15625000.00514 3380 3282 23108532.96245 3393 3282 119183368.3243 3394 3282 4.112720489502e-06 3395 3282 2285903.027438 3396 3282 -32106344.47651 3397 3282 -9.387731552124e-06 3398 3282 571475.757148 3414 3282 -97033826.33989 3415 3282 1.400709152222e-06 3416 3282 -69175329.97466 3417 3282 -39900479.57507 3418 3282 15625000.00513 3419 3282 -23680008.71958 3283 3283 892596215.9216 3284 3283 -109721099.1218 3285 3283 -9.95397567749e-06 3286 3283 -117193314.8593 3287 3283 54860549.56089 3303 3283 2.920627593994e-06 3304 3283 35526744.0481 3305 3283 -27430274.79396 3306 3283 62499999.98974 3307 3283 -76869811.57243 3308 3283 14949512.39685 3375 3283 -6.705522537231e-07 3376 3283 -24709454.43242 3377 3283 -6857568.701869 3378 3283 -15625000.00514 3379 3283 -33980662.73527 3380 3283 16657951.02195 3393 3283 4.053115844727e-06 3394 3283 81681619.73861 3395 3283 -27430274.79396 3396 3283 -8.40425491333e-06 3397 3283 -91481269.86781 3398 3283 68140484.61019 3414 3283 7.450580596924e-07 3415 3283 -28283463.80681 3416 3283 -6857568.701869 3417 3283 15625000.00513 3418 3283 -35212760.99956 3419 3283 17343714.91106 3284 3284 985817875.0266 3285 3284 2285903.027413 3286 3284 54860549.56089 3287 3284 72200645.50821 3303 3284 -4571806.052597 3304 3284 -27430274.79396 3305 3284 58631507.34796 3306 3284 -27030538.31493 3307 3284 15223817.95222 3308 3284 -30681326.51173 3375 3284 66546545.00303 3376 3284 -6857568.701869 3377 3284 -74918497.68596 3378 3284 23108532.96245 3379 3284 16657951.02195 3380 3284 -47038891.18556 3393 3284 2285903.027438 3394 3284 -27430274.79396 3395 3284 -130792022.7266 3396 3284 571475.7571481 3397 3284 67866179.05482 3398 3284 -147771014.9835 3414 3284 -68832448.03044 3415 3284 -6857568.701869 3416 3284 -84449189.35104 3417 3284 -23680008.71958 3418 3284 17343714.91106 3419 3284 -50324486.557 3285 3285 1042603210.19 3286 3285 2.193450927734e-05 3287 3285 9143612.105123 3288 3285 120306386.5889 3289 3285 -9.268522262573e-06 3290 3285 2285903.027413 3303 3285 -94266302.18495 3304 3285 -62499999.98975 3305 3285 24744635.2875 3306 3285 -239474705.9488 3307 3285 2.950429916382e-06 3308 3285 -4571806.052598 3309 3285 -95620685.86526 3310 3285 62499999.98975 3311 3285 -26687656.37071 3375 3285 -25604579.22317 3376 3285 15625000.00514 3377 3285 10250460.04156 3378 3285 -93459816.96553 3379 3285 1.579523086548e-06 3380 3285 66889426.94725 3381 3285 -38668381.31079 3382 3285 -15625000.00514 3383 3285 23108532.96245 3393 3285 21503247.52855 3394 3285 3.844499588013e-06 3395 3285 571475.7571353 3396 3285 119183368.3243 3397 3285 4.112720489502e-06 3398 3285 2285903.027438 3399 3285 -32106344.47651 3400 3285 -9.387731552124e-06 3401 3285 571475.757148 3414 3285 -26159485.64696 3415 3285 -15625000.00513 3416 3285 -10821935.79869 3417 3285 -97033826.33989 3418 3285 1.400709152222e-06 3419 3285 -69175329.97466 3420 3285 -39900479.57507 3421 3285 15625000.00513 3422 3285 -23680008.71958 3286 3286 892596215.9216 3287 3286 -109721099.1218 3288 3286 -9.95397567749e-06 3289 3286 -117193314.8593 3290 3286 54860549.56089 3303 3286 -62499999.98975 3304 3286 -75515427.89211 3305 3286 12480762.39712 3306 3286 2.920627593994e-06 3307 3286 35526744.0481 3308 3286 -27430274.79396 3309 3286 62499999.98974 3310 3286 -76869811.57243 3311 3286 14949512.39685 3375 3286 15625000.00514 3376 3286 -20916860.64765 3377 3286 -9800382.320076 3378 3286 -6.705522537231e-07 3379 3286 -24709454.43242 3380 3286 -6857568.701869 3381 3286 -15625000.00514 3382 3286 -33980662.73527 3383 3286 16657951.02195 3393 3286 5.88595867157e-06 3394 3286 -37871677.86274 3395 3286 -40710209.81623 3396 3286 4.053115844727e-06 3397 3286 81681619.73861 3398 3286 -27430274.79396 3399 3286 -8.40425491333e-06 3400 3286 -91481269.86781 3401 3286 68140484.61019 3414 3286 -15625000.00513 3415 3286 -21471767.07144 3416 3286 -10486146.20919 3417 3286 7.450580596924e-07 3418 3286 -28283463.80681 3419 3286 -6857568.701869 3420 3286 15625000.00513 3421 3286 -35212760.99956 3422 3286 17343714.91106 3287 3287 985817875.0266 3288 3287 2285903.027413 3289 3287 54860549.56089 3290 3287 72200645.50821 3303 3287 24401753.34329 3304 3287 12206456.84174 3305 3287 -27069636.69752 3306 3287 -4571806.052597 3307 3287 -27430274.79396 3308 3287 58631507.34796 3309 3287 -27030538.31493 3310 3287 15223817.95222 3311 3287 -30681326.51173 3375 3287 10250460.04156 3376 3287 -9800382.320076 3377 3287 -12202085.61857 3378 3287 66546545.00303 3379 3287 -6857568.701869 3380 3287 -74918497.68596 3381 3287 23108532.96245 3382 3287 16657951.02195 3383 3287 -47038891.18556 3393 3287 571475.7571355 3394 3287 -40435904.26086 3395 3287 -4812102.970013 3396 3287 2285903.027438 3397 3287 -27430274.79396 3398 3287 -130792022.7266 3399 3287 571475.7571481 3400 3287 67866179.05482 3401 3287 -147771014.9835 3414 3287 -10821935.79869 3415 3287 -10486146.20919 3416 3287 -13681836.08202 3417 3287 -68832448.03044 3418 3287 -6857568.701869 3419 3287 -84449189.35104 3420 3287 -23680008.71958 3421 3287 17343714.91106 3422 3287 -50324486.557 3288 3288 1042603210.19 3289 3288 2.193450927734e-05 3290 3288 9143612.105123 3291 3288 120306386.5889 3292 3288 -9.268522262573e-06 3293 3288 2285903.027413 3306 3288 -94266302.18495 3307 3288 -62499999.98975 3308 3288 24744635.2875 3309 3288 -239474705.9488 3310 3288 2.950429916382e-06 3311 3288 -4571806.052598 3312 3288 -95620685.86526 3313 3288 62499999.98975 3314 3288 -26687656.37071 3378 3288 -25604579.22317 3379 3288 15625000.00514 3380 3288 10250460.04156 3381 3288 -93459816.96553 3382 3288 1.579523086548e-06 3383 3288 66889426.94725 3384 3288 -38668381.31079 3385 3288 -15625000.00514 3386 3288 23108532.96245 3396 3288 21503247.52855 3397 3288 3.844499588013e-06 3398 3288 571475.7571353 3399 3288 119183368.3243 3400 3288 4.112720489502e-06 3401 3288 2285903.027438 3402 3288 -32106344.47651 3403 3288 -9.387731552124e-06 3404 3288 571475.757148 3417 3288 -26159485.64696 3418 3288 -15625000.00513 3419 3288 -10821935.79869 3420 3288 -97033826.33989 3421 3288 1.400709152222e-06 3422 3288 -69175329.97466 3423 3288 -39900479.57507 3424 3288 15625000.00513 3425 3288 -23680008.71958 3289 3289 892596215.9216 3290 3289 -109721099.1218 3291 3289 -9.95397567749e-06 3292 3289 -117193314.8593 3293 3289 54860549.56089 3306 3289 -62499999.98975 3307 3289 -75515427.89211 3308 3289 12480762.39712 3309 3289 2.920627593994e-06 3310 3289 35526744.0481 3311 3289 -27430274.79396 3312 3289 62499999.98974 3313 3289 -76869811.57243 3314 3289 14949512.39685 3378 3289 15625000.00514 3379 3289 -20916860.64765 3380 3289 -9800382.320076 3381 3289 -6.705522537231e-07 3382 3289 -24709454.43242 3383 3289 -6857568.701869 3384 3289 -15625000.00514 3385 3289 -33980662.73527 3386 3289 16657951.02195 3396 3289 5.88595867157e-06 3397 3289 -37871677.86274 3398 3289 -40710209.81623 3399 3289 4.053115844727e-06 3400 3289 81681619.73861 3401 3289 -27430274.79396 3402 3289 -8.40425491333e-06 3403 3289 -91481269.86781 3404 3289 68140484.61019 3417 3289 -15625000.00513 3418 3289 -21471767.07144 3419 3289 -10486146.20919 3420 3289 7.450580596924e-07 3421 3289 -28283463.80681 3422 3289 -6857568.701869 3423 3289 15625000.00513 3424 3289 -35212760.99956 3425 3289 17343714.91106 3290 3290 985817875.0266 3291 3290 2285903.027413 3292 3290 54860549.56089 3293 3290 72200645.50821 3306 3290 24401753.34329 3307 3290 12206456.84174 3308 3290 -27069636.69752 3309 3290 -4571806.052597 3310 3290 -27430274.79396 3311 3290 58631507.34796 3312 3290 -27030538.31493 3313 3290 15223817.95222 3314 3290 -30681326.51173 3378 3290 10250460.04156 3379 3290 -9800382.320076 3380 3290 -12202085.61857 3381 3290 66546545.00303 3382 3290 -6857568.701869 3383 3290 -74918497.68596 3384 3290 23108532.96245 3385 3290 16657951.02195 3386 3290 -47038891.18556 3396 3290 571475.7571355 3397 3290 -40435904.26086 3398 3290 -4812102.970013 3399 3290 2285903.027438 3400 3290 -27430274.79396 3401 3290 -130792022.7266 3402 3290 571475.7571481 3403 3290 67866179.05482 3404 3290 -147771014.9835 3417 3290 -10821935.79869 3418 3290 -10486146.20919 3419 3290 -13681836.08202 3420 3290 -68832448.03044 3421 3290 -6857568.701869 3422 3290 -84449189.35104 3423 3290 -23680008.71958 3424 3290 17343714.91106 3425 3290 -50324486.557 3291 3291 1042603210.19 3292 3291 2.193450927734e-05 3293 3291 9143612.105123 3294 3291 120306386.5889 3295 3291 -9.268522262573e-06 3296 3291 2285903.027413 3309 3291 -94266302.18495 3310 3291 -62499999.98975 3311 3291 24744635.2875 3312 3291 -239474705.9488 3313 3291 2.950429916382e-06 3314 3291 -4571806.052598 3315 3291 -95620685.86526 3316 3291 62499999.98975 3317 3291 -26687656.37071 3381 3291 -25604579.22317 3382 3291 15625000.00514 3383 3291 10250460.04156 3384 3291 -93459816.96553 3385 3291 1.579523086548e-06 3386 3291 66889426.94725 3387 3291 -38668381.31079 3388 3291 -15625000.00514 3389 3291 23108532.96245 3399 3291 21503247.52855 3400 3291 3.844499588013e-06 3401 3291 571475.7571353 3402 3291 119183368.3243 3403 3291 4.112720489502e-06 3404 3291 2285903.027438 3405 3291 -32106344.47651 3406 3291 -9.387731552124e-06 3407 3291 571475.757148 3420 3291 -26159485.64696 3421 3291 -15625000.00513 3422 3291 -10821935.79869 3423 3291 -97033826.33989 3424 3291 1.400709152222e-06 3425 3291 -69175329.97466 3426 3291 -39900479.57507 3427 3291 15625000.00513 3428 3291 -23680008.71958 3292 3292 892596215.9216 3293 3292 -109721099.1218 3294 3292 -9.95397567749e-06 3295 3292 -117193314.8593 3296 3292 54860549.56089 3309 3292 -62499999.98975 3310 3292 -75515427.89211 3311 3292 12480762.39712 3312 3292 2.920627593994e-06 3313 3292 35526744.0481 3314 3292 -27430274.79396 3315 3292 62499999.98974 3316 3292 -76869811.57243 3317 3292 14949512.39685 3381 3292 15625000.00514 3382 3292 -20916860.64765 3383 3292 -9800382.320076 3384 3292 -6.705522537231e-07 3385 3292 -24709454.43242 3386 3292 -6857568.701869 3387 3292 -15625000.00514 3388 3292 -33980662.73527 3389 3292 16657951.02195 3399 3292 5.88595867157e-06 3400 3292 -37871677.86274 3401 3292 -40710209.81623 3402 3292 4.053115844727e-06 3403 3292 81681619.73861 3404 3292 -27430274.79396 3405 3292 -8.40425491333e-06 3406 3292 -91481269.86781 3407 3292 68140484.61019 3420 3292 -15625000.00513 3421 3292 -21471767.07144 3422 3292 -10486146.20919 3423 3292 7.450580596924e-07 3424 3292 -28283463.80681 3425 3292 -6857568.701869 3426 3292 15625000.00513 3427 3292 -35212760.99956 3428 3292 17343714.91106 3293 3293 985817875.0266 3294 3293 2285903.027413 3295 3293 54860549.56089 3296 3293 72200645.50821 3309 3293 24401753.34329 3310 3293 12206456.84174 3311 3293 -27069636.69752 3312 3293 -4571806.052597 3313 3293 -27430274.79396 3314 3293 58631507.34796 3315 3293 -27030538.31493 3316 3293 15223817.95222 3317 3293 -30681326.51173 3381 3293 10250460.04156 3382 3293 -9800382.320076 3383 3293 -12202085.61857 3384 3293 66546545.00303 3385 3293 -6857568.701869 3386 3293 -74918497.68596 3387 3293 23108532.96245 3388 3293 16657951.02195 3389 3293 -47038891.18556 3399 3293 571475.7571355 3400 3293 -40435904.26086 3401 3293 -4812102.970013 3402 3293 2285903.027438 3403 3293 -27430274.79396 3404 3293 -130792022.7266 3405 3293 571475.7571481 3406 3293 67866179.05482 3407 3293 -147771014.9835 3420 3293 -10821935.79869 3421 3293 -10486146.20919 3422 3293 -13681836.08202 3423 3293 -68832448.03044 3424 3293 -6857568.701869 3425 3293 -84449189.35104 3426 3293 -23680008.71958 3427 3293 17343714.91106 3428 3293 -50324486.557 3294 3294 1042603210.19 3295 3294 2.193450927734e-05 3296 3294 9143612.105123 3297 3294 120306386.5889 3298 3294 -9.268522262573e-06 3299 3294 2285903.027413 3312 3294 -94266302.18495 3313 3294 -62499999.98975 3314 3294 24744635.2875 3315 3294 -239474705.9488 3316 3294 2.950429916382e-06 3317 3294 -4571806.052598 3318 3294 -95620685.86526 3319 3294 62499999.98975 3320 3294 -26687656.37071 3384 3294 -25604579.22317 3385 3294 15625000.00514 3386 3294 10250460.04156 3387 3294 -93459816.96553 3388 3294 1.579523086548e-06 3389 3294 66889426.94725 3390 3294 -38668381.31079 3391 3294 -15625000.00514 3392 3294 23108532.96245 3402 3294 21503247.52855 3403 3294 3.844499588013e-06 3404 3294 571475.7571353 3405 3294 119183368.3243 3406 3294 4.112720489502e-06 3407 3294 2285903.027438 3408 3294 -32106344.47651 3409 3294 -9.387731552124e-06 3410 3294 571475.757148 3423 3294 -26159485.64696 3424 3294 -15625000.00513 3425 3294 -10821935.79869 3426 3294 -97033826.33989 3427 3294 1.400709152222e-06 3428 3294 -69175329.97466 3429 3294 -39900479.57507 3430 3294 15625000.00513 3431 3294 -23680008.71958 3295 3295 892596215.9216 3296 3295 -109721099.1218 3297 3295 -9.95397567749e-06 3298 3295 -117193314.8593 3299 3295 54860549.56089 3312 3295 -62499999.98975 3313 3295 -75515427.89211 3314 3295 12480762.39712 3315 3295 2.920627593994e-06 3316 3295 35526744.0481 3317 3295 -27430274.79396 3318 3295 62499999.98974 3319 3295 -76869811.57243 3320 3295 14949512.39685 3384 3295 15625000.00514 3385 3295 -20916860.64765 3386 3295 -9800382.320076 3387 3295 -6.705522537231e-07 3388 3295 -24709454.43242 3389 3295 -6857568.701869 3390 3295 -15625000.00514 3391 3295 -33980662.73527 3392 3295 16657951.02195 3402 3295 5.88595867157e-06 3403 3295 -37871677.86274 3404 3295 -40710209.81623 3405 3295 4.053115844727e-06 3406 3295 81681619.73861 3407 3295 -27430274.79396 3408 3295 -8.40425491333e-06 3409 3295 -91481269.86781 3410 3295 68140484.61019 3423 3295 -15625000.00513 3424 3295 -21471767.07144 3425 3295 -10486146.20919 3426 3295 7.450580596924e-07 3427 3295 -28283463.80681 3428 3295 -6857568.701869 3429 3295 15625000.00513 3430 3295 -35212760.99956 3431 3295 17343714.91106 3296 3296 985817875.0266 3297 3296 2285903.027413 3298 3296 54860549.56089 3299 3296 72200645.50821 3312 3296 24401753.34329 3313 3296 12206456.84174 3314 3296 -27069636.69752 3315 3296 -4571806.052597 3316 3296 -27430274.79396 3317 3296 58631507.34796 3318 3296 -27030538.31493 3319 3296 15223817.95222 3320 3296 -30681326.51173 3384 3296 10250460.04156 3385 3296 -9800382.320076 3386 3296 -12202085.61857 3387 3296 66546545.00303 3388 3296 -6857568.701869 3389 3296 -74918497.68596 3390 3296 23108532.96245 3391 3296 16657951.02195 3392 3296 -47038891.18556 3402 3296 571475.7571355 3403 3296 -40435904.26086 3404 3296 -4812102.970013 3405 3296 2285903.027438 3406 3296 -27430274.79396 3407 3296 -130792022.7266 3408 3296 571475.7571481 3409 3296 67866179.05482 3410 3296 -147771014.9835 3423 3296 -10821935.79869 3424 3296 -10486146.20919 3425 3296 -13681836.08202 3426 3296 -68832448.03044 3427 3296 -6857568.701869 3428 3296 -84449189.35104 3429 3296 -23680008.71958 3430 3296 17343714.91106 3431 3296 -50324486.557 3297 3297 1035907821.889 3298 3297 40720864.10725 3299 3297 9150670.592108 3300 3297 -13553326.64045 3301 3297 -75259059.17135 3302 3297 4752365.253985 3315 3297 -94266302.18495 3316 3297 -62499999.98975 3317 3297 24744635.2875 3318 3297 -215979427.1388 3319 3297 12040799.05848 3320 3297 -612033.9502044 3321 3297 -66477077.19527 3322 3297 60298495.93906 3323 3297 -4491915.002784 3387 3297 -25604579.22317 3388 3297 15625000.00514 3389 3297 10250460.04156 3390 3297 -103436156.438 3391 3297 -10350768.52208 3392 3297 61482412.84568 3405 3297 21503247.52855 3406 3297 3.844499588013e-06 3407 3297 571475.7571353 3408 3297 131757605.1285 3409 3297 10883246.74728 3410 3297 2279585.359685 3411 3297 -36126426.97389 3412 3297 -18339298.48663 3413 3297 18999429.52286 3426 3297 -26159485.64696 3427 3297 -15625000.00513 3428 3297 -10821935.79869 3429 3297 -92843586.12443 3430 3297 2583957.046466 3431 3297 -66781939.86803 3432 3297 -28459782.66519 3433 3297 15222863.21497 3434 3297 -15946233.92645 3298 3298 935772345.0432 3299 3298 -65825099.27941 3300 3298 -75284338.29789 3301 3298 -234963497.7551 3302 3298 10060083.50378 3315 3298 -62499999.98975 3316 3298 -75515427.89211 3317 3298 12480762.39712 3318 3298 12040799.05849 3319 3298 45327393.94003 3320 3298 -16678780.64226 3321 3298 60298495.93905 3322 3298 -88997757.51486 3323 3298 4003871.938917 3387 3298 15625000.00514 3388 3298 -20916860.64765 3389 3298 -9800382.320076 3390 3298 -10344958.86108 3391 3298 -32344074.20199 3392 3298 5139701.049837 3405 3298 5.88595867157e-06 3406 3298 -37871677.86274 3407 3298 -40710209.81623 3408 3298 10883246.74728 3409 3298 104151967.825 3410 3298 -16241176.13329 3411 3298 -18345108.14763 3412 3298 -91334291.07195 3413 3298 59528706.98488 3426 3298 -15625000.00513 3427 3298 -21471767.07144 3428 3298 -10486146.20919 3429 3298 2583957.046465 3430 3298 -26969019.99144 3431 3298 -1735814.665134 3432 3298 15222863.21497 3433 3298 -32613441.3924 3434 3298 17623591.55946 3299 3299 926320393.7883 3300 3299 4754399.607948 3301 3299 10061803.60335 3302 3299 13106850.14392 3315 3299 24401753.34329 3316 3299 12206456.84174 3317 3299 -27069636.69752 3318 3299 -8155436.726743 3319 3299 -16678780.64226 3320 3299 61481729.40711 3321 3299 -4491915.002108 3322 3299 4003871.938917 3323 3299 -16574342.61114 3387 3299 10250460.04156 3388 3299 -9800382.320076 3389 3299 -12202085.61857 3390 3299 63196485.75275 3391 3299 5144712.253762 3392 3299 -73803270.72483 3405 3299 571475.7571355 3406 3299 -40435904.26086 3407 3299 -4812102.970013 3408 3299 2290581.919219 3409 3299 -15135156.45706 3410 3299 -113860390.812 3411 3299 19005396.74573 3412 3299 59528200.21841 3413 3299 -86717110.56998 3426 3299 -10821935.79869 3427 3299 -10486146.20919 3428 3299 -13681836.08202 3429 3299 -68496349.59065 3430 3299 -1461509.109081 3431 3299 -86067604.18011 3432 3299 -15946233.92645 3433 3299 17623591.55946 3434 3299 -33840037.48144 3300 3300 588770587.9403 3301 3300 7652236.866376 3302 3300 446911.4688625 3318 3300 -95938327.17325 3319 3300 -62221889.125 3320 3300 3753790.277217 3321 3300 -169290249.2095 3322 3300 16019779.71915 3323 3300 -1089860.549835 3324 3300 69942878.16334 3325 3300 -19874379.98696 3326 3300 -121964.6218983 3327 3300 -61207996.79291 3328 3300 58632753.45702 3329 3300 -879534.2312962 3390 3300 -9124574.864806 3391 3300 18767428.98916 3392 3300 16759462.39556 3408 3300 -28508580.62171 3409 3300 -18345108.14763 3410 3300 -16671081.90644 3411 3300 35679552.15368 3412 3300 1655379.388776 3413 3300 14165948.25441 3429 3300 -32510576.07318 3430 3300 -15574325.71153 3431 3300 -16880670.05429 3432 3300 -88819293.76525 3433 3300 3437545.20277 3434 3300 -70500570.73188 3435 3300 -7622122.072972 3436 3300 -4729780.206454 3437 3300 7040650.668737 3438 3300 -28304511.99637 3439 3300 14788860.4849 3440 3300 -17524016.40433 3301 3301 679134303.0822 3302 3301 -11620757.79788 3318 3301 -62221889.125 3319 3301 -68870616.90601 3320 3301 1214164.49255 3321 3301 16019779.71915 3322 3301 84011428.11482 3323 3301 -3414009.299908 3324 3301 5125620.008936 3325 3301 -51269016.14184 3326 3301 497911.9161388 3327 3301 58632753.45702 3328 3301 -64548801.20942 3329 3301 529627.1496301 3390 3301 12511619.32611 3391 3301 -14231534.33912 3392 3301 -13158898.02962 3408 3301 -18339298.48663 3409 3301 -83716444.71977 3410 3301 -54581883.12002 3411 3301 1655379.388774 3412 3301 56036966.87791 3413 3301 1932874.632548 3429 3301 -15574325.71153 3430 3301 -26045146.46973 3431 3301 -13941698.99809 3432 3301 3437545.202769 3433 3301 -24846613.1138 3434 3301 1574541.669722 3435 3301 1520219.795599 3436 3301 -37884423.86236 3437 3301 33456830.95586 3438 3301 14788860.4849 3439 3301 -28522911.61373 3440 3301 16796943.73319 3302 3302 656403085.8504 3318 3302 3753790.277555 3319 3302 1214164.49282 3320 3302 -18712183.00421 3321 3302 -1089860.549835 3322 3302 -3414009.299908 3323 3302 99513420.62195 3324 3302 -121964.6218953 3325 3302 497911.9161386 3326 3302 75507335.14742 3327 3302 -879534.2309586 3328 3302 529627.1496301 3329 3302 -659231.5568017 3390 3302 11172974.93037 3391 3302 -17628488.72141 3392 3302 -19225240.16517 3408 3302 -16666052.77693 3409 3302 -54583174.79693 3410 3302 -66402853.6308 3411 3302 -13932732.29653 3412 3302 -7556887.577361 3413 3302 -135188700.698 3429 3302 -16880670.05429 3430 3302 -13941698.99809 3431 3302 -27798747.1414 3432 3302 -70500570.73222 3433 3302 1574541.670129 3434 3302 -94439191.19081 3435 3302 -1084349.333422 3436 3302 33456830.95586 3437 3302 -48399876.41365 3438 3302 -17524016.40433 3439 3302 16796943.73319 3440 3302 -33105676.73507 3303 3303 521301605.0952 3304 3303 1.144409179688e-05 3305 3303 4571806.05256 3306 3303 60175766.35577 3307 3303 12499999.99795 3308 3303 -3143072.791566 3393 3303 -93459816.96553 3394 3303 1.579523086548e-06 3395 3303 66889426.94725 3396 3303 -38668381.31079 3397 3303 -15625000.00514 3398 3303 23108532.96245 3414 3303 59569111.10081 3415 3303 1.192092895508e-07 3416 3303 -13286440.8446 3417 3303 -16053172.23825 3418 3303 3125000.001022 3419 3303 -4393116.289629 3304 3304 446298107.9608 3305 3304 -54860549.56088 3306 3304 -12499999.99795 3307 3304 -58574084.36832 3308 3304 27155969.22494 3393 3304 -6.705522537231e-07 3394 3304 -24709454.43242 3395 3304 -6857568.701869 3396 3304 -15625000.00514 3397 3304 -33980662.73527 3398 3304 16657951.02195 3414 3304 -5.960464477539e-08 3415 3304 40818236.80798 3416 3304 -13715137.39698 3417 3304 -3125000.001031 3418 3304 -45740634.9339 3419 3304 34001665.91618 3305 3305 492908937.5133 3306 3305 7143385.540075 3307 3305 27704580.33596 3308 3305 36160517.58431 3393 3305 66546545.00303 3394 3305 -6857568.701869 3395 3305 -74918497.68596 3396 3305 23108532.96245 3397 3305 16657951.02195 3398 3305 -47038891.18556 3414 3305 13857934.15094 3415 3305 -13715137.39698 3416 3305 -65456206.19348 3417 3305 4964592.046777 3418 3305 34001665.91632 3419 3305 -73885507.49175 3306 3306 521301605.0952 3307 3306 1.144409179688e-05 3308 3306 4571806.05256 3309 3306 60175766.35577 3310 3306 12499999.99795 3311 3306 -3143072.791566 3393 3306 -25604579.22317 3394 3306 15625000.00514 3395 3306 10250460.04156 3396 3306 -93459816.96553 3397 3306 1.579523086548e-06 3398 3306 66889426.94725 3399 3306 -38668381.31079 3400 3306 -15625000.00514 3401 3306 23108532.96245 3414 3306 10751623.76428 3415 3306 -3125000.001025 3416 3306 -1821501.705457 3417 3306 59569111.10081 3418 3306 1.192092895508e-07 3419 3306 -13286440.8446 3420 3306 -16053172.23825 3421 3306 3125000.001022 3422 3306 -4393116.289629 3307 3307 446298107.9608 3308 3307 -54860549.56088 3309 3307 -12499999.99795 3310 3307 -58574084.36832 3311 3307 27155969.22494 3393 3307 15625000.00514 3394 3307 -20916860.64765 3395 3307 -9800382.320076 3396 3307 -6.705522537231e-07 3397 3307 -24709454.43242 3398 3307 -6857568.701869 3399 3307 -15625000.00514 3400 3307 -33980662.73527 3401 3307 16657951.02195 3414 3307 3125000.00103 3415 3307 -18935838.93137 3416 3307 -20286528.5192 3417 3307 -5.960464477539e-08 3418 3307 40818236.80798 3419 3307 -13715137.39698 3420 3307 -3125000.001031 3421 3307 -45740634.9339 3422 3307 34001665.91618 3308 3308 492908937.5133 3309 3308 7143385.540075 3310 3308 27704580.33596 3311 3308 36160517.58431 3393 3308 10250460.04156 3394 3308 -9800382.320076 3395 3308 -12202085.61857 3396 3308 66546545.00303 3397 3308 -6857568.701869 3398 3308 -74918497.68596 3399 3308 23108532.96245 3400 3308 16657951.02195 3401 3308 -47038891.18556 3414 3308 2392977.462593 3415 3308 -20286528.51934 3416 3308 -2406051.485007 3417 3308 13857934.15094 3418 3308 -13715137.39698 3419 3308 -65456206.19348 3420 3308 4964592.046777 3421 3308 34001665.91632 3422 3308 -73885507.49175 3309 3309 521301605.0952 3310 3309 1.144409179688e-05 3311 3309 4571806.05256 3312 3309 60175766.35577 3313 3309 12499999.99795 3314 3309 -3143072.791566 3396 3309 -25604579.22317 3397 3309 15625000.00514 3398 3309 10250460.04156 3399 3309 -93459816.96553 3400 3309 1.579523086548e-06 3401 3309 66889426.94725 3402 3309 -38668381.31079 3403 3309 -15625000.00514 3404 3309 23108532.96245 3417 3309 10751623.76428 3418 3309 -3125000.001025 3419 3309 -1821501.705457 3420 3309 59569111.10081 3421 3309 1.192092895508e-07 3422 3309 -13286440.8446 3423 3309 -16053172.23825 3424 3309 3125000.001022 3425 3309 -4393116.289629 3310 3310 446298107.9608 3311 3310 -54860549.56088 3312 3310 -12499999.99795 3313 3310 -58574084.36832 3314 3310 27155969.22494 3396 3310 15625000.00514 3397 3310 -20916860.64765 3398 3310 -9800382.320076 3399 3310 -6.705522537231e-07 3400 3310 -24709454.43242 3401 3310 -6857568.701869 3402 3310 -15625000.00514 3403 3310 -33980662.73527 3404 3310 16657951.02195 3417 3310 3125000.00103 3418 3310 -18935838.93137 3419 3310 -20286528.5192 3420 3310 -5.960464477539e-08 3421 3310 40818236.80798 3422 3310 -13715137.39698 3423 3310 -3125000.001031 3424 3310 -45740634.9339 3425 3310 34001665.91618 3311 3311 492908937.5133 3312 3311 7143385.540075 3313 3311 27704580.33596 3314 3311 36160517.58431 3396 3311 10250460.04156 3397 3311 -9800382.320076 3398 3311 -12202085.61857 3399 3311 66546545.00303 3400 3311 -6857568.701869 3401 3311 -74918497.68596 3402 3311 23108532.96245 3403 3311 16657951.02195 3404 3311 -47038891.18556 3417 3311 2392977.462593 3418 3311 -20286528.51934 3419 3311 -2406051.485007 3420 3311 13857934.15094 3421 3311 -13715137.39698 3422 3311 -65456206.19348 3423 3311 4964592.046777 3424 3311 34001665.91632 3425 3311 -73885507.49175 3312 3312 521301605.0952 3313 3312 1.144409179688e-05 3314 3312 4571806.05256 3315 3312 60175766.35577 3316 3312 12499999.99795 3317 3312 -3143072.791566 3399 3312 -25604579.22317 3400 3312 15625000.00514 3401 3312 10250460.04156 3402 3312 -93459816.96553 3403 3312 1.579523086548e-06 3404 3312 66889426.94725 3405 3312 -38668381.31079 3406 3312 -15625000.00514 3407 3312 23108532.96245 3420 3312 10751623.76428 3421 3312 -3125000.001025 3422 3312 -1821501.705457 3423 3312 59569111.10081 3424 3312 1.192092895508e-07 3425 3312 -13286440.8446 3426 3312 -16053172.23825 3427 3312 3125000.001022 3428 3312 -4393116.289629 3313 3313 446298107.9608 3314 3313 -54860549.56088 3315 3313 -12499999.99795 3316 3313 -58574084.36832 3317 3313 27155969.22494 3399 3313 15625000.00514 3400 3313 -20916860.64765 3401 3313 -9800382.320076 3402 3313 -6.705522537231e-07 3403 3313 -24709454.43242 3404 3313 -6857568.701869 3405 3313 -15625000.00514 3406 3313 -33980662.73527 3407 3313 16657951.02195 3420 3313 3125000.00103 3421 3313 -18935838.93137 3422 3313 -20286528.5192 3423 3313 -5.960464477539e-08 3424 3313 40818236.80798 3425 3313 -13715137.39698 3426 3313 -3125000.001031 3427 3313 -45740634.9339 3428 3313 34001665.91618 3314 3314 492908937.5133 3315 3314 7143385.540075 3316 3314 27704580.33596 3317 3314 36160517.58431 3399 3314 10250460.04156 3400 3314 -9800382.320076 3401 3314 -12202085.61857 3402 3314 66546545.00303 3403 3314 -6857568.701869 3404 3314 -74918497.68596 3405 3314 23108532.96245 3406 3314 16657951.02195 3407 3314 -47038891.18556 3420 3314 2392977.462593 3421 3314 -20286528.51934 3422 3314 -2406051.485007 3423 3314 13857934.15094 3424 3314 -13715137.39698 3425 3314 -65456206.19348 3426 3314 4964592.046777 3427 3314 34001665.91632 3428 3314 -73885507.49175 3315 3315 521301605.0952 3316 3315 1.144409179688e-05 3317 3315 4571806.05256 3318 3315 60175766.35577 3319 3315 12499999.99795 3320 3315 -3143072.791566 3402 3315 -25604579.22317 3403 3315 15625000.00514 3404 3315 10250460.04156 3405 3315 -93459816.96553 3406 3315 1.579523086548e-06 3407 3315 66889426.94725 3408 3315 -38668381.31079 3409 3315 -15625000.00514 3410 3315 23108532.96245 3423 3315 10751623.76428 3424 3315 -3125000.001025 3425 3315 -1821501.705457 3426 3315 59569111.10081 3427 3315 1.192092895508e-07 3428 3315 -13286440.8446 3429 3315 -16053172.23825 3430 3315 3125000.001022 3431 3315 -4393116.289629 3316 3316 446298107.9608 3317 3316 -54860549.56088 3318 3316 -12499999.99795 3319 3316 -58574084.36832 3320 3316 27155969.22494 3402 3316 15625000.00514 3403 3316 -20916860.64765 3404 3316 -9800382.320076 3405 3316 -6.705522537231e-07 3406 3316 -24709454.43242 3407 3316 -6857568.701869 3408 3316 -15625000.00514 3409 3316 -33980662.73527 3410 3316 16657951.02195 3423 3316 3125000.00103 3424 3316 -18935838.93137 3425 3316 -20286528.5192 3426 3316 -5.960464477539e-08 3427 3316 40818236.80798 3428 3316 -13715137.39698 3429 3316 -3125000.001031 3430 3316 -45740634.9339 3431 3316 34001665.91618 3317 3317 492908937.5133 3318 3317 7143385.540075 3319 3317 27704580.33596 3320 3317 36160517.58431 3402 3317 10250460.04156 3403 3317 -9800382.320076 3404 3317 -12202085.61857 3405 3317 66546545.00303 3406 3317 -6857568.701869 3407 3317 -74918497.68596 3408 3317 23108532.96245 3409 3317 16657951.02195 3410 3317 -47038891.18556 3423 3317 2392977.462593 3424 3317 -20286528.51934 3425 3317 -2406051.485007 3426 3317 13857934.15094 3427 3317 -13715137.39698 3428 3317 -65456206.19348 3429 3317 4964592.046777 3430 3317 34001665.91632 3431 3317 -73885507.49175 3318 3318 512919684.7442 3319 3318 277859.0827601 3320 3318 23183746.35062 3321 3318 52632871.13715 3322 3318 -96769.00803724 3323 3318 419288.9836029 3405 3318 -25604579.22317 3406 3318 15625000.00514 3407 3318 10250460.04156 3408 3318 -89305058.1739 3409 3318 2583957.046472 3410 3318 64629778.85911 3411 3318 -34387866.91098 3412 3318 -15574325.71152 3413 3318 18762819.54075 3426 3318 10751623.76428 3427 3318 -3125000.001025 3428 3318 -1821501.705457 3429 3318 54397998.43316 3430 3318 50599.66069502 3431 3318 -8544829.381506 3432 3318 -8999605.967961 3433 3318 439769.0002548 3434 3318 -473741.2428953 3319 3319 446243430.4062 3320 3319 -34445483.83251 3321 3319 -25096769.00393 3322 3319 -69066429.4396 3323 3319 5335868.360457 3405 3319 15625000.00514 3406 3319 -20916860.64765 3407 3319 -9800382.320076 3408 3319 2583957.04647 3409 3319 -23430492.04089 3410 3319 -6553522.997743 3411 3319 -15574325.71152 3412 3319 -27922437.30753 3413 3319 14573926.01127 3426 3319 3125000.00103 3427 3319 -18935838.93137 3428 3319 -20286528.5192 3429 3319 50599.66069496 3430 3319 37427394.32585 3431 3319 -8530220.726501 3432 3319 -5810231.001798 3433 3319 -39369253.47696 3434 3319 32242561.88557 3320 3320 483393300.2846 3321 3320 2476580.649929 3322 3320 5335868.360457 3323 3320 50197647.73292 3405 3320 10250460.04156 3406 3320 -9800382.320076 3407 3320 -12202085.61857 3408 3320 66344188.58291 3409 3320 -6279217.441555 3410 3320 -76631529.64527 3411 3320 18762819.54075 3412 3320 14573926.01127 3413 3320 -32804856.04221 3426 3320 2392977.462593 3427 3320 -20286528.51934 3428 3320 -2406051.485007 3429 3320 19284753.94725 3430 3320 -7981609.61548 3431 3320 -76421561.87405 3432 3320 7169279.592269 3433 3320 32242561.88517 3434 3320 -47927216.87771 3321 3321 493979409.6462 3322 3321 10740346.00452 3323 3321 -162501.3412886 3324 3321 -102481955.1195 3325 3321 -66367246.52247 3326 3321 834875.4907987 3327 3321 48903259.76668 3328 3321 4405393.863676 3329 3321 -310234.8039477 3408 3321 -25379569.00674 3409 3321 15222863.21497 3410 3321 13675467.47217 3411 3321 -88164971.38851 3412 3321 3437545.202782 3413 3321 69992832.02249 3429 3321 -3493491.887329 3430 3321 -5810231.0018 3431 3321 -5981206.519598 3432 3321 36561069.75252 3433 3321 2225739.982271 3434 3321 -14060665.87398 3435 3321 -37337194.291 3436 3321 -16461139.52537 3437 3321 20518691.9415 3438 3321 -10818972.69166 3439 3321 1385222.127153 3440 3321 -534841.2643511 3322 3322 481892445.1481 3323 3322 -8075954.830394 3324 3322 -66367246.52247 3325 3322 -80026535.58188 3326 3322 529627.1496299 3327 3322 -20594606.13222 3328 3322 -70546891.70076 3329 3322 1620596.681338 3408 3322 15222863.21497 3409 3322 -29533227.73396 3410 3322 -15709741.78482 3411 3322 3437545.202781 3412 3322 -24192290.73706 3413 3322 -3243166.662888 3429 3322 439769.0002542 3430 3322 -33863139.39634 3431 3322 -29606396.43753 3432 3322 2225739.982274 3433 3322 31531560.9283 3434 3322 -1968582.791773 3435 3322 -16461139.52537 3436 3322 -31910167.47421 3437 3322 16796943.73319 3438 3322 -4864777.874899 3439 3322 -40665865.09945 3440 3322 33730943.9438 3323 3323 510808562.0931 3324 3323 834875.4907988 3325 3323 529627.1496299 3326 3323 -16136965.92926 3327 3323 375529.0848255 3328 3323 1620596.681338 3329 3323 58235035.49457 3408 3323 13675467.47217 3409 3323 -15709741.78482 3410 3323 -25626134.39224 3411 3323 69992832.02282 3412 3323 -3243166.662346 3413 3323 -92694331.5195 3429 3323 633168.4820659 3430 3323 -29606396.43807 3431 3323 -33244245.99602 3432 3323 14038014.67696 3433 3323 -1968582.791773 3434 3323 -106482561.1728 3435 3323 20518691.9415 3436 3323 16796943.73319 3437 3323 -36492932.59555 3438 3323 6557242.07182 3439 3323 33730943.9438 3440 3323 -48481473.02449 3324 3324 273404566.2226 3325 3324 69874379.97876 3326 3324 -449505.2853138 3327 3324 -93670600.38049 3328 3324 -8632753.465224 3329 3324 -263405.5835879 3411 3324 -7073510.961695 3412 3324 1520219.795598 3413 3324 1018862.4752 3432 3324 -36788583.17971 3433 3324 -16461139.52537 3434 3324 -20106308.07184 3435 3324 18212288.76877 3436 3324 17229780.21056 3437 3324 8014875.950861 3438 3324 -47947639.07035 3439 3324 -2288860.480793 3440 3324 -37677430.35422 3325 3325 242272710.5527 3326 3325 -497911.9161291 3327 3325 16367246.53067 3328 3325 36217730.05694 3329 3325 -529627.1496239 3411 3325 -4729780.206456 3412 3325 -37335812.75109 3413 3325 -33209835.69985 3432 3325 -16461139.52537 3433 3325 -31361556.36294 3434 3325 -16536389.61109 3435 3325 17229780.21056 3436 3325 10388653.04564 3437 3325 6543169.037562 3438 3325 3961139.521261 3439 3325 -15288728.37461 3440 3325 3203056.273373 3326 3326 281492099.9733 3327 3326 -263405.5835847 3328 3326 -529627.149624 3329 3326 51657234.50443 3411 3326 -7106137.526792 3412 3326 -33209835.69985 3413 3326 -46936913.45023 3432 3326 -20106308.07184 3433 3326 -16536389.61109 3434 3326 -35029969.63213 3435 3326 -8235124.04647 3436 3326 -6790164.293581 3437 3326 -63008116.61013 3438 3326 -37677430.35489 3439 3326 -3463610.395482 3440 3326 -51284852.15548 3327 3327 244365115.1874 3328 3327 -54405393.85547 3329 3327 -604117.0485091 3411 3327 -27755900.88508 3412 3327 14788860.4849 3413 3327 17079195.4126 3432 3327 -9173139.358883 3433 3327 -4864777.874901 3434 3327 -6385188.485611 3435 3327 -47947639.07035 3436 3327 3961139.521267 3437 3327 37550781.4389 3438 3327 15681790.42398 3439 3327 -13885222.13126 3440 3327 -7063816.143437 3328 3328 237267740.6339 3329 3328 -1620596.681323 3411 3328 14788860.4849 3412 3328 -27974300.50245 3413 3328 -16536389.61109 3432 3328 1385222.127153 3433 3328 -39020031.76669 3434 3328 -32935722.71191 3435 3328 -2288860.480787 3436 3328 -15288728.37461 3437 3328 3203056.273374 3438 3328 -13885222.13126 3439 3328 13088171.7534 3440 3328 6269056.04962 3329 3329 259806368.9729 3411 3329 17079195.4126 3412 3329 -16536389.61109 3413 3329 -31642713.77164 3432 3329 364012.9061733 3433 3329 -32935722.71191 3434 3329 -44092584.13708 3435 3329 37550781.43839 3436 3329 -3463610.395482 3437 3329 -51284852.15548 3438 3329 6777468.576512 3439 3329 -7064277.281522 3440 3329 -57499553.64335 3330 3330 672539349.2322 3331 3330 62499999.98975 3332 3330 33164131.31328 3333 3330 -347114474.3686 3334 3330 -62519355.57327 3335 3330 -27670762.35809 3336 3330 9372586.160465 3337 3330 50019355.57532 3338 3330 -19895735.37814 3441 3330 64179725.07093 3442 3330 15625000.00514 3443 3330 22379883.77153 3444 3330 -131080904.1793 3445 3330 -15629389.46552 3446 3330 -81477706.67803 3447 3330 -28030795.60664 3448 3330 12504389.4645 3449 3330 -20094076.36695 3331 3331 578763407.3196 3332 3331 -63106764.95873 3333 3331 -62529033.36503 3334 3331 -53301772.56443 3335 3331 -38274305.78037 3336 3331 75029033.36299 3337 3331 9372586.160465 3338 3331 25519231.22886 3441 3331 15625000.00513 3442 3331 40736294.19042 3443 3331 -4504985.17355 3444 3331 -15631584.19572 3445 3331 -57629159.23151 3446 3331 -24484028.50059 3447 3331 18756584.19674 3448 3331 -28030795.60664 3449 3331 24112532.59506 3332 3332 671642303.0214 3333 3332 -24924077.88049 3334 3332 -30316506.48178 3335 3332 -3879396.610056 3336 3332 -29843603.06721 3337 3332 17012820.81924 3338 3332 24993563.09457 3441 3332 -7512792.611826 3442 3332 -28418903.81719 3443 3332 -109296917.9411 3444 3332 -81133941.74793 3445 3332 -22561100.97091 3446 3332 -119114540.4154 3447 3332 -30141114.55043 3448 3332 16075021.73004 3449 3332 -74748788.28438 3333 3333 1145935402.266 3334 3333 62548388.94858 3335 3333 30860151.66558 3336 3333 21182372.10022 3337 3333 -62519355.57328 3338 3333 27039120.36991 3339 3333 -234498519.637 3340 3333 3.576278686523e-06 3341 3333 -5943331.630163 3342 3333 -94399229.23175 3343 3333 62499999.98975 3344 3333 -27030537.76527 3441 3333 -115335214.0726 3442 3333 -15631584.19572 3443 3333 68329440.16886 3444 3333 130473837.5578 3445 3333 15635973.65611 3446 3333 7712253.313144 3447 3333 -53686446.86531 3448 3333 -15629389.46553 3449 3333 25401550.08976 3450 3333 -102220422.2785 3451 3333 1.013278961182e-06 3452 3333 -76032967.78832 3453 3333 -41874328.64406 3454 3333 15625000.00513 3455 3333 -25394418.17384 3334 3334 977156127.6318 3335 3334 -85033333.84819 3336 3334 -62529033.36504 3337 3334 -197605220.9809 3338 3334 46638027.38239 3339 3334 4.14252281189e-06 3340 3334 40502862.18745 3341 3334 -27430287.99363 3342 3334 62499999.98975 3343 3334 -75648396.04218 3344 3334 15223824.55232 3441 3334 -15629389.46552 3442 3334 -41883469.12474 3443 3334 7334445.059211 3444 3334 15635973.65611 3445 3334 88279612.65644 3446 3334 -21260570.15053 3447 3334 -15631584.19572 3448 3334 -108382459.4402 3449 3334 71307025.97358 3450 3334 -7.748603820801e-07 3451 3334 -33470093.0295 3452 3334 -6857575.146393 3453 3334 15625000.00513 3454 3334 -37186630.13654 3455 3334 18715245.91155 3335 3335 1036803405.136 3336 3335 26700529.72734 3337 3335 52127606.5745 3338 3335 32215992.22129 3339 3335 -3200276.075057 3340 3335 -27430287.99363 3341 3335 71900937.83954 3342 3335 -26687655.82037 3343 3335 14949518.99641 3344 3335 -27424184.68052 3441 3335 67985675.23876 3442 3335 5415714.150796 3443 3335 -77126033.46393 3444 3335 7717499.145858 3445 3335 -21256373.52338 3446 3335 -156819638.9591 3447 3335 25405116.04772 3448 3335 72953597.68388 3449 3335 -149232299.5136 3450 3335 -75690085.8441 3451 3335 -6857575.146393 3452 3335 -98280306.98791 3453 3335 -25394418.17384 3454 3335 18715245.91155 3455 3335 -55588121.11081 3336 3336 672539349.2322 3337 3336 62499999.98975 3338 3336 33164131.31328 3339 3336 -93044845.55145 3340 3336 -62499999.98975 3341 3336 24401753.89294 3342 3336 -347114474.3686 3343 3336 -62519355.57327 3344 3336 -27670762.35809 3345 3336 9372586.160465 3346 3336 50019355.57532 3347 3336 -19895735.37814 3441 3336 1493260.574915 3442 3336 18756584.19674 3443 3336 14705768.01689 3444 3336 -8426923.443562 3445 3336 -15631584.19572 3446 3336 -11969908.87826 3447 3336 64179725.07093 3448 3336 15625000.00514 3449 3336 22379883.77153 3450 3336 -26778951.03495 3451 3336 -15625000.00513 3452 3336 -12536345.25295 3453 3336 -131080904.1793 3454 3336 -15629389.46552 3455 3336 -81477706.67803 3456 3336 -28030795.60664 3457 3336 12504389.4645 3458 3336 -20094076.36695 3337 3337 578763407.3196 3338 3337 -63106764.95873 3339 3337 -62499999.98975 3340 3337 -74294012.36186 3341 3337 12206463.4413 3342 3337 -62529033.36503 3343 3337 -53301772.56443 3344 3337 -38274305.78037 3345 3337 75029033.36299 3346 3337 9372586.160465 3347 3337 25519231.22886 3441 3337 12504389.4645 3442 3337 1493260.574915 3443 3337 -7843093.74256 3444 3337 -15629389.46552 3445 3337 -63122936.0184 3446 3337 -46615995.93793 3447 3337 15625000.00513 3448 3337 40736294.19042 3449 3337 -4504985.17355 3450 3337 -15625000.00513 3451 3337 -22091252.52743 3452 3337 -11857670.76516 3453 3337 -15631584.19572 3454 3337 -57629159.23151 3455 3337 -24484028.50059 3456 3337 18756584.19674 3457 3337 -28030795.60664 3458 3337 24112532.59506 3338 3338 671642303.0214 3339 3338 24744635.83784 3340 3338 12480768.99722 3341 3338 -23812494.86631 3342 3338 -24924077.88049 3343 3338 -30316506.48178 3344 3338 -3879396.610056 3345 3338 -29843603.06721 3346 3338 17012820.81924 3347 3338 24993563.09457 3441 3338 9803845.344592 3442 3338 -11764640.61384 3443 3338 3982028.199772 3444 3338 -11968229.26313 3445 3338 -48262567.85004 3446 3338 -28540237.05556 3447 3338 -7512792.611826 3448 3338 -28418903.81719 3449 3338 -109296917.9411 3450 3338 -12536345.25295 3451 3338 -11857670.76516 3452 3338 -15333780.81983 3453 3338 -81133941.74793 3454 3338 -22561100.97091 3455 3338 -119114540.4154 3456 3338 -30141114.55043 3457 3338 16075021.73004 3458 3338 -74748788.28438 3339 3339 1062868161.752 3340 3339 1.955032348633e-05 3341 3339 9143607.705144 3342 3339 125282264.7016 3343 3339 -9.357929229736e-06 3344 3339 2285901.927418 3348 3339 -234498519.637 3349 3339 3.576278686523e-06 3350 3339 -5943331.630163 3351 3339 -94399229.23175 3352 3339 62499999.98975 3353 3339 -27030537.76527 3444 3339 -98285243.92273 3445 3339 1.072883605957e-06 3446 3339 73747066.90912 3447 3339 -40551938.13439 3448 3339 -15625000.00514 3449 3339 24822942.95376 3450 3339 99158852.54101 3451 3339 3.457069396973e-06 3452 3339 2285900.879224 3453 3339 -39821273.75826 3454 3339 -8.895993232727e-06 3455 3339 571475.2200941 3459 3339 -102220422.2785 3460 3339 1.013278961182e-06 3461 3339 -76032967.78832 3462 3339 -41874328.64406 3463 3339 15625000.00513 3464 3339 -25394418.17384 3340 3340 912861496.3092 3341 3340 -109721151.9205 3342 3340 -9.924173355103e-06 3343 3340 -112217450.7807 3344 3340 55957798.18227 3348 3340 4.14252281189e-06 3349 3340 40502862.18745 3350 3340 -27430287.99363 3351 3340 62499999.98975 3352 3340 -75648396.04218 3353 3340 15223824.55232 3444 3340 -4.172325134277e-07 3445 3340 -29534914.67368 3446 3340 -6857575.146393 3447 3340 -15625000.00514 3448 3340 -35864239.62686 3449 3340 18029482.02244 3450 3340 3.814697265625e-06 3451 3340 61657264.49931 3452 3340 -27430300.57206 3453 3340 -7.718801498413e-06 3454 3340 -99196206.00148 3455 3340 73626608.60945 3459 3340 -7.748603820801e-07 3460 3340 -33470093.0295 3461 3340 -6857575.146393 3462 3340 15625000.00513 3463 3340 -37186630.13654 3464 3340 18715245.91155 3341 3341 1039858352.722 3342 3341 2285901.927418 3343 3341 53763353.73819 3344 3341 85469901.76562 3348 3341 -3200276.075057 3349 3341 -27430287.99363 3350 3341 71900937.83954 3351 3341 -26687655.82037 3352 3341 14949518.99641 3353 3341 -27424184.68052 3444 3341 73404184.96491 3445 3341 -6857575.146392 3446 3341 -87786498.03904 3447 3341 24822942.95376 3448 3341 18029482.02244 3449 3341 -52061746.4183 3450 3341 2285900.879224 3451 3341 -27430300.57206 3452 3341 -184190435.19 3453 3341 571475.2200943 3454 3341 73352303.05408 3455 3341 -168344038.6739 3459 3341 -75690085.8441 3460 3341 -6857575.146393 3461 3341 -98280306.98791 3462 3341 -25394418.17384 3463 3341 18715245.91155 3464 3341 -55588121.11081 3342 3342 1145935402.266 3343 3342 62548388.94858 3344 3342 30860151.66558 3345 3342 21182372.10022 3346 3342 -62519355.57328 3347 3342 27039120.36991 3348 3342 -93044845.55145 3349 3342 -62499999.98975 3350 3342 24401753.89294 3351 3342 -234498519.637 3352 3342 3.576278686523e-06 3353 3342 -5943331.630163 3354 3342 -94399229.23175 3355 3342 62499999.98975 3356 3342 -27030537.76527 3444 3342 -26133752.36576 3445 3342 15625000.00514 3446 3342 11964870.03287 3447 3342 -115335214.0726 3448 3342 -15631584.19572 3449 3342 68329440.16886 3450 3342 19205852.96814 3451 3342 4.768371582031e-06 3452 3342 571475.220082 3453 3342 130473837.5578 3454 3342 15635973.65611 3455 3342 7712253.313144 3456 3342 -53686446.86531 3457 3342 -15629389.46553 3458 3342 25401550.08976 3459 3342 -26778951.03495 3460 3342 -15625000.00513 3461 3342 -12536345.25295 3462 3342 -102220422.2785 3463 3342 1.013278961182e-06 3464 3342 -76032967.78832 3465 3342 -41874328.64406 3466 3342 15625000.00513 3467 3342 -25394418.17384 3343 3343 977156127.6318 3344 3343 -85033333.84819 3345 3343 -62529033.36504 3346 3343 -197605220.9809 3347 3343 46638027.38239 3348 3343 -62499999.98975 3349 3343 -74294012.36186 3350 3343 12206463.4413 3351 3343 4.14252281189e-06 3352 3343 40502862.18745 3353 3343 -27430287.99363 3354 3343 62499999.98975 3355 3343 -75648396.04218 3356 3343 15223824.55232 3444 3343 15625000.00514 3445 3343 -21446053.85824 3446 3343 -11171906.87604 3447 3343 -15629389.46552 3448 3343 -41883469.12474 3449 3343 7334445.059211 3450 3343 6.780028343201e-06 3451 3343 -40169079.27509 3452 3343 -46196308.03739 3453 3343 15635973.65611 3454 3343 88279612.65644 3455 3343 -21260570.15053 3456 3343 -15631584.19572 3457 3343 -108382459.4402 3458 3343 71307025.97358 3459 3343 -15625000.00513 3460 3343 -22091252.52743 3461 3343 -11857670.76516 3462 3343 -7.748603820801e-07 3463 3343 -33470093.0295 3464 3343 -6857575.146393 3465 3343 15625000.00513 3466 3343 -37186630.13654 3467 3343 18715245.91155 3344 3344 1036803405.136 3345 3344 26700529.72734 3346 3344 52127606.5745 3347 3344 32215992.22129 3348 3344 24744635.83784 3349 3344 12480768.99722 3350 3344 -23812494.86631 3351 3344 -3200276.075057 3352 3344 -27430287.99363 3353 3344 71900937.83954 3354 3344 -26687655.82037 3355 3344 14949518.99641 3356 3344 -27424184.68052 3444 3344 11964870.03287 3445 3344 -11171906.87604 3446 3344 -13613251.03531 3447 3344 67985675.23876 3448 3344 5415714.150796 3449 3344 -77126033.46393 3450 3344 571475.2200821 3451 3344 -45922002.48202 3452 3344 -10938367.40355 3453 3344 7717499.145858 3454 3344 -21256373.52338 3455 3344 -156819638.9591 3456 3344 25405116.04772 3457 3344 72953597.68388 3458 3344 -149232299.5136 3459 3344 -12536345.25295 3460 3344 -11857670.76516 3461 3344 -15333780.81983 3462 3344 -75690085.8441 3463 3344 -6857575.146393 3464 3344 -98280306.98791 3465 3344 -25394418.17384 3466 3344 18715245.91155 3467 3344 -55588121.11081 3345 3345 672539349.2322 3346 3345 62499999.98975 3347 3345 33164131.31328 3351 3345 -93044845.55145 3352 3345 -62499999.98975 3353 3345 24401753.89294 3354 3345 -347114474.3686 3355 3345 -62519355.57327 3356 3345 -27670762.35809 3357 3345 9372586.160465 3358 3345 50019355.57532 3359 3345 -19895735.37814 3447 3345 1493260.574915 3448 3345 18756584.19674 3449 3345 14705768.01689 3453 3345 -8426923.443562 3454 3345 -15631584.19572 3455 3345 -11969908.87826 3456 3345 64179725.07093 3457 3345 15625000.00514 3458 3345 22379883.77153 3462 3345 -26778951.03495 3463 3345 -15625000.00513 3464 3345 -12536345.25295 3465 3345 -131080904.1793 3466 3345 -15629389.46552 3467 3345 -81477706.67803 3468 3345 -28030795.60664 3469 3345 12504389.4645 3470 3345 -20094076.36695 3346 3346 578763407.3196 3347 3346 -63106764.95873 3351 3346 -62499999.98975 3352 3346 -74294012.36186 3353 3346 12206463.4413 3354 3346 -62529033.36503 3355 3346 -53301772.56443 3356 3346 -38274305.78037 3357 3346 75029033.36299 3358 3346 9372586.160465 3359 3346 25519231.22886 3447 3346 12504389.4645 3448 3346 1493260.574915 3449 3346 -7843093.74256 3453 3346 -15629389.46552 3454 3346 -63122936.0184 3455 3346 -46615995.93793 3456 3346 15625000.00513 3457 3346 40736294.19042 3458 3346 -4504985.17355 3462 3346 -15625000.00513 3463 3346 -22091252.52743 3464 3346 -11857670.76516 3465 3346 -15631584.19572 3466 3346 -57629159.23151 3467 3346 -24484028.50059 3468 3346 18756584.19674 3469 3346 -28030795.60664 3470 3346 24112532.59506 3347 3347 671642303.0214 3351 3347 24744635.83784 3352 3347 12480768.99722 3353 3347 -23812494.86631 3354 3347 -24924077.88049 3355 3347 -30316506.48178 3356 3347 -3879396.610056 3357 3347 -29843603.06721 3358 3347 17012820.81924 3359 3347 24993563.09457 3447 3347 9803845.344592 3448 3347 -11764640.61384 3449 3347 3982028.199772 3453 3347 -11968229.26313 3454 3347 -48262567.85004 3455 3347 -28540237.05556 3456 3347 -7512792.611826 3457 3347 -28418903.81719 3458 3347 -109296917.9411 3462 3347 -12536345.25295 3463 3347 -11857670.76516 3464 3347 -15333780.81983 3465 3347 -81133941.74793 3466 3347 -22561100.97091 3467 3347 -119114540.4154 3468 3347 -30141114.55043 3469 3347 16075021.73004 3470 3347 -74748788.28438 3348 3348 1062868161.752 3349 3348 1.955032348633e-05 3350 3348 9143607.705144 3351 3348 125282264.7016 3352 3348 -9.357929229736e-06 3353 3348 2285901.927418 3360 3348 -234498519.637 3361 3348 3.576278686523e-06 3362 3348 -5943331.630163 3363 3348 -94399229.23175 3364 3348 62499999.98975 3365 3348 -27030537.76527 3450 3348 -98285243.92273 3451 3348 1.072883605957e-06 3452 3348 73747066.90912 3453 3348 -40551938.13439 3454 3348 -15625000.00514 3455 3348 24822942.95376 3459 3348 99158852.54101 3460 3348 3.457069396973e-06 3461 3348 2285900.879224 3462 3348 -39821273.75826 3463 3348 -8.895993232727e-06 3464 3348 571475.2200941 3471 3348 -102220422.2785 3472 3348 1.013278961182e-06 3473 3348 -76032967.78832 3474 3348 -41874328.64406 3475 3348 15625000.00513 3476 3348 -25394418.17384 3349 3349 912861496.3092 3350 3349 -109721151.9205 3351 3349 -9.924173355103e-06 3352 3349 -112217450.7807 3353 3349 55957798.18227 3360 3349 4.14252281189e-06 3361 3349 40502862.18745 3362 3349 -27430287.99363 3363 3349 62499999.98975 3364 3349 -75648396.04218 3365 3349 15223824.55232 3450 3349 -4.172325134277e-07 3451 3349 -29534914.67368 3452 3349 -6857575.146393 3453 3349 -15625000.00514 3454 3349 -35864239.62686 3455 3349 18029482.02244 3459 3349 3.814697265625e-06 3460 3349 61657264.49931 3461 3349 -27430300.57206 3462 3349 -7.718801498413e-06 3463 3349 -99196206.00148 3464 3349 73626608.60945 3471 3349 -7.748603820801e-07 3472 3349 -33470093.0295 3473 3349 -6857575.146393 3474 3349 15625000.00513 3475 3349 -37186630.13654 3476 3349 18715245.91155 3350 3350 1039858352.722 3351 3350 2285901.927418 3352 3350 53763353.73819 3353 3350 85469901.76562 3360 3350 -3200276.075057 3361 3350 -27430287.99363 3362 3350 71900937.83954 3363 3350 -26687655.82037 3364 3350 14949518.99641 3365 3350 -27424184.68052 3450 3350 73404184.96491 3451 3350 -6857575.146392 3452 3350 -87786498.03904 3453 3350 24822942.95376 3454 3350 18029482.02244 3455 3350 -52061746.4183 3459 3350 2285900.879224 3460 3350 -27430300.57206 3461 3350 -184190435.19 3462 3350 571475.2200943 3463 3350 73352303.05408 3464 3350 -168344038.6739 3471 3350 -75690085.8441 3472 3350 -6857575.146393 3473 3350 -98280306.98791 3474 3350 -25394418.17384 3475 3350 18715245.91155 3476 3350 -55588121.11081 3351 3351 1062868161.752 3352 3351 1.955032348633e-05 3353 3351 9143607.705144 3354 3351 125282264.7016 3355 3351 -9.357929229736e-06 3356 3351 2285901.927418 3360 3351 -93044845.55145 3361 3351 -62499999.98975 3362 3351 24401753.89294 3363 3351 -234498519.637 3364 3351 3.576278686523e-06 3365 3351 -5943331.630163 3366 3351 -94399229.23175 3367 3351 62499999.98975 3368 3351 -27030537.76527 3450 3351 -26133752.36576 3451 3351 15625000.00514 3452 3351 11964870.03287 3453 3351 -98285243.92273 3454 3351 1.072883605957e-06 3455 3351 73747066.90912 3456 3351 -40551938.13439 3457 3351 -15625000.00514 3458 3351 24822942.95376 3459 3351 19205852.96814 3460 3351 4.768371582031e-06 3461 3351 571475.220082 3462 3351 99158852.54101 3463 3351 3.457069396973e-06 3464 3351 2285900.879224 3465 3351 -39821273.75826 3466 3351 -8.895993232727e-06 3467 3351 571475.2200941 3471 3351 -26778951.03495 3472 3351 -15625000.00513 3473 3351 -12536345.25295 3474 3351 -102220422.2785 3475 3351 1.013278961182e-06 3476 3351 -76032967.78832 3477 3351 -41874328.64406 3478 3351 15625000.00513 3479 3351 -25394418.17384 3352 3352 912861496.3092 3353 3352 -109721151.9205 3354 3352 -9.924173355103e-06 3355 3352 -112217450.7807 3356 3352 55957798.18227 3360 3352 -62499999.98975 3361 3352 -74294012.36186 3362 3352 12206463.4413 3363 3352 4.14252281189e-06 3364 3352 40502862.18745 3365 3352 -27430287.99363 3366 3352 62499999.98975 3367 3352 -75648396.04218 3368 3352 15223824.55232 3450 3352 15625000.00514 3451 3352 -21446053.85824 3452 3352 -11171906.87604 3453 3352 -4.172325134277e-07 3454 3352 -29534914.67368 3455 3352 -6857575.146393 3456 3352 -15625000.00514 3457 3352 -35864239.62686 3458 3352 18029482.02244 3459 3352 6.780028343201e-06 3460 3352 -40169079.27509 3461 3352 -46196308.03739 3462 3352 3.814697265625e-06 3463 3352 61657264.49931 3464 3352 -27430300.57206 3465 3352 -7.718801498413e-06 3466 3352 -99196206.00148 3467 3352 73626608.60945 3471 3352 -15625000.00513 3472 3352 -22091252.52743 3473 3352 -11857670.76516 3474 3352 -7.748603820801e-07 3475 3352 -33470093.0295 3476 3352 -6857575.146393 3477 3352 15625000.00513 3478 3352 -37186630.13654 3479 3352 18715245.91155 3353 3353 1039858352.722 3354 3353 2285901.927418 3355 3353 53763353.73819 3356 3353 85469901.76562 3360 3353 24744635.83784 3361 3353 12480768.99722 3362 3353 -23812494.86631 3363 3353 -3200276.075057 3364 3353 -27430287.99363 3365 3353 71900937.83954 3366 3353 -26687655.82037 3367 3353 14949518.99641 3368 3353 -27424184.68052 3450 3353 11964870.03287 3451 3353 -11171906.87604 3452 3353 -13613251.03531 3453 3353 73404184.96491 3454 3353 -6857575.146392 3455 3353 -87786498.03904 3456 3353 24822942.95376 3457 3353 18029482.02244 3458 3353 -52061746.4183 3459 3353 571475.2200821 3460 3353 -45922002.48202 3461 3353 -10938367.40355 3462 3353 2285900.879224 3463 3353 -27430300.57206 3464 3353 -184190435.19 3465 3353 571475.2200943 3466 3353 73352303.05408 3467 3353 -168344038.6739 3471 3353 -12536345.25295 3472 3353 -11857670.76516 3473 3353 -15333780.81983 3474 3353 -75690085.8441 3475 3353 -6857575.146393 3476 3353 -98280306.98791 3477 3353 -25394418.17384 3478 3353 18715245.91155 3479 3353 -55588121.11081 3354 3354 1145935402.266 3355 3354 62548388.94858 3356 3354 30860151.66558 3357 3354 21182372.10022 3358 3354 -62519355.57328 3359 3354 27039120.36991 3363 3354 -93044845.55145 3364 3354 -62499999.98975 3365 3354 24401753.89294 3366 3354 -234498519.637 3367 3354 3.576278686523e-06 3368 3354 -5943331.630163 3369 3354 -94399229.23175 3370 3354 62499999.98975 3371 3354 -27030537.76527 3453 3354 -26133752.36576 3454 3354 15625000.00514 3455 3354 11964870.03287 3456 3354 -115335214.0726 3457 3354 -15631584.19572 3458 3354 68329440.16886 3462 3354 19205852.96814 3463 3354 4.768371582031e-06 3464 3354 571475.220082 3465 3354 130473837.5578 3466 3354 15635973.65611 3467 3354 7712253.313144 3468 3354 -53686446.86531 3469 3354 -15629389.46553 3470 3354 25401550.08976 3474 3354 -26778951.03495 3475 3354 -15625000.00513 3476 3354 -12536345.25295 3477 3354 -102220422.2785 3478 3354 1.013278961182e-06 3479 3354 -76032967.78832 3480 3354 -41874328.64406 3481 3354 15625000.00513 3482 3354 -25394418.17384 3355 3355 977156127.6318 3356 3355 -85033333.84819 3357 3355 -62529033.36504 3358 3355 -197605220.9809 3359 3355 46638027.38239 3363 3355 -62499999.98975 3364 3355 -74294012.36186 3365 3355 12206463.4413 3366 3355 4.14252281189e-06 3367 3355 40502862.18745 3368 3355 -27430287.99363 3369 3355 62499999.98975 3370 3355 -75648396.04218 3371 3355 15223824.55232 3453 3355 15625000.00514 3454 3355 -21446053.85824 3455 3355 -11171906.87604 3456 3355 -15629389.46552 3457 3355 -41883469.12474 3458 3355 7334445.059211 3462 3355 6.780028343201e-06 3463 3355 -40169079.27509 3464 3355 -46196308.03739 3465 3355 15635973.65611 3466 3355 88279612.65644 3467 3355 -21260570.15053 3468 3355 -15631584.19572 3469 3355 -108382459.4402 3470 3355 71307025.97358 3474 3355 -15625000.00513 3475 3355 -22091252.52743 3476 3355 -11857670.76516 3477 3355 -7.748603820801e-07 3478 3355 -33470093.0295 3479 3355 -6857575.146393 3480 3355 15625000.00513 3481 3355 -37186630.13654 3482 3355 18715245.91155 3356 3356 1036803405.136 3357 3356 26700529.72734 3358 3356 52127606.5745 3359 3356 32215992.22129 3363 3356 24744635.83784 3364 3356 12480768.99722 3365 3356 -23812494.86631 3366 3356 -3200276.075057 3367 3356 -27430287.99363 3368 3356 71900937.83954 3369 3356 -26687655.82037 3370 3356 14949518.99641 3371 3356 -27424184.68052 3453 3356 11964870.03287 3454 3356 -11171906.87604 3455 3356 -13613251.03531 3456 3356 67985675.23876 3457 3356 5415714.150796 3458 3356 -77126033.46393 3462 3356 571475.2200821 3463 3356 -45922002.48202 3464 3356 -10938367.40355 3465 3356 7717499.145858 3466 3356 -21256373.52338 3467 3356 -156819638.9591 3468 3356 25405116.04772 3469 3356 72953597.68388 3470 3356 -149232299.5136 3474 3356 -12536345.25295 3475 3356 -11857670.76516 3476 3356 -15333780.81983 3477 3356 -75690085.8441 3478 3356 -6857575.146393 3479 3356 -98280306.98791 3480 3356 -25394418.17384 3481 3356 18715245.91155 3482 3356 -55588121.11081 3357 3357 672539349.2322 3358 3357 62499999.98975 3359 3357 33164131.31328 3366 3357 -93044845.55145 3367 3357 -62499999.98975 3368 3357 24401753.89294 3369 3357 -347114474.3686 3370 3357 -62519355.57327 3371 3357 -27670762.35809 3372 3357 9372586.160465 3373 3357 50019355.57532 3374 3357 -19895735.37814 3456 3357 1493260.574915 3457 3357 18756584.19674 3458 3357 14705768.01689 3465 3357 -8426923.443562 3466 3357 -15631584.19572 3467 3357 -11969908.87826 3468 3357 64179725.07093 3469 3357 15625000.00514 3470 3357 22379883.77153 3477 3357 -26778951.03495 3478 3357 -15625000.00513 3479 3357 -12536345.25295 3480 3357 -131080904.1793 3481 3357 -15629389.46552 3482 3357 -81477706.67803 3483 3357 -28030795.60664 3484 3357 12504389.4645 3485 3357 -20094076.36695 3358 3358 578763407.3196 3359 3358 -63106764.95873 3366 3358 -62499999.98975 3367 3358 -74294012.36186 3368 3358 12206463.4413 3369 3358 -62529033.36503 3370 3358 -53301772.56443 3371 3358 -38274305.78037 3372 3358 75029033.36299 3373 3358 9372586.160465 3374 3358 25519231.22886 3456 3358 12504389.4645 3457 3358 1493260.574915 3458 3358 -7843093.74256 3465 3358 -15629389.46552 3466 3358 -63122936.0184 3467 3358 -46615995.93793 3468 3358 15625000.00513 3469 3358 40736294.19042 3470 3358 -4504985.17355 3477 3358 -15625000.00513 3478 3358 -22091252.52743 3479 3358 -11857670.76516 3480 3358 -15631584.19572 3481 3358 -57629159.23151 3482 3358 -24484028.50059 3483 3358 18756584.19674 3484 3358 -28030795.60664 3485 3358 24112532.59506 3359 3359 671642303.0214 3366 3359 24744635.83784 3367 3359 12480768.99722 3368 3359 -23812494.86631 3369 3359 -24924077.88049 3370 3359 -30316506.48178 3371 3359 -3879396.610056 3372 3359 -29843603.06721 3373 3359 17012820.81924 3374 3359 24993563.09457 3456 3359 9803845.344592 3457 3359 -11764640.61384 3458 3359 3982028.199772 3465 3359 -11968229.26313 3466 3359 -48262567.85004 3467 3359 -28540237.05556 3468 3359 -7512792.611826 3469 3359 -28418903.81719 3470 3359 -109296917.9411 3477 3359 -12536345.25295 3478 3359 -11857670.76516 3479 3359 -15333780.81983 3480 3359 -81133941.74793 3481 3359 -22561100.97091 3482 3359 -119114540.4154 3483 3359 -30141114.55043 3484 3359 16075021.73004 3485 3359 -74748788.28438 3360 3360 1062868161.752 3361 3360 1.955032348633e-05 3362 3360 9143607.705144 3363 3360 125282264.7016 3364 3360 -9.357929229736e-06 3365 3360 2285901.927418 3375 3360 -234498519.637 3376 3360 3.576278686523e-06 3377 3360 -5943331.630163 3378 3360 -94399229.23175 3379 3360 62499999.98975 3380 3360 -27030537.76527 3459 3360 -98285243.92273 3460 3360 1.072883605957e-06 3461 3360 73747066.90912 3462 3360 -40551938.13439 3463 3360 -15625000.00514 3464 3360 24822942.95376 3471 3360 99158852.54101 3472 3360 3.457069396973e-06 3473 3360 2285900.879224 3474 3360 -39821273.75826 3475 3360 -8.895993232727e-06 3476 3360 571475.2200941 3486 3360 -102220422.2785 3487 3360 1.013278961182e-06 3488 3360 -76032967.78832 3489 3360 -41874328.64406 3490 3360 15625000.00513 3491 3360 -25394418.17384 3361 3361 912861496.3092 3362 3361 -109721151.9205 3363 3361 -9.924173355103e-06 3364 3361 -112217450.7807 3365 3361 55957798.18227 3375 3361 4.14252281189e-06 3376 3361 40502862.18745 3377 3361 -27430287.99363 3378 3361 62499999.98975 3379 3361 -75648396.04218 3380 3361 15223824.55232 3459 3361 -4.172325134277e-07 3460 3361 -29534914.67368 3461 3361 -6857575.146393 3462 3361 -15625000.00514 3463 3361 -35864239.62686 3464 3361 18029482.02244 3471 3361 3.814697265625e-06 3472 3361 61657264.49931 3473 3361 -27430300.57206 3474 3361 -7.718801498413e-06 3475 3361 -99196206.00148 3476 3361 73626608.60945 3486 3361 -7.748603820801e-07 3487 3361 -33470093.0295 3488 3361 -6857575.146393 3489 3361 15625000.00513 3490 3361 -37186630.13654 3491 3361 18715245.91155 3362 3362 1039858352.722 3363 3362 2285901.927418 3364 3362 53763353.73819 3365 3362 85469901.76562 3375 3362 -3200276.075057 3376 3362 -27430287.99363 3377 3362 71900937.83954 3378 3362 -26687655.82037 3379 3362 14949518.99641 3380 3362 -27424184.68052 3459 3362 73404184.96491 3460 3362 -6857575.146392 3461 3362 -87786498.03904 3462 3362 24822942.95376 3463 3362 18029482.02244 3464 3362 -52061746.4183 3471 3362 2285900.879224 3472 3362 -27430300.57206 3473 3362 -184190435.19 3474 3362 571475.2200943 3475 3362 73352303.05408 3476 3362 -168344038.6739 3486 3362 -75690085.8441 3487 3362 -6857575.146393 3488 3362 -98280306.98791 3489 3362 -25394418.17384 3490 3362 18715245.91155 3491 3362 -55588121.11081 3363 3363 1062868161.752 3364 3363 1.955032348633e-05 3365 3363 9143607.705144 3366 3363 125282264.7016 3367 3363 -9.357929229736e-06 3368 3363 2285901.927418 3375 3363 -93044845.55145 3376 3363 -62499999.98975 3377 3363 24401753.89294 3378 3363 -234498519.637 3379 3363 3.576278686523e-06 3380 3363 -5943331.630163 3381 3363 -94399229.23175 3382 3363 62499999.98975 3383 3363 -27030537.76527 3459 3363 -26133752.36576 3460 3363 15625000.00514 3461 3363 11964870.03287 3462 3363 -98285243.92273 3463 3363 1.072883605957e-06 3464 3363 73747066.90912 3465 3363 -40551938.13439 3466 3363 -15625000.00514 3467 3363 24822942.95376 3471 3363 19205852.96814 3472 3363 4.768371582031e-06 3473 3363 571475.220082 3474 3363 99158852.54101 3475 3363 3.457069396973e-06 3476 3363 2285900.879224 3477 3363 -39821273.75826 3478 3363 -8.895993232727e-06 3479 3363 571475.2200941 3486 3363 -26778951.03495 3487 3363 -15625000.00513 3488 3363 -12536345.25295 3489 3363 -102220422.2785 3490 3363 1.013278961182e-06 3491 3363 -76032967.78832 3492 3363 -41874328.64406 3493 3363 15625000.00513 3494 3363 -25394418.17384 3364 3364 912861496.3092 3365 3364 -109721151.9205 3366 3364 -9.924173355103e-06 3367 3364 -112217450.7807 3368 3364 55957798.18227 3375 3364 -62499999.98975 3376 3364 -74294012.36186 3377 3364 12206463.4413 3378 3364 4.14252281189e-06 3379 3364 40502862.18745 3380 3364 -27430287.99363 3381 3364 62499999.98975 3382 3364 -75648396.04218 3383 3364 15223824.55232 3459 3364 15625000.00514 3460 3364 -21446053.85824 3461 3364 -11171906.87604 3462 3364 -4.172325134277e-07 3463 3364 -29534914.67368 3464 3364 -6857575.146393 3465 3364 -15625000.00514 3466 3364 -35864239.62686 3467 3364 18029482.02244 3471 3364 6.780028343201e-06 3472 3364 -40169079.27509 3473 3364 -46196308.03739 3474 3364 3.814697265625e-06 3475 3364 61657264.49931 3476 3364 -27430300.57206 3477 3364 -7.718801498413e-06 3478 3364 -99196206.00148 3479 3364 73626608.60945 3486 3364 -15625000.00513 3487 3364 -22091252.52743 3488 3364 -11857670.76516 3489 3364 -7.748603820801e-07 3490 3364 -33470093.0295 3491 3364 -6857575.146393 3492 3364 15625000.00513 3493 3364 -37186630.13654 3494 3364 18715245.91155 3365 3365 1039858352.722 3366 3365 2285901.927418 3367 3365 53763353.73819 3368 3365 85469901.76562 3375 3365 24744635.83784 3376 3365 12480768.99722 3377 3365 -23812494.86631 3378 3365 -3200276.075057 3379 3365 -27430287.99363 3380 3365 71900937.83954 3381 3365 -26687655.82037 3382 3365 14949518.99641 3383 3365 -27424184.68052 3459 3365 11964870.03287 3460 3365 -11171906.87604 3461 3365 -13613251.03531 3462 3365 73404184.96491 3463 3365 -6857575.146392 3464 3365 -87786498.03904 3465 3365 24822942.95376 3466 3365 18029482.02244 3467 3365 -52061746.4183 3471 3365 571475.2200821 3472 3365 -45922002.48202 3473 3365 -10938367.40355 3474 3365 2285900.879224 3475 3365 -27430300.57206 3476 3365 -184190435.19 3477 3365 571475.2200943 3478 3365 73352303.05408 3479 3365 -168344038.6739 3486 3365 -12536345.25295 3487 3365 -11857670.76516 3488 3365 -15333780.81983 3489 3365 -75690085.8441 3490 3365 -6857575.146393 3491 3365 -98280306.98791 3492 3365 -25394418.17384 3493 3365 18715245.91155 3494 3365 -55588121.11081 3366 3366 1062868161.752 3367 3366 1.955032348633e-05 3368 3366 9143607.705144 3369 3366 125282264.7016 3370 3366 -9.357929229736e-06 3371 3366 2285901.927418 3378 3366 -93044845.55145 3379 3366 -62499999.98975 3380 3366 24401753.89294 3381 3366 -234498519.637 3382 3366 3.576278686523e-06 3383 3366 -5943331.630163 3384 3366 -94399229.23175 3385 3366 62499999.98975 3386 3366 -27030537.76527 3462 3366 -26133752.36576 3463 3366 15625000.00514 3464 3366 11964870.03287 3465 3366 -98285243.92273 3466 3366 1.072883605957e-06 3467 3366 73747066.90912 3468 3366 -40551938.13439 3469 3366 -15625000.00514 3470 3366 24822942.95376 3474 3366 19205852.96814 3475 3366 4.768371582031e-06 3476 3366 571475.220082 3477 3366 99158852.54101 3478 3366 3.457069396973e-06 3479 3366 2285900.879224 3480 3366 -39821273.75826 3481 3366 -8.895993232727e-06 3482 3366 571475.2200941 3489 3366 -26778951.03495 3490 3366 -15625000.00513 3491 3366 -12536345.25295 3492 3366 -102220422.2785 3493 3366 1.013278961182e-06 3494 3366 -76032967.78832 3495 3366 -41874328.64406 3496 3366 15625000.00513 3497 3366 -25394418.17384 3367 3367 912861496.3092 3368 3367 -109721151.9205 3369 3367 -9.924173355103e-06 3370 3367 -112217450.7807 3371 3367 55957798.18227 3378 3367 -62499999.98975 3379 3367 -74294012.36186 3380 3367 12206463.4413 3381 3367 4.14252281189e-06 3382 3367 40502862.18745 3383 3367 -27430287.99363 3384 3367 62499999.98975 3385 3367 -75648396.04218 3386 3367 15223824.55232 3462 3367 15625000.00514 3463 3367 -21446053.85824 3464 3367 -11171906.87604 3465 3367 -4.172325134277e-07 3466 3367 -29534914.67368 3467 3367 -6857575.146393 3468 3367 -15625000.00514 3469 3367 -35864239.62686 3470 3367 18029482.02244 3474 3367 6.780028343201e-06 3475 3367 -40169079.27509 3476 3367 -46196308.03739 3477 3367 3.814697265625e-06 3478 3367 61657264.49931 3479 3367 -27430300.57206 3480 3367 -7.718801498413e-06 3481 3367 -99196206.00148 3482 3367 73626608.60945 3489 3367 -15625000.00513 3490 3367 -22091252.52743 3491 3367 -11857670.76516 3492 3367 -7.748603820801e-07 3493 3367 -33470093.0295 3494 3367 -6857575.146393 3495 3367 15625000.00513 3496 3367 -37186630.13654 3497 3367 18715245.91155 3368 3368 1039858352.722 3369 3368 2285901.927418 3370 3368 53763353.73819 3371 3368 85469901.76562 3378 3368 24744635.83784 3379 3368 12480768.99722 3380 3368 -23812494.86631 3381 3368 -3200276.075057 3382 3368 -27430287.99363 3383 3368 71900937.83954 3384 3368 -26687655.82037 3385 3368 14949518.99641 3386 3368 -27424184.68052 3462 3368 11964870.03287 3463 3368 -11171906.87604 3464 3368 -13613251.03531 3465 3368 73404184.96491 3466 3368 -6857575.146392 3467 3368 -87786498.03904 3468 3368 24822942.95376 3469 3368 18029482.02244 3470 3368 -52061746.4183 3474 3368 571475.2200821 3475 3368 -45922002.48202 3476 3368 -10938367.40355 3477 3368 2285900.879224 3478 3368 -27430300.57206 3479 3368 -184190435.19 3480 3368 571475.2200943 3481 3368 73352303.05408 3482 3368 -168344038.6739 3489 3368 -12536345.25295 3490 3368 -11857670.76516 3491 3368 -15333780.81983 3492 3368 -75690085.8441 3493 3368 -6857575.146393 3494 3368 -98280306.98791 3495 3368 -25394418.17384 3496 3368 18715245.91155 3497 3368 -55588121.11081 3369 3369 1145935402.266 3370 3369 62548388.94858 3371 3369 30860151.66558 3372 3369 21182372.10022 3373 3369 -62519355.57328 3374 3369 27039120.36991 3381 3369 -93044845.55145 3382 3369 -62499999.98975 3383 3369 24401753.89294 3384 3369 -234498519.637 3385 3369 3.576278686523e-06 3386 3369 -5943331.630163 3387 3369 -94399229.23175 3388 3369 62499999.98975 3389 3369 -27030537.76527 3465 3369 -26133752.36576 3466 3369 15625000.00514 3467 3369 11964870.03287 3468 3369 -115335214.0726 3469 3369 -15631584.19572 3470 3369 68329440.16886 3477 3369 19205852.96814 3478 3369 4.768371582031e-06 3479 3369 571475.220082 3480 3369 130473837.5578 3481 3369 15635973.65611 3482 3369 7712253.313144 3483 3369 -53686446.86531 3484 3369 -15629389.46553 3485 3369 25401550.08976 3492 3369 -26778951.03495 3493 3369 -15625000.00513 3494 3369 -12536345.25295 3495 3369 -102220422.2785 3496 3369 1.013278961182e-06 3497 3369 -76032967.78832 3498 3369 -41874328.64406 3499 3369 15625000.00513 3500 3369 -25394418.17384 3370 3370 977156127.6318 3371 3370 -85033333.84819 3372 3370 -62529033.36504 3373 3370 -197605220.9809 3374 3370 46638027.38239 3381 3370 -62499999.98975 3382 3370 -74294012.36186 3383 3370 12206463.4413 3384 3370 4.14252281189e-06 3385 3370 40502862.18745 3386 3370 -27430287.99363 3387 3370 62499999.98975 3388 3370 -75648396.04218 3389 3370 15223824.55232 3465 3370 15625000.00514 3466 3370 -21446053.85824 3467 3370 -11171906.87604 3468 3370 -15629389.46552 3469 3370 -41883469.12474 3470 3370 7334445.059211 3477 3370 6.780028343201e-06 3478 3370 -40169079.27509 3479 3370 -46196308.03739 3480 3370 15635973.65611 3481 3370 88279612.65644 3482 3370 -21260570.15053 3483 3370 -15631584.19572 3484 3370 -108382459.4402 3485 3370 71307025.97358 3492 3370 -15625000.00513 3493 3370 -22091252.52743 3494 3370 -11857670.76516 3495 3370 -7.748603820801e-07 3496 3370 -33470093.0295 3497 3370 -6857575.146393 3498 3370 15625000.00513 3499 3370 -37186630.13654 3500 3370 18715245.91155 3371 3371 1036803405.136 3372 3371 26700529.72734 3373 3371 52127606.5745 3374 3371 32215992.22129 3381 3371 24744635.83784 3382 3371 12480768.99722 3383 3371 -23812494.86631 3384 3371 -3200276.075057 3385 3371 -27430287.99363 3386 3371 71900937.83954 3387 3371 -26687655.82037 3388 3371 14949518.99641 3389 3371 -27424184.68052 3465 3371 11964870.03287 3466 3371 -11171906.87604 3467 3371 -13613251.03531 3468 3371 67985675.23876 3469 3371 5415714.150796 3470 3371 -77126033.46393 3477 3371 571475.2200821 3478 3371 -45922002.48202 3479 3371 -10938367.40355 3480 3371 7717499.145858 3481 3371 -21256373.52338 3482 3371 -156819638.9591 3483 3371 25405116.04772 3484 3371 72953597.68388 3485 3371 -149232299.5136 3492 3371 -12536345.25295 3493 3371 -11857670.76516 3494 3371 -15333780.81983 3495 3371 -75690085.8441 3496 3371 -6857575.146393 3497 3371 -98280306.98791 3498 3371 -25394418.17384 3499 3371 18715245.91155 3500 3371 -55588121.11081 3372 3372 672539349.2322 3373 3372 62499999.98975 3374 3372 33164131.31328 3384 3372 -93044845.55145 3385 3372 -62499999.98975 3386 3372 24401753.89294 3387 3372 -347114474.3686 3388 3372 -62519355.57327 3389 3372 -27670762.35809 3390 3372 9372586.160465 3391 3372 50019355.57532 3392 3372 -19895735.37814 3468 3372 1493260.574915 3469 3372 18756584.19674 3470 3372 14705768.01689 3480 3372 -8426923.443562 3481 3372 -15631584.19572 3482 3372 -11969908.87826 3483 3372 64179725.07093 3484 3372 15625000.00514 3485 3372 22379883.77153 3495 3372 -26778951.03495 3496 3372 -15625000.00513 3497 3372 -12536345.25295 3498 3372 -131080904.1793 3499 3372 -15629389.46552 3500 3372 -81477706.67803 3501 3372 -28030795.60664 3502 3372 12504389.4645 3503 3372 -20094076.36695 3373 3373 578763407.3196 3374 3373 -63106764.95873 3384 3373 -62499999.98975 3385 3373 -74294012.36186 3386 3373 12206463.4413 3387 3373 -62529033.36503 3388 3373 -53301772.56443 3389 3373 -38274305.78037 3390 3373 75029033.36299 3391 3373 9372586.160465 3392 3373 25519231.22886 3468 3373 12504389.4645 3469 3373 1493260.574915 3470 3373 -7843093.74256 3480 3373 -15629389.46552 3481 3373 -63122936.0184 3482 3373 -46615995.93793 3483 3373 15625000.00513 3484 3373 40736294.19042 3485 3373 -4504985.17355 3495 3373 -15625000.00513 3496 3373 -22091252.52743 3497 3373 -11857670.76516 3498 3373 -15631584.19572 3499 3373 -57629159.23151 3500 3373 -24484028.50059 3501 3373 18756584.19674 3502 3373 -28030795.60664 3503 3373 24112532.59506 3374 3374 671642303.0214 3384 3374 24744635.83784 3385 3374 12480768.99722 3386 3374 -23812494.86631 3387 3374 -24924077.88049 3388 3374 -30316506.48178 3389 3374 -3879396.610056 3390 3374 -29843603.06721 3391 3374 17012820.81924 3392 3374 24993563.09457 3468 3374 9803845.344592 3469 3374 -11764640.61384 3470 3374 3982028.199772 3480 3374 -11968229.26313 3481 3374 -48262567.85004 3482 3374 -28540237.05556 3483 3374 -7512792.611826 3484 3374 -28418903.81719 3485 3374 -109296917.9411 3495 3374 -12536345.25295 3496 3374 -11857670.76516 3497 3374 -15333780.81983 3498 3374 -81133941.74793 3499 3374 -22561100.97091 3500 3374 -119114540.4154 3501 3374 -30141114.55043 3502 3374 16075021.73004 3503 3374 -74748788.28438 3375 3375 1062868161.752 3376 3375 1.955032348633e-05 3377 3375 9143607.705144 3378 3375 125282264.7016 3379 3375 -9.357929229736e-06 3380 3375 2285901.927418 3393 3375 -234498519.637 3394 3375 3.576278686523e-06 3395 3375 -5943331.630163 3396 3375 -94399229.23175 3397 3375 62499999.98975 3398 3375 -27030537.76527 3471 3375 -98285243.92273 3472 3375 1.072883605957e-06 3473 3375 73747066.90912 3474 3375 -40551938.13439 3475 3375 -15625000.00514 3476 3375 24822942.95376 3486 3375 99158852.54101 3487 3375 3.457069396973e-06 3488 3375 2285900.879224 3489 3375 -39821273.75826 3490 3375 -8.895993232727e-06 3491 3375 571475.2200941 3504 3375 -102220422.2785 3505 3375 1.013278961182e-06 3506 3375 -76032967.78832 3507 3375 -41874328.64406 3508 3375 15625000.00513 3509 3375 -25394418.17384 3376 3376 912861496.3092 3377 3376 -109721151.9205 3378 3376 -9.924173355103e-06 3379 3376 -112217450.7807 3380 3376 55957798.18227 3393 3376 4.14252281189e-06 3394 3376 40502862.18745 3395 3376 -27430287.99363 3396 3376 62499999.98975 3397 3376 -75648396.04218 3398 3376 15223824.55232 3471 3376 -4.172325134277e-07 3472 3376 -29534914.67368 3473 3376 -6857575.146393 3474 3376 -15625000.00514 3475 3376 -35864239.62686 3476 3376 18029482.02244 3486 3376 3.814697265625e-06 3487 3376 61657264.49931 3488 3376 -27430300.57206 3489 3376 -7.718801498413e-06 3490 3376 -99196206.00148 3491 3376 73626608.60945 3504 3376 -7.748603820801e-07 3505 3376 -33470093.0295 3506 3376 -6857575.146393 3507 3376 15625000.00513 3508 3376 -37186630.13654 3509 3376 18715245.91155 3377 3377 1039858352.722 3378 3377 2285901.927418 3379 3377 53763353.73819 3380 3377 85469901.76562 3393 3377 -3200276.075057 3394 3377 -27430287.99363 3395 3377 71900937.83954 3396 3377 -26687655.82037 3397 3377 14949518.99641 3398 3377 -27424184.68052 3471 3377 73404184.96491 3472 3377 -6857575.146392 3473 3377 -87786498.03904 3474 3377 24822942.95376 3475 3377 18029482.02244 3476 3377 -52061746.4183 3486 3377 2285900.879224 3487 3377 -27430300.57206 3488 3377 -184190435.19 3489 3377 571475.2200943 3490 3377 73352303.05408 3491 3377 -168344038.6739 3504 3377 -75690085.8441 3505 3377 -6857575.146393 3506 3377 -98280306.98791 3507 3377 -25394418.17384 3508 3377 18715245.91155 3509 3377 -55588121.11081 3378 3378 1062868161.752 3379 3378 1.955032348633e-05 3380 3378 9143607.705144 3381 3378 125282264.7016 3382 3378 -9.357929229736e-06 3383 3378 2285901.927418 3393 3378 -93044845.55145 3394 3378 -62499999.98975 3395 3378 24401753.89294 3396 3378 -234498519.637 3397 3378 3.576278686523e-06 3398 3378 -5943331.630163 3399 3378 -94399229.23175 3400 3378 62499999.98975 3401 3378 -27030537.76527 3471 3378 -26133752.36576 3472 3378 15625000.00514 3473 3378 11964870.03287 3474 3378 -98285243.92273 3475 3378 1.072883605957e-06 3476 3378 73747066.90912 3477 3378 -40551938.13439 3478 3378 -15625000.00514 3479 3378 24822942.95376 3486 3378 19205852.96814 3487 3378 4.768371582031e-06 3488 3378 571475.220082 3489 3378 99158852.54101 3490 3378 3.457069396973e-06 3491 3378 2285900.879224 3492 3378 -39821273.75826 3493 3378 -8.895993232727e-06 3494 3378 571475.2200941 3504 3378 -26778951.03495 3505 3378 -15625000.00513 3506 3378 -12536345.25295 3507 3378 -102220422.2785 3508 3378 1.013278961182e-06 3509 3378 -76032967.78832 3510 3378 -41874328.64406 3511 3378 15625000.00513 3512 3378 -25394418.17384 3379 3379 912861496.3092 3380 3379 -109721151.9205 3381 3379 -9.924173355103e-06 3382 3379 -112217450.7807 3383 3379 55957798.18227 3393 3379 -62499999.98975 3394 3379 -74294012.36186 3395 3379 12206463.4413 3396 3379 4.14252281189e-06 3397 3379 40502862.18745 3398 3379 -27430287.99363 3399 3379 62499999.98975 3400 3379 -75648396.04218 3401 3379 15223824.55232 3471 3379 15625000.00514 3472 3379 -21446053.85824 3473 3379 -11171906.87604 3474 3379 -4.172325134277e-07 3475 3379 -29534914.67368 3476 3379 -6857575.146393 3477 3379 -15625000.00514 3478 3379 -35864239.62686 3479 3379 18029482.02244 3486 3379 6.780028343201e-06 3487 3379 -40169079.27509 3488 3379 -46196308.03739 3489 3379 3.814697265625e-06 3490 3379 61657264.49931 3491 3379 -27430300.57206 3492 3379 -7.718801498413e-06 3493 3379 -99196206.00148 3494 3379 73626608.60945 3504 3379 -15625000.00513 3505 3379 -22091252.52743 3506 3379 -11857670.76516 3507 3379 -7.748603820801e-07 3508 3379 -33470093.0295 3509 3379 -6857575.146393 3510 3379 15625000.00513 3511 3379 -37186630.13654 3512 3379 18715245.91155 3380 3380 1039858352.722 3381 3380 2285901.927418 3382 3380 53763353.73819 3383 3380 85469901.76562 3393 3380 24744635.83784 3394 3380 12480768.99722 3395 3380 -23812494.86631 3396 3380 -3200276.075057 3397 3380 -27430287.99363 3398 3380 71900937.83954 3399 3380 -26687655.82037 3400 3380 14949518.99641 3401 3380 -27424184.68052 3471 3380 11964870.03287 3472 3380 -11171906.87604 3473 3380 -13613251.03531 3474 3380 73404184.96491 3475 3380 -6857575.146392 3476 3380 -87786498.03904 3477 3380 24822942.95376 3478 3380 18029482.02244 3479 3380 -52061746.4183 3486 3380 571475.2200821 3487 3380 -45922002.48202 3488 3380 -10938367.40355 3489 3380 2285900.879224 3490 3380 -27430300.57206 3491 3380 -184190435.19 3492 3380 571475.2200943 3493 3380 73352303.05408 3494 3380 -168344038.6739 3504 3380 -12536345.25295 3505 3380 -11857670.76516 3506 3380 -15333780.81983 3507 3380 -75690085.8441 3508 3380 -6857575.146393 3509 3380 -98280306.98791 3510 3380 -25394418.17384 3511 3380 18715245.91155 3512 3380 -55588121.11081 3381 3381 1062868161.752 3382 3381 1.955032348633e-05 3383 3381 9143607.705144 3384 3381 125282264.7016 3385 3381 -9.357929229736e-06 3386 3381 2285901.927418 3396 3381 -93044845.55145 3397 3381 -62499999.98975 3398 3381 24401753.89294 3399 3381 -234498519.637 3400 3381 3.576278686523e-06 3401 3381 -5943331.630163 3402 3381 -94399229.23175 3403 3381 62499999.98975 3404 3381 -27030537.76527 3474 3381 -26133752.36576 3475 3381 15625000.00514 3476 3381 11964870.03287 3477 3381 -98285243.92273 3478 3381 1.072883605957e-06 3479 3381 73747066.90912 3480 3381 -40551938.13439 3481 3381 -15625000.00514 3482 3381 24822942.95376 3489 3381 19205852.96814 3490 3381 4.768371582031e-06 3491 3381 571475.220082 3492 3381 99158852.54101 3493 3381 3.457069396973e-06 3494 3381 2285900.879224 3495 3381 -39821273.75826 3496 3381 -8.895993232727e-06 3497 3381 571475.2200941 3507 3381 -26778951.03495 3508 3381 -15625000.00513 3509 3381 -12536345.25295 3510 3381 -102220422.2785 3511 3381 1.013278961182e-06 3512 3381 -76032967.78832 3513 3381 -41874328.64406 3514 3381 15625000.00513 3515 3381 -25394418.17384 3382 3382 912861496.3092 3383 3382 -109721151.9205 3384 3382 -9.924173355103e-06 3385 3382 -112217450.7807 3386 3382 55957798.18227 3396 3382 -62499999.98975 3397 3382 -74294012.36186 3398 3382 12206463.4413 3399 3382 4.14252281189e-06 3400 3382 40502862.18745 3401 3382 -27430287.99363 3402 3382 62499999.98975 3403 3382 -75648396.04218 3404 3382 15223824.55232 3474 3382 15625000.00514 3475 3382 -21446053.85824 3476 3382 -11171906.87604 3477 3382 -4.172325134277e-07 3478 3382 -29534914.67368 3479 3382 -6857575.146393 3480 3382 -15625000.00514 3481 3382 -35864239.62686 3482 3382 18029482.02244 3489 3382 6.780028343201e-06 3490 3382 -40169079.27509 3491 3382 -46196308.03739 3492 3382 3.814697265625e-06 3493 3382 61657264.49931 3494 3382 -27430300.57206 3495 3382 -7.718801498413e-06 3496 3382 -99196206.00148 3497 3382 73626608.60945 3507 3382 -15625000.00513 3508 3382 -22091252.52743 3509 3382 -11857670.76516 3510 3382 -7.748603820801e-07 3511 3382 -33470093.0295 3512 3382 -6857575.146393 3513 3382 15625000.00513 3514 3382 -37186630.13654 3515 3382 18715245.91155 3383 3383 1039858352.722 3384 3383 2285901.927418 3385 3383 53763353.73819 3386 3383 85469901.76562 3396 3383 24744635.83784 3397 3383 12480768.99722 3398 3383 -23812494.86631 3399 3383 -3200276.075057 3400 3383 -27430287.99363 3401 3383 71900937.83954 3402 3383 -26687655.82037 3403 3383 14949518.99641 3404 3383 -27424184.68052 3474 3383 11964870.03287 3475 3383 -11171906.87604 3476 3383 -13613251.03531 3477 3383 73404184.96491 3478 3383 -6857575.146392 3479 3383 -87786498.03904 3480 3383 24822942.95376 3481 3383 18029482.02244 3482 3383 -52061746.4183 3489 3383 571475.2200821 3490 3383 -45922002.48202 3491 3383 -10938367.40355 3492 3383 2285900.879224 3493 3383 -27430300.57206 3494 3383 -184190435.19 3495 3383 571475.2200943 3496 3383 73352303.05408 3497 3383 -168344038.6739 3507 3383 -12536345.25295 3508 3383 -11857670.76516 3509 3383 -15333780.81983 3510 3383 -75690085.8441 3511 3383 -6857575.146393 3512 3383 -98280306.98791 3513 3383 -25394418.17384 3514 3383 18715245.91155 3515 3383 -55588121.11081 3384 3384 1062868161.752 3385 3384 1.955032348633e-05 3386 3384 9143607.705144 3387 3384 125282264.7016 3388 3384 -9.357929229736e-06 3389 3384 2285901.927418 3399 3384 -93044845.55145 3400 3384 -62499999.98975 3401 3384 24401753.89294 3402 3384 -234498519.637 3403 3384 3.576278686523e-06 3404 3384 -5943331.630163 3405 3384 -94399229.23175 3406 3384 62499999.98975 3407 3384 -27030537.76527 3477 3384 -26133752.36576 3478 3384 15625000.00514 3479 3384 11964870.03287 3480 3384 -98285243.92273 3481 3384 1.072883605957e-06 3482 3384 73747066.90912 3483 3384 -40551938.13439 3484 3384 -15625000.00514 3485 3384 24822942.95376 3492 3384 19205852.96814 3493 3384 4.768371582031e-06 3494 3384 571475.220082 3495 3384 99158852.54101 3496 3384 3.457069396973e-06 3497 3384 2285900.879224 3498 3384 -39821273.75826 3499 3384 -8.895993232727e-06 3500 3384 571475.2200941 3510 3384 -26778951.03495 3511 3384 -15625000.00513 3512 3384 -12536345.25295 3513 3384 -102220422.2785 3514 3384 1.013278961182e-06 3515 3384 -76032967.78832 3516 3384 -41874328.64406 3517 3384 15625000.00513 3518 3384 -25394418.17384 3385 3385 912861496.3092 3386 3385 -109721151.9205 3387 3385 -9.924173355103e-06 3388 3385 -112217450.7807 3389 3385 55957798.18227 3399 3385 -62499999.98975 3400 3385 -74294012.36186 3401 3385 12206463.4413 3402 3385 4.14252281189e-06 3403 3385 40502862.18745 3404 3385 -27430287.99363 3405 3385 62499999.98975 3406 3385 -75648396.04218 3407 3385 15223824.55232 3477 3385 15625000.00514 3478 3385 -21446053.85824 3479 3385 -11171906.87604 3480 3385 -4.172325134277e-07 3481 3385 -29534914.67368 3482 3385 -6857575.146393 3483 3385 -15625000.00514 3484 3385 -35864239.62686 3485 3385 18029482.02244 3492 3385 6.780028343201e-06 3493 3385 -40169079.27509 3494 3385 -46196308.03739 3495 3385 3.814697265625e-06 3496 3385 61657264.49931 3497 3385 -27430300.57206 3498 3385 -7.718801498413e-06 3499 3385 -99196206.00148 3500 3385 73626608.60945 3510 3385 -15625000.00513 3511 3385 -22091252.52743 3512 3385 -11857670.76516 3513 3385 -7.748603820801e-07 3514 3385 -33470093.0295 3515 3385 -6857575.146393 3516 3385 15625000.00513 3517 3385 -37186630.13654 3518 3385 18715245.91155 3386 3386 1039858352.722 3387 3386 2285901.927418 3388 3386 53763353.73819 3389 3386 85469901.76562 3399 3386 24744635.83784 3400 3386 12480768.99722 3401 3386 -23812494.86631 3402 3386 -3200276.075057 3403 3386 -27430287.99363 3404 3386 71900937.83954 3405 3386 -26687655.82037 3406 3386 14949518.99641 3407 3386 -27424184.68052 3477 3386 11964870.03287 3478 3386 -11171906.87604 3479 3386 -13613251.03531 3480 3386 73404184.96491 3481 3386 -6857575.146392 3482 3386 -87786498.03904 3483 3386 24822942.95376 3484 3386 18029482.02244 3485 3386 -52061746.4183 3492 3386 571475.2200821 3493 3386 -45922002.48202 3494 3386 -10938367.40355 3495 3386 2285900.879224 3496 3386 -27430300.57206 3497 3386 -184190435.19 3498 3386 571475.2200943 3499 3386 73352303.05408 3500 3386 -168344038.6739 3510 3386 -12536345.25295 3511 3386 -11857670.76516 3512 3386 -15333780.81983 3513 3386 -75690085.8441 3514 3386 -6857575.146393 3515 3386 -98280306.98791 3516 3386 -25394418.17384 3517 3386 18715245.91155 3518 3386 -55588121.11081 3387 3387 1145935402.266 3388 3387 62548388.94858 3389 3387 30860151.66558 3390 3387 21182372.10022 3391 3387 -62519355.57328 3392 3387 27039120.36991 3402 3387 -93044845.55145 3403 3387 -62499999.98975 3404 3387 24401753.89294 3405 3387 -234498519.637 3406 3387 3.576278686523e-06 3407 3387 -5943331.630163 3408 3387 -94399229.23175 3409 3387 62499999.98975 3410 3387 -27030537.76527 3480 3387 -26133752.36576 3481 3387 15625000.00514 3482 3387 11964870.03287 3483 3387 -115335214.0726 3484 3387 -15631584.19572 3485 3387 68329440.16886 3495 3387 19205852.96814 3496 3387 4.768371582031e-06 3497 3387 571475.220082 3498 3387 130473837.5578 3499 3387 15635973.65611 3500 3387 7712253.313144 3501 3387 -53686446.86531 3502 3387 -15629389.46553 3503 3387 25401550.08976 3513 3387 -26778951.03495 3514 3387 -15625000.00513 3515 3387 -12536345.25295 3516 3387 -102220422.2785 3517 3387 1.013278961182e-06 3518 3387 -76032967.78832 3519 3387 -41874328.64406 3520 3387 15625000.00513 3521 3387 -25394418.17384 3388 3388 977156127.6318 3389 3388 -85033333.84819 3390 3388 -62529033.36504 3391 3388 -197605220.9809 3392 3388 46638027.38239 3402 3388 -62499999.98975 3403 3388 -74294012.36186 3404 3388 12206463.4413 3405 3388 4.14252281189e-06 3406 3388 40502862.18745 3407 3388 -27430287.99363 3408 3388 62499999.98975 3409 3388 -75648396.04218 3410 3388 15223824.55232 3480 3388 15625000.00514 3481 3388 -21446053.85824 3482 3388 -11171906.87604 3483 3388 -15629389.46552 3484 3388 -41883469.12474 3485 3388 7334445.059211 3495 3388 6.780028343201e-06 3496 3388 -40169079.27509 3497 3388 -46196308.03739 3498 3388 15635973.65611 3499 3388 88279612.65644 3500 3388 -21260570.15053 3501 3388 -15631584.19572 3502 3388 -108382459.4402 3503 3388 71307025.97358 3513 3388 -15625000.00513 3514 3388 -22091252.52743 3515 3388 -11857670.76516 3516 3388 -7.748603820801e-07 3517 3388 -33470093.0295 3518 3388 -6857575.146393 3519 3388 15625000.00513 3520 3388 -37186630.13654 3521 3388 18715245.91155 3389 3389 1036803405.136 3390 3389 26700529.72734 3391 3389 52127606.5745 3392 3389 32215992.22129 3402 3389 24744635.83784 3403 3389 12480768.99722 3404 3389 -23812494.86631 3405 3389 -3200276.075057 3406 3389 -27430287.99363 3407 3389 71900937.83954 3408 3389 -26687655.82037 3409 3389 14949518.99641 3410 3389 -27424184.68052 3480 3389 11964870.03287 3481 3389 -11171906.87604 3482 3389 -13613251.03531 3483 3389 67985675.23876 3484 3389 5415714.150796 3485 3389 -77126033.46393 3495 3389 571475.2200821 3496 3389 -45922002.48202 3497 3389 -10938367.40355 3498 3389 7717499.145858 3499 3389 -21256373.52338 3500 3389 -156819638.9591 3501 3389 25405116.04772 3502 3389 72953597.68388 3503 3389 -149232299.5136 3513 3389 -12536345.25295 3514 3389 -11857670.76516 3515 3389 -15333780.81983 3516 3389 -75690085.8441 3517 3389 -6857575.146393 3518 3389 -98280306.98791 3519 3389 -25394418.17384 3520 3389 18715245.91155 3521 3389 -55588121.11081 3390 3390 624177588.0977 3391 3390 44771201.06216 3392 3390 -10528787.07099 3405 3390 -93044845.55145 3406 3390 -62499999.98975 3407 3390 24401753.89294 3408 3390 -306121171.2699 3409 3390 -44814096.9728 3410 3390 -1812498.000401 3411 3390 7315323.621087 3412 3390 50042895.90245 3413 3390 -2746529.772747 3483 3390 1493260.574915 3484 3390 18756584.19674 3485 3390 14705768.01689 3498 3390 -8426923.443562 3499 3390 -15631584.19572 3500 3390 -11969908.87826 3501 3390 57208053.40963 3502 3390 12012672.80452 3503 3390 11011317.07793 3516 3390 -26778951.03495 3517 3390 -15625000.00513 3518 3390 -12536345.25295 3519 3390 -114994229.098 3520 3390 -12022605.74552 3521 3390 -70788401.11925 3522 3390 -13789915.32092 3523 3390 12509932.94511 3524 3390 -13917270.56417 3391 3391 554873465.2641 3392 3391 -63143435.45857 3405 3391 -62499999.98975 3406 3391 -74294012.36186 3407 3391 12206463.4413 3408 3391 -44835544.92813 3409 3391 -20217050.21208 3410 3391 -17039568.2124 3411 3391 75064343.85367 3412 3391 -9247914.711671 3413 3391 5419777.187231 3483 3391 12504389.4645 3484 3391 1493260.574915 3485 3391 -7843093.74256 3498 3391 -15629389.46552 3499 3391 -63122936.0184 3500 3391 -46615995.93793 3501 3391 12012672.80452 3502 3391 38649078.93965 3503 3391 -5152657.419769 3516 3391 -15625000.00513 3517 3391 -22091252.52743 3518 3391 -11857670.76516 3519 3391 -12027572.21602 3520 3391 -43151737.0681 3521 3391 -15928192.70217 3522 3391 18764899.41767 3523 3391 -17065118.81357 3524 3391 20617693.61 3392 3392 621301487.0834 3405 3392 24744635.83784 3406 3392 12480768.99722 3407 3392 -23812494.86631 3408 3392 -7983140.536079 3409 3392 -15941307.43553 3410 3392 10248959.56633 3411 3392 -4119794.65912 3412 3392 4322211.812592 3413 3392 36070767.98899 3483 3392 9803845.344592 3484 3392 -11764640.61384 3485 3392 3982028.199772 3498 3392 -11968229.26313 3499 3392 -48262567.85004 3500 3392 -28540237.05556 3501 3392 -17163098.26417 3502 3392 -27687003.01679 3503 3392 -111776345.5784 3516 3392 -12536345.25295 3517 3392 -11857670.76516 3518 3392 -15333780.81983 3519 3392 -72502527.79782 3520 3392 -15648904.09818 3521 3392 -95603640.48409 3522 3392 -20875905.84626 3523 3392 15050910.90763 3524 3392 -33497904.02979 3393 3393 1062868161.752 3394 3393 1.955032348633e-05 3395 3393 9143607.705144 3396 3393 125282264.7016 3397 3393 -9.357929229736e-06 3398 3393 2285901.927418 3414 3393 -234498519.637 3415 3393 3.576278686523e-06 3416 3393 -5943331.630163 3417 3393 -94399229.23175 3418 3393 62499999.98975 3419 3393 -27030537.76527 3486 3393 -98285243.92273 3487 3393 1.072883605957e-06 3488 3393 73747066.90912 3489 3393 -40551938.13439 3490 3393 -15625000.00514 3491 3393 24822942.95376 3504 3393 99158852.54101 3505 3393 3.457069396973e-06 3506 3393 2285900.879224 3507 3393 -39821273.75826 3508 3393 -8.895993232727e-06 3509 3393 571475.2200941 3525 3393 -102220422.2785 3526 3393 1.013278961182e-06 3527 3393 -76032967.78832 3528 3393 -41874328.64406 3529 3393 15625000.00513 3530 3393 -25394418.17384 3394 3394 912861496.3092 3395 3394 -109721151.9205 3396 3394 -9.924173355103e-06 3397 3394 -112217450.7807 3398 3394 55957798.18227 3414 3394 4.14252281189e-06 3415 3394 40502862.18745 3416 3394 -27430287.99363 3417 3394 62499999.98975 3418 3394 -75648396.04218 3419 3394 15223824.55232 3486 3394 -4.172325134277e-07 3487 3394 -29534914.67368 3488 3394 -6857575.146393 3489 3394 -15625000.00514 3490 3394 -35864239.62686 3491 3394 18029482.02244 3504 3394 3.814697265625e-06 3505 3394 61657264.49931 3506 3394 -27430300.57206 3507 3394 -7.718801498413e-06 3508 3394 -99196206.00148 3509 3394 73626608.60945 3525 3394 -7.748603820801e-07 3526 3394 -33470093.0295 3527 3394 -6857575.146393 3528 3394 15625000.00513 3529 3394 -37186630.13654 3530 3394 18715245.91155 3395 3395 1039858352.722 3396 3395 2285901.927418 3397 3395 53763353.73819 3398 3395 85469901.76562 3414 3395 -3200276.075057 3415 3395 -27430287.99363 3416 3395 71900937.83954 3417 3395 -26687655.82037 3418 3395 14949518.99641 3419 3395 -27424184.68052 3486 3395 73404184.96491 3487 3395 -6857575.146392 3488 3395 -87786498.03904 3489 3395 24822942.95376 3490 3395 18029482.02244 3491 3395 -52061746.4183 3504 3395 2285900.879224 3505 3395 -27430300.57206 3506 3395 -184190435.19 3507 3395 571475.2200943 3508 3395 73352303.05408 3509 3395 -168344038.6739 3525 3395 -75690085.8441 3526 3395 -6857575.146393 3527 3395 -98280306.98791 3528 3395 -25394418.17384 3529 3395 18715245.91155 3530 3395 -55588121.11081 3396 3396 1062868161.752 3397 3396 1.955032348633e-05 3398 3396 9143607.705144 3399 3396 125282264.7016 3400 3396 -9.357929229736e-06 3401 3396 2285901.927418 3414 3396 -93044845.55145 3415 3396 -62499999.98975 3416 3396 24401753.89294 3417 3396 -234498519.637 3418 3396 3.576278686523e-06 3419 3396 -5943331.630163 3420 3396 -94399229.23175 3421 3396 62499999.98975 3422 3396 -27030537.76527 3486 3396 -26133752.36576 3487 3396 15625000.00514 3488 3396 11964870.03287 3489 3396 -98285243.92273 3490 3396 1.072883605957e-06 3491 3396 73747066.90912 3492 3396 -40551938.13439 3493 3396 -15625000.00514 3494 3396 24822942.95376 3504 3396 19205852.96814 3505 3396 4.768371582031e-06 3506 3396 571475.220082 3507 3396 99158852.54101 3508 3396 3.457069396973e-06 3509 3396 2285900.879224 3510 3396 -39821273.75826 3511 3396 -8.895993232727e-06 3512 3396 571475.2200941 3525 3396 -26778951.03495 3526 3396 -15625000.00513 3527 3396 -12536345.25295 3528 3396 -102220422.2785 3529 3396 1.013278961182e-06 3530 3396 -76032967.78832 3531 3396 -41874328.64406 3532 3396 15625000.00513 3533 3396 -25394418.17384 3397 3397 912861496.3092 3398 3397 -109721151.9205 3399 3397 -9.924173355103e-06 3400 3397 -112217450.7807 3401 3397 55957798.18227 3414 3397 -62499999.98975 3415 3397 -74294012.36186 3416 3397 12206463.4413 3417 3397 4.14252281189e-06 3418 3397 40502862.18745 3419 3397 -27430287.99363 3420 3397 62499999.98975 3421 3397 -75648396.04218 3422 3397 15223824.55232 3486 3397 15625000.00514 3487 3397 -21446053.85824 3488 3397 -11171906.87604 3489 3397 -4.172325134277e-07 3490 3397 -29534914.67368 3491 3397 -6857575.146393 3492 3397 -15625000.00514 3493 3397 -35864239.62686 3494 3397 18029482.02244 3504 3397 6.780028343201e-06 3505 3397 -40169079.27509 3506 3397 -46196308.03739 3507 3397 3.814697265625e-06 3508 3397 61657264.49931 3509 3397 -27430300.57206 3510 3397 -7.718801498413e-06 3511 3397 -99196206.00148 3512 3397 73626608.60945 3525 3397 -15625000.00513 3526 3397 -22091252.52743 3527 3397 -11857670.76516 3528 3397 -7.748603820801e-07 3529 3397 -33470093.0295 3530 3397 -6857575.146393 3531 3397 15625000.00513 3532 3397 -37186630.13654 3533 3397 18715245.91155 3398 3398 1039858352.722 3399 3398 2285901.927418 3400 3398 53763353.73819 3401 3398 85469901.76562 3414 3398 24744635.83784 3415 3398 12480768.99722 3416 3398 -23812494.86631 3417 3398 -3200276.075057 3418 3398 -27430287.99363 3419 3398 71900937.83954 3420 3398 -26687655.82037 3421 3398 14949518.99641 3422 3398 -27424184.68052 3486 3398 11964870.03287 3487 3398 -11171906.87604 3488 3398 -13613251.03531 3489 3398 73404184.96491 3490 3398 -6857575.146392 3491 3398 -87786498.03904 3492 3398 24822942.95376 3493 3398 18029482.02244 3494 3398 -52061746.4183 3504 3398 571475.2200821 3505 3398 -45922002.48202 3506 3398 -10938367.40355 3507 3398 2285900.879224 3508 3398 -27430300.57206 3509 3398 -184190435.19 3510 3398 571475.2200943 3511 3398 73352303.05408 3512 3398 -168344038.6739 3525 3398 -12536345.25295 3526 3398 -11857670.76516 3527 3398 -15333780.81983 3528 3398 -75690085.8441 3529 3398 -6857575.146393 3530 3398 -98280306.98791 3531 3398 -25394418.17384 3532 3398 18715245.91155 3533 3398 -55588121.11081 3399 3399 1062868161.752 3400 3399 1.955032348633e-05 3401 3399 9143607.705144 3402 3399 125282264.7016 3403 3399 -9.357929229736e-06 3404 3399 2285901.927418 3417 3399 -93044845.55145 3418 3399 -62499999.98975 3419 3399 24401753.89294 3420 3399 -234498519.637 3421 3399 3.576278686523e-06 3422 3399 -5943331.630163 3423 3399 -94399229.23175 3424 3399 62499999.98975 3425 3399 -27030537.76527 3489 3399 -26133752.36576 3490 3399 15625000.00514 3491 3399 11964870.03287 3492 3399 -98285243.92273 3493 3399 1.072883605957e-06 3494 3399 73747066.90912 3495 3399 -40551938.13439 3496 3399 -15625000.00514 3497 3399 24822942.95376 3507 3399 19205852.96814 3508 3399 4.768371582031e-06 3509 3399 571475.220082 3510 3399 99158852.54101 3511 3399 3.457069396973e-06 3512 3399 2285900.879224 3513 3399 -39821273.75826 3514 3399 -8.895993232727e-06 3515 3399 571475.2200941 3528 3399 -26778951.03495 3529 3399 -15625000.00513 3530 3399 -12536345.25295 3531 3399 -102220422.2785 3532 3399 1.013278961182e-06 3533 3399 -76032967.78832 3534 3399 -41874328.64406 3535 3399 15625000.00513 3536 3399 -25394418.17384 3400 3400 912861496.3092 3401 3400 -109721151.9205 3402 3400 -9.924173355103e-06 3403 3400 -112217450.7807 3404 3400 55957798.18227 3417 3400 -62499999.98975 3418 3400 -74294012.36186 3419 3400 12206463.4413 3420 3400 4.14252281189e-06 3421 3400 40502862.18745 3422 3400 -27430287.99363 3423 3400 62499999.98975 3424 3400 -75648396.04218 3425 3400 15223824.55232 3489 3400 15625000.00514 3490 3400 -21446053.85824 3491 3400 -11171906.87604 3492 3400 -4.172325134277e-07 3493 3400 -29534914.67368 3494 3400 -6857575.146393 3495 3400 -15625000.00514 3496 3400 -35864239.62686 3497 3400 18029482.02244 3507 3400 6.780028343201e-06 3508 3400 -40169079.27509 3509 3400 -46196308.03739 3510 3400 3.814697265625e-06 3511 3400 61657264.49931 3512 3400 -27430300.57206 3513 3400 -7.718801498413e-06 3514 3400 -99196206.00148 3515 3400 73626608.60945 3528 3400 -15625000.00513 3529 3400 -22091252.52743 3530 3400 -11857670.76516 3531 3400 -7.748603820801e-07 3532 3400 -33470093.0295 3533 3400 -6857575.146393 3534 3400 15625000.00513 3535 3400 -37186630.13654 3536 3400 18715245.91155 3401 3401 1039858352.722 3402 3401 2285901.927418 3403 3401 53763353.73819 3404 3401 85469901.76562 3417 3401 24744635.83784 3418 3401 12480768.99722 3419 3401 -23812494.86631 3420 3401 -3200276.075057 3421 3401 -27430287.99363 3422 3401 71900937.83954 3423 3401 -26687655.82037 3424 3401 14949518.99641 3425 3401 -27424184.68052 3489 3401 11964870.03287 3490 3401 -11171906.87604 3491 3401 -13613251.03531 3492 3401 73404184.96491 3493 3401 -6857575.146392 3494 3401 -87786498.03904 3495 3401 24822942.95376 3496 3401 18029482.02244 3497 3401 -52061746.4183 3507 3401 571475.2200821 3508 3401 -45922002.48202 3509 3401 -10938367.40355 3510 3401 2285900.879224 3511 3401 -27430300.57206 3512 3401 -184190435.19 3513 3401 571475.2200943 3514 3401 73352303.05408 3515 3401 -168344038.6739 3528 3401 -12536345.25295 3529 3401 -11857670.76516 3530 3401 -15333780.81983 3531 3401 -75690085.8441 3532 3401 -6857575.146393 3533 3401 -98280306.98791 3534 3401 -25394418.17384 3535 3401 18715245.91155 3536 3401 -55588121.11081 3402 3402 1062868161.752 3403 3402 1.955032348633e-05 3404 3402 9143607.705144 3405 3402 125282264.7016 3406 3402 -9.357929229736e-06 3407 3402 2285901.927418 3420 3402 -93044845.55145 3421 3402 -62499999.98975 3422 3402 24401753.89294 3423 3402 -234498519.637 3424 3402 3.576278686523e-06 3425 3402 -5943331.630163 3426 3402 -94399229.23175 3427 3402 62499999.98975 3428 3402 -27030537.76527 3492 3402 -26133752.36576 3493 3402 15625000.00514 3494 3402 11964870.03287 3495 3402 -98285243.92273 3496 3402 1.072883605957e-06 3497 3402 73747066.90912 3498 3402 -40551938.13439 3499 3402 -15625000.00514 3500 3402 24822942.95376 3510 3402 19205852.96814 3511 3402 4.768371582031e-06 3512 3402 571475.220082 3513 3402 99158852.54101 3514 3402 3.457069396973e-06 3515 3402 2285900.879224 3516 3402 -39821273.75826 3517 3402 -8.895993232727e-06 3518 3402 571475.2200941 3531 3402 -26778951.03495 3532 3402 -15625000.00513 3533 3402 -12536345.25295 3534 3402 -102220422.2785 3535 3402 1.013278961182e-06 3536 3402 -76032967.78832 3537 3402 -41874328.64406 3538 3402 15625000.00513 3539 3402 -25394418.17384 3403 3403 912861496.3092 3404 3403 -109721151.9205 3405 3403 -9.924173355103e-06 3406 3403 -112217450.7807 3407 3403 55957798.18227 3420 3403 -62499999.98975 3421 3403 -74294012.36186 3422 3403 12206463.4413 3423 3403 4.14252281189e-06 3424 3403 40502862.18745 3425 3403 -27430287.99363 3426 3403 62499999.98975 3427 3403 -75648396.04218 3428 3403 15223824.55232 3492 3403 15625000.00514 3493 3403 -21446053.85824 3494 3403 -11171906.87604 3495 3403 -4.172325134277e-07 3496 3403 -29534914.67368 3497 3403 -6857575.146393 3498 3403 -15625000.00514 3499 3403 -35864239.62686 3500 3403 18029482.02244 3510 3403 6.780028343201e-06 3511 3403 -40169079.27509 3512 3403 -46196308.03739 3513 3403 3.814697265625e-06 3514 3403 61657264.49931 3515 3403 -27430300.57206 3516 3403 -7.718801498413e-06 3517 3403 -99196206.00148 3518 3403 73626608.60945 3531 3403 -15625000.00513 3532 3403 -22091252.52743 3533 3403 -11857670.76516 3534 3403 -7.748603820801e-07 3535 3403 -33470093.0295 3536 3403 -6857575.146393 3537 3403 15625000.00513 3538 3403 -37186630.13654 3539 3403 18715245.91155 3404 3404 1039858352.722 3405 3404 2285901.927418 3406 3404 53763353.73819 3407 3404 85469901.76562 3420 3404 24744635.83784 3421 3404 12480768.99722 3422 3404 -23812494.86631 3423 3404 -3200276.075057 3424 3404 -27430287.99363 3425 3404 71900937.83954 3426 3404 -26687655.82037 3427 3404 14949518.99641 3428 3404 -27424184.68052 3492 3404 11964870.03287 3493 3404 -11171906.87604 3494 3404 -13613251.03531 3495 3404 73404184.96491 3496 3404 -6857575.146392 3497 3404 -87786498.03904 3498 3404 24822942.95376 3499 3404 18029482.02244 3500 3404 -52061746.4183 3510 3404 571475.2200821 3511 3404 -45922002.48202 3512 3404 -10938367.40355 3513 3404 2285900.879224 3514 3404 -27430300.57206 3515 3404 -184190435.19 3516 3404 571475.2200943 3517 3404 73352303.05408 3518 3404 -168344038.6739 3531 3404 -12536345.25295 3532 3404 -11857670.76516 3533 3404 -15333780.81983 3534 3404 -75690085.8441 3535 3404 -6857575.146393 3536 3404 -98280306.98791 3537 3404 -25394418.17384 3538 3404 18715245.91155 3539 3404 -55588121.11081 3405 3405 1062868161.752 3406 3405 1.955032348633e-05 3407 3405 9143607.705144 3408 3405 125282264.7016 3409 3405 -9.357929229736e-06 3410 3405 2285901.927418 3423 3405 -93044845.55145 3424 3405 -62499999.98975 3425 3405 24401753.89294 3426 3405 -234498519.637 3427 3405 3.576278686523e-06 3428 3405 -5943331.630163 3429 3405 -94399229.23175 3430 3405 62499999.98975 3431 3405 -27030537.76527 3495 3405 -26133752.36576 3496 3405 15625000.00514 3497 3405 11964870.03287 3498 3405 -98285243.92273 3499 3405 1.072883605957e-06 3500 3405 73747066.90912 3501 3405 -40551938.13439 3502 3405 -15625000.00514 3503 3405 24822942.95376 3513 3405 19205852.96814 3514 3405 4.768371582031e-06 3515 3405 571475.220082 3516 3405 99158852.54101 3517 3405 3.457069396973e-06 3518 3405 2285900.879224 3519 3405 -39821273.75826 3520 3405 -8.895993232727e-06 3521 3405 571475.2200941 3534 3405 -26778951.03495 3535 3405 -15625000.00513 3536 3405 -12536345.25295 3537 3405 -102220422.2785 3538 3405 1.013278961182e-06 3539 3405 -76032967.78832 3540 3405 -41874328.64406 3541 3405 15625000.00513 3542 3405 -25394418.17384 3406 3406 912861496.3092 3407 3406 -109721151.9205 3408 3406 -9.924173355103e-06 3409 3406 -112217450.7807 3410 3406 55957798.18227 3423 3406 -62499999.98975 3424 3406 -74294012.36186 3425 3406 12206463.4413 3426 3406 4.14252281189e-06 3427 3406 40502862.18745 3428 3406 -27430287.99363 3429 3406 62499999.98975 3430 3406 -75648396.04218 3431 3406 15223824.55232 3495 3406 15625000.00514 3496 3406 -21446053.85824 3497 3406 -11171906.87604 3498 3406 -4.172325134277e-07 3499 3406 -29534914.67368 3500 3406 -6857575.146393 3501 3406 -15625000.00514 3502 3406 -35864239.62686 3503 3406 18029482.02244 3513 3406 6.780028343201e-06 3514 3406 -40169079.27509 3515 3406 -46196308.03739 3516 3406 3.814697265625e-06 3517 3406 61657264.49931 3518 3406 -27430300.57206 3519 3406 -7.718801498413e-06 3520 3406 -99196206.00148 3521 3406 73626608.60945 3534 3406 -15625000.00513 3535 3406 -22091252.52743 3536 3406 -11857670.76516 3537 3406 -7.748603820801e-07 3538 3406 -33470093.0295 3539 3406 -6857575.146393 3540 3406 15625000.00513 3541 3406 -37186630.13654 3542 3406 18715245.91155 3407 3407 1039858352.722 3408 3407 2285901.927418 3409 3407 53763353.73819 3410 3407 85469901.76562 3423 3407 24744635.83784 3424 3407 12480768.99722 3425 3407 -23812494.86631 3426 3407 -3200276.075057 3427 3407 -27430287.99363 3428 3407 71900937.83954 3429 3407 -26687655.82037 3430 3407 14949518.99641 3431 3407 -27424184.68052 3495 3407 11964870.03287 3496 3407 -11171906.87604 3497 3407 -13613251.03531 3498 3407 73404184.96491 3499 3407 -6857575.146392 3500 3407 -87786498.03904 3501 3407 24822942.95376 3502 3407 18029482.02244 3503 3407 -52061746.4183 3513 3407 571475.2200821 3514 3407 -45922002.48202 3515 3407 -10938367.40355 3516 3407 2285900.879224 3517 3407 -27430300.57206 3518 3407 -184190435.19 3519 3407 571475.2200943 3520 3407 73352303.05408 3521 3407 -168344038.6739 3534 3407 -12536345.25295 3535 3407 -11857670.76516 3536 3407 -15333780.81983 3537 3407 -75690085.8441 3538 3407 -6857575.146393 3539 3407 -98280306.98791 3540 3407 -25394418.17384 3541 3407 18715245.91155 3542 3407 -55588121.11081 3408 3408 1075173652.846 3409 3408 46334615.81186 3410 3408 9124226.612516 3411 3408 1916926.255678 3412 3408 -71562144.11825 3413 3408 4586649.454248 3426 3408 -93044845.55145 3427 3408 -62499999.98975 3428 3408 24401753.89294 3429 3408 -218823261.2053 3430 3408 8693888.23577 3431 3408 -1141242.668708 3432 3408 -70901410.64439 3433 3408 61369184.99877 3434 3408 -4585483.569651 3498 3408 -26133752.36576 3499 3408 15625000.00514 3500 3408 11964870.03287 3501 3408 -111379581.0895 3502 3408 -12027572.21602 3503 3408 68369548.91265 3516 3408 19205852.96814 3517 3408 4.768371582031e-06 3518 3408 571475.220082 3519 3408 120911111.2073 3520 3408 12278922.06453 3521 3408 2270598.06335 3522 3408 -36700079.12217 3523 3408 -17466056.76703 3524 3408 19817312.72048 3537 3408 -26778951.03495 3538 3408 -15625000.00513 3539 3408 -12536345.25295 3540 3408 -98620103.2208 3541 3408 1778213.472963 3542 3408 -72744377.11155 3543 3408 -30606173.22176 3544 3408 15436493.44556 3545 3408 -17681366.86574 3409 3409 955054398.0361 3410 3409 -59710257.41375 3411 3409 -71583592.07358 3412 3409 -218430104.7672 3413 3409 9734746.878626 3426 3409 -62499999.98975 3427 3409 -74294012.36186 3428 3409 12206463.4413 3429 3409 8693888.235771 3430 3409 46696952.88892 3431 3409 -15374856.65955 3432 3409 61369184.99877 3433 3409 -81861410.86036 3434 3409 3664812.614708 3498 3409 15625000.00514 3499 3409 -21446053.85824 3500 3409 -11171906.87604 3501 3409 -12022605.74552 3502 3409 -39537089.05956 3503 3409 7359372.223937 3516 3409 6.780028343201e-06 3517 3409 -40169079.27509 3518 3409 -46196308.03739 3519 3409 12278922.06453 3520 3409 88590814.60077 3521 3409 -15549265.97361 3522 3409 -17471023.23754 3523 3409 -91686021.10489 3524 3409 62194368.75178 3537 3409 -15625000.00513 3538 3409 -22091252.52743 3539 3409 -11857670.76516 3540 3409 1778213.472961 3541 3409 -31772368.13475 3542 3409 -2298329.894473 3543 3409 15436493.44556 3544 3409 -31990626.5204 3545 3409 17545113.68925 3410 3410 982065205.3903 3411 3410 4588386.563072 3412 3410 9736189.179777 3413 3410 33362944.22637 3426 3410 24744635.83784 3427 3410 12480768.99722 3428 3410 -23812494.86631 3429 3410 -7313117.667695 3430 3410 -15374856.65955 3431 3410 70793885.3786 3432 3410 -4585483.568976 3433 3410 3664812.614708 3434 3410 -13149747.71181 3498 3410 11964870.03287 3499 3410 -11171906.87604 3500 3410 -13613251.03531 3501 3410 70083675.59122 3502 3410 7089578.00376 3503 3410 -85964579.12796 3516 3410 571475.2200821 3517 3410 -45922002.48202 3518 3410 -10938367.40355 3519 3410 2281089.798958 3520 3410 -15540872.40854 3521 3410 -154748576.3714 3522 3410 19822961.88866 3523 3410 62194150.41038 3524 3410 -93237810.97087 3537 3410 -12536345.25295 3538 3410 -11857670.76516 3539 3410 -15333780.81983 3540 3410 -74458786.83433 3541 3410 -2298329.894201 3542 3410 -97429758.39169 3543 3410 -17681366.86574 3544 3410 17545113.68925 3545 3410 -35671678.22496 3411 3411 605103202.4825 3412 3411 5616654.661039 3413 3411 484531.4385712 3429 3411 -93529557.10328 3430 3411 -62357763.20029 3431 3411 3773531.373596 3432 3411 -183018439.214 3433 3411 11569778.02511 3434 3411 -944334.4519733 3435 3411 71508600.70521 3436 3411 -17974760.11169 3437 3411 -139838.4039876 3438 3411 -66781052.77063 3439 3411 59665338.84574 3440 3411 -899426.3036951 3501 3411 -9302628.702825 3502 3411 18764899.41767 3503 3411 18816193.68425 3519 3411 -28751449.72098 3520 3411 -17471023.23754 3521 3411 -17566411.9441 3522 3411 31494515.43557 3523 3411 1158847.128799 3524 3411 14860448.35881 3540 3411 -32807336.98145 3541 3411 -15601315.81942 3542 3411 -17733537.44274 3543 3411 -94362051.98175 3544 3411 2368086.475652 3545 3411 -73894565.1737 3546 3411 -7533777.190493 3547 3411 -4260257.921041 3548 3411 6179048.228008 3549 3411 -29991436.33932 3550 3411 15040763.95587 3551 3411 -18386036.82208 3412 3412 678108327.2261 3413 3412 -10914628.25135 3429 3412 -62357763.20029 3430 3412 -68815724.21444 3431 3412 1310585.605053 3432 3412 11569778.02511 3433 3412 75433646.11065 3434 3412 -3265168.713637 3435 3412 7025239.884211 3436 3412 -49350516.58907 3437 3412 490165.0741894 3438 3412 59665338.84574 3439 3412 -65182709.07778 3440 3412 512891.4409334 3501 3412 12509932.94511 3502 3412 -12577832.19548 3503 3412 -13016519.16007 3519 3412 -17466056.76704 3520 3412 -83737391.70371 3521 3412 -57398629.61985 3522 3412 1158847.128796 3523 3412 47746735.68824 3524 3412 2639318.658195 3540 3412 -15601315.81942 3541 3412 -26902770.57574 3542 3412 -14605313.75058 3543 3412 2368086.475653 3544 3412 -29115968.9013 3545 3412 923765.0025147 3546 3412 1989742.081013 3547 3412 -37694269.5522 3548 3412 33454941.08177 3549 3412 15040763.95587 3550 3412 -28972668.24107 3551 3412 16792906.76868 3413 3413 683948498.04 3429 3413 3773531.373933 3430 3413 1310585.605323 3431 3413 -15395465.36467 3432 3413 -944334.451972 3433 3413 -3265168.713637 3434 3413 99728654.97492 3435 3413 -139838.403985 3436 3413 490165.0741892 3437 3413 77233581.16884 3438 3413 -899426.3033575 3439 3413 512891.4409334 3440 3413 -1575637.096933 3501 3413 12544129.12283 3502 3413 -18034518.9332 3503 3413 -21531806.38154 3519 3413 -17561569.6073 3520 3413 -57399512.28169 3521 3413 -72041465.90101 3522 3413 -14609759.96969 3523 3413 -7946564.416753 3524 3413 -150648682.0086 3540 3413 -17733537.44274 3541 3413 -14605313.75058 3542 3413 -29379378.11343 3543 3413 -73894565.17404 3544 3413 923765.0027867 3545 3413 -100288486.4379 3546 3413 -1945951.77432 3547 3413 33454941.08177 3548 3413 -48711782.95365 3549 3413 -18386036.82208 3550 3413 16792906.76868 3551 3413 -34076172.82057 3414 3414 531253496.3852 3415 3414 8.702278137207e-06 3416 3414 -2285835.035192 3417 3414 62618559.28942 3418 3414 12499999.99795 3419 3414 -4857483.06435 3504 3414 -98285243.92273 3505 3414 1.072883605957e-06 3506 3414 73747066.90912 3507 3414 -40551938.13439 3508 3414 -15625000.00514 3509 3414 24822942.95376 3525 3414 49556853.20918 3526 3414 2.026557922363e-06 3527 3414 -14657969.69626 3528 3414 -19910636.87912 3529 3414 3125000.001023 3530 3414 -4735998.502713 3415 3415 456250163.6639 3416 3415 -54860575.96022 3417 3415 -12499999.99795 3418 3415 -56131298.45172 3419 3415 27704593.53563 3504 3415 -4.172325134277e-07 3505 3415 -29534914.67368 3506 3415 -6857575.146393 3507 3415 -15625000.00514 3508 3415 -35864239.62686 3509 3415 18029482.02244 3525 3415 2.264976501465e-06 3526 3415 30806059.18833 3527 3415 -13715150.28603 3528 3415 -3125000.00103 3529 3415 -49598103.00073 3530 3415 36744727.91581 3416 3416 519447617.7192 3417 3416 5428975.267292 3418 3416 27155982.42461 3419 3416 42674756.05248 3504 3416 73404184.96491 3505 3416 -6857575.146392 3506 3416 -87786498.03904 3507 3416 24822942.95376 3508 3416 18029482.02244 3509 3416 -52061746.4183 3525 3416 15229460.85439 3526 3416 -13715150.28603 3527 3416 -92155412.4252 3528 3416 5307473.722807 3529 3416 36744727.91595 3530 3416 -84172019.33696 3417 3417 531253496.3852 3418 3417 8.702278137207e-06 3419 3417 -2285835.035192 3420 3417 62618559.28942 3421 3417 12499999.99795 3422 3417 -4857483.06435 3504 3417 -26133752.36576 3505 3417 15625000.00514 3506 3417 11964870.03287 3507 3417 -98285243.92273 3508 3417 1.072883605957e-06 3509 3417 73747066.90912 3510 3417 -40551938.13439 3511 3417 -15625000.00514 3512 3417 24822942.95376 3525 3417 9602926.484067 3526 3417 -3125000.001024 3527 3417 -2164383.918541 3528 3417 49556853.20918 3529 3417 2.026557922363e-06 3530 3417 -14657969.69626 3531 3417 -19910636.87912 3532 3417 3125000.001023 3533 3417 -4735998.502713 3418 3418 456250163.6639 3419 3418 -54860575.96022 3420 3418 -12499999.99795 3421 3418 -56131298.45172 3422 3418 27704593.53563 3504 3418 15625000.00514 3505 3418 -21446053.85824 3506 3418 -11171906.87604 3507 3418 -4.172325134277e-07 3508 3418 -29534914.67368 3509 3418 -6857575.146393 3510 3418 -15625000.00514 3511 3418 -35864239.62686 3512 3418 18029482.02244 3525 3418 3125000.001031 3526 3418 -20084539.63755 3527 3418 -23029577.62979 3528 3418 2.264976501465e-06 3529 3418 30806059.18833 3530 3418 -13715150.28603 3531 3418 -3125000.00103 3532 3418 -49598103.00073 3533 3418 36744727.91581 3419 3419 519447617.7192 3420 3419 5428975.267292 3421 3419 27155982.42461 3422 3419 42674756.05248 3504 3419 11964870.03287 3505 3419 -11171906.87604 3506 3419 -13613251.03531 3507 3419 73404184.96491 3508 3419 -6857575.146392 3509 3419 -87786498.03904 3510 3419 24822942.95376 3511 3419 18029482.02244 3512 3419 -52061746.4183 3525 3419 2735859.138623 3526 3419 -23029577.62992 3527 3419 -5469183.701778 3528 3419 15229460.85439 3529 3419 -13715150.28603 3530 3419 -92155412.4252 3531 3419 5307473.722807 3532 3419 36744727.91595 3533 3419 -84172019.33696 3420 3420 531253496.3852 3421 3420 8.702278137207e-06 3422 3420 -2285835.035192 3423 3420 62618559.28942 3424 3420 12499999.99795 3425 3420 -4857483.06435 3507 3420 -26133752.36576 3508 3420 15625000.00514 3509 3420 11964870.03287 3510 3420 -98285243.92273 3511 3420 1.072883605957e-06 3512 3420 73747066.90912 3513 3420 -40551938.13439 3514 3420 -15625000.00514 3515 3420 24822942.95376 3528 3420 9602926.484067 3529 3420 -3125000.001024 3530 3420 -2164383.918541 3531 3420 49556853.20918 3532 3420 2.026557922363e-06 3533 3420 -14657969.69626 3534 3420 -19910636.87912 3535 3420 3125000.001023 3536 3420 -4735998.502713 3421 3421 456250163.6639 3422 3421 -54860575.96022 3423 3421 -12499999.99795 3424 3421 -56131298.45172 3425 3421 27704593.53563 3507 3421 15625000.00514 3508 3421 -21446053.85824 3509 3421 -11171906.87604 3510 3421 -4.172325134277e-07 3511 3421 -29534914.67368 3512 3421 -6857575.146393 3513 3421 -15625000.00514 3514 3421 -35864239.62686 3515 3421 18029482.02244 3528 3421 3125000.001031 3529 3421 -20084539.63755 3530 3421 -23029577.62979 3531 3421 2.264976501465e-06 3532 3421 30806059.18833 3533 3421 -13715150.28603 3534 3421 -3125000.00103 3535 3421 -49598103.00073 3536 3421 36744727.91581 3422 3422 519447617.7192 3423 3422 5428975.267292 3424 3422 27155982.42461 3425 3422 42674756.05248 3507 3422 11964870.03287 3508 3422 -11171906.87604 3509 3422 -13613251.03531 3510 3422 73404184.96491 3511 3422 -6857575.146392 3512 3422 -87786498.03904 3513 3422 24822942.95376 3514 3422 18029482.02244 3515 3422 -52061746.4183 3528 3422 2735859.138623 3529 3422 -23029577.62992 3530 3422 -5469183.701778 3531 3422 15229460.85439 3532 3422 -13715150.28603 3533 3422 -92155412.4252 3534 3422 5307473.722807 3535 3422 36744727.91595 3536 3422 -84172019.33696 3423 3423 531253496.3852 3424 3423 8.702278137207e-06 3425 3423 -2285835.035192 3426 3423 62618559.28942 3427 3423 12499999.99795 3428 3423 -4857483.06435 3510 3423 -26133752.36576 3511 3423 15625000.00514 3512 3423 11964870.03287 3513 3423 -98285243.92273 3514 3423 1.072883605957e-06 3515 3423 73747066.90912 3516 3423 -40551938.13439 3517 3423 -15625000.00514 3518 3423 24822942.95376 3531 3423 9602926.484067 3532 3423 -3125000.001024 3533 3423 -2164383.918541 3534 3423 49556853.20918 3535 3423 2.026557922363e-06 3536 3423 -14657969.69626 3537 3423 -19910636.87912 3538 3423 3125000.001023 3539 3423 -4735998.502713 3424 3424 456250163.6639 3425 3424 -54860575.96022 3426 3424 -12499999.99795 3427 3424 -56131298.45172 3428 3424 27704593.53563 3510 3424 15625000.00514 3511 3424 -21446053.85824 3512 3424 -11171906.87604 3513 3424 -4.172325134277e-07 3514 3424 -29534914.67368 3515 3424 -6857575.146393 3516 3424 -15625000.00514 3517 3424 -35864239.62686 3518 3424 18029482.02244 3531 3424 3125000.001031 3532 3424 -20084539.63755 3533 3424 -23029577.62979 3534 3424 2.264976501465e-06 3535 3424 30806059.18833 3536 3424 -13715150.28603 3537 3424 -3125000.00103 3538 3424 -49598103.00073 3539 3424 36744727.91581 3425 3425 519447617.7192 3426 3425 5428975.267292 3427 3425 27155982.42461 3428 3425 42674756.05248 3510 3425 11964870.03287 3511 3425 -11171906.87604 3512 3425 -13613251.03531 3513 3425 73404184.96491 3514 3425 -6857575.146392 3515 3425 -87786498.03904 3516 3425 24822942.95376 3517 3425 18029482.02244 3518 3425 -52061746.4183 3531 3425 2735859.138623 3532 3425 -23029577.62992 3533 3425 -5469183.701778 3534 3425 15229460.85439 3535 3425 -13715150.28603 3536 3425 -92155412.4252 3537 3425 5307473.722807 3538 3425 36744727.91595 3539 3425 -84172019.33696 3426 3426 531253496.3852 3427 3426 8.702278137207e-06 3428 3426 -2285835.035192 3429 3426 62618559.28942 3430 3426 12499999.99795 3431 3426 -4857483.06435 3513 3426 -26133752.36576 3514 3426 15625000.00514 3515 3426 11964870.03287 3516 3426 -98285243.92273 3517 3426 1.072883605957e-06 3518 3426 73747066.90912 3519 3426 -40551938.13439 3520 3426 -15625000.00514 3521 3426 24822942.95376 3534 3426 9602926.484067 3535 3426 -3125000.001024 3536 3426 -2164383.918541 3537 3426 49556853.20918 3538 3426 2.026557922363e-06 3539 3426 -14657969.69626 3540 3426 -19910636.87912 3541 3426 3125000.001023 3542 3426 -4735998.502713 3427 3427 456250163.6639 3428 3427 -54860575.96022 3429 3427 -12499999.99795 3430 3427 -56131298.45172 3431 3427 27704593.53563 3513 3427 15625000.00514 3514 3427 -21446053.85824 3515 3427 -11171906.87604 3516 3427 -4.172325134277e-07 3517 3427 -29534914.67368 3518 3427 -6857575.146393 3519 3427 -15625000.00514 3520 3427 -35864239.62686 3521 3427 18029482.02244 3534 3427 3125000.001031 3535 3427 -20084539.63755 3536 3427 -23029577.62979 3537 3427 2.264976501465e-06 3538 3427 30806059.18833 3539 3427 -13715150.28603 3540 3427 -3125000.00103 3541 3427 -49598103.00073 3542 3427 36744727.91581 3428 3428 519447617.7192 3429 3428 5428975.267292 3430 3428 27155982.42461 3431 3428 42674756.05248 3513 3428 11964870.03287 3514 3428 -11171906.87604 3515 3428 -13613251.03531 3516 3428 73404184.96491 3517 3428 -6857575.146392 3518 3428 -87786498.03904 3519 3428 24822942.95376 3520 3428 18029482.02244 3521 3428 -52061746.4183 3534 3428 2735859.138623 3535 3428 -23029577.62992 3536 3428 -5469183.701778 3537 3428 15229460.85439 3538 3428 -13715150.28603 3539 3428 -92155412.4252 3540 3428 5307473.722807 3541 3428 36744727.91595 3542 3428 -84172019.33696 3429 3429 522704651.1313 3430 3429 141896.0766639 3431 3429 19774674.20139 3432 3429 59979012.46658 3433 3429 3521978.896065 3434 3429 223245.4222929 3516 3429 -26133752.36576 3517 3429 15625000.00514 3518 3429 11964870.03287 3519 3429 -94931088.19469 3520 3429 1778213.472971 3521 3429 70668209.66918 3522 3429 -34774920.06465 3523 3429 -15601315.81941 3524 3429 19624361.87508 3537 3429 9602926.484067 3538 3429 -3125000.001024 3539 3429 -2164383.918541 3540 3429 47127590.05582 3541 3429 23589.49173892 3542 3429 -9569136.5938 3543 3429 -9037623.796586 3544 3429 1299512.850601 3545 3429 -1549059.953223 3430 3430 453674266.6075 3431 3430 -31606008.9039 3432 3430 -21478021.09983 3433 3430 -61225625.4412 3434 3430 5210611.870475 3516 3430 15625000.00514 3517 3430 -21446053.85824 3518 3430 -11171906.87604 3519 3430 1778213.472969 3520 3430 -28083353.10861 3521 3430 -5744510.44953 3522 3430 -15601315.81941 3523 3430 -28870353.65893 3524 3430 15281839.03701 3537 3430 3125000.001031 3538 3430 -20084539.63755 3539 3430 -23029577.62979 3540 3430 23589.49173927 3541 3430 29596081.79884 3542 3430 -8233769.735779 3543 3430 -4950487.151452 3544 3430 -39258649.4173 3545 3430 32897925.65411 3431 3431 506379680.2075 3432 3431 2280537.088619 3433 3431 5210611.870475 3434 3431 59105129.33173 3516 3431 11964870.03287 3517 3431 -11171906.87604 3518 3431 -13613251.03531 3519 3431 72382619.39281 3520 3431 -5744510.449122 3521 3431 -87592384.98863 3522 3431 19624361.87508 3523 3431 15281839.03701 3524 3431 -34626266.33531 3537 3431 2735859.138623 3538 3431 -23029577.62992 3539 3431 -5469183.701778 3540 3431 20317738.40129 3541 3431 -8233769.735779 3542 3431 -96598600.18896 3543 3431 6436842.826668 3544 3431 32897925.65384 3545 3431 -50491961.43478 3432 3432 507163372.2162 3433 3432 7237603.668449 3434 3432 63171.26888609 3435 3432 -97768552.76553 3436 3432 -65334661.13375 3437 3432 814983.4184016 3438 3432 55904688.30974 3439 3432 6636115.541256 3440 3432 -371929.3114105 3519 3432 -27465764.73306 3520 3432 15436493.44557 3521 3432 15369153.97845 3522 3432 -93737827.02013 3523 3432 2368086.475668 3524 3432 73456476.46843 3540 3432 -3381022.64037 3541 3432 -4950487.151454 3542 3432 -5342115.507985 3543 3432 35297954.45178 3544 3432 1431829.559498 3545 3432 -14694178.46936 3546 3432 -36452504.04978 3547 3432 -16209236.0544 3548 3432 20513876.38514 3549 3432 -9940171.192638 3550 3432 1923313.725128 3551 3432 -1578351.743113 3433 3433 479243839.2419 3434 3433 -7684547.900964 3435 3433 -65334661.13375 3436 3433 -76803021.57588 3437 3433 512891.4409333 3438 3433 -18363884.45464 3439 3433 -63428757.10643 3440 3433 1561400.688534 3519 3433 15436493.44557 3520 3433 -28850218.03171 3521 3433 -15788219.65503 3522 3433 2368086.475667 3523 3433 -28491743.93969 3524 3433 -2522415.552542 3540 3433 1299512.850601 3541 3433 -33602048.2611 3542 3433 -30322560.44655 3543 3433 1431829.559502 3544 3433 26422223.1926 3545 3433 -1876397.074467 3546 3433 -16209236.0544 3547 3433 -31395568.63249 3548 3433 16792906.76868 3549 3433 -4326686.276925 3550 3433 -39761979.51182 3551 3433 33716685.95988 3434 3434 526719601.0496 3435 3434 814983.4184014 3436 3434 512891.4409332 3437 3434 -13195949.59502 3438 3434 313834.5773636 3439 3434 1561400.688533 3440 3434 64415432.93373 3519 3434 15369153.97845 3520 3434 -15788219.65503 3521 3434 -27297255.58841 3522 3434 73456476.46876 3523 3434 -2522415.552135 3524 3434 -98623886.54024 3540 3434 1615141.438405 3541 3434 -30322560.44696 3542 3434 -35407691.68486 3543 3434 14776029.85913 3544 3434 -1876397.074467 3545 3434 -114825169.0474 3546 3434 20513876.38514 3547 3434 16792906.76868 3548 3434 -36499073.21199 3549 3434 5856613.537447 3550 3434 33716685.95988 3551 3434 -49158484.41831 3435 3435 272936065.9033 3436 3435 67974760.10349 3437 3435 -431631.5032227 3438 3435 -97286780.51185 3439 3435 -9665338.853946 3440 3435 -243513.5111909 3522 3435 -6985166.079218 3523 3435 1989742.081013 3524 3435 1871669.756412 3543 3435 -35903892.93849 3544 3435 -16209236.0544 3545 3435 -20111123.62821 3546 3435 17575332.77501 3547 3435 16760257.92515 3548 3435 8019273.530703 3549 3435 -49380940.42286 3550 3435 -2540763.951765 3551 3435 -38529819.65891 3436 3436 241451433.2226 3437 3436 -490165.0741773 3438 3436 15334661.14195 3439 3436 34091438.27351 3440 3436 -512891.4409258 3522 3436 -4260257.921042 3523 3436 -37145658.44093 3524 3436 -33211725.57395 3543 3436 -16209236.0544 3544 3436 -30846957.52121 3545 3436 -16540426.57559 3546 3436 16760257.92515 3547 3436 9649887.624199 3548 3436 6545058.911655 3549 3436 3709236.050289 3550 3436 -16351938.32763 3551 3436 3207093.237879 3437 3437 282691779.8788 3438 3437 -243513.5111878 3439 3437 -512891.440926 3440 3437 51642144.09707 3522 3437 -6253330.245749 3523 3437 -33211725.57395 3524 3437 -47248819.99024 3543 3437 -20111123.62821 3544 3437 -16540426.57559 3545 3437 -35036110.24856 3546 3437 -8230726.466628 3547 3437 -6788274.419488 3548 3437 -64159173.03356 3549 3437 -38529819.65942 3550 3437 -3459573.430977 3551 3437 -52741674.50249 3438 3438 250941811.6415 3439 3438 -56636115.53305 3440 3438 -542422.5410457 3522 3438 -29442825.22804 3523 3438 15040763.95587 3524 3438 17931584.71763 3543 3438 -8294337.85986 3544 3438 -4326686.276927 3545 3438 -5714289.242432 3546 3438 -49380940.42286 3547 3438 3709236.050297 3548 3438 38412801.85615 3549 3438 15728770.17635 3550 3438 -14423313.72924 3551 3438 -7391833.442228 3439 3439 237298694.5795 3440 3439 -1561400.688515 3522 3439 15040763.95587 3523 3439 -28424057.12979 3524 3439 -16540426.57559 3543 3439 1923313.725128 3544 3439 -38116146.17906 3545 3439 -32949980.69584 3546 3439 -2540763.951758 3547 3439 -16351938.32763 3548 3439 3207093.237879 3549 3439 -14423313.72924 3550 3439 11502808.30206 3551 3439 6283314.033542 3440 3440 266261171.1829 3522 3440 17931584.71763 3523 3440 -16540426.57559 3524 3440 -32613209.85713 3543 3440 1377794.09374 3544 3440 -32949980.69584 3545 3440 -44769595.53089 3546 3440 38412801.85581 3547 3440 -3459573.430977 3548 3440 -52741674.50249 3549 3440 7135215.166498 3550 3440 -7050019.297601 3551 3440 -60247075.66791 3441 3441 686246478.3192 3442 3441 62499999.98975 3443 3441 26305964.70958 3444 3441 -342709650.4072 3445 3441 -62517557.83129 3446 3441 -26298419.34625 3447 3441 11295368.10194 3448 3441 50017557.83334 3449 3441 -21265985.17297 3552 3441 64179725.07093 3553 3441 15625000.00514 3554 3441 22379883.77153 3555 3441 -131080904.1793 3556 3441 -15629389.46552 3557 3441 -81477706.67803 3558 3441 -28030795.60664 3559 3441 12504389.4645 3560 3441 -20094076.36695 3442 3442 592472754.8433 3443 3442 -68590352.01097 3444 3442 -62526336.75206 3445 3442 -48902670.76065 3446 3442 -37999764.78392 3447 3442 75026336.75001 3448 3442 11295368.10194 3449 3442 23873156.16496 3552 3442 15625000.00513 3553 3442 40736294.19042 3554 3442 -4504985.17355 3555 3442 -15631584.19572 3556 3442 -57629159.23151 3557 3442 -24484028.50059 3558 3442 18756584.19674 3559 3442 -28030795.60664 3560 3442 24112532.59506 3443 3443 708219203.5496 3444 3443 -26294646.66457 3445 3443 -30590657.17329 3446 3443 7845748.044902 3447 3443 -31898977.75945 3448 3443 15915437.44331 3449 3443 30120981.60519 3552 3443 -7512792.611826 3553 3443 -28418903.81719 3554 3443 -109296917.9411 3555 3443 -81133941.74793 3556 3443 -22561100.97091 3557 3443 -119114540.4154 3558 3443 -30141114.55043 3559 3443 16075021.73004 3560 3443 -74748788.28438 3444 3444 1165690130.316 3445 3444 62543894.59362 3446 3444 30858903.05731 3447 3444 26211628.98162 3448 3444 -62517557.8313 3449 3444 26694959.91784 3450 3444 -229462147.1059 3451 3444 3.129243850708e-06 3452 3444 -4571801.756165 3453 3444 -93117579.12609 3454 3444 62499999.98975 3455 3444 -26687655.2966 3552 3444 -115335214.0726 3553 3444 -15631584.19572 3554 3444 68329440.16886 3555 3444 130473837.5578 3556 3444 15635973.65611 3557 3444 7712253.313144 3558 3444 -53686446.86531 3559 3444 -15629389.46553 3560 3444 25401550.08976 3561 3444 -102220422.2785 3562 3444 1.013278961182e-06 3563 3444 -76032967.78832 3564 3444 -41874328.64406 3565 3444 15625000.00513 3566 3444 -25394418.17384 3445 3445 996913230.7936 3446 3445 -85034368.77329 3447 3445 -62526336.75207 3448 3445 -192572421.21 3449 3445 45540401.39811 3450 3445 3.904104232788e-06 3451 3445 45539169.75475 3452 3445 -27430300.57206 3453 3445 62499999.98975 3454 3445 -74366785.10525 3455 3445 14949525.28589 3552 3445 -15629389.46552 3553 3445 -41883469.12474 3554 3445 7334445.059211 3555 3445 15635973.65611 3556 3445 88279612.65644 3557 3445 -21260570.15053 3558 3445 -15631584.19572 3559 3445 -108382459.4402 3560 3445 71307025.97358 3561 3445 -7.748603820801e-07 3562 3445 -33470093.0295 3563 3445 -6857575.146393 3564 3445 15625000.00513 3565 3445 -37186630.13654 3566 3445 18715245.91155 3446 3446 1089507525.384 3447 3446 27041494.17268 3448 3446 53223718.26906 3449 3446 45623912.47205 3450 3446 -4571801.756165 3451 3446 -27430300.57206 3452 3446 85330883.72684 3453 3446 -27030537.24082 3454 3446 15223830.84127 3455 3446 -24006523.35327 3552 3446 67985675.23876 3553 3446 5415714.150796 3554 3446 -77126033.46393 3555 3446 7717499.145858 3556 3446 -21256373.52338 3557 3446 -156819638.9591 3558 3446 25405116.04772 3559 3446 72953597.68388 3560 3446 -149232299.5136 3561 3446 -75690085.8441 3562 3446 -6857575.146393 3563 3446 -98280306.98791 3564 3446 -25394418.17384 3565 3446 18715245.91155 3566 3446 -55588121.11081 3447 3447 686246478.3192 3448 3447 62499999.98975 3449 3447 26305964.70958 3450 3447 -91763195.44578 3451 3447 -62499999.98975 3452 3447 24744636.36161 3453 3447 -342709650.4072 3454 3447 -62517557.83129 3455 3447 -26298419.34625 3456 3447 11295368.10194 3457 3447 50017557.83334 3458 3447 -21265985.17297 3552 3447 1493260.574915 3553 3447 18756584.19674 3554 3447 14705768.01689 3555 3447 -8426923.443562 3556 3447 -15631584.19572 3557 3447 -11969908.87826 3558 3447 64179725.07093 3559 3447 15625000.00514 3560 3447 22379883.77153 3561 3447 -26778951.03495 3562 3447 -15625000.00513 3563 3447 -12536345.25295 3564 3447 -131080904.1793 3565 3447 -15629389.46552 3566 3447 -81477706.67803 3567 3447 -28030795.60664 3568 3447 12504389.4645 3569 3447 -20094076.36695 3448 3448 592472754.8433 3449 3448 -68590352.01097 3450 3448 -62499999.98975 3451 3448 -73012401.42493 3452 3448 12480775.28616 3453 3448 -62526336.75206 3454 3448 -48902670.76065 3455 3448 -37999764.78392 3456 3448 75026336.75001 3457 3448 11295368.10194 3458 3448 23873156.16496 3552 3448 12504389.4645 3553 3448 1493260.574915 3554 3448 -7843093.74256 3555 3448 -15629389.46552 3556 3448 -63122936.0184 3557 3448 -46615995.93793 3558 3448 15625000.00513 3559 3448 40736294.19042 3560 3448 -4504985.17355 3561 3448 -15625000.00513 3562 3448 -22091252.52743 3563 3448 -11857670.76516 3564 3448 -15631584.19572 3565 3448 -57629159.23151 3566 3448 -24484028.50059 3567 3448 18756584.19674 3568 3448 -28030795.60664 3569 3448 24112532.59506 3449 3449 708219203.5496 3450 3449 24401754.41739 3451 3449 12206469.73079 3452 3449 -20394833.53905 3453 3449 -26294646.66457 3454 3449 -30590657.17329 3455 3449 7845748.044902 3456 3449 -31898977.75945 3457 3449 15915437.44331 3458 3449 30120981.60519 3552 3449 9803845.344592 3553 3449 -11764640.61384 3554 3449 3982028.199772 3555 3449 -11968229.26313 3556 3449 -48262567.85004 3557 3449 -28540237.05556 3558 3449 -7512792.611826 3559 3449 -28418903.81719 3560 3449 -109296917.9411 3561 3449 -12536345.25295 3562 3449 -11857670.76516 3563 3449 -15333780.81983 3564 3449 -81133941.74793 3565 3449 -22561100.97091 3566 3449 -119114540.4154 3567 3449 -30141114.55043 3568 3449 16075021.73004 3569 3449 -74748788.28438 3450 3450 1082651565.536 3451 3450 1.692771911621e-05 3452 3450 9143603.512253 3453 3450 130318343.5391 3454 3450 -8.195638656616e-06 3455 3450 2285900.879194 3459 3450 -229462147.1059 3460 3450 3.129243850708e-06 3461 3450 -4571801.756165 3462 3450 -93117579.12609 3463 3450 62499999.98975 3464 3450 -26687655.2966 3555 3450 -98285243.92273 3556 3450 1.072883605957e-06 3557 3450 73747066.90912 3558 3450 -40551938.13439 3559 3450 -15625000.00514 3560 3450 24822942.95376 3561 3450 99158852.54101 3562 3450 3.457069396973e-06 3563 3450 2285900.879224 3564 3450 -39821273.75826 3565 3450 -8.895993232727e-06 3566 3450 571475.2200941 3570 3450 -102220422.2785 3571 3450 1.013278961182e-06 3572 3450 -76032967.78832 3573 3450 -41874328.64406 3574 3450 15625000.00513 3575 3450 -25394418.17384 3451 3451 932645213.4434 3452 3451 -109721202.2342 3453 3451 -8.702278137207e-06 3454 3451 -107181385.3168 3455 3451 54860601.11709 3459 3451 3.904104232788e-06 3460 3451 45539169.75475 3461 3451 -27430300.57206 3462 3451 62499999.98975 3463 3451 -74366785.10525 3464 3451 14949525.28589 3555 3451 -4.172325134277e-07 3556 3451 -29534914.67368 3557 3451 -6857575.146393 3558 3451 -15625000.00514 3559 3451 -35864239.62686 3560 3451 18029482.02244 3561 3451 3.814697265625e-06 3562 3451 61657264.49931 3563 3451 -27430300.57206 3564 3451 -7.718801498413e-06 3565 3451 -99196206.00148 3566 3451 73626608.60945 3570 3451 -7.748603820801e-07 3571 3451 -33470093.0295 3572 3451 -6857575.146393 3573 3451 15625000.00513 3574 3451 -37186630.13654 3575 3451 18715245.91155 3452 3452 1092614674.45 3453 3452 2285900.879194 3454 3452 54860601.11708 3455 3452 98899681.61908 3459 3452 -4571801.756165 3460 3452 -27430300.57206 3461 3452 85330883.72684 3462 3452 -27030537.24082 3463 3452 15223830.84127 3464 3452 -24006523.35327 3555 3452 73404184.96491 3556 3452 -6857575.146392 3557 3452 -87786498.03904 3558 3452 24822942.95376 3559 3452 18029482.02244 3560 3452 -52061746.4183 3561 3452 2285900.879224 3562 3452 -27430300.57206 3563 3452 -184190435.19 3564 3452 571475.2200943 3565 3452 73352303.05408 3566 3452 -168344038.6739 3570 3452 -75690085.8441 3571 3452 -6857575.146393 3572 3452 -98280306.98791 3573 3452 -25394418.17384 3574 3452 18715245.91155 3575 3452 -55588121.11081 3453 3453 1165690130.316 3454 3453 62543894.59362 3455 3453 30858903.05731 3456 3453 26211628.98162 3457 3453 -62517557.8313 3458 3453 26694959.91784 3459 3453 -91763195.44578 3460 3453 -62499999.98975 3461 3453 24744636.36161 3462 3453 -229462147.1059 3463 3453 3.129243850708e-06 3464 3453 -4571801.756165 3465 3453 -93117579.12609 3466 3453 62499999.98975 3467 3453 -26687655.2966 3555 3453 -26133752.36576 3556 3453 15625000.00514 3557 3453 11964870.03287 3558 3453 -115335214.0726 3559 3453 -15631584.19572 3560 3453 68329440.16886 3561 3453 19205852.96814 3562 3453 4.768371582031e-06 3563 3453 571475.220082 3564 3453 130473837.5578 3565 3453 15635973.65611 3566 3453 7712253.313144 3567 3453 -53686446.86531 3568 3453 -15629389.46553 3569 3453 25401550.08976 3570 3453 -26778951.03495 3571 3453 -15625000.00513 3572 3453 -12536345.25295 3573 3453 -102220422.2785 3574 3453 1.013278961182e-06 3575 3453 -76032967.78832 3576 3453 -41874328.64406 3577 3453 15625000.00513 3578 3453 -25394418.17384 3454 3454 996913230.7936 3455 3454 -85034368.77329 3456 3454 -62526336.75207 3457 3454 -192572421.21 3458 3454 45540401.39811 3459 3454 -62499999.98975 3460 3454 -73012401.42493 3461 3454 12480775.28616 3462 3454 3.904104232788e-06 3463 3454 45539169.75475 3464 3454 -27430300.57206 3465 3454 62499999.98975 3466 3454 -74366785.10525 3467 3454 14949525.28589 3555 3454 15625000.00514 3556 3454 -21446053.85824 3557 3454 -11171906.87604 3558 3454 -15629389.46552 3559 3454 -41883469.12474 3560 3454 7334445.059211 3561 3454 6.780028343201e-06 3562 3454 -40169079.27509 3563 3454 -46196308.03739 3564 3454 15635973.65611 3565 3454 88279612.65644 3566 3454 -21260570.15053 3567 3454 -15631584.19572 3568 3454 -108382459.4402 3569 3454 71307025.97358 3570 3454 -15625000.00513 3571 3454 -22091252.52743 3572 3454 -11857670.76516 3573 3454 -7.748603820801e-07 3574 3454 -33470093.0295 3575 3454 -6857575.146393 3576 3454 15625000.00513 3577 3454 -37186630.13654 3578 3454 18715245.91155 3455 3455 1089507525.384 3456 3455 27041494.17268 3457 3455 53223718.26906 3458 3455 45623912.47205 3459 3455 24401754.41739 3460 3455 12206469.73079 3461 3455 -20394833.53905 3462 3455 -4571801.756165 3463 3455 -27430300.57206 3464 3455 85330883.72684 3465 3455 -27030537.24082 3466 3455 15223830.84127 3467 3455 -24006523.35327 3555 3455 11964870.03287 3556 3455 -11171906.87604 3557 3455 -13613251.03531 3558 3455 67985675.23876 3559 3455 5415714.150796 3560 3455 -77126033.46393 3561 3455 571475.2200821 3562 3455 -45922002.48202 3563 3455 -10938367.40355 3564 3455 7717499.145858 3565 3455 -21256373.52338 3566 3455 -156819638.9591 3567 3455 25405116.04772 3568 3455 72953597.68388 3569 3455 -149232299.5136 3570 3455 -12536345.25295 3571 3455 -11857670.76516 3572 3455 -15333780.81983 3573 3455 -75690085.8441 3574 3455 -6857575.146393 3575 3455 -98280306.98791 3576 3455 -25394418.17384 3577 3455 18715245.91155 3578 3455 -55588121.11081 3456 3456 686246478.3192 3457 3456 62499999.98975 3458 3456 26305964.70958 3462 3456 -91763195.44578 3463 3456 -62499999.98975 3464 3456 24744636.36161 3465 3456 -342709650.4072 3466 3456 -62517557.83129 3467 3456 -26298419.34625 3468 3456 11295368.10194 3469 3456 50017557.83334 3470 3456 -21265985.17297 3558 3456 1493260.574915 3559 3456 18756584.19674 3560 3456 14705768.01689 3564 3456 -8426923.443562 3565 3456 -15631584.19572 3566 3456 -11969908.87826 3567 3456 64179725.07093 3568 3456 15625000.00514 3569 3456 22379883.77153 3573 3456 -26778951.03495 3574 3456 -15625000.00513 3575 3456 -12536345.25295 3576 3456 -131080904.1793 3577 3456 -15629389.46552 3578 3456 -81477706.67803 3579 3456 -28030795.60664 3580 3456 12504389.4645 3581 3456 -20094076.36695 3457 3457 592472754.8433 3458 3457 -68590352.01097 3462 3457 -62499999.98975 3463 3457 -73012401.42493 3464 3457 12480775.28616 3465 3457 -62526336.75206 3466 3457 -48902670.76065 3467 3457 -37999764.78392 3468 3457 75026336.75001 3469 3457 11295368.10194 3470 3457 23873156.16496 3558 3457 12504389.4645 3559 3457 1493260.574915 3560 3457 -7843093.74256 3564 3457 -15629389.46552 3565 3457 -63122936.0184 3566 3457 -46615995.93793 3567 3457 15625000.00513 3568 3457 40736294.19042 3569 3457 -4504985.17355 3573 3457 -15625000.00513 3574 3457 -22091252.52743 3575 3457 -11857670.76516 3576 3457 -15631584.19572 3577 3457 -57629159.23151 3578 3457 -24484028.50059 3579 3457 18756584.19674 3580 3457 -28030795.60664 3581 3457 24112532.59506 3458 3458 708219203.5496 3462 3458 24401754.41739 3463 3458 12206469.73079 3464 3458 -20394833.53905 3465 3458 -26294646.66457 3466 3458 -30590657.17329 3467 3458 7845748.044902 3468 3458 -31898977.75945 3469 3458 15915437.44331 3470 3458 30120981.60519 3558 3458 9803845.344592 3559 3458 -11764640.61384 3560 3458 3982028.199772 3564 3458 -11968229.26313 3565 3458 -48262567.85004 3566 3458 -28540237.05556 3567 3458 -7512792.611826 3568 3458 -28418903.81719 3569 3458 -109296917.9411 3573 3458 -12536345.25295 3574 3458 -11857670.76516 3575 3458 -15333780.81983 3576 3458 -81133941.74793 3577 3458 -22561100.97091 3578 3458 -119114540.4154 3579 3458 -30141114.55043 3580 3458 16075021.73004 3581 3458 -74748788.28438 3459 3459 1082651565.536 3460 3459 1.692771911621e-05 3461 3459 9143603.512253 3462 3459 130318343.5391 3463 3459 -8.195638656616e-06 3464 3459 2285900.879194 3471 3459 -229462147.1059 3472 3459 3.129243850708e-06 3473 3459 -4571801.756165 3474 3459 -93117579.12609 3475 3459 62499999.98975 3476 3459 -26687655.2966 3561 3459 -98285243.92273 3562 3459 1.072883605957e-06 3563 3459 73747066.90912 3564 3459 -40551938.13439 3565 3459 -15625000.00514 3566 3459 24822942.95376 3570 3459 99158852.54101 3571 3459 3.457069396973e-06 3572 3459 2285900.879224 3573 3459 -39821273.75826 3574 3459 -8.895993232727e-06 3575 3459 571475.2200941 3582 3459 -102220422.2785 3583 3459 1.013278961182e-06 3584 3459 -76032967.78832 3585 3459 -41874328.64406 3586 3459 15625000.00513 3587 3459 -25394418.17384 3460 3460 932645213.4434 3461 3460 -109721202.2342 3462 3460 -8.702278137207e-06 3463 3460 -107181385.3168 3464 3460 54860601.11709 3471 3460 3.904104232788e-06 3472 3460 45539169.75475 3473 3460 -27430300.57206 3474 3460 62499999.98975 3475 3460 -74366785.10525 3476 3460 14949525.28589 3561 3460 -4.172325134277e-07 3562 3460 -29534914.67368 3563 3460 -6857575.146393 3564 3460 -15625000.00514 3565 3460 -35864239.62686 3566 3460 18029482.02244 3570 3460 3.814697265625e-06 3571 3460 61657264.49931 3572 3460 -27430300.57206 3573 3460 -7.718801498413e-06 3574 3460 -99196206.00148 3575 3460 73626608.60945 3582 3460 -7.748603820801e-07 3583 3460 -33470093.0295 3584 3460 -6857575.146393 3585 3460 15625000.00513 3586 3460 -37186630.13654 3587 3460 18715245.91155 3461 3461 1092614674.45 3462 3461 2285900.879194 3463 3461 54860601.11708 3464 3461 98899681.61908 3471 3461 -4571801.756165 3472 3461 -27430300.57206 3473 3461 85330883.72684 3474 3461 -27030537.24082 3475 3461 15223830.84127 3476 3461 -24006523.35327 3561 3461 73404184.96491 3562 3461 -6857575.146392 3563 3461 -87786498.03904 3564 3461 24822942.95376 3565 3461 18029482.02244 3566 3461 -52061746.4183 3570 3461 2285900.879224 3571 3461 -27430300.57206 3572 3461 -184190435.19 3573 3461 571475.2200943 3574 3461 73352303.05408 3575 3461 -168344038.6739 3582 3461 -75690085.8441 3583 3461 -6857575.146393 3584 3461 -98280306.98791 3585 3461 -25394418.17384 3586 3461 18715245.91155 3587 3461 -55588121.11081 3462 3462 1082651565.536 3463 3462 1.692771911621e-05 3464 3462 9143603.512253 3465 3462 130318343.5391 3466 3462 -8.195638656616e-06 3467 3462 2285900.879194 3471 3462 -91763195.44578 3472 3462 -62499999.98975 3473 3462 24744636.36161 3474 3462 -229462147.1059 3475 3462 3.129243850708e-06 3476 3462 -4571801.756165 3477 3462 -93117579.12609 3478 3462 62499999.98975 3479 3462 -26687655.2966 3561 3462 -26133752.36576 3562 3462 15625000.00514 3563 3462 11964870.03287 3564 3462 -98285243.92273 3565 3462 1.072883605957e-06 3566 3462 73747066.90912 3567 3462 -40551938.13439 3568 3462 -15625000.00514 3569 3462 24822942.95376 3570 3462 19205852.96814 3571 3462 4.768371582031e-06 3572 3462 571475.220082 3573 3462 99158852.54101 3574 3462 3.457069396973e-06 3575 3462 2285900.879224 3576 3462 -39821273.75826 3577 3462 -8.895993232727e-06 3578 3462 571475.2200941 3582 3462 -26778951.03495 3583 3462 -15625000.00513 3584 3462 -12536345.25295 3585 3462 -102220422.2785 3586 3462 1.013278961182e-06 3587 3462 -76032967.78832 3588 3462 -41874328.64406 3589 3462 15625000.00513 3590 3462 -25394418.17384 3463 3463 932645213.4434 3464 3463 -109721202.2342 3465 3463 -8.702278137207e-06 3466 3463 -107181385.3168 3467 3463 54860601.11709 3471 3463 -62499999.98975 3472 3463 -73012401.42493 3473 3463 12480775.28616 3474 3463 3.904104232788e-06 3475 3463 45539169.75475 3476 3463 -27430300.57206 3477 3463 62499999.98975 3478 3463 -74366785.10525 3479 3463 14949525.28589 3561 3463 15625000.00514 3562 3463 -21446053.85824 3563 3463 -11171906.87604 3564 3463 -4.172325134277e-07 3565 3463 -29534914.67368 3566 3463 -6857575.146393 3567 3463 -15625000.00514 3568 3463 -35864239.62686 3569 3463 18029482.02244 3570 3463 6.780028343201e-06 3571 3463 -40169079.27509 3572 3463 -46196308.03739 3573 3463 3.814697265625e-06 3574 3463 61657264.49931 3575 3463 -27430300.57206 3576 3463 -7.718801498413e-06 3577 3463 -99196206.00148 3578 3463 73626608.60945 3582 3463 -15625000.00513 3583 3463 -22091252.52743 3584 3463 -11857670.76516 3585 3463 -7.748603820801e-07 3586 3463 -33470093.0295 3587 3463 -6857575.146393 3588 3463 15625000.00513 3589 3463 -37186630.13654 3590 3463 18715245.91155 3464 3464 1092614674.45 3465 3464 2285900.879194 3466 3464 54860601.11708 3467 3464 98899681.61908 3471 3464 24401754.41739 3472 3464 12206469.73079 3473 3464 -20394833.53905 3474 3464 -4571801.756165 3475 3464 -27430300.57206 3476 3464 85330883.72684 3477 3464 -27030537.24082 3478 3464 15223830.84127 3479 3464 -24006523.35327 3561 3464 11964870.03287 3562 3464 -11171906.87604 3563 3464 -13613251.03531 3564 3464 73404184.96491 3565 3464 -6857575.146392 3566 3464 -87786498.03904 3567 3464 24822942.95376 3568 3464 18029482.02244 3569 3464 -52061746.4183 3570 3464 571475.2200821 3571 3464 -45922002.48202 3572 3464 -10938367.40355 3573 3464 2285900.879224 3574 3464 -27430300.57206 3575 3464 -184190435.19 3576 3464 571475.2200943 3577 3464 73352303.05408 3578 3464 -168344038.6739 3582 3464 -12536345.25295 3583 3464 -11857670.76516 3584 3464 -15333780.81983 3585 3464 -75690085.8441 3586 3464 -6857575.146393 3587 3464 -98280306.98791 3588 3464 -25394418.17384 3589 3464 18715245.91155 3590 3464 -55588121.11081 3465 3465 1165690130.316 3466 3465 62543894.59362 3467 3465 30858903.05731 3468 3465 26211628.98162 3469 3465 -62517557.8313 3470 3465 26694959.91784 3474 3465 -91763195.44578 3475 3465 -62499999.98975 3476 3465 24744636.36161 3477 3465 -229462147.1059 3478 3465 3.129243850708e-06 3479 3465 -4571801.756165 3480 3465 -93117579.12609 3481 3465 62499999.98975 3482 3465 -26687655.2966 3564 3465 -26133752.36576 3565 3465 15625000.00514 3566 3465 11964870.03287 3567 3465 -115335214.0726 3568 3465 -15631584.19572 3569 3465 68329440.16886 3573 3465 19205852.96814 3574 3465 4.768371582031e-06 3575 3465 571475.220082 3576 3465 130473837.5578 3577 3465 15635973.65611 3578 3465 7712253.313144 3579 3465 -53686446.86531 3580 3465 -15629389.46553 3581 3465 25401550.08976 3585 3465 -26778951.03495 3586 3465 -15625000.00513 3587 3465 -12536345.25295 3588 3465 -102220422.2785 3589 3465 1.013278961182e-06 3590 3465 -76032967.78832 3591 3465 -41874328.64406 3592 3465 15625000.00513 3593 3465 -25394418.17384 3466 3466 996913230.7936 3467 3466 -85034368.77329 3468 3466 -62526336.75207 3469 3466 -192572421.21 3470 3466 45540401.39811 3474 3466 -62499999.98975 3475 3466 -73012401.42493 3476 3466 12480775.28616 3477 3466 3.904104232788e-06 3478 3466 45539169.75475 3479 3466 -27430300.57206 3480 3466 62499999.98975 3481 3466 -74366785.10525 3482 3466 14949525.28589 3564 3466 15625000.00514 3565 3466 -21446053.85824 3566 3466 -11171906.87604 3567 3466 -15629389.46552 3568 3466 -41883469.12474 3569 3466 7334445.059211 3573 3466 6.780028343201e-06 3574 3466 -40169079.27509 3575 3466 -46196308.03739 3576 3466 15635973.65611 3577 3466 88279612.65644 3578 3466 -21260570.15053 3579 3466 -15631584.19572 3580 3466 -108382459.4402 3581 3466 71307025.97358 3585 3466 -15625000.00513 3586 3466 -22091252.52743 3587 3466 -11857670.76516 3588 3466 -7.748603820801e-07 3589 3466 -33470093.0295 3590 3466 -6857575.146393 3591 3466 15625000.00513 3592 3466 -37186630.13654 3593 3466 18715245.91155 3467 3467 1089507525.384 3468 3467 27041494.17268 3469 3467 53223718.26906 3470 3467 45623912.47205 3474 3467 24401754.41739 3475 3467 12206469.73079 3476 3467 -20394833.53905 3477 3467 -4571801.756165 3478 3467 -27430300.57206 3479 3467 85330883.72684 3480 3467 -27030537.24082 3481 3467 15223830.84127 3482 3467 -24006523.35327 3564 3467 11964870.03287 3565 3467 -11171906.87604 3566 3467 -13613251.03531 3567 3467 67985675.23876 3568 3467 5415714.150796 3569 3467 -77126033.46393 3573 3467 571475.2200821 3574 3467 -45922002.48202 3575 3467 -10938367.40355 3576 3467 7717499.145858 3577 3467 -21256373.52338 3578 3467 -156819638.9591 3579 3467 25405116.04772 3580 3467 72953597.68388 3581 3467 -149232299.5136 3585 3467 -12536345.25295 3586 3467 -11857670.76516 3587 3467 -15333780.81983 3588 3467 -75690085.8441 3589 3467 -6857575.146393 3590 3467 -98280306.98791 3591 3467 -25394418.17384 3592 3467 18715245.91155 3593 3467 -55588121.11081 3468 3468 686246478.3192 3469 3468 62499999.98975 3470 3468 26305964.70958 3477 3468 -91763195.44578 3478 3468 -62499999.98975 3479 3468 24744636.36161 3480 3468 -342709650.4072 3481 3468 -62517557.83129 3482 3468 -26298419.34625 3483 3468 11295368.10194 3484 3468 50017557.83334 3485 3468 -21265985.17297 3567 3468 1493260.574915 3568 3468 18756584.19674 3569 3468 14705768.01689 3576 3468 -8426923.443562 3577 3468 -15631584.19572 3578 3468 -11969908.87826 3579 3468 64179725.07093 3580 3468 15625000.00514 3581 3468 22379883.77153 3588 3468 -26778951.03495 3589 3468 -15625000.00513 3590 3468 -12536345.25295 3591 3468 -131080904.1793 3592 3468 -15629389.46552 3593 3468 -81477706.67803 3594 3468 -28030795.60664 3595 3468 12504389.4645 3596 3468 -20094076.36695 3469 3469 592472754.8433 3470 3469 -68590352.01097 3477 3469 -62499999.98975 3478 3469 -73012401.42493 3479 3469 12480775.28616 3480 3469 -62526336.75206 3481 3469 -48902670.76065 3482 3469 -37999764.78392 3483 3469 75026336.75001 3484 3469 11295368.10194 3485 3469 23873156.16496 3567 3469 12504389.4645 3568 3469 1493260.574915 3569 3469 -7843093.74256 3576 3469 -15629389.46552 3577 3469 -63122936.0184 3578 3469 -46615995.93793 3579 3469 15625000.00513 3580 3469 40736294.19042 3581 3469 -4504985.17355 3588 3469 -15625000.00513 3589 3469 -22091252.52743 3590 3469 -11857670.76516 3591 3469 -15631584.19572 3592 3469 -57629159.23151 3593 3469 -24484028.50059 3594 3469 18756584.19674 3595 3469 -28030795.60664 3596 3469 24112532.59506 3470 3470 708219203.5496 3477 3470 24401754.41739 3478 3470 12206469.73079 3479 3470 -20394833.53905 3480 3470 -26294646.66457 3481 3470 -30590657.17329 3482 3470 7845748.044902 3483 3470 -31898977.75945 3484 3470 15915437.44331 3485 3470 30120981.60519 3567 3470 9803845.344592 3568 3470 -11764640.61384 3569 3470 3982028.199772 3576 3470 -11968229.26313 3577 3470 -48262567.85004 3578 3470 -28540237.05556 3579 3470 -7512792.611826 3580 3470 -28418903.81719 3581 3470 -109296917.9411 3588 3470 -12536345.25295 3589 3470 -11857670.76516 3590 3470 -15333780.81983 3591 3470 -81133941.74793 3592 3470 -22561100.97091 3593 3470 -119114540.4154 3594 3470 -30141114.55043 3595 3470 16075021.73004 3596 3470 -74748788.28438 3471 3471 1082651565.536 3472 3471 1.692771911621e-05 3473 3471 9143603.512253 3474 3471 130318343.5391 3475 3471 -8.195638656616e-06 3476 3471 2285900.879194 3486 3471 -229462147.1059 3487 3471 3.129243850708e-06 3488 3471 -4571801.756165 3489 3471 -93117579.12609 3490 3471 62499999.98975 3491 3471 -26687655.2966 3570 3471 -98285243.92273 3571 3471 1.072883605957e-06 3572 3471 73747066.90912 3573 3471 -40551938.13439 3574 3471 -15625000.00514 3575 3471 24822942.95376 3582 3471 99158852.54101 3583 3471 3.457069396973e-06 3584 3471 2285900.879224 3585 3471 -39821273.75826 3586 3471 -8.895993232727e-06 3587 3471 571475.2200941 3597 3471 -102220422.2785 3598 3471 1.013278961182e-06 3599 3471 -76032967.78832 3600 3471 -41874328.64406 3601 3471 15625000.00513 3602 3471 -25394418.17384 3472 3472 932645213.4434 3473 3472 -109721202.2342 3474 3472 -8.702278137207e-06 3475 3472 -107181385.3168 3476 3472 54860601.11709 3486 3472 3.904104232788e-06 3487 3472 45539169.75475 3488 3472 -27430300.57206 3489 3472 62499999.98975 3490 3472 -74366785.10525 3491 3472 14949525.28589 3570 3472 -4.172325134277e-07 3571 3472 -29534914.67368 3572 3472 -6857575.146393 3573 3472 -15625000.00514 3574 3472 -35864239.62686 3575 3472 18029482.02244 3582 3472 3.814697265625e-06 3583 3472 61657264.49931 3584 3472 -27430300.57206 3585 3472 -7.718801498413e-06 3586 3472 -99196206.00148 3587 3472 73626608.60945 3597 3472 -7.748603820801e-07 3598 3472 -33470093.0295 3599 3472 -6857575.146393 3600 3472 15625000.00513 3601 3472 -37186630.13654 3602 3472 18715245.91155 3473 3473 1092614674.45 3474 3473 2285900.879194 3475 3473 54860601.11708 3476 3473 98899681.61908 3486 3473 -4571801.756165 3487 3473 -27430300.57206 3488 3473 85330883.72684 3489 3473 -27030537.24082 3490 3473 15223830.84127 3491 3473 -24006523.35327 3570 3473 73404184.96491 3571 3473 -6857575.146392 3572 3473 -87786498.03904 3573 3473 24822942.95376 3574 3473 18029482.02244 3575 3473 -52061746.4183 3582 3473 2285900.879224 3583 3473 -27430300.57206 3584 3473 -184190435.19 3585 3473 571475.2200943 3586 3473 73352303.05408 3587 3473 -168344038.6739 3597 3473 -75690085.8441 3598 3473 -6857575.146393 3599 3473 -98280306.98791 3600 3473 -25394418.17384 3601 3473 18715245.91155 3602 3473 -55588121.11081 3474 3474 1082651565.536 3475 3474 1.692771911621e-05 3476 3474 9143603.512253 3477 3474 130318343.5391 3478 3474 -8.195638656616e-06 3479 3474 2285900.879194 3486 3474 -91763195.44578 3487 3474 -62499999.98975 3488 3474 24744636.36161 3489 3474 -229462147.1059 3490 3474 3.129243850708e-06 3491 3474 -4571801.756165 3492 3474 -93117579.12609 3493 3474 62499999.98975 3494 3474 -26687655.2966 3570 3474 -26133752.36576 3571 3474 15625000.00514 3572 3474 11964870.03287 3573 3474 -98285243.92273 3574 3474 1.072883605957e-06 3575 3474 73747066.90912 3576 3474 -40551938.13439 3577 3474 -15625000.00514 3578 3474 24822942.95376 3582 3474 19205852.96814 3583 3474 4.768371582031e-06 3584 3474 571475.220082 3585 3474 99158852.54101 3586 3474 3.457069396973e-06 3587 3474 2285900.879224 3588 3474 -39821273.75826 3589 3474 -8.895993232727e-06 3590 3474 571475.2200941 3597 3474 -26778951.03495 3598 3474 -15625000.00513 3599 3474 -12536345.25295 3600 3474 -102220422.2785 3601 3474 1.013278961182e-06 3602 3474 -76032967.78832 3603 3474 -41874328.64406 3604 3474 15625000.00513 3605 3474 -25394418.17384 3475 3475 932645213.4434 3476 3475 -109721202.2342 3477 3475 -8.702278137207e-06 3478 3475 -107181385.3168 3479 3475 54860601.11709 3486 3475 -62499999.98975 3487 3475 -73012401.42493 3488 3475 12480775.28616 3489 3475 3.904104232788e-06 3490 3475 45539169.75475 3491 3475 -27430300.57206 3492 3475 62499999.98975 3493 3475 -74366785.10525 3494 3475 14949525.28589 3570 3475 15625000.00514 3571 3475 -21446053.85824 3572 3475 -11171906.87604 3573 3475 -4.172325134277e-07 3574 3475 -29534914.67368 3575 3475 -6857575.146393 3576 3475 -15625000.00514 3577 3475 -35864239.62686 3578 3475 18029482.02244 3582 3475 6.780028343201e-06 3583 3475 -40169079.27509 3584 3475 -46196308.03739 3585 3475 3.814697265625e-06 3586 3475 61657264.49931 3587 3475 -27430300.57206 3588 3475 -7.718801498413e-06 3589 3475 -99196206.00148 3590 3475 73626608.60945 3597 3475 -15625000.00513 3598 3475 -22091252.52743 3599 3475 -11857670.76516 3600 3475 -7.748603820801e-07 3601 3475 -33470093.0295 3602 3475 -6857575.146393 3603 3475 15625000.00513 3604 3475 -37186630.13654 3605 3475 18715245.91155 3476 3476 1092614674.45 3477 3476 2285900.879194 3478 3476 54860601.11708 3479 3476 98899681.61908 3486 3476 24401754.41739 3487 3476 12206469.73079 3488 3476 -20394833.53905 3489 3476 -4571801.756165 3490 3476 -27430300.57206 3491 3476 85330883.72684 3492 3476 -27030537.24082 3493 3476 15223830.84127 3494 3476 -24006523.35327 3570 3476 11964870.03287 3571 3476 -11171906.87604 3572 3476 -13613251.03531 3573 3476 73404184.96491 3574 3476 -6857575.146392 3575 3476 -87786498.03904 3576 3476 24822942.95376 3577 3476 18029482.02244 3578 3476 -52061746.4183 3582 3476 571475.2200821 3583 3476 -45922002.48202 3584 3476 -10938367.40355 3585 3476 2285900.879224 3586 3476 -27430300.57206 3587 3476 -184190435.19 3588 3476 571475.2200943 3589 3476 73352303.05408 3590 3476 -168344038.6739 3597 3476 -12536345.25295 3598 3476 -11857670.76516 3599 3476 -15333780.81983 3600 3476 -75690085.8441 3601 3476 -6857575.146393 3602 3476 -98280306.98791 3603 3476 -25394418.17384 3604 3476 18715245.91155 3605 3476 -55588121.11081 3477 3477 1082651565.536 3478 3477 1.692771911621e-05 3479 3477 9143603.512253 3480 3477 130318343.5391 3481 3477 -8.195638656616e-06 3482 3477 2285900.879194 3489 3477 -91763195.44578 3490 3477 -62499999.98975 3491 3477 24744636.36161 3492 3477 -229462147.1059 3493 3477 3.129243850708e-06 3494 3477 -4571801.756165 3495 3477 -93117579.12609 3496 3477 62499999.98975 3497 3477 -26687655.2966 3573 3477 -26133752.36576 3574 3477 15625000.00514 3575 3477 11964870.03287 3576 3477 -98285243.92273 3577 3477 1.072883605957e-06 3578 3477 73747066.90912 3579 3477 -40551938.13439 3580 3477 -15625000.00514 3581 3477 24822942.95376 3585 3477 19205852.96814 3586 3477 4.768371582031e-06 3587 3477 571475.220082 3588 3477 99158852.54101 3589 3477 3.457069396973e-06 3590 3477 2285900.879224 3591 3477 -39821273.75826 3592 3477 -8.895993232727e-06 3593 3477 571475.2200941 3600 3477 -26778951.03495 3601 3477 -15625000.00513 3602 3477 -12536345.25295 3603 3477 -102220422.2785 3604 3477 1.013278961182e-06 3605 3477 -76032967.78832 3606 3477 -41874328.64406 3607 3477 15625000.00513 3608 3477 -25394418.17384 3478 3478 932645213.4434 3479 3478 -109721202.2342 3480 3478 -8.702278137207e-06 3481 3478 -107181385.3168 3482 3478 54860601.11709 3489 3478 -62499999.98975 3490 3478 -73012401.42493 3491 3478 12480775.28616 3492 3478 3.904104232788e-06 3493 3478 45539169.75475 3494 3478 -27430300.57206 3495 3478 62499999.98975 3496 3478 -74366785.10525 3497 3478 14949525.28589 3573 3478 15625000.00514 3574 3478 -21446053.85824 3575 3478 -11171906.87604 3576 3478 -4.172325134277e-07 3577 3478 -29534914.67368 3578 3478 -6857575.146393 3579 3478 -15625000.00514 3580 3478 -35864239.62686 3581 3478 18029482.02244 3585 3478 6.780028343201e-06 3586 3478 -40169079.27509 3587 3478 -46196308.03739 3588 3478 3.814697265625e-06 3589 3478 61657264.49931 3590 3478 -27430300.57206 3591 3478 -7.718801498413e-06 3592 3478 -99196206.00148 3593 3478 73626608.60945 3600 3478 -15625000.00513 3601 3478 -22091252.52743 3602 3478 -11857670.76516 3603 3478 -7.748603820801e-07 3604 3478 -33470093.0295 3605 3478 -6857575.146393 3606 3478 15625000.00513 3607 3478 -37186630.13654 3608 3478 18715245.91155 3479 3479 1092614674.45 3480 3479 2285900.879194 3481 3479 54860601.11708 3482 3479 98899681.61908 3489 3479 24401754.41739 3490 3479 12206469.73079 3491 3479 -20394833.53905 3492 3479 -4571801.756165 3493 3479 -27430300.57206 3494 3479 85330883.72684 3495 3479 -27030537.24082 3496 3479 15223830.84127 3497 3479 -24006523.35327 3573 3479 11964870.03287 3574 3479 -11171906.87604 3575 3479 -13613251.03531 3576 3479 73404184.96491 3577 3479 -6857575.146392 3578 3479 -87786498.03904 3579 3479 24822942.95376 3580 3479 18029482.02244 3581 3479 -52061746.4183 3585 3479 571475.2200821 3586 3479 -45922002.48202 3587 3479 -10938367.40355 3588 3479 2285900.879224 3589 3479 -27430300.57206 3590 3479 -184190435.19 3591 3479 571475.2200943 3592 3479 73352303.05408 3593 3479 -168344038.6739 3600 3479 -12536345.25295 3601 3479 -11857670.76516 3602 3479 -15333780.81983 3603 3479 -75690085.8441 3604 3479 -6857575.146393 3605 3479 -98280306.98791 3606 3479 -25394418.17384 3607 3479 18715245.91155 3608 3479 -55588121.11081 3480 3480 1165690130.316 3481 3480 62543894.59362 3482 3480 30858903.05731 3483 3480 26211628.98162 3484 3480 -62517557.8313 3485 3480 26694959.91784 3492 3480 -91763195.44578 3493 3480 -62499999.98975 3494 3480 24744636.36161 3495 3480 -229462147.1059 3496 3480 3.129243850708e-06 3497 3480 -4571801.756165 3498 3480 -93117579.12609 3499 3480 62499999.98975 3500 3480 -26687655.2966 3576 3480 -26133752.36576 3577 3480 15625000.00514 3578 3480 11964870.03287 3579 3480 -115335214.0726 3580 3480 -15631584.19572 3581 3480 68329440.16886 3588 3480 19205852.96814 3589 3480 4.768371582031e-06 3590 3480 571475.220082 3591 3480 130473837.5578 3592 3480 15635973.65611 3593 3480 7712253.313144 3594 3480 -53686446.86531 3595 3480 -15629389.46553 3596 3480 25401550.08976 3603 3480 -26778951.03495 3604 3480 -15625000.00513 3605 3480 -12536345.25295 3606 3480 -102220422.2785 3607 3480 1.013278961182e-06 3608 3480 -76032967.78832 3609 3480 -41874328.64406 3610 3480 15625000.00513 3611 3480 -25394418.17384 3481 3481 996913230.7936 3482 3481 -85034368.77329 3483 3481 -62526336.75207 3484 3481 -192572421.21 3485 3481 45540401.39811 3492 3481 -62499999.98975 3493 3481 -73012401.42493 3494 3481 12480775.28616 3495 3481 3.904104232788e-06 3496 3481 45539169.75475 3497 3481 -27430300.57206 3498 3481 62499999.98975 3499 3481 -74366785.10525 3500 3481 14949525.28589 3576 3481 15625000.00514 3577 3481 -21446053.85824 3578 3481 -11171906.87604 3579 3481 -15629389.46552 3580 3481 -41883469.12474 3581 3481 7334445.059211 3588 3481 6.780028343201e-06 3589 3481 -40169079.27509 3590 3481 -46196308.03739 3591 3481 15635973.65611 3592 3481 88279612.65644 3593 3481 -21260570.15053 3594 3481 -15631584.19572 3595 3481 -108382459.4402 3596 3481 71307025.97358 3603 3481 -15625000.00513 3604 3481 -22091252.52743 3605 3481 -11857670.76516 3606 3481 -7.748603820801e-07 3607 3481 -33470093.0295 3608 3481 -6857575.146393 3609 3481 15625000.00513 3610 3481 -37186630.13654 3611 3481 18715245.91155 3482 3482 1089507525.384 3483 3482 27041494.17268 3484 3482 53223718.26906 3485 3482 45623912.47205 3492 3482 24401754.41739 3493 3482 12206469.73079 3494 3482 -20394833.53905 3495 3482 -4571801.756165 3496 3482 -27430300.57206 3497 3482 85330883.72684 3498 3482 -27030537.24082 3499 3482 15223830.84127 3500 3482 -24006523.35327 3576 3482 11964870.03287 3577 3482 -11171906.87604 3578 3482 -13613251.03531 3579 3482 67985675.23876 3580 3482 5415714.150796 3581 3482 -77126033.46393 3588 3482 571475.2200821 3589 3482 -45922002.48202 3590 3482 -10938367.40355 3591 3482 7717499.145858 3592 3482 -21256373.52338 3593 3482 -156819638.9591 3594 3482 25405116.04772 3595 3482 72953597.68388 3596 3482 -149232299.5136 3603 3482 -12536345.25295 3604 3482 -11857670.76516 3605 3482 -15333780.81983 3606 3482 -75690085.8441 3607 3482 -6857575.146393 3608 3482 -98280306.98791 3609 3482 -25394418.17384 3610 3482 18715245.91155 3611 3482 -55588121.11081 3483 3483 686246478.3192 3484 3483 62499999.98975 3485 3483 26305964.70958 3495 3483 -91763195.44578 3496 3483 -62499999.98975 3497 3483 24744636.36161 3498 3483 -342709650.4072 3499 3483 -62517557.83129 3500 3483 -26298419.34625 3501 3483 11295368.10194 3502 3483 50017557.83334 3503 3483 -21265985.17297 3579 3483 1493260.574915 3580 3483 18756584.19674 3581 3483 14705768.01689 3591 3483 -8426923.443562 3592 3483 -15631584.19572 3593 3483 -11969908.87826 3594 3483 64179725.07093 3595 3483 15625000.00514 3596 3483 22379883.77153 3606 3483 -26778951.03495 3607 3483 -15625000.00513 3608 3483 -12536345.25295 3609 3483 -131080904.1793 3610 3483 -15629389.46552 3611 3483 -81477706.67803 3612 3483 -28030795.60664 3613 3483 12504389.4645 3614 3483 -20094076.36695 3484 3484 592472754.8433 3485 3484 -68590352.01097 3495 3484 -62499999.98975 3496 3484 -73012401.42493 3497 3484 12480775.28616 3498 3484 -62526336.75206 3499 3484 -48902670.76065 3500 3484 -37999764.78392 3501 3484 75026336.75001 3502 3484 11295368.10194 3503 3484 23873156.16496 3579 3484 12504389.4645 3580 3484 1493260.574915 3581 3484 -7843093.74256 3591 3484 -15629389.46552 3592 3484 -63122936.0184 3593 3484 -46615995.93793 3594 3484 15625000.00513 3595 3484 40736294.19042 3596 3484 -4504985.17355 3606 3484 -15625000.00513 3607 3484 -22091252.52743 3608 3484 -11857670.76516 3609 3484 -15631584.19572 3610 3484 -57629159.23151 3611 3484 -24484028.50059 3612 3484 18756584.19674 3613 3484 -28030795.60664 3614 3484 24112532.59506 3485 3485 708219203.5496 3495 3485 24401754.41739 3496 3485 12206469.73079 3497 3485 -20394833.53905 3498 3485 -26294646.66457 3499 3485 -30590657.17329 3500 3485 7845748.044902 3501 3485 -31898977.75945 3502 3485 15915437.44331 3503 3485 30120981.60519 3579 3485 9803845.344592 3580 3485 -11764640.61384 3581 3485 3982028.199772 3591 3485 -11968229.26313 3592 3485 -48262567.85004 3593 3485 -28540237.05556 3594 3485 -7512792.611826 3595 3485 -28418903.81719 3596 3485 -109296917.9411 3606 3485 -12536345.25295 3607 3485 -11857670.76516 3608 3485 -15333780.81983 3609 3485 -81133941.74793 3610 3485 -22561100.97091 3611 3485 -119114540.4154 3612 3485 -30141114.55043 3613 3485 16075021.73004 3614 3485 -74748788.28438 3486 3486 1082651565.536 3487 3486 1.692771911621e-05 3488 3486 9143603.512253 3489 3486 130318343.5391 3490 3486 -8.195638656616e-06 3491 3486 2285900.879194 3504 3486 -229462147.1059 3505 3486 3.129243850708e-06 3506 3486 -4571801.756165 3507 3486 -93117579.12609 3508 3486 62499999.98975 3509 3486 -26687655.2966 3582 3486 -98285243.92273 3583 3486 1.072883605957e-06 3584 3486 73747066.90912 3585 3486 -40551938.13439 3586 3486 -15625000.00514 3587 3486 24822942.95376 3597 3486 99158852.54101 3598 3486 3.457069396973e-06 3599 3486 2285900.879224 3600 3486 -39821273.75826 3601 3486 -8.895993232727e-06 3602 3486 571475.2200941 3615 3486 -102220422.2785 3616 3486 1.013278961182e-06 3617 3486 -76032967.78832 3618 3486 -41874328.64406 3619 3486 15625000.00513 3620 3486 -25394418.17384 3487 3487 932645213.4434 3488 3487 -109721202.2342 3489 3487 -8.702278137207e-06 3490 3487 -107181385.3168 3491 3487 54860601.11709 3504 3487 3.904104232788e-06 3505 3487 45539169.75475 3506 3487 -27430300.57206 3507 3487 62499999.98975 3508 3487 -74366785.10525 3509 3487 14949525.28589 3582 3487 -4.172325134277e-07 3583 3487 -29534914.67368 3584 3487 -6857575.146393 3585 3487 -15625000.00514 3586 3487 -35864239.62686 3587 3487 18029482.02244 3597 3487 3.814697265625e-06 3598 3487 61657264.49931 3599 3487 -27430300.57206 3600 3487 -7.718801498413e-06 3601 3487 -99196206.00148 3602 3487 73626608.60945 3615 3487 -7.748603820801e-07 3616 3487 -33470093.0295 3617 3487 -6857575.146393 3618 3487 15625000.00513 3619 3487 -37186630.13654 3620 3487 18715245.91155 3488 3488 1092614674.45 3489 3488 2285900.879194 3490 3488 54860601.11708 3491 3488 98899681.61908 3504 3488 -4571801.756165 3505 3488 -27430300.57206 3506 3488 85330883.72684 3507 3488 -27030537.24082 3508 3488 15223830.84127 3509 3488 -24006523.35327 3582 3488 73404184.96491 3583 3488 -6857575.146392 3584 3488 -87786498.03904 3585 3488 24822942.95376 3586 3488 18029482.02244 3587 3488 -52061746.4183 3597 3488 2285900.879224 3598 3488 -27430300.57206 3599 3488 -184190435.19 3600 3488 571475.2200943 3601 3488 73352303.05408 3602 3488 -168344038.6739 3615 3488 -75690085.8441 3616 3488 -6857575.146393 3617 3488 -98280306.98791 3618 3488 -25394418.17384 3619 3488 18715245.91155 3620 3488 -55588121.11081 3489 3489 1082651565.536 3490 3489 1.692771911621e-05 3491 3489 9143603.512253 3492 3489 130318343.5391 3493 3489 -8.195638656616e-06 3494 3489 2285900.879194 3504 3489 -91763195.44578 3505 3489 -62499999.98975 3506 3489 24744636.36161 3507 3489 -229462147.1059 3508 3489 3.129243850708e-06 3509 3489 -4571801.756165 3510 3489 -93117579.12609 3511 3489 62499999.98975 3512 3489 -26687655.2966 3582 3489 -26133752.36576 3583 3489 15625000.00514 3584 3489 11964870.03287 3585 3489 -98285243.92273 3586 3489 1.072883605957e-06 3587 3489 73747066.90912 3588 3489 -40551938.13439 3589 3489 -15625000.00514 3590 3489 24822942.95376 3597 3489 19205852.96814 3598 3489 4.768371582031e-06 3599 3489 571475.220082 3600 3489 99158852.54101 3601 3489 3.457069396973e-06 3602 3489 2285900.879224 3603 3489 -39821273.75826 3604 3489 -8.895993232727e-06 3605 3489 571475.2200941 3615 3489 -26778951.03495 3616 3489 -15625000.00513 3617 3489 -12536345.25295 3618 3489 -102220422.2785 3619 3489 1.013278961182e-06 3620 3489 -76032967.78832 3621 3489 -41874328.64406 3622 3489 15625000.00513 3623 3489 -25394418.17384 3490 3490 932645213.4434 3491 3490 -109721202.2342 3492 3490 -8.702278137207e-06 3493 3490 -107181385.3168 3494 3490 54860601.11709 3504 3490 -62499999.98975 3505 3490 -73012401.42493 3506 3490 12480775.28616 3507 3490 3.904104232788e-06 3508 3490 45539169.75475 3509 3490 -27430300.57206 3510 3490 62499999.98975 3511 3490 -74366785.10525 3512 3490 14949525.28589 3582 3490 15625000.00514 3583 3490 -21446053.85824 3584 3490 -11171906.87604 3585 3490 -4.172325134277e-07 3586 3490 -29534914.67368 3587 3490 -6857575.146393 3588 3490 -15625000.00514 3589 3490 -35864239.62686 3590 3490 18029482.02244 3597 3490 6.780028343201e-06 3598 3490 -40169079.27509 3599 3490 -46196308.03739 3600 3490 3.814697265625e-06 3601 3490 61657264.49931 3602 3490 -27430300.57206 3603 3490 -7.718801498413e-06 3604 3490 -99196206.00148 3605 3490 73626608.60945 3615 3490 -15625000.00513 3616 3490 -22091252.52743 3617 3490 -11857670.76516 3618 3490 -7.748603820801e-07 3619 3490 -33470093.0295 3620 3490 -6857575.146393 3621 3490 15625000.00513 3622 3490 -37186630.13654 3623 3490 18715245.91155 3491 3491 1092614674.45 3492 3491 2285900.879194 3493 3491 54860601.11708 3494 3491 98899681.61908 3504 3491 24401754.41739 3505 3491 12206469.73079 3506 3491 -20394833.53905 3507 3491 -4571801.756165 3508 3491 -27430300.57206 3509 3491 85330883.72684 3510 3491 -27030537.24082 3511 3491 15223830.84127 3512 3491 -24006523.35327 3582 3491 11964870.03287 3583 3491 -11171906.87604 3584 3491 -13613251.03531 3585 3491 73404184.96491 3586 3491 -6857575.146392 3587 3491 -87786498.03904 3588 3491 24822942.95376 3589 3491 18029482.02244 3590 3491 -52061746.4183 3597 3491 571475.2200821 3598 3491 -45922002.48202 3599 3491 -10938367.40355 3600 3491 2285900.879224 3601 3491 -27430300.57206 3602 3491 -184190435.19 3603 3491 571475.2200943 3604 3491 73352303.05408 3605 3491 -168344038.6739 3615 3491 -12536345.25295 3616 3491 -11857670.76516 3617 3491 -15333780.81983 3618 3491 -75690085.8441 3619 3491 -6857575.146393 3620 3491 -98280306.98791 3621 3491 -25394418.17384 3622 3491 18715245.91155 3623 3491 -55588121.11081 3492 3492 1082651565.536 3493 3492 1.692771911621e-05 3494 3492 9143603.512253 3495 3492 130318343.5391 3496 3492 -8.195638656616e-06 3497 3492 2285900.879194 3507 3492 -91763195.44578 3508 3492 -62499999.98975 3509 3492 24744636.36161 3510 3492 -229462147.1059 3511 3492 3.129243850708e-06 3512 3492 -4571801.756165 3513 3492 -93117579.12609 3514 3492 62499999.98975 3515 3492 -26687655.2966 3585 3492 -26133752.36576 3586 3492 15625000.00514 3587 3492 11964870.03287 3588 3492 -98285243.92273 3589 3492 1.072883605957e-06 3590 3492 73747066.90912 3591 3492 -40551938.13439 3592 3492 -15625000.00514 3593 3492 24822942.95376 3600 3492 19205852.96814 3601 3492 4.768371582031e-06 3602 3492 571475.220082 3603 3492 99158852.54101 3604 3492 3.457069396973e-06 3605 3492 2285900.879224 3606 3492 -39821273.75826 3607 3492 -8.895993232727e-06 3608 3492 571475.2200941 3618 3492 -26778951.03495 3619 3492 -15625000.00513 3620 3492 -12536345.25295 3621 3492 -102220422.2785 3622 3492 1.013278961182e-06 3623 3492 -76032967.78832 3624 3492 -41874328.64406 3625 3492 15625000.00513 3626 3492 -25394418.17384 3493 3493 932645213.4434 3494 3493 -109721202.2342 3495 3493 -8.702278137207e-06 3496 3493 -107181385.3168 3497 3493 54860601.11709 3507 3493 -62499999.98975 3508 3493 -73012401.42493 3509 3493 12480775.28616 3510 3493 3.904104232788e-06 3511 3493 45539169.75475 3512 3493 -27430300.57206 3513 3493 62499999.98975 3514 3493 -74366785.10525 3515 3493 14949525.28589 3585 3493 15625000.00514 3586 3493 -21446053.85824 3587 3493 -11171906.87604 3588 3493 -4.172325134277e-07 3589 3493 -29534914.67368 3590 3493 -6857575.146393 3591 3493 -15625000.00514 3592 3493 -35864239.62686 3593 3493 18029482.02244 3600 3493 6.780028343201e-06 3601 3493 -40169079.27509 3602 3493 -46196308.03739 3603 3493 3.814697265625e-06 3604 3493 61657264.49931 3605 3493 -27430300.57206 3606 3493 -7.718801498413e-06 3607 3493 -99196206.00148 3608 3493 73626608.60945 3618 3493 -15625000.00513 3619 3493 -22091252.52743 3620 3493 -11857670.76516 3621 3493 -7.748603820801e-07 3622 3493 -33470093.0295 3623 3493 -6857575.146393 3624 3493 15625000.00513 3625 3493 -37186630.13654 3626 3493 18715245.91155 3494 3494 1092614674.45 3495 3494 2285900.879194 3496 3494 54860601.11708 3497 3494 98899681.61908 3507 3494 24401754.41739 3508 3494 12206469.73079 3509 3494 -20394833.53905 3510 3494 -4571801.756165 3511 3494 -27430300.57206 3512 3494 85330883.72684 3513 3494 -27030537.24082 3514 3494 15223830.84127 3515 3494 -24006523.35327 3585 3494 11964870.03287 3586 3494 -11171906.87604 3587 3494 -13613251.03531 3588 3494 73404184.96491 3589 3494 -6857575.146392 3590 3494 -87786498.03904 3591 3494 24822942.95376 3592 3494 18029482.02244 3593 3494 -52061746.4183 3600 3494 571475.2200821 3601 3494 -45922002.48202 3602 3494 -10938367.40355 3603 3494 2285900.879224 3604 3494 -27430300.57206 3605 3494 -184190435.19 3606 3494 571475.2200943 3607 3494 73352303.05408 3608 3494 -168344038.6739 3618 3494 -12536345.25295 3619 3494 -11857670.76516 3620 3494 -15333780.81983 3621 3494 -75690085.8441 3622 3494 -6857575.146393 3623 3494 -98280306.98791 3624 3494 -25394418.17384 3625 3494 18715245.91155 3626 3494 -55588121.11081 3495 3495 1082651565.536 3496 3495 1.692771911621e-05 3497 3495 9143603.512253 3498 3495 130318343.5391 3499 3495 -8.195638656616e-06 3500 3495 2285900.879194 3510 3495 -91763195.44578 3511 3495 -62499999.98975 3512 3495 24744636.36161 3513 3495 -229462147.1059 3514 3495 3.129243850708e-06 3515 3495 -4571801.756165 3516 3495 -93117579.12609 3517 3495 62499999.98975 3518 3495 -26687655.2966 3588 3495 -26133752.36576 3589 3495 15625000.00514 3590 3495 11964870.03287 3591 3495 -98285243.92273 3592 3495 1.072883605957e-06 3593 3495 73747066.90912 3594 3495 -40551938.13439 3595 3495 -15625000.00514 3596 3495 24822942.95376 3603 3495 19205852.96814 3604 3495 4.768371582031e-06 3605 3495 571475.220082 3606 3495 99158852.54101 3607 3495 3.457069396973e-06 3608 3495 2285900.879224 3609 3495 -39821273.75826 3610 3495 -8.895993232727e-06 3611 3495 571475.2200941 3621 3495 -26778951.03495 3622 3495 -15625000.00513 3623 3495 -12536345.25295 3624 3495 -102220422.2785 3625 3495 1.013278961182e-06 3626 3495 -76032967.78832 3627 3495 -41874328.64406 3628 3495 15625000.00513 3629 3495 -25394418.17384 3496 3496 932645213.4434 3497 3496 -109721202.2342 3498 3496 -8.702278137207e-06 3499 3496 -107181385.3168 3500 3496 54860601.11709 3510 3496 -62499999.98975 3511 3496 -73012401.42493 3512 3496 12480775.28616 3513 3496 3.904104232788e-06 3514 3496 45539169.75475 3515 3496 -27430300.57206 3516 3496 62499999.98975 3517 3496 -74366785.10525 3518 3496 14949525.28589 3588 3496 15625000.00514 3589 3496 -21446053.85824 3590 3496 -11171906.87604 3591 3496 -4.172325134277e-07 3592 3496 -29534914.67368 3593 3496 -6857575.146393 3594 3496 -15625000.00514 3595 3496 -35864239.62686 3596 3496 18029482.02244 3603 3496 6.780028343201e-06 3604 3496 -40169079.27509 3605 3496 -46196308.03739 3606 3496 3.814697265625e-06 3607 3496 61657264.49931 3608 3496 -27430300.57206 3609 3496 -7.718801498413e-06 3610 3496 -99196206.00148 3611 3496 73626608.60945 3621 3496 -15625000.00513 3622 3496 -22091252.52743 3623 3496 -11857670.76516 3624 3496 -7.748603820801e-07 3625 3496 -33470093.0295 3626 3496 -6857575.146393 3627 3496 15625000.00513 3628 3496 -37186630.13654 3629 3496 18715245.91155 3497 3497 1092614674.45 3498 3497 2285900.879194 3499 3497 54860601.11708 3500 3497 98899681.61908 3510 3497 24401754.41739 3511 3497 12206469.73079 3512 3497 -20394833.53905 3513 3497 -4571801.756165 3514 3497 -27430300.57206 3515 3497 85330883.72684 3516 3497 -27030537.24082 3517 3497 15223830.84127 3518 3497 -24006523.35327 3588 3497 11964870.03287 3589 3497 -11171906.87604 3590 3497 -13613251.03531 3591 3497 73404184.96491 3592 3497 -6857575.146392 3593 3497 -87786498.03904 3594 3497 24822942.95376 3595 3497 18029482.02244 3596 3497 -52061746.4183 3603 3497 571475.2200821 3604 3497 -45922002.48202 3605 3497 -10938367.40355 3606 3497 2285900.879224 3607 3497 -27430300.57206 3608 3497 -184190435.19 3609 3497 571475.2200943 3610 3497 73352303.05408 3611 3497 -168344038.6739 3621 3497 -12536345.25295 3622 3497 -11857670.76516 3623 3497 -15333780.81983 3624 3497 -75690085.8441 3625 3497 -6857575.146393 3626 3497 -98280306.98791 3627 3497 -25394418.17384 3628 3497 18715245.91155 3629 3497 -55588121.11081 3498 3498 1165690130.316 3499 3498 62543894.59362 3500 3498 30858903.05731 3501 3498 26211628.98162 3502 3498 -62517557.8313 3503 3498 26694959.91784 3513 3498 -91763195.44578 3514 3498 -62499999.98975 3515 3498 24744636.36161 3516 3498 -229462147.1059 3517 3498 3.129243850708e-06 3518 3498 -4571801.756165 3519 3498 -93117579.12609 3520 3498 62499999.98975 3521 3498 -26687655.2966 3591 3498 -26133752.36576 3592 3498 15625000.00514 3593 3498 11964870.03287 3594 3498 -115335214.0726 3595 3498 -15631584.19572 3596 3498 68329440.16886 3606 3498 19205852.96814 3607 3498 4.768371582031e-06 3608 3498 571475.220082 3609 3498 130473837.5578 3610 3498 15635973.65611 3611 3498 7712253.313144 3612 3498 -53686446.86531 3613 3498 -15629389.46553 3614 3498 25401550.08976 3624 3498 -26778951.03495 3625 3498 -15625000.00513 3626 3498 -12536345.25295 3627 3498 -102220422.2785 3628 3498 1.013278961182e-06 3629 3498 -76032967.78832 3630 3498 -41874328.64406 3631 3498 15625000.00513 3632 3498 -25394418.17384 3499 3499 996913230.7936 3500 3499 -85034368.77329 3501 3499 -62526336.75207 3502 3499 -192572421.21 3503 3499 45540401.39811 3513 3499 -62499999.98975 3514 3499 -73012401.42493 3515 3499 12480775.28616 3516 3499 3.904104232788e-06 3517 3499 45539169.75475 3518 3499 -27430300.57206 3519 3499 62499999.98975 3520 3499 -74366785.10525 3521 3499 14949525.28589 3591 3499 15625000.00514 3592 3499 -21446053.85824 3593 3499 -11171906.87604 3594 3499 -15629389.46552 3595 3499 -41883469.12474 3596 3499 7334445.059211 3606 3499 6.780028343201e-06 3607 3499 -40169079.27509 3608 3499 -46196308.03739 3609 3499 15635973.65611 3610 3499 88279612.65644 3611 3499 -21260570.15053 3612 3499 -15631584.19572 3613 3499 -108382459.4402 3614 3499 71307025.97358 3624 3499 -15625000.00513 3625 3499 -22091252.52743 3626 3499 -11857670.76516 3627 3499 -7.748603820801e-07 3628 3499 -33470093.0295 3629 3499 -6857575.146393 3630 3499 15625000.00513 3631 3499 -37186630.13654 3632 3499 18715245.91155 3500 3500 1089507525.384 3501 3500 27041494.17268 3502 3500 53223718.26906 3503 3500 45623912.47205 3513 3500 24401754.41739 3514 3500 12206469.73079 3515 3500 -20394833.53905 3516 3500 -4571801.756165 3517 3500 -27430300.57206 3518 3500 85330883.72684 3519 3500 -27030537.24082 3520 3500 15223830.84127 3521 3500 -24006523.35327 3591 3500 11964870.03287 3592 3500 -11171906.87604 3593 3500 -13613251.03531 3594 3500 67985675.23876 3595 3500 5415714.150796 3596 3500 -77126033.46393 3606 3500 571475.2200821 3607 3500 -45922002.48202 3608 3500 -10938367.40355 3609 3500 7717499.145858 3610 3500 -21256373.52338 3611 3500 -156819638.9591 3612 3500 25405116.04772 3613 3500 72953597.68388 3614 3500 -149232299.5136 3624 3500 -12536345.25295 3625 3500 -11857670.76516 3626 3500 -15333780.81983 3627 3500 -75690085.8441 3628 3500 -6857575.146393 3629 3500 -98280306.98791 3630 3500 -25394418.17384 3631 3500 18715245.91155 3632 3500 -55588121.11081 3501 3501 653068470.5481 3502 3501 51182522.29112 3503 3501 -14075591.44842 3516 3501 -91763195.44578 3517 3501 -62499999.98975 3518 3501 24744636.36161 3519 3501 -315959922.3283 3520 3501 -51219443.04345 3521 3501 -1009127.195598 3522 3501 14126098.18154 3523 3501 50036920.74413 3524 3501 -2746063.173858 3594 3501 1493260.574915 3595 3501 18756584.19674 3596 3501 14705768.01689 3609 3501 -8426923.443562 3610 3501 -15631584.19572 3611 3501 -11969908.87826 3612 3501 57174585.59698 3613 3501 13544133.69379 3614 3501 11668680.97911 3627 3501 -26778951.03495 3628 3501 -15625000.00513 3629 3501 -12536345.25295 3630 3501 -120250044.4998 3631 3501 -13552736.157 3632 3501 -74187983.11656 3633 3501 -14447038.24357 3634 3501 12508602.46732 3635 3501 -15288233.60612 3502 3502 574312661.4285 3503 3502 -68239667.19298 3516 3502 -62499999.98975 3517 3502 -73012401.42493 3518 3502 12480775.28616 3519 3502 -51237903.41962 3520 3502 -27189411.59528 3521 3502 -18317053.54182 3522 3502 75055381.1162 3523 3502 4144652.738794 3524 3502 4938030.416524 3594 3502 12504389.4645 3595 3502 1493260.574915 3596 3502 -7843093.74256 3609 3502 -15629389.46552 3610 3502 -63122936.0184 3611 3502 -46615995.93793 3612 3502 13544133.69379 3613 3502 36444414.94717 3614 3502 -4791843.499179 3627 3502 -15625000.00513 3628 3502 -22091252.52743 3629 3502 -11857670.76516 3630 3502 -13557037.38861 3631 3502 -47722549.95791 3632 3502 -18100147.64644 3633 3502 18762903.70099 3634 3502 -16236048.06839 3635 3502 20781353.42089 3503 3503 670482888.5982 3516 3503 24401754.41739 3517 3503 12206469.73079 3518 3503 -20394833.53905 3519 3503 -8551486.517594 3520 3503 -17218969.19268 3521 3503 18458538.37432 3522 3503 -4119094.760787 3523 3503 3840470.11218 3524 3503 47651040.59353 3594 3503 9803845.344592 3595 3503 -11764640.61384 3596 3503 3982028.199772 3609 3503 -11968229.26313 3610 3503 -48262567.85004 3611 3503 -28540237.05556 3612 3503 -17876801.63845 3613 3503 -27875325.58272 3614 3503 -118608665.1674 3627 3503 -12536345.25295 3628 3503 -11857670.76516 3629 3503 -15333780.81983 3630 3503 -75902151.56773 3631 3503 -17547038.78856 3632 3503 -101389882.4658 3633 3503 -22932350.40918 3634 3503 14666146.34475 3635 3503 -36736425.49136 3504 3504 1082651565.536 3505 3504 1.692771911621e-05 3506 3504 9143603.512253 3507 3504 130318343.5391 3508 3504 -8.195638656616e-06 3509 3504 2285900.879194 3525 3504 -229462147.1059 3526 3504 3.129243850708e-06 3527 3504 -4571801.756165 3528 3504 -93117579.12609 3529 3504 62499999.98975 3530 3504 -26687655.2966 3597 3504 -98285243.92273 3598 3504 1.072883605957e-06 3599 3504 73747066.90912 3600 3504 -40551938.13439 3601 3504 -15625000.00514 3602 3504 24822942.95376 3615 3504 99158852.54101 3616 3504 3.457069396973e-06 3617 3504 2285900.879224 3618 3504 -39821273.75826 3619 3504 -8.895993232727e-06 3620 3504 571475.2200941 3636 3504 -102220422.2785 3637 3504 1.013278961182e-06 3638 3504 -76032967.78832 3639 3504 -41874328.64406 3640 3504 15625000.00513 3641 3504 -25394418.17384 3505 3505 932645213.4434 3506 3505 -109721202.2342 3507 3505 -8.702278137207e-06 3508 3505 -107181385.3168 3509 3505 54860601.11709 3525 3505 3.904104232788e-06 3526 3505 45539169.75475 3527 3505 -27430300.57206 3528 3505 62499999.98975 3529 3505 -74366785.10525 3530 3505 14949525.28589 3597 3505 -4.172325134277e-07 3598 3505 -29534914.67368 3599 3505 -6857575.146393 3600 3505 -15625000.00514 3601 3505 -35864239.62686 3602 3505 18029482.02244 3615 3505 3.814697265625e-06 3616 3505 61657264.49931 3617 3505 -27430300.57206 3618 3505 -7.718801498413e-06 3619 3505 -99196206.00148 3620 3505 73626608.60945 3636 3505 -7.748603820801e-07 3637 3505 -33470093.0295 3638 3505 -6857575.146393 3639 3505 15625000.00513 3640 3505 -37186630.13654 3641 3505 18715245.91155 3506 3506 1092614674.45 3507 3506 2285900.879194 3508 3506 54860601.11708 3509 3506 98899681.61908 3525 3506 -4571801.756165 3526 3506 -27430300.57206 3527 3506 85330883.72684 3528 3506 -27030537.24082 3529 3506 15223830.84127 3530 3506 -24006523.35327 3597 3506 73404184.96491 3598 3506 -6857575.146392 3599 3506 -87786498.03904 3600 3506 24822942.95376 3601 3506 18029482.02244 3602 3506 -52061746.4183 3615 3506 2285900.879224 3616 3506 -27430300.57206 3617 3506 -184190435.19 3618 3506 571475.2200943 3619 3506 73352303.05408 3620 3506 -168344038.6739 3636 3506 -75690085.8441 3637 3506 -6857575.146393 3638 3506 -98280306.98791 3639 3506 -25394418.17384 3640 3506 18715245.91155 3641 3506 -55588121.11081 3507 3507 1082651565.536 3508 3507 1.692771911621e-05 3509 3507 9143603.512253 3510 3507 130318343.5391 3511 3507 -8.195638656616e-06 3512 3507 2285900.879194 3525 3507 -91763195.44578 3526 3507 -62499999.98975 3527 3507 24744636.36161 3528 3507 -229462147.1059 3529 3507 3.129243850708e-06 3530 3507 -4571801.756165 3531 3507 -93117579.12609 3532 3507 62499999.98975 3533 3507 -26687655.2966 3597 3507 -26133752.36576 3598 3507 15625000.00514 3599 3507 11964870.03287 3600 3507 -98285243.92273 3601 3507 1.072883605957e-06 3602 3507 73747066.90912 3603 3507 -40551938.13439 3604 3507 -15625000.00514 3605 3507 24822942.95376 3615 3507 19205852.96814 3616 3507 4.768371582031e-06 3617 3507 571475.220082 3618 3507 99158852.54101 3619 3507 3.457069396973e-06 3620 3507 2285900.879224 3621 3507 -39821273.75826 3622 3507 -8.895993232727e-06 3623 3507 571475.2200941 3636 3507 -26778951.03495 3637 3507 -15625000.00513 3638 3507 -12536345.25295 3639 3507 -102220422.2785 3640 3507 1.013278961182e-06 3641 3507 -76032967.78832 3642 3507 -41874328.64406 3643 3507 15625000.00513 3644 3507 -25394418.17384 3508 3508 932645213.4434 3509 3508 -109721202.2342 3510 3508 -8.702278137207e-06 3511 3508 -107181385.3168 3512 3508 54860601.11709 3525 3508 -62499999.98975 3526 3508 -73012401.42493 3527 3508 12480775.28616 3528 3508 3.904104232788e-06 3529 3508 45539169.75475 3530 3508 -27430300.57206 3531 3508 62499999.98975 3532 3508 -74366785.10525 3533 3508 14949525.28589 3597 3508 15625000.00514 3598 3508 -21446053.85824 3599 3508 -11171906.87604 3600 3508 -4.172325134277e-07 3601 3508 -29534914.67368 3602 3508 -6857575.146393 3603 3508 -15625000.00514 3604 3508 -35864239.62686 3605 3508 18029482.02244 3615 3508 6.780028343201e-06 3616 3508 -40169079.27509 3617 3508 -46196308.03739 3618 3508 3.814697265625e-06 3619 3508 61657264.49931 3620 3508 -27430300.57206 3621 3508 -7.718801498413e-06 3622 3508 -99196206.00148 3623 3508 73626608.60945 3636 3508 -15625000.00513 3637 3508 -22091252.52743 3638 3508 -11857670.76516 3639 3508 -7.748603820801e-07 3640 3508 -33470093.0295 3641 3508 -6857575.146393 3642 3508 15625000.00513 3643 3508 -37186630.13654 3644 3508 18715245.91155 3509 3509 1092614674.45 3510 3509 2285900.879194 3511 3509 54860601.11708 3512 3509 98899681.61908 3525 3509 24401754.41739 3526 3509 12206469.73079 3527 3509 -20394833.53905 3528 3509 -4571801.756165 3529 3509 -27430300.57206 3530 3509 85330883.72684 3531 3509 -27030537.24082 3532 3509 15223830.84127 3533 3509 -24006523.35327 3597 3509 11964870.03287 3598 3509 -11171906.87604 3599 3509 -13613251.03531 3600 3509 73404184.96491 3601 3509 -6857575.146392 3602 3509 -87786498.03904 3603 3509 24822942.95376 3604 3509 18029482.02244 3605 3509 -52061746.4183 3615 3509 571475.2200821 3616 3509 -45922002.48202 3617 3509 -10938367.40355 3618 3509 2285900.879224 3619 3509 -27430300.57206 3620 3509 -184190435.19 3621 3509 571475.2200943 3622 3509 73352303.05408 3623 3509 -168344038.6739 3636 3509 -12536345.25295 3637 3509 -11857670.76516 3638 3509 -15333780.81983 3639 3509 -75690085.8441 3640 3509 -6857575.146393 3641 3509 -98280306.98791 3642 3509 -25394418.17384 3643 3509 18715245.91155 3644 3509 -55588121.11081 3510 3510 1082651565.536 3511 3510 1.692771911621e-05 3512 3510 9143603.512253 3513 3510 130318343.5391 3514 3510 -8.195638656616e-06 3515 3510 2285900.879194 3528 3510 -91763195.44578 3529 3510 -62499999.98975 3530 3510 24744636.36161 3531 3510 -229462147.1059 3532 3510 3.129243850708e-06 3533 3510 -4571801.756165 3534 3510 -93117579.12609 3535 3510 62499999.98975 3536 3510 -26687655.2966 3600 3510 -26133752.36576 3601 3510 15625000.00514 3602 3510 11964870.03287 3603 3510 -98285243.92273 3604 3510 1.072883605957e-06 3605 3510 73747066.90912 3606 3510 -40551938.13439 3607 3510 -15625000.00514 3608 3510 24822942.95376 3618 3510 19205852.96814 3619 3510 4.768371582031e-06 3620 3510 571475.220082 3621 3510 99158852.54101 3622 3510 3.457069396973e-06 3623 3510 2285900.879224 3624 3510 -39821273.75826 3625 3510 -8.895993232727e-06 3626 3510 571475.2200941 3639 3510 -26778951.03495 3640 3510 -15625000.00513 3641 3510 -12536345.25295 3642 3510 -102220422.2785 3643 3510 1.013278961182e-06 3644 3510 -76032967.78832 3645 3510 -41874328.64406 3646 3510 15625000.00513 3647 3510 -25394418.17384 3511 3511 932645213.4434 3512 3511 -109721202.2342 3513 3511 -8.702278137207e-06 3514 3511 -107181385.3168 3515 3511 54860601.11709 3528 3511 -62499999.98975 3529 3511 -73012401.42493 3530 3511 12480775.28616 3531 3511 3.904104232788e-06 3532 3511 45539169.75475 3533 3511 -27430300.57206 3534 3511 62499999.98975 3535 3511 -74366785.10525 3536 3511 14949525.28589 3600 3511 15625000.00514 3601 3511 -21446053.85824 3602 3511 -11171906.87604 3603 3511 -4.172325134277e-07 3604 3511 -29534914.67368 3605 3511 -6857575.146393 3606 3511 -15625000.00514 3607 3511 -35864239.62686 3608 3511 18029482.02244 3618 3511 6.780028343201e-06 3619 3511 -40169079.27509 3620 3511 -46196308.03739 3621 3511 3.814697265625e-06 3622 3511 61657264.49931 3623 3511 -27430300.57206 3624 3511 -7.718801498413e-06 3625 3511 -99196206.00148 3626 3511 73626608.60945 3639 3511 -15625000.00513 3640 3511 -22091252.52743 3641 3511 -11857670.76516 3642 3511 -7.748603820801e-07 3643 3511 -33470093.0295 3644 3511 -6857575.146393 3645 3511 15625000.00513 3646 3511 -37186630.13654 3647 3511 18715245.91155 3512 3512 1092614674.45 3513 3512 2285900.879194 3514 3512 54860601.11708 3515 3512 98899681.61908 3528 3512 24401754.41739 3529 3512 12206469.73079 3530 3512 -20394833.53905 3531 3512 -4571801.756165 3532 3512 -27430300.57206 3533 3512 85330883.72684 3534 3512 -27030537.24082 3535 3512 15223830.84127 3536 3512 -24006523.35327 3600 3512 11964870.03287 3601 3512 -11171906.87604 3602 3512 -13613251.03531 3603 3512 73404184.96491 3604 3512 -6857575.146392 3605 3512 -87786498.03904 3606 3512 24822942.95376 3607 3512 18029482.02244 3608 3512 -52061746.4183 3618 3512 571475.2200821 3619 3512 -45922002.48202 3620 3512 -10938367.40355 3621 3512 2285900.879224 3622 3512 -27430300.57206 3623 3512 -184190435.19 3624 3512 571475.2200943 3625 3512 73352303.05408 3626 3512 -168344038.6739 3639 3512 -12536345.25295 3640 3512 -11857670.76516 3641 3512 -15333780.81983 3642 3512 -75690085.8441 3643 3512 -6857575.146393 3644 3512 -98280306.98791 3645 3512 -25394418.17384 3646 3512 18715245.91155 3647 3512 -55588121.11081 3513 3513 1082651565.536 3514 3513 1.692771911621e-05 3515 3513 9143603.512253 3516 3513 130318343.5391 3517 3513 -8.195638656616e-06 3518 3513 2285900.879194 3531 3513 -91763195.44578 3532 3513 -62499999.98975 3533 3513 24744636.36161 3534 3513 -229462147.1059 3535 3513 3.129243850708e-06 3536 3513 -4571801.756165 3537 3513 -93117579.12609 3538 3513 62499999.98975 3539 3513 -26687655.2966 3603 3513 -26133752.36576 3604 3513 15625000.00514 3605 3513 11964870.03287 3606 3513 -98285243.92273 3607 3513 1.072883605957e-06 3608 3513 73747066.90912 3609 3513 -40551938.13439 3610 3513 -15625000.00514 3611 3513 24822942.95376 3621 3513 19205852.96814 3622 3513 4.768371582031e-06 3623 3513 571475.220082 3624 3513 99158852.54101 3625 3513 3.457069396973e-06 3626 3513 2285900.879224 3627 3513 -39821273.75826 3628 3513 -8.895993232727e-06 3629 3513 571475.2200941 3642 3513 -26778951.03495 3643 3513 -15625000.00513 3644 3513 -12536345.25295 3645 3513 -102220422.2785 3646 3513 1.013278961182e-06 3647 3513 -76032967.78832 3648 3513 -41874328.64406 3649 3513 15625000.00513 3650 3513 -25394418.17384 3514 3514 932645213.4434 3515 3514 -109721202.2342 3516 3514 -8.702278137207e-06 3517 3514 -107181385.3168 3518 3514 54860601.11709 3531 3514 -62499999.98975 3532 3514 -73012401.42493 3533 3514 12480775.28616 3534 3514 3.904104232788e-06 3535 3514 45539169.75475 3536 3514 -27430300.57206 3537 3514 62499999.98975 3538 3514 -74366785.10525 3539 3514 14949525.28589 3603 3514 15625000.00514 3604 3514 -21446053.85824 3605 3514 -11171906.87604 3606 3514 -4.172325134277e-07 3607 3514 -29534914.67368 3608 3514 -6857575.146393 3609 3514 -15625000.00514 3610 3514 -35864239.62686 3611 3514 18029482.02244 3621 3514 6.780028343201e-06 3622 3514 -40169079.27509 3623 3514 -46196308.03739 3624 3514 3.814697265625e-06 3625 3514 61657264.49931 3626 3514 -27430300.57206 3627 3514 -7.718801498413e-06 3628 3514 -99196206.00148 3629 3514 73626608.60945 3642 3514 -15625000.00513 3643 3514 -22091252.52743 3644 3514 -11857670.76516 3645 3514 -7.748603820801e-07 3646 3514 -33470093.0295 3647 3514 -6857575.146393 3648 3514 15625000.00513 3649 3514 -37186630.13654 3650 3514 18715245.91155 3515 3515 1092614674.45 3516 3515 2285900.879194 3517 3515 54860601.11708 3518 3515 98899681.61908 3531 3515 24401754.41739 3532 3515 12206469.73079 3533 3515 -20394833.53905 3534 3515 -4571801.756165 3535 3515 -27430300.57206 3536 3515 85330883.72684 3537 3515 -27030537.24082 3538 3515 15223830.84127 3539 3515 -24006523.35327 3603 3515 11964870.03287 3604 3515 -11171906.87604 3605 3515 -13613251.03531 3606 3515 73404184.96491 3607 3515 -6857575.146392 3608 3515 -87786498.03904 3609 3515 24822942.95376 3610 3515 18029482.02244 3611 3515 -52061746.4183 3621 3515 571475.2200821 3622 3515 -45922002.48202 3623 3515 -10938367.40355 3624 3515 2285900.879224 3625 3515 -27430300.57206 3626 3515 -184190435.19 3627 3515 571475.2200943 3628 3515 73352303.05408 3629 3515 -168344038.6739 3642 3515 -12536345.25295 3643 3515 -11857670.76516 3644 3515 -15333780.81983 3645 3515 -75690085.8441 3646 3515 -6857575.146393 3647 3515 -98280306.98791 3648 3515 -25394418.17384 3649 3515 18715245.91155 3650 3515 -55588121.11081 3516 3516 1082651565.536 3517 3516 1.692771911621e-05 3518 3516 9143603.512253 3519 3516 130318343.5391 3520 3516 -8.195638656616e-06 3521 3516 2285900.879194 3534 3516 -91763195.44578 3535 3516 -62499999.98975 3536 3516 24744636.36161 3537 3516 -229462147.1059 3538 3516 3.129243850708e-06 3539 3516 -4571801.756165 3540 3516 -93117579.12609 3541 3516 62499999.98975 3542 3516 -26687655.2966 3606 3516 -26133752.36576 3607 3516 15625000.00514 3608 3516 11964870.03287 3609 3516 -98285243.92273 3610 3516 1.072883605957e-06 3611 3516 73747066.90912 3612 3516 -40551938.13439 3613 3516 -15625000.00514 3614 3516 24822942.95376 3624 3516 19205852.96814 3625 3516 4.768371582031e-06 3626 3516 571475.220082 3627 3516 99158852.54101 3628 3516 3.457069396973e-06 3629 3516 2285900.879224 3630 3516 -39821273.75826 3631 3516 -8.895993232727e-06 3632 3516 571475.2200941 3645 3516 -26778951.03495 3646 3516 -15625000.00513 3647 3516 -12536345.25295 3648 3516 -102220422.2785 3649 3516 1.013278961182e-06 3650 3516 -76032967.78832 3651 3516 -41874328.64406 3652 3516 15625000.00513 3653 3516 -25394418.17384 3517 3517 932645213.4434 3518 3517 -109721202.2342 3519 3517 -8.702278137207e-06 3520 3517 -107181385.3168 3521 3517 54860601.11709 3534 3517 -62499999.98975 3535 3517 -73012401.42493 3536 3517 12480775.28616 3537 3517 3.904104232788e-06 3538 3517 45539169.75475 3539 3517 -27430300.57206 3540 3517 62499999.98975 3541 3517 -74366785.10525 3542 3517 14949525.28589 3606 3517 15625000.00514 3607 3517 -21446053.85824 3608 3517 -11171906.87604 3609 3517 -4.172325134277e-07 3610 3517 -29534914.67368 3611 3517 -6857575.146393 3612 3517 -15625000.00514 3613 3517 -35864239.62686 3614 3517 18029482.02244 3624 3517 6.780028343201e-06 3625 3517 -40169079.27509 3626 3517 -46196308.03739 3627 3517 3.814697265625e-06 3628 3517 61657264.49931 3629 3517 -27430300.57206 3630 3517 -7.718801498413e-06 3631 3517 -99196206.00148 3632 3517 73626608.60945 3645 3517 -15625000.00513 3646 3517 -22091252.52743 3647 3517 -11857670.76516 3648 3517 -7.748603820801e-07 3649 3517 -33470093.0295 3650 3517 -6857575.146393 3651 3517 15625000.00513 3652 3517 -37186630.13654 3653 3517 18715245.91155 3518 3518 1092614674.45 3519 3518 2285900.879194 3520 3518 54860601.11708 3521 3518 98899681.61908 3534 3518 24401754.41739 3535 3518 12206469.73079 3536 3518 -20394833.53905 3537 3518 -4571801.756165 3538 3518 -27430300.57206 3539 3518 85330883.72684 3540 3518 -27030537.24082 3541 3518 15223830.84127 3542 3518 -24006523.35327 3606 3518 11964870.03287 3607 3518 -11171906.87604 3608 3518 -13613251.03531 3609 3518 73404184.96491 3610 3518 -6857575.146392 3611 3518 -87786498.03904 3612 3518 24822942.95376 3613 3518 18029482.02244 3614 3518 -52061746.4183 3624 3518 571475.2200821 3625 3518 -45922002.48202 3626 3518 -10938367.40355 3627 3518 2285900.879224 3628 3518 -27430300.57206 3629 3518 -184190435.19 3630 3518 571475.2200943 3631 3518 73352303.05408 3632 3518 -168344038.6739 3645 3518 -12536345.25295 3646 3518 -11857670.76516 3647 3518 -15333780.81983 3648 3518 -75690085.8441 3649 3518 -6857575.146393 3650 3518 -98280306.98791 3651 3518 -25394418.17384 3652 3518 18715245.91155 3653 3518 -55588121.11081 3519 3519 1119567064.823 3520 3519 51868578.37564 3521 3519 9078619.584517 3522 3519 16739573.67208 3523 3519 -68255098.98124 3524 3519 4440784.766338 3537 3519 -91763195.44578 3538 3519 -62499999.98975 3539 3519 24744636.36161 3540 3519 -219541507.9457 3541 3519 5590443.380515 3542 3519 -308077.8811086 3543 3519 -75671590.24938 3544 3519 62033980.64472 3545 3519 -4658919.241186 3609 3519 -26133752.36576 3610 3519 15625000.00514 3611 3519 11964870.03287 3612 3519 -116635571.6621 3613 3519 -13557037.38861 3614 3519 71825261.52009 3627 3519 19205852.96814 3628 3519 4.768371582031e-06 3629 3519 571475.220082 3630 3519 119513491.7636 3631 3519 13646802.5259 3632 3519 2257650.049491 3633 3519 -37663498.656 3634 3519 -16681828.38297 3635 3519 20639715.93369 3648 3519 -26778951.03495 3649 3519 -15625000.00513 3650 3519 -12536345.25295 3651 3519 -101736939.0315 3652 3519 1031079.308418 3653 3519 -75280279.48546 3654 3519 -32862857.84378 3655 3519 15560983.93726 3656 3519 -19412034.49389 3520 3520 981611138.411 3521 3520 -64673518.78673 3522 3520 -68273559.3574 3523 3520 -202871285.6405 3524 3520 9454749.061244 3537 3520 -62499999.98975 3538 3520 -73012401.42493 3539 3520 12480775.28616 3540 3520 5590443.380517 3541 3520 49584393.39806 3542 3520 -16791816.53285 3543 3520 62033980.64471 3544 3520 -76003075.78772 3545 3520 3373418.155893 3609 3520 15625000.00514 3610 3520 -21446053.85824 3611 3520 -11171906.87604 3612 3520 -13552736.15701 3613 3520 -44108077.12019 3614 3520 9302354.58656 3627 3520 6.780028343201e-06 3628 3520 -40169079.27509 3629 3520 -46196308.03739 3630 3520 13646802.52589 3631 3520 82967131.3934 3632 3520 -15977932.15831 3633 3520 -16686129.61458 3634 3520 -92498249.21409 3635 3520 64870490.37463 3648 3520 -15625000.00513 3649 3520 -22091252.52743 3650 3520 -11857670.76516 3651 3520 1031079.308416 3652 3520 -34052279.33202 3653 3520 -3130435.378702 3654 3520 15560983.93726 3655 3520 -31694365.92876 3656 3520 17477326.20954 3521 3521 1053716606.38 3522 3521 4442288.575716 3523 3521 9455979.495823 3524 3521 53874562.57944 3537 3521 24401754.41739 3538 3521 12206469.73079 3539 3521 -20394833.53905 3540 3521 -7851480.657647 3541 3521 -16791816.53285 3542 3521 84352977.65236 3543 3521 -4658919.240511 3544 3521 3373418.155893 3545 3521 -10044511.20959 3609 3521 11964870.03287 3610 3521 -11171906.87604 3611 3521 -13613251.03531 3612 3521 73539429.97126 3613 3521 9306457.422693 3614 3521 -91751288.23183 3627 3521 571475.2200821 3628 3521 -45922002.48202 3629 3521 -10938367.40355 3630 3521 2267681.283016 3631 3521 -14872684.79652 3632 3521 -169875280.5724 3633 3521 20645082.7339 3634 3521 64870488.0431 3635 3521 -100342559.1602 3648 3521 -12536345.25295 3649 3521 -11857670.76516 3650 3521 -15333780.81983 3651 3521 -76994689.20841 3652 3521 -2856129.82292 3653 3521 -102037504.2931 3654 3521 -19412034.49389 3655 3521 17477326.20954 3656 3521 -37687237.45018 3522 3522 623317858.5368 3523 3522 3675811.7928 3524 3522 517107.2674251 3540 3522 -90991721.40217 3541 3522 -62441458.17468 3542 3522 3788785.758507 3543 3522 -195665726.9223 3544 3522 7452350.770389 3545 3522 -810784.3127724 3546 3522 72846196.4546 3547 3522 -16117683.85556 3548 3522 -157155.5887424 3549 3522 -72505863.56765 3550 3522 60649157.70826 3551 3522 -918091.382888 3612 3522 -9779519.734472 3613 3522 18762903.70099 3614 3522 20872950.87833 3630 3522 -29384033.50768 3631 3522 -16686129.61458 3632 3522 -18457319.24497 3633 3522 27287164.95526 3634 3522 684062.1150855 3635 3522 15553829.11912 3651 3522 -33120558.02393 3652 3522 -15616945.6841 3653 3522 -18587389.84292 3654 3522 -99717017.87952 3655 3522 1376184.523421 3656 3522 -77291329.02194 3657 3522 -7501425.829938 3658 3522 -3801118.93258 3659 3522 5317579.933864 3660 3522 -31714807.53314 3661 3522 15281043.89176 3662 3522 -19247766.26639 3523 3523 680695003.4004 3524 3523 -10342881.00179 3540 3523 -62441458.17468 3541 3523 -68421577.40789 3542 3523 1392259.099982 3543 3523 7452350.77039 3544 3523 67820764.43311 3545 3523 -3133252.076033 3546 3523 8882316.140337 3547 3523 -47551906.89358 3548 3523 482784.0969671 3549 3523 60649157.70826 3550 3523 -65949235.67731 3551 3523 497300.0129927 3612 3523 12508602.46732 3613 3523 -11568529.55929 3614 3523 -12849308.9116 3630 3523 -16681828.38297 3631 3523 -84218784.06579 3632 3523 -60205510.16422 3633 3523 684062.1150822 3634 3523 39801359.55164 3635 3523 3317151.913985 3651 3523 -15616945.6841 3652 3523 -27729259.16604 3653 3523 -15272198.20777 3654 3523 1376184.523421 3655 3523 -33227547.88426 3656 3523 269158.2598691 3657 3523 2448881.069472 3658 3523 -37533389.70497 3659 3523 33453138.41178 3660 3523 15281043.89176 3661 3523 -29454046.72473 3662 3523 16789140.72124 3524 3524 714283333.8847 3540 3524 3788785.758844 3541 3524 1392259.100252 3542 3524 -11821835.32419 3543 3524 -810784.3127718 3544 3524 -3133252.076033 3545 3524 100694743.5742 3546 3524 -157155.5887394 3547 3524 482784.096967 3548 3524 78864901.84259 3549 3524 -918091.3825506 3550 3524 497300.0129927 3551 3524 -2569640.608923 3612 3524 13915300.58555 3613 3524 -18415738.09842 3614 3524 -24289709.4671 3630 3524 -18452655.06576 3631 3524 -60206083.47894 3632 3524 -78263985.43137 3633 3524 -15287906.98693 3634 3524 -8365059.572945 3635 3524 -166656134.6925 3651 3524 -18587389.84292 3652 3524 -15272198.20777 3653 3524 -31019516.42629 3654 3524 -77291329.02227 3655 3524 269158.2600059 3656 3524 -106138990.6835 3657 3524 -2807420.068633 3658 3524 33453138.41178 3659 3524 -49046947.17697 3660 3524 -19247766.26639 3661 3524 16789140.72124 3662 3524 -35065242.93145 3525 3525 541325782.7681 3526 3525 6.437301635742e-06 3527 3525 4571801.756125 3528 3525 65181744.83088 3529 3525 12499999.99795 3530 3525 -3143073.865676 3615 3525 -98285243.92273 3616 3525 1.072883605957e-06 3617 3525 73747066.90912 3618 3525 -40551938.13439 3619 3525 -15625000.00514 3620 3525 24822942.95376 3636 3525 49556853.20918 3637 3525 2.026557922363e-06 3638 3525 -14657969.69626 3639 3525 -19910636.87912 3640 3525 3125000.001023 3641 3525 -4735998.502713 3526 3526 466322606.7217 3527 3526 -54860601.11707 3528 3526 -12499999.99795 3529 3526 -53568119.59706 3530 3526 27155995.00303 3615 3526 -4.172325134277e-07 3616 3526 -29534914.67368 3617 3526 -6857575.146393 3618 3526 -15625000.00514 3619 3526 -35864239.62686 3620 3526 18029482.02244 3636 3526 2.264976501465e-06 3637 3526 30806059.18833 3638 3526 -13715150.28603 3639 3526 -3125000.00103 3640 3526 -49598103.00073 3641 3526 36744727.91581 3527 3527 546307337.2251 3528 3527 7143384.465966 3529 3527 27704606.11405 3530 3527 49510035.63975 3615 3527 73404184.96491 3616 3527 -6857575.146392 3617 3527 -87786498.03904 3618 3527 24822942.95376 3619 3527 18029482.02244 3620 3527 -52061746.4183 3636 3527 15229460.85439 3637 3527 -13715150.28603 3638 3527 -92155412.4252 3639 3527 5307473.722807 3640 3527 36744727.91595 3641 3527 -84172019.33696 3528 3528 541325782.7681 3529 3528 6.437301635742e-06 3530 3528 4571801.756125 3531 3528 65181744.83088 3532 3528 12499999.99795 3533 3528 -3143073.865676 3615 3528 -26133752.36576 3616 3528 15625000.00514 3617 3528 11964870.03287 3618 3528 -98285243.92273 3619 3528 1.072883605957e-06 3620 3528 73747066.90912 3621 3528 -40551938.13439 3622 3528 -15625000.00514 3623 3528 24822942.95376 3636 3528 9602926.484067 3637 3528 -3125000.001024 3638 3528 -2164383.918541 3639 3528 49556853.20918 3640 3528 2.026557922363e-06 3641 3528 -14657969.69626 3642 3528 -19910636.87912 3643 3528 3125000.001023 3644 3528 -4735998.502713 3529 3529 466322606.7217 3530 3529 -54860601.11707 3531 3529 -12499999.99795 3532 3529 -53568119.59706 3533 3529 27155995.00303 3615 3529 15625000.00514 3616 3529 -21446053.85824 3617 3529 -11171906.87604 3618 3529 -4.172325134277e-07 3619 3529 -29534914.67368 3620 3529 -6857575.146393 3621 3529 -15625000.00514 3622 3529 -35864239.62686 3623 3529 18029482.02244 3636 3529 3125000.001031 3637 3529 -20084539.63755 3638 3529 -23029577.62979 3639 3529 2.264976501465e-06 3640 3529 30806059.18833 3641 3529 -13715150.28603 3642 3529 -3125000.00103 3643 3529 -49598103.00073 3644 3529 36744727.91581 3530 3530 546307337.2251 3531 3530 7143384.465966 3532 3530 27704606.11405 3533 3530 49510035.63975 3615 3530 11964870.03287 3616 3530 -11171906.87604 3617 3530 -13613251.03531 3618 3530 73404184.96491 3619 3530 -6857575.146392 3620 3530 -87786498.03904 3621 3530 24822942.95376 3622 3530 18029482.02244 3623 3530 -52061746.4183 3636 3530 2735859.138623 3637 3530 -23029577.62992 3638 3530 -5469183.701778 3639 3530 15229460.85439 3640 3530 -13715150.28603 3641 3530 -92155412.4252 3642 3530 5307473.722807 3643 3530 36744727.91595 3644 3530 -84172019.33696 3531 3531 541325782.7681 3532 3531 6.437301635742e-06 3533 3531 4571801.756125 3534 3531 65181744.83088 3535 3531 12499999.99795 3536 3531 -3143073.865676 3618 3531 -26133752.36576 3619 3531 15625000.00514 3620 3531 11964870.03287 3621 3531 -98285243.92273 3622 3531 1.072883605957e-06 3623 3531 73747066.90912 3624 3531 -40551938.13439 3625 3531 -15625000.00514 3626 3531 24822942.95376 3639 3531 9602926.484067 3640 3531 -3125000.001024 3641 3531 -2164383.918541 3642 3531 49556853.20918 3643 3531 2.026557922363e-06 3644 3531 -14657969.69626 3645 3531 -19910636.87912 3646 3531 3125000.001023 3647 3531 -4735998.502713 3532 3532 466322606.7217 3533 3532 -54860601.11707 3534 3532 -12499999.99795 3535 3532 -53568119.59706 3536 3532 27155995.00303 3618 3532 15625000.00514 3619 3532 -21446053.85824 3620 3532 -11171906.87604 3621 3532 -4.172325134277e-07 3622 3532 -29534914.67368 3623 3532 -6857575.146393 3624 3532 -15625000.00514 3625 3532 -35864239.62686 3626 3532 18029482.02244 3639 3532 3125000.001031 3640 3532 -20084539.63755 3641 3532 -23029577.62979 3642 3532 2.264976501465e-06 3643 3532 30806059.18833 3644 3532 -13715150.28603 3645 3532 -3125000.00103 3646 3532 -49598103.00073 3647 3532 36744727.91581 3533 3533 546307337.2251 3534 3533 7143384.465966 3535 3533 27704606.11405 3536 3533 49510035.63975 3618 3533 11964870.03287 3619 3533 -11171906.87604 3620 3533 -13613251.03531 3621 3533 73404184.96491 3622 3533 -6857575.146392 3623 3533 -87786498.03904 3624 3533 24822942.95376 3625 3533 18029482.02244 3626 3533 -52061746.4183 3639 3533 2735859.138623 3640 3533 -23029577.62992 3641 3533 -5469183.701778 3642 3533 15229460.85439 3643 3533 -13715150.28603 3644 3533 -92155412.4252 3645 3533 5307473.722807 3646 3533 36744727.91595 3647 3533 -84172019.33696 3534 3534 541325782.7681 3535 3534 6.437301635742e-06 3536 3534 4571801.756125 3537 3534 65181744.83088 3538 3534 12499999.99795 3539 3534 -3143073.865676 3621 3534 -26133752.36576 3622 3534 15625000.00514 3623 3534 11964870.03287 3624 3534 -98285243.92273 3625 3534 1.072883605957e-06 3626 3534 73747066.90912 3627 3534 -40551938.13439 3628 3534 -15625000.00514 3629 3534 24822942.95376 3642 3534 9602926.484067 3643 3534 -3125000.001024 3644 3534 -2164383.918541 3645 3534 49556853.20918 3646 3534 2.026557922363e-06 3647 3534 -14657969.69626 3648 3534 -19910636.87912 3649 3534 3125000.001023 3650 3534 -4735998.502713 3535 3535 466322606.7217 3536 3535 -54860601.11707 3537 3535 -12499999.99795 3538 3535 -53568119.59706 3539 3535 27155995.00303 3621 3535 15625000.00514 3622 3535 -21446053.85824 3623 3535 -11171906.87604 3624 3535 -4.172325134277e-07 3625 3535 -29534914.67368 3626 3535 -6857575.146393 3627 3535 -15625000.00514 3628 3535 -35864239.62686 3629 3535 18029482.02244 3642 3535 3125000.001031 3643 3535 -20084539.63755 3644 3535 -23029577.62979 3645 3535 2.264976501465e-06 3646 3535 30806059.18833 3647 3535 -13715150.28603 3648 3535 -3125000.00103 3649 3535 -49598103.00073 3650 3535 36744727.91581 3536 3536 546307337.2251 3537 3536 7143384.465966 3538 3536 27704606.11405 3539 3536 49510035.63975 3621 3536 11964870.03287 3622 3536 -11171906.87604 3623 3536 -13613251.03531 3624 3536 73404184.96491 3625 3536 -6857575.146392 3626 3536 -87786498.03904 3627 3536 24822942.95376 3628 3536 18029482.02244 3629 3536 -52061746.4183 3642 3536 2735859.138623 3643 3536 -23029577.62992 3644 3536 -5469183.701778 3645 3536 15229460.85439 3646 3536 -13715150.28603 3647 3536 -92155412.4252 3648 3536 5307473.722807 3649 3536 36744727.91595 3650 3536 -84172019.33696 3537 3537 541325782.7681 3538 3537 6.437301635742e-06 3539 3537 4571801.756125 3540 3537 65181744.83088 3541 3537 12499999.99795 3542 3537 -3143073.865676 3624 3537 -26133752.36576 3625 3537 15625000.00514 3626 3537 11964870.03287 3627 3537 -98285243.92273 3628 3537 1.072883605957e-06 3629 3537 73747066.90912 3630 3537 -40551938.13439 3631 3537 -15625000.00514 3632 3537 24822942.95376 3645 3537 9602926.484067 3646 3537 -3125000.001024 3647 3537 -2164383.918541 3648 3537 49556853.20918 3649 3537 2.026557922363e-06 3650 3537 -14657969.69626 3651 3537 -19910636.87912 3652 3537 3125000.001023 3653 3537 -4735998.502713 3538 3538 466322606.7217 3539 3538 -54860601.11707 3540 3538 -12499999.99795 3541 3538 -53568119.59706 3542 3538 27155995.00303 3624 3538 15625000.00514 3625 3538 -21446053.85824 3626 3538 -11171906.87604 3627 3538 -4.172325134277e-07 3628 3538 -29534914.67368 3629 3538 -6857575.146393 3630 3538 -15625000.00514 3631 3538 -35864239.62686 3632 3538 18029482.02244 3645 3538 3125000.001031 3646 3538 -20084539.63755 3647 3538 -23029577.62979 3648 3538 2.264976501465e-06 3649 3538 30806059.18833 3650 3538 -13715150.28603 3651 3538 -3125000.00103 3652 3538 -49598103.00073 3653 3538 36744727.91581 3539 3539 546307337.2251 3540 3539 7143384.465966 3541 3539 27704606.11405 3542 3539 49510035.63975 3624 3539 11964870.03287 3625 3539 -11171906.87604 3626 3539 -13613251.03531 3627 3539 73404184.96491 3628 3539 -6857575.146392 3629 3539 -87786498.03904 3630 3539 24822942.95376 3631 3539 18029482.02244 3632 3539 -52061746.4183 3645 3539 2735859.138623 3646 3539 -23029577.62992 3647 3539 -5469183.701778 3648 3539 15229460.85439 3649 3539 -13715150.28603 3650 3539 -92155412.4252 3651 3539 5307473.722807 3652 3539 36744727.91595 3653 3539 -84172019.33696 3540 3540 535568240.4202 3541 3540 58128.69620621 3542 3540 23218753.21209 3543 3540 66687073.10683 3544 3540 6792886.106159 3545 3540 45330.57174599 3627 3540 -26133752.36576 3628 3540 15625000.00514 3629 3540 11964870.03287 3630 3540 -98078021.4205 3631 3540 1031079.308427 3632 3540 73275536.4611 3633 3540 -35178433.35253 3634 3540 -15616945.6841 3635 3540 20484919.19769 3648 3540 9602926.484067 3649 3540 -3125000.001024 3650 3540 -2164383.918541 3651 3540 44756559.78498 3652 3540 7943.295568347 3653 3540 -9908664.635919 3654 3540 -9289690.704191 3655 3540 2077923.076005 3656 3540 -2620124.358963 3541 3541 464393931.4614 3542 3541 -34267393.04202 3543 3541 -18207113.88974 3544 3541 -53835592.86528 3545 3541 5092680.185999 3627 3541 15625000.00514 3628 3541 -21446053.85824 3629 3541 -11171906.87604 3630 3541 1031079.308425 3631 3541 -30393361.72101 3632 3541 -5205088.156207 3633 3541 -15616945.6841 3634 3541 -29787134.49463 3635 3541 15986482.35805 3648 3541 3125000.001031 3649 3541 -20084539.63755 3650 3541 -23029577.62979 3651 3541 7943.295568764 3652 3541 26711708.06824 3653 3541 -8489193.347654 3654 3541 -4172076.926047 3655 3541 -39321029.93073 3656 3541 33555116.98496 3542 3542 537488440.5739 3543 3542 2102622.238072 3544 3542 5092680.185999 3545 3542 67906904.50199 3627 3542 11964870.03287 3628 3542 -11171906.87604 3629 3542 -13613251.03531 3630 3542 74989946.18456 3631 3542 -4930782.600289 3632 3542 -92280390.6637 3633 3542 20484919.19769 3634 3542 15986482.35805 3635 3542 -36507183.96923 3648 3542 2735859.138623 3649 3542 -23029577.62992 3650 3542 -5469183.701778 3651 3542 20663974.24795 3652 3542 -7940582.236633 3653 3542 -103726319.7821 3654 3542 5708660.365653 3655 3542 33555116.98482 3656 3542 -53258101.71172 3543 3543 521142175.6205 3544 3543 4357310.012615 3545 3543 256979.8629427 3546 3543 -93206905.2309 3547 3543 -64350842.27123 3548 3543 796318.3392085 3549 3543 62527224.36834 3550 3543 8714314.733252 3551 3543 -429272.4433933 3630 3543 -29662254.52482 3631 3543 15560983.93727 3632 3543 17067305.79587 3633 3543 -99122890.33304 3634 3543 1376184.523438 3635 3543 76917351.50796 3651 3543 -3482602.472394 3652 3543 -4172076.926049 3653 3543 -4698770.191785 3654 3543 34117046.21824 3655 3543 778570.1040945 3656 3543 -15334961.99471 3657 3543 -35604260.65942 3658 3543 -15968956.1185 3659 3543 20509351.80222 3660 3543 -9151163.575078 3661 3543 2425294.479764 3662 3543 -2620832.474664 3544 3544 478263488.7933 3545 3544 -7336562.232819 3546 3544 -64350842.27123 3547 3544 -73712126.30103 3548 3544 497300.0129924 3549 3544 -16285685.26264 3550 3544 -56721207.5792 3551 3544 1506415.954023 3630 3544 15560983.93727 3631 3544 -28493762.60981 3632 3544 -15856007.13474 3633 3544 1376184.523438 3634 3544 -32633420.33777 3635 3544 -1805494.517635 3651 3544 2077923.076005 3652 3544 -33513941.69894 3653 3544 -31036896.89325 3654 3544 778570.1040981 3655 3544 21602897.83365 3656 3544 -1794166.615711 3657 3544 -15968956.1185 3658 3544 -30912591.64709 3659 3544 16789140.72124 3660 3544 -3824705.522288 3661 3544 -38955306.88653 3662 3544 33703424.44008 3545 3545 543561032.3812 3546 3545 796318.3392083 3547 3545 497300.0129924 3548 3545 -10332531.23264 3549 3545 256491.4453803 3550 3545 1506415.954023 3551 3545 70380363.83328 3630 3545 17067305.79587 3631 3545 -15856007.13474 3632 3545 -29152295.26628 3633 3545 76917351.50829 3634 3545 -1805494.517364 3635 3545 -104554650.5595 3651 3545 2601368.699331 3652 3545 -31036896.89352 3653 3545 -37772533.09358 3654 3545 15506774.11134 3655 3545 -1794166.615711 3656 3545 -123193199.9205 3657 3545 20509351.80222 3658 3545 16789140.72124 3659 3545 -36523787.8538 3660 3545 5157014.750283 3661 3545 33703424.44008 3662 3545 -49886534.23033 3546 3546 272695692.3765 3547 3546 66117683.84736 3548 3546 -414314.3184705 3549 3546 -100751205.8239 3550 3546 -10649157.71646 3551 3546 -224848.4319969 3633 3546 -6952814.718665 3634 3546 2448881.069473 3635 3546 2724611.184208 3654 3546 -35055649.54814 3655 3546 -15968956.11851 3656 3546 -20115648.21112 3657 3546 16994370.30315 3658 3546 16301118.93669 3659 3546 8023536.963962 3660 3546 -50777794.92451 3661 3546 -2781043.887658 3662 3546 -39382499.93705 3547 3547 240750045.7496 3548 3547 -482784.0969512 3549 3547 14350842.27944 3550 3547 32097765.22126 3551 3547 -497300.0129839 3633 3547 -3801118.932581 3634 3547 -36984778.59371 3635 3547 -33213528.24393 3654 3547 -15968956.11851 3655 3547 -30363980.53581 3656 3547 -16544192.62304 3657 3547 16301118.93669 3658 3547 8940396.665666 3659 3547 6546861.581638 3660 3547 3468956.114395 3661 3547 -17383526.42432 3662 3547 3210859.285327 3548 3548 283986385.1319 3549 3548 -224848.4319939 3550 3548 -497300.0129839 3551 3548 51704651.66159 3633 3548 -5400388.818121 3634 3548 -33213528.24393 3635 3548 -47583984.21356 3654 3548 -20115648.21112 3655 3548 -16544192.62304 3656 3548 -35060824.89038 3657 3548 -8226463.033369 3658 3548 -6786471.749505 3659 3548 -65286971.7737 3660 3548 -39382499.93739 3661 3548 -3455807.383529 3662 3548 -54179922.82412 3549 3549 257897400.5802 3550 3549 -58714314.72505 3551 3549 -485079.4090633 3633 3549 -31166196.42186 3634 3549 15281043.89176 3635 3549 18784264.9961 3654 3549 -7505330.242306 3655 3549 -3824705.52229 3656 3549 -5042360.252043 3657 3549 -50777794.92451 3658 3549 3468956.114404 3659 3549 39274531.29995 3660 3549 15865543.81017 3661 3549 -14925294.48387 3662 3549 -7720880.488229 3550 3550 237740233.5922 3551 3550 -1506415.954004 3633 3550 15281043.89176 3634 3550 -28905435.61346 3635 3550 -16544192.62304 3654 3550 2425294.479764 3655 3550 -37309473.55378 3656 3550 -32963242.21564 3657 3550 -2781043.887649 3658 3550 -17383526.42432 3659 3550 3210859.285327 3660 3550 -14925294.48387 3661 3550 10014657.81304 3662 3550 6296575.553343 3551 3551 272931439.9327 3633 3551 18784264.9961 3634 3551 -16544192.62304 3635 3551 -33602279.96802 3654 3551 2392605.028518 3655 3551 -32963242.21564 3656 3551 -45497645.34292 3657 3551 39274531.29978 3658 3551 -3455807.383529 3659 3551 -54179922.82412 3660 3551 7491932.009273 3661 3551 -7036757.7778 3662 3551 -62943559.27428 3552 3552 698751952.167 3553 3552 62499999.98975 3554 3552 33160993.85051 3555 3552 -337915744.7523 3556 3552 -62516096.56266 3557 3552 -27668847.19038 3558 3552 13308405.80675 3559 3552 50016096.56471 3560 3552 -19894290.40682 3663 3552 50455843.08525 3664 3552 15625000.00514 3665 3552 23750485.45243 3666 3552 -136601119.3265 3667 3552 -15628682.15673 3668 3552 -88333821.76341 3669 3552 -31442472.41633 3670 3552 12503682.1557 3671 3552 -21464859.02542 3553 3553 604980043.3115 3554 3553 -63103934.68082 3555 3553 -62524144.84911 3556 3553 -44113422.33778 3557 3553 -38272833.23799 3558 3553 75024144.84706 3559 3553 13308405.80675 3560 3553 25517746.91897 3663 3553 15625000.00514 3664 3553 27013291.43733 3665 3553 -3407345.083582 3666 3553 -15630523.23252 3667 3553 -63151629.12586 3668 3553 -25854695.88552 3669 3553 18755523.23355 3670 3553 -31442472.41633 3671 3553 25757502.85539 3554 3554 741587115.0734 3555 3554 -24922773.86031 3556 3554 -30315528.70936 3557 3554 20612357.80692 3558 3554 -29841435.61023 3559 3554 17011831.27931 3560 3554 35489082.15132 3663 3554 -8884805.348678 3664 3554 -29515355.2492 3665 3554 -145884263.2499 3666 3554 -87990199.11779 3667 3554 -23932056.04702 3668 3554 -133843411.9462 3669 3554 -32197288.53812 3670 3554 17171668.57026 3671 3554 -83846593.11021 3555 3555 1185266328.887 3556 3555 62540241.42204 3557 3555 30860066.01788 3558 3555 30368144.44572 3559 3555 -62516096.56266 3560 3555 27037674.41794 3561 3555 -224004433.2424 3562 3555 3.09944152832e-06 3563 3555 -5943327.707585 3564 3555 -91775737.73549 3565 3555 62499999.98974 3566 3555 -27030536.78462 3663 3555 -119411159.8837 3664 3555 -15630523.23252 3665 3555 75186254.88774 3666 3555 109890622.1535 3667 3555 15634205.38412 3668 3555 7712478.882864 3669 3555 -60563825.20041 3670 3555 -15628682.15673 3671 3555 27115214.46942 3672 3555 -107888591.8846 3673 3555 1.713633537292e-06 3674 3555 -82890605.78265 3675 3555 -43968569.74338 3676 3555 15625000.00513 3677 3555 -27108827.67327 3556 3556 1016491380.459 3557 3556 -85033469.8302 3558 3556 -62524144.84912 3559 3556 -188413029.0158 3560 3556 46636948.6184 3561 3556 3.695487976074e-06 3562 3556 50996827.03073 3563 3556 -27430311.52865 3564 3556 62499999.98974 3565 3556 -73024977.83304 3566 3556 15223836.31984 3663 3556 -15628682.15673 3664 3556 -45961669.68301 3665 3556 8705839.731277 3666 3556 15634205.38412 3667 3556 67697343.25408 3668 3556 -21260405.06448 3669 3556 -15630523.23252 3670 3556 -115258445.5683 3671 3556 76792017.46155 3672 3556 1.668930053711e-06 3673 3556 -39138290.32084 3674 3556 -6857580.506883 3675 3556 15625000.00513 3676 3556 -39280887.92821 3677 3556 20086776.37002 3557 3557 1141730954.706 3558 3557 26698361.28971 3559 3557 52125943.97254 3560 3557 56705174.06508 3561 3557 -3200272.15248 3562 3557 -27430311.52865 3563 3557 99884455.60809 3564 3557 -26687654.83973 3565 3557 14949530.76392 3566 3557 -20428342.61214 3663 3557 74842632.24213 3664 3557 6787043.609902 3665 3557 -88003520.09856 3666 3557 7717283.578221 3667 3557 -21256561.34093 3668 3557 -211698416.8248 3669 3557 27118407.8675 3670 3557 78438470.16785 3671 3557 -167573319.7819 3672 3557 -82547723.83843 3673 3557 -6857580.506883 3674 3557 -113395588.2476 3675 3557 -27108827.67327 3676 3557 20086776.37002 3677 3557 -61172794.84886 3558 3558 698751952.167 3559 3558 62499999.98975 3560 3558 33160993.85051 3561 3558 -90421354.05518 3562 3558 -62499999.98975 3563 3558 24401754.87359 3564 3558 -337915744.7523 3565 3558 -62516096.56266 3566 3558 -27668847.19038 3567 3558 13308405.80675 3568 3558 50016096.56471 3569 3558 -19894290.40682 3663 3558 789479.8663111 3664 3558 18755523.23355 3665 3558 16762853.88037 3666 3558 -11151323.14121 3667 3558 -15630523.23252 3668 3558 -13684113.02055 3669 3558 50455843.08525 3670 3558 15625000.00514 3671 3558 23750485.45243 3672 3558 -27518808.45327 3673 3558 -15625000.00513 3674 3558 -14250754.75238 3675 3558 -136601119.3265 3676 3558 -15628682.15673 3677 3558 -88333821.76341 3678 3558 -31442472.41633 3679 3558 12503682.1557 3680 3558 -21464859.02542 3559 3559 604980043.3115 3560 3559 -63103934.68082 3561 3559 -62499999.98975 3562 3559 -71670594.15271 3563 3559 12206475.20882 3564 3559 -62524144.84911 3565 3559 -44113422.33778 3566 3559 -38272833.23799 3567 3559 75024144.84706 3568 3559 13308405.80675 3569 3559 25517746.91897 3663 3559 12503682.1557 3664 3559 789479.8663122 3665 3559 -8940185.539224 3666 3559 -15628682.15672 3667 3559 -65845943.5091 3668 3559 -52101581.10086 3669 3559 15625000.00514 3670 3559 27013291.43733 3671 3559 -3407345.083582 3672 3559 -15625000.00513 3673 3559 -22831126.63809 3674 3559 -13229195.86314 3675 3559 -15630523.23252 3676 3559 -63151629.12586 3677 3559 -25854695.88552 3678 3559 18755523.23355 3679 3559 -31442472.41633 3680 3559 25757502.85539 3560 3560 741587115.0734 3561 3560 24744636.81848 3562 3560 12480780.76473 3563 3560 -16816652.79793 3564 3560 -24922773.86031 3565 3560 -30315528.70936 3566 3560 20612357.80692 3567 3560 -29841435.61023 3568 3560 17011831.27931 3569 3560 35489082.15132 3663 3560 11175235.92025 3664 3560 -13410278.30884 3665 3560 2105279.643495 3666 3560 -13682502.0067 3667 3560 -53748034.02747 3668 3560 -35806647.62401 3669 3560 -8884805.348678 3670 3560 -29515355.2492 3671 3560 -145884263.2499 3672 3560 -14250754.75238 3673 3560 -13229195.86314 3674 3560 -17306764.74188 3675 3560 -87990199.11779 3676 3560 -23932056.04702 3677 3560 -133843411.9462 3678 3560 -32197288.53812 3679 3560 17171668.57026 3680 3560 -83846593.11021 3561 3561 1104842790.893 3562 3561 1.609325408936e-05 3563 3561 9143599.859988 3564 3561 135775801.5773 3565 3561 -6.794929504395e-06 3566 3561 2285899.966128 3570 3561 -224004433.2424 3571 3561 3.09944152832e-06 3572 3561 -5943327.707585 3573 3561 -91775737.73549 3574 3561 62499999.98974 3575 3561 -27030536.78462 3666 3561 -103592244.5474 3667 3561 1.892447471619e-06 3668 3561 80604706.69032 3669 3561 -42555886.98831 3670 3561 -15625000.00514 3671 3561 26537352.8999 3672 3561 77208121.14848 3673 3561 3.09944152832e-06 3674 3561 2285899.092361 3675 3561 -48017751.39621 3676 3561 -8.776783943176e-06 3677 3561 571474.7733788 3681 3561 -107888591.8846 3682 3561 1.713633537292e-06 3683 3561 -82890605.78265 3684 3561 -43968569.74338 3685 3561 15625000.00513 3686 3561 -27108827.67327 3562 3562 954836711.7471 3563 3562 -109721246.0606 3564 3562 -6.705522537231e-06 3565 3562 -101723938.9279 3566 3562 55957845.25232 3570 3562 3.695487976074e-06 3571 3562 50996827.03073 3572 3562 -27430311.52865 3573 3562 62499999.98974 3574 3562 -73024977.83304 3575 3562 15223836.31984 3666 3562 -9.983777999878e-07 3667 3562 -34841942.9836 3668 3562 -6857580.506883 3669 3562 -15625000.00514 3670 3562 -37868205.17313 3671 3562 19401012.48091 3672 3562 3.09944152832e-06 3673 3562 39706666.64553 3674 3562 -27430322.01402 3675 3562 -7.04824924469e-06 3676 3562 -107392689.3388 3677 3562 79112730.44064 3681 3562 1.668930053711e-06 3682 3562 -39138290.32084 3683 3562 -6857580.506883 3684 3562 15625000.00513 3685 3562 -39280887.92821 3686 3562 20086776.37002 3563 3563 1151791779.138 3564 3563 2285899.966128 3565 3563 53763400.80823 3566 3563 113453108.8746 3570 3563 -3200272.15248 3571 3563 -27430311.52865 3572 3563 99884455.60809 3573 3563 -26687654.83973 3574 3563 14949530.76392 3575 3563 -20428342.61214 3666 3563 80261824.7461 3667 3563 -6857580.506883 3668 3563 -101938662.0149 3669 3563 26537352.8999 3670 3563 19401012.48091 3671 3563 -57405640.83529 3672 3563 2285899.092361 3673 3563 -27430322.01402 3674 3563 -242725472.4512 3675 3563 571474.773379 3676 3563 78838424.88527 3677 3563 -190201211.678 3681 3563 -82547723.83843 3682 3563 -6857580.506883 3683 3563 -113395588.2476 3684 3563 -27108827.67327 3685 3563 20086776.37002 3686 3563 -61172794.84886 3564 3564 1185266328.887 3565 3564 62540241.42204 3566 3564 30860066.01788 3567 3564 30368144.44572 3568 3564 -62516096.56266 3569 3564 27037674.41794 3570 3564 -90421354.05518 3571 3564 -62499999.98975 3572 3564 24401754.87359 3573 3564 -224004433.2424 3574 3564 3.09944152832e-06 3575 3564 -5943327.707585 3576 3564 -91775737.73549 3577 3564 62499999.98974 3578 3564 -27030536.78462 3666 3564 -26783317.53868 3667 3564 15625000.00513 3668 3564 13679279.97901 3669 3564 -119411159.8837 3670 3564 -15630523.23252 3671 3564 75186254.88774 3672 3564 16426910.05153 3673 3564 4.485249519348e-06 3674 3564 571474.7733669 3675 3564 109890622.1535 3676 3564 15634205.38412 3677 3564 7712478.882864 3678 3564 -60563825.20041 3679 3564 -15628682.15673 3680 3564 27115214.46942 3681 3564 -27518808.45327 3682 3564 -15625000.00513 3683 3564 -14250754.75238 3684 3564 -107888591.8846 3685 3564 1.713633537292e-06 3686 3564 -82890605.78265 3687 3564 -43968569.74338 3688 3564 15625000.00513 3689 3564 -27108827.67327 3565 3565 1016491380.459 3566 3565 -85033469.8302 3567 3565 -62524144.84912 3568 3565 -188413029.0158 3569 3565 46636948.6184 3570 3565 -62499999.98975 3571 3565 -71670594.15271 3572 3565 12206475.20882 3573 3565 3.695487976074e-06 3574 3565 50996827.03073 3575 3565 -27430311.52865 3576 3565 62499999.98974 3577 3565 -73024977.83304 3578 3565 15223836.31984 3666 3565 15625000.00513 3667 3565 -22095635.7235 3668 3565 -12543431.97403 3669 3565 -15628682.15673 3670 3565 -45961669.68301 3671 3565 8705839.731277 3672 3565 5.781650543213e-06 3673 3565 -42948027.89108 3674 3565 -51682408.42662 3675 3565 15634205.38412 3676 3565 67697343.25408 3677 3565 -21260405.06448 3678 3565 -15630523.23252 3679 3565 -115258445.5683 3680 3565 76792017.46155 3681 3565 -15625000.00513 3682 3565 -22831126.63809 3683 3565 -13229195.86314 3684 3565 1.668930053711e-06 3685 3565 -39138290.32084 3686 3565 -6857580.506883 3687 3565 15625000.00513 3688 3565 -39280887.92821 3689 3565 20086776.37002 3566 3566 1141730954.706 3567 3566 26698361.28971 3568 3566 52125943.97254 3569 3566 56705174.06508 3570 3566 24744636.81848 3571 3566 12480780.76473 3572 3566 -16816652.79793 3573 3566 -3200272.15248 3574 3566 -27430311.52865 3575 3566 99884455.60809 3576 3566 -26687654.83973 3577 3566 14949530.76392 3578 3566 -20428342.61214 3666 3566 13679279.97901 3667 3566 -12543431.97403 3668 3566 -15345455.6363 3669 3566 74842632.24213 3670 3566 6787043.609902 3671 3566 -88003520.09856 3672 3566 571474.7733671 3673 3566 -51408102.87125 3674 3566 -18348781.1507 3675 3566 7717283.578221 3676 3566 -21256561.34093 3677 3566 -211698416.8248 3678 3566 27118407.8675 3679 3566 78438470.16785 3680 3566 -167573319.7819 3681 3566 -14250754.75238 3682 3566 -13229195.86314 3683 3566 -17306764.74188 3684 3566 -82547723.83843 3685 3566 -6857580.506883 3686 3566 -113395588.2476 3687 3566 -27108827.67327 3688 3566 20086776.37002 3689 3566 -61172794.84886 3567 3567 698751952.167 3568 3567 62499999.98975 3569 3567 33160993.85051 3573 3567 -90421354.05518 3574 3567 -62499999.98975 3575 3567 24401754.87359 3576 3567 -337915744.7523 3577 3567 -62516096.56266 3578 3567 -27668847.19038 3579 3567 13308405.80675 3580 3567 50016096.56471 3581 3567 -19894290.40682 3669 3567 789479.8663111 3670 3567 18755523.23355 3671 3567 16762853.88037 3675 3567 -11151323.14121 3676 3567 -15630523.23252 3677 3567 -13684113.02055 3678 3567 50455843.08525 3679 3567 15625000.00514 3680 3567 23750485.45243 3684 3567 -27518808.45327 3685 3567 -15625000.00513 3686 3567 -14250754.75238 3687 3567 -136601119.3265 3688 3567 -15628682.15673 3689 3567 -88333821.76341 3690 3567 -31442472.41633 3691 3567 12503682.1557 3692 3567 -21464859.02542 3568 3568 604980043.3115 3569 3568 -63103934.68082 3573 3568 -62499999.98975 3574 3568 -71670594.15271 3575 3568 12206475.20882 3576 3568 -62524144.84911 3577 3568 -44113422.33778 3578 3568 -38272833.23799 3579 3568 75024144.84706 3580 3568 13308405.80675 3581 3568 25517746.91897 3669 3568 12503682.1557 3670 3568 789479.8663122 3671 3568 -8940185.539224 3675 3568 -15628682.15672 3676 3568 -65845943.5091 3677 3568 -52101581.10086 3678 3568 15625000.00514 3679 3568 27013291.43733 3680 3568 -3407345.083582 3684 3568 -15625000.00513 3685 3568 -22831126.63809 3686 3568 -13229195.86314 3687 3568 -15630523.23252 3688 3568 -63151629.12586 3689 3568 -25854695.88552 3690 3568 18755523.23355 3691 3568 -31442472.41633 3692 3568 25757502.85539 3569 3569 741587115.0734 3573 3569 24744636.81848 3574 3569 12480780.76473 3575 3569 -16816652.79793 3576 3569 -24922773.86031 3577 3569 -30315528.70936 3578 3569 20612357.80692 3579 3569 -29841435.61023 3580 3569 17011831.27931 3581 3569 35489082.15132 3669 3569 11175235.92025 3670 3569 -13410278.30884 3671 3569 2105279.643495 3675 3569 -13682502.0067 3676 3569 -53748034.02747 3677 3569 -35806647.62401 3678 3569 -8884805.348678 3679 3569 -29515355.2492 3680 3569 -145884263.2499 3684 3569 -14250754.75238 3685 3569 -13229195.86314 3686 3569 -17306764.74188 3687 3569 -87990199.11779 3688 3569 -23932056.04702 3689 3569 -133843411.9462 3690 3569 -32197288.53812 3691 3569 17171668.57026 3692 3569 -83846593.11021 3570 3570 1104842790.893 3571 3570 1.609325408936e-05 3572 3570 9143599.859988 3573 3570 135775801.5773 3574 3570 -6.794929504395e-06 3575 3570 2285899.966128 3582 3570 -224004433.2424 3583 3570 3.09944152832e-06 3584 3570 -5943327.707585 3585 3570 -91775737.73549 3586 3570 62499999.98974 3587 3570 -27030536.78462 3672 3570 -103592244.5474 3673 3570 1.892447471619e-06 3674 3570 80604706.69032 3675 3570 -42555886.98831 3676 3570 -15625000.00514 3677 3570 26537352.8999 3681 3570 77208121.14848 3682 3570 3.09944152832e-06 3683 3570 2285899.092361 3684 3570 -48017751.39621 3685 3570 -8.776783943176e-06 3686 3570 571474.7733788 3693 3570 -107888591.8846 3694 3570 1.713633537292e-06 3695 3570 -82890605.78265 3696 3570 -43968569.74338 3697 3570 15625000.00513 3698 3570 -27108827.67327 3571 3571 954836711.7471 3572 3571 -109721246.0606 3573 3571 -6.705522537231e-06 3574 3571 -101723938.9279 3575 3571 55957845.25232 3582 3571 3.695487976074e-06 3583 3571 50996827.03073 3584 3571 -27430311.52865 3585 3571 62499999.98974 3586 3571 -73024977.83304 3587 3571 15223836.31984 3672 3571 -9.983777999878e-07 3673 3571 -34841942.9836 3674 3571 -6857580.506883 3675 3571 -15625000.00514 3676 3571 -37868205.17313 3677 3571 19401012.48091 3681 3571 3.09944152832e-06 3682 3571 39706666.64553 3683 3571 -27430322.01402 3684 3571 -7.04824924469e-06 3685 3571 -107392689.3388 3686 3571 79112730.44064 3693 3571 1.668930053711e-06 3694 3571 -39138290.32084 3695 3571 -6857580.506883 3696 3571 15625000.00513 3697 3571 -39280887.92821 3698 3571 20086776.37002 3572 3572 1151791779.138 3573 3572 2285899.966128 3574 3572 53763400.80823 3575 3572 113453108.8746 3582 3572 -3200272.15248 3583 3572 -27430311.52865 3584 3572 99884455.60809 3585 3572 -26687654.83973 3586 3572 14949530.76392 3587 3572 -20428342.61214 3672 3572 80261824.7461 3673 3572 -6857580.506883 3674 3572 -101938662.0149 3675 3572 26537352.8999 3676 3572 19401012.48091 3677 3572 -57405640.83529 3681 3572 2285899.092361 3682 3572 -27430322.01402 3683 3572 -242725472.4512 3684 3572 571474.773379 3685 3572 78838424.88527 3686 3572 -190201211.678 3693 3572 -82547723.83843 3694 3572 -6857580.506883 3695 3572 -113395588.2476 3696 3572 -27108827.67327 3697 3572 20086776.37002 3698 3572 -61172794.84886 3573 3573 1104842790.893 3574 3573 1.609325408936e-05 3575 3573 9143599.859988 3576 3573 135775801.5773 3577 3573 -6.794929504395e-06 3578 3573 2285899.966128 3582 3573 -90421354.05518 3583 3573 -62499999.98975 3584 3573 24401754.87359 3585 3573 -224004433.2424 3586 3573 3.09944152832e-06 3587 3573 -5943327.707585 3588 3573 -91775737.73549 3589 3573 62499999.98974 3590 3573 -27030536.78462 3672 3573 -26783317.53868 3673 3573 15625000.00513 3674 3573 13679279.97901 3675 3573 -103592244.5474 3676 3573 1.892447471619e-06 3677 3573 80604706.69032 3678 3573 -42555886.98831 3679 3573 -15625000.00514 3680 3573 26537352.8999 3681 3573 16426910.05153 3682 3573 4.485249519348e-06 3683 3573 571474.7733669 3684 3573 77208121.14848 3685 3573 3.09944152832e-06 3686 3573 2285899.092361 3687 3573 -48017751.39621 3688 3573 -8.776783943176e-06 3689 3573 571474.7733788 3693 3573 -27518808.45327 3694 3573 -15625000.00513 3695 3573 -14250754.75238 3696 3573 -107888591.8846 3697 3573 1.713633537292e-06 3698 3573 -82890605.78265 3699 3573 -43968569.74338 3700 3573 15625000.00513 3701 3573 -27108827.67327 3574 3574 954836711.7471 3575 3574 -109721246.0606 3576 3574 -6.705522537231e-06 3577 3574 -101723938.9279 3578 3574 55957845.25232 3582 3574 -62499999.98975 3583 3574 -71670594.15271 3584 3574 12206475.20882 3585 3574 3.695487976074e-06 3586 3574 50996827.03073 3587 3574 -27430311.52865 3588 3574 62499999.98974 3589 3574 -73024977.83304 3590 3574 15223836.31984 3672 3574 15625000.00513 3673 3574 -22095635.7235 3674 3574 -12543431.97403 3675 3574 -9.983777999878e-07 3676 3574 -34841942.9836 3677 3574 -6857580.506883 3678 3574 -15625000.00514 3679 3574 -37868205.17313 3680 3574 19401012.48091 3681 3574 5.781650543213e-06 3682 3574 -42948027.89108 3683 3574 -51682408.42662 3684 3574 3.09944152832e-06 3685 3574 39706666.64553 3686 3574 -27430322.01402 3687 3574 -7.04824924469e-06 3688 3574 -107392689.3388 3689 3574 79112730.44064 3693 3574 -15625000.00513 3694 3574 -22831126.63809 3695 3574 -13229195.86314 3696 3574 1.668930053711e-06 3697 3574 -39138290.32084 3698 3574 -6857580.506883 3699 3574 15625000.00513 3700 3574 -39280887.92821 3701 3574 20086776.37002 3575 3575 1151791779.138 3576 3575 2285899.966128 3577 3575 53763400.80823 3578 3575 113453108.8746 3582 3575 24744636.81848 3583 3575 12480780.76473 3584 3575 -16816652.79793 3585 3575 -3200272.15248 3586 3575 -27430311.52865 3587 3575 99884455.60809 3588 3575 -26687654.83973 3589 3575 14949530.76392 3590 3575 -20428342.61214 3672 3575 13679279.97901 3673 3575 -12543431.97403 3674 3575 -15345455.6363 3675 3575 80261824.7461 3676 3575 -6857580.506883 3677 3575 -101938662.0149 3678 3575 26537352.8999 3679 3575 19401012.48091 3680 3575 -57405640.83529 3681 3575 571474.7733671 3682 3575 -51408102.87125 3683 3575 -18348781.1507 3684 3575 2285899.092361 3685 3575 -27430322.01402 3686 3575 -242725472.4512 3687 3575 571474.773379 3688 3575 78838424.88527 3689 3575 -190201211.678 3693 3575 -14250754.75238 3694 3575 -13229195.86314 3695 3575 -17306764.74188 3696 3575 -82547723.83843 3697 3575 -6857580.506883 3698 3575 -113395588.2476 3699 3575 -27108827.67327 3700 3575 20086776.37002 3701 3575 -61172794.84886 3576 3576 1185266328.887 3577 3576 62540241.42204 3578 3576 30860066.01788 3579 3576 30368144.44572 3580 3576 -62516096.56266 3581 3576 27037674.41794 3585 3576 -90421354.05518 3586 3576 -62499999.98975 3587 3576 24401754.87359 3588 3576 -224004433.2424 3589 3576 3.09944152832e-06 3590 3576 -5943327.707585 3591 3576 -91775737.73549 3592 3576 62499999.98974 3593 3576 -27030536.78462 3675 3576 -26783317.53868 3676 3576 15625000.00513 3677 3576 13679279.97901 3678 3576 -119411159.8837 3679 3576 -15630523.23252 3680 3576 75186254.88774 3684 3576 16426910.05153 3685 3576 4.485249519348e-06 3686 3576 571474.7733669 3687 3576 109890622.1535 3688 3576 15634205.38412 3689 3576 7712478.882864 3690 3576 -60563825.20041 3691 3576 -15628682.15673 3692 3576 27115214.46942 3696 3576 -27518808.45327 3697 3576 -15625000.00513 3698 3576 -14250754.75238 3699 3576 -107888591.8846 3700 3576 1.713633537292e-06 3701 3576 -82890605.78265 3702 3576 -43968569.74338 3703 3576 15625000.00513 3704 3576 -27108827.67327 3577 3577 1016491380.459 3578 3577 -85033469.8302 3579 3577 -62524144.84912 3580 3577 -188413029.0158 3581 3577 46636948.6184 3585 3577 -62499999.98975 3586 3577 -71670594.15271 3587 3577 12206475.20882 3588 3577 3.695487976074e-06 3589 3577 50996827.03073 3590 3577 -27430311.52865 3591 3577 62499999.98974 3592 3577 -73024977.83304 3593 3577 15223836.31984 3675 3577 15625000.00513 3676 3577 -22095635.7235 3677 3577 -12543431.97403 3678 3577 -15628682.15673 3679 3577 -45961669.68301 3680 3577 8705839.731277 3684 3577 5.781650543213e-06 3685 3577 -42948027.89108 3686 3577 -51682408.42662 3687 3577 15634205.38412 3688 3577 67697343.25408 3689 3577 -21260405.06448 3690 3577 -15630523.23252 3691 3577 -115258445.5683 3692 3577 76792017.46155 3696 3577 -15625000.00513 3697 3577 -22831126.63809 3698 3577 -13229195.86314 3699 3577 1.668930053711e-06 3700 3577 -39138290.32084 3701 3577 -6857580.506883 3702 3577 15625000.00513 3703 3577 -39280887.92821 3704 3577 20086776.37002 3578 3578 1141730954.706 3579 3578 26698361.28971 3580 3578 52125943.97254 3581 3578 56705174.06508 3585 3578 24744636.81848 3586 3578 12480780.76473 3587 3578 -16816652.79793 3588 3578 -3200272.15248 3589 3578 -27430311.52865 3590 3578 99884455.60809 3591 3578 -26687654.83973 3592 3578 14949530.76392 3593 3578 -20428342.61214 3675 3578 13679279.97901 3676 3578 -12543431.97403 3677 3578 -15345455.6363 3678 3578 74842632.24213 3679 3578 6787043.609902 3680 3578 -88003520.09856 3684 3578 571474.7733671 3685 3578 -51408102.87125 3686 3578 -18348781.1507 3687 3578 7717283.578221 3688 3578 -21256561.34093 3689 3578 -211698416.8248 3690 3578 27118407.8675 3691 3578 78438470.16785 3692 3578 -167573319.7819 3696 3578 -14250754.75238 3697 3578 -13229195.86314 3698 3578 -17306764.74188 3699 3578 -82547723.83843 3700 3578 -6857580.506883 3701 3578 -113395588.2476 3702 3578 -27108827.67327 3703 3578 20086776.37002 3704 3578 -61172794.84886 3579 3579 698751952.167 3580 3579 62499999.98975 3581 3579 33160993.85051 3588 3579 -90421354.05518 3589 3579 -62499999.98975 3590 3579 24401754.87359 3591 3579 -337915744.7523 3592 3579 -62516096.56266 3593 3579 -27668847.19038 3594 3579 13308405.80675 3595 3579 50016096.56471 3596 3579 -19894290.40682 3678 3579 789479.8663111 3679 3579 18755523.23355 3680 3579 16762853.88037 3687 3579 -11151323.14121 3688 3579 -15630523.23252 3689 3579 -13684113.02055 3690 3579 50455843.08525 3691 3579 15625000.00514 3692 3579 23750485.45243 3699 3579 -27518808.45327 3700 3579 -15625000.00513 3701 3579 -14250754.75238 3702 3579 -136601119.3265 3703 3579 -15628682.15673 3704 3579 -88333821.76341 3705 3579 -31442472.41633 3706 3579 12503682.1557 3707 3579 -21464859.02542 3580 3580 604980043.3115 3581 3580 -63103934.68082 3588 3580 -62499999.98975 3589 3580 -71670594.15271 3590 3580 12206475.20882 3591 3580 -62524144.84911 3592 3580 -44113422.33778 3593 3580 -38272833.23799 3594 3580 75024144.84706 3595 3580 13308405.80675 3596 3580 25517746.91897 3678 3580 12503682.1557 3679 3580 789479.8663122 3680 3580 -8940185.539224 3687 3580 -15628682.15672 3688 3580 -65845943.5091 3689 3580 -52101581.10086 3690 3580 15625000.00514 3691 3580 27013291.43733 3692 3580 -3407345.083582 3699 3580 -15625000.00513 3700 3580 -22831126.63809 3701 3580 -13229195.86314 3702 3580 -15630523.23252 3703 3580 -63151629.12586 3704 3580 -25854695.88552 3705 3580 18755523.23355 3706 3580 -31442472.41633 3707 3580 25757502.85539 3581 3581 741587115.0734 3588 3581 24744636.81848 3589 3581 12480780.76473 3590 3581 -16816652.79793 3591 3581 -24922773.86031 3592 3581 -30315528.70936 3593 3581 20612357.80692 3594 3581 -29841435.61023 3595 3581 17011831.27931 3596 3581 35489082.15132 3678 3581 11175235.92025 3679 3581 -13410278.30884 3680 3581 2105279.643495 3687 3581 -13682502.0067 3688 3581 -53748034.02747 3689 3581 -35806647.62401 3690 3581 -8884805.348678 3691 3581 -29515355.2492 3692 3581 -145884263.2499 3699 3581 -14250754.75238 3700 3581 -13229195.86314 3701 3581 -17306764.74188 3702 3581 -87990199.11779 3703 3581 -23932056.04702 3704 3581 -133843411.9462 3705 3581 -32197288.53812 3706 3581 17171668.57026 3707 3581 -83846593.11021 3582 3582 1104842790.893 3583 3582 1.609325408936e-05 3584 3582 9143599.859988 3585 3582 135775801.5773 3586 3582 -6.794929504395e-06 3587 3582 2285899.966128 3597 3582 -224004433.2424 3598 3582 3.09944152832e-06 3599 3582 -5943327.707585 3600 3582 -91775737.73549 3601 3582 62499999.98974 3602 3582 -27030536.78462 3681 3582 -103592244.5474 3682 3582 1.892447471619e-06 3683 3582 80604706.69032 3684 3582 -42555886.98831 3685 3582 -15625000.00514 3686 3582 26537352.8999 3693 3582 77208121.14848 3694 3582 3.09944152832e-06 3695 3582 2285899.092361 3696 3582 -48017751.39621 3697 3582 -8.776783943176e-06 3698 3582 571474.7733788 3708 3582 -107888591.8846 3709 3582 1.713633537292e-06 3710 3582 -82890605.78265 3711 3582 -43968569.74338 3712 3582 15625000.00513 3713 3582 -27108827.67327 3583 3583 954836711.7471 3584 3583 -109721246.0606 3585 3583 -6.705522537231e-06 3586 3583 -101723938.9279 3587 3583 55957845.25232 3597 3583 3.695487976074e-06 3598 3583 50996827.03073 3599 3583 -27430311.52865 3600 3583 62499999.98974 3601 3583 -73024977.83304 3602 3583 15223836.31984 3681 3583 -9.983777999878e-07 3682 3583 -34841942.9836 3683 3583 -6857580.506883 3684 3583 -15625000.00514 3685 3583 -37868205.17313 3686 3583 19401012.48091 3693 3583 3.09944152832e-06 3694 3583 39706666.64553 3695 3583 -27430322.01402 3696 3583 -7.04824924469e-06 3697 3583 -107392689.3388 3698 3583 79112730.44064 3708 3583 1.668930053711e-06 3709 3583 -39138290.32084 3710 3583 -6857580.506883 3711 3583 15625000.00513 3712 3583 -39280887.92821 3713 3583 20086776.37002 3584 3584 1151791779.138 3585 3584 2285899.966128 3586 3584 53763400.80823 3587 3584 113453108.8746 3597 3584 -3200272.15248 3598 3584 -27430311.52865 3599 3584 99884455.60809 3600 3584 -26687654.83973 3601 3584 14949530.76392 3602 3584 -20428342.61214 3681 3584 80261824.7461 3682 3584 -6857580.506883 3683 3584 -101938662.0149 3684 3584 26537352.8999 3685 3584 19401012.48091 3686 3584 -57405640.83529 3693 3584 2285899.092361 3694 3584 -27430322.01402 3695 3584 -242725472.4512 3696 3584 571474.773379 3697 3584 78838424.88527 3698 3584 -190201211.678 3708 3584 -82547723.83843 3709 3584 -6857580.506883 3710 3584 -113395588.2476 3711 3584 -27108827.67327 3712 3584 20086776.37002 3713 3584 -61172794.84886 3585 3585 1104842790.893 3586 3585 1.609325408936e-05 3587 3585 9143599.859988 3588 3585 135775801.5773 3589 3585 -6.794929504395e-06 3590 3585 2285899.966128 3597 3585 -90421354.05518 3598 3585 -62499999.98975 3599 3585 24401754.87359 3600 3585 -224004433.2424 3601 3585 3.09944152832e-06 3602 3585 -5943327.707585 3603 3585 -91775737.73549 3604 3585 62499999.98974 3605 3585 -27030536.78462 3681 3585 -26783317.53868 3682 3585 15625000.00513 3683 3585 13679279.97901 3684 3585 -103592244.5474 3685 3585 1.892447471619e-06 3686 3585 80604706.69032 3687 3585 -42555886.98831 3688 3585 -15625000.00514 3689 3585 26537352.8999 3693 3585 16426910.05153 3694 3585 4.485249519348e-06 3695 3585 571474.7733669 3696 3585 77208121.14848 3697 3585 3.09944152832e-06 3698 3585 2285899.092361 3699 3585 -48017751.39621 3700 3585 -8.776783943176e-06 3701 3585 571474.7733788 3708 3585 -27518808.45327 3709 3585 -15625000.00513 3710 3585 -14250754.75238 3711 3585 -107888591.8846 3712 3585 1.713633537292e-06 3713 3585 -82890605.78265 3714 3585 -43968569.74338 3715 3585 15625000.00513 3716 3585 -27108827.67327 3586 3586 954836711.7471 3587 3586 -109721246.0606 3588 3586 -6.705522537231e-06 3589 3586 -101723938.9279 3590 3586 55957845.25232 3597 3586 -62499999.98975 3598 3586 -71670594.15271 3599 3586 12206475.20882 3600 3586 3.695487976074e-06 3601 3586 50996827.03073 3602 3586 -27430311.52865 3603 3586 62499999.98974 3604 3586 -73024977.83304 3605 3586 15223836.31984 3681 3586 15625000.00513 3682 3586 -22095635.7235 3683 3586 -12543431.97403 3684 3586 -9.983777999878e-07 3685 3586 -34841942.9836 3686 3586 -6857580.506883 3687 3586 -15625000.00514 3688 3586 -37868205.17313 3689 3586 19401012.48091 3693 3586 5.781650543213e-06 3694 3586 -42948027.89108 3695 3586 -51682408.42662 3696 3586 3.09944152832e-06 3697 3586 39706666.64553 3698 3586 -27430322.01402 3699 3586 -7.04824924469e-06 3700 3586 -107392689.3388 3701 3586 79112730.44064 3708 3586 -15625000.00513 3709 3586 -22831126.63809 3710 3586 -13229195.86314 3711 3586 1.668930053711e-06 3712 3586 -39138290.32084 3713 3586 -6857580.506883 3714 3586 15625000.00513 3715 3586 -39280887.92821 3716 3586 20086776.37002 3587 3587 1151791779.138 3588 3587 2285899.966128 3589 3587 53763400.80823 3590 3587 113453108.8746 3597 3587 24744636.81848 3598 3587 12480780.76473 3599 3587 -16816652.79793 3600 3587 -3200272.15248 3601 3587 -27430311.52865 3602 3587 99884455.60809 3603 3587 -26687654.83973 3604 3587 14949530.76392 3605 3587 -20428342.61214 3681 3587 13679279.97901 3682 3587 -12543431.97403 3683 3587 -15345455.6363 3684 3587 80261824.7461 3685 3587 -6857580.506883 3686 3587 -101938662.0149 3687 3587 26537352.8999 3688 3587 19401012.48091 3689 3587 -57405640.83529 3693 3587 571474.7733671 3694 3587 -51408102.87125 3695 3587 -18348781.1507 3696 3587 2285899.092361 3697 3587 -27430322.01402 3698 3587 -242725472.4512 3699 3587 571474.773379 3700 3587 78838424.88527 3701 3587 -190201211.678 3708 3587 -14250754.75238 3709 3587 -13229195.86314 3710 3587 -17306764.74188 3711 3587 -82547723.83843 3712 3587 -6857580.506883 3713 3587 -113395588.2476 3714 3587 -27108827.67327 3715 3587 20086776.37002 3716 3587 -61172794.84886 3588 3588 1104842790.893 3589 3588 1.609325408936e-05 3590 3588 9143599.859988 3591 3588 135775801.5773 3592 3588 -6.794929504395e-06 3593 3588 2285899.966128 3600 3588 -90421354.05518 3601 3588 -62499999.98975 3602 3588 24401754.87359 3603 3588 -224004433.2424 3604 3588 3.09944152832e-06 3605 3588 -5943327.707585 3606 3588 -91775737.73549 3607 3588 62499999.98974 3608 3588 -27030536.78462 3684 3588 -26783317.53868 3685 3588 15625000.00513 3686 3588 13679279.97901 3687 3588 -103592244.5474 3688 3588 1.892447471619e-06 3689 3588 80604706.69032 3690 3588 -42555886.98831 3691 3588 -15625000.00514 3692 3588 26537352.8999 3696 3588 16426910.05153 3697 3588 4.485249519348e-06 3698 3588 571474.7733669 3699 3588 77208121.14848 3700 3588 3.09944152832e-06 3701 3588 2285899.092361 3702 3588 -48017751.39621 3703 3588 -8.776783943176e-06 3704 3588 571474.7733788 3711 3588 -27518808.45327 3712 3588 -15625000.00513 3713 3588 -14250754.75238 3714 3588 -107888591.8846 3715 3588 1.713633537292e-06 3716 3588 -82890605.78265 3717 3588 -43968569.74338 3718 3588 15625000.00513 3719 3588 -27108827.67327 3589 3589 954836711.7471 3590 3589 -109721246.0606 3591 3589 -6.705522537231e-06 3592 3589 -101723938.9279 3593 3589 55957845.25232 3600 3589 -62499999.98975 3601 3589 -71670594.15271 3602 3589 12206475.20882 3603 3589 3.695487976074e-06 3604 3589 50996827.03073 3605 3589 -27430311.52865 3606 3589 62499999.98974 3607 3589 -73024977.83304 3608 3589 15223836.31984 3684 3589 15625000.00513 3685 3589 -22095635.7235 3686 3589 -12543431.97403 3687 3589 -9.983777999878e-07 3688 3589 -34841942.9836 3689 3589 -6857580.506883 3690 3589 -15625000.00514 3691 3589 -37868205.17313 3692 3589 19401012.48091 3696 3589 5.781650543213e-06 3697 3589 -42948027.89108 3698 3589 -51682408.42662 3699 3589 3.09944152832e-06 3700 3589 39706666.64553 3701 3589 -27430322.01402 3702 3589 -7.04824924469e-06 3703 3589 -107392689.3388 3704 3589 79112730.44064 3711 3589 -15625000.00513 3712 3589 -22831126.63809 3713 3589 -13229195.86314 3714 3589 1.668930053711e-06 3715 3589 -39138290.32084 3716 3589 -6857580.506883 3717 3589 15625000.00513 3718 3589 -39280887.92821 3719 3589 20086776.37002 3590 3590 1151791779.138 3591 3590 2285899.966128 3592 3590 53763400.80823 3593 3590 113453108.8746 3600 3590 24744636.81848 3601 3590 12480780.76473 3602 3590 -16816652.79793 3603 3590 -3200272.15248 3604 3590 -27430311.52865 3605 3590 99884455.60809 3606 3590 -26687654.83973 3607 3590 14949530.76392 3608 3590 -20428342.61214 3684 3590 13679279.97901 3685 3590 -12543431.97403 3686 3590 -15345455.6363 3687 3590 80261824.7461 3688 3590 -6857580.506883 3689 3590 -101938662.0149 3690 3590 26537352.8999 3691 3590 19401012.48091 3692 3590 -57405640.83529 3696 3590 571474.7733671 3697 3590 -51408102.87125 3698 3590 -18348781.1507 3699 3590 2285899.092361 3700 3590 -27430322.01402 3701 3590 -242725472.4512 3702 3590 571474.773379 3703 3590 78838424.88527 3704 3590 -190201211.678 3711 3590 -14250754.75238 3712 3590 -13229195.86314 3713 3590 -17306764.74188 3714 3590 -82547723.83843 3715 3590 -6857580.506883 3716 3590 -113395588.2476 3717 3590 -27108827.67327 3718 3590 20086776.37002 3719 3590 -61172794.84886 3591 3591 1185266328.887 3592 3591 62540241.42204 3593 3591 30860066.01788 3594 3591 30368144.44572 3595 3591 -62516096.56266 3596 3591 27037674.41794 3603 3591 -90421354.05518 3604 3591 -62499999.98975 3605 3591 24401754.87359 3606 3591 -224004433.2424 3607 3591 3.09944152832e-06 3608 3591 -5943327.707585 3609 3591 -91775737.73549 3610 3591 62499999.98974 3611 3591 -27030536.78462 3687 3591 -26783317.53868 3688 3591 15625000.00513 3689 3591 13679279.97901 3690 3591 -119411159.8837 3691 3591 -15630523.23252 3692 3591 75186254.88774 3699 3591 16426910.05153 3700 3591 4.485249519348e-06 3701 3591 571474.7733669 3702 3591 109890622.1535 3703 3591 15634205.38412 3704 3591 7712478.882864 3705 3591 -60563825.20041 3706 3591 -15628682.15673 3707 3591 27115214.46942 3714 3591 -27518808.45327 3715 3591 -15625000.00513 3716 3591 -14250754.75238 3717 3591 -107888591.8846 3718 3591 1.713633537292e-06 3719 3591 -82890605.78265 3720 3591 -43968569.74338 3721 3591 15625000.00513 3722 3591 -27108827.67327 3592 3592 1016491380.459 3593 3592 -85033469.8302 3594 3592 -62524144.84912 3595 3592 -188413029.0158 3596 3592 46636948.6184 3603 3592 -62499999.98975 3604 3592 -71670594.15271 3605 3592 12206475.20882 3606 3592 3.695487976074e-06 3607 3592 50996827.03073 3608 3592 -27430311.52865 3609 3592 62499999.98974 3610 3592 -73024977.83304 3611 3592 15223836.31984 3687 3592 15625000.00513 3688 3592 -22095635.7235 3689 3592 -12543431.97403 3690 3592 -15628682.15673 3691 3592 -45961669.68301 3692 3592 8705839.731277 3699 3592 5.781650543213e-06 3700 3592 -42948027.89108 3701 3592 -51682408.42662 3702 3592 15634205.38412 3703 3592 67697343.25408 3704 3592 -21260405.06448 3705 3592 -15630523.23252 3706 3592 -115258445.5683 3707 3592 76792017.46155 3714 3592 -15625000.00513 3715 3592 -22831126.63809 3716 3592 -13229195.86314 3717 3592 1.668930053711e-06 3718 3592 -39138290.32084 3719 3592 -6857580.506883 3720 3592 15625000.00513 3721 3592 -39280887.92821 3722 3592 20086776.37002 3593 3593 1141730954.706 3594 3593 26698361.28971 3595 3593 52125943.97254 3596 3593 56705174.06508 3603 3593 24744636.81848 3604 3593 12480780.76473 3605 3593 -16816652.79793 3606 3593 -3200272.15248 3607 3593 -27430311.52865 3608 3593 99884455.60809 3609 3593 -26687654.83973 3610 3593 14949530.76392 3611 3593 -20428342.61214 3687 3593 13679279.97901 3688 3593 -12543431.97403 3689 3593 -15345455.6363 3690 3593 74842632.24213 3691 3593 6787043.609902 3692 3593 -88003520.09856 3699 3593 571474.7733671 3700 3593 -51408102.87125 3701 3593 -18348781.1507 3702 3593 7717283.578221 3703 3593 -21256561.34093 3704 3593 -211698416.8248 3705 3593 27118407.8675 3706 3593 78438470.16785 3707 3593 -167573319.7819 3714 3593 -14250754.75238 3715 3593 -13229195.86314 3716 3593 -17306764.74188 3717 3593 -82547723.83843 3718 3593 -6857580.506883 3719 3593 -113395588.2476 3720 3593 -27108827.67327 3721 3593 20086776.37002 3722 3593 -61172794.84886 3594 3594 698751952.167 3595 3594 62499999.98975 3596 3594 33160993.85051 3606 3594 -90421354.05518 3607 3594 -62499999.98975 3608 3594 24401754.87359 3609 3594 -337915744.7523 3610 3594 -62516096.56266 3611 3594 -27668847.19038 3612 3594 13308405.80675 3613 3594 50016096.56471 3614 3594 -19894290.40682 3690 3594 789479.8663111 3691 3594 18755523.23355 3692 3594 16762853.88037 3702 3594 -11151323.14121 3703 3594 -15630523.23252 3704 3594 -13684113.02055 3705 3594 50455843.08525 3706 3594 15625000.00514 3707 3594 23750485.45243 3717 3594 -27518808.45327 3718 3594 -15625000.00513 3719 3594 -14250754.75238 3720 3594 -136601119.3265 3721 3594 -15628682.15673 3722 3594 -88333821.76341 3723 3594 -31442472.41633 3724 3594 12503682.1557 3725 3594 -21464859.02542 3595 3595 604980043.3115 3596 3595 -63103934.68082 3606 3595 -62499999.98975 3607 3595 -71670594.15271 3608 3595 12206475.20882 3609 3595 -62524144.84911 3610 3595 -44113422.33778 3611 3595 -38272833.23799 3612 3595 75024144.84706 3613 3595 13308405.80675 3614 3595 25517746.91897 3690 3595 12503682.1557 3691 3595 789479.8663122 3692 3595 -8940185.539224 3702 3595 -15628682.15672 3703 3595 -65845943.5091 3704 3595 -52101581.10086 3705 3595 15625000.00514 3706 3595 27013291.43733 3707 3595 -3407345.083582 3717 3595 -15625000.00513 3718 3595 -22831126.63809 3719 3595 -13229195.86314 3720 3595 -15630523.23252 3721 3595 -63151629.12586 3722 3595 -25854695.88552 3723 3595 18755523.23355 3724 3595 -31442472.41633 3725 3595 25757502.85539 3596 3596 741587115.0734 3606 3596 24744636.81848 3607 3596 12480780.76473 3608 3596 -16816652.79793 3609 3596 -24922773.86031 3610 3596 -30315528.70936 3611 3596 20612357.80692 3612 3596 -29841435.61023 3613 3596 17011831.27931 3614 3596 35489082.15132 3690 3596 11175235.92025 3691 3596 -13410278.30884 3692 3596 2105279.643495 3702 3596 -13682502.0067 3703 3596 -53748034.02747 3704 3596 -35806647.62401 3705 3596 -8884805.348678 3706 3596 -29515355.2492 3707 3596 -145884263.2499 3717 3596 -14250754.75238 3718 3596 -13229195.86314 3719 3596 -17306764.74188 3720 3596 -87990199.11779 3721 3596 -23932056.04702 3722 3596 -133843411.9462 3723 3596 -32197288.53812 3724 3596 17171668.57026 3725 3596 -83846593.11021 3597 3597 1104842790.893 3598 3597 1.609325408936e-05 3599 3597 9143599.859988 3600 3597 135775801.5773 3601 3597 -6.794929504395e-06 3602 3597 2285899.966128 3615 3597 -224004433.2424 3616 3597 3.09944152832e-06 3617 3597 -5943327.707585 3618 3597 -91775737.73549 3619 3597 62499999.98974 3620 3597 -27030536.78462 3693 3597 -103592244.5474 3694 3597 1.892447471619e-06 3695 3597 80604706.69032 3696 3597 -42555886.98831 3697 3597 -15625000.00514 3698 3597 26537352.8999 3708 3597 77208121.14848 3709 3597 3.09944152832e-06 3710 3597 2285899.092361 3711 3597 -48017751.39621 3712 3597 -8.776783943176e-06 3713 3597 571474.7733788 3726 3597 -107888591.8846 3727 3597 1.713633537292e-06 3728 3597 -82890605.78265 3729 3597 -43968569.74338 3730 3597 15625000.00513 3731 3597 -27108827.67327 3598 3598 954836711.7471 3599 3598 -109721246.0606 3600 3598 -6.705522537231e-06 3601 3598 -101723938.9279 3602 3598 55957845.25232 3615 3598 3.695487976074e-06 3616 3598 50996827.03073 3617 3598 -27430311.52865 3618 3598 62499999.98974 3619 3598 -73024977.83304 3620 3598 15223836.31984 3693 3598 -9.983777999878e-07 3694 3598 -34841942.9836 3695 3598 -6857580.506883 3696 3598 -15625000.00514 3697 3598 -37868205.17313 3698 3598 19401012.48091 3708 3598 3.09944152832e-06 3709 3598 39706666.64553 3710 3598 -27430322.01402 3711 3598 -7.04824924469e-06 3712 3598 -107392689.3388 3713 3598 79112730.44064 3726 3598 1.668930053711e-06 3727 3598 -39138290.32084 3728 3598 -6857580.506883 3729 3598 15625000.00513 3730 3598 -39280887.92821 3731 3598 20086776.37002 3599 3599 1151791779.138 3600 3599 2285899.966128 3601 3599 53763400.80823 3602 3599 113453108.8746 3615 3599 -3200272.15248 3616 3599 -27430311.52865 3617 3599 99884455.60809 3618 3599 -26687654.83973 3619 3599 14949530.76392 3620 3599 -20428342.61214 3693 3599 80261824.7461 3694 3599 -6857580.506883 3695 3599 -101938662.0149 3696 3599 26537352.8999 3697 3599 19401012.48091 3698 3599 -57405640.83529 3708 3599 2285899.092361 3709 3599 -27430322.01402 3710 3599 -242725472.4512 3711 3599 571474.773379 3712 3599 78838424.88527 3713 3599 -190201211.678 3726 3599 -82547723.83843 3727 3599 -6857580.506883 3728 3599 -113395588.2476 3729 3599 -27108827.67327 3730 3599 20086776.37002 3731 3599 -61172794.84886 3600 3600 1104842790.893 3601 3600 1.609325408936e-05 3602 3600 9143599.859988 3603 3600 135775801.5773 3604 3600 -6.794929504395e-06 3605 3600 2285899.966128 3615 3600 -90421354.05518 3616 3600 -62499999.98975 3617 3600 24401754.87359 3618 3600 -224004433.2424 3619 3600 3.09944152832e-06 3620 3600 -5943327.707585 3621 3600 -91775737.73549 3622 3600 62499999.98974 3623 3600 -27030536.78462 3693 3600 -26783317.53868 3694 3600 15625000.00513 3695 3600 13679279.97901 3696 3600 -103592244.5474 3697 3600 1.892447471619e-06 3698 3600 80604706.69032 3699 3600 -42555886.98831 3700 3600 -15625000.00514 3701 3600 26537352.8999 3708 3600 16426910.05153 3709 3600 4.485249519348e-06 3710 3600 571474.7733669 3711 3600 77208121.14848 3712 3600 3.09944152832e-06 3713 3600 2285899.092361 3714 3600 -48017751.39621 3715 3600 -8.776783943176e-06 3716 3600 571474.7733788 3726 3600 -27518808.45327 3727 3600 -15625000.00513 3728 3600 -14250754.75238 3729 3600 -107888591.8846 3730 3600 1.713633537292e-06 3731 3600 -82890605.78265 3732 3600 -43968569.74338 3733 3600 15625000.00513 3734 3600 -27108827.67327 3601 3601 954836711.7471 3602 3601 -109721246.0606 3603 3601 -6.705522537231e-06 3604 3601 -101723938.9279 3605 3601 55957845.25232 3615 3601 -62499999.98975 3616 3601 -71670594.15271 3617 3601 12206475.20882 3618 3601 3.695487976074e-06 3619 3601 50996827.03073 3620 3601 -27430311.52865 3621 3601 62499999.98974 3622 3601 -73024977.83304 3623 3601 15223836.31984 3693 3601 15625000.00513 3694 3601 -22095635.7235 3695 3601 -12543431.97403 3696 3601 -9.983777999878e-07 3697 3601 -34841942.9836 3698 3601 -6857580.506883 3699 3601 -15625000.00514 3700 3601 -37868205.17313 3701 3601 19401012.48091 3708 3601 5.781650543213e-06 3709 3601 -42948027.89108 3710 3601 -51682408.42662 3711 3601 3.09944152832e-06 3712 3601 39706666.64553 3713 3601 -27430322.01402 3714 3601 -7.04824924469e-06 3715 3601 -107392689.3388 3716 3601 79112730.44064 3726 3601 -15625000.00513 3727 3601 -22831126.63809 3728 3601 -13229195.86314 3729 3601 1.668930053711e-06 3730 3601 -39138290.32084 3731 3601 -6857580.506883 3732 3601 15625000.00513 3733 3601 -39280887.92821 3734 3601 20086776.37002 3602 3602 1151791779.138 3603 3602 2285899.966128 3604 3602 53763400.80823 3605 3602 113453108.8746 3615 3602 24744636.81848 3616 3602 12480780.76473 3617 3602 -16816652.79793 3618 3602 -3200272.15248 3619 3602 -27430311.52865 3620 3602 99884455.60809 3621 3602 -26687654.83973 3622 3602 14949530.76392 3623 3602 -20428342.61214 3693 3602 13679279.97901 3694 3602 -12543431.97403 3695 3602 -15345455.6363 3696 3602 80261824.7461 3697 3602 -6857580.506883 3698 3602 -101938662.0149 3699 3602 26537352.8999 3700 3602 19401012.48091 3701 3602 -57405640.83529 3708 3602 571474.7733671 3709 3602 -51408102.87125 3710 3602 -18348781.1507 3711 3602 2285899.092361 3712 3602 -27430322.01402 3713 3602 -242725472.4512 3714 3602 571474.773379 3715 3602 78838424.88527 3716 3602 -190201211.678 3726 3602 -14250754.75238 3727 3602 -13229195.86314 3728 3602 -17306764.74188 3729 3602 -82547723.83843 3730 3602 -6857580.506883 3731 3602 -113395588.2476 3732 3602 -27108827.67327 3733 3602 20086776.37002 3734 3602 -61172794.84886 3603 3603 1104842790.893 3604 3603 1.609325408936e-05 3605 3603 9143599.859988 3606 3603 135775801.5773 3607 3603 -6.794929504395e-06 3608 3603 2285899.966128 3618 3603 -90421354.05518 3619 3603 -62499999.98975 3620 3603 24401754.87359 3621 3603 -224004433.2424 3622 3603 3.09944152832e-06 3623 3603 -5943327.707585 3624 3603 -91775737.73549 3625 3603 62499999.98974 3626 3603 -27030536.78462 3696 3603 -26783317.53868 3697 3603 15625000.00513 3698 3603 13679279.97901 3699 3603 -103592244.5474 3700 3603 1.892447471619e-06 3701 3603 80604706.69032 3702 3603 -42555886.98831 3703 3603 -15625000.00514 3704 3603 26537352.8999 3711 3603 16426910.05153 3712 3603 4.485249519348e-06 3713 3603 571474.7733669 3714 3603 77208121.14848 3715 3603 3.09944152832e-06 3716 3603 2285899.092361 3717 3603 -48017751.39621 3718 3603 -8.776783943176e-06 3719 3603 571474.7733788 3729 3603 -27518808.45327 3730 3603 -15625000.00513 3731 3603 -14250754.75238 3732 3603 -107888591.8846 3733 3603 1.713633537292e-06 3734 3603 -82890605.78265 3735 3603 -43968569.74338 3736 3603 15625000.00513 3737 3603 -27108827.67327 3604 3604 954836711.7471 3605 3604 -109721246.0606 3606 3604 -6.705522537231e-06 3607 3604 -101723938.9279 3608 3604 55957845.25232 3618 3604 -62499999.98975 3619 3604 -71670594.15271 3620 3604 12206475.20882 3621 3604 3.695487976074e-06 3622 3604 50996827.03073 3623 3604 -27430311.52865 3624 3604 62499999.98974 3625 3604 -73024977.83304 3626 3604 15223836.31984 3696 3604 15625000.00513 3697 3604 -22095635.7235 3698 3604 -12543431.97403 3699 3604 -9.983777999878e-07 3700 3604 -34841942.9836 3701 3604 -6857580.506883 3702 3604 -15625000.00514 3703 3604 -37868205.17313 3704 3604 19401012.48091 3711 3604 5.781650543213e-06 3712 3604 -42948027.89108 3713 3604 -51682408.42662 3714 3604 3.09944152832e-06 3715 3604 39706666.64553 3716 3604 -27430322.01402 3717 3604 -7.04824924469e-06 3718 3604 -107392689.3388 3719 3604 79112730.44064 3729 3604 -15625000.00513 3730 3604 -22831126.63809 3731 3604 -13229195.86314 3732 3604 1.668930053711e-06 3733 3604 -39138290.32084 3734 3604 -6857580.506883 3735 3604 15625000.00513 3736 3604 -39280887.92821 3737 3604 20086776.37002 3605 3605 1151791779.138 3606 3605 2285899.966128 3607 3605 53763400.80823 3608 3605 113453108.8746 3618 3605 24744636.81848 3619 3605 12480780.76473 3620 3605 -16816652.79793 3621 3605 -3200272.15248 3622 3605 -27430311.52865 3623 3605 99884455.60809 3624 3605 -26687654.83973 3625 3605 14949530.76392 3626 3605 -20428342.61214 3696 3605 13679279.97901 3697 3605 -12543431.97403 3698 3605 -15345455.6363 3699 3605 80261824.7461 3700 3605 -6857580.506883 3701 3605 -101938662.0149 3702 3605 26537352.8999 3703 3605 19401012.48091 3704 3605 -57405640.83529 3711 3605 571474.7733671 3712 3605 -51408102.87125 3713 3605 -18348781.1507 3714 3605 2285899.092361 3715 3605 -27430322.01402 3716 3605 -242725472.4512 3717 3605 571474.773379 3718 3605 78838424.88527 3719 3605 -190201211.678 3729 3605 -14250754.75238 3730 3605 -13229195.86314 3731 3605 -17306764.74188 3732 3605 -82547723.83843 3733 3605 -6857580.506883 3734 3605 -113395588.2476 3735 3605 -27108827.67327 3736 3605 20086776.37002 3737 3605 -61172794.84886 3606 3606 1104842790.893 3607 3606 1.609325408936e-05 3608 3606 9143599.859988 3609 3606 135775801.5773 3610 3606 -6.794929504395e-06 3611 3606 2285899.966128 3621 3606 -90421354.05518 3622 3606 -62499999.98975 3623 3606 24401754.87359 3624 3606 -224004433.2424 3625 3606 3.09944152832e-06 3626 3606 -5943327.707585 3627 3606 -91775737.73549 3628 3606 62499999.98974 3629 3606 -27030536.78462 3699 3606 -26783317.53868 3700 3606 15625000.00513 3701 3606 13679279.97901 3702 3606 -103592244.5474 3703 3606 1.892447471619e-06 3704 3606 80604706.69032 3705 3606 -42555886.98831 3706 3606 -15625000.00514 3707 3606 26537352.8999 3714 3606 16426910.05153 3715 3606 4.485249519348e-06 3716 3606 571474.7733669 3717 3606 77208121.14848 3718 3606 3.09944152832e-06 3719 3606 2285899.092361 3720 3606 -48017751.39621 3721 3606 -8.776783943176e-06 3722 3606 571474.7733788 3732 3606 -27518808.45327 3733 3606 -15625000.00513 3734 3606 -14250754.75238 3735 3606 -107888591.8846 3736 3606 1.713633537292e-06 3737 3606 -82890605.78265 3738 3606 -43968569.74338 3739 3606 15625000.00513 3740 3606 -27108827.67327 3607 3607 954836711.7471 3608 3607 -109721246.0606 3609 3607 -6.705522537231e-06 3610 3607 -101723938.9279 3611 3607 55957845.25232 3621 3607 -62499999.98975 3622 3607 -71670594.15271 3623 3607 12206475.20882 3624 3607 3.695487976074e-06 3625 3607 50996827.03073 3626 3607 -27430311.52865 3627 3607 62499999.98974 3628 3607 -73024977.83304 3629 3607 15223836.31984 3699 3607 15625000.00513 3700 3607 -22095635.7235 3701 3607 -12543431.97403 3702 3607 -9.983777999878e-07 3703 3607 -34841942.9836 3704 3607 -6857580.506883 3705 3607 -15625000.00514 3706 3607 -37868205.17313 3707 3607 19401012.48091 3714 3607 5.781650543213e-06 3715 3607 -42948027.89108 3716 3607 -51682408.42662 3717 3607 3.09944152832e-06 3718 3607 39706666.64553 3719 3607 -27430322.01402 3720 3607 -7.04824924469e-06 3721 3607 -107392689.3388 3722 3607 79112730.44064 3732 3607 -15625000.00513 3733 3607 -22831126.63809 3734 3607 -13229195.86314 3735 3607 1.668930053711e-06 3736 3607 -39138290.32084 3737 3607 -6857580.506883 3738 3607 15625000.00513 3739 3607 -39280887.92821 3740 3607 20086776.37002 3608 3608 1151791779.138 3609 3608 2285899.966128 3610 3608 53763400.80823 3611 3608 113453108.8746 3621 3608 24744636.81848 3622 3608 12480780.76473 3623 3608 -16816652.79793 3624 3608 -3200272.15248 3625 3608 -27430311.52865 3626 3608 99884455.60809 3627 3608 -26687654.83973 3628 3608 14949530.76392 3629 3608 -20428342.61214 3699 3608 13679279.97901 3700 3608 -12543431.97403 3701 3608 -15345455.6363 3702 3608 80261824.7461 3703 3608 -6857580.506883 3704 3608 -101938662.0149 3705 3608 26537352.8999 3706 3608 19401012.48091 3707 3608 -57405640.83529 3714 3608 571474.7733671 3715 3608 -51408102.87125 3716 3608 -18348781.1507 3717 3608 2285899.092361 3718 3608 -27430322.01402 3719 3608 -242725472.4512 3720 3608 571474.773379 3721 3608 78838424.88527 3722 3608 -190201211.678 3732 3608 -14250754.75238 3733 3608 -13229195.86314 3734 3608 -17306764.74188 3735 3608 -82547723.83843 3736 3608 -6857580.506883 3737 3608 -113395588.2476 3738 3608 -27108827.67327 3739 3608 20086776.37002 3740 3608 -61172794.84886 3609 3609 1185266328.887 3610 3609 62540241.42204 3611 3609 30860066.01788 3612 3609 30368144.44572 3613 3609 -62516096.56266 3614 3609 27037674.41794 3624 3609 -90421354.05518 3625 3609 -62499999.98975 3626 3609 24401754.87359 3627 3609 -224004433.2424 3628 3609 3.09944152832e-06 3629 3609 -5943327.707585 3630 3609 -91775737.73549 3631 3609 62499999.98974 3632 3609 -27030536.78462 3702 3609 -26783317.53868 3703 3609 15625000.00513 3704 3609 13679279.97901 3705 3609 -119411159.8837 3706 3609 -15630523.23252 3707 3609 75186254.88774 3717 3609 16426910.05153 3718 3609 4.485249519348e-06 3719 3609 571474.7733669 3720 3609 109890622.1535 3721 3609 15634205.38412 3722 3609 7712478.882864 3723 3609 -60563825.20041 3724 3609 -15628682.15673 3725 3609 27115214.46942 3735 3609 -27518808.45327 3736 3609 -15625000.00513 3737 3609 -14250754.75238 3738 3609 -107888591.8846 3739 3609 1.713633537292e-06 3740 3609 -82890605.78265 3741 3609 -43968569.74338 3742 3609 15625000.00513 3743 3609 -27108827.67327 3610 3610 1016491380.459 3611 3610 -85033469.8302 3612 3610 -62524144.84912 3613 3610 -188413029.0158 3614 3610 46636948.6184 3624 3610 -62499999.98975 3625 3610 -71670594.15271 3626 3610 12206475.20882 3627 3610 3.695487976074e-06 3628 3610 50996827.03073 3629 3610 -27430311.52865 3630 3610 62499999.98974 3631 3610 -73024977.83304 3632 3610 15223836.31984 3702 3610 15625000.00513 3703 3610 -22095635.7235 3704 3610 -12543431.97403 3705 3610 -15628682.15673 3706 3610 -45961669.68301 3707 3610 8705839.731277 3717 3610 5.781650543213e-06 3718 3610 -42948027.89108 3719 3610 -51682408.42662 3720 3610 15634205.38412 3721 3610 67697343.25408 3722 3610 -21260405.06448 3723 3610 -15630523.23252 3724 3610 -115258445.5683 3725 3610 76792017.46155 3735 3610 -15625000.00513 3736 3610 -22831126.63809 3737 3610 -13229195.86314 3738 3610 1.668930053711e-06 3739 3610 -39138290.32084 3740 3610 -6857580.506883 3741 3610 15625000.00513 3742 3610 -39280887.92821 3743 3610 20086776.37002 3611 3611 1141730954.706 3612 3611 26698361.28971 3613 3611 52125943.97254 3614 3611 56705174.06508 3624 3611 24744636.81848 3625 3611 12480780.76473 3626 3611 -16816652.79793 3627 3611 -3200272.15248 3628 3611 -27430311.52865 3629 3611 99884455.60809 3630 3611 -26687654.83973 3631 3611 14949530.76392 3632 3611 -20428342.61214 3702 3611 13679279.97901 3703 3611 -12543431.97403 3704 3611 -15345455.6363 3705 3611 74842632.24213 3706 3611 6787043.609902 3707 3611 -88003520.09856 3717 3611 571474.7733671 3718 3611 -51408102.87125 3719 3611 -18348781.1507 3720 3611 7717283.578221 3721 3611 -21256561.34093 3722 3611 -211698416.8248 3723 3611 27118407.8675 3724 3611 78438470.16785 3725 3611 -167573319.7819 3735 3611 -14250754.75238 3736 3611 -13229195.86314 3737 3611 -17306764.74188 3738 3611 -82547723.83843 3739 3611 -6857580.506883 3740 3611 -113395588.2476 3741 3611 -27108827.67327 3742 3611 20086776.37002 3743 3611 -61172794.84886 3612 3612 677400133.3289 3613 3612 57041619.96368 3614 3612 -10754501.96958 3627 3612 -90421354.05518 3628 3612 -62499999.98975 3629 3612 24401754.87359 3630 3612 -325398175.4315 3631 3612 -57073776.75131 3632 3612 -1587457.988453 3633 3612 20401810.48982 3634 3612 50032156.77943 3635 3612 -2745688.895618 3705 3612 789479.8663111 3706 3612 18755523.23355 3707 3612 16762853.88037 3720 3612 -11151323.14121 3721 3612 -15630523.23252 3722 3612 -13684113.02055 3723 3612 47191822.66489 3724 3612 14946498.26301 3725 3612 13014221.82389 3738 3612 -27518808.45327 3739 3612 -15625000.00513 3740 3612 -14250754.75238 3741 3612 -128111353.7422 3742 3612 -14954029.75625 3743 3612 -81018857.78974 3744 3612 -15349095.37302 3745 3612 12507531.49735 3746 3612 -16659255.21042 3613 3613 590623589.3511 3614 3613 -62444456.30045 3627 3613 -62499999.98975 3628 3613 -71670594.15271 3629 3613 12206475.20882 3630 3613 -57089855.14513 3631 3613 -34005965.86669 3632 3613 -16859606.35942 3633 3613 75048235.16915 3634 3613 15816558.46177 3635 3613 4543067.024131 3705 3613 12503682.1557 3706 3613 789479.8663122 3707 3613 -8940185.539224 3720 3613 -15628682.15672 3721 3613 -65845943.5091 3722 3613 -52101581.10086 3723 3613 14946498.263 3724 3613 24602513.67136 3725 3613 -3350281.619218 3738 3613 -15625000.00513 3739 3613 -22831126.63809 3740 3613 -13229195.86314 3741 3613 -14957795.50287 3742 3613 -54956148.79942 3743 3613 -19999621.90016 3744 3613 18761297.24603 3745 3613 -15908052.76959 3746 3613 20964116.01977 3614 3614 709279085.6458 3627 3614 24744636.81848 3628 3614 12480780.76473 3629 3614 -16816652.79793 3630 3614 -7758437.967454 3631 3614 -15761657.05467 3632 3614 24777136.49351 3633 3614 -4118533.343426 3634 3614 3445519.29042 3635 3614 58990080.00089 3705 3614 11175235.92025 3706 3614 -13410278.30884 3707 3614 2105279.643495 3720 3614 -13682502.0067 3721 3614 -53748034.02747 3722 3614 -35806647.62401 3723 3614 -19273894.57614 3724 3614 -29176868.80117 3725 3614 -151535111.2545 3738 3614 -14250754.75238 3739 3614 -13229195.86314 3740 3614 -17306764.74188 3741 3614 -82733059.37263 3742 3614 -19721218.30569 3743 3614 -114816200.9011 3744 3614 -24988882.81563 3745 3614 14300470.30205 3746 3614 -40371963.59817 3615 3615 1104842790.893 3616 3615 1.609325408936e-05 3617 3615 9143599.859988 3618 3615 135775801.5773 3619 3615 -6.794929504395e-06 3620 3615 2285899.966128 3636 3615 -224004433.2424 3637 3615 3.09944152832e-06 3638 3615 -5943327.707585 3639 3615 -91775737.73549 3640 3615 62499999.98974 3641 3615 -27030536.78462 3708 3615 -103592244.5474 3709 3615 1.892447471619e-06 3710 3615 80604706.69032 3711 3615 -42555886.98831 3712 3615 -15625000.00514 3713 3615 26537352.8999 3726 3615 77208121.14848 3727 3615 3.09944152832e-06 3728 3615 2285899.092361 3729 3615 -48017751.39621 3730 3615 -8.776783943176e-06 3731 3615 571474.7733788 3747 3615 -107888591.8846 3748 3615 1.713633537292e-06 3749 3615 -82890605.78265 3750 3615 -43968569.74338 3751 3615 15625000.00513 3752 3615 -27108827.67327 3616 3616 954836711.7471 3617 3616 -109721246.0606 3618 3616 -6.705522537231e-06 3619 3616 -101723938.9279 3620 3616 55957845.25232 3636 3616 3.695487976074e-06 3637 3616 50996827.03073 3638 3616 -27430311.52865 3639 3616 62499999.98974 3640 3616 -73024977.83304 3641 3616 15223836.31984 3708 3616 -9.983777999878e-07 3709 3616 -34841942.9836 3710 3616 -6857580.506883 3711 3616 -15625000.00514 3712 3616 -37868205.17313 3713 3616 19401012.48091 3726 3616 3.09944152832e-06 3727 3616 39706666.64553 3728 3616 -27430322.01402 3729 3616 -7.04824924469e-06 3730 3616 -107392689.3388 3731 3616 79112730.44064 3747 3616 1.668930053711e-06 3748 3616 -39138290.32084 3749 3616 -6857580.506883 3750 3616 15625000.00513 3751 3616 -39280887.92821 3752 3616 20086776.37002 3617 3617 1151791779.138 3618 3617 2285899.966128 3619 3617 53763400.80823 3620 3617 113453108.8746 3636 3617 -3200272.15248 3637 3617 -27430311.52865 3638 3617 99884455.60809 3639 3617 -26687654.83973 3640 3617 14949530.76392 3641 3617 -20428342.61214 3708 3617 80261824.7461 3709 3617 -6857580.506883 3710 3617 -101938662.0149 3711 3617 26537352.8999 3712 3617 19401012.48091 3713 3617 -57405640.83529 3726 3617 2285899.092361 3727 3617 -27430322.01402 3728 3617 -242725472.4512 3729 3617 571474.773379 3730 3617 78838424.88527 3731 3617 -190201211.678 3747 3617 -82547723.83843 3748 3617 -6857580.506883 3749 3617 -113395588.2476 3750 3617 -27108827.67327 3751 3617 20086776.37002 3752 3617 -61172794.84886 3618 3618 1104842790.893 3619 3618 1.609325408936e-05 3620 3618 9143599.859988 3621 3618 135775801.5773 3622 3618 -6.794929504395e-06 3623 3618 2285899.966128 3636 3618 -90421354.05518 3637 3618 -62499999.98975 3638 3618 24401754.87359 3639 3618 -224004433.2424 3640 3618 3.09944152832e-06 3641 3618 -5943327.707585 3642 3618 -91775737.73549 3643 3618 62499999.98974 3644 3618 -27030536.78462 3708 3618 -26783317.53868 3709 3618 15625000.00513 3710 3618 13679279.97901 3711 3618 -103592244.5474 3712 3618 1.892447471619e-06 3713 3618 80604706.69032 3714 3618 -42555886.98831 3715 3618 -15625000.00514 3716 3618 26537352.8999 3726 3618 16426910.05153 3727 3618 4.485249519348e-06 3728 3618 571474.7733669 3729 3618 77208121.14848 3730 3618 3.09944152832e-06 3731 3618 2285899.092361 3732 3618 -48017751.39621 3733 3618 -8.776783943176e-06 3734 3618 571474.7733788 3747 3618 -27518808.45327 3748 3618 -15625000.00513 3749 3618 -14250754.75238 3750 3618 -107888591.8846 3751 3618 1.713633537292e-06 3752 3618 -82890605.78265 3753 3618 -43968569.74338 3754 3618 15625000.00513 3755 3618 -27108827.67327 3619 3619 954836711.7471 3620 3619 -109721246.0606 3621 3619 -6.705522537231e-06 3622 3619 -101723938.9279 3623 3619 55957845.25232 3636 3619 -62499999.98975 3637 3619 -71670594.15271 3638 3619 12206475.20882 3639 3619 3.695487976074e-06 3640 3619 50996827.03073 3641 3619 -27430311.52865 3642 3619 62499999.98974 3643 3619 -73024977.83304 3644 3619 15223836.31984 3708 3619 15625000.00513 3709 3619 -22095635.7235 3710 3619 -12543431.97403 3711 3619 -9.983777999878e-07 3712 3619 -34841942.9836 3713 3619 -6857580.506883 3714 3619 -15625000.00514 3715 3619 -37868205.17313 3716 3619 19401012.48091 3726 3619 5.781650543213e-06 3727 3619 -42948027.89108 3728 3619 -51682408.42662 3729 3619 3.09944152832e-06 3730 3619 39706666.64553 3731 3619 -27430322.01402 3732 3619 -7.04824924469e-06 3733 3619 -107392689.3388 3734 3619 79112730.44064 3747 3619 -15625000.00513 3748 3619 -22831126.63809 3749 3619 -13229195.86314 3750 3619 1.668930053711e-06 3751 3619 -39138290.32084 3752 3619 -6857580.506883 3753 3619 15625000.00513 3754 3619 -39280887.92821 3755 3619 20086776.37002 3620 3620 1151791779.138 3621 3620 2285899.966128 3622 3620 53763400.80823 3623 3620 113453108.8746 3636 3620 24744636.81848 3637 3620 12480780.76473 3638 3620 -16816652.79793 3639 3620 -3200272.15248 3640 3620 -27430311.52865 3641 3620 99884455.60809 3642 3620 -26687654.83973 3643 3620 14949530.76392 3644 3620 -20428342.61214 3708 3620 13679279.97901 3709 3620 -12543431.97403 3710 3620 -15345455.6363 3711 3620 80261824.7461 3712 3620 -6857580.506883 3713 3620 -101938662.0149 3714 3620 26537352.8999 3715 3620 19401012.48091 3716 3620 -57405640.83529 3726 3620 571474.7733671 3727 3620 -51408102.87125 3728 3620 -18348781.1507 3729 3620 2285899.092361 3730 3620 -27430322.01402 3731 3620 -242725472.4512 3732 3620 571474.773379 3733 3620 78838424.88527 3734 3620 -190201211.678 3747 3620 -14250754.75238 3748 3620 -13229195.86314 3749 3620 -17306764.74188 3750 3620 -82547723.83843 3751 3620 -6857580.506883 3752 3620 -113395588.2476 3753 3620 -27108827.67327 3754 3620 20086776.37002 3755 3620 -61172794.84886 3621 3621 1104842790.893 3622 3621 1.609325408936e-05 3623 3621 9143599.859988 3624 3621 135775801.5773 3625 3621 -6.794929504395e-06 3626 3621 2285899.966128 3639 3621 -90421354.05518 3640 3621 -62499999.98975 3641 3621 24401754.87359 3642 3621 -224004433.2424 3643 3621 3.09944152832e-06 3644 3621 -5943327.707585 3645 3621 -91775737.73549 3646 3621 62499999.98974 3647 3621 -27030536.78462 3711 3621 -26783317.53868 3712 3621 15625000.00513 3713 3621 13679279.97901 3714 3621 -103592244.5474 3715 3621 1.892447471619e-06 3716 3621 80604706.69032 3717 3621 -42555886.98831 3718 3621 -15625000.00514 3719 3621 26537352.8999 3729 3621 16426910.05153 3730 3621 4.485249519348e-06 3731 3621 571474.7733669 3732 3621 77208121.14848 3733 3621 3.09944152832e-06 3734 3621 2285899.092361 3735 3621 -48017751.39621 3736 3621 -8.776783943176e-06 3737 3621 571474.7733788 3750 3621 -27518808.45327 3751 3621 -15625000.00513 3752 3621 -14250754.75238 3753 3621 -107888591.8846 3754 3621 1.713633537292e-06 3755 3621 -82890605.78265 3756 3621 -43968569.74338 3757 3621 15625000.00513 3758 3621 -27108827.67327 3622 3622 954836711.7471 3623 3622 -109721246.0606 3624 3622 -6.705522537231e-06 3625 3622 -101723938.9279 3626 3622 55957845.25232 3639 3622 -62499999.98975 3640 3622 -71670594.15271 3641 3622 12206475.20882 3642 3622 3.695487976074e-06 3643 3622 50996827.03073 3644 3622 -27430311.52865 3645 3622 62499999.98974 3646 3622 -73024977.83304 3647 3622 15223836.31984 3711 3622 15625000.00513 3712 3622 -22095635.7235 3713 3622 -12543431.97403 3714 3622 -9.983777999878e-07 3715 3622 -34841942.9836 3716 3622 -6857580.506883 3717 3622 -15625000.00514 3718 3622 -37868205.17313 3719 3622 19401012.48091 3729 3622 5.781650543213e-06 3730 3622 -42948027.89108 3731 3622 -51682408.42662 3732 3622 3.09944152832e-06 3733 3622 39706666.64553 3734 3622 -27430322.01402 3735 3622 -7.04824924469e-06 3736 3622 -107392689.3388 3737 3622 79112730.44064 3750 3622 -15625000.00513 3751 3622 -22831126.63809 3752 3622 -13229195.86314 3753 3622 1.668930053711e-06 3754 3622 -39138290.32084 3755 3622 -6857580.506883 3756 3622 15625000.00513 3757 3622 -39280887.92821 3758 3622 20086776.37002 3623 3623 1151791779.138 3624 3623 2285899.966128 3625 3623 53763400.80823 3626 3623 113453108.8746 3639 3623 24744636.81848 3640 3623 12480780.76473 3641 3623 -16816652.79793 3642 3623 -3200272.15248 3643 3623 -27430311.52865 3644 3623 99884455.60809 3645 3623 -26687654.83973 3646 3623 14949530.76392 3647 3623 -20428342.61214 3711 3623 13679279.97901 3712 3623 -12543431.97403 3713 3623 -15345455.6363 3714 3623 80261824.7461 3715 3623 -6857580.506883 3716 3623 -101938662.0149 3717 3623 26537352.8999 3718 3623 19401012.48091 3719 3623 -57405640.83529 3729 3623 571474.7733671 3730 3623 -51408102.87125 3731 3623 -18348781.1507 3732 3623 2285899.092361 3733 3623 -27430322.01402 3734 3623 -242725472.4512 3735 3623 571474.773379 3736 3623 78838424.88527 3737 3623 -190201211.678 3750 3623 -14250754.75238 3751 3623 -13229195.86314 3752 3623 -17306764.74188 3753 3623 -82547723.83843 3754 3623 -6857580.506883 3755 3623 -113395588.2476 3756 3623 -27108827.67327 3757 3623 20086776.37002 3758 3623 -61172794.84886 3624 3624 1104842790.893 3625 3624 1.609325408936e-05 3626 3624 9143599.859988 3627 3624 135775801.5773 3628 3624 -6.794929504395e-06 3629 3624 2285899.966128 3642 3624 -90421354.05518 3643 3624 -62499999.98975 3644 3624 24401754.87359 3645 3624 -224004433.2424 3646 3624 3.09944152832e-06 3647 3624 -5943327.707585 3648 3624 -91775737.73549 3649 3624 62499999.98974 3650 3624 -27030536.78462 3714 3624 -26783317.53868 3715 3624 15625000.00513 3716 3624 13679279.97901 3717 3624 -103592244.5474 3718 3624 1.892447471619e-06 3719 3624 80604706.69032 3720 3624 -42555886.98831 3721 3624 -15625000.00514 3722 3624 26537352.8999 3732 3624 16426910.05153 3733 3624 4.485249519348e-06 3734 3624 571474.7733669 3735 3624 77208121.14848 3736 3624 3.09944152832e-06 3737 3624 2285899.092361 3738 3624 -48017751.39621 3739 3624 -8.776783943176e-06 3740 3624 571474.7733788 3753 3624 -27518808.45327 3754 3624 -15625000.00513 3755 3624 -14250754.75238 3756 3624 -107888591.8846 3757 3624 1.713633537292e-06 3758 3624 -82890605.78265 3759 3624 -43968569.74338 3760 3624 15625000.00513 3761 3624 -27108827.67327 3625 3625 954836711.7471 3626 3625 -109721246.0606 3627 3625 -6.705522537231e-06 3628 3625 -101723938.9279 3629 3625 55957845.25232 3642 3625 -62499999.98975 3643 3625 -71670594.15271 3644 3625 12206475.20882 3645 3625 3.695487976074e-06 3646 3625 50996827.03073 3647 3625 -27430311.52865 3648 3625 62499999.98974 3649 3625 -73024977.83304 3650 3625 15223836.31984 3714 3625 15625000.00513 3715 3625 -22095635.7235 3716 3625 -12543431.97403 3717 3625 -9.983777999878e-07 3718 3625 -34841942.9836 3719 3625 -6857580.506883 3720 3625 -15625000.00514 3721 3625 -37868205.17313 3722 3625 19401012.48091 3732 3625 5.781650543213e-06 3733 3625 -42948027.89108 3734 3625 -51682408.42662 3735 3625 3.09944152832e-06 3736 3625 39706666.64553 3737 3625 -27430322.01402 3738 3625 -7.04824924469e-06 3739 3625 -107392689.3388 3740 3625 79112730.44064 3753 3625 -15625000.00513 3754 3625 -22831126.63809 3755 3625 -13229195.86314 3756 3625 1.668930053711e-06 3757 3625 -39138290.32084 3758 3625 -6857580.506883 3759 3625 15625000.00513 3760 3625 -39280887.92821 3761 3625 20086776.37002 3626 3626 1151791779.138 3627 3626 2285899.966128 3628 3626 53763400.80823 3629 3626 113453108.8746 3642 3626 24744636.81848 3643 3626 12480780.76473 3644 3626 -16816652.79793 3645 3626 -3200272.15248 3646 3626 -27430311.52865 3647 3626 99884455.60809 3648 3626 -26687654.83973 3649 3626 14949530.76392 3650 3626 -20428342.61214 3714 3626 13679279.97901 3715 3626 -12543431.97403 3716 3626 -15345455.6363 3717 3626 80261824.7461 3718 3626 -6857580.506883 3719 3626 -101938662.0149 3720 3626 26537352.8999 3721 3626 19401012.48091 3722 3626 -57405640.83529 3732 3626 571474.7733671 3733 3626 -51408102.87125 3734 3626 -18348781.1507 3735 3626 2285899.092361 3736 3626 -27430322.01402 3737 3626 -242725472.4512 3738 3626 571474.773379 3739 3626 78838424.88527 3740 3626 -190201211.678 3753 3626 -14250754.75238 3754 3626 -13229195.86314 3755 3626 -17306764.74188 3756 3626 -82547723.83843 3757 3626 -6857580.506883 3758 3626 -113395588.2476 3759 3626 -27108827.67327 3760 3626 20086776.37002 3761 3626 -61172794.84886 3627 3627 1104842790.893 3628 3627 1.609325408936e-05 3629 3627 9143599.859988 3630 3627 135775801.5773 3631 3627 -6.794929504395e-06 3632 3627 2285899.966128 3645 3627 -90421354.05518 3646 3627 -62499999.98975 3647 3627 24401754.87359 3648 3627 -224004433.2424 3649 3627 3.09944152832e-06 3650 3627 -5943327.707585 3651 3627 -91775737.73549 3652 3627 62499999.98974 3653 3627 -27030536.78462 3717 3627 -26783317.53868 3718 3627 15625000.00513 3719 3627 13679279.97901 3720 3627 -103592244.5474 3721 3627 1.892447471619e-06 3722 3627 80604706.69032 3723 3627 -42555886.98831 3724 3627 -15625000.00514 3725 3627 26537352.8999 3735 3627 16426910.05153 3736 3627 4.485249519348e-06 3737 3627 571474.7733669 3738 3627 77208121.14848 3739 3627 3.09944152832e-06 3740 3627 2285899.092361 3741 3627 -48017751.39621 3742 3627 -8.776783943176e-06 3743 3627 571474.7733788 3756 3627 -27518808.45327 3757 3627 -15625000.00513 3758 3627 -14250754.75238 3759 3627 -107888591.8846 3760 3627 1.713633537292e-06 3761 3627 -82890605.78265 3762 3627 -43968569.74338 3763 3627 15625000.00513 3764 3627 -27108827.67327 3628 3628 954836711.7471 3629 3628 -109721246.0606 3630 3628 -6.705522537231e-06 3631 3628 -101723938.9279 3632 3628 55957845.25232 3645 3628 -62499999.98975 3646 3628 -71670594.15271 3647 3628 12206475.20882 3648 3628 3.695487976074e-06 3649 3628 50996827.03073 3650 3628 -27430311.52865 3651 3628 62499999.98974 3652 3628 -73024977.83304 3653 3628 15223836.31984 3717 3628 15625000.00513 3718 3628 -22095635.7235 3719 3628 -12543431.97403 3720 3628 -9.983777999878e-07 3721 3628 -34841942.9836 3722 3628 -6857580.506883 3723 3628 -15625000.00514 3724 3628 -37868205.17313 3725 3628 19401012.48091 3735 3628 5.781650543213e-06 3736 3628 -42948027.89108 3737 3628 -51682408.42662 3738 3628 3.09944152832e-06 3739 3628 39706666.64553 3740 3628 -27430322.01402 3741 3628 -7.04824924469e-06 3742 3628 -107392689.3388 3743 3628 79112730.44064 3756 3628 -15625000.00513 3757 3628 -22831126.63809 3758 3628 -13229195.86314 3759 3628 1.668930053711e-06 3760 3628 -39138290.32084 3761 3628 -6857580.506883 3762 3628 15625000.00513 3763 3628 -39280887.92821 3764 3628 20086776.37002 3629 3629 1151791779.138 3630 3629 2285899.966128 3631 3629 53763400.80823 3632 3629 113453108.8746 3645 3629 24744636.81848 3646 3629 12480780.76473 3647 3629 -16816652.79793 3648 3629 -3200272.15248 3649 3629 -27430311.52865 3650 3629 99884455.60809 3651 3629 -26687654.83973 3652 3629 14949530.76392 3653 3629 -20428342.61214 3717 3629 13679279.97901 3718 3629 -12543431.97403 3719 3629 -15345455.6363 3720 3629 80261824.7461 3721 3629 -6857580.506883 3722 3629 -101938662.0149 3723 3629 26537352.8999 3724 3629 19401012.48091 3725 3629 -57405640.83529 3735 3629 571474.7733671 3736 3629 -51408102.87125 3737 3629 -18348781.1507 3738 3629 2285899.092361 3739 3629 -27430322.01402 3740 3629 -242725472.4512 3741 3629 571474.773379 3742 3629 78838424.88527 3743 3629 -190201211.678 3756 3629 -14250754.75238 3757 3629 -13229195.86314 3758 3629 -17306764.74188 3759 3629 -82547723.83843 3760 3629 -6857580.506883 3761 3629 -113395588.2476 3762 3629 -27108827.67327 3763 3629 20086776.37002 3764 3629 -61172794.84886 3630 3630 1159636637.338 3631 3630 57267063.74011 3632 3630 9020084.21679 3633 3630 31068618.59239 3634 3630 -65274374.9039 3635 3630 4311134.649271 3648 3630 -90421354.05518 3649 3630 -62499999.98975 3650 3630 24401754.87359 3651 3630 -220710941.0308 3652 3630 2712121.047365 3653 3630 -855474.0274411 3654 3630 -80630013.79547 3655 3630 62385045.26156 3656 3630 -4716463.569327 3720 3630 -26783317.53868 3721 3630 15625000.00513 3722 3630 13679279.97901 3723 3630 -124316437.4178 3724 3630 -14957795.50287 3725 3630 78707522.62756 3738 3630 16426910.05153 3739 3630 4.485249519348e-06 3740 3630 571474.7733669 3741 3630 106567923.342 3742 3630 14976154.3703 3743 3630 2242040.339887 3744 3630 -38982657.32228 3745 3630 -15972608.5643 3746 3630 21465843.53807 3759 3630 -27518808.45327 3760 3630 -15625000.00513 3761 3630 -14250754.75238 3762 3630 -107633678.2844 3763 3630 337880.5181414 3764 3630 -81247218.16221 3765 3630 -35196367.11042 3766 3630 15616369.17874 3767 3630 -21139158.27512 3631 3631 1005630507.664 3632 3631 -58747305.48163 3633 3631 -65290453.29772 3634 3631 -188051818.3445 3635 3631 9211005.933655 3648 3631 -62499999.98975 3649 3631 -71670594.15271 3650 3631 12206475.20882 3651 3631 2712121.047367 3652 3631 51529818.24322 3653 3631 -15449642.33916 3654 3631 62385045.26156 3655 3631 -71138195.32306 3656 3631 3120533.507055 3720 3631 15625000.00513 3721 3631 -22095635.7235 3722 3631 -12543431.97403 3723 3631 -14954029.75625 3724 3631 -51161232.47498 3725 3631 11517596.47983 3738 3631 5.781650543213e-06 3739 3631 -42948027.89108 3740 3631 -51682408.42662 3741 3631 14976154.3703 3742 3631 66205199.90227 3743 3631 -15327806.57963 3744 3631 -15976374.31093 3745 3631 -93719762.45757 3746 3631 67555030.84424 3759 3631 -15625000.00513 3760 3631 -22831126.63809 3761 3631 -13229195.86314 3762 3631 337880.5181415 3763 3631 -39223021.22566 3764 3631 -3684799.406556 3765 3631 15616369.17874 3766 3631 -31662826.22467 3767 3631 17418239.39067 3632 3632 1116099565.682 3633 3632 4312451.31953 3634 3632 9212070.355586 3635 3632 74748743.47656 3648 3632 24744636.81848 3649 3632 12480780.76473 3650 3632 -16816652.79793 3651 3632 -7027349.026428 3652 3632 -15449642.33916 3653 3632 95423237.22936 3654 3632 -4716463.568652 3655 3632 3120533.507055 3656 3632 -7137235.120732 3720 3632 13679279.97901 3721 3632 -12543431.97403 3722 3632 -15345455.6363 3723 3632 80421724.21045 3724 3632 11247053.56524 3725 3632 -104696424.0359 3738 3632 571474.7733671 3739 3632 -51408102.87125 3740 3632 -18348781.1507 3741 3632 2251649.800783 3742 3632 -15320118.87702 3743 3632 -215234303.521 3744 3632 21470957.25149 3745 3632 67555192.73323 3746 3632 -108007902.8681 3759 3632 -14250754.75238 3760 3632 -13229195.86314 3761 3632 -17306764.74188 3762 3632 -82961627.88533 3763 3632 -3684799.406555 3764 3632 -114363640.4791 3765 3632 -21139158.27512 3766 3632 17418239.39067 3767 3632 -39860548.18916 3633 3633 643114116.341 3634 3633 1815262.806053 3635 3633 545690.5594623 3651 3633 -88351160.48298 3652 3633 -62485443.67478 3653 3633 3800566.078527 3654 3633 -207344403.6932 3655 3633 3624976.418577 3656 3633 -687512.8056319 3657 3633 73963822.68434 3658 3633 -14301178.74488 3659 3633 -173954.9675533 3660 3633 -78370874.87386 3661 3633 61588601.32361 3662 3633 -935651.2844473 3723 3633 -10501282.92581 3724 3633 18761297.24603 3725 3633 22929736.41723 3741 3633 -30372317.15758 3742 3633 -15976374.31093 3743 3633 -19344589.06185 3744 3633 22995899.35193 3745 3633 227894.836162 3746 3633 16246316.0836 3762 3633 -33455777.13317 3763 3633 -15623874.23674 3764 3633 -19442010.85091 3765 3633 -104909724.8711 3766 3633 452225.1981282 3767 3633 -80690483.95003 3768 3633 -7523100.327808 3769 3633 -3351893.393406 3770 3633 4456236.678043 3771 3633 -33471919.22362 3772 3633 15510724.66075 3773 3633 -20109233.0943 3634 3634 686119149.4706 3635 3634 -9870113.888656 3651 3634 -62485443.67478 3652 3634 -67751390.65724 3653 3634 1462280.361642 3654 3634 3624976.418576 3655 3634 61053696.21525 3656 3634 -3015261.418273 3657 3634 10698821.25101 3658 3634 -45867734.52917 3659 3634 475736.0394503 3660 3634 61588601.32361 3661 3634 -66836531.55906 3662 3634 482735.8839684 3723 3634 12507531.49735 3724 3634 -11060240.32237 3725 3634 -12663686.66971 3741 3634 -15972608.56431 3742 3634 -85109422.29288 3743 3634 -63004424.41222 3744 3634 227894.8361608 3745 3634 32042317.97522 3746 3634 3973582.995076 3762 3634 -15623874.23674 3763 3634 -28538119.24658 3764 3634 -15941688.91568 3765 3634 452225.198129 3766 3634 -37207991.53993 3767 3634 -388625.0459828 3768 3634 2898106.608647 3769 3634 -37400484.43975 3770 3634 33451415.26071 3771 3634 15510724.66075 3772 3634 -29964282.42088 3773 3634 16785618.37505 3635 3635 747110544.2067 3651 3635 3800566.078864 3652 3635 1462280.361912 3653 3635 -8016031.629538 3654 3635 -687512.8056315 3655 3635 -3015261.418274 3656 3635 102348319.6376 3657 3635 -173954.9675504 3658 3635 475736.03945 3659 3635 80405010.0952 3660 3635 -935651.2841095 3661 3635 482735.8839684 3662 3635 -3634854.967177 3723 3635 15286490.94482 3724 3635 -18778561.99058 3725 3635 -27444463.73893 3741 3635 -19340093.59196 3742 3635 -63004759.50055 3743 3635 -85046995.76227 3744 3635 -15966947.8 3745 3635 -8805110.802092 3746 3635 -183271847.5442 3762 3635 -19442010.85091 3763 3635 -15941688.91568 3764 3635 -32724423.62665 3765 3635 -80690483.95036 3766 3635 -388625.0459812 3767 3635 -112004990.4481 3768 3635 -3668763.324622 3769 3635 33451415.26071 3770 3635 -49404477.66436 3771 3635 -20109233.0943 3772 3635 16785618.37505 3773 3635 -36071393.98125 3636 3636 552240810.9557 3637 3636 6.198883056641e-06 3638 3636 -2285838.95777 3639 3636 67865327.72727 3640 3636 12499999.99795 3641 3636 -4857484.044995 3726 3636 -103592244.5474 3727 3636 1.892447471619e-06 3728 3636 80604706.69032 3729 3636 -42555886.98831 3730 3636 -15625000.00514 3731 3636 26537352.8999 3747 3636 38581487.51291 3748 3636 -1.847743988037e-06 3749 3636 -16029498.36724 3750 3636 -24008875.6981 3751 3636 3125000.001023 3752 3636 -5078880.670627 3637 3637 477237771.3828 3638 3637 -54860623.03027 3639 3637 -12499999.99795 3640 3637 -50884542.52531 3641 3637 27704617.07065 3726 3637 -9.983777999878e-07 3727 3637 -34841942.9836 3728 3637 -6857580.506883 3729 3637 -15625000.00514 3730 3637 -37868205.17313 3731 3637 19401012.48091 3747 3637 -2.026557922363e-06 3748 3637 19830760.26143 3749 3637 -13715161.00701 3750 3637 -3125000.00103 3751 3637 -53696344.6694 3752 3637 39487788.83141 3638 3638 575414330.9272 3639 3638 5428974.286648 3640 3638 27156005.95963 3641 3638 56666359.60696 3726 3638 80261824.7461 3727 3638 -6857580.506883 3728 3638 -101938662.0149 3729 3638 26537352.8999 3730 3638 19401012.48091 3731 3638 -57405640.83529 3747 3638 16600987.73851 3748 3638 -13715161.00701 3749 3638 -121422931.0558 3750 3638 5650355.444006 3751 3638 39487788.83154 3752 3638 -95100605.83899 3639 3639 552240810.9557 3640 3639 6.198883056641e-06 3641 3639 -2285838.95777 3642 3639 67865327.72727 3643 3639 12499999.99795 3644 3639 -4857484.044995 3726 3639 -26783317.53868 3727 3639 15625000.00513 3728 3639 13679279.97901 3729 3639 -103592244.5474 3730 3639 1.892447471619e-06 3731 3639 80604706.69032 3732 3639 -42555886.98831 3733 3639 -15625000.00514 3734 3639 26537352.8999 3747 3639 8213455.025764 3748 3639 -3125000.001024 3749 3639 -2507266.086456 3750 3639 38581487.51291 3751 3639 -1.847743988037e-06 3752 3639 -16029498.36724 3753 3639 -24008875.6981 3754 3639 3125000.001023 3755 3639 -5078880.670627 3640 3640 477237771.3828 3641 3640 -54860623.03027 3642 3640 -12499999.99795 3643 3640 -50884542.52531 3644 3640 27704617.07065 3726 3640 15625000.00513 3727 3640 -22095635.7235 3728 3640 -12543431.97403 3729 3640 -9.983777999878e-07 3730 3640 -34841942.9836 3731 3640 -6857580.506883 3732 3640 -15625000.00514 3733 3640 -37868205.17313 3734 3640 19401012.48091 3747 3640 3125000.00103 3748 3640 -21474013.94555 3749 3640 -25772627.8244 3750 3640 -2.026557922363e-06 3751 3640 19830760.26143 3752 3640 -13715161.00701 3753 3640 -3125000.00103 3754 3640 -53696344.6694 3755 3640 39487788.83141 3641 3641 575414330.9272 3642 3641 5428974.286648 3643 3641 27156005.95963 3644 3641 56666359.60696 3726 3641 13679279.97901 3727 3641 -12543431.97403 3728 3641 -15345455.6363 3729 3641 80261824.7461 3730 3641 -6857580.506883 3731 3641 -101938662.0149 3732 3641 26537352.8999 3733 3641 19401012.48091 3734 3641 -57405640.83529 3747 3641 3078740.859823 3748 3641 -25772627.82454 3749 3641 -9174390.575351 3750 3641 16600987.73851 3751 3641 -13715161.00701 3752 3641 -121422931.0558 3753 3641 5650355.444006 3754 3641 39487788.83154 3755 3641 -95100605.83899 3642 3642 552240810.9557 3643 3642 6.198883056641e-06 3644 3642 -2285838.95777 3645 3642 67865327.72727 3646 3642 12499999.99795 3647 3642 -4857484.044995 3729 3642 -26783317.53868 3730 3642 15625000.00513 3731 3642 13679279.97901 3732 3642 -103592244.5474 3733 3642 1.892447471619e-06 3734 3642 80604706.69032 3735 3642 -42555886.98831 3736 3642 -15625000.00514 3737 3642 26537352.8999 3750 3642 8213455.025764 3751 3642 -3125000.001024 3752 3642 -2507266.086456 3753 3642 38581487.51291 3754 3642 -1.847743988037e-06 3755 3642 -16029498.36724 3756 3642 -24008875.6981 3757 3642 3125000.001023 3758 3642 -5078880.670627 3643 3643 477237771.3828 3644 3643 -54860623.03027 3645 3643 -12499999.99795 3646 3643 -50884542.52531 3647 3643 27704617.07065 3729 3643 15625000.00513 3730 3643 -22095635.7235 3731 3643 -12543431.97403 3732 3643 -9.983777999878e-07 3733 3643 -34841942.9836 3734 3643 -6857580.506883 3735 3643 -15625000.00514 3736 3643 -37868205.17313 3737 3643 19401012.48091 3750 3643 3125000.00103 3751 3643 -21474013.94555 3752 3643 -25772627.8244 3753 3643 -2.026557922363e-06 3754 3643 19830760.26143 3755 3643 -13715161.00701 3756 3643 -3125000.00103 3757 3643 -53696344.6694 3758 3643 39487788.83141 3644 3644 575414330.9272 3645 3644 5428974.286648 3646 3644 27156005.95963 3647 3644 56666359.60696 3729 3644 13679279.97901 3730 3644 -12543431.97403 3731 3644 -15345455.6363 3732 3644 80261824.7461 3733 3644 -6857580.506883 3734 3644 -101938662.0149 3735 3644 26537352.8999 3736 3644 19401012.48091 3737 3644 -57405640.83529 3750 3644 3078740.859823 3751 3644 -25772627.82454 3752 3644 -9174390.575351 3753 3644 16600987.73851 3754 3644 -13715161.00701 3755 3644 -121422931.0558 3756 3644 5650355.444006 3757 3644 39487788.83154 3758 3644 -95100605.83899 3645 3645 552240810.9557 3646 3645 6.198883056641e-06 3647 3645 -2285838.95777 3648 3645 67865327.72727 3649 3645 12499999.99795 3650 3645 -4857484.044995 3732 3645 -26783317.53868 3733 3645 15625000.00513 3734 3645 13679279.97901 3735 3645 -103592244.5474 3736 3645 1.892447471619e-06 3737 3645 80604706.69032 3738 3645 -42555886.98831 3739 3645 -15625000.00514 3740 3645 26537352.8999 3753 3645 8213455.025764 3754 3645 -3125000.001024 3755 3645 -2507266.086456 3756 3645 38581487.51291 3757 3645 -1.847743988037e-06 3758 3645 -16029498.36724 3759 3645 -24008875.6981 3760 3645 3125000.001023 3761 3645 -5078880.670627 3646 3646 477237771.3828 3647 3646 -54860623.03027 3648 3646 -12499999.99795 3649 3646 -50884542.52531 3650 3646 27704617.07065 3732 3646 15625000.00513 3733 3646 -22095635.7235 3734 3646 -12543431.97403 3735 3646 -9.983777999878e-07 3736 3646 -34841942.9836 3737 3646 -6857580.506883 3738 3646 -15625000.00514 3739 3646 -37868205.17313 3740 3646 19401012.48091 3753 3646 3125000.00103 3754 3646 -21474013.94555 3755 3646 -25772627.8244 3756 3646 -2.026557922363e-06 3757 3646 19830760.26143 3758 3646 -13715161.00701 3759 3646 -3125000.00103 3760 3646 -53696344.6694 3761 3646 39487788.83141 3647 3647 575414330.9272 3648 3647 5428974.286648 3649 3647 27156005.95963 3650 3647 56666359.60696 3732 3647 13679279.97901 3733 3647 -12543431.97403 3734 3647 -15345455.6363 3735 3647 80261824.7461 3736 3647 -6857580.506883 3737 3647 -101938662.0149 3738 3647 26537352.8999 3739 3647 19401012.48091 3740 3647 -57405640.83529 3753 3647 3078740.859823 3754 3647 -25772627.82454 3755 3647 -9174390.575351 3756 3647 16600987.73851 3757 3647 -13715161.00701 3758 3647 -121422931.0558 3759 3647 5650355.444006 3760 3647 39487788.83154 3761 3647 -95100605.83899 3648 3648 552240810.9557 3649 3648 6.198883056641e-06 3650 3648 -2285838.95777 3651 3648 67865327.72727 3652 3648 12499999.99795 3653 3648 -4857484.044995 3735 3648 -26783317.53868 3736 3648 15625000.00513 3737 3648 13679279.97901 3738 3648 -103592244.5474 3739 3648 1.892447471619e-06 3740 3648 80604706.69032 3741 3648 -42555886.98831 3742 3648 -15625000.00514 3743 3648 26537352.8999 3756 3648 8213455.025764 3757 3648 -3125000.001024 3758 3648 -2507266.086456 3759 3648 38581487.51291 3760 3648 -1.847743988037e-06 3761 3648 -16029498.36724 3762 3648 -24008875.6981 3763 3648 3125000.001023 3764 3648 -5078880.670627 3649 3649 477237771.3828 3650 3649 -54860623.03027 3651 3649 -12499999.99795 3652 3649 -50884542.52531 3653 3649 27704617.07065 3735 3649 15625000.00513 3736 3649 -22095635.7235 3737 3649 -12543431.97403 3738 3649 -9.983777999878e-07 3739 3649 -34841942.9836 3740 3649 -6857580.506883 3741 3649 -15625000.00514 3742 3649 -37868205.17313 3743 3649 19401012.48091 3756 3649 3125000.00103 3757 3649 -21474013.94555 3758 3649 -25772627.8244 3759 3649 -2.026557922363e-06 3760 3649 19830760.26143 3761 3649 -13715161.00701 3762 3649 -3125000.00103 3763 3649 -53696344.6694 3764 3649 39487788.83141 3650 3650 575414330.9272 3651 3650 5428974.286648 3652 3650 27156005.95963 3653 3650 56666359.60696 3735 3650 13679279.97901 3736 3650 -12543431.97403 3737 3650 -15345455.6363 3738 3650 80261824.7461 3739 3650 -6857580.506883 3740 3650 -101938662.0149 3741 3650 26537352.8999 3742 3650 19401012.48091 3743 3650 -57405640.83529 3756 3650 3078740.859823 3757 3650 -25772627.82454 3758 3650 -9174390.575351 3759 3650 16600987.73851 3760 3650 -13715161.00701 3761 3650 -121422931.0558 3762 3650 5650355.444006 3763 3650 39487788.83154 3764 3650 -95100605.83899 3651 3651 546427747.6316 3652 3651 14084.27154636 3653 3651 19801718.51323 3654 3651 72858320.95034 3655 3651 9759238.364084 3656 3651 -116602.2357446 3738 3651 -26783317.53868 3739 3651 15625000.00513 3740 3651 13679279.97901 3741 3651 -103824273.5978 3742 3651 337880.518146 3743 3651 79309465.83793 3744 3651 -35603944.70717 3745 3651 -15623874.23674 3746 3651 21344707.91248 3759 3651 8213455.025764 3760 3651 -3125000.001024 3761 3651 -2507266.086456 3762 3651 36785557.19904 3763 3651 1001.460290611 3764 3651 -10934725.82542 3765 3651 -9732528.17502 3766 3651 2784992.254198 3767 3651 -3687434.039309 3652 3652 473282839.044 3653 3652 -31454317.56922 3654 3652 -15240761.63181 3655 3652 -46838189.21174 3656 3652 4981976.156287 3738 3652 15625000.00513 3739 3652 -22095635.7235 3740 3652 -12543431.97403 3741 3652 337880.5181429 3742 3652 -35413616.53907 3743 3652 -4387924.406508 3744 3652 -15623874.23674 3745 3652 -30686286.82058 3746 3652 16688519.42836 3759 3652 3125000.00103 3760 3652 -21474013.94555 3761 3652 -25772627.8244 3762 3652 1001.460290015 3763 3652 18267026.88321 3764 3652 -8198617.671864 3765 3652 -3465007.747854 3766 3652 -39542525.64835 3767 3652 34214082.44842 3653 3653 563211198.8205 3654 3653 1940689.430582 3655 3653 4981976.156287 3656 3653 76646397.41118 3738 3653 13679279.97901 3739 3653 -12543431.97403 3740 3653 -15345455.6363 3741 3653 81023875.56122 3742 3653 -4387924.406372 3743 3653 -104205227.9814 3744 3653 21344707.91248 3745 3653 16688519.42836 3746 3653 -38452870.49066 3759 3653 3078740.859823 3760 3653 -25772627.82454 3761 3653 -9174390.575351 3762 3653 21695204.72477 3763 3653 -8198617.671865 3764 3653 -125793345.0864 3765 3653 4984232.630034 3766 3653 34214082.44842 3767 3653 -56215515.01345 3654 3654 535719626.833 3655 3654 1986554.525402 3656 3654 424185.6203845 3657 3654 -88785458.20547 3658 3654 -63411398.65587 3659 3654 778758.4376477 3660 3654 68808927.91007 3661 3654 10655584.08215 3662 3654 -482712.6707865 3741 3654 -31935568.9612 3742 3654 15616369.17874 3743 3654 18769001.46021 3744 3654 -104345694.7398 3745 3654 452225.1981363 3746 3654 80375835.46763 3762 3654 -3774952.867633 3763 3654 -3465007.747854 3764 3654 -4051670.15019 3765 3654 32975566.42036 3766 3654 240896.7043756 3767 3654 -15981841.05615 3768 3654 -34789757.76571 3769 3654 -15739275.34951 3770 3654 20505089.8357 3771 3654 -8443092.085658 3772 3654 2894792.016114 3773 3654 -3662387.778975 3655 3655 478673986.4768 3656 3655 -7025191.624467 3657 3655 -63411398.65587 3658 3655 -70742000.30841 3659 3655 482735.8839682 3660 3655 -14344415.91375 3661 3655 -50382297.84958 3662 3655 1455207.495472 3741 3655 15616369.17874 3742 3655 -28402028.07545 3743 3655 -15915093.95361 3744 3655 452225.1981353 3745 3655 -36643961.40857 3746 3655 -1091750.045935 3762 3655 2784992.254199 3763 3655 -33584950.34097 3764 3655 -31749459.20734 3765 3655 240896.7043772 3766 3655 17012000.22864 3767 3655 -1720373.374572 3768 3655 -15739275.34951 3769 3655 -30458471.87417 3770 3655 16785618.37505 3771 3655 -3355207.985938 3772 3655 -38236088.52908 3773 3655 33691058.20639 3656 3656 561203178.0176 3657 3656 778758.4376477 3658 3656 482735.8839681 3659 3656 -7540323.716533 3660 3656 203051.2179867 3661 3656 1455207.495472 3662 3656 76151663.76902 3741 3656 18769001.46021 3742 3656 -15915093.95361 3743 3656 -31165086.45791 3744 3656 80375835.46797 3745 3656 -1091750.045798 3746 3656 -110500910.0978 3762 3656 3591350.685652 3763 3656 -31749459.20747 3764 3656 -40328647.52708 3765 3656 16231422.82745 3766 3656 -1720373.374572 3767 3656 -131615230.9477 3768 3656 20505089.8357 3769 3656 16785618.37505 3770 3656 -36565583.43453 3771 3656 4458341.39036 3772 3656 33691058.20639 3773 3656 -50660541.5339 3657 3657 272675288.3693 3658 3657 64301178.73667 3659 3657 -397514.9396582 3660 3657 -104075430.6267 3661 3657 -11588601.33182 3662 3657 -207288.5304373 3744 3657 -6974489.216529 3745 3657 2898106.608647 3746 3657 3577677.650328 3765 3657 -34241146.65443 3766 3657 -15739275.34951 3767 3657 -20119910.17764 3768 3657 16467433.68971 3769 3657 15851893.39751 3770 3657 8027675.358897 3771 3657 -52140908.9295 3772 3657 -3010724.656649 3773 3657 -40235442.83158 3658 3658 240163095.6078 3659 3658 -475736.039438 3660 3658 13411398.66408 3661 3658 30224861.45123 3662 3658 -482735.8839618 3744 3658 -3351893.393406 3745 3658 -36851873.32848 3746 3658 -33215251.395 3765 3658 -15739275.34951 3766 3658 -29909860.76288 3767 3658 -16547714.96923 3768 3658 15851893.39751 3769 3658 8258880.289149 3770 3658 6548584.732711 3771 3658 3239275.345404 3772 3658 -18386257.30854 3773 3658 3214381.631519 3659 3659 285372202.8062 3660 3659 -207288.530434 3661 3659 -482735.8839618 3662 3659 51838370.07238 3744 3659 -4547322.35217 3745 3659 -33215251.395 3746 3659 -47941514.70095 3765 3659 -20119910.17764 3766 3659 -16547714.96923 3767 3659 -35102620.4711 3768 3659 -8222324.638434 3769 3659 -6784748.598432 3770 3659 -66392404.24977 3771 3659 -40235442.83175 3772 3659 -3452285.037337 3773 3659 -55601090.20684 3660 3660 265193822.0356 3661 3660 -60655584.07394 3662 3660 -431639.1816709 3744 3660 -32923308.11233 3745 3660 15510724.66075 3746 3660 19637207.89097 3765 3660 -6797258.752877 3766 3660 -3355207.985938 3767 3660 -4369505.834413 3768 3660 -52140908.9295 3769 3660 3239275.345408 3770 3660 40135998.12736 3771 3660 16083253.57212 3772 3660 -15394792.02022 3773 3660 -8050852.961471 3661 3661 238550412.4026 3662 3661 -1455207.495458 3744 3661 15510724.66075 3745 3661 -29415671.3096 3746 3661 -16547714.96923 3765 3661 2894792.016115 3766 3661 -36590255.19631 3767 3661 -32975608.44932 3768 3661 -3010724.656646 3769 3661 -18386257.30854 3770 3661 3214381.631519 3771 3661 -15394792.02022 3772 3661 8613961.591849 3773 3661 6308941.787031 3662 3662 279795339.6462 3744 3662 19637207.89097 3745 3662 -16547714.96923 3746 3662 -34608431.01782 3765 3662 3408341.390536 3766 3662 -32975608.44932 3767 3662 -46271652.64648 3768 3662 40135998.12736 3769 3662 -3452285.037337 3770 3662 -55601090.20684 3771 3662 7847723.424807 3772 3662 -7024391.544111 3773 3662 -65594085.3891 3663 3663 713665840.9484 3664 3663 62499999.98975 3665 3663 26303045.6496 3666 3663 -333091779.4995 3667 3663 -62514728.59611 3668 3663 -26296716.12064 3669 3663 15411687.79098 3670 3663 50014728.59815 3671 3663 -21264808.11782 3774 3663 50455843.08525 3775 3663 15625000.00514 3776 3663 23750485.45243 3777 3663 -136601119.3265 3778 3663 -15628682.15673 3779 3663 -88333821.76341 3780 3663 -31442472.41633 3781 3663 12503682.1557 3782 3663 -21464859.02542 3664 3664 619895634.403 3665 3664 -68588052.25144 3666 3664 -62522092.89929 3667 3664 -39293818.84171 3668 3664 -37998394.10174 3669 3664 75022092.89723 3670 3664 15411687.79098 3671 3664 23871774.7618 3774 3664 15625000.00514 3775 3664 27013291.43733 3776 3664 -3407345.083582 3777 3664 -15630523.23252 3778 3664 -63151629.12586 3779 3664 -25854695.88552 3780 3664 18755523.23355 3781 3664 -31442472.41633 3782 3664 25757502.85539 3665 3665 781376197.173 3666 3665 -26293551.35616 3667 3665 -30589746.95883 3668 3665 33460212.57848 3669 3665 -31897212.17672 3670 3665 15914516.50787 3671 3665 41097834.10927 3774 3665 -8884805.348678 3775 3665 -29515355.2492 3776 3665 -145884263.2499 3777 3665 -87990199.11779 3778 3665 -23932056.04702 3779 3665 -133843411.9462 3780 3665 -32197288.53812 3781 3665 17171668.57026 3782 3665 -83846593.11021 3666 3666 1206829602.888 3667 3666 62536821.50566 3668 3666 30859020.00955 3669 3666 35818303.75647 3670 3666 -62514728.59611 3671 3666 26693781.96925 3672 3666 -218486531.0803 3673 3666 2.98023223877e-06 3674 3666 -4571798.18244 3675 3666 -90373702.5448 3676 3666 62499999.98974 3677 3666 -26687654.40317 3774 3666 -119411159.8837 3775 3666 -15630523.23252 3776 3666 75186254.88774 3777 3666 109890622.1535 3778 3666 15634205.38412 3779 3666 7712478.882864 3780 3666 -60563825.20041 3781 3666 -15628682.15673 3782 3666 27115214.46942 3783 3666 -107888591.8846 3784 3666 1.713633537292e-06 3785 3666 -82890605.78265 3786 3666 -43968569.74338 3787 3666 15625000.00513 3788 3666 -27108827.67327 3667 3667 1038056487.373 3668 3667 -85034336.6799 3669 3667 -62522092.89929 3670 3667 -182960177.6074 3671 3667 45539436.5079 3672 3667 4.291534423828e-06 3673 3667 56514675.03912 3674 3667 -27430322.01402 3675 3667 62499999.98974 3676 3667 -71622975.29333 3677 3667 14949536.00687 3774 3667 -15628682.15673 3775 3667 -45961669.68301 3776 3667 8705839.731277 3777 3667 15634205.38412 3778 3667 67697343.25408 3779 3667 -21260405.06448 3780 3667 -15630523.23252 3781 3667 -115258445.5683 3782 3667 76792017.46155 3783 3667 1.668930053711e-06 3784 3667 -39138290.32084 3785 3667 -6857580.506883 3786 3667 15625000.00513 3787 3667 -39280887.92821 3788 3667 20086776.37002 3668 3668 1199251971.759 3669 3668 27039727.69652 3670 3668 53222308.42241 3671 3668 71236333.03937 3672 3668 -4571798.18244 3673 3668 -27430322.01402 3674 3668 114598543.8875 3675 3668 -27030536.34739 3676 3668 15223841.56225 3677 3668 -16689642.3626 3774 3668 74842632.24213 3775 3668 6787043.609902 3776 3668 -88003520.09856 3777 3668 7717283.578221 3778 3668 -21256561.34093 3779 3668 -211698416.8248 3780 3668 27118407.8675 3781 3668 78438470.16785 3782 3668 -167573319.7819 3783 3668 -82547723.83843 3784 3668 -6857580.506883 3785 3668 -113395588.2476 3786 3668 -27108827.67327 3787 3668 20086776.37002 3788 3668 -61172794.84886 3669 3669 713665840.9484 3670 3669 62499999.98975 3671 3669 26303045.6496 3672 3669 -89019318.86449 3673 3669 -62499999.98974 3674 3669 24744637.25504 3675 3669 -333091779.4995 3676 3669 -62514728.59611 3677 3669 -26296716.12064 3678 3669 15411687.79098 3679 3669 50014728.59815 3680 3669 -21264808.11782 3774 3669 789479.8663111 3775 3669 18755523.23355 3776 3669 16762853.88037 3777 3669 -11151323.14121 3778 3669 -15630523.23252 3779 3669 -13684113.02055 3780 3669 50455843.08525 3781 3669 15625000.00514 3782 3669 23750485.45243 3783 3669 -27518808.45327 3784 3669 -15625000.00513 3785 3669 -14250754.75238 3786 3669 -136601119.3265 3787 3669 -15628682.15673 3788 3669 -88333821.76341 3789 3669 -31442472.41633 3790 3669 12503682.1557 3791 3669 -21464859.02542 3670 3670 619895634.403 3671 3670 -68588052.25144 3672 3670 -62499999.98974 3673 3670 -70268591.613 3674 3670 12480786.00715 3675 3670 -62522092.89929 3676 3670 -39293818.84171 3677 3670 -37998394.10174 3678 3670 75022092.89723 3679 3670 15411687.79098 3680 3670 23871774.7618 3774 3670 12503682.1557 3775 3670 789479.8663122 3776 3670 -8940185.539224 3777 3670 -15628682.15672 3778 3670 -65845943.5091 3779 3670 -52101581.10086 3780 3670 15625000.00514 3781 3670 27013291.43733 3782 3670 -3407345.083582 3783 3670 -15625000.00513 3784 3670 -22831126.63809 3785 3670 -13229195.86314 3786 3670 -15630523.23252 3787 3670 -63151629.12586 3788 3670 -25854695.88552 3789 3670 18755523.23355 3790 3670 -31442472.41633 3791 3670 25757502.85539 3671 3671 781376197.173 3672 3671 24401755.31083 3673 3671 12206480.45177 3674 3671 -13077952.54839 3675 3671 -26293551.35616 3676 3671 -30589746.95883 3677 3671 33460212.57848 3678 3671 -31897212.17672 3679 3671 15914516.50787 3680 3671 41097834.10927 3774 3671 11175235.92025 3775 3671 -13410278.30884 3776 3671 2105279.643495 3777 3671 -13682502.0067 3778 3671 -53748034.02747 3779 3671 -35806647.62401 3780 3671 -8884805.348678 3781 3671 -29515355.2492 3782 3671 -145884263.2499 3783 3671 -14250754.75238 3784 3671 -13229195.86314 3785 3671 -17306764.74188 3786 3671 -87990199.11779 3787 3671 -23932056.04702 3788 3671 -133843411.9462 3789 3671 -32197288.53812 3790 3671 17171668.57026 3791 3671 -83846593.11021 3672 3672 1126552465.849 3673 3672 1.227855682373e-05 3674 3672 9143596.364805 3675 3672 141293458.9169 3676 3672 -4.947185516357e-06 3677 3672 2285899.092331 3681 3672 -218486531.0803 3682 3672 2.98023223877e-06 3683 3672 -4571798.18244 3684 3672 -90373702.5448 3685 3672 62499999.98974 3686 3672 -26687654.40317 3777 3672 -103592244.5474 3778 3672 1.892447471619e-06 3779 3672 80604706.69032 3780 3672 -42555886.98831 3781 3672 -15625000.00514 3782 3672 26537352.8999 3783 3672 77208121.14848 3784 3672 3.09944152832e-06 3785 3672 2285899.092361 3786 3672 -48017751.39621 3787 3672 -8.776783943176e-06 3788 3672 571474.7733788 3792 3672 -107888591.8846 3793 3672 1.713633537292e-06 3794 3672 -82890605.78265 3795 3672 -43968569.74338 3796 3672 15625000.00513 3797 3672 -27108827.67327 3673 3673 976546647.911 3674 3673 -109721288.002 3675 3673 -4.738569259644e-06 3676 3673 -96206292.73656 3677 3673 54860644.00101 3681 3673 4.291534423828e-06 3682 3673 56514675.03912 3683 3673 -27430322.01402 3684 3673 62499999.98974 3685 3673 -71622975.29333 3686 3673 14949536.00687 3777 3673 -9.983777999878e-07 3778 3673 -34841942.9836 3779 3673 -6857580.506883 3780 3673 -15625000.00514 3781 3673 -37868205.17313 3782 3673 19401012.48091 3783 3673 3.09944152832e-06 3784 3673 39706666.64553 3785 3673 -27430322.01402 3786 3673 -7.04824924469e-06 3787 3673 -107392689.3388 3788 3673 79112730.44064 3792 3673 1.668930053711e-06 3793 3673 -39138290.32084 3794 3673 -6857580.506883 3795 3673 15625000.00513 3796 3673 -39280887.92821 3797 3673 20086776.37002 3674 3674 1209684727.759 3675 3674 2285899.092332 3676 3674 54860644.00101 3677 3674 128167058.7484 3681 3674 -4571798.18244 3682 3674 -27430322.01402 3683 3674 114598543.8875 3684 3674 -27030536.34739 3685 3674 15223841.56225 3686 3674 -16689642.3626 3777 3674 80261824.7461 3778 3674 -6857580.506883 3779 3674 -101938662.0149 3780 3674 26537352.8999 3781 3674 19401012.48091 3782 3674 -57405640.83529 3783 3674 2285899.092361 3784 3674 -27430322.01402 3785 3674 -242725472.4512 3786 3674 571474.773379 3787 3674 78838424.88527 3788 3674 -190201211.678 3792 3674 -82547723.83843 3793 3674 -6857580.506883 3794 3674 -113395588.2476 3795 3674 -27108827.67327 3796 3674 20086776.37002 3797 3674 -61172794.84886 3675 3675 1206829602.888 3676 3675 62536821.50566 3677 3675 30859020.00955 3678 3675 35818303.75647 3679 3675 -62514728.59611 3680 3675 26693781.96925 3681 3675 -89019318.86449 3682 3675 -62499999.98974 3683 3675 24744637.25504 3684 3675 -218486531.0803 3685 3675 2.98023223877e-06 3686 3675 -4571798.18244 3687 3675 -90373702.5448 3688 3675 62499999.98974 3689 3675 -26687654.40317 3777 3675 -26783317.53868 3778 3675 15625000.00513 3779 3675 13679279.97901 3780 3675 -119411159.8837 3781 3675 -15630523.23252 3782 3675 75186254.88774 3783 3675 16426910.05153 3784 3675 4.485249519348e-06 3785 3675 571474.7733669 3786 3675 109890622.1535 3787 3675 15634205.38412 3788 3675 7712478.882864 3789 3675 -60563825.20041 3790 3675 -15628682.15673 3791 3675 27115214.46942 3792 3675 -27518808.45327 3793 3675 -15625000.00513 3794 3675 -14250754.75238 3795 3675 -107888591.8846 3796 3675 1.713633537292e-06 3797 3675 -82890605.78265 3798 3675 -43968569.74338 3799 3675 15625000.00513 3800 3675 -27108827.67327 3676 3676 1038056487.373 3677 3676 -85034336.6799 3678 3676 -62522092.89929 3679 3676 -182960177.6074 3680 3676 45539436.5079 3681 3676 -62499999.98974 3682 3676 -70268591.613 3683 3676 12480786.00715 3684 3676 4.291534423828e-06 3685 3676 56514675.03912 3686 3676 -27430322.01402 3687 3676 62499999.98974 3688 3676 -71622975.29333 3689 3676 14949536.00687 3777 3676 15625000.00513 3778 3676 -22095635.7235 3779 3676 -12543431.97403 3780 3676 -15628682.15673 3781 3676 -45961669.68301 3782 3676 8705839.731277 3783 3676 5.781650543213e-06 3784 3676 -42948027.89108 3785 3676 -51682408.42662 3786 3676 15634205.38412 3787 3676 67697343.25408 3788 3676 -21260405.06448 3789 3676 -15630523.23252 3790 3676 -115258445.5683 3791 3676 76792017.46155 3792 3676 -15625000.00513 3793 3676 -22831126.63809 3794 3676 -13229195.86314 3795 3676 1.668930053711e-06 3796 3676 -39138290.32084 3797 3676 -6857580.506883 3798 3676 15625000.00513 3799 3676 -39280887.92821 3800 3676 20086776.37002 3677 3677 1199251971.759 3678 3677 27039727.69652 3679 3677 53222308.42241 3680 3677 71236333.03937 3681 3677 24401755.31083 3682 3677 12206480.45177 3683 3677 -13077952.54839 3684 3677 -4571798.18244 3685 3677 -27430322.01402 3686 3677 114598543.8875 3687 3677 -27030536.34739 3688 3677 15223841.56225 3689 3677 -16689642.3626 3777 3677 13679279.97901 3778 3677 -12543431.97403 3779 3677 -15345455.6363 3780 3677 74842632.24213 3781 3677 6787043.609902 3782 3677 -88003520.09856 3783 3677 571474.7733671 3784 3677 -51408102.87125 3785 3677 -18348781.1507 3786 3677 7717283.578221 3787 3677 -21256561.34093 3788 3677 -211698416.8248 3789 3677 27118407.8675 3790 3677 78438470.16785 3791 3677 -167573319.7819 3792 3677 -14250754.75238 3793 3677 -13229195.86314 3794 3677 -17306764.74188 3795 3677 -82547723.83843 3796 3677 -6857580.506883 3797 3677 -113395588.2476 3798 3677 -27108827.67327 3799 3677 20086776.37002 3800 3677 -61172794.84886 3678 3678 713665840.9484 3679 3678 62499999.98975 3680 3678 26303045.6496 3684 3678 -89019318.86449 3685 3678 -62499999.98974 3686 3678 24744637.25504 3687 3678 -333091779.4995 3688 3678 -62514728.59611 3689 3678 -26296716.12064 3690 3678 15411687.79098 3691 3678 50014728.59815 3692 3678 -21264808.11782 3780 3678 789479.8663111 3781 3678 18755523.23355 3782 3678 16762853.88037 3786 3678 -11151323.14121 3787 3678 -15630523.23252 3788 3678 -13684113.02055 3789 3678 50455843.08525 3790 3678 15625000.00514 3791 3678 23750485.45243 3795 3678 -27518808.45327 3796 3678 -15625000.00513 3797 3678 -14250754.75238 3798 3678 -136601119.3265 3799 3678 -15628682.15673 3800 3678 -88333821.76341 3801 3678 -31442472.41633 3802 3678 12503682.1557 3803 3678 -21464859.02542 3679 3679 619895634.403 3680 3679 -68588052.25144 3684 3679 -62499999.98974 3685 3679 -70268591.613 3686 3679 12480786.00715 3687 3679 -62522092.89929 3688 3679 -39293818.84171 3689 3679 -37998394.10174 3690 3679 75022092.89723 3691 3679 15411687.79098 3692 3679 23871774.7618 3780 3679 12503682.1557 3781 3679 789479.8663122 3782 3679 -8940185.539224 3786 3679 -15628682.15672 3787 3679 -65845943.5091 3788 3679 -52101581.10086 3789 3679 15625000.00514 3790 3679 27013291.43733 3791 3679 -3407345.083582 3795 3679 -15625000.00513 3796 3679 -22831126.63809 3797 3679 -13229195.86314 3798 3679 -15630523.23252 3799 3679 -63151629.12586 3800 3679 -25854695.88552 3801 3679 18755523.23355 3802 3679 -31442472.41633 3803 3679 25757502.85539 3680 3680 781376197.173 3684 3680 24401755.31083 3685 3680 12206480.45177 3686 3680 -13077952.54839 3687 3680 -26293551.35616 3688 3680 -30589746.95883 3689 3680 33460212.57848 3690 3680 -31897212.17672 3691 3680 15914516.50787 3692 3680 41097834.10927 3780 3680 11175235.92025 3781 3680 -13410278.30884 3782 3680 2105279.643495 3786 3680 -13682502.0067 3787 3680 -53748034.02747 3788 3680 -35806647.62401 3789 3680 -8884805.348678 3790 3680 -29515355.2492 3791 3680 -145884263.2499 3795 3680 -14250754.75238 3796 3680 -13229195.86314 3797 3680 -17306764.74188 3798 3680 -87990199.11779 3799 3680 -23932056.04702 3800 3680 -133843411.9462 3801 3680 -32197288.53812 3802 3680 17171668.57026 3803 3680 -83846593.11021 3681 3681 1126552465.849 3682 3681 1.227855682373e-05 3683 3681 9143596.364805 3684 3681 141293458.9169 3685 3681 -4.947185516357e-06 3686 3681 2285899.092331 3693 3681 -218486531.0803 3694 3681 2.98023223877e-06 3695 3681 -4571798.18244 3696 3681 -90373702.5448 3697 3681 62499999.98974 3698 3681 -26687654.40317 3783 3681 -103592244.5474 3784 3681 1.892447471619e-06 3785 3681 80604706.69032 3786 3681 -42555886.98831 3787 3681 -15625000.00514 3788 3681 26537352.8999 3792 3681 77208121.14848 3793 3681 3.09944152832e-06 3794 3681 2285899.092361 3795 3681 -48017751.39621 3796 3681 -8.776783943176e-06 3797 3681 571474.7733788 3804 3681 -107888591.8846 3805 3681 1.713633537292e-06 3806 3681 -82890605.78265 3807 3681 -43968569.74338 3808 3681 15625000.00513 3809 3681 -27108827.67327 3682 3682 976546647.911 3683 3682 -109721288.002 3684 3682 -4.738569259644e-06 3685 3682 -96206292.73656 3686 3682 54860644.00101 3693 3682 4.291534423828e-06 3694 3682 56514675.03912 3695 3682 -27430322.01402 3696 3682 62499999.98974 3697 3682 -71622975.29333 3698 3682 14949536.00687 3783 3682 -9.983777999878e-07 3784 3682 -34841942.9836 3785 3682 -6857580.506883 3786 3682 -15625000.00514 3787 3682 -37868205.17313 3788 3682 19401012.48091 3792 3682 3.09944152832e-06 3793 3682 39706666.64553 3794 3682 -27430322.01402 3795 3682 -7.04824924469e-06 3796 3682 -107392689.3388 3797 3682 79112730.44064 3804 3682 1.668930053711e-06 3805 3682 -39138290.32084 3806 3682 -6857580.506883 3807 3682 15625000.00513 3808 3682 -39280887.92821 3809 3682 20086776.37002 3683 3683 1209684727.759 3684 3683 2285899.092332 3685 3683 54860644.00101 3686 3683 128167058.7484 3693 3683 -4571798.18244 3694 3683 -27430322.01402 3695 3683 114598543.8875 3696 3683 -27030536.34739 3697 3683 15223841.56225 3698 3683 -16689642.3626 3783 3683 80261824.7461 3784 3683 -6857580.506883 3785 3683 -101938662.0149 3786 3683 26537352.8999 3787 3683 19401012.48091 3788 3683 -57405640.83529 3792 3683 2285899.092361 3793 3683 -27430322.01402 3794 3683 -242725472.4512 3795 3683 571474.773379 3796 3683 78838424.88527 3797 3683 -190201211.678 3804 3683 -82547723.83843 3805 3683 -6857580.506883 3806 3683 -113395588.2476 3807 3683 -27108827.67327 3808 3683 20086776.37002 3809 3683 -61172794.84886 3684 3684 1126552465.849 3685 3684 1.227855682373e-05 3686 3684 9143596.364805 3687 3684 141293458.9169 3688 3684 -4.947185516357e-06 3689 3684 2285899.092331 3693 3684 -89019318.86449 3694 3684 -62499999.98974 3695 3684 24744637.25504 3696 3684 -218486531.0803 3697 3684 2.98023223877e-06 3698 3684 -4571798.18244 3699 3684 -90373702.5448 3700 3684 62499999.98974 3701 3684 -26687654.40317 3783 3684 -26783317.53868 3784 3684 15625000.00513 3785 3684 13679279.97901 3786 3684 -103592244.5474 3787 3684 1.892447471619e-06 3788 3684 80604706.69032 3789 3684 -42555886.98831 3790 3684 -15625000.00514 3791 3684 26537352.8999 3792 3684 16426910.05153 3793 3684 4.485249519348e-06 3794 3684 571474.7733669 3795 3684 77208121.14848 3796 3684 3.09944152832e-06 3797 3684 2285899.092361 3798 3684 -48017751.39621 3799 3684 -8.776783943176e-06 3800 3684 571474.7733788 3804 3684 -27518808.45327 3805 3684 -15625000.00513 3806 3684 -14250754.75238 3807 3684 -107888591.8846 3808 3684 1.713633537292e-06 3809 3684 -82890605.78265 3810 3684 -43968569.74338 3811 3684 15625000.00513 3812 3684 -27108827.67327 3685 3685 976546647.911 3686 3685 -109721288.002 3687 3685 -4.738569259644e-06 3688 3685 -96206292.73656 3689 3685 54860644.00101 3693 3685 -62499999.98974 3694 3685 -70268591.613 3695 3685 12480786.00715 3696 3685 4.291534423828e-06 3697 3685 56514675.03912 3698 3685 -27430322.01402 3699 3685 62499999.98974 3700 3685 -71622975.29333 3701 3685 14949536.00687 3783 3685 15625000.00513 3784 3685 -22095635.7235 3785 3685 -12543431.97403 3786 3685 -9.983777999878e-07 3787 3685 -34841942.9836 3788 3685 -6857580.506883 3789 3685 -15625000.00514 3790 3685 -37868205.17313 3791 3685 19401012.48091 3792 3685 5.781650543213e-06 3793 3685 -42948027.89108 3794 3685 -51682408.42662 3795 3685 3.09944152832e-06 3796 3685 39706666.64553 3797 3685 -27430322.01402 3798 3685 -7.04824924469e-06 3799 3685 -107392689.3388 3800 3685 79112730.44064 3804 3685 -15625000.00513 3805 3685 -22831126.63809 3806 3685 -13229195.86314 3807 3685 1.668930053711e-06 3808 3685 -39138290.32084 3809 3685 -6857580.506883 3810 3685 15625000.00513 3811 3685 -39280887.92821 3812 3685 20086776.37002 3686 3686 1209684727.759 3687 3686 2285899.092332 3688 3686 54860644.00101 3689 3686 128167058.7484 3693 3686 24401755.31083 3694 3686 12206480.45177 3695 3686 -13077952.54839 3696 3686 -4571798.18244 3697 3686 -27430322.01402 3698 3686 114598543.8875 3699 3686 -27030536.34739 3700 3686 15223841.56225 3701 3686 -16689642.3626 3783 3686 13679279.97901 3784 3686 -12543431.97403 3785 3686 -15345455.6363 3786 3686 80261824.7461 3787 3686 -6857580.506883 3788 3686 -101938662.0149 3789 3686 26537352.8999 3790 3686 19401012.48091 3791 3686 -57405640.83529 3792 3686 571474.7733671 3793 3686 -51408102.87125 3794 3686 -18348781.1507 3795 3686 2285899.092361 3796 3686 -27430322.01402 3797 3686 -242725472.4512 3798 3686 571474.773379 3799 3686 78838424.88527 3800 3686 -190201211.678 3804 3686 -14250754.75238 3805 3686 -13229195.86314 3806 3686 -17306764.74188 3807 3686 -82547723.83843 3808 3686 -6857580.506883 3809 3686 -113395588.2476 3810 3686 -27108827.67327 3811 3686 20086776.37002 3812 3686 -61172794.84886 3687 3687 1206829602.888 3688 3687 62536821.50566 3689 3687 30859020.00955 3690 3687 35818303.75647 3691 3687 -62514728.59611 3692 3687 26693781.96925 3696 3687 -89019318.86449 3697 3687 -62499999.98974 3698 3687 24744637.25504 3699 3687 -218486531.0803 3700 3687 2.98023223877e-06 3701 3687 -4571798.18244 3702 3687 -90373702.5448 3703 3687 62499999.98974 3704 3687 -26687654.40317 3786 3687 -26783317.53868 3787 3687 15625000.00513 3788 3687 13679279.97901 3789 3687 -119411159.8837 3790 3687 -15630523.23252 3791 3687 75186254.88774 3795 3687 16426910.05153 3796 3687 4.485249519348e-06 3797 3687 571474.7733669 3798 3687 109890622.1535 3799 3687 15634205.38412 3800 3687 7712478.882864 3801 3687 -60563825.20041 3802 3687 -15628682.15673 3803 3687 27115214.46942 3807 3687 -27518808.45327 3808 3687 -15625000.00513 3809 3687 -14250754.75238 3810 3687 -107888591.8846 3811 3687 1.713633537292e-06 3812 3687 -82890605.78265 3813 3687 -43968569.74338 3814 3687 15625000.00513 3815 3687 -27108827.67327 3688 3688 1038056487.373 3689 3688 -85034336.6799 3690 3688 -62522092.89929 3691 3688 -182960177.6074 3692 3688 45539436.5079 3696 3688 -62499999.98974 3697 3688 -70268591.613 3698 3688 12480786.00715 3699 3688 4.291534423828e-06 3700 3688 56514675.03912 3701 3688 -27430322.01402 3702 3688 62499999.98974 3703 3688 -71622975.29333 3704 3688 14949536.00687 3786 3688 15625000.00513 3787 3688 -22095635.7235 3788 3688 -12543431.97403 3789 3688 -15628682.15673 3790 3688 -45961669.68301 3791 3688 8705839.731277 3795 3688 5.781650543213e-06 3796 3688 -42948027.89108 3797 3688 -51682408.42662 3798 3688 15634205.38412 3799 3688 67697343.25408 3800 3688 -21260405.06448 3801 3688 -15630523.23252 3802 3688 -115258445.5683 3803 3688 76792017.46155 3807 3688 -15625000.00513 3808 3688 -22831126.63809 3809 3688 -13229195.86314 3810 3688 1.668930053711e-06 3811 3688 -39138290.32084 3812 3688 -6857580.506883 3813 3688 15625000.00513 3814 3688 -39280887.92821 3815 3688 20086776.37002 3689 3689 1199251971.759 3690 3689 27039727.69652 3691 3689 53222308.42241 3692 3689 71236333.03937 3696 3689 24401755.31083 3697 3689 12206480.45177 3698 3689 -13077952.54839 3699 3689 -4571798.18244 3700 3689 -27430322.01402 3701 3689 114598543.8875 3702 3689 -27030536.34739 3703 3689 15223841.56225 3704 3689 -16689642.3626 3786 3689 13679279.97901 3787 3689 -12543431.97403 3788 3689 -15345455.6363 3789 3689 74842632.24213 3790 3689 6787043.609902 3791 3689 -88003520.09856 3795 3689 571474.7733671 3796 3689 -51408102.87125 3797 3689 -18348781.1507 3798 3689 7717283.578221 3799 3689 -21256561.34093 3800 3689 -211698416.8248 3801 3689 27118407.8675 3802 3689 78438470.16785 3803 3689 -167573319.7819 3807 3689 -14250754.75238 3808 3689 -13229195.86314 3809 3689 -17306764.74188 3810 3689 -82547723.83843 3811 3689 -6857580.506883 3812 3689 -113395588.2476 3813 3689 -27108827.67327 3814 3689 20086776.37002 3815 3689 -61172794.84886 3690 3690 713665840.9484 3691 3690 62499999.98975 3692 3690 26303045.6496 3699 3690 -89019318.86449 3700 3690 -62499999.98974 3701 3690 24744637.25504 3702 3690 -333091779.4995 3703 3690 -62514728.59611 3704 3690 -26296716.12064 3705 3690 15411687.79098 3706 3690 50014728.59815 3707 3690 -21264808.11782 3789 3690 789479.8663111 3790 3690 18755523.23355 3791 3690 16762853.88037 3798 3690 -11151323.14121 3799 3690 -15630523.23252 3800 3690 -13684113.02055 3801 3690 50455843.08525 3802 3690 15625000.00514 3803 3690 23750485.45243 3810 3690 -27518808.45327 3811 3690 -15625000.00513 3812 3690 -14250754.75238 3813 3690 -136601119.3265 3814 3690 -15628682.15673 3815 3690 -88333821.76341 3816 3690 -31442472.41633 3817 3690 12503682.1557 3818 3690 -21464859.02542 3691 3691 619895634.403 3692 3691 -68588052.25144 3699 3691 -62499999.98974 3700 3691 -70268591.613 3701 3691 12480786.00715 3702 3691 -62522092.89929 3703 3691 -39293818.84171 3704 3691 -37998394.10174 3705 3691 75022092.89723 3706 3691 15411687.79098 3707 3691 23871774.7618 3789 3691 12503682.1557 3790 3691 789479.8663122 3791 3691 -8940185.539224 3798 3691 -15628682.15672 3799 3691 -65845943.5091 3800 3691 -52101581.10086 3801 3691 15625000.00514 3802 3691 27013291.43733 3803 3691 -3407345.083582 3810 3691 -15625000.00513 3811 3691 -22831126.63809 3812 3691 -13229195.86314 3813 3691 -15630523.23252 3814 3691 -63151629.12586 3815 3691 -25854695.88552 3816 3691 18755523.23355 3817 3691 -31442472.41633 3818 3691 25757502.85539 3692 3692 781376197.173 3699 3692 24401755.31083 3700 3692 12206480.45177 3701 3692 -13077952.54839 3702 3692 -26293551.35616 3703 3692 -30589746.95883 3704 3692 33460212.57848 3705 3692 -31897212.17672 3706 3692 15914516.50787 3707 3692 41097834.10927 3789 3692 11175235.92025 3790 3692 -13410278.30884 3791 3692 2105279.643495 3798 3692 -13682502.0067 3799 3692 -53748034.02747 3800 3692 -35806647.62401 3801 3692 -8884805.348678 3802 3692 -29515355.2492 3803 3692 -145884263.2499 3810 3692 -14250754.75238 3811 3692 -13229195.86314 3812 3692 -17306764.74188 3813 3692 -87990199.11779 3814 3692 -23932056.04702 3815 3692 -133843411.9462 3816 3692 -32197288.53812 3817 3692 17171668.57026 3818 3692 -83846593.11021 3693 3693 1126552465.849 3694 3693 1.227855682373e-05 3695 3693 9143596.364805 3696 3693 141293458.9169 3697 3693 -4.947185516357e-06 3698 3693 2285899.092331 3708 3693 -218486531.0803 3709 3693 2.98023223877e-06 3710 3693 -4571798.18244 3711 3693 -90373702.5448 3712 3693 62499999.98974 3713 3693 -26687654.40317 3792 3693 -103592244.5474 3793 3693 1.892447471619e-06 3794 3693 80604706.69032 3795 3693 -42555886.98831 3796 3693 -15625000.00514 3797 3693 26537352.8999 3804 3693 77208121.14848 3805 3693 3.09944152832e-06 3806 3693 2285899.092361 3807 3693 -48017751.39621 3808 3693 -8.776783943176e-06 3809 3693 571474.7733788 3819 3693 -107888591.8846 3820 3693 1.713633537292e-06 3821 3693 -82890605.78265 3822 3693 -43968569.74338 3823 3693 15625000.00513 3824 3693 -27108827.67327 3694 3694 976546647.911 3695 3694 -109721288.002 3696 3694 -4.738569259644e-06 3697 3694 -96206292.73656 3698 3694 54860644.00101 3708 3694 4.291534423828e-06 3709 3694 56514675.03912 3710 3694 -27430322.01402 3711 3694 62499999.98974 3712 3694 -71622975.29333 3713 3694 14949536.00687 3792 3694 -9.983777999878e-07 3793 3694 -34841942.9836 3794 3694 -6857580.506883 3795 3694 -15625000.00514 3796 3694 -37868205.17313 3797 3694 19401012.48091 3804 3694 3.09944152832e-06 3805 3694 39706666.64553 3806 3694 -27430322.01402 3807 3694 -7.04824924469e-06 3808 3694 -107392689.3388 3809 3694 79112730.44064 3819 3694 1.668930053711e-06 3820 3694 -39138290.32084 3821 3694 -6857580.506883 3822 3694 15625000.00513 3823 3694 -39280887.92821 3824 3694 20086776.37002 3695 3695 1209684727.759 3696 3695 2285899.092332 3697 3695 54860644.00101 3698 3695 128167058.7484 3708 3695 -4571798.18244 3709 3695 -27430322.01402 3710 3695 114598543.8875 3711 3695 -27030536.34739 3712 3695 15223841.56225 3713 3695 -16689642.3626 3792 3695 80261824.7461 3793 3695 -6857580.506883 3794 3695 -101938662.0149 3795 3695 26537352.8999 3796 3695 19401012.48091 3797 3695 -57405640.83529 3804 3695 2285899.092361 3805 3695 -27430322.01402 3806 3695 -242725472.4512 3807 3695 571474.773379 3808 3695 78838424.88527 3809 3695 -190201211.678 3819 3695 -82547723.83843 3820 3695 -6857580.506883 3821 3695 -113395588.2476 3822 3695 -27108827.67327 3823 3695 20086776.37002 3824 3695 -61172794.84886 3696 3696 1126552465.849 3697 3696 1.227855682373e-05 3698 3696 9143596.364805 3699 3696 141293458.9169 3700 3696 -4.947185516357e-06 3701 3696 2285899.092331 3708 3696 -89019318.86449 3709 3696 -62499999.98974 3710 3696 24744637.25504 3711 3696 -218486531.0803 3712 3696 2.98023223877e-06 3713 3696 -4571798.18244 3714 3696 -90373702.5448 3715 3696 62499999.98974 3716 3696 -26687654.40317 3792 3696 -26783317.53868 3793 3696 15625000.00513 3794 3696 13679279.97901 3795 3696 -103592244.5474 3796 3696 1.892447471619e-06 3797 3696 80604706.69032 3798 3696 -42555886.98831 3799 3696 -15625000.00514 3800 3696 26537352.8999 3804 3696 16426910.05153 3805 3696 4.485249519348e-06 3806 3696 571474.7733669 3807 3696 77208121.14848 3808 3696 3.09944152832e-06 3809 3696 2285899.092361 3810 3696 -48017751.39621 3811 3696 -8.776783943176e-06 3812 3696 571474.7733788 3819 3696 -27518808.45327 3820 3696 -15625000.00513 3821 3696 -14250754.75238 3822 3696 -107888591.8846 3823 3696 1.713633537292e-06 3824 3696 -82890605.78265 3825 3696 -43968569.74338 3826 3696 15625000.00513 3827 3696 -27108827.67327 3697 3697 976546647.911 3698 3697 -109721288.002 3699 3697 -4.738569259644e-06 3700 3697 -96206292.73656 3701 3697 54860644.00101 3708 3697 -62499999.98974 3709 3697 -70268591.613 3710 3697 12480786.00715 3711 3697 4.291534423828e-06 3712 3697 56514675.03912 3713 3697 -27430322.01402 3714 3697 62499999.98974 3715 3697 -71622975.29333 3716 3697 14949536.00687 3792 3697 15625000.00513 3793 3697 -22095635.7235 3794 3697 -12543431.97403 3795 3697 -9.983777999878e-07 3796 3697 -34841942.9836 3797 3697 -6857580.506883 3798 3697 -15625000.00514 3799 3697 -37868205.17313 3800 3697 19401012.48091 3804 3697 5.781650543213e-06 3805 3697 -42948027.89108 3806 3697 -51682408.42662 3807 3697 3.09944152832e-06 3808 3697 39706666.64553 3809 3697 -27430322.01402 3810 3697 -7.04824924469e-06 3811 3697 -107392689.3388 3812 3697 79112730.44064 3819 3697 -15625000.00513 3820 3697 -22831126.63809 3821 3697 -13229195.86314 3822 3697 1.668930053711e-06 3823 3697 -39138290.32084 3824 3697 -6857580.506883 3825 3697 15625000.00513 3826 3697 -39280887.92821 3827 3697 20086776.37002 3698 3698 1209684727.759 3699 3698 2285899.092332 3700 3698 54860644.00101 3701 3698 128167058.7484 3708 3698 24401755.31083 3709 3698 12206480.45177 3710 3698 -13077952.54839 3711 3698 -4571798.18244 3712 3698 -27430322.01402 3713 3698 114598543.8875 3714 3698 -27030536.34739 3715 3698 15223841.56225 3716 3698 -16689642.3626 3792 3698 13679279.97901 3793 3698 -12543431.97403 3794 3698 -15345455.6363 3795 3698 80261824.7461 3796 3698 -6857580.506883 3797 3698 -101938662.0149 3798 3698 26537352.8999 3799 3698 19401012.48091 3800 3698 -57405640.83529 3804 3698 571474.7733671 3805 3698 -51408102.87125 3806 3698 -18348781.1507 3807 3698 2285899.092361 3808 3698 -27430322.01402 3809 3698 -242725472.4512 3810 3698 571474.773379 3811 3698 78838424.88527 3812 3698 -190201211.678 3819 3698 -14250754.75238 3820 3698 -13229195.86314 3821 3698 -17306764.74188 3822 3698 -82547723.83843 3823 3698 -6857580.506883 3824 3698 -113395588.2476 3825 3698 -27108827.67327 3826 3698 20086776.37002 3827 3698 -61172794.84886 3699 3699 1126552465.849 3700 3699 1.227855682373e-05 3701 3699 9143596.364805 3702 3699 141293458.9169 3703 3699 -4.947185516357e-06 3704 3699 2285899.092331 3711 3699 -89019318.86449 3712 3699 -62499999.98974 3713 3699 24744637.25504 3714 3699 -218486531.0803 3715 3699 2.98023223877e-06 3716 3699 -4571798.18244 3717 3699 -90373702.5448 3718 3699 62499999.98974 3719 3699 -26687654.40317 3795 3699 -26783317.53868 3796 3699 15625000.00513 3797 3699 13679279.97901 3798 3699 -103592244.5474 3799 3699 1.892447471619e-06 3800 3699 80604706.69032 3801 3699 -42555886.98831 3802 3699 -15625000.00514 3803 3699 26537352.8999 3807 3699 16426910.05153 3808 3699 4.485249519348e-06 3809 3699 571474.7733669 3810 3699 77208121.14848 3811 3699 3.09944152832e-06 3812 3699 2285899.092361 3813 3699 -48017751.39621 3814 3699 -8.776783943176e-06 3815 3699 571474.7733788 3822 3699 -27518808.45327 3823 3699 -15625000.00513 3824 3699 -14250754.75238 3825 3699 -107888591.8846 3826 3699 1.713633537292e-06 3827 3699 -82890605.78265 3828 3699 -43968569.74338 3829 3699 15625000.00513 3830 3699 -27108827.67327 3700 3700 976546647.911 3701 3700 -109721288.002 3702 3700 -4.738569259644e-06 3703 3700 -96206292.73656 3704 3700 54860644.00101 3711 3700 -62499999.98974 3712 3700 -70268591.613 3713 3700 12480786.00715 3714 3700 4.291534423828e-06 3715 3700 56514675.03912 3716 3700 -27430322.01402 3717 3700 62499999.98974 3718 3700 -71622975.29333 3719 3700 14949536.00687 3795 3700 15625000.00513 3796 3700 -22095635.7235 3797 3700 -12543431.97403 3798 3700 -9.983777999878e-07 3799 3700 -34841942.9836 3800 3700 -6857580.506883 3801 3700 -15625000.00514 3802 3700 -37868205.17313 3803 3700 19401012.48091 3807 3700 5.781650543213e-06 3808 3700 -42948027.89108 3809 3700 -51682408.42662 3810 3700 3.09944152832e-06 3811 3700 39706666.64553 3812 3700 -27430322.01402 3813 3700 -7.04824924469e-06 3814 3700 -107392689.3388 3815 3700 79112730.44064 3822 3700 -15625000.00513 3823 3700 -22831126.63809 3824 3700 -13229195.86314 3825 3700 1.668930053711e-06 3826 3700 -39138290.32084 3827 3700 -6857580.506883 3828 3700 15625000.00513 3829 3700 -39280887.92821 3830 3700 20086776.37002 3701 3701 1209684727.759 3702 3701 2285899.092332 3703 3701 54860644.00101 3704 3701 128167058.7484 3711 3701 24401755.31083 3712 3701 12206480.45177 3713 3701 -13077952.54839 3714 3701 -4571798.18244 3715 3701 -27430322.01402 3716 3701 114598543.8875 3717 3701 -27030536.34739 3718 3701 15223841.56225 3719 3701 -16689642.3626 3795 3701 13679279.97901 3796 3701 -12543431.97403 3797 3701 -15345455.6363 3798 3701 80261824.7461 3799 3701 -6857580.506883 3800 3701 -101938662.0149 3801 3701 26537352.8999 3802 3701 19401012.48091 3803 3701 -57405640.83529 3807 3701 571474.7733671 3808 3701 -51408102.87125 3809 3701 -18348781.1507 3810 3701 2285899.092361 3811 3701 -27430322.01402 3812 3701 -242725472.4512 3813 3701 571474.773379 3814 3701 78838424.88527 3815 3701 -190201211.678 3822 3701 -14250754.75238 3823 3701 -13229195.86314 3824 3701 -17306764.74188 3825 3701 -82547723.83843 3826 3701 -6857580.506883 3827 3701 -113395588.2476 3828 3701 -27108827.67327 3829 3701 20086776.37002 3830 3701 -61172794.84886 3702 3702 1206829602.888 3703 3702 62536821.50566 3704 3702 30859020.00955 3705 3702 35818303.75647 3706 3702 -62514728.59611 3707 3702 26693781.96925 3714 3702 -89019318.86449 3715 3702 -62499999.98974 3716 3702 24744637.25504 3717 3702 -218486531.0803 3718 3702 2.98023223877e-06 3719 3702 -4571798.18244 3720 3702 -90373702.5448 3721 3702 62499999.98974 3722 3702 -26687654.40317 3798 3702 -26783317.53868 3799 3702 15625000.00513 3800 3702 13679279.97901 3801 3702 -119411159.8837 3802 3702 -15630523.23252 3803 3702 75186254.88774 3810 3702 16426910.05153 3811 3702 4.485249519348e-06 3812 3702 571474.7733669 3813 3702 109890622.1535 3814 3702 15634205.38412 3815 3702 7712478.882864 3816 3702 -60563825.20041 3817 3702 -15628682.15673 3818 3702 27115214.46942 3825 3702 -27518808.45327 3826 3702 -15625000.00513 3827 3702 -14250754.75238 3828 3702 -107888591.8846 3829 3702 1.713633537292e-06 3830 3702 -82890605.78265 3831 3702 -43968569.74338 3832 3702 15625000.00513 3833 3702 -27108827.67327 3703 3703 1038056487.373 3704 3703 -85034336.6799 3705 3703 -62522092.89929 3706 3703 -182960177.6074 3707 3703 45539436.5079 3714 3703 -62499999.98974 3715 3703 -70268591.613 3716 3703 12480786.00715 3717 3703 4.291534423828e-06 3718 3703 56514675.03912 3719 3703 -27430322.01402 3720 3703 62499999.98974 3721 3703 -71622975.29333 3722 3703 14949536.00687 3798 3703 15625000.00513 3799 3703 -22095635.7235 3800 3703 -12543431.97403 3801 3703 -15628682.15673 3802 3703 -45961669.68301 3803 3703 8705839.731277 3810 3703 5.781650543213e-06 3811 3703 -42948027.89108 3812 3703 -51682408.42662 3813 3703 15634205.38412 3814 3703 67697343.25408 3815 3703 -21260405.06448 3816 3703 -15630523.23252 3817 3703 -115258445.5683 3818 3703 76792017.46155 3825 3703 -15625000.00513 3826 3703 -22831126.63809 3827 3703 -13229195.86314 3828 3703 1.668930053711e-06 3829 3703 -39138290.32084 3830 3703 -6857580.506883 3831 3703 15625000.00513 3832 3703 -39280887.92821 3833 3703 20086776.37002 3704 3704 1199251971.759 3705 3704 27039727.69652 3706 3704 53222308.42241 3707 3704 71236333.03937 3714 3704 24401755.31083 3715 3704 12206480.45177 3716 3704 -13077952.54839 3717 3704 -4571798.18244 3718 3704 -27430322.01402 3719 3704 114598543.8875 3720 3704 -27030536.34739 3721 3704 15223841.56225 3722 3704 -16689642.3626 3798 3704 13679279.97901 3799 3704 -12543431.97403 3800 3704 -15345455.6363 3801 3704 74842632.24213 3802 3704 6787043.609902 3803 3704 -88003520.09856 3810 3704 571474.7733671 3811 3704 -51408102.87125 3812 3704 -18348781.1507 3813 3704 7717283.578221 3814 3704 -21256561.34093 3815 3704 -211698416.8248 3816 3704 27118407.8675 3817 3704 78438470.16785 3818 3704 -167573319.7819 3825 3704 -14250754.75238 3826 3704 -13229195.86314 3827 3704 -17306764.74188 3828 3704 -82547723.83843 3829 3704 -6857580.506883 3830 3704 -113395588.2476 3831 3704 -27108827.67327 3832 3704 20086776.37002 3833 3704 -61172794.84886 3705 3705 713665840.9484 3706 3705 62499999.98975 3707 3705 26303045.6496 3717 3705 -89019318.86449 3718 3705 -62499999.98974 3719 3705 24744637.25504 3720 3705 -333091779.4995 3721 3705 -62514728.59611 3722 3705 -26296716.12064 3723 3705 15411687.79098 3724 3705 50014728.59815 3725 3705 -21264808.11782 3801 3705 789479.8663111 3802 3705 18755523.23355 3803 3705 16762853.88037 3813 3705 -11151323.14121 3814 3705 -15630523.23252 3815 3705 -13684113.02055 3816 3705 50455843.08525 3817 3705 15625000.00514 3818 3705 23750485.45243 3828 3705 -27518808.45327 3829 3705 -15625000.00513 3830 3705 -14250754.75238 3831 3705 -136601119.3265 3832 3705 -15628682.15673 3833 3705 -88333821.76341 3834 3705 -31442472.41633 3835 3705 12503682.1557 3836 3705 -21464859.02542 3706 3706 619895634.403 3707 3706 -68588052.25144 3717 3706 -62499999.98974 3718 3706 -70268591.613 3719 3706 12480786.00715 3720 3706 -62522092.89929 3721 3706 -39293818.84171 3722 3706 -37998394.10174 3723 3706 75022092.89723 3724 3706 15411687.79098 3725 3706 23871774.7618 3801 3706 12503682.1557 3802 3706 789479.8663122 3803 3706 -8940185.539224 3813 3706 -15628682.15672 3814 3706 -65845943.5091 3815 3706 -52101581.10086 3816 3706 15625000.00514 3817 3706 27013291.43733 3818 3706 -3407345.083582 3828 3706 -15625000.00513 3829 3706 -22831126.63809 3830 3706 -13229195.86314 3831 3706 -15630523.23252 3832 3706 -63151629.12586 3833 3706 -25854695.88552 3834 3706 18755523.23355 3835 3706 -31442472.41633 3836 3706 25757502.85539 3707 3707 781376197.173 3717 3707 24401755.31083 3718 3707 12206480.45177 3719 3707 -13077952.54839 3720 3707 -26293551.35616 3721 3707 -30589746.95883 3722 3707 33460212.57848 3723 3707 -31897212.17672 3724 3707 15914516.50787 3725 3707 41097834.10927 3801 3707 11175235.92025 3802 3707 -13410278.30884 3803 3707 2105279.643495 3813 3707 -13682502.0067 3814 3707 -53748034.02747 3815 3707 -35806647.62401 3816 3707 -8884805.348678 3817 3707 -29515355.2492 3818 3707 -145884263.2499 3828 3707 -14250754.75238 3829 3707 -13229195.86314 3830 3707 -17306764.74188 3831 3707 -87990199.11779 3832 3707 -23932056.04702 3833 3707 -133843411.9462 3834 3707 -32197288.53812 3835 3707 17171668.57026 3836 3707 -83846593.11021 3708 3708 1126552465.849 3709 3708 1.227855682373e-05 3710 3708 9143596.364805 3711 3708 141293458.9169 3712 3708 -4.947185516357e-06 3713 3708 2285899.092331 3726 3708 -218486531.0803 3727 3708 2.98023223877e-06 3728 3708 -4571798.18244 3729 3708 -90373702.5448 3730 3708 62499999.98974 3731 3708 -26687654.40317 3804 3708 -103592244.5474 3805 3708 1.892447471619e-06 3806 3708 80604706.69032 3807 3708 -42555886.98831 3808 3708 -15625000.00514 3809 3708 26537352.8999 3819 3708 77208121.14848 3820 3708 3.09944152832e-06 3821 3708 2285899.092361 3822 3708 -48017751.39621 3823 3708 -8.776783943176e-06 3824 3708 571474.7733788 3837 3708 -107888591.8846 3838 3708 1.713633537292e-06 3839 3708 -82890605.78265 3840 3708 -43968569.74338 3841 3708 15625000.00513 3842 3708 -27108827.67327 3709 3709 976546647.911 3710 3709 -109721288.002 3711 3709 -4.738569259644e-06 3712 3709 -96206292.73656 3713 3709 54860644.00101 3726 3709 4.291534423828e-06 3727 3709 56514675.03912 3728 3709 -27430322.01402 3729 3709 62499999.98974 3730 3709 -71622975.29333 3731 3709 14949536.00687 3804 3709 -9.983777999878e-07 3805 3709 -34841942.9836 3806 3709 -6857580.506883 3807 3709 -15625000.00514 3808 3709 -37868205.17313 3809 3709 19401012.48091 3819 3709 3.09944152832e-06 3820 3709 39706666.64553 3821 3709 -27430322.01402 3822 3709 -7.04824924469e-06 3823 3709 -107392689.3388 3824 3709 79112730.44064 3837 3709 1.668930053711e-06 3838 3709 -39138290.32084 3839 3709 -6857580.506883 3840 3709 15625000.00513 3841 3709 -39280887.92821 3842 3709 20086776.37002 3710 3710 1209684727.759 3711 3710 2285899.092332 3712 3710 54860644.00101 3713 3710 128167058.7484 3726 3710 -4571798.18244 3727 3710 -27430322.01402 3728 3710 114598543.8875 3729 3710 -27030536.34739 3730 3710 15223841.56225 3731 3710 -16689642.3626 3804 3710 80261824.7461 3805 3710 -6857580.506883 3806 3710 -101938662.0149 3807 3710 26537352.8999 3808 3710 19401012.48091 3809 3710 -57405640.83529 3819 3710 2285899.092361 3820 3710 -27430322.01402 3821 3710 -242725472.4512 3822 3710 571474.773379 3823 3710 78838424.88527 3824 3710 -190201211.678 3837 3710 -82547723.83843 3838 3710 -6857580.506883 3839 3710 -113395588.2476 3840 3710 -27108827.67327 3841 3710 20086776.37002 3842 3710 -61172794.84886 3711 3711 1126552465.849 3712 3711 1.227855682373e-05 3713 3711 9143596.364805 3714 3711 141293458.9169 3715 3711 -4.947185516357e-06 3716 3711 2285899.092331 3726 3711 -89019318.86449 3727 3711 -62499999.98974 3728 3711 24744637.25504 3729 3711 -218486531.0803 3730 3711 2.98023223877e-06 3731 3711 -4571798.18244 3732 3711 -90373702.5448 3733 3711 62499999.98974 3734 3711 -26687654.40317 3804 3711 -26783317.53868 3805 3711 15625000.00513 3806 3711 13679279.97901 3807 3711 -103592244.5474 3808 3711 1.892447471619e-06 3809 3711 80604706.69032 3810 3711 -42555886.98831 3811 3711 -15625000.00514 3812 3711 26537352.8999 3819 3711 16426910.05153 3820 3711 4.485249519348e-06 3821 3711 571474.7733669 3822 3711 77208121.14848 3823 3711 3.09944152832e-06 3824 3711 2285899.092361 3825 3711 -48017751.39621 3826 3711 -8.776783943176e-06 3827 3711 571474.7733788 3837 3711 -27518808.45327 3838 3711 -15625000.00513 3839 3711 -14250754.75238 3840 3711 -107888591.8846 3841 3711 1.713633537292e-06 3842 3711 -82890605.78265 3843 3711 -43968569.74338 3844 3711 15625000.00513 3845 3711 -27108827.67327 3712 3712 976546647.911 3713 3712 -109721288.002 3714 3712 -4.738569259644e-06 3715 3712 -96206292.73656 3716 3712 54860644.00101 3726 3712 -62499999.98974 3727 3712 -70268591.613 3728 3712 12480786.00715 3729 3712 4.291534423828e-06 3730 3712 56514675.03912 3731 3712 -27430322.01402 3732 3712 62499999.98974 3733 3712 -71622975.29333 3734 3712 14949536.00687 3804 3712 15625000.00513 3805 3712 -22095635.7235 3806 3712 -12543431.97403 3807 3712 -9.983777999878e-07 3808 3712 -34841942.9836 3809 3712 -6857580.506883 3810 3712 -15625000.00514 3811 3712 -37868205.17313 3812 3712 19401012.48091 3819 3712 5.781650543213e-06 3820 3712 -42948027.89108 3821 3712 -51682408.42662 3822 3712 3.09944152832e-06 3823 3712 39706666.64553 3824 3712 -27430322.01402 3825 3712 -7.04824924469e-06 3826 3712 -107392689.3388 3827 3712 79112730.44064 3837 3712 -15625000.00513 3838 3712 -22831126.63809 3839 3712 -13229195.86314 3840 3712 1.668930053711e-06 3841 3712 -39138290.32084 3842 3712 -6857580.506883 3843 3712 15625000.00513 3844 3712 -39280887.92821 3845 3712 20086776.37002 3713 3713 1209684727.759 3714 3713 2285899.092332 3715 3713 54860644.00101 3716 3713 128167058.7484 3726 3713 24401755.31083 3727 3713 12206480.45177 3728 3713 -13077952.54839 3729 3713 -4571798.18244 3730 3713 -27430322.01402 3731 3713 114598543.8875 3732 3713 -27030536.34739 3733 3713 15223841.56225 3734 3713 -16689642.3626 3804 3713 13679279.97901 3805 3713 -12543431.97403 3806 3713 -15345455.6363 3807 3713 80261824.7461 3808 3713 -6857580.506883 3809 3713 -101938662.0149 3810 3713 26537352.8999 3811 3713 19401012.48091 3812 3713 -57405640.83529 3819 3713 571474.7733671 3820 3713 -51408102.87125 3821 3713 -18348781.1507 3822 3713 2285899.092361 3823 3713 -27430322.01402 3824 3713 -242725472.4512 3825 3713 571474.773379 3826 3713 78838424.88527 3827 3713 -190201211.678 3837 3713 -14250754.75238 3838 3713 -13229195.86314 3839 3713 -17306764.74188 3840 3713 -82547723.83843 3841 3713 -6857580.506883 3842 3713 -113395588.2476 3843 3713 -27108827.67327 3844 3713 20086776.37002 3845 3713 -61172794.84886 3714 3714 1126552465.849 3715 3714 1.227855682373e-05 3716 3714 9143596.364805 3717 3714 141293458.9169 3718 3714 -4.947185516357e-06 3719 3714 2285899.092331 3729 3714 -89019318.86449 3730 3714 -62499999.98974 3731 3714 24744637.25504 3732 3714 -218486531.0803 3733 3714 2.98023223877e-06 3734 3714 -4571798.18244 3735 3714 -90373702.5448 3736 3714 62499999.98974 3737 3714 -26687654.40317 3807 3714 -26783317.53868 3808 3714 15625000.00513 3809 3714 13679279.97901 3810 3714 -103592244.5474 3811 3714 1.892447471619e-06 3812 3714 80604706.69032 3813 3714 -42555886.98831 3814 3714 -15625000.00514 3815 3714 26537352.8999 3822 3714 16426910.05153 3823 3714 4.485249519348e-06 3824 3714 571474.7733669 3825 3714 77208121.14848 3826 3714 3.09944152832e-06 3827 3714 2285899.092361 3828 3714 -48017751.39621 3829 3714 -8.776783943176e-06 3830 3714 571474.7733788 3840 3714 -27518808.45327 3841 3714 -15625000.00513 3842 3714 -14250754.75238 3843 3714 -107888591.8846 3844 3714 1.713633537292e-06 3845 3714 -82890605.78265 3846 3714 -43968569.74338 3847 3714 15625000.00513 3848 3714 -27108827.67327 3715 3715 976546647.911 3716 3715 -109721288.002 3717 3715 -4.738569259644e-06 3718 3715 -96206292.73656 3719 3715 54860644.00101 3729 3715 -62499999.98974 3730 3715 -70268591.613 3731 3715 12480786.00715 3732 3715 4.291534423828e-06 3733 3715 56514675.03912 3734 3715 -27430322.01402 3735 3715 62499999.98974 3736 3715 -71622975.29333 3737 3715 14949536.00687 3807 3715 15625000.00513 3808 3715 -22095635.7235 3809 3715 -12543431.97403 3810 3715 -9.983777999878e-07 3811 3715 -34841942.9836 3812 3715 -6857580.506883 3813 3715 -15625000.00514 3814 3715 -37868205.17313 3815 3715 19401012.48091 3822 3715 5.781650543213e-06 3823 3715 -42948027.89108 3824 3715 -51682408.42662 3825 3715 3.09944152832e-06 3826 3715 39706666.64553 3827 3715 -27430322.01402 3828 3715 -7.04824924469e-06 3829 3715 -107392689.3388 3830 3715 79112730.44064 3840 3715 -15625000.00513 3841 3715 -22831126.63809 3842 3715 -13229195.86314 3843 3715 1.668930053711e-06 3844 3715 -39138290.32084 3845 3715 -6857580.506883 3846 3715 15625000.00513 3847 3715 -39280887.92821 3848 3715 20086776.37002 3716 3716 1209684727.759 3717 3716 2285899.092332 3718 3716 54860644.00101 3719 3716 128167058.7484 3729 3716 24401755.31083 3730 3716 12206480.45177 3731 3716 -13077952.54839 3732 3716 -4571798.18244 3733 3716 -27430322.01402 3734 3716 114598543.8875 3735 3716 -27030536.34739 3736 3716 15223841.56225 3737 3716 -16689642.3626 3807 3716 13679279.97901 3808 3716 -12543431.97403 3809 3716 -15345455.6363 3810 3716 80261824.7461 3811 3716 -6857580.506883 3812 3716 -101938662.0149 3813 3716 26537352.8999 3814 3716 19401012.48091 3815 3716 -57405640.83529 3822 3716 571474.7733671 3823 3716 -51408102.87125 3824 3716 -18348781.1507 3825 3716 2285899.092361 3826 3716 -27430322.01402 3827 3716 -242725472.4512 3828 3716 571474.773379 3829 3716 78838424.88527 3830 3716 -190201211.678 3840 3716 -14250754.75238 3841 3716 -13229195.86314 3842 3716 -17306764.74188 3843 3716 -82547723.83843 3844 3716 -6857580.506883 3845 3716 -113395588.2476 3846 3716 -27108827.67327 3847 3716 20086776.37002 3848 3716 -61172794.84886 3717 3717 1126552465.849 3718 3717 1.227855682373e-05 3719 3717 9143596.364805 3720 3717 141293458.9169 3721 3717 -4.947185516357e-06 3722 3717 2285899.092331 3732 3717 -89019318.86449 3733 3717 -62499999.98974 3734 3717 24744637.25504 3735 3717 -218486531.0803 3736 3717 2.98023223877e-06 3737 3717 -4571798.18244 3738 3717 -90373702.5448 3739 3717 62499999.98974 3740 3717 -26687654.40317 3810 3717 -26783317.53868 3811 3717 15625000.00513 3812 3717 13679279.97901 3813 3717 -103592244.5474 3814 3717 1.892447471619e-06 3815 3717 80604706.69032 3816 3717 -42555886.98831 3817 3717 -15625000.00514 3818 3717 26537352.8999 3825 3717 16426910.05153 3826 3717 4.485249519348e-06 3827 3717 571474.7733669 3828 3717 77208121.14848 3829 3717 3.09944152832e-06 3830 3717 2285899.092361 3831 3717 -48017751.39621 3832 3717 -8.776783943176e-06 3833 3717 571474.7733788 3843 3717 -27518808.45327 3844 3717 -15625000.00513 3845 3717 -14250754.75238 3846 3717 -107888591.8846 3847 3717 1.713633537292e-06 3848 3717 -82890605.78265 3849 3717 -43968569.74338 3850 3717 15625000.00513 3851 3717 -27108827.67327 3718 3718 976546647.911 3719 3718 -109721288.002 3720 3718 -4.738569259644e-06 3721 3718 -96206292.73656 3722 3718 54860644.00101 3732 3718 -62499999.98974 3733 3718 -70268591.613 3734 3718 12480786.00715 3735 3718 4.291534423828e-06 3736 3718 56514675.03912 3737 3718 -27430322.01402 3738 3718 62499999.98974 3739 3718 -71622975.29333 3740 3718 14949536.00687 3810 3718 15625000.00513 3811 3718 -22095635.7235 3812 3718 -12543431.97403 3813 3718 -9.983777999878e-07 3814 3718 -34841942.9836 3815 3718 -6857580.506883 3816 3718 -15625000.00514 3817 3718 -37868205.17313 3818 3718 19401012.48091 3825 3718 5.781650543213e-06 3826 3718 -42948027.89108 3827 3718 -51682408.42662 3828 3718 3.09944152832e-06 3829 3718 39706666.64553 3830 3718 -27430322.01402 3831 3718 -7.04824924469e-06 3832 3718 -107392689.3388 3833 3718 79112730.44064 3843 3718 -15625000.00513 3844 3718 -22831126.63809 3845 3718 -13229195.86314 3846 3718 1.668930053711e-06 3847 3718 -39138290.32084 3848 3718 -6857580.506883 3849 3718 15625000.00513 3850 3718 -39280887.92821 3851 3718 20086776.37002 3719 3719 1209684727.759 3720 3719 2285899.092332 3721 3719 54860644.00101 3722 3719 128167058.7484 3732 3719 24401755.31083 3733 3719 12206480.45177 3734 3719 -13077952.54839 3735 3719 -4571798.18244 3736 3719 -27430322.01402 3737 3719 114598543.8875 3738 3719 -27030536.34739 3739 3719 15223841.56225 3740 3719 -16689642.3626 3810 3719 13679279.97901 3811 3719 -12543431.97403 3812 3719 -15345455.6363 3813 3719 80261824.7461 3814 3719 -6857580.506883 3815 3719 -101938662.0149 3816 3719 26537352.8999 3817 3719 19401012.48091 3818 3719 -57405640.83529 3825 3719 571474.7733671 3826 3719 -51408102.87125 3827 3719 -18348781.1507 3828 3719 2285899.092361 3829 3719 -27430322.01402 3830 3719 -242725472.4512 3831 3719 571474.773379 3832 3719 78838424.88527 3833 3719 -190201211.678 3843 3719 -14250754.75238 3844 3719 -13229195.86314 3845 3719 -17306764.74188 3846 3719 -82547723.83843 3847 3719 -6857580.506883 3848 3719 -113395588.2476 3849 3719 -27108827.67327 3850 3719 20086776.37002 3851 3719 -61172794.84886 3720 3720 1206829602.888 3721 3720 62536821.50566 3722 3720 30859020.00955 3723 3720 35818303.75647 3724 3720 -62514728.59611 3725 3720 26693781.96925 3735 3720 -89019318.86449 3736 3720 -62499999.98974 3737 3720 24744637.25504 3738 3720 -218486531.0803 3739 3720 2.98023223877e-06 3740 3720 -4571798.18244 3741 3720 -90373702.5448 3742 3720 62499999.98974 3743 3720 -26687654.40317 3813 3720 -26783317.53868 3814 3720 15625000.00513 3815 3720 13679279.97901 3816 3720 -119411159.8837 3817 3720 -15630523.23252 3818 3720 75186254.88774 3828 3720 16426910.05153 3829 3720 4.485249519348e-06 3830 3720 571474.7733669 3831 3720 109890622.1535 3832 3720 15634205.38412 3833 3720 7712478.882864 3834 3720 -60563825.20041 3835 3720 -15628682.15673 3836 3720 27115214.46942 3846 3720 -27518808.45327 3847 3720 -15625000.00513 3848 3720 -14250754.75238 3849 3720 -107888591.8846 3850 3720 1.713633537292e-06 3851 3720 -82890605.78265 3852 3720 -43968569.74338 3853 3720 15625000.00513 3854 3720 -27108827.67327 3721 3721 1038056487.373 3722 3721 -85034336.6799 3723 3721 -62522092.89929 3724 3721 -182960177.6074 3725 3721 45539436.5079 3735 3721 -62499999.98974 3736 3721 -70268591.613 3737 3721 12480786.00715 3738 3721 4.291534423828e-06 3739 3721 56514675.03912 3740 3721 -27430322.01402 3741 3721 62499999.98974 3742 3721 -71622975.29333 3743 3721 14949536.00687 3813 3721 15625000.00513 3814 3721 -22095635.7235 3815 3721 -12543431.97403 3816 3721 -15628682.15673 3817 3721 -45961669.68301 3818 3721 8705839.731277 3828 3721 5.781650543213e-06 3829 3721 -42948027.89108 3830 3721 -51682408.42662 3831 3721 15634205.38412 3832 3721 67697343.25408 3833 3721 -21260405.06448 3834 3721 -15630523.23252 3835 3721 -115258445.5683 3836 3721 76792017.46155 3846 3721 -15625000.00513 3847 3721 -22831126.63809 3848 3721 -13229195.86314 3849 3721 1.668930053711e-06 3850 3721 -39138290.32084 3851 3721 -6857580.506883 3852 3721 15625000.00513 3853 3721 -39280887.92821 3854 3721 20086776.37002 3722 3722 1199251971.759 3723 3722 27039727.69652 3724 3722 53222308.42241 3725 3722 71236333.03937 3735 3722 24401755.31083 3736 3722 12206480.45177 3737 3722 -13077952.54839 3738 3722 -4571798.18244 3739 3722 -27430322.01402 3740 3722 114598543.8875 3741 3722 -27030536.34739 3742 3722 15223841.56225 3743 3722 -16689642.3626 3813 3722 13679279.97901 3814 3722 -12543431.97403 3815 3722 -15345455.6363 3816 3722 74842632.24213 3817 3722 6787043.609902 3818 3722 -88003520.09856 3828 3722 571474.7733671 3829 3722 -51408102.87125 3830 3722 -18348781.1507 3831 3722 7717283.578221 3832 3722 -21256561.34093 3833 3722 -211698416.8248 3834 3722 27118407.8675 3835 3722 78438470.16785 3836 3722 -167573319.7819 3846 3722 -14250754.75238 3847 3722 -13229195.86314 3848 3722 -17306764.74188 3849 3722 -82547723.83843 3850 3722 -6857580.506883 3851 3722 -113395588.2476 3852 3722 -27108827.67327 3853 3722 20086776.37002 3854 3722 -61172794.84886 3723 3723 706551906.5059 3724 3723 62417112.17672 3725 3723 -14282093.03959 3738 3723 -89019318.86449 3739 3723 -62499999.98974 3740 3723 24744637.25504 3741 3723 -332076358.0832 3742 3723 -62445400.64684 3743 3723 -803160.0738334 3744 3723 26319971.87446 3745 3723 50028288.46192 3746 3723 -2745383.255368 3816 3723 789479.8663111 3817 3723 18755523.23355 3818 3723 16762853.88037 3831 3723 -11151323.14121 3832 3723 -15630523.23252 3833 3723 -13684113.02055 3834 3723 46470413.46474 3835 3723 16235473.27994 3836 3723 13676114.56996 3849 3723 -27518808.45327 3850 3723 -15625000.00513 3851 3723 -14250754.75238 3852 3723 -132948615.2463 3853 3723 -16242128.17313 3854 3723 -84423084.10332 3855 3723 -16459257.1867 3856 3723 12506654.8973 3857 3723 -18030325.78853 3724 3724 612861139.5605 3725 3724 -67677862.13804 3738 3724 -62499999.98974 3739 3724 -70268591.613 3740 3724 12480786.00715 3741 3724 -62459544.88191 3742 3724 -38277258.88191 3743 3724 -18152324.58222 3744 3724 75042432.69288 3745 3724 26239393.73097 3746 3724 4213360.948835 3816 3724 12503682.1557 3817 3724 789479.8663122 3818 3724 -8940185.539224 3831 3724 -15628682.15672 3832 3724 -65845943.5091 3833 3724 -52101581.10086 3834 3724 16235473.27994 3835 3724 22268881.83647 3836 3724 -3019008.474344 3849 3724 -15625000.00513 3850 3724 -22831126.63809 3851 3724 -13229195.86314 3852 3724 -16245455.61973 3853 3724 -59216101.33218 3854 3724 -22175016.50334 3855 3724 18759982.34595 3856 3724 -15983300.91978 3857 3724 21161428.32241 3725 3725 762630407.7355 3738 3725 24401755.31083 3739 3725 12206480.45177 3740 3725 -13077952.54839 3741 3725 -8345786.630533 3742 3725 -17054481.01644 3743 3725 35862722.46929 3744 3725 -4118074.883052 3745 3725 3115829.182002 3746 3725 70267169.80871 3816 3725 11175235.92025 3817 3725 -13410278.30884 3818 3725 2105279.643495 3831 3725 -13682502.0067 3832 3725 -53748034.02747 3833 3725 -35806647.62401 3834 3725 -19983141.87505 3835 3725 -29394519.18652 3836 3725 -159353009.1983 3849 3725 -14250754.75238 3850 3725 -13229195.86314 3851 3725 -17306764.74188 3852 3725 -86137312.42499 3853 3725 -21622642.20025 3854 3725 -120786511.1716 3855 3725 -27045488.6828 3856 3725 13949330.84847 3857 3725 -44367308.76476 3726 3726 1126552465.849 3727 3726 1.227855682373e-05 3728 3726 9143596.364805 3729 3726 141293458.9169 3730 3726 -4.947185516357e-06 3731 3726 2285899.092331 3747 3726 -218486531.0803 3748 3726 2.98023223877e-06 3749 3726 -4571798.18244 3750 3726 -90373702.5448 3751 3726 62499999.98974 3752 3726 -26687654.40317 3819 3726 -103592244.5474 3820 3726 1.892447471619e-06 3821 3726 80604706.69032 3822 3726 -42555886.98831 3823 3726 -15625000.00514 3824 3726 26537352.8999 3837 3726 77208121.14848 3838 3726 3.09944152832e-06 3839 3726 2285899.092361 3840 3726 -48017751.39621 3841 3726 -8.776783943176e-06 3842 3726 571474.7733788 3858 3726 -107888591.8846 3859 3726 1.713633537292e-06 3860 3726 -82890605.78265 3861 3726 -43968569.74338 3862 3726 15625000.00513 3863 3726 -27108827.67327 3727 3727 976546647.911 3728 3727 -109721288.002 3729 3727 -4.738569259644e-06 3730 3727 -96206292.73656 3731 3727 54860644.00101 3747 3727 4.291534423828e-06 3748 3727 56514675.03912 3749 3727 -27430322.01402 3750 3727 62499999.98974 3751 3727 -71622975.29333 3752 3727 14949536.00687 3819 3727 -9.983777999878e-07 3820 3727 -34841942.9836 3821 3727 -6857580.506883 3822 3727 -15625000.00514 3823 3727 -37868205.17313 3824 3727 19401012.48091 3837 3727 3.09944152832e-06 3838 3727 39706666.64553 3839 3727 -27430322.01402 3840 3727 -7.04824924469e-06 3841 3727 -107392689.3388 3842 3727 79112730.44064 3858 3727 1.668930053711e-06 3859 3727 -39138290.32084 3860 3727 -6857580.506883 3861 3727 15625000.00513 3862 3727 -39280887.92821 3863 3727 20086776.37002 3728 3728 1209684727.759 3729 3728 2285899.092332 3730 3728 54860644.00101 3731 3728 128167058.7484 3747 3728 -4571798.18244 3748 3728 -27430322.01402 3749 3728 114598543.8875 3750 3728 -27030536.34739 3751 3728 15223841.56225 3752 3728 -16689642.3626 3819 3728 80261824.7461 3820 3728 -6857580.506883 3821 3728 -101938662.0149 3822 3728 26537352.8999 3823 3728 19401012.48091 3824 3728 -57405640.83529 3837 3728 2285899.092361 3838 3728 -27430322.01402 3839 3728 -242725472.4512 3840 3728 571474.773379 3841 3728 78838424.88527 3842 3728 -190201211.678 3858 3728 -82547723.83843 3859 3728 -6857580.506883 3860 3728 -113395588.2476 3861 3728 -27108827.67327 3862 3728 20086776.37002 3863 3728 -61172794.84886 3729 3729 1126552465.849 3730 3729 1.227855682373e-05 3731 3729 9143596.364805 3732 3729 141293458.9169 3733 3729 -4.947185516357e-06 3734 3729 2285899.092331 3747 3729 -89019318.86449 3748 3729 -62499999.98974 3749 3729 24744637.25504 3750 3729 -218486531.0803 3751 3729 2.98023223877e-06 3752 3729 -4571798.18244 3753 3729 -90373702.5448 3754 3729 62499999.98974 3755 3729 -26687654.40317 3819 3729 -26783317.53868 3820 3729 15625000.00513 3821 3729 13679279.97901 3822 3729 -103592244.5474 3823 3729 1.892447471619e-06 3824 3729 80604706.69032 3825 3729 -42555886.98831 3826 3729 -15625000.00514 3827 3729 26537352.8999 3837 3729 16426910.05153 3838 3729 4.485249519348e-06 3839 3729 571474.7733669 3840 3729 77208121.14848 3841 3729 3.09944152832e-06 3842 3729 2285899.092361 3843 3729 -48017751.39621 3844 3729 -8.776783943176e-06 3845 3729 571474.7733788 3858 3729 -27518808.45327 3859 3729 -15625000.00513 3860 3729 -14250754.75238 3861 3729 -107888591.8846 3862 3729 1.713633537292e-06 3863 3729 -82890605.78265 3864 3729 -43968569.74338 3865 3729 15625000.00513 3866 3729 -27108827.67327 3730 3730 976546647.911 3731 3730 -109721288.002 3732 3730 -4.738569259644e-06 3733 3730 -96206292.73656 3734 3730 54860644.00101 3747 3730 -62499999.98974 3748 3730 -70268591.613 3749 3730 12480786.00715 3750 3730 4.291534423828e-06 3751 3730 56514675.03912 3752 3730 -27430322.01402 3753 3730 62499999.98974 3754 3730 -71622975.29333 3755 3730 14949536.00687 3819 3730 15625000.00513 3820 3730 -22095635.7235 3821 3730 -12543431.97403 3822 3730 -9.983777999878e-07 3823 3730 -34841942.9836 3824 3730 -6857580.506883 3825 3730 -15625000.00514 3826 3730 -37868205.17313 3827 3730 19401012.48091 3837 3730 5.781650543213e-06 3838 3730 -42948027.89108 3839 3730 -51682408.42662 3840 3730 3.09944152832e-06 3841 3730 39706666.64553 3842 3730 -27430322.01402 3843 3730 -7.04824924469e-06 3844 3730 -107392689.3388 3845 3730 79112730.44064 3858 3730 -15625000.00513 3859 3730 -22831126.63809 3860 3730 -13229195.86314 3861 3730 1.668930053711e-06 3862 3730 -39138290.32084 3863 3730 -6857580.506883 3864 3730 15625000.00513 3865 3730 -39280887.92821 3866 3730 20086776.37002 3731 3731 1209684727.759 3732 3731 2285899.092332 3733 3731 54860644.00101 3734 3731 128167058.7484 3747 3731 24401755.31083 3748 3731 12206480.45177 3749 3731 -13077952.54839 3750 3731 -4571798.18244 3751 3731 -27430322.01402 3752 3731 114598543.8875 3753 3731 -27030536.34739 3754 3731 15223841.56225 3755 3731 -16689642.3626 3819 3731 13679279.97901 3820 3731 -12543431.97403 3821 3731 -15345455.6363 3822 3731 80261824.7461 3823 3731 -6857580.506883 3824 3731 -101938662.0149 3825 3731 26537352.8999 3826 3731 19401012.48091 3827 3731 -57405640.83529 3837 3731 571474.7733671 3838 3731 -51408102.87125 3839 3731 -18348781.1507 3840 3731 2285899.092361 3841 3731 -27430322.01402 3842 3731 -242725472.4512 3843 3731 571474.773379 3844 3731 78838424.88527 3845 3731 -190201211.678 3858 3731 -14250754.75238 3859 3731 -13229195.86314 3860 3731 -17306764.74188 3861 3731 -82547723.83843 3862 3731 -6857580.506883 3863 3731 -113395588.2476 3864 3731 -27108827.67327 3865 3731 20086776.37002 3866 3731 -61172794.84886 3732 3732 1126552465.849 3733 3732 1.227855682373e-05 3734 3732 9143596.364805 3735 3732 141293458.9169 3736 3732 -4.947185516357e-06 3737 3732 2285899.092331 3750 3732 -89019318.86449 3751 3732 -62499999.98974 3752 3732 24744637.25504 3753 3732 -218486531.0803 3754 3732 2.98023223877e-06 3755 3732 -4571798.18244 3756 3732 -90373702.5448 3757 3732 62499999.98974 3758 3732 -26687654.40317 3822 3732 -26783317.53868 3823 3732 15625000.00513 3824 3732 13679279.97901 3825 3732 -103592244.5474 3826 3732 1.892447471619e-06 3827 3732 80604706.69032 3828 3732 -42555886.98831 3829 3732 -15625000.00514 3830 3732 26537352.8999 3840 3732 16426910.05153 3841 3732 4.485249519348e-06 3842 3732 571474.7733669 3843 3732 77208121.14848 3844 3732 3.09944152832e-06 3845 3732 2285899.092361 3846 3732 -48017751.39621 3847 3732 -8.776783943176e-06 3848 3732 571474.7733788 3861 3732 -27518808.45327 3862 3732 -15625000.00513 3863 3732 -14250754.75238 3864 3732 -107888591.8846 3865 3732 1.713633537292e-06 3866 3732 -82890605.78265 3867 3732 -43968569.74338 3868 3732 15625000.00513 3869 3732 -27108827.67327 3733 3733 976546647.911 3734 3733 -109721288.002 3735 3733 -4.738569259644e-06 3736 3733 -96206292.73656 3737 3733 54860644.00101 3750 3733 -62499999.98974 3751 3733 -70268591.613 3752 3733 12480786.00715 3753 3733 4.291534423828e-06 3754 3733 56514675.03912 3755 3733 -27430322.01402 3756 3733 62499999.98974 3757 3733 -71622975.29333 3758 3733 14949536.00687 3822 3733 15625000.00513 3823 3733 -22095635.7235 3824 3733 -12543431.97403 3825 3733 -9.983777999878e-07 3826 3733 -34841942.9836 3827 3733 -6857580.506883 3828 3733 -15625000.00514 3829 3733 -37868205.17313 3830 3733 19401012.48091 3840 3733 5.781650543213e-06 3841 3733 -42948027.89108 3842 3733 -51682408.42662 3843 3733 3.09944152832e-06 3844 3733 39706666.64553 3845 3733 -27430322.01402 3846 3733 -7.04824924469e-06 3847 3733 -107392689.3388 3848 3733 79112730.44064 3861 3733 -15625000.00513 3862 3733 -22831126.63809 3863 3733 -13229195.86314 3864 3733 1.668930053711e-06 3865 3733 -39138290.32084 3866 3733 -6857580.506883 3867 3733 15625000.00513 3868 3733 -39280887.92821 3869 3733 20086776.37002 3734 3734 1209684727.759 3735 3734 2285899.092332 3736 3734 54860644.00101 3737 3734 128167058.7484 3750 3734 24401755.31083 3751 3734 12206480.45177 3752 3734 -13077952.54839 3753 3734 -4571798.18244 3754 3734 -27430322.01402 3755 3734 114598543.8875 3756 3734 -27030536.34739 3757 3734 15223841.56225 3758 3734 -16689642.3626 3822 3734 13679279.97901 3823 3734 -12543431.97403 3824 3734 -15345455.6363 3825 3734 80261824.7461 3826 3734 -6857580.506883 3827 3734 -101938662.0149 3828 3734 26537352.8999 3829 3734 19401012.48091 3830 3734 -57405640.83529 3840 3734 571474.7733671 3841 3734 -51408102.87125 3842 3734 -18348781.1507 3843 3734 2285899.092361 3844 3734 -27430322.01402 3845 3734 -242725472.4512 3846 3734 571474.773379 3847 3734 78838424.88527 3848 3734 -190201211.678 3861 3734 -14250754.75238 3862 3734 -13229195.86314 3863 3734 -17306764.74188 3864 3734 -82547723.83843 3865 3734 -6857580.506883 3866 3734 -113395588.2476 3867 3734 -27108827.67327 3868 3734 20086776.37002 3869 3734 -61172794.84886 3735 3735 1126552465.849 3736 3735 1.227855682373e-05 3737 3735 9143596.364805 3738 3735 141293458.9169 3739 3735 -4.947185516357e-06 3740 3735 2285899.092331 3753 3735 -89019318.86449 3754 3735 -62499999.98974 3755 3735 24744637.25504 3756 3735 -218486531.0803 3757 3735 2.98023223877e-06 3758 3735 -4571798.18244 3759 3735 -90373702.5448 3760 3735 62499999.98974 3761 3735 -26687654.40317 3825 3735 -26783317.53868 3826 3735 15625000.00513 3827 3735 13679279.97901 3828 3735 -103592244.5474 3829 3735 1.892447471619e-06 3830 3735 80604706.69032 3831 3735 -42555886.98831 3832 3735 -15625000.00514 3833 3735 26537352.8999 3843 3735 16426910.05153 3844 3735 4.485249519348e-06 3845 3735 571474.7733669 3846 3735 77208121.14848 3847 3735 3.09944152832e-06 3848 3735 2285899.092361 3849 3735 -48017751.39621 3850 3735 -8.776783943176e-06 3851 3735 571474.7733788 3864 3735 -27518808.45327 3865 3735 -15625000.00513 3866 3735 -14250754.75238 3867 3735 -107888591.8846 3868 3735 1.713633537292e-06 3869 3735 -82890605.78265 3870 3735 -43968569.74338 3871 3735 15625000.00513 3872 3735 -27108827.67327 3736 3736 976546647.911 3737 3736 -109721288.002 3738 3736 -4.738569259644e-06 3739 3736 -96206292.73656 3740 3736 54860644.00101 3753 3736 -62499999.98974 3754 3736 -70268591.613 3755 3736 12480786.00715 3756 3736 4.291534423828e-06 3757 3736 56514675.03912 3758 3736 -27430322.01402 3759 3736 62499999.98974 3760 3736 -71622975.29333 3761 3736 14949536.00687 3825 3736 15625000.00513 3826 3736 -22095635.7235 3827 3736 -12543431.97403 3828 3736 -9.983777999878e-07 3829 3736 -34841942.9836 3830 3736 -6857580.506883 3831 3736 -15625000.00514 3832 3736 -37868205.17313 3833 3736 19401012.48091 3843 3736 5.781650543213e-06 3844 3736 -42948027.89108 3845 3736 -51682408.42662 3846 3736 3.09944152832e-06 3847 3736 39706666.64553 3848 3736 -27430322.01402 3849 3736 -7.04824924469e-06 3850 3736 -107392689.3388 3851 3736 79112730.44064 3864 3736 -15625000.00513 3865 3736 -22831126.63809 3866 3736 -13229195.86314 3867 3736 1.668930053711e-06 3868 3736 -39138290.32084 3869 3736 -6857580.506883 3870 3736 15625000.00513 3871 3736 -39280887.92821 3872 3736 20086776.37002 3737 3737 1209684727.759 3738 3737 2285899.092332 3739 3737 54860644.00101 3740 3737 128167058.7484 3753 3737 24401755.31083 3754 3737 12206480.45177 3755 3737 -13077952.54839 3756 3737 -4571798.18244 3757 3737 -27430322.01402 3758 3737 114598543.8875 3759 3737 -27030536.34739 3760 3737 15223841.56225 3761 3737 -16689642.3626 3825 3737 13679279.97901 3826 3737 -12543431.97403 3827 3737 -15345455.6363 3828 3737 80261824.7461 3829 3737 -6857580.506883 3830 3737 -101938662.0149 3831 3737 26537352.8999 3832 3737 19401012.48091 3833 3737 -57405640.83529 3843 3737 571474.7733671 3844 3737 -51408102.87125 3845 3737 -18348781.1507 3846 3737 2285899.092361 3847 3737 -27430322.01402 3848 3737 -242725472.4512 3849 3737 571474.773379 3850 3737 78838424.88527 3851 3737 -190201211.678 3864 3737 -14250754.75238 3865 3737 -13229195.86314 3866 3737 -17306764.74188 3867 3737 -82547723.83843 3868 3737 -6857580.506883 3869 3737 -113395588.2476 3870 3737 -27108827.67327 3871 3737 20086776.37002 3872 3737 -61172794.84886 3738 3738 1126552465.849 3739 3738 1.227855682373e-05 3740 3738 9143596.364805 3741 3738 141293458.9169 3742 3738 -4.947185516357e-06 3743 3738 2285899.092331 3756 3738 -89019318.86449 3757 3738 -62499999.98974 3758 3738 24744637.25504 3759 3738 -218486531.0803 3760 3738 2.98023223877e-06 3761 3738 -4571798.18244 3762 3738 -90373702.5448 3763 3738 62499999.98974 3764 3738 -26687654.40317 3828 3738 -26783317.53868 3829 3738 15625000.00513 3830 3738 13679279.97901 3831 3738 -103592244.5474 3832 3738 1.892447471619e-06 3833 3738 80604706.69032 3834 3738 -42555886.98831 3835 3738 -15625000.00514 3836 3738 26537352.8999 3846 3738 16426910.05153 3847 3738 4.485249519348e-06 3848 3738 571474.7733669 3849 3738 77208121.14848 3850 3738 3.09944152832e-06 3851 3738 2285899.092361 3852 3738 -48017751.39621 3853 3738 -8.776783943176e-06 3854 3738 571474.7733788 3867 3738 -27518808.45327 3868 3738 -15625000.00513 3869 3738 -14250754.75238 3870 3738 -107888591.8846 3871 3738 1.713633537292e-06 3872 3738 -82890605.78265 3873 3738 -43968569.74338 3874 3738 15625000.00513 3875 3738 -27108827.67327 3739 3739 976546647.911 3740 3739 -109721288.002 3741 3739 -4.738569259644e-06 3742 3739 -96206292.73656 3743 3739 54860644.00101 3756 3739 -62499999.98974 3757 3739 -70268591.613 3758 3739 12480786.00715 3759 3739 4.291534423828e-06 3760 3739 56514675.03912 3761 3739 -27430322.01402 3762 3739 62499999.98974 3763 3739 -71622975.29333 3764 3739 14949536.00687 3828 3739 15625000.00513 3829 3739 -22095635.7235 3830 3739 -12543431.97403 3831 3739 -9.983777999878e-07 3832 3739 -34841942.9836 3833 3739 -6857580.506883 3834 3739 -15625000.00514 3835 3739 -37868205.17313 3836 3739 19401012.48091 3846 3739 5.781650543213e-06 3847 3739 -42948027.89108 3848 3739 -51682408.42662 3849 3739 3.09944152832e-06 3850 3739 39706666.64553 3851 3739 -27430322.01402 3852 3739 -7.04824924469e-06 3853 3739 -107392689.3388 3854 3739 79112730.44064 3867 3739 -15625000.00513 3868 3739 -22831126.63809 3869 3739 -13229195.86314 3870 3739 1.668930053711e-06 3871 3739 -39138290.32084 3872 3739 -6857580.506883 3873 3739 15625000.00513 3874 3739 -39280887.92821 3875 3739 20086776.37002 3740 3740 1209684727.759 3741 3740 2285899.092332 3742 3740 54860644.00101 3743 3740 128167058.7484 3756 3740 24401755.31083 3757 3740 12206480.45177 3758 3740 -13077952.54839 3759 3740 -4571798.18244 3760 3740 -27430322.01402 3761 3740 114598543.8875 3762 3740 -27030536.34739 3763 3740 15223841.56225 3764 3740 -16689642.3626 3828 3740 13679279.97901 3829 3740 -12543431.97403 3830 3740 -15345455.6363 3831 3740 80261824.7461 3832 3740 -6857580.506883 3833 3740 -101938662.0149 3834 3740 26537352.8999 3835 3740 19401012.48091 3836 3740 -57405640.83529 3846 3740 571474.7733671 3847 3740 -51408102.87125 3848 3740 -18348781.1507 3849 3740 2285899.092361 3850 3740 -27430322.01402 3851 3740 -242725472.4512 3852 3740 571474.773379 3853 3740 78838424.88527 3854 3740 -190201211.678 3867 3740 -14250754.75238 3868 3740 -13229195.86314 3869 3740 -17306764.74188 3870 3740 -82547723.83843 3871 3740 -6857580.506883 3872 3740 -113395588.2476 3873 3740 -27108827.67327 3874 3740 20086776.37002 3875 3740 -61172794.84886 3741 3741 1204754822.305 3742 3741 62497357.07621 3743 3741 8952962.2647 3744 3741 45024925.86313 3745 3741 -62570336.85273 3746 3741 4194937.250903 3759 3741 -89019318.86449 3760 3741 -62499999.98974 3761 3741 24744637.25504 3762 3741 -219851604.8368 3763 3741 40242.33966598 3764 3741 -40004.89876187 3765 3741 -85662760.9757 3766 3741 62492282.31877 3767 3741 -4761332.72443 3831 3741 -26783317.53868 3832 3741 15625000.00513 3833 3741 13679279.97901 3834 3741 -129153814.3351 3835 3741 -16245455.61973 3836 3741 82158969.80008 3849 3741 16426910.05153 3850 3741 4.485249519348e-06 3851 3741 571474.7733669 3852 3741 104024325.5148 3853 3741 16260854.35681 3854 3741 2224683.703303 3855 3741 -40630590.51198 3856 3741 -15327351.62456 3857 3741 22295084.26312 3870 3741 -27518808.45327 3871 3741 -15625000.00513 3872 3741 -14250754.75238 3873 3741 -110653931.884 3874 3741 -305984.1418301 3875 3741 -83787444.46656 3876 3741 -37582436.37865 3877 3741 15617937.02931 3878 3741 -22863442.41946 3742 3742 1036206231.181 3743 3742 -63859055.41908 3744 3742 -62584481.0878 3745 3742 -173792340.1873 3746 3742 8996740.020617 3759 3742 -62499999.98974 3760 3742 -70268591.613 3761 3742 12480786.00715 3762 3742 40242.33966711 3763 3742 55101624.38748 3764 3742 -16838726.0431 3765 3742 62492282.31877 3766 3742 -67050935.07603 3767 3742 2899204.461618 3831 3742 15625000.00513 3832 3742 -22095635.7235 3833 3742 -12543431.97403 3834 3742 -16242128.17313 3835 3742 -55421300.42098 3836 3742 13456767.21673 3849 3742 5.781650543213e-06 3850 3742 -42948027.89108 3851 3742 -51682408.42662 3852 3742 16260854.35681 3853 3742 60193058.58581 3854 3742 -15789635.31347 3855 3742 -15330679.07116 3856 3742 -95311088.41941 3857 3742 70246455.99071 3870 3742 -15625000.00513 3871 3742 -22831126.63809 3872 3742 -13229195.86314 3873 3742 -305984.1418316 3874 3742 -41608792.32606 3875 3742 -4510931.026938 3876 3742 15617937.02931 3877 3742 -31848750.70198 3878 3742 17366327.12976 3743 3743 1194167608.39 3744 3743 4196101.101037 3745 3743 8997671.484154 3746 3743 96068025.68697 3759 3743 24401755.31083 3760 3743 12206480.45177 3761 3743 -13077952.54839 3762 3743 -7583407.675302 3763 3743 -16838726.0431 3764 3743 110744786.4731 3765 3743 -4761332.723755 3766 3743 2899204.461618 3767 3743 -4337375.443198 3831 3743 13679279.97901 3832 3743 -12543431.97403 3833 3743 -15345455.6363 3834 3743 83873198.12175 3835 3743 13460242.0837 3836 3743 -110667042.0751 3849 3743 571474.7733671 3850 3743 -51408102.87125 3851 3743 -18348781.1507 3852 3743 2233905.431621 3853 3743 -14685035.59046 3854 3743 -232308263.7716 3855 3743 22299969.37665 3856 3743 70246744.15636 3857 3743 -116215570.0634 3870 3743 -14250754.75238 3871 3743 -13229195.86314 3872 3743 -17306764.74188 3873 3743 -85501854.18985 3874 3743 -4236625.471426 3875 3743 -119293921.0885 3876 3743 -22863442.41946 3877 3743 17366327.12976 3878 3743 -42171970.90008 3744 3744 664287766.0269 3745 3744 24091.37187457 3746 3744 571059.7622714 3762 3744 -85626578.19959 3763 3744 -62498840.1633 3764 3744 3809616.386258 3765 3744 -218147695.2755 3766 3744 52750.43064576 3767 3744 -573164.2357075 3768 3744 74869081.74691 3769 3744 -12523451.48296 3770 3744 -190270.809375 3771 3744 -84365929.45554 3772 3744 62487498.23866 3773 3744 -952211.7649758 3834 3744 -11431103.66588 3835 3744 18759982.34595 3836 3744 24986550.61557 3852 3744 -31689345.25595 3853 3744 -15330679.07116 3854 3744 -20228823.39131 3855 3744 18578016.42486 3856 3744 -212048.4434399 3857 3744 16938078.048 3873 3744 -33816955.75253 3874 3744 -15624066.27071 3875 3744 -20297239.76849 3876 3744 -109961515.6943 3877 3744 -411737.3918817 3878 3744 -84091725.01815 3879 3744 -7596963.016065 3880 3744 -2912152.926645 3881 3744 3595010.390649 3882 3744 -35260385.50178 3883 3744 15730701.75788 3884 3744 -20970461.98783 3745 3745 693856738.6524 3746 3745 -9472423.040339 3762 3745 -62498840.1633 3763 3745 -66851597.3442 3764 3745 1522937.794223 3765 3745 52750.43064803 3766 3745 55036643.93943 3767 3745 -2908904.606411 3768 3745 12476548.51293 3769 3745 -44293034.1186 3770 3745 468992.1784517 3771 3745 62487498.23866 3772 3745 -67834262.09186 3773 3745 469097.6150822 3834 3745 12506654.8973 3835 3745 -10955147.39897 3836 3745 -12464032.54073 3852 3745 -15327351.62456 3853 3745 -86369843.16339 3854 3745 -65796808.19713 3855 3745 -212048.4434426 3856 3745 24360358.36927 3857 3745 4613573.717161 3873 3745 -15624066.27071 3874 3745 -29339377.68916 3875 3745 -16613289.94378 3876 3745 -411737.3918818 3877 3745 -41078918.26341 3878 3745 -1049079.875028 3879 3745 3337847.075409 3880 3745 -37294366.69524 3881 3745 33449764.91022 3882 3745 15730701.75788 3883 3745 -30500957.62076 3884 3745 16782316.0706 3746 3746 782229023.3854 3762 3746 3809616.386596 3763 3746 1522937.794493 3764 3746 -3996051.731711 3765 3746 -573164.2357077 3766 3746 -2908904.606411 3767 3746 104637633.003 3768 3746 -190270.8093724 3769 3746 468992.1784514 3770 3746 81857334.49913 3771 3746 -952211.7646383 3772 3746 469097.6150822 3773 3746 -4765687.76924 3834 3746 16657700.41038 3835 3746 -19127368.11652 3836 3746 -30958899.37592 3852 3746 -20224487.07758 3853 3746 -65796957.16143 3854 3746 -92372249.38064 3855 3746 -16646713.61315 3856 3746 -9261719.67195 3857 3746 -200537782.5998 3873 3746 -20297239.76849 3874 3746 -16613289.94378 3875 3746 -34497965.15509 3876 3746 -84091725.01849 3877 3746 -1049079.875162 3878 3746 -117898245.7723 3879 3746 -4529989.612186 3880 3746 33449764.91022 3881 3746 -49783549.25395 3882 3746 -20970461.98783 3883 3746 16782316.0706 3884 3746 -37093315.02675 3747 3747 563276232.9245 3748 3747 3.09944152832e-06 3749 3747 4571798.182401 3750 3747 70669302.51978 3751 3747 12499999.99795 3752 3747 -3143074.759108 3837 3747 -103592244.5474 3838 3747 1.892447471619e-06 3839 3747 80604706.69032 3840 3747 -42555886.98831 3841 3747 -15625000.00514 3842 3747 26537352.8999 3858 3747 38581487.51291 3859 3747 -1.847743988037e-06 3860 3747 -16029498.36724 3861 3747 -24008875.6981 3862 3747 3125000.001023 3863 3747 -5078880.670627 3748 3748 488273323.9555 3749 3748 -54860644.001 3750 3748 -12499999.99795 3751 3748 -48080573.30694 3752 3748 27156016.445 3837 3748 -9.983777999878e-07 3838 3748 -34841942.9836 3839 3748 -6857580.506883 3840 3748 -15625000.00514 3841 3748 -37868205.17313 3842 3748 19401012.48091 3858 3748 -2.026557922363e-06 3859 3748 19830760.26143 3860 3748 -13715161.00701 3861 3748 -3125000.00103 3862 3748 -53696344.6694 3863 3748 39487788.83141 3749 3749 604842363.8797 3750 3749 7143383.572535 3751 3749 27704627.55602 3752 3749 64143724.20442 3837 3749 80261824.7461 3838 3749 -6857580.506883 3839 3749 -101938662.0149 3840 3749 26537352.8999 3841 3749 19401012.48091 3842 3749 -57405640.83529 3858 3749 16600987.73851 3859 3749 -13715161.00701 3860 3749 -121422931.0558 3861 3749 5650355.444006 3862 3749 39487788.83154 3863 3749 -95100605.83899 3750 3750 563276232.9245 3751 3750 3.09944152832e-06 3752 3750 4571798.182401 3753 3750 70669302.51978 3754 3750 12499999.99795 3755 3750 -3143074.759108 3837 3750 -26783317.53868 3838 3750 15625000.00513 3839 3750 13679279.97901 3840 3750 -103592244.5474 3841 3750 1.892447471619e-06 3842 3750 80604706.69032 3843 3750 -42555886.98831 3844 3750 -15625000.00514 3845 3750 26537352.8999 3858 3750 8213455.025764 3859 3750 -3125000.001024 3860 3750 -2507266.086456 3861 3750 38581487.51291 3862 3750 -1.847743988037e-06 3863 3750 -16029498.36724 3864 3750 -24008875.6981 3865 3750 3125000.001023 3866 3750 -5078880.670627 3751 3751 488273323.9555 3752 3751 -54860644.001 3753 3751 -12499999.99795 3754 3751 -48080573.30694 3755 3751 27156016.445 3837 3751 15625000.00513 3838 3751 -22095635.7235 3839 3751 -12543431.97403 3840 3751 -9.983777999878e-07 3841 3751 -34841942.9836 3842 3751 -6857580.506883 3843 3751 -15625000.00514 3844 3751 -37868205.17313 3845 3751 19401012.48091 3858 3751 3125000.00103 3859 3751 -21474013.94555 3860 3751 -25772627.8244 3861 3751 -2.026557922363e-06 3862 3751 19830760.26143 3863 3751 -13715161.00701 3864 3751 -3125000.00103 3865 3751 -53696344.6694 3866 3751 39487788.83141 3752 3752 604842363.8797 3753 3752 7143383.572535 3754 3752 27704627.55602 3755 3752 64143724.20442 3837 3752 13679279.97901 3838 3752 -12543431.97403 3839 3752 -15345455.6363 3840 3752 80261824.7461 3841 3752 -6857580.506883 3842 3752 -101938662.0149 3843 3752 26537352.8999 3844 3752 19401012.48091 3845 3752 -57405640.83529 3858 3752 3078740.859823 3859 3752 -25772627.82454 3860 3752 -9174390.575351 3861 3752 16600987.73851 3862 3752 -13715161.00701 3863 3752 -121422931.0558 3864 3752 5650355.444006 3865 3752 39487788.83154 3866 3752 -95100605.83899 3753 3753 563276232.9245 3754 3753 3.09944152832e-06 3755 3753 4571798.182401 3756 3753 70669302.51978 3757 3753 12499999.99795 3758 3753 -3143074.759108 3840 3753 -26783317.53868 3841 3753 15625000.00513 3842 3753 13679279.97901 3843 3753 -103592244.5474 3844 3753 1.892447471619e-06 3845 3753 80604706.69032 3846 3753 -42555886.98831 3847 3753 -15625000.00514 3848 3753 26537352.8999 3861 3753 8213455.025764 3862 3753 -3125000.001024 3863 3753 -2507266.086456 3864 3753 38581487.51291 3865 3753 -1.847743988037e-06 3866 3753 -16029498.36724 3867 3753 -24008875.6981 3868 3753 3125000.001023 3869 3753 -5078880.670627 3754 3754 488273323.9555 3755 3754 -54860644.001 3756 3754 -12499999.99795 3757 3754 -48080573.30694 3758 3754 27156016.445 3840 3754 15625000.00513 3841 3754 -22095635.7235 3842 3754 -12543431.97403 3843 3754 -9.983777999878e-07 3844 3754 -34841942.9836 3845 3754 -6857580.506883 3846 3754 -15625000.00514 3847 3754 -37868205.17313 3848 3754 19401012.48091 3861 3754 3125000.00103 3862 3754 -21474013.94555 3863 3754 -25772627.8244 3864 3754 -2.026557922363e-06 3865 3754 19830760.26143 3866 3754 -13715161.00701 3867 3754 -3125000.00103 3868 3754 -53696344.6694 3869 3754 39487788.83141 3755 3755 604842363.8797 3756 3755 7143383.572535 3757 3755 27704627.55602 3758 3755 64143724.20442 3840 3755 13679279.97901 3841 3755 -12543431.97403 3842 3755 -15345455.6363 3843 3755 80261824.7461 3844 3755 -6857580.506883 3845 3755 -101938662.0149 3846 3755 26537352.8999 3847 3755 19401012.48091 3848 3755 -57405640.83529 3861 3755 3078740.859823 3862 3755 -25772627.82454 3863 3755 -9174390.575351 3864 3755 16600987.73851 3865 3755 -13715161.00701 3866 3755 -121422931.0558 3867 3755 5650355.444006 3868 3755 39487788.83154 3869 3755 -95100605.83899 3756 3756 563276232.9245 3757 3756 3.09944152832e-06 3758 3756 4571798.182401 3759 3756 70669302.51978 3760 3756 12499999.99795 3761 3756 -3143074.759108 3843 3756 -26783317.53868 3844 3756 15625000.00513 3845 3756 13679279.97901 3846 3756 -103592244.5474 3847 3756 1.892447471619e-06 3848 3756 80604706.69032 3849 3756 -42555886.98831 3850 3756 -15625000.00514 3851 3756 26537352.8999 3864 3756 8213455.025764 3865 3756 -3125000.001024 3866 3756 -2507266.086456 3867 3756 38581487.51291 3868 3756 -1.847743988037e-06 3869 3756 -16029498.36724 3870 3756 -24008875.6981 3871 3756 3125000.001023 3872 3756 -5078880.670627 3757 3757 488273323.9555 3758 3757 -54860644.001 3759 3757 -12499999.99795 3760 3757 -48080573.30694 3761 3757 27156016.445 3843 3757 15625000.00513 3844 3757 -22095635.7235 3845 3757 -12543431.97403 3846 3757 -9.983777999878e-07 3847 3757 -34841942.9836 3848 3757 -6857580.506883 3849 3757 -15625000.00514 3850 3757 -37868205.17313 3851 3757 19401012.48091 3864 3757 3125000.00103 3865 3757 -21474013.94555 3866 3757 -25772627.8244 3867 3757 -2.026557922363e-06 3868 3757 19830760.26143 3869 3757 -13715161.00701 3870 3757 -3125000.00103 3871 3757 -53696344.6694 3872 3757 39487788.83141 3758 3758 604842363.8797 3759 3758 7143383.572535 3760 3758 27704627.55602 3761 3758 64143724.20442 3843 3758 13679279.97901 3844 3758 -12543431.97403 3845 3758 -15345455.6363 3846 3758 80261824.7461 3847 3758 -6857580.506883 3848 3758 -101938662.0149 3849 3758 26537352.8999 3850 3758 19401012.48091 3851 3758 -57405640.83529 3864 3758 3078740.859823 3865 3758 -25772627.82454 3866 3758 -9174390.575351 3867 3758 16600987.73851 3868 3758 -13715161.00701 3869 3758 -121422931.0558 3870 3758 5650355.444006 3871 3758 39487788.83154 3872 3758 -95100605.83899 3759 3759 563276232.9245 3760 3759 3.09944152832e-06 3761 3759 4571798.182401 3762 3759 70669302.51978 3763 3759 12499999.99795 3764 3759 -3143074.759108 3846 3759 -26783317.53868 3847 3759 15625000.00513 3848 3759 13679279.97901 3849 3759 -103592244.5474 3850 3759 1.892447471619e-06 3851 3759 80604706.69032 3852 3759 -42555886.98831 3853 3759 -15625000.00514 3854 3759 26537352.8999 3867 3759 8213455.025764 3868 3759 -3125000.001024 3869 3759 -2507266.086456 3870 3759 38581487.51291 3871 3759 -1.847743988037e-06 3872 3759 -16029498.36724 3873 3759 -24008875.6981 3874 3759 3125000.001023 3875 3759 -5078880.670627 3760 3760 488273323.9555 3761 3760 -54860644.001 3762 3760 -12499999.99795 3763 3760 -48080573.30694 3764 3760 27156016.445 3846 3760 15625000.00513 3847 3760 -22095635.7235 3848 3760 -12543431.97403 3849 3760 -9.983777999878e-07 3850 3760 -34841942.9836 3851 3760 -6857580.506883 3852 3760 -15625000.00514 3853 3760 -37868205.17313 3854 3760 19401012.48091 3867 3760 3125000.00103 3868 3760 -21474013.94555 3869 3760 -25772627.8244 3870 3760 -2.026557922363e-06 3871 3760 19830760.26143 3872 3760 -13715161.00701 3873 3760 -3125000.00103 3874 3760 -53696344.6694 3875 3760 39487788.83141 3761 3761 604842363.8797 3762 3761 7143383.572535 3763 3761 27704627.55602 3764 3761 64143724.20442 3846 3761 13679279.97901 3847 3761 -12543431.97403 3848 3761 -15345455.6363 3849 3761 80261824.7461 3850 3761 -6857580.506883 3851 3761 -101938662.0149 3852 3761 26537352.8999 3853 3761 19401012.48091 3854 3761 -57405640.83529 3867 3761 3078740.859823 3868 3761 -25772627.82454 3869 3761 -9174390.575351 3870 3761 16600987.73851 3871 3761 -13715161.00701 3872 3761 -121422931.0558 3873 3761 5650355.444006 3874 3761 39487788.83154 3875 3761 -95100605.83899 3762 3762 560320827.2113 3763 3762 639.901719451 3764 3762 23239591.98142 3765 3762 78578401.33592 3766 3762 12457957.93012 3767 3762 -264411.8076911 3849 3762 -26783317.53868 3850 3762 15625000.00513 3851 3762 13679279.97901 3852 3762 -106874624.6125 3853 3762 -305984.1418223 3854 3762 81912468.6994 3855 3762 -36055415.57193 3856 3762 -15624066.27071 3857 3762 22203888.71768 3870 3762 8213455.025764 3871 3762 -3125000.001024 3872 3762 -2507266.086456 3873 3762 34185986.02995 3874 3762 798.6461966634 3875 3762 -11275630.76041 3876 3762 -10346432.29075 3877 3762 3429251.762236 3878 3762 -4751421.104327 3763 3763 485350920.2351 3764 3763 -34136717.37342 3765 3763 -12542042.06577 3766 3763 -40180753.19227 3767 3763 4878203.170454 3849 3763 15625000.00513 3850 3763 -22095635.7235 3851 3763 -12543431.97403 3852 3763 -305984.1418242 3853 3763 -37829485.05459 3854 3763 -3842528.249337 3855 3763 -15624066.27071 3856 3763 -31577837.50856 3857 3763 17388446.1785 3870 3763 3125000.00103 3871 3763 -21474013.94555 3872 3763 -25772627.8244 3873 3763 798.6461972594 3874 3763 15227309.46198 3875 3763 -8458758.259206 3876 3763 -2820748.239817 3877 3763 -39910686.18794 3878 3763 34874733.46178 3764 3764 597013597.6343 3765 3764 1792879.858635 3766 3764 4878203.170454 3767 3764 85361307.078 3849 3764 13679279.97901 3850 3764 -12543431.97403 3851 3764 -15345455.6363 3852 3764 83626878.42252 3853 3764 -3568222.69369 3854 3764 -109215768.3646 3855 3764 22203888.71769 3856 3764 17388446.1785 3857 3764 -40467191.34016 3870 3764 3078740.859823 3871 3764 -25772627.82454 3872 3764 -9174390.575351 3873 3764 22040063.67856 3874 3764 -7910147.148185 3875 3764 -133536023.2831 3876 3764 4263127.509742 3877 3764 34874733.46192 3878 3764 -59355434.68897 3765 3765 550746202.1403 3766 3765 36066.57850146 3767 3765 569002.3382969 3768 3765 -84494054.45551 3769 3765 -62512501.74082 3770 3765 762197.9571191 3771 3765 74782825.51741 3772 3765 12473444.47867 3773 3765 -532638.751045 3852 3765 -34261443.39917 3853 3765 15617937.02931 3854 3765 20473536.76144 3855 3765 -109427582.9781 3856 3765 -411737.3918647 3857 3765 83832233.28727 3873 3765 -4238369.907793 3874 3765 -2820748.239818 3875 3765 -3401247.493269 3876 3765 31840797.35778 3877 3765 -201113.0826508 3878 3765 -16633868.93328 3879 3765 -34006609.4597 3880 3765 -15519298.25239 3881 3765 20501065.80357 3882 3765 -7808250.756493 3883 3765 3334959.937417 3884 3765 -4703108.31416 3766 3766 480255926.3528 3767 3766 -6744998.921652 3768 3766 -62512501.74082 3769 3766 -67882308.96685 3770 3766 469097.615082 3771 3766 -12526555.51723 3772 3766 -44375654.77008 3773 3766 1407398.280953 3852 3766 15617937.02931 3853 3766 -28527757.72252 3854 3766 -15967006.21452 3855 3766 -411737.3918659 3856 3766 -40544985.54718 3857 3766 -380677.0974279 3873 3766 3429251.762237 3874 3766 -33802623.805 3875 3766 -32460335.97153 3876 3766 -201113.0826469 3877 3766 12600540.20203 3878 3766 -1653796.126267 3879 3766 -15519298.25239 3880 3766 -30030791.60498 3881 3766 16782316.0706 3882 3766 -2915040.064636 3883 3766 -37595840.66582 3884 3766 33679499.33911 3767 3767 579545011.66 3768 3767 762197.9571192 3769 3767 469097.615082 3770 3767 -4813734.644226 3771 3767 153125.1377279 3772 3767 1407398.280952 3773 3767 81748273.77839 3852 3767 20473536.76144 3853 3767 -15967006.21452 3854 3767 -33315989.62148 3855 3767 83832233.28761 3856 3767 -380677.0974262 3857 3767 -116474425.1957 3873 3767 4584655.287299 3874 3767 -32460335.97153 3875 3767 -43067268.3344 3876 3767 16950922.72787 3877 3767 -1653796.126267 3878 3767 -140113637.8354 3879 3767 20501065.80357 3880 3767 16782316.0706 3881 3767 -36623149.01096 3882 3767 3760502.799563 3883 3767 33679499.33911 3884 3767 -51476087.71803 3768 3768 272867251.5293 3769 3768 62523451.47476 3770 3768 -381199.097837 3771 3768 -107269612.1541 3772 3768 -12487498.24687 3773 3768 -190728.0499092 3855 3768 -7048351.904789 3856 3768 3337847.075409 3857 3768 4430861.084874 3876 3768 -33457998.34841 3877 3768 -15519298.25239 3878 3768 -20123934.20978 3879 3768 15992685.2667 3880 3768 15412152.93075 3881 3768 8031696.785406 3882 3768 -53472668.34682 3883 3768 -3230701.753776 3884 3768 -41088623.6605 3769 3769 239685617.4198 3770 3769 -468992.1784413 3771 3769 12512501.74903 3772 3769 28462392.33225 3773 3769 -469097.6150756 3855 3769 -2912152.926645 3856 3769 -36745755.58397 3857 3769 -33216901.74549 3876 3769 -15519298.25239 3877 3769 -29482180.49371 3878 3769 -16551017.27368 3879 3769 15412152.93075 3880 3769 7604151.433358 3881 3769 6550235.083201 3882 3769 3019298.248277 3883 3769 -19362548.68901 3884 3769 3217683.935962 3770 3770 286845804.3292 3771 3770 -190728.0499058 3772 3770 -469097.6150757 3773 3770 52037706.92696 3855 3770 -3694138.917793 3856 3770 -33216901.74549 3857 3770 -48320586.29054 3876 3770 -20123934.20978 3877 3770 -16551017.27368 3878 3770 -35160186.04754 3879 3770 -8218303.211925 3880 3770 -6783098.247942 3881 3770 -67476295.62359 3882 3770 -41088623.6605 3883 3770 -3448982.732894 3884 3770 -57006487.59384 3771 3771 272798049.4256 3772 3771 -62473444.47046 3773 3771 -381713.1014125 3855 3771 -34711774.39049 3856 3771 15730701.75788 3857 3771 20490388.72023 3876 3771 -6162417.423721 3877 3771 -2915040.064636 3878 3771 -3695816.647659 3879 3771 -53472668.34682 3880 3771 3019298.248286 3881 3771 40997227.02038 3882 3771 16374193.49437 3883 3771 -15834959.94153 3884 3771 -8381660.203837 3772 3772 239692857.863 3773 3772 -1407398.280936 3855 3772 15730701.75788 3856 3772 -29952346.50949 3857 3772 -16551017.27368 3876 3772 3334959.937418 3877 3772 -35950007.33306 3878 3772 -32987167.3166 3879 3772 -3230701.753769 3880 3772 -19362548.68901 3881 3772 3217683.935962 3882 3772 -15834959.94153 3883 3772 7292235.86488 3884 3772 6320500.654305 3773 3773 286833929.2861 3855 3773 20490388.72023 3856 3773 -16551017.27368 3857 3773 -35630352.06332 3876 3773 4424912.521678 3877 3773 -32987167.3166 3878 3773 -47087198.83062 3879 3773 40997227.02055 3880 3773 -3448982.732894 3881 3773 -57006487.59384 3882 3773 8202680.071217 3883 3773 -7012832.676838 3884 3773 -68203072.62332 3774 3774 731873593.1548 3775 3774 63656944.434 3776 3774 18282582.06852 3777 3774 -339558601.0551 3778 3774 -63664153.72624 3779 3774 -14174508.59703 3780 3774 22166321.31964 3781 3774 50932764.83944 3782 3774 -9608497.922564 3885 3774 41127258.27048 3886 3774 16203472.22755 3887 3774 17343888.84954 3888 3774 -135326679.0276 3889 3774 -16203472.09792 3890 3774 -86719444.24762 3891 3774 -13923315.162 3892 3774 12962777.65241 3893 3774 -17343888.52033 3775 3775 636376493.3815 3776 3775 -30188925.21508 3777 3775 -63667758.37236 3778 3775 -40346533.53339 3779 3775 -19199086.44689 3780 3775 76399147.25916 3781 3775 22166321.31964 3782 3775 13164421.99706 3885 3775 16203472.22755 3886 3775 16821163.40287 3887 3775 13874999.85144 3888 3775 -16203472.0331 3889 3775 -59169888.51194 3890 3775 -17343749.90781 3891 3775 19444166.47861 3892 3775 -13923315.162 3893 3775 20812499.90895 3776 3776 809270793.6919 3777 3776 -12120471.86127 3778 3776 -15085251.33671 3779 3776 33187550.82531 3780 3776 -14412746.88385 3781 3776 8776281.331372 3782 3776 59110190.1857 3885 3776 -17343888.84951 3886 3776 -13874999.85143 3887 3776 -181091253.0988 3888 3776 -86719444.24762 3889 3776 -17343749.94043 3890 3776 -121957897.9018 3891 3776 -26015832.7805 3892 3776 13874999.9393 3893 3776 -37128840.43199 3777 3777 1236679322.481 3778 3777 63674967.6646 3779 3777 15441526.4422 3780 3777 49455964.79174 3781 3777 -63664153.72624 3782 3777 13608792.08924 3783 3777 -223854518.1091 3784 3777 1.281499862671e-06 3785 3777 -3314544.719882 3786 3777 -89126355.34779 3787 3777 63656944.434 3788 3777 -13600988.60888 3885 3777 -135326679.0277 3886 3777 -16203472.0331 3887 3777 86719444.24762 3888 3777 101875695.1567 3889 3777 16203471.90348 3890 3777 0.03654569387436 3891 3777 -36808280.87074 3892 3777 -16203472.09792 3893 3777 21679860.74398 3894 3777 -113177912.5204 3895 3777 6.407499313354e-07 3896 3777 -86719444.43019 3897 3777 -36072082.53397 3898 3777 16203472.22755 3899 3777 -21679861.11823 3778 3778 1064791031.509 3779 3778 -42507558.78941 3780 3778 -63667758.37236 3781 3778 -173356800.7659 3782 3778 23590660.68649 3783 3778 2.622604370117e-06 3784 3778 56237222.37539 3785 3778 -13715162.23406 3786 3778 63656944.434 3787 3778 -70028557.53863 3788 3778 7680497.783698 3885 3778 -16203472.09792 3886 3778 -59169888.51195 3887 3778 17343749.94043 3888 3778 16203471.90348 3889 3778 58124724.28025 3890 3778 0.029221534729 3891 3778 -16203472.03311 3892 3778 -93520195.52346 3893 3778 69374999.6084 3894 3778 -1.177191734314e-06 3895 3778 -41882340.60421 3896 3778 8.344650268555e-07 3897 3778 16203472.22754 3898 3778 -31210863.52937 3899 3778 17343750.0057 3779 3779 1241583328.715 3780 3779 13269811.8847 3781 3779 25790082.19602 3782 3779 107138521.2855 3783 3779 -1257253.053552 3784 3779 -13715162.23407 3785 3779 113190145.6041 3786 3779 -13258106.66415 3787 3779 7406192.227917 3788 3779 -9211261.686427 3885 3779 86719444.24762 3886 3779 17343749.9078 3887 3779 -121957897.9018 3888 3779 -0.03648543357849 3889 3779 -0.02920261025429 3890 3779 -251706576.231 3891 3779 21679860.55685 3892 3779 69374999.49133 3893 3779 -104457508.7431 3894 3779 -86719444.43019 3895 3779 8.940696716309e-07 3896 3779 -121047307.7997 3897 3779 -21679861.11823 3898 3779 17343750.0057 3899 3779 -38039431.35476 3780 3780 731873593.1548 3781 3780 63656944.434 3782 3780 18282582.06852 3783 3780 -88449163.50764 3784 3780 -63656944.434 3785 3780 12115157.22023 3786 3780 -339558601.0551 3787 3780 -63664153.72624 3788 3780 -14174508.59703 3789 3780 22166321.31964 3790 3780 50932764.83944 3791 3780 -9608497.922564 3885 3780 -13923315.16199 3886 3780 19444166.47861 3887 3780 26015832.7805 3888 3780 -36808280.87074 3889 3780 -16203472.0331 3890 3780 -21679860.55685 3891 3780 41127258.27048 3892 3780 16203472.22755 3893 3780 17343888.84954 3894 3780 -36072082.53397 3895 3780 -16203472.22754 3896 3780 -21679861.11823 3897 3780 -135326679.0276 3898 3780 -16203472.09792 3899 3780 -86719444.24762 3900 3780 -13923315.162 3901 3780 12962777.65241 3902 3780 -17343888.52033 3781 3781 636376493.3815 3782 3781 -30188925.21508 3783 3781 -63656944.434 3784 3781 -69351365.69847 3785 3781 6034664.450365 3786 3781 -63667758.37236 3787 3781 -40346533.53339 3788 3781 -19199086.44689 3789 3781 76399147.25916 3790 3781 22166321.31964 3791 3781 13164421.99706 3885 3781 12962777.65241 3886 3781 -13923315.162 3887 3781 -13874999.9393 3888 3781 -16203472.09791 3889 3781 -93520195.52345 3890 3781 -69374999.49133 3891 3781 16203472.22755 3892 3781 16821163.40287 3893 3781 13874999.85144 3894 3781 -16203472.22754 3895 3781 -31210863.52937 3896 3781 -17343750.0057 3897 3781 -16203472.0331 3898 3781 -59169888.51194 3899 3781 -17343749.90781 3900 3781 19444166.47861 3901 3781 -13923315.162 3902 3781 20812499.90895 3782 3782 809270793.6919 3783 3782 12458039.16496 3784 3782 6308970.006146 3785 3782 -7405416.779322 3786 3782 -12120471.86127 3787 3782 -15085251.33671 3788 3782 33187550.82531 3789 3782 -14412746.88385 3790 3782 8776281.331372 3791 3782 59110190.1857 3885 3782 17343888.52033 3886 3782 -20812499.90894 3887 3782 -37128840.43198 3888 3782 -21679860.74397 3889 3782 -69374999.6084 3890 3782 -104457508.7431 3891 3782 -17343888.84951 3892 3782 -13874999.85143 3893 3782 -181091253.0988 3894 3782 -21679861.11823 3895 3782 -17343750.0057 3896 3782 -38039431.35476 3897 3782 -86719444.24762 3898 3782 -17343749.94043 3899 3782 -121957897.9018 3900 3782 -26015832.7805 3901 3782 13874999.9393 3902 3782 -37128840.43199 3783 3783 1137565312.076 3784 3783 4.64916229248e-06 3785 3783 4571797.773345 3786 3783 153072235.6709 3787 3783 -3.814697265625e-06 3788 3783 1142949.443904 3792 3783 -223854518.1091 3793 3783 1.281499862671e-06 3794 3783 -3314544.719882 3795 3783 -89126355.34779 3796 3783 63656944.434 3797 3783 -13600988.60888 3888 3783 -113177912.5205 3889 3783 -1.952052116394e-06 3890 3783 86719444.4302 3891 3783 -36072082.53399 3892 3783 -16203472.22755 3893 3783 21679861.11823 3894 3783 65803613.40852 3895 3783 4.112720489502e-06 3896 3783 3.081560134888e-05 3897 3783 -14659514.18418 3898 3783 -1.010298728943e-05 3899 3783 8.165836334229e-06 3903 3783 -113177912.5204 3904 3783 6.407499313354e-07 3905 3783 -86719444.43019 3906 3783 -36072082.53397 3907 3783 16203472.22755 3908 3783 -21679861.11823 3784 3784 984782929.6775 3785 3784 -54860648.90923 3786 3784 -3.695487976074e-06 3787 3784 -88823909.23288 3788 3784 28253241.12114 3792 3784 2.622604370117e-06 3793 3784 56237222.37539 3794 3784 -13715162.23406 3795 3784 63656944.434 3796 3784 -70028557.53863 3797 3784 7680497.783698 3888 3784 -4.097819328308e-06 3889 3784 -41882340.60423 3890 3784 1.296401023865e-06 3891 3784 -16203472.22755 3892 3784 -31210863.52938 3893 3784 17343750.0057 3894 3784 4.053115844727e-06 3895 3784 26913861.39084 3896 3784 4.738569259644e-06 3897 3784 -7.331371307373e-06 3898 3784 -76232648.10076 3899 3784 69374999.9886 3903 3784 -1.177191734314e-06 3904 3784 -41882340.60421 3905 3784 8.344650268555e-07 3906 3784 16203472.22754 3907 3784 -31210863.52937 3908 3784 17343750.0057 3785 3785 1205835345.84 3786 3785 1142949.443904 3787 3785 26607407.78808 3788 3785 154975139.2593 3792 3785 -1257253.053552 3793 3785 -13715162.23407 3794 3785 113190145.6041 3795 3785 -13258106.66415 3796 3785 7406192.227917 3797 3785 -9211261.686427 3888 3785 86719444.4302 3889 3785 1.415610313416e-06 3890 3785 -121047307.7997 3891 3785 21679861.11823 3892 3785 17343750.0057 3893 3785 -38039431.35476 3894 3785 3.02791595459e-05 3895 3785 4.619359970093e-06 3896 3785 -289746007.2349 3897 3785 8.165836334229e-06 3898 3785 69374999.9886 3899 3785 -103546919.3888 3903 3785 -86719444.43019 3904 3785 8.940696716309e-07 3905 3785 -121047307.7997 3906 3785 -21679861.11823 3907 3785 17343750.0057 3908 3785 -38039431.35476 3786 3786 1236679322.481 3787 3786 63674967.6646 3788 3786 15441526.4422 3789 3786 49455964.79174 3790 3786 -63664153.72624 3791 3786 13608792.08924 3792 3786 -88449163.50764 3793 3786 -63656944.434 3794 3786 12115157.22023 3795 3786 -223854518.1091 3796 3786 1.281499862671e-06 3797 3786 -3314544.719882 3798 3786 -89126355.34779 3799 3786 63656944.434 3800 3786 -13600988.60888 3888 3786 -36072082.53399 3889 3786 16203472.22755 3890 3786 21679861.11823 3891 3786 -135326679.0277 3892 3786 -16203472.0331 3893 3786 86719444.24762 3894 3786 -14659514.18418 3895 3786 7.62939453125e-06 3896 3786 7.152557373047e-06 3897 3786 101875695.1567 3898 3786 16203471.90348 3899 3786 0.03654569387436 3900 3786 -36808280.87074 3901 3786 -16203472.09792 3902 3786 21679860.74398 3903 3786 -36072082.53397 3904 3786 -16203472.22754 3905 3786 -21679861.11823 3906 3786 -113177912.5204 3907 3786 6.407499313354e-07 3908 3786 -86719444.43019 3909 3786 -36072082.53397 3910 3786 16203472.22755 3911 3786 -21679861.11823 3787 3787 1064791031.509 3788 3787 -42507558.78941 3789 3787 -63667758.37236 3790 3787 -173356800.7659 3791 3787 23590660.68649 3792 3787 -63656944.434 3793 3787 -69351365.69847 3794 3787 6034664.450365 3795 3787 2.622604370117e-06 3796 3787 56237222.37539 3797 3787 -13715162.23406 3798 3787 63656944.434 3799 3787 -70028557.53863 3800 3787 7680497.783698 3888 3787 16203472.22755 3889 3787 -31210863.52938 3890 3787 -17343750.00569 3891 3787 -16203472.09792 3892 3787 -59169888.51195 3893 3787 17343749.94043 3894 3787 8.970499038696e-06 3895 3787 -76232648.10075 3896 3787 -69374999.9886 3897 3787 16203471.90348 3898 3787 58124724.28025 3899 3787 0.029221534729 3900 3787 -16203472.03311 3901 3787 -93520195.52346 3902 3787 69374999.6084 3903 3787 -16203472.22754 3904 3787 -31210863.52937 3905 3787 -17343750.0057 3906 3787 -1.177191734314e-06 3907 3787 -41882340.60421 3908 3787 8.344650268555e-07 3909 3787 16203472.22754 3910 3787 -31210863.52937 3911 3787 17343750.0057 3788 3788 1241583328.715 3789 3788 13269811.8847 3790 3788 25790082.19602 3791 3788 107138521.2855 3792 3788 12458039.16496 3793 3788 6308970.006146 3794 3788 -7405416.779322 3795 3788 -1257253.053552 3796 3788 -13715162.23407 3797 3788 113190145.6041 3798 3788 -13258106.66415 3799 3788 7406192.227917 3800 3788 -9211261.686427 3888 3788 21679861.11823 3889 3788 -17343750.00569 3890 3788 -38039431.35476 3891 3788 86719444.24762 3892 3788 17343749.9078 3893 3788 -121957897.9018 3894 3788 7.182359695435e-06 3895 3788 -69374999.9886 3896 3788 -103546919.3888 3897 3788 -0.03648543357849 3898 3788 -0.02920261025429 3899 3788 -251706576.231 3900 3788 21679860.55685 3901 3788 69374999.49133 3902 3788 -104457508.7431 3903 3788 -21679861.11823 3904 3788 -17343750.0057 3905 3788 -38039431.35476 3906 3788 -86719444.43019 3907 3788 8.940696716309e-07 3908 3788 -121047307.7997 3909 3788 -21679861.11823 3910 3788 17343750.0057 3911 3788 -38039431.35476 3789 3789 731873593.1548 3790 3789 63656944.434 3791 3789 18282582.06852 3795 3789 -88449163.50764 3796 3789 -63656944.434 3797 3789 12115157.22023 3798 3789 -339558601.0551 3799 3789 -63664153.72624 3800 3789 -14174508.59703 3801 3789 22166321.31964 3802 3789 50932764.83944 3803 3789 -9608497.922564 3891 3789 -13923315.16199 3892 3789 19444166.47861 3893 3789 26015832.7805 3897 3789 -36808280.87074 3898 3789 -16203472.0331 3899 3789 -21679860.55685 3900 3789 41127258.27048 3901 3789 16203472.22755 3902 3789 17343888.84954 3906 3789 -36072082.53397 3907 3789 -16203472.22754 3908 3789 -21679861.11823 3909 3789 -135326679.0276 3910 3789 -16203472.09792 3911 3789 -86719444.24762 3912 3789 -13923315.162 3913 3789 12962777.65241 3914 3789 -17343888.52033 3790 3790 636376493.3815 3791 3790 -30188925.21508 3795 3790 -63656944.434 3796 3790 -69351365.69847 3797 3790 6034664.450365 3798 3790 -63667758.37236 3799 3790 -40346533.53339 3800 3790 -19199086.44689 3801 3790 76399147.25916 3802 3790 22166321.31964 3803 3790 13164421.99706 3891 3790 12962777.65241 3892 3790 -13923315.162 3893 3790 -13874999.9393 3897 3790 -16203472.09791 3898 3790 -93520195.52345 3899 3790 -69374999.49133 3900 3790 16203472.22755 3901 3790 16821163.40287 3902 3790 13874999.85144 3906 3790 -16203472.22754 3907 3790 -31210863.52937 3908 3790 -17343750.0057 3909 3790 -16203472.0331 3910 3790 -59169888.51194 3911 3790 -17343749.90781 3912 3790 19444166.47861 3913 3790 -13923315.162 3914 3790 20812499.90895 3791 3791 809270793.6919 3795 3791 12458039.16496 3796 3791 6308970.006146 3797 3791 -7405416.779322 3798 3791 -12120471.86127 3799 3791 -15085251.33671 3800 3791 33187550.82531 3801 3791 -14412746.88385 3802 3791 8776281.331372 3803 3791 59110190.1857 3891 3791 17343888.52033 3892 3791 -20812499.90894 3893 3791 -37128840.43198 3897 3791 -21679860.74397 3898 3791 -69374999.6084 3899 3791 -104457508.7431 3900 3791 -17343888.84951 3901 3791 -13874999.85143 3902 3791 -181091253.0988 3906 3791 -21679861.11823 3907 3791 -17343750.0057 3908 3791 -38039431.35476 3909 3791 -86719444.24762 3910 3791 -17343749.94043 3911 3791 -121957897.9018 3912 3791 -26015832.7805 3913 3791 13874999.9393 3914 3791 -37128840.43199 3792 3792 1137565312.076 3793 3792 4.64916229248e-06 3794 3792 4571797.773345 3795 3792 153072235.6709 3796 3792 -3.814697265625e-06 3797 3792 1142949.443904 3804 3792 -223854518.1091 3805 3792 1.281499862671e-06 3806 3792 -3314544.719882 3807 3792 -89126355.34779 3808 3792 63656944.434 3809 3792 -13600988.60888 3894 3792 -113177912.5205 3895 3792 -1.952052116394e-06 3896 3792 86719444.4302 3897 3792 -36072082.53399 3898 3792 -16203472.22755 3899 3792 21679861.11823 3903 3792 65803613.40852 3904 3792 4.112720489502e-06 3905 3792 3.081560134888e-05 3906 3792 -14659514.18418 3907 3792 -1.010298728943e-05 3908 3792 8.165836334229e-06 3915 3792 -113177912.5204 3916 3792 6.407499313354e-07 3917 3792 -86719444.43019 3918 3792 -36072082.53397 3919 3792 16203472.22755 3920 3792 -21679861.11823 3793 3793 984782929.6775 3794 3793 -54860648.90923 3795 3793 -3.695487976074e-06 3796 3793 -88823909.23288 3797 3793 28253241.12114 3804 3793 2.622604370117e-06 3805 3793 56237222.37539 3806 3793 -13715162.23406 3807 3793 63656944.434 3808 3793 -70028557.53863 3809 3793 7680497.783698 3894 3793 -4.097819328308e-06 3895 3793 -41882340.60423 3896 3793 1.296401023865e-06 3897 3793 -16203472.22755 3898 3793 -31210863.52938 3899 3793 17343750.0057 3903 3793 4.053115844727e-06 3904 3793 26913861.39084 3905 3793 4.738569259644e-06 3906 3793 -7.331371307373e-06 3907 3793 -76232648.10076 3908 3793 69374999.9886 3915 3793 -1.177191734314e-06 3916 3793 -41882340.60421 3917 3793 8.344650268555e-07 3918 3793 16203472.22754 3919 3793 -31210863.52937 3920 3793 17343750.0057 3794 3794 1205835345.84 3795 3794 1142949.443904 3796 3794 26607407.78808 3797 3794 154975139.2593 3804 3794 -1257253.053552 3805 3794 -13715162.23407 3806 3794 113190145.6041 3807 3794 -13258106.66415 3808 3794 7406192.227917 3809 3794 -9211261.686427 3894 3794 86719444.4302 3895 3794 1.415610313416e-06 3896 3794 -121047307.7997 3897 3794 21679861.11823 3898 3794 17343750.0057 3899 3794 -38039431.35476 3903 3794 3.02791595459e-05 3904 3794 4.619359970093e-06 3905 3794 -289746007.2349 3906 3794 8.165836334229e-06 3907 3794 69374999.9886 3908 3794 -103546919.3888 3915 3794 -86719444.43019 3916 3794 8.940696716309e-07 3917 3794 -121047307.7997 3918 3794 -21679861.11823 3919 3794 17343750.0057 3920 3794 -38039431.35476 3795 3795 1137565312.076 3796 3795 4.64916229248e-06 3797 3795 4571797.773345 3798 3795 153072235.6709 3799 3795 -3.814697265625e-06 3800 3795 1142949.443904 3804 3795 -88449163.50764 3805 3795 -63656944.434 3806 3795 12115157.22023 3807 3795 -223854518.1091 3808 3795 1.281499862671e-06 3809 3795 -3314544.719882 3810 3795 -89126355.34779 3811 3795 63656944.434 3812 3795 -13600988.60888 3894 3795 -36072082.53399 3895 3795 16203472.22755 3896 3795 21679861.11823 3897 3795 -113177912.5205 3898 3795 -1.952052116394e-06 3899 3795 86719444.4302 3900 3795 -36072082.53399 3901 3795 -16203472.22755 3902 3795 21679861.11823 3903 3795 -14659514.18418 3904 3795 7.62939453125e-06 3905 3795 7.152557373047e-06 3906 3795 65803613.40852 3907 3795 4.112720489502e-06 3908 3795 3.081560134888e-05 3909 3795 -14659514.18418 3910 3795 -1.010298728943e-05 3911 3795 8.165836334229e-06 3915 3795 -36072082.53397 3916 3795 -16203472.22754 3917 3795 -21679861.11823 3918 3795 -113177912.5204 3919 3795 6.407499313354e-07 3920 3795 -86719444.43019 3921 3795 -36072082.53397 3922 3795 16203472.22755 3923 3795 -21679861.11823 3796 3796 984782929.6775 3797 3796 -54860648.90923 3798 3796 -3.695487976074e-06 3799 3796 -88823909.23288 3800 3796 28253241.12114 3804 3796 -63656944.434 3805 3796 -69351365.69847 3806 3796 6034664.450365 3807 3796 2.622604370117e-06 3808 3796 56237222.37539 3809 3796 -13715162.23406 3810 3796 63656944.434 3811 3796 -70028557.53863 3812 3796 7680497.783698 3894 3796 16203472.22755 3895 3796 -31210863.52938 3896 3796 -17343750.00569 3897 3796 -4.097819328308e-06 3898 3796 -41882340.60423 3899 3796 1.296401023865e-06 3900 3796 -16203472.22755 3901 3796 -31210863.52938 3902 3796 17343750.0057 3903 3796 8.970499038696e-06 3904 3796 -76232648.10075 3905 3796 -69374999.9886 3906 3796 4.053115844727e-06 3907 3796 26913861.39084 3908 3796 4.738569259644e-06 3909 3796 -7.331371307373e-06 3910 3796 -76232648.10076 3911 3796 69374999.9886 3915 3796 -16203472.22754 3916 3796 -31210863.52937 3917 3796 -17343750.0057 3918 3796 -1.177191734314e-06 3919 3796 -41882340.60421 3920 3796 8.344650268555e-07 3921 3796 16203472.22754 3922 3796 -31210863.52937 3923 3796 17343750.0057 3797 3797 1205835345.84 3798 3797 1142949.443904 3799 3797 26607407.78808 3800 3797 154975139.2593 3804 3797 12458039.16496 3805 3797 6308970.006146 3806 3797 -7405416.779322 3807 3797 -1257253.053552 3808 3797 -13715162.23407 3809 3797 113190145.6041 3810 3797 -13258106.66415 3811 3797 7406192.227917 3812 3797 -9211261.686427 3894 3797 21679861.11823 3895 3797 -17343750.00569 3896 3797 -38039431.35476 3897 3797 86719444.4302 3898 3797 1.415610313416e-06 3899 3797 -121047307.7997 3900 3797 21679861.11823 3901 3797 17343750.0057 3902 3797 -38039431.35476 3903 3797 7.182359695435e-06 3904 3797 -69374999.9886 3905 3797 -103546919.3888 3906 3797 3.02791595459e-05 3907 3797 4.619359970093e-06 3908 3797 -289746007.2349 3909 3797 8.165836334229e-06 3910 3797 69374999.9886 3911 3797 -103546919.3888 3915 3797 -21679861.11823 3916 3797 -17343750.0057 3917 3797 -38039431.35476 3918 3797 -86719444.43019 3919 3797 8.940696716309e-07 3920 3797 -121047307.7997 3921 3797 -21679861.11823 3922 3797 17343750.0057 3923 3797 -38039431.35476 3798 3798 1236679322.481 3799 3798 63674967.6646 3800 3798 15441526.4422 3801 3798 49455964.79174 3802 3798 -63664153.72624 3803 3798 13608792.08924 3807 3798 -88449163.50764 3808 3798 -63656944.434 3809 3798 12115157.22023 3810 3798 -223854518.1091 3811 3798 1.281499862671e-06 3812 3798 -3314544.719882 3813 3798 -89126355.34779 3814 3798 63656944.434 3815 3798 -13600988.60888 3897 3798 -36072082.53399 3898 3798 16203472.22755 3899 3798 21679861.11823 3900 3798 -135326679.0277 3901 3798 -16203472.0331 3902 3798 86719444.24762 3906 3798 -14659514.18418 3907 3798 7.62939453125e-06 3908 3798 7.152557373047e-06 3909 3798 101875695.1567 3910 3798 16203471.90348 3911 3798 0.03654569387436 3912 3798 -36808280.87074 3913 3798 -16203472.09792 3914 3798 21679860.74398 3918 3798 -36072082.53397 3919 3798 -16203472.22754 3920 3798 -21679861.11823 3921 3798 -113177912.5204 3922 3798 6.407499313354e-07 3923 3798 -86719444.43019 3924 3798 -36072082.53397 3925 3798 16203472.22755 3926 3798 -21679861.11823 3799 3799 1064791031.509 3800 3799 -42507558.78941 3801 3799 -63667758.37236 3802 3799 -173356800.7659 3803 3799 23590660.68649 3807 3799 -63656944.434 3808 3799 -69351365.69847 3809 3799 6034664.450365 3810 3799 2.622604370117e-06 3811 3799 56237222.37539 3812 3799 -13715162.23406 3813 3799 63656944.434 3814 3799 -70028557.53863 3815 3799 7680497.783698 3897 3799 16203472.22755 3898 3799 -31210863.52938 3899 3799 -17343750.00569 3900 3799 -16203472.09792 3901 3799 -59169888.51195 3902 3799 17343749.94043 3906 3799 8.970499038696e-06 3907 3799 -76232648.10075 3908 3799 -69374999.9886 3909 3799 16203471.90348 3910 3799 58124724.28025 3911 3799 0.029221534729 3912 3799 -16203472.03311 3913 3799 -93520195.52346 3914 3799 69374999.6084 3918 3799 -16203472.22754 3919 3799 -31210863.52937 3920 3799 -17343750.0057 3921 3799 -1.177191734314e-06 3922 3799 -41882340.60421 3923 3799 8.344650268555e-07 3924 3799 16203472.22754 3925 3799 -31210863.52937 3926 3799 17343750.0057 3800 3800 1241583328.715 3801 3800 13269811.8847 3802 3800 25790082.19602 3803 3800 107138521.2855 3807 3800 12458039.16496 3808 3800 6308970.006146 3809 3800 -7405416.779322 3810 3800 -1257253.053552 3811 3800 -13715162.23407 3812 3800 113190145.6041 3813 3800 -13258106.66415 3814 3800 7406192.227917 3815 3800 -9211261.686427 3897 3800 21679861.11823 3898 3800 -17343750.00569 3899 3800 -38039431.35476 3900 3800 86719444.24762 3901 3800 17343749.9078 3902 3800 -121957897.9018 3906 3800 7.182359695435e-06 3907 3800 -69374999.9886 3908 3800 -103546919.3888 3909 3800 -0.03648543357849 3910 3800 -0.02920261025429 3911 3800 -251706576.231 3912 3800 21679860.55685 3913 3800 69374999.49133 3914 3800 -104457508.7431 3918 3800 -21679861.11823 3919 3800 -17343750.0057 3920 3800 -38039431.35476 3921 3800 -86719444.43019 3922 3800 8.940696716309e-07 3923 3800 -121047307.7997 3924 3800 -21679861.11823 3925 3800 17343750.0057 3926 3800 -38039431.35476 3801 3801 731873593.1548 3802 3801 63656944.434 3803 3801 18282582.06852 3810 3801 -88449163.50764 3811 3801 -63656944.434 3812 3801 12115157.22023 3813 3801 -339558601.0551 3814 3801 -63664153.72624 3815 3801 -14174508.59703 3816 3801 22166321.31964 3817 3801 50932764.83944 3818 3801 -9608497.922564 3900 3801 -13923315.16199 3901 3801 19444166.47861 3902 3801 26015832.7805 3909 3801 -36808280.87074 3910 3801 -16203472.0331 3911 3801 -21679860.55685 3912 3801 41127258.27048 3913 3801 16203472.22755 3914 3801 17343888.84954 3921 3801 -36072082.53397 3922 3801 -16203472.22754 3923 3801 -21679861.11823 3924 3801 -135326679.0276 3925 3801 -16203472.09792 3926 3801 -86719444.24762 3927 3801 -13923315.162 3928 3801 12962777.65241 3929 3801 -17343888.52033 3802 3802 636376493.3815 3803 3802 -30188925.21508 3810 3802 -63656944.434 3811 3802 -69351365.69847 3812 3802 6034664.450365 3813 3802 -63667758.37236 3814 3802 -40346533.53339 3815 3802 -19199086.44689 3816 3802 76399147.25916 3817 3802 22166321.31964 3818 3802 13164421.99706 3900 3802 12962777.65241 3901 3802 -13923315.162 3902 3802 -13874999.9393 3909 3802 -16203472.09791 3910 3802 -93520195.52345 3911 3802 -69374999.49133 3912 3802 16203472.22755 3913 3802 16821163.40287 3914 3802 13874999.85144 3921 3802 -16203472.22754 3922 3802 -31210863.52937 3923 3802 -17343750.0057 3924 3802 -16203472.0331 3925 3802 -59169888.51194 3926 3802 -17343749.90781 3927 3802 19444166.47861 3928 3802 -13923315.162 3929 3802 20812499.90895 3803 3803 809270793.6919 3810 3803 12458039.16496 3811 3803 6308970.006146 3812 3803 -7405416.779322 3813 3803 -12120471.86127 3814 3803 -15085251.33671 3815 3803 33187550.82531 3816 3803 -14412746.88385 3817 3803 8776281.331372 3818 3803 59110190.1857 3900 3803 17343888.52033 3901 3803 -20812499.90894 3902 3803 -37128840.43198 3909 3803 -21679860.74397 3910 3803 -69374999.6084 3911 3803 -104457508.7431 3912 3803 -17343888.84951 3913 3803 -13874999.85143 3914 3803 -181091253.0988 3921 3803 -21679861.11823 3922 3803 -17343750.0057 3923 3803 -38039431.35476 3924 3803 -86719444.24762 3925 3803 -17343749.94043 3926 3803 -121957897.9018 3927 3803 -26015832.7805 3928 3803 13874999.9393 3929 3803 -37128840.43199 3804 3804 1137565312.076 3805 3804 4.64916229248e-06 3806 3804 4571797.773345 3807 3804 153072235.6709 3808 3804 -3.814697265625e-06 3809 3804 1142949.443904 3819 3804 -223854518.1091 3820 3804 1.281499862671e-06 3821 3804 -3314544.719882 3822 3804 -89126355.34779 3823 3804 63656944.434 3824 3804 -13600988.60888 3903 3804 -113177912.5205 3904 3804 -1.952052116394e-06 3905 3804 86719444.4302 3906 3804 -36072082.53399 3907 3804 -16203472.22755 3908 3804 21679861.11823 3915 3804 65803613.40852 3916 3804 4.112720489502e-06 3917 3804 3.081560134888e-05 3918 3804 -14659514.18418 3919 3804 -1.010298728943e-05 3920 3804 8.165836334229e-06 3930 3804 -113177912.5204 3931 3804 6.407499313354e-07 3932 3804 -86719444.43019 3933 3804 -36072082.53397 3934 3804 16203472.22755 3935 3804 -21679861.11823 3805 3805 984782929.6775 3806 3805 -54860648.90923 3807 3805 -3.695487976074e-06 3808 3805 -88823909.23288 3809 3805 28253241.12114 3819 3805 2.622604370117e-06 3820 3805 56237222.37539 3821 3805 -13715162.23406 3822 3805 63656944.434 3823 3805 -70028557.53863 3824 3805 7680497.783698 3903 3805 -4.097819328308e-06 3904 3805 -41882340.60423 3905 3805 1.296401023865e-06 3906 3805 -16203472.22755 3907 3805 -31210863.52938 3908 3805 17343750.0057 3915 3805 4.053115844727e-06 3916 3805 26913861.39084 3917 3805 4.738569259644e-06 3918 3805 -7.331371307373e-06 3919 3805 -76232648.10076 3920 3805 69374999.9886 3930 3805 -1.177191734314e-06 3931 3805 -41882340.60421 3932 3805 8.344650268555e-07 3933 3805 16203472.22754 3934 3805 -31210863.52937 3935 3805 17343750.0057 3806 3806 1205835345.84 3807 3806 1142949.443904 3808 3806 26607407.78808 3809 3806 154975139.2593 3819 3806 -1257253.053552 3820 3806 -13715162.23407 3821 3806 113190145.6041 3822 3806 -13258106.66415 3823 3806 7406192.227917 3824 3806 -9211261.686427 3903 3806 86719444.4302 3904 3806 1.415610313416e-06 3905 3806 -121047307.7997 3906 3806 21679861.11823 3907 3806 17343750.0057 3908 3806 -38039431.35476 3915 3806 3.02791595459e-05 3916 3806 4.619359970093e-06 3917 3806 -289746007.2349 3918 3806 8.165836334229e-06 3919 3806 69374999.9886 3920 3806 -103546919.3888 3930 3806 -86719444.43019 3931 3806 8.940696716309e-07 3932 3806 -121047307.7997 3933 3806 -21679861.11823 3934 3806 17343750.0057 3935 3806 -38039431.35476 3807 3807 1137565312.076 3808 3807 4.64916229248e-06 3809 3807 4571797.773345 3810 3807 153072235.6709 3811 3807 -3.814697265625e-06 3812 3807 1142949.443904 3819 3807 -88449163.50764 3820 3807 -63656944.434 3821 3807 12115157.22023 3822 3807 -223854518.1091 3823 3807 1.281499862671e-06 3824 3807 -3314544.719882 3825 3807 -89126355.34779 3826 3807 63656944.434 3827 3807 -13600988.60888 3903 3807 -36072082.53399 3904 3807 16203472.22755 3905 3807 21679861.11823 3906 3807 -113177912.5205 3907 3807 -1.952052116394e-06 3908 3807 86719444.4302 3909 3807 -36072082.53399 3910 3807 -16203472.22755 3911 3807 21679861.11823 3915 3807 -14659514.18418 3916 3807 7.62939453125e-06 3917 3807 7.152557373047e-06 3918 3807 65803613.40852 3919 3807 4.112720489502e-06 3920 3807 3.081560134888e-05 3921 3807 -14659514.18418 3922 3807 -1.010298728943e-05 3923 3807 8.165836334229e-06 3930 3807 -36072082.53397 3931 3807 -16203472.22754 3932 3807 -21679861.11823 3933 3807 -113177912.5204 3934 3807 6.407499313354e-07 3935 3807 -86719444.43019 3936 3807 -36072082.53397 3937 3807 16203472.22755 3938 3807 -21679861.11823 3808 3808 984782929.6775 3809 3808 -54860648.90923 3810 3808 -3.695487976074e-06 3811 3808 -88823909.23288 3812 3808 28253241.12114 3819 3808 -63656944.434 3820 3808 -69351365.69847 3821 3808 6034664.450365 3822 3808 2.622604370117e-06 3823 3808 56237222.37539 3824 3808 -13715162.23406 3825 3808 63656944.434 3826 3808 -70028557.53863 3827 3808 7680497.783698 3903 3808 16203472.22755 3904 3808 -31210863.52938 3905 3808 -17343750.00569 3906 3808 -4.097819328308e-06 3907 3808 -41882340.60423 3908 3808 1.296401023865e-06 3909 3808 -16203472.22755 3910 3808 -31210863.52938 3911 3808 17343750.0057 3915 3808 8.970499038696e-06 3916 3808 -76232648.10075 3917 3808 -69374999.9886 3918 3808 4.053115844727e-06 3919 3808 26913861.39084 3920 3808 4.738569259644e-06 3921 3808 -7.331371307373e-06 3922 3808 -76232648.10076 3923 3808 69374999.9886 3930 3808 -16203472.22754 3931 3808 -31210863.52937 3932 3808 -17343750.0057 3933 3808 -1.177191734314e-06 3934 3808 -41882340.60421 3935 3808 8.344650268555e-07 3936 3808 16203472.22754 3937 3808 -31210863.52937 3938 3808 17343750.0057 3809 3809 1205835345.84 3810 3809 1142949.443904 3811 3809 26607407.78808 3812 3809 154975139.2593 3819 3809 12458039.16496 3820 3809 6308970.006146 3821 3809 -7405416.779322 3822 3809 -1257253.053552 3823 3809 -13715162.23407 3824 3809 113190145.6041 3825 3809 -13258106.66415 3826 3809 7406192.227917 3827 3809 -9211261.686427 3903 3809 21679861.11823 3904 3809 -17343750.00569 3905 3809 -38039431.35476 3906 3809 86719444.4302 3907 3809 1.415610313416e-06 3908 3809 -121047307.7997 3909 3809 21679861.11823 3910 3809 17343750.0057 3911 3809 -38039431.35476 3915 3809 7.182359695435e-06 3916 3809 -69374999.9886 3917 3809 -103546919.3888 3918 3809 3.02791595459e-05 3919 3809 4.619359970093e-06 3920 3809 -289746007.2349 3921 3809 8.165836334229e-06 3922 3809 69374999.9886 3923 3809 -103546919.3888 3930 3809 -21679861.11823 3931 3809 -17343750.0057 3932 3809 -38039431.35476 3933 3809 -86719444.43019 3934 3809 8.940696716309e-07 3935 3809 -121047307.7997 3936 3809 -21679861.11823 3937 3809 17343750.0057 3938 3809 -38039431.35476 3810 3810 1137565312.076 3811 3810 4.64916229248e-06 3812 3810 4571797.773345 3813 3810 153072235.6709 3814 3810 -3.814697265625e-06 3815 3810 1142949.443904 3822 3810 -88449163.50764 3823 3810 -63656944.434 3824 3810 12115157.22023 3825 3810 -223854518.1091 3826 3810 1.281499862671e-06 3827 3810 -3314544.719882 3828 3810 -89126355.34779 3829 3810 63656944.434 3830 3810 -13600988.60888 3906 3810 -36072082.53399 3907 3810 16203472.22755 3908 3810 21679861.11823 3909 3810 -113177912.5205 3910 3810 -1.952052116394e-06 3911 3810 86719444.4302 3912 3810 -36072082.53399 3913 3810 -16203472.22755 3914 3810 21679861.11823 3918 3810 -14659514.18418 3919 3810 7.62939453125e-06 3920 3810 7.152557373047e-06 3921 3810 65803613.40852 3922 3810 4.112720489502e-06 3923 3810 3.081560134888e-05 3924 3810 -14659514.18418 3925 3810 -1.010298728943e-05 3926 3810 8.165836334229e-06 3933 3810 -36072082.53397 3934 3810 -16203472.22754 3935 3810 -21679861.11823 3936 3810 -113177912.5204 3937 3810 6.407499313354e-07 3938 3810 -86719444.43019 3939 3810 -36072082.53397 3940 3810 16203472.22755 3941 3810 -21679861.11823 3811 3811 984782929.6775 3812 3811 -54860648.90923 3813 3811 -3.695487976074e-06 3814 3811 -88823909.23288 3815 3811 28253241.12114 3822 3811 -63656944.434 3823 3811 -69351365.69847 3824 3811 6034664.450365 3825 3811 2.622604370117e-06 3826 3811 56237222.37539 3827 3811 -13715162.23406 3828 3811 63656944.434 3829 3811 -70028557.53863 3830 3811 7680497.783698 3906 3811 16203472.22755 3907 3811 -31210863.52938 3908 3811 -17343750.00569 3909 3811 -4.097819328308e-06 3910 3811 -41882340.60423 3911 3811 1.296401023865e-06 3912 3811 -16203472.22755 3913 3811 -31210863.52938 3914 3811 17343750.0057 3918 3811 8.970499038696e-06 3919 3811 -76232648.10075 3920 3811 -69374999.9886 3921 3811 4.053115844727e-06 3922 3811 26913861.39084 3923 3811 4.738569259644e-06 3924 3811 -7.331371307373e-06 3925 3811 -76232648.10076 3926 3811 69374999.9886 3933 3811 -16203472.22754 3934 3811 -31210863.52937 3935 3811 -17343750.0057 3936 3811 -1.177191734314e-06 3937 3811 -41882340.60421 3938 3811 8.344650268555e-07 3939 3811 16203472.22754 3940 3811 -31210863.52937 3941 3811 17343750.0057 3812 3812 1205835345.84 3813 3812 1142949.443904 3814 3812 26607407.78808 3815 3812 154975139.2593 3822 3812 12458039.16496 3823 3812 6308970.006146 3824 3812 -7405416.779322 3825 3812 -1257253.053552 3826 3812 -13715162.23407 3827 3812 113190145.6041 3828 3812 -13258106.66415 3829 3812 7406192.227917 3830 3812 -9211261.686427 3906 3812 21679861.11823 3907 3812 -17343750.00569 3908 3812 -38039431.35476 3909 3812 86719444.4302 3910 3812 1.415610313416e-06 3911 3812 -121047307.7997 3912 3812 21679861.11823 3913 3812 17343750.0057 3914 3812 -38039431.35476 3918 3812 7.182359695435e-06 3919 3812 -69374999.9886 3920 3812 -103546919.3888 3921 3812 3.02791595459e-05 3922 3812 4.619359970093e-06 3923 3812 -289746007.2349 3924 3812 8.165836334229e-06 3925 3812 69374999.9886 3926 3812 -103546919.3888 3933 3812 -21679861.11823 3934 3812 -17343750.0057 3935 3812 -38039431.35476 3936 3812 -86719444.43019 3937 3812 8.940696716309e-07 3938 3812 -121047307.7997 3939 3812 -21679861.11823 3940 3812 17343750.0057 3941 3812 -38039431.35476 3813 3813 1236679322.481 3814 3813 63674967.6646 3815 3813 15441526.4422 3816 3813 49455964.79174 3817 3813 -63664153.72624 3818 3813 13608792.08924 3825 3813 -88449163.50764 3826 3813 -63656944.434 3827 3813 12115157.22023 3828 3813 -223854518.1091 3829 3813 1.281499862671e-06 3830 3813 -3314544.719882 3831 3813 -89126355.34779 3832 3813 63656944.434 3833 3813 -13600988.60888 3909 3813 -36072082.53399 3910 3813 16203472.22755 3911 3813 21679861.11823 3912 3813 -135326679.0277 3913 3813 -16203472.0331 3914 3813 86719444.24762 3921 3813 -14659514.18418 3922 3813 7.62939453125e-06 3923 3813 7.152557373047e-06 3924 3813 101875695.1567 3925 3813 16203471.90348 3926 3813 0.03654569387436 3927 3813 -36808280.87074 3928 3813 -16203472.09792 3929 3813 21679860.74398 3936 3813 -36072082.53397 3937 3813 -16203472.22754 3938 3813 -21679861.11823 3939 3813 -113177912.5204 3940 3813 6.407499313354e-07 3941 3813 -86719444.43019 3942 3813 -36072082.53397 3943 3813 16203472.22755 3944 3813 -21679861.11823 3814 3814 1064791031.509 3815 3814 -42507558.78941 3816 3814 -63667758.37236 3817 3814 -173356800.7659 3818 3814 23590660.68649 3825 3814 -63656944.434 3826 3814 -69351365.69847 3827 3814 6034664.450365 3828 3814 2.622604370117e-06 3829 3814 56237222.37539 3830 3814 -13715162.23406 3831 3814 63656944.434 3832 3814 -70028557.53863 3833 3814 7680497.783698 3909 3814 16203472.22755 3910 3814 -31210863.52938 3911 3814 -17343750.00569 3912 3814 -16203472.09792 3913 3814 -59169888.51195 3914 3814 17343749.94043 3921 3814 8.970499038696e-06 3922 3814 -76232648.10075 3923 3814 -69374999.9886 3924 3814 16203471.90348 3925 3814 58124724.28025 3926 3814 0.029221534729 3927 3814 -16203472.03311 3928 3814 -93520195.52346 3929 3814 69374999.6084 3936 3814 -16203472.22754 3937 3814 -31210863.52937 3938 3814 -17343750.0057 3939 3814 -1.177191734314e-06 3940 3814 -41882340.60421 3941 3814 8.344650268555e-07 3942 3814 16203472.22754 3943 3814 -31210863.52937 3944 3814 17343750.0057 3815 3815 1241583328.715 3816 3815 13269811.8847 3817 3815 25790082.19602 3818 3815 107138521.2855 3825 3815 12458039.16496 3826 3815 6308970.006146 3827 3815 -7405416.779322 3828 3815 -1257253.053552 3829 3815 -13715162.23407 3830 3815 113190145.6041 3831 3815 -13258106.66415 3832 3815 7406192.227917 3833 3815 -9211261.686427 3909 3815 21679861.11823 3910 3815 -17343750.00569 3911 3815 -38039431.35476 3912 3815 86719444.24762 3913 3815 17343749.9078 3914 3815 -121957897.9018 3921 3815 7.182359695435e-06 3922 3815 -69374999.9886 3923 3815 -103546919.3888 3924 3815 -0.03648543357849 3925 3815 -0.02920261025429 3926 3815 -251706576.231 3927 3815 21679860.55685 3928 3815 69374999.49133 3929 3815 -104457508.7431 3936 3815 -21679861.11823 3937 3815 -17343750.0057 3938 3815 -38039431.35476 3939 3815 -86719444.43019 3940 3815 8.940696716309e-07 3941 3815 -121047307.7997 3942 3815 -21679861.11823 3943 3815 17343750.0057 3944 3815 -38039431.35476 3816 3816 731873593.1548 3817 3816 63656944.434 3818 3816 18282582.06852 3828 3816 -88449163.50764 3829 3816 -63656944.434 3830 3816 12115157.22023 3831 3816 -339558601.0551 3832 3816 -63664153.72624 3833 3816 -14174508.59703 3834 3816 22166321.31964 3835 3816 50932764.83944 3836 3816 -9608497.922564 3912 3816 -13923315.16199 3913 3816 19444166.47861 3914 3816 26015832.7805 3924 3816 -36808280.87074 3925 3816 -16203472.0331 3926 3816 -21679860.55685 3927 3816 41127258.27048 3928 3816 16203472.22755 3929 3816 17343888.84954 3939 3816 -36072082.53397 3940 3816 -16203472.22754 3941 3816 -21679861.11823 3942 3816 -135326679.0276 3943 3816 -16203472.09792 3944 3816 -86719444.24762 3945 3816 -13923315.162 3946 3816 12962777.65241 3947 3816 -17343888.52033 3817 3817 636376493.3815 3818 3817 -30188925.21508 3828 3817 -63656944.434 3829 3817 -69351365.69847 3830 3817 6034664.450365 3831 3817 -63667758.37236 3832 3817 -40346533.53339 3833 3817 -19199086.44689 3834 3817 76399147.25916 3835 3817 22166321.31964 3836 3817 13164421.99706 3912 3817 12962777.65241 3913 3817 -13923315.162 3914 3817 -13874999.9393 3924 3817 -16203472.09791 3925 3817 -93520195.52345 3926 3817 -69374999.49133 3927 3817 16203472.22755 3928 3817 16821163.40287 3929 3817 13874999.85144 3939 3817 -16203472.22754 3940 3817 -31210863.52937 3941 3817 -17343750.0057 3942 3817 -16203472.0331 3943 3817 -59169888.51194 3944 3817 -17343749.90781 3945 3817 19444166.47861 3946 3817 -13923315.162 3947 3817 20812499.90895 3818 3818 809270793.6919 3828 3818 12458039.16496 3829 3818 6308970.006146 3830 3818 -7405416.779322 3831 3818 -12120471.86127 3832 3818 -15085251.33671 3833 3818 33187550.82531 3834 3818 -14412746.88385 3835 3818 8776281.331372 3836 3818 59110190.1857 3912 3818 17343888.52033 3913 3818 -20812499.90894 3914 3818 -37128840.43198 3924 3818 -21679860.74397 3925 3818 -69374999.6084 3926 3818 -104457508.7431 3927 3818 -17343888.84951 3928 3818 -13874999.85143 3929 3818 -181091253.0988 3939 3818 -21679861.11823 3940 3818 -17343750.0057 3941 3818 -38039431.35476 3942 3818 -86719444.24762 3943 3818 -17343749.94043 3944 3818 -121957897.9018 3945 3818 -26015832.7805 3946 3818 13874999.9393 3947 3818 -37128840.43199 3819 3819 1137565312.076 3820 3819 4.64916229248e-06 3821 3819 4571797.773345 3822 3819 153072235.6709 3823 3819 -3.814697265625e-06 3824 3819 1142949.443904 3837 3819 -223854518.1091 3838 3819 1.281499862671e-06 3839 3819 -3314544.719882 3840 3819 -89126355.34779 3841 3819 63656944.434 3842 3819 -13600988.60888 3915 3819 -113177912.5205 3916 3819 -1.952052116394e-06 3917 3819 86719444.4302 3918 3819 -36072082.53399 3919 3819 -16203472.22755 3920 3819 21679861.11823 3930 3819 65803613.40852 3931 3819 4.112720489502e-06 3932 3819 3.081560134888e-05 3933 3819 -14659514.18418 3934 3819 -1.010298728943e-05 3935 3819 8.165836334229e-06 3948 3819 -113177912.5204 3949 3819 6.407499313354e-07 3950 3819 -86719444.43019 3951 3819 -36072082.53397 3952 3819 16203472.22755 3953 3819 -21679861.11823 3820 3820 984782929.6775 3821 3820 -54860648.90923 3822 3820 -3.695487976074e-06 3823 3820 -88823909.23288 3824 3820 28253241.12114 3837 3820 2.622604370117e-06 3838 3820 56237222.37539 3839 3820 -13715162.23406 3840 3820 63656944.434 3841 3820 -70028557.53863 3842 3820 7680497.783698 3915 3820 -4.097819328308e-06 3916 3820 -41882340.60423 3917 3820 1.296401023865e-06 3918 3820 -16203472.22755 3919 3820 -31210863.52938 3920 3820 17343750.0057 3930 3820 4.053115844727e-06 3931 3820 26913861.39084 3932 3820 4.738569259644e-06 3933 3820 -7.331371307373e-06 3934 3820 -76232648.10076 3935 3820 69374999.9886 3948 3820 -1.177191734314e-06 3949 3820 -41882340.60421 3950 3820 8.344650268555e-07 3951 3820 16203472.22754 3952 3820 -31210863.52937 3953 3820 17343750.0057 3821 3821 1205835345.84 3822 3821 1142949.443904 3823 3821 26607407.78808 3824 3821 154975139.2593 3837 3821 -1257253.053552 3838 3821 -13715162.23407 3839 3821 113190145.6041 3840 3821 -13258106.66415 3841 3821 7406192.227917 3842 3821 -9211261.686427 3915 3821 86719444.4302 3916 3821 1.415610313416e-06 3917 3821 -121047307.7997 3918 3821 21679861.11823 3919 3821 17343750.0057 3920 3821 -38039431.35476 3930 3821 3.02791595459e-05 3931 3821 4.619359970093e-06 3932 3821 -289746007.2349 3933 3821 8.165836334229e-06 3934 3821 69374999.9886 3935 3821 -103546919.3888 3948 3821 -86719444.43019 3949 3821 8.940696716309e-07 3950 3821 -121047307.7997 3951 3821 -21679861.11823 3952 3821 17343750.0057 3953 3821 -38039431.35476 3822 3822 1137565312.076 3823 3822 4.64916229248e-06 3824 3822 4571797.773345 3825 3822 153072235.6709 3826 3822 -3.814697265625e-06 3827 3822 1142949.443904 3837 3822 -88449163.50764 3838 3822 -63656944.434 3839 3822 12115157.22023 3840 3822 -223854518.1091 3841 3822 1.281499862671e-06 3842 3822 -3314544.719882 3843 3822 -89126355.34779 3844 3822 63656944.434 3845 3822 -13600988.60888 3915 3822 -36072082.53399 3916 3822 16203472.22755 3917 3822 21679861.11823 3918 3822 -113177912.5205 3919 3822 -1.952052116394e-06 3920 3822 86719444.4302 3921 3822 -36072082.53399 3922 3822 -16203472.22755 3923 3822 21679861.11823 3930 3822 -14659514.18418 3931 3822 7.62939453125e-06 3932 3822 7.152557373047e-06 3933 3822 65803613.40852 3934 3822 4.112720489502e-06 3935 3822 3.081560134888e-05 3936 3822 -14659514.18418 3937 3822 -1.010298728943e-05 3938 3822 8.165836334229e-06 3948 3822 -36072082.53397 3949 3822 -16203472.22754 3950 3822 -21679861.11823 3951 3822 -113177912.5204 3952 3822 6.407499313354e-07 3953 3822 -86719444.43019 3954 3822 -36072082.53397 3955 3822 16203472.22755 3956 3822 -21679861.11823 3823 3823 984782929.6775 3824 3823 -54860648.90923 3825 3823 -3.695487976074e-06 3826 3823 -88823909.23288 3827 3823 28253241.12114 3837 3823 -63656944.434 3838 3823 -69351365.69847 3839 3823 6034664.450365 3840 3823 2.622604370117e-06 3841 3823 56237222.37539 3842 3823 -13715162.23406 3843 3823 63656944.434 3844 3823 -70028557.53863 3845 3823 7680497.783698 3915 3823 16203472.22755 3916 3823 -31210863.52938 3917 3823 -17343750.00569 3918 3823 -4.097819328308e-06 3919 3823 -41882340.60423 3920 3823 1.296401023865e-06 3921 3823 -16203472.22755 3922 3823 -31210863.52938 3923 3823 17343750.0057 3930 3823 8.970499038696e-06 3931 3823 -76232648.10075 3932 3823 -69374999.9886 3933 3823 4.053115844727e-06 3934 3823 26913861.39084 3935 3823 4.738569259644e-06 3936 3823 -7.331371307373e-06 3937 3823 -76232648.10076 3938 3823 69374999.9886 3948 3823 -16203472.22754 3949 3823 -31210863.52937 3950 3823 -17343750.0057 3951 3823 -1.177191734314e-06 3952 3823 -41882340.60421 3953 3823 8.344650268555e-07 3954 3823 16203472.22754 3955 3823 -31210863.52937 3956 3823 17343750.0057 3824 3824 1205835345.84 3825 3824 1142949.443904 3826 3824 26607407.78808 3827 3824 154975139.2593 3837 3824 12458039.16496 3838 3824 6308970.006146 3839 3824 -7405416.779322 3840 3824 -1257253.053552 3841 3824 -13715162.23407 3842 3824 113190145.6041 3843 3824 -13258106.66415 3844 3824 7406192.227917 3845 3824 -9211261.686427 3915 3824 21679861.11823 3916 3824 -17343750.00569 3917 3824 -38039431.35476 3918 3824 86719444.4302 3919 3824 1.415610313416e-06 3920 3824 -121047307.7997 3921 3824 21679861.11823 3922 3824 17343750.0057 3923 3824 -38039431.35476 3930 3824 7.182359695435e-06 3931 3824 -69374999.9886 3932 3824 -103546919.3888 3933 3824 3.02791595459e-05 3934 3824 4.619359970093e-06 3935 3824 -289746007.2349 3936 3824 8.165836334229e-06 3937 3824 69374999.9886 3938 3824 -103546919.3888 3948 3824 -21679861.11823 3949 3824 -17343750.0057 3950 3824 -38039431.35476 3951 3824 -86719444.43019 3952 3824 8.940696716309e-07 3953 3824 -121047307.7997 3954 3824 -21679861.11823 3955 3824 17343750.0057 3956 3824 -38039431.35476 3825 3825 1137565312.076 3826 3825 4.64916229248e-06 3827 3825 4571797.773345 3828 3825 153072235.6709 3829 3825 -3.814697265625e-06 3830 3825 1142949.443904 3840 3825 -88449163.50764 3841 3825 -63656944.434 3842 3825 12115157.22023 3843 3825 -223854518.1091 3844 3825 1.281499862671e-06 3845 3825 -3314544.719882 3846 3825 -89126355.34779 3847 3825 63656944.434 3848 3825 -13600988.60888 3918 3825 -36072082.53399 3919 3825 16203472.22755 3920 3825 21679861.11823 3921 3825 -113177912.5205 3922 3825 -1.952052116394e-06 3923 3825 86719444.4302 3924 3825 -36072082.53399 3925 3825 -16203472.22755 3926 3825 21679861.11823 3933 3825 -14659514.18418 3934 3825 7.62939453125e-06 3935 3825 7.152557373047e-06 3936 3825 65803613.40852 3937 3825 4.112720489502e-06 3938 3825 3.081560134888e-05 3939 3825 -14659514.18418 3940 3825 -1.010298728943e-05 3941 3825 8.165836334229e-06 3951 3825 -36072082.53397 3952 3825 -16203472.22754 3953 3825 -21679861.11823 3954 3825 -113177912.5204 3955 3825 6.407499313354e-07 3956 3825 -86719444.43019 3957 3825 -36072082.53397 3958 3825 16203472.22755 3959 3825 -21679861.11823 3826 3826 984782929.6775 3827 3826 -54860648.90923 3828 3826 -3.695487976074e-06 3829 3826 -88823909.23288 3830 3826 28253241.12114 3840 3826 -63656944.434 3841 3826 -69351365.69847 3842 3826 6034664.450365 3843 3826 2.622604370117e-06 3844 3826 56237222.37539 3845 3826 -13715162.23406 3846 3826 63656944.434 3847 3826 -70028557.53863 3848 3826 7680497.783698 3918 3826 16203472.22755 3919 3826 -31210863.52938 3920 3826 -17343750.00569 3921 3826 -4.097819328308e-06 3922 3826 -41882340.60423 3923 3826 1.296401023865e-06 3924 3826 -16203472.22755 3925 3826 -31210863.52938 3926 3826 17343750.0057 3933 3826 8.970499038696e-06 3934 3826 -76232648.10075 3935 3826 -69374999.9886 3936 3826 4.053115844727e-06 3937 3826 26913861.39084 3938 3826 4.738569259644e-06 3939 3826 -7.331371307373e-06 3940 3826 -76232648.10076 3941 3826 69374999.9886 3951 3826 -16203472.22754 3952 3826 -31210863.52937 3953 3826 -17343750.0057 3954 3826 -1.177191734314e-06 3955 3826 -41882340.60421 3956 3826 8.344650268555e-07 3957 3826 16203472.22754 3958 3826 -31210863.52937 3959 3826 17343750.0057 3827 3827 1205835345.84 3828 3827 1142949.443904 3829 3827 26607407.78808 3830 3827 154975139.2593 3840 3827 12458039.16496 3841 3827 6308970.006146 3842 3827 -7405416.779322 3843 3827 -1257253.053552 3844 3827 -13715162.23407 3845 3827 113190145.6041 3846 3827 -13258106.66415 3847 3827 7406192.227917 3848 3827 -9211261.686427 3918 3827 21679861.11823 3919 3827 -17343750.00569 3920 3827 -38039431.35476 3921 3827 86719444.4302 3922 3827 1.415610313416e-06 3923 3827 -121047307.7997 3924 3827 21679861.11823 3925 3827 17343750.0057 3926 3827 -38039431.35476 3933 3827 7.182359695435e-06 3934 3827 -69374999.9886 3935 3827 -103546919.3888 3936 3827 3.02791595459e-05 3937 3827 4.619359970093e-06 3938 3827 -289746007.2349 3939 3827 8.165836334229e-06 3940 3827 69374999.9886 3941 3827 -103546919.3888 3951 3827 -21679861.11823 3952 3827 -17343750.0057 3953 3827 -38039431.35476 3954 3827 -86719444.43019 3955 3827 8.940696716309e-07 3956 3827 -121047307.7997 3957 3827 -21679861.11823 3958 3827 17343750.0057 3959 3827 -38039431.35476 3828 3828 1137565312.076 3829 3828 4.64916229248e-06 3830 3828 4571797.773345 3831 3828 153072235.6709 3832 3828 -3.814697265625e-06 3833 3828 1142949.443904 3843 3828 -88449163.50764 3844 3828 -63656944.434 3845 3828 12115157.22023 3846 3828 -223854518.1091 3847 3828 1.281499862671e-06 3848 3828 -3314544.719882 3849 3828 -89126355.34779 3850 3828 63656944.434 3851 3828 -13600988.60888 3921 3828 -36072082.53399 3922 3828 16203472.22755 3923 3828 21679861.11823 3924 3828 -113177912.5205 3925 3828 -1.952052116394e-06 3926 3828 86719444.4302 3927 3828 -36072082.53399 3928 3828 -16203472.22755 3929 3828 21679861.11823 3936 3828 -14659514.18418 3937 3828 7.62939453125e-06 3938 3828 7.152557373047e-06 3939 3828 65803613.40852 3940 3828 4.112720489502e-06 3941 3828 3.081560134888e-05 3942 3828 -14659514.18418 3943 3828 -1.010298728943e-05 3944 3828 8.165836334229e-06 3954 3828 -36072082.53397 3955 3828 -16203472.22754 3956 3828 -21679861.11823 3957 3828 -113177912.5204 3958 3828 6.407499313354e-07 3959 3828 -86719444.43019 3960 3828 -36072082.53397 3961 3828 16203472.22755 3962 3828 -21679861.11823 3829 3829 984782929.6775 3830 3829 -54860648.90923 3831 3829 -3.695487976074e-06 3832 3829 -88823909.23288 3833 3829 28253241.12114 3843 3829 -63656944.434 3844 3829 -69351365.69847 3845 3829 6034664.450365 3846 3829 2.622604370117e-06 3847 3829 56237222.37539 3848 3829 -13715162.23406 3849 3829 63656944.434 3850 3829 -70028557.53863 3851 3829 7680497.783698 3921 3829 16203472.22755 3922 3829 -31210863.52938 3923 3829 -17343750.00569 3924 3829 -4.097819328308e-06 3925 3829 -41882340.60423 3926 3829 1.296401023865e-06 3927 3829 -16203472.22755 3928 3829 -31210863.52938 3929 3829 17343750.0057 3936 3829 8.970499038696e-06 3937 3829 -76232648.10075 3938 3829 -69374999.9886 3939 3829 4.053115844727e-06 3940 3829 26913861.39084 3941 3829 4.738569259644e-06 3942 3829 -7.331371307373e-06 3943 3829 -76232648.10076 3944 3829 69374999.9886 3954 3829 -16203472.22754 3955 3829 -31210863.52937 3956 3829 -17343750.0057 3957 3829 -1.177191734314e-06 3958 3829 -41882340.60421 3959 3829 8.344650268555e-07 3960 3829 16203472.22754 3961 3829 -31210863.52937 3962 3829 17343750.0057 3830 3830 1205835345.84 3831 3830 1142949.443904 3832 3830 26607407.78808 3833 3830 154975139.2593 3843 3830 12458039.16496 3844 3830 6308970.006146 3845 3830 -7405416.779322 3846 3830 -1257253.053552 3847 3830 -13715162.23407 3848 3830 113190145.6041 3849 3830 -13258106.66415 3850 3830 7406192.227917 3851 3830 -9211261.686427 3921 3830 21679861.11823 3922 3830 -17343750.00569 3923 3830 -38039431.35476 3924 3830 86719444.4302 3925 3830 1.415610313416e-06 3926 3830 -121047307.7997 3927 3830 21679861.11823 3928 3830 17343750.0057 3929 3830 -38039431.35476 3936 3830 7.182359695435e-06 3937 3830 -69374999.9886 3938 3830 -103546919.3888 3939 3830 3.02791595459e-05 3940 3830 4.619359970093e-06 3941 3830 -289746007.2349 3942 3830 8.165836334229e-06 3943 3830 69374999.9886 3944 3830 -103546919.3888 3954 3830 -21679861.11823 3955 3830 -17343750.0057 3956 3830 -38039431.35476 3957 3830 -86719444.43019 3958 3830 8.940696716309e-07 3959 3830 -121047307.7997 3960 3830 -21679861.11823 3961 3830 17343750.0057 3962 3830 -38039431.35476 3831 3831 1236679322.481 3832 3831 63674967.6646 3833 3831 15441526.4422 3834 3831 49455964.79174 3835 3831 -63664153.72624 3836 3831 13608792.08924 3846 3831 -88449163.50764 3847 3831 -63656944.434 3848 3831 12115157.22023 3849 3831 -223854518.1091 3850 3831 1.281499862671e-06 3851 3831 -3314544.719882 3852 3831 -89126355.34779 3853 3831 63656944.434 3854 3831 -13600988.60888 3924 3831 -36072082.53399 3925 3831 16203472.22755 3926 3831 21679861.11823 3927 3831 -135326679.0277 3928 3831 -16203472.0331 3929 3831 86719444.24762 3939 3831 -14659514.18418 3940 3831 7.62939453125e-06 3941 3831 7.152557373047e-06 3942 3831 101875695.1567 3943 3831 16203471.90348 3944 3831 0.03654569387436 3945 3831 -36808280.87074 3946 3831 -16203472.09792 3947 3831 21679860.74398 3957 3831 -36072082.53397 3958 3831 -16203472.22754 3959 3831 -21679861.11823 3960 3831 -113177912.5204 3961 3831 6.407499313354e-07 3962 3831 -86719444.43019 3963 3831 -36072082.53397 3964 3831 16203472.22755 3965 3831 -21679861.11823 3832 3832 1064791031.509 3833 3832 -42507558.78941 3834 3832 -63667758.37236 3835 3832 -173356800.7659 3836 3832 23590660.68649 3846 3832 -63656944.434 3847 3832 -69351365.69847 3848 3832 6034664.450365 3849 3832 2.622604370117e-06 3850 3832 56237222.37539 3851 3832 -13715162.23406 3852 3832 63656944.434 3853 3832 -70028557.53863 3854 3832 7680497.783698 3924 3832 16203472.22755 3925 3832 -31210863.52938 3926 3832 -17343750.00569 3927 3832 -16203472.09792 3928 3832 -59169888.51195 3929 3832 17343749.94043 3939 3832 8.970499038696e-06 3940 3832 -76232648.10075 3941 3832 -69374999.9886 3942 3832 16203471.90348 3943 3832 58124724.28025 3944 3832 0.029221534729 3945 3832 -16203472.03311 3946 3832 -93520195.52346 3947 3832 69374999.6084 3957 3832 -16203472.22754 3958 3832 -31210863.52937 3959 3832 -17343750.0057 3960 3832 -1.177191734314e-06 3961 3832 -41882340.60421 3962 3832 8.344650268555e-07 3963 3832 16203472.22754 3964 3832 -31210863.52937 3965 3832 17343750.0057 3833 3833 1241583328.715 3834 3833 13269811.8847 3835 3833 25790082.19602 3836 3833 107138521.2855 3846 3833 12458039.16496 3847 3833 6308970.006146 3848 3833 -7405416.779322 3849 3833 -1257253.053552 3850 3833 -13715162.23407 3851 3833 113190145.6041 3852 3833 -13258106.66415 3853 3833 7406192.227917 3854 3833 -9211261.686427 3924 3833 21679861.11823 3925 3833 -17343750.00569 3926 3833 -38039431.35476 3927 3833 86719444.24762 3928 3833 17343749.9078 3929 3833 -121957897.9018 3939 3833 7.182359695435e-06 3940 3833 -69374999.9886 3941 3833 -103546919.3888 3942 3833 -0.03648543357849 3943 3833 -0.02920261025429 3944 3833 -251706576.231 3945 3833 21679860.55685 3946 3833 69374999.49133 3947 3833 -104457508.7431 3957 3833 -21679861.11823 3958 3833 -17343750.0057 3959 3833 -38039431.35476 3960 3833 -86719444.43019 3961 3833 8.940696716309e-07 3962 3833 -121047307.7997 3963 3833 -21679861.11823 3964 3833 17343750.0057 3965 3833 -38039431.35476 3834 3834 753206313.808 3835 3834 68026432.09525 3836 3834 -4626567.456927 3849 3834 -88449163.50764 3850 3834 -63656944.434 3851 3834 12115157.22023 3852 3834 -341975368.7049 3853 3834 -68039344.23401 3854 3834 -876918.7379556 3855 3834 31371891.95152 3856 3834 50938467.68596 3857 3834 -1381632.119869 3927 3834 -13923315.16199 3928 3834 19444166.47861 3929 3834 26015832.7805 3942 3834 -36808280.87074 3943 3834 -16203472.0331 3944 3834 -21679860.55685 3945 3834 42592361.7517 3946 3834 17468608.18462 3947 3834 17682222.18139 3960 3834 -36072082.53397 3961 3834 -16203472.22754 3962 3834 -21679861.11823 3963 3834 -139005882.4837 3964 3834 -17468608.05498 3965 3834 -88411110.90688 3966 3834 -13882071.21844 3967 3834 12962777.65241 3968 3834 -18020555.17262 3835 3835 652353022.169 3836 3835 -29654678.01534 3849 3835 -63656944.434 3850 3835 -69351365.69847 3851 3835 6034664.450365 3852 3835 -68045800.30339 3853 3835 -40783133.78399 3854 3835 -8009373.208703 3855 3835 76407701.52894 3856 3835 34747916.41813 3857 3835 1988516.814094 3927 3835 12962777.65241 3928 3835 -13923315.162 3929 3835 -13874999.9393 3942 3835 -16203472.09791 3943 3835 -93520195.52345 3944 3835 -69374999.49133 3945 3835 17468608.18461 3946 3835 16743847.91339 3947 3835 14145833.18359 3960 3835 -16203472.22754 3961 3835 -31210863.52937 3962 3835 -17343750.0057 3963 3835 -17468607.99017 3964 3835 -62280769.56998 3965 3835 -18697916.56855 3966 3835 19444166.47861 3967 3835 -12907974.64576 3968 3835 20270833.25379 3836 3836 845960452.2258 3849 3836 12458039.16496 3850 3836 6308970.006146 3851 3836 -7405416.779322 3852 3836 -3628661.835378 3853 3836 -7464235.36192 3854 3836 50316458.1007 3855 3836 -2072448.179803 3856 3836 1443101.03928 3857 3836 80282354.07081 3927 3836 17343888.52033 3928 3836 -20812499.90894 3929 3836 -37128840.43198 3942 3836 -21679860.74397 3943 3836 -69374999.6084 3944 3836 -104457508.7431 3945 3836 -17682222.18136 3946 3836 -14145833.18358 3947 3836 -183017309.7474 3960 3836 -21679861.11823 3961 3836 -17343750.0057 3962 3836 -38039431.35476 3963 3836 -88411110.90688 3964 3836 -18697916.60118 3965 3836 -124962011.2801 3966 3836 -27030832.75893 3967 3836 13062499.95656 3968 3836 -37992953.15516 3837 3837 1137565312.076 3838 3837 4.64916229248e-06 3839 3837 4571797.773345 3840 3837 153072235.6709 3841 3837 -3.814697265625e-06 3842 3837 1142949.443904 3858 3837 -223854518.1091 3859 3837 1.281499862671e-06 3860 3837 -3314544.719882 3861 3837 -89126355.34779 3862 3837 63656944.434 3863 3837 -13600988.60888 3930 3837 -113177912.5205 3931 3837 -1.952052116394e-06 3932 3837 86719444.4302 3933 3837 -36072082.53399 3934 3837 -16203472.22755 3935 3837 21679861.11823 3948 3837 65803613.40852 3949 3837 4.112720489502e-06 3950 3837 3.081560134888e-05 3951 3837 -14659514.18418 3952 3837 -1.010298728943e-05 3953 3837 8.165836334229e-06 3969 3837 -113177912.5204 3970 3837 6.407499313354e-07 3971 3837 -86719444.43019 3972 3837 -36072082.53397 3973 3837 16203472.22755 3974 3837 -21679861.11823 3838 3838 984782929.6775 3839 3838 -54860648.90923 3840 3838 -3.695487976074e-06 3841 3838 -88823909.23288 3842 3838 28253241.12114 3858 3838 2.622604370117e-06 3859 3838 56237222.37539 3860 3838 -13715162.23406 3861 3838 63656944.434 3862 3838 -70028557.53863 3863 3838 7680497.783698 3930 3838 -4.097819328308e-06 3931 3838 -41882340.60423 3932 3838 1.296401023865e-06 3933 3838 -16203472.22755 3934 3838 -31210863.52938 3935 3838 17343750.0057 3948 3838 4.053115844727e-06 3949 3838 26913861.39084 3950 3838 4.738569259644e-06 3951 3838 -7.331371307373e-06 3952 3838 -76232648.10076 3953 3838 69374999.9886 3969 3838 -1.177191734314e-06 3970 3838 -41882340.60421 3971 3838 8.344650268555e-07 3972 3838 16203472.22754 3973 3838 -31210863.52937 3974 3838 17343750.0057 3839 3839 1205835345.84 3840 3839 1142949.443904 3841 3839 26607407.78808 3842 3839 154975139.2593 3858 3839 -1257253.053552 3859 3839 -13715162.23407 3860 3839 113190145.6041 3861 3839 -13258106.66415 3862 3839 7406192.227917 3863 3839 -9211261.686427 3930 3839 86719444.4302 3931 3839 1.415610313416e-06 3932 3839 -121047307.7997 3933 3839 21679861.11823 3934 3839 17343750.0057 3935 3839 -38039431.35476 3948 3839 3.02791595459e-05 3949 3839 4.619359970093e-06 3950 3839 -289746007.2349 3951 3839 8.165836334229e-06 3952 3839 69374999.9886 3953 3839 -103546919.3888 3969 3839 -86719444.43019 3970 3839 8.940696716309e-07 3971 3839 -121047307.7997 3972 3839 -21679861.11823 3973 3839 17343750.0057 3974 3839 -38039431.35476 3840 3840 1137565312.076 3841 3840 4.64916229248e-06 3842 3840 4571797.773345 3843 3840 153072235.6709 3844 3840 -3.814697265625e-06 3845 3840 1142949.443904 3858 3840 -88449163.50764 3859 3840 -63656944.434 3860 3840 12115157.22023 3861 3840 -223854518.1091 3862 3840 1.281499862671e-06 3863 3840 -3314544.719882 3864 3840 -89126355.34779 3865 3840 63656944.434 3866 3840 -13600988.60888 3930 3840 -36072082.53399 3931 3840 16203472.22755 3932 3840 21679861.11823 3933 3840 -113177912.5205 3934 3840 -1.952052116394e-06 3935 3840 86719444.4302 3936 3840 -36072082.53399 3937 3840 -16203472.22755 3938 3840 21679861.11823 3948 3840 -14659514.18418 3949 3840 7.62939453125e-06 3950 3840 7.152557373047e-06 3951 3840 65803613.40852 3952 3840 4.112720489502e-06 3953 3840 3.081560134888e-05 3954 3840 -14659514.18418 3955 3840 -1.010298728943e-05 3956 3840 8.165836334229e-06 3969 3840 -36072082.53397 3970 3840 -16203472.22754 3971 3840 -21679861.11823 3972 3840 -113177912.5204 3973 3840 6.407499313354e-07 3974 3840 -86719444.43019 3975 3840 -36072082.53397 3976 3840 16203472.22755 3977 3840 -21679861.11823 3841 3841 984782929.6775 3842 3841 -54860648.90923 3843 3841 -3.695487976074e-06 3844 3841 -88823909.23288 3845 3841 28253241.12114 3858 3841 -63656944.434 3859 3841 -69351365.69847 3860 3841 6034664.450365 3861 3841 2.622604370117e-06 3862 3841 56237222.37539 3863 3841 -13715162.23406 3864 3841 63656944.434 3865 3841 -70028557.53863 3866 3841 7680497.783698 3930 3841 16203472.22755 3931 3841 -31210863.52938 3932 3841 -17343750.00569 3933 3841 -4.097819328308e-06 3934 3841 -41882340.60423 3935 3841 1.296401023865e-06 3936 3841 -16203472.22755 3937 3841 -31210863.52938 3938 3841 17343750.0057 3948 3841 8.970499038696e-06 3949 3841 -76232648.10075 3950 3841 -69374999.9886 3951 3841 4.053115844727e-06 3952 3841 26913861.39084 3953 3841 4.738569259644e-06 3954 3841 -7.331371307373e-06 3955 3841 -76232648.10076 3956 3841 69374999.9886 3969 3841 -16203472.22754 3970 3841 -31210863.52937 3971 3841 -17343750.0057 3972 3841 -1.177191734314e-06 3973 3841 -41882340.60421 3974 3841 8.344650268555e-07 3975 3841 16203472.22754 3976 3841 -31210863.52937 3977 3841 17343750.0057 3842 3842 1205835345.84 3843 3842 1142949.443904 3844 3842 26607407.78808 3845 3842 154975139.2593 3858 3842 12458039.16496 3859 3842 6308970.006146 3860 3842 -7405416.779322 3861 3842 -1257253.053552 3862 3842 -13715162.23407 3863 3842 113190145.6041 3864 3842 -13258106.66415 3865 3842 7406192.227917 3866 3842 -9211261.686427 3930 3842 21679861.11823 3931 3842 -17343750.00569 3932 3842 -38039431.35476 3933 3842 86719444.4302 3934 3842 1.415610313416e-06 3935 3842 -121047307.7997 3936 3842 21679861.11823 3937 3842 17343750.0057 3938 3842 -38039431.35476 3948 3842 7.182359695435e-06 3949 3842 -69374999.9886 3950 3842 -103546919.3888 3951 3842 3.02791595459e-05 3952 3842 4.619359970093e-06 3953 3842 -289746007.2349 3954 3842 8.165836334229e-06 3955 3842 69374999.9886 3956 3842 -103546919.3888 3969 3842 -21679861.11823 3970 3842 -17343750.0057 3971 3842 -38039431.35476 3972 3842 -86719444.43019 3973 3842 8.940696716309e-07 3974 3842 -121047307.7997 3975 3842 -21679861.11823 3976 3842 17343750.0057 3977 3842 -38039431.35476 3843 3843 1137565312.076 3844 3843 4.64916229248e-06 3845 3843 4571797.773345 3846 3843 153072235.6709 3847 3843 -3.814697265625e-06 3848 3843 1142949.443904 3861 3843 -88449163.50764 3862 3843 -63656944.434 3863 3843 12115157.22023 3864 3843 -223854518.1091 3865 3843 1.281499862671e-06 3866 3843 -3314544.719882 3867 3843 -89126355.34779 3868 3843 63656944.434 3869 3843 -13600988.60888 3933 3843 -36072082.53399 3934 3843 16203472.22755 3935 3843 21679861.11823 3936 3843 -113177912.5205 3937 3843 -1.952052116394e-06 3938 3843 86719444.4302 3939 3843 -36072082.53399 3940 3843 -16203472.22755 3941 3843 21679861.11823 3951 3843 -14659514.18418 3952 3843 7.62939453125e-06 3953 3843 7.152557373047e-06 3954 3843 65803613.40852 3955 3843 4.112720489502e-06 3956 3843 3.081560134888e-05 3957 3843 -14659514.18418 3958 3843 -1.010298728943e-05 3959 3843 8.165836334229e-06 3972 3843 -36072082.53397 3973 3843 -16203472.22754 3974 3843 -21679861.11823 3975 3843 -113177912.5204 3976 3843 6.407499313354e-07 3977 3843 -86719444.43019 3978 3843 -36072082.53397 3979 3843 16203472.22755 3980 3843 -21679861.11823 3844 3844 984782929.6775 3845 3844 -54860648.90923 3846 3844 -3.695487976074e-06 3847 3844 -88823909.23288 3848 3844 28253241.12114 3861 3844 -63656944.434 3862 3844 -69351365.69847 3863 3844 6034664.450365 3864 3844 2.622604370117e-06 3865 3844 56237222.37539 3866 3844 -13715162.23406 3867 3844 63656944.434 3868 3844 -70028557.53863 3869 3844 7680497.783698 3933 3844 16203472.22755 3934 3844 -31210863.52938 3935 3844 -17343750.00569 3936 3844 -4.097819328308e-06 3937 3844 -41882340.60423 3938 3844 1.296401023865e-06 3939 3844 -16203472.22755 3940 3844 -31210863.52938 3941 3844 17343750.0057 3951 3844 8.970499038696e-06 3952 3844 -76232648.10075 3953 3844 -69374999.9886 3954 3844 4.053115844727e-06 3955 3844 26913861.39084 3956 3844 4.738569259644e-06 3957 3844 -7.331371307373e-06 3958 3844 -76232648.10076 3959 3844 69374999.9886 3972 3844 -16203472.22754 3973 3844 -31210863.52937 3974 3844 -17343750.0057 3975 3844 -1.177191734314e-06 3976 3844 -41882340.60421 3977 3844 8.344650268555e-07 3978 3844 16203472.22754 3979 3844 -31210863.52937 3980 3844 17343750.0057 3845 3845 1205835345.84 3846 3845 1142949.443904 3847 3845 26607407.78808 3848 3845 154975139.2593 3861 3845 12458039.16496 3862 3845 6308970.006146 3863 3845 -7405416.779322 3864 3845 -1257253.053552 3865 3845 -13715162.23407 3866 3845 113190145.6041 3867 3845 -13258106.66415 3868 3845 7406192.227917 3869 3845 -9211261.686427 3933 3845 21679861.11823 3934 3845 -17343750.00569 3935 3845 -38039431.35476 3936 3845 86719444.4302 3937 3845 1.415610313416e-06 3938 3845 -121047307.7997 3939 3845 21679861.11823 3940 3845 17343750.0057 3941 3845 -38039431.35476 3951 3845 7.182359695435e-06 3952 3845 -69374999.9886 3953 3845 -103546919.3888 3954 3845 3.02791595459e-05 3955 3845 4.619359970093e-06 3956 3845 -289746007.2349 3957 3845 8.165836334229e-06 3958 3845 69374999.9886 3959 3845 -103546919.3888 3972 3845 -21679861.11823 3973 3845 -17343750.0057 3974 3845 -38039431.35476 3975 3845 -86719444.43019 3976 3845 8.940696716309e-07 3977 3845 -121047307.7997 3978 3845 -21679861.11823 3979 3845 17343750.0057 3980 3845 -38039431.35476 3846 3846 1137565312.076 3847 3846 4.64916229248e-06 3848 3846 4571797.773345 3849 3846 153072235.6709 3850 3846 -3.814697265625e-06 3851 3846 1142949.443904 3864 3846 -88449163.50764 3865 3846 -63656944.434 3866 3846 12115157.22023 3867 3846 -223854518.1091 3868 3846 1.281499862671e-06 3869 3846 -3314544.719882 3870 3846 -89126355.34779 3871 3846 63656944.434 3872 3846 -13600988.60888 3936 3846 -36072082.53399 3937 3846 16203472.22755 3938 3846 21679861.11823 3939 3846 -113177912.5205 3940 3846 -1.952052116394e-06 3941 3846 86719444.4302 3942 3846 -36072082.53399 3943 3846 -16203472.22755 3944 3846 21679861.11823 3954 3846 -14659514.18418 3955 3846 7.62939453125e-06 3956 3846 7.152557373047e-06 3957 3846 65803613.40852 3958 3846 4.112720489502e-06 3959 3846 3.081560134888e-05 3960 3846 -14659514.18418 3961 3846 -1.010298728943e-05 3962 3846 8.165836334229e-06 3975 3846 -36072082.53397 3976 3846 -16203472.22754 3977 3846 -21679861.11823 3978 3846 -113177912.5204 3979 3846 6.407499313354e-07 3980 3846 -86719444.43019 3981 3846 -36072082.53397 3982 3846 16203472.22755 3983 3846 -21679861.11823 3847 3847 984782929.6775 3848 3847 -54860648.90923 3849 3847 -3.695487976074e-06 3850 3847 -88823909.23288 3851 3847 28253241.12114 3864 3847 -63656944.434 3865 3847 -69351365.69847 3866 3847 6034664.450365 3867 3847 2.622604370117e-06 3868 3847 56237222.37539 3869 3847 -13715162.23406 3870 3847 63656944.434 3871 3847 -70028557.53863 3872 3847 7680497.783698 3936 3847 16203472.22755 3937 3847 -31210863.52938 3938 3847 -17343750.00569 3939 3847 -4.097819328308e-06 3940 3847 -41882340.60423 3941 3847 1.296401023865e-06 3942 3847 -16203472.22755 3943 3847 -31210863.52938 3944 3847 17343750.0057 3954 3847 8.970499038696e-06 3955 3847 -76232648.10075 3956 3847 -69374999.9886 3957 3847 4.053115844727e-06 3958 3847 26913861.39084 3959 3847 4.738569259644e-06 3960 3847 -7.331371307373e-06 3961 3847 -76232648.10076 3962 3847 69374999.9886 3975 3847 -16203472.22754 3976 3847 -31210863.52937 3977 3847 -17343750.0057 3978 3847 -1.177191734314e-06 3979 3847 -41882340.60421 3980 3847 8.344650268555e-07 3981 3847 16203472.22754 3982 3847 -31210863.52937 3983 3847 17343750.0057 3848 3848 1205835345.84 3849 3848 1142949.443904 3850 3848 26607407.78808 3851 3848 154975139.2593 3864 3848 12458039.16496 3865 3848 6308970.006146 3866 3848 -7405416.779322 3867 3848 -1257253.053552 3868 3848 -13715162.23407 3869 3848 113190145.6041 3870 3848 -13258106.66415 3871 3848 7406192.227917 3872 3848 -9211261.686427 3936 3848 21679861.11823 3937 3848 -17343750.00569 3938 3848 -38039431.35476 3939 3848 86719444.4302 3940 3848 1.415610313416e-06 3941 3848 -121047307.7997 3942 3848 21679861.11823 3943 3848 17343750.0057 3944 3848 -38039431.35476 3954 3848 7.182359695435e-06 3955 3848 -69374999.9886 3956 3848 -103546919.3888 3957 3848 3.02791595459e-05 3958 3848 4.619359970093e-06 3959 3848 -289746007.2349 3960 3848 8.165836334229e-06 3961 3848 69374999.9886 3962 3848 -103546919.3888 3975 3848 -21679861.11823 3976 3848 -17343750.0057 3977 3848 -38039431.35476 3978 3848 -86719444.43019 3979 3848 8.940696716309e-07 3980 3848 -121047307.7997 3981 3848 -21679861.11823 3982 3848 17343750.0057 3983 3848 -38039431.35476 3849 3849 1137565312.076 3850 3849 4.64916229248e-06 3851 3849 4571797.773345 3852 3849 153072235.6709 3853 3849 -3.814697265625e-06 3854 3849 1142949.443904 3867 3849 -88449163.50764 3868 3849 -63656944.434 3869 3849 12115157.22023 3870 3849 -223854518.1091 3871 3849 1.281499862671e-06 3872 3849 -3314544.719882 3873 3849 -89126355.34779 3874 3849 63656944.434 3875 3849 -13600988.60888 3939 3849 -36072082.53399 3940 3849 16203472.22755 3941 3849 21679861.11823 3942 3849 -113177912.5205 3943 3849 -1.952052116394e-06 3944 3849 86719444.4302 3945 3849 -36072082.53399 3946 3849 -16203472.22755 3947 3849 21679861.11823 3957 3849 -14659514.18418 3958 3849 7.62939453125e-06 3959 3849 7.152557373047e-06 3960 3849 65803613.40852 3961 3849 4.112720489502e-06 3962 3849 3.081560134888e-05 3963 3849 -14659514.18418 3964 3849 -1.010298728943e-05 3965 3849 8.165836334229e-06 3978 3849 -36072082.53397 3979 3849 -16203472.22754 3980 3849 -21679861.11823 3981 3849 -113177912.5204 3982 3849 6.407499313354e-07 3983 3849 -86719444.43019 3984 3849 -36072082.53397 3985 3849 16203472.22755 3986 3849 -21679861.11823 3850 3850 984782929.6775 3851 3850 -54860648.90923 3852 3850 -3.695487976074e-06 3853 3850 -88823909.23288 3854 3850 28253241.12114 3867 3850 -63656944.434 3868 3850 -69351365.69847 3869 3850 6034664.450365 3870 3850 2.622604370117e-06 3871 3850 56237222.37539 3872 3850 -13715162.23406 3873 3850 63656944.434 3874 3850 -70028557.53863 3875 3850 7680497.783698 3939 3850 16203472.22755 3940 3850 -31210863.52938 3941 3850 -17343750.00569 3942 3850 -4.097819328308e-06 3943 3850 -41882340.60423 3944 3850 1.296401023865e-06 3945 3850 -16203472.22755 3946 3850 -31210863.52938 3947 3850 17343750.0057 3957 3850 8.970499038696e-06 3958 3850 -76232648.10075 3959 3850 -69374999.9886 3960 3850 4.053115844727e-06 3961 3850 26913861.39084 3962 3850 4.738569259644e-06 3963 3850 -7.331371307373e-06 3964 3850 -76232648.10076 3965 3850 69374999.9886 3978 3850 -16203472.22754 3979 3850 -31210863.52937 3980 3850 -17343750.0057 3981 3850 -1.177191734314e-06 3982 3850 -41882340.60421 3983 3850 8.344650268555e-07 3984 3850 16203472.22754 3985 3850 -31210863.52937 3986 3850 17343750.0057 3851 3851 1205835345.84 3852 3851 1142949.443904 3853 3851 26607407.78808 3854 3851 154975139.2593 3867 3851 12458039.16496 3868 3851 6308970.006146 3869 3851 -7405416.779322 3870 3851 -1257253.053552 3871 3851 -13715162.23407 3872 3851 113190145.6041 3873 3851 -13258106.66415 3874 3851 7406192.227917 3875 3851 -9211261.686427 3939 3851 21679861.11823 3940 3851 -17343750.00569 3941 3851 -38039431.35476 3942 3851 86719444.4302 3943 3851 1.415610313416e-06 3944 3851 -121047307.7997 3945 3851 21679861.11823 3946 3851 17343750.0057 3947 3851 -38039431.35476 3957 3851 7.182359695435e-06 3958 3851 -69374999.9886 3959 3851 -103546919.3888 3960 3851 3.02791595459e-05 3961 3851 4.619359970093e-06 3962 3851 -289746007.2349 3963 3851 8.165836334229e-06 3964 3851 69374999.9886 3965 3851 -103546919.3888 3978 3851 -21679861.11823 3979 3851 -17343750.0057 3980 3851 -38039431.35476 3981 3851 -86719444.43019 3982 3851 8.940696716309e-07 3983 3851 -121047307.7997 3984 3851 -21679861.11823 3985 3851 17343750.0057 3986 3851 -38039431.35476 3852 3852 1269720907.856 3853 3852 68143803.88653 3854 3852 4472085.757898 3855 3852 56630151.75876 3856 3852 -61493522.07384 3857 3852 2066539.235759 3870 3852 -88449163.50764 3871 3852 -63656944.434 3872 3852 12115157.22023 3873 3852 -221842316.0237 3874 3852 -2192752.606858 3875 3852 -488260.9777767 3876 3852 -92167492.31837 3877 3852 63588271.09756 3878 3852 -2394222.752949 3942 3852 -36072082.53399 3943 3852 16203472.22755 3944 3852 21679861.11823 3945 3852 -139005882.4838 3946 3852 -17468607.99017 3947 3852 88411110.90689 3960 3852 -14659514.18418 3961 3852 7.62939453125e-06 3962 3852 7.152557373047e-06 3963 3852 104468568.107 3964 3852 17495749.11933 3965 3852 0.03796535730362 3966 3852 -35762896.95689 3967 3852 -15573449.9111 3968 3852 21679166.28526 3981 3852 -36072082.53397 3982 3852 -16203472.22754 3983 3852 -21679861.11823 3984 3852 -114724288.833 3985 3852 -635253.1045092 3986 3852 -87564583.31886 3987 3852 -37742508.83701 3988 3852 16181561.88645 3989 3852 -22525694.45184 3853 3853 1086127371.027 3854 3853 -27673448.94957 3855 3853 -61499978.14322 3856 3853 -166059630.2496 3857 3853 4422580.871377 3870 3853 -63656944.434 3871 3853 -69351365.69847 3872 3853 6034664.450365 3873 3853 -2192752.606858 3874 3853 60350350.0081 3875 3853 -7394473.435481 3876 3853 63588271.09756 3877 3853 -65568525.14848 3878 3853 1374962.965883 3942 3853 16203472.22755 3943 3853 -31210863.52938 3944 3853 -17343750.00569 3945 3853 -17468608.05499 3946 3853 -62280769.57 3947 3853 18697916.60118 3960 3853 8.970499038696e-06 3961 3853 -76232648.10075 3962 3853 -69374999.9886 3963 3853 17495749.11933 3964 3853 57330719.05929 3965 3853 0.0303530395031 3966 3853 -15573449.84629 3967 3853 -92437084.05277 3968 3853 69374999.59698 3981 3853 -16203472.22754 3982 3853 -31210863.52937 3983 3853 -17343750.0057 3984 3853 -635253.1045111 3985 3853 -42821513.04608 3986 3853 -677083.3331571 3987 3853 16181561.88645 3988 3853 -30707665.48679 3989 3853 16666666.67214 3854 3854 1294220130.987 3855 3854 2071591.406919 3856 3854 4430099.551854 3857 3854 113359280.4676 3870 3854 12458039.16496 3871 3854 6308970.006146 3872 3854 -7405416.779322 3873 3854 -3231316.532882 3874 3854 -7394473.435481 3875 3854 129130465.5522 3876 3854 -2394222.752611 3877 3854 1374962.965883 3878 3854 -3084530.879807 3942 3854 21679861.11823 3943 3854 -17343750.00569 3944 3854 -38039431.35476 3945 3854 88411110.90689 3946 3854 18697916.56855 3947 3854 -124962011.2801 3960 3854 7.182359695435e-06 3961 3854 -69374999.9886 3962 3854 -103546919.3888 3963 3854 -0.03791534900665 3964 3854 -0.03035178780556 3965 3854 -255055797.837 3966 3854 21679166.091 3967 3854 69374999.4742 3968 3854 -105412602.9399 3981 3854 -21679861.11823 3982 3854 -17343750.0057 3983 3854 -38039431.35476 3984 3854 -87564583.31903 3985 3854 -677083.3332905 3986 3854 -122108417.4801 3987 3854 -22525694.45184 3988 3854 16666666.67214 3989 3854 -38357223.71349 3855 3855 690428323.8106 3856 3855 -1526145.223039 3857 3855 294203.4919279 3873 3855 -85206561.85399 3874 3855 -63648145.55862 3875 3855 1907505.069545 3876 3855 -233498878.8511 3877 3855 -2953519.016915 3878 3855 -246183.6404445 3879 3855 75671100.45934 3880 3855 -11197009.81833 3881 3855 -101111.1356556 3882 3855 -91977007.54163 3883 3855 64417096.23118 3884 3855 -482029.2342617 3945 3855 -13882071.21844 3946 3855 19444166.47861 3947 3855 27030832.75893 3963 3855 -35762896.9569 3964 3855 -15573449.84628 3965 3855 -21679166.091 3966 3855 24359103.43621 3967 3855 -442912.9657402 3968 3855 17135277.77496 3984 3855 -35736813.43153 3985 3855 -16200678.02492 3986 3855 -21679166.67379 3987 3855 -113692433.8764 3988 3855 -855995.94238 3989 3855 -85676388.87482 3990 3855 -6375113.374563 3991 3855 -2795132.258683 3992 3855 3215972.223778 3993 3855 -36573838.1928 3994 3855 16424002.55938 3995 3855 -21159027.78473 3856 3856 709101692.0832 3857 3856 -4623228.324144 3873 3856 -63648145.55862 3874 3856 -67612861.43276 3875 3856 781772.525224 3876 3856 -2953519.016915 3877 3856 48917447.31709 3878 3856 -1417705.220885 3879 3856 14265767.95527 3880 3856 -45017324.84969 3881 3856 232055.2517371 3882 3856 64417096.23118 3883 3856 -70658219.55288 3884 3856 229699.3659164 3945 3856 12962777.65241 3946 3856 -12907974.64577 3947 3856 -13062499.95656 3963 3856 -15573449.9111 3964 3856 -92437084.05279 3965 3856 -69374999.4742 3966 3856 -442912.9657424 3967 3856 28707972.02069 3968 3856 7208333.185864 3984 3856 -16200678.02492 3985 3856 -31311329.22223 3986 3856 -17343750.0057 3987 3856 -855995.9423803 3988 3856 -41658168.45665 3989 3856 -677083.3331592 3990 3856 3686256.632335 3991 3856 -37070043.77932 3992 3856 33333333.32785 3993 3856 16424002.55938 3994 3856 -30987435.47836 3995 3856 16666666.67214 3857 3857 813645978.3204 3873 3857 1907505.069714 3874 3857 781772.5253592 3875 3857 -1613944.686177 3876 3857 -246183.6404451 3877 3857 -1417705.220885 3878 3857 102943642.7192 3879 3857 -101111.1356529 3880 3857 232055.2517369 3881 3857 81331741.41331 3882 3857 -482029.2340931 3883 3857 229699.3659164 3884 3857 -7498333.015678 3945 3857 18020555.17262 3946 3857 -20270833.25379 3947 3857 -37992953.15517 3963 3857 -21679166.28526 3964 3857 -69374999.59698 3965 3857 -105412602.9399 3966 3857 -17135277.77496 3967 3857 -7208333.185869 3968 3857 -197305370.7383 3984 3857 -21679166.67379 3985 3857 -17343750.0057 3986 3857 -37974851.43985 3987 3857 -85676388.87482 3988 3857 -677083.3332927 3989 3857 -117555867.1805 3990 3857 -4909027.779056 3991 3857 33333333.32785 3992 3857 -47673130.40164 3993 3857 -21159027.78473 3994 3857 16666666.67214 3995 3857 -36522727.11636 3858 3858 570930829.7064 3859 3858 -1.072883605957e-06 3860 3858 -2857330.279152 3861 3858 77084447.78357 3862 3858 12731388.8868 3863 3858 -2857344.722774 3948 3858 -113177912.5205 3949 3858 -1.952052116394e-06 3950 3858 86719444.4302 3951 3858 -36072082.53399 3952 3858 -16203472.22755 3953 3858 21679861.11823 3969 3858 32901806.70425 3970 3858 2.026557922363e-06 3971 3858 -17343888.88602 3972 3858 -7329757.09209 3973 3858 3240694.445505 3974 3858 -4335972.223642 3859 3859 494539638.5074 3860 3859 -27430324.4546 3861 3859 -12731388.8868 3862 3859 -43863624.66835 3863 3859 13989467.78282 3948 3859 -4.097819328308e-06 3949 3859 -41882340.60423 3950 3859 1.296401023865e-06 3951 3859 -16203472.22755 3952 3859 -31210863.52938 3953 3859 17343750.0057 3969 3859 1.430511474609e-06 3970 3859 13456930.69541 3971 3859 -4.410743713379e-06 3972 3859 -3240694.445512 3973 3859 -38116324.05037 3974 3859 34687499.9943 3860 3860 608646136.0366 3861 3860 2285884.443047 3862 3860 13440856.6718 3863 3860 78949782.82454 3948 3860 86719444.4302 3949 3860 1.415610313416e-06 3950 3860 -121047307.7997 3951 3860 21679861.11823 3952 3860 17343750.0057 3953 3860 -38039431.35476 3969 3860 17343888.88605 3970 3860 -4.410743713379e-06 3971 3860 -144873003.6175 3972 3860 4335972.22365 3973 3860 34687499.9943 3974 3860 -51773459.69442 3861 3861 570930829.7064 3862 3861 -1.072883605957e-06 3863 3861 -2857330.279152 3864 3861 77084447.78357 3865 3861 12731388.8868 3866 3861 -2857344.722774 3948 3861 -36072082.53399 3949 3861 16203472.22755 3950 3861 21679861.11823 3951 3861 -113177912.5205 3952 3861 -1.952052116394e-06 3953 3861 86719444.4302 3954 3861 -36072082.53399 3955 3861 -16203472.22755 3956 3861 21679861.11823 3969 3861 -7329757.092094 3970 3861 -3240694.445505 3971 3861 -4335972.223642 3972 3861 32901806.70425 3973 3861 2.026557922363e-06 3974 3861 -17343888.88602 3975 3861 -7329757.09209 3976 3861 3240694.445505 3977 3861 -4335972.223642 3862 3862 494539638.5074 3863 3862 -27430324.4546 3864 3862 -12731388.8868 3865 3862 -43863624.66835 3866 3862 13989467.78282 3948 3862 16203472.22755 3949 3862 -31210863.52938 3950 3862 -17343750.00569 3951 3862 -4.097819328308e-06 3952 3862 -41882340.60423 3953 3862 1.296401023865e-06 3954 3862 -16203472.22755 3955 3862 -31210863.52938 3956 3862 17343750.0057 3969 3862 3240694.445514 3970 3862 -38116324.05038 3971 3862 -34687499.9943 3972 3862 1.430511474609e-06 3973 3862 13456930.69541 3974 3862 -4.410743713379e-06 3975 3862 -3240694.445512 3976 3862 -38116324.05037 3977 3862 34687499.9943 3863 3863 608646136.0366 3864 3863 2285884.443047 3865 3863 13440856.6718 3866 3863 78949782.82454 3948 3863 21679861.11823 3949 3863 -17343750.00569 3950 3863 -38039431.35476 3951 3863 86719444.4302 3952 3863 1.415610313416e-06 3953 3863 -121047307.7997 3954 3863 21679861.11823 3955 3863 17343750.0057 3956 3863 -38039431.35476 3969 3863 4335972.22365 3970 3863 -34687499.9943 3971 3863 -51773459.69442 3972 3863 17343888.88605 3973 3863 -4.410743713379e-06 3974 3863 -144873003.6175 3975 3863 4335972.22365 3976 3863 34687499.9943 3977 3863 -51773459.69442 3864 3864 570930829.7064 3865 3864 -1.072883605957e-06 3866 3864 -2857330.279152 3867 3864 77084447.78357 3868 3864 12731388.8868 3869 3864 -2857344.722774 3951 3864 -36072082.53399 3952 3864 16203472.22755 3953 3864 21679861.11823 3954 3864 -113177912.5205 3955 3864 -1.952052116394e-06 3956 3864 86719444.4302 3957 3864 -36072082.53399 3958 3864 -16203472.22755 3959 3864 21679861.11823 3972 3864 -7329757.092094 3973 3864 -3240694.445505 3974 3864 -4335972.223642 3975 3864 32901806.70425 3976 3864 2.026557922363e-06 3977 3864 -17343888.88602 3978 3864 -7329757.09209 3979 3864 3240694.445505 3980 3864 -4335972.223642 3865 3865 494539638.5074 3866 3865 -27430324.4546 3867 3865 -12731388.8868 3868 3865 -43863624.66835 3869 3865 13989467.78282 3951 3865 16203472.22755 3952 3865 -31210863.52938 3953 3865 -17343750.00569 3954 3865 -4.097819328308e-06 3955 3865 -41882340.60423 3956 3865 1.296401023865e-06 3957 3865 -16203472.22755 3958 3865 -31210863.52938 3959 3865 17343750.0057 3972 3865 3240694.445514 3973 3865 -38116324.05038 3974 3865 -34687499.9943 3975 3865 1.430511474609e-06 3976 3865 13456930.69541 3977 3865 -4.410743713379e-06 3978 3865 -3240694.445512 3979 3865 -38116324.05037 3980 3865 34687499.9943 3866 3866 608646136.0366 3867 3866 2285884.443047 3868 3866 13440856.6718 3869 3866 78949782.82454 3951 3866 21679861.11823 3952 3866 -17343750.00569 3953 3866 -38039431.35476 3954 3866 86719444.4302 3955 3866 1.415610313416e-06 3956 3866 -121047307.7997 3957 3866 21679861.11823 3958 3866 17343750.0057 3959 3866 -38039431.35476 3972 3866 4335972.22365 3973 3866 -34687499.9943 3974 3866 -51773459.69442 3975 3866 17343888.88605 3976 3866 -4.410743713379e-06 3977 3866 -144873003.6175 3978 3866 4335972.22365 3979 3866 34687499.9943 3980 3866 -51773459.69442 3867 3867 570930829.7064 3868 3867 -1.072883605957e-06 3869 3867 -2857330.279152 3870 3867 77084447.78357 3871 3867 12731388.8868 3872 3867 -2857344.722774 3954 3867 -36072082.53399 3955 3867 16203472.22755 3956 3867 21679861.11823 3957 3867 -113177912.5205 3958 3867 -1.952052116394e-06 3959 3867 86719444.4302 3960 3867 -36072082.53399 3961 3867 -16203472.22755 3962 3867 21679861.11823 3975 3867 -7329757.092094 3976 3867 -3240694.445505 3977 3867 -4335972.223642 3978 3867 32901806.70425 3979 3867 2.026557922363e-06 3980 3867 -17343888.88602 3981 3867 -7329757.09209 3982 3867 3240694.445505 3983 3867 -4335972.223642 3868 3868 494539638.5074 3869 3868 -27430324.4546 3870 3868 -12731388.8868 3871 3868 -43863624.66835 3872 3868 13989467.78282 3954 3868 16203472.22755 3955 3868 -31210863.52938 3956 3868 -17343750.00569 3957 3868 -4.097819328308e-06 3958 3868 -41882340.60423 3959 3868 1.296401023865e-06 3960 3868 -16203472.22755 3961 3868 -31210863.52938 3962 3868 17343750.0057 3975 3868 3240694.445514 3976 3868 -38116324.05038 3977 3868 -34687499.9943 3978 3868 1.430511474609e-06 3979 3868 13456930.69541 3980 3868 -4.410743713379e-06 3981 3868 -3240694.445512 3982 3868 -38116324.05037 3983 3868 34687499.9943 3869 3869 608646136.0366 3870 3869 2285884.443047 3871 3869 13440856.6718 3872 3869 78949782.82454 3954 3869 21679861.11823 3955 3869 -17343750.00569 3956 3869 -38039431.35476 3957 3869 86719444.4302 3958 3869 1.415610313416e-06 3959 3869 -121047307.7997 3960 3869 21679861.11823 3961 3869 17343750.0057 3962 3869 -38039431.35476 3975 3869 4335972.22365 3976 3869 -34687499.9943 3977 3869 -51773459.69442 3978 3869 17343888.88605 3979 3869 -4.410743713379e-06 3980 3869 -144873003.6175 3981 3869 4335972.22365 3982 3869 34687499.9943 3983 3869 -51773459.69442 3870 3870 570930829.7064 3871 3870 -1.072883605957e-06 3872 3870 -2857330.279152 3873 3870 77084447.78357 3874 3870 12731388.8868 3875 3870 -2857344.722774 3957 3870 -36072082.53399 3958 3870 16203472.22755 3959 3870 21679861.11823 3960 3870 -113177912.5205 3961 3870 -1.952052116394e-06 3962 3870 86719444.4302 3963 3870 -36072082.53399 3964 3870 -16203472.22755 3965 3870 21679861.11823 3978 3870 -7329757.092094 3979 3870 -3240694.445505 3980 3870 -4335972.223642 3981 3870 32901806.70425 3982 3870 2.026557922363e-06 3983 3870 -17343888.88602 3984 3870 -7329757.09209 3985 3870 3240694.445505 3986 3870 -4335972.223642 3871 3871 494539638.5074 3872 3871 -27430324.4546 3873 3871 -12731388.8868 3874 3871 -43863624.66835 3875 3871 13989467.78282 3957 3871 16203472.22755 3958 3871 -31210863.52938 3959 3871 -17343750.00569 3960 3871 -4.097819328308e-06 3961 3871 -41882340.60423 3962 3871 1.296401023865e-06 3963 3871 -16203472.22755 3964 3871 -31210863.52938 3965 3871 17343750.0057 3978 3871 3240694.445514 3979 3871 -38116324.05038 3980 3871 -34687499.9943 3981 3871 1.430511474609e-06 3982 3871 13456930.69541 3983 3871 -4.410743713379e-06 3984 3871 -3240694.445512 3985 3871 -38116324.05037 3986 3871 34687499.9943 3872 3872 608646136.0366 3873 3872 2285884.443047 3874 3872 13440856.6718 3875 3872 78949782.82454 3957 3872 21679861.11823 3958 3872 -17343750.00569 3959 3872 -38039431.35476 3960 3872 86719444.4302 3961 3872 1.415610313416e-06 3962 3872 -121047307.7997 3963 3872 21679861.11823 3964 3872 17343750.0057 3965 3872 -38039431.35476 3978 3872 4335972.22365 3979 3872 -34687499.9943 3980 3872 -51773459.69442 3981 3872 17343888.88605 3982 3872 -4.410743713379e-06 3983 3872 -144873003.6175 3984 3872 4335972.22365 3985 3872 34687499.9943 3986 3872 -51773459.69442 3873 3873 584777336.9746 3874 3873 8233.997064114 3875 3873 9050879.702598 3876 3873 83891523.67113 3877 3873 14907108.62122 3878 3873 -183665.463271 3960 3873 -36072082.53399 3961 3873 16203472.22755 3962 3873 21679861.11823 3963 3873 -114724288.8331 3964 3873 -635253.1045028 3965 3873 87564583.31904 3966 3873 -35736813.43153 3967 3873 -16200678.02491 3968 3873 21679166.67379 3981 3873 -7329757.092094 3982 3873 -3240694.445505 3983 3873 -4335972.223642 3984 3873 33236111.75388 3985 3873 2649.269784987 3986 3873 -17343611.10825 3987 3873 -6450528.111146 3988 3873 3870504.077598 3989 3873 -5182361.112478 3874 3874 506890648.9322 3875 3874 -14990761.54941 3876 3874 -10555669.15238 3877 3874 -36157880.09678 3878 3874 2402246.893188 3960 3874 16203472.22755 3961 3874 -31210863.52938 3962 3874 -17343750.00569 3963 3874 -635253.1045053 3964 3874 -42821513.0461 3965 3874 677083.3332872 3966 3874 -16200678.02491 3967 3874 -31311329.22222 3968 3874 17343750.00569 3981 3874 3240694.445514 3982 3874 -38116324.05038 3983 3874 -34687499.9943 3984 3874 2649.269785047 3985 3874 13357668.57743 3986 3874 -8.702278137207e-06 3987 3874 -2610884.813419 3988 3874 -36974996.97727 3989 3874 34010416.66101 3875 3875 642732276.2337 3876 3875 844980.3698907 3877 3875 2402246.893187 3878 3875 92220882.30562 3960 3875 21679861.11823 3961 3875 -17343750.00569 3962 3875 -38039431.35476 3963 3875 87564583.31887 3964 3875 677083.3331538 3965 3875 -122108417.4801 3966 3875 21679166.67379 3967 3875 17343750.00569 3968 3875 -37974851.43984 3981 3875 4335972.22365 3982 3875 -34687499.9943 3983 3875 -51773459.69442 3984 3875 17343611.10827 3985 3875 -8.702278137207e-06 3986 3875 -144806554.3753 3987 3875 3489305.557202 3988 3875 34010416.66114 3989 3875 -50836907.65005 3876 3876 569990048.566 3877 3876 -1419907.296957 3878 3876 332759.6698096 3879 3876 -82916439.46504 3880 3876 -62896792.63683 3881 3876 375175.6267792 3882 3876 80126740.36145 3883 3876 14237617.00553 3884 3876 -284037.0516534 3963 3876 -37742508.83701 3964 3876 16181561.88645 3965 3876 22525694.45184 3966 3876 -113692433.8764 3967 3876 -855995.9423645 3968 3876 85676388.87482 3984 3876 -6450528.111161 3985 3876 -2610884.81342 3986 3876 -3489305.557202 3987 3876 37702548.37275 3988 3876 -408992.820539 3989 3876 -17135277.77496 3990 3876 -33940233.84008 3991 3876 -15982941.89571 3992 3876 20312500.00667 3993 3876 -5632342.894131 3994 3876 3677253.585592 3995 3876 -5078333.3345 3877 3877 486720818.0868 3878 3877 -3275946.215516 3879 3877 -62896792.63683 3880 3877 -67260506.52416 3881 3877 229699.3659162 3882 3877 -11225160.76807 3883 3877 -41225851.67031 3884 3877 686742.2114756 3963 3877 16181561.88645 3964 3877 -30707665.4868 3965 3877 -16666666.67214 3966 3877 -855995.9423657 3967 3877 -41658168.45665 3968 3877 677083.3332849 3984 3877 3870504.077599 3985 3877 -36974996.9773 3986 3877 -34010416.66115 3987 3877 -408992.820535 3988 3877 16106902.49244 3989 3877 -1.171231269836e-05 3990 3877 -15982941.89571 3991 3877 -29999833.84609 3992 3877 16666666.67214 3993 3877 -2804135.305426 3994 3877 -36521736.91163 3995 3877 33333333.32785 3878 3878 594757336.3219 3879 3878 375175.6267794 3880 3878 229699.3659162 3881 3878 -4100619.986957 3882 3878 58844.89273202 3883 3878 686742.2114754 3884 3878 85064628.09103 3963 3878 22525694.45184 3964 3878 -16666666.67214 3965 3878 -38357223.7135 3966 3878 85676388.87482 3967 3878 677083.3331515 3968 3878 -117555867.1805 3984 3878 5182361.112479 3985 3878 -34010416.66102 3986 3878 -50836907.65008 3987 3878 17135277.77496 3988 3878 -1.192092895508e-05 3989 3878 -135669723.6375 3990 3878 20312500.00667 3991 3878 16666666.67214 3992 3878 -35535125.48409 3993 3878 3385277.779223 3994 3878 33333333.32785 3995 3878 -48059816.83043 3879 3879 275798770.109 3880 3879 62122565.36553 3881 3879 -184623.8179488 3882 3879 -113209643.2581 3883 3879 -13491540.68398 3884 3879 -89440.67317849 3966 3879 -6375113.374575 3967 3879 3686256.632336 3968 3879 4909027.779057 3987 3879 -33940233.84009 3988 3879 -15982941.89571 3989 3879 -20312500.00667 3990 3879 18902645.55566 3991 3879 15757910.04072 3992 3879 8124999.998668 3993 3879 -54847530.63036 3994 3879 -3461224.777349 3995 3879 -41471527.77105 3880 3880 241323393.3602 3881 3880 -232055.2517254 3882 3880 11971237.08962 3883 3880 26298225.85892 3884 3880 -229699.3659078 3966 3880 -2795132.258684 3967 3880 -37070043.77934 3968 3880 -33333333.32786 3987 3880 -15982941.89571 3988 3880 -29999833.8461 3989 3880 -16666666.67214 3990 3880 15757910.04072 3991 3880 10101612.40577 3992 3880 6666666.66557 3993 3880 3020164.11367 3994 3880 -19291967.06971 3995 3880 3333333.334426 3881 3881 286987305.8901 3882 3881 -89440.67317563 3883 3881 -229699.3659079 3884 3881 50031673.60422 3966 3881 -3215972.223779 3967 3881 -33333333.32786 3968 3881 -47673130.40167 3987 3881 -20312500.00667 3988 3881 -16666666.67214 3989 3881 -35535125.48411 3990 3881 -8124999.998663 3991 3881 -6666666.665573 3992 3881 -63738650.14914 3993 3881 -41471527.77088 3994 3881 -3333333.33443 3995 3881 -56413713.40338 3882 3882 282532125.9073 3883 3882 -65163172.55273 3884 3882 -173138.874578 3966 3882 -36573838.19281 3967 3882 16424002.55938 3968 3882 21159027.78473 3987 3882 -5632342.894148 3988 3882 -2804135.305426 3989 3882 -3385277.779223 3990 3882 -54847530.63036 3991 3882 3020164.113678 3992 3882 41471527.77088 3993 3882 19748607.35903 3994 3882 -16640031.36763 3995 3882 -8463611.109722 3883 3883 243058060.8333 3884 3883 -686742.2114532 3966 3883 16424002.55938 3967 3883 -30987435.47837 3968 3883 -16666666.67214 3987 3883 3677253.585593 3988 3883 -36521736.91167 3989 3883 -33333333.32786 3990 3883 -3461224.777342 3991 3883 -19291967.06971 3992 3883 3333333.334426 3993 3883 -16640031.36763 3994 3883 9496035.10145 3995 3883 6666666.665565 3884 3884 292327939.2378 3966 3884 21159027.78473 3967 3884 -16666666.67214 3968 3884 -36522727.11638 3987 3884 5078333.334501 3988 3884 -33333333.32786 3989 3884 -48059816.83045 3990 3884 41471527.77105 3991 3884 -3333333.33443 3992 3884 -56413713.40338 3993 3884 8463611.10972 3994 3884 -6666666.665577 3995 3884 -65150687.6052 3885 3885 721441645.4454 3886 3885 64813888.87825 3887 3885 -8.821487426758e-06 3888 3885 -346380299.6592 3889 3885 -64813888.35974 3890 3885 -2.676248550415e-05 3891 3885 27846630.32399 3892 3885 51851110.58409 3996 3885 41127258.27048 3997 3885 16203472.22755 3998 3885 17343888.84954 3999 3885 -135326679.0276 4000 3885 -16203472.09792 4001 3885 -86719444.24762 4002 3885 -13923315.162 4003 3885 12962777.65241 4004 3885 -17343888.52033 3886 3886 624217266.0229 3887 3886 -7.51187935966e-06 3888 3886 -64813888.10048 3889 3886 -41753137.74642 3890 3886 -7.390975952148e-06 3891 3886 77776665.87613 3892 3886 27846630.32398 3893 3886 6.794929504395e-06 3996 3886 16203472.22755 3997 3886 16821163.40287 3998 3886 13874999.85144 3999 3886 -16203472.0331 4000 3886 -59169888.51194 4001 3886 -17343749.90781 4002 3886 19444166.47861 4003 3886 -13923315.162 4004 3886 20812499.90895 3887 3887 760788621.1472 3888 3887 -2.646446228027e-05 3889 3887 -5.185604095459e-06 3890 3887 31972185.12589 3892 3887 4.708766937256e-06 3893 3887 74257680.86397 3996 3887 -17343888.84951 3997 3887 -13874999.85143 3998 3887 -181091253.0988 3999 3887 -86719444.24762 4000 3887 -17343749.94043 4001 3887 -121957897.9018 4002 3887 -26015832.7805 4003 3887 13874999.9393 4004 3887 -37128840.43199 3888 3888 1242901705.056 3889 3888 64813887.58197 3890 3888 -3.838539123535e-05 3891 3888 47693290.89467 3892 3888 -64813888.35975 3893 3888 -7.510185241699e-06 3894 3888 -229938603.1375 3895 3888 -1.400709152222e-06 3896 3888 -1.621246337891e-05 3897 3888 -88595068.35711 3898 3888 64813888.87826 3899 3888 -3.75509262085e-06 3996 3888 -135326679.0277 3997 3888 -16203472.0331 3998 3888 86719444.24762 3999 3888 101875695.1567 4000 3888 16203471.90348 4001 3888 0.03654569387436 4002 3888 -36808280.87074 4003 3888 -16203472.09792 4004 3888 21679860.74398 4005 3888 -113177912.5204 4006 3888 6.407499313354e-07 4007 3888 -86719444.43019 4008 3888 -36072082.53397 4009 3888 16203472.22755 4010 3888 -21679861.11823 3889 3889 1067897821.637 3891 3889 -64813888.10049 3892 3889 -179154367.6044 3893 3889 -1.16229057312e-05 3894 3889 7.748603820801e-07 3895 3889 55243684.38681 3896 3889 -1.788139343262e-06 3897 3889 64813888.87826 3898 3889 -69150192.34827 3899 3889 -4.619359970093e-07 3996 3889 -16203472.09792 3997 3889 -59169888.51195 3998 3889 17343749.94043 3999 3889 16203471.90348 4000 3889 58124724.28025 4001 3889 0.029221534729 4002 3889 -16203472.03311 4003 3889 -93520195.52346 4004 3889 69374999.6084 4005 3889 -1.177191734314e-06 4006 3889 -41882340.60421 4007 3889 8.344650268555e-07 4008 3889 16203472.22754 4009 3889 -31210863.52937 4010 3889 17343750.0057 3890 3890 1220904161.253 3891 3890 -7.390975952148e-06 3892 3890 -9.536743164063e-06 3893 3890 101973736.7139 3894 3890 -1.54972076416e-05 3895 3890 -1.907348632813e-06 3896 3890 109872226.963 3897 3890 -3.635883331299e-06 3898 3890 -6.109476089478e-07 3899 3890 -3642360.79014 3996 3890 86719444.24762 3997 3890 17343749.9078 3998 3890 -121957897.9018 3999 3890 -0.03648543357849 4000 3890 -0.02920261025429 4001 3890 -251706576.231 4002 3890 21679860.55685 4003 3890 69374999.49133 4004 3890 -104457508.7431 4005 3890 -86719444.43019 4006 3890 8.940696716309e-07 4007 3890 -121047307.7997 4008 3890 -21679861.11823 4009 3890 17343750.0057 4010 3890 -38039431.35476 3891 3891 721441645.4454 3892 3891 64813888.87825 3893 3891 -8.821487426758e-06 3894 3891 -88595068.35711 3895 3891 -64813888.87825 3896 3891 -4.26173210144e-06 3897 3891 -346380299.6592 3898 3891 -64813888.35974 3899 3891 -2.676248550415e-05 3900 3891 27846630.32399 3901 3891 51851110.58409 3996 3891 -13923315.16199 3997 3891 19444166.47861 3998 3891 26015832.7805 3999 3891 -36808280.87074 4000 3891 -16203472.0331 4001 3891 -21679860.55685 4002 3891 41127258.27048 4003 3891 16203472.22755 4004 3891 17343888.84954 4005 3891 -36072082.53397 4006 3891 -16203472.22754 4007 3891 -21679861.11823 4008 3891 -135326679.0276 4009 3891 -16203472.09792 4010 3891 -86719444.24762 4011 3891 -13923315.162 4012 3891 12962777.65241 4013 3891 -17343888.52033 3892 3892 624217266.0229 3893 3892 -7.273460780558e-06 3894 3892 -64813888.87825 3895 3892 -69150192.34827 3896 3892 -6.705522537231e-07 3897 3892 -64813888.10048 3898 3892 -41753137.74642 3899 3892 -7.390975952148e-06 3900 3892 77776665.87613 3901 3892 27846630.32398 3902 3892 6.794929504395e-06 3996 3892 12962777.65241 3997 3892 -13923315.162 3998 3892 -13874999.9393 3999 3892 -16203472.09791 4000 3892 -93520195.52345 4001 3892 -69374999.49133 4002 3892 16203472.22755 4003 3892 16821163.40287 4004 3892 13874999.85144 4005 3892 -16203472.22754 4006 3892 -31210863.52937 4007 3892 -17343750.0057 4008 3892 -16203472.0331 4009 3892 -59169888.51194 4010 3892 -17343749.90781 4011 3892 19444166.47861 4012 3892 -13923315.162 4013 3892 20812499.90895 3893 3893 760788621.1472 3894 3893 -4.231929779053e-06 3895 3893 -5.811452865601e-07 3896 3893 -3642360.790142 3897 3893 -2.646446228027e-05 3898 3893 -5.185604095459e-06 3899 3893 31972185.12589 3901 3893 4.708766937256e-06 3902 3893 74257680.86397 3996 3893 17343888.52033 3997 3893 -20812499.90894 3998 3893 -37128840.43198 3999 3893 -21679860.74397 4000 3893 -69374999.6084 4001 3893 -104457508.7431 4002 3893 -17343888.84951 4003 3893 -13874999.85143 4004 3893 -181091253.0988 4005 3893 -21679861.11823 4006 3893 -17343750.0057 4007 3893 -38039431.35476 4008 3893 -86719444.24762 4009 3893 -17343749.94043 4010 3893 -121957897.9018 4011 3893 -26015832.7805 4012 3893 13874999.9393 4013 3893 -37128840.43199 3894 3894 1154306639.95 3895 3894 4.053115844727e-06 3896 3894 -5.984306335449e-05 3897 3894 164134990.0133 3898 3894 -4.798173904419e-06 3899 3894 -1.537799835205e-05 3903 3894 -229938603.1375 3904 3894 -1.400709152222e-06 3905 3894 -1.621246337891e-05 3906 3894 -88595068.35711 3907 3894 64813888.87826 3908 3894 -3.75509262085e-06 3999 3894 -113177912.5205 4000 3894 -1.952052116394e-06 4001 3894 86719444.4302 4002 3894 -36072082.53399 4003 3894 -16203472.22755 4004 3894 21679861.11823 4005 3894 65803613.40852 4006 3894 4.112720489502e-06 4007 3894 3.081560134888e-05 4008 3894 -14659514.18418 4009 3894 -1.010298728943e-05 4010 3894 8.165836334229e-06 4014 3894 -113177912.5204 4015 3894 6.407499313354e-07 4016 3894 -86719444.43019 4017 3894 -36072082.53397 4018 3894 16203472.22755 4019 3894 -21679861.11823 3895 3895 998747631.9559 3896 3895 -6.675720214844e-06 3897 3895 -3.397464752197e-06 3898 3895 -82157545.53163 3899 3895 -2.264976501465e-06 3903 3895 7.748603820801e-07 3904 3895 55243684.38681 3905 3895 -1.788139343262e-06 3906 3895 64813888.87826 3907 3895 -69150192.34827 3908 3895 -4.619359970093e-07 3999 3895 -4.097819328308e-06 4000 3895 -41882340.60423 4001 3895 1.296401023865e-06 4002 3895 -16203472.22755 4003 3895 -31210863.52938 4004 3895 17343750.0057 4005 3895 4.053115844727e-06 4006 3895 26913861.39084 4007 3895 4.738569259644e-06 4008 3895 -7.331371307373e-06 4009 3895 -76232648.10076 4010 3895 69374999.9886 4014 3895 -1.177191734314e-06 4015 3895 -41882340.60421 4016 3895 8.344650268555e-07 4017 3895 16203472.22754 4018 3895 -31210863.52937 4019 3895 17343750.0057 3896 3896 1217261802.153 3897 3896 -1.52587890625e-05 3898 3896 -2.562999725342e-06 3899 3896 179873780.5718 3903 3896 -1.54972076416e-05 3904 3896 -1.907348632813e-06 3905 3896 109872226.963 3906 3896 -3.635883331299e-06 3907 3896 -6.109476089478e-07 3908 3896 -3642360.79014 3999 3896 86719444.4302 4000 3896 1.415610313416e-06 4001 3896 -121047307.7997 4002 3896 21679861.11823 4003 3896 17343750.0057 4004 3896 -38039431.35476 4005 3896 3.02791595459e-05 4006 3896 4.619359970093e-06 4007 3896 -289746007.2349 4008 3896 8.165836334229e-06 4009 3896 69374999.9886 4010 3896 -103546919.3888 4014 3896 -86719444.43019 4015 3896 8.940696716309e-07 4016 3896 -121047307.7997 4017 3896 -21679861.11823 4018 3896 17343750.0057 4019 3896 -38039431.35476 3897 3897 1242901705.056 3898 3897 64813887.58197 3899 3897 -3.838539123535e-05 3900 3897 47693290.89467 3901 3897 -64813888.35975 3902 3897 -7.510185241699e-06 3903 3897 -88595068.35711 3904 3897 -64813888.87825 3905 3897 -4.26173210144e-06 3906 3897 -229938603.1375 3907 3897 -1.400709152222e-06 3908 3897 -1.621246337891e-05 3909 3897 -88595068.35711 3910 3897 64813888.87826 3911 3897 -3.75509262085e-06 3999 3897 -36072082.53399 4000 3897 16203472.22755 4001 3897 21679861.11823 4002 3897 -135326679.0277 4003 3897 -16203472.0331 4004 3897 86719444.24762 4005 3897 -14659514.18418 4006 3897 7.62939453125e-06 4007 3897 7.152557373047e-06 4008 3897 101875695.1567 4009 3897 16203471.90348 4010 3897 0.03654569387436 4011 3897 -36808280.87074 4012 3897 -16203472.09792 4013 3897 21679860.74398 4014 3897 -36072082.53397 4015 3897 -16203472.22754 4016 3897 -21679861.11823 4017 3897 -113177912.5204 4018 3897 6.407499313354e-07 4019 3897 -86719444.43019 4020 3897 -36072082.53397 4021 3897 16203472.22755 4022 3897 -21679861.11823 3898 3898 1067897821.637 3900 3898 -64813888.10049 3901 3898 -179154367.6044 3902 3898 -1.16229057312e-05 3903 3898 -64813888.87825 3904 3898 -69150192.34827 3905 3898 -6.705522537231e-07 3906 3898 7.748603820801e-07 3907 3898 55243684.38681 3908 3898 -1.788139343262e-06 3909 3898 64813888.87826 3910 3898 -69150192.34827 3911 3898 -4.619359970093e-07 3999 3898 16203472.22755 4000 3898 -31210863.52938 4001 3898 -17343750.00569 4002 3898 -16203472.09792 4003 3898 -59169888.51195 4004 3898 17343749.94043 4005 3898 8.970499038696e-06 4006 3898 -76232648.10075 4007 3898 -69374999.9886 4008 3898 16203471.90348 4009 3898 58124724.28025 4010 3898 0.029221534729 4011 3898 -16203472.03311 4012 3898 -93520195.52346 4013 3898 69374999.6084 4014 3898 -16203472.22754 4015 3898 -31210863.52937 4016 3898 -17343750.0057 4017 3898 -1.177191734314e-06 4018 3898 -41882340.60421 4019 3898 8.344650268555e-07 4020 3898 16203472.22754 4021 3898 -31210863.52937 4022 3898 17343750.0057 3899 3899 1220904161.253 3900 3899 -7.390975952148e-06 3901 3899 -9.536743164063e-06 3902 3899 101973736.7139 3903 3899 -4.231929779053e-06 3904 3899 -5.811452865601e-07 3905 3899 -3642360.790142 3906 3899 -1.54972076416e-05 3907 3899 -1.907348632813e-06 3908 3899 109872226.963 3909 3899 -3.635883331299e-06 3910 3899 -6.109476089478e-07 3911 3899 -3642360.79014 3999 3899 21679861.11823 4000 3899 -17343750.00569 4001 3899 -38039431.35476 4002 3899 86719444.24762 4003 3899 17343749.9078 4004 3899 -121957897.9018 4005 3899 7.182359695435e-06 4006 3899 -69374999.9886 4007 3899 -103546919.3888 4008 3899 -0.03648543357849 4009 3899 -0.02920261025429 4010 3899 -251706576.231 4011 3899 21679860.55685 4012 3899 69374999.49133 4013 3899 -104457508.7431 4014 3899 -21679861.11823 4015 3899 -17343750.0057 4016 3899 -38039431.35476 4017 3899 -86719444.43019 4018 3899 8.940696716309e-07 4019 3899 -121047307.7997 4020 3899 -21679861.11823 4021 3899 17343750.0057 4022 3899 -38039431.35476 3900 3900 721441645.4454 3901 3900 64813888.87825 3902 3900 -8.821487426758e-06 3906 3900 -88595068.35711 3907 3900 -64813888.87825 3908 3900 -4.26173210144e-06 3909 3900 -346380299.6592 3910 3900 -64813888.35974 3911 3900 -2.676248550415e-05 3912 3900 27846630.32399 3913 3900 51851110.58409 4002 3900 -13923315.16199 4003 3900 19444166.47861 4004 3900 26015832.7805 4008 3900 -36808280.87074 4009 3900 -16203472.0331 4010 3900 -21679860.55685 4011 3900 41127258.27048 4012 3900 16203472.22755 4013 3900 17343888.84954 4017 3900 -36072082.53397 4018 3900 -16203472.22754 4019 3900 -21679861.11823 4020 3900 -135326679.0276 4021 3900 -16203472.09792 4022 3900 -86719444.24762 4023 3900 -13923315.162 4024 3900 12962777.65241 4025 3900 -17343888.52033 3901 3901 624217266.0229 3902 3901 -7.273460780558e-06 3906 3901 -64813888.87825 3907 3901 -69150192.34827 3908 3901 -6.705522537231e-07 3909 3901 -64813888.10048 3910 3901 -41753137.74642 3911 3901 -7.390975952148e-06 3912 3901 77776665.87613 3913 3901 27846630.32398 3914 3901 6.794929504395e-06 4002 3901 12962777.65241 4003 3901 -13923315.162 4004 3901 -13874999.9393 4008 3901 -16203472.09791 4009 3901 -93520195.52345 4010 3901 -69374999.49133 4011 3901 16203472.22755 4012 3901 16821163.40287 4013 3901 13874999.85144 4017 3901 -16203472.22754 4018 3901 -31210863.52937 4019 3901 -17343750.0057 4020 3901 -16203472.0331 4021 3901 -59169888.51194 4022 3901 -17343749.90781 4023 3901 19444166.47861 4024 3901 -13923315.162 4025 3901 20812499.90895 3902 3902 760788621.1472 3906 3902 -4.231929779053e-06 3907 3902 -5.811452865601e-07 3908 3902 -3642360.790142 3909 3902 -2.646446228027e-05 3910 3902 -5.185604095459e-06 3911 3902 31972185.12589 3913 3902 4.708766937256e-06 3914 3902 74257680.86397 4002 3902 17343888.52033 4003 3902 -20812499.90894 4004 3902 -37128840.43198 4008 3902 -21679860.74397 4009 3902 -69374999.6084 4010 3902 -104457508.7431 4011 3902 -17343888.84951 4012 3902 -13874999.85143 4013 3902 -181091253.0988 4017 3902 -21679861.11823 4018 3902 -17343750.0057 4019 3902 -38039431.35476 4020 3902 -86719444.24762 4021 3902 -17343749.94043 4022 3902 -121957897.9018 4023 3902 -26015832.7805 4024 3902 13874999.9393 4025 3902 -37128840.43199 3903 3903 1154306639.95 3904 3903 4.053115844727e-06 3905 3903 -5.984306335449e-05 3906 3903 164134990.0133 3907 3903 -4.798173904419e-06 3908 3903 -1.537799835205e-05 3915 3903 -229938603.1375 3916 3903 -1.400709152222e-06 3917 3903 -1.621246337891e-05 3918 3903 -88595068.35711 3919 3903 64813888.87826 3920 3903 -3.75509262085e-06 4005 3903 -113177912.5205 4006 3903 -1.952052116394e-06 4007 3903 86719444.4302 4008 3903 -36072082.53399 4009 3903 -16203472.22755 4010 3903 21679861.11823 4014 3903 65803613.40852 4015 3903 4.112720489502e-06 4016 3903 3.081560134888e-05 4017 3903 -14659514.18418 4018 3903 -1.010298728943e-05 4019 3903 8.165836334229e-06 4026 3903 -113177912.5204 4027 3903 6.407499313354e-07 4028 3903 -86719444.43019 4029 3903 -36072082.53397 4030 3903 16203472.22755 4031 3903 -21679861.11823 3904 3904 998747631.9559 3905 3904 -6.675720214844e-06 3906 3904 -3.397464752197e-06 3907 3904 -82157545.53163 3908 3904 -2.264976501465e-06 3915 3904 7.748603820801e-07 3916 3904 55243684.38681 3917 3904 -1.788139343262e-06 3918 3904 64813888.87826 3919 3904 -69150192.34827 3920 3904 -4.619359970093e-07 4005 3904 -4.097819328308e-06 4006 3904 -41882340.60423 4007 3904 1.296401023865e-06 4008 3904 -16203472.22755 4009 3904 -31210863.52938 4010 3904 17343750.0057 4014 3904 4.053115844727e-06 4015 3904 26913861.39084 4016 3904 4.738569259644e-06 4017 3904 -7.331371307373e-06 4018 3904 -76232648.10076 4019 3904 69374999.9886 4026 3904 -1.177191734314e-06 4027 3904 -41882340.60421 4028 3904 8.344650268555e-07 4029 3904 16203472.22754 4030 3904 -31210863.52937 4031 3904 17343750.0057 3905 3905 1217261802.153 3906 3905 -1.52587890625e-05 3907 3905 -2.562999725342e-06 3908 3905 179873780.5718 3915 3905 -1.54972076416e-05 3916 3905 -1.907348632813e-06 3917 3905 109872226.963 3918 3905 -3.635883331299e-06 3919 3905 -6.109476089478e-07 3920 3905 -3642360.79014 4005 3905 86719444.4302 4006 3905 1.415610313416e-06 4007 3905 -121047307.7997 4008 3905 21679861.11823 4009 3905 17343750.0057 4010 3905 -38039431.35476 4014 3905 3.02791595459e-05 4015 3905 4.619359970093e-06 4016 3905 -289746007.2349 4017 3905 8.165836334229e-06 4018 3905 69374999.9886 4019 3905 -103546919.3888 4026 3905 -86719444.43019 4027 3905 8.940696716309e-07 4028 3905 -121047307.7997 4029 3905 -21679861.11823 4030 3905 17343750.0057 4031 3905 -38039431.35476 3906 3906 1154306639.95 3907 3906 4.053115844727e-06 3908 3906 -5.984306335449e-05 3909 3906 164134990.0133 3910 3906 -4.798173904419e-06 3911 3906 -1.537799835205e-05 3915 3906 -88595068.35711 3916 3906 -64813888.87825 3917 3906 -4.26173210144e-06 3918 3906 -229938603.1375 3919 3906 -1.400709152222e-06 3920 3906 -1.621246337891e-05 3921 3906 -88595068.35711 3922 3906 64813888.87826 3923 3906 -3.75509262085e-06 4005 3906 -36072082.53399 4006 3906 16203472.22755 4007 3906 21679861.11823 4008 3906 -113177912.5205 4009 3906 -1.952052116394e-06 4010 3906 86719444.4302 4011 3906 -36072082.53399 4012 3906 -16203472.22755 4013 3906 21679861.11823 4014 3906 -14659514.18418 4015 3906 7.62939453125e-06 4016 3906 7.152557373047e-06 4017 3906 65803613.40852 4018 3906 4.112720489502e-06 4019 3906 3.081560134888e-05 4020 3906 -14659514.18418 4021 3906 -1.010298728943e-05 4022 3906 8.165836334229e-06 4026 3906 -36072082.53397 4027 3906 -16203472.22754 4028 3906 -21679861.11823 4029 3906 -113177912.5204 4030 3906 6.407499313354e-07 4031 3906 -86719444.43019 4032 3906 -36072082.53397 4033 3906 16203472.22755 4034 3906 -21679861.11823 3907 3907 998747631.9559 3908 3907 -6.675720214844e-06 3909 3907 -3.397464752197e-06 3910 3907 -82157545.53163 3911 3907 -2.264976501465e-06 3915 3907 -64813888.87825 3916 3907 -69150192.34827 3917 3907 -6.705522537231e-07 3918 3907 7.748603820801e-07 3919 3907 55243684.38681 3920 3907 -1.788139343262e-06 3921 3907 64813888.87826 3922 3907 -69150192.34827 3923 3907 -4.619359970093e-07 4005 3907 16203472.22755 4006 3907 -31210863.52938 4007 3907 -17343750.00569 4008 3907 -4.097819328308e-06 4009 3907 -41882340.60423 4010 3907 1.296401023865e-06 4011 3907 -16203472.22755 4012 3907 -31210863.52938 4013 3907 17343750.0057 4014 3907 8.970499038696e-06 4015 3907 -76232648.10075 4016 3907 -69374999.9886 4017 3907 4.053115844727e-06 4018 3907 26913861.39084 4019 3907 4.738569259644e-06 4020 3907 -7.331371307373e-06 4021 3907 -76232648.10076 4022 3907 69374999.9886 4026 3907 -16203472.22754 4027 3907 -31210863.52937 4028 3907 -17343750.0057 4029 3907 -1.177191734314e-06 4030 3907 -41882340.60421 4031 3907 8.344650268555e-07 4032 3907 16203472.22754 4033 3907 -31210863.52937 4034 3907 17343750.0057 3908 3908 1217261802.153 3909 3908 -1.52587890625e-05 3910 3908 -2.562999725342e-06 3911 3908 179873780.5718 3915 3908 -4.231929779053e-06 3916 3908 -5.811452865601e-07 3917 3908 -3642360.790142 3918 3908 -1.54972076416e-05 3919 3908 -1.907348632813e-06 3920 3908 109872226.963 3921 3908 -3.635883331299e-06 3922 3908 -6.109476089478e-07 3923 3908 -3642360.79014 4005 3908 21679861.11823 4006 3908 -17343750.00569 4007 3908 -38039431.35476 4008 3908 86719444.4302 4009 3908 1.415610313416e-06 4010 3908 -121047307.7997 4011 3908 21679861.11823 4012 3908 17343750.0057 4013 3908 -38039431.35476 4014 3908 7.182359695435e-06 4015 3908 -69374999.9886 4016 3908 -103546919.3888 4017 3908 3.02791595459e-05 4018 3908 4.619359970093e-06 4019 3908 -289746007.2349 4020 3908 8.165836334229e-06 4021 3908 69374999.9886 4022 3908 -103546919.3888 4026 3908 -21679861.11823 4027 3908 -17343750.0057 4028 3908 -38039431.35476 4029 3908 -86719444.43019 4030 3908 8.940696716309e-07 4031 3908 -121047307.7997 4032 3908 -21679861.11823 4033 3908 17343750.0057 4034 3908 -38039431.35476 3909 3909 1242901705.056 3910 3909 64813887.58197 3911 3909 -3.838539123535e-05 3912 3909 47693290.89467 3913 3909 -64813888.35975 3914 3909 -7.510185241699e-06 3918 3909 -88595068.35711 3919 3909 -64813888.87825 3920 3909 -4.26173210144e-06 3921 3909 -229938603.1375 3922 3909 -1.400709152222e-06 3923 3909 -1.621246337891e-05 3924 3909 -88595068.35711 3925 3909 64813888.87826 3926 3909 -3.75509262085e-06 4008 3909 -36072082.53399 4009 3909 16203472.22755 4010 3909 21679861.11823 4011 3909 -135326679.0277 4012 3909 -16203472.0331 4013 3909 86719444.24762 4017 3909 -14659514.18418 4018 3909 7.62939453125e-06 4019 3909 7.152557373047e-06 4020 3909 101875695.1567 4021 3909 16203471.90348 4022 3909 0.03654569387436 4023 3909 -36808280.87074 4024 3909 -16203472.09792 4025 3909 21679860.74398 4029 3909 -36072082.53397 4030 3909 -16203472.22754 4031 3909 -21679861.11823 4032 3909 -113177912.5204 4033 3909 6.407499313354e-07 4034 3909 -86719444.43019 4035 3909 -36072082.53397 4036 3909 16203472.22755 4037 3909 -21679861.11823 3910 3910 1067897821.637 3912 3910 -64813888.10049 3913 3910 -179154367.6044 3914 3910 -1.16229057312e-05 3918 3910 -64813888.87825 3919 3910 -69150192.34827 3920 3910 -6.705522537231e-07 3921 3910 7.748603820801e-07 3922 3910 55243684.38681 3923 3910 -1.788139343262e-06 3924 3910 64813888.87826 3925 3910 -69150192.34827 3926 3910 -4.619359970093e-07 4008 3910 16203472.22755 4009 3910 -31210863.52938 4010 3910 -17343750.00569 4011 3910 -16203472.09792 4012 3910 -59169888.51195 4013 3910 17343749.94043 4017 3910 8.970499038696e-06 4018 3910 -76232648.10075 4019 3910 -69374999.9886 4020 3910 16203471.90348 4021 3910 58124724.28025 4022 3910 0.029221534729 4023 3910 -16203472.03311 4024 3910 -93520195.52346 4025 3910 69374999.6084 4029 3910 -16203472.22754 4030 3910 -31210863.52937 4031 3910 -17343750.0057 4032 3910 -1.177191734314e-06 4033 3910 -41882340.60421 4034 3910 8.344650268555e-07 4035 3910 16203472.22754 4036 3910 -31210863.52937 4037 3910 17343750.0057 3911 3911 1220904161.253 3912 3911 -7.390975952148e-06 3913 3911 -9.536743164063e-06 3914 3911 101973736.7139 3918 3911 -4.231929779053e-06 3919 3911 -5.811452865601e-07 3920 3911 -3642360.790142 3921 3911 -1.54972076416e-05 3922 3911 -1.907348632813e-06 3923 3911 109872226.963 3924 3911 -3.635883331299e-06 3925 3911 -6.109476089478e-07 3926 3911 -3642360.79014 4008 3911 21679861.11823 4009 3911 -17343750.00569 4010 3911 -38039431.35476 4011 3911 86719444.24762 4012 3911 17343749.9078 4013 3911 -121957897.9018 4017 3911 7.182359695435e-06 4018 3911 -69374999.9886 4019 3911 -103546919.3888 4020 3911 -0.03648543357849 4021 3911 -0.02920261025429 4022 3911 -251706576.231 4023 3911 21679860.55685 4024 3911 69374999.49133 4025 3911 -104457508.7431 4029 3911 -21679861.11823 4030 3911 -17343750.0057 4031 3911 -38039431.35476 4032 3911 -86719444.43019 4033 3911 8.940696716309e-07 4034 3911 -121047307.7997 4035 3911 -21679861.11823 4036 3911 17343750.0057 4037 3911 -38039431.35476 3912 3912 721441645.4454 3913 3912 64813888.87825 3914 3912 -8.821487426758e-06 3921 3912 -88595068.35711 3922 3912 -64813888.87825 3923 3912 -4.26173210144e-06 3924 3912 -346380299.6592 3925 3912 -64813888.35974 3926 3912 -2.676248550415e-05 3927 3912 27846630.32399 3928 3912 51851110.58409 4011 3912 -13923315.16199 4012 3912 19444166.47861 4013 3912 26015832.7805 4020 3912 -36808280.87074 4021 3912 -16203472.0331 4022 3912 -21679860.55685 4023 3912 41127258.27048 4024 3912 16203472.22755 4025 3912 17343888.84954 4032 3912 -36072082.53397 4033 3912 -16203472.22754 4034 3912 -21679861.11823 4035 3912 -135326679.0276 4036 3912 -16203472.09792 4037 3912 -86719444.24762 4038 3912 -13923315.162 4039 3912 12962777.65241 4040 3912 -17343888.52033 3913 3913 624217266.0229 3914 3913 -7.273460780558e-06 3921 3913 -64813888.87825 3922 3913 -69150192.34827 3923 3913 -6.705522537231e-07 3924 3913 -64813888.10048 3925 3913 -41753137.74642 3926 3913 -7.390975952148e-06 3927 3913 77776665.87613 3928 3913 27846630.32398 3929 3913 6.794929504395e-06 4011 3913 12962777.65241 4012 3913 -13923315.162 4013 3913 -13874999.9393 4020 3913 -16203472.09791 4021 3913 -93520195.52345 4022 3913 -69374999.49133 4023 3913 16203472.22755 4024 3913 16821163.40287 4025 3913 13874999.85144 4032 3913 -16203472.22754 4033 3913 -31210863.52937 4034 3913 -17343750.0057 4035 3913 -16203472.0331 4036 3913 -59169888.51194 4037 3913 -17343749.90781 4038 3913 19444166.47861 4039 3913 -13923315.162 4040 3913 20812499.90895 3914 3914 760788621.1472 3921 3914 -4.231929779053e-06 3922 3914 -5.811452865601e-07 3923 3914 -3642360.790142 3924 3914 -2.646446228027e-05 3925 3914 -5.185604095459e-06 3926 3914 31972185.12589 3928 3914 4.708766937256e-06 3929 3914 74257680.86397 4011 3914 17343888.52033 4012 3914 -20812499.90894 4013 3914 -37128840.43198 4020 3914 -21679860.74397 4021 3914 -69374999.6084 4022 3914 -104457508.7431 4023 3914 -17343888.84951 4024 3914 -13874999.85143 4025 3914 -181091253.0988 4032 3914 -21679861.11823 4033 3914 -17343750.0057 4034 3914 -38039431.35476 4035 3914 -86719444.24762 4036 3914 -17343749.94043 4037 3914 -121957897.9018 4038 3914 -26015832.7805 4039 3914 13874999.9393 4040 3914 -37128840.43199 3915 3915 1154306639.95 3916 3915 4.053115844727e-06 3917 3915 -5.984306335449e-05 3918 3915 164134990.0133 3919 3915 -4.798173904419e-06 3920 3915 -1.537799835205e-05 3930 3915 -229938603.1375 3931 3915 -1.400709152222e-06 3932 3915 -1.621246337891e-05 3933 3915 -88595068.35711 3934 3915 64813888.87826 3935 3915 -3.75509262085e-06 4014 3915 -113177912.5205 4015 3915 -1.952052116394e-06 4016 3915 86719444.4302 4017 3915 -36072082.53399 4018 3915 -16203472.22755 4019 3915 21679861.11823 4026 3915 65803613.40852 4027 3915 4.112720489502e-06 4028 3915 3.081560134888e-05 4029 3915 -14659514.18418 4030 3915 -1.010298728943e-05 4031 3915 8.165836334229e-06 4041 3915 -113177912.5204 4042 3915 6.407499313354e-07 4043 3915 -86719444.43019 4044 3915 -36072082.53397 4045 3915 16203472.22755 4046 3915 -21679861.11823 3916 3916 998747631.9559 3917 3916 -6.675720214844e-06 3918 3916 -3.397464752197e-06 3919 3916 -82157545.53163 3920 3916 -2.264976501465e-06 3930 3916 7.748603820801e-07 3931 3916 55243684.38681 3932 3916 -1.788139343262e-06 3933 3916 64813888.87826 3934 3916 -69150192.34827 3935 3916 -4.619359970093e-07 4014 3916 -4.097819328308e-06 4015 3916 -41882340.60423 4016 3916 1.296401023865e-06 4017 3916 -16203472.22755 4018 3916 -31210863.52938 4019 3916 17343750.0057 4026 3916 4.053115844727e-06 4027 3916 26913861.39084 4028 3916 4.738569259644e-06 4029 3916 -7.331371307373e-06 4030 3916 -76232648.10076 4031 3916 69374999.9886 4041 3916 -1.177191734314e-06 4042 3916 -41882340.60421 4043 3916 8.344650268555e-07 4044 3916 16203472.22754 4045 3916 -31210863.52937 4046 3916 17343750.0057 3917 3917 1217261802.153 3918 3917 -1.52587890625e-05 3919 3917 -2.562999725342e-06 3920 3917 179873780.5718 3930 3917 -1.54972076416e-05 3931 3917 -1.907348632813e-06 3932 3917 109872226.963 3933 3917 -3.635883331299e-06 3934 3917 -6.109476089478e-07 3935 3917 -3642360.79014 4014 3917 86719444.4302 4015 3917 1.415610313416e-06 4016 3917 -121047307.7997 4017 3917 21679861.11823 4018 3917 17343750.0057 4019 3917 -38039431.35476 4026 3917 3.02791595459e-05 4027 3917 4.619359970093e-06 4028 3917 -289746007.2349 4029 3917 8.165836334229e-06 4030 3917 69374999.9886 4031 3917 -103546919.3888 4041 3917 -86719444.43019 4042 3917 8.940696716309e-07 4043 3917 -121047307.7997 4044 3917 -21679861.11823 4045 3917 17343750.0057 4046 3917 -38039431.35476 3918 3918 1154306639.95 3919 3918 4.053115844727e-06 3920 3918 -5.984306335449e-05 3921 3918 164134990.0133 3922 3918 -4.798173904419e-06 3923 3918 -1.537799835205e-05 3930 3918 -88595068.35711 3931 3918 -64813888.87825 3932 3918 -4.26173210144e-06 3933 3918 -229938603.1375 3934 3918 -1.400709152222e-06 3935 3918 -1.621246337891e-05 3936 3918 -88595068.35711 3937 3918 64813888.87826 3938 3918 -3.75509262085e-06 4014 3918 -36072082.53399 4015 3918 16203472.22755 4016 3918 21679861.11823 4017 3918 -113177912.5205 4018 3918 -1.952052116394e-06 4019 3918 86719444.4302 4020 3918 -36072082.53399 4021 3918 -16203472.22755 4022 3918 21679861.11823 4026 3918 -14659514.18418 4027 3918 7.62939453125e-06 4028 3918 7.152557373047e-06 4029 3918 65803613.40852 4030 3918 4.112720489502e-06 4031 3918 3.081560134888e-05 4032 3918 -14659514.18418 4033 3918 -1.010298728943e-05 4034 3918 8.165836334229e-06 4041 3918 -36072082.53397 4042 3918 -16203472.22754 4043 3918 -21679861.11823 4044 3918 -113177912.5204 4045 3918 6.407499313354e-07 4046 3918 -86719444.43019 4047 3918 -36072082.53397 4048 3918 16203472.22755 4049 3918 -21679861.11823 3919 3919 998747631.9559 3920 3919 -6.675720214844e-06 3921 3919 -3.397464752197e-06 3922 3919 -82157545.53163 3923 3919 -2.264976501465e-06 3930 3919 -64813888.87825 3931 3919 -69150192.34827 3932 3919 -6.705522537231e-07 3933 3919 7.748603820801e-07 3934 3919 55243684.38681 3935 3919 -1.788139343262e-06 3936 3919 64813888.87826 3937 3919 -69150192.34827 3938 3919 -4.619359970093e-07 4014 3919 16203472.22755 4015 3919 -31210863.52938 4016 3919 -17343750.00569 4017 3919 -4.097819328308e-06 4018 3919 -41882340.60423 4019 3919 1.296401023865e-06 4020 3919 -16203472.22755 4021 3919 -31210863.52938 4022 3919 17343750.0057 4026 3919 8.970499038696e-06 4027 3919 -76232648.10075 4028 3919 -69374999.9886 4029 3919 4.053115844727e-06 4030 3919 26913861.39084 4031 3919 4.738569259644e-06 4032 3919 -7.331371307373e-06 4033 3919 -76232648.10076 4034 3919 69374999.9886 4041 3919 -16203472.22754 4042 3919 -31210863.52937 4043 3919 -17343750.0057 4044 3919 -1.177191734314e-06 4045 3919 -41882340.60421 4046 3919 8.344650268555e-07 4047 3919 16203472.22754 4048 3919 -31210863.52937 4049 3919 17343750.0057 3920 3920 1217261802.153 3921 3920 -1.52587890625e-05 3922 3920 -2.562999725342e-06 3923 3920 179873780.5718 3930 3920 -4.231929779053e-06 3931 3920 -5.811452865601e-07 3932 3920 -3642360.790142 3933 3920 -1.54972076416e-05 3934 3920 -1.907348632813e-06 3935 3920 109872226.963 3936 3920 -3.635883331299e-06 3937 3920 -6.109476089478e-07 3938 3920 -3642360.79014 4014 3920 21679861.11823 4015 3920 -17343750.00569 4016 3920 -38039431.35476 4017 3920 86719444.4302 4018 3920 1.415610313416e-06 4019 3920 -121047307.7997 4020 3920 21679861.11823 4021 3920 17343750.0057 4022 3920 -38039431.35476 4026 3920 7.182359695435e-06 4027 3920 -69374999.9886 4028 3920 -103546919.3888 4029 3920 3.02791595459e-05 4030 3920 4.619359970093e-06 4031 3920 -289746007.2349 4032 3920 8.165836334229e-06 4033 3920 69374999.9886 4034 3920 -103546919.3888 4041 3920 -21679861.11823 4042 3920 -17343750.0057 4043 3920 -38039431.35476 4044 3920 -86719444.43019 4045 3920 8.940696716309e-07 4046 3920 -121047307.7997 4047 3920 -21679861.11823 4048 3920 17343750.0057 4049 3920 -38039431.35476 3921 3921 1154306639.95 3922 3921 4.053115844727e-06 3923 3921 -5.984306335449e-05 3924 3921 164134990.0133 3925 3921 -4.798173904419e-06 3926 3921 -1.537799835205e-05 3933 3921 -88595068.35711 3934 3921 -64813888.87825 3935 3921 -4.26173210144e-06 3936 3921 -229938603.1375 3937 3921 -1.400709152222e-06 3938 3921 -1.621246337891e-05 3939 3921 -88595068.35711 3940 3921 64813888.87826 3941 3921 -3.75509262085e-06 4017 3921 -36072082.53399 4018 3921 16203472.22755 4019 3921 21679861.11823 4020 3921 -113177912.5205 4021 3921 -1.952052116394e-06 4022 3921 86719444.4302 4023 3921 -36072082.53399 4024 3921 -16203472.22755 4025 3921 21679861.11823 4029 3921 -14659514.18418 4030 3921 7.62939453125e-06 4031 3921 7.152557373047e-06 4032 3921 65803613.40852 4033 3921 4.112720489502e-06 4034 3921 3.081560134888e-05 4035 3921 -14659514.18418 4036 3921 -1.010298728943e-05 4037 3921 8.165836334229e-06 4044 3921 -36072082.53397 4045 3921 -16203472.22754 4046 3921 -21679861.11823 4047 3921 -113177912.5204 4048 3921 6.407499313354e-07 4049 3921 -86719444.43019 4050 3921 -36072082.53397 4051 3921 16203472.22755 4052 3921 -21679861.11823 3922 3922 998747631.9559 3923 3922 -6.675720214844e-06 3924 3922 -3.397464752197e-06 3925 3922 -82157545.53163 3926 3922 -2.264976501465e-06 3933 3922 -64813888.87825 3934 3922 -69150192.34827 3935 3922 -6.705522537231e-07 3936 3922 7.748603820801e-07 3937 3922 55243684.38681 3938 3922 -1.788139343262e-06 3939 3922 64813888.87826 3940 3922 -69150192.34827 3941 3922 -4.619359970093e-07 4017 3922 16203472.22755 4018 3922 -31210863.52938 4019 3922 -17343750.00569 4020 3922 -4.097819328308e-06 4021 3922 -41882340.60423 4022 3922 1.296401023865e-06 4023 3922 -16203472.22755 4024 3922 -31210863.52938 4025 3922 17343750.0057 4029 3922 8.970499038696e-06 4030 3922 -76232648.10075 4031 3922 -69374999.9886 4032 3922 4.053115844727e-06 4033 3922 26913861.39084 4034 3922 4.738569259644e-06 4035 3922 -7.331371307373e-06 4036 3922 -76232648.10076 4037 3922 69374999.9886 4044 3922 -16203472.22754 4045 3922 -31210863.52937 4046 3922 -17343750.0057 4047 3922 -1.177191734314e-06 4048 3922 -41882340.60421 4049 3922 8.344650268555e-07 4050 3922 16203472.22754 4051 3922 -31210863.52937 4052 3922 17343750.0057 3923 3923 1217261802.153 3924 3923 -1.52587890625e-05 3925 3923 -2.562999725342e-06 3926 3923 179873780.5718 3933 3923 -4.231929779053e-06 3934 3923 -5.811452865601e-07 3935 3923 -3642360.790142 3936 3923 -1.54972076416e-05 3937 3923 -1.907348632813e-06 3938 3923 109872226.963 3939 3923 -3.635883331299e-06 3940 3923 -6.109476089478e-07 3941 3923 -3642360.79014 4017 3923 21679861.11823 4018 3923 -17343750.00569 4019 3923 -38039431.35476 4020 3923 86719444.4302 4021 3923 1.415610313416e-06 4022 3923 -121047307.7997 4023 3923 21679861.11823 4024 3923 17343750.0057 4025 3923 -38039431.35476 4029 3923 7.182359695435e-06 4030 3923 -69374999.9886 4031 3923 -103546919.3888 4032 3923 3.02791595459e-05 4033 3923 4.619359970093e-06 4034 3923 -289746007.2349 4035 3923 8.165836334229e-06 4036 3923 69374999.9886 4037 3923 -103546919.3888 4044 3923 -21679861.11823 4045 3923 -17343750.0057 4046 3923 -38039431.35476 4047 3923 -86719444.43019 4048 3923 8.940696716309e-07 4049 3923 -121047307.7997 4050 3923 -21679861.11823 4051 3923 17343750.0057 4052 3923 -38039431.35476 3924 3924 1242901705.056 3925 3924 64813887.58197 3926 3924 -3.838539123535e-05 3927 3924 47693290.89467 3928 3924 -64813888.35975 3929 3924 -7.510185241699e-06 3936 3924 -88595068.35711 3937 3924 -64813888.87825 3938 3924 -4.26173210144e-06 3939 3924 -229938603.1375 3940 3924 -1.400709152222e-06 3941 3924 -1.621246337891e-05 3942 3924 -88595068.35711 3943 3924 64813888.87826 3944 3924 -3.75509262085e-06 4020 3924 -36072082.53399 4021 3924 16203472.22755 4022 3924 21679861.11823 4023 3924 -135326679.0277 4024 3924 -16203472.0331 4025 3924 86719444.24762 4032 3924 -14659514.18418 4033 3924 7.62939453125e-06 4034 3924 7.152557373047e-06 4035 3924 101875695.1567 4036 3924 16203471.90348 4037 3924 0.03654569387436 4038 3924 -36808280.87074 4039 3924 -16203472.09792 4040 3924 21679860.74398 4047 3924 -36072082.53397 4048 3924 -16203472.22754 4049 3924 -21679861.11823 4050 3924 -113177912.5204 4051 3924 6.407499313354e-07 4052 3924 -86719444.43019 4053 3924 -36072082.53397 4054 3924 16203472.22755 4055 3924 -21679861.11823 3925 3925 1067897821.637 3927 3925 -64813888.10049 3928 3925 -179154367.6044 3929 3925 -1.16229057312e-05 3936 3925 -64813888.87825 3937 3925 -69150192.34827 3938 3925 -6.705522537231e-07 3939 3925 7.748603820801e-07 3940 3925 55243684.38681 3941 3925 -1.788139343262e-06 3942 3925 64813888.87826 3943 3925 -69150192.34827 3944 3925 -4.619359970093e-07 4020 3925 16203472.22755 4021 3925 -31210863.52938 4022 3925 -17343750.00569 4023 3925 -16203472.09792 4024 3925 -59169888.51195 4025 3925 17343749.94043 4032 3925 8.970499038696e-06 4033 3925 -76232648.10075 4034 3925 -69374999.9886 4035 3925 16203471.90348 4036 3925 58124724.28025 4037 3925 0.029221534729 4038 3925 -16203472.03311 4039 3925 -93520195.52346 4040 3925 69374999.6084 4047 3925 -16203472.22754 4048 3925 -31210863.52937 4049 3925 -17343750.0057 4050 3925 -1.177191734314e-06 4051 3925 -41882340.60421 4052 3925 8.344650268555e-07 4053 3925 16203472.22754 4054 3925 -31210863.52937 4055 3925 17343750.0057 3926 3926 1220904161.253 3927 3926 -7.390975952148e-06 3928 3926 -9.536743164063e-06 3929 3926 101973736.7139 3936 3926 -4.231929779053e-06 3937 3926 -5.811452865601e-07 3938 3926 -3642360.790142 3939 3926 -1.54972076416e-05 3940 3926 -1.907348632813e-06 3941 3926 109872226.963 3942 3926 -3.635883331299e-06 3943 3926 -6.109476089478e-07 3944 3926 -3642360.79014 4020 3926 21679861.11823 4021 3926 -17343750.00569 4022 3926 -38039431.35476 4023 3926 86719444.24762 4024 3926 17343749.9078 4025 3926 -121957897.9018 4032 3926 7.182359695435e-06 4033 3926 -69374999.9886 4034 3926 -103546919.3888 4035 3926 -0.03648543357849 4036 3926 -0.02920261025429 4037 3926 -251706576.231 4038 3926 21679860.55685 4039 3926 69374999.49133 4040 3926 -104457508.7431 4047 3926 -21679861.11823 4048 3926 -17343750.0057 4049 3926 -38039431.35476 4050 3926 -86719444.43019 4051 3926 8.940696716309e-07 4052 3926 -121047307.7997 4053 3926 -21679861.11823 4054 3926 17343750.0057 4055 3926 -38039431.35476 3927 3927 721441645.4454 3928 3927 64813888.87825 3929 3927 -8.821487426758e-06 3939 3927 -88595068.35711 3940 3927 -64813888.87825 3941 3927 -4.26173210144e-06 3942 3927 -346380299.6592 3943 3927 -64813888.35974 3944 3927 -2.676248550415e-05 3945 3927 27846630.32399 3946 3927 51851110.58409 4023 3927 -13923315.16199 4024 3927 19444166.47861 4025 3927 26015832.7805 4035 3927 -36808280.87074 4036 3927 -16203472.0331 4037 3927 -21679860.55685 4038 3927 41127258.27048 4039 3927 16203472.22755 4040 3927 17343888.84954 4050 3927 -36072082.53397 4051 3927 -16203472.22754 4052 3927 -21679861.11823 4053 3927 -135326679.0276 4054 3927 -16203472.09792 4055 3927 -86719444.24762 4056 3927 -13923315.162 4057 3927 12962777.65241 4058 3927 -17343888.52033 3928 3928 624217266.0229 3929 3928 -7.273460780558e-06 3939 3928 -64813888.87825 3940 3928 -69150192.34827 3941 3928 -6.705522537231e-07 3942 3928 -64813888.10048 3943 3928 -41753137.74642 3944 3928 -7.390975952148e-06 3945 3928 77776665.87613 3946 3928 27846630.32398 3947 3928 6.794929504395e-06 4023 3928 12962777.65241 4024 3928 -13923315.162 4025 3928 -13874999.9393 4035 3928 -16203472.09791 4036 3928 -93520195.52345 4037 3928 -69374999.49133 4038 3928 16203472.22755 4039 3928 16821163.40287 4040 3928 13874999.85144 4050 3928 -16203472.22754 4051 3928 -31210863.52937 4052 3928 -17343750.0057 4053 3928 -16203472.0331 4054 3928 -59169888.51194 4055 3928 -17343749.90781 4056 3928 19444166.47861 4057 3928 -13923315.162 4058 3928 20812499.90895 3929 3929 760788621.1472 3939 3929 -4.231929779053e-06 3940 3929 -5.811452865601e-07 3941 3929 -3642360.790142 3942 3929 -2.646446228027e-05 3943 3929 -5.185604095459e-06 3944 3929 31972185.12589 3946 3929 4.708766937256e-06 3947 3929 74257680.86397 4023 3929 17343888.52033 4024 3929 -20812499.90894 4025 3929 -37128840.43198 4035 3929 -21679860.74397 4036 3929 -69374999.6084 4037 3929 -104457508.7431 4038 3929 -17343888.84951 4039 3929 -13874999.85143 4040 3929 -181091253.0988 4050 3929 -21679861.11823 4051 3929 -17343750.0057 4052 3929 -38039431.35476 4053 3929 -86719444.24762 4054 3929 -17343749.94043 4055 3929 -121957897.9018 4056 3929 -26015832.7805 4057 3929 13874999.9393 4058 3929 -37128840.43199 3930 3930 1154306639.95 3931 3930 4.053115844727e-06 3932 3930 -5.984306335449e-05 3933 3930 164134990.0133 3934 3930 -4.798173904419e-06 3935 3930 -1.537799835205e-05 3948 3930 -229938603.1375 3949 3930 -1.400709152222e-06 3950 3930 -1.621246337891e-05 3951 3930 -88595068.35711 3952 3930 64813888.87826 3953 3930 -3.75509262085e-06 4026 3930 -113177912.5205 4027 3930 -1.952052116394e-06 4028 3930 86719444.4302 4029 3930 -36072082.53399 4030 3930 -16203472.22755 4031 3930 21679861.11823 4041 3930 65803613.40852 4042 3930 4.112720489502e-06 4043 3930 3.081560134888e-05 4044 3930 -14659514.18418 4045 3930 -1.010298728943e-05 4046 3930 8.165836334229e-06 4059 3930 -113177912.5204 4060 3930 6.407499313354e-07 4061 3930 -86719444.43019 4062 3930 -36072082.53397 4063 3930 16203472.22755 4064 3930 -21679861.11823 3931 3931 998747631.9559 3932 3931 -6.675720214844e-06 3933 3931 -3.397464752197e-06 3934 3931 -82157545.53163 3935 3931 -2.264976501465e-06 3948 3931 7.748603820801e-07 3949 3931 55243684.38681 3950 3931 -1.788139343262e-06 3951 3931 64813888.87826 3952 3931 -69150192.34827 3953 3931 -4.619359970093e-07 4026 3931 -4.097819328308e-06 4027 3931 -41882340.60423 4028 3931 1.296401023865e-06 4029 3931 -16203472.22755 4030 3931 -31210863.52938 4031 3931 17343750.0057 4041 3931 4.053115844727e-06 4042 3931 26913861.39084 4043 3931 4.738569259644e-06 4044 3931 -7.331371307373e-06 4045 3931 -76232648.10076 4046 3931 69374999.9886 4059 3931 -1.177191734314e-06 4060 3931 -41882340.60421 4061 3931 8.344650268555e-07 4062 3931 16203472.22754 4063 3931 -31210863.52937 4064 3931 17343750.0057 3932 3932 1217261802.153 3933 3932 -1.52587890625e-05 3934 3932 -2.562999725342e-06 3935 3932 179873780.5718 3948 3932 -1.54972076416e-05 3949 3932 -1.907348632813e-06 3950 3932 109872226.963 3951 3932 -3.635883331299e-06 3952 3932 -6.109476089478e-07 3953 3932 -3642360.79014 4026 3932 86719444.4302 4027 3932 1.415610313416e-06 4028 3932 -121047307.7997 4029 3932 21679861.11823 4030 3932 17343750.0057 4031 3932 -38039431.35476 4041 3932 3.02791595459e-05 4042 3932 4.619359970093e-06 4043 3932 -289746007.2349 4044 3932 8.165836334229e-06 4045 3932 69374999.9886 4046 3932 -103546919.3888 4059 3932 -86719444.43019 4060 3932 8.940696716309e-07 4061 3932 -121047307.7997 4062 3932 -21679861.11823 4063 3932 17343750.0057 4064 3932 -38039431.35476 3933 3933 1154306639.95 3934 3933 4.053115844727e-06 3935 3933 -5.984306335449e-05 3936 3933 164134990.0133 3937 3933 -4.798173904419e-06 3938 3933 -1.537799835205e-05 3948 3933 -88595068.35711 3949 3933 -64813888.87825 3950 3933 -4.26173210144e-06 3951 3933 -229938603.1375 3952 3933 -1.400709152222e-06 3953 3933 -1.621246337891e-05 3954 3933 -88595068.35711 3955 3933 64813888.87826 3956 3933 -3.75509262085e-06 4026 3933 -36072082.53399 4027 3933 16203472.22755 4028 3933 21679861.11823 4029 3933 -113177912.5205 4030 3933 -1.952052116394e-06 4031 3933 86719444.4302 4032 3933 -36072082.53399 4033 3933 -16203472.22755 4034 3933 21679861.11823 4041 3933 -14659514.18418 4042 3933 7.62939453125e-06 4043 3933 7.152557373047e-06 4044 3933 65803613.40852 4045 3933 4.112720489502e-06 4046 3933 3.081560134888e-05 4047 3933 -14659514.18418 4048 3933 -1.010298728943e-05 4049 3933 8.165836334229e-06 4059 3933 -36072082.53397 4060 3933 -16203472.22754 4061 3933 -21679861.11823 4062 3933 -113177912.5204 4063 3933 6.407499313354e-07 4064 3933 -86719444.43019 4065 3933 -36072082.53397 4066 3933 16203472.22755 4067 3933 -21679861.11823 3934 3934 998747631.9559 3935 3934 -6.675720214844e-06 3936 3934 -3.397464752197e-06 3937 3934 -82157545.53163 3938 3934 -2.264976501465e-06 3948 3934 -64813888.87825 3949 3934 -69150192.34827 3950 3934 -6.705522537231e-07 3951 3934 7.748603820801e-07 3952 3934 55243684.38681 3953 3934 -1.788139343262e-06 3954 3934 64813888.87826 3955 3934 -69150192.34827 3956 3934 -4.619359970093e-07 4026 3934 16203472.22755 4027 3934 -31210863.52938 4028 3934 -17343750.00569 4029 3934 -4.097819328308e-06 4030 3934 -41882340.60423 4031 3934 1.296401023865e-06 4032 3934 -16203472.22755 4033 3934 -31210863.52938 4034 3934 17343750.0057 4041 3934 8.970499038696e-06 4042 3934 -76232648.10075 4043 3934 -69374999.9886 4044 3934 4.053115844727e-06 4045 3934 26913861.39084 4046 3934 4.738569259644e-06 4047 3934 -7.331371307373e-06 4048 3934 -76232648.10076 4049 3934 69374999.9886 4059 3934 -16203472.22754 4060 3934 -31210863.52937 4061 3934 -17343750.0057 4062 3934 -1.177191734314e-06 4063 3934 -41882340.60421 4064 3934 8.344650268555e-07 4065 3934 16203472.22754 4066 3934 -31210863.52937 4067 3934 17343750.0057 3935 3935 1217261802.153 3936 3935 -1.52587890625e-05 3937 3935 -2.562999725342e-06 3938 3935 179873780.5718 3948 3935 -4.231929779053e-06 3949 3935 -5.811452865601e-07 3950 3935 -3642360.790142 3951 3935 -1.54972076416e-05 3952 3935 -1.907348632813e-06 3953 3935 109872226.963 3954 3935 -3.635883331299e-06 3955 3935 -6.109476089478e-07 3956 3935 -3642360.79014 4026 3935 21679861.11823 4027 3935 -17343750.00569 4028 3935 -38039431.35476 4029 3935 86719444.4302 4030 3935 1.415610313416e-06 4031 3935 -121047307.7997 4032 3935 21679861.11823 4033 3935 17343750.0057 4034 3935 -38039431.35476 4041 3935 7.182359695435e-06 4042 3935 -69374999.9886 4043 3935 -103546919.3888 4044 3935 3.02791595459e-05 4045 3935 4.619359970093e-06 4046 3935 -289746007.2349 4047 3935 8.165836334229e-06 4048 3935 69374999.9886 4049 3935 -103546919.3888 4059 3935 -21679861.11823 4060 3935 -17343750.0057 4061 3935 -38039431.35476 4062 3935 -86719444.43019 4063 3935 8.940696716309e-07 4064 3935 -121047307.7997 4065 3935 -21679861.11823 4066 3935 17343750.0057 4067 3935 -38039431.35476 3936 3936 1154306639.95 3937 3936 4.053115844727e-06 3938 3936 -5.984306335449e-05 3939 3936 164134990.0133 3940 3936 -4.798173904419e-06 3941 3936 -1.537799835205e-05 3951 3936 -88595068.35711 3952 3936 -64813888.87825 3953 3936 -4.26173210144e-06 3954 3936 -229938603.1375 3955 3936 -1.400709152222e-06 3956 3936 -1.621246337891e-05 3957 3936 -88595068.35711 3958 3936 64813888.87826 3959 3936 -3.75509262085e-06 4029 3936 -36072082.53399 4030 3936 16203472.22755 4031 3936 21679861.11823 4032 3936 -113177912.5205 4033 3936 -1.952052116394e-06 4034 3936 86719444.4302 4035 3936 -36072082.53399 4036 3936 -16203472.22755 4037 3936 21679861.11823 4044 3936 -14659514.18418 4045 3936 7.62939453125e-06 4046 3936 7.152557373047e-06 4047 3936 65803613.40852 4048 3936 4.112720489502e-06 4049 3936 3.081560134888e-05 4050 3936 -14659514.18418 4051 3936 -1.010298728943e-05 4052 3936 8.165836334229e-06 4062 3936 -36072082.53397 4063 3936 -16203472.22754 4064 3936 -21679861.11823 4065 3936 -113177912.5204 4066 3936 6.407499313354e-07 4067 3936 -86719444.43019 4068 3936 -36072082.53397 4069 3936 16203472.22755 4070 3936 -21679861.11823 3937 3937 998747631.9559 3938 3937 -6.675720214844e-06 3939 3937 -3.397464752197e-06 3940 3937 -82157545.53163 3941 3937 -2.264976501465e-06 3951 3937 -64813888.87825 3952 3937 -69150192.34827 3953 3937 -6.705522537231e-07 3954 3937 7.748603820801e-07 3955 3937 55243684.38681 3956 3937 -1.788139343262e-06 3957 3937 64813888.87826 3958 3937 -69150192.34827 3959 3937 -4.619359970093e-07 4029 3937 16203472.22755 4030 3937 -31210863.52938 4031 3937 -17343750.00569 4032 3937 -4.097819328308e-06 4033 3937 -41882340.60423 4034 3937 1.296401023865e-06 4035 3937 -16203472.22755 4036 3937 -31210863.52938 4037 3937 17343750.0057 4044 3937 8.970499038696e-06 4045 3937 -76232648.10075 4046 3937 -69374999.9886 4047 3937 4.053115844727e-06 4048 3937 26913861.39084 4049 3937 4.738569259644e-06 4050 3937 -7.331371307373e-06 4051 3937 -76232648.10076 4052 3937 69374999.9886 4062 3937 -16203472.22754 4063 3937 -31210863.52937 4064 3937 -17343750.0057 4065 3937 -1.177191734314e-06 4066 3937 -41882340.60421 4067 3937 8.344650268555e-07 4068 3937 16203472.22754 4069 3937 -31210863.52937 4070 3937 17343750.0057 3938 3938 1217261802.153 3939 3938 -1.52587890625e-05 3940 3938 -2.562999725342e-06 3941 3938 179873780.5718 3951 3938 -4.231929779053e-06 3952 3938 -5.811452865601e-07 3953 3938 -3642360.790142 3954 3938 -1.54972076416e-05 3955 3938 -1.907348632813e-06 3956 3938 109872226.963 3957 3938 -3.635883331299e-06 3958 3938 -6.109476089478e-07 3959 3938 -3642360.79014 4029 3938 21679861.11823 4030 3938 -17343750.00569 4031 3938 -38039431.35476 4032 3938 86719444.4302 4033 3938 1.415610313416e-06 4034 3938 -121047307.7997 4035 3938 21679861.11823 4036 3938 17343750.0057 4037 3938 -38039431.35476 4044 3938 7.182359695435e-06 4045 3938 -69374999.9886 4046 3938 -103546919.3888 4047 3938 3.02791595459e-05 4048 3938 4.619359970093e-06 4049 3938 -289746007.2349 4050 3938 8.165836334229e-06 4051 3938 69374999.9886 4052 3938 -103546919.3888 4062 3938 -21679861.11823 4063 3938 -17343750.0057 4064 3938 -38039431.35476 4065 3938 -86719444.43019 4066 3938 8.940696716309e-07 4067 3938 -121047307.7997 4068 3938 -21679861.11823 4069 3938 17343750.0057 4070 3938 -38039431.35476 3939 3939 1154306639.95 3940 3939 4.053115844727e-06 3941 3939 -5.984306335449e-05 3942 3939 164134990.0133 3943 3939 -4.798173904419e-06 3944 3939 -1.537799835205e-05 3954 3939 -88595068.35711 3955 3939 -64813888.87825 3956 3939 -4.26173210144e-06 3957 3939 -229938603.1375 3958 3939 -1.400709152222e-06 3959 3939 -1.621246337891e-05 3960 3939 -88595068.35711 3961 3939 64813888.87826 3962 3939 -3.75509262085e-06 4032 3939 -36072082.53399 4033 3939 16203472.22755 4034 3939 21679861.11823 4035 3939 -113177912.5205 4036 3939 -1.952052116394e-06 4037 3939 86719444.4302 4038 3939 -36072082.53399 4039 3939 -16203472.22755 4040 3939 21679861.11823 4047 3939 -14659514.18418 4048 3939 7.62939453125e-06 4049 3939 7.152557373047e-06 4050 3939 65803613.40852 4051 3939 4.112720489502e-06 4052 3939 3.081560134888e-05 4053 3939 -14659514.18418 4054 3939 -1.010298728943e-05 4055 3939 8.165836334229e-06 4065 3939 -36072082.53397 4066 3939 -16203472.22754 4067 3939 -21679861.11823 4068 3939 -113177912.5204 4069 3939 6.407499313354e-07 4070 3939 -86719444.43019 4071 3939 -36072082.53397 4072 3939 16203472.22755 4073 3939 -21679861.11823 3940 3940 998747631.9559 3941 3940 -6.675720214844e-06 3942 3940 -3.397464752197e-06 3943 3940 -82157545.53163 3944 3940 -2.264976501465e-06 3954 3940 -64813888.87825 3955 3940 -69150192.34827 3956 3940 -6.705522537231e-07 3957 3940 7.748603820801e-07 3958 3940 55243684.38681 3959 3940 -1.788139343262e-06 3960 3940 64813888.87826 3961 3940 -69150192.34827 3962 3940 -4.619359970093e-07 4032 3940 16203472.22755 4033 3940 -31210863.52938 4034 3940 -17343750.00569 4035 3940 -4.097819328308e-06 4036 3940 -41882340.60423 4037 3940 1.296401023865e-06 4038 3940 -16203472.22755 4039 3940 -31210863.52938 4040 3940 17343750.0057 4047 3940 8.970499038696e-06 4048 3940 -76232648.10075 4049 3940 -69374999.9886 4050 3940 4.053115844727e-06 4051 3940 26913861.39084 4052 3940 4.738569259644e-06 4053 3940 -7.331371307373e-06 4054 3940 -76232648.10076 4055 3940 69374999.9886 4065 3940 -16203472.22754 4066 3940 -31210863.52937 4067 3940 -17343750.0057 4068 3940 -1.177191734314e-06 4069 3940 -41882340.60421 4070 3940 8.344650268555e-07 4071 3940 16203472.22754 4072 3940 -31210863.52937 4073 3940 17343750.0057 3941 3941 1217261802.153 3942 3941 -1.52587890625e-05 3943 3941 -2.562999725342e-06 3944 3941 179873780.5718 3954 3941 -4.231929779053e-06 3955 3941 -5.811452865601e-07 3956 3941 -3642360.790142 3957 3941 -1.54972076416e-05 3958 3941 -1.907348632813e-06 3959 3941 109872226.963 3960 3941 -3.635883331299e-06 3961 3941 -6.109476089478e-07 3962 3941 -3642360.79014 4032 3941 21679861.11823 4033 3941 -17343750.00569 4034 3941 -38039431.35476 4035 3941 86719444.4302 4036 3941 1.415610313416e-06 4037 3941 -121047307.7997 4038 3941 21679861.11823 4039 3941 17343750.0057 4040 3941 -38039431.35476 4047 3941 7.182359695435e-06 4048 3941 -69374999.9886 4049 3941 -103546919.3888 4050 3941 3.02791595459e-05 4051 3941 4.619359970093e-06 4052 3941 -289746007.2349 4053 3941 8.165836334229e-06 4054 3941 69374999.9886 4055 3941 -103546919.3888 4065 3941 -21679861.11823 4066 3941 -17343750.0057 4067 3941 -38039431.35476 4068 3941 -86719444.43019 4069 3941 8.940696716309e-07 4070 3941 -121047307.7997 4071 3941 -21679861.11823 4072 3941 17343750.0057 4073 3941 -38039431.35476 3942 3942 1242901705.056 3943 3942 64813887.58197 3944 3942 -3.838539123535e-05 3945 3942 47693290.89467 3946 3942 -64813888.35975 3947 3942 -7.510185241699e-06 3957 3942 -88595068.35711 3958 3942 -64813888.87825 3959 3942 -4.26173210144e-06 3960 3942 -229938603.1375 3961 3942 -1.400709152222e-06 3962 3942 -1.621246337891e-05 3963 3942 -88595068.35711 3964 3942 64813888.87826 3965 3942 -3.75509262085e-06 4035 3942 -36072082.53399 4036 3942 16203472.22755 4037 3942 21679861.11823 4038 3942 -135326679.0277 4039 3942 -16203472.0331 4040 3942 86719444.24762 4050 3942 -14659514.18418 4051 3942 7.62939453125e-06 4052 3942 7.152557373047e-06 4053 3942 101875695.1567 4054 3942 16203471.90348 4055 3942 0.03654569387436 4056 3942 -36808280.87074 4057 3942 -16203472.09792 4058 3942 21679860.74398 4068 3942 -36072082.53397 4069 3942 -16203472.22754 4070 3942 -21679861.11823 4071 3942 -113177912.5204 4072 3942 6.407499313354e-07 4073 3942 -86719444.43019 4074 3942 -36072082.53397 4075 3942 16203472.22755 4076 3942 -21679861.11823 3943 3943 1067897821.637 3945 3943 -64813888.10049 3946 3943 -179154367.6044 3947 3943 -1.16229057312e-05 3957 3943 -64813888.87825 3958 3943 -69150192.34827 3959 3943 -6.705522537231e-07 3960 3943 7.748603820801e-07 3961 3943 55243684.38681 3962 3943 -1.788139343262e-06 3963 3943 64813888.87826 3964 3943 -69150192.34827 3965 3943 -4.619359970093e-07 4035 3943 16203472.22755 4036 3943 -31210863.52938 4037 3943 -17343750.00569 4038 3943 -16203472.09792 4039 3943 -59169888.51195 4040 3943 17343749.94043 4050 3943 8.970499038696e-06 4051 3943 -76232648.10075 4052 3943 -69374999.9886 4053 3943 16203471.90348 4054 3943 58124724.28025 4055 3943 0.029221534729 4056 3943 -16203472.03311 4057 3943 -93520195.52346 4058 3943 69374999.6084 4068 3943 -16203472.22754 4069 3943 -31210863.52937 4070 3943 -17343750.0057 4071 3943 -1.177191734314e-06 4072 3943 -41882340.60421 4073 3943 8.344650268555e-07 4074 3943 16203472.22754 4075 3943 -31210863.52937 4076 3943 17343750.0057 3944 3944 1220904161.253 3945 3944 -7.390975952148e-06 3946 3944 -9.536743164063e-06 3947 3944 101973736.7139 3957 3944 -4.231929779053e-06 3958 3944 -5.811452865601e-07 3959 3944 -3642360.790142 3960 3944 -1.54972076416e-05 3961 3944 -1.907348632813e-06 3962 3944 109872226.963 3963 3944 -3.635883331299e-06 3964 3944 -6.109476089478e-07 3965 3944 -3642360.79014 4035 3944 21679861.11823 4036 3944 -17343750.00569 4037 3944 -38039431.35476 4038 3944 86719444.24762 4039 3944 17343749.9078 4040 3944 -121957897.9018 4050 3944 7.182359695435e-06 4051 3944 -69374999.9886 4052 3944 -103546919.3888 4053 3944 -0.03648543357849 4054 3944 -0.02920261025429 4055 3944 -251706576.231 4056 3944 21679860.55685 4057 3944 69374999.49133 4058 3944 -104457508.7431 4068 3944 -21679861.11823 4069 3944 -17343750.0057 4070 3944 -38039431.35476 4071 3944 -86719444.43019 4072 3944 8.940696716309e-07 4073 3944 -121047307.7997 4074 3944 -21679861.11823 4075 3944 17343750.0057 4076 3944 -38039431.35476 3945 3945 733825161.8322 3946 3945 69874541.14581 3947 3945 -2.193450927734e-05 3960 3945 -88595068.35711 3961 3945 -64813888.87825 3962 3945 -4.26173210144e-06 3963 3945 -357844273.7831 3964 3945 -69875651.73839 3965 3945 -1.645088195801e-05 3966 3945 31270320.21803 3967 3945 51852221.69519 3968 3945 2.264976501465e-06 4038 3945 -13923315.16199 4039 3945 19444166.47861 4040 3945 26015832.7805 4053 3945 -36808280.87074 4054 3945 -16203472.0331 4055 3945 -21679860.55685 4056 3945 42596488.85742 4057 3945 17468662.4055 4058 3945 17682222.18139 4071 3945 -36072082.53397 4072 3945 -16203472.22754 4073 3945 -21679861.11823 4074 3945 -139008174.7088 4075 3945 -17469217.83142 4076 3945 -88411110.90688 4077 3945 -13881426.19349 4078 3945 12963333.20796 4079 3945 -18020555.17262 3946 3946 630427502.0707 3947 3946 -7.875263690948e-06 3960 3946 -64813888.87825 3961 3946 -69150192.34827 3962 3946 -6.705522537231e-07 3963 3946 -69876207.03469 3964 3946 -50940301.31525 3965 3946 -9.536743164063e-07 3966 3946 77778332.54279 3967 3946 35166790.002 3968 3946 5.960464477539e-07 4038 3946 12962777.65241 4039 3946 -13923315.162 4040 3946 -13874999.9393 4053 3946 -16203472.09791 4054 3946 -93520195.52345 4055 3946 -69374999.49133 4056 3946 17468662.4055 4057 3946 16746172.7895 4058 3946 14145833.18359 4071 3946 -16203472.22754 4072 3946 -31210863.52937 4073 3946 -17343750.0057 4074 3946 -17469495.54439 4075 3946 -62281301.31302 4076 3946 -18697916.56855 4077 3946 19444999.81194 4078 3946 -12907287.87322 4079 3946 20270833.25379 3947 3947 770466102.9009 3960 3947 -4.231929779053e-06 3961 3947 -5.811452865601e-07 3962 3947 -3642360.790142 3963 3947 -1.710653305054e-05 3964 3947 -1.132488250732e-06 3965 3947 28643285.85722 3966 3947 2.98023223877e-06 3967 3947 5.364418029785e-07 3968 3947 79491050.79751 4038 3947 17343888.52033 4039 3947 -20812499.90894 4040 3947 -37128840.43198 4053 3947 -21679860.74397 4054 3947 -69374999.6084 4055 3947 -104457508.7431 4056 3947 -17682222.18137 4057 3947 -14145833.18358 4058 3947 -183012919.9131 4071 3947 -21679861.11823 4072 3947 -17343750.0057 4073 3947 -38039431.35476 4074 3947 -88411110.90688 4075 3947 -18697916.60118 4076 3947 -124961466.3518 4077 3947 -27030832.75893 4078 3947 13062499.95656 4079 3947 -37991274.83622 3948 3948 1154306639.95 3949 3948 4.053115844727e-06 3950 3948 -5.984306335449e-05 3951 3948 164134990.0133 3952 3948 -4.798173904419e-06 3953 3948 -1.537799835205e-05 3969 3948 -229938603.1375 3970 3948 -1.400709152222e-06 3971 3948 -1.621246337891e-05 3972 3948 -88595068.35711 3973 3948 64813888.87826 3974 3948 -3.75509262085e-06 4041 3948 -113177912.5205 4042 3948 -1.952052116394e-06 4043 3948 86719444.4302 4044 3948 -36072082.53399 4045 3948 -16203472.22755 4046 3948 21679861.11823 4059 3948 65803613.40852 4060 3948 4.112720489502e-06 4061 3948 3.081560134888e-05 4062 3948 -14659514.18418 4063 3948 -1.010298728943e-05 4064 3948 8.165836334229e-06 4080 3948 -113177912.5204 4081 3948 6.407499313354e-07 4082 3948 -86719444.43019 4083 3948 -36072082.53397 4084 3948 16203472.22755 4085 3948 -21679861.11823 3949 3949 998747631.9559 3950 3949 -6.675720214844e-06 3951 3949 -3.397464752197e-06 3952 3949 -82157545.53163 3953 3949 -2.264976501465e-06 3969 3949 7.748603820801e-07 3970 3949 55243684.38681 3971 3949 -1.788139343262e-06 3972 3949 64813888.87826 3973 3949 -69150192.34827 3974 3949 -4.619359970093e-07 4041 3949 -4.097819328308e-06 4042 3949 -41882340.60423 4043 3949 1.296401023865e-06 4044 3949 -16203472.22755 4045 3949 -31210863.52938 4046 3949 17343750.0057 4059 3949 4.053115844727e-06 4060 3949 26913861.39084 4061 3949 4.738569259644e-06 4062 3949 -7.331371307373e-06 4063 3949 -76232648.10076 4064 3949 69374999.9886 4080 3949 -1.177191734314e-06 4081 3949 -41882340.60421 4082 3949 8.344650268555e-07 4083 3949 16203472.22754 4084 3949 -31210863.52937 4085 3949 17343750.0057 3950 3950 1217261802.153 3951 3950 -1.52587890625e-05 3952 3950 -2.562999725342e-06 3953 3950 179873780.5718 3969 3950 -1.54972076416e-05 3970 3950 -1.907348632813e-06 3971 3950 109872226.963 3972 3950 -3.635883331299e-06 3973 3950 -6.109476089478e-07 3974 3950 -3642360.79014 4041 3950 86719444.4302 4042 3950 1.415610313416e-06 4043 3950 -121047307.7997 4044 3950 21679861.11823 4045 3950 17343750.0057 4046 3950 -38039431.35476 4059 3950 3.02791595459e-05 4060 3950 4.619359970093e-06 4061 3950 -289746007.2349 4062 3950 8.165836334229e-06 4063 3950 69374999.9886 4064 3950 -103546919.3888 4080 3950 -86719444.43019 4081 3950 8.940696716309e-07 4082 3950 -121047307.7997 4083 3950 -21679861.11823 4084 3950 17343750.0057 4085 3950 -38039431.35476 3951 3951 1154306639.95 3952 3951 4.053115844727e-06 3953 3951 -5.984306335449e-05 3954 3951 164134990.0133 3955 3951 -4.798173904419e-06 3956 3951 -1.537799835205e-05 3969 3951 -88595068.35711 3970 3951 -64813888.87825 3971 3951 -4.26173210144e-06 3972 3951 -229938603.1375 3973 3951 -1.400709152222e-06 3974 3951 -1.621246337891e-05 3975 3951 -88595068.35711 3976 3951 64813888.87826 3977 3951 -3.75509262085e-06 4041 3951 -36072082.53399 4042 3951 16203472.22755 4043 3951 21679861.11823 4044 3951 -113177912.5205 4045 3951 -1.952052116394e-06 4046 3951 86719444.4302 4047 3951 -36072082.53399 4048 3951 -16203472.22755 4049 3951 21679861.11823 4059 3951 -14659514.18418 4060 3951 7.62939453125e-06 4061 3951 7.152557373047e-06 4062 3951 65803613.40852 4063 3951 4.112720489502e-06 4064 3951 3.081560134888e-05 4065 3951 -14659514.18418 4066 3951 -1.010298728943e-05 4067 3951 8.165836334229e-06 4080 3951 -36072082.53397 4081 3951 -16203472.22754 4082 3951 -21679861.11823 4083 3951 -113177912.5204 4084 3951 6.407499313354e-07 4085 3951 -86719444.43019 4086 3951 -36072082.53397 4087 3951 16203472.22755 4088 3951 -21679861.11823 3952 3952 998747631.9559 3953 3952 -6.675720214844e-06 3954 3952 -3.397464752197e-06 3955 3952 -82157545.53163 3956 3952 -2.264976501465e-06 3969 3952 -64813888.87825 3970 3952 -69150192.34827 3971 3952 -6.705522537231e-07 3972 3952 7.748603820801e-07 3973 3952 55243684.38681 3974 3952 -1.788139343262e-06 3975 3952 64813888.87826 3976 3952 -69150192.34827 3977 3952 -4.619359970093e-07 4041 3952 16203472.22755 4042 3952 -31210863.52938 4043 3952 -17343750.00569 4044 3952 -4.097819328308e-06 4045 3952 -41882340.60423 4046 3952 1.296401023865e-06 4047 3952 -16203472.22755 4048 3952 -31210863.52938 4049 3952 17343750.0057 4059 3952 8.970499038696e-06 4060 3952 -76232648.10075 4061 3952 -69374999.9886 4062 3952 4.053115844727e-06 4063 3952 26913861.39084 4064 3952 4.738569259644e-06 4065 3952 -7.331371307373e-06 4066 3952 -76232648.10076 4067 3952 69374999.9886 4080 3952 -16203472.22754 4081 3952 -31210863.52937 4082 3952 -17343750.0057 4083 3952 -1.177191734314e-06 4084 3952 -41882340.60421 4085 3952 8.344650268555e-07 4086 3952 16203472.22754 4087 3952 -31210863.52937 4088 3952 17343750.0057 3953 3953 1217261802.153 3954 3953 -1.52587890625e-05 3955 3953 -2.562999725342e-06 3956 3953 179873780.5718 3969 3953 -4.231929779053e-06 3970 3953 -5.811452865601e-07 3971 3953 -3642360.790142 3972 3953 -1.54972076416e-05 3973 3953 -1.907348632813e-06 3974 3953 109872226.963 3975 3953 -3.635883331299e-06 3976 3953 -6.109476089478e-07 3977 3953 -3642360.79014 4041 3953 21679861.11823 4042 3953 -17343750.00569 4043 3953 -38039431.35476 4044 3953 86719444.4302 4045 3953 1.415610313416e-06 4046 3953 -121047307.7997 4047 3953 21679861.11823 4048 3953 17343750.0057 4049 3953 -38039431.35476 4059 3953 7.182359695435e-06 4060 3953 -69374999.9886 4061 3953 -103546919.3888 4062 3953 3.02791595459e-05 4063 3953 4.619359970093e-06 4064 3953 -289746007.2349 4065 3953 8.165836334229e-06 4066 3953 69374999.9886 4067 3953 -103546919.3888 4080 3953 -21679861.11823 4081 3953 -17343750.0057 4082 3953 -38039431.35476 4083 3953 -86719444.43019 4084 3953 8.940696716309e-07 4085 3953 -121047307.7997 4086 3953 -21679861.11823 4087 3953 17343750.0057 4088 3953 -38039431.35476 3954 3954 1154306639.95 3955 3954 4.053115844727e-06 3956 3954 -5.984306335449e-05 3957 3954 164134990.0133 3958 3954 -4.798173904419e-06 3959 3954 -1.537799835205e-05 3972 3954 -88595068.35711 3973 3954 -64813888.87825 3974 3954 -4.26173210144e-06 3975 3954 -229938603.1375 3976 3954 -1.400709152222e-06 3977 3954 -1.621246337891e-05 3978 3954 -88595068.35711 3979 3954 64813888.87826 3980 3954 -3.75509262085e-06 4044 3954 -36072082.53399 4045 3954 16203472.22755 4046 3954 21679861.11823 4047 3954 -113177912.5205 4048 3954 -1.952052116394e-06 4049 3954 86719444.4302 4050 3954 -36072082.53399 4051 3954 -16203472.22755 4052 3954 21679861.11823 4062 3954 -14659514.18418 4063 3954 7.62939453125e-06 4064 3954 7.152557373047e-06 4065 3954 65803613.40852 4066 3954 4.112720489502e-06 4067 3954 3.081560134888e-05 4068 3954 -14659514.18418 4069 3954 -1.010298728943e-05 4070 3954 8.165836334229e-06 4083 3954 -36072082.53397 4084 3954 -16203472.22754 4085 3954 -21679861.11823 4086 3954 -113177912.5204 4087 3954 6.407499313354e-07 4088 3954 -86719444.43019 4089 3954 -36072082.53397 4090 3954 16203472.22755 4091 3954 -21679861.11823 3955 3955 998747631.9559 3956 3955 -6.675720214844e-06 3957 3955 -3.397464752197e-06 3958 3955 -82157545.53163 3959 3955 -2.264976501465e-06 3972 3955 -64813888.87825 3973 3955 -69150192.34827 3974 3955 -6.705522537231e-07 3975 3955 7.748603820801e-07 3976 3955 55243684.38681 3977 3955 -1.788139343262e-06 3978 3955 64813888.87826 3979 3955 -69150192.34827 3980 3955 -4.619359970093e-07 4044 3955 16203472.22755 4045 3955 -31210863.52938 4046 3955 -17343750.00569 4047 3955 -4.097819328308e-06 4048 3955 -41882340.60423 4049 3955 1.296401023865e-06 4050 3955 -16203472.22755 4051 3955 -31210863.52938 4052 3955 17343750.0057 4062 3955 8.970499038696e-06 4063 3955 -76232648.10075 4064 3955 -69374999.9886 4065 3955 4.053115844727e-06 4066 3955 26913861.39084 4067 3955 4.738569259644e-06 4068 3955 -7.331371307373e-06 4069 3955 -76232648.10076 4070 3955 69374999.9886 4083 3955 -16203472.22754 4084 3955 -31210863.52937 4085 3955 -17343750.0057 4086 3955 -1.177191734314e-06 4087 3955 -41882340.60421 4088 3955 8.344650268555e-07 4089 3955 16203472.22754 4090 3955 -31210863.52937 4091 3955 17343750.0057 3956 3956 1217261802.153 3957 3956 -1.52587890625e-05 3958 3956 -2.562999725342e-06 3959 3956 179873780.5718 3972 3956 -4.231929779053e-06 3973 3956 -5.811452865601e-07 3974 3956 -3642360.790142 3975 3956 -1.54972076416e-05 3976 3956 -1.907348632813e-06 3977 3956 109872226.963 3978 3956 -3.635883331299e-06 3979 3956 -6.109476089478e-07 3980 3956 -3642360.79014 4044 3956 21679861.11823 4045 3956 -17343750.00569 4046 3956 -38039431.35476 4047 3956 86719444.4302 4048 3956 1.415610313416e-06 4049 3956 -121047307.7997 4050 3956 21679861.11823 4051 3956 17343750.0057 4052 3956 -38039431.35476 4062 3956 7.182359695435e-06 4063 3956 -69374999.9886 4064 3956 -103546919.3888 4065 3956 3.02791595459e-05 4066 3956 4.619359970093e-06 4067 3956 -289746007.2349 4068 3956 8.165836334229e-06 4069 3956 69374999.9886 4070 3956 -103546919.3888 4083 3956 -21679861.11823 4084 3956 -17343750.0057 4085 3956 -38039431.35476 4086 3956 -86719444.43019 4087 3956 8.940696716309e-07 4088 3956 -121047307.7997 4089 3956 -21679861.11823 4090 3956 17343750.0057 4091 3956 -38039431.35476 3957 3957 1154306639.95 3958 3957 4.053115844727e-06 3959 3957 -5.984306335449e-05 3960 3957 164134990.0133 3961 3957 -4.798173904419e-06 3962 3957 -1.537799835205e-05 3975 3957 -88595068.35711 3976 3957 -64813888.87825 3977 3957 -4.26173210144e-06 3978 3957 -229938603.1375 3979 3957 -1.400709152222e-06 3980 3957 -1.621246337891e-05 3981 3957 -88595068.35711 3982 3957 64813888.87826 3983 3957 -3.75509262085e-06 4047 3957 -36072082.53399 4048 3957 16203472.22755 4049 3957 21679861.11823 4050 3957 -113177912.5205 4051 3957 -1.952052116394e-06 4052 3957 86719444.4302 4053 3957 -36072082.53399 4054 3957 -16203472.22755 4055 3957 21679861.11823 4065 3957 -14659514.18418 4066 3957 7.62939453125e-06 4067 3957 7.152557373047e-06 4068 3957 65803613.40852 4069 3957 4.112720489502e-06 4070 3957 3.081560134888e-05 4071 3957 -14659514.18418 4072 3957 -1.010298728943e-05 4073 3957 8.165836334229e-06 4086 3957 -36072082.53397 4087 3957 -16203472.22754 4088 3957 -21679861.11823 4089 3957 -113177912.5204 4090 3957 6.407499313354e-07 4091 3957 -86719444.43019 4092 3957 -36072082.53397 4093 3957 16203472.22755 4094 3957 -21679861.11823 3958 3958 998747631.9559 3959 3958 -6.675720214844e-06 3960 3958 -3.397464752197e-06 3961 3958 -82157545.53163 3962 3958 -2.264976501465e-06 3975 3958 -64813888.87825 3976 3958 -69150192.34827 3977 3958 -6.705522537231e-07 3978 3958 7.748603820801e-07 3979 3958 55243684.38681 3980 3958 -1.788139343262e-06 3981 3958 64813888.87826 3982 3958 -69150192.34827 3983 3958 -4.619359970093e-07 4047 3958 16203472.22755 4048 3958 -31210863.52938 4049 3958 -17343750.00569 4050 3958 -4.097819328308e-06 4051 3958 -41882340.60423 4052 3958 1.296401023865e-06 4053 3958 -16203472.22755 4054 3958 -31210863.52938 4055 3958 17343750.0057 4065 3958 8.970499038696e-06 4066 3958 -76232648.10075 4067 3958 -69374999.9886 4068 3958 4.053115844727e-06 4069 3958 26913861.39084 4070 3958 4.738569259644e-06 4071 3958 -7.331371307373e-06 4072 3958 -76232648.10076 4073 3958 69374999.9886 4086 3958 -16203472.22754 4087 3958 -31210863.52937 4088 3958 -17343750.0057 4089 3958 -1.177191734314e-06 4090 3958 -41882340.60421 4091 3958 8.344650268555e-07 4092 3958 16203472.22754 4093 3958 -31210863.52937 4094 3958 17343750.0057 3959 3959 1217261802.153 3960 3959 -1.52587890625e-05 3961 3959 -2.562999725342e-06 3962 3959 179873780.5718 3975 3959 -4.231929779053e-06 3976 3959 -5.811452865601e-07 3977 3959 -3642360.790142 3978 3959 -1.54972076416e-05 3979 3959 -1.907348632813e-06 3980 3959 109872226.963 3981 3959 -3.635883331299e-06 3982 3959 -6.109476089478e-07 3983 3959 -3642360.79014 4047 3959 21679861.11823 4048 3959 -17343750.00569 4049 3959 -38039431.35476 4050 3959 86719444.4302 4051 3959 1.415610313416e-06 4052 3959 -121047307.7997 4053 3959 21679861.11823 4054 3959 17343750.0057 4055 3959 -38039431.35476 4065 3959 7.182359695435e-06 4066 3959 -69374999.9886 4067 3959 -103546919.3888 4068 3959 3.02791595459e-05 4069 3959 4.619359970093e-06 4070 3959 -289746007.2349 4071 3959 8.165836334229e-06 4072 3959 69374999.9886 4073 3959 -103546919.3888 4086 3959 -21679861.11823 4087 3959 -17343750.0057 4088 3959 -38039431.35476 4089 3959 -86719444.43019 4090 3959 8.940696716309e-07 4091 3959 -121047307.7997 4092 3959 -21679861.11823 4093 3959 17343750.0057 4094 3959 -38039431.35476 3960 3960 1154306639.95 3961 3960 4.053115844727e-06 3962 3960 -5.984306335449e-05 3963 3960 164134990.0133 3964 3960 -4.798173904419e-06 3965 3960 -1.537799835205e-05 3978 3960 -88595068.35711 3979 3960 -64813888.87825 3980 3960 -4.26173210144e-06 3981 3960 -229938603.1375 3982 3960 -1.400709152222e-06 3983 3960 -1.621246337891e-05 3984 3960 -88595068.35711 3985 3960 64813888.87826 3986 3960 -3.75509262085e-06 4050 3960 -36072082.53399 4051 3960 16203472.22755 4052 3960 21679861.11823 4053 3960 -113177912.5205 4054 3960 -1.952052116394e-06 4055 3960 86719444.4302 4056 3960 -36072082.53399 4057 3960 -16203472.22755 4058 3960 21679861.11823 4068 3960 -14659514.18418 4069 3960 7.62939453125e-06 4070 3960 7.152557373047e-06 4071 3960 65803613.40852 4072 3960 4.112720489502e-06 4073 3960 3.081560134888e-05 4074 3960 -14659514.18418 4075 3960 -1.010298728943e-05 4076 3960 8.165836334229e-06 4089 3960 -36072082.53397 4090 3960 -16203472.22754 4091 3960 -21679861.11823 4092 3960 -113177912.5204 4093 3960 6.407499313354e-07 4094 3960 -86719444.43019 4095 3960 -36072082.53397 4096 3960 16203472.22755 4097 3960 -21679861.11823 3961 3961 998747631.9559 3962 3961 -6.675720214844e-06 3963 3961 -3.397464752197e-06 3964 3961 -82157545.53163 3965 3961 -2.264976501465e-06 3978 3961 -64813888.87825 3979 3961 -69150192.34827 3980 3961 -6.705522537231e-07 3981 3961 7.748603820801e-07 3982 3961 55243684.38681 3983 3961 -1.788139343262e-06 3984 3961 64813888.87826 3985 3961 -69150192.34827 3986 3961 -4.619359970093e-07 4050 3961 16203472.22755 4051 3961 -31210863.52938 4052 3961 -17343750.00569 4053 3961 -4.097819328308e-06 4054 3961 -41882340.60423 4055 3961 1.296401023865e-06 4056 3961 -16203472.22755 4057 3961 -31210863.52938 4058 3961 17343750.0057 4068 3961 8.970499038696e-06 4069 3961 -76232648.10075 4070 3961 -69374999.9886 4071 3961 4.053115844727e-06 4072 3961 26913861.39084 4073 3961 4.738569259644e-06 4074 3961 -7.331371307373e-06 4075 3961 -76232648.10076 4076 3961 69374999.9886 4089 3961 -16203472.22754 4090 3961 -31210863.52937 4091 3961 -17343750.0057 4092 3961 -1.177191734314e-06 4093 3961 -41882340.60421 4094 3961 8.344650268555e-07 4095 3961 16203472.22754 4096 3961 -31210863.52937 4097 3961 17343750.0057 3962 3962 1217261802.153 3963 3962 -1.52587890625e-05 3964 3962 -2.562999725342e-06 3965 3962 179873780.5718 3978 3962 -4.231929779053e-06 3979 3962 -5.811452865601e-07 3980 3962 -3642360.790142 3981 3962 -1.54972076416e-05 3982 3962 -1.907348632813e-06 3983 3962 109872226.963 3984 3962 -3.635883331299e-06 3985 3962 -6.109476089478e-07 3986 3962 -3642360.79014 4050 3962 21679861.11823 4051 3962 -17343750.00569 4052 3962 -38039431.35476 4053 3962 86719444.4302 4054 3962 1.415610313416e-06 4055 3962 -121047307.7997 4056 3962 21679861.11823 4057 3962 17343750.0057 4058 3962 -38039431.35476 4068 3962 7.182359695435e-06 4069 3962 -69374999.9886 4070 3962 -103546919.3888 4071 3962 3.02791595459e-05 4072 3962 4.619359970093e-06 4073 3962 -289746007.2349 4074 3962 8.165836334229e-06 4075 3962 69374999.9886 4076 3962 -103546919.3888 4089 3962 -21679861.11823 4090 3962 -17343750.0057 4091 3962 -38039431.35476 4092 3962 -86719444.43019 4093 3962 8.940696716309e-07 4094 3962 -121047307.7997 4095 3962 -21679861.11823 4096 3962 17343750.0057 4097 3962 -38039431.35476 3963 3963 1264143404.142 3964 3963 69984496.09991 3965 3963 -4.60147857666e-05 3966 3963 56216718.86035 3967 3963 -62295134.49991 3968 3963 -1.907348632813e-06 3981 3963 -88595068.35711 3982 3963 -64813888.87825 3983 3963 -4.26173210144e-06 3984 3963 -235044286.8786 3985 3963 -2540789.090044 3986 3963 -1.227855682373e-05 3987 3963 -95281145.7069 3988 3963 64727634.52473 3989 3963 3.665685653687e-06 4053 3963 -36072082.53399 4054 3963 16203472.22755 4055 3963 21679861.11823 4056 3963 -139008174.7088 4057 3963 -17469495.54439 4058 3963 88411110.90689 4071 3963 -14659514.18418 4072 3963 7.62939453125e-06 4073 3963 7.152557373047e-06 4074 3963 104477359.7431 4075 3963 17496498.94787 4076 3963 0.03796523809433 4077 3963 -35761582.98115 4078 3963 -15574117.3542 4079 3963 21679166.28526 4092 3963 -36072082.53397 4093 3963 -16203472.22754 4094 3963 -21679861.11823 4095 3963 -114725173.6726 4096 3963 -635141.4411426 4097 3963 -87564583.31886 4098 3963 -37743330.80579 4099 3963 16182255.39186 4100 3963 -22525694.45184 3964 3964 1075589634.327 3965 3964 1.347064971924e-05 3966 3964 -62295134.24065 3967 3964 -170484887.2684 3968 3964 -5.185604095459e-06 3981 3964 -64813888.87825 3982 3964 -69150192.34827 3983 3964 -6.705522537231e-07 3984 3964 -2541344.645598 3985 3964 52569923.74254 3986 3964 6.318092346191e-06 3987 3964 64727634.52473 3988 3964 -67141169.32472 3989 3964 4.619359970093e-07 4053 3964 16203472.22755 4054 3964 -31210863.52938 4055 3964 -17343750.00569 4056 3964 -17469217.83143 4057 3964 -62281301.31304 4058 3964 18697916.60118 4071 3964 8.970499038696e-06 4072 3964 -76232648.10075 4073 3964 -69374999.9886 4074 3964 17496498.94786 4075 3964 57338323.8368 4076 3964 0.03035295009613 4077 3964 -15574117.28939 4078 3964 -92438199.00546 4079 3964 69374999.59698 4092 3964 -16203472.22754 4093 3964 -31210863.52937 4094 3964 -17343750.0057 4095 3964 -635419.218922 4096 3964 -42820844.07815 4097 3964 -677083.3331566 4098 3964 16182255.39186 4099 3964 -30708185.95798 4100 3964 16666666.67214 3965 3965 1236468691.55 3966 3965 -1.54972076416e-06 3967 3965 -5.036592483521e-06 3968 3965 109730878.4261 3981 3965 -4.231929779053e-06 3982 3965 -5.811452865601e-07 3983 3965 -3642360.790142 3984 3965 -1.358985900879e-05 3985 3965 5.960464477539e-06 3986 3965 108515321.757 3987 3965 3.635883331299e-06 3988 3965 4.768371582031e-07 3989 3965 -4919850.093644 4053 3965 21679861.11823 4054 3965 -17343750.00569 4055 3965 -38039431.35476 4056 3965 88411110.90689 4057 3965 18697916.56855 4058 3965 -124961466.3518 4071 3965 7.182359695435e-06 4072 3965 -69374999.9886 4073 3965 -103546919.3888 4074 3965 -0.03791528940201 4075 3965 -0.0303518474102 4076 3965 -255045254.8364 4077 3965 21679166.091 4078 3965 69374999.47419 4079 3965 -105409529.5055 4092 3965 -21679861.11823 4093 3965 -17343750.0057 4094 3965 -38039431.35476 4095 3965 -87564583.31903 4096 3965 -677083.3332901 4097 3965 -122106772.304 4098 3965 -22525694.45184 4099 3965 16666666.67214 4100 3965 -38356746.04355 3966 3966 696472573.0656 3967 3966 -1771689.826602 3968 3966 -2.384185791016e-07 3984 3966 -87258192.16973 3985 3966 -64804100.71711 3986 3966 -4.500150680542e-06 3987 3966 -242104687.4354 3988 3966 -3424057.139938 3989 3966 -7.450580596924e-07 3990 3966 75831742.92238 3991 3966 -11180768.61541 3992 3966 -2.384185791016e-06 3993 3966 -95109676.42566 3994 3966 65697417.99692 3995 3966 6.496906280518e-06 4056 3966 -13881426.19349 4057 3966 19444999.81194 4058 3966 27030832.75893 4074 3966 -35761582.98116 4075 3966 -15574117.28939 4076 3966 -21679166.091 4077 3966 24368704.92005 4078 3966 -442931.9479949 4079 3966 17135277.77496 4095 3966 -35737549.44071 4096 3966 -16201372.34961 4097 3966 -21679166.67379 4098 3966 -113694268.311 4099 3966 -856032.6284447 4100 3966 -85676388.87482 4101 3966 -6373939.007678 4102 3966 -2795252.051776 4103 3966 3215972.223778 4104 3966 -36574674.40711 4105 3966 16424706.45526 4106 3966 -21159027.78473 3967 3967 713868420.1604 3968 3967 2.801418304443e-05 3984 3967 -64804100.71711 3985 3967 -69555876.00861 3986 3967 2.98023223877e-08 3987 3967 -3424057.139937 3988 3967 46038548.55542 3989 3967 1.448392868042e-05 3990 3967 14745342.49145 3991 3967 -46950609.66778 3992 3967 -3.695487976074e-06 3993 3967 65697417.99692 3994 3967 -72763586.73756 3995 3967 -7.003545761108e-07 4056 3967 12963333.20796 4057 3967 -12907287.87322 4058 3967 -13062499.95656 4074 3967 -15574117.3542 4075 3967 -92438199.00548 4076 3967 -69374999.4742 4077 3967 -442931.947997 4078 3967 28717759.88727 4079 3967 7208333.185863 4095 3967 -16201372.34961 4096 3967 -31311875.5651 4097 3967 -17343750.0057 4098 3967 -856032.6284447 4099 3967 -41656915.6643 4100 3967 -677083.3331583 4101 3967 3686414.617019 4102 3967 -37070184.92824 4103 3967 33333333.32785 4104 3967 16424706.45526 4105 3967 -30988032.27199 4106 3967 16666666.67214 3968 3968 808185795.7469 3984 3968 -4.559755325317e-06 3985 3968 8.940696716309e-08 3986 3968 -3390328.224569 3987 3968 -8.344650268555e-07 3988 3968 1.460313796997e-05 3989 3968 96899236.61813 3990 3968 3.576278686523e-07 3991 3968 -3.904104232788e-06 3992 3968 79524039.77178 3993 3968 6.049871444702e-06 3994 3968 -7.003545761108e-07 3995 3968 -9590542.374578 4056 3968 18020555.17262 4057 3968 -20270833.25379 4058 3968 -37991274.83623 4074 3968 -21679166.28526 4075 3968 -69374999.59698 4076 3968 -105409529.5055 4077 3968 -17135277.77496 4078 3968 -7208333.18587 4079 3968 -197291006.784 4095 3968 -21679166.67379 4096 3968 -17343750.0057 4097 3968 -37974357.38229 4098 3968 -85676388.87482 4099 3968 -677083.3332918 4100 3968 -117552803.5799 4101 3968 -4909027.779057 4102 3968 33333333.32785 4103 3968 -47671313.32517 4104 3968 -21159027.78473 4105 3968 16666666.67214 4106 3968 -36522342.37636 3969 3969 577153319.975 3970 3969 -3.814697265625e-06 3971 3969 -3.170967102051e-05 3972 3969 82067495.00666 3973 3969 12962777.77565 3974 3969 -7.867813110352e-06 4059 3969 -113177912.5205 4060 3969 -1.952052116394e-06 4061 3969 86719444.4302 4062 3969 -36072082.53399 4063 3969 -16203472.22755 4064 3969 21679861.11823 4080 3969 32901806.70425 4081 3969 2.026557922363e-06 4082 3969 -17343888.88602 4083 3969 -7329757.09209 4084 3969 3240694.445505 4085 3969 -4335972.223642 3970 3970 499373815.978 3971 3970 1.025199890137e-05 3972 3970 -12962777.77565 3973 3970 -41078772.7658 3974 3970 2.264976501465e-06 4059 3970 -4.097819328308e-06 4060 3970 -41882340.60423 4061 3970 1.296401023865e-06 4062 3970 -16203472.22755 4063 3970 -31210863.52938 4064 3970 17343750.0057 4080 3970 1.430511474609e-06 4081 3970 13456930.69541 4082 3970 -4.410743713379e-06 4083 3970 -3240694.445512 4084 3970 -38116324.05037 4085 3970 34687499.9943 3971 3971 608630901.0765 3972 3971 -7.867813110352e-06 3973 3971 2.115964889526e-06 3974 3971 89936890.28591 4059 3971 86719444.4302 4060 3971 1.415610313416e-06 4061 3971 -121047307.7997 4062 3971 21679861.11823 4063 3971 17343750.0057 4064 3971 -38039431.35476 4080 3971 17343888.88605 4081 3971 -4.410743713379e-06 4082 3971 -144873003.6175 4083 3971 4335972.22365 4084 3971 34687499.9943 4085 3971 -51773459.69442 3972 3972 577153319.975 3973 3972 -3.814697265625e-06 3974 3972 -3.170967102051e-05 3975 3972 82067495.00666 3976 3972 12962777.77565 3977 3972 -7.867813110352e-06 4059 3972 -36072082.53399 4060 3972 16203472.22755 4061 3972 21679861.11823 4062 3972 -113177912.5205 4063 3972 -1.952052116394e-06 4064 3972 86719444.4302 4065 3972 -36072082.53399 4066 3972 -16203472.22755 4067 3972 21679861.11823 4080 3972 -7329757.092094 4081 3972 -3240694.445505 4082 3972 -4335972.223642 4083 3972 32901806.70425 4084 3972 2.026557922363e-06 4085 3972 -17343888.88602 4086 3972 -7329757.09209 4087 3972 3240694.445505 4088 3972 -4335972.223642 3973 3973 499373815.978 3974 3973 1.025199890137e-05 3975 3973 -12962777.77565 3976 3973 -41078772.7658 3977 3973 2.264976501465e-06 4059 3973 16203472.22755 4060 3973 -31210863.52938 4061 3973 -17343750.00569 4062 3973 -4.097819328308e-06 4063 3973 -41882340.60423 4064 3973 1.296401023865e-06 4065 3973 -16203472.22755 4066 3973 -31210863.52938 4067 3973 17343750.0057 4080 3973 3240694.445514 4081 3973 -38116324.05038 4082 3973 -34687499.9943 4083 3973 1.430511474609e-06 4084 3973 13456930.69541 4085 3973 -4.410743713379e-06 4086 3973 -3240694.445512 4087 3973 -38116324.05037 4088 3973 34687499.9943 3974 3974 608630901.0765 3975 3974 -7.867813110352e-06 3976 3974 2.115964889526e-06 3977 3974 89936890.28591 4059 3974 21679861.11823 4060 3974 -17343750.00569 4061 3974 -38039431.35476 4062 3974 86719444.4302 4063 3974 1.415610313416e-06 4064 3974 -121047307.7997 4065 3974 21679861.11823 4066 3974 17343750.0057 4067 3974 -38039431.35476 4080 3974 4335972.22365 4081 3974 -34687499.9943 4082 3974 -51773459.69442 4083 3974 17343888.88605 4084 3974 -4.410743713379e-06 4085 3974 -144873003.6175 4086 3974 4335972.22365 4087 3974 34687499.9943 4088 3974 -51773459.69442 3975 3975 577153319.975 3976 3975 -3.814697265625e-06 3977 3975 -3.170967102051e-05 3978 3975 82067495.00666 3979 3975 12962777.77565 3980 3975 -7.867813110352e-06 4062 3975 -36072082.53399 4063 3975 16203472.22755 4064 3975 21679861.11823 4065 3975 -113177912.5205 4066 3975 -1.952052116394e-06 4067 3975 86719444.4302 4068 3975 -36072082.53399 4069 3975 -16203472.22755 4070 3975 21679861.11823 4083 3975 -7329757.092094 4084 3975 -3240694.445505 4085 3975 -4335972.223642 4086 3975 32901806.70425 4087 3975 2.026557922363e-06 4088 3975 -17343888.88602 4089 3975 -7329757.09209 4090 3975 3240694.445505 4091 3975 -4335972.223642 3976 3976 499373815.978 3977 3976 1.025199890137e-05 3978 3976 -12962777.77565 3979 3976 -41078772.7658 3980 3976 2.264976501465e-06 4062 3976 16203472.22755 4063 3976 -31210863.52938 4064 3976 -17343750.00569 4065 3976 -4.097819328308e-06 4066 3976 -41882340.60423 4067 3976 1.296401023865e-06 4068 3976 -16203472.22755 4069 3976 -31210863.52938 4070 3976 17343750.0057 4083 3976 3240694.445514 4084 3976 -38116324.05038 4085 3976 -34687499.9943 4086 3976 1.430511474609e-06 4087 3976 13456930.69541 4088 3976 -4.410743713379e-06 4089 3976 -3240694.445512 4090 3976 -38116324.05037 4091 3976 34687499.9943 3977 3977 608630901.0765 3978 3977 -7.867813110352e-06 3979 3977 2.115964889526e-06 3980 3977 89936890.28591 4062 3977 21679861.11823 4063 3977 -17343750.00569 4064 3977 -38039431.35476 4065 3977 86719444.4302 4066 3977 1.415610313416e-06 4067 3977 -121047307.7997 4068 3977 21679861.11823 4069 3977 17343750.0057 4070 3977 -38039431.35476 4083 3977 4335972.22365 4084 3977 -34687499.9943 4085 3977 -51773459.69442 4086 3977 17343888.88605 4087 3977 -4.410743713379e-06 4088 3977 -144873003.6175 4089 3977 4335972.22365 4090 3977 34687499.9943 4091 3977 -51773459.69442 3978 3978 577153319.975 3979 3978 -3.814697265625e-06 3980 3978 -3.170967102051e-05 3981 3978 82067495.00666 3982 3978 12962777.77565 3983 3978 -7.867813110352e-06 4065 3978 -36072082.53399 4066 3978 16203472.22755 4067 3978 21679861.11823 4068 3978 -113177912.5205 4069 3978 -1.952052116394e-06 4070 3978 86719444.4302 4071 3978 -36072082.53399 4072 3978 -16203472.22755 4073 3978 21679861.11823 4086 3978 -7329757.092094 4087 3978 -3240694.445505 4088 3978 -4335972.223642 4089 3978 32901806.70425 4090 3978 2.026557922363e-06 4091 3978 -17343888.88602 4092 3978 -7329757.09209 4093 3978 3240694.445505 4094 3978 -4335972.223642 3979 3979 499373815.978 3980 3979 1.025199890137e-05 3981 3979 -12962777.77565 3982 3979 -41078772.7658 3983 3979 2.264976501465e-06 4065 3979 16203472.22755 4066 3979 -31210863.52938 4067 3979 -17343750.00569 4068 3979 -4.097819328308e-06 4069 3979 -41882340.60423 4070 3979 1.296401023865e-06 4071 3979 -16203472.22755 4072 3979 -31210863.52938 4073 3979 17343750.0057 4086 3979 3240694.445514 4087 3979 -38116324.05038 4088 3979 -34687499.9943 4089 3979 1.430511474609e-06 4090 3979 13456930.69541 4091 3979 -4.410743713379e-06 4092 3979 -3240694.445512 4093 3979 -38116324.05037 4094 3979 34687499.9943 3980 3980 608630901.0765 3981 3980 -7.867813110352e-06 3982 3980 2.115964889526e-06 3983 3980 89936890.28591 4065 3980 21679861.11823 4066 3980 -17343750.00569 4067 3980 -38039431.35476 4068 3980 86719444.4302 4069 3980 1.415610313416e-06 4070 3980 -121047307.7997 4071 3980 21679861.11823 4072 3980 17343750.0057 4073 3980 -38039431.35476 4086 3980 4335972.22365 4087 3980 -34687499.9943 4088 3980 -51773459.69442 4089 3980 17343888.88605 4090 3980 -4.410743713379e-06 4091 3980 -144873003.6175 4092 3980 4335972.22365 4093 3980 34687499.9943 4094 3980 -51773459.69442 3981 3981 577153319.975 3982 3981 -3.814697265625e-06 3983 3981 -3.170967102051e-05 3984 3981 82067495.00666 3985 3981 12962777.77565 3986 3981 -7.867813110352e-06 4068 3981 -36072082.53399 4069 3981 16203472.22755 4070 3981 21679861.11823 4071 3981 -113177912.5205 4072 3981 -1.952052116394e-06 4073 3981 86719444.4302 4074 3981 -36072082.53399 4075 3981 -16203472.22755 4076 3981 21679861.11823 4089 3981 -7329757.092094 4090 3981 -3240694.445505 4091 3981 -4335972.223642 4092 3981 32901806.70425 4093 3981 2.026557922363e-06 4094 3981 -17343888.88602 4095 3981 -7329757.09209 4096 3981 3240694.445505 4097 3981 -4335972.223642 3982 3982 499373815.978 3983 3982 1.025199890137e-05 3984 3982 -12962777.77565 3985 3982 -41078772.7658 3986 3982 2.264976501465e-06 4068 3982 16203472.22755 4069 3982 -31210863.52938 4070 3982 -17343750.00569 4071 3982 -4.097819328308e-06 4072 3982 -41882340.60423 4073 3982 1.296401023865e-06 4074 3982 -16203472.22755 4075 3982 -31210863.52938 4076 3982 17343750.0057 4089 3982 3240694.445514 4090 3982 -38116324.05038 4091 3982 -34687499.9943 4092 3982 1.430511474609e-06 4093 3982 13456930.69541 4094 3982 -4.410743713379e-06 4095 3982 -3240694.445512 4096 3982 -38116324.05037 4097 3982 34687499.9943 3983 3983 608630901.0765 3984 3983 -7.867813110352e-06 3985 3983 2.115964889526e-06 3986 3983 89936890.28591 4068 3983 21679861.11823 4069 3983 -17343750.00569 4070 3983 -38039431.35476 4071 3983 86719444.4302 4072 3983 1.415610313416e-06 4073 3983 -121047307.7997 4074 3983 21679861.11823 4075 3983 17343750.0057 4076 3983 -38039431.35476 4089 3983 4335972.22365 4090 3983 -34687499.9943 4091 3983 -51773459.69442 4092 3983 17343888.88605 4093 3983 -4.410743713379e-06 4094 3983 -144873003.6175 4095 3983 4335972.22365 4096 3983 34687499.9943 4097 3983 -51773459.69442 3984 3984 578486932.6103 3985 3984 11986.19510341 3986 3984 -2.169609069824e-05 3987 3984 84494256.20949 3988 3984 15482348.065 3989 3984 1.311302185059e-06 4071 3984 -36072082.53399 4072 3984 16203472.22755 4073 3984 21679861.11823 4074 3984 -114725173.6726 4075 3984 -635419.2189152 4076 3984 87564583.31904 4077 3984 -35737549.44071 4078 3984 -16201372.3496 4079 3984 21679166.67379 4092 3984 -7329757.092094 4093 3984 -3240694.445505 4094 3984 -4335972.223642 4095 3984 33240013.48478 4096 3984 3343.827772319 4097 3984 -17343611.10825 4098 3984 -6449228.918503 4099 3984 3870669.958714 4100 3984 -5182361.112478 3985 3985 498972289.4165 3986 3985 2.264976501465e-05 3987 3985 -10443763.04186 3988 3985 -37606235.61531 3989 3985 1.877546310425e-06 4071 3985 16203472.22755 4072 3985 -31210863.52938 4073 3985 -17343750.00569 4074 3985 -635141.4411397 4075 3985 -42820844.07817 4076 3985 677083.3332876 4077 3985 -16201372.3496 4078 3985 -31311875.56509 4079 3985 17343750.00569 4092 3985 3240694.445514 4093 3985 -38116324.05038 4094 3985 -34687499.9943 4095 3985 3343.827771783 4096 3985 13361135.04474 4097 3985 -6.437301635742e-06 4098 3985 -2610996.710082 4099 3985 -36975005.99484 4100 3985 34010416.66101 3986 3986 608877037.9683 3987 3986 -3.576278686523e-07 3988 3986 1.966953277588e-06 3989 3986 90773136.12632 4071 3986 21679861.11823 4072 3986 -17343750.00569 4073 3986 -38039431.35476 4074 3986 87564583.31887 4075 3986 677083.3331542 4076 3986 -122106772.304 4077 3986 21679166.67379 4078 3986 17343750.00569 4079 3986 -37974357.38228 4092 3986 4335972.22365 4093 3986 -34687499.9943 4094 3986 -51773459.69442 4095 3986 17343611.10827 4096 3986 -6.526708602905e-06 4097 3986 -144801169.7145 4098 3986 3489305.557202 4099 3986 34010416.66114 4100 3986 -50834884.67833 3987 3987 576078114.5405 3988 3987 -1636006.338362 3989 3987 -1.192092895508e-06 3990 3987 -84575033.27924 3991 3987 -63933137.53737 3992 3987 -5.602836608887e-06 3993 3987 80892647.57501 3994 3987 14709329.53279 3995 3987 1.072883605957e-06 4074 3987 -37743330.8058 4075 3987 16182255.39187 4076 3987 22525694.45184 4077 3987 -113694268.311 4078 3987 -856032.628432 4079 3987 85676388.87482 4095 3987 -6449228.918515 4096 3987 -2610996.710082 4097 3987 -3489305.557202 4098 3987 37710239.3424 4099 3987 -409010.3490507 4100 3987 -17135277.77496 4101 3987 -33940957.18403 4102 3987 -15983626.88872 4103 3987 20312500.00667 4104 3987 -5631106.840498 4105 3987 3677411.184425 4106 3987 -5078333.3345 3988 3988 489693679.98 3989 3988 3.409385681152e-05 3990 3988 -63933137.53736 3991 3988 -68813095.55765 3992 3988 -9.238719940186e-07 3993 3988 -11216781.57407 3994 3988 -42667576.13433 3995 3988 6.556510925293e-07 4074 3988 16182255.39187 4075 3988 -30708185.95799 4076 3988 -16666666.67214 4077 3988 -856032.6284325 4078 3988 -41656915.6643 4079 3988 677083.3332858 4095 3988 3870669.958715 4096 3988 -36975005.99487 4097 3988 -34010416.66115 4098 3988 -409010.3490478 4099 3988 16113667.92119 4100 3988 -7.688999176025e-06 4101 3988 -15983626.88872 4102 3988 -30000388.31333 4103 3988 16666666.67214 4104 3988 -2804255.48437 4105 3988 -36521824.70809 4106 3988 33333333.32785 3989 3989 591348648.5328 3990 3989 -5.483627319336e-06 3991 3989 -9.536743164063e-07 3992 3989 -5640051.194669 3993 3989 -1.072883605957e-06 3994 3989 5.960464477539e-07 3995 3989 83549951.75354 4074 3989 22525694.45184 4075 3989 -16666666.67214 4076 3989 -38356746.04356 4077 3989 85676388.87482 4078 3989 677083.3331523 4079 3989 -117552803.5799 4095 3989 5182361.112479 4096 3989 -34010416.66102 4097 3989 -50834884.67835 4098 3989 17135277.77496 4099 3989 -7.659196853638e-06 4100 3989 -135659337.8091 4101 3989 20312500.00667 4102 3989 16666666.67214 4103 3989 -35534698.41771 4104 3989 3385277.779223 4105 3989 33333333.32785 4106 3989 -48057936.71774 3990 3990 278277688.0438 3991 3990 63032990.82913 3992 3990 7.867813110352e-06 3993 3990 -117017201.3105 3994 3990 -13845195.78321 3995 3990 -3.039836883545e-06 4077 3990 -6373939.007691 4078 3990 3686414.61702 4079 3990 4909027.779057 4098 3990 -33940957.18403 4099 3990 -15983626.88872 4100 3990 -20312500.00667 4101 3990 18906350.86048 4102 3990 15758585.38937 4103 3990 8124999.998668 4104 3990 -54848418.75583 4105 3990 -3461373.117672 4106 3990 -41471527.77105 3991 3991 243072801.0766 3992 3991 1.418590545654e-05 3993 3991 12080915.32365 3994 3991 25208100.52529 3995 3991 7.987022399902e-06 4077 3991 -2795252.051777 4078 3991 -37070184.92826 4079 3991 -33333333.32786 4098 3991 -15983626.88872 4099 3991 -30000388.31335 4100 3991 -16666666.67214 4101 3991 15758585.38937 4102 3991 10104940.51806 4103 3991 6666666.66557 4104 3991 3020293.551124 4105 3991 -19291331.36354 4106 3991 3333333.334427 3992 3992 285481231.0942 3993 3992 -2.384185791016e-07 3994 3992 7.867813110352e-06 3995 3992 47347303.99915 4077 3992 -3215972.223779 4078 3992 -33333333.32786 4079 3992 -47671313.3252 4098 3992 -20312500.00667 4099 3992 -16666666.67214 4100 3992 -35534698.41772 4101 3992 -8124999.998663 4102 3992 -6666666.665573 4103 3992 -63733661.36496 4104 3992 -41471527.77088 4105 3992 -3333333.334429 4106 3992 -56412231.12431 3993 3993 285841125.8965 3994 3993 -66561551.7465 3995 3993 -5.960464477539e-06 4077 3993 -36574674.40712 4078 3993 16424706.45526 4079 3993 21159027.78473 4098 3993 -5631106.840512 4099 3993 -2804255.484371 4100 3993 -3385277.779223 4101 3993 -54848418.75583 4102 3993 3020293.55113 4103 3993 41471527.77088 4104 3993 19752408.62642 4105 3993 -16640744.52202 4106 3993 -8463611.109722 3994 3994 244829958.0819 3995 3994 1.835823059082e-05 4077 3994 16424706.45526 4078 3994 -30988032.272 4079 3994 -16666666.67214 4098 3994 3677411.184426 4099 3994 -36521824.70811 4100 3994 -33333333.32786 4101 3994 -3461373.117666 4102 3994 -19291331.36354 4103 3994 3333333.334427 4104 3994 -16640744.52202 4105 3994 9499396.966606 4106 3994 6666666.665568 3995 3995 290978341.916 4077 3995 21159027.78473 4078 3995 -16666666.67214 4079 3995 -36522342.37638 4098 3995 5078333.334501 4099 3995 -33333333.32786 4100 3995 -48057936.71776 4101 3995 41471527.77105 4102 3995 -3333333.334429 4103 3995 -56412231.12431 4104 3995 8463611.10972 4105 3995 -6666666.665575 4106 3995 -65145600.12031 3996 3996 721441645.4454 3997 3996 64813888.87825 3998 3996 -8.821487426758e-06 3999 3996 -346380299.6592 4000 3996 -64813888.35974 4001 3996 -2.676248550415e-05 4002 3996 27846630.32399 4003 3996 51851110.58409 4107 3996 41127258.27048 4108 3996 16203472.22755 4109 3996 17343888.84954 4110 3996 -135326679.0276 4111 3996 -16203472.09792 4112 3996 -86719444.24762 4113 3996 -13923315.162 4114 3996 12962777.65241 4115 3996 -17343888.52033 3997 3997 624217266.0229 3998 3997 -7.51187935966e-06 3999 3997 -64813888.10048 4000 3997 -41753137.74642 4001 3997 -7.390975952148e-06 4002 3997 77776665.87613 4003 3997 27846630.32398 4004 3997 6.794929504395e-06 4107 3997 16203472.22755 4108 3997 16821163.40287 4109 3997 13874999.85144 4110 3997 -16203472.0331 4111 3997 -59169888.51194 4112 3997 -17343749.90781 4113 3997 19444166.47861 4114 3997 -13923315.162 4115 3997 20812499.90895 3998 3998 760788621.1472 3999 3998 -2.646446228027e-05 4000 3998 -5.185604095459e-06 4001 3998 31972185.12589 4003 3998 4.708766937256e-06 4004 3998 74257680.86397 4107 3998 -17343888.84951 4108 3998 -13874999.85143 4109 3998 -181091253.0988 4110 3998 -86719444.24762 4111 3998 -17343749.94043 4112 3998 -121957897.9018 4113 3998 -26015832.7805 4114 3998 13874999.9393 4115 3998 -37128840.43199 3999 3999 1242901705.056 4000 3999 64813887.58197 4001 3999 -3.838539123535e-05 4002 3999 47693290.89467 4003 3999 -64813888.35975 4004 3999 -7.510185241699e-06 4005 3999 -229938603.1375 4006 3999 -1.400709152222e-06 4007 3999 -1.621246337891e-05 4008 3999 -88595068.35711 4009 3999 64813888.87826 4010 3999 -3.75509262085e-06 4107 3999 -135326679.0277 4108 3999 -16203472.0331 4109 3999 86719444.24762 4110 3999 101875695.1567 4111 3999 16203471.90348 4112 3999 0.03654569387436 4113 3999 -36808280.87074 4114 3999 -16203472.09792 4115 3999 21679860.74398 4116 3999 -113177912.5204 4117 3999 6.407499313354e-07 4118 3999 -86719444.43019 4119 3999 -36072082.53397 4120 3999 16203472.22755 4121 3999 -21679861.11823 4000 4000 1067897821.637 4002 4000 -64813888.10049 4003 4000 -179154367.6044 4004 4000 -1.16229057312e-05 4005 4000 7.748603820801e-07 4006 4000 55243684.38681 4007 4000 -1.788139343262e-06 4008 4000 64813888.87826 4009 4000 -69150192.34827 4010 4000 -4.619359970093e-07 4107 4000 -16203472.09792 4108 4000 -59169888.51195 4109 4000 17343749.94043 4110 4000 16203471.90348 4111 4000 58124724.28025 4112 4000 0.029221534729 4113 4000 -16203472.03311 4114 4000 -93520195.52346 4115 4000 69374999.6084 4116 4000 -1.177191734314e-06 4117 4000 -41882340.60421 4118 4000 8.344650268555e-07 4119 4000 16203472.22754 4120 4000 -31210863.52937 4121 4000 17343750.0057 4001 4001 1220904161.253 4002 4001 -7.390975952148e-06 4003 4001 -9.536743164063e-06 4004 4001 101973736.7139 4005 4001 -1.54972076416e-05 4006 4001 -1.907348632813e-06 4007 4001 109872226.963 4008 4001 -3.635883331299e-06 4009 4001 -6.109476089478e-07 4010 4001 -3642360.79014 4107 4001 86719444.24762 4108 4001 17343749.9078 4109 4001 -121957897.9018 4110 4001 -0.03648543357849 4111 4001 -0.02920261025429 4112 4001 -251706576.231 4113 4001 21679860.55685 4114 4001 69374999.49133 4115 4001 -104457508.7431 4116 4001 -86719444.43019 4117 4001 8.940696716309e-07 4118 4001 -121047307.7997 4119 4001 -21679861.11823 4120 4001 17343750.0057 4121 4001 -38039431.35476 4002 4002 721441645.4454 4003 4002 64813888.87825 4004 4002 -8.821487426758e-06 4005 4002 -88595068.35711 4006 4002 -64813888.87825 4007 4002 -4.26173210144e-06 4008 4002 -346380299.6592 4009 4002 -64813888.35974 4010 4002 -2.676248550415e-05 4011 4002 27846630.32399 4012 4002 51851110.58409 4107 4002 -13923315.16199 4108 4002 19444166.47861 4109 4002 26015832.7805 4110 4002 -36808280.87074 4111 4002 -16203472.0331 4112 4002 -21679860.55685 4113 4002 41127258.27048 4114 4002 16203472.22755 4115 4002 17343888.84954 4116 4002 -36072082.53397 4117 4002 -16203472.22754 4118 4002 -21679861.11823 4119 4002 -135326679.0276 4120 4002 -16203472.09792 4121 4002 -86719444.24762 4122 4002 -13923315.162 4123 4002 12962777.65241 4124 4002 -17343888.52033 4003 4003 624217266.0229 4004 4003 -7.273460780558e-06 4005 4003 -64813888.87825 4006 4003 -69150192.34827 4007 4003 -6.705522537231e-07 4008 4003 -64813888.10048 4009 4003 -41753137.74642 4010 4003 -7.390975952148e-06 4011 4003 77776665.87613 4012 4003 27846630.32398 4013 4003 6.794929504395e-06 4107 4003 12962777.65241 4108 4003 -13923315.162 4109 4003 -13874999.9393 4110 4003 -16203472.09791 4111 4003 -93520195.52345 4112 4003 -69374999.49133 4113 4003 16203472.22755 4114 4003 16821163.40287 4115 4003 13874999.85144 4116 4003 -16203472.22754 4117 4003 -31210863.52937 4118 4003 -17343750.0057 4119 4003 -16203472.0331 4120 4003 -59169888.51194 4121 4003 -17343749.90781 4122 4003 19444166.47861 4123 4003 -13923315.162 4124 4003 20812499.90895 4004 4004 760788621.1472 4005 4004 -4.231929779053e-06 4006 4004 -5.811452865601e-07 4007 4004 -3642360.790142 4008 4004 -2.646446228027e-05 4009 4004 -5.185604095459e-06 4010 4004 31972185.12589 4012 4004 4.708766937256e-06 4013 4004 74257680.86397 4107 4004 17343888.52033 4108 4004 -20812499.90894 4109 4004 -37128840.43198 4110 4004 -21679860.74397 4111 4004 -69374999.6084 4112 4004 -104457508.7431 4113 4004 -17343888.84951 4114 4004 -13874999.85143 4115 4004 -181091253.0988 4116 4004 -21679861.11823 4117 4004 -17343750.0057 4118 4004 -38039431.35476 4119 4004 -86719444.24762 4120 4004 -17343749.94043 4121 4004 -121957897.9018 4122 4004 -26015832.7805 4123 4004 13874999.9393 4124 4004 -37128840.43199 4005 4005 1154306639.95 4006 4005 4.053115844727e-06 4007 4005 -5.984306335449e-05 4008 4005 164134990.0133 4009 4005 -4.798173904419e-06 4010 4005 -1.537799835205e-05 4014 4005 -229938603.1375 4015 4005 -1.400709152222e-06 4016 4005 -1.621246337891e-05 4017 4005 -88595068.35711 4018 4005 64813888.87826 4019 4005 -3.75509262085e-06 4110 4005 -113177912.5205 4111 4005 -1.952052116394e-06 4112 4005 86719444.4302 4113 4005 -36072082.53399 4114 4005 -16203472.22755 4115 4005 21679861.11823 4116 4005 65803613.40852 4117 4005 4.112720489502e-06 4118 4005 3.081560134888e-05 4119 4005 -14659514.18418 4120 4005 -1.010298728943e-05 4121 4005 8.165836334229e-06 4125 4005 -113177912.5204 4126 4005 6.407499313354e-07 4127 4005 -86719444.43019 4128 4005 -36072082.53397 4129 4005 16203472.22755 4130 4005 -21679861.11823 4006 4006 998747631.9559 4007 4006 -6.675720214844e-06 4008 4006 -3.397464752197e-06 4009 4006 -82157545.53163 4010 4006 -2.264976501465e-06 4014 4006 7.748603820801e-07 4015 4006 55243684.38681 4016 4006 -1.788139343262e-06 4017 4006 64813888.87826 4018 4006 -69150192.34827 4019 4006 -4.619359970093e-07 4110 4006 -4.097819328308e-06 4111 4006 -41882340.60423 4112 4006 1.296401023865e-06 4113 4006 -16203472.22755 4114 4006 -31210863.52938 4115 4006 17343750.0057 4116 4006 4.053115844727e-06 4117 4006 26913861.39084 4118 4006 4.738569259644e-06 4119 4006 -7.331371307373e-06 4120 4006 -76232648.10076 4121 4006 69374999.9886 4125 4006 -1.177191734314e-06 4126 4006 -41882340.60421 4127 4006 8.344650268555e-07 4128 4006 16203472.22754 4129 4006 -31210863.52937 4130 4006 17343750.0057 4007 4007 1217261802.153 4008 4007 -1.52587890625e-05 4009 4007 -2.562999725342e-06 4010 4007 179873780.5718 4014 4007 -1.54972076416e-05 4015 4007 -1.907348632813e-06 4016 4007 109872226.963 4017 4007 -3.635883331299e-06 4018 4007 -6.109476089478e-07 4019 4007 -3642360.79014 4110 4007 86719444.4302 4111 4007 1.415610313416e-06 4112 4007 -121047307.7997 4113 4007 21679861.11823 4114 4007 17343750.0057 4115 4007 -38039431.35476 4116 4007 3.02791595459e-05 4117 4007 4.619359970093e-06 4118 4007 -289746007.2349 4119 4007 8.165836334229e-06 4120 4007 69374999.9886 4121 4007 -103546919.3888 4125 4007 -86719444.43019 4126 4007 8.940696716309e-07 4127 4007 -121047307.7997 4128 4007 -21679861.11823 4129 4007 17343750.0057 4130 4007 -38039431.35476 4008 4008 1242901705.056 4009 4008 64813887.58197 4010 4008 -3.838539123535e-05 4011 4008 47693290.89467 4012 4008 -64813888.35975 4013 4008 -7.510185241699e-06 4014 4008 -88595068.35711 4015 4008 -64813888.87825 4016 4008 -4.26173210144e-06 4017 4008 -229938603.1375 4018 4008 -1.400709152222e-06 4019 4008 -1.621246337891e-05 4020 4008 -88595068.35711 4021 4008 64813888.87826 4022 4008 -3.75509262085e-06 4110 4008 -36072082.53399 4111 4008 16203472.22755 4112 4008 21679861.11823 4113 4008 -135326679.0277 4114 4008 -16203472.0331 4115 4008 86719444.24762 4116 4008 -14659514.18418 4117 4008 7.62939453125e-06 4118 4008 7.152557373047e-06 4119 4008 101875695.1567 4120 4008 16203471.90348 4121 4008 0.03654569387436 4122 4008 -36808280.87074 4123 4008 -16203472.09792 4124 4008 21679860.74398 4125 4008 -36072082.53397 4126 4008 -16203472.22754 4127 4008 -21679861.11823 4128 4008 -113177912.5204 4129 4008 6.407499313354e-07 4130 4008 -86719444.43019 4131 4008 -36072082.53397 4132 4008 16203472.22755 4133 4008 -21679861.11823 4009 4009 1067897821.637 4011 4009 -64813888.10049 4012 4009 -179154367.6044 4013 4009 -1.16229057312e-05 4014 4009 -64813888.87825 4015 4009 -69150192.34827 4016 4009 -6.705522537231e-07 4017 4009 7.748603820801e-07 4018 4009 55243684.38681 4019 4009 -1.788139343262e-06 4020 4009 64813888.87826 4021 4009 -69150192.34827 4022 4009 -4.619359970093e-07 4110 4009 16203472.22755 4111 4009 -31210863.52938 4112 4009 -17343750.00569 4113 4009 -16203472.09792 4114 4009 -59169888.51195 4115 4009 17343749.94043 4116 4009 8.970499038696e-06 4117 4009 -76232648.10075 4118 4009 -69374999.9886 4119 4009 16203471.90348 4120 4009 58124724.28025 4121 4009 0.029221534729 4122 4009 -16203472.03311 4123 4009 -93520195.52346 4124 4009 69374999.6084 4125 4009 -16203472.22754 4126 4009 -31210863.52937 4127 4009 -17343750.0057 4128 4009 -1.177191734314e-06 4129 4009 -41882340.60421 4130 4009 8.344650268555e-07 4131 4009 16203472.22754 4132 4009 -31210863.52937 4133 4009 17343750.0057 4010 4010 1220904161.253 4011 4010 -7.390975952148e-06 4012 4010 -9.536743164063e-06 4013 4010 101973736.7139 4014 4010 -4.231929779053e-06 4015 4010 -5.811452865601e-07 4016 4010 -3642360.790142 4017 4010 -1.54972076416e-05 4018 4010 -1.907348632813e-06 4019 4010 109872226.963 4020 4010 -3.635883331299e-06 4021 4010 -6.109476089478e-07 4022 4010 -3642360.79014 4110 4010 21679861.11823 4111 4010 -17343750.00569 4112 4010 -38039431.35476 4113 4010 86719444.24762 4114 4010 17343749.9078 4115 4010 -121957897.9018 4116 4010 7.182359695435e-06 4117 4010 -69374999.9886 4118 4010 -103546919.3888 4119 4010 -0.03648543357849 4120 4010 -0.02920261025429 4121 4010 -251706576.231 4122 4010 21679860.55685 4123 4010 69374999.49133 4124 4010 -104457508.7431 4125 4010 -21679861.11823 4126 4010 -17343750.0057 4127 4010 -38039431.35476 4128 4010 -86719444.43019 4129 4010 8.940696716309e-07 4130 4010 -121047307.7997 4131 4010 -21679861.11823 4132 4010 17343750.0057 4133 4010 -38039431.35476 4011 4011 721441645.4454 4012 4011 64813888.87825 4013 4011 -8.821487426758e-06 4017 4011 -88595068.35711 4018 4011 -64813888.87825 4019 4011 -4.26173210144e-06 4020 4011 -346380299.6592 4021 4011 -64813888.35974 4022 4011 -2.676248550415e-05 4023 4011 27846630.32399 4024 4011 51851110.58409 4113 4011 -13923315.16199 4114 4011 19444166.47861 4115 4011 26015832.7805 4119 4011 -36808280.87074 4120 4011 -16203472.0331 4121 4011 -21679860.55685 4122 4011 41127258.27048 4123 4011 16203472.22755 4124 4011 17343888.84954 4128 4011 -36072082.53397 4129 4011 -16203472.22754 4130 4011 -21679861.11823 4131 4011 -135326679.0276 4132 4011 -16203472.09792 4133 4011 -86719444.24762 4134 4011 -13923315.162 4135 4011 12962777.65241 4136 4011 -17343888.52033 4012 4012 624217266.0229 4013 4012 -7.273460780558e-06 4017 4012 -64813888.87825 4018 4012 -69150192.34827 4019 4012 -6.705522537231e-07 4020 4012 -64813888.10048 4021 4012 -41753137.74642 4022 4012 -7.390975952148e-06 4023 4012 77776665.87613 4024 4012 27846630.32398 4025 4012 6.794929504395e-06 4113 4012 12962777.65241 4114 4012 -13923315.162 4115 4012 -13874999.9393 4119 4012 -16203472.09791 4120 4012 -93520195.52345 4121 4012 -69374999.49133 4122 4012 16203472.22755 4123 4012 16821163.40287 4124 4012 13874999.85144 4128 4012 -16203472.22754 4129 4012 -31210863.52937 4130 4012 -17343750.0057 4131 4012 -16203472.0331 4132 4012 -59169888.51194 4133 4012 -17343749.90781 4134 4012 19444166.47861 4135 4012 -13923315.162 4136 4012 20812499.90895 4013 4013 760788621.1472 4017 4013 -4.231929779053e-06 4018 4013 -5.811452865601e-07 4019 4013 -3642360.790142 4020 4013 -2.646446228027e-05 4021 4013 -5.185604095459e-06 4022 4013 31972185.12589 4024 4013 4.708766937256e-06 4025 4013 74257680.86397 4113 4013 17343888.52033 4114 4013 -20812499.90894 4115 4013 -37128840.43198 4119 4013 -21679860.74397 4120 4013 -69374999.6084 4121 4013 -104457508.7431 4122 4013 -17343888.84951 4123 4013 -13874999.85143 4124 4013 -181091253.0988 4128 4013 -21679861.11823 4129 4013 -17343750.0057 4130 4013 -38039431.35476 4131 4013 -86719444.24762 4132 4013 -17343749.94043 4133 4013 -121957897.9018 4134 4013 -26015832.7805 4135 4013 13874999.9393 4136 4013 -37128840.43199 4014 4014 1154306639.95 4015 4014 4.053115844727e-06 4016 4014 -5.984306335449e-05 4017 4014 164134990.0133 4018 4014 -4.798173904419e-06 4019 4014 -1.537799835205e-05 4026 4014 -229938603.1375 4027 4014 -1.400709152222e-06 4028 4014 -1.621246337891e-05 4029 4014 -88595068.35711 4030 4014 64813888.87826 4031 4014 -3.75509262085e-06 4116 4014 -113177912.5205 4117 4014 -1.952052116394e-06 4118 4014 86719444.4302 4119 4014 -36072082.53399 4120 4014 -16203472.22755 4121 4014 21679861.11823 4125 4014 65803613.40852 4126 4014 4.112720489502e-06 4127 4014 3.081560134888e-05 4128 4014 -14659514.18418 4129 4014 -1.010298728943e-05 4130 4014 8.165836334229e-06 4137 4014 -113177912.5204 4138 4014 6.407499313354e-07 4139 4014 -86719444.43019 4140 4014 -36072082.53397 4141 4014 16203472.22755 4142 4014 -21679861.11823 4015 4015 998747631.9559 4016 4015 -6.675720214844e-06 4017 4015 -3.397464752197e-06 4018 4015 -82157545.53163 4019 4015 -2.264976501465e-06 4026 4015 7.748603820801e-07 4027 4015 55243684.38681 4028 4015 -1.788139343262e-06 4029 4015 64813888.87826 4030 4015 -69150192.34827 4031 4015 -4.619359970093e-07 4116 4015 -4.097819328308e-06 4117 4015 -41882340.60423 4118 4015 1.296401023865e-06 4119 4015 -16203472.22755 4120 4015 -31210863.52938 4121 4015 17343750.0057 4125 4015 4.053115844727e-06 4126 4015 26913861.39084 4127 4015 4.738569259644e-06 4128 4015 -7.331371307373e-06 4129 4015 -76232648.10076 4130 4015 69374999.9886 4137 4015 -1.177191734314e-06 4138 4015 -41882340.60421 4139 4015 8.344650268555e-07 4140 4015 16203472.22754 4141 4015 -31210863.52937 4142 4015 17343750.0057 4016 4016 1217261802.153 4017 4016 -1.52587890625e-05 4018 4016 -2.562999725342e-06 4019 4016 179873780.5718 4026 4016 -1.54972076416e-05 4027 4016 -1.907348632813e-06 4028 4016 109872226.963 4029 4016 -3.635883331299e-06 4030 4016 -6.109476089478e-07 4031 4016 -3642360.79014 4116 4016 86719444.4302 4117 4016 1.415610313416e-06 4118 4016 -121047307.7997 4119 4016 21679861.11823 4120 4016 17343750.0057 4121 4016 -38039431.35476 4125 4016 3.02791595459e-05 4126 4016 4.619359970093e-06 4127 4016 -289746007.2349 4128 4016 8.165836334229e-06 4129 4016 69374999.9886 4130 4016 -103546919.3888 4137 4016 -86719444.43019 4138 4016 8.940696716309e-07 4139 4016 -121047307.7997 4140 4016 -21679861.11823 4141 4016 17343750.0057 4142 4016 -38039431.35476 4017 4017 1154306639.95 4018 4017 4.053115844727e-06 4019 4017 -5.984306335449e-05 4020 4017 164134990.0133 4021 4017 -4.798173904419e-06 4022 4017 -1.537799835205e-05 4026 4017 -88595068.35711 4027 4017 -64813888.87825 4028 4017 -4.26173210144e-06 4029 4017 -229938603.1375 4030 4017 -1.400709152222e-06 4031 4017 -1.621246337891e-05 4032 4017 -88595068.35711 4033 4017 64813888.87826 4034 4017 -3.75509262085e-06 4116 4017 -36072082.53399 4117 4017 16203472.22755 4118 4017 21679861.11823 4119 4017 -113177912.5205 4120 4017 -1.952052116394e-06 4121 4017 86719444.4302 4122 4017 -36072082.53399 4123 4017 -16203472.22755 4124 4017 21679861.11823 4125 4017 -14659514.18418 4126 4017 7.62939453125e-06 4127 4017 7.152557373047e-06 4128 4017 65803613.40852 4129 4017 4.112720489502e-06 4130 4017 3.081560134888e-05 4131 4017 -14659514.18418 4132 4017 -1.010298728943e-05 4133 4017 8.165836334229e-06 4137 4017 -36072082.53397 4138 4017 -16203472.22754 4139 4017 -21679861.11823 4140 4017 -113177912.5204 4141 4017 6.407499313354e-07 4142 4017 -86719444.43019 4143 4017 -36072082.53397 4144 4017 16203472.22755 4145 4017 -21679861.11823 4018 4018 998747631.9559 4019 4018 -6.675720214844e-06 4020 4018 -3.397464752197e-06 4021 4018 -82157545.53163 4022 4018 -2.264976501465e-06 4026 4018 -64813888.87825 4027 4018 -69150192.34827 4028 4018 -6.705522537231e-07 4029 4018 7.748603820801e-07 4030 4018 55243684.38681 4031 4018 -1.788139343262e-06 4032 4018 64813888.87826 4033 4018 -69150192.34827 4034 4018 -4.619359970093e-07 4116 4018 16203472.22755 4117 4018 -31210863.52938 4118 4018 -17343750.00569 4119 4018 -4.097819328308e-06 4120 4018 -41882340.60423 4121 4018 1.296401023865e-06 4122 4018 -16203472.22755 4123 4018 -31210863.52938 4124 4018 17343750.0057 4125 4018 8.970499038696e-06 4126 4018 -76232648.10075 4127 4018 -69374999.9886 4128 4018 4.053115844727e-06 4129 4018 26913861.39084 4130 4018 4.738569259644e-06 4131 4018 -7.331371307373e-06 4132 4018 -76232648.10076 4133 4018 69374999.9886 4137 4018 -16203472.22754 4138 4018 -31210863.52937 4139 4018 -17343750.0057 4140 4018 -1.177191734314e-06 4141 4018 -41882340.60421 4142 4018 8.344650268555e-07 4143 4018 16203472.22754 4144 4018 -31210863.52937 4145 4018 17343750.0057 4019 4019 1217261802.153 4020 4019 -1.52587890625e-05 4021 4019 -2.562999725342e-06 4022 4019 179873780.5718 4026 4019 -4.231929779053e-06 4027 4019 -5.811452865601e-07 4028 4019 -3642360.790142 4029 4019 -1.54972076416e-05 4030 4019 -1.907348632813e-06 4031 4019 109872226.963 4032 4019 -3.635883331299e-06 4033 4019 -6.109476089478e-07 4034 4019 -3642360.79014 4116 4019 21679861.11823 4117 4019 -17343750.00569 4118 4019 -38039431.35476 4119 4019 86719444.4302 4120 4019 1.415610313416e-06 4121 4019 -121047307.7997 4122 4019 21679861.11823 4123 4019 17343750.0057 4124 4019 -38039431.35476 4125 4019 7.182359695435e-06 4126 4019 -69374999.9886 4127 4019 -103546919.3888 4128 4019 3.02791595459e-05 4129 4019 4.619359970093e-06 4130 4019 -289746007.2349 4131 4019 8.165836334229e-06 4132 4019 69374999.9886 4133 4019 -103546919.3888 4137 4019 -21679861.11823 4138 4019 -17343750.0057 4139 4019 -38039431.35476 4140 4019 -86719444.43019 4141 4019 8.940696716309e-07 4142 4019 -121047307.7997 4143 4019 -21679861.11823 4144 4019 17343750.0057 4145 4019 -38039431.35476 4020 4020 1242901705.056 4021 4020 64813887.58197 4022 4020 -3.838539123535e-05 4023 4020 47693290.89467 4024 4020 -64813888.35975 4025 4020 -7.510185241699e-06 4029 4020 -88595068.35711 4030 4020 -64813888.87825 4031 4020 -4.26173210144e-06 4032 4020 -229938603.1375 4033 4020 -1.400709152222e-06 4034 4020 -1.621246337891e-05 4035 4020 -88595068.35711 4036 4020 64813888.87826 4037 4020 -3.75509262085e-06 4119 4020 -36072082.53399 4120 4020 16203472.22755 4121 4020 21679861.11823 4122 4020 -135326679.0277 4123 4020 -16203472.0331 4124 4020 86719444.24762 4128 4020 -14659514.18418 4129 4020 7.62939453125e-06 4130 4020 7.152557373047e-06 4131 4020 101875695.1567 4132 4020 16203471.90348 4133 4020 0.03654569387436 4134 4020 -36808280.87074 4135 4020 -16203472.09792 4136 4020 21679860.74398 4140 4020 -36072082.53397 4141 4020 -16203472.22754 4142 4020 -21679861.11823 4143 4020 -113177912.5204 4144 4020 6.407499313354e-07 4145 4020 -86719444.43019 4146 4020 -36072082.53397 4147 4020 16203472.22755 4148 4020 -21679861.11823 4021 4021 1067897821.637 4023 4021 -64813888.10049 4024 4021 -179154367.6044 4025 4021 -1.16229057312e-05 4029 4021 -64813888.87825 4030 4021 -69150192.34827 4031 4021 -6.705522537231e-07 4032 4021 7.748603820801e-07 4033 4021 55243684.38681 4034 4021 -1.788139343262e-06 4035 4021 64813888.87826 4036 4021 -69150192.34827 4037 4021 -4.619359970093e-07 4119 4021 16203472.22755 4120 4021 -31210863.52938 4121 4021 -17343750.00569 4122 4021 -16203472.09792 4123 4021 -59169888.51195 4124 4021 17343749.94043 4128 4021 8.970499038696e-06 4129 4021 -76232648.10075 4130 4021 -69374999.9886 4131 4021 16203471.90348 4132 4021 58124724.28025 4133 4021 0.029221534729 4134 4021 -16203472.03311 4135 4021 -93520195.52346 4136 4021 69374999.6084 4140 4021 -16203472.22754 4141 4021 -31210863.52937 4142 4021 -17343750.0057 4143 4021 -1.177191734314e-06 4144 4021 -41882340.60421 4145 4021 8.344650268555e-07 4146 4021 16203472.22754 4147 4021 -31210863.52937 4148 4021 17343750.0057 4022 4022 1220904161.253 4023 4022 -7.390975952148e-06 4024 4022 -9.536743164063e-06 4025 4022 101973736.7139 4029 4022 -4.231929779053e-06 4030 4022 -5.811452865601e-07 4031 4022 -3642360.790142 4032 4022 -1.54972076416e-05 4033 4022 -1.907348632813e-06 4034 4022 109872226.963 4035 4022 -3.635883331299e-06 4036 4022 -6.109476089478e-07 4037 4022 -3642360.79014 4119 4022 21679861.11823 4120 4022 -17343750.00569 4121 4022 -38039431.35476 4122 4022 86719444.24762 4123 4022 17343749.9078 4124 4022 -121957897.9018 4128 4022 7.182359695435e-06 4129 4022 -69374999.9886 4130 4022 -103546919.3888 4131 4022 -0.03648543357849 4132 4022 -0.02920261025429 4133 4022 -251706576.231 4134 4022 21679860.55685 4135 4022 69374999.49133 4136 4022 -104457508.7431 4140 4022 -21679861.11823 4141 4022 -17343750.0057 4142 4022 -38039431.35476 4143 4022 -86719444.43019 4144 4022 8.940696716309e-07 4145 4022 -121047307.7997 4146 4022 -21679861.11823 4147 4022 17343750.0057 4148 4022 -38039431.35476 4023 4023 721441645.4454 4024 4023 64813888.87825 4025 4023 -8.821487426758e-06 4032 4023 -88595068.35711 4033 4023 -64813888.87825 4034 4023 -4.26173210144e-06 4035 4023 -346380299.6592 4036 4023 -64813888.35974 4037 4023 -2.676248550415e-05 4038 4023 27846630.32399 4039 4023 51851110.58409 4122 4023 -13923315.16199 4123 4023 19444166.47861 4124 4023 26015832.7805 4131 4023 -36808280.87074 4132 4023 -16203472.0331 4133 4023 -21679860.55685 4134 4023 41127258.27048 4135 4023 16203472.22755 4136 4023 17343888.84954 4143 4023 -36072082.53397 4144 4023 -16203472.22754 4145 4023 -21679861.11823 4146 4023 -135326679.0276 4147 4023 -16203472.09792 4148 4023 -86719444.24762 4149 4023 -13923315.162 4150 4023 12962777.65241 4151 4023 -17343888.52033 4024 4024 624217266.0229 4025 4024 -7.273460780558e-06 4032 4024 -64813888.87825 4033 4024 -69150192.34827 4034 4024 -6.705522537231e-07 4035 4024 -64813888.10048 4036 4024 -41753137.74642 4037 4024 -7.390975952148e-06 4038 4024 77776665.87613 4039 4024 27846630.32398 4040 4024 6.794929504395e-06 4122 4024 12962777.65241 4123 4024 -13923315.162 4124 4024 -13874999.9393 4131 4024 -16203472.09791 4132 4024 -93520195.52345 4133 4024 -69374999.49133 4134 4024 16203472.22755 4135 4024 16821163.40287 4136 4024 13874999.85144 4143 4024 -16203472.22754 4144 4024 -31210863.52937 4145 4024 -17343750.0057 4146 4024 -16203472.0331 4147 4024 -59169888.51194 4148 4024 -17343749.90781 4149 4024 19444166.47861 4150 4024 -13923315.162 4151 4024 20812499.90895 4025 4025 760788621.1472 4032 4025 -4.231929779053e-06 4033 4025 -5.811452865601e-07 4034 4025 -3642360.790142 4035 4025 -2.646446228027e-05 4036 4025 -5.185604095459e-06 4037 4025 31972185.12589 4039 4025 4.708766937256e-06 4040 4025 74257680.86397 4122 4025 17343888.52033 4123 4025 -20812499.90894 4124 4025 -37128840.43198 4131 4025 -21679860.74397 4132 4025 -69374999.6084 4133 4025 -104457508.7431 4134 4025 -17343888.84951 4135 4025 -13874999.85143 4136 4025 -181091253.0988 4143 4025 -21679861.11823 4144 4025 -17343750.0057 4145 4025 -38039431.35476 4146 4025 -86719444.24762 4147 4025 -17343749.94043 4148 4025 -121957897.9018 4149 4025 -26015832.7805 4150 4025 13874999.9393 4151 4025 -37128840.43199 4026 4026 1154306639.95 4027 4026 4.053115844727e-06 4028 4026 -5.984306335449e-05 4029 4026 164134990.0133 4030 4026 -4.798173904419e-06 4031 4026 -1.537799835205e-05 4041 4026 -229938603.1375 4042 4026 -1.400709152222e-06 4043 4026 -1.621246337891e-05 4044 4026 -88595068.35711 4045 4026 64813888.87826 4046 4026 -3.75509262085e-06 4125 4026 -113177912.5205 4126 4026 -1.952052116394e-06 4127 4026 86719444.4302 4128 4026 -36072082.53399 4129 4026 -16203472.22755 4130 4026 21679861.11823 4137 4026 65803613.40852 4138 4026 4.112720489502e-06 4139 4026 3.081560134888e-05 4140 4026 -14659514.18418 4141 4026 -1.010298728943e-05 4142 4026 8.165836334229e-06 4152 4026 -113177912.5204 4153 4026 6.407499313354e-07 4154 4026 -86719444.43019 4155 4026 -36072082.53397 4156 4026 16203472.22755 4157 4026 -21679861.11823 4027 4027 998747631.9559 4028 4027 -6.675720214844e-06 4029 4027 -3.397464752197e-06 4030 4027 -82157545.53163 4031 4027 -2.264976501465e-06 4041 4027 7.748603820801e-07 4042 4027 55243684.38681 4043 4027 -1.788139343262e-06 4044 4027 64813888.87826 4045 4027 -69150192.34827 4046 4027 -4.619359970093e-07 4125 4027 -4.097819328308e-06 4126 4027 -41882340.60423 4127 4027 1.296401023865e-06 4128 4027 -16203472.22755 4129 4027 -31210863.52938 4130 4027 17343750.0057 4137 4027 4.053115844727e-06 4138 4027 26913861.39084 4139 4027 4.738569259644e-06 4140 4027 -7.331371307373e-06 4141 4027 -76232648.10076 4142 4027 69374999.9886 4152 4027 -1.177191734314e-06 4153 4027 -41882340.60421 4154 4027 8.344650268555e-07 4155 4027 16203472.22754 4156 4027 -31210863.52937 4157 4027 17343750.0057 4028 4028 1217261802.153 4029 4028 -1.52587890625e-05 4030 4028 -2.562999725342e-06 4031 4028 179873780.5718 4041 4028 -1.54972076416e-05 4042 4028 -1.907348632813e-06 4043 4028 109872226.963 4044 4028 -3.635883331299e-06 4045 4028 -6.109476089478e-07 4046 4028 -3642360.79014 4125 4028 86719444.4302 4126 4028 1.415610313416e-06 4127 4028 -121047307.7997 4128 4028 21679861.11823 4129 4028 17343750.0057 4130 4028 -38039431.35476 4137 4028 3.02791595459e-05 4138 4028 4.619359970093e-06 4139 4028 -289746007.2349 4140 4028 8.165836334229e-06 4141 4028 69374999.9886 4142 4028 -103546919.3888 4152 4028 -86719444.43019 4153 4028 8.940696716309e-07 4154 4028 -121047307.7997 4155 4028 -21679861.11823 4156 4028 17343750.0057 4157 4028 -38039431.35476 4029 4029 1154306639.95 4030 4029 4.053115844727e-06 4031 4029 -5.984306335449e-05 4032 4029 164134990.0133 4033 4029 -4.798173904419e-06 4034 4029 -1.537799835205e-05 4041 4029 -88595068.35711 4042 4029 -64813888.87825 4043 4029 -4.26173210144e-06 4044 4029 -229938603.1375 4045 4029 -1.400709152222e-06 4046 4029 -1.621246337891e-05 4047 4029 -88595068.35711 4048 4029 64813888.87826 4049 4029 -3.75509262085e-06 4125 4029 -36072082.53399 4126 4029 16203472.22755 4127 4029 21679861.11823 4128 4029 -113177912.5205 4129 4029 -1.952052116394e-06 4130 4029 86719444.4302 4131 4029 -36072082.53399 4132 4029 -16203472.22755 4133 4029 21679861.11823 4137 4029 -14659514.18418 4138 4029 7.62939453125e-06 4139 4029 7.152557373047e-06 4140 4029 65803613.40852 4141 4029 4.112720489502e-06 4142 4029 3.081560134888e-05 4143 4029 -14659514.18418 4144 4029 -1.010298728943e-05 4145 4029 8.165836334229e-06 4152 4029 -36072082.53397 4153 4029 -16203472.22754 4154 4029 -21679861.11823 4155 4029 -113177912.5204 4156 4029 6.407499313354e-07 4157 4029 -86719444.43019 4158 4029 -36072082.53397 4159 4029 16203472.22755 4160 4029 -21679861.11823 4030 4030 998747631.9559 4031 4030 -6.675720214844e-06 4032 4030 -3.397464752197e-06 4033 4030 -82157545.53163 4034 4030 -2.264976501465e-06 4041 4030 -64813888.87825 4042 4030 -69150192.34827 4043 4030 -6.705522537231e-07 4044 4030 7.748603820801e-07 4045 4030 55243684.38681 4046 4030 -1.788139343262e-06 4047 4030 64813888.87826 4048 4030 -69150192.34827 4049 4030 -4.619359970093e-07 4125 4030 16203472.22755 4126 4030 -31210863.52938 4127 4030 -17343750.00569 4128 4030 -4.097819328308e-06 4129 4030 -41882340.60423 4130 4030 1.296401023865e-06 4131 4030 -16203472.22755 4132 4030 -31210863.52938 4133 4030 17343750.0057 4137 4030 8.970499038696e-06 4138 4030 -76232648.10075 4139 4030 -69374999.9886 4140 4030 4.053115844727e-06 4141 4030 26913861.39084 4142 4030 4.738569259644e-06 4143 4030 -7.331371307373e-06 4144 4030 -76232648.10076 4145 4030 69374999.9886 4152 4030 -16203472.22754 4153 4030 -31210863.52937 4154 4030 -17343750.0057 4155 4030 -1.177191734314e-06 4156 4030 -41882340.60421 4157 4030 8.344650268555e-07 4158 4030 16203472.22754 4159 4030 -31210863.52937 4160 4030 17343750.0057 4031 4031 1217261802.153 4032 4031 -1.52587890625e-05 4033 4031 -2.562999725342e-06 4034 4031 179873780.5718 4041 4031 -4.231929779053e-06 4042 4031 -5.811452865601e-07 4043 4031 -3642360.790142 4044 4031 -1.54972076416e-05 4045 4031 -1.907348632813e-06 4046 4031 109872226.963 4047 4031 -3.635883331299e-06 4048 4031 -6.109476089478e-07 4049 4031 -3642360.79014 4125 4031 21679861.11823 4126 4031 -17343750.00569 4127 4031 -38039431.35476 4128 4031 86719444.4302 4129 4031 1.415610313416e-06 4130 4031 -121047307.7997 4131 4031 21679861.11823 4132 4031 17343750.0057 4133 4031 -38039431.35476 4137 4031 7.182359695435e-06 4138 4031 -69374999.9886 4139 4031 -103546919.3888 4140 4031 3.02791595459e-05 4141 4031 4.619359970093e-06 4142 4031 -289746007.2349 4143 4031 8.165836334229e-06 4144 4031 69374999.9886 4145 4031 -103546919.3888 4152 4031 -21679861.11823 4153 4031 -17343750.0057 4154 4031 -38039431.35476 4155 4031 -86719444.43019 4156 4031 8.940696716309e-07 4157 4031 -121047307.7997 4158 4031 -21679861.11823 4159 4031 17343750.0057 4160 4031 -38039431.35476 4032 4032 1154306639.95 4033 4032 4.053115844727e-06 4034 4032 -5.984306335449e-05 4035 4032 164134990.0133 4036 4032 -4.798173904419e-06 4037 4032 -1.537799835205e-05 4044 4032 -88595068.35711 4045 4032 -64813888.87825 4046 4032 -4.26173210144e-06 4047 4032 -229938603.1375 4048 4032 -1.400709152222e-06 4049 4032 -1.621246337891e-05 4050 4032 -88595068.35711 4051 4032 64813888.87826 4052 4032 -3.75509262085e-06 4128 4032 -36072082.53399 4129 4032 16203472.22755 4130 4032 21679861.11823 4131 4032 -113177912.5205 4132 4032 -1.952052116394e-06 4133 4032 86719444.4302 4134 4032 -36072082.53399 4135 4032 -16203472.22755 4136 4032 21679861.11823 4140 4032 -14659514.18418 4141 4032 7.62939453125e-06 4142 4032 7.152557373047e-06 4143 4032 65803613.40852 4144 4032 4.112720489502e-06 4145 4032 3.081560134888e-05 4146 4032 -14659514.18418 4147 4032 -1.010298728943e-05 4148 4032 8.165836334229e-06 4155 4032 -36072082.53397 4156 4032 -16203472.22754 4157 4032 -21679861.11823 4158 4032 -113177912.5204 4159 4032 6.407499313354e-07 4160 4032 -86719444.43019 4161 4032 -36072082.53397 4162 4032 16203472.22755 4163 4032 -21679861.11823 4033 4033 998747631.9559 4034 4033 -6.675720214844e-06 4035 4033 -3.397464752197e-06 4036 4033 -82157545.53163 4037 4033 -2.264976501465e-06 4044 4033 -64813888.87825 4045 4033 -69150192.34827 4046 4033 -6.705522537231e-07 4047 4033 7.748603820801e-07 4048 4033 55243684.38681 4049 4033 -1.788139343262e-06 4050 4033 64813888.87826 4051 4033 -69150192.34827 4052 4033 -4.619359970093e-07 4128 4033 16203472.22755 4129 4033 -31210863.52938 4130 4033 -17343750.00569 4131 4033 -4.097819328308e-06 4132 4033 -41882340.60423 4133 4033 1.296401023865e-06 4134 4033 -16203472.22755 4135 4033 -31210863.52938 4136 4033 17343750.0057 4140 4033 8.970499038696e-06 4141 4033 -76232648.10075 4142 4033 -69374999.9886 4143 4033 4.053115844727e-06 4144 4033 26913861.39084 4145 4033 4.738569259644e-06 4146 4033 -7.331371307373e-06 4147 4033 -76232648.10076 4148 4033 69374999.9886 4155 4033 -16203472.22754 4156 4033 -31210863.52937 4157 4033 -17343750.0057 4158 4033 -1.177191734314e-06 4159 4033 -41882340.60421 4160 4033 8.344650268555e-07 4161 4033 16203472.22754 4162 4033 -31210863.52937 4163 4033 17343750.0057 4034 4034 1217261802.153 4035 4034 -1.52587890625e-05 4036 4034 -2.562999725342e-06 4037 4034 179873780.5718 4044 4034 -4.231929779053e-06 4045 4034 -5.811452865601e-07 4046 4034 -3642360.790142 4047 4034 -1.54972076416e-05 4048 4034 -1.907348632813e-06 4049 4034 109872226.963 4050 4034 -3.635883331299e-06 4051 4034 -6.109476089478e-07 4052 4034 -3642360.79014 4128 4034 21679861.11823 4129 4034 -17343750.00569 4130 4034 -38039431.35476 4131 4034 86719444.4302 4132 4034 1.415610313416e-06 4133 4034 -121047307.7997 4134 4034 21679861.11823 4135 4034 17343750.0057 4136 4034 -38039431.35476 4140 4034 7.182359695435e-06 4141 4034 -69374999.9886 4142 4034 -103546919.3888 4143 4034 3.02791595459e-05 4144 4034 4.619359970093e-06 4145 4034 -289746007.2349 4146 4034 8.165836334229e-06 4147 4034 69374999.9886 4148 4034 -103546919.3888 4155 4034 -21679861.11823 4156 4034 -17343750.0057 4157 4034 -38039431.35476 4158 4034 -86719444.43019 4159 4034 8.940696716309e-07 4160 4034 -121047307.7997 4161 4034 -21679861.11823 4162 4034 17343750.0057 4163 4034 -38039431.35476 4035 4035 1242901705.056 4036 4035 64813887.58197 4037 4035 -3.838539123535e-05 4038 4035 47693290.89467 4039 4035 -64813888.35975 4040 4035 -7.510185241699e-06 4047 4035 -88595068.35711 4048 4035 -64813888.87825 4049 4035 -4.26173210144e-06 4050 4035 -229938603.1375 4051 4035 -1.400709152222e-06 4052 4035 -1.621246337891e-05 4053 4035 -88595068.35711 4054 4035 64813888.87826 4055 4035 -3.75509262085e-06 4131 4035 -36072082.53399 4132 4035 16203472.22755 4133 4035 21679861.11823 4134 4035 -135326679.0277 4135 4035 -16203472.0331 4136 4035 86719444.24762 4143 4035 -14659514.18418 4144 4035 7.62939453125e-06 4145 4035 7.152557373047e-06 4146 4035 101875695.1567 4147 4035 16203471.90348 4148 4035 0.03654569387436 4149 4035 -36808280.87074 4150 4035 -16203472.09792 4151 4035 21679860.74398 4158 4035 -36072082.53397 4159 4035 -16203472.22754 4160 4035 -21679861.11823 4161 4035 -113177912.5204 4162 4035 6.407499313354e-07 4163 4035 -86719444.43019 4164 4035 -36072082.53397 4165 4035 16203472.22755 4166 4035 -21679861.11823 4036 4036 1067897821.637 4038 4036 -64813888.10049 4039 4036 -179154367.6044 4040 4036 -1.16229057312e-05 4047 4036 -64813888.87825 4048 4036 -69150192.34827 4049 4036 -6.705522537231e-07 4050 4036 7.748603820801e-07 4051 4036 55243684.38681 4052 4036 -1.788139343262e-06 4053 4036 64813888.87826 4054 4036 -69150192.34827 4055 4036 -4.619359970093e-07 4131 4036 16203472.22755 4132 4036 -31210863.52938 4133 4036 -17343750.00569 4134 4036 -16203472.09792 4135 4036 -59169888.51195 4136 4036 17343749.94043 4143 4036 8.970499038696e-06 4144 4036 -76232648.10075 4145 4036 -69374999.9886 4146 4036 16203471.90348 4147 4036 58124724.28025 4148 4036 0.029221534729 4149 4036 -16203472.03311 4150 4036 -93520195.52346 4151 4036 69374999.6084 4158 4036 -16203472.22754 4159 4036 -31210863.52937 4160 4036 -17343750.0057 4161 4036 -1.177191734314e-06 4162 4036 -41882340.60421 4163 4036 8.344650268555e-07 4164 4036 16203472.22754 4165 4036 -31210863.52937 4166 4036 17343750.0057 4037 4037 1220904161.253 4038 4037 -7.390975952148e-06 4039 4037 -9.536743164063e-06 4040 4037 101973736.7139 4047 4037 -4.231929779053e-06 4048 4037 -5.811452865601e-07 4049 4037 -3642360.790142 4050 4037 -1.54972076416e-05 4051 4037 -1.907348632813e-06 4052 4037 109872226.963 4053 4037 -3.635883331299e-06 4054 4037 -6.109476089478e-07 4055 4037 -3642360.79014 4131 4037 21679861.11823 4132 4037 -17343750.00569 4133 4037 -38039431.35476 4134 4037 86719444.24762 4135 4037 17343749.9078 4136 4037 -121957897.9018 4143 4037 7.182359695435e-06 4144 4037 -69374999.9886 4145 4037 -103546919.3888 4146 4037 -0.03648543357849 4147 4037 -0.02920261025429 4148 4037 -251706576.231 4149 4037 21679860.55685 4150 4037 69374999.49133 4151 4037 -104457508.7431 4158 4037 -21679861.11823 4159 4037 -17343750.0057 4160 4037 -38039431.35476 4161 4037 -86719444.43019 4162 4037 8.940696716309e-07 4163 4037 -121047307.7997 4164 4037 -21679861.11823 4165 4037 17343750.0057 4166 4037 -38039431.35476 4038 4038 721441645.4454 4039 4038 64813888.87825 4040 4038 -8.821487426758e-06 4050 4038 -88595068.35711 4051 4038 -64813888.87825 4052 4038 -4.26173210144e-06 4053 4038 -346380299.6592 4054 4038 -64813888.35974 4055 4038 -2.676248550415e-05 4056 4038 27846630.32399 4057 4038 51851110.58409 4134 4038 -13923315.16199 4135 4038 19444166.47861 4136 4038 26015832.7805 4146 4038 -36808280.87074 4147 4038 -16203472.0331 4148 4038 -21679860.55685 4149 4038 41127258.27048 4150 4038 16203472.22755 4151 4038 17343888.84954 4161 4038 -36072082.53397 4162 4038 -16203472.22754 4163 4038 -21679861.11823 4164 4038 -135326679.0276 4165 4038 -16203472.09792 4166 4038 -86719444.24762 4167 4038 -13923315.162 4168 4038 12962777.65241 4169 4038 -17343888.52033 4039 4039 624217266.0229 4040 4039 -7.273460780558e-06 4050 4039 -64813888.87825 4051 4039 -69150192.34827 4052 4039 -6.705522537231e-07 4053 4039 -64813888.10048 4054 4039 -41753137.74642 4055 4039 -7.390975952148e-06 4056 4039 77776665.87613 4057 4039 27846630.32398 4058 4039 6.794929504395e-06 4134 4039 12962777.65241 4135 4039 -13923315.162 4136 4039 -13874999.9393 4146 4039 -16203472.09791 4147 4039 -93520195.52345 4148 4039 -69374999.49133 4149 4039 16203472.22755 4150 4039 16821163.40287 4151 4039 13874999.85144 4161 4039 -16203472.22754 4162 4039 -31210863.52937 4163 4039 -17343750.0057 4164 4039 -16203472.0331 4165 4039 -59169888.51194 4166 4039 -17343749.90781 4167 4039 19444166.47861 4168 4039 -13923315.162 4169 4039 20812499.90895 4040 4040 760788621.1472 4050 4040 -4.231929779053e-06 4051 4040 -5.811452865601e-07 4052 4040 -3642360.790142 4053 4040 -2.646446228027e-05 4054 4040 -5.185604095459e-06 4055 4040 31972185.12589 4057 4040 4.708766937256e-06 4058 4040 74257680.86397 4134 4040 17343888.52033 4135 4040 -20812499.90894 4136 4040 -37128840.43198 4146 4040 -21679860.74397 4147 4040 -69374999.6084 4148 4040 -104457508.7431 4149 4040 -17343888.84951 4150 4040 -13874999.85143 4151 4040 -181091253.0988 4161 4040 -21679861.11823 4162 4040 -17343750.0057 4163 4040 -38039431.35476 4164 4040 -86719444.24762 4165 4040 -17343749.94043 4166 4040 -121957897.9018 4167 4040 -26015832.7805 4168 4040 13874999.9393 4169 4040 -37128840.43199 4041 4041 1154306639.95 4042 4041 4.053115844727e-06 4043 4041 -5.984306335449e-05 4044 4041 164134990.0133 4045 4041 -4.798173904419e-06 4046 4041 -1.537799835205e-05 4059 4041 -229938603.1375 4060 4041 -1.400709152222e-06 4061 4041 -1.621246337891e-05 4062 4041 -88595068.35711 4063 4041 64813888.87826 4064 4041 -3.75509262085e-06 4137 4041 -113177912.5205 4138 4041 -1.952052116394e-06 4139 4041 86719444.4302 4140 4041 -36072082.53399 4141 4041 -16203472.22755 4142 4041 21679861.11823 4152 4041 65803613.40852 4153 4041 4.112720489502e-06 4154 4041 3.081560134888e-05 4155 4041 -14659514.18418 4156 4041 -1.010298728943e-05 4157 4041 8.165836334229e-06 4170 4041 -113177912.5204 4171 4041 6.407499313354e-07 4172 4041 -86719444.43019 4173 4041 -36072082.53397 4174 4041 16203472.22755 4175 4041 -21679861.11823 4042 4042 998747631.9559 4043 4042 -6.675720214844e-06 4044 4042 -3.397464752197e-06 4045 4042 -82157545.53163 4046 4042 -2.264976501465e-06 4059 4042 7.748603820801e-07 4060 4042 55243684.38681 4061 4042 -1.788139343262e-06 4062 4042 64813888.87826 4063 4042 -69150192.34827 4064 4042 -4.619359970093e-07 4137 4042 -4.097819328308e-06 4138 4042 -41882340.60423 4139 4042 1.296401023865e-06 4140 4042 -16203472.22755 4141 4042 -31210863.52938 4142 4042 17343750.0057 4152 4042 4.053115844727e-06 4153 4042 26913861.39084 4154 4042 4.738569259644e-06 4155 4042 -7.331371307373e-06 4156 4042 -76232648.10076 4157 4042 69374999.9886 4170 4042 -1.177191734314e-06 4171 4042 -41882340.60421 4172 4042 8.344650268555e-07 4173 4042 16203472.22754 4174 4042 -31210863.52937 4175 4042 17343750.0057 4043 4043 1217261802.153 4044 4043 -1.52587890625e-05 4045 4043 -2.562999725342e-06 4046 4043 179873780.5718 4059 4043 -1.54972076416e-05 4060 4043 -1.907348632813e-06 4061 4043 109872226.963 4062 4043 -3.635883331299e-06 4063 4043 -6.109476089478e-07 4064 4043 -3642360.79014 4137 4043 86719444.4302 4138 4043 1.415610313416e-06 4139 4043 -121047307.7997 4140 4043 21679861.11823 4141 4043 17343750.0057 4142 4043 -38039431.35476 4152 4043 3.02791595459e-05 4153 4043 4.619359970093e-06 4154 4043 -289746007.2349 4155 4043 8.165836334229e-06 4156 4043 69374999.9886 4157 4043 -103546919.3888 4170 4043 -86719444.43019 4171 4043 8.940696716309e-07 4172 4043 -121047307.7997 4173 4043 -21679861.11823 4174 4043 17343750.0057 4175 4043 -38039431.35476 4044 4044 1154306639.95 4045 4044 4.053115844727e-06 4046 4044 -5.984306335449e-05 4047 4044 164134990.0133 4048 4044 -4.798173904419e-06 4049 4044 -1.537799835205e-05 4059 4044 -88595068.35711 4060 4044 -64813888.87825 4061 4044 -4.26173210144e-06 4062 4044 -229938603.1375 4063 4044 -1.400709152222e-06 4064 4044 -1.621246337891e-05 4065 4044 -88595068.35711 4066 4044 64813888.87826 4067 4044 -3.75509262085e-06 4137 4044 -36072082.53399 4138 4044 16203472.22755 4139 4044 21679861.11823 4140 4044 -113177912.5205 4141 4044 -1.952052116394e-06 4142 4044 86719444.4302 4143 4044 -36072082.53399 4144 4044 -16203472.22755 4145 4044 21679861.11823 4152 4044 -14659514.18418 4153 4044 7.62939453125e-06 4154 4044 7.152557373047e-06 4155 4044 65803613.40852 4156 4044 4.112720489502e-06 4157 4044 3.081560134888e-05 4158 4044 -14659514.18418 4159 4044 -1.010298728943e-05 4160 4044 8.165836334229e-06 4170 4044 -36072082.53397 4171 4044 -16203472.22754 4172 4044 -21679861.11823 4173 4044 -113177912.5204 4174 4044 6.407499313354e-07 4175 4044 -86719444.43019 4176 4044 -36072082.53397 4177 4044 16203472.22755 4178 4044 -21679861.11823 4045 4045 998747631.9559 4046 4045 -6.675720214844e-06 4047 4045 -3.397464752197e-06 4048 4045 -82157545.53163 4049 4045 -2.264976501465e-06 4059 4045 -64813888.87825 4060 4045 -69150192.34827 4061 4045 -6.705522537231e-07 4062 4045 7.748603820801e-07 4063 4045 55243684.38681 4064 4045 -1.788139343262e-06 4065 4045 64813888.87826 4066 4045 -69150192.34827 4067 4045 -4.619359970093e-07 4137 4045 16203472.22755 4138 4045 -31210863.52938 4139 4045 -17343750.00569 4140 4045 -4.097819328308e-06 4141 4045 -41882340.60423 4142 4045 1.296401023865e-06 4143 4045 -16203472.22755 4144 4045 -31210863.52938 4145 4045 17343750.0057 4152 4045 8.970499038696e-06 4153 4045 -76232648.10075 4154 4045 -69374999.9886 4155 4045 4.053115844727e-06 4156 4045 26913861.39084 4157 4045 4.738569259644e-06 4158 4045 -7.331371307373e-06 4159 4045 -76232648.10076 4160 4045 69374999.9886 4170 4045 -16203472.22754 4171 4045 -31210863.52937 4172 4045 -17343750.0057 4173 4045 -1.177191734314e-06 4174 4045 -41882340.60421 4175 4045 8.344650268555e-07 4176 4045 16203472.22754 4177 4045 -31210863.52937 4178 4045 17343750.0057 4046 4046 1217261802.153 4047 4046 -1.52587890625e-05 4048 4046 -2.562999725342e-06 4049 4046 179873780.5718 4059 4046 -4.231929779053e-06 4060 4046 -5.811452865601e-07 4061 4046 -3642360.790142 4062 4046 -1.54972076416e-05 4063 4046 -1.907348632813e-06 4064 4046 109872226.963 4065 4046 -3.635883331299e-06 4066 4046 -6.109476089478e-07 4067 4046 -3642360.79014 4137 4046 21679861.11823 4138 4046 -17343750.00569 4139 4046 -38039431.35476 4140 4046 86719444.4302 4141 4046 1.415610313416e-06 4142 4046 -121047307.7997 4143 4046 21679861.11823 4144 4046 17343750.0057 4145 4046 -38039431.35476 4152 4046 7.182359695435e-06 4153 4046 -69374999.9886 4154 4046 -103546919.3888 4155 4046 3.02791595459e-05 4156 4046 4.619359970093e-06 4157 4046 -289746007.2349 4158 4046 8.165836334229e-06 4159 4046 69374999.9886 4160 4046 -103546919.3888 4170 4046 -21679861.11823 4171 4046 -17343750.0057 4172 4046 -38039431.35476 4173 4046 -86719444.43019 4174 4046 8.940696716309e-07 4175 4046 -121047307.7997 4176 4046 -21679861.11823 4177 4046 17343750.0057 4178 4046 -38039431.35476 4047 4047 1154306639.95 4048 4047 4.053115844727e-06 4049 4047 -5.984306335449e-05 4050 4047 164134990.0133 4051 4047 -4.798173904419e-06 4052 4047 -1.537799835205e-05 4062 4047 -88595068.35711 4063 4047 -64813888.87825 4064 4047 -4.26173210144e-06 4065 4047 -229938603.1375 4066 4047 -1.400709152222e-06 4067 4047 -1.621246337891e-05 4068 4047 -88595068.35711 4069 4047 64813888.87826 4070 4047 -3.75509262085e-06 4140 4047 -36072082.53399 4141 4047 16203472.22755 4142 4047 21679861.11823 4143 4047 -113177912.5205 4144 4047 -1.952052116394e-06 4145 4047 86719444.4302 4146 4047 -36072082.53399 4147 4047 -16203472.22755 4148 4047 21679861.11823 4155 4047 -14659514.18418 4156 4047 7.62939453125e-06 4157 4047 7.152557373047e-06 4158 4047 65803613.40852 4159 4047 4.112720489502e-06 4160 4047 3.081560134888e-05 4161 4047 -14659514.18418 4162 4047 -1.010298728943e-05 4163 4047 8.165836334229e-06 4173 4047 -36072082.53397 4174 4047 -16203472.22754 4175 4047 -21679861.11823 4176 4047 -113177912.5204 4177 4047 6.407499313354e-07 4178 4047 -86719444.43019 4179 4047 -36072082.53397 4180 4047 16203472.22755 4181 4047 -21679861.11823 4048 4048 998747631.9559 4049 4048 -6.675720214844e-06 4050 4048 -3.397464752197e-06 4051 4048 -82157545.53163 4052 4048 -2.264976501465e-06 4062 4048 -64813888.87825 4063 4048 -69150192.34827 4064 4048 -6.705522537231e-07 4065 4048 7.748603820801e-07 4066 4048 55243684.38681 4067 4048 -1.788139343262e-06 4068 4048 64813888.87826 4069 4048 -69150192.34827 4070 4048 -4.619359970093e-07 4140 4048 16203472.22755 4141 4048 -31210863.52938 4142 4048 -17343750.00569 4143 4048 -4.097819328308e-06 4144 4048 -41882340.60423 4145 4048 1.296401023865e-06 4146 4048 -16203472.22755 4147 4048 -31210863.52938 4148 4048 17343750.0057 4155 4048 8.970499038696e-06 4156 4048 -76232648.10075 4157 4048 -69374999.9886 4158 4048 4.053115844727e-06 4159 4048 26913861.39084 4160 4048 4.738569259644e-06 4161 4048 -7.331371307373e-06 4162 4048 -76232648.10076 4163 4048 69374999.9886 4173 4048 -16203472.22754 4174 4048 -31210863.52937 4175 4048 -17343750.0057 4176 4048 -1.177191734314e-06 4177 4048 -41882340.60421 4178 4048 8.344650268555e-07 4179 4048 16203472.22754 4180 4048 -31210863.52937 4181 4048 17343750.0057 4049 4049 1217261802.153 4050 4049 -1.52587890625e-05 4051 4049 -2.562999725342e-06 4052 4049 179873780.5718 4062 4049 -4.231929779053e-06 4063 4049 -5.811452865601e-07 4064 4049 -3642360.790142 4065 4049 -1.54972076416e-05 4066 4049 -1.907348632813e-06 4067 4049 109872226.963 4068 4049 -3.635883331299e-06 4069 4049 -6.109476089478e-07 4070 4049 -3642360.79014 4140 4049 21679861.11823 4141 4049 -17343750.00569 4142 4049 -38039431.35476 4143 4049 86719444.4302 4144 4049 1.415610313416e-06 4145 4049 -121047307.7997 4146 4049 21679861.11823 4147 4049 17343750.0057 4148 4049 -38039431.35476 4155 4049 7.182359695435e-06 4156 4049 -69374999.9886 4157 4049 -103546919.3888 4158 4049 3.02791595459e-05 4159 4049 4.619359970093e-06 4160 4049 -289746007.2349 4161 4049 8.165836334229e-06 4162 4049 69374999.9886 4163 4049 -103546919.3888 4173 4049 -21679861.11823 4174 4049 -17343750.0057 4175 4049 -38039431.35476 4176 4049 -86719444.43019 4177 4049 8.940696716309e-07 4178 4049 -121047307.7997 4179 4049 -21679861.11823 4180 4049 17343750.0057 4181 4049 -38039431.35476 4050 4050 1154306639.95 4051 4050 4.053115844727e-06 4052 4050 -5.984306335449e-05 4053 4050 164134990.0133 4054 4050 -4.798173904419e-06 4055 4050 -1.537799835205e-05 4065 4050 -88595068.35711 4066 4050 -64813888.87825 4067 4050 -4.26173210144e-06 4068 4050 -229938603.1375 4069 4050 -1.400709152222e-06 4070 4050 -1.621246337891e-05 4071 4050 -88595068.35711 4072 4050 64813888.87826 4073 4050 -3.75509262085e-06 4143 4050 -36072082.53399 4144 4050 16203472.22755 4145 4050 21679861.11823 4146 4050 -113177912.5205 4147 4050 -1.952052116394e-06 4148 4050 86719444.4302 4149 4050 -36072082.53399 4150 4050 -16203472.22755 4151 4050 21679861.11823 4158 4050 -14659514.18418 4159 4050 7.62939453125e-06 4160 4050 7.152557373047e-06 4161 4050 65803613.40852 4162 4050 4.112720489502e-06 4163 4050 3.081560134888e-05 4164 4050 -14659514.18418 4165 4050 -1.010298728943e-05 4166 4050 8.165836334229e-06 4176 4050 -36072082.53397 4177 4050 -16203472.22754 4178 4050 -21679861.11823 4179 4050 -113177912.5204 4180 4050 6.407499313354e-07 4181 4050 -86719444.43019 4182 4050 -36072082.53397 4183 4050 16203472.22755 4184 4050 -21679861.11823 4051 4051 998747631.9559 4052 4051 -6.675720214844e-06 4053 4051 -3.397464752197e-06 4054 4051 -82157545.53163 4055 4051 -2.264976501465e-06 4065 4051 -64813888.87825 4066 4051 -69150192.34827 4067 4051 -6.705522537231e-07 4068 4051 7.748603820801e-07 4069 4051 55243684.38681 4070 4051 -1.788139343262e-06 4071 4051 64813888.87826 4072 4051 -69150192.34827 4073 4051 -4.619359970093e-07 4143 4051 16203472.22755 4144 4051 -31210863.52938 4145 4051 -17343750.00569 4146 4051 -4.097819328308e-06 4147 4051 -41882340.60423 4148 4051 1.296401023865e-06 4149 4051 -16203472.22755 4150 4051 -31210863.52938 4151 4051 17343750.0057 4158 4051 8.970499038696e-06 4159 4051 -76232648.10075 4160 4051 -69374999.9886 4161 4051 4.053115844727e-06 4162 4051 26913861.39084 4163 4051 4.738569259644e-06 4164 4051 -7.331371307373e-06 4165 4051 -76232648.10076 4166 4051 69374999.9886 4176 4051 -16203472.22754 4177 4051 -31210863.52937 4178 4051 -17343750.0057 4179 4051 -1.177191734314e-06 4180 4051 -41882340.60421 4181 4051 8.344650268555e-07 4182 4051 16203472.22754 4183 4051 -31210863.52937 4184 4051 17343750.0057 4052 4052 1217261802.153 4053 4052 -1.52587890625e-05 4054 4052 -2.562999725342e-06 4055 4052 179873780.5718 4065 4052 -4.231929779053e-06 4066 4052 -5.811452865601e-07 4067 4052 -3642360.790142 4068 4052 -1.54972076416e-05 4069 4052 -1.907348632813e-06 4070 4052 109872226.963 4071 4052 -3.635883331299e-06 4072 4052 -6.109476089478e-07 4073 4052 -3642360.79014 4143 4052 21679861.11823 4144 4052 -17343750.00569 4145 4052 -38039431.35476 4146 4052 86719444.4302 4147 4052 1.415610313416e-06 4148 4052 -121047307.7997 4149 4052 21679861.11823 4150 4052 17343750.0057 4151 4052 -38039431.35476 4158 4052 7.182359695435e-06 4159 4052 -69374999.9886 4160 4052 -103546919.3888 4161 4052 3.02791595459e-05 4162 4052 4.619359970093e-06 4163 4052 -289746007.2349 4164 4052 8.165836334229e-06 4165 4052 69374999.9886 4166 4052 -103546919.3888 4176 4052 -21679861.11823 4177 4052 -17343750.0057 4178 4052 -38039431.35476 4179 4052 -86719444.43019 4180 4052 8.940696716309e-07 4181 4052 -121047307.7997 4182 4052 -21679861.11823 4183 4052 17343750.0057 4184 4052 -38039431.35476 4053 4053 1242901705.056 4054 4053 64813887.58197 4055 4053 -3.838539123535e-05 4056 4053 47693290.89467 4057 4053 -64813888.35975 4058 4053 -7.510185241699e-06 4068 4053 -88595068.35711 4069 4053 -64813888.87825 4070 4053 -4.26173210144e-06 4071 4053 -229938603.1375 4072 4053 -1.400709152222e-06 4073 4053 -1.621246337891e-05 4074 4053 -88595068.35711 4075 4053 64813888.87826 4076 4053 -3.75509262085e-06 4146 4053 -36072082.53399 4147 4053 16203472.22755 4148 4053 21679861.11823 4149 4053 -135326679.0277 4150 4053 -16203472.0331 4151 4053 86719444.24762 4161 4053 -14659514.18418 4162 4053 7.62939453125e-06 4163 4053 7.152557373047e-06 4164 4053 101875695.1567 4165 4053 16203471.90348 4166 4053 0.03654569387436 4167 4053 -36808280.87074 4168 4053 -16203472.09792 4169 4053 21679860.74398 4179 4053 -36072082.53397 4180 4053 -16203472.22754 4181 4053 -21679861.11823 4182 4053 -113177912.5204 4183 4053 6.407499313354e-07 4184 4053 -86719444.43019 4185 4053 -36072082.53397 4186 4053 16203472.22755 4187 4053 -21679861.11823 4054 4054 1067897821.637 4056 4054 -64813888.10049 4057 4054 -179154367.6044 4058 4054 -1.16229057312e-05 4068 4054 -64813888.87825 4069 4054 -69150192.34827 4070 4054 -6.705522537231e-07 4071 4054 7.748603820801e-07 4072 4054 55243684.38681 4073 4054 -1.788139343262e-06 4074 4054 64813888.87826 4075 4054 -69150192.34827 4076 4054 -4.619359970093e-07 4146 4054 16203472.22755 4147 4054 -31210863.52938 4148 4054 -17343750.00569 4149 4054 -16203472.09792 4150 4054 -59169888.51195 4151 4054 17343749.94043 4161 4054 8.970499038696e-06 4162 4054 -76232648.10075 4163 4054 -69374999.9886 4164 4054 16203471.90348 4165 4054 58124724.28025 4166 4054 0.029221534729 4167 4054 -16203472.03311 4168 4054 -93520195.52346 4169 4054 69374999.6084 4179 4054 -16203472.22754 4180 4054 -31210863.52937 4181 4054 -17343750.0057 4182 4054 -1.177191734314e-06 4183 4054 -41882340.60421 4184 4054 8.344650268555e-07 4185 4054 16203472.22754 4186 4054 -31210863.52937 4187 4054 17343750.0057 4055 4055 1220904161.253 4056 4055 -7.390975952148e-06 4057 4055 -9.536743164063e-06 4058 4055 101973736.7139 4068 4055 -4.231929779053e-06 4069 4055 -5.811452865601e-07 4070 4055 -3642360.790142 4071 4055 -1.54972076416e-05 4072 4055 -1.907348632813e-06 4073 4055 109872226.963 4074 4055 -3.635883331299e-06 4075 4055 -6.109476089478e-07 4076 4055 -3642360.79014 4146 4055 21679861.11823 4147 4055 -17343750.00569 4148 4055 -38039431.35476 4149 4055 86719444.24762 4150 4055 17343749.9078 4151 4055 -121957897.9018 4161 4055 7.182359695435e-06 4162 4055 -69374999.9886 4163 4055 -103546919.3888 4164 4055 -0.03648543357849 4165 4055 -0.02920261025429 4166 4055 -251706576.231 4167 4055 21679860.55685 4168 4055 69374999.49133 4169 4055 -104457508.7431 4179 4055 -21679861.11823 4180 4055 -17343750.0057 4181 4055 -38039431.35476 4182 4055 -86719444.43019 4183 4055 8.940696716309e-07 4184 4055 -121047307.7997 4185 4055 -21679861.11823 4186 4055 17343750.0057 4187 4055 -38039431.35476 4056 4056 733825161.8322 4057 4056 69874541.14581 4058 4056 -2.217292785645e-05 4071 4056 -88595068.35711 4072 4056 -64813888.87825 4073 4056 -4.26173210144e-06 4074 4056 -357844273.783 4075 4056 -69875651.73839 4076 4056 -1.627206802368e-05 4077 4056 31270320.21804 4078 4056 51852221.69518 4079 4056 2.145767211914e-06 4149 4056 -13923315.16199 4150 4056 19444166.47861 4151 4056 26015832.7805 4164 4056 -36808280.87074 4165 4056 -16203472.0331 4166 4056 -21679860.55685 4167 4056 42592361.75168 4168 4056 17468608.18462 4169 4056 17682222.18139 4182 4056 -36072082.53397 4183 4056 -16203472.22754 4184 4056 -21679861.11823 4185 4056 -139005882.4837 4186 4056 -17468608.05498 4187 4056 -88411110.90688 4188 4056 -13882071.21844 4189 4056 12962777.65241 4190 4056 -18020555.17262 4057 4057 630427502.0707 4058 4057 -7.890164852142e-06 4071 4057 -64813888.87825 4072 4057 -69150192.34827 4073 4057 -6.705522537231e-07 4074 4057 -69876207.03468 4075 4057 -50940301.31523 4076 4057 -8.344650268555e-07 4077 4057 77778332.54278 4078 4057 35166790.002 4079 4057 3.576278686523e-07 4149 4057 12962777.65241 4150 4057 -13923315.162 4151 4057 -13874999.9393 4164 4057 -16203472.09791 4165 4057 -93520195.52345 4166 4057 -69374999.49133 4167 4057 17468608.18461 4168 4057 16743847.91338 4169 4057 14145833.18359 4182 4057 -16203472.22754 4183 4057 -31210863.52937 4184 4057 -17343750.0057 4185 4057 -17468607.99017 4186 4057 -62280769.56998 4187 4057 -18697916.56855 4188 4057 19444166.47861 4189 4057 -12907974.64577 4190 4057 20270833.25379 4058 4058 770466102.9009 4071 4058 -4.231929779053e-06 4072 4058 -5.811452865601e-07 4073 4058 -3642360.790142 4074 4058 -1.692771911621e-05 4075 4058 -1.072883605957e-06 4076 4058 28643285.85725 4077 4058 2.741813659668e-06 4078 4058 3.576278686523e-07 4079 4058 79491050.79752 4149 4058 17343888.52033 4150 4058 -20812499.90894 4151 4058 -37128840.43198 4164 4058 -21679860.74397 4165 4058 -69374999.6084 4166 4058 -104457508.7431 4167 4058 -17682222.18136 4168 4058 -14145833.18358 4169 4058 -183017309.7474 4182 4058 -21679861.11823 4183 4058 -17343750.0057 4184 4058 -38039431.35476 4185 4058 -88411110.90688 4186 4058 -18697916.60118 4187 4058 -124962011.2801 4188 4058 -27030832.75893 4189 4058 13062499.95656 4190 4058 -37992953.15517 4059 4059 1154306639.95 4060 4059 4.053115844727e-06 4061 4059 -5.984306335449e-05 4062 4059 164134990.0133 4063 4059 -4.798173904419e-06 4064 4059 -1.537799835205e-05 4080 4059 -229938603.1375 4081 4059 -1.400709152222e-06 4082 4059 -1.621246337891e-05 4083 4059 -88595068.35711 4084 4059 64813888.87826 4085 4059 -3.75509262085e-06 4152 4059 -113177912.5205 4153 4059 -1.952052116394e-06 4154 4059 86719444.4302 4155 4059 -36072082.53399 4156 4059 -16203472.22755 4157 4059 21679861.11823 4170 4059 65803613.40852 4171 4059 4.112720489502e-06 4172 4059 3.081560134888e-05 4173 4059 -14659514.18418 4174 4059 -1.010298728943e-05 4175 4059 8.165836334229e-06 4191 4059 -113177912.5204 4192 4059 6.407499313354e-07 4193 4059 -86719444.43019 4194 4059 -36072082.53397 4195 4059 16203472.22755 4196 4059 -21679861.11823 4060 4060 998747631.9559 4061 4060 -6.675720214844e-06 4062 4060 -3.397464752197e-06 4063 4060 -82157545.53163 4064 4060 -2.264976501465e-06 4080 4060 7.748603820801e-07 4081 4060 55243684.38681 4082 4060 -1.788139343262e-06 4083 4060 64813888.87826 4084 4060 -69150192.34827 4085 4060 -4.619359970093e-07 4152 4060 -4.097819328308e-06 4153 4060 -41882340.60423 4154 4060 1.296401023865e-06 4155 4060 -16203472.22755 4156 4060 -31210863.52938 4157 4060 17343750.0057 4170 4060 4.053115844727e-06 4171 4060 26913861.39084 4172 4060 4.738569259644e-06 4173 4060 -7.331371307373e-06 4174 4060 -76232648.10076 4175 4060 69374999.9886 4191 4060 -1.177191734314e-06 4192 4060 -41882340.60421 4193 4060 8.344650268555e-07 4194 4060 16203472.22754 4195 4060 -31210863.52937 4196 4060 17343750.0057 4061 4061 1217261802.153 4062 4061 -1.52587890625e-05 4063 4061 -2.562999725342e-06 4064 4061 179873780.5718 4080 4061 -1.54972076416e-05 4081 4061 -1.907348632813e-06 4082 4061 109872226.963 4083 4061 -3.635883331299e-06 4084 4061 -6.109476089478e-07 4085 4061 -3642360.79014 4152 4061 86719444.4302 4153 4061 1.415610313416e-06 4154 4061 -121047307.7997 4155 4061 21679861.11823 4156 4061 17343750.0057 4157 4061 -38039431.35476 4170 4061 3.02791595459e-05 4171 4061 4.619359970093e-06 4172 4061 -289746007.2349 4173 4061 8.165836334229e-06 4174 4061 69374999.9886 4175 4061 -103546919.3888 4191 4061 -86719444.43019 4192 4061 8.940696716309e-07 4193 4061 -121047307.7997 4194 4061 -21679861.11823 4195 4061 17343750.0057 4196 4061 -38039431.35476 4062 4062 1154306639.95 4063 4062 4.053115844727e-06 4064 4062 -5.984306335449e-05 4065 4062 164134990.0133 4066 4062 -4.798173904419e-06 4067 4062 -1.537799835205e-05 4080 4062 -88595068.35711 4081 4062 -64813888.87825 4082 4062 -4.26173210144e-06 4083 4062 -229938603.1375 4084 4062 -1.400709152222e-06 4085 4062 -1.621246337891e-05 4086 4062 -88595068.35711 4087 4062 64813888.87826 4088 4062 -3.75509262085e-06 4152 4062 -36072082.53399 4153 4062 16203472.22755 4154 4062 21679861.11823 4155 4062 -113177912.5205 4156 4062 -1.952052116394e-06 4157 4062 86719444.4302 4158 4062 -36072082.53399 4159 4062 -16203472.22755 4160 4062 21679861.11823 4170 4062 -14659514.18418 4171 4062 7.62939453125e-06 4172 4062 7.152557373047e-06 4173 4062 65803613.40852 4174 4062 4.112720489502e-06 4175 4062 3.081560134888e-05 4176 4062 -14659514.18418 4177 4062 -1.010298728943e-05 4178 4062 8.165836334229e-06 4191 4062 -36072082.53397 4192 4062 -16203472.22754 4193 4062 -21679861.11823 4194 4062 -113177912.5204 4195 4062 6.407499313354e-07 4196 4062 -86719444.43019 4197 4062 -36072082.53397 4198 4062 16203472.22755 4199 4062 -21679861.11823 4063 4063 998747631.9559 4064 4063 -6.675720214844e-06 4065 4063 -3.397464752197e-06 4066 4063 -82157545.53163 4067 4063 -2.264976501465e-06 4080 4063 -64813888.87825 4081 4063 -69150192.34827 4082 4063 -6.705522537231e-07 4083 4063 7.748603820801e-07 4084 4063 55243684.38681 4085 4063 -1.788139343262e-06 4086 4063 64813888.87826 4087 4063 -69150192.34827 4088 4063 -4.619359970093e-07 4152 4063 16203472.22755 4153 4063 -31210863.52938 4154 4063 -17343750.00569 4155 4063 -4.097819328308e-06 4156 4063 -41882340.60423 4157 4063 1.296401023865e-06 4158 4063 -16203472.22755 4159 4063 -31210863.52938 4160 4063 17343750.0057 4170 4063 8.970499038696e-06 4171 4063 -76232648.10075 4172 4063 -69374999.9886 4173 4063 4.053115844727e-06 4174 4063 26913861.39084 4175 4063 4.738569259644e-06 4176 4063 -7.331371307373e-06 4177 4063 -76232648.10076 4178 4063 69374999.9886 4191 4063 -16203472.22754 4192 4063 -31210863.52937 4193 4063 -17343750.0057 4194 4063 -1.177191734314e-06 4195 4063 -41882340.60421 4196 4063 8.344650268555e-07 4197 4063 16203472.22754 4198 4063 -31210863.52937 4199 4063 17343750.0057 4064 4064 1217261802.153 4065 4064 -1.52587890625e-05 4066 4064 -2.562999725342e-06 4067 4064 179873780.5718 4080 4064 -4.231929779053e-06 4081 4064 -5.811452865601e-07 4082 4064 -3642360.790142 4083 4064 -1.54972076416e-05 4084 4064 -1.907348632813e-06 4085 4064 109872226.963 4086 4064 -3.635883331299e-06 4087 4064 -6.109476089478e-07 4088 4064 -3642360.79014 4152 4064 21679861.11823 4153 4064 -17343750.00569 4154 4064 -38039431.35476 4155 4064 86719444.4302 4156 4064 1.415610313416e-06 4157 4064 -121047307.7997 4158 4064 21679861.11823 4159 4064 17343750.0057 4160 4064 -38039431.35476 4170 4064 7.182359695435e-06 4171 4064 -69374999.9886 4172 4064 -103546919.3888 4173 4064 3.02791595459e-05 4174 4064 4.619359970093e-06 4175 4064 -289746007.2349 4176 4064 8.165836334229e-06 4177 4064 69374999.9886 4178 4064 -103546919.3888 4191 4064 -21679861.11823 4192 4064 -17343750.0057 4193 4064 -38039431.35476 4194 4064 -86719444.43019 4195 4064 8.940696716309e-07 4196 4064 -121047307.7997 4197 4064 -21679861.11823 4198 4064 17343750.0057 4199 4064 -38039431.35476 4065 4065 1154306639.95 4066 4065 4.053115844727e-06 4067 4065 -5.984306335449e-05 4068 4065 164134990.0133 4069 4065 -4.798173904419e-06 4070 4065 -1.537799835205e-05 4083 4065 -88595068.35711 4084 4065 -64813888.87825 4085 4065 -4.26173210144e-06 4086 4065 -229938603.1375 4087 4065 -1.400709152222e-06 4088 4065 -1.621246337891e-05 4089 4065 -88595068.35711 4090 4065 64813888.87826 4091 4065 -3.75509262085e-06 4155 4065 -36072082.53399 4156 4065 16203472.22755 4157 4065 21679861.11823 4158 4065 -113177912.5205 4159 4065 -1.952052116394e-06 4160 4065 86719444.4302 4161 4065 -36072082.53399 4162 4065 -16203472.22755 4163 4065 21679861.11823 4173 4065 -14659514.18418 4174 4065 7.62939453125e-06 4175 4065 7.152557373047e-06 4176 4065 65803613.40852 4177 4065 4.112720489502e-06 4178 4065 3.081560134888e-05 4179 4065 -14659514.18418 4180 4065 -1.010298728943e-05 4181 4065 8.165836334229e-06 4194 4065 -36072082.53397 4195 4065 -16203472.22754 4196 4065 -21679861.11823 4197 4065 -113177912.5204 4198 4065 6.407499313354e-07 4199 4065 -86719444.43019 4200 4065 -36072082.53397 4201 4065 16203472.22755 4202 4065 -21679861.11823 4066 4066 998747631.9559 4067 4066 -6.675720214844e-06 4068 4066 -3.397464752197e-06 4069 4066 -82157545.53163 4070 4066 -2.264976501465e-06 4083 4066 -64813888.87825 4084 4066 -69150192.34827 4085 4066 -6.705522537231e-07 4086 4066 7.748603820801e-07 4087 4066 55243684.38681 4088 4066 -1.788139343262e-06 4089 4066 64813888.87826 4090 4066 -69150192.34827 4091 4066 -4.619359970093e-07 4155 4066 16203472.22755 4156 4066 -31210863.52938 4157 4066 -17343750.00569 4158 4066 -4.097819328308e-06 4159 4066 -41882340.60423 4160 4066 1.296401023865e-06 4161 4066 -16203472.22755 4162 4066 -31210863.52938 4163 4066 17343750.0057 4173 4066 8.970499038696e-06 4174 4066 -76232648.10075 4175 4066 -69374999.9886 4176 4066 4.053115844727e-06 4177 4066 26913861.39084 4178 4066 4.738569259644e-06 4179 4066 -7.331371307373e-06 4180 4066 -76232648.10076 4181 4066 69374999.9886 4194 4066 -16203472.22754 4195 4066 -31210863.52937 4196 4066 -17343750.0057 4197 4066 -1.177191734314e-06 4198 4066 -41882340.60421 4199 4066 8.344650268555e-07 4200 4066 16203472.22754 4201 4066 -31210863.52937 4202 4066 17343750.0057 4067 4067 1217261802.153 4068 4067 -1.52587890625e-05 4069 4067 -2.562999725342e-06 4070 4067 179873780.5718 4083 4067 -4.231929779053e-06 4084 4067 -5.811452865601e-07 4085 4067 -3642360.790142 4086 4067 -1.54972076416e-05 4087 4067 -1.907348632813e-06 4088 4067 109872226.963 4089 4067 -3.635883331299e-06 4090 4067 -6.109476089478e-07 4091 4067 -3642360.79014 4155 4067 21679861.11823 4156 4067 -17343750.00569 4157 4067 -38039431.35476 4158 4067 86719444.4302 4159 4067 1.415610313416e-06 4160 4067 -121047307.7997 4161 4067 21679861.11823 4162 4067 17343750.0057 4163 4067 -38039431.35476 4173 4067 7.182359695435e-06 4174 4067 -69374999.9886 4175 4067 -103546919.3888 4176 4067 3.02791595459e-05 4177 4067 4.619359970093e-06 4178 4067 -289746007.2349 4179 4067 8.165836334229e-06 4180 4067 69374999.9886 4181 4067 -103546919.3888 4194 4067 -21679861.11823 4195 4067 -17343750.0057 4196 4067 -38039431.35476 4197 4067 -86719444.43019 4198 4067 8.940696716309e-07 4199 4067 -121047307.7997 4200 4067 -21679861.11823 4201 4067 17343750.0057 4202 4067 -38039431.35476 4068 4068 1154306639.95 4069 4068 4.053115844727e-06 4070 4068 -5.984306335449e-05 4071 4068 164134990.0133 4072 4068 -4.798173904419e-06 4073 4068 -1.537799835205e-05 4086 4068 -88595068.35711 4087 4068 -64813888.87825 4088 4068 -4.26173210144e-06 4089 4068 -229938603.1375 4090 4068 -1.400709152222e-06 4091 4068 -1.621246337891e-05 4092 4068 -88595068.35711 4093 4068 64813888.87826 4094 4068 -3.75509262085e-06 4158 4068 -36072082.53399 4159 4068 16203472.22755 4160 4068 21679861.11823 4161 4068 -113177912.5205 4162 4068 -1.952052116394e-06 4163 4068 86719444.4302 4164 4068 -36072082.53399 4165 4068 -16203472.22755 4166 4068 21679861.11823 4176 4068 -14659514.18418 4177 4068 7.62939453125e-06 4178 4068 7.152557373047e-06 4179 4068 65803613.40852 4180 4068 4.112720489502e-06 4181 4068 3.081560134888e-05 4182 4068 -14659514.18418 4183 4068 -1.010298728943e-05 4184 4068 8.165836334229e-06 4197 4068 -36072082.53397 4198 4068 -16203472.22754 4199 4068 -21679861.11823 4200 4068 -113177912.5204 4201 4068 6.407499313354e-07 4202 4068 -86719444.43019 4203 4068 -36072082.53397 4204 4068 16203472.22755 4205 4068 -21679861.11823 4069 4069 998747631.9559 4070 4069 -6.675720214844e-06 4071 4069 -3.397464752197e-06 4072 4069 -82157545.53163 4073 4069 -2.264976501465e-06 4086 4069 -64813888.87825 4087 4069 -69150192.34827 4088 4069 -6.705522537231e-07 4089 4069 7.748603820801e-07 4090 4069 55243684.38681 4091 4069 -1.788139343262e-06 4092 4069 64813888.87826 4093 4069 -69150192.34827 4094 4069 -4.619359970093e-07 4158 4069 16203472.22755 4159 4069 -31210863.52938 4160 4069 -17343750.00569 4161 4069 -4.097819328308e-06 4162 4069 -41882340.60423 4163 4069 1.296401023865e-06 4164 4069 -16203472.22755 4165 4069 -31210863.52938 4166 4069 17343750.0057 4176 4069 8.970499038696e-06 4177 4069 -76232648.10075 4178 4069 -69374999.9886 4179 4069 4.053115844727e-06 4180 4069 26913861.39084 4181 4069 4.738569259644e-06 4182 4069 -7.331371307373e-06 4183 4069 -76232648.10076 4184 4069 69374999.9886 4197 4069 -16203472.22754 4198 4069 -31210863.52937 4199 4069 -17343750.0057 4200 4069 -1.177191734314e-06 4201 4069 -41882340.60421 4202 4069 8.344650268555e-07 4203 4069 16203472.22754 4204 4069 -31210863.52937 4205 4069 17343750.0057 4070 4070 1217261802.153 4071 4070 -1.52587890625e-05 4072 4070 -2.562999725342e-06 4073 4070 179873780.5718 4086 4070 -4.231929779053e-06 4087 4070 -5.811452865601e-07 4088 4070 -3642360.790142 4089 4070 -1.54972076416e-05 4090 4070 -1.907348632813e-06 4091 4070 109872226.963 4092 4070 -3.635883331299e-06 4093 4070 -6.109476089478e-07 4094 4070 -3642360.79014 4158 4070 21679861.11823 4159 4070 -17343750.00569 4160 4070 -38039431.35476 4161 4070 86719444.4302 4162 4070 1.415610313416e-06 4163 4070 -121047307.7997 4164 4070 21679861.11823 4165 4070 17343750.0057 4166 4070 -38039431.35476 4176 4070 7.182359695435e-06 4177 4070 -69374999.9886 4178 4070 -103546919.3888 4179 4070 3.02791595459e-05 4180 4070 4.619359970093e-06 4181 4070 -289746007.2349 4182 4070 8.165836334229e-06 4183 4070 69374999.9886 4184 4070 -103546919.3888 4197 4070 -21679861.11823 4198 4070 -17343750.0057 4199 4070 -38039431.35476 4200 4070 -86719444.43019 4201 4070 8.940696716309e-07 4202 4070 -121047307.7997 4203 4070 -21679861.11823 4204 4070 17343750.0057 4205 4070 -38039431.35476 4071 4071 1154306639.95 4072 4071 4.053115844727e-06 4073 4071 -5.984306335449e-05 4074 4071 164134990.0133 4075 4071 -4.798173904419e-06 4076 4071 -1.537799835205e-05 4089 4071 -88595068.35711 4090 4071 -64813888.87825 4091 4071 -4.26173210144e-06 4092 4071 -229938603.1375 4093 4071 -1.400709152222e-06 4094 4071 -1.621246337891e-05 4095 4071 -88595068.35711 4096 4071 64813888.87826 4097 4071 -3.75509262085e-06 4161 4071 -36072082.53399 4162 4071 16203472.22755 4163 4071 21679861.11823 4164 4071 -113177912.5205 4165 4071 -1.952052116394e-06 4166 4071 86719444.4302 4167 4071 -36072082.53399 4168 4071 -16203472.22755 4169 4071 21679861.11823 4179 4071 -14659514.18418 4180 4071 7.62939453125e-06 4181 4071 7.152557373047e-06 4182 4071 65803613.40852 4183 4071 4.112720489502e-06 4184 4071 3.081560134888e-05 4185 4071 -14659514.18418 4186 4071 -1.010298728943e-05 4187 4071 8.165836334229e-06 4200 4071 -36072082.53397 4201 4071 -16203472.22754 4202 4071 -21679861.11823 4203 4071 -113177912.5204 4204 4071 6.407499313354e-07 4205 4071 -86719444.43019 4206 4071 -36072082.53397 4207 4071 16203472.22755 4208 4071 -21679861.11823 4072 4072 998747631.9559 4073 4072 -6.675720214844e-06 4074 4072 -3.397464752197e-06 4075 4072 -82157545.53163 4076 4072 -2.264976501465e-06 4089 4072 -64813888.87825 4090 4072 -69150192.34827 4091 4072 -6.705522537231e-07 4092 4072 7.748603820801e-07 4093 4072 55243684.38681 4094 4072 -1.788139343262e-06 4095 4072 64813888.87826 4096 4072 -69150192.34827 4097 4072 -4.619359970093e-07 4161 4072 16203472.22755 4162 4072 -31210863.52938 4163 4072 -17343750.00569 4164 4072 -4.097819328308e-06 4165 4072 -41882340.60423 4166 4072 1.296401023865e-06 4167 4072 -16203472.22755 4168 4072 -31210863.52938 4169 4072 17343750.0057 4179 4072 8.970499038696e-06 4180 4072 -76232648.10075 4181 4072 -69374999.9886 4182 4072 4.053115844727e-06 4183 4072 26913861.39084 4184 4072 4.738569259644e-06 4185 4072 -7.331371307373e-06 4186 4072 -76232648.10076 4187 4072 69374999.9886 4200 4072 -16203472.22754 4201 4072 -31210863.52937 4202 4072 -17343750.0057 4203 4072 -1.177191734314e-06 4204 4072 -41882340.60421 4205 4072 8.344650268555e-07 4206 4072 16203472.22754 4207 4072 -31210863.52937 4208 4072 17343750.0057 4073 4073 1217261802.153 4074 4073 -1.52587890625e-05 4075 4073 -2.562999725342e-06 4076 4073 179873780.5718 4089 4073 -4.231929779053e-06 4090 4073 -5.811452865601e-07 4091 4073 -3642360.790142 4092 4073 -1.54972076416e-05 4093 4073 -1.907348632813e-06 4094 4073 109872226.963 4095 4073 -3.635883331299e-06 4096 4073 -6.109476089478e-07 4097 4073 -3642360.79014 4161 4073 21679861.11823 4162 4073 -17343750.00569 4163 4073 -38039431.35476 4164 4073 86719444.4302 4165 4073 1.415610313416e-06 4166 4073 -121047307.7997 4167 4073 21679861.11823 4168 4073 17343750.0057 4169 4073 -38039431.35476 4179 4073 7.182359695435e-06 4180 4073 -69374999.9886 4181 4073 -103546919.3888 4182 4073 3.02791595459e-05 4183 4073 4.619359970093e-06 4184 4073 -289746007.2349 4185 4073 8.165836334229e-06 4186 4073 69374999.9886 4187 4073 -103546919.3888 4200 4073 -21679861.11823 4201 4073 -17343750.0057 4202 4073 -38039431.35476 4203 4073 -86719444.43019 4204 4073 8.940696716309e-07 4205 4073 -121047307.7997 4206 4073 -21679861.11823 4207 4073 17343750.0057 4208 4073 -38039431.35476 4074 4074 1264143404.142 4075 4074 69984496.09989 4076 4074 -4.458427429199e-05 4077 4074 56216718.86036 4078 4074 -62295134.4999 4079 4074 -1.54972076416e-06 4092 4074 -88595068.35711 4093 4074 -64813888.87825 4094 4074 -4.26173210144e-06 4095 4074 -235044286.8786 4096 4074 -2540789.090044 4097 4074 -1.227855682373e-05 4098 4074 -95281145.70689 4099 4074 64727634.52473 4100 4074 3.576278686523e-06 4164 4074 -36072082.53399 4165 4074 16203472.22755 4166 4074 21679861.11823 4167 4074 -139005882.4837 4168 4074 -17468607.99017 4169 4074 88411110.90689 4182 4074 -14659514.18418 4183 4074 7.62939453125e-06 4184 4074 7.152557373047e-06 4185 4074 104468568.1069 4186 4074 17495749.11933 4187 4074 0.03796529769897 4188 4074 -35762896.95689 4189 4074 -15573449.91109 4190 4074 21679166.28526 4203 4074 -36072082.53397 4204 4074 -16203472.22754 4205 4074 -21679861.11823 4206 4074 -114724288.833 4207 4074 -635253.1045082 4208 4074 -87564583.31886 4209 4074 -37742508.837 4210 4074 16181561.88644 4211 4074 -22525694.45184 4075 4075 1075589634.327 4076 4075 1.180171966553e-05 4077 4075 -62295134.24064 4078 4075 -170484887.2683 4079 4075 -5.960464477539e-06 4092 4075 -64813888.87825 4093 4075 -69150192.34827 4094 4075 -6.705522537231e-07 4095 4075 -2541344.645597 4096 4075 52569923.74254 4097 4075 4.887580871582e-06 4098 4075 64727634.52473 4099 4075 -67141169.32471 4164 4075 16203472.22755 4165 4075 -31210863.52938 4166 4075 -17343750.00569 4167 4075 -17468608.05498 4168 4075 -62280769.56999 4169 4075 18697916.60118 4182 4075 8.970499038696e-06 4183 4075 -76232648.10075 4184 4075 -69374999.9886 4185 4075 17495749.11932 4186 4075 57330719.05925 4187 4075 0.0303547680378 4188 4075 -15573449.84628 4189 4075 -92437084.05277 4190 4075 69374999.59698 4203 4075 -16203472.22754 4204 4075 -31210863.52937 4205 4075 -17343750.0057 4206 4075 -635253.1045087 4207 4075 -42821513.04609 4208 4075 -677083.3331559 4209 4075 16181561.88644 4210 4075 -30707665.48679 4211 4075 16666666.67214 4076 4076 1236468691.55 4077 4076 -1.54972076416e-06 4078 4076 -5.69224357605e-06 4079 4076 109730878.4261 4092 4076 -4.231929779053e-06 4093 4076 -5.811452865601e-07 4094 4076 -3642360.790142 4095 4076 -1.347064971924e-05 4096 4076 4.768371582031e-06 4097 4076 108515321.757 4098 4076 3.635883331299e-06 4099 4076 -1.490116119385e-08 4100 4076 -4919850.093637 4164 4076 21679861.11823 4165 4076 -17343750.00569 4166 4076 -38039431.35476 4167 4076 88411110.90689 4168 4076 18697916.56855 4169 4076 -124962011.2801 4182 4076 7.182359695435e-06 4183 4076 -69374999.9886 4184 4076 -103546919.3888 4185 4076 -0.03791528940201 4186 4076 -0.03035008907318 4187 4076 -255055797.8371 4188 4076 21679166.091 4189 4076 69374999.4742 4190 4076 -105412602.9399 4203 4076 -21679861.11823 4204 4076 -17343750.0057 4205 4076 -38039431.35476 4206 4076 -87564583.31903 4207 4076 -677083.3332893 4208 4076 -122108417.4801 4209 4076 -22525694.45184 4210 4076 16666666.67214 4211 4076 -38357223.71349 4077 4077 696472573.0655 4078 4077 -1771689.826609 4079 4077 1.192092895508e-06 4095 4077 -87258192.16972 4096 4077 -64804100.71711 4097 4077 -4.500150680542e-06 4098 4077 -242104687.4354 4099 4077 -3424057.139935 4100 4077 -8.940696716309e-07 4101 4077 75831742.92238 4102 4077 -11180768.61541 4103 4077 -2.026557922363e-06 4104 4077 -95109676.42566 4105 4077 65697417.99692 4106 4077 6.526708602905e-06 4167 4077 -13882071.21844 4168 4077 19444166.47861 4169 4077 27030832.75893 4185 4077 -35762896.9569 4186 4077 -15573449.84628 4187 4077 -21679166.091 4188 4077 24359103.43618 4189 4077 -442912.965739 4190 4077 17135277.77496 4206 4077 -35736813.43153 4207 4077 -16200678.02491 4208 4077 -21679166.67379 4209 4077 -113692433.8764 4210 4077 -855995.9423768 4211 4077 -85676388.87482 4212 4077 -6375113.374567 4213 4077 -2795132.258682 4214 4077 3215972.223778 4215 4077 -36573838.1928 4216 4077 16424002.55938 4217 4077 -21159027.78473 4078 4078 713868420.1604 4079 4078 2.408027648926e-05 4095 4078 -64804100.71711 4096 4078 -69555876.00861 4097 4078 -4.619359970093e-07 4098 4078 -3424057.139936 4099 4078 46038548.55542 4100 4078 1.239776611328e-05 4101 4078 14745342.49144 4102 4078 -46950609.66777 4103 4078 -4.500150680542e-06 4104 4078 65697417.99692 4105 4078 -72763586.73755 4106 4078 -1.296401023865e-06 4167 4078 12962777.65241 4168 4078 -12907974.64577 4169 4078 -13062499.95656 4185 4078 -15573449.91109 4186 4078 -92437084.05278 4187 4078 -69374999.4742 4188 4078 -442912.96574 4189 4078 28707972.02065 4190 4078 7208333.185868 4206 4078 -16200678.02491 4207 4078 -31311329.22223 4208 4078 -17343750.0057 4209 4078 -855995.9423762 4210 4078 -41658168.45665 4211 4078 -677083.3331569 4212 4078 3686256.632335 4213 4078 -37070043.77932 4214 4078 33333333.32785 4215 4078 16424002.55938 4216 4078 -30987435.47836 4217 4078 16666666.67214 4079 4079 808185795.747 4095 4079 -4.52995300293e-06 4096 4079 -4.619359970093e-07 4097 4079 -3390328.224563 4098 4079 -1.132488250732e-06 4099 4079 1.233816146851e-05 4100 4079 96899236.61815 4101 4079 3.576278686523e-07 4102 4079 -4.738569259644e-06 4103 4079 79524039.77179 4104 4079 6.139278411865e-06 4105 4079 -1.35600566864e-06 4106 4079 -9590542.374572 4167 4079 18020555.17262 4168 4079 -20270833.25379 4169 4079 -37992953.15518 4185 4079 -21679166.28526 4186 4079 -69374999.59698 4187 4079 -105412602.9399 4188 4079 -17135277.77496 4189 4079 -7208333.185865 4190 4079 -197305370.7384 4206 4079 -21679166.67379 4207 4079 -17343750.0057 4208 4079 -37974851.43985 4209 4079 -85676388.87482 4210 4079 -677083.3332903 4211 4079 -117555867.1805 4212 4079 -4909027.779057 4213 4079 33333333.32785 4214 4079 -47673130.40165 4215 4079 -21159027.78473 4216 4079 16666666.67214 4217 4079 -36522727.11637 4080 4080 577153319.975 4081 4080 -3.814697265625e-06 4082 4080 -3.170967102051e-05 4083 4080 82067495.00666 4084 4080 12962777.77565 4085 4080 -7.867813110352e-06 4170 4080 -113177912.5205 4171 4080 -1.952052116394e-06 4172 4080 86719444.4302 4173 4080 -36072082.53399 4174 4080 -16203472.22755 4175 4080 21679861.11823 4191 4080 32901806.70425 4192 4080 2.026557922363e-06 4193 4080 -17343888.88602 4194 4080 -7329757.09209 4195 4080 3240694.445505 4196 4080 -4335972.223642 4081 4081 499373815.978 4082 4081 1.025199890137e-05 4083 4081 -12962777.77565 4084 4081 -41078772.7658 4085 4081 2.264976501465e-06 4170 4081 -4.097819328308e-06 4171 4081 -41882340.60423 4172 4081 1.296401023865e-06 4173 4081 -16203472.22755 4174 4081 -31210863.52938 4175 4081 17343750.0057 4191 4081 1.430511474609e-06 4192 4081 13456930.69541 4193 4081 -4.410743713379e-06 4194 4081 -3240694.445512 4195 4081 -38116324.05037 4196 4081 34687499.9943 4082 4082 608630901.0765 4083 4082 -7.867813110352e-06 4084 4082 2.115964889526e-06 4085 4082 89936890.28591 4170 4082 86719444.4302 4171 4082 1.415610313416e-06 4172 4082 -121047307.7997 4173 4082 21679861.11823 4174 4082 17343750.0057 4175 4082 -38039431.35476 4191 4082 17343888.88605 4192 4082 -4.410743713379e-06 4193 4082 -144873003.6175 4194 4082 4335972.22365 4195 4082 34687499.9943 4196 4082 -51773459.69442 4083 4083 577153319.975 4084 4083 -3.814697265625e-06 4085 4083 -3.170967102051e-05 4086 4083 82067495.00666 4087 4083 12962777.77565 4088 4083 -7.867813110352e-06 4170 4083 -36072082.53399 4171 4083 16203472.22755 4172 4083 21679861.11823 4173 4083 -113177912.5205 4174 4083 -1.952052116394e-06 4175 4083 86719444.4302 4176 4083 -36072082.53399 4177 4083 -16203472.22755 4178 4083 21679861.11823 4191 4083 -7329757.092094 4192 4083 -3240694.445505 4193 4083 -4335972.223642 4194 4083 32901806.70425 4195 4083 2.026557922363e-06 4196 4083 -17343888.88602 4197 4083 -7329757.09209 4198 4083 3240694.445505 4199 4083 -4335972.223642 4084 4084 499373815.978 4085 4084 1.025199890137e-05 4086 4084 -12962777.77565 4087 4084 -41078772.7658 4088 4084 2.264976501465e-06 4170 4084 16203472.22755 4171 4084 -31210863.52938 4172 4084 -17343750.00569 4173 4084 -4.097819328308e-06 4174 4084 -41882340.60423 4175 4084 1.296401023865e-06 4176 4084 -16203472.22755 4177 4084 -31210863.52938 4178 4084 17343750.0057 4191 4084 3240694.445514 4192 4084 -38116324.05038 4193 4084 -34687499.9943 4194 4084 1.430511474609e-06 4195 4084 13456930.69541 4196 4084 -4.410743713379e-06 4197 4084 -3240694.445512 4198 4084 -38116324.05037 4199 4084 34687499.9943 4085 4085 608630901.0765 4086 4085 -7.867813110352e-06 4087 4085 2.115964889526e-06 4088 4085 89936890.28591 4170 4085 21679861.11823 4171 4085 -17343750.00569 4172 4085 -38039431.35476 4173 4085 86719444.4302 4174 4085 1.415610313416e-06 4175 4085 -121047307.7997 4176 4085 21679861.11823 4177 4085 17343750.0057 4178 4085 -38039431.35476 4191 4085 4335972.22365 4192 4085 -34687499.9943 4193 4085 -51773459.69442 4194 4085 17343888.88605 4195 4085 -4.410743713379e-06 4196 4085 -144873003.6175 4197 4085 4335972.22365 4198 4085 34687499.9943 4199 4085 -51773459.69442 4086 4086 577153319.975 4087 4086 -3.814697265625e-06 4088 4086 -3.170967102051e-05 4089 4086 82067495.00666 4090 4086 12962777.77565 4091 4086 -7.867813110352e-06 4173 4086 -36072082.53399 4174 4086 16203472.22755 4175 4086 21679861.11823 4176 4086 -113177912.5205 4177 4086 -1.952052116394e-06 4178 4086 86719444.4302 4179 4086 -36072082.53399 4180 4086 -16203472.22755 4181 4086 21679861.11823 4194 4086 -7329757.092094 4195 4086 -3240694.445505 4196 4086 -4335972.223642 4197 4086 32901806.70425 4198 4086 2.026557922363e-06 4199 4086 -17343888.88602 4200 4086 -7329757.09209 4201 4086 3240694.445505 4202 4086 -4335972.223642 4087 4087 499373815.978 4088 4087 1.025199890137e-05 4089 4087 -12962777.77565 4090 4087 -41078772.7658 4091 4087 2.264976501465e-06 4173 4087 16203472.22755 4174 4087 -31210863.52938 4175 4087 -17343750.00569 4176 4087 -4.097819328308e-06 4177 4087 -41882340.60423 4178 4087 1.296401023865e-06 4179 4087 -16203472.22755 4180 4087 -31210863.52938 4181 4087 17343750.0057 4194 4087 3240694.445514 4195 4087 -38116324.05038 4196 4087 -34687499.9943 4197 4087 1.430511474609e-06 4198 4087 13456930.69541 4199 4087 -4.410743713379e-06 4200 4087 -3240694.445512 4201 4087 -38116324.05037 4202 4087 34687499.9943 4088 4088 608630901.0765 4089 4088 -7.867813110352e-06 4090 4088 2.115964889526e-06 4091 4088 89936890.28591 4173 4088 21679861.11823 4174 4088 -17343750.00569 4175 4088 -38039431.35476 4176 4088 86719444.4302 4177 4088 1.415610313416e-06 4178 4088 -121047307.7997 4179 4088 21679861.11823 4180 4088 17343750.0057 4181 4088 -38039431.35476 4194 4088 4335972.22365 4195 4088 -34687499.9943 4196 4088 -51773459.69442 4197 4088 17343888.88605 4198 4088 -4.410743713379e-06 4199 4088 -144873003.6175 4200 4088 4335972.22365 4201 4088 34687499.9943 4202 4088 -51773459.69442 4089 4089 577153319.975 4090 4089 -3.814697265625e-06 4091 4089 -3.170967102051e-05 4092 4089 82067495.00666 4093 4089 12962777.77565 4094 4089 -7.867813110352e-06 4176 4089 -36072082.53399 4177 4089 16203472.22755 4178 4089 21679861.11823 4179 4089 -113177912.5205 4180 4089 -1.952052116394e-06 4181 4089 86719444.4302 4182 4089 -36072082.53399 4183 4089 -16203472.22755 4184 4089 21679861.11823 4197 4089 -7329757.092094 4198 4089 -3240694.445505 4199 4089 -4335972.223642 4200 4089 32901806.70425 4201 4089 2.026557922363e-06 4202 4089 -17343888.88602 4203 4089 -7329757.09209 4204 4089 3240694.445505 4205 4089 -4335972.223642 4090 4090 499373815.978 4091 4090 1.025199890137e-05 4092 4090 -12962777.77565 4093 4090 -41078772.7658 4094 4090 2.264976501465e-06 4176 4090 16203472.22755 4177 4090 -31210863.52938 4178 4090 -17343750.00569 4179 4090 -4.097819328308e-06 4180 4090 -41882340.60423 4181 4090 1.296401023865e-06 4182 4090 -16203472.22755 4183 4090 -31210863.52938 4184 4090 17343750.0057 4197 4090 3240694.445514 4198 4090 -38116324.05038 4199 4090 -34687499.9943 4200 4090 1.430511474609e-06 4201 4090 13456930.69541 4202 4090 -4.410743713379e-06 4203 4090 -3240694.445512 4204 4090 -38116324.05037 4205 4090 34687499.9943 4091 4091 608630901.0765 4092 4091 -7.867813110352e-06 4093 4091 2.115964889526e-06 4094 4091 89936890.28591 4176 4091 21679861.11823 4177 4091 -17343750.00569 4178 4091 -38039431.35476 4179 4091 86719444.4302 4180 4091 1.415610313416e-06 4181 4091 -121047307.7997 4182 4091 21679861.11823 4183 4091 17343750.0057 4184 4091 -38039431.35476 4197 4091 4335972.22365 4198 4091 -34687499.9943 4199 4091 -51773459.69442 4200 4091 17343888.88605 4201 4091 -4.410743713379e-06 4202 4091 -144873003.6175 4203 4091 4335972.22365 4204 4091 34687499.9943 4205 4091 -51773459.69442 4092 4092 577153319.975 4093 4092 -3.814697265625e-06 4094 4092 -3.170967102051e-05 4095 4092 82067495.00666 4096 4092 12962777.77565 4097 4092 -7.867813110352e-06 4179 4092 -36072082.53399 4180 4092 16203472.22755 4181 4092 21679861.11823 4182 4092 -113177912.5205 4183 4092 -1.952052116394e-06 4184 4092 86719444.4302 4185 4092 -36072082.53399 4186 4092 -16203472.22755 4187 4092 21679861.11823 4200 4092 -7329757.092094 4201 4092 -3240694.445505 4202 4092 -4335972.223642 4203 4092 32901806.70425 4204 4092 2.026557922363e-06 4205 4092 -17343888.88602 4206 4092 -7329757.09209 4207 4092 3240694.445505 4208 4092 -4335972.223642 4093 4093 499373815.978 4094 4093 1.025199890137e-05 4095 4093 -12962777.77565 4096 4093 -41078772.7658 4097 4093 2.264976501465e-06 4179 4093 16203472.22755 4180 4093 -31210863.52938 4181 4093 -17343750.00569 4182 4093 -4.097819328308e-06 4183 4093 -41882340.60423 4184 4093 1.296401023865e-06 4185 4093 -16203472.22755 4186 4093 -31210863.52938 4187 4093 17343750.0057 4200 4093 3240694.445514 4201 4093 -38116324.05038 4202 4093 -34687499.9943 4203 4093 1.430511474609e-06 4204 4093 13456930.69541 4205 4093 -4.410743713379e-06 4206 4093 -3240694.445512 4207 4093 -38116324.05037 4208 4093 34687499.9943 4094 4094 608630901.0765 4095 4094 -7.867813110352e-06 4096 4094 2.115964889526e-06 4097 4094 89936890.28591 4179 4094 21679861.11823 4180 4094 -17343750.00569 4181 4094 -38039431.35476 4182 4094 86719444.4302 4183 4094 1.415610313416e-06 4184 4094 -121047307.7997 4185 4094 21679861.11823 4186 4094 17343750.0057 4187 4094 -38039431.35476 4200 4094 4335972.22365 4201 4094 -34687499.9943 4202 4094 -51773459.69442 4203 4094 17343888.88605 4204 4094 -4.410743713379e-06 4205 4094 -144873003.6175 4206 4094 4335972.22365 4207 4094 34687499.9943 4208 4094 -51773459.69442 4095 4095 578486932.6103 4096 4095 11986.19510007 4097 4095 -2.288818359375e-05 4098 4095 84494256.20949 4099 4095 15482348.065 4100 4095 1.072883605957e-06 4182 4095 -36072082.53399 4183 4095 16203472.22755 4184 4095 21679861.11823 4185 4095 -114724288.8331 4186 4095 -635253.1045037 4187 4095 87564583.31904 4188 4095 -35736813.43152 4189 4095 -16200678.02491 4190 4095 21679166.67379 4203 4095 -7329757.092094 4204 4095 -3240694.445505 4205 4095 -4335972.223642 4206 4095 33236111.75387 4207 4095 2649.269782305 4208 4095 -17343611.10825 4209 4095 -6450528.111152 4210 4095 3870504.077597 4211 4095 -5182361.112478 4096 4096 498972289.4165 4097 4096 1.955032348633e-05 4098 4096 -10443763.04186 4099 4096 -37606235.6153 4100 4096 3.8743019104e-07 4182 4096 16203472.22755 4183 4096 -31210863.52938 4184 4096 -17343750.00569 4185 4096 -635253.1045074 4186 4096 -42821513.04611 4187 4096 677083.3332883 4188 4096 -16200678.02491 4189 4096 -31311329.22222 4190 4096 17343750.00569 4203 4096 3240694.445514 4204 4096 -38116324.05038 4205 4096 -34687499.9943 4206 4096 2649.26978153 4207 4096 13357668.57741 4208 4096 -5.722045898438e-06 4209 4096 -2610884.81342 4210 4096 -36974996.97728 4211 4096 34010416.66101 4097 4097 608877037.9683 4098 4097 -5.960464477539e-07 4099 4097 4.768371582031e-07 4100 4097 90773136.12633 4182 4097 21679861.11823 4183 4097 -17343750.00569 4184 4097 -38039431.35476 4185 4097 87564583.31887 4186 4097 677083.333155 4187 4097 -122108417.4801 4188 4097 21679166.67379 4189 4097 17343750.00569 4190 4097 -37974851.43984 4203 4097 4335972.22365 4204 4097 -34687499.9943 4205 4097 -51773459.69442 4206 4097 17343611.10828 4207 4097 -5.781650543213e-06 4208 4097 -144806554.3753 4209 4097 3489305.557203 4210 4097 34010416.66114 4211 4097 -50836907.65006 4098 4098 576078114.5405 4099 4098 -1636006.338361 4100 4098 -9.536743164063e-07 4101 4098 -84575033.27923 4102 4098 -63933137.53736 4103 4098 -5.543231964111e-06 4104 4098 80892647.57501 4105 4098 14709329.53279 4106 4098 9.536743164063e-07 4185 4098 -37742508.83701 4186 4098 16181561.88645 4187 4098 22525694.45184 4188 4098 -113692433.8764 4189 4098 -855995.9423672 4190 4098 85676388.87482 4206 4098 -6450528.111163 4207 4098 -2610884.81342 4208 4098 -3489305.557202 4209 4098 37702548.37273 4210 4098 -408992.8205404 4211 4098 -17135277.77496 4212 4098 -33940233.84008 4213 4098 -15982941.89571 4214 4098 20312500.00667 4215 4098 -5632342.894137 4216 4098 3677253.585591 4217 4098 -5078333.334501 4099 4099 489693679.98 4100 4099 2.896785736084e-05 4101 4099 -63933137.53736 4102 4099 -68813095.55764 4103 4099 -1.490116119385e-06 4104 4099 -11216781.57406 4105 4099 -42667576.13432 4106 4099 -9.238719940186e-07 4185 4099 16181561.88645 4186 4099 -30707665.4868 4187 4099 -16666666.67214 4188 4099 -855995.942369 4189 4099 -41658168.45665 4190 4099 677083.3332871 4206 4099 3870504.077598 4207 4099 -36974996.9773 4208 4099 -34010416.66115 4209 4099 -408992.8205381 4210 4099 16106902.49242 4211 4099 -6.198883056641e-06 4212 4099 -15982941.89571 4213 4099 -29999833.84609 4214 4099 16666666.67214 4215 4099 -2804135.305426 4216 4099 -36521736.91164 4217 4099 33333333.32785 4100 4100 591348648.5328 4101 4100 -5.513429641724e-06 4102 4100 -1.490116119385e-06 4103 4100 -5640051.194663 4104 4100 -1.072883605957e-06 4105 4100 -9.238719940186e-07 4106 4100 83549951.75354 4185 4100 22525694.45184 4186 4100 -16666666.67214 4187 4100 -38357223.7135 4188 4100 85676388.87482 4189 4100 677083.3331537 4190 4100 -117555867.1805 4206 4100 5182361.112479 4207 4100 -34010416.66102 4208 4100 -50836907.65008 4209 4100 17135277.77496 4210 4100 -6.258487701416e-06 4211 4100 -135669723.6375 4212 4100 20312500.00667 4213 4100 16666666.67214 4214 4100 -35535125.4841 4215 4100 3385277.779223 4216 4100 33333333.32785 4217 4100 -48059816.83043 4101 4101 278277688.0438 4102 4101 63032990.82912 4103 4101 8.106231689453e-06 4104 4101 -117017201.3105 4105 4101 -13845195.78321 4106 4101 -2.741813659668e-06 4188 4101 -6375113.374578 4189 4101 3686256.632336 4190 4101 4909027.779056 4209 4101 -33940233.84009 4210 4101 -15982941.89571 4211 4101 -20312500.00667 4212 4101 18902645.55565 4213 4101 15757910.04072 4214 4101 8124999.998667 4215 4101 -54847530.63036 4216 4101 -3461224.777347 4217 4101 -41471527.77105 4102 4102 243072801.0765 4103 4102 1.251697540283e-05 4104 4102 12080915.32365 4105 4102 25208100.5253 4106 4102 6.85453414917e-06 4188 4102 -2795132.258682 4189 4102 -37070043.77933 4190 4102 -33333333.32786 4209 4102 -15982941.89571 4210 4102 -29999833.8461 4211 4102 -16666666.67214 4212 4102 15757910.04072 4213 4102 10101612.40576 4214 4102 6666666.665572 4215 4102 3020164.113671 4216 4102 -19291967.06971 4217 4102 3333333.334427 4103 4103 285481231.0942 4104 4103 1.788139343262e-07 4105 4103 6.85453414917e-06 4106 4103 47347303.99915 4188 4103 -3215972.223779 4189 4103 -33333333.32786 4190 4103 -47673130.40168 4209 4103 -20312500.00667 4210 4103 -16666666.67214 4211 4103 -35535125.48411 4212 4103 -8124999.998663 4213 4103 -6666666.665571 4214 4103 -63738650.14916 4215 4103 -41471527.77088 4216 4103 -3333333.334429 4217 4103 -56413713.40339 4104 4104 285841125.8965 4105 4104 -66561551.7465 4106 4104 -6.437301635742e-06 4188 4104 -36573838.1928 4189 4104 16424002.55938 4190 4104 21159027.78473 4209 4104 -5632342.894149 4210 4104 -2804135.305427 4211 4104 -3385277.779223 4212 4104 -54847530.63036 4213 4104 3020164.113676 4214 4104 41471527.77088 4215 4104 19748607.35902 4216 4104 -16640031.36763 4217 4104 -8463611.109722 4105 4105 244829958.0819 4106 4105 1.54972076416e-05 4188 4105 16424002.55938 4189 4105 -30987435.47837 4190 4105 -16666666.67214 4209 4105 3677253.585592 4210 4105 -36521736.91166 4211 4105 -33333333.32786 4212 4105 -3461224.777343 4213 4105 -19291967.06971 4214 4105 3333333.334427 4215 4105 -16640031.36763 4216 4105 9496035.101444 4217 4105 6666666.665568 4106 4106 290978341.916 4188 4106 21159027.78473 4189 4106 -16666666.67214 4190 4106 -36522727.11638 4209 4106 5078333.334501 4210 4106 -33333333.32786 4211 4106 -48059816.83046 4212 4106 41471527.77105 4213 4106 -3333333.334429 4214 4106 -56413713.40339 4215 4106 8463611.10972 4216 4106 -6666666.665574 4217 4106 -65150687.60521 4107 4107 824455161.8017 4108 4107 81018055.54225 4109 4107 -8.583068847656e-06 4110 4107 -460053204.795 4111 4107 -81018054.89409 4112 4107 -1.305341720581e-05 4113 4107 23205392.66699 4114 4107 64814443.78565 4115 4107 1.54972076416e-06 4218 4107 139046393.5639 4219 4107 24305555.56354 4220 4107 17343888.84952 4221 4107 -175918799.4896 4222 4107 -24305555.36909 4223 4107 -86719444.24762 4224 4107 -9282077.505002 4225 4107 19444444.25638 4226 4107 -17343888.52033 4108 4108 702923645.8189 4109 4108 7.830374228711e-07 4110 4108 -81018054.57002 4111 4108 -79265988.49504 4112 4108 -7.152557373047e-07 4113 4108 97221665.67847 4114 4108 23205392.66698 4115 4108 3.457069396973e-06 4218 4108 24305555.56354 4219 4108 102586730.4102 4220 4108 13874999.85143 4221 4108 -24305555.27187 4222 4108 -61681981.76159 4223 4108 -17343749.90781 4224 4108 29166666.38457 4225 4108 -9282077.504995 4226 4108 20812499.90894 4109 4109 744714928.2643 4110 4109 -1.293420791626e-05 4111 4109 3.576278686523e-07 4112 4109 -32232076.56353 4113 4109 1.192092895508e-06 4114 4109 3.218650817871e-06 4115 4109 61881047.11197 4218 4109 -17343888.84952 4219 4109 -13874999.85144 4220 4109 -65361760.6378 4221 4109 -86719444.24762 4222 4109 -17343749.94044 4223 4109 -110741809.7386 4224 4109 -26015832.7805 4225 4109 13874999.9393 4226 4109 -24752206.67999 4110 4110 1437608510.215 4111 4110 81018053.92186 4112 4110 -4.029273986816e-05 4113 4110 32543005.93566 4114 4110 -81018054.8941 4115 4110 -4.887580871582e-06 4116 4110 -318367567.7659 4117 4110 -2.443790435791e-06 4118 4110 -1.460313796997e-05 4119 4110 -118480247.2419 4120 4110 81018055.54225 4121 4110 -3.516674041748e-06 4218 4110 -175918799.4897 4219 4110 -24305555.27186 4220 4110 86719444.24762 4221 4110 268847663.9159 4222 4110 24305555.07742 4223 4110 0.03653132915497 4224 4110 -28139091.37671 4225 4110 -24305555.36909 4226 4110 21679860.74398 4227 4110 -138827443.8751 4228 4110 -5.066394805908e-07 4229 4110 -86719444.43019 4230 4110 -46373434.23611 4231 4110 24305555.56353 4232 4110 -21679861.11823 4111 4111 1218851780.873 4112 4111 -1.430511474609e-06 4113 4111 -81018054.57003 4114 4111 -251018997.7335 4115 4111 -4.26173210144e-06 4116 4111 -1.072883605957e-06 4117 4111 38113347.20754 4118 4111 -1.192092895508e-06 4119 4111 81018055.54225 4120 4111 -94173943.88989 4121 4111 -2.682209014893e-07 4218 4111 -24305555.36908 4219 4111 -61681981.7616 4220 4111 17343749.94043 4221 4111 24305555.07742 4222 4111 203220270.0671 4223 4111 0.02920919656754 4224 4111 -24305555.27186 4225 4111 -113208178.6284 4226 4111 69374999.6084 4227 4111 -8.344650268555e-07 4228 4111 -31882558.21681 4229 4111 -3.278255462646e-07 4230 4111 24305555.56353 4231 4111 -39081501.55875 4232 4111 17343750.00569 4112 4112 1216724781.271 4113 4112 -4.52995300293e-06 4114 4112 -3.457069396973e-06 4115 4112 55270613.64501 4116 4112 -1.388788223267e-05 4117 4112 -1.072883605957e-06 4118 4112 54829860.44019 4119 4112 -3.36766242981e-06 4120 4112 -3.576278686523e-07 4121 4112 -25180890.14437 4218 4112 86719444.24762 4219 4112 17343749.9078 4220 4112 -110741809.7386 4221 4112 -0.03649973869324 4222 4112 -0.02921465039253 4223 4112 -68146756.53808 4224 4112 21679860.55685 4225 4112 69374999.49133 4226 4112 -84490851.68298 4227 4112 -86719444.43019 4228 4112 -2.682209014893e-07 4229 4112 -99061955.12461 4230 4112 -21679861.11823 4231 4112 17343750.00569 4232 4112 -36432062.04358 4113 4113 824455161.8017 4114 4113 81018055.54225 4115 4113 -8.583068847656e-06 4116 4113 -118480247.2419 4117 4113 -81018055.54225 4118 4113 -3.695487976074e-06 4119 4113 -460053204.795 4120 4113 -81018054.89409 4121 4113 -1.305341720581e-05 4122 4113 23205392.66699 4123 4113 64814443.78565 4124 4113 1.54972076416e-06 4218 4113 -9282077.50499 4219 4113 29166666.38457 4220 4113 26015832.78049 4221 4113 -28139091.37673 4222 4113 -24305555.27187 4223 4113 -21679860.55685 4224 4113 139046393.5639 4225 4113 24305555.56354 4226 4113 17343888.84952 4227 4113 -46373434.23611 4228 4113 -24305555.56353 4229 4113 -21679861.11823 4230 4113 -175918799.4896 4231 4113 -24305555.36909 4232 4113 -86719444.24762 4233 4113 -9282077.505002 4234 4113 19444444.25638 4235 4113 -17343888.52033 4114 4114 702923645.8189 4115 4114 7.830374228711e-07 4116 4114 -81018055.54225 4117 4114 -94173943.88989 4118 4114 -1.9371509552e-07 4119 4114 -81018054.57002 4120 4114 -79265988.49504 4121 4114 -7.152557373047e-07 4122 4114 97221665.67847 4123 4114 23205392.66698 4124 4114 3.457069396973e-06 4218 4114 19444444.25638 4219 4114 -9282077.505 4220 4114 -13874999.9393 4221 4114 -24305555.36909 4222 4114 -113208178.6284 4223 4114 -69374999.49133 4224 4114 24305555.56354 4225 4114 102586730.4102 4226 4114 13874999.85143 4227 4114 -24305555.56353 4228 4114 -39081501.55875 4229 4114 -17343750.0057 4230 4114 -24305555.27187 4231 4114 -61681981.76159 4232 4114 -17343749.90781 4233 4114 29166666.38457 4234 4114 -9282077.504995 4235 4114 20812499.90894 4115 4115 744714928.2643 4116 4115 -3.576278686523e-06 4117 4115 -1.341104507446e-07 4118 4115 -25180890.14438 4119 4115 -1.293420791626e-05 4120 4115 3.576278686523e-07 4121 4115 -32232076.56353 4122 4115 1.192092895508e-06 4123 4115 3.218650817871e-06 4124 4115 61881047.11197 4218 4115 17343888.52033 4219 4115 -20812499.90895 4220 4115 -24752206.67999 4221 4115 -21679860.74398 4222 4115 -69374999.6084 4223 4115 -84490851.68299 4224 4115 -17343888.84952 4225 4115 -13874999.85144 4226 4115 -65361760.6378 4227 4115 -21679861.11823 4228 4115 -17343750.0057 4229 4115 -36432062.04358 4230 4115 -86719444.24762 4231 4115 -17343749.94044 4232 4115 -110741809.7386 4233 4115 -26015832.7805 4234 4115 13874999.9393 4235 4115 -24752206.67999 4116 4116 1319128267.022 4117 4116 9.775161743164e-06 4118 4116 -5.745887756348e-05 4119 4116 174228645.9499 4120 4116 -4.291534423828e-06 4121 4116 -1.45435333252e-05 4125 4116 -318367567.7659 4126 4116 -2.443790435791e-06 4127 4116 -1.460313796997e-05 4128 4116 -118480247.2419 4129 4116 81018055.54225 4130 4116 -3.516674041748e-06 4221 4116 -138827443.8752 4222 4116 2.682209014893e-07 4223 4116 86719444.4302 4224 4116 -46373434.23614 4225 4116 -24305555.56354 4226 4116 21679861.11823 4227 4116 222474230.8735 4228 4116 3.933906555176e-06 4229 4116 2.622604370117e-05 4230 4116 8952264.76783 4231 4116 -1.302361488342e-05 4232 4116 6.914138793945e-06 4236 4116 -138827443.8751 4237 4116 -5.066394805908e-07 4238 4116 -86719444.43019 4239 4116 -46373434.23611 4240 4116 24305555.56353 4241 4116 -21679861.11823 4117 4117 1124677840.302 4118 4117 -3.814697265625e-06 4119 4117 -4.947185516357e-06 4120 4117 -133639662.3675 4121 4117 -8.046627044678e-07 4125 4117 -1.072883605957e-06 4126 4117 38113347.20754 4127 4117 -1.192092895508e-06 4128 4117 81018055.54225 4129 4117 -94173943.88989 4130 4117 -2.682209014893e-07 4221 4117 -2.294778823853e-06 4222 4117 -31882558.21685 4223 4117 2.682209014893e-07 4224 4117 -24305555.56354 4225 4117 -39081501.55876 4226 4117 17343750.0057 4227 4117 4.410743713379e-06 4228 4117 164138769.4832 4229 4117 -1.192092895508e-07 4230 4117 -1.156330108643e-05 4231 4117 -83408755.55014 4232 4117 69374999.9886 4236 4117 -8.344650268555e-07 4237 4117 -31882558.21681 4238 4117 -3.278255462646e-07 4239 4117 24305555.56353 4240 4117 -39081501.55875 4241 4117 17343750.00569 4118 4118 1191543893.2 4119 4118 -1.45435333252e-05 4120 4118 -1.192092895508e-06 4121 4118 142332552.4786 4125 4118 -1.388788223267e-05 4126 4118 -1.072883605957e-06 4127 4118 54829860.44019 4128 4118 -3.36766242981e-06 4129 4118 -3.576278686523e-07 4130 4118 -25180890.14437 4221 4118 86719444.4302 4222 4118 3.427267074585e-07 4223 4118 -99061955.12464 4224 4118 21679861.11823 4225 4118 17343750.0057 4226 4118 -36432062.04359 4227 4118 2.598762512207e-05 4228 4118 5.960464477539e-08 4229 4118 -104578818.0156 4230 4118 6.973743438721e-06 4231 4118 69374999.9886 4232 4118 -72810997.49471 4236 4118 -86719444.43019 4237 4118 -2.682209014893e-07 4238 4118 -99061955.12461 4239 4118 -21679861.11823 4240 4118 17343750.00569 4241 4118 -36432062.04358 4119 4119 1437608510.215 4120 4119 81018053.92186 4121 4119 -4.029273986816e-05 4122 4119 32543005.93566 4123 4119 -81018054.8941 4124 4119 -4.887580871582e-06 4125 4119 -118480247.2419 4126 4119 -81018055.54225 4127 4119 -3.695487976074e-06 4128 4119 -318367567.7659 4129 4119 -2.443790435791e-06 4130 4119 -1.460313796997e-05 4131 4119 -118480247.2419 4132 4119 81018055.54225 4133 4119 -3.516674041748e-06 4221 4119 -46373434.23613 4222 4119 24305555.56354 4223 4119 21679861.11823 4224 4119 -175918799.4897 4225 4119 -24305555.27186 4226 4119 86719444.24762 4227 4119 8952264.76783 4228 4119 9.298324584961e-06 4229 4119 6.228685379028e-06 4230 4119 268847663.9159 4231 4119 24305555.07742 4232 4119 0.03653132915497 4233 4119 -28139091.37671 4234 4119 -24305555.36909 4235 4119 21679860.74398 4236 4119 -46373434.23611 4237 4119 -24305555.56353 4238 4119 -21679861.11823 4239 4119 -138827443.8751 4240 4119 -5.066394805908e-07 4241 4119 -86719444.43019 4242 4119 -46373434.23611 4243 4119 24305555.56353 4244 4119 -21679861.11823 4120 4120 1218851780.873 4121 4120 -1.430511474609e-06 4122 4120 -81018054.57003 4123 4120 -251018997.7335 4124 4120 -4.26173210144e-06 4125 4120 -81018055.54225 4126 4120 -94173943.88989 4127 4120 -1.9371509552e-07 4128 4120 -1.072883605957e-06 4129 4120 38113347.20754 4130 4120 -1.192092895508e-06 4131 4120 81018055.54225 4132 4120 -94173943.88989 4133 4120 -2.682209014893e-07 4221 4120 24305555.56354 4222 4120 -39081501.55876 4223 4120 -17343750.00569 4224 4120 -24305555.36908 4225 4120 -61681981.7616 4226 4120 17343749.94043 4227 4120 1.069903373718e-05 4228 4120 -83408755.55014 4229 4120 -69374999.9886 4230 4120 24305555.07742 4231 4120 203220270.0671 4232 4120 0.02920919656754 4233 4120 -24305555.27186 4234 4120 -113208178.6284 4235 4120 69374999.6084 4236 4120 -24305555.56353 4237 4120 -39081501.55875 4238 4120 -17343750.0057 4239 4120 -8.344650268555e-07 4240 4120 -31882558.21681 4241 4120 -3.278255462646e-07 4242 4120 24305555.56353 4243 4120 -39081501.55875 4244 4120 17343750.00569 4121 4121 1216724781.271 4122 4121 -4.52995300293e-06 4123 4121 -3.457069396973e-06 4124 4121 55270613.64501 4125 4121 -3.576278686523e-06 4126 4121 -1.341104507446e-07 4127 4121 -25180890.14438 4128 4121 -1.388788223267e-05 4129 4121 -1.072883605957e-06 4130 4121 54829860.44019 4131 4121 -3.36766242981e-06 4132 4121 -3.576278686523e-07 4133 4121 -25180890.14437 4221 4121 21679861.11823 4222 4121 -17343750.0057 4223 4121 -36432062.04359 4224 4121 86719444.24762 4225 4121 17343749.9078 4226 4121 -110741809.7386 4227 4121 6.169080734253e-06 4228 4121 -69374999.9886 4229 4121 -72810997.49471 4230 4121 -0.03649973869324 4231 4121 -0.02921465039253 4232 4121 -68146756.53808 4233 4121 21679860.55685 4234 4121 69374999.49133 4235 4121 -84490851.68298 4236 4121 -21679861.11823 4237 4121 -17343750.0057 4238 4121 -36432062.04358 4239 4121 -86719444.43019 4240 4121 -2.682209014893e-07 4241 4121 -99061955.12461 4242 4121 -21679861.11823 4243 4121 17343750.00569 4244 4121 -36432062.04358 4122 4122 824455161.8017 4123 4122 81018055.54225 4124 4122 -8.583068847656e-06 4128 4122 -118480247.2419 4129 4122 -81018055.54225 4130 4122 -3.695487976074e-06 4131 4122 -460053204.795 4132 4122 -81018054.89409 4133 4122 -1.305341720581e-05 4134 4122 23205392.66699 4135 4122 64814443.78565 4136 4122 1.54972076416e-06 4224 4122 -9282077.50499 4225 4122 29166666.38457 4226 4122 26015832.78049 4230 4122 -28139091.37673 4231 4122 -24305555.27187 4232 4122 -21679860.55685 4233 4122 139046393.5639 4234 4122 24305555.56354 4235 4122 17343888.84952 4239 4122 -46373434.23611 4240 4122 -24305555.56353 4241 4122 -21679861.11823 4242 4122 -175918799.4896 4243 4122 -24305555.36909 4244 4122 -86719444.24762 4245 4122 -9282077.505002 4246 4122 19444444.25638 4247 4122 -17343888.52033 4123 4123 702923645.8189 4124 4123 7.830374228711e-07 4128 4123 -81018055.54225 4129 4123 -94173943.88989 4130 4123 -1.9371509552e-07 4131 4123 -81018054.57002 4132 4123 -79265988.49504 4133 4123 -7.152557373047e-07 4134 4123 97221665.67847 4135 4123 23205392.66698 4136 4123 3.457069396973e-06 4224 4123 19444444.25638 4225 4123 -9282077.505 4226 4123 -13874999.9393 4230 4123 -24305555.36909 4231 4123 -113208178.6284 4232 4123 -69374999.49133 4233 4123 24305555.56354 4234 4123 102586730.4102 4235 4123 13874999.85143 4239 4123 -24305555.56353 4240 4123 -39081501.55875 4241 4123 -17343750.0057 4242 4123 -24305555.27187 4243 4123 -61681981.76159 4244 4123 -17343749.90781 4245 4123 29166666.38457 4246 4123 -9282077.504995 4247 4123 20812499.90894 4124 4124 744714928.2643 4128 4124 -3.576278686523e-06 4129 4124 -1.341104507446e-07 4130 4124 -25180890.14438 4131 4124 -1.293420791626e-05 4132 4124 3.576278686523e-07 4133 4124 -32232076.56353 4134 4124 1.192092895508e-06 4135 4124 3.218650817871e-06 4136 4124 61881047.11197 4224 4124 17343888.52033 4225 4124 -20812499.90895 4226 4124 -24752206.67999 4230 4124 -21679860.74398 4231 4124 -69374999.6084 4232 4124 -84490851.68299 4233 4124 -17343888.84952 4234 4124 -13874999.85144 4235 4124 -65361760.6378 4239 4124 -21679861.11823 4240 4124 -17343750.0057 4241 4124 -36432062.04358 4242 4124 -86719444.24762 4243 4124 -17343749.94044 4244 4124 -110741809.7386 4245 4124 -26015832.7805 4246 4124 13874999.9393 4247 4124 -24752206.67999 4125 4125 1319128267.022 4126 4125 9.775161743164e-06 4127 4125 -5.745887756348e-05 4128 4125 174228645.9499 4129 4125 -4.291534423828e-06 4130 4125 -1.45435333252e-05 4137 4125 -318367567.7659 4138 4125 -2.443790435791e-06 4139 4125 -1.460313796997e-05 4140 4125 -118480247.2419 4141 4125 81018055.54225 4142 4125 -3.516674041748e-06 4227 4125 -138827443.8752 4228 4125 2.682209014893e-07 4229 4125 86719444.4302 4230 4125 -46373434.23614 4231 4125 -24305555.56354 4232 4125 21679861.11823 4236 4125 222474230.8735 4237 4125 3.933906555176e-06 4238 4125 2.622604370117e-05 4239 4125 8952264.76783 4240 4125 -1.302361488342e-05 4241 4125 6.914138793945e-06 4248 4125 -138827443.8751 4249 4125 -5.066394805908e-07 4250 4125 -86719444.43019 4251 4125 -46373434.23611 4252 4125 24305555.56353 4253 4125 -21679861.11823 4126 4126 1124677840.302 4127 4126 -3.814697265625e-06 4128 4126 -4.947185516357e-06 4129 4126 -133639662.3675 4130 4126 -8.046627044678e-07 4137 4126 -1.072883605957e-06 4138 4126 38113347.20754 4139 4126 -1.192092895508e-06 4140 4126 81018055.54225 4141 4126 -94173943.88989 4142 4126 -2.682209014893e-07 4227 4126 -2.294778823853e-06 4228 4126 -31882558.21685 4229 4126 2.682209014893e-07 4230 4126 -24305555.56354 4231 4126 -39081501.55876 4232 4126 17343750.0057 4236 4126 4.410743713379e-06 4237 4126 164138769.4832 4238 4126 -1.192092895508e-07 4239 4126 -1.156330108643e-05 4240 4126 -83408755.55014 4241 4126 69374999.9886 4248 4126 -8.344650268555e-07 4249 4126 -31882558.21681 4250 4126 -3.278255462646e-07 4251 4126 24305555.56353 4252 4126 -39081501.55875 4253 4126 17343750.00569 4127 4127 1191543893.2 4128 4127 -1.45435333252e-05 4129 4127 -1.192092895508e-06 4130 4127 142332552.4786 4137 4127 -1.388788223267e-05 4138 4127 -1.072883605957e-06 4139 4127 54829860.44019 4140 4127 -3.36766242981e-06 4141 4127 -3.576278686523e-07 4142 4127 -25180890.14437 4227 4127 86719444.4302 4228 4127 3.427267074585e-07 4229 4127 -99061955.12464 4230 4127 21679861.11823 4231 4127 17343750.0057 4232 4127 -36432062.04359 4236 4127 2.598762512207e-05 4237 4127 5.960464477539e-08 4238 4127 -104578818.0156 4239 4127 6.973743438721e-06 4240 4127 69374999.9886 4241 4127 -72810997.49471 4248 4127 -86719444.43019 4249 4127 -2.682209014893e-07 4250 4127 -99061955.12461 4251 4127 -21679861.11823 4252 4127 17343750.00569 4253 4127 -36432062.04358 4128 4128 1319128267.022 4129 4128 9.775161743164e-06 4130 4128 -5.745887756348e-05 4131 4128 174228645.9499 4132 4128 -4.291534423828e-06 4133 4128 -1.45435333252e-05 4137 4128 -118480247.2419 4138 4128 -81018055.54225 4139 4128 -3.695487976074e-06 4140 4128 -318367567.7659 4141 4128 -2.443790435791e-06 4142 4128 -1.460313796997e-05 4143 4128 -118480247.2419 4144 4128 81018055.54225 4145 4128 -3.516674041748e-06 4227 4128 -46373434.23613 4228 4128 24305555.56354 4229 4128 21679861.11823 4230 4128 -138827443.8752 4231 4128 2.682209014893e-07 4232 4128 86719444.4302 4233 4128 -46373434.23614 4234 4128 -24305555.56354 4235 4128 21679861.11823 4236 4128 8952264.76783 4237 4128 9.298324584961e-06 4238 4128 6.228685379028e-06 4239 4128 222474230.8735 4240 4128 3.933906555176e-06 4241 4128 2.622604370117e-05 4242 4128 8952264.76783 4243 4128 -1.302361488342e-05 4244 4128 6.914138793945e-06 4248 4128 -46373434.23611 4249 4128 -24305555.56353 4250 4128 -21679861.11823 4251 4128 -138827443.8751 4252 4128 -5.066394805908e-07 4253 4128 -86719444.43019 4254 4128 -46373434.23611 4255 4128 24305555.56353 4256 4128 -21679861.11823 4129 4129 1124677840.302 4130 4129 -3.814697265625e-06 4131 4129 -4.947185516357e-06 4132 4129 -133639662.3675 4133 4129 -8.046627044678e-07 4137 4129 -81018055.54225 4138 4129 -94173943.88989 4139 4129 -1.9371509552e-07 4140 4129 -1.072883605957e-06 4141 4129 38113347.20754 4142 4129 -1.192092895508e-06 4143 4129 81018055.54225 4144 4129 -94173943.88989 4145 4129 -2.682209014893e-07 4227 4129 24305555.56354 4228 4129 -39081501.55876 4229 4129 -17343750.00569 4230 4129 -2.294778823853e-06 4231 4129 -31882558.21685 4232 4129 2.682209014893e-07 4233 4129 -24305555.56354 4234 4129 -39081501.55876 4235 4129 17343750.0057 4236 4129 1.069903373718e-05 4237 4129 -83408755.55014 4238 4129 -69374999.9886 4239 4129 4.410743713379e-06 4240 4129 164138769.4832 4241 4129 -1.192092895508e-07 4242 4129 -1.156330108643e-05 4243 4129 -83408755.55014 4244 4129 69374999.9886 4248 4129 -24305555.56353 4249 4129 -39081501.55875 4250 4129 -17343750.0057 4251 4129 -8.344650268555e-07 4252 4129 -31882558.21681 4253 4129 -3.278255462646e-07 4254 4129 24305555.56353 4255 4129 -39081501.55875 4256 4129 17343750.00569 4130 4130 1191543893.2 4131 4130 -1.45435333252e-05 4132 4130 -1.192092895508e-06 4133 4130 142332552.4786 4137 4130 -3.576278686523e-06 4138 4130 -1.341104507446e-07 4139 4130 -25180890.14438 4140 4130 -1.388788223267e-05 4141 4130 -1.072883605957e-06 4142 4130 54829860.44019 4143 4130 -3.36766242981e-06 4144 4130 -3.576278686523e-07 4145 4130 -25180890.14437 4227 4130 21679861.11823 4228 4130 -17343750.0057 4229 4130 -36432062.04359 4230 4130 86719444.4302 4231 4130 3.427267074585e-07 4232 4130 -99061955.12464 4233 4130 21679861.11823 4234 4130 17343750.0057 4235 4130 -36432062.04359 4236 4130 6.169080734253e-06 4237 4130 -69374999.9886 4238 4130 -72810997.49471 4239 4130 2.598762512207e-05 4240 4130 5.960464477539e-08 4241 4130 -104578818.0156 4242 4130 6.973743438721e-06 4243 4130 69374999.9886 4244 4130 -72810997.49471 4248 4130 -21679861.11823 4249 4130 -17343750.0057 4250 4130 -36432062.04358 4251 4130 -86719444.43019 4252 4130 -2.682209014893e-07 4253 4130 -99061955.12461 4254 4130 -21679861.11823 4255 4130 17343750.00569 4256 4130 -36432062.04358 4131 4131 1437608510.215 4132 4131 81018053.92186 4133 4131 -4.029273986816e-05 4134 4131 32543005.93566 4135 4131 -81018054.8941 4136 4131 -4.887580871582e-06 4140 4131 -118480247.2419 4141 4131 -81018055.54225 4142 4131 -3.695487976074e-06 4143 4131 -318367567.7659 4144 4131 -2.443790435791e-06 4145 4131 -1.460313796997e-05 4146 4131 -118480247.2419 4147 4131 81018055.54225 4148 4131 -3.516674041748e-06 4230 4131 -46373434.23613 4231 4131 24305555.56354 4232 4131 21679861.11823 4233 4131 -175918799.4897 4234 4131 -24305555.27186 4235 4131 86719444.24762 4239 4131 8952264.76783 4240 4131 9.298324584961e-06 4241 4131 6.228685379028e-06 4242 4131 268847663.9159 4243 4131 24305555.07742 4244 4131 0.03653132915497 4245 4131 -28139091.37671 4246 4131 -24305555.36909 4247 4131 21679860.74398 4251 4131 -46373434.23611 4252 4131 -24305555.56353 4253 4131 -21679861.11823 4254 4131 -138827443.8751 4255 4131 -5.066394805908e-07 4256 4131 -86719444.43019 4257 4131 -46373434.23611 4258 4131 24305555.56353 4259 4131 -21679861.11823 4132 4132 1218851780.873 4133 4132 -1.430511474609e-06 4134 4132 -81018054.57003 4135 4132 -251018997.7335 4136 4132 -4.26173210144e-06 4140 4132 -81018055.54225 4141 4132 -94173943.88989 4142 4132 -1.9371509552e-07 4143 4132 -1.072883605957e-06 4144 4132 38113347.20754 4145 4132 -1.192092895508e-06 4146 4132 81018055.54225 4147 4132 -94173943.88989 4148 4132 -2.682209014893e-07 4230 4132 24305555.56354 4231 4132 -39081501.55876 4232 4132 -17343750.00569 4233 4132 -24305555.36908 4234 4132 -61681981.7616 4235 4132 17343749.94043 4239 4132 1.069903373718e-05 4240 4132 -83408755.55014 4241 4132 -69374999.9886 4242 4132 24305555.07742 4243 4132 203220270.0671 4244 4132 0.02920919656754 4245 4132 -24305555.27186 4246 4132 -113208178.6284 4247 4132 69374999.6084 4251 4132 -24305555.56353 4252 4132 -39081501.55875 4253 4132 -17343750.0057 4254 4132 -8.344650268555e-07 4255 4132 -31882558.21681 4256 4132 -3.278255462646e-07 4257 4132 24305555.56353 4258 4132 -39081501.55875 4259 4132 17343750.00569 4133 4133 1216724781.271 4134 4133 -4.52995300293e-06 4135 4133 -3.457069396973e-06 4136 4133 55270613.64501 4140 4133 -3.576278686523e-06 4141 4133 -1.341104507446e-07 4142 4133 -25180890.14438 4143 4133 -1.388788223267e-05 4144 4133 -1.072883605957e-06 4145 4133 54829860.44019 4146 4133 -3.36766242981e-06 4147 4133 -3.576278686523e-07 4148 4133 -25180890.14437 4230 4133 21679861.11823 4231 4133 -17343750.0057 4232 4133 -36432062.04359 4233 4133 86719444.24762 4234 4133 17343749.9078 4235 4133 -110741809.7386 4239 4133 6.169080734253e-06 4240 4133 -69374999.9886 4241 4133 -72810997.49471 4242 4133 -0.03649973869324 4243 4133 -0.02921465039253 4244 4133 -68146756.53808 4245 4133 21679860.55685 4246 4133 69374999.49133 4247 4133 -84490851.68298 4251 4133 -21679861.11823 4252 4133 -17343750.0057 4253 4133 -36432062.04358 4254 4133 -86719444.43019 4255 4133 -2.682209014893e-07 4256 4133 -99061955.12461 4257 4133 -21679861.11823 4258 4133 17343750.00569 4259 4133 -36432062.04358 4134 4134 824455161.8017 4135 4134 81018055.54225 4136 4134 -8.583068847656e-06 4143 4134 -118480247.2419 4144 4134 -81018055.54225 4145 4134 -3.695487976074e-06 4146 4134 -460053204.795 4147 4134 -81018054.89409 4148 4134 -1.305341720581e-05 4149 4134 23205392.66699 4150 4134 64814443.78565 4151 4134 1.54972076416e-06 4233 4134 -9282077.50499 4234 4134 29166666.38457 4235 4134 26015832.78049 4242 4134 -28139091.37673 4243 4134 -24305555.27187 4244 4134 -21679860.55685 4245 4134 139046393.5639 4246 4134 24305555.56354 4247 4134 17343888.84952 4254 4134 -46373434.23611 4255 4134 -24305555.56353 4256 4134 -21679861.11823 4257 4134 -175918799.4896 4258 4134 -24305555.36909 4259 4134 -86719444.24762 4260 4134 -9282077.505002 4261 4134 19444444.25638 4262 4134 -17343888.52033 4135 4135 702923645.8189 4136 4135 7.830374228711e-07 4143 4135 -81018055.54225 4144 4135 -94173943.88989 4145 4135 -1.9371509552e-07 4146 4135 -81018054.57002 4147 4135 -79265988.49504 4148 4135 -7.152557373047e-07 4149 4135 97221665.67847 4150 4135 23205392.66698 4151 4135 3.457069396973e-06 4233 4135 19444444.25638 4234 4135 -9282077.505 4235 4135 -13874999.9393 4242 4135 -24305555.36909 4243 4135 -113208178.6284 4244 4135 -69374999.49133 4245 4135 24305555.56354 4246 4135 102586730.4102 4247 4135 13874999.85143 4254 4135 -24305555.56353 4255 4135 -39081501.55875 4256 4135 -17343750.0057 4257 4135 -24305555.27187 4258 4135 -61681981.76159 4259 4135 -17343749.90781 4260 4135 29166666.38457 4261 4135 -9282077.504995 4262 4135 20812499.90894 4136 4136 744714928.2643 4143 4136 -3.576278686523e-06 4144 4136 -1.341104507446e-07 4145 4136 -25180890.14438 4146 4136 -1.293420791626e-05 4147 4136 3.576278686523e-07 4148 4136 -32232076.56353 4149 4136 1.192092895508e-06 4150 4136 3.218650817871e-06 4151 4136 61881047.11197 4233 4136 17343888.52033 4234 4136 -20812499.90895 4235 4136 -24752206.67999 4242 4136 -21679860.74398 4243 4136 -69374999.6084 4244 4136 -84490851.68299 4245 4136 -17343888.84952 4246 4136 -13874999.85144 4247 4136 -65361760.6378 4254 4136 -21679861.11823 4255 4136 -17343750.0057 4256 4136 -36432062.04358 4257 4136 -86719444.24762 4258 4136 -17343749.94044 4259 4136 -110741809.7386 4260 4136 -26015832.7805 4261 4136 13874999.9393 4262 4136 -24752206.67999 4137 4137 1319128267.022 4138 4137 9.775161743164e-06 4139 4137 -5.745887756348e-05 4140 4137 174228645.9499 4141 4137 -4.291534423828e-06 4142 4137 -1.45435333252e-05 4152 4137 -318367567.7659 4153 4137 -2.443790435791e-06 4154 4137 -1.460313796997e-05 4155 4137 -118480247.2419 4156 4137 81018055.54225 4157 4137 -3.516674041748e-06 4236 4137 -138827443.8752 4237 4137 2.682209014893e-07 4238 4137 86719444.4302 4239 4137 -46373434.23614 4240 4137 -24305555.56354 4241 4137 21679861.11823 4248 4137 222474230.8735 4249 4137 3.933906555176e-06 4250 4137 2.622604370117e-05 4251 4137 8952264.76783 4252 4137 -1.302361488342e-05 4253 4137 6.914138793945e-06 4263 4137 -138827443.8751 4264 4137 -5.066394805908e-07 4265 4137 -86719444.43019 4266 4137 -46373434.23611 4267 4137 24305555.56353 4268 4137 -21679861.11823 4138 4138 1124677840.302 4139 4138 -3.814697265625e-06 4140 4138 -4.947185516357e-06 4141 4138 -133639662.3675 4142 4138 -8.046627044678e-07 4152 4138 -1.072883605957e-06 4153 4138 38113347.20754 4154 4138 -1.192092895508e-06 4155 4138 81018055.54225 4156 4138 -94173943.88989 4157 4138 -2.682209014893e-07 4236 4138 -2.294778823853e-06 4237 4138 -31882558.21685 4238 4138 2.682209014893e-07 4239 4138 -24305555.56354 4240 4138 -39081501.55876 4241 4138 17343750.0057 4248 4138 4.410743713379e-06 4249 4138 164138769.4832 4250 4138 -1.192092895508e-07 4251 4138 -1.156330108643e-05 4252 4138 -83408755.55014 4253 4138 69374999.9886 4263 4138 -8.344650268555e-07 4264 4138 -31882558.21681 4265 4138 -3.278255462646e-07 4266 4138 24305555.56353 4267 4138 -39081501.55875 4268 4138 17343750.00569 4139 4139 1191543893.2 4140 4139 -1.45435333252e-05 4141 4139 -1.192092895508e-06 4142 4139 142332552.4786 4152 4139 -1.388788223267e-05 4153 4139 -1.072883605957e-06 4154 4139 54829860.44019 4155 4139 -3.36766242981e-06 4156 4139 -3.576278686523e-07 4157 4139 -25180890.14437 4236 4139 86719444.4302 4237 4139 3.427267074585e-07 4238 4139 -99061955.12464 4239 4139 21679861.11823 4240 4139 17343750.0057 4241 4139 -36432062.04359 4248 4139 2.598762512207e-05 4249 4139 5.960464477539e-08 4250 4139 -104578818.0156 4251 4139 6.973743438721e-06 4252 4139 69374999.9886 4253 4139 -72810997.49471 4263 4139 -86719444.43019 4264 4139 -2.682209014893e-07 4265 4139 -99061955.12461 4266 4139 -21679861.11823 4267 4139 17343750.00569 4268 4139 -36432062.04358 4140 4140 1319128267.022 4141 4140 9.775161743164e-06 4142 4140 -5.745887756348e-05 4143 4140 174228645.9499 4144 4140 -4.291534423828e-06 4145 4140 -1.45435333252e-05 4152 4140 -118480247.2419 4153 4140 -81018055.54225 4154 4140 -3.695487976074e-06 4155 4140 -318367567.7659 4156 4140 -2.443790435791e-06 4157 4140 -1.460313796997e-05 4158 4140 -118480247.2419 4159 4140 81018055.54225 4160 4140 -3.516674041748e-06 4236 4140 -46373434.23613 4237 4140 24305555.56354 4238 4140 21679861.11823 4239 4140 -138827443.8752 4240 4140 2.682209014893e-07 4241 4140 86719444.4302 4242 4140 -46373434.23614 4243 4140 -24305555.56354 4244 4140 21679861.11823 4248 4140 8952264.76783 4249 4140 9.298324584961e-06 4250 4140 6.228685379028e-06 4251 4140 222474230.8735 4252 4140 3.933906555176e-06 4253 4140 2.622604370117e-05 4254 4140 8952264.76783 4255 4140 -1.302361488342e-05 4256 4140 6.914138793945e-06 4263 4140 -46373434.23611 4264 4140 -24305555.56353 4265 4140 -21679861.11823 4266 4140 -138827443.8751 4267 4140 -5.066394805908e-07 4268 4140 -86719444.43019 4269 4140 -46373434.23611 4270 4140 24305555.56353 4271 4140 -21679861.11823 4141 4141 1124677840.302 4142 4141 -3.814697265625e-06 4143 4141 -4.947185516357e-06 4144 4141 -133639662.3675 4145 4141 -8.046627044678e-07 4152 4141 -81018055.54225 4153 4141 -94173943.88989 4154 4141 -1.9371509552e-07 4155 4141 -1.072883605957e-06 4156 4141 38113347.20754 4157 4141 -1.192092895508e-06 4158 4141 81018055.54225 4159 4141 -94173943.88989 4160 4141 -2.682209014893e-07 4236 4141 24305555.56354 4237 4141 -39081501.55876 4238 4141 -17343750.00569 4239 4141 -2.294778823853e-06 4240 4141 -31882558.21685 4241 4141 2.682209014893e-07 4242 4141 -24305555.56354 4243 4141 -39081501.55876 4244 4141 17343750.0057 4248 4141 1.069903373718e-05 4249 4141 -83408755.55014 4250 4141 -69374999.9886 4251 4141 4.410743713379e-06 4252 4141 164138769.4832 4253 4141 -1.192092895508e-07 4254 4141 -1.156330108643e-05 4255 4141 -83408755.55014 4256 4141 69374999.9886 4263 4141 -24305555.56353 4264 4141 -39081501.55875 4265 4141 -17343750.0057 4266 4141 -8.344650268555e-07 4267 4141 -31882558.21681 4268 4141 -3.278255462646e-07 4269 4141 24305555.56353 4270 4141 -39081501.55875 4271 4141 17343750.00569 4142 4142 1191543893.2 4143 4142 -1.45435333252e-05 4144 4142 -1.192092895508e-06 4145 4142 142332552.4786 4152 4142 -3.576278686523e-06 4153 4142 -1.341104507446e-07 4154 4142 -25180890.14438 4155 4142 -1.388788223267e-05 4156 4142 -1.072883605957e-06 4157 4142 54829860.44019 4158 4142 -3.36766242981e-06 4159 4142 -3.576278686523e-07 4160 4142 -25180890.14437 4236 4142 21679861.11823 4237 4142 -17343750.0057 4238 4142 -36432062.04359 4239 4142 86719444.4302 4240 4142 3.427267074585e-07 4241 4142 -99061955.12464 4242 4142 21679861.11823 4243 4142 17343750.0057 4244 4142 -36432062.04359 4248 4142 6.169080734253e-06 4249 4142 -69374999.9886 4250 4142 -72810997.49471 4251 4142 2.598762512207e-05 4252 4142 5.960464477539e-08 4253 4142 -104578818.0156 4254 4142 6.973743438721e-06 4255 4142 69374999.9886 4256 4142 -72810997.49471 4263 4142 -21679861.11823 4264 4142 -17343750.0057 4265 4142 -36432062.04358 4266 4142 -86719444.43019 4267 4142 -2.682209014893e-07 4268 4142 -99061955.12461 4269 4142 -21679861.11823 4270 4142 17343750.00569 4271 4142 -36432062.04358 4143 4143 1319128267.022 4144 4143 9.775161743164e-06 4145 4143 -5.745887756348e-05 4146 4143 174228645.9499 4147 4143 -4.291534423828e-06 4148 4143 -1.45435333252e-05 4155 4143 -118480247.2419 4156 4143 -81018055.54225 4157 4143 -3.695487976074e-06 4158 4143 -318367567.7659 4159 4143 -2.443790435791e-06 4160 4143 -1.460313796997e-05 4161 4143 -118480247.2419 4162 4143 81018055.54225 4163 4143 -3.516674041748e-06 4239 4143 -46373434.23613 4240 4143 24305555.56354 4241 4143 21679861.11823 4242 4143 -138827443.8752 4243 4143 2.682209014893e-07 4244 4143 86719444.4302 4245 4143 -46373434.23614 4246 4143 -24305555.56354 4247 4143 21679861.11823 4251 4143 8952264.76783 4252 4143 9.298324584961e-06 4253 4143 6.228685379028e-06 4254 4143 222474230.8735 4255 4143 3.933906555176e-06 4256 4143 2.622604370117e-05 4257 4143 8952264.76783 4258 4143 -1.302361488342e-05 4259 4143 6.914138793945e-06 4266 4143 -46373434.23611 4267 4143 -24305555.56353 4268 4143 -21679861.11823 4269 4143 -138827443.8751 4270 4143 -5.066394805908e-07 4271 4143 -86719444.43019 4272 4143 -46373434.23611 4273 4143 24305555.56353 4274 4143 -21679861.11823 4144 4144 1124677840.302 4145 4144 -3.814697265625e-06 4146 4144 -4.947185516357e-06 4147 4144 -133639662.3675 4148 4144 -8.046627044678e-07 4155 4144 -81018055.54225 4156 4144 -94173943.88989 4157 4144 -1.9371509552e-07 4158 4144 -1.072883605957e-06 4159 4144 38113347.20754 4160 4144 -1.192092895508e-06 4161 4144 81018055.54225 4162 4144 -94173943.88989 4163 4144 -2.682209014893e-07 4239 4144 24305555.56354 4240 4144 -39081501.55876 4241 4144 -17343750.00569 4242 4144 -2.294778823853e-06 4243 4144 -31882558.21685 4244 4144 2.682209014893e-07 4245 4144 -24305555.56354 4246 4144 -39081501.55876 4247 4144 17343750.0057 4251 4144 1.069903373718e-05 4252 4144 -83408755.55014 4253 4144 -69374999.9886 4254 4144 4.410743713379e-06 4255 4144 164138769.4832 4256 4144 -1.192092895508e-07 4257 4144 -1.156330108643e-05 4258 4144 -83408755.55014 4259 4144 69374999.9886 4266 4144 -24305555.56353 4267 4144 -39081501.55875 4268 4144 -17343750.0057 4269 4144 -8.344650268555e-07 4270 4144 -31882558.21681 4271 4144 -3.278255462646e-07 4272 4144 24305555.56353 4273 4144 -39081501.55875 4274 4144 17343750.00569 4145 4145 1191543893.2 4146 4145 -1.45435333252e-05 4147 4145 -1.192092895508e-06 4148 4145 142332552.4786 4155 4145 -3.576278686523e-06 4156 4145 -1.341104507446e-07 4157 4145 -25180890.14438 4158 4145 -1.388788223267e-05 4159 4145 -1.072883605957e-06 4160 4145 54829860.44019 4161 4145 -3.36766242981e-06 4162 4145 -3.576278686523e-07 4163 4145 -25180890.14437 4239 4145 21679861.11823 4240 4145 -17343750.0057 4241 4145 -36432062.04359 4242 4145 86719444.4302 4243 4145 3.427267074585e-07 4244 4145 -99061955.12464 4245 4145 21679861.11823 4246 4145 17343750.0057 4247 4145 -36432062.04359 4251 4145 6.169080734253e-06 4252 4145 -69374999.9886 4253 4145 -72810997.49471 4254 4145 2.598762512207e-05 4255 4145 5.960464477539e-08 4256 4145 -104578818.0156 4257 4145 6.973743438721e-06 4258 4145 69374999.9886 4259 4145 -72810997.49471 4266 4145 -21679861.11823 4267 4145 -17343750.0057 4268 4145 -36432062.04358 4269 4145 -86719444.43019 4270 4145 -2.682209014893e-07 4271 4145 -99061955.12461 4272 4145 -21679861.11823 4273 4145 17343750.00569 4274 4145 -36432062.04358 4146 4146 1437608510.215 4147 4146 81018053.92186 4148 4146 -4.029273986816e-05 4149 4146 32543005.93566 4150 4146 -81018054.8941 4151 4146 -4.887580871582e-06 4158 4146 -118480247.2419 4159 4146 -81018055.54225 4160 4146 -3.695487976074e-06 4161 4146 -318367567.7659 4162 4146 -2.443790435791e-06 4163 4146 -1.460313796997e-05 4164 4146 -118480247.2419 4165 4146 81018055.54225 4166 4146 -3.516674041748e-06 4242 4146 -46373434.23613 4243 4146 24305555.56354 4244 4146 21679861.11823 4245 4146 -175918799.4897 4246 4146 -24305555.27186 4247 4146 86719444.24762 4254 4146 8952264.76783 4255 4146 9.298324584961e-06 4256 4146 6.228685379028e-06 4257 4146 268847663.9159 4258 4146 24305555.07742 4259 4146 0.03653132915497 4260 4146 -28139091.37671 4261 4146 -24305555.36909 4262 4146 21679860.74398 4269 4146 -46373434.23611 4270 4146 -24305555.56353 4271 4146 -21679861.11823 4272 4146 -138827443.8751 4273 4146 -5.066394805908e-07 4274 4146 -86719444.43019 4275 4146 -46373434.23611 4276 4146 24305555.56353 4277 4146 -21679861.11823 4147 4147 1218851780.873 4148 4147 -1.430511474609e-06 4149 4147 -81018054.57003 4150 4147 -251018997.7335 4151 4147 -4.26173210144e-06 4158 4147 -81018055.54225 4159 4147 -94173943.88989 4160 4147 -1.9371509552e-07 4161 4147 -1.072883605957e-06 4162 4147 38113347.20754 4163 4147 -1.192092895508e-06 4164 4147 81018055.54225 4165 4147 -94173943.88989 4166 4147 -2.682209014893e-07 4242 4147 24305555.56354 4243 4147 -39081501.55876 4244 4147 -17343750.00569 4245 4147 -24305555.36908 4246 4147 -61681981.7616 4247 4147 17343749.94043 4254 4147 1.069903373718e-05 4255 4147 -83408755.55014 4256 4147 -69374999.9886 4257 4147 24305555.07742 4258 4147 203220270.0671 4259 4147 0.02920919656754 4260 4147 -24305555.27186 4261 4147 -113208178.6284 4262 4147 69374999.6084 4269 4147 -24305555.56353 4270 4147 -39081501.55875 4271 4147 -17343750.0057 4272 4147 -8.344650268555e-07 4273 4147 -31882558.21681 4274 4147 -3.278255462646e-07 4275 4147 24305555.56353 4276 4147 -39081501.55875 4277 4147 17343750.00569 4148 4148 1216724781.271 4149 4148 -4.52995300293e-06 4150 4148 -3.457069396973e-06 4151 4148 55270613.64501 4158 4148 -3.576278686523e-06 4159 4148 -1.341104507446e-07 4160 4148 -25180890.14438 4161 4148 -1.388788223267e-05 4162 4148 -1.072883605957e-06 4163 4148 54829860.44019 4164 4148 -3.36766242981e-06 4165 4148 -3.576278686523e-07 4166 4148 -25180890.14437 4242 4148 21679861.11823 4243 4148 -17343750.0057 4244 4148 -36432062.04359 4245 4148 86719444.24762 4246 4148 17343749.9078 4247 4148 -110741809.7386 4254 4148 6.169080734253e-06 4255 4148 -69374999.9886 4256 4148 -72810997.49471 4257 4148 -0.03649973869324 4258 4148 -0.02921465039253 4259 4148 -68146756.53808 4260 4148 21679860.55685 4261 4148 69374999.49133 4262 4148 -84490851.68298 4269 4148 -21679861.11823 4270 4148 -17343750.0057 4271 4148 -36432062.04358 4272 4148 -86719444.43019 4273 4148 -2.682209014893e-07 4274 4148 -99061955.12461 4275 4148 -21679861.11823 4276 4148 17343750.00569 4277 4148 -36432062.04358 4149 4149 824455161.8017 4150 4149 81018055.54225 4151 4149 -8.583068847656e-06 4161 4149 -118480247.2419 4162 4149 -81018055.54225 4163 4149 -3.695487976074e-06 4164 4149 -460053204.795 4165 4149 -81018054.89409 4166 4149 -1.305341720581e-05 4167 4149 23205392.66699 4168 4149 64814443.78565 4169 4149 1.54972076416e-06 4245 4149 -9282077.50499 4246 4149 29166666.38457 4247 4149 26015832.78049 4257 4149 -28139091.37673 4258 4149 -24305555.27187 4259 4149 -21679860.55685 4260 4149 139046393.5639 4261 4149 24305555.56354 4262 4149 17343888.84952 4272 4149 -46373434.23611 4273 4149 -24305555.56353 4274 4149 -21679861.11823 4275 4149 -175918799.4896 4276 4149 -24305555.36909 4277 4149 -86719444.24762 4278 4149 -9282077.505002 4279 4149 19444444.25638 4280 4149 -17343888.52033 4150 4150 702923645.8189 4151 4150 7.830374228711e-07 4161 4150 -81018055.54225 4162 4150 -94173943.88989 4163 4150 -1.9371509552e-07 4164 4150 -81018054.57002 4165 4150 -79265988.49504 4166 4150 -7.152557373047e-07 4167 4150 97221665.67847 4168 4150 23205392.66698 4169 4150 3.457069396973e-06 4245 4150 19444444.25638 4246 4150 -9282077.505 4247 4150 -13874999.9393 4257 4150 -24305555.36909 4258 4150 -113208178.6284 4259 4150 -69374999.49133 4260 4150 24305555.56354 4261 4150 102586730.4102 4262 4150 13874999.85143 4272 4150 -24305555.56353 4273 4150 -39081501.55875 4274 4150 -17343750.0057 4275 4150 -24305555.27187 4276 4150 -61681981.76159 4277 4150 -17343749.90781 4278 4150 29166666.38457 4279 4150 -9282077.504995 4280 4150 20812499.90894 4151 4151 744714928.2643 4161 4151 -3.576278686523e-06 4162 4151 -1.341104507446e-07 4163 4151 -25180890.14438 4164 4151 -1.293420791626e-05 4165 4151 3.576278686523e-07 4166 4151 -32232076.56353 4167 4151 1.192092895508e-06 4168 4151 3.218650817871e-06 4169 4151 61881047.11197 4245 4151 17343888.52033 4246 4151 -20812499.90895 4247 4151 -24752206.67999 4257 4151 -21679860.74398 4258 4151 -69374999.6084 4259 4151 -84490851.68299 4260 4151 -17343888.84952 4261 4151 -13874999.85144 4262 4151 -65361760.6378 4272 4151 -21679861.11823 4273 4151 -17343750.0057 4274 4151 -36432062.04358 4275 4151 -86719444.24762 4276 4151 -17343749.94044 4277 4151 -110741809.7386 4278 4151 -26015832.7805 4279 4151 13874999.9393 4280 4151 -24752206.67999 4152 4152 1319128267.022 4153 4152 9.775161743164e-06 4154 4152 -5.745887756348e-05 4155 4152 174228645.9499 4156 4152 -4.291534423828e-06 4157 4152 -1.45435333252e-05 4170 4152 -318367567.7659 4171 4152 -2.443790435791e-06 4172 4152 -1.460313796997e-05 4173 4152 -118480247.2419 4174 4152 81018055.54225 4175 4152 -3.516674041748e-06 4248 4152 -138827443.8752 4249 4152 2.682209014893e-07 4250 4152 86719444.4302 4251 4152 -46373434.23614 4252 4152 -24305555.56354 4253 4152 21679861.11823 4263 4152 222474230.8735 4264 4152 3.933906555176e-06 4265 4152 2.622604370117e-05 4266 4152 8952264.76783 4267 4152 -1.302361488342e-05 4268 4152 6.914138793945e-06 4281 4152 -138827443.8751 4282 4152 -5.066394805908e-07 4283 4152 -86719444.43019 4284 4152 -46373434.23611 4285 4152 24305555.56353 4286 4152 -21679861.11823 4153 4153 1124677840.302 4154 4153 -3.814697265625e-06 4155 4153 -4.947185516357e-06 4156 4153 -133639662.3675 4157 4153 -8.046627044678e-07 4170 4153 -1.072883605957e-06 4171 4153 38113347.20754 4172 4153 -1.192092895508e-06 4173 4153 81018055.54225 4174 4153 -94173943.88989 4175 4153 -2.682209014893e-07 4248 4153 -2.294778823853e-06 4249 4153 -31882558.21685 4250 4153 2.682209014893e-07 4251 4153 -24305555.56354 4252 4153 -39081501.55876 4253 4153 17343750.0057 4263 4153 4.410743713379e-06 4264 4153 164138769.4832 4265 4153 -1.192092895508e-07 4266 4153 -1.156330108643e-05 4267 4153 -83408755.55014 4268 4153 69374999.9886 4281 4153 -8.344650268555e-07 4282 4153 -31882558.21681 4283 4153 -3.278255462646e-07 4284 4153 24305555.56353 4285 4153 -39081501.55875 4286 4153 17343750.00569 4154 4154 1191543893.2 4155 4154 -1.45435333252e-05 4156 4154 -1.192092895508e-06 4157 4154 142332552.4786 4170 4154 -1.388788223267e-05 4171 4154 -1.072883605957e-06 4172 4154 54829860.44019 4173 4154 -3.36766242981e-06 4174 4154 -3.576278686523e-07 4175 4154 -25180890.14437 4248 4154 86719444.4302 4249 4154 3.427267074585e-07 4250 4154 -99061955.12464 4251 4154 21679861.11823 4252 4154 17343750.0057 4253 4154 -36432062.04359 4263 4154 2.598762512207e-05 4264 4154 5.960464477539e-08 4265 4154 -104578818.0156 4266 4154 6.973743438721e-06 4267 4154 69374999.9886 4268 4154 -72810997.49471 4281 4154 -86719444.43019 4282 4154 -2.682209014893e-07 4283 4154 -99061955.12461 4284 4154 -21679861.11823 4285 4154 17343750.00569 4286 4154 -36432062.04358 4155 4155 1319128267.022 4156 4155 9.775161743164e-06 4157 4155 -5.745887756348e-05 4158 4155 174228645.9499 4159 4155 -4.291534423828e-06 4160 4155 -1.45435333252e-05 4170 4155 -118480247.2419 4171 4155 -81018055.54225 4172 4155 -3.695487976074e-06 4173 4155 -318367567.7659 4174 4155 -2.443790435791e-06 4175 4155 -1.460313796997e-05 4176 4155 -118480247.2419 4177 4155 81018055.54225 4178 4155 -3.516674041748e-06 4248 4155 -46373434.23613 4249 4155 24305555.56354 4250 4155 21679861.11823 4251 4155 -138827443.8752 4252 4155 2.682209014893e-07 4253 4155 86719444.4302 4254 4155 -46373434.23614 4255 4155 -24305555.56354 4256 4155 21679861.11823 4263 4155 8952264.76783 4264 4155 9.298324584961e-06 4265 4155 6.228685379028e-06 4266 4155 222474230.8735 4267 4155 3.933906555176e-06 4268 4155 2.622604370117e-05 4269 4155 8952264.76783 4270 4155 -1.302361488342e-05 4271 4155 6.914138793945e-06 4281 4155 -46373434.23611 4282 4155 -24305555.56353 4283 4155 -21679861.11823 4284 4155 -138827443.8751 4285 4155 -5.066394805908e-07 4286 4155 -86719444.43019 4287 4155 -46373434.23611 4288 4155 24305555.56353 4289 4155 -21679861.11823 4156 4156 1124677840.302 4157 4156 -3.814697265625e-06 4158 4156 -4.947185516357e-06 4159 4156 -133639662.3675 4160 4156 -8.046627044678e-07 4170 4156 -81018055.54225 4171 4156 -94173943.88989 4172 4156 -1.9371509552e-07 4173 4156 -1.072883605957e-06 4174 4156 38113347.20754 4175 4156 -1.192092895508e-06 4176 4156 81018055.54225 4177 4156 -94173943.88989 4178 4156 -2.682209014893e-07 4248 4156 24305555.56354 4249 4156 -39081501.55876 4250 4156 -17343750.00569 4251 4156 -2.294778823853e-06 4252 4156 -31882558.21685 4253 4156 2.682209014893e-07 4254 4156 -24305555.56354 4255 4156 -39081501.55876 4256 4156 17343750.0057 4263 4156 1.069903373718e-05 4264 4156 -83408755.55014 4265 4156 -69374999.9886 4266 4156 4.410743713379e-06 4267 4156 164138769.4832 4268 4156 -1.192092895508e-07 4269 4156 -1.156330108643e-05 4270 4156 -83408755.55014 4271 4156 69374999.9886 4281 4156 -24305555.56353 4282 4156 -39081501.55875 4283 4156 -17343750.0057 4284 4156 -8.344650268555e-07 4285 4156 -31882558.21681 4286 4156 -3.278255462646e-07 4287 4156 24305555.56353 4288 4156 -39081501.55875 4289 4156 17343750.00569 4157 4157 1191543893.2 4158 4157 -1.45435333252e-05 4159 4157 -1.192092895508e-06 4160 4157 142332552.4786 4170 4157 -3.576278686523e-06 4171 4157 -1.341104507446e-07 4172 4157 -25180890.14438 4173 4157 -1.388788223267e-05 4174 4157 -1.072883605957e-06 4175 4157 54829860.44019 4176 4157 -3.36766242981e-06 4177 4157 -3.576278686523e-07 4178 4157 -25180890.14437 4248 4157 21679861.11823 4249 4157 -17343750.0057 4250 4157 -36432062.04359 4251 4157 86719444.4302 4252 4157 3.427267074585e-07 4253 4157 -99061955.12464 4254 4157 21679861.11823 4255 4157 17343750.0057 4256 4157 -36432062.04359 4263 4157 6.169080734253e-06 4264 4157 -69374999.9886 4265 4157 -72810997.49471 4266 4157 2.598762512207e-05 4267 4157 5.960464477539e-08 4268 4157 -104578818.0156 4269 4157 6.973743438721e-06 4270 4157 69374999.9886 4271 4157 -72810997.49471 4281 4157 -21679861.11823 4282 4157 -17343750.0057 4283 4157 -36432062.04358 4284 4157 -86719444.43019 4285 4157 -2.682209014893e-07 4286 4157 -99061955.12461 4287 4157 -21679861.11823 4288 4157 17343750.00569 4289 4157 -36432062.04358 4158 4158 1319128267.022 4159 4158 9.775161743164e-06 4160 4158 -5.745887756348e-05 4161 4158 174228645.9499 4162 4158 -4.291534423828e-06 4163 4158 -1.45435333252e-05 4173 4158 -118480247.2419 4174 4158 -81018055.54225 4175 4158 -3.695487976074e-06 4176 4158 -318367567.7659 4177 4158 -2.443790435791e-06 4178 4158 -1.460313796997e-05 4179 4158 -118480247.2419 4180 4158 81018055.54225 4181 4158 -3.516674041748e-06 4251 4158 -46373434.23613 4252 4158 24305555.56354 4253 4158 21679861.11823 4254 4158 -138827443.8752 4255 4158 2.682209014893e-07 4256 4158 86719444.4302 4257 4158 -46373434.23614 4258 4158 -24305555.56354 4259 4158 21679861.11823 4266 4158 8952264.76783 4267 4158 9.298324584961e-06 4268 4158 6.228685379028e-06 4269 4158 222474230.8735 4270 4158 3.933906555176e-06 4271 4158 2.622604370117e-05 4272 4158 8952264.76783 4273 4158 -1.302361488342e-05 4274 4158 6.914138793945e-06 4284 4158 -46373434.23611 4285 4158 -24305555.56353 4286 4158 -21679861.11823 4287 4158 -138827443.8751 4288 4158 -5.066394805908e-07 4289 4158 -86719444.43019 4290 4158 -46373434.23611 4291 4158 24305555.56353 4292 4158 -21679861.11823 4159 4159 1124677840.302 4160 4159 -3.814697265625e-06 4161 4159 -4.947185516357e-06 4162 4159 -133639662.3675 4163 4159 -8.046627044678e-07 4173 4159 -81018055.54225 4174 4159 -94173943.88989 4175 4159 -1.9371509552e-07 4176 4159 -1.072883605957e-06 4177 4159 38113347.20754 4178 4159 -1.192092895508e-06 4179 4159 81018055.54225 4180 4159 -94173943.88989 4181 4159 -2.682209014893e-07 4251 4159 24305555.56354 4252 4159 -39081501.55876 4253 4159 -17343750.00569 4254 4159 -2.294778823853e-06 4255 4159 -31882558.21685 4256 4159 2.682209014893e-07 4257 4159 -24305555.56354 4258 4159 -39081501.55876 4259 4159 17343750.0057 4266 4159 1.069903373718e-05 4267 4159 -83408755.55014 4268 4159 -69374999.9886 4269 4159 4.410743713379e-06 4270 4159 164138769.4832 4271 4159 -1.192092895508e-07 4272 4159 -1.156330108643e-05 4273 4159 -83408755.55014 4274 4159 69374999.9886 4284 4159 -24305555.56353 4285 4159 -39081501.55875 4286 4159 -17343750.0057 4287 4159 -8.344650268555e-07 4288 4159 -31882558.21681 4289 4159 -3.278255462646e-07 4290 4159 24305555.56353 4291 4159 -39081501.55875 4292 4159 17343750.00569 4160 4160 1191543893.2 4161 4160 -1.45435333252e-05 4162 4160 -1.192092895508e-06 4163 4160 142332552.4786 4173 4160 -3.576278686523e-06 4174 4160 -1.341104507446e-07 4175 4160 -25180890.14438 4176 4160 -1.388788223267e-05 4177 4160 -1.072883605957e-06 4178 4160 54829860.44019 4179 4160 -3.36766242981e-06 4180 4160 -3.576278686523e-07 4181 4160 -25180890.14437 4251 4160 21679861.11823 4252 4160 -17343750.0057 4253 4160 -36432062.04359 4254 4160 86719444.4302 4255 4160 3.427267074585e-07 4256 4160 -99061955.12464 4257 4160 21679861.11823 4258 4160 17343750.0057 4259 4160 -36432062.04359 4266 4160 6.169080734253e-06 4267 4160 -69374999.9886 4268 4160 -72810997.49471 4269 4160 2.598762512207e-05 4270 4160 5.960464477539e-08 4271 4160 -104578818.0156 4272 4160 6.973743438721e-06 4273 4160 69374999.9886 4274 4160 -72810997.49471 4284 4160 -21679861.11823 4285 4160 -17343750.0057 4286 4160 -36432062.04358 4287 4160 -86719444.43019 4288 4160 -2.682209014893e-07 4289 4160 -99061955.12461 4290 4160 -21679861.11823 4291 4160 17343750.00569 4292 4160 -36432062.04358 4161 4161 1319128267.022 4162 4161 9.775161743164e-06 4163 4161 -5.745887756348e-05 4164 4161 174228645.9499 4165 4161 -4.291534423828e-06 4166 4161 -1.45435333252e-05 4176 4161 -118480247.2419 4177 4161 -81018055.54225 4178 4161 -3.695487976074e-06 4179 4161 -318367567.7659 4180 4161 -2.443790435791e-06 4181 4161 -1.460313796997e-05 4182 4161 -118480247.2419 4183 4161 81018055.54225 4184 4161 -3.516674041748e-06 4254 4161 -46373434.23613 4255 4161 24305555.56354 4256 4161 21679861.11823 4257 4161 -138827443.8752 4258 4161 2.682209014893e-07 4259 4161 86719444.4302 4260 4161 -46373434.23614 4261 4161 -24305555.56354 4262 4161 21679861.11823 4269 4161 8952264.76783 4270 4161 9.298324584961e-06 4271 4161 6.228685379028e-06 4272 4161 222474230.8735 4273 4161 3.933906555176e-06 4274 4161 2.622604370117e-05 4275 4161 8952264.76783 4276 4161 -1.302361488342e-05 4277 4161 6.914138793945e-06 4287 4161 -46373434.23611 4288 4161 -24305555.56353 4289 4161 -21679861.11823 4290 4161 -138827443.8751 4291 4161 -5.066394805908e-07 4292 4161 -86719444.43019 4293 4161 -46373434.23611 4294 4161 24305555.56353 4295 4161 -21679861.11823 4162 4162 1124677840.302 4163 4162 -3.814697265625e-06 4164 4162 -4.947185516357e-06 4165 4162 -133639662.3675 4166 4162 -8.046627044678e-07 4176 4162 -81018055.54225 4177 4162 -94173943.88989 4178 4162 -1.9371509552e-07 4179 4162 -1.072883605957e-06 4180 4162 38113347.20754 4181 4162 -1.192092895508e-06 4182 4162 81018055.54225 4183 4162 -94173943.88989 4184 4162 -2.682209014893e-07 4254 4162 24305555.56354 4255 4162 -39081501.55876 4256 4162 -17343750.00569 4257 4162 -2.294778823853e-06 4258 4162 -31882558.21685 4259 4162 2.682209014893e-07 4260 4162 -24305555.56354 4261 4162 -39081501.55876 4262 4162 17343750.0057 4269 4162 1.069903373718e-05 4270 4162 -83408755.55014 4271 4162 -69374999.9886 4272 4162 4.410743713379e-06 4273 4162 164138769.4832 4274 4162 -1.192092895508e-07 4275 4162 -1.156330108643e-05 4276 4162 -83408755.55014 4277 4162 69374999.9886 4287 4162 -24305555.56353 4288 4162 -39081501.55875 4289 4162 -17343750.0057 4290 4162 -8.344650268555e-07 4291 4162 -31882558.21681 4292 4162 -3.278255462646e-07 4293 4162 24305555.56353 4294 4162 -39081501.55875 4295 4162 17343750.00569 4163 4163 1191543893.2 4164 4163 -1.45435333252e-05 4165 4163 -1.192092895508e-06 4166 4163 142332552.4786 4176 4163 -3.576278686523e-06 4177 4163 -1.341104507446e-07 4178 4163 -25180890.14438 4179 4163 -1.388788223267e-05 4180 4163 -1.072883605957e-06 4181 4163 54829860.44019 4182 4163 -3.36766242981e-06 4183 4163 -3.576278686523e-07 4184 4163 -25180890.14437 4254 4163 21679861.11823 4255 4163 -17343750.0057 4256 4163 -36432062.04359 4257 4163 86719444.4302 4258 4163 3.427267074585e-07 4259 4163 -99061955.12464 4260 4163 21679861.11823 4261 4163 17343750.0057 4262 4163 -36432062.04359 4269 4163 6.169080734253e-06 4270 4163 -69374999.9886 4271 4163 -72810997.49471 4272 4163 2.598762512207e-05 4273 4163 5.960464477539e-08 4274 4163 -104578818.0156 4275 4163 6.973743438721e-06 4276 4163 69374999.9886 4277 4163 -72810997.49471 4287 4163 -21679861.11823 4288 4163 -17343750.0057 4289 4163 -36432062.04358 4290 4163 -86719444.43019 4291 4163 -2.682209014893e-07 4292 4163 -99061955.12461 4293 4163 -21679861.11823 4294 4163 17343750.00569 4295 4163 -36432062.04358 4164 4164 1437608510.215 4165 4164 81018053.92186 4166 4164 -4.029273986816e-05 4167 4164 32543005.93566 4168 4164 -81018054.8941 4169 4164 -4.887580871582e-06 4179 4164 -118480247.2419 4180 4164 -81018055.54225 4181 4164 -3.695487976074e-06 4182 4164 -318367567.7659 4183 4164 -2.443790435791e-06 4184 4164 -1.460313796997e-05 4185 4164 -118480247.2419 4186 4164 81018055.54225 4187 4164 -3.516674041748e-06 4257 4164 -46373434.23613 4258 4164 24305555.56354 4259 4164 21679861.11823 4260 4164 -175918799.4897 4261 4164 -24305555.27186 4262 4164 86719444.24762 4272 4164 8952264.76783 4273 4164 9.298324584961e-06 4274 4164 6.228685379028e-06 4275 4164 268847663.9159 4276 4164 24305555.07742 4277 4164 0.03653132915497 4278 4164 -28139091.37671 4279 4164 -24305555.36909 4280 4164 21679860.74398 4290 4164 -46373434.23611 4291 4164 -24305555.56353 4292 4164 -21679861.11823 4293 4164 -138827443.8751 4294 4164 -5.066394805908e-07 4295 4164 -86719444.43019 4296 4164 -46373434.23611 4297 4164 24305555.56353 4298 4164 -21679861.11823 4165 4165 1218851780.873 4166 4165 -1.430511474609e-06 4167 4165 -81018054.57003 4168 4165 -251018997.7335 4169 4165 -4.26173210144e-06 4179 4165 -81018055.54225 4180 4165 -94173943.88989 4181 4165 -1.9371509552e-07 4182 4165 -1.072883605957e-06 4183 4165 38113347.20754 4184 4165 -1.192092895508e-06 4185 4165 81018055.54225 4186 4165 -94173943.88989 4187 4165 -2.682209014893e-07 4257 4165 24305555.56354 4258 4165 -39081501.55876 4259 4165 -17343750.00569 4260 4165 -24305555.36908 4261 4165 -61681981.7616 4262 4165 17343749.94043 4272 4165 1.069903373718e-05 4273 4165 -83408755.55014 4274 4165 -69374999.9886 4275 4165 24305555.07742 4276 4165 203220270.0671 4277 4165 0.02920919656754 4278 4165 -24305555.27186 4279 4165 -113208178.6284 4280 4165 69374999.6084 4290 4165 -24305555.56353 4291 4165 -39081501.55875 4292 4165 -17343750.0057 4293 4165 -8.344650268555e-07 4294 4165 -31882558.21681 4295 4165 -3.278255462646e-07 4296 4165 24305555.56353 4297 4165 -39081501.55875 4298 4165 17343750.00569 4166 4166 1216724781.271 4167 4166 -4.52995300293e-06 4168 4166 -3.457069396973e-06 4169 4166 55270613.64501 4179 4166 -3.576278686523e-06 4180 4166 -1.341104507446e-07 4181 4166 -25180890.14438 4182 4166 -1.388788223267e-05 4183 4166 -1.072883605957e-06 4184 4166 54829860.44019 4185 4166 -3.36766242981e-06 4186 4166 -3.576278686523e-07 4187 4166 -25180890.14437 4257 4166 21679861.11823 4258 4166 -17343750.0057 4259 4166 -36432062.04359 4260 4166 86719444.24762 4261 4166 17343749.9078 4262 4166 -110741809.7386 4272 4166 6.169080734253e-06 4273 4166 -69374999.9886 4274 4166 -72810997.49471 4275 4166 -0.03649973869324 4276 4166 -0.02921465039253 4277 4166 -68146756.53808 4278 4166 21679860.55685 4279 4166 69374999.49133 4280 4166 -84490851.68298 4290 4166 -21679861.11823 4291 4166 -17343750.0057 4292 4166 -36432062.04358 4293 4166 -86719444.43019 4294 4166 -2.682209014893e-07 4295 4166 -99061955.12461 4296 4166 -21679861.11823 4297 4166 17343750.00569 4298 4166 -36432062.04358 4167 4167 839023631.6674 4168 4167 87343789.54536 4169 4167 -1.788139343262e-05 4182 4167 -118480247.2419 4183 4167 -81018055.54225 4184 4167 -3.695487976074e-06 4185 4167 -474827934.8941 4186 4167 -87343788.8972 4187 4167 -1.013278961182e-05 4188 4167 27033058.92538 4189 4167 64814443.78564 4190 4167 -1.192092895508e-07 4260 4167 -9282077.50499 4261 4167 29166666.38457 4262 4167 26015832.78049 4275 4167 -28139091.37673 4276 4167 -24305555.27187 4277 4167 -21679860.55685 4278 4167 142149470.4916 4279 4167 26203286.60958 4280 4167 17682222.18138 4293 4167 -46373434.23611 4294 4167 -24305555.56353 4295 4167 -21679861.11823 4296 4167 -180984988.3575 4297 4167 -26203286.41513 4298 4167 -88411110.90688 4299 4167 -8767515.558548 4300 4167 19444444.25638 4301 4167 -18020555.17262 4168 4168 709779954.7303 4169 4168 -3.48687171936e-06 4182 4168 -81018055.54225 4183 4168 -94173943.88989 4184 4168 -1.9371509552e-07 4185 4168 -87343788.57312 4186 4168 -91199082.2484 4188 4168 97221665.67847 4189 4168 31903583.53394 4190 4168 -7.152557373047e-07 4260 4168 19444444.25638 4261 4168 -9282077.505 4262 4168 -13874999.9393 4275 4168 -24305555.36909 4276 4168 -113208178.6284 4277 4168 -69374999.49133 4278 4168 26203286.60958 4279 4168 103376145.8295 4280 4168 14145833.18358 4293 4168 -24305555.56353 4294 4168 -39081501.55875 4295 4168 -17343750.0057 4296 4168 -26203286.31791 4297 4168 -65895674.85385 4298 4168 -18697916.56855 4299 4168 29166666.38457 4300 4168 -7306349.825743 4301 4168 20270833.25379 4169 4169 754398934.9387 4182 4169 -3.576278686523e-06 4183 4169 -1.341104507446e-07 4184 4169 -25180890.14438 4185 4169 -9.834766387939e-06 4186 4169 -1.788139343262e-07 4187 4169 -37595585.9186 4188 4169 -1.311302185059e-06 4189 4169 -4.172325134277e-07 4190 4169 67217632.52583 4260 4169 17343888.52033 4261 4169 -20812499.90895 4262 4169 -24752206.67999 4275 4169 -21679860.74398 4276 4169 -69374999.6084 4277 4169 -84490851.68299 4278 4169 -17682222.18137 4279 4169 -14145833.18359 4280 4169 -65836512.72296 4293 4169 -21679861.11823 4294 4169 -17343750.0057 4295 4169 -36432062.04358 4296 4169 -88411110.90688 4297 4169 -18697916.60118 4298 4169 -114040857.0942 4299 4169 -27030832.75893 4300 4169 13062499.95656 4301 4169 -24841207.22226 4170 4170 1319128267.022 4171 4170 9.775161743164e-06 4172 4170 -5.745887756348e-05 4173 4170 174228645.9499 4174 4170 -4.291534423828e-06 4175 4170 -1.45435333252e-05 4191 4170 -318367567.7659 4192 4170 -2.443790435791e-06 4193 4170 -1.460313796997e-05 4194 4170 -118480247.2419 4195 4170 81018055.54225 4196 4170 -3.516674041748e-06 4263 4170 -138827443.8752 4264 4170 2.682209014893e-07 4265 4170 86719444.4302 4266 4170 -46373434.23614 4267 4170 -24305555.56354 4268 4170 21679861.11823 4281 4170 222474230.8735 4282 4170 3.933906555176e-06 4283 4170 2.622604370117e-05 4284 4170 8952264.76783 4285 4170 -1.302361488342e-05 4286 4170 6.914138793945e-06 4302 4170 -138827443.8751 4303 4170 -5.066394805908e-07 4304 4170 -86719444.43019 4305 4170 -46373434.23611 4306 4170 24305555.56353 4307 4170 -21679861.11823 4171 4171 1124677840.302 4172 4171 -3.814697265625e-06 4173 4171 -4.947185516357e-06 4174 4171 -133639662.3675 4175 4171 -8.046627044678e-07 4191 4171 -1.072883605957e-06 4192 4171 38113347.20754 4193 4171 -1.192092895508e-06 4194 4171 81018055.54225 4195 4171 -94173943.88989 4196 4171 -2.682209014893e-07 4263 4171 -2.294778823853e-06 4264 4171 -31882558.21685 4265 4171 2.682209014893e-07 4266 4171 -24305555.56354 4267 4171 -39081501.55876 4268 4171 17343750.0057 4281 4171 4.410743713379e-06 4282 4171 164138769.4832 4283 4171 -1.192092895508e-07 4284 4171 -1.156330108643e-05 4285 4171 -83408755.55014 4286 4171 69374999.9886 4302 4171 -8.344650268555e-07 4303 4171 -31882558.21681 4304 4171 -3.278255462646e-07 4305 4171 24305555.56353 4306 4171 -39081501.55875 4307 4171 17343750.00569 4172 4172 1191543893.2 4173 4172 -1.45435333252e-05 4174 4172 -1.192092895508e-06 4175 4172 142332552.4786 4191 4172 -1.388788223267e-05 4192 4172 -1.072883605957e-06 4193 4172 54829860.44019 4194 4172 -3.36766242981e-06 4195 4172 -3.576278686523e-07 4196 4172 -25180890.14437 4263 4172 86719444.4302 4264 4172 3.427267074585e-07 4265 4172 -99061955.12464 4266 4172 21679861.11823 4267 4172 17343750.0057 4268 4172 -36432062.04359 4281 4172 2.598762512207e-05 4282 4172 5.960464477539e-08 4283 4172 -104578818.0156 4284 4172 6.973743438721e-06 4285 4172 69374999.9886 4286 4172 -72810997.49471 4302 4172 -86719444.43019 4303 4172 -2.682209014893e-07 4304 4172 -99061955.12461 4305 4172 -21679861.11823 4306 4172 17343750.00569 4307 4172 -36432062.04358 4173 4173 1319128267.022 4174 4173 9.775161743164e-06 4175 4173 -5.745887756348e-05 4176 4173 174228645.9499 4177 4173 -4.291534423828e-06 4178 4173 -1.45435333252e-05 4191 4173 -118480247.2419 4192 4173 -81018055.54225 4193 4173 -3.695487976074e-06 4194 4173 -318367567.7659 4195 4173 -2.443790435791e-06 4196 4173 -1.460313796997e-05 4197 4173 -118480247.2419 4198 4173 81018055.54225 4199 4173 -3.516674041748e-06 4263 4173 -46373434.23613 4264 4173 24305555.56354 4265 4173 21679861.11823 4266 4173 -138827443.8752 4267 4173 2.682209014893e-07 4268 4173 86719444.4302 4269 4173 -46373434.23614 4270 4173 -24305555.56354 4271 4173 21679861.11823 4281 4173 8952264.76783 4282 4173 9.298324584961e-06 4283 4173 6.228685379028e-06 4284 4173 222474230.8735 4285 4173 3.933906555176e-06 4286 4173 2.622604370117e-05 4287 4173 8952264.76783 4288 4173 -1.302361488342e-05 4289 4173 6.914138793945e-06 4302 4173 -46373434.23611 4303 4173 -24305555.56353 4304 4173 -21679861.11823 4305 4173 -138827443.8751 4306 4173 -5.066394805908e-07 4307 4173 -86719444.43019 4308 4173 -46373434.23611 4309 4173 24305555.56353 4310 4173 -21679861.11823 4174 4174 1124677840.302 4175 4174 -3.814697265625e-06 4176 4174 -4.947185516357e-06 4177 4174 -133639662.3675 4178 4174 -8.046627044678e-07 4191 4174 -81018055.54225 4192 4174 -94173943.88989 4193 4174 -1.9371509552e-07 4194 4174 -1.072883605957e-06 4195 4174 38113347.20754 4196 4174 -1.192092895508e-06 4197 4174 81018055.54225 4198 4174 -94173943.88989 4199 4174 -2.682209014893e-07 4263 4174 24305555.56354 4264 4174 -39081501.55876 4265 4174 -17343750.00569 4266 4174 -2.294778823853e-06 4267 4174 -31882558.21685 4268 4174 2.682209014893e-07 4269 4174 -24305555.56354 4270 4174 -39081501.55876 4271 4174 17343750.0057 4281 4174 1.069903373718e-05 4282 4174 -83408755.55014 4283 4174 -69374999.9886 4284 4174 4.410743713379e-06 4285 4174 164138769.4832 4286 4174 -1.192092895508e-07 4287 4174 -1.156330108643e-05 4288 4174 -83408755.55014 4289 4174 69374999.9886 4302 4174 -24305555.56353 4303 4174 -39081501.55875 4304 4174 -17343750.0057 4305 4174 -8.344650268555e-07 4306 4174 -31882558.21681 4307 4174 -3.278255462646e-07 4308 4174 24305555.56353 4309 4174 -39081501.55875 4310 4174 17343750.00569 4175 4175 1191543893.2 4176 4175 -1.45435333252e-05 4177 4175 -1.192092895508e-06 4178 4175 142332552.4786 4191 4175 -3.576278686523e-06 4192 4175 -1.341104507446e-07 4193 4175 -25180890.14438 4194 4175 -1.388788223267e-05 4195 4175 -1.072883605957e-06 4196 4175 54829860.44019 4197 4175 -3.36766242981e-06 4198 4175 -3.576278686523e-07 4199 4175 -25180890.14437 4263 4175 21679861.11823 4264 4175 -17343750.0057 4265 4175 -36432062.04359 4266 4175 86719444.4302 4267 4175 3.427267074585e-07 4268 4175 -99061955.12464 4269 4175 21679861.11823 4270 4175 17343750.0057 4271 4175 -36432062.04359 4281 4175 6.169080734253e-06 4282 4175 -69374999.9886 4283 4175 -72810997.49471 4284 4175 2.598762512207e-05 4285 4175 5.960464477539e-08 4286 4175 -104578818.0156 4287 4175 6.973743438721e-06 4288 4175 69374999.9886 4289 4175 -72810997.49471 4302 4175 -21679861.11823 4303 4175 -17343750.0057 4304 4175 -36432062.04358 4305 4175 -86719444.43019 4306 4175 -2.682209014893e-07 4307 4175 -99061955.12461 4308 4175 -21679861.11823 4309 4175 17343750.00569 4310 4175 -36432062.04358 4176 4176 1319128267.022 4177 4176 9.775161743164e-06 4178 4176 -5.745887756348e-05 4179 4176 174228645.9499 4180 4176 -4.291534423828e-06 4181 4176 -1.45435333252e-05 4194 4176 -118480247.2419 4195 4176 -81018055.54225 4196 4176 -3.695487976074e-06 4197 4176 -318367567.7659 4198 4176 -2.443790435791e-06 4199 4176 -1.460313796997e-05 4200 4176 -118480247.2419 4201 4176 81018055.54225 4202 4176 -3.516674041748e-06 4266 4176 -46373434.23613 4267 4176 24305555.56354 4268 4176 21679861.11823 4269 4176 -138827443.8752 4270 4176 2.682209014893e-07 4271 4176 86719444.4302 4272 4176 -46373434.23614 4273 4176 -24305555.56354 4274 4176 21679861.11823 4284 4176 8952264.76783 4285 4176 9.298324584961e-06 4286 4176 6.228685379028e-06 4287 4176 222474230.8735 4288 4176 3.933906555176e-06 4289 4176 2.622604370117e-05 4290 4176 8952264.76783 4291 4176 -1.302361488342e-05 4292 4176 6.914138793945e-06 4305 4176 -46373434.23611 4306 4176 -24305555.56353 4307 4176 -21679861.11823 4308 4176 -138827443.8751 4309 4176 -5.066394805908e-07 4310 4176 -86719444.43019 4311 4176 -46373434.23611 4312 4176 24305555.56353 4313 4176 -21679861.11823 4177 4177 1124677840.302 4178 4177 -3.814697265625e-06 4179 4177 -4.947185516357e-06 4180 4177 -133639662.3675 4181 4177 -8.046627044678e-07 4194 4177 -81018055.54225 4195 4177 -94173943.88989 4196 4177 -1.9371509552e-07 4197 4177 -1.072883605957e-06 4198 4177 38113347.20754 4199 4177 -1.192092895508e-06 4200 4177 81018055.54225 4201 4177 -94173943.88989 4202 4177 -2.682209014893e-07 4266 4177 24305555.56354 4267 4177 -39081501.55876 4268 4177 -17343750.00569 4269 4177 -2.294778823853e-06 4270 4177 -31882558.21685 4271 4177 2.682209014893e-07 4272 4177 -24305555.56354 4273 4177 -39081501.55876 4274 4177 17343750.0057 4284 4177 1.069903373718e-05 4285 4177 -83408755.55014 4286 4177 -69374999.9886 4287 4177 4.410743713379e-06 4288 4177 164138769.4832 4289 4177 -1.192092895508e-07 4290 4177 -1.156330108643e-05 4291 4177 -83408755.55014 4292 4177 69374999.9886 4305 4177 -24305555.56353 4306 4177 -39081501.55875 4307 4177 -17343750.0057 4308 4177 -8.344650268555e-07 4309 4177 -31882558.21681 4310 4177 -3.278255462646e-07 4311 4177 24305555.56353 4312 4177 -39081501.55875 4313 4177 17343750.00569 4178 4178 1191543893.2 4179 4178 -1.45435333252e-05 4180 4178 -1.192092895508e-06 4181 4178 142332552.4786 4194 4178 -3.576278686523e-06 4195 4178 -1.341104507446e-07 4196 4178 -25180890.14438 4197 4178 -1.388788223267e-05 4198 4178 -1.072883605957e-06 4199 4178 54829860.44019 4200 4178 -3.36766242981e-06 4201 4178 -3.576278686523e-07 4202 4178 -25180890.14437 4266 4178 21679861.11823 4267 4178 -17343750.0057 4268 4178 -36432062.04359 4269 4178 86719444.4302 4270 4178 3.427267074585e-07 4271 4178 -99061955.12464 4272 4178 21679861.11823 4273 4178 17343750.0057 4274 4178 -36432062.04359 4284 4178 6.169080734253e-06 4285 4178 -69374999.9886 4286 4178 -72810997.49471 4287 4178 2.598762512207e-05 4288 4178 5.960464477539e-08 4289 4178 -104578818.0156 4290 4178 6.973743438721e-06 4291 4178 69374999.9886 4292 4178 -72810997.49471 4305 4178 -21679861.11823 4306 4178 -17343750.0057 4307 4178 -36432062.04358 4308 4178 -86719444.43019 4309 4178 -2.682209014893e-07 4310 4178 -99061955.12461 4311 4178 -21679861.11823 4312 4178 17343750.00569 4313 4178 -36432062.04358 4179 4179 1319128267.022 4180 4179 9.775161743164e-06 4181 4179 -5.745887756348e-05 4182 4179 174228645.9499 4183 4179 -4.291534423828e-06 4184 4179 -1.45435333252e-05 4197 4179 -118480247.2419 4198 4179 -81018055.54225 4199 4179 -3.695487976074e-06 4200 4179 -318367567.7659 4201 4179 -2.443790435791e-06 4202 4179 -1.460313796997e-05 4203 4179 -118480247.2419 4204 4179 81018055.54225 4205 4179 -3.516674041748e-06 4269 4179 -46373434.23613 4270 4179 24305555.56354 4271 4179 21679861.11823 4272 4179 -138827443.8752 4273 4179 2.682209014893e-07 4274 4179 86719444.4302 4275 4179 -46373434.23614 4276 4179 -24305555.56354 4277 4179 21679861.11823 4287 4179 8952264.76783 4288 4179 9.298324584961e-06 4289 4179 6.228685379028e-06 4290 4179 222474230.8735 4291 4179 3.933906555176e-06 4292 4179 2.622604370117e-05 4293 4179 8952264.76783 4294 4179 -1.302361488342e-05 4295 4179 6.914138793945e-06 4308 4179 -46373434.23611 4309 4179 -24305555.56353 4310 4179 -21679861.11823 4311 4179 -138827443.8751 4312 4179 -5.066394805908e-07 4313 4179 -86719444.43019 4314 4179 -46373434.23611 4315 4179 24305555.56353 4316 4179 -21679861.11823 4180 4180 1124677840.302 4181 4180 -3.814697265625e-06 4182 4180 -4.947185516357e-06 4183 4180 -133639662.3675 4184 4180 -8.046627044678e-07 4197 4180 -81018055.54225 4198 4180 -94173943.88989 4199 4180 -1.9371509552e-07 4200 4180 -1.072883605957e-06 4201 4180 38113347.20754 4202 4180 -1.192092895508e-06 4203 4180 81018055.54225 4204 4180 -94173943.88989 4205 4180 -2.682209014893e-07 4269 4180 24305555.56354 4270 4180 -39081501.55876 4271 4180 -17343750.00569 4272 4180 -2.294778823853e-06 4273 4180 -31882558.21685 4274 4180 2.682209014893e-07 4275 4180 -24305555.56354 4276 4180 -39081501.55876 4277 4180 17343750.0057 4287 4180 1.069903373718e-05 4288 4180 -83408755.55014 4289 4180 -69374999.9886 4290 4180 4.410743713379e-06 4291 4180 164138769.4832 4292 4180 -1.192092895508e-07 4293 4180 -1.156330108643e-05 4294 4180 -83408755.55014 4295 4180 69374999.9886 4308 4180 -24305555.56353 4309 4180 -39081501.55875 4310 4180 -17343750.0057 4311 4180 -8.344650268555e-07 4312 4180 -31882558.21681 4313 4180 -3.278255462646e-07 4314 4180 24305555.56353 4315 4180 -39081501.55875 4316 4180 17343750.00569 4181 4181 1191543893.2 4182 4181 -1.45435333252e-05 4183 4181 -1.192092895508e-06 4184 4181 142332552.4786 4197 4181 -3.576278686523e-06 4198 4181 -1.341104507446e-07 4199 4181 -25180890.14438 4200 4181 -1.388788223267e-05 4201 4181 -1.072883605957e-06 4202 4181 54829860.44019 4203 4181 -3.36766242981e-06 4204 4181 -3.576278686523e-07 4205 4181 -25180890.14437 4269 4181 21679861.11823 4270 4181 -17343750.0057 4271 4181 -36432062.04359 4272 4181 86719444.4302 4273 4181 3.427267074585e-07 4274 4181 -99061955.12464 4275 4181 21679861.11823 4276 4181 17343750.0057 4277 4181 -36432062.04359 4287 4181 6.169080734253e-06 4288 4181 -69374999.9886 4289 4181 -72810997.49471 4290 4181 2.598762512207e-05 4291 4181 5.960464477539e-08 4292 4181 -104578818.0156 4293 4181 6.973743438721e-06 4294 4181 69374999.9886 4295 4181 -72810997.49471 4308 4181 -21679861.11823 4309 4181 -17343750.0057 4310 4181 -36432062.04358 4311 4181 -86719444.43019 4312 4181 -2.682209014893e-07 4313 4181 -99061955.12461 4314 4181 -21679861.11823 4315 4181 17343750.00569 4316 4181 -36432062.04358 4182 4182 1319128267.022 4183 4182 9.775161743164e-06 4184 4182 -5.745887756348e-05 4185 4182 174228645.9499 4186 4182 -4.291534423828e-06 4187 4182 -1.45435333252e-05 4200 4182 -118480247.2419 4201 4182 -81018055.54225 4202 4182 -3.695487976074e-06 4203 4182 -318367567.7659 4204 4182 -2.443790435791e-06 4205 4182 -1.460313796997e-05 4206 4182 -118480247.2419 4207 4182 81018055.54225 4208 4182 -3.516674041748e-06 4272 4182 -46373434.23613 4273 4182 24305555.56354 4274 4182 21679861.11823 4275 4182 -138827443.8752 4276 4182 2.682209014893e-07 4277 4182 86719444.4302 4278 4182 -46373434.23614 4279 4182 -24305555.56354 4280 4182 21679861.11823 4290 4182 8952264.76783 4291 4182 9.298324584961e-06 4292 4182 6.228685379028e-06 4293 4182 222474230.8735 4294 4182 3.933906555176e-06 4295 4182 2.622604370117e-05 4296 4182 8952264.76783 4297 4182 -1.302361488342e-05 4298 4182 6.914138793945e-06 4311 4182 -46373434.23611 4312 4182 -24305555.56353 4313 4182 -21679861.11823 4314 4182 -138827443.8751 4315 4182 -5.066394805908e-07 4316 4182 -86719444.43019 4317 4182 -46373434.23611 4318 4182 24305555.56353 4319 4182 -21679861.11823 4183 4183 1124677840.302 4184 4183 -3.814697265625e-06 4185 4183 -4.947185516357e-06 4186 4183 -133639662.3675 4187 4183 -8.046627044678e-07 4200 4183 -81018055.54225 4201 4183 -94173943.88989 4202 4183 -1.9371509552e-07 4203 4183 -1.072883605957e-06 4204 4183 38113347.20754 4205 4183 -1.192092895508e-06 4206 4183 81018055.54225 4207 4183 -94173943.88989 4208 4183 -2.682209014893e-07 4272 4183 24305555.56354 4273 4183 -39081501.55876 4274 4183 -17343750.00569 4275 4183 -2.294778823853e-06 4276 4183 -31882558.21685 4277 4183 2.682209014893e-07 4278 4183 -24305555.56354 4279 4183 -39081501.55876 4280 4183 17343750.0057 4290 4183 1.069903373718e-05 4291 4183 -83408755.55014 4292 4183 -69374999.9886 4293 4183 4.410743713379e-06 4294 4183 164138769.4832 4295 4183 -1.192092895508e-07 4296 4183 -1.156330108643e-05 4297 4183 -83408755.55014 4298 4183 69374999.9886 4311 4183 -24305555.56353 4312 4183 -39081501.55875 4313 4183 -17343750.0057 4314 4183 -8.344650268555e-07 4315 4183 -31882558.21681 4316 4183 -3.278255462646e-07 4317 4183 24305555.56353 4318 4183 -39081501.55875 4319 4183 17343750.00569 4184 4184 1191543893.2 4185 4184 -1.45435333252e-05 4186 4184 -1.192092895508e-06 4187 4184 142332552.4786 4200 4184 -3.576278686523e-06 4201 4184 -1.341104507446e-07 4202 4184 -25180890.14438 4203 4184 -1.388788223267e-05 4204 4184 -1.072883605957e-06 4205 4184 54829860.44019 4206 4184 -3.36766242981e-06 4207 4184 -3.576278686523e-07 4208 4184 -25180890.14437 4272 4184 21679861.11823 4273 4184 -17343750.0057 4274 4184 -36432062.04359 4275 4184 86719444.4302 4276 4184 3.427267074585e-07 4277 4184 -99061955.12464 4278 4184 21679861.11823 4279 4184 17343750.0057 4280 4184 -36432062.04359 4290 4184 6.169080734253e-06 4291 4184 -69374999.9886 4292 4184 -72810997.49471 4293 4184 2.598762512207e-05 4294 4184 5.960464477539e-08 4295 4184 -104578818.0156 4296 4184 6.973743438721e-06 4297 4184 69374999.9886 4298 4184 -72810997.49471 4311 4184 -21679861.11823 4312 4184 -17343750.0057 4313 4184 -36432062.04358 4314 4184 -86719444.43019 4315 4184 -2.682209014893e-07 4316 4184 -99061955.12461 4317 4184 -21679861.11823 4318 4184 17343750.00569 4319 4184 -36432062.04358 4185 4185 1462641058.094 4186 4185 87479495.38205 4187 4185 -4.52995300293e-05 4188 4185 42596143.66857 4189 4185 -77867916.96021 4190 4185 1.072883605957e-06 4203 4185 -118480247.2419 4204 4185 -81018055.54225 4205 4185 -3.695487976074e-06 4206 4185 -324895063.8002 4207 4185 -3176292.746493 4208 4185 -9.357929229736e-06 4209 4185 -126834155.7336 4210 4185 80908502.89777 4211 4185 7.748603820801e-07 4275 4185 -46373434.23613 4276 4185 24305555.56354 4277 4185 21679861.11823 4278 4185 -180984988.3575 4279 4185 -26203286.31791 4280 4185 88411110.90689 4293 4185 8952264.76783 4294 4185 9.298324584961e-06 4295 4185 6.228685379028e-06 4296 4185 274245586.3934 4297 4185 26243998.59326 4298 4185 0.03795540332794 4299 4185 -25967702.04295 4300 4185 -23360508.58819 4301 4185 21679166.28526 4314 4185 -46373434.23611 4315 4185 -24305555.56353 4316 4185 -21679861.11823 4317 4185 -140996480.1669 4318 4185 -952893.2695215 4319 4185 -87564583.31886 4320 4185 -48879322.66663 4321 4185 24272689.58237 4322 4185 -22525694.45184 4186 4186 1226949792.75 4187 4186 1.54972076416e-06 4188 4186 -77867916.63614 4189 4186 -240777220.5996 4190 4186 8.642673492432e-07 4203 4186 -81018055.54225 4204 4186 -94173943.88989 4205 4186 -1.9371509552e-07 4206 4186 -3176292.746491 4207 4186 34621896.54898 4208 4186 2.384185791016e-06 4209 4186 80908502.89777 4210 4186 -91659637.50231 4211 4186 4.619359970093e-07 4275 4186 24305555.56354 4276 4186 -39081501.55876 4277 4186 -17343750.00569 4278 4186 -26203286.41513 4279 4186 -65895674.85387 4280 4186 18697916.60118 4293 4186 1.069903373718e-05 4294 4186 -83408755.55014 4295 4186 -69374999.9886 4296 4186 26243998.59325 4297 4186 203537802.7107 4298 4186 0.03034836053848 4299 4186 -23360508.49097 4300 4186 -110980197.151 4301 4186 69374999.59698 4314 4186 -24305555.56353 4315 4186 -39081501.55875 4316 4186 -17343750.0057 4317 4186 -952893.2695235 4318 4186 -33140775.69073 4319 4186 -677083.3331564 4320 4186 24272689.58237 4321 4186 -38326906.89252 4322 4186 16666666.67214 4187 4187 1232160055.067 4188 4187 1.311302185059e-06 4189 4187 8.046627044678e-07 4190 4187 63364897.36566 4203 4187 -3.576278686523e-06 4204 4187 -1.341104507446e-07 4205 4187 -25180890.14438 4206 4187 -9.536743164063e-06 4207 4187 2.503395080566e-06 4208 4187 52736138.02881 4209 4187 5.662441253662e-07 4210 4187 4.91738319397e-07 4211 4187 -26774413.26387 4275 4187 21679861.11823 4276 4187 -17343750.0057 4277 4187 -36432062.04359 4278 4187 88411110.90689 4279 4187 18697916.56855 4280 4187 -114040857.0943 4293 4187 6.169080734253e-06 4294 4187 -69374999.9886 4295 4187 -72810997.49471 4296 4187 -0.03792554140091 4297 4187 -0.03035613894463 4298 4187 -69147840.74464 4299 4187 21679166.091 4300 4187 69374999.4742 4301 4187 -84314737.28063 4314 4187 -21679861.11823 4315 4187 -17343750.0057 4316 4187 -36432062.04358 4317 4187 -87564583.31903 4318 4187 -677083.3332899 4319 4187 -100252145.5455 4320 4187 -22525694.45184 4321 4187 16666666.67214 4322 4187 -36909325.87324 4188 4188 787388547.2823 4189 4188 -2214583.809871 4190 4188 1.430511474609e-06 4206 4188 -116805592.7516 4207 4188 -81004084.40933 4208 4188 -1.579523086548e-06 4209 4188 -332162222.5414 4210 4188 -4280016.395824 4211 4188 -2.384185791016e-07 4212 4188 80715855.11751 4213 4188 -13975781.07962 4214 4188 -1.311302185059e-06 4215 4188 -125994423.3344 4216 4188 82120716.65231 4217 4188 2.652406692505e-06 4278 4188 -8767515.558547 4279 4188 29166666.38457 4280 4188 27030832.75893 4296 4188 -25967702.04295 4297 4188 -23360508.49097 4298 4188 -21679166.091 4299 4188 119740849.7094 4300 4188 -664378.9397402 4301 4188 17135277.77496 4317 4188 -45870736.57861 4318 4188 -24301364.19971 4319 4188 -21679166.67379 4320 4188 -141002035.2671 4321 4188 -1284012.256595 4322 4188 -85676388.87482 4323 4188 4511607.61049 4324 4188 -4192758.28457 4325 4188 3215972.223778 4326 4188 -47751770.62455 4327 4188 24636355.787 4328 4188 -21159027.78473 4189 4189 809133076.5767 4190 4189 9.655952453613e-06 4206 4189 -81004084.40933 4207 4189 -94677982.04967 4208 4189 4.91738319397e-07 4209 4189 -4280016.395824 4210 4189 28012191.60674 4211 4189 6.07967376709e-06 4212 4189 18431441.13728 4213 4189 -72760112.34643 4214 4189 -2.413988113403e-06 4215 4189 82120716.65231 4216 4189 -98062170.35532 4217 4189 -1.490116119385e-07 4278 4189 19444444.25638 4279 4189 -7306349.825742 4280 4189 -13062499.95656 4296 4189 -23360508.58819 4297 4189 -110980197.151 4298 4189 -69374999.4742 4299 4189 -664378.9397414 4300 4189 126264245.7775 4301 4189 7208333.185862 4317 4189 -24301364.19971 4318 4189 -39232415.43151 4319 4189 -17343750.0057 4320 4189 -1284012.256596 4321 4189 -32949093.52409 4322 4189 -677083.3331572 4323 4189 5529463.940844 4324 4189 -41531445.75453 4325 4189 33333333.32786 4326 4189 24636355.787 4327 4189 -39372046.84255 4328 4189 16666666.67214 4190 4190 788376653.8888 4206 4190 -1.698732376099e-06 4207 4190 4.91738319397e-07 4208 4190 -24862535.50895 4209 4190 -2.384185791016e-07 4210 4190 6.258487701416e-06 4211 4190 42361810.64111 4212 4190 -2.384185791016e-07 4213 4190 -2.443790435791e-06 4214 4190 61876825.47302 4215 4190 2.205371856689e-06 4216 4190 -1.192092895508e-07 4217 4190 -30944974.07514 4278 4190 18020555.17262 4279 4190 -20270833.25379 4280 4190 -24841207.22225 4296 4190 -21679166.28526 4297 4190 -69374999.59698 4298 4190 -84314737.28062 4299 4190 -17135277.77496 4300 4190 -7208333.18587 4301 4190 -74091157.2951 4317 4190 -21679166.67379 4318 4190 -17343750.0057 4319 4190 -36335759.26896 4320 4190 -85676388.87482 4321 4190 -677083.3332907 4322 4190 -97565514.93122 4323 4190 -4909027.779057 4324 4190 33333333.32786 4325 4190 -33978945.7605 4326 4190 -21159027.78473 4327 4190 16666666.67214 4328 4190 -35825485.57976 4191 4191 659564133.511 4192 4191 1.192092895508e-06 4193 4191 -3.0517578125e-05 4194 4191 87114322.97494 4195 4191 16203611.10845 4196 4191 -7.62939453125e-06 4281 4191 -138827443.8752 4282 4191 2.682209014893e-07 4283 4191 86719444.4302 4284 4191 -46373434.23614 4285 4191 -24305555.56354 4286 4191 21679861.11823 4302 4191 111237115.4367 4303 4191 -8.344650268555e-07 4304 4191 -17343888.88603 4305 4191 4476132.383917 4306 4191 4861111.1127 4307 4191 -4335972.223642 4192 4192 562338920.1509 4193 4192 8.344650268555e-06 4194 4192 -16203611.10845 4195 4192 -66819831.18376 4196 4192 2.235174179077e-06 4281 4192 -2.294778823853e-06 4282 4192 -31882558.21685 4283 4192 2.682209014893e-07 4284 4192 -24305555.56354 4285 4192 -39081501.55876 4286 4192 17343750.0057 4302 4192 -7.152557373047e-07 4303 4192 82069384.74161 4304 4192 -3.75509262085e-06 4305 4192 -4861111.112713 4306 4192 -41704377.77507 4307 4192 34687499.9943 4193 4193 595771946.5998 4194 4193 -7.62939453125e-06 4195 4193 2.026557922363e-06 4196 4193 71166276.23929 4281 4193 86719444.4302 4282 4193 3.427267074585e-07 4283 4193 -99061955.12464 4284 4193 21679861.11823 4285 4193 17343750.0057 4286 4193 -36432062.04359 4302 4193 17343888.88605 4303 4193 -3.576278686523e-06 4304 4193 -52289409.00778 4305 4193 4335972.22365 4306 4193 34687499.9943 4307 4193 -36405498.74735 4194 4194 659564133.511 4195 4194 1.192092895508e-06 4196 4194 -3.0517578125e-05 4197 4194 87114322.97494 4198 4194 16203611.10845 4199 4194 -7.62939453125e-06 4281 4194 -46373434.23613 4282 4194 24305555.56354 4283 4194 21679861.11823 4284 4194 -138827443.8752 4285 4194 2.682209014893e-07 4286 4194 86719444.4302 4287 4194 -46373434.23614 4288 4194 -24305555.56354 4289 4194 21679861.11823 4302 4194 4476132.383914 4303 4194 -4861111.112702 4304 4194 -4335972.223643 4305 4194 111237115.4367 4306 4194 -8.344650268555e-07 4307 4194 -17343888.88603 4308 4194 4476132.383917 4309 4194 4861111.1127 4310 4194 -4335972.223642 4195 4195 562338920.1509 4196 4195 8.344650268555e-06 4197 4195 -16203611.10845 4198 4195 -66819831.18376 4199 4195 2.235174179077e-06 4281 4195 24305555.56354 4282 4195 -39081501.55876 4283 4195 -17343750.00569 4284 4195 -2.294778823853e-06 4285 4195 -31882558.21685 4286 4195 2.682209014893e-07 4287 4195 -24305555.56354 4288 4195 -39081501.55876 4289 4195 17343750.0057 4302 4195 4861111.112712 4303 4195 -41704377.77507 4304 4195 -34687499.9943 4305 4195 -7.152557373047e-07 4306 4195 82069384.74161 4307 4195 -3.75509262085e-06 4308 4195 -4861111.112713 4309 4195 -41704377.77507 4310 4195 34687499.9943 4196 4196 595771946.5998 4197 4196 -7.62939453125e-06 4198 4196 2.026557922363e-06 4199 4196 71166276.23929 4281 4196 21679861.11823 4282 4196 -17343750.0057 4283 4196 -36432062.04359 4284 4196 86719444.4302 4285 4196 3.427267074585e-07 4286 4196 -99061955.12464 4287 4196 21679861.11823 4288 4196 17343750.0057 4289 4196 -36432062.04359 4302 4196 4335972.223649 4303 4196 -34687499.9943 4304 4196 -36405498.74736 4305 4196 17343888.88605 4306 4196 -3.576278686523e-06 4307 4196 -52289409.00778 4308 4196 4335972.22365 4309 4196 34687499.9943 4310 4196 -36405498.74735 4197 4197 659564133.511 4198 4197 1.192092895508e-06 4199 4197 -3.0517578125e-05 4200 4197 87114322.97494 4201 4197 16203611.10845 4202 4197 -7.62939453125e-06 4284 4197 -46373434.23613 4285 4197 24305555.56354 4286 4197 21679861.11823 4287 4197 -138827443.8752 4288 4197 2.682209014893e-07 4289 4197 86719444.4302 4290 4197 -46373434.23614 4291 4197 -24305555.56354 4292 4197 21679861.11823 4305 4197 4476132.383914 4306 4197 -4861111.112702 4307 4197 -4335972.223643 4308 4197 111237115.4367 4309 4197 -8.344650268555e-07 4310 4197 -17343888.88603 4311 4197 4476132.383917 4312 4197 4861111.1127 4313 4197 -4335972.223642 4198 4198 562338920.1509 4199 4198 8.344650268555e-06 4200 4198 -16203611.10845 4201 4198 -66819831.18376 4202 4198 2.235174179077e-06 4284 4198 24305555.56354 4285 4198 -39081501.55876 4286 4198 -17343750.00569 4287 4198 -2.294778823853e-06 4288 4198 -31882558.21685 4289 4198 2.682209014893e-07 4290 4198 -24305555.56354 4291 4198 -39081501.55876 4292 4198 17343750.0057 4305 4198 4861111.112712 4306 4198 -41704377.77507 4307 4198 -34687499.9943 4308 4198 -7.152557373047e-07 4309 4198 82069384.74161 4310 4198 -3.75509262085e-06 4311 4198 -4861111.112713 4312 4198 -41704377.77507 4313 4198 34687499.9943 4199 4199 595771946.5998 4200 4199 -7.62939453125e-06 4201 4199 2.026557922363e-06 4202 4199 71166276.23929 4284 4199 21679861.11823 4285 4199 -17343750.0057 4286 4199 -36432062.04359 4287 4199 86719444.4302 4288 4199 3.427267074585e-07 4289 4199 -99061955.12464 4290 4199 21679861.11823 4291 4199 17343750.0057 4292 4199 -36432062.04359 4305 4199 4335972.223649 4306 4199 -34687499.9943 4307 4199 -36405498.74736 4308 4199 17343888.88605 4309 4199 -3.576278686523e-06 4310 4199 -52289409.00778 4311 4199 4335972.22365 4312 4199 34687499.9943 4313 4199 -36405498.74735 4200 4200 659564133.511 4201 4200 1.192092895508e-06 4202 4200 -3.0517578125e-05 4203 4200 87114322.97494 4204 4200 16203611.10845 4205 4200 -7.62939453125e-06 4287 4200 -46373434.23613 4288 4200 24305555.56354 4289 4200 21679861.11823 4290 4200 -138827443.8752 4291 4200 2.682209014893e-07 4292 4200 86719444.4302 4293 4200 -46373434.23614 4294 4200 -24305555.56354 4295 4200 21679861.11823 4308 4200 4476132.383914 4309 4200 -4861111.112702 4310 4200 -4335972.223643 4311 4200 111237115.4367 4312 4200 -8.344650268555e-07 4313 4200 -17343888.88603 4314 4200 4476132.383917 4315 4200 4861111.1127 4316 4200 -4335972.223642 4201 4201 562338920.1509 4202 4201 8.344650268555e-06 4203 4201 -16203611.10845 4204 4201 -66819831.18376 4205 4201 2.235174179077e-06 4287 4201 24305555.56354 4288 4201 -39081501.55876 4289 4201 -17343750.00569 4290 4201 -2.294778823853e-06 4291 4201 -31882558.21685 4292 4201 2.682209014893e-07 4293 4201 -24305555.56354 4294 4201 -39081501.55876 4295 4201 17343750.0057 4308 4201 4861111.112712 4309 4201 -41704377.77507 4310 4201 -34687499.9943 4311 4201 -7.152557373047e-07 4312 4201 82069384.74161 4313 4201 -3.75509262085e-06 4314 4201 -4861111.112713 4315 4201 -41704377.77507 4316 4201 34687499.9943 4202 4202 595771946.5998 4203 4202 -7.62939453125e-06 4204 4202 2.026557922363e-06 4205 4202 71166276.23929 4287 4202 21679861.11823 4288 4202 -17343750.0057 4289 4202 -36432062.04359 4290 4202 86719444.4302 4291 4202 3.427267074585e-07 4292 4202 -99061955.12464 4293 4202 21679861.11823 4294 4202 17343750.0057 4295 4202 -36432062.04359 4308 4202 4335972.223649 4309 4202 -34687499.9943 4310 4202 -36405498.74736 4311 4202 17343888.88605 4312 4202 -3.576278686523e-06 4313 4202 -52289409.00778 4314 4202 4335972.22365 4315 4202 34687499.9943 4316 4202 -36405498.74735 4203 4203 659564133.511 4204 4203 1.192092895508e-06 4205 4203 -3.0517578125e-05 4206 4203 87114322.97494 4207 4203 16203611.10845 4208 4203 -7.62939453125e-06 4290 4203 -46373434.23613 4291 4203 24305555.56354 4292 4203 21679861.11823 4293 4203 -138827443.8752 4294 4203 2.682209014893e-07 4295 4203 86719444.4302 4296 4203 -46373434.23614 4297 4203 -24305555.56354 4298 4203 21679861.11823 4311 4203 4476132.383914 4312 4203 -4861111.112702 4313 4203 -4335972.223643 4314 4203 111237115.4367 4315 4203 -8.344650268555e-07 4316 4203 -17343888.88603 4317 4203 4476132.383917 4318 4203 4861111.1127 4319 4203 -4335972.223642 4204 4204 562338920.1509 4205 4204 8.344650268555e-06 4206 4204 -16203611.10845 4207 4204 -66819831.18376 4208 4204 2.235174179077e-06 4290 4204 24305555.56354 4291 4204 -39081501.55876 4292 4204 -17343750.00569 4293 4204 -2.294778823853e-06 4294 4204 -31882558.21685 4295 4204 2.682209014893e-07 4296 4204 -24305555.56354 4297 4204 -39081501.55876 4298 4204 17343750.0057 4311 4204 4861111.112712 4312 4204 -41704377.77507 4313 4204 -34687499.9943 4314 4204 -7.152557373047e-07 4315 4204 82069384.74161 4316 4204 -3.75509262085e-06 4317 4204 -4861111.112713 4318 4204 -41704377.77507 4319 4204 34687499.9943 4205 4205 595771946.5998 4206 4205 -7.62939453125e-06 4207 4205 2.026557922363e-06 4208 4205 71166276.23929 4290 4205 21679861.11823 4291 4205 -17343750.0057 4292 4205 -36432062.04359 4293 4205 86719444.4302 4294 4205 3.427267074585e-07 4295 4205 -99061955.12464 4296 4205 21679861.11823 4297 4205 17343750.0057 4298 4205 -36432062.04359 4311 4205 4335972.223649 4312 4205 -34687499.9943 4313 4205 -36405498.74736 4314 4205 17343888.88605 4315 4205 -3.576278686523e-06 4316 4205 -52289409.00778 4317 4205 4335972.22365 4318 4205 34687499.9943 4319 4205 -36405498.74735 4206 4206 661228297.9436 4207 4206 13246.46245313 4208 4206 -2.217292785645e-05 4209 4206 90298955.40877 4210 4206 19352686.25957 4211 4206 4.768371582031e-07 4293 4206 -46373434.23613 4294 4206 24305555.56354 4295 4206 21679861.11823 4296 4206 -140996480.167 4297 4206 -952893.2695185 4298 4206 87564583.31904 4299 4206 -45870736.57861 4300 4206 -24301364.19971 4301 4206 21679166.67379 4314 4206 4476132.383914 4315 4206 -4861111.112702 4316 4206 -4335972.223643 4317 4206 111737658.2525 4318 4206 3973.96144855 4319 4206 -17343611.10825 4320 4206 5643546.059494 4321 4206 5805839.056954 4322 4206 -5182361.112479 4207 4207 561835230.1649 4208 4207 1.120567321777e-05 4209 4207 -13054535.95733 4210 4207 -62324697.05688 4211 4207 2.32458114624e-06 4293 4207 24305555.56354 4294 4207 -39081501.55876 4295 4207 -17343750.00569 4296 4207 -952893.2695203 4297 4207 -33140775.69076 4298 4207 677083.3332878 4299 4207 -24301364.19971 4300 4207 -39232415.4315 4301 4207 17343750.00569 4314 4207 4861111.112712 4315 4207 -41704377.77507 4316 4207 -34687499.9943 4317 4207 3973.961447358 4318 4207 81919567.51516 4319 4207 -4.619359970093e-06 4320 4207 -3916383.168459 4321 4207 -40143811.34479 4322 4207 34010416.66101 4208 4208 596084528.6123 4209 4208 2.384185791016e-07 4210 4208 2.32458114624e-06 4211 4208 72618276.19601 4293 4208 21679861.11823 4294 4208 -17343750.0057 4295 4208 -36432062.04359 4296 4208 87564583.31887 4297 4208 677083.3331544 4298 4208 -100252145.5455 4299 4208 21679166.67379 4300 4208 17343750.00569 4301 4208 -36335759.26896 4314 4208 4335972.223649 4315 4208 -34687499.9943 4316 4208 -36405498.74736 4317 4208 17343611.10827 4318 4208 -4.559755325317e-06 4319 4208 -52192192.18038 4320 4208 3489305.557202 4321 4208 34010416.66115 4322 4208 -35404513.64281 4209 4209 661029666.5103 4210 4209 -2044981.630182 4211 4209 -1.907348632813e-06 4212 4209 -112826288.707 4213 4209 -79915394.43217 4214 4209 -1.892447471619e-06 4215 4209 86751688.89203 4216 4209 18386425.51773 4217 4209 1.192092895508e-07 4296 4209 -48879322.66663 4297 4209 24272689.58237 4298 4209 22525694.45184 4299 4209 -141002035.2671 4300 4209 -1284012.25659 4301 4209 85676388.87482 4317 4209 5643546.059493 4318 4209 -3916383.168459 4319 4209 -3489305.557201 4320 4209 115620942.6216 4321 4209 -613497.9950585 4322 4209 -17135277.77496 4323 4209 -43801307.66029 4324 4209 -23974755.34006 4325 4209 20312500.00667 4326 4209 5916032.269865 4327 4209 5515959.177803 4328 4209 -5078333.334502 4210 4210 553050511.6211 4211 4210 1.490116119385e-05 4212 4210 -79915394.43217 4213 4210 -93124119.87001 4214 4210 -5.960464477539e-08 4215 4210 -14020796.69916 4216 4210 -67696604.96948 4217 4210 2.056360244751e-06 4296 4210 24272689.58237 4297 4210 -38326906.89252 4298 4210 -16666666.67214 4299 4210 -1284012.256589 4300 4210 -32949093.52409 4301 4210 677083.3332867 4317 4210 5805839.056955 4318 4210 -40143811.3448 4319 4210 -34010416.66115 4320 4210 -613497.9950569 4321 4210 83227011.03068 4322 4210 -5.275011062622e-06 4323 4210 -23974755.34006 4324 4210 -37890623.23096 4325 4210 16666666.67214 4326 4210 -4206263.04761 4327 4210 -40418720.68143 4328 4210 33333333.32786 4211 4211 581686391.3615 4212 4211 -1.966953277588e-06 4213 4211 -5.960464477539e-08 4214 4211 -26006923.58984 4215 4211 -3.576278686523e-07 4216 4211 2.056360244751e-06 4217 4211 66135242.1995 4296 4211 22525694.45184 4297 4211 -16666666.67214 4298 4211 -36909325.87324 4299 4211 85676388.87482 4300 4211 677083.3331533 4301 4211 -97565514.93122 4317 4211 5182361.112479 4318 4211 -34010416.66101 4319 4211 -35404513.64281 4320 4211 17135277.77496 4321 4211 -5.30481338501e-06 4322 4211 -45997327.00158 4323 4211 20312500.00667 4324 4211 16666666.67214 4325 4211 -34344061.96817 4326 4211 3385277.779223 4327 4211 33333333.32786 4328 4211 -33784975.63128 4212 4212 319697428.1411 4213 4212 78790225.51341 4214 4212 3.814697265625e-06 4215 4212 -160487333.6906 4216 4212 -17306272.21852 4217 4212 -2.145767211914e-06 4299 4212 4511607.610488 4300 4212 5529463.940844 4301 4212 4909027.779056 4320 4212 -43801307.66029 4321 4212 -23974755.34006 4322 4212 -20312500.00667 4323 4212 56503201.94981 4324 4212 23637202.7354 4325 4212 8124999.998666 4326 4212 -68052930.47167 4327 4212 -5191911.33618 4328 4212 -41471527.77105 4213 4213 275691885.2208 4214 4213 6.675720214844e-06 4215 4213 15100949.99838 4216 4213 17292007.85667 4217 4213 3.516674041748e-06 4299 4213 -4192758.28457 4300 4213 -41531445.75454 4301 4213 -33333333.32786 4320 4213 -23974755.34006 4321 4213 -37890623.23096 4322 4213 -16666666.67214 4323 4213 23637202.7354 4324 4213 43301463.62872 4325 4213 6666666.66557 4326 4213 4530310.889233 4327 4213 -14718823.21489 4328 4213 3333333.334427 4214 4214 281793058.4744 4215 4214 -1.192092895508e-06 4216 4214 3.457069396973e-06 4217 4214 21269468.60514 4299 4214 -3215972.223779 4300 4214 -33333333.32786 4301 4214 -33978945.7605 4320 4214 -20312500.00667 4321 4214 -16666666.67214 4322 4214 -34344061.96817 4323 4214 -8124999.998665 4324 4214 -6666666.665573 4325 4214 -20545798.26112 4326 4214 -41471527.77088 4327 4214 -3333333.334429 4328 4214 -46703003.53464 4215 4215 328571172.4911 4216 4215 -83200869.95153 4217 4215 -1.907348632813e-06 4299 4215 -47751770.62455 4300 4215 24636355.78701 4301 4215 21159027.78473 4320 4215 5916032.269864 4321 4215 -4206263.04761 4322 4215 -3385277.779223 4323 4215 -68052930.47167 4324 4215 4530310.889237 4325 4215 41471527.77088 4326 4215 58352668.82658 4327 4215 -24960403.62863 4328 4215 -8463611.10972 4216 4216 277307871.8262 4217 4216 7.748603820801e-06 4299 4216 24636355.78701 4300 4216 -39372046.84256 4301 4216 -16666666.67214 4320 4216 5515959.177804 4321 4216 -40418720.68143 4322 4216 -33333333.32786 4323 4216 -5191911.336177 4324 4216 -14718823.21489 4325 4216 3333333.334427 4326 4216 -24960403.62863 4327 4216 42973590.73909 4328 4216 6666666.665569 4217 4217 287116541.5586 4299 4217 21159027.78473 4300 4217 -16666666.67214 4301 4217 -35825485.57976 4320 4217 5078333.334501 4321 4217 -33333333.32786 4322 4217 -33784975.63128 4323 4217 41471527.77105 4324 4217 -3333333.334429 4325 4217 -46703003.53464 4326 4217 8463611.109722 4327 4217 -6666666.665574 4328 4217 -21115868.58705 4218 4218 927468678.158 4219 4218 97222222.20623 4220 4218 -8.106231689453e-06 4221 4218 -573726109.9308 4222 4218 -97222221.42845 4223 4218 8.940696716309e-07 4224 4218 18564155.00999 4225 4218 77777776.9872 4226 4218 2.861022949219e-06 4329 4218 139046393.5639 4330 4218 24305555.56354 4331 4218 17343888.84952 4332 4218 -175918799.4896 4333 4218 -24305555.36909 4334 4218 -86719444.24762 4335 4218 -9282077.505002 4336 4218 19444444.25638 4337 4218 -17343888.52033 4219 4219 781630025.6149 4220 4219 8.412431954121e-06 4221 4219 -97222221.03956 4222 4219 -116778839.2437 4223 4219 5.602836608887e-06 4224 4219 116666665.4808 4225 4219 18564155.00998 4226 4219 5.960464477539e-07 4329 4219 24305555.56354 4330 4219 102586730.4102 4331 4219 13874999.85143 4332 4219 -24305555.27187 4333 4219 -61681981.76159 4334 4219 -17343749.90781 4335 4219 29166666.38457 4336 4219 -9282077.504995 4337 4219 20812499.90894 4220 4220 728641235.3813 4221 4220 4.172325134277e-07 4222 4220 4.887580871582e-06 4223 4220 -96436338.25295 4224 4220 2.503395080566e-06 4225 4220 1.251697540283e-06 4226 4220 49504413.35998 4329 4220 -17343888.84952 4330 4220 -13874999.85144 4331 4220 -65361760.6378 4332 4220 -86719444.24762 4333 4220 -17343749.94044 4334 4220 -110741809.7386 4335 4220 -26015832.7805 4336 4220 13874999.9393 4337 4220 -24752206.67999 4221 4221 1632315315.374 4222 4221 97222220.26178 4223 4221 -4.172325134277e-05 4224 4221 17392720.97666 4225 4221 -97222221.42845 4226 4221 -2.145767211914e-06 4227 4221 -406796532.3944 4228 4221 -2.801418304443e-06 4229 4221 -1.233816146851e-05 4230 4221 -148365426.1266 4231 4221 97222222.20624 4232 4221 -3.308057785034e-06 4329 4221 -175918799.4897 4330 4221 -24305555.27186 4331 4221 86719444.24762 4332 4221 268847663.9159 4333 4221 24305555.07742 4334 4221 0.03653132915497 4335 4221 -28139091.37671 4336 4221 -24305555.36909 4337 4221 21679860.74398 4338 4221 -138827443.8751 4339 4221 -5.066394805908e-07 4340 4221 -86719444.43019 4341 4221 -46373434.23611 4342 4221 24305555.56353 4343 4221 -21679861.11823 4222 4222 1369805740.108 4223 4222 -2.145767211914e-06 4224 4222 -97222221.03956 4225 4222 -322883627.8625 4226 4222 4.798173904419e-06 4227 4222 -3.09944152832e-06 4228 4222 20983010.02827 4229 4222 -4.768371582031e-07 4230 4222 97222222.20624 4231 4222 -119197695.4315 4232 4222 -7.450580596924e-08 4329 4222 -24305555.36908 4330 4222 -61681981.7616 4331 4222 17343749.94043 4332 4222 24305555.07742 4333 4222 203220270.0671 4334 4222 0.02920919656754 4335 4222 -24305555.27186 4336 4222 -113208178.6284 4337 4222 69374999.6084 4338 4222 -8.344650268555e-07 4339 4222 -31882558.21681 4340 4222 -3.278255462646e-07 4341 4222 24305555.56353 4342 4222 -39081501.55875 4343 4222 17343750.00569 4223 4223 1212545401.289 4224 4223 -1.788139343262e-06 4225 4223 3.75509262085e-06 4226 4223 8567490.576108 4227 4223 -1.20997428894e-05 4228 4223 -4.768371582031e-07 4229 4223 -212506.0825927 4230 4223 -3.278255462646e-06 4231 4223 -2.086162567139e-07 4232 4223 -46719419.49861 4329 4223 86719444.24762 4330 4223 17343749.9078 4331 4223 -110741809.7386 4332 4223 -0.03649973869324 4333 4223 -0.02921465039253 4334 4223 -68146756.53808 4335 4223 21679860.55685 4336 4223 69374999.49133 4337 4223 -84490851.68298 4338 4223 -86719444.43019 4339 4223 -2.682209014893e-07 4340 4223 -99061955.12461 4341 4223 -21679861.11823 4342 4223 17343750.00569 4343 4223 -36432062.04358 4224 4224 927468678.158 4225 4224 97222222.20623 4226 4224 -8.106231689453e-06 4227 4224 -148365426.1266 4228 4224 -97222222.20624 4229 4224 -3.039836883545e-06 4230 4224 -573726109.9308 4231 4224 -97222221.42845 4232 4224 8.940696716309e-07 4233 4224 18564155.00999 4234 4224 77777776.9872 4235 4224 2.861022949219e-06 4329 4224 -9282077.50499 4330 4224 29166666.38457 4331 4224 26015832.78049 4332 4224 -28139091.37673 4333 4224 -24305555.27187 4334 4224 -21679860.55685 4335 4224 139046393.5639 4336 4224 24305555.56354 4337 4224 17343888.84952 4338 4224 -46373434.23611 4339 4224 -24305555.56353 4340 4224 -21679861.11823 4341 4224 -175918799.4896 4342 4224 -24305555.36909 4343 4224 -86719444.24762 4344 4224 -9282077.505002 4345 4224 19444444.25638 4346 4224 -17343888.52033 4225 4225 781630025.6149 4226 4225 8.412431954121e-06 4227 4225 -97222222.20624 4228 4225 -119197695.4315 4229 4225 2.831220626831e-07 4230 4225 -97222221.03956 4231 4225 -116778839.2437 4232 4225 5.602836608887e-06 4233 4225 116666665.4808 4234 4225 18564155.00998 4235 4225 5.960464477539e-07 4329 4225 19444444.25638 4330 4225 -9282077.505 4331 4225 -13874999.9393 4332 4225 -24305555.36909 4333 4225 -113208178.6284 4334 4225 -69374999.49133 4335 4225 24305555.56354 4336 4225 102586730.4102 4337 4225 13874999.85143 4338 4225 -24305555.56353 4339 4225 -39081501.55875 4340 4225 -17343750.0057 4341 4225 -24305555.27187 4342 4225 -61681981.76159 4343 4225 -17343749.90781 4344 4225 29166666.38457 4345 4225 -9282077.504995 4346 4225 20812499.90894 4226 4226 728641235.3813 4227 4226 -2.890825271606e-06 4228 4226 3.8743019104e-07 4229 4226 -46719419.49861 4230 4226 4.172325134277e-07 4231 4226 4.887580871582e-06 4232 4226 -96436338.25295 4233 4226 2.503395080566e-06 4234 4226 1.251697540283e-06 4235 4226 49504413.35998 4329 4226 17343888.52033 4330 4226 -20812499.90895 4331 4226 -24752206.67999 4332 4226 -21679860.74398 4333 4226 -69374999.6084 4334 4226 -84490851.68299 4335 4226 -17343888.84952 4336 4226 -13874999.85144 4337 4226 -65361760.6378 4338 4226 -21679861.11823 4339 4226 -17343750.0057 4340 4226 -36432062.04358 4341 4226 -86719444.24762 4342 4226 -17343749.94044 4343 4226 -110741809.7386 4344 4226 -26015832.7805 4345 4226 13874999.9393 4346 4226 -24752206.67999 4227 4227 1483949894.094 4228 4227 7.867813110352e-06 4229 4227 -5.507469177246e-05 4230 4227 184322301.8864 4231 4227 -2.622604370117e-06 4232 4227 -1.358985900879e-05 4236 4227 -406796532.3944 4237 4227 -2.801418304443e-06 4238 4227 -1.233816146851e-05 4239 4227 -148365426.1266 4240 4227 97222222.20624 4241 4227 -3.308057785034e-06 4332 4227 -138827443.8752 4333 4227 2.682209014893e-07 4334 4227 86719444.4302 4335 4227 -46373434.23614 4336 4227 -24305555.56354 4337 4227 21679861.11823 4338 4227 222474230.8735 4339 4227 3.933906555176e-06 4340 4227 2.622604370117e-05 4341 4227 8952264.76783 4342 4227 -1.302361488342e-05 4343 4227 6.914138793945e-06 4347 4227 -138827443.8751 4348 4227 -5.066394805908e-07 4349 4227 -86719444.43019 4350 4227 -46373434.23611 4351 4227 24305555.56353 4352 4227 -21679861.11823 4228 4228 1250608048.648 4229 4228 -1.192092895508e-06 4230 4228 -3.159046173096e-06 4231 4228 -185121779.2034 4232 4228 8.046627044678e-07 4236 4228 -3.09944152832e-06 4237 4228 20983010.02827 4238 4228 -4.768371582031e-07 4239 4228 97222222.20624 4240 4228 -119197695.4315 4241 4228 -7.450580596924e-08 4332 4228 -2.294778823853e-06 4333 4228 -31882558.21685 4334 4228 2.682209014893e-07 4335 4228 -24305555.56354 4336 4228 -39081501.55876 4337 4228 17343750.0057 4338 4228 4.410743713379e-06 4339 4228 164138769.4832 4340 4228 -1.192092895508e-07 4341 4228 -1.156330108643e-05 4342 4228 -83408755.55014 4343 4228 69374999.9886 4347 4228 -8.344650268555e-07 4348 4228 -31882558.21681 4349 4228 -3.278255462646e-07 4350 4228 24305555.56353 4351 4228 -39081501.55875 4352 4228 17343750.00569 4229 4229 1165825984.246 4230 4229 -1.382827758789e-05 4231 4229 1.788139343262e-07 4232 4229 104791324.3853 4236 4229 -1.20997428894e-05 4237 4229 -4.768371582031e-07 4238 4229 -212506.0825927 4239 4229 -3.278255462646e-06 4240 4229 -2.086162567139e-07 4241 4229 -46719419.49861 4332 4229 86719444.4302 4333 4229 3.427267074585e-07 4334 4229 -99061955.12464 4335 4229 21679861.11823 4336 4229 17343750.0057 4337 4229 -36432062.04359 4338 4229 2.598762512207e-05 4339 4229 5.960464477539e-08 4340 4229 -104578818.0156 4341 4229 6.973743438721e-06 4342 4229 69374999.9886 4343 4229 -72810997.49471 4347 4229 -86719444.43019 4348 4229 -2.682209014893e-07 4349 4229 -99061955.12461 4350 4229 -21679861.11823 4351 4229 17343750.00569 4352 4229 -36432062.04358 4230 4230 1632315315.374 4231 4230 97222220.26178 4232 4230 -4.172325134277e-05 4233 4230 17392720.97666 4234 4230 -97222221.42845 4235 4230 -2.145767211914e-06 4236 4230 -148365426.1266 4237 4230 -97222222.20624 4238 4230 -3.039836883545e-06 4239 4230 -406796532.3944 4240 4230 -2.801418304443e-06 4241 4230 -1.233816146851e-05 4242 4230 -148365426.1266 4243 4230 97222222.20624 4244 4230 -3.308057785034e-06 4332 4230 -46373434.23613 4333 4230 24305555.56354 4334 4230 21679861.11823 4335 4230 -175918799.4897 4336 4230 -24305555.27186 4337 4230 86719444.24762 4338 4230 8952264.76783 4339 4230 9.298324584961e-06 4340 4230 6.228685379028e-06 4341 4230 268847663.9159 4342 4230 24305555.07742 4343 4230 0.03653132915497 4344 4230 -28139091.37671 4345 4230 -24305555.36909 4346 4230 21679860.74398 4347 4230 -46373434.23611 4348 4230 -24305555.56353 4349 4230 -21679861.11823 4350 4230 -138827443.8751 4351 4230 -5.066394805908e-07 4352 4230 -86719444.43019 4353 4230 -46373434.23611 4354 4230 24305555.56353 4355 4230 -21679861.11823 4231 4231 1369805740.108 4232 4231 -2.145767211914e-06 4233 4231 -97222221.03956 4234 4231 -322883627.8625 4235 4231 4.798173904419e-06 4236 4231 -97222222.20624 4237 4231 -119197695.4315 4238 4231 2.831220626831e-07 4239 4231 -3.09944152832e-06 4240 4231 20983010.02827 4241 4231 -4.768371582031e-07 4242 4231 97222222.20624 4243 4231 -119197695.4315 4244 4231 -7.450580596924e-08 4332 4231 24305555.56354 4333 4231 -39081501.55876 4334 4231 -17343750.00569 4335 4231 -24305555.36908 4336 4231 -61681981.7616 4337 4231 17343749.94043 4338 4231 1.069903373718e-05 4339 4231 -83408755.55014 4340 4231 -69374999.9886 4341 4231 24305555.07742 4342 4231 203220270.0671 4343 4231 0.02920919656754 4344 4231 -24305555.27186 4345 4231 -113208178.6284 4346 4231 69374999.6084 4347 4231 -24305555.56353 4348 4231 -39081501.55875 4349 4231 -17343750.0057 4350 4231 -8.344650268555e-07 4351 4231 -31882558.21681 4352 4231 -3.278255462646e-07 4353 4231 24305555.56353 4354 4231 -39081501.55875 4355 4231 17343750.00569 4232 4232 1212545401.289 4233 4232 -1.788139343262e-06 4234 4232 3.75509262085e-06 4235 4232 8567490.576108 4236 4232 -2.890825271606e-06 4237 4232 3.8743019104e-07 4238 4232 -46719419.49861 4239 4232 -1.20997428894e-05 4240 4232 -4.768371582031e-07 4241 4232 -212506.0825927 4242 4232 -3.278255462646e-06 4243 4232 -2.086162567139e-07 4244 4232 -46719419.49861 4332 4232 21679861.11823 4333 4232 -17343750.0057 4334 4232 -36432062.04359 4335 4232 86719444.24762 4336 4232 17343749.9078 4337 4232 -110741809.7386 4338 4232 6.169080734253e-06 4339 4232 -69374999.9886 4340 4232 -72810997.49471 4341 4232 -0.03649973869324 4342 4232 -0.02921465039253 4343 4232 -68146756.53808 4344 4232 21679860.55685 4345 4232 69374999.49133 4346 4232 -84490851.68298 4347 4232 -21679861.11823 4348 4232 -17343750.0057 4349 4232 -36432062.04358 4350 4232 -86719444.43019 4351 4232 -2.682209014893e-07 4352 4232 -99061955.12461 4353 4232 -21679861.11823 4354 4232 17343750.00569 4355 4232 -36432062.04358 4233 4233 927468678.158 4234 4233 97222222.20623 4235 4233 -8.106231689453e-06 4239 4233 -148365426.1266 4240 4233 -97222222.20624 4241 4233 -3.039836883545e-06 4242 4233 -573726109.9308 4243 4233 -97222221.42845 4244 4233 8.940696716309e-07 4245 4233 18564155.00999 4246 4233 77777776.9872 4247 4233 2.861022949219e-06 4335 4233 -9282077.50499 4336 4233 29166666.38457 4337 4233 26015832.78049 4341 4233 -28139091.37673 4342 4233 -24305555.27187 4343 4233 -21679860.55685 4344 4233 139046393.5639 4345 4233 24305555.56354 4346 4233 17343888.84952 4350 4233 -46373434.23611 4351 4233 -24305555.56353 4352 4233 -21679861.11823 4353 4233 -175918799.4896 4354 4233 -24305555.36909 4355 4233 -86719444.24762 4356 4233 -9282077.505002 4357 4233 19444444.25638 4358 4233 -17343888.52033 4234 4234 781630025.6149 4235 4234 8.412431954121e-06 4239 4234 -97222222.20624 4240 4234 -119197695.4315 4241 4234 2.831220626831e-07 4242 4234 -97222221.03956 4243 4234 -116778839.2437 4244 4234 5.602836608887e-06 4245 4234 116666665.4808 4246 4234 18564155.00998 4247 4234 5.960464477539e-07 4335 4234 19444444.25638 4336 4234 -9282077.505 4337 4234 -13874999.9393 4341 4234 -24305555.36909 4342 4234 -113208178.6284 4343 4234 -69374999.49133 4344 4234 24305555.56354 4345 4234 102586730.4102 4346 4234 13874999.85143 4350 4234 -24305555.56353 4351 4234 -39081501.55875 4352 4234 -17343750.0057 4353 4234 -24305555.27187 4354 4234 -61681981.76159 4355 4234 -17343749.90781 4356 4234 29166666.38457 4357 4234 -9282077.504995 4358 4234 20812499.90894 4235 4235 728641235.3813 4239 4235 -2.890825271606e-06 4240 4235 3.8743019104e-07 4241 4235 -46719419.49861 4242 4235 4.172325134277e-07 4243 4235 4.887580871582e-06 4244 4235 -96436338.25295 4245 4235 2.503395080566e-06 4246 4235 1.251697540283e-06 4247 4235 49504413.35998 4335 4235 17343888.52033 4336 4235 -20812499.90895 4337 4235 -24752206.67999 4341 4235 -21679860.74398 4342 4235 -69374999.6084 4343 4235 -84490851.68299 4344 4235 -17343888.84952 4345 4235 -13874999.85144 4346 4235 -65361760.6378 4350 4235 -21679861.11823 4351 4235 -17343750.0057 4352 4235 -36432062.04358 4353 4235 -86719444.24762 4354 4235 -17343749.94044 4355 4235 -110741809.7386 4356 4235 -26015832.7805 4357 4235 13874999.9393 4358 4235 -24752206.67999 4236 4236 1483949894.094 4237 4236 7.867813110352e-06 4238 4236 -5.507469177246e-05 4239 4236 184322301.8864 4240 4236 -2.622604370117e-06 4241 4236 -1.358985900879e-05 4248 4236 -406796532.3944 4249 4236 -2.801418304443e-06 4250 4236 -1.233816146851e-05 4251 4236 -148365426.1266 4252 4236 97222222.20624 4253 4236 -3.308057785034e-06 4338 4236 -138827443.8752 4339 4236 2.682209014893e-07 4340 4236 86719444.4302 4341 4236 -46373434.23614 4342 4236 -24305555.56354 4343 4236 21679861.11823 4347 4236 222474230.8735 4348 4236 3.933906555176e-06 4349 4236 2.622604370117e-05 4350 4236 8952264.76783 4351 4236 -1.302361488342e-05 4352 4236 6.914138793945e-06 4359 4236 -138827443.8751 4360 4236 -5.066394805908e-07 4361 4236 -86719444.43019 4362 4236 -46373434.23611 4363 4236 24305555.56353 4364 4236 -21679861.11823 4237 4237 1250608048.648 4238 4237 -1.192092895508e-06 4239 4237 -3.159046173096e-06 4240 4237 -185121779.2034 4241 4237 8.046627044678e-07 4248 4237 -3.09944152832e-06 4249 4237 20983010.02827 4250 4237 -4.768371582031e-07 4251 4237 97222222.20624 4252 4237 -119197695.4315 4253 4237 -7.450580596924e-08 4338 4237 -2.294778823853e-06 4339 4237 -31882558.21685 4340 4237 2.682209014893e-07 4341 4237 -24305555.56354 4342 4237 -39081501.55876 4343 4237 17343750.0057 4347 4237 4.410743713379e-06 4348 4237 164138769.4832 4349 4237 -1.192092895508e-07 4350 4237 -1.156330108643e-05 4351 4237 -83408755.55014 4352 4237 69374999.9886 4359 4237 -8.344650268555e-07 4360 4237 -31882558.21681 4361 4237 -3.278255462646e-07 4362 4237 24305555.56353 4363 4237 -39081501.55875 4364 4237 17343750.00569 4238 4238 1165825984.246 4239 4238 -1.382827758789e-05 4240 4238 1.788139343262e-07 4241 4238 104791324.3853 4248 4238 -1.20997428894e-05 4249 4238 -4.768371582031e-07 4250 4238 -212506.0825927 4251 4238 -3.278255462646e-06 4252 4238 -2.086162567139e-07 4253 4238 -46719419.49861 4338 4238 86719444.4302 4339 4238 3.427267074585e-07 4340 4238 -99061955.12464 4341 4238 21679861.11823 4342 4238 17343750.0057 4343 4238 -36432062.04359 4347 4238 2.598762512207e-05 4348 4238 5.960464477539e-08 4349 4238 -104578818.0156 4350 4238 6.973743438721e-06 4351 4238 69374999.9886 4352 4238 -72810997.49471 4359 4238 -86719444.43019 4360 4238 -2.682209014893e-07 4361 4238 -99061955.12461 4362 4238 -21679861.11823 4363 4238 17343750.00569 4364 4238 -36432062.04358 4239 4239 1483949894.094 4240 4239 7.867813110352e-06 4241 4239 -5.507469177246e-05 4242 4239 184322301.8864 4243 4239 -2.622604370117e-06 4244 4239 -1.358985900879e-05 4248 4239 -148365426.1266 4249 4239 -97222222.20624 4250 4239 -3.039836883545e-06 4251 4239 -406796532.3944 4252 4239 -2.801418304443e-06 4253 4239 -1.233816146851e-05 4254 4239 -148365426.1266 4255 4239 97222222.20624 4256 4239 -3.308057785034e-06 4338 4239 -46373434.23613 4339 4239 24305555.56354 4340 4239 21679861.11823 4341 4239 -138827443.8752 4342 4239 2.682209014893e-07 4343 4239 86719444.4302 4344 4239 -46373434.23614 4345 4239 -24305555.56354 4346 4239 21679861.11823 4347 4239 8952264.76783 4348 4239 9.298324584961e-06 4349 4239 6.228685379028e-06 4350 4239 222474230.8735 4351 4239 3.933906555176e-06 4352 4239 2.622604370117e-05 4353 4239 8952264.76783 4354 4239 -1.302361488342e-05 4355 4239 6.914138793945e-06 4359 4239 -46373434.23611 4360 4239 -24305555.56353 4361 4239 -21679861.11823 4362 4239 -138827443.8751 4363 4239 -5.066394805908e-07 4364 4239 -86719444.43019 4365 4239 -46373434.23611 4366 4239 24305555.56353 4367 4239 -21679861.11823 4240 4240 1250608048.648 4241 4240 -1.192092895508e-06 4242 4240 -3.159046173096e-06 4243 4240 -185121779.2034 4244 4240 8.046627044678e-07 4248 4240 -97222222.20624 4249 4240 -119197695.4315 4250 4240 2.831220626831e-07 4251 4240 -3.09944152832e-06 4252 4240 20983010.02827 4253 4240 -4.768371582031e-07 4254 4240 97222222.20624 4255 4240 -119197695.4315 4256 4240 -7.450580596924e-08 4338 4240 24305555.56354 4339 4240 -39081501.55876 4340 4240 -17343750.00569 4341 4240 -2.294778823853e-06 4342 4240 -31882558.21685 4343 4240 2.682209014893e-07 4344 4240 -24305555.56354 4345 4240 -39081501.55876 4346 4240 17343750.0057 4347 4240 1.069903373718e-05 4348 4240 -83408755.55014 4349 4240 -69374999.9886 4350 4240 4.410743713379e-06 4351 4240 164138769.4832 4352 4240 -1.192092895508e-07 4353 4240 -1.156330108643e-05 4354 4240 -83408755.55014 4355 4240 69374999.9886 4359 4240 -24305555.56353 4360 4240 -39081501.55875 4361 4240 -17343750.0057 4362 4240 -8.344650268555e-07 4363 4240 -31882558.21681 4364 4240 -3.278255462646e-07 4365 4240 24305555.56353 4366 4240 -39081501.55875 4367 4240 17343750.00569 4241 4241 1165825984.246 4242 4241 -1.382827758789e-05 4243 4241 1.788139343262e-07 4244 4241 104791324.3853 4248 4241 -2.890825271606e-06 4249 4241 3.8743019104e-07 4250 4241 -46719419.49861 4251 4241 -1.20997428894e-05 4252 4241 -4.768371582031e-07 4253 4241 -212506.0825927 4254 4241 -3.278255462646e-06 4255 4241 -2.086162567139e-07 4256 4241 -46719419.49861 4338 4241 21679861.11823 4339 4241 -17343750.0057 4340 4241 -36432062.04359 4341 4241 86719444.4302 4342 4241 3.427267074585e-07 4343 4241 -99061955.12464 4344 4241 21679861.11823 4345 4241 17343750.0057 4346 4241 -36432062.04359 4347 4241 6.169080734253e-06 4348 4241 -69374999.9886 4349 4241 -72810997.49471 4350 4241 2.598762512207e-05 4351 4241 5.960464477539e-08 4352 4241 -104578818.0156 4353 4241 6.973743438721e-06 4354 4241 69374999.9886 4355 4241 -72810997.49471 4359 4241 -21679861.11823 4360 4241 -17343750.0057 4361 4241 -36432062.04358 4362 4241 -86719444.43019 4363 4241 -2.682209014893e-07 4364 4241 -99061955.12461 4365 4241 -21679861.11823 4366 4241 17343750.00569 4367 4241 -36432062.04358 4242 4242 1632315315.374 4243 4242 97222220.26178 4244 4242 -4.172325134277e-05 4245 4242 17392720.97666 4246 4242 -97222221.42845 4247 4242 -2.145767211914e-06 4251 4242 -148365426.1266 4252 4242 -97222222.20624 4253 4242 -3.039836883545e-06 4254 4242 -406796532.3944 4255 4242 -2.801418304443e-06 4256 4242 -1.233816146851e-05 4257 4242 -148365426.1266 4258 4242 97222222.20624 4259 4242 -3.308057785034e-06 4341 4242 -46373434.23613 4342 4242 24305555.56354 4343 4242 21679861.11823 4344 4242 -175918799.4897 4345 4242 -24305555.27186 4346 4242 86719444.24762 4350 4242 8952264.76783 4351 4242 9.298324584961e-06 4352 4242 6.228685379028e-06 4353 4242 268847663.9159 4354 4242 24305555.07742 4355 4242 0.03653132915497 4356 4242 -28139091.37671 4357 4242 -24305555.36909 4358 4242 21679860.74398 4362 4242 -46373434.23611 4363 4242 -24305555.56353 4364 4242 -21679861.11823 4365 4242 -138827443.8751 4366 4242 -5.066394805908e-07 4367 4242 -86719444.43019 4368 4242 -46373434.23611 4369 4242 24305555.56353 4370 4242 -21679861.11823 4243 4243 1369805740.108 4244 4243 -2.145767211914e-06 4245 4243 -97222221.03956 4246 4243 -322883627.8625 4247 4243 4.798173904419e-06 4251 4243 -97222222.20624 4252 4243 -119197695.4315 4253 4243 2.831220626831e-07 4254 4243 -3.09944152832e-06 4255 4243 20983010.02827 4256 4243 -4.768371582031e-07 4257 4243 97222222.20624 4258 4243 -119197695.4315 4259 4243 -7.450580596924e-08 4341 4243 24305555.56354 4342 4243 -39081501.55876 4343 4243 -17343750.00569 4344 4243 -24305555.36908 4345 4243 -61681981.7616 4346 4243 17343749.94043 4350 4243 1.069903373718e-05 4351 4243 -83408755.55014 4352 4243 -69374999.9886 4353 4243 24305555.07742 4354 4243 203220270.0671 4355 4243 0.02920919656754 4356 4243 -24305555.27186 4357 4243 -113208178.6284 4358 4243 69374999.6084 4362 4243 -24305555.56353 4363 4243 -39081501.55875 4364 4243 -17343750.0057 4365 4243 -8.344650268555e-07 4366 4243 -31882558.21681 4367 4243 -3.278255462646e-07 4368 4243 24305555.56353 4369 4243 -39081501.55875 4370 4243 17343750.00569 4244 4244 1212545401.289 4245 4244 -1.788139343262e-06 4246 4244 3.75509262085e-06 4247 4244 8567490.576108 4251 4244 -2.890825271606e-06 4252 4244 3.8743019104e-07 4253 4244 -46719419.49861 4254 4244 -1.20997428894e-05 4255 4244 -4.768371582031e-07 4256 4244 -212506.0825927 4257 4244 -3.278255462646e-06 4258 4244 -2.086162567139e-07 4259 4244 -46719419.49861 4341 4244 21679861.11823 4342 4244 -17343750.0057 4343 4244 -36432062.04359 4344 4244 86719444.24762 4345 4244 17343749.9078 4346 4244 -110741809.7386 4350 4244 6.169080734253e-06 4351 4244 -69374999.9886 4352 4244 -72810997.49471 4353 4244 -0.03649973869324 4354 4244 -0.02921465039253 4355 4244 -68146756.53808 4356 4244 21679860.55685 4357 4244 69374999.49133 4358 4244 -84490851.68298 4362 4244 -21679861.11823 4363 4244 -17343750.0057 4364 4244 -36432062.04358 4365 4244 -86719444.43019 4366 4244 -2.682209014893e-07 4367 4244 -99061955.12461 4368 4244 -21679861.11823 4369 4244 17343750.00569 4370 4244 -36432062.04358 4245 4245 927468678.158 4246 4245 97222222.20623 4247 4245 -8.106231689453e-06 4254 4245 -148365426.1266 4255 4245 -97222222.20624 4256 4245 -3.039836883545e-06 4257 4245 -573726109.9308 4258 4245 -97222221.42845 4259 4245 8.940696716309e-07 4260 4245 18564155.00999 4261 4245 77777776.9872 4262 4245 2.861022949219e-06 4344 4245 -9282077.50499 4345 4245 29166666.38457 4346 4245 26015832.78049 4353 4245 -28139091.37673 4354 4245 -24305555.27187 4355 4245 -21679860.55685 4356 4245 139046393.5639 4357 4245 24305555.56354 4358 4245 17343888.84952 4365 4245 -46373434.23611 4366 4245 -24305555.56353 4367 4245 -21679861.11823 4368 4245 -175918799.4896 4369 4245 -24305555.36909 4370 4245 -86719444.24762 4371 4245 -9282077.505002 4372 4245 19444444.25638 4373 4245 -17343888.52033 4246 4246 781630025.6149 4247 4246 8.412431954121e-06 4254 4246 -97222222.20624 4255 4246 -119197695.4315 4256 4246 2.831220626831e-07 4257 4246 -97222221.03956 4258 4246 -116778839.2437 4259 4246 5.602836608887e-06 4260 4246 116666665.4808 4261 4246 18564155.00998 4262 4246 5.960464477539e-07 4344 4246 19444444.25638 4345 4246 -9282077.505 4346 4246 -13874999.9393 4353 4246 -24305555.36909 4354 4246 -113208178.6284 4355 4246 -69374999.49133 4356 4246 24305555.56354 4357 4246 102586730.4102 4358 4246 13874999.85143 4365 4246 -24305555.56353 4366 4246 -39081501.55875 4367 4246 -17343750.0057 4368 4246 -24305555.27187 4369 4246 -61681981.76159 4370 4246 -17343749.90781 4371 4246 29166666.38457 4372 4246 -9282077.504995 4373 4246 20812499.90894 4247 4247 728641235.3813 4254 4247 -2.890825271606e-06 4255 4247 3.8743019104e-07 4256 4247 -46719419.49861 4257 4247 4.172325134277e-07 4258 4247 4.887580871582e-06 4259 4247 -96436338.25295 4260 4247 2.503395080566e-06 4261 4247 1.251697540283e-06 4262 4247 49504413.35998 4344 4247 17343888.52033 4345 4247 -20812499.90895 4346 4247 -24752206.67999 4353 4247 -21679860.74398 4354 4247 -69374999.6084 4355 4247 -84490851.68299 4356 4247 -17343888.84952 4357 4247 -13874999.85144 4358 4247 -65361760.6378 4365 4247 -21679861.11823 4366 4247 -17343750.0057 4367 4247 -36432062.04358 4368 4247 -86719444.24762 4369 4247 -17343749.94044 4370 4247 -110741809.7386 4371 4247 -26015832.7805 4372 4247 13874999.9393 4373 4247 -24752206.67999 4248 4248 1483949894.094 4249 4248 7.867813110352e-06 4250 4248 -5.507469177246e-05 4251 4248 184322301.8864 4252 4248 -2.622604370117e-06 4253 4248 -1.358985900879e-05 4263 4248 -406796532.3944 4264 4248 -2.801418304443e-06 4265 4248 -1.233816146851e-05 4266 4248 -148365426.1266 4267 4248 97222222.20624 4268 4248 -3.308057785034e-06 4347 4248 -138827443.8752 4348 4248 2.682209014893e-07 4349 4248 86719444.4302 4350 4248 -46373434.23614 4351 4248 -24305555.56354 4352 4248 21679861.11823 4359 4248 222474230.8735 4360 4248 3.933906555176e-06 4361 4248 2.622604370117e-05 4362 4248 8952264.76783 4363 4248 -1.302361488342e-05 4364 4248 6.914138793945e-06 4374 4248 -138827443.8751 4375 4248 -5.066394805908e-07 4376 4248 -86719444.43019 4377 4248 -46373434.23611 4378 4248 24305555.56353 4379 4248 -21679861.11823 4249 4249 1250608048.648 4250 4249 -1.192092895508e-06 4251 4249 -3.159046173096e-06 4252 4249 -185121779.2034 4253 4249 8.046627044678e-07 4263 4249 -3.09944152832e-06 4264 4249 20983010.02827 4265 4249 -4.768371582031e-07 4266 4249 97222222.20624 4267 4249 -119197695.4315 4268 4249 -7.450580596924e-08 4347 4249 -2.294778823853e-06 4348 4249 -31882558.21685 4349 4249 2.682209014893e-07 4350 4249 -24305555.56354 4351 4249 -39081501.55876 4352 4249 17343750.0057 4359 4249 4.410743713379e-06 4360 4249 164138769.4832 4361 4249 -1.192092895508e-07 4362 4249 -1.156330108643e-05 4363 4249 -83408755.55014 4364 4249 69374999.9886 4374 4249 -8.344650268555e-07 4375 4249 -31882558.21681 4376 4249 -3.278255462646e-07 4377 4249 24305555.56353 4378 4249 -39081501.55875 4379 4249 17343750.00569 4250 4250 1165825984.246 4251 4250 -1.382827758789e-05 4252 4250 1.788139343262e-07 4253 4250 104791324.3853 4263 4250 -1.20997428894e-05 4264 4250 -4.768371582031e-07 4265 4250 -212506.0825927 4266 4250 -3.278255462646e-06 4267 4250 -2.086162567139e-07 4268 4250 -46719419.49861 4347 4250 86719444.4302 4348 4250 3.427267074585e-07 4349 4250 -99061955.12464 4350 4250 21679861.11823 4351 4250 17343750.0057 4352 4250 -36432062.04359 4359 4250 2.598762512207e-05 4360 4250 5.960464477539e-08 4361 4250 -104578818.0156 4362 4250 6.973743438721e-06 4363 4250 69374999.9886 4364 4250 -72810997.49471 4374 4250 -86719444.43019 4375 4250 -2.682209014893e-07 4376 4250 -99061955.12461 4377 4250 -21679861.11823 4378 4250 17343750.00569 4379 4250 -36432062.04358 4251 4251 1483949894.094 4252 4251 7.867813110352e-06 4253 4251 -5.507469177246e-05 4254 4251 184322301.8864 4255 4251 -2.622604370117e-06 4256 4251 -1.358985900879e-05 4263 4251 -148365426.1266 4264 4251 -97222222.20624 4265 4251 -3.039836883545e-06 4266 4251 -406796532.3944 4267 4251 -2.801418304443e-06 4268 4251 -1.233816146851e-05 4269 4251 -148365426.1266 4270 4251 97222222.20624 4271 4251 -3.308057785034e-06 4347 4251 -46373434.23613 4348 4251 24305555.56354 4349 4251 21679861.11823 4350 4251 -138827443.8752 4351 4251 2.682209014893e-07 4352 4251 86719444.4302 4353 4251 -46373434.23614 4354 4251 -24305555.56354 4355 4251 21679861.11823 4359 4251 8952264.76783 4360 4251 9.298324584961e-06 4361 4251 6.228685379028e-06 4362 4251 222474230.8735 4363 4251 3.933906555176e-06 4364 4251 2.622604370117e-05 4365 4251 8952264.76783 4366 4251 -1.302361488342e-05 4367 4251 6.914138793945e-06 4374 4251 -46373434.23611 4375 4251 -24305555.56353 4376 4251 -21679861.11823 4377 4251 -138827443.8751 4378 4251 -5.066394805908e-07 4379 4251 -86719444.43019 4380 4251 -46373434.23611 4381 4251 24305555.56353 4382 4251 -21679861.11823 4252 4252 1250608048.648 4253 4252 -1.192092895508e-06 4254 4252 -3.159046173096e-06 4255 4252 -185121779.2034 4256 4252 8.046627044678e-07 4263 4252 -97222222.20624 4264 4252 -119197695.4315 4265 4252 2.831220626831e-07 4266 4252 -3.09944152832e-06 4267 4252 20983010.02827 4268 4252 -4.768371582031e-07 4269 4252 97222222.20624 4270 4252 -119197695.4315 4271 4252 -7.450580596924e-08 4347 4252 24305555.56354 4348 4252 -39081501.55876 4349 4252 -17343750.00569 4350 4252 -2.294778823853e-06 4351 4252 -31882558.21685 4352 4252 2.682209014893e-07 4353 4252 -24305555.56354 4354 4252 -39081501.55876 4355 4252 17343750.0057 4359 4252 1.069903373718e-05 4360 4252 -83408755.55014 4361 4252 -69374999.9886 4362 4252 4.410743713379e-06 4363 4252 164138769.4832 4364 4252 -1.192092895508e-07 4365 4252 -1.156330108643e-05 4366 4252 -83408755.55014 4367 4252 69374999.9886 4374 4252 -24305555.56353 4375 4252 -39081501.55875 4376 4252 -17343750.0057 4377 4252 -8.344650268555e-07 4378 4252 -31882558.21681 4379 4252 -3.278255462646e-07 4380 4252 24305555.56353 4381 4252 -39081501.55875 4382 4252 17343750.00569 4253 4253 1165825984.246 4254 4253 -1.382827758789e-05 4255 4253 1.788139343262e-07 4256 4253 104791324.3853 4263 4253 -2.890825271606e-06 4264 4253 3.8743019104e-07 4265 4253 -46719419.49861 4266 4253 -1.20997428894e-05 4267 4253 -4.768371582031e-07 4268 4253 -212506.0825927 4269 4253 -3.278255462646e-06 4270 4253 -2.086162567139e-07 4271 4253 -46719419.49861 4347 4253 21679861.11823 4348 4253 -17343750.0057 4349 4253 -36432062.04359 4350 4253 86719444.4302 4351 4253 3.427267074585e-07 4352 4253 -99061955.12464 4353 4253 21679861.11823 4354 4253 17343750.0057 4355 4253 -36432062.04359 4359 4253 6.169080734253e-06 4360 4253 -69374999.9886 4361 4253 -72810997.49471 4362 4253 2.598762512207e-05 4363 4253 5.960464477539e-08 4364 4253 -104578818.0156 4365 4253 6.973743438721e-06 4366 4253 69374999.9886 4367 4253 -72810997.49471 4374 4253 -21679861.11823 4375 4253 -17343750.0057 4376 4253 -36432062.04358 4377 4253 -86719444.43019 4378 4253 -2.682209014893e-07 4379 4253 -99061955.12461 4380 4253 -21679861.11823 4381 4253 17343750.00569 4382 4253 -36432062.04358 4254 4254 1483949894.094 4255 4254 7.867813110352e-06 4256 4254 -5.507469177246e-05 4257 4254 184322301.8864 4258 4254 -2.622604370117e-06 4259 4254 -1.358985900879e-05 4266 4254 -148365426.1266 4267 4254 -97222222.20624 4268 4254 -3.039836883545e-06 4269 4254 -406796532.3944 4270 4254 -2.801418304443e-06 4271 4254 -1.233816146851e-05 4272 4254 -148365426.1266 4273 4254 97222222.20624 4274 4254 -3.308057785034e-06 4350 4254 -46373434.23613 4351 4254 24305555.56354 4352 4254 21679861.11823 4353 4254 -138827443.8752 4354 4254 2.682209014893e-07 4355 4254 86719444.4302 4356 4254 -46373434.23614 4357 4254 -24305555.56354 4358 4254 21679861.11823 4362 4254 8952264.76783 4363 4254 9.298324584961e-06 4364 4254 6.228685379028e-06 4365 4254 222474230.8735 4366 4254 3.933906555176e-06 4367 4254 2.622604370117e-05 4368 4254 8952264.76783 4369 4254 -1.302361488342e-05 4370 4254 6.914138793945e-06 4377 4254 -46373434.23611 4378 4254 -24305555.56353 4379 4254 -21679861.11823 4380 4254 -138827443.8751 4381 4254 -5.066394805908e-07 4382 4254 -86719444.43019 4383 4254 -46373434.23611 4384 4254 24305555.56353 4385 4254 -21679861.11823 4255 4255 1250608048.648 4256 4255 -1.192092895508e-06 4257 4255 -3.159046173096e-06 4258 4255 -185121779.2034 4259 4255 8.046627044678e-07 4266 4255 -97222222.20624 4267 4255 -119197695.4315 4268 4255 2.831220626831e-07 4269 4255 -3.09944152832e-06 4270 4255 20983010.02827 4271 4255 -4.768371582031e-07 4272 4255 97222222.20624 4273 4255 -119197695.4315 4274 4255 -7.450580596924e-08 4350 4255 24305555.56354 4351 4255 -39081501.55876 4352 4255 -17343750.00569 4353 4255 -2.294778823853e-06 4354 4255 -31882558.21685 4355 4255 2.682209014893e-07 4356 4255 -24305555.56354 4357 4255 -39081501.55876 4358 4255 17343750.0057 4362 4255 1.069903373718e-05 4363 4255 -83408755.55014 4364 4255 -69374999.9886 4365 4255 4.410743713379e-06 4366 4255 164138769.4832 4367 4255 -1.192092895508e-07 4368 4255 -1.156330108643e-05 4369 4255 -83408755.55014 4370 4255 69374999.9886 4377 4255 -24305555.56353 4378 4255 -39081501.55875 4379 4255 -17343750.0057 4380 4255 -8.344650268555e-07 4381 4255 -31882558.21681 4382 4255 -3.278255462646e-07 4383 4255 24305555.56353 4384 4255 -39081501.55875 4385 4255 17343750.00569 4256 4256 1165825984.246 4257 4256 -1.382827758789e-05 4258 4256 1.788139343262e-07 4259 4256 104791324.3853 4266 4256 -2.890825271606e-06 4267 4256 3.8743019104e-07 4268 4256 -46719419.49861 4269 4256 -1.20997428894e-05 4270 4256 -4.768371582031e-07 4271 4256 -212506.0825927 4272 4256 -3.278255462646e-06 4273 4256 -2.086162567139e-07 4274 4256 -46719419.49861 4350 4256 21679861.11823 4351 4256 -17343750.0057 4352 4256 -36432062.04359 4353 4256 86719444.4302 4354 4256 3.427267074585e-07 4355 4256 -99061955.12464 4356 4256 21679861.11823 4357 4256 17343750.0057 4358 4256 -36432062.04359 4362 4256 6.169080734253e-06 4363 4256 -69374999.9886 4364 4256 -72810997.49471 4365 4256 2.598762512207e-05 4366 4256 5.960464477539e-08 4367 4256 -104578818.0156 4368 4256 6.973743438721e-06 4369 4256 69374999.9886 4370 4256 -72810997.49471 4377 4256 -21679861.11823 4378 4256 -17343750.0057 4379 4256 -36432062.04358 4380 4256 -86719444.43019 4381 4256 -2.682209014893e-07 4382 4256 -99061955.12461 4383 4256 -21679861.11823 4384 4256 17343750.00569 4385 4256 -36432062.04358 4257 4257 1632315315.374 4258 4257 97222220.26178 4259 4257 -4.172325134277e-05 4260 4257 17392720.97666 4261 4257 -97222221.42845 4262 4257 -2.145767211914e-06 4269 4257 -148365426.1266 4270 4257 -97222222.20624 4271 4257 -3.039836883545e-06 4272 4257 -406796532.3944 4273 4257 -2.801418304443e-06 4274 4257 -1.233816146851e-05 4275 4257 -148365426.1266 4276 4257 97222222.20624 4277 4257 -3.308057785034e-06 4353 4257 -46373434.23613 4354 4257 24305555.56354 4355 4257 21679861.11823 4356 4257 -175918799.4897 4357 4257 -24305555.27186 4358 4257 86719444.24762 4365 4257 8952264.76783 4366 4257 9.298324584961e-06 4367 4257 6.228685379028e-06 4368 4257 268847663.9159 4369 4257 24305555.07742 4370 4257 0.03653132915497 4371 4257 -28139091.37671 4372 4257 -24305555.36909 4373 4257 21679860.74398 4380 4257 -46373434.23611 4381 4257 -24305555.56353 4382 4257 -21679861.11823 4383 4257 -138827443.8751 4384 4257 -5.066394805908e-07 4385 4257 -86719444.43019 4386 4257 -46373434.23611 4387 4257 24305555.56353 4388 4257 -21679861.11823 4258 4258 1369805740.108 4259 4258 -2.145767211914e-06 4260 4258 -97222221.03956 4261 4258 -322883627.8625 4262 4258 4.798173904419e-06 4269 4258 -97222222.20624 4270 4258 -119197695.4315 4271 4258 2.831220626831e-07 4272 4258 -3.09944152832e-06 4273 4258 20983010.02827 4274 4258 -4.768371582031e-07 4275 4258 97222222.20624 4276 4258 -119197695.4315 4277 4258 -7.450580596924e-08 4353 4258 24305555.56354 4354 4258 -39081501.55876 4355 4258 -17343750.00569 4356 4258 -24305555.36908 4357 4258 -61681981.7616 4358 4258 17343749.94043 4365 4258 1.069903373718e-05 4366 4258 -83408755.55014 4367 4258 -69374999.9886 4368 4258 24305555.07742 4369 4258 203220270.0671 4370 4258 0.02920919656754 4371 4258 -24305555.27186 4372 4258 -113208178.6284 4373 4258 69374999.6084 4380 4258 -24305555.56353 4381 4258 -39081501.55875 4382 4258 -17343750.0057 4383 4258 -8.344650268555e-07 4384 4258 -31882558.21681 4385 4258 -3.278255462646e-07 4386 4258 24305555.56353 4387 4258 -39081501.55875 4388 4258 17343750.00569 4259 4259 1212545401.289 4260 4259 -1.788139343262e-06 4261 4259 3.75509262085e-06 4262 4259 8567490.576108 4269 4259 -2.890825271606e-06 4270 4259 3.8743019104e-07 4271 4259 -46719419.49861 4272 4259 -1.20997428894e-05 4273 4259 -4.768371582031e-07 4274 4259 -212506.0825927 4275 4259 -3.278255462646e-06 4276 4259 -2.086162567139e-07 4277 4259 -46719419.49861 4353 4259 21679861.11823 4354 4259 -17343750.0057 4355 4259 -36432062.04359 4356 4259 86719444.24762 4357 4259 17343749.9078 4358 4259 -110741809.7386 4365 4259 6.169080734253e-06 4366 4259 -69374999.9886 4367 4259 -72810997.49471 4368 4259 -0.03649973869324 4369 4259 -0.02921465039253 4370 4259 -68146756.53808 4371 4259 21679860.55685 4372 4259 69374999.49133 4373 4259 -84490851.68298 4380 4259 -21679861.11823 4381 4259 -17343750.0057 4382 4259 -36432062.04358 4383 4259 -86719444.43019 4384 4259 -2.682209014893e-07 4385 4259 -99061955.12461 4386 4259 -21679861.11823 4387 4259 17343750.00569 4388 4259 -36432062.04358 4260 4260 927468678.158 4261 4260 97222222.20623 4262 4260 -8.106231689453e-06 4272 4260 -148365426.1266 4273 4260 -97222222.20624 4274 4260 -3.039836883545e-06 4275 4260 -573726109.9308 4276 4260 -97222221.42845 4277 4260 8.940696716309e-07 4278 4260 18564155.00999 4279 4260 77777776.9872 4280 4260 2.861022949219e-06 4356 4260 -9282077.50499 4357 4260 29166666.38457 4358 4260 26015832.78049 4368 4260 -28139091.37673 4369 4260 -24305555.27187 4370 4260 -21679860.55685 4371 4260 139046393.5639 4372 4260 24305555.56354 4373 4260 17343888.84952 4383 4260 -46373434.23611 4384 4260 -24305555.56353 4385 4260 -21679861.11823 4386 4260 -175918799.4896 4387 4260 -24305555.36909 4388 4260 -86719444.24762 4389 4260 -9282077.505002 4390 4260 19444444.25638 4391 4260 -17343888.52033 4261 4261 781630025.6149 4262 4261 8.412431954121e-06 4272 4261 -97222222.20624 4273 4261 -119197695.4315 4274 4261 2.831220626831e-07 4275 4261 -97222221.03956 4276 4261 -116778839.2437 4277 4261 5.602836608887e-06 4278 4261 116666665.4808 4279 4261 18564155.00998 4280 4261 5.960464477539e-07 4356 4261 19444444.25638 4357 4261 -9282077.505 4358 4261 -13874999.9393 4368 4261 -24305555.36909 4369 4261 -113208178.6284 4370 4261 -69374999.49133 4371 4261 24305555.56354 4372 4261 102586730.4102 4373 4261 13874999.85143 4383 4261 -24305555.56353 4384 4261 -39081501.55875 4385 4261 -17343750.0057 4386 4261 -24305555.27187 4387 4261 -61681981.76159 4388 4261 -17343749.90781 4389 4261 29166666.38457 4390 4261 -9282077.504995 4391 4261 20812499.90894 4262 4262 728641235.3813 4272 4262 -2.890825271606e-06 4273 4262 3.8743019104e-07 4274 4262 -46719419.49861 4275 4262 4.172325134277e-07 4276 4262 4.887580871582e-06 4277 4262 -96436338.25295 4278 4262 2.503395080566e-06 4279 4262 1.251697540283e-06 4280 4262 49504413.35998 4356 4262 17343888.52033 4357 4262 -20812499.90895 4358 4262 -24752206.67999 4368 4262 -21679860.74398 4369 4262 -69374999.6084 4370 4262 -84490851.68299 4371 4262 -17343888.84952 4372 4262 -13874999.85144 4373 4262 -65361760.6378 4383 4262 -21679861.11823 4384 4262 -17343750.0057 4385 4262 -36432062.04358 4386 4262 -86719444.24762 4387 4262 -17343749.94044 4388 4262 -110741809.7386 4389 4262 -26015832.7805 4390 4262 13874999.9393 4391 4262 -24752206.67999 4263 4263 1483949894.094 4264 4263 7.867813110352e-06 4265 4263 -5.507469177246e-05 4266 4263 184322301.8864 4267 4263 -2.622604370117e-06 4268 4263 -1.358985900879e-05 4281 4263 -406796532.3944 4282 4263 -2.801418304443e-06 4283 4263 -1.233816146851e-05 4284 4263 -148365426.1266 4285 4263 97222222.20624 4286 4263 -3.308057785034e-06 4359 4263 -138827443.8752 4360 4263 2.682209014893e-07 4361 4263 86719444.4302 4362 4263 -46373434.23614 4363 4263 -24305555.56354 4364 4263 21679861.11823 4374 4263 222474230.8735 4375 4263 3.933906555176e-06 4376 4263 2.622604370117e-05 4377 4263 8952264.76783 4378 4263 -1.302361488342e-05 4379 4263 6.914138793945e-06 4392 4263 -138827443.8751 4393 4263 -5.066394805908e-07 4394 4263 -86719444.43019 4395 4263 -46373434.23611 4396 4263 24305555.56353 4397 4263 -21679861.11823 4264 4264 1250608048.648 4265 4264 -1.192092895508e-06 4266 4264 -3.159046173096e-06 4267 4264 -185121779.2034 4268 4264 8.046627044678e-07 4281 4264 -3.09944152832e-06 4282 4264 20983010.02827 4283 4264 -4.768371582031e-07 4284 4264 97222222.20624 4285 4264 -119197695.4315 4286 4264 -7.450580596924e-08 4359 4264 -2.294778823853e-06 4360 4264 -31882558.21685 4361 4264 2.682209014893e-07 4362 4264 -24305555.56354 4363 4264 -39081501.55876 4364 4264 17343750.0057 4374 4264 4.410743713379e-06 4375 4264 164138769.4832 4376 4264 -1.192092895508e-07 4377 4264 -1.156330108643e-05 4378 4264 -83408755.55014 4379 4264 69374999.9886 4392 4264 -8.344650268555e-07 4393 4264 -31882558.21681 4394 4264 -3.278255462646e-07 4395 4264 24305555.56353 4396 4264 -39081501.55875 4397 4264 17343750.00569 4265 4265 1165825984.246 4266 4265 -1.382827758789e-05 4267 4265 1.788139343262e-07 4268 4265 104791324.3853 4281 4265 -1.20997428894e-05 4282 4265 -4.768371582031e-07 4283 4265 -212506.0825927 4284 4265 -3.278255462646e-06 4285 4265 -2.086162567139e-07 4286 4265 -46719419.49861 4359 4265 86719444.4302 4360 4265 3.427267074585e-07 4361 4265 -99061955.12464 4362 4265 21679861.11823 4363 4265 17343750.0057 4364 4265 -36432062.04359 4374 4265 2.598762512207e-05 4375 4265 5.960464477539e-08 4376 4265 -104578818.0156 4377 4265 6.973743438721e-06 4378 4265 69374999.9886 4379 4265 -72810997.49471 4392 4265 -86719444.43019 4393 4265 -2.682209014893e-07 4394 4265 -99061955.12461 4395 4265 -21679861.11823 4396 4265 17343750.00569 4397 4265 -36432062.04358 4266 4266 1483949894.094 4267 4266 7.867813110352e-06 4268 4266 -5.507469177246e-05 4269 4266 184322301.8864 4270 4266 -2.622604370117e-06 4271 4266 -1.358985900879e-05 4281 4266 -148365426.1266 4282 4266 -97222222.20624 4283 4266 -3.039836883545e-06 4284 4266 -406796532.3944 4285 4266 -2.801418304443e-06 4286 4266 -1.233816146851e-05 4287 4266 -148365426.1266 4288 4266 97222222.20624 4289 4266 -3.308057785034e-06 4359 4266 -46373434.23613 4360 4266 24305555.56354 4361 4266 21679861.11823 4362 4266 -138827443.8752 4363 4266 2.682209014893e-07 4364 4266 86719444.4302 4365 4266 -46373434.23614 4366 4266 -24305555.56354 4367 4266 21679861.11823 4374 4266 8952264.76783 4375 4266 9.298324584961e-06 4376 4266 6.228685379028e-06 4377 4266 222474230.8735 4378 4266 3.933906555176e-06 4379 4266 2.622604370117e-05 4380 4266 8952264.76783 4381 4266 -1.302361488342e-05 4382 4266 6.914138793945e-06 4392 4266 -46373434.23611 4393 4266 -24305555.56353 4394 4266 -21679861.11823 4395 4266 -138827443.8751 4396 4266 -5.066394805908e-07 4397 4266 -86719444.43019 4398 4266 -46373434.23611 4399 4266 24305555.56353 4400 4266 -21679861.11823 4267 4267 1250608048.648 4268 4267 -1.192092895508e-06 4269 4267 -3.159046173096e-06 4270 4267 -185121779.2034 4271 4267 8.046627044678e-07 4281 4267 -97222222.20624 4282 4267 -119197695.4315 4283 4267 2.831220626831e-07 4284 4267 -3.09944152832e-06 4285 4267 20983010.02827 4286 4267 -4.768371582031e-07 4287 4267 97222222.20624 4288 4267 -119197695.4315 4289 4267 -7.450580596924e-08 4359 4267 24305555.56354 4360 4267 -39081501.55876 4361 4267 -17343750.00569 4362 4267 -2.294778823853e-06 4363 4267 -31882558.21685 4364 4267 2.682209014893e-07 4365 4267 -24305555.56354 4366 4267 -39081501.55876 4367 4267 17343750.0057 4374 4267 1.069903373718e-05 4375 4267 -83408755.55014 4376 4267 -69374999.9886 4377 4267 4.410743713379e-06 4378 4267 164138769.4832 4379 4267 -1.192092895508e-07 4380 4267 -1.156330108643e-05 4381 4267 -83408755.55014 4382 4267 69374999.9886 4392 4267 -24305555.56353 4393 4267 -39081501.55875 4394 4267 -17343750.0057 4395 4267 -8.344650268555e-07 4396 4267 -31882558.21681 4397 4267 -3.278255462646e-07 4398 4267 24305555.56353 4399 4267 -39081501.55875 4400 4267 17343750.00569 4268 4268 1165825984.246 4269 4268 -1.382827758789e-05 4270 4268 1.788139343262e-07 4271 4268 104791324.3853 4281 4268 -2.890825271606e-06 4282 4268 3.8743019104e-07 4283 4268 -46719419.49861 4284 4268 -1.20997428894e-05 4285 4268 -4.768371582031e-07 4286 4268 -212506.0825927 4287 4268 -3.278255462646e-06 4288 4268 -2.086162567139e-07 4289 4268 -46719419.49861 4359 4268 21679861.11823 4360 4268 -17343750.0057 4361 4268 -36432062.04359 4362 4268 86719444.4302 4363 4268 3.427267074585e-07 4364 4268 -99061955.12464 4365 4268 21679861.11823 4366 4268 17343750.0057 4367 4268 -36432062.04359 4374 4268 6.169080734253e-06 4375 4268 -69374999.9886 4376 4268 -72810997.49471 4377 4268 2.598762512207e-05 4378 4268 5.960464477539e-08 4379 4268 -104578818.0156 4380 4268 6.973743438721e-06 4381 4268 69374999.9886 4382 4268 -72810997.49471 4392 4268 -21679861.11823 4393 4268 -17343750.0057 4394 4268 -36432062.04358 4395 4268 -86719444.43019 4396 4268 -2.682209014893e-07 4397 4268 -99061955.12461 4398 4268 -21679861.11823 4399 4268 17343750.00569 4400 4268 -36432062.04358 4269 4269 1483949894.094 4270 4269 7.867813110352e-06 4271 4269 -5.507469177246e-05 4272 4269 184322301.8864 4273 4269 -2.622604370117e-06 4274 4269 -1.358985900879e-05 4284 4269 -148365426.1266 4285 4269 -97222222.20624 4286 4269 -3.039836883545e-06 4287 4269 -406796532.3944 4288 4269 -2.801418304443e-06 4289 4269 -1.233816146851e-05 4290 4269 -148365426.1266 4291 4269 97222222.20624 4292 4269 -3.308057785034e-06 4362 4269 -46373434.23613 4363 4269 24305555.56354 4364 4269 21679861.11823 4365 4269 -138827443.8752 4366 4269 2.682209014893e-07 4367 4269 86719444.4302 4368 4269 -46373434.23614 4369 4269 -24305555.56354 4370 4269 21679861.11823 4377 4269 8952264.76783 4378 4269 9.298324584961e-06 4379 4269 6.228685379028e-06 4380 4269 222474230.8735 4381 4269 3.933906555176e-06 4382 4269 2.622604370117e-05 4383 4269 8952264.76783 4384 4269 -1.302361488342e-05 4385 4269 6.914138793945e-06 4395 4269 -46373434.23611 4396 4269 -24305555.56353 4397 4269 -21679861.11823 4398 4269 -138827443.8751 4399 4269 -5.066394805908e-07 4400 4269 -86719444.43019 4401 4269 -46373434.23611 4402 4269 24305555.56353 4403 4269 -21679861.11823 4270 4270 1250608048.648 4271 4270 -1.192092895508e-06 4272 4270 -3.159046173096e-06 4273 4270 -185121779.2034 4274 4270 8.046627044678e-07 4284 4270 -97222222.20624 4285 4270 -119197695.4315 4286 4270 2.831220626831e-07 4287 4270 -3.09944152832e-06 4288 4270 20983010.02827 4289 4270 -4.768371582031e-07 4290 4270 97222222.20624 4291 4270 -119197695.4315 4292 4270 -7.450580596924e-08 4362 4270 24305555.56354 4363 4270 -39081501.55876 4364 4270 -17343750.00569 4365 4270 -2.294778823853e-06 4366 4270 -31882558.21685 4367 4270 2.682209014893e-07 4368 4270 -24305555.56354 4369 4270 -39081501.55876 4370 4270 17343750.0057 4377 4270 1.069903373718e-05 4378 4270 -83408755.55014 4379 4270 -69374999.9886 4380 4270 4.410743713379e-06 4381 4270 164138769.4832 4382 4270 -1.192092895508e-07 4383 4270 -1.156330108643e-05 4384 4270 -83408755.55014 4385 4270 69374999.9886 4395 4270 -24305555.56353 4396 4270 -39081501.55875 4397 4270 -17343750.0057 4398 4270 -8.344650268555e-07 4399 4270 -31882558.21681 4400 4270 -3.278255462646e-07 4401 4270 24305555.56353 4402 4270 -39081501.55875 4403 4270 17343750.00569 4271 4271 1165825984.246 4272 4271 -1.382827758789e-05 4273 4271 1.788139343262e-07 4274 4271 104791324.3853 4284 4271 -2.890825271606e-06 4285 4271 3.8743019104e-07 4286 4271 -46719419.49861 4287 4271 -1.20997428894e-05 4288 4271 -4.768371582031e-07 4289 4271 -212506.0825927 4290 4271 -3.278255462646e-06 4291 4271 -2.086162567139e-07 4292 4271 -46719419.49861 4362 4271 21679861.11823 4363 4271 -17343750.0057 4364 4271 -36432062.04359 4365 4271 86719444.4302 4366 4271 3.427267074585e-07 4367 4271 -99061955.12464 4368 4271 21679861.11823 4369 4271 17343750.0057 4370 4271 -36432062.04359 4377 4271 6.169080734253e-06 4378 4271 -69374999.9886 4379 4271 -72810997.49471 4380 4271 2.598762512207e-05 4381 4271 5.960464477539e-08 4382 4271 -104578818.0156 4383 4271 6.973743438721e-06 4384 4271 69374999.9886 4385 4271 -72810997.49471 4395 4271 -21679861.11823 4396 4271 -17343750.0057 4397 4271 -36432062.04358 4398 4271 -86719444.43019 4399 4271 -2.682209014893e-07 4400 4271 -99061955.12461 4401 4271 -21679861.11823 4402 4271 17343750.00569 4403 4271 -36432062.04358 4272 4272 1483949894.094 4273 4272 7.867813110352e-06 4274 4272 -5.507469177246e-05 4275 4272 184322301.8864 4276 4272 -2.622604370117e-06 4277 4272 -1.358985900879e-05 4287 4272 -148365426.1266 4288 4272 -97222222.20624 4289 4272 -3.039836883545e-06 4290 4272 -406796532.3944 4291 4272 -2.801418304443e-06 4292 4272 -1.233816146851e-05 4293 4272 -148365426.1266 4294 4272 97222222.20624 4295 4272 -3.308057785034e-06 4365 4272 -46373434.23613 4366 4272 24305555.56354 4367 4272 21679861.11823 4368 4272 -138827443.8752 4369 4272 2.682209014893e-07 4370 4272 86719444.4302 4371 4272 -46373434.23614 4372 4272 -24305555.56354 4373 4272 21679861.11823 4380 4272 8952264.76783 4381 4272 9.298324584961e-06 4382 4272 6.228685379028e-06 4383 4272 222474230.8735 4384 4272 3.933906555176e-06 4385 4272 2.622604370117e-05 4386 4272 8952264.76783 4387 4272 -1.302361488342e-05 4388 4272 6.914138793945e-06 4398 4272 -46373434.23611 4399 4272 -24305555.56353 4400 4272 -21679861.11823 4401 4272 -138827443.8751 4402 4272 -5.066394805908e-07 4403 4272 -86719444.43019 4404 4272 -46373434.23611 4405 4272 24305555.56353 4406 4272 -21679861.11823 4273 4273 1250608048.648 4274 4273 -1.192092895508e-06 4275 4273 -3.159046173096e-06 4276 4273 -185121779.2034 4277 4273 8.046627044678e-07 4287 4273 -97222222.20624 4288 4273 -119197695.4315 4289 4273 2.831220626831e-07 4290 4273 -3.09944152832e-06 4291 4273 20983010.02827 4292 4273 -4.768371582031e-07 4293 4273 97222222.20624 4294 4273 -119197695.4315 4295 4273 -7.450580596924e-08 4365 4273 24305555.56354 4366 4273 -39081501.55876 4367 4273 -17343750.00569 4368 4273 -2.294778823853e-06 4369 4273 -31882558.21685 4370 4273 2.682209014893e-07 4371 4273 -24305555.56354 4372 4273 -39081501.55876 4373 4273 17343750.0057 4380 4273 1.069903373718e-05 4381 4273 -83408755.55014 4382 4273 -69374999.9886 4383 4273 4.410743713379e-06 4384 4273 164138769.4832 4385 4273 -1.192092895508e-07 4386 4273 -1.156330108643e-05 4387 4273 -83408755.55014 4388 4273 69374999.9886 4398 4273 -24305555.56353 4399 4273 -39081501.55875 4400 4273 -17343750.0057 4401 4273 -8.344650268555e-07 4402 4273 -31882558.21681 4403 4273 -3.278255462646e-07 4404 4273 24305555.56353 4405 4273 -39081501.55875 4406 4273 17343750.00569 4274 4274 1165825984.246 4275 4274 -1.382827758789e-05 4276 4274 1.788139343262e-07 4277 4274 104791324.3853 4287 4274 -2.890825271606e-06 4288 4274 3.8743019104e-07 4289 4274 -46719419.49861 4290 4274 -1.20997428894e-05 4291 4274 -4.768371582031e-07 4292 4274 -212506.0825927 4293 4274 -3.278255462646e-06 4294 4274 -2.086162567139e-07 4295 4274 -46719419.49861 4365 4274 21679861.11823 4366 4274 -17343750.0057 4367 4274 -36432062.04359 4368 4274 86719444.4302 4369 4274 3.427267074585e-07 4370 4274 -99061955.12464 4371 4274 21679861.11823 4372 4274 17343750.0057 4373 4274 -36432062.04359 4380 4274 6.169080734253e-06 4381 4274 -69374999.9886 4382 4274 -72810997.49471 4383 4274 2.598762512207e-05 4384 4274 5.960464477539e-08 4385 4274 -104578818.0156 4386 4274 6.973743438721e-06 4387 4274 69374999.9886 4388 4274 -72810997.49471 4398 4274 -21679861.11823 4399 4274 -17343750.0057 4400 4274 -36432062.04358 4401 4274 -86719444.43019 4402 4274 -2.682209014893e-07 4403 4274 -99061955.12461 4404 4274 -21679861.11823 4405 4274 17343750.00569 4406 4274 -36432062.04358 4275 4275 1632315315.374 4276 4275 97222220.26178 4277 4275 -4.172325134277e-05 4278 4275 17392720.97666 4279 4275 -97222221.42845 4280 4275 -2.145767211914e-06 4290 4275 -148365426.1266 4291 4275 -97222222.20624 4292 4275 -3.039836883545e-06 4293 4275 -406796532.3944 4294 4275 -2.801418304443e-06 4295 4275 -1.233816146851e-05 4296 4275 -148365426.1266 4297 4275 97222222.20624 4298 4275 -3.308057785034e-06 4368 4275 -46373434.23613 4369 4275 24305555.56354 4370 4275 21679861.11823 4371 4275 -175918799.4897 4372 4275 -24305555.27186 4373 4275 86719444.24762 4383 4275 8952264.76783 4384 4275 9.298324584961e-06 4385 4275 6.228685379028e-06 4386 4275 268847663.9159 4387 4275 24305555.07742 4388 4275 0.03653132915497 4389 4275 -28139091.37671 4390 4275 -24305555.36909 4391 4275 21679860.74398 4401 4275 -46373434.23611 4402 4275 -24305555.56353 4403 4275 -21679861.11823 4404 4275 -138827443.8751 4405 4275 -5.066394805908e-07 4406 4275 -86719444.43019 4407 4275 -46373434.23611 4408 4275 24305555.56353 4409 4275 -21679861.11823 4276 4276 1369805740.108 4277 4276 -2.145767211914e-06 4278 4276 -97222221.03956 4279 4276 -322883627.8625 4280 4276 4.798173904419e-06 4290 4276 -97222222.20624 4291 4276 -119197695.4315 4292 4276 2.831220626831e-07 4293 4276 -3.09944152832e-06 4294 4276 20983010.02827 4295 4276 -4.768371582031e-07 4296 4276 97222222.20624 4297 4276 -119197695.4315 4298 4276 -7.450580596924e-08 4368 4276 24305555.56354 4369 4276 -39081501.55876 4370 4276 -17343750.00569 4371 4276 -24305555.36908 4372 4276 -61681981.7616 4373 4276 17343749.94043 4383 4276 1.069903373718e-05 4384 4276 -83408755.55014 4385 4276 -69374999.9886 4386 4276 24305555.07742 4387 4276 203220270.0671 4388 4276 0.02920919656754 4389 4276 -24305555.27186 4390 4276 -113208178.6284 4391 4276 69374999.6084 4401 4276 -24305555.56353 4402 4276 -39081501.55875 4403 4276 -17343750.0057 4404 4276 -8.344650268555e-07 4405 4276 -31882558.21681 4406 4276 -3.278255462646e-07 4407 4276 24305555.56353 4408 4276 -39081501.55875 4409 4276 17343750.00569 4277 4277 1212545401.289 4278 4277 -1.788139343262e-06 4279 4277 3.75509262085e-06 4280 4277 8567490.576108 4290 4277 -2.890825271606e-06 4291 4277 3.8743019104e-07 4292 4277 -46719419.49861 4293 4277 -1.20997428894e-05 4294 4277 -4.768371582031e-07 4295 4277 -212506.0825927 4296 4277 -3.278255462646e-06 4297 4277 -2.086162567139e-07 4298 4277 -46719419.49861 4368 4277 21679861.11823 4369 4277 -17343750.0057 4370 4277 -36432062.04359 4371 4277 86719444.24762 4372 4277 17343749.9078 4373 4277 -110741809.7386 4383 4277 6.169080734253e-06 4384 4277 -69374999.9886 4385 4277 -72810997.49471 4386 4277 -0.03649973869324 4387 4277 -0.02921465039253 4388 4277 -68146756.53808 4389 4277 21679860.55685 4390 4277 69374999.49133 4391 4277 -84490851.68298 4401 4277 -21679861.11823 4402 4277 -17343750.0057 4403 4277 -36432062.04358 4404 4277 -86719444.43019 4405 4277 -2.682209014893e-07 4406 4277 -99061955.12461 4407 4277 -21679861.11823 4408 4277 17343750.00569 4409 4277 -36432062.04358 4278 4278 944226635.8557 4279 4278 104813146.3867 4280 4278 -9.775161743164e-06 4293 4278 -148365426.1266 4294 4278 -97222222.20624 4295 4278 -3.039836883545e-06 4296 4278 -591818040.3847 4297 4278 -104813145.6089 4298 4278 -1.108646392822e-05 4299 4278 22795227.75345 4300 4278 77777776.98722 4301 4278 2.145767211914e-06 4371 4278 -9282077.50499 4372 4278 29166666.38457 4373 4278 26015832.78049 4386 4278 -28139091.37673 4387 4278 -24305555.27187 4388 4278 -21679860.55685 4389 4278 142149470.4917 4390 4278 26203286.60958 4391 4278 17682222.18138 4404 4278 -46373434.23611 4405 4278 -24305555.56353 4406 4278 -21679861.11823 4407 4278 -180984988.3575 4408 4278 -26203286.41514 4409 4278 -88411110.90688 4410 4278 -8767515.55854 4411 4278 19444444.25639 4412 4278 -18020555.17262 4279 4279 789133337.2837 4280 4279 2.644956111908e-06 4293 4279 -97222222.20624 4294 4279 -119197695.4315 4295 4279 2.831220626831e-07 4296 4279 -104813145.22 4297 4279 -131460786.5969 4298 4279 -4.768371582031e-07 4299 4279 116666665.4808 4300 4279 28639890.68178 4301 4279 3.576278686523e-07 4371 4279 19444444.25638 4372 4279 -9282077.505 4373 4279 -13874999.9393 4386 4279 -24305555.36909 4387 4279 -113208178.6284 4388 4279 -69374999.49133 4389 4279 26203286.60958 4390 4279 103376145.8295 4391 4279 14145833.18358 4404 4279 -24305555.56353 4405 4279 -39081501.55875 4406 4279 -17343750.0057 4407 4279 -26203286.31792 4408 4279 -65895674.85386 4409 4279 -18697916.56855 4410 4279 29166666.38458 4411 4279 -7306349.825737 4412 4279 20270833.25379 4280 4280 738330627.0228 4293 4280 -2.890825271606e-06 4294 4280 3.8743019104e-07 4295 4280 -46719419.49861 4296 4280 -1.20997428894e-05 4297 4280 -1.192092895508e-07 4298 4280 -103838327.6491 4299 4280 2.622604370117e-06 4300 4280 1.788139343262e-07 4301 4280 54942611.08087 4371 4280 17343888.52033 4372 4280 -20812499.90895 4373 4280 -24752206.67999 4386 4280 -21679860.74398 4387 4280 -69374999.6084 4388 4280 -84490851.68299 4389 4280 -17682222.18137 4390 4280 -14145833.18359 4391 4280 -65836512.72294 4404 4280 -21679861.11823 4405 4280 -17343750.0057 4406 4280 -36432062.04358 4407 4280 -88411110.90689 4408 4280 -18697916.60118 4409 4280 -114040857.0942 4410 4280 -27030832.75893 4411 4280 13062499.95656 4412 4280 -24841207.22224 4281 4281 1483949894.094 4282 4281 7.867813110352e-06 4283 4281 -5.507469177246e-05 4284 4281 184322301.8864 4285 4281 -2.622604370117e-06 4286 4281 -1.358985900879e-05 4302 4281 -406796532.3944 4303 4281 -2.801418304443e-06 4304 4281 -1.233816146851e-05 4305 4281 -148365426.1266 4306 4281 97222222.20624 4307 4281 -3.308057785034e-06 4374 4281 -138827443.8752 4375 4281 2.682209014893e-07 4376 4281 86719444.4302 4377 4281 -46373434.23614 4378 4281 -24305555.56354 4379 4281 21679861.11823 4392 4281 222474230.8735 4393 4281 3.933906555176e-06 4394 4281 2.622604370117e-05 4395 4281 8952264.76783 4396 4281 -1.302361488342e-05 4397 4281 6.914138793945e-06 4413 4281 -138827443.8751 4414 4281 -5.066394805908e-07 4415 4281 -86719444.43019 4416 4281 -46373434.23611 4417 4281 24305555.56353 4418 4281 -21679861.11823 4282 4282 1250608048.648 4283 4282 -1.192092895508e-06 4284 4282 -3.159046173096e-06 4285 4282 -185121779.2034 4286 4282 8.046627044678e-07 4302 4282 -3.09944152832e-06 4303 4282 20983010.02827 4304 4282 -4.768371582031e-07 4305 4282 97222222.20624 4306 4282 -119197695.4315 4307 4282 -7.450580596924e-08 4374 4282 -2.294778823853e-06 4375 4282 -31882558.21685 4376 4282 2.682209014893e-07 4377 4282 -24305555.56354 4378 4282 -39081501.55876 4379 4282 17343750.0057 4392 4282 4.410743713379e-06 4393 4282 164138769.4832 4394 4282 -1.192092895508e-07 4395 4282 -1.156330108643e-05 4396 4282 -83408755.55014 4397 4282 69374999.9886 4413 4282 -8.344650268555e-07 4414 4282 -31882558.21681 4415 4282 -3.278255462646e-07 4416 4282 24305555.56353 4417 4282 -39081501.55875 4418 4282 17343750.00569 4283 4283 1165825984.246 4284 4283 -1.382827758789e-05 4285 4283 1.788139343262e-07 4286 4283 104791324.3853 4302 4283 -1.20997428894e-05 4303 4283 -4.768371582031e-07 4304 4283 -212506.0825927 4305 4283 -3.278255462646e-06 4306 4283 -2.086162567139e-07 4307 4283 -46719419.49861 4374 4283 86719444.4302 4375 4283 3.427267074585e-07 4376 4283 -99061955.12464 4377 4283 21679861.11823 4378 4283 17343750.0057 4379 4283 -36432062.04359 4392 4283 2.598762512207e-05 4393 4283 5.960464477539e-08 4394 4283 -104578818.0156 4395 4283 6.973743438721e-06 4396 4283 69374999.9886 4397 4283 -72810997.49471 4413 4283 -86719444.43019 4414 4283 -2.682209014893e-07 4415 4283 -99061955.12461 4416 4283 -21679861.11823 4417 4283 17343750.00569 4418 4283 -36432062.04358 4284 4284 1483949894.094 4285 4284 7.867813110352e-06 4286 4284 -5.507469177246e-05 4287 4284 184322301.8864 4288 4284 -2.622604370117e-06 4289 4284 -1.358985900879e-05 4302 4284 -148365426.1266 4303 4284 -97222222.20624 4304 4284 -3.039836883545e-06 4305 4284 -406796532.3944 4306 4284 -2.801418304443e-06 4307 4284 -1.233816146851e-05 4308 4284 -148365426.1266 4309 4284 97222222.20624 4310 4284 -3.308057785034e-06 4374 4284 -46373434.23613 4375 4284 24305555.56354 4376 4284 21679861.11823 4377 4284 -138827443.8752 4378 4284 2.682209014893e-07 4379 4284 86719444.4302 4380 4284 -46373434.23614 4381 4284 -24305555.56354 4382 4284 21679861.11823 4392 4284 8952264.76783 4393 4284 9.298324584961e-06 4394 4284 6.228685379028e-06 4395 4284 222474230.8735 4396 4284 3.933906555176e-06 4397 4284 2.622604370117e-05 4398 4284 8952264.76783 4399 4284 -1.302361488342e-05 4400 4284 6.914138793945e-06 4413 4284 -46373434.23611 4414 4284 -24305555.56353 4415 4284 -21679861.11823 4416 4284 -138827443.8751 4417 4284 -5.066394805908e-07 4418 4284 -86719444.43019 4419 4284 -46373434.23611 4420 4284 24305555.56353 4421 4284 -21679861.11823 4285 4285 1250608048.648 4286 4285 -1.192092895508e-06 4287 4285 -3.159046173096e-06 4288 4285 -185121779.2034 4289 4285 8.046627044678e-07 4302 4285 -97222222.20624 4303 4285 -119197695.4315 4304 4285 2.831220626831e-07 4305 4285 -3.09944152832e-06 4306 4285 20983010.02827 4307 4285 -4.768371582031e-07 4308 4285 97222222.20624 4309 4285 -119197695.4315 4310 4285 -7.450580596924e-08 4374 4285 24305555.56354 4375 4285 -39081501.55876 4376 4285 -17343750.00569 4377 4285 -2.294778823853e-06 4378 4285 -31882558.21685 4379 4285 2.682209014893e-07 4380 4285 -24305555.56354 4381 4285 -39081501.55876 4382 4285 17343750.0057 4392 4285 1.069903373718e-05 4393 4285 -83408755.55014 4394 4285 -69374999.9886 4395 4285 4.410743713379e-06 4396 4285 164138769.4832 4397 4285 -1.192092895508e-07 4398 4285 -1.156330108643e-05 4399 4285 -83408755.55014 4400 4285 69374999.9886 4413 4285 -24305555.56353 4414 4285 -39081501.55875 4415 4285 -17343750.0057 4416 4285 -8.344650268555e-07 4417 4285 -31882558.21681 4418 4285 -3.278255462646e-07 4419 4285 24305555.56353 4420 4285 -39081501.55875 4421 4285 17343750.00569 4286 4286 1165825984.246 4287 4286 -1.382827758789e-05 4288 4286 1.788139343262e-07 4289 4286 104791324.3853 4302 4286 -2.890825271606e-06 4303 4286 3.8743019104e-07 4304 4286 -46719419.49861 4305 4286 -1.20997428894e-05 4306 4286 -4.768371582031e-07 4307 4286 -212506.0825927 4308 4286 -3.278255462646e-06 4309 4286 -2.086162567139e-07 4310 4286 -46719419.49861 4374 4286 21679861.11823 4375 4286 -17343750.0057 4376 4286 -36432062.04359 4377 4286 86719444.4302 4378 4286 3.427267074585e-07 4379 4286 -99061955.12464 4380 4286 21679861.11823 4381 4286 17343750.0057 4382 4286 -36432062.04359 4392 4286 6.169080734253e-06 4393 4286 -69374999.9886 4394 4286 -72810997.49471 4395 4286 2.598762512207e-05 4396 4286 5.960464477539e-08 4397 4286 -104578818.0156 4398 4286 6.973743438721e-06 4399 4286 69374999.9886 4400 4286 -72810997.49471 4413 4286 -21679861.11823 4414 4286 -17343750.0057 4415 4286 -36432062.04358 4416 4286 -86719444.43019 4417 4286 -2.682209014893e-07 4418 4286 -99061955.12461 4419 4286 -21679861.11823 4420 4286 17343750.00569 4421 4286 -36432062.04358 4287 4287 1483949894.094 4288 4287 7.867813110352e-06 4289 4287 -5.507469177246e-05 4290 4287 184322301.8864 4291 4287 -2.622604370117e-06 4292 4287 -1.358985900879e-05 4305 4287 -148365426.1266 4306 4287 -97222222.20624 4307 4287 -3.039836883545e-06 4308 4287 -406796532.3944 4309 4287 -2.801418304443e-06 4310 4287 -1.233816146851e-05 4311 4287 -148365426.1266 4312 4287 97222222.20624 4313 4287 -3.308057785034e-06 4377 4287 -46373434.23613 4378 4287 24305555.56354 4379 4287 21679861.11823 4380 4287 -138827443.8752 4381 4287 2.682209014893e-07 4382 4287 86719444.4302 4383 4287 -46373434.23614 4384 4287 -24305555.56354 4385 4287 21679861.11823 4395 4287 8952264.76783 4396 4287 9.298324584961e-06 4397 4287 6.228685379028e-06 4398 4287 222474230.8735 4399 4287 3.933906555176e-06 4400 4287 2.622604370117e-05 4401 4287 8952264.76783 4402 4287 -1.302361488342e-05 4403 4287 6.914138793945e-06 4416 4287 -46373434.23611 4417 4287 -24305555.56353 4418 4287 -21679861.11823 4419 4287 -138827443.8751 4420 4287 -5.066394805908e-07 4421 4287 -86719444.43019 4422 4287 -46373434.23611 4423 4287 24305555.56353 4424 4287 -21679861.11823 4288 4288 1250608048.648 4289 4288 -1.192092895508e-06 4290 4288 -3.159046173096e-06 4291 4288 -185121779.2034 4292 4288 8.046627044678e-07 4305 4288 -97222222.20624 4306 4288 -119197695.4315 4307 4288 2.831220626831e-07 4308 4288 -3.09944152832e-06 4309 4288 20983010.02827 4310 4288 -4.768371582031e-07 4311 4288 97222222.20624 4312 4288 -119197695.4315 4313 4288 -7.450580596924e-08 4377 4288 24305555.56354 4378 4288 -39081501.55876 4379 4288 -17343750.00569 4380 4288 -2.294778823853e-06 4381 4288 -31882558.21685 4382 4288 2.682209014893e-07 4383 4288 -24305555.56354 4384 4288 -39081501.55876 4385 4288 17343750.0057 4395 4288 1.069903373718e-05 4396 4288 -83408755.55014 4397 4288 -69374999.9886 4398 4288 4.410743713379e-06 4399 4288 164138769.4832 4400 4288 -1.192092895508e-07 4401 4288 -1.156330108643e-05 4402 4288 -83408755.55014 4403 4288 69374999.9886 4416 4288 -24305555.56353 4417 4288 -39081501.55875 4418 4288 -17343750.0057 4419 4288 -8.344650268555e-07 4420 4288 -31882558.21681 4421 4288 -3.278255462646e-07 4422 4288 24305555.56353 4423 4288 -39081501.55875 4424 4288 17343750.00569 4289 4289 1165825984.246 4290 4289 -1.382827758789e-05 4291 4289 1.788139343262e-07 4292 4289 104791324.3853 4305 4289 -2.890825271606e-06 4306 4289 3.8743019104e-07 4307 4289 -46719419.49861 4308 4289 -1.20997428894e-05 4309 4289 -4.768371582031e-07 4310 4289 -212506.0825927 4311 4289 -3.278255462646e-06 4312 4289 -2.086162567139e-07 4313 4289 -46719419.49861 4377 4289 21679861.11823 4378 4289 -17343750.0057 4379 4289 -36432062.04359 4380 4289 86719444.4302 4381 4289 3.427267074585e-07 4382 4289 -99061955.12464 4383 4289 21679861.11823 4384 4289 17343750.0057 4385 4289 -36432062.04359 4395 4289 6.169080734253e-06 4396 4289 -69374999.9886 4397 4289 -72810997.49471 4398 4289 2.598762512207e-05 4399 4289 5.960464477539e-08 4400 4289 -104578818.0156 4401 4289 6.973743438721e-06 4402 4289 69374999.9886 4403 4289 -72810997.49471 4416 4289 -21679861.11823 4417 4289 -17343750.0057 4418 4289 -36432062.04358 4419 4289 -86719444.43019 4420 4289 -2.682209014893e-07 4421 4289 -99061955.12461 4422 4289 -21679861.11823 4423 4289 17343750.00569 4424 4289 -36432062.04358 4290 4290 1483949894.094 4291 4290 7.867813110352e-06 4292 4290 -5.507469177246e-05 4293 4290 184322301.8864 4294 4290 -2.622604370117e-06 4295 4290 -1.358985900879e-05 4308 4290 -148365426.1266 4309 4290 -97222222.20624 4310 4290 -3.039836883545e-06 4311 4290 -406796532.3944 4312 4290 -2.801418304443e-06 4313 4290 -1.233816146851e-05 4314 4290 -148365426.1266 4315 4290 97222222.20624 4316 4290 -3.308057785034e-06 4380 4290 -46373434.23613 4381 4290 24305555.56354 4382 4290 21679861.11823 4383 4290 -138827443.8752 4384 4290 2.682209014893e-07 4385 4290 86719444.4302 4386 4290 -46373434.23614 4387 4290 -24305555.56354 4388 4290 21679861.11823 4398 4290 8952264.76783 4399 4290 9.298324584961e-06 4400 4290 6.228685379028e-06 4401 4290 222474230.8735 4402 4290 3.933906555176e-06 4403 4290 2.622604370117e-05 4404 4290 8952264.76783 4405 4290 -1.302361488342e-05 4406 4290 6.914138793945e-06 4419 4290 -46373434.23611 4420 4290 -24305555.56353 4421 4290 -21679861.11823 4422 4290 -138827443.8751 4423 4290 -5.066394805908e-07 4424 4290 -86719444.43019 4425 4290 -46373434.23611 4426 4290 24305555.56353 4427 4290 -21679861.11823 4291 4291 1250608048.648 4292 4291 -1.192092895508e-06 4293 4291 -3.159046173096e-06 4294 4291 -185121779.2034 4295 4291 8.046627044678e-07 4308 4291 -97222222.20624 4309 4291 -119197695.4315 4310 4291 2.831220626831e-07 4311 4291 -3.09944152832e-06 4312 4291 20983010.02827 4313 4291 -4.768371582031e-07 4314 4291 97222222.20624 4315 4291 -119197695.4315 4316 4291 -7.450580596924e-08 4380 4291 24305555.56354 4381 4291 -39081501.55876 4382 4291 -17343750.00569 4383 4291 -2.294778823853e-06 4384 4291 -31882558.21685 4385 4291 2.682209014893e-07 4386 4291 -24305555.56354 4387 4291 -39081501.55876 4388 4291 17343750.0057 4398 4291 1.069903373718e-05 4399 4291 -83408755.55014 4400 4291 -69374999.9886 4401 4291 4.410743713379e-06 4402 4291 164138769.4832 4403 4291 -1.192092895508e-07 4404 4291 -1.156330108643e-05 4405 4291 -83408755.55014 4406 4291 69374999.9886 4419 4291 -24305555.56353 4420 4291 -39081501.55875 4421 4291 -17343750.0057 4422 4291 -8.344650268555e-07 4423 4291 -31882558.21681 4424 4291 -3.278255462646e-07 4425 4291 24305555.56353 4426 4291 -39081501.55875 4427 4291 17343750.00569 4292 4292 1165825984.246 4293 4292 -1.382827758789e-05 4294 4292 1.788139343262e-07 4295 4292 104791324.3853 4308 4292 -2.890825271606e-06 4309 4292 3.8743019104e-07 4310 4292 -46719419.49861 4311 4292 -1.20997428894e-05 4312 4292 -4.768371582031e-07 4313 4292 -212506.0825927 4314 4292 -3.278255462646e-06 4315 4292 -2.086162567139e-07 4316 4292 -46719419.49861 4380 4292 21679861.11823 4381 4292 -17343750.0057 4382 4292 -36432062.04359 4383 4292 86719444.4302 4384 4292 3.427267074585e-07 4385 4292 -99061955.12464 4386 4292 21679861.11823 4387 4292 17343750.0057 4388 4292 -36432062.04359 4398 4292 6.169080734253e-06 4399 4292 -69374999.9886 4400 4292 -72810997.49471 4401 4292 2.598762512207e-05 4402 4292 5.960464477539e-08 4403 4292 -104578818.0156 4404 4292 6.973743438721e-06 4405 4292 69374999.9886 4406 4292 -72810997.49471 4419 4292 -21679861.11823 4420 4292 -17343750.0057 4421 4292 -36432062.04358 4422 4292 -86719444.43019 4423 4292 -2.682209014893e-07 4424 4292 -99061955.12461 4425 4292 -21679861.11823 4426 4292 17343750.00569 4427 4292 -36432062.04358 4293 4293 1483949894.094 4294 4293 7.867813110352e-06 4295 4293 -5.507469177246e-05 4296 4293 184322301.8864 4297 4293 -2.622604370117e-06 4298 4293 -1.358985900879e-05 4311 4293 -148365426.1266 4312 4293 -97222222.20624 4313 4293 -3.039836883545e-06 4314 4293 -406796532.3944 4315 4293 -2.801418304443e-06 4316 4293 -1.233816146851e-05 4317 4293 -148365426.1266 4318 4293 97222222.20624 4319 4293 -3.308057785034e-06 4383 4293 -46373434.23613 4384 4293 24305555.56354 4385 4293 21679861.11823 4386 4293 -138827443.8752 4387 4293 2.682209014893e-07 4388 4293 86719444.4302 4389 4293 -46373434.23614 4390 4293 -24305555.56354 4391 4293 21679861.11823 4401 4293 8952264.76783 4402 4293 9.298324584961e-06 4403 4293 6.228685379028e-06 4404 4293 222474230.8735 4405 4293 3.933906555176e-06 4406 4293 2.622604370117e-05 4407 4293 8952264.76783 4408 4293 -1.302361488342e-05 4409 4293 6.914138793945e-06 4422 4293 -46373434.23611 4423 4293 -24305555.56353 4424 4293 -21679861.11823 4425 4293 -138827443.8751 4426 4293 -5.066394805908e-07 4427 4293 -86719444.43019 4428 4293 -46373434.23611 4429 4293 24305555.56353 4430 4293 -21679861.11823 4294 4294 1250608048.648 4295 4294 -1.192092895508e-06 4296 4294 -3.159046173096e-06 4297 4294 -185121779.2034 4298 4294 8.046627044678e-07 4311 4294 -97222222.20624 4312 4294 -119197695.4315 4313 4294 2.831220626831e-07 4314 4294 -3.09944152832e-06 4315 4294 20983010.02827 4316 4294 -4.768371582031e-07 4317 4294 97222222.20624 4318 4294 -119197695.4315 4319 4294 -7.450580596924e-08 4383 4294 24305555.56354 4384 4294 -39081501.55876 4385 4294 -17343750.00569 4386 4294 -2.294778823853e-06 4387 4294 -31882558.21685 4388 4294 2.682209014893e-07 4389 4294 -24305555.56354 4390 4294 -39081501.55876 4391 4294 17343750.0057 4401 4294 1.069903373718e-05 4402 4294 -83408755.55014 4403 4294 -69374999.9886 4404 4294 4.410743713379e-06 4405 4294 164138769.4832 4406 4294 -1.192092895508e-07 4407 4294 -1.156330108643e-05 4408 4294 -83408755.55014 4409 4294 69374999.9886 4422 4294 -24305555.56353 4423 4294 -39081501.55875 4424 4294 -17343750.0057 4425 4294 -8.344650268555e-07 4426 4294 -31882558.21681 4427 4294 -3.278255462646e-07 4428 4294 24305555.56353 4429 4294 -39081501.55875 4430 4294 17343750.00569 4295 4295 1165825984.246 4296 4295 -1.382827758789e-05 4297 4295 1.788139343262e-07 4298 4295 104791324.3853 4311 4295 -2.890825271606e-06 4312 4295 3.8743019104e-07 4313 4295 -46719419.49861 4314 4295 -1.20997428894e-05 4315 4295 -4.768371582031e-07 4316 4295 -212506.0825927 4317 4295 -3.278255462646e-06 4318 4295 -2.086162567139e-07 4319 4295 -46719419.49861 4383 4295 21679861.11823 4384 4295 -17343750.0057 4385 4295 -36432062.04359 4386 4295 86719444.4302 4387 4295 3.427267074585e-07 4388 4295 -99061955.12464 4389 4295 21679861.11823 4390 4295 17343750.0057 4391 4295 -36432062.04359 4401 4295 6.169080734253e-06 4402 4295 -69374999.9886 4403 4295 -72810997.49471 4404 4295 2.598762512207e-05 4405 4295 5.960464477539e-08 4406 4295 -104578818.0156 4407 4295 6.973743438721e-06 4408 4295 69374999.9886 4409 4295 -72810997.49471 4422 4295 -21679861.11823 4423 4295 -17343750.0057 4424 4295 -36432062.04358 4425 4295 -86719444.43019 4426 4295 -2.682209014893e-07 4427 4295 -99061955.12461 4428 4295 -21679861.11823 4429 4295 17343750.00569 4430 4295 -36432062.04358 4296 4296 1661147708.834 4297 4296 104975994.3213 4298 4296 -3.504753112793e-05 4299 4296 28973926.47989 4300 4296 -93442034.30675 4301 4296 -1.907348632813e-06 4314 4296 -148365426.1266 4315 4296 -97222222.20624 4316 4296 -3.039836883545e-06 4317 4296 -414750020.4148 4318 4296 -3811573.076203 4319 4296 -6.437301635742e-06 4320 4296 -158390003.058 4321 4296 97090758.28167 4322 4296 3.248453140259e-06 4386 4296 -46373434.23613 4387 4296 24305555.56354 4388 4296 21679861.11823 4389 4296 -180984988.3575 4390 4296 -26203286.31792 4391 4296 88411110.90689 4404 4296 8952264.76783 4405 4296 9.298324584961e-06 4406 4296 6.228685379028e-06 4407 4296 274245586.3935 4408 4296 26243998.59327 4409 4296 0.03795969486237 4410 4296 -25967702.04294 4411 4296 -23360508.5882 4412 4296 21679166.28526 4425 4296 -46373434.23611 4426 4296 -24305555.56353 4427 4296 -21679861.11823 4428 4296 -140996480.1669 4429 4296 -952893.2695213 4430 4296 -87564583.31886 4431 4296 -48879322.66664 4432 4296 24272689.58238 4433 4296 -22525694.45184 4297 4297 1378316574.243 4298 4297 9.655952453613e-06 4299 4297 -93442033.91786 4300 4297 -311076053.7847 4301 4297 -7.063150405884e-06 4314 4297 -97222222.20624 4315 4297 -119197695.4315 4316 4297 2.831220626831e-07 4317 4297 -3811573.07621 4318 4297 16672797.27745 4319 4297 3.218650817871e-06 4320 4297 97090758.28167 4321 4297 -116180339.9824 4322 4297 -6.705522537231e-07 4386 4297 24305555.56354 4387 4297 -39081501.55876 4388 4297 -17343750.00569 4389 4297 -26203286.41514 4390 4297 -65895674.85388 4391 4297 18697916.60118 4404 4297 1.069903373718e-05 4405 4297 -83408755.55014 4406 4297 -69374999.9886 4407 4297 26243998.59326 4408 4297 203537802.7108 4409 4297 0.03035727143288 4410 4297 -23360508.49098 4411 4297 -110980197.151 4412 4297 69374999.59697 4425 4297 -24305555.56353 4426 4297 -39081501.55875 4427 4297 -17343750.0057 4428 4297 -952893.2695255 4429 4297 -33140775.69073 4430 4297 -677083.3331553 4431 4297 24272689.58238 4432 4297 -38326906.89252 4433 4297 16666666.67214 4298 4298 1227849607.294 4299 4298 -9.536743164063e-07 4300 4298 -7.063150405884e-06 4301 4298 16993676.64505 4314 4298 -2.890825271606e-06 4315 4298 3.8743019104e-07 4316 4298 -46719419.49861 4317 4298 -8.046627044678e-06 4318 4298 3.457069396973e-06 4319 4298 -3046182.050696 4320 4298 3.159046173096e-06 4321 4298 -7.599592208862e-07 4322 4298 -48631203.38772 4386 4298 21679861.11823 4387 4298 -17343750.0057 4388 4298 -36432062.04359 4389 4298 88411110.90689 4390 4298 18697916.56855 4391 4298 -114040857.0942 4404 4298 6.169080734253e-06 4405 4298 -69374999.9886 4406 4298 -72810997.49471 4407 4298 -0.03792124986649 4408 4298 -0.03034713864326 4409 4298 -69147840.74458 4410 4298 21679166.091 4411 4298 69374999.47419 4412 4298 -84314737.28059 4425 4298 -21679861.11823 4426 4298 -17343750.0057 4427 4298 -36432062.04358 4428 4298 -87564583.31903 4429 4298 -677083.3332887 4430 4298 -100252145.5455 4431 4298 -22525694.45184 4432 4298 16666666.67214 4433 4298 -36909325.87324 4299 4299 878310888.4809 4300 4299 -2657515.757646 4301 4299 4.768371582031e-07 4317 4299 -146355658.7119 4318 4299 -97205456.75096 4319 4299 -3.725290298462e-06 4320 4299 -422227983.6708 4321 4299 -5136049.023841 4322 4299 -4.172325134277e-07 4323 4299 85600144.70804 4324 4299 -16771033.13002 4325 4299 -1.668930053711e-06 4326 4299 -156881939.5358 4327 4299 98545423.09949 4328 4299 3.606081008911e-06 4389 4299 -8767515.558542 4390 4299 29166666.38458 4391 4299 27030832.75893 4407 4299 -25967702.04296 4408 4299 -23360508.49098 4409 4299 -21679166.091 4410 4299 119740849.7095 4411 4299 -664378.9397371 4412 4299 17135277.77496 4428 4299 -45870736.57862 4429 4299 -24301364.19972 4430 4299 -21679166.67379 4431 4299 -141002035.2672 4432 4299 -1284012.256597 4433 4299 -85676388.87482 4434 4299 4511607.610503 4435 4299 -4192758.28457 4436 4299 3215972.223777 4437 4299 -47751770.62456 4438 4299 24636355.78701 4439 4299 -21159027.78473 4300 4300 904404472.7404 4301 4300 1.704692840576e-05 4317 4300 -97205456.75096 4318 4300 -119802374.1365 4319 4300 -1.087784767151e-06 4320 4300 -5136049.02384 4321 4300 9983783.088483 4322 4300 6.914138793945e-06 4323 4300 22117855.75248 4324 4300 -98572068.66135 4325 4300 -4.559755325317e-06 4326 4300 98545423.09949 4327 4300 -123363044.4243 4328 4300 -8.940696716309e-07 4389 4300 19444444.25639 4390 4300 -7306349.825739 4391 4300 -13062499.95656 4407 4300 -23360508.5882 4408 4300 -110980197.151 4409 4300 -69374999.4742 4410 4300 -664378.9397382 4411 4300 126264245.7776 4412 4300 7208333.185874 4428 4300 -24301364.19972 4429 4300 -39232415.43152 4430 4300 -17343750.0057 4431 4300 -1284012.256597 4432 4300 -32949093.52409 4433 4300 -677083.3331551 4434 4300 5529463.940846 4435 4300 -41531445.75454 4436 4300 33333333.32785 4437 4300 24636355.78701 4438 4300 -39372046.84256 4439 4300 16666666.67214 4301 4301 768562010.6434 4317 4301 -3.784894943237e-06 4318 4301 -9.536743164063e-07 4319 4301 -46336936.97172 4320 4301 -1.788139343262e-07 4321 4301 7.092952728271e-06 4322 4301 -12181640.54615 4323 4301 3.576278686523e-07 4324 4301 -4.827976226807e-06 4325 4301 44227455.09152 4326 4301 3.159046173096e-06 4327 4301 -9.089708328247e-07 4328 4301 -52301561.2662 4389 4301 18020555.17262 4390 4301 -20270833.25379 4391 4301 -24841207.22225 4407 4301 -21679166.28527 4408 4301 -69374999.59699 4409 4301 -84314737.28064 4410 4301 -17135277.77496 4411 4301 -7208333.185859 4412 4301 -74091157.29502 4428 4301 -21679166.67379 4429 4301 -17343750.0057 4430 4301 -36335759.26896 4431 4301 -85676388.87482 4432 4301 -677083.3332886 4433 4301 -97565514.93121 4434 4301 -4909027.779057 4435 4301 33333333.32785 4436 4301 -33978945.76048 4437 4301 -21159027.78473 4438 4301 16666666.67214 4439 4301 -35825485.57976 4302 4302 741974947.0469 4303 4302 5.006790161133e-06 4304 4302 -2.908706665039e-05 4305 4302 92161150.94322 4306 4302 19444444.44125 4307 4302 -7.271766662598e-06 4392 4302 -138827443.8752 4393 4302 2.682209014893e-07 4394 4302 86719444.4302 4395 4302 -46373434.23614 4396 4302 -24305555.56354 4397 4302 21679861.11823 4413 4302 111237115.4367 4414 4302 -8.344650268555e-07 4415 4302 -17343888.88603 4416 4302 4476132.383917 4417 4302 4861111.1127 4418 4302 -4335972.223642 4303 4303 625304024.3239 4304 4303 6.198883056641e-06 4305 4303 -19444444.44125 4306 4303 -92560889.60172 4307 4303 2.32458114624e-06 4392 4303 -2.294778823853e-06 4393 4303 -31882558.21685 4394 4303 2.682209014893e-07 4395 4303 -24305555.56354 4396 4303 -39081501.55876 4397 4303 17343750.0057 4413 4303 -7.152557373047e-07 4414 4303 82069384.74161 4415 4303 -3.75509262085e-06 4416 4303 -4861111.112713 4417 4303 -41704377.77507 4418 4303 34687499.9943 4304 4304 582912992.1231 4305 4304 -7.271766662598e-06 4306 4304 1.877546310425e-06 4307 4304 52395662.19267 4392 4304 86719444.4302 4393 4304 3.427267074585e-07 4394 4304 -99061955.12464 4395 4304 21679861.11823 4396 4304 17343750.0057 4397 4304 -36432062.04359 4413 4304 17343888.88605 4414 4304 -3.576278686523e-06 4415 4304 -52289409.00778 4416 4304 4335972.22365 4417 4304 34687499.9943 4418 4304 -36405498.74735 4305 4305 741974947.0469 4306 4305 5.006790161133e-06 4307 4305 -2.908706665039e-05 4308 4305 92161150.94322 4309 4305 19444444.44125 4310 4305 -7.271766662598e-06 4392 4305 -46373434.23613 4393 4305 24305555.56354 4394 4305 21679861.11823 4395 4305 -138827443.8752 4396 4305 2.682209014893e-07 4397 4305 86719444.4302 4398 4305 -46373434.23614 4399 4305 -24305555.56354 4400 4305 21679861.11823 4413 4305 4476132.383914 4414 4305 -4861111.112702 4415 4305 -4335972.223643 4416 4305 111237115.4367 4417 4305 -8.344650268555e-07 4418 4305 -17343888.88603 4419 4305 4476132.383917 4420 4305 4861111.1127 4421 4305 -4335972.223642 4306 4306 625304024.3239 4307 4306 6.198883056641e-06 4308 4306 -19444444.44125 4309 4306 -92560889.60172 4310 4306 2.32458114624e-06 4392 4306 24305555.56354 4393 4306 -39081501.55876 4394 4306 -17343750.00569 4395 4306 -2.294778823853e-06 4396 4306 -31882558.21685 4397 4306 2.682209014893e-07 4398 4306 -24305555.56354 4399 4306 -39081501.55876 4400 4306 17343750.0057 4413 4306 4861111.112712 4414 4306 -41704377.77507 4415 4306 -34687499.9943 4416 4306 -7.152557373047e-07 4417 4306 82069384.74161 4418 4306 -3.75509262085e-06 4419 4306 -4861111.112713 4420 4306 -41704377.77507 4421 4306 34687499.9943 4307 4307 582912992.1231 4308 4307 -7.271766662598e-06 4309 4307 1.877546310425e-06 4310 4307 52395662.19267 4392 4307 21679861.11823 4393 4307 -17343750.0057 4394 4307 -36432062.04359 4395 4307 86719444.4302 4396 4307 3.427267074585e-07 4397 4307 -99061955.12464 4398 4307 21679861.11823 4399 4307 17343750.0057 4400 4307 -36432062.04359 4413 4307 4335972.223649 4414 4307 -34687499.9943 4415 4307 -36405498.74736 4416 4307 17343888.88605 4417 4307 -3.576278686523e-06 4418 4307 -52289409.00778 4419 4307 4335972.22365 4420 4307 34687499.9943 4421 4307 -36405498.74735 4308 4308 741974947.0469 4309 4308 5.006790161133e-06 4310 4308 -2.908706665039e-05 4311 4308 92161150.94322 4312 4308 19444444.44125 4313 4308 -7.271766662598e-06 4395 4308 -46373434.23613 4396 4308 24305555.56354 4397 4308 21679861.11823 4398 4308 -138827443.8752 4399 4308 2.682209014893e-07 4400 4308 86719444.4302 4401 4308 -46373434.23614 4402 4308 -24305555.56354 4403 4308 21679861.11823 4416 4308 4476132.383914 4417 4308 -4861111.112702 4418 4308 -4335972.223643 4419 4308 111237115.4367 4420 4308 -8.344650268555e-07 4421 4308 -17343888.88603 4422 4308 4476132.383917 4423 4308 4861111.1127 4424 4308 -4335972.223642 4309 4309 625304024.3239 4310 4309 6.198883056641e-06 4311 4309 -19444444.44125 4312 4309 -92560889.60172 4313 4309 2.32458114624e-06 4395 4309 24305555.56354 4396 4309 -39081501.55876 4397 4309 -17343750.00569 4398 4309 -2.294778823853e-06 4399 4309 -31882558.21685 4400 4309 2.682209014893e-07 4401 4309 -24305555.56354 4402 4309 -39081501.55876 4403 4309 17343750.0057 4416 4309 4861111.112712 4417 4309 -41704377.77507 4418 4309 -34687499.9943 4419 4309 -7.152557373047e-07 4420 4309 82069384.74161 4421 4309 -3.75509262085e-06 4422 4309 -4861111.112713 4423 4309 -41704377.77507 4424 4309 34687499.9943 4310 4310 582912992.1231 4311 4310 -7.271766662598e-06 4312 4310 1.877546310425e-06 4313 4310 52395662.19267 4395 4310 21679861.11823 4396 4310 -17343750.0057 4397 4310 -36432062.04359 4398 4310 86719444.4302 4399 4310 3.427267074585e-07 4400 4310 -99061955.12464 4401 4310 21679861.11823 4402 4310 17343750.0057 4403 4310 -36432062.04359 4416 4310 4335972.223649 4417 4310 -34687499.9943 4418 4310 -36405498.74736 4419 4310 17343888.88605 4420 4310 -3.576278686523e-06 4421 4310 -52289409.00778 4422 4310 4335972.22365 4423 4310 34687499.9943 4424 4310 -36405498.74735 4311 4311 741974947.0469 4312 4311 5.006790161133e-06 4313 4311 -2.908706665039e-05 4314 4311 92161150.94322 4315 4311 19444444.44125 4316 4311 -7.271766662598e-06 4398 4311 -46373434.23613 4399 4311 24305555.56354 4400 4311 21679861.11823 4401 4311 -138827443.8752 4402 4311 2.682209014893e-07 4403 4311 86719444.4302 4404 4311 -46373434.23614 4405 4311 -24305555.56354 4406 4311 21679861.11823 4419 4311 4476132.383914 4420 4311 -4861111.112702 4421 4311 -4335972.223643 4422 4311 111237115.4367 4423 4311 -8.344650268555e-07 4424 4311 -17343888.88603 4425 4311 4476132.383917 4426 4311 4861111.1127 4427 4311 -4335972.223642 4312 4312 625304024.3239 4313 4312 6.198883056641e-06 4314 4312 -19444444.44125 4315 4312 -92560889.60172 4316 4312 2.32458114624e-06 4398 4312 24305555.56354 4399 4312 -39081501.55876 4400 4312 -17343750.00569 4401 4312 -2.294778823853e-06 4402 4312 -31882558.21685 4403 4312 2.682209014893e-07 4404 4312 -24305555.56354 4405 4312 -39081501.55876 4406 4312 17343750.0057 4419 4312 4861111.112712 4420 4312 -41704377.77507 4421 4312 -34687499.9943 4422 4312 -7.152557373047e-07 4423 4312 82069384.74161 4424 4312 -3.75509262085e-06 4425 4312 -4861111.112713 4426 4312 -41704377.77507 4427 4312 34687499.9943 4313 4313 582912992.1231 4314 4313 -7.271766662598e-06 4315 4313 1.877546310425e-06 4316 4313 52395662.19267 4398 4313 21679861.11823 4399 4313 -17343750.0057 4400 4313 -36432062.04359 4401 4313 86719444.4302 4402 4313 3.427267074585e-07 4403 4313 -99061955.12464 4404 4313 21679861.11823 4405 4313 17343750.0057 4406 4313 -36432062.04359 4419 4313 4335972.223649 4420 4313 -34687499.9943 4421 4313 -36405498.74736 4422 4313 17343888.88605 4423 4313 -3.576278686523e-06 4424 4313 -52289409.00778 4425 4313 4335972.22365 4426 4313 34687499.9943 4427 4313 -36405498.74735 4314 4314 741974947.0469 4315 4314 5.006790161133e-06 4316 4314 -2.908706665039e-05 4317 4314 92161150.94322 4318 4314 19444444.44125 4319 4314 -7.271766662598e-06 4401 4314 -46373434.23613 4402 4314 24305555.56354 4403 4314 21679861.11823 4404 4314 -138827443.8752 4405 4314 2.682209014893e-07 4406 4314 86719444.4302 4407 4314 -46373434.23614 4408 4314 -24305555.56354 4409 4314 21679861.11823 4422 4314 4476132.383914 4423 4314 -4861111.112702 4424 4314 -4335972.223643 4425 4314 111237115.4367 4426 4314 -8.344650268555e-07 4427 4314 -17343888.88603 4428 4314 4476132.383917 4429 4314 4861111.1127 4430 4314 -4335972.223642 4315 4315 625304024.3239 4316 4315 6.198883056641e-06 4317 4315 -19444444.44125 4318 4315 -92560889.60172 4319 4315 2.32458114624e-06 4401 4315 24305555.56354 4402 4315 -39081501.55876 4403 4315 -17343750.00569 4404 4315 -2.294778823853e-06 4405 4315 -31882558.21685 4406 4315 2.682209014893e-07 4407 4315 -24305555.56354 4408 4315 -39081501.55876 4409 4315 17343750.0057 4422 4315 4861111.112712 4423 4315 -41704377.77507 4424 4315 -34687499.9943 4425 4315 -7.152557373047e-07 4426 4315 82069384.74161 4427 4315 -3.75509262085e-06 4428 4315 -4861111.112713 4429 4315 -41704377.77507 4430 4315 34687499.9943 4316 4316 582912992.1231 4317 4316 -7.271766662598e-06 4318 4316 1.877546310425e-06 4319 4316 52395662.19267 4401 4316 21679861.11823 4402 4316 -17343750.0057 4403 4316 -36432062.04359 4404 4316 86719444.4302 4405 4316 3.427267074585e-07 4406 4316 -99061955.12464 4407 4316 21679861.11823 4408 4316 17343750.0057 4409 4316 -36432062.04359 4422 4316 4335972.223649 4423 4316 -34687499.9943 4424 4316 -36405498.74736 4425 4316 17343888.88605 4426 4316 -3.576278686523e-06 4427 4316 -52289409.00778 4428 4316 4335972.22365 4429 4316 34687499.9943 4430 4316 -36405498.74735 4317 4317 743972693.3092 4318 4317 15895.84579444 4319 4317 -1.430511474609e-05 4320 4317 96103889.57229 4321 4317 23223356.21638 4322 4317 9.536743164063e-07 4404 4317 -46373434.23613 4405 4317 24305555.56354 4406 4317 21679861.11823 4407 4317 -140996480.167 4408 4317 -952893.2695191 4409 4317 87564583.31904 4410 4317 -45870736.57862 4411 4317 -24301364.19971 4412 4317 21679166.67378 4425 4317 4476132.383914 4426 4317 -4861111.112702 4427 4317 -4335972.223643 4428 4317 111737658.2526 4429 4317 3973.961452007 4430 4317 -17343611.10825 4431 4317 5643546.059508 4432 4317 5805839.056957 4433 4317 -5182361.11248 4318 4318 624700330.4184 4319 4318 1.120567321777e-05 4320 4318 -15665532.66612 4321 4318 -87045539.95468 4322 4318 1.788139343262e-07 4404 4318 24305555.56354 4405 4318 -39081501.55876 4406 4318 -17343750.00569 4407 4318 -952893.2695192 4408 4318 -33140775.69075 4409 4318 677083.3332889 4410 4318 -24301364.19971 4411 4318 -39232415.43151 4412 4318 17343750.00569 4425 4318 4861111.112712 4426 4318 -41704377.77507 4427 4318 -34687499.9943 4428 4318 3973.961451173 4429 4318 81919567.51518 4430 4318 -3.188848495483e-06 4431 4318 -3916383.168459 4432 4318 -40143811.34479 4433 4318 34010416.66101 4319 4319 583290059.4325 4320 4319 5.960464477539e-07 4322 4319 54461159.75298 4404 4319 21679861.11823 4405 4319 -17343750.0057 4406 4319 -36432062.04359 4407 4319 87564583.31887 4408 4319 677083.3331555 4409 4319 -100252145.5455 4410 4319 21679166.67378 4411 4319 17343750.00569 4412 4319 -36335759.26895 4425 4319 4335972.223649 4426 4319 -34687499.9943 4427 4319 -36405498.74736 4428 4319 17343611.10827 4429 4319 -3.039836883545e-06 4430 4319 -52192192.18036 4431 4319 3489305.5572 4432 4319 34010416.66114 4433 4319 -35404513.64279 4320 4320 745987487.9303 4321 4320 -2453991.97904 4322 4320 -3.814697265625e-06 4323 4320 -141080087.6865 4324 4320 -95899021.31302 4325 4320 -2.71201133728e-06 4326 4320 92610986.19901 4327 4320 22063836.70035 4328 4320 -2.384185791016e-07 4407 4320 -48879322.66665 4408 4320 24272689.58238 4409 4320 22525694.45184 4410 4320 -141002035.2672 4411 4320 -1284012.256587 4412 4320 85676388.87482 4428 4320 5643546.059495 4429 4320 -3916383.16846 4430 4320 -3489305.5572 4431 4320 115620942.6217 4432 4320 -613497.9950675 4433 4320 -17135277.77496 4434 4320 -43801307.6603 4435 4320 -23974755.34007 4436 4320 20312500.00667 4437 4320 5916032.26988 4438 4320 5515959.177805 4439 4320 -5078333.334502 4321 4321 616411761.6305 4322 4321 1.382827758789e-05 4323 4321 -95899021.31302 4324 4321 -117437349.9808 4325 4321 -7.450580596924e-07 4326 4321 -16825052.18215 4327 4321 -92728025.51489 4328 4321 1.341104507446e-06 4407 4321 24272689.58238 4408 4321 -38326906.89253 4409 4321 -16666666.67214 4410 4321 -1284012.256589 4411 4321 -32949093.52409 4412 4321 677083.3332888 4428 4321 5805839.056958 4429 4321 -40143811.34482 4430 4321 -34010416.66115 4431 4321 -613497.9950655 4432 4321 83227011.03075 4433 4321 -3.36766242981e-06 4434 4321 -23974755.34007 4435 4321 -37890623.23096 4436 4321 16666666.67214 4437 4321 -4206263.047611 4438 4321 -40418720.68142 4439 4321 33333333.32785 4322 4322 572020605.8755 4323 4322 -3.069639205933e-06 4324 4322 -8.642673492432e-07 4325 4322 -46375866.82272 4326 4322 -5.960464477539e-07 4327 4322 1.192092895508e-06 4328 4322 48718383.22464 4407 4322 22525694.45184 4408 4322 -16666666.67214 4409 4322 -36909325.87325 4410 4322 85676388.87482 4411 4322 677083.3331554 4412 4322 -97565514.93121 4428 4322 5182361.112481 4429 4322 -34010416.66102 4430 4322 -35404513.64282 4431 4322 17135277.77496 4432 4322 -3.308057785034e-06 4433 4322 -45997327.00151 4434 4322 20312500.00667 4435 4322 16666666.67214 4436 4322 -34344061.96816 4437 4322 3385277.779222 4438 4322 33333333.32785 4439 4322 -33784975.63126 4323 4323 361120236.1713 4324 4323 94548810.89502 4325 4323 4.291534423828e-06 4326 4323 -203961436.0495 4327 4323 -20767645.33449 4328 4323 -2.741813659668e-06 4410 4323 4511607.610493 4411 4323 5529463.940847 4412 4323 4909027.779058 4431 4323 -43801307.6603 4432 4323 -23974755.34007 4433 4323 -20312500.00667 4434 4323 56503201.94985 4435 4323 23637202.73541 4436 4323 8124999.998668 4437 4323 -68052930.47169 4438 4323 -5191911.336182 4439 4323 -41471527.77105 4324 4324 308313282.913 4325 4324 7.510185241699e-06 4326 4324 18121243.54802 4327 4324 9374992.872532 4328 4324 3.516674041748e-06 4410 4324 -4192758.28457 4411 4324 -41531445.75455 4412 4324 -33333333.32786 4431 4324 -23974755.34007 4432 4324 -37890623.23097 4433 4324 -16666666.67214 4434 4324 23637202.7354 4435 4324 43301463.62875 4436 4324 6666666.665574 4437 4324 4530310.889235 4438 4324 -14718823.21488 4439 4324 3333333.334428 4325 4325 278103282.9517 4326 4325 -1.072883605957e-06 4327 4325 3.635883331299e-06 4328 4325 -4811252.171662 4410 4325 -3215972.223778 4411 4325 -33333333.32786 4412 4325 -33978945.76051 4431 4325 -20312500.00667 4432 4325 -16666666.67214 4433 4325 -34344061.96817 4434 4325 -8124999.998663 4435 4325 -6666666.665569 4436 4325 -20545798.26109 4437 4325 -41471527.77088 4438 4325 -3333333.334428 4439 4325 -46703003.53464 4326 4326 371304389.3859 4327 4326 -99841614.46535 4328 4326 -3.337860107422e-06 4410 4326 -47751770.62457 4411 4326 24636355.78702 4412 4326 21159027.78473 4431 4326 5916032.269869 4432 4326 -4206263.047611 4433 4326 -3385277.779222 4434 4326 -68052930.47169 4435 4326 4530310.88924 4436 4326 41471527.77088 4437 4326 58352668.82663 4438 4326 -24960403.62864 4439 4326 -8463611.109723 4327 4327 309788077.0662 4328 4327 6.914138793945e-06 4410 4327 24636355.78702 4411 4327 -39372046.84257 4412 4327 -16666666.67214 4431 4327 5515959.177806 4432 4327 -40418720.68145 4433 4327 -33333333.32786 4434 4327 -5191911.336178 4435 4327 -14718823.21489 4436 4327 3333333.334428 4437 4327 -24960403.62864 4438 4327 42973590.73913 4439 4327 6666666.665569 4328 4328 283253096.8787 4410 4328 21159027.78473 4411 4328 -16666666.67214 4412 4328 -35825485.57977 4431 4328 5078333.334503 4432 4328 -33333333.32786 4433 4328 -33784975.63128 4434 4328 41471527.77105 4435 4328 -3333333.334428 4436 4328 -46703003.53464 4437 4328 8463611.10972 4438 4328 -6666666.665573 4439 4328 -21115868.58701 4329 4329 927468678.158 4330 4329 97222222.20623 4331 4329 -8.106231689453e-06 4332 4329 -573726109.9308 4333 4329 -97222221.42845 4334 4329 8.940696716309e-07 4335 4329 18564155.00999 4336 4329 77777776.9872 4337 4329 2.861022949219e-06 4440 4329 139046393.5639 4441 4329 24305555.56354 4442 4329 17343888.84952 4443 4329 -175918799.4896 4444 4329 -24305555.36909 4445 4329 -86719444.24762 4446 4329 -9282077.505002 4447 4329 19444444.25638 4448 4329 -17343888.52033 4330 4330 781630025.6149 4331 4330 8.412431954121e-06 4332 4330 -97222221.03956 4333 4330 -116778839.2437 4334 4330 5.602836608887e-06 4335 4330 116666665.4808 4336 4330 18564155.00998 4337 4330 5.960464477539e-07 4440 4330 24305555.56354 4441 4330 102586730.4102 4442 4330 13874999.85143 4443 4330 -24305555.27187 4444 4330 -61681981.76159 4445 4330 -17343749.90781 4446 4330 29166666.38457 4447 4330 -9282077.504995 4448 4330 20812499.90894 4331 4331 728641235.3813 4332 4331 4.172325134277e-07 4333 4331 4.887580871582e-06 4334 4331 -96436338.25295 4335 4331 2.503395080566e-06 4336 4331 1.251697540283e-06 4337 4331 49504413.35998 4440 4331 -17343888.84952 4441 4331 -13874999.85144 4442 4331 -65361760.6378 4443 4331 -86719444.24762 4444 4331 -17343749.94044 4445 4331 -110741809.7386 4446 4331 -26015832.7805 4447 4331 13874999.9393 4448 4331 -24752206.67999 4332 4332 1632315315.374 4333 4332 97222220.26178 4334 4332 -4.172325134277e-05 4335 4332 17392720.97666 4336 4332 -97222221.42845 4337 4332 -2.145767211914e-06 4338 4332 -406796532.3944 4339 4332 -2.801418304443e-06 4340 4332 -1.233816146851e-05 4341 4332 -148365426.1266 4342 4332 97222222.20624 4343 4332 -3.308057785034e-06 4440 4332 -175918799.4897 4441 4332 -24305555.27186 4442 4332 86719444.24762 4443 4332 268847663.9159 4444 4332 24305555.07742 4445 4332 0.03653132915497 4446 4332 -28139091.37671 4447 4332 -24305555.36909 4448 4332 21679860.74398 4449 4332 -138827443.8751 4450 4332 -5.066394805908e-07 4451 4332 -86719444.43019 4452 4332 -46373434.23611 4453 4332 24305555.56353 4454 4332 -21679861.11823 4333 4333 1369805740.108 4334 4333 -2.145767211914e-06 4335 4333 -97222221.03956 4336 4333 -322883627.8625 4337 4333 4.798173904419e-06 4338 4333 -3.09944152832e-06 4339 4333 20983010.02827 4340 4333 -4.768371582031e-07 4341 4333 97222222.20624 4342 4333 -119197695.4315 4343 4333 -7.450580596924e-08 4440 4333 -24305555.36908 4441 4333 -61681981.7616 4442 4333 17343749.94043 4443 4333 24305555.07742 4444 4333 203220270.0671 4445 4333 0.02920919656754 4446 4333 -24305555.27186 4447 4333 -113208178.6284 4448 4333 69374999.6084 4449 4333 -8.344650268555e-07 4450 4333 -31882558.21681 4451 4333 -3.278255462646e-07 4452 4333 24305555.56353 4453 4333 -39081501.55875 4454 4333 17343750.00569 4334 4334 1212545401.289 4335 4334 -1.788139343262e-06 4336 4334 3.75509262085e-06 4337 4334 8567490.576108 4338 4334 -1.20997428894e-05 4339 4334 -4.768371582031e-07 4340 4334 -212506.0825927 4341 4334 -3.278255462646e-06 4342 4334 -2.086162567139e-07 4343 4334 -46719419.49861 4440 4334 86719444.24762 4441 4334 17343749.9078 4442 4334 -110741809.7386 4443 4334 -0.03649973869324 4444 4334 -0.02921465039253 4445 4334 -68146756.53808 4446 4334 21679860.55685 4447 4334 69374999.49133 4448 4334 -84490851.68298 4449 4334 -86719444.43019 4450 4334 -2.682209014893e-07 4451 4334 -99061955.12461 4452 4334 -21679861.11823 4453 4334 17343750.00569 4454 4334 -36432062.04358 4335 4335 927468678.158 4336 4335 97222222.20623 4337 4335 -8.106231689453e-06 4338 4335 -148365426.1266 4339 4335 -97222222.20624 4340 4335 -3.039836883545e-06 4341 4335 -573726109.9308 4342 4335 -97222221.42845 4343 4335 8.940696716309e-07 4344 4335 18564155.00999 4345 4335 77777776.9872 4346 4335 2.861022949219e-06 4440 4335 -9282077.50499 4441 4335 29166666.38457 4442 4335 26015832.78049 4443 4335 -28139091.37673 4444 4335 -24305555.27187 4445 4335 -21679860.55685 4446 4335 139046393.5639 4447 4335 24305555.56354 4448 4335 17343888.84952 4449 4335 -46373434.23611 4450 4335 -24305555.56353 4451 4335 -21679861.11823 4452 4335 -175918799.4896 4453 4335 -24305555.36909 4454 4335 -86719444.24762 4455 4335 -9282077.505002 4456 4335 19444444.25638 4457 4335 -17343888.52033 4336 4336 781630025.6149 4337 4336 8.412431954121e-06 4338 4336 -97222222.20624 4339 4336 -119197695.4315 4340 4336 2.831220626831e-07 4341 4336 -97222221.03956 4342 4336 -116778839.2437 4343 4336 5.602836608887e-06 4344 4336 116666665.4808 4345 4336 18564155.00998 4346 4336 5.960464477539e-07 4440 4336 19444444.25638 4441 4336 -9282077.505 4442 4336 -13874999.9393 4443 4336 -24305555.36909 4444 4336 -113208178.6284 4445 4336 -69374999.49133 4446 4336 24305555.56354 4447 4336 102586730.4102 4448 4336 13874999.85143 4449 4336 -24305555.56353 4450 4336 -39081501.55875 4451 4336 -17343750.0057 4452 4336 -24305555.27187 4453 4336 -61681981.76159 4454 4336 -17343749.90781 4455 4336 29166666.38457 4456 4336 -9282077.504995 4457 4336 20812499.90894 4337 4337 728641235.3813 4338 4337 -2.890825271606e-06 4339 4337 3.8743019104e-07 4340 4337 -46719419.49861 4341 4337 4.172325134277e-07 4342 4337 4.887580871582e-06 4343 4337 -96436338.25295 4344 4337 2.503395080566e-06 4345 4337 1.251697540283e-06 4346 4337 49504413.35998 4440 4337 17343888.52033 4441 4337 -20812499.90895 4442 4337 -24752206.67999 4443 4337 -21679860.74398 4444 4337 -69374999.6084 4445 4337 -84490851.68299 4446 4337 -17343888.84952 4447 4337 -13874999.85144 4448 4337 -65361760.6378 4449 4337 -21679861.11823 4450 4337 -17343750.0057 4451 4337 -36432062.04358 4452 4337 -86719444.24762 4453 4337 -17343749.94044 4454 4337 -110741809.7386 4455 4337 -26015832.7805 4456 4337 13874999.9393 4457 4337 -24752206.67999 4338 4338 1483949894.094 4339 4338 7.867813110352e-06 4340 4338 -5.507469177246e-05 4341 4338 184322301.8864 4342 4338 -2.622604370117e-06 4343 4338 -1.358985900879e-05 4347 4338 -406796532.3944 4348 4338 -2.801418304443e-06 4349 4338 -1.233816146851e-05 4350 4338 -148365426.1266 4351 4338 97222222.20624 4352 4338 -3.308057785034e-06 4443 4338 -138827443.8752 4444 4338 2.682209014893e-07 4445 4338 86719444.4302 4446 4338 -46373434.23614 4447 4338 -24305555.56354 4448 4338 21679861.11823 4449 4338 222474230.8735 4450 4338 3.933906555176e-06 4451 4338 2.622604370117e-05 4452 4338 8952264.76783 4453 4338 -1.302361488342e-05 4454 4338 6.914138793945e-06 4458 4338 -138827443.8751 4459 4338 -5.066394805908e-07 4460 4338 -86719444.43019 4461 4338 -46373434.23611 4462 4338 24305555.56353 4463 4338 -21679861.11823 4339 4339 1250608048.648 4340 4339 -1.192092895508e-06 4341 4339 -3.159046173096e-06 4342 4339 -185121779.2034 4343 4339 8.046627044678e-07 4347 4339 -3.09944152832e-06 4348 4339 20983010.02827 4349 4339 -4.768371582031e-07 4350 4339 97222222.20624 4351 4339 -119197695.4315 4352 4339 -7.450580596924e-08 4443 4339 -2.294778823853e-06 4444 4339 -31882558.21685 4445 4339 2.682209014893e-07 4446 4339 -24305555.56354 4447 4339 -39081501.55876 4448 4339 17343750.0057 4449 4339 4.410743713379e-06 4450 4339 164138769.4832 4451 4339 -1.192092895508e-07 4452 4339 -1.156330108643e-05 4453 4339 -83408755.55014 4454 4339 69374999.9886 4458 4339 -8.344650268555e-07 4459 4339 -31882558.21681 4460 4339 -3.278255462646e-07 4461 4339 24305555.56353 4462 4339 -39081501.55875 4463 4339 17343750.00569 4340 4340 1165825984.246 4341 4340 -1.382827758789e-05 4342 4340 1.788139343262e-07 4343 4340 104791324.3853 4347 4340 -1.20997428894e-05 4348 4340 -4.768371582031e-07 4349 4340 -212506.0825927 4350 4340 -3.278255462646e-06 4351 4340 -2.086162567139e-07 4352 4340 -46719419.49861 4443 4340 86719444.4302 4444 4340 3.427267074585e-07 4445 4340 -99061955.12464 4446 4340 21679861.11823 4447 4340 17343750.0057 4448 4340 -36432062.04359 4449 4340 2.598762512207e-05 4450 4340 5.960464477539e-08 4451 4340 -104578818.0156 4452 4340 6.973743438721e-06 4453 4340 69374999.9886 4454 4340 -72810997.49471 4458 4340 -86719444.43019 4459 4340 -2.682209014893e-07 4460 4340 -99061955.12461 4461 4340 -21679861.11823 4462 4340 17343750.00569 4463 4340 -36432062.04358 4341 4341 1632315315.374 4342 4341 97222220.26178 4343 4341 -4.172325134277e-05 4344 4341 17392720.97666 4345 4341 -97222221.42845 4346 4341 -2.145767211914e-06 4347 4341 -148365426.1266 4348 4341 -97222222.20624 4349 4341 -3.039836883545e-06 4350 4341 -406796532.3944 4351 4341 -2.801418304443e-06 4352 4341 -1.233816146851e-05 4353 4341 -148365426.1266 4354 4341 97222222.20624 4355 4341 -3.308057785034e-06 4443 4341 -46373434.23613 4444 4341 24305555.56354 4445 4341 21679861.11823 4446 4341 -175918799.4897 4447 4341 -24305555.27186 4448 4341 86719444.24762 4449 4341 8952264.76783 4450 4341 9.298324584961e-06 4451 4341 6.228685379028e-06 4452 4341 268847663.9159 4453 4341 24305555.07742 4454 4341 0.03653132915497 4455 4341 -28139091.37671 4456 4341 -24305555.36909 4457 4341 21679860.74398 4458 4341 -46373434.23611 4459 4341 -24305555.56353 4460 4341 -21679861.11823 4461 4341 -138827443.8751 4462 4341 -5.066394805908e-07 4463 4341 -86719444.43019 4464 4341 -46373434.23611 4465 4341 24305555.56353 4466 4341 -21679861.11823 4342 4342 1369805740.108 4343 4342 -2.145767211914e-06 4344 4342 -97222221.03956 4345 4342 -322883627.8625 4346 4342 4.798173904419e-06 4347 4342 -97222222.20624 4348 4342 -119197695.4315 4349 4342 2.831220626831e-07 4350 4342 -3.09944152832e-06 4351 4342 20983010.02827 4352 4342 -4.768371582031e-07 4353 4342 97222222.20624 4354 4342 -119197695.4315 4355 4342 -7.450580596924e-08 4443 4342 24305555.56354 4444 4342 -39081501.55876 4445 4342 -17343750.00569 4446 4342 -24305555.36908 4447 4342 -61681981.7616 4448 4342 17343749.94043 4449 4342 1.069903373718e-05 4450 4342 -83408755.55014 4451 4342 -69374999.9886 4452 4342 24305555.07742 4453 4342 203220270.0671 4454 4342 0.02920919656754 4455 4342 -24305555.27186 4456 4342 -113208178.6284 4457 4342 69374999.6084 4458 4342 -24305555.56353 4459 4342 -39081501.55875 4460 4342 -17343750.0057 4461 4342 -8.344650268555e-07 4462 4342 -31882558.21681 4463 4342 -3.278255462646e-07 4464 4342 24305555.56353 4465 4342 -39081501.55875 4466 4342 17343750.00569 4343 4343 1212545401.289 4344 4343 -1.788139343262e-06 4345 4343 3.75509262085e-06 4346 4343 8567490.576108 4347 4343 -2.890825271606e-06 4348 4343 3.8743019104e-07 4349 4343 -46719419.49861 4350 4343 -1.20997428894e-05 4351 4343 -4.768371582031e-07 4352 4343 -212506.0825927 4353 4343 -3.278255462646e-06 4354 4343 -2.086162567139e-07 4355 4343 -46719419.49861 4443 4343 21679861.11823 4444 4343 -17343750.0057 4445 4343 -36432062.04359 4446 4343 86719444.24762 4447 4343 17343749.9078 4448 4343 -110741809.7386 4449 4343 6.169080734253e-06 4450 4343 -69374999.9886 4451 4343 -72810997.49471 4452 4343 -0.03649973869324 4453 4343 -0.02921465039253 4454 4343 -68146756.53808 4455 4343 21679860.55685 4456 4343 69374999.49133 4457 4343 -84490851.68298 4458 4343 -21679861.11823 4459 4343 -17343750.0057 4460 4343 -36432062.04358 4461 4343 -86719444.43019 4462 4343 -2.682209014893e-07 4463 4343 -99061955.12461 4464 4343 -21679861.11823 4465 4343 17343750.00569 4466 4343 -36432062.04358 4344 4344 927468678.158 4345 4344 97222222.20623 4346 4344 -8.106231689453e-06 4350 4344 -148365426.1266 4351 4344 -97222222.20624 4352 4344 -3.039836883545e-06 4353 4344 -573726109.9308 4354 4344 -97222221.42845 4355 4344 8.940696716309e-07 4356 4344 18564155.00999 4357 4344 77777776.9872 4358 4344 2.861022949219e-06 4446 4344 -9282077.50499 4447 4344 29166666.38457 4448 4344 26015832.78049 4452 4344 -28139091.37673 4453 4344 -24305555.27187 4454 4344 -21679860.55685 4455 4344 139046393.5639 4456 4344 24305555.56354 4457 4344 17343888.84952 4461 4344 -46373434.23611 4462 4344 -24305555.56353 4463 4344 -21679861.11823 4464 4344 -175918799.4896 4465 4344 -24305555.36909 4466 4344 -86719444.24762 4467 4344 -9282077.505002 4468 4344 19444444.25638 4469 4344 -17343888.52033 4345 4345 781630025.6149 4346 4345 8.412431954121e-06 4350 4345 -97222222.20624 4351 4345 -119197695.4315 4352 4345 2.831220626831e-07 4353 4345 -97222221.03956 4354 4345 -116778839.2437 4355 4345 5.602836608887e-06 4356 4345 116666665.4808 4357 4345 18564155.00998 4358 4345 5.960464477539e-07 4446 4345 19444444.25638 4447 4345 -9282077.505 4448 4345 -13874999.9393 4452 4345 -24305555.36909 4453 4345 -113208178.6284 4454 4345 -69374999.49133 4455 4345 24305555.56354 4456 4345 102586730.4102 4457 4345 13874999.85143 4461 4345 -24305555.56353 4462 4345 -39081501.55875 4463 4345 -17343750.0057 4464 4345 -24305555.27187 4465 4345 -61681981.76159 4466 4345 -17343749.90781 4467 4345 29166666.38457 4468 4345 -9282077.504995 4469 4345 20812499.90894 4346 4346 728641235.3813 4350 4346 -2.890825271606e-06 4351 4346 3.8743019104e-07 4352 4346 -46719419.49861 4353 4346 4.172325134277e-07 4354 4346 4.887580871582e-06 4355 4346 -96436338.25295 4356 4346 2.503395080566e-06 4357 4346 1.251697540283e-06 4358 4346 49504413.35998 4446 4346 17343888.52033 4447 4346 -20812499.90895 4448 4346 -24752206.67999 4452 4346 -21679860.74398 4453 4346 -69374999.6084 4454 4346 -84490851.68299 4455 4346 -17343888.84952 4456 4346 -13874999.85144 4457 4346 -65361760.6378 4461 4346 -21679861.11823 4462 4346 -17343750.0057 4463 4346 -36432062.04358 4464 4346 -86719444.24762 4465 4346 -17343749.94044 4466 4346 -110741809.7386 4467 4346 -26015832.7805 4468 4346 13874999.9393 4469 4346 -24752206.67999 4347 4347 1483949894.094 4348 4347 7.867813110352e-06 4349 4347 -5.507469177246e-05 4350 4347 184322301.8864 4351 4347 -2.622604370117e-06 4352 4347 -1.358985900879e-05 4359 4347 -406796532.3944 4360 4347 -2.801418304443e-06 4361 4347 -1.233816146851e-05 4362 4347 -148365426.1266 4363 4347 97222222.20624 4364 4347 -3.308057785034e-06 4449 4347 -138827443.8752 4450 4347 2.682209014893e-07 4451 4347 86719444.4302 4452 4347 -46373434.23614 4453 4347 -24305555.56354 4454 4347 21679861.11823 4458 4347 222474230.8735 4459 4347 3.933906555176e-06 4460 4347 2.622604370117e-05 4461 4347 8952264.76783 4462 4347 -1.302361488342e-05 4463 4347 6.914138793945e-06 4470 4347 -138827443.8751 4471 4347 -5.066394805908e-07 4472 4347 -86719444.43019 4473 4347 -46373434.23611 4474 4347 24305555.56353 4475 4347 -21679861.11823 4348 4348 1250608048.648 4349 4348 -1.192092895508e-06 4350 4348 -3.159046173096e-06 4351 4348 -185121779.2034 4352 4348 8.046627044678e-07 4359 4348 -3.09944152832e-06 4360 4348 20983010.02827 4361 4348 -4.768371582031e-07 4362 4348 97222222.20624 4363 4348 -119197695.4315 4364 4348 -7.450580596924e-08 4449 4348 -2.294778823853e-06 4450 4348 -31882558.21685 4451 4348 2.682209014893e-07 4452 4348 -24305555.56354 4453 4348 -39081501.55876 4454 4348 17343750.0057 4458 4348 4.410743713379e-06 4459 4348 164138769.4832 4460 4348 -1.192092895508e-07 4461 4348 -1.156330108643e-05 4462 4348 -83408755.55014 4463 4348 69374999.9886 4470 4348 -8.344650268555e-07 4471 4348 -31882558.21681 4472 4348 -3.278255462646e-07 4473 4348 24305555.56353 4474 4348 -39081501.55875 4475 4348 17343750.00569 4349 4349 1165825984.246 4350 4349 -1.382827758789e-05 4351 4349 1.788139343262e-07 4352 4349 104791324.3853 4359 4349 -1.20997428894e-05 4360 4349 -4.768371582031e-07 4361 4349 -212506.0825927 4362 4349 -3.278255462646e-06 4363 4349 -2.086162567139e-07 4364 4349 -46719419.49861 4449 4349 86719444.4302 4450 4349 3.427267074585e-07 4451 4349 -99061955.12464 4452 4349 21679861.11823 4453 4349 17343750.0057 4454 4349 -36432062.04359 4458 4349 2.598762512207e-05 4459 4349 5.960464477539e-08 4460 4349 -104578818.0156 4461 4349 6.973743438721e-06 4462 4349 69374999.9886 4463 4349 -72810997.49471 4470 4349 -86719444.43019 4471 4349 -2.682209014893e-07 4472 4349 -99061955.12461 4473 4349 -21679861.11823 4474 4349 17343750.00569 4475 4349 -36432062.04358 4350 4350 1483949894.094 4351 4350 7.867813110352e-06 4352 4350 -5.507469177246e-05 4353 4350 184322301.8864 4354 4350 -2.622604370117e-06 4355 4350 -1.358985900879e-05 4359 4350 -148365426.1266 4360 4350 -97222222.20624 4361 4350 -3.039836883545e-06 4362 4350 -406796532.3944 4363 4350 -2.801418304443e-06 4364 4350 -1.233816146851e-05 4365 4350 -148365426.1266 4366 4350 97222222.20624 4367 4350 -3.308057785034e-06 4449 4350 -46373434.23613 4450 4350 24305555.56354 4451 4350 21679861.11823 4452 4350 -138827443.8752 4453 4350 2.682209014893e-07 4454 4350 86719444.4302 4455 4350 -46373434.23614 4456 4350 -24305555.56354 4457 4350 21679861.11823 4458 4350 8952264.76783 4459 4350 9.298324584961e-06 4460 4350 6.228685379028e-06 4461 4350 222474230.8735 4462 4350 3.933906555176e-06 4463 4350 2.622604370117e-05 4464 4350 8952264.76783 4465 4350 -1.302361488342e-05 4466 4350 6.914138793945e-06 4470 4350 -46373434.23611 4471 4350 -24305555.56353 4472 4350 -21679861.11823 4473 4350 -138827443.8751 4474 4350 -5.066394805908e-07 4475 4350 -86719444.43019 4476 4350 -46373434.23611 4477 4350 24305555.56353 4478 4350 -21679861.11823 4351 4351 1250608048.648 4352 4351 -1.192092895508e-06 4353 4351 -3.159046173096e-06 4354 4351 -185121779.2034 4355 4351 8.046627044678e-07 4359 4351 -97222222.20624 4360 4351 -119197695.4315 4361 4351 2.831220626831e-07 4362 4351 -3.09944152832e-06 4363 4351 20983010.02827 4364 4351 -4.768371582031e-07 4365 4351 97222222.20624 4366 4351 -119197695.4315 4367 4351 -7.450580596924e-08 4449 4351 24305555.56354 4450 4351 -39081501.55876 4451 4351 -17343750.00569 4452 4351 -2.294778823853e-06 4453 4351 -31882558.21685 4454 4351 2.682209014893e-07 4455 4351 -24305555.56354 4456 4351 -39081501.55876 4457 4351 17343750.0057 4458 4351 1.069903373718e-05 4459 4351 -83408755.55014 4460 4351 -69374999.9886 4461 4351 4.410743713379e-06 4462 4351 164138769.4832 4463 4351 -1.192092895508e-07 4464 4351 -1.156330108643e-05 4465 4351 -83408755.55014 4466 4351 69374999.9886 4470 4351 -24305555.56353 4471 4351 -39081501.55875 4472 4351 -17343750.0057 4473 4351 -8.344650268555e-07 4474 4351 -31882558.21681 4475 4351 -3.278255462646e-07 4476 4351 24305555.56353 4477 4351 -39081501.55875 4478 4351 17343750.00569 4352 4352 1165825984.246 4353 4352 -1.382827758789e-05 4354 4352 1.788139343262e-07 4355 4352 104791324.3853 4359 4352 -2.890825271606e-06 4360 4352 3.8743019104e-07 4361 4352 -46719419.49861 4362 4352 -1.20997428894e-05 4363 4352 -4.768371582031e-07 4364 4352 -212506.0825927 4365 4352 -3.278255462646e-06 4366 4352 -2.086162567139e-07 4367 4352 -46719419.49861 4449 4352 21679861.11823 4450 4352 -17343750.0057 4451 4352 -36432062.04359 4452 4352 86719444.4302 4453 4352 3.427267074585e-07 4454 4352 -99061955.12464 4455 4352 21679861.11823 4456 4352 17343750.0057 4457 4352 -36432062.04359 4458 4352 6.169080734253e-06 4459 4352 -69374999.9886 4460 4352 -72810997.49471 4461 4352 2.598762512207e-05 4462 4352 5.960464477539e-08 4463 4352 -104578818.0156 4464 4352 6.973743438721e-06 4465 4352 69374999.9886 4466 4352 -72810997.49471 4470 4352 -21679861.11823 4471 4352 -17343750.0057 4472 4352 -36432062.04358 4473 4352 -86719444.43019 4474 4352 -2.682209014893e-07 4475 4352 -99061955.12461 4476 4352 -21679861.11823 4477 4352 17343750.00569 4478 4352 -36432062.04358 4353 4353 1632315315.374 4354 4353 97222220.26178 4355 4353 -4.172325134277e-05 4356 4353 17392720.97666 4357 4353 -97222221.42845 4358 4353 -2.145767211914e-06 4362 4353 -148365426.1266 4363 4353 -97222222.20624 4364 4353 -3.039836883545e-06 4365 4353 -406796532.3944 4366 4353 -2.801418304443e-06 4367 4353 -1.233816146851e-05 4368 4353 -148365426.1266 4369 4353 97222222.20624 4370 4353 -3.308057785034e-06 4452 4353 -46373434.23613 4453 4353 24305555.56354 4454 4353 21679861.11823 4455 4353 -175918799.4897 4456 4353 -24305555.27186 4457 4353 86719444.24762 4461 4353 8952264.76783 4462 4353 9.298324584961e-06 4463 4353 6.228685379028e-06 4464 4353 268847663.9159 4465 4353 24305555.07742 4466 4353 0.03653132915497 4467 4353 -28139091.37671 4468 4353 -24305555.36909 4469 4353 21679860.74398 4473 4353 -46373434.23611 4474 4353 -24305555.56353 4475 4353 -21679861.11823 4476 4353 -138827443.8751 4477 4353 -5.066394805908e-07 4478 4353 -86719444.43019 4479 4353 -46373434.23611 4480 4353 24305555.56353 4481 4353 -21679861.11823 4354 4354 1369805740.108 4355 4354 -2.145767211914e-06 4356 4354 -97222221.03956 4357 4354 -322883627.8625 4358 4354 4.798173904419e-06 4362 4354 -97222222.20624 4363 4354 -119197695.4315 4364 4354 2.831220626831e-07 4365 4354 -3.09944152832e-06 4366 4354 20983010.02827 4367 4354 -4.768371582031e-07 4368 4354 97222222.20624 4369 4354 -119197695.4315 4370 4354 -7.450580596924e-08 4452 4354 24305555.56354 4453 4354 -39081501.55876 4454 4354 -17343750.00569 4455 4354 -24305555.36908 4456 4354 -61681981.7616 4457 4354 17343749.94043 4461 4354 1.069903373718e-05 4462 4354 -83408755.55014 4463 4354 -69374999.9886 4464 4354 24305555.07742 4465 4354 203220270.0671 4466 4354 0.02920919656754 4467 4354 -24305555.27186 4468 4354 -113208178.6284 4469 4354 69374999.6084 4473 4354 -24305555.56353 4474 4354 -39081501.55875 4475 4354 -17343750.0057 4476 4354 -8.344650268555e-07 4477 4354 -31882558.21681 4478 4354 -3.278255462646e-07 4479 4354 24305555.56353 4480 4354 -39081501.55875 4481 4354 17343750.00569 4355 4355 1212545401.289 4356 4355 -1.788139343262e-06 4357 4355 3.75509262085e-06 4358 4355 8567490.576108 4362 4355 -2.890825271606e-06 4363 4355 3.8743019104e-07 4364 4355 -46719419.49861 4365 4355 -1.20997428894e-05 4366 4355 -4.768371582031e-07 4367 4355 -212506.0825927 4368 4355 -3.278255462646e-06 4369 4355 -2.086162567139e-07 4370 4355 -46719419.49861 4452 4355 21679861.11823 4453 4355 -17343750.0057 4454 4355 -36432062.04359 4455 4355 86719444.24762 4456 4355 17343749.9078 4457 4355 -110741809.7386 4461 4355 6.169080734253e-06 4462 4355 -69374999.9886 4463 4355 -72810997.49471 4464 4355 -0.03649973869324 4465 4355 -0.02921465039253 4466 4355 -68146756.53808 4467 4355 21679860.55685 4468 4355 69374999.49133 4469 4355 -84490851.68298 4473 4355 -21679861.11823 4474 4355 -17343750.0057 4475 4355 -36432062.04358 4476 4355 -86719444.43019 4477 4355 -2.682209014893e-07 4478 4355 -99061955.12461 4479 4355 -21679861.11823 4480 4355 17343750.00569 4481 4355 -36432062.04358 4356 4356 927468678.158 4357 4356 97222222.20623 4358 4356 -8.106231689453e-06 4365 4356 -148365426.1266 4366 4356 -97222222.20624 4367 4356 -3.039836883545e-06 4368 4356 -573726109.9308 4369 4356 -97222221.42845 4370 4356 8.940696716309e-07 4371 4356 18564155.00999 4372 4356 77777776.9872 4373 4356 2.861022949219e-06 4455 4356 -9282077.50499 4456 4356 29166666.38457 4457 4356 26015832.78049 4464 4356 -28139091.37673 4465 4356 -24305555.27187 4466 4356 -21679860.55685 4467 4356 139046393.5639 4468 4356 24305555.56354 4469 4356 17343888.84952 4476 4356 -46373434.23611 4477 4356 -24305555.56353 4478 4356 -21679861.11823 4479 4356 -175918799.4896 4480 4356 -24305555.36909 4481 4356 -86719444.24762 4482 4356 -9282077.505002 4483 4356 19444444.25638 4484 4356 -17343888.52033 4357 4357 781630025.6149 4358 4357 8.412431954121e-06 4365 4357 -97222222.20624 4366 4357 -119197695.4315 4367 4357 2.831220626831e-07 4368 4357 -97222221.03956 4369 4357 -116778839.2437 4370 4357 5.602836608887e-06 4371 4357 116666665.4808 4372 4357 18564155.00998 4373 4357 5.960464477539e-07 4455 4357 19444444.25638 4456 4357 -9282077.505 4457 4357 -13874999.9393 4464 4357 -24305555.36909 4465 4357 -113208178.6284 4466 4357 -69374999.49133 4467 4357 24305555.56354 4468 4357 102586730.4102 4469 4357 13874999.85143 4476 4357 -24305555.56353 4477 4357 -39081501.55875 4478 4357 -17343750.0057 4479 4357 -24305555.27187 4480 4357 -61681981.76159 4481 4357 -17343749.90781 4482 4357 29166666.38457 4483 4357 -9282077.504995 4484 4357 20812499.90894 4358 4358 728641235.3813 4365 4358 -2.890825271606e-06 4366 4358 3.8743019104e-07 4367 4358 -46719419.49861 4368 4358 4.172325134277e-07 4369 4358 4.887580871582e-06 4370 4358 -96436338.25295 4371 4358 2.503395080566e-06 4372 4358 1.251697540283e-06 4373 4358 49504413.35998 4455 4358 17343888.52033 4456 4358 -20812499.90895 4457 4358 -24752206.67999 4464 4358 -21679860.74398 4465 4358 -69374999.6084 4466 4358 -84490851.68299 4467 4358 -17343888.84952 4468 4358 -13874999.85144 4469 4358 -65361760.6378 4476 4358 -21679861.11823 4477 4358 -17343750.0057 4478 4358 -36432062.04358 4479 4358 -86719444.24762 4480 4358 -17343749.94044 4481 4358 -110741809.7386 4482 4358 -26015832.7805 4483 4358 13874999.9393 4484 4358 -24752206.67999 4359 4359 1483949894.094 4360 4359 7.867813110352e-06 4361 4359 -5.507469177246e-05 4362 4359 184322301.8864 4363 4359 -2.622604370117e-06 4364 4359 -1.358985900879e-05 4374 4359 -406796532.3944 4375 4359 -2.801418304443e-06 4376 4359 -1.233816146851e-05 4377 4359 -148365426.1266 4378 4359 97222222.20624 4379 4359 -3.308057785034e-06 4458 4359 -138827443.8752 4459 4359 2.682209014893e-07 4460 4359 86719444.4302 4461 4359 -46373434.23614 4462 4359 -24305555.56354 4463 4359 21679861.11823 4470 4359 222474230.8735 4471 4359 3.933906555176e-06 4472 4359 2.622604370117e-05 4473 4359 8952264.76783 4474 4359 -1.302361488342e-05 4475 4359 6.914138793945e-06 4485 4359 -138827443.8751 4486 4359 -5.066394805908e-07 4487 4359 -86719444.43019 4488 4359 -46373434.23611 4489 4359 24305555.56353 4490 4359 -21679861.11823 4360 4360 1250608048.648 4361 4360 -1.192092895508e-06 4362 4360 -3.159046173096e-06 4363 4360 -185121779.2034 4364 4360 8.046627044678e-07 4374 4360 -3.09944152832e-06 4375 4360 20983010.02827 4376 4360 -4.768371582031e-07 4377 4360 97222222.20624 4378 4360 -119197695.4315 4379 4360 -7.450580596924e-08 4458 4360 -2.294778823853e-06 4459 4360 -31882558.21685 4460 4360 2.682209014893e-07 4461 4360 -24305555.56354 4462 4360 -39081501.55876 4463 4360 17343750.0057 4470 4360 4.410743713379e-06 4471 4360 164138769.4832 4472 4360 -1.192092895508e-07 4473 4360 -1.156330108643e-05 4474 4360 -83408755.55014 4475 4360 69374999.9886 4485 4360 -8.344650268555e-07 4486 4360 -31882558.21681 4487 4360 -3.278255462646e-07 4488 4360 24305555.56353 4489 4360 -39081501.55875 4490 4360 17343750.00569 4361 4361 1165825984.246 4362 4361 -1.382827758789e-05 4363 4361 1.788139343262e-07 4364 4361 104791324.3853 4374 4361 -1.20997428894e-05 4375 4361 -4.768371582031e-07 4376 4361 -212506.0825927 4377 4361 -3.278255462646e-06 4378 4361 -2.086162567139e-07 4379 4361 -46719419.49861 4458 4361 86719444.4302 4459 4361 3.427267074585e-07 4460 4361 -99061955.12464 4461 4361 21679861.11823 4462 4361 17343750.0057 4463 4361 -36432062.04359 4470 4361 2.598762512207e-05 4471 4361 5.960464477539e-08 4472 4361 -104578818.0156 4473 4361 6.973743438721e-06 4474 4361 69374999.9886 4475 4361 -72810997.49471 4485 4361 -86719444.43019 4486 4361 -2.682209014893e-07 4487 4361 -99061955.12461 4488 4361 -21679861.11823 4489 4361 17343750.00569 4490 4361 -36432062.04358 4362 4362 1483949894.094 4363 4362 7.867813110352e-06 4364 4362 -5.507469177246e-05 4365 4362 184322301.8864 4366 4362 -2.622604370117e-06 4367 4362 -1.358985900879e-05 4374 4362 -148365426.1266 4375 4362 -97222222.20624 4376 4362 -3.039836883545e-06 4377 4362 -406796532.3944 4378 4362 -2.801418304443e-06 4379 4362 -1.233816146851e-05 4380 4362 -148365426.1266 4381 4362 97222222.20624 4382 4362 -3.308057785034e-06 4458 4362 -46373434.23613 4459 4362 24305555.56354 4460 4362 21679861.11823 4461 4362 -138827443.8752 4462 4362 2.682209014893e-07 4463 4362 86719444.4302 4464 4362 -46373434.23614 4465 4362 -24305555.56354 4466 4362 21679861.11823 4470 4362 8952264.76783 4471 4362 9.298324584961e-06 4472 4362 6.228685379028e-06 4473 4362 222474230.8735 4474 4362 3.933906555176e-06 4475 4362 2.622604370117e-05 4476 4362 8952264.76783 4477 4362 -1.302361488342e-05 4478 4362 6.914138793945e-06 4485 4362 -46373434.23611 4486 4362 -24305555.56353 4487 4362 -21679861.11823 4488 4362 -138827443.8751 4489 4362 -5.066394805908e-07 4490 4362 -86719444.43019 4491 4362 -46373434.23611 4492 4362 24305555.56353 4493 4362 -21679861.11823 4363 4363 1250608048.648 4364 4363 -1.192092895508e-06 4365 4363 -3.159046173096e-06 4366 4363 -185121779.2034 4367 4363 8.046627044678e-07 4374 4363 -97222222.20624 4375 4363 -119197695.4315 4376 4363 2.831220626831e-07 4377 4363 -3.09944152832e-06 4378 4363 20983010.02827 4379 4363 -4.768371582031e-07 4380 4363 97222222.20624 4381 4363 -119197695.4315 4382 4363 -7.450580596924e-08 4458 4363 24305555.56354 4459 4363 -39081501.55876 4460 4363 -17343750.00569 4461 4363 -2.294778823853e-06 4462 4363 -31882558.21685 4463 4363 2.682209014893e-07 4464 4363 -24305555.56354 4465 4363 -39081501.55876 4466 4363 17343750.0057 4470 4363 1.069903373718e-05 4471 4363 -83408755.55014 4472 4363 -69374999.9886 4473 4363 4.410743713379e-06 4474 4363 164138769.4832 4475 4363 -1.192092895508e-07 4476 4363 -1.156330108643e-05 4477 4363 -83408755.55014 4478 4363 69374999.9886 4485 4363 -24305555.56353 4486 4363 -39081501.55875 4487 4363 -17343750.0057 4488 4363 -8.344650268555e-07 4489 4363 -31882558.21681 4490 4363 -3.278255462646e-07 4491 4363 24305555.56353 4492 4363 -39081501.55875 4493 4363 17343750.00569 4364 4364 1165825984.246 4365 4364 -1.382827758789e-05 4366 4364 1.788139343262e-07 4367 4364 104791324.3853 4374 4364 -2.890825271606e-06 4375 4364 3.8743019104e-07 4376 4364 -46719419.49861 4377 4364 -1.20997428894e-05 4378 4364 -4.768371582031e-07 4379 4364 -212506.0825927 4380 4364 -3.278255462646e-06 4381 4364 -2.086162567139e-07 4382 4364 -46719419.49861 4458 4364 21679861.11823 4459 4364 -17343750.0057 4460 4364 -36432062.04359 4461 4364 86719444.4302 4462 4364 3.427267074585e-07 4463 4364 -99061955.12464 4464 4364 21679861.11823 4465 4364 17343750.0057 4466 4364 -36432062.04359 4470 4364 6.169080734253e-06 4471 4364 -69374999.9886 4472 4364 -72810997.49471 4473 4364 2.598762512207e-05 4474 4364 5.960464477539e-08 4475 4364 -104578818.0156 4476 4364 6.973743438721e-06 4477 4364 69374999.9886 4478 4364 -72810997.49471 4485 4364 -21679861.11823 4486 4364 -17343750.0057 4487 4364 -36432062.04358 4488 4364 -86719444.43019 4489 4364 -2.682209014893e-07 4490 4364 -99061955.12461 4491 4364 -21679861.11823 4492 4364 17343750.00569 4493 4364 -36432062.04358 4365 4365 1483949894.094 4366 4365 7.867813110352e-06 4367 4365 -5.507469177246e-05 4368 4365 184322301.8864 4369 4365 -2.622604370117e-06 4370 4365 -1.358985900879e-05 4377 4365 -148365426.1266 4378 4365 -97222222.20624 4379 4365 -3.039836883545e-06 4380 4365 -406796532.3944 4381 4365 -2.801418304443e-06 4382 4365 -1.233816146851e-05 4383 4365 -148365426.1266 4384 4365 97222222.20624 4385 4365 -3.308057785034e-06 4461 4365 -46373434.23613 4462 4365 24305555.56354 4463 4365 21679861.11823 4464 4365 -138827443.8752 4465 4365 2.682209014893e-07 4466 4365 86719444.4302 4467 4365 -46373434.23614 4468 4365 -24305555.56354 4469 4365 21679861.11823 4473 4365 8952264.76783 4474 4365 9.298324584961e-06 4475 4365 6.228685379028e-06 4476 4365 222474230.8735 4477 4365 3.933906555176e-06 4478 4365 2.622604370117e-05 4479 4365 8952264.76783 4480 4365 -1.302361488342e-05 4481 4365 6.914138793945e-06 4488 4365 -46373434.23611 4489 4365 -24305555.56353 4490 4365 -21679861.11823 4491 4365 -138827443.8751 4492 4365 -5.066394805908e-07 4493 4365 -86719444.43019 4494 4365 -46373434.23611 4495 4365 24305555.56353 4496 4365 -21679861.11823 4366 4366 1250608048.648 4367 4366 -1.192092895508e-06 4368 4366 -3.159046173096e-06 4369 4366 -185121779.2034 4370 4366 8.046627044678e-07 4377 4366 -97222222.20624 4378 4366 -119197695.4315 4379 4366 2.831220626831e-07 4380 4366 -3.09944152832e-06 4381 4366 20983010.02827 4382 4366 -4.768371582031e-07 4383 4366 97222222.20624 4384 4366 -119197695.4315 4385 4366 -7.450580596924e-08 4461 4366 24305555.56354 4462 4366 -39081501.55876 4463 4366 -17343750.00569 4464 4366 -2.294778823853e-06 4465 4366 -31882558.21685 4466 4366 2.682209014893e-07 4467 4366 -24305555.56354 4468 4366 -39081501.55876 4469 4366 17343750.0057 4473 4366 1.069903373718e-05 4474 4366 -83408755.55014 4475 4366 -69374999.9886 4476 4366 4.410743713379e-06 4477 4366 164138769.4832 4478 4366 -1.192092895508e-07 4479 4366 -1.156330108643e-05 4480 4366 -83408755.55014 4481 4366 69374999.9886 4488 4366 -24305555.56353 4489 4366 -39081501.55875 4490 4366 -17343750.0057 4491 4366 -8.344650268555e-07 4492 4366 -31882558.21681 4493 4366 -3.278255462646e-07 4494 4366 24305555.56353 4495 4366 -39081501.55875 4496 4366 17343750.00569 4367 4367 1165825984.246 4368 4367 -1.382827758789e-05 4369 4367 1.788139343262e-07 4370 4367 104791324.3853 4377 4367 -2.890825271606e-06 4378 4367 3.8743019104e-07 4379 4367 -46719419.49861 4380 4367 -1.20997428894e-05 4381 4367 -4.768371582031e-07 4382 4367 -212506.0825927 4383 4367 -3.278255462646e-06 4384 4367 -2.086162567139e-07 4385 4367 -46719419.49861 4461 4367 21679861.11823 4462 4367 -17343750.0057 4463 4367 -36432062.04359 4464 4367 86719444.4302 4465 4367 3.427267074585e-07 4466 4367 -99061955.12464 4467 4367 21679861.11823 4468 4367 17343750.0057 4469 4367 -36432062.04359 4473 4367 6.169080734253e-06 4474 4367 -69374999.9886 4475 4367 -72810997.49471 4476 4367 2.598762512207e-05 4477 4367 5.960464477539e-08 4478 4367 -104578818.0156 4479 4367 6.973743438721e-06 4480 4367 69374999.9886 4481 4367 -72810997.49471 4488 4367 -21679861.11823 4489 4367 -17343750.0057 4490 4367 -36432062.04358 4491 4367 -86719444.43019 4492 4367 -2.682209014893e-07 4493 4367 -99061955.12461 4494 4367 -21679861.11823 4495 4367 17343750.00569 4496 4367 -36432062.04358 4368 4368 1632315315.374 4369 4368 97222220.26178 4370 4368 -4.172325134277e-05 4371 4368 17392720.97666 4372 4368 -97222221.42845 4373 4368 -2.145767211914e-06 4380 4368 -148365426.1266 4381 4368 -97222222.20624 4382 4368 -3.039836883545e-06 4383 4368 -406796532.3944 4384 4368 -2.801418304443e-06 4385 4368 -1.233816146851e-05 4386 4368 -148365426.1266 4387 4368 97222222.20624 4388 4368 -3.308057785034e-06 4464 4368 -46373434.23613 4465 4368 24305555.56354 4466 4368 21679861.11823 4467 4368 -175918799.4897 4468 4368 -24305555.27186 4469 4368 86719444.24762 4476 4368 8952264.76783 4477 4368 9.298324584961e-06 4478 4368 6.228685379028e-06 4479 4368 268847663.9159 4480 4368 24305555.07742 4481 4368 0.03653132915497 4482 4368 -28139091.37671 4483 4368 -24305555.36909 4484 4368 21679860.74398 4491 4368 -46373434.23611 4492 4368 -24305555.56353 4493 4368 -21679861.11823 4494 4368 -138827443.8751 4495 4368 -5.066394805908e-07 4496 4368 -86719444.43019 4497 4368 -46373434.23611 4498 4368 24305555.56353 4499 4368 -21679861.11823 4369 4369 1369805740.108 4370 4369 -2.145767211914e-06 4371 4369 -97222221.03956 4372 4369 -322883627.8625 4373 4369 4.798173904419e-06 4380 4369 -97222222.20624 4381 4369 -119197695.4315 4382 4369 2.831220626831e-07 4383 4369 -3.09944152832e-06 4384 4369 20983010.02827 4385 4369 -4.768371582031e-07 4386 4369 97222222.20624 4387 4369 -119197695.4315 4388 4369 -7.450580596924e-08 4464 4369 24305555.56354 4465 4369 -39081501.55876 4466 4369 -17343750.00569 4467 4369 -24305555.36908 4468 4369 -61681981.7616 4469 4369 17343749.94043 4476 4369 1.069903373718e-05 4477 4369 -83408755.55014 4478 4369 -69374999.9886 4479 4369 24305555.07742 4480 4369 203220270.0671 4481 4369 0.02920919656754 4482 4369 -24305555.27186 4483 4369 -113208178.6284 4484 4369 69374999.6084 4491 4369 -24305555.56353 4492 4369 -39081501.55875 4493 4369 -17343750.0057 4494 4369 -8.344650268555e-07 4495 4369 -31882558.21681 4496 4369 -3.278255462646e-07 4497 4369 24305555.56353 4498 4369 -39081501.55875 4499 4369 17343750.00569 4370 4370 1212545401.289 4371 4370 -1.788139343262e-06 4372 4370 3.75509262085e-06 4373 4370 8567490.576108 4380 4370 -2.890825271606e-06 4381 4370 3.8743019104e-07 4382 4370 -46719419.49861 4383 4370 -1.20997428894e-05 4384 4370 -4.768371582031e-07 4385 4370 -212506.0825927 4386 4370 -3.278255462646e-06 4387 4370 -2.086162567139e-07 4388 4370 -46719419.49861 4464 4370 21679861.11823 4465 4370 -17343750.0057 4466 4370 -36432062.04359 4467 4370 86719444.24762 4468 4370 17343749.9078 4469 4370 -110741809.7386 4476 4370 6.169080734253e-06 4477 4370 -69374999.9886 4478 4370 -72810997.49471 4479 4370 -0.03649973869324 4480 4370 -0.02921465039253 4481 4370 -68146756.53808 4482 4370 21679860.55685 4483 4370 69374999.49133 4484 4370 -84490851.68298 4491 4370 -21679861.11823 4492 4370 -17343750.0057 4493 4370 -36432062.04358 4494 4370 -86719444.43019 4495 4370 -2.682209014893e-07 4496 4370 -99061955.12461 4497 4370 -21679861.11823 4498 4370 17343750.00569 4499 4370 -36432062.04358 4371 4371 927468678.158 4372 4371 97222222.20623 4373 4371 -8.106231689453e-06 4383 4371 -148365426.1266 4384 4371 -97222222.20624 4385 4371 -3.039836883545e-06 4386 4371 -573726109.9308 4387 4371 -97222221.42845 4388 4371 8.940696716309e-07 4389 4371 18564155.00999 4390 4371 77777776.9872 4391 4371 2.861022949219e-06 4467 4371 -9282077.50499 4468 4371 29166666.38457 4469 4371 26015832.78049 4479 4371 -28139091.37673 4480 4371 -24305555.27187 4481 4371 -21679860.55685 4482 4371 139046393.5639 4483 4371 24305555.56354 4484 4371 17343888.84952 4494 4371 -46373434.23611 4495 4371 -24305555.56353 4496 4371 -21679861.11823 4497 4371 -175918799.4896 4498 4371 -24305555.36909 4499 4371 -86719444.24762 4500 4371 -9282077.505002 4501 4371 19444444.25638 4502 4371 -17343888.52033 4372 4372 781630025.6149 4373 4372 8.412431954121e-06 4383 4372 -97222222.20624 4384 4372 -119197695.4315 4385 4372 2.831220626831e-07 4386 4372 -97222221.03956 4387 4372 -116778839.2437 4388 4372 5.602836608887e-06 4389 4372 116666665.4808 4390 4372 18564155.00998 4391 4372 5.960464477539e-07 4467 4372 19444444.25638 4468 4372 -9282077.505 4469 4372 -13874999.9393 4479 4372 -24305555.36909 4480 4372 -113208178.6284 4481 4372 -69374999.49133 4482 4372 24305555.56354 4483 4372 102586730.4102 4484 4372 13874999.85143 4494 4372 -24305555.56353 4495 4372 -39081501.55875 4496 4372 -17343750.0057 4497 4372 -24305555.27187 4498 4372 -61681981.76159 4499 4372 -17343749.90781 4500 4372 29166666.38457 4501 4372 -9282077.504995 4502 4372 20812499.90894 4373 4373 728641235.3813 4383 4373 -2.890825271606e-06 4384 4373 3.8743019104e-07 4385 4373 -46719419.49861 4386 4373 4.172325134277e-07 4387 4373 4.887580871582e-06 4388 4373 -96436338.25295 4389 4373 2.503395080566e-06 4390 4373 1.251697540283e-06 4391 4373 49504413.35998 4467 4373 17343888.52033 4468 4373 -20812499.90895 4469 4373 -24752206.67999 4479 4373 -21679860.74398 4480 4373 -69374999.6084 4481 4373 -84490851.68299 4482 4373 -17343888.84952 4483 4373 -13874999.85144 4484 4373 -65361760.6378 4494 4373 -21679861.11823 4495 4373 -17343750.0057 4496 4373 -36432062.04358 4497 4373 -86719444.24762 4498 4373 -17343749.94044 4499 4373 -110741809.7386 4500 4373 -26015832.7805 4501 4373 13874999.9393 4502 4373 -24752206.67999 4374 4374 1483949894.094 4375 4374 7.867813110352e-06 4376 4374 -5.507469177246e-05 4377 4374 184322301.8864 4378 4374 -2.622604370117e-06 4379 4374 -1.358985900879e-05 4392 4374 -406796532.3944 4393 4374 -2.801418304443e-06 4394 4374 -1.233816146851e-05 4395 4374 -148365426.1266 4396 4374 97222222.20624 4397 4374 -3.308057785034e-06 4470 4374 -138827443.8752 4471 4374 2.682209014893e-07 4472 4374 86719444.4302 4473 4374 -46373434.23614 4474 4374 -24305555.56354 4475 4374 21679861.11823 4485 4374 222474230.8735 4486 4374 3.933906555176e-06 4487 4374 2.622604370117e-05 4488 4374 8952264.76783 4489 4374 -1.302361488342e-05 4490 4374 6.914138793945e-06 4503 4374 -138827443.8751 4504 4374 -5.066394805908e-07 4505 4374 -86719444.43019 4506 4374 -46373434.23611 4507 4374 24305555.56353 4508 4374 -21679861.11823 4375 4375 1250608048.648 4376 4375 -1.192092895508e-06 4377 4375 -3.159046173096e-06 4378 4375 -185121779.2034 4379 4375 8.046627044678e-07 4392 4375 -3.09944152832e-06 4393 4375 20983010.02827 4394 4375 -4.768371582031e-07 4395 4375 97222222.20624 4396 4375 -119197695.4315 4397 4375 -7.450580596924e-08 4470 4375 -2.294778823853e-06 4471 4375 -31882558.21685 4472 4375 2.682209014893e-07 4473 4375 -24305555.56354 4474 4375 -39081501.55876 4475 4375 17343750.0057 4485 4375 4.410743713379e-06 4486 4375 164138769.4832 4487 4375 -1.192092895508e-07 4488 4375 -1.156330108643e-05 4489 4375 -83408755.55014 4490 4375 69374999.9886 4503 4375 -8.344650268555e-07 4504 4375 -31882558.21681 4505 4375 -3.278255462646e-07 4506 4375 24305555.56353 4507 4375 -39081501.55875 4508 4375 17343750.00569 4376 4376 1165825984.246 4377 4376 -1.382827758789e-05 4378 4376 1.788139343262e-07 4379 4376 104791324.3853 4392 4376 -1.20997428894e-05 4393 4376 -4.768371582031e-07 4394 4376 -212506.0825927 4395 4376 -3.278255462646e-06 4396 4376 -2.086162567139e-07 4397 4376 -46719419.49861 4470 4376 86719444.4302 4471 4376 3.427267074585e-07 4472 4376 -99061955.12464 4473 4376 21679861.11823 4474 4376 17343750.0057 4475 4376 -36432062.04359 4485 4376 2.598762512207e-05 4486 4376 5.960464477539e-08 4487 4376 -104578818.0156 4488 4376 6.973743438721e-06 4489 4376 69374999.9886 4490 4376 -72810997.49471 4503 4376 -86719444.43019 4504 4376 -2.682209014893e-07 4505 4376 -99061955.12461 4506 4376 -21679861.11823 4507 4376 17343750.00569 4508 4376 -36432062.04358 4377 4377 1483949894.094 4378 4377 7.867813110352e-06 4379 4377 -5.507469177246e-05 4380 4377 184322301.8864 4381 4377 -2.622604370117e-06 4382 4377 -1.358985900879e-05 4392 4377 -148365426.1266 4393 4377 -97222222.20624 4394 4377 -3.039836883545e-06 4395 4377 -406796532.3944 4396 4377 -2.801418304443e-06 4397 4377 -1.233816146851e-05 4398 4377 -148365426.1266 4399 4377 97222222.20624 4400 4377 -3.308057785034e-06 4470 4377 -46373434.23613 4471 4377 24305555.56354 4472 4377 21679861.11823 4473 4377 -138827443.8752 4474 4377 2.682209014893e-07 4475 4377 86719444.4302 4476 4377 -46373434.23614 4477 4377 -24305555.56354 4478 4377 21679861.11823 4485 4377 8952264.76783 4486 4377 9.298324584961e-06 4487 4377 6.228685379028e-06 4488 4377 222474230.8735 4489 4377 3.933906555176e-06 4490 4377 2.622604370117e-05 4491 4377 8952264.76783 4492 4377 -1.302361488342e-05 4493 4377 6.914138793945e-06 4503 4377 -46373434.23611 4504 4377 -24305555.56353 4505 4377 -21679861.11823 4506 4377 -138827443.8751 4507 4377 -5.066394805908e-07 4508 4377 -86719444.43019 4509 4377 -46373434.23611 4510 4377 24305555.56353 4511 4377 -21679861.11823 4378 4378 1250608048.648 4379 4378 -1.192092895508e-06 4380 4378 -3.159046173096e-06 4381 4378 -185121779.2034 4382 4378 8.046627044678e-07 4392 4378 -97222222.20624 4393 4378 -119197695.4315 4394 4378 2.831220626831e-07 4395 4378 -3.09944152832e-06 4396 4378 20983010.02827 4397 4378 -4.768371582031e-07 4398 4378 97222222.20624 4399 4378 -119197695.4315 4400 4378 -7.450580596924e-08 4470 4378 24305555.56354 4471 4378 -39081501.55876 4472 4378 -17343750.00569 4473 4378 -2.294778823853e-06 4474 4378 -31882558.21685 4475 4378 2.682209014893e-07 4476 4378 -24305555.56354 4477 4378 -39081501.55876 4478 4378 17343750.0057 4485 4378 1.069903373718e-05 4486 4378 -83408755.55014 4487 4378 -69374999.9886 4488 4378 4.410743713379e-06 4489 4378 164138769.4832 4490 4378 -1.192092895508e-07 4491 4378 -1.156330108643e-05 4492 4378 -83408755.55014 4493 4378 69374999.9886 4503 4378 -24305555.56353 4504 4378 -39081501.55875 4505 4378 -17343750.0057 4506 4378 -8.344650268555e-07 4507 4378 -31882558.21681 4508 4378 -3.278255462646e-07 4509 4378 24305555.56353 4510 4378 -39081501.55875 4511 4378 17343750.00569 4379 4379 1165825984.246 4380 4379 -1.382827758789e-05 4381 4379 1.788139343262e-07 4382 4379 104791324.3853 4392 4379 -2.890825271606e-06 4393 4379 3.8743019104e-07 4394 4379 -46719419.49861 4395 4379 -1.20997428894e-05 4396 4379 -4.768371582031e-07 4397 4379 -212506.0825927 4398 4379 -3.278255462646e-06 4399 4379 -2.086162567139e-07 4400 4379 -46719419.49861 4470 4379 21679861.11823 4471 4379 -17343750.0057 4472 4379 -36432062.04359 4473 4379 86719444.4302 4474 4379 3.427267074585e-07 4475 4379 -99061955.12464 4476 4379 21679861.11823 4477 4379 17343750.0057 4478 4379 -36432062.04359 4485 4379 6.169080734253e-06 4486 4379 -69374999.9886 4487 4379 -72810997.49471 4488 4379 2.598762512207e-05 4489 4379 5.960464477539e-08 4490 4379 -104578818.0156 4491 4379 6.973743438721e-06 4492 4379 69374999.9886 4493 4379 -72810997.49471 4503 4379 -21679861.11823 4504 4379 -17343750.0057 4505 4379 -36432062.04358 4506 4379 -86719444.43019 4507 4379 -2.682209014893e-07 4508 4379 -99061955.12461 4509 4379 -21679861.11823 4510 4379 17343750.00569 4511 4379 -36432062.04358 4380 4380 1483949894.094 4381 4380 7.867813110352e-06 4382 4380 -5.507469177246e-05 4383 4380 184322301.8864 4384 4380 -2.622604370117e-06 4385 4380 -1.358985900879e-05 4395 4380 -148365426.1266 4396 4380 -97222222.20624 4397 4380 -3.039836883545e-06 4398 4380 -406796532.3944 4399 4380 -2.801418304443e-06 4400 4380 -1.233816146851e-05 4401 4380 -148365426.1266 4402 4380 97222222.20624 4403 4380 -3.308057785034e-06 4473 4380 -46373434.23613 4474 4380 24305555.56354 4475 4380 21679861.11823 4476 4380 -138827443.8752 4477 4380 2.682209014893e-07 4478 4380 86719444.4302 4479 4380 -46373434.23614 4480 4380 -24305555.56354 4481 4380 21679861.11823 4488 4380 8952264.76783 4489 4380 9.298324584961e-06 4490 4380 6.228685379028e-06 4491 4380 222474230.8735 4492 4380 3.933906555176e-06 4493 4380 2.622604370117e-05 4494 4380 8952264.76783 4495 4380 -1.302361488342e-05 4496 4380 6.914138793945e-06 4506 4380 -46373434.23611 4507 4380 -24305555.56353 4508 4380 -21679861.11823 4509 4380 -138827443.8751 4510 4380 -5.066394805908e-07 4511 4380 -86719444.43019 4512 4380 -46373434.23611 4513 4380 24305555.56353 4514 4380 -21679861.11823 4381 4381 1250608048.648 4382 4381 -1.192092895508e-06 4383 4381 -3.159046173096e-06 4384 4381 -185121779.2034 4385 4381 8.046627044678e-07 4395 4381 -97222222.20624 4396 4381 -119197695.4315 4397 4381 2.831220626831e-07 4398 4381 -3.09944152832e-06 4399 4381 20983010.02827 4400 4381 -4.768371582031e-07 4401 4381 97222222.20624 4402 4381 -119197695.4315 4403 4381 -7.450580596924e-08 4473 4381 24305555.56354 4474 4381 -39081501.55876 4475 4381 -17343750.00569 4476 4381 -2.294778823853e-06 4477 4381 -31882558.21685 4478 4381 2.682209014893e-07 4479 4381 -24305555.56354 4480 4381 -39081501.55876 4481 4381 17343750.0057 4488 4381 1.069903373718e-05 4489 4381 -83408755.55014 4490 4381 -69374999.9886 4491 4381 4.410743713379e-06 4492 4381 164138769.4832 4493 4381 -1.192092895508e-07 4494 4381 -1.156330108643e-05 4495 4381 -83408755.55014 4496 4381 69374999.9886 4506 4381 -24305555.56353 4507 4381 -39081501.55875 4508 4381 -17343750.0057 4509 4381 -8.344650268555e-07 4510 4381 -31882558.21681 4511 4381 -3.278255462646e-07 4512 4381 24305555.56353 4513 4381 -39081501.55875 4514 4381 17343750.00569 4382 4382 1165825984.246 4383 4382 -1.382827758789e-05 4384 4382 1.788139343262e-07 4385 4382 104791324.3853 4395 4382 -2.890825271606e-06 4396 4382 3.8743019104e-07 4397 4382 -46719419.49861 4398 4382 -1.20997428894e-05 4399 4382 -4.768371582031e-07 4400 4382 -212506.0825927 4401 4382 -3.278255462646e-06 4402 4382 -2.086162567139e-07 4403 4382 -46719419.49861 4473 4382 21679861.11823 4474 4382 -17343750.0057 4475 4382 -36432062.04359 4476 4382 86719444.4302 4477 4382 3.427267074585e-07 4478 4382 -99061955.12464 4479 4382 21679861.11823 4480 4382 17343750.0057 4481 4382 -36432062.04359 4488 4382 6.169080734253e-06 4489 4382 -69374999.9886 4490 4382 -72810997.49471 4491 4382 2.598762512207e-05 4492 4382 5.960464477539e-08 4493 4382 -104578818.0156 4494 4382 6.973743438721e-06 4495 4382 69374999.9886 4496 4382 -72810997.49471 4506 4382 -21679861.11823 4507 4382 -17343750.0057 4508 4382 -36432062.04358 4509 4382 -86719444.43019 4510 4382 -2.682209014893e-07 4511 4382 -99061955.12461 4512 4382 -21679861.11823 4513 4382 17343750.00569 4514 4382 -36432062.04358 4383 4383 1483949894.094 4384 4383 7.867813110352e-06 4385 4383 -5.507469177246e-05 4386 4383 184322301.8864 4387 4383 -2.622604370117e-06 4388 4383 -1.358985900879e-05 4398 4383 -148365426.1266 4399 4383 -97222222.20624 4400 4383 -3.039836883545e-06 4401 4383 -406796532.3944 4402 4383 -2.801418304443e-06 4403 4383 -1.233816146851e-05 4404 4383 -148365426.1266 4405 4383 97222222.20624 4406 4383 -3.308057785034e-06 4476 4383 -46373434.23613 4477 4383 24305555.56354 4478 4383 21679861.11823 4479 4383 -138827443.8752 4480 4383 2.682209014893e-07 4481 4383 86719444.4302 4482 4383 -46373434.23614 4483 4383 -24305555.56354 4484 4383 21679861.11823 4491 4383 8952264.76783 4492 4383 9.298324584961e-06 4493 4383 6.228685379028e-06 4494 4383 222474230.8735 4495 4383 3.933906555176e-06 4496 4383 2.622604370117e-05 4497 4383 8952264.76783 4498 4383 -1.302361488342e-05 4499 4383 6.914138793945e-06 4509 4383 -46373434.23611 4510 4383 -24305555.56353 4511 4383 -21679861.11823 4512 4383 -138827443.8751 4513 4383 -5.066394805908e-07 4514 4383 -86719444.43019 4515 4383 -46373434.23611 4516 4383 24305555.56353 4517 4383 -21679861.11823 4384 4384 1250608048.648 4385 4384 -1.192092895508e-06 4386 4384 -3.159046173096e-06 4387 4384 -185121779.2034 4388 4384 8.046627044678e-07 4398 4384 -97222222.20624 4399 4384 -119197695.4315 4400 4384 2.831220626831e-07 4401 4384 -3.09944152832e-06 4402 4384 20983010.02827 4403 4384 -4.768371582031e-07 4404 4384 97222222.20624 4405 4384 -119197695.4315 4406 4384 -7.450580596924e-08 4476 4384 24305555.56354 4477 4384 -39081501.55876 4478 4384 -17343750.00569 4479 4384 -2.294778823853e-06 4480 4384 -31882558.21685 4481 4384 2.682209014893e-07 4482 4384 -24305555.56354 4483 4384 -39081501.55876 4484 4384 17343750.0057 4491 4384 1.069903373718e-05 4492 4384 -83408755.55014 4493 4384 -69374999.9886 4494 4384 4.410743713379e-06 4495 4384 164138769.4832 4496 4384 -1.192092895508e-07 4497 4384 -1.156330108643e-05 4498 4384 -83408755.55014 4499 4384 69374999.9886 4509 4384 -24305555.56353 4510 4384 -39081501.55875 4511 4384 -17343750.0057 4512 4384 -8.344650268555e-07 4513 4384 -31882558.21681 4514 4384 -3.278255462646e-07 4515 4384 24305555.56353 4516 4384 -39081501.55875 4517 4384 17343750.00569 4385 4385 1165825984.246 4386 4385 -1.382827758789e-05 4387 4385 1.788139343262e-07 4388 4385 104791324.3853 4398 4385 -2.890825271606e-06 4399 4385 3.8743019104e-07 4400 4385 -46719419.49861 4401 4385 -1.20997428894e-05 4402 4385 -4.768371582031e-07 4403 4385 -212506.0825927 4404 4385 -3.278255462646e-06 4405 4385 -2.086162567139e-07 4406 4385 -46719419.49861 4476 4385 21679861.11823 4477 4385 -17343750.0057 4478 4385 -36432062.04359 4479 4385 86719444.4302 4480 4385 3.427267074585e-07 4481 4385 -99061955.12464 4482 4385 21679861.11823 4483 4385 17343750.0057 4484 4385 -36432062.04359 4491 4385 6.169080734253e-06 4492 4385 -69374999.9886 4493 4385 -72810997.49471 4494 4385 2.598762512207e-05 4495 4385 5.960464477539e-08 4496 4385 -104578818.0156 4497 4385 6.973743438721e-06 4498 4385 69374999.9886 4499 4385 -72810997.49471 4509 4385 -21679861.11823 4510 4385 -17343750.0057 4511 4385 -36432062.04358 4512 4385 -86719444.43019 4513 4385 -2.682209014893e-07 4514 4385 -99061955.12461 4515 4385 -21679861.11823 4516 4385 17343750.00569 4517 4385 -36432062.04358 4386 4386 1632315315.374 4387 4386 97222220.26178 4388 4386 -4.172325134277e-05 4389 4386 17392720.97666 4390 4386 -97222221.42845 4391 4386 -2.145767211914e-06 4401 4386 -148365426.1266 4402 4386 -97222222.20624 4403 4386 -3.039836883545e-06 4404 4386 -406796532.3944 4405 4386 -2.801418304443e-06 4406 4386 -1.233816146851e-05 4407 4386 -148365426.1266 4408 4386 97222222.20624 4409 4386 -3.308057785034e-06 4479 4386 -46373434.23613 4480 4386 24305555.56354 4481 4386 21679861.11823 4482 4386 -175918799.4897 4483 4386 -24305555.27186 4484 4386 86719444.24762 4494 4386 8952264.76783 4495 4386 9.298324584961e-06 4496 4386 6.228685379028e-06 4497 4386 268847663.9159 4498 4386 24305555.07742 4499 4386 0.03653132915497 4500 4386 -28139091.37671 4501 4386 -24305555.36909 4502 4386 21679860.74398 4512 4386 -46373434.23611 4513 4386 -24305555.56353 4514 4386 -21679861.11823 4515 4386 -138827443.8751 4516 4386 -5.066394805908e-07 4517 4386 -86719444.43019 4518 4386 -46373434.23611 4519 4386 24305555.56353 4520 4386 -21679861.11823 4387 4387 1369805740.108 4388 4387 -2.145767211914e-06 4389 4387 -97222221.03956 4390 4387 -322883627.8625 4391 4387 4.798173904419e-06 4401 4387 -97222222.20624 4402 4387 -119197695.4315 4403 4387 2.831220626831e-07 4404 4387 -3.09944152832e-06 4405 4387 20983010.02827 4406 4387 -4.768371582031e-07 4407 4387 97222222.20624 4408 4387 -119197695.4315 4409 4387 -7.450580596924e-08 4479 4387 24305555.56354 4480 4387 -39081501.55876 4481 4387 -17343750.00569 4482 4387 -24305555.36908 4483 4387 -61681981.7616 4484 4387 17343749.94043 4494 4387 1.069903373718e-05 4495 4387 -83408755.55014 4496 4387 -69374999.9886 4497 4387 24305555.07742 4498 4387 203220270.0671 4499 4387 0.02920919656754 4500 4387 -24305555.27186 4501 4387 -113208178.6284 4502 4387 69374999.6084 4512 4387 -24305555.56353 4513 4387 -39081501.55875 4514 4387 -17343750.0057 4515 4387 -8.344650268555e-07 4516 4387 -31882558.21681 4517 4387 -3.278255462646e-07 4518 4387 24305555.56353 4519 4387 -39081501.55875 4520 4387 17343750.00569 4388 4388 1212545401.289 4389 4388 -1.788139343262e-06 4390 4388 3.75509262085e-06 4391 4388 8567490.576108 4401 4388 -2.890825271606e-06 4402 4388 3.8743019104e-07 4403 4388 -46719419.49861 4404 4388 -1.20997428894e-05 4405 4388 -4.768371582031e-07 4406 4388 -212506.0825927 4407 4388 -3.278255462646e-06 4408 4388 -2.086162567139e-07 4409 4388 -46719419.49861 4479 4388 21679861.11823 4480 4388 -17343750.0057 4481 4388 -36432062.04359 4482 4388 86719444.24762 4483 4388 17343749.9078 4484 4388 -110741809.7386 4494 4388 6.169080734253e-06 4495 4388 -69374999.9886 4496 4388 -72810997.49471 4497 4388 -0.03649973869324 4498 4388 -0.02921465039253 4499 4388 -68146756.53808 4500 4388 21679860.55685 4501 4388 69374999.49133 4502 4388 -84490851.68298 4512 4388 -21679861.11823 4513 4388 -17343750.0057 4514 4388 -36432062.04358 4515 4388 -86719444.43019 4516 4388 -2.682209014893e-07 4517 4388 -99061955.12461 4518 4388 -21679861.11823 4519 4388 17343750.00569 4520 4388 -36432062.04358 4389 4389 944226635.8558 4390 4389 104813146.3867 4391 4389 -5.006790161133e-06 4404 4389 -148365426.1266 4405 4389 -97222222.20624 4406 4389 -3.039836883545e-06 4407 4389 -591818040.3848 4408 4389 -104813145.6089 4409 4389 -1.752376556396e-05 4410 4389 22795227.75344 4411 4389 77777776.98725 4412 4389 4.887580871582e-06 4482 4389 -9282077.50499 4483 4389 29166666.38457 4484 4389 26015832.78049 4497 4389 -28139091.37673 4498 4389 -24305555.27187 4499 4389 -21679860.55685 4500 4389 142149470.4917 4501 4389 26203286.60958 4502 4389 17682222.18138 4515 4389 -46373434.23611 4516 4389 -24305555.56353 4517 4389 -21679861.11823 4518 4389 -180984988.3575 4519 4389 -26203286.41514 4520 4389 -88411110.90689 4521 4389 -8767515.558537 4522 4389 19444444.25639 4523 4389 -18020555.17262 4390 4390 789133337.2837 4391 4390 2.846121788025e-06 4404 4390 -97222222.20624 4405 4390 -119197695.4315 4406 4390 2.831220626831e-07 4407 4390 -104813145.2201 4408 4390 -131460786.597 4409 4390 -2.503395080566e-06 4410 4390 116666665.4809 4411 4390 28639890.68178 4412 4390 2.384185791016e-06 4482 4390 19444444.25638 4483 4390 -9282077.505 4484 4390 -13874999.9393 4497 4390 -24305555.36909 4498 4390 -113208178.6284 4499 4390 -69374999.49133 4500 4390 26203286.60958 4501 4390 103376145.8296 4502 4390 14145833.18358 4515 4390 -24305555.56353 4516 4390 -39081501.55875 4517 4390 -17343750.0057 4518 4390 -26203286.31793 4519 4390 -65895674.85387 4520 4390 -18697916.56855 4521 4390 29166666.38459 4522 4390 -7306349.825734 4523 4390 20270833.25379 4391 4391 738330627.0228 4404 4391 -2.890825271606e-06 4405 4391 3.8743019104e-07 4406 4391 -46719419.49861 4407 4391 -1.990795135498e-05 4408 4391 -1.54972076416e-06 4409 4391 -103838327.6491 4410 4391 7.390975952148e-06 4411 4391 1.609325408936e-06 4412 4391 54942611.08085 4482 4391 17343888.52033 4483 4391 -20812499.90895 4484 4391 -24752206.67999 4497 4391 -21679860.74398 4498 4391 -69374999.6084 4499 4391 -84490851.68299 4500 4391 -17682222.18137 4501 4391 -14145833.18359 4502 4391 -65836512.72291 4515 4391 -21679861.11823 4516 4391 -17343750.0057 4517 4391 -36432062.04358 4518 4391 -88411110.90689 4519 4391 -18697916.60118 4520 4391 -114040857.0942 4521 4391 -27030832.75893 4522 4391 13062499.95656 4523 4391 -24841207.22224 4392 4392 1483949894.094 4393 4392 7.867813110352e-06 4394 4392 -5.507469177246e-05 4395 4392 184322301.8864 4396 4392 -2.622604370117e-06 4397 4392 -1.358985900879e-05 4413 4392 -406796532.3944 4414 4392 -2.801418304443e-06 4415 4392 -1.233816146851e-05 4416 4392 -148365426.1266 4417 4392 97222222.20624 4418 4392 -3.308057785034e-06 4485 4392 -138827443.8752 4486 4392 2.682209014893e-07 4487 4392 86719444.4302 4488 4392 -46373434.23614 4489 4392 -24305555.56354 4490 4392 21679861.11823 4503 4392 222474230.8735 4504 4392 3.933906555176e-06 4505 4392 2.622604370117e-05 4506 4392 8952264.76783 4507 4392 -1.302361488342e-05 4508 4392 6.914138793945e-06 4524 4392 -138827443.8751 4525 4392 -5.066394805908e-07 4526 4392 -86719444.43019 4527 4392 -46373434.23611 4528 4392 24305555.56353 4529 4392 -21679861.11823 4393 4393 1250608048.648 4394 4393 -1.192092895508e-06 4395 4393 -3.159046173096e-06 4396 4393 -185121779.2034 4397 4393 8.046627044678e-07 4413 4393 -3.09944152832e-06 4414 4393 20983010.02827 4415 4393 -4.768371582031e-07 4416 4393 97222222.20624 4417 4393 -119197695.4315 4418 4393 -7.450580596924e-08 4485 4393 -2.294778823853e-06 4486 4393 -31882558.21685 4487 4393 2.682209014893e-07 4488 4393 -24305555.56354 4489 4393 -39081501.55876 4490 4393 17343750.0057 4503 4393 4.410743713379e-06 4504 4393 164138769.4832 4505 4393 -1.192092895508e-07 4506 4393 -1.156330108643e-05 4507 4393 -83408755.55014 4508 4393 69374999.9886 4524 4393 -8.344650268555e-07 4525 4393 -31882558.21681 4526 4393 -3.278255462646e-07 4527 4393 24305555.56353 4528 4393 -39081501.55875 4529 4393 17343750.00569 4394 4394 1165825984.246 4395 4394 -1.382827758789e-05 4396 4394 1.788139343262e-07 4397 4394 104791324.3853 4413 4394 -1.20997428894e-05 4414 4394 -4.768371582031e-07 4415 4394 -212506.0825927 4416 4394 -3.278255462646e-06 4417 4394 -2.086162567139e-07 4418 4394 -46719419.49861 4485 4394 86719444.4302 4486 4394 3.427267074585e-07 4487 4394 -99061955.12464 4488 4394 21679861.11823 4489 4394 17343750.0057 4490 4394 -36432062.04359 4503 4394 2.598762512207e-05 4504 4394 5.960464477539e-08 4505 4394 -104578818.0156 4506 4394 6.973743438721e-06 4507 4394 69374999.9886 4508 4394 -72810997.49471 4524 4394 -86719444.43019 4525 4394 -2.682209014893e-07 4526 4394 -99061955.12461 4527 4394 -21679861.11823 4528 4394 17343750.00569 4529 4394 -36432062.04358 4395 4395 1483949894.094 4396 4395 7.867813110352e-06 4397 4395 -5.507469177246e-05 4398 4395 184322301.8864 4399 4395 -2.622604370117e-06 4400 4395 -1.358985900879e-05 4413 4395 -148365426.1266 4414 4395 -97222222.20624 4415 4395 -3.039836883545e-06 4416 4395 -406796532.3944 4417 4395 -2.801418304443e-06 4418 4395 -1.233816146851e-05 4419 4395 -148365426.1266 4420 4395 97222222.20624 4421 4395 -3.308057785034e-06 4485 4395 -46373434.23613 4486 4395 24305555.56354 4487 4395 21679861.11823 4488 4395 -138827443.8752 4489 4395 2.682209014893e-07 4490 4395 86719444.4302 4491 4395 -46373434.23614 4492 4395 -24305555.56354 4493 4395 21679861.11823 4503 4395 8952264.76783 4504 4395 9.298324584961e-06 4505 4395 6.228685379028e-06 4506 4395 222474230.8735 4507 4395 3.933906555176e-06 4508 4395 2.622604370117e-05 4509 4395 8952264.76783 4510 4395 -1.302361488342e-05 4511 4395 6.914138793945e-06 4524 4395 -46373434.23611 4525 4395 -24305555.56353 4526 4395 -21679861.11823 4527 4395 -138827443.8751 4528 4395 -5.066394805908e-07 4529 4395 -86719444.43019 4530 4395 -46373434.23611 4531 4395 24305555.56353 4532 4395 -21679861.11823 4396 4396 1250608048.648 4397 4396 -1.192092895508e-06 4398 4396 -3.159046173096e-06 4399 4396 -185121779.2034 4400 4396 8.046627044678e-07 4413 4396 -97222222.20624 4414 4396 -119197695.4315 4415 4396 2.831220626831e-07 4416 4396 -3.09944152832e-06 4417 4396 20983010.02827 4418 4396 -4.768371582031e-07 4419 4396 97222222.20624 4420 4396 -119197695.4315 4421 4396 -7.450580596924e-08 4485 4396 24305555.56354 4486 4396 -39081501.55876 4487 4396 -17343750.00569 4488 4396 -2.294778823853e-06 4489 4396 -31882558.21685 4490 4396 2.682209014893e-07 4491 4396 -24305555.56354 4492 4396 -39081501.55876 4493 4396 17343750.0057 4503 4396 1.069903373718e-05 4504 4396 -83408755.55014 4505 4396 -69374999.9886 4506 4396 4.410743713379e-06 4507 4396 164138769.4832 4508 4396 -1.192092895508e-07 4509 4396 -1.156330108643e-05 4510 4396 -83408755.55014 4511 4396 69374999.9886 4524 4396 -24305555.56353 4525 4396 -39081501.55875 4526 4396 -17343750.0057 4527 4396 -8.344650268555e-07 4528 4396 -31882558.21681 4529 4396 -3.278255462646e-07 4530 4396 24305555.56353 4531 4396 -39081501.55875 4532 4396 17343750.00569 4397 4397 1165825984.246 4398 4397 -1.382827758789e-05 4399 4397 1.788139343262e-07 4400 4397 104791324.3853 4413 4397 -2.890825271606e-06 4414 4397 3.8743019104e-07 4415 4397 -46719419.49861 4416 4397 -1.20997428894e-05 4417 4397 -4.768371582031e-07 4418 4397 -212506.0825927 4419 4397 -3.278255462646e-06 4420 4397 -2.086162567139e-07 4421 4397 -46719419.49861 4485 4397 21679861.11823 4486 4397 -17343750.0057 4487 4397 -36432062.04359 4488 4397 86719444.4302 4489 4397 3.427267074585e-07 4490 4397 -99061955.12464 4491 4397 21679861.11823 4492 4397 17343750.0057 4493 4397 -36432062.04359 4503 4397 6.169080734253e-06 4504 4397 -69374999.9886 4505 4397 -72810997.49471 4506 4397 2.598762512207e-05 4507 4397 5.960464477539e-08 4508 4397 -104578818.0156 4509 4397 6.973743438721e-06 4510 4397 69374999.9886 4511 4397 -72810997.49471 4524 4397 -21679861.11823 4525 4397 -17343750.0057 4526 4397 -36432062.04358 4527 4397 -86719444.43019 4528 4397 -2.682209014893e-07 4529 4397 -99061955.12461 4530 4397 -21679861.11823 4531 4397 17343750.00569 4532 4397 -36432062.04358 4398 4398 1483949894.094 4399 4398 7.867813110352e-06 4400 4398 -5.507469177246e-05 4401 4398 184322301.8864 4402 4398 -2.622604370117e-06 4403 4398 -1.358985900879e-05 4416 4398 -148365426.1266 4417 4398 -97222222.20624 4418 4398 -3.039836883545e-06 4419 4398 -406796532.3944 4420 4398 -2.801418304443e-06 4421 4398 -1.233816146851e-05 4422 4398 -148365426.1266 4423 4398 97222222.20624 4424 4398 -3.308057785034e-06 4488 4398 -46373434.23613 4489 4398 24305555.56354 4490 4398 21679861.11823 4491 4398 -138827443.8752 4492 4398 2.682209014893e-07 4493 4398 86719444.4302 4494 4398 -46373434.23614 4495 4398 -24305555.56354 4496 4398 21679861.11823 4506 4398 8952264.76783 4507 4398 9.298324584961e-06 4508 4398 6.228685379028e-06 4509 4398 222474230.8735 4510 4398 3.933906555176e-06 4511 4398 2.622604370117e-05 4512 4398 8952264.76783 4513 4398 -1.302361488342e-05 4514 4398 6.914138793945e-06 4527 4398 -46373434.23611 4528 4398 -24305555.56353 4529 4398 -21679861.11823 4530 4398 -138827443.8751 4531 4398 -5.066394805908e-07 4532 4398 -86719444.43019 4533 4398 -46373434.23611 4534 4398 24305555.56353 4535 4398 -21679861.11823 4399 4399 1250608048.648 4400 4399 -1.192092895508e-06 4401 4399 -3.159046173096e-06 4402 4399 -185121779.2034 4403 4399 8.046627044678e-07 4416 4399 -97222222.20624 4417 4399 -119197695.4315 4418 4399 2.831220626831e-07 4419 4399 -3.09944152832e-06 4420 4399 20983010.02827 4421 4399 -4.768371582031e-07 4422 4399 97222222.20624 4423 4399 -119197695.4315 4424 4399 -7.450580596924e-08 4488 4399 24305555.56354 4489 4399 -39081501.55876 4490 4399 -17343750.00569 4491 4399 -2.294778823853e-06 4492 4399 -31882558.21685 4493 4399 2.682209014893e-07 4494 4399 -24305555.56354 4495 4399 -39081501.55876 4496 4399 17343750.0057 4506 4399 1.069903373718e-05 4507 4399 -83408755.55014 4508 4399 -69374999.9886 4509 4399 4.410743713379e-06 4510 4399 164138769.4832 4511 4399 -1.192092895508e-07 4512 4399 -1.156330108643e-05 4513 4399 -83408755.55014 4514 4399 69374999.9886 4527 4399 -24305555.56353 4528 4399 -39081501.55875 4529 4399 -17343750.0057 4530 4399 -8.344650268555e-07 4531 4399 -31882558.21681 4532 4399 -3.278255462646e-07 4533 4399 24305555.56353 4534 4399 -39081501.55875 4535 4399 17343750.00569 4400 4400 1165825984.246 4401 4400 -1.382827758789e-05 4402 4400 1.788139343262e-07 4403 4400 104791324.3853 4416 4400 -2.890825271606e-06 4417 4400 3.8743019104e-07 4418 4400 -46719419.49861 4419 4400 -1.20997428894e-05 4420 4400 -4.768371582031e-07 4421 4400 -212506.0825927 4422 4400 -3.278255462646e-06 4423 4400 -2.086162567139e-07 4424 4400 -46719419.49861 4488 4400 21679861.11823 4489 4400 -17343750.0057 4490 4400 -36432062.04359 4491 4400 86719444.4302 4492 4400 3.427267074585e-07 4493 4400 -99061955.12464 4494 4400 21679861.11823 4495 4400 17343750.0057 4496 4400 -36432062.04359 4506 4400 6.169080734253e-06 4507 4400 -69374999.9886 4508 4400 -72810997.49471 4509 4400 2.598762512207e-05 4510 4400 5.960464477539e-08 4511 4400 -104578818.0156 4512 4400 6.973743438721e-06 4513 4400 69374999.9886 4514 4400 -72810997.49471 4527 4400 -21679861.11823 4528 4400 -17343750.0057 4529 4400 -36432062.04358 4530 4400 -86719444.43019 4531 4400 -2.682209014893e-07 4532 4400 -99061955.12461 4533 4400 -21679861.11823 4534 4400 17343750.00569 4535 4400 -36432062.04358 4401 4401 1483949894.094 4402 4401 7.867813110352e-06 4403 4401 -5.507469177246e-05 4404 4401 184322301.8864 4405 4401 -2.622604370117e-06 4406 4401 -1.358985900879e-05 4419 4401 -148365426.1266 4420 4401 -97222222.20624 4421 4401 -3.039836883545e-06 4422 4401 -406796532.3944 4423 4401 -2.801418304443e-06 4424 4401 -1.233816146851e-05 4425 4401 -148365426.1266 4426 4401 97222222.20624 4427 4401 -3.308057785034e-06 4491 4401 -46373434.23613 4492 4401 24305555.56354 4493 4401 21679861.11823 4494 4401 -138827443.8752 4495 4401 2.682209014893e-07 4496 4401 86719444.4302 4497 4401 -46373434.23614 4498 4401 -24305555.56354 4499 4401 21679861.11823 4509 4401 8952264.76783 4510 4401 9.298324584961e-06 4511 4401 6.228685379028e-06 4512 4401 222474230.8735 4513 4401 3.933906555176e-06 4514 4401 2.622604370117e-05 4515 4401 8952264.76783 4516 4401 -1.302361488342e-05 4517 4401 6.914138793945e-06 4530 4401 -46373434.23611 4531 4401 -24305555.56353 4532 4401 -21679861.11823 4533 4401 -138827443.8751 4534 4401 -5.066394805908e-07 4535 4401 -86719444.43019 4536 4401 -46373434.23611 4537 4401 24305555.56353 4538 4401 -21679861.11823 4402 4402 1250608048.648 4403 4402 -1.192092895508e-06 4404 4402 -3.159046173096e-06 4405 4402 -185121779.2034 4406 4402 8.046627044678e-07 4419 4402 -97222222.20624 4420 4402 -119197695.4315 4421 4402 2.831220626831e-07 4422 4402 -3.09944152832e-06 4423 4402 20983010.02827 4424 4402 -4.768371582031e-07 4425 4402 97222222.20624 4426 4402 -119197695.4315 4427 4402 -7.450580596924e-08 4491 4402 24305555.56354 4492 4402 -39081501.55876 4493 4402 -17343750.00569 4494 4402 -2.294778823853e-06 4495 4402 -31882558.21685 4496 4402 2.682209014893e-07 4497 4402 -24305555.56354 4498 4402 -39081501.55876 4499 4402 17343750.0057 4509 4402 1.069903373718e-05 4510 4402 -83408755.55014 4511 4402 -69374999.9886 4512 4402 4.410743713379e-06 4513 4402 164138769.4832 4514 4402 -1.192092895508e-07 4515 4402 -1.156330108643e-05 4516 4402 -83408755.55014 4517 4402 69374999.9886 4530 4402 -24305555.56353 4531 4402 -39081501.55875 4532 4402 -17343750.0057 4533 4402 -8.344650268555e-07 4534 4402 -31882558.21681 4535 4402 -3.278255462646e-07 4536 4402 24305555.56353 4537 4402 -39081501.55875 4538 4402 17343750.00569 4403 4403 1165825984.246 4404 4403 -1.382827758789e-05 4405 4403 1.788139343262e-07 4406 4403 104791324.3853 4419 4403 -2.890825271606e-06 4420 4403 3.8743019104e-07 4421 4403 -46719419.49861 4422 4403 -1.20997428894e-05 4423 4403 -4.768371582031e-07 4424 4403 -212506.0825927 4425 4403 -3.278255462646e-06 4426 4403 -2.086162567139e-07 4427 4403 -46719419.49861 4491 4403 21679861.11823 4492 4403 -17343750.0057 4493 4403 -36432062.04359 4494 4403 86719444.4302 4495 4403 3.427267074585e-07 4496 4403 -99061955.12464 4497 4403 21679861.11823 4498 4403 17343750.0057 4499 4403 -36432062.04359 4509 4403 6.169080734253e-06 4510 4403 -69374999.9886 4511 4403 -72810997.49471 4512 4403 2.598762512207e-05 4513 4403 5.960464477539e-08 4514 4403 -104578818.0156 4515 4403 6.973743438721e-06 4516 4403 69374999.9886 4517 4403 -72810997.49471 4530 4403 -21679861.11823 4531 4403 -17343750.0057 4532 4403 -36432062.04358 4533 4403 -86719444.43019 4534 4403 -2.682209014893e-07 4535 4403 -99061955.12461 4536 4403 -21679861.11823 4537 4403 17343750.00569 4538 4403 -36432062.04358 4404 4404 1483949894.094 4405 4404 7.867813110352e-06 4406 4404 -5.507469177246e-05 4407 4404 184322301.8864 4408 4404 -2.622604370117e-06 4409 4404 -1.358985900879e-05 4422 4404 -148365426.1266 4423 4404 -97222222.20624 4424 4404 -3.039836883545e-06 4425 4404 -406796532.3944 4426 4404 -2.801418304443e-06 4427 4404 -1.233816146851e-05 4428 4404 -148365426.1266 4429 4404 97222222.20624 4430 4404 -3.308057785034e-06 4494 4404 -46373434.23613 4495 4404 24305555.56354 4496 4404 21679861.11823 4497 4404 -138827443.8752 4498 4404 2.682209014893e-07 4499 4404 86719444.4302 4500 4404 -46373434.23614 4501 4404 -24305555.56354 4502 4404 21679861.11823 4512 4404 8952264.76783 4513 4404 9.298324584961e-06 4514 4404 6.228685379028e-06 4515 4404 222474230.8735 4516 4404 3.933906555176e-06 4517 4404 2.622604370117e-05 4518 4404 8952264.76783 4519 4404 -1.302361488342e-05 4520 4404 6.914138793945e-06 4533 4404 -46373434.23611 4534 4404 -24305555.56353 4535 4404 -21679861.11823 4536 4404 -138827443.8751 4537 4404 -5.066394805908e-07 4538 4404 -86719444.43019 4539 4404 -46373434.23611 4540 4404 24305555.56353 4541 4404 -21679861.11823 4405 4405 1250608048.648 4406 4405 -1.192092895508e-06 4407 4405 -3.159046173096e-06 4408 4405 -185121779.2034 4409 4405 8.046627044678e-07 4422 4405 -97222222.20624 4423 4405 -119197695.4315 4424 4405 2.831220626831e-07 4425 4405 -3.09944152832e-06 4426 4405 20983010.02827 4427 4405 -4.768371582031e-07 4428 4405 97222222.20624 4429 4405 -119197695.4315 4430 4405 -7.450580596924e-08 4494 4405 24305555.56354 4495 4405 -39081501.55876 4496 4405 -17343750.00569 4497 4405 -2.294778823853e-06 4498 4405 -31882558.21685 4499 4405 2.682209014893e-07 4500 4405 -24305555.56354 4501 4405 -39081501.55876 4502 4405 17343750.0057 4512 4405 1.069903373718e-05 4513 4405 -83408755.55014 4514 4405 -69374999.9886 4515 4405 4.410743713379e-06 4516 4405 164138769.4832 4517 4405 -1.192092895508e-07 4518 4405 -1.156330108643e-05 4519 4405 -83408755.55014 4520 4405 69374999.9886 4533 4405 -24305555.56353 4534 4405 -39081501.55875 4535 4405 -17343750.0057 4536 4405 -8.344650268555e-07 4537 4405 -31882558.21681 4538 4405 -3.278255462646e-07 4539 4405 24305555.56353 4540 4405 -39081501.55875 4541 4405 17343750.00569 4406 4406 1165825984.246 4407 4406 -1.382827758789e-05 4408 4406 1.788139343262e-07 4409 4406 104791324.3853 4422 4406 -2.890825271606e-06 4423 4406 3.8743019104e-07 4424 4406 -46719419.49861 4425 4406 -1.20997428894e-05 4426 4406 -4.768371582031e-07 4427 4406 -212506.0825927 4428 4406 -3.278255462646e-06 4429 4406 -2.086162567139e-07 4430 4406 -46719419.49861 4494 4406 21679861.11823 4495 4406 -17343750.0057 4496 4406 -36432062.04359 4497 4406 86719444.4302 4498 4406 3.427267074585e-07 4499 4406 -99061955.12464 4500 4406 21679861.11823 4501 4406 17343750.0057 4502 4406 -36432062.04359 4512 4406 6.169080734253e-06 4513 4406 -69374999.9886 4514 4406 -72810997.49471 4515 4406 2.598762512207e-05 4516 4406 5.960464477539e-08 4517 4406 -104578818.0156 4518 4406 6.973743438721e-06 4519 4406 69374999.9886 4520 4406 -72810997.49471 4533 4406 -21679861.11823 4534 4406 -17343750.0057 4535 4406 -36432062.04358 4536 4406 -86719444.43019 4537 4406 -2.682209014893e-07 4538 4406 -99061955.12461 4539 4406 -21679861.11823 4540 4406 17343750.00569 4541 4406 -36432062.04358 4407 4407 1661147708.835 4408 4407 104975994.3214 4409 4407 -2.622604370117e-05 4410 4407 28973926.47985 4411 4407 -93442034.30678 4412 4407 -5.245208740234e-06 4425 4407 -148365426.1266 4426 4407 -97222222.20624 4427 4407 -3.039836883545e-06 4428 4407 -414750020.4148 4429 4407 -3811573.076203 4430 4407 -7.62939453125e-06 4431 4407 -158390003.0581 4432 4407 97090758.28169 4433 4407 7.271766662598e-06 4497 4407 -46373434.23613 4498 4407 24305555.56354 4499 4407 21679861.11823 4500 4407 -180984988.3576 4501 4407 -26203286.31793 4502 4407 88411110.90689 4515 4407 8952264.76783 4516 4407 9.298324584961e-06 4517 4407 6.228685379028e-06 4518 4407 274245586.3935 4519 4407 26243998.59328 4520 4407 0.03795856237411 4521 4407 -25967702.04295 4522 4407 -23360508.58821 4523 4407 21679166.28526 4536 4407 -46373434.23611 4537 4407 -24305555.56353 4538 4407 -21679861.11823 4539 4407 -140996480.1669 4540 4407 -952893.2695225 4541 4407 -87564583.31886 4542 4407 -48879322.66665 4543 4407 24272689.58238 4544 4407 -22525694.45184 4408 4408 1378316574.243 4409 4408 2.27689743042e-05 4410 4408 -93442033.9179 4411 4408 -311076053.7848 4412 4408 -1.84178352356e-05 4425 4408 -97222222.20624 4426 4408 -119197695.4315 4427 4408 2.831220626831e-07 4428 4408 -3811573.076217 4429 4408 16672797.27746 4430 4408 6.437301635742e-06 4431 4408 97090758.28169 4432 4408 -116180339.9824 4433 4408 -2.279877662659e-06 4497 4408 24305555.56354 4498 4408 -39081501.55876 4499 4408 -17343750.00569 4500 4408 -26203286.41515 4501 4408 -65895674.85389 4502 4408 18697916.60118 4515 4408 1.069903373718e-05 4516 4408 -83408755.55014 4517 4408 -69374999.9886 4518 4408 26243998.59327 4519 4408 203537802.7108 4520 4408 0.03035420179367 4521 4408 -23360508.49099 4522 4408 -110980197.151 4523 4408 69374999.59698 4536 4408 -24305555.56353 4537 4408 -39081501.55875 4538 4408 -17343750.0057 4539 4408 -952893.2695275 4540 4408 -33140775.69073 4541 4408 -677083.3331562 4542 4408 24272689.58238 4543 4408 -38326906.89252 4544 4408 16666666.67214 4409 4409 1227849607.295 4410 4409 -4.768371582031e-06 4411 4409 -1.84178352356e-05 4412 4409 16993676.64499 4425 4409 -2.890825271606e-06 4426 4409 3.8743019104e-07 4427 4409 -46719419.49861 4428 4409 -1.019239425659e-05 4429 4409 6.794929504395e-06 4430 4409 -3046182.050705 4431 4409 7.182359695435e-06 4432 4409 -2.369284629822e-06 4433 4409 -48631203.38775 4497 4409 21679861.11823 4498 4409 -17343750.0057 4499 4409 -36432062.04359 4500 4409 88411110.90689 4501 4409 18697916.56855 4502 4409 -114040857.0943 4515 4409 6.169080734253e-06 4516 4409 -69374999.9886 4517 4409 -72810997.49471 4518 4409 -0.03792208433151 4519 4409 -0.03035029768944 4520 4409 -69147840.74455 4521 4409 21679166.091 4522 4409 69374999.47419 4523 4409 -84314737.2806 4536 4409 -21679861.11823 4537 4409 -17343750.0057 4538 4409 -36432062.04358 4539 4409 -87564583.31903 4540 4409 -677083.3332895 4541 4409 -100252145.5455 4542 4409 -22525694.45184 4543 4409 16666666.67214 4544 4409 -36909325.87324 4410 4410 878310888.481 4411 4410 -2657515.757642 4412 4410 1.192092895508e-06 4428 4410 -146355658.7119 4429 4410 -97205456.75097 4430 4410 -8.851289749146e-06 4431 4410 -422227983.6709 4432 4410 -5136049.023847 4433 4410 -1.490116119385e-06 4434 4410 85600144.70805 4435 4410 -16771033.13002 4436 4410 -2.384185791016e-06 4437 4410 -156881939.5358 4438 4410 98545423.09951 4439 4410 9.715557098389e-06 4500 4410 -8767515.558538 4501 4410 29166666.38459 4502 4410 27030832.75893 4518 4410 -25967702.04296 4519 4410 -23360508.49099 4520 4410 -21679166.091 4521 4410 119740849.7095 4522 4410 -664378.9397355 4523 4410 17135277.77496 4539 4410 -45870736.57862 4540 4410 -24301364.19972 4541 4410 -21679166.67379 4542 4410 -141002035.2672 4543 4410 -1284012.256601 4544 4410 -85676388.87482 4545 4410 4511607.610505 4546 4410 -4192758.284571 4547 4410 3215972.223777 4548 4410 -47751770.62456 4549 4410 24636355.78701 4550 4410 -21159027.78472 4411 4411 904404472.7405 4412 4411 3.612041473389e-05 4428 4411 -97205456.75097 4429 4411 -119802374.1366 4430 4411 -3.308057785034e-06 4431 4411 -5136049.023845 4432 4411 9983783.088469 4433 4411 1.45435333252e-05 4434 4411 22117855.75249 4435 4411 -98572068.66138 4436 4411 -9.775161743164e-06 4437 4411 98545423.09951 4438 4411 -123363044.4243 4439 4411 -3.531575202942e-06 4500 4411 19444444.25639 4501 4411 -7306349.825734 4502 4411 -13062499.95656 4518 4411 -23360508.58821 4519 4411 -110980197.151 4520 4411 -69374999.4742 4521 4411 -664378.9397378 4522 4411 126264245.7776 4523 4411 7208333.185869 4539 4411 -24301364.19972 4540 4411 -39232415.43152 4541 4411 -17343750.0057 4542 4411 -1284012.256601 4543 4411 -32949093.52409 4544 4411 -677083.3331561 4545 4411 5529463.940845 4546 4411 -41531445.75453 4547 4411 33333333.32785 4548 4411 24636355.78701 4549 4411 -39372046.84256 4550 4411 16666666.67214 4412 4412 768562010.6434 4428 4412 -8.642673492432e-06 4429 4412 -3.188848495483e-06 4430 4412 -46336936.97173 4431 4412 -1.132488250732e-06 4432 4412 1.466274261475e-05 4433 4412 -12181640.5462 4434 4412 1.430511474609e-06 4435 4412 -9.983777999878e-06 4436 4412 44227455.09151 4437 4412 9.298324584961e-06 4438 4412 -3.591179847717e-06 4439 4412 -52301561.26622 4500 4412 18020555.17262 4501 4412 -20270833.25379 4502 4412 -24841207.22224 4518 4412 -21679166.28527 4519 4412 -69374999.59699 4520 4412 -84314737.28063 4521 4412 -17135277.77496 4522 4412 -7208333.185864 4523 4412 -74091157.29499 4539 4412 -21679166.67379 4540 4412 -17343750.0057 4541 4412 -36335759.26896 4542 4412 -85676388.87482 4543 4412 -677083.3332896 4544 4412 -97565514.93121 4545 4412 -4909027.779057 4546 4412 33333333.32785 4547 4412 -33978945.76048 4548 4412 -21159027.78472 4549 4412 16666666.67214 4550 4412 -35825485.57976 4413 4413 741974947.0469 4414 4413 5.006790161133e-06 4415 4413 -2.908706665039e-05 4416 4413 92161150.94322 4417 4413 19444444.44125 4418 4413 -7.271766662598e-06 4503 4413 -138827443.8752 4504 4413 2.682209014893e-07 4505 4413 86719444.4302 4506 4413 -46373434.23614 4507 4413 -24305555.56354 4508 4413 21679861.11823 4524 4413 111237115.4367 4525 4413 -8.344650268555e-07 4526 4413 -17343888.88603 4527 4413 4476132.383917 4528 4413 4861111.1127 4529 4413 -4335972.223642 4414 4414 625304024.3239 4415 4414 6.198883056641e-06 4416 4414 -19444444.44125 4417 4414 -92560889.60172 4418 4414 2.32458114624e-06 4503 4414 -2.294778823853e-06 4504 4414 -31882558.21685 4505 4414 2.682209014893e-07 4506 4414 -24305555.56354 4507 4414 -39081501.55876 4508 4414 17343750.0057 4524 4414 -7.152557373047e-07 4525 4414 82069384.74161 4526 4414 -3.75509262085e-06 4527 4414 -4861111.112713 4528 4414 -41704377.77507 4529 4414 34687499.9943 4415 4415 582912992.1231 4416 4415 -7.271766662598e-06 4417 4415 1.877546310425e-06 4418 4415 52395662.19267 4503 4415 86719444.4302 4504 4415 3.427267074585e-07 4505 4415 -99061955.12464 4506 4415 21679861.11823 4507 4415 17343750.0057 4508 4415 -36432062.04359 4524 4415 17343888.88605 4525 4415 -3.576278686523e-06 4526 4415 -52289409.00778 4527 4415 4335972.22365 4528 4415 34687499.9943 4529 4415 -36405498.74735 4416 4416 741974947.0469 4417 4416 5.006790161133e-06 4418 4416 -2.908706665039e-05 4419 4416 92161150.94322 4420 4416 19444444.44125 4421 4416 -7.271766662598e-06 4503 4416 -46373434.23613 4504 4416 24305555.56354 4505 4416 21679861.11823 4506 4416 -138827443.8752 4507 4416 2.682209014893e-07 4508 4416 86719444.4302 4509 4416 -46373434.23614 4510 4416 -24305555.56354 4511 4416 21679861.11823 4524 4416 4476132.383914 4525 4416 -4861111.112702 4526 4416 -4335972.223643 4527 4416 111237115.4367 4528 4416 -8.344650268555e-07 4529 4416 -17343888.88603 4530 4416 4476132.383917 4531 4416 4861111.1127 4532 4416 -4335972.223642 4417 4417 625304024.3239 4418 4417 6.198883056641e-06 4419 4417 -19444444.44125 4420 4417 -92560889.60172 4421 4417 2.32458114624e-06 4503 4417 24305555.56354 4504 4417 -39081501.55876 4505 4417 -17343750.00569 4506 4417 -2.294778823853e-06 4507 4417 -31882558.21685 4508 4417 2.682209014893e-07 4509 4417 -24305555.56354 4510 4417 -39081501.55876 4511 4417 17343750.0057 4524 4417 4861111.112712 4525 4417 -41704377.77507 4526 4417 -34687499.9943 4527 4417 -7.152557373047e-07 4528 4417 82069384.74161 4529 4417 -3.75509262085e-06 4530 4417 -4861111.112713 4531 4417 -41704377.77507 4532 4417 34687499.9943 4418 4418 582912992.1231 4419 4418 -7.271766662598e-06 4420 4418 1.877546310425e-06 4421 4418 52395662.19267 4503 4418 21679861.11823 4504 4418 -17343750.0057 4505 4418 -36432062.04359 4506 4418 86719444.4302 4507 4418 3.427267074585e-07 4508 4418 -99061955.12464 4509 4418 21679861.11823 4510 4418 17343750.0057 4511 4418 -36432062.04359 4524 4418 4335972.223649 4525 4418 -34687499.9943 4526 4418 -36405498.74736 4527 4418 17343888.88605 4528 4418 -3.576278686523e-06 4529 4418 -52289409.00778 4530 4418 4335972.22365 4531 4418 34687499.9943 4532 4418 -36405498.74735 4419 4419 741974947.0469 4420 4419 5.006790161133e-06 4421 4419 -2.908706665039e-05 4422 4419 92161150.94322 4423 4419 19444444.44125 4424 4419 -7.271766662598e-06 4506 4419 -46373434.23613 4507 4419 24305555.56354 4508 4419 21679861.11823 4509 4419 -138827443.8752 4510 4419 2.682209014893e-07 4511 4419 86719444.4302 4512 4419 -46373434.23614 4513 4419 -24305555.56354 4514 4419 21679861.11823 4527 4419 4476132.383914 4528 4419 -4861111.112702 4529 4419 -4335972.223643 4530 4419 111237115.4367 4531 4419 -8.344650268555e-07 4532 4419 -17343888.88603 4533 4419 4476132.383917 4534 4419 4861111.1127 4535 4419 -4335972.223642 4420 4420 625304024.3239 4421 4420 6.198883056641e-06 4422 4420 -19444444.44125 4423 4420 -92560889.60172 4424 4420 2.32458114624e-06 4506 4420 24305555.56354 4507 4420 -39081501.55876 4508 4420 -17343750.00569 4509 4420 -2.294778823853e-06 4510 4420 -31882558.21685 4511 4420 2.682209014893e-07 4512 4420 -24305555.56354 4513 4420 -39081501.55876 4514 4420 17343750.0057 4527 4420 4861111.112712 4528 4420 -41704377.77507 4529 4420 -34687499.9943 4530 4420 -7.152557373047e-07 4531 4420 82069384.74161 4532 4420 -3.75509262085e-06 4533 4420 -4861111.112713 4534 4420 -41704377.77507 4535 4420 34687499.9943 4421 4421 582912992.1231 4422 4421 -7.271766662598e-06 4423 4421 1.877546310425e-06 4424 4421 52395662.19267 4506 4421 21679861.11823 4507 4421 -17343750.0057 4508 4421 -36432062.04359 4509 4421 86719444.4302 4510 4421 3.427267074585e-07 4511 4421 -99061955.12464 4512 4421 21679861.11823 4513 4421 17343750.0057 4514 4421 -36432062.04359 4527 4421 4335972.223649 4528 4421 -34687499.9943 4529 4421 -36405498.74736 4530 4421 17343888.88605 4531 4421 -3.576278686523e-06 4532 4421 -52289409.00778 4533 4421 4335972.22365 4534 4421 34687499.9943 4535 4421 -36405498.74735 4422 4422 741974947.0469 4423 4422 5.006790161133e-06 4424 4422 -2.908706665039e-05 4425 4422 92161150.94322 4426 4422 19444444.44125 4427 4422 -7.271766662598e-06 4509 4422 -46373434.23613 4510 4422 24305555.56354 4511 4422 21679861.11823 4512 4422 -138827443.8752 4513 4422 2.682209014893e-07 4514 4422 86719444.4302 4515 4422 -46373434.23614 4516 4422 -24305555.56354 4517 4422 21679861.11823 4530 4422 4476132.383914 4531 4422 -4861111.112702 4532 4422 -4335972.223643 4533 4422 111237115.4367 4534 4422 -8.344650268555e-07 4535 4422 -17343888.88603 4536 4422 4476132.383917 4537 4422 4861111.1127 4538 4422 -4335972.223642 4423 4423 625304024.3239 4424 4423 6.198883056641e-06 4425 4423 -19444444.44125 4426 4423 -92560889.60172 4427 4423 2.32458114624e-06 4509 4423 24305555.56354 4510 4423 -39081501.55876 4511 4423 -17343750.00569 4512 4423 -2.294778823853e-06 4513 4423 -31882558.21685 4514 4423 2.682209014893e-07 4515 4423 -24305555.56354 4516 4423 -39081501.55876 4517 4423 17343750.0057 4530 4423 4861111.112712 4531 4423 -41704377.77507 4532 4423 -34687499.9943 4533 4423 -7.152557373047e-07 4534 4423 82069384.74161 4535 4423 -3.75509262085e-06 4536 4423 -4861111.112713 4537 4423 -41704377.77507 4538 4423 34687499.9943 4424 4424 582912992.1231 4425 4424 -7.271766662598e-06 4426 4424 1.877546310425e-06 4427 4424 52395662.19267 4509 4424 21679861.11823 4510 4424 -17343750.0057 4511 4424 -36432062.04359 4512 4424 86719444.4302 4513 4424 3.427267074585e-07 4514 4424 -99061955.12464 4515 4424 21679861.11823 4516 4424 17343750.0057 4517 4424 -36432062.04359 4530 4424 4335972.223649 4531 4424 -34687499.9943 4532 4424 -36405498.74736 4533 4424 17343888.88605 4534 4424 -3.576278686523e-06 4535 4424 -52289409.00778 4536 4424 4335972.22365 4537 4424 34687499.9943 4538 4424 -36405498.74735 4425 4425 741974947.0469 4426 4425 5.006790161133e-06 4427 4425 -2.908706665039e-05 4428 4425 92161150.94322 4429 4425 19444444.44125 4430 4425 -7.271766662598e-06 4512 4425 -46373434.23613 4513 4425 24305555.56354 4514 4425 21679861.11823 4515 4425 -138827443.8752 4516 4425 2.682209014893e-07 4517 4425 86719444.4302 4518 4425 -46373434.23614 4519 4425 -24305555.56354 4520 4425 21679861.11823 4533 4425 4476132.383914 4534 4425 -4861111.112702 4535 4425 -4335972.223643 4536 4425 111237115.4367 4537 4425 -8.344650268555e-07 4538 4425 -17343888.88603 4539 4425 4476132.383917 4540 4425 4861111.1127 4541 4425 -4335972.223642 4426 4426 625304024.3239 4427 4426 6.198883056641e-06 4428 4426 -19444444.44125 4429 4426 -92560889.60172 4430 4426 2.32458114624e-06 4512 4426 24305555.56354 4513 4426 -39081501.55876 4514 4426 -17343750.00569 4515 4426 -2.294778823853e-06 4516 4426 -31882558.21685 4517 4426 2.682209014893e-07 4518 4426 -24305555.56354 4519 4426 -39081501.55876 4520 4426 17343750.0057 4533 4426 4861111.112712 4534 4426 -41704377.77507 4535 4426 -34687499.9943 4536 4426 -7.152557373047e-07 4537 4426 82069384.74161 4538 4426 -3.75509262085e-06 4539 4426 -4861111.112713 4540 4426 -41704377.77507 4541 4426 34687499.9943 4427 4427 582912992.1231 4428 4427 -7.271766662598e-06 4429 4427 1.877546310425e-06 4430 4427 52395662.19267 4512 4427 21679861.11823 4513 4427 -17343750.0057 4514 4427 -36432062.04359 4515 4427 86719444.4302 4516 4427 3.427267074585e-07 4517 4427 -99061955.12464 4518 4427 21679861.11823 4519 4427 17343750.0057 4520 4427 -36432062.04359 4533 4427 4335972.223649 4534 4427 -34687499.9943 4535 4427 -36405498.74736 4536 4427 17343888.88605 4537 4427 -3.576278686523e-06 4538 4427 -52289409.00778 4539 4427 4335972.22365 4540 4427 34687499.9943 4541 4427 -36405498.74735 4428 4428 743972693.3092 4429 4428 15895.84580994 4430 4428 -1.239776611328e-05 4431 4428 96103889.57229 4432 4428 23223356.21639 4433 4428 2.145767211914e-06 4515 4428 -46373434.23613 4516 4428 24305555.56354 4517 4428 21679861.11823 4518 4428 -140996480.167 4519 4428 -952893.2695184 4520 4428 87564583.31904 4521 4428 -45870736.57862 4522 4428 -24301364.19971 4523 4428 21679166.67378 4536 4428 4476132.383914 4537 4428 -4861111.112702 4538 4428 -4335972.223643 4539 4428 111737658.2526 4540 4428 3973.961454153 4541 4428 -17343611.10825 4542 4428 5643546.059512 4543 4428 5805839.056957 4544 4428 -5182361.11248 4429 4429 624700330.4184 4430 4429 1.978874206543e-05 4431 4429 -15665532.66612 4432 4429 -87045539.95471 4433 4429 -3.546476364136e-06 4515 4429 24305555.56354 4516 4429 -39081501.55876 4517 4429 -17343750.00569 4518 4429 -952893.2695179 4519 4429 -33140775.69075 4520 4429 677083.3332881 4521 4429 -24301364.19971 4522 4429 -39232415.43151 4523 4429 17343750.00569 4536 4429 4861111.112712 4537 4429 -41704377.77507 4538 4429 -34687499.9943 4539 4429 3973.961454034 4540 4429 81919567.51518 4541 4429 -4.976987838745e-06 4542 4429 -3916383.16846 4543 4429 -40143811.34479 4544 4429 34010416.66101 4430 4430 583290059.4325 4431 4430 -9.536743164063e-07 4432 4430 -3.75509262085e-06 4433 4430 54461159.75296 4515 4430 21679861.11823 4516 4430 -17343750.0057 4517 4430 -36432062.04359 4518 4430 87564583.31887 4519 4430 677083.3331547 4520 4430 -100252145.5455 4521 4430 21679166.67378 4522 4430 17343750.00569 4523 4430 -36335759.26895 4536 4430 4335972.223649 4537 4430 -34687499.9943 4538 4430 -36405498.74736 4539 4430 17343611.10827 4540 4430 -4.589557647705e-06 4541 4430 -52192192.18035 4542 4430 3489305.557201 4543 4430 34010416.66114 4544 4430 -35404513.64279 4431 4431 745987487.9304 4432 4431 -2453991.979044 4433 4431 -2.861022949219e-06 4434 4431 -141080087.6865 4435 4431 -95899021.31304 4436 4431 -9.119510650635e-06 4437 4431 92610986.19902 4438 4431 22063836.70036 4439 4431 1.668930053711e-06 4518 4431 -48879322.66665 4519 4431 24272689.58238 4520 4431 22525694.45184 4521 4431 -141002035.2672 4522 4431 -1284012.256585 4523 4431 85676388.87482 4539 4431 5643546.059496 4540 4431 -3916383.16846 4541 4431 -3489305.557201 4542 4431 115620942.6217 4543 4431 -613497.9950656 4544 4431 -17135277.77496 4545 4431 -43801307.6603 4546 4431 -23974755.34007 4547 4431 20312500.00667 4548 4431 5916032.269886 4549 4431 5515959.177805 4550 4431 -5078333.334501 4432 4432 616411761.6306 4433 4432 3.254413604736e-05 4434 4432 -95899021.31304 4435 4432 -117437349.9809 4436 4432 -3.94880771637e-06 4437 4432 -16825052.18215 4438 4432 -92728025.51491 4439 4432 -5.006790161133e-06 4518 4432 24272689.58238 4519 4432 -38326906.89253 4520 4432 -16666666.67214 4521 4432 -1284012.256587 4522 4432 -32949093.52409 4523 4432 677083.333288 4539 4432 5805839.056958 4540 4432 -40143811.34482 4541 4432 -34010416.66115 4542 4432 -613497.9950618 4543 4432 83227011.03075 4544 4432 -4.321336746216e-06 4545 4432 -23974755.34007 4546 4432 -37890623.23096 4547 4432 16666666.67214 4548 4432 -4206263.047611 4549 4432 -40418720.68142 4550 4432 33333333.32785 4433 4433 572020605.8755 4434 4433 -9.298324584961e-06 4435 4433 -3.933906555176e-06 4436 4433 -46375866.82274 4437 4433 -1.907348632813e-06 4438 4433 -4.976987838745e-06 4439 4433 48718383.22463 4518 4433 22525694.45184 4519 4433 -16666666.67214 4520 4433 -36909325.87325 4521 4433 85676388.87482 4522 4433 677083.3331545 4523 4433 -97565514.93121 4539 4433 5182361.112481 4540 4433 -34010416.66102 4541 4433 -35404513.64282 4542 4433 17135277.77496 4543 4433 -4.26173210144e-06 4544 4433 -45997327.0015 4545 4433 20312500.00667 4546 4433 16666666.67214 4547 4433 -34344061.96816 4548 4433 3385277.779222 4549 4433 33333333.32785 4550 4433 -33784975.63125 4434 4434 361120236.1714 4435 4434 94548810.89504 4436 4434 1.192092895508e-05 4437 4434 -203961436.0496 4438 4434 -20767645.33449 4439 4434 -3.784894943237e-06 4521 4434 4511607.610493 4522 4434 5529463.940846 4523 4434 4909027.779057 4542 4434 -43801307.66031 4543 4434 -23974755.34007 4544 4434 -20312500.00667 4545 4434 56503201.94985 4546 4434 23637202.73541 4547 4434 8124999.998669 4548 4434 -68052930.47169 4549 4434 -5191911.336184 4550 4434 -41471527.77105 4435 4435 308313282.913 4436 4435 1.406669616699e-05 4437 4435 18121243.54802 4438 4435 9374992.87252 4439 4435 7.748603820801e-06 4521 4435 -4192758.284571 4522 4435 -41531445.75455 4523 4435 -33333333.32786 4542 4435 -23974755.34007 4543 4435 -37890623.23097 4544 4435 -16666666.67214 4545 4435 23637202.73541 4546 4435 43301463.62875 4547 4435 6666666.665572 4548 4435 4530310.889233 4549 4435 -14718823.21489 4550 4435 3333333.334428 4436 4436 278103282.9517 4437 4436 5.364418029785e-07 4438 4436 7.62939453125e-06 4439 4436 -4811252.171693 4521 4436 -3215972.223778 4522 4436 -33333333.32786 4523 4436 -33978945.76051 4542 4436 -20312500.00667 4543 4436 -16666666.67214 4544 4436 -34344061.96818 4545 4436 -8124999.998662 4546 4436 -6666666.66557 4547 4436 -20545798.26108 4548 4436 -41471527.77088 4549 4436 -3333333.334428 4550 4436 -46703003.53464 4437 4437 371304389.3859 4438 4437 -99841614.46537 4439 4437 -9.298324584961e-06 4521 4437 -47751770.62457 4522 4437 24636355.78702 4523 4437 21159027.78473 4542 4437 5916032.269866 4543 4437 -4206263.047612 4544 4437 -3385277.779223 4545 4437 -68052930.47169 4546 4437 4530310.889241 4547 4437 41471527.77088 4548 4437 58352668.82663 4549 4437 -24960403.62864 4550 4437 -8463611.109724 4438 4438 309788077.0662 4439 4438 1.740455627441e-05 4521 4438 24636355.78702 4522 4438 -39372046.84257 4523 4438 -16666666.67214 4542 4438 5515959.177807 4543 4438 -40418720.68145 4544 4438 -33333333.32786 4545 4438 -5191911.336177 4546 4438 -14718823.21489 4547 4438 3333333.334428 4548 4438 -24960403.62864 4549 4438 42973590.73913 4550 4438 6666666.665569 4439 4439 283253096.8787 4521 4439 21159027.78473 4522 4439 -16666666.67214 4523 4439 -35825485.57977 4542 4439 5078333.334503 4543 4439 -33333333.32786 4544 4439 -33784975.63129 4545 4439 41471527.77105 4546 4439 -3333333.334428 4547 4439 -46703003.53464 4548 4439 8463611.109719 4549 4439 -6666666.665573 4550 4439 -21115868.58701 4440 4440 927468678.158 4441 4440 97222222.20623 4442 4440 -8.106231689453e-06 4443 4440 -573726109.9308 4444 4440 -97222221.42845 4445 4440 8.940696716309e-07 4446 4440 18564155.00999 4447 4440 77777776.9872 4448 4440 2.861022949219e-06 4551 4440 139046393.5639 4552 4440 24305555.56354 4553 4440 17343888.84952 4554 4440 -175918799.4896 4555 4440 -24305555.36909 4556 4440 -86719444.24762 4557 4440 -9282077.505002 4558 4440 19444444.25638 4559 4440 -17343888.52033 4441 4441 781630025.6149 4442 4441 8.412431954121e-06 4443 4441 -97222221.03956 4444 4441 -116778839.2437 4445 4441 5.602836608887e-06 4446 4441 116666665.4808 4447 4441 18564155.00998 4448 4441 5.960464477539e-07 4551 4441 24305555.56354 4552 4441 102586730.4102 4553 4441 13874999.85143 4554 4441 -24305555.27187 4555 4441 -61681981.76159 4556 4441 -17343749.90781 4557 4441 29166666.38457 4558 4441 -9282077.504995 4559 4441 20812499.90894 4442 4442 728641235.3813 4443 4442 4.172325134277e-07 4444 4442 4.887580871582e-06 4445 4442 -96436338.25295 4446 4442 2.503395080566e-06 4447 4442 1.251697540283e-06 4448 4442 49504413.35998 4551 4442 -17343888.84952 4552 4442 -13874999.85144 4553 4442 -65361760.6378 4554 4442 -86719444.24762 4555 4442 -17343749.94044 4556 4442 -110741809.7386 4557 4442 -26015832.7805 4558 4442 13874999.9393 4559 4442 -24752206.67999 4443 4443 1632315315.374 4444 4443 97222220.26178 4445 4443 -4.172325134277e-05 4446 4443 17392720.97666 4447 4443 -97222221.42845 4448 4443 -2.145767211914e-06 4449 4443 -406796532.3944 4450 4443 -2.801418304443e-06 4451 4443 -1.233816146851e-05 4452 4443 -148365426.1266 4453 4443 97222222.20624 4454 4443 -3.308057785034e-06 4551 4443 -175918799.4897 4552 4443 -24305555.27186 4553 4443 86719444.24762 4554 4443 268847663.9159 4555 4443 24305555.07742 4556 4443 0.03653132915497 4557 4443 -28139091.37671 4558 4443 -24305555.36909 4559 4443 21679860.74398 4560 4443 -138827443.8751 4561 4443 -5.066394805908e-07 4562 4443 -86719444.43019 4563 4443 -46373434.23611 4564 4443 24305555.56353 4565 4443 -21679861.11823 4444 4444 1369805740.108 4445 4444 -2.145767211914e-06 4446 4444 -97222221.03956 4447 4444 -322883627.8625 4448 4444 4.798173904419e-06 4449 4444 -3.09944152832e-06 4450 4444 20983010.02827 4451 4444 -4.768371582031e-07 4452 4444 97222222.20624 4453 4444 -119197695.4315 4454 4444 -7.450580596924e-08 4551 4444 -24305555.36908 4552 4444 -61681981.7616 4553 4444 17343749.94043 4554 4444 24305555.07742 4555 4444 203220270.0671 4556 4444 0.02920919656754 4557 4444 -24305555.27186 4558 4444 -113208178.6284 4559 4444 69374999.6084 4560 4444 -8.344650268555e-07 4561 4444 -31882558.21681 4562 4444 -3.278255462646e-07 4563 4444 24305555.56353 4564 4444 -39081501.55875 4565 4444 17343750.00569 4445 4445 1212545401.289 4446 4445 -1.788139343262e-06 4447 4445 3.75509262085e-06 4448 4445 8567490.576108 4449 4445 -1.20997428894e-05 4450 4445 -4.768371582031e-07 4451 4445 -212506.0825927 4452 4445 -3.278255462646e-06 4453 4445 -2.086162567139e-07 4454 4445 -46719419.49861 4551 4445 86719444.24762 4552 4445 17343749.9078 4553 4445 -110741809.7386 4554 4445 -0.03649973869324 4555 4445 -0.02921465039253 4556 4445 -68146756.53808 4557 4445 21679860.55685 4558 4445 69374999.49133 4559 4445 -84490851.68298 4560 4445 -86719444.43019 4561 4445 -2.682209014893e-07 4562 4445 -99061955.12461 4563 4445 -21679861.11823 4564 4445 17343750.00569 4565 4445 -36432062.04358 4446 4446 927468678.158 4447 4446 97222222.20623 4448 4446 -8.106231689453e-06 4449 4446 -148365426.1266 4450 4446 -97222222.20624 4451 4446 -3.039836883545e-06 4452 4446 -573726109.9308 4453 4446 -97222221.42845 4454 4446 8.940696716309e-07 4455 4446 18564155.00999 4456 4446 77777776.9872 4457 4446 2.861022949219e-06 4551 4446 -9282077.50499 4552 4446 29166666.38457 4553 4446 26015832.78049 4554 4446 -28139091.37673 4555 4446 -24305555.27187 4556 4446 -21679860.55685 4557 4446 139046393.5639 4558 4446 24305555.56354 4559 4446 17343888.84952 4560 4446 -46373434.23611 4561 4446 -24305555.56353 4562 4446 -21679861.11823 4563 4446 -175918799.4896 4564 4446 -24305555.36909 4565 4446 -86719444.24762 4566 4446 -9282077.505002 4567 4446 19444444.25638 4568 4446 -17343888.52033 4447 4447 781630025.6149 4448 4447 8.412431954121e-06 4449 4447 -97222222.20624 4450 4447 -119197695.4315 4451 4447 2.831220626831e-07 4452 4447 -97222221.03956 4453 4447 -116778839.2437 4454 4447 5.602836608887e-06 4455 4447 116666665.4808 4456 4447 18564155.00998 4457 4447 5.960464477539e-07 4551 4447 19444444.25638 4552 4447 -9282077.505 4553 4447 -13874999.9393 4554 4447 -24305555.36909 4555 4447 -113208178.6284 4556 4447 -69374999.49133 4557 4447 24305555.56354 4558 4447 102586730.4102 4559 4447 13874999.85143 4560 4447 -24305555.56353 4561 4447 -39081501.55875 4562 4447 -17343750.0057 4563 4447 -24305555.27187 4564 4447 -61681981.76159 4565 4447 -17343749.90781 4566 4447 29166666.38457 4567 4447 -9282077.504995 4568 4447 20812499.90894 4448 4448 728641235.3813 4449 4448 -2.890825271606e-06 4450 4448 3.8743019104e-07 4451 4448 -46719419.49861 4452 4448 4.172325134277e-07 4453 4448 4.887580871582e-06 4454 4448 -96436338.25295 4455 4448 2.503395080566e-06 4456 4448 1.251697540283e-06 4457 4448 49504413.35998 4551 4448 17343888.52033 4552 4448 -20812499.90895 4553 4448 -24752206.67999 4554 4448 -21679860.74398 4555 4448 -69374999.6084 4556 4448 -84490851.68299 4557 4448 -17343888.84952 4558 4448 -13874999.85144 4559 4448 -65361760.6378 4560 4448 -21679861.11823 4561 4448 -17343750.0057 4562 4448 -36432062.04358 4563 4448 -86719444.24762 4564 4448 -17343749.94044 4565 4448 -110741809.7386 4566 4448 -26015832.7805 4567 4448 13874999.9393 4568 4448 -24752206.67999 4449 4449 1483949894.094 4450 4449 7.867813110352e-06 4451 4449 -5.507469177246e-05 4452 4449 184322301.8864 4453 4449 -2.622604370117e-06 4454 4449 -1.358985900879e-05 4458 4449 -406796532.3944 4459 4449 -2.801418304443e-06 4460 4449 -1.233816146851e-05 4461 4449 -148365426.1266 4462 4449 97222222.20624 4463 4449 -3.308057785034e-06 4554 4449 -138827443.8752 4555 4449 2.682209014893e-07 4556 4449 86719444.4302 4557 4449 -46373434.23614 4558 4449 -24305555.56354 4559 4449 21679861.11823 4560 4449 222474230.8735 4561 4449 3.933906555176e-06 4562 4449 2.622604370117e-05 4563 4449 8952264.76783 4564 4449 -1.302361488342e-05 4565 4449 6.914138793945e-06 4569 4449 -138827443.8751 4570 4449 -5.066394805908e-07 4571 4449 -86719444.43019 4572 4449 -46373434.23611 4573 4449 24305555.56353 4574 4449 -21679861.11823 4450 4450 1250608048.648 4451 4450 -1.192092895508e-06 4452 4450 -3.159046173096e-06 4453 4450 -185121779.2034 4454 4450 8.046627044678e-07 4458 4450 -3.09944152832e-06 4459 4450 20983010.02827 4460 4450 -4.768371582031e-07 4461 4450 97222222.20624 4462 4450 -119197695.4315 4463 4450 -7.450580596924e-08 4554 4450 -2.294778823853e-06 4555 4450 -31882558.21685 4556 4450 2.682209014893e-07 4557 4450 -24305555.56354 4558 4450 -39081501.55876 4559 4450 17343750.0057 4560 4450 4.410743713379e-06 4561 4450 164138769.4832 4562 4450 -1.192092895508e-07 4563 4450 -1.156330108643e-05 4564 4450 -83408755.55014 4565 4450 69374999.9886 4569 4450 -8.344650268555e-07 4570 4450 -31882558.21681 4571 4450 -3.278255462646e-07 4572 4450 24305555.56353 4573 4450 -39081501.55875 4574 4450 17343750.00569 4451 4451 1165825984.246 4452 4451 -1.382827758789e-05 4453 4451 1.788139343262e-07 4454 4451 104791324.3853 4458 4451 -1.20997428894e-05 4459 4451 -4.768371582031e-07 4460 4451 -212506.0825927 4461 4451 -3.278255462646e-06 4462 4451 -2.086162567139e-07 4463 4451 -46719419.49861 4554 4451 86719444.4302 4555 4451 3.427267074585e-07 4556 4451 -99061955.12464 4557 4451 21679861.11823 4558 4451 17343750.0057 4559 4451 -36432062.04359 4560 4451 2.598762512207e-05 4561 4451 5.960464477539e-08 4562 4451 -104578818.0156 4563 4451 6.973743438721e-06 4564 4451 69374999.9886 4565 4451 -72810997.49471 4569 4451 -86719444.43019 4570 4451 -2.682209014893e-07 4571 4451 -99061955.12461 4572 4451 -21679861.11823 4573 4451 17343750.00569 4574 4451 -36432062.04358 4452 4452 1632315315.374 4453 4452 97222220.26178 4454 4452 -4.172325134277e-05 4455 4452 17392720.97666 4456 4452 -97222221.42845 4457 4452 -2.145767211914e-06 4458 4452 -148365426.1266 4459 4452 -97222222.20624 4460 4452 -3.039836883545e-06 4461 4452 -406796532.3944 4462 4452 -2.801418304443e-06 4463 4452 -1.233816146851e-05 4464 4452 -148365426.1266 4465 4452 97222222.20624 4466 4452 -3.308057785034e-06 4554 4452 -46373434.23613 4555 4452 24305555.56354 4556 4452 21679861.11823 4557 4452 -175918799.4897 4558 4452 -24305555.27186 4559 4452 86719444.24762 4560 4452 8952264.76783 4561 4452 9.298324584961e-06 4562 4452 6.228685379028e-06 4563 4452 268847663.9159 4564 4452 24305555.07742 4565 4452 0.03653132915497 4566 4452 -28139091.37671 4567 4452 -24305555.36909 4568 4452 21679860.74398 4569 4452 -46373434.23611 4570 4452 -24305555.56353 4571 4452 -21679861.11823 4572 4452 -138827443.8751 4573 4452 -5.066394805908e-07 4574 4452 -86719444.43019 4575 4452 -46373434.23611 4576 4452 24305555.56353 4577 4452 -21679861.11823 4453 4453 1369805740.108 4454 4453 -2.145767211914e-06 4455 4453 -97222221.03956 4456 4453 -322883627.8625 4457 4453 4.798173904419e-06 4458 4453 -97222222.20624 4459 4453 -119197695.4315 4460 4453 2.831220626831e-07 4461 4453 -3.09944152832e-06 4462 4453 20983010.02827 4463 4453 -4.768371582031e-07 4464 4453 97222222.20624 4465 4453 -119197695.4315 4466 4453 -7.450580596924e-08 4554 4453 24305555.56354 4555 4453 -39081501.55876 4556 4453 -17343750.00569 4557 4453 -24305555.36908 4558 4453 -61681981.7616 4559 4453 17343749.94043 4560 4453 1.069903373718e-05 4561 4453 -83408755.55014 4562 4453 -69374999.9886 4563 4453 24305555.07742 4564 4453 203220270.0671 4565 4453 0.02920919656754 4566 4453 -24305555.27186 4567 4453 -113208178.6284 4568 4453 69374999.6084 4569 4453 -24305555.56353 4570 4453 -39081501.55875 4571 4453 -17343750.0057 4572 4453 -8.344650268555e-07 4573 4453 -31882558.21681 4574 4453 -3.278255462646e-07 4575 4453 24305555.56353 4576 4453 -39081501.55875 4577 4453 17343750.00569 4454 4454 1212545401.289 4455 4454 -1.788139343262e-06 4456 4454 3.75509262085e-06 4457 4454 8567490.576108 4458 4454 -2.890825271606e-06 4459 4454 3.8743019104e-07 4460 4454 -46719419.49861 4461 4454 -1.20997428894e-05 4462 4454 -4.768371582031e-07 4463 4454 -212506.0825927 4464 4454 -3.278255462646e-06 4465 4454 -2.086162567139e-07 4466 4454 -46719419.49861 4554 4454 21679861.11823 4555 4454 -17343750.0057 4556 4454 -36432062.04359 4557 4454 86719444.24762 4558 4454 17343749.9078 4559 4454 -110741809.7386 4560 4454 6.169080734253e-06 4561 4454 -69374999.9886 4562 4454 -72810997.49471 4563 4454 -0.03649973869324 4564 4454 -0.02921465039253 4565 4454 -68146756.53808 4566 4454 21679860.55685 4567 4454 69374999.49133 4568 4454 -84490851.68298 4569 4454 -21679861.11823 4570 4454 -17343750.0057 4571 4454 -36432062.04358 4572 4454 -86719444.43019 4573 4454 -2.682209014893e-07 4574 4454 -99061955.12461 4575 4454 -21679861.11823 4576 4454 17343750.00569 4577 4454 -36432062.04358 4455 4455 927468678.158 4456 4455 97222222.20623 4457 4455 -8.106231689453e-06 4461 4455 -148365426.1266 4462 4455 -97222222.20624 4463 4455 -3.039836883545e-06 4464 4455 -573726109.9308 4465 4455 -97222221.42845 4466 4455 8.940696716309e-07 4467 4455 18564155.00999 4468 4455 77777776.9872 4469 4455 2.861022949219e-06 4557 4455 -9282077.50499 4558 4455 29166666.38457 4559 4455 26015832.78049 4563 4455 -28139091.37673 4564 4455 -24305555.27187 4565 4455 -21679860.55685 4566 4455 139046393.5639 4567 4455 24305555.56354 4568 4455 17343888.84952 4572 4455 -46373434.23611 4573 4455 -24305555.56353 4574 4455 -21679861.11823 4575 4455 -175918799.4896 4576 4455 -24305555.36909 4577 4455 -86719444.24762 4578 4455 -9282077.505002 4579 4455 19444444.25638 4580 4455 -17343888.52033 4456 4456 781630025.6149 4457 4456 8.412431954121e-06 4461 4456 -97222222.20624 4462 4456 -119197695.4315 4463 4456 2.831220626831e-07 4464 4456 -97222221.03956 4465 4456 -116778839.2437 4466 4456 5.602836608887e-06 4467 4456 116666665.4808 4468 4456 18564155.00998 4469 4456 5.960464477539e-07 4557 4456 19444444.25638 4558 4456 -9282077.505 4559 4456 -13874999.9393 4563 4456 -24305555.36909 4564 4456 -113208178.6284 4565 4456 -69374999.49133 4566 4456 24305555.56354 4567 4456 102586730.4102 4568 4456 13874999.85143 4572 4456 -24305555.56353 4573 4456 -39081501.55875 4574 4456 -17343750.0057 4575 4456 -24305555.27187 4576 4456 -61681981.76159 4577 4456 -17343749.90781 4578 4456 29166666.38457 4579 4456 -9282077.504995 4580 4456 20812499.90894 4457 4457 728641235.3813 4461 4457 -2.890825271606e-06 4462 4457 3.8743019104e-07 4463 4457 -46719419.49861 4464 4457 4.172325134277e-07 4465 4457 4.887580871582e-06 4466 4457 -96436338.25295 4467 4457 2.503395080566e-06 4468 4457 1.251697540283e-06 4469 4457 49504413.35998 4557 4457 17343888.52033 4558 4457 -20812499.90895 4559 4457 -24752206.67999 4563 4457 -21679860.74398 4564 4457 -69374999.6084 4565 4457 -84490851.68299 4566 4457 -17343888.84952 4567 4457 -13874999.85144 4568 4457 -65361760.6378 4572 4457 -21679861.11823 4573 4457 -17343750.0057 4574 4457 -36432062.04358 4575 4457 -86719444.24762 4576 4457 -17343749.94044 4577 4457 -110741809.7386 4578 4457 -26015832.7805 4579 4457 13874999.9393 4580 4457 -24752206.67999 4458 4458 1483949894.094 4459 4458 7.867813110352e-06 4460 4458 -5.507469177246e-05 4461 4458 184322301.8864 4462 4458 -2.622604370117e-06 4463 4458 -1.358985900879e-05 4470 4458 -406796532.3944 4471 4458 -2.801418304443e-06 4472 4458 -1.233816146851e-05 4473 4458 -148365426.1266 4474 4458 97222222.20624 4475 4458 -3.308057785034e-06 4560 4458 -138827443.8752 4561 4458 2.682209014893e-07 4562 4458 86719444.4302 4563 4458 -46373434.23614 4564 4458 -24305555.56354 4565 4458 21679861.11823 4569 4458 222474230.8735 4570 4458 3.933906555176e-06 4571 4458 2.622604370117e-05 4572 4458 8952264.76783 4573 4458 -1.302361488342e-05 4574 4458 6.914138793945e-06 4581 4458 -138827443.8751 4582 4458 -5.066394805908e-07 4583 4458 -86719444.43019 4584 4458 -46373434.23611 4585 4458 24305555.56353 4586 4458 -21679861.11823 4459 4459 1250608048.648 4460 4459 -1.192092895508e-06 4461 4459 -3.159046173096e-06 4462 4459 -185121779.2034 4463 4459 8.046627044678e-07 4470 4459 -3.09944152832e-06 4471 4459 20983010.02827 4472 4459 -4.768371582031e-07 4473 4459 97222222.20624 4474 4459 -119197695.4315 4475 4459 -7.450580596924e-08 4560 4459 -2.294778823853e-06 4561 4459 -31882558.21685 4562 4459 2.682209014893e-07 4563 4459 -24305555.56354 4564 4459 -39081501.55876 4565 4459 17343750.0057 4569 4459 4.410743713379e-06 4570 4459 164138769.4832 4571 4459 -1.192092895508e-07 4572 4459 -1.156330108643e-05 4573 4459 -83408755.55014 4574 4459 69374999.9886 4581 4459 -8.344650268555e-07 4582 4459 -31882558.21681 4583 4459 -3.278255462646e-07 4584 4459 24305555.56353 4585 4459 -39081501.55875 4586 4459 17343750.00569 4460 4460 1165825984.246 4461 4460 -1.382827758789e-05 4462 4460 1.788139343262e-07 4463 4460 104791324.3853 4470 4460 -1.20997428894e-05 4471 4460 -4.768371582031e-07 4472 4460 -212506.0825927 4473 4460 -3.278255462646e-06 4474 4460 -2.086162567139e-07 4475 4460 -46719419.49861 4560 4460 86719444.4302 4561 4460 3.427267074585e-07 4562 4460 -99061955.12464 4563 4460 21679861.11823 4564 4460 17343750.0057 4565 4460 -36432062.04359 4569 4460 2.598762512207e-05 4570 4460 5.960464477539e-08 4571 4460 -104578818.0156 4572 4460 6.973743438721e-06 4573 4460 69374999.9886 4574 4460 -72810997.49471 4581 4460 -86719444.43019 4582 4460 -2.682209014893e-07 4583 4460 -99061955.12461 4584 4460 -21679861.11823 4585 4460 17343750.00569 4586 4460 -36432062.04358 4461 4461 1483949894.094 4462 4461 7.867813110352e-06 4463 4461 -5.507469177246e-05 4464 4461 184322301.8864 4465 4461 -2.622604370117e-06 4466 4461 -1.358985900879e-05 4470 4461 -148365426.1266 4471 4461 -97222222.20624 4472 4461 -3.039836883545e-06 4473 4461 -406796532.3944 4474 4461 -2.801418304443e-06 4475 4461 -1.233816146851e-05 4476 4461 -148365426.1266 4477 4461 97222222.20624 4478 4461 -3.308057785034e-06 4560 4461 -46373434.23613 4561 4461 24305555.56354 4562 4461 21679861.11823 4563 4461 -138827443.8752 4564 4461 2.682209014893e-07 4565 4461 86719444.4302 4566 4461 -46373434.23614 4567 4461 -24305555.56354 4568 4461 21679861.11823 4569 4461 8952264.76783 4570 4461 9.298324584961e-06 4571 4461 6.228685379028e-06 4572 4461 222474230.8735 4573 4461 3.933906555176e-06 4574 4461 2.622604370117e-05 4575 4461 8952264.76783 4576 4461 -1.302361488342e-05 4577 4461 6.914138793945e-06 4581 4461 -46373434.23611 4582 4461 -24305555.56353 4583 4461 -21679861.11823 4584 4461 -138827443.8751 4585 4461 -5.066394805908e-07 4586 4461 -86719444.43019 4587 4461 -46373434.23611 4588 4461 24305555.56353 4589 4461 -21679861.11823 4462 4462 1250608048.648 4463 4462 -1.192092895508e-06 4464 4462 -3.159046173096e-06 4465 4462 -185121779.2034 4466 4462 8.046627044678e-07 4470 4462 -97222222.20624 4471 4462 -119197695.4315 4472 4462 2.831220626831e-07 4473 4462 -3.09944152832e-06 4474 4462 20983010.02827 4475 4462 -4.768371582031e-07 4476 4462 97222222.20624 4477 4462 -119197695.4315 4478 4462 -7.450580596924e-08 4560 4462 24305555.56354 4561 4462 -39081501.55876 4562 4462 -17343750.00569 4563 4462 -2.294778823853e-06 4564 4462 -31882558.21685 4565 4462 2.682209014893e-07 4566 4462 -24305555.56354 4567 4462 -39081501.55876 4568 4462 17343750.0057 4569 4462 1.069903373718e-05 4570 4462 -83408755.55014 4571 4462 -69374999.9886 4572 4462 4.410743713379e-06 4573 4462 164138769.4832 4574 4462 -1.192092895508e-07 4575 4462 -1.156330108643e-05 4576 4462 -83408755.55014 4577 4462 69374999.9886 4581 4462 -24305555.56353 4582 4462 -39081501.55875 4583 4462 -17343750.0057 4584 4462 -8.344650268555e-07 4585 4462 -31882558.21681 4586 4462 -3.278255462646e-07 4587 4462 24305555.56353 4588 4462 -39081501.55875 4589 4462 17343750.00569 4463 4463 1165825984.246 4464 4463 -1.382827758789e-05 4465 4463 1.788139343262e-07 4466 4463 104791324.3853 4470 4463 -2.890825271606e-06 4471 4463 3.8743019104e-07 4472 4463 -46719419.49861 4473 4463 -1.20997428894e-05 4474 4463 -4.768371582031e-07 4475 4463 -212506.0825927 4476 4463 -3.278255462646e-06 4477 4463 -2.086162567139e-07 4478 4463 -46719419.49861 4560 4463 21679861.11823 4561 4463 -17343750.0057 4562 4463 -36432062.04359 4563 4463 86719444.4302 4564 4463 3.427267074585e-07 4565 4463 -99061955.12464 4566 4463 21679861.11823 4567 4463 17343750.0057 4568 4463 -36432062.04359 4569 4463 6.169080734253e-06 4570 4463 -69374999.9886 4571 4463 -72810997.49471 4572 4463 2.598762512207e-05 4573 4463 5.960464477539e-08 4574 4463 -104578818.0156 4575 4463 6.973743438721e-06 4576 4463 69374999.9886 4577 4463 -72810997.49471 4581 4463 -21679861.11823 4582 4463 -17343750.0057 4583 4463 -36432062.04358 4584 4463 -86719444.43019 4585 4463 -2.682209014893e-07 4586 4463 -99061955.12461 4587 4463 -21679861.11823 4588 4463 17343750.00569 4589 4463 -36432062.04358 4464 4464 1632315315.374 4465 4464 97222220.26178 4466 4464 -4.172325134277e-05 4467 4464 17392720.97666 4468 4464 -97222221.42845 4469 4464 -2.145767211914e-06 4473 4464 -148365426.1266 4474 4464 -97222222.20624 4475 4464 -3.039836883545e-06 4476 4464 -406796532.3944 4477 4464 -2.801418304443e-06 4478 4464 -1.233816146851e-05 4479 4464 -148365426.1266 4480 4464 97222222.20624 4481 4464 -3.308057785034e-06 4563 4464 -46373434.23613 4564 4464 24305555.56354 4565 4464 21679861.11823 4566 4464 -175918799.4897 4567 4464 -24305555.27186 4568 4464 86719444.24762 4572 4464 8952264.76783 4573 4464 9.298324584961e-06 4574 4464 6.228685379028e-06 4575 4464 268847663.9159 4576 4464 24305555.07742 4577 4464 0.03653132915497 4578 4464 -28139091.37671 4579 4464 -24305555.36909 4580 4464 21679860.74398 4584 4464 -46373434.23611 4585 4464 -24305555.56353 4586 4464 -21679861.11823 4587 4464 -138827443.8751 4588 4464 -5.066394805908e-07 4589 4464 -86719444.43019 4590 4464 -46373434.23611 4591 4464 24305555.56353 4592 4464 -21679861.11823 4465 4465 1369805740.108 4466 4465 -2.145767211914e-06 4467 4465 -97222221.03956 4468 4465 -322883627.8625 4469 4465 4.798173904419e-06 4473 4465 -97222222.20624 4474 4465 -119197695.4315 4475 4465 2.831220626831e-07 4476 4465 -3.09944152832e-06 4477 4465 20983010.02827 4478 4465 -4.768371582031e-07 4479 4465 97222222.20624 4480 4465 -119197695.4315 4481 4465 -7.450580596924e-08 4563 4465 24305555.56354 4564 4465 -39081501.55876 4565 4465 -17343750.00569 4566 4465 -24305555.36908 4567 4465 -61681981.7616 4568 4465 17343749.94043 4572 4465 1.069903373718e-05 4573 4465 -83408755.55014 4574 4465 -69374999.9886 4575 4465 24305555.07742 4576 4465 203220270.0671 4577 4465 0.02920919656754 4578 4465 -24305555.27186 4579 4465 -113208178.6284 4580 4465 69374999.6084 4584 4465 -24305555.56353 4585 4465 -39081501.55875 4586 4465 -17343750.0057 4587 4465 -8.344650268555e-07 4588 4465 -31882558.21681 4589 4465 -3.278255462646e-07 4590 4465 24305555.56353 4591 4465 -39081501.55875 4592 4465 17343750.00569 4466 4466 1212545401.289 4467 4466 -1.788139343262e-06 4468 4466 3.75509262085e-06 4469 4466 8567490.576108 4473 4466 -2.890825271606e-06 4474 4466 3.8743019104e-07 4475 4466 -46719419.49861 4476 4466 -1.20997428894e-05 4477 4466 -4.768371582031e-07 4478 4466 -212506.0825927 4479 4466 -3.278255462646e-06 4480 4466 -2.086162567139e-07 4481 4466 -46719419.49861 4563 4466 21679861.11823 4564 4466 -17343750.0057 4565 4466 -36432062.04359 4566 4466 86719444.24762 4567 4466 17343749.9078 4568 4466 -110741809.7386 4572 4466 6.169080734253e-06 4573 4466 -69374999.9886 4574 4466 -72810997.49471 4575 4466 -0.03649973869324 4576 4466 -0.02921465039253 4577 4466 -68146756.53808 4578 4466 21679860.55685 4579 4466 69374999.49133 4580 4466 -84490851.68298 4584 4466 -21679861.11823 4585 4466 -17343750.0057 4586 4466 -36432062.04358 4587 4466 -86719444.43019 4588 4466 -2.682209014893e-07 4589 4466 -99061955.12461 4590 4466 -21679861.11823 4591 4466 17343750.00569 4592 4466 -36432062.04358 4467 4467 927468678.158 4468 4467 97222222.20623 4469 4467 -8.106231689453e-06 4476 4467 -148365426.1266 4477 4467 -97222222.20624 4478 4467 -3.039836883545e-06 4479 4467 -573726109.9308 4480 4467 -97222221.42845 4481 4467 8.940696716309e-07 4482 4467 18564155.00999 4483 4467 77777776.9872 4484 4467 2.861022949219e-06 4566 4467 -9282077.50499 4567 4467 29166666.38457 4568 4467 26015832.78049 4575 4467 -28139091.37673 4576 4467 -24305555.27187 4577 4467 -21679860.55685 4578 4467 139046393.5639 4579 4467 24305555.56354 4580 4467 17343888.84952 4587 4467 -46373434.23611 4588 4467 -24305555.56353 4589 4467 -21679861.11823 4590 4467 -175918799.4896 4591 4467 -24305555.36909 4592 4467 -86719444.24762 4593 4467 -9282077.505002 4594 4467 19444444.25638 4595 4467 -17343888.52033 4468 4468 781630025.6149 4469 4468 8.412431954121e-06 4476 4468 -97222222.20624 4477 4468 -119197695.4315 4478 4468 2.831220626831e-07 4479 4468 -97222221.03956 4480 4468 -116778839.2437 4481 4468 5.602836608887e-06 4482 4468 116666665.4808 4483 4468 18564155.00998 4484 4468 5.960464477539e-07 4566 4468 19444444.25638 4567 4468 -9282077.505 4568 4468 -13874999.9393 4575 4468 -24305555.36909 4576 4468 -113208178.6284 4577 4468 -69374999.49133 4578 4468 24305555.56354 4579 4468 102586730.4102 4580 4468 13874999.85143 4587 4468 -24305555.56353 4588 4468 -39081501.55875 4589 4468 -17343750.0057 4590 4468 -24305555.27187 4591 4468 -61681981.76159 4592 4468 -17343749.90781 4593 4468 29166666.38457 4594 4468 -9282077.504995 4595 4468 20812499.90894 4469 4469 728641235.3813 4476 4469 -2.890825271606e-06 4477 4469 3.8743019104e-07 4478 4469 -46719419.49861 4479 4469 4.172325134277e-07 4480 4469 4.887580871582e-06 4481 4469 -96436338.25295 4482 4469 2.503395080566e-06 4483 4469 1.251697540283e-06 4484 4469 49504413.35998 4566 4469 17343888.52033 4567 4469 -20812499.90895 4568 4469 -24752206.67999 4575 4469 -21679860.74398 4576 4469 -69374999.6084 4577 4469 -84490851.68299 4578 4469 -17343888.84952 4579 4469 -13874999.85144 4580 4469 -65361760.6378 4587 4469 -21679861.11823 4588 4469 -17343750.0057 4589 4469 -36432062.04358 4590 4469 -86719444.24762 4591 4469 -17343749.94044 4592 4469 -110741809.7386 4593 4469 -26015832.7805 4594 4469 13874999.9393 4595 4469 -24752206.67999 4470 4470 1483949894.094 4471 4470 7.867813110352e-06 4472 4470 -5.507469177246e-05 4473 4470 184322301.8864 4474 4470 -2.622604370117e-06 4475 4470 -1.358985900879e-05 4485 4470 -406796532.3944 4486 4470 -2.801418304443e-06 4487 4470 -1.233816146851e-05 4488 4470 -148365426.1266 4489 4470 97222222.20624 4490 4470 -3.308057785034e-06 4569 4470 -138827443.8752 4570 4470 2.682209014893e-07 4571 4470 86719444.4302 4572 4470 -46373434.23614 4573 4470 -24305555.56354 4574 4470 21679861.11823 4581 4470 222474230.8735 4582 4470 3.933906555176e-06 4583 4470 2.622604370117e-05 4584 4470 8952264.76783 4585 4470 -1.302361488342e-05 4586 4470 6.914138793945e-06 4596 4470 -138827443.8751 4597 4470 -5.066394805908e-07 4598 4470 -86719444.43019 4599 4470 -46373434.23611 4600 4470 24305555.56353 4601 4470 -21679861.11823 4471 4471 1250608048.648 4472 4471 -1.192092895508e-06 4473 4471 -3.159046173096e-06 4474 4471 -185121779.2034 4475 4471 8.046627044678e-07 4485 4471 -3.09944152832e-06 4486 4471 20983010.02827 4487 4471 -4.768371582031e-07 4488 4471 97222222.20624 4489 4471 -119197695.4315 4490 4471 -7.450580596924e-08 4569 4471 -2.294778823853e-06 4570 4471 -31882558.21685 4571 4471 2.682209014893e-07 4572 4471 -24305555.56354 4573 4471 -39081501.55876 4574 4471 17343750.0057 4581 4471 4.410743713379e-06 4582 4471 164138769.4832 4583 4471 -1.192092895508e-07 4584 4471 -1.156330108643e-05 4585 4471 -83408755.55014 4586 4471 69374999.9886 4596 4471 -8.344650268555e-07 4597 4471 -31882558.21681 4598 4471 -3.278255462646e-07 4599 4471 24305555.56353 4600 4471 -39081501.55875 4601 4471 17343750.00569 4472 4472 1165825984.246 4473 4472 -1.382827758789e-05 4474 4472 1.788139343262e-07 4475 4472 104791324.3853 4485 4472 -1.20997428894e-05 4486 4472 -4.768371582031e-07 4487 4472 -212506.0825927 4488 4472 -3.278255462646e-06 4489 4472 -2.086162567139e-07 4490 4472 -46719419.49861 4569 4472 86719444.4302 4570 4472 3.427267074585e-07 4571 4472 -99061955.12464 4572 4472 21679861.11823 4573 4472 17343750.0057 4574 4472 -36432062.04359 4581 4472 2.598762512207e-05 4582 4472 5.960464477539e-08 4583 4472 -104578818.0156 4584 4472 6.973743438721e-06 4585 4472 69374999.9886 4586 4472 -72810997.49471 4596 4472 -86719444.43019 4597 4472 -2.682209014893e-07 4598 4472 -99061955.12461 4599 4472 -21679861.11823 4600 4472 17343750.00569 4601 4472 -36432062.04358 4473 4473 1483949894.094 4474 4473 7.867813110352e-06 4475 4473 -5.507469177246e-05 4476 4473 184322301.8864 4477 4473 -2.622604370117e-06 4478 4473 -1.358985900879e-05 4485 4473 -148365426.1266 4486 4473 -97222222.20624 4487 4473 -3.039836883545e-06 4488 4473 -406796532.3944 4489 4473 -2.801418304443e-06 4490 4473 -1.233816146851e-05 4491 4473 -148365426.1266 4492 4473 97222222.20624 4493 4473 -3.308057785034e-06 4569 4473 -46373434.23613 4570 4473 24305555.56354 4571 4473 21679861.11823 4572 4473 -138827443.8752 4573 4473 2.682209014893e-07 4574 4473 86719444.4302 4575 4473 -46373434.23614 4576 4473 -24305555.56354 4577 4473 21679861.11823 4581 4473 8952264.76783 4582 4473 9.298324584961e-06 4583 4473 6.228685379028e-06 4584 4473 222474230.8735 4585 4473 3.933906555176e-06 4586 4473 2.622604370117e-05 4587 4473 8952264.76783 4588 4473 -1.302361488342e-05 4589 4473 6.914138793945e-06 4596 4473 -46373434.23611 4597 4473 -24305555.56353 4598 4473 -21679861.11823 4599 4473 -138827443.8751 4600 4473 -5.066394805908e-07 4601 4473 -86719444.43019 4602 4473 -46373434.23611 4603 4473 24305555.56353 4604 4473 -21679861.11823 4474 4474 1250608048.648 4475 4474 -1.192092895508e-06 4476 4474 -3.159046173096e-06 4477 4474 -185121779.2034 4478 4474 8.046627044678e-07 4485 4474 -97222222.20624 4486 4474 -119197695.4315 4487 4474 2.831220626831e-07 4488 4474 -3.09944152832e-06 4489 4474 20983010.02827 4490 4474 -4.768371582031e-07 4491 4474 97222222.20624 4492 4474 -119197695.4315 4493 4474 -7.450580596924e-08 4569 4474 24305555.56354 4570 4474 -39081501.55876 4571 4474 -17343750.00569 4572 4474 -2.294778823853e-06 4573 4474 -31882558.21685 4574 4474 2.682209014893e-07 4575 4474 -24305555.56354 4576 4474 -39081501.55876 4577 4474 17343750.0057 4581 4474 1.069903373718e-05 4582 4474 -83408755.55014 4583 4474 -69374999.9886 4584 4474 4.410743713379e-06 4585 4474 164138769.4832 4586 4474 -1.192092895508e-07 4587 4474 -1.156330108643e-05 4588 4474 -83408755.55014 4589 4474 69374999.9886 4596 4474 -24305555.56353 4597 4474 -39081501.55875 4598 4474 -17343750.0057 4599 4474 -8.344650268555e-07 4600 4474 -31882558.21681 4601 4474 -3.278255462646e-07 4602 4474 24305555.56353 4603 4474 -39081501.55875 4604 4474 17343750.00569 4475 4475 1165825984.246 4476 4475 -1.382827758789e-05 4477 4475 1.788139343262e-07 4478 4475 104791324.3853 4485 4475 -2.890825271606e-06 4486 4475 3.8743019104e-07 4487 4475 -46719419.49861 4488 4475 -1.20997428894e-05 4489 4475 -4.768371582031e-07 4490 4475 -212506.0825927 4491 4475 -3.278255462646e-06 4492 4475 -2.086162567139e-07 4493 4475 -46719419.49861 4569 4475 21679861.11823 4570 4475 -17343750.0057 4571 4475 -36432062.04359 4572 4475 86719444.4302 4573 4475 3.427267074585e-07 4574 4475 -99061955.12464 4575 4475 21679861.11823 4576 4475 17343750.0057 4577 4475 -36432062.04359 4581 4475 6.169080734253e-06 4582 4475 -69374999.9886 4583 4475 -72810997.49471 4584 4475 2.598762512207e-05 4585 4475 5.960464477539e-08 4586 4475 -104578818.0156 4587 4475 6.973743438721e-06 4588 4475 69374999.9886 4589 4475 -72810997.49471 4596 4475 -21679861.11823 4597 4475 -17343750.0057 4598 4475 -36432062.04358 4599 4475 -86719444.43019 4600 4475 -2.682209014893e-07 4601 4475 -99061955.12461 4602 4475 -21679861.11823 4603 4475 17343750.00569 4604 4475 -36432062.04358 4476 4476 1483949894.094 4477 4476 7.867813110352e-06 4478 4476 -5.507469177246e-05 4479 4476 184322301.8864 4480 4476 -2.622604370117e-06 4481 4476 -1.358985900879e-05 4488 4476 -148365426.1266 4489 4476 -97222222.20624 4490 4476 -3.039836883545e-06 4491 4476 -406796532.3944 4492 4476 -2.801418304443e-06 4493 4476 -1.233816146851e-05 4494 4476 -148365426.1266 4495 4476 97222222.20624 4496 4476 -3.308057785034e-06 4572 4476 -46373434.23613 4573 4476 24305555.56354 4574 4476 21679861.11823 4575 4476 -138827443.8752 4576 4476 2.682209014893e-07 4577 4476 86719444.4302 4578 4476 -46373434.23614 4579 4476 -24305555.56354 4580 4476 21679861.11823 4584 4476 8952264.76783 4585 4476 9.298324584961e-06 4586 4476 6.228685379028e-06 4587 4476 222474230.8735 4588 4476 3.933906555176e-06 4589 4476 2.622604370117e-05 4590 4476 8952264.76783 4591 4476 -1.302361488342e-05 4592 4476 6.914138793945e-06 4599 4476 -46373434.23611 4600 4476 -24305555.56353 4601 4476 -21679861.11823 4602 4476 -138827443.8751 4603 4476 -5.066394805908e-07 4604 4476 -86719444.43019 4605 4476 -46373434.23611 4606 4476 24305555.56353 4607 4476 -21679861.11823 4477 4477 1250608048.648 4478 4477 -1.192092895508e-06 4479 4477 -3.159046173096e-06 4480 4477 -185121779.2034 4481 4477 8.046627044678e-07 4488 4477 -97222222.20624 4489 4477 -119197695.4315 4490 4477 2.831220626831e-07 4491 4477 -3.09944152832e-06 4492 4477 20983010.02827 4493 4477 -4.768371582031e-07 4494 4477 97222222.20624 4495 4477 -119197695.4315 4496 4477 -7.450580596924e-08 4572 4477 24305555.56354 4573 4477 -39081501.55876 4574 4477 -17343750.00569 4575 4477 -2.294778823853e-06 4576 4477 -31882558.21685 4577 4477 2.682209014893e-07 4578 4477 -24305555.56354 4579 4477 -39081501.55876 4580 4477 17343750.0057 4584 4477 1.069903373718e-05 4585 4477 -83408755.55014 4586 4477 -69374999.9886 4587 4477 4.410743713379e-06 4588 4477 164138769.4832 4589 4477 -1.192092895508e-07 4590 4477 -1.156330108643e-05 4591 4477 -83408755.55014 4592 4477 69374999.9886 4599 4477 -24305555.56353 4600 4477 -39081501.55875 4601 4477 -17343750.0057 4602 4477 -8.344650268555e-07 4603 4477 -31882558.21681 4604 4477 -3.278255462646e-07 4605 4477 24305555.56353 4606 4477 -39081501.55875 4607 4477 17343750.00569 4478 4478 1165825984.246 4479 4478 -1.382827758789e-05 4480 4478 1.788139343262e-07 4481 4478 104791324.3853 4488 4478 -2.890825271606e-06 4489 4478 3.8743019104e-07 4490 4478 -46719419.49861 4491 4478 -1.20997428894e-05 4492 4478 -4.768371582031e-07 4493 4478 -212506.0825927 4494 4478 -3.278255462646e-06 4495 4478 -2.086162567139e-07 4496 4478 -46719419.49861 4572 4478 21679861.11823 4573 4478 -17343750.0057 4574 4478 -36432062.04359 4575 4478 86719444.4302 4576 4478 3.427267074585e-07 4577 4478 -99061955.12464 4578 4478 21679861.11823 4579 4478 17343750.0057 4580 4478 -36432062.04359 4584 4478 6.169080734253e-06 4585 4478 -69374999.9886 4586 4478 -72810997.49471 4587 4478 2.598762512207e-05 4588 4478 5.960464477539e-08 4589 4478 -104578818.0156 4590 4478 6.973743438721e-06 4591 4478 69374999.9886 4592 4478 -72810997.49471 4599 4478 -21679861.11823 4600 4478 -17343750.0057 4601 4478 -36432062.04358 4602 4478 -86719444.43019 4603 4478 -2.682209014893e-07 4604 4478 -99061955.12461 4605 4478 -21679861.11823 4606 4478 17343750.00569 4607 4478 -36432062.04358 4479 4479 1632315315.374 4480 4479 97222220.26178 4481 4479 -4.172325134277e-05 4482 4479 17392720.97666 4483 4479 -97222221.42845 4484 4479 -2.145767211914e-06 4491 4479 -148365426.1266 4492 4479 -97222222.20624 4493 4479 -3.039836883545e-06 4494 4479 -406796532.3944 4495 4479 -2.801418304443e-06 4496 4479 -1.233816146851e-05 4497 4479 -148365426.1266 4498 4479 97222222.20624 4499 4479 -3.308057785034e-06 4575 4479 -46373434.23613 4576 4479 24305555.56354 4577 4479 21679861.11823 4578 4479 -175918799.4897 4579 4479 -24305555.27186 4580 4479 86719444.24762 4587 4479 8952264.76783 4588 4479 9.298324584961e-06 4589 4479 6.228685379028e-06 4590 4479 268847663.9159 4591 4479 24305555.07742 4592 4479 0.03653132915497 4593 4479 -28139091.37671 4594 4479 -24305555.36909 4595 4479 21679860.74398 4602 4479 -46373434.23611 4603 4479 -24305555.56353 4604 4479 -21679861.11823 4605 4479 -138827443.8751 4606 4479 -5.066394805908e-07 4607 4479 -86719444.43019 4608 4479 -46373434.23611 4609 4479 24305555.56353 4610 4479 -21679861.11823 4480 4480 1369805740.108 4481 4480 -2.145767211914e-06 4482 4480 -97222221.03956 4483 4480 -322883627.8625 4484 4480 4.798173904419e-06 4491 4480 -97222222.20624 4492 4480 -119197695.4315 4493 4480 2.831220626831e-07 4494 4480 -3.09944152832e-06 4495 4480 20983010.02827 4496 4480 -4.768371582031e-07 4497 4480 97222222.20624 4498 4480 -119197695.4315 4499 4480 -7.450580596924e-08 4575 4480 24305555.56354 4576 4480 -39081501.55876 4577 4480 -17343750.00569 4578 4480 -24305555.36908 4579 4480 -61681981.7616 4580 4480 17343749.94043 4587 4480 1.069903373718e-05 4588 4480 -83408755.55014 4589 4480 -69374999.9886 4590 4480 24305555.07742 4591 4480 203220270.0671 4592 4480 0.02920919656754 4593 4480 -24305555.27186 4594 4480 -113208178.6284 4595 4480 69374999.6084 4602 4480 -24305555.56353 4603 4480 -39081501.55875 4604 4480 -17343750.0057 4605 4480 -8.344650268555e-07 4606 4480 -31882558.21681 4607 4480 -3.278255462646e-07 4608 4480 24305555.56353 4609 4480 -39081501.55875 4610 4480 17343750.00569 4481 4481 1212545401.289 4482 4481 -1.788139343262e-06 4483 4481 3.75509262085e-06 4484 4481 8567490.576108 4491 4481 -2.890825271606e-06 4492 4481 3.8743019104e-07 4493 4481 -46719419.49861 4494 4481 -1.20997428894e-05 4495 4481 -4.768371582031e-07 4496 4481 -212506.0825927 4497 4481 -3.278255462646e-06 4498 4481 -2.086162567139e-07 4499 4481 -46719419.49861 4575 4481 21679861.11823 4576 4481 -17343750.0057 4577 4481 -36432062.04359 4578 4481 86719444.24762 4579 4481 17343749.9078 4580 4481 -110741809.7386 4587 4481 6.169080734253e-06 4588 4481 -69374999.9886 4589 4481 -72810997.49471 4590 4481 -0.03649973869324 4591 4481 -0.02921465039253 4592 4481 -68146756.53808 4593 4481 21679860.55685 4594 4481 69374999.49133 4595 4481 -84490851.68298 4602 4481 -21679861.11823 4603 4481 -17343750.0057 4604 4481 -36432062.04358 4605 4481 -86719444.43019 4606 4481 -2.682209014893e-07 4607 4481 -99061955.12461 4608 4481 -21679861.11823 4609 4481 17343750.00569 4610 4481 -36432062.04358 4482 4482 927468678.158 4483 4482 97222222.20623 4484 4482 -8.106231689453e-06 4494 4482 -148365426.1266 4495 4482 -97222222.20624 4496 4482 -3.039836883545e-06 4497 4482 -573726109.9308 4498 4482 -97222221.42845 4499 4482 8.940696716309e-07 4500 4482 18564155.00999 4501 4482 77777776.9872 4502 4482 2.861022949219e-06 4578 4482 -9282077.50499 4579 4482 29166666.38457 4580 4482 26015832.78049 4590 4482 -28139091.37673 4591 4482 -24305555.27187 4592 4482 -21679860.55685 4593 4482 139046393.5639 4594 4482 24305555.56354 4595 4482 17343888.84952 4605 4482 -46373434.23611 4606 4482 -24305555.56353 4607 4482 -21679861.11823 4608 4482 -175918799.4896 4609 4482 -24305555.36909 4610 4482 -86719444.24762 4611 4482 -9282077.505002 4612 4482 19444444.25638 4613 4482 -17343888.52033 4483 4483 781630025.6149 4484 4483 8.412431954121e-06 4494 4483 -97222222.20624 4495 4483 -119197695.4315 4496 4483 2.831220626831e-07 4497 4483 -97222221.03956 4498 4483 -116778839.2437 4499 4483 5.602836608887e-06 4500 4483 116666665.4808 4501 4483 18564155.00998 4502 4483 5.960464477539e-07 4578 4483 19444444.25638 4579 4483 -9282077.505 4580 4483 -13874999.9393 4590 4483 -24305555.36909 4591 4483 -113208178.6284 4592 4483 -69374999.49133 4593 4483 24305555.56354 4594 4483 102586730.4102 4595 4483 13874999.85143 4605 4483 -24305555.56353 4606 4483 -39081501.55875 4607 4483 -17343750.0057 4608 4483 -24305555.27187 4609 4483 -61681981.76159 4610 4483 -17343749.90781 4611 4483 29166666.38457 4612 4483 -9282077.504995 4613 4483 20812499.90894 4484 4484 728641235.3813 4494 4484 -2.890825271606e-06 4495 4484 3.8743019104e-07 4496 4484 -46719419.49861 4497 4484 4.172325134277e-07 4498 4484 4.887580871582e-06 4499 4484 -96436338.25295 4500 4484 2.503395080566e-06 4501 4484 1.251697540283e-06 4502 4484 49504413.35998 4578 4484 17343888.52033 4579 4484 -20812499.90895 4580 4484 -24752206.67999 4590 4484 -21679860.74398 4591 4484 -69374999.6084 4592 4484 -84490851.68299 4593 4484 -17343888.84952 4594 4484 -13874999.85144 4595 4484 -65361760.6378 4605 4484 -21679861.11823 4606 4484 -17343750.0057 4607 4484 -36432062.04358 4608 4484 -86719444.24762 4609 4484 -17343749.94044 4610 4484 -110741809.7386 4611 4484 -26015832.7805 4612 4484 13874999.9393 4613 4484 -24752206.67999 4485 4485 1483949894.094 4486 4485 7.867813110352e-06 4487 4485 -5.507469177246e-05 4488 4485 184322301.8864 4489 4485 -2.622604370117e-06 4490 4485 -1.358985900879e-05 4503 4485 -406796532.3944 4504 4485 -2.801418304443e-06 4505 4485 -1.233816146851e-05 4506 4485 -148365426.1266 4507 4485 97222222.20624 4508 4485 -3.308057785034e-06 4581 4485 -138827443.8752 4582 4485 2.682209014893e-07 4583 4485 86719444.4302 4584 4485 -46373434.23614 4585 4485 -24305555.56354 4586 4485 21679861.11823 4596 4485 222474230.8735 4597 4485 3.933906555176e-06 4598 4485 2.622604370117e-05 4599 4485 8952264.76783 4600 4485 -1.302361488342e-05 4601 4485 6.914138793945e-06 4614 4485 -138827443.8751 4615 4485 -5.066394805908e-07 4616 4485 -86719444.43019 4617 4485 -46373434.23611 4618 4485 24305555.56353 4619 4485 -21679861.11823 4486 4486 1250608048.648 4487 4486 -1.192092895508e-06 4488 4486 -3.159046173096e-06 4489 4486 -185121779.2034 4490 4486 8.046627044678e-07 4503 4486 -3.09944152832e-06 4504 4486 20983010.02827 4505 4486 -4.768371582031e-07 4506 4486 97222222.20624 4507 4486 -119197695.4315 4508 4486 -7.450580596924e-08 4581 4486 -2.294778823853e-06 4582 4486 -31882558.21685 4583 4486 2.682209014893e-07 4584 4486 -24305555.56354 4585 4486 -39081501.55876 4586 4486 17343750.0057 4596 4486 4.410743713379e-06 4597 4486 164138769.4832 4598 4486 -1.192092895508e-07 4599 4486 -1.156330108643e-05 4600 4486 -83408755.55014 4601 4486 69374999.9886 4614 4486 -8.344650268555e-07 4615 4486 -31882558.21681 4616 4486 -3.278255462646e-07 4617 4486 24305555.56353 4618 4486 -39081501.55875 4619 4486 17343750.00569 4487 4487 1165825984.246 4488 4487 -1.382827758789e-05 4489 4487 1.788139343262e-07 4490 4487 104791324.3853 4503 4487 -1.20997428894e-05 4504 4487 -4.768371582031e-07 4505 4487 -212506.0825927 4506 4487 -3.278255462646e-06 4507 4487 -2.086162567139e-07 4508 4487 -46719419.49861 4581 4487 86719444.4302 4582 4487 3.427267074585e-07 4583 4487 -99061955.12464 4584 4487 21679861.11823 4585 4487 17343750.0057 4586 4487 -36432062.04359 4596 4487 2.598762512207e-05 4597 4487 5.960464477539e-08 4598 4487 -104578818.0156 4599 4487 6.973743438721e-06 4600 4487 69374999.9886 4601 4487 -72810997.49471 4614 4487 -86719444.43019 4615 4487 -2.682209014893e-07 4616 4487 -99061955.12461 4617 4487 -21679861.11823 4618 4487 17343750.00569 4619 4487 -36432062.04358 4488 4488 1483949894.094 4489 4488 7.867813110352e-06 4490 4488 -5.507469177246e-05 4491 4488 184322301.8864 4492 4488 -2.622604370117e-06 4493 4488 -1.358985900879e-05 4503 4488 -148365426.1266 4504 4488 -97222222.20624 4505 4488 -3.039836883545e-06 4506 4488 -406796532.3944 4507 4488 -2.801418304443e-06 4508 4488 -1.233816146851e-05 4509 4488 -148365426.1266 4510 4488 97222222.20624 4511 4488 -3.308057785034e-06 4581 4488 -46373434.23613 4582 4488 24305555.56354 4583 4488 21679861.11823 4584 4488 -138827443.8752 4585 4488 2.682209014893e-07 4586 4488 86719444.4302 4587 4488 -46373434.23614 4588 4488 -24305555.56354 4589 4488 21679861.11823 4596 4488 8952264.76783 4597 4488 9.298324584961e-06 4598 4488 6.228685379028e-06 4599 4488 222474230.8735 4600 4488 3.933906555176e-06 4601 4488 2.622604370117e-05 4602 4488 8952264.76783 4603 4488 -1.302361488342e-05 4604 4488 6.914138793945e-06 4614 4488 -46373434.23611 4615 4488 -24305555.56353 4616 4488 -21679861.11823 4617 4488 -138827443.8751 4618 4488 -5.066394805908e-07 4619 4488 -86719444.43019 4620 4488 -46373434.23611 4621 4488 24305555.56353 4622 4488 -21679861.11823 4489 4489 1250608048.648 4490 4489 -1.192092895508e-06 4491 4489 -3.159046173096e-06 4492 4489 -185121779.2034 4493 4489 8.046627044678e-07 4503 4489 -97222222.20624 4504 4489 -119197695.4315 4505 4489 2.831220626831e-07 4506 4489 -3.09944152832e-06 4507 4489 20983010.02827 4508 4489 -4.768371582031e-07 4509 4489 97222222.20624 4510 4489 -119197695.4315 4511 4489 -7.450580596924e-08 4581 4489 24305555.56354 4582 4489 -39081501.55876 4583 4489 -17343750.00569 4584 4489 -2.294778823853e-06 4585 4489 -31882558.21685 4586 4489 2.682209014893e-07 4587 4489 -24305555.56354 4588 4489 -39081501.55876 4589 4489 17343750.0057 4596 4489 1.069903373718e-05 4597 4489 -83408755.55014 4598 4489 -69374999.9886 4599 4489 4.410743713379e-06 4600 4489 164138769.4832 4601 4489 -1.192092895508e-07 4602 4489 -1.156330108643e-05 4603 4489 -83408755.55014 4604 4489 69374999.9886 4614 4489 -24305555.56353 4615 4489 -39081501.55875 4616 4489 -17343750.0057 4617 4489 -8.344650268555e-07 4618 4489 -31882558.21681 4619 4489 -3.278255462646e-07 4620 4489 24305555.56353 4621 4489 -39081501.55875 4622 4489 17343750.00569 4490 4490 1165825984.246 4491 4490 -1.382827758789e-05 4492 4490 1.788139343262e-07 4493 4490 104791324.3853 4503 4490 -2.890825271606e-06 4504 4490 3.8743019104e-07 4505 4490 -46719419.49861 4506 4490 -1.20997428894e-05 4507 4490 -4.768371582031e-07 4508 4490 -212506.0825927 4509 4490 -3.278255462646e-06 4510 4490 -2.086162567139e-07 4511 4490 -46719419.49861 4581 4490 21679861.11823 4582 4490 -17343750.0057 4583 4490 -36432062.04359 4584 4490 86719444.4302 4585 4490 3.427267074585e-07 4586 4490 -99061955.12464 4587 4490 21679861.11823 4588 4490 17343750.0057 4589 4490 -36432062.04359 4596 4490 6.169080734253e-06 4597 4490 -69374999.9886 4598 4490 -72810997.49471 4599 4490 2.598762512207e-05 4600 4490 5.960464477539e-08 4601 4490 -104578818.0156 4602 4490 6.973743438721e-06 4603 4490 69374999.9886 4604 4490 -72810997.49471 4614 4490 -21679861.11823 4615 4490 -17343750.0057 4616 4490 -36432062.04358 4617 4490 -86719444.43019 4618 4490 -2.682209014893e-07 4619 4490 -99061955.12461 4620 4490 -21679861.11823 4621 4490 17343750.00569 4622 4490 -36432062.04358 4491 4491 1483949894.094 4492 4491 7.867813110352e-06 4493 4491 -5.507469177246e-05 4494 4491 184322301.8864 4495 4491 -2.622604370117e-06 4496 4491 -1.358985900879e-05 4506 4491 -148365426.1266 4507 4491 -97222222.20624 4508 4491 -3.039836883545e-06 4509 4491 -406796532.3944 4510 4491 -2.801418304443e-06 4511 4491 -1.233816146851e-05 4512 4491 -148365426.1266 4513 4491 97222222.20624 4514 4491 -3.308057785034e-06 4584 4491 -46373434.23613 4585 4491 24305555.56354 4586 4491 21679861.11823 4587 4491 -138827443.8752 4588 4491 2.682209014893e-07 4589 4491 86719444.4302 4590 4491 -46373434.23614 4591 4491 -24305555.56354 4592 4491 21679861.11823 4599 4491 8952264.76783 4600 4491 9.298324584961e-06 4601 4491 6.228685379028e-06 4602 4491 222474230.8735 4603 4491 3.933906555176e-06 4604 4491 2.622604370117e-05 4605 4491 8952264.76783 4606 4491 -1.302361488342e-05 4607 4491 6.914138793945e-06 4617 4491 -46373434.23611 4618 4491 -24305555.56353 4619 4491 -21679861.11823 4620 4491 -138827443.8751 4621 4491 -5.066394805908e-07 4622 4491 -86719444.43019 4623 4491 -46373434.23611 4624 4491 24305555.56353 4625 4491 -21679861.11823 4492 4492 1250608048.648 4493 4492 -1.192092895508e-06 4494 4492 -3.159046173096e-06 4495 4492 -185121779.2034 4496 4492 8.046627044678e-07 4506 4492 -97222222.20624 4507 4492 -119197695.4315 4508 4492 2.831220626831e-07 4509 4492 -3.09944152832e-06 4510 4492 20983010.02827 4511 4492 -4.768371582031e-07 4512 4492 97222222.20624 4513 4492 -119197695.4315 4514 4492 -7.450580596924e-08 4584 4492 24305555.56354 4585 4492 -39081501.55876 4586 4492 -17343750.00569 4587 4492 -2.294778823853e-06 4588 4492 -31882558.21685 4589 4492 2.682209014893e-07 4590 4492 -24305555.56354 4591 4492 -39081501.55876 4592 4492 17343750.0057 4599 4492 1.069903373718e-05 4600 4492 -83408755.55014 4601 4492 -69374999.9886 4602 4492 4.410743713379e-06 4603 4492 164138769.4832 4604 4492 -1.192092895508e-07 4605 4492 -1.156330108643e-05 4606 4492 -83408755.55014 4607 4492 69374999.9886 4617 4492 -24305555.56353 4618 4492 -39081501.55875 4619 4492 -17343750.0057 4620 4492 -8.344650268555e-07 4621 4492 -31882558.21681 4622 4492 -3.278255462646e-07 4623 4492 24305555.56353 4624 4492 -39081501.55875 4625 4492 17343750.00569 4493 4493 1165825984.246 4494 4493 -1.382827758789e-05 4495 4493 1.788139343262e-07 4496 4493 104791324.3853 4506 4493 -2.890825271606e-06 4507 4493 3.8743019104e-07 4508 4493 -46719419.49861 4509 4493 -1.20997428894e-05 4510 4493 -4.768371582031e-07 4511 4493 -212506.0825927 4512 4493 -3.278255462646e-06 4513 4493 -2.086162567139e-07 4514 4493 -46719419.49861 4584 4493 21679861.11823 4585 4493 -17343750.0057 4586 4493 -36432062.04359 4587 4493 86719444.4302 4588 4493 3.427267074585e-07 4589 4493 -99061955.12464 4590 4493 21679861.11823 4591 4493 17343750.0057 4592 4493 -36432062.04359 4599 4493 6.169080734253e-06 4600 4493 -69374999.9886 4601 4493 -72810997.49471 4602 4493 2.598762512207e-05 4603 4493 5.960464477539e-08 4604 4493 -104578818.0156 4605 4493 6.973743438721e-06 4606 4493 69374999.9886 4607 4493 -72810997.49471 4617 4493 -21679861.11823 4618 4493 -17343750.0057 4619 4493 -36432062.04358 4620 4493 -86719444.43019 4621 4493 -2.682209014893e-07 4622 4493 -99061955.12461 4623 4493 -21679861.11823 4624 4493 17343750.00569 4625 4493 -36432062.04358 4494 4494 1483949894.094 4495 4494 7.867813110352e-06 4496 4494 -5.507469177246e-05 4497 4494 184322301.8864 4498 4494 -2.622604370117e-06 4499 4494 -1.358985900879e-05 4509 4494 -148365426.1266 4510 4494 -97222222.20624 4511 4494 -3.039836883545e-06 4512 4494 -406796532.3944 4513 4494 -2.801418304443e-06 4514 4494 -1.233816146851e-05 4515 4494 -148365426.1266 4516 4494 97222222.20624 4517 4494 -3.308057785034e-06 4587 4494 -46373434.23613 4588 4494 24305555.56354 4589 4494 21679861.11823 4590 4494 -138827443.8752 4591 4494 2.682209014893e-07 4592 4494 86719444.4302 4593 4494 -46373434.23614 4594 4494 -24305555.56354 4595 4494 21679861.11823 4602 4494 8952264.76783 4603 4494 9.298324584961e-06 4604 4494 6.228685379028e-06 4605 4494 222474230.8735 4606 4494 3.933906555176e-06 4607 4494 2.622604370117e-05 4608 4494 8952264.76783 4609 4494 -1.302361488342e-05 4610 4494 6.914138793945e-06 4620 4494 -46373434.23611 4621 4494 -24305555.56353 4622 4494 -21679861.11823 4623 4494 -138827443.8751 4624 4494 -5.066394805908e-07 4625 4494 -86719444.43019 4626 4494 -46373434.23611 4627 4494 24305555.56353 4628 4494 -21679861.11823 4495 4495 1250608048.648 4496 4495 -1.192092895508e-06 4497 4495 -3.159046173096e-06 4498 4495 -185121779.2034 4499 4495 8.046627044678e-07 4509 4495 -97222222.20624 4510 4495 -119197695.4315 4511 4495 2.831220626831e-07 4512 4495 -3.09944152832e-06 4513 4495 20983010.02827 4514 4495 -4.768371582031e-07 4515 4495 97222222.20624 4516 4495 -119197695.4315 4517 4495 -7.450580596924e-08 4587 4495 24305555.56354 4588 4495 -39081501.55876 4589 4495 -17343750.00569 4590 4495 -2.294778823853e-06 4591 4495 -31882558.21685 4592 4495 2.682209014893e-07 4593 4495 -24305555.56354 4594 4495 -39081501.55876 4595 4495 17343750.0057 4602 4495 1.069903373718e-05 4603 4495 -83408755.55014 4604 4495 -69374999.9886 4605 4495 4.410743713379e-06 4606 4495 164138769.4832 4607 4495 -1.192092895508e-07 4608 4495 -1.156330108643e-05 4609 4495 -83408755.55014 4610 4495 69374999.9886 4620 4495 -24305555.56353 4621 4495 -39081501.55875 4622 4495 -17343750.0057 4623 4495 -8.344650268555e-07 4624 4495 -31882558.21681 4625 4495 -3.278255462646e-07 4626 4495 24305555.56353 4627 4495 -39081501.55875 4628 4495 17343750.00569 4496 4496 1165825984.246 4497 4496 -1.382827758789e-05 4498 4496 1.788139343262e-07 4499 4496 104791324.3853 4509 4496 -2.890825271606e-06 4510 4496 3.8743019104e-07 4511 4496 -46719419.49861 4512 4496 -1.20997428894e-05 4513 4496 -4.768371582031e-07 4514 4496 -212506.0825927 4515 4496 -3.278255462646e-06 4516 4496 -2.086162567139e-07 4517 4496 -46719419.49861 4587 4496 21679861.11823 4588 4496 -17343750.0057 4589 4496 -36432062.04359 4590 4496 86719444.4302 4591 4496 3.427267074585e-07 4592 4496 -99061955.12464 4593 4496 21679861.11823 4594 4496 17343750.0057 4595 4496 -36432062.04359 4602 4496 6.169080734253e-06 4603 4496 -69374999.9886 4604 4496 -72810997.49471 4605 4496 2.598762512207e-05 4606 4496 5.960464477539e-08 4607 4496 -104578818.0156 4608 4496 6.973743438721e-06 4609 4496 69374999.9886 4610 4496 -72810997.49471 4620 4496 -21679861.11823 4621 4496 -17343750.0057 4622 4496 -36432062.04358 4623 4496 -86719444.43019 4624 4496 -2.682209014893e-07 4625 4496 -99061955.12461 4626 4496 -21679861.11823 4627 4496 17343750.00569 4628 4496 -36432062.04358 4497 4497 1632315315.374 4498 4497 97222220.26178 4499 4497 -4.172325134277e-05 4500 4497 17392720.97666 4501 4497 -97222221.42845 4502 4497 -2.145767211914e-06 4512 4497 -148365426.1266 4513 4497 -97222222.20624 4514 4497 -3.039836883545e-06 4515 4497 -406796532.3944 4516 4497 -2.801418304443e-06 4517 4497 -1.233816146851e-05 4518 4497 -148365426.1266 4519 4497 97222222.20624 4520 4497 -3.308057785034e-06 4590 4497 -46373434.23613 4591 4497 24305555.56354 4592 4497 21679861.11823 4593 4497 -175918799.4897 4594 4497 -24305555.27186 4595 4497 86719444.24762 4605 4497 8952264.76783 4606 4497 9.298324584961e-06 4607 4497 6.228685379028e-06 4608 4497 268847663.9159 4609 4497 24305555.07742 4610 4497 0.03653132915497 4611 4497 -28139091.37671 4612 4497 -24305555.36909 4613 4497 21679860.74398 4623 4497 -46373434.23611 4624 4497 -24305555.56353 4625 4497 -21679861.11823 4626 4497 -138827443.8751 4627 4497 -5.066394805908e-07 4628 4497 -86719444.43019 4629 4497 -46373434.23611 4630 4497 24305555.56353 4631 4497 -21679861.11823 4498 4498 1369805740.108 4499 4498 -2.145767211914e-06 4500 4498 -97222221.03956 4501 4498 -322883627.8625 4502 4498 4.798173904419e-06 4512 4498 -97222222.20624 4513 4498 -119197695.4315 4514 4498 2.831220626831e-07 4515 4498 -3.09944152832e-06 4516 4498 20983010.02827 4517 4498 -4.768371582031e-07 4518 4498 97222222.20624 4519 4498 -119197695.4315 4520 4498 -7.450580596924e-08 4590 4498 24305555.56354 4591 4498 -39081501.55876 4592 4498 -17343750.00569 4593 4498 -24305555.36908 4594 4498 -61681981.7616 4595 4498 17343749.94043 4605 4498 1.069903373718e-05 4606 4498 -83408755.55014 4607 4498 -69374999.9886 4608 4498 24305555.07742 4609 4498 203220270.0671 4610 4498 0.02920919656754 4611 4498 -24305555.27186 4612 4498 -113208178.6284 4613 4498 69374999.6084 4623 4498 -24305555.56353 4624 4498 -39081501.55875 4625 4498 -17343750.0057 4626 4498 -8.344650268555e-07 4627 4498 -31882558.21681 4628 4498 -3.278255462646e-07 4629 4498 24305555.56353 4630 4498 -39081501.55875 4631 4498 17343750.00569 4499 4499 1212545401.289 4500 4499 -1.788139343262e-06 4501 4499 3.75509262085e-06 4502 4499 8567490.576108 4512 4499 -2.890825271606e-06 4513 4499 3.8743019104e-07 4514 4499 -46719419.49861 4515 4499 -1.20997428894e-05 4516 4499 -4.768371582031e-07 4517 4499 -212506.0825927 4518 4499 -3.278255462646e-06 4519 4499 -2.086162567139e-07 4520 4499 -46719419.49861 4590 4499 21679861.11823 4591 4499 -17343750.0057 4592 4499 -36432062.04359 4593 4499 86719444.24762 4594 4499 17343749.9078 4595 4499 -110741809.7386 4605 4499 6.169080734253e-06 4606 4499 -69374999.9886 4607 4499 -72810997.49471 4608 4499 -0.03649973869324 4609 4499 -0.02921465039253 4610 4499 -68146756.53808 4611 4499 21679860.55685 4612 4499 69374999.49133 4613 4499 -84490851.68298 4623 4499 -21679861.11823 4624 4499 -17343750.0057 4625 4499 -36432062.04358 4626 4499 -86719444.43019 4627 4499 -2.682209014893e-07 4628 4499 -99061955.12461 4629 4499 -21679861.11823 4630 4499 17343750.00569 4631 4499 -36432062.04358 4500 4500 944226635.8558 4501 4500 104813146.3867 4502 4500 -9.059906005859e-06 4515 4500 -148365426.1266 4516 4500 -97222222.20624 4517 4500 -3.039836883545e-06 4518 4500 -591818040.3848 4519 4500 -104813145.6089 4520 4500 -1.09076499939e-05 4521 4500 22795227.75344 4522 4500 77777776.98724 4523 4500 1.311302185059e-06 4593 4500 -9282077.50499 4594 4500 29166666.38457 4595 4500 26015832.78049 4608 4500 -28139091.37673 4609 4500 -24305555.27187 4610 4500 -21679860.55685 4611 4500 142149470.4916 4612 4500 26203286.60958 4613 4500 17682222.18138 4626 4500 -46373434.23611 4627 4500 -24305555.56353 4628 4500 -21679861.11823 4629 4500 -180984988.3575 4630 4500 -26203286.41514 4631 4500 -88411110.90688 4632 4500 -8767515.558541 4633 4500 19444444.25639 4634 4500 -18020555.17262 4501 4501 789133337.2837 4502 4501 2.719461917877e-06 4515 4501 -97222222.20624 4516 4501 -119197695.4315 4517 4501 2.831220626831e-07 4518 4501 -104813145.2201 4519 4501 -131460786.597 4520 4501 -9.536743164063e-07 4521 4501 116666665.4809 4522 4501 28639890.68178 4523 4501 5.960464477539e-07 4593 4501 19444444.25638 4594 4501 -9282077.505 4595 4501 -13874999.9393 4608 4501 -24305555.36909 4609 4501 -113208178.6284 4610 4501 -69374999.49133 4611 4501 26203286.60958 4612 4501 103376145.8295 4613 4501 14145833.18358 4626 4501 -24305555.56353 4627 4501 -39081501.55875 4628 4501 -17343750.0057 4629 4501 -26203286.31792 4630 4501 -65895674.85386 4631 4501 -18697916.56855 4632 4501 29166666.38458 4633 4501 -7306349.825738 4634 4501 20270833.25379 4502 4502 738330627.0228 4515 4502 -2.890825271606e-06 4516 4502 3.8743019104e-07 4517 4502 -46719419.49861 4518 4502 -1.251697540283e-05 4519 4502 -4.768371582031e-07 4520 4502 -103838327.6491 4521 4502 1.907348632813e-06 4522 4502 4.172325134277e-07 4523 4502 54942611.08084 4593 4502 17343888.52033 4594 4502 -20812499.90895 4595 4502 -24752206.67999 4608 4502 -21679860.74398 4609 4502 -69374999.6084 4610 4502 -84490851.68299 4611 4502 -17682222.18137 4612 4502 -14145833.18359 4613 4502 -65836512.72295 4626 4502 -21679861.11823 4627 4502 -17343750.0057 4628 4502 -36432062.04358 4629 4502 -88411110.90688 4630 4502 -18697916.60118 4631 4502 -114040857.0942 4632 4502 -27030832.75893 4633 4502 13062499.95656 4634 4502 -24841207.22225 4503 4503 1483949894.094 4504 4503 7.867813110352e-06 4505 4503 -5.507469177246e-05 4506 4503 184322301.8864 4507 4503 -2.622604370117e-06 4508 4503 -1.358985900879e-05 4524 4503 -406796532.3944 4525 4503 -2.801418304443e-06 4526 4503 -1.233816146851e-05 4527 4503 -148365426.1266 4528 4503 97222222.20624 4529 4503 -3.308057785034e-06 4596 4503 -138827443.8752 4597 4503 2.682209014893e-07 4598 4503 86719444.4302 4599 4503 -46373434.23614 4600 4503 -24305555.56354 4601 4503 21679861.11823 4614 4503 222474230.8735 4615 4503 3.933906555176e-06 4616 4503 2.622604370117e-05 4617 4503 8952264.76783 4618 4503 -1.302361488342e-05 4619 4503 6.914138793945e-06 4635 4503 -138827443.8751 4636 4503 -5.066394805908e-07 4637 4503 -86719444.43019 4638 4503 -46373434.23611 4639 4503 24305555.56353 4640 4503 -21679861.11823 4504 4504 1250608048.648 4505 4504 -1.192092895508e-06 4506 4504 -3.159046173096e-06 4507 4504 -185121779.2034 4508 4504 8.046627044678e-07 4524 4504 -3.09944152832e-06 4525 4504 20983010.02827 4526 4504 -4.768371582031e-07 4527 4504 97222222.20624 4528 4504 -119197695.4315 4529 4504 -7.450580596924e-08 4596 4504 -2.294778823853e-06 4597 4504 -31882558.21685 4598 4504 2.682209014893e-07 4599 4504 -24305555.56354 4600 4504 -39081501.55876 4601 4504 17343750.0057 4614 4504 4.410743713379e-06 4615 4504 164138769.4832 4616 4504 -1.192092895508e-07 4617 4504 -1.156330108643e-05 4618 4504 -83408755.55014 4619 4504 69374999.9886 4635 4504 -8.344650268555e-07 4636 4504 -31882558.21681 4637 4504 -3.278255462646e-07 4638 4504 24305555.56353 4639 4504 -39081501.55875 4640 4504 17343750.00569 4505 4505 1165825984.246 4506 4505 -1.382827758789e-05 4507 4505 1.788139343262e-07 4508 4505 104791324.3853 4524 4505 -1.20997428894e-05 4525 4505 -4.768371582031e-07 4526 4505 -212506.0825927 4527 4505 -3.278255462646e-06 4528 4505 -2.086162567139e-07 4529 4505 -46719419.49861 4596 4505 86719444.4302 4597 4505 3.427267074585e-07 4598 4505 -99061955.12464 4599 4505 21679861.11823 4600 4505 17343750.0057 4601 4505 -36432062.04359 4614 4505 2.598762512207e-05 4615 4505 5.960464477539e-08 4616 4505 -104578818.0156 4617 4505 6.973743438721e-06 4618 4505 69374999.9886 4619 4505 -72810997.49471 4635 4505 -86719444.43019 4636 4505 -2.682209014893e-07 4637 4505 -99061955.12461 4638 4505 -21679861.11823 4639 4505 17343750.00569 4640 4505 -36432062.04358 4506 4506 1483949894.094 4507 4506 7.867813110352e-06 4508 4506 -5.507469177246e-05 4509 4506 184322301.8864 4510 4506 -2.622604370117e-06 4511 4506 -1.358985900879e-05 4524 4506 -148365426.1266 4525 4506 -97222222.20624 4526 4506 -3.039836883545e-06 4527 4506 -406796532.3944 4528 4506 -2.801418304443e-06 4529 4506 -1.233816146851e-05 4530 4506 -148365426.1266 4531 4506 97222222.20624 4532 4506 -3.308057785034e-06 4596 4506 -46373434.23613 4597 4506 24305555.56354 4598 4506 21679861.11823 4599 4506 -138827443.8752 4600 4506 2.682209014893e-07 4601 4506 86719444.4302 4602 4506 -46373434.23614 4603 4506 -24305555.56354 4604 4506 21679861.11823 4614 4506 8952264.76783 4615 4506 9.298324584961e-06 4616 4506 6.228685379028e-06 4617 4506 222474230.8735 4618 4506 3.933906555176e-06 4619 4506 2.622604370117e-05 4620 4506 8952264.76783 4621 4506 -1.302361488342e-05 4622 4506 6.914138793945e-06 4635 4506 -46373434.23611 4636 4506 -24305555.56353 4637 4506 -21679861.11823 4638 4506 -138827443.8751 4639 4506 -5.066394805908e-07 4640 4506 -86719444.43019 4641 4506 -46373434.23611 4642 4506 24305555.56353 4643 4506 -21679861.11823 4507 4507 1250608048.648 4508 4507 -1.192092895508e-06 4509 4507 -3.159046173096e-06 4510 4507 -185121779.2034 4511 4507 8.046627044678e-07 4524 4507 -97222222.20624 4525 4507 -119197695.4315 4526 4507 2.831220626831e-07 4527 4507 -3.09944152832e-06 4528 4507 20983010.02827 4529 4507 -4.768371582031e-07 4530 4507 97222222.20624 4531 4507 -119197695.4315 4532 4507 -7.450580596924e-08 4596 4507 24305555.56354 4597 4507 -39081501.55876 4598 4507 -17343750.00569 4599 4507 -2.294778823853e-06 4600 4507 -31882558.21685 4601 4507 2.682209014893e-07 4602 4507 -24305555.56354 4603 4507 -39081501.55876 4604 4507 17343750.0057 4614 4507 1.069903373718e-05 4615 4507 -83408755.55014 4616 4507 -69374999.9886 4617 4507 4.410743713379e-06 4618 4507 164138769.4832 4619 4507 -1.192092895508e-07 4620 4507 -1.156330108643e-05 4621 4507 -83408755.55014 4622 4507 69374999.9886 4635 4507 -24305555.56353 4636 4507 -39081501.55875 4637 4507 -17343750.0057 4638 4507 -8.344650268555e-07 4639 4507 -31882558.21681 4640 4507 -3.278255462646e-07 4641 4507 24305555.56353 4642 4507 -39081501.55875 4643 4507 17343750.00569 4508 4508 1165825984.246 4509 4508 -1.382827758789e-05 4510 4508 1.788139343262e-07 4511 4508 104791324.3853 4524 4508 -2.890825271606e-06 4525 4508 3.8743019104e-07 4526 4508 -46719419.49861 4527 4508 -1.20997428894e-05 4528 4508 -4.768371582031e-07 4529 4508 -212506.0825927 4530 4508 -3.278255462646e-06 4531 4508 -2.086162567139e-07 4532 4508 -46719419.49861 4596 4508 21679861.11823 4597 4508 -17343750.0057 4598 4508 -36432062.04359 4599 4508 86719444.4302 4600 4508 3.427267074585e-07 4601 4508 -99061955.12464 4602 4508 21679861.11823 4603 4508 17343750.0057 4604 4508 -36432062.04359 4614 4508 6.169080734253e-06 4615 4508 -69374999.9886 4616 4508 -72810997.49471 4617 4508 2.598762512207e-05 4618 4508 5.960464477539e-08 4619 4508 -104578818.0156 4620 4508 6.973743438721e-06 4621 4508 69374999.9886 4622 4508 -72810997.49471 4635 4508 -21679861.11823 4636 4508 -17343750.0057 4637 4508 -36432062.04358 4638 4508 -86719444.43019 4639 4508 -2.682209014893e-07 4640 4508 -99061955.12461 4641 4508 -21679861.11823 4642 4508 17343750.00569 4643 4508 -36432062.04358 4509 4509 1483949894.094 4510 4509 7.867813110352e-06 4511 4509 -5.507469177246e-05 4512 4509 184322301.8864 4513 4509 -2.622604370117e-06 4514 4509 -1.358985900879e-05 4527 4509 -148365426.1266 4528 4509 -97222222.20624 4529 4509 -3.039836883545e-06 4530 4509 -406796532.3944 4531 4509 -2.801418304443e-06 4532 4509 -1.233816146851e-05 4533 4509 -148365426.1266 4534 4509 97222222.20624 4535 4509 -3.308057785034e-06 4599 4509 -46373434.23613 4600 4509 24305555.56354 4601 4509 21679861.11823 4602 4509 -138827443.8752 4603 4509 2.682209014893e-07 4604 4509 86719444.4302 4605 4509 -46373434.23614 4606 4509 -24305555.56354 4607 4509 21679861.11823 4617 4509 8952264.76783 4618 4509 9.298324584961e-06 4619 4509 6.228685379028e-06 4620 4509 222474230.8735 4621 4509 3.933906555176e-06 4622 4509 2.622604370117e-05 4623 4509 8952264.76783 4624 4509 -1.302361488342e-05 4625 4509 6.914138793945e-06 4638 4509 -46373434.23611 4639 4509 -24305555.56353 4640 4509 -21679861.11823 4641 4509 -138827443.8751 4642 4509 -5.066394805908e-07 4643 4509 -86719444.43019 4644 4509 -46373434.23611 4645 4509 24305555.56353 4646 4509 -21679861.11823 4510 4510 1250608048.648 4511 4510 -1.192092895508e-06 4512 4510 -3.159046173096e-06 4513 4510 -185121779.2034 4514 4510 8.046627044678e-07 4527 4510 -97222222.20624 4528 4510 -119197695.4315 4529 4510 2.831220626831e-07 4530 4510 -3.09944152832e-06 4531 4510 20983010.02827 4532 4510 -4.768371582031e-07 4533 4510 97222222.20624 4534 4510 -119197695.4315 4535 4510 -7.450580596924e-08 4599 4510 24305555.56354 4600 4510 -39081501.55876 4601 4510 -17343750.00569 4602 4510 -2.294778823853e-06 4603 4510 -31882558.21685 4604 4510 2.682209014893e-07 4605 4510 -24305555.56354 4606 4510 -39081501.55876 4607 4510 17343750.0057 4617 4510 1.069903373718e-05 4618 4510 -83408755.55014 4619 4510 -69374999.9886 4620 4510 4.410743713379e-06 4621 4510 164138769.4832 4622 4510 -1.192092895508e-07 4623 4510 -1.156330108643e-05 4624 4510 -83408755.55014 4625 4510 69374999.9886 4638 4510 -24305555.56353 4639 4510 -39081501.55875 4640 4510 -17343750.0057 4641 4510 -8.344650268555e-07 4642 4510 -31882558.21681 4643 4510 -3.278255462646e-07 4644 4510 24305555.56353 4645 4510 -39081501.55875 4646 4510 17343750.00569 4511 4511 1165825984.246 4512 4511 -1.382827758789e-05 4513 4511 1.788139343262e-07 4514 4511 104791324.3853 4527 4511 -2.890825271606e-06 4528 4511 3.8743019104e-07 4529 4511 -46719419.49861 4530 4511 -1.20997428894e-05 4531 4511 -4.768371582031e-07 4532 4511 -212506.0825927 4533 4511 -3.278255462646e-06 4534 4511 -2.086162567139e-07 4535 4511 -46719419.49861 4599 4511 21679861.11823 4600 4511 -17343750.0057 4601 4511 -36432062.04359 4602 4511 86719444.4302 4603 4511 3.427267074585e-07 4604 4511 -99061955.12464 4605 4511 21679861.11823 4606 4511 17343750.0057 4607 4511 -36432062.04359 4617 4511 6.169080734253e-06 4618 4511 -69374999.9886 4619 4511 -72810997.49471 4620 4511 2.598762512207e-05 4621 4511 5.960464477539e-08 4622 4511 -104578818.0156 4623 4511 6.973743438721e-06 4624 4511 69374999.9886 4625 4511 -72810997.49471 4638 4511 -21679861.11823 4639 4511 -17343750.0057 4640 4511 -36432062.04358 4641 4511 -86719444.43019 4642 4511 -2.682209014893e-07 4643 4511 -99061955.12461 4644 4511 -21679861.11823 4645 4511 17343750.00569 4646 4511 -36432062.04358 4512 4512 1483949894.094 4513 4512 7.867813110352e-06 4514 4512 -5.507469177246e-05 4515 4512 184322301.8864 4516 4512 -2.622604370117e-06 4517 4512 -1.358985900879e-05 4530 4512 -148365426.1266 4531 4512 -97222222.20624 4532 4512 -3.039836883545e-06 4533 4512 -406796532.3944 4534 4512 -2.801418304443e-06 4535 4512 -1.233816146851e-05 4536 4512 -148365426.1266 4537 4512 97222222.20624 4538 4512 -3.308057785034e-06 4602 4512 -46373434.23613 4603 4512 24305555.56354 4604 4512 21679861.11823 4605 4512 -138827443.8752 4606 4512 2.682209014893e-07 4607 4512 86719444.4302 4608 4512 -46373434.23614 4609 4512 -24305555.56354 4610 4512 21679861.11823 4620 4512 8952264.76783 4621 4512 9.298324584961e-06 4622 4512 6.228685379028e-06 4623 4512 222474230.8735 4624 4512 3.933906555176e-06 4625 4512 2.622604370117e-05 4626 4512 8952264.76783 4627 4512 -1.302361488342e-05 4628 4512 6.914138793945e-06 4641 4512 -46373434.23611 4642 4512 -24305555.56353 4643 4512 -21679861.11823 4644 4512 -138827443.8751 4645 4512 -5.066394805908e-07 4646 4512 -86719444.43019 4647 4512 -46373434.23611 4648 4512 24305555.56353 4649 4512 -21679861.11823 4513 4513 1250608048.648 4514 4513 -1.192092895508e-06 4515 4513 -3.159046173096e-06 4516 4513 -185121779.2034 4517 4513 8.046627044678e-07 4530 4513 -97222222.20624 4531 4513 -119197695.4315 4532 4513 2.831220626831e-07 4533 4513 -3.09944152832e-06 4534 4513 20983010.02827 4535 4513 -4.768371582031e-07 4536 4513 97222222.20624 4537 4513 -119197695.4315 4538 4513 -7.450580596924e-08 4602 4513 24305555.56354 4603 4513 -39081501.55876 4604 4513 -17343750.00569 4605 4513 -2.294778823853e-06 4606 4513 -31882558.21685 4607 4513 2.682209014893e-07 4608 4513 -24305555.56354 4609 4513 -39081501.55876 4610 4513 17343750.0057 4620 4513 1.069903373718e-05 4621 4513 -83408755.55014 4622 4513 -69374999.9886 4623 4513 4.410743713379e-06 4624 4513 164138769.4832 4625 4513 -1.192092895508e-07 4626 4513 -1.156330108643e-05 4627 4513 -83408755.55014 4628 4513 69374999.9886 4641 4513 -24305555.56353 4642 4513 -39081501.55875 4643 4513 -17343750.0057 4644 4513 -8.344650268555e-07 4645 4513 -31882558.21681 4646 4513 -3.278255462646e-07 4647 4513 24305555.56353 4648 4513 -39081501.55875 4649 4513 17343750.00569 4514 4514 1165825984.246 4515 4514 -1.382827758789e-05 4516 4514 1.788139343262e-07 4517 4514 104791324.3853 4530 4514 -2.890825271606e-06 4531 4514 3.8743019104e-07 4532 4514 -46719419.49861 4533 4514 -1.20997428894e-05 4534 4514 -4.768371582031e-07 4535 4514 -212506.0825927 4536 4514 -3.278255462646e-06 4537 4514 -2.086162567139e-07 4538 4514 -46719419.49861 4602 4514 21679861.11823 4603 4514 -17343750.0057 4604 4514 -36432062.04359 4605 4514 86719444.4302 4606 4514 3.427267074585e-07 4607 4514 -99061955.12464 4608 4514 21679861.11823 4609 4514 17343750.0057 4610 4514 -36432062.04359 4620 4514 6.169080734253e-06 4621 4514 -69374999.9886 4622 4514 -72810997.49471 4623 4514 2.598762512207e-05 4624 4514 5.960464477539e-08 4625 4514 -104578818.0156 4626 4514 6.973743438721e-06 4627 4514 69374999.9886 4628 4514 -72810997.49471 4641 4514 -21679861.11823 4642 4514 -17343750.0057 4643 4514 -36432062.04358 4644 4514 -86719444.43019 4645 4514 -2.682209014893e-07 4646 4514 -99061955.12461 4647 4514 -21679861.11823 4648 4514 17343750.00569 4649 4514 -36432062.04358 4515 4515 1483949894.094 4516 4515 7.867813110352e-06 4517 4515 -5.507469177246e-05 4518 4515 184322301.8864 4519 4515 -2.622604370117e-06 4520 4515 -1.358985900879e-05 4533 4515 -148365426.1266 4534 4515 -97222222.20624 4535 4515 -3.039836883545e-06 4536 4515 -406796532.3944 4537 4515 -2.801418304443e-06 4538 4515 -1.233816146851e-05 4539 4515 -148365426.1266 4540 4515 97222222.20624 4541 4515 -3.308057785034e-06 4605 4515 -46373434.23613 4606 4515 24305555.56354 4607 4515 21679861.11823 4608 4515 -138827443.8752 4609 4515 2.682209014893e-07 4610 4515 86719444.4302 4611 4515 -46373434.23614 4612 4515 -24305555.56354 4613 4515 21679861.11823 4623 4515 8952264.76783 4624 4515 9.298324584961e-06 4625 4515 6.228685379028e-06 4626 4515 222474230.8735 4627 4515 3.933906555176e-06 4628 4515 2.622604370117e-05 4629 4515 8952264.76783 4630 4515 -1.302361488342e-05 4631 4515 6.914138793945e-06 4644 4515 -46373434.23611 4645 4515 -24305555.56353 4646 4515 -21679861.11823 4647 4515 -138827443.8751 4648 4515 -5.066394805908e-07 4649 4515 -86719444.43019 4650 4515 -46373434.23611 4651 4515 24305555.56353 4652 4515 -21679861.11823 4516 4516 1250608048.648 4517 4516 -1.192092895508e-06 4518 4516 -3.159046173096e-06 4519 4516 -185121779.2034 4520 4516 8.046627044678e-07 4533 4516 -97222222.20624 4534 4516 -119197695.4315 4535 4516 2.831220626831e-07 4536 4516 -3.09944152832e-06 4537 4516 20983010.02827 4538 4516 -4.768371582031e-07 4539 4516 97222222.20624 4540 4516 -119197695.4315 4541 4516 -7.450580596924e-08 4605 4516 24305555.56354 4606 4516 -39081501.55876 4607 4516 -17343750.00569 4608 4516 -2.294778823853e-06 4609 4516 -31882558.21685 4610 4516 2.682209014893e-07 4611 4516 -24305555.56354 4612 4516 -39081501.55876 4613 4516 17343750.0057 4623 4516 1.069903373718e-05 4624 4516 -83408755.55014 4625 4516 -69374999.9886 4626 4516 4.410743713379e-06 4627 4516 164138769.4832 4628 4516 -1.192092895508e-07 4629 4516 -1.156330108643e-05 4630 4516 -83408755.55014 4631 4516 69374999.9886 4644 4516 -24305555.56353 4645 4516 -39081501.55875 4646 4516 -17343750.0057 4647 4516 -8.344650268555e-07 4648 4516 -31882558.21681 4649 4516 -3.278255462646e-07 4650 4516 24305555.56353 4651 4516 -39081501.55875 4652 4516 17343750.00569 4517 4517 1165825984.246 4518 4517 -1.382827758789e-05 4519 4517 1.788139343262e-07 4520 4517 104791324.3853 4533 4517 -2.890825271606e-06 4534 4517 3.8743019104e-07 4535 4517 -46719419.49861 4536 4517 -1.20997428894e-05 4537 4517 -4.768371582031e-07 4538 4517 -212506.0825927 4539 4517 -3.278255462646e-06 4540 4517 -2.086162567139e-07 4541 4517 -46719419.49861 4605 4517 21679861.11823 4606 4517 -17343750.0057 4607 4517 -36432062.04359 4608 4517 86719444.4302 4609 4517 3.427267074585e-07 4610 4517 -99061955.12464 4611 4517 21679861.11823 4612 4517 17343750.0057 4613 4517 -36432062.04359 4623 4517 6.169080734253e-06 4624 4517 -69374999.9886 4625 4517 -72810997.49471 4626 4517 2.598762512207e-05 4627 4517 5.960464477539e-08 4628 4517 -104578818.0156 4629 4517 6.973743438721e-06 4630 4517 69374999.9886 4631 4517 -72810997.49471 4644 4517 -21679861.11823 4645 4517 -17343750.0057 4646 4517 -36432062.04358 4647 4517 -86719444.43019 4648 4517 -2.682209014893e-07 4649 4517 -99061955.12461 4650 4517 -21679861.11823 4651 4517 17343750.00569 4652 4517 -36432062.04358 4518 4518 1661147708.835 4519 4518 104975994.3214 4520 4518 -3.314018249512e-05 4521 4518 28973926.47986 4522 4518 -93442034.30678 4523 4518 -1.668930053711e-06 4536 4518 -148365426.1266 4537 4518 -97222222.20624 4538 4518 -3.039836883545e-06 4539 4518 -414750020.4148 4540 4518 -3811573.076203 4541 4518 -7.390975952148e-06 4542 4518 -158390003.0581 4543 4518 97090758.28168 4544 4518 3.516674041748e-06 4608 4518 -46373434.23613 4609 4518 24305555.56354 4610 4518 21679861.11823 4611 4518 -180984988.3575 4612 4518 -26203286.31792 4613 4518 88411110.90689 4626 4518 8952264.76783 4627 4518 9.298324584961e-06 4628 4518 6.228685379028e-06 4629 4518 274245586.3934 4630 4518 26243998.59327 4631 4518 0.0379564166069 4632 4518 -25967702.04295 4633 4518 -23360508.5882 4634 4518 21679166.28526 4647 4518 -46373434.23611 4648 4518 -24305555.56353 4649 4518 -21679861.11823 4650 4518 -140996480.1669 4651 4518 -952893.2695236 4652 4518 -87564583.31886 4653 4518 -48879322.66663 4654 4518 24272689.58237 4655 4518 -22525694.45184 4519 4519 1378316574.243 4520 4519 1.299381256104e-05 4521 4519 -93442033.91789 4522 4519 -311076053.7848 4523 4519 -5.543231964111e-06 4536 4519 -97222222.20624 4537 4519 -119197695.4315 4538 4519 2.831220626831e-07 4539 4519 -3811573.076213 4540 4519 16672797.27745 4541 4519 5.483627319336e-06 4542 4519 97090758.28168 4543 4519 -116180339.9824 4544 4519 -2.384185791016e-07 4608 4519 24305555.56354 4609 4519 -39081501.55876 4610 4519 -17343750.00569 4611 4519 -26203286.41514 4612 4519 -65895674.85388 4613 4519 18697916.60118 4626 4519 1.069903373718e-05 4627 4519 -83408755.55014 4628 4519 -69374999.9886 4629 4519 26243998.59326 4630 4519 203537802.7107 4631 4519 0.03034961223602 4632 4519 -23360508.49098 4633 4519 -110980197.151 4634 4519 69374999.59698 4647 4519 -24305555.56353 4648 4519 -39081501.55875 4649 4519 -17343750.0057 4650 4519 -952893.2695259 4651 4519 -33140775.69073 4652 4519 -677083.3331571 4653 4519 24272689.58237 4654 4519 -38326906.89251 4655 4519 16666666.67214 4520 4520 1227849607.295 4521 4520 -7.152557373047e-07 4522 4520 -5.275011062622e-06 4523 4520 16993676.64502 4536 4520 -2.890825271606e-06 4537 4520 3.8743019104e-07 4538 4520 -46719419.49861 4539 4520 -9.238719940186e-06 4540 4520 5.841255187988e-06 4541 4520 -3046182.050694 4542 4520 3.36766242981e-06 4543 4520 -1.788139343262e-07 4544 4520 -48631203.38773 4608 4520 21679861.11823 4609 4520 -17343750.0057 4610 4520 -36432062.04359 4611 4520 88411110.90689 4612 4520 18697916.56855 4613 4520 -114040857.0943 4626 4520 6.169080734253e-06 4627 4520 -69374999.9886 4628 4520 -72810997.49471 4629 4520 -0.03792423009872 4630 4520 -0.03035497665405 4631 4520 -69147840.74461 4632 4520 21679166.091 4633 4520 69374999.4742 4634 4520 -84314737.28062 4647 4520 -21679861.11823 4648 4520 -17343750.0057 4649 4520 -36432062.04358 4650 4520 -87564583.31903 4651 4520 -677083.3332905 4652 4520 -100252145.5455 4653 4520 -22525694.45184 4654 4520 16666666.67214 4655 4520 -36909325.87324 4521 4521 878310888.4809 4522 4521 -2657515.75764 4523 4521 -4.768371582031e-07 4539 4521 -146355658.7119 4540 4521 -97205456.75096 4541 4521 -4.738569259644e-06 4542 4521 -422227983.6709 4543 4521 -5136049.023845 4544 4521 -1.072883605957e-06 4545 4521 85600144.70804 4546 4521 -16771033.13002 4547 4521 -1.192092895508e-06 4548 4521 -156881939.5358 4549 4521 98545423.0995 4550 4521 5.125999450684e-06 4611 4521 -8767515.558542 4612 4521 29166666.38458 4613 4521 27030832.75893 4629 4521 -25967702.04296 4630 4521 -23360508.49098 4631 4521 -21679166.091 4632 4521 119740849.7094 4633 4521 -664378.9397368 4634 4521 17135277.77496 4650 4521 -45870736.57861 4651 4521 -24301364.19971 4652 4521 -21679166.67379 4653 4521 -141002035.2671 4654 4521 -1284012.2566 4655 4521 -85676388.87482 4656 4521 4511607.610493 4657 4521 -4192758.28457 4658 4521 3215972.223778 4659 4521 -47751770.62455 4660 4521 24636355.78701 4661 4521 -21159027.78473 4522 4522 904404472.7405 4523 4522 2.038478851318e-05 4539 4522 -97205456.75096 4540 4522 -119802374.1365 4541 4522 -4.91738319397e-07 4542 4522 -5136049.023844 4543 4522 9983783.088479 4544 4522 1.126527786255e-05 4545 4522 22117855.75248 4546 4522 -98572068.66136 4547 4522 -3.457069396973e-06 4548 4522 98545423.09949 4549 4522 -123363044.4243 4550 4522 -7.003545761108e-07 4611 4522 19444444.25639 4612 4522 -7306349.825739 4613 4522 -13062499.95656 4629 4522 -23360508.5882 4630 4522 -110980197.151 4631 4522 -69374999.4742 4632 4522 -664378.939739 4633 4522 126264245.7775 4634 4522 7208333.185862 4650 4522 -24301364.19971 4651 4522 -39232415.43151 4652 4522 -17343750.0057 4653 4522 -1284012.256601 4654 4522 -32949093.52409 4655 4522 -677083.3331589 4656 4522 5529463.940844 4657 4522 -41531445.75453 4658 4522 33333333.32786 4659 4522 24636355.78701 4660 4522 -39372046.84255 4661 4522 16666666.67214 4523 4523 768562010.6434 4539 4523 -4.708766937256e-06 4540 4523 -5.811452865601e-07 4541 4523 -46336936.97172 4542 4523 -1.251697540283e-06 4543 4523 1.132488250732e-05 4544 4523 -12181640.54617 4545 4523 4.768371582031e-07 4546 4523 -3.576278686523e-06 4547 4523 44227455.09152 4548 4523 4.827976226807e-06 4549 4523 -7.301568984985e-07 4550 4523 -52301561.2662 4611 4523 18020555.17262 4612 4523 -20270833.25379 4613 4523 -24841207.22225 4629 4523 -21679166.28526 4630 4523 -69374999.59698 4631 4523 -84314737.28063 4632 4523 -17135277.77496 4633 4523 -7208333.185871 4634 4523 -74091157.29507 4650 4523 -21679166.67379 4651 4523 -17343750.0057 4652 4523 -36335759.26896 4653 4523 -85676388.87481 4654 4523 -677083.3332923 4655 4523 -97565514.93122 4656 4523 -4909027.779057 4657 4523 33333333.32786 4658 4523 -33978945.7605 4659 4523 -21159027.78473 4660 4523 16666666.67214 4661 4523 -35825485.57976 4524 4524 741974947.0469 4525 4524 5.006790161133e-06 4526 4524 -2.908706665039e-05 4527 4524 92161150.94322 4528 4524 19444444.44125 4529 4524 -7.271766662598e-06 4614 4524 -138827443.8752 4615 4524 2.682209014893e-07 4616 4524 86719444.4302 4617 4524 -46373434.23614 4618 4524 -24305555.56354 4619 4524 21679861.11823 4635 4524 111237115.4367 4636 4524 -8.344650268555e-07 4637 4524 -17343888.88603 4638 4524 4476132.383917 4639 4524 4861111.1127 4640 4524 -4335972.223642 4525 4525 625304024.3239 4526 4525 6.198883056641e-06 4527 4525 -19444444.44125 4528 4525 -92560889.60172 4529 4525 2.32458114624e-06 4614 4525 -2.294778823853e-06 4615 4525 -31882558.21685 4616 4525 2.682209014893e-07 4617 4525 -24305555.56354 4618 4525 -39081501.55876 4619 4525 17343750.0057 4635 4525 -7.152557373047e-07 4636 4525 82069384.74161 4637 4525 -3.75509262085e-06 4638 4525 -4861111.112713 4639 4525 -41704377.77507 4640 4525 34687499.9943 4526 4526 582912992.1231 4527 4526 -7.271766662598e-06 4528 4526 1.877546310425e-06 4529 4526 52395662.19267 4614 4526 86719444.4302 4615 4526 3.427267074585e-07 4616 4526 -99061955.12464 4617 4526 21679861.11823 4618 4526 17343750.0057 4619 4526 -36432062.04359 4635 4526 17343888.88605 4636 4526 -3.576278686523e-06 4637 4526 -52289409.00778 4638 4526 4335972.22365 4639 4526 34687499.9943 4640 4526 -36405498.74735 4527 4527 741974947.0469 4528 4527 5.006790161133e-06 4529 4527 -2.908706665039e-05 4530 4527 92161150.94322 4531 4527 19444444.44125 4532 4527 -7.271766662598e-06 4614 4527 -46373434.23613 4615 4527 24305555.56354 4616 4527 21679861.11823 4617 4527 -138827443.8752 4618 4527 2.682209014893e-07 4619 4527 86719444.4302 4620 4527 -46373434.23614 4621 4527 -24305555.56354 4622 4527 21679861.11823 4635 4527 4476132.383914 4636 4527 -4861111.112702 4637 4527 -4335972.223643 4638 4527 111237115.4367 4639 4527 -8.344650268555e-07 4640 4527 -17343888.88603 4641 4527 4476132.383917 4642 4527 4861111.1127 4643 4527 -4335972.223642 4528 4528 625304024.3239 4529 4528 6.198883056641e-06 4530 4528 -19444444.44125 4531 4528 -92560889.60172 4532 4528 2.32458114624e-06 4614 4528 24305555.56354 4615 4528 -39081501.55876 4616 4528 -17343750.00569 4617 4528 -2.294778823853e-06 4618 4528 -31882558.21685 4619 4528 2.682209014893e-07 4620 4528 -24305555.56354 4621 4528 -39081501.55876 4622 4528 17343750.0057 4635 4528 4861111.112712 4636 4528 -41704377.77507 4637 4528 -34687499.9943 4638 4528 -7.152557373047e-07 4639 4528 82069384.74161 4640 4528 -3.75509262085e-06 4641 4528 -4861111.112713 4642 4528 -41704377.77507 4643 4528 34687499.9943 4529 4529 582912992.1231 4530 4529 -7.271766662598e-06 4531 4529 1.877546310425e-06 4532 4529 52395662.19267 4614 4529 21679861.11823 4615 4529 -17343750.0057 4616 4529 -36432062.04359 4617 4529 86719444.4302 4618 4529 3.427267074585e-07 4619 4529 -99061955.12464 4620 4529 21679861.11823 4621 4529 17343750.0057 4622 4529 -36432062.04359 4635 4529 4335972.223649 4636 4529 -34687499.9943 4637 4529 -36405498.74736 4638 4529 17343888.88605 4639 4529 -3.576278686523e-06 4640 4529 -52289409.00778 4641 4529 4335972.22365 4642 4529 34687499.9943 4643 4529 -36405498.74735 4530 4530 741974947.0469 4531 4530 5.006790161133e-06 4532 4530 -2.908706665039e-05 4533 4530 92161150.94322 4534 4530 19444444.44125 4535 4530 -7.271766662598e-06 4617 4530 -46373434.23613 4618 4530 24305555.56354 4619 4530 21679861.11823 4620 4530 -138827443.8752 4621 4530 2.682209014893e-07 4622 4530 86719444.4302 4623 4530 -46373434.23614 4624 4530 -24305555.56354 4625 4530 21679861.11823 4638 4530 4476132.383914 4639 4530 -4861111.112702 4640 4530 -4335972.223643 4641 4530 111237115.4367 4642 4530 -8.344650268555e-07 4643 4530 -17343888.88603 4644 4530 4476132.383917 4645 4530 4861111.1127 4646 4530 -4335972.223642 4531 4531 625304024.3239 4532 4531 6.198883056641e-06 4533 4531 -19444444.44125 4534 4531 -92560889.60172 4535 4531 2.32458114624e-06 4617 4531 24305555.56354 4618 4531 -39081501.55876 4619 4531 -17343750.00569 4620 4531 -2.294778823853e-06 4621 4531 -31882558.21685 4622 4531 2.682209014893e-07 4623 4531 -24305555.56354 4624 4531 -39081501.55876 4625 4531 17343750.0057 4638 4531 4861111.112712 4639 4531 -41704377.77507 4640 4531 -34687499.9943 4641 4531 -7.152557373047e-07 4642 4531 82069384.74161 4643 4531 -3.75509262085e-06 4644 4531 -4861111.112713 4645 4531 -41704377.77507 4646 4531 34687499.9943 4532 4532 582912992.1231 4533 4532 -7.271766662598e-06 4534 4532 1.877546310425e-06 4535 4532 52395662.19267 4617 4532 21679861.11823 4618 4532 -17343750.0057 4619 4532 -36432062.04359 4620 4532 86719444.4302 4621 4532 3.427267074585e-07 4622 4532 -99061955.12464 4623 4532 21679861.11823 4624 4532 17343750.0057 4625 4532 -36432062.04359 4638 4532 4335972.223649 4639 4532 -34687499.9943 4640 4532 -36405498.74736 4641 4532 17343888.88605 4642 4532 -3.576278686523e-06 4643 4532 -52289409.00778 4644 4532 4335972.22365 4645 4532 34687499.9943 4646 4532 -36405498.74735 4533 4533 741974947.0469 4534 4533 5.006790161133e-06 4535 4533 -2.908706665039e-05 4536 4533 92161150.94322 4537 4533 19444444.44125 4538 4533 -7.271766662598e-06 4620 4533 -46373434.23613 4621 4533 24305555.56354 4622 4533 21679861.11823 4623 4533 -138827443.8752 4624 4533 2.682209014893e-07 4625 4533 86719444.4302 4626 4533 -46373434.23614 4627 4533 -24305555.56354 4628 4533 21679861.11823 4641 4533 4476132.383914 4642 4533 -4861111.112702 4643 4533 -4335972.223643 4644 4533 111237115.4367 4645 4533 -8.344650268555e-07 4646 4533 -17343888.88603 4647 4533 4476132.383917 4648 4533 4861111.1127 4649 4533 -4335972.223642 4534 4534 625304024.3239 4535 4534 6.198883056641e-06 4536 4534 -19444444.44125 4537 4534 -92560889.60172 4538 4534 2.32458114624e-06 4620 4534 24305555.56354 4621 4534 -39081501.55876 4622 4534 -17343750.00569 4623 4534 -2.294778823853e-06 4624 4534 -31882558.21685 4625 4534 2.682209014893e-07 4626 4534 -24305555.56354 4627 4534 -39081501.55876 4628 4534 17343750.0057 4641 4534 4861111.112712 4642 4534 -41704377.77507 4643 4534 -34687499.9943 4644 4534 -7.152557373047e-07 4645 4534 82069384.74161 4646 4534 -3.75509262085e-06 4647 4534 -4861111.112713 4648 4534 -41704377.77507 4649 4534 34687499.9943 4535 4535 582912992.1231 4536 4535 -7.271766662598e-06 4537 4535 1.877546310425e-06 4538 4535 52395662.19267 4620 4535 21679861.11823 4621 4535 -17343750.0057 4622 4535 -36432062.04359 4623 4535 86719444.4302 4624 4535 3.427267074585e-07 4625 4535 -99061955.12464 4626 4535 21679861.11823 4627 4535 17343750.0057 4628 4535 -36432062.04359 4641 4535 4335972.223649 4642 4535 -34687499.9943 4643 4535 -36405498.74736 4644 4535 17343888.88605 4645 4535 -3.576278686523e-06 4646 4535 -52289409.00778 4647 4535 4335972.22365 4648 4535 34687499.9943 4649 4535 -36405498.74735 4536 4536 741974947.0469 4537 4536 5.006790161133e-06 4538 4536 -2.908706665039e-05 4539 4536 92161150.94322 4540 4536 19444444.44125 4541 4536 -7.271766662598e-06 4623 4536 -46373434.23613 4624 4536 24305555.56354 4625 4536 21679861.11823 4626 4536 -138827443.8752 4627 4536 2.682209014893e-07 4628 4536 86719444.4302 4629 4536 -46373434.23614 4630 4536 -24305555.56354 4631 4536 21679861.11823 4644 4536 4476132.383914 4645 4536 -4861111.112702 4646 4536 -4335972.223643 4647 4536 111237115.4367 4648 4536 -8.344650268555e-07 4649 4536 -17343888.88603 4650 4536 4476132.383917 4651 4536 4861111.1127 4652 4536 -4335972.223642 4537 4537 625304024.3239 4538 4537 6.198883056641e-06 4539 4537 -19444444.44125 4540 4537 -92560889.60172 4541 4537 2.32458114624e-06 4623 4537 24305555.56354 4624 4537 -39081501.55876 4625 4537 -17343750.00569 4626 4537 -2.294778823853e-06 4627 4537 -31882558.21685 4628 4537 2.682209014893e-07 4629 4537 -24305555.56354 4630 4537 -39081501.55876 4631 4537 17343750.0057 4644 4537 4861111.112712 4645 4537 -41704377.77507 4646 4537 -34687499.9943 4647 4537 -7.152557373047e-07 4648 4537 82069384.74161 4649 4537 -3.75509262085e-06 4650 4537 -4861111.112713 4651 4537 -41704377.77507 4652 4537 34687499.9943 4538 4538 582912992.1231 4539 4538 -7.271766662598e-06 4540 4538 1.877546310425e-06 4541 4538 52395662.19267 4623 4538 21679861.11823 4624 4538 -17343750.0057 4625 4538 -36432062.04359 4626 4538 86719444.4302 4627 4538 3.427267074585e-07 4628 4538 -99061955.12464 4629 4538 21679861.11823 4630 4538 17343750.0057 4631 4538 -36432062.04359 4644 4538 4335972.223649 4645 4538 -34687499.9943 4646 4538 -36405498.74736 4647 4538 17343888.88605 4648 4538 -3.576278686523e-06 4649 4538 -52289409.00778 4650 4538 4335972.22365 4651 4538 34687499.9943 4652 4538 -36405498.74735 4539 4539 743972693.3092 4540 4539 15895.84580326 4541 4539 -1.50203704834e-05 4542 4539 96103889.5723 4543 4539 23223356.21638 4544 4539 1.668930053711e-06 4626 4539 -46373434.23613 4627 4539 24305555.56354 4628 4539 21679861.11823 4629 4539 -140996480.167 4630 4539 -952893.2695162 4631 4539 87564583.31904 4632 4539 -45870736.57861 4633 4539 -24301364.19971 4634 4539 21679166.67379 4647 4539 4476132.383914 4648 4539 -4861111.112702 4649 4539 -4335972.223643 4650 4539 111737658.2526 4651 4539 3973.961447597 4652 4539 -17343611.10825 4653 4539 5643546.0595 4654 4539 5805839.056953 4655 4539 -5182361.11248 4540 4540 624700330.4184 4541 4540 1.788139343262e-05 4542 4540 -15665532.66612 4543 4540 -87045539.95468 4544 4540 5.960464477539e-07 4626 4540 24305555.56354 4627 4540 -39081501.55876 4628 4540 -17343750.00569 4629 4540 -952893.2695182 4630 4540 -33140775.69076 4631 4540 677083.3332871 4632 4540 -24301364.19971 4633 4540 -39232415.4315 4634 4540 17343750.00569 4647 4540 4861111.112712 4648 4540 -41704377.77507 4649 4540 -34687499.9943 4650 4540 3973.961447477 4651 4540 81919567.51516 4652 4540 -6.735324859619e-06 4653 4540 -3916383.16846 4654 4540 -40143811.34479 4655 4540 34010416.66101 4541 4541 583290059.4325 4542 4541 -1.192092895508e-07 4543 4541 7.748603820801e-07 4544 4541 54461159.75298 4626 4541 21679861.11823 4627 4541 -17343750.0057 4628 4541 -36432062.04359 4629 4541 87564583.31887 4630 4541 677083.3331537 4631 4541 -100252145.5455 4632 4541 21679166.67379 4633 4541 17343750.00569 4634 4541 -36335759.26895 4647 4541 4335972.223649 4648 4541 -34687499.9943 4649 4541 -36405498.74736 4650 4541 17343611.10827 4651 4541 -6.496906280518e-06 4652 4541 -52192192.18038 4653 4541 3489305.557201 4654 4541 34010416.66114 4655 4541 -35404513.64281 4542 4542 745987487.9303 4543 4542 -2453991.979033 4544 4542 -1.192092895508e-06 4545 4542 -141080087.6865 4546 4542 -95899021.31303 4547 4542 -4.440546035767e-06 4548 4542 92610986.19901 4549 4542 22063836.70035 4550 4542 1.54972076416e-06 4629 4542 -48879322.66664 4630 4542 24272689.58238 4631 4542 22525694.45184 4632 4542 -141002035.2671 4633 4542 -1284012.256585 4634 4542 85676388.87482 4650 4542 5643546.05949 4651 4542 -3916383.16846 4652 4542 -3489305.557201 4653 4542 115620942.6216 4654 4542 -613497.9950627 4655 4542 -17135277.77496 4656 4542 -43801307.66029 4657 4542 -23974755.34006 4658 4542 20312500.00667 4659 4542 5916032.26987 4660 4542 5515959.177802 4661 4542 -5078333.334501 4543 4543 616411761.6305 4544 4543 2.765655517578e-05 4545 4543 -95899021.31303 4546 4543 -117437349.9808 4547 4543 -9.536743164063e-07 4548 4543 -16825052.18215 4549 4543 -92728025.5149 4550 4543 3.576278686523e-07 4629 4543 24272689.58238 4630 4543 -38326906.89252 4631 4543 -16666666.67214 4632 4543 -1284012.256586 4633 4543 -32949093.52409 4634 4543 677083.333285 4650 4543 5805839.056955 4651 4543 -40143811.34481 4652 4543 -34010416.66115 4653 4543 -613497.9950588 4654 4543 83227011.03069 4655 4543 -1.034140586853e-05 4656 4543 -23974755.34006 4657 4543 -37890623.23096 4658 4543 16666666.67214 4659 4543 -4206263.047611 4660 4543 -40418720.68142 4661 4543 33333333.32786 4544 4544 572020605.8755 4545 4544 -4.291534423828e-06 4546 4544 -8.79168510437e-07 4547 4544 -46375866.82273 4548 4544 -3.576278686523e-07 4549 4544 3.278255462646e-07 4550 4544 48718383.22464 4629 4544 22525694.45184 4630 4544 -16666666.67214 4631 4544 -36909325.87324 4632 4544 85676388.87482 4633 4544 677083.3331516 4634 4544 -97565514.93122 4650 4544 5182361.11248 4651 4544 -34010416.66102 4652 4544 -35404513.64282 4653 4544 17135277.77496 4654 4544 -1.025199890137e-05 4655 4544 -45997327.00157 4656 4544 20312500.00667 4657 4544 16666666.67214 4658 4544 -34344061.96817 4659 4544 3385277.779223 4660 4544 33333333.32786 4661 4544 -33784975.63128 4545 4545 361120236.1713 4546 4545 94548810.89503 4547 4545 5.722045898438e-06 4548 4545 -203961436.0496 4549 4545 -20767645.33449 4550 4545 -2.413988113403e-06 4632 4545 4511607.610489 4633 4545 5529463.940845 4634 4545 4909027.779056 4653 4545 -43801307.66029 4654 4545 -23974755.34007 4655 4545 -20312500.00667 4656 4545 56503201.94982 4657 4545 23637202.7354 4658 4545 8124999.998666 4659 4545 -68052930.47167 4660 4545 -5191911.336183 4661 4545 -41471527.77105 4546 4546 308313282.913 4547 4546 9.775161743164e-06 4548 4546 18121243.54801 4549 4546 9374992.872524 4550 4546 5.900859832764e-06 4632 4546 -4192758.28457 4633 4546 -41531445.75454 4634 4546 -33333333.32786 4653 4546 -23974755.34007 4654 4546 -37890623.23096 4655 4546 -16666666.67214 4656 4546 23637202.7354 4657 4546 43301463.62873 4658 4546 6666666.665569 4659 4546 4530310.889231 4660 4546 -14718823.21489 4661 4546 3333333.334426 4547 4547 278103282.9517 4548 4547 -2.98023223877e-07 4549 4547 5.781650543213e-06 4550 4547 -4811252.171681 4632 4547 -3215972.223779 4633 4547 -33333333.32786 4634 4547 -33978945.7605 4653 4547 -20312500.00667 4654 4547 -16666666.67214 4655 4547 -34344061.96817 4656 4547 -8124999.998665 4657 4547 -6666666.665574 4658 4547 -20545798.26111 4659 4547 -41471527.77088 4660 4547 -3333333.33443 4661 4547 -46703003.53464 4548 4548 371304389.3859 4549 4548 -99841614.46535 4550 4548 -4.52995300293e-06 4632 4548 -47751770.62456 4633 4548 24636355.78701 4634 4548 21159027.78473 4653 4548 5916032.269863 4654 4548 -4206263.047612 4655 4548 -3385277.779223 4656 4548 -68052930.47167 4657 4548 4530310.889239 4658 4548 41471527.77088 4659 4548 58352668.82659 4660 4548 -24960403.62863 4661 4548 -8463611.10972 4549 4549 309788077.0662 4550 4549 1.430511474609e-05 4632 4549 24636355.78701 4633 4549 -39372046.84256 4634 4549 -16666666.67214 4653 4549 5515959.177803 4654 4549 -40418720.68144 4655 4549 -33333333.32786 4656 4549 -5191911.336175 4657 4549 -14718823.21489 4658 4549 3333333.334426 4659 4549 -24960403.62863 4660 4549 42973590.7391 4661 4549 6666666.665565 4550 4550 283253096.8786 4632 4550 21159027.78473 4633 4550 -16666666.67214 4634 4550 -35825485.57977 4653 4550 5078333.334501 4654 4550 -33333333.32786 4655 4550 -33784975.63128 4656 4550 41471527.77105 4657 4550 -3333333.33443 4658 4550 -46703003.53464 4659 4550 8463611.109722 4660 4550 -6666666.665577 4661 4550 -21115868.58705 4551 4551 927468678.158 4552 4551 97222222.20623 4553 4551 -8.106231689453e-06 4554 4551 -573726109.9308 4555 4551 -97222221.42845 4556 4551 8.940696716309e-07 4557 4551 18564155.00999 4558 4551 77777776.9872 4559 4551 2.861022949219e-06 4662 4551 139046393.5639 4663 4551 24305555.56354 4664 4551 17343888.84952 4665 4551 -175918799.4896 4666 4551 -24305555.36909 4667 4551 -86719444.24762 4668 4551 -9282077.505002 4669 4551 19444444.25638 4670 4551 -17343888.52033 4552 4552 781630025.6149 4553 4552 8.412431954121e-06 4554 4552 -97222221.03956 4555 4552 -116778839.2437 4556 4552 5.602836608887e-06 4557 4552 116666665.4808 4558 4552 18564155.00998 4559 4552 5.960464477539e-07 4662 4552 24305555.56354 4663 4552 102586730.4102 4664 4552 13874999.85143 4665 4552 -24305555.27187 4666 4552 -61681981.76159 4667 4552 -17343749.90781 4668 4552 29166666.38457 4669 4552 -9282077.504995 4670 4552 20812499.90894 4553 4553 728641235.3813 4554 4553 4.172325134277e-07 4555 4553 4.887580871582e-06 4556 4553 -96436338.25295 4557 4553 2.503395080566e-06 4558 4553 1.251697540283e-06 4559 4553 49504413.35998 4662 4553 -17343888.84952 4663 4553 -13874999.85144 4664 4553 -65361760.6378 4665 4553 -86719444.24762 4666 4553 -17343749.94044 4667 4553 -110741809.7386 4668 4553 -26015832.7805 4669 4553 13874999.9393 4670 4553 -24752206.67999 4554 4554 1632315315.374 4555 4554 97222220.26178 4556 4554 -4.172325134277e-05 4557 4554 17392720.97666 4558 4554 -97222221.42845 4559 4554 -2.145767211914e-06 4560 4554 -406796532.3944 4561 4554 -2.801418304443e-06 4562 4554 -1.233816146851e-05 4563 4554 -148365426.1266 4564 4554 97222222.20624 4565 4554 -3.308057785034e-06 4662 4554 -175918799.4897 4663 4554 -24305555.27186 4664 4554 86719444.24762 4665 4554 268847663.9159 4666 4554 24305555.07742 4667 4554 0.03653132915497 4668 4554 -28139091.37671 4669 4554 -24305555.36909 4670 4554 21679860.74398 4671 4554 -138827443.8751 4672 4554 -5.066394805908e-07 4673 4554 -86719444.43019 4674 4554 -46373434.23611 4675 4554 24305555.56353 4676 4554 -21679861.11823 4555 4555 1369805740.108 4556 4555 -2.145767211914e-06 4557 4555 -97222221.03956 4558 4555 -322883627.8625 4559 4555 4.798173904419e-06 4560 4555 -3.09944152832e-06 4561 4555 20983010.02827 4562 4555 -4.768371582031e-07 4563 4555 97222222.20624 4564 4555 -119197695.4315 4565 4555 -7.450580596924e-08 4662 4555 -24305555.36908 4663 4555 -61681981.7616 4664 4555 17343749.94043 4665 4555 24305555.07742 4666 4555 203220270.0671 4667 4555 0.02920919656754 4668 4555 -24305555.27186 4669 4555 -113208178.6284 4670 4555 69374999.6084 4671 4555 -8.344650268555e-07 4672 4555 -31882558.21681 4673 4555 -3.278255462646e-07 4674 4555 24305555.56353 4675 4555 -39081501.55875 4676 4555 17343750.00569 4556 4556 1212545401.289 4557 4556 -1.788139343262e-06 4558 4556 3.75509262085e-06 4559 4556 8567490.576108 4560 4556 -1.20997428894e-05 4561 4556 -4.768371582031e-07 4562 4556 -212506.0825927 4563 4556 -3.278255462646e-06 4564 4556 -2.086162567139e-07 4565 4556 -46719419.49861 4662 4556 86719444.24762 4663 4556 17343749.9078 4664 4556 -110741809.7386 4665 4556 -0.03649973869324 4666 4556 -0.02921465039253 4667 4556 -68146756.53808 4668 4556 21679860.55685 4669 4556 69374999.49133 4670 4556 -84490851.68298 4671 4556 -86719444.43019 4672 4556 -2.682209014893e-07 4673 4556 -99061955.12461 4674 4556 -21679861.11823 4675 4556 17343750.00569 4676 4556 -36432062.04358 4557 4557 927468678.158 4558 4557 97222222.20623 4559 4557 -8.106231689453e-06 4560 4557 -148365426.1266 4561 4557 -97222222.20624 4562 4557 -3.039836883545e-06 4563 4557 -573726109.9308 4564 4557 -97222221.42845 4565 4557 8.940696716309e-07 4566 4557 18564155.00999 4567 4557 77777776.9872 4568 4557 2.861022949219e-06 4662 4557 -9282077.50499 4663 4557 29166666.38457 4664 4557 26015832.78049 4665 4557 -28139091.37673 4666 4557 -24305555.27187 4667 4557 -21679860.55685 4668 4557 139046393.5639 4669 4557 24305555.56354 4670 4557 17343888.84952 4671 4557 -46373434.23611 4672 4557 -24305555.56353 4673 4557 -21679861.11823 4674 4557 -175918799.4896 4675 4557 -24305555.36909 4676 4557 -86719444.24762 4677 4557 -9282077.505002 4678 4557 19444444.25638 4679 4557 -17343888.52033 4558 4558 781630025.6149 4559 4558 8.412431954121e-06 4560 4558 -97222222.20624 4561 4558 -119197695.4315 4562 4558 2.831220626831e-07 4563 4558 -97222221.03956 4564 4558 -116778839.2437 4565 4558 5.602836608887e-06 4566 4558 116666665.4808 4567 4558 18564155.00998 4568 4558 5.960464477539e-07 4662 4558 19444444.25638 4663 4558 -9282077.505 4664 4558 -13874999.9393 4665 4558 -24305555.36909 4666 4558 -113208178.6284 4667 4558 -69374999.49133 4668 4558 24305555.56354 4669 4558 102586730.4102 4670 4558 13874999.85143 4671 4558 -24305555.56353 4672 4558 -39081501.55875 4673 4558 -17343750.0057 4674 4558 -24305555.27187 4675 4558 -61681981.76159 4676 4558 -17343749.90781 4677 4558 29166666.38457 4678 4558 -9282077.504995 4679 4558 20812499.90894 4559 4559 728641235.3813 4560 4559 -2.890825271606e-06 4561 4559 3.8743019104e-07 4562 4559 -46719419.49861 4563 4559 4.172325134277e-07 4564 4559 4.887580871582e-06 4565 4559 -96436338.25295 4566 4559 2.503395080566e-06 4567 4559 1.251697540283e-06 4568 4559 49504413.35998 4662 4559 17343888.52033 4663 4559 -20812499.90895 4664 4559 -24752206.67999 4665 4559 -21679860.74398 4666 4559 -69374999.6084 4667 4559 -84490851.68299 4668 4559 -17343888.84952 4669 4559 -13874999.85144 4670 4559 -65361760.6378 4671 4559 -21679861.11823 4672 4559 -17343750.0057 4673 4559 -36432062.04358 4674 4559 -86719444.24762 4675 4559 -17343749.94044 4676 4559 -110741809.7386 4677 4559 -26015832.7805 4678 4559 13874999.9393 4679 4559 -24752206.67999 4560 4560 1483949894.094 4561 4560 7.867813110352e-06 4562 4560 -5.507469177246e-05 4563 4560 184322301.8864 4564 4560 -2.622604370117e-06 4565 4560 -1.358985900879e-05 4569 4560 -406796532.3944 4570 4560 -2.801418304443e-06 4571 4560 -1.233816146851e-05 4572 4560 -148365426.1266 4573 4560 97222222.20624 4574 4560 -3.308057785034e-06 4665 4560 -138827443.8752 4666 4560 2.682209014893e-07 4667 4560 86719444.4302 4668 4560 -46373434.23614 4669 4560 -24305555.56354 4670 4560 21679861.11823 4671 4560 222474230.8735 4672 4560 3.933906555176e-06 4673 4560 2.622604370117e-05 4674 4560 8952264.76783 4675 4560 -1.302361488342e-05 4676 4560 6.914138793945e-06 4680 4560 -138827443.8751 4681 4560 -5.066394805908e-07 4682 4560 -86719444.43019 4683 4560 -46373434.23611 4684 4560 24305555.56353 4685 4560 -21679861.11823 4561 4561 1250608048.648 4562 4561 -1.192092895508e-06 4563 4561 -3.159046173096e-06 4564 4561 -185121779.2034 4565 4561 8.046627044678e-07 4569 4561 -3.09944152832e-06 4570 4561 20983010.02827 4571 4561 -4.768371582031e-07 4572 4561 97222222.20624 4573 4561 -119197695.4315 4574 4561 -7.450580596924e-08 4665 4561 -2.294778823853e-06 4666 4561 -31882558.21685 4667 4561 2.682209014893e-07 4668 4561 -24305555.56354 4669 4561 -39081501.55876 4670 4561 17343750.0057 4671 4561 4.410743713379e-06 4672 4561 164138769.4832 4673 4561 -1.192092895508e-07 4674 4561 -1.156330108643e-05 4675 4561 -83408755.55014 4676 4561 69374999.9886 4680 4561 -8.344650268555e-07 4681 4561 -31882558.21681 4682 4561 -3.278255462646e-07 4683 4561 24305555.56353 4684 4561 -39081501.55875 4685 4561 17343750.00569 4562 4562 1165825984.246 4563 4562 -1.382827758789e-05 4564 4562 1.788139343262e-07 4565 4562 104791324.3853 4569 4562 -1.20997428894e-05 4570 4562 -4.768371582031e-07 4571 4562 -212506.0825927 4572 4562 -3.278255462646e-06 4573 4562 -2.086162567139e-07 4574 4562 -46719419.49861 4665 4562 86719444.4302 4666 4562 3.427267074585e-07 4667 4562 -99061955.12464 4668 4562 21679861.11823 4669 4562 17343750.0057 4670 4562 -36432062.04359 4671 4562 2.598762512207e-05 4672 4562 5.960464477539e-08 4673 4562 -104578818.0156 4674 4562 6.973743438721e-06 4675 4562 69374999.9886 4676 4562 -72810997.49471 4680 4562 -86719444.43019 4681 4562 -2.682209014893e-07 4682 4562 -99061955.12461 4683 4562 -21679861.11823 4684 4562 17343750.00569 4685 4562 -36432062.04358 4563 4563 1632315315.374 4564 4563 97222220.26178 4565 4563 -4.172325134277e-05 4566 4563 17392720.97666 4567 4563 -97222221.42845 4568 4563 -2.145767211914e-06 4569 4563 -148365426.1266 4570 4563 -97222222.20624 4571 4563 -3.039836883545e-06 4572 4563 -406796532.3944 4573 4563 -2.801418304443e-06 4574 4563 -1.233816146851e-05 4575 4563 -148365426.1266 4576 4563 97222222.20624 4577 4563 -3.308057785034e-06 4665 4563 -46373434.23613 4666 4563 24305555.56354 4667 4563 21679861.11823 4668 4563 -175918799.4897 4669 4563 -24305555.27186 4670 4563 86719444.24762 4671 4563 8952264.76783 4672 4563 9.298324584961e-06 4673 4563 6.228685379028e-06 4674 4563 268847663.9159 4675 4563 24305555.07742 4676 4563 0.03653132915497 4677 4563 -28139091.37671 4678 4563 -24305555.36909 4679 4563 21679860.74398 4680 4563 -46373434.23611 4681 4563 -24305555.56353 4682 4563 -21679861.11823 4683 4563 -138827443.8751 4684 4563 -5.066394805908e-07 4685 4563 -86719444.43019 4686 4563 -46373434.23611 4687 4563 24305555.56353 4688 4563 -21679861.11823 4564 4564 1369805740.108 4565 4564 -2.145767211914e-06 4566 4564 -97222221.03956 4567 4564 -322883627.8625 4568 4564 4.798173904419e-06 4569 4564 -97222222.20624 4570 4564 -119197695.4315 4571 4564 2.831220626831e-07 4572 4564 -3.09944152832e-06 4573 4564 20983010.02827 4574 4564 -4.768371582031e-07 4575 4564 97222222.20624 4576 4564 -119197695.4315 4577 4564 -7.450580596924e-08 4665 4564 24305555.56354 4666 4564 -39081501.55876 4667 4564 -17343750.00569 4668 4564 -24305555.36908 4669 4564 -61681981.7616 4670 4564 17343749.94043 4671 4564 1.069903373718e-05 4672 4564 -83408755.55014 4673 4564 -69374999.9886 4674 4564 24305555.07742 4675 4564 203220270.0671 4676 4564 0.02920919656754 4677 4564 -24305555.27186 4678 4564 -113208178.6284 4679 4564 69374999.6084 4680 4564 -24305555.56353 4681 4564 -39081501.55875 4682 4564 -17343750.0057 4683 4564 -8.344650268555e-07 4684 4564 -31882558.21681 4685 4564 -3.278255462646e-07 4686 4564 24305555.56353 4687 4564 -39081501.55875 4688 4564 17343750.00569 4565 4565 1212545401.289 4566 4565 -1.788139343262e-06 4567 4565 3.75509262085e-06 4568 4565 8567490.576108 4569 4565 -2.890825271606e-06 4570 4565 3.8743019104e-07 4571 4565 -46719419.49861 4572 4565 -1.20997428894e-05 4573 4565 -4.768371582031e-07 4574 4565 -212506.0825927 4575 4565 -3.278255462646e-06 4576 4565 -2.086162567139e-07 4577 4565 -46719419.49861 4665 4565 21679861.11823 4666 4565 -17343750.0057 4667 4565 -36432062.04359 4668 4565 86719444.24762 4669 4565 17343749.9078 4670 4565 -110741809.7386 4671 4565 6.169080734253e-06 4672 4565 -69374999.9886 4673 4565 -72810997.49471 4674 4565 -0.03649973869324 4675 4565 -0.02921465039253 4676 4565 -68146756.53808 4677 4565 21679860.55685 4678 4565 69374999.49133 4679 4565 -84490851.68298 4680 4565 -21679861.11823 4681 4565 -17343750.0057 4682 4565 -36432062.04358 4683 4565 -86719444.43019 4684 4565 -2.682209014893e-07 4685 4565 -99061955.12461 4686 4565 -21679861.11823 4687 4565 17343750.00569 4688 4565 -36432062.04358 4566 4566 927468678.158 4567 4566 97222222.20623 4568 4566 -8.106231689453e-06 4572 4566 -148365426.1266 4573 4566 -97222222.20624 4574 4566 -3.039836883545e-06 4575 4566 -573726109.9308 4576 4566 -97222221.42845 4577 4566 8.940696716309e-07 4578 4566 18564155.00999 4579 4566 77777776.9872 4580 4566 2.861022949219e-06 4668 4566 -9282077.50499 4669 4566 29166666.38457 4670 4566 26015832.78049 4674 4566 -28139091.37673 4675 4566 -24305555.27187 4676 4566 -21679860.55685 4677 4566 139046393.5639 4678 4566 24305555.56354 4679 4566 17343888.84952 4683 4566 -46373434.23611 4684 4566 -24305555.56353 4685 4566 -21679861.11823 4686 4566 -175918799.4896 4687 4566 -24305555.36909 4688 4566 -86719444.24762 4689 4566 -9282077.505002 4690 4566 19444444.25638 4691 4566 -17343888.52033 4567 4567 781630025.6149 4568 4567 8.412431954121e-06 4572 4567 -97222222.20624 4573 4567 -119197695.4315 4574 4567 2.831220626831e-07 4575 4567 -97222221.03956 4576 4567 -116778839.2437 4577 4567 5.602836608887e-06 4578 4567 116666665.4808 4579 4567 18564155.00998 4580 4567 5.960464477539e-07 4668 4567 19444444.25638 4669 4567 -9282077.505 4670 4567 -13874999.9393 4674 4567 -24305555.36909 4675 4567 -113208178.6284 4676 4567 -69374999.49133 4677 4567 24305555.56354 4678 4567 102586730.4102 4679 4567 13874999.85143 4683 4567 -24305555.56353 4684 4567 -39081501.55875 4685 4567 -17343750.0057 4686 4567 -24305555.27187 4687 4567 -61681981.76159 4688 4567 -17343749.90781 4689 4567 29166666.38457 4690 4567 -9282077.504995 4691 4567 20812499.90894 4568 4568 728641235.3813 4572 4568 -2.890825271606e-06 4573 4568 3.8743019104e-07 4574 4568 -46719419.49861 4575 4568 4.172325134277e-07 4576 4568 4.887580871582e-06 4577 4568 -96436338.25295 4578 4568 2.503395080566e-06 4579 4568 1.251697540283e-06 4580 4568 49504413.35998 4668 4568 17343888.52033 4669 4568 -20812499.90895 4670 4568 -24752206.67999 4674 4568 -21679860.74398 4675 4568 -69374999.6084 4676 4568 -84490851.68299 4677 4568 -17343888.84952 4678 4568 -13874999.85144 4679 4568 -65361760.6378 4683 4568 -21679861.11823 4684 4568 -17343750.0057 4685 4568 -36432062.04358 4686 4568 -86719444.24762 4687 4568 -17343749.94044 4688 4568 -110741809.7386 4689 4568 -26015832.7805 4690 4568 13874999.9393 4691 4568 -24752206.67999 4569 4569 1483949894.094 4570 4569 7.867813110352e-06 4571 4569 -5.507469177246e-05 4572 4569 184322301.8864 4573 4569 -2.622604370117e-06 4574 4569 -1.358985900879e-05 4581 4569 -406796532.3944 4582 4569 -2.801418304443e-06 4583 4569 -1.233816146851e-05 4584 4569 -148365426.1266 4585 4569 97222222.20624 4586 4569 -3.308057785034e-06 4671 4569 -138827443.8752 4672 4569 2.682209014893e-07 4673 4569 86719444.4302 4674 4569 -46373434.23614 4675 4569 -24305555.56354 4676 4569 21679861.11823 4680 4569 222474230.8735 4681 4569 3.933906555176e-06 4682 4569 2.622604370117e-05 4683 4569 8952264.76783 4684 4569 -1.302361488342e-05 4685 4569 6.914138793945e-06 4692 4569 -138827443.8751 4693 4569 -5.066394805908e-07 4694 4569 -86719444.43019 4695 4569 -46373434.23611 4696 4569 24305555.56353 4697 4569 -21679861.11823 4570 4570 1250608048.648 4571 4570 -1.192092895508e-06 4572 4570 -3.159046173096e-06 4573 4570 -185121779.2034 4574 4570 8.046627044678e-07 4581 4570 -3.09944152832e-06 4582 4570 20983010.02827 4583 4570 -4.768371582031e-07 4584 4570 97222222.20624 4585 4570 -119197695.4315 4586 4570 -7.450580596924e-08 4671 4570 -2.294778823853e-06 4672 4570 -31882558.21685 4673 4570 2.682209014893e-07 4674 4570 -24305555.56354 4675 4570 -39081501.55876 4676 4570 17343750.0057 4680 4570 4.410743713379e-06 4681 4570 164138769.4832 4682 4570 -1.192092895508e-07 4683 4570 -1.156330108643e-05 4684 4570 -83408755.55014 4685 4570 69374999.9886 4692 4570 -8.344650268555e-07 4693 4570 -31882558.21681 4694 4570 -3.278255462646e-07 4695 4570 24305555.56353 4696 4570 -39081501.55875 4697 4570 17343750.00569 4571 4571 1165825984.246 4572 4571 -1.382827758789e-05 4573 4571 1.788139343262e-07 4574 4571 104791324.3853 4581 4571 -1.20997428894e-05 4582 4571 -4.768371582031e-07 4583 4571 -212506.0825927 4584 4571 -3.278255462646e-06 4585 4571 -2.086162567139e-07 4586 4571 -46719419.49861 4671 4571 86719444.4302 4672 4571 3.427267074585e-07 4673 4571 -99061955.12464 4674 4571 21679861.11823 4675 4571 17343750.0057 4676 4571 -36432062.04359 4680 4571 2.598762512207e-05 4681 4571 5.960464477539e-08 4682 4571 -104578818.0156 4683 4571 6.973743438721e-06 4684 4571 69374999.9886 4685 4571 -72810997.49471 4692 4571 -86719444.43019 4693 4571 -2.682209014893e-07 4694 4571 -99061955.12461 4695 4571 -21679861.11823 4696 4571 17343750.00569 4697 4571 -36432062.04358 4572 4572 1483949894.094 4573 4572 7.867813110352e-06 4574 4572 -5.507469177246e-05 4575 4572 184322301.8864 4576 4572 -2.622604370117e-06 4577 4572 -1.358985900879e-05 4581 4572 -148365426.1266 4582 4572 -97222222.20624 4583 4572 -3.039836883545e-06 4584 4572 -406796532.3944 4585 4572 -2.801418304443e-06 4586 4572 -1.233816146851e-05 4587 4572 -148365426.1266 4588 4572 97222222.20624 4589 4572 -3.308057785034e-06 4671 4572 -46373434.23613 4672 4572 24305555.56354 4673 4572 21679861.11823 4674 4572 -138827443.8752 4675 4572 2.682209014893e-07 4676 4572 86719444.4302 4677 4572 -46373434.23614 4678 4572 -24305555.56354 4679 4572 21679861.11823 4680 4572 8952264.76783 4681 4572 9.298324584961e-06 4682 4572 6.228685379028e-06 4683 4572 222474230.8735 4684 4572 3.933906555176e-06 4685 4572 2.622604370117e-05 4686 4572 8952264.76783 4687 4572 -1.302361488342e-05 4688 4572 6.914138793945e-06 4692 4572 -46373434.23611 4693 4572 -24305555.56353 4694 4572 -21679861.11823 4695 4572 -138827443.8751 4696 4572 -5.066394805908e-07 4697 4572 -86719444.43019 4698 4572 -46373434.23611 4699 4572 24305555.56353 4700 4572 -21679861.11823 4573 4573 1250608048.648 4574 4573 -1.192092895508e-06 4575 4573 -3.159046173096e-06 4576 4573 -185121779.2034 4577 4573 8.046627044678e-07 4581 4573 -97222222.20624 4582 4573 -119197695.4315 4583 4573 2.831220626831e-07 4584 4573 -3.09944152832e-06 4585 4573 20983010.02827 4586 4573 -4.768371582031e-07 4587 4573 97222222.20624 4588 4573 -119197695.4315 4589 4573 -7.450580596924e-08 4671 4573 24305555.56354 4672 4573 -39081501.55876 4673 4573 -17343750.00569 4674 4573 -2.294778823853e-06 4675 4573 -31882558.21685 4676 4573 2.682209014893e-07 4677 4573 -24305555.56354 4678 4573 -39081501.55876 4679 4573 17343750.0057 4680 4573 1.069903373718e-05 4681 4573 -83408755.55014 4682 4573 -69374999.9886 4683 4573 4.410743713379e-06 4684 4573 164138769.4832 4685 4573 -1.192092895508e-07 4686 4573 -1.156330108643e-05 4687 4573 -83408755.55014 4688 4573 69374999.9886 4692 4573 -24305555.56353 4693 4573 -39081501.55875 4694 4573 -17343750.0057 4695 4573 -8.344650268555e-07 4696 4573 -31882558.21681 4697 4573 -3.278255462646e-07 4698 4573 24305555.56353 4699 4573 -39081501.55875 4700 4573 17343750.00569 4574 4574 1165825984.246 4575 4574 -1.382827758789e-05 4576 4574 1.788139343262e-07 4577 4574 104791324.3853 4581 4574 -2.890825271606e-06 4582 4574 3.8743019104e-07 4583 4574 -46719419.49861 4584 4574 -1.20997428894e-05 4585 4574 -4.768371582031e-07 4586 4574 -212506.0825927 4587 4574 -3.278255462646e-06 4588 4574 -2.086162567139e-07 4589 4574 -46719419.49861 4671 4574 21679861.11823 4672 4574 -17343750.0057 4673 4574 -36432062.04359 4674 4574 86719444.4302 4675 4574 3.427267074585e-07 4676 4574 -99061955.12464 4677 4574 21679861.11823 4678 4574 17343750.0057 4679 4574 -36432062.04359 4680 4574 6.169080734253e-06 4681 4574 -69374999.9886 4682 4574 -72810997.49471 4683 4574 2.598762512207e-05 4684 4574 5.960464477539e-08 4685 4574 -104578818.0156 4686 4574 6.973743438721e-06 4687 4574 69374999.9886 4688 4574 -72810997.49471 4692 4574 -21679861.11823 4693 4574 -17343750.0057 4694 4574 -36432062.04358 4695 4574 -86719444.43019 4696 4574 -2.682209014893e-07 4697 4574 -99061955.12461 4698 4574 -21679861.11823 4699 4574 17343750.00569 4700 4574 -36432062.04358 4575 4575 1632315315.374 4576 4575 97222220.26178 4577 4575 -4.172325134277e-05 4578 4575 17392720.97666 4579 4575 -97222221.42845 4580 4575 -2.145767211914e-06 4584 4575 -148365426.1266 4585 4575 -97222222.20624 4586 4575 -3.039836883545e-06 4587 4575 -406796532.3944 4588 4575 -2.801418304443e-06 4589 4575 -1.233816146851e-05 4590 4575 -148365426.1266 4591 4575 97222222.20624 4592 4575 -3.308057785034e-06 4674 4575 -46373434.23613 4675 4575 24305555.56354 4676 4575 21679861.11823 4677 4575 -175918799.4897 4678 4575 -24305555.27186 4679 4575 86719444.24762 4683 4575 8952264.76783 4684 4575 9.298324584961e-06 4685 4575 6.228685379028e-06 4686 4575 268847663.9159 4687 4575 24305555.07742 4688 4575 0.03653132915497 4689 4575 -28139091.37671 4690 4575 -24305555.36909 4691 4575 21679860.74398 4695 4575 -46373434.23611 4696 4575 -24305555.56353 4697 4575 -21679861.11823 4698 4575 -138827443.8751 4699 4575 -5.066394805908e-07 4700 4575 -86719444.43019 4701 4575 -46373434.23611 4702 4575 24305555.56353 4703 4575 -21679861.11823 4576 4576 1369805740.108 4577 4576 -2.145767211914e-06 4578 4576 -97222221.03956 4579 4576 -322883627.8625 4580 4576 4.798173904419e-06 4584 4576 -97222222.20624 4585 4576 -119197695.4315 4586 4576 2.831220626831e-07 4587 4576 -3.09944152832e-06 4588 4576 20983010.02827 4589 4576 -4.768371582031e-07 4590 4576 97222222.20624 4591 4576 -119197695.4315 4592 4576 -7.450580596924e-08 4674 4576 24305555.56354 4675 4576 -39081501.55876 4676 4576 -17343750.00569 4677 4576 -24305555.36908 4678 4576 -61681981.7616 4679 4576 17343749.94043 4683 4576 1.069903373718e-05 4684 4576 -83408755.55014 4685 4576 -69374999.9886 4686 4576 24305555.07742 4687 4576 203220270.0671 4688 4576 0.02920919656754 4689 4576 -24305555.27186 4690 4576 -113208178.6284 4691 4576 69374999.6084 4695 4576 -24305555.56353 4696 4576 -39081501.55875 4697 4576 -17343750.0057 4698 4576 -8.344650268555e-07 4699 4576 -31882558.21681 4700 4576 -3.278255462646e-07 4701 4576 24305555.56353 4702 4576 -39081501.55875 4703 4576 17343750.00569 4577 4577 1212545401.289 4578 4577 -1.788139343262e-06 4579 4577 3.75509262085e-06 4580 4577 8567490.576108 4584 4577 -2.890825271606e-06 4585 4577 3.8743019104e-07 4586 4577 -46719419.49861 4587 4577 -1.20997428894e-05 4588 4577 -4.768371582031e-07 4589 4577 -212506.0825927 4590 4577 -3.278255462646e-06 4591 4577 -2.086162567139e-07 4592 4577 -46719419.49861 4674 4577 21679861.11823 4675 4577 -17343750.0057 4676 4577 -36432062.04359 4677 4577 86719444.24762 4678 4577 17343749.9078 4679 4577 -110741809.7386 4683 4577 6.169080734253e-06 4684 4577 -69374999.9886 4685 4577 -72810997.49471 4686 4577 -0.03649973869324 4687 4577 -0.02921465039253 4688 4577 -68146756.53808 4689 4577 21679860.55685 4690 4577 69374999.49133 4691 4577 -84490851.68298 4695 4577 -21679861.11823 4696 4577 -17343750.0057 4697 4577 -36432062.04358 4698 4577 -86719444.43019 4699 4577 -2.682209014893e-07 4700 4577 -99061955.12461 4701 4577 -21679861.11823 4702 4577 17343750.00569 4703 4577 -36432062.04358 4578 4578 927468678.158 4579 4578 97222222.20623 4580 4578 -8.106231689453e-06 4587 4578 -148365426.1266 4588 4578 -97222222.20624 4589 4578 -3.039836883545e-06 4590 4578 -573726109.9308 4591 4578 -97222221.42845 4592 4578 8.940696716309e-07 4593 4578 18564155.00999 4594 4578 77777776.9872 4595 4578 2.861022949219e-06 4677 4578 -9282077.50499 4678 4578 29166666.38457 4679 4578 26015832.78049 4686 4578 -28139091.37673 4687 4578 -24305555.27187 4688 4578 -21679860.55685 4689 4578 139046393.5639 4690 4578 24305555.56354 4691 4578 17343888.84952 4698 4578 -46373434.23611 4699 4578 -24305555.56353 4700 4578 -21679861.11823 4701 4578 -175918799.4896 4702 4578 -24305555.36909 4703 4578 -86719444.24762 4704 4578 -9282077.505002 4705 4578 19444444.25638 4706 4578 -17343888.52033 4579 4579 781630025.6149 4580 4579 8.412431954121e-06 4587 4579 -97222222.20624 4588 4579 -119197695.4315 4589 4579 2.831220626831e-07 4590 4579 -97222221.03956 4591 4579 -116778839.2437 4592 4579 5.602836608887e-06 4593 4579 116666665.4808 4594 4579 18564155.00998 4595 4579 5.960464477539e-07 4677 4579 19444444.25638 4678 4579 -9282077.505 4679 4579 -13874999.9393 4686 4579 -24305555.36909 4687 4579 -113208178.6284 4688 4579 -69374999.49133 4689 4579 24305555.56354 4690 4579 102586730.4102 4691 4579 13874999.85143 4698 4579 -24305555.56353 4699 4579 -39081501.55875 4700 4579 -17343750.0057 4701 4579 -24305555.27187 4702 4579 -61681981.76159 4703 4579 -17343749.90781 4704 4579 29166666.38457 4705 4579 -9282077.504995 4706 4579 20812499.90894 4580 4580 728641235.3813 4587 4580 -2.890825271606e-06 4588 4580 3.8743019104e-07 4589 4580 -46719419.49861 4590 4580 4.172325134277e-07 4591 4580 4.887580871582e-06 4592 4580 -96436338.25295 4593 4580 2.503395080566e-06 4594 4580 1.251697540283e-06 4595 4580 49504413.35998 4677 4580 17343888.52033 4678 4580 -20812499.90895 4679 4580 -24752206.67999 4686 4580 -21679860.74398 4687 4580 -69374999.6084 4688 4580 -84490851.68299 4689 4580 -17343888.84952 4690 4580 -13874999.85144 4691 4580 -65361760.6378 4698 4580 -21679861.11823 4699 4580 -17343750.0057 4700 4580 -36432062.04358 4701 4580 -86719444.24762 4702 4580 -17343749.94044 4703 4580 -110741809.7386 4704 4580 -26015832.7805 4705 4580 13874999.9393 4706 4580 -24752206.67999 4581 4581 1483949894.094 4582 4581 7.867813110352e-06 4583 4581 -5.507469177246e-05 4584 4581 184322301.8864 4585 4581 -2.622604370117e-06 4586 4581 -1.358985900879e-05 4596 4581 -406796532.3944 4597 4581 -2.801418304443e-06 4598 4581 -1.233816146851e-05 4599 4581 -148365426.1266 4600 4581 97222222.20624 4601 4581 -3.308057785034e-06 4680 4581 -138827443.8752 4681 4581 2.682209014893e-07 4682 4581 86719444.4302 4683 4581 -46373434.23614 4684 4581 -24305555.56354 4685 4581 21679861.11823 4692 4581 222474230.8735 4693 4581 3.933906555176e-06 4694 4581 2.622604370117e-05 4695 4581 8952264.76783 4696 4581 -1.302361488342e-05 4697 4581 6.914138793945e-06 4707 4581 -138827443.8751 4708 4581 -5.066394805908e-07 4709 4581 -86719444.43019 4710 4581 -46373434.23611 4711 4581 24305555.56353 4712 4581 -21679861.11823 4582 4582 1250608048.648 4583 4582 -1.192092895508e-06 4584 4582 -3.159046173096e-06 4585 4582 -185121779.2034 4586 4582 8.046627044678e-07 4596 4582 -3.09944152832e-06 4597 4582 20983010.02827 4598 4582 -4.768371582031e-07 4599 4582 97222222.20624 4600 4582 -119197695.4315 4601 4582 -7.450580596924e-08 4680 4582 -2.294778823853e-06 4681 4582 -31882558.21685 4682 4582 2.682209014893e-07 4683 4582 -24305555.56354 4684 4582 -39081501.55876 4685 4582 17343750.0057 4692 4582 4.410743713379e-06 4693 4582 164138769.4832 4694 4582 -1.192092895508e-07 4695 4582 -1.156330108643e-05 4696 4582 -83408755.55014 4697 4582 69374999.9886 4707 4582 -8.344650268555e-07 4708 4582 -31882558.21681 4709 4582 -3.278255462646e-07 4710 4582 24305555.56353 4711 4582 -39081501.55875 4712 4582 17343750.00569 4583 4583 1165825984.246 4584 4583 -1.382827758789e-05 4585 4583 1.788139343262e-07 4586 4583 104791324.3853 4596 4583 -1.20997428894e-05 4597 4583 -4.768371582031e-07 4598 4583 -212506.0825927 4599 4583 -3.278255462646e-06 4600 4583 -2.086162567139e-07 4601 4583 -46719419.49861 4680 4583 86719444.4302 4681 4583 3.427267074585e-07 4682 4583 -99061955.12464 4683 4583 21679861.11823 4684 4583 17343750.0057 4685 4583 -36432062.04359 4692 4583 2.598762512207e-05 4693 4583 5.960464477539e-08 4694 4583 -104578818.0156 4695 4583 6.973743438721e-06 4696 4583 69374999.9886 4697 4583 -72810997.49471 4707 4583 -86719444.43019 4708 4583 -2.682209014893e-07 4709 4583 -99061955.12461 4710 4583 -21679861.11823 4711 4583 17343750.00569 4712 4583 -36432062.04358 4584 4584 1483949894.094 4585 4584 7.867813110352e-06 4586 4584 -5.507469177246e-05 4587 4584 184322301.8864 4588 4584 -2.622604370117e-06 4589 4584 -1.358985900879e-05 4596 4584 -148365426.1266 4597 4584 -97222222.20624 4598 4584 -3.039836883545e-06 4599 4584 -406796532.3944 4600 4584 -2.801418304443e-06 4601 4584 -1.233816146851e-05 4602 4584 -148365426.1266 4603 4584 97222222.20624 4604 4584 -3.308057785034e-06 4680 4584 -46373434.23613 4681 4584 24305555.56354 4682 4584 21679861.11823 4683 4584 -138827443.8752 4684 4584 2.682209014893e-07 4685 4584 86719444.4302 4686 4584 -46373434.23614 4687 4584 -24305555.56354 4688 4584 21679861.11823 4692 4584 8952264.76783 4693 4584 9.298324584961e-06 4694 4584 6.228685379028e-06 4695 4584 222474230.8735 4696 4584 3.933906555176e-06 4697 4584 2.622604370117e-05 4698 4584 8952264.76783 4699 4584 -1.302361488342e-05 4700 4584 6.914138793945e-06 4707 4584 -46373434.23611 4708 4584 -24305555.56353 4709 4584 -21679861.11823 4710 4584 -138827443.8751 4711 4584 -5.066394805908e-07 4712 4584 -86719444.43019 4713 4584 -46373434.23611 4714 4584 24305555.56353 4715 4584 -21679861.11823 4585 4585 1250608048.648 4586 4585 -1.192092895508e-06 4587 4585 -3.159046173096e-06 4588 4585 -185121779.2034 4589 4585 8.046627044678e-07 4596 4585 -97222222.20624 4597 4585 -119197695.4315 4598 4585 2.831220626831e-07 4599 4585 -3.09944152832e-06 4600 4585 20983010.02827 4601 4585 -4.768371582031e-07 4602 4585 97222222.20624 4603 4585 -119197695.4315 4604 4585 -7.450580596924e-08 4680 4585 24305555.56354 4681 4585 -39081501.55876 4682 4585 -17343750.00569 4683 4585 -2.294778823853e-06 4684 4585 -31882558.21685 4685 4585 2.682209014893e-07 4686 4585 -24305555.56354 4687 4585 -39081501.55876 4688 4585 17343750.0057 4692 4585 1.069903373718e-05 4693 4585 -83408755.55014 4694 4585 -69374999.9886 4695 4585 4.410743713379e-06 4696 4585 164138769.4832 4697 4585 -1.192092895508e-07 4698 4585 -1.156330108643e-05 4699 4585 -83408755.55014 4700 4585 69374999.9886 4707 4585 -24305555.56353 4708 4585 -39081501.55875 4709 4585 -17343750.0057 4710 4585 -8.344650268555e-07 4711 4585 -31882558.21681 4712 4585 -3.278255462646e-07 4713 4585 24305555.56353 4714 4585 -39081501.55875 4715 4585 17343750.00569 4586 4586 1165825984.246 4587 4586 -1.382827758789e-05 4588 4586 1.788139343262e-07 4589 4586 104791324.3853 4596 4586 -2.890825271606e-06 4597 4586 3.8743019104e-07 4598 4586 -46719419.49861 4599 4586 -1.20997428894e-05 4600 4586 -4.768371582031e-07 4601 4586 -212506.0825927 4602 4586 -3.278255462646e-06 4603 4586 -2.086162567139e-07 4604 4586 -46719419.49861 4680 4586 21679861.11823 4681 4586 -17343750.0057 4682 4586 -36432062.04359 4683 4586 86719444.4302 4684 4586 3.427267074585e-07 4685 4586 -99061955.12464 4686 4586 21679861.11823 4687 4586 17343750.0057 4688 4586 -36432062.04359 4692 4586 6.169080734253e-06 4693 4586 -69374999.9886 4694 4586 -72810997.49471 4695 4586 2.598762512207e-05 4696 4586 5.960464477539e-08 4697 4586 -104578818.0156 4698 4586 6.973743438721e-06 4699 4586 69374999.9886 4700 4586 -72810997.49471 4707 4586 -21679861.11823 4708 4586 -17343750.0057 4709 4586 -36432062.04358 4710 4586 -86719444.43019 4711 4586 -2.682209014893e-07 4712 4586 -99061955.12461 4713 4586 -21679861.11823 4714 4586 17343750.00569 4715 4586 -36432062.04358 4587 4587 1483949894.094 4588 4587 7.867813110352e-06 4589 4587 -5.507469177246e-05 4590 4587 184322301.8864 4591 4587 -2.622604370117e-06 4592 4587 -1.358985900879e-05 4599 4587 -148365426.1266 4600 4587 -97222222.20624 4601 4587 -3.039836883545e-06 4602 4587 -406796532.3944 4603 4587 -2.801418304443e-06 4604 4587 -1.233816146851e-05 4605 4587 -148365426.1266 4606 4587 97222222.20624 4607 4587 -3.308057785034e-06 4683 4587 -46373434.23613 4684 4587 24305555.56354 4685 4587 21679861.11823 4686 4587 -138827443.8752 4687 4587 2.682209014893e-07 4688 4587 86719444.4302 4689 4587 -46373434.23614 4690 4587 -24305555.56354 4691 4587 21679861.11823 4695 4587 8952264.76783 4696 4587 9.298324584961e-06 4697 4587 6.228685379028e-06 4698 4587 222474230.8735 4699 4587 3.933906555176e-06 4700 4587 2.622604370117e-05 4701 4587 8952264.76783 4702 4587 -1.302361488342e-05 4703 4587 6.914138793945e-06 4710 4587 -46373434.23611 4711 4587 -24305555.56353 4712 4587 -21679861.11823 4713 4587 -138827443.8751 4714 4587 -5.066394805908e-07 4715 4587 -86719444.43019 4716 4587 -46373434.23611 4717 4587 24305555.56353 4718 4587 -21679861.11823 4588 4588 1250608048.648 4589 4588 -1.192092895508e-06 4590 4588 -3.159046173096e-06 4591 4588 -185121779.2034 4592 4588 8.046627044678e-07 4599 4588 -97222222.20624 4600 4588 -119197695.4315 4601 4588 2.831220626831e-07 4602 4588 -3.09944152832e-06 4603 4588 20983010.02827 4604 4588 -4.768371582031e-07 4605 4588 97222222.20624 4606 4588 -119197695.4315 4607 4588 -7.450580596924e-08 4683 4588 24305555.56354 4684 4588 -39081501.55876 4685 4588 -17343750.00569 4686 4588 -2.294778823853e-06 4687 4588 -31882558.21685 4688 4588 2.682209014893e-07 4689 4588 -24305555.56354 4690 4588 -39081501.55876 4691 4588 17343750.0057 4695 4588 1.069903373718e-05 4696 4588 -83408755.55014 4697 4588 -69374999.9886 4698 4588 4.410743713379e-06 4699 4588 164138769.4832 4700 4588 -1.192092895508e-07 4701 4588 -1.156330108643e-05 4702 4588 -83408755.55014 4703 4588 69374999.9886 4710 4588 -24305555.56353 4711 4588 -39081501.55875 4712 4588 -17343750.0057 4713 4588 -8.344650268555e-07 4714 4588 -31882558.21681 4715 4588 -3.278255462646e-07 4716 4588 24305555.56353 4717 4588 -39081501.55875 4718 4588 17343750.00569 4589 4589 1165825984.246 4590 4589 -1.382827758789e-05 4591 4589 1.788139343262e-07 4592 4589 104791324.3853 4599 4589 -2.890825271606e-06 4600 4589 3.8743019104e-07 4601 4589 -46719419.49861 4602 4589 -1.20997428894e-05 4603 4589 -4.768371582031e-07 4604 4589 -212506.0825927 4605 4589 -3.278255462646e-06 4606 4589 -2.086162567139e-07 4607 4589 -46719419.49861 4683 4589 21679861.11823 4684 4589 -17343750.0057 4685 4589 -36432062.04359 4686 4589 86719444.4302 4687 4589 3.427267074585e-07 4688 4589 -99061955.12464 4689 4589 21679861.11823 4690 4589 17343750.0057 4691 4589 -36432062.04359 4695 4589 6.169080734253e-06 4696 4589 -69374999.9886 4697 4589 -72810997.49471 4698 4589 2.598762512207e-05 4699 4589 5.960464477539e-08 4700 4589 -104578818.0156 4701 4589 6.973743438721e-06 4702 4589 69374999.9886 4703 4589 -72810997.49471 4710 4589 -21679861.11823 4711 4589 -17343750.0057 4712 4589 -36432062.04358 4713 4589 -86719444.43019 4714 4589 -2.682209014893e-07 4715 4589 -99061955.12461 4716 4589 -21679861.11823 4717 4589 17343750.00569 4718 4589 -36432062.04358 4590 4590 1632315315.374 4591 4590 97222220.26178 4592 4590 -4.172325134277e-05 4593 4590 17392720.97666 4594 4590 -97222221.42845 4595 4590 -2.145767211914e-06 4602 4590 -148365426.1266 4603 4590 -97222222.20624 4604 4590 -3.039836883545e-06 4605 4590 -406796532.3944 4606 4590 -2.801418304443e-06 4607 4590 -1.233816146851e-05 4608 4590 -148365426.1266 4609 4590 97222222.20624 4610 4590 -3.308057785034e-06 4686 4590 -46373434.23613 4687 4590 24305555.56354 4688 4590 21679861.11823 4689 4590 -175918799.4897 4690 4590 -24305555.27186 4691 4590 86719444.24762 4698 4590 8952264.76783 4699 4590 9.298324584961e-06 4700 4590 6.228685379028e-06 4701 4590 268847663.9159 4702 4590 24305555.07742 4703 4590 0.03653132915497 4704 4590 -28139091.37671 4705 4590 -24305555.36909 4706 4590 21679860.74398 4713 4590 -46373434.23611 4714 4590 -24305555.56353 4715 4590 -21679861.11823 4716 4590 -138827443.8751 4717 4590 -5.066394805908e-07 4718 4590 -86719444.43019 4719 4590 -46373434.23611 4720 4590 24305555.56353 4721 4590 -21679861.11823 4591 4591 1369805740.108 4592 4591 -2.145767211914e-06 4593 4591 -97222221.03956 4594 4591 -322883627.8625 4595 4591 4.798173904419e-06 4602 4591 -97222222.20624 4603 4591 -119197695.4315 4604 4591 2.831220626831e-07 4605 4591 -3.09944152832e-06 4606 4591 20983010.02827 4607 4591 -4.768371582031e-07 4608 4591 97222222.20624 4609 4591 -119197695.4315 4610 4591 -7.450580596924e-08 4686 4591 24305555.56354 4687 4591 -39081501.55876 4688 4591 -17343750.00569 4689 4591 -24305555.36908 4690 4591 -61681981.7616 4691 4591 17343749.94043 4698 4591 1.069903373718e-05 4699 4591 -83408755.55014 4700 4591 -69374999.9886 4701 4591 24305555.07742 4702 4591 203220270.0671 4703 4591 0.02920919656754 4704 4591 -24305555.27186 4705 4591 -113208178.6284 4706 4591 69374999.6084 4713 4591 -24305555.56353 4714 4591 -39081501.55875 4715 4591 -17343750.0057 4716 4591 -8.344650268555e-07 4717 4591 -31882558.21681 4718 4591 -3.278255462646e-07 4719 4591 24305555.56353 4720 4591 -39081501.55875 4721 4591 17343750.00569 4592 4592 1212545401.289 4593 4592 -1.788139343262e-06 4594 4592 3.75509262085e-06 4595 4592 8567490.576108 4602 4592 -2.890825271606e-06 4603 4592 3.8743019104e-07 4604 4592 -46719419.49861 4605 4592 -1.20997428894e-05 4606 4592 -4.768371582031e-07 4607 4592 -212506.0825927 4608 4592 -3.278255462646e-06 4609 4592 -2.086162567139e-07 4610 4592 -46719419.49861 4686 4592 21679861.11823 4687 4592 -17343750.0057 4688 4592 -36432062.04359 4689 4592 86719444.24762 4690 4592 17343749.9078 4691 4592 -110741809.7386 4698 4592 6.169080734253e-06 4699 4592 -69374999.9886 4700 4592 -72810997.49471 4701 4592 -0.03649973869324 4702 4592 -0.02921465039253 4703 4592 -68146756.53808 4704 4592 21679860.55685 4705 4592 69374999.49133 4706 4592 -84490851.68298 4713 4592 -21679861.11823 4714 4592 -17343750.0057 4715 4592 -36432062.04358 4716 4592 -86719444.43019 4717 4592 -2.682209014893e-07 4718 4592 -99061955.12461 4719 4592 -21679861.11823 4720 4592 17343750.00569 4721 4592 -36432062.04358 4593 4593 927468678.158 4594 4593 97222222.20623 4595 4593 -8.106231689453e-06 4605 4593 -148365426.1266 4606 4593 -97222222.20624 4607 4593 -3.039836883545e-06 4608 4593 -573726109.9308 4609 4593 -97222221.42845 4610 4593 8.940696716309e-07 4611 4593 18564155.00999 4612 4593 77777776.9872 4613 4593 2.861022949219e-06 4689 4593 -9282077.50499 4690 4593 29166666.38457 4691 4593 26015832.78049 4701 4593 -28139091.37673 4702 4593 -24305555.27187 4703 4593 -21679860.55685 4704 4593 139046393.5639 4705 4593 24305555.56354 4706 4593 17343888.84952 4716 4593 -46373434.23611 4717 4593 -24305555.56353 4718 4593 -21679861.11823 4719 4593 -175918799.4896 4720 4593 -24305555.36909 4721 4593 -86719444.24762 4722 4593 -9282077.505002 4723 4593 19444444.25638 4724 4593 -17343888.52033 4594 4594 781630025.6149 4595 4594 8.412431954121e-06 4605 4594 -97222222.20624 4606 4594 -119197695.4315 4607 4594 2.831220626831e-07 4608 4594 -97222221.03956 4609 4594 -116778839.2437 4610 4594 5.602836608887e-06 4611 4594 116666665.4808 4612 4594 18564155.00998 4613 4594 5.960464477539e-07 4689 4594 19444444.25638 4690 4594 -9282077.505 4691 4594 -13874999.9393 4701 4594 -24305555.36909 4702 4594 -113208178.6284 4703 4594 -69374999.49133 4704 4594 24305555.56354 4705 4594 102586730.4102 4706 4594 13874999.85143 4716 4594 -24305555.56353 4717 4594 -39081501.55875 4718 4594 -17343750.0057 4719 4594 -24305555.27187 4720 4594 -61681981.76159 4721 4594 -17343749.90781 4722 4594 29166666.38457 4723 4594 -9282077.504995 4724 4594 20812499.90894 4595 4595 728641235.3813 4605 4595 -2.890825271606e-06 4606 4595 3.8743019104e-07 4607 4595 -46719419.49861 4608 4595 4.172325134277e-07 4609 4595 4.887580871582e-06 4610 4595 -96436338.25295 4611 4595 2.503395080566e-06 4612 4595 1.251697540283e-06 4613 4595 49504413.35998 4689 4595 17343888.52033 4690 4595 -20812499.90895 4691 4595 -24752206.67999 4701 4595 -21679860.74398 4702 4595 -69374999.6084 4703 4595 -84490851.68299 4704 4595 -17343888.84952 4705 4595 -13874999.85144 4706 4595 -65361760.6378 4716 4595 -21679861.11823 4717 4595 -17343750.0057 4718 4595 -36432062.04358 4719 4595 -86719444.24762 4720 4595 -17343749.94044 4721 4595 -110741809.7386 4722 4595 -26015832.7805 4723 4595 13874999.9393 4724 4595 -24752206.67999 4596 4596 1483949894.094 4597 4596 7.867813110352e-06 4598 4596 -5.507469177246e-05 4599 4596 184322301.8864 4600 4596 -2.622604370117e-06 4601 4596 -1.358985900879e-05 4614 4596 -406796532.3944 4615 4596 -2.801418304443e-06 4616 4596 -1.233816146851e-05 4617 4596 -148365426.1266 4618 4596 97222222.20624 4619 4596 -3.308057785034e-06 4692 4596 -138827443.8752 4693 4596 2.682209014893e-07 4694 4596 86719444.4302 4695 4596 -46373434.23614 4696 4596 -24305555.56354 4697 4596 21679861.11823 4707 4596 222474230.8735 4708 4596 3.933906555176e-06 4709 4596 2.622604370117e-05 4710 4596 8952264.76783 4711 4596 -1.302361488342e-05 4712 4596 6.914138793945e-06 4725 4596 -138827443.8751 4726 4596 -5.066394805908e-07 4727 4596 -86719444.43019 4728 4596 -46373434.23611 4729 4596 24305555.56353 4730 4596 -21679861.11823 4597 4597 1250608048.648 4598 4597 -1.192092895508e-06 4599 4597 -3.159046173096e-06 4600 4597 -185121779.2034 4601 4597 8.046627044678e-07 4614 4597 -3.09944152832e-06 4615 4597 20983010.02827 4616 4597 -4.768371582031e-07 4617 4597 97222222.20624 4618 4597 -119197695.4315 4619 4597 -7.450580596924e-08 4692 4597 -2.294778823853e-06 4693 4597 -31882558.21685 4694 4597 2.682209014893e-07 4695 4597 -24305555.56354 4696 4597 -39081501.55876 4697 4597 17343750.0057 4707 4597 4.410743713379e-06 4708 4597 164138769.4832 4709 4597 -1.192092895508e-07 4710 4597 -1.156330108643e-05 4711 4597 -83408755.55014 4712 4597 69374999.9886 4725 4597 -8.344650268555e-07 4726 4597 -31882558.21681 4727 4597 -3.278255462646e-07 4728 4597 24305555.56353 4729 4597 -39081501.55875 4730 4597 17343750.00569 4598 4598 1165825984.246 4599 4598 -1.382827758789e-05 4600 4598 1.788139343262e-07 4601 4598 104791324.3853 4614 4598 -1.20997428894e-05 4615 4598 -4.768371582031e-07 4616 4598 -212506.0825927 4617 4598 -3.278255462646e-06 4618 4598 -2.086162567139e-07 4619 4598 -46719419.49861 4692 4598 86719444.4302 4693 4598 3.427267074585e-07 4694 4598 -99061955.12464 4695 4598 21679861.11823 4696 4598 17343750.0057 4697 4598 -36432062.04359 4707 4598 2.598762512207e-05 4708 4598 5.960464477539e-08 4709 4598 -104578818.0156 4710 4598 6.973743438721e-06 4711 4598 69374999.9886 4712 4598 -72810997.49471 4725 4598 -86719444.43019 4726 4598 -2.682209014893e-07 4727 4598 -99061955.12461 4728 4598 -21679861.11823 4729 4598 17343750.00569 4730 4598 -36432062.04358 4599 4599 1483949894.094 4600 4599 7.867813110352e-06 4601 4599 -5.507469177246e-05 4602 4599 184322301.8864 4603 4599 -2.622604370117e-06 4604 4599 -1.358985900879e-05 4614 4599 -148365426.1266 4615 4599 -97222222.20624 4616 4599 -3.039836883545e-06 4617 4599 -406796532.3944 4618 4599 -2.801418304443e-06 4619 4599 -1.233816146851e-05 4620 4599 -148365426.1266 4621 4599 97222222.20624 4622 4599 -3.308057785034e-06 4692 4599 -46373434.23613 4693 4599 24305555.56354 4694 4599 21679861.11823 4695 4599 -138827443.8752 4696 4599 2.682209014893e-07 4697 4599 86719444.4302 4698 4599 -46373434.23614 4699 4599 -24305555.56354 4700 4599 21679861.11823 4707 4599 8952264.76783 4708 4599 9.298324584961e-06 4709 4599 6.228685379028e-06 4710 4599 222474230.8735 4711 4599 3.933906555176e-06 4712 4599 2.622604370117e-05 4713 4599 8952264.76783 4714 4599 -1.302361488342e-05 4715 4599 6.914138793945e-06 4725 4599 -46373434.23611 4726 4599 -24305555.56353 4727 4599 -21679861.11823 4728 4599 -138827443.8751 4729 4599 -5.066394805908e-07 4730 4599 -86719444.43019 4731 4599 -46373434.23611 4732 4599 24305555.56353 4733 4599 -21679861.11823 4600 4600 1250608048.648 4601 4600 -1.192092895508e-06 4602 4600 -3.159046173096e-06 4603 4600 -185121779.2034 4604 4600 8.046627044678e-07 4614 4600 -97222222.20624 4615 4600 -119197695.4315 4616 4600 2.831220626831e-07 4617 4600 -3.09944152832e-06 4618 4600 20983010.02827 4619 4600 -4.768371582031e-07 4620 4600 97222222.20624 4621 4600 -119197695.4315 4622 4600 -7.450580596924e-08 4692 4600 24305555.56354 4693 4600 -39081501.55876 4694 4600 -17343750.00569 4695 4600 -2.294778823853e-06 4696 4600 -31882558.21685 4697 4600 2.682209014893e-07 4698 4600 -24305555.56354 4699 4600 -39081501.55876 4700 4600 17343750.0057 4707 4600 1.069903373718e-05 4708 4600 -83408755.55014 4709 4600 -69374999.9886 4710 4600 4.410743713379e-06 4711 4600 164138769.4832 4712 4600 -1.192092895508e-07 4713 4600 -1.156330108643e-05 4714 4600 -83408755.55014 4715 4600 69374999.9886 4725 4600 -24305555.56353 4726 4600 -39081501.55875 4727 4600 -17343750.0057 4728 4600 -8.344650268555e-07 4729 4600 -31882558.21681 4730 4600 -3.278255462646e-07 4731 4600 24305555.56353 4732 4600 -39081501.55875 4733 4600 17343750.00569 4601 4601 1165825984.246 4602 4601 -1.382827758789e-05 4603 4601 1.788139343262e-07 4604 4601 104791324.3853 4614 4601 -2.890825271606e-06 4615 4601 3.8743019104e-07 4616 4601 -46719419.49861 4617 4601 -1.20997428894e-05 4618 4601 -4.768371582031e-07 4619 4601 -212506.0825927 4620 4601 -3.278255462646e-06 4621 4601 -2.086162567139e-07 4622 4601 -46719419.49861 4692 4601 21679861.11823 4693 4601 -17343750.0057 4694 4601 -36432062.04359 4695 4601 86719444.4302 4696 4601 3.427267074585e-07 4697 4601 -99061955.12464 4698 4601 21679861.11823 4699 4601 17343750.0057 4700 4601 -36432062.04359 4707 4601 6.169080734253e-06 4708 4601 -69374999.9886 4709 4601 -72810997.49471 4710 4601 2.598762512207e-05 4711 4601 5.960464477539e-08 4712 4601 -104578818.0156 4713 4601 6.973743438721e-06 4714 4601 69374999.9886 4715 4601 -72810997.49471 4725 4601 -21679861.11823 4726 4601 -17343750.0057 4727 4601 -36432062.04358 4728 4601 -86719444.43019 4729 4601 -2.682209014893e-07 4730 4601 -99061955.12461 4731 4601 -21679861.11823 4732 4601 17343750.00569 4733 4601 -36432062.04358 4602 4602 1483949894.094 4603 4602 7.867813110352e-06 4604 4602 -5.507469177246e-05 4605 4602 184322301.8864 4606 4602 -2.622604370117e-06 4607 4602 -1.358985900879e-05 4617 4602 -148365426.1266 4618 4602 -97222222.20624 4619 4602 -3.039836883545e-06 4620 4602 -406796532.3944 4621 4602 -2.801418304443e-06 4622 4602 -1.233816146851e-05 4623 4602 -148365426.1266 4624 4602 97222222.20624 4625 4602 -3.308057785034e-06 4695 4602 -46373434.23613 4696 4602 24305555.56354 4697 4602 21679861.11823 4698 4602 -138827443.8752 4699 4602 2.682209014893e-07 4700 4602 86719444.4302 4701 4602 -46373434.23614 4702 4602 -24305555.56354 4703 4602 21679861.11823 4710 4602 8952264.76783 4711 4602 9.298324584961e-06 4712 4602 6.228685379028e-06 4713 4602 222474230.8735 4714 4602 3.933906555176e-06 4715 4602 2.622604370117e-05 4716 4602 8952264.76783 4717 4602 -1.302361488342e-05 4718 4602 6.914138793945e-06 4728 4602 -46373434.23611 4729 4602 -24305555.56353 4730 4602 -21679861.11823 4731 4602 -138827443.8751 4732 4602 -5.066394805908e-07 4733 4602 -86719444.43019 4734 4602 -46373434.23611 4735 4602 24305555.56353 4736 4602 -21679861.11823 4603 4603 1250608048.648 4604 4603 -1.192092895508e-06 4605 4603 -3.159046173096e-06 4606 4603 -185121779.2034 4607 4603 8.046627044678e-07 4617 4603 -97222222.20624 4618 4603 -119197695.4315 4619 4603 2.831220626831e-07 4620 4603 -3.09944152832e-06 4621 4603 20983010.02827 4622 4603 -4.768371582031e-07 4623 4603 97222222.20624 4624 4603 -119197695.4315 4625 4603 -7.450580596924e-08 4695 4603 24305555.56354 4696 4603 -39081501.55876 4697 4603 -17343750.00569 4698 4603 -2.294778823853e-06 4699 4603 -31882558.21685 4700 4603 2.682209014893e-07 4701 4603 -24305555.56354 4702 4603 -39081501.55876 4703 4603 17343750.0057 4710 4603 1.069903373718e-05 4711 4603 -83408755.55014 4712 4603 -69374999.9886 4713 4603 4.410743713379e-06 4714 4603 164138769.4832 4715 4603 -1.192092895508e-07 4716 4603 -1.156330108643e-05 4717 4603 -83408755.55014 4718 4603 69374999.9886 4728 4603 -24305555.56353 4729 4603 -39081501.55875 4730 4603 -17343750.0057 4731 4603 -8.344650268555e-07 4732 4603 -31882558.21681 4733 4603 -3.278255462646e-07 4734 4603 24305555.56353 4735 4603 -39081501.55875 4736 4603 17343750.00569 4604 4604 1165825984.246 4605 4604 -1.382827758789e-05 4606 4604 1.788139343262e-07 4607 4604 104791324.3853 4617 4604 -2.890825271606e-06 4618 4604 3.8743019104e-07 4619 4604 -46719419.49861 4620 4604 -1.20997428894e-05 4621 4604 -4.768371582031e-07 4622 4604 -212506.0825927 4623 4604 -3.278255462646e-06 4624 4604 -2.086162567139e-07 4625 4604 -46719419.49861 4695 4604 21679861.11823 4696 4604 -17343750.0057 4697 4604 -36432062.04359 4698 4604 86719444.4302 4699 4604 3.427267074585e-07 4700 4604 -99061955.12464 4701 4604 21679861.11823 4702 4604 17343750.0057 4703 4604 -36432062.04359 4710 4604 6.169080734253e-06 4711 4604 -69374999.9886 4712 4604 -72810997.49471 4713 4604 2.598762512207e-05 4714 4604 5.960464477539e-08 4715 4604 -104578818.0156 4716 4604 6.973743438721e-06 4717 4604 69374999.9886 4718 4604 -72810997.49471 4728 4604 -21679861.11823 4729 4604 -17343750.0057 4730 4604 -36432062.04358 4731 4604 -86719444.43019 4732 4604 -2.682209014893e-07 4733 4604 -99061955.12461 4734 4604 -21679861.11823 4735 4604 17343750.00569 4736 4604 -36432062.04358 4605 4605 1483949894.094 4606 4605 7.867813110352e-06 4607 4605 -5.507469177246e-05 4608 4605 184322301.8864 4609 4605 -2.622604370117e-06 4610 4605 -1.358985900879e-05 4620 4605 -148365426.1266 4621 4605 -97222222.20624 4622 4605 -3.039836883545e-06 4623 4605 -406796532.3944 4624 4605 -2.801418304443e-06 4625 4605 -1.233816146851e-05 4626 4605 -148365426.1266 4627 4605 97222222.20624 4628 4605 -3.308057785034e-06 4698 4605 -46373434.23613 4699 4605 24305555.56354 4700 4605 21679861.11823 4701 4605 -138827443.8752 4702 4605 2.682209014893e-07 4703 4605 86719444.4302 4704 4605 -46373434.23614 4705 4605 -24305555.56354 4706 4605 21679861.11823 4713 4605 8952264.76783 4714 4605 9.298324584961e-06 4715 4605 6.228685379028e-06 4716 4605 222474230.8735 4717 4605 3.933906555176e-06 4718 4605 2.622604370117e-05 4719 4605 8952264.76783 4720 4605 -1.302361488342e-05 4721 4605 6.914138793945e-06 4731 4605 -46373434.23611 4732 4605 -24305555.56353 4733 4605 -21679861.11823 4734 4605 -138827443.8751 4735 4605 -5.066394805908e-07 4736 4605 -86719444.43019 4737 4605 -46373434.23611 4738 4605 24305555.56353 4739 4605 -21679861.11823 4606 4606 1250608048.648 4607 4606 -1.192092895508e-06 4608 4606 -3.159046173096e-06 4609 4606 -185121779.2034 4610 4606 8.046627044678e-07 4620 4606 -97222222.20624 4621 4606 -119197695.4315 4622 4606 2.831220626831e-07 4623 4606 -3.09944152832e-06 4624 4606 20983010.02827 4625 4606 -4.768371582031e-07 4626 4606 97222222.20624 4627 4606 -119197695.4315 4628 4606 -7.450580596924e-08 4698 4606 24305555.56354 4699 4606 -39081501.55876 4700 4606 -17343750.00569 4701 4606 -2.294778823853e-06 4702 4606 -31882558.21685 4703 4606 2.682209014893e-07 4704 4606 -24305555.56354 4705 4606 -39081501.55876 4706 4606 17343750.0057 4713 4606 1.069903373718e-05 4714 4606 -83408755.55014 4715 4606 -69374999.9886 4716 4606 4.410743713379e-06 4717 4606 164138769.4832 4718 4606 -1.192092895508e-07 4719 4606 -1.156330108643e-05 4720 4606 -83408755.55014 4721 4606 69374999.9886 4731 4606 -24305555.56353 4732 4606 -39081501.55875 4733 4606 -17343750.0057 4734 4606 -8.344650268555e-07 4735 4606 -31882558.21681 4736 4606 -3.278255462646e-07 4737 4606 24305555.56353 4738 4606 -39081501.55875 4739 4606 17343750.00569 4607 4607 1165825984.246 4608 4607 -1.382827758789e-05 4609 4607 1.788139343262e-07 4610 4607 104791324.3853 4620 4607 -2.890825271606e-06 4621 4607 3.8743019104e-07 4622 4607 -46719419.49861 4623 4607 -1.20997428894e-05 4624 4607 -4.768371582031e-07 4625 4607 -212506.0825927 4626 4607 -3.278255462646e-06 4627 4607 -2.086162567139e-07 4628 4607 -46719419.49861 4698 4607 21679861.11823 4699 4607 -17343750.0057 4700 4607 -36432062.04359 4701 4607 86719444.4302 4702 4607 3.427267074585e-07 4703 4607 -99061955.12464 4704 4607 21679861.11823 4705 4607 17343750.0057 4706 4607 -36432062.04359 4713 4607 6.169080734253e-06 4714 4607 -69374999.9886 4715 4607 -72810997.49471 4716 4607 2.598762512207e-05 4717 4607 5.960464477539e-08 4718 4607 -104578818.0156 4719 4607 6.973743438721e-06 4720 4607 69374999.9886 4721 4607 -72810997.49471 4731 4607 -21679861.11823 4732 4607 -17343750.0057 4733 4607 -36432062.04358 4734 4607 -86719444.43019 4735 4607 -2.682209014893e-07 4736 4607 -99061955.12461 4737 4607 -21679861.11823 4738 4607 17343750.00569 4739 4607 -36432062.04358 4608 4608 1632315315.374 4609 4608 97222220.26178 4610 4608 -4.172325134277e-05 4611 4608 17392720.97666 4612 4608 -97222221.42845 4613 4608 -2.145767211914e-06 4623 4608 -148365426.1266 4624 4608 -97222222.20624 4625 4608 -3.039836883545e-06 4626 4608 -406796532.3944 4627 4608 -2.801418304443e-06 4628 4608 -1.233816146851e-05 4629 4608 -148365426.1266 4630 4608 97222222.20624 4631 4608 -3.308057785034e-06 4701 4608 -46373434.23613 4702 4608 24305555.56354 4703 4608 21679861.11823 4704 4608 -175918799.4897 4705 4608 -24305555.27186 4706 4608 86719444.24762 4716 4608 8952264.76783 4717 4608 9.298324584961e-06 4718 4608 6.228685379028e-06 4719 4608 268847663.9159 4720 4608 24305555.07742 4721 4608 0.03653132915497 4722 4608 -28139091.37671 4723 4608 -24305555.36909 4724 4608 21679860.74398 4734 4608 -46373434.23611 4735 4608 -24305555.56353 4736 4608 -21679861.11823 4737 4608 -138827443.8751 4738 4608 -5.066394805908e-07 4739 4608 -86719444.43019 4740 4608 -46373434.23611 4741 4608 24305555.56353 4742 4608 -21679861.11823 4609 4609 1369805740.108 4610 4609 -2.145767211914e-06 4611 4609 -97222221.03956 4612 4609 -322883627.8625 4613 4609 4.798173904419e-06 4623 4609 -97222222.20624 4624 4609 -119197695.4315 4625 4609 2.831220626831e-07 4626 4609 -3.09944152832e-06 4627 4609 20983010.02827 4628 4609 -4.768371582031e-07 4629 4609 97222222.20624 4630 4609 -119197695.4315 4631 4609 -7.450580596924e-08 4701 4609 24305555.56354 4702 4609 -39081501.55876 4703 4609 -17343750.00569 4704 4609 -24305555.36908 4705 4609 -61681981.7616 4706 4609 17343749.94043 4716 4609 1.069903373718e-05 4717 4609 -83408755.55014 4718 4609 -69374999.9886 4719 4609 24305555.07742 4720 4609 203220270.0671 4721 4609 0.02920919656754 4722 4609 -24305555.27186 4723 4609 -113208178.6284 4724 4609 69374999.6084 4734 4609 -24305555.56353 4735 4609 -39081501.55875 4736 4609 -17343750.0057 4737 4609 -8.344650268555e-07 4738 4609 -31882558.21681 4739 4609 -3.278255462646e-07 4740 4609 24305555.56353 4741 4609 -39081501.55875 4742 4609 17343750.00569 4610 4610 1212545401.289 4611 4610 -1.788139343262e-06 4612 4610 3.75509262085e-06 4613 4610 8567490.576108 4623 4610 -2.890825271606e-06 4624 4610 3.8743019104e-07 4625 4610 -46719419.49861 4626 4610 -1.20997428894e-05 4627 4610 -4.768371582031e-07 4628 4610 -212506.0825927 4629 4610 -3.278255462646e-06 4630 4610 -2.086162567139e-07 4631 4610 -46719419.49861 4701 4610 21679861.11823 4702 4610 -17343750.0057 4703 4610 -36432062.04359 4704 4610 86719444.24762 4705 4610 17343749.9078 4706 4610 -110741809.7386 4716 4610 6.169080734253e-06 4717 4610 -69374999.9886 4718 4610 -72810997.49471 4719 4610 -0.03649973869324 4720 4610 -0.02921465039253 4721 4610 -68146756.53808 4722 4610 21679860.55685 4723 4610 69374999.49133 4724 4610 -84490851.68298 4734 4610 -21679861.11823 4735 4610 -17343750.0057 4736 4610 -36432062.04358 4737 4610 -86719444.43019 4738 4610 -2.682209014893e-07 4739 4610 -99061955.12461 4740 4610 -21679861.11823 4741 4610 17343750.00569 4742 4610 -36432062.04358 4611 4611 944226635.8558 4612 4611 104813146.3867 4613 4611 -1.025199890137e-05 4626 4611 -148365426.1266 4627 4611 -97222222.20624 4628 4611 -3.039836883545e-06 4629 4611 -591818040.3847 4630 4611 -104813145.6089 4631 4611 -7.987022399902e-06 4632 4611 22795227.75344 4633 4611 77777776.98724 4634 4611 -4.768371582031e-07 4704 4611 -9282077.50499 4705 4611 29166666.38457 4706 4611 26015832.78049 4719 4611 -28139091.37673 4720 4611 -24305555.27187 4721 4611 -21679860.55685 4722 4611 142149470.4917 4723 4611 26203286.60958 4724 4611 17682222.18138 4737 4611 -46373434.23611 4738 4611 -24305555.56353 4739 4611 -21679861.11823 4740 4611 -180984988.3575 4741 4611 -26203286.41514 4742 4611 -88411110.90688 4743 4611 -8767515.55854 4744 4611 19444444.25639 4745 4611 -18020555.17262 4612 4612 789133337.2837 4613 4612 2.71201133728e-06 4626 4612 -97222222.20624 4627 4612 -119197695.4315 4628 4612 2.831220626831e-07 4629 4612 -104813145.22 4630 4612 -131460786.5969 4631 4612 -2.384185791016e-07 4632 4612 116666665.4809 4633 4612 28639890.68178 4634 4612 3.576278686523e-07 4704 4612 19444444.25638 4705 4612 -9282077.505 4706 4612 -13874999.9393 4719 4612 -24305555.36909 4720 4612 -113208178.6284 4721 4612 -69374999.49133 4722 4612 26203286.60958 4723 4612 103376145.8296 4724 4612 14145833.18358 4737 4612 -24305555.56353 4738 4612 -39081501.55875 4739 4612 -17343750.0057 4740 4612 -26203286.31792 4741 4612 -65895674.85386 4742 4612 -18697916.56855 4743 4612 29166666.38459 4744 4612 -7306349.825737 4745 4612 20270833.25379 4613 4613 738330627.0228 4626 4613 -2.890825271606e-06 4627 4613 3.8743019104e-07 4628 4613 -46719419.49861 4629 4613 -8.523464202881e-06 4630 4613 5.960464477539e-08 4631 4613 -103838327.6491 4632 4613 -8.344650268555e-07 4633 4613 2.384185791016e-07 4634 4613 54942611.08085 4704 4613 17343888.52033 4705 4613 -20812499.90895 4706 4613 -24752206.67999 4719 4613 -21679860.74398 4720 4613 -69374999.6084 4721 4613 -84490851.68299 4722 4613 -17682222.18137 4723 4613 -14145833.18359 4724 4613 -65836512.72293 4737 4613 -21679861.11823 4738 4613 -17343750.0057 4739 4613 -36432062.04358 4740 4613 -88411110.90688 4741 4613 -18697916.60118 4742 4613 -114040857.0942 4743 4613 -27030832.75893 4744 4613 13062499.95656 4745 4613 -24841207.22224 4614 4614 1483949894.094 4615 4614 7.867813110352e-06 4616 4614 -5.507469177246e-05 4617 4614 184322301.8864 4618 4614 -2.622604370117e-06 4619 4614 -1.358985900879e-05 4635 4614 -406796532.3944 4636 4614 -2.801418304443e-06 4637 4614 -1.233816146851e-05 4638 4614 -148365426.1266 4639 4614 97222222.20624 4640 4614 -3.308057785034e-06 4707 4614 -138827443.8752 4708 4614 2.682209014893e-07 4709 4614 86719444.4302 4710 4614 -46373434.23614 4711 4614 -24305555.56354 4712 4614 21679861.11823 4725 4614 222474230.8735 4726 4614 3.933906555176e-06 4727 4614 2.622604370117e-05 4728 4614 8952264.76783 4729 4614 -1.302361488342e-05 4730 4614 6.914138793945e-06 4746 4614 -138827443.8751 4747 4614 -5.066394805908e-07 4748 4614 -86719444.43019 4749 4614 -46373434.23611 4750 4614 24305555.56353 4751 4614 -21679861.11823 4615 4615 1250608048.648 4616 4615 -1.192092895508e-06 4617 4615 -3.159046173096e-06 4618 4615 -185121779.2034 4619 4615 8.046627044678e-07 4635 4615 -3.09944152832e-06 4636 4615 20983010.02827 4637 4615 -4.768371582031e-07 4638 4615 97222222.20624 4639 4615 -119197695.4315 4640 4615 -7.450580596924e-08 4707 4615 -2.294778823853e-06 4708 4615 -31882558.21685 4709 4615 2.682209014893e-07 4710 4615 -24305555.56354 4711 4615 -39081501.55876 4712 4615 17343750.0057 4725 4615 4.410743713379e-06 4726 4615 164138769.4832 4727 4615 -1.192092895508e-07 4728 4615 -1.156330108643e-05 4729 4615 -83408755.55014 4730 4615 69374999.9886 4746 4615 -8.344650268555e-07 4747 4615 -31882558.21681 4748 4615 -3.278255462646e-07 4749 4615 24305555.56353 4750 4615 -39081501.55875 4751 4615 17343750.00569 4616 4616 1165825984.246 4617 4616 -1.382827758789e-05 4618 4616 1.788139343262e-07 4619 4616 104791324.3853 4635 4616 -1.20997428894e-05 4636 4616 -4.768371582031e-07 4637 4616 -212506.0825927 4638 4616 -3.278255462646e-06 4639 4616 -2.086162567139e-07 4640 4616 -46719419.49861 4707 4616 86719444.4302 4708 4616 3.427267074585e-07 4709 4616 -99061955.12464 4710 4616 21679861.11823 4711 4616 17343750.0057 4712 4616 -36432062.04359 4725 4616 2.598762512207e-05 4726 4616 5.960464477539e-08 4727 4616 -104578818.0156 4728 4616 6.973743438721e-06 4729 4616 69374999.9886 4730 4616 -72810997.49471 4746 4616 -86719444.43019 4747 4616 -2.682209014893e-07 4748 4616 -99061955.12461 4749 4616 -21679861.11823 4750 4616 17343750.00569 4751 4616 -36432062.04358 4617 4617 1483949894.094 4618 4617 7.867813110352e-06 4619 4617 -5.507469177246e-05 4620 4617 184322301.8864 4621 4617 -2.622604370117e-06 4622 4617 -1.358985900879e-05 4635 4617 -148365426.1266 4636 4617 -97222222.20624 4637 4617 -3.039836883545e-06 4638 4617 -406796532.3944 4639 4617 -2.801418304443e-06 4640 4617 -1.233816146851e-05 4641 4617 -148365426.1266 4642 4617 97222222.20624 4643 4617 -3.308057785034e-06 4707 4617 -46373434.23613 4708 4617 24305555.56354 4709 4617 21679861.11823 4710 4617 -138827443.8752 4711 4617 2.682209014893e-07 4712 4617 86719444.4302 4713 4617 -46373434.23614 4714 4617 -24305555.56354 4715 4617 21679861.11823 4725 4617 8952264.76783 4726 4617 9.298324584961e-06 4727 4617 6.228685379028e-06 4728 4617 222474230.8735 4729 4617 3.933906555176e-06 4730 4617 2.622604370117e-05 4731 4617 8952264.76783 4732 4617 -1.302361488342e-05 4733 4617 6.914138793945e-06 4746 4617 -46373434.23611 4747 4617 -24305555.56353 4748 4617 -21679861.11823 4749 4617 -138827443.8751 4750 4617 -5.066394805908e-07 4751 4617 -86719444.43019 4752 4617 -46373434.23611 4753 4617 24305555.56353 4754 4617 -21679861.11823 4618 4618 1250608048.648 4619 4618 -1.192092895508e-06 4620 4618 -3.159046173096e-06 4621 4618 -185121779.2034 4622 4618 8.046627044678e-07 4635 4618 -97222222.20624 4636 4618 -119197695.4315 4637 4618 2.831220626831e-07 4638 4618 -3.09944152832e-06 4639 4618 20983010.02827 4640 4618 -4.768371582031e-07 4641 4618 97222222.20624 4642 4618 -119197695.4315 4643 4618 -7.450580596924e-08 4707 4618 24305555.56354 4708 4618 -39081501.55876 4709 4618 -17343750.00569 4710 4618 -2.294778823853e-06 4711 4618 -31882558.21685 4712 4618 2.682209014893e-07 4713 4618 -24305555.56354 4714 4618 -39081501.55876 4715 4618 17343750.0057 4725 4618 1.069903373718e-05 4726 4618 -83408755.55014 4727 4618 -69374999.9886 4728 4618 4.410743713379e-06 4729 4618 164138769.4832 4730 4618 -1.192092895508e-07 4731 4618 -1.156330108643e-05 4732 4618 -83408755.55014 4733 4618 69374999.9886 4746 4618 -24305555.56353 4747 4618 -39081501.55875 4748 4618 -17343750.0057 4749 4618 -8.344650268555e-07 4750 4618 -31882558.21681 4751 4618 -3.278255462646e-07 4752 4618 24305555.56353 4753 4618 -39081501.55875 4754 4618 17343750.00569 4619 4619 1165825984.246 4620 4619 -1.382827758789e-05 4621 4619 1.788139343262e-07 4622 4619 104791324.3853 4635 4619 -2.890825271606e-06 4636 4619 3.8743019104e-07 4637 4619 -46719419.49861 4638 4619 -1.20997428894e-05 4639 4619 -4.768371582031e-07 4640 4619 -212506.0825927 4641 4619 -3.278255462646e-06 4642 4619 -2.086162567139e-07 4643 4619 -46719419.49861 4707 4619 21679861.11823 4708 4619 -17343750.0057 4709 4619 -36432062.04359 4710 4619 86719444.4302 4711 4619 3.427267074585e-07 4712 4619 -99061955.12464 4713 4619 21679861.11823 4714 4619 17343750.0057 4715 4619 -36432062.04359 4725 4619 6.169080734253e-06 4726 4619 -69374999.9886 4727 4619 -72810997.49471 4728 4619 2.598762512207e-05 4729 4619 5.960464477539e-08 4730 4619 -104578818.0156 4731 4619 6.973743438721e-06 4732 4619 69374999.9886 4733 4619 -72810997.49471 4746 4619 -21679861.11823 4747 4619 -17343750.0057 4748 4619 -36432062.04358 4749 4619 -86719444.43019 4750 4619 -2.682209014893e-07 4751 4619 -99061955.12461 4752 4619 -21679861.11823 4753 4619 17343750.00569 4754 4619 -36432062.04358 4620 4620 1483949894.094 4621 4620 7.867813110352e-06 4622 4620 -5.507469177246e-05 4623 4620 184322301.8864 4624 4620 -2.622604370117e-06 4625 4620 -1.358985900879e-05 4638 4620 -148365426.1266 4639 4620 -97222222.20624 4640 4620 -3.039836883545e-06 4641 4620 -406796532.3944 4642 4620 -2.801418304443e-06 4643 4620 -1.233816146851e-05 4644 4620 -148365426.1266 4645 4620 97222222.20624 4646 4620 -3.308057785034e-06 4710 4620 -46373434.23613 4711 4620 24305555.56354 4712 4620 21679861.11823 4713 4620 -138827443.8752 4714 4620 2.682209014893e-07 4715 4620 86719444.4302 4716 4620 -46373434.23614 4717 4620 -24305555.56354 4718 4620 21679861.11823 4728 4620 8952264.76783 4729 4620 9.298324584961e-06 4730 4620 6.228685379028e-06 4731 4620 222474230.8735 4732 4620 3.933906555176e-06 4733 4620 2.622604370117e-05 4734 4620 8952264.76783 4735 4620 -1.302361488342e-05 4736 4620 6.914138793945e-06 4749 4620 -46373434.23611 4750 4620 -24305555.56353 4751 4620 -21679861.11823 4752 4620 -138827443.8751 4753 4620 -5.066394805908e-07 4754 4620 -86719444.43019 4755 4620 -46373434.23611 4756 4620 24305555.56353 4757 4620 -21679861.11823 4621 4621 1250608048.648 4622 4621 -1.192092895508e-06 4623 4621 -3.159046173096e-06 4624 4621 -185121779.2034 4625 4621 8.046627044678e-07 4638 4621 -97222222.20624 4639 4621 -119197695.4315 4640 4621 2.831220626831e-07 4641 4621 -3.09944152832e-06 4642 4621 20983010.02827 4643 4621 -4.768371582031e-07 4644 4621 97222222.20624 4645 4621 -119197695.4315 4646 4621 -7.450580596924e-08 4710 4621 24305555.56354 4711 4621 -39081501.55876 4712 4621 -17343750.00569 4713 4621 -2.294778823853e-06 4714 4621 -31882558.21685 4715 4621 2.682209014893e-07 4716 4621 -24305555.56354 4717 4621 -39081501.55876 4718 4621 17343750.0057 4728 4621 1.069903373718e-05 4729 4621 -83408755.55014 4730 4621 -69374999.9886 4731 4621 4.410743713379e-06 4732 4621 164138769.4832 4733 4621 -1.192092895508e-07 4734 4621 -1.156330108643e-05 4735 4621 -83408755.55014 4736 4621 69374999.9886 4749 4621 -24305555.56353 4750 4621 -39081501.55875 4751 4621 -17343750.0057 4752 4621 -8.344650268555e-07 4753 4621 -31882558.21681 4754 4621 -3.278255462646e-07 4755 4621 24305555.56353 4756 4621 -39081501.55875 4757 4621 17343750.00569 4622 4622 1165825984.246 4623 4622 -1.382827758789e-05 4624 4622 1.788139343262e-07 4625 4622 104791324.3853 4638 4622 -2.890825271606e-06 4639 4622 3.8743019104e-07 4640 4622 -46719419.49861 4641 4622 -1.20997428894e-05 4642 4622 -4.768371582031e-07 4643 4622 -212506.0825927 4644 4622 -3.278255462646e-06 4645 4622 -2.086162567139e-07 4646 4622 -46719419.49861 4710 4622 21679861.11823 4711 4622 -17343750.0057 4712 4622 -36432062.04359 4713 4622 86719444.4302 4714 4622 3.427267074585e-07 4715 4622 -99061955.12464 4716 4622 21679861.11823 4717 4622 17343750.0057 4718 4622 -36432062.04359 4728 4622 6.169080734253e-06 4729 4622 -69374999.9886 4730 4622 -72810997.49471 4731 4622 2.598762512207e-05 4732 4622 5.960464477539e-08 4733 4622 -104578818.0156 4734 4622 6.973743438721e-06 4735 4622 69374999.9886 4736 4622 -72810997.49471 4749 4622 -21679861.11823 4750 4622 -17343750.0057 4751 4622 -36432062.04358 4752 4622 -86719444.43019 4753 4622 -2.682209014893e-07 4754 4622 -99061955.12461 4755 4622 -21679861.11823 4756 4622 17343750.00569 4757 4622 -36432062.04358 4623 4623 1483949894.094 4624 4623 7.867813110352e-06 4625 4623 -5.507469177246e-05 4626 4623 184322301.8864 4627 4623 -2.622604370117e-06 4628 4623 -1.358985900879e-05 4641 4623 -148365426.1266 4642 4623 -97222222.20624 4643 4623 -3.039836883545e-06 4644 4623 -406796532.3944 4645 4623 -2.801418304443e-06 4646 4623 -1.233816146851e-05 4647 4623 -148365426.1266 4648 4623 97222222.20624 4649 4623 -3.308057785034e-06 4713 4623 -46373434.23613 4714 4623 24305555.56354 4715 4623 21679861.11823 4716 4623 -138827443.8752 4717 4623 2.682209014893e-07 4718 4623 86719444.4302 4719 4623 -46373434.23614 4720 4623 -24305555.56354 4721 4623 21679861.11823 4731 4623 8952264.76783 4732 4623 9.298324584961e-06 4733 4623 6.228685379028e-06 4734 4623 222474230.8735 4735 4623 3.933906555176e-06 4736 4623 2.622604370117e-05 4737 4623 8952264.76783 4738 4623 -1.302361488342e-05 4739 4623 6.914138793945e-06 4752 4623 -46373434.23611 4753 4623 -24305555.56353 4754 4623 -21679861.11823 4755 4623 -138827443.8751 4756 4623 -5.066394805908e-07 4757 4623 -86719444.43019 4758 4623 -46373434.23611 4759 4623 24305555.56353 4760 4623 -21679861.11823 4624 4624 1250608048.648 4625 4624 -1.192092895508e-06 4626 4624 -3.159046173096e-06 4627 4624 -185121779.2034 4628 4624 8.046627044678e-07 4641 4624 -97222222.20624 4642 4624 -119197695.4315 4643 4624 2.831220626831e-07 4644 4624 -3.09944152832e-06 4645 4624 20983010.02827 4646 4624 -4.768371582031e-07 4647 4624 97222222.20624 4648 4624 -119197695.4315 4649 4624 -7.450580596924e-08 4713 4624 24305555.56354 4714 4624 -39081501.55876 4715 4624 -17343750.00569 4716 4624 -2.294778823853e-06 4717 4624 -31882558.21685 4718 4624 2.682209014893e-07 4719 4624 -24305555.56354 4720 4624 -39081501.55876 4721 4624 17343750.0057 4731 4624 1.069903373718e-05 4732 4624 -83408755.55014 4733 4624 -69374999.9886 4734 4624 4.410743713379e-06 4735 4624 164138769.4832 4736 4624 -1.192092895508e-07 4737 4624 -1.156330108643e-05 4738 4624 -83408755.55014 4739 4624 69374999.9886 4752 4624 -24305555.56353 4753 4624 -39081501.55875 4754 4624 -17343750.0057 4755 4624 -8.344650268555e-07 4756 4624 -31882558.21681 4757 4624 -3.278255462646e-07 4758 4624 24305555.56353 4759 4624 -39081501.55875 4760 4624 17343750.00569 4625 4625 1165825984.246 4626 4625 -1.382827758789e-05 4627 4625 1.788139343262e-07 4628 4625 104791324.3853 4641 4625 -2.890825271606e-06 4642 4625 3.8743019104e-07 4643 4625 -46719419.49861 4644 4625 -1.20997428894e-05 4645 4625 -4.768371582031e-07 4646 4625 -212506.0825927 4647 4625 -3.278255462646e-06 4648 4625 -2.086162567139e-07 4649 4625 -46719419.49861 4713 4625 21679861.11823 4714 4625 -17343750.0057 4715 4625 -36432062.04359 4716 4625 86719444.4302 4717 4625 3.427267074585e-07 4718 4625 -99061955.12464 4719 4625 21679861.11823 4720 4625 17343750.0057 4721 4625 -36432062.04359 4731 4625 6.169080734253e-06 4732 4625 -69374999.9886 4733 4625 -72810997.49471 4734 4625 2.598762512207e-05 4735 4625 5.960464477539e-08 4736 4625 -104578818.0156 4737 4625 6.973743438721e-06 4738 4625 69374999.9886 4739 4625 -72810997.49471 4752 4625 -21679861.11823 4753 4625 -17343750.0057 4754 4625 -36432062.04358 4755 4625 -86719444.43019 4756 4625 -2.682209014893e-07 4757 4625 -99061955.12461 4758 4625 -21679861.11823 4759 4625 17343750.00569 4760 4625 -36432062.04358 4626 4626 1483949894.094 4627 4626 7.867813110352e-06 4628 4626 -5.507469177246e-05 4629 4626 184322301.8864 4630 4626 -2.622604370117e-06 4631 4626 -1.358985900879e-05 4644 4626 -148365426.1266 4645 4626 -97222222.20624 4646 4626 -3.039836883545e-06 4647 4626 -406796532.3944 4648 4626 -2.801418304443e-06 4649 4626 -1.233816146851e-05 4650 4626 -148365426.1266 4651 4626 97222222.20624 4652 4626 -3.308057785034e-06 4716 4626 -46373434.23613 4717 4626 24305555.56354 4718 4626 21679861.11823 4719 4626 -138827443.8752 4720 4626 2.682209014893e-07 4721 4626 86719444.4302 4722 4626 -46373434.23614 4723 4626 -24305555.56354 4724 4626 21679861.11823 4734 4626 8952264.76783 4735 4626 9.298324584961e-06 4736 4626 6.228685379028e-06 4737 4626 222474230.8735 4738 4626 3.933906555176e-06 4739 4626 2.622604370117e-05 4740 4626 8952264.76783 4741 4626 -1.302361488342e-05 4742 4626 6.914138793945e-06 4755 4626 -46373434.23611 4756 4626 -24305555.56353 4757 4626 -21679861.11823 4758 4626 -138827443.8751 4759 4626 -5.066394805908e-07 4760 4626 -86719444.43019 4761 4626 -46373434.23611 4762 4626 24305555.56353 4763 4626 -21679861.11823 4627 4627 1250608048.648 4628 4627 -1.192092895508e-06 4629 4627 -3.159046173096e-06 4630 4627 -185121779.2034 4631 4627 8.046627044678e-07 4644 4627 -97222222.20624 4645 4627 -119197695.4315 4646 4627 2.831220626831e-07 4647 4627 -3.09944152832e-06 4648 4627 20983010.02827 4649 4627 -4.768371582031e-07 4650 4627 97222222.20624 4651 4627 -119197695.4315 4652 4627 -7.450580596924e-08 4716 4627 24305555.56354 4717 4627 -39081501.55876 4718 4627 -17343750.00569 4719 4627 -2.294778823853e-06 4720 4627 -31882558.21685 4721 4627 2.682209014893e-07 4722 4627 -24305555.56354 4723 4627 -39081501.55876 4724 4627 17343750.0057 4734 4627 1.069903373718e-05 4735 4627 -83408755.55014 4736 4627 -69374999.9886 4737 4627 4.410743713379e-06 4738 4627 164138769.4832 4739 4627 -1.192092895508e-07 4740 4627 -1.156330108643e-05 4741 4627 -83408755.55014 4742 4627 69374999.9886 4755 4627 -24305555.56353 4756 4627 -39081501.55875 4757 4627 -17343750.0057 4758 4627 -8.344650268555e-07 4759 4627 -31882558.21681 4760 4627 -3.278255462646e-07 4761 4627 24305555.56353 4762 4627 -39081501.55875 4763 4627 17343750.00569 4628 4628 1165825984.246 4629 4628 -1.382827758789e-05 4630 4628 1.788139343262e-07 4631 4628 104791324.3853 4644 4628 -2.890825271606e-06 4645 4628 3.8743019104e-07 4646 4628 -46719419.49861 4647 4628 -1.20997428894e-05 4648 4628 -4.768371582031e-07 4649 4628 -212506.0825927 4650 4628 -3.278255462646e-06 4651 4628 -2.086162567139e-07 4652 4628 -46719419.49861 4716 4628 21679861.11823 4717 4628 -17343750.0057 4718 4628 -36432062.04359 4719 4628 86719444.4302 4720 4628 3.427267074585e-07 4721 4628 -99061955.12464 4722 4628 21679861.11823 4723 4628 17343750.0057 4724 4628 -36432062.04359 4734 4628 6.169080734253e-06 4735 4628 -69374999.9886 4736 4628 -72810997.49471 4737 4628 2.598762512207e-05 4738 4628 5.960464477539e-08 4739 4628 -104578818.0156 4740 4628 6.973743438721e-06 4741 4628 69374999.9886 4742 4628 -72810997.49471 4755 4628 -21679861.11823 4756 4628 -17343750.0057 4757 4628 -36432062.04358 4758 4628 -86719444.43019 4759 4628 -2.682209014893e-07 4760 4628 -99061955.12461 4761 4628 -21679861.11823 4762 4628 17343750.00569 4763 4628 -36432062.04358 4629 4629 1661147708.835 4630 4629 104975994.3213 4631 4629 -3.910064697266e-05 4632 4629 28973926.47985 4633 4629 -93442034.30677 4634 4629 -1.192092895508e-07 4647 4629 -148365426.1266 4648 4629 -97222222.20624 4649 4629 -3.039836883545e-06 4650 4629 -414750020.4148 4651 4629 -3811573.0762 4652 4629 -7.867813110352e-06 4653 4629 -158390003.0581 4654 4629 97090758.28168 4655 4629 2.413988113403e-06 4719 4629 -46373434.23613 4720 4629 24305555.56354 4721 4629 21679861.11823 4722 4629 -180984988.3576 4723 4629 -26203286.31792 4724 4629 88411110.90689 4737 4629 8952264.76783 4738 4629 9.298324584961e-06 4739 4629 6.228685379028e-06 4740 4629 274245586.3935 4741 4629 26243998.59326 4742 4629 0.03795725107193 4743 4629 -25967702.04294 4744 4629 -23360508.5882 4745 4629 21679166.28526 4758 4629 -46373434.23611 4759 4629 -24305555.56353 4760 4629 -21679861.11823 4761 4629 -140996480.1669 4762 4629 -952893.269521 4763 4629 -87564583.31886 4764 4629 -48879322.66665 4765 4629 24272689.58238 4766 4629 -22525694.45184 4630 4630 1378316574.243 4631 4630 6.914138793945e-06 4632 4630 -93442033.91788 4633 4630 -311076053.7848 4634 4630 7.450580596924e-07 4647 4630 -97222222.20624 4648 4630 -119197695.4315 4649 4630 2.831220626831e-07 4650 4630 -3811573.076214 4651 4630 16672797.27745 4652 4630 4.64916229248e-06 4653 4630 97090758.28168 4654 4630 -116180339.9824 4655 4630 4.023313522339e-07 4719 4630 24305555.56354 4720 4630 -39081501.55876 4721 4630 -17343750.00569 4722 4630 -26203286.41514 4723 4630 -65895674.85388 4724 4630 18697916.60118 4737 4630 1.069903373718e-05 4738 4630 -83408755.55014 4739 4630 -69374999.9886 4740 4630 26243998.59326 4741 4630 203537802.7108 4742 4630 0.03034967184067 4743 4630 -23360508.49098 4744 4630 -110980197.151 4745 4630 69374999.59698 4758 4630 -24305555.56353 4759 4630 -39081501.55875 4760 4630 -17343750.0057 4761 4630 -952893.2695279 4762 4630 -33140775.69073 4763 4630 -677083.3331567 4764 4630 24272689.58238 4765 4630 -38326906.89253 4766 4630 16666666.67214 4631 4631 1227849607.294 4632 4631 1.311302185059e-06 4633 4631 4.470348358154e-07 4634 4631 16993676.645 4647 4631 -2.890825271606e-06 4648 4631 3.8743019104e-07 4649 4631 -46719419.49861 4650 4631 -9.059906005859e-06 4651 4631 4.64916229248e-06 4652 4631 -3046182.050712 4653 4631 2.205371856689e-06 4654 4631 2.98023223877e-07 4655 4631 -48631203.38774 4719 4631 21679861.11823 4720 4631 -17343750.0057 4721 4631 -36432062.04359 4722 4631 88411110.90689 4723 4631 18697916.56855 4724 4631 -114040857.0943 4737 4631 6.169080734253e-06 4738 4631 -69374999.9886 4739 4631 -72810997.49471 4740 4631 -0.03792351484299 4741 4631 -0.03035482764244 4742 4631 -69147840.74453 4743 4631 21679166.091 4744 4631 69374999.4742 4745 4631 -84314737.2806 4758 4631 -21679861.11823 4759 4631 -17343750.0057 4760 4631 -36432062.04358 4761 4631 -87564583.31903 4762 4631 -677083.33329 4763 4631 -100252145.5455 4764 4631 -22525694.45184 4765 4631 16666666.67214 4766 4631 -36909325.87324 4632 4632 878310888.481 4633 4632 -2657515.757649 4634 4632 -9.536743164063e-07 4650 4632 -146355658.7119 4651 4632 -97205456.75097 4652 4632 -2.801418304443e-06 4653 4632 -422227983.6709 4654 4632 -5136049.023844 4655 4632 4.768371582031e-07 4656 4632 85600144.70804 4657 4632 -16771033.13002 4658 4632 -1.311302185059e-06 4659 4632 -156881939.5358 4660 4632 98545423.0995 4661 4632 2.205371856689e-06 4722 4632 -8767515.558539 4723 4632 29166666.38459 4724 4632 27030832.75893 4740 4632 -25967702.04295 4741 4632 -23360508.49098 4742 4632 -21679166.091 4743 4632 119740849.7095 4744 4632 -664378.939739 4745 4632 17135277.77496 4761 4632 -45870736.57863 4762 4632 -24301364.19972 4763 4632 -21679166.67379 4764 4632 -141002035.2672 4765 4632 -1284012.2566 4766 4632 -85676388.87481 4767 4632 4511607.610508 4768 4632 -4192758.284571 4769 4632 3215972.223777 4770 4632 -47751770.62457 4771 4632 24636355.78702 4772 4632 -21159027.78473 4633 4633 904404472.7405 4634 4633 1.776218414307e-05 4650 4633 -97205456.75097 4651 4633 -119802374.1365 4652 4633 4.321336746216e-07 4653 4633 -5136049.023847 4654 4633 9983783.088476 4655 4633 9.000301361084e-06 4656 4633 22117855.75249 4657 4633 -98572068.66138 4658 4633 -9.238719940186e-07 4659 4633 98545423.0995 4660 4633 -123363044.4243 4661 4633 5.662441253662e-07 4722 4633 19444444.25639 4723 4633 -7306349.825736 4724 4633 -13062499.95656 4740 4633 -23360508.5882 4741 4633 -110980197.151 4742 4633 -69374999.4742 4743 4633 -664378.9397418 4744 4633 126264245.7776 4745 4633 7208333.185864 4761 4633 -24301364.19972 4762 4633 -39232415.43152 4763 4633 -17343750.0057 4764 4633 -1284012.256601 4765 4633 -32949093.52408 4766 4633 -677083.3331573 4767 4633 5529463.940848 4768 4633 -41531445.75454 4769 4633 33333333.32785 4770 4633 24636355.78702 4771 4633 -39372046.84257 4772 4633 16666666.67214 4634 4634 768562010.6434 4650 4634 -2.801418304443e-06 4651 4634 4.470348358154e-07 4652 4634 -46336936.97173 4653 4634 8.940696716309e-07 4654 4634 9.059906005859e-06 4655 4634 -12181640.54619 4657 4634 -9.834766387939e-07 4658 4634 44227455.09151 4659 4634 1.788139343262e-06 4660 4634 5.513429641724e-07 4661 4634 -52301561.26621 4722 4634 18020555.17262 4723 4634 -20270833.25379 4724 4634 -24841207.22224 4740 4634 -21679166.28526 4741 4634 -69374999.59698 4742 4634 -84314737.28062 4743 4634 -17135277.77496 4744 4634 -7208333.18587 4745 4634 -74091157.29495 4761 4634 -21679166.67379 4762 4634 -17343750.0057 4763 4634 -36335759.26896 4764 4634 -85676388.87481 4765 4634 -677083.3332908 4766 4634 -97565514.9312 4767 4634 -4909027.779057 4768 4634 33333333.32785 4769 4634 -33978945.76048 4770 4634 -21159027.78473 4771 4634 16666666.67214 4772 4634 -35825485.57976 4635 4635 741974947.0469 4636 4635 5.006790161133e-06 4637 4635 -2.908706665039e-05 4638 4635 92161150.94322 4639 4635 19444444.44125 4640 4635 -7.271766662598e-06 4725 4635 -138827443.8752 4726 4635 2.682209014893e-07 4727 4635 86719444.4302 4728 4635 -46373434.23614 4729 4635 -24305555.56354 4730 4635 21679861.11823 4746 4635 111237115.4367 4747 4635 -8.344650268555e-07 4748 4635 -17343888.88603 4749 4635 4476132.383917 4750 4635 4861111.1127 4751 4635 -4335972.223642 4636 4636 625304024.3239 4637 4636 6.198883056641e-06 4638 4636 -19444444.44125 4639 4636 -92560889.60172 4640 4636 2.32458114624e-06 4725 4636 -2.294778823853e-06 4726 4636 -31882558.21685 4727 4636 2.682209014893e-07 4728 4636 -24305555.56354 4729 4636 -39081501.55876 4730 4636 17343750.0057 4746 4636 -7.152557373047e-07 4747 4636 82069384.74161 4748 4636 -3.75509262085e-06 4749 4636 -4861111.112713 4750 4636 -41704377.77507 4751 4636 34687499.9943 4637 4637 582912992.1231 4638 4637 -7.271766662598e-06 4639 4637 1.877546310425e-06 4640 4637 52395662.19267 4725 4637 86719444.4302 4726 4637 3.427267074585e-07 4727 4637 -99061955.12464 4728 4637 21679861.11823 4729 4637 17343750.0057 4730 4637 -36432062.04359 4746 4637 17343888.88605 4747 4637 -3.576278686523e-06 4748 4637 -52289409.00778 4749 4637 4335972.22365 4750 4637 34687499.9943 4751 4637 -36405498.74735 4638 4638 741974947.0469 4639 4638 5.006790161133e-06 4640 4638 -2.908706665039e-05 4641 4638 92161150.94322 4642 4638 19444444.44125 4643 4638 -7.271766662598e-06 4725 4638 -46373434.23613 4726 4638 24305555.56354 4727 4638 21679861.11823 4728 4638 -138827443.8752 4729 4638 2.682209014893e-07 4730 4638 86719444.4302 4731 4638 -46373434.23614 4732 4638 -24305555.56354 4733 4638 21679861.11823 4746 4638 4476132.383914 4747 4638 -4861111.112702 4748 4638 -4335972.223643 4749 4638 111237115.4367 4750 4638 -8.344650268555e-07 4751 4638 -17343888.88603 4752 4638 4476132.383917 4753 4638 4861111.1127 4754 4638 -4335972.223642 4639 4639 625304024.3239 4640 4639 6.198883056641e-06 4641 4639 -19444444.44125 4642 4639 -92560889.60172 4643 4639 2.32458114624e-06 4725 4639 24305555.56354 4726 4639 -39081501.55876 4727 4639 -17343750.00569 4728 4639 -2.294778823853e-06 4729 4639 -31882558.21685 4730 4639 2.682209014893e-07 4731 4639 -24305555.56354 4732 4639 -39081501.55876 4733 4639 17343750.0057 4746 4639 4861111.112712 4747 4639 -41704377.77507 4748 4639 -34687499.9943 4749 4639 -7.152557373047e-07 4750 4639 82069384.74161 4751 4639 -3.75509262085e-06 4752 4639 -4861111.112713 4753 4639 -41704377.77507 4754 4639 34687499.9943 4640 4640 582912992.1231 4641 4640 -7.271766662598e-06 4642 4640 1.877546310425e-06 4643 4640 52395662.19267 4725 4640 21679861.11823 4726 4640 -17343750.0057 4727 4640 -36432062.04359 4728 4640 86719444.4302 4729 4640 3.427267074585e-07 4730 4640 -99061955.12464 4731 4640 21679861.11823 4732 4640 17343750.0057 4733 4640 -36432062.04359 4746 4640 4335972.223649 4747 4640 -34687499.9943 4748 4640 -36405498.74736 4749 4640 17343888.88605 4750 4640 -3.576278686523e-06 4751 4640 -52289409.00778 4752 4640 4335972.22365 4753 4640 34687499.9943 4754 4640 -36405498.74735 4641 4641 741974947.0469 4642 4641 5.006790161133e-06 4643 4641 -2.908706665039e-05 4644 4641 92161150.94322 4645 4641 19444444.44125 4646 4641 -7.271766662598e-06 4728 4641 -46373434.23613 4729 4641 24305555.56354 4730 4641 21679861.11823 4731 4641 -138827443.8752 4732 4641 2.682209014893e-07 4733 4641 86719444.4302 4734 4641 -46373434.23614 4735 4641 -24305555.56354 4736 4641 21679861.11823 4749 4641 4476132.383914 4750 4641 -4861111.112702 4751 4641 -4335972.223643 4752 4641 111237115.4367 4753 4641 -8.344650268555e-07 4754 4641 -17343888.88603 4755 4641 4476132.383917 4756 4641 4861111.1127 4757 4641 -4335972.223642 4642 4642 625304024.3239 4643 4642 6.198883056641e-06 4644 4642 -19444444.44125 4645 4642 -92560889.60172 4646 4642 2.32458114624e-06 4728 4642 24305555.56354 4729 4642 -39081501.55876 4730 4642 -17343750.00569 4731 4642 -2.294778823853e-06 4732 4642 -31882558.21685 4733 4642 2.682209014893e-07 4734 4642 -24305555.56354 4735 4642 -39081501.55876 4736 4642 17343750.0057 4749 4642 4861111.112712 4750 4642 -41704377.77507 4751 4642 -34687499.9943 4752 4642 -7.152557373047e-07 4753 4642 82069384.74161 4754 4642 -3.75509262085e-06 4755 4642 -4861111.112713 4756 4642 -41704377.77507 4757 4642 34687499.9943 4643 4643 582912992.1231 4644 4643 -7.271766662598e-06 4645 4643 1.877546310425e-06 4646 4643 52395662.19267 4728 4643 21679861.11823 4729 4643 -17343750.0057 4730 4643 -36432062.04359 4731 4643 86719444.4302 4732 4643 3.427267074585e-07 4733 4643 -99061955.12464 4734 4643 21679861.11823 4735 4643 17343750.0057 4736 4643 -36432062.04359 4749 4643 4335972.223649 4750 4643 -34687499.9943 4751 4643 -36405498.74736 4752 4643 17343888.88605 4753 4643 -3.576278686523e-06 4754 4643 -52289409.00778 4755 4643 4335972.22365 4756 4643 34687499.9943 4757 4643 -36405498.74735 4644 4644 741974947.0469 4645 4644 5.006790161133e-06 4646 4644 -2.908706665039e-05 4647 4644 92161150.94322 4648 4644 19444444.44125 4649 4644 -7.271766662598e-06 4731 4644 -46373434.23613 4732 4644 24305555.56354 4733 4644 21679861.11823 4734 4644 -138827443.8752 4735 4644 2.682209014893e-07 4736 4644 86719444.4302 4737 4644 -46373434.23614 4738 4644 -24305555.56354 4739 4644 21679861.11823 4752 4644 4476132.383914 4753 4644 -4861111.112702 4754 4644 -4335972.223643 4755 4644 111237115.4367 4756 4644 -8.344650268555e-07 4757 4644 -17343888.88603 4758 4644 4476132.383917 4759 4644 4861111.1127 4760 4644 -4335972.223642 4645 4645 625304024.3239 4646 4645 6.198883056641e-06 4647 4645 -19444444.44125 4648 4645 -92560889.60172 4649 4645 2.32458114624e-06 4731 4645 24305555.56354 4732 4645 -39081501.55876 4733 4645 -17343750.00569 4734 4645 -2.294778823853e-06 4735 4645 -31882558.21685 4736 4645 2.682209014893e-07 4737 4645 -24305555.56354 4738 4645 -39081501.55876 4739 4645 17343750.0057 4752 4645 4861111.112712 4753 4645 -41704377.77507 4754 4645 -34687499.9943 4755 4645 -7.152557373047e-07 4756 4645 82069384.74161 4757 4645 -3.75509262085e-06 4758 4645 -4861111.112713 4759 4645 -41704377.77507 4760 4645 34687499.9943 4646 4646 582912992.1231 4647 4646 -7.271766662598e-06 4648 4646 1.877546310425e-06 4649 4646 52395662.19267 4731 4646 21679861.11823 4732 4646 -17343750.0057 4733 4646 -36432062.04359 4734 4646 86719444.4302 4735 4646 3.427267074585e-07 4736 4646 -99061955.12464 4737 4646 21679861.11823 4738 4646 17343750.0057 4739 4646 -36432062.04359 4752 4646 4335972.223649 4753 4646 -34687499.9943 4754 4646 -36405498.74736 4755 4646 17343888.88605 4756 4646 -3.576278686523e-06 4757 4646 -52289409.00778 4758 4646 4335972.22365 4759 4646 34687499.9943 4760 4646 -36405498.74735 4647 4647 741974947.0469 4648 4647 5.006790161133e-06 4649 4647 -2.908706665039e-05 4650 4647 92161150.94322 4651 4647 19444444.44125 4652 4647 -7.271766662598e-06 4734 4647 -46373434.23613 4735 4647 24305555.56354 4736 4647 21679861.11823 4737 4647 -138827443.8752 4738 4647 2.682209014893e-07 4739 4647 86719444.4302 4740 4647 -46373434.23614 4741 4647 -24305555.56354 4742 4647 21679861.11823 4755 4647 4476132.383914 4756 4647 -4861111.112702 4757 4647 -4335972.223643 4758 4647 111237115.4367 4759 4647 -8.344650268555e-07 4760 4647 -17343888.88603 4761 4647 4476132.383917 4762 4647 4861111.1127 4763 4647 -4335972.223642 4648 4648 625304024.3239 4649 4648 6.198883056641e-06 4650 4648 -19444444.44125 4651 4648 -92560889.60172 4652 4648 2.32458114624e-06 4734 4648 24305555.56354 4735 4648 -39081501.55876 4736 4648 -17343750.00569 4737 4648 -2.294778823853e-06 4738 4648 -31882558.21685 4739 4648 2.682209014893e-07 4740 4648 -24305555.56354 4741 4648 -39081501.55876 4742 4648 17343750.0057 4755 4648 4861111.112712 4756 4648 -41704377.77507 4757 4648 -34687499.9943 4758 4648 -7.152557373047e-07 4759 4648 82069384.74161 4760 4648 -3.75509262085e-06 4761 4648 -4861111.112713 4762 4648 -41704377.77507 4763 4648 34687499.9943 4649 4649 582912992.1231 4650 4649 -7.271766662598e-06 4651 4649 1.877546310425e-06 4652 4649 52395662.19267 4734 4649 21679861.11823 4735 4649 -17343750.0057 4736 4649 -36432062.04359 4737 4649 86719444.4302 4738 4649 3.427267074585e-07 4739 4649 -99061955.12464 4740 4649 21679861.11823 4741 4649 17343750.0057 4742 4649 -36432062.04359 4755 4649 4335972.223649 4756 4649 -34687499.9943 4757 4649 -36405498.74736 4758 4649 17343888.88605 4759 4649 -3.576278686523e-06 4760 4649 -52289409.00778 4761 4649 4335972.22365 4762 4649 34687499.9943 4763 4649 -36405498.74735 4650 4650 743972693.3092 4651 4650 15895.84580994 4652 4650 -1.621246337891e-05 4653 4650 96103889.57229 4654 4650 23223356.21638 4655 4650 1.311302185059e-06 4737 4650 -46373434.23613 4738 4650 24305555.56354 4739 4650 21679861.11823 4740 4650 -140996480.167 4741 4650 -952893.2695191 4742 4650 87564583.31904 4743 4650 -45870736.57862 4744 4650 -24301364.19972 4745 4650 21679166.67378 4758 4650 4476132.383914 4759 4650 -4861111.112702 4760 4650 -4335972.223643 4761 4650 111737658.2526 4762 4650 3973.961459279 4763 4650 -17343611.10825 4764 4650 5643546.059514 4765 4650 5805839.056956 4766 4650 -5182361.11248 4651 4651 624700330.4184 4652 4651 1.406669616699e-05 4653 4651 -15665532.66612 4654 4651 -87045539.95469 4655 4651 1.907348632813e-06 4737 4651 24305555.56354 4738 4651 -39081501.55876 4739 4651 -17343750.00569 4740 4651 -952893.2695158 4741 4651 -33140775.69075 4742 4651 677083.3332877 4743 4651 -24301364.19972 4744 4651 -39232415.43151 4745 4651 17343750.00569 4758 4651 4861111.112712 4759 4651 -41704377.77507 4760 4651 -34687499.9943 4761 4651 3973.961458564 4762 4651 81919567.5152 4763 4651 -4.589557647705e-06 4764 4651 -3916383.168461 4765 4651 -40143811.34479 4766 4651 34010416.66101 4652 4652 583290059.4325 4653 4652 2.384185791016e-07 4654 4652 1.609325408936e-06 4655 4652 54461159.75297 4737 4652 21679861.11823 4738 4652 -17343750.0057 4739 4652 -36432062.04359 4740 4652 87564583.31887 4741 4652 677083.3331543 4742 4652 -100252145.5455 4743 4652 21679166.67378 4744 4652 17343750.00569 4745 4652 -36335759.26895 4758 4652 4335972.223649 4759 4652 -34687499.9943 4760 4652 -36405498.74736 4761 4652 17343611.10827 4762 4652 -4.291534423828e-06 4763 4652 -52192192.18033 4764 4652 3489305.557201 4765 4652 34010416.66114 4766 4652 -35404513.64279 4653 4653 745987487.9303 4654 4653 -2453991.979028 4655 4653 -3.814697265625e-06 4656 4653 -141080087.6865 4657 4653 -95899021.31303 4658 4653 -1.296401023865e-06 4659 4653 92610986.19901 4660 4653 22063836.70035 4661 4653 -3.576278686523e-07 4740 4653 -48879322.66666 4741 4653 24272689.58239 4742 4653 22525694.45184 4743 4653 -141002035.2672 4744 4653 -1284012.256587 4745 4653 85676388.87482 4761 4653 5643546.059503 4762 4653 -3916383.168461 4763 4653 -3489305.557201 4764 4653 115620942.6217 4765 4653 -613497.995061 4766 4653 -17135277.77496 4767 4653 -43801307.66031 4768 4653 -23974755.34007 4769 4653 20312500.00667 4770 4653 5916032.269885 4771 4653 5515959.177805 4772 4653 -5078333.334501 4654 4654 616411761.6305 4655 4654 1.907348632813e-05 4656 4654 -95899021.31303 4657 4654 -117437349.9809 4658 4654 9.387731552124e-07 4659 4654 -16825052.18216 4660 4654 -92728025.5149 4661 4654 3.844499588013e-06 4740 4654 24272689.58239 4741 4654 -38326906.89254 4742 4654 -16666666.67214 4743 4654 -1284012.256586 4744 4654 -32949093.52409 4745 4654 677083.3332867 4761 4654 5805839.056958 4762 4654 -40143811.34482 4763 4654 -34010416.66115 4764 4654 -613497.9950583 4765 4654 83227011.03077 4766 4654 -4.678964614868e-06 4767 4654 -23974755.34007 4768 4654 -37890623.23097 4769 4654 16666666.67214 4770 4654 -4206263.047613 4771 4654 -40418720.68143 4772 4654 33333333.32785 4655 4655 572020605.8755 4656 4655 -1.54972076416e-06 4657 4655 8.493661880493e-07 4658 4655 -46375866.82274 4659 4655 -3.576278686523e-07 4660 4655 3.725290298462e-06 4661 4655 48718383.22463 4740 4655 22525694.45184 4741 4655 -16666666.67214 4742 4655 -36909325.87325 4743 4655 85676388.87482 4744 4655 677083.3331533 4745 4655 -97565514.93121 4761 4655 5182361.11248 4762 4655 -34010416.66102 4763 4655 -35404513.64281 4764 4655 17135277.77496 4765 4655 -4.738569259644e-06 4766 4655 -45997327.00148 4767 4655 20312500.00667 4768 4655 16666666.67214 4769 4655 -34344061.96816 4770 4655 3385277.779222 4771 4655 33333333.32785 4772 4655 -33784975.63126 4656 4656 361120236.1713 4657 4656 94548810.89504 4658 4656 2.861022949219e-06 4659 4656 -203961436.0496 4660 4656 -20767645.33449 4661 4656 -2.056360244751e-06 4743 4656 4511607.610497 4744 4656 5529463.940849 4745 4656 4909027.779057 4764 4656 -43801307.66031 4765 4656 -23974755.34008 4766 4656 -20312500.00667 4767 4656 56503201.94986 4768 4656 23637202.73541 4769 4656 8124999.998667 4770 4656 -68052930.47169 4771 4656 -5191911.336185 4772 4656 -41471527.77105 4657 4657 308313282.913 4658 4657 8.821487426758e-06 4659 4657 18121243.54801 4660 4657 9374992.872531 4661 4657 4.52995300293e-06 4743 4657 -4192758.284571 4744 4657 -41531445.75456 4745 4657 -33333333.32786 4764 4657 -23974755.34008 4765 4657 -37890623.23098 4766 4657 -16666666.67214 4767 4657 23637202.73541 4768 4657 43301463.62877 4769 4657 6666666.66557 4770 4657 4530310.889233 4771 4657 -14718823.21488 4772 4657 3333333.334427 4658 4658 278103282.9517 4659 4658 -8.344650268555e-07 4660 4658 4.52995300293e-06 4661 4658 -4811252.171673 4743 4658 -3215972.223779 4744 4658 -33333333.32786 4745 4658 -33978945.7605 4764 4658 -20312500.00667 4765 4658 -16666666.67214 4766 4658 -34344061.96817 4767 4658 -8124999.998664 4768 4658 -6666666.665573 4769 4658 -20545798.26107 4770 4658 -41471527.77088 4771 4658 -3333333.334429 4772 4658 -46703003.53463 4659 4659 371304389.3859 4660 4659 -99841614.46536 4661 4659 -2.145767211914e-06 4743 4659 -47751770.62458 4744 4659 24636355.78702 4745 4659 21159027.78473 4764 4659 5916032.269875 4765 4659 -4206263.047613 4766 4659 -3385277.779223 4767 4659 -68052930.47169 4768 4659 4530310.88924 4769 4659 41471527.77088 4770 4659 58352668.82663 4771 4659 -24960403.62864 4772 4659 -8463611.109722 4660 4660 309788077.0662 4661 4660 9.059906005859e-06 4743 4660 24636355.78702 4744 4660 -39372046.84258 4745 4660 -16666666.67214 4764 4660 5515959.177806 4765 4660 -40418720.68145 4766 4660 -33333333.32786 4767 4660 -5191911.336178 4768 4660 -14718823.21488 4769 4660 3333333.334427 4770 4660 -24960403.62864 4771 4660 42973590.73914 4772 4660 6666666.665569 4661 4661 283253096.8787 4743 4661 21159027.78473 4744 4661 -16666666.67214 4745 4661 -35825485.57977 4764 4661 5078333.334502 4765 4661 -33333333.32786 4766 4661 -33784975.63127 4767 4661 41471527.77105 4768 4661 -3333333.334429 4769 4661 -46703003.53464 4770 4661 8463611.10972 4771 4661 -6666666.665574 4772 4661 -21115868.587 4662 4662 927468678.158 4663 4662 97222222.20623 4664 4662 -8.106231689453e-06 4665 4662 -573726109.9308 4666 4662 -97222221.42845 4667 4662 8.940696716309e-07 4668 4662 18564155.00999 4669 4662 77777776.9872 4670 4662 2.861022949219e-06 4773 4662 139046393.5639 4774 4662 24305555.56354 4776 4662 -175918799.4896 4777 4662 -24305555.36909 4779 4662 -9282077.505002 4780 4662 19444444.25638 4663 4663 781630025.6149 4664 4663 8.412431954121e-06 4665 4663 -97222221.03956 4666 4663 -116778839.2437 4667 4663 5.602836608887e-06 4668 4663 116666665.4808 4669 4663 18564155.00998 4670 4663 5.960464477539e-07 4773 4663 24305555.56354 4774 4663 102586730.4102 4776 4663 -24305555.27187 4777 4663 -61681981.76159 4779 4663 29166666.38457 4780 4663 -9282077.504995 4664 4664 728641235.3813 4665 4664 4.172325134277e-07 4666 4664 4.887580871582e-06 4667 4664 -96436338.25295 4668 4664 2.503395080566e-06 4669 4664 1.251697540283e-06 4670 4664 49504413.35998 4773 4664 -17343888.84952 4774 4664 -13874999.85144 4776 4664 -86719444.24762 4777 4664 -17343749.94044 4779 4664 -26015832.7805 4780 4664 13874999.9393 4665 4665 1632315315.374 4666 4665 97222220.26178 4667 4665 -4.172325134277e-05 4668 4665 17392720.97666 4669 4665 -97222221.42845 4670 4665 -2.145767211914e-06 4671 4665 -406796532.3944 4672 4665 -2.801418304443e-06 4673 4665 -1.233816146851e-05 4674 4665 -148365426.1266 4675 4665 97222222.20624 4676 4665 -3.308057785034e-06 4773 4665 -175918799.4897 4774 4665 -24305555.27186 4776 4665 268847663.9159 4777 4665 24305555.07742 4779 4665 -28139091.37671 4780 4665 -24305555.36909 4782 4665 -138827443.8751 4783 4665 -5.066394805908e-07 4785 4665 -46373434.23611 4786 4665 24305555.56353 4666 4666 1369805740.108 4667 4666 -2.145767211914e-06 4668 4666 -97222221.03956 4669 4666 -322883627.8625 4670 4666 4.798173904419e-06 4671 4666 -3.09944152832e-06 4672 4666 20983010.02827 4673 4666 -4.768371582031e-07 4674 4666 97222222.20624 4675 4666 -119197695.4315 4676 4666 -7.450580596924e-08 4773 4666 -24305555.36908 4774 4666 -61681981.7616 4776 4666 24305555.07742 4777 4666 203220270.0671 4779 4666 -24305555.27186 4780 4666 -113208178.6284 4782 4666 -8.344650268555e-07 4783 4666 -31882558.21681 4785 4666 24305555.56353 4786 4666 -39081501.55875 4667 4667 1212545401.289 4668 4667 -1.788139343262e-06 4669 4667 3.75509262085e-06 4670 4667 8567490.576108 4671 4667 -1.20997428894e-05 4672 4667 -4.768371582031e-07 4673 4667 -212506.0825927 4674 4667 -3.278255462646e-06 4675 4667 -2.086162567139e-07 4676 4667 -46719419.49861 4773 4667 86719444.24762 4774 4667 17343749.9078 4776 4667 -0.03649973869324 4777 4667 -0.02921465039253 4779 4667 21679860.55685 4780 4667 69374999.49133 4782 4667 -86719444.43019 4783 4667 -2.682209014893e-07 4785 4667 -21679861.11823 4786 4667 17343750.00569 4668 4668 927468678.158 4669 4668 97222222.20623 4670 4668 -8.106231689453e-06 4671 4668 -148365426.1266 4672 4668 -97222222.20624 4673 4668 -3.039836883545e-06 4674 4668 -573726109.9308 4675 4668 -97222221.42845 4676 4668 8.940696716309e-07 4677 4668 18564155.00999 4678 4668 77777776.9872 4679 4668 2.861022949219e-06 4773 4668 -9282077.50499 4774 4668 29166666.38457 4776 4668 -28139091.37673 4777 4668 -24305555.27187 4779 4668 139046393.5639 4780 4668 24305555.56354 4782 4668 -46373434.23611 4783 4668 -24305555.56353 4785 4668 -175918799.4896 4786 4668 -24305555.36909 4788 4668 -9282077.505002 4789 4668 19444444.25638 4669 4669 781630025.6149 4670 4669 8.412431954121e-06 4671 4669 -97222222.20624 4672 4669 -119197695.4315 4673 4669 2.831220626831e-07 4674 4669 -97222221.03956 4675 4669 -116778839.2437 4676 4669 5.602836608887e-06 4677 4669 116666665.4808 4678 4669 18564155.00998 4679 4669 5.960464477539e-07 4773 4669 19444444.25638 4774 4669 -9282077.505 4776 4669 -24305555.36909 4777 4669 -113208178.6284 4779 4669 24305555.56354 4780 4669 102586730.4102 4782 4669 -24305555.56353 4783 4669 -39081501.55875 4785 4669 -24305555.27187 4786 4669 -61681981.76159 4788 4669 29166666.38457 4789 4669 -9282077.504995 4670 4670 728641235.3813 4671 4670 -2.890825271606e-06 4672 4670 3.8743019104e-07 4673 4670 -46719419.49861 4674 4670 4.172325134277e-07 4675 4670 4.887580871582e-06 4676 4670 -96436338.25295 4677 4670 2.503395080566e-06 4678 4670 1.251697540283e-06 4679 4670 49504413.35998 4773 4670 17343888.52033 4774 4670 -20812499.90895 4776 4670 -21679860.74398 4777 4670 -69374999.6084 4779 4670 -17343888.84952 4780 4670 -13874999.85144 4782 4670 -21679861.11823 4783 4670 -17343750.0057 4785 4670 -86719444.24762 4786 4670 -17343749.94044 4788 4670 -26015832.7805 4789 4670 13874999.9393 4671 4671 1483949894.094 4672 4671 7.867813110352e-06 4673 4671 -5.507469177246e-05 4674 4671 184322301.8864 4675 4671 -2.622604370117e-06 4676 4671 -1.358985900879e-05 4680 4671 -406796532.3944 4681 4671 -2.801418304443e-06 4682 4671 -1.233816146851e-05 4683 4671 -148365426.1266 4684 4671 97222222.20624 4685 4671 -3.308057785034e-06 4776 4671 -138827443.8752 4777 4671 2.682209014893e-07 4779 4671 -46373434.23614 4780 4671 -24305555.56354 4782 4671 222474230.8735 4783 4671 3.933906555176e-06 4785 4671 8952264.76783 4786 4671 -1.302361488342e-05 4791 4671 -138827443.8751 4792 4671 -5.066394805908e-07 4794 4671 -46373434.23611 4795 4671 24305555.56353 4672 4672 1250608048.648 4673 4672 -1.192092895508e-06 4674 4672 -3.159046173096e-06 4675 4672 -185121779.2034 4676 4672 8.046627044678e-07 4680 4672 -3.09944152832e-06 4681 4672 20983010.02827 4682 4672 -4.768371582031e-07 4683 4672 97222222.20624 4684 4672 -119197695.4315 4685 4672 -7.450580596924e-08 4776 4672 -2.294778823853e-06 4777 4672 -31882558.21685 4779 4672 -24305555.56354 4780 4672 -39081501.55876 4782 4672 4.410743713379e-06 4783 4672 164138769.4832 4785 4672 -1.156330108643e-05 4786 4672 -83408755.55014 4791 4672 -8.344650268555e-07 4792 4672 -31882558.21681 4794 4672 24305555.56353 4795 4672 -39081501.55875 4673 4673 1165825984.246 4674 4673 -1.382827758789e-05 4675 4673 1.788139343262e-07 4676 4673 104791324.3853 4680 4673 -1.20997428894e-05 4681 4673 -4.768371582031e-07 4682 4673 -212506.0825927 4683 4673 -3.278255462646e-06 4684 4673 -2.086162567139e-07 4685 4673 -46719419.49861 4776 4673 86719444.4302 4777 4673 3.427267074585e-07 4779 4673 21679861.11823 4780 4673 17343750.0057 4782 4673 2.598762512207e-05 4783 4673 5.960464477539e-08 4785 4673 6.973743438721e-06 4786 4673 69374999.9886 4791 4673 -86719444.43019 4792 4673 -2.682209014893e-07 4794 4673 -21679861.11823 4795 4673 17343750.00569 4674 4674 1632315315.374 4675 4674 97222220.26178 4676 4674 -4.172325134277e-05 4677 4674 17392720.97666 4678 4674 -97222221.42845 4679 4674 -2.145767211914e-06 4680 4674 -148365426.1266 4681 4674 -97222222.20624 4682 4674 -3.039836883545e-06 4683 4674 -406796532.3944 4684 4674 -2.801418304443e-06 4685 4674 -1.233816146851e-05 4686 4674 -148365426.1266 4687 4674 97222222.20624 4688 4674 -3.308057785034e-06 4776 4674 -46373434.23613 4777 4674 24305555.56354 4779 4674 -175918799.4897 4780 4674 -24305555.27186 4782 4674 8952264.76783 4783 4674 9.298324584961e-06 4785 4674 268847663.9159 4786 4674 24305555.07742 4788 4674 -28139091.37671 4789 4674 -24305555.36909 4791 4674 -46373434.23611 4792 4674 -24305555.56353 4794 4674 -138827443.8751 4795 4674 -5.066394805908e-07 4797 4674 -46373434.23611 4798 4674 24305555.56353 4675 4675 1369805740.108 4676 4675 -2.145767211914e-06 4677 4675 -97222221.03956 4678 4675 -322883627.8625 4679 4675 4.798173904419e-06 4680 4675 -97222222.20624 4681 4675 -119197695.4315 4682 4675 2.831220626831e-07 4683 4675 -3.09944152832e-06 4684 4675 20983010.02827 4685 4675 -4.768371582031e-07 4686 4675 97222222.20624 4687 4675 -119197695.4315 4688 4675 -7.450580596924e-08 4776 4675 24305555.56354 4777 4675 -39081501.55876 4779 4675 -24305555.36908 4780 4675 -61681981.7616 4782 4675 1.069903373718e-05 4783 4675 -83408755.55014 4785 4675 24305555.07742 4786 4675 203220270.0671 4788 4675 -24305555.27186 4789 4675 -113208178.6284 4791 4675 -24305555.56353 4792 4675 -39081501.55875 4794 4675 -8.344650268555e-07 4795 4675 -31882558.21681 4797 4675 24305555.56353 4798 4675 -39081501.55875 4676 4676 1212545401.289 4677 4676 -1.788139343262e-06 4678 4676 3.75509262085e-06 4679 4676 8567490.576108 4680 4676 -2.890825271606e-06 4681 4676 3.8743019104e-07 4682 4676 -46719419.49861 4683 4676 -1.20997428894e-05 4684 4676 -4.768371582031e-07 4685 4676 -212506.0825927 4686 4676 -3.278255462646e-06 4687 4676 -2.086162567139e-07 4688 4676 -46719419.49861 4776 4676 21679861.11823 4777 4676 -17343750.0057 4779 4676 86719444.24762 4780 4676 17343749.9078 4782 4676 6.169080734253e-06 4783 4676 -69374999.9886 4785 4676 -0.03649973869324 4786 4676 -0.02921465039253 4788 4676 21679860.55685 4789 4676 69374999.49133 4791 4676 -21679861.11823 4792 4676 -17343750.0057 4794 4676 -86719444.43019 4795 4676 -2.682209014893e-07 4797 4676 -21679861.11823 4798 4676 17343750.00569 4677 4677 927468678.158 4678 4677 97222222.20623 4679 4677 -8.106231689453e-06 4683 4677 -148365426.1266 4684 4677 -97222222.20624 4685 4677 -3.039836883545e-06 4686 4677 -573726109.9308 4687 4677 -97222221.42845 4688 4677 8.940696716309e-07 4689 4677 18564155.00999 4690 4677 77777776.9872 4691 4677 2.861022949219e-06 4779 4677 -9282077.50499 4780 4677 29166666.38457 4785 4677 -28139091.37673 4786 4677 -24305555.27187 4788 4677 139046393.5639 4789 4677 24305555.56354 4794 4677 -46373434.23611 4795 4677 -24305555.56353 4797 4677 -175918799.4896 4798 4677 -24305555.36909 4800 4677 -9282077.505002 4801 4677 19444444.25638 4678 4678 781630025.6149 4679 4678 8.412431954121e-06 4683 4678 -97222222.20624 4684 4678 -119197695.4315 4685 4678 2.831220626831e-07 4686 4678 -97222221.03956 4687 4678 -116778839.2437 4688 4678 5.602836608887e-06 4689 4678 116666665.4808 4690 4678 18564155.00998 4691 4678 5.960464477539e-07 4779 4678 19444444.25638 4780 4678 -9282077.505 4785 4678 -24305555.36909 4786 4678 -113208178.6284 4788 4678 24305555.56354 4789 4678 102586730.4102 4794 4678 -24305555.56353 4795 4678 -39081501.55875 4797 4678 -24305555.27187 4798 4678 -61681981.76159 4800 4678 29166666.38457 4801 4678 -9282077.504995 4679 4679 728641235.3813 4683 4679 -2.890825271606e-06 4684 4679 3.8743019104e-07 4685 4679 -46719419.49861 4686 4679 4.172325134277e-07 4687 4679 4.887580871582e-06 4688 4679 -96436338.25295 4689 4679 2.503395080566e-06 4690 4679 1.251697540283e-06 4691 4679 49504413.35998 4779 4679 17343888.52033 4780 4679 -20812499.90895 4785 4679 -21679860.74398 4786 4679 -69374999.6084 4788 4679 -17343888.84952 4789 4679 -13874999.85144 4794 4679 -21679861.11823 4795 4679 -17343750.0057 4797 4679 -86719444.24762 4798 4679 -17343749.94044 4800 4679 -26015832.7805 4801 4679 13874999.9393 4680 4680 1483949894.094 4681 4680 7.867813110352e-06 4682 4680 -5.507469177246e-05 4683 4680 184322301.8864 4684 4680 -2.622604370117e-06 4685 4680 -1.358985900879e-05 4692 4680 -406796532.3944 4693 4680 -2.801418304443e-06 4694 4680 -1.233816146851e-05 4695 4680 -148365426.1266 4696 4680 97222222.20624 4697 4680 -3.308057785034e-06 4782 4680 -138827443.8752 4783 4680 2.682209014893e-07 4785 4680 -46373434.23614 4786 4680 -24305555.56354 4791 4680 222474230.8735 4792 4680 3.933906555176e-06 4794 4680 8952264.76783 4795 4680 -1.302361488342e-05 4803 4680 -138827443.8751 4804 4680 -5.066394805908e-07 4806 4680 -46373434.23611 4807 4680 24305555.56353 4681 4681 1250608048.648 4682 4681 -1.192092895508e-06 4683 4681 -3.159046173096e-06 4684 4681 -185121779.2034 4685 4681 8.046627044678e-07 4692 4681 -3.09944152832e-06 4693 4681 20983010.02827 4694 4681 -4.768371582031e-07 4695 4681 97222222.20624 4696 4681 -119197695.4315 4697 4681 -7.450580596924e-08 4782 4681 -2.294778823853e-06 4783 4681 -31882558.21685 4785 4681 -24305555.56354 4786 4681 -39081501.55876 4791 4681 4.410743713379e-06 4792 4681 164138769.4832 4794 4681 -1.156330108643e-05 4795 4681 -83408755.55014 4803 4681 -8.344650268555e-07 4804 4681 -31882558.21681 4806 4681 24305555.56353 4807 4681 -39081501.55875 4682 4682 1165825984.246 4683 4682 -1.382827758789e-05 4684 4682 1.788139343262e-07 4685 4682 104791324.3853 4692 4682 -1.20997428894e-05 4693 4682 -4.768371582031e-07 4694 4682 -212506.0825927 4695 4682 -3.278255462646e-06 4696 4682 -2.086162567139e-07 4697 4682 -46719419.49861 4782 4682 86719444.4302 4783 4682 3.427267074585e-07 4785 4682 21679861.11823 4786 4682 17343750.0057 4791 4682 2.598762512207e-05 4792 4682 5.960464477539e-08 4794 4682 6.973743438721e-06 4795 4682 69374999.9886 4803 4682 -86719444.43019 4804 4682 -2.682209014893e-07 4806 4682 -21679861.11823 4807 4682 17343750.00569 4683 4683 1483949894.094 4684 4683 7.867813110352e-06 4685 4683 -5.507469177246e-05 4686 4683 184322301.8864 4687 4683 -2.622604370117e-06 4688 4683 -1.358985900879e-05 4692 4683 -148365426.1266 4693 4683 -97222222.20624 4694 4683 -3.039836883545e-06 4695 4683 -406796532.3944 4696 4683 -2.801418304443e-06 4697 4683 -1.233816146851e-05 4698 4683 -148365426.1266 4699 4683 97222222.20624 4700 4683 -3.308057785034e-06 4782 4683 -46373434.23613 4783 4683 24305555.56354 4785 4683 -138827443.8752 4786 4683 2.682209014893e-07 4788 4683 -46373434.23614 4789 4683 -24305555.56354 4791 4683 8952264.76783 4792 4683 9.298324584961e-06 4794 4683 222474230.8735 4795 4683 3.933906555176e-06 4797 4683 8952264.76783 4798 4683 -1.302361488342e-05 4803 4683 -46373434.23611 4804 4683 -24305555.56353 4806 4683 -138827443.8751 4807 4683 -5.066394805908e-07 4809 4683 -46373434.23611 4810 4683 24305555.56353 4684 4684 1250608048.648 4685 4684 -1.192092895508e-06 4686 4684 -3.159046173096e-06 4687 4684 -185121779.2034 4688 4684 8.046627044678e-07 4692 4684 -97222222.20624 4693 4684 -119197695.4315 4694 4684 2.831220626831e-07 4695 4684 -3.09944152832e-06 4696 4684 20983010.02827 4697 4684 -4.768371582031e-07 4698 4684 97222222.20624 4699 4684 -119197695.4315 4700 4684 -7.450580596924e-08 4782 4684 24305555.56354 4783 4684 -39081501.55876 4785 4684 -2.294778823853e-06 4786 4684 -31882558.21685 4788 4684 -24305555.56354 4789 4684 -39081501.55876 4791 4684 1.069903373718e-05 4792 4684 -83408755.55014 4794 4684 4.410743713379e-06 4795 4684 164138769.4832 4797 4684 -1.156330108643e-05 4798 4684 -83408755.55014 4803 4684 -24305555.56353 4804 4684 -39081501.55875 4806 4684 -8.344650268555e-07 4807 4684 -31882558.21681 4809 4684 24305555.56353 4810 4684 -39081501.55875 4685 4685 1165825984.246 4686 4685 -1.382827758789e-05 4687 4685 1.788139343262e-07 4688 4685 104791324.3853 4692 4685 -2.890825271606e-06 4693 4685 3.8743019104e-07 4694 4685 -46719419.49861 4695 4685 -1.20997428894e-05 4696 4685 -4.768371582031e-07 4697 4685 -212506.0825927 4698 4685 -3.278255462646e-06 4699 4685 -2.086162567139e-07 4700 4685 -46719419.49861 4782 4685 21679861.11823 4783 4685 -17343750.0057 4785 4685 86719444.4302 4786 4685 3.427267074585e-07 4788 4685 21679861.11823 4789 4685 17343750.0057 4791 4685 6.169080734253e-06 4792 4685 -69374999.9886 4794 4685 2.598762512207e-05 4795 4685 5.960464477539e-08 4797 4685 6.973743438721e-06 4798 4685 69374999.9886 4803 4685 -21679861.11823 4804 4685 -17343750.0057 4806 4685 -86719444.43019 4807 4685 -2.682209014893e-07 4809 4685 -21679861.11823 4810 4685 17343750.00569 4686 4686 1632315315.374 4687 4686 97222220.26178 4688 4686 -4.172325134277e-05 4689 4686 17392720.97666 4690 4686 -97222221.42845 4691 4686 -2.145767211914e-06 4695 4686 -148365426.1266 4696 4686 -97222222.20624 4697 4686 -3.039836883545e-06 4698 4686 -406796532.3944 4699 4686 -2.801418304443e-06 4700 4686 -1.233816146851e-05 4701 4686 -148365426.1266 4702 4686 97222222.20624 4703 4686 -3.308057785034e-06 4785 4686 -46373434.23613 4786 4686 24305555.56354 4788 4686 -175918799.4897 4789 4686 -24305555.27186 4794 4686 8952264.76783 4795 4686 9.298324584961e-06 4797 4686 268847663.9159 4798 4686 24305555.07742 4800 4686 -28139091.37671 4801 4686 -24305555.36909 4806 4686 -46373434.23611 4807 4686 -24305555.56353 4809 4686 -138827443.8751 4810 4686 -5.066394805908e-07 4812 4686 -46373434.23611 4813 4686 24305555.56353 4687 4687 1369805740.108 4688 4687 -2.145767211914e-06 4689 4687 -97222221.03956 4690 4687 -322883627.8625 4691 4687 4.798173904419e-06 4695 4687 -97222222.20624 4696 4687 -119197695.4315 4697 4687 2.831220626831e-07 4698 4687 -3.09944152832e-06 4699 4687 20983010.02827 4700 4687 -4.768371582031e-07 4701 4687 97222222.20624 4702 4687 -119197695.4315 4703 4687 -7.450580596924e-08 4785 4687 24305555.56354 4786 4687 -39081501.55876 4788 4687 -24305555.36908 4789 4687 -61681981.7616 4794 4687 1.069903373718e-05 4795 4687 -83408755.55014 4797 4687 24305555.07742 4798 4687 203220270.0671 4800 4687 -24305555.27186 4801 4687 -113208178.6284 4806 4687 -24305555.56353 4807 4687 -39081501.55875 4809 4687 -8.344650268555e-07 4810 4687 -31882558.21681 4812 4687 24305555.56353 4813 4687 -39081501.55875 4688 4688 1212545401.289 4689 4688 -1.788139343262e-06 4690 4688 3.75509262085e-06 4691 4688 8567490.576108 4695 4688 -2.890825271606e-06 4696 4688 3.8743019104e-07 4697 4688 -46719419.49861 4698 4688 -1.20997428894e-05 4699 4688 -4.768371582031e-07 4700 4688 -212506.0825927 4701 4688 -3.278255462646e-06 4702 4688 -2.086162567139e-07 4703 4688 -46719419.49861 4785 4688 21679861.11823 4786 4688 -17343750.0057 4788 4688 86719444.24762 4789 4688 17343749.9078 4794 4688 6.169080734253e-06 4795 4688 -69374999.9886 4797 4688 -0.03649973869324 4798 4688 -0.02921465039253 4800 4688 21679860.55685 4801 4688 69374999.49133 4806 4688 -21679861.11823 4807 4688 -17343750.0057 4809 4688 -86719444.43019 4810 4688 -2.682209014893e-07 4812 4688 -21679861.11823 4813 4688 17343750.00569 4689 4689 927468678.158 4690 4689 97222222.20623 4691 4689 -8.106231689453e-06 4698 4689 -148365426.1266 4699 4689 -97222222.20624 4700 4689 -3.039836883545e-06 4701 4689 -573726109.9308 4702 4689 -97222221.42845 4703 4689 8.940696716309e-07 4704 4689 18564155.00999 4705 4689 77777776.9872 4706 4689 2.861022949219e-06 4788 4689 -9282077.50499 4789 4689 29166666.38457 4797 4689 -28139091.37673 4798 4689 -24305555.27187 4800 4689 139046393.5639 4801 4689 24305555.56354 4809 4689 -46373434.23611 4810 4689 -24305555.56353 4812 4689 -175918799.4896 4813 4689 -24305555.36909 4815 4689 -9282077.505002 4816 4689 19444444.25638 4690 4690 781630025.6149 4691 4690 8.412431954121e-06 4698 4690 -97222222.20624 4699 4690 -119197695.4315 4700 4690 2.831220626831e-07 4701 4690 -97222221.03956 4702 4690 -116778839.2437 4703 4690 5.602836608887e-06 4704 4690 116666665.4808 4705 4690 18564155.00998 4706 4690 5.960464477539e-07 4788 4690 19444444.25638 4789 4690 -9282077.505 4797 4690 -24305555.36909 4798 4690 -113208178.6284 4800 4690 24305555.56354 4801 4690 102586730.4102 4809 4690 -24305555.56353 4810 4690 -39081501.55875 4812 4690 -24305555.27187 4813 4690 -61681981.76159 4815 4690 29166666.38457 4816 4690 -9282077.504995 4691 4691 728641235.3813 4698 4691 -2.890825271606e-06 4699 4691 3.8743019104e-07 4700 4691 -46719419.49861 4701 4691 4.172325134277e-07 4702 4691 4.887580871582e-06 4703 4691 -96436338.25295 4704 4691 2.503395080566e-06 4705 4691 1.251697540283e-06 4706 4691 49504413.35998 4788 4691 17343888.52033 4789 4691 -20812499.90895 4797 4691 -21679860.74398 4798 4691 -69374999.6084 4800 4691 -17343888.84952 4801 4691 -13874999.85144 4809 4691 -21679861.11823 4810 4691 -17343750.0057 4812 4691 -86719444.24762 4813 4691 -17343749.94044 4815 4691 -26015832.7805 4816 4691 13874999.9393 4692 4692 1483949894.094 4693 4692 7.867813110352e-06 4694 4692 -5.507469177246e-05 4695 4692 184322301.8864 4696 4692 -2.622604370117e-06 4697 4692 -1.358985900879e-05 4707 4692 -406796532.3944 4708 4692 -2.801418304443e-06 4709 4692 -1.233816146851e-05 4710 4692 -148365426.1266 4711 4692 97222222.20624 4712 4692 -3.308057785034e-06 4791 4692 -138827443.8752 4792 4692 2.682209014893e-07 4794 4692 -46373434.23614 4795 4692 -24305555.56354 4803 4692 222474230.8735 4804 4692 3.933906555176e-06 4806 4692 8952264.76783 4807 4692 -1.302361488342e-05 4818 4692 -138827443.8751 4819 4692 -5.066394805908e-07 4821 4692 -46373434.23611 4822 4692 24305555.56353 4693 4693 1250608048.648 4694 4693 -1.192092895508e-06 4695 4693 -3.159046173096e-06 4696 4693 -185121779.2034 4697 4693 8.046627044678e-07 4707 4693 -3.09944152832e-06 4708 4693 20983010.02827 4709 4693 -4.768371582031e-07 4710 4693 97222222.20624 4711 4693 -119197695.4315 4712 4693 -7.450580596924e-08 4791 4693 -2.294778823853e-06 4792 4693 -31882558.21685 4794 4693 -24305555.56354 4795 4693 -39081501.55876 4803 4693 4.410743713379e-06 4804 4693 164138769.4832 4806 4693 -1.156330108643e-05 4807 4693 -83408755.55014 4818 4693 -8.344650268555e-07 4819 4693 -31882558.21681 4821 4693 24305555.56353 4822 4693 -39081501.55875 4694 4694 1165825984.246 4695 4694 -1.382827758789e-05 4696 4694 1.788139343262e-07 4697 4694 104791324.3853 4707 4694 -1.20997428894e-05 4708 4694 -4.768371582031e-07 4709 4694 -212506.0825927 4710 4694 -3.278255462646e-06 4711 4694 -2.086162567139e-07 4712 4694 -46719419.49861 4791 4694 86719444.4302 4792 4694 3.427267074585e-07 4794 4694 21679861.11823 4795 4694 17343750.0057 4803 4694 2.598762512207e-05 4804 4694 5.960464477539e-08 4806 4694 6.973743438721e-06 4807 4694 69374999.9886 4818 4694 -86719444.43019 4819 4694 -2.682209014893e-07 4821 4694 -21679861.11823 4822 4694 17343750.00569 4695 4695 1483949894.094 4696 4695 7.867813110352e-06 4697 4695 -5.507469177246e-05 4698 4695 184322301.8864 4699 4695 -2.622604370117e-06 4700 4695 -1.358985900879e-05 4707 4695 -148365426.1266 4708 4695 -97222222.20624 4709 4695 -3.039836883545e-06 4710 4695 -406796532.3944 4711 4695 -2.801418304443e-06 4712 4695 -1.233816146851e-05 4713 4695 -148365426.1266 4714 4695 97222222.20624 4715 4695 -3.308057785034e-06 4791 4695 -46373434.23613 4792 4695 24305555.56354 4794 4695 -138827443.8752 4795 4695 2.682209014893e-07 4797 4695 -46373434.23614 4798 4695 -24305555.56354 4803 4695 8952264.76783 4804 4695 9.298324584961e-06 4806 4695 222474230.8735 4807 4695 3.933906555176e-06 4809 4695 8952264.76783 4810 4695 -1.302361488342e-05 4818 4695 -46373434.23611 4819 4695 -24305555.56353 4821 4695 -138827443.8751 4822 4695 -5.066394805908e-07 4824 4695 -46373434.23611 4825 4695 24305555.56353 4696 4696 1250608048.648 4697 4696 -1.192092895508e-06 4698 4696 -3.159046173096e-06 4699 4696 -185121779.2034 4700 4696 8.046627044678e-07 4707 4696 -97222222.20624 4708 4696 -119197695.4315 4709 4696 2.831220626831e-07 4710 4696 -3.09944152832e-06 4711 4696 20983010.02827 4712 4696 -4.768371582031e-07 4713 4696 97222222.20624 4714 4696 -119197695.4315 4715 4696 -7.450580596924e-08 4791 4696 24305555.56354 4792 4696 -39081501.55876 4794 4696 -2.294778823853e-06 4795 4696 -31882558.21685 4797 4696 -24305555.56354 4798 4696 -39081501.55876 4803 4696 1.069903373718e-05 4804 4696 -83408755.55014 4806 4696 4.410743713379e-06 4807 4696 164138769.4832 4809 4696 -1.156330108643e-05 4810 4696 -83408755.55014 4818 4696 -24305555.56353 4819 4696 -39081501.55875 4821 4696 -8.344650268555e-07 4822 4696 -31882558.21681 4824 4696 24305555.56353 4825 4696 -39081501.55875 4697 4697 1165825984.246 4698 4697 -1.382827758789e-05 4699 4697 1.788139343262e-07 4700 4697 104791324.3853 4707 4697 -2.890825271606e-06 4708 4697 3.8743019104e-07 4709 4697 -46719419.49861 4710 4697 -1.20997428894e-05 4711 4697 -4.768371582031e-07 4712 4697 -212506.0825927 4713 4697 -3.278255462646e-06 4714 4697 -2.086162567139e-07 4715 4697 -46719419.49861 4791 4697 21679861.11823 4792 4697 -17343750.0057 4794 4697 86719444.4302 4795 4697 3.427267074585e-07 4797 4697 21679861.11823 4798 4697 17343750.0057 4803 4697 6.169080734253e-06 4804 4697 -69374999.9886 4806 4697 2.598762512207e-05 4807 4697 5.960464477539e-08 4809 4697 6.973743438721e-06 4810 4697 69374999.9886 4818 4697 -21679861.11823 4819 4697 -17343750.0057 4821 4697 -86719444.43019 4822 4697 -2.682209014893e-07 4824 4697 -21679861.11823 4825 4697 17343750.00569 4698 4698 1483949894.094 4699 4698 7.867813110352e-06 4700 4698 -5.507469177246e-05 4701 4698 184322301.8864 4702 4698 -2.622604370117e-06 4703 4698 -1.358985900879e-05 4710 4698 -148365426.1266 4711 4698 -97222222.20624 4712 4698 -3.039836883545e-06 4713 4698 -406796532.3944 4714 4698 -2.801418304443e-06 4715 4698 -1.233816146851e-05 4716 4698 -148365426.1266 4717 4698 97222222.20624 4718 4698 -3.308057785034e-06 4794 4698 -46373434.23613 4795 4698 24305555.56354 4797 4698 -138827443.8752 4798 4698 2.682209014893e-07 4800 4698 -46373434.23614 4801 4698 -24305555.56354 4806 4698 8952264.76783 4807 4698 9.298324584961e-06 4809 4698 222474230.8735 4810 4698 3.933906555176e-06 4812 4698 8952264.76783 4813 4698 -1.302361488342e-05 4821 4698 -46373434.23611 4822 4698 -24305555.56353 4824 4698 -138827443.8751 4825 4698 -5.066394805908e-07 4827 4698 -46373434.23611 4828 4698 24305555.56353 4699 4699 1250608048.648 4700 4699 -1.192092895508e-06 4701 4699 -3.159046173096e-06 4702 4699 -185121779.2034 4703 4699 8.046627044678e-07 4710 4699 -97222222.20624 4711 4699 -119197695.4315 4712 4699 2.831220626831e-07 4713 4699 -3.09944152832e-06 4714 4699 20983010.02827 4715 4699 -4.768371582031e-07 4716 4699 97222222.20624 4717 4699 -119197695.4315 4718 4699 -7.450580596924e-08 4794 4699 24305555.56354 4795 4699 -39081501.55876 4797 4699 -2.294778823853e-06 4798 4699 -31882558.21685 4800 4699 -24305555.56354 4801 4699 -39081501.55876 4806 4699 1.069903373718e-05 4807 4699 -83408755.55014 4809 4699 4.410743713379e-06 4810 4699 164138769.4832 4812 4699 -1.156330108643e-05 4813 4699 -83408755.55014 4821 4699 -24305555.56353 4822 4699 -39081501.55875 4824 4699 -8.344650268555e-07 4825 4699 -31882558.21681 4827 4699 24305555.56353 4828 4699 -39081501.55875 4700 4700 1165825984.246 4701 4700 -1.382827758789e-05 4702 4700 1.788139343262e-07 4703 4700 104791324.3853 4710 4700 -2.890825271606e-06 4711 4700 3.8743019104e-07 4712 4700 -46719419.49861 4713 4700 -1.20997428894e-05 4714 4700 -4.768371582031e-07 4715 4700 -212506.0825927 4716 4700 -3.278255462646e-06 4717 4700 -2.086162567139e-07 4718 4700 -46719419.49861 4794 4700 21679861.11823 4795 4700 -17343750.0057 4797 4700 86719444.4302 4798 4700 3.427267074585e-07 4800 4700 21679861.11823 4801 4700 17343750.0057 4806 4700 6.169080734253e-06 4807 4700 -69374999.9886 4809 4700 2.598762512207e-05 4810 4700 5.960464477539e-08 4812 4700 6.973743438721e-06 4813 4700 69374999.9886 4821 4700 -21679861.11823 4822 4700 -17343750.0057 4824 4700 -86719444.43019 4825 4700 -2.682209014893e-07 4827 4700 -21679861.11823 4828 4700 17343750.00569 4701 4701 1632315315.374 4702 4701 97222220.26178 4703 4701 -4.172325134277e-05 4704 4701 17392720.97666 4705 4701 -97222221.42845 4706 4701 -2.145767211914e-06 4713 4701 -148365426.1266 4714 4701 -97222222.20624 4715 4701 -3.039836883545e-06 4716 4701 -406796532.3944 4717 4701 -2.801418304443e-06 4718 4701 -1.233816146851e-05 4719 4701 -148365426.1266 4720 4701 97222222.20624 4721 4701 -3.308057785034e-06 4797 4701 -46373434.23613 4798 4701 24305555.56354 4800 4701 -175918799.4897 4801 4701 -24305555.27186 4809 4701 8952264.76783 4810 4701 9.298324584961e-06 4812 4701 268847663.9159 4813 4701 24305555.07742 4815 4701 -28139091.37671 4816 4701 -24305555.36909 4824 4701 -46373434.23611 4825 4701 -24305555.56353 4827 4701 -138827443.8751 4828 4701 -5.066394805908e-07 4830 4701 -46373434.23611 4831 4701 24305555.56353 4702 4702 1369805740.108 4703 4702 -2.145767211914e-06 4704 4702 -97222221.03956 4705 4702 -322883627.8625 4706 4702 4.798173904419e-06 4713 4702 -97222222.20624 4714 4702 -119197695.4315 4715 4702 2.831220626831e-07 4716 4702 -3.09944152832e-06 4717 4702 20983010.02827 4718 4702 -4.768371582031e-07 4719 4702 97222222.20624 4720 4702 -119197695.4315 4721 4702 -7.450580596924e-08 4797 4702 24305555.56354 4798 4702 -39081501.55876 4800 4702 -24305555.36908 4801 4702 -61681981.7616 4809 4702 1.069903373718e-05 4810 4702 -83408755.55014 4812 4702 24305555.07742 4813 4702 203220270.0671 4815 4702 -24305555.27186 4816 4702 -113208178.6284 4824 4702 -24305555.56353 4825 4702 -39081501.55875 4827 4702 -8.344650268555e-07 4828 4702 -31882558.21681 4830 4702 24305555.56353 4831 4702 -39081501.55875 4703 4703 1212545401.289 4704 4703 -1.788139343262e-06 4705 4703 3.75509262085e-06 4706 4703 8567490.576108 4713 4703 -2.890825271606e-06 4714 4703 3.8743019104e-07 4715 4703 -46719419.49861 4716 4703 -1.20997428894e-05 4717 4703 -4.768371582031e-07 4718 4703 -212506.0825927 4719 4703 -3.278255462646e-06 4720 4703 -2.086162567139e-07 4721 4703 -46719419.49861 4797 4703 21679861.11823 4798 4703 -17343750.0057 4800 4703 86719444.24762 4801 4703 17343749.9078 4809 4703 6.169080734253e-06 4810 4703 -69374999.9886 4812 4703 -0.03649973869324 4813 4703 -0.02921465039253 4815 4703 21679860.55685 4816 4703 69374999.49133 4824 4703 -21679861.11823 4825 4703 -17343750.0057 4827 4703 -86719444.43019 4828 4703 -2.682209014893e-07 4830 4703 -21679861.11823 4831 4703 17343750.00569 4704 4704 927468678.158 4705 4704 97222222.20623 4706 4704 -8.106231689453e-06 4716 4704 -148365426.1266 4717 4704 -97222222.20624 4718 4704 -3.039836883545e-06 4719 4704 -573726109.9308 4720 4704 -97222221.42845 4721 4704 8.940696716309e-07 4722 4704 18564155.00999 4723 4704 77777776.9872 4724 4704 2.861022949219e-06 4800 4704 -9282077.50499 4801 4704 29166666.38457 4812 4704 -28139091.37673 4813 4704 -24305555.27187 4815 4704 139046393.5639 4816 4704 24305555.56354 4827 4704 -46373434.23611 4828 4704 -24305555.56353 4830 4704 -175918799.4896 4831 4704 -24305555.36909 4833 4704 -9282077.505002 4834 4704 19444444.25638 4705 4705 781630025.6149 4706 4705 8.412431954121e-06 4716 4705 -97222222.20624 4717 4705 -119197695.4315 4718 4705 2.831220626831e-07 4719 4705 -97222221.03956 4720 4705 -116778839.2437 4721 4705 5.602836608887e-06 4722 4705 116666665.4808 4723 4705 18564155.00998 4724 4705 5.960464477539e-07 4800 4705 19444444.25638 4801 4705 -9282077.505 4812 4705 -24305555.36909 4813 4705 -113208178.6284 4815 4705 24305555.56354 4816 4705 102586730.4102 4827 4705 -24305555.56353 4828 4705 -39081501.55875 4830 4705 -24305555.27187 4831 4705 -61681981.76159 4833 4705 29166666.38457 4834 4705 -9282077.504995 4706 4706 728641235.3813 4716 4706 -2.890825271606e-06 4717 4706 3.8743019104e-07 4718 4706 -46719419.49861 4719 4706 4.172325134277e-07 4720 4706 4.887580871582e-06 4721 4706 -96436338.25295 4722 4706 2.503395080566e-06 4723 4706 1.251697540283e-06 4724 4706 49504413.35998 4800 4706 17343888.52033 4801 4706 -20812499.90895 4812 4706 -21679860.74398 4813 4706 -69374999.6084 4815 4706 -17343888.84952 4816 4706 -13874999.85144 4827 4706 -21679861.11823 4828 4706 -17343750.0057 4830 4706 -86719444.24762 4831 4706 -17343749.94044 4833 4706 -26015832.7805 4834 4706 13874999.9393 4707 4707 1483949894.094 4708 4707 7.867813110352e-06 4709 4707 -5.507469177246e-05 4710 4707 184322301.8864 4711 4707 -2.622604370117e-06 4712 4707 -1.358985900879e-05 4725 4707 -406796532.3944 4726 4707 -2.801418304443e-06 4727 4707 -1.233816146851e-05 4728 4707 -148365426.1266 4729 4707 97222222.20624 4730 4707 -3.308057785034e-06 4803 4707 -138827443.8752 4804 4707 2.682209014893e-07 4806 4707 -46373434.23614 4807 4707 -24305555.56354 4818 4707 222474230.8735 4819 4707 3.933906555176e-06 4821 4707 8952264.76783 4822 4707 -1.302361488342e-05 4836 4707 -138827443.8751 4837 4707 -5.066394805908e-07 4839 4707 -46373434.23611 4840 4707 24305555.56353 4708 4708 1250608048.648 4709 4708 -1.192092895508e-06 4710 4708 -3.159046173096e-06 4711 4708 -185121779.2034 4712 4708 8.046627044678e-07 4725 4708 -3.09944152832e-06 4726 4708 20983010.02827 4727 4708 -4.768371582031e-07 4728 4708 97222222.20624 4729 4708 -119197695.4315 4730 4708 -7.450580596924e-08 4803 4708 -2.294778823853e-06 4804 4708 -31882558.21685 4806 4708 -24305555.56354 4807 4708 -39081501.55876 4818 4708 4.410743713379e-06 4819 4708 164138769.4832 4821 4708 -1.156330108643e-05 4822 4708 -83408755.55014 4836 4708 -8.344650268555e-07 4837 4708 -31882558.21681 4839 4708 24305555.56353 4840 4708 -39081501.55875 4709 4709 1165825984.246 4710 4709 -1.382827758789e-05 4711 4709 1.788139343262e-07 4712 4709 104791324.3853 4725 4709 -1.20997428894e-05 4726 4709 -4.768371582031e-07 4727 4709 -212506.0825927 4728 4709 -3.278255462646e-06 4729 4709 -2.086162567139e-07 4730 4709 -46719419.49861 4803 4709 86719444.4302 4804 4709 3.427267074585e-07 4806 4709 21679861.11823 4807 4709 17343750.0057 4818 4709 2.598762512207e-05 4819 4709 5.960464477539e-08 4821 4709 6.973743438721e-06 4822 4709 69374999.9886 4836 4709 -86719444.43019 4837 4709 -2.682209014893e-07 4839 4709 -21679861.11823 4840 4709 17343750.00569 4710 4710 1483949894.094 4711 4710 7.867813110352e-06 4712 4710 -5.507469177246e-05 4713 4710 184322301.8864 4714 4710 -2.622604370117e-06 4715 4710 -1.358985900879e-05 4725 4710 -148365426.1266 4726 4710 -97222222.20624 4727 4710 -3.039836883545e-06 4728 4710 -406796532.3944 4729 4710 -2.801418304443e-06 4730 4710 -1.233816146851e-05 4731 4710 -148365426.1266 4732 4710 97222222.20624 4733 4710 -3.308057785034e-06 4803 4710 -46373434.23613 4804 4710 24305555.56354 4806 4710 -138827443.8752 4807 4710 2.682209014893e-07 4809 4710 -46373434.23614 4810 4710 -24305555.56354 4818 4710 8952264.76783 4819 4710 9.298324584961e-06 4821 4710 222474230.8735 4822 4710 3.933906555176e-06 4824 4710 8952264.76783 4825 4710 -1.302361488342e-05 4836 4710 -46373434.23611 4837 4710 -24305555.56353 4839 4710 -138827443.8751 4840 4710 -5.066394805908e-07 4842 4710 -46373434.23611 4843 4710 24305555.56353 4711 4711 1250608048.648 4712 4711 -1.192092895508e-06 4713 4711 -3.159046173096e-06 4714 4711 -185121779.2034 4715 4711 8.046627044678e-07 4725 4711 -97222222.20624 4726 4711 -119197695.4315 4727 4711 2.831220626831e-07 4728 4711 -3.09944152832e-06 4729 4711 20983010.02827 4730 4711 -4.768371582031e-07 4731 4711 97222222.20624 4732 4711 -119197695.4315 4733 4711 -7.450580596924e-08 4803 4711 24305555.56354 4804 4711 -39081501.55876 4806 4711 -2.294778823853e-06 4807 4711 -31882558.21685 4809 4711 -24305555.56354 4810 4711 -39081501.55876 4818 4711 1.069903373718e-05 4819 4711 -83408755.55014 4821 4711 4.410743713379e-06 4822 4711 164138769.4832 4824 4711 -1.156330108643e-05 4825 4711 -83408755.55014 4836 4711 -24305555.56353 4837 4711 -39081501.55875 4839 4711 -8.344650268555e-07 4840 4711 -31882558.21681 4842 4711 24305555.56353 4843 4711 -39081501.55875 4712 4712 1165825984.246 4713 4712 -1.382827758789e-05 4714 4712 1.788139343262e-07 4715 4712 104791324.3853 4725 4712 -2.890825271606e-06 4726 4712 3.8743019104e-07 4727 4712 -46719419.49861 4728 4712 -1.20997428894e-05 4729 4712 -4.768371582031e-07 4730 4712 -212506.0825927 4731 4712 -3.278255462646e-06 4732 4712 -2.086162567139e-07 4733 4712 -46719419.49861 4803 4712 21679861.11823 4804 4712 -17343750.0057 4806 4712 86719444.4302 4807 4712 3.427267074585e-07 4809 4712 21679861.11823 4810 4712 17343750.0057 4818 4712 6.169080734253e-06 4819 4712 -69374999.9886 4821 4712 2.598762512207e-05 4822 4712 5.960464477539e-08 4824 4712 6.973743438721e-06 4825 4712 69374999.9886 4836 4712 -21679861.11823 4837 4712 -17343750.0057 4839 4712 -86719444.43019 4840 4712 -2.682209014893e-07 4842 4712 -21679861.11823 4843 4712 17343750.00569 4713 4713 1483949894.094 4714 4713 7.867813110352e-06 4715 4713 -5.507469177246e-05 4716 4713 184322301.8864 4717 4713 -2.622604370117e-06 4718 4713 -1.358985900879e-05 4728 4713 -148365426.1266 4729 4713 -97222222.20624 4730 4713 -3.039836883545e-06 4731 4713 -406796532.3944 4732 4713 -2.801418304443e-06 4733 4713 -1.233816146851e-05 4734 4713 -148365426.1266 4735 4713 97222222.20624 4736 4713 -3.308057785034e-06 4806 4713 -46373434.23613 4807 4713 24305555.56354 4809 4713 -138827443.8752 4810 4713 2.682209014893e-07 4812 4713 -46373434.23614 4813 4713 -24305555.56354 4821 4713 8952264.76783 4822 4713 9.298324584961e-06 4824 4713 222474230.8735 4825 4713 3.933906555176e-06 4827 4713 8952264.76783 4828 4713 -1.302361488342e-05 4839 4713 -46373434.23611 4840 4713 -24305555.56353 4842 4713 -138827443.8751 4843 4713 -5.066394805908e-07 4845 4713 -46373434.23611 4846 4713 24305555.56353 4714 4714 1250608048.648 4715 4714 -1.192092895508e-06 4716 4714 -3.159046173096e-06 4717 4714 -185121779.2034 4718 4714 8.046627044678e-07 4728 4714 -97222222.20624 4729 4714 -119197695.4315 4730 4714 2.831220626831e-07 4731 4714 -3.09944152832e-06 4732 4714 20983010.02827 4733 4714 -4.768371582031e-07 4734 4714 97222222.20624 4735 4714 -119197695.4315 4736 4714 -7.450580596924e-08 4806 4714 24305555.56354 4807 4714 -39081501.55876 4809 4714 -2.294778823853e-06 4810 4714 -31882558.21685 4812 4714 -24305555.56354 4813 4714 -39081501.55876 4821 4714 1.069903373718e-05 4822 4714 -83408755.55014 4824 4714 4.410743713379e-06 4825 4714 164138769.4832 4827 4714 -1.156330108643e-05 4828 4714 -83408755.55014 4839 4714 -24305555.56353 4840 4714 -39081501.55875 4842 4714 -8.344650268555e-07 4843 4714 -31882558.21681 4845 4714 24305555.56353 4846 4714 -39081501.55875 4715 4715 1165825984.246 4716 4715 -1.382827758789e-05 4717 4715 1.788139343262e-07 4718 4715 104791324.3853 4728 4715 -2.890825271606e-06 4729 4715 3.8743019104e-07 4730 4715 -46719419.49861 4731 4715 -1.20997428894e-05 4732 4715 -4.768371582031e-07 4733 4715 -212506.0825927 4734 4715 -3.278255462646e-06 4735 4715 -2.086162567139e-07 4736 4715 -46719419.49861 4806 4715 21679861.11823 4807 4715 -17343750.0057 4809 4715 86719444.4302 4810 4715 3.427267074585e-07 4812 4715 21679861.11823 4813 4715 17343750.0057 4821 4715 6.169080734253e-06 4822 4715 -69374999.9886 4824 4715 2.598762512207e-05 4825 4715 5.960464477539e-08 4827 4715 6.973743438721e-06 4828 4715 69374999.9886 4839 4715 -21679861.11823 4840 4715 -17343750.0057 4842 4715 -86719444.43019 4843 4715 -2.682209014893e-07 4845 4715 -21679861.11823 4846 4715 17343750.00569 4716 4716 1483949894.094 4717 4716 7.867813110352e-06 4718 4716 -5.507469177246e-05 4719 4716 184322301.8864 4720 4716 -2.622604370117e-06 4721 4716 -1.358985900879e-05 4731 4716 -148365426.1266 4732 4716 -97222222.20624 4733 4716 -3.039836883545e-06 4734 4716 -406796532.3944 4735 4716 -2.801418304443e-06 4736 4716 -1.233816146851e-05 4737 4716 -148365426.1266 4738 4716 97222222.20624 4739 4716 -3.308057785034e-06 4809 4716 -46373434.23613 4810 4716 24305555.56354 4812 4716 -138827443.8752 4813 4716 2.682209014893e-07 4815 4716 -46373434.23614 4816 4716 -24305555.56354 4824 4716 8952264.76783 4825 4716 9.298324584961e-06 4827 4716 222474230.8735 4828 4716 3.933906555176e-06 4830 4716 8952264.76783 4831 4716 -1.302361488342e-05 4842 4716 -46373434.23611 4843 4716 -24305555.56353 4845 4716 -138827443.8751 4846 4716 -5.066394805908e-07 4848 4716 -46373434.23611 4849 4716 24305555.56353 4717 4717 1250608048.648 4718 4717 -1.192092895508e-06 4719 4717 -3.159046173096e-06 4720 4717 -185121779.2034 4721 4717 8.046627044678e-07 4731 4717 -97222222.20624 4732 4717 -119197695.4315 4733 4717 2.831220626831e-07 4734 4717 -3.09944152832e-06 4735 4717 20983010.02827 4736 4717 -4.768371582031e-07 4737 4717 97222222.20624 4738 4717 -119197695.4315 4739 4717 -7.450580596924e-08 4809 4717 24305555.56354 4810 4717 -39081501.55876 4812 4717 -2.294778823853e-06 4813 4717 -31882558.21685 4815 4717 -24305555.56354 4816 4717 -39081501.55876 4824 4717 1.069903373718e-05 4825 4717 -83408755.55014 4827 4717 4.410743713379e-06 4828 4717 164138769.4832 4830 4717 -1.156330108643e-05 4831 4717 -83408755.55014 4842 4717 -24305555.56353 4843 4717 -39081501.55875 4845 4717 -8.344650268555e-07 4846 4717 -31882558.21681 4848 4717 24305555.56353 4849 4717 -39081501.55875 4718 4718 1165825984.246 4719 4718 -1.382827758789e-05 4720 4718 1.788139343262e-07 4721 4718 104791324.3853 4731 4718 -2.890825271606e-06 4732 4718 3.8743019104e-07 4733 4718 -46719419.49861 4734 4718 -1.20997428894e-05 4735 4718 -4.768371582031e-07 4736 4718 -212506.0825927 4737 4718 -3.278255462646e-06 4738 4718 -2.086162567139e-07 4739 4718 -46719419.49861 4809 4718 21679861.11823 4810 4718 -17343750.0057 4812 4718 86719444.4302 4813 4718 3.427267074585e-07 4815 4718 21679861.11823 4816 4718 17343750.0057 4824 4718 6.169080734253e-06 4825 4718 -69374999.9886 4827 4718 2.598762512207e-05 4828 4718 5.960464477539e-08 4830 4718 6.973743438721e-06 4831 4718 69374999.9886 4842 4718 -21679861.11823 4843 4718 -17343750.0057 4845 4718 -86719444.43019 4846 4718 -2.682209014893e-07 4848 4718 -21679861.11823 4849 4718 17343750.00569 4719 4719 1632315315.374 4720 4719 97222220.26178 4721 4719 -4.172325134277e-05 4722 4719 17392720.97666 4723 4719 -97222221.42845 4724 4719 -2.145767211914e-06 4734 4719 -148365426.1266 4735 4719 -97222222.20624 4736 4719 -3.039836883545e-06 4737 4719 -406796532.3944 4738 4719 -2.801418304443e-06 4739 4719 -1.233816146851e-05 4740 4719 -148365426.1266 4741 4719 97222222.20624 4742 4719 -3.308057785034e-06 4812 4719 -46373434.23613 4813 4719 24305555.56354 4815 4719 -175918799.4897 4816 4719 -24305555.27186 4827 4719 8952264.76783 4828 4719 9.298324584961e-06 4830 4719 268847663.9159 4831 4719 24305555.07742 4833 4719 -28139091.37671 4834 4719 -24305555.36909 4845 4719 -46373434.23611 4846 4719 -24305555.56353 4848 4719 -138827443.8751 4849 4719 -5.066394805908e-07 4851 4719 -46373434.23611 4852 4719 24305555.56353 4720 4720 1369805740.108 4721 4720 -2.145767211914e-06 4722 4720 -97222221.03956 4723 4720 -322883627.8625 4724 4720 4.798173904419e-06 4734 4720 -97222222.20624 4735 4720 -119197695.4315 4736 4720 2.831220626831e-07 4737 4720 -3.09944152832e-06 4738 4720 20983010.02827 4739 4720 -4.768371582031e-07 4740 4720 97222222.20624 4741 4720 -119197695.4315 4742 4720 -7.450580596924e-08 4812 4720 24305555.56354 4813 4720 -39081501.55876 4815 4720 -24305555.36908 4816 4720 -61681981.7616 4827 4720 1.069903373718e-05 4828 4720 -83408755.55014 4830 4720 24305555.07742 4831 4720 203220270.0671 4833 4720 -24305555.27186 4834 4720 -113208178.6284 4845 4720 -24305555.56353 4846 4720 -39081501.55875 4848 4720 -8.344650268555e-07 4849 4720 -31882558.21681 4851 4720 24305555.56353 4852 4720 -39081501.55875 4721 4721 1212545401.289 4722 4721 -1.788139343262e-06 4723 4721 3.75509262085e-06 4724 4721 8567490.576108 4734 4721 -2.890825271606e-06 4735 4721 3.8743019104e-07 4736 4721 -46719419.49861 4737 4721 -1.20997428894e-05 4738 4721 -4.768371582031e-07 4739 4721 -212506.0825927 4740 4721 -3.278255462646e-06 4741 4721 -2.086162567139e-07 4742 4721 -46719419.49861 4812 4721 21679861.11823 4813 4721 -17343750.0057 4815 4721 86719444.24762 4816 4721 17343749.9078 4827 4721 6.169080734253e-06 4828 4721 -69374999.9886 4830 4721 -0.03649973869324 4831 4721 -0.02921465039253 4833 4721 21679860.55685 4834 4721 69374999.49133 4845 4721 -21679861.11823 4846 4721 -17343750.0057 4848 4721 -86719444.43019 4849 4721 -2.682209014893e-07 4851 4721 -21679861.11823 4852 4721 17343750.00569 4722 4722 944226635.8558 4723 4722 104813146.3867 4724 4722 -5.006790161133e-06 4737 4722 -148365426.1266 4738 4722 -97222222.20624 4739 4722 -3.039836883545e-06 4740 4722 -591818040.3848 4741 4722 -104813145.6089 4742 4722 -1.507997512817e-05 4743 4722 22795227.75344 4744 4722 77777776.98725 4745 4722 3.218650817871e-06 4815 4722 -9282077.50499 4816 4722 29166666.38457 4830 4722 -28139091.37673 4831 4722 -24305555.27187 4833 4722 142149470.4917 4834 4722 26203286.60958 4848 4722 -46373434.23611 4849 4722 -24305555.56353 4851 4722 -180984988.3575 4852 4722 -26203286.41514 4854 4722 -8767515.55854 4855 4722 19444444.25639 4723 4723 789133337.2837 4724 4723 2.995133399963e-06 4737 4723 -97222222.20624 4738 4723 -119197695.4315 4739 4723 2.831220626831e-07 4740 4723 -104813145.2201 4741 4723 -131460786.597 4742 4723 -1.668930053711e-06 4743 4723 116666665.4809 4744 4723 28639890.68178 4745 4723 1.54972076416e-06 4815 4723 19444444.25638 4816 4723 -9282077.505 4830 4723 -24305555.36909 4831 4723 -113208178.6284 4833 4723 26203286.60958 4834 4723 103376145.8296 4848 4723 -24305555.56353 4849 4723 -39081501.55875 4851 4723 -26203286.31793 4852 4723 -65895674.85387 4854 4723 29166666.38459 4855 4723 -7306349.825735 4724 4724 738330627.0228 4737 4724 -2.890825271606e-06 4738 4724 3.8743019104e-07 4739 4724 -46719419.49861 4740 4724 -1.716613769531e-05 4741 4724 -1.013278961182e-06 4742 4724 -103838327.6491 4743 4724 5.245208740234e-06 4744 4724 1.132488250732e-06 4745 4724 54942611.08085 4815 4724 17343888.52033 4816 4724 -20812499.90895 4830 4724 -21679860.74398 4831 4724 -69374999.6084 4833 4724 -17682222.18137 4834 4724 -14145833.18359 4848 4724 -21679861.11823 4849 4724 -17343750.0057 4851 4724 -88411110.90689 4852 4724 -18697916.60118 4854 4724 -27030832.75893 4855 4724 13062499.95656 4725 4725 1483949894.094 4726 4725 7.867813110352e-06 4727 4725 -5.507469177246e-05 4728 4725 184322301.8864 4729 4725 -2.622604370117e-06 4730 4725 -1.358985900879e-05 4746 4725 -406796532.3944 4747 4725 -2.801418304443e-06 4748 4725 -1.233816146851e-05 4749 4725 -148365426.1266 4750 4725 97222222.20624 4751 4725 -3.308057785034e-06 4818 4725 -138827443.8752 4819 4725 2.682209014893e-07 4821 4725 -46373434.23614 4822 4725 -24305555.56354 4836 4725 222474230.8735 4837 4725 3.933906555176e-06 4839 4725 8952264.76783 4840 4725 -1.302361488342e-05 4857 4725 -138827443.8751 4858 4725 -5.066394805908e-07 4860 4725 -46373434.23611 4861 4725 24305555.56353 4726 4726 1250608048.648 4727 4726 -1.192092895508e-06 4728 4726 -3.159046173096e-06 4729 4726 -185121779.2034 4730 4726 8.046627044678e-07 4746 4726 -3.09944152832e-06 4747 4726 20983010.02827 4748 4726 -4.768371582031e-07 4749 4726 97222222.20624 4750 4726 -119197695.4315 4751 4726 -7.450580596924e-08 4818 4726 -2.294778823853e-06 4819 4726 -31882558.21685 4821 4726 -24305555.56354 4822 4726 -39081501.55876 4836 4726 4.410743713379e-06 4837 4726 164138769.4832 4839 4726 -1.156330108643e-05 4840 4726 -83408755.55014 4857 4726 -8.344650268555e-07 4858 4726 -31882558.21681 4860 4726 24305555.56353 4861 4726 -39081501.55875 4727 4727 1165825984.246 4728 4727 -1.382827758789e-05 4729 4727 1.788139343262e-07 4730 4727 104791324.3853 4746 4727 -1.20997428894e-05 4747 4727 -4.768371582031e-07 4748 4727 -212506.0825927 4749 4727 -3.278255462646e-06 4750 4727 -2.086162567139e-07 4751 4727 -46719419.49861 4818 4727 86719444.4302 4819 4727 3.427267074585e-07 4821 4727 21679861.11823 4822 4727 17343750.0057 4836 4727 2.598762512207e-05 4837 4727 5.960464477539e-08 4839 4727 6.973743438721e-06 4840 4727 69374999.9886 4857 4727 -86719444.43019 4858 4727 -2.682209014893e-07 4860 4727 -21679861.11823 4861 4727 17343750.00569 4728 4728 1483949894.094 4729 4728 7.867813110352e-06 4730 4728 -5.507469177246e-05 4731 4728 184322301.8864 4732 4728 -2.622604370117e-06 4733 4728 -1.358985900879e-05 4746 4728 -148365426.1266 4747 4728 -97222222.20624 4748 4728 -3.039836883545e-06 4749 4728 -406796532.3944 4750 4728 -2.801418304443e-06 4751 4728 -1.233816146851e-05 4752 4728 -148365426.1266 4753 4728 97222222.20624 4754 4728 -3.308057785034e-06 4818 4728 -46373434.23613 4819 4728 24305555.56354 4821 4728 -138827443.8752 4822 4728 2.682209014893e-07 4824 4728 -46373434.23614 4825 4728 -24305555.56354 4836 4728 8952264.76783 4837 4728 9.298324584961e-06 4839 4728 222474230.8735 4840 4728 3.933906555176e-06 4842 4728 8952264.76783 4843 4728 -1.302361488342e-05 4857 4728 -46373434.23611 4858 4728 -24305555.56353 4860 4728 -138827443.8751 4861 4728 -5.066394805908e-07 4863 4728 -46373434.23611 4864 4728 24305555.56353 4729 4729 1250608048.648 4730 4729 -1.192092895508e-06 4731 4729 -3.159046173096e-06 4732 4729 -185121779.2034 4733 4729 8.046627044678e-07 4746 4729 -97222222.20624 4747 4729 -119197695.4315 4748 4729 2.831220626831e-07 4749 4729 -3.09944152832e-06 4750 4729 20983010.02827 4751 4729 -4.768371582031e-07 4752 4729 97222222.20624 4753 4729 -119197695.4315 4754 4729 -7.450580596924e-08 4818 4729 24305555.56354 4819 4729 -39081501.55876 4821 4729 -2.294778823853e-06 4822 4729 -31882558.21685 4824 4729 -24305555.56354 4825 4729 -39081501.55876 4836 4729 1.069903373718e-05 4837 4729 -83408755.55014 4839 4729 4.410743713379e-06 4840 4729 164138769.4832 4842 4729 -1.156330108643e-05 4843 4729 -83408755.55014 4857 4729 -24305555.56353 4858 4729 -39081501.55875 4860 4729 -8.344650268555e-07 4861 4729 -31882558.21681 4863 4729 24305555.56353 4864 4729 -39081501.55875 4730 4730 1165825984.246 4731 4730 -1.382827758789e-05 4732 4730 1.788139343262e-07 4733 4730 104791324.3853 4746 4730 -2.890825271606e-06 4747 4730 3.8743019104e-07 4748 4730 -46719419.49861 4749 4730 -1.20997428894e-05 4750 4730 -4.768371582031e-07 4751 4730 -212506.0825927 4752 4730 -3.278255462646e-06 4753 4730 -2.086162567139e-07 4754 4730 -46719419.49861 4818 4730 21679861.11823 4819 4730 -17343750.0057 4821 4730 86719444.4302 4822 4730 3.427267074585e-07 4824 4730 21679861.11823 4825 4730 17343750.0057 4836 4730 6.169080734253e-06 4837 4730 -69374999.9886 4839 4730 2.598762512207e-05 4840 4730 5.960464477539e-08 4842 4730 6.973743438721e-06 4843 4730 69374999.9886 4857 4730 -21679861.11823 4858 4730 -17343750.0057 4860 4730 -86719444.43019 4861 4730 -2.682209014893e-07 4863 4730 -21679861.11823 4864 4730 17343750.00569 4731 4731 1483949894.094 4732 4731 7.867813110352e-06 4733 4731 -5.507469177246e-05 4734 4731 184322301.8864 4735 4731 -2.622604370117e-06 4736 4731 -1.358985900879e-05 4749 4731 -148365426.1266 4750 4731 -97222222.20624 4751 4731 -3.039836883545e-06 4752 4731 -406796532.3944 4753 4731 -2.801418304443e-06 4754 4731 -1.233816146851e-05 4755 4731 -148365426.1266 4756 4731 97222222.20624 4757 4731 -3.308057785034e-06 4821 4731 -46373434.23613 4822 4731 24305555.56354 4824 4731 -138827443.8752 4825 4731 2.682209014893e-07 4827 4731 -46373434.23614 4828 4731 -24305555.56354 4839 4731 8952264.76783 4840 4731 9.298324584961e-06 4842 4731 222474230.8735 4843 4731 3.933906555176e-06 4845 4731 8952264.76783 4846 4731 -1.302361488342e-05 4860 4731 -46373434.23611 4861 4731 -24305555.56353 4863 4731 -138827443.8751 4864 4731 -5.066394805908e-07 4866 4731 -46373434.23611 4867 4731 24305555.56353 4732 4732 1250608048.648 4733 4732 -1.192092895508e-06 4734 4732 -3.159046173096e-06 4735 4732 -185121779.2034 4736 4732 8.046627044678e-07 4749 4732 -97222222.20624 4750 4732 -119197695.4315 4751 4732 2.831220626831e-07 4752 4732 -3.09944152832e-06 4753 4732 20983010.02827 4754 4732 -4.768371582031e-07 4755 4732 97222222.20624 4756 4732 -119197695.4315 4757 4732 -7.450580596924e-08 4821 4732 24305555.56354 4822 4732 -39081501.55876 4824 4732 -2.294778823853e-06 4825 4732 -31882558.21685 4827 4732 -24305555.56354 4828 4732 -39081501.55876 4839 4732 1.069903373718e-05 4840 4732 -83408755.55014 4842 4732 4.410743713379e-06 4843 4732 164138769.4832 4845 4732 -1.156330108643e-05 4846 4732 -83408755.55014 4860 4732 -24305555.56353 4861 4732 -39081501.55875 4863 4732 -8.344650268555e-07 4864 4732 -31882558.21681 4866 4732 24305555.56353 4867 4732 -39081501.55875 4733 4733 1165825984.246 4734 4733 -1.382827758789e-05 4735 4733 1.788139343262e-07 4736 4733 104791324.3853 4749 4733 -2.890825271606e-06 4750 4733 3.8743019104e-07 4751 4733 -46719419.49861 4752 4733 -1.20997428894e-05 4753 4733 -4.768371582031e-07 4754 4733 -212506.0825927 4755 4733 -3.278255462646e-06 4756 4733 -2.086162567139e-07 4757 4733 -46719419.49861 4821 4733 21679861.11823 4822 4733 -17343750.0057 4824 4733 86719444.4302 4825 4733 3.427267074585e-07 4827 4733 21679861.11823 4828 4733 17343750.0057 4839 4733 6.169080734253e-06 4840 4733 -69374999.9886 4842 4733 2.598762512207e-05 4843 4733 5.960464477539e-08 4845 4733 6.973743438721e-06 4846 4733 69374999.9886 4860 4733 -21679861.11823 4861 4733 -17343750.0057 4863 4733 -86719444.43019 4864 4733 -2.682209014893e-07 4866 4733 -21679861.11823 4867 4733 17343750.00569 4734 4734 1483949894.094 4735 4734 7.867813110352e-06 4736 4734 -5.507469177246e-05 4737 4734 184322301.8864 4738 4734 -2.622604370117e-06 4739 4734 -1.358985900879e-05 4752 4734 -148365426.1266 4753 4734 -97222222.20624 4754 4734 -3.039836883545e-06 4755 4734 -406796532.3944 4756 4734 -2.801418304443e-06 4757 4734 -1.233816146851e-05 4758 4734 -148365426.1266 4759 4734 97222222.20624 4760 4734 -3.308057785034e-06 4824 4734 -46373434.23613 4825 4734 24305555.56354 4827 4734 -138827443.8752 4828 4734 2.682209014893e-07 4830 4734 -46373434.23614 4831 4734 -24305555.56354 4842 4734 8952264.76783 4843 4734 9.298324584961e-06 4845 4734 222474230.8735 4846 4734 3.933906555176e-06 4848 4734 8952264.76783 4849 4734 -1.302361488342e-05 4863 4734 -46373434.23611 4864 4734 -24305555.56353 4866 4734 -138827443.8751 4867 4734 -5.066394805908e-07 4869 4734 -46373434.23611 4870 4734 24305555.56353 4735 4735 1250608048.648 4736 4735 -1.192092895508e-06 4737 4735 -3.159046173096e-06 4738 4735 -185121779.2034 4739 4735 8.046627044678e-07 4752 4735 -97222222.20624 4753 4735 -119197695.4315 4754 4735 2.831220626831e-07 4755 4735 -3.09944152832e-06 4756 4735 20983010.02827 4757 4735 -4.768371582031e-07 4758 4735 97222222.20624 4759 4735 -119197695.4315 4760 4735 -7.450580596924e-08 4824 4735 24305555.56354 4825 4735 -39081501.55876 4827 4735 -2.294778823853e-06 4828 4735 -31882558.21685 4830 4735 -24305555.56354 4831 4735 -39081501.55876 4842 4735 1.069903373718e-05 4843 4735 -83408755.55014 4845 4735 4.410743713379e-06 4846 4735 164138769.4832 4848 4735 -1.156330108643e-05 4849 4735 -83408755.55014 4863 4735 -24305555.56353 4864 4735 -39081501.55875 4866 4735 -8.344650268555e-07 4867 4735 -31882558.21681 4869 4735 24305555.56353 4870 4735 -39081501.55875 4736 4736 1165825984.246 4737 4736 -1.382827758789e-05 4738 4736 1.788139343262e-07 4739 4736 104791324.3853 4752 4736 -2.890825271606e-06 4753 4736 3.8743019104e-07 4754 4736 -46719419.49861 4755 4736 -1.20997428894e-05 4756 4736 -4.768371582031e-07 4757 4736 -212506.0825927 4758 4736 -3.278255462646e-06 4759 4736 -2.086162567139e-07 4760 4736 -46719419.49861 4824 4736 21679861.11823 4825 4736 -17343750.0057 4827 4736 86719444.4302 4828 4736 3.427267074585e-07 4830 4736 21679861.11823 4831 4736 17343750.0057 4842 4736 6.169080734253e-06 4843 4736 -69374999.9886 4845 4736 2.598762512207e-05 4846 4736 5.960464477539e-08 4848 4736 6.973743438721e-06 4849 4736 69374999.9886 4863 4736 -21679861.11823 4864 4736 -17343750.0057 4866 4736 -86719444.43019 4867 4736 -2.682209014893e-07 4869 4736 -21679861.11823 4870 4736 17343750.00569 4737 4737 1483949894.094 4738 4737 7.867813110352e-06 4739 4737 -5.507469177246e-05 4740 4737 184322301.8864 4741 4737 -2.622604370117e-06 4742 4737 -1.358985900879e-05 4755 4737 -148365426.1266 4756 4737 -97222222.20624 4757 4737 -3.039836883545e-06 4758 4737 -406796532.3944 4759 4737 -2.801418304443e-06 4760 4737 -1.233816146851e-05 4761 4737 -148365426.1266 4762 4737 97222222.20624 4763 4737 -3.308057785034e-06 4827 4737 -46373434.23613 4828 4737 24305555.56354 4830 4737 -138827443.8752 4831 4737 2.682209014893e-07 4833 4737 -46373434.23614 4834 4737 -24305555.56354 4845 4737 8952264.76783 4846 4737 9.298324584961e-06 4848 4737 222474230.8735 4849 4737 3.933906555176e-06 4851 4737 8952264.76783 4852 4737 -1.302361488342e-05 4866 4737 -46373434.23611 4867 4737 -24305555.56353 4869 4737 -138827443.8751 4870 4737 -5.066394805908e-07 4872 4737 -46373434.23611 4873 4737 24305555.56353 4738 4738 1250608048.648 4739 4738 -1.192092895508e-06 4740 4738 -3.159046173096e-06 4741 4738 -185121779.2034 4742 4738 8.046627044678e-07 4755 4738 -97222222.20624 4756 4738 -119197695.4315 4757 4738 2.831220626831e-07 4758 4738 -3.09944152832e-06 4759 4738 20983010.02827 4760 4738 -4.768371582031e-07 4761 4738 97222222.20624 4762 4738 -119197695.4315 4763 4738 -7.450580596924e-08 4827 4738 24305555.56354 4828 4738 -39081501.55876 4830 4738 -2.294778823853e-06 4831 4738 -31882558.21685 4833 4738 -24305555.56354 4834 4738 -39081501.55876 4845 4738 1.069903373718e-05 4846 4738 -83408755.55014 4848 4738 4.410743713379e-06 4849 4738 164138769.4832 4851 4738 -1.156330108643e-05 4852 4738 -83408755.55014 4866 4738 -24305555.56353 4867 4738 -39081501.55875 4869 4738 -8.344650268555e-07 4870 4738 -31882558.21681 4872 4738 24305555.56353 4873 4738 -39081501.55875 4739 4739 1165825984.246 4740 4739 -1.382827758789e-05 4741 4739 1.788139343262e-07 4742 4739 104791324.3853 4755 4739 -2.890825271606e-06 4756 4739 3.8743019104e-07 4757 4739 -46719419.49861 4758 4739 -1.20997428894e-05 4759 4739 -4.768371582031e-07 4760 4739 -212506.0825927 4761 4739 -3.278255462646e-06 4762 4739 -2.086162567139e-07 4763 4739 -46719419.49861 4827 4739 21679861.11823 4828 4739 -17343750.0057 4830 4739 86719444.4302 4831 4739 3.427267074585e-07 4833 4739 21679861.11823 4834 4739 17343750.0057 4845 4739 6.169080734253e-06 4846 4739 -69374999.9886 4848 4739 2.598762512207e-05 4849 4739 5.960464477539e-08 4851 4739 6.973743438721e-06 4852 4739 69374999.9886 4866 4739 -21679861.11823 4867 4739 -17343750.0057 4869 4739 -86719444.43019 4870 4739 -2.682209014893e-07 4872 4739 -21679861.11823 4873 4739 17343750.00569 4740 4740 1661147708.835 4741 4740 104975994.3213 4742 4740 -2.908706665039e-05 4743 4740 28973926.47986 4744 4740 -93442034.30678 4745 4740 -4.887580871582e-06 4758 4740 -148365426.1266 4759 4740 -97222222.20624 4760 4740 -3.039836883545e-06 4761 4740 -414750020.4149 4762 4740 -3811573.076195 4763 4740 -8.344650268555e-06 4764 4740 -158390003.0581 4765 4740 97090758.2817 4766 4740 7.480382919312e-06 4830 4740 -46373434.23613 4831 4740 24305555.56354 4833 4740 -180984988.3576 4834 4740 -26203286.31793 4848 4740 8952264.76783 4849 4740 9.298324584961e-06 4851 4740 274245586.3935 4852 4740 26243998.59327 4854 4740 -25967702.04294 4855 4740 -23360508.5882 4869 4740 -46373434.23611 4870 4740 -24305555.56353 4872 4740 -140996480.1669 4873 4740 -952893.2695205 4875 4740 -48879322.66664 4876 4740 24272689.58238 4741 4741 1378316574.243 4742 4741 2.241134643555e-05 4743 4741 -93442033.91789 4744 4741 -311076053.7848 4745 4741 -1.373887062073e-05 4758 4741 -97222222.20624 4759 4741 -119197695.4315 4760 4741 2.831220626831e-07 4761 4741 -3811573.076215 4762 4741 16672797.27744 4763 4741 6.914138793945e-06 4764 4741 97090758.2817 4765 4741 -116180339.9824 4766 4741 -2.041459083557e-06 4830 4741 24305555.56354 4831 4741 -39081501.55876 4833 4741 -26203286.41514 4834 4741 -65895674.85389 4848 4741 1.069903373718e-05 4849 4741 -83408755.55014 4851 4741 26243998.59327 4852 4741 203537802.7108 4854 4741 -23360508.49098 4855 4741 -110980197.151 4869 4741 -24305555.56353 4870 4741 -39081501.55875 4872 4741 -952893.2695257 4873 4741 -33140775.69073 4875 4741 24272689.58238 4876 4741 -38326906.89252 4742 4742 1227849607.294 4743 4742 -3.337860107422e-06 4744 4742 -1.326203346252e-05 4745 4742 16993676.64498 4758 4742 -2.890825271606e-06 4759 4742 3.8743019104e-07 4760 4742 -46719419.49861 4761 4742 -1.120567321777e-05 4762 4742 7.152557373047e-06 4763 4742 -3046182.050739 4764 4742 7.480382919312e-06 4765 4742 -2.101063728333e-06 4766 4742 -48631203.38775 4830 4742 21679861.11823 4831 4742 -17343750.0057 4833 4742 88411110.90689 4834 4742 18697916.56855 4848 4742 6.169080734253e-06 4849 4742 -69374999.9886 4851 4742 -0.03792053461075 4852 4742 -0.03034740686417 4854 4742 21679166.091 4855 4742 69374999.47419 4869 4742 -21679861.11823 4870 4742 -17343750.0057 4872 4742 -87564583.31903 4873 4742 -677083.3332888 4875 4742 -22525694.45184 4876 4742 16666666.67214 4743 4743 878310888.4811 4744 4743 -2657515.757653 4745 4743 9.536743164063e-07 4761 4743 -146355658.7119 4762 4743 -97205456.75099 4763 4743 -8.374452590942e-06 4764 4743 -422227983.671 4765 4743 -5136049.02384 4766 4743 -9.536743164063e-07 4767 4743 85600144.70805 4768 4743 -16771033.13002 4769 4743 -2.264976501465e-06 4770 4743 -156881939.5358 4771 4743 98545423.09952 4772 4743 9.477138519287e-06 4833 4743 -8767515.558543 4834 4743 29166666.38459 4851 4743 -25967702.04296 4852 4743 -23360508.49098 4854 4743 119740849.7095 4855 4743 -664378.9397391 4872 4743 -45870736.57863 4873 4743 -24301364.19972 4875 4743 -141002035.2672 4876 4743 -1284012.256597 4878 4743 4511607.610506 4879 4743 -4192758.284571 4881 4743 -47751770.62456 4882 4743 24636355.78701 4744 4744 904404472.7406 4745 4744 3.480911254883e-05 4761 4744 -97205456.75099 4762 4744 -119802374.1366 4763 4744 -2.965331077576e-06 4764 4744 -5136049.023842 4765 4744 9983783.088459 4766 4744 1.490116119385e-05 4767 4744 22117855.75249 4768 4744 -98572068.6614 4769 4744 -8.374452590942e-06 4770 4744 98545423.09952 4771 4744 -123363044.4244 4772 4744 -3.159046173096e-06 4833 4744 19444444.25639 4834 4744 -7306349.825738 4851 4744 -23360508.5882 4852 4744 -110980197.151 4854 4744 -664378.9397408 4855 4744 126264245.7776 4872 4744 -24301364.19972 4873 4744 -39232415.43152 4875 4744 -1284012.256598 4876 4744 -32949093.52409 4878 4744 5529463.940846 4879 4744 -41531445.75453 4881 4744 24636355.78701 4882 4744 -39372046.84256 4745 4745 768562010.6434 4761 4745 -8.344650268555e-06 4762 4745 -2.875924110413e-06 4763 4745 -46336936.97175 4764 4745 -5.364418029785e-07 4765 4745 1.47819519043e-05 4766 4745 -12181640.54623 4767 4745 1.430511474609e-06 4768 4745 -8.553266525269e-06 4769 4745 44227455.0915 4770 4745 9.089708328247e-06 4771 4745 -3.17394733429e-06 4772 4745 -52301561.26623 4833 4745 18020555.17262 4834 4745 -20270833.25379 4851 4745 -21679166.28527 4852 4745 -69374999.59699 4854 4745 -17135277.77496 4855 4745 -7208333.18586 4872 4745 -21679166.67379 4873 4745 -17343750.0057 4875 4745 -85676388.87482 4876 4745 -677083.3332884 4878 4745 -4909027.779056 4879 4745 33333333.32785 4881 4745 -21159027.78472 4882 4745 16666666.67214 4746 4746 741974947.0469 4747 4746 5.006790161133e-06 4748 4746 -2.908706665039e-05 4749 4746 92161150.94322 4750 4746 19444444.44125 4751 4746 -7.271766662598e-06 4836 4746 -138827443.8752 4837 4746 2.682209014893e-07 4839 4746 -46373434.23614 4840 4746 -24305555.56354 4857 4746 111237115.4367 4858 4746 -8.344650268555e-07 4860 4746 4476132.383917 4861 4746 4861111.1127 4747 4747 625304024.3239 4748 4747 6.198883056641e-06 4749 4747 -19444444.44125 4750 4747 -92560889.60172 4751 4747 2.32458114624e-06 4836 4747 -2.294778823853e-06 4837 4747 -31882558.21685 4839 4747 -24305555.56354 4840 4747 -39081501.55876 4857 4747 -7.152557373047e-07 4858 4747 82069384.74161 4860 4747 -4861111.112713 4861 4747 -41704377.77507 4748 4748 582912992.1231 4749 4748 -7.271766662598e-06 4750 4748 1.877546310425e-06 4751 4748 52395662.19267 4836 4748 86719444.4302 4837 4748 3.427267074585e-07 4839 4748 21679861.11823 4840 4748 17343750.0057 4857 4748 17343888.88605 4858 4748 -3.576278686523e-06 4860 4748 4335972.22365 4861 4748 34687499.9943 4749 4749 741974947.0469 4750 4749 5.006790161133e-06 4751 4749 -2.908706665039e-05 4752 4749 92161150.94322 4753 4749 19444444.44125 4754 4749 -7.271766662598e-06 4836 4749 -46373434.23613 4837 4749 24305555.56354 4839 4749 -138827443.8752 4840 4749 2.682209014893e-07 4842 4749 -46373434.23614 4843 4749 -24305555.56354 4857 4749 4476132.383914 4858 4749 -4861111.112702 4860 4749 111237115.4367 4861 4749 -8.344650268555e-07 4863 4749 4476132.383917 4864 4749 4861111.1127 4750 4750 625304024.3239 4751 4750 6.198883056641e-06 4752 4750 -19444444.44125 4753 4750 -92560889.60172 4754 4750 2.32458114624e-06 4836 4750 24305555.56354 4837 4750 -39081501.55876 4839 4750 -2.294778823853e-06 4840 4750 -31882558.21685 4842 4750 -24305555.56354 4843 4750 -39081501.55876 4857 4750 4861111.112712 4858 4750 -41704377.77507 4860 4750 -7.152557373047e-07 4861 4750 82069384.74161 4863 4750 -4861111.112713 4864 4750 -41704377.77507 4751 4751 582912992.1231 4752 4751 -7.271766662598e-06 4753 4751 1.877546310425e-06 4754 4751 52395662.19267 4836 4751 21679861.11823 4837 4751 -17343750.0057 4839 4751 86719444.4302 4840 4751 3.427267074585e-07 4842 4751 21679861.11823 4843 4751 17343750.0057 4857 4751 4335972.223649 4858 4751 -34687499.9943 4860 4751 17343888.88605 4861 4751 -3.576278686523e-06 4863 4751 4335972.22365 4864 4751 34687499.9943 4752 4752 741974947.0469 4753 4752 5.006790161133e-06 4754 4752 -2.908706665039e-05 4755 4752 92161150.94322 4756 4752 19444444.44125 4757 4752 -7.271766662598e-06 4839 4752 -46373434.23613 4840 4752 24305555.56354 4842 4752 -138827443.8752 4843 4752 2.682209014893e-07 4845 4752 -46373434.23614 4846 4752 -24305555.56354 4860 4752 4476132.383914 4861 4752 -4861111.112702 4863 4752 111237115.4367 4864 4752 -8.344650268555e-07 4866 4752 4476132.383917 4867 4752 4861111.1127 4753 4753 625304024.3239 4754 4753 6.198883056641e-06 4755 4753 -19444444.44125 4756 4753 -92560889.60172 4757 4753 2.32458114624e-06 4839 4753 24305555.56354 4840 4753 -39081501.55876 4842 4753 -2.294778823853e-06 4843 4753 -31882558.21685 4845 4753 -24305555.56354 4846 4753 -39081501.55876 4860 4753 4861111.112712 4861 4753 -41704377.77507 4863 4753 -7.152557373047e-07 4864 4753 82069384.74161 4866 4753 -4861111.112713 4867 4753 -41704377.77507 4754 4754 582912992.1231 4755 4754 -7.271766662598e-06 4756 4754 1.877546310425e-06 4757 4754 52395662.19267 4839 4754 21679861.11823 4840 4754 -17343750.0057 4842 4754 86719444.4302 4843 4754 3.427267074585e-07 4845 4754 21679861.11823 4846 4754 17343750.0057 4860 4754 4335972.223649 4861 4754 -34687499.9943 4863 4754 17343888.88605 4864 4754 -3.576278686523e-06 4866 4754 4335972.22365 4867 4754 34687499.9943 4755 4755 741974947.0469 4756 4755 5.006790161133e-06 4757 4755 -2.908706665039e-05 4758 4755 92161150.94322 4759 4755 19444444.44125 4760 4755 -7.271766662598e-06 4842 4755 -46373434.23613 4843 4755 24305555.56354 4845 4755 -138827443.8752 4846 4755 2.682209014893e-07 4848 4755 -46373434.23614 4849 4755 -24305555.56354 4863 4755 4476132.383914 4864 4755 -4861111.112702 4866 4755 111237115.4367 4867 4755 -8.344650268555e-07 4869 4755 4476132.383917 4870 4755 4861111.1127 4756 4756 625304024.3239 4757 4756 6.198883056641e-06 4758 4756 -19444444.44125 4759 4756 -92560889.60172 4760 4756 2.32458114624e-06 4842 4756 24305555.56354 4843 4756 -39081501.55876 4845 4756 -2.294778823853e-06 4846 4756 -31882558.21685 4848 4756 -24305555.56354 4849 4756 -39081501.55876 4863 4756 4861111.112712 4864 4756 -41704377.77507 4866 4756 -7.152557373047e-07 4867 4756 82069384.74161 4869 4756 -4861111.112713 4870 4756 -41704377.77507 4757 4757 582912992.1231 4758 4757 -7.271766662598e-06 4759 4757 1.877546310425e-06 4760 4757 52395662.19267 4842 4757 21679861.11823 4843 4757 -17343750.0057 4845 4757 86719444.4302 4846 4757 3.427267074585e-07 4848 4757 21679861.11823 4849 4757 17343750.0057 4863 4757 4335972.223649 4864 4757 -34687499.9943 4866 4757 17343888.88605 4867 4757 -3.576278686523e-06 4869 4757 4335972.22365 4870 4757 34687499.9943 4758 4758 741974947.0469 4759 4758 5.006790161133e-06 4760 4758 -2.908706665039e-05 4761 4758 92161150.94322 4762 4758 19444444.44125 4763 4758 -7.271766662598e-06 4845 4758 -46373434.23613 4846 4758 24305555.56354 4848 4758 -138827443.8752 4849 4758 2.682209014893e-07 4851 4758 -46373434.23614 4852 4758 -24305555.56354 4866 4758 4476132.383914 4867 4758 -4861111.112702 4869 4758 111237115.4367 4870 4758 -8.344650268555e-07 4872 4758 4476132.383917 4873 4758 4861111.1127 4759 4759 625304024.3239 4760 4759 6.198883056641e-06 4761 4759 -19444444.44125 4762 4759 -92560889.60172 4763 4759 2.32458114624e-06 4845 4759 24305555.56354 4846 4759 -39081501.55876 4848 4759 -2.294778823853e-06 4849 4759 -31882558.21685 4851 4759 -24305555.56354 4852 4759 -39081501.55876 4866 4759 4861111.112712 4867 4759 -41704377.77507 4869 4759 -7.152557373047e-07 4870 4759 82069384.74161 4872 4759 -4861111.112713 4873 4759 -41704377.77507 4760 4760 582912992.1231 4761 4760 -7.271766662598e-06 4762 4760 1.877546310425e-06 4763 4760 52395662.19267 4845 4760 21679861.11823 4846 4760 -17343750.0057 4848 4760 86719444.4302 4849 4760 3.427267074585e-07 4851 4760 21679861.11823 4852 4760 17343750.0057 4866 4760 4335972.223649 4867 4760 -34687499.9943 4869 4760 17343888.88605 4870 4760 -3.576278686523e-06 4872 4760 4335972.22365 4873 4760 34687499.9943 4761 4761 743972693.3093 4762 4761 15895.84582305 4763 4761 -1.215934753418e-05 4764 4761 96103889.57231 4765 4761 23223356.21639 4766 4761 2.145767211914e-06 4848 4761 -46373434.23613 4849 4761 24305555.56354 4851 4761 -140996480.167 4852 4761 -952893.2695176 4854 4761 -45870736.57862 4855 4761 -24301364.19972 4869 4761 4476132.383914 4870 4761 -4861111.112702 4872 4761 111737658.2526 4873 4761 3973.961454272 4875 4761 5643546.059514 4876 4761 5805839.056956 4762 4762 624700330.4184 4763 4762 2.026557922363e-05 4764 4762 -15665532.66612 4765 4762 -87045539.95471 4766 4762 -4.470348358154e-06 4848 4762 24305555.56354 4849 4762 -39081501.55876 4851 4762 -952893.2695167 4852 4762 -33140775.69075 4854 4762 -24301364.19972 4855 4762 -39232415.43151 4869 4762 4861111.112712 4870 4762 -41704377.77507 4872 4762 3973.961453795 4873 4762 81919567.51518 4875 4762 -3916383.16846 4876 4762 -40143811.34479 4763 4763 583290059.4325 4764 4763 -1.192092895508e-06 4765 4763 -4.589557647705e-06 4766 4763 54461159.75297 4848 4763 21679861.11823 4849 4763 -17343750.0057 4851 4763 87564583.31887 4852 4763 677083.3331556 4854 4763 21679166.67378 4855 4763 17343750.00569 4869 4763 4335972.223649 4870 4763 -34687499.9943 4872 4763 17343611.10827 4873 4763 -2.473592758179e-06 4875 4763 3489305.557201 4876 4763 34010416.66114 4764 4764 745987487.9304 4765 4764 -2453991.979034 4766 4764 -2.622604370117e-06 4767 4764 -141080087.6866 4768 4764 -95899021.31305 4769 4764 -8.359551429749e-06 4770 4764 92610986.19902 4771 4764 22063836.70035 4772 4764 1.430511474609e-06 4851 4764 -48879322.66665 4852 4764 24272689.58238 4854 4764 -141002035.2672 4855 4764 -1284012.256585 4872 4764 5643546.059495 4873 4764 -3916383.168461 4875 4764 115620942.6217 4876 4764 -613497.9950649 4878 4764 -43801307.6603 4879 4764 -23974755.34007 4881 4764 5916032.269884 4882 4764 5515959.177805 4765 4765 616411761.6306 4766 4765 3.147125244141e-05 4767 4765 -95899021.31305 4768 4765 -117437349.9809 4769 4765 -3.337860107422e-06 4770 4765 -16825052.18216 4771 4765 -92728025.51492 4772 4765 -4.708766937256e-06 4851 4765 24272689.58238 4852 4765 -38326906.89253 4854 4765 -1284012.256586 4855 4765 -32949093.52409 4872 4765 5805839.056957 4873 4765 -40143811.34482 4875 4765 -613497.9950616 4876 4765 83227011.03075 4878 4765 -23974755.34007 4879 4765 -37890623.23096 4881 4765 -4206263.047611 4882 4765 -40418720.68142 4766 4766 572020605.8755 4767 4766 -8.553266525269e-06 4768 4766 -3.397464752197e-06 4769 4766 -46375866.82275 4770 4766 -1.907348632813e-06 4771 4766 -4.738569259644e-06 4772 4766 48718383.22462 4851 4766 22525694.45184 4852 4766 -16666666.67214 4854 4766 85676388.87482 4855 4766 677083.3331557 4872 4766 5182361.11248 4873 4766 -34010416.66102 4875 4766 17135277.77496 4876 4766 -1.698732376099e-06 4878 4766 20312500.00667 4879 4766 16666666.67214 4881 4766 3385277.779223 4882 4766 33333333.32785 4767 4767 361120236.1714 4768 4767 94548810.89505 4769 4767 1.120567321777e-05 4770 4767 -203961436.0496 4771 4767 -20767645.33449 4772 4767 -3.635883331299e-06 4854 4767 4511607.610492 4855 4767 5529463.940847 4875 4767 -43801307.66031 4876 4767 -23974755.34007 4878 4767 56503201.94985 4879 4767 23637202.73541 4881 4767 -68052930.47169 4882 4767 -5191911.336183 4768 4768 308313282.913 4769 4768 1.609325408936e-05 4770 4768 18121243.54802 4771 4768 9374992.872524 4772 4768 7.987022399902e-06 4854 4768 -4192758.284571 4855 4768 -41531445.75455 4875 4768 -23974755.34007 4876 4768 -37890623.23097 4878 4768 23637202.73541 4879 4768 43301463.62875 4881 4768 4530310.889234 4882 4768 -14718823.21488 4769 4769 278103282.9517 4770 4769 5.364418029785e-07 4771 4769 7.927417755127e-06 4772 4769 -4811252.171694 4854 4769 -3215972.223779 4855 4769 -33333333.32786 4875 4769 -20312500.00667 4876 4769 -16666666.67214 4878 4769 -8124999.998662 4879 4769 -6666666.665569 4881 4769 -41471527.77088 4882 4769 -3333333.334428 4770 4770 371304389.3859 4771 4770 -99841614.46538 4772 4770 -9.536743164063e-06 4854 4770 -47751770.62457 4855 4770 24636355.78702 4875 4770 5916032.269866 4876 4770 -4206263.047612 4878 4770 -68052930.47169 4879 4770 4530310.889241 4881 4770 58352668.82662 4882 4770 -24960403.62864 4771 4771 309788077.0663 4772 4771 1.561641693115e-05 4854 4771 24636355.78702 4855 4771 -39372046.84257 4875 4771 5515959.177806 4876 4771 -40418720.68145 4878 4771 -5191911.336177 4879 4771 -14718823.21488 4881 4771 -24960403.62864 4882 4771 42973590.73913 4772 4772 283253096.8787 4854 4772 21159027.78473 4855 4772 -16666666.67214 4875 4772 5078333.334502 4876 4772 -33333333.32786 4878 4772 41471527.77105 4879 4772 -3333333.334428 4881 4772 8463611.109719 4882 4772 -6666666.665572 4773 4773 463734339.079 4774 4773 48611111.10311 4776 4773 -286863054.9654 4777 4773 -48611110.71422 4779 4773 9282077.504984 4780 4773 38888888.4936 4774 4774 390815012.8075 4776 4774 -48611110.51978 4777 4774 -58389419.62183 4779 4774 58333332.7404 4780 4774 9282077.504984 4775 4775 1 4776 4776 816157657.6872 4777 4776 48611110.13091 4779 4776 8696360.488349 4780 4776 -48611110.71423 4782 4776 -203398266.1972 4783 4776 -2.920627593994e-06 4785 4776 -74182713.06331 4786 4776 48611111.10312 4777 4777 684902870.0541 4779 4777 -48611110.51978 4780 4777 -161441813.9313 4782 4777 -2.801418304443e-06 4783 4777 10491505.01414 4785 4777 48611111.10312 4786 4777 -59598847.71575 4778 4778 1 4779 4779 463734339.079 4780 4779 48611111.10311 4782 4779 -74182713.06331 4783 4779 -48611111.10312 4785 4779 -286863054.9654 4786 4779 -48611110.71422 4788 4779 9282077.504984 4789 4779 38888888.4936 4780 4780 390815012.8075 4782 4780 -48611111.10312 4783 4780 -59598847.71576 4785 4780 -48611110.51978 4786 4780 -58389419.62183 4788 4780 58333332.7404 4789 4780 9282077.504984 4781 4781 1 4782 4782 741974947.0469 4783 4782 1.335144042969e-05 4785 4782 92161150.94322 4786 4782 -4.291534423828e-06 4791 4782 -203398266.1972 4792 4782 -2.920627593994e-06 4794 4782 -74182713.06331 4795 4782 48611111.10312 4783 4783 625304024.3239 4785 4783 -1.192092895508e-07 4786 4783 -92560889.60172 4791 4783 -2.801418304443e-06 4792 4783 10491505.01414 4794 4783 48611111.10312 4795 4783 -59598847.71575 4784 4784 1 4785 4785 816157657.6872 4786 4785 48611110.13091 4788 4785 8696360.488349 4789 4785 -48611110.71423 4791 4785 -74182713.06331 4792 4785 -48611111.10312 4794 4785 -203398266.1972 4795 4785 -2.920627593994e-06 4797 4785 -74182713.06331 4798 4785 48611111.10312 4786 4786 684902870.0541 4788 4786 -48611110.51978 4789 4786 -161441813.9313 4791 4786 -48611111.10312 4792 4786 -59598847.71576 4794 4786 -2.801418304443e-06 4795 4786 10491505.01414 4797 4786 48611111.10312 4798 4786 -59598847.71575 4787 4787 1 4788 4788 463734339.079 4789 4788 48611111.10311 4794 4788 -74182713.06331 4795 4788 -48611111.10312 4797 4788 -286863054.9654 4798 4788 -48611110.71422 4800 4788 9282077.504984 4801 4788 38888888.4936 4789 4789 390815012.8075 4794 4789 -48611111.10312 4795 4789 -59598847.71576 4797 4789 -48611110.51978 4798 4789 -58389419.62183 4800 4789 58333332.7404 4801 4789 9282077.504984 4790 4790 1 4791 4791 741974947.0469 4792 4791 1.335144042969e-05 4794 4791 92161150.94322 4795 4791 -4.291534423828e-06 4803 4791 -203398266.1972 4804 4791 -2.920627593994e-06 4806 4791 -74182713.06331 4807 4791 48611111.10312 4792 4792 625304024.3239 4794 4792 -1.192092895508e-07 4795 4792 -92560889.60172 4803 4792 -2.801418304443e-06 4804 4792 10491505.01414 4806 4792 48611111.10312 4807 4792 -59598847.71575 4793 4793 1 4794 4794 741974947.0469 4795 4794 1.335144042969e-05 4797 4794 92161150.94322 4798 4794 -4.291534423828e-06 4803 4794 -74182713.06331 4804 4794 -48611111.10312 4806 4794 -203398266.1972 4807 4794 -2.920627593994e-06 4809 4794 -74182713.06331 4810 4794 48611111.10312 4795 4795 625304024.3239 4797 4795 -1.192092895508e-07 4798 4795 -92560889.60172 4803 4795 -48611111.10312 4804 4795 -59598847.71576 4806 4795 -2.801418304443e-06 4807 4795 10491505.01414 4809 4795 48611111.10312 4810 4795 -59598847.71575 4796 4796 1 4797 4797 816157657.6872 4798 4797 48611110.13091 4800 4797 8696360.488349 4801 4797 -48611110.71423 4806 4797 -74182713.06331 4807 4797 -48611111.10312 4809 4797 -203398266.1972 4810 4797 -2.920627593994e-06 4812 4797 -74182713.06331 4813 4797 48611111.10312 4798 4798 684902870.0541 4800 4798 -48611110.51978 4801 4798 -161441813.9313 4806 4798 -48611111.10312 4807 4798 -59598847.71576 4809 4798 -2.801418304443e-06 4810 4798 10491505.01414 4812 4798 48611111.10312 4813 4798 -59598847.71575 4799 4799 1 4800 4800 463734339.079 4801 4800 48611111.10311 4809 4800 -74182713.06331 4810 4800 -48611111.10312 4812 4800 -286863054.9654 4813 4800 -48611110.71422 4815 4800 9282077.504984 4816 4800 38888888.4936 4801 4801 390815012.8075 4809 4801 -48611111.10312 4810 4801 -59598847.71576 4812 4801 -48611110.51978 4813 4801 -58389419.62183 4815 4801 58333332.7404 4816 4801 9282077.504984 4802 4802 1 4803 4803 741974947.0469 4804 4803 1.335144042969e-05 4806 4803 92161150.94322 4807 4803 -4.291534423828e-06 4818 4803 -203398266.1972 4819 4803 -2.920627593994e-06 4821 4803 -74182713.06331 4822 4803 48611111.10312 4804 4804 625304024.3239 4806 4804 -1.192092895508e-07 4807 4804 -92560889.60172 4818 4804 -2.801418304443e-06 4819 4804 10491505.01414 4821 4804 48611111.10312 4822 4804 -59598847.71575 4805 4805 1 4806 4806 741974947.0469 4807 4806 1.335144042969e-05 4809 4806 92161150.94322 4810 4806 -4.291534423828e-06 4818 4806 -74182713.06331 4819 4806 -48611111.10312 4821 4806 -203398266.1972 4822 4806 -2.920627593994e-06 4824 4806 -74182713.06331 4825 4806 48611111.10312 4807 4807 625304024.3239 4809 4807 -1.192092895508e-07 4810 4807 -92560889.60172 4818 4807 -48611111.10312 4819 4807 -59598847.71576 4821 4807 -2.801418304443e-06 4822 4807 10491505.01414 4824 4807 48611111.10312 4825 4807 -59598847.71575 4808 4808 1 4809 4809 741974947.0469 4810 4809 1.335144042969e-05 4812 4809 92161150.94322 4813 4809 -4.291534423828e-06 4821 4809 -74182713.06331 4822 4809 -48611111.10312 4824 4809 -203398266.1972 4825 4809 -2.920627593994e-06 4827 4809 -74182713.06331 4828 4809 48611111.10312 4810 4810 625304024.3239 4812 4810 -1.192092895508e-07 4813 4810 -92560889.60172 4821 4810 -48611111.10312 4822 4810 -59598847.71576 4824 4810 -2.801418304443e-06 4825 4810 10491505.01414 4827 4810 48611111.10312 4828 4810 -59598847.71575 4811 4811 1 4812 4812 816157657.6872 4813 4812 48611110.13091 4815 4812 8696360.488349 4816 4812 -48611110.71423 4824 4812 -74182713.06331 4825 4812 -48611111.10312 4827 4812 -203398266.1972 4828 4812 -2.920627593994e-06 4830 4812 -74182713.06331 4831 4812 48611111.10312 4813 4813 684902870.0541 4815 4813 -48611110.51978 4816 4813 -161441813.9313 4824 4813 -48611111.10312 4825 4813 -59598847.71576 4827 4813 -2.801418304443e-06 4828 4813 10491505.01414 4830 4813 48611111.10312 4831 4813 -59598847.71575 4814 4814 1 4815 4815 463734339.079 4816 4815 48611111.10311 4827 4815 -74182713.06331 4828 4815 -48611111.10312 4830 4815 -286863054.9654 4831 4815 -48611110.71422 4833 4815 9282077.504984 4834 4815 38888888.4936 4816 4816 390815012.8075 4827 4816 -48611111.10312 4828 4816 -59598847.71576 4830 4816 -48611110.51978 4831 4816 -58389419.62183 4833 4816 58333332.7404 4834 4816 9282077.504984 4817 4817 1 4818 4818 741974947.0469 4819 4818 1.335144042969e-05 4821 4818 92161150.94322 4822 4818 -4.291534423828e-06 4836 4818 -203398266.1972 4837 4818 -2.920627593994e-06 4839 4818 -74182713.06331 4840 4818 48611111.10312 4819 4819 625304024.3239 4821 4819 -1.192092895508e-07 4822 4819 -92560889.60172 4836 4819 -2.801418304443e-06 4837 4819 10491505.01414 4839 4819 48611111.10312 4840 4819 -59598847.71575 4820 4820 1 4821 4821 741974947.0469 4822 4821 1.335144042969e-05 4824 4821 92161150.94322 4825 4821 -4.291534423828e-06 4836 4821 -74182713.06331 4837 4821 -48611111.10312 4839 4821 -203398266.1972 4840 4821 -2.920627593994e-06 4842 4821 -74182713.06331 4843 4821 48611111.10312 4822 4822 625304024.3239 4824 4822 -1.192092895508e-07 4825 4822 -92560889.60172 4836 4822 -48611111.10312 4837 4822 -59598847.71576 4839 4822 -2.801418304443e-06 4840 4822 10491505.01414 4842 4822 48611111.10312 4843 4822 -59598847.71575 4823 4823 1 4824 4824 741974947.0469 4825 4824 1.335144042969e-05 4827 4824 92161150.94322 4828 4824 -4.291534423828e-06 4839 4824 -74182713.06331 4840 4824 -48611111.10312 4842 4824 -203398266.1972 4843 4824 -2.920627593994e-06 4845 4824 -74182713.06331 4846 4824 48611111.10312 4825 4825 625304024.3239 4827 4825 -1.192092895508e-07 4828 4825 -92560889.60172 4839 4825 -48611111.10312 4840 4825 -59598847.71576 4842 4825 -2.801418304443e-06 4843 4825 10491505.01414 4845 4825 48611111.10312 4846 4825 -59598847.71575 4826 4826 1 4827 4827 741974947.0469 4828 4827 1.335144042969e-05 4830 4827 92161150.94322 4831 4827 -4.291534423828e-06 4842 4827 -74182713.06331 4843 4827 -48611111.10312 4845 4827 -203398266.1972 4846 4827 -2.920627593994e-06 4848 4827 -74182713.06331 4849 4827 48611111.10312 4828 4828 625304024.3239 4830 4828 -1.192092895508e-07 4831 4828 -92560889.60172 4842 4828 -48611111.10312 4843 4828 -59598847.71576 4845 4828 -2.801418304443e-06 4846 4828 10491505.01414 4848 4828 48611111.10312 4849 4828 -59598847.71575 4829 4829 1 4830 4830 816157657.6872 4831 4830 48611110.13091 4833 4830 8696360.488349 4834 4830 -48611110.71423 4845 4830 -74182713.06331 4846 4830 -48611111.10312 4848 4830 -203398266.1972 4849 4830 -2.920627593994e-06 4851 4830 -74182713.06331 4852 4830 48611111.10312 4831 4831 684902870.0541 4833 4831 -48611110.51978 4834 4831 -161441813.9313 4845 4831 -48611111.10312 4846 4831 -59598847.71576 4848 4831 -2.801418304443e-06 4849 4831 10491505.01414 4851 4831 48611111.10312 4852 4831 -59598847.71575 4832 4832 1 4833 4833 472113317.9279 4834 4833 52406573.19334 4848 4833 -74182713.06331 4849 4833 -48611111.10312 4851 4833 -295909020.1924 4852 4833 -52406572.80447 4854 4833 11397613.87671 4855 4833 38888888.49362 4834 4834 394566668.6419 4848 4834 -48611111.10312 4849 4834 -59598847.71576 4851 4834 -52406572.61003 4852 4834 -65730393.29849 4854 4834 58333332.74044 4855 4834 14319945.34088 4835 4835 1 4836 4836 741974947.0469 4837 4836 1.335144042969e-05 4839 4836 92161150.94322 4840 4836 -4.291534423828e-06 4857 4836 -203398266.1972 4858 4836 -2.920627593994e-06 4860 4836 -74182713.06331 4861 4836 48611111.10312 4837 4837 625304024.3239 4839 4837 -1.192092895508e-07 4840 4837 -92560889.60172 4857 4837 -2.801418304443e-06 4858 4837 10491505.01414 4860 4837 48611111.10312 4861 4837 -59598847.71575 4838 4838 1 4839 4839 741974947.0469 4840 4839 1.335144042969e-05 4842 4839 92161150.94322 4843 4839 -4.291534423828e-06 4857 4839 -74182713.06331 4858 4839 -48611111.10312 4860 4839 -203398266.1972 4861 4839 -2.920627593994e-06 4863 4839 -74182713.06331 4864 4839 48611111.10312 4840 4840 625304024.3239 4842 4840 -1.192092895508e-07 4843 4840 -92560889.60172 4857 4840 -48611111.10312 4858 4840 -59598847.71576 4860 4840 -2.801418304443e-06 4861 4840 10491505.01414 4863 4840 48611111.10312 4864 4840 -59598847.71575 4841 4841 1 4842 4842 741974947.0469 4843 4842 1.335144042969e-05 4845 4842 92161150.94322 4846 4842 -4.291534423828e-06 4860 4842 -74182713.06331 4861 4842 -48611111.10312 4863 4842 -203398266.1972 4864 4842 -2.920627593994e-06 4866 4842 -74182713.06331 4867 4842 48611111.10312 4843 4843 625304024.3239 4845 4843 -1.192092895508e-07 4846 4843 -92560889.60172 4860 4843 -48611111.10312 4861 4843 -59598847.71576 4863 4843 -2.801418304443e-06 4864 4843 10491505.01414 4866 4843 48611111.10312 4867 4843 -59598847.71575 4844 4844 1 4845 4845 741974947.0469 4846 4845 1.335144042969e-05 4848 4845 92161150.94322 4849 4845 -4.291534423828e-06 4863 4845 -74182713.06331 4864 4845 -48611111.10312 4866 4845 -203398266.1972 4867 4845 -2.920627593994e-06 4869 4845 -74182713.06331 4870 4845 48611111.10312 4846 4846 625304024.3239 4848 4846 -1.192092895508e-07 4849 4846 -92560889.60172 4863 4846 -48611111.10312 4864 4846 -59598847.71576 4866 4846 -2.801418304443e-06 4867 4846 10491505.01414 4869 4846 48611111.10312 4870 4846 -59598847.71575 4847 4847 1 4848 4848 741974947.0469 4849 4848 1.335144042969e-05 4851 4848 92161150.94322 4852 4848 -4.291534423828e-06 4866 4848 -74182713.06331 4867 4848 -48611111.10312 4869 4848 -203398266.1972 4870 4848 -2.920627593994e-06 4872 4848 -74182713.06331 4873 4848 48611111.10312 4849 4849 625304024.3239 4851 4849 -1.192092895508e-07 4852 4849 -92560889.60172 4866 4849 -48611111.10312 4867 4849 -59598847.71576 4869 4849 -2.801418304443e-06 4870 4849 10491505.01414 4872 4849 48611111.10312 4873 4849 -59598847.71575 4850 4850 1 4851 4851 830573854.4174 4852 4851 52487997.16069 4854 4851 14486963.23993 4855 4851 -46721017.15339 4869 4851 -74182713.06331 4870 4851 -48611111.10312 4872 4851 -207375010.2074 4873 4851 -1905786.538097 4875 4851 -79195001.52904 4876 4851 48545379.14084 4852 4852 689158287.1216 4854 4852 -46721016.95895 4855 4852 -155538026.8924 4869 4852 -48611111.10312 4870 4852 -59598847.71576 4872 4852 -1905786.538106 4873 4852 8336398.63873 4875 4852 48545379.14084 4876 4852 -58090169.9912 4853 4853 1 4854 4854 439155444.2405 4855 4854 -1328757.878829 4872 4854 -73177829.35596 4873 4854 -48602728.37549 4875 4854 -211113991.8355 4876 4854 -2568024.51192 4878 4854 42800072.35402 4879 4854 -8385516.565012 4881 4854 -78440969.76791 4882 4854 49272711.54975 4855 4855 452202236.3703 4872 4855 -48602728.37549 4873 4855 -59901187.06828 4875 4855 -2568024.511923 4876 4855 4991891.544235 4878 4855 11058927.87624 4879 4855 -49286034.33069 4881 4855 49272711.54975 4882 4855 -61681522.21217 4856 4856 1 4857 4857 370987473.5234 4858 4857 6.914138793945e-06 4860 4857 46080575.4716 4861 4857 9722222.220623 4858 4858 312652012.1619 4860 4858 -9722222.220622 4861 4858 -46280444.80086 4859 4859 1 4860 4860 370987473.5234 4861 4860 6.914138793945e-06 4863 4860 46080575.4716 4864 4860 9722222.220623 4861 4861 312652012.1619 4863 4861 -9722222.220622 4864 4861 -46280444.80086 4862 4862 1 4863 4863 370987473.5234 4864 4863 6.914138793945e-06 4866 4863 46080575.4716 4867 4863 9722222.220623 4864 4864 312652012.1619 4866 4864 -9722222.220622 4867 4864 -46280444.80086 4865 4865 1 4866 4866 370987473.5234 4867 4866 6.914138793945e-06 4869 4866 46080575.4716 4870 4866 9722222.220623 4867 4867 312652012.1619 4869 4867 -9722222.220622 4870 4867 -46280444.80086 4868 4868 1 4869 4869 370987473.5234 4870 4869 6.914138793945e-06 4872 4869 46080575.4716 4873 4869 9722222.220623 4870 4870 312652012.1619 4872 4870 -9722222.220622 4873 4870 -46280444.80086 4871 4871 1 4872 4872 371986346.6546 4873 4872 7947.922919989 4875 4872 48051944.78615 4876 4872 11611678.10819 4873 4873 312350165.2092 4875 4873 -7832766.333059 4876 4873 -43522769.97735 4874 4874 1 4875 4875 372993743.9652 4876 4875 -1226995.989509 4878 4875 -70540043.84328 4879 4875 -47949510.65652 4881 4875 46305493.09951 4882 4875 11031918.35018 4876 4876 308205880.8153 4878 4876 -47949510.65652 4879 4876 -58718674.99043 4881 4876 -8412526.091075 4882 4876 -46364012.75746 4877 4877 1 4878 4878 180560118.0857 4879 4878 47274405.44752 4881 4878 -101980718.0248 4882 4878 -10383822.66724 4879 4879 154156641.4565 4881 4879 9060621.774008 4882 4879 4687496.436255 4880 4880 1 4881 4881 185652194.6929 4882 4881 -49920807.23268 4882 4882 154894038.5331 4883 4883 1 SuiteSparse/CXSparse/Matrix/mbeacxc0000644001170100242450000374020210326007632016237 0ustar davisfac5 0 0.0045458972 6 0 0.24555165 18 0 0.025517598 24 0 7.0999988e-05 62 0 0.0068898983 98 0 0.0028766999 102 0 0.11666727 103 0 8.8799992e-05 104 0 0.0011898 107 0 0.0042084977 108 0 1.779999e-05 111 0 0.00094119995 114 0 8.8799992e-05 117 0 0.0014915999 118 0 0.012057398 119 0 0.0002308 120 0 0.0001776 126 0 1.779999e-05 141 0 3.5499994e-05 143 0 0.0015626999 160 0 0.0002485998 171 0 8.8799992e-05 172 0 1.779999e-05 189 0 1.779999e-05 194 0 1.779999e-05 198 0 0.00014209999 200 0 8.8799992e-05 201 0 7.0999988e-05 206 0 3.5499994e-05 214 0 0.00062149996 217 0 0.0011719998 223 0 0.00095889997 228 0 0.00037289993 229 0 0.0037113 234 0 0.0047767982 237 0 0.0039421991 242 0 1.779999e-05 253 0 0.00039069983 279 0 8.8799992e-05 283 0 3.5499994e-05 307 0 0.0001065 315 0 0.0017402 317 0 0.00095889997 318 0 1.779999e-05 322 0 5.3299998e-05 329 0 0.0049720965 356 0 8.8799992e-05 357 0 0.00014209999 358 0 8.8799992e-05 384 0 7.0999988e-05 387 0 1.779999e-05 394 0 0.00026639993 397 0 5.3299998e-05 402 0 0.00062149996 422 0 1.779999e-05 438 0 3.5499994e-05 442 0 3.5499994e-05 443 0 0.0044926964 444 0 1.779999e-05 445 0 0.032176699 446 0 0.00053269998 447 0 3.5499994e-05 448 0 0.00012429999 450 0 0.0026991998 452 0 0.0080086999 454 0 0.0002308 455 0 0.021841798 456 0 0.00078129978 457 0 0.0098198988 458 0 0.00037289993 459 0 3.5499994e-05 460 0 0.0055580996 463 0 0.029246699 464 0 1.779999e-05 467 0 0.0031963999 468 0 0.00021309999 469 0 0.0013851 470 0 0.00040839985 471 0 0.0032495998 473 0 1.779999e-05 476 0 0.0017402 478 0 0.00035519991 483 0 0.00014209999 490 0 3.5499994e-05 6 1 0.16098946 18 1 0.12319708 62 1 0.0048390999 102 1 0.38757879 114 1 2.3599991e-05 117 1 0.0025966 118 1 0.020938098 119 1 0.00040129991 120 1 0.00030689989 126 1 2.3599991e-05 141 1 4.7199996e-05 171 1 9.4399991e-05 172 1 2.3599991e-05 194 1 0.0046738982 195 1 0.011023797 200 1 9.4399991e-05 201 1 9.4399991e-05 206 1 4.7199996e-05 214 1 0.00028329995 217 1 0.00054289983 223 1 0.00092059979 228 1 0.0059249997 229 1 0.00068459986 234 1 0.0055944994 237 1 0.0020772999 279 1 0.00014159999 283 1 4.7199996e-05 307 1 0.000118 317 1 0.00096779992 318 1 2.3599991e-05 322 1 2.3599991e-05 329 1 0.0028326998 356 1 9.4399991e-05 357 1 7.0799986e-05 358 1 4.7199996e-05 384 1 4.7199996e-05 394 1 0.00016519999 397 1 4.7199996e-05 402 1 0.00028329995 438 1 4.7199996e-05 442 1 4.7199996e-05 443 1 0.010575298 445 1 0.0052403994 446 1 0.0011094999 447 1 4.7199996e-05 448 1 0.00014159999 450 1 0.0026909998 452 1 0.0080494992 453 1 0.00051929988 454 1 0.00023609999 455 1 0.042230196 456 1 0.012062397 457 1 0.0048862994 458 1 0.00037769997 459 1 2.3599991e-05 460 1 0.0033047998 463 1 0.0162878 464 1 2.3599991e-05 467 1 0.0015815999 468 1 0.00021239999 469 1 0.0014398999 470 1 0.00040129991 471 1 0.0017467998 473 1 2.3599991e-05 476 1 0.027901698 478 1 0.00035409979 483 1 0.00014159999 490 1 4.7199996e-05 0 2 0.0031091999 2 2 0.36019218 3 2 0.0014519999 5 2 0.0087651983 6 2 0.22969705 9 2 3.2999997e-06 11 2 7.9399993e-05 14 2 0.00015219999 18 2 0.016207296 62 2 0.0048456974 82 2 1.32e-05 83 2 3.2999997e-06 84 2 3.2999997e-06 98 2 0.00080039981 102 2 0.058878798 103 2 2.9799994e-05 104 2 0.00033739978 107 2 0.0011741999 108 2 3.2999997e-06 111 2 0.00025799987 113 2 6.5999993e-06 114 2 5.2899995e-05 117 2 0.0015479999 118 2 0.012585498 119 2 0.00022819999 120 2 0.00017859999 126 2 6.5999993e-06 141 2 2.6499998e-05 171 2 8.5999985e-05 172 2 1.9799991e-05 189 2 6.5999993e-06 193 2 1.6499995e-05 194 2 9.8999999e-06 197 2 3.2999997e-06 200 2 9.5899988e-05 201 2 7.2799987e-05 203 2 6.5999993e-06 204 2 6.5999993e-06 206 2 1.32e-05 207 2 3.2999997e-06 214 2 0.00036709988 217 2 0.0007077998 223 2 0.00086989999 228 2 0.00048289984 234 2 0.0037838998 237 2 0.0030958999 242 2 9.8999999e-06 252 2 3.2999997e-06 279 2 9.5899988e-05 283 2 4.9599999e-05 307 2 0.00010579999 317 2 0.00093609979 318 2 9.8999999e-06 322 2 3.6399986e-05 329 2 0.0040253997 356 2 8.9299996e-05 357 2 0.00010919999 358 2 5.6199991e-05 384 2 4.9599999e-05 387 2 3.2999997e-06 394 2 0.00020839999 397 2 4.6299989e-05 402 2 0.00043659983 419 2 3.2999997e-06 422 2 9.8999999e-06 423 2 3.2999997e-06 425 2 3.2999997e-06 430 2 3.2999997e-06 431 2 3.2999997e-06 433 2 3.2999997e-06 434 2 3.2999997e-06 438 2 2.9799994e-05 442 2 3.9699997e-05 443 2 0.0041576996 444 2 9.8999999e-06 445 2 0.004623998 446 2 0.00069129979 447 2 3.6399986e-05 448 2 7.9399993e-05 450 2 0.0026791999 452 2 0.0080043972 454 2 0.00015219999 455 2 0.032106999 456 2 0.0010187 457 2 0.0087452978 458 2 4.6299989e-05 459 2 1.6499995e-05 460 2 0.0044586994 463 2 0.022627398 464 2 1.32e-05 467 2 0.0026625998 468 2 0.0002249 469 2 0.0014056999 470 2 0.00039689988 471 2 0.0028014998 473 2 9.8999999e-06 476 2 0.0022987998 478 2 0.00035389978 483 2 0.0001389 490 2 3.309999e-05 3 3 0.068147898 5 3 0.00082899979 6 3 0.21903497 18 3 0.0076272972 62 3 0.0031503998 98 3 0.012104098 101 3 0.037307199 102 3 0.16630739 103 3 0.00049739983 104 3 0.0049742982 107 3 0.017741699 111 3 0.0039793998 114 3 0.0014922998 117 3 0.00066319993 118 3 0.0051400997 119 3 0.0001658 200 3 0.0001658 201 3 0.0001658 214 3 0.00066319993 217 3 0.00099489978 223 3 0.0024871 228 3 0.0021555 234 3 0.0084562972 237 3 0.0013265 251 3 0.023379199 279 3 0.0001658 307 3 0.0001658 317 3 0.00082899979 322 3 0.0016580999 329 3 0.00082899979 356 3 0.0001658 394 3 0.0001658 402 3 0.0001658 443 3 0.0061349981 445 3 0.0051400997 446 3 0.00066319993 447 3 0.00049739983 448 3 0.0001658 450 3 0.0026529999 452 3 0.0079588965 453 3 0.00066319993 454 3 0.0001658 455 3 0.030343197 456 3 0.0043110996 457 3 0.0024871 458 3 0.00049739983 460 3 0.0023212999 463 3 0.028685097 467 3 0.0021555 468 3 0.0001658 469 3 0.0014922998 470 3 0.00049739983 471 3 0.0013265 476 3 0.0096169971 478 3 0.00033159996 483 3 0.0001658 490 3 0.0001658 0 4 0.00024319999 1 4 0.00072969985 2 4 0.0031619 3 4 0.0087560974 4 4 0.012696397 18 4 0.18679768 24 4 0.0016538999 25 4 0.0018485 62 4 0.0087074973 114 4 4.8599992e-05 171 4 9.7299999e-05 200 4 9.7299999e-05 201 4 9.7299999e-05 206 4 4.8599992e-05 214 4 0.028019696 215 4 0.078124166 217 4 0.045775197 223 4 0.00029189978 234 4 0.022765998 237 4 0.0063724965 273 4 9.7299999e-05 279 4 4.8599992e-05 283 4 4.8599992e-05 307 4 9.7299999e-05 317 4 0.00097289984 322 4 9.7299999e-05 329 4 0.0094857998 356 4 0.00029189978 357 4 0.0001946 358 4 9.7299999e-05 384 4 4.8599992e-05 394 4 0.00087559992 397 4 9.7299999e-05 402 4 0.00068099983 438 4 4.8599992e-05 442 4 4.8599992e-05 443 4 0.0069075972 445 4 0.0049617998 446 4 0.0019944999 447 4 4.8599992e-05 448 4 0.00048649986 450 4 0.0026268 453 4 0.006858997 454 4 0.0070535988 455 4 0.038672999 457 4 0.010118198 458 4 0.00034049992 460 4 0.009388499 463 4 0.17463636 467 4 0.012745097 468 4 0.0001946 469 4 0.0014106999 470 4 0.00038919994 471 4 0.0042807981 478 4 0.00034049992 483 4 0.00014589999 490 4 4.8599992e-05 0 5 0.00028399983 1 5 0.00099389977 2 5 0.023086797 3 5 0.0034359999 5 5 0.043362197 18 5 0.017066598 24 5 0.0023852999 25 5 0.0011642999 62 5 0.010109298 114 5 2.8399998e-05 141 5 2.8399998e-05 171 5 8.5199994e-05 172 5 2.8399998e-05 200 5 8.5199994e-05 201 5 8.5199994e-05 206 5 5.6799996e-05 214 5 0.0090017989 215 5 0.037569199 217 5 0.0083486997 223 5 0.00017039999 234 5 0.025670897 237 5 0.0047706999 242 5 2.8399998e-05 273 5 8.5199994e-05 279 5 0.00017039999 283 5 5.6799996e-05 307 5 0.00011359999 317 5 0.0009370998 318 5 2.8399998e-05 322 5 5.6799996e-05 329 5 0.0070991963 356 5 0.00031239982 357 5 0.00011359999 358 5 5.6799996e-05 384 5 2.8399998e-05 394 5 0.00070989993 397 5 5.6799996e-05 402 5 0.00045439997 438 5 2.8399998e-05 442 5 5.6799996e-05 443 5 0.0051114969 445 5 0.0034075999 446 5 0.0017037999 447 5 5.6799996e-05 448 5 0.0005394998 450 5 0.0026409 453 5 0.0031804999 454 5 0.0026125 455 5 0.0240523 457 5 0.0058497973 458 5 0.00036919978 459 5 2.8399998e-05 460 5 0.0082350969 463 5 0.15800089 464 5 2.8399998e-05 467 5 0.010506898 468 5 0.0002272 469 5 0.0013914998 470 5 0.00039759977 471 5 0.0026976999 478 5 0.00036919978 483 5 0.00014199999 490 5 5.6799996e-05 0 6 0.0077898987 1 6 0.0020032998 2 6 0.028940197 3 6 0.0054982975 6 6 0.023989499 7 6 0.0047560968 13 6 0.0006773998 18 6 0.018692899 24 6 0.0040714964 25 6 0.0020754 62 6 0.0094761997 108 6 7.1999993e-06 114 6 7.1999993e-06 126 6 7.1999993e-06 141 6 0.0035670998 171 6 8.6499989e-05 172 6 2.159999e-05 189 6 0.0001657 194 6 1.44e-05 200 6 9.3699986e-05 201 6 7.2099996e-05 203 6 7.1999993e-06 204 6 7.1999993e-06 206 6 1.44e-05 214 6 0.020516098 215 6 0.054731198 217 6 0.019910797 223 6 0.0001946 234 6 0.031282198 237 6 0.0060171969 241 6 0.00040349993 242 6 1.44e-05 273 6 0.00020179999 279 6 8.6499989e-05 283 6 5.0399991e-05 307 6 0.0001009 317 6 0.00093679992 318 6 1.44e-05 322 6 0.0012683 329 6 0.009490598 356 6 0.00030989992 357 6 0.00010809999 358 6 6.4899999e-05 384 6 2.8799986e-05 387 6 7.1999993e-06 394 6 0.0010016998 397 6 5.0399991e-05 402 6 0.00046839984 422 6 7.1999993e-06 430 6 7.1999993e-06 434 6 7.1999993e-06 438 6 2.159999e-05 442 6 5.0399991e-05 443 6 0.0065648966 444 6 1.44e-05 445 6 0.0085104965 446 6 0.0025221999 447 6 0.00011529999 448 6 0.00069179991 450 6 0.0026590999 453 6 0.0036175 454 6 0.006672997 455 6 0.039324299 456 6 2.159999e-05 457 6 0.0064423978 458 6 0.00036749989 459 6 2.159999e-05 460 6 0.0073791966 463 6 0.1141609 464 6 2.159999e-05 467 6 0.015197899 468 6 0.0002234 469 6 0.0013907999 470 6 0.00039629987 471 6 0.0029400999 473 6 7.1999993e-06 478 6 0.00036029983 483 6 0.00013689999 490 6 3.5999998e-05 3 7 0.0092790984 7 7 0.0563883 18 7 0.0513919 24 7 0.00071379985 62 7 0.0028551 153 7 0.00071379985 154 7 0.0028551 172 7 0.00071379985 193 7 0.0028551 214 7 0.0107066 215 7 0.044967897 217 7 0.015703097 223 7 0.00071379985 234 7 0.030692399 237 7 0.0099928975 241 7 0.024982199 317 7 0.0014275999 329 7 0.014275499 357 7 0.00071379985 394 7 0.0014275999 402 7 0.00071379985 443 7 0.0035688998 445 7 0.0135617 446 7 0.00071379985 448 7 0.00071379985 450 7 0.0028551 453 7 0.00071379985 454 7 0.0064239986 455 7 0.037116297 457 7 0.016416799 460 7 0.011420399 463 7 0.084225595 467 7 0.016416799 469 7 0.0014275999 470 7 0.00071379985 471 7 0.0064239986 478 7 0.00071379985 0 8 0.00013659999 1 8 0.00020489999 2 8 0.00027319998 3 8 0.0088114999 8 8 0.00095629995 18 8 0.019398898 24 8 0.0011612 25 8 0.00013659999 62 8 0.0118852 114 8 6.8299996e-05 130 8 0.0064890981 171 8 0.00013659999 200 8 0.00013659999 201 8 6.8299996e-05 206 8 6.8299996e-05 214 8 0.0077185966 217 8 0.0088114999 223 8 0.00040979986 234 8 0.014275998 237 8 0.0064207986 241 8 0.0020491998 273 8 6.8299996e-05 279 8 6.8299996e-05 283 8 6.8299996e-05 307 8 0.00013659999 317 8 0.00088799978 329 8 0.0085382983 356 8 0.00027319998 357 8 0.00020489999 358 8 0.00013659999 384 8 6.8299996e-05 394 8 0.00054639997 397 8 0.00013659999 402 8 0.00081969984 438 8 6.8299996e-05 442 8 6.8299996e-05 443 8 0.00081969984 445 8 0.0017759998 446 8 0.0004780998 448 8 0.00034149992 450 8 0.0027321998 454 8 0.00034149992 455 8 0.048497297 457 8 0.0061474964 458 8 0.00034149992 460 8 0.011816896 463 8 0.12233609 467 8 0.0062157996 468 8 0.00020489999 469 8 0.0013660998 470 8 0.00040979986 471 8 0.0049179979 478 8 0.00034149992 483 8 0.00013659999 490 8 6.8299996e-05 0 9 4.4799992e-05 1 9 0.0001792 2 9 0.00013439999 3 9 0.00094079995 16 9 0.011827398 18 9 0.073786974 24 9 0.0014783998 25 9 8.9599998e-05 62 9 0.0079297982 114 9 4.4799992e-05 141 9 4.4799992e-05 153 9 0.00062719989 154 9 0.0023743999 171 9 8.9599998e-05 172 9 0.049460098 189 9 4.4799992e-05 193 9 0.0023743999 198 9 8.9599998e-05 200 9 0.00013439999 201 9 8.9599998e-05 206 9 4.4799992e-05 214 9 0.0173827 215 9 0.12580079 217 9 0.0284485 223 9 0.0001792 234 9 0.030823 237 9 0.0035392998 273 9 4.4799992e-05 283 9 4.4799992e-05 307 9 0.00013439999 317 9 0.0010751998 322 9 4.4799992e-05 329 9 0.0050176978 356 9 0.00031359983 357 9 8.9599998e-05 358 9 8.9599998e-05 384 9 4.4799992e-05 394 9 0.00044799992 397 9 4.4799992e-05 402 9 0.00035839994 438 9 4.4799992e-05 442 9 4.4799992e-05 443 9 0.010259397 445 9 0.0056896992 446 9 0.0021952 447 9 4.4799992e-05 448 9 0.00058239978 450 9 0.0026433 453 9 0.00022399999 454 9 0.0046144985 455 9 0.053178597 456 9 0.0053760968 457 9 0.0056448989 458 9 0.00040319981 460 9 0.0054208972 463 9 0.021862797 467 9 0.0072577 468 9 0.00022399999 469 9 0.0014336 470 9 0.00044799992 471 9 0.0022847999 478 9 0.00035839994 483 9 0.00013439999 490 9 4.4799992e-05 3 10 0.0016096998 16 10 0.0072434992 18 10 0.074849069 24 10 0.0016096998 62 10 0.013279699 153 10 0.00080479984 154 10 0.0024144999 172 10 0.00080479984 193 10 0.0024144999 214 10 0.012072399 215 10 0.1191147 217 10 0.016498998 234 10 0.029376298 237 10 0.0040240996 317 10 0.0012071999 329 10 0.0028168999 356 10 0.0004023998 394 10 0.0004023998 443 10 0.0088530965 445 10 0.0040240996 446 10 0.0016096998 448 10 0.00080479984 450 10 0.0028168999 453 10 0.0016096998 455 10 0.047082499 456 10 0.0040240996 457 10 0.0060361996 458 10 0.0004023998 460 10 0.006438598 463 10 0.024144899 467 10 0.0100604 468 10 0.0004023998 469 10 0.0016096998 470 10 0.0004023998 471 10 0.0024144999 478 10 0.0004023998 0 11 0.0001144 1 11 0.0001716 2 11 0.00028599985 3 11 0.0028891 11 11 0.015704099 16 11 0.016247597 18 11 0.048456799 24 11 0.001373 25 11 0.0011441999 62 11 0.0060069971 114 11 2.8599999e-05 141 11 2.8599999e-05 153 11 0.00062929979 154 11 0.0024027999 171 11 8.5799998e-05 172 11 0.00077229994 193 11 0.0024599999 198 11 8.5799998e-05 200 11 8.5799998e-05 201 11 8.5799998e-05 206 11 5.7199999e-05 214 11 0.0097256973 215 11 0.046883497 217 11 0.0125576 223 11 0.0001716 234 11 0.011356197 237 11 0.0036613999 273 11 8.5799998e-05 283 11 5.7199999e-05 307 11 0.0001144 317 11 0.0010583999 322 11 5.7199999e-05 329 11 0.0051202998 356 11 0.00028599985 357 11 0.0001144 358 11 8.5799998e-05 384 11 2.8599999e-05 394 11 0.00042909989 397 11 5.7199999e-05 402 11 0.00037189992 438 11 2.8599999e-05 442 11 5.7199999e-05 443 11 0.0042620972 445 11 0.0073514991 446 11 0.0010869999 447 11 5.7199999e-05 448 11 0.0002288 450 11 0.0026602999 453 11 0.0001144 454 11 0.0031178999 455 11 0.051946599 456 11 0.0074086972 457 11 0.0062930994 458 11 0.00037189992 459 11 2.8599999e-05 460 11 0.0046339966 463 11 0.044938397 464 11 2.8599999e-05 467 11 0.0062358975 468 11 0.0002288 469 11 0.0014016 470 11 0.00040049991 471 11 0.0025743998 478 11 0.00037189992 483 11 0.000143 490 11 5.7199999e-05 3 12 0.0059012994 12 12 0.0362124 18 12 0.046405599 24 12 0.0020118 25 12 0.00013409999 62 12 0.008851897 171 12 0.00013409999 200 12 0.00013409999 201 12 0.00013409999 214 12 0.014216699 215 12 0.10005355 217 12 0.0189109 223 12 0.00026819995 234 12 0.017972097 237 12 0.0046941973 273 12 0.00013409999 279 12 0.00013409999 307 12 0.00013409999 317 12 0.00093879993 329 12 0.0060353987 356 12 0.0004023998 357 12 0.00013409999 394 12 0.00080469996 397 12 0.00013409999 402 12 0.00026819995 442 12 0.00013409999 443 12 0.0068400986 445 12 0.0040235966 446 12 0.0013412 448 12 0.0004023998 450 12 0.0028164999 453 12 0.00093879993 455 12 0.032188799 457 12 0.010058999 458 12 0.0004023998 460 12 0.0115343 463 12 0.11614805 467 12 0.0107296 468 12 0.00026819995 469 12 0.0014752999 470 12 0.0004023998 471 12 0.0033529999 478 12 0.0004023998 483 12 0.00013409999 490 12 0.00013409999 3 13 0.0014612998 13 13 0.010715999 16 13 0.0029225999 18 13 0.049683399 24 13 0.0053579994 25 13 0.00048709987 62 13 0.0014612998 214 13 0.017535299 215 13 0.2513395 217 13 0.014612798 234 13 0.014612798 237 13 0.0043837987 273 13 0.00048709987 317 13 0.0014612998 329 13 0.0043837987 443 13 0.017048199 445 13 0.007306397 446 13 0.0019483999 450 13 0.0024354998 453 13 0.00097419997 455 13 0.069654167 457 13 0.009741798 460 13 0.004870899 463 13 0.07355088 467 13 0.010715999 469 13 0.0014612998 470 13 0.00048709987 471 13 0.0038967 478 13 0.00048709987 0 14 0.0011772998 1 14 0.0014295999 2 14 0.011142597 3 14 0.0033006999 14 14 0.056007598 18 14 0.021213099 24 14 0.00058869994 25 14 0.00077789999 62 14 0.0082623996 114 14 2.1e-05 126 14 2.1e-05 141 14 4.2e-05 171 14 0.0001051 172 14 2.1e-05 194 14 2.1e-05 200 14 8.4099986e-05 201 14 8.4099986e-05 206 14 4.2e-05 214 14 0.015767898 215 14 0.010911398 217 14 0.026931599 223 14 0.00016819999 234 14 0.022348396 237 14 0.0057184994 242 14 2.1e-05 273 14 2.1e-05 279 14 0.00014719999 283 14 4.2e-05 307 14 0.0001051 317 14 0.0009670998 318 14 2.1e-05 322 14 4.2e-05 329 14 0.0089350976 356 14 0.00031539984 357 14 0.0001261 358 14 0.0001051 384 14 4.2e-05 394 14 0.0009039999 397 14 6.3099986e-05 402 14 0.00054659997 438 14 4.2e-05 442 14 6.3099986e-05 443 14 0.0023546999 444 14 2.1e-05 445 14 0.0030063998 446 14 0.0012403999 447 14 4.2e-05 448 14 0.00046249991 450 14 0.0026910999 453 14 0.00031539984 454 14 0.00086199981 455 14 0.020182896 457 14 0.0066434965 458 14 0.00037839985 459 14 2.1e-05 460 14 0.0073162988 463 14 0.10947114 464 14 2.1e-05 467 14 0.013875697 468 14 0.0002102 469 14 0.0013875999 470 14 0.0003994999 471 14 0.0029222998 473 14 2.1e-05 478 14 0.00035739993 483 14 0.00014719999 490 14 4.2e-05 1 16 0.00035179988 3 16 0.0021813998 16 16 0.054183397 18 16 0.013932899 22 16 0.00056289998 24 16 0.0019703 25 16 7.0399998e-05 60 16 0.00014069999 62 16 0.0052775964 101 16 7.0399998e-05 114 16 7.0399998e-05 141 16 0.00091479998 143 16 0.0015480998 171 16 7.0399998e-05 198 16 0.0033072999 200 16 7.0399998e-05 201 16 7.0399998e-05 206 16 7.0399998e-05 214 16 0.0030961998 215 16 0.00014069999 217 16 0.0026035998 223 16 0.00021109999 234 16 0.016114298 237 16 0.0038701999 241 16 0.010766298 263 16 0.0040109977 273 16 7.0399998e-05 279 16 7.0399998e-05 283 16 7.0399998e-05 307 16 7.0399998e-05 317 16 0.00077399984 328 16 7.0399998e-05 329 16 0.005840499 356 16 0.00028149993 357 16 0.00014069999 394 16 0.00056289998 397 16 7.0399998e-05 402 16 0.00028149993 442 16 7.0399998e-05 443 16 0.0012665999 444 16 7.0399998e-05 445 16 0.0052775964 446 16 0.00063329982 447 16 0.00014069999 448 16 0.00028149993 450 16 0.0023924999 452 16 0.0069663972 453 16 0.0074589998 454 16 0.00049259979 455 16 0.053550098 456 16 0.0247695 457 16 0.0041516982 458 16 0.00035179988 460 16 0.0045738965 463 16 0.0157624 467 16 0.0066849999 468 16 0.012806997 469 16 0.0013369999 470 16 0.00042219996 471 16 0.0028851 478 16 0.00028149993 483 16 0.00014069999 490 16 7.0399998e-05 3 17 0.0019595998 6 17 0.0056116991 12 17 0.00017809999 16 17 0.00093529979 17 17 0.0040973984 18 17 0.023560297 62 17 0.0004453999 98 17 0.00031179981 101 17 0.010822598 102 17 0.0042755976 104 17 0.0001336 107 17 0.0004453999 108 17 4.449999e-05 111 17 8.9099995e-05 114 17 0.00017809999 118 17 0.0001336 123 17 0.010599896 126 17 4.449999e-05 139 17 0.0083284974 141 17 0.011401597 143 17 0.0035184999 154 17 0.010020897 194 17 4.449999e-05 200 17 4.449999e-05 206 17 8.9099995e-05 207 17 0.001737 214 17 0.0089965984 215 17 0.00071259984 217 17 0.00075709983 223 17 0.0016923998 228 17 0.0001336 233 17 0.0037856998 234 17 0.023248598 237 17 0.0018259999 240 17 4.449999e-05 251 17 0.00062349997 252 17 0.0001336 300 17 0.017414197 317 17 0.0013806999 319 17 0.004587397 322 17 0.0084620975 326 17 0.0042755976 328 17 0.0079721995 329 17 0.00031179981 350 17 0.0076603964 356 17 8.9099995e-05 384 17 0.0011133999 387 17 4.449999e-05 394 17 8.9099995e-05 397 17 4.449999e-05 402 17 8.9099995e-05 404 17 4.449999e-05 406 17 0.020353597 407 17 0.0082393996 414 17 0.0036074999 422 17 4.449999e-05 430 17 0.0031621999 443 17 0.0021378 444 17 0.0016033 445 17 0.011134397 446 17 0.00080169993 447 17 0.0016033 448 17 0.0004453999 450 17 0.0021378 452 17 0.0003562998 453 17 0.00031179981 454 17 4.449999e-05 455 17 0.031443499 456 17 0.00066809985 457 17 0.0050326996 458 17 4.449999e-05 459 17 8.9099995e-05 460 17 0.0068141967 463 17 0.010688998 464 17 0.0022713998 465 17 0.00062349997 467 17 0.017235998 468 17 0.0019150998 469 17 0.0035629999 470 17 0.0019150998 471 17 0.0096200965 473 17 4.449999e-05 476 17 0.00026719994 477 17 0.0004453999 478 17 0.0001336 483 17 0.00026719994 489 17 0.00017809999 490 17 0.00026719994 491 17 0.0011133999 0 18 0.0003849999 1 18 0.045257699 2 18 0.019127999 3 18 0.00055339979 4 18 9.619999e-05 5 18 0.00076989993 6 18 0.016721997 7 18 0.0018044999 9 18 2.4099994e-05 11 18 9.619999e-05 12 18 9.619999e-05 13 18 2.4099994e-05 14 18 0.00052929996 16 18 0.0096481964 17 18 0.0025262998 18 18 0.030460499 24 18 0.00045709987 25 18 9.619999e-05 60 18 0.013112899 62 18 0.00096239988 79 18 2.4099994e-05 82 18 2.4099994e-05 83 18 2.4099994e-05 84 18 2.4099994e-05 98 18 0.00055339979 101 18 0.0049564987 102 18 0.0056061 104 18 0.00057749986 107 18 0.0001203 108 18 4.8099988e-05 111 18 2.4099994e-05 113 18 7.2199997e-05 114 18 0.0001203 117 18 9.619999e-05 118 18 0.00079399999 126 18 7.2199997e-05 127 18 2.4099994e-05 130 18 2.4099994e-05 141 18 9.619999e-05 143 18 0.010249697 153 18 0.0031518999 154 18 4.8099988e-05 172 18 0.0043789968 192 18 0.00021649999 193 18 4.8099988e-05 194 18 0.00048119994 195 18 4.8099988e-05 196 18 7.2199997e-05 197 18 0.0001203 198 18 0.027837899 201 18 7.2199997e-05 203 18 0.0003849999 204 18 0.00055339979 206 18 0.00093839993 207 18 0.00031279982 209 18 9.619999e-05 214 18 0.0013714 215 18 0.017564099 217 18 0.014508396 219 18 2.4099994e-05 223 18 0.0001203 228 18 4.8099988e-05 229 18 2.4099994e-05 234 18 0.0194408 237 18 0.0015399 240 18 2.4099994e-05 241 18 0.0001203 248 18 2.4099994e-05 250 18 2.4099994e-05 251 18 0.00079399999 252 18 0.00033679977 263 18 2.4099994e-05 267 18 0.0022856998 279 18 2.4099994e-05 315 18 2.4099994e-05 317 18 7.2199997e-05 322 18 0.0037774998 326 18 0.0036090999 328 18 0.0042827986 329 18 0.0027188 330 18 0.0027669999 356 18 4.8099988e-05 363 18 2.4099994e-05 387 18 4.8099988e-05 394 18 0.00014439999 397 18 7.2199997e-05 398 18 0.0019007998 402 18 0.0038977999 404 18 0.0013714 412 18 0.00079399999 419 18 2.4099994e-05 422 18 0.00043309992 423 18 2.4099994e-05 425 18 2.4099994e-05 430 18 4.8099988e-05 431 18 7.2199997e-05 432 18 7.2199997e-05 433 18 0.0002406 434 18 0.00028869999 438 18 0.00055339979 443 18 0.0034647 444 18 0.0045714974 445 18 0.0066406988 446 18 0.00089019979 447 18 0.017179199 448 18 0.0003849999 449 18 2.4099994e-05 450 18 0.0056541972 452 18 0.0075308979 453 18 0.0026225999 454 18 0.00033679977 455 18 0.031446997 456 18 0.0060872994 457 18 0.0045233965 458 18 0.0041383989 459 18 7.2199997e-05 460 18 0.0058706999 463 18 0.035681598 464 18 0.0041383989 465 18 0.0012270999 467 18 0.047423098 468 18 0.0051007979 469 18 0.0114046 470 18 0.0067849979 471 18 0.016000196 473 18 0.00014439999 474 18 4.8099988e-05 476 18 0.00098649994 477 18 7.2199997e-05 478 18 0.0027909998 483 18 0.0013714 489 18 0.0002406 490 18 0.00052929996 491 18 9.619999e-05 19 19 0.018687297 20 19 0.0071814992 21 19 0.0027798999 22 19 0.0033976999 24 19 0.0048648976 60 19 0.025250997 114 19 7.7199991e-05 126 19 7.7199991e-05 159 19 0.00054049981 160 19 0.0015443999 206 19 0.0001544 214 19 0.0068725981 215 19 0.00092659984 220 19 0.010965299 234 19 0.010115799 237 19 0.010038599 242 19 0.0026254999 252 19 0.00030889991 254 19 0.00030889991 267 19 0.0012355 272 19 0.00023169999 277 19 0.010656398 282 19 0.014517397 283 19 0.0108108 294 19 7.7199991e-05 295 19 0.0041699 312 19 0.0016215998 317 19 0.00061779981 322 19 0.011196896 328 19 0.0035520999 331 19 0.009034697 332 19 0.009034697 335 19 0.0020848999 336 19 7.7199991e-05 340 19 0.00023169999 343 19 7.7199991e-05 350 19 0.00092659984 352 19 0.0019304999 356 19 0.00030889991 372 19 0.0020076998 374 19 0.00023169999 384 19 0.0003860998 398 19 0.0001544 402 19 0.018455599 408 19 0.0016215998 442 19 0.0020848999 443 19 0.0056370981 444 19 0.0035520999 445 19 0.0078763999 446 19 0.00069499994 447 19 0.0030887998 448 19 7.7199991e-05 450 19 0.00077219983 452 19 0.038146697 453 19 0.0203861 454 19 0.0064864978 455 19 0.023629297 456 19 0.00030889991 457 19 0.0030115999 459 19 0.0014672 460 19 0.0010038998 463 19 0.19752896 464 19 0.00023169999 465 19 0.00030889991 467 19 0.019845597 468 19 0.0097296983 469 19 0.0013126999 470 19 0.0012355 471 19 0.0019304999 473 19 7.7199991e-05 477 19 0.0003860998 478 19 0.00069499994 483 19 0.0013899999 489 19 0.0029344 490 19 0.0001544 491 19 0.0094207972 19 20 6.4199994e-05 20 20 0.13482279 21 20 0.0053928979 22 20 0.0001926 24 20 0.00038519991 60 20 0.0049434975 114 20 6.4199994e-05 126 20 6.4199994e-05 130 20 0.00038519991 143 20 6.4199994e-05 159 20 0.0026322999 160 20 6.4199994e-05 194 20 6.4199994e-05 206 20 0.00012839999 214 20 0.026001498 215 20 0.0015407999 220 20 0.006805297 234 20 0.010336399 237 20 0.024011299 242 20 0.00070619979 252 20 0.00038519991 254 20 0.00077039981 265 20 0.0001926 267 20 0.0069978982 277 20 0.0044298992 282 20 0.010464799 283 20 0.0079609975 284 20 6.4199994e-05 294 20 0.001926 312 20 0.0030174998 317 20 0.00051359995 322 20 0.0082177967 328 20 6.4199994e-05 331 20 0.0093733966 332 20 0.0090523995 335 20 0.001284 336 20 0.00089879986 350 20 6.4199994e-05 356 20 0.00038519991 358 20 0.00012839999 372 20 0.00070619979 384 20 0.00025679986 386 20 0.00025679986 398 20 0.00044939993 402 20 0.00077039981 408 20 0.0017976 413 20 0.00032099988 422 20 6.4199994e-05 442 20 6.4199994e-05 443 20 0.0041731 444 20 0.00012839999 445 20 0.0041731 446 20 0.00096299988 447 20 0.00038519991 448 20 0.0001926 450 20 0.00077039981 452 20 0.027413998 453 20 0.0050076991 454 20 0.0012198 455 20 0.032999497 456 20 0.00051359995 457 20 0.0059706978 458 20 6.4199994e-05 459 20 0.0030174998 460 20 0.00083459984 463 20 0.010528997 464 20 6.4199994e-05 465 20 0.00044939993 467 20 0.014766298 468 20 0.00083459984 469 20 0.0013481998 470 20 0.0015407999 471 20 0.0023753999 473 20 6.4199994e-05 477 20 0.00032099988 478 20 0.00077039981 483 20 0.00070619979 489 20 0.00070619979 490 20 0.0001926 491 20 0.022984099 20 21 0.0012299998 21 21 0.045971699 22 21 0.00015379999 24 21 0.00015379999 60 21 0.013837598 114 21 0.00015379999 159 21 0.0053812973 160 21 0.0039974973 206 21 0.0003074999 214 21 0.021678999 215 21 0.0003074999 220 21 0.0087637976 223 21 0.0015374999 224 21 0.0003074999 234 21 0.012915097 237 21 0.0063037984 242 21 0.0007687998 252 21 0.00061499979 254 21 0.00061499979 272 21 0.0038437999 277 21 0.017681397 282 21 0.00015379999 295 21 0.0003074999 305 21 0.00015379999 312 21 0.0044588 322 21 0.0072262995 328 21 0.010762598 331 21 0.014145099 332 21 0.0133764 335 21 0.0018449998 336 21 0.0010762999 341 21 0.0010762999 350 21 0.00015379999 352 21 0.0003074999 356 21 0.0004612999 358 21 0.0130689 372 21 0.0026137999 384 21 0.0003074999 398 21 0.0018449998 402 21 0.0015374999 442 21 0.0063037984 443 21 0.0030749999 444 21 0.0070725977 445 21 0.0047662966 446 21 0.0004612999 447 21 0.0044588 450 21 0.0007687998 452 21 0.029520299 453 21 0.0035362998 454 21 0.0024599999 455 21 0.019372698 456 21 0.00061499979 457 21 0.011377599 458 21 0.0041512996 459 21 0.0069187991 460 21 0.0052275993 463 21 0.0435117 464 21 0.0027674998 465 21 0.00061499979 467 21 0.023216497 468 21 0.0010762999 469 21 0.0018449998 470 21 0.0012299998 471 21 0.0033824998 477 21 0.0007687998 478 21 0.0010762999 483 21 0.0013837998 489 21 0.00061499979 490 21 0.00015379999 491 21 0.0047662966 19 22 0.00029419991 22 22 0.12051398 60 22 0.0083099976 82 22 1.8399995e-05 108 22 1.8399995e-05 114 22 1.8399995e-05 126 22 1.8399995e-05 130 22 0.0020774999 150 22 0.00071699987 159 22 0.0068943985 189 22 1.8399995e-05 190 22 9.1899987e-05 192 22 1.8399995e-05 193 22 0.0022796998 194 22 1.8399995e-05 200 22 1.8399995e-05 203 22 1.8399995e-05 204 22 3.6799989e-05 206 22 5.5199998e-05 207 22 1.8399995e-05 214 22 0.00051479996 215 22 0.0025738999 220 22 0.0070965998 223 22 3.6799989e-05 234 22 0.014395498 237 22 0.0050558969 242 22 0.0036401998 252 22 3.6799989e-05 264 22 0.00049639982 265 22 0.0012502 267 22 0.00012869999 272 22 5.5199998e-05 273 22 0.0029048 277 22 0.0097991973 282 22 1.8399995e-05 284 22 1.8399995e-05 295 22 0.0026841999 305 22 1.8399995e-05 312 22 0.012299597 317 22 0.00029419991 322 22 0.0033276998 328 22 0.0015626999 331 22 0.031125899 332 22 0.016270798 335 22 0.0027760998 340 22 0.00018389999 352 22 0.00068019982 356 22 0.00034929998 358 22 0.00064349989 372 22 0.00049639982 374 22 5.5199998e-05 384 22 0.0001103 385 22 0.0020223998 387 22 1.8399995e-05 394 22 3.6799989e-05 397 22 3.6799989e-05 402 22 0.00022059999 417 22 0.00012869999 422 22 1.8399995e-05 430 22 1.8399995e-05 433 22 1.8399995e-05 434 22 1.8399995e-05 442 22 0.00068019982 443 22 0.0030334999 444 22 0.00022059999 445 22 0.0035299 446 22 0.00047799991 447 22 0.0022429998 448 22 0.00018389999 450 22 0.00093759992 452 22 0.019524898 453 22 0.0001103 454 22 0.00055159978 455 22 0.030004397 456 22 0.00064349989 457 22 0.0031989999 458 22 9.1899987e-05 459 22 0.00080889999 460 22 0.0025370999 463 22 0.041090596 464 22 9.1899987e-05 465 22 0.00064349989 467 22 0.022742298 468 22 0.0010478999 469 22 0.0025922998 470 22 0.0013052998 471 22 0.0035850999 473 22 3.6799989e-05 477 22 0.00027579977 478 22 0.0009192999 483 22 0.0005698998 489 22 0.00027579977 490 22 0.0001103 491 22 0.0050926991 9 23 1.7899991e-05 16 23 5.9999993e-06 21 23 2.3899993e-05 22 23 5.9999993e-06 23 23 0.033729199 24 23 3.5899997e-05 25 23 5.9999993e-06 60 23 0.0041899979 66 23 4.1799998e-05 74 23 0.036938999 79 23 5.9999993e-06 82 23 2.3899993e-05 83 23 2.3899993e-05 84 23 1.7899991e-05 108 23 2.9899995e-05 113 23 4.1799998e-05 114 23 9.5599986e-05 126 23 4.7799986e-05 127 23 5.9999993e-06 150 23 0.0001255 189 23 4.1799998e-05 190 23 2.3899993e-05 192 23 1.2e-05 194 23 1.7899991e-05 196 23 5.9999993e-06 197 23 1.2e-05 200 23 2.3899993e-05 201 23 1.2e-05 203 23 1.7899991e-05 204 23 1.7899991e-05 206 23 3.5899997e-05 207 23 1.2e-05 209 23 5.9999993e-06 214 23 0.0043453984 215 23 5.9999993e-06 223 23 0.0021098999 233 23 0.00019129999 234 23 0.0036699998 237 23 0.0002331 241 23 1.2e-05 242 23 5.9999993e-06 248 23 1.7899991e-05 250 23 1.2e-05 251 23 5.9999993e-06 252 23 0.0002331 254 23 0.0001255 263 23 5.9999993e-06 272 23 8.3699997e-05 277 23 0.006281998 281 23 0.00028689997 287 23 5.9999993e-06 307 23 0.00093839993 311 23 2.3899993e-05 317 23 5.9999993e-06 319 23 0.0001853 324 23 0.0032754999 326 23 0.0010758999 328 23 0.0025462999 331 23 0.00053789979 333 23 0.0060369968 340 23 0.00016739999 349 23 5.9999993e-06 350 23 0.0024924998 351 23 0.0001375 354 23 0.0010519999 356 23 0.00039449986 358 23 0.0041301996 369 23 0.00028089993 370 23 0.0004482998 372 23 0.0051223971 374 23 0.00094439997 380 23 5.9999993e-06 385 23 0.0002331 386 23 0.00010159999 387 23 3.5899997e-05 390 23 0.00016139999 394 23 1.7899991e-05 397 23 1.7899991e-05 402 23 0.00010759999 404 23 0.0001853 414 23 0.00047819992 419 23 5.9999993e-06 422 23 2.9899995e-05 423 23 1.2e-05 425 23 5.9999993e-06 430 23 2.3899993e-05 431 23 5.9999993e-06 432 23 5.9999993e-06 433 23 1.2e-05 434 23 1.2e-05 442 23 0.0002271 443 23 0.00059169997 444 23 0.0005857998 445 23 0.0013149998 446 23 0.0001733 447 23 0.0033053998 448 23 7.7699995e-05 449 23 1.2e-05 450 23 0.0026000999 452 23 0.0088342987 453 23 0.0029348 454 23 0.0021756999 455 23 0.0046322979 456 23 0.00054389983 457 23 0.0033710999 458 23 8.9699999e-05 459 23 0.00082489988 460 23 0.0020740998 463 23 0.15183824 464 23 0.00059769978 465 23 0.00030479999 467 23 0.014524497 468 23 0.00026299991 469 23 0.007280197 470 23 0.0056543984 471 23 0.0014344999 473 23 0.00010159999 477 23 1.7899991e-05 478 23 0.00035859994 483 23 0.00055589993 489 23 0.00039449986 490 23 0.00035859994 491 23 5.3799988e-05 22 24 0.0014771998 24 24 0.025145996 25 24 3.4399985e-05 60 24 0.0065956973 108 24 3.4399985e-05 114 24 6.8699999e-05 126 24 3.4399985e-05 150 24 0.00072139991 160 24 6.8699999e-05 169 24 0.0002061 171 24 3.4399985e-05 190 24 0.0001374 191 24 3.4399985e-05 192 24 0.0001374 193 24 0.0040535964 194 24 0.0001031 197 24 3.4399985e-05 198 24 0.0001374 200 24 6.8699999e-05 203 24 6.8699999e-05 204 24 6.8699999e-05 206 24 0.0001374 207 24 3.4399985e-05 214 24 0.0023015998 215 24 0.0015115 218 24 3.4399985e-05 220 24 0.009275198 223 24 0.0002748 231 24 0.0001718 233 24 6.8699999e-05 234 24 0.030951597 235 24 0.0001031 237 24 0.0067673996 240 24 0.00034349994 241 24 0.0002061 242 24 0.0021986 252 24 0.0001374 254 24 0.0083132982 266 24 0.0002061 267 24 3.4399985e-05 269 24 3.4399985e-05 270 24 0.0001031 272 24 0.00061829994 273 24 0.00037789997 276 24 3.4399985e-05 277 24 0.011954699 282 24 0.0089659989 283 24 0.00079009985 289 24 0.00079009985 292 24 0.00030919979 295 24 0.0015801999 297 24 0.0009961999 300 24 3.4399985e-05 301 24 3.4399985e-05 305 24 0.0012367 307 24 0.00037789997 312 24 0.0018206998 317 24 0.0002748 322 24 0.0071452968 326 24 3.4399985e-05 328 24 0.011130199 331 24 0.020336699 332 24 0.015218098 335 24 0.0041909963 336 24 0.0029199999 337 24 0.0014771998 341 24 6.8699999e-05 350 24 0.0002405 351 24 0.0018549999 352 24 0.00034349994 354 24 0.0020611 356 24 0.00048089982 358 24 0.00085879979 371 24 0.0001031 372 24 0.0012023 373 24 3.4399985e-05 374 24 0.0002061 384 24 0.0001031 386 24 0.00030919979 387 24 3.4399985e-05 394 24 0.0001031 397 24 6.8699999e-05 402 24 0.0059772991 422 24 0.0001031 433 24 3.4399985e-05 434 24 3.4399985e-05 438 24 3.4399985e-05 442 24 0.0012023 443 24 0.0036413998 444 24 0.0017519998 445 24 0.009275198 446 24 0.0012709999 447 24 0.0022328999 448 24 0.00044659991 450 24 0.0012709999 452 24 0.025523897 453 24 0.0073857978 454 24 0.0037101 455 24 0.0282721 456 24 0.0018549999 457 24 0.0065269992 458 24 0.0002748 459 24 0.0027137999 460 24 0.004637599 463 24 0.0366541 464 24 0.0012023 465 24 0.00085879979 467 24 0.0297492 468 24 0.0016832999 469 24 0.0038130998 470 24 0.0011679998 471 24 0.0098247975 473 24 3.4399985e-05 477 24 3.4399985e-05 478 24 0.0012367 483 24 0.00054959999 489 24 0.00092749996 490 24 0.0001031 491 24 0.0042253993 22 25 0.0014227999 24 25 0.017073199 25 25 0.032520298 60 25 0.011788599 104 25 0.00020329999 114 25 0.00020329999 126 25 0.00020329999 130 25 0.00060979999 160 25 0.0008129999 190 25 0.00020329999 193 25 0.0028454999 194 25 0.00020329999 206 25 0.00020329999 214 25 0.015243899 218 25 0.00060979999 220 25 0.0044714995 223 25 0.0012194999 231 25 0.00020329999 234 25 0.016869899 237 25 0.0028454999 240 25 0.00020329999 242 25 0.00040649995 252 25 0.00020329999 257 25 0.00020329999 272 25 0.00020329999 277 25 0.017886199 282 25 0.0028454999 283 25 0.0024389999 292 25 0.00060979999 295 25 0.00060979999 297 25 0.00020329999 305 25 0.0020325 308 25 0.00020329999 312 25 0.0071137995 322 25 0.0022357998 328 25 0.0079267994 331 25 0.013821099 332 25 0.0097560994 333 25 0.00020329999 335 25 0.0008129999 336 25 0.0020325 337 25 0.0012194999 350 25 0.0008129999 351 25 0.00060979999 352 25 0.0008129999 354 25 0.0010162999 356 25 0.0010162999 371 25 0.00040649995 372 25 0.0016259998 374 25 0.00060979999 384 25 0.00020329999 394 25 0.00020329999 402 25 0.0020325 408 25 0.00060979999 442 25 0.0054877996 443 25 0.0065040998 444 25 0.0044714995 445 25 0.0032519998 446 25 0.00060979999 447 25 0.0038617998 448 25 0.00020329999 450 25 0.0014227999 452 25 0.038008098 453 25 0.041260198 454 25 0.0091462992 455 25 0.014837399 456 25 0.0014227999 457 25 0.015447199 458 25 0.00020329999 459 25 0.0014227999 460 25 0.0018292998 463 25 0.045934997 464 25 0.00060979999 465 25 0.00040649995 467 25 0.034349598 468 25 0.0010162999 469 25 0.0022357998 470 25 0.0022357998 471 25 0.0063007995 473 25 0.00020329999 478 25 0.0010162999 483 25 0.0034552999 489 25 0.0014227999 490 25 0.00020329999 491 25 0.0052846 7 26 0.00024609989 9 26 2.0499996e-05 16 26 0.0015481999 17 26 3.3999995e-06 18 26 0.0011995998 24 26 0.0024024998 60 26 0.00048529985 79 26 1.7099999e-05 80 26 2.729999e-05 82 26 3.7599995e-05 83 26 2.729999e-05 84 26 2.729999e-05 108 26 3.7599995e-05 113 26 4.4399989e-05 114 26 0.00015379999 126 26 7.1799994e-05 127 26 1.0299999e-05 134 26 0.010697 135 26 0.00015379999 139 26 0.0018010999 141 26 2.729999e-05 142 26 0.0001162 150 26 0.00012299999 154 26 2.3899993e-05 160 26 0.051157497 161 26 0.0011312 162 26 0.0035849998 163 26 0.038553499 164 26 0.0095007978 165 26 0.024753399 167 26 0.023434199 168 26 2.3899993e-05 170 26 0.00059119985 171 26 0.0032124999 177 26 0.0012063999 182 26 0.0015207999 189 26 3.7599995e-05 191 26 0.0027818999 192 26 0.00058439979 194 26 4.0999992e-05 195 26 3.0799987e-05 196 26 6.7999999e-06 197 26 0.001432 198 26 4.4399989e-05 201 26 3.0799987e-05 203 26 4.7799986e-05 204 26 7.1799994e-05 206 26 0.0001504 207 26 3.7599995e-05 209 26 1.37e-05 214 26 0.0002153 215 26 0.00011959999 218 26 1.7099999e-05 219 26 0.00026999996 223 26 0.00023919999 233 26 0.0032295999 234 26 0.00068689999 235 26 0.00024949992 236 26 0.0061754994 237 26 0.0013601999 240 26 0.00090909982 241 26 0.0094802976 242 26 0.00021869999 248 26 3.0799987e-05 250 26 1.37e-05 251 26 6.7999999e-06 252 26 0.0011586 254 26 0.0029424999 255 26 0.0065069981 256 26 0.0031817998 257 26 0.00080649997 258 26 0.0017497998 259 26 0.0032090999 263 26 3.3999995e-06 264 26 0.010167297 265 26 0.0019172998 266 26 0.0312468 267 26 9.229999e-05 268 26 0.0056013986 269 26 0.0021940998 270 26 4.7799986e-05 271 26 0.0014079998 272 26 8.8899993e-05 273 26 0.00046139979 274 26 0.0028126999 277 26 0.0026348999 279 26 0.0020915 282 26 0.0013020998 285 26 3.0799987e-05 292 26 0.0030109 293 26 4.7799986e-05 295 26 0.0049144998 302 26 0.0050374977 303 26 0.004220698 304 26 0.0028331999 305 26 2.0499996e-05 306 26 0.015512299 307 26 0.0004784998 308 26 0.01055 309 26 0.00057069981 310 26 0.00022209999 311 26 0.0017497998 312 26 0.0001299 317 26 0.0024913999 318 26 7.5199991e-05 319 26 0.0058884993 322 26 0.0011687998 323 26 6.7999999e-06 324 26 0.00042379997 326 26 3.3999995e-06 331 26 0.0014524998 341 26 0.00020509999 350 26 0.0020949999 352 26 0.00039639999 356 26 4.0999992e-05 358 26 0.00016059999 363 26 3.3999995e-06 366 26 0.012026399 368 26 0.00056389999 371 26 0.0032398999 374 26 6.7999999e-06 380 26 0.0010799998 383 26 0.0015207999 384 26 3.7599995e-05 385 26 0.0040019974 386 26 0.0019479999 387 26 6.8399997e-05 390 26 0.00065279985 394 26 0.0001333 397 26 3.3999995e-06 398 26 0.00053659989 402 26 0.00028019981 412 26 6.7999999e-06 414 26 1.0299999e-05 415 26 0.0013840999 419 26 1.0299999e-05 422 26 0.0001948 423 26 2.3899993e-05 425 26 1.0299999e-05 430 26 3.4199998e-05 431 26 2.3899993e-05 432 26 1.0299999e-05 433 26 2.729999e-05 434 26 3.0799987e-05 438 26 0.00026659993 439 26 0.0014729998 441 26 6.7999999e-06 442 26 3.3999995e-06 443 26 0.010608099 444 26 0.00020509999 445 26 0.0136429 446 26 0.0016814 447 26 0.0010115998 448 26 3.3999995e-06 449 26 1.37e-05 450 26 0.0049417987 452 26 0.00074499985 453 26 8.8899993e-05 454 26 0.0014660999 455 26 0.046813797 456 26 0.059373397 457 26 0.0051946975 458 26 0.00037929998 459 26 2.729999e-05 460 26 0.0038002999 463 26 0.010515798 464 26 0.00026319991 465 26 0.00015719999 467 26 0.012781698 468 26 0.00077919988 469 26 0.033734798 470 26 0.0076621994 471 26 0.0042445995 473 26 0.00017429999 477 26 5.1299998e-05 478 26 0.00086119981 483 26 0.00054679997 489 26 9.9099998e-05 490 26 0.00061519979 491 26 0.00019139999 7 27 0.00040699984 16 27 0.0021831999 18 27 0.0016281998 24 27 0.0034043998 60 27 0.00014799999 80 27 7.3999996e-05 108 27 3.6999991e-05 113 27 3.6999991e-05 114 27 7.3999996e-05 126 27 3.6999991e-05 134 27 0.011175297 135 27 0.00014799999 139 27 0.0010730999 141 27 3.6999991e-05 142 27 7.3999996e-05 150 27 3.6999991e-05 154 27 7.3999996e-05 160 27 0.033488799 161 27 0.00070309988 162 27 0.0018871999 163 27 0.026161898 164 27 0.0076228976 165 27 0.021869399 167 27 0.0045144968 168 27 0.00048109982 170 27 0.00055509992 171 27 0.0026642999 177 27 0.00099909981 182 27 0.0012210999 191 27 0.0023312999 192 27 0.00055509992 195 27 0.00040699984 197 27 0.00096209999 198 27 3.6999991e-05 206 27 7.3999996e-05 214 27 0.00029599993 215 27 0.00011099999 219 27 0.0017392 223 27 0.00036999979 233 27 0.0055875964 234 27 0.0017392 235 27 0.0014062 236 27 0.0037743999 237 27 0.0010360999 240 27 0.00092509994 241 27 0.0099540986 242 27 0.000185 252 27 0.00085109985 254 27 0.0026642999 255 27 0.0043294989 256 27 0.0021092 257 27 0.00059209997 258 27 0.0012951 259 27 0.0022201999 262 27 3.6999991e-05 264 27 0.0068827979 265 27 0.0042554997 266 27 0.025939897 267 27 0.00025899988 268 27 0.0059946999 269 27 0.0013320998 270 27 3.6999991e-05 271 27 0.0023683 272 27 7.3999996e-05 273 27 0.00029599993 274 27 0.0027382998 277 27 0.0046254992 279 27 0.0016651999 282 27 0.0019611998 285 27 0.00014799999 292 27 0.0025902998 293 27 0.00011099999 295 27 0.0052175969 302 27 0.0028122999 303 27 0.0038113999 304 27 0.0027013 305 27 0.00025899988 306 27 0.016577899 307 27 0.00048109982 308 27 0.0099910982 309 27 0.0017021999 310 27 0.00022199999 311 27 0.0028863 312 27 0.00025899988 317 27 0.00092509994 318 27 3.6999991e-05 319 27 0.0049955994 322 27 0.0017761998 324 27 0.00044399989 331 27 0.0010730999 334 27 0.00025899988 341 27 7.3999996e-05 350 27 0.0030713 352 27 0.0010730999 356 27 7.3999996e-05 358 27 3.6999991e-05 366 27 0.013173498 368 27 0.0011470998 371 27 0.0042554997 380 27 0.0012951 381 27 0.0012210999 383 27 0.0017761998 384 27 0.00011099999 385 27 0.0032933999 386 27 0.0027382998 387 27 3.6999991e-05 390 27 0.00066609983 394 27 7.3999996e-05 398 27 0.00040699984 402 27 0.00025899988 415 27 0.0012951 422 27 3.6999991e-05 430 27 3.6999991e-05 438 27 0.00025899988 439 27 0.00096209999 441 27 3.6999991e-05 443 27 0.0071787983 444 27 7.3999996e-05 445 27 0.013617497 446 27 0.00085109985 447 27 0.00036999979 450 27 0.0016651999 452 27 0.00025899988 453 27 3.6999991e-05 454 27 0.00048109982 455 27 0.037374198 456 27 0.045145098 457 27 0.0017392 458 27 0.00022199999 460 27 0.0022942999 463 27 0.0035523998 464 27 7.3999996e-05 465 27 3.6999991e-05 467 27 0.008547999 468 27 0.00025899988 469 27 0.065201283 470 27 0.0025902998 471 27 0.0027752998 473 27 7.3999996e-05 478 27 0.00029599993 483 27 0.000185 489 27 3.6999991e-05 490 27 0.00022199999 491 27 0.00014799999 7 28 0.00049079978 9 28 8.2999995e-06 16 28 0.0028199998 18 28 0.0021046 24 28 0.0045419969 60 28 0.00010809999 80 28 7.4899988e-05 82 28 8.2999995e-06 83 28 8.2999995e-06 84 28 8.2999995e-06 108 28 1.6599995e-05 113 28 1.6599995e-05 114 28 3.3299992e-05 126 28 2.4999987e-05 127 28 8.2999995e-06 134 28 0.012502898 135 28 0.00019129999 139 28 0.00054899999 141 28 2.4999987e-05 142 28 4.1599997e-05 150 28 3.3299992e-05 154 28 9.1499998e-05 159 28 8.2999995e-06 160 28 0.0223605 161 28 0.00031609996 162 28 0.00069879997 163 28 0.018567197 164 28 0.013417996 165 28 0.021229196 167 28 0.0083601996 168 28 0.0009066998 170 28 0.00054069981 171 28 0.0023873998 177 28 0.0017386 182 28 0.0021627999 183 28 1.6599995e-05 189 28 8.2999995e-06 191 28 0.0021378999 192 28 0.00049909996 194 28 8.2999995e-06 195 28 0.0007487 197 28 0.00069879997 198 28 3.3299992e-05 201 28 8.2999995e-06 203 28 8.2999995e-06 204 28 1.6599995e-05 206 28 4.1599997e-05 207 28 8.2999995e-06 214 28 0.00029119989 215 28 0.00010809999 218 28 2.4999987e-05 219 28 0.0021545 220 28 8.2999995e-06 223 28 0.00048249983 233 28 0.0054736994 234 28 0.0026868999 235 28 0.0023624999 236 28 0.0021627999 237 28 0.00064049987 240 28 0.00092339981 241 28 0.010914098 242 28 0.000183 248 28 8.2999995e-06 250 28 8.2999995e-06 252 28 0.00066549983 254 28 0.0025787998 255 28 0.0029281999 256 28 0.0012643998 257 28 0.00049079978 258 28 0.00095659983 259 28 0.0015472998 262 28 7.4899988e-05 264 28 0.0048413984 265 28 0.0064219981 266 28 0.023990899 267 28 0.00034939987 268 28 0.0068461969 269 28 0.00059059984 270 28 2.4999987e-05 271 28 0.0028948998 272 28 7.4899988e-05 273 28 0.00019129999 274 28 0.0030029998 277 28 0.0063969977 279 28 0.0014308 282 28 0.0026785999 285 28 0.00014969999 292 28 0.0025121998 293 28 0.0001581 295 28 0.0057481974 302 28 0.0021046 303 28 0.0046583973 304 28 0.0027700998 305 28 0.00031609996 306 28 0.018883299 307 28 0.00045749987 308 28 0.020472199 309 28 0.0026452998 310 28 0.00025789998 311 28 0.0038681999 312 28 0.0003992999 317 28 0.00057399995 318 28 1.6599995e-05 319 28 0.004724998 322 28 0.0022127999 324 28 0.00048249983 331 28 0.00066549983 334 28 0.00044089998 335 28 8.2999995e-06 341 28 4.1599997e-05 350 28 0.004009597 352 28 0.0013392998 356 28 0.00014969999 358 28 4.1599997e-05 366 28 0.011454798 368 28 0.0014640999 371 28 0.0054736994 374 28 2.4999987e-05 380 28 0.0015305998 383 28 0.0020879998 384 28 0.0001581 385 28 0.0029447998 386 28 0.0034605998 387 28 1.6599995e-05 390 28 0.00074039982 394 28 4.1599997e-05 397 28 8.2999995e-06 398 28 0.00032439991 402 28 0.00016639999 412 28 8.2999995e-06 414 28 8.2999995e-06 415 28 0.0013059999 419 28 3.3299992e-05 422 28 4.9899987e-05 423 28 8.2999995e-06 425 28 8.2999995e-06 430 28 1.6599995e-05 431 28 8.2999995e-06 433 28 8.2999995e-06 434 28 8.2999995e-06 438 28 0.00029119989 439 28 0.00041589979 441 28 6.6499997e-05 443 28 0.0068212971 444 28 4.9899987e-05 445 28 0.017810199 446 28 0.00080689997 447 28 0.0003992999 448 28 8.2999995e-06 450 28 0.0011063998 452 28 0.00016639999 453 28 1.6599995e-05 454 28 0.00033269986 455 28 0.0379912 456 28 0.041984197 457 28 0.0011562998 458 28 0.00013309999 460 28 0.0017551999 463 28 0.0023542 464 28 5.8199992e-05 465 28 3.3299992e-05 467 28 0.0056566969 468 28 0.00017469999 469 28 0.060168698 470 28 0.0017135998 471 28 0.0017718999 473 28 4.1599997e-05 477 28 8.2999995e-06 478 28 0.00019129999 483 28 0.0001165 489 28 2.4999987e-05 490 28 0.0001414 491 28 6.6499997e-05 7 29 0.00025089993 9 29 2.5099987e-05 16 29 0.0013299999 18 29 0.0010038 24 29 0.0021329999 60 29 0.00030109985 80 29 0.00022579999 82 29 2.5099987e-05 83 29 2.5099987e-05 84 29 2.5099987e-05 108 29 5.0199989e-05 113 29 5.0199989e-05 114 29 0.00010039999 126 29 7.5299991e-05 127 29 2.5099987e-05 139 29 0.00030109985 141 29 5.0199989e-05 142 29 2.5099987e-05 150 29 0.00010039999 154 29 0.00010039999 160 29 0.0070262998 161 29 0.00087829982 162 29 2.5099987e-05 163 29 0.0124969 164 29 0.0074528977 165 29 0.0085821971 168 29 0.00022579999 170 29 0.00022579999 171 29 0.0026850998 177 29 0.00097869989 182 29 0.0012546999 183 29 2.5099987e-05 189 29 2.5099987e-05 191 29 0.00020079999 192 29 0.00032619992 194 29 2.5099987e-05 197 29 0.0011292 198 29 5.0199989e-05 201 29 2.5099987e-05 203 29 2.5099987e-05 204 29 5.0199989e-05 206 29 0.0001255 207 29 2.5099987e-05 214 29 7.5299991e-05 215 29 7.5299991e-05 219 29 0.0030866 223 29 0.0003513 233 29 0.0041655973 234 29 0.0017064 235 29 0.0010038 236 29 0.00037639984 237 29 0.00095359981 240 29 0.0008280999 241 29 0.00040149991 242 29 0.00010039999 252 29 0.00037639984 254 29 0.0025093998 255 29 0.0077540986 256 29 0.0014052999 257 29 0.00020079999 258 29 0.00045169983 259 29 0.0023337998 264 29 0.0091592968 265 29 0.0091342963 266 29 0.035558298 267 29 0.0001757 268 29 0.0074027963 269 29 0.00040149991 270 29 5.0199989e-05 271 29 0.0032872998 272 29 0.00022579999 273 29 0.00020079999 274 29 0.0020325999 277 29 0.011467997 279 29 0.00090339989 282 29 0.0032119998 285 29 7.5299991e-05 292 29 0.0027353 293 29 0.00020079999 295 29 0.0055206977 302 29 0.0031116998 303 29 0.0045419969 304 29 0.0030363998 305 29 0.0047678985 306 29 0.033726498 307 29 0.00095359981 308 29 0.026599698 309 29 0.0032621999 310 29 0.0035132 311 29 0.0069259964 312 29 0.0011292 317 29 0.0015808998 318 29 5.0199989e-05 319 29 0.0050689988 322 29 0.0084064975 324 29 0.0016311 331 29 0.00095359981 334 29 0.0085068978 335 29 2.5099987e-05 341 29 0.0001255 350 29 0.0024089999 352 29 0.0036887999 356 29 0.0019071999 358 29 0.00010039999 366 29 0.0050940998 368 29 0.00097869989 371 29 0.0062985979 374 29 0.0001757 380 29 0.00092849997 383 29 0.00077789999 384 29 0.0001757 385 29 0.0027853998 386 29 0.0039648972 387 29 5.0199989e-05 390 29 0.0016059999 394 29 0.00010039999 398 29 0.00022579999 402 29 0.00020079999 412 29 2.5099987e-05 414 29 2.5099987e-05 415 29 0.0044416972 419 29 0.00020079999 422 29 0.0001506 423 29 2.5099987e-05 425 29 2.5099987e-05 430 29 5.0199989e-05 431 29 2.5099987e-05 433 29 2.5099987e-05 434 29 2.5099987e-05 438 29 0.00020079999 439 29 0.00045169983 441 29 5.0199989e-05 443 29 0.0043161996 444 29 0.0001255 445 29 0.011066496 446 29 0.00072769984 447 29 0.00060229981 450 29 0.0030614999 452 29 0.00045169983 453 29 5.0199989e-05 454 29 0.00092849997 455 29 0.034479298 456 29 0.028030097 457 29 0.0032119998 458 29 0.00022579999 460 29 0.0025344999 463 29 0.0065495968 464 29 0.0001757 465 29 0.00010039999 467 29 0.0081304982 468 29 0.00047679991 469 29 0.072547078 470 29 0.0047678985 471 29 0.00266 473 29 0.00010039999 477 29 2.5099987e-05 478 29 0.00052699982 483 29 0.00032619992 489 29 7.5299991e-05 490 29 0.00037639984 491 29 0.00020079999 9 30 1.3399999e-05 16 30 4.0199986e-05 24 30 0.0016213998 60 30 0.00012059999 80 30 1.3399999e-05 82 30 1.3399999e-05 83 30 1.3399999e-05 84 30 1.3399999e-05 108 30 1.3399999e-05 113 30 2.6799986e-05 114 30 5.3599986e-05 126 30 2.6799986e-05 134 30 0.0025459998 135 30 4.0199986e-05 139 30 0.00072359992 141 30 2.6799986e-05 142 30 5.3599986e-05 150 30 4.0199986e-05 160 30 0.040333398 161 30 0.00033499999 162 30 0.0014605999 163 30 0.050034799 164 30 0.022015899 165 30 0.031891499 167 30 0.010009598 170 30 0.00080399984 171 30 0.0067802966 177 30 0.0028541998 182 30 0.0034973 189 30 1.3399999e-05 191 30 0.003082 192 30 0.0020367999 194 30 1.3399999e-05 195 30 1.3399999e-05 197 30 0.0011925998 198 30 2.6799986e-05 203 30 1.3399999e-05 204 30 1.3399999e-05 206 30 4.0199986e-05 207 30 1.3399999e-05 214 30 0.00013399999 215 30 4.0199986e-05 218 30 4.0199986e-05 219 30 0.00095139979 223 30 0.00016079999 233 30 0.010545596 234 30 0.00077719986 235 30 0.00010719999 236 30 0.0021439998 237 30 0.00077719986 240 30 0.00054939999 241 30 0.017205298 242 30 0.00030819979 252 30 0.00046899985 254 30 0.0018759998 255 30 0.0026397998 256 30 0.0044754967 257 30 0.00032159989 258 30 0.0009782 259 30 0.0035642998 264 30 0.0041538998 265 30 0.0016213998 266 30 0.021734498 267 30 9.3799987e-05 268 30 0.0076378994 269 30 0.00049579982 270 30 2.6799986e-05 271 30 0.0017553999 272 30 2.6799986e-05 273 30 0.00020099999 274 30 0.0039126985 277 30 0.0031355999 279 30 0.0014739998 282 30 0.0011657998 285 30 1.3399999e-05 292 30 0.003966298 293 30 4.0199986e-05 295 30 0.018196899 302 30 0.0028541998 303 30 0.023275398 304 30 0.0019161999 306 30 0.019228697 307 30 0.00053599989 308 30 0.0144316 309 30 0.0016615998 310 30 0.007879097 311 30 0.0019697999 312 30 5.3599986e-05 317 30 0.0006163998 318 30 2.6799986e-05 319 30 0.0043548979 322 30 0.0062442981 324 30 0.00025459984 331 30 0.00079059997 334 30 8.0399986e-05 341 30 5.3599986e-05 350 30 0.0018357998 352 30 0.00017419999 356 30 2.6799986e-05 358 30 4.0199986e-05 366 30 0.011992797 368 30 0.00068339985 371 30 0.0128638 380 30 0.0019295998 383 30 0.0013533998 385 30 0.013614196 386 30 0.0025727998 387 30 1.3399999e-05 390 30 0.0021573999 394 30 4.0199986e-05 397 30 1.3399999e-05 398 30 0.00033499999 402 30 0.00020099999 414 30 1.3399999e-05 415 30 0.0013935999 422 30 6.6999986e-05 423 30 1.3399999e-05 425 30 1.3399999e-05 430 30 1.3399999e-05 431 30 1.3399999e-05 433 30 1.3399999e-05 434 30 1.3399999e-05 438 30 0.00057619996 439 30 0.00071019982 441 30 1.3399999e-05 443 30 0.0095942989 444 30 5.3599986e-05 445 30 0.011228997 446 30 0.00091119995 447 30 0.00036179996 450 30 0.0011925998 452 30 0.00017419999 453 30 2.6799986e-05 454 30 0.00036179996 455 30 0.051950999 456 30 0.068982184 457 30 0.0012461999 458 30 0.00014739999 460 30 0.0017955999 463 30 0.0025459998 464 30 6.6999986e-05 465 30 2.6799986e-05 467 30 0.006740097 468 30 0.00018759999 469 30 0.0037518998 470 30 0.0018491999 471 30 0.0021171998 473 30 4.0199986e-05 477 30 1.3399999e-05 478 30 0.00020099999 483 30 0.00012059999 489 30 2.6799986e-05 490 30 0.00014739999 491 30 8.0399986e-05 7 31 0.00010629999 9 31 5.3099997e-05 16 31 0.00042509986 18 31 0.00026569981 24 31 0.0066949986 60 31 0.00037189992 80 31 0.00010629999 82 31 5.3099997e-05 83 31 5.3099997e-05 84 31 5.3099997e-05 108 31 5.3099997e-05 113 31 0.00010629999 114 31 0.00015939999 126 31 5.3099997e-05 134 31 0.0017002998 135 31 5.3099997e-05 139 31 0.00031879987 141 31 5.3099997e-05 150 31 0.00010629999 154 31 0.00010629999 160 31 0.007704597 162 31 0.00031879987 163 31 0.0030286999 164 31 0.0019659998 165 31 0.0065886974 166 31 0.012646098 167 31 0.0034538 168 31 0.0013814999 170 31 0.00021249999 171 31 0.00085019995 177 31 0.00026569981 182 31 0.005313497 183 31 0.0034005998 189 31 5.3099997e-05 191 31 0.0006907999 192 31 0.00085019995 194 31 5.3099997e-05 197 31 0.00015939999 198 31 5.3099997e-05 203 31 5.3099997e-05 204 31 5.3099997e-05 206 31 0.00015939999 207 31 5.3099997e-05 214 31 0.00010629999 219 31 0.0030286999 223 31 0.00042509986 233 31 0.0077576973 234 31 0.0034005998 235 31 0.0054197982 236 31 0.0028692998 237 31 0.00074389996 240 31 0.00026569981 241 31 0.008554697 242 31 5.3099997e-05 252 31 0.0044632964 254 31 0.0042507984 255 31 0.004728999 256 31 0.0030818 257 31 0.00026569981 258 31 0.00074389996 259 31 0.0020722998 262 31 0.00015939999 264 31 0.0074919984 265 31 0.011105198 266 31 0.037353899 267 31 0.00058449991 268 31 0.0073325969 269 31 0.00058449991 271 31 0.0028161998 272 31 0.00015939999 273 31 0.00010629999 274 31 0.0070137978 277 31 0.010573898 279 31 0.0011689998 282 31 0.0038256999 292 31 0.0042507984 293 31 0.00015939999 295 31 0.011105198 302 31 0.0031349999 303 31 0.0026566999 304 31 0.0057916977 305 31 0.020669498 306 31 0.016524997 307 31 0.00079699978 308 31 0.014665198 309 31 0.0037725999 310 31 0.0063761994 311 31 0.010254998 312 31 0.00047819992 315 31 0.00015939999 317 31 0.0019659998 318 31 5.3099997e-05 319 31 0.013974499 322 31 0.0040382966 324 31 0.0013814999 331 31 0.00063759997 334 31 0.0071200989 335 31 0.0019659998 341 31 0.00015939999 350 31 0.00090329978 352 31 0.0021784999 356 31 0.00079699978 358 31 0.00010629999 366 31 0.011530299 368 31 0.00026569981 371 31 0.011689696 380 31 0.00095639983 383 31 0.0014877999 384 31 0.00031879987 385 31 0.0038788998 386 31 0.0071200989 387 31 5.3099997e-05 390 31 0.0012220999 394 31 0.00015939999 398 31 0.00031879987 402 31 0.00015939999 414 31 0.00026569981 415 31 0.0032943999 419 31 0.00010629999 422 31 0.00015939999 423 31 5.3099997e-05 430 31 5.3099997e-05 431 31 5.3099997e-05 433 31 5.3099997e-05 434 31 5.3099997e-05 438 31 0.00037189992 439 31 0.00037189992 441 31 0.00015939999 443 31 0.0047820993 444 31 0.00015939999 445 31 0.017481398 446 31 0.00042509986 447 31 0.00058449991 450 31 0.0038256999 452 31 0.00058449991 453 31 5.3099997e-05 454 31 0.0011157999 455 31 0.036769398 456 31 0.028799098 457 31 0.0040382966 458 31 0.00021249999 460 31 0.0027098998 463 31 0.0081827976 464 31 0.00021249999 465 31 0.00010629999 467 31 0.0064292997 468 31 0.00058449991 469 31 0.085440993 470 31 0.0059510991 471 31 0.0021253999 473 31 0.00010629999 478 31 0.0006907999 483 31 0.00042509986 489 31 5.3099997e-05 490 31 0.00047819992 491 31 0.00026569981 16 32 0.00054049981 18 32 0.00027029985 24 32 0.0064864978 60 32 0.00054049981 114 32 0.00027029985 126 32 0.00027029985 134 32 0.0056756996 139 32 0.00027029985 160 32 0.0078377984 162 32 0.00027029985 163 32 0.0032431998 164 32 0.0018918999 165 32 0.0070269965 166 32 0.012432396 167 32 0.0035134999 168 32 0.0027027 170 32 0.00027029985 171 32 0.00081079989 177 32 0.00027029985 182 32 0.0043242984 183 32 0.0029729998 191 32 0.0010811 192 32 0.00054049981 214 32 0.00027029985 219 32 0.0027027 223 32 0.00054049981 233 32 0.004594598 234 32 0.0016215998 235 32 0.0013513998 236 32 0.0021621999 237 32 0.0010811 240 32 0.00027029985 241 32 0.0081080981 242 32 0.00027029985 252 32 0.0021621999 254 32 0.0072972998 255 32 0.010270298 256 32 0.0029729998 257 32 0.00054049981 258 32 0.0010811 259 32 0.0024323999 262 32 0.00027029985 264 32 0.0162162 265 32 0.014054097 266 32 0.045135099 267 32 0.0010811 268 32 0.0024323999 269 32 0.0029729998 271 32 0.0040540993 273 32 0.00027029985 274 32 0.0067567974 277 32 0.010270298 279 32 0.0010811 282 32 0.0043242984 285 32 0.00027029985 292 32 0.0043242984 293 32 0.00027029985 295 32 0.0083783977 302 32 0.0037837999 303 32 0.0032431998 304 32 0.0043242984 305 32 0.0075675994 306 32 0.034054097 307 32 0.00054049981 308 32 0.012432396 309 32 0.0081080981 310 32 0.0097296983 311 32 0.012162197 312 32 0.00027029985 315 32 0.00027029985 317 32 0.0021621999 319 32 0.013783798 322 32 0.004594598 324 32 0.0010811 331 32 0.00081079989 334 32 0.0072972998 335 32 0.0016215998 341 32 0.00027029985 350 32 0.0010811 352 32 0.0016215998 356 32 0.00054049981 366 32 0.0078377984 368 32 0.00054049981 371 32 0.0091891997 380 32 0.0010811 383 32 0.0018918999 384 32 0.00027029985 385 32 0.0040540993 386 32 0.0054053999 390 32 0.00081079989 394 32 0.00027029985 398 32 0.00027029985 402 32 0.00027029985 414 32 0.00027029985 415 32 0.0018918999 438 32 0.00027029985 439 32 0.00027029985 441 32 0.00027029985 443 32 0.0035134999 444 32 0.00027029985 445 32 0.012432396 446 32 0.00054049981 447 32 0.00054049981 450 32 0.0040540993 452 32 0.00054049981 454 32 0.0010811 455 32 0.031621598 456 32 0.024054099 457 32 0.0043242984 458 32 0.00027029985 460 32 0.0027027 463 32 0.0086485967 464 32 0.00027029985 467 32 0.0072972998 468 32 0.00054049981 469 32 0.085945845 470 32 0.0064864978 471 32 0.0024323999 473 32 0.00027029985 478 32 0.00054049981 483 32 0.00054049981 490 32 0.00054049981 491 32 0.00027029985 7 33 5.7599987e-05 16 33 0.00026869983 18 33 0.00023029999 24 33 0.0027830999 80 33 5.7599987e-05 134 33 0.00021109999 139 33 3.8399987e-05 141 33 1.9199986e-05 154 33 1.9199986e-05 159 33 1.9199986e-05 160 33 0.0011515999 162 33 0.00011519999 163 33 0.00042229984 164 33 0.00028789998 165 33 0.0014203 166 33 0.0017273999 167 33 0.00051819999 168 33 0.0012476 170 33 5.7599987e-05 171 33 0.00015359999 177 33 3.8399987e-05 182 33 0.00069099991 183 33 0.00044149999 191 33 0.00023029999 192 33 0.00030709989 197 33 1.9199986e-05 198 33 1.9199986e-05 214 33 3.8399987e-05 215 33 1.9199986e-05 219 33 0.0004606999 223 33 0.00011519999 233 33 0.0058348998 234 33 0.0018809999 235 33 0.0012859998 236 33 0.0023991999 237 33 0.00024949992 240 33 3.8399987e-05 241 33 0.0029558998 242 33 1.9199986e-05 252 33 0.00084449979 254 33 0.0013436 255 33 0.0020344998 256 33 0.00013439999 257 33 0.0025527999 258 33 0.00015359999 259 33 0.00042229984 262 33 7.6799988e-05 264 33 0.0031478 265 33 0.00044149999 266 33 0.011784997 267 33 0.00015359999 268 33 0.00038389978 269 33 0.00069099991 271 33 0.0016122998 272 33 7.6799988e-05 273 33 0.00086369994 274 33 0.0050671995 275 33 0.023781199 276 33 0.0015354999 277 33 0.0068905987 279 33 0.00030709989 282 33 0.0010556998 285 33 7.6799988e-05 292 33 0.0018809999 293 33 0.00036469987 295 33 0.0047216974 302 33 0.00069099991 303 33 0.00057579996 304 33 0.004875198 305 33 0.098656356 306 33 0.0040882975 307 33 0.055930898 308 33 0.012322497 309 33 0.0128599 310 33 0.0025336 311 33 0.0035316998 312 33 0.00026869983 315 33 7.6799988e-05 319 33 0.0012476 322 33 0.0013627999 324 33 0.11134356 331 33 0.00028789998 334 33 0.00049899984 335 33 0.00023029999 336 33 0.030153599 350 33 0.0004606999 351 33 0.00030709989 352 33 0.0012283998 354 33 0.00024949992 356 33 0.0004606999 366 33 0.0061035976 368 33 5.7599987e-05 371 33 0.004875198 374 33 1.9199986e-05 380 33 0.00038389978 383 33 0.00042229984 384 33 0.00013439999 385 33 0.011458699 386 33 0.0031478 390 33 0.00049899984 398 33 0.00021109999 402 33 7.6799988e-05 414 33 0.00090209977 415 33 0.0019769999 419 33 3.8399987e-05 438 33 9.5999989e-05 439 33 5.7599987e-05 441 33 0.00015359999 443 33 0.006161198 445 33 0.014299396 446 33 0.00057579996 447 33 0.00017269999 455 33 0.041708298 456 33 0.020921297 458 33 3.8399987e-05 460 33 0.00049899984 467 33 0.0027062998 469 33 0.033301298 471 33 0.00071019982 7 34 0.00020759999 9 34 3.1899996e-05 16 34 0.0010856998 18 34 0.00079829991 24 34 0.0053009987 60 34 0.00036719977 79 34 1.5999991e-05 80 34 0.00011179999 82 34 3.1899996e-05 83 34 3.1899996e-05 84 34 3.1899996e-05 108 34 4.7899986e-05 113 34 7.9799996e-05 114 34 0.00014369999 126 34 7.9799996e-05 127 34 1.5999991e-05 134 34 0.0025227999 135 34 4.7899986e-05 139 34 9.5799987e-05 141 34 4.7899986e-05 150 34 0.00011179999 154 34 3.1899996e-05 159 34 1.5999991e-05 160 34 0.002874 162 34 7.9799996e-05 163 34 0.00094199996 164 34 0.00065459986 165 34 0.0030496998 166 34 0.0038959 167 34 0.0010537999 168 34 0.0023630999 170 34 7.9799996e-05 171 34 0.0004629998 177 34 9.5799987e-05 182 34 0.0025386999 183 34 0.0016445999 189 34 3.1899996e-05 191 34 0.00075039989 192 34 0.00076639978 194 34 4.7899986e-05 196 34 3.1899996e-05 197 34 7.9799996e-05 198 34 4.7899986e-05 201 34 4.7899986e-05 203 34 4.7899986e-05 204 34 6.3899992e-05 206 34 0.0001277 207 34 4.7899986e-05 209 34 1.5999991e-05 214 34 0.00023949999 215 34 4.7899986e-05 219 34 0.0017084 223 34 0.00038319989 233 34 0.0027462998 234 34 0.0018041998 235 34 0.0024269999 236 34 0.0017084 237 34 0.00070249988 240 34 0.0003513 241 34 0.0072329976 242 34 0.0001277 248 34 4.7899986e-05 250 34 3.1899996e-05 251 34 1.5999991e-05 252 34 0.0052370988 254 34 0.0042311996 255 34 0.0035605999 256 34 0.0016285998 257 34 0.00019159999 258 34 0.00033529988 259 34 0.0010698 262 34 0.00020759999 263 34 1.5999991e-05 264 34 0.0056042969 265 34 0.0083665997 266 34 0.030768 267 34 0.0004629998 268 34 0.0023790998 269 34 0.0035126999 270 34 4.7899986e-05 271 34 0.0033849999 272 34 0.0001756 273 34 0.0002235 274 34 0.0098674968 277 34 0.0091968998 279 34 0.00075039989 282 34 0.0024269999 285 34 0.00011179999 292 34 0.0032891999 293 34 0.00039919978 294 34 3.1899996e-05 295 34 0.011543997 302 34 0.0016285998 303 34 0.0015008999 304 34 0.0074245967 305 34 0.0407153 306 34 0.013172597 307 34 0.0010698 308 34 0.024045996 309 34 0.0075841993 310 34 0.026504897 311 34 0.020102199 312 34 0.00052689994 315 34 0.0007185 317 34 0.0019159999 318 34 9.5799987e-05 319 34 0.0056362972 322 34 0.0038959 323 34 1.5999991e-05 324 34 0.0011974999 331 34 0.00060669985 334 34 0.010553997 335 34 0.00095799984 341 34 0.00015969999 350 34 0.00051089982 352 34 0.0028261 356 34 0.00083029992 358 34 0.0001277 363 34 1.5999991e-05 366 34 0.016365997 368 34 0.00014369999 371 34 0.012102798 374 34 3.1899996e-05 380 34 0.00095799984 383 34 0.00094199996 384 34 0.00036719977 385 34 0.0107616 386 34 0.0073446967 387 34 4.7899986e-05 390 34 0.0012613998 394 34 0.00011179999 398 34 0.00049499981 402 34 0.00014369999 412 34 1.5999991e-05 414 34 0.00015969999 415 34 0.0047261976 419 34 0.00011179999 422 34 0.00020759999 423 34 3.1899996e-05 425 34 1.5999991e-05 430 34 3.1899996e-05 431 34 3.1899996e-05 432 34 1.5999991e-05 433 34 4.7899986e-05 434 34 3.1899996e-05 438 34 0.0001277 439 34 0.00020759999 443 34 0.0047899969 444 34 0.00015969999 445 34 0.017898798 446 34 0.00086219981 447 34 0.00079829991 449 34 1.5999991e-05 450 34 0.0036882998 452 34 0.00055879983 453 34 7.9799996e-05 454 34 0.0011335998 455 34 0.037553899 456 34 0.027047697 457 34 0.0038959 458 34 0.00020759999 459 34 4.7899986e-05 460 34 0.0025546998 463 34 0.0078556985 464 34 0.00019159999 465 34 0.00011179999 467 34 0.0058916993 468 34 0.00059079984 469 34 0.074852288 470 34 0.0057160966 471 34 0.0019159999 473 34 0.0001277 477 34 6.3899992e-05 478 34 0.00068659987 483 34 0.00039919978 489 34 7.9799996e-05 490 34 0.0004629998 491 34 0.0002235 7 35 0.00016639999 9 35 5.5499986e-05 16 35 0.0010537999 18 35 0.00077649998 24 35 0.0083194971 60 35 0.00033279997 80 35 0.00011089999 82 35 5.5499986e-05 108 35 5.5499986e-05 113 35 5.5499986e-05 114 35 0.00011089999 126 35 5.5499986e-05 139 35 5.5499986e-05 141 35 5.5499986e-05 150 35 0.00011089999 154 35 5.5499986e-05 160 35 0.0023294999 162 35 0.00033279997 163 35 0.00083189993 164 35 0.0005545998 165 35 0.0032168999 166 35 0.0034941998 167 35 0.0009982998 168 35 0.0026621998 170 35 0.00011089999 171 35 0.00044369977 177 35 0.00011089999 182 35 0.0012202 183 35 0.00077649998 189 35 5.5499986e-05 191 35 0.0007209999 192 35 0.0005545998 194 35 5.5499986e-05 197 35 5.5499986e-05 198 35 5.5499986e-05 203 35 5.5499986e-05 206 35 0.00011089999 214 35 5.5499986e-05 215 35 5.5499986e-05 219 35 0.0010537999 223 35 0.00038819993 233 35 0.017914597 234 35 0.0065445974 235 35 0.0046588965 236 35 0.0085967965 237 35 0.0007209999 240 35 5.5499986e-05 241 35 0.0061008967 242 35 5.5499986e-05 252 35 0.0021076 254 35 0.0034941998 255 35 0.0038824 256 35 0.00022189999 257 35 0.00016639999 258 35 0.0002772999 259 35 0.00077649998 262 35 0.00016639999 264 35 0.0059899986 265 35 0.0066000968 266 35 0.025013898 267 35 0.0002772999 268 35 0.00083189993 269 35 0.0038824 270 35 5.5499986e-05 271 35 0.0028285999 272 35 0.00011089999 273 35 0.0002772999 274 35 0.0063227974 277 35 0.011258997 279 35 0.0007209999 282 35 0.0018302999 285 35 0.00016639999 292 35 0.0037159999 293 35 0.00016639999 294 35 5.5499986e-05 295 35 0.007820297 302 35 0.0012756998 303 35 0.0011646999 304 35 0.0047697984 305 35 0.072157443 306 35 0.018635597 307 35 0.049473099 308 35 0.014808699 309 35 0.0074320994 310 35 0.012756497 311 35 0.0167499 312 35 0.00061009987 315 35 0.00038819993 317 35 0.0017193998 318 35 5.5499986e-05 319 35 0.0027731999 322 35 0.0024957999 324 35 0.0023294999 331 35 0.00066559995 334 35 0.00016639999 335 35 0.00044369977 341 35 0.00016639999 350 35 0.00033279997 352 35 0.0018302999 356 35 0.00066559995 358 35 0.00011089999 366 35 0.0091513991 368 35 0.00011089999 371 35 0.0082639977 380 35 0.00061009987 383 35 0.00066559995 384 35 0.0002772999 385 35 0.007820297 386 35 0.0050470978 387 35 5.5499986e-05 390 35 0.00083189993 394 35 0.00011089999 398 35 0.00033279997 402 35 0.00011089999 414 35 0.00011089999 415 35 0.002995 419 35 5.5499986e-05 422 35 0.00016639999 430 35 5.5499986e-05 434 35 5.5499986e-05 438 35 0.00016639999 439 35 0.00011089999 441 35 0.00011089999 443 35 0.0051580966 444 35 0.00011089999 445 35 0.0253466 446 35 0.0009982998 447 35 0.00049919984 450 35 0.0033278 452 35 0.00049919984 453 35 5.5499986e-05 454 35 0.0009982998 455 35 0.035607297 456 35 0.028618999 457 35 0.0034941998 458 35 0.00022189999 460 35 0.0024404 463 35 0.0070992969 464 35 0.00016639999 465 35 0.00011089999 467 35 0.0058235973 468 35 0.00049919984 469 35 0.065723777 470 35 0.0051580966 471 35 0.0019967 473 35 0.00011089999 478 35 0.0005545998 483 35 0.00033279997 489 35 5.5499986e-05 490 35 0.00038819993 491 35 0.00022189999 7 36 0.00045729987 16 36 0.0022865999 18 36 0.0015244 24 36 0.0057926998 60 36 0.00030489988 80 36 0.0001524 114 36 0.0001524 126 36 0.0001524 150 36 0.0001524 160 36 0.0042682998 162 36 0.00030489988 163 36 0.0036584998 164 36 0.00045729987 165 36 0.0038109999 166 36 0.0022865999 167 36 0.00076219998 168 36 0.0033536998 170 36 0.0001524 171 36 0.00030489988 182 36 0.0092987977 183 36 0.0060975999 191 36 0.00076219998 192 36 0.00045729987 214 36 0.00045729987 215 36 0.0001524 219 36 0.0018292998 223 36 0.00060979999 233 36 0.0030487999 234 36 0.0045731999 235 36 0.0032011999 236 36 0.0054877996 237 36 0.00060979999 241 36 0.0050304979 252 36 0.0022865999 254 36 0.0042682998 255 36 0.0025914998 256 36 0.00091459998 257 36 0.0001524 258 36 0.00030489988 259 36 0.00076219998 262 36 0.0001524 264 36 0.005335398 265 36 0.010823198 266 36 0.046951197 267 36 0.00045729987 268 36 0.00091459998 269 36 0.0015244 271 36 0.0024389999 272 36 0.0001524 273 36 0.00030489988 274 36 0.0056401975 277 36 0.010213397 279 36 0.00060979999 282 36 0.001372 285 36 0.0001524 292 36 0.0024389999 293 36 0.00030489988 295 36 0.0065548979 302 36 0.00091459998 303 36 0.001372 304 36 0.0047255978 305 36 0.046341497 306 36 0.021036599 307 36 0.0035060998 308 36 0.016006097 309 36 0.0065548979 310 36 0.010975599 311 36 0.017530497 312 36 0.00045729987 315 36 0.00045729987 317 36 0.0012194999 319 36 0.0018292998 322 36 0.0041158982 324 36 0.0018292998 331 36 0.00045729987 334 36 0.056097597 335 36 0.0035060998 341 36 0.0001524 350 36 0.0001524 352 36 0.0015244 356 36 0.00045729987 358 36 0.0001524 366 36 0.0079267994 368 36 0.00091459998 371 36 0.0082316995 380 36 0.00045729987 383 36 0.00045729987 384 36 0.00030489988 385 36 0.018140197 386 36 0.0048779994 390 36 0.00060979999 394 36 0.0001524 398 36 0.00030489988 402 36 0.0001524 415 36 0.0028962998 438 36 0.0001524 441 36 0.0030487999 443 36 0.0035060998 444 36 0.0001524 445 36 0.023323197 446 36 0.00045729987 447 36 0.00030489988 450 36 0.0027438998 452 36 0.00045729987 454 36 0.00076219998 455 36 0.035975598 456 36 0.021493897 457 36 0.0028962998 458 36 0.0001524 460 36 0.0015244 463 36 0.0057926998 464 36 0.0001524 467 36 0.0051828995 468 36 0.00045729987 469 36 0.062652349 470 36 0.0041158982 471 36 0.0015244 473 36 0.0001524 478 36 0.00030489988 483 36 0.00030489988 490 36 0.00030489988 491 36 0.0001524 7 37 5.2299991e-05 9 37 3.4899989e-05 16 37 0.00034869998 18 37 0.0002441 24 37 0.0072867982 60 37 0.00034869998 79 37 1.7399987e-05 80 37 0.0001395 82 37 3.4899989e-05 83 37 3.4899989e-05 84 37 3.4899989e-05 108 37 5.2299991e-05 113 37 5.2299991e-05 114 37 0.000122 126 37 6.9699992e-05 127 37 1.7399987e-05 134 37 6.9699992e-05 139 37 0.0001395 141 37 3.4899989e-05 142 37 1.7399987e-05 150 37 0.0001046 154 37 3.4899989e-05 159 37 1.7399987e-05 160 37 0.0036259999 162 37 0.00020919999 163 37 0.0012899998 164 37 0.00081929984 165 37 0.0039048998 166 37 0.0053691976 167 37 0.0014294998 168 37 0.0028763998 170 37 0.0001046 171 37 0.00041839993 177 37 0.000122 182 37 0.0014294998 183 37 0.0008890999 189 37 3.4899989e-05 191 37 0.0010284998 192 37 0.00092389993 194 37 3.4899989e-05 196 37 1.7399987e-05 197 37 6.9699992e-05 198 37 3.4899989e-05 201 37 5.2299991e-05 203 37 3.4899989e-05 204 37 5.2299991e-05 206 37 0.0001395 207 37 3.4899989e-05 209 37 1.7399987e-05 214 37 0.00015689999 215 37 1.7399987e-05 218 37 1.7399987e-05 219 37 0.0016909998 223 37 0.00034869998 233 37 0.0037479999 234 37 0.0047938973 235 37 0.0036084999 236 37 0.0058398992 237 37 0.00059269997 240 37 0.00026149978 241 37 0.008507099 242 37 6.9699992e-05 248 37 1.7399987e-05 250 37 1.7399987e-05 252 37 0.0040442981 254 37 0.0039222986 255 37 0.0050205998 256 37 0.00083679985 257 37 0.00022659999 258 37 0.00031379983 259 37 0.00083679985 264 37 0.0078794993 265 37 0.0077399984 266 37 0.029129799 267 37 0.00052299979 268 37 0.0029634999 269 37 0.0022314 270 37 3.4899989e-05 271 37 0.0044452995 272 37 0.00019179999 273 37 0.00027889991 274 37 0.013318498 277 37 0.013684496 279 37 0.0011504998 282 37 0.0021964998 285 37 0.00015689999 292 37 0.0040617995 293 37 0.00027889991 294 37 3.4899989e-05 295 37 0.0139286 302 37 0.0012725999 303 37 0.0011157 304 37 0.0080363974 305 37 0.051443398 306 37 0.010041099 307 37 0.0011157 308 37 0.020570397 309 37 0.0080712996 310 37 0.0038176998 311 37 0.0119587 312 37 0.00066239992 315 37 0.0001046 317 37 0.0017955999 318 37 6.9699992e-05 319 37 0.0042534992 322 37 0.0042360984 324 37 0.0027019999 331 37 0.00048809987 334 37 0.0027542999 335 37 0.00050549977 341 37 0.00015689999 350 37 0.00080189994 352 37 0.0030856 356 37 0.0010807998 358 37 0.000122 366 37 0.016142499 368 37 0.0001046 371 37 0.0148177 374 37 3.4899989e-05 380 37 0.0010982 383 37 0.00080189994 384 37 0.00043579983 385 37 0.0128478 386 37 0.0088382997 387 37 6.9699992e-05 390 37 0.0014991998 394 37 0.0001046 398 37 0.00054039992 402 37 0.0001046 412 37 1.7399987e-05 414 37 0.00015689999 415 37 0.0052297972 419 37 0.00015689999 422 37 0.00017429999 423 37 1.7399987e-05 425 37 1.7399987e-05 430 37 3.4899989e-05 431 37 1.7399987e-05 432 37 1.7399987e-05 433 37 1.7399987e-05 434 37 3.4899989e-05 438 37 0.00017429999 439 37 0.00022659999 441 37 0.00022659999 443 37 0.0057178997 444 37 0.0001395 445 37 0.023655999 446 37 0.00081929984 447 37 0.00062759989 450 37 0.0034864999 452 37 0.00052299979 453 37 5.2299991e-05 454 37 0.0010284998 455 37 0.037288196 456 37 0.027403899 457 37 0.0036783 458 37 0.00019179999 459 37 1.7399987e-05 460 37 0.0024406 463 37 0.0074262992 464 37 0.00019179999 465 37 0.000122 467 37 0.0046021976 468 37 0.00054039992 469 37 0.077069163 470 37 0.0054214969 471 37 0.0015689 473 37 0.000122 477 37 3.4899989e-05 478 37 0.00061009987 483 37 0.00036609988 489 37 6.9699992e-05 490 37 0.00043579983 491 37 0.00020919999 24 38 0.0020142 60 38 0.00011849999 114 38 0.00011849999 162 38 0.0003554998 163 38 0.0033175 164 38 0.0020142 165 38 0.005568698 166 38 0.24111366 167 38 0.062085297 168 38 0.00011849999 170 38 0.00023699999 171 38 0.0003554998 177 38 0.00023699999 182 38 0.0034359999 183 38 0.0021326998 191 38 0.00059239985 192 38 0.0004739 219 38 0.0008293998 223 38 0.00011849999 233 38 0.0034359999 234 38 0.0017772999 235 38 0.00059239985 236 38 0.0024881999 237 38 0.0004739 241 38 0.0023697 252 38 0.0014217999 254 38 0.0015403 255 38 0.0033175 256 38 0.00011849999 257 38 0.00011849999 258 38 0.00011849999 259 38 0.0004739 262 38 0.00011849999 264 38 0.0052132979 265 38 0.0028436 266 38 0.0088862963 267 38 0.00023699999 268 38 0.00071089994 269 38 0.00023699999 271 38 0.0018956999 272 38 0.00011849999 273 38 0.00011849999 274 38 0.0034359999 277 38 0.0034359999 279 38 0.00071089994 282 38 0.00094789988 285 38 0.00011849999 292 38 0.0016587998 295 38 0.0042653978 302 38 0.00071089994 303 38 0.0004739 304 38 0.0029620999 305 38 0.0063980967 306 38 0.0068719983 307 38 0.00011849999 308 38 0.0068719983 309 38 0.0049762987 311 38 0.0041468963 312 38 0.00023699999 315 38 0.00011849999 317 38 0.0004739 319 38 0.004502397 322 38 0.0015403 324 38 0.0004739 331 38 0.00023699999 334 38 0.00011849999 335 38 0.0011847999 350 38 0.00011849999 352 38 0.0013032998 356 38 0.00023699999 366 38 0.0059241988 368 38 0.00011849999 371 38 0.004502397 380 38 0.0003554998 383 38 0.0004739 384 38 0.00011849999 385 38 0.0042653978 386 38 0.0026065998 390 38 0.0004739 398 38 0.00023699999 415 38 0.0018956999 438 38 0.00023699999 439 38 0.00011849999 441 38 0.00011849999 443 38 0.0028436 445 38 0.0074644983 446 38 0.0011847999 447 38 0.00011849999 450 38 0.0010664 452 38 0.00011849999 454 38 0.00023699999 455 38 0.036611397 456 38 0.021919399 457 38 0.0010664 460 38 0.0004739 463 38 0.0022511999 467 38 0.0023697 468 38 0.00011849999 469 38 0.0479858 470 38 0.0016587998 471 38 0.0008293998 478 38 0.00011849999 483 38 0.00011849999 490 38 0.00011849999 7 39 0.00021789999 9 39 3.1099989e-05 16 39 0.0013229998 18 39 0.0009804999 24 39 0.0079221986 60 39 0.00031129993 79 39 1.5599988e-05 80 39 0.00012449999 82 39 3.1099989e-05 83 39 3.1099989e-05 84 39 3.1099989e-05 108 39 4.6699992e-05 113 39 6.2299994e-05 114 39 0.0001089 126 39 6.2299994e-05 127 39 1.5599988e-05 134 39 0.0097120963 135 39 0.00015559999 139 39 9.3399998e-05 141 39 3.1099989e-05 150 39 0.0001089 154 39 3.1099989e-05 159 39 1.5599988e-05 160 39 0.0035330998 162 39 0.00014009999 163 39 0.0014475 164 39 0.00088719977 165 39 0.003393 166 39 0.0056030974 167 39 0.0015409 168 39 0.0022100999 170 39 9.3399998e-05 171 39 0.00045139994 177 39 0.00012449999 181 39 0.0011672999 182 39 0.0014008 183 39 0.0008405 189 39 3.1099989e-05 191 39 0.0011517999 192 39 0.00082489988 194 39 4.6699992e-05 196 39 1.5599988e-05 197 39 7.7799996e-05 198 39 3.1099989e-05 201 39 4.6699992e-05 203 39 3.1099989e-05 204 39 4.6699992e-05 206 39 0.00012449999 207 39 3.1099989e-05 209 39 1.5599988e-05 214 39 0.00026459992 215 39 6.2299994e-05 218 39 1.5599988e-05 219 39 0.0017120999 223 39 0.00032679993 233 39 0.0035641999 234 39 0.0041244999 235 39 0.0070194975 236 39 0.0034397 237 39 0.00082489988 240 39 0.00062259985 241 39 0.0071127973 242 39 0.00012449999 248 39 3.1099989e-05 250 39 1.5599988e-05 252 39 0.0027548999 254 39 0.0035797998 255 39 0.0049649999 256 39 0.00077819987 257 39 0.0002023 258 39 0.00034239981 259 39 0.0010427998 262 39 0.00021789999 264 39 0.0077197999 265 39 0.0059921965 266 39 0.0221323 267 39 0.00054469984 268 39 0.0023657999 269 39 0.0020544999 270 39 3.1099989e-05 271 39 0.0026925998 272 39 0.00014009999 273 39 0.0002489998 274 39 0.0094785988 277 39 0.0075952969 279 39 0.000856 282 39 0.0023035 285 39 0.00012449999 292 39 0.0034552999 293 39 0.0002023 294 39 4.6699992e-05 295 39 0.011782099 302 39 0.0015874999 303 39 0.0014942 304 39 0.0062411986 305 39 0.050972797 306 39 0.023797698 307 39 0.00088719977 308 39 0.015766498 309 39 0.011595298 310 39 0.0058365986 311 39 0.012964997 312 39 0.00057589984 315 39 0.00017119999 317 39 0.0016186999 318 39 7.7799996e-05 319 39 0.0081555992 322 39 0.0039376989 323 39 1.5599988e-05 324 39 0.000856 331 39 0.00073149987 334 39 0.0016031 335 39 0.00048249983 341 39 0.00014009999 350 39 0.00046689995 352 39 0.0023657999 356 39 0.00079379999 358 39 0.0001089 366 39 0.0123735 368 39 0.00014009999 371 39 0.012638099 374 39 4.6699992e-05 380 39 0.0009649999 383 39 0.00087159988 384 39 0.00038909982 385 39 0.011891097 386 39 0.0075952969 387 39 4.6699992e-05 390 39 0.0012762998 394 39 9.3399998e-05 397 39 1.5599988e-05 398 39 0.00042019994 402 39 0.0002023 412 39 1.5599988e-05 414 39 0.00014009999 415 39 0.0039532967 419 39 0.0001089 422 39 0.00015559999 423 39 1.5599988e-05 425 39 1.5599988e-05 430 39 3.1099989e-05 431 39 3.1099989e-05 432 39 1.5599988e-05 433 39 3.1099989e-05 434 39 3.1099989e-05 438 39 0.00015559999 439 39 0.00015559999 441 39 0.0002023 443 39 0.0054629967 444 39 0.00012449999 445 39 0.019937698 446 39 0.00094939978 447 39 0.00063809985 449 39 1.5599988e-05 450 39 0.003144 452 39 0.00046689995 453 39 6.2299994e-05 454 39 0.00094939978 455 39 0.035844397 456 39 0.026381299 457 39 0.0033151999 458 39 0.00021789999 459 39 1.5599988e-05 460 39 0.0026303998 463 39 0.0067081973 464 39 0.00017119999 465 39 0.0001089 467 39 0.0065057985 468 39 0.00051359995 469 39 0.11573535 470 39 0.0048559979 471 39 0.0022256998 473 39 0.0001089 477 39 4.6699992e-05 478 39 0.00054469984 483 39 0.00034239981 489 39 7.7799996e-05 490 39 0.00038909982 491 39 0.0002023 7 40 7.1799994e-05 9 40 2.3899993e-05 16 40 0.00035889982 18 40 0.00028709997 24 40 0.0048085973 60 40 0.00026319991 80 40 9.5699987e-05 82 40 2.3899993e-05 83 40 2.3899993e-05 84 40 2.3899993e-05 108 40 4.7799986e-05 113 40 4.7799986e-05 114 40 9.5699987e-05 126 40 7.1799994e-05 127 40 2.3899993e-05 134 40 0.0011243999 135 40 2.3899993e-05 139 40 0.00023919999 141 40 2.3899993e-05 142 40 2.3899993e-05 150 40 7.1799994e-05 154 40 4.7799986e-05 159 40 2.3899993e-05 160 40 0.0047846995 162 40 9.5699987e-05 163 40 0.0018659998 164 40 0.0012679 165 40 0.0040190965 166 40 0.0077989995 167 40 0.0021052998 168 40 0.0014354 170 40 9.5699987e-05 171 40 0.00071769999 177 40 0.00016749999 182 40 0.00081339991 183 40 0.00040669995 189 40 2.3899993e-05 191 40 0.0011482998 192 40 0.00093299989 194 40 2.3899993e-05 197 40 9.5699987e-05 198 40 2.3899993e-05 201 40 2.3899993e-05 203 40 2.3899993e-05 204 40 4.7799986e-05 206 40 0.00011959999 207 40 2.3899993e-05 214 40 0.0002153 215 40 2.3899993e-05 219 40 0.00189 223 40 0.00026319991 233 40 0.004162699 234 40 0.001555 235 40 0.0013875999 236 40 0.0016985999 237 40 0.00045449985 240 40 0.00031099981 241 40 0.0091147982 242 40 7.1799994e-05 252 40 0.00088519999 254 40 0.0031339999 255 40 0.0023206 256 40 0.0012439999 257 40 0.00011959999 258 40 0.00062199985 259 40 0.0018420999 262 40 0.00023919999 264 40 0.0036841999 265 40 0.0065549985 266 40 0.021626797 267 40 0.00052629993 268 40 0.0054305978 269 40 0.0018420999 270 40 2.3899993e-05 271 40 0.0035885 272 40 0.00023919999 273 40 0.00014349999 274 40 0.0099760965 277 40 0.010287099 279 40 0.0009808999 282 40 0.0038516999 285 40 0.00014349999 292 40 0.0048085973 293 40 0.0002153 294 40 2.3899993e-05 295 40 0.013468899 302 40 0.0028468999 304 40 0.010071799 305 40 0.031674597 306 40 0.012416299 307 40 0.0012439999 308 40 0.019928198 309 40 0.0046650991 311 40 0.0082535967 312 40 0.0005502 315 40 7.1799994e-05 317 40 0.0014114999 318 40 4.7799986e-05 319 40 0.011770297 322 40 0.0045454986 324 40 0.0013875999 331 40 0.00035889982 334 40 0.0089233965 335 40 0.0002153 341 40 0.00011959999 350 40 0.00078949984 352 40 0.0038037999 356 40 0.00093299989 358 40 9.5699987e-05 366 40 0.020909097 368 40 0.00026319991 371 40 0.014162697 374 40 2.3899993e-05 380 40 0.0011482998 383 40 0.0014832998 384 40 0.00035889982 385 40 0.011770297 386 40 0.0085884966 387 40 4.7799986e-05 390 40 0.0014354 394 40 9.5699987e-05 398 40 0.00066989986 402 40 9.5699987e-05 412 40 2.3899993e-05 414 40 0.00028709997 415 40 0.0062678978 419 40 0.00011959999 422 40 0.00014349999 423 40 2.3899993e-05 425 40 2.3899993e-05 430 40 4.7799986e-05 431 40 2.3899993e-05 433 40 2.3899993e-05 434 40 2.3899993e-05 438 40 0.0002153 439 40 0.00026319991 441 40 0.0002153 443 40 0.0043779984 444 40 0.00011959999 445 40 0.0179426 446 40 0.00052629993 447 40 0.0004784998 450 40 0.0027272999 452 40 0.00040669995 453 40 4.7799986e-05 454 40 0.00078949984 455 40 0.033803798 456 40 0.024880398 457 40 0.0028468999 458 40 0.00014349999 460 40 0.0018420999 463 40 0.0057655983 464 40 0.00014349999 465 40 9.5699987e-05 467 40 0.0039233975 468 40 0.00043059979 469 40 0.11217695 470 40 0.0042104982 471 40 0.0012200999 473 40 9.5699987e-05 477 40 2.3899993e-05 478 40 0.00045449985 483 40 0.00028709997 489 40 7.1799994e-05 490 40 0.00033489987 491 40 0.00016749999 7 41 6.8799985e-05 9 41 3.4399985e-05 16 41 0.00020639999 18 41 0.00013759999 24 41 0.0057435967 60 41 0.00037829997 80 41 0.00010319999 82 41 3.4399985e-05 83 41 3.4399985e-05 84 41 3.4399985e-05 108 41 6.8799985e-05 113 41 6.8799985e-05 114 41 0.00013759999 126 41 0.00010319999 134 41 0.0020291999 135 41 3.4399985e-05 139 41 0.00013759999 141 41 3.4399985e-05 150 41 0.00010319999 154 41 3.4399985e-05 159 41 3.4399985e-05 160 41 0.0044365972 162 41 0.00020639999 163 41 0.0016508 164 41 0.0010662 165 41 0.0042990968 166 41 0.0068096966 167 41 0.0018227999 168 41 0.0024074998 170 41 0.00013759999 171 41 0.00061909994 177 41 0.00013759999 181 41 0.0026481999 182 41 0.011383999 183 41 0.0073255971 189 41 3.4399985e-05 191 41 0.00079099997 192 41 0.00072219991 194 41 3.4399985e-05 197 41 6.8799985e-05 198 41 3.4399985e-05 201 41 3.4399985e-05 203 41 3.4399985e-05 204 41 6.8799985e-05 206 41 0.00017199999 207 41 3.4399985e-05 214 41 0.00027509988 219 41 0.001926 223 41 0.00037829997 233 41 0.0034049 234 41 0.0020635999 235 41 0.0010317999 236 41 0.0026825999 237 41 0.00075659994 240 41 0.00030949991 241 41 0.0082541965 242 41 0.00010319999 252 41 0.0023387 254 41 0.0058123991 255 41 0.0036455998 256 41 0.0011349998 257 41 0.00020639999 258 41 0.00051589985 259 41 0.0014444999 262 41 0.00017199999 264 41 0.0057091974 265 41 0.0091827996 266 41 0.032672998 267 41 0.0004127 269 41 0.0073255971 270 41 0.00010319999 271 41 0.0035079999 272 41 0.00020639999 273 41 0.00017199999 274 41 0.010902498 277 41 0.012622099 282 41 0.0031297 285 41 0.00013759999 292 41 0.0044022985 293 41 0.00027509988 295 41 0.010489799 302 41 0.0022010999 303 41 0.0018916 304 41 0.0090108998 305 41 0.023490198 306 41 0.017196298 307 41 0.00079099997 308 41 0.0208763 309 41 0.007875897 310 41 0.0073599964 311 41 0.010386597 312 41 0.00055029988 315 41 0.00020639999 317 41 0.0019947998 318 41 6.8799985e-05 319 41 0.0088732988 322 41 0.0037143999 324 41 0.0019947998 331 41 0.00061909994 334 41 0.0060874969 335 41 0.0042646974 341 41 0.00017199999 350 41 0.00065349997 352 41 0.0034736998 356 41 0.0008254 358 41 0.00010319999 366 41 0.018675197 368 41 0.00017199999 371 41 0.011005599 374 41 6.8799985e-05 380 41 0.00089419982 383 41 0.0011349998 384 41 0.00027509988 385 41 0.0098706968 386 41 0.0067409985 387 41 6.8799985e-05 390 41 0.0011006 394 41 0.00013759999 398 41 0.00061909994 402 41 0.00020639999 412 41 3.4399985e-05 414 41 0.00020639999 415 41 0.0057091974 419 41 0.00013759999 422 41 0.00020639999 423 41 3.4399985e-05 425 41 3.4399985e-05 430 41 6.8799985e-05 431 41 3.4399985e-05 433 41 3.4399985e-05 434 41 3.4399985e-05 438 41 0.00017199999 439 41 0.0002407 441 41 0.00020639999 443 41 0.0044022985 444 41 0.00017199999 445 41 0.016233299 446 41 0.0010317999 447 41 0.00061909994 450 41 0.0037487999 452 41 0.00055029988 453 41 6.8799985e-05 454 41 0.0011006 455 41 0.037281599 456 41 0.024143599 457 41 0.0039207973 458 41 0.0002407 460 41 0.0024074998 463 41 0.0079790987 464 41 0.00020639999 465 41 0.00013759999 467 41 0.0060186982 468 41 0.00058469991 469 41 0.10001379 470 41 0.0058123991 471 41 0.0020635999 473 41 0.00013759999 477 41 3.4399985e-05 478 41 0.00065349997 483 41 0.00037829997 489 41 0.00010319999 490 41 0.00048149982 491 41 0.00020639999 7 42 6.179999e-05 16 42 0.00030909991 18 42 0.00018549999 24 42 0.0051932 60 42 0.0001236 80 42 9.2699993e-05 108 42 3.0899988e-05 113 42 3.0899988e-05 114 42 6.179999e-05 126 42 3.0899988e-05 134 42 0.00046369992 139 42 3.0899988e-05 141 42 3.0899988e-05 150 42 3.0899988e-05 159 42 6.179999e-05 160 42 0.0017001999 162 42 6.179999e-05 163 42 0.00021639999 164 42 0.00018549999 165 42 0.00095829996 166 42 0.00095829996 167 42 0.00027819979 168 42 0.0066460967 170 42 3.0899988e-05 171 42 0.0001546 182 42 0.00055639981 183 42 0.00033999979 191 42 0.00018549999 192 42 0.0002472999 195 42 0.00046369992 197 42 3.0899988e-05 198 42 3.0899988e-05 206 42 6.179999e-05 214 42 3.0899988e-05 219 42 0.00040189992 223 42 0.00021639999 233 42 0.0012365 234 42 0.0051004998 235 42 0.0096753985 236 42 0.00095829996 237 42 0.0012055999 240 42 3.0899988e-05 241 42 0.0017310998 242 42 3.0899988e-05 252 42 0.0011747 254 42 0.0014218998 255 42 0.00092739984 256 42 0.00030909991 257 42 6.179999e-05 258 42 0.0013291999 259 42 0.0002472999 262 42 0.0017001999 264 42 0.0014837999 265 42 0.0059041977 266 42 0.016043298 267 42 0.0001236 268 42 0.00046369992 269 42 0.0011127999 271 42 0.0034311998 272 42 3.0899988e-05 273 42 6.179999e-05 274 42 0.0022874998 277 42 0.0034620999 279 42 0.00018549999 282 42 0.0013291999 285 42 3.0899988e-05 292 42 0.00083459984 293 42 9.2699993e-05 295 42 0.27020085 302 42 0.00037089991 303 42 0.00037089991 304 42 0.0016691999 305 42 0.027573399 306 42 0.0035857998 307 42 0.0002472999 308 42 0.0058732964 309 42 0.0022256998 310 42 0.005656898 311 42 0.0059968978 312 42 0.0004327998 315 42 0.0001546 317 42 0.00068009994 318 42 3.0899988e-05 319 42 0.0012055999 322 42 0.0029365998 324 42 0.016723298 331 42 0.0013291999 334 42 0.0018855999 335 42 0.00021639999 341 42 6.179999e-05 350 42 9.2699993e-05 352 42 0.0012673999 356 42 0.00068009994 358 42 3.0899988e-05 366 42 0.0036166999 368 42 3.0899988e-05 371 42 0.0027202 380 42 0.00021639999 383 42 0.00021639999 384 42 0.0010509999 385 42 0.0040803999 386 42 0.030757297 387 42 3.0899988e-05 390 42 0.00027819979 394 42 3.0899988e-05 397 42 3.0899988e-05 398 42 0.0001236 402 42 0.00033999979 414 42 3.0899988e-05 415 42 0.0010201 419 42 3.0899988e-05 422 42 3.0899988e-05 430 42 3.0899988e-05 438 42 6.179999e-05 439 42 6.179999e-05 441 42 6.179999e-05 443 42 0.0033075998 444 42 6.179999e-05 445 42 0.016383298 446 42 0.00089639984 447 42 0.00018549999 448 42 3.0899988e-05 450 42 0.0011747 452 42 0.00018549999 453 42 3.0899988e-05 454 42 0.00033999979 455 42 0.037341598 456 42 0.013137598 457 42 0.0012365 458 42 0.00021639999 460 42 0.0018546998 463 42 0.0025348 464 42 6.179999e-05 465 42 3.0899988e-05 467 42 0.010324597 468 42 0.00018549999 469 42 0.018485297 470 42 0.0018546998 471 42 0.0034311998 473 42 3.0899988e-05 478 42 0.00018549999 483 42 0.0001236 489 42 3.0899988e-05 490 42 0.0001546 491 42 0.0001236 24 43 0.013648998 134 43 0.00027859979 160 43 0.004735399 163 43 0.0011141999 164 43 0.00055709993 165 43 0.0013927999 166 43 0.0033425998 167 43 0.00083569996 168 43 0.019220099 191 43 0.00027859979 192 43 0.00083569996 233 43 0.00027859979 234 43 0.0019498998 235 43 0.0066851974 236 43 0.00055709993 237 43 0.00083569996 241 43 0.0027854999 252 43 0.00027859979 255 43 0.00055709993 262 43 0.00027859979 264 43 0.00055709993 265 43 0.011977699 266 43 0.0061280988 268 43 0.00027859979 271 43 0.00055709993 274 43 0.0011141999 277 43 0.14512527 279 43 0.00027859979 282 43 0.00027859979 285 43 0.00027859979 292 43 0.00055709993 295 43 0.013091899 302 43 0.00027859979 303 43 0.00027859979 304 43 0.00055709993 305 43 0.021726999 306 43 0.0011141999 308 43 0.0011141999 309 43 0.0011141999 310 43 0.0016712998 311 43 0.0019498998 317 43 0.00027859979 319 43 0.00083569996 322 43 0.0036211999 324 43 0.084958196 326 43 0.067687988 331 43 0.00055709993 334 43 0.00055709993 356 43 0.00083569996 366 43 0.0011141999 371 43 0.0144847 380 43 0.00083569996 384 43 0.00055709993 385 43 0.020055696 386 43 0.029247899 390 43 0.0013927999 402 43 0.00027859979 415 43 0.00027859979 441 43 0.00027859979 443 43 0.0055709966 445 43 0.0231198 446 43 0.00055709993 450 43 0.00055709993 455 43 0.0462396 456 43 0.0064066984 457 43 0.00055709993 460 43 0.00083569996 463 43 0.0011141999 467 43 0.0066851974 469 43 0.010306399 470 43 0.00083569996 471 43 0.0019498998 7 44 2.4899986e-05 9 44 1.24e-05 16 44 8.7099994e-05 18 44 6.2199993e-05 24 44 0.0012937 60 44 7.4599986e-05 80 44 7.4599986e-05 82 44 1.24e-05 108 44 1.24e-05 113 44 1.24e-05 114 44 2.4899986e-05 126 44 1.24e-05 134 44 4.9799986e-05 141 44 2.4899986e-05 150 44 2.4899986e-05 159 44 0.00011199999 160 44 0.0042542964 162 44 2.4899986e-05 163 44 6.2199993e-05 164 44 6.2199993e-05 165 44 0.0010076 166 44 0.00027369987 167 44 7.4599986e-05 168 44 0.022316199 170 44 3.7299993e-05 171 44 0.00018659999 182 44 0.00012439999 183 44 7.4599986e-05 189 44 1.24e-05 191 44 6.2199993e-05 192 44 0.00018659999 194 44 1.24e-05 195 44 0.00080859987 198 44 2.4899986e-05 203 44 1.24e-05 206 44 2.4899986e-05 214 44 0.00013679999 219 44 0.00013679999 220 44 2.4899986e-05 223 44 0.00016169999 233 44 0.00079609989 234 44 0.00083339983 235 44 0.00077119982 236 44 0.00059709977 237 44 0.0010324998 241 44 0.00073389988 242 44 6.2199993e-05 252 44 0.00023629999 254 44 0.0019405 255 44 0.0011816998 256 44 2.4899986e-05 257 44 0.0010698 258 44 0.0005349 259 44 6.2199993e-05 262 44 0.013733096 264 44 0.0010698 265 44 0.015511896 266 44 0.016730897 267 44 8.7099994e-05 268 44 8.7099994e-05 269 44 0.00033589988 271 44 0.0074138977 272 44 0.0007836998 273 44 0.00039809989 274 44 0.0008582999 277 44 0.024605099 279 44 0.0012563998 282 44 0.00075879996 285 44 1.24e-05 292 44 0.00055979984 293 44 1.24e-05 294 44 1.24e-05 295 44 0.0496579 302 44 9.9499986e-05 303 44 9.9499986e-05 304 44 0.00069659995 305 44 0.058265999 306 44 0.0013807998 307 44 0.06998378 308 44 0.0015299998 309 44 0.0016668998 310 44 0.0012314999 311 44 0.0072520971 312 44 0.00059709977 315 44 3.7299993e-05 317 44 0.00038559991 318 44 1.24e-05 319 44 0.00028609997 322 44 0.0016543998 324 44 0.099614382 331 44 0.0011443999 334 44 0.00022389999 335 44 4.9799986e-05 341 44 3.7299993e-05 350 44 2.4899986e-05 352 44 0.00079609989 356 44 0.00062199985 358 44 2.4899986e-05 366 44 0.00087079988 368 44 1.24e-05 371 44 0.00072149979 374 44 0.00073389988 380 44 6.2199993e-05 383 44 8.7099994e-05 384 44 2.4899986e-05 385 44 0.0225899 386 44 0.021619599 387 44 1.24e-05 390 44 7.4599986e-05 394 44 2.4899986e-05 397 44 2.4899986e-05 398 44 2.4899986e-05 402 44 0.00028609997 414 44 0.0061698966 415 44 0.0002487998 422 44 3.7299993e-05 430 44 1.24e-05 438 44 6.2199993e-05 439 44 1.24e-05 441 44 7.4599986e-05 443 44 0.0043661967 444 44 2.4899986e-05 445 44 0.0088318996 446 44 0.0011568998 447 44 0.00026119989 450 44 0.00073389988 452 44 0.00011199999 453 44 1.24e-05 454 44 0.0002115 455 44 0.0447568 456 44 0.016880199 457 44 0.00077119982 458 44 0.00018659999 460 44 0.0016917998 463 44 0.0015673998 464 44 3.7299993e-05 465 44 2.4899986e-05 467 44 0.0087572969 468 44 0.00011199999 469 44 0.035539199 470 44 0.0011443999 471 44 0.0028859 473 44 2.4899986e-05 478 44 0.00012439999 483 44 7.4599986e-05 489 44 1.24e-05 490 44 8.7099994e-05 491 44 6.2199993e-05 16 45 0.00012079999 18 45 6.0399994e-05 24 45 0.010453198 60 45 0.00024169999 108 45 6.0399994e-05 113 45 6.0399994e-05 114 45 0.00012079999 126 45 6.0399994e-05 134 45 6.0399994e-05 141 45 6.0399994e-05 150 45 6.0399994e-05 160 45 0.00030209986 163 45 6.0399994e-05 164 45 6.0399994e-05 165 45 0.0001813 166 45 0.0001813 168 45 0.00030209986 171 45 6.0399994e-05 182 45 0.00012079999 183 45 6.0399994e-05 191 45 6.0399994e-05 192 45 0.00012079999 198 45 6.0399994e-05 206 45 0.00012079999 214 45 0.0033232998 219 45 6.0399994e-05 220 45 0.0010271999 223 45 0.00024169999 233 45 0.0045316964 234 45 0.060120799 235 45 0.0087008998 236 45 0.00036249985 237 45 0.0016917998 241 45 0.0070090964 242 45 0.00012079999 252 45 0.00024169999 254 45 0.00030209986 255 45 0.00024169999 256 45 6.0399994e-05 259 45 6.0399994e-05 264 45 0.00036249985 265 45 0.0016917998 266 45 0.023867097 268 45 0.00012079999 269 45 0.00012079999 271 45 0.0001813 274 45 0.00036249985 277 45 0.088157058 279 45 6.0399994e-05 282 45 0.00012079999 292 45 0.00060419994 295 45 0.0069485977 302 45 0.00012079999 303 45 0.00012079999 304 45 0.00024169999 305 45 0.010876097 306 45 0.0009062998 307 45 0.086344361 308 45 0.006525699 309 45 0.0087008998 310 45 0.0009062998 311 45 0.0032627999 312 45 6.0399994e-05 317 45 0.0013897 318 45 6.0399994e-05 319 45 0.00024169999 322 45 0.004048299 324 45 0.083504498 331 45 0.0018126999 334 45 0.00024169999 335 45 6.0399994e-05 341 45 0.00012079999 352 45 0.00012079999 356 45 0.0029002998 358 45 6.0399994e-05 366 45 0.00066469982 371 45 0.012144998 374 45 0.0039274991 380 45 6.0399994e-05 385 45 0.0018730999 386 45 0.0012689 387 45 6.0399994e-05 390 45 6.0399994e-05 394 45 6.0399994e-05 402 45 0.00042299996 414 45 0.039154097 415 45 0.0001813 422 45 6.0399994e-05 430 45 6.0399994e-05 443 45 0.0048942976 444 45 0.00012079999 445 45 0.011842899 446 45 0.0025982 447 45 0.00078549981 448 45 0.0012084998 450 45 0.0024772999 452 45 0.00036249985 453 45 6.0399994e-05 454 45 0.00072509982 455 45 0.067190289 456 45 0.028398797 457 45 0.0025982 458 45 0.00030209986 460 45 0.0029002998 463 45 0.0053172 464 45 0.00012079999 465 45 6.0399994e-05 467 45 0.013534699 468 45 0.00036249985 469 45 0.015528698 470 45 0.0038671 471 45 0.0045920983 473 45 6.0399994e-05 478 45 0.00042299996 483 45 0.00024169999 489 45 6.0399994e-05 490 45 0.00030209986 491 45 0.00024169999 24 46 0.0098591968 214 46 0.0031689999 220 46 0.0014084999 233 46 0.015140798 234 46 0.058098599 235 46 0.0056337975 237 46 0.0021126999 265 46 0.0014084999 266 46 0.0038731999 277 46 0.20352107 295 46 0.011619698 305 46 0.0014084999 306 46 0.00035209977 307 46 0.12746477 311 46 0.00070419977 317 46 0.00035209977 322 46 0.0031689999 324 46 0.025704198 331 46 0.0024647999 356 46 0.0028168999 371 46 0.021830998 374 46 0.0021126999 385 46 0.0028168999 386 46 0.0017605999 390 46 0.0014084999 402 46 0.00070419977 414 46 0.0098591968 443 46 0.0056337975 445 46 0.010211296 446 46 0.0024647999 448 46 0.0010562998 450 46 0.00070419977 455 46 0.063028157 456 46 0.020774599 457 46 0.00070419977 458 46 0.00035209977 460 46 0.0021126999 463 46 0.0014084999 467 46 0.019718297 469 46 0.011971798 470 46 0.0010562998 471 46 0.0063379966 16 47 0.00018589999 24 47 0.0015798998 60 47 9.2899994e-05 114 47 9.2899994e-05 160 47 0.00037169992 165 47 0.00046469993 214 47 9.2899994e-05 220 47 9.2899994e-05 223 47 9.2899994e-05 233 47 0.00092939986 234 47 0.0045538992 235 47 0.00083639985 236 47 9.2899994e-05 237 47 0.00065059983 241 47 0.010408897 254 47 0.0028809998 255 47 0.00027879979 258 47 9.2899994e-05 259 47 0.00018589999 264 47 0.00055759982 265 47 0.019330896 266 47 0.0096653998 271 47 0.020817798 274 47 0.00037169992 277 47 0.013196997 282 47 0.20836425 292 47 0.00027879979 295 47 0.00055759982 302 47 9.2899994e-05 306 47 0.00046469993 307 47 0.071840048 308 47 0.0070631988 309 47 0.0010223 310 47 0.0055761971 311 47 0.0013010998 312 47 9.2899994e-05 317 47 0.00027879979 319 47 0.00018589999 322 47 0.00018589999 324 47 0.096096694 331 47 0.00065059983 350 47 9.2899994e-05 356 47 0.00083639985 371 47 0.004089199 374 47 0.00065059983 385 47 0.0043679997 386 47 0.00046469993 402 47 9.2899994e-05 414 47 0.0098512992 443 47 0.0029739998 445 47 0.0092936978 446 47 0.00065059983 447 47 0.00018589999 448 47 9.2899994e-05 450 47 0.00074349996 452 47 9.2899994e-05 454 47 0.00018589999 455 47 0.039405197 456 47 0.029182199 457 47 0.00074349996 458 47 9.2899994e-05 460 47 0.0072490983 463 47 0.0015798998 467 47 0.015613399 468 47 9.2899994e-05 469 47 0.022676598 470 47 0.0012081999 471 47 0.0016728998 478 47 9.2899994e-05 483 47 9.2899994e-05 490 47 9.2899994e-05 7 48 0.00019979999 16 48 0.0013486999 18 48 0.00094909989 24 48 0.012986999 60 48 0.00024979981 80 48 9.9899989e-05 82 48 4.9999988e-05 108 48 4.9999988e-05 113 48 4.9999988e-05 114 48 9.9899989e-05 126 48 4.9999988e-05 134 48 4.9999988e-05 139 48 9.9899989e-05 141 48 4.9999988e-05 150 48 9.9899989e-05 154 48 4.9999988e-05 160 48 0.0023975999 163 48 0.00024979981 165 48 0.0012987 166 48 4.9999988e-05 168 48 0.00089909998 170 48 4.9999988e-05 171 48 4.9999988e-05 182 48 0.00014989999 183 48 9.9899989e-05 189 48 4.9999988e-05 191 48 9.9899989e-05 192 48 9.9899989e-05 194 48 4.9999988e-05 197 48 4.9999988e-05 198 48 4.9999988e-05 203 48 4.9999988e-05 206 48 9.9899989e-05 214 48 4.9999988e-05 215 48 9.9899989e-05 219 48 0.00074929977 220 48 0.00069929985 223 48 0.00034969999 233 48 0.0010988999 234 48 0.0015484998 235 48 0.0051448978 236 48 0.00019979999 237 48 0.0016982998 241 48 0.0035963999 242 48 0.00024979981 252 48 4.9999988e-05 254 48 0.00069929985 255 48 0.00059939991 256 48 4.9999988e-05 257 48 9.9899989e-05 258 48 0.015734296 259 48 4.9999988e-05 264 48 0.0013486999 265 48 0.075074852 266 48 0.022827197 267 48 4.9999988e-05 268 48 4.9999988e-05 269 48 0.00029969984 271 48 0.0143856 273 48 9.9899989e-05 274 48 0.004245799 277 48 0.012287699 279 48 0.00049949996 282 48 0.084765196 285 48 4.9999988e-05 292 48 0.00014989999 293 48 4.9999988e-05 295 48 0.0023476998 302 48 4.9999988e-05 303 48 0.0024974998 304 48 0.0056942999 305 48 0.017981999 306 48 0.0028471998 307 48 0.0020978998 308 48 0.0065933987 309 48 0.0019480998 310 48 0.0019480998 311 48 0.0049450994 312 48 0.00039959978 317 48 0.0013985999 318 48 4.9999988e-05 319 48 0.00069929985 322 48 0.0015484998 324 48 0.00089909998 331 48 0.0017982 334 48 4.9999988e-05 335 48 0.0021478999 336 48 0.0027971999 341 48 0.00014989999 350 48 0.00089909998 352 48 0.0015484998 356 48 9.9899989e-05 358 48 9.9899989e-05 366 48 0.00014989999 368 48 0.039210796 371 48 0.0091408975 374 48 9.9899989e-05 380 48 9.9899989e-05 384 48 4.9999988e-05 385 48 0.0014984999 386 48 0.0014984999 387 48 4.9999988e-05 394 48 9.9899989e-05 402 48 0.00039959978 414 48 0.0031468999 415 48 0.0016982998 422 48 0.00014989999 430 48 4.9999988e-05 438 48 4.9999988e-05 439 48 4.9999988e-05 441 48 4.9999988e-05 443 48 0.0033965998 444 48 9.9899989e-05 445 48 0.015534498 446 48 0.00089909998 447 48 0.00049949996 450 48 0.0026473999 452 48 0.00039959978 453 48 4.9999988e-05 454 48 0.0007991998 455 48 0.0412088 456 48 0.011438597 457 48 0.0027971999 458 48 0.00034969999 460 48 0.0053945966 463 48 0.0056942999 464 48 0.00014989999 465 48 9.9899989e-05 467 48 0.016683299 468 48 0.00039959978 469 48 0.026923098 470 48 0.0041458979 471 48 0.0046453997 473 48 9.9899989e-05 478 48 0.00044959993 483 48 0.00029969984 489 48 4.9999988e-05 490 48 0.00034969999 491 48 0.00019979999 7 49 0.00058139977 16 49 0.0027131999 18 49 0.0017441998 24 49 0.014534898 60 49 0.00019379999 114 49 0.00019379999 160 49 0.006395299 165 49 0.0015503999 166 49 0.00019379999 168 49 0.0015503999 192 49 0.00019379999 215 49 0.00019379999 219 49 0.00019379999 223 49 0.00038759992 233 49 0.00058139977 234 49 0.0021317999 235 49 0.006007798 236 49 0.00058139977 237 49 0.0015503999 241 49 0.0017441998 252 49 0.00038759992 254 49 0.0025193999 255 49 0.00038759992 257 49 0.00019379999 258 49 0.00038759992 259 49 0.00019379999 264 49 0.00038759992 265 49 0.014728699 266 49 0.032364298 267 49 0.00038759992 268 49 0.00019379999 269 49 0.00019379999 271 49 0.00058139977 273 49 0.00019379999 274 49 0.0019379999 277 49 0.0093022995 279 49 0.00019379999 282 49 0.00077519985 292 49 0.00058139977 295 49 0.013372097 302 49 0.00019379999 303 49 0.00058139977 304 49 0.00077519985 305 49 0.06996119 306 49 0.0029069998 307 49 0.0050387979 308 49 0.0023255998 309 49 0.0032945999 310 49 0.0029069998 311 49 0.0071704984 312 49 0.00038759992 317 49 0.0015503999 319 49 0.00038759992 322 49 0.0029069998 324 49 0.017829496 326 49 0.00096899993 331 49 0.0017441998 334 49 0.012984499 341 49 0.00019379999 352 49 0.0034883998 356 49 0.00019379999 366 49 0.0038759999 371 49 0.0054263994 380 49 0.00019379999 385 49 0.0050387979 386 49 0.0067828968 390 49 0.00038759992 394 49 0.00019379999 402 49 0.00038759992 415 49 0.00038759992 441 49 0.0034883998 443 49 0.0032945999 444 49 0.00019379999 445 49 0.049418598 446 49 0.00038759992 447 49 0.00038759992 450 49 0.0029069998 452 49 0.00038759992 454 49 0.00077519985 455 49 0.020736396 456 49 0.0073642991 457 49 0.0029069998 458 49 0.00038759992 460 49 0.0027131999 463 49 0.0058139972 464 49 0.00019379999 467 49 0.013953499 468 49 0.00038759992 469 49 0.096705377 470 49 0.0044573992 471 49 0.0046511963 473 49 0.00019379999 478 49 0.00038759992 483 49 0.00038759992 490 49 0.00038759992 491 49 0.00019379999 7 50 8.6299988e-05 9 50 9.5999994e-06 16 50 0.00047939993 18 50 0.00035479991 24 50 0.043887198 60 50 0.00012469999 82 50 9.5999994e-06 83 50 9.5999994e-06 84 50 9.5999994e-06 108 50 1.9199986e-05 113 50 1.9199986e-05 114 50 3.8399987e-05 126 50 2.8799986e-05 127 50 9.5999994e-06 141 50 4.7899986e-05 150 50 3.8399987e-05 159 50 9.5999994e-06 160 50 0.0011026999 165 50 0.0043340996 168 50 0.00093969982 170 50 0.00010549999 171 50 3.8399987e-05 189 50 9.5999994e-06 192 50 0.00020139999 194 50 9.5999994e-06 198 50 4.7899986e-05 201 50 9.5999994e-06 203 50 9.5999994e-06 204 50 1.9199986e-05 206 50 4.7899986e-05 207 50 9.5999994e-06 215 50 0.00070959982 218 50 9.5999994e-06 220 50 0.0011697998 223 50 0.00024929992 233 50 0.005781997 234 50 0.043580398 235 50 0.032093197 237 50 0.0017450999 241 50 0.00012469999 242 50 3.8399987e-05 248 50 9.5999994e-06 250 50 9.5999994e-06 252 50 9.5999994e-06 254 50 0.016645897 255 50 0.00012469999 258 50 0.0015628999 265 50 0.070208073 266 50 0.032745197 269 50 4.7899986e-05 270 50 0.00014379999 274 50 0.0026464998 277 50 0.010806397 279 50 0.00068079983 282 50 0.00017259999 295 50 0.0011409998 305 50 0.028391998 308 50 0.013232298 309 50 0.0077283978 311 50 0.016003497 312 50 1.9199986e-05 317 50 0.00064239977 318 50 1.9199986e-05 319 50 2.8799986e-05 322 50 0.007440798 331 50 0.0019943998 341 50 4.7899986e-05 358 50 3.8399987e-05 371 50 0.00026849983 385 50 0.0078818984 386 50 0.0014094999 387 50 1.9199986e-05 394 50 4.7899986e-05 397 50 2.8799986e-05 402 50 0.000489 412 50 9.5999994e-06 419 50 9.5999994e-06 422 50 5.7499987e-05 423 50 9.5999994e-06 425 50 9.5999994e-06 430 50 1.9199986e-05 431 50 9.5999994e-06 433 50 9.5999994e-06 434 50 9.5999994e-06 438 50 0.00026849983 441 50 0.0048230998 443 50 0.0090708993 444 50 4.7899986e-05 445 50 0.026196197 446 50 0.0030491999 447 50 0.00045069982 448 50 0.00089169992 450 50 0.0012464998 452 50 0.00018219999 453 50 1.9199986e-05 454 50 0.00037399982 455 50 0.047914498 456 50 0.018026698 457 50 0.0013040998 458 50 0.00030679977 460 50 0.00373 463 50 0.0026464998 464 50 6.7099987e-05 465 50 3.8399987e-05 467 50 0.0151213 468 50 0.00019179999 469 50 0.0253428 470 50 0.0019272999 471 50 0.0050244965 473 50 3.8399987e-05 477 50 9.5999994e-06 478 50 0.00022049999 483 50 0.00013419999 489 50 2.8799986e-05 490 50 0.00015339999 491 50 8.6299988e-05 7 51 0.0001736 16 51 0.00086809997 18 51 0.00069439993 24 51 0.0022568998 60 51 0.0001736 114 51 0.0001736 134 51 0.0062499978 135 51 0.0001736 139 51 0.0012152998 142 51 0.0001736 160 51 0.0446181 161 51 0.00086809997 162 51 0.0027778 163 51 0.043402798 164 51 0.0119792 165 51 0.027777798 167 51 0.016145799 170 51 0.00069439993 171 51 0.0024305999 177 51 0.0015624999 182 51 0.0019097 191 51 0.0031249998 192 51 0.0015624999 197 51 0.00086809997 214 51 0.0001736 215 51 0.0001736 219 51 0.0010416999 223 51 0.0001736 233 51 0.0086805969 234 51 0.00069439993 235 51 0.0001736 236 51 0.0041666999 237 51 0.0012152998 240 51 0.00052079977 241 51 0.013715297 242 51 0.00034719985 252 51 0.00069439993 254 51 0.0024305999 255 51 0.004513897 256 51 0.0043402985 257 51 0.00069439993 258 51 0.0013889 259 51 0.0032986 264 51 0.0071180984 265 51 0.0015624999 266 51 0.025694396 267 51 0.0001736 268 51 0.0062499978 269 51 0.0013889 271 51 0.0017360998 273 51 0.00034719985 274 51 0.0036457998 277 51 0.0029513999 279 51 0.0017360998 282 51 0.0012152998 292 51 0.0034721999 295 51 0.0119792 302 51 0.0039930977 303 51 0.013888899 304 51 0.0024305999 306 51 0.0170139 307 51 0.00052079977 308 51 0.013020799 309 51 0.0010416999 310 51 0.0043402985 311 51 0.0019097 312 51 0.0001736 317 51 0.00086809997 319 51 0.0050346963 322 51 0.0043402985 324 51 0.00034719985 331 51 0.0012152998 341 51 0.0001736 350 51 0.0019097 352 51 0.00034719985 366 51 0.011805598 368 51 0.00086809997 371 51 0.0085068978 380 51 0.00069439993 383 51 0.0017360998 385 51 0.0093749985 386 51 0.0043402985 390 51 0.0013889 398 51 0.00052079977 402 51 0.00034719985 415 51 0.0012152998 438 51 0.00052079977 439 51 0.0010416999 443 51 0.0083332993 445 51 0.0088541992 446 51 0.00086809997 447 51 0.00034719985 450 51 0.0019097 452 51 0.00034719985 454 51 0.00052079977 455 51 0.0432292 456 51 0.057638898 457 51 0.0019097 458 51 0.0001736 460 51 0.0024305999 463 51 0.0039930977 464 51 0.0001736 467 51 0.0105903 468 51 0.00034719985 469 51 0.031423599 470 51 0.0029513999 471 51 0.0034721999 478 51 0.0001736 483 51 0.0001736 490 51 0.0001736 491 51 0.0001736 24 52 0.011103399 60 52 6.9799993e-05 114 52 6.9799993e-05 141 52 6.9799993e-05 159 52 0.00013969999 160 52 0.035265397 162 52 0.0025837999 163 52 0.014804497 165 52 0.020530697 168 52 0.015642498 170 52 0.00055869995 171 52 0.00069829985 191 52 0.0038407999 192 52 0.00090779993 197 52 0.00013969999 198 52 6.9799993e-05 214 52 6.9799993e-05 223 52 0.0004888 233 52 0.0055865981 234 52 0.0023742998 235 52 0.0035615 236 52 0.0065641999 237 52 0.00090779993 241 52 0.0147346 254 52 0.0045390986 255 52 0.00027929991 262 52 0.0047485977 264 52 0.0111732 265 52 0.032681599 266 52 0.071298897 268 52 0.0036312998 274 52 0.00069829985 277 52 0.008379899 279 52 0.011871498 292 52 0.00090779993 293 52 0.0037010999 295 52 0.015921798 304 52 6.9799993e-05 306 52 0.0050278977 307 52 0.0097764991 308 52 0.099860251 309 52 0.0023742998 310 52 0.046159197 311 52 0.00083799986 317 52 0.0004888 319 52 0.0030027998 322 52 0.037150797 324 52 0.0017457998 331 52 0.00090779993 341 52 6.9799993e-05 350 52 0.0011172998 356 52 0.00020949999 366 52 6.9799993e-05 371 52 0.0023742998 385 52 0.0071228966 386 52 0.0027234999 398 52 0.00020949999 402 52 0.00020949999 415 52 0.0007681998 438 52 0.00034919987 443 52 0.010125697 444 52 6.9799993e-05 445 52 0.016969297 446 52 0.0011172998 447 52 0.00083799986 450 52 0.00090779993 452 52 0.00013969999 454 52 0.00020949999 455 52 0.051815599 456 52 0.054189898 457 52 0.00097769988 458 52 0.00013969999 460 52 0.002933 463 52 0.0019552999 464 52 6.9799993e-05 467 52 0.0078910999 468 52 0.00013969999 469 52 0.0062150992 470 52 0.0014664999 471 52 0.0025139998 478 52 0.00013969999 483 52 6.9799993e-05 490 52 0.00013969999 491 52 6.9799993e-05 24 53 0.00089739985 60 53 4.269999e-05 80 53 0.00029909983 114 53 4.269999e-05 160 53 0.00029909983 192 53 4.269999e-05 214 53 0.014828399 220 53 0.00051279995 223 53 0.021152899 233 53 0.0012392998 234 53 0.021323897 237 53 0.0061107986 241 53 0.00025639986 242 53 0.00025639986 254 53 0.0276911 273 53 0.012050796 277 53 0.17024904 312 53 0.0014101998 317 53 0.00025639986 319 53 0.00081189978 322 53 0.00094009982 324 53 0.0018374999 331 53 0.0071363971 333 53 0.048630398 341 53 4.269999e-05 350 53 0.006794598 356 53 0.00068369997 374 53 0.0014528998 397 53 8.5499996e-05 402 53 0.0017092999 438 53 8.5499996e-05 443 53 0.014272898 445 53 0.0099567994 446 53 0.0043587983 447 53 0.00017089999 448 53 0.00042729988 450 53 0.00047009997 452 53 8.5499996e-05 454 53 0.00012819999 455 53 0.041322999 456 53 0.0062817968 457 53 0.00051279995 458 53 0.00098289992 460 53 0.0068799965 463 53 0.0010255999 464 53 4.269999e-05 467 53 0.053459298 468 53 8.5499996e-05 469 53 0.00068369997 470 53 0.0007691998 471 53 0.017606098 478 53 8.5499996e-05 483 53 4.269999e-05 490 53 4.269999e-05 491 53 8.5499996e-05 60 54 0.00026829983 114 54 0.00026829983 214 54 0.0085859969 220 54 0.035148896 234 54 0.036222197 237 54 0.0053661987 317 54 0.0018781999 331 54 0.0059028976 341 54 0.00026829983 394 54 0.00026829983 402 54 0.0016098998 443 54 0.0026830998 444 54 0.00026829983 445 54 0.007244397 446 54 0.0021464999 447 54 0.00053659989 448 54 0.00053659989 450 54 0.0037564 452 54 0.00053659989 454 54 0.00080489996 455 54 0.0238798 456 54 0.0056345984 457 54 0.0040246993 458 54 0.00080489996 460 54 0.0053661987 463 54 0.0080493987 464 54 0.00026829983 467 54 0.042124998 468 54 0.00053659989 469 54 0.0050978996 470 54 0.0059028976 471 54 0.014488898 478 54 0.00053659989 483 54 0.00026829983 490 54 0.00053659989 491 54 0.00026829983 7 55 0.00027599977 16 55 0.0018398999 18 55 0.0012878999 24 55 0.011315499 60 55 0.00018399999 80 55 9.1999987e-05 108 55 9.1999987e-05 113 55 9.1999987e-05 114 55 0.00018399999 126 55 9.1999987e-05 134 55 0.0016558999 139 55 9.1999987e-05 150 55 9.1999987e-05 160 55 0.0030359 162 55 0.00018399999 164 55 0.00055199978 165 55 0.0029438999 166 55 0.0033119 167 55 0.0010119998 168 55 0.0030359 170 55 9.1999987e-05 171 55 0.00027599977 182 55 0.0033119 183 55 0.0022078999 191 55 0.00045999978 192 55 0.00073599978 195 55 9.1999987e-05 197 55 9.1999987e-05 206 55 9.1999987e-05 214 55 0.00027599977 215 55 0.00018399999 219 55 0.0010119998 220 55 0.00027599977 223 55 0.00027599977 233 55 0.0074516982 234 55 0.010395598 235 55 0.0068076998 236 55 0.00055199978 237 55 0.0018398999 241 55 0.0062556975 242 55 9.1999987e-05 252 55 0.0014718999 254 55 0.0050597973 255 55 0.0022998999 256 55 0.00064399978 258 55 0.0018398999 259 55 0.00073599978 262 55 0.00091999979 264 55 0.0037717998 265 55 0.022999097 266 55 0.025758997 267 55 0.00036799978 268 55 0.0013798999 269 55 0.0022998999 271 55 0.0046917982 272 55 0.00018399999 273 55 0.00027599977 274 55 0.0056117997 277 55 0.014903396 279 55 0.00055199978 282 55 0.0035879 285 55 9.1999987e-05 292 55 0.0022998999 293 55 0.00018399999 295 55 0.018215299 302 55 0.0011039998 303 55 0.0013798999 304 55 0.0048757978 305 55 0.025482997 306 55 0.010487597 307 55 0.027506899 308 55 0.014075398 309 55 0.0060717985 310 55 0.0053357966 311 55 0.014167398 312 55 0.00036799978 315 55 0.00018399999 317 55 0.0011039998 319 55 0.0043237992 322 55 0.0045997985 324 55 0.0111316 326 55 0.0011039998 331 55 0.0018398999 334 55 0.0034959 335 55 0.0013798999 336 55 0.00018399999 341 55 9.1999987e-05 350 55 0.00045999978 352 55 0.0046917982 356 55 0.00082799979 358 55 9.1999987e-05 366 55 0.0085556991 368 55 0.0033119 371 55 0.010763597 374 55 0.00027599977 380 55 0.00073599978 383 55 0.00064399978 384 55 0.00027599977 385 55 0.011959497 386 55 0.0081876963 387 55 9.1999987e-05 390 55 0.0010119998 394 55 9.1999987e-05 398 55 0.00027599977 402 55 0.00055199978 414 55 0.0022078999 415 55 0.0027598999 419 55 9.1999987e-05 422 55 9.1999987e-05 438 55 0.00018399999 439 55 0.00018399999 441 55 0.0010119998 443 55 0.0037717998 444 55 9.1999987e-05 445 55 0.017295297 446 55 0.0010119998 447 55 0.00027599977 448 55 9.1999987e-05 450 55 0.0022078999 452 55 0.00036799978 454 55 0.00064399978 455 55 0.037074499 456 55 0.023643099 457 55 0.0022998999 458 55 0.00036799978 460 55 0.0028518999 463 55 0.0045997985 464 55 9.1999987e-05 467 55 0.015639398 468 55 0.00036799978 469 55 0.081600666 470 55 0.0034039 471 55 0.004783798 473 55 9.1999987e-05 478 55 0.00036799978 483 55 0.00018399999 490 55 0.00027599977 491 55 9.1999987e-05 7 56 9.2099988e-05 16 56 0.00032229978 18 56 0.00023019999 24 56 0.017541397 60 56 9.2099988e-05 80 56 0.00013809999 108 56 4.5999986e-05 113 56 4.5999986e-05 114 56 9.2099988e-05 126 56 4.5999986e-05 150 56 4.5999986e-05 159 56 4.5999986e-05 160 56 0.0020717999 165 56 0.0017955999 166 56 4.5999986e-05 168 56 0.0075045973 170 56 9.2099988e-05 171 56 9.2099988e-05 191 56 4.5999986e-05 192 56 0.00013809999 195 56 4.5999986e-05 206 56 4.5999986e-05 214 56 0.00023019999 215 56 0.00013809999 217 56 4.5999986e-05 220 56 0.0029006 223 56 0.00018419999 233 56 0.0014272998 234 56 0.037891299 235 56 0.0029006 236 56 0.00023019999 237 56 0.0029006 240 56 9.2099988e-05 241 56 0.004557997 242 56 0.0014272998 252 56 4.5999986e-05 254 56 0.015009198 255 56 0.00013809999 257 56 4.5999986e-05 258 56 0.00023019999 259 56 4.5999986e-05 262 56 0.0035911999 264 56 0.00064459979 265 56 0.0081951991 266 56 0.0084714964 267 56 4.5999986e-05 268 56 4.5999986e-05 271 56 0.0005063999 272 56 0.00018419999 273 56 0.00018419999 274 56 0.0004143999 277 56 0.011325996 279 56 0.00073659979 282 56 0.00027619977 292 56 0.00013809999 293 56 4.5999986e-05 295 56 0.016482498 302 56 4.5999986e-05 303 56 9.2099988e-05 304 56 4.5999986e-05 305 56 0.026058897 306 56 0.0006905999 307 56 0.027532198 308 56 0.0050183982 309 56 0.0010128999 310 56 0.00032229978 311 56 0.0090699978 312 56 0.0005524999 317 56 0.00059849978 319 56 0.0004143999 322 56 0.0040975995 324 56 0.0031768 331 56 0.0031768 333 56 0.00027619977 334 56 4.5999986e-05 341 56 4.5999986e-05 352 56 0.0015192998 356 56 0.00087479991 358 56 4.5999986e-05 366 56 0.00023019999 368 56 4.5999986e-05 371 56 0.00013809999 374 56 0.0005524999 380 56 4.5999986e-05 385 56 0.0031307999 386 56 0.0054787993 387 56 4.5999986e-05 394 56 4.5999986e-05 397 56 4.5999986e-05 402 56 0.00078269979 414 56 0.0019336999 415 56 4.5999986e-05 422 56 4.5999986e-05 438 56 9.2099988e-05 441 56 0.00036829989 443 56 0.0048802979 444 56 4.5999986e-05 445 56 0.013075497 446 56 0.0022559999 447 56 0.00013809999 448 56 0.00073659979 450 56 0.0011509999 452 56 0.00018419999 454 56 0.00036829989 455 56 0.034300197 456 56 0.012522999 457 56 0.0011970999 458 56 0.00046039978 460 56 0.0031768 463 56 0.0023941 464 56 4.5999986e-05 467 56 0.0240792 468 56 0.00018419999 469 56 0.034990799 470 56 0.0017494999 471 56 0.0079189986 473 56 4.5999986e-05 478 56 0.00018419999 483 56 0.00013809999 490 56 0.00013809999 491 56 9.2099988e-05 7 57 0.000103 16 57 0.00056669977 18 57 0.00036059995 24 57 0.0215353 60 57 0.000103 80 57 5.1499999e-05 114 57 5.1499999e-05 126 57 5.1499999e-05 134 57 0.00025759987 141 57 5.1499999e-05 159 57 0.000103 160 57 0.0035548999 161 57 5.1499999e-05 162 57 0.000103 163 57 0.0012365 164 57 0.00077279983 165 57 0.0034002999 166 57 0.0051519983 167 57 0.0014425998 168 57 0.013137598 170 57 0.000103 171 57 0.00025759987 177 57 0.000103 182 57 0.00056669977 183 57 0.00030909991 191 57 0.00025759987 192 57 0.0001546 198 57 5.1499999e-05 214 57 0.000103 215 57 0.0001546 219 57 0.00036059995 220 57 0.00025759987 223 57 0.00030909991 233 57 0.0026789999 234 57 0.014425598 235 57 0.024626497 236 57 0.0011333998 237 57 0.0017517 241 57 0.0031941999 242 57 5.1499999e-05 252 57 0.00041219988 254 57 0.0047397986 255 57 0.00066979998 256 57 5.1499999e-05 257 57 0.0021122999 258 57 0.0019061998 259 57 0.00041219988 264 57 0.0011333998 265 57 0.024574999 266 57 0.023132399 267 57 0.0001546 268 57 0.0002061 269 57 0.0013909999 271 57 0.0048428997 273 57 0.0010303999 274 57 0.0029365998 277 57 0.0092735998 279 57 0.00041219988 282 57 0.0042245984 285 57 5.1499999e-05 292 57 0.00087579992 293 57 5.1499999e-05 294 57 5.1499999e-05 295 57 0.0015455999 302 57 0.00061819982 303 57 0.00077279983 304 57 0.0022153999 305 57 0.0303967 306 57 0.0026789999 307 57 0.018341098 308 57 0.0065944977 309 57 0.0045852996 310 57 0.0032972998 311 57 0.013807297 312 57 0.0002061 315 57 5.1499999e-05 317 57 0.00041219988 319 57 0.00097889989 322 57 0.0067490973 324 57 0.033642497 331 57 0.0020607999 334 57 0.00072129979 335 57 0.00036059995 336 57 0.00025759987 341 57 5.1499999e-05 350 57 0.00025759987 351 57 0.00030909991 352 57 0.00051519996 354 57 0.0002061 356 57 0.00051519996 358 57 5.1499999e-05 366 57 0.0015970999 368 57 0.0037608999 371 57 0.0026274999 374 57 0.000103 380 57 0.0001546 383 57 0.00036059995 385 57 0.0088613965 386 57 0.0010819 390 57 0.0001546 394 57 5.1499999e-05 398 57 5.1499999e-05 402 57 0.00046369992 414 57 0.0016486 415 57 0.00061819982 438 57 0.000103 441 57 0.00082429987 443 57 0.0053580999 444 57 5.1499999e-05 445 57 0.026944898 446 57 0.0012879998 447 57 0.000103 448 57 0.000103 450 57 0.00087579992 452 57 0.000103 454 57 0.0002061 455 57 0.033642497 456 57 0.014270999 457 57 0.00087579992 458 57 0.00030909991 460 57 0.0032456999 463 57 0.0017517 464 57 5.1499999e-05 467 57 0.017568298 468 57 0.0001546 469 57 0.059659999 470 57 0.0013394998 471 57 0.0050488971 473 57 5.1499999e-05 478 57 0.000103 483 57 0.000103 490 57 0.000103 491 57 0.000103 16 58 0.00056229997 24 58 0.017992698 160 58 0.0061849989 165 58 0.0022490998 168 58 0.0044981986 192 58 0.0014056999 215 58 0.00028109993 220 58 0.00028109993 223 58 0.00028109993 233 58 0.0016867998 234 58 0.0132134 235 58 0.0081528984 237 58 0.0022490998 241 58 0.0042169988 254 58 0.0053415969 258 58 0.00028109993 262 58 0.00056229997 265 58 0.022209696 266 58 0.025021099 267 58 0.00028109993 273 58 0.00028109993 274 58 0.0011244998 277 58 0.024739899 279 58 0.00028109993 285 58 0.00028109993 292 58 0.00028109993 295 58 0.021366298 305 58 0.027832396 308 58 0.0030924999 309 58 0.0047792979 311 58 0.0168681 317 58 0.00056229997 319 58 0.00028109993 322 58 0.0084340982 326 58 0.0033735998 331 58 0.0025301999 334 58 0.0084340982 356 58 0.0014056999 366 58 0.0014056999 371 58 0.022490896 380 58 0.0014056999 384 58 0.0008433999 385 58 0.019117199 386 58 0.016586997 390 58 0.0025301999 402 58 0.00056229997 419 58 0.00028109993 441 58 0.0016867998 443 58 0.0033735998 445 58 0.030081499 446 58 0.0008433999 450 58 0.0011244998 452 58 0.00028109993 454 58 0.00028109993 455 58 0.027551297 456 58 0.014900196 457 58 0.0011244998 458 58 0.00028109993 460 58 0.0025301999 463 58 0.0022490998 467 58 0.0205229 468 58 0.00028109993 469 58 0.0019679999 470 58 0.0016867998 471 58 0.0064660981 478 58 0.00028109993 9 59 9.7999991e-06 16 59 9.7999991e-06 24 59 0.00025509996 60 59 0.00025509996 79 59 9.7999991e-06 82 59 1.9599989e-05 83 59 9.7999991e-06 84 59 9.7999991e-06 108 59 2.9399991e-05 113 59 3.9199993e-05 114 59 7.8499987e-05 126 59 3.9199993e-05 127 59 9.7999991e-06 134 59 0.0015109999 135 59 2.9399991e-05 139 59 0.00052979984 141 59 2.9399991e-05 142 59 4.9099996e-05 150 59 7.8499987e-05 154 59 2.9399991e-05 158 59 0.0020309999 160 59 0.0040913969 161 59 0.00024529989 162 59 0.00037279981 163 59 0.0039147995 164 59 0.0097917989 165 59 0.0057003982 168 59 1.9599989e-05 171 59 6.8699999e-05 177 59 0.0009321 182 59 0.0027275998 189 59 1.9599989e-05 191 59 0.000206 192 59 0.00038259989 194 59 1.9599989e-05 195 59 0.00010789999 196 59 9.7999991e-06 197 59 0.006004598 201 59 2.9399991e-05 203 59 2.9399991e-05 204 59 2.9399991e-05 206 59 7.8499987e-05 207 59 1.9599989e-05 209 59 9.7999991e-06 214 59 2.9399991e-05 218 59 3.9199993e-05 219 59 0.0039147995 223 59 3.9199993e-05 233 59 0.056719799 234 59 0.0032769998 235 59 0.00036299997 236 59 0.026902899 237 59 0.0011478998 240 59 0.00089279981 241 59 0.0093992986 242 59 0.00027469988 248 59 1.9599989e-05 250 59 9.7999991e-06 251 59 9.7999991e-06 252 59 0.0023546999 254 59 0.00018639999 255 59 0.00026489981 256 59 0.00017659999 258 59 0.00060829986 259 59 0.00061809993 263 59 9.7999991e-06 264 59 0.00056909979 265 59 0.0024136 266 59 0.0012361999 267 59 2.9399991e-05 268 59 0.0032867999 269 59 2.9399991e-05 271 59 0.007397797 273 59 4.9099996e-05 274 59 0.00066719996 277 59 0.0010890998 279 59 0.00055929995 282 59 0.00042189984 292 59 0.0017857 293 59 0.00052979984 295 59 0.0015993 303 59 0.0054158978 304 59 0.0092619993 305 59 7.8499987e-05 306 59 0.0022075998 307 59 0.0010890998 308 59 0.016561698 309 59 7.8499987e-05 310 59 1.9599989e-05 311 59 5.8899997e-05 312 59 9.7999991e-06 317 59 0.0013343999 318 59 5.8899997e-05 319 59 0.00030419999 322 59 0.00090269977 323 59 9.7999991e-06 331 59 0.00049059978 334 59 0.0065441988 335 59 0.0010399998 336 59 0.0045916997 341 59 0.00036299997 350 59 0.00091249985 352 59 0.0001962 356 59 0.0011282999 358 59 0.00024529989 366 59 0.027471997 368 59 0.00030419999 371 59 0.0024626998 380 59 0.0023252999 381 59 0.00022569999 383 59 0.019279398 384 59 1.9599989e-05 385 59 0.0040716976 386 59 0.0024037999 387 59 2.9399991e-05 390 59 1.9599989e-05 394 59 7.8499987e-05 397 59 2.9399991e-05 398 59 0.0011086999 402 59 0.0002942998 412 59 9.7999991e-06 415 59 0.005219698 419 59 9.7999991e-06 422 59 2.9399991e-05 423 59 9.7999991e-06 425 59 9.7999991e-06 430 59 2.9399991e-05 431 59 9.7999991e-06 432 59 9.7999991e-06 433 59 9.7999991e-06 434 59 9.7999991e-06 438 59 0.0040520988 439 59 0.0046799965 441 59 9.7999991e-06 443 59 0.0037479999 444 59 9.809999e-05 445 59 0.016954098 446 59 0.00084379991 447 59 0.00057889987 448 59 6.8699999e-05 449 59 9.7999991e-06 450 59 0.0025509999 452 59 0.00038259989 453 59 4.9099996e-05 454 59 0.0006769998 455 59 0.0474873 456 59 0.064951599 457 59 0.0026980999 458 59 8.8299988e-05 459 59 2.9399991e-05 460 59 0.0033064999 463 59 0.0053962991 464 59 0.0001275 465 59 9.809999e-05 467 59 0.0048369989 468 59 0.00040229992 469 59 0.0040324964 470 59 0.003953997 471 59 0.0026294999 473 59 8.8299988e-05 477 59 3.9199993e-05 478 59 0.00045129983 483 59 0.00028449995 489 59 5.8899997e-05 490 59 0.00030419999 491 59 0.0001374 9 60 2.6099995e-05 16 60 0.0002345 24 60 0.00038219988 60 60 0.00059929979 79 60 8.6999999e-06 82 60 4.3399996e-05 83 60 3.4699988e-05 84 60 3.4699988e-05 108 60 5.2099989e-05 113 60 7.8199999e-05 114 60 0.0001911 126 60 7.8199999e-05 127 60 1.7399987e-05 134 60 0.000139 139 60 0.00097279996 141 60 6.9499991e-05 142 60 0.00010419999 150 60 0.00018239999 154 60 6.9499991e-05 160 60 0.0064015985 161 60 0.0001563 162 60 0.00022579999 163 60 0.0030140998 164 60 0.00022579999 165 60 0.0102496 167 60 6.9499991e-05 168 60 1.7399987e-05 171 60 0.000139 182 60 0.00014769999 189 60 6.0799997e-05 191 60 0.00043429993 192 60 0.000139 194 60 6.0799997e-05 195 60 8.6899992e-05 196 60 8.6999999e-06 197 60 0.0002345 198 60 8.6999999e-06 201 60 6.0799997e-05 203 60 5.2099989e-05 204 60 6.9499991e-05 206 60 0.00018239999 207 60 4.3399996e-05 209 60 1.7399987e-05 214 60 0.00011289999 218 60 1.7399987e-05 219 60 0.0030226998 223 60 8.6899992e-05 233 60 0.022627197 234 60 0.012143098 235 60 0.00085119996 236 60 0.011274498 237 60 0.0027621998 240 60 0.00057329983 241 60 0.0073831975 242 60 0.00031269994 248 60 4.3399996e-05 250 60 1.7399987e-05 251 60 8.6999999e-06 252 60 0.0023886999 254 60 0.00061669992 255 60 0.00058199978 256 60 0.00067749992 257 60 0.015556697 258 60 0.00016499999 259 60 0.0020325 263 60 8.6999999e-06 264 60 0.0039434992 265 60 0.0012681999 266 60 0.0058022998 267 60 4.3399996e-05 268 60 0.0013897999 269 60 6.9499991e-05 271 60 0.00071229995 273 60 5.2099989e-05 274 60 0.00044299988 275 60 0.015930198 277 60 0.0024667999 279 60 0.00098149991 282 60 0.00096419989 292 60 0.00058199978 293 60 0.00057329983 295 60 0.0023104998 302 60 0.0010162999 303 60 0.0043516979 304 60 0.010049798 305 60 0.0004168998 306 60 0.0023712998 307 60 0.0021019999 308 60 0.0074525997 311 60 0.0004776998 312 60 0.00044299988 317 60 0.0031529998 318 60 0.00013029999 319 60 0.0016416998 322 60 0.00087729981 323 60 1.7399987e-05 324 60 0.0015721999 331 60 0.0011812998 334 60 0.0042213984 335 60 0.00067749992 336 60 0.0029618999 341 60 0.00026059989 350 60 0.00030399999 352 60 0.00028659985 356 60 0.00071229995 358 60 0.0003560998 363 60 8.6999999e-06 366 60 0.0284121 368 60 0.00018239999 371 60 0.0062191971 374 60 6.0799997e-05 380 60 0.00013029999 381 60 8.6999999e-06 383 60 0.0001563 384 60 3.4699988e-05 385 60 0.013854299 386 60 0.018040899 387 60 7.8199999e-05 390 60 0.0019456998 394 60 0.00019979999 397 60 2.6099995e-05 398 60 8.6999999e-06 402 60 0.00071229995 412 60 1.7399987e-05 415 60 0.0042474978 419 60 2.6099995e-05 422 60 7.8199999e-05 423 60 2.6099995e-05 425 60 1.7399987e-05 430 60 5.2099989e-05 431 60 1.7399987e-05 432 60 1.7399987e-05 433 60 2.6099995e-05 434 60 3.4699988e-05 438 60 0.0014852998 439 60 0.0001737 441 60 1.7399987e-05 443 60 0.004516799 444 60 0.00025189994 445 60 0.017789099 446 60 0.0014070999 447 60 0.0010162999 448 60 0.00019979999 449 60 1.7399987e-05 450 60 0.0060888976 452 60 0.00090339989 453 60 0.00011289999 454 60 0.0016156 455 60 0.038305499 456 60 0.036133997 457 60 0.0064015985 458 60 7.8199999e-05 459 60 4.3399996e-05 460 60 0.005072698 463 60 0.012881398 464 60 0.00032139989 465 60 0.00021719999 467 60 0.0067577995 468 60 0.00095549994 469 60 0.0096327998 470 60 0.0094330981 471 60 0.0056111999 473 60 0.00019979999 477 60 7.8199999e-05 478 60 0.0010684 483 60 0.00066009979 489 60 0.00013029999 490 60 0.00071229995 491 60 0.00027799979 24 61 0.00032479991 60 61 0.00064959982 108 61 0.00032479991 114 61 0.00064959982 126 61 0.00032479991 134 61 0.00032479991 139 61 0.0012991 150 61 0.00032479991 160 61 0.0045468993 161 61 0.00032479991 162 61 0.00064959982 163 61 0.0045468993 164 61 0.00032479991 165 61 0.010392997 182 61 0.0032477998 191 61 0.00032479991 192 61 0.00064959982 197 61 0.0077946968 206 61 0.00064959982 219 61 0.0051964968 233 61 0.069503069 234 61 0.0074699968 235 61 0.00032479991 236 61 0.031828497 237 61 0.0025982 240 61 0.00064959982 241 61 0.015264697 242 61 0.00032479991 252 61 0.0025982 254 61 0.00032479991 255 61 0.00032479991 258 61 0.00032479991 259 61 0.00064959982 264 61 0.00064959982 265 61 0.0029229999 266 61 0.0016238999 268 61 0.0035726 271 61 0.0087690987 273 61 0.00032479991 274 61 0.00097429985 277 61 0.0012991 279 61 0.00097429985 282 61 0.00064959982 292 61 0.0022735 293 61 0.00064959982 295 61 0.0016238999 303 61 0.0061707981 304 61 0.011692099 306 61 0.0025982 307 61 0.0025982 308 61 0.023059398 317 61 0.0025982 319 61 0.00032479991 322 61 0.0016238999 324 61 0.025332898 331 61 0.00097429985 334 61 0.0084442981 335 61 0.0012991 336 61 0.0058460981 341 61 0.00064959982 350 61 0.0012991 356 61 0.0016238999 366 61 0.011692099 368 61 0.00032479991 371 61 0.0032477998 380 61 0.0025982 381 61 0.00032479991 383 61 0.022409897 385 61 0.0058460981 386 61 0.0032477998 387 61 0.00032479991 394 61 0.00032479991 398 61 0.0012991 402 61 0.00064959982 415 61 0.0058460981 438 61 0.0048717 439 61 0.0051964968 443 61 0.0019486998 445 61 0.019811597 446 61 0.00097429985 447 61 0.00064959982 450 61 0.0058460981 452 61 0.00097429985 454 61 0.0012991 455 61 0.051964898 456 61 0.070477366 457 61 0.0058460981 460 61 0.0055212975 463 61 0.012341697 464 61 0.00032479991 467 61 0.011367299 468 61 0.00097429985 469 61 0.0087690987 470 61 0.0090938993 471 61 0.0058460981 473 61 0.00032479991 478 61 0.00064959982 483 61 0.00064959982 490 61 0.00097429985 491 61 0.00032479991 18 62 0.0013247 24 62 0.029640697 60 62 0.00016559999 114 62 0.00016559999 126 62 0.00016559999 134 62 0.007948298 139 62 0.00049679982 160 62 0.033945996 162 62 0.0009935 163 62 0.0026493999 165 62 0.015896697 166 62 0.0011590999 168 62 0.0155655 170 62 0.00033119996 171 62 0.0009935 191 62 0.0021527 192 62 0.00049679982 206 62 0.00016559999 219 62 0.00049679982 233 62 0.055141598 234 62 0.0099353977 235 62 0.022685897 236 62 0.010432199 237 62 0.0009935 241 62 0.012088098 254 62 0.0041397996 255 62 0.00016559999 262 62 0.0019870999 264 62 0.010266598 265 62 0.055638399 266 62 0.030468598 268 62 0.0039741993 271 62 0.0009935 273 62 0.00033119996 274 62 0.00049679982 277 62 0.026825599 279 62 0.010763399 292 62 0.0024838999 295 62 0.010929 305 62 0.0061267987 306 62 0.0018214998 307 62 0.0038085999 308 62 0.058287799 311 62 0.0019870999 317 62 0.00066239992 319 62 0.0026493999 322 62 0.035105098 324 62 0.0157311 331 62 0.005464498 350 62 0.0011590999 371 62 0.0016558999 385 62 0.005464498 386 62 0.0029805999 398 62 0.0013247 402 62 0.00016559999 438 62 0.0038085999 441 62 0.00049679982 443 62 0.0110946 445 62 0.025997698 446 62 0.0009935 447 62 0.00033119996 450 62 0.0016558999 452 62 0.00033119996 454 62 0.00033119996 455 62 0.057956599 456 62 0.070707083 457 62 0.0016558999 458 62 0.00016559999 460 62 0.0076171979 463 62 0.0034773999 467 62 0.0064579993 468 62 0.00033119996 469 62 0.0026493999 470 62 0.0024838999 471 62 0.0019870999 473 62 0.00016559999 478 62 0.00016559999 483 62 0.00016559999 490 62 0.00033119996 16 63 0.00010599999 60 63 0.00031799986 108 63 0.00010599999 114 63 0.00010599999 126 63 0.00010599999 139 63 0.00052989996 142 63 0.00010599999 150 63 0.00010599999 160 63 0.00074189994 162 63 0.00010599999 163 63 0.00052989996 165 63 0.042713299 168 63 0.00095389993 171 63 0.00010599999 191 63 0.00010599999 194 63 0.00010599999 206 63 0.00031799986 219 63 0.00063589984 223 63 0.00010599999 233 63 0.0047694966 234 63 0.0076311976 235 63 0.0057233982 236 63 0.0014837999 237 63 0.0018018 241 63 0.0044514984 242 63 0.00010599999 252 63 0.00042399997 254 63 0.0023316999 255 63 0.00010599999 256 63 0.00010599999 259 63 0.000212 262 63 0.0010598998 264 63 0.00042399997 265 63 0.00031799986 266 63 0.0026496998 268 63 0.00031799986 271 63 0.00010599999 273 63 0.000212 277 63 0.00031799986 279 63 0.000212 292 63 0.00010599999 295 63 0.0051933974 302 63 0.000212 303 63 0.00063589984 304 63 0.0014837999 305 63 0.00042399997 306 63 0.00042399997 307 63 0.0026496998 308 63 0.0041334964 309 63 0.00095389993 310 63 0.000212 311 63 0.000212 312 63 0.00074189994 317 63 0.0020138 318 63 0.00010599999 319 63 0.000212 322 63 0.0012718998 324 63 0.000212 331 63 0.00074189994 334 63 0.00063589984 335 63 0.00010599999 336 63 0.00031799986 356 63 0.00010599999 358 63 0.00010599999 366 63 0.0108108 371 63 0.00084789982 385 63 0.019607797 386 63 0.066772699 387 63 0.00010599999 390 63 0.000212 394 63 0.00010599999 402 63 0.00052989996 415 63 0.0010598998 422 63 0.00010599999 430 63 0.00010599999 438 63 0.00031799986 441 63 0.000212 443 63 0.0027556999 444 63 0.000212 445 63 0.0083730966 446 63 0.00063589984 447 63 0.00063589984 448 63 0.00010599999 450 63 0.0036036 452 63 0.00052989996 453 63 0.00010599999 454 63 0.00095389993 455 63 0.025649197 456 63 0.029994696 457 63 0.0037095998 458 63 0.00052989996 460 63 0.0025436999 463 63 0.0075251982 464 63 0.00031799986 467 63 0.018865898 468 63 0.00052989996 469 63 0.0055113994 470 63 0.0055113994 471 63 0.0052993968 473 63 0.00010599999 478 63 0.00063589984 483 63 0.00042399997 490 63 0.00052989996 491 63 0.000212 9 64 5.1999989e-05 24 64 0.010512598 60 64 0.00031229993 80 64 0.00010409999 82 64 5.1999989e-05 83 64 5.1999989e-05 84 64 5.1999989e-05 108 64 5.1999989e-05 113 64 0.00010409999 114 64 0.00010409999 126 64 5.1999989e-05 139 64 0.00046839984 141 64 5.1999989e-05 142 64 5.1999989e-05 150 64 0.00010409999 154 64 5.1999989e-05 159 64 0.014675997 160 64 0.010720797 163 64 0.0002082 165 64 0.0050480999 168 64 0.032890998 171 64 0.00010409999 189 64 5.1999989e-05 191 64 5.1999989e-05 194 64 5.1999989e-05 203 64 5.1999989e-05 204 64 0.00010409999 206 64 5.1999989e-05 207 64 5.1999989e-05 219 64 0.0001561 220 64 0.00026019989 223 64 5.1999989e-05 233 64 0.0060889982 234 64 0.0062971972 235 64 0.00078059989 236 64 0.0006765998 237 64 0.0014052 241 64 0.0036429998 242 64 0.00010409999 252 64 0.0002082 254 64 0.0013530999 255 64 5.1999989e-05 256 64 5.1999989e-05 259 64 0.00010409999 264 64 0.0002082 265 64 0.0001561 266 64 0.00052039977 268 64 0.00010409999 271 64 0.0002082 273 64 0.00026019989 274 64 5.1999989e-05 277 64 0.024407998 279 64 0.00026019989 292 64 5.1999989e-05 293 64 5.1999989e-05 295 64 0.0013010998 302 64 0.00010409999 303 64 0.0002082 304 64 0.00046839984 305 64 0.0083788969 306 64 0.00010409999 307 64 0.0023939998 308 64 0.0034347998 312 64 0.0039551966 317 64 0.0016132998 318 64 5.1999989e-05 319 64 0.00010409999 322 64 0.0006765998 324 64 0.0006765998 326 64 0.0247203 331 64 0.00062449998 334 64 0.00026019989 335 64 5.1999989e-05 336 64 0.00010409999 356 64 5.1999989e-05 358 64 5.1999989e-05 366 64 0.0041633993 371 64 0.00036429986 374 64 0.0029663998 385 64 0.0029143998 386 64 0.0047358982 387 64 5.1999989e-05 390 64 0.016185299 394 64 0.00010409999 402 64 0.00036429986 415 64 0.00036429986 422 64 5.1999989e-05 423 64 5.1999989e-05 430 64 5.1999989e-05 431 64 5.1999989e-05 434 64 5.1999989e-05 438 64 0.00041629979 443 64 0.0057766996 444 64 0.0001561 445 64 0.014311697 446 64 0.0037470998 447 64 0.00062449998 448 64 0.00010409999 450 64 0.0031225998 452 64 0.00046839984 453 64 5.1999989e-05 454 64 0.00083269994 455 64 0.048191499 456 64 0.0091074966 457 64 0.0032786999 458 64 0.00041629979 460 64 0.0023418998 463 64 0.0066093989 464 64 0.0001561 465 64 0.00010409999 467 64 0.015872996 468 64 0.00046839984 469 64 0.0051001981 470 64 0.0048399977 471 64 0.0045276992 473 64 0.00010409999 478 64 0.00052039977 483 64 0.00031229993 489 64 5.1999989e-05 490 64 0.00041629979 491 64 0.00026019989 60 65 7.2199997e-05 114 65 7.2199997e-05 139 65 0.00014439999 160 65 0.00043329992 163 65 0.00021669999 165 65 0.0024553998 191 65 7.2199997e-05 195 65 0.00014439999 206 65 7.2199997e-05 217 65 0.00064999983 219 65 0.00072219991 233 65 0.0086660981 234 65 0.0022387998 235 65 0.0010833 236 65 0.0007944 237 65 0.00043329992 241 65 0.00086659985 252 65 0.00021669999 254 65 0.0012276999 255 65 7.2199997e-05 257 65 0.0025997998 259 65 0.00014439999 262 65 0.0011554998 264 65 0.00028889999 265 65 0.0017331999 266 65 0.00072219991 268 65 0.00014439999 271 65 0.0011554998 272 65 0.00021669999 273 65 0.00021669999 274 65 0.00064999983 275 65 0.052574597 277 65 0.0064995997 279 65 7.2199997e-05 292 65 7.2199997e-05 293 65 7.2199997e-05 295 65 0.015093498 302 65 7.2199997e-05 303 65 0.00028889999 304 65 0.0044052973 305 65 0.0064273998 306 65 0.0010833 307 65 0.0096771978 308 65 0.0024553998 309 65 0.00028889999 310 65 7.2199997e-05 311 65 0.00014439999 312 65 0.005127497 317 65 0.00028889999 319 65 0.00014439999 322 65 0.00093879993 324 65 0.021087598 331 65 0.0044774972 334 65 0.00028889999 335 65 7.2199997e-05 336 65 0.00014439999 356 65 7.2199997e-05 358 65 7.2199997e-05 366 65 0.0052718967 371 65 0.0023832 374 65 0.007655099 385 65 0.0037552998 386 65 0.031198099 390 65 0.00014439999 402 65 7.2199997e-05 414 65 0.0036831 415 65 0.00050549977 438 65 0.00036109984 443 65 0.0038274999 445 65 0.0032497998 446 65 7.2199997e-05 447 65 7.2199997e-05 450 65 0.00064999983 452 65 7.2199997e-05 454 65 0.00014439999 455 65 0.021376498 456 65 0.011771496 457 65 0.00064999983 458 65 0.00043329992 460 65 0.00036109984 463 65 0.0013720999 464 65 7.2199997e-05 467 65 0.016393397 468 65 7.2199997e-05 469 65 0.0010109998 470 65 0.0010109998 471 65 0.0028164999 478 65 7.2199997e-05 483 65 7.2199997e-05 490 65 0.00014439999 18 66 0.00024149999 24 66 0.014734298 60 66 0.00024149999 114 66 0.00024149999 126 66 0.00024149999 134 66 0.0024154999 139 66 0.00048309984 160 66 0.00072459993 163 66 0.00024149999 165 66 0.0050724968 168 66 0.00024149999 206 66 0.00024149999 214 66 0.00096619991 219 66 0.00072459993 223 66 0.00048309984 233 66 0.0084540993 234 66 0.012077298 235 66 0.025603898 236 66 0.0016907998 237 66 0.0014493 240 66 0.00072459993 241 66 0.0043477975 242 66 0.00024149999 252 66 0.00024149999 254 66 0.00072459993 255 66 0.00024149999 259 66 0.00024149999 264 66 0.00024149999 266 66 0.015942 268 66 0.00024149999 269 66 0.00096619991 273 66 0.00048309984 274 66 0.00024149999 277 66 0.12294686 282 66 0.0014493 295 66 0.00024149999 303 66 0.00048309984 304 66 0.00072459993 305 66 0.0048308969 306 66 0.00024149999 307 66 0.0031400998 308 66 0.0036231999 311 66 0.0014493 317 66 0.0014493 322 66 0.0028986 324 66 0.029951699 331 66 0.00096619991 334 66 0.00024149999 336 66 0.00024149999 366 66 0.0050724968 371 66 0.00072459993 374 66 0.0014493 385 66 0.0016907998 386 66 0.0014493 390 66 0.00024149999 402 66 0.00024149999 414 66 0.0014493 415 66 0.00048309984 438 66 0.00072459993 441 66 0.00048309984 443 66 0.0041062981 445 66 0.0135266 446 66 0.00096619991 447 66 0.00048309984 450 66 0.0028986 452 66 0.00048309984 454 66 0.00072459993 455 66 0.022946898 456 66 0.0099033974 457 66 0.0028986 458 66 0.00048309984 460 66 0.0016907998 463 66 0.0060385987 464 66 0.00024149999 467 66 0.018599 468 66 0.00048309984 469 66 0.0045893975 470 66 0.0045893975 471 66 0.0048308969 473 66 0.00024149999 478 66 0.00048309984 483 66 0.00024149999 490 66 0.00048309984 491 66 0.00024149999 18 67 0.001003 24 67 0.0090270974 165 67 0.0040119998 166 67 0.0030089999 214 67 0.001003 220 67 0.001003 233 67 0.011033099 234 67 0.041123398 235 67 0.005014997 237 67 0.001003 241 67 0.0030089999 266 67 0.0040119998 271 67 0.001003 273 67 0.001003 274 67 0.001003 277 67 0.15346038 295 67 0.010030098 305 67 0.023069199 307 67 0.0080240965 308 67 0.0020059999 317 67 0.001003 322 67 0.0040119998 324 67 0.076228678 331 67 0.0040119998 366 67 0.001003 371 67 0.014042098 374 67 0.0030089999 385 67 0.0020059999 386 67 0.0040119998 414 67 0.0070210993 438 67 0.001003 443 67 0.0030089999 445 67 0.010030098 450 67 0.0020059999 455 67 0.033099297 456 67 0.018054198 457 67 0.0020059999 460 67 0.0030089999 463 67 0.0040119998 467 67 0.018054198 469 67 0.0030089999 470 67 0.0030089999 471 67 0.005014997 490 67 0.001003 7 68 0.00013489999 16 68 0.00040459982 18 68 0.0016857998 24 68 0.020633899 60 68 0.00026969984 82 68 6.7399989e-05 108 68 6.7399989e-05 114 68 6.7399989e-05 126 68 6.7399989e-05 139 68 0.00040459982 142 68 6.7399989e-05 150 68 6.7399989e-05 154 68 6.7399989e-05 160 68 0.00033719977 163 68 0.00013489999 165 68 0.0046526976 168 68 0.00013489999 171 68 6.7399989e-05 191 68 6.7399989e-05 192 68 6.7399989e-05 194 68 6.7399989e-05 203 68 6.7399989e-05 204 68 6.7399989e-05 206 68 0.0002023 219 68 0.00053939992 223 68 6.7399989e-05 233 68 0.036817297 234 68 0.0087659992 235 68 0.0225893 236 68 0.00053939992 237 68 0.0014159998 241 68 0.011867799 242 68 6.7399989e-05 252 68 0.00013489999 254 68 0.012002699 259 68 0.00013489999 264 68 0.0002023 265 68 0.0095077977 266 68 0.0093728974 268 68 6.7399989e-05 269 68 0.00053939992 271 68 0.0030343998 273 68 0.00033719977 274 68 0.0015508998 277 68 0.0036412999 279 68 6.7399989e-05 282 68 0.0071476996 292 68 0.00013489999 295 68 6.7399989e-05 302 68 6.7399989e-05 303 68 0.00013489999 304 68 0.00040459982 305 68 0.0048549995 306 68 0.00013489999 307 68 0.0022251999 308 68 0.0043829978 311 68 0.00013489999 317 68 0.0014834998 318 68 6.7399989e-05 319 68 6.7399989e-05 322 68 0.0016182999 324 68 0.040391099 331 68 0.00053939992 334 68 0.0002023 336 68 0.00013489999 350 68 6.7399989e-05 358 68 6.7399989e-05 366 68 0.0033714999 371 68 0.0020228999 374 68 0.0052595995 385 68 0.0010114999 386 68 0.00087659992 387 68 6.7399989e-05 390 68 6.7399989e-05 394 68 6.7399989e-05 402 68 0.00040459982 414 68 0.0025624 415 68 0.00033719977 430 68 6.7399989e-05 438 68 0.0026297998 441 68 0.00047199987 443 68 0.0036412999 444 68 0.0002023 445 68 0.017464597 446 68 0.0010788999 447 68 0.00053939992 448 68 6.7399989e-05 450 68 0.0027647 452 68 0.00040459982 453 68 6.7399989e-05 454 68 0.00074169994 455 68 0.0277141 456 68 0.030815899 457 68 0.0028994998 458 68 0.00040459982 460 68 0.0017531998 463 68 0.0057990998 464 68 0.0002023 465 68 6.7399989e-05 467 68 0.015643999 468 68 0.00040459982 469 68 0.0051246993 470 68 0.0042480975 471 68 0.0041806996 473 68 0.00013489999 478 68 0.00047199987 483 68 0.00026969984 489 68 6.7399989e-05 490 68 0.00040459982 491 68 0.0002023 16 69 0.0001604 18 69 0.00048129982 24 69 0.013637099 60 69 0.00080219982 82 69 0.0001604 108 69 0.0001604 114 69 0.0001604 126 69 0.0001604 134 69 0.0016043999 139 69 0.0011230998 141 69 0.0001604 142 69 0.0001604 150 69 0.0001604 154 69 0.0001604 160 69 0.0016043999 162 69 0.0001604 163 69 0.0011230998 165 69 0.012513999 171 69 0.0001604 191 69 0.0001604 194 69 0.0001604 203 69 0.0001604 206 69 0.0001604 207 69 0.0001604 219 69 0.00096259988 220 69 0.0001604 223 69 0.0001604 233 69 0.014278799 234 69 0.017166696 235 69 0.0097865984 236 69 0.0022461 237 69 0.0035295999 240 69 0.0011230998 241 69 0.0091448985 242 69 0.00048129982 252 69 0.00064169988 254 69 0.021177597 255 69 0.0054547973 256 69 0.0001604 258 69 0.0028879 259 69 0.0003209 264 69 0.0038504999 265 69 0.0145997 266 69 0.012995299 267 69 0.0001604 268 69 0.00048129982 269 69 0.0003209 271 69 0.0016043999 273 69 0.00048129982 274 69 0.00064169988 277 69 0.0036899999 279 69 0.0003209 282 69 0.004171297 292 69 0.0001604 293 69 0.0001604 295 69 0.00048129982 302 69 0.0003209 303 69 0.00096259988 304 69 0.0022461 305 69 0.0027273998 306 69 0.00080219982 307 69 0.0044921972 308 69 0.008503098 311 69 0.008021798 312 69 0.0001604 317 69 0.0040108971 318 69 0.0001604 319 69 0.0003209 322 69 0.013155799 324 69 0.011230499 331 69 0.0014438999 334 69 0.00096259988 335 69 0.0001604 336 69 0.00048129982 356 69 0.0001604 358 69 0.0001604 366 69 0.016204096 371 69 0.00064169988 374 69 0.0014438999 385 69 0.0032086999 386 69 0.0038504999 387 69 0.0001604 390 69 0.0003209 394 69 0.0003209 402 69 0.0011230998 415 69 0.0016043999 422 69 0.0001604 430 69 0.0001604 434 69 0.0001604 438 69 0.00096259988 441 69 0.0003209 443 69 0.0046526976 444 69 0.00048129982 445 69 0.023102798 446 69 0.0017647999 447 69 0.0012834999 448 69 0.0001604 450 69 0.0073800981 452 69 0.0011230998 453 69 0.0001604 454 69 0.0019252 455 69 0.029038999 456 69 0.022300698 457 69 0.0077008978 458 69 0.00064169988 460 69 0.0062569976 463 69 0.0155623 464 69 0.00064169988 465 69 0.0001604 467 69 0.027755499 468 69 0.0011230998 469 69 0.012032699 470 69 0.011390999 471 69 0.0093052983 473 69 0.0003209 478 69 0.0012834999 483 69 0.00080219982 489 69 0.0001604 490 69 0.00096259988 491 69 0.00048129982 24 70 0.0033783999 60 70 0.00067569991 114 70 0.00067569991 126 70 0.00067569991 139 70 0.0013513998 159 70 0.0013513998 160 70 0.0027027 165 70 0.0094594993 168 70 0.0027027 206 70 0.00067569991 233 70 0.019594599 234 70 0.012162197 235 70 0.00067569991 236 70 0.0020269998 237 70 0.0040540993 241 70 0.0087837987 254 70 0.0013513998 264 70 0.00067569991 266 70 0.0013513998 277 70 0.0027027 295 70 0.0060810968 303 70 0.0013513998 304 70 0.00067569991 305 70 0.0020269998 307 70 0.0020269998 308 70 0.0081080981 312 70 0.0047296993 317 70 0.0033783999 324 70 0.00067569991 326 70 0.0027027 331 70 0.0013513998 334 70 0.00067569991 366 70 0.0087837987 371 70 0.00067569991 374 70 0.00067569991 385 70 0.0067567974 386 70 0.0108108 390 70 0.017567597 402 70 0.00067569991 415 70 0.00067569991 438 70 0.0013513998 443 70 0.00067569991 445 70 0.013513498 446 70 0.00067569991 447 70 0.00067569991 450 70 0.0074323975 452 70 0.0013513998 454 70 0.0020269998 455 70 0.0162162 456 70 0.014189199 457 70 0.0074323975 460 70 0.0047296993 463 70 0.014864899 467 70 0.0074323975 468 70 0.0013513998 469 70 0.011486497 470 70 0.011486497 471 70 0.0060810968 473 70 0.00067569991 478 70 0.00067569991 483 70 0.00067569991 490 70 0.0013513998 491 70 0.00067569991 16 71 0.0001258 18 71 0.0001258 24 71 0.018867899 60 71 0.00037739985 108 71 0.0001258 114 71 0.0001258 126 71 0.0001258 134 71 0.00025159982 139 71 0.00062889978 142 71 0.0001258 150 71 0.0001258 160 71 0.0056603998 161 71 0.0001258 162 71 0.00025159982 163 71 0.0020126 164 71 0.0001258 165 71 0.0085534975 168 71 0.0001258 171 71 0.0001258 182 71 0.0001258 191 71 0.00025159982 192 71 0.0001258 194 71 0.0001258 195 71 0.0001258 197 71 0.0001258 206 71 0.00025159982 219 71 0.0023898999 223 71 0.0001258 233 71 0.021006297 234 71 0.018490598 235 71 0.011949699 236 71 0.0075471997 237 71 0.0020126 240 71 0.00025159982 241 71 0.0057861991 242 71 0.00025159982 252 71 0.0017609999 254 71 0.0016351999 255 71 0.00050309999 256 71 0.00050309999 257 71 0.0001258 258 71 0.0001258 259 71 0.0013835998 264 71 0.0027672998 265 71 0.0020126 266 71 0.0094339997 268 71 0.00088049984 269 71 0.0001258 271 71 0.00075469981 273 71 0.00025159982 274 71 0.00037739985 277 71 0.0023898999 279 71 0.00075469981 282 71 0.0010062999 292 71 0.00037739985 293 71 0.00037739985 295 71 0.0022641998 302 71 0.00075469981 303 71 0.0027672998 304 71 0.007169798 305 71 0.0050313994 306 71 0.0017609999 307 71 0.0022641998 308 71 0.0069181994 309 71 0.00088049984 310 71 0.0001258 311 71 0.0010062999 312 71 0.00050309999 317 71 0.0021384 318 71 0.0001258 319 71 0.0010062999 322 71 0.0022641998 324 71 0.0038993999 331 71 0.0010062999 334 71 0.0027672998 335 71 0.00050309999 336 71 0.0018867999 341 71 0.00025159982 350 71 0.00025159982 352 71 0.0001258 356 71 0.00050309999 358 71 0.00062889978 366 71 0.053459097 368 71 0.0001258 371 71 0.004528299 374 71 0.00062889978 380 71 0.0001258 385 71 0.0099370964 386 71 0.013584897 387 71 0.0001258 390 71 0.0012578999 394 71 0.0001258 402 71 0.00050309999 414 71 0.00025159982 415 71 0.0054087974 422 71 0.0001258 430 71 0.0001258 438 71 0.0012578999 439 71 0.0001258 441 71 0.00050309999 443 71 0.0038993999 444 71 0.00025159982 445 71 0.017987397 446 71 0.0011320999 447 71 0.00062889978 448 71 0.0001258 450 71 0.0040251985 452 71 0.00062889978 453 71 0.0001258 454 71 0.0011320999 455 71 0.030440297 456 71 0.0261635 457 71 0.0041508973 458 71 0.00025159982 460 71 0.0032704 463 71 0.0084276982 464 71 0.00025159982 467 71 0.010817599 468 71 0.00062889978 469 71 0.0065408982 470 71 0.0062892996 471 71 0.004528299 473 71 0.0001258 478 71 0.00062889978 483 71 0.00037739985 490 71 0.00050309999 491 71 0.00025159982 16 72 0.000166 18 72 0.000166 24 72 0.0041500963 60 72 0.00033199997 80 72 0.00049799983 108 72 0.000166 114 72 0.00033199997 126 72 0.000166 139 72 0.00049799983 141 72 0.00049799983 150 72 0.000166 160 72 0.0016599998 162 72 0.000166 163 72 0.0008299998 165 72 0.005478099 182 72 0.000166 191 72 0.000166 206 72 0.00033199997 217 72 0.000166 219 72 0.0009959999 220 72 0.0024899999 233 72 0.012782197 234 72 0.032868497 235 72 0.0018259999 236 72 0.0023239998 237 72 0.0013279999 240 72 0.0019919998 241 72 0.0041500963 242 72 0.00049799983 252 72 0.00066399993 255 72 0.000166 256 72 0.000166 257 72 0.00033199997 259 72 0.00033199997 262 72 0.000166 264 72 0.00066399993 265 72 0.00049799983 266 72 0.0023239998 268 72 0.0009959999 271 72 0.00049799983 273 72 0.000166 274 72 0.000166 275 72 0.000166 277 72 0.0018259999 279 72 0.00033199997 292 72 0.000166 293 72 0.000166 295 72 0.0049800985 302 72 0.00033199997 303 72 0.0009959999 304 72 0.002656 305 72 0.0029879999 306 72 0.0008299998 307 72 0.0048140995 308 72 0.0044820979 311 72 0.0011619998 312 72 0.0016599998 317 72 0.0013279999 319 72 0.00033199997 322 72 0.0046480969 324 72 0.007802099 331 72 0.001494 333 72 0.00066399993 334 72 0.0009959999 335 72 0.000166 336 72 0.00049799983 356 72 0.00066399993 358 72 0.000166 366 72 0.016932297 371 72 0.001494 374 72 0.0009959999 385 72 0.0034860999 386 72 0.013280198 387 72 0.000166 390 72 0.00049799983 394 72 0.000166 402 72 0.00033199997 414 72 0.00033199997 415 72 0.0016599998 438 72 0.0008299998 443 72 0.0013279999 445 72 0.0091300979 446 72 0.0009959999 447 72 0.00033199997 448 72 0.000166 450 72 0.0028219998 452 72 0.00049799983 454 72 0.00066399993 455 72 0.020916298 456 72 0.014608197 457 72 0.0029879999 458 72 0.00049799983 460 72 0.0021579999 463 72 0.0061420985 464 72 0.000166 467 72 0.018094297 468 72 0.00049799983 469 72 0.0044820979 470 72 0.0044820979 471 72 0.0048140995 473 72 0.000166 478 72 0.00033199997 483 72 0.00033199997 490 72 0.00049799983 491 72 0.000166 9 73 2.3899993e-05 16 73 2.3899993e-05 24 73 0.061835498 60 73 0.00033449987 79 73 2.3899993e-05 80 73 4.7799986e-05 82 73 2.3899993e-05 83 73 2.3899993e-05 84 73 2.3899993e-05 108 73 2.3899993e-05 113 73 7.1699993e-05 114 73 0.00011949999 126 73 7.1699993e-05 127 73 2.3899993e-05 134 73 0.00038229977 139 73 0.00054949988 141 73 4.7799986e-05 142 73 7.1699993e-05 150 73 9.5599986e-05 154 73 4.7799986e-05 160 73 0.0054714978 165 73 0.0093660988 168 73 0.00062119984 171 73 7.1699993e-05 189 73 2.3899993e-05 192 73 2.3899993e-05 194 73 4.7799986e-05 197 73 2.3899993e-05 201 73 4.7799986e-05 203 73 4.7799986e-05 204 73 4.7799986e-05 206 73 9.5599986e-05 207 73 2.3899993e-05 209 73 2.3899993e-05 219 73 0.00066899997 220 73 0.00014339999 223 73 4.7799986e-05 233 73 0.0071440972 234 73 0.037679497 235 73 0.035696398 237 73 0.0016007998 241 73 0.0055909976 242 73 0.00011949999 248 73 2.3899993e-05 250 73 2.3899993e-05 252 73 2.3899993e-05 254 73 0.0018875999 258 73 9.5599986e-05 265 73 0.0027476999 266 73 0.017872099 271 73 2.3899993e-05 273 73 0.00052559981 277 73 0.00074069994 305 73 0.014718197 307 73 0.0021025999 308 73 0.010680199 309 73 0.0018636999 310 73 0.00050179986 311 73 0.0022459999 317 73 0.0017919999 318 73 4.7799986e-05 322 73 0.0033210998 324 73 0.00023889999 331 73 0.00066899997 384 73 2.3899993e-05 385 73 0.00083629997 387 73 4.7799986e-05 394 73 0.00011949999 397 73 2.3899993e-05 402 73 0.00040619983 412 73 2.3899993e-05 419 73 2.3899993e-05 422 73 7.1699993e-05 423 73 2.3899993e-05 425 73 2.3899993e-05 430 73 2.3899993e-05 431 73 2.3899993e-05 433 73 2.3899993e-05 434 73 2.3899993e-05 438 73 0.00040619983 441 73 0.0015052999 443 73 0.0086731985 444 73 0.00014339999 445 73 0.034358297 446 73 0.0028671999 447 73 0.0004778998 448 73 0.0004300999 450 73 0.0034883998 452 73 0.00052559981 453 73 7.1699993e-05 454 73 0.00093179988 455 73 0.022029497 456 73 0.013810199 457 73 0.0036795 458 73 0.00028669997 460 73 0.0026282 463 73 0.0073590986 464 73 0.00016729999 465 73 0.00011949999 467 73 0.012496099 468 73 0.00054949988 469 73 0.0054475963 470 73 0.0053998977 471 73 0.004396297 473 73 0.00011949999 477 73 4.7799986e-05 478 73 0.00062119984 483 73 0.00035839994 489 73 7.1699993e-05 490 73 0.0004300999 491 73 0.00021499999 18 74 0.00030299998 24 74 0.00090909982 60 74 0.00045449985 80 74 0.00015149999 108 74 0.00015149999 114 74 0.00015149999 126 74 0.00015149999 139 74 0.00075759995 142 74 0.00015149999 150 74 0.00015149999 160 74 0.00030299998 165 74 0.007878799 171 74 0.00015149999 182 74 0.0018181999 183 74 0.00090909982 194 74 0.00015149999 206 74 0.00045449985 214 74 0.013181798 220 74 0.00060609984 223 74 0.017878797 233 74 0.00060609984 234 74 0.017727297 237 74 0.0033332999 240 74 0.00045449985 241 74 0.0057575963 242 74 0.00030299998 254 74 0.022121198 265 74 0.0031817998 266 74 0.00030299998 273 74 0.010302998 274 74 0.00030299998 277 74 0.053484797 305 74 0.00015149999 307 74 0.0034848 308 74 0.0056061 312 74 0.0010605999 317 74 0.0027272999 318 74 0.00015149999 322 74 0.0042423978 324 74 0.0081817992 331 74 0.0287879 333 74 0.040757596 350 74 0.0056061 371 74 0.00030299998 374 74 0.00090909982 387 74 0.00015149999 394 74 0.00015149999 402 74 0.00075759995 422 74 0.00015149999 430 74 0.00015149999 443 74 0.010606099 444 74 0.00030299998 445 74 0.014848497 446 74 0.0015151999 447 74 0.00090909982 448 74 0.00015149999 450 74 0.004999999 452 74 0.00075759995 453 74 0.00015149999 454 74 0.004999999 455 74 0.030151498 456 74 0.0075757988 457 74 0.0053029992 458 74 0.00045449985 460 74 0.0040908977 463 74 0.010606099 464 74 0.00030299998 467 74 0.021818198 468 74 0.00075759995 469 74 0.007878799 470 74 0.007878799 471 74 0.0069696978 473 74 0.00015149999 478 74 0.00090909982 483 74 0.00045449985 490 74 0.00075759995 491 74 0.00030299998 16 75 0.0001852 24 75 0.014999997 60 75 0.00037039979 108 75 0.0001852 114 75 0.00037039979 126 75 0.0001852 134 75 0.0001852 139 75 0.00055559981 150 75 0.0001852 160 75 0.007407397 162 75 0.0001852 163 75 0.0024073999 165 75 0.0072221979 166 75 0.0001852 167 75 0.0012963 182 75 0.00055559981 191 75 0.00037039979 192 75 0.0001852 206 75 0.00037039979 219 75 0.0012963 233 75 0.025185198 234 75 0.014259297 235 75 0.0087036975 236 75 0.0024073999 237 75 0.0014815 241 75 0.004444398 242 75 0.0001852 252 75 0.00074069994 254 75 0.0012963 255 75 0.0001852 256 75 0.0001852 257 75 0.0001852 259 75 0.00037039979 264 75 0.00074069994 265 75 0.0022221999 266 75 0.0092592984 268 75 0.0024073999 271 75 0.00037039979 273 75 0.00037039979 277 75 0.0014815 279 75 0.00055559981 292 75 0.0001852 293 75 0.0001852 295 75 0.0024073999 302 75 0.00037039979 303 75 0.00092589995 304 75 0.0024073999 305 75 0.0062962994 306 75 0.0012963 307 75 0.002963 308 75 0.0055555999 309 75 0.00055559981 311 75 0.0014815 312 75 0.00037039979 317 75 0.0016666998 319 75 0.0011111 322 75 0.0025926 324 75 0.0014815 331 75 0.00074069994 334 75 0.00092589995 335 75 0.0001852 336 75 0.00055559981 356 75 0.0001852 358 75 0.0001852 366 75 0.017036997 371 75 0.0025926 374 75 0.00037039979 380 75 0.0001852 385 75 0.0038888999 386 75 0.0062962994 387 75 0.0001852 390 75 0.00055559981 394 75 0.0001852 402 75 0.00037039979 414 75 0.0001852 415 75 0.0014815 438 75 0.0016666998 441 75 0.00037039979 443 75 0.0031480999 444 75 0.0001852 445 75 0.014259297 446 75 0.00092589995 447 75 0.00037039979 450 75 0.0033332999 452 75 0.00055559981 454 75 0.00092589995 455 75 0.018333297 456 75 0.022222199 457 75 0.0035184999 458 75 0.00055559981 460 75 0.0025926 463 75 0.0072221979 464 75 0.0001852 467 75 0.018518496 468 75 0.00055559981 469 75 0.005185198 470 75 0.005185198 471 75 0.004999999 473 75 0.0001852 478 75 0.00037039979 483 75 0.00037039979 490 75 0.00055559981 491 75 0.0001852 9 76 7.9199992e-05 16 76 2.6399997e-05 18 76 2.6399997e-05 22 76 7.9199992e-05 60 76 0.0039842986 76 76 0.012955498 79 76 2.6399997e-05 81 76 0.00060689985 82 76 0.0001583 83 76 0.00010549999 84 76 0.00010549999 108 76 0.00018469999 113 76 0.0002638998 114 76 0.00055409991 126 76 0.00029019988 127 76 5.2799995e-05 130 76 7.9199992e-05 134 76 2.6399997e-05 150 76 0.00042219996 181 76 5.2799995e-05 187 76 2.6399997e-05 189 76 0.00029019988 190 76 0.00010549999 192 76 5.2799995e-05 194 76 7.9199992e-05 196 76 2.6399997e-05 197 76 5.2799995e-05 198 76 5.2799995e-05 200 76 0.00010549999 201 76 7.9199992e-05 203 76 7.9199992e-05 204 76 0.00010549999 206 76 0.00021109999 207 76 5.2799995e-05 209 76 2.6399997e-05 214 76 5.2799995e-05 223 76 5.2799995e-05 224 76 0.001161 233 76 0.00081799994 234 76 0.0016886999 237 76 7.9199992e-05 240 76 0.00047489977 241 76 0.0015039998 248 76 0.00010549999 250 76 5.2799995e-05 251 76 2.6399997e-05 252 76 0.00023749999 263 76 2.6399997e-05 270 76 0.00034299982 272 76 0.00076519977 277 76 0.0067019984 282 76 0.00021109999 283 76 0.00036939979 284 76 0.00044859992 292 76 0.00013189999 293 76 0.0024275 294 76 0.00063329982 295 76 0.00071239984 296 76 0.00084429979 298 76 0.0020052998 299 76 0.0010026998 312 76 0.0048285984 315 76 0.0013720999 319 76 0.0017414999 320 76 0.00092349993 321 76 0.00097629987 322 76 7.9199992e-05 324 76 0.00047489977 326 76 0.00010549999 338 76 2.6399997e-05 339 76 0.00013189999 340 76 0.003694 350 76 0.0023482998 351 76 0.0002638998 354 76 0.0007387998 356 76 2.6399997e-05 358 76 0.0027704998 359 76 0.0001583 369 76 0.00039579999 370 76 2.6399997e-05 372 76 0.0019788998 380 76 5.2799995e-05 384 76 5.2799995e-05 386 76 7.9199992e-05 387 76 0.00029019988 390 76 0.032058898 391 76 0.00010549999 392 76 0.0019788998 393 76 0.023430698 396 76 2.6399997e-05 397 76 0.00010549999 402 76 0.0029815999 403 76 0.00010549999 404 76 0.006965898 405 76 0.08731097 413 76 0.0062797964 414 76 0.00081799994 419 76 7.9199992e-05 420 76 0.00010549999 422 76 0.00021109999 423 76 7.9199992e-05 425 76 5.2799995e-05 430 76 0.0001583 431 76 2.6399997e-05 432 76 2.6399997e-05 433 76 5.2799995e-05 434 76 5.2799995e-05 443 76 0.00044859992 444 76 0.0014775998 445 76 0.0020844999 446 76 0.00013189999 447 76 0.0027704998 449 76 5.2799995e-05 450 76 0.0058048964 452 76 0.0045647994 453 76 0.00036939979 454 76 0.00031659985 455 76 0.0078893974 456 76 0.0021372999 457 76 0.0027704998 458 76 0.0013984998 459 76 0.00058049988 460 76 0.00089709996 463 76 0.0092086978 464 76 0.0014511999 465 76 0.0031398998 467 76 0.023931999 468 76 0.0011345998 469 76 0.012981899 470 76 0.028786998 471 76 0.0031398998 473 76 0.00058049988 477 76 0.00013189999 478 76 0.0015568 479 76 2.6399997e-05 483 76 0.0038786998 490 76 0.0022427998 491 76 0.00010549999 9 77 7.0099995e-05 22 77 0.0034355 24 77 0.00035059988 60 77 0.0043468997 77 77 0.082521141 78 77 0.00070109987 82 77 7.0099995e-05 83 77 7.0099995e-05 84 77 7.0099995e-05 108 77 7.0099995e-05 113 77 0.00014019999 114 77 0.00021029999 126 77 0.00014019999 127 77 7.0099995e-05 137 77 0.00063099992 150 77 0.008833997 165 77 7.0099995e-05 171 77 7.0099995e-05 172 77 0.021173697 189 77 7.0099995e-05 190 77 0.00014019999 192 77 7.0099995e-05 194 77 7.0099995e-05 198 77 0.010867298 200 77 0.00014019999 201 77 7.0099995e-05 203 77 7.0099995e-05 204 77 0.00014019999 206 77 0.00028039981 207 77 7.0099995e-05 214 77 0.00091139995 218 77 0.00014019999 220 77 0.0086937994 224 77 0.0018228998 229 77 0.0010517 233 77 0.00014019999 234 77 0.0060996972 237 77 0.00028039981 240 77 0.00084129977 241 77 0.0016125999 242 77 0.00035059988 248 77 7.0099995e-05 250 77 7.0099995e-05 252 77 0.00035059988 270 77 0.00021029999 271 77 7.0099995e-05 272 77 7.0099995e-05 273 77 0.00014019999 277 77 0.15754044 282 77 0.0051180981 283 77 0.008833997 284 77 0.00056089996 285 77 0.023206897 288 77 0.00014019999 292 77 0.0084834993 293 77 0.022645999 294 77 0.00028039981 295 77 0.0011217999 296 77 0.0065904967 298 77 0.00014019999 299 77 0.0056789964 304 77 0.00014019999 307 77 7.0099995e-05 308 77 7.0099995e-05 312 77 0.0035055999 315 77 0.0077823997 319 77 0.00035059988 320 77 0.0021734999 321 77 7.0099995e-05 322 77 0.0082731992 324 77 0.00028039981 326 77 0.0046974979 328 77 0.00035059988 331 77 0.00063099992 333 77 7.0099995e-05 338 77 0.00063099992 339 77 7.0099995e-05 340 77 0.008833997 341 77 7.0099995e-05 349 77 7.0099995e-05 350 77 0.00014019999 351 77 0.00077119982 352 77 7.0099995e-05 354 77 0.00070109987 356 77 7.0099995e-05 358 77 0.0072214976 366 77 0.00028039981 369 77 0.00014019999 370 77 0.00014019999 371 77 0.00035059988 372 77 0.0014722999 373 77 0.00014019999 384 77 7.0099995e-05 386 77 0.00028039981 387 77 7.0099995e-05 390 77 0.00091139995 391 77 7.0099995e-05 392 77 0.0072915964 393 77 0.0051180981 398 77 0.00014019999 402 77 0.00028039981 404 77 0.00021029999 405 77 0.0011918999 413 77 0.00021029999 415 77 7.0099995e-05 419 77 0.0030848999 422 77 0.00021029999 423 77 0.00014019999 424 77 7.0099995e-05 425 77 7.0099995e-05 426 77 7.0099995e-05 430 77 7.0099995e-05 431 77 7.0099995e-05 433 77 7.0099995e-05 434 77 7.0099995e-05 438 77 0.00014019999 441 77 0.00014019999 442 77 7.0099995e-05 443 77 0.0077823997 444 77 0.00063099992 445 77 0.0082731992 446 77 0.00084129977 447 77 0.0015425 448 77 7.0099995e-05 450 77 0.0068007968 452 77 0.0178083 453 77 0.0081328973 454 77 0.00084129977 455 77 0.0250999 456 77 0.00056089996 457 77 0.00098159979 458 77 0.0013320998 459 77 0.00014019999 460 77 0.0010517 463 77 0.0058893971 464 77 0.00077119982 465 77 0.0022435999 467 77 0.025941197 468 77 0.0060996972 469 77 0.0091144964 470 77 0.010306399 471 77 0.0013320998 473 77 0.00021029999 477 77 0.00014019999 478 77 0.0016125999 483 77 0.00098159979 489 77 7.0099995e-05 490 77 0.00091139995 491 77 0.00098159979 22 78 0.00031939987 60 78 0.0022356999 77 78 0.020121399 78 78 0.16671985 114 78 0.00031939987 130 78 0.00031939987 156 78 0.017246898 172 78 0.00031939987 198 78 0.00031939987 206 78 0.00031939987 214 78 0.00063879997 225 78 0.00095819985 234 78 0.0015968999 237 78 0.00031939987 240 78 0.0114979 241 78 0.00063879997 252 78 0.00031939987 270 78 0.00031939987 271 78 0.00031939987 277 78 0.035451896 278 78 0.00031939987 282 78 0.047588598 283 78 0.0099009983 284 78 0.00063879997 285 78 0.00031939987 292 78 0.00095819985 293 78 0.0325775 294 78 0.0028744999 295 78 0.028744798 296 78 0.004152 298 78 0.0092621967 299 78 0.0086233988 312 78 0.0038325998 313 78 0.0025550998 315 78 0.0035132999 319 78 0.00063879997 320 78 0.0038325998 321 78 0.0038325998 323 78 0.00031939987 324 78 0.00031939987 326 78 0.0031939 328 78 0.0105398 340 78 0.0092621967 351 78 0.0083040968 353 78 0.00063879997 354 78 0.016288698 357 78 0.00031939987 358 78 0.0079846978 366 78 0.00095819985 369 78 0.00031939987 372 78 0.00095819985 373 78 0.00063879997 375 78 0.00031939987 386 78 0.00031939987 387 78 0.00031939987 390 78 0.0022356999 391 78 0.00031939987 392 78 0.0015968999 393 78 0.0038325998 397 78 0.00095819985 398 78 0.00031939987 401 78 0.00095819985 402 78 0.0079846978 404 78 0.0073458999 405 78 0.0025550998 414 78 0.00063879997 443 78 0.0031939 444 78 0.00031939987 445 78 0.015330598 447 78 0.0015968999 450 78 0.004152 452 78 0.0044713989 453 78 0.0012774998 454 78 0.00063879997 455 78 0.020760097 457 78 0.00063879997 458 78 0.00063879997 460 78 0.00063879997 463 78 0.0038325998 464 78 0.00031939987 465 78 0.0012774998 467 78 0.015969299 468 78 0.0012774998 469 78 0.0038325998 470 78 0.0057489984 471 78 0.0015968999 478 78 0.00095819985 483 78 0.0019162998 490 78 0.00063879997 491 78 0.013094898 22 79 0.00051709986 60 79 0.0033608999 79 79 0.026628699 108 79 0.00025849999 114 79 0.00051709986 126 79 0.00025849999 161 79 0.018355697 190 79 0.00025849999 194 79 0.00025849999 198 79 0.0028437998 200 79 0.00025849999 206 79 0.00051709986 220 79 0.0072388984 229 79 0.00051709986 234 79 0.0033608999 237 79 0.00025849999 240 79 0.00025849999 241 79 0.010082699 252 79 0.00025849999 270 79 0.00025849999 277 79 0.036711499 282 79 0.010082699 283 79 0.015253399 284 79 0.00051709986 292 79 0.0012926999 293 79 0.0054291971 294 79 0.0025852998 296 79 0.0043949969 298 79 0.008272998 299 79 0.0010340998 312 79 0.012409497 313 79 0.00025849999 315 79 0.0080144964 320 79 0.0072388984 321 79 0.0031023999 322 79 0.013443597 340 79 0.018097199 351 79 0.0020682998 358 79 0.0056876987 387 79 0.00025849999 392 79 0.0018096999 393 79 0.0025852998 402 79 0.00051709986 422 79 0.00025849999 441 79 0.0028437998 443 79 0.0023267998 444 79 0.00051709986 445 79 0.003878 446 79 0.00025849999 447 79 0.011892498 450 79 0.0067217983 452 79 0.0067217983 453 79 0.0020682998 454 79 0.0015511999 455 79 0.016287498 456 79 0.00025849999 457 79 0.00077559985 458 79 0.0023267998 459 79 0.00025849999 460 79 0.0010340998 463 79 0.004136499 464 79 0.00077559985 465 79 0.0023267998 467 79 0.028955497 468 79 0.0074973963 469 79 0.008272998 470 79 0.0093070976 471 79 0.0010340998 473 79 0.00025849999 477 79 0.00025849999 478 79 0.0020682998 483 79 0.0012926999 490 79 0.0010340998 491 79 0.0018096999 22 80 0.00066919997 24 80 0.0002231 60 80 0.010484099 79 80 0.009368699 80 80 0.020521998 108 80 0.0002231 114 80 0.00044609979 126 80 0.0002231 135 80 0.0002231 160 80 0.0022306 171 80 0.0013383999 191 80 0.0011153 194 80 0.0002231 198 80 0.013160799 206 80 0.00044609979 220 80 0.039036397 225 80 0.00044609979 229 80 0.00089229993 234 80 0.0026767999 237 80 0.0002231 241 80 0.010260999 252 80 0.0002231 270 80 0.0071380995 271 80 0.0002231 277 80 0.017845199 284 80 0.00044609979 287 80 0.052866399 292 80 0.16417575 315 80 0.036805697 320 80 0.0044612996 321 80 0.009368699 340 80 0.013606999 351 80 0.0002231 358 80 0.0040151998 387 80 0.0002231 443 80 0.0051304996 444 80 0.010260999 445 80 0.017175999 446 80 0.00044609979 447 80 0.0064688995 450 80 0.0055765994 452 80 0.0071380995 453 80 0.0017845 454 80 0.00089229993 455 80 0.023867898 456 80 0.0002231 457 80 0.00066919997 458 80 0.0011153 459 80 0.0002231 460 80 0.00089229993 463 80 0.0017845 464 80 0.00066919997 465 80 0.0013383999 467 80 0.024090998 468 80 0.0055765994 469 80 0.0057996996 470 80 0.0066918992 471 80 0.00066919997 473 80 0.0002231 477 80 0.0002231 478 80 0.0013383999 483 80 0.00066919997 490 80 0.00066919997 491 80 0.0013383999 9 81 0.00017429999 22 81 0.00052279979 24 81 0.00017429999 60 81 0.0060996972 77 81 0.013419297 79 81 0.010108098 81 81 0.00017429999 82 81 0.00017429999 108 81 0.00017429999 114 81 0.00034859986 120 81 0.00017429999 126 81 0.00017429999 130 81 0.00017429999 150 81 0.00052279979 160 81 0.0012198999 161 81 0.00052279979 172 81 0.0012198999 181 81 0.00017429999 189 81 0.00017429999 190 81 0.00017429999 194 81 0.00017429999 198 81 0.0017428 200 81 0.00017429999 203 81 0.00017429999 204 81 0.00017429999 206 81 0.00052279979 214 81 0.00052279979 218 81 0.00017429999 220 81 0.005053997 223 81 0.00017429999 224 81 0.00017429999 229 81 0.00052279979 234 81 0.0033113 237 81 0.00017429999 240 81 0.0015685 241 81 0.0024398998 252 81 0.00017429999 270 81 0.00017429999 277 81 0.031892598 282 81 0.011327997 283 81 0.0087137967 284 81 0.00052279979 285 81 0.0012198999 287 81 0.00017429999 289 81 0.0024398998 290 81 0.00017429999 292 81 0.0020913 293 81 0.006622497 294 81 0.0022655998 295 81 0.00017429999 296 81 0.009585198 298 81 0.0024398998 299 81 0.0067967996 312 81 0.0031369999 313 81 0.00034859986 315 81 0.0026141999 318 81 0.0017428 319 81 0.00034859986 320 81 0.0087137967 321 81 0.0013941999 322 81 0.0078424998 326 81 0.0043568984 328 81 0.0017428 333 81 0.00017429999 338 81 0.00087139988 340 81 0.0041825995 351 81 0.0047054999 354 81 0.00017429999 358 81 0.011153698 369 81 0.00017429999 386 81 0.00017429999 387 81 0.00017429999 390 81 0.0026141999 391 81 0.00017429999 392 81 0.0202161 393 81 0.0085395984 397 81 0.00017429999 402 81 0.00034859986 403 81 0.00017429999 404 81 0.0047054999 405 81 0.026315797 414 81 0.00017429999 419 81 0.0013941999 422 81 0.00017429999 430 81 0.00017429999 434 81 0.00017429999 442 81 0.00017429999 443 81 0.0017428 444 81 0.0010456999 445 81 0.0031369999 447 81 0.0022655998 450 81 0.0078424998 452 81 0.010979399 453 81 0.0020913 454 81 0.0012198999 455 81 0.012896497 456 81 0.00069709984 457 81 0.00087139988 458 81 0.0017428 459 81 0.00034859986 460 81 0.00087139988 463 81 0.0031369999 464 81 0.0013941999 465 81 0.0024398998 467 81 0.033286899 468 81 0.0027883998 469 81 0.013244998 470 81 0.016033497 471 81 0.0013941999 473 81 0.00034859986 478 81 0.0020913 483 81 0.0026141999 490 81 0.0013941999 491 81 0.0034854999 0 82 6.5899992e-05 1 82 4.2299987e-05 2 82 0.72868645 3 82 4.2299987e-05 5 82 0.00035749981 6 82 0.0049346983 9 82 3.2899989e-05 11 82 2.349999e-05 14 82 4.6999994e-06 17 82 6.5899992e-05 18 82 0.00033399998 22 82 0.0001317 25 82 4.2299987e-05 60 82 0.00076209987 62 82 9.8799996e-05 79 82 4.6999994e-06 82 82 0.067349672 83 82 0.0025684999 84 82 2.349999e-05 88 82 0.00019759999 94 82 9.3999997e-06 97 82 4.6999994e-06 98 82 2.349999e-05 102 82 0.0012089999 104 82 9.3999997e-06 107 82 2.8199996e-05 108 82 4.6999994e-06 111 82 4.6999994e-06 113 82 9.3999997e-06 114 82 1.4099999e-05 117 82 4.2299987e-05 118 82 0.00030109985 119 82 1.8799998e-05 120 82 0.0002774999 122 82 2.349999e-05 125 82 0.0014253999 126 82 9.3999997e-06 127 82 4.6999994e-06 141 82 4.6999994e-06 149 82 4.6999994e-06 150 82 0.00012699999 153 82 0.00013639999 172 82 0.00011289999 189 82 3.2899989e-05 190 82 1.8799998e-05 192 82 1.8799998e-05 193 82 3.2899989e-05 194 82 1.4099999e-05 196 82 4.6999994e-06 197 82 4.6999994e-06 198 82 0.0048499964 200 82 9.3999997e-06 201 82 9.3999997e-06 203 82 1.4099999e-05 204 82 0.00019759999 206 82 9.8799996e-05 207 82 9.3999997e-06 209 82 4.6999994e-06 214 82 0.00036219996 217 82 1.4099999e-05 218 82 9.3999997e-06 223 82 0.00013639999 228 82 9.3999997e-06 229 82 0.00068209996 230 82 0.00015519999 234 82 0.00088439998 237 82 0.00015519999 241 82 0.0053721964 242 82 0.0001599 248 82 4.6999994e-06 250 82 4.6999994e-06 251 82 4.6999994e-06 252 82 1.4099999e-05 253 82 4.6999994e-06 272 82 0.00013639999 279 82 0.0002023 300 82 0.0019945998 301 82 0.00011759999 317 82 1.8799998e-05 325 82 1.4099999e-05 329 82 8.469999e-05 344 82 0.00054099993 356 82 6.5899992e-05 358 82 7.0599999e-05 384 82 9.3999997e-06 387 82 9.3999997e-06 394 82 9.3999997e-06 397 82 4.6999994e-06 402 82 4.6999994e-05 404 82 1.8799998e-05 414 82 0.00010819999 419 82 4.6999994e-06 422 82 1.8799998e-05 423 82 4.6999994e-06 425 82 4.6999994e-06 430 82 4.6999994e-06 431 82 4.6999994e-06 432 82 4.6999994e-06 433 82 9.3999997e-06 434 82 9.3999997e-06 443 82 0.0012371999 444 82 1.8799998e-05 445 82 0.0057108998 446 82 0.00031519984 447 82 6.5899992e-05 448 82 1.4099999e-05 450 82 0.00055979984 452 82 0.0028036998 453 82 0.0011336999 454 82 0.00030109985 455 82 0.030807696 456 82 0.0001599 457 82 0.0010537 458 82 9.8799996e-05 459 82 0.00038099987 460 82 0.00071029994 463 82 0.0011713 464 82 2.349999e-05 465 82 0.00030579977 467 82 0.0025072999 468 82 0.0014489 469 82 0.00072439993 470 82 0.00078559993 471 82 0.00066799996 472 82 7.9999998e-05 473 82 1.4099999e-05 476 82 4.6999994e-05 477 82 4.2299987e-05 478 82 0.00021639999 483 82 0.00040459982 489 82 4.2299987e-05 490 82 6.1199986e-05 491 82 0.00044219987 0 83 7.9699996e-05 1 83 0.00090279989 2 83 0.34128594 3 83 2.6599999e-05 5 83 0.00037169992 6 83 0.00023899999 9 83 5.3099997e-05 11 83 9.2899994e-05 13 83 1.3299999e-05 14 83 1.3299999e-05 17 83 0.00018589999 22 83 7.9699996e-05 25 83 1.3299999e-05 60 83 0.0011815999 82 83 0.31769359 83 83 0.033775397 84 83 0.00029209978 85 83 1.3299999e-05 87 83 6.6399996e-05 88 83 0.00099569978 90 83 2.6599999e-05 93 83 5.3099997e-05 94 83 7.9699996e-05 98 83 3.9799997e-05 103 83 1.3299999e-05 104 83 1.3299999e-05 107 83 3.9799997e-05 108 83 1.3299999e-05 114 83 3.9799997e-05 115 83 1.3299999e-05 118 83 2.6599999e-05 120 83 1.3299999e-05 122 83 3.9799997e-05 124 83 3.9799997e-05 125 83 0.0055628978 126 83 1.3299999e-05 130 83 1.3299999e-05 149 83 1.3299999e-05 150 83 0.00022569999 153 83 6.6399996e-05 172 83 5.3099997e-05 189 83 3.9799997e-05 190 83 3.9799997e-05 192 83 0.00087619992 193 83 0.0072090998 194 83 2.6599999e-05 198 83 0.011377998 200 83 1.3299999e-05 203 83 1.3299999e-05 204 83 0.010090098 206 83 0.00019909999 207 83 1.3299999e-05 214 83 0.00033189985 223 83 0.00019909999 224 83 0.00010619999 229 83 0.00066379993 230 83 0.00026549981 234 83 0.0013408998 237 83 0.00014599999 240 83 0.00010619999 241 83 0.011616897 242 83 0.00017259999 252 83 1.3299999e-05 253 83 0.00014599999 272 83 0.00018589999 277 83 1.3299999e-05 279 83 0.00049119978 300 83 0.0060009994 301 83 5.3099997e-05 314 83 2.6599999e-05 315 83 1.3299999e-05 316 83 0.00017259999 318 83 1.3299999e-05 344 83 0.00051779998 356 83 6.6399996e-05 358 83 0.00010619999 384 83 1.3299999e-05 387 83 1.3299999e-05 394 83 1.3299999e-05 402 83 5.3099997e-05 404 83 1.3299999e-05 414 83 5.3099997e-05 422 83 2.6599999e-05 430 83 1.3299999e-05 433 83 1.3299999e-05 434 83 1.3299999e-05 442 83 6.6399996e-05 443 83 0.0023498998 444 83 6.6399996e-05 445 83 0.012984399 446 83 0.00037169992 447 83 0.0014072999 448 83 1.3299999e-05 450 83 0.00082309986 452 83 0.0034385999 453 83 0.0017259 454 83 0.00039829989 455 83 0.0437859 456 83 0.00018589999 457 83 0.001009 458 83 0.00023899999 459 83 0.0010753998 460 83 0.00086299982 463 83 0.0031597998 464 83 7.9699996e-05 465 83 0.0013408998 467 83 0.003359 468 83 0.0026021998 469 83 0.0012877998 470 83 0.0014205999 471 83 0.0010753998 472 83 3.9799997e-05 473 83 3.9799997e-05 477 83 3.9799997e-05 478 83 0.00034519983 483 83 0.00057089981 489 83 5.3099997e-05 490 83 0.00014599999 491 83 0.00029209978 1 84 0.62848139 2 84 0.00014199999 3 84 0.0009937 4 84 2.8399998e-05 5 84 5.6799996e-05 6 84 0.00031229993 9 84 5.6799996e-05 11 84 8.5199994e-05 14 84 0.004059799 18 84 0.0001987 60 84 0.0010221 82 84 0.0013626998 83 84 0.00014199999 84 84 0.026374798 85 84 0.00011359999 94 84 8.5199994e-05 102 84 0.00059619988 108 84 2.8399998e-05 114 84 5.6799996e-05 118 84 0.00017029999 120 84 2.8399998e-05 122 84 2.8399998e-05 125 84 2.8399998e-05 126 84 2.8399998e-05 150 84 0.00045419997 172 84 0.0029525999 189 84 2.8399998e-05 190 84 8.5199994e-05 192 84 2.8399998e-05 193 84 0.012775697 194 84 8.5199994e-05 195 84 0.0002271 197 84 2.8399998e-05 198 84 0.015728399 200 84 2.8399998e-05 203 84 5.6799996e-05 204 84 0.0010787998 206 84 0.00017029999 207 84 2.8399998e-05 214 84 0.0024699999 223 84 0.00014199999 229 84 0.00059619988 230 84 0.00053939992 234 84 0.0023563998 237 84 0.00028389995 240 84 2.8399998e-05 241 84 0.00014199999 242 84 0.00017029999 252 84 2.8399998e-05 272 84 0.00025549997 277 84 2.8399998e-05 279 84 0.00079489988 300 84 0.00025549997 325 84 2.8399998e-05 344 84 0.00045419997 356 84 5.6799996e-05 358 84 0.0002271 366 84 2.8399998e-05 387 84 2.8399998e-05 394 84 2.8399998e-05 397 84 2.8399998e-05 402 84 0.00014199999 422 84 8.5199994e-05 433 84 2.8399998e-05 434 84 2.8399998e-05 443 84 0.0009368998 444 84 5.6799996e-05 445 84 0.010845199 446 84 0.00017029999 447 84 0.00082329987 448 84 2.8399998e-05 450 84 0.0017317999 452 84 0.0049682967 453 84 0.0012492 454 84 0.0015330999 455 84 0.049796999 456 84 0.00039749988 457 84 0.00028389995 458 84 0.00028389995 459 84 0.00014199999 460 84 0.0007664999 463 84 0.0015330999 464 84 8.5199994e-05 465 84 0.0010787998 467 84 0.0041449964 468 84 0.0030377998 469 84 0.0009937 470 84 0.0011355998 471 84 0.0022429 473 84 2.8399998e-05 476 84 5.6799996e-05 477 84 2.8399998e-05 478 84 0.00070979982 483 84 0.0003690999 489 84 0.00014199999 490 84 0.00011359999 491 84 0.00031229993 1 85 0.41609979 2 85 0.000189 9 85 0.0032123998 11 85 0.0022675998 60 85 0.0015117 82 85 0.0041571967 83 85 0.00056689978 84 85 0.14852607 85 85 0.0060468987 97 85 0.000189 98 85 0.00037789997 105 85 0.000189 107 85 0.00037789997 114 85 0.000189 122 85 0.00094479998 125 85 0.000189 172 85 0.000189 189 85 0.00037789997 192 85 0.00075589982 193 85 0.013416499 194 85 0.000189 198 85 0.034580499 204 85 0.00037789997 206 85 0.00037789997 214 85 0.00056689978 223 85 0.00056689978 229 85 0.00056689978 230 85 0.00075589982 234 85 0.0032123998 237 85 0.00037789997 240 85 0.00094479998 241 85 0.0011337998 242 85 0.000189 253 85 0.000189 272 85 0.00056689978 279 85 0.0015117 300 85 0.0096371993 325 85 0.0015117 344 85 0.00056689978 358 85 0.00037789997 366 85 0.000189 402 85 0.000189 443 85 0.00094479998 445 85 0.011526797 446 85 0.00037789997 447 85 0.00075589982 450 85 0.0020786 452 85 0.0056688972 453 85 0.0020786 454 85 0.0013227998 455 85 0.062547147 456 85 0.00037789997 457 85 0.0049130991 458 85 0.00094479998 459 85 0.00094479998 460 85 0.00075589982 463 85 0.0047240965 465 85 0.0011337998 467 85 0.0060468987 468 85 0.0079364963 469 85 0.0013227998 470 85 0.0015117 471 85 0.0022675998 478 85 0.00075589982 483 85 0.00037789997 490 85 0.000189 491 85 0.000189 0 86 0.32495898 1 86 0.0032823998 22 86 0.00025249994 60 86 0.0020198999 82 86 0.00025249994 84 86 0.00050499989 86 86 0.019820698 87 86 0.011614699 88 86 0.020704497 90 86 0.31662667 107 86 0.0036611999 115 86 0.0013887 125 86 0.00025249994 192 86 0.021840699 193 86 0.0020198999 194 86 0.00025249994 198 86 0.023355599 204 86 0.0041660964 206 86 0.00025249994 214 86 0.00050499989 223 86 0.00025249994 229 86 0.00088369986 230 86 0.00012619999 234 86 0.0027774 237 86 0.00025249994 240 86 0.00012619999 241 86 0.0045448989 242 86 0.00050499989 253 86 0.00012619999 272 86 0.00025249994 277 86 0.00012619999 279 86 0.00012619999 300 86 0.012119699 325 86 0.00050499989 344 86 0.00088369986 350 86 0.00037869997 351 86 0.00025249994 356 86 0.00012619999 366 86 0.00012619999 443 86 0.0018936999 444 86 0.00037869997 445 86 0.0090897977 446 86 0.00025249994 447 86 0.0018936999 450 86 0.00088369986 452 86 0.0034087 453 86 0.0032823998 454 86 0.00050499989 455 86 0.050498698 456 86 0.00037869997 457 86 0.0021461998 458 86 0.00025249994 459 86 0.00050499989 460 86 0.0011361998 463 86 0.0017674998 464 86 0.00012619999 465 86 0.0050498992 467 86 0.0039136 468 86 0.004797399 469 86 0.00088369986 470 86 0.00075749983 471 86 0.0025248998 478 86 0.00025249994 483 86 0.00075749983 490 86 0.00025249994 491 86 0.00075749983 0 87 0.29069388 3 87 3.6099998e-05 9 87 3.6099998e-05 11 87 7.2199997e-05 13 87 3.6099998e-05 14 87 7.2199997e-05 22 87 7.2199997e-05 25 87 0.00014429999 60 87 0.00093819993 82 87 7.2199997e-05 86 87 0.0014795 87 87 0.24414527 88 87 0.0046548992 90 87 0.088875294 104 87 3.6099998e-05 105 87 3.6099998e-05 107 87 0.0010463998 114 87 3.6099998e-05 122 87 7.2199997e-05 125 87 0.0019484998 130 87 0.0011908 150 87 0.0012629 151 87 0.0013712 190 87 3.6099998e-05 192 87 0.023887698 193 87 0.0117273 194 87 3.6099998e-05 198 87 0.0105366 203 87 3.6099998e-05 204 87 0.0088767 206 87 0.00018039999 214 87 0.0037527999 223 87 0.00050519989 229 87 0.00079389988 230 87 0.00014429999 234 87 0.0029227999 237 87 0.00036079995 240 87 0.00021649999 241 87 0.018727697 242 87 0.0010103998 253 87 3.6099998e-05 272 87 0.00032479991 277 87 7.2199997e-05 279 87 0.00036079995 300 87 0.0055569969 317 87 0.0011908 324 87 0.00014429999 325 87 0.0022371998 326 87 0.00082989992 340 87 0.0010463998 344 87 0.002165 349 87 3.6099998e-05 356 87 7.2199997e-05 358 87 0.0001083 366 87 0.00086599984 394 87 3.6099998e-05 402 87 0.00014429999 422 87 3.6099998e-05 434 87 3.6099998e-05 442 87 0.00075779995 443 87 0.0022733 444 87 0.0016599 445 87 0.0093457997 446 87 0.00028869999 447 87 0.0011185999 448 87 7.2199997e-05 450 87 0.0020567998 452 87 0.0031392998 453 87 0.0030671998 454 87 0.0014072999 455 87 0.071266174 456 87 0.0004329998 457 87 0.0020567998 458 87 0.00032479991 459 87 0.0018041998 460 87 0.0011908 463 87 0.0046908967 464 87 0.00093819993 465 87 0.005448699 467 87 0.007469397 468 87 0.0110057 469 87 0.0004329998 470 87 0.0004329998 471 87 0.0024175998 472 87 0.00036079995 477 87 3.6099998e-05 478 87 0.00028869999 483 87 0.00028869999 489 87 0.0001083 490 87 0.00018039999 491 87 3.6099998e-05 0 88 0.30537045 1 88 0.0011586999 2 88 5.789999e-05 3 88 5.789999e-05 5 88 5.789999e-05 9 88 0.00011589999 10 88 5.789999e-05 11 88 0.00011589999 13 88 0.00011589999 14 88 0.0001738 22 88 0.00052139978 60 88 0.0017959999 82 88 0.00028969999 84 88 0.00011589999 86 88 0.0057354979 87 88 0.0069520995 88 88 0.071896195 90 88 0.1147095 98 88 0.00011589999 104 88 0.00023169999 105 88 0.0001738 107 88 0.009443298 109 88 0.00011589999 114 88 5.789999e-05 115 88 0.0079948977 116 88 0.00023169999 122 88 0.0001738 125 88 5.789999e-05 150 88 0.00023169999 151 88 5.789999e-05 172 88 5.789999e-05 192 88 0.040495899 193 88 0.009443298 194 88 0.00034759985 198 88 0.023173597 204 88 0.0057933964 206 88 0.00028969999 214 88 0.0020277 223 88 0.00011589999 229 88 0.00063729985 230 88 0.0001738 234 88 0.0034180998 237 88 0.00034759985 240 88 0.00023169999 241 88 0.0057933964 242 88 0.0016800999 253 88 0.00057929987 272 88 0.00034759985 277 88 5.789999e-05 279 88 0.00040549994 300 88 0.067261457 301 88 5.789999e-05 314 88 5.789999e-05 324 88 0.0001738 325 88 0.0018538998 340 88 0.00011589999 344 88 0.0012166 350 88 0.0021435998 351 88 0.0012166 356 88 5.789999e-05 358 88 0.00011589999 366 88 0.00023169999 402 88 0.0001738 443 88 0.0038816 444 88 0.0012166 445 88 0.0064885989 446 88 0.00052139978 447 88 0.0019697999 450 88 0.0010427998 452 88 0.0047505982 453 88 0.004171297 454 88 0.00092689996 455 88 0.0436823 456 88 0.00052139978 457 88 0.0022594 458 88 0.00046349992 459 88 0.00046349992 460 88 0.0013903999 463 88 0.0036497999 464 88 0.00011589999 465 88 0.0057354979 467 88 0.0074734986 468 88 0.016858798 469 88 0.0011586999 470 88 0.00086899986 471 88 0.0029545999 472 88 5.789999e-05 477 88 5.789999e-05 478 88 0.00040549994 483 88 0.00057929987 489 88 0.0001738 490 88 0.00034759985 491 88 0.001738 0 89 0.15343666 2 89 0.0001314 10 89 0.0053225979 14 89 6.5699991e-05 22 89 6.5699991e-05 60 89 0.0025628 86 89 0.0048626997 87 89 0.00072279992 88 89 0.083322346 89 89 0.0011170998 90 89 0.12938625 104 89 0.012682296 105 89 0.0085424967 107 89 0.027795997 108 89 0.00019709999 109 89 0.0076225996 114 89 6.5699991e-05 115 89 0.00019709999 116 89 0.0089367963 117 89 0.0001314 119 89 0.00098569994 125 89 6.5699991e-05 126 89 6.5699991e-05 150 89 0.0001314 172 89 6.5699991e-05 189 89 0.0001314 190 89 6.5699991e-05 192 89 0.010645296 193 89 0.0081481971 194 89 0.00052569993 198 89 0.065645874 203 89 6.5699991e-05 204 89 0.0001314 206 89 0.00032859994 214 89 0.0017084999 223 89 0.00019709999 229 89 0.00059139985 230 89 0.00026279991 234 89 0.0048626997 237 89 0.00078849983 240 89 0.00019709999 241 89 0.0083453991 242 89 0.00059139985 253 89 6.5699991e-05 272 89 0.00059139985 279 89 0.00039429986 300 89 0.0017741998 301 89 0.0001314 314 89 6.5699991e-05 324 89 0.00026279991 325 89 0.00019709999 344 89 0.00045999978 350 89 6.5699991e-05 351 89 0.00032859994 356 89 6.5699991e-05 358 89 0.00026279991 366 89 0.00091999979 402 89 0.00026279991 422 89 6.5699991e-05 434 89 6.5699991e-05 443 89 0.0045340993 444 89 0.00019709999 445 89 0.0056511983 446 89 0.0006571 447 89 0.0032199 448 89 6.5699991e-05 450 89 0.0019055998 452 89 0.0095938966 453 89 0.0018398999 454 89 0.00052569993 455 89 0.048429497 456 89 0.00098569994 457 89 0.0022341998 458 89 0.0006571 459 89 0.00052569993 460 89 0.0019055998 463 89 0.0058482997 464 89 0.0001314 465 89 0.0080167986 467 89 0.0065054968 468 89 0.017413598 469 89 0.0025628 470 89 0.0024312998 471 89 0.0061111972 472 89 6.5699991e-05 473 89 6.5699991e-05 478 89 0.0006571 483 89 0.0017084999 489 89 0.00026279991 490 89 0.00026279991 491 89 6.5699991e-05 0 90 0.3519575 1 90 0.00019929999 2 90 0.00029369979 5 90 0.00087069999 6 90 0.047343798 9 90 2.1e-05 10 90 1.05e-05 11 90 1.05e-05 18 90 0.0049200989 22 90 0.00028319983 24 90 1.05e-05 60 90 0.0015840998 62 90 0.0013322998 79 90 1.05e-05 82 90 1.05e-05 83 90 1.05e-05 84 90 3.1499992e-05 86 90 0.0024128 87 90 0.0039653964 88 90 0.011634 90 90 0.098159969 98 90 0.00055599981 102 90 0.022502199 103 90 2.1e-05 104 90 0.00026229979 105 90 2.1e-05 107 90 0.0067034997 108 90 1.05e-05 109 90 2.1e-05 111 90 0.00017829999 113 90 2.1e-05 114 90 6.2899999e-05 115 90 0.00015739999 116 90 2.1e-05 117 90 0.00028319983 118 90 0.0023184 119 90 4.2e-05 120 90 3.1499992e-05 122 90 2.1e-05 125 90 2.1e-05 126 90 3.1499992e-05 127 90 1.05e-05 130 90 1.05e-05 141 90 1.05e-05 143 90 0.00030419999 150 90 0.00015739999 151 90 3.1499992e-05 160 90 5.2499992e-05 171 90 2.1e-05 172 90 0.00013639999 189 90 0.00011539999 190 90 4.2e-05 191 90 2.1e-05 192 90 0.0013007999 193 90 0.00037769997 194 90 0.0012484 196 90 1.05e-05 197 90 1.05e-05 198 90 0.047238898 200 90 4.2e-05 201 90 3.1499992e-05 203 90 3.1499992e-05 204 90 0.00028319983 206 90 0.00013639999 207 90 2.1e-05 209 90 1.05e-05 214 90 0.00048259995 217 90 0.0002308 218 90 2.1e-05 223 90 0.00024129999 228 90 7.3399991e-05 229 90 0.0012063999 230 90 0.00017829999 234 90 0.0041751973 237 90 0.0013007999 240 90 0.00015739999 241 90 0.0055389963 242 90 0.00030419999 248 90 1.05e-05 250 90 1.05e-05 251 90 1.05e-05 252 90 2.1e-05 253 90 0.0002098 272 90 0.00030419999 279 90 0.0001888 283 90 1.05e-05 300 90 0.0025072 301 90 0.00032519992 307 90 2.1e-05 314 90 0.0001678 315 90 0.00033569988 317 90 0.00019929999 322 90 1.05e-05 324 90 0.0001049 325 90 8.3899999e-05 326 90 1.05e-05 329 90 0.00096509978 334 90 1.05e-05 340 90 2.1e-05 344 90 0.00044059986 350 90 8.3899999e-05 351 90 0.00083919987 356 90 9.4399991e-05 357 90 2.1e-05 358 90 0.0001469 366 90 0.00087069999 384 90 3.1499992e-05 387 90 2.1e-05 394 90 8.3899999e-05 397 90 2.1e-05 402 90 0.00032519992 419 90 1.05e-05 422 90 4.2e-05 423 90 1.05e-05 425 90 1.05e-05 430 90 1.05e-05 431 90 1.05e-05 432 90 1.05e-05 433 90 2.1e-05 434 90 2.1e-05 442 90 2.1e-05 443 90 0.0019302999 444 90 0.0001678 445 90 0.0083399974 446 90 0.00034619984 447 90 0.0011119999 448 90 9.4399991e-05 450 90 0.0017833998 452 90 0.0056123994 453 90 0.0013742999 454 90 0.00038809981 455 90 0.026121397 456 90 0.00093369978 457 90 0.0036821999 458 90 0.00055599981 459 90 0.00071339984 460 90 0.0023079 463 90 0.0089064986 464 90 9.4399991e-05 465 90 0.0013951999 467 90 0.0063572973 468 90 0.0058431998 469 90 0.0034408998 470 90 0.0020456999 471 90 0.0050039999 472 90 0.0001888 473 90 5.2499992e-05 476 90 0.00033569988 477 90 6.2899999e-05 478 90 0.00070289988 483 90 0.0014161998 489 90 0.00015739999 490 90 0.00017829999 491 90 4.2e-05 0 91 0.0030756998 3 91 0.00096119987 9 91 0.00019219999 11 91 0.00096119987 17 91 0.37677819 22 91 0.00019219999 60 91 0.0024989999 82 91 0.0049980991 83 91 0.00038449978 84 91 0.00038449978 90 91 0.00076889992 91 91 0.005190298 93 91 0.00096119987 94 91 0.0011533999 96 91 0.00019219999 98 91 0.00038449978 103 91 0.00019219999 104 91 0.00019219999 107 91 0.00057669985 114 91 0.00019219999 115 91 0.00019219999 116 91 0.00019219999 118 91 0.00019219999 120 91 0.00019219999 122 91 0.0096116997 124 91 0.00057669985 125 91 0.00038449978 150 91 0.00019219999 192 91 0.00038449978 193 91 0.00038449978 194 91 0.00019219999 198 91 0.0151865 204 91 0.017493296 206 91 0.00096119987 214 91 0.00096119987 223 91 0.00076889992 229 91 0.00038449978 230 91 0.00076889992 233 91 0.00019219999 234 91 0.0028835 237 91 0.00019219999 240 91 0.0013455998 241 91 0.0086504966 242 91 0.0023067999 252 91 0.00019219999 253 91 0.0019222999 272 91 0.00057669985 277 91 0.00019219999 300 91 0.051326398 314 91 0.00038449978 340 91 0.00019219999 344 91 0.00038449978 356 91 0.00019219999 358 91 0.00076889992 366 91 0.00019219999 402 91 0.00019219999 443 91 0.0015379 444 91 0.00019219999 445 91 0.0042290986 447 91 0.0098038986 450 91 0.0021145998 452 91 0.0036523999 453 91 0.0013455998 454 91 0.0017300998 455 91 0.10976547 456 91 0.00019219999 457 91 0.0017300998 458 91 0.0011533999 459 91 0.00038449978 460 91 0.0017300998 463 91 0.0065358989 464 91 0.00038449978 465 91 0.0013455998 467 91 0.0078815967 468 91 0.012110699 469 91 0.0019222999 470 91 0.0019222999 471 91 0.0021145998 478 91 0.00076889992 483 91 0.0011533999 489 91 0.00076889992 490 91 0.00038449978 491 91 0.0021145998 0 92 0.00061319978 1 92 0.0018396999 2 92 0.0011037998 3 92 6.1299987e-05 5 92 6.1299987e-05 9 92 0.0063775964 11 92 0.027472898 13 92 0.0017170999 14 92 0.00012259999 16 92 0.00098119979 17 92 0.0051511973 22 92 0.00067459978 60 92 0.0036793998 82 92 0.066045284 83 92 0.00079719978 84 92 0.010424998 85 92 0.00018399999 88 92 0.0019009998 90 92 0.00018399999 92 92 0.00024529989 93 92 0.0226283 94 92 0.028024796 95 92 0.00024529989 98 92 0.0072974972 103 92 0.0025755998 104 92 0.0038019998 107 92 0.014288299 108 92 6.1299987e-05 114 92 0.00012259999 115 92 0.0038633998 116 92 0.0005518999 118 92 0.0036181 119 92 0.0009198999 122 92 0.0072974972 124 92 0.013920397 125 92 0.010976899 126 92 6.1299987e-05 150 92 6.1299987e-05 169 92 6.1299987e-05 172 92 0.00012259999 189 92 6.1299987e-05 190 92 6.1299987e-05 192 92 0.00042929989 193 92 0.00036789989 194 92 6.1299987e-05 198 92 0.016128 203 92 6.1299987e-05 204 92 0.0172932 206 92 0.00018399999 214 92 0.0036793998 223 92 0.0012877998 229 92 0.00079719978 230 92 0.00042929989 234 92 0.0026981998 237 92 0.00018399999 240 92 0.0014717998 241 92 0.0082172975 242 92 0.0011650999 252 92 6.1299987e-05 253 92 0.045317996 272 92 0.0005518999 277 92 6.1299987e-05 300 92 0.11522657 314 92 0.0109156 325 92 6.1299987e-05 344 92 0.00036789989 356 92 6.1299987e-05 358 92 0.00042929989 366 92 0.0016556999 387 92 6.1299987e-05 402 92 0.00012259999 414 92 6.1299987e-05 422 92 6.1299987e-05 434 92 6.1299987e-05 443 92 0.0065002963 444 92 0.00030659977 445 92 0.027104899 446 92 0.0011037998 447 92 0.0031274999 448 92 6.1299987e-05 450 92 0.0015943998 452 92 0.0029434999 453 92 0.0021462999 454 92 0.0012877998 455 92 0.057092 456 92 0.00018399999 457 92 0.0013490999 458 92 0.00049059978 459 92 0.00024529989 460 92 0.0016556999 463 92 0.0075427964 464 92 0.00018399999 465 92 0.0054577999 467 92 0.0082172975 468 92 0.053473998 469 92 0.0017170999 470 92 0.0018396999 471 92 0.0028208999 473 92 6.1299987e-05 477 92 6.1299987e-05 478 92 0.00067459978 483 92 0.0011037998 489 92 0.00024529989 490 92 0.0024528999 491 92 0.00024529989 0 93 0.0046974979 1 93 0.0001777 3 93 7.6199998e-05 5 93 5.0799994e-05 9 93 0.053576399 10 93 2.539999e-05 11 93 0.060482897 12 93 0.00010159999 13 93 0.00022849999 14 93 0.00010159999 16 93 0.015742797 17 93 0.00096489978 21 93 2.539999e-05 22 93 0.0001777 24 93 7.6199998e-05 60 93 0.0026152998 82 93 0.0047227964 83 93 0.00012699999 84 93 0.0012949998 85 93 0.00022849999 86 93 2.539999e-05 87 93 0.00012699999 88 93 0.00027929991 90 93 0.0012695999 93 93 0.0323998 94 93 0.0075412989 95 93 0.0021582998 97 93 0.00020309999 98 93 0.0018789999 103 93 0.00012699999 104 93 0.006804999 105 93 0.00010159999 107 93 0.025924899 108 93 7.6199998e-05 109 93 5.0799994e-05 114 93 5.0799994e-05 115 93 0.0018028 116 93 0.0045450963 117 93 2.539999e-05 118 93 0.00033009984 119 93 0.00010159999 120 93 0.00012699999 122 93 0.0035547998 124 93 0.0006601999 125 93 0.0029707998 126 93 2.539999e-05 150 93 0.00045699999 151 93 2.539999e-05 160 93 0.00048239995 169 93 0.0010410999 172 93 0.0020566999 189 93 5.0799994e-05 190 93 7.6199998e-05 192 93 0.00091409986 193 93 0.00045699999 194 93 0.00010159999 197 93 2.539999e-05 198 93 0.015996698 200 93 2.539999e-05 203 93 5.0799994e-05 204 93 0.018256597 206 93 0.00063479994 207 93 2.539999e-05 214 93 0.0013203998 218 93 5.0799994e-05 223 93 0.00096489978 224 93 5.0799994e-05 228 93 2.539999e-05 229 93 0.00083789998 230 93 0.00053319987 234 93 0.0027676998 237 93 0.00025389995 240 93 0.0014726999 241 93 0.0060939975 242 93 0.00093949982 252 93 0.00010159999 253 93 0.0412107 272 93 0.00055859983 277 93 5.0799994e-05 279 93 7.6199998e-05 300 93 0.12799937 301 93 5.0799994e-05 314 93 0.006982699 325 93 0.0011171999 340 93 2.539999e-05 344 93 0.00048239995 350 93 2.539999e-05 351 93 0.0003554998 356 93 7.6199998e-05 358 93 0.00053319987 366 93 0.0001523 384 93 5.0799994e-05 387 93 2.539999e-05 394 93 2.539999e-05 397 93 2.539999e-05 402 93 0.00012699999 414 93 0.00060939998 422 93 7.6199998e-05 430 93 2.539999e-05 433 93 2.539999e-05 434 93 2.539999e-05 443 93 0.008937899 444 93 0.00048239995 445 93 0.055937797 446 93 0.0022851999 447 93 0.0031486 448 93 5.0799994e-05 450 93 0.0020058998 452 93 0.0042911991 453 93 0.0040626973 454 93 0.0014726999 455 93 0.074194372 456 93 0.00030469988 457 93 0.0013203998 458 93 0.00063479994 459 93 0.00038089999 460 93 0.0017773998 463 93 0.0087854974 464 93 0.00022849999 465 93 0.0040626973 467 93 0.0091917999 468 93 0.014092397 469 93 0.0017519998 470 93 0.0018535999 471 93 0.0018789999 473 93 5.0799994e-05 477 93 2.539999e-05 478 93 0.00076169986 483 93 0.00081249978 489 93 0.0001523 490 93 0.0013964998 491 93 0.00055859983 3 94 0.00027609989 5 94 0.0016562999 6 94 0.00013799999 9 94 0.017529298 11 94 0.067632854 13 94 0.00069009978 14 94 0.00041409978 16 94 0.0019323998 17 94 0.00013799999 18 94 0.011594199 24 94 0.00027609989 60 94 0.0019323998 62 94 0.0012421999 82 94 0.0011041998 84 94 0.0005520999 85 94 0.0011041998 88 94 0.0030365998 93 94 0.0005520999 94 94 0.14837819 95 94 0.0005520999 97 94 0.00013799999 98 94 0.0012421999 104 94 0.0011041998 105 94 0.00027609989 107 94 0.0067632981 114 94 0.00013799999 115 94 0.00013799999 116 94 0.0012421999 118 94 0.00027609989 122 94 0.0051069967 125 94 0.0026224998 153 94 0.00013799999 154 94 0.00041409978 172 94 0.0077294968 192 94 0.010489997 193 94 0.0093857981 198 94 0.067080677 204 94 0.015182897 206 94 0.00027609989 214 94 0.004140798 215 94 0.019875798 217 94 0.0044167973 223 94 0.0015182998 228 94 0.00013799999 229 94 0.00069009978 230 94 0.00041409978 234 94 0.0063491985 237 94 0.00069009978 241 94 0.0092477985 242 94 0.00041409978 252 94 0.00013799999 253 94 0.0042787977 272 94 0.0005520999 279 94 0.00069009978 300 94 0.0016562999 314 94 0.00082819979 317 94 0.00013799999 325 94 0.0099378973 329 94 0.00082819979 344 94 0.00027609989 358 94 0.00041409978 394 94 0.00013799999 443 94 0.0097998977 444 94 0.00013799999 445 94 0.026362997 446 94 0.0011041998 447 94 0.0026224998 448 94 0.00013799999 450 94 0.0019323998 452 94 0.0048308969 453 94 0.0075913966 454 94 0.0017942998 455 94 0.065286398 456 94 0.00096619991 457 94 0.0019323998 458 94 0.0005520999 459 94 0.00027609989 460 94 0.0022083998 463 94 0.0066252984 464 94 0.00041409978 465 94 0.00096619991 467 94 0.0267771 468 94 0.033264298 469 94 0.0017942998 470 94 0.0017942998 471 94 0.0017942998 478 94 0.0005520999 483 94 0.00041409978 490 94 0.0016562999 491 94 0.0022083998 0 95 0.018136699 3 95 0.00051329983 5 95 8.5599997e-05 9 95 0.0129181 10 95 0.00017109999 11 95 0.035332397 12 95 0.00034219981 13 95 0.0106938 14 95 0.0021388 16 95 0.00085549988 17 95 0.00051329983 22 95 0.00025669998 60 95 0.0020531998 82 95 0.0097527988 83 95 8.5599997e-05 84 95 0.0004278 85 95 0.028402798 86 95 8.5599997e-05 87 95 0.014543597 88 95 0.00059889979 90 95 0.0053896978 93 95 0.0022242998 94 95 0.0015399 95 95 0.016254596 97 95 8.5599997e-05 98 95 0.0011121999 103 95 8.5599997e-05 104 95 0.0073572993 105 95 0.00025669998 106 95 8.5599997e-05 107 95 0.0269484 108 95 0.00034219981 109 95 0.00017109999 112 95 8.5599997e-05 114 95 0.00017109999 115 95 0.00025669998 116 95 0.00094109983 117 95 0.0012832999 118 95 0.0091538988 119 95 0.0023953998 122 95 0.11925739 124 95 0.00034219981 125 95 0.016938999 126 95 8.5599997e-05 130 95 8.5599997e-05 150 95 8.5599997e-05 151 95 8.5599997e-05 169 95 8.5599997e-05 172 95 8.5599997e-05 189 95 8.5599997e-05 190 95 8.5599997e-05 192 95 0.0023098998 193 95 0.010266099 194 95 8.5599997e-05 198 95 0.035161298 204 95 0.0180512 206 95 0.00017109999 214 95 0.0014543999 223 95 0.0014543999 229 95 0.00085549988 230 95 0.0004278 231 95 8.5599997e-05 234 95 0.001711 237 95 0.00025669998 240 95 8.5599997e-05 241 95 0.016083498 242 95 0.00094109983 252 95 8.5599997e-05 253 95 0.094875455 272 95 0.00068439986 277 95 8.5599997e-05 279 95 0.0011976999 300 95 0.013003699 301 95 8.5599997e-05 314 95 0.018906698 317 95 8.5599997e-05 325 95 0.00068439986 326 95 8.5599997e-05 340 95 8.5599997e-05 344 95 0.00059889979 350 95 8.5599997e-05 351 95 8.5599997e-05 356 95 8.5599997e-05 358 95 0.0004278 366 95 0.00017109999 387 95 8.5599997e-05 402 95 8.5599997e-05 422 95 8.5599997e-05 442 95 8.5599997e-05 443 95 0.0082127973 444 95 0.0004278 445 95 0.0376422 446 95 0.0011976999 447 95 0.0032509 450 95 0.0015399 452 95 0.003422 453 95 0.0021388 454 95 0.004619699 455 95 0.066472769 456 95 8.5599997e-05 457 95 0.0014543999 458 95 0.00068439986 459 95 0.00051329983 460 95 0.0017965999 463 95 0.012233697 464 95 0.00025669998 465 95 0.0036787 467 95 0.0062451996 468 95 0.065788269 469 95 0.0020531998 470 95 0.0022242998 471 95 0.0016254999 473 95 8.5599997e-05 478 95 0.00051329983 483 95 0.00076999981 489 95 8.5599997e-05 490 95 0.003422 491 95 0.00025669998 3 96 0.0285137 9 96 0.0010110999 11 96 0.0007077998 17 96 0.49484324 22 96 0.0002022 60 96 0.0070778988 82 96 0.00050559989 84 96 0.00030329986 91 96 0.0001011 96 96 0.0077855997 97 96 0.0001011 98 96 0.0001011 107 96 0.0001011 114 96 0.0001011 120 96 0.00050559989 122 96 0.0059655979 125 96 0.0001011 126 96 0.0001011 190 96 0.0001011 192 96 0.0029322999 193 96 0.013346799 194 96 0.0001011 198 96 0.021031298 204 96 0.021132499 206 96 0.0002022 214 96 0.0015166998 223 96 0.0007077998 229 96 0.00040439982 230 96 0.00060669985 234 96 0.0028310998 237 96 0.00030329986 241 96 0.0038422998 242 96 0.0045500994 252 96 0.0001011 272 96 0.00040439982 277 96 0.0001011 279 96 0.00040439982 300 96 0.004752297 301 96 0.0024267 325 96 0.0035388998 344 96 0.00050559989 356 96 0.0001011 358 96 0.00060669985 366 96 0.0069766976 384 96 0.0001011 402 96 0.0001011 422 96 0.0001011 443 96 0.0026288999 444 96 0.0030333998 445 96 0.0052577965 446 96 0.0002022 447 96 0.0075833984 450 96 0.0023255998 452 96 0.0049544983 453 96 0.00030329986 454 96 0.00090999994 455 96 0.12275028 456 96 0.00030329986 457 96 0.0012132998 458 96 0.00080889999 459 96 0.0002022 460 96 0.0021233999 463 96 0.0079878978 464 96 0.00030329986 465 96 0.0010110999 467 96 0.0089989975 468 96 0.0078867972 469 96 0.0019210998 470 96 0.0022244998 471 96 0.0019210998 473 96 0.0001011 478 96 0.00080889999 483 96 0.00060669985 489 96 0.0001011 490 96 0.0002022 491 96 0.0012132998 0 97 0.00035029999 1 97 0.0016347999 2 97 0.0019267998 3 97 0.00011679999 5 97 5.8399994e-05 6 97 5.8399994e-05 9 97 0.069860458 10 97 0.00011679999 11 97 0.049862798 13 97 2.919999e-05 14 97 8.7599998e-05 16 97 0.00052549993 17 97 0.0025106999 24 97 2.919999e-05 60 97 0.0020436 82 97 0.038214497 83 97 0.0036199999 84 97 0.0235301 85 97 8.7599998e-05 86 97 2.919999e-05 87 97 2.919999e-05 88 97 0.00014599999 90 97 8.7599998e-05 93 97 0.0012552999 94 97 0.00075899996 95 97 8.7599998e-05 96 97 2.919999e-05 97 97 0.0060430989 98 97 0.010480497 100 97 8.7599998e-05 102 97 2.919999e-05 103 97 2.919999e-05 104 97 0.00037949998 105 97 0.0023939 107 97 0.011502299 108 97 0.0001752 109 97 0.0011676999 114 97 0.00011679999 115 97 8.7599998e-05 116 97 0.0022186998 118 97 0.00011679999 119 97 2.919999e-05 120 97 5.8399994e-05 122 97 0.017662197 124 97 0.00011679999 125 97 0.0057219975 126 97 5.8399994e-05 150 97 0.00040869997 151 97 2.919999e-05 160 97 2.919999e-05 169 97 2.919999e-05 172 97 5.8399994e-05 189 97 5.8399994e-05 190 97 8.7599998e-05 192 97 0.014480099 193 97 0.010714099 194 97 8.7599998e-05 197 97 2.919999e-05 198 97 0.058650099 200 97 2.919999e-05 203 97 5.8399994e-05 204 97 0.0047001988 206 97 0.00011679999 207 97 2.919999e-05 214 97 0.0097214989 218 97 2.919999e-05 223 97 0.0012844999 224 97 2.919999e-05 228 97 2.919999e-05 229 97 0.00037949998 230 97 0.00058389991 234 97 0.0028025999 237 97 0.00026269979 240 97 0.00043789996 241 97 0.026974998 242 97 0.00096339989 252 97 8.7599998e-05 253 97 0.0020436 272 97 0.00081739994 277 97 2.919999e-05 300 97 0.019326199 301 97 0.00090499991 314 97 0.00035029999 325 97 0.034156598 340 97 0.00099259987 344 97 0.0012844999 350 97 0.00081739994 351 97 0.0012260999 356 97 5.8399994e-05 358 97 0.00058389991 366 97 0.0021894998 384 97 2.919999e-05 387 97 5.8399994e-05 394 97 2.919999e-05 397 97 2.919999e-05 402 97 0.00011679999 414 97 2.919999e-05 422 97 8.7599998e-05 433 97 2.919999e-05 434 97 2.919999e-05 443 97 0.0088456981 444 97 0.00087579992 445 97 0.057073597 446 97 0.0024522999 447 97 0.0038828 448 97 2.919999e-05 450 97 0.0021018998 452 97 0.0071815997 453 97 0.0032988999 454 97 0.0028901999 455 97 0.076691747 456 97 0.00029189978 457 97 0.0013428999 458 97 0.00075899996 459 97 0.0013136999 460 97 0.0017807998 463 97 0.0060430989 464 97 0.0011968999 465 97 0.0023355 467 97 0.0078238994 468 97 0.025310896 469 97 0.0021018998 470 97 0.0022186998 471 97 0.002715 472 97 0.00029189978 473 97 5.8399994e-05 477 97 5.8399994e-05 478 97 0.00081739994 483 97 0.0006130999 489 97 0.0002044 490 97 0.00037949998 491 97 0.00035029999 1 98 0.0003554998 3 98 4.4399989e-05 4 98 4.4399989e-05 5 98 0.39633876 6 98 0.053274699 9 98 0.00026659993 10 98 0.00022219999 11 98 0.00031099981 13 98 8.8899993e-05 14 98 0.0059983991 16 98 8.8899993e-05 22 98 8.8899993e-05 25 98 4.4399989e-05 60 98 0.0023104998 82 98 0.00044429977 84 98 8.8899993e-05 85 98 0.00044429977 88 98 0.0026659998 91 98 4.4399989e-05 93 98 0.0001333 94 98 4.4399989e-05 98 98 0.018750597 99 98 4.4399989e-05 102 98 0.0033324 103 98 0.00062209996 104 98 0.0018661998 105 98 4.4399989e-05 107 98 0.010086197 108 98 4.4399989e-05 109 98 0.00062209996 111 98 4.4399989e-05 114 98 0.0001333 116 98 0.0027547998 117 98 0.00026659993 118 98 0.005865097 119 98 4.4399989e-05 120 98 0.00097749988 122 98 0.0034212999 126 98 4.4399989e-05 143 98 0.0011996999 153 98 0.0052874982 189 98 4.4399989e-05 190 98 4.4399989e-05 191 98 4.4399989e-05 192 98 0.008442197 193 98 0.017328698 194 98 4.4399989e-05 198 98 0.0039545 204 98 8.8899993e-05 206 98 0.00066649984 214 98 0.0010664 215 98 8.8899993e-05 223 98 0.00053319987 228 98 0.0025770999 229 98 0.00044429977 230 98 0.0001777 234 98 0.0011996999 237 98 0.0001333 241 98 0.00026659993 242 98 0.0023548999 252 98 4.4399989e-05 253 98 0.00026659993 272 98 0.00026659993 300 98 0.00084419991 314 98 4.4399989e-05 325 98 8.8899993e-05 344 98 0.00053319987 356 98 8.8899993e-05 358 98 0.0001777 384 98 4.4399989e-05 387 98 4.4399989e-05 402 98 8.8899993e-05 414 98 0.0003998999 422 98 4.4399989e-05 430 98 4.4399989e-05 443 98 0.0379899 444 98 0.0022660999 445 98 0.011730198 446 98 0.004309997 447 98 0.0060872994 450 98 0.0017328998 452 98 0.0065315999 453 98 0.00084419991 454 98 0.00022219999 455 98 0.035634898 456 98 0.0001777 457 98 0.0018216998 458 98 4.4399989e-05 459 98 0.0004888 460 98 0.0024438 463 98 0.0025770999 464 98 0.0022215999 465 98 0.00044429977 467 98 0.0078200996 468 98 0.028036997 469 98 0.0023993999 470 98 0.0027547998 471 98 0.0012884999 473 98 8.8899993e-05 477 98 4.4399989e-05 478 98 0.00031099981 483 98 0.00062209996 489 98 4.4399989e-05 490 98 0.00031099981 491 98 0.00097749988 0 99 0.00053259986 3 99 0.00063909986 5 99 0.081699967 6 99 0.042181499 9 99 0.00053259986 10 99 0.0095866993 11 99 0.0011717 13 99 0.00074559986 14 99 0.00074559986 17 99 0.00031959987 22 99 0.0001065 60 99 0.0019172998 82 99 0.0056454986 84 99 0.0012782 85 99 0.00042609987 88 99 0.0063910969 90 99 0.0001065 91 99 0.00031959987 93 99 0.00042609987 94 99 0.00063909986 98 99 0.023753699 99 99 0.0014912998 101 99 0.00021299999 102 99 0.00085219997 103 99 0.021623299 104 99 0.0021303999 105 99 0.00021299999 106 99 0.0001065 107 99 0.043566298 108 99 0.00074559986 109 99 0.00063909986 114 99 0.00021299999 115 99 0.00021299999 118 99 0.0028759998 120 99 0.0017042998 122 99 0.0063910969 124 99 0.00031959987 125 99 0.00031959987 126 99 0.0001065 143 99 0.00053259986 153 99 0.00042609987 192 99 0.016510397 193 99 0.009480197 194 99 0.0001065 198 99 0.0498509 204 99 0.00074559986 206 99 0.00021299999 214 99 0.00095869997 223 99 0.00053259986 228 99 0.0060715973 229 99 0.00021299999 230 99 0.00031959987 234 99 0.0025564998 237 99 0.00031959987 241 99 0.010545399 242 99 0.0025564998 252 99 0.0001065 253 99 0.0013846999 272 99 0.00042609987 277 99 0.00021299999 300 99 0.0087345988 314 99 0.00031959987 325 99 0.0038347 344 99 0.00031959987 356 99 0.0001065 358 99 0.00031959987 387 99 0.0001065 402 99 0.0001065 443 99 0.019279897 444 99 0.0014912998 445 99 0.012782298 446 99 0.0020238999 447 99 0.0054324977 450 99 0.0015977998 452 99 0.0047933981 453 99 0.0025564998 454 99 0.00063909986 455 99 0.037707698 456 99 0.00031959987 457 99 0.0025564998 458 99 0.00021299999 459 99 0.0033020999 460 99 0.0026629998 463 99 0.0027694998 464 99 0.00042609987 465 99 0.004473798 467 99 0.0046867989 468 99 0.097358286 469 99 0.0031955999 470 99 0.0033020999 471 99 0.0021303999 473 99 0.0001065 478 99 0.00042609987 483 99 0.00063909986 489 99 0.0001065 490 99 0.0013846999 491 99 0.00063909986 0 100 0.0015001998 3 100 0.00024999981 5 100 0.13676709 6 100 0.015126899 9 100 0.00062509999 10 100 0.0012502 11 100 0.0015001998 13 100 0.00037499983 14 100 0.00050009997 17 100 0.00012499999 60 100 0.0018751998 82 100 0.0028753998 84 100 0.00050009997 85 100 0.0041254982 88 100 0.025878198 90 100 0.00037499983 93 100 0.00062509999 94 100 0.00087509979 98 100 0.074884355 99 100 0.00024999981 102 100 0.00024999981 103 100 0.0031253998 104 100 0.013626698 105 100 0.00024999981 107 100 0.057257198 108 100 0.0050005987 109 100 0.0056256987 114 100 0.00024999981 115 100 0.00012499999 116 100 0.00062509999 118 100 0.0080009997 120 100 0.00037499983 122 100 0.0221278 124 100 0.00050009997 125 100 0.00062509999 126 100 0.00012499999 143 100 0.00037499983 153 100 0.0011250998 192 100 0.012501597 193 100 0.013751697 198 100 0.058382299 204 100 0.00062509999 206 100 0.00037499983 214 100 0.0038754998 223 100 0.00062509999 228 100 0.0011250998 229 100 0.00037499983 230 100 0.00024999981 231 100 0.00024999981 232 100 0.00012499999 234 100 0.0020003 237 100 0.00024999981 241 100 0.012126498 242 100 0.0025002998 252 100 0.00012499999 253 100 0.0016251998 272 100 0.00050009997 300 100 0.0071258992 314 100 0.00050009997 325 100 0.0032503998 344 100 0.00050009997 356 100 0.00012499999 358 100 0.00024999981 387 100 0.00012499999 402 100 0.00012499999 414 100 0.00012499999 443 100 0.021252699 444 100 0.00075009977 445 100 0.013376698 446 100 0.0017501998 447 100 0.0061257966 450 100 0.0015001998 452 100 0.0042504966 453 100 0.0011250998 454 100 0.00050009997 455 100 0.0426303 456 100 0.00024999981 457 100 0.0022502998 458 100 0.00012499999 459 100 0.0010000998 460 100 0.0027502999 463 100 0.0053756982 464 100 0.00075009977 465 100 0.0056256987 467 100 0.0052506998 468 100 0.030628797 469 100 0.0040004998 470 100 0.0042504966 471 100 0.0018751998 473 100 0.00012499999 478 100 0.00050009997 483 100 0.00075009977 490 100 0.0012502 491 100 0.00024999981 1 101 0.00034169992 2 101 0.0030756998 3 101 0.0053994991 5 101 0.005331099 6 101 0.036839597 9 101 0.00047839992 11 101 0.00054679997 12 101 6.8299996e-05 13 101 0.0092952996 16 101 6.8299996e-05 17 101 0.012165897 22 101 6.8299996e-05 24 101 6.8299996e-05 25 101 0.00027339999 60 101 0.0017769998 82 101 0.11195409 84 101 0.027407598 85 101 6.8299996e-05 88 101 0.0021187998 91 101 0.0071081966 93 101 0.00013669999 94 101 6.8299996e-05 98 101 0.0134646 101 101 0.0041691996 102 101 0.020914499 103 101 0.0018453998 104 101 0.0056728981 107 101 0.0095686987 111 101 0.00047839992 112 101 0.00034169992 114 101 0.00082019996 116 101 6.8299996e-05 117 101 0.0020503998 118 101 0.049073897 119 101 0.00034169992 120 101 0.045178 122 101 0.0007517999 125 101 0.00041009998 143 101 0.00082019996 153 101 0.00041009998 189 101 6.8299996e-05 192 101 0.00013669999 193 101 0.018043898 194 101 6.8299996e-05 198 101 0.023306698 204 101 0.0069714971 206 101 0.00013669999 214 101 0.0047843978 215 101 0.0013669999 223 101 0.0013669999 228 101 0.013942998 229 101 0.00034169992 230 101 0.00027339999 231 101 0.00013669999 232 101 6.8299996e-05 234 101 0.0019820998 237 101 0.00020499999 240 101 6.8299996e-05 241 101 0.0037590999 242 101 0.0033490998 252 101 6.8299996e-05 253 101 0.00034169992 272 101 0.00082019996 277 101 0.00013669999 300 101 0.06855309 314 101 6.8299996e-05 325 101 0.00013669999 344 101 0.00034169992 356 101 6.8299996e-05 358 101 0.00020499999 402 101 6.8299996e-05 422 101 6.8299996e-05 443 101 0.010115497 444 101 0.0010935999 445 101 0.012917798 446 101 0.0012302999 447 101 0.0038274999 450 101 0.0013669999 452 101 0.0048526973 453 101 0.0033490998 454 101 0.0008884999 455 101 0.054063298 456 101 0.00020499999 457 101 0.0018453998 458 101 0.00054679997 459 101 0.0007517999 460 101 0.0025288998 463 101 0.0038274999 464 101 0.00013669999 465 101 0.00041009998 467 101 0.0052627996 468 101 0.058300897 469 101 0.00068349997 470 101 0.00068349997 471 101 0.0015719999 478 101 0.00034169992 483 101 0.00068349997 489 101 6.8299996e-05 490 101 6.8299996e-05 491 101 0.00034169992 0 102 8.4199986e-05 1 102 0.00060659996 2 102 0.0006571 3 102 3.3699995e-05 4 102 0.00021899999 5 102 0.010412797 6 102 0.12756526 9 102 6.7399989e-05 10 102 1.6799997e-05 11 102 5.0499992e-05 13 102 6.7399989e-05 14 102 0.011322699 17 102 3.3699995e-05 22 102 8.4199986e-05 24 102 0.00084249978 25 102 0.0006571 60 102 0.0013647999 82 102 0.00092669996 84 102 0.00025269995 88 102 0.0071608983 90 102 1.6799997e-05 91 102 5.0499992e-05 93 102 0.00016849999 98 102 0.040438097 101 102 3.3699995e-05 102 102 0.19804549 103 102 0.0059308968 104 102 0.012620099 107 102 0.015534997 108 102 1.6799997e-05 111 102 0.0031339999 112 102 0.0010277999 114 102 0.0017859999 116 102 1.6799997e-05 117 102 0.016882896 118 102 0.12475145 119 102 0.0031675999 120 102 0.050648697 122 102 6.7399989e-05 125 102 0.00047179987 126 102 1.6799997e-05 143 102 0.0014489999 151 102 1.6799997e-05 153 102 0.0018533999 189 102 5.0499992e-05 190 102 1.6799997e-05 192 102 0.00013479999 193 102 0.0064194985 194 102 1.6799997e-05 198 102 0.00050549977 200 102 1.6799997e-05 203 102 1.6799997e-05 204 102 6.7399989e-05 206 102 5.0499992e-05 207 102 1.6799997e-05 214 102 0.008744698 215 102 0.0059140995 217 102 1.6799997e-05 218 102 1.6799997e-05 223 102 0.0013142 228 102 0.033058099 229 102 0.00038749981 230 102 0.0001853 234 102 0.0016343999 237 102 0.0001853 241 102 0.0001179 242 102 0.00084249978 252 102 5.0499992e-05 253 102 1.6799997e-05 272 102 0.00023589999 277 102 3.3699995e-05 300 102 0.00053919991 301 102 1.6799997e-05 324 102 8.4199986e-05 325 102 3.3699995e-05 344 102 0.00043809996 356 102 6.7399989e-05 358 102 0.0001853 384 102 1.6799997e-05 387 102 1.6799997e-05 394 102 1.6799997e-05 397 102 1.6799997e-05 402 102 8.4199986e-05 422 102 1.6799997e-05 433 102 1.6799997e-05 434 102 1.6799997e-05 443 102 0.030210599 444 102 0.00089299981 445 102 0.013513099 446 102 0.0031507998 447 102 0.00094359997 448 102 3.3699995e-05 450 102 0.00094359997 452 102 0.0041280985 453 102 0.0027126998 454 102 0.0001011 455 102 0.063875258 456 102 0.0002022 457 102 0.0022745999 458 102 0.00025269995 459 102 0.0012973999 460 102 0.0020050998 463 102 0.0025104999 464 102 0.00015159999 465 102 0.00032009999 467 102 0.006924998 468 102 0.0045323968 469 102 0.00074139982 470 102 0.00072449981 471 102 0.0016848999 473 102 1.6799997e-05 477 102 3.3699995e-05 478 102 0.00026959996 483 102 0.00092669996 489 102 5.0499992e-05 490 102 6.7399989e-05 491 102 0.00025269995 5 103 0.58880275 60 103 0.0017541 88 103 0.00014619999 98 103 0.0002923999 103 103 0.0029234998 107 103 0.0002923999 114 103 0.00014619999 122 103 0.00014619999 126 103 0.00014619999 153 103 0.014763899 193 103 0.014617696 198 103 0.012571298 204 103 0.00014619999 206 103 0.00014619999 229 103 0.00043849996 230 103 0.00014619999 234 103 0.00043849996 237 103 0.00014619999 241 103 0.00014619999 242 103 0.0057008974 253 103 0.0002923999 272 103 0.00014619999 279 103 0.0002923999 300 103 0.00087709981 344 103 0.00058469991 356 103 0.00014619999 358 103 0.00014619999 414 103 0.0002923999 443 103 0.0024849998 444 103 0.0039467998 445 103 0.024996299 446 103 0.0055546984 447 103 0.0065779984 450 103 0.00073089986 452 103 0.0032158999 453 103 0.0011693998 454 103 0.00058469991 455 103 0.10261655 457 103 0.0017541 458 103 0.00014619999 459 103 0.0002923999 460 103 0.0024849998 463 103 0.0019002999 464 103 0.0002923999 465 103 0.004677698 467 103 0.0029234998 468 103 0.013009798 469 103 0.0020464999 470 103 0.0023387999 471 103 0.00087709981 473 103 0.00014619999 478 103 0.00014619999 483 103 0.00043849996 490 103 0.0073088966 491 103 0.011694197 5 104 0.020244498 6 104 0.35014009 13 104 0.00012729999 14 104 0.0025464999 21 104 0.00012729999 22 104 0.0076393969 24 104 0.00038199988 60 104 0.0061114989 82 104 0.0036923999 98 104 0.00025459984 104 104 0.0418895 107 104 0.00012729999 108 104 0.00012729999 114 104 0.00012729999 119 104 0.00012729999 120 104 0.0005092998 126 104 0.00012729999 153 104 0.00012729999 189 104 0.00012729999 192 104 0.00012729999 193 104 0.0005092998 194 104 0.00012729999 198 104 0.020881098 204 104 0.0057295971 206 104 0.00025459984 214 104 0.0020371999 218 104 0.00038199988 223 104 0.00025459984 224 104 0.00025459984 229 104 0.00038199988 230 104 0.00038199988 231 104 0.00012729999 234 104 0.0034377 237 104 0.00038199988 241 104 0.00012729999 242 104 0.00012729999 252 104 0.00012729999 272 104 0.0014006 279 104 0.0005092998 301 104 0.00025459984 344 104 0.00038199988 356 104 0.00012729999 358 104 0.00038199988 384 104 0.00012729999 387 104 0.00012729999 402 104 0.00012729999 414 104 0.00089129992 430 104 0.00012729999 443 104 0.031448897 444 104 0.00025459984 445 104 0.0076393969 446 104 0.0049655996 447 104 0.00089129992 450 104 0.0019099 452 104 0.010822497 453 104 0.017443299 454 104 0.0029283999 455 104 0.0537306 456 104 0.0005092998 457 104 0.0019099 458 104 0.00076389988 459 104 0.00089129992 460 104 0.0029283999 463 104 0.0021644998 464 104 0.00038199988 465 104 0.00063659996 467 104 0.0099311993 468 104 0.0031830999 469 104 0.006366197 470 104 0.0068754964 471 104 0.0021644998 473 104 0.00012729999 478 104 0.00063659996 483 104 0.0010185998 489 104 0.00089129992 490 104 0.00063659996 491 104 0.0019099 0 105 0.0006465998 5 105 0.0020903 6 105 0.00070679979 9 105 0.00010529999 10 105 0.004180599 11 105 7.5199991e-05 14 105 0.00042109983 22 105 1.5e-05 60 105 0.0036843999 82 105 0.0055941977 83 105 1.5e-05 84 105 4.5099994e-05 85 105 0.0062709972 86 105 3.0099996e-05 87 105 0.0039550997 88 105 0.0076845996 90 105 0.00018049999 93 105 0.0037596 94 105 0.0031579998 97 105 0.0032031999 98 105 0.11024559 100 105 0.012256198 103 105 0.00063159992 104 105 0.0066318996 105 105 0.0075341985 106 105 0.00027069985 107 105 0.032753397 108 105 1.5e-05 109 105 0.00061659981 113 105 3.0099996e-05 114 105 4.5099994e-05 116 105 0.0035189998 118 105 0.0014285999 119 105 0.00055639981 122 105 0.017639898 125 105 0.013474297 126 105 1.5e-05 150 105 0.00093239988 189 105 0.00022559999 190 105 9.0199988e-05 192 105 0.0009474 193 105 0.012481797 194 105 9.0199988e-05 196 105 1.5e-05 197 105 3.0099996e-05 198 105 0.018331699 200 105 4.5099994e-05 201 105 1.5e-05 203 105 7.5199991e-05 204 105 0.013233699 206 105 0.00025569997 207 105 6.0199993e-05 209 105 1.5e-05 214 105 0.0063761994 218 105 1.5e-05 223 105 0.00034589996 228 105 0.0024812999 229 105 0.00016539999 230 105 0.00072179991 234 105 0.0048723966 237 105 0.00076699979 241 105 0.020542298 242 105 0.0006616998 252 105 3.0099996e-05 253 105 1.5e-05 272 105 0.00052629993 279 105 0.00036089984 284 105 3.0099996e-05 300 105 4.5099994e-05 317 105 1.5e-05 325 105 0.0023759999 340 105 0.00025569997 344 105 0.00048119994 356 105 6.0199993e-05 358 105 0.00063159992 384 105 3.0099996e-05 387 105 1.5e-05 394 105 4.5099994e-05 397 105 3.0099996e-05 402 105 0.00028569996 422 105 7.5199991e-05 423 105 1.5e-05 430 105 1.5e-05 431 105 3.0099996e-05 432 105 1.5e-05 433 105 3.0099996e-05 434 105 6.0199993e-05 443 105 0.012557 444 105 0.00045109983 445 105 0.0090379976 446 105 0.0008270999 447 105 0.0020601999 448 105 0.00010529999 450 105 0.0057445988 452 105 0.0041354969 453 105 0.0030377 454 105 0.00054139993 455 105 0.032557897 456 105 0.0010527 457 105 0.0031880999 458 105 0.00037599984 459 105 0.00085719978 460 105 0.0015940999 463 105 0.0077897981 464 105 0.00060149981 465 105 0.0032782999 467 105 0.010496698 468 105 0.013684798 469 105 0.009519197 470 105 0.0016391999 471 105 0.0088725984 473 105 4.5099994e-05 477 105 6.0199993e-05 478 105 0.0013533998 483 105 0.0028873 489 105 0.00022559999 490 105 0.0016541998 491 105 3.0099996e-05 3 106 0.00012139999 5 106 0.0021237 6 106 0.0010314998 9 106 0.0011527999 10 106 0.0011527999 11 106 0.0002427 13 106 0.0002427 14 106 0.00072809984 22 106 0.00012139999 60 106 0.0029123998 82 106 0.012256499 85 106 0.0029730999 87 106 6.0699997e-05 88 106 0.0024269999 93 106 6.0699997e-05 94 106 6.0699997e-05 97 106 6.0699997e-05 98 106 0.085917056 100 106 0.0026697 103 106 0.00030339998 104 106 0.014683597 105 106 0.0040045977 106 106 0.00030339998 107 106 0.0461744 108 106 0.0014561999 109 106 0.024634399 114 106 6.0699997e-05 116 106 0.0050967969 118 106 0.0052787997 122 106 0.028092999 125 106 0.0079484992 126 106 6.0699997e-05 189 106 6.0699997e-05 190 106 6.0699997e-05 192 106 0.0058855973 193 106 0.0074630976 194 106 6.0699997e-05 198 106 0.054062299 200 106 6.0699997e-05 203 106 6.0699997e-05 204 106 0.017049897 206 106 0.0002427 207 106 6.0699997e-05 214 106 0.0081305988 223 106 0.00066739996 228 106 0.0020629999 229 106 0.00018199999 230 106 0.00060679996 234 106 0.0038832999 237 106 0.00060679996 241 106 0.020144399 242 106 0.00012139999 253 106 0.0002427 272 106 0.00042469986 277 106 6.0699997e-05 279 106 0.00066739996 300 106 0.0002427 314 106 6.0699997e-05 325 106 0.0019415999 344 106 0.00030339998 356 106 6.0699997e-05 358 106 0.00054609985 394 106 6.0699997e-05 402 106 0.0002427 422 106 6.0699997e-05 433 106 6.0699997e-05 434 106 6.0699997e-05 443 106 0.011649799 444 106 0.00012139999 445 106 0.0090406984 446 106 0.00072809984 447 106 0.0014561999 448 106 6.0699997e-05 450 106 0.0023057 452 106 0.0037011998 453 106 0.0030944999 454 106 0.00048539997 455 106 0.0364662 456 106 0.00066739996 457 106 0.0020023 458 106 0.00048539997 459 106 0.00036409986 460 106 0.0016988998 463 106 0.0157151 464 106 0.00012139999 465 106 0.0043079965 467 106 0.014440898 468 106 0.013652097 469 106 0.0013348998 470 106 0.0014561999 471 106 0.0041259974 473 106 6.0699997e-05 477 106 6.0699997e-05 478 106 0.00066739996 483 106 0.00097079994 489 106 0.00018199999 490 106 0.00060679996 5 107 3.119999e-05 11 107 3.119999e-05 12 107 0.22531909 18 107 3.119999e-05 22 107 0.0014044999 24 107 0.00059299986 60 107 0.0024656998 85 107 3.119999e-05 88 107 3.119999e-05 93 107 0.00012479999 95 107 3.119999e-05 98 107 3.119999e-05 104 107 0.00053059985 107 107 0.36892539 108 107 3.119999e-05 112 107 3.119999e-05 113 107 3.119999e-05 114 107 9.36e-05 115 107 6.2399995e-05 116 107 0.00062419986 118 107 9.36e-05 119 107 3.119999e-05 122 107 0.00012479999 125 107 3.119999e-05 126 107 3.119999e-05 150 107 3.119999e-05 151 107 0.00068669999 189 107 0.00012479999 190 107 3.119999e-05 193 107 0.0058053993 194 107 6.2399995e-05 198 107 0.0039950982 200 107 3.119999e-05 203 107 3.119999e-05 204 107 0.0001561 206 107 6.2399995e-05 214 107 0.0034957 215 107 6.2399995e-05 223 107 0.00024969992 228 107 6.2399995e-05 229 107 0.00040579983 230 107 0.00018729999 234 107 0.0043696985 237 107 0.00018729999 241 107 3.119999e-05 242 107 0.0011547999 252 107 6.2399995e-05 253 107 0.00040579983 267 107 0.0040575974 272 107 0.00056179985 277 107 0.0012484998 279 107 0.00012479999 300 107 0.0001561 301 107 0.00056179985 314 107 6.2399995e-05 324 107 0.00021849999 344 107 0.00046819984 350 107 0.0017166999 356 107 6.2399995e-05 358 107 0.00037449994 384 107 3.119999e-05 387 107 3.119999e-05 402 107 9.36e-05 422 107 6.2399995e-05 434 107 3.119999e-05 443 107 0.013358697 444 107 0.0016853998 445 107 0.0134211 446 107 0.00034329994 447 107 0.00099879992 450 107 0.0011547999 452 107 0.0019351 453 107 0.010362398 454 107 0.0025281999 455 107 0.028434098 456 107 0.00028089993 457 107 0.0044008978 458 107 0.00040579983 459 107 0.00037449994 460 107 0.00024969992 463 107 0.0035581999 464 107 0.0013732999 465 107 0.00040579983 467 107 0.0042447969 468 107 0.0046817996 469 107 0.0035269998 470 107 0.0010611999 471 107 0.0014044999 473 107 3.119999e-05 477 107 3.119999e-05 478 107 0.00034329994 483 107 0.00031209993 489 107 0.00056179985 490 107 0.00021849999 491 107 6.2399995e-05 0 108 0.00015159999 3 108 0.0002274 5 108 7.5799995e-05 9 108 0.00041679991 10 108 0.054111399 11 108 0.00064419978 13 108 0.0032587999 14 108 0.027927198 16 108 3.7899998e-05 17 108 3.7899998e-05 22 108 0.00018949999 60 108 0.0023872999 82 108 0.00041679991 85 108 7.5799995e-05 86 108 0.0019703999 88 108 0.019439198 90 108 3.7899998e-05 93 108 0.00045469985 94 108 7.5799995e-05 95 108 3.7899998e-05 98 108 0.00037889997 104 108 0.015460398 105 108 0.00015159999 106 108 3.7899998e-05 107 108 0.066881359 108 108 0.083175361 109 108 0.053164098 110 108 0.00079579977 112 108 3.7899998e-05 114 108 7.5799995e-05 115 108 3.7899998e-05 116 108 0.030503999 118 108 0.00037889997 119 108 7.5799995e-05 122 108 0.0039408989 124 108 3.7899998e-05 125 108 0.0053807981 126 108 3.7899998e-05 150 108 0.00049259979 151 108 3.7899998e-05 189 108 0.00011369999 190 108 7.5799995e-05 192 108 0.011746898 193 108 0.0022356999 194 108 0.00011369999 197 108 3.7899998e-05 198 108 0.040394098 200 108 3.7899998e-05 203 108 7.5799995e-05 204 108 0.0025008998 206 108 0.00049259979 207 108 3.7899998e-05 214 108 0.00060629984 223 108 0.0012125999 229 108 0.00030309986 230 108 0.00060629984 231 108 0.0002274 234 108 0.0023494 237 108 0.0002274 241 108 0.010647997 242 108 0.00015159999 252 108 7.5799995e-05 253 108 0.0025766999 272 108 0.00049259979 277 108 3.7899998e-05 279 108 0.00068209996 300 108 0.011367898 301 108 0.00011369999 314 108 0.00064419978 324 108 0.00018949999 325 108 0.0061007999 344 108 0.00037889997 356 108 7.5799995e-05 358 108 0.00071999989 384 108 3.7899998e-05 387 108 3.7899998e-05 402 108 0.00011369999 414 108 0.00026529981 422 108 0.00011369999 430 108 3.7899998e-05 433 108 3.7899998e-05 434 108 3.7899998e-05 443 108 0.0087911971 444 108 0.00026529981 445 108 0.012959499 446 108 0.0013263 447 108 0.00079579977 448 108 3.7899998e-05 450 108 0.0023494 452 108 0.0053807981 453 108 0.0018189 454 108 0.00037889997 455 108 0.061424799 456 108 0.0003409998 457 108 0.0024251998 458 108 0.00037889997 459 108 0.00045469985 460 108 0.0016293998 463 108 0.005342897 464 108 0.00018949999 465 108 0.0020082998 467 108 0.0153846 468 108 0.033383898 469 108 0.0027282999 470 108 0.0030314999 471 108 0.0017051999 473 108 7.5799995e-05 477 108 3.7899998e-05 478 108 0.00079579977 479 108 0.00018949999 483 108 0.0014777998 489 108 7.5799995e-05 490 108 0.027775697 491 108 0.00026529981 3 109 0.0030345998 5 109 0.0030345998 9 109 0.0030345998 10 109 0.0064737983 11 109 0.0046529993 13 109 0.0032368999 14 109 0.0072829984 17 109 0.00040459982 22 109 0.00060689985 60 109 0.0022253999 85 109 0.0002023 86 109 0.012542997 88 109 0.033380497 98 109 0.0046529993 104 109 0.020432897 105 109 0.0014161 106 109 0.00040459982 107 109 0.087396264 108 109 0.015375298 109 109 0.074044049 113 109 0.0002023 114 109 0.0002023 115 109 0.00040459982 116 109 0.00060689985 117 109 0.0002023 118 109 0.00080919988 119 109 0.00040459982 122 109 0.0093060993 125 109 0.0024277 191 109 0.0002023 192 109 0.0036414999 193 109 0.0020230999 198 109 0.038235899 204 109 0.0052599981 206 109 0.0002023 214 109 0.0022253999 223 109 0.0028322998 229 109 0.0002023 230 109 0.0002023 234 109 0.0016184999 237 109 0.0002023 241 109 0.013352197 242 109 0.00040459982 253 109 0.0030345998 272 109 0.00060689985 279 109 0.00060689985 300 109 0.023669798 301 109 0.00080919988 314 109 0.00080919988 324 109 0.0002023 325 109 0.0056645982 344 109 0.00060689985 356 109 0.0002023 358 109 0.00060689985 443 109 0.012947597 444 109 0.00040459982 445 109 0.014970697 446 109 0.0028322998 447 109 0.0016184999 450 109 0.0014161 452 109 0.0058668964 453 109 0.0016184999 454 109 0.00040459982 455 109 0.066154182 456 109 0.00040459982 457 109 0.0026299998 458 109 0.0002023 459 109 0.00040459982 460 109 0.0020230999 463 109 0.0044506975 464 109 0.0002023 465 109 0.0016184999 467 109 0.0226583 468 109 0.027311299 469 109 0.0022253999 470 109 0.0022253999 471 109 0.0016184999 478 109 0.00060689985 483 109 0.00080919988 489 109 0.0002023 490 109 0.16710496 491 109 0.0002023 10 110 0.0034111999 13 110 0.0002623999 14 110 0.0015743999 60 110 0.0031488 82 110 0.0002623999 88 110 0.00078719994 102 110 0.0002623999 104 110 0.023091096 107 110 0.055890799 108 110 0.004985597 109 110 0.002624 110 110 0.073996246 114 110 0.0002623999 116 110 0.050642896 118 110 0.0057727993 122 110 0.0002623999 125 110 0.0002623999 192 110 0.0028863999 193 110 0.0020991999 198 110 0.048281297 204 110 0.015481498 206 110 0.00052479981 214 110 0.0023615998 223 110 0.0002623999 228 110 0.0041983984 230 110 0.00052479981 234 110 0.0055103973 237 110 0.0002623999 241 110 0.012070298 253 110 0.0010495998 272 110 0.0010495998 279 110 0.00078719994 300 110 0.00078719994 314 110 0.0002623999 324 110 0.0002623999 325 110 0.0057727993 344 110 0.0002623999 358 110 0.00052479981 443 110 0.0057727993 444 110 0.0070847981 445 110 0.0073471963 446 110 0.001312 447 110 0.012070298 450 110 0.0020991999 452 110 0.0047231987 453 110 0.00052479981 454 110 0.00078719994 455 110 0.031750198 457 110 0.0023615998 459 110 0.00078719994 460 110 0.0010495998 463 110 0.0028863999 464 110 0.00052479981 465 110 0.010233499 467 110 0.0083966963 468 110 0.047756497 469 110 0.0034111999 470 110 0.0036735998 471 110 0.0010495998 477 110 0.0002623999 478 110 0.00078719994 483 110 0.0015743999 490 110 0.014431898 491 110 0.0002623999 5 111 0.0064279996 6 111 0.012103099 13 111 0.0072193965 22 111 0.00021229999 60 111 0.0038798999 82 111 1.9299987e-05 98 111 0.0092654973 103 111 0.0063120984 104 111 0.002104 107 111 0.0010616998 108 111 1.9299987e-05 111 111 0.0027796999 112 111 0.035575699 113 111 3.8599988e-05 114 111 0.00086859986 116 111 7.7199991e-05 118 111 3.8599988e-05 125 111 0.0008299998 126 111 1.9299987e-05 151 111 1.9299987e-05 189 111 3.8599988e-05 190 111 3.8599988e-05 192 111 0.0014862998 194 111 5.789999e-05 197 111 1.9299987e-05 198 111 0.0283756 200 111 1.9299987e-05 203 111 3.8599988e-05 204 111 0.0051731989 206 111 0.00021229999 207 111 1.9299987e-05 214 111 0.00030889991 218 111 1.9299987e-05 223 111 1.9299987e-05 229 111 0.00067559979 230 111 0.0001737 234 111 0.0025672999 237 111 0.00021229999 241 111 0.0008299998 242 111 0.00055979984 252 111 5.789999e-05 253 111 0.0545507 272 111 0.0005983999 277 111 5.789999e-05 279 111 0.00069489982 300 111 0.22260398 314 111 0.0065437965 324 111 0.00030889991 344 111 0.00027019996 350 111 0.00079139997 356 111 5.789999e-05 358 111 0.00034749997 384 111 5.789999e-05 387 111 1.9299987e-05 394 111 1.9299987e-05 402 111 7.7199991e-05 422 111 5.789999e-05 430 111 1.9299987e-05 433 111 1.9299987e-05 434 111 1.9299987e-05 443 111 0.0065437965 444 111 0.00086859986 445 111 0.0078177974 446 111 0.00065629999 447 111 0.00027019996 448 111 1.9299987e-05 450 111 0.0012353999 452 111 0.0037061998 453 111 0.0023549998 454 111 0.0020653999 455 111 0.0219284 456 111 0.00032819994 457 111 0.0034938999 458 111 0.00032819994 459 111 0.0003668 460 111 0.00023159999 463 111 0.0025479998 464 111 0.0001351 465 111 0.0014283999 467 111 0.0054241978 468 111 0.043547899 469 111 0.0070649981 470 111 0.0013897999 471 111 0.0031849998 473 111 3.8599988e-05 477 111 1.9299987e-05 478 111 0.00034749997 483 111 0.00052119978 489 111 0.0001351 490 111 0.00011579999 491 111 1.9299987e-05 5 112 0.020178299 6 112 0.49460346 22 112 0.00046929996 60 112 0.0065696985 111 112 0.00046929996 112 112 0.014077898 114 112 0.00046929996 116 112 0.00046929996 198 112 0.0014077998 229 112 0.00093849981 234 112 0.0018771 253 112 0.00046929996 272 112 0.00093849981 277 112 0.00046929996 300 112 0.00093849981 344 112 0.00046929996 350 112 0.00046929996 358 112 0.00046929996 443 112 0.025809497 444 112 0.00046929996 445 112 0.029094297 446 112 0.0046925992 447 112 0.0098544993 450 112 0.00093849981 452 112 0.015954997 453 112 0.0229939 454 112 0.0023462998 455 112 0.13233215 457 112 0.0046925992 459 112 0.00046929996 460 112 -0.0018771 463 112 0.0126701 464 112 0.00046929996 467 112 0.0056311972 468 112 0.00046929996 469 112 0.00046929996 470 112 0.00093849981 471 112 0.00046929996 478 112 0.00046929996 490 112 0.00046929996 491 112 0.00093849981 6 113 0.00015889999 9 113 0.081519067 11 113 0.00015889999 60 113 0.0016684998 93 113 0.0373431 94 113 0.0030987 104 113 7.9499994e-05 107 113 0.0081041977 112 113 0.0027013998 113 113 0.073335469 114 113 0.0080247968 116 113 0.0002384 126 113 7.9499994e-05 171 113 0.0025424999 172 113 0.00015889999 192 113 0.00055619981 194 113 7.9499994e-05 198 113 0.0041315965 204 113 0.013268698 206 113 0.00031779986 223 113 7.9499994e-05 229 113 0.00039729988 230 113 0.00015889999 234 113 0.0011918 237 113 0.0002384 241 113 0.00063559995 242 113 0.0025424999 253 113 0.06991899 272 113 0.00071509997 279 113 0.0002384 300 113 0.00031779986 314 113 0.0080247968 324 113 0.00039729988 325 113 0.00039729988 344 113 0.00031779986 356 113 7.9499994e-05 358 113 0.0002384 402 113 7.9499994e-05 443 113 0.0077863969 444 113 0.0038137999 445 113 0.039567798 446 113 0.0025424999 447 113 0.0032575999 450 113 0.0008739999 452 113 0.0021451998 453 113 0.0014301999 454 113 0.0002384 455 113 0.064198256 456 113 0.00015889999 457 113 0.0041315965 459 113 0.0010328998 460 113 0.00095339981 463 113 0.0040520988 464 113 0.0002384 465 113 0.0002384 467 113 0.0026219999 468 113 0.042984299 469 113 0.0011123 470 113 0.0011918 471 113 0.0011918 472 113 0.0015890999 473 113 7.9499994e-05 478 113 0.0002384 483 113 0.0002384 490 113 0.0002384 5 114 0.0005551998 6 114 0.0077535994 9 114 0.00069409981 22 114 0.00057509984 60 114 0.0010707998 93 114 0.0036288998 98 114 0.00041639991 102 114 0.0001586 104 114 7.9299993e-05 107 114 0.00021809999 112 114 0.0019631998 113 114 0.00059489999 114 114 0.041227099 117 114 1.9799991e-05 118 114 9.9199999e-05 120 114 3.9699997e-05 126 114 1.9799991e-05 169 114 0.00061469991 171 114 0.0013682998 172 114 0.0072776973 190 114 1.9799991e-05 192 114 0.0025978 194 114 1.9799991e-05 198 114 0.0045807995 203 114 1.9799991e-05 204 114 0.0059291981 206 114 9.9199999e-05 214 114 7.9299993e-05 228 114 1.9799991e-05 229 114 9.9199999e-05 230 114 5.9499987e-05 234 114 0.00079319999 237 114 7.9299993e-05 241 114 0.0027762 242 114 0.0010311999 252 114 1.9799991e-05 253 114 0.031629298 272 114 0.00013879999 279 114 3.9699997e-05 314 114 0.0017053999 324 114 5.9499987e-05 325 114 0.00023799999 344 114 7.9299993e-05 350 114 0.0013682998 351 114 0.00047589978 356 114 1.9799991e-05 358 114 0.00011899999 384 114 1.9799991e-05 402 114 3.9699997e-05 404 114 1.9799991e-05 422 114 1.9799991e-05 434 114 1.9799991e-05 443 114 0.0019234999 444 114 0.0022012 445 114 0.0047592968 446 114 0.0001983 447 114 0.0093003996 450 114 0.00043629995 452 114 0.00085269986 453 114 0.00045609986 454 114 0.00033709989 455 114 0.017073799 456 114 7.9299993e-05 457 114 0.0039660968 458 114 0.00011899999 459 114 0.0020424998 460 114 0.00093199988 463 114 0.0075552985 464 114 0.0016062998 465 114 0.00013879999 467 114 0.0016855998 468 114 0.042099599 469 114 0.0012889998 470 114 0.00031729997 471 114 0.0005551998 473 114 1.9799991e-05 477 114 1.9799991e-05 478 114 0.00011899999 483 114 9.9199999e-05 489 114 3.9699997e-05 490 114 0.0016458998 491 114 9.9199999e-05 0 115 0.0055522993 1 115 8.1699996e-05 9 115 0.00081649981 10 115 2.0399995e-05 11 115 0.00083689997 16 115 0.0001429 17 115 2.0399995e-05 22 115 0.00089819985 60 115 0.0023882999 82 115 0.00036739977 83 115 4.0799991e-05 84 115 0.00016329999 86 115 4.0799991e-05 87 115 2.0399995e-05 88 115 0.00059199985 90 115 0.0015309998 93 115 0.0083079971 94 115 0.0001429 95 115 2.0399995e-05 97 115 2.0399995e-05 98 115 8.1699996e-05 104 115 0.0014493 105 115 2.0399995e-05 107 115 0.069770753 108 115 4.0799991e-05 113 115 4.0799991e-05 114 115 6.1199986e-05 115 115 0.0053276978 116 115 0.12029225 118 115 4.0799991e-05 122 115 0.00012249999 124 115 4.0799991e-05 125 115 0.00012249999 126 115 4.0799991e-05 127 115 2.0399995e-05 150 115 0.00030619977 151 115 2.0399995e-05 172 115 0.0022249999 189 115 0.0001429 190 115 8.1699996e-05 192 115 0.00010209999 193 115 4.0799991e-05 194 115 0.00010209999 196 115 2.0399995e-05 197 115 2.0399995e-05 198 115 0.023066398 200 115 6.1199986e-05 201 115 2.0399995e-05 203 115 6.1199986e-05 204 115 0.0027965 206 115 0.00032659993 207 115 6.1199986e-05 209 115 2.0399995e-05 214 115 0.0031843998 218 115 2.0399995e-05 223 115 6.1199986e-05 229 115 0.00091859978 230 115 0.00042869989 234 115 0.0039804988 237 115 0.00057159993 240 115 2.0399995e-05 241 115 0.0041029975 242 115 0.00083689997 248 115 2.0399995e-05 252 115 0.0001429 253 115 0.12004739 272 115 0.00085729989 279 115 0.00067359977 284 115 2.0399995e-05 300 115 0.16075039 314 115 0.014452197 324 115 0.00044909981 325 115 0.00030619977 344 115 0.00036739977 351 115 0.00030619977 356 115 8.1699996e-05 358 115 0.00087769981 366 115 2.0399995e-05 384 115 4.0799991e-05 387 115 2.0399995e-05 394 115 4.0799991e-05 397 115 2.0399995e-05 402 115 0.0002041 419 115 2.0399995e-05 422 115 8.1699996e-05 423 115 2.0399995e-05 425 115 2.0399995e-05 430 115 2.0399995e-05 431 115 4.0799991e-05 432 115 2.0399995e-05 433 115 4.0799991e-05 434 115 4.0799991e-05 443 115 0.0050827973 444 115 0.00040829997 445 115 0.011880197 446 115 0.0011838998 447 115 0.0011022999 448 115 8.1699996e-05 450 115 0.0031027 452 115 0.0041233972 453 115 0.0017758999 454 115 0.00073489989 455 115 0.0303129 456 115 0.00091859978 457 115 0.0046132989 458 115 0.00040829997 459 115 0.0013676998 460 115 0.0012859998 463 115 0.0109616 464 115 0.00016329999 465 115 0.0012451999 467 115 0.011206597 468 115 0.057380199 469 115 0.0087161995 470 115 0.0031639999 471 115 0.0057155974 473 115 6.1199986e-05 477 115 8.1699996e-05 478 115 0.0029189999 483 115 0.0018575999 489 115 0.00018369999 490 115 0.00028579985 491 115 2.0399995e-05 0 116 0.00080389995 3 116 0.00053589977 5 116 0.0039522983 6 116 0.0026794998 9 116 0.0017416999 10 116 0.00033489987 11 116 0.0015407 13 116 0.0013398 14 116 0.0010717998 16 116 6.6999986e-05 17 116 6.6999986e-05 60 116 0.0014736999 82 116 0.00026799995 84 116 6.6999986e-05 85 116 0.00020099999 87 116 0.00020099999 88 116 0.00026799995 90 116 0.00020099999 93 116 0.0089763999 94 116 0.00020099999 95 116 0.00013399999 98 116 0.0012057999 99 116 6.6999986e-05 102 116 0.0013398 103 116 0.00073689991 104 116 0.007167697 105 116 0.00026799995 106 116 6.6999986e-05 107 116 0.14529735 108 116 0.00013399999 109 116 0.00013399999 110 116 0.00013399999 112 116 0.0016076998 113 116 0.0020095999 114 116 0.0020766 115 116 0.0050240979 116 116 0.044145197 117 116 0.00013399999 118 116 0.0063638985 119 116 0.0014067998 120 116 0.00040189992 122 116 0.0020095999 125 116 0.0013398 126 116 6.6999986e-05 172 116 6.6999986e-05 192 116 0.0010048 193 116 0.00060289982 194 116 6.6999986e-05 198 116 0.018957697 204 116 0.0061628968 206 116 0.00013399999 214 116 0.0050910972 215 116 6.6999986e-05 223 116 0.016880997 228 116 0.0041532964 229 116 0.00066989986 230 116 0.00013399999 231 116 0.00013399999 232 116 0.00013399999 234 116 0.0018086999 237 116 0.00020099999 241 116 0.0044211969 242 116 0.0030814998 252 116 6.6999986e-05 253 116 0.025187597 272 116 0.00026799995 277 116 6.6999986e-05 279 116 0.00026799995 300 116 0.011053097 301 116 0.0019426998 314 116 0.0034163999 317 116 6.6999986e-05 325 116 0.00040189992 344 116 0.00033489987 349 116 6.6999986e-05 356 116 6.6999986e-05 358 116 0.00026799995 402 116 6.6999986e-05 443 116 0.0086414963 444 116 0.0024116 445 116 0.0087084994 446 116 0.0019426998 447 116 0.0028804999 450 116 0.0010048 452 116 0.0024785998 453 116 0.00087079988 454 116 0.0010048 455 116 0.030948598 456 116 0.00013399999 457 116 0.0045551993 458 116 0.00040189992 459 116 0.00046889996 460 116 0.00020099999 463 116 0.014670398 464 116 0.0026794998 465 116 0.00053589977 467 116 0.0042202994 468 116 0.016278099 469 116 0.0014736999 470 116 0.0013398 471 116 0.0036173998 473 116 6.6999986e-05 478 116 0.00026799995 483 116 0.00040189992 490 116 0.0148714 491 116 0.00093779992 4 117 0.43876797 5 117 0.027132697 6 117 0.0068442971 13 117 0.0002444 14 117 0.12613046 60 117 0.0034220999 82 117 0.0031776999 88 117 0.0002444 98 117 0.00073329988 102 117 0.0034220999 104 117 0.00097779999 107 117 0.0002444 114 117 0.0002444 117 117 0.032265898 118 117 0.016132999 119 117 0.0043998994 120 117 0.00097779999 122 117 0.0065998994 198 117 0.0012222 204 117 0.00097779999 206 117 0.0002444 214 117 0.0012222 228 117 0.00048889988 229 117 0.00048889988 230 117 0.0002444 231 117 0.0002444 234 117 0.0014666 237 117 0.0002444 241 117 0.00073329988 242 117 0.00048889988 253 117 0.00073329988 272 117 0.00048889988 300 117 0.00097779999 301 117 0.0014666 314 117 0.0002444 325 117 0.0002444 344 117 0.00048889988 351 117 0.0002444 358 117 0.00048889988 443 117 0.023710597 444 117 0.00048889988 445 117 0.023466099 446 117 0.0012222 447 117 0.00048889988 450 117 0.0014666 452 117 0.014177497 453 117 0.0051331967 454 117 0.0002444 455 117 0.070642889 456 117 0.0002444 457 117 0.0024444 459 117 0.00048889988 460 117 0.0063553974 463 117 0.00048889988 464 117 0.0002444 465 117 0.0012222 467 117 0.0065998994 468 117 0.0024444 469 117 0.0012222 470 117 0.0012222 471 117 0.0017110999 478 117 0.00048889988 483 117 0.00073329988 490 117 0.00048889988 491 117 0.0031776999 4 118 0.0095405988 5 118 0.0085460991 6 118 0.0083986968 13 118 3.6799989e-05 14 118 0.74266028 17 118 7.3699994e-05 22 118 0.00077359984 60 118 0.0012155999 82 118 0.007993497 84 118 3.6799989e-05 94 118 3.6799989e-05 102 118 3.6799989e-05 104 118 0.001584 114 118 3.6799989e-05 117 118 0.0023206999 118 118 0.022654399 119 118 0.0025416999 120 118 0.00062619988 122 118 0.0020627999 126 118 3.6799989e-05 151 118 3.6799989e-05 193 118 0.00092089991 198 118 0.0014734999 204 118 0.0002946998 206 118 7.3699994e-05 214 118 0.00092089991 224 118 3.6799989e-05 229 118 0.00051569985 230 118 7.3699994e-05 231 118 3.6799989e-05 234 118 0.0010682999 237 118 7.3699994e-05 241 118 0.0014366 242 118 0.0013628998 252 118 3.6799989e-05 253 118 0.00033149985 272 118 0.00022099999 277 118 3.6799989e-05 279 118 3.6799989e-05 300 118 0.00040519983 301 118 0.0015470998 314 118 3.6799989e-05 325 118 3.6799989e-05 344 118 0.00058939983 350 118 3.6799989e-05 351 118 0.00022099999 358 118 0.00014729999 402 118 3.6799989e-05 443 118 0.019891698 444 118 0.0016207998 445 118 0.011861298 446 118 0.0042729974 447 118 0.0012524 450 118 0.00040519983 452 118 0.0045308992 453 118 0.0044203997 454 118 0.00033149985 455 118 0.015581798 456 118 7.3699994e-05 457 118 0.0025785998 458 118 0.00018419999 459 118 0.00044199987 460 118 0.00040519983 463 118 0.0011419 464 118 0.0016575998 465 118 0.00014729999 467 118 0.0021733998 468 118 0.00081039988 469 118 0.0020996998 470 118 0.0005524999 471 118 0.0034625998 473 118 3.6799989e-05 477 118 3.6799989e-05 478 118 0.0001105 483 118 0.0001105 489 118 3.6799989e-05 490 118 0.00014729999 491 118 0.0036099998 4 119 0.030545499 5 119 0.0025454999 6 119 0.00072729983 9 119 0.00036359997 10 119 0.0036364 11 119 0.00036359997 13 119 0.056727298 14 119 0.34036356 17 119 0.0029090999 22 119 0.00036359997 24 119 0.0032726999 60 119 0.0018181999 82 119 0.0105455 84 119 0.00072729983 88 119 0.0010908998 104 119 0.0029090999 107 119 0.0036364 108 119 0.0050908998 109 119 0.0025454999 116 119 0.0018181999 117 119 0.0079999976 118 119 0.038545497 119 119 0.012727298 120 119 0.021454498 122 119 0.017454498 125 119 0.00036359997 192 119 0.00072729983 198 119 0.0058181994 204 119 0.0025454999 214 119 0.0021817998 215 119 0.0010908998 231 119 0.00036359997 234 119 0.0021817998 241 119 0.0029090999 242 119 0.00036359997 253 119 0.0025454999 272 119 0.0029090999 300 119 0.0043635964 301 119 0.0054544993 314 119 0.00036359997 325 119 0.0010908998 344 119 0.00036359997 350 119 0.00036359997 351 119 0.00036359997 356 119 0.00036359997 443 119 0.016727298 444 119 0.00072729983 445 119 0.0192727 446 119 0.0149091 447 119 0.0021817998 450 119 0.00036359997 452 119 0.006545499 453 119 0.0047272965 454 119 0.00072729983 455 119 0.044 457 119 0.0025454999 459 119 0.0101818 460 119 0.0025454999 463 119 0.0018181999 464 119 0.00036359997 465 119 0.00072729983 467 119 0.0050908998 468 119 0.021090899 469 119 0.00072729983 470 119 0.0010908998 489 119 0.00036359997 490 119 0.081090868 491 119 0.0061817989 1 120 0.004378397 2 120 0.18949187 6 120 0.00020359999 13 120 0.00020359999 14 120 0.0016291998 17 120 0.036656097 21 120 0.00010179999 22 120 0.00010179999 24 120 0.00030549988 60 120 0.0021382999 82 120 0.040728997 83 120 0.00061089988 84 120 0.0096731 85 120 0.0011199999 88 120 0.00010179999 91 120 0.0019345998 96 120 0.00091639999 102 120 0.00010179999 104 120 0.00030549988 114 120 0.00010179999 117 120 0.00081459992 118 120 0.0046837963 119 120 0.0016291998 120 120 0.25180739 122 120 0.0023418998 125 120 0.00040729996 126 120 0.00010179999 153 120 0.00010179999 193 120 0.00020359999 194 120 0.00010179999 198 120 0.0023418998 204 120 0.00040729996 206 120 0.00020359999 214 120 0.0029528998 218 120 0.00040729996 223 120 0.00040729996 224 120 0.00040729996 225 120 0.00010179999 229 120 0.00040729996 230 120 0.00020359999 231 120 0.00020359999 232 120 0.00010179999 234 120 0.0060075 237 120 0.00020359999 241 120 0.0021382999 252 120 0.00010179999 253 120 0.00030549988 277 120 0.00030549988 279 120 0.00010179999 300 120 0.0015272999 301 120 0.0037673998 324 120 0.00020359999 325 120 0.00010179999 344 120 0.00040729996 358 120 0.0005090998 402 120 0.00010179999 443 120 0.0079421997 444 120 0.00010179999 445 120 0.0091639981 446 120 0.0015272999 447 120 0.0019345998 450 120 0.0016291998 452 120 0.008145798 453 120 0.0085530989 454 120 0.00071279984 455 120 0.044700097 456 120 0.00020359999 457 120 0.0021382999 458 120 0.00010179999 459 120 0.00061089988 460 120 0.0016291998 463 120 0.0047856979 464 120 0.00020359999 465 120 0.0065165982 467 120 0.0054983981 468 120 0.0039710999 469 120 0.0019345998 470 120 0.0021382999 471 120 0.0016291998 473 120 0.00010179999 478 120 0.00040729996 483 120 0.00071279984 490 120 0.00040729996 491 120 0.004378397 3 121 0.00041569979 5 121 4.6199988e-05 9 121 0.00046189991 10 121 4.6199988e-05 11 121 0.00073899981 13 121 0.0012469999 14 121 0.00073899981 17 121 4.6199988e-05 22 121 4.6199988e-05 60 121 0.0013394 93 121 4.6199988e-05 94 121 9.2399991e-05 98 121 0.00013859999 104 121 0.00018469999 105 121 0.00018469999 106 121 4.6199988e-05 107 121 0.0006465998 108 121 0.00013859999 109 121 4.6199988e-05 114 121 9.2399991e-05 115 121 4.6199988e-05 116 121 9.2399991e-05 118 121 4.6199988e-05 119 121 9.2399991e-05 120 121 9.2399991e-05 121 121 0.0005541998 122 121 0.00073899981 125 121 0.00013859999 126 121 4.6199988e-05 151 121 0.0015703 153 121 0.0016627 189 121 4.6199988e-05 192 121 0.00032329978 193 121 0.0078514963 194 121 4.6199988e-05 198 121 0.031775396 204 121 0.0052650981 206 121 9.2399991e-05 214 121 0.001986 223 121 0.0002309 229 121 0.0003694999 230 121 0.00013859999 231 121 0.00018469999 232 121 4.6199988e-05 234 121 0.0015703 237 121 0.00013859999 241 121 0.0060501993 242 121 0.0015240998 252 121 4.6199988e-05 253 121 0.015379597 272 121 0.0002770999 279 121 0.0005541998 300 121 0.052004397 314 121 0.0026786998 325 121 9.2399991e-05 344 121 0.00050799991 356 121 4.6199988e-05 358 121 0.0002309 387 121 4.6199988e-05 402 121 4.6199988e-05 443 121 0.0036024 444 121 0.0043875985 445 121 0.004202798 446 121 0.023323499 447 121 0.0015703 450 121 0.00073899981 452 121 0.0023553998 453 121 0.0013394 454 121 0.0018936 455 121 0.032745197 456 121 0.00013859999 457 121 0.0024015999 458 121 4.6199988e-05 459 121 0.00041569979 460 121 0.0029557999 463 121 0.0037872 464 121 0.0017088 465 121 0.00032329978 467 121 0.0039718971 468 121 0.042259399 469 121 0.0033714999 470 121 0.0013394 471 121 0.0049879998 473 121 4.6199988e-05 477 121 4.6199988e-05 478 121 0.0002309 483 121 0.00069279992 490 121 0.4301219 491 121 0.00032329978 0 122 0.0065629967 2 122 0.0081926994 3 122 4.3999986e-05 4 122 0.0040082969 5 122 0.0023345 6 122 0.0011011998 9 122 0.00057259994 10 122 0.0002642998 11 122 0.0017618998 13 122 0.00096899993 14 122 0.10064745 17 122 4.3999986e-05 22 122 0.00048449985 24 122 4.3999986e-05 60 122 0.0016737999 82 122 0.041712496 83 122 4.3999986e-05 85 122 0.0015856999 86 122 8.8099987e-05 87 122 0.0051975995 88 122 0.00017619999 90 122 0.0025106999 93 122 4.3999986e-05 95 122 0.00088089984 98 122 4.3999986e-05 104 122 0.012377199 107 122 0.0016297 108 122 0.00044049998 109 122 0.00022019999 114 122 4.3999986e-05 116 122 0.00017619999 117 122 0.0342246 118 122 0.18530589 119 122 0.0606528 120 122 0.0003082999 122 122 0.096683264 125 122 0.00096899993 126 122 4.3999986e-05 130 122 4.3999986e-05 150 122 4.3999986e-05 151 122 8.8099987e-05 189 122 4.3999986e-05 192 122 0.00061669992 193 122 0.00092499983 194 122 4.3999986e-05 198 122 0.0198652 204 122 0.013874799 206 122 8.8099987e-05 214 122 0.0064308979 223 122 4.3999986e-05 229 122 0.00048449985 230 122 0.00013209999 231 122 0.0016737999 234 122 0.0023345 237 122 0.00013209999 241 122 0.012200996 242 122 0.0013213998 252 122 4.3999986e-05 253 122 0.016473599 272 122 0.00035239989 279 122 0.00092499983 300 122 0.014667697 301 122 0.0015856999 314 122 0.0027749999 317 122 4.3999986e-05 324 122 0.00013209999 325 122 0.0024225998 340 122 0.00013209999 344 122 0.00057259994 350 122 0.0014535999 351 122 0.0019381 356 122 4.3999986e-05 358 122 0.00022019999 402 122 4.3999986e-05 443 122 0.018455699 444 122 0.0021582998 445 122 0.025371097 446 122 0.0014535999 447 122 0.0026427999 450 122 0.00088089984 452 122 0.0037439999 453 122 0.0035677999 454 122 0.0010130999 455 122 0.045280397 456 122 0.00013209999 457 122 0.0022023998 458 122 0.00048449985 459 122 0.00052859983 460 122 0.0016737999 463 122 0.0020261998 464 122 0.00039639999 465 122 0.00048449985 467 122 0.005770199 468 122 0.0306127 469 122 0.0012333 470 122 0.0010570998 471 122 0.0011892999 473 122 4.3999986e-05 477 122 4.3999986e-05 478 122 0.0002642998 483 122 0.00039639999 490 122 0.00088089984 491 122 0.0013213998 17 123 0.00091659999 22 123 0.00091659999 60 123 0.021998197 114 123 0.00091659999 123 123 0.0018332 193 123 0.0183318 198 123 0.00091659999 206 123 0.0018332 230 123 0.00091659999 234 123 0.0082492977 237 123 0.0018332 241 123 0.013748899 272 123 0.0018332 277 123 0.00091659999 324 123 0.00091659999 334 123 0.00091659999 358 123 0.0027498 366 123 0.00091659999 444 123 0.00091659999 445 123 0.016498599 447 123 0.0064160973 450 123 0.0082492977 452 123 0.076076984 453 123 0.00091659999 454 123 0.012832299 455 123 0.0073326975 456 123 0.00091659999 457 123 0.0027498 458 123 0.0018332 459 123 0.00091659999 460 123 0.0036664 463 123 0.010082498 464 123 0.0018332 465 123 0.0018332 467 123 0.034830399 468 123 0.0054994971 469 123 0.010082498 470 123 0.010999098 471 123 0.009165898 478 123 0.0018332 483 123 0.0054994971 490 123 0.0018332 0 124 0.0088593997 3 124 0.00055369991 5 124 0.024640098 9 124 0.00055369991 11 124 0.0011073998 13 124 0.00055369991 14 124 0.0127353 60 124 0.0024917 85 124 0.020210396 87 124 0.0074750967 88 124 0.00055369991 90 124 0.0027684998 94 124 0.0019379999 97 124 0.0002768999 98 124 0.27380949 104 124 0.00055369991 105 124 0.0002768999 107 124 0.0019379999 114 124 0.0002768999 118 124 0.0011073998 122 124 0.0016611 124 124 0.011627898 125 124 0.0002768999 192 124 0.013012197 193 124 0.0096898973 198 124 0.059523799 204 124 0.00083059981 206 124 0.00055369991 214 124 0.0011073998 223 124 0.00055369991 228 124 0.0127353 229 124 0.0002768999 230 124 0.00055369991 234 124 0.0038759999 237 124 0.00055369991 241 124 0.033222597 252 124 0.0002768999 253 124 0.00055369991 272 124 0.0002768999 279 124 0.0013842999 300 124 0.0011073998 314 124 0.0002768999 325 124 0.0002768999 340 124 0.0002768999 344 124 0.0002768999 358 124 0.00083059981 443 124 0.023255799 444 124 0.0002768999 445 124 0.018826097 446 124 0.00055369991 447 124 0.011627898 450 124 0.0024917 452 124 0.0066444986 453 124 0.0016611 454 124 0.00055369991 455 124 0.040974498 456 124 0.0002768999 457 124 0.0024917 458 124 0.00055369991 459 124 0.00055369991 460 124 0.0024917 463 124 0.0063676983 464 124 0.00055369991 465 124 0.0011073998 467 124 0.0083055981 468 124 0.026854899 469 124 0.0033222998 470 124 0.0035990998 471 124 0.0024917 478 124 0.00055369991 483 124 0.00083059981 490 124 0.0027684998 0 125 0.0035058998 1 125 0.00034269993 2 125 0.0018189 3 125 0.014418997 5 125 0.0044284984 6 125 0.0038221998 9 125 0.017160498 10 125 0.0001318 11 125 0.025437597 12 125 7.9099991e-05 13 125 0.016079698 14 125 0.025463898 16 125 0.0004480998 17 125 0.0026623998 22 125 0.00021089999 24 125 2.6399997e-05 60 125 0.0020297 82 125 0.0025042 83 125 0.00010539999 84 125 0.00052719982 85 125 0.00055359979 86 125 7.9099991e-05 87 125 0.0006589999 88 125 0.0011862 90 125 0.0013970998 91 125 2.6399997e-05 93 125 0.0011862 94 125 0.0010279999 95 125 0.00028999988 97 125 7.9099991e-05 98 125 0.0091469996 100 125 0.00010539999 102 125 0.00010539999 103 125 0.0001318 104 125 0.0079607964 105 125 0.006563697 106 125 0.0020560999 107 125 0.026043899 108 125 0.0001582 109 125 0.00081719994 112 125 2.6399997e-05 113 125 0.00063259993 114 125 0.0001318 115 125 0.0022143 116 125 0.0027150998 117 125 0.00097529986 118 125 0.0044284984 119 125 0.0021088 120 125 0.00026359991 121 125 2.6399997e-05 122 125 0.029022597 124 125 0.00010539999 125 125 0.0054301992 126 125 5.2699994e-05 150 125 0.00036899978 151 125 5.2699994e-05 153 125 5.2699994e-05 160 125 2.6399997e-05 169 125 2.6399997e-05 172 125 5.2699994e-05 189 125 5.2699994e-05 190 125 5.2699994e-05 191 125 0.00068539986 192 125 0.011862099 193 125 0.0037958999 194 125 0.00010539999 197 125 2.6399997e-05 198 125 0.0279154 200 125 2.6399997e-05 203 125 5.2699994e-05 204 125 0.0081188977 206 125 0.0001318 207 125 2.6399997e-05 214 125 0.004191298 218 125 5.2699994e-05 219 125 5.2699994e-05 223 125 0.0088569969 224 125 2.6399997e-05 228 125 0.00023719999 229 125 0.00031629996 230 125 0.0004480998 231 125 0.00028999988 232 125 0.00010539999 234 125 0.0031895998 237 125 0.00034269993 240 125 2.6399997e-05 241 125 0.029628798 242 125 0.0014497999 252 125 0.0001582 253 125 0.018715698 270 125 2.6399997e-05 272 125 0.00036899978 277 125 7.9099991e-05 279 125 0.0006589999 300 125 0.021483596 301 125 0.00092259981 314 125 0.0045866966 317 125 2.6399997e-05 325 125 0.0043230988 326 125 2.6399997e-05 340 125 7.9099991e-05 344 125 0.00092259981 350 125 2.6399997e-05 351 125 5.2699994e-05 358 125 0.00068539986 366 125 2.6399997e-05 384 125 2.6399997e-05 387 125 2.6399997e-05 394 125 2.6399997e-05 397 125 2.6399997e-05 402 125 0.0001582 414 125 2.6399997e-05 419 125 2.6399997e-05 422 125 0.00010539999 423 125 2.6399997e-05 425 125 2.6399997e-05 430 125 2.6399997e-05 431 125 2.6399997e-05 433 125 2.6399997e-05 434 125 2.6399997e-05 443 125 0.0096214972 444 125 0.0019506998 445 125 0.0294443 446 125 0.0036640998 447 125 0.0058255978 448 125 2.6399997e-05 450 125 0.0023196999 452 125 0.0047711991 453 125 0.0030313998 454 125 0.00052719982 455 125 0.053959299 456 125 0.00050079986 457 125 0.0041121989 458 125 0.00047449977 459 125 0.00050079986 460 125 0.0021352 463 125 0.0137337 464 125 0.00023719999 465 125 0.0050083995 467 125 0.011651199 468 125 0.0526677 469 125 0.0032686999 470 125 0.0035322998 471 125 0.0049029998 473 125 7.9099991e-05 477 125 5.2699994e-05 478 125 0.00068539986 483 125 0.00086989999 489 125 0.00023719999 490 125 0.049688898 491 125 0.00026359991 22 126 0.0002077 60 126 0.00064049987 104 126 0.00027699978 108 126 1.7299986e-05 114 126 1.7299986e-05 126 126 1.7299986e-05 129 126 0.19280237 151 126 1.7299986e-05 187 126 0.012584597 189 126 1.7299986e-05 190 126 1.7299986e-05 194 126 3.4599987e-05 198 126 0.0089147985 200 126 1.7299986e-05 203 126 1.7299986e-05 204 126 0.010316998 206 126 3.4599987e-05 214 126 0.00015579999 229 126 0.00076169986 234 126 0.00070969993 237 126 8.659999e-05 241 126 0.016150497 252 126 3.4599987e-05 272 126 0.00034619984 279 126 0.00019039999 284 126 1.7299986e-05 325 126 0.0047775991 340 126 5.1899988e-05 350 126 0.0006750999 356 126 1.7299986e-05 358 126 0.00032889983 387 126 1.7299986e-05 402 126 5.1899988e-05 404 126 1.7299986e-05 422 126 3.4599987e-05 430 126 1.7299986e-05 434 126 1.7299986e-05 443 126 0.0009347999 444 126 0.00079629989 445 126 0.0020252999 446 126 0.00012119999 447 126 0.00076169986 450 126 0.00060589984 452 126 0.0010213 453 126 0.0002597 454 126 0.0002597 455 126 0.0051584989 456 126 0.00010389999 457 126 0.0014020998 458 126 0.00098669995 459 126 0.0017309999 460 126 0.0004153999 463 126 0.0018867999 464 126 0.000225 465 126 0.0042063966 467 126 0.0027003998 468 126 0.059530199 469 126 0.00084819994 470 126 0.00091739977 471 126 0.00057119993 472 126 0.00017309999 473 126 1.7299986e-05 477 126 6.9199989e-05 478 126 0.000225 483 126 0.0018002999 489 126 1.7299986e-05 490 126 8.659999e-05 491 126 0.00072699995 8 127 0.017421599 60 127 0.0017422 104 127 0.00049779983 114 127 0.00024889992 126 127 0.00024889992 127 127 0.0014932998 129 127 0.25311095 150 127 0.00024889992 172 127 0.00049779983 187 127 0.00099549978 194 127 0.00024889992 198 127 0.033847697 204 127 0.00074659986 206 127 0.00049779983 229 127 0.00074659986 234 127 0.0032354 237 127 0.00049779983 241 127 0.017670497 252 127 0.00024889992 272 127 0.00024889992 279 127 0.00049779983 317 127 0.00024889992 325 127 0.0069685988 358 127 0.0017422 402 127 0.00024889992 443 127 0.00024889992 444 127 0.00024889992 445 127 0.0037331998 447 127 0.0017422 450 127 0.0029865999 452 127 0.0037331998 453 127 0.00074659986 454 127 0.0014932998 455 127 0.0052264966 456 127 0.00024889992 457 127 0.0019909998 458 127 0.00099549978 459 127 0.0012443999 460 127 0.00049779983 463 127 0.0032354 464 127 0.00024889992 465 127 0.0047286972 467 127 0.010452997 468 127 0.020408198 469 127 0.0037331998 470 127 0.0039820969 471 127 0.0029865999 473 127 0.00024889992 478 127 0.00099549978 483 127 0.0037331998 490 127 0.00049779983 491 127 0.00024889992 8 128 0.017788097 22 128 0.0011600999 60 128 0.0023202 104 128 0.015854597 114 128 0.0003866998 128 128 0.0023202 129 128 0.25870067 187 128 0.0042536967 192 128 0.0019334999 193 128 0.0073472969 198 128 0.017788097 204 128 0.0069605969 206 128 0.0003866998 229 128 0.0011600999 234 128 0.0015467999 241 128 0.0073472969 272 128 0.00077339984 279 128 0.0003866998 300 128 0.0019334999 325 128 0.0061871968 340 128 0.0003866998 350 128 0.0003866998 358 128 0.00077339984 443 128 0.0023202 444 128 0.0019334999 445 128 0.0042536967 446 128 0.0003866998 447 128 0.018561497 450 128 0.0015467999 452 128 0.0019334999 453 128 0.00077339984 455 128 0.0058004968 457 128 0.0023202 458 128 0.0003866998 459 128 0.0019334999 460 128 0.0003866998 463 128 0.012760997 464 128 0.0003866998 465 128 0.0015467999 467 128 0.0050270967 468 128 0.11136889 469 128 0.0030935998 470 128 0.0034802998 471 128 0.0015467999 478 128 0.0003866998 483 128 0.0038669999 490 128 0.0003866998 491 128 0.0030935998 8 129 0.5532372 22 129 7.1599992e-05 60 129 0.00093049998 104 129 7.1599992e-05 114 129 3.5799996e-05 126 129 3.5799996e-05 129 129 0.26316166 130 129 3.5799996e-05 151 129 3.5799996e-05 159 129 0.00010739999 160 129 0.00057259994 172 129 0.0016104998 186 129 0.00025049993 187 129 0.0001432 189 129 3.5799996e-05 193 129 3.5799996e-05 198 129 0.00071579986 204 129 0.00010739999 206 129 7.1599992e-05 214 129 7.1599992e-05 229 129 0.0016462998 234 129 0.00078739994 237 129 3.5799996e-05 241 129 0.00017889999 252 129 3.5799996e-05 272 129 0.00010739999 279 129 3.5799996e-05 325 129 7.1599992e-05 356 129 3.5799996e-05 358 129 0.00021469999 443 129 0.0017894998 444 129 7.1599992e-05 445 129 0.043949798 446 129 0.00028629997 447 129 0.00071579986 450 129 0.00035789981 452 129 0.0013599999 453 129 0.00028629997 454 129 0.00010739999 455 129 0.0012526 456 129 3.5799996e-05 457 129 0.0012883998 458 129 0.00010739999 459 129 0.00071579986 460 129 0.00028629997 463 129 0.0025768999 464 129 7.1599992e-05 465 129 0.00010739999 467 129 0.0091263987 468 129 0.0015389998 469 129 0.0007515999 470 129 0.00085899979 471 129 0.0005367999 473 129 3.5799996e-05 477 129 3.5799996e-05 478 129 0.00010739999 483 129 0.0019325998 490 129 0.0070147999 491 129 3.5799996e-05 2 130 0.0017565 4 130 0.0603249 9 130 8.8999996e-06 13 130 0.0001508 16 130 8.8999996e-06 18 130 8.8999996e-06 22 130 0.00074519985 25 130 4.4399989e-05 60 130 0.0025903999 79 130 8.8999996e-06 82 130 8.8999996e-06 83 130 8.8999996e-06 84 130 6.2099993e-05 104 130 0.0018451998 108 130 1.7699989e-05 113 130 2.6599999e-05 114 130 6.2099993e-05 126 130 2.6599999e-05 127 130 8.8999996e-06 130 130 0.32233 131 130 0.00015969999 132 130 0.052855197 133 130 0.00045239995 134 130 4.4399989e-05 136 130 2.6599999e-05 137 130 0.0001242 138 130 0.0014016998 139 130 0.00025729998 140 130 6.2099993e-05 141 130 1.7699989e-05 142 130 0.00028389995 143 130 0.0058816969 145 130 1.7699989e-05 146 130 2.6599999e-05 149 130 0.0011443999 150 130 0.00078949984 151 130 0.00014189999 152 130 0.00021289999 155 130 8.8999996e-06 156 130 8.8999996e-06 157 130 0.00013309999 158 130 7.0999988e-05 171 130 0.00015969999 186 130 1.7699989e-05 187 130 8.8999996e-06 189 130 7.9799996e-05 190 130 8.8699991e-05 192 130 0.0014282998 193 130 0.0001065 194 130 5.3199998e-05 196 130 8.8999996e-06 197 130 2.6599999e-05 198 130 0.0062630996 200 130 2.6599999e-05 201 130 1.7699989e-05 203 130 4.4399989e-05 204 130 5.3199998e-05 206 130 0.0001065 207 130 3.5499994e-05 209 130 8.8999996e-06 214 130 0.024351697 219 130 2.6599999e-05 221 130 0.0012774998 222 130 1.7699989e-05 223 130 0.0039565973 224 130 0.0014548998 225 130 0.00019519999 226 130 0.0220984 227 130 0.043566998 231 130 0.0045598969 232 130 1.7699989e-05 233 130 0.00040809996 234 130 0.0025016998 237 130 8.8699991e-05 240 130 0.0001065 241 130 0.0035662998 242 130 5.3199998e-05 243 130 8.8999996e-06 248 130 8.8999996e-06 250 130 8.8999996e-06 251 130 8.8999996e-06 252 130 0.0047815964 253 130 1.7699989e-05 263 130 8.8999996e-06 271 130 0.0001242 272 130 0.00050569978 277 130 7.9799996e-05 279 130 0.00011529999 284 130 1.7699989e-05 300 130 1.7699989e-05 317 130 0.00014189999 319 130 0.00038149999 322 130 1.7699989e-05 326 130 0.00079839979 334 130 8.8999996e-06 335 130 0.00095809996 336 130 0.00078069977 340 130 8.8999996e-06 345 130 0.0062187985 350 130 0.0002307 351 130 1.7699989e-05 356 130 7.0999988e-05 358 130 0.0013927999 365 130 0.0001774 384 130 4.4399989e-05 387 130 2.6599999e-05 392 130 8.8999996e-06 394 130 8.8999996e-06 397 130 8.8999996e-06 402 130 4.4399989e-05 404 130 1.7699989e-05 414 130 0.0001774 419 130 8.8999996e-06 421 130 0.00040809996 422 130 0.00076289987 423 130 8.8999996e-06 425 130 8.8999996e-06 430 130 1.7699989e-05 431 130 1.7699989e-05 432 130 8.8999996e-06 433 130 1.7699989e-05 434 130 2.6599999e-05 435 130 2.6599999e-05 437 130 2.6599999e-05 442 130 8.8999996e-06 443 130 0.0043380968 444 130 0.0018540998 445 130 0.0093946978 446 130 0.00051449984 447 130 0.0042670965 448 130 1.7699989e-05 449 130 8.8999996e-06 450 130 0.0029187 452 130 0.010015696 453 130 0.0026169999 454 130 0.0018806998 455 130 0.043017 456 130 0.000275 457 130 0.0022089998 458 130 0.00062989979 459 130 0.00055889995 460 130 0.00048789987 463 130 0.0063518994 464 130 0.0014725998 465 130 0.00086049992 467 130 0.012473099 468 130 0.0026258999 469 130 0.0025372 470 130 0.0027945 471 130 0.0010467998 473 130 6.2099993e-05 477 130 5.3199998e-05 478 130 0.00096699991 479 130 0.00079839979 483 130 0.0012153999 489 130 6.2099993e-05 490 130 0.00040809996 491 130 0.0013750999 4 131 0.0029487999 22 131 0.00018429999 60 131 0.0027645 108 131 0.00018429999 114 131 0.00036859978 126 131 0.00018429999 130 131 0.014190897 131 131 0.0086619966 132 131 0.20586067 138 131 0.00018429999 139 131 0.00018429999 142 131 0.013085097 143 131 0.00018429999 144 131 0.00018429999 149 131 0.00036859978 171 131 0.00018429999 189 131 0.00018429999 190 131 0.00018429999 194 131 0.00018429999 198 131 0.0014743998 206 131 0.00036859978 214 131 0.0014743998 223 131 0.00018429999 224 131 0.00018429999 225 131 0.0005528999 226 131 0.072797596 227 131 0.10523409 231 131 0.00018429999 234 131 0.0031331 237 131 0.00018429999 240 131 0.030040499 241 131 0.00018429999 252 131 0.0038702998 272 131 0.00036859978 279 131 0.00092149992 345 131 0.0129008 356 131 0.00018429999 358 131 0.0014743998 387 131 0.00018429999 422 131 0.00018429999 443 131 0.0011057998 444 131 0.0005528999 445 131 0.0145595 447 131 0.0064503998 450 131 0.0031331 452 131 0.009399198 453 131 0.0022115998 454 131 0.00036859978 455 131 0.028566197 457 131 0.0022115998 458 131 0.0005528999 459 131 0.00036859978 460 131 0.0005528999 463 131 0.016033899 464 131 0.0005528999 465 131 0.0014743998 467 131 0.009399198 468 131 0.0053445995 469 131 0.005528897 470 131 0.0060817972 471 131 0.00092149992 473 131 0.00018429999 478 131 0.0018429998 479 131 0.0053445995 483 131 0.0018429998 490 131 0.0005528999 491 131 0.00092149992 2 132 0.0075674988 4 132 0.057291199 9 132 1.9799991e-05 13 132 0.00021789999 18 132 1.9799991e-05 22 132 0.00045559998 60 132 0.0024167998 82 132 1.9799991e-05 83 132 1.9799991e-05 84 132 1.9799991e-05 104 132 0.0017432999 108 132 1.9799991e-05 113 132 3.9599996e-05 114 132 7.9199992e-05 118 132 5.9399987e-05 126 132 3.9599996e-05 127 132 1.9799991e-05 130 132 0.016917899 131 132 0.0015254 132 132 0.087363064 133 132 0.0001981 134 132 0.0001981 135 132 1.9799991e-05 137 132 1.9799991e-05 138 132 0.0011687998 140 132 0.00011889999 142 132 0.00021789999 143 132 0.0086372979 144 132 0.00013869999 149 132 0.0010499 150 132 0.0008121999 151 132 1.9799991e-05 155 132 3.9599996e-05 158 132 3.9599996e-05 171 132 0.0072703995 186 132 0.00051509985 189 132 1.9799991e-05 190 132 9.9099998e-05 192 132 9.9099998e-05 193 132 5.9399987e-05 194 132 0.00011889999 197 132 1.9799991e-05 198 132 0.009409897 200 132 1.9799991e-05 203 132 3.9599996e-05 204 132 5.9399987e-05 206 132 9.9099998e-05 207 132 3.9599996e-05 209 132 1.9799991e-05 214 132 0.035856497 215 132 9.9099998e-05 221 132 5.9399987e-05 223 132 0.0016243998 224 132 0.0025356999 225 132 0.00021789999 226 132 0.031042598 227 132 0.25824594 231 132 0.0012876999 233 132 1.9799991e-05 234 132 0.0025752999 237 132 7.9199992e-05 240 132 0.00021789999 241 132 0.0055071972 242 132 0.00075279991 252 132 0.00075279991 272 132 0.0010102999 277 132 7.9199992e-05 279 132 0.00025749998 284 132 1.9799991e-05 319 132 1.9799991e-05 324 132 3.9599996e-05 326 132 3.9599996e-05 334 132 1.9799991e-05 335 132 5.9399987e-05 336 132 3.9599996e-05 345 132 0.0073693991 349 132 0.00051509985 350 132 1.9799991e-05 351 132 3.9599996e-05 356 132 0.00013869999 358 132 0.0010102999 377 132 1.9799991e-05 382 132 0.0001585 384 132 3.9599996e-05 387 132 1.9799991e-05 392 132 0.0015848 402 132 3.9599996e-05 404 132 3.9599996e-05 414 132 0.0016441999 417 132 1.9799991e-05 419 132 1.9799991e-05 421 132 1.9799991e-05 422 132 0.00013869999 423 132 1.9799991e-05 425 132 1.9799991e-05 430 132 1.9799991e-05 431 132 1.9799991e-05 432 132 1.9799991e-05 433 132 1.9799991e-05 434 132 3.9599996e-05 443 132 0.0042987987 444 132 0.00073299999 445 132 0.0061411969 446 132 0.00045559998 447 132 0.00065369997 450 132 0.0022781999 452 132 0.0135304 453 132 0.0021592998 454 132 0.0010698 455 132 0.035836697 456 132 0.00023769999 457 132 0.0022584 458 132 0.00045559998 459 132 0.0005349 460 132 0.00073299999 463 132 0.0063788965 464 132 0.00033679977 465 132 0.00099049998 467 132 0.0069533996 468 132 0.0029516998 469 132 0.0030111999 470 132 0.0030903998 471 132 0.00067349989 473 132 5.9399987e-05 477 132 1.9799991e-05 478 132 0.0010895999 479 132 5.9399987e-05 483 132 0.00073299999 489 132 7.9199992e-05 490 132 0.00057449983 491 132 0.0016243998 2 133 0.0011536998 4 133 0.039515398 22 133 0.0011536998 60 133 0.0025958999 104 133 0.00086529995 114 133 0.00028839987 130 133 0.008653 132 133 0.28901064 133 133 0.010383599 138 133 0.00086529995 143 133 0.0017305999 171 133 0.046149399 198 133 0.013556398 206 133 0.00057689985 214 133 0.029420197 226 133 0.0028843 227 133 0.090279758 231 133 0.0040380992 234 133 0.0028843 240 133 0.00028839987 241 133 0.011248898 272 133 0.00057689985 279 133 0.00057689985 345 133 0.0106721 358 133 0.00086529995 443 133 0.0034611998 444 133 0.00028839987 445 133 0.015575398 446 133 0.00057689985 447 133 0.010383599 450 133 0.0020189998 452 133 0.012402698 453 133 0.0017305999 454 133 0.0020189998 455 133 0.0409576 457 133 0.0020189998 458 133 0.00028839987 460 133 0.00028839987 463 133 0.026535898 464 133 0.00057689985 465 133 0.00086529995 467 133 0.0072107986 468 133 0.026535898 469 133 0.0034611998 470 133 0.0040380992 471 133 0.0037495999 478 133 0.00086529995 483 133 0.0014421998 490 133 0.0011536998 491 133 0.00057689985 2 134 3.2199998e-05 4 134 0.00061109988 22 134 0.00028939988 60 134 0.0012863998 82 134 3.2199998e-05 104 134 3.2199998e-05 108 134 3.2199998e-05 114 134 3.2199998e-05 126 134 3.2199998e-05 130 134 0.028204799 131 134 0.00032159989 132 134 0.39058977 133 134 3.2199998e-05 134 134 0.035247996 137 134 3.2199998e-05 138 134 3.2199998e-05 139 134 6.4299995e-05 142 134 0.014247097 143 134 0.046568498 149 134 0.00028939988 150 134 0.00041809981 151 134 3.2199998e-05 152 134 6.4299995e-05 157 134 3.2199998e-05 158 134 0.0047597997 171 134 3.2199998e-05 189 134 0.00048239995 190 134 6.4299995e-05 191 134 3.2199998e-05 192 134 3.2199998e-05 193 134 3.2199998e-05 194 134 9.6499993e-05 197 134 3.2199998e-05 198 134 0.0052421987 200 134 3.2199998e-05 203 134 6.4299995e-05 204 134 6.4299995e-05 206 134 9.6499993e-05 207 134 3.2199998e-05 214 134 0.014793899 223 134 3.2199998e-05 224 134 3.2199998e-05 225 134 0.018974699 226 134 0.0019295998 227 134 0.012542598 231 134 0.0015758998 234 134 0.0034411999 237 134 9.6499993e-05 240 134 0.027111299 241 134 0.0048240982 252 134 6.4299995e-05 272 134 0.00051459996 277 134 3.2199998e-05 279 134 0.00012859999 345 134 0.0020260999 351 134 0.0027015 356 134 6.4299995e-05 358 134 0.00080399984 384 134 0.00012859999 387 134 3.2199998e-05 402 134 3.2199998e-05 422 134 9.6499993e-05 430 134 3.2199998e-05 433 134 3.2199998e-05 434 134 3.2199998e-05 443 134 0.0032803998 444 134 0.0013506999 445 134 0.0097124986 446 134 0.0003537999 447 134 0.0031516999 448 134 3.2199998e-05 450 134 0.0056923963 452 134 0.004180897 453 134 0.0034411999 454 134 0.0035376998 455 134 0.043995596 456 134 0.00016079999 457 134 0.0019617998 458 134 0.00048239995 459 134 0.00025729998 460 134 0.00041809981 463 134 0.0090692975 464 134 0.000193 465 134 0.00051459996 467 134 0.0080400966 468 134 0.019650098 469 134 0.0019295998 470 134 0.0021225999 471 134 0.00077189994 473 134 6.4299995e-05 477 134 3.2199998e-05 478 134 0.00064319978 483 134 0.00073969993 489 134 6.4299995e-05 490 134 0.00032159989 491 134 0.00025729998 2 135 0.029029798 23 135 0.0045836978 60 135 0.0030558 114 135 0.00076389988 117 135 0.0015278999 130 135 0.0068754964 132 135 0.060351398 134 135 0.0022918 135 135 0.0022918 138 135 0.11764705 139 135 0.0022918 142 135 0.0038196999 143 135 0.073338389 149 135 0.00076389988 186 135 0.00076389988 192 135 0.00076389988 198 135 0.0022918 206 135 0.00076389988 214 135 0.019862499 219 135 0.00076389988 224 135 0.011459097 225 135 0.0015278999 226 135 0.0045836978 227 135 0.033613399 234 135 0.0068754964 240 135 0.011459097 241 135 0.0084033981 243 135 0.00076389988 272 135 0.00076389988 279 135 0.0015278999 345 135 0.0091672987 358 135 0.0015278999 442 135 0.010695197 443 135 0.0068754964 444 135 0.0038196999 445 135 0.0076393969 446 135 0.00076389988 447 135 0.029793698 450 135 0.0045836978 452 135 0.0084033981 453 135 0.0022918 454 135 0.0015278999 455 135 0.032849498 457 135 0.0022918 458 135 0.00076389988 463 135 0.039724998 464 135 0.00076389988 465 135 0.00076389988 467 135 0.0061114989 468 135 0.0045836978 469 135 0.0038196999 470 135 0.0038196999 471 135 0.00076389988 478 135 0.00076389988 483 135 0.0022918 490 135 0.0015278999 60 136 0.0062240995 130 136 0.0020746998 132 136 0.18672198 136 136 0.016597498 143 136 0.0020746998 149 136 0.0062240995 198 136 0.012448099 206 136 0.0020746998 214 136 0.0394191 226 136 0.029045597 227 136 0.010373399 234 136 0.0082987994 345 136 0.0082987994 358 136 0.0020746998 447 136 0.0020746998 450 136 0.0041493997 452 136 0.010373399 453 136 0.0062240995 455 136 0.018672198 457 136 0.0020746998 463 136 0.014522798 467 136 0.0082987994 468 136 0.016597498 469 136 0.0041493997 470 136 0.0041493997 478 136 0.0020746998 483 136 0.0041493997 490 136 0.0020746998 491 136 0.0020746998 2 137 0.0018843999 22 137 0.00062809978 24 137 0.00062809978 25 137 0.00062809978 60 137 0.0031406998 114 137 0.00062809978 117 137 0.040200997 130 137 0.010678399 131 137 0.00062809978 132 137 0.089195967 133 137 0.00062809978 134 137 0.00062809978 135 137 0.021356799 137 137 0.0031406998 138 137 0.15515077 142 137 0.0031406998 143 137 0.0069094971 149 137 0.00062809978 158 137 0.00062809978 160 137 0.00062809978 161 137 0.00062809978 178 137 0.00062809978 186 137 0.00062809978 187 137 0.0012562999 188 137 0.00062809978 192 137 0.0018843999 193 137 0.0012562999 198 137 0.015075397 206 137 0.00062809978 214 137 0.0050251 219 137 0.0056532994 223 137 0.0012562999 224 137 0.0056532994 225 137 0.00062809978 226 137 0.0062813982 227 137 0.0056532994 234 137 0.0025125998 240 137 0.0012562999 241 137 0.0050251 252 137 0.0012562999 272 137 0.00062809978 273 137 0.00062809978 277 137 0.0012562999 279 137 0.00062809978 293 137 0.0012562999 322 137 0.0037687998 325 137 0.00062809978 345 137 0.0037687998 358 137 0.0012562999 442 137 0.0012562999 443 137 0.013191 444 137 0.0012562999 445 137 0.011934698 446 137 0.0043969974 447 137 0.0031406998 450 137 0.0025125998 452 137 0.0094220974 453 137 0.0056532994 454 137 0.0012562999 455 137 0.039572898 457 137 0.0018843999 463 137 0.0075376965 464 137 0.0012562999 465 137 0.00062809978 467 137 0.0056532994 468 137 0.011934698 469 137 0.0025125998 470 137 0.0025125998 471 137 0.00062809978 478 137 0.00062809978 483 137 0.0018843999 490 137 0.026381899 491 137 0.0012562999 4 138 0.0418569 60 138 0.0022830998 130 138 0.0045661964 132 138 0.0030440998 138 138 0.0045661964 142 138 0.0015220998 143 138 0.0091323964 186 138 0.00076099997 192 138 0.00076099997 198 138 0.0098934993 206 138 0.00076099997 214 138 0.025114197 219 138 0.00076099997 223 138 0.00076099997 224 138 0.0015220998 226 138 0.0038051999 227 138 0.0060882978 230 138 0.0091323964 234 138 0.0030440998 241 138 0.00076099997 272 138 0.00076099997 279 138 0.00076099997 345 138 0.026636198 358 138 0.0015220998 443 138 0.0304414 444 138 0.0068492964 445 138 0.0053271987 446 138 0.0022830998 447 138 0.027397297 450 138 0.0022830998 452 138 0.0076103993 453 138 0.0015220998 454 138 0.0030440998 455 138 0.15144598 457 138 0.0022830998 463 138 0.045662098 464 138 0.00076099997 465 138 0.042617999 467 138 0.0045661964 468 138 0.00076099997 469 138 0.0022830998 470 138 0.0022830998 478 138 0.00076099997 483 138 0.0015220998 490 138 0.0015220998 491 138 0.21308976 2 139 0.0001161 4 139 0.0001161 60 139 0.0019734998 82 139 0.0011608999 108 139 0.0001161 114 139 0.00023219999 118 139 0.0001161 126 139 0.0001161 130 139 0.12955648 131 139 0.020663999 132 139 0.010215897 134 139 0.0001161 138 139 0.0001161 139 139 0.0087067969 140 139 0.0001161 141 139 0.0001161 142 139 0.027977698 143 139 0.030647799 149 139 0.068144858 158 139 0.017993998 160 139 0.0001161 161 139 0.00023219999 171 139 0.0001161 184 139 0.00092869997 187 139 0.00023219999 188 139 0.0001161 190 139 0.0001161 194 139 0.00034829997 198 139 0.012537699 206 139 0.00023219999 214 139 0.042256799 219 139 0.0001161 222 139 0.00023219999 223 139 0.013930798 224 139 0.063501298 225 139 0.0032505 226 139 0.00046439981 227 139 0.00046439981 230 139 0.0001161 233 139 0.0069653988 234 139 0.0033665998 237 139 0.0001161 239 139 0.0001161 240 139 0.0012769999 241 139 0.047596898 243 139 0.00046439981 252 139 0.00023219999 272 139 0.00069649983 276 139 0.0001161 277 139 0.0012769999 279 139 0.00058049988 282 139 0.00034829997 286 139 0.0001161 290 139 0.0001161 292 139 0.0001161 293 139 0.00046439981 294 139 0.0001161 295 139 0.0001161 300 139 0.00023219999 312 139 0.00058049988 315 139 0.0008125999 319 139 0.0001161 320 139 0.00023219999 322 139 0.0001161 326 139 0.00046439981 340 139 0.00034829997 345 139 0.0068492964 349 139 0.00023219999 350 139 0.0046435967 356 139 0.0001161 358 139 0.0011608999 387 139 0.0001161 392 139 0.00034829997 393 139 0.0015091999 422 139 0.0081262998 443 139 0.0071975999 444 139 0.0039470978 445 139 0.011725098 446 139 0.0008125999 447 139 0.0071975999 450 139 0.0018573999 452 139 0.0070814975 453 139 0.0034826999 454 139 0.0012769999 455 139 0.050383098 456 139 0.0001161 457 139 0.0035987999 458 139 0.00034829997 459 139 0.00034829997 460 139 0.00069649983 463 139 0.024611097 464 139 0.0008125999 465 139 0.010680299 467 139 0.0049918965 468 139 0.0022056999 469 139 0.0032505 470 139 0.0034826999 471 139 0.004527498 473 139 0.0001161 478 139 0.00058049988 483 139 0.0012769999 490 139 0.0010447998 491 139 0.0013930998 4 140 0.018298399 22 140 0.00031279982 60 140 0.0014075998 114 140 0.0001564 130 140 0.0086017996 132 140 0.0014075998 140 140 0.022364698 143 140 0.0001564 186 140 0.00093839993 187 140 0.0001564 198 140 0.0075069964 206 140 0.00031279982 214 140 0.011729699 223 140 0.0029714999 225 140 0.017359998 226 140 0.038160797 227 140 0.56803244 231 140 0.0001564 234 140 0.00046919985 241 140 0.0001564 242 140 0.0064122975 252 140 0.032999698 272 140 0.00031279982 279 140 0.00046919985 334 140 0.0034406998 345 140 0.012824498 356 140 0.0001564 358 140 0.00062559987 443 140 0.0029714999 444 140 0.0039098971 445 140 0.0043790974 446 140 0.0001564 447 140 0.005317498 450 140 0.0014075998 452 140 0.0095401965 453 140 0.0017203998 454 140 0.0014075998 455 140 0.035189196 457 140 0.0018767999 459 140 0.00031279982 460 140 0.00031279982 463 140 0.012824498 464 140 0.0057866983 465 140 0.0048482977 467 140 0.0028150999 468 140 0.0007819999 469 140 0.0021895999 470 140 0.0007819999 471 140 0.00046919985 478 140 0.00046919985 483 140 0.0007819999 490 140 0.0001564 491 140 0.0001564 2 141 0.00057939999 4 141 0.0069524981 60 141 0.0028968998 114 141 0.00057939999 130 141 0.0023174998 132 141 0.070683658 138 141 0.084588587 143 141 0.018539999 160 141 0.0011586999 171 141 0.0011586999 198 141 0.023754299 206 141 0.0011586999 214 141 0.0069524981 224 141 0.0011586999 227 141 0.11066049 234 141 0.0034761999 240 141 0.00057939999 241 141 0.030706797 271 141 0.0011586999 272 141 0.00057939999 277 141 0.0017380998 279 141 0.0011586999 312 141 0.00057939999 326 141 0.00057939999 345 141 0.0063731 358 141 0.0023174998 430 141 0.0011586999 442 141 0.00057939999 443 141 0.0069524981 444 141 0.00057939999 445 141 0.0086905994 446 141 0.022595599 447 141 0.0017380998 450 141 0.0040555969 452 141 0.011587497 453 141 0.0017380998 454 141 0.00057939999 455 141 0.0330243 457 141 0.0023174998 458 141 0.00057939999 459 141 0.0028968998 460 141 0.00057939999 463 141 0.011008099 464 141 0.00057939999 465 141 0.0040555969 467 141 0.011587497 468 141 0.025492497 469 141 0.0046349987 470 141 0.0040555969 471 141 0.0017380998 478 141 0.0017380998 483 141 0.0017380998 490 141 0.056199297 491 141 0.00057939999 2 142 0.00075669982 4 142 0.00094589987 6 142 0.00018919999 22 142 0.0026484998 24 142 0.00037839985 60 142 0.0032159998 84 142 0.00018919999 104 142 0.00075669982 114 142 0.00018919999 117 142 0.00056749978 118 142 0.00018919999 130 142 0.012107499 131 142 0.00018919999 132 142 0.014755998 133 142 0.00037839985 135 142 0.00037839985 137 142 0.00018919999 138 142 0.033106297 139 142 0.0011350999 140 142 0.00018919999 142 142 0.024404097 143 142 0.031971198 149 142 0.00018919999 152 142 0.00037839985 157 142 0.00018919999 159 142 0.0034051999 160 142 0.0013243 171 142 0.00018919999 186 142 0.0181612 187 142 0.010593999 188 142 0.00037839985 189 142 0.00056749978 192 142 0.011918299 193 142 0.00018919999 197 142 0.0032159998 198 142 0.020431299 204 142 0.00094589987 206 142 0.00037839985 208 142 0.0017025999 214 142 0.086454749 215 142 0.00037839985 219 142 0.013999198 221 142 0.00075669982 223 142 0.0083238967 224 142 0.016269397 225 142 0.00037839985 226 142 0.070942044 227 142 0.060726397 231 142 0.0030268999 234 142 0.0045402981 240 142 0.00018919999 241 142 0.022890698 243 142 0.00018919999 252 142 0.00018919999 272 142 0.00056749978 279 142 0.00094589987 322 142 0.00018919999 324 142 0.00018919999 326 142 0.00018919999 345 142 0.0024593 347 142 0.00018919999 349 142 0.0017025999 356 142 0.00018919999 358 142 0.0011350999 414 142 0.00018919999 422 142 0.00018919999 442 142 0.00018919999 443 142 0.010404799 444 142 0.0077562965 445 142 0.015323497 446 142 0.0013243 447 142 0.0096480995 450 142 0.0028376998 452 142 0.0102157 453 142 0.0017025999 454 142 0.0054861978 455 142 0.031782098 457 142 0.0026484998 458 142 0.00018919999 459 142 0.00075669982 460 142 0.00037839985 463 142 0.015890997 464 142 0.0049186982 465 142 0.00056749978 467 142 0.0081346966 468 142 0.0088913999 469 142 0.0035943999 470 142 0.0032159998 471 142 0.00056749978 478 142 0.00075669982 479 142 0.00037839985 483 142 0.0013243 489 142 0.00037839985 490 142 0.00094589987 491 142 0.0018918 2 143 0.16462457 4 143 0.0047124997 60 143 0.0018849999 114 143 0.00031419983 117 143 0.00031419983 130 143 0.00094249984 132 143 0.057807099 138 143 0.0065974966 143 143 0.17844796 149 143 0.0062833987 171 143 0.0301602 198 143 0.0087966993 206 143 0.00062829978 214 143 0.014451798 223 143 0.0084825978 224 143 0.00031419983 226 143 0.0040841997 227 143 0.025133498 231 143 0.00031419983 234 143 0.0043983981 241 143 0.00094249984 242 143 0.00031419983 272 143 0.00094249984 277 143 0.00031419983 279 143 0.00031419983 345 143 0.0037699998 358 143 0.0012566999 443 143 0.0031416998 444 143 0.0141376 445 143 0.016965099 446 143 0.0018849999 447 143 0.013823397 450 143 0.0021992 452 143 0.0081683993 453 143 0.0015707999 454 143 0.0135093 455 143 0.033930298 457 143 0.0015707999 458 143 0.00094249984 459 143 0.00031419983 460 143 0.00031419983 463 143 0.0094250999 464 143 0.0081683993 465 143 0.00031419983 467 143 0.0053408965 468 143 0.033301897 469 143 0.0025133998 470 143 0.0028275 471 143 0.00094249984 478 143 0.00062829978 483 143 0.0018849999 490 143 0.019792598 491 143 0.0025133998 4 144 0.00010929999 22 144 0.00010929999 60 144 0.0022957998 114 144 0.00010929999 126 144 0.00010929999 132 144 0.22160268 144 144 0.14245105 145 144 0.0036076999 146 144 0.00032799994 149 144 0.00010929999 150 144 0.0014211999 187 144 0.00010929999 189 144 0.00010929999 190 144 0.00021869999 193 144 0.027768698 194 144 0.028315298 198 144 0.0317044 203 144 0.00010929999 204 144 0.00076529989 206 144 0.00021869999 214 144 0.0027331 227 144 0.027987298 231 144 0.0064501986 234 144 0.0019679 237 144 0.00010929999 241 144 0.0081993975 272 144 0.00032799994 279 144 0.00065599987 345 144 0.0049195997 358 144 0.0010932998 422 144 0.00021869999 443 144 0.0016398998 444 144 0.0029517999 445 144 0.0059035979 446 144 0.00010929999 447 144 0.0030610999 450 144 0.0029517999 452 144 0.0089646988 453 144 0.0018584998 454 144 0.00087459991 455 144 0.042855598 456 144 0.00010929999 457 144 0.0067781992 458 144 0.0010932998 459 144 0.00021869999 460 144 0.0017491998 463 144 0.011479199 464 144 0.0021864998 465 144 0.0014211999 467 144 0.012791097 468 144 0.010932498 469 144 0.0022957998 470 144 0.0019679 471 144 0.00087459991 473 144 0.00010929999 478 144 0.0016398998 483 144 0.0025144999 490 144 0.00021869999 4 145 0.00033049984 22 145 0.00033049984 60 145 0.0019830998 114 145 0.00016529999 130 145 0.00066099991 132 145 0.24838865 144 145 0.0066104978 145 145 0.13435799 146 145 0.00049579982 149 145 0.00066099991 150 145 0.0013220999 190 145 0.00016529999 193 145 0.0099156983 194 145 0.0026441999 198 145 0.015038799 203 145 0.00016529999 204 145 0.011072498 206 145 0.00033049984 214 145 0.0072714984 226 145 0.00033049984 227 145 0.062303796 231 145 0.0062799975 234 145 0.0026441999 237 145 0.00016529999 241 145 0.017517798 272 145 0.00049579982 279 145 0.00049579982 345 145 0.0094198994 358 145 0.0011568 422 145 0.00016529999 434 145 0.00016529999 443 145 0.0013220999 444 145 0.0072714984 445 145 0.0097504966 447 145 0.007436797 450 145 0.0029746999 452 145 0.0064451993 453 145 0.0023136998 454 145 0.00066099991 455 145 0.042472299 456 145 0.00016529999 457 145 0.0021483998 459 145 0.00033049984 460 145 0.0016525998 463 145 0.0059493966 464 145 0.00066099991 465 145 0.0013220999 467 145 0.0071062967 468 145 0.011733599 469 145 0.0018179 470 145 0.0018179 471 145 0.00082629989 478 145 0.0016525998 483 145 0.0026441999 490 145 0.00033049984 491 145 0.00016529999 60 146 0.00088069984 130 146 0.0017612998 131 146 0.0074856989 132 146 0.29854685 133 146 0.015411697 144 146 0.0026419999 145 146 0.0022016999 146 146 0.12549537 149 146 0.015851997 150 146 0.0030822998 198 146 0.013650399 226 146 0.00088069984 227 146 0.0114487 231 146 0.004843697 234 146 0.0017612998 272 146 0.00044029998 279 146 0.00044029998 345 146 0.0039629973 358 146 0.00088069984 436 146 0.004843697 437 146 0.0079259984 443 146 0.00044029998 444 146 0.0022016999 445 146 0.0070453994 447 146 0.0017612998 450 146 0.0035226999 452 146 0.0044032969 453 146 0.0013209998 454 146 0.0017612998 455 146 0.028181396 457 146 0.0017612998 458 146 0.00044029998 459 146 0.00044029998 460 146 0.0022016999 463 146 0.011888999 464 146 0.0022016999 465 146 0.0013209998 467 146 0.0061646998 468 146 0.0026419999 469 146 0.0017612998 470 146 0.0017612998 471 146 0.00088069984 478 146 0.0013209998 483 146 0.00088069984 131 147 0.023809496 132 147 0.28571427 133 147 0.023809496 147 147 0.023809496 149 147 0.047618996 194 147 0.023809496 214 147 0.023809496 226 147 0.023809496 227 147 0.023809496 445 147 0.023809496 455 147 0.023809496 467 147 0.023809496 132 148 0.25 227 148 0.083333254 463 148 0.083333254 2 149 5.3199998e-05 4 149 0.0058772974 18 149 0.0010372 22 149 0.0001064 60 149 0.00087759993 104 149 5.3199998e-05 108 149 2.6599999e-05 114 149 5.3199998e-05 126 149 2.6599999e-05 130 149 0.011728097 131 149 0.00023929999 132 149 0.30360085 133 149 0.00029249978 138 149 5.3199998e-05 139 149 2.6599999e-05 142 149 5.3199998e-05 143 149 0.00023929999 144 149 5.3199998e-05 145 149 5.3199998e-05 146 149 0.0020744 147 149 5.3199998e-05 148 149 7.9799996e-05 149 149 0.096138477 150 149 0.00071799988 151 149 0.00085099996 171 149 0.0047337972 190 149 7.9799996e-05 192 149 5.3199998e-05 193 149 2.6599999e-05 194 149 0.0001064 197 149 2.6599999e-05 198 149 0.023722097 200 149 2.6599999e-05 203 149 5.3199998e-05 204 149 7.9799996e-05 206 149 5.3199998e-05 207 149 2.6599999e-05 214 149 0.025291197 218 149 2.6599999e-05 221 149 5.3199998e-05 223 149 0.00013299999 224 149 0.0001064 225 149 0.0001064 226 149 0.027604897 227 149 0.078958571 231 149 0.0071804971 233 149 2.6599999e-05 234 149 0.0029785999 237 149 5.3199998e-05 240 149 0.0001064 241 149 0.011861097 242 149 0.004122097 252 149 0.00015959999 272 149 0.0016488 277 149 0.0001064 279 149 0.00045209983 282 149 2.6599999e-05 315 149 2.6599999e-05 326 149 2.6599999e-05 335 149 0.0013828999 336 149 2.6599999e-05 345 149 0.0023136998 351 149 0.0022338999 358 149 0.00055849995 387 149 2.6599999e-05 402 149 2.6599999e-05 421 149 2.6599999e-05 422 149 0.0001064 433 149 2.6599999e-05 434 149 2.6599999e-05 436 149 7.9799996e-05 437 149 0.00013299999 443 149 0.0030582999 444 149 0.0013828999 445 149 0.0065421984 446 149 0.00031909999 447 149 0.0012232999 448 149 2.6599999e-05 450 149 0.0014094999 452 149 0.0069676973 453 149 0.0022604999 454 149 0.0021274998 455 149 0.038003299 456 149 7.9799996e-05 457 149 0.0019147999 458 149 0.00069149979 459 149 0.00066489982 460 149 0.0017551999 463 149 0.0085633993 464 149 0.0011435999 465 149 0.00069149979 467 149 0.0045741983 468 149 0.0057709999 469 149 0.0018881999 470 149 0.0013563 471 149 0.00050529977 473 149 2.6599999e-05 477 149 0.00082439999 478 149 0.00079779979 479 149 2.6599999e-05 483 149 0.00074459985 489 149 5.3199998e-05 490 149 0.00015959999 491 149 0.00018619999 4 150 6.0799997e-05 9 150 1.2199999e-05 16 150 4.0999994e-06 17 150 0.0029328 18 150 4.0999994e-06 22 150 3.6499987e-05 60 150 0.00058819982 79 150 4.0999994e-06 82 150 1.6199992e-05 83 150 1.6199992e-05 84 150 0.00027579977 108 150 2.4299996e-05 113 150 3.2499986e-05 114 150 8.1099992e-05 126 150 4.0599989e-05 127 150 4.0999994e-06 130 150 0.16148525 131 150 0.0065591969 132 150 0.0249631 133 150 0.0069688968 135 150 7.709999e-05 136 150 0.0019226999 137 150 1.6199992e-05 138 150 8.0999998e-06 139 150 4.8699992e-05 140 150 8.0999998e-06 141 150 4.0999994e-06 142 150 0.00038939994 143 150 0.0014928 144 150 0.00031229993 145 150 0.00034069992 146 150 0.0071067996 147 150 0.00027579977 149 150 0.12158644 150 150 0.15409046 151 150 4.0999994e-06 152 150 1.2199999e-05 155 150 0.0036954 156 150 0.0087739974 157 150 0.0025189999 158 150 0.00056379987 171 150 8.0999998e-06 188 150 4.0999994e-06 189 150 9.74e-05 190 150 0.00017039999 192 150 7.709999e-05 193 150 0.0001947 194 150 0.0004015998 196 150 1.2199999e-05 197 150 2.4299996e-05 198 150 0.0050826967 200 150 3.6499987e-05 201 150 1.6199992e-05 203 150 6.8999987e-05 204 150 0.00029609981 206 150 0.00017439999 207 150 5.6799996e-05 208 150 0.0001298 209 150 1.6199992e-05 214 150 0.00045029982 219 150 4.0999994e-06 222 150 1.2199999e-05 223 150 2.4299996e-05 224 150 3.2499986e-05 225 150 0.00014599999 226 150 0.00060849986 227 150 0.0012290999 231 150 0.00041779992 234 150 0.0016711999 237 150 0.0001582 239 150 4.0999994e-06 240 150 0.00018659999 241 150 0.00064499979 242 150 4.0999994e-06 243 150 0.0057438985 248 150 1.6199992e-05 249 150 4.0999994e-06 250 150 8.0999998e-06 251 150 4.0999994e-06 252 150 1.2199999e-05 263 150 4.0999994e-06 272 150 0.00011359999 276 150 4.0999994e-06 277 150 6.8999987e-05 279 150 0.00010949999 282 150 1.6199992e-05 292 150 1.2199999e-05 293 150 8.0999998e-06 308 150 4.0999994e-06 315 150 3.2499986e-05 317 150 0.00079099997 319 150 1.6199992e-05 326 150 4.0999994e-06 328 150 4.0999994e-06 340 150 4.0999994e-06 345 150 0.00034889998 349 150 4.0999994e-06 351 150 4.0999994e-06 356 150 2.4299996e-05 358 150 0.0003205 363 150 4.0999994e-06 380 150 4.0999994e-06 382 150 0.00074639986 384 150 8.0999998e-06 387 150 3.2499986e-05 394 150 1.2199999e-05 397 150 1.2199999e-05 402 150 6.0799997e-05 409 150 4.0999994e-06 412 150 4.0999994e-06 419 150 4.0999994e-06 422 150 8.1099992e-05 423 150 8.0999998e-06 425 150 4.0999994e-06 430 150 2.0299995e-05 431 150 1.2199999e-05 432 150 1.2199999e-05 433 150 4.459999e-05 434 150 5.6799996e-05 435 150 0.0010302998 436 150 0.0035899 437 150 0.0138404 442 150 4.0999994e-06 443 150 0.00054359995 444 150 0.0022107 445 150 0.0054842979 446 150 0.00011359999 447 150 0.0041374974 448 150 2.4299996e-05 449 150 8.0999998e-06 450 150 0.004161898 452 150 0.0032491998 453 150 0.00070579979 454 150 0.00033259997 455 150 0.035749096 456 150 0.00039349985 457 150 0.0043321997 458 150 0.00058409991 459 150 0.00064089987 460 150 0.00087619992 463 150 0.0098286979 464 150 0.0023567998 465 150 0.0014886998 467 150 0.012002897 468 150 0.0055937991 469 150 0.0033749 470 150 0.0036791998 471 150 0.0011357998 472 150 8.1099992e-05 473 150 7.709999e-05 477 150 0.00011359999 478 150 0.0016387999 483 150 0.0026974999 489 150 4.459999e-05 490 150 0.00048679998 491 150 0.00021499999 4 151 0.00014559999 84 151 0.00029119989 114 151 0.00014559999 126 151 0.00014559999 130 151 0.44182318 131 151 0.0020386998 132 151 0.017474897 133 151 0.0018930999 134 151 0.00014559999 136 151 0.0037862 137 151 0.00072809984 138 151 0.0005824999 139 151 0.011795498 141 151 0.0027669 142 151 0.011212997 143 151 0.00087369978 149 151 0.00072809984 151 151 0.030580997 152 151 0.0013106 155 151 0.0011649998 157 151 0.00087369978 158 151 0.00014559999 171 151 0.00043689995 184 151 0.00014559999 190 151 0.00014559999 193 151 0.010048099 194 151 0.00029119989 198 151 0.0042230971 203 151 0.00014559999 204 151 0.00014559999 206 151 0.00029119989 225 151 0.00014559999 226 151 0.00014559999 227 151 0.0005824999 234 151 0.0017474999 237 151 0.00029119989 240 151 0.00043689995 241 151 0.0055336989 272 151 0.00029119989 277 151 0.00029119989 279 151 0.00014559999 282 151 0.00014559999 322 151 0.00014559999 358 151 0.00072809984 382 151 0.00029119989 402 151 0.00014559999 422 151 0.00029119989 435 151 0.00014559999 437 151 0.0052424967 443 151 0.0005824999 444 151 0.0040774979 445 151 0.013106197 447 151 0.0045142993 450 151 0.0040774979 452 151 0.0032036998 453 151 0.00072809984 454 151 0.00014559999 455 151 0.036551598 456 151 0.00014559999 457 151 0.0026211999 458 151 0.0005824999 459 151 0.00029119989 460 151 0.0016019 463 151 0.038444698 464 151 0.0046599992 465 151 0.0065530986 467 151 0.005824998 468 151 0.015727397 469 151 0.0027669 470 151 0.0030580999 471 151 0.0017474999 473 151 0.00014559999 477 151 0.0021843999 478 151 0.0014561999 483 151 0.0016019 490 151 0.00029119989 491 151 0.00014559999 2 152 0.00062999991 4 152 0.022501197 13 152 0.00013499999 22 152 0.00076499977 24 152 4.4999993e-05 60 152 0.00099009997 84 152 0.0036001999 104 152 0.00067499978 108 152 4.4999993e-05 114 152 8.9999987e-05 117 152 4.4999993e-05 120 152 4.4999993e-05 126 152 4.4999993e-05 130 152 0.33387339 131 152 0.0040051974 132 152 0.031906798 133 152 0.0054452978 136 152 0.0020250999 137 152 0.0074703991 138 152 0.0071103983 139 152 0.012510698 141 152 0.00017999999 142 152 0.0103506 143 152 0.0082354993 144 152 4.4999993e-05 145 152 4.4999993e-05 149 152 0.0092254989 150 152 0.0016200999 151 152 0.00049499981 152 152 0.014265798 155 152 0.00031499984 156 152 4.4999993e-05 157 152 0.0092254989 158 152 0.0018451 160 152 0.00013499999 161 152 8.9999987e-05 171 152 0.0046802983 178 152 4.4999993e-05 189 152 8.9999987e-05 190 152 0.00013499999 192 152 0.00062999991 193 152 0.0063452981 194 152 8.9999987e-05 198 152 0.0155259 200 152 4.4999993e-05 203 152 4.4999993e-05 204 152 8.9999987e-05 206 152 0.00013499999 207 152 4.4999993e-05 214 152 0.0096304975 221 152 0.00049499981 223 152 0.0016200999 224 152 0.00080999988 226 152 0.0096754991 227 152 0.022096198 230 152 8.9999987e-05 231 152 0.0019351 232 152 0.00017999999 233 152 0.00017999999 234 152 0.0018000999 237 152 0.00013499999 240 152 0.0027001 241 152 0.014175799 243 152 8.9999987e-05 248 152 8.9999987e-05 252 152 0.0017551 253 152 0.00013499999 271 152 4.4999993e-05 272 152 0.00044999993 277 152 0.00017999999 279 152 0.000225 300 152 0.00044999993 315 152 0.00013499999 317 152 4.4999993e-05 319 152 0.00035999995 322 152 0.000225 326 152 0.00035999995 335 152 0.00035999995 336 152 0.00031499984 345 152 0.0023850999 350 152 8.9999987e-05 356 152 8.9999987e-05 358 152 0.00085499999 365 152 8.9999987e-05 382 152 0.00013499999 387 152 4.4999993e-05 402 152 4.4999993e-05 414 152 4.4999993e-05 421 152 0.00013499999 422 152 0.00031499984 433 152 4.4999993e-05 434 152 8.9999987e-05 435 152 0.0021150999 437 152 0.00080999988 442 152 0.00017999999 443 152 0.0033302 444 152 0.0018900998 445 152 0.0117906 446 152 0.00031499984 447 152 0.0034651998 450 152 0.0040501989 452 152 0.0063903965 453 152 0.0018451 454 152 0.0026550998 455 152 0.043832399 456 152 0.00017999999 457 152 0.0023850999 458 152 0.00044999993 459 152 0.00035999995 460 152 0.0015300999 463 152 0.010620598 464 152 0.0027901998 465 152 0.0010801 467 152 0.0089104995 468 152 0.012420699 469 152 0.0025650999 470 152 0.0028801998 471 152 0.0012600999 473 152 4.4999993e-05 477 152 0.0010801 478 152 0.0011250998 479 152 0.00031499984 483 152 0.0016200999 489 152 4.4999993e-05 490 152 0.00035999995 491 152 0.00080999988 4 153 0.0016991999 60 153 0.0016991999 114 153 0.00042479998 130 153 0.15590477 131 153 0.019965999 132 153 0.030161399 133 153 0.0042480975 139 153 0.014443498 143 153 0.28377229 149 153 0.00084959995 150 153 0.00084959995 153 153 0.0046728998 158 153 0.025913298 187 153 0.031435899 188 153 0.00042479998 193 153 0.00042479998 198 153 0.011469796 206 153 0.00084959995 214 153 0.0012743999 219 153 0.00042479998 221 153 0.00084959995 223 153 0.00042479998 224 153 0.0050976984 226 153 0.00042479998 227 153 0.0012743999 234 153 0.00084959995 241 153 0.0033984999 242 153 0.0016991999 272 153 0.00042479998 279 153 0.00042479998 358 153 0.00042479998 437 153 0.00084959995 443 153 0.0025489 444 153 0.00042479998 445 153 0.010195397 450 153 0.0025489 452 153 0.0038232999 453 153 0.0012743999 455 153 0.048852999 457 153 0.0025489 460 153 0.0012743999 463 153 0.0093457997 464 153 0.00042479998 465 153 0.00084959995 467 153 0.0042480975 468 153 0.0016991999 469 153 0.0025489 470 153 0.0025489 471 153 0.0012743999 478 153 0.00084959995 483 153 0.0012743999 490 153 0.00042479998 491 153 0.00042479998 4 154 0.0003562998 22 154 0.0003562998 60 154 0.0010688 114 154 0.0003562998 130 154 0.19202 131 154 0.028856397 132 154 0.044531498 133 154 0.0042749979 137 154 0.0010688 139 154 0.085500479 141 154 0.0078374967 142 154 0.0024937999 143 154 0.0049874969 149 154 0.0021374999 150 154 0.0003562998 152 154 0.0003562998 154 154 0.0092625991 157 154 0.0003562998 158 154 0.027431399 160 154 0.0003562998 187 154 0.0003562998 193 154 0.0014249999 194 154 0.0003562998 198 154 0.0056999996 206 154 0.00071249995 223 154 0.0003562998 227 154 0.0003562998 234 154 0.0014249999 237 154 0.0010688 241 154 0.0003562998 252 154 0.0003562998 272 154 0.0003562998 277 154 0.0028499998 279 154 0.0003562998 282 154 0.00071249995 283 154 0.0003562998 293 154 0.0003562998 312 154 0.0003562998 315 154 0.0003562998 328 154 0.0017812999 329 154 0.00071249995 345 154 0.0032062999 350 154 0.0003562998 351 154 0.0003562998 354 154 0.00071249995 358 154 0.0010688 382 154 0.0003562998 402 154 0.00071249995 412 154 0.0003562998 430 154 0.0003562998 437 154 0.0363377 443 154 0.0014249999 444 154 0.0003562998 445 154 0.0071249977 447 154 0.00071249995 450 154 0.0039187968 452 154 0.0035624998 453 154 0.0014249999 455 154 0.047025297 457 154 0.0021374999 458 154 0.0003562998 460 154 0.0014249999 463 154 0.012112599 464 154 0.00071249995 465 154 0.0010688 467 154 0.0067687966 468 154 0.0024937999 469 154 0.0042749979 470 154 0.0042749979 471 154 0.0014249999 478 154 0.0014249999 483 154 0.0021374999 490 154 0.00071249995 4 155 0.00033979979 114 155 0.00033979979 130 155 0.084947288 132 155 0.17804956 133 155 0.06252116 135 155 0.0061161965 137 155 0.0088344999 139 155 0.00033979979 142 155 0.032279998 143 155 0.0040774979 149 155 0.00033979979 150 155 0.00067959982 155 155 0.015630297 157 155 0.00033979979 171 155 0.00033979979 187 155 0.00033979979 190 155 0.00033979979 193 155 0.013591599 194 155 0.00033979979 198 155 0.0040774979 202 155 0.0013591999 206 155 0.00067959982 210 155 0.00033979979 227 155 0.00033979979 234 155 0.0016988998 237 155 0.00033979979 272 155 0.00033979979 279 155 0.00033979979 358 155 0.00067959982 377 155 0.012572199 382 155 0.00033979979 437 155 0.0010193998 443 155 0.00067959982 444 155 0.0088344999 445 155 0.0292219 447 155 0.0142712 450 155 0.0044172965 452 155 0.0050967969 453 155 0.0016988998 455 155 0.032279998 456 155 0.00033979979 457 155 0.026163798 460 155 0.0016988998 463 155 0.027183097 464 155 0.013591599 465 155 0.013931397 467 155 0.0057763979 468 155 0.0020386998 469 155 0.0030580999 470 155 0.0033978999 471 155 0.0016988998 478 155 0.0016988998 483 155 0.0016988998 490 155 0.00033979979 491 155 0.00033979979 22 156 0.00025529996 60 156 0.0015318999 114 156 8.5099993e-05 117 156 8.5099993e-05 126 156 8.5099993e-05 130 156 0.12017018 131 156 0.016936198 132 156 0.0194043 133 156 0.011914898 136 156 0.0013616998 137 156 0.0065531991 138 156 0.00017019999 139 156 0.13455319 142 156 0.035233997 143 156 0.0003403998 149 156 0.00085109985 150 156 8.5099993e-05 155 156 0.0068935975 156 156 0.0020426 157 156 8.5099993e-05 158 156 0.0069786981 171 156 8.5099993e-05 172 156 8.5099993e-05 188 156 8.5099993e-05 189 156 8.5099993e-05 190 156 8.5099993e-05 194 156 0.0077446997 198 156 0.0045956969 203 156 8.5099993e-05 204 156 0.006808497 206 156 0.00017019999 214 156 0.00051059993 223 156 0.00017019999 224 156 0.00068089995 226 156 0.00025529996 227 156 0.00051059993 233 156 8.5099993e-05 234 156 0.00093619991 237 156 8.5099993e-05 240 156 8.5099993e-05 241 156 0.061361697 243 156 0.026638299 272 156 0.00017019999 277 156 0.0094467998 279 156 0.00025529996 282 156 8.5099993e-05 292 156 8.5099993e-05 293 156 0.00017019999 298 156 0.00017019999 299 156 8.5099993e-05 312 156 0.0003403998 313 156 0.00076599978 320 156 8.5099993e-05 339 156 8.5099993e-05 340 156 0.00017019999 345 156 0.00017019999 350 156 8.5099993e-05 356 156 8.5099993e-05 358 156 0.0005957 382 156 8.5099993e-05 402 156 8.5099993e-05 422 156 0.00017019999 434 156 8.5099993e-05 437 156 0.00068089995 443 156 0.0020426 444 156 0.0039999969 445 156 0.014893599 446 156 0.00017019999 447 156 0.0035744999 450 156 0.0047659986 452 156 0.0030637998 453 156 0.0005957 455 156 0.040680896 456 156 8.5099993e-05 457 156 0.0022127999 458 156 0.0003403998 459 156 0.00025529996 460 156 0.0017020998 463 156 0.013191499 464 156 0.0029787 465 156 0.00068089995 467 156 0.0056169964 468 156 0.00085109985 469 156 0.0057871975 470 156 0.0018722999 471 156 0.00076599978 473 156 8.5099993e-05 477 156 0.0034893998 478 156 0.00068089995 479 156 0.0042552985 483 156 0.0012765999 490 156 0.00017019999 491 156 0.00017019999 60 157 0.0034188 130 157 0.060683798 132 157 0.15982908 133 157 0.00085469987 139 157 0.00085469987 157 157 0.11025637 198 157 0.0017094 206 157 0.00085469987 234 157 0.0025640999 358 157 0.00085469987 444 157 0.00085469987 445 157 0.0025640999 447 157 0.029059798 450 157 0.0042734966 452 157 0.0051281974 455 157 0.0153846 457 157 0.0034188 460 157 0.00085469987 463 157 0.041880298 464 157 0.00085469987 465 157 0.00085469987 467 157 0.0051281974 468 157 0.0017094 469 157 0.0025640999 470 157 0.0025640999 471 157 0.0017094 472 157 0.0085469969 478 157 0.0017094 483 157 0.0025640999 490 157 0.00085469987 2 158 0.0003994999 4 158 0.0027965999 23 158 0.0003994999 60 158 0.0015980999 84 158 0.0034624999 104 158 0.00026629982 114 158 0.0001332 126 158 0.0001332 130 158 0.14848846 131 158 0.033959199 132 158 0.094020486 133 158 0.015181798 134 158 0.00066589983 135 158 0.0025302998 137 158 0.018377896 138 158 0.0011985998 139 158 0.016912997 141 158 0.014116399 142 158 0.046077996 143 158 0.0019975998 149 158 0.023038998 150 158 0.0025302998 151 158 0.0001332 152 158 0.0003994999 155 158 0.0001332 156 158 0.0001332 157 158 0.00053269998 158 158 0.026101999 171 158 0.00026629982 187 158 0.0027965999 188 158 0.0001332 190 158 0.0001332 192 158 0.0001332 193 158 0.0085230991 194 158 0.00026629982 198 158 0.013983198 203 158 0.0001332 206 158 0.00026629982 214 158 0.0018644 219 158 0.0001332 221 158 0.0001332 223 158 0.0071913972 224 158 0.0015980999 225 158 0.0003994999 226 158 0.0037288999 227 158 0.0093220994 231 158 0.00026629982 234 158 0.0023971 237 158 0.0003994999 240 158 0.00093219988 241 158 0.0051937997 243 158 0.0001332 252 158 0.00026629982 271 158 0.00026629982 272 158 0.00066589983 277 158 0.0038619998 279 158 0.0003994999 282 158 0.0026634999 283 158 0.0010654 292 158 0.0003994999 293 158 0.00026629982 295 158 0.0001332 296 158 0.00053269998 308 158 0.0001332 312 158 0.0003994999 313 158 0.00053269998 315 158 0.0001332 320 158 0.0001332 326 158 0.0001332 328 158 0.00026629982 340 158 0.0001332 345 158 0.0003994999 351 158 0.00026629982 357 158 0.00026629982 358 158 0.0007989998 382 158 0.00026629982 397 158 0.0001332 402 158 0.0023971 412 158 0.00026629982 422 158 0.0001332 434 158 0.0001332 437 158 0.012251999 442 158 0.0001332 443 158 0.0023971 444 158 0.00026629982 445 158 0.012118798 446 158 0.00026629982 447 158 0.0011985998 450 158 0.0038619998 452 158 0.0051937997 453 158 0.0010654 454 158 0.00026629982 455 158 0.048475198 456 158 0.0001332 457 158 0.0026634999 458 158 0.00093219988 459 158 0.0003994999 460 158 0.0017312998 463 158 0.0094552971 464 158 0.0003994999 465 158 0.0010654 467 158 0.0067917965 468 158 0.0035956998 469 158 0.0027965999 470 158 0.0029298 471 158 0.0021307999 473 158 0.0001332 478 158 0.0011985998 483 158 0.0015980999 490 158 0.00026629982 491 158 0.0017312998 3 159 4.2e-05 9 159 2.1e-05 16 159 0.00027299998 17 159 0.35643339 18 159 0.0015119999 22 159 0.0036119998 24 159 2.1e-05 60 159 0.00081899995 62 159 8.3999999e-05 75 159 0.0018689998 82 159 2.1e-05 83 159 2.1e-05 84 159 2.1e-05 104 159 2.1e-05 108 159 2.1e-05 113 159 4.2e-05 114 159 6.2999999e-05 126 159 2.1e-05 130 159 2.1e-05 141 159 0.0020579998 150 159 0.00079799979 151 159 0.00079799979 159 159 0.026312999 160 159 0.003759 161 159 2.1e-05 165 159 0.0010289999 170 159 2.1e-05 186 159 0.00027299998 190 159 6.2999999e-05 192 159 2.1e-05 194 159 2.1e-05 198 159 0.00088199996 200 159 2.1e-05 206 159 4.2e-05 214 159 0.00081899995 215 159 0.00067199999 217 159 0.000189 218 159 0.000147 219 159 0.000105 220 159 0.00075599994 223 159 6.2999999e-05 224 159 6.2999999e-05 233 159 0.0008609998 234 159 0.033809997 237 159 0.002226 240 159 0.0017849999 241 159 0.0041579977 242 159 0.0013229998 251 159 0.00062999991 252 159 4.2e-05 270 159 0.000105 271 159 0.00060899998 272 159 0.0016589998 277 159 0.0044309981 279 159 2.1e-05 283 159 0.0040109977 292 159 0.00060899998 295 159 0.00058799982 312 159 0.00088199996 315 159 0.0017429998 317 159 0.0034019998 318 159 0.0068459995 319 159 0.0098699965 322 159 0.0534871 326 159 0.0023729999 329 159 8.3999999e-05 331 159 0.00065099983 334 159 0.00071399985 335 159 4.2e-05 337 159 0.0025829999 340 159 0.00046199979 341 159 0.0017219998 346 159 0.0019739999 349 159 0.000126 350 159 2.1e-05 352 159 4.2e-05 354 159 0.0036749998 356 159 2.1e-05 358 159 0.00058799982 372 159 0.00094499998 374 159 0.00056699989 384 159 0.00073499978 387 159 2.1e-05 394 159 0.000231 397 159 4.2e-05 398 159 0.00054599997 400 159 0.0018059998 401 159 2.1e-05 402 159 0.0039269999 412 159 0.00039899978 417 159 0.000105 421 159 2.1e-05 423 159 2.1e-05 430 159 2.1e-05 431 159 2.1e-05 442 159 0.00094499998 443 159 0.0050399974 444 159 0.0011339998 445 159 0.006719999 446 159 0.0021209999 447 159 0.0026459999 448 159 0.0008609998 450 159 0.00079799979 452 159 0.0011759999 453 159 0.00048299995 454 159 0.0008609998 455 159 0.032697 456 159 0.0025829999 457 159 0.0018269999 458 159 0.00050399988 459 159 0.0013649999 460 159 0.0021629999 463 159 0.0040109977 464 159 0.00065099983 465 159 0.00052499981 467 159 0.0096599981 468 159 0.00079799979 469 159 0.0021629999 470 159 0.002289 471 159 0.013250999 473 159 4.2e-05 477 159 0.00071399985 478 159 0.00060899998 483 159 0.000147 489 159 0.00050399988 490 159 0.000189 491 159 8.3999999e-05 9 160 1.6399994e-05 17 160 0.0038231998 18 160 0.00065629999 22 160 0.0026089998 60 160 0.0022971998 75 160 0.0015915998 82 160 1.6399994e-05 83 160 1.6399994e-05 84 160 1.6399994e-05 108 160 1.6399994e-05 113 160 3.2799988e-05 114 160 4.9199996e-05 117 160 1.6399994e-05 126 160 1.6399994e-05 130 160 6.559999e-05 139 160 1.6399994e-05 141 160 1.6399994e-05 150 160 0.00049229991 151 160 0.00044299988 159 160 0.33716196 160 160 0.070589364 161 160 0.00014769999 162 160 0.0001313 163 160 1.6399994e-05 165 160 0.0066782981 170 160 0.00014769999 171 160 0.0001313 172 160 3.2799988e-05 186 160 8.1999999e-05 189 160 4.9199996e-05 190 160 8.1999999e-05 192 160 0.00034459983 194 160 6.559999e-05 197 160 1.6399994e-05 198 160 8.1999999e-05 200 160 3.2799988e-05 203 160 3.2799988e-05 204 160 3.2799988e-05 206 160 6.559999e-05 207 160 1.6399994e-05 214 160 0.0016243998 215 160 1.6399994e-05 218 160 9.8499993e-05 219 160 0.0005086998 223 160 4.9199996e-05 224 160 0.00057429983 233 160 0.0009680998 234 160 0.0093363971 237 160 0.0012469999 240 160 1.6399994e-05 241 160 0.00068919989 242 160 0.0005086998 251 160 3.2799988e-05 252 160 0.00057429983 270 160 0.0009680998 272 160 0.0010008998 277 160 0.00067269988 279 160 0.0005086998 283 160 4.9199996e-05 312 160 0.00060709985 315 160 0.0012963 317 160 0.0005086998 318 160 0.0025104999 319 160 0.0018048999 322 160 0.0012635 324 160 1.6399994e-05 326 160 0.0069079995 335 160 0.00063989987 337 160 0.00082039996 341 160 1.6399994e-05 346 160 0.0012141999 349 160 0.0026417999 350 160 0.00041019986 352 160 0.00067269988 354 160 3.2799988e-05 356 160 0.00014769999 358 160 0.00063989987 372 160 1.6399994e-05 384 160 4.9199996e-05 387 160 1.6399994e-05 394 160 8.1999999e-05 397 160 3.2799988e-05 400 160 1.6399994e-05 401 160 0.00031179981 402 160 0.0010666 417 160 0.00032819994 421 160 4.9199996e-05 422 160 4.9199996e-05 423 160 1.6399994e-05 430 160 1.6399994e-05 431 160 1.6399994e-05 433 160 1.6399994e-05 434 160 1.6399994e-05 442 160 1.6399994e-05 443 160 0.019017499 444 160 0.00055789994 445 160 0.0055788979 446 160 0.0017392999 447 160 0.0019197999 448 160 0.00019689999 450 160 0.0015423999 452 160 0.0095989965 453 160 0.0019689999 454 160 0.0011157999 455 160 0.031323798 456 160 0.0017720999 457 160 0.0040856972 458 160 0.00080399984 459 160 0.0013126999 460 160 0.0027565998 463 160 0.0041184984 464 160 0.00045939977 465 160 0.00085319998 467 160 0.010041997 468 160 0.0027729999 469 160 0.0027565998 470 160 0.0016736998 471 160 0.0091230981 473 160 3.2799988e-05 477 160 0.00045939977 478 160 0.00085319998 483 160 0.00059069996 489 160 0.0005086998 490 160 0.00014769999 491 160 0.0011649998 17 161 0.00068559987 18 161 0.00034279982 22 161 0.00034279982 60 161 0.0025710999 114 161 0.0001714 126 161 0.0001714 130 161 0.00034279982 156 161 0.0001714 159 161 0.082790494 160 161 0.23260194 161 161 0.014569797 162 161 0.0001714 165 161 0.0020568999 170 161 0.00068559987 171 161 0.00068559987 190 161 0.0001714 194 161 0.0001714 198 161 0.0022282999 206 161 0.00034279982 214 161 0.0001714 219 161 0.0017140999 233 161 0.0022282999 234 161 0.0059992969 237 161 0.00068559987 241 161 0.0011998999 252 161 0.0001714 270 161 0.0435379 272 161 0.00051419996 277 161 0.00051419996 317 161 0.0001714 318 161 0.0022282999 319 161 0.00085699977 322 161 0.0001714 326 161 0.015940998 346 161 0.0022282999 349 161 0.0001714 356 161 0.0001714 358 161 0.0058278963 402 161 0.0001714 417 161 0.00068559987 421 161 0.0001714 422 161 0.0001714 443 161 0.023825798 444 161 0.0029139998 445 161 0.0078847967 446 161 0.0018854998 447 161 0.0053136982 450 161 0.0030854 452 161 0.016112398 453 161 0.0027424998 454 161 0.0011998999 455 161 0.056050699 456 161 0.00085699977 457 161 0.0042851977 458 161 0.00051419996 459 161 0.00034279982 460 161 0.0015427 463 161 0.010455899 464 161 0.00051419996 465 161 0.0015427 467 161 0.0099416971 468 161 0.0068563968 469 161 0.0030854 470 161 0.0034281998 471 161 0.012684297 473 161 0.0001714 477 161 0.0001714 478 161 0.0015427 483 161 0.0011998999 489 161 0.0001714 490 161 0.00034279982 491 161 0.0013712998 17 162 0.0051753968 60 162 0.0011500998 114 162 0.00057499995 159 162 0.29039675 160 162 0.086256444 161 162 0.028752197 162 162 0.00057499995 165 162 0.00057499995 206 162 0.00057499995 234 162 0.0063254982 241 162 0.013800997 270 162 0.00057499995 272 162 0.00057499995 277 162 0.00057499995 317 162 0.00057499995 318 162 0.0023001998 319 162 0.0011500998 322 162 0.00057499995 346 162 0.0028751998 358 162 0.0011500998 417 162 0.00057499995 443 162 0.021276597 444 162 0.00057499995 445 162 0.014951099 446 162 0.0017251 447 162 0.0034502998 450 162 0.0023001998 452 162 0.0069004968 454 162 0.010350797 455 162 0.033927497 457 162 0.0028751998 459 162 0.017826296 460 162 0.0046002977 463 162 0.0086255968 464 162 0.00057499995 465 162 0.0011500998 467 162 0.0069004968 468 162 0.0011500998 469 162 0.0017251 470 162 0.0017251 471 162 0.0034502998 478 162 0.0011500998 483 162 0.0011500998 490 162 0.00057499995 491 162 0.0011500998 18 163 0.00030919979 22 163 0.00017669999 60 163 0.0012808 75 163 0.00013249999 82 163 4.4199987e-05 108 163 4.4199987e-05 114 163 8.8299988e-05 126 163 4.4199987e-05 139 163 4.4199987e-05 150 163 0.00057419995 151 163 4.4199987e-05 156 163 4.4199987e-05 159 163 0.017710399 160 163 0.24949205 161 163 0.0032682999 162 163 4.4199987e-05 163 163 0.0022965998 165 163 0.045137398 170 163 0.006315697 171 163 0.012852199 184 163 4.4199987e-05 187 163 4.4199987e-05 189 163 4.4199987e-05 190 163 8.8299988e-05 192 163 0.0012365999 194 163 8.8299988e-05 198 163 0.0042840987 200 163 4.4199987e-05 203 163 4.4199987e-05 204 163 4.4199987e-05 206 163 8.8299988e-05 214 163 4.4199987e-05 215 163 0.0028265999 219 163 0.0018107998 224 163 4.4199987e-05 233 163 0.0064923987 234 163 0.0027382998 236 163 4.4199987e-05 237 163 0.00039749988 240 163 0.00013249999 241 163 0.0051673986 252 163 0.016694598 268 163 4.4199987e-05 270 163 0.013338 272 163 0.00052999984 277 163 0.000795 279 163 8.8299988e-05 289 163 0.00035329978 290 163 4.4199987e-05 293 163 0.00070669991 297 163 4.4199987e-05 306 163 4.4199987e-05 312 163 0.0063598976 315 163 0.0077289976 317 163 0.011041399 318 163 0.0013249998 319 163 0.040323298 322 163 0.00052999984 326 163 0.0065364987 346 163 0.0012808 349 163 4.4199987e-05 358 163 0.0021640998 387 163 4.4199987e-05 402 163 0.00013249999 417 163 0.00039749988 421 163 4.4199987e-05 422 163 8.8299988e-05 430 163 4.4199987e-05 434 163 4.4199987e-05 438 163 4.4199987e-05 443 163 0.026499398 444 163 0.0021199998 445 163 0.0076406971 446 163 0.00159 447 163 0.0041956976 448 163 4.4199987e-05 450 163 0.0018549999 452 163 0.0052556992 453 163 0.0012365999 454 163 0.0010157998 455 163 0.058475398 456 163 0.00061829994 457 163 0.006094899 458 163 0.00057419995 459 163 0.00039749988 460 163 0.0022524998 463 163 0.0094514973 464 163 0.0014132999 465 163 0.0010599999 467 163 0.0071989968 468 163 0.0052998997 469 163 0.0029590998 470 163 0.0032241 471 163 0.0044165999 473 163 8.8299988e-05 477 163 8.8299988e-05 478 163 0.0010157998 483 163 0.00097159995 489 163 8.8299988e-05 490 163 0.00026499992 491 163 0.00017669999 18 164 0.00045799999 22 164 0.000229 60 164 0.0017175998 108 164 0.0001145 114 164 0.000229 126 164 0.0001145 139 164 0.0001145 159 164 0.0010305999 160 164 0.051757697 161 164 0.035611998 163 164 0.0001145 164 164 0.0012595998 165 164 0.080728292 170 164 0.025535297 171 164 0.015916597 190 164 0.0001145 192 164 0.0032062 194 164 0.0001145 198 164 0.0016031 206 164 0.000229 215 164 0.0001145 219 164 0.013282899 233 164 0.014771599 234 164 0.0036642998 237 164 0.00045799999 240 164 0.0001145 241 164 0.0320623 252 164 0.00068699988 270 164 0.0269094 272 164 0.00068699988 277 164 0.00057249982 279 164 0.000229 293 164 0.000229 312 164 0.0018320999 315 164 0.0067559965 317 164 0.0069849975 318 164 0.0017175998 319 164 0.028512497 326 164 0.010992799 346 164 0.0018320999 358 164 0.0042367987 387 164 0.0001145 402 164 0.000229 417 164 0.00057249982 421 164 0.0001145 422 164 0.0001145 438 164 0.0030916999 443 164 0.018206798 444 164 0.0027482 445 164 0.006870497 446 164 0.00057249982 447 164 0.0037787999 450 164 0.0025191999 452 164 0.0056108981 453 164 0.0016031 454 164 0.00045799999 455 164 0.048207898 456 164 0.00045799999 457 164 0.0042367987 458 164 0.00080159982 459 164 0.00045799999 460 164 0.0064124987 463 164 0.022100098 464 164 0.00045799999 465 164 0.0014885999 467 164 0.010420199 468 164 0.0045802966 469 164 0.0041222982 470 164 0.0044657998 471 164 0.0090460964 473 164 0.0001145 477 164 0.0001145 478 164 0.0014885999 483 164 0.00091609987 489 164 0.000229 490 164 0.00045799999 17 165 0.0015085 18 165 0.00028069993 22 165 0.0012278999 60 165 0.0018944 75 165 0.0074372999 108 165 3.5099991e-05 114 165 7.0199996e-05 126 165 3.5099991e-05 150 165 0.00045609986 151 165 7.0199996e-05 159 165 0.23322219 160 165 0.018663399 161 165 3.5099991e-05 162 165 3.5099991e-05 165 165 0.1547097 170 165 0.0037185999 171 165 0.00021049999 190 165 7.0199996e-05 192 165 0.0011225999 194 165 7.0199996e-05 198 165 0.00010519999 200 165 3.5099991e-05 203 165 3.5099991e-05 204 165 3.5099991e-05 206 165 7.0199996e-05 214 165 0.00010519999 218 165 3.5099991e-05 219 165 0.015049998 224 165 0.0052621998 233 165 0.011296298 234 165 0.0035432 237 165 0.00031569996 241 165 0.0025609999 242 165 3.5099991e-05 252 165 0.0001754 270 165 0.0054726973 272 165 0.00031569996 277 165 0.00045609986 279 165 3.5099991e-05 312 165 7.0199996e-05 315 165 0.00014029999 317 165 0.0049464963 318 165 0.0014382999 319 165 0.0003858998 322 165 0.00024559977 326 165 0.0033326999 335 165 3.5099991e-05 337 165 0.00010519999 346 165 0.0010173998 349 165 0.0001754 350 165 0.00084199989 352 165 3.5099991e-05 356 165 0.00014029999 358 165 0.0015786998 384 165 0.00014029999 387 165 3.5099991e-05 401 165 3.5099991e-05 402 165 0.0001754 404 165 7.0199996e-05 417 165 0.00031569996 421 165 3.5099991e-05 422 165 7.0199996e-05 434 165 3.5099991e-05 443 165 0.023644999 444 165 0.0018241999 445 165 0.0067005977 446 165 0.0014733998 447 165 0.0012629 448 165 3.5099991e-05 450 165 0.0014382999 452 165 0.0081739984 453 165 0.0039641969 454 165 0.00091209984 455 165 0.0390458 456 165 0.00045609986 457 165 0.0047008991 458 165 0.00042099995 459 165 0.00035079988 460 165 0.0016488 463 165 0.0050516985 464 165 0.0001754 465 165 0.00080689997 467 165 0.006139297 468 165 0.0054726973 469 165 0.0014382999 470 165 0.0015085 471 165 0.0037536998 473 165 3.5099991e-05 477 165 7.0199996e-05 478 165 0.00080689997 483 165 0.00031569996 489 165 0.00014029999 490 165 0.00014029999 491 165 0.00056129997 18 166 0.00021719999 22 166 0.00021719999 60 166 0.00086859986 114 166 0.00021719999 126 166 0.00021719999 159 166 0.006731797 160 166 0.33333325 161 166 0.00086859986 162 166 0.00043429993 163 166 0.0017372 164 166 0.00021719999 165 166 0.014983699 166 166 0.0045602992 167 166 0.00043429993 170 166 0.0045602992 171 166 0.00065149995 191 166 0.00021719999 206 166 0.00021719999 219 166 0.0043430999 224 166 0.00086859986 233 166 0.0076003969 234 166 0.0028229998 236 166 0.00043429993 237 166 0.00043429993 241 166 0.00065149995 252 166 0.00065149995 256 166 0.00043429993 268 166 0.00043429993 270 166 0.00086859986 272 166 0.0028229998 274 166 0.00021719999 277 166 0.00021719999 279 166 0.0062974989 292 166 0.00021719999 293 166 0.00021719999 302 166 0.00021719999 303 166 0.00021719999 304 166 0.00021719999 305 166 0.00043429993 306 166 0.00065149995 308 166 0.00021719999 312 166 0.0060802996 315 166 0.00021719999 317 166 0.004777398 318 166 0.0010857999 319 166 0.0078175999 324 166 0.00021719999 326 166 0.020195398 346 166 0.0013028998 356 166 0.00021719999 358 166 0.0056459978 366 166 0.00043429993 385 166 0.0052116998 402 166 0.00021719999 417 166 0.00043429993 443 166 0.0286645 444 166 0.0086861998 445 166 0.0086861998 446 166 0.0017372 447 166 0.011509199 450 166 0.0017372 452 166 0.0028229998 453 166 0.00086859986 455 166 0.052117299 456 166 0.00043429993 457 166 0.0043430999 458 166 0.00065149995 459 166 0.0010857999 460 166 0.0058631971 463 166 0.017589599 464 166 0.0089033991 465 166 0.00065149995 467 166 0.0065146983 468 166 0.0013028998 469 166 0.0032572998 470 166 0.0036915999 471 166 0.0021715998 473 166 0.00021719999 478 166 0.00086859986 483 166 0.00043429993 490 166 0.00043429993 18 167 0.00019359999 22 167 9.6799995e-05 60 167 0.0008711 108 167 9.6799995e-05 114 167 0.00019359999 126 167 9.6799995e-05 134 167 0.0003870998 139 167 9.6799995e-05 159 167 0.0015485999 160 167 0.16376305 161 167 0.021196298 162 167 0.0067750998 163 167 0.041134298 164 167 0.0076460987 165 167 0.0564266 166 167 9.6799995e-05 167 167 0.009775497 170 167 0.0035810999 171 167 0.0090978965 173 167 9.6799995e-05 176 167 9.6799995e-05 177 167 0.0015485999 190 167 9.6799995e-05 191 167 0.0061942972 194 167 9.6799995e-05 206 167 0.00019359999 219 167 0.0003870998 224 167 0.00029039988 233 167 0.0028068 234 167 0.0020325 236 167 0.011033699 237 167 0.0003870998 240 167 9.6799995e-05 241 167 0.0049360991 252 167 0.00019359999 256 167 0.0083236992 259 167 0.0022260998 268 167 0.010162599 270 167 0.012679096 272 167 0.00058069988 274 167 0.0057103969 277 167 0.0014517999 279 167 0.0053232983 289 167 0.00019359999 292 167 0.0030003998 293 167 0.0009678998 295 167 0.0026131999 302 167 0.0029036 303 167 0.005032897 304 167 0.0048392974 305 167 0.0084203966 306 167 0.013550099 308 167 0.0039682984 312 167 0.0010646998 317 167 0.00019359999 318 167 0.0009678998 319 167 0.011227299 324 167 0.0043553971 326 167 0.0003870998 346 167 0.0009678998 356 167 0.00019359999 358 167 0.0047424994 366 167 0.0082268976 377 167 0.00019359999 378 167 0.00029039988 383 167 0.00067749992 385 167 0.0016454 386 167 0.0017422 387 167 9.6799995e-05 402 167 0.00077429996 415 167 0.0020325 417 167 0.00029039988 439 167 0.0020325 443 167 0.023035198 444 167 0.0009678998 445 167 0.0133566 446 167 0.0013549998 447 167 0.0042585991 450 167 0.0072589964 452 167 0.0021292998 453 167 0.00067749992 454 167 0.0003870998 455 167 0.060588498 456 167 0.00029039988 457 167 0.0041617975 458 167 0.0010646998 459 167 0.0003870998 460 167 0.0059039965 463 167 0.020905897 464 167 0.00048389984 465 167 0.0008711 467 167 0.0063878968 468 167 0.0036778999 469 167 0.0032906998 470 167 0.0037747 471 167 0.0037747 472 167 0.0019357 473 167 9.6799995e-05 477 167 9.6799995e-05 478 167 0.0008711 483 167 0.00058069988 490 167 0.0003870998 491 167 9.6799995e-05 17 168 0.0010572998 22 168 0.0002115 60 168 0.0014801999 114 168 0.0002115 159 168 0.17635858 160 168 0.21251845 168 168 0.0074010976 206 168 0.00042289984 214 168 0.10467327 233 168 0.010573097 234 168 0.0046520978 237 168 0.0002115 272 168 0.00063439994 317 168 0.0002115 318 168 0.0002115 322 168 0.0002115 326 168 0.0088813975 346 168 0.0012687999 356 168 0.0002115 358 168 0.00084579992 417 168 0.00042289984 443 168 0.028335799 444 168 0.0002115 445 168 0.0086698979 446 168 0.002749 447 168 0.010573097 450 168 0.0019031998 452 168 0.0067667998 453 168 0.0078240968 454 168 0.00084579992 455 168 0.056037199 456 168 0.0002115 457 168 0.0025374999 458 168 0.00063439994 459 168 0.0002115 460 168 0.0050750971 463 168 0.0012687999 464 168 0.00042289984 465 168 0.00042289984 467 168 0.0063437968 468 168 0.00084579992 469 168 0.0025374999 470 168 0.0029604998 471 168 0.0016917 478 168 0.00063439994 483 168 0.00063439994 490 168 0.00042289984 17 169 0.0020547998 18 169 0.00034249993 22 169 0.00068489998 60 169 0.0075341985 114 169 0.00034249993 159 169 0.073287666 160 169 0.28150678 161 169 0.004794497 162 169 0.0017122999 165 169 0.0023973 169 169 0.0044520982 170 169 0.00034249993 171 169 0.0027396998 172 169 0.00034249993 188 169 0.0017122999 198 169 0.0010273999 206 169 0.00068489998 219 169 0.0013698998 224 169 0.0020547998 233 169 0.00034249993 234 169 0.0041095987 237 169 0.00034249993 270 169 0.0010273999 272 169 0.00068489998 277 169 0.0010273999 279 169 0.030479498 315 169 0.00034249993 318 169 0.0020547998 319 169 0.00034249993 322 169 0.00034249993 326 169 0.00068489998 346 169 0.0023973 358 169 0.0017122999 417 169 0.00068489998 438 169 0.0027396998 443 169 0.027397297 444 169 0.00034249993 445 169 0.024315096 446 169 0.0017122999 447 169 0.0023973 450 169 0.0034246999 452 169 0.0092465989 453 169 0.0054794997 455 169 0.044862997 456 169 0.00034249993 457 169 0.0023973 458 169 0.0023973 459 169 0.00068489998 460 169 0.0013698998 463 169 0.004794497 464 169 0.00068489998 465 169 0.00068489998 467 169 0.013013698 468 169 0.0051369965 469 169 0.0037670999 470 169 0.0041095987 471 169 0.0034246999 478 169 0.0013698998 483 169 0.0010273999 490 169 0.00068489998 491 169 0.00034249993 22 170 0.00067869993 60 170 0.0023752998 114 170 0.00033929991 159 170 0.015269797 160 170 0.087885976 161 170 0.0074651986 162 170 0.0095011964 165 170 0.010519199 170 170 0.00033929991 206 170 0.00033929991 219 170 0.17237866 233 170 0.0010179998 234 170 0.016966399 241 170 0.014591098 270 170 0.019002397 272 170 0.0023752998 277 170 0.00033929991 315 170 0.0020359999 317 170 0.00033929991 318 170 0.00033929991 319 170 0.00033929991 326 170 0.012894496 346 170 0.0016965999 358 170 0.0010179998 417 170 0.00033929991 438 170 0.0074651986 443 170 0.010858499 444 170 0.003054 445 170 0.024092298 446 170 0.00067869993 447 170 0.0159484 450 170 0.0020359999 452 170 0.0288429 453 170 0.0098404996 454 170 0.0013573 455 170 0.047845297 457 170 0.0023752998 458 170 0.00067869993 459 170 0.00067869993 460 170 0.0010179998 463 170 0.012215797 464 170 0.00067869993 465 170 0.00033929991 467 170 0.0074651986 468 170 0.015609097 469 170 0.0023752998 470 170 0.0023752998 471 170 0.0016965999 478 170 0.00067869993 483 170 0.00067869993 490 170 0.00033929991 491 170 0.00033929991 13 171 6.6999986e-05 18 171 0.00033519999 22 171 0.00093849981 24 171 0.00046919985 60 171 0.0024132 75 171 6.6999986e-05 82 171 0.00013409999 104 171 0.00020109999 107 171 0.00020109999 108 171 6.6999986e-05 114 171 6.6999986e-05 126 171 6.6999986e-05 130 171 0.00060329982 131 171 6.6999986e-05 132 171 6.6999986e-05 139 171 6.6999986e-05 150 171 0.00093849981 156 171 6.6999986e-05 159 171 0.032041799 160 171 0.13601017 161 171 0.011730798 162 171 0.0065021999 163 171 6.6999986e-05 165 171 0.010457199 169 171 0.0010724999 170 171 0.013473697 171 171 0.056374799 172 171 0.00093849981 186 171 0.0012065999 187 171 0.00033519999 188 171 6.6999986e-05 189 171 6.6999986e-05 190 171 0.00013409999 191 171 0.0004021998 192 171 0.0049604997 193 171 0.00053629978 194 171 0.00013409999 198 171 0.032913297 200 171 6.6999986e-05 203 171 6.6999986e-05 204 171 6.6999986e-05 206 171 6.6999986e-05 207 171 6.6999986e-05 214 171 0.0010054999 219 171 0.010993399 223 171 6.6999986e-05 224 171 0.0091164969 225 171 6.6999986e-05 233 171 0.0081109963 234 171 0.0043571964 237 171 0.0004021998 240 171 0.00026809983 241 171 0.0062340982 252 171 0.0029495 267 171 0.00013409999 270 171 0.016154997 272 171 0.0011395998 273 171 0.00013409999 277 171 0.0012065999 279 171 0.00020109999 282 171 6.6999986e-05 285 171 6.6999986e-05 292 171 0.00013409999 293 171 0.00020109999 298 171 6.6999986e-05 312 171 0.00046919985 313 171 0.0047593974 315 171 0.0085801966 317 171 0.00013409999 318 171 0.0017428999 319 171 0.0030834998 322 171 0.0004021998 325 171 6.6999986e-05 326 171 0.0053625964 334 171 6.6999986e-05 340 171 0.00020109999 346 171 0.0018098999 347 171 6.6999986e-05 350 171 0.00020109999 356 171 0.00013409999 358 171 0.0016758 387 171 6.6999986e-05 402 171 0.00020109999 417 171 0.00060329982 421 171 6.6999986e-05 422 171 6.6999986e-05 430 171 6.6999986e-05 431 171 6.6999986e-05 433 171 6.6999986e-05 434 171 0.00013409999 438 171 0.0018098999 442 171 0.00026809983 443 171 0.018836297 444 171 0.00087139988 445 171 0.0090494975 446 171 0.0023461999 447 171 0.0075076967 448 171 6.6999986e-05 450 171 0.0031505998 452 171 0.0146803 453 171 0.0089823976 454 171 0.00087139988 455 171 0.044040799 456 171 0.00053629978 457 171 0.0026143 458 171 0.00067029987 459 171 0.00053629978 460 171 0.0014746999 463 171 0.011730798 464 171 0.0004021998 465 171 0.0010724999 467 171 0.0091835 468 171 0.0095186979 469 171 0.0042230971 470 171 0.0045582987 471 171 0.0057647973 473 171 0.00013409999 477 171 6.6999986e-05 478 171 0.0014076999 483 171 0.0010724999 489 171 0.00020109999 490 171 0.0004021998 491 171 0.0010054999 17 172 0.0017462999 18 172 0.00043659983 60 172 0.0028378 114 172 0.00021829999 126 172 0.00021829999 159 172 0.058284197 160 172 0.21305388 161 172 0.0032743998 162 172 0.054136697 165 172 0.067015886 169 172 0.0024011999 170 172 0.00043659983 171 172 0.00043659983 172 172 0.0106964 190 172 0.00021829999 194 172 0.00021829999 206 172 0.00043659983 233 172 0.00021829999 234 172 0.004584197 237 172 0.00043659983 241 172 0.00043659983 252 172 0.00043659983 270 172 0.00021829999 272 172 0.00043659983 277 172 0.023139097 279 172 0.017026898 312 172 0.0021829 315 172 0.00021829999 317 172 0.00021829999 318 172 0.0017462999 319 172 0.0010914998 322 172 0.00021829999 326 172 0.00021829999 346 172 0.0019645998 356 172 0.00021829999 358 172 0.0019645998 402 172 0.00021829999 417 172 0.00065489998 442 172 0.0010914998 443 172 0.029906098 444 172 0.00021829999 445 172 0.0111329 446 172 0.0024011999 447 172 0.0015280999 450 172 0.0034926999 452 172 0.0082950965 453 172 0.0024011999 454 172 0.00043659983 455 172 0.058502499 456 172 0.00043659983 457 172 0.0028378 458 172 0.0008731999 459 172 0.013752498 460 172 0.0010914998 463 172 0.0072036982 464 172 0.00043659983 465 172 0.0010914998 467 172 0.0098231994 468 172 0.0019645998 469 172 0.0032743998 470 172 0.0037109999 471 172 0.0030560999 473 172 0.00021829999 478 172 0.0015280999 483 172 0.0013098 490 172 0.00043659983 491 172 0.00021829999 9 173 3.6199999e-05 18 173 0.00018079999 22 173 0.0005063999 60 173 0.0027849998 82 173 3.6199999e-05 83 173 3.6199999e-05 84 173 3.6199999e-05 108 173 3.6199999e-05 113 173 7.2299998e-05 114 173 7.2299998e-05 117 173 7.2299998e-05 126 173 3.6199999e-05 130 173 0.0043040998 131 173 3.6199999e-05 132 173 3.6199999e-05 133 173 7.2299998e-05 137 173 0.00061489991 139 173 0.0040870979 141 173 3.6199999e-05 143 173 3.6199999e-05 149 173 7.2299998e-05 150 173 0.0011211999 151 173 3.6199999e-05 154 173 3.6199999e-05 159 173 0.00018079999 160 173 0.094437182 161 173 0.041630499 162 173 0.0030743999 165 173 0.037507199 169 173 0.0005063999 170 173 0.019133396 171 173 0.022280097 172 173 0.00043399981 173 173 0.0013382998 175 173 3.6199999e-05 176 173 3.6199999e-05 178 173 3.6199999e-05 188 173 3.6199999e-05 189 173 7.2299998e-05 190 173 0.0001447 192 173 0.0014829 194 173 0.00054249982 198 173 0.019386597 200 173 0.0001085 203 173 0.0001447 204 173 7.2299998e-05 206 173 0.00021699999 207 173 7.2299998e-05 214 173 0.0001447 219 173 0.00021699999 223 173 3.6199999e-05 224 173 0.00054249982 225 173 3.6199999e-05 227 173 3.6199999e-05 233 173 0.018807899 234 173 0.0030019998 237 173 0.00036169984 240 173 0.00021699999 241 173 0.0326606 243 173 0.0001447 252 173 0.0088251978 270 173 0.012080397 272 173 0.00068719988 277 173 0.0027849998 279 173 0.00075949985 282 173 3.6199999e-05 283 173 3.6199999e-05 293 173 0.00028939988 296 173 3.6199999e-05 312 173 0.0064380988 315 173 0.0001085 317 173 0.0067635998 318 173 0.0020615999 319 173 0.030164897 322 173 0.0013744 326 173 0.0014105998 346 173 0.0026764998 356 173 0.0001085 358 173 0.0010851 372 173 3.6199999e-05 384 173 3.6199999e-05 387 173 3.6199999e-05 391 173 3.6199999e-05 393 173 7.2299998e-05 394 173 3.6199999e-05 397 173 3.6199999e-05 402 173 0.00018079999 419 173 3.6199999e-05 422 173 0.0001447 423 173 3.6199999e-05 427 173 3.6199999e-05 428 173 7.2299998e-05 430 173 0.00021699999 431 173 3.6199999e-05 432 173 3.6199999e-05 433 173 7.2299998e-05 434 173 7.2299998e-05 437 173 7.2299998e-05 438 173 0.0013020998 443 173 0.017433397 444 173 0.0013020998 445 173 0.0073422976 446 173 0.0010851 447 173 0.0036531 448 173 3.6199999e-05 450 173 0.0038339 452 173 0.0061848983 453 173 0.0011574 454 173 0.0003254998 455 173 0.056351297 456 173 0.00047019986 457 173 0.0033998999 458 173 0.00043399981 459 173 0.0003254998 460 173 0.0061486997 463 173 0.0098017976 464 173 0.0005063999 465 173 0.0012296999 467 173 0.014322899 468 173 0.0112486 469 173 0.0031466999 470 173 0.0035446 471 173 0.0026041998 473 173 7.2299998e-05 477 173 0.0001447 478 173 0.0015913998 483 173 0.0011574 489 173 0.0001085 490 173 0.00028939988 491 173 0.0003254998 60 174 0.0020682998 114 174 0.00051709986 130 174 0.0046535991 139 174 0.0031023999 159 174 0.0010340998 160 174 0.0062047988 161 174 0.043433297 165 174 0.012926597 170 174 0.0010340998 171 174 0.013443597 187 174 0.00051709986 192 174 0.00051709986 193 174 0.00051709986 194 174 0.0010340998 197 174 0.00051709986 198 174 0.020682499 206 174 0.00051709986 214 174 0.0051705986 219 174 0.020682499 224 174 0.029472597 225 174 0.00051709986 233 174 0.00051709986 234 174 0.0036193999 240 174 0.00051709986 241 174 0.16287488 252 174 0.0015511999 272 174 0.00051709986 274 174 0.00051709986 277 174 0.0025852998 279 174 0.0010340998 282 174 0.00051709986 292 174 0.00051709986 293 174 0.0010340998 294 174 0.00051709986 295 174 0.00051709986 312 174 0.00051709986 315 174 0.0020682998 318 174 0.00051709986 319 174 0.016028997 320 174 0.0010340998 322 174 0.0010340998 326 174 0.0020682998 338 174 0.00051709986 340 174 0.0010340998 349 174 0.00051709986 350 174 0.00051709986 358 174 0.0020682998 373 174 0.00051709986 385 174 0.00051709986 392 174 0.0010340998 393 174 0.0062047988 442 174 0.00051709986 443 174 0.0046535991 444 174 0.008272998 445 174 0.0087900981 447 174 0.023267798 450 174 0.0031023999 452 174 0.010858297 453 174 0.00051709986 455 174 0.0506722 457 174 0.004136499 458 174 0.00051709986 459 174 0.024301998 460 174 0.0051705986 463 174 0.013443597 464 174 0.0020682998 465 174 0.0010340998 467 174 0.0072388984 468 174 0.020682499 469 174 0.0036193999 470 174 0.004136499 471 174 0.0025852998 478 174 0.0010340998 479 174 0.00051709986 490 174 0.0067217983 491 174 0.00051709986 22 175 0.00063229981 60 175 0.0022131 114 175 0.00031619985 126 175 0.00031619985 150 175 0.00031619985 159 175 0.0031615999 160 175 0.075877249 161 175 0.036990199 162 175 0.0123301 165 175 0.053430296 170 175 0.026240896 171 175 0.024660099 174 175 0.00063229981 175 175 0.0018968999 190 175 0.00031619985 192 175 0.00031619985 194 175 0.00031619985 198 175 0.0237117 206 175 0.00063229981 219 175 0.00063229981 233 175 0.016756199 234 175 0.0025291999 237 175 0.00031619985 241 175 0.042680997 252 175 0.00094849989 270 175 0.015491597 272 175 0.00063229981 277 175 0.00063229981 279 175 0.0012645999 295 175 0.00031619985 312 175 0.00094849989 315 175 0.00063229981 317 175 0.0063230991 318 175 0.0022131 319 175 0.035093296 322 175 0.0063230991 326 175 0.0069553964 340 175 0.00031619985 358 175 0.0012645999 386 175 0.00031619985 387 175 0.0012645999 391 175 0.0041099973 392 175 0.00063229981 393 175 0.0041099973 422 175 0.00031619985 443 175 0.019285496 444 175 0.00031619985 445 175 0.0079039 446 175 0.0012645999 447 175 0.0098007992 450 175 0.0041099973 452 175 0.0066392981 453 175 0.0012645999 454 175 0.00063229981 455 175 0.046790998 456 175 0.00031619985 457 175 0.0018968999 458 175 0.00094849989 459 175 0.00031619985 460 175 0.0053745992 463 175 0.035409398 464 175 0.00031619985 465 175 0.0022131 467 175 0.010116998 468 175 0.011381596 469 175 0.0034776998 470 175 0.0037938999 471 175 0.0028453998 473 175 0.00031619985 478 175 0.0015807999 483 175 0.0015807999 490 175 0.00063229981 491 175 0.00031619985 9 176 4.9599999e-05 18 176 0.0012888999 22 176 9.9099998e-05 60 176 0.0014375998 82 176 4.9599999e-05 83 176 4.9599999e-05 84 176 4.9599999e-05 108 176 4.9599999e-05 114 176 9.9099998e-05 117 176 0.0062462986 126 176 4.9599999e-05 130 176 0.13315487 131 176 0.0029247999 132 176 0.0016854999 133 176 0.003024 137 176 0.011302799 139 176 0.018193498 141 176 0.0027265998 143 176 0.0036684999 149 176 0.0015864 150 176 0.0011401998 152 176 4.9599999e-05 156 176 0.00039659999 158 176 9.9099998e-05 160 176 0.043575298 161 176 0.052845497 162 176 0.0016854999 165 176 0.0052547976 170 176 0.0011401998 171 176 0.010360897 172 176 0.0001983 173 176 4.9599999e-05 176 176 0.0016358998 178 176 0.00024789991 187 176 0.0006444999 189 176 9.9099998e-05 190 176 0.0001487 192 176 4.9599999e-05 194 176 0.0001983 197 176 4.9599999e-05 198 176 0.010013897 200 176 4.9599999e-05 203 176 9.9099998e-05 204 176 4.9599999e-05 206 176 0.0001983 207 176 4.9599999e-05 214 176 4.9599999e-05 219 176 0.0014871999 233 176 0.003024 234 176 0.0027265998 237 176 0.00034699985 240 176 0.010162599 241 176 0.044715397 243 176 0.0066428967 252 176 0.00034699985 270 176 0.0017847 272 176 0.00049569993 277 176 0.00044619991 279 176 0.00049569993 293 176 4.9599999e-05 312 176 0.0047094971 315 176 4.9599999e-05 317 176 0.0066923983 318 176 0.0017350998 319 176 0.014673799 322 176 0.023844898 326 176 0.00024789991 346 176 9.9099998e-05 356 176 9.9099998e-05 358 176 0.0010409998 387 176 4.9599999e-05 402 176 0.0001487 422 176 0.0001487 423 176 4.9599999e-05 430 176 4.9599999e-05 433 176 4.9599999e-05 434 176 4.9599999e-05 437 176 0.0045111999 438 176 4.9599999e-05 442 176 4.9599999e-05 443 176 0.0078821965 444 176 0.0016854999 445 176 0.0089727975 446 176 0.00054529984 447 176 0.0054530986 448 176 4.9599999e-05 450 176 0.0036189 452 176 0.0034701999 453 176 0.00089229993 454 176 0.0016854999 455 176 0.049573697 456 176 0.00044619991 457 176 0.0023299998 458 176 0.00049569993 459 176 0.00034699985 460 176 0.0013881 463 176 0.013682298 464 176 0.0013881 465 176 0.0011898 467 176 0.012839597 468 176 0.010063499 469 176 0.0037675998 470 176 0.0040649995 471 176 0.004312899 473 176 9.9099998e-05 477 176 0.0020325 478 176 0.0013384998 483 176 0.0012392998 489 176 9.9099998e-05 490 176 0.00034699985 491 176 0.0001983 22 177 0.00022939999 60 177 0.0017205998 108 177 0.00011469999 114 177 0.00022939999 117 177 0.00011469999 126 177 0.00011469999 130 177 0.0020646998 131 177 0.00057349983 133 177 0.00057349983 137 177 0.011126399 139 177 0.022482198 141 177 0.00011469999 149 177 0.0038999999 150 177 0.0035559 154 177 0.0057352968 156 177 0.00022939999 158 177 0.00011469999 160 177 0.0080293976 161 177 0.0018352999 165 177 0.012043998 170 177 0.014452897 171 177 0.0038999999 178 177 0.00022939999 188 177 0.00011469999 189 177 0.00011469999 190 177 0.00011469999 194 177 0.00022939999 198 177 0.027873397 200 177 0.0041293986 203 177 0.00011469999 204 177 0.00011469999 206 177 0.00022939999 214 177 0.0038999999 223 177 0.00011469999 224 177 0.0012617998 225 177 0.00011469999 227 177 0.00011469999 233 177 0.0069969967 234 177 0.0033264998 237 177 0.00034409994 240 177 0.010438196 241 177 0.085914195 243 177 0.00011469999 252 177 0.020188097 270 177 0.00011469999 272 177 0.00034409994 277 177 0.10690528 282 177 0.00057349983 283 177 0.00011469999 285 177 0.00011469999 286 177 0.00022939999 289 177 0.00034409994 290 177 0.00022939999 292 177 0.00011469999 293 177 0.051158499 294 177 0.00022939999 295 177 0.00011469999 307 177 0.00022939999 312 177 0.0056205988 313 177 0.00011469999 315 177 0.013764597 317 177 0.00022939999 318 177 0.00011469999 319 177 0.018926397 320 177 0.00011469999 321 177 0.00091759977 322 177 0.0035559 324 177 0.00011469999 326 177 0.036476299 328 177 0.00022939999 340 177 0.0010322998 349 177 0.00022939999 350 177 0.00011469999 351 177 0.00011469999 354 177 0.00034409994 356 177 0.00011469999 358 177 0.0011470998 372 177 0.00011469999 373 177 0.00011469999 384 177 0.0019499999 387 177 0.00011469999 402 177 0.00011469999 419 177 0.0037852998 422 177 0.0034411999 428 177 0.00034409994 430 177 0.00034409994 437 177 0.00011469999 443 177 0.0096351989 444 177 0.00022939999 445 177 0.011241097 446 177 0.00045879977 447 177 0.00091759977 450 177 0.0032116999 452 177 0.0048175976 453 177 0.0030969998 454 177 0.00068819989 455 177 0.057008497 456 177 0.00034409994 457 177 0.0026381998 458 177 0.00080289994 459 177 0.00022939999 460 177 0.0013764999 463 177 0.010438196 464 177 0.00022939999 465 177 0.0010322998 467 177 0.0077999979 468 177 0.0056205988 469 177 0.0038999999 470 177 0.0043587983 471 177 0.0021793998 473 177 0.00011469999 477 177 0.00034409994 478 177 0.0013764999 483 177 0.0013764999 489 177 0.00011469999 490 177 0.00034409994 491 177 0.00022939999 18 178 0.00018419999 60 178 0.0018420999 108 178 9.2099988e-05 114 178 0.00018419999 117 178 0.015658099 126 178 9.2099988e-05 130 178 0.10776454 131 178 0.0013815998 132 178 0.00036839978 133 178 0.0046973974 137 178 0.025329299 138 178 9.2099988e-05 139 178 0.008565899 141 178 0.0045131966 142 178 9.2099988e-05 143 178 0.0004604999 149 178 0.0070000999 150 178 0.0043289997 152 178 9.2099988e-05 158 178 0.0076447986 160 178 0.025881898 161 178 0.0298425 162 178 0.00018419999 165 178 0.0038684998 170 178 0.00073689991 171 178 0.0011973998 172 178 0.00027629989 176 178 0.00018419999 178 178 0.023855597 187 178 9.2099988e-05 189 178 9.2099988e-05 190 178 9.2099988e-05 194 178 0.00018419999 198 178 0.0165792 203 178 9.2099988e-05 204 178 9.2099988e-05 206 178 0.00018419999 219 178 0.00018419999 233 178 0.0038684998 234 178 0.0022105998 237 178 0.00027629989 240 178 0.013355397 241 178 0.0350926 243 178 0.00073689991 252 178 9.2099988e-05 270 178 0.00027629989 272 178 0.0004604999 277 178 0.017776497 279 178 0.00092109991 293 178 9.2099988e-05 312 178 0.0004604999 315 178 0.0040526986 317 178 0.00073689991 318 178 0.00018419999 319 178 0.004144799 321 178 9.2099988e-05 322 178 0.10905409 326 178 0.0131712 356 178 9.2099988e-05 358 178 0.00073689991 384 178 0.0019341998 387 178 9.2099988e-05 402 178 9.2099988e-05 422 178 9.2099988e-05 437 178 0.0016578999 442 178 0.004144799 443 178 0.0097632967 444 178 0.0032237 445 178 0.010407999 446 178 0.0004604999 447 178 0.0040526986 450 178 0.0026711 452 178 0.0030395 453 178 0.0011973998 454 178 0.00073689991 455 178 0.049921699 456 178 0.00036839978 457 178 0.0024869 458 178 0.0006446999 459 178 0.0051579997 460 178 0.0011973998 463 178 0.011605397 464 178 0.0012894999 465 178 0.00082899979 467 178 0.014184397 468 178 0.0157502 469 178 0.004144799 470 178 0.004605297 471 178 0.0020262999 473 178 9.2099988e-05 477 178 0.0004604999 478 178 0.0011973998 483 178 0.0015657998 489 178 9.2099988e-05 490 178 0.00036839978 491 178 0.00018419999 22 179 0.00075819995 60 179 0.0022745 114 179 0.00037909998 130 179 0.0041697994 133 179 0.0068233982 137 179 0.011372298 139 179 0.017058399 141 179 0.00037909998 149 179 0.00037909998 150 179 0.0049279965 156 179 0.00037909998 158 179 0.00037909998 160 179 0.075056851 161 179 0.0064442977 165 179 0.040560998 169 179 0.00037909998 170 179 0.015162997 171 179 0.025018997 179 179 0.005307097 180 179 0.0011371998 185 179 0.00037909998 198 179 0.015162997 200 179 0.00037909998 206 179 0.00075819995 214 179 0.00037909998 219 179 0.0015162998 233 179 0.007202398 234 179 0.0026534998 237 179 0.00037909998 240 179 0.005307097 241 179 0.034874897 243 179 0.012130398 252 179 0.00037909998 270 179 0.012130398 272 179 0.00037909998 277 179 0.018953796 279 179 0.00075819995 293 179 0.00037909998 312 179 0.012130398 315 179 0.00075819995 317 179 0.0060651973 318 179 0.0018954 319 179 0.042835496 322 179 0.0022745 326 179 0.0015162998 351 179 0.00037909998 358 179 0.0011371998 437 179 0.0018954 442 179 0.00037909998 443 179 0.012509499 444 179 0.010234997 445 179 0.0060651973 446 179 0.00037909998 447 179 0.018195599 450 179 0.0037908 452 179 0.0056860968 453 179 0.0018954 454 179 0.0011371998 455 179 0.052312396 456 179 0.00037909998 457 179 0.0034116998 460 179 0.0060651973 463 179 0.0094768964 464 179 0.0015162998 465 179 0.00075819995 467 179 0.0094768964 468 179 0.0056860968 469 179 0.0045488998 470 179 0.0049279965 471 179 0.0022745 478 179 0.0011371998 483 179 0.00075819995 490 179 0.00075819995 22 180 0.0026427999 60 180 0.0035237998 108 180 0.0001258 114 180 0.00025169994 126 180 0.0001258 130 180 0.0090611987 133 180 0.0021394 137 180 0.0057890974 139 180 0.0090611987 141 180 0.0001258 149 180 0.0047822967 150 180 0.0055373982 156 180 0.00025169994 158 180 0.0032720999 160 180 0.0036495999 161 180 0.0032720999 165 180 0.0057890974 169 180 0.0050339997 170 180 0.0022652999 171 180 0.0022652999 172 180 0.00037749996 180 180 0.0096903965 185 180 0.0036495999 187 180 0.00075509981 188 180 0.0006291999 189 180 0.0001258 190 180 0.0001258 194 180 0.0001258 198 180 0.018877398 200 180 0.0042788982 203 180 0.0001258 206 180 0.00025169994 214 180 0.0032720999 224 180 0.0015101999 233 180 0.0096903965 234 180 0.0021394 237 180 0.00037749996 240 180 0.0039012998 241 180 0.040649399 243 180 0.0001258 252 180 0.00088089984 270 180 0.00025169994 272 180 0.00075509981 277 180 0.10596526 279 180 0.0010068 282 180 0.00050339988 283 180 0.00025169994 284 180 0.0001258 285 180 0.00037749996 286 180 0.0001258 289 180 0.00075509981 290 180 0.00050339988 292 180 0.00037749996 293 180 0.0076767989 294 180 0.00037749996 295 180 0.00025169994 296 180 0.0001258 299 180 0.0001258 301 180 0.0001258 308 180 0.0001258 312 180 0.004027199 315 180 0.010319699 319 180 0.038509898 320 180 0.00037749996 321 180 0.00075509981 322 180 0.0023910999 325 180 0.0001258 326 180 0.018374 328 180 0.0006291999 339 180 0.0001258 340 180 0.00088089984 351 180 0.0035237998 356 180 0.0001258 358 180 0.0013842999 387 180 0.0001258 392 180 0.0001258 393 180 0.0001258 402 180 0.00025169994 405 180 0.0001258 413 180 0.0001258 422 180 0.0001258 434 180 0.0001258 437 180 0.0006291999 443 180 0.0045305975 444 180 0.0045305975 445 180 0.0064182989 446 180 0.00050339988 447 180 0.0055373982 450 180 0.0028944998 452 180 0.0059148967 453 180 0.0035237998 454 180 0.0015101999 455 180 0.040523499 456 180 0.0001258 457 180 0.010948896 458 180 0.00075509981 459 180 0.00037749996 460 180 0.0013842999 463 180 0.014976099 464 180 0.0056631975 465 180 0.0010068 467 180 0.024666499 468 180 0.0059148967 469 180 0.0052856989 470 180 0.0055373982 471 180 0.0052856989 473 180 0.0001258 477 180 0.0010068 478 180 0.0011325998 483 180 0.0013842999 490 180 0.00050339988 491 180 0.00050339988 22 181 0.0005804 60 181 0.0021280998 108 181 0.00019349999 114 181 0.0003868998 117 181 0.00019349999 126 181 0.00019349999 130 181 0.013735697 133 181 0.0013541998 137 181 0.0061907992 139 181 0.017217997 141 181 0.00019349999 150 181 0.0058037974 156 181 0.032694899 158 181 0.0071580969 160 181 0.036370698 161 181 0.0027084998 165 181 0.022441499 169 181 0.0032887999 170 181 0.0096731 171 181 0.0046430975 178 181 0.00019349999 180 181 0.00019349999 181 181 0.0029018999 189 181 0.00019349999 190 181 0.00019349999 194 181 0.00019349999 198 181 0.012381498 206 181 0.0003868998 214 181 0.0005804 219 181 0.0011608 224 181 0.0011608 233 181 0.0069645979 234 181 0.0023214999 237 181 0.0009672998 240 181 0.0021280998 241 181 0.055329897 243 181 0.00019349999 252 181 0.00077379984 269 181 0.0003868998 270 181 0.0077383965 272 181 0.0005804 277 181 0.068678677 283 181 0.00019349999 286 181 0.00019349999 290 181 0.00019349999 293 181 0.011220697 296 181 0.00019349999 312 181 0.017024599 315 181 0.011220697 317 181 0.00019349999 318 181 0.0015476998 319 181 0.023602199 320 181 0.0005804 321 181 0.0005804 322 181 0.017411496 325 181 0.00019349999 326 181 0.0056103989 328 181 0.00019349999 330 181 0.00019349999 340 181 0.0005804 354 181 0.0011608 356 181 0.00019349999 358 181 0.0013541998 372 181 0.00019349999 387 181 0.00019349999 402 181 0.0003868998 409 181 0.0021280998 412 181 0.0003868998 422 181 0.00019349999 437 181 0.0003868998 442 181 0.00019349999 443 181 0.0102534 444 181 0.0096731 445 181 0.017411496 446 181 0.00019349999 447 181 0.011414196 450 181 0.0030953998 452 181 0.0058037974 453 181 0.0025149998 455 181 0.0433353 456 181 0.00019349999 457 181 0.0090926997 458 181 0.0011608 459 181 0.00019349999 460 181 0.0058037974 463 181 0.013155296 464 181 0.0034822999 465 181 0.0011608 467 181 0.0085122995 468 181 0.0021280998 469 181 0.0056103989 470 181 0.0059972964 471 181 0.0019345998 473 181 0.00019349999 477 181 0.0003868998 478 181 0.0013541998 483 181 0.0017410999 490 181 0.0005804 491 181 0.00019349999 60 182 0.0017557 108 182 0.00012539999 114 182 0.00025079981 126 182 0.00012539999 130 182 0.00062699988 137 182 0.00025079981 139 182 0.0016303 150 182 0.005643297 156 182 0.00062699988 158 182 0.00012539999 159 182 0.00062699988 160 182 0.040381197 161 182 0.0051416978 163 182 0.00012539999 165 182 0.041008297 169 182 0.00012539999 170 182 0.034110896 171 182 0.015675899 180 182 0.00012539999 182 182 0.0050162971 183 182 0.00012539999 189 182 0.00012539999 190 182 0.00012539999 194 182 0.00025079981 198 182 0.0061449967 203 182 0.00012539999 204 182 0.00012539999 206 182 0.00025079981 219 182 0.0018810998 224 182 0.00037619984 233 182 0.0079007 234 182 0.0025081998 237 182 0.00037619984 241 182 0.081514895 243 182 0.00012539999 252 182 0.0219463 270 182 0.0041383989 272 182 0.00037619984 277 182 0.023074999 279 182 0.0012540999 293 182 0.0043892972 312 182 0.005894199 315 182 0.00087789982 317 182 0.0067719966 318 182 0.0015048999 319 182 0.030850299 320 182 0.00012539999 321 182 0.00087789982 322 182 0.00050159986 326 182 0.0057686977 340 182 0.0020064998 354 182 0.00012539999 356 182 0.00012539999 358 182 0.00087789982 372 182 0.00012539999 385 182 0.00050159986 387 182 0.00012539999 402 182 0.00012539999 422 182 0.00012539999 442 182 0.0097817965 443 182 0.015550498 444 182 0.0045146979 445 182 0.0081514977 446 182 0.00037619984 447 182 0.0053924993 450 182 0.0032605999 452 182 0.0051416978 453 182 0.0026335998 454 182 0.0028843998 455 182 0.0451467 456 182 0.00037619984 457 182 0.0028843998 458 182 0.00050159986 459 182 0.00025079981 460 182 0.0062703975 463 182 0.0200652 464 182 0.005643297 465 182 0.0010032998 467 182 0.0077752993 468 182 0.0070227981 469 182 0.0046400987 470 182 0.0051416978 471 182 0.008026097 473 182 0.00012539999 477 182 0.0017557 478 182 0.0012540999 483 182 0.0015048999 489 182 0.00012539999 490 182 0.00050159986 491 182 0.00012539999 60 183 0.0025807999 108 183 0.00013579999 114 183 0.00027169986 126 183 0.00013579999 130 183 0.00040749996 137 183 0.00027169986 139 183 0.00067919982 149 183 0.00013579999 150 183 0.0042107999 156 183 0.00040749996 158 183 0.00027169986 160 183 0.0059765987 161 183 0.0014942 165 183 0.0055690967 169 183 0.0039390996 170 183 0.0031241998 171 183 0.0099157989 172 183 0.00027169986 180 183 0.00027169986 182 183 0.00013579999 183 183 0.0029882998 185 183 0.00013579999 189 183 0.00013579999 190 183 0.00013579999 194 183 0.00013579999 198 183 0.014398299 200 183 0.00013579999 203 183 0.00013579999 206 183 0.00027169986 223 183 0.00013579999 224 183 0.00027169986 233 183 0.012360796 234 183 0.0023091999 237 183 0.00027169986 240 183 0.00013579999 241 183 0.031648997 242 183 0.00013579999 252 183 0.014534097 270 183 0.00013579999 272 183 0.00054329983 277 183 0.20320565 282 183 0.00027169986 288 183 0.00013579999 289 183 0.00040749996 292 183 0.00040749996 293 183 0.012224898 294 183 0.00013579999 295 183 0.00040749996 296 183 0.00013579999 297 183 0.00013579999 298 183 0.00013579999 307 183 0.00027169986 312 183 0.012224898 315 183 0.013583299 317 183 0.00040749996 318 183 0.00040749996 319 183 0.0162999 320 183 0.00013579999 321 183 0.027166497 322 183 0.00013579999 324 183 0.00027169986 326 183 0.0039390996 328 183 0.00013579999 335 183 0.00027169986 340 183 0.0036674999 351 183 0.00027169986 352 183 0.00013579999 354 183 0.00027169986 356 183 0.00013579999 358 183 0.0010866998 366 183 0.00040749996 371 183 0.00013579999 372 183 0.0012224999 373 183 0.00027169986 380 183 0.00013579999 385 183 0.00040749996 386 183 0.00027169986 387 183 0.00013579999 402 183 0.00013579999 415 183 0.00013579999 422 183 0.00013579999 434 183 0.00013579999 442 183 0.00013579999 443 183 0.0051615983 444 183 0.006248299 445 183 0.0059765987 446 183 0.00040749996 447 183 0.0065199994 450 183 0.0027166998 452 183 0.005704999 453 183 0.0040749982 454 183 0.0052974969 455 183 0.035995699 456 183 0.00013579999 457 183 0.0074707977 458 183 0.00081499992 459 183 0.00027169986 460 183 0.0013583 463 183 0.0152133 464 183 0.0036674999 465 183 0.00095079979 467 183 0.0081499964 468 183 0.006248299 469 183 0.0047541 470 183 0.0054332986 471 183 0.006384097 473 183 0.00013579999 477 183 0.0046182983 478 183 0.0012224999 483 183 0.0019016999 490 183 0.00054329983 491 183 0.00027169986 16 184 0.00032139989 22 184 0.00064289989 60 184 0.0025714999 84 184 0.00064289989 114 184 0.00032139989 126 184 0.00032139989 130 184 0.0022500998 131 184 0.0022500998 133 184 0.00032139989 139 184 0.094503343 141 184 0.0070716999 160 184 0.005142998 161 184 0.0080359988 165 184 0.00032139989 184 184 0.057216298 187 184 0.00032139989 198 184 0.0038572999 206 184 0.00064289989 214 184 0.011250399 233 184 0.00032139989 234 184 0.0028929999 237 184 0.00032139989 241 184 0.072966874 272 184 0.00064289989 277 184 0.0520733 279 184 0.00032139989 289 184 0.0025714999 293 184 0.026036598 312 184 0.022179399 315 184 0.0057858974 318 184 0.00032139989 320 184 0.0016071999 321 184 0.0035357999 326 184 0.0073930994 358 184 0.00096429978 435 184 0.00032139989 443 184 0.0070716999 444 184 0.0016071999 445 184 0.018964998 447 184 0.0176792 450 184 0.0032143998 452 184 0.0041786991 453 184 0.0019285998 454 184 0.00064289989 455 184 0.0347155 456 184 0.00064289989 457 184 0.0028929999 458 184 0.00096429978 459 184 0.0012857998 460 184 0.00096429978 463 184 0.018643498 464 184 0.00064289989 465 184 0.00064289989 467 184 0.0077145994 468 184 0.016071998 469 184 0.005464498 470 184 0.0061073974 471 184 0.0016071999 473 184 0.00032139989 477 184 0.00032139989 478 184 0.0012857998 479 184 0.0012857998 483 184 0.0019285998 490 184 0.0019285998 491 184 0.00064289989 22 185 0.00025809999 60 185 0.0010322998 114 185 0.00025809999 117 185 0.00025809999 126 185 0.00025809999 130 185 0.0025805999 137 185 0.0015483999 139 185 0.0136774 142 185 0.00025809999 149 185 0.0028386998 150 185 0.0018064999 156 185 0.00077419984 158 185 0.00025809999 160 185 0.0229677 161 185 0.0072257966 165 185 0.017548397 169 185 0.00025809999 170 185 0.0087741986 171 185 0.0043870993 178 185 0.0049031973 183 185 0.00025809999 185 185 0.0046451986 186 185 0.00025809999 187 185 0.0020644998 193 185 0.00025809999 194 185 0.00025809999 198 185 0.0077418983 206 185 0.00051609986 214 185 0.00025809999 233 185 0.0064515993 234 185 0.0028386998 237 185 0.00025809999 240 185 0.0041289963 241 185 0.0335484 242 185 0.00025809999 252 185 0.0018064999 253 185 0.00025809999 270 185 0.0077418983 272 185 0.00077419984 277 185 0.078451574 279 185 0.00051609986 286 185 0.00077419984 290 185 0.00077419984 293 185 0.0061934963 312 185 0.0098064989 315 185 0.010838699 317 185 0.00051609986 318 185 0.0015483999 319 185 0.014451597 320 185 0.0092902966 321 185 0.011870999 322 185 0.0020644998 325 185 0.00051609986 326 185 0.0079999976 328 185 0.00051609986 340 185 0.0012902999 354 185 0.0085160993 358 185 0.00077419984 366 185 0.00025809999 372 185 0.017290298 401 185 0.00051609986 402 185 0.00051609986 414 185 0.00025809999 416 185 0.00025809999 422 185 0.00025809999 443 185 0.0074838996 444 185 0.010064498 445 185 0.0054193996 447 185 0.013161298 450 185 0.0030967998 452 185 0.0051612966 453 185 0.0015483999 454 185 0.0015483999 455 185 0.038967699 456 185 0.00025809999 457 185 0.0030967998 458 185 0.00025809999 459 185 0.00025809999 460 185 0.0056773983 463 185 0.038709696 464 185 0.0015483999 465 185 0.00051609986 467 185 0.0079999976 468 185 0.0054193996 469 185 0.0046451986 470 185 0.0054193996 471 185 0.0023226 473 185 0.00025809999 477 185 0.00051609986 478 185 0.0010322998 483 185 0.00077419984 490 185 0.00051609986 491 185 0.00077419984 6 186 0.00053219986 17 186 0.0001774 18 186 8.8699991e-05 21 186 0.0001774 22 186 0.0046127997 24 186 0.0025724999 25 186 0.0020402998 60 186 0.011443298 75 186 0.015878599 104 186 0.0041692965 114 186 8.8699991e-05 117 186 0.0062981993 126 186 8.8699991e-05 130 186 0.0038143999 139 186 0.0011531999 150 186 0.0001774 159 186 0.1312871 160 186 0.076554596 169 186 0.00079839979 171 186 0.00044349977 186 186 0.043821499 187 186 0.00079839979 192 186 0.00053219986 193 186 0.00044349977 198 186 0.0015079998 206 186 0.0001774 209 186 0.0001774 214 186 0.050563298 215 186 0.00035479991 218 186 0.00035479991 219 186 0.0001774 223 186 0.0028386 224 186 0.0020402998 225 186 0.0013305999 231 186 0.0015966999 233 186 0.0001774 234 186 0.018184997 240 186 0.00035479991 241 186 0.0017741998 267 186 0.0018628999 272 186 0.0029272998 273 186 8.8699991e-05 277 186 0.00062099984 287 186 8.8699991e-05 318 186 0.00035479991 322 186 0.0021289999 324 186 0.0094029978 326 186 0.0011531999 347 186 0.0031935 349 186 8.8699991e-05 350 186 0.00088709989 356 186 0.00044349977 358 186 0.00088709989 384 186 0.00035479991 414 186 0.0018628999 442 186 8.8699991e-05 443 186 0.038676497 444 186 0.0014193 445 186 0.011088397 446 186 0.0037256998 447 186 0.0066530965 448 186 8.8699991e-05 450 186 0.0015966999 452 186 0.017475396 453 186 0.015612498 454 186 0.020491399 455 186 0.038853899 456 186 8.8699991e-05 457 186 0.0031935 458 186 0.0010644998 459 186 0.0017741998 460 186 0.0012418998 463 186 0.010999698 464 186 0.00097579998 465 186 0.00044349977 467 186 0.015257698 468 186 0.0031935 469 186 0.0041692965 470 186 0.0039030998 471 186 0.00062099984 473 186 8.8699991e-05 477 186 8.8699991e-05 478 186 0.00062099984 483 186 0.0012418998 489 186 0.0028386 490 186 0.00044349977 491 186 0.020313997 4 187 1.589999e-05 6 187 0.0022057998 9 187 1.589999e-05 16 187 1.589999e-05 17 187 0.00058719981 18 187 0.0002063 21 187 0.00042849989 22 187 0.0086645968 24 187 0.0089025982 25 187 0.00041259988 60 187 0.012679499 79 187 1.589999e-05 82 187 1.589999e-05 83 187 1.589999e-05 84 187 1.589999e-05 104 187 0.011584498 108 187 3.1699994e-05 113 187 4.7599999e-05 114 187 7.9299993e-05 117 187 0.00092039979 126 187 4.7599999e-05 127 187 1.589999e-05 130 187 0.011235397 132 187 1.589999e-05 139 187 7.9299993e-05 142 187 6.3499989e-05 143 187 3.1699994e-05 150 187 0.0004918999 151 187 1.589999e-05 159 187 0.072744548 160 187 0.027564898 161 187 7.9299993e-05 169 187 0.0019359998 170 187 0.00012699999 171 187 0.00017459999 172 187 0.00017459999 186 187 0.14163285 187 187 0.0062524974 188 187 0.00031739986 189 187 7.9299993e-05 190 187 6.3499989e-05 192 187 0.0012694998 193 187 0.0013170999 194 187 6.3499989e-05 198 187 0.005189199 200 187 3.1699994e-05 201 187 3.1699994e-05 203 187 6.3499989e-05 204 187 3.1699994e-05 206 187 7.9299993e-05 207 187 3.1699994e-05 208 187 3.1699994e-05 209 187 4.7599999e-05 214 187 0.038514599 215 187 0.00099979993 217 187 1.589999e-05 218 187 0.00012699999 219 187 0.00055539981 221 187 0.00017459999 223 187 0.0040624999 224 187 0.005649399 225 187 0.0031579998 231 187 0.0019677998 233 187 0.00023799999 234 187 0.014361698 237 187 7.9299993e-05 240 187 0.0008886999 241 187 0.0074584968 248 187 1.589999e-05 250 187 1.589999e-05 251 187 4.7599999e-05 252 187 7.9299993e-05 267 187 0.0013647999 272 187 0.0012061 273 187 6.3499989e-05 277 187 0.00033329986 279 187 1.589999e-05 284 187 1.589999e-05 290 187 3.1699994e-05 293 187 0.00011109999 294 187 1.589999e-05 317 187 1.589999e-05 318 187 9.5199997e-05 322 187 0.0051733963 324 187 0.00069819996 325 187 4.7599999e-05 326 187 0.0024120999 337 187 1.589999e-05 347 187 0.0029199 350 187 0.00042849989 356 187 0.00036499999 358 187 0.0010155998 384 187 7.9299993e-05 387 187 3.1699994e-05 392 187 1.589999e-05 402 187 3.1699994e-05 404 187 3.1699994e-05 414 187 0.0019995 419 187 1.589999e-05 420 187 1.589999e-05 422 187 9.5199997e-05 423 187 1.589999e-05 425 187 1.589999e-05 430 187 3.1699994e-05 431 187 1.589999e-05 432 187 1.589999e-05 433 187 3.1699994e-05 434 187 3.1699994e-05 442 187 0.00042849989 443 187 0.031421099 444 187 0.0023804 445 187 0.013726898 446 187 0.0034118998 447 187 0.008061599 448 187 9.5199997e-05 449 187 1.589999e-05 450 187 0.0019995 452 187 0.023534097 453 187 0.013028599 454 187 0.0056017973 455 187 0.037340298 456 187 0.00042849989 457 187 0.0031420998 458 187 0.00038089999 459 187 0.0016504 460 187 0.0008886999 463 187 0.010838699 464 187 0.0022216998 465 187 0.00072999997 467 187 0.014298197 468 187 0.008109197 469 187 0.0053002983 470 187 0.0045702979 471 187 0.0014123998 473 187 9.5199997e-05 477 187 0.00011109999 478 187 0.00076169986 483 187 0.001095 489 187 0.0019202 490 187 0.00034909998 491 187 0.015202697 6 188 0.00013659999 9 188 2.729999e-05 17 188 2.729999e-05 18 188 0.0001639 21 188 2.729999e-05 22 188 0.011200298 24 188 0.0021853999 25 188 0.00032779993 60 188 0.016336098 75 188 2.729999e-05 82 188 2.729999e-05 83 188 2.729999e-05 84 188 2.729999e-05 104 188 0.008277297 108 188 2.729999e-05 113 188 5.4599994e-05 114 188 8.1999999e-05 117 188 5.4599994e-05 126 188 5.4599994e-05 127 188 2.729999e-05 130 188 0.0066108964 139 188 0.0011473999 150 188 0.00035509979 151 188 2.729999e-05 159 188 0.12257546 160 188 0.057613499 169 188 0.0022673998 171 188 0.0027863998 172 188 5.4599994e-05 186 188 0.02251 187 188 0.00019119999 188 188 0.0001639 189 188 5.4599994e-05 190 188 5.4599994e-05 192 188 0.0015297998 193 188 0.00071029994 194 188 5.4599994e-05 197 188 2.729999e-05 198 188 0.002322 200 188 2.729999e-05 203 188 5.4599994e-05 204 188 5.4599994e-05 206 188 5.4599994e-05 207 188 2.729999e-05 209 188 0.00084689981 214 188 0.028793097 215 188 8.1999999e-05 217 188 2.729999e-05 218 188 0.00024589989 219 188 0.00030049984 223 188 0.0088509992 224 188 0.0050810985 225 188 0.0032235 231 188 0.0026497999 233 188 0.00024589989 234 188 0.020761598 237 188 8.1999999e-05 240 188 0.00084689981 241 188 0.00040979986 248 188 2.729999e-05 251 188 5.4599994e-05 252 188 8.1999999e-05 267 188 0.0013658998 272 188 0.0015297998 277 188 0.00076489989 284 188 2.729999e-05 317 188 2.729999e-05 318 188 0.00013659999 322 188 0.0054908991 324 188 0.0017756999 326 188 0.0035785998 347 188 0.0029229999 350 188 0.0010107998 356 188 0.00038249977 358 188 0.0008741999 384 188 0.00010929999 387 188 2.729999e-05 402 188 2.729999e-05 404 188 5.4599994e-05 414 188 0.0015024999 419 188 2.729999e-05 422 188 0.00010929999 423 188 2.729999e-05 425 188 2.729999e-05 430 188 2.729999e-05 431 188 2.729999e-05 433 188 2.729999e-05 434 188 2.729999e-05 442 188 2.729999e-05 443 188 0.0303775 444 188 0.0025952 445 188 0.010353498 446 188 0.0035239998 447 188 0.0047259964 448 188 0.00010929999 450 188 0.0016937 452 188 0.017019097 453 188 0.017947897 454 188 0.0038518 455 188 0.052040599 456 188 0.00024589989 457 188 0.0031961999 458 188 0.00030049984 459 188 0.0011747 460 188 0.00092879985 463 188 0.015489299 464 188 0.0018575999 465 188 0.00054639997 467 188 0.012866698 468 188 0.0048352964 469 188 0.0047259964 470 188 0.0037971998 471 188 0.0013385999 473 188 8.1999999e-05 477 188 0.00010929999 478 188 0.00065559987 483 188 0.0009015 489 188 0.0017482999 490 188 0.00030049984 491 188 0.038436297 60 189 0.0015085 104 189 0.00033519999 108 189 0.0001676 114 189 0.00033519999 126 189 0.0001676 139 189 0.0001676 187 189 0.26651019 188 189 0.0098893978 189 189 0.010224599 190 189 0.0001676 192 189 0.0018437998 194 189 0.00033519999 196 189 0.00033519999 198 189 0.030841399 203 189 0.0001676 204 189 0.00033519999 206 189 0.00033519999 219 189 0.014079798 234 189 0.0026818998 237 189 0.0001676 241 189 0.027991999 252 189 0.0001676 272 189 0.00067049987 279 189 0.00083809998 317 189 0.0010056999 347 189 0.0031846999 356 189 0.00033519999 358 189 0.0018437998 387 189 0.0001676 422 189 0.0001676 443 189 0.0095540993 444 189 0.0001676 445 189 0.017934997 446 189 0.0001676 447 189 0.0010056999 450 189 0.0045255981 452 189 0.007207498 453 189 0.0011733 454 189 0.00050279987 455 189 0.046262197 456 189 0.00033519999 457 189 0.0015085 458 189 0.00050279987 459 189 0.00033519999 460 189 0.00050279987 463 189 0.031176697 464 189 0.00033519999 465 189 0.0092188977 467 189 0.011733197 468 189 0.0020113999 469 189 0.0041903965 470 189 0.0046932995 471 189 0.0013408998 473 189 0.0001676 477 189 0.0001676 478 189 0.0013408998 483 189 0.0013408998 490 189 0.00050279987 491 189 0.0050284974 18 190 0.00010029999 22 190 5.0199989e-05 60 190 0.00321 82 190 5.0199989e-05 108 190 5.0199989e-05 114 190 0.00010029999 126 190 5.0199989e-05 130 190 0.015548199 131 190 0.0002006 132 190 0.0003511 133 190 5.0199989e-05 137 190 5.0199989e-05 138 190 0.0003511 139 190 0.00010029999 141 190 5.0199989e-05 142 190 0.040024098 143 190 0.00030089985 149 190 5.0199989e-05 151 190 5.0199989e-05 158 190 0.00010029999 186 190 0.027334698 187 190 0.32330215 188 190 0.0026081 189 190 0.0002006 190 190 0.00070219999 192 190 0.0014044 193 190 5.0199989e-05 194 190 0.0001505 197 190 5.0199989e-05 198 190 0.048550498 203 190 5.0199989e-05 204 190 0.0004011998 206 190 0.00010029999 208 190 0.00060189981 214 190 0.00055169989 219 190 0.0040123984 221 190 0.0024575999 223 190 5.0199989e-05 224 190 0.0002006 225 190 0.0001505 226 190 0.00075229979 227 190 0.00050159986 228 190 0.0002006 231 190 5.0199989e-05 234 190 0.0019560999 237 190 5.0199989e-05 240 190 0.00095299981 241 190 0.017754998 252 190 0.00010029999 253 190 5.0199989e-05 272 190 0.0011535999 277 190 5.0199989e-05 293 190 5.0199989e-05 300 190 5.0199989e-05 312 190 5.0199989e-05 347 190 0.0034606999 356 190 0.0004011998 358 190 0.00065199984 384 190 5.0199989e-05 387 190 5.0199989e-05 393 190 5.0199989e-05 416 190 5.0199989e-05 417 190 5.0199989e-05 422 190 0.0001505 437 190 5.0199989e-05 443 190 0.012639198 444 190 0.0026081 445 190 0.015899297 446 190 0.00055169989 447 190 0.0054167993 450 190 0.0015548 452 190 0.0042631999 453 190 0.00095299981 454 190 0.00070219999 455 190 0.058079999 456 190 0.00010029999 457 190 0.0016550999 458 190 0.00025079981 459 190 0.00055169989 460 190 0.00090279989 463 190 0.0089276992 464 190 0.00060189981 465 190 0.0049151964 467 190 0.0062192976 468 190 0.024074599 469 190 0.0013541998 470 190 0.0015046999 471 190 0.0017052998 473 190 5.0199989e-05 477 190 0.00010029999 478 190 0.00045139994 479 190 0.00010029999 483 190 0.0004011998 490 190 0.0002006 491 190 0.00010029999 18 191 0.00049479981 22 191 0.0079168975 24 191 0.016576 60 191 0.00074219983 104 191 0.0069272965 107 191 0.011380497 114 191 0.00024739979 126 191 0.00024739979 130 191 0.011133097 138 191 0.00024739979 159 191 0.036120698 160 191 0.028698698 161 191 0.00024739979 165 191 0.00024739979 169 191 0.0071746968 170 191 0.00024739979 171 191 0.00098959985 186 191 0.022018798 191 191 0.00024739979 198 191 0.011133097 206 191 0.00049479981 214 191 0.028698698 219 191 0.0242454 223 191 0.0017317999 224 191 0.0022266 225 191 0.0012369999 231 191 0.0014843999 233 191 0.008411698 234 191 0.010638297 241 191 0.00024739979 267 191 0.0059376992 270 191 0.00024739979 272 191 0.00098959985 273 191 0.0054428987 277 191 0.00074219983 315 191 0.00024739979 317 191 0.00024739979 322 191 0.011627898 326 191 0.00024739979 334 191 0.0039583966 340 191 0.0012369999 347 191 0.0027213998 350 191 0.0098960996 356 191 0.00049479981 358 191 0.0012369999 443 191 0.017812997 444 191 0.0091538988 445 191 0.024492797 446 191 0.0022266 447 191 0.012617499 450 191 0.0022266 452 191 0.033399299 453 191 0.021276597 454 191 0.0049479976 455 191 0.042058397 457 191 0.0029687998 458 191 0.00024739979 459 191 0.00098959985 460 191 0.00074219983 463 191 0.0098960996 464 191 0.005690299 465 191 0.00049479981 467 191 0.014101896 468 191 0.013112299 469 191 0.0037109999 470 191 0.0039583966 471 191 0.00074219983 473 191 0.00024739979 477 191 0.00049479981 478 191 0.00098959985 483 191 0.0012369999 489 191 0.00049479981 490 191 0.00049479981 491 191 0.023503199 18 192 0.00019119999 21 192 6.369999e-05 22 192 0.00063729985 24 192 0.0013382998 60 192 0.0027403999 82 192 0.0001275 104 192 0.0098782964 108 192 6.369999e-05 114 192 6.369999e-05 126 192 6.369999e-05 130 192 0.0092409998 131 192 0.00057359994 132 192 6.369999e-05 138 192 6.369999e-05 139 192 0.00031869998 142 192 0.0042699985 143 192 0.0014658 149 192 0.00044609979 150 192 0.0016569998 158 192 0.0001275 159 192 0.0015294999 160 192 0.0019756998 169 192 0.0012745999 171 192 0.0001275 186 192 0.0014020998 187 192 0.1773628 188 192 0.017462198 189 192 6.369999e-05 190 192 6.369999e-05 192 192 0.0080937967 193 192 0.0001275 194 192 0.00019119999 197 192 6.369999e-05 198 192 0.032566398 200 192 6.369999e-05 203 192 6.369999e-05 204 192 0.00050979992 205 192 0.0001275 206 192 0.0001275 207 192 6.369999e-05 208 192 0.0020393999 209 192 0.0001275 211 192 0.00019119999 212 192 0.00019119999 213 192 0.0001275 214 192 0.017972097 219 192 0.015550297 221 192 0.0099419989 223 192 0.0001275 224 192 0.027786598 229 192 6.369999e-05 233 192 0.0013382998 234 192 0.0073289983 237 192 6.369999e-05 240 192 0.0043336973 241 192 0.040022898 252 192 0.00019119999 270 192 0.0015294999 271 192 0.0001275 272 192 0.00063729985 273 192 0.00057359994 276 192 6.369999e-05 277 192 0.00044609979 287 192 6.369999e-05 289 192 6.369999e-05 290 192 0.0017845 292 192 6.369999e-05 293 192 0.0081574991 294 192 0.00019119999 296 192 6.369999e-05 300 192 6.369999e-05 312 192 6.369999e-05 315 192 0.00019119999 322 192 0.0001275 325 192 0.0026766998 326 192 0.00019119999 340 192 0.00038239988 345 192 6.369999e-05 347 192 0.0028678998 348 192 6.369999e-05 350 192 6.369999e-05 356 192 0.00044609979 358 192 0.00095599983 387 192 6.369999e-05 392 192 0.0001275 393 192 0.0001275 404 192 0.0001275 416 192 6.369999e-05 417 192 0.0001275 420 192 6.369999e-05 422 192 0.00050979992 430 192 6.369999e-05 433 192 6.369999e-05 434 192 6.369999e-05 443 192 0.011471499 444 192 0.0015932999 445 192 0.013765898 446 192 0.00089219981 447 192 0.0026766998 450 192 0.0025491999 452 192 0.006691698 453 192 0.0028041999 454 192 0.0017206999 455 192 0.041233797 456 192 0.00025489996 457 192 0.0016569998 458 192 0.00038239988 459 192 0.00038239988 460 192 0.00076479977 463 192 0.0123 464 192 0.00089219981 465 192 0.0028678998 467 192 0.0087948963 468 192 0.0077113993 469 192 0.0033139999 470 192 0.0035688998 471 192 0.00076479977 473 192 0.0001275 477 192 0.00025489996 478 192 0.00082849991 483 192 0.00095599983 489 192 0.0001275 490 192 0.00038239988 491 192 0.0012108998 4 193 5.4299991e-05 10 193 5.4299991e-05 14 193 5.4299991e-05 18 193 0.00016279999 22 193 5.4299991e-05 23 193 0.0011398999 24 193 5.4299991e-05 60 193 0.0023341998 104 193 0.0038540999 107 193 5.4299991e-05 108 193 0.00016279999 109 193 5.4299991e-05 114 193 5.4299991e-05 116 193 5.4299991e-05 126 193 5.4299991e-05 130 193 0.011670798 131 193 0.0001086 132 193 0.0003256998 138 193 5.4299991e-05 139 193 0.0001086 142 193 0.0012484998 143 193 0.0019542 150 193 0.00081419991 153 193 5.4299991e-05 158 193 0.00016279999 160 193 5.4299991e-05 169 193 5.4299991e-05 186 193 0.00075999997 187 193 0.24546736 188 193 0.0094451979 189 193 0.0001086 190 193 0.0001086 192 193 0.00048849988 193 193 0.0041254982 194 193 0.0003256998 197 193 5.4299991e-05 198 193 0.027467199 200 193 5.4299991e-05 203 193 0.0001086 204 193 0.00037999987 205 193 0.0001086 206 193 0.0001086 207 193 5.4299991e-05 208 193 5.4299991e-05 209 193 0.0020084998 211 193 0.00016279999 212 193 0.00097709987 213 193 0.00016279999 214 193 0.0032026998 219 193 0.0068395995 221 193 0.0158506 224 193 0.062099699 227 193 0.00016279999 233 193 5.4299991e-05 234 193 0.0020627999 237 193 0.0001086 240 193 0.00092279981 241 193 0.060145497 242 193 5.4299991e-05 252 193 0.0001086 271 193 5.4299991e-05 272 193 0.00059709977 277 193 0.00016279999 290 193 5.4299991e-05 293 193 0.0019542 295 193 0.0001086 296 193 5.4299991e-05 315 193 0.0001086 325 193 0.0034740998 326 193 5.4299991e-05 340 193 0.00016279999 347 193 0.0032026998 348 193 5.4299991e-05 356 193 0.00037999987 358 193 0.0011941998 372 193 5.4299991e-05 387 193 5.4299991e-05 422 193 0.00027139997 430 193 5.4299991e-05 433 193 5.4299991e-05 434 193 5.4299991e-05 443 193 0.011507999 444 193 0.0028227 445 193 0.015036397 446 193 0.0007056999 447 193 0.0022798998 448 193 5.4299991e-05 450 193 0.0029312999 452 193 0.0063510984 453 193 0.0015741999 454 193 0.0013027999 455 193 0.047008999 456 193 0.00016279999 457 193 0.0016284999 458 193 0.00043429993 459 193 0.00027139997 460 193 0.00086849998 463 193 0.026815798 464 193 0.00037999987 465 193 0.0084138997 467 193 0.0086852983 468 193 0.0067310967 469 193 0.0028227 470 193 0.0030940999 471 193 0.0030397999 473 193 5.4299991e-05 477 193 0.00016279999 478 193 0.00081419991 483 193 0.00092279981 489 193 5.4299991e-05 490 193 0.0003256998 491 193 0.00016279999 22 194 0.00030299998 60 194 0.0025757998 104 194 0.0019697 114 194 0.00015149999 126 194 0.00015149999 130 194 0.00030299998 159 194 0.0037878999 160 194 0.0018181999 171 194 0.00015149999 186 194 0.0010605999 187 194 0.15742415 188 194 0.18045449 192 194 0.00030299998 194 194 0.0039393976 198 194 0.051666699 204 194 0.00015149999 206 194 0.00030299998 211 194 0.00030299998 214 194 0.0021211999 219 194 0.0039393976 221 194 0.00045449985 223 194 0.00030299998 224 194 0.0013635999 225 194 0.00015149999 234 194 0.0025757998 240 194 0.00075759995 241 194 0.0077272989 272 194 0.00030299998 277 194 0.0012120998 279 194 0.0013635999 294 194 0.00030299998 296 194 0.00015149999 312 194 0.00030299998 317 194 0.00090909982 319 194 0.00015149999 322 194 0.00015149999 326 194 0.00045449985 340 194 0.0015151999 347 194 0.0037878999 356 194 0.00045449985 358 194 0.0012120998 361 194 0.00015149999 372 194 0.00015149999 392 194 0.00030299998 393 194 0.00015149999 419 194 0.00090909982 420 194 0.00015149999 422 194 0.00075759995 434 194 0.00015149999 443 194 0.020909097 444 194 0.0046969987 445 194 0.012727298 446 194 0.00090909982 447 194 0.0068181977 450 194 0.0027272999 452 194 0.0042423978 453 194 0.0015151999 454 194 0.0025757998 455 194 0.0375758 457 194 0.0018181999 458 194 0.00030299998 459 194 0.00030299998 460 194 0.00060609984 463 194 0.037878796 464 194 0.0054544993 465 194 0.016060598 467 194 0.0098484978 468 194 0.0092423968 469 194 0.0033332999 470 194 0.0036364 471 194 0.00060609984 473 194 0.00015149999 477 194 0.00015149999 478 194 0.00075759995 483 194 0.00090909982 490 194 0.00030299998 491 194 0.0033332999 22 195 0.0087335967 60 195 0.0074859969 114 195 0.00062379986 186 195 0.076731086 187 195 0.0043667965 188 195 0.0087335967 192 195 0.0074859969 195 195 0.00062379986 198 195 0.040548999 206 195 0.0012476998 214 195 0.016843397 219 195 0.0037429999 224 195 0.0043667965 234 195 0.0081097968 241 195 0.026824698 272 195 0.00062379986 279 195 0.0018714999 340 195 0.00062379986 347 195 0.0043667965 356 195 0.00062379986 358 195 0.0018714999 443 195 0.013100397 444 195 0.00062379986 445 195 0.026200898 446 195 0.0012476998 447 195 0.013100397 450 195 0.0043667965 452 195 0.036805999 453 195 0.014348097 454 195 0.0043667965 455 195 0.034934498 457 195 0.0018714999 458 195 0.00062379986 459 195 0.021210197 463 195 0.0037429999 464 195 0.00062379986 465 195 0.0012476998 467 195 0.010605097 468 195 0.0012476998 469 195 0.0037429999 470 195 0.0037429999 471 195 0.00062379986 478 195 0.0012476998 483 195 0.0012476998 489 195 0.0018714999 490 195 0.00062379986 491 195 0.037429798 60 196 0.0018582998 114 196 0.00023229999 126 196 0.00023229999 131 196 0.00023229999 138 196 0.00023229999 139 196 0.0023228999 187 196 0.26666665 188 196 0.027874596 189 196 0.0013936998 192 196 0.005342599 194 196 0.0011614 196 196 0.0062717982 198 196 0.021370497 204 196 0.0020905999 206 196 0.00046459981 207 196 0.0011614 208 196 0.0037165999 214 196 0.00023229999 219 196 0.0030196998 221 196 0.0013936998 233 196 0.00023229999 234 196 0.0018582998 241 196 0.080139399 272 196 0.00046459981 277 196 0.00092919986 326 196 0.00046459981 347 196 0.0032519998 348 196 0.00023229999 356 196 0.00046459981 358 196 0.0016259998 422 196 0.00069689984 443 196 0.0109175 444 196 0.0013936998 445 196 0.0141696 446 196 0.00023229999 447 196 0.0020905999 450 196 0.0039488971 452 196 0.0048779994 453 196 0.00092919986 455 196 0.054587699 457 196 0.0020905999 458 196 0.00092919986 459 196 0.00046459981 460 196 0.00046459981 463 196 0.0157956 464 196 0.00069689984 465 196 0.0016259998 467 196 0.011614397 468 196 0.0027874999 469 196 0.0046457984 470 196 0.0051102974 471 196 0.00069689984 473 196 0.00023229999 478 196 0.00092919986 479 196 0.00069689984 483 196 0.0013936998 490 196 0.00046459981 22 197 0.00014729999 60 197 0.0029463999 104 197 0.00029459991 114 197 0.00014729999 126 197 0.00014729999 130 197 0.0013259 131 197 0.00058929995 139 197 0.0047141984 142 197 0.0025044 159 197 0.00073659979 160 197 0.0010311999 161 197 0.00014729999 165 197 0.00029459991 170 197 0.00014729999 171 197 0.00044199987 186 197 0.0013259 187 197 0.20035356 188 197 0.022834398 189 197 0.0011785999 190 197 0.00014729999 192 197 0.0010311999 193 197 0.00014729999 194 197 0.00044199987 196 197 0.00014729999 197 197 0.0039775968 198 197 0.039628796 203 197 0.00014729999 204 197 0.0025044 205 197 0.00014729999 206 197 0.00029459991 208 197 0.0033882998 211 197 0.0017678 212 197 0.00014729999 214 197 0.014142599 219 197 0.0064819977 221 197 0.011490896 222 197 0.0010311999 223 197 0.00014729999 224 197 0.0072185993 225 197 0.00073659979 233 197 0.00014729999 234 197 0.0027990998 237 197 0.00014729999 240 197 0.00044199987 241 197 0.059074797 270 197 0.00014729999 271 197 0.00014729999 272 197 0.00058929995 276 197 0.00014729999 277 197 0.00058929995 282 197 0.00014729999 293 197 0.0066292994 294 197 0.00029459991 296 197 0.00014729999 315 197 0.00044199987 325 197 0.0048614964 326 197 0.00044199987 340 197 0.00044199987 347 197 0.0029463999 356 197 0.00029459991 358 197 0.0013259 392 197 0.00044199987 393 197 0.00014729999 420 197 0.00014729999 422 197 0.0011785999 434 197 0.00014729999 443 197 0.0095756985 444 197 0.0048614964 445 197 0.0123748 446 197 0.00058929995 447 197 0.0082498975 450 197 0.0035356998 452 197 0.0060400963 453 197 0.0016204999 454 197 0.00058929995 455 197 0.043017097 457 197 0.0017678 458 197 0.00029459991 459 197 0.00029459991 460 197 0.00073659979 463 197 0.034767199 464 197 0.00058929995 465 197 0.0016204999 467 197 0.011343498 468 197 0.0079551972 469 197 0.0038302999 470 197 0.0042721964 471 197 0.00088389986 473 197 0.00014729999 477 197 0.00014729999 478 197 0.0011785999 479 197 0.00073659979 483 197 0.0017678 490 197 0.00058929995 491 197 0.0035356998 9 198 1.26e-05 16 198 1.26e-05 18 198 6.2899999e-05 22 198 0.00016339999 24 198 1.26e-05 60 198 0.0056322999 79 198 1.26e-05 82 198 1.26e-05 83 198 1.26e-05 84 198 1.26e-05 104 198 1.26e-05 108 198 2.5099987e-05 113 198 3.7699996e-05 114 198 7.5399992e-05 126 198 3.7699996e-05 127 198 1.26e-05 130 198 2.5099987e-05 142 198 1.26e-05 150 198 0.00057829986 151 198 1.26e-05 159 198 0.00022629999 160 198 0.00033939979 162 198 2.5099987e-05 165 198 3.7699996e-05 169 198 1.26e-05 171 198 2.5099987e-05 186 198 3.7699996e-05 187 198 0.025232296 188 198 0.3545844 189 198 0.0001509 190 198 8.7999986e-05 192 198 0.0021247 194 198 0.012685299 196 198 1.26e-05 197 198 0.00095549994 198 198 0.0183427 200 198 3.7699996e-05 201 198 2.5099987e-05 202 198 3.7699996e-05 203 198 6.2899999e-05 204 198 0.00055319979 205 198 1.26e-05 206 198 0.00016339999 207 198 5.029999e-05 208 198 0.00025139982 209 198 1.26e-05 210 198 1.26e-05 211 198 1.26e-05 212 198 1.26e-05 213 198 1.26e-05 214 198 0.0020114998 218 198 1.26e-05 219 198 0.0070906989 221 198 0.0099570975 223 198 2.5099987e-05 224 198 0.0090896972 229 198 1.26e-05 233 198 0.00013829999 234 198 0.0061602965 237 198 0.0001886 240 198 0.00023889999 241 198 0.0014583999 248 198 1.26e-05 250 198 1.26e-05 252 198 5.029999e-05 272 198 0.00052799983 273 198 1.26e-05 277 198 0.0053305998 279 198 0.0012824 282 198 1.26e-05 284 198 1.26e-05 285 198 1.26e-05 287 198 3.7699996e-05 289 198 0.00057829986 290 198 2.5099987e-05 292 198 2.5099987e-05 293 198 0.0022127 295 198 3.7699996e-05 296 198 1.26e-05 297 198 1.26e-05 299 198 1.26e-05 300 198 1.26e-05 301 198 1.26e-05 312 198 3.7699996e-05 315 198 6.2899999e-05 317 198 0.0002137 319 198 1.26e-05 320 198 2.5099987e-05 321 198 2.5099987e-05 322 198 2.5099987e-05 326 198 0.0012069 328 198 0.0001509 330 198 5.029999e-05 340 198 0.0022629998 347 198 0.0033944999 349 198 1.26e-05 350 198 1.26e-05 351 198 0.00013829999 354 198 3.7699996e-05 356 198 0.0001509 358 198 0.0012949 372 198 2.5099987e-05 384 198 3.7699996e-05 387 198 2.5099987e-05 394 198 1.26e-05 395 198 1.26e-05 397 198 1.26e-05 402 198 6.2899999e-05 419 198 1.26e-05 422 198 0.0001257 423 198 1.26e-05 425 198 1.26e-05 430 198 2.5099987e-05 431 198 1.26e-05 432 198 1.26e-05 433 198 2.5099987e-05 434 198 3.7699996e-05 442 198 0.0009680998 443 198 0.029934198 444 198 0.0025143998 445 198 0.013514999 446 198 0.00098059978 447 198 0.0054185987 448 198 2.5099987e-05 449 198 1.26e-05 450 198 0.0042493977 452 198 0.0060094967 453 198 0.0022880998 454 198 0.00055319979 455 198 0.0278221 456 198 0.00045259995 457 198 0.0016217998 458 198 0.00056569977 459 198 0.0010937999 460 198 0.00093029998 463 198 0.014030498 464 198 0.0021749998 465 198 0.0039350986 467 198 0.011591498 468 198 0.0071283989 469 198 0.0031933 470 198 0.0035452999 471 198 0.0023383999 473 198 7.5399992e-05 477 198 0.00010059999 478 198 0.00094289985 479 198 5.029999e-05 483 198 0.0010308998 489 198 5.029999e-05 490 198 0.00027659978 491 198 0.0001886 9 199 5.0899995e-05 18 199 0.00040749996 60 199 0.0058062971 82 199 0.00010189999 83 199 5.0899995e-05 84 199 5.0899995e-05 108 199 0.00010189999 113 199 0.0001528 114 199 0.0003564998 126 199 0.0001528 141 199 0.00025469996 150 199 5.0899995e-05 151 199 0.00020369999 187 199 0.1624223 189 199 0.00025469996 190 199 0.00020369999 192 199 0.0001528 194 199 0.0003056 196 199 5.0899995e-05 197 199 0.00010189999 200 199 0.0019864 201 199 0.00010189999 203 199 0.0003056 204 199 0.019659799 205 199 0.0029540998 206 199 0.0010696 207 199 0.00025469996 209 199 0.00020369999 212 199 0.0005092998 213 199 0.00010189999 214 199 0.00040749996 221 199 0.0040745996 223 199 5.0899995e-05 233 199 0.0003056 234 199 0.0024446999 237 199 0.0004584 241 199 0.0019864 248 199 5.0899995e-05 250 199 5.0899995e-05 252 199 5.0899995e-05 272 199 0.0009168 277 199 5.0899995e-05 317 199 0.00025469996 334 199 0.00040749996 340 199 0.0003564998 348 199 0.0015788998 356 199 5.0899995e-05 358 199 0.00040749996 384 199 5.0899995e-05 387 199 0.0001528 402 199 0.0001528 422 199 0.0057552978 423 199 5.0899995e-05 425 199 5.0899995e-05 430 199 0.00010189999 431 199 5.0899995e-05 432 199 5.0899995e-05 433 199 0.0001528 434 199 0.00020369999 443 199 0.0049912967 444 199 0.0123256 445 199 0.006519299 446 199 0.00025469996 447 199 0.027706999 448 199 5.0899995e-05 449 199 5.0899995e-05 450 199 0.021798898 452 199 0.0045329966 453 199 0.0006620998 454 199 0.0003564998 455 199 0.0251095 456 199 0.0016297998 457 199 0.0071304999 458 199 0.00056029996 459 199 0.0012732998 460 199 0.0018336 463 199 0.028623797 464 199 0.019557897 465 199 0.0014260998 467 199 0.031781599 468 199 0.0096261986 469 199 0.015788898 470 199 0.0170113 471 199 0.0057043992 472 199 0.00010189999 473 199 0.0003564998 477 199 0.00020369999 478 199 0.0034633998 483 199 0.011765298 489 199 0.00010189999 490 199 0.0013752 9 200 7.0999988e-05 60 200 0.0023425999 82 200 7.0999988e-05 83 200 7.0999988e-05 84 200 7.0999988e-05 108 200 7.0999988e-05 113 200 7.0999988e-05 114 200 0.00021299999 126 200 0.00014199999 139 200 0.00021299999 150 200 0.00035489979 187 200 0.097536683 188 200 7.0999988e-05 189 200 0.0034073999 190 200 0.00014199999 192 200 0.0095832981 194 200 7.0999988e-05 198 200 0.0013487998 200 200 0.0033363998 201 200 0.0013487998 202 200 0.060055397 203 200 0.00014199999 204 200 0.1510613 205 200 0.00014199999 206 200 0.00085179997 207 200 7.0999988e-05 209 200 0.00085179997 210 200 0.010932099 211 200 0.014410399 214 200 0.00092279981 221 200 0.0041172989 234 200 0.00078089978 237 200 0.00014199999 241 200 0.00035489979 272 200 0.00028389995 279 200 7.0999988e-05 325 200 0.00014199999 340 200 0.00042589987 348 200 0.0010648 356 200 7.0999988e-05 358 200 0.00014199999 387 200 0.00014199999 402 200 7.0999988e-05 404 200 7.0999988e-05 422 200 0.0017746999 430 200 7.0999988e-05 433 200 7.0999988e-05 434 200 7.0999988e-05 443 200 0.0034073999 444 200 0.0051820986 445 200 0.0056789964 446 200 0.00014199999 447 200 0.012564797 450 200 0.0047561973 452 200 0.0015616999 453 200 0.00021299999 455 200 0.0203024 456 200 0.0010648 457 200 0.0055369996 458 200 0.00056789978 459 200 0.0015616999 460 200 0.0012778 463 200 0.12209839 464 200 0.0056079999 465 200 0.0026974999 467 200 0.0326542 468 200 0.0472776 469 200 0.012209799 470 200 0.013629597 471 200 0.0040462986 473 200 0.00028389995 477 200 7.0999988e-05 478 200 0.0024136 483 200 0.054376397 490 200 0.0010648 491 200 0.00070989993 9 201 3.309999e-05 16 201 3.309999e-05 18 201 3.309999e-05 60 201 0.0013891 79 201 3.309999e-05 82 201 3.309999e-05 83 201 3.309999e-05 84 201 3.309999e-05 108 201 6.6099994e-05 113 201 9.9199999e-05 114 201 0.00026459992 126 201 9.9199999e-05 127 201 3.309999e-05 133 201 3.309999e-05 139 201 0.0024474999 150 201 0.00033069984 158 201 3.309999e-05 160 201 6.6099994e-05 171 201 3.309999e-05 187 201 0.058045298 188 201 6.6099994e-05 189 201 0.0020836999 190 201 9.9199999e-05 192 201 0.0011906999 194 201 0.00013229999 198 201 0.0021497998 200 201 0.0014552998 201 201 0.015941799 202 201 0.19222754 203 201 0.0014221999 204 201 0.018686999 205 201 0.0021167998 206 201 0.00095919985 207 201 6.6099994e-05 208 201 0.00039689988 209 201 9.9199999e-05 210 201 0.037605397 211 201 0.0056225993 212 201 3.309999e-05 213 201 3.309999e-05 214 201 9.9199999e-05 221 201 0.0030427999 224 201 0.0001984 234 201 0.00092609995 237 201 0.00023149999 240 201 3.309999e-05 241 201 0.005324997 243 201 0.00026459992 248 201 3.309999e-05 250 201 3.309999e-05 252 201 3.309999e-05 263 201 3.309999e-05 272 201 0.00036379998 277 201 6.6099994e-05 279 201 3.309999e-05 312 201 3.309999e-05 317 201 3.309999e-05 325 201 0.0014882998 326 201 3.309999e-05 340 201 3.309999e-05 348 201 0.00079379999 356 201 3.309999e-05 358 201 0.0001984 372 201 3.309999e-05 387 201 9.9199999e-05 388 201 3.309999e-05 390 201 3.309999e-05 402 201 6.6099994e-05 404 201 3.309999e-05 405 201 6.6099994e-05 419 201 3.309999e-05 422 201 0.0014552998 423 201 3.309999e-05 425 201 3.309999e-05 428 201 0.00013229999 430 201 6.6099994e-05 431 201 3.309999e-05 432 201 3.309999e-05 433 201 6.6099994e-05 434 201 6.6099994e-05 443 201 0.0019182998 444 201 0.0068793967 445 201 0.0051264986 446 201 6.6099994e-05 447 201 0.014486499 449 201 3.309999e-05 450 201 0.0051264986 452 201 0.0016205998 453 201 0.00029769982 454 201 9.9199999e-05 455 201 0.012898996 456 201 0.00079379999 457 201 0.0054902993 458 201 0.0006614998 459 201 0.0006614998 460 201 0.0014221999 463 201 0.11992717 464 201 0.0058210976 465 201 0.0012236999 467 201 0.0168017 468 201 0.025632497 469 201 0.011179097 470 201 0.012435898 471 201 0.0023482998 473 201 0.00026459992 477 201 6.6099994e-05 478 201 0.0019514 479 201 9.9199999e-05 483 201 0.031817399 489 201 3.309999e-05 490 201 0.0011906999 491 201 0.0013229998 60 202 0.0036038999 82 202 9.4799994e-05 108 202 9.4799994e-05 114 202 9.4799994e-05 126 202 9.4799994e-05 130 202 9.4799994e-05 132 202 9.4799994e-05 139 202 0.0027504 150 202 0.0034142998 158 202 9.4799994e-05 160 202 0.00028449995 165 202 9.4799994e-05 171 202 0.00018969999 172 202 9.4799994e-05 187 202 0.13154399 188 202 0.0185888 189 202 9.4799994e-05 190 202 0.00037939986 192 202 0.013941597 194 202 0.00028449995 197 202 9.4799994e-05 198 202 0.0036038999 200 202 0.0024658998 201 202 9.4799994e-05 202 202 0.0018967998 203 202 0.0036038999 204 202 0.006069798 205 202 0.017166197 206 202 0.0013277999 207 202 9.4799994e-05 209 202 0.0014225999 210 202 0.0090098977 211 202 0.024848297 212 202 0.0040780976 213 202 0.00085359998 214 202 0.0020864999 219 202 0.010527298 221 202 0.016502298 224 202 0.00075869984 233 202 0.00028449995 234 202 0.0021813 237 202 0.00047419989 241 202 0.011855099 243 202 0.0018967998 272 202 0.00075869984 277 202 0.00047419989 279 202 9.4799994e-05 293 202 9.4799994e-05 294 202 9.4799994e-05 312 202 0.00018969999 315 202 9.4799994e-05 317 202 9.4799994e-05 325 202 0.0043626986 326 202 9.4799994e-05 348 202 0.0027504 358 202 0.00037939986 372 202 9.4799994e-05 387 202 9.4799994e-05 398 202 9.4799994e-05 402 202 9.4799994e-05 409 202 9.4799994e-05 422 202 0.014415797 428 202 0.00075869984 430 202 9.4799994e-05 431 202 9.4799994e-05 433 202 9.4799994e-05 434 202 0.00037939986 443 202 0.0063542984 444 202 0.0027504 445 202 0.029305797 446 202 0.00018969999 447 202 0.0088201985 450 202 0.0080614984 452 202 0.0070181973 453 202 0.001802 454 202 0.00047419989 455 202 0.030348998 456 202 0.00047419989 457 202 0.0037935998 458 202 0.00075869984 459 202 0.00085359998 460 202 0.0018967998 463 202 0.015553899 464 202 0.0023709999 465 202 0.0019916999 467 202 0.019252699 468 202 0.018019699 469 202 0.0065439977 470 202 0.0073026977 471 202 0.0061645992 472 202 9.4799994e-05 473 202 0.00018969999 478 202 0.0016122998 479 202 9.4799994e-05 483 202 0.0022761999 489 202 9.4799994e-05 490 202 0.00056899991 9 203 0.00015369999 60 203 0.0012297998 82 203 0.00015369999 83 203 0.00015369999 84 203 0.00015369999 108 203 0.00015369999 113 203 0.00015369999 114 203 0.0003074999 126 203 0.00015369999 127 203 0.00015369999 133 203 0.00015369999 150 203 0.0019985 160 203 0.00015369999 187 203 0.0424289 188 203 0.0003074999 189 203 0.00046119979 190 203 0.00015369999 192 203 0.00046119979 194 203 0.0003074999 197 203 0.00015369999 198 203 0.0013835998 200 203 0.0033819999 201 203 0.00046119979 202 203 0.050576497 203 203 0.010299798 204 203 0.026748698 205 203 0.0003074999 206 203 0.0012297998 207 203 0.00015369999 208 203 0.00015369999 210 203 0.069792449 211 203 0.0064565986 221 203 0.0015372999 224 203 0.00015369999 234 203 0.0015372999 237 203 0.0003074999 241 203 0.0073788986 248 203 0.00015369999 250 203 0.00015369999 252 203 0.00015369999 272 203 0.00046119979 277 203 0.00015369999 279 203 0.00015369999 317 203 0.00015369999 348 203 0.0007685998 358 203 0.0003074999 387 203 0.00015369999 402 203 0.00015369999 419 203 0.00015369999 422 203 0.0084549971 423 203 0.00015369999 425 203 0.00015369999 428 203 0.00015369999 430 203 0.00015369999 431 203 0.00015369999 433 203 0.00015369999 434 203 0.00015369999 443 203 0.0012297998 444 203 0.0081475973 445 203 0.0027671 446 203 0.00015369999 447 203 0.0167563 450 203 0.006917797 452 203 0.0024595999 453 203 0.0003074999 455 203 0.010299798 456 203 0.0007685998 457 203 0.0039968975 458 203 0.00061489991 459 203 0.00046119979 460 203 0.0012297998 463 203 0.023674097 464 203 0.0083012991 465 203 0.0016909998 467 203 0.035972297 468 203 0.017217498 469 203 0.013835497 470 203 0.0152191 471 203 0.004919298 473 203 0.0003074999 477 203 0.00015369999 478 203 0.0041506998 483 203 0.0063027963 489 203 0.00015369999 490 203 0.0012297998 491 203 0.00015369999 9 204 2.0699998e-05 18 204 6.2199993e-05 22 204 2.0699998e-05 60 204 0.0037759 82 204 2.0699998e-05 83 204 2.0699998e-05 84 204 2.0699998e-05 104 204 8.2999992e-05 108 204 2.0699998e-05 113 204 6.2199993e-05 114 204 0.0001452 126 204 4.1499996e-05 130 204 0.00029049977 131 204 2.0699998e-05 132 204 0.00010369999 133 204 2.0699998e-05 138 204 2.0699998e-05 139 204 0.0001867 141 204 2.0699998e-05 142 204 6.2199993e-05 143 204 4.1499996e-05 150 204 0.00072609982 151 204 2.0699998e-05 159 204 4.1499996e-05 160 204 2.0699998e-05 169 204 2.0699998e-05 171 204 2.0699998e-05 180 204 2.0699998e-05 187 204 0.16491359 188 204 0.0081533976 189 204 0.0002489998 190 204 0.000166 192 204 0.0082985982 193 204 4.1499996e-05 194 204 0.00041489978 196 204 2.0699998e-05 197 204 4.1499996e-05 198 204 0.0039832965 200 204 0.00041489978 201 204 8.2999992e-05 202 204 0.00062239985 203 204 0.00064309989 204 204 0.022240199 205 204 0.010041296 206 204 0.0011824998 207 204 0.00022819999 208 204 0.000166 209 204 0.0040455982 210 204 0.0018048999 211 204 0.015352398 212 204 0.011244599 213 204 0.0022198998 214 204 0.0075101964 219 204 0.0011824998 221 204 0.021472599 223 204 4.1499996e-05 224 204 0.0010372999 225 204 2.0699998e-05 226 204 8.2999992e-05 227 204 6.2199993e-05 233 204 0.00076759979 234 204 0.0021160999 237 204 0.00031119981 240 204 4.1499996e-05 241 204 0.008174099 243 204 6.2199993e-05 248 204 2.0699998e-05 252 204 4.1499996e-05 270 204 2.0699998e-05 271 204 2.0699998e-05 272 204 0.00078839995 277 204 0.0026969998 279 204 0.00012449999 287 204 8.2999992e-05 289 204 0.00091279997 290 204 6.2199993e-05 292 204 6.2199993e-05 293 204 0.0018671998 294 204 6.2199993e-05 295 204 2.0699998e-05 315 204 4.1499996e-05 317 204 2.0699998e-05 319 204 6.2199993e-05 320 204 2.0699998e-05 321 204 2.0699998e-05 325 204 0.0024065999 326 204 8.2999992e-05 334 204 2.0699998e-05 340 204 0.00010369999 347 204 8.2999992e-05 348 204 0.0040247999 356 204 2.0699998e-05 358 204 0.00035269978 370 204 2.0699998e-05 384 204 2.0699998e-05 387 204 6.2199993e-05 392 204 2.0699998e-05 394 204 2.0699998e-05 397 204 2.0699998e-05 402 204 8.2999992e-05 421 204 2.0699998e-05 422 204 0.010829698 430 204 4.1499996e-05 431 204 0.00033189985 432 204 2.0699998e-05 433 204 8.2999992e-05 434 204 0.0011824998 441 204 2.0699998e-05 442 204 2.0699998e-05 443 204 0.0067218989 444 204 0.0023651 445 204 0.0089831986 446 204 0.00029049977 447 204 0.0070122965 448 204 2.0699998e-05 450 204 0.0079665966 452 204 0.0060994998 453 204 0.0020538999 454 204 0.00039419997 455 204 0.031990997 456 204 0.00078839995 457 204 0.0033608999 458 204 0.00066389982 459 204 0.0011202998 460 204 0.0017633999 463 204 0.014315099 464 204 0.0024895999 465 204 0.0024895999 467 204 0.027924698 468 204 0.0080080964 469 204 0.0065973997 470 204 0.0073441975 471 204 0.0028007999 472 204 0.0001867 473 204 0.0001452 477 204 8.2999992e-05 478 204 0.0014936998 479 204 4.1499996e-05 483 204 0.0037550998 489 204 8.2999992e-05 490 204 0.00053939992 491 204 0.0002489998 60 205 0.003268 130 205 0.00065359985 187 205 0.014379099 188 205 0.00065359985 192 205 0.00065359985 198 205 0.0013071999 200 205 0.010457497 203 205 0.0078430995 204 205 0.0026143999 205 205 0.00065359985 206 205 0.00065359985 208 205 0.00065359985 209 205 0.00065359985 211 205 0.0013071999 212 205 0.0019607998 214 205 0.029411796 218 205 0.00065359985 221 205 0.0019607998 222 205 0.00065359985 224 205 0.0019607998 225 205 0.00065359985 233 205 0.0013071999 234 205 0.003268 241 205 0.0071894974 270 205 0.0071894974 272 205 0.00065359985 292 205 0.0045751967 293 205 0.069934547 294 205 0.0071894974 301 205 0.00065359985 320 205 0.013725497 348 205 0.0019607998 422 205 0.0372549 434 205 0.0078430995 442 205 0.011111099 443 205 0.003268 444 205 0.0078430995 445 205 0.0065358989 447 205 0.016993497 450 205 0.0065358989 452 205 0.0058823973 453 205 0.0019607998 455 205 0.022222199 457 205 0.003268 460 205 0.055555597 463 205 0.018300697 464 205 0.00065359985 465 205 0.00065359985 467 205 0.013725497 468 205 0.0026143999 469 205 0.008496698 470 205 0.0098038986 471 205 0.0013071999 478 205 0.0013071999 483 205 0.00065359985 490 205 0.00065359985 9 206 7.1799994e-05 60 206 0.0017233 82 206 7.1799994e-05 108 206 7.1799994e-05 114 206 0.00014359999 126 206 7.1799994e-05 131 206 7.1799994e-05 139 206 7.1799994e-05 150 206 0.0021541 187 206 0.24965888 188 206 0.0031593 189 206 7.1799994e-05 190 206 7.1799994e-05 192 206 0.0034464998 194 206 0.0022976999 197 206 7.1799994e-05 198 206 0.010554999 200 206 0.0017233 203 206 0.0019387 204 206 0.0056005977 205 206 0.00078979996 206 206 0.0099087991 207 206 0.00028719986 208 206 7.1799994e-05 209 206 0.00028719986 210 206 7.1799994e-05 211 206 0.018309798 212 206 0.0016514999 213 206 0.00028719986 214 206 0.00050259987 219 206 0.0028720999 221 206 0.0055287965 233 206 7.1799994e-05 234 206 0.0013642998 237 206 0.0002154 241 206 0.00071799988 272 206 0.00071799988 277 206 7.1799994e-05 279 206 0.00014359999 317 206 7.1799994e-05 325 206 0.00014359999 326 206 7.1799994e-05 348 206 0.0022976999 358 206 0.0002154 387 206 7.1799994e-05 402 206 7.1799994e-05 422 206 0.0041645989 430 206 7.1799994e-05 433 206 7.1799994e-05 434 206 0.030229099 443 206 0.0081136972 444 206 0.0027284999 445 206 0.010267798 446 206 0.00035899994 447 206 0.0081854984 450 206 0.0053133965 452 206 0.0053851977 453 206 0.0010052 454 206 0.0015079 455 206 0.046743698 456 206 0.00028719986 457 206 0.0033028999 458 206 0.00071799988 459 206 0.00043079979 460 206 0.0015079 463 206 0.0078264996 464 206 0.0021541 465 206 0.0013642998 467 206 0.010124199 468 206 0.0052415989 469 206 0.0053851977 470 206 0.0061032996 471 206 0.0015796998 473 206 0.00014359999 478 206 0.0010769998 483 206 0.0016514999 489 206 7.1799994e-05 490 206 0.00050259987 491 206 7.1799994e-05 60 207 0.0015452998 108 207 0.0001717 114 207 0.00034339982 126 207 0.0001717 130 207 0.00034339982 131 207 0.0072114989 133 207 0.0001717 139 207 0.013221197 141 207 0.0001717 150 207 0.0001717 187 207 0.11933374 188 207 0.028674498 189 207 0.0001717 190 207 0.0001717 192 207 0.0015452998 194 207 0.016998596 196 207 0.00034339982 198 207 0.008928597 200 207 0.00034339982 203 207 0.0024037999 204 207 0.00068679987 205 207 0.0001717 206 207 0.00051509985 207 207 0.026270598 210 207 0.00034339982 211 207 0.00034339982 212 207 0.0001717 214 207 0.00051509985 219 207 0.00051509985 221 207 0.00034339982 224 207 0.0018886998 234 207 0.0024037999 237 207 0.00034339982 241 207 0.027815897 243 207 0.00034339982 252 207 0.0001717 272 207 0.00051509985 277 207 0.0070397966 279 207 0.0001717 312 207 0.0001717 315 207 0.0001717 326 207 0.012019198 340 207 0.0001717 347 207 0.0001717 348 207 0.0024037999 358 207 0.00034339982 387 207 0.0001717 422 207 0.0029189999 433 207 0.0001717 434 207 0.0001717 443 207 0.0065246969 444 207 0.0010301999 445 207 0.013221197 446 207 0.0001717 447 207 0.0077265985 450 207 0.0078983977 452 207 0.0058378987 453 207 0.0018886998 454 207 0.00034339982 455 207 0.0331387 456 207 0.0001717 457 207 0.0029189999 458 207 0.0010301999 459 207 0.00034339982 460 207 0.0017169998 463 207 0.021291196 464 207 0.00051509985 465 207 0.0017169998 467 207 0.012877699 468 207 0.0070397966 469 207 0.0060095973 470 207 0.0065246969 471 207 0.0022320999 473 207 0.0001717 477 207 0.0001717 478 207 0.0018886998 483 207 0.0017169998 489 207 0.0001717 490 207 0.00068679987 491 207 0.0001717 9 208 0.00016349999 60 208 0.0024517998 82 208 0.00016349999 83 208 0.00016349999 84 208 0.00016349999 108 208 0.00016349999 113 208 0.00032689981 114 208 0.00032689981 126 208 0.00016349999 150 208 0.00049039978 187 208 0.07682246 188 208 0.00032689981 189 208 0.018960398 190 208 0.00016349999 192 208 0.0034324999 194 208 0.00032689981 198 208 0.0068649985 200 208 0.00016349999 203 208 0.00016349999 204 208 0.039065097 205 208 0.00016349999 206 208 0.00032689981 207 208 0.00016349999 208 208 0.064400077 211 208 0.00032689981 212 208 0.00016349999 214 208 0.00032689981 221 208 0.015200999 233 208 0.0024517998 234 208 0.001798 237 208 0.00032689981 241 208 0.044295497 252 208 0.00016349999 272 208 0.0014710999 279 208 0.00016349999 317 208 0.00016349999 348 208 0.0014710999 358 208 0.00032689981 387 208 0.00016349999 422 208 0.0062111989 423 208 0.00016349999 430 208 0.00016349999 431 208 0.00016349999 433 208 0.00016349999 434 208 0.00016349999 443 208 0.0027786999 444 208 0.004086297 445 208 0.009153299 447 208 0.014383797 450 208 0.0053939 452 208 0.0044131987 453 208 0.0009806999 454 208 0.00065379986 455 208 0.0246813 456 208 0.00032689981 457 208 0.0037594 458 208 0.0013075999 459 208 0.0009806999 460 208 0.0014710999 463 208 0.062602162 464 208 0.00081729982 465 208 0.0014710999 467 208 0.048872199 468 208 0.0080091991 469 208 0.0107878 470 208 0.0120955 471 208 0.0014710999 473 208 0.00032689981 477 208 0.00016349999 478 208 0.0014710999 479 208 0.012912698 483 208 0.0031055999 490 208 0.0013075999 491 208 0.00016349999 60 209 0.0014450999 114 209 0.00048169983 126 209 0.00048169983 130 209 0.032273598 150 209 0.00048169983 187 209 0.094412267 188 209 0.0014450999 192 209 0.00048169983 194 209 0.00048169983 198 209 0.0048169978 204 209 0.0019267998 205 209 0.00048169983 206 209 0.00096339989 208 209 0.00048169983 209 209 0.0019267998 211 209 0.0096338987 212 209 0.00096339989 214 209 0.0019267998 221 209 0.0062619969 225 209 0.0086704977 234 209 0.0028901999 237 209 0.00048169983 241 209 0.0019267998 272 209 0.00048169983 292 209 0.0024084998 293 209 0.00048169983 294 209 0.00096339989 317 209 0.00048169983 348 209 0.0033718999 358 209 0.00048169983 422 209 0.0028901999 443 209 0.0038535998 444 209 0.00048169983 445 209 0.0057802983 447 209 0.0077070966 450 209 0.008188799 452 209 0.0067436993 453 209 0.00096339989 454 209 0.0014450999 455 209 0.015896 456 209 0.00048169983 457 209 0.0033718999 458 209 0.00048169983 459 209 0.015414298 460 209 0.0033718999 463 209 0.025048196 464 209 0.00096339989 465 209 0.0014450999 467 209 0.014450897 468 209 0.0086704977 469 209 0.0077070966 470 209 0.0091521963 471 209 0.0019267998 472 209 0.0048169978 473 209 0.00048169983 478 209 0.0019267998 483 209 0.0024084998 490 209 0.00096339989 60 210 0.00076079997 108 210 0.00025359984 114 210 0.0005071999 126 210 0.00025359984 131 210 0.00025359984 139 210 0.024600599 150 210 0.00025359984 187 210 0.043875199 188 210 0.029165599 189 210 0.00025359984 190 210 0.00025359984 192 210 0.0010144999 194 210 0.0010144999 198 210 0.0017752999 200 210 0.00025359984 201 210 0.0005071999 202 210 0.0076083988 203 210 0.00025359984 204 210 0.0017752999 205 210 0.0005071999 206 210 0.00076079997 207 210 0.0053258985 210 210 0.019274697 211 210 0.00076079997 212 210 0.00025359984 214 210 0.00025359984 219 210 0.022317998 221 210 0.0005071999 234 210 0.0035505998 237 210 0.0005071999 241 210 0.0050722994 243 210 0.00025359984 272 210 0.0005071999 277 210 0.0045650974 290 210 0.00025359984 326 210 0.00025359984 348 210 0.0038041999 358 210 0.0005071999 387 210 0.00025359984 422 210 0.00076079997 433 210 0.00025359984 434 210 0.00025359984 443 210 0.0035505998 444 210 0.0005071999 445 210 0.0053258985 447 210 0.0017752999 450 210 0.011919897 452 210 0.0068475977 453 210 0.00076079997 454 210 0.00025359984 455 210 0.015724096 456 210 0.00025359984 457 210 0.0035505998 458 210 0.0005071999 459 210 0.00025359984 460 210 0.0015216998 463 210 0.015470497 464 210 0.00076079997 465 210 0.003297 467 210 0.017499398 468 210 0.0043113977 469 210 0.0063402988 470 210 0.0071011968 471 210 0.003297 473 210 0.00025359984 478 210 0.0022824998 483 210 0.003297 489 210 0.00025359984 490 210 0.00076079997 60 211 0.0014368 114 211 0.00035919994 150 211 0.00035919994 187 211 0.022270098 188 211 0.0014368 192 211 0.0014368 194 211 0.00035919994 198 211 0.00035919994 202 211 0.0010775998 203 211 0.00035919994 204 211 0.0025143998 205 211 0.0014368 206 211 0.00035919994 209 211 0.00035919994 210 211 0.00071839988 211 211 0.0021551999 212 211 0.00071839988 214 211 0.0010775998 219 211 0.00071839988 221 211 0.0021551999 234 211 0.0017959999 237 211 0.00035919994 241 211 0.0010775998 272 211 0.00035919994 287 211 0.014008597 293 211 0.0010775998 294 211 0.00035919994 320 211 0.00035919994 325 211 0.00035919994 348 211 0.021192499 358 211 0.00035919994 422 211 0.026221298 443 211 0.0010775998 444 211 0.00071839988 445 211 0.010057498 447 211 0.0079022981 450 211 0.0096982978 452 211 0.0071838982 453 211 0.00071839988 455 211 0.011135098 457 211 0.0035919999 458 211 0.0014368 459 211 0.00035919994 460 211 0.0021551999 463 211 0.024425298 464 211 0.0010775998 465 211 0.0014368 467 211 0.0172414 468 211 0.011853397 469 211 0.0075430982 470 211 0.0082614981 471 211 0.0032327999 478 211 0.0017959999 483 211 0.0028736 490 211 0.00071839988 60 212 0.0015552 114 212 0.00077759987 130 212 0.00077759987 187 212 0.029548999 188 212 0.00077759987 192 212 0.00077759987 200 212 0.00077759987 202 212 0.0031103999 203 212 0.00077759987 204 212 0.0038879998 205 212 0.00077759987 206 212 0.00077759987 210 212 0.00077759987 211 212 0.0015552 212 212 0.0093312971 214 212 0.0046655983 221 212 0.0023327998 234 212 0.0015552 241 212 0.031881798 270 212 0.00077759987 292 212 0.024105798 293 212 0.0077759996 294 212 0.038102597 320 212 0.0015552 348 212 0.0031103999 422 212 0.013996899 434 212 0.00077759987 442 212 0.0015552 443 212 0.00077759987 444 212 0.0015552 445 212 0.013996899 447 212 0.0062207989 450 212 0.0093312971 452 212 0.0062207989 453 212 0.0015552 455 212 0.013996899 457 212 0.0031103999 459 212 0.00077759987 460 212 0.050544299 463 212 0.022550497 464 212 0.0023327998 465 212 0.00077759987 467 212 0.014774498 468 212 0.0038879998 469 212 0.010886498 470 212 0.010886498 471 212 0.0015552 478 212 0.0015552 483 212 0.0054431967 490 212 0.00077759987 114 213 0.0039840974 187 213 0.011952199 198 213 0.0039840974 206 213 0.0039840974 214 213 0.07171309 241 213 0.0039840974 292 213 0.023904398 293 213 0.0039840974 294 213 0.011952199 348 213 0.0079680979 422 213 0.019920297 443 213 0.0079680979 444 213 0.0039840974 445 213 0.0039840974 447 213 0.07171309 450 213 0.0079680979 452 213 0.0079680979 455 213 0.011952199 457 213 0.0039840974 460 213 0.011952199 463 213 0.035856597 464 213 0.0039840974 467 213 0.011952199 468 213 0.0039840974 469 213 0.0079680979 470 213 0.0079680979 478 213 0.0039840974 483 213 0.0079680979 490 213 0.0039840974 5 214 1.7299986e-05 6 214 0.00015029999 9 214 2.8899987e-05 10 214 6.359999e-05 12 214 1.1599999e-05 13 214 5.1999989e-05 14 214 4.6199988e-05 16 214 1.7299986e-05 17 214 0.0001734 18 214 0.0002138 19 214 0.0024389999 20 214 0.00068779988 21 214 0.0076001994 22 214 0.0053634979 23 214 0.047849398 24 214 0.0022598 25 214 0.0090277977 60 214 0.011460997 66 214 6.939999e-05 75 214 1.7299986e-05 79 214 1.7299986e-05 82 214 0.00050859991 83 214 2.3099987e-05 84 214 2.3099987e-05 88 214 0.00012139999 98 214 0.00071669999 102 214 0.00010399999 103 214 5.7999996e-06 104 214 0.00053749979 107 214 0.0004623998 108 214 0.00014449999 109 214 5.1999989e-05 113 214 6.359999e-05 114 214 0.0001734 116 214 4.0499988e-05 117 214 8.6699991e-05 118 214 0.00014449999 119 214 0.00030629989 120 214 0.00062419986 122 214 5.7999996e-06 125 214 5.7999996e-06 126 214 6.359999e-05 127 214 1.7299986e-05 130 214 3.4699988e-05 131 214 1.1599999e-05 132 214 2.8899987e-05 139 214 1.1599999e-05 140 214 0.00012139999 150 214 0.0002023 151 214 0.00010399999 153 214 5.7999996e-06 158 214 5.7999996e-06 159 214 0.0001965 160 214 0.00015599999 162 214 5.7999996e-06 169 214 5.7999996e-06 171 214 4.0499988e-05 186 214 0.0022308999 187 214 0.0002023 188 214 1.1599999e-05 189 214 8.089999e-05 190 214 4.0499988e-05 192 214 0.00052589993 193 214 0.0007050999 194 214 6.359999e-05 196 214 5.7999996e-06 197 214 1.1599999e-05 198 214 0.0035601999 200 214 4.6199988e-05 201 214 2.8899987e-05 202 214 5.7999996e-06 203 214 2.8899987e-05 204 214 0.00010979999 206 214 0.00046809996 207 214 2.3099987e-05 209 214 5.7999996e-06 214 214 0.17221504 215 214 0.0048374981 217 214 0.00058949995 218 214 0.00062999991 219 214 1.1599999e-05 220 214 8.089999e-05 222 214 0.0001907 223 214 0.0035023999 224 214 0.0036122999 225 214 0.00023699999 226 214 5.7999996e-06 227 214 2.8899987e-05 228 214 0.00028899987 229 214 0.0001849 230 214 1.1599999e-05 231 214 0.00073979981 232 214 5.7799989e-05 233 214 0.0014044 234 214 0.013911497 237 214 0.00011559999 239 214 5.7999996e-06 240 214 9.2499991e-05 241 214 0.0076290965 242 214 1.1599999e-05 248 214 2.3099987e-05 250 214 1.7299986e-05 251 214 0.00023699999 252 214 0.00039879978 253 214 0.00010979999 254 214 5.7999996e-06 257 214 5.7999996e-06 263 214 1.7299986e-05 267 214 0.0013581999 270 214 2.3099987e-05 272 214 0.0002254 273 214 0.00035259989 276 214 5.7999996e-06 277 214 0.0051727965 278 214 6.939999e-05 279 214 2.3099987e-05 282 214 9.8299992e-05 283 214 4.6199988e-05 284 214 2.8899987e-05 285 214 0.0018032 286 214 0.00078599993 287 214 0.0064731985 288 214 0.0012830999 289 214 0.00082069985 290 214 0.0031093999 291 214 5.7999996e-06 292 214 4.0499988e-05 293 214 1.7299986e-05 294 214 0.00082649989 295 214 3.4699988e-05 297 214 1.7299986e-05 298 214 1.7299986e-05 300 214 0.0011038999 301 214 0.0036527 305 214 4.0499988e-05 307 214 4.6199988e-05 308 214 5.7999996e-06 312 214 0.00014449999 314 214 1.7299986e-05 315 214 2.8899987e-05 317 214 5.7999996e-06 320 214 5.7999996e-06 321 214 1.7299986e-05 322 214 5.1999989e-05 324 214 0.0014564998 325 214 2.3099987e-05 326 214 0.0002427 328 214 0.00012139999 331 214 0.0002081 332 214 0.00015029999 333 214 5.7999996e-06 335 214 1.1599999e-05 336 214 2.8899987e-05 337 214 2.3099987e-05 340 214 4.6199988e-05 341 214 5.7999996e-06 343 214 5.7999996e-06 349 214 0.0099986978 350 214 0.0044040978 351 214 5.1999989e-05 352 214 2.3099987e-05 354 214 4.6199988e-05 356 214 0.0014853999 358 214 0.00076289987 359 214 5.7999996e-06 364 214 5.7999996e-06 366 214 0.0010287999 370 214 2.3099987e-05 371 214 1.7299986e-05 372 214 3.4699988e-05 373 214 1.1599999e-05 374 214 1.7299986e-05 375 214 0.00059529999 380 214 1.1599999e-05 384 214 8.089999e-05 386 214 5.7999996e-06 387 214 6.359999e-05 392 214 5.7999996e-06 393 214 5.7999996e-06 394 214 5.7999996e-06 397 214 5.7999996e-06 402 214 7.509999e-05 404 214 1.7299986e-05 408 214 1.1599999e-05 414 214 0.0010346 416 214 5.7999996e-06 417 214 0.00015029999 419 214 2.3099987e-05 421 214 8.089999e-05 422 214 7.509999e-05 423 214 1.7299986e-05 425 214 1.7299986e-05 430 214 5.1999989e-05 431 214 2.3099987e-05 432 214 5.7999996e-06 433 214 1.1599999e-05 434 214 1.7299986e-05 441 214 5.7999996e-06 442 214 0.00013289999 443 214 0.014957599 444 214 0.00278 445 214 0.011374298 446 214 0.0048721991 447 214 0.0071493983 448 214 0.0033753 449 214 1.7299986e-05 450 214 0.0031382998 452 214 0.023696396 453 214 0.024459299 454 214 0.0027279998 455 214 0.022164799 456 214 0.00061839982 457 214 0.0034330999 458 214 0.00071089994 459 214 0.0013581999 460 214 0.0014910998 463 214 0.0194542 464 214 0.0027973 465 214 0.00071089994 467 214 0.017697196 468 214 0.008941099 469 214 0.010102797 470 214 0.0076001994 471 214 0.0015604999 472 214 5.7999996e-06 473 214 0.0001676 477 214 0.00043349992 478 214 0.00068779988 483 214 0.0011500998 489 214 0.0015315998 490 214 0.0025603999 491 214 0.00087849982 6 215 0.00011199999 9 215 7.4699987e-05 10 215 3.7299993e-05 11 215 3.7299993e-05 14 215 0.00033609988 17 215 3.7299993e-05 18 215 0.00014939999 19 215 0.00056019984 21 215 0.00093369978 22 215 0.0020915999 23 215 0.0058638975 24 215 0.0077313967 25 215 0.046799097 60 215 0.0043698996 72 215 0.00052289991 82 215 0.0025397998 84 215 3.7299993e-05 98 215 7.4699987e-05 102 215 0.0001867 104 215 3.7299993e-05 107 215 7.4699987e-05 108 215 0.00014939999 109 215 3.7299993e-05 114 215 0.00011199999 116 215 3.7299993e-05 118 215 0.00011199999 120 215 0.00029879995 122 215 3.7299993e-05 126 215 7.4699987e-05 153 215 0.0029505999 171 215 3.7299993e-05 186 215 0.00014939999 189 215 7.4699987e-05 190 215 3.7299993e-05 192 215 0.0015312999 193 215 0.0090385973 194 215 0.00011199999 198 215 0.002353 200 215 3.7299993e-05 203 215 3.7299993e-05 204 215 3.7299993e-05 206 215 0.00037349993 214 215 0.089452446 215 215 0.13501894 216 215 0.0024277 217 215 0.0013446 218 215 7.4699987e-05 220 215 7.4699987e-05 222 215 3.7299993e-05 223 215 0.00029879995 224 215 0.00022409999 228 215 3.7299993e-05 229 215 7.4699987e-05 231 215 3.7299993e-05 233 215 0.00014939999 234 215 0.0051542968 237 215 0.0001867 240 215 3.7299993e-05 241 215 0.0042578988 251 215 3.7299993e-05 252 215 0.00037349993 267 215 0.00026139989 272 215 0.00082169985 273 215 3.7299993e-05 277 215 0.0013818999 278 215 0.00014939999 282 215 7.4699987e-05 284 215 3.7299993e-05 285 215 0.00014939999 286 215 3.7299993e-05 287 215 0.00052289991 288 215 0.00014939999 289 215 0.0011951998 290 215 0.00044819992 294 215 7.4699987e-05 295 215 3.7299993e-05 300 215 0.0017553999 301 215 0.0084036998 312 215 3.7299993e-05 324 215 0.0012698998 325 215 3.7299993e-05 326 215 3.7299993e-05 340 215 3.7299993e-05 349 215 0.0040710978 350 215 0.0027264999 351 215 3.7299993e-05 354 215 3.7299993e-05 356 215 0.0013818999 358 215 0.00041079987 366 215 7.4699987e-05 370 215 3.7299993e-05 371 215 3.7299993e-05 375 215 7.4699987e-05 384 215 7.4699987e-05 387 215 7.4699987e-05 402 215 3.7299993e-05 414 215 0.00041079987 417 215 0.00011199999 421 215 7.4699987e-05 422 215 0.00011199999 430 215 3.7299993e-05 434 215 3.7299993e-05 443 215 0.023119397 444 215 0.0017180999 445 215 0.03664 446 215 0.011727799 447 215 0.0040337965 448 215 0.00044819992 450 215 0.0025770999 452 215 0.024688099 453 215 0.059087198 454 215 0.0045192987 455 215 0.023156799 456 215 0.00026139989 457 215 0.0010457998 458 215 0.00085899979 459 215 0.00048549986 460 215 0.0015312999 463 215 0.013819396 464 215 0.0019047998 465 215 0.00037349993 467 215 0.010943498 468 215 0.0056770965 469 215 0.0045192987 470 215 0.0046686977 471 215 0.0011951998 473 215 0.00011199999 477 215 0.00022409999 478 215 0.00056019984 483 215 0.00082169985 489 215 0.00093369978 490 215 0.0070216991 491 215 0.0022035998 24 216 0.023255799 60 216 0.007751897 82 216 0.007751897 153 216 0.007751897 192 216 0.007751897 193 216 0.015503898 198 216 0.007751897 214 216 0.13178289 215 216 0.28682166 216 216 0.007751897 217 216 0.007751897 300 216 0.007751897 301 216 0.007751897 350 216 0.007751897 443 216 0.023255799 444 216 0.007751897 445 216 0.031007797 446 216 0.007751897 447 216 0.007751897 452 216 0.007751897 455 216 0.038759697 463 216 0.038759697 464 216 0.007751897 467 216 0.015503898 468 216 0.007751897 469 216 0.007751897 470 216 0.007751897 3 217 0.0001661 6 217 0.0037368999 10 217 8.2999992e-05 13 217 8.2999992e-05 14 217 8.2999992e-05 17 217 0.00033219997 18 217 0.0001661 19 217 0.00024909992 20 217 0.00049829995 21 217 0.0012455999 22 217 0.0011625998 23 217 0.0004151999 24 217 0.0082211979 25 217 0.0053977966 60 217 0.00382 82 217 0.00033219997 98 217 0.0074737966 102 217 0.00049829995 104 217 0.0021590998 107 217 0.0001661 108 217 0.00024909992 109 217 8.2999992e-05 114 217 8.2999992e-05 116 217 8.2999992e-05 118 217 0.00066429982 119 217 0.00033219997 120 217 0.00058129989 122 217 8.2999992e-05 126 217 8.2999992e-05 153 217 0.0001661 159 217 0.0011625998 160 217 0.0017438999 186 217 0.00049829995 189 217 8.2999992e-05 192 217 0.0033216998 193 217 0.0048164986 194 217 8.2999992e-05 198 217 0.0070585981 204 217 0.00033219997 206 217 0.00074739987 214 217 0.20445108 215 217 0.0047333986 216 217 8.2999992e-05 217 217 0.024414498 218 217 0.0032386999 223 217 0.0015777999 224 217 0.0012455999 228 217 0.00091349985 229 217 8.2999992e-05 230 217 0.0014948 231 217 0.0015777999 232 217 0.00066429982 233 217 0.0008303998 234 217 0.012622498 237 217 0.0001661 240 217 8.2999992e-05 241 217 0.0076398998 252 217 0.00033219997 253 217 0.00074739987 267 217 0.00049829995 273 217 0.00091349985 277 217 0.00066429982 279 217 0.0001661 285 217 0.00024909992 286 217 0.00049829995 287 217 0.0008303998 288 217 0.0001661 289 217 0.0010795998 290 217 0.00049829995 294 217 8.2999992e-05 300 217 0.018435497 301 217 0.0088024996 314 217 0.00033219997 315 217 0.00066429982 324 217 0.0015777999 325 217 8.2999992e-05 326 217 0.0014948 349 217 0.0013287 350 217 0.0031555998 356 217 0.0013287 358 217 0.00033219997 366 217 0.0001661 375 217 8.2999992e-05 387 217 8.2999992e-05 414 217 0.0004151999 417 217 8.2999992e-05 421 217 0.0001661 422 217 8.2999992e-05 430 217 8.2999992e-05 443 217 0.011792097 444 217 0.0047333986 445 217 0.012207299 446 217 0.0048994981 447 217 0.0064772964 448 217 0.0001661 450 217 0.0023251998 452 217 0.0087194964 453 217 0.0064772964 454 217 0.0042351969 455 217 0.030891899 456 217 0.00033219997 457 217 0.0085533969 458 217 0.00058129989 459 217 0.00066429982 460 217 0.0014116999 463 217 0.032137498 464 217 0.0046503991 465 217 0.0008303998 467 217 0.025078896 468 217 0.024746697 469 217 0.0057298988 470 217 0.0058129989 471 217 0.0011625998 473 217 8.2999992e-05 477 217 0.00024909992 478 217 0.00066429982 483 217 0.0010795998 489 217 0.00033219997 490 217 0.014698599 491 217 0.0017438999 17 218 0.013446998 22 218 0.0019679 24 218 0.00098389992 60 218 0.0052475967 75 218 0.00032799994 82 218 0.00032799994 104 218 0.0013118999 114 218 0.00032799994 120 218 0.00032799994 130 218 0.0013118999 139 218 0.00032799994 159 218 0.069858968 160 218 0.075434566 169 218 0.00032799994 171 218 0.00032799994 186 218 0.018694699 192 218 0.00032799994 193 218 0.015086897 198 218 0.0085273981 206 218 0.00098389992 214 218 0.020662498 218 218 0.1197114 219 218 0.00032799994 223 218 0.0016398998 224 218 0.0032797998 225 218 0.00098389992 231 218 0.00032799994 234 218 0.011151198 240 218 0.00032799994 241 218 0.00065599987 252 218 0.00032799994 267 218 0.00032799994 272 218 0.00098389992 277 218 0.00098389992 279 218 0.00032799994 284 218 0.00032799994 287 218 0.00032799994 300 218 0.0059035979 301 218 0.0022957998 322 218 0.00098389992 324 218 0.0016398998 326 218 0.00098389992 347 218 0.00032799994 350 218 0.0075434968 356 218 0.00098389992 358 218 0.00065599987 414 218 0.00032799994 417 218 0.00032799994 421 218 0.00065599987 443 218 0.0242703 444 218 0.0042636991 445 218 0.010495197 446 218 0.0029517999 447 218 0.015086897 450 218 0.0026238 452 218 0.0098392963 453 218 0.011479199 454 218 0.0045916997 455 218 0.042308997 457 218 0.0026238 458 218 0.00065599987 459 218 0.0081993975 460 218 0.00065599987 463 218 0.0121351 464 218 0.00065599987 465 218 0.00032799994 467 218 0.010167297 468 218 0.022958297 469 218 0.0032797998 470 218 0.0032797998 471 218 0.0088553987 477 218 0.00032799994 478 218 0.00098389992 483 218 0.00098389992 489 218 0.00065599987 490 218 0.011479199 491 218 0.0091832988 0 219 0.00031229993 5 219 0.00010409999 6 219 0.00031229993 12 219 0.00041639991 13 219 0.00010409999 14 219 0.0070781969 17 219 0.00031229993 18 219 0.0002082 21 219 0.0002082 22 219 0.0002082 23 219 0.00052049989 24 219 0.0057249963 60 219 0.0023941 82 219 0.0087435991 87 219 0.0002082 90 219 0.0015613998 104 219 0.0047881976 107 219 0.00062449998 108 219 0.00010409999 114 219 0.00010409999 118 219 0.0010408999 119 219 0.0030185999 120 219 0.00093679992 126 219 0.00010409999 130 219 0.0014572998 131 219 0.00010409999 142 219 0.00010409999 149 219 0.00010409999 159 219 0.00041639991 160 219 0.00031229993 161 219 0.00010409999 169 219 0.00010409999 187 219 0.0029145 188 219 0.0002082 191 219 0.00093679992 192 219 0.00229 193 219 0.0026022999 194 219 0.0002082 198 219 0.0087435991 204 219 0.00031229993 206 219 0.0002082 208 219 0.00010409999 214 219 0.16519195 215 219 0.00093679992 218 219 0.018736299 219 219 0.0091599971 222 219 0.00031229993 223 219 0.0066617988 224 219 0.060372598 225 219 0.030498598 227 219 0.00010409999 228 219 0.00010409999 229 219 0.0002082 230 219 0.00010409999 231 219 0.00031229993 232 219 0.00010409999 233 219 0.00052049989 234 219 0.021026298 237 219 0.00010409999 240 219 0.0069740973 241 219 0.0052044988 243 219 0.00031229993 252 219 0.00041639991 273 219 0.0011449999 277 219 0.00041639991 279 219 0.0002082 282 219 0.0002082 284 219 0.00010409999 285 219 0.00010409999 287 219 0.0066617988 288 219 0.00010409999 290 219 0.00010409999 300 219 0.0086394995 301 219 0.026439097 315 219 0.0002082 317 219 0.00010409999 319 219 0.00010409999 322 219 0.00010409999 324 219 0.00062449998 326 219 0.0092640966 337 219 0.00010409999 340 219 0.0002082 349 219 0.00010409999 350 219 0.0031226999 356 219 0.0012490998 358 219 0.00052049989 387 219 0.00010409999 393 219 0.00010409999 402 219 0.00010409999 417 219 0.0002082 421 219 0.0002082 422 219 0.00010409999 430 219 0.00010409999 442 219 0.00010409999 443 219 0.011866298 444 219 0.00229 445 219 0.012699097 446 219 0.0028104999 447 219 0.006245397 448 219 0.00031229993 450 219 0.0029145 452 219 0.0063494965 453 219 0.0029145 454 219 0.00229 455 219 0.031643599 456 219 0.0002082 457 219 0.0020817998 458 219 0.00041639991 459 219 0.00041639991 460 219 0.0017694999 463 219 0.046112198 464 219 0.00093679992 465 219 0.00083269994 467 219 0.010825399 468 219 0.050483998 469 219 0.0059331991 470 219 0.0065576993 471 219 0.0010408999 473 219 0.00010409999 477 219 0.0002082 478 219 0.00072859996 483 219 0.0010408999 490 219 0.0030185999 491 219 0.00093679992 18 220 0.00050529977 21 220 0.00025269995 22 220 0.0149065 25 220 0.00025269995 60 220 0.0058109984 77 220 0.00025269995 104 220 0.0017686 108 220 0.00025269995 114 220 0.00025269995 126 220 0.00025269995 171 220 0.0063162968 189 220 0.00025269995 190 220 0.00025269995 192 220 0.0050530992 193 220 0.00025269995 194 220 0.00025269995 198 220 0.0078321993 200 220 0.00025269995 203 220 0.00025269995 206 220 0.00050529977 214 220 0.044214197 215 220 0.043708898 220 220 0.016927697 223 220 0.00025269995 229 220 0.0096007995 234 220 0.0073268972 237 220 0.00050529977 241 220 0.0098534971 252 220 0.0010105998 272 220 0.0015158998 277 220 0.0027792 282 220 0.00025269995 284 220 0.00050529977 287 220 0.00025269995 292 220 0.0025264998 301 220 0.032844897 333 220 0.00025269995 349 220 0.00025269995 350 220 0.0078321993 356 220 0.0012633 358 220 0.0017686 387 220 0.00025269995 417 220 0.00050529977 421 220 0.00050529977 422 220 0.00025269995 430 220 0.00025269995 434 220 0.00025269995 443 220 0.0149065 444 220 0.00075799995 445 220 0.0060636997 446 220 0.0017686 447 220 0.0012633 450 220 0.0070742965 452 220 0.017180398 453 220 0.0078321993 454 220 0.0010105998 455 220 0.017685696 456 220 0.00050529977 457 220 0.0010105998 459 220 0.00050529977 460 220 0.015159197 463 220 0.0083374977 464 220 0.00075799995 465 220 0.0012633 467 220 0.017685696 468 220 0.0020211998 469 220 0.011116698 470 220 0.012379996 471 220 0.0020211998 473 220 0.00025269995 477 220 0.00025269995 478 220 0.0022739 483 220 0.0020211998 489 220 0.0025264998 490 220 0.0010105998 491 220 0.00050529977 13 221 0.0001981 21 221 0.0001981 22 221 0.0001981 24 221 0.0025752999 25 221 0.0001981 60 221 0.0021790999 108 221 0.0001981 114 221 0.00039619999 118 221 0.0001981 119 221 0.0063390993 120 221 0.00039619999 126 221 0.0001981 131 221 0.00039619999 171 221 0.00039619999 187 221 0.0011886 192 221 0.0017829 193 221 0.0001981 194 221 0.0001981 198 221 0.004754398 206 221 0.00039619999 214 221 0.29793978 215 221 0.0035657999 218 221 0.014659297 221 221 0.00039619999 222 221 0.011093497 223 221 0.0031695999 224 221 0.036846299 225 221 0.0093105994 230 221 0.0015848 233 221 0.031893797 234 221 0.034865297 237 221 0.0001981 240 221 0.0001981 241 221 0.0013867 252 221 0.00039619999 276 221 0.0001981 277 221 0.00099049998 279 221 0.0001981 284 221 0.0001981 287 221 0.0001981 292 221 0.0001981 293 221 0.00039619999 294 221 0.0001981 300 221 0.0021790999 301 221 0.010499198 312 221 0.0001981 315 221 0.00039619999 324 221 0.00059429999 326 221 0.0001981 349 221 0.0001981 350 221 0.0063390993 356 221 0.0013867 358 221 0.00079239998 359 221 0.0001981 361 221 0.0001981 363 221 0.0001981 372 221 0.0001981 387 221 0.0001981 392 221 0.0001981 417 221 0.0001981 419 221 0.0001981 422 221 0.0001981 443 221 0.014263097 444 221 0.001981 445 221 0.011093497 446 221 0.0027733999 447 221 0.010895398 448 221 0.00059429999 450 221 0.0029714999 452 221 0.0063390993 453 221 0.0015848 454 221 0.00059429999 455 221 0.043977797 457 221 0.0011886 458 221 0.0001981 459 221 0.00059429999 460 221 0.0013867 463 221 0.015847899 464 221 0.00059429999 465 221 0.00059429999 467 221 0.0089143999 468 221 0.017036498 469 221 0.006537199 470 221 0.0073295981 471 221 0.00079239998 473 221 0.0001981 477 221 0.0001981 478 221 0.00099049998 483 221 0.0011886 490 221 0.00059429999 491 221 0.00039619999 23 222 0.051610097 60 222 0.0039699972 114 222 0.00044109998 153 222 0.0066166967 169 222 0.0066166967 193 222 0.034406699 198 222 0.0022055998 206 222 0.00044109998 214 222 0.00044109998 223 222 0.00044109998 234 222 0.16453457 252 222 0.00044109998 272 222 0.00088219997 277 222 0.00044109998 350 222 0.014556699 358 222 0.00044109998 443 222 0.0022055998 444 222 0.00044109998 445 222 0.0083810985 446 222 0.0039699972 447 222 0.016321097 450 222 0.0022055998 452 222 0.021173399 453 222 0.022496697 454 222 0.0017643999 455 222 0.0410234 457 222 0.0017643999 459 222 0.029995598 460 222 0.0013232999 463 222 0.029113397 464 222 0.00044109998 467 222 0.0070577972 468 222 0.037494499 469 222 0.0026466998 470 222 0.0022055998 478 222 0.00044109998 483 222 0.00088219997 489 222 0.00044109998 490 222 0.00044109998 491 222 0.0013232999 0 223 0.00043869996 2 223 0.00035099988 3 223 4.39e-05 6 223 0.00026319991 9 223 0.00048259995 11 223 0.00030709989 13 223 0.0089061968 14 223 4.39e-05 17 223 0.00035099988 18 223 0.0002194 19 223 0.0002194 21 223 0.0064054988 22 223 0.0019303998 23 223 0.0025008 24 223 0.022594698 25 223 0.00065809977 60 223 0.0034220999 77 223 0.00074579986 82 223 0.0083358996 83 223 4.39e-05 84 223 0.0001755 88 223 0.0001755 90 223 0.0001316 97 223 4.39e-05 98 223 0.00057039992 102 223 0.0010090999 104 223 0.0010090999 107 223 0.00048259995 108 223 4.39e-05 113 223 8.7699998e-05 114 223 0.0001755 116 223 0.0001755 117 223 0.0001755 118 223 0.00061419979 119 223 0.0046066977 120 223 0.030755099 122 223 0.00035099988 125 223 4.39e-05 126 223 8.7699998e-05 130 223 0.00039489986 131 223 0.0001316 135 223 4.39e-05 140 223 4.39e-05 142 223 4.39e-05 150 223 0.0001316 151 223 4.39e-05 159 223 0.0015355998 160 223 0.0019742998 171 223 0.0001755 172 223 0.0001755 186 223 0.00043869996 187 223 0.00070199999 189 223 8.7699998e-05 190 223 4.39e-05 191 223 4.39e-05 192 223 0.00070199999 193 223 0.011494797 194 223 0.00026319991 197 223 4.39e-05 198 223 0.0165402 200 223 4.39e-05 203 223 4.39e-05 204 223 0.00048259995 206 223 0.00039489986 207 223 4.39e-05 214 223 0.12438029 215 223 0.00039489986 217 223 0.00030709989 218 223 0.020795897 219 223 8.7699998e-05 220 223 0.00061419979 222 223 0.00083359983 223 223 0.018689897 224 223 0.019084796 225 223 0.0020181998 228 223 0.00048259995 229 223 0.0001755 230 223 0.00039489986 231 223 0.0048698969 232 223 0.00083359983 233 223 0.00083359983 234 223 0.016496297 237 223 0.0001316 240 223 0.00030709989 241 223 0.009081699 252 223 0.00057039992 253 223 0.00057039992 254 223 0.0010090999 267 223 8.7699998e-05 270 223 8.7699998e-05 273 223 0.00083359983 274 223 4.39e-05 277 223 0.0048698969 278 223 4.39e-05 282 223 0.00035099988 283 223 8.7699998e-05 284 223 0.0001755 285 223 0.00035099988 286 223 4.39e-05 287 223 0.00052649993 288 223 0.0001755 289 223 0.0002194 290 223 0.00057039992 292 223 0.00026319991 293 223 0.00061419979 294 223 0.0001755 295 223 0.0001755 296 223 0.0001316 297 223 4.39e-05 298 223 4.39e-05 299 223 4.39e-05 300 223 0.0044750981 301 223 0.012547698 307 223 4.39e-05 312 223 0.0001755 314 223 0.0014477998 315 223 0.00057039992 319 223 4.39e-05 322 223 0.0002194 324 223 0.00087749981 325 223 0.00026319991 326 223 0.00057039992 328 223 8.7699998e-05 338 223 0.0002194 340 223 0.00039489986 349 223 0.00083359983 350 223 0.002413 351 223 4.39e-05 354 223 8.7699998e-05 355 223 4.39e-05 356 223 0.0013161998 358 223 0.00092129991 366 223 8.7699998e-05 370 223 0.0001316 372 223 0.0002194 373 223 0.00039489986 374 223 0.0001316 375 223 4.39e-05 384 223 4.39e-05 385 223 4.39e-05 387 223 4.39e-05 392 223 0.0001316 393 223 8.7699998e-05 402 223 8.7699998e-05 414 223 8.7699998e-05 417 223 0.0002194 419 223 4.39e-05 420 223 4.39e-05 421 223 8.7699998e-05 422 223 0.0002194 423 223 4.39e-05 425 223 4.39e-05 430 223 4.39e-05 431 223 8.7699998e-05 433 223 4.39e-05 434 223 4.39e-05 442 223 4.39e-05 443 223 0.013512898 444 223 0.0021497998 445 223 0.017066598 446 223 0.0036414999 447 223 0.0044311993 448 223 0.00043869996 450 223 0.0041678995 452 223 0.0075899996 453 223 0.0065370984 454 223 0.0012722998 455 223 0.035712697 456 223 0.00035099988 457 223 0.0055718981 458 223 0.00048259995 459 223 0.0028078998 460 223 0.0015793999 463 223 0.023428198 464 223 0.00078969984 465 223 0.0022813999 467 223 0.023472097 468 223 0.025753498 469 223 0.0062299967 470 223 0.0065370984 471 223 0.0023691 473 223 0.0001316 477 223 0.0002194 478 223 0.00078969984 479 223 4.39e-05 483 223 0.0011407 489 223 0.00026319991 490 223 0.0021058999 491 223 0.0030711 9 224 2.2099994e-05 13 224 2.2099994e-05 14 224 6.6199995e-05 16 224 2.2099994e-05 17 224 0.00013249999 18 224 0.00017669999 19 224 0.00037539983 20 224 4.4199987e-05 21 224 0.0014574998 22 224 0.0032241 23 224 0.0043502972 24 224 0.00044169999 25 224 0.0014574998 60 224 0.0091864988 79 224 2.2099994e-05 82 224 0.00022079999 83 224 2.2099994e-05 84 224 2.2099994e-05 88 224 2.2099994e-05 98 224 0.0001104 104 224 0.0001104 107 224 6.6199995e-05 108 224 2.2099994e-05 113 224 6.6199995e-05 114 224 0.00013249999 118 224 0.0020758 119 224 0.0026719999 120 224 0.0001987 126 224 8.8299988e-05 127 224 2.2099994e-05 130 224 0.00072869984 131 224 4.4199987e-05 140 224 0.00046369992 149 224 2.2099994e-05 150 224 0.0001987 151 224 4.4199987e-05 159 224 0.00024289999 160 224 0.00033119996 171 224 0.00081709982 186 224 0.0014354 187 224 0.0001104 188 224 8.8299988e-05 189 224 6.6199995e-05 190 224 4.4199987e-05 192 224 0.0071989968 193 224 0.00090539991 194 224 0.00013249999 197 224 2.2099994e-05 198 224 0.0083472989 200 224 4.4199987e-05 201 224 2.2099994e-05 202 224 4.4199987e-05 203 224 2.2099994e-05 204 224 0.0001546 206 224 0.00048579997 207 224 2.2099994e-05 208 224 2.2099994e-05 214 224 0.30310929 215 224 0.0022745 217 224 6.6199995e-05 218 224 0.0037319998 219 224 4.4199987e-05 222 224 0.0010821 223 224 0.0061831996 224 224 0.023164898 225 224 0.0022745 226 224 4.4199987e-05 227 224 0.00026499992 229 224 0.0025173998 231 224 0.0014354 233 224 0.0027162 234 224 0.010555599 237 224 8.8299988e-05 239 224 4.4199987e-05 240 224 0.00028709997 241 224 0.022126999 248 224 2.2099994e-05 250 224 2.2099994e-05 251 224 6.6199995e-05 252 224 0.0011924999 267 224 0.00035329978 270 224 0.00046369992 272 224 2.2099994e-05 273 224 0.0001546 274 224 2.2099994e-05 276 224 2.2099994e-05 277 224 0.0010599999 282 224 6.6199995e-05 285 224 0.00033119996 286 224 4.4199987e-05 287 224 0.0012365999 288 224 0.00022079999 289 224 0.0001546 290 224 0.0010157998 294 224 0.00013249999 300 224 0.00068459986 301 224 0.0045269988 315 224 0.00017669999 319 224 4.4199987e-05 322 224 2.2099994e-05 324 224 0.0013911999 326 224 0.00017669999 340 224 0.00083909999 349 224 0.0028486999 350 224 0.0021861999 356 224 0.0010378999 358 224 0.00070669991 366 224 0.00017669999 375 224 8.8299988e-05 384 224 8.8299988e-05 385 224 2.2099994e-05 387 224 6.6199995e-05 402 224 4.4199987e-05 404 224 4.4199987e-05 414 224 0.00081709982 417 224 0.0001546 419 224 2.2099994e-05 421 224 4.4199987e-05 422 224 6.6199995e-05 423 224 2.2099994e-05 425 224 2.2099994e-05 430 224 2.2099994e-05 431 224 2.2099994e-05 433 224 2.2099994e-05 434 224 2.2099994e-05 442 224 4.4199987e-05 443 224 0.0093630999 444 224 0.0025615999 445 224 0.0096501969 446 224 0.0033344999 447 224 0.012189697 448 224 0.00033119996 450 224 0.0038645 452 224 0.016098399 453 224 0.0083914995 454 224 0.0022304 455 224 0.031843498 456 224 0.00035329978 457 224 0.0038423999 458 224 0.00046369992 459 224 0.0014795999 460 224 0.0015678999 463 224 0.016716696 464 224 0.0023628999 465 224 0.0036436999 467 224 0.014132999 468 224 0.021354098 469 224 0.0075302981 470 224 0.0070002973 471 224 0.0024291 473 224 0.00013249999 477 224 0.0010157998 478 224 0.00059619988 479 224 2.2099994e-05 483 224 0.00081709982 489 224 0.00064039999 490 224 0.0010599999 491 224 0.0018107998 18 225 0.00022819999 19 225 0.00038039987 20 225 7.6099997e-05 21 225 0.0012933 22 225 0.0017496999 23 225 0.007531397 24 225 0.00038039987 25 225 0.0016735999 60 225 0.0059337988 82 225 7.6099997e-05 98 225 0.00015209999 104 225 7.6099997e-05 107 225 7.6099997e-05 108 225 7.6099997e-05 114 225 0.00015209999 118 225 0.00015209999 119 225 0.0021300998 120 225 7.6099997e-05 126 225 7.6099997e-05 130 225 0.00022819999 140 225 0.0015975998 150 225 7.6099997e-05 171 225 7.6099997e-05 186 225 0.00045639998 187 225 7.6099997e-05 189 225 7.6099997e-05 192 225 0.0058576986 193 225 0.00015209999 198 225 0.0072270967 206 225 0.00022819999 214 225 0.31243819 215 225 0.0055533983 217 225 7.6099997e-05 218 225 0.0074552968 222 225 0.019018598 223 225 0.0025864998 224 225 0.0024343999 225 225 0.0067705996 229 225 0.011106897 231 225 0.0064662993 233 225 0.0031951 234 225 0.013084799 239 225 7.6099997e-05 240 225 0.00030429987 241 225 0.0031951 251 225 7.6099997e-05 252 225 0.00030429987 267 225 0.00022819999 272 225 0.00045639998 273 225 7.6099997e-05 277 225 0.0013692998 282 225 7.6099997e-05 285 225 0.00038039987 286 225 7.6099997e-05 287 225 0.0012933 288 225 0.00022819999 290 225 0.0058576986 294 225 0.00015209999 300 225 0.00015209999 301 225 0.00098899985 315 225 7.6099997e-05 324 225 0.00091289985 340 225 0.00030429987 349 225 0.0050969981 350 225 0.0034993999 356 225 0.0011411 358 225 0.00060859998 366 225 0.00022819999 375 225 7.6099997e-05 387 225 7.6099997e-05 402 225 7.6099997e-05 414 225 0.00030429987 417 225 7.6099997e-05 421 225 0.00015209999 443 225 0.011182997 444 225 0.0034993999 445 225 0.0089006983 446 225 0.0031951 447 225 0.0058576986 448 225 0.00076069986 450 225 0.0020539998 452 225 0.014986698 453 225 0.012095898 454 225 0.0019778998 455 225 0.029212598 456 225 7.6099997e-05 457 225 0.0038037 458 225 0.00060859998 459 225 0.0012172 460 225 0.0014453998 463 225 0.015367098 464 225 0.0012172 465 225 0.0041840971 467 225 0.0095853992 468 225 0.018105697 469 225 0.0050969981 470 225 0.0047926977 471 225 0.0025864998 473 225 7.6099997e-05 477 225 0.00030429987 478 225 0.00053249998 483 225 0.00076069986 489 225 0.00053249998 490 225 0.0012172 491 225 0.0026625998 18 226 0.00014969999 22 226 0.019760497 60 226 0.0094310977 114 226 0.00014969999 118 226 0.00029939995 126 226 0.00014969999 130 226 0.0017963999 132 226 0.012425099 150 226 0.00014969999 186 226 0.13757485 190 226 0.00014969999 192 226 0.00014969999 198 226 0.011526898 206 226 0.00089819985 214 226 0.21347308 215 226 0.00029939995 223 226 0.017664697 224 226 0.010628697 226 226 0.00089819985 227 226 0.0055388995 231 226 0.0025448999 234 226 0.002994 241 226 0.013622798 252 226 0.00029939995 277 226 0.0011975998 324 226 0.0013472999 349 226 0.008981999 350 226 0.00014969999 356 226 0.0010478999 358 226 0.001497 384 226 0.00014969999 414 226 0.0032933999 417 226 0.0005987999 443 226 0.030987997 444 226 0.00029939995 445 226 0.012125697 446 226 0.0041915998 447 226 0.0010478999 450 226 0.0031436998 452 226 0.010329299 453 226 0.0077843964 454 226 0.0028442999 455 226 0.024401199 457 226 0.0043412969 458 226 0.0005987999 459 226 0.001497 460 226 0.0017963999 463 226 0.0074849986 464 226 0.00029939995 465 226 0.0007485 467 226 0.011826299 468 226 0.0035927999 469 226 0.0043412969 470 226 0.004041899 471 226 0.00029939995 473 226 0.00014969999 477 226 0.00014969999 478 226 0.0011975998 483 226 0.0007485 489 226 0.0011975998 490 226 0.00044909981 491 226 0.0010478999 2 227 0.00010149999 4 227 0.00087939994 9 227 3.3799995e-05 18 227 0.00016909999 22 227 0.0043630973 25 227 0.00016909999 60 227 0.0095717981 82 227 3.3799995e-05 83 227 3.3799995e-05 84 227 3.3799995e-05 104 227 3.3799995e-05 108 227 3.3799995e-05 113 227 6.7599991e-05 114 227 0.00010149999 118 227 0.0010485 119 227 0.00016909999 126 227 6.7599991e-05 127 227 3.3799995e-05 130 227 0.0024351999 131 227 3.3799995e-05 132 227 0.0013867 143 227 0.0001353 150 227 0.0004735 151 227 3.3799995e-05 171 227 0.0001353 186 227 0.0088953972 189 227 3.3799995e-05 190 227 0.00010149999 192 227 0.00010149999 194 227 0.00010149999 198 227 0.013224598 200 227 6.7599991e-05 203 227 3.3799995e-05 204 227 3.3799995e-05 206 227 0.00040589995 207 227 3.3799995e-05 214 227 0.26828104 215 227 0.0016572999 223 227 0.0052086972 224 227 0.0383549 225 227 0.00010149999 226 227 0.0040248968 227 227 0.029188897 231 227 0.0015896999 234 227 0.0046674982 237 227 6.7599991e-05 240 227 0.00010149999 241 227 0.013123199 248 227 3.3799995e-05 252 227 0.00030439999 277 227 3.3799995e-05 284 227 3.3799995e-05 315 227 6.7599991e-05 322 227 3.3799995e-05 324 227 0.00071029994 326 227 6.7599991e-05 340 227 6.7599991e-05 345 227 0.00010149999 349 227 0.0080835968 350 227 3.3799995e-05 356 227 0.0010146999 358 227 0.0013867 384 227 0.00010149999 387 227 3.3799995e-05 392 227 3.3799995e-05 414 227 6.7599991e-05 417 227 0.00033819978 419 227 3.3799995e-05 421 227 6.7599991e-05 422 227 6.7599991e-05 423 227 3.3799995e-05 425 227 3.3799995e-05 430 227 3.3799995e-05 431 227 3.3799995e-05 433 227 3.3799995e-05 434 227 3.3799995e-05 443 227 0.0065953992 444 227 0.00020289999 445 227 0.0069335997 446 227 0.0023337998 447 227 0.0011499999 448 227 3.3799995e-05 450 227 0.0039910972 452 227 0.0126158 453 227 0.0044645965 454 227 0.0021307999 455 227 0.021714099 456 227 0.0002368 457 227 0.0039571971 458 227 0.00037199981 459 227 0.0016911 460 227 0.0015219999 463 227 0.012480598 464 227 0.0002368 465 227 0.00064259977 467 227 0.0097408965 468 227 0.010112997 469 227 0.0067644976 470 227 0.0042616986 471 227 0.0004735 473 227 0.00010149999 477 227 0.0002368 478 227 0.00087939994 483 227 0.00030439999 489 227 0.00060879998 490 227 0.00037199981 491 227 0.00094699999 0 228 0.00020699999 5 228 1.2899999e-05 6 228 0.0013325999 9 228 7.7599994e-05 10 228 1.2899999e-05 13 228 0.00032349979 14 228 1.2899999e-05 16 228 3.879999e-05 17 228 0.0001811 18 228 0.0001164 19 228 3.879999e-05 21 228 0.0001294 22 228 0.00032349979 23 228 3.879999e-05 24 228 6.4699998e-05 25 228 0.00016819999 60 228 0.0092896968 79 228 2.5899993e-05 82 228 0.0022123998 83 228 7.7599994e-05 84 228 7.7599994e-05 85 228 0.00051749987 88 228 0.00020699999 90 228 5.1799987e-05 98 228 6.4699998e-05 102 228 0.0029628999 104 228 0.0014231999 107 228 0.0011514998 108 228 0.00016819999 109 228 1.2899999e-05 110 228 0.00014229999 113 228 0.00019409999 114 228 0.0004916999 115 228 1.2899999e-05 116 228 0.00037519983 117 228 2.5899993e-05 118 228 9.0599991e-05 119 228 2.5899993e-05 120 228 0.0016949 125 228 0.00055629993 126 228 0.00020699999 127 228 3.879999e-05 130 228 9.0599991e-05 131 228 7.7599994e-05 133 228 1.2899999e-05 135 228 1.2899999e-05 138 228 5.1799987e-05 139 228 2.5899993e-05 142 228 3.879999e-05 149 228 1.2899999e-05 150 228 0.00019409999 151 228 6.4699998e-05 158 228 1.2899999e-05 159 228 1.2899999e-05 160 228 1.2899999e-05 165 228 2.5899993e-05 170 228 1.2899999e-05 171 228 1.2899999e-05 186 228 3.879999e-05 187 228 9.0599991e-05 188 228 1.2899999e-05 189 228 0.00010349999 190 228 5.1799987e-05 192 228 0.0056151971 193 228 0.0025487999 194 228 0.00010349999 196 228 1.2899999e-05 197 228 3.879999e-05 198 228 0.013818096 200 228 7.7599994e-05 201 228 7.7599994e-05 203 228 7.7599994e-05 204 228 0.0015137999 206 228 0.00097039994 207 228 6.4699998e-05 209 228 1.2899999e-05 214 228 0.039177097 215 228 7.7599994e-05 217 228 0.0019407 222 228 1.2899999e-05 223 228 0.0053046979 224 228 0.00016819999 228 228 0.058778599 229 228 0.00080219982 230 228 1.2899999e-05 231 228 0.0001164 232 228 0.00071159983 233 228 5.1799987e-05 234 228 0.0033380999 237 228 0.0001294 240 228 0.00014229999 241 228 0.024893299 242 228 1.2899999e-05 248 228 6.4699998e-05 250 228 5.1799987e-05 251 228 1.2899999e-05 252 228 0.00032349979 253 228 0.016548097 263 228 1.2899999e-05 267 228 2.5899993e-05 271 228 2.5899993e-05 272 228 7.7599994e-05 273 228 1.2899999e-05 277 228 0.00021999999 282 228 1.2899999e-05 285 228 3.879999e-05 286 228 6.4699998e-05 287 228 0.0001294 288 228 2.5899993e-05 290 228 0.00054339995 293 228 0.00020699999 294 228 0.00024579978 296 228 1.2899999e-05 300 228 0.0056927986 301 228 0.00067279977 312 228 0.00010349999 314 228 0.0026781999 315 228 7.7599994e-05 317 228 1.2899999e-05 319 228 3.879999e-05 320 228 2.5899993e-05 321 228 5.1799987e-05 324 228 3.879999e-05 325 228 0.00075039989 326 228 0.0018113998 340 228 3.879999e-05 349 228 0.00019409999 350 228 0.00075039989 354 228 3.879999e-05 356 228 0.00014229999 358 228 0.00036229985 366 228 2.5899993e-05 372 228 1.2899999e-05 375 228 2.5899993e-05 380 228 3.879999e-05 384 228 6.4699998e-05 387 228 0.00019409999 391 228 3.879999e-05 393 228 6.4699998e-05 394 228 1.2899999e-05 396 228 3.879999e-05 397 228 1.2899999e-05 402 228 3.879999e-05 414 228 0.00016819999 416 228 0.0016689999 417 228 0.0001811 419 228 3.879999e-05 421 228 2.5899993e-05 422 228 0.00015529999 423 228 5.1799987e-05 425 228 3.879999e-05 430 228 0.0001164 431 228 3.879999e-05 432 228 1.2899999e-05 433 228 3.879999e-05 434 228 5.1799987e-05 438 228 1.2899999e-05 442 228 1.2899999e-05 443 228 0.0034544999 444 228 0.0014231999 445 228 0.0054340996 446 228 0.00080219982 447 228 0.0030663998 448 228 3.879999e-05 449 228 3.879999e-05 450 228 0.0056410991 452 228 0.0049941987 453 228 0.0017336998 454 228 0.0012549998 455 228 0.023469999 456 228 0.0017207998 457 228 0.0041013993 458 228 0.0010091998 459 228 0.0022123998 460 228 0.001462 463 228 0.026730496 464 228 0.0015137999 465 228 0.0081381984 467 228 0.0363307 468 228 0.099805892 469 228 0.022486698 470 228 0.023172498 471 228 0.0022382999 472 228 0.00024579978 473 228 0.00050459988 477 228 0.0023806 478 228 0.0038426998 479 228 1.2899999e-05 483 228 0.0020183998 489 228 0.00014229999 490 228 0.0082028992 491 228 0.0014878998 3 229 0.0001026 6 229 0.00017089999 9 229 3.4199998e-05 13 229 6.8399997e-05 14 229 3.4199998e-05 17 229 0.0001026 18 229 0.00078629982 19 229 3.4199998e-05 21 229 0.00027349987 22 229 0.00047859992 23 229 0.0001026 24 229 0.00044439989 25 229 0.00017089999 60 229 0.0020853998 82 229 0.00017089999 83 229 3.4199998e-05 84 229 3.4199998e-05 104 229 0.0003076999 107 229 0.00068369997 108 229 3.4199998e-05 113 229 6.8399997e-05 114 229 0.0001026 117 229 6.8399997e-05 118 229 0.00051279995 119 229 0.0069398992 120 229 0.017640397 122 229 0.00017089999 126 229 3.4199998e-05 130 229 0.00071789999 131 229 3.4199998e-05 132 229 0.0001026 137 229 6.8399997e-05 138 229 3.4199998e-05 139 229 3.4199998e-05 142 229 6.8399997e-05 143 229 0.00023929999 149 229 6.8399997e-05 151 229 0.00051279995 152 229 3.4199998e-05 157 229 3.4199998e-05 158 229 6.8399997e-05 160 229 6.8399997e-05 186 229 3.4199998e-05 187 229 3.4199998e-05 189 229 6.8399997e-05 190 229 3.4199998e-05 192 229 0.0031794 193 229 0.005914297 194 229 0.0001026 197 229 3.4199998e-05 198 229 0.036067098 200 229 3.4199998e-05 202 229 0.00085469987 203 229 6.8399997e-05 204 229 0.0076236986 206 229 0.00034189993 207 229 3.4199998e-05 214 229 0.10997909 215 229 0.00013669999 218 229 0.0010255999 223 229 0.0044100992 224 229 0.0018461 228 229 0.00013669999 229 229 0.0029400999 230 229 0.00095719984 231 229 0.039656799 232 229 0.015110597 233 229 0.00051279995 234 229 0.0049912967 237 229 6.8399997e-05 240 229 6.8399997e-05 241 229 0.057092097 252 229 0.00068369997 253 229 0.0031452 260 229 6.8399997e-05 261 229 3.4199998e-05 267 229 3.4199998e-05 270 229 0.0021537999 273 229 3.4199998e-05 277 229 0.00013669999 285 229 3.4199998e-05 287 229 0.00017089999 288 229 3.4199998e-05 289 229 0.00027349987 290 229 0.0001026 294 229 3.4199998e-05 300 229 0.014392696 301 229 0.0030083999 314 229 0.0006153998 315 229 0.00047859992 316 229 0.00027349987 324 229 0.0008888999 325 229 0.0030767999 326 229 0.00034189993 349 229 0.00020509999 350 229 0.0017434999 356 229 0.00017089999 358 229 0.0003076999 366 229 3.4199998e-05 384 229 3.4199998e-05 387 229 3.4199998e-05 402 229 3.4199998e-05 404 229 6.8399997e-05 414 229 0.00054699997 417 229 0.0001026 422 229 0.0001026 423 229 3.4199998e-05 425 229 0.00037609995 426 229 0.00027349987 428 229 0.00058119977 430 229 3.4199998e-05 431 229 0.00085469987 433 229 3.4199998e-05 434 229 3.4199998e-05 443 229 0.0116577 444 229 0.0035895999 445 229 0.0094697997 446 229 0.0030767999 447 229 0.0133329 448 229 3.4199998e-05 450 229 0.0026323998 452 229 0.0038973 453 229 0.0030083999 454 229 0.002017 455 229 0.034460399 456 229 0.00020509999 457 229 0.0024614998 458 229 0.00034189993 459 229 0.0006153998 460 229 0.0014699998 463 229 0.026460599 464 229 0.0031109999 465 229 0.0047519989 467 229 0.011623498 468 229 0.12539738 469 229 0.0088201985 470 229 0.004717797 471 229 0.00064959982 472 229 3.4199998e-05 473 229 0.0001026 477 229 0.0011282 478 229 0.00041019986 483 229 0.0016067999 489 229 0.00013669999 490 229 0.0017776999 491 229 0.00037609995 3 230 0.0021062 5 230 0.00073999981 6 230 0.0059201978 9 230 5.6899997e-05 11 230 5.6899997e-05 13 230 5.6899997e-05 18 230 0.00017079999 19 230 5.6899997e-05 21 230 0.00017079999 22 230 0.00022769999 23 230 5.6899997e-05 24 230 0.0052370988 25 230 0.00028459984 60 230 0.0015369998 82 230 0.00011379999 83 230 5.6899997e-05 84 230 5.6899997e-05 85 230 5.6899997e-05 98 230 5.6899997e-05 102 230 0.00022769999 104 230 0.00022769999 107 230 0.00011379999 108 230 5.6899997e-05 113 230 0.00011379999 114 230 0.00017079999 118 230 0.00017079999 119 230 0.0017646998 120 230 0.0025615999 122 230 0.00022769999 125 230 5.6899997e-05 126 230 5.6899997e-05 130 230 0.0009676998 132 230 0.00011379999 137 230 5.6899997e-05 138 230 5.6899997e-05 139 230 5.6899997e-05 142 230 0.00017079999 149 230 5.6899997e-05 151 230 5.6899997e-05 152 230 5.6899997e-05 157 230 5.6899997e-05 160 230 0.0011384999 186 230 0.00011379999 187 230 0.0010245999 189 230 5.6899997e-05 190 230 5.6899997e-05 191 230 5.6899997e-05 192 230 0.004440099 193 230 0.0019353998 194 230 0.00011379999 198 230 0.023282297 200 230 5.6899997e-05 202 230 0.00011379999 203 230 5.6899997e-05 204 230 0.0042693987 206 230 0.00022769999 207 230 5.6899997e-05 214 230 0.080890298 215 230 0.00028459984 217 230 5.6899997e-05 218 230 0.00022769999 223 230 0.010815699 224 230 0.0048954971 226 230 5.6899997e-05 227 230 5.6899997e-05 228 230 0.00028459984 229 230 0.00051229983 230 230 0.020720698 231 230 0.019126799 232 230 0.0085956976 233 230 0.0086525977 234 230 0.0055216998 237 230 0.00011379999 240 230 5.6899997e-05 241 230 0.060226597 242 230 0.00011379999 252 230 0.00039849989 253 230 0.0078555979 270 230 0.00022769999 277 230 0.00056919991 282 230 0.00017079999 285 230 5.6899997e-05 287 230 0.00011379999 290 230 0.00011379999 293 230 5.6899997e-05 294 230 5.6899997e-05 295 230 0.00017079999 296 230 0.00011379999 300 230 0.06330049 301 230 0.0033586 307 230 5.6899997e-05 312 230 5.6899997e-05 314 230 0.0046677999 315 230 0.0096202977 319 230 5.6899997e-05 322 230 5.6899997e-05 324 230 0.0031309 325 230 0.00034149992 326 230 0.0038139999 349 230 0.00022769999 350 230 0.00028459984 352 230 5.6899997e-05 356 230 0.00017079999 358 230 0.00045539998 368 230 5.6899997e-05 371 230 5.6899997e-05 372 230 0.00017079999 386 230 0.00011379999 387 230 5.6899997e-05 398 230 5.6899997e-05 402 230 5.6899997e-05 414 230 5.6899997e-05 417 230 0.00011379999 421 230 0.00011379999 422 230 5.6899997e-05 423 230 5.6899997e-05 425 230 5.6899997e-05 426 230 5.6899997e-05 428 230 5.6899997e-05 430 230 5.6899997e-05 431 230 0.00017079999 433 230 5.6899997e-05 434 230 5.6899997e-05 438 230 5.6899997e-05 441 230 5.6899997e-05 443 230 0.012466598 444 230 0.0024477998 445 230 0.011897299 446 230 0.0021630998 447 230 0.0043831989 448 230 5.6899997e-05 450 230 0.0027892999 452 230 0.0042693987 453 230 0.0026184998 454 230 0.00085389987 455 230 0.035236496 456 230 0.00022769999 457 230 0.0022769999 458 230 0.00045539998 459 230 0.00056919991 460 230 0.0012522999 463 230 0.059828099 464 230 0.0014799999 465 230 0.0039846972 467 230 0.019752897 468 230 0.11686689 469 230 0.0059770979 470 230 0.0056924969 471 230 0.00062619988 472 230 0.00051229983 473 230 0.00011379999 477 230 0.00062619988 478 230 0.00062619988 483 230 0.0012522999 489 230 0.00011379999 490 230 0.0020492999 491 230 0.00034149992 13 231 0.0003382999 17 231 0.00016909999 19 231 0.00050739991 21 231 0.0018606 22 231 0.0011839999 23 231 0.025372099 24 231 0.0015222998 25 231 0.0020297999 60 231 0.0049052984 82 231 0.0035520999 88 231 0.0006765998 98 231 0.00016909999 104 231 0.0003382999 108 231 0.00016909999 114 231 0.0003382999 117 231 0.00016909999 118 231 0.0037211999 119 231 0.019790299 120 231 0.0087956972 122 231 0.0006765998 126 231 0.00016909999 130 231 0.00016909999 159 231 0.00016909999 160 231 0.00016909999 186 231 0.0008456998 192 231 0.00050739991 193 231 0.0015222998 194 231 0.00016909999 198 231 0.015223298 204 231 0.012347799 206 231 0.00050739991 214 231 0.14918804 215 231 0.0010148999 217 231 0.00050739991 218 231 0.0013531998 219 231 0.00016909999 223 231 0.0529432 224 231 0.0023681 225 231 0.0008456998 228 231 0.0003382999 229 231 0.011332899 230 231 0.00016909999 231 231 0.0018606 232 231 0.0006765998 233 231 0.00050739991 234 231 0.061400499 240 231 0.00016909999 241 231 0.027401898 252 231 0.0003382999 253 231 0.00016909999 267 231 0.0003382999 277 231 0.0013531998 285 231 0.00050739991 287 231 0.0015222998 288 231 0.0003382999 290 231 0.0006765998 294 231 0.00016909999 300 231 0.020466797 301 231 0.019621097 324 231 0.0003382999 325 231 0.00016909999 326 231 0.00016909999 349 231 0.0023681 350 231 0.0010148999 356 231 0.00050739991 358 231 0.00050739991 366 231 0.00016909999 375 231 0.00016909999 387 231 0.00016909999 414 231 0.00016909999 417 231 0.00016909999 443 231 0.0145467 444 231 0.0011839999 445 231 0.014884997 446 231 0.0049052984 447 231 0.0035520999 448 231 0.0027063999 450 231 0.0033828998 452 231 0.010994598 453 231 0.0091339983 454 231 0.0016915 455 231 0.038565598 456 231 0.00016909999 457 231 0.0028754999 458 231 0.0003382999 459 231 0.0010148999 460 231 0.0013531998 463 231 0.018606197 464 231 0.0011839999 465 231 0.0010148999 467 231 0.0121786 468 231 0.032137997 469 231 0.0071041994 470 231 0.0069349967 471 231 0.0010148999 473 231 0.00016909999 477 231 0.0003382999 478 231 0.00050739991 483 231 0.0016915 489 231 0.00050739991 490 231 0.0013531998 491 231 0.0013531998 3 232 2.3399989e-05 6 232 9.3399998e-05 9 232 2.3399989e-05 10 232 0.00011679999 13 232 4.6699992e-05 14 232 4.6699992e-05 17 232 0.00030359998 18 232 0.00011679999 19 232 2.3399989e-05 21 232 4.6699992e-05 22 232 0.00016349999 23 232 0.00037369994 24 232 0.00014009999 25 232 4.6699992e-05 60 232 0.0019150998 82 232 0.00030359998 83 232 2.3399989e-05 84 232 2.3399989e-05 85 232 2.3399989e-05 88 232 2.3399989e-05 93 232 4.6699992e-05 102 232 0.00016349999 104 232 0.00011679999 107 232 0.00091089983 108 232 0.0001868 109 232 9.3399998e-05 113 232 7.0099995e-05 114 232 9.3399998e-05 115 232 2.3399989e-05 116 232 0.00030359998 117 232 2.3399989e-05 118 232 2.3399989e-05 119 232 0.0009341999 120 232 0.0034098998 125 232 2.3399989e-05 126 232 7.0099995e-05 127 232 2.3399989e-05 130 232 0.00028029992 131 232 0.0002102 133 232 2.3399989e-05 135 232 2.3399989e-05 138 232 0.00014009999 139 232 7.0099995e-05 142 232 0.00014009999 149 232 2.3399989e-05 151 232 4.6699992e-05 158 232 0.0009341999 160 232 4.6699992e-05 186 232 2.3399989e-05 187 232 0.0021954 188 232 4.6699992e-05 189 232 4.6699992e-05 190 232 4.6699992e-05 192 232 0.0024522999 193 232 0.00046709995 194 232 0.00011679999 197 232 2.3399989e-05 198 232 0.033070996 200 232 4.6699992e-05 202 232 4.6699992e-05 203 232 4.6699992e-05 204 232 0.00058389991 206 232 0.00051379995 207 232 4.6699992e-05 209 232 2.3399989e-05 214 232 0.036364097 215 232 2.3399989e-05 217 232 0.00011679999 218 232 7.0099995e-05 223 232 0.007964097 224 232 0.0009808999 228 232 0.0036201 229 232 0.0023355 230 232 0.00028029992 231 232 0.0074736997 232 232 0.024733197 233 232 0.00065389997 234 232 0.0033397998 237 232 9.3399998e-05 240 232 0.0002102 241 232 0.061050497 242 232 2.3399989e-05 248 232 2.3399989e-05 250 232 9.3399998e-05 252 232 0.00088749989 253 232 0.026204497 270 232 0.00011679999 271 232 7.0099995e-05 273 232 0.00074739987 276 232 4.6699992e-05 277 232 0.00030359998 282 232 4.6699992e-05 285 232 2.3399989e-05 287 232 4.6699992e-05 290 232 0.0012844999 293 232 7.0099995e-05 294 232 0.00037369994 296 232 2.3399989e-05 300 232 0.036340699 301 232 0.00028029992 312 232 0.0001868 314 232 0.0039936975 315 232 0.0019385 319 232 2.3399989e-05 320 232 2.3399989e-05 324 232 0.0010742999 325 232 0.0009341999 326 232 0.0096456967 340 232 0.00056049996 349 232 7.0099995e-05 350 232 0.00014009999 356 232 0.00011679999 358 232 0.00037369994 372 232 2.3399989e-05 384 232 2.3399989e-05 387 232 7.0099995e-05 393 232 0.00011679999 402 232 2.3399989e-05 414 232 0.00063059991 416 232 0.00025689998 417 232 0.00028029992 419 232 4.6699992e-05 421 232 4.6699992e-05 422 232 9.3399998e-05 423 232 7.0099995e-05 424 232 0.00072399992 425 232 4.6699992e-05 426 232 2.3399989e-05 428 232 2.3399989e-05 430 232 2.3399989e-05 431 232 7.0099995e-05 432 232 2.3399989e-05 433 232 2.3399989e-05 434 232 4.6699992e-05 438 232 0.0005371999 441 232 2.3399989e-05 442 232 2.3399989e-05 443 232 0.0034098998 444 232 0.0037602 445 232 0.0071699992 446 232 0.00074739987 447 232 0.0159049 448 232 4.6699992e-05 450 232 0.0027325999 452 232 0.0025223999 453 232 0.00065389997 454 232 0.00067729992 455 232 0.0275358 456 232 0.00035029999 457 232 0.0024522999 458 232 0.00042039994 459 232 0.00060719997 460 232 0.0014479998 463 232 0.023401897 464 232 0.0024756999 465 232 0.011140399 467 232 0.032300297 468 232 0.20006067 469 232 0.010673299 470 232 0.006235797 471 232 0.00079409988 472 232 2.3399989e-05 473 232 0.00011679999 477 232 0.00063059991 478 232 0.00074739987 479 232 2.3399989e-05 483 232 0.0015180998 489 232 2.3399989e-05 490 232 0.0009808999 491 232 0.00042039994 9 233 2.8099996e-05 13 233 2.8099996e-05 14 233 0.0054736994 16 233 2.8099996e-05 17 233 0.0037052999 18 233 8.4199986e-05 19 233 0.00047719991 21 233 0.0019929998 22 233 8.4199986e-05 23 233 0.0012069999 24 233 0.0024981999 25 233 5.6099991e-05 60 233 0.0028350998 79 233 2.8099996e-05 82 233 0.0001123 83 233 2.8099996e-05 84 233 2.8099996e-05 104 233 2.8099996e-05 108 233 2.8099996e-05 113 233 8.4199986e-05 114 233 0.00014039999 118 233 0.015101798 119 233 0.0069052987 120 233 0.00022459999 126 233 8.4199986e-05 127 233 2.8099996e-05 130 233 2.8099996e-05 135 233 2.8099996e-05 150 233 2.8099996e-05 151 233 2.8099996e-05 159 233 0.0001123 160 233 0.00016839999 169 233 2.8099996e-05 187 233 0.00053329999 188 233 0.00022459999 189 233 0.00014039999 190 233 5.6099991e-05 191 233 0.0001123 192 233 0.00014039999 193 233 0.0012631998 194 233 0.0001123 196 233 2.8099996e-05 197 233 2.8099996e-05 198 233 0.0085052997 200 233 5.6099991e-05 201 233 5.6099991e-05 203 233 8.4199986e-05 204 233 0.0064841993 206 233 0.00047719991 207 233 5.6099991e-05 208 233 0.0011788998 209 233 2.8099996e-05 214 233 0.19489115 215 233 2.8099996e-05 218 233 0.0030315998 219 233 5.6099991e-05 222 233 0.0012631998 223 233 0.0058385991 224 233 0.087663174 225 233 0.0023578999 226 233 0.00016839999 227 233 0.0029473999 229 233 0.0016841998 230 233 8.4199986e-05 231 233 0.00064559979 232 233 8.4199986e-05 233 233 0.0099648982 234 233 0.014877196 237 233 0.0001965 240 233 8.4199986e-05 241 233 0.0028350998 242 233 2.8099996e-05 248 233 2.8099996e-05 250 233 2.8099996e-05 252 233 0.00078599993 253 233 0.00030879979 266 233 2.8099996e-05 267 233 2.8099996e-05 273 233 0.0052210987 277 233 0.00022459999 284 233 5.6099991e-05 285 233 0.0013754 287 233 0.0067648999 288 233 0.0013754 289 233 8.4199986e-05 290 233 0.0025825 293 233 0.00016839999 300 233 0.045192998 301 233 0.0104982 314 233 2.8099996e-05 315 233 0.00039299997 319 233 5.6099991e-05 322 233 2.8099996e-05 324 233 0.00056139985 326 233 0.0030595998 332 233 2.8099996e-05 349 233 5.6099991e-05 350 233 8.4199986e-05 356 233 5.6099991e-05 358 233 0.00022459999 384 233 5.6099991e-05 387 233 5.6099991e-05 402 233 5.6099991e-05 414 233 0.00025259983 417 233 0.00014039999 419 233 2.8099996e-05 421 233 5.6099991e-05 422 233 0.0001123 423 233 2.8099996e-05 425 233 2.8099996e-05 430 233 2.8099996e-05 431 233 2.8099996e-05 432 233 2.8099996e-05 433 233 5.6099991e-05 434 233 5.6099991e-05 442 233 0.0018806998 443 233 0.010806996 444 233 0.0028350998 445 233 0.011059597 446 233 0.0019929998 447 233 0.010919299 448 233 8.4199986e-05 450 233 0.0054174997 452 233 0.0045473985 453 233 0.0019648999 454 233 0.00053329999 455 233 0.033459596 456 233 0.00047719991 457 233 0.0031999999 458 233 0.00039299997 459 233 0.00039299997 460 233 0.0014876998 463 233 0.029585999 464 233 0.0020772 465 233 0.0066525973 467 233 0.0118737 468 233 0.0168982 469 233 0.0056701973 470 233 0.007719297 471 233 0.0021052998 473 233 0.00014039999 477 233 0.00042109983 478 233 0.00084209978 483 233 0.0018245999 489 233 2.8099996e-05 490 233 0.0019087999 491 233 0.00047719991 9 234 1.0399999e-05 16 234 3.4999994e-06 18 234 4.1599997e-05 19 234 3.4999994e-06 21 234 2.0799998e-05 22 234 0.00087069999 23 234 0.49135369 24 234 1.0399999e-05 25 234 2.4299996e-05 60 234 0.017792199 66 234 3.4999994e-06 74 234 0.0010753998 79 234 3.4999994e-06 82 234 0.0001145 83 234 6.8999998e-06 84 234 6.8999998e-06 104 234 3.4999994e-06 108 234 1.0399999e-05 113 234 2.0799998e-05 114 234 5.1999989e-05 117 234 0.00012839999 118 234 0.0002081 119 234 0.0001908 120 234 0.00039199996 122 234 2.0799998e-05 126 234 2.0799998e-05 127 234 3.4999994e-06 135 234 3.4999994e-06 150 234 5.8999998e-05 151 234 3.4999994e-06 160 234 3.4699988e-05 186 234 3.4999994e-06 189 234 4.1599997e-05 190 234 1.3899999e-05 191 234 4.1599997e-05 192 234 2.4299996e-05 194 234 1.3899999e-05 196 234 3.4999994e-06 197 234 3.4999994e-06 198 234 0.0029451 200 234 1.3899999e-05 201 234 1.0399999e-05 203 234 1.0399999e-05 204 234 2.4299996e-05 206 234 1.3899999e-05 207 234 1.0399999e-05 209 234 1.7299986e-05 214 234 0.023873199 215 234 6.8999998e-06 218 234 4.5099994e-05 223 234 0.0035660998 224 234 3.4999994e-06 229 234 3.4999994e-06 230 234 6.8999998e-06 231 234 0.0029936999 232 234 3.4999994e-06 233 234 2.0799998e-05 234 234 0.064313948 235 234 6.8999998e-06 237 234 9.0199988e-05 241 234 0.00074929977 242 234 5.1999989e-05 248 234 6.8999998e-06 250 234 3.4999994e-06 251 234 2.0799998e-05 252 234 6.939999e-05 253 234 1.0399999e-05 254 234 3.4999994e-06 263 234 3.4999994e-06 267 234 0.00010059999 272 234 0.00072499993 273 234 6.2399995e-05 277 234 0.00048909988 279 234 6.8999998e-06 281 234 6.8999998e-06 285 234 3.4999994e-06 287 234 1.0399999e-05 289 234 3.119999e-05 290 234 0.0015262999 294 234 6.8999998e-06 300 234 0.0038053999 301 234 0.0047523975 307 234 2.7799993e-05 315 234 3.4999994e-06 317 234 3.4999994e-06 319 234 6.8999998e-06 324 234 0.0002462999 326 234 0.0014118999 328 234 7.2799987e-05 331 234 1.7299986e-05 333 234 0.00017689999 334 234 6.8999998e-06 337 234 3.4999994e-06 340 234 1.0399999e-05 349 234 1.3899999e-05 350 234 0.0010302998 351 234 0.00029139989 354 234 3.119999e-05 356 234 0.00017689999 358 234 0.00031909999 369 234 6.8999998e-06 370 234 1.3899999e-05 372 234 0.00014919999 374 234 2.7799993e-05 380 234 3.4999994e-06 384 234 7.9799996e-05 385 234 6.8999998e-06 386 234 3.4999994e-06 387 234 2.0799998e-05 390 234 3.4999994e-06 394 234 6.8999998e-06 397 234 6.8999998e-06 402 234 4.1599997e-05 404 234 1.7299986e-05 414 234 0.00042319996 417 234 3.4699988e-05 419 234 3.4999994e-06 421 234 1.7299986e-05 422 234 2.7799993e-05 423 234 3.4999994e-06 425 234 3.4999994e-06 430 234 1.0399999e-05 431 234 6.8999998e-06 432 234 3.4999994e-06 433 234 6.8999998e-06 434 234 6.8999998e-06 441 234 8.6699991e-05 442 234 6.8999998e-06 443 234 0.0035903 444 234 7.6299999e-05 445 234 0.0046101995 446 234 0.0086861998 447 234 0.0020015999 448 234 0.033485599 449 234 3.4999994e-06 450 234 0.0018177 452 234 0.0066880994 453 234 0.012245297 454 234 0.0013979999 455 234 0.0072083995 456 234 0.0002462999 457 234 0.0045477971 458 234 0.00017689999 459 234 0.00058619981 460 234 0.0011377998 463 234 0.013358898 464 234 9.3699986e-05 465 234 0.00017689999 467 234 0.0081554987 468 234 0.0116001 469 234 0.0021402999 470 234 0.0023067999 471 234 0.00060359994 472 234 6.5899992e-05 473 234 4.8599992e-05 477 234 0.0001318 478 234 0.0001943 483 234 0.00077009993 489 234 0.00041279988 490 234 0.00018389999 18 235 0.00021619999 22 235 0.0057284981 23 235 0.00043229992 24 235 0.085170746 25 235 0.00010809999 60 235 0.0023778998 114 235 0.00010809999 126 235 0.00010809999 135 235 0.00010809999 160 235 0.00010809999 171 235 0.0048637986 191 235 0.00097279996 192 235 0.0064850971 193 235 0.00021619999 194 235 0.00010809999 198 235 0.0033505999 203 235 0.00010809999 206 235 0.00021619999 214 235 0.00043229992 215 235 0.00010809999 218 235 0.00010809999 220 235 0.00043229992 223 235 0.00010809999 231 235 0.013078298 233 235 0.0014050999 234 235 0.21379155 235 235 0.011565097 237 235 0.00086469995 241 235 0.020103797 242 235 0.00010809999 252 235 0.00021619999 254 235 0.0073497966 264 235 0.00021619999 266 235 0.00010809999 269 235 0.00021619999 272 235 0.0011888999 273 235 0.0069173984 277 235 0.0016212999 279 235 0.00010809999 282 235 0.00043229992 295 235 0.00010809999 300 235 0.0029183 301 235 0.0042152964 305 235 0.00010809999 312 235 0.00010809999 317 235 0.00010809999 322 235 0.00043229992 326 235 0.0036748999 328 235 0.00054039992 331 235 0.00097279996 332 235 0.00086469995 335 235 0.00021619999 336 235 0.00010809999 337 235 0.00010809999 340 235 0.00021619999 351 235 0.00010809999 354 235 0.00010809999 356 235 0.00010809999 358 235 0.00064849993 372 235 0.00010809999 402 235 0.00064849993 417 235 0.00010809999 421 235 0.00021619999 422 235 0.00010809999 434 235 0.00010809999 442 235 0.00010809999 443 235 0.011889298 444 235 0.0019454998 445 235 0.070146978 446 235 0.0070254989 447 235 0.0033505999 448 235 0.00021619999 450 235 0.0022697998 452 235 0.012105498 453 235 0.0088628978 454 235 0.00075659994 455 235 0.033073898 456 235 0.00054039992 457 235 0.0030264 458 235 0.0014050999 459 235 0.00054039992 460 235 0.0022697998 463 235 0.0155642 464 235 0.00054039992 465 235 0.00021619999 467 235 0.010808498 468 235 0.0056203976 469 235 0.0021616998 470 235 0.0019454998 471 235 0.0041071996 473 235 0.00010809999 477 235 0.00010809999 478 235 0.00064849993 483 235 0.00064849993 489 235 0.00010809999 490 235 0.00021619999 491 235 0.00021619999 18 236 0.0002194 22 236 0.0038389999 23 236 0.0015355998 24 236 0.0085553974 25 236 0.00010969999 60 236 0.0023033998 114 236 0.00010969999 117 236 0.0042776987 118 236 0.0036195999 119 236 0.0037292999 126 236 0.00010969999 130 236 0.00010969999 135 236 0.010749098 171 236 0.00010969999 189 236 0.00010969999 190 236 0.00010969999 191 236 0.084347844 192 236 0.0039486997 194 236 0.00010969999 198 236 0.013162199 203 236 0.00010969999 206 236 0.0002194 214 236 0.0063616969 218 236 0.00010969999 224 236 0.0026323998 225 236 0.00010969999 231 236 0.0002194 233 236 0.0014258998 234 236 0.15761757 235 236 0.0010968999 237 236 0.00065809977 241 236 0.0084457994 252 236 0.0002194 264 236 0.00032909983 267 236 0.0019742998 269 236 0.0002194 272 236 0.00043869996 273 236 0.055062 277 236 0.0028517998 279 236 0.00010969999 300 236 0.0043873973 301 236 0.0106395 315 236 0.00010969999 317 236 0.00010969999 326 236 0.0002194 334 236 0.0002194 340 236 0.0002194 349 236 0.00010969999 356 236 0.00010969999 358 236 0.00076779979 402 236 0.00032909983 417 236 0.00010969999 421 236 0.0002194 422 236 0.0042776987 434 236 0.00010969999 443 236 0.040912598 444 236 0.0028517998 445 236 0.044203099 446 236 0.0049357973 447 236 0.0031808999 448 236 0.0002194 450 236 0.0025227999 452 236 0.0062520988 453 236 0.0084457994 454 236 0.0017549999 455 236 0.047932398 456 236 0.00076779979 457 236 0.0029614998 458 236 0.0013161998 459 236 0.00010969999 460 236 0.0018646 463 236 0.0065810978 464 236 0.00032909983 465 236 0.00043869996 467 236 0.0086650997 468 236 0.0043873973 469 236 0.0019742998 470 236 0.0020839998 471 236 0.0040583983 473 236 0.00010969999 477 236 0.00010969999 478 236 0.00065809977 483 236 0.00098719983 489 236 0.00010969999 490 236 0.0002194 491 236 0.00032909983 9 237 1.7499988e-05 18 237 0.00068069994 22 237 0.00078539993 24 237 0.0018151999 25 237 0.0031241998 60 237 0.0055676997 79 237 1.7499988e-05 82 237 1.7499988e-05 83 237 1.7499988e-05 84 237 1.7499988e-05 108 237 1.7499988e-05 113 237 5.2399992e-05 114 237 8.7299995e-05 126 237 5.2399992e-05 127 237 1.7499988e-05 130 237 0.0065799989 131 237 1.7499988e-05 140 237 0.10304558 150 237 0.0003839999 151 237 0.00034909998 160 237 0.00017449999 189 237 5.2399992e-05 190 237 5.2399992e-05 192 237 5.2399992e-05 193 237 0.00099489978 194 237 6.9799993e-05 198 237 0.0011518998 200 237 3.4899989e-05 201 237 1.7499988e-05 203 237 6.9799993e-05 204 237 3.4899989e-05 206 237 6.9799993e-05 207 237 3.4899989e-05 214 237 0.030456398 222 237 0.022794299 223 237 0.0019373 224 237 0.0021292998 225 237 0.10222524 234 237 0.0021467998 237 237 0.0002269 239 237 0.0060912967 240 237 0.0051661991 241 237 0.0094772987 248 237 1.7499988e-05 250 237 1.7499988e-05 251 237 1.7499988e-05 252 237 0.0001222 272 237 0.00094249984 277 237 0.010314997 282 237 3.4899989e-05 284 237 3.4899989e-05 288 237 1.7499988e-05 312 237 1.7499988e-05 315 237 3.4899989e-05 319 237 0.00048869988 326 237 1.7499988e-05 349 237 1.7499988e-05 350 237 0.00095989997 356 237 0.00024429988 358 237 0.00095989997 384 237 3.4899989e-05 387 237 3.4899989e-05 402 237 0.0035430999 404 237 6.9799993e-05 414 237 0.00047119986 417 237 0.00027929991 419 237 1.7499988e-05 421 237 3.4899989e-05 422 237 6.9799993e-05 423 237 1.7499988e-05 425 237 1.7499988e-05 430 237 3.4899989e-05 431 237 1.7499988e-05 432 237 1.7499988e-05 433 237 3.4899989e-05 434 237 3.4899989e-05 443 237 0.0091979988 444 237 0.0014312 445 237 0.011938199 446 237 0.0023910999 447 237 0.0065450966 448 237 1.7499988e-05 450 237 0.0028275 452 237 0.0078191981 453 237 0.0026528998 454 237 0.0013438999 455 237 0.018134199 456 237 0.0002617999 457 237 0.0046425983 458 237 6.9799993e-05 459 237 0.0020420998 460 237 0.001309 463 237 0.0075049996 464 237 0.0011169999 465 237 0.0037175999 467 237 0.015900198 468 237 0.027297299 469 237 0.0041538998 470 237 0.0045029968 471 237 0.0021990999 473 237 8.7299995e-05 477 237 0.00061089988 478 237 0.00069809984 483 237 0.00085519999 489 237 5.2399992e-05 490 237 0.024469797 491 237 0.00041889981 24 238 0.0001967 60 238 0.0017698999 108 238 0.0001967 114 238 0.00039329985 126 238 0.0001967 130 238 0.075909495 131 238 0.0078662969 133 238 0.012192696 149 238 0.0019665998 150 238 0.0001967 171 238 0.018092398 187 238 0.0001967 189 238 0.0001967 190 238 0.0001967 192 238 0.012389399 194 238 0.00039329985 198 238 0.024778798 200 238 0.0001967 203 238 0.0001967 204 238 0.0001967 206 238 0.00039329985 214 238 0.017895799 219 238 0.0070795976 222 238 0.010816097 224 238 0.0330383 225 238 0.019075699 233 238 0.0031464999 234 238 0.0043265 238 238 0.00098329992 239 238 0.0001967 240 238 0.0214356 241 238 0.027925298 252 238 0.00039329985 270 238 0.0041297972 272 238 0.00078659994 277 238 0.0001967 340 238 0.00039329985 358 238 0.0031464999 387 238 0.0001967 417 238 0.00098329992 421 238 0.0001967 422 238 0.00039329985 437 238 0.0088495985 443 238 0.0045230985 444 238 0.0047197975 445 238 0.0090461969 446 238 0.00098329992 447 238 0.010226198 450 238 0.0060963966 452 238 0.0076695979 453 238 0.00078659994 454 238 0.0011798998 455 238 0.026745297 456 238 0.00039329985 457 238 0.0033431998 458 238 0.00098329992 459 238 0.00058999984 460 238 0.0011798998 463 238 0.0078662969 464 238 0.00078659994 465 238 0.0019665998 467 238 0.016322497 468 238 0.021632299 469 238 0.0074729994 470 238 0.0082595982 471 238 0.0011798998 473 238 0.0001967 477 238 0.0001967 478 238 0.0021631999 483 238 0.0019665998 490 238 0.0104228 21 239 0.0019607998 22 239 0.0039215982 25 239 0.0019607998 60 239 0.0058823973 130 239 0.0019607998 140 239 0.0156863 192 239 0.0019607998 198 239 0.0019607998 214 239 0.060784299 215 239 0.0019607998 218 239 0.0078430995 222 239 0.0039215982 224 239 0.0039215982 225 239 0.021568596 233 239 0.0019607998 234 239 0.031372499 236 239 0.0019607998 239 239 0.074509799 240 239 0.0156863 241 239 0.0058823973 277 239 0.0039215982 287 239 0.0019607998 334 239 0.0019607998 340 239 0.0019607998 349 239 0.0019607998 350 239 0.0019607998 443 239 0.013725497 444 239 0.0019607998 445 239 0.023529399 446 239 0.0039215982 447 239 0.0039215982 450 239 0.0019607998 452 239 0.033333298 453 239 0.0098038986 455 239 0.031372499 457 239 0.0019607998 463 239 0.0058823973 464 239 0.0019607998 467 239 0.0156863 468 239 0.0078430995 469 239 0.0058823973 470 239 0.0058823973 490 239 0.0078430995 491 239 0.019607797 0 240 0.00046659983 4 240 0.00015549999 9 240 3.8899991e-05 18 240 0.00011659999 21 240 0.0001944 22 240 0.001283 24 240 0.00093309977 25 240 7.7799996e-05 60 240 0.0031103999 79 240 3.8899991e-05 82 240 0.00011659999 83 240 3.8899991e-05 84 240 3.8899991e-05 88 240 0.00015549999 90 240 0.00011659999 104 240 7.7799996e-05 108 240 3.8899991e-05 113 240 7.7799996e-05 114 240 0.00015549999 115 240 3.8899991e-05 117 240 3.8899991e-05 126 240 7.7799996e-05 127 240 3.8899991e-05 130 240 0.028887998 131 240 0.0039268993 132 240 0.00050539989 133 240 0.00046659983 135 240 0.0001944 138 240 0.00031099981 139 240 0.0001944 140 240 0.0059486963 142 240 0.00042769988 143 240 0.00034989999 149 240 0.00050539989 150 240 0.00077759987 151 240 3.8899991e-05 152 240 3.8899991e-05 157 240 3.8899991e-05 158 240 0.00015549999 160 240 0.00077759987 161 240 3.8899991e-05 165 240 3.8899991e-05 169 240 0.00093309977 171 240 0.00077759987 186 240 7.7799996e-05 187 240 0.0018273999 188 240 0.0013218999 189 240 0.00015549999 190 240 0.00011659999 191 240 0.00042769988 192 240 0.0012053 193 240 7.7799996e-05 194 240 0.00023329999 197 240 0.00023329999 198 240 0.013685796 200 240 7.7799996e-05 201 240 3.8899991e-05 203 240 7.7799996e-05 204 240 0.00081649981 206 240 0.00015549999 207 240 7.7799996e-05 209 240 3.8899991e-05 214 240 0.053887997 218 240 0.00023329999 219 240 0.001283 221 240 3.8899991e-05 222 240 0.0059486963 223 240 0.0026826998 224 240 0.015435498 225 240 0.077293873 226 240 0.00038879993 227 240 0.0024883 228 240 7.7799996e-05 233 240 0.00023329999 234 240 0.0036546998 237 240 7.7799996e-05 239 240 0.0020607 240 240 0.028188199 241 240 0.031765196 242 240 3.8899991e-05 243 240 0.00062209996 248 240 3.8899991e-05 250 240 3.8899991e-05 251 240 3.8899991e-05 252 240 0.00050539989 254 240 3.8899991e-05 270 240 3.8899991e-05 271 240 0.00011659999 272 240 3.8899991e-05 273 240 0.00062209996 274 240 7.7799996e-05 276 240 0.0020994998 277 240 0.0088257976 282 240 0.0096422993 283 240 0.0001944 284 240 7.7799996e-05 292 240 7.7799996e-05 293 240 0.00011659999 296 240 7.7799996e-05 300 240 0.0001944 312 240 0.00015549999 313 240 3.8899991e-05 315 240 0.011003099 319 240 0.0020994998 322 240 0.00046659983 324 240 3.8899991e-05 326 240 0.0027604999 340 240 0.0020607 345 240 7.7799996e-05 348 240 7.7799996e-05 349 240 0.0026049998 350 240 7.7799996e-05 351 240 7.7799996e-05 354 240 3.8899991e-05 356 240 0.00027219998 357 240 3.8899991e-05 358 240 0.0020217998 372 240 7.7799996e-05 384 240 7.7799996e-05 385 240 3.8899991e-05 387 240 7.7799996e-05 393 240 3.8899991e-05 402 240 0.00027219998 414 240 0.00093309977 416 240 3.8899991e-05 417 240 0.00058319978 419 240 3.8899991e-05 421 240 7.7799996e-05 422 240 0.0001944 423 240 3.8899991e-05 425 240 3.8899991e-05 430 240 0.00042769988 431 240 3.8899991e-05 432 240 3.8899991e-05 433 240 3.8899991e-05 434 240 0.00011659999 437 240 3.8899991e-05 442 240 0.00015549999 443 240 0.0079315975 444 240 0.0033437 445 240 0.0087480992 446 240 0.0019828998 447 240 0.0077759996 448 240 3.8899991e-05 450 240 0.0037324999 452 240 0.01007 453 240 0.0033825999 454 240 0.0013218999 455 240 0.0315708 456 240 0.00038879993 457 240 0.0033047998 458 240 0.00050539989 459 240 0.00062209996 460 240 0.0014385998 463 240 0.0071539991 464 240 0.0023327998 465 240 0.0023716998 467 240 0.0146579 468 240 0.016990699 469 240 0.0063374974 470 240 0.0069595985 471 240 0.00089419982 473 240 0.00015549999 477 240 0.00015549999 478 240 0.0013218999 479 240 0.00011659999 483 240 0.0019439999 489 240 0.00011659999 490 240 0.0183126 491 240 0.0027215998 0 241 4.4299988e-05 2 241 0.00027469988 4 241 6.1999992e-05 9 241 8.8999996e-06 13 241 7.9799996e-05 16 241 8.8999996e-06 18 241 0.00013289999 19 241 1.7699989e-05 21 241 3.5399993e-05 22 241 0.00024809991 23 241 0.00058489991 24 241 0.00026589981 25 241 1.7699989e-05 60 241 0.0055033974 77 241 1.7699989e-05 79 241 8.8999996e-06 82 241 0.00016839999 83 241 1.7699989e-05 84 241 1.7699989e-05 90 241 8.8999996e-06 104 241 5.3199998e-05 107 241 2.6599999e-05 108 241 2.6599999e-05 110 241 3.5399993e-05 113 241 3.5399993e-05 114 241 7.0899987e-05 116 241 2.6599999e-05 118 241 0.0002216 119 241 9.7499986e-05 120 241 7.0899987e-05 126 241 3.5399993e-05 127 241 8.8999996e-06 130 241 0.012008198 131 241 0.0015419999 132 241 0.00021269999 133 241 0.0001241 135 241 1.7699989e-05 137 241 8.8999996e-06 138 241 3.5399993e-05 139 241 0.00027469988 140 241 9.7499986e-05 141 241 8.8999996e-06 142 241 0.00014179999 143 241 0.0001507 149 241 0.00025699986 150 241 0.0010279999 151 241 2.6599999e-05 152 241 0.0001772 157 241 8.8999996e-06 158 241 9.7499986e-05 159 241 0.0001772 160 241 0.00074439985 161 241 0.00052289991 162 241 2.6599999e-05 165 241 0.0001507 169 241 0.00068239984 170 241 0.00046079978 171 241 0.0037486998 172 241 2.6599999e-05 181 241 8.8999996e-06 184 241 5.3199998e-05 186 241 0.0001241 187 241 0.0040853992 188 241 0.0011254998 189 241 4.4299988e-05 190 241 9.7499986e-05 191 241 7.0899987e-05 192 241 0.0019673998 193 241 0.0015065998 194 241 0.0067705996 196 241 8.8999996e-06 197 241 0.001799 198 241 0.021012098 200 241 5.3199998e-05 201 241 2.6599999e-05 203 241 6.1999992e-05 204 241 0.00027469988 206 241 0.0001507 207 241 4.4299988e-05 209 241 3.5399993e-05 212 241 8.8999996e-06 214 241 0.041448098 215 241 0.00035449979 218 241 0.0001507 219 241 0.00084189977 221 241 0.00068239984 222 241 0.00011519999 223 241 0.00071779988 224 241 0.15698326 225 241 0.0032612998 226 241 0.00020379999 227 241 0.0010988999 228 241 3.5399993e-05 229 241 0.00047859992 230 241 2.6599999e-05 231 241 8.8599991e-05 232 241 4.4299988e-05 233 241 0.0021888998 234 241 0.0034385 237 241 0.00010629999 239 241 4.4299988e-05 240 241 0.0023749999 241 241 0.046685599 242 241 1.7699989e-05 243 241 7.0899987e-05 248 241 1.7699989e-05 250 241 1.7699989e-05 251 241 1.7699989e-05 252 241 0.0075504966 253 241 5.3199998e-05 254 241 2.6599999e-05 262 241 1.7699989e-05 263 241 8.8999996e-06 269 241 8.8999996e-06 270 241 0.00024809991 271 241 0.0003101998 272 241 8.8999996e-06 273 241 0.00042539998 274 241 0.0016128998 276 241 7.9799996e-05 277 241 0.0040322989 282 241 0.00080649997 283 241 6.1999992e-05 284 241 4.4299988e-05 285 241 4.4299988e-05 286 241 0.00018609999 287 241 3.5399993e-05 288 241 0.00033679977 289 241 0.00019499999 290 241 0.00021269999 292 241 0.0011342999 293 241 0.0014356999 294 241 0.00013289999 295 241 0.00018609999 296 241 0.00010629999 297 241 7.9799996e-05 298 241 6.1999992e-05 299 241 2.6599999e-05 300 241 0.00013289999 301 241 0.0001772 305 241 8.8999996e-06 307 241 2.6599999e-05 312 241 0.00066469982 313 241 8.8999996e-06 314 241 3.5399993e-05 315 241 0.0099520981 317 241 0.00042539998 319 241 0.0017014998 320 241 9.7499986e-05 321 241 5.3199998e-05 322 241 0.0029687998 324 241 7.9799996e-05 325 241 0.00094819977 326 241 0.0083126985 328 241 0.00010629999 330 241 8.8999996e-06 335 241 7.9799996e-05 336 241 8.8599991e-05 338 241 2.6599999e-05 340 241 0.0061768964 341 241 8.8999996e-06 344 241 8.8999996e-06 345 241 2.6599999e-05 347 241 3.5399993e-05 348 241 0.00060259993 349 241 0.0035979999 350 241 8.8599991e-05 351 241 5.3199998e-05 352 241 8.8999996e-06 353 241 8.8999996e-06 354 241 5.3199998e-05 355 241 8.8999996e-06 356 241 0.00058489991 357 241 1.7699989e-05 358 241 0.003146 363 241 8.8999996e-06 366 241 8.8999996e-06 369 241 8.8999996e-06 370 241 5.3199998e-05 371 241 2.6599999e-05 372 241 9.7499986e-05 373 241 2.6599999e-05 376 241 8.8999996e-06 380 241 1.7699989e-05 384 241 2.6599999e-05 385 241 0.0014799999 386 241 0.00035449979 387 241 2.6599999e-05 390 241 6.1999992e-05 392 241 0.0001241 393 241 0.00024809991 394 241 8.8999996e-06 397 241 1.7699989e-05 398 241 2.6599999e-05 402 241 4.4299988e-05 404 241 2.6599999e-05 405 241 0.00023929999 409 241 2.6599999e-05 414 241 0.00074439985 416 241 8.8999996e-06 417 241 0.00050509977 419 241 3.5399993e-05 420 241 8.8999996e-06 421 241 0.0001241 422 241 0.0001241 423 241 8.8999996e-06 424 241 2.6599999e-05 425 241 8.8999996e-06 426 241 8.8999996e-06 428 241 0.00023929999 430 241 0.00035449979 431 241 2.6599999e-05 432 241 1.7699989e-05 433 241 3.5399993e-05 434 241 4.4299988e-05 437 241 0.0004164998 438 241 1.7699989e-05 441 241 1.7699989e-05 442 241 0.0015596999 443 241 0.0089240968 444 241 0.0048209988 445 241 0.010873798 446 241 0.0012496 447 241 0.014968097 448 241 6.1999992e-05 449 241 8.8999996e-06 450 241 0.0045107976 452 241 0.012442399 453 241 0.0037308999 454 241 0.0012317998 455 241 0.030441299 456 241 0.00047859992 457 241 0.0022952999 458 241 0.00069119991 459 241 0.0013116 460 241 0.0013913999 463 241 0.014223699 464 241 0.0044753999 465 241 0.0025699998 467 241 0.0080467984 468 241 0.0087822974 469 241 0.0036334998 470 241 0.0048032999 471 241 0.0017547 473 241 7.0899987e-05 477 241 0.00053169997 478 241 0.0011077998 479 241 0.0016748998 483 241 0.00069119991 489 241 0.00010629999 490 241 0.00062029995 491 241 0.00093939994 9 242 0.0001121 22 242 0.00056059984 24 242 0.0001121 25 242 0.0001121 60 242 0.0029151 82 242 0.0001121 108 242 0.0001121 114 242 0.00022419999 126 242 0.0001121 130 242 0.066935778 131 242 0.0077362992 132 242 0.00022419999 140 242 0.0076241978 142 242 0.0001121 156 242 0.0001121 158 242 0.0001121 160 242 0.0001121 165 242 0.0001121 171 242 0.0001121 187 242 0.00022419999 189 242 0.0001121 190 242 0.0001121 192 242 0.00056059984 193 242 0.0001121 194 242 0.00044849981 197 242 0.0024665999 198 242 0.0065029971 200 242 0.0001121 203 242 0.0001121 204 242 0.0001121 206 242 0.00022419999 214 242 0.026908796 222 242 0.0107635 223 242 0.0011211999 224 242 0.0244422 225 242 0.072093248 233 242 0.0001121 234 242 0.0038120998 237 242 0.0001121 239 242 0.0025787998 240 242 0.013790797 241 242 0.0028029999 252 242 0.00056059984 272 242 0.00067269988 274 242 0.0001121 277 242 0.013118099 282 242 0.00056059984 284 242 0.0001121 307 242 0.0001121 312 242 0.0001121 315 242 0.00067269988 319 242 0.011324096 322 242 0.0077362992 324 242 0.0001121 326 242 0.0087453984 328 242 0.0001121 340 242 0.0052695982 349 242 0.00022419999 350 242 0.0001121 351 242 0.0001121 354 242 0.0001121 356 242 0.00033639977 358 242 0.0019059998 372 242 0.00022419999 385 242 0.0001121 387 242 0.0001121 402 242 0.00022419999 417 242 0.00056059984 421 242 0.0001121 422 242 0.00022419999 430 242 0.0001121 443 242 0.0061665997 444 242 0.0012333 445 242 0.0065029971 446 242 0.00067269988 447 242 0.0050453991 450 242 0.0034756998 452 242 0.0086332969 453 242 0.0030271998 454 242 0.0010090999 455 242 0.0225362 456 242 0.00044849981 457 242 0.0047089979 458 242 0.00078479992 459 242 0.00078479992 460 242 0.0014575999 463 242 0.009081699 464 242 0.00078479992 465 242 0.0014575999 467 242 0.011996899 468 242 0.023769498 469 242 0.0076241978 470 242 0.0084089972 471 242 0.0023544999 473 242 0.00022419999 477 242 0.0001121 478 242 0.0012333 479 242 0.0001121 483 242 0.0017938998 490 242 0.0056059994 491 242 0.00089699985 22 243 0.00066699996 25 243 0.0009527998 60 243 0.0021914998 82 243 0.41629344 104 243 0.0015244999 114 243 9.5299998e-05 126 243 9.5299998e-05 130 243 0.00028589997 142 243 9.5299998e-05 143 243 9.5299998e-05 160 243 0.00028589997 161 243 9.5299998e-05 188 243 0.0001906 189 243 9.5299998e-05 190 243 9.5299998e-05 194 243 9.5299998e-05 198 243 0.00057169981 206 243 0.0001906 214 243 0.052786998 218 243 0.012100998 223 243 0.0012386998 224 243 9.5299998e-05 230 243 0.020867098 231 243 0.014864199 234 243 0.0046688989 237 243 9.5299998e-05 240 243 9.5299998e-05 241 243 9.5299998e-05 243 243 0.08575505 252 243 9.5299998e-05 267 243 0.0031444 272 243 0.00028589997 277 243 0.0004763999 312 243 9.5299998e-05 350 243 9.5299998e-05 358 243 0.00076229987 422 243 9.5299998e-05 430 243 0.00028589997 442 243 0.00066699996 443 243 0.0078131966 444 243 0.0001906 445 243 0.016769897 446 243 0.0012386998 447 243 0.0014292998 450 243 0.0015244999 452 243 0.0059075989 453 243 0.0033348999 454 243 0.00038109999 455 243 0.052120097 456 243 9.5299998e-05 457 243 0.0035255 458 243 0.00057169981 459 243 0.00028589997 460 243 0.0004763999 463 243 0.0071462989 464 243 0.0001906 465 243 0.00076229987 467 243 0.0044782981 468 243 0.0010480999 469 243 0.0019057 470 243 0.0020009999 471 243 0.00085759978 473 243 9.5299998e-05 478 243 0.00076229987 483 243 0.0012386998 490 243 0.00076229987 491 243 0.0014292998 60 244 0.0025038 82 244 0.025538299 114 244 0.00050079986 130 244 0.075112641 131 244 0.00050079986 133 244 0.00050079986 135 244 0.0095142983 142 244 0.035553299 143 244 0.027541298 149 244 0.0010014998 158 244 0.00050079986 160 244 0.0045067966 161 244 0.047571398 188 244 0.070105195 192 244 0.00050079986 198 244 0.010015 206 244 0.00050079986 214 244 0.0075112991 218 244 0.0015022999 223 244 0.00050079986 224 244 0.0015022999 225 244 0.0015022999 230 244 0.0065097995 231 244 0.0015022999 234 244 0.0035052998 240 244 0.00050079986 241 244 0.014020998 243 244 0.17526287 244 244 0.0075112991 272 244 0.00050079986 277 244 0.010015 279 244 0.00050079986 317 244 0.0010014998 358 244 0.0010014998 443 244 0.0080119967 444 244 0.00050079986 445 244 0.010015 446 244 0.0015022999 450 244 0.0030044999 452 244 0.0055082999 453 244 0.00050079986 454 244 0.0015022999 455 244 0.045568399 457 244 0.0035052998 458 244 0.00050079986 460 244 0.0010014998 463 244 0.0080119967 464 244 0.00050079986 465 244 0.00050079986 467 244 0.0065097995 468 244 0.0020029999 469 244 0.0030044999 470 244 0.0035052998 471 244 0.00050079986 478 244 0.0015022999 483 244 0.0065097995 490 244 0.0010014998 491 244 0.00050079986 18 245 3.3199991e-05 22 245 6.6399996e-05 60 245 0.0011292 108 245 6.6399996e-05 114 245 0.00013279999 126 245 9.9599987e-05 130 245 0.0106606 131 245 0.0046494976 132 245 0.0028893 133 245 0.0055128969 139 245 0.020889398 141 245 0.0015608999 142 245 0.0029224998 143 245 0.0070737973 149 245 0.0027564999 150 245 0.0016272999 151 245 3.3199991e-05 161 245 0.0031881998 171 245 0.0027896999 188 245 0.0015940999 189 245 0.00019929999 190 245 0.0001661 192 245 0.0012951999 193 245 0.0011292 194 245 9.9599987e-05 196 245 3.3199991e-05 197 245 3.3199991e-05 198 245 0.0155425 200 245 3.3199991e-05 203 245 9.9599987e-05 204 245 9.9599987e-05 206 245 0.0001661 207 245 6.6399996e-05 209 245 3.3199991e-05 214 245 0.0025239999 219 245 0.007571999 224 245 3.3199991e-05 230 245 0.0009631 233 245 0.0010626998 234 245 0.0017269 237 245 0.00019929999 240 245 0.0220185 241 245 0.049217898 243 245 0.20706719 244 245 0.019826598 245 245 0.0063099973 246 245 6.6399996e-05 251 245 0.0022914999 272 245 0.0002325 279 245 0.00019929999 284 245 3.3199991e-05 292 245 0.0057453997 315 245 0.0062435977 317 245 0.00099629979 335 245 0.0017269 349 245 0.0057453997 356 245 6.6399996e-05 358 245 0.0011292 387 245 6.6399996e-05 402 245 6.6399996e-05 422 245 9.9599987e-05 430 245 3.3199991e-05 432 245 3.3199991e-05 433 245 6.6399996e-05 434 245 6.6399996e-05 437 245 0.0052804984 442 245 0.0029888998 443 245 0.0009631 444 245 0.0010626998 445 245 0.0096974969 446 245 0.00053139986 447 245 0.0039519966 450 245 0.0032213998 452 245 0.0038192 453 245 0.00033209985 454 245 0.0001661 455 245 0.035468798 456 245 0.00019929999 457 245 0.0055128969 458 245 0.0010958998 459 245 0.00053139986 460 245 0.00099629979 463 245 0.011523999 464 245 0.00073059998 465 245 0.0014944999 467 245 0.015011098 468 245 0.012453899 469 245 0.0034538999 470 245 0.0038855998 471 245 0.0011623998 473 245 9.9599987e-05 477 245 6.6399996e-05 478 245 0.0017269 483 245 0.0044169985 489 245 3.3199991e-05 490 245 0.00033209985 491 245 6.6399996e-05 60 246 0.0012084998 114 246 0.00060419994 130 246 0.047129899 131 246 0.027190298 132 246 0.0054380968 133 246 0.0018126999 139 246 0.062839866 143 246 0.031419899 145 246 0.0084591992 146 246 0.00060419994 149 246 0.0012084998 150 246 0.00060419994 171 246 0.00060419994 192 246 0.00060419994 198 246 0.022960696 206 246 0.00060419994 214 246 0.00060419994 219 246 0.010876097 222 246 0.00060419994 224 246 0.0012084998 225 246 0.00060419994 230 246 0.00060419994 234 246 0.0018126999 240 246 0.0277946 241 246 0.051963698 243 246 0.068277895 244 246 0.0054380968 245 246 0.00060419994 246 246 0.030815698 292 246 0.00060419994 315 246 0.00060419994 317 246 0.0012084998 349 246 0.00060419994 358 246 0.0012084998 377 246 0.00060419994 437 246 0.0012084998 444 246 0.00060419994 445 246 0.006646499 447 246 0.0048337989 450 246 0.0030210998 452 246 0.0036253999 453 246 0.00060419994 455 246 0.033232599 457 246 0.0042295977 458 246 0.00060419994 459 246 0.00060419994 460 246 0.0012084998 463 246 0.0096676983 464 246 0.00060419994 465 246 0.00060419994 467 246 0.0090633966 468 246 0.039879199 469 246 0.0060422979 470 246 0.0060422979 471 246 0.00060419994 478 246 0.0018126999 483 246 0.0060422979 490 246 0.0012084998 60 247 0.0012361 82 247 0.0074165985 114 247 0.0012361 130 247 0.063040793 131 247 0.0012361 133 247 0.034610599 139 247 0.0037082999 149 247 0.029666297 150 247 0.022249699 156 247 0.0012361 198 247 0.0173053 206 247 0.0012361 214 247 0.0012361 224 247 0.004944399 234 247 0.0037082999 243 247 0.31149566 317 247 0.0012361 358 247 0.0012361 382 247 0.0024722 437 247 0.009888798 445 247 0.0086526982 450 247 0.004944399 452 247 0.0037082999 453 247 0.0012361 455 247 0.028430197 457 247 0.004944399 460 247 0.0012361 463 247 0.0037082999 465 247 0.0012361 467 247 0.0086526982 468 247 0.0074165985 469 247 0.004944399 470 247 0.0061804987 471 247 0.0037082999 478 247 0.0012361 483 247 0.0037082999 490 247 0.0012361 491 247 0.0012361 60 248 0.0021007999 114 248 0.00030009984 126 248 0.00030009984 130 248 0.036914799 131 248 0.023109198 132 248 0.00030009984 133 248 0.016206499 135 248 0.00030009984 139 248 0.061224498 141 248 0.00030009984 142 248 0.021308497 156 248 0.0054021999 160 248 0.0024009999 161 248 0.0015005998 165 248 0.006902799 169 248 0.00030009984 171 248 0.0018006999 190 248 0.00030009984 192 248 0.016206499 194 248 0.00060019991 198 248 0.0066025965 206 248 0.00060019991 224 248 0.0057022981 234 248 0.0030011998 237 248 0.00030009984 241 248 0.076530576 243 248 0.017106798 248 248 0.027010798 272 248 0.00060019991 279 248 0.00030009984 284 248 0.00030009984 315 248 0.017106798 317 248 0.00090039987 319 248 0.072328866 322 248 0.00030009984 326 248 0.00030009984 358 248 0.0012004999 378 248 0.00030009984 419 248 0.00060019991 422 248 0.00030009984 437 248 0.027911197 442 248 0.021608599 443 248 0.0024009999 444 248 0.00060019991 445 248 0.013505399 447 248 0.0021007999 450 248 0.0045017973 452 248 0.0048018992 453 248 0.0012004999 454 248 0.00060019991 455 248 0.045618199 456 248 0.00030009984 457 248 0.0036013999 458 248 0.0021007999 459 248 0.00060019991 460 248 0.0015005998 463 248 0.034513798 464 248 0.00060019991 465 248 0.0012004999 467 248 0.0090035982 468 248 0.014405798 469 248 0.0057022981 470 248 0.0063024983 471 248 0.0021007999 473 248 0.00030009984 478 248 0.0015005998 483 248 0.0030011998 490 248 0.00060019991 491 248 0.00090039987 60 249 0.00085229985 114 249 0.00028409995 126 249 0.00028409995 130 249 0.025568198 131 249 0.0068181977 133 249 0.0065340996 139 249 0.11363637 141 249 0.00028409995 149 249 0.0011363998 150 249 0.0014205 156 249 0.0068181977 160 249 0.00028409995 190 249 0.00028409995 194 249 0.00028409995 198 249 0.0028408999 203 249 0.00028409995 206 249 0.0005681999 219 249 0.0073863976 224 249 0.00028409995 234 249 0.0022727 237 249 0.00028409995 241 249 0.093181789 243 249 0.076420486 248 249 0.00028409995 249 249 0.012784097 272 249 0.00028409995 277 249 0.00028409995 279 249 0.00028409995 284 249 0.00028409995 292 249 0.00028409995 317 249 0.0011363998 319 249 0.025284097 326 249 0.00028409995 358 249 0.0014205 422 249 0.00028409995 430 249 0.00028409995 434 249 0.00028409995 437 249 0.018181797 442 249 0.0088067986 443 249 0.0011363998 444 249 0.00028409995 445 249 0.010511398 447 249 0.00085229985 450 249 0.0056817979 452 249 0.0053976998 453 249 0.00085229985 455 249 0.0480114 456 249 0.00028409995 457 249 0.0034091 458 249 0.0005681999 459 249 0.00028409995 460 249 0.0017044998 463 249 0.014772698 464 249 0.0005681999 465 249 0.0014205 467 249 0.0085226968 468 249 0.0082385987 469 249 0.0048294999 470 249 0.0053976998 471 249 0.0025567999 473 249 0.00028409995 478 249 0.0019885998 483 249 0.0036931999 490 249 0.0005681999 60 250 0.0012578999 82 250 0.0012578999 114 250 0.00041929982 126 250 0.00041929982 130 250 0.027672999 131 250 0.018029399 133 250 0.0075471997 139 250 0.032285098 141 250 0.00041929982 142 250 0.00041929982 149 250 0.00083859987 150 250 0.00083859987 156 250 0.020545099 160 250 0.0096435994 161 250 0.00083859987 171 250 0.00041929982 188 250 0.00041929982 193 250 0.0037735999 198 250 0.018867899 206 250 0.00083859987 219 250 0.0075471997 224 250 0.00041929982 231 250 0.00041929982 234 250 0.0033542998 237 250 0.00041929982 241 250 0.064570189 243 250 0.092662454 249 250 0.00041929982 250 250 0.00041929982 251 250 0.00083859987 252 250 0.00041929982 272 250 0.00041929982 279 250 0.00041929982 290 250 0.0016770998 292 250 0.00041929982 298 250 0.0012578999 312 250 0.0033542998 315 250 0.00083859987 317 250 0.00083859987 319 250 0.015513599 322 250 0.012578599 326 250 0.018867899 358 250 0.0012578999 378 250 0.014255799 421 250 0.00083859987 424 250 0.0012578999 426 250 0.00041929982 437 250 0.0083856992 442 250 0.0012578999 443 250 0.0012578999 444 250 0.0037735999 445 250 0.021802898 447 250 0.020545099 450 250 0.0041928999 452 250 0.0037735999 455 250 0.031027298 456 250 0.00041929982 457 250 0.0037735999 458 250 0.00083859987 460 250 0.0012578999 463 250 0.012159299 464 250 0.00083859987 465 250 0.00041929982 467 250 0.010062899 468 250 0.019706499 469 250 0.0062892996 470 250 0.0075471997 471 250 0.0016770998 473 250 0.00041929982 478 250 0.0012578999 483 250 0.0041928999 490 250 0.00083859987 60 251 0.00065449998 82 251 0.033376999 114 251 0.00065449998 130 251 0.0032722999 133 251 0.00065449998 139 251 0.0032722999 142 251 0.00065449998 149 251 0.0013088998 150 251 0.0013088998 161 251 0.028141398 171 251 0.00065449998 188 251 0.0026177999 191 251 0.00065449998 193 251 0.0157068 198 251 0.0058900975 206 251 0.0013088998 214 251 0.0013088998 225 251 0.00065449998 230 251 0.00065449998 231 251 0.021596897 234 251 0.0045811981 237 251 0.00065449998 240 251 0.00065449998 241 251 0.0039266981 243 251 0.19437164 251 251 0.0058900975 312 251 0.0091622993 315 251 0.0078534 317 251 0.00065449998 319 251 0.0235602 358 251 0.0013088998 437 251 0.059554998 443 251 0.00065449998 445 251 0.0045811981 450 251 0.0045811981 452 251 0.0052355975 453 251 0.0019633998 455 251 0.038612597 457 251 0.0039266981 458 251 0.00065449998 460 251 -0.024869099 463 251 0.0065444969 464 251 0.0013088998 465 251 0.00065449998 467 251 0.0065444969 468 251 0.052355997 469 251 0.0052355975 470 251 0.0052355975 471 251 0.0019633998 478 251 0.0013088998 483 251 0.0019633998 490 251 0.00065449998 491 251 0.00065449998 4 252 2.8299997e-05 18 252 0.0011618 22 252 0.00042499998 24 252 0.006403897 25 252 0.00045339996 60 252 0.0098324977 82 252 2.8299997e-05 108 252 8.4999992e-05 114 252 0.00011329999 126 252 8.4999992e-05 130 252 0.00028339983 132 252 5.6699995e-05 135 252 2.8299997e-05 139 252 5.6699995e-05 150 252 0.00062339986 151 252 0.00085009984 156 252 2.8299997e-05 159 252 2.8299997e-05 160 252 0.0043920986 161 252 0.00039669988 162 252 0.00076509989 165 252 0.00036839978 169 252 0.0012750998 170 252 0.00022669999 171 252 0.010144196 172 252 0.0031452999 187 252 5.6699995e-05 189 252 8.4999992e-05 190 252 8.4999992e-05 192 252 0.0022384999 193 252 0.00076509989 194 252 0.00011329999 197 252 2.8299997e-05 198 252 0.01873 200 252 2.8299997e-05 203 252 5.6699995e-05 204 252 8.4999992e-05 206 252 0.00011329999 207 252 2.8299997e-05 214 252 0.015612997 218 252 2.8299997e-05 219 252 0.0016150998 223 252 0.0024368998 224 252 0.00028339983 227 252 2.8299997e-05 228 252 2.8299997e-05 233 252 0.0028902998 234 252 0.0026918999 237 252 0.00017 240 252 0.0012750998 241 252 0.059986997 242 252 0.0012750998 252 252 0.12668949 253 252 2.8299997e-05 263 252 0.00073669991 267 252 0.00070839981 268 252 0.00031169993 270 252 0.00042499998 271 252 2.8299997e-05 272 252 0.00073669991 273 252 0.0047603995 274 252 0.0009066998 277 252 0.0013317999 279 252 0.0010201 282 252 0.00028339983 283 252 8.4999992e-05 284 252 8.4999992e-05 285 252 2.8299997e-05 289 252 2.8299997e-05 290 252 0.0024935999 292 252 0.00025499985 293 252 0.00025499985 295 252 0.00011329999 296 252 0.00014169999 298 252 8.4999992e-05 312 252 0.00017 313 252 2.8299997e-05 315 252 0.0029753 317 252 0.00028339983 318 252 2.8299997e-05 319 252 0.00031169993 320 252 5.6699995e-05 322 252 5.6699995e-05 324 252 2.8299997e-05 325 252 2.8299997e-05 326 252 0.00014169999 328 252 8.4999992e-05 340 252 0.00036839978 345 252 0.0010483998 346 252 2.8299997e-05 349 252 0.00059509999 350 252 0.00082169985 351 252 5.6699995e-05 352 252 0.00011329999 354 252 5.6699995e-05 356 252 0.00022669999 357 252 2.8299997e-05 358 252 0.0030318999 369 252 2.8299997e-05 370 252 0.00031169993 372 252 8.4999992e-05 375 252 0.0013317999 377 252 0.00059509999 384 252 0.00017 385 252 8.4999992e-05 386 252 0.0010201 387 252 8.4999992e-05 393 252 5.6699995e-05 397 252 2.8299997e-05 398 252 5.6699995e-05 401 252 5.6699995e-05 402 252 0.00025499985 412 252 2.8299997e-05 414 252 0.00076509989 417 252 0.00042499998 419 252 0.0013885 420 252 2.8299997e-05 421 252 8.4999992e-05 422 252 8.4999992e-05 430 252 5.6699995e-05 433 252 2.8299997e-05 434 252 2.8299997e-05 442 252 8.4999992e-05 443 252 0.015131298 444 252 0.0011333998 445 252 0.011249296 446 252 0.00085009984 447 252 0.0041653998 450 252 0.0032869999 452 252 0.010710899 453 252 0.020628497 454 252 0.0017567999 455 252 0.038423397 456 252 0.00028339983 457 252 0.0035702998 458 252 0.0021819 459 252 0.0020684998 460 252 0.00082169985 463 252 0.012071099 464 252 0.0012750998 465 252 0.00079339999 467 252 0.015074696 468 252 0.014196299 469 252 0.0047320984 470 252 0.0053554997 471 252 0.0069138967 473 252 8.4999992e-05 477 252 0.00096339989 478 252 0.0010767998 483 252 0.0012467999 489 252 0.00014169999 490 252 0.00039669988 491 252 0.0042219982 9 253 4.7299996e-05 18 253 0.0002366 24 253 0.011972897 60 253 0.0037385998 82 253 4.7299996e-05 108 253 4.7299996e-05 114 253 9.4599993e-05 126 253 4.7299996e-05 150 253 0.00075719994 160 253 0.00037859986 162 253 0.0022715 169 253 0.0021768999 172 253 0.00099379988 189 253 4.7299996e-05 190 253 9.4599993e-05 192 253 0.0032179998 193 253 4.7299996e-05 194 253 0.00014199999 198 253 0.089867949 200 253 4.7299996e-05 203 253 4.7299996e-05 204 253 0.0036912998 206 253 0.00014199999 207 253 4.7299996e-05 214 253 0.033694599 233 253 0.0015143999 234 253 0.0053475983 237 253 0.00014199999 241 253 0.0048743971 252 253 0.00033129985 253 253 0.0031706998 267 253 0.0065779984 270 253 0.0020821998 273 253 0.015948098 276 253 9.4599993e-05 277 253 9.4599993e-05 279 253 0.0041171983 284 253 9.4599993e-05 314 253 0.0026027998 317 253 0.0010410999 326 253 4.7299996e-05 340 253 0.0056788996 349 253 0.0128721 356 253 0.00018929999 358 253 0.0035492999 384 253 4.7299996e-05 387 253 4.7299996e-05 402 253 4.7299996e-05 414 253 0.00094649987 417 253 0.00052059977 421 253 9.4599993e-05 422 253 4.7299996e-05 430 253 4.7299996e-05 433 253 4.7299996e-05 434 253 4.7299996e-05 442 253 0.0032652998 443 253 0.0387582 444 253 0.00014199999 445 253 0.015096299 446 253 0.0019403 447 253 0.00056789978 448 253 4.7299996e-05 450 253 0.0026974999 452 253 0.017604496 453 253 0.030145299 454 253 0.0022241999 455 253 0.0234253 456 253 0.00033129985 457 253 0.0026974999 458 253 0.00033129985 459 253 0.00080449996 460 253 0.00085179997 463 253 0.017415199 464 253 0.00018929999 465 253 0.00099379988 467 253 0.0090861991 468 253 0.0043537989 469 253 0.0031706998 470 253 0.0035019999 471 253 0.0010410999 472 253 0.00047319988 473 253 9.4599993e-05 477 253 4.7299996e-05 478 253 0.0012303998 483 253 0.0010883999 489 253 9.4599993e-05 490 253 0.00028389995 491 253 0.0077137984 18 254 0.00061059999 19 254 0.00088809989 21 254 5.5499986e-05 22 254 0.025312196 24 254 0.0511241 25 254 5.5499986e-05 60 254 0.034415796 68 254 0.00088809989 69 254 0.00044409977 73 254 0.00011099999 75 254 5.5499986e-05 108 254 5.5499986e-05 114 254 0.00011099999 126 254 5.5499986e-05 160 254 0.0017762999 169 254 0.0027754998 189 254 5.5499986e-05 190 254 5.5499986e-05 193 254 0.012323096 194 254 0.00011099999 200 254 5.5499986e-05 203 254 5.5499986e-05 204 254 5.5499986e-05 206 254 0.00011099999 214 254 0.025978398 219 254 0.0015542998 220 254 0.0023313998 224 254 0.0016097999 234 254 0.014654499 235 254 0.00272 237 254 0.00066609983 241 254 5.5499986e-05 242 254 0.0044406988 251 254 0.00011099999 252 254 5.5499986e-05 254 254 0.0020537998 270 254 0.0029419998 273 254 0.014987499 277 254 0.0032195 287 254 5.5499986e-05 295 254 0.0018872998 305 254 0.00016649999 320 254 0.0019427999 322 254 0.0013321999 324 254 0.00049959985 328 254 0.00055509992 331 254 0.0049957968 349 254 0.0011656999 350 254 0.0023868999 356 254 0.00038859993 358 254 0.00038859993 384 254 0.00016649999 386 254 0.0025533999 387 254 5.5499986e-05 402 254 0.00016649999 404 254 5.5499986e-05 414 254 0.00049959985 417 254 0.00016649999 422 254 5.5499986e-05 442 254 0.0044962987 443 254 0.0329725 444 254 0.0021094 445 254 0.0286428 446 254 0.0036636 447 254 0.0022759 448 254 0.00016649999 450 254 0.0021094 452 254 0.050402399 453 254 0.043297298 454 254 0.0032749998 455 254 0.016097698 456 254 0.00066609983 457 254 0.017596398 458 254 0.00038859993 459 254 0.0013321999 460 254 0.0018318 463 254 0.0085483976 464 254 0.0016097999 465 254 0.00044409977 467 254 0.018706597 468 254 0.0026089 469 254 0.0064945966 470 254 0.0020537998 471 254 0.0062169991 473 254 5.5499986e-05 477 254 0.0017762999 478 254 0.00061059999 483 254 0.00044409977 489 254 0.00044409977 490 254 0.00016649999 491 254 5.5499986e-05 18 255 0.00042859977 22 255 0.0021431998 24 255 0.051007297 60 255 0.0092155971 108 255 0.00021429999 114 255 0.00042859977 126 255 0.00021429999 160 255 0.0032146999 169 255 0.0021431998 189 255 0.00021429999 190 255 0.00021429999 194 255 0.00021429999 198 255 0.0062151998 206 255 0.00042859977 214 255 0.0070723966 218 255 0.00021429999 220 255 0.00064289989 233 255 0.0060008988 234 255 0.0098585971 235 255 0.0034290999 237 255 0.00042859977 240 255 0.0012858999 252 255 0.00021429999 254 255 0.00042859977 255 255 0.0032146999 260 255 0.0021431998 271 255 0.00021429999 272 255 0.0017144999 273 255 0.00085729989 277 255 0.0045005977 282 255 0.0019287998 283 255 0.00042859977 284 255 0.00021429999 292 255 0.00021429999 295 255 0.00042859977 297 255 0.00042859977 305 255 0.00085729989 322 255 0.0010715998 324 255 0.00042859977 326 255 0.010930099 328 255 0.0034290999 331 255 0.0045005977 335 255 0.0027860999 351 255 0.0017144999 354 255 0.0034290999 356 255 0.00042859977 358 255 0.0021431998 372 255 0.00085729989 387 255 0.00021429999 402 255 0.0021431998 417 255 0.00064289989 443 255 0.010501496 444 255 0.0070723966 445 255 0.034933597 446 255 0.0021431998 447 255 0.0062151998 448 255 0.00021429999 450 255 0.0038576999 452 255 0.025932297 453 255 0.076082289 454 255 0.00064289989 455 255 0.012430299 456 255 0.00042859977 457 255 0.0070723966 458 255 0.0012858999 459 255 0.00085729989 460 255 0.0077153966 463 255 0.0117874 464 255 0.00064289989 465 255 0.0012858999 467 255 0.0145735 468 255 0.0079296976 469 255 0.0057864971 470 255 0.0062151998 471 255 0.013501897 473 255 0.00021429999 478 255 0.0017144999 483 255 0.0017144999 490 255 0.00064289989 19 256 0.0012429999 24 256 0.011187099 60 256 0.0074579976 114 256 0.00062149996 160 256 0.0055934973 198 256 0.032939699 206 256 0.00062149996 214 256 0.070229948 223 256 0.025481697 233 256 0.013051599 234 256 0.0018644999 235 256 0.003729 240 256 0.0055934973 256 256 0.0031074998 263 256 0.0012429999 268 256 0.00062149996 272 256 0.0012429999 273 256 0.011808597 279 256 0.0018644999 340 256 0.0012429999 356 256 0.00062149996 358 256 0.0024859998 417 256 0.00062149996 443 256 0.0074579976 444 256 0.022374097 445 256 0.010565598 446 256 0.00062149996 447 256 0.028589197 450 256 0.0043504983 452 256 0.0149161 453 256 0.025481697 454 256 0.0018644999 455 256 0.016159099 457 256 0.011808597 458 256 0.0012429999 459 256 0.00062149996 460 256 0.0074579976 463 256 0.0074579976 464 256 0.0012429999 465 256 0.00062149996 467 256 0.010565598 468 256 0.013051599 469 256 0.0074579976 470 256 0.0074579976 471 256 0.003729 478 256 0.0012429999 483 256 0.0031074998 490 256 0.0012429999 18 257 0.00032939995 19 257 0.0013174999 21 257 0.056324098 22 257 0.0029644 24 257 0.072463751 60 257 0.0062581971 114 257 0.00032939995 126 257 0.00032939995 160 257 0.0059288964 169 257 0.012516499 193 257 0.00032939995 198 257 0.00032939995 206 257 0.00065879989 214 257 0.0108696 220 257 0.00032939995 234 257 0.0042818971 237 257 0.00065879989 240 257 0.00032939995 241 257 0.00032939995 257 257 0.030961797 267 257 0.00032939995 270 257 0.00032939995 272 257 0.00065879989 273 257 0.0075757988 275 257 0.0046112984 277 257 0.0023057 278 257 0.00032939995 282 257 0.00032939995 284 257 0.00032939995 286 257 0.00032939995 287 257 0.00032939995 288 257 0.00032939995 289 257 0.00098809996 290 257 0.0088932998 291 257 0.00032939995 301 257 0.0042818971 324 257 0.00032939995 326 257 0.00032939995 328 257 0.00065879989 331 257 0.00098809996 335 257 0.00065879989 340 257 0.00032939995 351 257 0.00032939995 354 257 0.00065879989 356 257 0.00032939995 358 257 0.0013174999 370 257 0.00098809996 402 257 0.00032939995 417 257 0.00032939995 443 257 0.024374198 444 257 0.00065879989 445 257 0.062582254 446 257 0.0023057 447 257 0.0082344972 450 257 0.0029644 452 257 0.014163397 453 257 0.0408432 454 257 0.00065879989 455 257 0.019104097 456 257 0.00032939995 457 257 0.0029644 458 257 0.00065879989 459 257 0.00065879989 460 257 0.0065875985 463 257 0.015151497 464 257 0.00065879989 465 257 0.00065879989 467 257 0.0079050995 468 257 0.0059288964 469 257 0.0059288964 470 257 0.0065875985 471 257 0.0016468999 473 257 0.00032939995 478 257 0.00098809996 483 257 0.0013174999 490 257 0.00065879989 491 257 0.0026349998 22 258 0.0040863976 24 258 0.061295997 60 258 0.0087565966 114 258 0.00058379979 160 258 0.004670199 169 258 0.0029189 198 258 0.0017512999 206 258 0.00058379979 214 258 0.0017512999 220 258 0.00058379979 223 258 0.00058379979 233 258 0.0011674999 234 258 0.006421499 237 258 0.0023351 240 258 0.0011674999 258 258 0.0017512999 268 258 0.004670199 272 258 0.0011674999 273 258 0.00058379979 277 258 0.0023351 282 258 0.0017512999 283 258 0.00058379979 295 258 0.00058379979 297 258 0.00058379979 305 258 0.00058379979 322 258 0.0011674999 326 258 0.00058379979 328 258 0.0035025999 331 258 0.004670199 335 258 0.0029189 351 258 0.0017512999 354 258 0.0029189 358 258 0.0017512999 372 258 0.00058379979 402 258 0.0023351 417 258 0.00058379979 443 258 0.012842998 444 258 0.0052538998 445 258 0.067133665 446 258 0.0023351 447 258 0.016929399 450 258 0.0035025999 452 258 0.018096898 453 258 0.060128398 455 258 0.0075889975 457 258 0.0035025999 458 258 0.0023351 459 258 0.00058379979 460 258 0.0075889975 463 258 0.004670199 464 258 0.00058379979 465 258 0.00058379979 467 258 0.011675399 468 258 0.0017512999 469 258 0.0058376975 470 258 0.0058376975 471 258 0.0040863976 478 258 0.0011674999 483 258 0.0017512999 490 258 0.0011674999 22 259 0.00040019979 24 259 0.036814697 25 259 0.00040019979 60 259 0.0052020997 114 259 0.00040019979 160 259 0.0016005998 198 259 0.028011199 206 259 0.00080029992 214 259 0.075630248 223 259 0.0028010998 224 259 0.00040019979 233 259 0.0024009999 234 259 0.0024009999 240 259 0.00040019979 241 259 0.00040019979 267 259 0.00080029992 268 259 0.0024009999 270 259 0.0016005998 272 259 0.00040019979 273 259 0.016406599 277 259 0.008803498 279 259 0.00080029992 282 259 0.00080029992 284 259 0.00040019979 288 259 0.00080029992 292 259 0.00080029992 295 259 0.00040019979 297 259 0.0012004999 298 259 0.00040019979 312 259 0.00080029992 315 259 0.00080029992 317 259 0.00040019979 319 259 0.00040019979 320 259 0.00040019979 321 259 0.0012004999 324 259 0.00040019979 340 259 0.00040019979 356 259 0.00040019979 358 259 0.0032012998 372 259 0.00080029992 380 259 0.00040019979 386 259 0.00040019979 415 259 0.00080029992 417 259 0.00040019979 422 259 0.010003999 443 259 0.012805097 444 259 0.0052020997 445 259 0.041216496 446 259 0.0016005998 447 259 0.0172069 450 259 0.0032012998 452 259 0.008803498 453 259 0.016006399 454 259 0.0024009999 455 259 0.016806699 457 259 0.0032012998 458 259 0.00040019979 459 259 0.00040019979 460 259 0.00080029992 463 259 0.0172069 464 259 0.00040019979 465 259 0.00080029992 467 259 0.0068026967 468 259 0.022409 469 259 0.0032012998 470 259 0.0032012998 471 259 0.0016005998 478 259 0.0012004999 483 259 0.0012004999 490 259 0.00040019979 491 259 0.00080029992 22 260 0.0012135999 24 260 0.0072815977 60 260 0.0060679987 114 260 0.0012135999 198 260 0.0097086988 206 260 0.0012135999 214 260 0.040048499 223 260 0.0133495 234 260 0.0048543997 260 260 0.0012135999 263 260 0.0024271999 267 260 0.0012135999 268 260 0.0133495 273 260 0.0133495 358 260 0.0072815977 417 260 0.0012135999 443 260 0.0097086988 444 260 0.0012135999 445 260 0.0097086988 446 260 0.0012135999 447 260 0.0048543997 450 260 0.0060679987 452 260 0.0097086988 453 260 0.016990297 454 260 0.0012135999 455 260 0.0072815977 457 260 0.0024271999 463 260 0.033980597 464 260 0.0012135999 465 260 0.0012135999 467 260 0.0097086988 468 260 0.0084950998 469 260 0.0097086988 470 260 0.0097086988 478 260 0.0024271999 483 260 0.0024271999 490 260 0.0012135999 491 260 0.0012135999 24 261 0.020134199 60 261 0.0033556998 114 261 0.0016778999 160 261 0.0033556998 198 261 0.011744998 206 261 0.0016778999 214 261 0.050335597 223 261 0.020134199 234 261 0.0050335974 263 261 0.026845597 268 261 0.0218121 272 261 0.0016778999 273 261 0.0083892979 284 261 0.0016778999 358 261 0.0067113973 417 261 0.0016778999 443 261 0.0067113973 444 261 0.0067113973 445 261 0.018456399 446 261 0.0016778999 447 261 0.036912799 450 261 0.0067113973 452 261 0.0083892979 453 261 0.020134199 455 261 0.010067098 457 261 0.0050335974 464 261 0.0016778999 465 261 0.0016778999 467 261 0.010067098 468 261 0.0067113973 469 261 0.0083892979 470 261 0.010067098 471 261 0.0016778999 478 261 0.0033556998 483 261 0.0033556998 490 261 0.0016778999 18 262 0.00038309977 22 262 0.0137931 24 262 0.047892697 60 262 0.0042145997 114 262 0.00038309977 126 262 0.00038309977 160 262 0.0015325998 198 262 0.016475096 206 262 0.0007662999 214 262 0.062835157 233 262 0.00038309977 234 262 0.0042145997 240 262 0.00038309977 241 262 0.0007662999 252 262 0.0007662999 262 262 0.0011493999 263 262 0.00038309977 268 262 0.0022988999 272 262 0.00038309977 273 262 0.023754798 277 262 0.0007662999 279 262 0.0007662999 284 262 0.00038309977 286 262 0.00038309977 287 262 0.00038309977 288 262 0.00038309977 289 262 0.0049807988 290 262 0.0084290989 291 262 0.00038309977 292 262 0.00038309977 294 262 0.00038309977 295 262 0.0007662999 315 262 0.00038309977 317 262 0.00038309977 326 262 0.00038309977 340 262 0.0007662999 356 262 0.00038309977 358 262 0.0038313998 385 262 0.023754798 386 262 0.0007662999 417 262 0.0007662999 438 262 0.014559399 443 262 0.014559399 444 262 0.0019156998 445 262 0.027969297 446 262 0.0030650999 447 262 0.013409998 450 262 0.0038313998 452 262 0.011494298 453 262 0.013026796 454 262 0.0026819999 455 262 0.017624497 456 262 0.00038309977 457 262 0.0030650999 458 262 0.00038309977 459 262 0.00038309977 460 262 0.0007662999 463 262 0.0038313998 464 262 0.0007662999 465 262 0.0011493999 467 262 0.0095784999 468 262 0.0019156998 469 262 0.0061302967 470 262 0.0068965964 471 262 0.0015325998 473 262 0.00038309977 478 262 0.0019156998 483 262 0.0019156998 490 262 0.0007662999 491 262 0.0019156998 21 263 0.00067749992 22 263 0.00067749992 24 263 0.014905099 25 263 0.00067749992 60 263 0.0060975999 114 263 0.00067749992 160 263 0.0013549998 198 263 0.012195099 206 263 0.0013549998 214 263 0.0616531 223 263 0.018292699 234 263 0.0033874998 241 263 0.0013549998 263 263 0.0040649995 268 263 0.018292699 272 263 0.00067749992 273 263 0.018970199 279 263 0.00067749992 284 263 0.00067749992 287 263 0.00067749992 349 263 0.00067749992 356 263 0.00067749992 358 263 0.0054200999 385 263 0.00067749992 393 263 0.00067749992 417 263 0.00067749992 420 263 0.0013549998 438 263 0.00067749992 443 263 0.013550099 444 263 0.00067749992 445 263 0.018970199 446 263 0.0013549998 447 263 0.0088075995 450 263 0.0047424994 452 263 0.010840099 453 263 0.017615199 454 263 0.0033874998 455 263 0.017615199 457 263 0.0027099999 460 263 0.00067749992 463 263 0.017615199 464 263 0.00067749992 465 263 0.0013549998 467 263 0.010162599 468 263 0.0094850995 469 263 0.0074525997 470 263 0.0074525997 471 263 0.0027099999 478 263 0.0020325 483 263 0.0020325 490 263 0.0013549998 491 263 0.00067749992 18 264 0.0002485998 22 264 0.00074589998 24 264 0.090377867 60 264 0.0031078998 108 264 0.00012429999 114 264 0.0002485998 126 264 0.00012429999 160 264 0.0016160998 169 264 0.00012429999 189 264 0.00012429999 190 264 0.00012429999 193 264 0.00012429999 194 264 0.00012429999 198 264 0.0013674998 203 264 0.00012429999 206 264 0.0002485998 214 264 0.0042267963 218 264 0.00012429999 223 264 0.00049729994 231 264 0.00037289993 233 264 0.0014918 234 264 0.0104426 235 264 0.00074589998 237 264 0.00099449977 240 264 0.00012429999 242 264 0.00012429999 252 264 0.00012429999 254 264 0.14022869 264 264 0.0012431999 265 264 0.00049729994 266 264 0.0012431999 269 264 0.0002485998 270 264 0.015290897 272 264 0.0012431999 273 264 0.033316799 276 264 0.00012429999 277 264 0.0037294999 317 264 0.00012429999 322 264 0.0039780997 326 264 0.005842898 332 264 0.00037289993 356 264 0.00037289993 358 264 0.00074589998 387 264 0.00012429999 402 264 0.00037289993 417 264 0.0002485998 422 264 0.00012429999 434 264 0.00012429999 438 264 0.00012429999 442 264 0.00037289993 443 264 0.034062698 444 264 0.0026105999 445 264 0.059298899 446 264 0.0041023977 447 264 0.0070859976 448 264 0.0002485998 450 264 0.0036052 452 264 0.0085777976 453 264 0.0068373978 454 264 0.00062159984 455 264 0.023744397 456 264 0.0013674998 457 264 0.0032321999 458 264 0.00099449977 459 264 0.00074589998 460 264 0.0021133998 463 264 0.031576298 464 264 0.00099449977 465 264 0.00087019987 467 264 0.017031297 468 264 0.005842898 469 264 0.0057184994 470 264 0.0060914978 471 264 0.0064643994 473 264 0.00012429999 478 264 0.0012431999 483 264 0.0011187999 489 264 0.0002485998 490 264 0.00049729994 9 265 5.2299991e-05 18 265 0.00036609988 22 265 0.0023534 24 265 0.035929099 60 265 0.0023534 82 265 5.2299991e-05 83 265 5.2299991e-05 84 265 5.2299991e-05 108 265 5.2299991e-05 114 265 0.0001046 120 265 5.2299991e-05 126 265 5.2299991e-05 130 265 5.2299991e-05 137 265 5.2299991e-05 150 265 0.00041839993 160 265 0.0015689998 169 265 0.0025626 189 265 5.2299991e-05 190 265 0.0001046 191 265 0.0001046 193 265 0.0046545975 194 265 0.00015689999 197 265 5.2299991e-05 198 265 5.2299991e-05 200 265 5.2299991e-05 203 265 0.0001046 204 265 0.0001046 206 265 0.0001046 207 265 5.2299991e-05 214 265 0.018147599 218 265 0.00015689999 223 265 0.0047068968 231 265 0.00020919999 233 265 0.0073740967 234 265 0.0088906996 235 265 0.0019872999 237 265 0.0010982999 240 265 0.0014644 242 265 0.0019872999 252 265 0.00015689999 254 265 0.078761578 264 265 0.0013597999 265 265 0.016212497 266 265 0.025103297 269 265 0.0013074998 270 265 0.0043407977 272 265 0.0010459998 273 265 0.0026671998 277 265 0.0151143 293 265 0.0001046 317 265 5.2299991e-05 319 265 5.2299991e-05 322 265 0.060875498 326 265 0.0001046 332 265 0.0025102999 340 265 0.00015689999 356 265 0.00041839993 358 265 0.0008890999 384 265 0.00094139995 386 265 0.0012551998 387 265 5.2299991e-05 394 265 5.2299991e-05 397 265 5.2299991e-05 402 265 0.00041839993 404 265 5.2299991e-05 417 265 0.00031379983 421 265 5.2299991e-05 422 265 0.00015689999 423 265 5.2299991e-05 430 265 5.2299991e-05 433 265 5.2299991e-05 434 265 5.2299991e-05 440 265 0.0001046 442 265 0.0020395999 443 265 0.0157419 444 265 0.0020919 445 265 0.041315798 446 265 0.0025626 447 265 0.0050729997 448 265 0.00015689999 450 265 0.0040269978 452 265 0.0055958964 453 265 0.0030332999 454 265 0.00067989994 455 265 0.031065296 456 265 0.0015689998 457 265 0.0028763998 458 265 0.00073219999 459 265 0.00052299979 460 265 0.0018304 463 265 0.0136499 464 265 0.0007844998 465 265 0.0008890999 467 265 0.014172897 468 265 0.0040792972 469 265 0.004236199 470 265 0.0047068968 471 265 0.0071125999 473 265 0.0001046 477 265 0.00020919999 478 265 0.0012029 483 265 0.00067989994 489 265 0.00031379983 490 265 0.00036609988 9 266 2.739999e-05 18 266 0.0002193 22 266 0.0041934997 24 266 0.10689318 60 266 0.0023023 79 266 2.739999e-05 82 266 2.739999e-05 83 266 2.739999e-05 84 266 2.739999e-05 108 266 2.739999e-05 113 266 5.4799995e-05 114 266 8.2199986e-05 126 266 5.4799995e-05 127 266 2.739999e-05 150 266 0.00032889983 151 266 2.739999e-05 160 266 0.0017815998 169 266 2.739999e-05 171 266 2.739999e-05 189 266 5.4799995e-05 190 266 8.2199986e-05 192 266 2.739999e-05 193 266 8.2199986e-05 194 266 0.00010959999 197 266 2.739999e-05 198 266 0.0013155998 200 266 5.4799995e-05 201 266 2.739999e-05 203 266 5.4799995e-05 204 266 2.739999e-05 206 266 0.00010959999 207 266 2.739999e-05 214 266 0.0024941999 218 266 0.00019189999 220 266 0.00043849996 223 266 0.0037823999 231 266 0.0015075 233 266 0.00010959999 234 266 0.010771498 235 266 5.4799995e-05 237 266 0.00073999981 241 266 8.2199986e-05 242 266 2.739999e-05 248 266 2.739999e-05 250 266 2.739999e-05 252 266 0.00010959999 254 266 0.23031378 265 266 0.00010959999 266 266 0.0048512965 270 266 0.00010959999 272 266 0.0012881998 273 266 0.0055090971 277 266 0.0002193 282 266 5.4799995e-05 284 266 2.739999e-05 301 266 2.739999e-05 317 266 2.739999e-05 322 266 0.0024667999 326 266 5.4799995e-05 328 266 8.2199986e-05 331 266 0.000137 332 266 0.0018638 335 266 2.739999e-05 336 266 2.739999e-05 340 266 2.739999e-05 351 266 0.000137 354 266 0.00010959999 358 266 0.0010688999 384 266 5.4799995e-05 386 266 8.2199986e-05 387 266 5.4799995e-05 394 266 2.739999e-05 397 266 2.739999e-05 402 266 0.00032889983 417 266 0.0002193 419 266 2.739999e-05 421 266 2.739999e-05 422 266 0.00010959999 423 266 2.739999e-05 425 266 2.739999e-05 430 266 2.739999e-05 431 266 2.739999e-05 433 266 2.739999e-05 434 266 2.739999e-05 438 266 0.00057559996 442 266 0.0026311998 443 266 0.033383597 444 266 0.002412 445 266 0.097793579 446 266 0.0064409971 447 266 0.0060024969 448 266 0.00019189999 450 266 0.0040290989 452 266 0.004714299 453 266 0.0012059999 454 266 0.00060299993 455 266 0.0260107 456 266 0.0011236998 457 266 0.0029600998 458 266 0.00071259984 459 266 0.00063039991 460 266 0.0027682998 463 266 0.010853797 464 266 0.002686 465 266 0.00060299993 467 266 0.014087997 468 266 0.0055090971 469 266 0.0054542981 470 266 0.0046319999 471 266 0.0046045966 473 266 0.00010959999 477 266 0.00010959999 478 266 0.0007948 483 266 0.0007948 489 266 0.0002193 490 266 0.00038369978 491 266 2.739999e-05 19 267 0.0012536999 21 267 0.00041789981 22 267 0.047221098 24 267 0.0589219 60 267 0.0058503971 114 267 0.00041789981 160 267 0.0025072999 169 267 0.026744697 192 267 0.0091934986 193 267 0.026744697 198 267 0.0071040988 206 267 0.00041789981 214 267 0.011282898 220 267 0.0029251999 233 267 0.0087755993 234 267 0.015043899 237 267 0.00041789981 240 267 0.00083579984 254 267 0.0020893998 265 267 0.00041789981 266 267 0.00083579984 267 267 0.0033431 270 267 0.00041789981 272 267 0.0029251999 273 267 0.0041788965 275 267 0.00041789981 277 267 0.0033431 282 267 0.0016714998 283 267 0.0016714998 289 267 0.0016714998 295 267 0.00041789981 296 267 0.00041789981 305 267 0.00041789981 317 267 0.00041789981 322 267 0.0025072999 328 267 0.00041789981 331 267 0.00083579984 340 267 0.00083579984 356 267 0.00041789981 358 267 0.00041789981 370 267 0.0016714998 386 267 0.0104471 402 267 0.0020893998 417 267 0.00041789981 443 267 0.042206399 444 267 0.014208097 445 267 0.028416198 446 267 0.0041788965 447 267 0.021729998 450 267 0.0025072999 452 267 0.032177199 453 267 0.071040452 454 267 0.0029251999 455 267 0.021729998 456 267 0.00083579984 457 267 0.0025072999 459 267 0.0012536999 460 267 0.0020893998 463 267 0.0075218976 464 267 0.00083579984 465 267 0.00041789981 467 267 0.0071040988 468 267 0.013790198 469 267 0.0033431 470 267 0.0029251999 471 267 0.0041788965 478 267 0.00083579984 483 267 0.00083579984 490 267 0.00041789981 22 268 0.0059717 24 268 0.097082376 60 268 0.0092133991 114 268 0.00017059999 160 268 0.0078484975 169 268 0.013137698 188 268 0.085650861 192 268 0.0061422996 193 268 0.0324177 206 268 0.0003411998 214 268 0.00051189982 220 268 0.00017059999 223 268 0.0054597966 231 268 0.0030711 233 268 0.0059717 234 268 0.0095546991 237 268 0.00051189982 240 268 0.00051189982 241 268 0.0040948987 242 268 0.0058010966 254 268 0.0010237 266 268 0.0063128993 272 268 0.00085309986 273 268 0.028322797 276 268 0.00017059999 277 268 0.0010237 282 268 0.00068249996 283 268 0.00017059999 295 268 0.00017059999 297 268 0.00017059999 305 268 0.00017059999 317 268 0.00017059999 322 268 0.0003411998 328 268 0.0010237 331 268 0.0013649999 332 268 0.0056303963 335 268 0.0010237 340 268 0.0018767999 351 268 0.00051189982 354 268 0.0010237 356 268 0.0003411998 358 268 0.00051189982 372 268 0.00017059999 384 268 0.00017059999 402 268 0.00068249996 417 268 0.00017059999 443 268 0.030882098 444 268 0.005289197 445 268 0.034123898 446 268 0.005289197 447 268 0.0059717 450 268 0.0022180998 452 268 0.018768098 453 268 0.026616599 454 268 0.0022180998 455 268 0.021497998 456 268 0.00068249996 457 268 0.0027298999 459 268 0.00051189982 460 268 0.0015355998 463 268 0.010237198 464 268 0.0068247989 465 268 0.00017059999 467 268 0.0066541992 468 268 0.0059717 469 268 0.0020474 470 268 0.0022180998 471 268 0.0035829998 478 268 0.00051189982 483 268 0.00051189982 489 268 0.00017059999 490 268 0.0003411998 491 268 0.00017059999 22 269 0.00033639977 24 269 0.057853997 60 269 0.0036999998 114 269 0.00033639977 126 269 0.00033639977 160 269 0.0057180971 188 269 0.0033635998 193 269 0.051126797 194 269 0.00033639977 206 269 0.00067269988 214 269 0.00033639977 218 269 0.00033639977 233 269 0.0043726973 234 269 0.0063908994 237 269 0.00067269988 241 269 0.0016817998 252 269 0.00033639977 254 269 0.0026908999 266 269 0.00033639977 269 269 0.0084089972 270 269 0.028254297 272 269 0.0010090999 276 269 0.016481698 277 269 0.00067269988 282 269 0.00033639977 284 269 0.00033639977 317 269 0.00033639977 322 269 0.00067269988 332 269 0.0023544999 340 269 0.0010090999 356 269 0.00033639977 358 269 0.012781698 386 269 0.0043726973 417 269 0.00067269988 443 269 0.0070635974 444 269 0.0057180971 445 269 0.043390498 446 269 0.053481299 447 269 0.0094180964 450 269 0.0057180971 452 269 0.013790797 453 269 0.0013454 454 269 0.0013454 455 269 0.021190699 456 269 0.00033639977 457 269 0.0050453991 458 269 0.00033639977 459 269 0.00067269988 460 269 0.0013454 463 269 0.042045098 464 269 0.0010090999 465 269 0.0010090999 467 269 0.011436298 468 269 0.019172598 469 269 0.0057180971 470 269 0.0063908994 471 269 0.016817998 473 269 0.00033639977 478 269 0.0016817998 483 269 0.0020181998 490 269 0.00067269988 18 270 0.00022099999 21 270 0.005857598 22 270 0.00033159996 24 270 0.014367796 60 270 0.0045313984 104 270 0.00066309981 108 270 0.0001105 114 270 0.0001105 120 270 0.0001105 126 270 0.0001105 130 270 0.025640998 131 270 0.016246699 142 270 0.00022099999 143 270 0.00033159996 150 270 0.0001105 160 270 0.00033159996 169 270 0.0001105 187 270 0.018346597 188 270 0.0011051998 189 270 0.00022099999 190 270 0.0001105 192 270 0.00055259978 193 270 0.0022103998 194 270 0.00022099999 198 270 0.012599498 203 270 0.0001105 204 270 0.0001105 206 270 0.00022099999 208 270 0.0001105 214 270 0.020004399 219 270 0.024425298 221 270 0.00066309981 224 270 0.0081785992 227 270 0.0020998998 233 270 0.0001105 234 270 0.0050839968 237 270 0.00033159996 240 270 0.00033159996 241 270 0.0036471998 242 270 0.0001105 252 270 0.00022099999 270 270 0.11063218 273 270 0.0011051998 277 270 0.0080680996 282 270 0.0016577998 283 270 0.00033159996 284 270 0.00033159996 285 270 0.0001105 286 270 0.00033159996 289 270 0.0062996969 290 270 0.0013263 292 270 0.00022099999 293 270 0.00055259978 294 270 0.002321 296 270 0.0001105 297 270 0.0001105 307 270 0.0011051998 312 270 0.00022099999 317 270 0.0001105 320 270 0.0001105 321 270 0.00033159996 322 270 0.00022099999 324 270 0.00044209999 325 270 0.0001105 326 270 0.00022099999 328 270 0.00022099999 335 270 0.0001105 338 270 0.00044209999 339 270 0.0001105 340 270 0.00055259978 347 270 0.00033159996 349 270 0.00088419998 350 270 0.00044209999 351 270 0.00044209999 352 270 0.0001105 354 270 0.0013263 356 270 0.00033159996 358 270 0.0028736 371 270 0.0001105 372 270 0.00066309981 373 270 0.00077369995 375 270 0.0011051998 387 270 0.0001105 393 270 0.0001105 402 270 0.00033159996 417 270 0.00033159996 422 270 0.0001105 424 270 0.0019893998 430 270 0.0001105 443 270 0.0087311976 444 270 0.0011051998 445 270 0.017020296 446 270 0.0013263 447 270 0.0097258985 450 270 0.0035366998 452 270 0.0099468976 453 270 0.0032050998 454 270 0.00099469977 455 270 0.037577398 456 270 0.00033159996 457 270 0.0028736 458 270 0.00088419998 459 270 0.00033159996 460 270 0.002321 463 270 0.0172414 464 270 0.00055259978 465 270 0.00088419998 467 270 0.0119363 468 270 0.016799297 469 270 0.0059681982 470 270 0.0065207966 471 270 0.0054155998 473 270 0.0001105 477 270 0.0001105 478 270 0.0011051998 483 270 0.0025419998 490 270 0.00055259978 491 270 0.0039787963 4 271 0.0001318 17 271 0.0017127998 18 271 0.00026349979 22 271 0.00065879989 24 271 0.049407098 60 271 0.0044795983 108 271 0.0001318 114 271 0.00026349979 117 271 0.0001318 118 271 0.0001318 119 271 0.0042160973 126 271 0.0001318 130 271 0.00052699982 135 271 0.00065879989 160 271 0.0018445 169 271 0.00026349979 171 271 0.0023714998 172 271 0.0038208 186 271 0.0039525963 189 271 0.0001318 190 271 0.0001318 191 271 0.0088273995 192 271 0.0001318 194 271 0.00026349979 198 271 0.014360998 203 271 0.0001318 206 271 0.00026349979 214 271 0.049143597 219 271 0.032938097 224 271 0.012121197 225 271 0.00092229992 227 271 0.0052700974 234 271 0.016205497 237 271 0.00026349979 239 271 0.0001318 240 271 0.0054017976 241 271 0.027667999 252 271 0.00026349979 254 271 0.013043497 267 271 0.0001318 270 271 0.0014493 271 271 0.0028986 272 271 0.0001318 273 271 0.0038208 274 271 0.0001318 276 271 0.0068510994 277 271 0.0061923973 282 271 0.0001318 283 271 0.0001318 284 271 0.00026349979 285 271 0.0080368966 300 271 0.0001318 301 271 0.00039529987 315 271 0.0060605966 317 271 0.00026349979 322 271 0.0043477975 326 271 0.0001318 328 271 0.0001318 331 271 0.00026349979 337 271 0.00026349979 340 271 0.0001318 349 271 0.0001318 354 271 0.0001318 356 271 0.00039529987 358 271 0.0018445 386 271 0.0047430992 387 271 0.0001318 417 271 0.00039529987 422 271 0.00026349979 434 271 0.0001318 442 271 0.0038208 443 271 0.015942 444 271 0.0064558983 445 271 0.058893297 446 271 0.0035573 447 271 0.0044795983 448 271 0.0001318 450 271 0.0035573 452 271 0.011989497 453 271 0.0054017976 454 271 0.0018445 455 271 0.027536198 456 271 0.00026349979 457 271 0.0038208 458 271 0.00092229992 459 271 0.00092229992 460 271 0.0019762998 463 271 0.0094861984 464 271 0.0013174999 465 271 0.0010539999 467 271 0.0118577 468 271 0.012252998 469 271 0.0048747994 470 271 0.0048747994 471 271 0.002108 473 271 0.0001318 477 271 0.0001318 478 271 0.0015809999 483 271 0.0014493 490 271 0.00052699982 491 271 0.0046112984 13 272 0.0001356 18 272 0.00027109985 21 272 0.0001356 22 272 0.00027109985 24 272 0.011522297 25 272 0.0001356 60 272 0.0020333 82 272 0.00054219994 108 272 0.0001356 114 272 0.0001356 119 272 0.00027109985 120 272 0.00067779981 126 272 0.0001356 130 272 0.0035244999 131 272 0.00040669995 135 272 0.0085400976 138 272 0.0001356 140 272 0.00067779981 143 272 0.0001356 150 272 0.0001356 160 272 0.0013555998 161 272 0.0001356 169 272 0.0001356 171 272 0.06466037 172 272 0.0001356 186 272 0.0040666983 187 272 0.0001356 188 272 0.0001356 189 272 0.0001356 190 272 0.0001356 191 272 0.056255899 192 272 0.0001356 193 272 0.00027109985 194 272 0.00054219994 197 272 0.0020333 198 272 0.0126068 200 272 0.0001356 203 272 0.0001356 204 272 0.0001356 206 272 0.00027109985 214 272 0.0094889998 218 272 0.00040669995 219 272 0.0044733994 222 272 0.00081329979 223 272 0.00067779981 224 272 0.0036599999 225 272 0.036057997 227 272 0.0001356 231 272 0.0001356 233 272 0.0001356 234 272 0.0066422969 237 272 0.00040669995 239 272 0.0048799999 240 272 0.0032533999 241 272 0.0044733994 243 272 0.00067779981 252 272 0.00027109985 254 272 0.00054219994 271 272 0.0070488974 272 272 0.0028466999 273 272 0.0010845 274 272 0.0040666983 276 272 0.00040669995 277 272 0.0032533999 279 272 0.00054219994 282 272 0.0010845 284 272 0.00040669995 285 272 0.00040669995 293 272 0.0001356 301 272 0.00027109985 312 272 0.0001356 315 272 0.0014910998 317 272 0.0001356 319 272 0.00027109985 322 272 0.00027109985 326 272 0.00054219994 340 272 0.00040669995 349 272 0.00027109985 356 272 0.00040669995 358 272 0.0029821999 386 272 0.00027109985 387 272 0.0001356 402 272 0.00027109985 404 272 0.0001356 414 272 0.0001356 417 272 0.00054219994 421 272 0.0001356 422 272 0.0001356 430 272 0.0001356 434 272 0.0001356 437 272 0.0001356 442 272 0.0001356 443 272 0.013284497 444 272 0.00094889989 445 272 0.035515796 446 272 0.0027110998 447 272 0.0014910998 450 272 0.0046088994 452 272 0.0085400976 453 272 0.0020333 454 272 0.00067779981 455 272 0.0322624 456 272 0.00054219994 457 272 0.0028466999 458 272 0.00081329979 459 272 0.00054219994 460 272 0.00122 463 272 0.0070488974 464 272 0.00067779981 465 272 0.00122 467 272 0.010573398 468 272 0.0043377988 469 272 0.0066422969 470 272 0.0074555986 471 272 0.00244 473 272 0.0001356 477 272 0.0001356 478 272 0.0014910998 483 272 0.0020333 490 272 0.0040666983 491 272 0.0010845 19 273 0.014090497 21 273 0.0002135 22 273 0.0017078998 23 273 0.00042699999 24 273 0.075362861 25 273 0.043552499 60 273 0.0070452988 114 273 0.0002135 126 273 0.0002135 160 273 0.0019214 169 273 0.00042699999 188 273 0.0034158998 192 273 0.0002135 193 273 0.013876997 206 273 0.00042699999 214 273 0.0215628 215 273 0.0002135 218 273 0.0002135 220 273 0.0010674999 223 273 0.0002135 224 273 0.00064049987 225 273 0.0002135 231 273 0.0002135 233 273 0.0002135 234 273 0.0098206997 237 273 0.0010674999 241 273 0.0002135 242 273 0.00042699999 254 273 0.0029888998 257 273 0.0002135 266 273 0.0002135 267 273 0.0017078998 268 273 0.0002135 270 273 0.00042699999 273 273 0.047395397 276 273 0.00085399998 277 273 0.048676297 282 273 0.0010674999 283 273 0.0002135 284 273 0.0002135 295 273 0.0002135 301 273 0.0002135 305 273 0.0002135 312 273 0.00064049987 322 273 0.00064049987 326 273 0.0002135 328 273 0.0014944 331 273 0.0023484 332 273 0.0019214 335 273 0.00042699999 336 273 0.0002135 337 273 0.0002135 351 273 0.0002135 354 273 0.0002135 356 273 0.00042699999 358 273 0.0010674999 402 273 0.00042699999 417 273 0.0002135 442 273 0.0002135 443 273 0.056789096 444 273 0.00085399998 445 273 0.058069997 446 273 0.0053372979 447 273 0.001281 450 273 0.0021348998 452 273 0.0213493 453 273 0.019214299 454 273 0.0027753999 455 273 0.016865898 456 273 0.00042699999 457 273 0.0040563978 458 273 0.0010674999 459 273 0.0010674999 460 273 0.0017078998 463 273 0.0098206997 464 273 0.0002135 465 273 0.0002135 467 273 0.011528596 468 273 0.0014944 469 273 0.0029888998 470 273 0.0029888998 471 273 0.0023484 473 273 0.0002135 478 273 0.00085399998 483 273 0.00085399998 489 273 0.00042699999 490 273 0.00042699999 491 273 0.00085399998 18 274 0.00027009984 21 274 0.00027009984 22 274 0.00081029977 24 274 0.010263298 25 274 0.0054017976 60 274 0.0035110998 104 274 0.0024307999 107 274 0.00054019992 108 274 0.00013499999 114 274 0.00027009984 126 274 0.00013499999 130 274 0.014989898 159 274 0.0010803998 160 274 0.0032410999 169 274 0.00040509994 171 274 0.00013499999 186 274 0.0010803998 187 274 0.0171506 190 274 0.00013499999 191 274 0.0033761 192 274 0.0066171996 193 274 0.011343699 194 274 0.00013499999 198 274 0.0094530992 206 274 0.00027009984 214 274 0.011073597 219 274 0.0540176 223 274 0.0059418976 224 274 0.0239028 225 274 0.0031059999 231 274 0.00013499999 233 274 0.00054019992 234 274 0.0054017976 237 274 0.00013499999 241 274 0.031330198 252 274 0.011748798 254 274 0.00094529986 257 274 0.00013499999 265 274 0.00027009984 266 274 0.00027009984 267 274 0.0016204999 270 274 0.0033761 273 274 0.0094530992 276 274 0.00013499999 277 274 0.0059418976 284 274 0.00027009984 290 274 0.0013503998 293 274 0.0118839 322 274 0.013774499 325 274 0.0082376972 334 274 0.00013499999 340 274 0.00013499999 347 274 0.00013499999 350 274 0.00054019992 356 274 0.00040509994 358 274 0.0017555999 387 274 0.00013499999 417 274 0.00027009984 422 274 0.00013499999 443 274 0.014449697 444 274 0.0010803998 445 274 0.0201215 446 274 0.0018906 447 274 0.0064820983 450 274 0.0028358998 452 274 0.019446298 453 274 0.023092497 454 274 0.0022956999 455 274 0.034571197 456 274 0.00027009984 457 274 0.0029709998 458 274 0.0010803998 459 274 0.00067519979 460 274 0.0012153999 463 274 0.015529998 464 274 0.00054019992 465 274 0.00054019992 467 274 0.0074273981 468 274 0.0059418976 469 274 0.0033761 470 274 0.0037811999 471 274 0.0014854998 473 274 0.00013499999 478 274 0.00081029977 483 274 0.00081029977 490 274 0.00040509994 491 274 0.0081025995 19 275 0.019535098 21 275 0.012116697 22 275 0.0039564967 24 275 0.044263098 25 275 0.0046982989 60 275 0.0059346966 114 275 0.0002472999 120 275 0.0002472999 126 275 0.0002472999 130 275 0.00074179983 131 275 0.00049459981 160 275 0.0029673998 169 275 0.0061819963 187 275 0.0002472999 192 275 0.0002472999 193 275 0.0061819963 198 275 0.0037091998 206 275 0.00049459981 214 275 0.010632999 218 275 0.0002472999 219 275 0.00074179983 223 275 0.0002472999 224 275 0.0027200999 233 275 0.0002472999 234 275 0.0044509992 241 275 0.0002472999 254 275 0.00049459981 257 275 0.0024728 267 275 0.0093965977 270 275 0.0066765994 273 275 0.064787269 275 275 0.0064292997 277 275 0.005687397 284 275 0.0002472999 289 275 0.022255197 301 275 0.00049459981 340 275 0.0002472999 349 275 0.0022254998 356 275 0.0002472999 358 275 0.0014836998 370 275 0.025717098 386 275 0.0002472999 417 275 0.0002472999 443 275 0.051186897 444 275 0.00074179983 445 275 0.037091997 446 275 0.0029673998 447 275 0.0096438974 450 275 0.0027200999 452 275 0.015084099 453 275 0.019287799 454 275 0.00098909996 455 275 0.017062299 457 275 0.0027200999 458 275 0.00049459981 459 275 0.00049459981 460 275 0.0017309999 463 275 0.014836799 464 275 0.00049459981 465 275 0.0002472999 467 275 0.0071710981 468 275 0.0022254998 469 275 0.0044509992 470 275 0.0046982989 471 275 0.0042037964 473 275 0.0002472999 478 275 0.00049459981 483 275 0.00098909996 490 275 0.00049459981 491 275 0.0022254998 21 276 0.00059769978 24 276 0.0101614 25 276 0.00059769978 60 276 0.0023908999 114 276 0.00059769978 118 276 0.00059769978 130 276 0.0017931999 131 276 0.0011954999 160 276 0.0011954999 187 276 0.00059769978 193 276 0.050806899 198 276 0.0059772991 206 276 0.00059769978 214 276 0.023311399 219 276 0.0041840971 224 276 0.0035863998 233 276 0.0059772991 234 276 0.0059772991 241 276 0.00059769978 252 276 0.00059769978 268 276 0.0203228 270 276 0.0071726963 272 276 0.00059769978 273 276 0.0017931999 276 276 0.083084285 277 276 0.0017931999 284 276 0.00059769978 289 276 0.00059769978 300 276 0.0017931999 301 276 0.00059769978 326 276 0.026300099 340 276 0.0011954999 356 276 0.00059769978 358 276 0.0023908999 417 276 0.00059769978 443 276 0.011954598 444 276 0.0101614 445 276 0.022713698 447 276 0.028690998 450 276 0.0047817975 452 276 0.011356797 453 276 0.0173341 454 276 0.0011954999 455 276 0.034070499 457 276 0.0029885999 459 276 0.019724999 460 276 0.00059769978 463 276 0.037059199 464 276 0.0011954999 465 276 0.00059769978 467 276 0.0083681978 468 276 0.0029885999 469 276 0.0053795986 470 276 0.0053795986 471 276 0.0029885999 478 276 0.0011954999 483 276 0.0017931999 490 276 0.00059769978 491 276 0.00059769978 9 277 1.17e-05 16 277 3.8999997e-06 18 277 0.00011659999 19 277 0.057920396 21 277 0.00047409977 22 277 0.027266096 23 277 0.00014769999 24 277 0.0018845999 25 277 0.0011034999 60 277 0.0140002 66 277 1.5499987e-05 79 277 3.8999997e-06 82 277 1.17e-05 83 277 7.7999994e-06 84 277 7.7999994e-06 108 277 1.9399988e-05 113 277 1.9399988e-05 114 277 6.6099994e-05 126 277 2.7199989e-05 127 277 3.8999997e-06 150 277 0.00035749981 151 277 2.7199989e-05 153 277 1.17e-05 154 277 0.0001127 160 277 0.0020826999 161 277 6.9899994e-05 165 277 0.00057119993 169 277 0.0011656999 171 277 0.000101 172 277 0.0002293 183 277 0.00058669993 189 277 6.6099994e-05 190 277 6.6099994e-05 192 277 1.5499987e-05 194 277 4.269999e-05 195 277 0.00039629987 196 277 1.17e-05 197 277 7.7999994e-06 198 277 0.00054399995 200 277 1.9399988e-05 201 277 7.7999994e-06 203 277 0.00034189993 204 277 4.269999e-05 206 277 0.00048179994 207 277 2.3299988e-05 209 277 7.7999994e-06 214 277 0.020030897 218 277 5.0499992e-05 223 277 0.00064109988 224 277 2.3299988e-05 233 277 0.00048959977 234 277 0.0049153976 237 277 6.9899994e-05 240 277 0.00048569986 241 277 0.00042349985 242 277 0.0002137 248 277 7.7999994e-06 250 277 3.8999997e-06 251 277 4.6599991e-05 252 277 0.00011659999 262 277 3.8999997e-06 263 277 3.8999997e-06 267 277 0.0029958999 270 277 0.0017990998 272 277 0.00076159998 273 277 0.0011463 276 277 0.00013209999 277 277 0.17267716 278 277 0.019902598 279 277 0.0001049 280 277 0.00092479982 281 277 1.9399988e-05 282 277 0.012259398 283 277 0.00037299981 284 277 0.0022421 285 277 3.8999997e-06 286 277 0.00062949979 287 277 0.00045849988 288 277 0.0045229979 289 277 0.0016786 290 277 0.010495298 291 277 0.0015153999 292 277 0.00015149999 293 277 0.000101 294 277 1.5499987e-05 295 277 0.0018728999 296 277 7.7999994e-06 297 277 3.499999e-05 298 277 7.7999994e-06 300 277 0.0001088 301 277 0.00037299981 302 277 0.00018259999 303 277 0.0001127 306 277 0.00032249978 307 277 3.8999997e-06 308 277 0.00033029984 309 277 8.5499996e-05 310 277 0.0004778998 312 277 0.0068737976 313 277 3.8999997e-06 315 277 0.0018223999 317 277 0.000101 318 277 0.0001088 319 277 0.00038859993 320 277 0.0018145998 321 277 0.0022926 322 277 0.0019622999 324 277 0.00086649996 326 277 0.0067805983 328 277 7.7999994e-06 330 277 3.8999997e-06 331 277 3.8999997e-06 333 277 3.8999997e-06 336 277 0.00024869991 337 277 0.00083929999 338 277 0.000101 339 277 0.00012819999 340 277 0.0039866976 341 277 0.0001088 342 277 0.00068779988 343 277 0.00082379999 349 277 0.00030309986 350 277 0.0035593 351 277 0.0033572998 352 277 0.0021060999 353 277 1.9399988e-05 354 277 0.0045384988 355 277 0.00036139996 356 277 0.00042349985 357 277 0.00012049999 358 277 0.0026305998 359 277 0.0014260998 362 277 5.0499992e-05 363 277 0.000101 368 277 0.00013989999 370 277 0.0017018998 371 277 0.00058669993 372 277 0.0001049 373 277 0.00091309985 374 277 0.00047019986 375 277 0.0026655998 376 277 0.00011659999 380 277 3.8999997e-06 384 277 0.0032017999 385 277 0.00027199998 386 277 0.00013989999 387 277 3.1099989e-05 393 277 3.8999997e-06 394 277 3.8999997e-06 395 277 0.00013599999 397 277 3.8999997e-06 402 277 3.1099989e-05 404 277 2.3299988e-05 408 277 0.00083929999 409 277 4.269999e-05 412 277 9.3299997e-05 413 277 0.00062169996 414 277 0.00082379999 415 277 0.00017489999 417 277 0.00024479977 419 277 0.0001088 421 277 0.00014379999 422 277 3.8899991e-05 423 277 3.8999997e-06 425 277 3.8999997e-06 430 277 1.9399988e-05 431 277 7.7999994e-06 432 277 7.7999994e-06 433 277 1.9399988e-05 434 277 2.3299988e-05 438 277 0.00029139989 441 277 0.00014769999 442 277 8.9399997e-05 443 277 0.037411597 444 277 0.0020088998 445 277 0.0133591 446 277 0.008540798 447 277 0.0046472996 448 277 0.0002176 449 277 3.8999997e-06 450 277 0.0018106999 452 277 0.016898997 453 277 0.014497597 454 277 0.0019701 455 277 0.0368676 456 277 0.00026809983 457 277 0.0021448999 458 277 0.00040019979 459 277 0.00054009981 460 277 0.0022964999 463 277 0.0014648999 464 277 0.0019583998 465 277 0.00076159998 467 277 0.011863098 468 277 0.0030075 469 277 0.0039866976 470 277 0.0024518999 471 277 0.0010064 472 277 7.7699995e-05 473 277 5.8299993e-05 477 277 0.00042739999 478 277 0.00067999982 483 277 0.00083539984 489 277 0.0014260998 490 277 0.0001943 491 277 0.019747198 19 278 0.20604849 21 278 0.032901298 22 278 0.016118299 24 278 0.026088398 25 278 0.0001662 60 278 0.0144566 114 278 0.0001662 130 278 0.00049849995 131 278 0.00033229985 160 278 0.0023263998 169 278 0.0069790967 172 278 0.00049849995 187 278 0.0001662 198 278 0.0001662 206 278 0.00049849995 214 278 0.0018277999 219 278 0.00049849995 223 278 0.00049849995 224 278 0.0001662 234 278 0.0021601999 252 278 0.0001662 267 278 0.00033229985 270 278 0.0023263998 272 278 0.00083079981 273 278 0.0001662 276 278 0.0069790967 277 278 0.024426699 278 278 0.010634799 282 278 0.00099699991 284 278 0.0019939998 286 278 0.00049849995 288 278 0.0011631998 289 278 0.016949199 290 278 0.027251597 291 278 0.0001662 295 278 0.0001662 312 278 0.00049849995 315 278 0.0001662 320 278 0.0001662 321 278 0.0001662 322 278 0.0001662 324 278 0.00049849995 326 278 0.00033229985 340 278 0.00033229985 350 278 0.00033229985 351 278 0.00033229985 352 278 0.0001662 354 278 0.00033229985 355 278 0.00083079981 356 278 0.0001662 358 278 0.0011631998 359 278 0.0001662 375 278 0.028248597 384 278 0.00033229985 417 278 0.0001662 443 278 0.023429699 444 278 0.0084745996 445 278 0.019773997 446 278 0.0034894999 447 278 0.0054834969 450 278 0.0014954999 452 278 0.086739779 453 278 0.0034894999 454 278 0.0053173974 455 278 0.0224327 457 278 0.0019939998 459 278 0.00049849995 460 278 0.0019939998 463 278 0.0058158971 464 278 0.0046526976 465 278 0.00049849995 467 278 0.016616799 468 278 0.0084745996 469 278 0.0023263998 470 278 0.0021601999 471 278 0.0001662 478 278 0.00049849995 483 278 0.00083079981 489 278 0.0036556998 490 278 0.0018277999 491 278 0.013958097 19 279 0.0188291 21 279 0.00029419991 22 279 0.0088260993 24 279 0.0011767999 25 279 0.00029419991 60 279 0.0079434998 160 279 0.0023536 165 279 0.00029419991 169 279 0.00029419991 171 279 0.0029419998 172 279 0.00029419991 183 279 0.00029419991 187 279 0.00029419991 198 279 0.0067666993 203 279 0.0026477999 206 279 0.00029419991 214 279 0.015592799 223 279 0.017652299 233 279 0.00029419991 234 279 0.0047072992 241 279 0.00088259997 267 279 0.0035305 270 279 0.00029419991 272 279 0.00058839982 273 279 0.00029419991 277 279 0.22418356 278 279 0.0064724982 279 279 0.0055898987 280 279 0.00029419991 282 279 0.0038246999 284 279 0.0044130981 286 279 0.0082376972 287 279 0.00058839982 288 279 0.0061782971 289 279 0.0011767999 290 279 0.0035305 291 279 0.00058839982 293 279 0.00029419991 295 279 0.0023536 310 279 0.00029419991 312 279 0.0067666993 315 279 0.00058839982 320 279 0.00058839982 321 279 0.00058839982 322 279 0.00058839982 324 279 0.00058839982 326 279 0.0035305 337 279 0.00029419991 340 279 0.029420398 343 279 0.00029419991 350 279 0.0032362 351 279 0.0050014965 352 279 0.00058839982 354 279 0.0032362 355 279 0.00029419991 356 279 0.00029419991 358 279 0.0017651999 359 279 0.00058839982 361 279 0.00029419991 370 279 0.00029419991 372 279 0.00029419991 373 279 0.0011767999 374 279 0.00058839982 375 279 0.00088259997 384 279 0.0011767999 408 279 0.00029419991 413 279 0.00029419991 414 279 0.00029419991 417 279 0.00029419991 419 279 0.00029419991 443 279 0.017652299 444 279 0.0020593998 445 279 0.0097086988 446 279 0.0032362 447 279 0.0038246999 450 279 0.0020593998 452 279 0.012650799 453 279 0.0085318983 454 279 0.0032362 455 279 0.032656699 456 279 0.00058839982 457 279 0.0020593998 458 279 0.00058839982 459 279 0.00058839982 460 279 0.0011767999 463 279 0.0035305 464 279 0.0026477999 465 279 0.00088259997 467 279 0.018240698 468 279 0.0038246999 469 279 0.0038246999 470 279 0.0035305 471 279 0.00058839982 477 279 0.0020593998 478 279 0.00088259997 483 279 0.00088259997 489 279 0.00058839982 490 279 0.00029419991 491 279 0.0064724982 60 280 0.0054445975 160 280 0.0018149 169 280 0.0018149 198 280 0.0018149 203 280 0.0018149 214 280 0.058076199 234 280 0.0018149 240 280 0.0036297999 270 280 0.010889299 277 280 0.44283116 280 280 0.0054445975 282 280 0.0072594993 284 280 0.0018149 290 280 0.010889299 295 280 0.0018149 312 280 0.010889299 321 280 0.0054445975 322 280 0.0054445975 326 280 0.0272232 342 280 0.0036297999 350 280 0.0054445975 351 280 0.0018149 352 280 0.0090743974 354 280 0.010889299 358 280 0.010889299 370 280 0.019963697 373 280 0.0018149 443 280 0.012704197 444 280 0.0036297999 445 280 0.010889299 446 280 0.0018149 447 280 0.0036297999 450 280 0.0018149 452 280 0.0072594993 453 280 0.0054445975 454 280 0.0036297999 455 280 0.016333897 457 280 0.0018149 460 280 0.0036297999 463 280 0.0036297999 464 280 0.0018149 467 280 0.025408298 468 280 0.0018149 469 280 0.0090743974 470 280 0.0018149 477 280 0.0018149 60 281 0.0036100999 160 281 0.0036100999 169 281 0.0036100999 214 281 0.07581228 223 281 0.0072201975 277 281 0.38267148 282 281 0.010830298 284 281 0.0036100999 288 281 0.0072201975 312 281 0.010830298 320 281 0.0036100999 321 281 0.0036100999 324 281 0.0036100999 326 281 0.0072201975 340 281 0.0072201975 349 281 0.0036100999 350 281 0.0036100999 351 281 0.0036100999 354 281 0.018050499 358 281 0.014440399 370 281 0.010830298 371 281 0.0072201975 375 281 0.0036100999 414 281 0.0036100999 443 281 0.014440399 444 281 0.0036100999 445 281 0.010830298 447 281 0.0036100999 452 281 0.0072201975 453 281 0.0072201975 454 281 0.0036100999 455 281 0.014440399 457 281 0.0036100999 460 281 0.0036100999 463 281 0.0036100999 464 281 0.0036100999 467 281 0.0216606 468 281 0.0036100999 469 281 0.0036100999 470 281 0.0036100999 477 281 0.0036100999 9 282 1.6999998e-05 18 282 0.00015339999 19 282 0.0019434998 21 282 1.6999998e-05 22 282 0.0018070999 24 282 0.0056257993 25 282 0.0003409998 60 282 0.010058299 77 282 1.6999998e-05 78 282 0.00013639999 79 282 1.6999998e-05 82 282 1.6999998e-05 83 282 1.6999998e-05 84 282 1.6999998e-05 98 282 1.6999998e-05 104 282 0.00018749999 108 282 1.6999998e-05 113 282 3.4099998e-05 114 282 8.5199994e-05 126 282 5.1099996e-05 127 282 1.6999998e-05 134 282 6.8199995e-05 150 282 0.00081829983 151 282 1.6999998e-05 156 282 0.00040919986 158 282 0.00010229999 159 282 3.4099998e-05 160 282 0.0029662999 161 282 1.6999998e-05 162 282 1.6999998e-05 165 282 3.4099998e-05 169 282 0.00075009977 170 282 1.6999998e-05 171 282 8.5199994e-05 172 282 0.0010910998 181 282 8.5199994e-05 183 282 1.6999998e-05 189 282 6.8199995e-05 190 282 0.00011929999 192 282 3.4099998e-05 194 282 0.00010229999 195 282 1.6999998e-05 196 282 1.6999998e-05 197 282 1.6999998e-05 198 282 0.0015001998 200 282 3.4099998e-05 201 282 3.4099998e-05 203 282 5.1099996e-05 204 282 8.5199994e-05 206 282 0.00035799993 207 282 5.1099996e-05 209 282 1.6999998e-05 214 282 0.00080129993 218 282 3.4099998e-05 219 282 5.1099996e-05 223 282 0.0048415996 224 282 1.6999998e-05 233 282 0.00011929999 234 282 0.0030685998 236 282 1.6999998e-05 237 282 0.00073309988 240 282 0.00083539984 241 282 0.00020459999 242 282 0.00013639999 248 282 1.6999998e-05 250 282 1.6999998e-05 252 282 0.0004602999 267 282 0.00010229999 270 282 0.0080124997 271 282 1.6999998e-05 272 282 0.0010058 273 282 3.4099998e-05 276 282 3.4099998e-05 277 282 0.060400996 278 282 0.022094198 279 282 8.5199994e-05 280 282 6.8199995e-05 282 282 0.0060349964 283 282 0.0023866999 284 282 0.0077738985 285 282 5.1099996e-05 286 282 0.0027788 287 282 0.00027279998 288 282 0.0003409998 289 282 0.001773 290 282 0.0043983981 291 282 5.1099996e-05 292 282 0.00018749999 293 282 0.00018749999 294 282 0.00013639999 295 282 6.8199995e-05 296 282 0.00015339999 297 282 0.00013639999 298 282 8.5199994e-05 299 282 3.4099998e-05 301 282 1.6999998e-05 304 282 5.1099996e-05 305 282 1.6999998e-05 306 282 1.6999998e-05 307 282 0.00011929999 308 282 1.6999998e-05 310 282 1.6999998e-05 312 282 0.00075009977 313 282 0.0018070999 315 282 0.00030689989 319 282 0.00051139994 320 282 8.5199994e-05 321 282 6.8199995e-05 322 282 0.00020459999 323 282 0.00017049999 324 282 0.00015339999 326 282 0.00068189995 328 282 0.0015683998 329 282 0.00027279998 330 282 5.1099996e-05 331 282 0.00013639999 332 282 1.6999998e-05 333 282 1.6999998e-05 335 282 3.4099998e-05 337 282 3.4099998e-05 338 282 0.00027279998 339 282 6.8199995e-05 340 282 0.0069215 341 282 5.1099996e-05 342 282 0.00011929999 343 282 5.1099996e-05 344 282 1.6999998e-05 345 282 6.8199995e-05 347 282 0.00010229999 349 282 0.0036823999 350 282 0.0004602999 351 282 0.0012274999 352 282 8.5199994e-05 353 282 0.023509197 354 282 0.012444999 355 282 0.00013639999 356 282 0.00030689989 357 282 0.00020459999 358 282 0.015632998 359 282 5.1099996e-05 366 282 0.00020459999 370 282 1.6999998e-05 371 282 6.8199995e-05 372 282 0.00040919986 373 282 0.0002387 374 282 0.0024037999 375 282 0.013689499 384 282 0.00030689989 385 282 0.00011929999 386 282 1.6999998e-05 387 282 0.00017049999 392 282 1.6999998e-05 394 282 8.5199994e-05 397 282 0.00047729979 399 282 5.1099996e-05 401 282 0.00080129993 402 282 0.0055234991 408 282 0.0002387 412 282 1.6999998e-05 413 282 1.6999998e-05 414 282 5.1099996e-05 415 282 3.4099998e-05 417 282 0.00054549985 419 282 3.4099998e-05 421 282 0.00032389979 422 282 6.8199995e-05 423 282 1.6999998e-05 425 282 1.6999998e-05 430 282 1.6999998e-05 431 282 3.4099998e-05 432 282 1.6999998e-05 433 282 3.4099998e-05 434 282 3.4099998e-05 438 282 0.001432 443 282 0.012922399 444 282 0.0015513999 445 282 0.010160599 446 282 0.00098879985 447 282 0.0035118998 448 282 1.6999998e-05 450 282 0.0040573999 452 282 0.020269997 453 282 0.0080806985 454 282 0.0017217998 455 282 0.049456198 456 282 0.00049439981 457 282 0.0048415996 458 282 0.00093759992 459 282 0.0013297 460 282 0.0020458 463 282 0.0021479998 464 282 0.0012444998 465 282 0.0010739998 467 282 0.011405099 468 282 0.0028640998 469 282 0.0035289 470 282 0.0038698998 471 282 0.0017899999 473 282 8.5199994e-05 477 282 0.00010229999 478 282 0.0012786 483 282 0.00092059979 489 282 0.00015339999 490 282 0.0003409998 491 282 0.035630297 18 283 0.00010799999 19 283 0.010635398 21 283 0.00010799999 22 283 0.0059924982 24 283 0.00032389979 25 283 0.0002159 60 283 0.0078820996 78 283 5.3999989e-05 108 283 5.3999989e-05 114 283 0.00010799999 126 283 5.3999989e-05 134 283 5.3999989e-05 150 283 0.00010799999 156 283 0.00032389979 158 283 0.00010799999 160 283 0.00032389979 165 283 0.00010799999 168 283 5.3999989e-05 169 283 0.000162 171 283 0.00037789997 172 283 5.3999989e-05 181 283 5.3999989e-05 183 283 0.00010799999 189 283 5.3999989e-05 190 283 5.3999989e-05 194 283 5.3999989e-05 195 283 5.3999989e-05 198 283 0.0025913999 203 283 0.00010799999 206 283 0.00048589986 214 283 0.0026453999 223 283 0.0002159 224 283 0.0005398998 229 283 0.00070179999 233 283 0.0002159 234 283 0.0054527 237 283 0.00075579993 240 283 0.0014036999 241 283 0.0029153 242 283 0.00043189991 252 283 0.00037789997 262 283 0.0002159 267 283 0.0005398998 270 283 0.0012416998 271 283 0.000162 272 283 0.00043189991 273 283 0.0002159 277 283 0.28499699 278 283 0.0098795965 279 283 0.00010799999 280 283 0.00010799999 282 283 0.0055606999 283 283 0.0084758997 284 283 0.0043189973 286 283 0.00043189991 287 283 0.00010799999 288 283 0.00091779977 289 283 0.0019975 290 283 0.0017815998 291 283 0.00026989984 292 283 0.0021594998 293 283 0.0025913999 294 283 0.013766699 295 283 0.00091779977 296 283 0.00059389998 297 283 0.00010799999 298 283 5.3999989e-05 299 283 0.000162 301 283 5.3999989e-05 302 283 5.3999989e-05 305 283 5.3999989e-05 306 283 5.3999989e-05 307 283 5.3999989e-05 308 283 5.3999989e-05 310 283 0.00010799999 312 283 0.0024293999 313 283 0.0016196 315 283 0.00097179995 317 283 0.000162 319 283 0.00048589986 320 283 0.00091779977 321 283 0.0051826984 322 283 0.00064779981 323 283 0.000162 324 283 0.0027532999 326 283 0.0051287971 328 283 0.0010257999 329 283 0.00048589986 330 283 5.3999989e-05 331 283 0.00032389979 333 283 0.00086379983 336 283 5.3999989e-05 337 283 0.000162 338 283 0.00075579993 339 283 0.0010257999 340 283 0.0131188 341 283 5.3999989e-05 342 283 0.000162 343 283 0.0002159 349 283 5.3999989e-05 350 283 0.0010257999 351 283 0.0025374 352 283 0.00026989984 353 283 5.3999989e-05 354 283 0.0028072998 355 283 0.00037789997 356 283 0.00026989984 357 283 0.00032389979 358 283 0.0073961988 359 283 0.00026989984 366 283 0.00010799999 370 283 0.00010799999 371 283 0.0002159 372 283 0.00010799999 373 283 0.00032389979 374 283 0.00010799999 375 283 0.00048589986 376 283 5.3999989e-05 384 283 0.00070179999 385 283 0.000162 386 283 0.0011336999 387 283 0.000162 392 283 5.3999989e-05 393 283 0.00010799999 394 283 5.3999989e-05 397 283 0.00048589986 398 283 0.00010799999 399 283 5.3999989e-05 401 283 0.00059389998 402 283 0.0053986982 408 283 0.00032389979 413 283 0.00010799999 414 283 0.00010799999 415 283 5.3999989e-05 417 283 0.00032389979 421 283 0.00010799999 422 283 5.3999989e-05 434 283 5.3999989e-05 438 283 5.3999989e-05 443 283 0.012093097 444 283 0.0016196 445 283 0.0080979988 446 283 0.0023753999 447 283 0.0028072998 448 283 0.00010799999 450 283 0.0022674999 452 283 0.010419499 453 283 0.012362998 454 283 0.0014575999 455 283 0.031312399 456 283 0.0002159 457 283 0.0022135 458 283 0.00048589986 459 283 0.00032389979 460 283 0.0020514999 463 283 0.0028612998 464 283 0.00059389998 465 283 0.00075579993 467 283 0.011823099 468 283 0.0018894998 469 283 0.0031311999 470 283 0.0031851998 471 283 0.0010797 473 283 5.3999989e-05 477 283 0.00010799999 478 283 0.00086379983 483 283 0.00086379983 489 283 0.00026989984 490 283 0.00026989984 491 283 0.0046428964 60 284 0.0027506999 114 284 0.0002116 126 284 0.0002116 190 284 0.0002116 194 284 0.0002116 206 284 0.00042319996 214 284 0.0086753964 218 284 0.0002116 223 284 0.049513299 233 284 0.0093101971 234 284 0.018620398 237 284 0.0002116 240 284 0.0012695999 241 284 0.0002116 270 284 0.0002116 272 284 0.0010579999 277 284 0.055649597 284 284 0.0080405995 285 284 0.018197197 286 284 0.0021159998 287 284 0.0040202998 288 284 0.00042319996 289 284 0.0048666969 290 284 0.018408798 320 284 0.0019043998 321 284 0.0002116 354 284 0.0012695999 355 284 0.0010579999 356 284 0.0002116 358 284 0.0029622999 417 284 0.00063479994 443 284 0.0050782971 444 284 0.0019043998 445 284 0.005924698 446 284 0.00042319996 447 284 0.0063478984 450 284 0.0025390999 452 284 0.027930599 453 284 0.0247567 454 284 0.0012695999 455 284 0.015234899 456 284 0.0027506999 457 284 0.0016927999 458 284 0.0010579999 459 284 0.00063479994 460 284 0.0014811999 463 284 0.013753697 464 284 0.00042319996 465 284 0.00084639993 467 284 0.0082521997 468 284 0.0012695999 469 284 0.0044434965 470 284 0.0048666969 471 284 0.0010579999 473 284 0.0002116 478 284 0.0012695999 483 284 0.0012695999 490 284 0.00063479994 19 285 0.045200396 20 285 0.0023298999 21 285 0.0055917986 24 285 0.00093199988 25 285 0.00046599982 60 285 0.0018638999 114 285 0.000233 169 285 0.00069899997 171 285 0.019105297 193 285 0.000233 198 285 0.0067567974 206 285 0.00069899997 214 285 0.046365298 223 285 0.00046599982 224 285 0.00046599982 225 285 0.000233 234 285 0.0037278999 240 285 0.0013978998 241 285 0.0020968998 270 285 0.00093199988 272 285 0.0011649998 273 285 0.00069899997 276 285 0.000233 277 285 0.0090866983 278 285 0.00046599982 279 285 0.000233 282 285 0.0011649998 284 285 0.0041937977 285 285 0.0011649998 286 285 0.023532197 287 285 0.0044267997 288 285 0.0039608963 289 285 0.12744635 290 285 0.038443599 291 285 0.00069899997 292 285 0.00046599982 293 285 0.00046599982 294 285 0.0016309 295 285 0.046598297 296 285 0.00069899997 298 285 0.00069899997 301 285 0.0072226971 312 285 0.0011649998 315 285 0.00046599982 320 285 0.011882599 321 285 0.012814499 322 285 0.00046599982 326 285 0.0018638999 338 285 0.000233 340 285 0.017707396 351 285 0.00093199988 354 285 0.010950599 355 285 0.0011649998 356 285 0.000233 358 285 0.0032618998 370 285 0.000233 371 285 0.000233 373 285 0.000233 375 285 0.00069899997 386 285 0.000233 392 285 0.00046599982 396 285 0.000233 397 285 0.0039608963 402 285 0.000233 417 285 0.000233 438 285 0.000233 443 285 0.010950599 444 285 0.0083876997 445 285 0.0034949 446 285 0.00046599982 447 285 0.011416599 450 285 0.0018638999 452 285 0.017940398 453 285 0.0097855963 454 285 0.0016309 455 285 0.018639296 457 285 0.0023298999 458 285 0.000233 459 285 0.00069899997 460 285 0.0016309 463 285 0.016076397 464 285 0.0011649998 465 285 0.00046599982 467 285 0.0067567974 468 285 0.0020968998 469 285 0.0032618998 470 285 0.0023298999 471 285 0.00093199988 478 285 0.00046599982 483 285 0.0013978998 490 285 0.00046599982 491 285 0.0018638999 18 286 0.00028329995 20 286 0.35669565 22 286 0.00033999979 60 286 0.00079319999 108 286 2.8299997e-05 114 286 5.6699995e-05 126 286 5.6699995e-05 150 286 2.8299997e-05 151 286 2.8299997e-05 160 286 5.6699995e-05 169 286 2.8299997e-05 172 286 2.8299997e-05 189 286 2.8299997e-05 190 286 5.6699995e-05 194 286 5.6699995e-05 198 286 5.6699995e-05 206 286 0.00042489986 214 286 0.0034844999 218 286 2.8299997e-05 223 286 0.00048159994 224 286 2.8299997e-05 233 286 2.8299997e-05 234 286 0.0030311998 237 286 2.8299997e-05 240 286 0.00033999979 241 286 0.00093489978 242 286 2.8299997e-05 252 286 5.6699995e-05 262 286 2.8299997e-05 267 286 0.00056659989 272 286 0.00067989994 277 286 0.0010481998 282 286 5.6699995e-05 283 286 2.8299997e-05 284 286 0.00059489999 285 286 0.0032578998 286 286 0.36805576 287 286 0.0034844999 288 286 0.0054675974 289 286 0.0016148 290 286 0.016601 291 286 0.0028612998 292 286 0.00056659989 293 286 5.6699995e-05 294 286 5.6699995e-05 295 286 0.00011329999 296 286 2.8299997e-05 312 286 8.4999992e-05 315 286 5.6699995e-05 317 286 0.00017 318 286 0.00017 319 286 2.8299997e-05 320 286 2.8299997e-05 321 286 5.6699995e-05 324 286 0.0001983 326 286 8.4999992e-05 340 286 0.00033999979 350 286 2.8299997e-05 351 286 2.8299997e-05 354 286 0.0014730999 356 286 0.0001983 358 286 0.0018696999 373 286 2.8299997e-05 375 286 0.0011047998 386 286 0.00011329999 387 286 2.8299997e-05 417 286 0.00011329999 443 286 0.013229799 444 286 0.00042489986 445 286 0.0018980999 446 286 0.00033999979 447 286 0.00045329984 448 286 2.8299997e-05 450 286 0.00084989984 452 286 0.0044476986 453 286 0.0058924966 454 286 0.0011614999 455 286 0.0246749 456 286 0.0026629998 457 286 0.0021529999 458 286 0.00014159999 459 286 0.00082159997 460 286 0.0017563999 463 286 0.0016997999 464 286 0.00036829989 465 286 0.00014159999 467 286 0.0039094985 468 286 0.0028328998 469 286 0.0035128 470 286 0.00082159997 471 286 0.00045329984 473 286 5.6699995e-05 477 286 5.6699995e-05 478 286 0.00022659999 483 286 0.0001983 489 286 0.00011329999 490 286 8.4999992e-05 491 286 0.050086398 18 287 0.00073289988 19 287 0.00043979986 20 287 0.00043979986 21 287 0.13559067 22 287 0.00073289988 60 287 0.0016123999 206 287 0.0002931999 214 287 0.021108199 223 287 0.0016123999 234 287 0.0087950975 240 287 0.00087949983 241 287 0.0051304996 272 287 0.0002931999 277 287 0.0083552971 278 287 0.0001466 284 287 0.0013192999 285 287 0.012313098 286 287 0.0095279999 287 287 0.22339487 288 287 0.015391398 289 287 0.0086484998 290 287 0.053649999 291 287 0.0082086995 317 287 0.00043979986 318 287 0.00043979986 326 287 0.0001466 340 287 0.0014658 353 287 0.0002931999 354 287 0.0038111999 356 287 0.0002931999 358 287 0.0043974966 375 287 0.0032249 417 287 0.0001466 443 287 0.028584 444 287 0.0042509995 445 287 0.0055701993 446 287 0.00058629992 447 287 0.005423598 450 287 0.0014658 452 287 0.0045440979 453 287 0.0051304996 454 287 0.0014658 455 287 0.061125796 456 287 0.0077689998 457 287 0.0023453999 458 287 0.0001466 459 287 0.00058629992 460 287 0.0026385 463 287 0.0043974966 464 287 0.0011727 465 287 0.0001466 467 287 0.0055701993 468 287 0.0071825981 469 287 0.0095279999 470 287 0.0013192999 471 287 0.00087949983 478 287 0.0033713998 483 287 0.00043979986 489 287 0.0001466 490 287 0.0010260998 491 287 0.12826145 18 288 0.00042659999 20 288 0.0034129999 21 288 0.24850678 22 288 0.0055460967 24 288 0.00021329999 60 288 0.0021330998 114 288 0.00021329999 120 288 0.00021329999 206 288 0.00063989987 214 288 0.0153584 223 288 0.0010666 234 288 0.022397596 240 288 0.00063989987 241 288 0.0017064998 272 288 0.00063989987 277 288 0.0076791979 284 288 0.0014932 285 288 0.0066125989 286 288 0.010025598 287 288 0.015571699 288 288 0.070392489 289 288 0.0029862998 290 288 0.052687697 291 288 0.0057593994 317 288 0.00042659999 318 288 0.00042659999 324 288 0.00021329999 340 288 0.00063989987 354 288 0.0025596998 356 288 0.00021329999 358 288 0.0038395999 375 288 0.0021330998 417 288 0.00021329999 443 288 0.036262799 444 288 0.0012798999 445 288 0.016638197 446 288 0.0012798999 447 288 0.0070391968 450 288 0.0021330998 452 288 0.012158699 453 288 0.012585297 454 288 0.011732098 455 288 0.0505546 456 288 0.0053327978 457 288 0.0025596998 458 288 0.00021329999 459 288 0.00085319998 460 288 0.0023463999 463 288 0.0104522 464 288 0.00085319998 465 288 0.00021329999 467 288 0.0068258978 468 288 0.0049060993 469 288 0.007465899 470 288 0.0019197999 471 288 0.00063989987 478 288 0.00063989987 483 288 0.00085319998 489 288 0.0023463999 490 288 0.00021329999 491 288 0.10025597 18 289 0.0012138998 19 289 3.6799989e-05 21 289 0.052896798 22 289 0.0012874999 60 289 0.010630898 114 289 7.3599993e-05 126 289 3.6799989e-05 150 289 3.6799989e-05 151 289 0.0015449999 160 289 0.00022069999 169 289 7.3599993e-05 172 289 0.00025749998 190 289 3.6799989e-05 194 289 3.6799989e-05 198 289 0.0001104 206 289 0.00058859983 214 289 0.044436298 223 289 0.00099319988 233 289 0.0002942998 234 289 0.016442899 237 289 7.3599993e-05 240 289 0.00033109984 241 289 0.0045612976 242 289 0.0001471 251 289 3.6799989e-05 252 289 3.6799989e-05 267 289 0.0018391998 272 289 0.00088279997 277 289 0.00022069999 278 289 0.0041198991 282 289 0.0001104 284 289 0.00091959978 285 289 0.0034945998 286 289 0.0049291998 287 289 0.0037152998 288 289 0.0085340999 289 289 0.19466615 290 289 0.0337318 291 289 0.0031266999 292 289 3.6799989e-05 293 289 0.0064741969 295 289 0.0036416999 312 289 0.0001471 315 289 3.6799989e-05 317 289 0.0011034999 318 289 0.00018389999 319 289 3.6799989e-05 321 289 0.00018389999 322 289 3.6799989e-05 324 289 0.00033109984 326 289 0.00091959978 337 289 0.00084609981 340 289 0.0018024999 350 289 0.00084609981 351 289 0.0001104 354 289 0.0016921 356 289 0.00018389999 358 289 0.0022070999 370 289 0.0053705983 371 289 0.0029059998 373 289 7.3599993e-05 375 289 0.0057751983 384 289 7.3599993e-05 386 289 0.0010668 404 289 7.3599993e-05 417 289 0.00018389999 421 289 7.3599993e-05 422 289 3.6799989e-05 438 289 3.6799989e-05 443 289 0.025859799 444 289 0.0022806998 445 289 0.0068051964 446 289 0.0015817999 447 289 0.0015081998 450 289 0.0026852998 452 289 0.073643565 453 289 0.011955097 454 289 0.0031635 455 289 0.037814997 456 289 0.0028692 457 289 0.0068419985 458 289 0.00055179978 459 289 0.00095639983 460 289 0.0023542 463 289 0.0049659982 464 289 0.0018391998 465 289 0.00033109984 467 289 0.0082397982 468 289 0.0020599999 469 289 0.012139 470 289 0.00099319988 471 289 0.00069889985 473 289 3.6799989e-05 477 289 0.0001104 478 289 0.00044139987 483 289 0.00033109984 489 289 0.00058859983 490 289 0.00018389999 491 289 0.045907699 18 290 0.00068219984 19 290 0.0074187964 20 290 0.0902192 21 290 0.093459487 22 290 0.00025579985 24 290 8.5299995e-05 25 290 0.00025579985 60 290 0.0014495999 114 290 8.5299995e-05 160 290 8.5299995e-05 171 290 8.5299995e-05 198 290 0.00025579985 206 290 0.00068219984 214 290 0.015519697 223 290 0.0013643999 233 290 8.5299995e-05 234 290 0.0039225966 240 290 0.00085269986 241 290 0.0031550999 242 290 8.5299995e-05 267 290 0.00068219984 270 290 8.5299995e-05 272 290 0.00059689977 276 290 0.00017049999 277 290 0.0020466 278 290 0.0038373 282 290 8.5299995e-05 284 290 0.0010233 285 290 0.008953698 286 290 0.10701799 287 290 0.037349697 288 290 0.023535397 289 290 0.0050310977 290 290 0.067280591 291 290 0.0081009977 292 290 0.00034109992 294 290 8.5299995e-05 295 290 0.00017049999 312 290 0.00017049999 315 290 8.5299995e-05 317 290 0.00042639999 318 290 0.00051159994 320 290 8.5299995e-05 321 290 0.00025579985 324 290 0.00025579985 326 290 0.00085269986 340 290 0.0017054998 349 290 8.5299995e-05 350 290 8.5299995e-05 351 290 0.00034109992 353 290 8.5299995e-05 354 290 0.0036668 356 290 8.5299995e-05 358 290 0.0047752969 373 290 8.5299995e-05 375 290 0.0030697999 386 290 8.5299995e-05 417 290 8.5299995e-05 438 290 8.5299995e-05 442 290 8.5299995e-05 443 290 0.018248498 444 290 0.0034108998 445 290 0.0043488964 446 290 0.00059689977 447 290 0.0045194998 450 290 0.0017906998 452 290 0.016542997 453 290 0.0070776977 454 290 0.0019612999 455 290 0.060288198 456 290 0.0070776977 457 290 0.0023876999 458 290 0.00025579985 459 290 0.00093799992 460 290 0.0032404 463 290 0.0071629994 464 290 0.0011085998 465 290 0.00017049999 467 290 0.0066512972 468 290 0.0061396994 469 290 0.0092947967 470 290 0.0018759998 471 290 0.0010233 478 290 0.00068219984 483 290 0.00034109992 489 290 0.0013643999 490 290 0.0119383 491 290 0.11469257 18 291 0.0017605999 60 291 0.00088029983 214 291 0.024647899 223 291 0.0035210999 234 291 0.0026407999 240 291 0.0026407999 241 291 0.005281698 277 291 0.00088029983 284 291 0.00088029983 285 291 0.023767598 286 291 0.022007 287 291 0.0255282 288 291 0.036091499 289 291 0.0105634 290 291 0.073063374 291 291 0.021126799 317 291 0.00088029983 318 291 0.00088029983 340 291 0.00088029983 354 291 0.0096830986 358 291 0.0096830986 375 291 0.0079224966 443 291 0.0255282 444 291 0.0026407999 445 291 0.005281698 446 291 0.00088029983 447 291 0.0017605999 450 291 0.0026407999 452 291 0.004401397 453 291 0.006161999 454 291 0.0017605999 455 291 0.12147886 456 291 0.019366197 457 291 0.0026407999 459 291 0.00088029983 460 291 0.004401397 463 291 0.0079224966 464 291 0.0017605999 467 291 0.0088027976 468 291 0.0017605999 469 291 0.022007 470 291 0.0026407999 471 291 0.0026407999 483 291 0.00088029983 491 291 0.29577458 18 292 0.00013619999 22 292 0.00013619999 60 292 0.0013275 108 292 3.3999997e-05 114 292 6.8099995e-05 126 292 3.3999997e-05 131 292 0.00010209999 132 292 0.00013619999 139 292 0.00010209999 151 292 6.8099995e-05 160 292 0.0036761998 161 292 0.00030639977 169 292 0.0012593998 171 292 0.00071479985 172 292 0.00078289979 187 292 0.00010209999 189 292 3.3999997e-05 190 292 3.3999997e-05 194 292 6.8099995e-05 197 292 6.8099995e-05 198 292 0.0010211999 200 292 3.3999997e-05 203 292 3.3999997e-05 204 292 3.3999997e-05 206 292 6.8099995e-05 214 292 0.0066375993 223 292 0.00037439982 224 292 0.0015997998 225 292 0.00027229986 233 292 0.0021784999 234 292 0.0021103998 237 292 6.8099995e-05 240 292 0.00017019999 241 292 0.0066716969 242 292 0.0011572998 251 292 3.3999997e-05 252 292 0.00017019999 270 292 6.8099995e-05 271 292 3.3999997e-05 272 292 0.00047649979 276 292 0.00010209999 277 292 0.00068079983 278 292 3.3999997e-05 279 292 3.3999997e-05 282 292 0.0021784999 283 292 0.00017019999 284 292 0.0017019999 285 292 0.00098709995 286 292 0.37371498 287 292 0.0010892998 288 292 0.026550498 289 292 0.0080331974 290 292 0.021274399 291 292 0.0012253998 292 292 0.033256199 293 292 0.0046973974 294 292 0.0002383 295 292 0.0066375993 297 292 3.3999997e-05 299 292 3.3999997e-05 308 292 0.00010209999 312 292 0.0016678998 315 292 0.0012935 317 292 6.8099995e-05 318 292 3.3999997e-05 319 292 0.0013615999 320 292 3.3999997e-05 321 292 0.0011232998 326 292 0.0051398985 327 292 3.3999997e-05 337 292 6.8099995e-05 340 292 0.0070119984 350 292 0.00078289979 351 292 0.0010551999 354 292 0.0056163967 358 292 0.0012935 369 292 3.3999997e-05 370 292 3.3999997e-05 371 292 6.8099995e-05 372 292 0.00010209999 373 292 0.0017019999 375 292 3.3999997e-05 376 292 3.3999997e-05 386 292 0.0014976999 387 292 3.3999997e-05 389 292 0.00037439982 390 292 6.8099995e-05 392 292 0.00017019999 393 292 0.0003403998 417 292 0.0002042 421 292 6.8099995e-05 422 292 6.8099995e-05 438 292 3.3999997e-05 443 292 0.014977198 444 292 0.0013955999 445 292 0.0037443 446 292 0.00047649979 447 292 0.0014295999 450 292 0.0013615999 452 292 0.0085437968 453 292 0.0037103 454 292 0.0028932998 455 292 0.0584451 456 292 0.00010209999 457 292 0.0024848999 458 292 0.00040849997 459 292 0.00078289979 460 292 0.0014976999 463 292 0.0049356967 464 292 0.0012593998 465 292 0.00051059993 467 292 0.0099053979 468 292 0.0039825998 469 292 0.0020082998 470 292 0.0016678998 471 292 0.0018720999 473 292 3.3999997e-05 477 292 6.8099995e-05 478 292 0.00051059993 483 292 0.00071479985 489 292 0.00010209999 490 292 0.00017019999 491 292 0.11202258 18 293 0.00016649999 19 293 5.5499986e-05 21 293 0.0014149998 22 293 0.00027739978 60 293 0.0024138 108 293 2.7699993e-05 114 293 5.5499986e-05 126 293 2.7699993e-05 130 293 2.7699993e-05 131 293 2.7699993e-05 132 293 2.7699993e-05 139 293 2.7699993e-05 150 293 0.00033289986 151 293 5.5499986e-05 160 293 0.0029131998 169 293 0.0010543 171 293 0.00038839993 172 293 0.0037455 187 293 5.5499986e-05 189 293 2.7699993e-05 190 293 5.5499986e-05 192 293 2.7699993e-05 194 293 5.5499986e-05 197 293 2.7699993e-05 198 293 0.0018865999 200 293 2.7699993e-05 203 293 2.7699993e-05 204 293 0.00022199999 206 293 0.00033289986 207 293 2.7699993e-05 214 293 0.005105 223 293 0.0010819999 224 293 0.0007491 225 293 8.3199993e-05 233 293 0.0039674975 234 293 0.0018865999 237 293 8.3199993e-05 240 293 8.3199993e-05 241 293 0.0051327981 242 293 0.0021917999 251 293 2.7699993e-05 252 293 0.00033289986 267 293 5.5499986e-05 270 293 2.7699993e-05 271 293 2.7699993e-05 272 293 0.00066589983 276 293 2.7699993e-05 277 293 0.0011652999 278 293 0.0023859998 279 293 0.00022199999 282 293 0.0018034 284 293 0.0021640998 285 293 0.0012208 286 293 0.010015797 287 293 0.0011097998 288 293 0.0030242 289 293 0.40240818 290 293 0.016147397 291 293 0.0022195999 292 293 0.0029964 293 293 0.091806948 294 293 5.5499986e-05 295 293 0.0038564999 297 293 2.7699993e-05 312 293 0.0022751 315 293 0.00080459984 317 293 0.0013595 318 293 0.00013869999 319 293 0.00083229993 321 293 0.0025247999 322 293 0.00063809985 324 293 2.7699993e-05 326 293 0.0047720969 337 293 0.0016368998 340 293 0.0077961981 350 293 8.3199993e-05 351 293 0.0017756999 354 293 0.0043003969 356 293 0.00016649999 358 293 0.0013316998 370 293 0.00013869999 371 293 0.00011099999 373 293 0.0011374999 375 293 0.00011099999 384 293 5.5499986e-05 386 293 0.00077679986 387 293 2.7699993e-05 401 293 2.7699993e-05 402 293 2.7699993e-05 408 293 2.7699993e-05 417 293 0.00024969992 421 293 5.5499986e-05 422 293 2.7699993e-05 433 293 2.7699993e-05 434 293 2.7699993e-05 438 293 0.00066589983 443 293 0.013594899 444 293 0.0012762998 445 293 0.0055488981 446 293 0.0003052 447 293 0.0011097998 450 293 0.001526 452 293 0.013039999 453 293 0.0095718987 454 293 0.00099879992 455 293 0.032100499 456 293 0.00013869999 457 293 0.0025803 458 293 0.0012484998 459 293 0.00086009991 460 293 0.0016923998 463 293 0.0021917999 464 293 0.00083229993 465 293 0.00041619991 467 293 0.0076574981 468 293 0.0065476969 469 293 0.0029964 470 293 0.0011374999 471 293 0.0017756999 473 293 2.7699993e-05 477 293 0.00083229993 478 293 0.00055489992 483 293 0.00055489992 489 293 8.3199993e-05 490 293 0.00013869999 491 293 0.029575799 19 294 0.00075719994 21 294 0.0019876999 22 294 0.0004733 60 294 0.0020822999 108 294 9.4699993e-05 114 294 0.00018929999 126 294 9.4699993e-05 160 294 0.0020822999 189 294 9.4699993e-05 190 294 9.4699993e-05 194 294 9.4699993e-05 198 294 0.0038806999 206 294 0.00018929999 214 294 0.027354497 223 294 0.0021769998 224 294 9.4699993e-05 233 294 0.0020822999 234 294 0.0015143999 237 294 9.4699993e-05 240 294 9.4699993e-05 241 294 0.015333597 242 294 0.0021769998 252 294 9.4699993e-05 272 294 0.0004733 277 294 0.0032181998 278 294 0.005584497 282 294 0.0022717 284 294 0.0015143999 285 294 0.00028399983 286 294 0.020350199 287 294 0.023284398 288 294 0.017415997 289 294 0.0070988983 290 294 0.42953146 291 294 0.013724599 292 294 0.0015143999 293 294 0.0017036998 294 294 0.0032181998 295 294 0.00066259992 312 294 0.0031234999 315 294 0.0025555999 317 294 9.4699993e-05 318 294 9.4699993e-05 320 294 9.4699993e-05 321 294 0.0037860998 322 294 9.4699993e-05 326 294 0.014860399 337 294 9.4699993e-05 340 294 0.0107903 350 294 0.0021769998 351 294 0.005584497 353 294 9.4699993e-05 354 294 0.0023663 356 294 0.00028399983 358 294 0.0078560971 373 294 0.0011357998 375 294 0.00018929999 386 294 0.0034075 387 294 9.4699993e-05 389 294 0.0019876999 390 294 0.00037859986 391 294 9.4699993e-05 392 294 0.00085189985 393 294 0.0010411998 397 294 0.00028399983 398 294 9.4699993e-05 417 294 0.00028399983 438 294 0.0029342 442 294 0.0019876999 443 294 0.0073828995 444 294 0.0035020998 445 294 0.0042592995 446 294 0.00037859986 447 294 0.0043539964 450 294 0.0016090998 452 294 0.0086132996 453 294 0.0043539964 454 294 0.0024609999 455 294 0.022148598 456 294 0.00028399983 457 294 0.0025555999 458 294 0.0004733 459 294 0.00085189985 460 294 0.0017984 463 294 0.010317098 464 294 0.0027448998 465 294 0.0004733 467 294 0.012588698 468 294 0.0035020998 469 294 0.0039753988 470 294 0.0025555999 471 294 0.0036913999 473 294 9.4699993e-05 477 294 0.00094649987 478 294 0.00056789978 483 294 0.00094649987 490 294 0.00037859986 491 294 0.0088972971 9 295 2.2199994e-05 18 295 0.00057599996 19 295 4.4299988e-05 21 295 2.2199994e-05 22 295 8.8599991e-05 25 295 2.2199994e-05 60 295 0.0013956998 82 295 2.2199994e-05 83 295 2.2199994e-05 84 295 2.2199994e-05 108 295 2.2199994e-05 113 295 4.4299988e-05 114 295 4.4299988e-05 126 295 2.2199994e-05 130 295 2.2199994e-05 131 295 0.0021046 132 295 0.0025919999 139 295 0.002016 150 295 0.00033229985 151 295 0.00042089983 160 295 0.0026805999 169 295 0.0011298 171 295 0.0095925964 172 295 0.00064249989 187 295 0.0022153999 189 295 4.4299988e-05 190 295 4.4299988e-05 194 295 6.6499997e-05 197 295 0.0016393999 198 295 0.0036774999 200 295 2.2199994e-05 203 295 4.4299988e-05 204 295 4.4299988e-05 206 295 4.4299988e-05 207 295 2.2199994e-05 214 295 0.010855399 215 295 2.2199994e-05 223 295 0.0015064999 224 295 0.031945799 225 295 0.005471997 233 295 0.0016615 234 295 0.0022374999 237 295 6.6499997e-05 240 295 0.0018608999 241 295 0.010434397 242 295 0.00062029995 252 295 0.002016 262 295 2.2199994e-05 270 295 0.0015729 271 295 0.0010854998 272 295 0.00066459994 276 295 0.0021488999 277 295 0.0036553999 278 295 0.00013289999 279 295 0.00019939999 282 295 0.00086399983 283 295 0.0002215 284 295 0.0015507999 285 295 4.4299988e-05 286 295 0.10673696 287 295 0.0064023994 288 295 0.0027027999 289 295 0.0173021 290 295 0.0081746988 291 295 0.00026579993 292 295 0.1619221 293 295 0.0580872 294 295 0.0038547998 295 295 0.082389951 296 295 0.0001772 297 295 2.2199994e-05 298 295 2.2199994e-05 312 295 0.0022596999 313 295 0.0001108 315 295 0.0004431 317 295 0.00090829981 319 295 4.4299988e-05 320 295 0.0001772 321 295 0.0044971965 322 295 6.6499997e-05 324 295 2.2199994e-05 326 295 0.0060700998 328 295 2.2199994e-05 337 295 0.0007974999 340 295 0.0066682994 349 295 2.2199994e-05 350 295 0.0010411998 351 295 0.0021267999 354 295 0.0040097982 356 295 0.00019939999 357 295 6.6499997e-05 358 295 0.0015950999 370 295 0.00057599996 371 295 0.00097479997 372 295 0.00066459994 373 295 0.0010411998 375 295 0.00050949981 376 295 2.2199994e-05 380 295 2.2199994e-05 384 295 0.00015509999 386 295 0.0022374999 387 295 2.2199994e-05 390 295 6.6499997e-05 391 295 2.2199994e-05 392 295 0.0001772 393 295 0.00035449979 397 295 0.00024369999 398 295 0.0007974999 402 295 0.00048739999 417 295 0.00024369999 421 295 4.4299988e-05 422 295 4.4299988e-05 423 295 2.2199994e-05 430 295 2.2199994e-05 431 295 2.2199994e-05 433 295 2.2199994e-05 434 295 2.2199994e-05 438 295 6.6499997e-05 442 295 2.2199994e-05 443 295 0.0076651983 444 295 0.0012627998 445 295 0.0082190968 446 295 0.00073109986 447 295 0.0027470998 448 295 2.2199994e-05 450 295 0.0028799998 452 295 0.0079974979 453 295 0.0021931999 454 295 0.0014842998 455 295 0.042003598 456 295 0.00013289999 457 295 0.0034337998 458 295 0.00033229985 459 295 0.00090829981 460 295 0.0016615 463 295 0.0047187991 464 295 0.0011298 465 295 0.00050949981 467 295 0.0081968978 468 295 0.0052725971 469 295 0.0068897977 470 295 0.0023260999 471 295 0.002016 473 295 4.4299988e-05 477 295 0.0007974999 478 295 0.00057599996 483 295 0.00075319991 489 295 4.4299988e-05 490 295 0.00099689979 491 295 0.0029020999 9 296 8.4599989e-05 18 296 0.00016919999 21 296 0.00016919999 24 296 0.0012687999 60 296 0.013703298 82 296 8.4599989e-05 83 296 8.4599989e-05 84 296 8.4599989e-05 104 296 0.00016919999 108 296 8.4599989e-05 113 296 0.00016919999 114 296 0.00033839978 126 296 0.00016919999 150 296 0.00059209997 160 296 0.00016919999 189 296 8.4599989e-05 190 296 8.4599989e-05 194 296 0.00016919999 198 296 0.0036372999 200 296 8.4599989e-05 203 296 8.4599989e-05 204 296 8.4599989e-05 206 296 0.00016919999 214 296 0.0014379998 223 296 0.0047368966 224 296 8.4599989e-05 234 296 0.0025376 237 296 0.00025379984 241 296 0.0038065 242 296 8.4599989e-05 252 296 0.00025379984 268 296 0.0016917998 270 296 0.00042289984 272 296 0.00059209997 276 296 0.00059209997 277 296 0.0035526999 278 296 0.0020301 279 296 0.00016919999 282 296 0.0011841999 283 296 8.4599989e-05 284 296 0.0028759998 286 296 0.014887497 287 296 0.00016919999 288 296 0.023600098 289 296 0.21324646 290 296 0.0032988999 291 296 8.4599989e-05 293 296 0.00016919999 294 296 0.00016919999 295 296 0.00016919999 296 296 0.0014379998 297 296 0.00025379984 298 296 0.00025379984 312 296 0.00059209997 315 296 0.00016919999 320 296 8.4599989e-05 326 296 0.0065978989 328 296 0.00059209997 329 296 8.4599989e-05 339 296 0.0016917998 340 296 0.036372896 341 296 8.4599989e-05 349 296 8.4599989e-05 350 296 0.00016919999 351 296 0.00042289984 353 296 0.014295399 354 296 0.00033839978 356 296 0.00025379984 357 296 8.4599989e-05 358 296 0.0073591992 372 296 0.00025379984 374 296 8.4599989e-05 375 296 0.00025379984 384 296 0.00025379984 387 296 8.4599989e-05 397 296 8.4599989e-05 402 296 0.00025379984 417 296 0.00050749979 419 296 8.4599989e-05 421 296 8.4599989e-05 422 296 0.00025379984 423 296 8.4599989e-05 425 296 8.4599989e-05 430 296 8.4599989e-05 431 296 8.4599989e-05 434 296 8.4599989e-05 443 296 0.0084587969 444 296 0.00059209997 445 296 0.0074437 446 296 8.4599989e-05 447 296 0.0019454998 450 296 0.0032988999 452 296 0.011419397 453 296 0.012011498 454 296 0.00067669991 455 296 0.0190323 456 296 0.00050749979 457 296 0.0027067999 458 296 0.00076129986 459 296 0.00084589981 460 296 0.0021146999 463 296 0.0077820979 464 296 0.00042289984 465 296 0.0011841999 467 296 0.015733398 468 296 0.0036372999 469 296 0.0084587969 470 296 0.0094738975 471 296 0.0010996 473 296 0.00025379984 477 296 8.4599989e-05 478 296 0.0015226 483 296 0.00093049998 490 296 0.00076129986 491 296 0.017848097 19 297 0.00042689987 24 297 0.0029882998 60 297 0.0087512992 104 297 0.0002134 108 297 0.0002134 114 297 0.00042689987 126 297 0.0002134 160 297 0.0002134 190 297 0.0002134 194 297 0.0002134 198 297 0.0040554963 206 297 0.00042689987 214 297 0.00042689987 223 297 0.0049092993 234 297 0.0036285999 241 297 0.00042689987 252 297 0.00042689987 268 297 0.0002134 270 297 0.00064029987 272 297 0.00085379998 277 297 0.010245498 278 297 0.011739597 279 297 0.0002134 282 297 0.001921 283 297 0.00064029987 284 297 0.0034151999 286 297 0.20234787 288 297 0.0040554963 289 297 0.032017097 290 297 0.0017076 292 297 0.0010672 293 297 0.0002134 295 297 0.00042689987 296 297 0.0002134 297 297 0.0070437975 312 297 0.00042689987 313 297 0.0002134 315 297 0.0002134 319 297 0.0002134 322 297 0.0002134 324 297 0.0002134 326 297 0.00064029987 328 297 0.00042689987 340 297 0.011739597 341 297 0.0002134 349 297 0.0002134 351 297 0.00042689987 353 297 0.027534697 354 297 0.0010672 356 297 0.0002134 358 297 0.0096050985 374 297 0.0002134 375 297 0.00085379998 377 297 0.0002134 380 297 0.0002134 386 297 0.0002134 387 297 0.0002134 402 297 0.00064029987 415 297 0.00042689987 417 297 0.00042689987 419 297 0.0002134 443 297 0.010031998 444 297 0.00042689987 445 297 0.014514398 447 297 0.0061899982 450 297 0.0032016998 452 297 0.011099298 453 297 0.0064033978 454 297 0.00042689987 455 297 0.033724699 456 297 0.0002134 457 297 0.0027747999 458 297 0.0002134 459 297 0.00085379998 460 297 0.0017076 463 297 0.022411998 464 297 0.00064029987 465 297 0.00085379998 467 297 0.011099298 468 297 0.0017076 469 297 0.0070437975 470 297 0.0076840967 471 297 0.0010672 473 297 0.0002134 478 297 0.0012806999 483 297 0.0012806999 490 297 0.00085379998 491 297 0.052721497 21 298 0.00081929984 24 298 0.0001639 60 298 0.010650497 104 298 0.0001639 114 298 0.0001639 126 298 0.0001639 150 298 0.0001639 190 298 0.0001639 194 298 0.0001639 198 298 0.0075372979 206 298 0.00032769982 214 298 0.0086842999 223 298 0.0045878999 234 298 0.0026216998 237 298 0.0001639 241 298 0.0065541975 252 298 0.0001639 268 298 0.00032769982 270 298 0.0045878999 272 298 0.00065539987 276 298 0.013927598 277 298 0.0026216998 278 298 0.0029493999 279 298 0.00032769982 284 298 0.0036048 286 298 0.0058986992 287 298 0.0052432977 288 298 0.13747334 289 298 0.053580198 290 298 0.038833398 291 298 0.00098309992 294 298 0.00032769982 295 298 0.00032769982 296 298 0.0001639 298 298 0.0022939998 312 298 0.012125198 321 298 0.0001639 326 298 0.014582999 339 298 0.0026216998 340 298 0.061772898 351 298 0.0062263981 353 298 0.0077010989 354 298 0.0001639 356 298 0.0001639 358 298 0.015238397 370 298 0.0001639 373 298 0.0001639 374 298 0.0001639 375 298 0.0001639 384 298 0.0001639 386 298 0.0001639 417 298 0.00065539987 422 298 0.0001639 438 298 0.0001639 443 298 0.0049155988 444 298 0.0058986992 445 298 0.0093396977 447 298 0.0075372979 450 298 0.0034408998 452 298 0.011797499 453 298 0.0091757998 454 298 0.00098309992 455 298 0.017532397 456 298 0.00049159979 457 298 0.0042601973 458 298 0.00098309992 459 298 0.00098309992 460 298 0.0021300998 463 298 0.018679298 464 298 0.00049159979 465 298 0.00098309992 467 298 0.0119613 468 298 0.0016384998 469 298 0.0042601973 470 298 0.0045878999 471 298 0.0011469999 473 298 0.0001639 478 298 0.0011469999 483 298 0.00098309992 490 298 0.00065539987 491 298 0.0044240989 22 299 0.0013623999 60 299 0.0030653998 114 299 0.0003405998 160 299 0.00068119983 172 299 0.0003405998 198 299 0.0047683977 206 299 0.0003405998 214 299 0.0061307997 223 299 0.0003405998 229 299 0.00068119983 233 299 0.00068119983 234 299 0.0023842 240 299 0.00068119983 241 299 0.014305197 272 299 0.0003405998 277 299 0.091961861 278 299 0.0013623999 279 299 0.0003405998 282 299 0.0010217999 283 299 0.0013623999 284 299 0.0023842 286 299 0.044959098 288 299 0.0034059999 289 299 0.09162128 290 299 0.0040871985 292 299 0.028950997 293 299 0.070163488 294 299 0.053814698 295 299 0.00068119983 299 299 0.0057901964 307 299 0.0003405998 312 299 0.0003405998 320 299 0.0003405998 321 299 0.013964597 324 299 0.0010217999 326 299 0.010217998 333 299 0.0003405998 339 299 0.0003405998 340 299 0.016008198 351 299 0.00068119983 354 299 0.0013623999 358 299 0.0051089972 417 299 0.0003405998 443 299 0.0071525984 444 299 0.00068119983 445 299 0.0207766 447 299 0.0057901964 450 299 0.0017029999 452 299 0.012942798 453 299 0.011580396 454 299 0.0020436 455 299 0.027588598 457 299 0.0023842 458 299 0.00068119983 460 299 0.0017029999 463 299 0.010899197 464 299 0.0003405998 465 299 0.00068119983 467 299 0.009536799 468 299 0.0013623999 469 299 0.0047683977 470 299 0.0037465999 471 299 0.0003405998 478 299 0.00068119983 483 299 0.0010217999 490 299 0.00068119983 491 299 0.016008198 0 300 0.0003052 9 300 7.0399998e-05 11 300 4.6899993e-05 18 300 0.00056339987 22 300 2.349999e-05 60 300 0.0020187998 82 300 2.349999e-05 84 300 2.349999e-05 88 300 0.00011739999 90 300 9.3899987e-05 93 300 2.349999e-05 107 300 0.0003052 108 300 2.349999e-05 114 300 2.349999e-05 115 300 4.6899993e-05 116 300 0.0005398998 122 300 2.349999e-05 126 300 2.349999e-05 130 300 2.349999e-05 150 300 0.00032859994 151 300 0.00068079983 160 300 0.0001408 169 300 0.0015492998 187 300 0.0003052 188 300 0.0013849998 189 300 2.349999e-05 190 300 4.6899993e-05 192 300 0.0002347 193 300 2.349999e-05 194 300 7.0399998e-05 197 300 2.349999e-05 198 300 0.0081691965 200 300 2.349999e-05 203 300 4.6899993e-05 204 300 0.050517596 206 300 4.6899993e-05 207 300 2.349999e-05 214 300 0.00011739999 219 300 0.00072769984 221 300 0.0019248999 224 300 0.00021129999 229 300 0.0010797998 233 300 0.018239897 234 300 0.0015962999 237 300 9.3899987e-05 240 300 0.0010797998 241 300 9.3899987e-05 252 300 2.349999e-05 253 300 0.0005398998 270 300 0.00058689993 272 300 0.0006573 277 300 0.33648676 279 300 0.00037559983 284 300 0.00082159997 287 300 0.0054226965 290 300 0.00046949997 293 300 0.090729773 300 300 0.0022065998 312 300 2.349999e-05 314 300 7.0399998e-05 315 300 0.0006573 317 300 0.00072769984 321 300 0.0040845983 322 300 4.6899993e-05 325 300 2.349999e-05 326 300 9.3899987e-05 339 300 0.0010563999 340 300 0.0045305975 341 300 4.6899993e-05 351 300 0.00070419977 356 300 0.0001408 358 300 0.0026525999 384 300 4.6899993e-05 387 300 2.349999e-05 401 300 2.349999e-05 402 300 4.6899993e-05 417 300 0.0002347 421 300 2.349999e-05 422 300 7.0399998e-05 430 300 2.349999e-05 433 300 2.349999e-05 434 300 2.349999e-05 443 300 0.0071832985 444 300 0.0044366978 445 300 0.0084039979 446 300 0.00089199981 447 300 0.029319897 450 300 0.0015962999 452 300 0.0048592985 453 300 0.0033098999 454 300 0.0011737 455 300 0.031385697 456 300 0.00018779999 457 300 0.0020893 458 300 0.0012910999 459 300 0.0017136999 460 300 0.0016901998 463 300 0.0102585 464 300 0.0036150999 465 300 0.00042249984 467 300 0.015610699 468 300 0.012089498 469 300 0.0064085983 470 300 0.0031690998 471 300 0.0015023998 473 300 2.349999e-05 477 300 0.0007511999 478 300 0.00056339987 483 300 0.00025819987 489 300 2.349999e-05 490 300 0.00011739999 491 300 0.00011739999 23 301 0.0011695998 60 301 0.0029239999 114 301 0.0001949 156 301 0.0001949 187 301 0.0001949 188 301 0.0015594999 198 301 0.0017543999 204 301 0.0017543999 206 301 0.00038989983 214 301 0.0001949 219 301 0.00038989983 223 301 0.0001949 224 301 0.012280699 229 301 0.00097469985 233 301 0.022806998 234 301 0.0027289998 237 301 0.0001949 240 301 0.0001949 241 301 0.00038989983 272 301 0.00038989983 277 301 0.3705653 284 301 0.00097469985 285 301 0.0001949 287 301 0.0001949 292 301 0.0005847998 293 301 0.007017497 295 301 0.0005847998 298 301 0.00038989983 299 301 0.0001949 301 301 0.0011695998 305 301 0.0001949 312 301 0.0015594999 313 301 0.00097469985 315 301 0.0005847998 319 301 0.0005847998 320 301 0.00038989983 321 301 0.0011695998 322 301 0.020467799 324 301 0.0001949 326 301 0.043469798 339 301 0.00097469985 340 301 0.0050681978 341 301 0.0001949 351 301 0.0072124973 356 301 0.0001949 358 301 0.0031188999 371 301 0.0001949 372 301 0.0005847998 380 301 0.0001949 386 301 0.00038989983 402 301 0.0001949 415 301 0.0005847998 417 301 0.0001949 443 301 0.0081870966 444 301 0.0062377974 445 301 0.0087718964 446 301 0.0005847998 447 301 0.017543897 450 301 0.0019492998 452 301 0.0066276975 453 301 0.0044833981 454 301 0.00097469985 455 301 0.0391813 456 301 0.0001949 457 301 0.0031188999 458 301 0.0005847998 459 301 0.00038989983 460 301 0.0011695998 463 301 0.012670599 464 301 0.0005847998 465 301 0.00038989983 467 301 0.0079921968 468 301 0.0079921968 469 301 0.0031188999 470 301 0.0023391999 471 301 0.0007797 478 301 0.0005847998 483 301 0.0005847998 490 301 0.00038989983 491 301 0.00038989983 22 302 0.0012425999 24 302 0.0021745998 60 302 0.0040384978 114 302 0.00031069992 160 302 0.0012425999 169 302 0.0012425999 198 302 0.012736898 206 302 0.00062129996 214 302 0.00093199988 223 302 0.013358198 224 302 0.0018638999 229 302 0.00093199988 233 302 0.018018 234 302 0.0027959 237 302 0.00031069992 240 302 0.00093199988 241 302 0.0012425999 270 302 0.0096302964 272 302 0.0040384978 277 302 0.14103758 279 302 0.00062129996 282 302 0.016154099 283 302 0.0034171999 284 302 0.0015532998 286 302 0.0037278999 288 302 0.013979498 289 302 0.0024851998 292 302 0.010251597 293 302 0.0034171999 295 302 0.00031069992 296 302 0.0034171999 297 302 0.014290199 299 302 0.00031069992 302 302 0.00031069992 303 302 0.00062129996 312 302 0.010251597 313 302 0.00062129996 315 302 0.0052810982 317 302 0.00031069992 319 302 0.00031069992 320 302 0.0055917986 321 302 0.023299199 326 302 0.00031069992 339 302 0.0040384978 340 302 0.0052810982 353 302 0.0031065999 358 302 0.0021745998 374 302 0.00062129996 417 302 0.00062129996 443 302 0.0086983964 444 302 0.0074556991 445 302 0.014290199 446 302 0.00031069992 447 302 0.0080769993 450 302 0.0031065999 452 302 0.0083876997 453 302 0.0083876997 454 302 0.0015532998 455 302 0.031065498 456 302 0.00031069992 457 302 0.0086983964 458 302 0.0012425999 459 302 0.00093199988 460 302 0.0015532998 463 302 0.012115598 464 302 0.00062129996 465 302 0.00062129996 467 302 0.010251597 468 302 0.013668798 469 302 0.0031065999 470 302 0.0027959 471 302 0.0012425999 478 302 0.00093199988 483 302 0.0015532998 490 302 0.00062129996 491 302 0.011183597 24 303 0.00072109979 60 303 0.0015864 114 303 0.00014419999 126 303 0.00014419999 160 303 0.0012979999 190 303 0.00014419999 194 303 0.00014419999 198 303 0.0087971985 206 303 0.00028839987 214 303 0.00043269992 223 303 0.0047591999 229 303 0.00086529995 233 303 0.00086529995 234 303 0.0024516999 237 303 0.00057689985 240 303 0.0011536998 241 303 0.0046148971 270 303 0.0070665963 272 303 0.0040380992 277 303 0.0291318 279 303 0.00028839987 282 303 0.0067781992 283 303 0.00057689985 284 303 0.0015864 286 303 0.024228398 288 303 0.00072109979 289 303 0.0054801963 290 303 0.00028839987 292 303 0.11595035 293 303 0.0036054 296 303 0.0015864 297 303 0.059128899 298 303 0.015575398 303 303 0.006633997 312 303 0.041534498 315 303 0.040092297 317 303 0.00014419999 320 303 0.042544 321 303 0.0011536998 324 303 0.00043269992 328 303 0.0023075 330 303 0.00086529995 339 303 0.0021632998 340 303 0.0038939 341 303 0.00014419999 350 303 0.00014419999 351 303 0.00086529995 353 303 0.00014419999 354 303 0.00057689985 358 303 0.006201297 372 303 0.00043269992 374 303 0.00028839987 386 303 0.00014419999 395 303 0.00014419999 397 303 0.00014419999 417 303 0.00043269992 422 303 0.00014419999 443 303 0.0043265 444 303 0.0015864 445 303 0.0102394 446 303 0.00014419999 447 303 0.0060570985 450 303 0.0027400998 452 303 0.0057686977 453 303 0.0027400998 454 303 0.00057689985 455 303 0.034612097 456 303 0.00028839987 457 303 0.0060570985 458 303 0.00072109979 459 303 0.00072109979 460 303 0.0017305999 463 303 0.0070665963 464 303 0.00028839987 465 303 0.00057689985 467 303 0.0074992999 468 303 0.0095182993 469 303 0.0033169999 470 303 0.0036054 471 303 0.0011536998 473 303 0.00014419999 478 303 0.00086529995 483 303 0.00072109979 490 303 0.00043269992 491 303 0.0030285998 21 304 0.00010399999 22 304 0.00010399999 60 304 0.0033270998 108 304 0.00010399999 114 304 0.00010399999 126 304 0.00010399999 135 304 0.00010399999 160 304 0.0023912999 169 304 0.00093569979 171 304 0.0002079 172 304 0.0023912999 189 304 0.00010399999 190 304 0.00010399999 194 304 0.0002079 198 304 0.0091494992 203 304 0.00010399999 206 304 0.0002079 214 304 0.00031189993 223 304 0.00010399999 224 304 0.00010399999 229 304 0.00083179981 233 304 0.0058223978 234 304 0.0034310999 236 304 0.00031189993 237 304 0.0002079 240 304 0.0021833999 241 304 0.00051989988 242 304 0.0002079 252 304 0.0002079 270 304 0.0022874 271 304 0.00010399999 272 304 0.00010399999 274 304 0.0002079 277 304 0.078706563 278 304 0.00010399999 279 304 0.00010399999 282 304 0.011748798 283 304 0.0002079 284 304 0.0016635 285 304 0.00010399999 286 304 0.0016635 289 304 0.0016635 292 304 0.021522097 293 304 0.015595797 294 304 0.00010399999 295 304 0.00051989988 296 304 0.0029111998 297 304 0.0017674998 298 304 0.0039508976 304 304 0.040964898 307 304 0.00041589979 312 304 0.0066541992 315 304 0.011644799 319 304 0.00041589979 320 304 0.0010396999 321 304 0.004782699 322 304 0.0069660991 324 304 0.013828199 326 304 0.013620298 328 304 0.0011437 339 304 0.0019754998 340 304 0.0046786964 343 304 0.00010399999 350 304 0.00083179981 351 304 0.00072779995 352 304 0.014348097 353 304 0.0012476998 354 304 0.00041589979 355 304 0.00010399999 356 304 0.00010399999 358 304 0.0041588992 366 304 0.023809496 370 304 0.0081097968 371 304 0.00041589979 372 304 0.039925098 373 304 0.0019754998 374 304 0.00083179981 375 304 0.00010399999 376 304 0.0042627975 377 304 0.00010399999 380 304 0.0002079 386 304 0.00051989988 387 304 0.00010399999 402 304 0.00010399999 415 304 0.029839899 417 304 0.00041589979 419 304 0.004782699 421 304 0.00010399999 422 304 0.00010399999 430 304 0.00010399999 434 304 0.00010399999 441 304 0.0025992999 443 304 0.0043667965 444 304 0.0030151999 445 304 0.0065501966 446 304 0.0002079 447 304 0.014867999 450 304 0.0083176978 452 304 0.0049905963 453 304 0.0025992999 454 304 0.00083179981 455 304 0.044915799 456 304 0.00031189993 457 304 0.0051985979 458 304 0.00072779995 459 304 0.00072779995 460 304 0.0016635 463 304 0.016011599 464 304 0.00051989988 465 304 0.0010396999 467 304 0.0085256994 468 304 0.011020999 469 304 0.004782699 470 304 0.0049905963 471 304 0.0041588992 473 304 0.00010399999 477 304 0.00010399999 478 304 0.0010396999 483 304 0.0011437 490 304 0.00041589979 491 304 0.0049905963 9 305 2.9599993e-05 18 305 0.00097779999 19 305 0.00029629981 21 305 5.9299986e-05 22 305 0.00023699999 60 305 0.0025185 79 305 2.9599993e-05 82 305 2.9599993e-05 83 305 2.9599993e-05 84 305 2.9599993e-05 108 305 2.9599993e-05 113 305 5.9299986e-05 114 305 0.00011849999 126 305 5.9299986e-05 127 305 2.9599993e-05 150 305 0.00062219985 151 305 0.00047409977 160 305 0.0016295998 169 305 0.00068149995 172 305 8.8899993e-05 189 305 8.8899993e-05 190 305 8.8899993e-05 191 305 2.9599993e-05 192 305 5.9299986e-05 194 305 8.8899993e-05 197 305 2.9599993e-05 198 305 0.0023999999 200 305 5.9299986e-05 201 305 5.9299986e-05 203 305 5.9299986e-05 204 305 8.8899993e-05 206 305 0.00011849999 207 305 5.9299986e-05 209 305 2.9599993e-05 214 305 0.00068149995 218 305 2.9599993e-05 224 305 2.9599993e-05 229 305 0.00085929991 233 305 0.0093036965 234 305 0.0024295999 237 305 0.00029629981 240 305 0.00029629981 241 305 0.0029926 242 305 2.9599993e-05 248 305 2.9599993e-05 250 305 2.9599993e-05 252 305 0.00017779999 262 305 2.9599993e-05 267 305 2.9599993e-05 270 305 0.00077039981 272 305 0.00044439989 274 305 2.9599993e-05 277 305 0.34613329 278 305 0.00011849999 279 305 0.00011849999 280 305 0.0025185 282 305 0.0040295981 283 305 0.00023699999 284 305 0.00056299986 285 305 0.0013925999 286 305 2.9599993e-05 288 305 0.0019258999 289 305 0.0034667 290 305 0.0024295999 292 305 0.00079999981 293 305 0.010903697 294 305 0.00011849999 295 305 8.8899993e-05 296 305 0.00017779999 297 305 0.0024889 299 305 8.8899993e-05 305 305 0.013748098 307 305 0.0004147999 308 305 2.9599993e-05 309 305 2.9599993e-05 312 305 0.026370399 315 305 0.0055703968 317 305 0.00047409977 318 305 0.0028740999 319 305 0.00011849999 320 305 0.0012147999 321 305 0.0092443973 322 305 0.0053036995 324 305 0.00026669982 326 305 0.0013629999 327 305 0.00017779999 328 305 0.00026669982 331 305 8.8899993e-05 332 305 2.9599993e-05 338 305 0.00077039981 339 305 0.0021332998 340 305 0.0028147998 341 305 2.9599993e-05 343 305 2.9599993e-05 349 305 8.8899993e-05 350 305 5.9299986e-05 351 305 0.0010074 352 305 8.8899993e-05 353 305 0.00097779999 354 305 0.0004147999 356 305 2.9599993e-05 358 305 0.012503698 371 305 0.00011849999 372 305 0.0023703999 373 305 8.8899993e-05 374 305 0.006933298 375 305 2.9599993e-05 384 305 8.8899993e-05 386 305 8.8899993e-05 387 305 5.9299986e-05 390 305 5.9299986e-05 394 305 2.9599993e-05 397 305 2.9599993e-05 398 305 2.9599993e-05 402 305 0.00023699999 405 305 2.9599993e-05 408 305 0.00044439989 417 305 0.00044439989 419 305 2.9599993e-05 421 305 5.9299986e-05 422 305 0.0012443999 423 305 2.9599993e-05 425 305 2.9599993e-05 430 305 2.9599993e-05 431 305 2.9599993e-05 432 305 2.9599993e-05 433 305 2.9599993e-05 434 305 5.9299986e-05 443 305 0.0072295964 444 305 0.0012147999 445 305 0.0091851987 446 305 0.00085929991 447 305 0.0083555989 448 305 2.9599993e-05 450 305 0.0033481 452 305 0.0056592971 453 305 0.0019556 454 305 0.0013036998 455 305 0.034725897 456 305 0.00056299986 457 305 0.0028147998 458 305 0.00047409977 459 305 0.0003258998 460 305 0.0022814998 463 305 0.010607399 464 305 0.0015703999 465 305 0.0008888999 467 305 0.0096592978 468 305 0.0042962991 469 305 0.0093332976 470 305 0.007407397 471 305 0.0016888999 473 305 0.00011849999 477 305 0.00091849989 478 305 0.001037 483 305 0.001037 489 305 8.8899993e-05 490 305 0.00047409977 491 305 0.0015703999 9 306 5.1799987e-05 18 306 0.00015539999 24 306 0.00020719999 60 306 0.0015538 82 306 5.1799987e-05 83 306 5.1799987e-05 84 306 5.1799987e-05 108 306 5.1799987e-05 113 306 0.00010359999 114 306 0.00020719999 126 306 0.00010359999 130 306 5.1799987e-05 139 306 0.00010359999 150 306 0.00077689998 159 306 0.00020719999 160 306 0.0062667988 161 306 0.00010359999 163 306 5.1799987e-05 165 306 0.0032628998 170 306 0.00015539999 171 306 0.00046609994 172 306 0.00025899988 184 306 5.1799987e-05 187 306 0.0060078986 189 306 0.00010359999 190 306 0.00010359999 191 306 5.1799987e-05 194 306 0.0009323 197 306 5.1799987e-05 198 306 0.0065775998 200 306 5.1799987e-05 203 306 0.00010359999 204 306 0.00010359999 206 306 0.00010359999 207 306 5.1799987e-05 214 306 0.0024859998 215 306 5.1799987e-05 219 306 5.1799987e-05 224 306 0.00041429978 229 306 0.00088049984 233 306 0.0078205988 234 306 0.0029520998 237 306 0.00025899988 240 306 5.1799987e-05 241 306 0.0100476 242 306 5.1799987e-05 252 306 0.052361697 254 306 0.00031079981 270 306 0.0013983999 271 306 5.1799987e-05 272 306 0.0005696998 273 306 0.00010359999 274 306 0.0012947998 277 306 0.061114598 278 306 5.1799987e-05 279 306 0.00025899988 280 306 5.1799987e-05 282 306 0.0010358 283 306 0.00010359999 284 306 0.00072509982 286 306 5.1799987e-05 287 306 5.1799987e-05 288 306 0.00036249985 289 306 0.06287545 290 306 0.009633299 291 306 5.1799987e-05 292 306 0.0016055999 293 306 0.11471927 295 306 0.00010359999 296 306 0.00062149996 297 306 0.0076133981 305 306 5.1799987e-05 306 306 0.0030038999 311 306 5.1799987e-05 312 306 0.0082866997 313 306 5.1799987e-05 315 306 0.004246898 317 306 0.00025899988 318 306 5.1799987e-05 319 306 0.037652798 320 306 0.0020198999 321 306 0.0022787999 322 306 0.011135299 326 306 0.0097886994 335 306 5.1799987e-05 337 306 5.1799987e-05 339 306 0.0011912 340 306 0.0012947998 350 306 5.1799987e-05 351 306 0.0016055999 353 306 0.0016572999 354 306 0.00010359999 356 306 5.1799987e-05 357 306 5.1799987e-05 358 306 0.0030556999 366 306 5.1799987e-05 371 306 5.1799987e-05 372 306 5.1799987e-05 374 306 0.00015539999 387 306 5.1799987e-05 402 306 0.00036249985 417 306 0.00051789987 419 306 5.1799987e-05 421 306 5.1799987e-05 422 306 0.00020719999 423 306 5.1799987e-05 425 306 5.1799987e-05 430 306 5.1799987e-05 431 306 5.1799987e-05 433 306 5.1799987e-05 434 306 5.1799987e-05 443 306 0.0073026977 444 306 0.0018126999 445 306 0.0093225986 446 306 0.00036249985 447 306 0.0097368993 448 306 5.1799987e-05 450 306 0.0040915981 452 306 0.0053345971 453 306 0.0038325998 454 306 0.00041429978 455 306 0.034182698 456 306 0.0005696998 457 306 0.0027967999 458 306 0.00072509982 459 306 0.00031079981 460 306 0.0018126999 463 306 0.028174799 464 306 0.0011912 465 306 0.0009323 467 306 0.0097886994 468 306 0.0047648996 469 306 0.0060596988 470 306 0.0066294 471 306 0.0040397979 473 306 0.00015539999 477 306 0.00010359999 478 306 0.0012947998 483 306 0.0014501999 489 306 5.1799987e-05 490 306 0.0005696998 491 306 0.0021235 9 307 2.9699993e-05 18 307 0.00074129994 19 307 0.00029649981 21 307 0.004685197 22 307 0.00017789999 24 307 2.9699993e-05 60 307 0.0024611999 77 307 5.9299986e-05 79 307 2.9699993e-05 82 307 2.9699993e-05 83 307 2.9699993e-05 84 307 2.9699993e-05 108 307 2.9699993e-05 113 307 5.9299986e-05 114 307 0.00011859999 126 307 5.9299986e-05 127 307 2.9699993e-05 142 307 2.9699993e-05 150 307 0.00062269997 151 307 0.00059309998 160 307 0.00083029992 161 307 2.9699993e-05 169 307 2.9699993e-05 171 307 8.8999994e-05 172 307 0.00026689982 189 307 8.8999994e-05 190 307 8.8999994e-05 191 307 2.9699993e-05 194 307 0.00011859999 197 307 2.9699993e-05 198 307 0.00074129994 200 307 5.9299986e-05 201 307 5.9299986e-05 203 307 5.9299986e-05 204 307 5.9299986e-05 206 307 0.00011859999 207 307 2.9699993e-05 214 307 0.0010082 218 307 2.9699993e-05 223 307 0.0014827 224 307 2.9699993e-05 229 307 0.00083029992 233 307 0.0013046998 234 307 0.0031728998 237 307 0.00029649981 240 307 0.00032619992 241 307 0.0033211999 242 307 0.00011859999 248 307 2.9699993e-05 250 307 2.9699993e-05 252 307 0.0017494999 270 307 0.0022239999 272 307 0.00094889989 274 307 0.0014529999 276 307 0.00077099982 277 307 0.25199419 278 307 0.00017789999 280 307 0.00011859999 282 307 0.008480899 283 307 0.0012750998 284 307 0.00059309998 285 307 0.0027280999 286 307 5.9299986e-05 287 307 0.0011268 288 307 0.00014829999 289 307 0.0033507999 290 307 0.00085989991 291 307 2.9699993e-05 292 307 0.0079470985 293 307 0.006227199 294 307 0.0013936998 295 307 0.00023719999 296 307 0.00041509978 297 307 0.0053375997 298 307 0.00023719999 299 307 0.00023719999 304 307 0.00041509978 305 307 0.0030246 307 307 0.023248199 308 307 0.00017789999 312 307 0.0053079985 313 307 2.9699993e-05 315 307 0.00088959979 317 307 0.00068199984 318 307 0.00074129994 319 307 0.0012750998 320 307 0.0016013 321 307 0.0023722998 322 307 0.0028763998 324 307 0.014144599 326 307 0.0088069998 327 307 0.0010972 328 307 0.00035579992 329 307 2.9699993e-05 331 307 2.9699993e-05 332 307 2.9699993e-05 333 307 5.9299986e-05 338 307 0.00074129994 339 307 0.0016901998 340 307 0.0032321999 341 307 2.9699993e-05 343 307 0.0032025999 344 307 0.00014829999 347 307 0.00014829999 349 307 5.9299986e-05 350 307 0.00083029992 351 307 0.0015123 352 307 0.0031136 353 307 0.00020759999 354 307 0.0020164 355 307 2.9699993e-05 356 307 0.00011859999 357 307 5.9299986e-05 358 307 0.0046555996 366 307 0.0019274999 369 307 2.9699993e-05 370 307 8.8999994e-05 371 307 0.00014829999 372 307 0.0044182986 373 307 0.00041509978 374 307 0.0031432998 375 307 0.00071169995 380 307 2.9699993e-05 384 307 5.9299986e-05 386 307 8.8999994e-05 387 307 5.9299986e-05 390 307 0.00011859999 392 307 5.9299986e-05 393 307 0.00011859999 394 307 2.9699993e-05 397 307 5.9299986e-05 398 307 0.00014829999 401 307 5.9299986e-05 402 307 0.0014529999 404 307 0.0010674999 405 307 0.00047449977 408 307 0.00011859999 414 307 0.0011564998 415 307 0.0012750998 417 307 0.00038549979 419 307 5.9299986e-05 421 307 5.9299986e-05 422 307 0.00014829999 423 307 2.9699993e-05 425 307 2.9699993e-05 430 307 2.9699993e-05 431 307 2.9699993e-05 433 307 2.9699993e-05 434 307 2.9699993e-05 441 307 0.0013343999 442 307 2.9699993e-05 443 307 0.0061678998 444 307 0.0029652999 445 307 0.0093704984 446 307 0.00080059981 447 307 0.011179298 448 307 2.9699993e-05 450 307 0.0048927963 452 307 0.0057527982 453 307 0.0028466999 454 307 0.0011564998 455 307 0.0355247 456 307 0.00059309998 457 307 0.0027280999 458 307 0.00044479989 459 307 0.00029649981 460 307 0.0018681998 463 307 0.0109124 464 307 0.0024909 465 307 0.0091924965 467 307 0.0094890967 468 307 0.0021646998 469 307 0.011001397 470 307 0.0074725971 471 307 0.0032321999 473 307 0.00011859999 477 307 0.0010082 478 307 0.0010674999 483 307 0.0011268 489 307 8.8999994e-05 490 307 0.00047449977 491 307 0.0020756999 9 308 3.6999991e-05 18 308 0.0014416999 19 308 0.0014785999 21 308 3.6999991e-05 22 308 0.0023657999 24 308 3.6999991e-05 25 308 3.6999991e-05 60 308 0.0023287998 82 308 3.6999991e-05 83 308 3.6999991e-05 84 308 3.6999991e-05 108 308 3.6999991e-05 113 308 7.3899995e-05 114 308 0.00014789999 126 308 7.3899995e-05 127 308 3.6999991e-05 130 308 3.6999991e-05 139 308 3.6999991e-05 150 308 0.00055449991 151 308 0.00048059993 160 308 0.0044728965 165 308 7.3899995e-05 169 308 0.0018112999 171 308 3.6999991e-05 172 308 0.00022179999 187 308 0.0001848 189 308 7.3899995e-05 190 308 7.3899995e-05 191 308 0.0038443999 194 308 0.00014789999 197 308 3.6999991e-05 198 308 0.0125314 200 308 3.6999991e-05 203 308 7.3899995e-05 204 308 7.3899995e-05 206 308 0.00011089999 207 308 3.6999991e-05 214 308 0.00096109998 223 308 0.0003696999 224 308 3.6999991e-05 229 308 0.00096109998 233 308 0.021994699 234 308 0.0042140968 236 308 0.0011459 237 308 0.00033269986 240 308 0.00025879988 241 308 0.0059514977 242 308 7.3899995e-05 252 308 0.0020700998 254 308 3.6999991e-05 267 308 7.3899995e-05 270 308 0.00092409994 271 308 3.6999991e-05 272 308 3.6999991e-05 273 308 3.6999991e-05 274 308 7.3899995e-05 277 308 0.17909944 278 308 0.00059149996 280 308 0.0026246 282 308 0.0040292963 283 308 0.0001848 284 308 0.00059149996 285 308 0.0015155999 286 308 7.3899995e-05 287 308 0.0028463998 288 308 0.0018852998 289 308 0.018076297 290 308 0.0011459 291 308 0.0018483 292 308 0.0043249987 293 308 0.070863485 294 308 0.00088719977 295 308 0.00029569981 296 308 0.0022548998 297 308 0.0038814 304 308 7.3899995e-05 305 308 0.0003696999 306 308 7.3899995e-05 307 308 0.00022179999 308 308 0.0011459 310 308 3.6999991e-05 311 308 0.0017003999 312 308 0.012605399 313 308 7.3899995e-05 315 308 0.0026614999 317 308 0.0011459 318 308 0.0011089998 319 308 0.0019591998 320 308 0.0023287998 321 308 0.0097589977 322 308 0.0024396998 324 308 0.0014416999 326 308 0.0028094 328 308 0.00011089999 337 308 7.3899995e-05 338 308 0.0011459 339 308 0.0018112999 340 308 0.0046946965 343 308 0.00059149996 350 308 0.0024396998 351 308 0.0014785999 352 308 0.0013307999 353 308 0.0012937998 354 308 0.0012198999 355 308 3.6999991e-05 356 308 0.0016635 357 308 3.6999991e-05 358 308 0.0047685988 359 308 7.3899995e-05 366 308 0.0023657999 369 308 3.6999991e-05 370 308 7.3899995e-05 371 308 0.0029942 372 308 0.0051382966 373 308 0.00014789999 374 308 0.00066539994 375 308 7.3899995e-05 377 308 3.6999991e-05 380 308 3.6999991e-05 384 308 0.0017003999 385 308 3.6999991e-05 386 308 0.00048059993 387 308 3.6999991e-05 390 308 3.6999991e-05 393 308 3.6999991e-05 397 308 3.6999991e-05 398 308 0.0011459 401 308 0.0015525999 402 308 0.00066539994 405 308 3.6999991e-05 408 308 3.6999991e-05 412 308 0.00092409994 414 308 3.6999991e-05 415 308 0.00022179999 417 308 0.00040659984 419 308 0.00014789999 421 308 7.3899995e-05 422 308 0.0001848 423 308 3.6999991e-05 425 308 3.6999991e-05 430 308 3.6999991e-05 431 308 3.6999991e-05 433 308 3.6999991e-05 434 308 3.6999991e-05 438 308 3.6999991e-05 439 308 0.0011089998 443 308 0.0071343966 444 308 0.0015894999 445 308 0.0096111 446 308 0.00092409994 447 308 0.0084651969 448 308 7.3899995e-05 450 308 0.0031420998 452 308 0.0048055984 453 308 0.0028833 454 308 0.0011828998 455 308 0.036854897 456 308 0.00044359989 457 308 0.0027723999 458 308 0.00033269986 459 308 0.00033269986 460 308 0.0018852998 463 308 0.025802199 464 308 0.0017003999 465 308 0.00088719977 467 308 0.0086499974 468 308 0.0057296976 469 308 0.0050273985 470 308 0.0064689964 471 308 0.0038074998 473 308 0.00011089999 477 308 0.001035 478 308 0.0011089998 483 308 0.0009980998 489 308 7.3899995e-05 490 308 0.00040659984 491 308 0.0035118 22 309 0.0034929998 60 309 0.0019959998 108 309 0.00016629999 114 309 0.00033269986 126 309 0.00016629999 139 309 0.00033269986 160 309 0.0018296998 184 309 0.00016629999 190 309 0.00016629999 191 309 0.00016629999 192 309 0.0033266998 194 309 0.00016629999 198 309 0.0078176968 206 309 0.00033269986 214 309 0.0078176968 229 309 0.00066529983 233 309 0.013140399 234 309 0.0033266998 237 309 0.00033269986 240 309 0.00016629999 241 309 0.012474999 242 309 0.00016629999 252 309 0.00083169993 270 309 0.00016629999 272 309 0.00049899984 277 309 0.16566867 279 309 0.00016629999 280 309 0.00016629999 282 309 0.0056553967 284 309 0.00066529983 285 309 0.00016629999 287 309 0.00016629999 288 309 0.0016633 289 309 0.033433098 290 309 0.00033269986 292 309 0.001497 293 309 0.056719899 296 309 0.0023286999 297 309 0.00033269986 305 309 0.0013306998 309 309 0.0024949999 312 309 0.015302699 315 309 0.0073186979 317 309 0.00016629999 318 309 0.00033269986 319 309 0.00033269986 320 309 0.0033266998 321 309 0.0084829964 322 309 0.0054889992 324 309 0.00016629999 326 309 0.029274799 327 309 0.00016629999 331 309 0.00016629999 335 309 0.00033269986 339 309 0.0033266998 340 309 0.0039919987 351 309 0.00016629999 352 309 0.00033269986 353 309 0.0041582994 354 309 0.00033269986 358 309 0.027944099 366 309 0.00099799992 370 309 0.00033269986 371 309 0.00016629999 372 309 0.001497 373 309 0.00049899984 374 309 0.0028277 387 309 0.00016629999 390 309 0.00016629999 402 309 0.00033269986 405 309 0.00016629999 417 309 0.00049899984 422 309 0.00033269986 443 309 0.006486997 444 309 0.0056553967 445 309 0.014304698 446 309 0.00033269986 447 309 0.0088156983 450 309 0.0041582994 452 309 0.0053226985 453 309 0.001497 454 309 0.00066529983 455 309 0.034930099 456 309 0.00033269986 457 309 0.0024949999 458 309 0.00083169993 459 309 0.00033269986 460 309 0.0023286999 463 309 0.017797697 464 309 0.00099799992 465 309 0.00083169993 467 309 0.0093146972 468 309 0.0059879981 469 309 0.0066533983 470 309 0.0069859996 471 309 0.0023286999 473 309 0.00016629999 478 309 0.001497 483 309 0.00099799992 490 309 0.00066529983 491 309 0.0046573989 22 310 0.0055714995 60 310 0.0021947999 114 310 0.00016879999 126 310 0.00016879999 160 310 0.00033769989 191 310 0.00016879999 194 310 0.00016879999 198 310 0.0047272965 206 310 0.00033769989 214 310 0.00016879999 229 310 0.0010129998 233 310 0.0064156987 234 310 0.0018571999 237 310 0.00016879999 240 310 0.00016879999 241 310 0.00033769989 252 310 0.0013506999 272 310 0.00033769989 277 310 0.31723785 279 310 0.00016879999 280 310 0.00016879999 282 310 0.0006752999 283 310 0.00016879999 284 310 0.00033769989 289 310 0.0042207986 290 310 0.00016879999 292 310 0.0057402998 293 310 0.013000198 296 310 0.00033769989 297 310 0.00016879999 305 310 0.00050649978 310 310 0.0054026991 312 310 0.031065296 315 310 0.0251562 318 310 0.00016879999 319 310 0.00016879999 320 310 0.0016882999 321 310 0.0060779974 322 310 0.012155998 326 310 0.0297147 328 310 0.00016879999 329 310 0.00016879999 339 310 0.0030389999 340 310 0.0033767 351 310 0.0052337982 353 310 0.0067532994 358 310 0.0079351999 366 310 0.00016879999 372 310 0.00016879999 374 310 0.0047272965 390 310 0.00033769989 392 310 0.00033769989 393 310 0.00016879999 404 310 0.00016879999 405 310 0.0010129998 417 310 0.00033769989 443 310 0.0074286982 444 310 0.0055714995 445 310 0.0087792985 446 310 0.00084419991 447 310 0.0089481995 450 310 0.0027013 452 310 0.0037143 453 310 0.0025324998 454 310 0.00050649978 455 310 0.035455 456 310 0.00016879999 457 310 0.0027013 458 310 0.00084419991 459 310 0.00033769989 460 310 0.0015194998 463 310 0.011142999 464 310 0.0020259998 465 310 0.00033769989 467 310 0.0072597973 468 310 0.0077662989 469 310 0.0042207986 470 310 0.0048961975 471 310 0.0011817999 473 310 0.00016879999 478 310 0.00084419991 483 310 0.00084419991 490 310 0.00050649978 491 310 0.0011817999 18 311 9.9899989e-05 19 311 0.005791299 22 311 0.0027957999 24 311 0.00039939978 25 311 9.9899989e-05 60 311 0.0030953998 108 311 9.9899989e-05 114 311 9.9899989e-05 126 311 9.9899989e-05 160 311 0.0027957999 165 311 0.00019969999 169 311 0.00069899997 172 311 0.0012981 183 311 9.9899989e-05 187 311 0.00019969999 188 311 0.00019969999 189 311 9.9899989e-05 190 311 9.9899989e-05 191 311 9.9899989e-05 193 311 9.9899989e-05 194 311 9.9899989e-05 198 311 0.0022965998 206 311 0.00019969999 214 311 0.0016974998 229 311 0.0010984 233 311 0.0013978998 234 311 0.0023963999 237 311 9.9899989e-05 240 311 0.00019969999 241 311 0.0007987998 252 311 0.0030953998 267 311 0.00029959995 270 311 9.9899989e-05 272 311 0.00059909979 273 311 0.00019969999 277 311 0.36575139 278 311 0.0019969998 279 311 9.9899989e-05 280 311 0.00039939978 282 311 0.0061906986 284 311 0.00059909979 285 311 9.9899989e-05 287 311 9.9899989e-05 288 311 0.0018971998 289 311 0.0060908981 290 311 0.0013978998 291 311 0.00019969999 292 311 0.0013978998 293 311 0.044932596 295 311 0.00029959995 296 311 9.9899989e-05 297 311 0.00059909979 305 311 0.0007987998 306 311 9.9899989e-05 307 311 0.00029959995 311 311 0.0042935982 312 311 0.0027957999 315 311 0.0112831 318 311 0.00019969999 319 311 0.0011981998 320 311 0.0014978 321 311 0.0017972998 322 311 0.014677998 324 311 0.00029959995 326 311 0.019370899 337 311 9.9899989e-05 339 311 0.00059909979 340 311 0.0025960999 343 311 9.9899989e-05 350 311 0.00039939978 351 311 0.0026959998 352 311 0.00029959995 353 311 0.0009984998 354 311 0.00039939978 358 311 0.0040938966 359 311 9.9899989e-05 366 311 9.9899989e-05 368 311 9.9899989e-05 371 311 9.9899989e-05 372 311 0.00029959995 373 311 9.9899989e-05 374 311 0.00059909979 375 311 0.00029959995 384 311 0.00029959995 386 311 9.9899989e-05 387 311 9.9899989e-05 408 311 0.00029959995 413 311 9.9899989e-05 414 311 9.9899989e-05 417 311 0.00029959995 422 311 0.00019969999 430 311 9.9899989e-05 443 311 0.011382896 444 311 0.0025960999 445 311 0.0090863965 446 311 0.0015975998 447 311 0.0046929978 450 311 0.0028956998 452 311 0.0066899993 453 311 0.0034947998 454 311 0.00069899997 455 311 0.0390414 456 311 0.00029959995 457 311 0.0029954999 458 311 0.00049929996 459 311 0.00049929996 460 311 0.0019969998 463 311 0.0091861971 464 311 0.00069899997 465 311 0.00069899997 467 311 0.0075885989 468 311 0.0054917969 469 311 0.0053918995 470 311 0.005791299 471 311 0.0013978998 473 311 9.9899989e-05 477 311 9.9899989e-05 478 311 0.0009984998 483 311 0.0011981998 489 311 9.9899989e-05 490 311 0.00039939978 491 311 0.0036944998 9 312 3.1899996e-05 18 312 0.0011181999 19 312 0.0022043998 21 312 3.1899996e-05 22 312 0.0011181999 24 312 6.3899992e-05 25 312 3.1899996e-05 60 312 0.0029391998 82 312 3.1899996e-05 83 312 3.1899996e-05 84 312 3.1899996e-05 108 312 3.1899996e-05 113 312 6.3899992e-05 114 312 9.5799987e-05 126 312 3.1899996e-05 150 312 0.00070289988 153 312 0.00083059981 160 312 6.3899992e-05 165 312 3.1899996e-05 169 312 0.0014056999 172 312 0.00079869991 183 312 3.1899996e-05 189 312 6.3899992e-05 190 312 9.5799987e-05 192 312 9.5799987e-05 193 312 0.00083059981 194 312 0.0001278 198 312 0.0025238998 200 312 3.1899996e-05 203 312 0.0001278 204 312 6.3899992e-05 206 312 0.00015969999 207 312 6.3899992e-05 214 312 0.0036420999 223 312 3.1899996e-05 224 312 3.1899996e-05 229 312 0.00063899998 233 312 3.1899996e-05 234 312 0.0050477982 237 312 0.00025559985 240 312 0.0021086 241 312 0.0071562976 242 312 6.3899992e-05 252 312 6.3899992e-05 262 312 3.1899996e-05 267 312 0.0001278 270 312 0.0048240982 271 312 3.1899996e-05 272 312 0.00063899998 273 312 3.1899996e-05 277 312 0.19002587 278 312 0.0007666999 279 312 0.0001278 280 312 3.1899996e-05 282 312 0.0043129995 283 312 0.00031949999 284 312 0.0061019994 285 312 3.1899996e-05 286 312 0.0011820998 287 312 9.5799987e-05 288 312 0.0016931999 289 312 0.00041529979 290 312 0.00060699997 291 312 9.5799987e-05 292 312 0.0277946 293 312 0.0095843971 294 312 0.00092649995 295 312 0.0017251999 296 312 0.00025559985 297 312 0.0058144964 298 312 6.3899992e-05 299 312 3.1899996e-05 301 312 0.0028752999 304 312 3.1899996e-05 307 312 3.1899996e-05 310 312 3.1899996e-05 312 312 0.006836798 313 312 9.5799987e-05 315 312 0.0054630972 318 312 0.00054309983 320 312 0.013481997 321 312 0.00095839985 322 312 0.0011500998 324 312 0.0001278 326 312 0.0010543 327 312 3.1899996e-05 328 312 0.00067089987 329 312 9.5799987e-05 337 312 0.00092649995 338 312 0.0010543 339 312 0.00038339989 340 312 0.027219597 341 312 0.0001278 342 312 3.1899996e-05 343 312 3.1899996e-05 350 312 0.00019169999 351 312 0.00099039986 352 312 6.3899992e-05 354 312 0.00028749998 356 312 9.5799987e-05 357 312 0.00019169999 358 312 0.037155397 359 312 6.3899992e-05 366 312 3.1899996e-05 367 312 3.1899996e-05 372 312 0.0001278 373 312 9.5799987e-05 374 312 3.1899996e-05 375 312 9.5799987e-05 384 312 0.00015969999 386 312 9.5799987e-05 387 312 3.1899996e-05 390 312 3.1899996e-05 392 312 3.1899996e-05 393 312 3.1899996e-05 397 312 0.00015969999 398 312 0.00083059981 402 312 0.00041529979 405 312 0.0001278 408 312 3.1899996e-05 413 312 3.1899996e-05 414 312 0.0001278 417 312 0.00047919992 421 312 6.3899992e-05 422 312 9.5799987e-05 423 312 3.1899996e-05 430 312 3.1899996e-05 431 312 3.1899996e-05 432 312 3.1899996e-05 433 312 6.3899992e-05 434 312 6.3899992e-05 443 312 0.0060380995 444 312 0.0011820998 445 312 0.0092648976 446 312 0.00099039986 447 312 0.008466199 448 312 3.1899996e-05 450 312 0.0034822999 452 312 0.0083702989 453 312 0.0040892996 454 312 0.0021404999 455 312 0.028657198 456 312 0.00067089987 457 312 0.0050157979 458 312 0.00060699997 459 312 0.00041529979 460 312 0.0018529999 463 312 0.011724897 464 312 0.0010543 465 312 0.00092649995 467 312 0.0096801966 468 312 0.0046962984 469 312 0.010478899 470 312 0.0046323985 471 312 0.0015653998 473 312 6.3899992e-05 477 312 0.0014376999 478 312 0.0011500998 479 312 0.0031947999 483 312 0.0013098998 489 312 0.0001278 490 312 0.00028749998 491 312 0.0048560984 9 313 1.9299987e-05 18 313 5.789999e-05 19 313 0.00034749997 22 313 0.00046329992 24 313 1.9299987e-05 60 313 0.0044206977 77 313 0.0005983999 82 313 1.9299987e-05 83 313 1.9299987e-05 84 313 1.9299987e-05 108 313 1.9299987e-05 113 313 3.8599988e-05 114 313 3.8599988e-05 126 313 1.9299987e-05 134 313 0.0001351 150 313 0.00061769993 151 313 1.9299987e-05 156 313 0.003976699 158 313 0.000193 160 313 0.00042469986 169 313 0.00054049981 171 313 5.789999e-05 172 313 0.0019496998 181 313 0.0001544 187 313 0.00061769993 188 313 0.0015056999 189 313 3.8599988e-05 190 313 7.7199991e-05 192 313 5.789999e-05 194 313 7.7199991e-05 197 313 1.9299987e-05 198 313 0.0025095998 200 313 3.8599988e-05 203 313 3.8599988e-05 204 313 5.789999e-05 206 313 7.7199991e-05 207 313 3.8599988e-05 209 313 1.9299987e-05 214 313 0.0016215998 218 313 1.9299987e-05 219 313 0.0007528998 220 313 5.789999e-05 223 313 0.00081079989 224 313 0.0007528998 229 313 0.00086869998 233 313 0.0010616998 234 313 0.0021042 236 313 1.9299987e-05 237 313 0.00084939995 240 313 0.0013319999 241 313 0.001525 242 313 7.7199991e-05 252 313 0.00067559979 267 313 1.9299987e-05 270 313 0.0001544 271 313 7.7199991e-05 272 313 0.00025099982 274 313 3.8599988e-05 277 313 0.31369448 278 313 0.0001351 279 313 3.8599988e-05 282 313 0.0029342 283 313 0.00042469986 284 313 0.00084939995 285 313 0.00025099982 286 313 0.00057909987 288 313 0.00092659984 289 313 0.00023169999 290 313 7.7199991e-05 292 313 0.0041503981 293 313 0.0065054968 294 313 0.00027029985 295 313 0.00030889991 296 313 0.00094589987 297 313 5.789999e-05 298 313 0.0049611963 299 313 0.0020462999 301 313 5.789999e-05 312 313 0.012547798 313 313 0.029052898 315 313 0.00030889991 318 313 1.9299987e-05 319 313 0.0016408998 320 313 0.0040152967 321 313 0.00034749997 322 313 0.00086869998 323 313 0.00028959988 325 313 0.00046329992 326 313 0.0012161999 328 313 0.00042469986 330 313 0.00061769993 338 313 0.00048259995 339 313 0.0016601998 340 313 0.0049997978 350 313 1.9299987e-05 351 313 0.00086869998 354 313 1.9299987e-05 356 313 3.8599988e-05 357 313 0.00030889991 358 313 0.0093818977 366 313 0.00025099982 372 313 5.789999e-05 373 313 0.0010231 374 313 1.9299987e-05 375 313 1.9299987e-05 384 313 0.00011579999 385 313 0.0003668 386 313 1.9299987e-05 387 313 0.00028959988 392 313 7.7199991e-05 393 313 3.8599988e-05 394 313 0.0001351 397 313 0.00083009992 399 313 5.789999e-05 401 313 0.0014863999 402 313 0.012953199 405 313 0.0007528998 414 313 5.789999e-05 417 313 0.0003668 419 313 1.9299987e-05 421 313 5.789999e-05 422 313 5.789999e-05 423 313 1.9299987e-05 430 313 1.9299987e-05 432 313 1.9299987e-05 433 313 1.9299987e-05 434 313 3.8599988e-05 441 313 1.9299987e-05 443 313 0.0069301985 444 313 0.00098449993 445 313 0.0069494992 446 313 0.00086869998 447 313 0.0023936999 448 313 1.9299987e-05 450 313 0.0019689999 452 313 0.0071618967 453 313 0.0017759998 454 313 0.00052119978 455 313 0.028937098 456 313 0.00025099982 457 313 0.0027990998 458 313 0.00027029985 459 313 0.0022199999 460 313 0.0017374 463 313 0.0052121989 464 313 0.0011195999 465 313 0.00067559979 467 313 0.0072004981 468 313 0.0014477998 469 313 0.0044592991 470 313 0.0017952998 471 313 0.0010809998 473 313 3.8599988e-05 477 313 7.7199991e-05 478 313 0.00079149986 483 313 0.00057909987 489 313 5.789999e-05 490 313 0.0001351 491 313 0.0020462999 0 314 0.0036722999 22 314 0.00056499988 24 314 0.00028249994 60 314 0.0036722999 87 314 0.0031072998 90 314 0.0011298999 114 314 0.00028249994 130 314 0.00056499988 135 314 0.00028249994 169 314 0.00084749982 171 314 0.005649697 172 314 0.0016949 187 314 0.0050846972 188 314 0.011299398 191 314 0.0011298999 192 314 0.00056499988 193 314 0.00028249994 194 314 0.00028249994 198 314 0.011299398 204 314 0.0033898 206 314 0.00028249994 214 314 0.003954798 223 314 0.017231598 224 314 0.020338997 225 314 0.00056499988 229 314 0.00084749982 233 314 0.017231598 234 314 0.0019773999 241 314 0.019491497 252 314 0.00056499988 270 314 0.0031072998 272 314 0.0064971969 277 314 0.19039547 284 314 0.00084749982 287 314 0.00028249994 292 314 0.00028249994 293 314 0.088983059 294 314 0.00028249994 312 314 0.0025423998 314 314 0.046045199 315 314 0.00084749982 321 314 0.0050846972 322 314 0.00028249994 326 314 0.00056499988 339 314 0.0014123998 340 314 0.005649697 349 314 0.00028249994 351 314 0.00028249994 358 314 0.0045197979 385 314 0.00028249994 417 314 0.00028249994 443 314 0.0079095997 444 314 0.00084749982 445 314 0.0093219988 446 314 0.00028249994 447 314 0.005649697 450 314 0.0019773999 452 314 0.0062146969 453 314 0.0028249 454 314 0.00028249994 455 314 0.031638399 457 314 0.0016949 458 314 0.00028249994 459 314 0.00028249994 460 314 0.0014123998 463 314 0.0084745996 464 314 0.00084749982 465 314 0.00028249994 467 314 0.0081920996 468 314 0.0019773999 469 314 0.0022598999 470 314 0.0022598999 471 314 0.00084749982 478 314 0.00056499988 483 314 0.00056499988 490 314 0.00028249994 491 314 0.00056499988 9 315 3.7899998e-05 18 315 0.00011359999 19 315 0.0003407998 21 315 3.7899998e-05 22 315 0.00060589984 25 315 3.7899998e-05 60 315 0.0035974998 77 315 0.00011359999 82 315 3.7899998e-05 108 315 3.7899998e-05 114 315 7.5699994e-05 126 315 3.7899998e-05 130 315 0.00026509981 131 315 7.5699994e-05 139 315 0.00015149999 141 315 3.7899998e-05 150 315 0.00075739995 151 315 3.7899998e-05 156 315 0.00011359999 160 315 0.0010225 169 315 0.00053019985 171 315 0.0041655973 172 315 0.0020827998 187 315 0.0020069999 188 315 0.0051500984 189 315 3.7899998e-05 190 315 0.00011359999 192 315 3.7899998e-05 194 315 0.00018929999 197 315 3.7899998e-05 198 315 0.014996 200 315 3.7899998e-05 203 315 7.5699994e-05 204 315 0.00018929999 206 315 0.00015149999 207 315 3.7899998e-05 214 315 0.0054530986 219 315 0.0019312999 220 315 3.7899998e-05 221 315 3.7899998e-05 223 315 0.0029537999 224 315 0.001742 225 315 0.00015149999 229 315 0.00075739995 233 315 0.0040140972 234 315 0.0027643999 237 315 0.00018929999 240 315 0.00030289986 241 315 0.013973597 243 315 3.7899998e-05 252 315 0.0036732999 270 315 0.00037869997 272 315 0.00053019985 274 315 0.0027264999 277 315 0.16366869 278 315 0.00011359999 279 315 3.7899998e-05 280 315 3.7899998e-05 282 315 0.0025750999 283 315 0.00011359999 284 315 0.004506398 285 315 0.0048850998 286 315 0.0003407998 287 315 7.5699994e-05 288 315 0.00083309994 289 315 0.00079519977 290 315 0.00026509981 292 315 0.014314398 293 315 0.038663998 294 315 0.0021584998 295 315 0.015791297 296 315 0.0019691999 297 315 0.00094669987 298 315 0.00083309994 299 315 0.0055287965 301 315 0.0034460998 305 315 3.7899998e-05 307 315 3.7899998e-05 308 315 3.7899998e-05 312 315 0.0095807984 313 315 0.00094669987 314 315 3.7899998e-05 315 315 0.017306 318 315 0.00064379978 319 315 0.006361898 320 315 0.0093535967 321 315 0.0028402 322 315 0.0014389998 324 315 0.00011359999 325 315 0.0012117999 326 315 0.004619997 328 315 0.00011359999 330 315 7.5699994e-05 331 315 7.5699994e-05 338 315 0.00060589984 339 315 0.0018555999 340 315 0.0063240975 341 315 3.7899998e-05 344 315 0.00045439997 349 315 3.7899998e-05 350 315 3.7899998e-05 351 315 0.00079519977 352 315 3.7899998e-05 354 315 7.5699994e-05 356 315 3.7899998e-05 358 315 0.006361898 359 315 0.0016661999 366 315 3.7899998e-05 370 315 0.0002272 371 315 0.00015149999 372 315 0.0033324 373 315 0.00087099988 375 315 3.7899998e-05 376 315 3.7899998e-05 377 315 7.5699994e-05 380 315 0.00079519977 384 315 7.5699994e-05 385 315 0.0002272 386 315 0.0023478998 387 315 3.7899998e-05 389 315 3.7899998e-05 390 315 0.00015149999 392 315 0.00053019985 393 315 0.00075739995 398 315 7.5699994e-05 402 315 0.0049228966 405 315 0.00011359999 415 315 0.00041659991 417 315 0.0005679999 419 315 0.00018929999 421 315 7.5699994e-05 422 315 0.00011359999 430 315 0.00015149999 433 315 3.7899998e-05 434 315 3.7899998e-05 441 315 0.00011359999 442 315 3.7899998e-05 443 315 0.0059453994 444 315 0.00094669987 445 315 0.0065133981 446 315 0.00068159983 447 315 0.0055666976 450 315 0.0028779998 452 315 0.0069677979 453 315 0.0024992998 454 315 0.00053019985 455 315 0.031052399 456 315 0.00030289986 457 315 0.0035597 458 315 0.00049229991 459 315 0.00037869997 460 315 0.0018555999 463 315 0.012458798 464 315 0.0020448999 465 315 0.00094669987 467 315 0.0095807984 468 315 0.0054151975 469 315 0.0079523996 470 315 0.0033702999 471 315 0.0013253998 473 315 7.5699994e-05 477 315 7.5699994e-05 478 315 0.0011739 483 315 0.00064379978 489 315 3.7899998e-05 490 315 0.00026509981 491 315 0.00064379978 60 316 0.0038768998 114 316 0.0002423 160 316 0.00048459996 168 316 0.0002423 171 316 0.0055730976 194 316 0.0002423 198 316 0.0167192 206 316 0.00048459996 214 316 0.0062999986 224 316 0.0012114998 229 316 0.00048459996 234 316 0.0048460998 237 316 0.0002423 240 316 0.010176897 241 316 0.017930698 272 316 0.00048459996 277 316 0.046765197 279 316 0.0002423 282 316 0.0029076999 283 316 0.0036346 284 316 0.0046037994 292 316 0.0065422989 293 316 0.0048460998 294 316 0.0012114998 296 316 0.00048459996 299 316 0.0002423 312 316 0.018899899 315 316 0.0196268 316 316 0.0019385 317 316 0.0002423 319 316 0.0121153 320 316 0.016961496 326 316 0.033438299 340 316 0.0048460998 353 316 0.0072691999 356 316 0.0002423 358 316 0.0026653998 417 316 0.00048459996 441 316 0.0096922964 443 316 0.0019385 444 316 0.0099345967 445 316 0.0043614991 447 316 0.0067845993 450 316 0.0036346 452 316 0.0058153979 453 316 0.0019385 454 316 0.0031499998 455 316 0.019142199 456 316 0.00048459996 457 316 0.0016961 458 316 0.00048459996 459 316 0.00048459996 460 316 0.0019385 463 316 0.0050883964 464 316 0.00096919993 465 316 0.00072689983 467 316 0.0094499998 468 316 0.1344803 469 316 0.0031499998 470 316 0.0033922999 471 316 0.00096919993 478 316 0.00096919993 479 316 0.0048460998 483 316 0.0012114998 490 316 0.00048459996 491 316 0.00096919993 22 317 8.6699991e-05 24 317 8.6699991e-05 60 317 0.0027729999 108 317 8.6699991e-05 114 317 0.0001733 126 317 8.6699991e-05 142 317 0.0001733 159 317 8.6699991e-05 160 317 0.00086659985 161 317 0.00034659985 168 317 0.0036394999 171 317 0.050606597 172 317 0.00060659996 189 317 8.6699991e-05 190 317 8.6699991e-05 192 317 8.6699991e-05 194 317 0.0001733 198 317 0.011525098 200 317 8.6699991e-05 203 317 8.6699991e-05 204 317 8.6699991e-05 206 317 0.0001733 207 317 8.6699991e-05 214 317 8.6699991e-05 224 317 8.6699991e-05 229 317 0.00060659996 234 317 0.0038127999 237 317 0.00025999988 240 317 0.00043329992 241 317 0.013431497 270 317 0.0019063998 271 317 8.6699991e-05 272 317 0.00060659996 277 317 0.095580578 278 317 0.0001733 279 317 0.00025999988 282 317 0.017071098 283 317 0.027902897 284 317 0.0044193976 285 317 0.00034659985 286 317 8.6699991e-05 288 317 8.6699991e-05 289 317 0.00043329992 290 317 8.6699991e-05 292 317 0.0033794998 293 317 0.0032928998 294 317 0.0001733 295 317 0.00043329992 296 317 0.005632598 297 317 8.6699991e-05 298 317 0.00025999988 299 317 0.0064990968 307 317 0.00025999988 308 317 8.6699991e-05 312 317 0.0013865 313 317 8.6699991e-05 315 317 0.0048526973 317 317 0.0045926981 318 317 8.6699991e-05 319 317 0.00025999988 320 317 0.020277299 324 317 0.0001733 326 317 0.011785097 328 317 0.00034659985 330 317 8.6699991e-05 338 317 0.0012997999 339 317 0.00051989988 340 317 0.0086654983 341 317 0.0001733 350 317 0.0001733 351 317 0.00077989977 353 317 0.00025999988 354 317 0.00060659996 355 317 8.6699991e-05 356 317 0.00025999988 357 317 8.6699991e-05 358 317 0.011525098 371 317 8.6699991e-05 372 317 0.00025999988 373 317 0.00069319992 375 317 8.6699991e-05 386 317 0.00025999988 387 317 8.6699991e-05 397 317 8.6699991e-05 401 317 8.6699991e-05 402 317 0.00095319981 412 317 8.6699991e-05 417 317 0.00051989988 421 317 8.6699991e-05 422 317 8.6699991e-05 430 317 8.6699991e-05 433 317 8.6699991e-05 434 317 8.6699991e-05 441 317 8.6699991e-05 443 317 0.0034661999 444 317 0.0041593984 445 317 0.013864797 446 317 0.00034659985 447 317 0.005632598 450 317 0.0036394999 452 317 0.005979199 453 317 0.0037262 454 317 0.00043329992 455 317 0.033882096 456 317 0.00025999988 457 317 0.0019930999 458 317 0.00086659985 459 317 0.00043329992 460 317 0.0019930999 463 317 0.0088387989 464 317 0.0027729999 465 317 0.0010398999 467 317 0.017850999 468 317 0.0076255985 469 317 0.0069323964 470 317 0.0040727966 471 317 0.0016464 473 317 8.6699991e-05 477 317 8.6699991e-05 478 317 0.0012131999 479 317 0.0026862998 483 317 0.0013865 489 317 8.6699991e-05 490 317 0.00043329992 491 317 0.0026862998 60 318 0.0023991999 114 318 0.00047979993 171 318 0.0062379986 172 318 0.00047979993 198 318 0.0052782968 206 318 0.00095969997 224 318 0.00047979993 229 318 0.00047979993 234 318 0.0033588998 237 318 0.00095969997 240 318 0.00047979993 241 318 0.012475997 270 318 0.022072896 272 318 0.00047979993 276 318 0.00047979993 277 318 0.14635319 282 318 0.0038387999 283 318 0.0014394999 284 318 0.0043185987 285 318 0.0014394999 292 318 0.00047979993 293 318 0.00047979993 294 318 0.0023991999 295 318 0.0033588998 296 318 0.0033588998 297 318 0.00047979993 298 318 0.00095969997 307 318 0.00095969997 312 318 0.0014394999 315 318 0.0014394999 317 318 0.00047979993 318 318 0.0038387999 320 318 0.047504798 326 318 0.00047979993 328 318 0.0052782968 330 318 0.0019193999 333 318 0.00047979993 338 318 0.00047979993 340 318 0.013435699 341 318 0.00047979993 351 318 0.0019193999 354 318 0.0019193999 358 318 0.0086371973 371 318 0.00047979993 372 318 0.0014394999 373 318 0.0038387999 386 318 0.0019193999 398 318 0.00047979993 417 318 0.00047979993 443 318 0.0028790999 444 318 0.00047979993 445 318 0.0043185987 447 318 0.018714 450 318 0.0033588998 452 318 0.006717898 453 318 0.0019193999 454 318 0.00047979993 455 318 0.024951998 457 318 0.0023991999 458 318 0.00095969997 459 318 0.00047979993 460 318 0.0014394999 463 318 0.0091170967 464 318 0.00047979993 465 318 0.00047979993 467 318 0.011516299 468 318 0.011516299 469 318 0.0043185987 470 318 0.0043185987 471 318 0.0014394999 478 318 0.00095969997 483 318 0.0014394999 490 318 0.00047979993 491 318 0.0014394999 9 319 3.1499992e-05 18 319 9.4399991e-05 22 319 0.00034609996 60 319 0.0032406999 82 319 3.1499992e-05 83 319 3.1499992e-05 84 319 3.1499992e-05 108 319 3.1499992e-05 113 319 6.2899999e-05 114 319 9.4399991e-05 126 319 6.2899999e-05 139 319 0.00062929979 150 319 0.00072369981 151 319 3.1499992e-05 160 319 0.00044049998 169 319 0.00091239996 171 319 0.0050655976 172 319 0.00037759985 189 319 9.4399991e-05 190 319 9.4399991e-05 192 319 6.2899999e-05 194 319 0.0001259 198 319 0.0090613998 200 319 6.2899999e-05 203 319 0.0001259 204 319 6.2899999e-05 206 319 0.00022019999 207 319 6.2899999e-05 214 319 0.0026429 223 319 0.0025485 224 319 0.0050026998 229 319 0.00066069979 233 319 0.0013528999 234 319 0.0030834 237 319 0.0010698 240 319 0.0060723983 241 319 0.024258297 242 319 3.1499992e-05 252 319 0.0020450999 253 319 0.0016675999 270 319 0.0014473 272 319 3.1499992e-05 277 319 0.10058838 279 319 3.1499992e-05 282 319 0.0094074979 283 319 0.00037759985 284 319 0.0040901974 285 319 0.00056629977 286 319 0.0023597998 288 319 0.018122897 289 319 0.00056629977 290 319 9.4399991e-05 292 319 0.013875298 293 319 0.0098479986 294 319 0.0026115 295 319 0.0025171 296 319 0.0024226999 297 319 0.0033350999 298 319 0.0023911998 304 319 3.1499992e-05 305 319 3.1499992e-05 312 319 0.0182487 313 319 6.2899999e-05 315 319 0.0082748979 317 319 3.1499992e-05 319 319 0.028600197 320 319 0.00031459983 321 319 0.0079287998 322 319 0.0040272996 324 319 9.4399991e-05 326 319 0.0072679967 328 319 3.1499992e-05 335 319 3.1499992e-05 337 319 6.2899999e-05 338 319 0.00050339988 339 319 0.00062929979 340 319 0.0056948997 341 319 6.2899999e-05 350 319 3.1499992e-05 351 319 0.00088099996 353 319 0.00015729999 354 319 0.00028319983 356 319 0.00015729999 357 319 3.1499992e-05 358 319 0.0042789988 359 319 6.2899999e-05 366 319 9.4399991e-05 367 319 3.1499992e-05 369 319 0.0001888 370 319 9.4399991e-05 372 319 0.008872699 373 319 3.1499992e-05 384 319 9.4399991e-05 385 319 6.2899999e-05 386 319 0.00022019999 387 319 6.2899999e-05 390 319 0.0017618998 391 319 0.00022019999 392 319 0.0012899998 393 319 0.0027372998 402 319 9.4399991e-05 405 319 9.4399991e-05 414 319 6.2899999e-05 415 319 3.1499992e-05 417 319 0.00047199987 419 319 3.1499992e-05 421 319 6.2899999e-05 422 319 9.4399991e-05 423 319 3.1499992e-05 425 319 3.1499992e-05 430 319 3.1499992e-05 431 319 3.1499992e-05 432 319 3.1499992e-05 433 319 6.2899999e-05 434 319 6.2899999e-05 441 319 0.0011955998 443 319 0.0042160973 444 319 0.0016675999 445 319 0.0092816986 446 319 0.00040899985 447 319 0.012176298 448 319 3.1499992e-05 450 319 0.0033979998 452 319 0.0061038993 453 319 0.0017933999 454 319 0.00078659994 455 319 0.029732898 456 319 0.0005349 457 319 0.0019192998 458 319 0.0016989999 459 319 0.00050339988 460 319 0.0018877999 463 319 0.009438999 464 319 0.0018248998 465 319 0.0010382999 467 319 0.0128056 468 319 0.0011640999 469 319 0.0066387989 470 319 0.0042160973 471 319 0.0012584999 473 319 9.4399991e-05 477 319 6.2899999e-05 478 319 0.0011326999 483 319 0.0014159 489 319 6.2899999e-05 490 319 0.00034609996 491 319 0.00069219992 18 320 0.0001928 22 320 9.6399992e-05 60 320 0.015715398 108 320 9.6399992e-05 114 320 9.6399992e-05 126 320 9.6399992e-05 150 320 0.001157 189 320 9.6399992e-05 190 320 0.0001928 192 320 9.6399992e-05 194 320 0.0001928 198 320 0.0019282999 200 320 9.6399992e-05 203 320 9.6399992e-05 204 320 9.6399992e-05 206 320 0.00028919987 207 320 9.6399992e-05 214 320 0.024006899 218 320 9.6399992e-05 223 320 0.094967186 224 320 9.6399992e-05 229 320 0.00038569979 233 320 0.0037600999 234 320 0.0062668994 237 320 0.00038569979 240 320 0.0010604998 241 320 0.0034708998 252 320 0.0031815998 270 320 0.0071345977 277 320 0.0086771995 278 320 9.6399992e-05 284 320 0.0026995998 286 320 0.004049398 287 320 0.0001928 288 320 0.0074237995 289 320 0.0016389999 290 320 0.027767099 291 320 0.0001928 292 320 9.6399992e-05 293 320 0.00048209983 294 320 9.6399992e-05 295 320 9.6399992e-05 312 320 0.0012534 315 320 0.0042421967 320 320 0.0006748999 326 320 0.0001928 340 320 0.0001928 349 320 0.0031815998 351 320 9.6399992e-05 356 320 0.0001928 358 320 0.0030852 384 320 0.00028919987 387 320 9.6399992e-05 392 320 0.0001928 393 320 0.001157 402 320 0.0001928 417 320 0.00077129994 421 320 9.6399992e-05 422 320 9.6399992e-05 430 320 9.6399992e-05 433 320 9.6399992e-05 434 320 9.6399992e-05 443 320 0.0078094974 444 320 0.00057849986 445 320 0.013883498 446 320 0.0006748999 447 320 0.0041457973 450 320 0.0052062981 452 320 0.022271499 453 320 0.0095448978 454 320 0.0017353999 455 320 0.017450798 456 320 0.00077129994 457 320 0.0054955967 458 320 0.00086769997 459 320 0.00057849986 460 320 0.0024102998 463 320 0.023814097 464 320 0.00038569979 465 320 0.0015425999 467 320 0.014751296 468 320 0.0019282999 469 320 0.0046277978 470 320 0.0051098987 471 320 0.0026995998 473 320 9.6399992e-05 478 320 0.0018318999 483 320 0.0010604998 489 320 0.0001928 490 320 0.00048209983 491 320 0.00028919987 19 321 0.0001372 22 321 0.0001372 24 321 0.00041159987 25 321 0.0001372 60 321 0.0026069998 108 321 0.0001372 114 321 0.00027439999 126 321 0.0001372 130 321 0.0001372 160 321 0.0001372 171 321 0.00027439999 187 321 0.0015093 190 321 0.0001372 192 321 0.0001372 194 321 0.00041159987 198 321 0.0032930998 203 321 0.0001372 204 321 0.0001372 205 321 0.0001372 206 321 0.00027439999 211 321 0.0001372 212 321 0.0001372 214 321 0.058452297 221 321 0.0001372 223 321 0.00027439999 224 321 0.0024697999 229 321 0.00068609999 233 321 0.10812289 234 321 0.0030186998 237 321 0.00027439999 240 321 0.023874898 241 321 0.014132798 250 321 0.0001372 252 321 0.00027439999 270 321 0.019072399 272 321 0.00068609999 273 321 0.0001372 277 321 0.0057628974 278 321 0.00041159987 279 321 0.0001372 282 321 0.00027439999 284 321 0.0020581998 286 321 0.00027439999 288 321 0.0429473 289 321 0.0042535998 290 321 0.0017837998 292 321 0.00068609999 293 321 0.0021954 295 321 0.00082329987 298 321 0.00041159987 308 321 0.00054879999 312 321 0.00041159987 315 321 0.0001372 320 321 0.024286497 321 321 0.026619099 326 321 0.0001372 340 321 0.0097419992 353 321 0.00041159987 354 321 0.00027439999 356 321 0.0001372 358 321 0.00041159987 369 321 0.00027439999 370 321 0.0001372 371 321 0.00027439999 372 321 0.00041159987 373 321 0.0032930998 375 321 0.00027439999 376 321 0.0001372 386 321 0.00041159987 387 321 0.0001372 393 321 0.00082329987 402 321 0.0001372 417 321 0.00054879999 421 321 0.0001372 422 321 0.00027439999 424 321 0.00054879999 426 321 0.0001372 434 321 0.0001372 442 321 0.0001372 443 321 0.0086442977 444 321 0.0043907985 445 321 0.013172299 446 321 0.001921 447 321 0.0080954991 450 321 0.0039790981 452 321 0.011662997 453 321 0.011662997 454 321 0.0038418998 455 321 0.037184399 456 321 0.00027439999 457 321 0.0031558999 458 321 0.0010976999 459 321 0.00041159987 460 321 0.0017837998 463 321 0.025932997 464 321 0.0045279972 465 321 0.0012349 467 321 0.010702498 468 321 0.0017837998 469 321 0.0038418998 470 321 0.0042535998 471 321 0.001921 473 321 0.0001372 477 321 0.0032930998 478 321 0.0012349 483 321 0.00082329987 490 321 0.00041159987 491 321 0.0010976999 18 322 0.00016269999 19 322 0.0076869987 21 322 8.1299993e-05 22 322 0.0036604998 24 322 0.00048809987 25 322 0.00016269999 60 322 0.0049212985 77 322 8.1299993e-05 108 322 8.1299993e-05 114 322 8.1299993e-05 126 322 8.1299993e-05 131 322 4.069999e-05 132 322 4.069999e-05 139 322 4.069999e-05 141 322 0.0037417999 150 322 0.00052869995 160 322 0.0055720992 165 322 8.1299993e-05 169 322 0.00044739991 171 322 0.0018302 172 322 0.0012607998 183 322 8.1299993e-05 187 322 4.069999e-05 189 322 8.1299993e-05 190 322 0.000122 192 322 8.1299993e-05 194 322 0.00016269999 195 322 4.069999e-05 197 322 4.069999e-05 198 322 0.011184797 200 322 4.069999e-05 203 322 0.0010574998 204 322 4.069999e-05 206 322 0.00032539992 207 322 4.069999e-05 214 322 0.0093544982 223 322 0.0065074973 224 322 0.00069139991 225 322 0.000122 229 322 0.00052869995 233 322 0.000244 234 322 0.0039044998 237 322 0.00081339991 240 322 0.0037417999 241 322 0.0117542 242 322 4.069999e-05 252 322 0.000122 267 322 0.0014234998 270 322 0.00020339999 271 322 4.069999e-05 272 322 0.00056939991 273 322 0.00016269999 276 322 4.069999e-05 277 322 0.22190589 278 322 0.0026842998 279 322 0.0021555999 280 322 8.1299993e-05 282 322 0.014926597 283 322 8.1299993e-05 284 322 0.0028063999 285 322 0.0012202 286 322 0.0059380978 287 322 0.00044739991 288 322 0.0097612999 289 322 0.00077279983 290 322 0.0019928999 291 322 0.00020339999 292 322 0.010737397 293 322 0.0057753995 294 322 8.1299993e-05 295 322 0.010493398 301 322 4.069999e-05 302 322 4.069999e-05 306 322 4.069999e-05 307 322 4.069999e-05 308 322 4.069999e-05 310 322 8.1299993e-05 311 322 4.069999e-05 312 322 0.0061820969 315 322 0.0015454998 318 322 0.00044739991 319 322 0.0012202 320 322 0.004189197 321 322 0.005734697 322 322 0.0060193986 323 322 4.069999e-05 324 322 0.00016269999 326 322 0.0017082 328 322 0.000122 329 322 4.069999e-05 330 322 4.069999e-05 335 322 4.069999e-05 336 322 4.069999e-05 337 322 0.000122 339 322 0.00032539992 340 322 0.012892999 342 322 4.069999e-05 343 322 0.000122 345 322 4.069999e-05 347 322 4.069999e-05 349 322 4.069999e-05 350 322 0.0013014998 351 322 0.0029689998 352 322 0.000244 353 322 4.069999e-05 354 322 0.0014234998 355 322 0.00028469996 356 322 0.00016269999 358 322 0.0030503999 359 322 0.00020339999 361 322 4.069999e-05 370 322 4.069999e-05 371 322 4.069999e-05 372 322 0.000122 373 322 0.00044739991 374 322 0.00093549979 375 322 0.00032539992 384 322 0.00040669995 385 322 4.069999e-05 387 322 8.1299993e-05 402 322 0.00020339999 408 322 0.000122 413 322 8.1299993e-05 414 322 8.1299993e-05 415 322 4.069999e-05 417 322 0.00048809987 421 322 8.1299993e-05 422 322 8.1299993e-05 430 322 4.069999e-05 433 322 4.069999e-05 434 322 8.1299993e-05 438 322 4.069999e-05 441 322 0.0010167998 443 322 0.011062797 444 322 0.0021555999 445 322 0.0079716966 446 322 0.0017488999 447 322 0.0033350999 448 322 4.069999e-05 450 322 0.0030910999 452 322 0.0089884996 453 322 0.0052466989 454 322 0.0015048999 455 322 0.030625898 456 322 0.00052869995 457 322 0.0036604998 458 322 0.00065079983 459 322 0.00040669995 460 322 0.0020742998 463 322 0.0090697967 464 322 0.0013422 465 322 0.00093549979 467 322 0.012160897 468 322 0.0036197999 469 322 0.0035384998 470 322 0.0036604998 471 322 0.0014234998 473 322 8.1299993e-05 477 322 0.00089479983 478 322 0.0010980999 483 322 0.0010980999 489 322 0.00028469996 490 322 0.00036599999 491 322 0.0032943999 60 323 0.0021851999 114 323 0.00027309987 141 323 0.00054629985 156 323 0.00054629985 158 323 0.00027309987 160 323 0.00081939995 172 323 0.00027309987 198 323 0.015842699 206 323 0.00054629985 214 323 0.0081944987 223 323 0.00027309987 224 323 0.00027309987 229 323 0.00081939995 233 323 0.0090138987 234 323 0.0021851999 237 323 0.00054629985 240 323 0.020213097 241 323 0.0027315 252 323 0.00054629985 270 323 0.00027309987 271 323 0.00081939995 272 323 0.00027309987 277 323 0.23900568 278 323 0.00027309987 279 323 0.00027309987 282 323 0.011745397 283 323 0.0032777998 284 323 0.0016388998 285 323 0.016935296 288 323 0.0013656998 292 323 0.0024583 293 323 0.0013656998 294 323 0.00054629985 295 323 0.0019119999 296 323 0.0019119999 312 323 0.023763999 313 323 0.0040971972 315 323 0.00081939995 319 323 0.0010925999 320 323 0.0098333992 321 323 0.00081939995 322 323 0.0010925999 323 323 0.0046434999 328 323 0.0024583 329 323 0.00027309987 340 323 0.012018599 351 323 0.0013656998 354 323 0.00054629985 355 323 0.0081944987 357 323 0.0013656998 358 323 0.0030045998 366 323 0.00027309987 374 323 0.0065555982 385 323 0.00027309987 387 323 0.00027309987 397 323 0.0013656998 401 323 0.0013656998 402 323 0.013657499 417 323 0.00027309987 441 323 0.00027309987 443 323 0.0060092993 444 323 0.0084675997 445 323 0.0062823966 446 323 0.00027309987 447 323 0.0084675997 450 323 0.0024583 452 323 0.0060092993 453 323 0.0076481998 454 323 0.0079212971 455 323 0.031412199 457 323 0.0032777998 458 323 0.00027309987 459 323 0.00027309987 460 323 0.0016388998 463 323 0.0114723 464 323 0.010925997 465 323 0.00027309987 467 323 0.0068286993 468 323 0.0019119999 469 323 0.0024583 470 323 0.0027315 471 323 0.0038240999 478 323 0.0010925999 483 323 0.0010925999 490 323 0.00027309987 491 323 0.0010925999 9 324 2.739999e-05 18 324 0.00079379999 19 324 0.00027369987 21 324 2.739999e-05 22 324 0.00021899999 24 324 0.0006295999 60 324 0.0029563999 82 324 2.739999e-05 83 324 2.739999e-05 84 324 2.739999e-05 108 324 5.4699995e-05 113 324 5.4699995e-05 114 324 0.00013689999 126 324 8.2099999e-05 135 324 2.739999e-05 142 324 0.00010949999 150 324 0.00065699988 151 324 0.0010401998 160 324 0.0003558998 171 324 0.0006295999 172 324 2.739999e-05 187 324 2.739999e-05 189 324 8.2099999e-05 190 324 0.00010949999 191 324 2.739999e-05 192 324 5.4699995e-05 194 324 0.00010949999 198 324 0.0055021979 200 324 5.4699995e-05 203 324 0.00010949999 204 324 8.2099999e-05 206 324 0.00010949999 207 324 5.4699995e-05 214 324 0.00038319989 223 324 0.0015876999 224 324 0.00021899999 229 324 0.00071169995 233 324 8.2099999e-05 234 324 0.0034218 237 324 0.00027369987 240 324 0.0103474 241 324 0.0028742999 242 324 0.0032574998 252 324 0.00013689999 254 324 5.4699995e-05 262 324 8.2099999e-05 266 324 2.739999e-05 267 324 2.739999e-05 270 324 0.0038596999 272 324 0.0037228998 277 324 0.077824295 278 324 0.00021899999 279 324 2.739999e-05 282 324 0.0447018 283 324 0.013933398 284 324 0.0017245999 285 324 8.2099999e-05 286 324 0.016725499 288 324 0.0016971999 289 324 0.00060219993 290 324 0.010292597 292 324 0.023596399 293 324 0.0034490998 294 324 0.00049269991 295 324 0.0029837999 296 324 0.0044345967 297 324 0.0130574 298 324 0.0101831 299 324 0.0021352 303 324 8.2099999e-05 304 324 0.00010949999 305 324 8.2099999e-05 307 324 0.00060219993 308 324 8.2099999e-05 312 324 0.013960697 313 324 2.739999e-05 315 324 0.0060222968 317 324 0.00065699988 318 324 0.00010949999 319 324 0.001314 320 324 0.0030385 321 324 0.0019983 322 324 0.0028468999 324 324 0.0213244 326 324 0.0017519 327 324 0.00013689999 328 324 0.00073909992 329 324 5.4699995e-05 330 324 0.00068439986 333 324 0.00049269991 335 324 2.739999e-05 338 324 0.0012591998 339 324 2.739999e-05 340 324 0.0058032982 341 324 0.00027369987 349 324 8.2099999e-05 350 324 0.0010401998 351 324 0.0018340999 352 324 0.00010949999 353 324 0.0023542 354 324 0.00087599992 356 324 0.0003558998 358 324 0.018559597 359 324 2.739999e-05 366 324 0.00032849982 368 324 0.00090329978 369 324 0.00021899999 370 324 0.0001642 371 324 0.0003558998 372 324 0.0076099969 373 324 0.00090329978 375 324 2.739999e-05 384 324 8.2099999e-05 386 324 0.00027369987 387 324 5.4699995e-05 390 324 2.739999e-05 392 324 8.2099999e-05 393 324 0.0012865998 394 324 2.739999e-05 397 324 2.739999e-05 398 324 2.739999e-05 402 324 0.00024639978 404 324 2.739999e-05 405 324 2.739999e-05 413 324 5.4699995e-05 414 324 0.0006295999 415 324 0.00013689999 417 324 0.00043799984 419 324 0.00013689999 421 324 5.4699995e-05 422 324 0.00010949999 423 324 2.739999e-05 425 324 2.739999e-05 430 324 5.4699995e-05 431 324 2.739999e-05 432 324 2.739999e-05 433 324 5.4699995e-05 434 324 5.4699995e-05 443 324 0.0039144978 444 324 0.0027647999 445 324 0.0051736981 446 324 0.00038319989 447 324 0.0081574991 448 324 2.739999e-05 450 324 0.0035038998 452 324 0.0064602979 453 324 0.0027099999 454 324 0.0016697999 455 324 0.031534899 456 324 0.00052009989 457 324 0.0069803968 458 324 0.0017245999 459 324 0.0028468999 460 324 0.0017792999 463 324 0.0082942992 464 324 0.0024362998 465 324 0.0010401998 467 324 0.010210499 468 324 0.0015876999 469 324 0.014097597 470 324 0.0063780993 471 324 0.0044345967 473 324 0.00010949999 477 324 5.4699995e-05 478 324 0.0011771 483 324 0.0014507999 489 324 0.00010949999 490 324 0.00043799984 491 324 0.0068160966 24 325 0.0001928 60 325 0.0028923999 77 325 0.00057849986 104 325 0.00077129994 114 325 0.0001928 130 325 0.001157 139 325 0.0001928 142 325 0.00038569979 143 325 0.0001928 150 325 0.00038569979 160 325 0.001157 169 325 0.00057849986 171 325 0.00038569979 172 325 0.0015425999 187 325 0.033744697 188 325 0.0025066999 189 325 0.00038569979 192 325 0.001157 194 325 0.0001928 197 325 0.0001928 198 325 0.052834596 204 325 0.0017353999 205 325 0.00057849986 206 325 0.00038569979 208 325 0.001157 209 325 0.0001928 211 325 0.00077129994 212 325 0.00057849986 213 325 0.0001928 214 325 0.004820697 219 325 0.0015425999 221 325 0.0026995998 223 325 0.00077129994 224 325 0.0088699982 229 325 0.00057849986 233 325 0.0019282999 234 325 0.0026995998 240 325 0.00057849986 241 325 0.06440419 242 325 0.00077129994 252 325 0.0001928 271 325 0.0030852 272 325 0.00077129994 277 325 0.0053991973 278 325 0.00077129994 279 325 0.0001928 282 325 0.00057849986 284 325 0.0013497998 285 325 0.00057849986 286 325 0.00057849986 287 325 0.0025066999 288 325 0.00077129994 289 325 0.13825679 290 325 0.0059775971 291 325 0.00077129994 292 325 0.0019282999 293 325 0.1396066 295 325 0.00077129994 312 325 0.00077129994 314 325 0.001157 315 325 0.00057849986 317 325 0.00038569979 319 325 0.0001928 321 325 0.00096409977 322 325 0.00038569979 325 325 0.012148097 326 325 0.0019282999 337 325 0.00057849986 340 325 0.0034708998 347 325 0.00038569979 348 325 0.0001928 349 325 0.0001928 351 325 0.00057849986 354 325 0.0015425999 358 325 0.0013497998 373 325 0.00038569979 386 325 0.0001928 417 325 0.0001928 422 325 0.00077129994 438 325 0.0001928 443 325 0.0080986992 444 325 0.0050134994 445 325 0.010026999 446 325 0.0001928 447 325 0.0061704963 450 325 0.0023138998 452 325 0.010026999 453 325 0.0055919997 454 325 0.0013497998 455 325 0.029116899 457 325 0.0028923999 458 325 0.00057849986 459 325 0.00057849986 460 325 0.0019282999 463 325 0.014269199 464 325 0.00096409977 465 325 0.00077129994 467 325 0.0084843971 468 325 0.004049398 469 325 0.0034708998 470 325 0.0028923999 471 325 0.001157 477 325 0.00038569979 478 325 0.00057849986 479 325 0.0001928 483 325 0.00077129994 490 325 0.0001928 491 325 0.010219797 9 326 4.5399996e-05 18 326 0.00013619999 19 326 0.0032229 21 326 4.5399996e-05 22 326 0.0015886999 24 326 0.0010893999 25 326 4.5399996e-05 60 326 0.0026781999 77 326 0.00013619999 82 326 9.0799993e-05 84 326 4.5399996e-05 108 326 4.5399996e-05 114 326 9.0799993e-05 126 326 4.5399996e-05 130 326 0.00018159999 131 326 0.00027239998 132 326 4.5399996e-05 135 326 4.5399996e-05 139 326 0.00013619999 141 326 4.5399996e-05 142 326 9.0799993e-05 150 326 0.00059009995 156 326 4.5399996e-05 159 326 0.00013619999 160 326 0.0032682999 161 326 4.5399996e-05 165 326 0.00027239998 169 326 0.00072629983 170 326 0.00013619999 171 326 0.0030866999 172 326 0.000227 175 326 4.5399996e-05 183 326 4.5399996e-05 188 326 0.00013619999 189 326 4.5399996e-05 190 326 9.0799993e-05 191 326 4.5399996e-05 194 326 0.000227 197 326 4.5399996e-05 198 326 0.0052201971 200 326 4.5399996e-05 203 326 9.0799993e-05 204 326 0.00027239998 206 326 9.0799993e-05 207 326 4.5399996e-05 214 326 0.0040398985 223 326 0.0012255998 224 326 0.0022241999 225 326 4.5399996e-05 227 326 4.5399996e-05 229 326 0.00063549983 233 326 0.0068542995 234 326 0.0032682999 237 326 0.00027239998 240 326 0.0048115999 241 326 0.0192011 242 326 9.0799993e-05 243 326 4.5399996e-05 252 326 0.0023603998 267 326 0.00018159999 270 326 0.0016794999 271 326 9.0799993e-05 272 326 0.0016341 273 326 4.5399996e-05 274 326 4.5399996e-05 276 326 4.5399996e-05 277 326 0.13091236 278 326 0.0012709999 280 326 4.5399996e-05 282 326 0.0088969991 283 326 0.0022695998 284 326 0.0015886999 285 326 0.0067180991 286 326 0.0024057999 287 326 0.00063549983 288 326 0.0018610999 289 326 0.013708599 290 326 0.0093054995 291 326 0.00013619999 292 326 0.0054470971 293 326 0.028324999 294 326 0.005810298 295 326 0.0062187985 296 326 0.0015886999 297 326 0.0012709999 298 326 0.000227 299 326 0.0020881 300 326 0.00086249993 301 326 0.0014525999 304 326 9.0799993e-05 306 326 0.00063549983 307 326 0.00013619999 308 326 0.0011347998 310 326 4.5399996e-05 312 326 0.0071719997 313 326 0.00027239998 315 326 0.0145256 317 326 4.5399996e-05 319 326 0.0060825981 320 326 0.0048115999 321 326 0.0049931966 322 326 0.0057648979 324 326 0.00068089995 326 326 0.016386699 327 326 4.5399996e-05 328 326 0.010304097 329 326 9.0799993e-05 331 326 4.5399996e-05 332 326 4.5399996e-05 337 326 4.5399996e-05 338 326 4.5399996e-05 339 326 0.0019518998 340 326 0.013027698 341 326 4.5399996e-05 342 326 4.5399996e-05 343 326 4.5399996e-05 344 326 4.5399996e-05 345 326 4.5399996e-05 349 326 0.00054469984 350 326 0.00031769997 351 326 0.0012709999 352 326 0.00013619999 353 326 0.00018159999 354 326 0.00072629983 355 326 4.5399996e-05 356 326 0.000227 357 326 9.0799993e-05 358 326 0.0077620968 359 326 0.00013619999 364 326 4.5399996e-05 366 326 0.00018159999 369 326 0.000227 370 326 0.000227 371 326 0.00031769997 372 326 0.00090789981 373 326 0.0018610999 374 326 4.5399996e-05 375 326 0.000227 376 326 0.00018159999 380 326 4.5399996e-05 384 326 0.000227 385 326 4.5399996e-05 386 326 0.00059009995 387 326 4.5399996e-05 389 326 0.00090789981 390 326 0.000227 391 326 0.00013619999 392 326 0.00045389985 393 326 0.0012709999 397 326 4.5399996e-05 401 326 9.0799993e-05 402 326 0.0011801999 404 326 9.0799993e-05 405 326 0.00013619999 408 326 9.0799993e-05 413 326 4.5399996e-05 414 326 9.0799993e-05 415 326 0.00013619999 417 326 0.00040849997 421 326 4.5399996e-05 422 326 9.0799993e-05 424 326 4.5399996e-05 428 326 4.5399996e-05 430 326 0.00018159999 433 326 4.5399996e-05 434 326 4.5399996e-05 437 326 9.0799993e-05 441 326 9.0799993e-05 442 326 0.00013619999 443 326 0.0062187985 444 326 0.00081709982 445 326 0.0072173998 446 326 0.00077169994 447 326 0.0061733983 450 326 0.0034043998 452 326 0.0077620968 453 326 0.0037221999 454 326 0.00040849997 455 326 0.028778899 456 326 0.00036309985 457 326 0.0055832975 458 326 0.00040849997 459 326 0.00049929996 460 326 0.0017249 463 326 0.013073098 464 326 0.0018157 465 326 0.0010893999 467 326 0.010213297 468 326 0.0025419998 469 326 0.0044484995 470 326 0.0044484995 471 326 0.0017702999 473 326 9.0799993e-05 477 326 9.0799993e-05 478 326 0.0010439998 483 326 0.00068089995 489 326 0.00013619999 490 326 0.00031769997 491 326 0.0032682999 9 327 4.6199988e-05 18 327 0.00013869999 60 327 0.0018952999 77 327 9.2499991e-05 79 327 9.2499991e-05 82 327 4.6199988e-05 83 327 4.6199988e-05 84 327 4.6199988e-05 108 327 4.6199988e-05 113 327 9.2499991e-05 114 327 0.0001849 126 327 4.6199988e-05 130 327 4.6199988e-05 150 327 0.00036979979 172 327 4.6199988e-05 181 327 4.6199988e-05 187 327 4.6199988e-05 189 327 4.6199988e-05 190 327 9.2499991e-05 192 327 4.6199988e-05 194 327 4.6199988e-05 198 327 0.0002311 200 327 4.6199988e-05 203 327 4.6199988e-05 204 327 4.6199988e-05 206 327 0.0002311 207 327 4.6199988e-05 214 327 0.00013869999 218 327 4.6199988e-05 220 327 4.6199988e-05 224 327 0.0002311 233 327 0.00013869999 234 327 0.0035595 237 327 4.6199988e-05 240 327 0.0005084998 241 327 0.0016641999 242 327 4.6199988e-05 252 327 9.2499991e-05 270 327 0.00046229991 272 327 0.0005084998 276 327 4.6199988e-05 277 327 0.049509998 282 327 0.047475997 283 327 0.055149797 284 327 0.001618 289 327 0.0001849 290 327 4.6199988e-05 292 327 0.0066567995 293 327 0.0013867998 294 327 0.0012943998 295 327 0.0068878978 296 327 0.0011094999 297 327 0.0012019 298 327 0.00087829982 299 327 0.0083209984 305 327 0.015671197 307 327 0.016364597 308 327 0.010817297 312 327 0.0065642968 315 327 0.0002311 318 327 4.6199988e-05 319 327 0.00013869999 320 327 0.00069339992 321 327 0.0014793 322 327 0.00013869999 324 327 0.0096616 326 327 0.00013869999 327 327 0.065920889 328 327 0.0082285963 331 327 4.6199988e-05 338 327 0.0010631999 339 327 0.0002311 340 327 0.0075813979 341 327 0.00013869999 343 327 4.6199988e-05 350 327 0.0020339999 351 327 0.0034671 352 327 4.6199988e-05 354 327 0.0061020963 355 327 0.00013869999 356 327 0.00041609979 357 327 0.0001849 358 327 0.014423098 370 327 0.0023575998 371 327 0.00013869999 372 327 0.0046689995 373 327 0.0023113999 374 327 4.6199988e-05 375 327 4.6199988e-05 376 327 4.6199988e-05 387 327 4.6199988e-05 390 327 0.00087829982 392 327 0.00092459982 393 327 0.00069339992 396 327 4.6199988e-05 397 327 0.00036979979 398 327 0.0091068968 403 327 4.6199988e-05 404 327 0.0054548979 405 327 0.0042529963 408 327 0.0001849 413 327 9.2499991e-05 414 327 0.0002311 417 327 0.0003235999 421 327 4.6199988e-05 422 327 4.6199988e-05 423 327 4.6199988e-05 430 327 4.6199988e-05 431 327 4.6199988e-05 433 327 4.6199988e-05 434 327 9.2499991e-05 443 327 0.0024962998 444 327 0.00060099992 445 327 0.0042991973 446 327 0.0002311 447 327 0.0051774979 450 327 0.0028660998 452 327 0.0042529963 453 327 0.0010169998 454 327 0.00092459982 455 327 0.018629797 456 327 0.00046229991 457 327 0.0028660998 458 327 0.0002311 459 327 0.00041609979 460 327 0.0010631999 463 327 0.0058247 464 327 0.00064719981 465 327 0.0011556998 467 327 0.0092917979 468 327 0.00092459982 469 327 0.0049463995 470 327 0.0063331984 471 327 0.0018491 473 327 0.00013869999 477 327 9.2499991e-05 478 327 0.0010169998 483 327 0.0011556998 489 327 0.0002311 490 327 0.00055469992 491 327 0.0026349998 9 328 2.8699986e-05 18 328 8.6099986e-05 22 328 0.00028689997 60 328 0.0022374999 82 328 2.8699986e-05 83 328 2.8699986e-05 84 328 2.8699986e-05 108 328 2.8699986e-05 113 328 5.7399986e-05 114 328 8.6099986e-05 126 328 2.8699986e-05 130 328 2.8699986e-05 134 328 2.8699986e-05 150 328 0.00045899977 151 328 2.8699986e-05 156 328 2.8699986e-05 160 328 0.00022949999 161 328 2.8699986e-05 169 328 5.7399986e-05 172 328 0.00011469999 187 328 0.00045899977 189 328 5.7399986e-05 190 328 5.7399986e-05 194 328 8.6099986e-05 197 328 2.8699986e-05 198 328 0.0039299987 200 328 2.8699986e-05 203 328 5.7399986e-05 204 328 5.7399986e-05 206 328 0.00020079999 207 328 2.8699986e-05 214 328 8.6099986e-05 223 328 2.8699986e-05 224 328 0.00011469999 233 328 0.00077449996 234 328 0.0027825998 237 328 0.00091799977 240 328 0.00077449996 241 328 0.0038438998 242 328 0.00034419983 252 328 0.00014339999 270 328 0.0044176988 271 328 0.0004015998 272 328 0.0059666969 276 328 2.8699986e-05 277 328 0.026190497 282 328 0.069219649 283 328 0.018932898 284 328 0.0016637999 285 328 2.8699986e-05 286 328 2.8699986e-05 289 328 0.0066551976 290 328 2.8699986e-05 292 328 0.0038438998 293 328 0.00077449996 294 328 0.013568599 295 328 0.0018071998 296 328 0.024555396 297 328 0.0012908999 298 328 0.00037289993 299 328 0.0050200969 307 328 0.0049913973 312 328 0.0088926964 313 328 0.00048769987 315 328 0.020309798 317 328 0.0025531 319 328 0.00017209999 320 328 0.0029546998 321 328 5.7399986e-05 322 328 0.0041307993 323 328 0.00014339999 324 328 0.001922 326 328 0.00011469999 327 328 0.0021227999 328 328 0.1164372 329 328 0.00028689997 330 328 0.001004 331 328 0.0034136998 332 328 5.7399986e-05 338 328 0.001463 339 328 2.8699986e-05 340 328 0.0094950981 341 328 0.00028689997 344 328 2.8699986e-05 350 328 0.0059379973 351 328 0.0090074986 352 328 8.6099986e-05 354 328 0.010728598 356 328 0.00091799977 357 328 0.022289198 358 328 0.021658096 366 328 2.8699986e-05 370 328 0.001004 371 328 0.00045899977 372 328 0.0059093982 373 328 0.0011187999 375 328 2.8699986e-05 376 328 2.8699986e-05 384 328 2.8699986e-05 387 328 5.7399986e-05 390 328 5.7399986e-05 392 328 2.8699986e-05 393 328 0.00025819987 397 328 0.011876099 399 328 8.6099986e-05 401 328 0.00014339999 402 328 0.0093229972 404 328 0.0019506998 405 328 0.0004302999 408 328 0.0011473999 412 328 5.7399986e-05 413 328 2.8699986e-05 414 328 0.00011469999 417 328 0.00031549996 421 328 2.8699986e-05 422 328 8.6099986e-05 423 328 2.8699986e-05 430 328 2.8699986e-05 431 328 2.8699986e-05 433 328 2.8699986e-05 434 328 2.8699986e-05 441 328 2.8699986e-05 443 328 0.0022948999 444 328 0.00094659999 445 328 0.0071428977 446 328 0.00020079999 447 328 0.0037292 450 328 0.0027538999 452 328 0.0044749975 453 328 0.0014916998 454 328 0.0010326998 455 328 0.031812999 456 328 0.0004302999 457 328 0.0028972998 458 328 0.0013482999 459 328 0.0004302999 460 328 0.001004 463 328 0.0026677998 464 328 0.0011473999 465 328 0.0008605998 467 328 0.0091795996 468 328 0.0046184994 469 328 0.0033849999 470 328 0.0036144999 471 328 0.0053642988 473 328 5.7399986e-05 477 328 8.6099986e-05 478 328 0.0008892999 483 328 0.0008605998 489 328 2.8699986e-05 490 328 0.00034419983 491 328 0.0038438998 6 329 2.3299988e-05 9 329 2.3299988e-05 18 329 0.00016329999 22 329 0.0002799998 24 329 2.3299988e-05 60 329 0.0022401998 78 329 4.6699992e-05 79 329 2.3299988e-05 82 329 2.3299988e-05 83 329 2.3299988e-05 84 329 2.3299988e-05 98 329 0.0014700999 102 329 4.6699992e-05 108 329 2.3299988e-05 113 329 4.6699992e-05 114 329 9.3299997e-05 118 329 2.3299988e-05 120 329 2.3299988e-05 126 329 4.6699992e-05 127 329 2.3299988e-05 139 329 2.3299988e-05 142 329 2.3299988e-05 150 329 0.00046669994 151 329 2.3299988e-05 156 329 4.6699992e-05 160 329 0.0020301 161 329 9.3299997e-05 163 329 2.3299988e-05 165 329 4.6699992e-05 169 329 0.00037339982 171 329 2.3299988e-05 172 329 0.00079339999 173 329 2.3299988e-05 176 329 2.3299988e-05 189 329 0.00011669999 190 329 6.9999995e-05 192 329 2.3299988e-05 194 329 9.3299997e-05 198 329 0.0012133999 200 329 4.6699992e-05 201 329 4.6699992e-05 203 329 9.3299997e-05 204 329 6.9999995e-05 206 329 0.0002799998 207 329 4.6699992e-05 214 329 0.00030339998 224 329 2.3299988e-05 233 329 0.0024734999 234 329 0.0027534999 237 329 0.017781299 240 329 0.0072104968 241 329 0.0020067999 242 329 0.0021702 248 329 2.3299988e-05 250 329 2.3299988e-05 252 329 0.00011669999 270 329 2.3299988e-05 271 329 0.0020067999 272 329 0.00084009999 277 329 0.087039649 278 329 4.6699992e-05 279 329 2.3299988e-05 282 329 0.041209698 283 329 0.0107341 284 329 0.0018900998 285 329 0.00067669991 286 329 2.3299988e-05 289 329 0.00016329999 292 329 0.0022868 293 329 0.0013533998 294 329 6.9999995e-05 295 329 2.3299988e-05 296 329 0.0015633998 297 329 6.9999995e-05 298 329 0.00062999991 302 329 2.3299988e-05 304 329 2.3299988e-05 305 329 2.3299988e-05 306 329 9.3299997e-05 307 329 0.00023339999 308 329 4.6699992e-05 312 329 0.0105941 313 329 0.00025669998 315 329 0.011037499 317 329 4.6699992e-05 318 329 0.00039669988 319 329 9.3299997e-05 320 329 4.6699992e-05 321 329 4.6699992e-05 322 329 0.0075138994 323 329 0.0023335 324 329 0.0001867 326 329 6.9999995e-05 328 329 0.037499398 329 329 0.034022499 330 329 0.0036169 331 329 0.0013067999 335 329 2.3299988e-05 337 329 4.6699992e-05 338 329 0.0025668999 339 329 0.00048999977 340 329 0.0052736998 341 329 0.00011669999 343 329 4.6699992e-05 344 329 2.3299988e-05 349 329 4.6699992e-05 350 329 0.014117699 351 329 0.014047697 353 329 4.6699992e-05 354 329 0.026205298 356 329 0.0018667998 357 329 0.0064637996 358 329 0.0089372993 366 329 0.00011669999 371 329 6.9999995e-05 372 329 0.0045269988 373 329 0.00016329999 375 329 2.3299988e-05 377 329 2.3299988e-05 378 329 4.6699992e-05 383 329 2.3299988e-05 384 329 4.6699992e-05 386 329 0.00025669998 387 329 6.9999995e-05 395 329 0.00023339999 397 329 0.0060203969 399 329 0.0028702 401 329 0.00011669999 402 329 0.020814899 412 329 2.3299988e-05 417 329 0.00034999987 419 329 2.3299988e-05 421 329 4.6699992e-05 422 329 9.3299997e-05 423 329 2.3299988e-05 425 329 2.3299988e-05 430 329 2.3299988e-05 431 329 2.3299988e-05 432 329 2.3299988e-05 433 329 4.6699992e-05 434 329 4.6699992e-05 439 329 2.3299988e-05 441 329 0.00025669998 442 329 0.00039669988 443 329 0.0041069984 444 329 0.00023339999 445 329 0.0065104999 446 329 0.00037339982 447 329 0.0030568999 450 329 0.0035003 452 329 0.0037802998 453 329 0.0026135 454 329 0.00051339995 455 329 0.039786298 456 329 0.00044339988 457 329 0.0032435998 458 329 0.00039669988 459 329 0.0012834 460 329 0.0010733998 463 329 0.0024734999 464 329 0.0001867 465 329 0.0018435 467 329 0.0097539984 468 329 0.011364199 469 329 0.0039202981 470 329 0.0043869987 471 329 0.0012600999 473 329 9.3299997e-05 477 329 9.3299997e-05 478 329 0.00088669988 483 329 0.0015401 489 329 6.9999995e-05 490 329 0.00084009999 491 329 0.0033602 18 330 0.00016719999 22 330 0.00016719999 60 330 0.0015886 98 330 8.3599996e-05 108 330 8.3599996e-05 114 330 0.00016719999 126 330 8.3599996e-05 139 330 8.3599996e-05 160 330 0.0030099999 172 330 0.00083609996 189 330 8.3599996e-05 190 330 8.3599996e-05 194 330 8.3599996e-05 198 330 0.0087792985 203 330 8.3599996e-05 206 330 0.00016719999 214 330 8.3599996e-05 223 330 8.3599996e-05 224 330 8.3599996e-05 233 330 0.0024247 234 330 0.0020066998 237 330 0.026672199 240 330 0.0061036982 241 330 0.0095317997 242 330 0.00016719999 270 330 0.00016719999 271 330 0.00041809981 272 330 0.00083609996 276 330 0.00016719999 277 330 0.065551758 282 330 0.014715698 283 330 0.0048494972 284 330 0.0015886 285 330 0.0027591998 286 330 8.3599996e-05 292 330 0.0011705998 293 330 0.0015886 294 330 0.00058529992 295 330 0.00058529992 296 330 0.010117099 297 330 0.0067725964 298 330 0.00058529992 299 330 0.0018394999 307 330 0.00033439999 312 330 0.017056897 313 330 0.00050169998 315 330 0.017391298 317 330 0.0091136992 318 330 8.3599996e-05 320 330 0.0011705998 321 330 0.0031772999 322 330 0.0013377999 323 330 0.0010032998 324 330 8.3599996e-05 326 330 0.00016719999 328 330 0.13185614 329 330 0.0024247 330 330 0.049581897 338 330 0.00016719999 340 330 0.0061872974 341 330 0.00016719999 350 330 0.0071069971 351 330 0.010953199 354 330 0.034949798 356 330 0.0010869999 357 330 0.0011705998 358 330 0.0072741993 371 330 0.00025079981 372 330 0.018896297 373 330 0.0012541998 385 330 8.3599996e-05 386 330 0.0056855977 387 330 8.3599996e-05 395 330 0.0057691969 397 330 0.0058527999 398 330 0.00016719999 399 330 0.00016719999 401 330 0.00016719999 402 330 0.0036789 409 330 0.0056019984 412 330 0.00033439999 417 330 0.00025079981 419 330 8.3599996e-05 422 330 8.3599996e-05 434 330 8.3599996e-05 441 330 0.0012541998 442 330 0.0015049998 443 330 0.0028428 444 330 0.00083609996 445 330 0.0064380988 446 330 0.00025079981 447 330 0.0056855977 450 330 0.0025083998 452 330 0.0032608998 453 330 0.0016721999 454 330 0.00025079981 455 330 0.053344499 456 330 0.00016719999 457 330 0.010200698 458 330 0.00041809981 459 330 0.00066889985 460 330 0.0009196999 463 330 0.0043477975 464 330 0.00033439999 465 330 0.0030099999 467 330 0.011956498 468 330 0.013545197 469 330 0.0039297976 470 330 0.0042641982 471 330 0.0026755999 472 330 8.3599996e-05 473 330 8.3599996e-05 477 330 8.3599996e-05 478 330 0.00083609996 483 330 0.0011705998 490 330 0.00050169998 491 330 0.0012541998 9 331 1.7199985e-05 16 331 1.7199985e-05 18 331 8.6199987e-05 22 331 0.00031049992 60 331 0.0054679997 78 331 3.4499986e-05 79 331 1.7199985e-05 82 331 1.7199985e-05 83 331 1.7199985e-05 84 331 1.7199985e-05 98 331 3.4499986e-05 108 331 1.7199985e-05 113 331 5.1699986e-05 114 331 0.00010349999 126 331 5.1699986e-05 127 331 1.7199985e-05 134 331 1.7199985e-05 135 331 1.7199985e-05 140 331 0.00010349999 142 331 3.4499986e-05 150 331 0.00044849981 151 331 1.7199985e-05 156 331 3.4499986e-05 160 331 0.0020698998 161 331 1.7199985e-05 165 331 1.7199985e-05 169 331 0.00046569994 171 331 1.7199985e-05 172 331 0.00043119979 181 331 1.7199985e-05 189 331 6.8999987e-05 190 331 6.8999987e-05 192 331 3.4499986e-05 194 331 8.6199987e-05 196 331 1.7199985e-05 197 331 1.7199985e-05 198 331 8.6199987e-05 200 331 5.1699986e-05 201 331 3.4499986e-05 203 331 5.1699986e-05 204 331 8.6199987e-05 206 331 0.00024149999 207 331 5.1699986e-05 209 331 1.7199985e-05 214 331 0.00024149999 222 331 1.7199985e-05 225 331 0.00010349999 233 331 0.0020525998 234 331 0.0028460999 237 331 0.013005797 240 331 0.0030185999 241 331 0.00091419998 242 331 0.0015006999 248 331 1.7199985e-05 250 331 1.7199985e-05 251 331 1.7199985e-05 252 331 0.00010349999 263 331 1.7199985e-05 270 331 0.00012069999 271 331 0.0036050999 272 331 0.0027253998 277 331 0.069686353 279 331 1.7199985e-05 282 331 0.047072798 283 331 0.028564498 284 331 0.0018801999 285 331 8.6199987e-05 289 331 3.4499986e-05 292 331 0.0010176999 293 331 0.0007071998 294 331 0.00010349999 295 331 0.00048299995 296 331 0.0024320998 297 331 0.00060369982 298 331 0.00086249993 299 331 8.6199987e-05 304 331 6.8999987e-05 305 331 6.8999987e-05 307 331 0.0053645 308 331 1.7199985e-05 312 331 0.0080897994 313 331 0.00017249999 315 331 0.0055024996 318 331 1.7199985e-05 319 331 0.00012069999 320 331 5.1699986e-05 321 331 3.4499986e-05 322 331 0.0024493998 323 331 0.0010866998 324 331 0.0053645 326 331 0.00018969999 327 331 3.4499986e-05 328 331 0.037775598 329 331 0.00079349987 330 331 0.00010349999 331 331 0.061251599 332 331 0.00032769982 333 331 8.6199987e-05 336 331 3.4499986e-05 337 331 0.00015519999 338 331 0.0010003999 339 331 0.0005347 340 331 0.010142498 341 331 0.00020699999 346 331 1.7199985e-05 349 331 1.7199985e-05 350 331 0.011125699 351 331 0.011349898 352 331 0.00051749987 353 331 1.7199985e-05 354 331 0.034256697 356 331 0.0015178998 357 331 0.00024149999 358 331 0.015731197 366 331 0.00010349999 370 331 0.00012069999 371 331 0.0033463 372 331 0.0053645 373 331 0.0019836 374 331 3.4499986e-05 376 331 3.4499986e-05 384 331 3.4499986e-05 387 331 5.1699986e-05 390 331 6.8999987e-05 392 331 3.4499986e-05 393 331 1.7199985e-05 394 331 1.7199985e-05 397 331 0.00031049992 398 331 6.8999987e-05 399 331 0.0013626998 401 331 0.0011556998 402 331 0.014333997 404 331 0.00037949998 405 331 0.00018969999 408 331 0.00089699985 412 331 5.1699986e-05 414 331 1.7199985e-05 415 331 5.1699986e-05 417 331 0.0002931999 419 331 1.7199985e-05 421 331 5.1699986e-05 422 331 6.8999987e-05 423 331 1.7199985e-05 425 331 1.7199985e-05 430 331 1.7199985e-05 431 331 3.4499986e-05 432 331 1.7199985e-05 433 331 3.4499986e-05 434 331 3.4499986e-05 441 331 0.00041399989 442 331 1.7199985e-05 443 331 0.0035532999 444 331 0.0006899999 445 331 0.0053126998 446 331 0.00037949998 447 331 0.0025873999 448 331 1.7199985e-05 450 331 0.0045709983 452 331 0.0044847988 453 331 0.0018973998 454 331 0.00062099984 455 331 0.042156797 456 331 0.00050019985 457 331 0.0042259991 458 331 0.0010521999 459 331 0.0014316998 460 331 0.0010348998 463 331 0.0040362999 464 331 0.00081069977 465 331 0.00077619986 467 331 0.015196498 468 331 0.0045364983 469 331 0.0041052997 470 331 0.0041397996 471 331 0.0015697 472 331 0.00018969999 473 331 8.6199987e-05 477 331 0.00012069999 478 331 0.00087969983 483 331 0.0011211999 489 331 3.4499986e-05 490 331 0.00032769982 491 331 0.00081069977 22 332 0.00013089999 60 332 0.0027486999 77 332 0.0002617999 82 332 0.00013089999 108 332 0.00013089999 114 332 0.0002617999 126 332 0.00013089999 130 332 0.00013089999 131 332 0.00013089999 138 332 0.00013089999 142 332 0.0002617999 151 332 0.00013089999 160 332 0.0037957998 172 332 0.00078529981 187 332 0.00013089999 189 332 0.00013089999 190 332 0.00013089999 194 332 0.00013089999 198 332 0.0002617999 203 332 0.00013089999 206 332 0.00039269985 214 332 0.00078529981 224 332 0.00013089999 233 332 0.0014397998 234 332 0.0036648999 237 332 0.0026177999 240 332 0.0002617999 241 332 0.0019633998 242 332 0.010863896 252 332 0.00013089999 263 332 0.0011779999 270 332 0.012565397 271 332 0.0013088998 272 332 0.0028795998 277 332 0.070026159 282 332 0.042670198 283 332 0.024476398 284 332 0.0024869 285 332 0.0060208999 286 332 0.00013089999 289 332 0.00013089999 292 332 0.00065449998 293 332 0.0010470999 294 332 0.0089004971 295 332 0.0023559998 296 332 0.0010470999 297 332 0.0014397998 298 332 0.00078529981 305 332 0.00013089999 307 332 0.0060208999 312 332 0.0082460977 315 332 0.00078529981 320 332 0.00013089999 321 332 0.0002617999 322 332 0.00013089999 324 332 0.0023559998 326 332 0.0066753998 328 332 0.011387397 331 332 0.0075915977 332 332 0.045549698 333 332 0.0011779999 339 332 0.00078529981 340 332 0.014790598 341 332 0.00013089999 343 332 0.00013089999 344 332 0.00013089999 349 332 0.0002617999 350 332 0.0058900975 351 332 0.014005199 352 332 0.0036648999 354 332 0.017277498 356 332 0.00078529981 358 332 0.014921498 370 332 0.00013089999 371 332 0.0023559998 372 332 0.015314098 373 332 0.0013088998 385 332 0.00013089999 387 332 0.00013089999 390 332 0.00013089999 393 332 0.00013089999 398 332 0.0091622993 399 332 0.00013089999 402 332 0.0010470999 408 332 0.00013089999 416 332 0.00013089999 417 332 0.0005235998 422 332 0.00013089999 434 332 0.00013089999 441 332 0.0030105 443 332 0.0027486999 444 332 0.0013088998 445 332 0.0066753998 446 332 0.00013089999 447 332 0.004973799 450 332 0.0044502988 452 332 0.0058900975 453 332 0.0022250998 454 332 0.00078529981 455 332 0.036911 456 332 0.00039269985 457 332 0.0030105 458 332 0.0010470999 459 332 0.00065449998 460 332 0.0010470999 463 332 0.0069371983 464 332 0.0005235998 465 332 0.00078529981 467 332 0.0115183 468 332 0.0052355975 469 332 0.0058900975 470 332 0.0064135976 471 332 0.0066753998 472 332 0.0024869 473 332 0.00013089999 477 332 0.00013089999 478 332 0.0010470999 483 332 0.0014397998 490 332 0.0005235998 491 332 0.0047119968 9 333 9.2199989e-05 19 333 9.2199989e-05 22 333 9.2199989e-05 60 333 0.0023961 77 333 0.00027649989 79 333 9.2199989e-05 82 333 9.2199989e-05 108 333 9.2199989e-05 114 333 0.00018429999 126 333 9.2199989e-05 160 333 0.0012901998 169 333 0.00027649989 172 333 0.0005528999 189 333 9.2199989e-05 190 333 9.2199989e-05 192 333 9.2199989e-05 194 333 9.2199989e-05 198 333 0.00018429999 200 333 9.2199989e-05 203 333 9.2199989e-05 204 333 9.2199989e-05 206 333 0.00027649989 207 333 9.2199989e-05 214 333 0.0028569 220 333 9.2199989e-05 233 333 0.0011058999 234 333 0.0030411999 237 333 0.0011979998 240 333 0.00036859978 241 333 0.0043313988 242 333 0.0109667 270 333 0.0043313988 272 333 0.00018429999 277 333 0.072712183 282 333 0.0319786 283 333 0.015851099 284 333 0.0024881999 285 333 9.2199989e-05 286 333 0.00027649989 290 333 0.00018429999 292 333 0.0020275 293 333 0.0011979998 294 333 9.2199989e-05 296 333 0.00027649989 297 333 0.0014744999 298 333 0.00018429999 299 333 0.00018429999 305 333 0.0024881999 307 333 0.00027649989 312 333 0.0035940998 315 333 0.0011979998 319 333 9.2199989e-05 320 333 9.2199989e-05 321 333 0.0029489999 322 333 9.2199989e-05 324 333 0.011335399 326 333 0.0037784998 327 333 9.2199989e-05 328 333 0.010874599 331 333 0.00027649989 333 333 0.0359414 338 333 0.0019353 339 333 0.00036859978 340 333 0.010229498 341 333 0.00036859978 350 333 0.0025803999 351 333 0.012533396 354 333 0.0073725991 356 333 0.00046079978 357 333 0.0008293998 358 333 0.023684498 370 333 9.2199989e-05 371 333 0.0062666982 372 333 0.0038705999 373 333 0.0037784998 374 333 9.2199989e-05 376 333 0.0009215998 387 333 9.2199989e-05 390 333 9.2199989e-05 392 333 0.00018429999 393 333 9.2199989e-05 402 333 0.0042391978 404 333 9.2199989e-05 405 333 0.00027649989 408 333 0.0015666999 417 333 0.00046079978 421 333 9.2199989e-05 422 333 9.2199989e-05 430 333 9.2199989e-05 433 333 9.2199989e-05 434 333 0.00018429999 443 333 0.0020275 444 333 0.0014744999 445 333 0.0036862998 446 333 0.00036859978 447 333 0.0029489999 450 333 0.0087549984 452 333 0.0062666982 453 333 0.0023961 454 333 0.00036859978 455 333 0.026725598 456 333 0.00046079978 457 333 0.0035940998 458 333 0.00027649989 459 333 0.00073729991 460 333 0.0010136999 463 333 0.017509896 464 333 0.0005528999 465 333 0.0010136999 467 333 0.014837299 468 333 0.0077411979 469 333 0.006082397 470 333 0.0064509995 471 333 0.0032255 473 333 0.00018429999 477 333 9.2199989e-05 478 333 0.0011058999 483 333 0.0008293998 490 333 0.0005528999 491 333 0.0077411979 22 334 0.0002291 60 334 0.0027498 108 334 0.0002291 114 334 0.00045829988 126 334 0.0002291 160 334 0.0013748999 172 334 0.0029789 189 334 0.0002291 194 334 0.0002291 198 334 0.0016039999 206 334 0.00045829988 214 334 0.0002291 233 334 0.00068739988 234 334 0.0041246973 241 334 0.0183318 242 334 0.00091659999 270 334 0.0016039999 272 334 0.00045829988 277 334 0.086388588 282 334 0.021310698 283 334 0.0054994971 284 334 0.0029789 292 334 0.0045829974 293 334 0.0020623 295 334 0.009165898 296 334 0.0061869994 297 334 0.06393218 312 334 0.014207099 320 334 0.0036664 321 334 0.0192484 322 334 0.0075618997 324 334 0.00091659999 326 334 0.0107699 328 334 0.034142997 334 334 0.0087075979 335 334 0.0002291 340 334 0.020623296 351 334 0.0087075979 354 334 0.031164099 358 334 0.010082498 367 334 0.00068739988 371 334 0.0032080999 372 334 0.0304766 387 334 0.0002291 414 334 0.0018332 417 334 0.00045829988 422 334 0.0002291 443 334 0.0029789 444 334 0.0032080999 445 334 0.0045829974 446 334 0.0002291 447 334 0.011228196 450 334 0.004812099 452 334 0.004812099 453 334 0.0013748999 454 334 0.0002291 455 334 0.026122797 456 334 0.0002291 457 334 0.0029789 458 334 0.00091659999 459 334 0.0013748999 460 334 0.00068739988 463 334 0.0192484 464 334 0.00068739988 465 334 0.00091659999 467 334 0.012603097 468 334 0.020164996 469 334 0.009165898 470 334 0.0096241981 471 334 0.0089367963 473 334 0.0002291 478 334 0.0013748999 483 334 0.0020623 490 334 0.00091659999 491 334 0.00068739988 22 335 0.00011339999 24 335 0.00011339999 60 335 0.0020419999 82 335 0.00011339999 108 335 0.00011339999 114 335 0.00011339999 120 335 0.0002269 126 335 0.00011339999 135 335 0.00011339999 150 335 0.00011339999 160 335 0.0013612998 172 335 0.0005671999 189 335 0.00011339999 190 335 0.00011339999 193 335 0.00011339999 194 335 0.0002269 198 335 0.00079409988 200 335 0.00011339999 203 335 0.00011339999 204 335 0.00011339999 206 335 0.00034029991 214 335 0.0011343998 218 335 0.00011339999 223 335 0.00011339999 224 335 0.0002269 233 335 0.00045379996 234 335 0.0037435999 237 335 0.0049914978 241 335 0.0014747998 242 335 0.012705598 270 335 0.00011339999 271 335 0.00011339999 277 335 0.13045937 282 335 0.012365296 283 335 0.0069199987 284 335 0.0026091998 286 335 0.00011339999 288 335 0.00011339999 289 335 0.00011339999 292 335 0.0020419999 293 335 0.0040838979 294 335 0.00034029991 295 335 0.0010209999 296 335 0.0023822999 297 335 0.00011339999 298 335 0.00045379996 299 335 0.00011339999 301 335 0.00011339999 305 335 0.0081678964 307 335 0.0005671999 312 335 0.0057855994 315 335 0.0029495 319 335 0.0039704964 320 335 0.00011339999 321 335 0.00011339999 322 335 0.0010209999 324 335 0.0039704964 326 335 0.00011339999 328 335 0.0015882 329 335 0.00011339999 331 335 0.0010209999 332 335 0.0002269 335 335 0.034373198 337 335 0.0036301999 339 335 0.0010209999 340 335 0.0031764 344 335 0.0002269 347 335 0.00011339999 349 335 0.0002269 350 335 0.0038570999 351 335 0.018831499 352 335 0.0002269 354 335 0.019739099 355 335 0.00011339999 356 335 0.00045379996 357 335 0.0020419999 358 335 0.0080544986 371 335 0.0057855994 372 335 0.012138397 373 335 0.0034033 387 335 0.00011339999 390 335 0.00045379996 392 335 0.00034029991 393 335 0.0002269 398 335 0.00011339999 402 335 0.00034029991 404 335 0.0002269 405 335 0.0013612998 417 335 0.00045379996 421 335 0.00011339999 422 335 0.0002269 430 335 0.00011339999 443 335 0.0027225998 444 335 0.0015882 445 335 0.0063527972 446 335 0.00011339999 447 335 0.0043107979 450 335 0.0044242963 452 335 0.0049914978 453 335 0.0018151 454 335 0.00011339999 455 335 0.034146298 456 335 0.00045379996 457 335 0.0030629998 458 335 0.0005671999 459 335 0.00045379996 460 335 0.0010209999 463 335 0.016789597 464 335 0.00068069994 465 335 0.00090749981 467 335 0.011571199 468 335 0.0060124993 469 335 0.0076006986 470 335 0.008508198 471 335 0.0057855994 473 335 0.0002269 477 335 0.00011339999 478 335 0.0012478998 483 335 0.0018151 490 335 0.00068069994 491 335 0.0014747998 60 336 0.0024917 108 336 0.00020759999 114 336 0.00041529979 126 336 0.00020759999 160 336 0.0018687998 165 336 0.00020759999 181 336 0.00020759999 190 336 0.00020759999 194 336 0.00020759999 198 336 0.00020759999 206 336 0.00062289997 214 336 0.00020759999 233 336 0.00062289997 234 336 0.0033222998 237 336 0.0020764 241 336 0.0078903995 242 336 0.0083055981 252 336 0.00020759999 270 336 0.00062289997 272 336 0.0035299 277 336 0.11025745 282 336 0.030107997 283 336 0.0091362 284 336 0.0026992999 285 336 0.00020759999 292 336 0.009551499 293 336 0.0012457999 294 336 0.00041529979 295 336 0.0064368993 296 336 0.0062291995 297 336 0.0014534998 298 336 0.010382097 305 336 0.00020759999 307 336 0.00062289997 312 336 0.011420298 313 336 0.00020759999 315 336 0.00062289997 319 336 0.00020759999 320 336 0.0014534998 322 336 0.0014534998 323 336 0.00041529979 324 336 0.0020764 328 336 0.0047756992 331 336 0.0016611 332 336 0.00062289997 335 336 0.00041529979 336 336 0.0049833991 337 336 0.00062289997 338 336 0.00020759999 339 336 0.0010382 340 336 0.0085132979 344 336 0.00020759999 350 336 0.00041529979 351 336 0.013081398 354 336 0.056893699 357 336 0.00020759999 358 336 0.034883697 366 336 0.00041529979 370 336 0.012043197 371 336 0.0168189 372 336 0.017649498 373 336 0.010797299 376 336 0.004360497 386 336 0.00020759999 387 336 0.00020759999 397 336 0.00041529979 398 336 0.00020759999 399 336 0.00020759999 401 336 0.0014534998 402 336 0.00083059981 417 336 0.00041529979 422 336 0.00020759999 443 336 0.0022840998 444 336 0.0016611 445 336 0.016195998 446 336 0.00020759999 447 336 0.0056062974 450 336 0.004360497 452 336 0.0049833991 453 336 0.0031146 454 336 0.00041529979 455 336 0.030938499 456 336 0.00020759999 457 336 0.0029069998 458 336 0.0012457999 459 336 0.00062289997 460 336 0.00083059981 463 336 0.011004999 464 336 0.00062289997 465 336 0.0012457999 467 336 0.011835497 468 336 0.0014534998 469 336 0.0060215965 470 336 0.0070597976 471 336 0.0078903995 473 336 0.00020759999 478 336 0.0012457999 483 336 0.0010382 490 336 0.00083059981 491 336 0.0016611 60 337 0.0020203998 108 337 9.619999e-05 114 337 9.619999e-05 126 337 9.619999e-05 150 337 9.619999e-05 160 337 0.0017317999 169 337 0.00028859987 171 337 9.619999e-05 172 337 0.00028859987 181 337 0.0014430999 189 337 9.619999e-05 190 337 9.619999e-05 194 337 0.0001924 198 337 0.0001924 200 337 9.619999e-05 203 337 9.619999e-05 206 337 0.00048099994 214 337 0.0001924 233 337 0.0011544998 234 337 0.0031748998 236 337 0.0001924 237 337 0.016163196 240 337 9.619999e-05 241 337 0.0013468999 242 337 0.0050990991 270 337 9.619999e-05 271 337 0.0018279999 272 337 9.619999e-05 277 337 0.076197743 282 337 0.038772397 283 337 0.0074080974 284 337 0.0022127999 288 337 9.619999e-05 292 337 0.0010582998 293 337 0.0053876974 295 337 0.0010582998 296 337 0.0015393 297 337 9.619999e-05 298 337 9.619999e-05 305 337 0.0084663965 307 337 9.619999e-05 312 337 0.0063497983 313 337 0.0011544998 315 337 0.0012506999 319 337 0.0078891963 322 337 0.00076969992 323 337 0.00028859987 324 337 0.0054838993 326 337 0.0010582998 328 337 0.024725799 329 337 0.0001924 331 337 0.0016355999 335 337 0.0001924 337 337 0.059072498 339 337 0.00067349989 340 337 0.0053876974 341 337 9.619999e-05 350 337 0.0085625984 351 337 0.011833798 353 337 0.0003847999 354 337 0.037232999 356 337 0.0010582998 357 337 0.016836599 358 337 0.016547997 366 337 9.619999e-05 370 337 9.619999e-05 371 337 0.010871697 372 337 0.011160299 373 337 0.0066383965 376 337 0.0029824998 387 337 9.619999e-05 390 337 9.619999e-05 394 337 0.0058688 397 337 0.00028859987 401 337 0.0003847999 402 337 0.0011544998 408 337 0.00067349989 417 337 0.00028859987 422 337 9.619999e-05 430 337 9.619999e-05 441 337 0.0013468999 443 337 0.0023089999 444 337 0.0003847999 445 337 0.0077929981 446 337 0.0001924 447 337 0.0058688 450 337 0.0033672999 452 337 0.0036559999 453 337 0.0018279999 454 337 0.0001924 455 337 0.035308797 456 337 0.0003847999 457 337 0.0027900999 458 337 0.0010582998 459 337 0.00048099994 460 337 0.0010582998 463 337 0.010679197 464 337 0.0003847999 465 337 0.00076969992 467 337 0.010294396 468 337 0.0049066991 469 337 0.0052914992 470 337 0.0058688 471 337 0.0024051999 473 337 9.619999e-05 477 337 9.619999e-05 478 337 0.0010582998 483 337 0.0011544998 490 337 0.00048099994 491 337 0.0022127999 9 338 7.4899988e-05 18 338 7.4899988e-05 22 338 0.00022469999 60 338 0.0049426965 82 338 7.4899988e-05 83 338 7.4899988e-05 84 338 7.4899988e-05 108 338 7.4899988e-05 113 338 0.00014979999 114 338 0.00022469999 126 338 0.00014979999 127 338 7.4899988e-05 150 338 0.00082379999 160 338 0.0020219998 171 338 0.00029959995 172 338 0.00022469999 189 338 0.00022469999 190 338 0.00014979999 192 338 7.4899988e-05 194 338 0.00014979999 198 338 0.00014979999 200 338 7.4899988e-05 203 338 7.4899988e-05 204 338 7.4899988e-05 206 338 0.00037439982 207 338 7.4899988e-05 214 338 0.00089869997 223 338 7.4899988e-05 233 338 7.4899988e-05 234 338 0.0072642975 237 338 0.00014979999 241 338 0.00029959995 242 338 7.4899988e-05 248 338 7.4899988e-05 250 338 7.4899988e-05 252 338 0.00014979999 270 338 0.0050175972 272 338 7.4899988e-05 277 338 0.046206798 282 338 0.038118798 283 338 0.0038194 284 338 0.0032203 285 338 0.00059909979 286 338 7.4899988e-05 288 338 7.4899988e-05 289 338 0.00014979999 292 338 0.0014978 293 338 0.0014228998 294 338 0.00029959995 295 338 0.0019470998 296 338 0.0034448998 297 338 0.0010485 298 338 0.007788498 299 338 7.4899988e-05 300 338 7.4899988e-05 307 338 0.010185 312 338 0.0070395991 315 338 7.4899988e-05 317 338 0.0007489 318 338 0.0014978 319 338 7.4899988e-05 320 338 0.0017225 321 338 7.4899988e-05 322 338 0.0020968998 324 338 0.00014979999 326 338 0.00029959995 328 338 0.00037439982 331 338 7.4899988e-05 338 338 0.046057098 339 338 0.0007489 340 338 0.017748799 341 338 0.00059909979 343 338 0.00014979999 344 338 7.4899988e-05 347 338 7.4899988e-05 349 338 0.00029959995 350 338 0.018048398 351 338 0.012656298 353 338 7.4899988e-05 354 338 0.0065153986 356 338 0.0024714 358 338 0.027559299 366 338 7.4899988e-05 371 338 0.0034448998 372 338 0.016101297 373 338 0.031678297 384 338 7.4899988e-05 387 338 0.00014979999 393 338 7.4899988e-05 402 338 7.4899988e-05 404 338 7.4899988e-05 405 338 7.4899988e-05 417 338 0.0056915991 419 338 7.4899988e-05 421 338 7.4899988e-05 422 338 0.00014979999 423 338 7.4899988e-05 425 338 7.4899988e-05 430 338 7.4899988e-05 431 338 7.4899988e-05 433 338 7.4899988e-05 434 338 7.4899988e-05 443 338 0.0017972998 444 338 0.00029959995 445 338 0.0032950998 446 338 0.00029959995 447 338 0.0010485 450 338 0.0062906966 452 338 0.0077135973 453 338 0.0020219998 454 338 0.00037439982 455 338 0.036246497 456 338 0.0010485 457 338 0.0035946998 458 338 0.00082379999 459 338 0.00037439982 460 338 0.0011981998 463 338 0.0057664998 464 338 0.00037439982 465 338 0.0013479998 467 338 0.012656298 468 338 0.0017972998 469 338 0.010185 470 338 0.011308298 471 338 0.0013479998 473 338 0.00029959995 477 338 7.4899988e-05 478 338 0.0016476 483 338 0.0028457998 489 338 7.4899988e-05 490 338 0.0014978 491 338 0.0053172 19 339 0.00014199999 24 339 0.00028409995 60 339 0.0041186996 82 339 0.00014199999 108 339 0.00014199999 114 339 0.00014199999 126 339 0.00014199999 150 339 0.00014199999 160 339 0.0015622999 169 339 0.00028409995 172 339 0.00056809979 189 339 0.00014199999 190 339 0.00014199999 193 339 0.00014199999 194 339 0.00014199999 203 339 0.00014199999 204 339 0.00028409995 206 339 0.00042609987 214 339 0.00071009994 223 339 0.0018463 233 339 0.00014199999 234 339 0.0069591999 237 339 0.00014199999 240 339 0.00014199999 241 339 0.00014199999 254 339 0.00042609987 265 339 0.00014199999 266 339 0.00014199999 270 339 0.0052548982 272 339 0.0052548982 277 339 0.073284984 282 339 0.041187298 283 339 0.010651898 284 339 0.0032666 285 339 0.00028409995 286 339 0.00014199999 289 339 0.00014199999 292 339 0.0017042998 293 339 0.0019883998 294 339 0.0019883998 295 339 0.00099419989 296 339 0.0015622999 297 339 0.0048288964 298 339 0.0088055991 307 339 0.0083794966 312 339 0.0053969994 317 339 0.0028404999 320 339 0.00014199999 321 339 0.00028409995 322 339 0.0026984999 324 339 0.00014199999 328 339 0.00014199999 338 339 0.0042607971 339 339 0.032239698 340 339 0.012356199 341 339 0.00042609987 342 339 0.00028409995 343 339 0.00028409995 349 339 0.00028409995 350 339 0.0124982 351 339 0.0086634979 352 339 0.00014199999 353 339 0.00099419989 354 339 0.015622798 355 339 0.00014199999 356 339 0.0015622999 358 339 0.035222299 370 339 0.00014199999 371 339 0.0032666 372 339 0.011930097 373 339 0.027410898 374 339 0.00014199999 386 339 0.00014199999 387 339 0.00014199999 417 339 0.00071009994 421 339 0.00014199999 422 339 0.00014199999 430 339 0.00014199999 434 339 0.00014199999 443 339 0.0021303999 444 339 0.00042609987 445 339 0.0036926998 446 339 0.00028409995 447 339 0.0012782 450 339 0.0042607971 452 339 0.0066751987 453 339 0.0022723998 454 339 0.00028409995 455 339 0.034086097 456 339 0.00071009994 457 339 0.0038347 458 339 0.0011361998 459 339 0.00042609987 460 339 0.0011361998 463 339 0.0066751987 464 339 0.00042609987 465 339 0.00085219997 467 339 0.011646099 468 339 0.0012782 469 339 0.0085214972 470 339 0.0092315972 471 339 0.00085219997 473 339 0.00028409995 477 339 0.00014199999 478 339 0.0012782 483 339 0.0018463 490 339 0.00085219997 491 339 0.0061070994 9 340 4.9099996e-05 18 340 4.9099996e-05 22 340 7.3599993e-05 60 340 0.0030415 82 340 4.9099996e-05 83 340 4.9099996e-05 84 340 4.9099996e-05 108 340 4.9099996e-05 113 340 9.809999e-05 114 340 0.00014719999 126 340 7.3599993e-05 127 340 2.4499997e-05 130 340 0.0002942998 131 340 4.9099996e-05 134 340 4.9099996e-05 139 340 2.4499997e-05 142 340 2.4499997e-05 150 340 0.0008584999 156 340 0.00039249985 158 340 4.9099996e-05 160 340 0.00026979996 169 340 0.0001717 171 340 0.0002942998 172 340 0.0006622998 181 340 4.9099996e-05 187 340 0.0001717 188 340 0.0001962 189 340 9.809999e-05 190 340 0.00012259999 192 340 7.3599993e-05 193 340 2.4499997e-05 194 340 0.00022079999 196 340 2.4499997e-05 197 340 4.9099996e-05 198 340 0.0011037998 200 340 7.3599993e-05 201 340 2.4499997e-05 203 340 7.3599993e-05 204 340 7.3599993e-05 206 340 0.00031889998 207 340 4.9099996e-05 209 340 2.4499997e-05 214 340 0.0037528998 218 340 2.4499997e-05 219 340 9.809999e-05 223 340 0.00068679987 224 340 0.0033604 225 340 0.00012259999 227 340 2.4499997e-05 229 340 4.9099996e-05 233 340 0.0015207999 234 340 0.0060830973 237 340 0.00039249985 240 340 0.00034339982 241 340 0.0037037998 242 340 2.4499997e-05 248 340 2.4499997e-05 252 340 0.00053959992 253 340 2.4499997e-05 270 340 0.0083641969 271 340 4.9099996e-05 272 340 0.00049059978 274 340 4.9099996e-05 276 340 4.9099996e-05 277 340 0.067526758 278 340 4.9099996e-05 282 340 0.012460399 283 340 0.0021584998 284 340 0.0032867999 285 340 0.017586898 286 340 0.0001962 287 340 0.00078489981 288 340 0.0009321 289 340 0.0019622999 290 340 0.0001962 292 340 0.0023546999 293 340 0.0029678999 294 340 0.00053959992 295 340 0.0007358999 296 340 0.0026490998 297 340 0.0009321 298 340 0.0024773998 299 340 0.0001962 301 340 4.9099996e-05 307 340 0.00041699992 312 340 0.0037773999 313 340 0.0022810998 315 340 0.00076039997 317 340 0.0012754998 318 340 2.4499997e-05 319 340 0.00076039997 320 340 0.0024283 321 340 0.0001962 322 340 0.00039249985 323 340 7.3599993e-05 324 340 2.4499997e-05 325 340 7.3599993e-05 326 340 0.0023792998 328 340 0.00026979996 330 340 2.4499997e-05 331 340 4.9099996e-05 332 340 2.4499997e-05 338 340 0.0048320964 339 340 0.00083399983 340 340 0.044813499 341 340 0.00022079999 343 340 0.00044149999 344 340 7.3599993e-05 345 340 2.4499997e-05 347 340 2.4499997e-05 348 340 2.4499997e-05 349 340 0.00014719999 350 340 0.00095659983 351 340 0.0032378 353 340 0.0013245 354 340 0.0011282999 355 340 2.4499997e-05 356 340 0.00041699992 357 340 0.00012259999 358 340 0.020309497 366 340 7.3599993e-05 369 340 0.00012259999 370 340 9.809999e-05 371 340 0.00095659983 372 340 0.0013245 373 340 0.0015452998 374 340 0.00058869994 375 340 2.4499997e-05 376 340 2.4499997e-05 384 340 9.809999e-05 385 340 9.809999e-05 386 340 0.0001717 387 340 0.00012259999 390 340 4.9099996e-05 392 340 9.809999e-05 393 340 0.00026979996 394 340 7.3599993e-05 397 340 0.00026979996 398 340 7.3599993e-05 399 340 2.4499997e-05 401 340 0.00039249985 402 340 0.0032867999 404 340 7.3599993e-05 405 340 0.0001717 414 340 9.809999e-05 415 340 2.4499997e-05 417 340 0.00068679987 419 340 2.4499997e-05 420 340 2.4499997e-05 421 340 7.3599993e-05 422 340 0.00012259999 423 340 4.9099996e-05 424 340 0.00071129994 425 340 2.4499997e-05 430 340 4.9099996e-05 431 340 4.9099996e-05 432 340 2.4499997e-05 433 340 4.9099996e-05 434 340 4.9099996e-05 441 340 4.9099996e-05 442 340 4.9099996e-05 443 340 0.0025754999 444 340 0.00061319978 445 340 0.0030169999 446 340 0.00034339982 447 340 0.0025263999 448 340 2.4499997e-05 450 340 0.0048565976 452 340 0.0076773986 453 340 0.0018886998 454 340 0.00024529989 455 340 0.019009497 456 340 0.00083399983 457 340 0.0035075999 458 340 0.0007358999 459 340 0.00056419987 460 340 0.0012999999 463 340 0.0094188973 464 340 0.00049059978 465 340 0.0012263998 467 340 0.012215197 468 340 0.0018642 469 340 0.0062301978 470 340 0.0068924986 471 340 0.0014962 473 340 0.00014719999 477 340 0.00012259999 478 340 0.0014471998 479 340 2.4499997e-05 483 340 0.0014962 489 340 4.9099996e-05 490 340 0.0038019 491 340 0.0014225999 19 341 0.0001582 22 341 0.0001582 60 341 0.0014240998 108 341 0.0001582 114 341 0.0001582 126 341 0.0001582 150 341 0.0001582 160 341 0.0012657999 171 341 0.00031649997 172 341 0.00094939978 189 341 0.0001582 190 341 0.0001582 194 341 0.0001582 198 341 0.0068037994 203 341 0.00031649997 206 341 0.00047469977 214 341 0.00079109985 223 341 0.0017404999 234 341 0.0080695972 237 341 0.0001582 240 341 0.0018986999 241 341 0.012025297 267 341 0.0001582 270 341 0.0022151999 276 341 0.0042721964 277 341 0.041139197 279 341 0.00079109985 282 341 0.013291098 283 341 0.0026898999 284 341 0.0031645999 285 341 0.011075899 286 341 0.00047469977 288 341 0.00031649997 289 341 0.0014240998 292 341 0.0015822998 293 341 0.0020569998 294 341 0.015189897 295 341 0.013449397 296 341 0.032911398 297 341 0.0011075998 298 341 0.0128165 307 341 0.0088607967 312 341 0.011075899 315 341 0.0026898999 317 341 0.00079109985 318 341 0.0022151999 320 341 0.0031645999 321 341 0.0001582 322 341 0.0001582 326 341 0.0001582 328 341 0.0001582 331 341 0.0001582 332 341 0.0001582 338 341 0.0001582 339 341 0.0001582 340 341 0.036392398 341 341 0.0049050972 344 341 0.0001582 350 341 0.0001582 351 341 0.014873397 353 341 0.0001582 354 341 0.0128165 356 341 0.00094939978 358 341 0.014398698 371 341 0.0063290969 372 341 0.0131329 373 341 0.0344937 386 341 0.0068037994 387 341 0.0001582 417 341 0.00063289981 421 341 0.0001582 422 341 0.0001582 430 341 0.0001582 434 341 0.0001582 443 341 0.0017404999 444 341 0.00079109985 445 341 0.0037974999 447 341 0.0075948983 450 341 0.0036391998 452 341 0.005854398 453 341 0.0014240998 454 341 0.00063289981 455 341 0.031329099 456 341 0.00079109985 457 341 0.0036391998 458 341 0.0011075998 459 341 0.00047469977 460 341 0.0011075998 463 341 0.012183499 464 341 0.00079109985 465 341 0.00094939978 467 341 0.0099683963 468 341 0.0028480999 469 341 0.0066455975 470 341 0.0074366964 471 341 0.00094939978 472 341 0.0014240998 473 341 0.0001582 477 341 0.00031649997 478 341 0.0012657999 483 341 0.0012657999 490 341 0.0020569998 491 341 0.0026898999 22 342 0.00036019995 24 342 0.00036019995 60 342 0.0072045997 108 342 0.00036019995 114 342 0.00072049978 126 342 0.00036019995 160 342 0.0010807 172 342 0.00072049978 206 342 0.00072049978 223 342 0.0021613999 234 342 0.0068443976 240 342 0.0057636984 270 342 0.0018012 276 342 0.0010807 277 342 0.049351599 278 342 0.0014408999 282 342 0.015129697 283 342 0.032780997 284 342 0.0032420999 285 342 0.00036019995 290 342 0.00036019995 292 342 0.0010807 294 342 0.012247797 295 342 0.0010807 296 342 0.00036019995 297 342 0.0039624982 298 342 0.0043227971 307 342 0.0064840987 312 342 0.0093659982 315 342 0.0025215999 317 342 0.00072049978 328 342 0.00036019995 338 342 0.00036019995 339 342 0.0093659982 340 342 0.013688799 341 342 0.00036019995 342 342 0.013328496 349 342 0.00036019995 350 342 0.0223343 351 342 0.011167098 353 342 0.0014408999 354 342 0.011527397 356 342 0.0014408999 358 342 0.027017299 370 342 0.00036019995 371 342 0.0028817998 372 342 0.0028817998 373 342 0.0162104 374 342 0.00036019995 375 342 0.00072049978 386 342 0.0036022998 387 342 0.00036019995 417 342 0.00072049978 443 342 0.0021613999 444 342 0.00072049978 445 342 0.0028817998 447 342 0.0010807 450 342 0.0036022998 452 342 0.0079250969 453 342 0.0068443976 454 342 0.00072049978 455 342 0.024495699 456 342 0.00036019995 457 342 0.0039624982 458 342 0.00072049978 459 342 0.00036019995 460 342 0.0010807 463 342 0.0025215999 464 342 0.00036019995 465 342 0.00072049978 467 342 0.011167098 468 342 0.0010807 469 342 0.0079250969 470 342 0.0090057999 471 342 0.0010807 473 342 0.00036019995 478 342 0.0010807 483 342 0.0018012 490 342 0.0014408999 491 342 0.0108069 60 343 0.0016154998 108 343 0.0002308 114 343 0.00046159979 126 343 0.0002308 142 343 0.0002308 160 343 0.0011538998 172 343 0.00092309993 194 343 0.0002308 198 343 0.00069239992 206 343 0.00069239992 214 343 0.0011538998 223 343 0.0023079 233 343 0.0002308 234 343 0.0060004964 236 343 0.0002308 237 343 0.0002308 240 343 0.0011538998 241 343 0.0062311999 270 343 0.0018463 277 343 0.045465 282 343 0.013385598 283 343 0.0018463 284 343 0.0030001998 285 343 0.0057696998 286 343 0.0002308 289 343 0.0066927969 290 343 0.0002308 292 343 0.018924497 293 343 0.0027693999 294 343 0.010616198 295 343 0.0025386999 296 343 0.0043849982 297 343 0.0053080991 298 343 0.0034617998 307 343 0.010846999 312 343 0.012231696 315 343 0.0078467987 317 343 0.00046159979 318 343 0.0002308 320 343 0.0023079 321 343 0.00046159979 322 343 0.0069235973 324 343 0.0002308 326 343 0.0080774985 328 343 0.00069239992 338 343 0.00046159979 339 343 0.00092309993 340 343 0.026540499 341 343 0.0002308 343 343 0.0270021 347 343 0.0002308 349 343 0.00046159979 350 343 0.0120009 351 343 0.0055388995 353 343 0.0002308 354 343 0.011539299 355 343 0.0002308 356 343 0.0016154998 358 343 0.016616698 370 343 0.00046159979 371 343 0.0023079 372 343 0.0120009 373 343 0.014539599 374 343 0.00046159979 387 343 0.0002308 401 343 0.0002308 402 343 0.0002308 405 343 0.0002308 417 343 0.00046159979 443 343 0.0013846999 444 343 0.0023079 445 343 0.0090007 447 343 0.011077799 450 343 0.0041541979 452 343 0.0053080991 453 343 0.0016154998 454 343 0.0002308 455 343 0.025155798 456 343 0.00046159979 457 343 0.0036925999 458 343 0.00069239992 459 343 0.00046159979 460 343 0.00069239992 463 343 0.013847198 464 343 0.00069239992 465 343 0.00092309993 467 343 0.010616198 468 343 0.0016154998 469 343 0.0083082989 470 343 0.0092314966 471 343 0.00069239992 473 343 0.0002308 478 343 0.0013846999 483 343 0.00069239992 490 343 0.0011538998 491 343 0.0032309999 9 344 0.00010729999 22 344 0.00010729999 60 344 0.0025758999 82 344 0.00010729999 108 344 0.00010729999 114 344 0.00021469999 126 344 0.00010729999 142 344 0.00010729999 150 344 0.00010729999 160 344 0.0038639 169 344 0.00085859979 171 344 0.00010729999 172 344 0.00042929989 187 344 0.00010729999 188 344 0.00021469999 189 344 0.00010729999 190 344 0.00010729999 194 344 0.00021469999 198 344 0.00053669978 200 344 0.00010729999 203 344 0.00010729999 204 344 0.00010729999 206 344 0.00021469999 214 344 0.0010732999 223 344 0.00021469999 224 344 0.00021469999 233 344 0.00042929989 234 344 0.0064397976 236 344 0.00021469999 237 344 0.00021469999 240 344 0.00021469999 241 344 0.0052591972 242 344 0.0086937994 252 344 0.00021469999 270 344 0.00021469999 272 344 0.00010729999 277 344 0.066759646 282 344 0.0226468 283 344 0.0031126 284 344 0.0018245999 285 344 0.0010732999 286 344 0.00010729999 289 344 0.00021469999 292 344 0.0017172999 293 344 0.004937198 294 344 0.0015025998 295 344 0.0095523968 296 344 0.0047225989 297 344 0.0024685999 298 344 0.00010729999 299 344 0.00010729999 301 344 0.00010729999 307 344 0.012665 312 344 0.0027905998 314 344 0.00042929989 315 344 0.0078350976 319 344 0.00010729999 320 344 0.00021469999 321 344 0.0053664967 322 344 0.0048298985 324 344 0.0059031993 326 344 0.0040785968 328 344 0.00053669978 329 344 0.00021469999 331 344 0.00010729999 338 344 0.0015025998 339 344 0.00075129978 340 344 0.0080497973 341 344 0.00021469999 344 344 0.047654796 347 344 0.00064399978 349 344 0.00042929989 350 344 0.0061177984 351 344 0.0084790997 352 344 0.0012879998 354 344 0.018890198 356 344 0.0010732999 358 344 0.018031597 362 344 0.00096599991 366 344 0.0030053 371 344 0.0015025998 372 344 0.015884899 373 344 0.0084790997 386 344 0.00010729999 387 344 0.00010729999 393 344 0.00010729999 402 344 0.00021469999 417 344 0.00053669978 421 344 0.00010729999 422 344 0.00021469999 430 344 0.00010729999 443 344 0.0021465998 444 344 0.00042929989 445 344 0.0040785968 446 344 0.00021469999 447 344 0.011913698 450 344 0.0044005997 452 344 0.0050444975 453 344 0.0016099999 454 344 0.00032199989 455 344 0.0296233 456 344 0.00085859979 457 344 0.0042931996 458 344 0.00064399978 459 344 0.00032199989 460 344 0.0010732999 463 344 0.023290798 464 344 0.00053669978 465 344 0.0011805999 467 344 0.0099817999 468 344 0.0015025998 469 344 0.0078350976 470 344 0.0085864998 471 344 0.00096599991 473 344 0.00021469999 477 344 0.00010729999 478 344 0.0012879998 483 344 0.0020392998 490 344 0.00075129978 491 344 0.0042931996 60 345 0.0033787999 82 345 0.00012999999 108 345 0.00012999999 114 345 0.00012999999 126 345 0.00012999999 130 345 0.0005198 150 345 0.00012999999 160 345 0.005847998 161 345 0.0015594999 172 345 0.00038989983 189 345 0.00012999999 190 345 0.00012999999 194 345 0.0002599 200 345 0.00012999999 203 345 0.00012999999 204 345 0.00012999999 206 345 0.0002599 214 345 0.00064979983 218 345 0.00012999999 222 345 0.00012999999 224 345 0.00012999999 225 345 0.0005198 234 345 0.0090967976 236 345 0.00012999999 237 345 0.00012999999 240 345 0.00012999999 241 345 0.017023999 242 345 0.0057179965 277 345 0.079662085 282 345 0.033138398 283 345 0.0015594999 284 345 0.0022091998 290 345 0.0031188999 292 345 0.0018193999 293 345 0.012085799 294 345 0.0031188999 296 345 0.011305999 305 345 0.00012999999 307 345 0.0010396 312 345 0.010526299 317 345 0.0011695998 319 345 0.00012999999 324 345 0.0025990999 326 345 0.00012999999 328 345 0.00012999999 331 345 0.00012999999 338 345 0.0027289998 340 345 0.007017497 341 345 0.00038989983 344 345 0.00012999999 345 345 0.043534797 347 345 0.00012999999 349 345 0.00012999999 350 345 0.0038985999 351 345 0.0109162 354 345 0.014684897 356 345 0.0005198 358 345 0.0162443 366 345 0.00012999999 371 345 0.0014294998 372 345 0.011176098 373 345 0.0081870966 387 345 0.00012999999 417 345 0.00064979983 421 345 0.00012999999 422 345 0.0002599 430 345 0.00012999999 443 345 0.0024690998 444 345 0.0005198 445 345 0.0042884983 446 345 0.0002599 447 345 0.0011695998 450 345 0.004938297 452 345 0.007017497 453 345 0.0012995 454 345 0.00038989983 455 345 0.026640698 456 345 0.0010396 457 345 0.0038985999 458 345 0.0012995 459 345 0.0005198 460 345 0.0012995 463 345 0.010396399 464 345 0.0005198 465 345 0.0012995 467 345 0.011695899 468 345 0.0016893998 469 345 0.007407397 470 345 0.0084469989 471 345 0.0010396 473 345 0.0002599 477 345 0.00012999999 478 345 0.0016893998 483 345 0.0022091998 490 345 0.017023999 491 345 0.0053280964 60 346 0.0017275 108 346 0.0002159 114 346 0.00043189991 126 346 0.0002159 160 346 0.0023752998 194 346 0.0002159 198 346 0.0090692975 206 346 0.00043189991 214 346 0.0002159 233 346 0.0047505982 234 346 0.0056142993 236 346 0.0002159 237 346 0.00064779981 241 346 0.0095011964 242 346 0.0071258992 270 346 0.0060461983 272 346 0.00064779981 277 346 0.041675698 282 346 0.029799197 283 346 0.010580897 284 346 0.0017275 285 346 0.0088533983 293 346 0.0010797 294 346 0.0002159 295 346 0.0002159 296 346 0.015331499 297 346 0.0002159 298 346 0.00043189991 307 346 0.0097170994 311 346 0.0010797 312 346 0.00064779981 315 346 0.0002159 317 346 0.0002159 318 346 0.0002159 320 346 0.0062620975 328 346 0.093284369 330 346 0.0010797 331 346 0.0002159 338 346 0.0017275 339 346 0.0002159 340 346 0.06780386 341 346 0.0002159 346 346 0.0051824972 347 346 0.0002159 350 346 0.00086369994 351 346 0.014683697 353 346 0.0066939965 354 346 0.0015115999 356 346 0.0002159 358 346 0.021377698 371 346 0.0002159 372 346 0.0246167 373 346 0.0017275 387 346 0.0002159 395 346 0.0002159 417 346 0.00064779981 443 346 0.0017275 444 346 0.0095011964 445 346 0.0041027963 447 346 0.011876497 450 346 0.0038867998 452 346 0.0047505982 453 346 0.0019433999 454 346 0.00086369994 455 346 0.031742599 456 346 0.00043189991 457 346 0.0043186992 458 346 0.00064779981 459 346 0.00043189991 460 346 0.00064779981 463 346 0.025696397 464 346 0.00086369994 465 346 0.00064779981 467 346 0.0090692975 468 346 0.0012955999 469 346 0.0060461983 470 346 0.0064780973 471 346 0.00064779981 473 346 0.0002159 478 346 0.0010797 483 346 0.0012955999 490 346 0.00064779981 491 346 0.003239 60 347 0.0046533979 108 347 0.00024489989 114 347 0.00048979977 126 347 0.00024489989 142 347 0.00024489989 160 347 0.0034288999 169 347 0.00073479977 172 347 0.00097969989 187 347 0.00024489989 188 347 0.00048979977 189 347 0.00024489989 190 347 0.00024489989 194 347 0.00024489989 206 347 0.00048979977 214 347 0.0029389998 223 347 0.00024489989 234 347 0.0063678995 236 347 0.00024489989 237 347 0.00024489989 240 347 0.0097966976 241 347 0.00024489989 242 347 0.00024489989 252 347 0.00024489989 270 347 0.00048979977 277 347 0.066372752 282 347 0.023022298 283 347 0.012735698 284 347 0.0019592999 285 347 0.00024489989 286 347 0.00048979977 289 347 0.00048979977 290 347 0.00024489989 292 347 0.0031838999 293 347 0.00024489989 294 347 0.00073479977 295 347 0.0036737998 296 347 0.00024489989 305 347 0.00024489989 307 347 0.0058779977 312 347 0.0034288999 320 347 0.00048979977 321 347 0.00048979977 322 347 0.0024491998 324 347 0.0036737998 326 347 0.00024489989 328 347 0.00048979977 332 347 0.00048979977 338 347 0.0026940999 340 347 0.0061228983 341 347 0.00048979977 347 347 0.064903259 349 347 0.0014694999 350 347 0.00048979977 351 347 0.015674699 354 347 0.027675699 356 347 0.00048979977 358 347 0.031349499 371 347 0.0034288999 372 347 0.013715398 373 347 0.017634097 387 347 0.00024489989 390 347 0.00024489989 393 347 0.00024489989 408 347 0.00024489989 417 347 0.00048979977 443 347 0.0012245998 444 347 0.00048979977 445 347 0.013715398 447 347 0.0012245998 450 347 0.0048983991 452 347 0.0058779977 453 347 0.0019592999 454 347 0.00024489989 455 347 0.038696997 456 347 0.00048979977 457 347 0.0039186999 458 347 0.00073479977 459 347 0.00048979977 460 347 0.0012245998 463 347 0.016899299 464 347 0.00048979977 465 347 0.00097969989 467 347 0.012000997 468 347 0.0012245998 469 347 0.0088169985 470 347 0.0097966976 471 347 0.0014694999 473 347 0.00024489989 478 347 0.0017143998 483 347 0.0026940999 490 347 0.00097969989 491 347 0.012000997 22 348 0.0001314 24 348 0.0001314 60 348 0.0031545998 108 348 0.0001314 114 348 0.0001314 120 348 0.0001314 126 348 0.0001314 130 348 0.00052579981 140 348 0.00039429986 150 348 0.0001314 160 348 0.0067034997 172 348 0.00052579981 187 348 0.0010515 189 348 0.0001314 190 348 0.0001314 194 348 0.00026289979 198 348 0.00039429986 204 348 0.00026289979 206 348 0.00026289979 208 348 0.0001314 211 348 0.0001314 214 348 0.0010515 218 348 0.0001314 221 348 0.0001314 222 348 0.0001314 223 348 0.00026289979 224 348 0.00052579981 225 348 0.0009200999 227 348 0.0001314 234 348 0.0064405985 236 348 0.0001314 237 348 0.0001314 240 348 0.00039429986 241 348 0.0024973999 242 348 0.0092007965 243 348 0.0001314 270 348 0.0032859999 277 348 0.025499497 282 348 0.033385899 283 348 0.0093322992 284 348 0.0017086999 290 348 0.0013144 292 348 0.0162986 293 348 0.0056518987 294 348 0.0013144 295 348 0.0009200999 296 348 0.0047318973 301 348 0.0001314 307 348 0.0077549964 308 348 0.0013144 312 348 0.0051261969 315 348 0.0001314 317 348 0.0014457998 320 348 0.0001314 322 348 0.0015772998 324 348 0.0014457998 340 348 0.0086750984 341 348 0.00026289979 345 348 0.0001314 347 348 0.00078859995 348 348 0.054942198 350 348 0.0068348981 351 348 0.011698198 353 348 0.0001314 354 348 0.027733997 356 348 0.00052579981 358 348 0.016693 359 348 0.0042060986 361 348 0.0001314 369 348 0.00026289979 371 348 0.0015772998 372 348 0.013144098 373 348 0.0098579973 386 348 0.00026289979 387 348 0.0001314 392 348 0.0009200999 393 348 0.0057833977 417 348 0.00039429986 422 348 0.00039429986 430 348 0.00052579981 443 348 0.0015772998 444 348 0.0052575991 445 348 0.0039431974 446 348 0.0001314 447 348 0.012224 450 348 0.0039431974 452 348 0.0051261969 453 348 0.0009200999 454 348 0.0030230999 455 348 0.023922198 456 348 0.00078859995 457 348 0.0078863986 458 348 0.00065719988 459 348 0.00039429986 460 348 0.0011829999 463 348 0.033254497 464 348 0.0056518987 465 348 0.0009200999 467 348 0.010778099 468 348 0.0019715999 469 348 0.007492099 470 348 0.0082807988 471 348 0.0010515 473 348 0.0001314 477 348 0.0001314 478 348 0.0011829999 483 348 0.0015772998 490 348 0.0009200999 491 348 0.0055204965 9 349 3.8899991e-05 18 349 0.00011659999 21 349 3.8899991e-05 22 349 3.8899991e-05 60 349 0.0023705999 77 349 7.7699995e-05 79 349 3.8899991e-05 82 349 3.8899991e-05 83 349 3.8899991e-05 84 349 3.8899991e-05 108 349 3.8899991e-05 113 349 7.7699995e-05 114 349 0.00015539999 126 349 7.7699995e-05 127 349 3.8899991e-05 130 349 0.00015539999 131 349 3.8899991e-05 135 349 0.00015539999 142 349 0.00023319999 150 349 0.00062179985 158 349 3.8899991e-05 160 349 0.0044690967 165 349 3.8899991e-05 168 349 3.8899991e-05 169 349 0.00015539999 171 349 0.00054409984 172 349 0.00027199998 187 349 3.8899991e-05 189 349 7.7699995e-05 190 349 7.7699995e-05 191 349 3.8899991e-05 194 349 0.00011659999 197 349 3.8899991e-05 198 349 0.0012435999 200 349 3.8899991e-05 201 349 3.8899991e-05 203 349 7.7699995e-05 204 349 0.00011659999 206 349 0.00015539999 207 349 3.8899991e-05 214 349 0.035714298 219 349 3.8899991e-05 220 349 3.8899991e-05 223 349 0.0001943 224 349 0.00077719986 225 349 0.00038859993 227 349 7.7699995e-05 233 349 0.00069949985 234 349 0.0054406971 236 349 0.00015539999 237 349 0.0012824 240 349 0.00038859993 241 349 0.0033032999 242 349 0.0033421 243 349 7.7699995e-05 248 349 3.8899991e-05 250 349 3.8899991e-05 251 349 0.00015539999 252 349 0.0040416978 262 349 7.7699995e-05 270 349 0.0023705999 271 349 3.8899991e-05 272 349 0.00011659999 274 349 0.0010103998 275 349 3.8899991e-05 276 349 3.8899991e-05 277 349 0.051647797 282 349 0.0242888 283 349 0.0043136999 284 349 0.0015155999 285 349 0.0010880998 286 349 0.0061401986 287 349 0.00011659999 288 349 7.7699995e-05 289 349 0.0073060989 290 349 0.0024482999 292 349 0.0052463971 293 349 0.0034586999 294 349 0.0099486969 295 349 0.0010493 296 349 0.0025648999 297 349 0.0016710998 298 349 0.00042749988 299 349 0.0001943 305 349 7.7699995e-05 307 349 0.019081298 312 349 0.0050908998 315 349 0.00089379982 317 349 0.0014767998 318 349 3.8899991e-05 319 349 3.8899991e-05 320 349 0.0026814998 321 349 0.0054017976 322 349 0.0032255999 324 349 0.0083164982 326 349 0.0034975999 327 349 3.8899991e-05 328 349 0.0036141998 331 349 0.00015539999 332 349 7.7699995e-05 333 349 3.8899991e-05 334 349 7.7699995e-05 335 349 0.0012824 338 349 0.0015155999 339 349 0.00046629994 340 349 0.0054795966 341 349 0.0001943 344 349 0.00066069979 345 349 0.00011659999 347 349 0.0018264998 349 349 0.017021596 350 349 0.0070728995 351 349 0.0072283968 352 349 0.0016321999 353 349 7.7699995e-05 354 349 0.027086899 355 349 0.00050519989 356 349 0.0010103998 357 349 3.8899991e-05 358 349 0.012630198 366 349 7.7699995e-05 369 349 0.00011659999 370 349 0.00015539999 371 349 0.0024094998 372 349 0.011503197 373 349 0.011697497 374 349 0.00089379982 375 349 3.8899991e-05 384 349 3.8899991e-05 385 349 3.8899991e-05 386 349 0.00011659999 387 349 7.7699995e-05 389 349 0.00034979987 390 349 0.00027199998 392 349 0.00066069979 393 349 0.0052463971 397 349 7.7699995e-05 398 349 0.0012047 402 349 0.0012435999 404 349 0.0016710998 405 349 0.00066069979 408 349 3.8899991e-05 414 349 0.00015539999 415 349 3.8899991e-05 417 349 0.00046629994 419 349 3.8899991e-05 420 349 7.7699995e-05 421 349 0.00031089992 422 349 0.00015539999 423 349 3.8899991e-05 425 349 3.8899991e-05 430 349 0.00046629994 431 349 3.8899991e-05 433 349 3.8899991e-05 434 349 3.8899991e-05 442 349 0.00011659999 443 349 0.0034586999 444 349 0.0012435999 445 349 0.0049743988 446 349 0.0011658999 447 349 0.0051297992 450 349 0.0089382976 452 349 0.0053240992 453 349 0.0014767998 454 349 0.00031089992 455 349 0.029301997 456 349 0.00093269977 457 349 0.0041581988 458 349 0.00054409984 459 349 0.00050519989 460 349 0.001127 463 349 0.023433898 464 349 0.0005828999 465 349 0.00097159995 467 349 0.010181896 468 349 0.0019041998 469 349 0.006917499 470 349 0.0077723972 471 349 0.0025648999 473 349 0.00015539999 477 349 0.00015539999 478 349 0.0011658999 479 349 3.8899991e-05 483 349 0.0013989999 489 349 3.8899991e-05 490 349 0.00085499999 491 349 0.0014378999 9 350 3.9599996e-05 18 350 7.9199992e-05 19 350 3.9599996e-05 22 350 0.0001583 24 350 3.9599996e-05 60 350 0.0024146999 79 350 3.9599996e-05 82 350 7.9199992e-05 83 350 3.9599996e-05 84 350 3.9599996e-05 108 350 7.9199992e-05 113 350 7.9199992e-05 114 350 0.00019789999 126 350 0.00011879999 127 350 3.9599996e-05 142 350 3.9599996e-05 150 350 0.00059379986 151 350 3.9599996e-05 160 350 0.0025334 169 350 0.00019789999 171 350 3.9599996e-05 172 350 0.00075209979 187 350 0.00031669997 188 350 0.0003562998 189 350 0.00011879999 190 350 0.00011879999 192 350 0.0002770999 194 350 0.0001583 197 350 0.00031669997 198 350 0.0027313998 200 350 7.9199992e-05 201 350 3.9599996e-05 203 350 7.9199992e-05 204 350 3.9599996e-05 206 350 0.0001583 207 350 3.9599996e-05 214 350 0.00047499989 224 350 7.9199992e-05 233 350 7.9199992e-05 234 350 0.0058982 237 350 0.0002770999 240 350 0.00011879999 241 350 0.0055022985 242 350 0.0093420967 248 350 3.9599996e-05 250 350 3.9599996e-05 252 350 0.00011879999 270 350 0.00011879999 271 350 3.9599996e-05 272 350 0.0049480982 276 350 3.9599996e-05 277 350 0.040376898 282 350 0.067809343 283 350 0.010410897 284 350 0.0016229998 285 350 3.9599996e-05 286 350 0.0013458999 289 350 0.00011879999 290 350 0.00019789999 292 350 0.0043147989 293 350 0.0012667 294 350 0.0060564987 295 350 0.0027313998 296 350 0.0068085976 297 350 0.0090649985 298 350 0.0001583 299 350 0.0019792998 304 350 0.0001583 305 350 0.00011879999 307 350 0.0129839 308 350 7.9199992e-05 312 350 0.013894398 313 350 7.9199992e-05 315 350 0.0005541998 317 350 3.9599996e-05 320 350 0.00019789999 321 350 0.0012270999 322 350 0.00011879999 324 350 0.014369398 326 350 0.00019789999 327 350 0.00039589987 328 350 0.0134985 329 350 7.9199992e-05 331 350 0.0003562998 332 350 0.00019789999 333 350 0.0003562998 338 350 0.0017021999 339 350 3.9599996e-05 340 350 0.010252599 341 350 0.0002770999 349 350 0.00011879999 350 350 0.028738797 351 350 0.010410897 352 350 0.0001583 353 350 3.9599996e-05 354 350 0.014092296 355 350 3.9599996e-05 356 350 0.0033251999 357 350 0.00011879999 358 350 0.016665298 366 350 0.00011879999 367 350 0.0002770999 368 350 7.9199992e-05 369 350 3.9599996e-05 370 350 0.0026521999 371 350 0.004987698 372 350 0.049164798 373 350 0.0027709999 375 350 7.9199992e-05 376 350 0.0001583 384 350 3.9599996e-05 386 350 7.9199992e-05 387 350 0.00011879999 390 350 3.9599996e-05 392 350 3.9599996e-05 393 350 0.00094999978 397 350 0.00047499989 398 350 7.9199992e-05 401 350 3.9599996e-05 402 350 0.00071249995 404 350 0.00019789999 405 350 0.00019789999 408 350 0.00011879999 413 350 3.9599996e-05 414 350 0.0016229998 415 350 0.00011879999 417 350 0.00043539982 419 350 7.9199992e-05 421 350 7.9199992e-05 422 350 0.0001583 423 350 3.9599996e-05 425 350 3.9599996e-05 430 350 7.9199992e-05 431 350 3.9599996e-05 433 350 3.9599996e-05 434 350 3.9599996e-05 443 350 0.0019397 444 350 0.0020979999 445 350 0.0053439997 446 350 0.00023749999 447 350 0.0041959994 450 350 0.0051064976 452 350 0.0054231994 453 350 0.0018208998 454 350 0.0005541998 455 350 0.033924498 456 350 0.00091049983 457 350 0.0037606 458 350 0.00083129993 459 350 0.0013062998 460 350 0.00098959985 463 350 0.0067690983 464 350 0.00067289989 465 350 0.0011083998 467 350 0.011083797 468 350 0.004275199 469 350 0.0088274963 470 350 0.0099358968 471 350 0.0026917998 473 350 0.00023749999 477 350 0.00011879999 478 350 0.0011876 483 350 0.0016229998 489 350 3.9599996e-05 490 350 0.0008709 491 350 0.0044334978 18 351 0.0001394 19 351 0.00027889991 22 351 0.00034859986 60 351 0.003973797 82 351 6.9699992e-05 108 351 6.9699992e-05 114 351 6.9699992e-05 126 351 6.9699992e-05 150 351 0.00069719995 160 351 0.0016035 169 351 0.00034859986 172 351 0.00027889991 189 351 6.9699992e-05 190 351 0.0001394 192 351 6.9699992e-05 194 351 0.00020909999 198 351 0.0052286983 200 351 6.9699992e-05 203 351 6.9699992e-05 204 351 6.9699992e-05 206 351 0.00020909999 207 351 6.9699992e-05 214 351 0.00020909999 234 351 0.011851598 237 351 0.0001394 270 351 0.0073200986 277 351 0.15184045 278 351 6.9699992e-05 282 351 0.0098995976 283 351 0.015616298 284 351 0.0018125998 285 351 0.00034859986 286 351 0.0011153999 290 351 6.9699992e-05 292 351 0.0020217998 294 351 0.0001394 296 351 0.0010456999 297 351 0.0039040998 299 351 0.0001394 312 351 0.0025795 320 351 0.0013245998 338 351 0.0009062998 340 351 0.025306698 341 351 0.0001394 351 351 0.075711071 354 351 0.00244 356 351 0.0001394 358 351 0.0092721991 372 351 0.00083659985 384 351 6.9699992e-05 387 351 6.9699992e-05 402 351 6.9699992e-05 417 351 0.00048799999 421 351 6.9699992e-05 422 351 6.9699992e-05 430 351 6.9699992e-05 433 351 6.9699992e-05 434 351 6.9699992e-05 443 351 0.0036251999 444 351 0.00020909999 445 351 0.0047406964 446 351 0.00069719995 447 351 0.00069719995 450 351 0.0039040998 452 351 0.0092721991 453 351 0.0041828975 454 351 0.0010456999 455 351 0.024888497 456 351 0.0007668999 457 351 0.0036251999 458 351 0.00020909999 459 351 0.0011153999 460 351 0.0011851999 463 351 0.0046011992 464 351 0.00027889991 465 351 0.0010456999 467 351 0.0087841973 468 351 0.0020217998 469 351 0.003973797 470 351 0.0043920986 471 351 0.0011851999 473 351 0.0001394 477 351 6.9699992e-05 478 351 0.0012548999 483 351 0.001464 489 351 6.9699992e-05 490 351 0.00041829981 491 351 0.0029280998 24 352 0.000141 25 352 0.000141 60 352 0.0018324999 82 352 0.000141 108 352 0.000141 114 352 0.000141 126 352 0.000141 130 352 0.00070479978 131 352 0.00042289984 135 352 0.0087397993 138 352 0.00028189993 139 352 0.000141 142 352 0.00042289984 150 352 0.000141 160 352 0.0029602 169 352 0.00042289984 172 352 0.00098669995 187 352 0.00056389999 188 352 0.000141 189 352 0.000141 190 352 0.000141 192 352 0.000141 193 352 0.00028189993 194 352 0.00042289984 198 352 0.0028192999 206 352 0.00028189993 214 352 0.0014095998 219 352 0.00098669995 223 352 0.000141 224 352 0.00084579992 229 352 0.000141 233 352 0.00028189993 234 352 0.0056385994 236 352 0.00042289984 237 352 0.000141 240 352 0.00028189993 241 352 0.0014095998 242 352 0.0031011999 252 352 0.00056389999 270 352 0.00028189993 271 352 0.000141 272 352 0.00070479978 273 352 0.000141 277 352 0.07569778 279 352 0.000141 282 352 0.015083198 283 352 0.0022553999 284 352 0.0015505999 285 352 0.0014095998 286 352 0.00028189993 289 352 0.00056389999 292 352 0.014237396 293 352 0.011136197 294 352 0.00042289984 295 352 0.021003697 296 352 0.0057794973 297 352 0.00070479978 298 352 0.0097264983 300 352 0.000141 304 352 0.00028189993 307 352 0.00070479978 312 352 0.0139555 315 352 0.0081758983 317 352 0.000141 320 352 0.0029602 321 352 0.0043698996 322 352 0.0067662969 324 352 0.0098674968 325 352 0.000141 326 352 0.0094445981 327 352 0.000141 328 352 0.011277098 331 352 0.000141 335 352 0.00028189993 338 352 0.000141 339 352 0.00098669995 340 352 0.0046517998 349 352 0.00056389999 350 352 0.00042289984 351 352 0.0094445981 352 352 0.037073597 353 352 0.0018324999 354 352 0.015224099 355 352 0.000141 356 352 0.00028189993 358 352 0.0059204996 366 352 0.0011276999 370 352 0.0018324999 371 352 0.0014095998 372 352 0.033549499 373 352 0.0023963999 380 352 0.000141 386 352 0.00028189993 387 352 0.000141 393 352 0.00028189993 402 352 0.000141 414 352 0.000141 415 352 0.0018324999 416 352 0.00028189993 417 352 0.00070479978 419 352 0.0012687 422 352 0.00028189993 430 352 0.000141 443 352 0.0035240999 444 352 0.00056389999 445 352 0.0063433982 446 352 0.00028189993 447 352 0.0067662969 450 352 0.0039469972 452 352 0.0047927983 453 352 0.0025374 454 352 0.00042289984 455 352 0.043698899 456 352 0.00084579992 457 352 0.0038059999 458 352 0.00070479978 459 352 0.0012687 460 352 0.00084579992 463 352 0.021567497 464 352 0.00056389999 465 352 0.00098669995 467 352 0.0091626979 468 352 0.0070481971 469 352 0.0057794973 470 352 0.0064843968 471 352 0.0011276999 473 352 0.000141 477 352 0.000141 478 352 0.0012687 483 352 0.0012687 490 352 0.00070479978 491 352 0.0043698996 21 353 0.0020937999 24 353 0.0033500998 60 353 0.0054438971 114 353 0.00041879993 160 353 0.023031797 165 353 0.0037687998 169 353 0.00041879993 198 353 0.00083749997 206 353 0.00083749997 214 353 0.00041879993 223 353 0.0012562999 234 353 0.0058625974 257 353 0.0012562999 270 353 0.0012562999 272 353 0.00041879993 277 353 0.015912898 278 353 0.0029312999 282 353 0.0196817 283 353 0.00041879993 284 353 0.0029312999 286 353 0.0025125998 288 353 0.0020937999 289 353 0.011306498 290 353 0.00083749997 293 353 0.0041875988 296 353 0.015075397 297 353 0.0016749999 326 353 0.00041879993 340 353 0.010887798 349 353 0.00041879993 351 353 0.00041879993 353 353 0.0087939985 354 353 0.0016749999 356 353 0.00041879993 358 353 0.0062813982 374 353 0.00041879993 375 353 0.0016749999 417 353 0.00041879993 443 353 0.0050251 444 353 0.00041879993 445 353 0.0046063997 447 353 0.0029312999 450 353 0.0046063997 452 353 0.0096314996 453 353 0.0058625974 454 353 0.00041879993 455 353 0.048576199 456 353 0.00041879993 457 353 0.0033500998 459 353 0.00083749997 460 353 0.0016749999 463 353 0.010887798 464 353 0.00041879993 465 353 0.00041879993 467 353 0.011306498 468 353 0.0020937999 469 353 0.0037687998 470 353 0.0041875988 471 353 0.0020937999 478 353 0.0012562999 483 353 0.00083749997 490 353 0.00041879993 491 353 0.0062813982 9 354 6.2399995e-05 18 354 0.00012479999 22 354 0.00018729999 60 354 0.002809 82 354 6.2399995e-05 83 354 6.2399995e-05 84 354 6.2399995e-05 108 354 6.2399995e-05 113 354 0.00012479999 114 354 0.00018729999 126 354 6.2399995e-05 135 354 6.2399995e-05 139 354 6.2399995e-05 142 354 6.2399995e-05 150 354 0.00062419986 160 354 0.0013108999 169 354 0.00037449994 171 354 6.2399995e-05 172 354 0.0010611999 184 354 6.2399995e-05 189 354 6.2399995e-05 190 354 0.00012479999 192 354 6.2399995e-05 194 354 0.00012479999 198 354 0.0035581 200 354 6.2399995e-05 203 354 6.2399995e-05 204 354 6.2399995e-05 206 354 0.00024969992 207 354 6.2399995e-05 214 354 0.00037449994 224 354 0.00018729999 233 354 0.00068659987 234 354 0.0079275966 237 354 0.00012479999 240 354 0.00018729999 241 354 0.00037449994 242 354 0.0035581 252 354 6.2399995e-05 270 354 0.0015604999 271 354 0.00012479999 272 354 0.0025592998 276 354 6.2399995e-05 277 354 0.070661664 278 354 0.00012479999 282 354 0.037702899 283 354 0.0360175 284 354 0.0017477998 285 354 0.0019975 286 354 0.0043070987 289 354 0.00018729999 290 354 6.2399995e-05 292 354 0.0054306984 293 354 0.00043699984 294 354 0.0059924982 295 354 0.0012484 296 354 0.0045567974 297 354 0.0068663992 298 354 0.0013108999 299 354 0.0053682998 303 354 6.2399995e-05 304 354 6.2399995e-05 305 354 6.2399995e-05 307 354 0.00024969992 308 354 6.2399995e-05 312 354 0.0077402964 313 354 0.00018729999 315 354 0.00068659987 317 354 6.2399995e-05 318 354 6.2399995e-05 319 354 0.00012479999 320 354 0.0018726999 322 354 6.2399995e-05 324 354 0.00056179985 326 354 0.00012479999 327 354 0.00049939984 328 354 0.00043699984 333 354 0.00031209993 335 354 0.00012479999 338 354 0.0022471999 340 354 0.011235997 341 354 0.00037449994 342 354 6.2399995e-05 343 354 6.2399995e-05 349 354 6.2399995e-05 350 354 0.00018729999 351 354 0.019350797 352 354 0.00031209993 353 354 0.00024969992 354 354 0.029587999 356 354 0.00018729999 357 354 0.00024969992 358 354 0.026841398 366 354 0.0007491 371 354 0.00037449994 372 354 0.012983799 373 354 0.00068659987 375 354 0.00012479999 376 354 0.00012479999 386 354 6.2399995e-05 387 354 6.2399995e-05 390 354 0.00018729999 392 354 6.2399995e-05 393 354 0.00018729999 397 354 0.00031209993 398 354 6.2399995e-05 401 354 6.2399995e-05 402 354 0.00099879992 404 354 0.0068039969 405 354 0.0016229998 413 354 6.2399995e-05 414 354 0.00031209993 415 354 6.2399995e-05 417 354 0.00043699984 419 354 6.2399995e-05 421 354 6.2399995e-05 422 354 6.2399995e-05 423 354 6.2399995e-05 430 354 6.2399995e-05 431 354 6.2399995e-05 433 354 6.2399995e-05 434 354 6.2399995e-05 443 354 0.0022471999 444 354 0.00049939984 445 354 0.0036829 446 354 0.00018729999 447 354 0.0025592998 450 354 0.0041822977 452 354 0.0069287978 453 354 0.0029962999 454 354 0.00056179985 455 354 0.023969997 456 354 0.00087389979 457 354 0.0036829 458 354 0.00099879992 459 354 0.00087389979 460 354 0.001186 463 354 0.007116098 464 354 0.00037449994 465 354 0.0013732999 467 354 0.010798998 468 354 0.0041198991 469 354 0.006242197 470 354 0.0076154992 471 354 0.0028714 472 354 0.001186 473 354 0.00018729999 477 354 6.2399995e-05 478 354 0.0013108999 483 354 0.0015604999 489 354 6.2399995e-05 490 354 0.00068659987 491 354 0.0050561987 60 355 0.0024044998 108 355 0.00026719994 114 355 0.00053429999 126 355 0.00026719994 160 355 0.0024044998 187 355 0.00080149993 188 355 0.00080149993 189 355 0.00026719994 192 355 0.00053429999 194 355 0.00026719994 197 355 0.00053429999 198 355 0.00026719994 206 355 0.00053429999 214 355 0.00080149993 223 355 0.00080149993 233 355 0.00026719994 234 355 0.0050760992 237 355 0.00026719994 240 355 0.0053432994 241 355 0.0029387998 257 355 0.003206 272 355 0.0029387998 275 355 0.0042745993 277 355 0.10633177 282 355 0.009350799 284 355 0.0018701998 289 355 0.00026719994 292 355 0.009350799 293 355 0.0048089996 294 355 0.0085492991 295 355 0.00080149993 307 355 0.015495598 312 355 0.0085492991 324 355 0.012022398 328 355 0.00026719994 339 355 0.0010686999 340 355 0.003206 349 355 0.00053429999 350 355 0.0050760992 351 355 0.00026719994 352 355 0.0024044998 354 355 0.015762798 355 355 0.063585341 356 355 0.0010686999 358 355 0.0048089996 366 355 0.00026719994 370 355 0.0082820989 371 355 0.014159799 372 355 0.0037403 373 355 0.0085492991 374 355 0.00026719994 387 355 0.00026719994 393 355 0.018434398 405 355 0.00026719994 414 355 0.0050760992 415 355 0.0040074997 417 355 0.00053429999 443 355 0.0029387998 444 355 0.00026719994 445 355 0.0045417994 447 355 0.024846397 450 355 0.0042745993 452 355 0.0050760992 453 355 0.0026717 455 355 0.049425598 456 355 0.00053429999 457 355 0.0037403 458 355 0.00080149993 459 355 0.0010686999 460 355 0.00080149993 463 355 0.010419399 464 355 0.00053429999 465 355 0.0010686999 467 355 0.010152299 468 355 0.0013357999 469 355 0.0082820989 470 355 0.009350799 471 355 0.00080149993 473 355 0.00026719994 478 355 0.0016029999 483 355 0.0026717 490 355 0.0010686999 491 355 0.0029387998 9 356 8.4999992e-05 13 356 0.0001699 19 356 8.4999992e-05 21 356 0.0001699 22 356 8.4999992e-05 24 356 0.00042479998 60 356 0.0028039999 82 356 0.00025489996 83 356 8.4999992e-05 84 356 8.4999992e-05 108 356 8.4999992e-05 113 356 0.0001699 114 356 0.0001699 119 356 8.4999992e-05 120 356 0.00050979992 126 356 8.4999992e-05 135 356 0.0056928992 142 356 0.019203 150 356 8.4999992e-05 160 356 0.0011896 172 356 0.00059479987 187 356 0.0050131977 189 356 0.0001699 190 356 8.4999992e-05 191 356 0.0030588999 193 356 0.0001699 194 356 0.0001699 198 356 0.0046732984 200 356 8.4999992e-05 203 356 8.4999992e-05 204 356 8.4999992e-05 206 356 0.00025489996 214 356 0.0029738999 218 356 0.00025489996 221 356 8.4999992e-05 223 356 0.00025489996 224 356 0.0031438998 231 356 8.4999992e-05 233 356 8.4999992e-05 234 356 0.006542597 236 356 0.0001699 237 356 0.00033989991 240 356 0.0023790998 241 356 0.010366198 242 356 0.00076469989 252 356 0.0001699 270 356 0.00025489996 272 356 0.0041634999 277 356 0.066700697 278 356 0.0001699 282 356 0.024641 283 356 0.0045033991 284 356 0.0017843 285 356 8.4999992e-05 286 356 0.00050979992 289 356 0.00025489996 290 356 0.00033989991 292 356 0.007817097 293 356 0.0069674999 294 356 0.0024640998 295 356 0.0075621977 296 356 0.0033987998 297 356 0.0057778992 298 356 0.00042479998 301 356 0.0001699 304 356 0.00025489996 305 356 8.4999992e-05 307 356 0.0076471977 312 356 0.0073922984 315 356 0.010876 317 356 8.4999992e-05 320 356 0.0011045998 321 356 0.00093469978 322 356 0.00025489996 324 356 0.0073922984 326 356 0.00042479998 328 356 0.00076469989 329 356 0.00042479998 338 356 0.0011896 339 356 0.00050979992 340 356 0.006457597 341 356 0.0001699 344 356 0.00025489996 347 356 0.00025489996 349 356 0.00050979992 350 356 0.012150597 351 356 0.005438 352 356 0.0001699 353 356 0.0001699 354 356 0.022431798 355 356 0.00050979992 356 356 0.017333698 357 356 8.4999992e-05 358 356 0.017078798 364 356 8.4999992e-05 365 356 8.4999992e-05 366 356 0.00033989991 367 356 0.00025489996 368 356 8.4999992e-05 370 356 0.0029738999 371 356 0.006542597 372 356 0.015294399 373 356 0.0070523992 375 356 8.4999992e-05 386 356 8.4999992e-05 387 356 8.4999992e-05 393 356 0.0042483993 397 356 8.4999992e-05 402 356 0.00033989991 405 356 8.4999992e-05 414 356 0.0035686998 415 356 0.00025489996 417 356 0.00042479998 419 356 8.4999992e-05 421 356 8.4999992e-05 422 356 0.00025489996 423 356 8.4999992e-05 430 356 8.4999992e-05 442 356 8.4999992e-05 443 356 0.0028889 444 356 0.0013595 445 356 0.010026298 446 356 0.0001699 447 356 0.0039934963 450 356 0.0084118992 452 356 0.005438 453 356 0.0014444999 454 356 0.00025489996 455 356 0.057438999 456 356 0.00076469989 457 356 0.0036537 458 356 0.00067979982 459 356 0.0013595 460 356 0.0011045998 463 356 0.021922 464 356 0.00042479998 465 356 0.0010195998 467 356 0.015209399 468 356 0.005098097 469 356 0.0073072985 470 356 0.0076471977 471 356 0.0044183992 473 356 0.0001699 477 356 8.4999992e-05 478 356 0.0011896 483 356 0.0021241999 490 356 0.00059479987 491 356 0.0032287999 19 357 0.0001127 22 357 0.0002254 60 357 0.0021412999 108 357 0.0001127 114 357 0.0002254 126 357 0.0001127 135 357 0.0003380999 143 357 0.0001127 150 357 0.0003380999 160 357 0.0001127 189 357 0.0001127 190 357 0.0001127 194 357 0.0002254 198 357 0.0052969977 200 357 0.0001127 203 357 0.0001127 206 357 0.0003380999 214 357 0.00056349998 223 357 0.0001127 224 357 0.00045079994 225 357 0.0002254 233 357 0.0001127 234 357 0.008452598 237 357 0.0001127 240 357 0.0013523998 241 357 0.0025920998 242 357 0.0019158998 262 357 0.0001127 270 357 0.0048461966 271 357 0.0001127 272 357 0.0020285998 274 357 0.0002254 277 357 0.062549293 282 357 0.037529599 283 357 0.0031555998 284 357 0.0015777999 286 357 0.00067619979 288 357 0.0003380999 289 357 0.0029302 290 357 0.00067619979 292 357 0.0041699968 293 357 0.017355997 294 357 0.0067620985 295 357 0.0061985999 296 357 0.010030396 297 357 0.0032682999 298 357 0.017130598 299 357 0.0001127 312 357 0.010931998 313 357 0.0001127 315 357 0.0032682999 317 357 0.001127 318 357 0.0010142999 320 357 0.0123972 321 357 0.00045079994 322 357 0.0027047999 324 357 0.00090159988 326 357 0.001127 328 357 0.00045079994 338 357 0.0020285998 340 357 0.015214697 341 357 0.0003380999 343 357 0.0003380999 351 357 0.0013523998 353 357 0.0003380999 354 357 0.001127 355 357 0.0001127 356 357 0.0001127 357 357 0.0024793998 358 357 0.041699499 370 357 0.00056349998 372 357 0.0002254 374 357 0.0001127 375 357 0.0002254 376 357 0.0003380999 386 357 0.0001127 387 357 0.0001127 392 357 0.00056349998 396 357 0.0002254 397 357 0.0046207979 398 357 0.00056349998 402 357 0.00090159988 417 357 0.00056349998 421 357 0.0001127 422 357 0.0001127 442 357 0.0014650999 443 357 0.0023667 444 357 0.00078889984 445 357 0.0065366998 446 357 0.0002254 447 357 0.0048461966 450 357 0.0039445981 452 357 0.0089033991 453 357 0.0025920998 454 357 0.00067619979 455 357 0.020060897 456 357 0.00056349998 457 357 0.0032682999 458 357 0.00078889984 459 357 0.00045079994 460 357 0.001127 463 357 0.020962499 464 357 0.00078889984 465 357 0.001127 467 357 0.0103685 468 357 0.0034936999 469 357 0.0039445981 470 357 0.0043953992 471 357 0.0029302 473 357 0.0001127 477 357 0.0001127 478 357 0.0012396998 483 357 0.0012396998 490 357 0.0003380999 491 357 0.0029302 9 358 2.7899994e-05 18 358 0.0001393 22 358 0.00066889985 60 358 0.0020344998 79 358 2.7899994e-05 82 358 2.7899994e-05 83 358 2.7899994e-05 84 358 2.7899994e-05 108 358 2.7899994e-05 113 358 5.5699988e-05 114 358 8.3599996e-05 126 358 5.5699988e-05 127 358 2.7899994e-05 135 358 0.001923 142 358 2.7899994e-05 143 358 0.00075249979 150 358 0.0017278998 151 358 2.7899994e-05 160 358 0.00064099999 169 358 0.00019509999 172 358 0.00019509999 187 358 2.7899994e-05 189 358 8.3599996e-05 190 358 0.0001393 192 358 5.5699988e-05 194 358 0.0001393 196 358 2.7899994e-05 197 358 2.7899994e-05 198 358 0.0080264993 200 358 8.3599996e-05 201 358 5.5699988e-05 203 358 8.3599996e-05 204 358 0.0001393 206 358 0.00019509999 207 358 8.3599996e-05 209 358 2.7899994e-05 214 358 0.0026755 218 358 2.7899994e-05 219 358 2.7899994e-05 223 358 0.00089179981 224 358 2.7899994e-05 229 358 0.00030659977 233 358 0.00072459993 234 358 0.0123742 237 358 0.00030659977 240 358 0.0016442998 241 358 0.0037066999 242 358 5.5699988e-05 248 358 2.7899994e-05 250 358 2.7899994e-05 252 358 8.3599996e-05 270 358 0.003929697 271 358 2.7899994e-05 272 358 0.000223 274 358 0.0020623999 277 358 0.061285898 278 358 5.5699988e-05 282 358 0.024163198 283 358 0.0012262999 284 358 0.0022852998 285 358 5.5699988e-05 286 358 0.00078039989 288 358 0.00016719999 289 358 0.00025079981 290 358 0.0024247 292 358 0.010562699 293 358 0.0085002966 294 358 0.0017000998 295 358 0.0009476 296 358 0.0073576979 297 358 0.0024247 298 358 0.0043476969 299 358 2.7899994e-05 307 358 0.00016719999 312 358 0.008639697 313 358 8.3599996e-05 315 358 0.0054067969 317 358 0.0022016999 318 358 0.00041799992 320 358 0.0042919964 321 358 0.0009476 322 358 0.0054903999 324 358 0.0019508998 326 358 0.0040410981 328 358 0.0022016999 333 358 2.7899994e-05 335 358 2.7899994e-05 338 358 0.0034000999 339 358 0.00016719999 340 358 0.014353 341 358 0.00055739982 343 358 0.003205 345 358 2.7899994e-05 347 358 2.7899994e-05 349 358 2.7899994e-05 350 358 0.00025079981 351 358 0.0048771985 352 358 2.7899994e-05 353 358 0.00097539998 354 358 0.0049329996 355 358 0.0010868998 356 358 0.00025079981 357 358 0.00030659977 358 358 0.0624565 359 358 0.00025079981 366 358 0.0001393 370 358 0.0043755993 371 358 2.7899994e-05 372 358 0.00066889985 373 358 0.00030659977 374 358 0.00083609996 375 358 5.5699988e-05 376 358 0.0024803998 384 358 2.7899994e-05 386 358 5.5699988e-05 387 358 5.5699988e-05 390 358 8.3599996e-05 392 358 0.0001393 393 358 0.00011149999 394 358 2.7899994e-05 397 358 0.00016719999 398 358 0.0051001981 401 358 5.5699988e-05 402 358 0.0027590999 404 358 5.5699988e-05 405 358 0.000223 417 358 0.00064099999 419 358 2.7899994e-05 421 358 8.3599996e-05 422 358 0.00011149999 423 358 2.7899994e-05 425 358 2.7899994e-05 430 358 2.7899994e-05 431 358 5.5699988e-05 432 358 2.7899994e-05 433 358 5.5699988e-05 434 358 5.5699988e-05 442 358 0.0006130999 443 358 0.0028426999 444 358 0.0027033999 445 358 0.0071346983 446 358 0.0006130999 447 358 0.0074133985 448 358 0.00011149999 450 358 0.0051280968 452 358 0.008054398 453 358 0.0025082999 454 358 0.0001393 455 358 0.021376196 456 358 0.0012540999 457 358 0.0051558986 458 358 0.00047379988 459 358 0.00030659977 460 358 0.0011983998 463 358 0.018505599 464 358 0.0019508998 465 358 0.0012262999 467 358 0.012151297 468 358 0.0026755 469 358 0.0046820976 470 358 0.0072739981 471 358 0.0020344998 473 358 0.00011149999 477 358 0.00011149999 478 358 0.0015886 483 358 0.0011704999 489 358 8.3599996e-05 490 358 0.00039019994 491 358 0.0012540999 9 359 3.2899989e-05 16 359 1.6399994e-05 18 359 6.5799992e-05 22 359 1.6399994e-05 24 359 1.6399994e-05 60 359 0.0012828 76 359 1.6399994e-05 79 359 1.6399994e-05 82 359 8.2199986e-05 83 359 6.5799992e-05 84 359 6.5799992e-05 104 359 0.0001316 108 359 9.8699995e-05 113 359 0.0001316 114 359 0.00032889983 126 359 0.00014799999 127 359 3.2899989e-05 130 359 8.2199986e-05 142 359 4.9299997e-05 143 359 1.6399994e-05 150 359 0.0002795998 151 359 1.6399994e-05 160 359 0.0002138 169 359 1.6399994e-05 175 359 8.2199986e-05 187 359 0.0024174999 188 359 0.00026309979 189 359 9.8699995e-05 190 359 8.2199986e-05 192 359 0.00014799999 193 359 6.5799992e-05 194 359 0.00037829997 196 359 1.6399994e-05 197 359 3.2899989e-05 198 359 0.0017104 200 359 0.0001316 201 359 6.5799992e-05 203 359 0.00075649982 204 359 9.8699995e-05 206 359 0.0009209998 207 359 6.5799992e-05 208 359 3.2899989e-05 209 359 1.6399994e-05 214 359 0.00078939996 219 359 0.00026309979 221 359 0.0001316 223 359 0.0002138 224 359 0.00069069979 233 359 0.0002138 234 359 0.0015787999 237 359 0.00011509999 240 359 0.00052629993 241 359 0.010936398 248 359 4.9299997e-05 250 359 3.2899989e-05 251 359 1.6399994e-05 252 359 0.0013485998 262 359 0.0001316 263 359 1.6399994e-05 276 359 0.00059199985 277 359 0.0052296966 282 359 0.00064139999 283 359 3.2899989e-05 284 359 8.2199986e-05 285 359 0.00011509999 289 359 9.8699995e-05 290 359 8.2199986e-05 292 359 0.00050979992 293 359 0.0023846 294 359 0.0014142999 295 359 0.0109693 296 359 0.0025326 297 359 6.5799992e-05 298 359 0.0013649999 299 359 0.00054269983 305 359 1.6399994e-05 308 359 0.0045883991 312 359 0.0045883991 315 359 0.010837696 317 359 1.6399994e-05 319 359 6.5799992e-05 320 359 0.0058875978 321 359 0.0013813998 322 359 0.0020227998 325 359 0.00011509999 326 359 0.0016445999 338 359 0.00014799999 340 359 0.0028450999 341 359 1.6399994e-05 347 359 3.2899989e-05 351 359 0.00083869998 354 359 0.0011840998 356 359 0.0001316 358 359 0.0023516999 359 359 0.17314076 360 359 3.2899989e-05 361 359 0.00083869998 363 359 1.6399994e-05 369 359 0.0001809 370 359 9.8699995e-05 371 359 0.0025819999 372 359 0.0053119995 373 359 0.011166699 375 359 8.2199986e-05 376 359 0.0036181 380 359 3.2899989e-05 384 359 1.6399994e-05 386 359 0.0043580979 387 359 0.00014799999 389 359 0.0013649999 390 359 0.00077299983 391 359 0.0004276 392 359 0.049254999 393 359 0.061112396 394 359 1.6399994e-05 396 359 3.2899989e-05 397 359 1.6399994e-05 402 359 6.5799992e-05 404 359 4.9299997e-05 405 359 9.8699995e-05 417 359 0.00019729999 419 359 0.0010032 421 359 1.6399994e-05 422 359 0.00011509999 423 359 4.9299997e-05 425 359 3.2899989e-05 430 359 9.8699995e-05 431 359 3.2899989e-05 432 359 1.6399994e-05 433 359 3.2899989e-05 434 359 4.9299997e-05 441 359 0.00047689979 442 359 0.00062489999 443 359 0.00090449979 444 359 0.0027957999 445 359 0.0027792999 446 359 0.0001316 447 359 0.010656796 448 359 1.6399994e-05 449 359 3.2899989e-05 450 359 0.0061013997 452 359 0.0042100996 453 359 0.00074009993 454 359 0.0002795998 455 359 0.032578997 456 359 0.0012828 457 359 0.0062165 458 359 0.0002795998 459 359 0.0022859999 460 359 0.0011347998 463 359 0.042676698 464 359 0.0028615999 465 359 0.0019898999 467 359 0.008913599 468 359 0.0056737997 469 359 0.0044567995 470 359 0.016478598 471 359 0.0026641998 472 359 0.00014799999 473 359 0.00034539984 477 359 0.00023019999 478 359 0.0015129999 483 359 0.0012663 489 359 4.9299997e-05 490 359 0.0016116998 491 359 0.0001809 9 360 0.00013569999 22 360 0.00054289983 60 360 0.0039358996 82 360 0.00013569999 83 360 0.00013569999 84 360 0.00013569999 108 360 0.00013569999 113 360 0.00027139997 114 360 0.00040719984 126 360 0.00013569999 175 360 0.00027139997 187 360 0.0008142998 189 360 0.00013569999 190 360 0.00013569999 194 360 0.0008142998 198 360 0.0013571999 200 360 0.00013569999 206 360 0.0023073 214 360 0.0010857999 221 360 0.00013569999 223 360 0.00013569999 224 360 0.00013569999 234 360 0.0016286999 237 360 0.00013569999 240 360 0.00067859981 241 360 0.0089576989 252 360 0.00054289983 262 360 0.00013569999 277 360 0.012486398 279 360 0.00027139997 282 360 0.0010857999 283 360 0.0036644998 284 360 0.0009500999 290 360 0.00027139997 292 360 0.0062431991 293 360 0.0008142998 294 360 0.0016286999 295 360 0.0021715998 296 360 0.0021715998 298 360 0.0009500999 299 360 0.00067859981 308 360 0.0044787973 312 360 0.0047502965 315 360 0.010450598 320 360 0.0059717968 321 360 0.00027139997 322 360 0.00013569999 326 360 0.0017643999 340 360 0.006107498 341 360 0.00013569999 351 360 0.0012214999 354 360 0.0013571999 358 360 0.0096362978 359 360 0.046552699 360 360 0.010450598 361 360 0.0008142998 362 360 0.00040719984 363 360 0.00013569999 364 360 0.00013569999 366 360 0.00013569999 369 360 0.0019000999 370 360 0.00013569999 371 360 0.0028501998 372 360 0.0065146983 373 360 0.011807799 376 360 0.0036644998 386 360 0.0057002977 387 360 0.00027139997 390 360 0.00013569999 391 360 0.0044787973 392 360 0.086862087 393 360 0.061753497 417 360 0.00040719984 419 360 0.00013569999 423 360 0.00013569999 424 360 0.00013569999 430 360 0.00013569999 431 360 0.00013569999 434 360 0.0009500999 441 360 0.0044787973 443 360 0.00067859981 444 360 0.0016286999 445 360 0.0021715998 447 360 0.010179199 450 360 0.006107498 452 360 0.0033930999 453 360 0.00054289983 454 360 0.00040719984 455 360 0.026330099 456 360 0.00067859981 457 360 0.0055645965 458 360 0.0009500999 459 360 0.0020357999 460 360 0.0012214999 463 360 0.031351797 464 360 0.0010857999 465 360 0.030944597 467 360 0.0299946 468 360 0.006921798 469 360 0.012893599 470 360 0.014657997 471 360 0.0013571999 472 360 0.0027143999 473 360 0.00027139997 477 360 0.00013569999 478 360 0.0016286999 483 360 0.0014928998 490 360 0.0014928998 491 360 0.0059717968 9 361 0.0002058 60 361 0.0022642999 82 361 0.0002058 83 361 0.0002058 84 361 0.0002058 108 361 0.0002058 113 361 0.00041169999 114 361 0.00082339998 126 361 0.00041169999 131 361 0.00041169999 187 361 0.00061749993 189 361 0.0002058 190 361 0.0002058 194 361 0.00041169999 198 361 0.0146151 200 361 0.0002058 203 361 0.0026759999 206 361 0.0028817998 224 361 0.0049402975 233 361 0.011939097 234 361 0.0016468 237 361 0.0002058 240 361 0.0022642999 241 361 0.074310362 252 361 0.0002058 272 361 0.0018525999 277 361 0.022025499 279 361 0.00082339998 282 361 0.0049402975 284 361 0.0010291999 293 361 0.0032934998 295 361 0.00082339998 296 361 0.011527397 298 361 0.0069987997 312 361 0.0010291999 315 361 0.012350798 320 361 0.011527397 321 361 0.013997499 322 361 0.0002058 326 361 0.012968298 340 361 0.0002058 351 361 0.0014408999 356 361 0.0002058 359 361 0.00082339998 361 361 0.0181145 372 361 0.0057636984 386 361 0.0034993999 387 361 0.0002058 392 361 0.0024702 393 361 0.0002058 417 361 0.00041169999 419 361 0.0002058 422 361 0.00041169999 423 361 0.0002058 425 361 0.0002058 430 361 0.0002058 431 361 0.0002058 434 361 0.0014408999 441 361 0.0032934998 443 361 0.0010291999 444 361 0.0012351 445 361 0.012968298 447 361 0.016673498 450 361 0.0053519979 452 361 0.004528597 453 361 0.0024702 454 361 0.0002058 455 361 0.023672298 456 361 0.00082339998 457 361 0.0063811988 458 361 0.0024702 459 361 0.0020585 460 361 0.0014408999 463 361 0.042198397 464 361 0.0010291999 465 361 0.0016468 467 361 0.0296418 468 361 0.0148209 469 361 0.0181145 470 361 0.020172898 471 361 0.00082339998 473 361 0.00061749993 477 361 0.00041169999 478 361 0.0016468 483 361 0.0018525999 490 361 0.0018525999 491 361 0.0018525999 60 362 0.0015439999 108 362 0.00051469984 114 362 0.00051469984 126 362 0.00051469984 187 362 0.00051469984 198 362 0.0087493993 206 362 0.0010292998 233 362 0.0056612976 234 362 0.0020587 240 362 0.021616098 241 362 0.071538866 262 362 0.00051469984 272 362 0.0041172989 277 362 0.044261497 279 362 0.00051469984 282 362 0.0036026998 283 362 0.00051469984 284 362 0.0010292998 292 362 0.014410697 293 362 0.0041172989 295 362 0.0077199973 296 362 0.0077199973 298 362 0.0046319999 312 362 0.00051469984 315 362 0.021101397 317 362 0.00051469984 320 362 0.009778697 321 362 0.020586699 326 362 0.00051469984 333 362 0.00051469984 340 362 0.010807998 351 362 0.0010292998 353 362 0.0036026998 358 362 0.0092639998 362 362 0.033968098 370 362 0.00051469984 371 362 0.00051469984 372 362 0.0082346983 376 362 0.00051469984 386 362 0.0066906996 387 362 0.00051469984 392 362 0.0061759986 393 362 0.0015439999 414 362 0.00051469984 417 362 0.00051469984 430 362 0.00051469984 443 362 0.0010292998 444 362 0.0010292998 445 362 0.0046319999 447 362 0.003088 450 362 0.0066906996 452 362 0.0051466972 453 362 0.0020587 455 362 0.029850699 456 362 0.00051469984 457 362 0.0056612976 458 362 0.0015439999 459 362 0.0020587 460 362 0.0010292998 463 362 0.0416881 464 362 0.0025732999 465 362 0.0020587 467 362 0.032938797 468 362 0.0056612976 469 362 0.022130698 470 362 0.025218699 471 362 0.0010292998 473 362 0.00051469984 478 362 0.0020587 483 362 0.0025732999 490 362 0.0025732999 491 362 0.0015439999 9 363 0.0001637 22 363 0.0001637 60 363 0.0034387 82 363 0.0001637 83 363 0.0001637 84 363 0.0001637 104 363 0.0001637 108 363 0.0001637 113 363 0.00032749982 114 363 0.00049119978 126 363 0.00032749982 127 363 0.0001637 130 363 0.0001637 131 363 0.00098249991 151 363 0.0001637 160 363 0.00081869983 171 363 0.00081869983 187 363 0.022924498 188 363 0.00081869983 189 363 0.0001637 190 363 0.0001637 192 363 0.00098249991 194 363 0.00049119978 198 363 0.015392199 200 363 0.0001637 203 363 0.00032749982 206 363 0.0022924999 211 363 0.0001637 214 363 0.0037661998 219 363 0.0001637 221 363 0.0088422969 223 363 0.00098249991 224 363 0.0034387 233 363 0.00081869983 234 363 0.0024561998 237 363 0.0001637 240 363 0.0039298981 241 363 0.011789698 242 363 0.0001637 248 363 0.0001637 250 363 0.00032749982 252 363 0.00049119978 270 363 0.00032749982 276 363 0.00049119978 277 363 0.0442116 279 363 0.0001637 282 363 0.0024561998 283 363 0.0001637 284 363 0.00098249991 285 363 0.00049119978 286 363 0.0001637 288 363 0.0001637 290 363 0.0001637 292 363 0.0081872977 293 363 0.0027836999 294 363 0.0057310984 295 363 0.0011461999 296 363 0.0039298981 298 363 0.0026198998 307 363 0.0001637 308 363 0.006713599 312 363 0.013918497 315 363 0.0099884979 317 363 0.0001637 320 363 0.0021286998 321 363 0.0055673979 322 363 0.0026198998 326 363 0.0021286998 339 363 0.0001637 340 363 0.0070410967 348 363 0.00098249991 350 363 0.0001637 351 363 0.0050760992 354 363 0.0021286998 356 363 0.0001637 358 363 0.0078597963 359 363 0.0096609965 360 363 0.0001637 361 363 0.00081869983 363 363 0.0081872977 370 363 0.0016374998 371 363 0.0029473999 372 363 0.016865898 373 363 0.0016374998 376 363 0.00049119978 384 363 0.0001637 386 363 0.0055673979 387 363 0.00032749982 390 363 0.00049119978 392 363 0.0099884979 393 363 0.0024561998 398 363 0.0001637 413 363 0.0001637 417 363 0.00032749982 419 363 0.016538396 420 363 0.00049119978 422 363 0.0026198998 423 363 0.00032749982 424 363 0.0001637 425 363 0.0001637 426 363 0.0001637 430 363 0.0001637 431 363 0.0001637 434 363 0.0001637 441 363 0.0054035969 442 363 0.00049119978 443 363 0.0021286998 444 363 0.0024561998 445 363 0.0058948994 446 363 0.0001637 447 363 0.0027836999 450 363 0.0050760992 452 363 0.0049123988 453 363 0.0018012 454 363 0.00049119978 455 363 0.034386799 456 363 0.0011461999 457 363 0.0065498985 458 363 0.00081869983 459 363 0.0031111999 460 363 0.00098249991 463 363 0.040936597 464 363 0.00131 465 363 0.0027836999 467 363 0.027836896 468 363 0.0065498985 469 363 0.020468298 470 363 0.022760797 471 363 0.00081869983 473 363 0.00065499987 478 363 0.0019649998 479 363 0.0001637 483 363 0.0019649998 490 363 0.0019649998 491 363 0.0027836999 60 364 0.0018743998 104 364 0.00031239982 107 364 0.00093719992 110 364 0.0012496 114 364 0.00031239982 116 364 0.00093719992 126 364 0.00031239982 174 364 0.00031239982 175 364 0.00062479987 198 364 0.010309298 204 364 0.00031239982 206 364 0.00062479987 233 364 0.0068728998 234 364 0.0053107999 236 364 0.00031239982 240 364 0.0024991999 241 364 0.011871297 242 364 0.011246499 277 364 0.061543297 282 364 0.00093719992 284 364 0.0018743998 292 364 0.0012496 293 364 0.005623199 294 364 0.0034363999 295 364 0.032802198 296 364 0.0012496 297 364 0.0034363999 298 364 0.00093719992 312 364 0.037175898 315 364 0.023742598 319 364 0.0062479973 320 364 0.0062479973 340 364 0.0059355982 358 364 0.0012496 364 364 0.028740998 366 364 0.036238696 370 364 0.0309278 371 364 0.0134333 372 364 0.020930998 373 364 0.0084348992 375 364 0.0021867999 376 364 0.021868199 386 364 0.0090596974 387 364 0.00031239982 391 364 0.0012496 392 364 0.00031239982 393 364 0.0018743998 415 364 0.0018743998 417 364 0.00062479987 441 364 0.022492997 443 364 0.0012496 444 364 0.0031239998 445 364 0.0065603964 447 364 0.013745699 450 364 0.0037487999 452 364 0.0037487999 453 364 0.0028116 454 364 0.00093719992 455 364 0.036551099 456 364 0.00062479987 457 364 0.0012496 458 364 0.00062479987 459 364 0.010309298 460 364 0.00062479987 463 364 0.016244899 464 364 0.00062479987 465 364 0.0012496 467 364 0.0090596974 468 364 0.0121837 469 364 0.0062479973 470 364 0.0068728998 471 364 0.00093719992 473 364 0.00031239982 478 364 0.0012496 483 364 0.0018743998 490 364 0.00093719992 491 364 0.0021867999 60 365 0.0021243 114 365 0.00053109997 172 365 0.0010620998 198 365 0.012214597 206 365 0.00053109997 233 365 0.0058416985 234 365 0.0047795996 236 365 0.00053109997 240 365 0.0026552998 241 365 0.012214597 242 365 0.011152398 270 365 0.00053109997 277 365 0.082846463 279 365 0.00053109997 282 365 0.015400998 284 365 0.0015931998 292 365 0.0047795996 293 365 0.0031863998 295 365 0.0074348971 296 365 0.0026552998 297 365 0.0026552998 298 365 0.0095591992 312 365 0.0132767 315 365 0.0074348971 319 365 0.00053109997 320 365 0.0058416985 321 365 0.00053109997 322 365 0.0026552998 324 365 0.0058416985 340 365 0.010090299 341 365 0.00053109997 351 365 0.0021243 352 365 0.00053109997 354 365 0.0053106993 358 365 0.006903898 364 365 0.0265534 365 365 0.019649498 366 365 0.0053106993 370 365 0.00053109997 372 365 0.050982498 373 365 0.0015931998 376 365 0.00053109997 377 365 0.0010620998 379 365 0.00053109997 385 365 0.00053109997 386 365 0.00053109997 398 365 0.0015931998 415 365 0.0175252 417 365 0.00053109997 419 365 0.016994197 441 365 0.0037174998 443 365 0.0010620998 444 365 0.0010620998 445 365 0.029208697 447 365 0.0042484999 450 365 0.0037174998 452 365 0.0047795996 453 365 0.0026552998 455 365 0.034519397 456 365 0.00053109997 457 365 0.0015931998 458 365 0.00053109997 459 365 0.027084399 460 365 0.00053109997 463 365 0.014338799 464 365 0.00053109997 465 365 0.00053109997 467 365 0.0090280995 468 365 0.0090280995 469 365 0.0053106993 470 365 0.0053106993 478 365 0.00053109997 483 365 0.0015931998 490 365 0.00053109997 491 365 0.0037174998 9 366 1.5399986e-05 16 366 1.5399986e-05 18 366 7.7199991e-05 22 366 0.0002931999 25 366 1.5399986e-05 60 366 0.0012653 79 366 1.5399986e-05 82 366 1.5399986e-05 83 366 1.5399986e-05 84 366 1.5399986e-05 108 366 3.0899988e-05 113 366 4.6299989e-05 114 366 9.2599992e-05 126 366 4.6299989e-05 127 366 1.5399986e-05 130 366 1.5399986e-05 131 366 6.169999e-05 135 366 4.6299989e-05 139 366 1.5399986e-05 150 366 0.0004474998 151 366 1.5399986e-05 160 366 0.0023145999 169 366 0.00021599999 171 366 1.5399986e-05 172 366 0.0017127998 187 366 0.00066349981 189 366 4.6299989e-05 190 366 7.7199991e-05 191 366 0.00050919992 192 366 3.0899988e-05 194 366 7.7199991e-05 196 366 1.5399986e-05 197 366 1.5399986e-05 198 366 0.006881997 200 366 4.6299989e-05 201 366 3.0899988e-05 203 366 4.6299989e-05 204 366 7.7199991e-05 206 366 0.00010799999 207 366 4.6299989e-05 209 366 1.5399986e-05 214 366 0.0035026998 218 366 1.5399986e-05 219 366 0.00021599999 223 366 0.00041659991 224 366 7.7199991e-05 229 366 1.5399986e-05 233 366 0.0028237998 234 366 0.0038884999 236 366 0.00066349981 237 366 0.0001389 240 366 0.0038729999 241 366 0.0081009977 242 366 0.0035489998 248 366 1.5399986e-05 250 366 1.5399986e-05 252 366 0.00098749995 270 366 0.0018670999 271 366 6.169999e-05 272 366 0.00026229979 274 366 0.0023453999 277 366 0.052201197 279 366 4.6299989e-05 282 366 0.015754499 283 366 0.0023916999 284 366 0.0011264 285 366 0.00067889993 286 366 0.00063259993 287 366 3.0899988e-05 288 366 6.169999e-05 289 366 7.7199991e-05 290 366 0.0002468999 292 366 0.0293178 293 366 0.016078498 294 366 0.0025614998 295 366 0.0031168999 296 366 0.0048605986 297 366 0.0025922998 298 366 0.0025459998 299 366 1.5399986e-05 304 366 0.0033020999 307 366 0.0001852 312 366 0.0068510994 313 366 0.00010799999 315 366 0.014782399 317 366 1.5399986e-05 318 366 1.5399986e-05 319 366 0.0036878998 320 366 0.00055549992 321 366 0.0011880998 322 366 0.0025151998 324 366 0.0169889 326 366 0.0013269999 327 366 1.5399986e-05 328 366 0.0037958999 329 366 3.0899988e-05 331 366 6.169999e-05 332 366 1.5399986e-05 338 366 0.00032399991 339 366 0.00037029991 340 366 0.0022836998 341 366 4.6299989e-05 344 366 4.6299989e-05 349 366 6.169999e-05 350 366 0.00080239982 351 366 0.0042124987 352 366 0.0085329972 353 366 0.00046289992 354 366 0.0018670999 355 366 0.0001852 356 366 7.7199991e-05 357 366 0.00010799999 358 366 0.0035952998 364 366 3.0899988e-05 366 366 0.069853544 368 366 0.0004474998 370 366 0.0001389 371 366 0.0041353963 372 366 0.071689785 373 366 0.033159997 374 366 1.5399986e-05 376 366 6.169999e-05 377 366 3.0899988e-05 380 366 3.0899988e-05 384 366 3.0899988e-05 385 366 0.00012339999 386 366 0.0033175 387 366 3.0899988e-05 390 366 6.169999e-05 392 366 4.6299989e-05 393 366 0.00012339999 397 366 7.7199991e-05 398 366 0.0004782998 401 366 1.5399986e-05 402 366 0.00057089981 404 366 1.5399986e-05 405 366 4.6299989e-05 414 366 1.5399986e-05 415 366 0.0066041984 417 366 0.00032399991 419 366 0.0045982972 421 366 4.6299989e-05 422 366 6.169999e-05 423 366 1.5399986e-05 425 366 1.5399986e-05 430 366 1.5399986e-05 431 366 3.0899988e-05 432 366 1.5399986e-05 433 366 3.0899988e-05 434 366 3.0899988e-05 441 366 0.0018824998 442 366 0.00032399991 443 366 0.0033175 444 366 0.0012498999 445 366 0.0063727982 446 366 0.00043209991 447 366 0.0022219999 448 366 1.5399986e-05 450 366 0.0042433999 452 366 0.004227899 453 366 0.0016355999 454 366 0.00092579983 455 366 0.040119097 456 366 0.00063259993 457 366 0.0018516998 458 366 0.0001543 459 366 0.00078699994 460 366 0.00095669995 463 366 0.0080237985 464 366 0.0016355999 465 366 0.00087949983 467 366 0.0094433986 468 366 0.010199498 469 366 0.0055394992 470 366 0.0039192997 471 366 0.0041044988 473 366 9.2599992e-05 477 366 0.0001389 478 366 0.00083319983 483 366 0.00083319983 489 366 4.6299989e-05 490 366 0.00030859979 491 366 0.0026385998 60 367 0.0020736 114 367 0.00051839999 126 367 0.00051839999 160 367 0.00051839999 198 367 0.0088128969 206 367 0.0010368 214 367 0.0025919999 233 367 0.00051839999 234 367 0.0051839985 241 367 0.012441698 242 367 0.034214597 270 367 0.00051839999 272 367 0.0020736 277 367 0.046656299 279 367 0.00051839999 282 367 0.020736098 283 367 0.0057023987 284 367 0.0015552 285 367 0.00051839999 286 367 0.00051839999 289 367 0.00051839999 292 367 0.0031103999 293 367 0.0015552 294 367 0.0010368 295 367 0.0010368 296 367 0.011923298 297 367 0.0010368 298 367 0.0010368 307 367 0.0020736 312 367 0.0015552 321 367 0.020736098 324 367 0.033696197 328 367 0.0041471981 329 367 0.00051839999 333 367 0.00051839999 340 367 0.0098496974 349 367 0.0010368 350 367 0.0010368 351 367 0.0031103999 354 367 0.0041471981 358 367 0.0155521 367 367 0.025920197 372 367 0.023846596 373 367 0.0020736 402 367 0.00051839999 414 367 0.06428194 417 367 0.00051839999 419 367 0.00051839999 443 367 0.0010368 444 367 0.00051839999 445 367 0.0031103999 447 367 0.013996899 450 367 0.0046655983 452 367 0.0051839985 453 367 0.0025919999 454 367 0.0015552 455 367 0.033177797 456 367 0.00051839999 457 367 0.0020736 458 367 0.0010368 459 367 0.020217698 460 367 0.0010368 463 367 0.022291299 464 367 0.00051839999 465 367 0.00051839999 467 367 0.0093312971 468 367 0.0088128969 469 367 0.0057023987 470 367 0.0057023987 471 367 0.00051839999 473 367 0.00051839999 478 367 0.0010368 483 367 0.0015552 490 367 0.0010368 491 367 0.0015552 13 368 0.00011179999 22 368 0.00011179999 24 368 0.00011179999 25 368 0.0032434999 60 368 0.0014539999 82 368 0.00011179999 108 368 0.00011179999 114 368 0.00011179999 120 368 0.00022369999 126 368 0.00011179999 135 368 0.00033549988 139 368 0.00011179999 142 368 0.00078289979 150 368 0.00011179999 160 368 0.00022369999 165 368 0.00022369999 170 368 0.00011179999 171 368 0.00011179999 187 368 0.00067109987 189 368 0.00011179999 190 368 0.00011179999 191 368 0.00011179999 193 368 0.00011179999 194 368 0.00022369999 198 368 0.010289699 206 368 0.00022369999 214 368 0.0059276968 218 368 0.00011179999 223 368 0.00022369999 224 368 0.011631798 233 368 0.0027961 234 368 0.0051447973 236 368 0.00033549988 237 368 0.00011179999 240 368 0.0019013998 241 368 0.0161056 242 368 0.0095067993 252 368 0.00011179999 270 368 0.0010066 272 368 0.0026842998 277 368 0.070461869 279 368 0.00055919983 282 368 0.0152108 283 368 0.00033549988 284 368 0.0015657998 289 368 0.00011179999 292 368 0.0024605999 293 368 0.0074935965 294 368 0.0049210973 295 368 0.00067109987 296 368 0.0048092976 297 368 0.0035789998 298 368 0.0012302999 299 368 0.00011179999 301 368 0.00011179999 307 368 0.018566199 312 368 0.0079408996 315 368 0.016553 317 368 0.00011179999 318 368 0.0021249999 319 368 0.0036908998 320 368 0.0012302999 321 368 0.0039145984 322 368 0.00022369999 324 368 0.017223999 326 368 0.00044739991 328 368 0.0040263981 331 368 0.00011179999 332 368 0.00011179999 335 368 0.00011179999 339 368 0.00044739991 340 368 0.0031315999 350 368 0.009394899 351 368 0.0032434999 352 368 0.020131998 354 368 0.010513399 355 368 0.00011179999 356 368 0.0019013998 358 368 0.0053684972 366 368 0.00033549988 368 368 0.013868697 369 368 0.00011179999 370 368 0.00011179999 371 368 0.00033549988 372 368 0.034112498 373 368 0.00044739991 377 368 0.00011179999 380 368 0.00022369999 386 368 0.014092397 387 368 0.00011179999 390 368 0.00033549988 392 368 0.00033549988 393 368 0.00044739991 404 368 0.00011179999 405 368 0.0014539999 414 368 0.0061513968 415 368 0.0026842998 417 368 0.00044739991 419 368 0.009618599 421 368 0.00011179999 422 368 0.00022369999 430 368 0.00011179999 438 368 0.0029079998 441 368 0.0026842998 443 368 0.0034671999 444 368 0.0022368999 445 368 0.011967298 446 368 0.00067109987 447 368 0.0055921972 450 368 0.0036908998 452 368 0.0039145984 453 368 0.0017894998 454 368 0.00033549988 455 368 0.044178497 456 368 0.00067109987 457 368 0.0021249999 458 368 0.00044739991 459 368 0.00022369999 460 368 0.00089479983 463 368 0.013868697 464 368 0.0078290999 465 368 0.00078289979 467 368 0.0090593994 468 368 0.012302898 469 368 0.006710697 470 368 0.0076053999 471 368 0.0010066 473 368 0.00022369999 477 368 0.00011179999 478 368 0.0010066 483 368 0.0013420999 490 368 0.00067109987 491 368 0.0019013998 9 369 7.0799986e-05 18 369 0.00014169999 60 369 0.0029044999 82 369 7.0799986e-05 83 369 7.0799986e-05 84 369 7.0799986e-05 108 369 7.0799986e-05 113 369 0.00014169999 114 369 0.00021249999 126 369 0.00014169999 127 369 7.0799986e-05 150 369 0.00070839981 165 369 7.0799986e-05 189 369 0.00014169999 190 369 0.00014169999 192 369 7.0799986e-05 194 369 0.00021249999 198 369 0.0029044999 200 369 7.0799986e-05 201 369 7.0799986e-05 203 369 7.0799986e-05 204 369 0.0014167998 206 369 0.0003541999 207 369 7.0799986e-05 214 369 7.0799986e-05 223 369 7.0799986e-05 224 369 0.0039670989 233 369 7.0799986e-05 234 369 0.0018418999 237 369 7.0799986e-05 240 369 7.0799986e-05 241 369 0.0043212995 248 369 7.0799986e-05 250 369 7.0799986e-05 252 369 0.003117 262 369 0.00014169999 277 369 0.010555398 282 369 0.0014167998 283 369 0.00014169999 284 369 0.00049589993 285 369 7.0799986e-05 286 369 7.0799986e-05 290 369 0.0058798976 292 369 0.0030461999 293 369 0.003117 294 369 0.0011334999 295 369 0.0167186 296 369 0.0045338981 297 369 0.00021249999 305 369 7.0799986e-05 307 369 7.0799986e-05 308 369 0.00014169999 312 369 0.0053130984 313 369 7.0799986e-05 315 369 0.011193 317 369 7.0799986e-05 320 369 0.0019126998 321 369 0.00014169999 322 369 0.0021251999 326 369 0.0015584999 340 369 0.0037546 351 369 0.00021249999 356 369 0.00014169999 358 369 0.0057381988 359 369 0.010484599 369 369 0.0575234 370 369 0.0011334999 371 369 0.0034711999 372 369 0.0037546 373 369 0.0016293998 376 369 0.00042499998 386 369 0.027203199 387 369 0.00021249999 389 369 0.0023377999 390 369 0.0034003998 391 369 0.0033296 392 369 0.028265797 393 369 0.065670192 402 369 0.00021249999 413 369 0.00014169999 414 369 0.0021960998 417 369 0.00049589993 419 369 0.00092089991 420 369 0.00014169999 421 369 7.0799986e-05 422 369 0.00014169999 423 369 7.0799986e-05 424 369 0.0026919998 425 369 7.0799986e-05 430 369 7.0799986e-05 431 369 7.0799986e-05 433 369 7.0799986e-05 434 369 7.0799986e-05 443 369 0.00056669977 444 369 0.0060923994 445 369 0.0022668999 446 369 7.0799986e-05 447 369 0.0083592981 450 369 0.0089259967 452 369 0.0043921992 453 369 0.0010625999 454 369 0.00056669977 455 369 0.021039996 456 369 0.0007793 457 369 0.0049588978 458 369 0.00099179987 459 369 0.00063759997 460 369 0.0012043 463 369 0.018418796 464 369 0.0092093982 465 369 0.010626197 467 369 0.016010199 468 369 0.0062340982 469 369 0.010272 470 369 0.011901397 471 369 0.0030461999 473 369 0.00028339983 477 369 0.00021249999 478 369 0.0016293998 483 369 0.0017001999 490 369 0.0087134987 491 369 0.0035420998 9 370 6.8699999e-05 18 370 0.0001375 22 370 0.0001375 60 370 0.0027494999 82 370 6.8699999e-05 83 370 6.8699999e-05 84 370 6.8699999e-05 108 370 6.8699999e-05 113 370 0.0001375 114 370 0.0002062 126 370 6.8699999e-05 150 370 0.00061859982 160 370 0.0040554963 169 370 0.0015121999 172 370 0.0026807999 187 370 0.010379396 189 370 6.8699999e-05 190 370 6.8699999e-05 192 370 6.8699999e-05 194 370 6.8699999e-05 198 370 0.0043304972 200 370 6.8699999e-05 203 370 6.8699999e-05 204 370 6.8699999e-05 206 370 0.0001375 207 370 6.8699999e-05 214 370 0.0028869999 223 370 6.8699999e-05 224 370 0.0001375 233 370 0.0068737976 234 370 0.013335198 237 370 6.8699999e-05 241 370 0.0030244999 252 370 0.000275 262 370 0.015397299 272 370 0.0068737976 277 370 0.12998348 279 370 0.0002062 282 370 6.8699999e-05 284 370 0.00041239988 289 370 0.016359597 290 370 6.8699999e-05 292 370 0.012097899 293 370 0.016772099 294 370 0.0001375 295 370 0.062620282 296 370 0.0001375 307 370 0.0052240975 308 370 6.8699999e-05 312 370 0.0065987967 315 370 0.0063238963 320 370 0.0001375 339 370 0.00048119994 340 370 0.0015121999 354 370 6.8699999e-05 356 370 0.0001375 358 370 0.0019246999 359 370 0.0001375 369 370 0.00068739988 370 370 0.00082489988 371 370 0.0026119999 372 370 6.8699999e-05 373 370 0.00048119994 375 370 6.8699999e-05 376 370 0.044267297 384 370 6.8699999e-05 385 370 6.8699999e-05 386 370 0.019384097 387 370 6.8699999e-05 391 370 0.0002062 392 370 0.00048119994 393 370 0.0017183998 396 370 6.8699999e-05 398 370 6.8699999e-05 402 370 6.8699999e-05 404 370 0.0002062 414 370 0.0056364983 417 370 0.00041239988 421 370 6.8699999e-05 422 370 6.8699999e-05 423 370 6.8699999e-05 430 370 6.8699999e-05 431 370 6.8699999e-05 433 370 6.8699999e-05 434 370 0.0001375 443 370 0.0046053976 444 370 0.0002062 445 370 0.0077673979 446 370 0.00075609982 447 370 0.00075609982 448 370 0.0002062 450 370 0.0043304972 452 370 0.0063238963 453 370 0.0010998 454 370 0.0023371 455 370 0.0328568 456 370 0.00034369994 457 370 0.0030244999 458 370 0.00096229999 459 370 0.00034369994 460 370 0.00096229999 463 370 0.0048803985 464 370 0.00041239988 465 370 0.023302197 467 370 0.014297497 468 370 0.0011684999 469 370 0.0060488991 470 370 0.0066675991 471 370 0.00054989988 473 370 0.0001375 477 370 0.0001375 478 370 0.0013748 483 370 0.0010998 490 370 0.0093483999 491 370 0.00082489988 9 371 4.7399997e-05 18 371 9.4799994e-05 22 371 4.7399997e-05 60 371 0.0020857998 82 371 4.7399997e-05 83 371 4.7399997e-05 84 371 4.7399997e-05 108 371 4.7399997e-05 113 371 9.4799994e-05 114 371 0.00014219999 126 371 9.4799994e-05 127 371 4.7399997e-05 150 371 0.00071109994 160 371 0.0011850998 169 371 0.0015168998 172 371 0.00080589997 187 371 0.00023699999 189 371 9.4799994e-05 190 371 9.4799994e-05 194 371 0.00014219999 197 371 4.7399997e-05 198 371 0.0041715987 200 371 9.4799994e-05 201 371 9.4799994e-05 203 371 9.4799994e-05 204 371 0.00014219999 206 371 0.00014219999 207 371 4.7399997e-05 214 371 0.00028439984 223 371 0.00018959999 224 371 0.008011397 233 371 0.0019435999 234 371 0.0024175998 237 371 9.4799994e-05 240 371 0.0018961998 241 371 0.017065696 248 371 4.7399997e-05 250 371 4.7399997e-05 252 371 0.00018959999 262 371 0.016686399 272 371 4.7399997e-05 277 371 0.038018499 282 371 0.0016117999 283 371 0.00018959999 284 371 0.00042659999 286 371 0.0070632994 288 371 0.00014219999 289 371 0.0025123998 290 371 0.0035078998 292 371 0.027067997 293 371 0.0102394 294 371 0.00085329986 295 371 0.011045299 296 371 0.0028442999 297 371 0.0063047968 298 371 0.0035078998 299 371 4.7399997e-05 305 371 4.7399997e-05 307 371 9.4799994e-05 308 371 0.0073002987 312 371 0.013557699 315 371 0.0030812998 317 371 9.4799994e-05 320 371 0.011282299 321 371 0.00042659999 322 371 0.0021331999 324 371 4.7399997e-05 326 371 0.00085329986 327 371 0.00018959999 328 371 9.4799994e-05 338 371 0.00047399988 339 371 0.0005214999 340 371 0.0037449999 341 371 4.7399997e-05 351 371 4.7399997e-05 354 371 0.0005214999 356 371 0.00014219999 358 371 0.0044559985 359 371 9.4799994e-05 369 371 0.0027021 370 371 0.0036976 371 371 0.010571197 372 371 0.0036026998 373 371 0.08063519 376 371 0.0037923998 386 371 0.010191999 387 371 9.4799994e-05 389 371 0.00014219999 390 371 0.00023699999 391 371 4.7399997e-05 392 371 0.0005214999 393 371 0.0085327998 398 371 0.00014219999 402 371 4.7399997e-05 405 371 4.7399997e-05 414 371 4.7399997e-05 417 371 0.00042659999 419 371 0.00037919986 421 371 4.7399997e-05 422 371 0.00018959999 423 371 4.7399997e-05 425 371 4.7399997e-05 430 371 4.7399997e-05 431 371 4.7399997e-05 433 371 4.7399997e-05 434 371 4.7399997e-05 441 371 0.0019909998 443 371 0.002228 444 371 0.0049300976 445 371 0.0066365972 446 371 0.00014219999 447 371 0.004882697 450 371 0.0064469986 452 371 0.0054514967 453 371 0.00099549978 454 371 0.00071109994 455 371 0.026830997 456 371 0.00056889979 457 371 0.004740499 458 371 0.00075849984 459 371 0.00033179997 460 371 0.00094809989 463 371 0.024934798 464 371 0.0071106963 465 371 0.011708897 467 371 0.015880499 468 371 0.0047878996 469 371 0.0079165995 470 371 0.0088172965 471 371 0.0027494999 473 371 0.00018959999 477 371 0.00018959999 478 371 0.0014694999 483 371 0.0012798999 489 371 4.7399997e-05 490 371 0.00085329986 491 371 0.0011850998 9 372 3.5699995e-05 18 372 0.000143 19 372 7.1499991e-05 22 372 0.00017869999 60 372 0.0025020998 79 372 3.5699995e-05 82 372 3.5699995e-05 83 372 3.5699995e-05 84 372 3.5699995e-05 108 372 3.5699995e-05 113 372 7.1499991e-05 114 372 0.000143 126 372 7.1499991e-05 127 372 3.5699995e-05 130 372 7.1499991e-05 134 372 7.1499991e-05 135 372 0.00071489997 139 372 3.5699995e-05 150 372 0.00064339978 160 372 0.0016084998 161 372 3.5699995e-05 169 372 0.00085779978 172 372 0.00064339978 187 372 3.5699995e-05 189 372 0.00010719999 190 372 0.00010719999 191 372 0.00085779978 194 372 0.000143 197 372 3.5699995e-05 198 372 0.0048968978 200 372 7.1499991e-05 201 372 7.1499991e-05 203 372 7.1499991e-05 204 372 7.1499991e-05 206 372 0.00017869999 207 372 3.5699995e-05 214 372 0.000143 218 372 3.5699995e-05 223 372 0.000143 224 372 0.0029666999 225 372 0.00017869999 227 372 3.5699995e-05 233 372 0.0028594998 234 372 0.0022161 237 372 0.000143 240 372 0.00053619989 241 372 0.0038602999 242 372 0.0034671 243 372 3.5699995e-05 248 372 3.5699995e-05 250 372 7.1499991e-05 252 372 0.00021449999 262 372 0.00010719999 270 372 0.00028589997 271 372 0.00025019981 272 372 0.00028589997 276 372 0.0030381999 277 372 0.070057452 279 372 3.5699995e-05 282 372 0.027951498 283 372 0.0043964982 284 372 0.00053619989 285 372 3.5699995e-05 286 372 0.0010722999 288 372 0.00010719999 289 372 0.0033955998 290 372 0.0046823993 292 372 0.011688199 293 372 0.0043606982 294 372 0.00096509978 295 372 0.052614599 296 372 0.0068627968 297 372 0.00089359982 298 372 0.00035739993 299 372 0.00050039985 305 372 0.00025019981 307 372 0.00050039985 308 372 0.00025019981 312 372 0.009114597 313 372 0.00042889989 315 372 0.011008997 317 372 0.0021445998 319 372 0.00017869999 320 372 0.0023232999 321 372 0.00021449999 322 372 0.00050039985 323 372 7.1499991e-05 324 372 0.00028589997 326 372 0.0028237 327 372 0.0011437999 328 372 0.012688998 330 372 3.5699995e-05 331 372 0.00025019981 332 372 0.000143 338 372 0.00082209986 339 372 0.00021449999 340 372 0.011259198 341 372 0.00010719999 350 372 0.00046469993 351 372 0.0084354989 352 372 0.00010719999 354 372 0.0096507967 355 372 3.5699995e-05 356 372 0.00017869999 357 372 0.0010366 358 372 0.0090430975 366 372 7.1499991e-05 369 372 0.000143 370 372 0.00010719999 371 372 0.0095077977 372 372 0.015298299 373 372 0.00060759997 374 372 3.5699995e-05 375 372 0.0033241999 376 372 0.0059691966 384 372 3.5699995e-05 386 372 0.00017869999 387 372 7.1499991e-05 390 372 0.00028589997 391 372 0.0010366 392 372 0.0013939999 393 372 0.0026807999 396 372 0.00010719999 397 372 0.002931 398 372 0.00017869999 402 372 0.0021445998 404 372 0.00032169977 405 372 0.00028589997 408 372 0.0029666999 412 372 0.00010719999 414 372 7.1499991e-05 417 372 0.00042889989 419 372 0.0012867998 421 372 7.1499991e-05 422 372 0.000143 423 372 7.1499991e-05 424 372 3.5699995e-05 425 372 3.5699995e-05 426 372 3.5699995e-05 430 372 0.000143 431 372 3.5699995e-05 433 372 3.5699995e-05 434 372 3.5699995e-05 443 372 0.0030024999 444 372 0.0030739999 445 372 0.0072201975 446 372 0.00039319997 447 372 0.0034671 450 372 0.0061121993 452 372 0.0060406998 453 372 0.0021088999 454 372 0.00057189981 455 372 0.026021399 456 372 0.00046469993 457 372 0.0028951999 458 372 0.00064339978 459 372 0.00046469993 460 372 0.0010722999 463 372 0.0115452 464 372 0.0041462965 465 372 0.011330698 467 372 0.015262499 468 372 0.0028237 469 372 0.0064695999 470 372 0.0073988996 471 372 0.0022876 473 372 0.000143 477 372 0.00025019981 478 372 0.0014654999 483 372 0.0015727 489 372 3.5699995e-05 490 372 0.0048968978 491 372 0.0024305999 9 373 7.6299999e-05 18 373 0.0001527 60 373 0.0025954 82 373 7.6299999e-05 83 373 7.6299999e-05 84 373 7.6299999e-05 108 373 7.6299999e-05 113 373 0.0001527 114 373 0.000229 126 373 0.0001527 127 373 7.6299999e-05 150 373 0.00061069988 160 373 0.0010686999 169 373 7.6299999e-05 172 373 0.00061069988 175 373 7.6299999e-05 189 373 7.6299999e-05 190 373 0.0001527 192 373 7.6299999e-05 194 373 0.0001527 198 373 0.0060304999 200 373 7.6299999e-05 201 373 7.6299999e-05 203 373 7.6299999e-05 204 373 7.6299999e-05 206 373 0.000229 207 373 7.6299999e-05 214 373 7.6299999e-05 223 373 0.0001527 224 373 0.0070228986 233 373 0.0016031 234 373 0.0021374 237 373 7.6299999e-05 240 373 0.0014503999 241 373 0.014427498 248 373 7.6299999e-05 250 373 7.6299999e-05 252 373 0.000229 262 373 0.0010686999 270 373 0.0001527 272 373 7.6299999e-05 277 373 0.024198499 282 373 0.0029771 283 373 0.00030529988 284 373 0.00053439988 286 373 0.0032823998 288 373 0.0001527 289 373 0.0024426999 290 373 0.00068699988 292 373 0.0164885 293 373 0.0031297999 294 373 0.00053439988 295 373 0.016793899 296 373 0.0024426999 297 373 0.0012214 298 373 0.00030529988 305 373 7.6299999e-05 307 373 7.6299999e-05 308 373 0.015877899 312 373 0.0098472983 315 373 0.00091599999 317 373 7.6299999e-05 319 373 0.0001527 320 373 0.0067938976 321 373 0.0037405 322 373 0.0003817 324 373 0.000229 326 373 0.0001527 327 373 0.0001527 328 373 7.6299999e-05 340 373 0.006870199 351 373 7.6299999e-05 352 373 7.6299999e-05 354 373 0.0001527 356 373 0.0001527 358 373 0.0044274963 359 373 0.0012977 369 373 0.0082442984 370 373 0.0022900999 371 373 0.0073281974 372 373 0.0074045993 373 373 0.08763355 376 373 0.0042747967 386 373 0.011450399 387 373 0.000229 389 373 0.00091599999 390 373 0.00068699988 391 373 0.0016031 392 373 0.0012977 393 373 0.023969498 405 373 0.0001527 413 373 7.6299999e-05 414 373 7.6299999e-05 415 373 7.6299999e-05 417 373 0.00053439988 419 373 0.00061069988 421 373 7.6299999e-05 422 373 0.0001527 423 373 7.6299999e-05 424 373 7.6299999e-05 425 373 7.6299999e-05 430 373 7.6299999e-05 431 373 7.6299999e-05 433 373 7.6299999e-05 434 373 7.6299999e-05 441 373 0.0017557 442 373 7.6299999e-05 443 373 0.001374 444 373 0.00083969999 445 373 0.0058014989 446 373 7.6299999e-05 447 373 0.0038168 450 373 0.0076335967 452 373 0.0067175999 453 373 0.0016031 454 373 0.00061069988 455 373 0.025419798 456 373 0.00068699988 457 373 0.0031297999 458 373 0.00099239987 459 373 0.00045799999 460 373 0.00099239987 463 373 0.011603098 464 373 0.0010686999 465 373 0.011144999 467 373 0.016717598 468 373 0.0017557 469 373 0.010839697 470 373 0.012137398 471 373 0.0028243999 473 373 0.00030529988 477 373 0.0001527 478 373 0.0016794 483 373 0.0011449999 490 373 0.0010686999 491 373 0.0012977 22 374 0.00016659999 60 374 0.0019989999 108 374 0.00016659999 114 374 0.00016659999 126 374 0.00016659999 130 374 0.00016659999 131 374 0.00016659999 160 374 0.0013326998 169 374 0.00099949981 171 374 0.00016659999 172 374 0.00033319998 187 374 0.00016659999 190 374 0.00016659999 198 374 0.0041645989 204 374 0.00016659999 206 374 0.00049979985 214 374 0.0013326998 223 374 0.057471298 224 374 0.00033319998 225 374 0.00016659999 233 374 0.0019989999 234 374 0.0011660999 240 374 0.00099949981 241 374 0.0016657999 252 374 0.00083289994 270 374 0.0028318998 272 374 0.00033319998 277 374 0.14192897 279 374 0.00016659999 282 374 0.00049979985 283 374 0.00016659999 284 374 0.00033319998 285 374 0.00016659999 287 374 0.0036648 290 374 0.008828897 292 374 0.012660298 293 374 0.0029984999 294 374 0.00016659999 295 374 0.022155598 296 374 0.0043311976 297 374 0.0073296987 312 374 0.011161096 320 374 0.00016659999 324 374 0.00016659999 328 374 0.010994498 338 374 0.00016659999 339 374 0.00016659999 340 374 0.011993997 344 374 0.00016659999 356 374 0.00016659999 358 374 0.0079959966 370 374 0.015991997 372 374 0.011827398 373 374 0.030651297 374 374 0.015325699 375 374 0.00049979985 387 374 0.00016659999 390 374 0.00016659999 392 374 0.00033319998 393 374 0.0011660999 394 374 0.00066629983 405 374 0.00016659999 408 374 0.00033319998 416 374 0.00016659999 417 374 0.00049979985 430 374 0.00016659999 443 374 0.0064967982 444 374 0.0036648 445 374 0.014159597 446 374 0.00033319998 447 374 0.0053306967 450 374 0.0034983 452 374 0.0058303997 453 374 0.0028318998 454 374 0.00049979985 455 374 0.032317199 456 374 0.00016659999 457 374 0.0031650998 458 374 0.00066629983 459 374 0.00049979985 460 374 0.00083289994 463 374 0.010827899 464 374 0.00066629983 465 374 0.0016657999 467 374 0.019157097 468 374 0.0084957965 469 374 0.0074962974 470 374 0.0079959966 471 374 0.00049979985 473 374 0.00016659999 477 374 0.00016659999 478 374 0.0011660999 483 374 0.00083289994 490 374 0.00099949981 491 374 0.0019989999 22 375 0.0038426998 60 375 0.0065030977 114 375 0.00029559992 126 375 0.00029559992 160 375 0.0011823999 169 375 0.0011823999 172 375 0.0011823999 198 375 0.0029559999 206 375 0.00059119985 214 375 0.029263999 223 375 0.00029559992 233 375 0.0076854974 234 375 0.0331067 241 375 0.055867597 270 375 0.012710597 273 375 0.0091634989 277 375 0.0091634989 284 375 0.00029559992 286 375 0.013892997 292 375 0.0026603998 295 375 0.0041382983 312 375 0.0112326 326 375 0.042565797 340 375 0.0056162998 356 375 0.00029559992 358 375 0.015075397 372 375 0.008572299 373 375 0.00059119985 375 375 0.037244998 417 375 0.00059119985 443 375 0.015962198 444 375 0.015075397 445 375 0.013597399 446 375 0.0011823999 447 375 0.013006199 450 375 0.0050251 452 375 0.034289099 453 375 0.015666597 454 375 0.0035470999 455 375 0.023943197 457 375 0.0032515998 458 375 0.00088679977 459 375 0.00059119985 460 375 0.0011823999 463 375 0.0032515998 464 375 0.00088679977 465 375 0.0014779998 467 375 0.015962198 468 375 0.013301797 469 375 0.0065030977 470 375 0.0070942976 471 375 0.00029559992 473 375 0.00029559992 477 375 0.00029559992 478 375 0.0011823999 483 375 0.00088679977 490 375 0.00088679977 491 375 0.0026603998 22 376 0.0012508 60 376 0.0022930999 108 376 0.00020849999 114 376 0.00020849999 126 376 0.00020849999 150 376 0.00020849999 160 376 0.0012508 169 376 0.0016676998 172 376 0.0012508 187 376 0.033562597 190 376 0.00020849999 194 376 0.00020849999 198 376 0.0052115992 200 376 0.00020849999 206 376 0.0004168998 214 376 0.0045861974 223 376 0.0010422999 224 376 0.00062539987 233 376 0.0050030984 234 376 0.0027099999 237 376 0.00020849999 241 376 0.016468599 252 376 0.00062539987 262 376 0.022305597 272 376 0.00020849999 276 376 0.00020849999 277 376 0.026474897 282 376 0.0012508 283 376 0.00062539987 284 376 0.00062539987 285 376 0.00020849999 290 376 0.00020849999 292 376 0.012507796 293 376 0.015426297 294 376 0.0035438999 295 376 0.052115899 296 376 0.0004168998 298 376 0.00062539987 299 376 0.0022930999 307 376 0.00020849999 312 376 0.013133198 315 376 0.012924697 317 376 0.0018761999 320 376 0.0012508 321 376 0.0062538981 326 376 0.014175497 328 376 0.0004168998 331 376 0.00020849999 332 376 0.00020849999 335 376 0.00020849999 340 376 0.0052115992 349 376 0.00020849999 351 376 0.00020849999 354 376 0.00083389995 355 376 0.00020849999 356 376 0.00020849999 358 376 0.0064623989 359 376 0.00020849999 369 376 0.0010422999 370 376 0.0150094 371 376 0.0193871 372 376 0.00062539987 373 376 0.0014591999 374 376 0.00020849999 376 376 0.013550099 384 376 0.0004168998 385 376 0.0004168998 386 376 0.0010422999 387 376 0.00020849999 390 376 0.00020849999 392 376 0.0152178 393 376 0.024181798 397 376 0.0010422999 402 376 0.00020849999 404 376 0.0025016 405 376 0.0012508 414 376 0.00020849999 417 376 0.00062539987 422 376 0.00020849999 430 376 0.00020849999 443 376 0.0025016 444 376 0.0010422999 445 376 0.0062538981 447 376 0.0075046979 450 376 0.0058369972 452 376 0.0064623989 453 376 0.0018761999 454 376 0.00083389995 455 376 0.026058 456 376 0.0004168998 457 376 0.0027099999 458 376 0.0014591999 459 376 0.0004168998 460 376 0.00062539987 463 376 0.015843198 464 376 0.0018761999 465 376 0.011465497 467 376 0.0193871 468 376 0.0020845998 469 376 0.011256997 470 376 0.012924697 471 376 0.0012508 473 376 0.00020849999 477 376 0.00020849999 478 376 0.0018761999 483 376 0.0010422999 490 376 0.0014591999 491 376 0.0012508 22 377 0.00019199999 24 377 9.5999989e-05 60 377 0.0011520998 108 377 9.5999989e-05 114 377 0.00019199999 126 377 9.5999989e-05 130 377 9.5999989e-05 131 377 0.0039362982 135 377 0.0025921999 137 377 9.5999989e-05 139 377 0.00019199999 150 377 9.5999989e-05 160 377 0.00057599996 161 377 9.5999989e-05 165 377 9.5999989e-05 170 377 9.5999989e-05 171 377 0.00019199999 172 377 0.00067199999 187 377 0.00019199999 190 377 9.5999989e-05 191 377 9.5999989e-05 194 377 0.00019199999 198 377 0.016609099 206 377 0.00067199999 214 377 0.00096009998 223 377 0.0060484 224 377 0.0026882 233 377 0.0080644973 234 377 0.0014400999 236 377 0.00028799986 240 377 0.0026882 241 377 0.0106567 242 377 0.00096009998 252 377 0.015648998 270 377 0.0003839999 272 377 0.0021120999 273 377 9.5999989e-05 274 377 0.006144397 277 377 0.10608679 282 377 0.0049922988 283 377 0.00019199999 284 377 0.00047999993 285 377 9.5999989e-05 292 377 0.0037441999 293 377 0.011616699 294 377 0.0012480998 295 377 0.014208898 296 377 0.0030721999 297 377 0.00028799986 298 377 0.0040322989 304 377 0.00057599996 307 377 9.5999989e-05 312 377 0.010560699 315 377 0.020929299 319 377 0.0134409 320 377 0.0019200998 321 377 0.0049922988 322 377 0.012384798 324 377 0.0072004981 326 377 0.0028801998 328 377 0.00028799986 339 377 0.00067199999 340 377 0.0098885968 341 377 0.00019199999 350 377 0.00047999993 351 377 0.0018240998 352 377 0.0010560998 354 377 0.0026882 355 377 0.00028799986 356 377 9.5999989e-05 358 377 0.0015360999 364 377 0.00028799986 366 377 0.0094085969 370 377 0.0050882995 371 377 0.0076804981 372 377 0.020545296 373 377 0.0034561998 377 377 0.012192797 379 377 0.00019199999 380 377 0.011808798 385 377 0.00019199999 386 377 0.016128998 387 377 9.5999989e-05 393 377 9.5999989e-05 398 377 0.0045122989 415 377 0.043106798 417 377 0.0003839999 419 377 0.022465397 422 377 0.00019199999 441 377 0.0032641999 443 377 0.0045122989 444 377 0.0018240998 445 377 0.0071044974 446 377 0.00019199999 447 377 0.0038401999 450 377 0.0028801998 452 377 0.0050882995 453 377 0.0034561998 454 377 0.00086409994 455 377 0.044546898 456 377 9.5999989e-05 457 377 0.0027841998 458 377 0.00096009998 459 377 0.00047999993 460 377 0.00096009998 463 377 0.016513098 464 377 0.00057599996 465 377 0.0016321 467 377 0.0096005984 468 377 0.020737298 469 377 0.0042242967 470 377 0.0045122989 471 377 0.00096009998 472 377 0.00096009998 473 377 9.5999989e-05 477 377 9.5999989e-05 478 377 0.0010560998 483 377 0.0019200998 490 377 0.0003839999 491 377 0.00086409994 22 378 0.00048609986 60 378 0.0012500999 108 378 6.939999e-05 114 378 0.0001389 126 378 6.939999e-05 131 378 0.0013889999 150 378 0.0001389 160 378 0.0024307 171 378 6.939999e-05 172 378 0.0019445999 187 378 0.0014583999 189 378 6.939999e-05 190 378 6.939999e-05 191 378 0.0010416999 194 378 0.0001389 198 378 0.014098197 200 378 6.939999e-05 203 378 6.939999e-05 204 378 6.939999e-05 206 378 0.00048609986 214 378 0.0069448985 219 378 0.0004166998 223 378 0.0026391 233 378 0.013889898 234 378 0.0013194999 236 378 0.00062499987 237 378 6.939999e-05 240 378 0.0092367977 241 378 0.053059198 242 378 0.0004166998 252 378 0.0012500999 270 378 0.00034719985 272 378 0.0037502998 274 378 0.0097922981 277 378 0.068685293 282 378 0.0038196999 283 378 0.00055559981 284 378 0.00048609986 285 378 0.0001389 286 378 6.939999e-05 289 378 6.939999e-05 292 378 0.012431398 293 378 0.012084197 294 378 0.00034719985 295 378 0.012709197 296 378 0.0013889999 297 378 0.0004166998 298 378 0.00034719985 304 378 0.0015278999 312 378 0.010278497 315 378 0.0117369 319 378 0.011875797 320 378 0.0001389 321 378 0.0068754964 322 378 0.014237098 324 378 0.0069448985 326 378 0.0029862998 328 378 0.0004166998 338 378 6.939999e-05 339 378 0.00055559981 340 378 0.0004166998 350 378 0.0084033981 351 378 0.00083339983 352 378 0.0037502998 353 378 6.939999e-05 354 378 0.0002083 356 378 0.0001389 358 378 0.0022918 366 378 0.049934 368 378 6.939999e-05 370 378 0.0002083 371 378 0.0077782981 372 378 0.050628498 373 378 0.0087505989 376 378 0.0001389 386 378 0.010834098 387 378 6.939999e-05 398 378 0.00055559981 415 378 0.015278798 417 378 0.00034719985 419 378 0.00069449982 421 378 6.939999e-05 422 378 0.0001389 441 378 0.00076389988 442 378 6.939999e-05 443 378 0.0043058991 444 378 0.00034719985 445 378 0.0078477971 446 378 0.00034719985 447 378 0.0026391 450 378 0.0025001999 452 378 0.0042363964 453 378 0.0018751 454 378 0.00090279989 455 378 0.042364098 456 378 0.0002083 457 378 0.0027084998 458 378 0.00048609986 459 378 0.0004166998 460 378 0.00090279989 463 378 0.0099311993 464 378 0.0004166998 465 378 0.004166998 467 378 0.0075699985 468 378 0.015834399 469 378 0.0031251998 470 378 0.0031947 471 378 0.0010416999 473 378 6.939999e-05 477 378 0.0001389 478 378 0.00076389988 483 378 0.0018056999 490 378 0.00027779979 491 378 0.00083339983 22 379 0.0001526 60 379 0.00091529987 108 379 7.6299999e-05 114 379 0.0001526 126 379 7.6299999e-05 150 379 7.6299999e-05 160 379 0.00076279999 169 379 0.00061019999 172 379 0.0045766979 187 379 7.6299999e-05 190 379 7.6299999e-05 194 379 0.0001526 198 379 0.015484396 206 379 0.00061019999 214 379 0.00030509988 219 379 0.00030509988 223 379 0.00030509988 224 379 7.6299999e-05 233 379 0.0073988996 234 379 0.00099159987 236 379 0.0010678999 240 379 0.012051899 241 379 0.018916897 242 379 0.0089244992 252 379 7.6299999e-05 270 379 0.002746 271 379 7.6299999e-05 272 379 0.0001526 274 379 0.0001526 277 379 0.099694848 282 379 0.011060297 283 379 0.00045769988 284 379 0.00038139988 285 379 7.6299999e-05 292 379 0.002746 293 379 0.0049579963 294 379 0.0002288 295 379 0.0045766979 296 379 0.0050342977 297 379 0.0002288 298 379 0.013424899 304 379 0.0002288 312 379 0.013882499 313 379 0.0001526 315 379 0.018230397 319 379 0.0021358 320 379 0.0022121 321 379 0.0028223 322 379 0.0035849998 324 379 0.0076277964 326 379 7.6299999e-05 328 379 0.00030509988 339 379 0.00030509988 340 379 0.0017543999 341 379 0.0026697 343 379 7.6299999e-05 351 379 0.0034324999 352 379 0.00061019999 354 379 0.0086956993 356 379 7.6299999e-05 357 379 7.6299999e-05 358 379 0.0025171998 364 379 0.0042714998 365 379 7.6299999e-05 366 379 0.011517897 371 379 0.00030509988 372 379 0.071929753 373 379 0.0025934 377 379 0.0041189976 379 379 0.0019069 385 379 0.0019832 386 379 0.00091529987 387 379 7.6299999e-05 397 379 7.6299999e-05 398 379 0.0062547997 402 379 0.00068649999 415 379 0.025858097 417 379 0.00030509988 419 379 0.028298996 421 379 7.6299999e-05 422 379 0.0001526 438 379 7.6299999e-05 441 379 0.0039663985 443 379 0.0029747998 444 379 0.0028986 445 379 0.0063309968 446 379 0.00030509988 447 379 0.0025171998 450 379 0.0017543999 452 379 0.004195299 453 379 0.0026697 454 379 0.00083909999 455 379 0.036536999 456 379 7.6299999e-05 457 379 0.0025171998 458 379 0.00030509988 459 379 0.00061019999 460 379 0.00076279999 463 379 0.0092295967 464 379 0.00053389999 465 379 0.0011441999 467 379 0.0064072981 468 379 0.023188397 469 379 0.0025934 470 379 0.002746 471 379 0.00099159987 473 379 7.6299999e-05 477 379 0.0001526 478 379 0.00068649999 483 379 0.0017543999 490 379 0.0002288 491 379 0.00083909999 9 380 6.7199988e-05 60 380 0.0046345964 82 380 6.7199988e-05 83 380 6.7199988e-05 84 380 6.7199988e-05 108 380 6.7199988e-05 113 380 0.00013429999 114 380 0.00013429999 126 380 6.7199988e-05 130 380 0.011015598 131 380 0.0016792 133 380 6.7199988e-05 137 380 6.7199988e-05 139 380 0.0058435984 150 380 0.00080599985 160 380 6.7199988e-05 161 380 0.00013429999 165 380 6.7199988e-05 170 380 6.7199988e-05 171 380 0.0090004988 172 380 6.7199988e-05 187 380 0.00013429999 188 380 0.00013429999 189 380 6.7199988e-05 190 380 0.00013429999 192 380 6.7199988e-05 194 380 0.00013429999 198 380 0.0190758 200 380 6.7199988e-05 203 380 6.7199988e-05 204 380 0.00073889992 206 380 0.00067169988 207 380 6.7199988e-05 214 380 0.00026869983 219 380 6.7199988e-05 223 380 0.0024180999 224 380 0.019948997 233 380 0.0032911999 234 380 0.0017463998 236 380 0.0003358 237 380 6.7199988e-05 240 380 0.0023508999 241 380 0.036472298 252 380 0.0065824986 257 380 6.7199988e-05 270 380 6.7199988e-05 272 380 0.00080599985 274 380 0.0021493998 275 380 6.7199988e-05 277 380 0.052659899 279 380 6.7199988e-05 282 380 0.0030896999 284 380 0.00067169988 285 380 0.00053729978 286 380 6.7199988e-05 292 380 0.0040972978 293 380 0.016120397 294 380 0.0089333989 295 380 0.030359998 296 380 0.0074556991 298 380 0.0064480975 299 380 0.00013429999 301 380 6.7199988e-05 304 380 6.7199988e-05 307 380 0.00020149999 312 380 0.011687297 315 380 0.011082798 319 380 0.005507797 320 380 0.00040299981 321 380 0.0039628968 322 380 0.0028881999 324 380 0.00040299981 326 380 0.0034926999 330 380 0.0010746999 339 380 0.0003358 340 380 0.0048360974 350 380 0.00013429999 351 380 0.00013429999 352 380 6.7199988e-05 353 380 6.7199988e-05 354 380 0.00026869983 355 380 0.00073889992 356 380 0.00013429999 358 380 0.0053734966 366 380 0.00067169988 370 380 0.0038285998 371 380 0.0051047988 372 380 0.026732899 373 380 0.00047019986 380 380 0.012627598 384 380 6.7199988e-05 386 380 0.0168592 387 380 6.7199988e-05 393 380 0.00020149999 395 380 0.00060449983 398 380 0.0017463998 402 380 0.00020149999 414 380 6.7199988e-05 415 380 0.0070526972 417 380 0.00060449983 419 380 0.0029553999 421 380 6.7199988e-05 422 380 6.7199988e-05 423 380 6.7199988e-05 430 380 6.7199988e-05 433 380 6.7199988e-05 434 380 6.7199988e-05 441 380 0.0030896999 442 380 0.00080599985 443 380 0.0031568999 444 380 0.0003358 445 380 0.0072541982 446 380 0.00013429999 447 380 0.0023508999 450 380 0.0032241 452 380 0.0053062998 453 380 0.0018806998 454 380 0.00060449983 455 380 0.040032197 456 380 0.00020149999 457 380 0.0028210999 458 380 0.00060449983 459 380 0.00040299981 460 380 0.0010746999 463 380 0.018941399 464 380 0.0003358 465 380 0.0016792 467 380 0.011149898 468 380 0.032442197 469 380 0.0051719993 470 380 0.005507797 471 380 0.0008731999 473 380 0.00013429999 477 380 0.00013429999 478 380 0.0011419 479 380 0.0008731999 483 380 0.002015 490 380 0.00047019986 491 380 0.0018806998 60 381 0.0037928999 114 381 0.0002231 126 381 0.0002231 130 381 0.00044619991 139 381 0.0002231 160 381 0.0002231 171 381 0.00044619991 172 381 0.0002231 193 381 0.0017849 198 381 0.0182954 206 381 0.00089249993 214 381 0.0053547993 219 381 0.0002231 223 381 0.00044619991 224 381 0.016287398 233 381 0.0071396977 234 381 0.00066929986 236 381 0.0002231 240 381 0.0046853982 241 381 0.026550598 242 381 0.016733598 252 381 0.0002231 271 381 0.00044619991 272 381 0.0037928999 274 381 0.00066929986 277 381 0.031905398 279 381 0.00089249993 282 381 0.010263298 283 381 0.0013386998 284 381 0.00044619991 292 381 0.0037928999 293 381 0.0080320984 294 381 0.00044619991 295 381 0.034359697 296 381 0.022757698 298 381 0.0002231 312 381 0.010040198 313 381 0.00066929986 315 381 0.025211997 319 381 0.0080320984 320 381 0.0002231 321 381 0.00066929986 322 381 0.0078089982 324 381 0.0040160976 326 381 0.00044619991 340 381 0.004462298 349 381 0.0031235998 350 381 0.00044619991 351 381 0.0024542999 352 381 0.0002231 356 381 0.0037928999 357 381 0.00044619991 358 381 0.0031235998 366 381 0.0026773999 370 381 0.004462298 371 381 0.0066933967 372 381 0.017849199 373 381 0.0002231 380 381 0.00066929986 381 381 0.00044619991 386 381 0.010709498 390 381 0.00066929986 392 381 0.00044619991 393 381 0.0011155999 397 381 0.0002231 398 381 0.0060240999 402 381 0.0026773999 415 381 0.0011155999 417 381 0.00044619991 419 381 0.00066929986 438 381 0.0095938966 441 381 0.0093707964 443 381 0.0022310999 444 381 0.0020079999 445 381 0.007585898 447 381 0.010932598 450 381 0.0026773999 452 381 0.004462298 453 381 0.0017849 454 381 0.00089249993 455 381 0.0305667 457 381 0.0026773999 459 381 0.00044619991 460 381 0.00089249993 463 381 0.0122713 464 381 0.00044619991 465 381 0.0013386998 467 381 0.0084783994 468 381 0.0276662 469 381 0.0051315986 470 381 0.0055778995 471 381 0.0015617998 473 381 0.0002231 477 381 0.0002231 478 381 0.00066929986 479 381 0.0013386998 483 381 0.0015617998 490 381 0.00066929986 491 381 0.0020079999 60 382 0.0077120997 114 382 0.00064269989 172 382 0.0012852999 198 382 0.0032133998 206 382 0.0012852999 234 382 0.0038559998 241 382 0.00064269989 242 382 0.0102828 272 382 0.0044986978 277 382 0.023136199 282 382 0.014781497 284 382 0.00064269989 292 382 0.0025706999 293 382 0.0032133998 295 382 0.034061696 296 382 0.00064269989 307 382 0.00064269989 312 382 0.0044986978 315 382 0.0064266995 319 382 0.0038559998 322 382 0.0032133998 340 382 0.0025706999 344 382 0.0019279998 351 382 0.00064269989 354 382 0.00064269989 358 382 0.025706898 371 382 0.00064269989 372 382 0.0025706999 373 382 0.00064269989 382 382 0.082262158 386 382 0.0012852999 417 382 0.00064269989 441 382 0.0044986978 444 382 0.00064269989 445 382 0.0012852999 447 382 0.012210798 450 382 0.0032133998 452 382 0.0064266995 453 382 0.00064269989 454 382 0.0019279998 455 382 0.025706898 457 382 0.0032133998 459 382 0.00064269989 460 382 0.00064269989 463 382 0.031490996 464 382 0.00064269989 465 382 0.0019279998 467 382 0.014138799 468 382 0.084832847 469 382 0.0044986978 470 382 0.0051413998 478 382 0.0012852999 483 382 0.0025706999 490 382 0.00064269989 491 382 0.0070693977 22 383 0.00011879999 60 383 0.0009500999 108 383 0.00011879999 114 383 0.00023749999 126 383 0.00011879999 130 383 0.00011879999 131 383 0.00011879999 135 383 0.00011879999 139 383 0.00011879999 160 383 0.00023749999 161 383 0.0032066999 171 383 0.00011879999 172 383 0.0003562998 182 383 0.0030878999 193 383 0.00011879999 194 383 0.00011879999 198 383 0.015439399 206 383 0.00071259984 214 383 0.0040379986 223 383 0.0065320991 224 383 0.0089073963 233 383 0.009263698 234 383 0.0009500999 236 383 0.0003562998 240 383 0.0089073963 241 383 0.0108076 242 383 0.0045130998 252 383 0.0021378 270 383 0.0038005 272 383 0.0043942966 274 383 0.0047505982 275 383 0.00011879999 277 383 0.10558188 282 383 0.0061757974 283 383 0.00011879999 284 383 0.0003562998 292 383 0.0071258992 293 383 0.0041567981 294 383 0.0016627 295 383 0.011045098 296 383 0.0046317987 297 383 0.00023749999 298 383 0.0074821971 300 383 0.00011879999 304 383 0.00023749999 307 383 0.00023749999 312 383 0.017695997 315 383 0.011757698 319 383 0.0097386986 320 383 0.0038005 321 383 0.0065320991 322 383 0.0061757974 324 383 0.0081947967 326 383 0.0058194995 328 383 0.00023749999 340 383 0.0059381984 341 383 0.00011879999 349 383 0.00011879999 350 383 0.0003562998 351 383 0.0047505982 352 383 0.00083139981 354 383 0.00071259984 355 383 0.0009500999 356 383 0.00023749999 358 383 0.0019001998 364 383 0.00011879999 366 383 0.006650798 370 383 0.00059379986 371 383 0.0072446987 372 383 0.040973898 373 383 0.0026127999 377 383 0.00059379986 379 383 0.00011879999 380 383 0.0102138 383 383 0.00011879999 385 383 0.00011879999 386 383 0.019477397 387 383 0.00011879999 393 383 0.00023749999 398 383 0.00059379986 414 383 0.00011879999 415 383 0.032066498 417 383 0.00023749999 419 383 0.0052256994 438 383 0.0032066999 441 383 0.0027315998 443 383 0.0039191991 444 383 0.0046317987 445 383 0.0070070997 446 383 0.00011879999 447 383 0.0053443983 450 383 0.0024940998 452 383 0.0039191991 453 383 0.0028503998 454 383 0.0011876 455 383 0.040142499 457 383 0.0026127999 458 383 0.00059379986 459 383 0.0003562998 460 383 0.00083139981 463 383 0.015676998 464 383 0.00047509978 465 383 0.0010688999 467 383 0.0077196993 468 383 0.019833699 469 383 0.0041567981 470 383 0.0043942966 471 383 0.00059379986 473 383 0.00011879999 477 383 0.00011879999 478 383 0.00059379986 479 383 0.00047509978 483 383 0.0021378 490 383 0.0003562998 491 383 0.0010688999 18 384 9.3799987e-05 60 384 0.0019689 108 384 9.3799987e-05 114 384 0.00018749999 126 384 9.3799987e-05 150 384 9.3799987e-05 151 384 9.3799987e-05 190 384 9.3799987e-05 194 384 0.00018749999 198 384 0.0235327 200 384 9.3799987e-05 203 384 9.3799987e-05 204 384 9.3799987e-05 206 384 0.00018749999 214 384 0.024282798 219 384 0.00018749999 223 384 9.3799987e-05 224 384 0.00018749999 233 384 0.00065629999 234 384 0.0021563999 237 384 9.3799987e-05 240 384 9.3799987e-05 241 384 0.0012188 252 384 0.073504567 270 384 9.3799987e-05 271 384 0.00018749999 277 384 0.0030001998 282 384 0.0021563999 283 384 0.00084379991 284 384 0.00037499983 290 384 0.00018749999 292 384 0.0050627999 293 384 9.3799987e-05 294 384 0.019032396 295 384 0.00028129993 296 384 0.00056249998 312 384 0.00046879984 313 384 0.00037499983 315 384 0.00018749999 320 384 0.00018749999 340 384 0.0018751 351 384 0.00018749999 357 384 0.00018749999 358 384 0.0013126 370 384 0.00037499983 384 384 0.00046879984 385 384 0.0033751999 386 384 0.00028129993 387 384 9.3799987e-05 389 384 0.00084379991 390 384 0.00018749999 392 384 0.00037499983 393 384 0.0027188999 397 384 0.00018749999 398 384 0.11110067 402 384 0.0016875998 417 384 0.00037499983 421 384 9.3799987e-05 422 384 0.00018749999 443 384 0.0015937998 444 384 0.0045939982 445 384 0.0058128983 446 384 0.00084379991 447 384 0.0058128983 450 384 0.004031498 452 384 0.0059065968 453 384 0.0029063998 454 384 0.00074999989 455 384 0.029251799 456 384 0.00018749999 457 384 0.0029063998 458 384 0.00056249998 459 384 0.00037499983 460 384 0.0010312998 463 384 0.0041252971 464 384 0.00046879984 465 384 0.0015937998 467 384 0.011531997 468 384 0.010031898 469 384 0.0032815 470 384 0.0037501999 471 384 0.0039376989 473 384 9.3799987e-05 477 384 0.00018749999 478 384 0.0012188 483 384 0.00065629999 490 384 0.00037499983 491 384 0.0012188 18 385 0.00012879999 21 385 4.2899992e-05 22 385 0.00034359982 24 385 4.2899992e-05 60 385 0.0015031998 82 385 4.2899992e-05 108 385 0.0001718 114 385 0.00034359982 126 385 0.0001718 130 385 0.0043806992 131 385 0.0014173 138 385 4.2899992e-05 139 385 4.2899992e-05 142 385 4.2899992e-05 150 385 0.00060129981 151 385 4.2899992e-05 156 385 0.0013742999 160 385 0.0019755999 161 385 0.0012883998 171 385 0.0026197999 187 385 8.5899999e-05 188 385 0.00012879999 190 385 8.5899999e-05 194 385 0.00012879999 197 385 4.2899992e-05 198 385 0.020314399 200 385 8.5899999e-05 201 385 4.2899992e-05 203 385 8.5899999e-05 204 385 0.00012879999 206 385 0.0001718 207 385 4.2899992e-05 214 385 0.0042088963 219 385 4.2899992e-05 223 385 0.00068719988 224 385 0.010693997 225 385 4.2899992e-05 227 385 4.2899992e-05 229 385 4.2899992e-05 233 385 0.0054972991 234 385 0.0018038 237 385 0.00012879999 240 385 0.00098779984 241 385 0.038008898 242 385 4.2899992e-05 243 385 4.2899992e-05 252 385 0.032597497 254 385 0.00012879999 262 385 8.5899999e-05 263 385 0.00085899979 265 385 4.2899992e-05 266 385 4.2899992e-05 270 385 0.0009019 271 385 4.2899992e-05 272 385 0.0020615 276 385 4.2899992e-05 277 385 0.048058797 282 385 0.0055402964 283 385 0.00012879999 284 385 0.00042949989 286 385 4.2899992e-05 288 385 0.0012454998 289 385 0.0014601999 290 385 0.00030059996 292 385 0.0038653 293 385 0.016062498 294 385 0.00064419978 295 385 0.0085465983 296 385 0.01151 297 385 0.0011165999 298 385 0.0033069998 300 385 4.2899992e-05 312 385 0.011037599 315 385 0.032683399 317 385 4.2899992e-05 319 385 0.00012879999 320 385 0.010865796 321 385 0.00025769998 322 385 0.0024909999 324 385 0.00012879999 326 385 0.00060129981 328 385 0.00021469999 329 385 8.5899999e-05 339 385 0.0001718 340 385 0.0073440969 350 385 4.2899992e-05 351 385 0.00012879999 352 385 4.2899992e-05 354 385 0.00012879999 356 385 0.00012879999 358 385 0.0018896998 366 385 0.00047239987 370 385 0.050764497 371 385 4.2899992e-05 372 385 0.00047239987 373 385 0.00034359982 375 385 4.2899992e-05 376 385 0.0014173 384 385 0.017823398 385 385 0.015203599 386 385 0.023621399 387 385 0.0001718 392 385 0.0003864998 393 385 0.0027486999 395 385 0.00012879999 397 385 0.00021469999 398 385 0.0015890999 402 385 0.00012879999 415 385 4.2899992e-05 416 385 4.2899992e-05 417 385 0.00051539997 419 385 4.2899992e-05 421 385 4.2899992e-05 422 385 0.00012879999 427 385 4.2899992e-05 430 385 0.00021469999 433 385 4.2899992e-05 434 385 4.2899992e-05 442 385 4.2899992e-05 443 385 0.0033928999 444 385 0.0044235997 445 385 0.0068286993 446 385 0.00012879999 447 385 0.0049389973 450 385 0.0042517968 452 385 0.0048101991 453 385 0.0021902998 454 385 0.00064419978 455 385 0.043978699 456 385 0.00012879999 457 385 0.0030922999 458 385 0.00081599993 459 385 0.0003864998 460 385 0.00073009985 463 385 0.018038098 464 385 0.0056261979 465 385 0.0017608998 467 385 0.012583699 468 385 0.0066998973 469 385 0.0054972991 470 385 0.0060985982 471 385 0.0055831969 473 385 0.0001718 477 385 0.00030059996 478 385 0.0012454998 479 385 0.0011596 483 385 0.00085899979 489 385 4.2899992e-05 490 385 0.00060129981 491 385 0.00068719988 9 386 4.7999987e-05 18 386 0.00014389999 19 386 0.0003837999 21 386 0.00014389999 22 386 0.0004317998 24 386 0.0003358 60 386 0.0022546998 82 386 0.00014389999 83 386 4.7999987e-05 84 386 4.7999987e-05 108 386 9.5899988e-05 113 386 9.5899988e-05 114 386 0.00019189999 117 386 4.7999987e-05 126 386 9.5899988e-05 130 386 0.00023989999 131 386 0.00019189999 135 386 0.00019189999 138 386 0.00014389999 139 386 4.7999987e-05 142 386 9.5899988e-05 150 386 0.00062369998 160 386 9.5899988e-05 169 386 9.5899988e-05 175 386 4.7999987e-05 187 386 0.0010074 188 386 9.5899988e-05 189 386 9.5899988e-05 190 386 9.5899988e-05 192 386 0.00028779986 193 386 9.5899988e-05 194 386 0.00023989999 197 386 4.7999987e-05 198 386 0.0086351968 200 386 9.5899988e-05 201 386 4.7999987e-05 203 386 9.5899988e-05 204 386 9.5899988e-05 206 386 0.00019189999 207 386 4.7999987e-05 214 386 0.0031661999 219 386 9.5899988e-05 223 386 0.0045573972 224 386 0.011177696 229 386 4.7999987e-05 233 386 0.00062369998 234 386 0.0025425998 237 386 9.5899988e-05 240 386 0.0038378998 241 386 0.015831098 242 386 4.7999987e-05 252 386 0.0012472998 262 386 0.0047013983 270 386 4.7999987e-05 271 386 9.5899988e-05 273 386 0.00019189999 276 386 9.5899988e-05 277 386 0.079827249 278 386 0.00014389999 282 386 0.0047492981 283 386 0.0003837999 284 386 0.00057569984 285 386 0.00019189999 286 386 0.0051810965 288 386 0.0039817989 289 386 0.0030703 290 386 0.0010074 292 386 0.026720997 293 386 0.0096905977 294 386 0.017270297 295 386 0.014056098 296 386 0.0062844977 297 386 0.0029742999 298 386 0.00028779986 300 386 9.5899988e-05 308 386 0.00023989999 312 386 0.015159499 313 386 9.5899988e-05 315 386 0.0096425973 317 386 0.0023987 320 386 0.009018898 321 386 0.0060925968 322 386 0.0039817989 324 386 0.00023989999 325 386 4.7999987e-05 326 386 0.00057569984 328 386 0.00023989999 339 386 0.00028779986 340 386 0.0066682994 343 386 4.7999987e-05 349 386 4.7999987e-05 350 386 9.5899988e-05 351 386 0.00028779986 352 386 0.00057569984 353 386 4.7999987e-05 354 386 0.00062369998 355 386 4.7999987e-05 356 386 9.5899988e-05 357 386 4.7999987e-05 358 386 0.004941199 359 386 4.7999987e-05 369 386 0.0003358 370 386 0.0013911999 371 386 0.0003837999 372 386 0.00086349994 373 386 0.0022067998 374 386 4.7999987e-05 375 386 0.00014389999 376 386 0.00023989999 384 386 0.00014389999 385 386 0.00023989999 386 386 0.026049398 387 386 9.5899988e-05 389 386 0.0016311 390 386 0.0004317998 391 386 9.5899988e-05 392 386 0.0037898999 393 386 0.0088749975 396 386 4.7999987e-05 397 386 9.5899988e-05 398 386 0.0013432 402 386 0.00052769994 414 386 4.7999987e-05 416 386 0.00014389999 417 386 0.00067159999 419 386 9.5899988e-05 420 386 0.00019189999 421 386 4.7999987e-05 422 386 0.00095949997 423 386 4.7999987e-05 430 386 9.5899988e-05 431 386 4.7999987e-05 433 386 4.7999987e-05 434 386 4.7999987e-05 438 386 9.5899988e-05 441 386 4.7999987e-05 442 386 4.7999987e-05 443 386 0.0039337985 444 386 0.00067159999 445 386 0.0075317994 446 386 0.00023989999 447 386 0.0032621999 450 386 0.0048452988 452 386 0.0067161992 453 386 0.0017749998 454 386 0.00076759979 455 386 0.023986597 456 386 0.0003358 457 386 0.0031182999 458 386 0.00081549981 459 386 0.00071959989 460 386 0.0010553999 463 386 0.0118494 464 386 0.0010074 465 386 0.0024465998 467 386 0.014343999 468 386 0.0023027 469 386 0.0067161992 470 386 0.0076276995 471 386 0.0019669 473 386 0.00014389999 477 386 0.00023989999 478 386 0.0015350999 479 386 9.5899988e-05 483 386 0.0012953 489 386 4.7999987e-05 490 386 0.00071959989 491 386 0.0033100999 9 387 2.6799986e-05 18 387 8.0299986e-05 22 387 2.6799986e-05 60 387 0.0019816 82 387 2.6799986e-05 83 387 2.6799986e-05 84 387 2.6799986e-05 108 387 2.6799986e-05 113 387 5.3599986e-05 114 387 0.00010709999 126 387 5.3599986e-05 150 387 0.00037489994 151 387 2.6799986e-05 160 387 0.0013388998 169 387 0.00091049983 172 387 0.0014727998 174 387 0.016522497 175 387 0.061778598 177 387 0.0016335 187 387 0.0022761999 188 387 0.00072299992 189 387 5.3599986e-05 190 387 8.0299986e-05 192 387 0.00010709999 194 387 8.0299986e-05 197 387 2.6799986e-05 198 387 0.0073641986 200 387 8.0299986e-05 201 387 2.6799986e-05 203 387 5.3599986e-05 204 387 8.0299986e-05 206 387 0.0026510998 207 387 5.3599986e-05 209 387 2.6799986e-05 214 387 5.3599986e-05 219 387 5.3599986e-05 223 387 2.6799986e-05 224 387 0.0023832999 234 387 0.00091049983 236 387 2.6799986e-05 237 387 5.3599986e-05 240 387 0.00085689989 241 387 0.013309099 252 387 0.0077390969 262 387 2.6799986e-05 276 387 2.6799986e-05 277 387 0.0064536966 279 387 0.00085689989 282 387 5.3599986e-05 283 387 2.6799986e-05 284 387 0.00013389999 285 387 0.00064269989 292 387 5.3599986e-05 293 387 0.00077659986 294 387 8.0299986e-05 295 387 0.0080871992 296 387 0.00069619995 298 387 0.00091049983 312 387 0.0068285987 315 387 0.020914197 318 387 8.0299986e-05 319 387 0.0027047 320 387 0.0014193 321 387 5.3599986e-05 326 387 0.0025974999 340 387 0.00066949986 356 387 0.00013389999 358 387 0.00042849989 359 387 0.00026779994 364 387 0.00061589992 369 387 0.00010709999 372 387 0.0033741 382 387 0.00077659986 384 387 2.6799986e-05 386 387 0.011113197 387 387 0.045898799 390 387 0.00024099999 391 387 0.14615858 392 387 0.020619698 393 387 0.13927639 396 387 0.00083009992 402 387 5.3599986e-05 404 387 2.6799986e-05 417 387 0.00026779994 419 387 0.0017674 421 387 2.6799986e-05 422 387 0.00013389999 423 387 2.6799986e-05 425 387 2.6799986e-05 430 387 2.6799986e-05 431 387 2.6799986e-05 432 387 2.6799986e-05 433 387 2.6799986e-05 434 387 0.00016069999 441 387 0.00064269989 443 387 0.0016870999 444 387 0.0013122 445 387 0.0038560999 446 387 8.0299986e-05 447 387 0.0038293998 450 387 0.0050343983 452 387 0.0023029998 453 387 0.00053559989 454 387 0.00080339983 455 387 0.0396326 456 387 0.00013389999 457 387 0.0048736967 458 387 0.00056239986 459 387 0.0021422999 460 387 0.00091049983 463 387 0.0103634 464 387 0.0026778998 465 387 0.028385498 467 387 0.0137375 468 387 0.027769599 469 387 0.0032402 470 387 0.0035883998 471 387 0.0027313998 473 387 8.0299986e-05 477 387 0.00058909995 478 387 0.0010443998 483 387 0.00096399989 489 387 2.6799986e-05 490 387 0.00032129977 491 387 0.0012585998 60 388 0.0014654999 108 388 0.0001832 114 388 0.0003664 126 388 0.0001832 160 388 0.00073269987 187 388 0.012456499 190 388 0.0001832 194 388 0.0003664 198 388 0.0031140998 200 388 0.0001832 204 388 0.084814072 206 388 0.0003664 214 388 0.0003664 224 388 0.050192297 234 388 0.0025646 237 388 0.0001832 241 388 0.020882897 272 388 0.00054959999 279 388 0.0001832 284 388 0.0001832 293 388 0.0047627985 317 388 0.0001832 356 388 0.0001832 387 388 0.0032972998 388 388 0.043780897 390 388 0.0001832 392 388 0.0001832 393 388 0.031873997 417 388 0.0003664 422 388 0.0003664 443 388 0.002015 444 388 0.0060450993 445 388 0.0137388 446 388 0.0001832 447 388 0.0089759976 450 388 0.0065945983 452 388 0.0071441978 453 388 0.0029308998 454 388 0.00054959999 455 388 0.040849999 457 388 0.0047627985 458 388 0.0014654999 459 388 0.00054959999 460 388 0.00073269987 463 388 0.11705434 464 388 0.00091589987 465 388 0.012456499 467 388 0.056970097 468 388 0.045429599 469 388 0.0056786984 470 388 0.0064113997 471 388 0.00073269987 473 388 0.0038468998 477 388 0.0001832 478 388 0.0018318 483 388 0.00073269987 490 388 0.00054959999 491 388 0.00091589987 9 389 2.3799992e-05 16 389 2.3799992e-05 18 389 0.00011899999 22 389 9.5199997e-05 60 389 0.0026900999 79 389 2.3799992e-05 82 389 2.3799992e-05 83 389 2.3799992e-05 84 389 2.3799992e-05 108 389 4.7599999e-05 113 389 7.1399991e-05 114 389 0.0001428 126 389 7.1399991e-05 127 389 2.3799992e-05 132 389 2.3799992e-05 150 389 0.00049989996 160 389 0.00042849989 169 389 0.00021429999 171 389 4.7599999e-05 172 389 0.0015711999 189 389 7.1399991e-05 190 389 9.5199997e-05 192 389 4.7599999e-05 194 389 0.0017139998 196 389 2.3799992e-05 197 389 2.3799992e-05 198 389 0.0019520998 200 389 9.5199997e-05 201 389 4.7599999e-05 203 389 7.1399991e-05 204 389 0.00011899999 206 389 9.5199997e-05 207 389 7.1399991e-05 209 389 2.3799992e-05 214 389 7.1399991e-05 219 389 0.0014759998 223 389 0.0011188998 224 389 0.0049278997 225 389 2.3799992e-05 233 389 0.0022139999 234 389 0.0010950998 237 389 9.5199997e-05 240 389 0.0010237 241 389 0.0034280999 248 389 2.3799992e-05 250 389 2.3799992e-05 252 389 0.0012616999 263 389 2.3799992e-05 270 389 0.0012379 277 389 0.013378996 279 389 4.7599999e-05 284 389 0.00019039999 285 389 0.0020234999 286 389 0.00054749986 287 389 2.3799992e-05 289 389 4.7599999e-05 290 389 0.022639599 292 389 0.011093698 293 389 0.0020234999 294 389 0.0103557 295 389 0.011450697 296 389 0.0024758 298 389 0.00052369991 312 389 0.0042850971 315 389 0.0036185 317 389 0.0018092999 318 389 2.3799992e-05 319 389 0.0015473999 320 389 0.0050468966 321 389 0.0019997 322 389 0.0030947998 326 389 0.0036422999 338 389 0.00035709981 339 389 0.00011899999 340 389 0.0029757998 341 389 2.3799992e-05 343 389 2.3799992e-05 351 389 0.00052369991 354 389 2.3799992e-05 356 389 0.00011899999 358 389 0.0041898973 359 389 2.3799992e-05 369 389 0.00011899999 375 389 0.00011899999 384 389 4.7599999e-05 386 389 0.016640499 387 389 7.1399991e-05 389 389 0.10936528 390 389 0.022092097 391 389 0.0041660964 392 389 0.049350098 393 389 0.059015397 396 389 0.0006903999 398 389 0.0010237 402 389 4.7599999e-05 417 389 0.00038089999 419 389 2.3799992e-05 421 389 4.7599999e-05 422 389 9.5199997e-05 423 389 2.3799992e-05 425 389 2.3799992e-05 430 389 4.7599999e-05 431 389 4.7599999e-05 432 389 2.3799992e-05 433 389 4.7599999e-05 434 389 4.7599999e-05 443 389 0.0014283999 444 389 0.0034280999 445 389 0.0037613998 446 389 7.1399991e-05 447 389 0.0054277964 449 389 2.3799992e-05 450 389 0.0065704994 452 389 0.0034995 453 389 0.0013807998 454 389 0.00047609978 455 389 0.017949797 456 389 0.00052369991 457 389 0.0039041999 458 389 0.00083319983 459 389 0.0016663999 460 389 0.0011188998 463 389 0.009760499 464 389 0.0086415969 465 389 0.0024995999 467 389 0.017640296 468 389 0.0029281999 469 389 0.0063799992 470 389 0.0071655996 471 389 0.0029519999 472 389 0.00047609978 473 389 0.00016659999 477 389 0.0001428 478 389 0.0014521999 479 389 0.0010237 483 389 0.0010950998 489 389 2.3799992e-05 490 389 0.00059519988 491 389 0.00045229984 9 390 6.6099994e-05 16 390 3.309999e-05 17 390 1.0999999e-05 18 390 9.9199999e-05 22 390 3.309999e-05 60 390 0.0021483998 76 390 0.00016529999 77 390 0.0004296999 79 390 2.1999993e-05 81 390 1.0999999e-05 82 390 0.0001102 83 390 6.6099994e-05 84 390 6.6099994e-05 108 390 0.00012119999 113 390 0.00017629999 114 390 0.00044069998 126 390 0.00018729999 127 390 3.309999e-05 130 390 7.709999e-05 131 390 3.309999e-05 138 390 1.0999999e-05 139 390 1.0999999e-05 142 390 1.0999999e-05 150 390 0.00060599996 151 390 1.0999999e-05 156 390 1.0999999e-05 160 390 0.0005398998 161 390 1.0999999e-05 165 390 2.1999993e-05 169 390 4.4099987e-05 171 390 8.8099987e-05 172 390 0.00044069998 174 390 7.709999e-05 175 390 0.00057289982 177 390 1.0999999e-05 181 390 1.0999999e-05 187 390 9.9199999e-05 188 390 1.0999999e-05 189 390 0.0002424 190 390 0.0001102 192 390 7.709999e-05 193 390 8.8099987e-05 194 390 0.0001102 196 390 2.1999993e-05 197 390 3.309999e-05 198 390 0.0016635999 200 390 0.00012119999 201 390 7.709999e-05 203 390 8.8099987e-05 204 390 0.00013219999 206 390 0.002534 207 390 5.5099998e-05 209 390 2.1999993e-05 214 390 0.00059489999 219 390 3.309999e-05 220 390 4.4099987e-05 223 390 7.709999e-05 224 390 0.00091439998 225 390 1.0999999e-05 229 390 1.0999999e-05 233 390 9.9199999e-05 234 390 0.0016305998 237 390 8.8099987e-05 240 390 0.0014322998 241 390 0.004561197 248 390 7.709999e-05 250 390 4.4099987e-05 251 390 1.0999999e-05 252 390 0.0016415999 262 390 5.5099998e-05 263 390 1.0999999e-05 270 390 0.00064999983 272 390 3.309999e-05 276 390 0.00012119999 277 390 0.0080426969 279 390 5.5099998e-05 282 390 0.00057289982 283 390 0.0001542 284 390 0.00022029999 285 390 0.00035259989 286 390 5.5099998e-05 289 390 5.5099998e-05 290 390 0.0011788998 292 390 0.0013330998 293 390 0.0040653981 294 390 0.00059489999 295 390 0.0043738969 296 390 0.0029195999 297 390 0.00023139999 298 390 0.0007821999 299 390 9.9199999e-05 300 390 1.0999999e-05 305 390 0.00085939979 307 390 1.0999999e-05 308 390 0.00057289982 312 390 0.0066985972 313 390 1.0999999e-05 315 390 0.008946199 317 390 0.00067209988 318 390 7.709999e-05 319 390 0.00022029999 320 390 0.0055307969 321 390 0.0014101998 322 390 0.0018068999 324 390 3.309999e-05 325 390 1.0999999e-05 326 390 0.0021153998 328 390 2.1999993e-05 338 390 0.00023139999 339 390 6.6099994e-05 340 390 0.0052442998 341 390 3.309999e-05 344 390 1.0999999e-05 349 390 0.00052879984 350 390 4.4099987e-05 351 390 0.00012119999 353 390 1.0999999e-05 354 390 0.0001432 356 390 0.00012119999 358 390 0.0034924999 359 390 0.001862 362 390 1.0999999e-05 363 390 1.0999999e-05 366 390 1.0999999e-05 369 390 0.0072053969 370 390 0.0016196 371 390 7.709999e-05 372 390 0.0024788999 373 390 0.0001542 375 390 3.309999e-05 376 390 2.1999993e-05 380 390 5.5099998e-05 384 390 0.0002424 385 390 0.00064999983 386 390 0.0070070997 387 390 0.0016525998 389 390 0.0012339999 390 390 0.060651097 391 390 0.0086596981 392 390 0.044598699 393 390 0.097140968 394 390 1.0999999e-05 396 390 0.00016529999 397 390 0.00017629999 398 390 0.00040759984 401 390 2.1999993e-05 402 390 0.0001102 403 390 2.1999993e-05 404 390 0.00047379988 405 390 0.0017186999 413 390 0.00013219999 414 390 6.6099994e-05 415 390 1.0999999e-05 416 390 1.0999999e-05 417 390 0.00041869981 419 390 0.00090339989 420 390 0.00031949999 421 390 5.5099998e-05 422 390 0.00027539977 423 390 4.4099987e-05 424 390 1.0999999e-05 425 390 3.309999e-05 427 390 8.8099987e-05 430 390 0.0001102 431 390 3.309999e-05 432 390 2.1999993e-05 433 390 4.4099987e-05 434 390 0.0001102 438 390 1.0999999e-05 441 390 1.0999999e-05 442 390 2.1999993e-05 443 390 0.00081529981 444 390 0.0021153998 445 390 0.0025670999 446 390 0.00016529999 447 390 0.0047044978 448 390 1.0999999e-05 449 390 3.309999e-05 450 390 0.0062027983 452 390 0.0053324997 453 390 0.00067209988 454 390 0.00029749982 455 390 0.021197598 456 390 0.0015203999 457 390 0.0025781 458 390 0.00082629989 459 390 0.0011127999 460 390 0.00095849996 463 390 0.013419297 464 390 0.0042196997 465 390 0.0031399999 467 390 0.022078998 468 390 0.0022695998 469 390 0.012174297 470 390 0.020228099 471 390 0.0028535 472 390 0.0001102 473 390 0.00045169983 477 390 0.00012119999 478 390 0.0020603 479 390 3.309999e-05 483 390 0.0034043998 489 390 3.309999e-05 490 390 0.0017296998 491 390 0.0001432 18 391 0.00016299999 22 391 8.1499995e-05 60 391 0.0038301998 108 391 0.00016299999 114 391 0.00032599992 126 391 0.00024449988 150 391 0.0007334 175 391 8.1499995e-05 189 391 0.00016299999 190 391 0.00016299999 192 391 0.00065189996 193 391 0.0005704998 194 391 0.00016299999 198 391 0.0048080981 200 391 8.1499995e-05 203 391 8.1499995e-05 204 391 8.1499995e-05 206 391 0.00016299999 207 391 8.1499995e-05 214 391 0.0082307979 223 391 0.00040749996 224 391 0.0047265999 233 391 8.1499995e-05 234 391 0.0022002999 237 391 8.1499995e-05 240 391 8.1499995e-05 241 391 0.013935298 252 391 0.12403226 262 391 0.00016299999 270 391 0.00016299999 272 391 0.00065189996 276 391 0.0036672 277 391 0.013609298 282 391 8.1499995e-05 284 391 0.000489 290 391 0.00032599992 292 391 0.0026077998 293 391 0.0039931983 294 391 0.0047265999 295 391 0.0094531998 296 391 8.1499995e-05 297 391 0.00097789988 298 391 8.1499995e-05 312 391 0.00016299999 315 391 0.00089639984 317 391 8.1499995e-05 320 391 0.0082307979 321 391 0.0024448 326 391 0.0052154996 339 391 8.1499995e-05 340 391 0.0017114 351 391 0.000489 356 391 8.1499995e-05 358 391 0.0086382963 369 391 8.1499995e-05 372 391 8.1499995e-05 375 391 0.00024449988 384 391 8.1499995e-05 385 391 0.00016299999 386 391 0.00016299999 387 391 0.00024449988 389 391 0.0008148998 390 391 0.0008148998 391 391 0.0033411998 392 391 0.0077417977 393 391 0.057778496 396 391 0.00089639984 417 391 0.000489 421 391 8.1499995e-05 422 391 8.1499995e-05 430 391 8.1499995e-05 433 391 8.1499995e-05 434 391 8.1499995e-05 443 391 0.0022002999 444 391 0.0011409 445 391 0.0074158981 447 391 0.0033411998 450 391 0.0048080981 452 391 0.0092086978 453 391 0.0018743 454 391 0.0011409 455 391 0.028603997 456 391 0.00024449988 457 391 0.0053784996 458 391 0.0011409 459 391 0.0044005997 460 391 0.00097789988 463 391 0.0125499 464 391 0.0066008978 465 391 0.0022002999 467 391 0.015239198 468 391 0.0091271996 469 391 0.0084752999 470 391 0.0092901997 471 391 0.0039931983 473 391 0.00024449988 477 391 0.00024449988 478 391 0.0013853998 483 391 0.0016299 490 391 0.027055699 491 391 0.0015483999 9 392 4.2299987e-05 16 392 4.2299987e-05 18 392 0.00016919999 60 392 0.0027917998 79 392 4.2299987e-05 82 392 4.2299987e-05 83 392 4.2299987e-05 84 392 4.2299987e-05 108 392 8.4599989e-05 113 392 0.00016919999 114 392 0.00029609981 126 392 0.00012689999 127 392 4.2299987e-05 150 392 0.00080369995 175 392 0.00012689999 187 392 0.00033839978 188 392 8.4599989e-05 189 392 8.4599989e-05 190 392 0.00012689999 192 392 4.2299987e-05 193 392 4.2299987e-05 194 392 0.00012689999 197 392 4.2299987e-05 198 392 0.0015650999 200 392 8.4599989e-05 201 392 8.4599989e-05 203 392 8.4599989e-05 204 392 0.00012689999 206 392 0.0002115 207 392 8.4599989e-05 209 392 4.2299987e-05 214 392 0.022841699 219 392 4.2299987e-05 223 392 0.0067678988 224 392 0.0013112999 233 392 0.00012689999 234 392 0.0024533998 237 392 8.4599989e-05 240 392 0.0021572998 241 392 0.0057526976 242 392 4.2299987e-05 248 392 4.2299987e-05 250 392 4.2299987e-05 252 392 0.0067255981 262 392 0.0044413991 263 392 4.2299987e-05 270 392 0.00029609981 276 392 0.0011843999 277 392 0.0015650999 279 392 4.2299987e-05 282 392 0.00029609981 284 392 0.00050759991 285 392 0.0002115 290 392 0.0037222998 292 392 0.0015228 293 392 0.00059219985 294 392 0.025633398 295 392 0.0014381998 296 392 0.00046529993 297 392 0.00033839978 298 392 0.00025379984 308 392 0.00012689999 312 392 0.002961 315 392 0.0240261 317 392 4.2299987e-05 320 392 0.011293899 321 392 0.00059219985 322 392 0.0006767998 325 392 4.2299987e-05 326 392 0.00016919999 335 392 8.4599989e-05 339 392 4.2299987e-05 340 392 0.0031724998 351 392 8.4599989e-05 354 392 8.4599989e-05 356 392 0.0002115 358 392 0.0012266999 359 392 0.0048220977 361 392 4.2299987e-05 369 392 4.2299987e-05 370 392 4.2299987e-05 371 392 8.4599989e-05 372 392 0.00071909977 373 392 0.00033839978 375 392 0.0023687999 376 392 8.4599989e-05 384 392 4.2299987e-05 386 392 0.00054989988 387 392 0.00016919999 389 392 0.00050759991 390 392 0.00042299996 391 392 0.00054989988 392 392 0.018823199 393 392 0.11374307 396 392 0.0006767998 402 392 4.2299987e-05 405 392 4.2299987e-05 417 392 0.00050759991 419 392 0.00012689999 421 392 8.4599989e-05 422 392 0.00016919999 423 392 4.2299987e-05 425 392 4.2299987e-05 430 392 8.4599989e-05 431 392 4.2299987e-05 432 392 4.2299987e-05 433 392 4.2299987e-05 434 392 8.4599989e-05 443 392 0.0013112999 444 392 0.0032147998 445 392 0.0041029975 446 392 0.00071909977 447 392 0.0063448995 449 392 4.2299987e-05 450 392 0.0056681 452 392 0.0089251995 453 392 0.0010574998 454 392 0.0010574998 455 392 0.022207197 456 392 0.0010574998 457 392 0.0059218965 458 392 0.00093059987 459 392 0.0013958998 460 392 0.0012266999 463 392 0.013831899 464 392 0.0071485974 465 392 0.0025379998 467 392 0.018780898 468 392 0.0033417 469 392 0.012478299 470 392 0.014339499 471 392 0.0049912967 473 392 0.00029609981 477 392 0.00029609981 478 392 0.0038068998 483 392 0.0013535998 489 392 0.00016919999 490 392 0.0065140985 491 392 0.0038068998 9 393 3.9699997e-05 18 393 0.00015869999 22 393 5.9499987e-05 24 393 1.9799991e-05 60 393 0.0023800998 77 393 3.9699997e-05 79 393 1.9799991e-05 82 393 3.9699997e-05 83 393 3.9699997e-05 84 393 3.9699997e-05 104 393 7.9299993e-05 108 393 9.9199999e-05 113 393 7.9299993e-05 114 393 0.00023799999 126 393 0.00011899999 127 393 1.9799991e-05 130 393 7.9299993e-05 142 393 3.9699997e-05 143 393 1.9799991e-05 150 393 0.0007536998 151 393 5.9499987e-05 160 393 0.00015869999 169 393 3.9699997e-05 171 393 1.9799991e-05 172 393 9.9199999e-05 174 393 0.00017849999 175 393 0.0020428998 177 393 1.9799991e-05 187 393 0.0029155998 188 393 0.0002776999 189 393 9.9199999e-05 190 393 0.00011899999 192 393 0.00011899999 193 393 0.0012496 194 393 0.00013879999 196 393 1.9799991e-05 197 393 1.9799991e-05 198 393 0.0059105977 200 393 9.9199999e-05 201 393 3.9699997e-05 203 393 0.00013879999 204 393 0.00013879999 206 393 0.00031729997 207 393 5.9499987e-05 208 393 1.9799991e-05 209 393 1.9799991e-05 214 393 0.0016263998 219 393 0.0014676999 221 393 7.9299993e-05 223 393 0.0038279998 224 393 0.0069022998 225 393 3.9699997e-05 233 393 0.0001983 234 393 0.0026775999 237 393 0.00013879999 240 393 0.00089249993 241 393 0.030048799 242 393 1.9799991e-05 248 393 1.9799991e-05 250 393 1.9799991e-05 252 393 0.0022015998 262 393 0.0027965999 268 393 1.9799991e-05 270 393 0.00011899999 271 393 0.00011899999 272 393 3.9699997e-05 276 393 0.0026180998 277 393 0.014260799 278 393 1.9799991e-05 279 393 7.9299993e-05 282 393 0.0024197998 283 393 0.00045619998 284 393 0.00051569985 285 393 0.0022015998 286 393 0.00051569985 287 393 1.9799991e-05 288 393 9.9199999e-05 289 393 0.00061489991 290 393 0.0021023999 291 393 1.9799991e-05 292 393 0.0087071992 293 393 0.0080327988 294 393 0.010274097 295 393 0.014022797 296 393 0.0019437999 297 393 0.00031729997 298 393 0.0007536998 299 393 5.9499987e-05 305 393 3.9699997e-05 307 393 3.9699997e-05 308 393 0.00051569985 312 393 0.0067237988 313 393 0.00021819999 315 393 0.015371498 317 393 0.00021819999 319 393 0.00011899999 320 393 0.017612796 321 393 0.00089249993 322 393 0.0017255999 325 393 0.0014081998 326 393 0.0010908998 328 393 3.9699997e-05 337 393 9.9199999e-05 338 393 3.9699997e-05 340 393 0.0047601983 341 393 1.9799991e-05 347 393 1.9799991e-05 349 393 3.9699997e-05 350 393 1.9799991e-05 351 393 0.00025779987 352 393 1.9799991e-05 353 393 3.9699997e-05 354 393 0.00021819999 356 393 0.00017849999 357 393 0.00013879999 358 393 0.0033320999 359 393 0.012297198 361 393 5.9499987e-05 369 393 0.0010313999 370 393 0.0016065999 371 393 0.00045619998 372 393 0.0011900999 373 393 0.0019040999 375 393 0.0015470998 376 393 0.00057519996 384 393 3.9699997e-05 385 393 1.9799991e-05 386 393 0.0033320999 387 393 0.00065449998 388 393 1.9799991e-05 389 393 0.0016858999 390 393 0.0016263998 391 393 0.0028164999 392 393 0.030941296 393 393 0.14048547 395 393 1.9799991e-05 396 393 0.00081319991 397 393 0.00059499987 398 393 5.9499987e-05 402 393 0.0009519998 405 393 1.9799991e-05 413 393 1.9799991e-05 414 393 5.9499987e-05 417 393 0.00051569985 419 393 0.0015272 420 393 3.9699997e-05 421 393 7.9299993e-05 422 393 9.9199999e-05 423 393 3.9699997e-05 424 393 3.9699997e-05 425 393 1.9799991e-05 427 393 1.9799991e-05 430 393 9.9199999e-05 431 393 5.9499987e-05 432 393 1.9799991e-05 433 393 3.9699997e-05 434 393 3.9699997e-05 441 393 5.9499987e-05 442 393 3.9699997e-05 443 393 0.0018048999 444 393 0.0036692999 445 393 0.0047799982 446 393 0.00015869999 447 393 0.0067039989 448 393 1.9799991e-05 450 393 0.0058312975 452 393 0.0065253973 453 393 0.00099169998 454 393 0.0010511999 455 393 0.026835699 456 393 0.00061489991 457 393 0.0054345988 458 393 0.00079339999 459 393 0.0014479 460 393 0.00097189983 463 393 0.015351698 464 393 0.0077947974 465 393 0.0031734998 467 393 0.016402896 468 393 0.0044229999 469 393 0.0084889978 470 393 0.010353398 471 393 0.0024395999 472 393 1.9799991e-05 473 393 0.00021819999 477 393 0.00021819999 478 393 0.0018048999 479 393 1.9799991e-05 483 393 0.0016065999 489 393 1.9799991e-05 490 393 0.0034510999 491 393 0.0022213999 21 394 0.00020499999 60 394 0.0020501998 108 394 0.00010249999 114 394 0.00020499999 126 394 0.00010249999 150 394 0.0035879 160 394 0.00040999986 171 394 0.0050230995 190 394 0.00010249999 194 394 0.00020499999 198 394 0.009943597 200 394 0.00010249999 204 394 0.0050230995 206 394 0.00020499999 214 394 0.06847769 224 394 0.0064581968 225 394 0.0042029992 233 394 0.0010250998 234 394 0.0017426999 237 394 0.00010249999 240 394 0.0512558 241 394 0.049205497 252 394 0.00010249999 272 394 0.00010249999 273 394 0.0013325999 277 394 0.00040999986 284 394 0.0003074999 287 394 0.18718606 288 394 0.00010249999 290 394 0.0048179999 294 394 0.0094310977 295 394 0.00010249999 315 394 0.00010249999 326 394 0.00082009984 340 394 0.0024603 356 394 0.00010249999 358 394 0.00092259981 370 394 0.00010249999 375 394 0.00061509991 384 394 0.00010249999 386 394 0.00010249999 387 394 0.00010249999 394 394 0.036904197 395 394 0.0003074999 397 394 0.00020499999 417 394 0.0003074999 422 394 0.00020499999 443 394 0.0056380965 444 394 0.0028702999 445 394 0.0093284994 446 394 0.00051259995 447 394 0.0039978996 450 394 0.0032803998 452 394 0.0094310977 453 394 0.0026652999 454 394 0.0012300999 455 394 0.022654999 456 394 0.00010249999 457 394 0.0080983974 458 394 0.00082009984 459 394 0.00040999986 460 394 0.00092259981 463 394 0.016094297 464 394 0.0017426999 465 394 0.0045104995 467 394 0.023577698 468 394 0.0054330975 469 394 0.0034854 470 394 0.0039978996 471 394 0.0039978996 473 394 0.00010249999 477 394 0.00071759988 478 394 0.0010250998 483 394 0.00061509991 490 394 0.00040999986 491 394 0.0019476998 21 395 0.005887799 22 395 0.00030989992 60 395 0.0024790999 114 395 0.00030989992 126 395 0.00030989992 188 395 0.0021692 198 395 0.0034087 206 395 0.00061979983 214 395 0.044003699 234 395 0.0015493999 240 395 0.00061979983 241 395 0.00061979983 272 395 0.013015199 279 395 0.00030989992 284 395 0.00030989992 287 395 0.0024790999 288 395 0.0111559 290 395 0.057018898 294 395 0.029439099 326 395 0.10040289 340 395 0.0055778995 358 395 0.0037185999 375 395 0.015494298 394 395 0.00061979983 395 395 0.034087397 405 395 0.00030989992 417 395 0.00030989992 443 395 0.0061976984 445 395 0.0055778995 446 395 0.0015493999 447 395 0.0086767972 450 395 0.0034087 452 395 0.0052680969 453 395 0.00092969998 454 395 0.0012394998 455 395 0.0238612 457 395 0.026030399 458 395 0.00061979983 459 395 0.00030989992 460 395 0.00061979983 463 395 0.035946697 464 395 0.0027889998 465 395 0.0015493999 467 395 0.019832697 468 395 0.011465799 469 395 0.0040284991 470 395 0.0043383986 471 395 0.00030989992 473 395 0.00030989992 477 395 0.00061979983 478 395 0.00092969998 483 395 0.00092969998 490 395 0.00061979983 491 395 0.0012394998 60 396 0.0016305998 108 396 0.0002329 114 396 0.00046589994 126 396 0.0002329 194 396 0.0002329 198 396 0.0025622998 206 396 0.00046589994 214 396 0.00046589994 224 396 0.0002329 233 396 0.00093169999 234 396 0.0011646999 241 396 0.0027951999 252 396 0.007221099 270 396 0.0002329 272 396 0.0039598979 276 396 0.0002329 277 396 0.003727 282 396 0.0025622998 284 396 0.00046589994 290 396 0.004658699 292 396 0.0020963999 293 396 0.004658699 294 396 0.0055904984 295 396 0.0041928999 312 396 0.0023293998 319 396 0.0048916973 320 396 0.0002329 321 396 0.010948099 326 396 0.0002329 340 396 0.0051245987 350 396 0.00069879997 351 396 0.0020963999 354 396 0.0358724 358 396 0.0044257976 369 396 0.0002329 372 396 0.0041928999 375 396 0.015140899 386 396 0.0011646999 387 396 0.0002329 390 396 0.00046589994 391 396 0.042161699 392 396 0.00069879997 393 396 0.0200326 395 396 0.0002329 396 396 0.029583 398 396 0.0016305998 414 396 0.0016305998 417 396 0.00046589994 422 396 0.0002329 441 396 0.00069879997 443 396 0.00046589994 444 396 0.006988097 445 396 0.010715097 447 396 0.0090845972 450 396 0.0044257976 452 396 0.0041928999 453 396 0.0016305998 454 396 0.0030281998 455 396 0.026787799 457 396 0.023060799 458 396 0.00069879997 459 396 0.00069879997 460 396 0.00069879997 463 396 0.045189798 464 396 0.0093174987 465 396 0.0090845972 467 396 0.023293696 468 396 0.0030281998 469 396 0.0097833984 470 396 0.011180997 471 396 0.010249197 473 396 0.0002329 477 396 0.00069879997 478 396 0.0013975999 483 396 0.0011646999 490 396 0.0018634999 491 396 0.0039598979 9 397 5.4299991e-05 18 397 0.00016289999 19 397 0.0011403 22 397 0.00038009998 60 397 0.0030950999 82 397 5.4299991e-05 83 397 5.4299991e-05 84 397 5.4299991e-05 108 397 5.4299991e-05 113 397 0.0001086 114 397 0.0001086 126 397 5.4299991e-05 130 397 5.4299991e-05 135 397 0.0008144998 137 397 5.4299991e-05 139 397 5.4299991e-05 150 397 0.00059729978 160 397 0.00043439982 169 397 5.4299991e-05 172 397 0.0001086 187 397 0.0001086 188 397 5.4299991e-05 189 397 5.4299991e-05 190 397 0.0001086 191 397 5.4299991e-05 194 397 0.00016289999 197 397 5.4299991e-05 198 397 0.0054300986 200 397 5.4299991e-05 203 397 0.0001086 204 397 0.0001086 206 397 0.0001086 207 397 5.4299991e-05 214 397 0.0014117998 223 397 0.00032579992 224 397 0.0073305964 225 397 0.0038552999 233 397 0.00016289999 234 397 0.0023349 237 397 0.0001086 240 397 0.0073305964 241 397 0.0079821981 242 397 5.4299991e-05 252 397 0.00038009998 262 397 0.0018461999 270 397 0.0021176999 271 397 0.00076019997 272 397 0.00021719999 277 397 0.051694199 282 397 0.0122719 283 397 0.0039638989 284 397 0.00048869988 285 397 5.4299991e-05 286 397 5.4299991e-05 287 397 0.00027149986 288 397 0.0022262998 289 397 0.0045069978 290 397 5.4299991e-05 292 397 0.0098826997 293 397 0.0021176999 294 397 0.008905299 295 397 0.042463098 296 397 0.0085251965 297 397 0.00038009998 298 397 0.0084165968 299 397 5.4299991e-05 308 397 5.4299991e-05 312 397 0.0078735985 313 397 0.0013031999 315 397 0.0034208999 319 397 5.4299991e-05 320 397 0.0051585995 321 397 0.0037466998 322 397 0.0064617991 323 397 5.4299991e-05 324 397 5.4299991e-05 326 397 0.007710699 328 397 0.00021719999 329 397 5.4299991e-05 338 397 5.4299991e-05 339 397 0.00027149986 340 397 0.0111316 351 397 0.008905299 352 397 5.4299991e-05 354 397 0.0072762966 356 397 5.4299991e-05 357 397 0.00076019997 358 397 0.0023349 370 397 0.00038009998 371 397 5.4299991e-05 372 397 0.0007058999 373 397 0.00032579992 374 397 5.4299991e-05 375 397 0.0037466998 376 397 5.4299991e-05 384 397 0.00016289999 385 397 0.0001086 386 397 0.0013031999 387 397 5.4299991e-05 389 397 5.4299991e-05 390 397 5.4299991e-05 391 397 5.4299991e-05 392 397 0.0079821981 393 397 0.0014117998 394 397 5.4299991e-05 396 397 0.0034751999 397 397 0.065920889 402 397 0.0060816966 404 397 0.0001086 412 397 5.4299991e-05 414 397 5.4299991e-05 417 397 0.00043439982 421 397 5.4299991e-05 422 397 0.0001086 423 397 5.4299991e-05 430 397 5.4299991e-05 431 397 5.4299991e-05 433 397 5.4299991e-05 434 397 5.4299991e-05 443 397 0.0033665998 444 397 0.0015203999 445 397 0.0076020993 446 397 0.00032579992 447 397 0.0019548 450 397 0.0038552999 452 397 0.0049413964 453 397 0.0012488998 454 397 0.00086879986 455 397 0.029539499 456 397 0.00027149986 457 397 0.0049413964 458 397 0.00048869988 459 397 0.00043439982 460 397 0.00092309993 463 397 0.0078192987 464 397 0.0032036998 465 397 0.0030950999 467 397 0.023240697 468 397 0.0029322 469 397 0.0041267984 470 397 0.0044525973 471 397 0.011185899 473 397 0.0001086 477 397 0.0008144998 478 397 0.0010859999 483 397 0.0008144998 490 397 0.00043439982 491 397 0.0033665998 22 398 0.00040169992 60 398 0.0010042 108 398 0.00020079999 114 398 0.00040169992 126 398 0.00020079999 150 398 0.00020079999 160 398 0.00080339983 171 398 0.0018075998 172 398 0.00020079999 187 398 0.00020079999 188 398 0.00020079999 190 398 0.00020079999 194 398 0.00020079999 198 398 0.010042198 200 398 0.00020079999 206 398 0.00040169992 214 398 0.0056235977 223 398 0.00020079999 224 398 0.010644697 225 398 0.00020079999 233 398 0.00040169992 234 398 0.0022092999 237 398 0.00020079999 240 398 0.00020079999 241 398 0.0092387982 242 398 0.00020079999 252 398 0.00040169992 262 398 0.00020079999 270 398 0.00020079999 274 398 0.00040169992 277 398 0.024703797 278 398 0.00020079999 282 398 0.0016066998 283 398 0.00020079999 284 398 0.00060249981 285 398 0.00020079999 286 398 0.0040168986 287 398 0.00060249981 288 398 0.00040169992 289 398 0.00020079999 290 398 0.0084353983 291 398 0.00020079999 292 398 0.016067497 293 398 0.0098412968 294 398 0.031532399 295 398 0.089576185 296 398 0.00040169992 297 398 0.00020079999 298 398 0.00020079999 299 398 0.00020079999 301 398 0.00020079999 304 398 0.00020079999 307 398 0.00020079999 312 398 0.0054227971 313 398 0.00020079999 315 398 0.013657399 319 398 0.00040169992 320 398 0.00060249981 321 398 0.00020079999 322 398 0.00020079999 324 398 0.0014058999 326 398 0.0012051 328 398 0.00020079999 340 398 0.0078328997 350 398 0.00020079999 351 398 0.00060249981 352 398 0.00080339983 354 398 0.00020079999 356 398 0.00020079999 358 398 0.0036151998 366 398 0.0054227971 369 398 0.00040169992 370 398 0.00020079999 371 398 0.00040169992 372 398 0.0068286993 373 398 0.0026109999 384 398 0.0056235977 386 398 0.057642099 387 398 0.00020079999 389 398 0.00060249981 390 398 0.00060249981 392 398 0.0048201978 393 398 0.0078328997 398 398 0.019281 402 398 0.00020079999 415 398 0.00080339983 417 398 0.00040169992 419 398 0.00060249981 422 398 0.00020079999 441 398 0.00020079999 442 398 0.00020079999 443 398 0.0028118 444 398 0.0046193972 445 398 0.0098412968 447 398 0.0054227971 450 398 0.0048201978 452 398 0.0052218996 453 398 0.0014058999 454 398 0.0044185966 455 398 0.032134999 456 398 0.00020079999 457 398 0.0070294999 458 398 0.0012051 459 398 0.00040169992 460 398 0.00080339983 463 398 0.025707997 464 398 0.0062260963 465 398 0.0018075998 467 398 0.050813399 468 398 0.0028118 469 398 0.0070294999 470 398 0.0072303973 471 398 0.0010042 473 398 0.00020079999 477 398 0.00060249981 478 398 0.0014058999 483 398 0.00040169992 490 398 0.00060249981 491 398 0.0024100998 18 399 0.0001181 60 399 0.0011808998 78 399 0.00047239987 113 399 0.0001181 114 399 0.0001181 130 399 0.0020075999 134 399 0.0016532999 139 399 0.0044874996 149 399 0.0001181 150 399 0.00047239987 151 399 0.00023619999 156 399 0.0022437 158 399 0.0001181 160 399 0.010510199 161 399 0.00070849992 163 399 0.00070849992 165 399 0.011572998 171 399 0.00047239987 173 399 0.00035429979 176 399 0.00035429979 177 399 0.0001181 178 399 0.0001181 181 399 0.0096834973 191 399 0.00023619999 194 399 0.0001181 198 399 0.00023619999 206 399 0.00023619999 214 399 0.0001181 224 399 0.00094469986 233 399 0.0081482977 234 399 0.0015351998 237 399 0.0057864971 240 399 0.005668398 241 399 0.0044874996 242 399 0.0001181 252 399 0.0090930983 270 399 0.0001181 271 399 0.0001181 274 399 0.00082659977 277 399 0.079475641 282 399 0.0060226992 283 399 0.00094469986 284 399 0.0010627999 289 399 0.00035429979 292 399 0.0027160998 293 399 0.022909798 295 399 0.0018894998 296 399 0.00059049996 297 399 0.0001181 298 399 0.0001181 302 399 0.00035429979 303 399 0.0033065998 304 399 0.0011808998 305 399 0.0001181 306 399 0.0034246999 307 399 0.00023619999 308 399 0.0012989999 312 399 0.0085025989 313 399 0.0093291998 315 399 0.0038969999 319 399 0.0220831 320 399 0.0017714 321 399 0.0017714 323 399 0.00082659977 324 399 0.0018894998 326 399 0.0024798999 328 399 0.0082663968 331 399 0.00082659977 332 399 0.0001181 337 399 0.0001181 338 399 0.0010627999 339 399 0.00047239987 340 399 0.0016532999 350 399 0.0001181 351 399 0.00059049996 354 399 0.0035426999 356 399 0.0001181 357 399 0.00023619999 358 399 0.0046055987 366 399 0.023854498 370 399 0.0001181 371 399 0.0001181 372 399 0.0018894998 373 399 0.0001181 374 399 0.0001181 377 399 0.0022437 378 399 0.0030703999 383 399 0.0011808998 384 399 0.0001181 385 399 0.0012989999 386 399 0.00023619999 387 399 0.0001181 394 399 0.00070849992 397 399 0.0043693967 399 399 0.0090930983 400 399 0.0069673993 401 399 0.10167688 402 399 0.042040598 410 399 0.0001181 412 399 0.0017714 417 399 0.00035429979 421 399 0.0001181 422 399 0.0001181 439 399 0.00023619999 441 399 0.0001181 443 399 0.0066130981 444 399 0.00047239987 445 399 0.0067311972 446 399 0.00023619999 447 399 0.0031884999 450 399 0.0020075999 452 399 0.0035426999 453 399 0.0014171 454 399 0.00023619999 455 399 0.0422768 456 399 0.00023619999 457 399 0.0017714 458 399 0.00023619999 459 399 0.00047239987 460 399 0.00082659977 463 399 0.011572998 464 399 0.0034246999 465 399 0.00082659977 467 399 0.0085025989 468 399 0.016532797 469 399 0.0043693967 470 399 0.0049597993 471 399 0.0016532999 473 399 0.0001181 477 399 0.0001181 478 399 0.00094469986 483 399 0.00070849992 490 399 0.00035429979 491 399 0.00035429979 22 400 0.0001643 60 400 0.0017255999 108 400 8.2199986e-05 114 400 0.0001643 126 400 8.2199986e-05 130 400 0.0017255999 139 400 0.00082169985 150 400 8.2199986e-05 160 400 0.022021398 161 400 0.022432197 165 400 0.0057517998 169 400 0.0001643 181 400 0.0001643 189 400 8.2199986e-05 190 400 8.2199986e-05 194 400 8.2199986e-05 198 400 8.2199986e-05 206 400 0.00032869983 214 400 0.0004929998 224 400 0.00041079987 233 400 0.0046835989 234 400 0.00098599982 237 400 0.053574398 240 400 0.0015611998 241 400 0.0016433999 242 400 8.2199986e-05 252 400 0.0001643 270 400 0.0032046 271 400 8.2199986e-05 274 400 0.0026294 277 400 0.077896476 282 400 0.010681998 283 400 0.0031223998 284 400 0.00090389978 286 400 8.2199986e-05 289 400 8.2199986e-05 292 400 0.0015611998 293 400 0.067214489 294 400 0.0002464999 295 400 0.00082169985 296 400 0.00041079987 303 400 8.2199986e-05 307 400 0.00032869983 312 400 0.012900598 313 400 0.0092029981 315 400 0.0077238977 319 400 0.0094494969 320 400 8.2199986e-05 321 400 0.0036153998 322 400 8.2199986e-05 323 400 0.007477399 324 400 0.0073130988 326 400 0.0023006999 328 400 0.00032869983 331 400 0.0001643 335 400 8.2199986e-05 337 400 0.0055052973 338 400 0.0016433999 339 400 0.0004929998 340 400 0.0017255999 349 400 0.0002464999 350 400 8.2199986e-05 351 400 0.0013968998 354 400 0.0029580998 356 400 0.0001643 357 400 8.2199986e-05 358 400 0.0039440989 366 400 0.006737899 372 400 0.0001643 373 400 0.0001643 374 400 0.0001643 378 400 8.2199986e-05 385 400 0.00073949993 387 400 8.2199986e-05 397 400 0.0001643 399 400 0.0001643 400 400 0.00082169985 401 400 0.0020541998 402 400 0.091454387 412 400 0.0024650998 417 400 0.00032869983 421 400 0.0001643 422 400 8.2199986e-05 443 400 0.0082990974 444 400 0.0023828999 445 400 0.006819997 446 400 0.00032869983 447 400 0.0044370964 450 400 0.0017255999 452 400 0.0028758999 453 400 0.0010682 454 400 0.0002464999 455 400 0.045850497 456 400 8.2199986e-05 457 400 0.0018076999 458 400 0.0004929998 459 400 0.00041079987 460 400 0.00073949993 463 400 0.0061626993 464 400 0.0004929998 465 400 0.00065739988 467 400 0.0077238977 468 400 0.0050944984 469 400 0.0035332998 470 400 0.0038619998 471 400 0.0051766969 473 400 8.2199986e-05 477 400 0.0001643 478 400 0.00073949993 483 400 0.00090389978 490 400 0.00032869983 491 400 0.00065739988 9 401 7.0999995e-06 16 401 2.3999992e-06 18 401 2.6099995e-05 22 401 0.00035159988 60 401 0.0012591998 79 401 2.3999992e-06 82 401 9.4999996e-06 83 401 7.0999995e-06 84 401 7.0999995e-06 108 401 9.4999996e-06 113 401 1.19e-05 114 401 2.6099995e-05 126 401 1.6599995e-05 127 401 2.3999992e-06 130 401 0.00014969999 134 401 0.0036753998 137 401 4.7999993e-06 139 401 0.00014259999 150 401 0.0001924 156 401 0.019572198 158 401 0.0052410997 160 401 0.00017819999 161 401 7.0999995e-06 165 401 0.00022099999 181 401 0.0041861981 189 401 2.6099995e-05 190 401 2.8499999e-05 192 401 7.0999995e-06 194 401 0.00059869979 196 401 2.3999992e-06 197 401 4.7999993e-06 198 401 9.4999996e-06 200 401 1.19e-05 201 401 4.7999993e-06 203 401 1.43e-05 204 401 1.6599995e-05 206 401 0.00020189999 207 401 9.4999996e-06 209 401 2.3999992e-06 214 401 0.00012119999 218 401 7.0999995e-06 219 401 0.0013613999 223 401 0.00023759999 224 401 8.079999e-05 233 401 0.0036254998 234 401 0.00083869998 236 401 0.00052739982 237 401 0.019515198 240 401 0.0094225965 241 401 0.0049725994 242 401 0.0021287999 248 401 4.7999993e-06 250 401 2.3999992e-06 251 401 2.3999992e-06 252 401 0.0159158 263 401 2.3999992e-06 270 401 0.00014019999 271 401 4.5099994e-05 272 401 2.3799992e-05 274 401 1.43e-05 276 401 8.79e-05 277 401 0.0096791983 282 401 0.0051579997 283 401 0.0011213999 284 401 0.00038009998 285 401 6.8899986e-05 289 401 0.0001164 290 401 1.19e-05 292 401 0.0002328 293 401 0.00096459989 295 401 0.0001449 296 401 0.0011997998 297 401 7.0999995e-06 298 401 0.00019009999 299 401 0.00020669999 303 401 7.129999e-05 304 401 1.19e-05 306 401 2.6099995e-05 307 401 2.3999992e-06 312 401 0.0092586987 313 401 0.0885216 315 401 8.3199993e-05 318 401 7.5999997e-05 319 401 0.023254797 320 401 0.00016159999 321 401 0.0012543998 322 401 0.0036136999 323 401 0.0077238977 324 401 3.5599995e-05 326 401 0.00048939977 328 401 0.011480097 331 401 3.0899988e-05 338 401 0.00015919999 339 401 4.9899987e-05 340 401 0.0017295999 341 401 1.19e-05 350 401 4.7999993e-06 351 401 0.0010928998 354 401 7.5999997e-05 355 401 7.0999995e-06 356 401 0.00024469988 357 401 0.0060155988 358 401 0.00098119979 359 401 3.5599995e-05 366 401 0.0069041997 371 401 2.3999992e-06 372 401 0.00058679981 374 401 0.00056309998 377 401 3.3299992e-05 378 401 5.4599994e-05 380 401 2.3999992e-06 383 401 1.6599995e-05 384 401 0.0014848998 385 401 0.0053503998 386 401 1.19e-05 387 401 0.0071084984 392 401 0.00088379998 393 401 0.00027799979 394 401 0.0035993999 397 401 0.020527299 399 401 0.0018127998 400 401 0.00015209999 401 401 0.040363196 402 401 0.25693089 404 401 2.6099995e-05 412 401 0.00016159999 414 401 0.0013281 417 401 0.00013069999 419 401 0.00062479987 421 401 7.3699994e-05 422 401 5.2299991e-05 423 401 4.7999993e-06 425 401 2.3999992e-06 430 401 1.19e-05 431 401 4.7999993e-06 432 401 2.3999992e-06 433 401 4.7999993e-06 434 401 2.1399988e-05 441 401 0.00031599985 443 401 0.0087050982 444 401 0.00048229983 445 401 0.0074007995 446 401 0.00023049999 447 401 0.0016963999 448 401 1.19e-05 449 401 2.3999992e-06 450 401 0.00084819994 452 401 0.0020051999 453 401 0.00076029985 454 401 0.00045849988 455 401 0.058405399 456 401 0.0001354 457 401 0.0019220999 458 401 0.00010929999 459 401 0.00054169982 460 401 0.00084579992 463 401 0.0010239999 464 401 0.0006010998 465 401 0.00026609981 467 401 0.0040341988 468 401 0.013839297 469 401 0.0011498998 470 401 0.0012852999 471 401 0.00020189999 472 401 4.5099994e-05 473 401 2.8499999e-05 477 401 0.00014969999 478 401 0.00030169985 483 401 0.00050609978 489 401 1.6599995e-05 490 401 0.00010219999 491 401 7.8399986e-05 9 402 1.44e-05 16 402 4.7999993e-06 18 402 5.2699994e-05 19 402 9.5999994e-06 22 402 0.00061379978 24 402 2.3999994e-05 60 402 0.0025604998 76 402 9.5999994e-06 77 402 4.7999993e-06 78 402 9.5999994e-06 79 402 1.44e-05 82 402 2.8799986e-05 83 402 9.5999994e-06 84 402 9.5999994e-06 108 402 1.44e-05 113 402 2.8799986e-05 114 402 6.2299994e-05 117 402 4.7999993e-06 126 402 2.3999994e-05 127 402 4.7999993e-06 130 402 0.00076719979 131 402 3.8399987e-05 133 402 4.7999993e-06 134 402 0.00022059999 135 402 1.44e-05 137 402 0.00047949981 138 402 1.9199986e-05 139 402 0.00051789987 140 402 7.1899995e-05 142 402 0.0001774 149 402 4.7999993e-06 150 402 0.0004602999 156 402 0.0012610999 158 402 0.00031169993 159 402 4.7999993e-06 160 402 0.00012469999 161 402 2.8799986e-05 165 402 0.0001007 169 402 0.00061379978 170 402 4.7999993e-06 171 402 0.00020139999 172 402 0.00088229985 174 402 3.8399987e-05 175 402 0.00013429999 177 402 4.7999993e-06 181 402 0.00024929992 187 402 0.00055139977 188 402 0.00042679999 189 402 5.2699994e-05 190 402 6.2299994e-05 191 402 0.00030209986 192 402 9.1099995e-05 194 402 8.1499995e-05 196 402 4.7999993e-06 197 402 9.5999994e-06 198 402 0.0043873973 200 402 2.3999994e-05 201 402 9.5999994e-06 203 402 2.8799986e-05 204 402 0.00013429999 206 402 0.00024929992 207 402 2.3999994e-05 209 402 4.7999993e-06 214 402 0.00031649997 218 402 4.7999993e-06 219 402 8.6299988e-05 220 402 4.7999993e-06 221 402 9.5999994e-06 222 402 1.9199986e-05 223 402 0.0018028999 224 402 0.00269 225 402 0.0001774 229 402 9.5999994e-06 230 402 7.6699987e-05 233 402 0.0013952998 234 402 0.0023015998 236 402 4.3199994e-05 237 402 0.001707 239 402 4.7999993e-06 240 402 0.0046942979 241 402 0.0042243972 242 402 0.00086309994 248 402 9.5999994e-06 250 402 4.7999993e-06 251 402 1.9199986e-05 252 402 0.0018700999 262 402 1.9199986e-05 263 402 9.5999994e-06 270 402 0.0016925998 271 402 0.0075329989 272 402 0.0010932998 274 402 3.3599994e-05 276 402 0.00019179999 277 402 0.084425747 278 402 0.0001007 279 402 0.00021099999 282 402 0.071153164 283 402 0.028041199 284 402 0.00095419982 285 402 0.00064729992 286 402 0.00031169993 287 402 9.5899988e-05 288 402 0.0001199 289 402 0.00089669996 290 402 0.00011509999 292 402 0.010548998 293 402 0.0018461 294 402 0.00096379989 295 402 0.0041092969 296 402 0.014207598 297 402 0.00028769998 298 402 0.0013714 299 402 0.00045069982 300 402 9.5999994e-06 303 402 4.7999993e-06 304 402 5.7499987e-05 307 402 5.7499987e-05 308 402 9.5999994e-06 312 402 0.013416398 313 402 0.017995697 315 402 0.0006616998 317 402 1.9199986e-05 318 402 0.00024449988 319 402 0.0021145998 320 402 0.0045408979 321 402 0.0014769 322 402 0.0016494999 323 402 0.00092539983 324 402 0.00070009986 326 402 0.00094939978 327 402 1.44e-05 328 402 0.0020234999 329 402 3.8399987e-05 330 402 0.000187 331 402 0.0001966 332 402 4.7999993e-06 337 402 1.44e-05 338 402 0.0007815999 339 402 0.00024449988 340 402 0.0048668981 341 402 0.0001007 345 402 1.44e-05 349 402 2.8799986e-05 350 402 9.5899988e-05 351 402 0.0077966973 352 402 0.0009015 353 402 0.00011509999 354 402 0.00052749994 355 402 1.44e-05 356 402 2.8799986e-05 357 402 0.0078445971 358 402 0.0079980977 359 402 9.5999994e-06 361 402 4.7999993e-06 363 402 9.5999994e-06 366 402 0.0016639 367 402 9.5999994e-06 368 402 9.5999994e-06 369 402 9.5999994e-06 370 402 0.00020139999 371 402 0.0001103 372 402 0.0019850999 373 402 0.0006616998 374 402 6.2299994e-05 375 402 0.00030689989 376 402 9.5999994e-06 377 402 4.7999993e-06 378 402 4.7999993e-06 380 402 4.7999993e-06 384 402 0.00018219999 385 402 0.00041239988 386 402 0.00024449988 387 402 0.00054659997 390 402 3.8399987e-05 391 402 0.00032129977 392 402 0.00071449997 393 402 0.00039319997 394 402 0.0002158 396 402 3.3599994e-05 397 402 0.0064300969 398 402 1.9199986e-05 399 402 0.00011509999 400 402 1.44e-05 401 402 0.0024358998 402 402 0.070299685 404 402 0.00034519983 405 402 0.0001582 408 402 4.7999993e-06 409 402 1.44e-05 412 402 0.00061859982 413 402 4.7999993e-06 414 402 0.0006616998 415 402 0.0001007 416 402 1.9199986e-05 417 402 0.00034999987 419 402 0.00023019999 421 402 0.00023019999 422 402 4.7999987e-05 423 402 4.7999993e-06 425 402 4.7999993e-06 430 402 1.44e-05 431 402 9.5999994e-06 432 402 4.7999993e-06 433 402 1.44e-05 434 402 1.9199986e-05 438 402 4.7999993e-06 441 402 5.7499987e-05 442 402 1.44e-05 443 402 0.0053224973 444 402 0.00089189992 445 402 0.0074274987 446 402 0.00055619981 447 402 0.0015103999 448 402 1.44e-05 449 402 4.7999993e-06 450 402 0.0021386 452 402 0.0057875998 453 402 0.0017788999 454 402 0.00070969993 455 402 0.037520997 456 402 0.00064729992 457 402 0.0019275998 458 402 0.0001774 459 402 0.00088709989 460 402 0.0009782 463 402 0.0025988999 464 402 0.0015966999 465 402 0.0011795999 467 402 0.0075760968 468 402 0.0033564998 469 402 0.0030113 470 402 0.0033421 471 402 0.023615398 472 402 5.7499987e-05 473 402 6.2299994e-05 477 402 0.00016299999 478 402 0.00075759995 479 402 9.5999994e-06 483 402 0.0018604998 489 402 4.3199994e-05 490 402 0.00029729982 491 402 0.0053703971 9 403 7.4699987e-05 16 403 2.4899986e-05 17 403 1.25e-05 18 403 7.4699987e-05 22 403 2.4899986e-05 60 403 0.0030271998 75 403 0.0004608999 76 403 0.00022419999 79 403 2.4899986e-05 81 403 0.00012459999 82 403 0.00012459999 83 403 9.9699988e-05 84 403 9.9699988e-05 108 403 0.00014949999 113 403 0.0002118 114 403 0.00054809987 126 403 0.0002367 127 403 4.9799986e-05 130 403 0.00093429978 134 403 0.00057309982 150 403 0.00044849981 158 403 3.7399994e-05 160 403 0.00028649997 171 403 1.25e-05 172 403 6.2299994e-05 181 403 0.0016070998 187 403 1.25e-05 189 403 0.000137 190 403 8.7199995e-05 192 403 2.4899986e-05 194 403 4.9799986e-05 196 403 1.25e-05 197 403 3.7399994e-05 198 403 2.4899986e-05 200 403 8.7199995e-05 201 403 7.4699987e-05 203 403 3.7399994e-05 204 403 0.00089699985 206 403 0.0014326 207 403 3.7399994e-05 209 403 1.25e-05 214 403 0.00017439999 218 403 1.25e-05 219 403 0.0001121 224 403 0.0017814999 233 403 0.0023047 234 403 0.0025787998 237 403 0.0004608999 240 403 0.00061039999 241 403 0.00078479992 248 403 6.2299994e-05 250 403 4.9799986e-05 251 403 2.4899986e-05 252 403 9.9699988e-05 263 403 1.25e-05 270 403 2.4899986e-05 272 403 0.0002491998 276 403 0.00039859978 277 403 0.0020181998 282 403 0.00064779981 283 403 0.00075989985 284 403 0.0011834998 292 403 0.00012459999 293 403 0.0088823996 294 403 0.0020554999 295 403 0.0013704 296 403 0.0022548998 297 403 3.7399994e-05 298 403 0.00078479992 299 403 0.0042978972 308 403 1.25e-05 312 403 0.0068641976 315 403 0.00097169983 317 403 9.9699988e-05 318 403 0.0001121 319 403 0.004783798 320 403 0.0022423998 321 403 0.0025787998 322 403 0.00064779981 324 403 0.0011461 326 403 0.0019433999 338 403 0.00057309982 339 403 0.00017439999 340 403 0.0041234978 341 403 3.7399994e-05 350 403 0.0046467967 351 403 0.00062289997 354 403 6.2299994e-05 356 403 0.00066029979 357 403 9.9699988e-05 358 403 0.019483998 359 403 0.0059547983 369 403 0.001769 372 403 0.00032389979 380 403 2.4899986e-05 384 403 4.9799986e-05 387 403 0.0002367 390 403 0.071071684 392 403 0.0098416992 393 403 0.020517997 394 403 3.7399994e-05 396 403 9.9699988e-05 397 403 0.0032265999 402 403 6.2299994e-05 403 403 0.0034133999 404 403 0.0446986 405 403 0.13625085 413 403 0.0062662996 414 403 0.0023794 417 403 0.00031139981 419 403 0.0016943 420 403 0.0046467967 421 403 9.9699988e-05 422 403 0.0018437998 423 403 4.9799986e-05 425 403 3.7399994e-05 430 403 0.000137 431 403 4.9799986e-05 432 403 1.25e-05 433 403 2.4899986e-05 434 403 0.0001869 442 403 1.25e-05 443 403 0.00077239983 444 403 0.0036251999 445 403 0.0047215 446 403 0.00019929999 447 403 0.0088326 448 403 1.25e-05 449 403 4.9799986e-05 450 403 0.0047215 452 403 0.0039241984 453 403 0.00074749999 454 403 0.00037369994 455 403 0.015958399 456 403 0.0020929 457 403 0.0026659998 458 403 0.00057309982 459 403 0.0011461 460 403 0.0010090999 463 403 0.0061541982 464 403 0.0083342977 465 403 0.0026659998 467 403 0.018686697 468 403 0.0021054 469 403 0.012121398 470 403 0.0270583 471 403 0.0022298999 473 403 0.00057309982 477 403 8.7199995e-05 478 403 0.0013952998 479 403 0.00072259991 483 403 0.0020305999 489 403 2.4899986e-05 490 403 0.0020554999 491 403 6.2299994e-05 9 404 7.509999e-05 16 404 5.0099989e-05 18 404 0.00010009999 22 404 0.0002002 60 404 0.0038039999 76 404 5.0099989e-05 77 404 0.00012509999 79 404 5.0099989e-05 82 404 0.00015019999 83 404 0.00012509999 84 404 0.00012509999 108 404 0.0002002 113 404 0.00027529988 114 404 0.00067569991 126 404 0.00030029984 127 404 7.509999e-05 130 404 7.509999e-05 150 404 0.00057559996 169 404 0.00010009999 172 404 0.0010760999 181 404 5.0099989e-05 187 404 2.4999987e-05 189 404 0.0002002 190 404 0.00010009999 192 404 5.0099989e-05 194 404 0.00010009999 196 404 2.4999987e-05 197 404 5.0099989e-05 198 404 0.0017267999 200 404 0.00010009999 201 404 0.00010009999 203 404 7.509999e-05 204 404 0.00010009999 206 404 0.0016017 207 404 7.509999e-05 209 404 2.4999987e-05 214 404 0.0008758998 220 404 2.4999987e-05 224 404 0.0015766998 233 404 0.00027529988 234 404 0.0045797974 237 404 5.0099989e-05 240 404 0.00095099979 241 404 0.00015019999 248 404 0.00010009999 250 404 7.509999e-05 251 404 2.4999987e-05 252 404 0.0001752 263 404 2.4999987e-05 271 404 2.4999987e-05 272 404 0.00095099979 277 404 0.028630096 279 404 0.00015019999 282 404 0.011612199 283 404 0.0192452 284 404 0.0013513998 285 404 2.4999987e-05 286 404 7.509999e-05 287 404 2.4999987e-05 288 404 2.4999987e-05 289 404 2.4999987e-05 290 404 0.00080079981 291 404 2.4999987e-05 292 404 0.0012512999 293 404 0.0025527 294 404 0.0059812963 295 404 0.00037539983 296 404 0.008433897 297 404 0.00037539983 298 404 0.022023097 299 404 0.013664298 305 404 5.0099989e-05 307 404 7.509999e-05 308 404 2.4999987e-05 312 404 0.0040291995 313 404 2.4999987e-05 315 404 0.00072579994 318 404 0.00067569991 319 404 0.0011511999 320 404 0.005380597 321 404 7.509999e-05 322 404 5.0099989e-05 324 404 0.0014765998 326 404 7.509999e-05 327 404 0.0023273998 328 404 0.0003252998 329 404 2.4999987e-05 331 404 2.4999987e-05 338 404 0.0014515 339 404 0.00012509999 340 404 0.013514198 341 404 0.00030029984 343 404 0.00095099979 350 404 0.0012762998 351 404 0.0034035998 354 404 0.0002002 356 404 0.00042539998 357 404 0.0021271999 358 404 0.021422498 359 404 2.4999987e-05 366 404 5.0099989e-05 369 404 2.4999987e-05 371 404 2.4999987e-05 372 404 0.00040039979 373 404 2.4999987e-05 380 404 5.0099989e-05 384 404 7.509999e-05 386 404 2.4999987e-05 387 404 0.00030029984 390 404 0.0046798997 391 404 5.0099989e-05 392 404 0.00095099979 393 404 0.0035787998 396 404 2.4999987e-05 397 404 0.0054306984 398 404 2.4999987e-05 402 404 0.00015019999 403 404 7.509999e-05 404 404 0.14269978 405 404 0.033885598 413 404 0.0011511999 414 404 0.0063315965 417 404 0.00035039987 419 404 7.509999e-05 420 404 2.4999987e-05 421 404 0.00012509999 422 404 0.0001752 423 404 0.00010009999 425 404 7.509999e-05 430 404 0.0002002 431 404 7.509999e-05 432 404 2.4999987e-05 433 404 5.0099989e-05 434 404 5.0099989e-05 443 404 0.0012013 444 404 0.0010511 445 404 0.0034285998 446 404 0.00025029993 447 404 0.0030532 448 404 2.4999987e-05 449 404 7.509999e-05 450 404 0.0052804984 452 404 0.0073326975 453 404 0.0014515 454 404 0.0015766998 455 404 0.015816599 456 404 0.0022773999 457 404 0.0028279999 458 404 0.00085089984 459 404 0.00067569991 460 404 0.00092599983 463 404 0.0041793995 464 404 0.0014264998 465 404 0.0026777999 467 404 0.021472499 468 404 0.0020271 469 404 0.014239997 470 404 0.031457998 471 404 0.00037539983 473 404 0.00067569991 477 404 0.00010009999 478 404 0.0015515999 483 404 0.0027278999 489 404 0.00012509999 490 404 0.0023774998 491 404 0.0024525998 9 405 0.00010999999 16 405 4.3999986e-05 18 405 0.00013199999 22 405 0.00015399999 24 405 2.1999993e-05 60 405 0.0028153998 75 405 0.00010999999 76 405 0.00048389984 77 405 0.00028589997 79 405 0.00013199999 81 405 2.1999993e-05 82 405 0.00017599999 83 405 0.00010999999 84 405 0.00010999999 108 405 0.00015399999 113 405 0.0002638998 114 405 0.00057189981 126 405 0.0002638998 127 405 4.3999986e-05 130 405 0.0020895 131 405 4.3999986e-05 132 405 2.1999993e-05 134 405 0.00013199999 135 405 2.1999993e-05 138 405 2.1999993e-05 139 405 2.1999993e-05 140 405 2.1999993e-05 142 405 2.1999993e-05 150 405 0.00052789995 156 405 2.1999993e-05 160 405 8.7999986e-05 161 405 2.1999993e-05 165 405 2.1999993e-05 169 405 0.00015399999 171 405 0.00010999999 172 405 0.00054989988 181 405 0.0018036 187 405 0.00068179984 189 405 0.00015399999 190 405 0.00010999999 191 405 6.5999993e-05 192 405 6.5999993e-05 194 405 0.00013199999 196 405 2.1999993e-05 197 405 4.3999986e-05 198 405 0.0011876998 200 405 0.00010999999 201 405 8.7999986e-05 203 405 6.5999993e-05 204 405 0.00028589997 206 405 0.0017376 207 405 6.5999993e-05 209 405 2.1999993e-05 214 405 0.0015395998 219 405 2.1999993e-05 220 405 4.3999986e-05 222 405 4.3999986e-05 223 405 4.3999986e-05 224 405 0.0036511999 225 405 0.00032989983 233 405 0.0014076999 234 405 0.0040470995 237 405 0.00017599999 240 405 0.0011216998 241 405 0.0022214998 248 405 8.7999986e-05 250 405 4.3999986e-05 251 405 2.1999993e-05 252 405 0.00021989999 262 405 2.1999993e-05 263 405 4.3999986e-05 272 405 0.00050589978 276 405 8.7999986e-05 277 405 0.013328899 278 405 2.1999993e-05 279 405 4.3999986e-05 282 405 0.004684899 283 405 0.0076981969 284 405 0.0013416999 285 405 0.00010999999 286 405 4.3999986e-05 287 405 4.3999986e-05 288 405 4.3999986e-05 290 405 0.00092379982 291 405 2.1999993e-05 292 405 0.00070379977 293 405 0.015352499 294 405 0.0051687993 295 405 0.0020234999 296 405 0.004970897 297 405 0.00013199999 298 405 0.0028372998 299 405 0.0056086965 305 405 6.5999993e-05 307 405 8.7999986e-05 308 405 6.5999993e-05 312 405 0.0089079998 313 405 4.3999986e-05 315 405 0.0030792998 317 405 4.3999986e-05 318 405 2.1999993e-05 319 405 0.0031893 320 405 0.0049268976 321 405 0.00096779992 322 405 0.0012096998 324 405 0.00092379982 326 405 0.0020234999 327 405 0.00028589997 328 405 0.00024189999 329 405 4.3999986e-05 331 405 2.1999993e-05 335 405 2.1999993e-05 338 405 0.00087979995 339 405 0.0002638998 340 405 0.0090838969 341 405 0.00019799999 343 405 2.1999993e-05 350 405 0.0016496 351 405 0.0031893 352 405 2.1999993e-05 354 405 0.0018916 356 405 0.00041789981 357 405 6.5999993e-05 358 405 0.016672198 359 405 0.0013636998 366 405 6.5999993e-05 369 405 0.00052789995 371 405 2.1999993e-05 372 405 0.0011876998 373 405 0.00017599999 380 405 2.1999993e-05 384 405 6.5999993e-05 386 405 8.7999986e-05 387 405 0.00024189999 390 405 0.0340482 391 405 4.3999986e-05 392 405 0.019817397 393 405 0.017002098 396 405 0.00052789995 397 405 0.0013196999 398 405 4.3999986e-05 401 405 2.1999993e-05 402 405 0.00021989999 403 405 0.0019574999 404 405 0.020345297 405 405 0.099087179 408 405 0.00010999999 413 405 0.0025293999 414 405 0.00079179998 416 405 2.1999993e-05 417 405 0.00037389994 419 405 0.00043989997 420 405 0.0010777998 421 405 0.00013199999 422 405 0.00063789985 423 405 6.5999993e-05 425 405 4.3999986e-05 430 405 0.00015399999 431 405 6.5999993e-05 432 405 2.1999993e-05 433 405 4.3999986e-05 434 405 8.7999986e-05 442 405 4.3999986e-05 443 405 0.0011437 444 405 0.0049928986 445 405 0.0036291999 446 405 0.00021989999 447 405 0.0080940984 448 405 2.1999993e-05 449 405 4.3999986e-05 450 405 0.0053667985 452 405 0.0065764971 453 405 0.0012316999 454 405 0.00039589987 455 405 0.017529998 456 405 0.0020015 457 405 0.0026613998 458 405 0.00094579998 459 405 0.0015615998 460 405 0.00092379982 463 405 0.0082700998 464 405 0.0095897987 465 405 0.0032332998 467 405 0.020367298 468 405 0.0023094998 469 405 0.012405097 470 405 0.027471699 471 405 0.0023534999 473 405 0.00061589992 477 405 0.00013199999 478 405 0.0015615998 479 405 0.00017599999 483 405 0.0023094998 489 405 2.1999993e-05 490 405 0.0021114999 491 405 0.00015399999 9 406 3.1999996e-05 16 406 3.1999996e-05 18 406 0.0001602 22 406 6.4099993e-05 24 406 9.609999e-05 60 406 0.0027557998 76 406 0.00025639986 79 406 3.1999996e-05 82 406 3.1999996e-05 83 406 3.1999996e-05 84 406 3.1999996e-05 108 406 6.4099993e-05 113 406 9.609999e-05 114 406 0.00022429999 126 406 9.609999e-05 127 406 3.1999996e-05 131 406 0.0012496999 150 406 0.0010253999 154 406 0.00092929997 160 406 0.0023071999 161 406 0.0014419998 163 406 0.00022429999 165 406 0.00089719985 169 406 9.609999e-05 171 406 0.0031402998 177 406 0.005543597 178 406 0.0015701998 180 406 0.0049026981 183 406 0.00086519984 185 406 0.00064089987 189 406 9.609999e-05 190 406 0.0001602 194 406 0.00012819999 200 406 6.4099993e-05 201 406 6.4099993e-05 203 406 0.00012819999 204 406 6.4099993e-05 206 406 0.00070499978 207 406 6.4099993e-05 214 406 0.00035249977 218 406 3.1999996e-05 219 406 3.1999996e-05 223 406 0.00012819999 224 406 0.0010894998 233 406 0.010926999 234 406 0.0058319978 237 406 6.4099993e-05 240 406 3.1999996e-05 241 406 0.0010574998 242 406 0.00048069982 248 406 3.1999996e-05 250 406 3.1999996e-05 252 406 0.0011855999 254 406 0.00041659991 256 406 0.00038449978 259 406 0.00019229999 263 406 3.1999996e-05 270 406 3.1999996e-05 271 406 0.00070499978 272 406 0.00092929997 274 406 0.0015701998 276 406 0.00083309994 277 406 0.090139985 279 406 3.1999996e-05 282 406 0.0017623999 283 406 0.0014739998 284 406 0.00012819999 289 406 0.0029801 290 406 0.0044220984 292 406 0.0045181997 293 406 0.0024353999 295 406 0.0052231997 296 406 6.4099993e-05 297 406 3.1999996e-05 298 406 3.1999996e-05 299 406 3.1999996e-05 302 406 0.00048069982 303 406 0.00089719985 304 406 0.00076909992 305 406 0.019130297 306 406 0.0049989 307 406 0.0083955973 308 406 0.0028518999 309 406 0.0048065968 312 406 0.0049347989 315 406 6.4099993e-05 319 406 3.1999996e-05 321 406 3.1999996e-05 322 406 9.609999e-05 323 406 0.00028839987 324 406 0.010382298 326 406 0.0048065968 327 406 0.018425398 328 406 0.012689497 331 406 0.010574598 334 406 0.0014419998 335 406 0.00044859992 336 406 0.0033004999 337 406 3.1999996e-05 338 406 0.00035249977 339 406 0.0014098999 340 406 0.0010894998 341 406 0.00086519984 349 406 0.0022751 350 406 0.0056076981 351 406 0.0024353999 352 406 0.0071778968 354 406 0.0092928 355 406 6.4099993e-05 356 406 0.0027557998 358 406 0.0052872971 359 406 0.00012819999 366 406 0.0046142973 368 406 0.0017944998 369 406 0.0015381 370 406 0.0050308965 371 406 0.0010253999 372 406 0.0030120998 373 406 0.0049026981 374 406 0.0094209984 384 406 9.609999e-05 385 406 0.00038449978 386 406 0.00035249977 387 406 9.609999e-05 389 406 0.0013458999 390 406 0.021982197 391 406 3.1999996e-05 392 406 0.00054469984 393 406 0.00054469984 394 406 0.00035249977 396 406 0.00028839987 402 406 9.609999e-05 404 406 0.0001602 405 406 0.0017623999 406 406 0.0042939 407 406 9.609999e-05 412 406 0.0017623999 413 406 0.0037811999 414 406 0.0015701998 415 406 0.0034607998 417 406 0.00070499978 419 406 0.0022431 421 406 0.00022429999 422 406 0.00012819999 423 406 3.1999996e-05 425 406 3.1999996e-05 430 406 6.4099993e-05 431 406 3.1999996e-05 432 406 3.1999996e-05 433 406 6.4099993e-05 434 406 9.609999e-05 439 406 0.00028839987 442 406 0.0012496999 443 406 0.0033645998 444 406 0.00032039988 445 406 0.0059281997 446 406 0.00044859992 447 406 0.00073699979 449 406 3.1999996e-05 450 406 0.0044861995 452 406 0.0065369979 453 406 0.00054469984 454 406 0.00076909992 455 406 0.032204296 456 406 0.0011855999 457 406 0.0020828999 458 406 0.00048069982 459 406 0.0010894998 460 406 0.0015381 463 406 0.0038772998 464 406 0.00038449978 465 406 0.0017944998 467 406 0.016502697 468 406 0.0016982998 469 406 0.0095811971 470 406 0.010926999 471 406 0.00051269983 473 406 0.00022429999 477 406 0.00019229999 478 406 0.0018585999 483 406 0.0013138 489 406 6.4099993e-05 490 406 0.00083309994 491 406 0.0010253999 9 407 7.9899997e-05 18 407 0.00015979999 60 407 0.0017579 82 407 7.9899997e-05 83 407 7.9899997e-05 84 407 7.9899997e-05 108 407 7.9899997e-05 114 407 0.00015979999 126 407 7.9899997e-05 134 407 0.0022372999 137 407 0.0070315972 138 407 0.0043946989 139 407 0.0073511973 141 407 0.0084697977 143 407 0.0011985998 149 407 7.9899997e-05 150 407 0.00071909977 151 407 0.00015979999 154 407 0.0060726963 160 407 0.0095884986 161 407 0.00031959987 163 407 0.0095884986 165 407 0.012624897 166 407 0.0061525963 171 407 0.010387499 173 407 0.00015979999 176 407 0.00015979999 177 407 0.00015979999 178 407 7.9899997e-05 180 407 7.9899997e-05 182 407 0.0035158 189 407 7.9899997e-05 190 407 7.9899997e-05 191 407 7.9899997e-05 194 407 0.00015979999 198 407 7.9899997e-05 200 407 7.9899997e-05 203 407 7.9899997e-05 204 407 7.9899997e-05 206 407 0.00063919998 214 407 0.00023969999 219 407 0.00023969999 224 407 0.028046299 233 407 0.016220499 234 407 0.0042348988 237 407 7.9899997e-05 240 407 0.0023971 241 407 0.0065520965 242 407 0.0019975998 252 407 0.0350779 270 407 0.0027965999 272 407 0.00063919998 274 407 7.9899997e-05 277 407 0.0087094977 282 407 0.00055929995 283 407 0.0021573999 284 407 7.9899997e-05 289 407 0.0041549988 290 407 0.0015980999 292 407 0.0003994999 293 407 0.018058296 295 407 0.00047939993 296 407 0.0012784998 297 407 0.00055929995 302 407 0.00015979999 303 407 7.9899997e-05 304 407 0.0091889985 305 407 0.00023969999 306 407 0.0013583999 307 407 0.0034359 308 407 0.0042348988 309 407 7.9899997e-05 312 407 0.0075908974 315 407 0.0019975998 319 407 0.0088693984 320 407 0.0029564998 321 407 0.0023171999 322 407 0.0035158 324 407 0.00015979999 326 407 0.0119057 327 407 0.00023969999 328 407 0.1043548 331 407 0.00023969999 340 407 0.0015181999 350 407 0.0076707974 351 407 0.0019176998 352 407 0.0024769998 354 407 0.015741099 356 407 0.0023171999 357 407 0.0043946989 358 407 0.0032760999 366 407 0.0036755998 370 407 0.00071909977 372 407 0.0020774999 373 407 7.9899997e-05 374 407 7.9899997e-05 377 407 0.00031959987 378 407 0.0003994999 383 407 0.00015979999 384 407 7.9899997e-05 385 407 7.9899997e-05 386 407 7.9899997e-05 387 407 7.9899997e-05 390 407 0.00023969999 394 407 0.00095879985 397 407 0.0003994999 398 407 0.0034359 401 407 7.9899997e-05 402 407 0.0012784998 406 407 7.9899997e-05 407 407 0.0178186 410 407 7.9899997e-05 412 407 0.0020774999 413 407 0.00031959987 415 407 7.9899997e-05 417 407 0.00047939993 419 407 0.0027166998 421 407 0.00015979999 422 407 0.00015979999 423 407 7.9899997e-05 430 407 0.00023969999 439 407 0.00015979999 441 407 7.9899997e-05 443 407 0.004794199 444 407 0.0043946989 445 407 0.0096683986 446 407 0.00015979999 447 407 0.0033559999 450 407 0.0030363998 452 407 0.0033559999 453 407 0.00087889982 454 407 0.00031959987 455 407 0.046264499 456 407 0.00047939993 457 407 0.0015980999 458 407 0.00063919998 459 407 0.0007989998 460 407 0.0015181999 463 407 0.012624897 464 407 0.00055929995 465 407 0.0011985998 467 407 0.0097482987 468 407 0.0167799 469 407 0.0063123964 470 407 0.0069516972 471 407 0.0039951988 473 407 0.00015979999 477 407 7.9899997e-05 478 407 0.0011985998 483 407 0.00071909977 490 407 0.00055929995 491 407 0.00063919998 9 408 4.0399987e-05 18 408 0.00012109999 22 408 0.00044409977 60 408 0.00072669983 82 408 4.0399987e-05 108 408 4.0399987e-05 114 408 8.0699989e-05 126 408 4.0399987e-05 130 408 4.0399987e-05 134 408 0.0025435998 137 408 0.00012109999 139 408 0.0010093998 150 408 0.00048449985 160 408 0.0046430975 161 408 0.0022205999 165 408 0.00044409977 169 408 0.00016149999 172 408 8.0699989e-05 181 408 4.0399987e-05 189 408 4.0399987e-05 190 408 8.0699989e-05 192 408 4.0399987e-05 194 408 4.0399987e-05 196 408 4.0399987e-05 198 408 4.0399987e-05 200 408 4.0399987e-05 203 408 4.0399987e-05 204 408 4.0399987e-05 206 408 0.0003229999 207 408 4.0399987e-05 214 408 0.0019379999 224 408 4.0399987e-05 233 408 0.0047641993 234 408 0.0018975998 237 408 4.0399987e-05 240 408 0.0056524985 241 408 0.00072669983 242 408 0.0014534998 252 408 0.0039566979 270 408 0.00044409977 271 408 8.0699989e-05 272 408 0.00040369993 277 408 0.10352069 278 408 4.0399987e-05 282 408 0.066779673 283 408 0.018895298 284 408 0.00028259982 286 408 8.0699989e-05 289 408 0.0041181967 290 408 4.0399987e-05 292 408 0.0044815987 293 408 0.0016553998 294 408 0.00088819978 295 408 0.00072669983 296 408 0.0020994998 298 408 0.0003229999 299 408 0.0070655979 307 408 0.0002422 312 408 0.0058946982 313 408 4.0399987e-05 315 408 0.00048449985 318 408 0.00012109999 319 408 0.0061369985 320 408 0.00020189999 321 408 0.0015341998 322 408 0.0028665999 323 408 0.0039970987 324 408 0.00016149999 326 408 0.0073481984 327 408 4.0399987e-05 328 408 0.022932798 331 408 0.00012109999 332 408 0.00012109999 338 408 0.00048449985 339 408 0.0006459998 340 408 0.0054101981 341 408 8.0699989e-05 343 408 4.0399987e-05 347 408 4.0399987e-05 349 408 0.0002422 350 408 0.0035932998 351 408 0.015301999 352 408 0.0010497 353 408 4.0399987e-05 354 408 0.011627898 355 408 4.0399987e-05 356 408 0.00040369993 357 408 8.0699989e-05 358 408 0.0057331994 359 408 4.0399987e-05 366 408 0.0034721999 371 408 0.014736798 372 408 0.0031895998 373 408 0.00016149999 374 408 0.00016149999 375 408 4.0399987e-05 386 408 0.00040369993 387 408 4.0399987e-05 390 408 0.00044409977 392 408 0.00028259982 393 408 0.00036339997 394 408 0.00036339997 397 408 8.0699989e-05 398 408 4.0399987e-05 402 408 0.0002422 404 408 0.0020994998 405 408 0.0017764999 408 408 0.13654715 412 408 0.0027858999 414 408 8.0699989e-05 417 408 0.0003229999 421 408 8.0699989e-05 422 408 4.0399987e-05 430 408 4.0399987e-05 433 408 4.0399987e-05 434 408 4.0399987e-05 443 408 0.0060157999 444 408 0.00080749998 445 408 0.0055312999 446 408 0.00044409977 447 408 0.0018571999 450 408 0.0020591 452 408 0.0039162971 453 408 0.0013323999 454 408 0.00044409977 455 408 0.029231299 456 408 0.00020189999 457 408 0.0041181967 458 408 0.00036339997 459 408 0.0026244 460 408 0.00084789982 463 408 0.005935099 464 408 0.00036339997 465 408 0.00072669983 467 408 0.0075903982 468 408 0.0018169 469 408 0.0030280999 470 408 0.0037145 471 408 0.00028259982 473 408 8.0699989e-05 477 408 8.0699989e-05 478 408 0.0007670999 483 408 0.0014130999 490 408 0.0003229999 491 408 0.0015745999 60 409 0.0054290965 114 409 0.00017509999 126 409 0.00017509999 139 409 0.0014010998 142 409 0.00017509999 150 409 0.00017509999 160 409 0.00017509999 190 409 0.00017509999 194 409 0.00017509999 198 409 0.0024517998 206 409 0.00052539981 214 409 0.00017509999 224 409 0.00017509999 233 409 0.0028020998 234 409 0.0019263998 237 409 0.035726797 240 409 0.0012258999 241 409 0.0012258999 272 409 0.0010507999 277 409 0.062696993 279 409 0.00017509999 282 409 0.0054290965 283 409 0.0099824965 284 409 0.00070049986 292 409 0.00017509999 293 409 0.0017512999 296 409 0.0082311966 297 409 0.00017509999 298 409 0.0010507999 308 409 0.00017509999 312 409 0.022591896 313 409 0.00017509999 315 409 0.010507897 317 409 0.00017509999 320 409 0.026269697 321 409 0.0071803965 322 409 0.0064798966 326 409 0.0052538998 328 409 0.0099824965 330 409 0.012434296 340 409 0.0036777998 350 409 0.00017509999 351 409 0.0036777998 354 409 0.053415097 356 409 0.00035029999 357 409 0.00070049986 358 409 0.0096321963 372 409 0.00035029999 385 409 0.0010507999 386 409 0.00017509999 395 409 0.00017509999 397 409 0.00052539981 398 409 0.0050787963 402 409 0.0089316964 409 409 0.15621716 412 409 0.0085813999 417 409 0.00052539981 419 409 0.0012258999 422 409 0.00017509999 430 409 0.00017509999 441 409 0.0031523998 443 409 0.0024517998 444 409 0.0010507999 445 409 0.0047284998 446 409 0.00017509999 447 409 0.0057792999 450 409 0.002627 452 409 0.0036777998 453 409 0.0017512999 454 409 0.00052539981 455 409 0.057267997 456 409 0.00017509999 457 409 0.0040279999 458 409 0.00052539981 459 409 0.00070049986 460 409 0.0010507999 463 409 0.010682996 464 409 0.00035029999 465 409 0.00070049986 467 409 0.0070052966 468 409 0.024693497 469 409 0.0028020998 470 409 0.0031523998 471 409 0.00052539981 473 409 0.00017509999 477 409 0.00017509999 478 409 0.0010507999 483 409 0.00052539981 490 409 0.00035029999 491 409 0.00035029999 60 410 0.00053639989 114 410 7.6599987e-05 130 410 7.6599987e-05 134 410 0.0080453977 139 410 0.0087349974 149 410 0.0028349999 150 410 7.6599987e-05 151 410 0.0075089969 154 410 0.00099609978 156 410 0.00015319999 160 410 0.045513798 161 410 0.00061299978 163 410 0.018925797 164 410 0.0013025999 165 410 0.0311087 170 410 0.00061299978 171 410 0.012642696 173 410 0.0086582974 176 410 0.009347897 177 410 0.0026051998 178 410 0.0033713998 181 410 0.00030649989 190 410 7.6599987e-05 191 410 0.0055933967 194 410 0.00015319999 198 410 7.6599987e-05 206 410 0.00015319999 214 410 0.00015319999 224 410 0.00045969989 233 410 0.0026051998 234 410 0.0012259998 237 410 0.0064362995 240 410 0.0022986999 241 410 0.015630998 252 410 0.0034479999 274 410 0.0051336996 277 410 0.029422998 282 410 0.0025284998 283 410 7.6599987e-05 289 410 0.0060531981 292 410 0.0016856999 293 410 0.027737297 295 410 0.0058998987 296 410 0.00030649989 302 410 0.010880399 303 410 0.0036778999 304 410 0.017852999 305 410 7.6599987e-05 306 410 0.061910998 307 410 0.0012259998 308 410 0.034096997 312 410 0.006512899 313 410 0.00045969989 315 410 0.00030649989 319 410 0.0064362995 320 410 0.0019155999 321 410 0.0033713998 322 410 7.6599987e-05 324 410 7.6599987e-05 326 410 0.0028349999 327 410 7.6599987e-05 328 410 0.0008427999 338 410 7.6599987e-05 340 410 7.6599987e-05 351 410 7.6599987e-05 354 410 7.6599987e-05 356 410 7.6599987e-05 358 410 0.00015319999 366 410 0.0046739988 372 410 7.6599987e-05 377 410 0.017929699 378 410 0.024595797 383 410 0.0081219971 384 410 0.0036012998 385 410 0.0047505982 386 410 0.0031414998 387 410 0.0009194999 390 410 7.6599987e-05 397 410 0.00022989999 399 410 0.00030649989 400 410 0.00022989999 401 410 0.0067427978 402 410 0.071105659 407 410 7.6599987e-05 410 410 0.0046739988 412 410 0.0023752998 417 410 0.00045969989 421 410 7.6599987e-05 422 410 0.00015319999 439 410 0.0078920983 441 410 0.0022986999 443 410 0.012412798 444 410 0.0024518999 445 410 0.011110298 446 410 0.00038309977 447 410 0.0032180999 450 410 0.0019155999 452 410 0.0024518999 453 410 0.0012259998 454 410 0.00022989999 455 410 0.068883598 456 410 0.00015319999 457 410 0.0040609986 458 410 0.00061299978 459 410 0.00061299978 460 410 0.00099609978 463 410 0.0086582974 464 410 0.00076619978 465 410 0.0006895999 467 410 0.0045972988 468 410 0.0037544998 469 410 0.0009194999 470 410 0.0009194999 471 410 0.0013025999 477 410 7.6599987e-05 478 410 0.0009194999 483 410 0.00015319999 490 410 0.00015319999 491 410 0.00053639989 9 411 3.119999e-05 18 411 6.2299994e-05 60 411 0.00052969996 82 411 3.119999e-05 83 411 3.119999e-05 84 411 3.119999e-05 108 411 3.119999e-05 113 411 6.2299994e-05 114 411 9.3499999e-05 126 411 3.119999e-05 134 411 0.026487198 135 411 0.00037389994 139 411 0.008569397 149 411 0.0026798998 150 411 0.00049859984 151 411 0.0019319998 159 411 0.00028049992 160 411 0.065937459 161 411 0.0013398998 163 411 0.015829999 164 411 0.013087798 165 411 0.041787397 170 411 0.0044248998 171 411 0.0099092983 173 411 0.0086004995 176 411 0.0064191967 177 411 0.0027109999 178 411 0.0031784999 182 411 0.0029292 183 411 0.00012459999 184 411 0.0017761998 190 411 6.2299994e-05 191 411 0.0012775999 192 411 0.00040509994 194 411 3.119999e-05 196 411 3.119999e-05 200 411 3.119999e-05 203 411 3.119999e-05 204 411 3.119999e-05 206 411 6.2299994e-05 207 411 3.119999e-05 214 411 0.00031159981 219 411 0.00056089996 223 411 0.00024929992 229 411 3.119999e-05 230 411 0.00071669999 233 411 0.0047053993 234 411 0.00087249978 236 411 0.0025240998 237 411 0.0096288994 240 411 0.00059209997 241 411 0.008507099 252 411 0.00049859984 259 411 0.0020877998 268 411 0.0059517995 270 411 9.3499999e-05 271 411 0.0023993999 272 411 0.00040509994 274 411 0.0032718999 277 411 0.025832798 279 411 0.0020877998 282 411 0.0017761998 283 411 3.119999e-05 285 411 6.2299994e-05 287 411 0.00040509994 289 411 0.0030226998 292 411 0.0025863999 293 411 0.034682598 294 411 0.00012459999 295 411 0.0073229 296 411 0.0014334 302 411 0.0097534992 303 411 0.010220896 304 411 9.3499999e-05 306 411 0.014116097 308 411 0.0037393998 312 411 0.0017138999 317 411 9.3499999e-05 318 411 3.119999e-05 319 411 0.0051415972 320 411 0.0014646 321 411 0.00090369978 324 411 0.00084139989 326 411 0.0012775999 337 411 3.119999e-05 339 411 0.00015579999 340 411 9.3499999e-05 341 411 0.0015892 343 411 3.119999e-05 346 411 0.00084139989 350 411 0.00056089996 356 411 9.3499999e-05 358 411 0.00015579999 366 411 0.085382164 369 411 0.0018384999 377 411 0.013710998 378 411 0.020410698 379 411 0.0013398998 380 411 0.0017449998 383 411 0.0091613978 384 411 6.2299994e-05 385 411 0.0065438971 386 411 0.0032408 387 411 3.119999e-05 398 411 0.00062319986 401 411 9.3499999e-05 402 411 0.049079198 410 411 3.119999e-05 411 411 0.0019942999 412 411 0.0017138999 415 411 0.00024929992 417 411 0.00034279982 419 411 0.00084139989 421 411 0.00015579999 422 411 3.119999e-05 423 411 3.119999e-05 430 411 3.119999e-05 431 411 3.119999e-05 433 411 3.119999e-05 434 411 3.119999e-05 438 411 6.2299994e-05 439 411 0.0010282998 441 411 0.00099719991 443 411 0.014583498 444 411 0.0010905999 445 411 0.010439098 446 411 0.00068559987 447 411 0.0015580999 450 411 0.0016204 452 411 0.0016204 453 411 0.00099719991 454 411 0.00021809999 455 411 0.067994058 456 411 0.00024929992 457 411 0.0042378977 458 411 0.00028049992 459 411 0.00059209997 460 411 0.00046739983 463 411 0.0036146999 464 411 0.0019007998 465 411 0.00059209997 467 411 0.0033030999 468 411 0.0029602998 469 411 0.0027733999 470 411 0.003085 471 411 0.00087249978 473 411 6.2299994e-05 478 411 0.00074789999 483 411 0.00021809999 489 411 3.119999e-05 490 411 0.00024929992 491 411 9.3499999e-05 60 412 0.0007540998 114 412 0.0001257 126 412 0.0001257 130 412 0.0007540998 131 412 0.0001257 132 412 0.0001257 134 412 0.00037699984 137 412 0.0001257 138 412 0.0001257 139 412 0.0012567998 141 412 0.0001257 149 412 0.0001257 151 412 0.00037699984 152 412 0.0027649 154 412 0.0001257 158 412 0.0001257 160 412 0.0080431998 161 412 0.0001257 163 412 0.0012567998 164 412 0.0001257 165 412 0.0030161999 166 412 0.0001257 171 412 0.011562098 173 412 0.00050269999 176 412 0.00050269999 177 412 0.0011310999 178 412 0.0018850998 182 412 0.0001257 188 412 0.0001257 190 412 0.0001257 191 412 0.0016337999 194 412 0.0001257 198 412 0.0012567998 206 412 0.00037699984 214 412 0.0001257 224 412 0.0011310999 233 412 0.0054039992 234 412 0.0018850998 237 412 0.033052698 240 412 0.0021364999 241 412 0.0090485997 242 412 0.0007540998 252 412 0.00087969983 274 412 0.00025139982 277 412 0.12379038 282 412 0.0026391998 283 412 0.0036445998 284 412 0.0006283999 285 412 0.0001257 289 412 0.0012567998 292 412 0.0001257 293 412 0.035440497 295 412 0.00037699984 296 412 0.0015081 297 412 0.00037699984 298 412 0.0023877998 299 412 0.0001257 302 412 0.0006283999 303 412 0.0020107999 304 412 0.0036445998 306 412 0.0064094998 307 412 0.00025139982 308 412 0.018599998 312 412 0.0086715966 313 412 0.0001257 315 412 0.013698597 317 412 0.00050269999 319 412 0.0006283999 320 412 0.0042729974 321 412 0.0062837973 322 412 0.0090485997 326 412 0.013949998 328 412 0.047756698 329 412 0.00087969983 330 412 0.0033932 337 412 0.00025139982 338 412 0.0001257 340 412 0.0031418998 350 412 0.00087969983 351 412 0.0059066974 354 412 0.0057810992 356 412 0.0001257 357 412 0.00037699984 358 412 0.0027649 366 412 0.00037699984 372 412 0.0012567998 377 412 0.0035188999 378 412 0.0037703 383 412 0.00050269999 384 412 0.0007540998 385 412 0.0011310999 386 412 0.0030161999 393 412 0.0028904998 395 412 0.00025139982 397 412 0.00037699984 398 412 0.00037699984 399 412 0.0001257 401 412 0.00050269999 402 412 0.068744481 407 412 0.00037699984 408 412 0.0001257 409 412 0.0090485997 410 412 0.00025139982 412 412 0.030664798 417 412 0.00025139982 419 412 0.0001257 421 412 0.00025139982 428 412 0.00037699984 430 412 0.00025139982 437 412 0.0001257 439 412 0.0016337999 441 412 0.00037699984 442 412 0.0001257 443 412 0.0072891973 444 412 0.00050269999 445 412 0.0082945973 446 412 0.0001257 447 412 0.0015081 450 412 0.0026391998 452 412 0.0032676 453 412 0.0017594998 454 412 0.00025139982 455 412 0.06736207 457 412 0.004524298 458 412 0.0007540998 459 412 0.00050269999 460 412 0.0007540998 463 412 0.0064094998 464 412 0.00025139982 465 412 0.0006283999 467 412 0.0071634986 468 412 0.0060323998 469 412 0.0031418998 470 412 0.0035188999 471 412 0.0006283999 473 412 0.0001257 477 412 0.0001257 478 412 0.0007540998 483 412 0.00037699984 490 412 0.00025139982 491 412 0.0016337999 9 413 8.6699991e-05 18 413 0.0001733 60 413 0.0027731999 77 413 0.00034669996 82 413 8.6699991e-05 83 413 8.6699991e-05 84 413 8.6699991e-05 108 413 8.6699991e-05 113 413 0.0001733 114 413 0.00025999988 126 413 8.6699991e-05 130 413 8.6699991e-05 150 413 0.0001733 156 413 8.6699991e-05 160 413 0.0013865998 161 413 8.6699991e-05 165 413 0.0064996965 171 413 0.00069329981 172 413 8.6699991e-05 181 413 8.6699991e-05 189 413 0.0001733 190 413 8.6699991e-05 192 413 0.0001733 194 413 8.6699991e-05 196 413 8.6699991e-05 198 413 0.0025998999 200 413 8.6699991e-05 203 413 8.6699991e-05 204 413 0.0001733 206 413 0.00051999977 207 413 8.6699991e-05 214 413 0.00077999989 223 413 8.6699991e-05 224 413 0.0018198998 228 413 0.00086659985 233 413 0.00077999989 234 413 0.0044197999 237 413 0.00051999977 240 413 0.0042464994 241 413 0.012306098 252 413 0.0037264999 253 413 0.00034669996 270 413 8.6699991e-05 277 413 0.013952699 279 413 8.6699991e-05 282 413 0.0050263964 283 413 0.00086659985 284 413 0.00060659996 285 413 8.6699991e-05 286 413 0.00025999988 290 413 0.00034669996 292 413 0.0021666 293 413 0.0045930967 294 413 0.00069329981 295 413 0.0021666 296 413 0.0042464994 297 413 0.0012132998 298 413 0.00060659996 299 413 0.00051999977 300 413 8.6699991e-05 305 413 8.6699991e-05 308 413 0.011179499 312 413 0.010139499 315 413 0.006672997 317 413 0.00025999988 318 413 0.00060659996 319 413 0.00034669996 320 413 0.0040730983 321 413 0.00025999988 322 413 0.0054596998 325 413 8.6699991e-05 326 413 0.006672997 328 413 0.00025999988 340 413 0.0099661984 341 413 8.6699991e-05 349 413 8.6699991e-05 350 413 8.6699991e-05 351 413 0.0030331998 353 413 0.0025998999 354 413 0.00025999988 358 413 0.011959396 359 413 0.00043329992 369 413 0.012219399 370 413 0.0001733 371 413 0.0085795969 372 413 0.0061529987 385 413 0.00069329981 386 413 0.007886298 387 413 0.00025999988 390 413 0.0077995993 391 413 0.0015598999 392 413 0.020625699 393 413 0.041251399 396 413 0.0033797999 397 413 0.0001733 402 413 0.00025999988 403 413 0.0001733 404 413 0.0012132998 405 413 0.0061529987 408 413 0.0011266 413 413 0.016119197 414 413 0.00025999988 417 413 0.00034669996 419 413 0.011006199 420 413 0.00095329992 421 413 8.6699991e-05 422 413 0.0032931999 423 413 8.6699991e-05 424 413 8.6699991e-05 430 413 8.6699991e-05 431 413 8.6699991e-05 433 413 8.6699991e-05 434 413 8.6699991e-05 435 413 8.6699991e-05 438 413 0.0030331998 443 413 0.0012998998 444 413 0.0019931998 445 413 0.0060663968 446 413 8.6699991e-05 447 413 0.0048530996 448 413 8.6699991e-05 450 413 0.0065863989 452 413 0.0063263997 453 413 0.0012998998 454 413 0.00043329992 455 413 0.025305498 456 413 0.0012132998 457 413 0.0032064999 458 413 0.0011266 459 413 0.0036397998 460 413 0.0014732999 463 413 0.018805798 464 413 0.0018198998 465 413 0.0025131998 467 413 0.017332498 468 413 0.0058930963 469 413 0.010486197 470 413 0.013086099 471 413 0.0038131999 472 413 0.0016466 473 413 0.0001733 477 413 8.6699991e-05 478 413 0.0017332998 483 413 0.0027731999 489 413 0.0001733 490 413 0.0012998998 491 413 0.0025998999 9 414 5.6499994e-05 18 414 0.00011299999 60 414 0.0029368999 77 414 0.0003388999 82 414 0.00016939999 83 414 5.6499994e-05 84 414 5.6499994e-05 108 414 0.00011299999 113 414 0.00011299999 114 414 0.00028239982 126 414 0.00022589999 127 414 5.6499994e-05 130 414 0.00011299999 131 414 0.00011299999 138 414 5.6499994e-05 139 414 5.6499994e-05 142 414 5.6499994e-05 150 414 0.00073419977 160 414 0.001186 165 414 0.00022589999 172 414 5.6499994e-05 187 414 0.00011299999 189 414 0.00022589999 190 414 0.00011299999 194 414 0.00022589999 197 414 5.6499994e-05 198 414 0.0045181997 200 414 0.00011299999 201 414 5.6499994e-05 203 414 0.00011299999 204 414 0.0030497999 206 414 0.00028239982 207 414 5.6499994e-05 214 414 0.00045179995 220 414 5.6499994e-05 223 414 0.00011299999 224 414 0.0057607964 233 414 0.00011299999 234 414 0.0051394999 237 414 0.00056479988 240 414 0.0028239 241 414 0.0076244995 242 414 0.00011299999 252 414 0.0055347979 253 414 5.6499994e-05 270 414 0.00011299999 271 414 0.00028239982 272 414 0.00011299999 277 414 0.018637698 282 414 0.010787297 283 414 0.0012424998 284 414 0.0005082998 285 414 0.00022589999 286 414 0.00056479988 289 414 0.00011299999 290 414 0.00039529987 292 414 0.0085846968 293 414 0.0031627999 294 414 0.0045181997 295 414 0.0027673999 296 414 0.012029797 297 414 0.011408597 298 414 0.0022025998 299 414 5.6499994e-05 300 414 5.6499994e-05 307 414 0.00022589999 308 414 0.0016943 312 414 0.012820497 313 414 0.00039529987 315 414 0.0081327967 317 414 5.6499994e-05 318 414 5.6499994e-05 319 414 5.6499994e-05 320 414 0.0068337992 321 414 0.00016939999 322 414 0.0053088963 324 414 0.00039529987 325 414 0.00011299999 326 414 0.0056477971 328 414 5.6499994e-05 339 414 5.6499994e-05 340 414 0.0048570968 341 414 5.6499994e-05 343 414 0.00016939999 344 414 5.6499994e-05 348 414 5.6499994e-05 349 414 0.00016939999 350 414 0.00016939999 351 414 0.0011296 353 414 0.00011299999 354 414 0.00079069985 356 414 5.6499994e-05 357 414 0.00022589999 358 414 0.012538098 359 414 0.0019202998 369 414 0.025923397 370 414 0.002598 371 414 0.0059301965 372 414 0.0081892982 373 414 0.0018072999 376 414 0.00067769992 384 414 5.6499994e-05 386 414 0.0081892982 387 414 0.00011299999 389 414 0.00011299999 390 414 0.0010730999 391 414 0.0014119998 392 414 0.0075115971 393 414 0.030215699 394 414 5.6499994e-05 395 414 0.00062129996 396 414 0.00096009998 397 414 0.00022589999 402 414 0.0020897 404 414 0.00016939999 405 414 0.0003388999 413 414 0.0027673999 414 414 0.0079633966 415 414 0.00011299999 416 414 5.6499994e-05 417 414 0.00056479988 419 414 0.0024285999 420 414 0.00067769992 421 414 5.6499994e-05 422 414 0.0022590999 423 414 5.6499994e-05 424 414 5.6499994e-05 425 414 5.6499994e-05 430 414 0.00011299999 431 414 5.6499994e-05 433 414 5.6499994e-05 434 414 5.6499994e-05 435 414 5.6499994e-05 438 414 5.6499994e-05 441 414 5.6499994e-05 442 414 0.00011299999 443 414 0.0012989999 444 414 0.00073419977 445 414 0.0059301965 446 414 0.00011299999 447 414 0.0018072999 448 414 5.6499994e-05 450 414 0.0070032999 452 414 0.0058736987 453 414 0.0011296 454 414 0.0003388999 455 414 0.0194849 456 414 0.0010165998 457 414 0.0032756999 458 414 0.0016943 459 414 0.0012989999 460 414 0.0014683998 463 414 0.011126198 464 414 0.0009035999 465 414 0.0021461998 467 414 0.018468298 468 414 0.0058736987 469 414 0.011747397 470 414 0.013215899 471 414 0.0049700998 472 414 5.6499994e-05 473 414 0.0003388999 477 414 0.00016939999 478 414 0.0018072999 483 414 0.0030497999 489 414 0.00016939999 490 414 0.0012989999 491 414 0.0096012987 21 415 0.00058899983 60 415 0.0026505999 108 415 0.00014729999 114 415 0.00014729999 126 415 0.00014729999 150 415 0.00014729999 160 415 0.0010307999 175 415 0.0002944998 189 415 0.0002944998 190 415 0.00014729999 192 415 0.00014729999 193 415 0.0007362999 194 415 0.00014729999 196 415 0.00014729999 198 415 0.0069208965 200 415 0.00014729999 203 415 0.00014729999 204 415 0.0016198 206 415 0.00014729999 207 415 0.00014729999 224 415 0.010013297 233 415 0.00014729999 234 415 0.0044175982 237 415 0.0007362999 240 415 0.0044175982 241 415 0.019731998 252 415 0.0014724999 262 415 0.00044179987 270 415 0.0002944998 271 415 0.00014729999 272 415 0.00014729999 277 415 0.015608899 282 415 0.0054483972 283 415 0.0007362999 284 415 0.00058899983 286 415 0.00058899983 290 415 0.00044179987 292 415 0.024296898 293 415 0.0051538981 294 415 0.0016198 295 415 0.0076571964 296 415 0.0085406974 297 415 0.0050065964 298 415 0.00044179987 308 415 0.0002944998 312 415 0.019879296 313 415 0.00014729999 315 415 0.0098659992 317 415 0.00014729999 318 415 0.00014729999 320 415 0.0067736991 322 415 0.012222096 324 415 0.0007362999 326 415 0.0014724999 340 415 0.0070681982 351 415 0.0002944998 352 415 0.00014729999 357 415 0.00014729999 358 415 0.0058900975 366 415 0.00088349986 369 415 0.017375898 370 415 0.0016198 371 415 0.0044175982 372 415 0.0041230991 373 415 0.0042703971 376 415 0.0007362999 386 415 0.016786899 387 415 0.0002944998 390 415 0.00014729999 391 415 0.00088349986 392 415 0.0032396 393 415 0.010749497 402 415 0.0011779999 408 415 0.0002944998 414 415 0.010896798 415 415 0.0060373992 417 415 0.00058899983 419 415 0.0013253 421 415 0.00014729999 422 415 0.0033867999 430 415 0.00014729999 433 415 0.00014729999 434 415 0.00014729999 441 415 0.0042703971 442 415 0.0051538981 443 415 0.0016198 444 415 0.0025032999 445 415 0.010749497 446 415 0.0002944998 447 415 0.0082461983 450 415 0.0073626973 452 415 0.0050065964 453 415 0.0013253 454 415 0.00058899983 455 415 0.024885897 456 415 0.00088349986 457 415 0.0030922999 458 415 0.0013253 459 415 0.0013253 460 415 0.0014724999 463 415 0.010749497 464 415 0.00088349986 465 415 0.0025032999 467 415 0.015903398 468 415 0.0075098984 469 415 0.0070681982 470 415 0.0076571964 471 415 0.0044175982 473 415 0.00014729999 478 415 0.0019142998 483 415 0.0032396 489 415 0.00014729999 490 415 0.0007362999 491 415 0.0013253 6 416 9.8599994e-05 9 416 9.8599994e-05 60 416 0.0020699999 82 416 0.00049289991 102 416 0.00019709999 104 416 9.8599994e-05 107 416 9.8599994e-05 108 416 9.8599994e-05 114 416 0.00019709999 117 416 0.00019709999 120 416 9.8599994e-05 126 416 9.8599994e-05 130 416 0.00098569994 131 416 0.00039429986 135 416 9.8599994e-05 137 416 9.8599994e-05 138 416 0.00019709999 139 416 0.0013799998 142 416 0.00019709999 150 416 0.0027599998 159 416 0.0020699999 160 416 0.0029570998 161 416 9.8599994e-05 165 416 0.0056184977 170 416 0.0030556999 171 416 9.8599994e-05 178 416 9.8599994e-05 184 416 9.8599994e-05 187 416 0.00029569981 188 416 9.8599994e-05 189 416 9.8599994e-05 190 416 9.8599994e-05 192 416 0.0006899999 193 416 0.0030556999 194 416 0.00029569981 198 416 0.0068013966 200 416 9.8599994e-05 203 416 9.8599994e-05 204 416 0.00019709999 206 416 0.00039429986 207 416 9.8599994e-05 214 416 0.0059141964 217 416 0.00019709999 223 416 0.00049289991 224 416 0.0006899999 228 416 0.0048299991 229 416 0.00019709999 233 416 0.0045342967 234 416 0.0041399971 237 416 0.00059139985 240 416 0.011631299 241 416 0.023361299 242 416 0.0030556999 252 416 0.0067027994 253 416 0.0059141964 268 416 9.8599994e-05 270 416 0.00019709999 271 416 9.8599994e-05 272 416 0.00078859995 277 416 0.019221298 279 416 9.8599994e-05 282 416 0.0011827999 283 416 0.00019709999 284 416 9.8599994e-05 286 416 0.018629897 290 416 0.0189256 292 416 0.00019709999 293 416 0.0013799998 294 416 0.00039429986 295 416 0.00019709999 296 416 0.00019709999 297 416 0.00019709999 300 416 0.00049289991 307 416 0.00019709999 308 416 9.8599994e-05 312 416 0.015179899 314 416 0.00019709999 315 416 0.014588498 317 416 0.0029570998 319 416 0.0089698993 320 416 0.0087727979 321 416 0.0094627999 322 416 0.00049289991 324 416 0.00029569981 325 416 0.013405599 326 416 0.0045342967 328 416 9.8599994e-05 340 416 0.006407097 345 416 0.00019709999 350 416 0.00039429986 351 416 0.00019709999 352 416 0.00019709999 354 416 0.00039429986 356 416 9.8599994e-05 358 416 0.0028585999 368 416 9.8599994e-05 369 416 0.00049289991 372 416 0.00098569994 375 416 9.8599994e-05 386 416 0.00039429986 387 416 9.8599994e-05 391 416 0.00019709999 392 416 0.00019709999 393 416 0.0010843 395 416 9.8599994e-05 396 416 0.0027599998 397 416 9.8599994e-05 398 416 9.8599994e-05 402 416 0.00029569981 405 416 9.8599994e-05 413 416 9.8599994e-05 414 416 0.0072941966 416 416 0.0042384975 417 416 0.0006899999 419 416 9.8599994e-05 421 416 0.00098569994 422 416 0.0027599998 430 416 9.8599994e-05 433 416 9.8599994e-05 434 416 9.8599994e-05 441 416 9.8599994e-05 442 416 0.00029569981 443 416 0.0023657 444 416 0.0040413998 445 416 0.007589899 446 416 0.00019709999 447 416 0.0041399971 448 416 9.8599994e-05 450 416 0.0068013966 452 416 0.0052241981 453 416 0.0015770998 454 416 0.0036470999 455 416 0.028191198 456 416 0.00088709989 457 416 0.0042384975 458 416 0.0010843 459 416 0.00088709989 460 416 0.0014785999 463 416 0.015475597 464 416 0.0051256977 465 416 0.0019713999 467 416 0.016362697 468 416 0.014391299 469 416 0.0088713989 470 416 0.0098570995 471 416 0.0042384975 473 416 0.00019709999 477 416 0.00059139985 478 416 0.0016756998 479 416 0.0012814 483 416 0.0010843 489 416 0.00019709999 490 416 0.0014785999 491 416 0.0030556999 4 417 0.00068269996 9 417 8.5299995e-05 60 417 0.0022187999 82 417 0.0093872994 83 417 8.5299995e-05 84 417 8.5299995e-05 104 417 0.00034139981 108 417 8.5299995e-05 113 417 0.00017069999 114 417 0.00025599985 117 417 0.0026454998 120 417 8.5299995e-05 126 417 8.5299995e-05 130 417 0.023894899 131 417 0.0180065 132 417 0.00051199994 133 417 0.0021334998 135 417 0.0028161998 137 417 8.5299995e-05 138 417 0.011862099 139 417 0.0052909963 141 417 8.5299995e-05 142 417 0.010923397 143 417 0.00025599985 149 417 0.0021334998 150 417 0.00025599985 158 417 0.00017069999 160 417 0.0016213998 169 417 8.5299995e-05 187 417 0.021334697 188 417 0.0040962994 189 417 0.00017069999 190 417 8.5299995e-05 192 417 0.0034989 193 417 8.5299995e-05 194 417 0.0039255992 197 417 8.5299995e-05 198 417 0.012288798 200 417 8.5299995e-05 203 417 0.00017069999 204 417 0.00017069999 206 417 0.00017069999 207 417 8.5299995e-05 208 417 8.5299995e-05 214 417 0.0017068 219 417 0.00059739989 221 417 0.00025599985 223 417 0.0029014999 224 417 0.016384996 226 417 0.00034139981 227 417 0.00025599985 228 417 0.00025599985 229 417 0.0046935976 231 417 8.5299995e-05 232 417 0.00051199994 233 417 8.5299995e-05 234 417 0.0040962994 237 417 0.00059739989 240 417 0.012032799 241 417 0.021334697 243 417 0.00017069999 252 417 0.0084484965 253 417 0.00059739989 268 417 0.00076799979 271 417 0.0052056983 277 417 0.016214397 282 417 0.0043522976 283 417 0.00034139981 284 417 0.00017069999 286 417 8.5299995e-05 287 417 0.00017069999 290 417 0.00059739989 292 417 0.00017069999 293 417 0.0066563971 295 417 8.5299995e-05 296 417 0.0023894999 297 417 0.00042669987 300 417 0.0073390976 312 417 0.0130568 313 417 0.00017069999 314 417 8.5299995e-05 315 417 0.00017069999 320 417 8.5299995e-05 325 417 0.00017069999 326 417 0.00025599985 340 417 8.5299995e-05 347 417 8.5299995e-05 351 417 8.5299995e-05 354 417 8.5299995e-05 356 417 8.5299995e-05 357 417 8.5299995e-05 358 417 0.0023041 372 417 0.0019627998 387 417 8.5299995e-05 391 417 8.5299995e-05 393 417 0.0088751987 394 417 8.5299995e-05 396 417 8.5299995e-05 397 417 0.00017069999 402 417 0.0010241 404 417 8.5299995e-05 416 417 0.012374099 417 417 0.015787698 421 417 0.00076799979 422 417 0.00017069999 423 417 8.5299995e-05 430 417 0.00025599985 431 417 8.5299995e-05 433 417 8.5299995e-05 434 417 8.5299995e-05 437 417 8.5299995e-05 442 417 0.00025599985 443 417 0.0039255992 444 417 0.0040108971 445 417 0.015275598 446 417 0.00025599985 447 417 0.0032428999 448 417 8.5299995e-05 450 417 0.0067417994 452 417 0.0048642978 453 417 0.0015360999 454 417 0.00076799979 455 417 0.040109199 456 417 0.00093869981 457 417 0.0045229979 458 417 0.00093869981 459 417 0.00068269996 460 417 0.0014507999 463 417 0.0093872994 464 417 0.0042668991 465 417 0.0015360999 467 417 0.019969299 468 417 0.027479097 469 417 0.0071684979 470 417 0.0076804981 471 417 0.0040108971 473 417 0.00017069999 477 417 0.00051199994 478 417 0.0013653999 479 417 0.0028161998 483 417 0.0017920998 489 417 0.00017069999 490 417 0.0015360999 491 417 0.0018775 24 418 0.0016246999 60 418 0.0016246999 82 418 0.00054159993 108 418 0.00027079997 114 418 0.00054159993 126 418 0.00027079997 130 418 0.0010831 131 418 0.00081229978 138 418 0.00054159993 139 418 0.0021662998 142 418 0.00054159993 160 418 0.00027079997 165 418 0.0010831 187 418 0.00081229978 188 418 0.00027079997 192 418 0.00027079997 193 418 0.0086649992 194 418 0.00054159993 198 418 0.0043324977 206 418 0.00054159993 224 418 0.00054159993 229 418 0.00027079997 233 418 0.0021662998 234 418 0.003791 237 418 0.00054159993 240 418 0.00054159993 241 418 0.0075818971 252 418 0.00054159993 268 418 0.0059571974 270 418 0.010560498 271 418 0.00027079997 272 418 0.00081229978 277 418 0.025995098 282 418 0.00027079997 290 418 0.13647437 293 418 0.0016246999 294 418 0.030327599 300 418 0.00027079997 312 418 0.00054159993 320 418 0.00027079997 340 418 0.00081229978 358 418 0.0024369999 387 418 0.00027079997 392 418 0.00027079997 393 418 0.0016246999 395 418 0.010831296 396 418 0.0078526996 398 418 0.0092065968 402 418 0.00027079997 416 418 0.00054159993 417 418 0.0013538999 418 418 0.00027079997 422 418 0.00027079997 441 418 0.011372898 443 418 0.0024369999 444 418 0.013809897 445 418 0.017600898 446 418 0.00027079997 447 418 0.012997597 450 418 0.0056863986 452 418 0.0046032965 453 418 0.0010831 455 418 0.035472497 456 418 0.00027079997 457 418 0.0046032965 458 418 0.0013538999 459 418 0.00081229978 460 418 0.0013538999 463 418 0.013539098 464 418 0.0016246999 465 418 0.011102099 467 418 0.013809897 468 418 0.071757376 469 418 0.0070402995 470 418 0.0078526996 471 418 0.0043324977 473 418 0.00027079997 477 418 0.00054159993 478 418 0.0013538999 483 418 0.0013538999 489 418 0.00027079997 490 418 0.00081229978 18 419 0.00021679999 22 419 0.00032519992 60 419 0.0010841 108 419 0.0001084 114 419 0.00021679999 126 419 0.0001084 130 419 0.0001084 150 419 0.0001084 160 419 0.0014093998 171 419 0.0001084 187 419 0.0001084 189 419 0.0001084 190 419 0.0001084 194 419 0.00021679999 198 419 0.010624498 203 419 0.0001084 204 419 0.0001084 206 419 0.00021679999 221 419 0.0001084 224 419 0.0092150979 234 419 0.0026018999 237 419 0.00032519992 240 419 0.00043369993 241 419 0.018863797 250 419 0.0042280965 252 419 0.0030355998 277 419 0.015828297 282 419 0.0001084 284 419 0.00065049995 290 419 0.00097569986 292 419 0.013659999 293 419 0.00021679999 294 419 0.015828297 295 419 0.0017345999 296 419 0.0001084 297 419 0.0001084 298 419 0.0017345999 308 419 0.0001084 312 419 0.0203816 315 419 0.015394598 317 419 0.0001084 320 419 0.011274897 322 419 0.0035775998 326 419 0.0039028998 340 419 0.0026018999 356 419 0.0001084 358 419 0.0020597999 359 419 0.0001084 361 419 0.0001084 363 419 0.0001084 369 419 0.00021679999 370 419 0.00054209982 371 419 0.00065049995 372 419 0.0076972991 373 419 0.0001084 380 419 0.0001084 385 419 0.00075889984 386 419 0.00043369993 387 419 0.0001084 390 419 0.00032519992 392 419 0.00043369993 393 419 0.0014093998 398 419 0.0033608 402 419 0.0001084 413 419 0.003144 414 419 0.00021679999 415 419 0.0001084 417 419 0.00054209982 419 419 0.22820896 421 419 0.0001084 422 419 0.00021679999 423 419 0.0052037984 424 419 0.0070467964 426 419 0.0057458989 441 419 0.00021679999 442 419 0.0028186999 443 419 0.0014093998 444 419 0.004119698 445 419 0.015177798 447 419 0.0062878989 450 419 0.0058542974 452 419 0.0034691999 453 419 0.00065049995 454 419 0.00032519992 455 419 0.048460498 456 419 0.00032519992 457 419 0.0015177999 458 419 0.00097569986 459 419 0.00032519992 460 419 0.00097569986 463 419 0.0091066994 464 419 0.0052037984 465 419 0.012575898 467 419 0.018213399 468 419 0.034475297 469 419 0.0037943998 470 419 0.004119698 471 419 0.0021682999 473 419 0.0001084 477 419 0.00043369993 478 419 0.0011924999 479 419 0.00043369993 483 419 0.0016261998 489 419 0.0001084 490 419 0.00032519992 491 419 0.00065049995 60 420 0.0026131 82 420 0.00016329999 108 420 0.00016329999 114 420 0.00016329999 126 420 0.00016329999 187 420 0.00016329999 189 420 0.00016329999 190 420 0.00016329999 194 420 0.00032659993 198 420 0.0019597998 203 420 0.00016329999 206 420 0.00065329997 214 420 0.00048999977 224 420 0.0037562998 234 420 0.0042462982 237 420 0.00048999977 240 420 0.00016329999 241 420 0.056344897 252 420 0.014208697 270 420 0.00016329999 273 420 0.00048999977 276 420 0.00016329999 277 420 0.0073492974 282 420 0.0037562998 283 420 0.00016329999 284 420 0.00016329999 290 420 0.0011431999 292 420 0.00097989989 293 420 0.0039195977 294 420 0.0055527985 295 420 0.00081659993 296 420 0.0037562998 297 420 0.00016329999 298 420 0.017148498 299 420 0.00016329999 308 420 0.00097989989 312 420 0.0029396999 315 420 0.011105698 320 420 0.00097989989 321 420 0.00016329999 322 420 0.00032659993 324 420 0.00032659993 326 420 0.0019597998 340 420 0.00065329997 351 420 0.00065329997 352 420 0.00016329999 356 420 0.00016329999 358 420 0.0032664 359 420 0.00016329999 366 420 0.0014698999 369 420 0.0019597998 370 420 0.00016329999 371 420 0.00032659993 372 420 0.0024497998 373 420 0.00065329997 386 420 0.00081659993 387 420 0.00032659993 390 420 0.0039195977 391 420 0.00065329997 392 420 0.017148498 393 420 0.036746699 398 420 0.00016329999 402 420 0.00032659993 404 420 0.00097989989 405 420 0.00048999977 413 420 0.00016329999 414 420 0.00016329999 415 420 0.00016329999 417 420 0.00032659993 419 420 0.00032659993 420 420 0.070880294 421 420 0.0017964998 422 420 0.00065329997 430 420 0.00016329999 434 420 0.00016329999 435 420 0.005879499 442 420 0.00065329997 443 420 0.00081659993 444 420 0.00081659993 445 420 0.010778997 447 420 0.0026131 450 420 0.0053894967 452 420 0.0057161972 453 420 0.00048999977 454 420 0.00016329999 455 420 0.035276797 456 420 0.00081659993 457 420 0.0037562998 458 420 0.0017964998 459 420 0.00065329997 460 420 0.00097989989 463 420 0.0097990967 464 420 0.0011431999 465 420 0.0011431999 467 420 0.017311797 468 420 0.0032664 469 420 0.010778997 470 420 0.0125755 471 420 0.0037562998 473 420 0.00032659993 477 420 0.00032659993 478 420 0.0014698999 483 420 0.0019597998 489 420 0.00016329999 490 420 0.0019597998 491 420 0.0026131 60 421 0.0025086999 108 421 0.000193 114 421 0.00038599991 126 421 0.000193 150 421 0.000193 187 421 0.00038599991 189 421 0.000193 190 421 0.000193 192 421 0.000193 194 421 0.00038599991 198 421 0.0019297998 200 421 0.000193 203 421 0.000193 204 421 0.000193 206 421 0.00057889987 214 421 0.0011578999 223 421 0.000193 224 421 0.022771098 234 421 0.0065611973 237 421 0.00077189994 240 421 0.000193 241 421 0.029718298 252 421 0.030490197 270 421 0.0034735999 277 421 0.00096489978 284 421 0.000193 290 421 0.041489799 294 421 0.00038599991 296 421 0.000193 312 421 0.000193 315 421 0.000193 326 421 0.000193 356 421 0.000193 358 421 0.0032805998 387 421 0.000193 392 421 0.00057889987 393 421 0.00038599991 402 421 0.00038599991 417 421 0.00057889987 420 421 0.00038599991 421 421 0.060401399 422 421 0.0011578999 442 421 0.020262398 443 421 0.0021227 444 421 0.00057889987 445 421 0.0119645 446 421 0.00038599991 447 421 0.0028945999 450 421 0.0071400963 452 421 0.0048243999 453 421 0.0025086999 454 421 0.0011578999 455 421 0.07043606 456 421 0.00077189994 457 421 0.0040524974 458 421 0.0017368 459 421 0.00057889987 460 421 0.0015437999 463 421 0.0121575 464 421 0.00077189994 465 421 0.0017368 467 421 0.016595896 468 421 0.0144732 469 421 0.0073330998 470 421 0.0082979985 471 421 0.0048243999 473 421 0.000193 477 421 0.00038599991 478 421 0.0023156998 483 421 0.0021227 489 421 0.000193 490 421 0.00077189994 491 421 0.00096489978 9 422 1.8599996e-05 13 422 9.3199997e-05 16 422 1.8599996e-05 18 422 9.3199997e-05 21 422 5.5899989e-05 22 422 0.0010809 24 422 0.00026089977 60 422 0.0057770982 79 422 1.8599996e-05 82 422 0.00013049999 83 422 1.8599996e-05 84 422 1.8599996e-05 104 422 9.3199997e-05 108 422 3.7299993e-05 113 422 5.5899989e-05 114 422 9.3199997e-05 119 422 3.7299993e-05 120 422 0.00031679985 126 422 5.5899989e-05 127 422 1.8599996e-05 130 422 7.45e-05 131 422 3.7299993e-05 132 422 1.8599996e-05 135 422 0.00054039992 139 422 3.7299993e-05 142 422 1.8599996e-05 143 422 1.8599996e-05 150 422 0.00029819994 151 422 1.8599996e-05 158 422 1.8599996e-05 159 422 0.00014909999 160 422 0.00050319987 162 422 1.8599996e-05 171 422 5.5899989e-05 184 422 1.8599996e-05 186 422 0.00031679985 187 422 0.016548596 188 422 0.00013049999 189 422 5.5899989e-05 190 422 5.5899989e-05 192 422 0.0084606968 193 422 0.00013049999 194 422 9.3199997e-05 196 422 1.8599996e-05 197 422 1.8599996e-05 198 422 0.0081810988 200 422 7.45e-05 201 422 3.7299993e-05 203 422 5.5899989e-05 204 422 7.45e-05 206 422 0.00011179999 207 422 3.7299993e-05 208 422 3.7299993e-05 209 422 1.8599996e-05 214 422 0.043607898 218 422 0.00018639999 219 422 0.00011179999 221 422 9.3199997e-05 223 422 0.003950797 224 422 0.00040999986 225 422 1.8599996e-05 230 422 1.8599996e-05 231 422 3.7299993e-05 233 422 7.45e-05 234 422 0.0028512999 237 422 0.0002423 240 422 0.00089449994 241 422 0.012765598 248 422 1.8599996e-05 250 422 3.7299993e-05 252 422 0.0011741 254 422 1.8599996e-05 270 422 1.8599996e-05 277 422 0.0196236 279 422 1.8599996e-05 284 422 3.7299993e-05 290 422 0.0031307999 292 422 0.00076409988 293 422 0.0010249999 294 422 0.014014199 295 422 5.5899989e-05 296 422 0.0051993988 297 422 1.8599996e-05 298 422 0.0030375998 300 422 1.8599996e-05 301 422 0.00013049999 308 422 3.7299993e-05 312 422 0.0024785998 314 422 1.8599996e-05 315 422 0.0040066987 318 422 7.45e-05 320 422 0.00013049999 321 422 3.7299993e-05 322 422 0.00096909981 325 422 0.00050319987 326 422 0.0056838989 340 422 5.5899989e-05 341 422 1.8599996e-05 347 422 1.8599996e-05 350 422 1.8599996e-05 351 422 1.8599996e-05 354 422 0.0030003998 356 422 0.00022359999 358 422 0.0013790999 359 422 3.7299993e-05 361 422 1.8599996e-05 363 422 3.7299993e-05 369 422 9.3199997e-05 370 422 0.00018639999 371 422 1.8599996e-05 372 422 0.0031494999 384 422 0.0017704 386 422 5.5899989e-05 387 422 5.5899989e-05 390 422 0.00020499999 391 422 7.45e-05 392 422 0.017554998 393 422 0.0056652986 394 422 1.8599996e-05 396 422 0.00014909999 397 422 1.8599996e-05 398 422 1.8599996e-05 402 422 0.00011179999 404 422 5.5899989e-05 405 422 1.8599996e-05 413 422 3.7299993e-05 417 422 0.00018639999 419 422 0.0030748998 420 422 0.0074542984 421 422 1.8599996e-05 422 422 0.030245997 423 422 5.5899989e-05 424 422 3.7299993e-05 425 422 1.8599996e-05 426 422 3.7299993e-05 427 422 1.8599996e-05 428 422 1.8599996e-05 430 422 5.5899989e-05 431 422 1.8599996e-05 432 422 1.8599996e-05 433 422 3.7299993e-05 434 422 5.5899989e-05 435 422 0.00050319987 438 422 0.00048449985 441 422 0.00035409979 442 422 0.0022548998 443 422 0.0028698999 444 422 0.0012299998 445 422 0.0047520995 446 422 0.00093179988 447 422 0.0044166967 448 422 1.8599996e-05 449 422 1.8599996e-05 450 422 0.004304897 452 422 0.0029630999 453 422 0.00089449994 454 422 0.00095039979 455 422 0.0232016 456 422 0.00061499979 457 422 0.0073424987 458 422 0.0010809 459 422 0.0032984999 460 422 0.0012486 463 422 0.0079201981 464 422 0.0017889999 465 422 0.0038949 467 422 0.018766299 468 422 0.0197354 469 422 0.0050502978 470 422 0.0056838989 471 422 0.0015280999 472 422 0.00018639999 473 422 0.00011179999 477 422 0.00046589994 478 422 0.003950797 479 422 0.0016027 483 422 0.00098769995 489 422 9.3199997e-05 490 422 0.0004472998 491 422 0.00011179999 9 423 9.8699995e-05 18 423 0.00019729999 24 423 9.8699995e-05 82 423 9.8699995e-05 108 423 9.8699995e-05 114 423 0.00019729999 126 423 9.8699995e-05 150 423 9.8699995e-05 171 423 0.00019729999 189 423 9.8699995e-05 190 423 9.8699995e-05 192 423 9.8699995e-05 194 423 9.8699995e-05 196 423 9.8699995e-05 198 423 0.0057226978 200 423 9.8699995e-05 203 423 9.8699995e-05 204 423 9.8699995e-05 206 423 9.8699995e-05 207 423 9.8699995e-05 214 423 9.8699995e-05 224 423 9.8699995e-05 234 423 0.0022693998 237 423 0.00019729999 240 423 9.8699995e-05 241 423 0.0019733999 250 423 0.013418797 252 423 0.0010853 270 423 0.0031573998 276 423 0.0095707998 277 423 0.00069069979 284 423 9.8699995e-05 290 423 0.20404536 292 423 0.00049329991 294 423 0.057128798 298 423 0.0011839999 312 423 0.00019729999 315 423 0.00019729999 317 423 0.00029599993 320 423 0.00019729999 325 423 0.0070053972 326 423 9.8699995e-05 356 423 9.8699995e-05 358 423 0.0012826999 372 423 9.8699995e-05 387 423 9.8699995e-05 402 423 9.8699995e-05 417 423 0.00049329991 419 423 0.0054266974 421 423 9.8699995e-05 422 423 9.8699995e-05 423 423 0.0059200972 424 423 0.11909229 426 423 0.00049329991 430 423 9.8699995e-05 433 423 9.8699995e-05 434 423 9.8699995e-05 438 423 0.0019733999 441 423 9.8699995e-05 442 423 0.0022693998 443 423 0.0013813998 444 423 0.0039466992 445 423 0.0063147992 447 423 0.005130697 450 423 0.010162797 452 423 0.0026639998 453 423 0.00019729999 454 423 0.0034534 455 423 0.051406 456 423 0.00039469986 457 423 0.0042426996 458 423 0.00078929984 459 423 0.00039469986 460 423 0.00098669995 463 423 0.0263444 464 423 0.0073013976 465 423 0.0012826999 467 423 0.014800198 468 423 0.026640397 469 423 0.0066107996 470 423 0.0073013976 471 423 0.0018747 473 423 0.00019729999 477 423 9.8699995e-05 478 423 0.0011839999 479 423 0.00019729999 483 423 0.0021706999 489 423 9.8699995e-05 490 423 0.0049333982 491 423 0.00088799978 24 424 0.013278097 114 424 0.0001428 131 424 0.0001428 171 424 0.0001428 198 424 0.0041405 206 424 0.00028559985 214 424 0.011707596 234 424 0.0011421998 237 424 0.0001428 241 424 0.00028559985 250 424 0.00085669989 270 424 0.0098514967 272 424 0.0001428 276 424 0.0068531968 277 424 0.046402097 279 424 0.0001428 286 424 0.0001428 287 424 0.0001428 288 424 0.0001428 290 424 0.022130199 291 424 0.0001428 292 424 0.0068531968 294 424 0.0418332 295 424 0.0001428 298 424 0.00042829989 308 424 0.0001428 317 424 0.0001428 325 424 0.00042829989 326 424 0.0001428 358 424 0.00042829989 373 424 0.00042829989 393 424 0.0001428 417 424 0.0001428 419 424 0.00042829989 423 424 0.0025699998 424 424 0.022701297 426 424 0.0001428 438 424 0.0001428 441 424 0.0011421998 442 424 0.00028559985 443 424 0.0044259988 444 424 0.00028559985 445 424 0.015848096 446 424 0.0011421998 447 424 0.0052826963 450 424 0.0019989 452 424 0.0017132999 453 424 0.0001428 454 424 0.0001428 455 424 0.056253597 457 424 0.0019989 458 424 0.0001428 459 424 0.0001428 460 424 0.0021415998 463 424 0.0042832978 464 424 0.00057109981 465 424 0.00028559985 467 424 0.0032837999 468 424 0.0042832978 469 424 0.0018560998 470 424 0.0019989 471 424 0.00071389996 478 424 0.00028559985 483 424 0.0019989 490 424 0.37592798 491 424 0.0054254979 22 425 0.00091299997 60 425 0.0021301999 108 425 0.00030429987 114 425 0.00060859998 126 425 0.00030429987 171 425 0.027084596 194 425 0.00030429987 198 425 0.024649996 206 425 0.00060859998 214 425 0.028910499 234 425 0.0039561987 237 425 0.00030429987 240 425 0.00030429987 241 425 0.0219111 250 425 0.00030429987 270 425 0.018563598 272 425 0.00060859998 276 425 0.0097383 277 425 0.079123557 279 425 0.00060859998 284 425 0.00030429987 290 425 0.0608643 292 425 0.037127197 293 425 0.00060859998 294 425 0.06299448 297 425 0.013390098 298 425 0.00060859998 312 425 0.00060859998 315 425 0.00060859998 317 425 0.00030429987 319 425 0.00030429987 320 425 0.00030429987 326 425 0.011259899 339 425 0.00030429987 340 425 0.00060859998 353 425 0.00030429987 358 425 0.0015215999 387 425 0.00030429987 417 425 0.00060859998 424 425 0.00091299997 425 425 0.0051734969 426 425 0.00030429987 441 425 0.00030429987 443 425 0.0063906983 444 425 0.0051734969 445 425 0.013998799 446 425 0.00060859998 447 425 0.0146074 450 425 0.0045647994 452 425 0.0066950992 453 425 0.0015215999 454 425 0.00091299997 455 425 0.032562397 456 425 0.00030429987 457 425 0.0045647994 458 425 0.00060859998 459 425 0.00060859998 460 425 0.00091299997 463 425 0.0076079965 464 425 0.00091299997 465 425 0.00060859998 467 425 0.0094339997 468 425 0.018259298 469 425 0.0063906983 470 425 0.0073036999 471 425 0.0018258998 473 425 0.00030429987 478 425 0.0012172998 483 425 0.0033475 490 425 0.00091299997 491 425 0.00030429987 17 426 0.00044509978 60 426 0.001558 82 426 0.00022259999 108 426 0.00022259999 114 426 0.00044509978 126 426 0.00022259999 131 426 0.00022259999 132 426 0.00022259999 139 426 0.00022259999 150 426 0.00022259999 171 426 0.016470097 187 426 0.00022259999 189 426 0.00022259999 190 426 0.00022259999 194 426 0.0011127999 198 426 0.011796098 203 426 0.00022259999 206 426 0.00066769985 208 426 0.00022259999 214 426 0.0022256998 223 426 0.00022259999 224 426 0.0024482999 233 426 0.0024482999 234 426 0.0080124997 237 426 0.00044509978 241 426 0.016024899 243 426 0.00044509978 250 426 0.020698898 252 426 0.0064544976 270 426 0.0066770986 276 426 0.0060092993 277 426 0.00066769985 279 426 0.00044509978 284 426 0.00022259999 290 426 0.064099669 292 426 0.015802398 293 426 0.00044509978 294 426 0.0037836998 295 426 0.00022259999 298 426 0.079234362 312 426 0.00022259999 315 426 0.00066769985 317 426 0.00022259999 320 426 0.0064544976 325 426 0.00044509978 326 426 0.0057867989 340 426 0.00044509978 358 426 0.0020030998 387 426 0.00022259999 392 426 0.00066769985 393 426 0.0035611 417 426 0.00066769985 419 426 0.00066769985 422 426 0.00022259999 423 426 0.00044509978 424 426 0.1112842 426 426 0.0244825 438 426 0.00022259999 441 426 0.0084575973 442 426 0.0182506 443 426 0.0011127999 444 426 0.0084575973 445 426 0.012463797 446 426 0.00022259999 447 426 0.013576698 448 426 0.00022259999 450 426 0.0064544976 452 426 0.0051190965 453 426 0.00066769985 454 426 0.00089029991 455 426 0.0316047 456 426 0.00022259999 457 426 0.0046738982 458 426 0.00044509978 459 426 0.00022259999 460 426 0.0011127999 463 426 0.016470097 464 426 0.001558 465 426 0.0011127999 467 426 0.012018699 468 426 0.012241296 469 426 0.0075672977 470 426 0.0082349963 471 426 0.0026707998 473 426 0.00022259999 478 426 0.0017804999 479 426 0.012018699 483 426 0.0035611 490 426 0.00066769985 491 426 0.00044509978 22 427 0.00018239999 60 427 0.0027357 108 427 0.00018239999 114 427 0.00036479998 126 427 0.00018239999 130 427 0.0032829 135 427 0.0031005 150 427 0.00018239999 160 427 0.0492431 165 427 0.010395799 171 427 0.041035898 172 427 0.00091189984 188 427 0.0078423992 189 427 0.00018239999 190 427 0.00018239999 194 427 0.00036479998 198 427 0.0063833967 203 427 0.00018239999 206 427 0.00054709986 214 427 0.00036479998 224 427 0.0142258 233 427 0.0041947998 234 427 0.0031005 237 427 0.00036479998 241 427 0.0076599978 248 427 0.018602997 277 427 0.0116724 279 427 0.00036479998 282 427 0.0036475998 284 427 0.00018239999 292 427 0.011854798 297 427 0.0069304965 298 427 0.0069304965 312 427 0.00091189984 315 427 0.0010942998 321 427 0.00091189984 322 427 0.00091189984 356 427 0.00018239999 358 427 0.0018237999 387 427 0.017508697 392 427 0.013313897 393 427 0.063468874 402 427 0.00018239999 417 427 0.00072949985 421 427 0.00018239999 422 427 0.00036479998 427 427 0.077329874 443 427 0.0067480989 444 427 0.00054709986 445 427 0.0041947998 446 427 0.00036479998 447 427 0.0052890964 450 427 0.0052890964 452 427 0.0049242973 453 427 0.0023709999 454 427 0.00054709986 455 427 0.032463998 456 427 0.00018239999 457 427 0.0045594983 458 427 0.00072949985 459 427 0.00054709986 460 427 0.0010942998 463 427 0.011307698 464 427 0.00054709986 465 427 0.0012766998 467 427 0.010942899 468 427 0.0087542981 469 427 0.0069304965 470 427 0.0076599978 471 427 0.0021885999 473 427 0.00018239999 477 427 0.00018239999 478 427 0.0016413999 483 427 0.0031005 490 427 0.0012766998 491 427 0.0018237999 9 428 6.5699991e-05 18 428 0.0001315 22 428 6.5699991e-05 60 428 0.0025636 82 428 6.5699991e-05 83 428 6.5699991e-05 84 428 6.5699991e-05 108 428 6.5699991e-05 113 428 0.0001315 114 428 0.00026289979 126 428 0.0001315 130 428 0.0041411966 132 428 0.0026950999 135 428 6.5699991e-05 137 428 6.5699991e-05 138 428 0.00019719999 139 428 0.0097942986 143 428 6.5699991e-05 150 428 0.00085449987 154 428 0.0018404999 158 428 0.0046012998 160 428 0.017222099 161 428 0.0021034998 165 428 0.0024320998 170 428 0.00032869983 171 428 0.010517299 172 428 0.0037467999 175 428 6.5699991e-05 187 428 0.0020376998 188 428 0.016236097 189 428 0.00026289979 190 428 0.0001315 194 428 0.00039439998 197 428 0.0001315 198 428 0.044238497 200 428 6.5699991e-05 202 428 6.5699991e-05 203 428 0.0001315 204 428 0.00046009989 206 428 0.00026289979 207 428 6.5699991e-05 208 428 0.00046009989 214 428 0.00085449987 219 428 0.0020376998 221 428 0.0007230998 224 428 0.042200699 225 428 0.00039439998 227 428 0.00039439998 233 428 0.0043383986 234 428 0.0024978998 237 428 0.0066390969 240 428 0.0010517 241 428 0.1003089 243 428 0.0015775999 252 428 0.00052589993 270 428 6.5699991e-05 277 428 0.023466799 282 428 0.00019719999 283 428 0.00019719999 284 428 0.00019719999 288 428 6.5699991e-05 292 428 0.0001315 293 428 0.0032867 294 428 0.0024320998 295 428 0.00019719999 296 428 0.0001315 299 428 6.5699991e-05 300 428 6.5699991e-05 312 428 0.010122899 315 428 0.0038124998 317 428 6.5699991e-05 319 428 0.0012488998 320 428 0.0006573 321 428 0.00059159985 322 428 0.0024978998 324 428 6.5699991e-05 326 428 0.0061131977 328 428 0.0006573 330 428 0.0001315 340 428 0.00032869983 349 428 0.0007230998 351 428 0.00026289979 354 428 0.00052589993 356 428 6.5699991e-05 358 428 0.0017747998 370 428 0.0011831999 372 428 0.0046670996 377 428 6.5699991e-05 380 428 6.5699991e-05 384 428 0.0013146999 386 428 6.5699991e-05 387 428 0.0001315 391 428 0.00019719999 393 428 0.00019719999 398 428 0.0026292999 402 428 0.00019719999 409 428 0.0040754974 412 428 0.0012488998 415 428 0.0001315 417 428 0.00052589993 419 428 0.0001315 421 428 6.5699991e-05 422 428 0.00026289979 423 428 6.5699991e-05 425 428 6.5699991e-05 428 428 0.036679197 429 428 0.00026289979 430 428 0.0007230998 431 428 6.5699991e-05 433 428 6.5699991e-05 434 428 6.5699991e-05 443 428 0.0069676973 444 428 0.00052589993 445 428 0.011371899 446 428 0.00059159985 447 428 0.0039439984 450 428 0.0045355968 452 428 0.0060474984 453 428 0.0015119 454 428 0.00039439998 455 428 0.050746098 456 428 0.00052589993 457 428 0.0043383986 458 428 0.00078879995 459 428 0.0046670996 460 428 0.0011831999 463 428 0.022875197 464 428 0.0042726994 465 428 0.004929997 467 428 0.016959198 468 428 0.06961149 469 428 0.0067047998 470 428 0.0071648993 471 428 0.0020376998 473 428 0.00019719999 477 428 0.0001315 478 428 0.0013803998 479 428 0.0059816986 483 428 0.0022348999 489 428 0.0001315 490 428 0.00078879995 491 428 0.00078879995 60 429 0.0021276998 114 429 0.00035459991 130 429 0.10496449 132 429 0.0039006998 137 429 0.0021276998 139 429 0.0031915 150 429 0.00035459991 154 429 0.00070919981 158 429 0.0014183999 160 429 0.0056737997 161 429 0.00070919981 162 429 0.00035459991 165 429 0.00070919981 171 429 0.0035460999 172 429 0.0014183999 187 429 0.00035459991 188 429 0.0049644969 194 429 0.00035459991 198 429 0.039361697 206 429 0.00070919981 219 429 0.00070919981 224 429 0.027305 225 429 0.00035459991 233 429 0.0216312 234 429 0.0024822999 237 429 0.0024822999 240 429 0.0092198998 241 429 0.11702126 243 429 0.00070919981 277 429 0.0070921965 293 429 0.0010638 294 429 0.00070919981 312 429 0.0031915 315 429 0.0010638 317 429 0.00035459991 319 429 0.00035459991 322 429 0.00070919981 326 429 0.001773 328 429 0.00035459991 349 429 0.00035459991 358 429 0.001773 370 429 0.00035459991 372 429 0.0014183999 384 429 0.00035459991 398 429 0.00070919981 409 429 0.00070919981 412 429 0.00035459991 417 429 0.00070919981 428 429 0.012056697 429 429 0.026950397 430 429 0.00035459991 442 429 0.00070919981 443 429 0.0028368998 444 429 0.00035459991 445 429 0.025886498 447 429 0.0046098977 450 429 0.0056737997 452 429 0.0056737997 453 429 0.0014183999 455 429 0.039361697 456 429 0.00035459991 457 429 0.0042552985 458 429 0.00070919981 459 429 0.022340398 460 429 0.0014183999 463 429 0.024468098 464 429 0.001773 465 429 0.0024822999 467 429 0.013120599 468 429 0.048226997 469 429 0.0056737997 470 429 0.0060283989 471 429 0.0024822999 478 429 0.0014183999 479 429 0.0163121 483 429 0.0042552985 490 429 0.0010638 491 429 0.00070919981 9 430 6.2499996e-05 18 430 0.00012489999 22 430 6.2499996e-05 60 430 0.0034351 82 430 0.00012489999 83 430 6.2499996e-05 84 430 6.2499996e-05 108 430 6.2499996e-05 113 430 0.00012489999 114 430 0.00018739999 126 430 6.2499996e-05 130 430 0.011991799 131 430 0.00024979981 132 430 0.00031229993 133 430 0.00068699988 135 430 0.0033101998 138 430 0.00024979981 139 430 0.0018736999 141 430 0.00081189978 142 430 0.00018739999 143 430 6.2499996e-05 145 430 6.2499996e-05 149 430 0.00074949977 150 430 0.004371997 156 430 0.00012489999 158 430 0.0046842992 159 430 6.2499996e-05 160 430 0.053713098 161 430 0.0013740999 165 430 0.0039972998 169 430 0.0013116 170 430 0.0011866998 171 430 0.0051838979 172 430 6.2499996e-05 188 430 0.00018739999 189 430 0.00012489999 190 430 0.00012489999 192 430 6.2499996e-05 194 430 0.00018739999 197 430 6.2499996e-05 198 430 0.015739199 200 430 6.2499996e-05 203 430 0.00012489999 204 430 0.0015613998 206 430 0.00024979981 207 430 6.2499996e-05 214 430 0.00062459987 219 430 0.005621098 222 430 6.2499996e-05 224 430 0.029104996 225 430 0.0099306963 227 430 0.0092435963 230 430 0.00031229993 233 430 0.007557299 234 430 0.0025606998 237 430 0.00037469994 240 430 0.011179797 241 430 0.020111199 242 430 0.0025606998 243 430 0.0110549 248 430 0.00012489999 252 430 0.00087439991 269 430 0.0022484998 270 430 0.00056209997 277 430 0.051464599 282 430 0.0081193969 283 430 0.0084316991 284 430 0.00018739999 292 430 0.0021235 293 430 0.0074947998 294 430 0.0014364999 295 430 6.2499996e-05 296 430 0.0061207972 298 430 0.00062459987 312 430 0.011554599 315 430 0.00031229993 319 430 0.00043719984 321 430 0.00049969996 322 430 6.2499996e-05 324 430 0.0026856998 326 430 0.00018739999 340 430 6.2499996e-05 350 430 6.2499996e-05 351 430 0.00018739999 354 430 6.2499996e-05 355 430 6.2499996e-05 356 430 0.0023108998 358 430 0.0015613998 371 430 0.0016862999 372 430 0.0029354999 387 430 6.2499996e-05 392 430 0.0019361998 393 430 0.0021235 398 430 6.2499996e-05 402 430 0.00012489999 409 430 6.2499996e-05 417 430 0.00056209997 421 430 6.2499996e-05 422 430 0.00018739999 423 430 6.2499996e-05 428 430 0.00049969996 430 430 0.052214097 431 430 6.2499996e-05 433 430 6.2499996e-05 434 430 6.2499996e-05 437 430 0.00074949977 441 430 0.0018736999 442 430 0.00012489999 443 430 0.0083691999 444 430 0.0021235 445 430 0.0098681971 446 430 0.00099929981 447 430 0.0033101998 450 430 0.0078695975 452 430 0.0053712986 453 430 0.0023733999 454 430 0.00056209997 455 430 0.054462597 456 430 0.00049969996 457 430 0.0073698983 458 430 0.0023733999 459 430 0.0038722998 460 430 0.0013116 463 430 0.017550398 464 430 0.0053712986 465 430 0.0012490998 467 430 0.014802299 468 430 0.041408997 469 430 0.013053499 470 430 0.0066203997 471 430 0.0019985999 473 430 0.00012489999 477 430 0.00018739999 478 430 0.0013116 479 430 0.0042470992 483 430 0.0021235 489 430 0.0019361998 490 430 0.0023108998 491 430 0.0024357999 13 431 0.00030889991 24 431 0.00092679984 60 431 0.0021624998 114 431 0.00030889991 120 431 0.00030889991 126 431 0.00030889991 130 431 0.00030889991 131 431 0.00061789993 135 431 0.021933898 160 431 0.00061789993 171 431 0.0027804 187 431 0.00092679984 194 431 0.00061789993 198 431 0.030274898 206 431 0.00061789993 214 431 0.00061789993 224 431 0.043558899 225 431 0.00030889991 233 431 0.00061789993 234 431 0.0021624998 237 431 0.00030889991 240 431 0.00061789993 241 431 0.10534447 268 431 0.00030889991 272 431 0.00061789993 273 431 0.00030889991 276 431 0.0111214 277 431 0.0024714 279 431 0.00061789993 290 431 0.00030889991 292 431 0.063639164 293 431 0.00030889991 298 431 0.00061789993 312 431 0.00030889991 315 431 0.00092679984 321 431 0.00030889991 322 431 0.0027804 326 431 0.029039197 358 431 0.0012357 370 431 0.00030889991 372 431 0.00030889991 417 431 0.00061789993 424 431 0.00061789993 431 431 0.050664198 432 431 0.00061789993 433 431 0.00030889991 434 431 0.00061789993 442 431 0.0101946 443 431 0.0040160976 444 431 0.0071052983 445 431 0.018226799 446 431 0.00030889991 447 431 0.0089588985 450 431 0.0046338998 452 431 0.0058695972 453 431 0.00061789993 454 431 0.0012357 455 431 0.0457213 456 431 0.00030889991 457 431 0.012665998 458 431 0.00061789993 459 431 0.00061789993 460 431 0.00092679984 463 431 0.0176089 464 431 0.00092679984 465 431 0.011430297 467 431 0.0092677996 468 431 0.016990997 469 431 0.0071052983 470 431 0.0071052983 471 431 0.0015445999 473 431 0.00030889991 478 431 0.00092679984 479 431 0.0052517988 483 431 0.0024714 490 431 0.00061789993 491 431 0.0024714 24 432 0.011454798 60 432 0.0028636998 114 432 0.00057269982 126 432 0.00057269982 135 432 0.010309298 139 432 0.00057269982 156 432 0.00057269982 159 432 0.00057269982 160 432 0.0148912 171 432 0.048682697 187 432 0.0017181998 188 432 0.00057269982 198 432 0.016036697 206 432 0.0011455 208 432 0.00057269982 218 432 0.0011455 224 432 0.0028636998 225 432 0.010881998 233 432 0.012600198 234 432 0.0091637969 240 432 0.0068728998 241 432 0.057273798 268 432 0.0040091984 272 432 0.00057269982 273 432 0.0040091984 276 432 0.021191299 277 432 0.002291 279 432 0.00057269982 292 432 0.0028636998 294 432 0.0011455 312 432 0.0057273991 315 432 0.0223368 317 432 0.00057269982 325 432 0.0017181998 326 432 0.018327598 358 432 0.0017181998 417 432 0.00057269982 428 432 0.0011455 430 432 0.00057269982 431 432 0.002291 432 432 0.0011455 433 432 0.0051545985 434 432 0.010881998 442 432 0.044100799 443 432 0.0063000992 445 432 0.014318399 446 432 0.00057269982 447 432 0.0011455 450 432 0.0045818985 452 432 0.0057273991 453 432 0.0034363999 455 432 0.038946196 457 432 0.0045818985 458 432 0.00057269982 459 432 0.00057269982 460 432 0.0011455 463 432 0.0154639 464 432 0.0017181998 465 432 0.0011455 467 432 0.010309298 468 432 0.053264599 469 432 0.0080182999 470 432 0.0091637969 471 432 0.0017181998 473 432 0.00057269982 478 432 0.0011455 479 432 0.0148912 483 432 0.0028636998 490 432 0.0011455 491 432 0.00057269982 24 433 0.00060099992 60 433 0.0030047998 114 433 0.00060099992 126 433 0.00060099992 131 433 0.0012019 135 433 0.00060099992 160 433 0.00060099992 171 433 0.058293298 187 433 0.0018028999 198 433 0.012019198 206 433 0.0012019 214 433 0.0036058 224 433 0.025240399 225 433 0.00060099992 233 433 0.0012019 234 433 0.0036058 237 433 0.00060099992 240 433 0.025841299 241 433 0.050480798 272 433 0.00060099992 276 433 0.022836499 277 433 0.040264398 279 433 0.00060099992 292 433 0.0012019 294 433 0.032451898 315 433 0.044471197 326 433 0.0096153989 358 433 0.0018028999 417 433 0.00060099992 431 433 0.00060099992 433 433 0.0024037999 434 433 0.00060099992 437 433 0.00060099992 442 433 0.0024037999 443 433 0.0030047998 444 433 0.0012019 445 433 0.032451898 447 433 0.0042066984 450 433 0.0066105984 452 433 0.0078125 453 433 0.0030047998 455 433 0.025240399 457 433 0.0048076995 458 433 0.00060099992 459 433 0.036057699 460 433 0.0012019 463 433 0.021033697 464 433 0.0012019 465 433 0.0012019 467 433 0.011418298 468 433 0.019831698 469 433 0.012620199 470 433 0.013822097 471 433 0.0024037999 473 433 0.00060099992 478 433 0.0012019 479 433 0.0036058 483 433 0.0030047998 490 433 0.0018028999 491 433 0.00060099992 60 434 0.015398797 114 434 0.00030799978 126 434 0.00030799978 131 434 0.05328 187 434 0.10101628 188 434 0.0021557999 192 434 0.010163199 198 434 0.037265196 203 434 0.00030799978 206 434 0.0018479 211 434 0.0006159998 214 434 0.00092389993 219 434 0.00030799978 221 434 0.0021557999 222 434 0.0030797999 223 434 0.0043116994 224 434 0.0015399 233 434 0.0018479 234 434 0.0120111 240 434 0.00092389993 241 434 0.064367056 272 434 0.00092389993 276 434 0.012626998 277 434 0.010779198 279 434 0.0006159998 282 434 0.00092389993 284 434 0.00030799978 292 434 0.0015399 293 434 0.0018479 294 434 0.00092389993 295 434 0.00030799978 296 434 0.0021557999 298 434 0.0012319 308 434 0.0015399 312 434 0.0027717999 315 434 0.0036956999 320 434 0.0021557999 321 434 0.0033876998 322 434 0.0006159998 326 434 0.041576799 340 434 0.0012319 351 434 0.0012319 354 434 0.00030799978 358 434 0.0021557999 359 434 0.0018479 361 434 0.0024637999 363 434 0.0018479 370 434 0.00030799978 371 434 0.0006159998 372 434 0.0043116994 373 434 0.00030799978 386 434 0.0018479 392 434 0.0018479 417 434 0.00030799978 419 434 0.0021557999 422 434 0.00030799978 434 434 0.0024637999 441 434 0.0015399 443 434 0.005543597 444 434 0.0080073997 445 434 0.012319099 446 434 0.00030799978 447 434 0.012319099 450 434 0.0040036999 452 434 0.0046195984 453 434 0.0012319 454 434 0.00092389993 455 434 0.046196498 456 434 0.00030799978 457 434 0.0052355975 458 434 0.0006159998 459 434 0.0012319 460 434 0.0018479 463 434 0.020942397 464 434 0.0024637999 465 434 0.00092389993 467 434 0.0157068 468 434 0.0033876998 469 434 0.011087198 470 434 0.012626998 471 434 0.0012319 473 434 0.00030799978 478 434 0.011087198 483 434 0.0021557999 490 434 0.0012319 491 434 0.0015399 16 435 0.013605397 60 435 0.00097179995 82 435 0.00097179995 84 435 0.038872696 114 435 0.00097179995 130 435 0.0019435999 132 435 0.00097179995 149 435 0.00097179995 150 435 0.0019435999 171 435 0.00097179995 187 435 0.0019435999 194 435 0.00097179995 198 435 0.017492697 206 435 0.00097179995 214 435 0.00097179995 223 435 0.00097179995 224 435 0.0019435999 233 435 0.00097179995 234 435 0.0068026967 241 435 0.27016515 272 435 0.00097179995 277 435 0.00097179995 279 435 0.00097179995 292 435 0.00097179995 293 435 0.00097179995 298 435 0.00097179995 326 435 0.0019435999 358 435 0.0019435999 417 435 0.00097179995 435 435 0.033041798 442 435 0.0029155 443 435 0.00097179995 444 435 0.00097179995 445 435 0.012633599 447 435 0.0068026967 450 435 0.0058308989 452 435 0.0048590973 455 435 0.047618996 456 435 0.03207 457 435 0.0048590973 459 435 0.060252696 460 435 0.00097179995 463 435 0.012633599 464 435 0.00097179995 465 435 0.00097179995 467 435 0.0087463968 468 435 0.0029155 469 435 0.0048590973 470 435 0.0058308989 471 435 0.0029155 478 435 0.00097179995 479 435 0.0019435999 483 435 0.0029155 490 435 0.00097179995 60 436 0.0028652998 114 436 0.00095509994 131 436 0.0057306997 139 436 0.00095509994 160 436 0.00095509994 188 436 0.0019101999 198 436 0.014326598 206 436 0.00095509994 224 436 0.09551096 234 436 0.0047754981 241 436 0.0057306997 277 436 0.034383997 279 436 0.00095509994 292 436 0.029608399 293 436 0.0085959993 295 436 0.00095509994 312 436 0.00095509994 315 436 0.0038204 319 436 0.00095509994 320 436 0.00095509994 358 436 0.0019101999 417 436 0.00095509994 428 436 0.00095509994 436 436 0.1432665 437 436 0.0019101999 443 436 0.0028652998 444 436 0.0019101999 445 436 0.0076408982 447 436 0.015281796 450 436 0.0047754981 452 436 0.0085959993 455 436 0.043935098 457 436 0.0028652998 459 436 0.057306599 460 436 0.00095509994 463 436 0.0095510967 464 436 0.00095509994 467 436 0.010506198 468 436 0.0047754981 469 436 0.0066857971 470 436 0.0066857971 471 436 0.0019101999 478 436 0.00095509994 483 436 0.0038204 490 436 0.00095509994 491 436 0.00095509994 4 437 0.0005394998 60 437 0.0014385998 108 437 0.00017979999 114 437 0.00035959994 126 437 0.00017979999 130 437 0.00017979999 131 437 0.078223288 132 437 0.00089909998 143 437 0.00017979999 149 437 0.00017979999 150 437 0.00035959994 188 437 0.0088113993 189 437 0.00017979999 190 437 0.00017979999 194 437 0.00035959994 198 437 0.0115087 206 437 0.00035959994 214 437 0.00035959994 224 437 0.027153399 226 437 0.00035959994 227 437 0.0028771998 233 437 0.0050350986 234 437 0.0032368 237 437 0.00017979999 240 437 0.00017979999 241 437 0.013306998 277 437 0.043337498 282 437 0.00017979999 284 437 0.00017979999 288 437 0.0046753995 290 437 0.0043157972 292 437 0.038122598 293 437 0.013486799 295 437 0.00017979999 298 437 0.00017979999 312 437 0.0053946972 313 437 0.00071929977 315 437 0.036504198 317 437 0.00017979999 319 437 0.0005394998 320 437 0.00035959994 321 437 0.00017979999 322 437 0.0062937997 326 437 0.00017979999 340 437 0.0005394998 356 437 0.00017979999 358 437 0.0017982 372 437 0.00017979999 387 437 0.00017979999 417 437 0.0005394998 422 437 0.0005394998 436 437 0.0016184 437 437 0.031109497 443 437 0.0035964998 444 437 0.0071929991 445 437 0.0055744983 446 437 0.00017979999 447 437 0.009530697 450 437 0.0043157972 452 437 0.0066534989 453 437 0.00071929977 454 437 0.00071929977 455 437 0.032188497 456 437 0.00017979999 457 437 0.0041358992 458 437 0.00089909998 459 437 0.0012587998 460 437 0.0010788999 463 437 0.0098902993 464 437 0.0005394998 465 437 0.00089909998 467 437 0.0086314976 468 437 0.0032368 469 437 0.0062937997 470 437 0.0064736977 471 437 0.0017982 473 437 0.00017979999 477 437 0.00017979999 478 437 0.0014385998 479 437 0.0037762998 483 437 0.0026973998 490 437 0.00071929977 13 438 0.041518997 60 438 0.0025316 108 438 0.00025319983 114 438 0.00050629978 119 438 0.00025319983 120 438 0.00050629978 126 438 0.00025319983 130 438 0.042278498 132 438 0.00025319983 135 438 0.00025319983 137 438 0.00025319983 139 438 0.00025319983 142 438 0.00025319983 149 438 0.00025319983 150 438 0.00025319983 152 438 0.00025319983 157 438 0.00025319983 160 438 0.0098733976 161 438 0.0040505975 171 438 0.042531598 172 438 0.00025319983 189 438 0.00025319983 190 438 0.00025319983 193 438 0.00025319983 194 438 0.00050629978 198 438 0.0083543994 204 438 0.00025319983 206 438 0.00050629978 214 438 0.0032910998 219 438 0.0015189999 224 438 0.00075949985 227 438 0.0073417984 228 438 0.00025319983 231 438 0.0010126999 232 438 0.00025319983 233 438 0.0025316 234 438 0.0032910998 237 438 0.00025319983 240 438 0.0012657999 241 438 0.085316479 277 438 0.0260759 284 438 0.00025319983 292 438 0.00075949985 293 438 0.0025316 295 438 0.0068353973 300 438 0.0010126999 315 438 0.015949398 326 438 0.00025319983 358 438 0.0017722 387 438 0.00025319983 417 438 0.00075949985 422 438 0.00050629978 431 438 0.00050629978 438 438 0.0027847998 442 438 0.054177199 443 438 0.0065822974 444 438 0.00025319983 445 438 0.018227797 446 438 0.00050629978 447 438 0.00075949985 450 438 0.0050632991 452 438 0.0073417984 453 438 0.0015189999 454 438 0.00075949985 455 438 0.059493698 456 438 0.00025319983 457 438 0.0043037981 458 438 0.00075949985 459 438 0.00050629978 460 438 0.0027847998 463 438 0.0096202977 464 438 0.00025319983 465 438 0.0012657999 467 438 0.010126598 468 438 0.06556958 469 438 0.0068353973 470 438 0.0073417984 471 438 0.0020252999 473 438 0.00025319983 478 438 0.0015189999 483 438 0.0035442999 490 438 0.00075949985 22 439 0.00032639992 24 439 0.0022845999 60 439 0.013707597 114 439 0.00032639992 119 439 0.0088119991 132 439 0.0026109999 134 439 0.00032639992 143 439 0.00032639992 169 439 0.0065273978 171 439 0.0058746971 191 439 0.058746699 198 439 0.015339397 206 439 0.00065269996 214 439 0.021866798 224 439 0.072780669 234 439 0.0048955977 240 439 0.00065269996 241 439 0.057114899 272 439 0.00097909989 279 439 0.00032639992 317 439 0.0075064972 337 439 0.0068537965 358 439 0.00065269996 417 439 0.00032639992 439 439 0.00032639992 443 439 0.012728497 444 439 0.012402099 445 439 0.039164498 446 439 0.00065269996 447 439 0.0104439 450 439 0.0088119991 452 439 0.0068537965 453 439 0.0022845999 454 439 0.013707597 455 439 0.038511697 457 439 0.030352499 458 439 0.013381198 459 439 0.014360297 460 439 0.00065269996 463 439 0.033616196 464 439 0.014033899 465 439 0.0120757 467 439 0.030352499 468 439 0.071801543 469 439 0.0267624 470 439 0.0029372999 471 439 0.015665799 478 439 0.015013099 483 439 0.00097909989 490 439 0.00065269996 491 439 0.0084855966 22 440 0.00025589997 60 440 0.0028146999 108 440 0.00025589997 114 440 0.00051179994 126 440 0.00025589997 130 440 0.030706197 137 440 0.029426798 142 440 0.0040941983 160 440 0.038126897 165 440 0.020726699 170 440 0.0079323985 172 440 0.0038382998 188 440 0.0023029998 189 440 0.00025589997 194 440 0.00025589997 206 440 0.00051179994 233 440 0.013817798 234 440 0.0023029998 237 440 0.00025589997 241 440 0.0084441975 252 440 0.00025589997 272 440 0.0025588998 277 440 0.075230241 279 440 0.00025589997 284 440 0.00025589997 289 440 0.00025589997 292 440 0.014585499 293 440 0.00051179994 307 440 0.00025589997 319 440 0.057830099 324 440 0.00025589997 358 440 0.0015352999 387 440 0.00025589997 417 440 0.00051179994 422 440 0.00025589997 440 440 0.095701098 443 440 0.0071647987 444 440 0.00025589997 445 440 0.015353099 446 440 0.0010235 447 440 0.0051176995 450 440 0.0043500997 452 440 0.0051176995 453 440 0.0040941983 454 440 0.00051179994 455 440 0.061156597 456 440 0.00025589997 457 440 0.0038382998 458 440 0.00076769991 459 440 0.00051179994 460 440 0.0010235 463 440 0.0099794976 464 440 0.00051179994 465 440 0.0089559965 467 440 0.0099794976 468 440 0.023285598 469 440 0.0066529997 470 440 0.0071647987 471 440 0.0020470999 473 440 0.00025589997 478 440 0.0010235 483 440 0.0038382998 490 440 0.00076769991 18 441 0.0001679 60 441 0.0018465999 113 441 0.0001679 114 441 0.0001679 130 441 0.0001679 150 441 0.00083929999 160 441 0.010072198 165 441 0.0125902 170 441 0.0043645985 171 441 0.0090649985 172 441 0.0001679 187 441 0.00067149987 188 441 0.0078898966 189 441 0.0001679 190 441 0.0001679 194 441 0.021487299 198 441 0.013933197 203 441 0.0001679 204 441 0.00067149987 206 441 0.0001679 214 441 0.00067149987 219 441 0.0001679 221 441 0.0001679 224 441 0.046835698 233 441 0.010072198 234 441 0.0036930998 237 441 0.00033569988 240 441 0.0001679 241 441 0.026355498 252 441 0.00083929999 270 441 0.0001679 277 441 0.044485498 279 441 0.0001679 282 441 0.0001679 284 441 0.0001679 288 441 0.0001679 292 441 0.0001679 293 441 0.018297799 295 441 0.016451199 312 441 0.0015107999 315 441 0.0001679 319 441 0.007554099 320 441 0.0001679 321 441 0.0047003999 326 441 0.0035253 340 441 0.0001679 358 441 0.0016786999 370 441 0.019137099 371 441 0.0043645985 373 441 0.0025179998 376 441 0.0026858998 384 441 0.0040288977 385 441 0.0001679 386 441 0.0063789971 398 441 0.0001679 402 441 0.00033569988 417 441 0.00050359988 422 441 0.0001679 431 441 0.0001679 441 441 0.016115498 442 441 0.0028537998 443 441 0.0068826973 444 441 0.0025179998 445 441 0.0095685981 446 441 0.00033569988 447 441 0.0047003999 450 441 0.0048681982 452 441 0.0058753975 453 441 0.0028537998 454 441 0.0001679 455 441 0.0256841 456 441 0.00067149987 457 441 0.0040288977 458 441 0.00067149987 459 441 0.00033569988 460 441 0.001343 463 441 0.024508998 464 441 0.00050359988 465 441 0.001343 467 441 0.014772497 468 441 0.015276097 469 441 0.0083934963 470 441 0.0092327967 471 441 0.0023502 473 441 0.0001679 478 441 0.0015107999 483 441 0.0025179998 490 441 0.00067149987 4 442 0.00020639999 9 442 6.8799985e-05 13 442 0.00013759999 17 442 0.0010320998 18 442 0.00013759999 22 442 0.00020639999 60 442 0.0040593967 82 442 0.0087380968 83 442 6.8799985e-05 84 442 6.8799985e-05 104 442 6.8799985e-05 108 442 6.8799985e-05 113 442 0.00013759999 114 442 0.00027519977 120 442 6.8799985e-05 126 442 0.00013759999 130 442 0.0037841999 131 442 0.0074308999 132 442 0.0087380968 138 442 0.00013759999 139 442 0.0063299984 143 442 6.8799985e-05 149 442 0.00013759999 150 442 0.0011008999 151 442 6.8799985e-05 158 442 0.0052978992 159 442 0.0017888998 160 442 0.0048162974 161 442 0.00013759999 162 442 0.004403498 165 442 0.00013759999 171 442 0.010664597 172 442 6.8799985e-05 187 442 0.00061919983 188 442 0.005917199 189 442 0.00013759999 190 442 0.00013759999 192 442 0.0053666979 193 442 0.0054354966 194 442 0.0097701997 197 442 6.8799985e-05 198 442 0.054492898 200 442 6.8799985e-05 203 442 0.00013759999 204 442 0.00020639999 206 442 0.00027519977 207 442 6.8799985e-05 214 442 0.0088068992 218 442 6.8799985e-05 219 442 0.00061919983 221 442 0.00027519977 223 442 0.010733496 224 442 0.0013760999 225 442 0.0025457998 226 442 0.00020639999 227 442 0.0012384998 228 442 0.00013759999 230 442 0.0027521998 232 442 6.8799985e-05 233 442 0.0083252974 234 442 0.023255799 237 442 0.00048159994 240 442 0.0057106987 241 442 0.0191276 252 442 0.0013760999 253 442 0.00013759999 270 442 0.004403498 272 442 0.0013760999 277 442 0.017889097 279 442 0.00048159994 282 442 6.8799985e-05 283 442 6.8799985e-05 284 442 0.00020639999 290 442 0.0020640998 292 442 0.0087380968 293 442 0.0072243996 294 442 0.00027519977 295 442 0.005917199 296 442 0.00013759999 297 442 0.0052290969 298 442 0.010114197 300 442 0.00013759999 312 442 0.005917199 315 442 0.0065363981 317 442 6.8799985e-05 319 442 6.8799985e-05 320 442 0.0018576998 321 442 0.0022704999 322 442 0.0031649999 326 442 0.028347299 339 442 0.00061919983 340 442 0.00041279988 341 442 0.0030273998 351 442 0.0023392998 356 442 0.0030961998 358 442 0.0048850998 364 442 0.0024080998 369 442 6.8799985e-05 370 442 0.00020639999 371 442 6.8799985e-05 372 442 0.00027519977 380 442 6.8799985e-05 384 442 6.8799985e-05 385 442 0.0017888998 386 442 0.00055039977 387 442 6.8799985e-05 390 442 0.00020639999 392 442 0.00013759999 393 442 0.00041279988 398 442 0.00013759999 402 442 0.00020639999 409 442 6.8799985e-05 415 442 6.8799985e-05 417 442 0.00061919983 419 442 0.0018576998 421 442 6.8799985e-05 422 442 0.00027519977 423 442 6.8799985e-05 424 442 6.8799985e-05 425 442 6.8799985e-05 428 442 0.00061919983 430 442 6.8799985e-05 431 442 0.00013759999 433 442 6.8799985e-05 434 442 6.8799985e-05 437 442 0.00020639999 442 442 0.030755498 443 442 0.0050226972 444 442 0.0028209998 445 442 0.013141599 446 442 0.0010320998 447 442 0.0060547963 448 442 6.8799985e-05 450 442 0.0053666979 452 442 0.0056418963 453 442 0.0012384998 454 442 0.00055039977 455 442 0.0399752 456 442 0.00075679994 457 442 0.010251798 458 442 0.0034401999 459 442 0.004403498 460 442 0.0012384998 463 442 0.023393396 464 442 0.0018576998 465 442 0.0050914995 467 442 0.020916499 468 442 0.023118198 469 442 0.0074996985 470 442 0.0083252974 471 442 0.0024769998 473 442 0.00020639999 477 442 0.00020639999 478 442 0.0015824998 479 442 6.8799985e-05 483 442 0.0022016999 489 442 0.0024080998 490 442 0.0025457998 491 442 6.8799985e-05 9 443 1.3299999e-05 16 443 0.00017279999 60 443 1.9899991e-05 64 443 0.12640977 79 443 6.5999993e-06 82 443 1.9899991e-05 83 443 1.3299999e-05 84 443 1.3299999e-05 108 443 1.9899991e-05 113 443 2.6599999e-05 114 443 6.6499997e-05 123 443 0.00026579993 126 443 3.9899998e-05 127 443 6.5999993e-06 134 443 2.6599999e-05 141 443 0.00018609999 143 443 1.3299999e-05 150 443 0.00045189983 154 443 0.00036549987 169 443 1.3299999e-05 187 443 0.000206 189 443 0.0001662 190 443 0.00011959999 192 443 5.3199998e-05 194 443 0.00011299999 196 443 1.9899991e-05 197 443 2.6599999e-05 198 443 0.00023929999 200 443 5.979999e-05 201 443 2.6599999e-05 203 443 9.9699988e-05 204 443 0.0011564 206 443 0.00072439993 207 443 7.9799996e-05 209 443 2.6599999e-05 214 443 0.0004319998 217 443 0.0010633999 218 443 2.6599999e-05 219 443 6.5999993e-06 220 443 1.3299999e-05 223 443 0.00043859985 229 443 3.9899998e-05 230 443 6.5999993e-06 233 443 0.00013289999 234 443 0.023520697 237 443 0.0004319998 240 443 0.00036549987 241 443 0.0002326 242 443 0.00043859985 248 443 1.3299999e-05 250 443 6.5999993e-06 251 443 6.5999993e-06 252 443 0.00051839999 263 443 6.5999993e-06 270 443 7.3099989e-05 271 443 0.0001794 272 443 6.5999993e-06 277 443 0.0019673 279 443 6.5999993e-06 282 443 0.0062872991 283 443 0.0014288998 284 443 3.3199991e-05 292 443 0.00044529978 293 443 0.00026579993 294 443 9.9699988e-05 295 443 8.6399989e-05 296 443 0.00014619999 297 443 9.2999995e-05 312 443 0.00038549979 315 443 6.5999993e-06 317 443 0.00053169997 318 443 9.2999995e-05 319 443 0.00065129995 322 443 0.0012494999 323 443 1.3299999e-05 324 443 0.00010629999 326 443 0.0023726998 327 443 9.2999995e-05 328 443 0.002931 340 443 0.00029909983 341 443 0.00013289999 351 443 0.0057887994 356 443 4.649999e-05 358 443 0.0002923999 363 443 6.5999993e-06 370 443 0.00013289999 371 443 0.00018609999 372 443 0.00087729981 374 443 0.00029909983 375 443 0.00021269999 380 443 6.5999993e-06 384 443 0.00035889982 385 443 0.00025919988 386 443 0.00019939999 387 443 3.3199991e-05 393 443 5.3199998e-05 394 443 3.3199991e-05 395 443 2.6599999e-05 397 443 3.3199991e-05 402 443 0.00041209999 408 443 0.020782497 412 443 0.00088389986 414 443 0.00023929999 417 443 6.5999993e-06 419 443 6.5999993e-06 422 443 0.00011299999 423 443 6.5999993e-06 425 443 6.5999993e-06 430 443 2.6599999e-05 431 443 1.9899991e-05 432 443 1.9899991e-05 433 443 5.979999e-05 434 443 0.00015289999 439 443 1.3299999e-05 442 443 3.3199991e-05 443 443 0.054571599 444 443 0.00011959999 445 443 0.010421198 446 443 0.0006446999 447 443 0.0021201 448 443 0.00050509977 449 443 0.013578098 450 443 0.0065597966 452 443 0.010035697 453 443 0.0016681999 454 443 0.0025189 455 443 0.0096435994 456 443 0.0007509999 457 443 0.0034693 458 443 0.00039209984 459 443 0.0013557998 460 443 0.0038081999 463 443 0.016283099 464 443 0.00012629999 465 443 0.0014622 467 443 0.012335297 468 443 0.0014421998 469 443 0.0082212985 470 443 0.0036553999 471 443 0.0026916999 472 443 0.00041869981 473 443 7.3099989e-05 477 443 0.00011299999 478 443 0.0015152998 483 443 0.00107 486 443 6.5999993e-06 489 443 0.00049849995 490 443 0.0028910998 491 443 1.3299999e-05 18 444 6.8799985e-05 22 444 1.38e-05 25 444 1.38e-05 60 444 0.0023518999 70 444 0.020355999 108 444 4.1299994e-05 114 444 0.00010999999 126 444 4.1299994e-05 134 444 0.00045389985 135 444 4.1299994e-05 150 444 0.0050614998 153 444 0.00016499999 187 444 0.0001926 189 444 0.0001238 190 444 0.00016499999 192 444 9.6299991e-05 194 444 9.6299991e-05 196 444 6.8799985e-05 197 444 0.00060519995 198 444 0.00041259988 200 444 1.38e-05 201 444 1.38e-05 202 444 2.7499991e-05 203 444 9.6299991e-05 204 444 0.002627 206 444 0.00017879999 207 444 6.8799985e-05 209 444 2.7499991e-05 223 444 0.0031633999 229 444 0.0011002999 230 444 0.00034389994 231 444 0.00015129999 233 444 6.8799985e-05 234 444 0.043380197 237 444 0.0079497993 240 444 6.8799985e-05 241 444 0.0011278 242 444 0.0018155 252 444 0.0012379 272 444 0.00015129999 282 444 0.00078399992 283 444 0.0014028999 307 444 1.38e-05 308 444 8.2499988e-05 309 444 1.38e-05 313 444 0.0038235998 317 444 0.00039889989 318 444 2.7499991e-05 319 444 2.7499991e-05 322 444 0.0012516 323 444 0.0001238 328 444 0.0053640977 340 444 0.00048139994 341 444 4.1299994e-05 350 444 9.6299991e-05 351 444 0.0025306998 354 444 9.6299991e-05 356 444 2.7499991e-05 358 444 0.00024759979 366 444 6.8799985e-05 368 444 2.7499991e-05 370 444 0.00017879999 371 444 0.0001375 372 444 0.0035484999 373 444 0.0011965998 374 444 0.00038509979 375 444 0.00053639989 376 444 0.00075649982 384 444 0.00042639999 385 444 5.4999997e-05 387 444 4.1299994e-05 390 444 6.8799985e-05 391 444 4.1299994e-05 392 444 0.00042639999 393 444 0.00016499999 394 444 0.0037685998 395 444 4.1299994e-05 397 444 0.0032046998 402 444 0.0175776 408 444 0.0026544998 412 444 0.0017604998 422 444 0.0001238 431 444 1.38e-05 432 444 2.7499991e-05 433 444 5.4999997e-05 434 444 5.4999997e-05 438 444 2.7499991e-05 441 444 4.1299994e-05 442 444 0.00059139985 443 444 0.0017604998 444 444 0.0065743998 445 444 0.014758099 446 444 0.0013478999 447 444 0.00023379999 448 444 0.00090779993 449 444 0.0001926 450 444 0.0067119971 452 444 0.013753999 453 444 0.0022419 454 444 0.0040161982 455 444 0.027081698 456 444 0.0059554987 457 444 0.0065606982 458 444 0.0019393 459 444 0.0001926 460 444 0.013987798 463 444 0.021538798 464 444 5.4999997e-05 465 444 0.0011965998 467 444 0.016656097 468 444 0.0086924993 469 444 0.013795298 470 444 0.0015816998 471 444 0.040161699 473 444 4.1299994e-05 474 444 4.1299994e-05 475 444 4.1299994e-05 476 444 2.7499991e-05 477 444 0.0007976999 478 444 0.0016229998 483 444 0.0017879999 489 444 0.0070282966 490 444 0.00017879999 491 444 0.00056389999 0 445 1.6499995e-05 1 445 3.2999997e-06 2 445 8.8899993e-05 3 445 1.6499995e-05 5 445 4.2799991e-05 6 445 5.2699994e-05 7 445 9.8999999e-06 9 445 9.8999999e-06 16 445 3.2999997e-06 18 445 5.9299986e-05 22 445 3.2999997e-06 24 445 1.32e-05 25 445 3.2999997e-06 60 445 0.0029501999 62 445 2.9599993e-05 64 445 0.00015149999 68 445 9.8799996e-05 69 445 4.6099987e-05 73 445 9.8999999e-06 75 445 6.5999993e-06 79 445 3.2999997e-06 82 445 1.9799991e-05 83 445 1.6499995e-05 84 445 1.6499995e-05 108 445 2.2999986e-05 113 445 3.2899989e-05 114 445 8.2299986e-05 126 445 3.6199999e-05 127 445 9.8999999e-06 134 445 3.2999997e-06 141 445 9.8999999e-06 150 445 0.00020089999 154 445 0.00077709998 169 445 0.00010209999 189 445 1.6499995e-05 190 445 0.00011849999 192 445 0.00038519991 194 445 8.5599997e-05 196 445 1.32e-05 197 445 0.0001449 198 445 0.00070789992 200 445 3.6199999e-05 201 445 2.2999986e-05 203 445 8.2299986e-05 204 445 0.0010042998 206 445 0.00031279982 207 445 5.9299986e-05 209 445 1.9799991e-05 214 445 0.00037539983 215 445 0.000158 217 445 4.9399998e-05 219 445 3.2999997e-06 223 445 0.00022059999 229 445 0.00016459999 233 445 0.00023049999 234 445 0.027138099 237 445 0.010543097 240 445 3.2999997e-06 241 445 3.2999997e-06 242 445 0.00017779999 248 445 1.32e-05 250 445 9.8999999e-06 251 445 3.2999997e-06 252 445 2.2999986e-05 263 445 3.2999997e-06 271 445 3.2999997e-06 272 445 0.00012839999 277 445 3.2999997e-06 279 445 3.2999997e-06 282 445 6.5999993e-06 283 445 9.8999999e-06 313 445 1.6499995e-05 316 445 0.00010539999 317 445 0.0001317 322 445 8.8899993e-05 323 445 2.9599993e-05 326 445 0.00027989992 328 445 0.00055319979 329 445 2.6299997e-05 335 445 4.2799991e-05 337 445 4.6099987e-05 340 445 0.00014819999 343 445 3.9499995e-05 351 445 3.6199999e-05 356 445 4.2799991e-05 358 445 0.00033589988 363 445 6.5999993e-06 366 445 4.6099987e-05 368 445 0.0001449 372 445 9.8999999e-06 375 445 3.2999997e-06 376 445 3.2999997e-06 380 445 6.5999993e-06 384 445 2.2999986e-05 387 445 3.2899989e-05 392 445 3.2999997e-06 393 445 2.9599993e-05 394 445 0.00060909986 397 445 0.00038849982 401 445 0.0019195999 402 445 0.0052385963 408 445 2.2999986e-05 412 445 0.00010209999 419 445 9.8999999e-06 422 445 9.55e-05 423 445 1.32e-05 425 445 9.8999999e-06 430 445 2.2999986e-05 431 445 1.6499995e-05 432 445 1.6499995e-05 433 445 4.6099987e-05 434 445 5.599999e-05 442 445 7.2399998e-05 443 445 0.0037141 444 445 0.00015479999 445 445 0.1266225 446 445 0.00071449997 447 445 0.00037869997 448 445 0.00056959991 449 445 0.0031148999 450 445 0.016440198 452 445 0.00063549983 453 445 0.00028649997 454 445 0.00025349995 455 445 0.025369897 456 445 0.010299399 457 445 0.0036778999 458 445 0.000214 459 445 0.00024369999 460 445 0.015541296 463 445 0.012390297 464 445 0.00014159999 465 445 0.00090549979 467 445 0.023940898 468 445 0.0011062999 469 445 0.0048961975 470 445 0.0040861964 471 445 0.0393341 473 445 8.5599997e-05 476 445 1.6499995e-05 477 445 2.9599993e-05 478 445 0.0011755 483 445 0.001373 489 445 0.0014289999 490 445 0.00031609996 491 445 5.2699994e-05 1 446 1.3399999e-05 7 446 1.3399999e-05 11 446 1.3399999e-05 16 446 1.3399999e-05 18 446 1.3399999e-05 22 446 0.00012069999 25 446 1.3399999e-05 60 446 0.012515098 66 446 8.0499987e-05 68 446 0.0080616996 69 446 0.0037826998 73 446 0.0007511999 75 446 0.00052309991 82 446 0.00012069999 83 446 1.3399999e-05 84 446 1.3399999e-05 86 446 1.3399999e-05 87 446 1.3399999e-05 88 446 1.3399999e-05 90 446 1.3399999e-05 93 446 1.3399999e-05 95 446 1.3399999e-05 96 446 2.6799986e-05 97 446 1.3399999e-05 105 446 2.6799986e-05 106 446 1.3399999e-05 108 446 6.7099987e-05 114 446 0.00012069999 115 446 1.3399999e-05 121 446 1.3399999e-05 122 446 1.3399999e-05 125 446 1.3399999e-05 126 446 4.0199986e-05 134 446 0.00037559983 141 446 0.0030180998 150 446 0.0002950998 153 446 1.3399999e-05 154 446 0.00037559983 187 446 2.6799986e-05 189 446 9.3899987e-05 190 446 0.00010729999 192 446 2.6799986e-05 194 446 8.0499987e-05 196 446 1.3399999e-05 197 446 1.3399999e-05 198 446 8.0499987e-05 200 446 6.7099987e-05 201 446 2.6799986e-05 203 446 6.7099987e-05 204 446 0.00033529988 206 446 0.00017439999 207 446 4.0199986e-05 209 446 1.3399999e-05 214 446 0.0012474998 215 446 1.3399999e-05 217 446 0.00014759999 223 446 9.3899987e-05 228 446 1.3399999e-05 229 446 6.7099987e-05 230 446 2.6799986e-05 231 446 4.0199986e-05 233 446 0.00071089994 234 446 0.036928199 237 446 0.00028169993 240 446 0.00079139997 242 446 1.3399999e-05 252 446 1.3399999e-05 260 446 1.3399999e-05 267 446 2.6799986e-05 272 446 1.3399999e-05 277 446 1.3399999e-05 279 446 2.6799986e-05 282 446 0.0015291998 283 446 0.005808197 295 446 0.001006 296 446 0.00025489996 316 446 0.0021193998 317 446 0.0002950998 318 446 2.6799986e-05 319 446 0.00028169993 322 446 0.0021327999 324 446 0.00042919978 326 446 0.0006573 327 446 6.7099987e-05 328 446 0.0019717999 330 446 2.6799986e-05 331 446 9.3899987e-05 340 446 0.00033529988 350 446 0.0023741999 351 446 0.00081819994 356 446 4.0199986e-05 358 446 0.0013279999 368 446 1.3399999e-05 372 446 5.3699987e-05 374 446 0.00046949997 375 446 2.6799986e-05 377 446 1.3399999e-05 380 446 1.3399999e-05 384 446 8.0499987e-05 387 446 4.0199986e-05 390 446 0.0011669998 394 446 4.0199986e-05 397 446 2.6799986e-05 400 446 2.6799986e-05 402 446 0.00026829983 406 446 0.035130799 407 446 0.0014754999 412 446 0.0017437998 413 446 1.3399999e-05 414 446 0.0013414 419 446 0.0014487 422 446 0.00022799999 431 446 1.3399999e-05 432 446 1.3399999e-05 433 446 2.6799986e-05 434 446 2.6799986e-05 442 446 0.0010998999 443 446 0.0007511999 444 446 6.7099987e-05 445 446 0.0032460999 446 446 0.27338696 447 446 0.00021459999 448 446 0.00013409999 449 446 0.0120993 450 446 0.0082762986 452 446 0.0078067966 453 446 0.0022400999 454 446 0.0008450998 455 446 0.013749197 456 446 0.0006438999 457 446 0.0035009999 458 446 0.016847797 459 446 0.0009657999 460 446 0.018189099 463 446 0.030167699 464 446 8.0499987e-05 465 446 0.00071089994 467 446 0.038323298 468 446 0.0040777996 469 446 0.0028436999 470 446 0.0019987 471 446 0.0030314999 473 446 5.3699987e-05 474 446 1.3399999e-05 477 446 4.0199986e-05 478 446 0.00093899993 483 446 0.00072429981 486 446 0.0023339998 489 446 0.00021459999 490 446 0.042427897 1 447 0.00024909992 7 447 7.2999992e-06 9 447 8.0599988e-05 11 447 0.00035169977 16 447 1.4699999e-05 17 447 0.0001466 18 447 7.2999992e-06 22 447 7.2999992e-06 25 447 7.2999992e-06 60 447 0.0017074 64 447 0.00087939994 66 447 2.929999e-05 68 447 0.0028944998 69 447 0.0013629999 73 447 0.00027109985 75 447 0.0014728999 79 447 7.2999992e-06 82 447 0.0036199999 83 447 0.00028579985 84 447 0.00043969997 86 447 0.00016119999 87 447 0.0001832 88 447 0.0001905 89 447 0.00027109985 90 447 0.00041039987 91 447 4.3999986e-05 92 447 9.5299998e-05 93 447 0.00049099978 94 447 2.1999993e-05 95 447 0.00024909992 96 447 0.00079139997 97 447 0.00032239989 98 447 5.1299998e-05 99 447 7.2999992e-06 100 447 3.6599988e-05 103 447 1.4699999e-05 105 447 0.00082069985 106 447 3.6599988e-05 107 447 7.3299991e-05 108 447 0.00081339991 109 447 0.00013189999 113 447 6.5999993e-05 114 447 0.00015389999 115 447 0.00026379991 116 447 0.00015389999 121 447 0.00032239989 122 447 0.0002272 124 447 2.1999993e-05 125 447 0.00016849999 126 447 7.3299991e-05 127 447 1.4699999e-05 130 447 0.00025649997 134 447 0.0001466 141 447 2.1999993e-05 150 447 0.00093799992 152 447 5.1299998e-05 154 447 0.00034439983 169 447 3.6599988e-05 187 447 1.4699999e-05 189 447 1.4699999e-05 190 447 0.00093799992 192 447 3.6599988e-05 193 447 7.2999992e-06 194 447 9.5299998e-05 195 447 4.3999986e-05 196 447 0.00072549982 197 447 2.1999993e-05 198 447 0.0002272 199 447 1.4699999e-05 200 447 0.00011719999 201 447 1.4699999e-05 203 447 8.0599988e-05 204 447 0.0018906 206 447 0.00098189991 207 447 5.8599995e-05 209 447 1.4699999e-05 214 447 0.00091599999 217 447 3.6599988e-05 219 447 8.79e-05 223 447 0.00026379991 228 447 7.2999992e-06 229 447 0.0001466 230 447 7.2999992e-06 231 447 5.8599995e-05 233 447 0.00011719999 234 447 0.064676344 237 447 0.0013776999 240 447 0.00010989999 241 447 0.00083539984 242 447 0.00035909982 248 447 1.4699999e-05 250 447 7.2999992e-06 251 447 7.2999992e-06 252 447 6.5999993e-05 263 447 7.2999992e-06 267 447 7.2999992e-06 272 447 7.2999992e-06 277 447 1.4699999e-05 282 447 4.3999986e-05 283 447 7.2999992e-06 284 447 2.1999993e-05 317 447 0.0001905 318 447 7.2999992e-06 319 447 2.929999e-05 322 447 0.0001832 326 447 1.4699999e-05 328 447 2.1999993e-05 330 447 7.2999992e-06 331 447 3.6599988e-05 340 447 0.00015389999 341 447 2.1999993e-05 351 447 3.6599988e-05 356 447 3.6599988e-05 358 447 0.00049099978 363 447 7.2999992e-06 371 447 0.00032239989 372 447 7.2999992e-06 375 447 0.00024179999 380 447 7.2999992e-06 384 447 2.929999e-05 385 447 0.00030779978 387 447 6.5999993e-05 388 447 3.6599988e-05 390 447 0.00026379991 391 447 0.00040299981 392 447 0.0008280999 393 447 0.0014509 394 447 0.00065219984 395 447 0.0001832 397 447 0.00088669988 402 447 0.00012459999 403 447 0.0063825995 404 447 0.015300699 405 447 0.013197597 408 447 0.0001466 412 447 0.00043969997 413 447 7.2999992e-06 414 447 0.0001832 419 447 1.4699999e-05 422 447 0.00010989999 423 447 2.1999993e-05 425 447 1.4699999e-05 430 447 2.929999e-05 431 447 2.929999e-05 432 447 1.4699999e-05 433 447 5.1299998e-05 434 447 5.8599995e-05 441 447 0.0001905 442 447 0.00033709989 443 447 0.0014288998 444 447 0.00040299981 445 447 0.011358298 446 447 0.0017146999 447 447 0.036822896 448 447 0.0013776999 449 447 0.023346797 450 447 0.011013899 452 447 0.0020738 453 447 0.0013043999 454 447 0.0055984966 455 447 0.018781498 456 447 0.00065949978 457 447 0.0057670996 458 447 0.021302298 459 447 0.0007693998 460 447 0.0047044978 463 447 0.012127697 464 447 0.00093059987 465 447 0.0017952998 467 447 0.038434997 468 447 0.016165398 469 447 0.0032169998 470 447 0.020606197 471 447 0.0018173 472 447 0.0010258998 473 447 0.0001466 474 447 7.2999992e-06 477 447 0.00013189999 478 447 0.0011064999 483 447 0.00024909992 489 447 0.00015389999 490 447 0.046129398 491 447 7.2999992e-06 23 448 0.019549597 67 448 0.061680298 108 448 6.1899991e-05 114 448 0.0001237 126 448 6.1899991e-05 154 448 0.0069907978 187 448 0.00092799985 189 448 0.0001237 190 448 6.1899991e-05 194 448 0.0001237 197 448 6.1899991e-05 203 448 0.0001237 204 448 0.0001237 206 448 0.0001237 207 448 6.1899991e-05 234 448 0.017136797 237 448 0.00018559999 272 448 0.004083097 322 448 0.0045780987 328 448 0.0028457998 350 448 0.0054441988 351 448 0.0051348992 356 448 6.1899991e-05 358 448 0.00018559999 371 448 0.00018559999 372 448 0.0016703999 373 448 0.00049489993 387 448 6.1899991e-05 389 448 0.0003711998 393 448 0.00061869994 402 448 6.1899991e-05 414 448 0.0031551998 422 448 0.0001237 433 448 6.1899991e-05 434 448 6.1899991e-05 443 448 0.0003711998 444 448 6.1899991e-05 445 448 0.0065577999 446 448 0.00068049994 447 448 0.0047636963 448 448 0.0013609999 450 448 0.0044542998 452 448 0.043182399 453 448 0.010888398 454 448 0.0022272 455 448 0.0071145967 457 448 0.015590198 458 448 0.00068049994 459 448 0.00098989997 460 448 0.0076713972 463 448 0.013486799 464 448 0.0001237 465 448 0.00068049994 467 448 0.013362996 468 448 0.00092799985 469 448 0.0052585974 470 448 0.0025364999 471 448 0.0044542998 473 448 6.1899991e-05 478 448 0.0028457998 483 448 0.0001237 489 448 6.1899991e-05 490 448 0.00024749991 9 449 0.00016499999 16 449 8.2499988e-05 60 449 0.0034641998 79 449 8.2499988e-05 82 449 0.00016499999 83 449 0.00016499999 84 449 0.00016499999 108 449 0.00024739979 113 449 0.00032989983 114 449 0.00049489993 126 449 0.00024739979 127 449 8.2499988e-05 169 449 0.0027218999 189 449 0.00024739979 190 449 0.00024739979 192 449 0.00024739979 194 449 0.00049489993 196 449 0.00016499999 197 449 0.00016499999 198 449 0.0016496 200 449 0.00032989983 201 449 0.00016499999 203 449 0.00041239988 204 449 0.002227 206 449 0.00098979985 207 449 0.00032989983 209 449 0.00016499999 223 449 0.00024739979 234 449 0.0010722999 237 449 0.0032992 242 449 0.0026393998 248 449 8.2499988e-05 250 449 8.2499988e-05 252 449 0.00016499999 272 449 8.2499988e-05 317 449 0.0010722999 356 449 8.2499988e-05 358 449 0.00032989983 363 449 8.2499988e-05 384 449 8.2499988e-05 387 449 0.00024739979 394 449 0.00024739979 397 449 0.00032989983 402 449 0.0014022 412 449 0.0018970999 419 449 8.2499988e-05 422 449 0.00049489993 423 449 0.00016499999 425 449 8.2499988e-05 430 449 0.00024739979 431 449 0.00016499999 432 449 0.00016499999 433 449 0.00024739979 434 449 0.00032989983 443 449 0.00024739979 444 449 0.0037115999 445 449 0.0038765999 446 449 8.2499988e-05 447 449 0.0037115999 449 449 8.2499988e-05 450 449 0.024166897 452 449 0.0017320998 453 449 0.0006597999 454 449 0.0032992 455 449 0.0044539981 456 449 0.0019794998 457 449 0.025074199 458 449 0.0017320998 459 449 0.00041239988 460 449 0.029280797 463 449 0.055262297 464 449 0.0027218999 465 449 0.0020619999 467 449 0.024744298 468 449 0.022352397 469 449 0.018888198 470 449 0.024661798 471 449 0.0013196999 473 449 0.00049489993 477 449 0.0016496 478 449 0.0027218999 483 449 0.005773697 489 449 0.00098979985 490 449 0.0018970999 9 450 1.3e-05 16 450 6.4999995e-06 18 450 0.0027947 63 450 0.029890999 79 450 3.2999997e-06 82 450 2.2799999e-05 83 450 1.6299993e-05 84 450 1.3e-05 108 450 2.929999e-05 113 450 3.5899997e-05 114 450 8.7999986e-05 126 450 4.2399988e-05 127 450 6.4999995e-06 150 450 0.00044999993 187 450 3.2999997e-06 189 450 0.00029679993 190 450 9.7799988e-05 192 450 9.1299997e-05 194 450 0.00018589999 196 450 3.2599986e-05 197 450 5.54e-05 200 450 5.54e-05 201 450 2.6099995e-05 203 450 0.00018259999 204 450 0.0015391998 206 450 0.0012163999 207 450 0.00014349999 209 450 0.00016629999 219 450 9.7999991e-06 223 450 1.6299993e-05 234 450 0.00042069983 237 450 0.0001141 240 450 0.00013039999 241 450 6.4999995e-06 248 450 1.6299993e-05 250 450 9.7999991e-06 251 450 3.2999997e-06 252 450 1.6299993e-05 263 450 3.2999997e-06 272 450 3.2999997e-06 279 450 6.4999995e-06 295 450 0.00059029995 322 450 3.2999997e-06 359 450 0.0001011 363 450 1.3e-05 380 450 3.2999997e-06 384 450 0.00047609978 387 450 3.5899997e-05 389 450 0.018637098 390 450 0.00059029995 392 450 0.0012750998 393 450 7.83e-05 394 450 9.7999991e-06 395 450 0.00010759999 397 450 6.4999995e-06 402 450 4.5699999e-05 412 450 0.00034569995 419 450 6.4999995e-06 422 450 0.00021849999 423 450 1.3e-05 425 450 9.7999991e-06 430 450 2.6099995e-05 431 450 2.6099995e-05 432 450 3.9099992e-05 433 450 0.00010759999 434 450 0.00016629999 442 450 7.4999989e-05 443 450 5.54e-05 444 450 0.00078589981 445 450 0.0012945998 446 450 2.2799999e-05 447 450 0.00086419983 448 450 9.7999991e-06 449 450 9.7999991e-06 450 450 0.0133182 452 450 0.0052046999 453 450 0.00033919979 454 450 0.0010239999 455 450 0.0016728998 456 450 0.0003847999 457 450 0.0035969999 458 450 0.00031959987 459 450 0.0036231 460 450 0.0018000999 463 450 0.019996896 464 450 0.001187 465 450 0.0033490998 467 450 0.013367198 468 450 0.015812997 469 450 0.0013630998 470 450 0.0043730997 471 450 0.0032414999 472 450 0.00020539999 473 450 9.1299997e-05 477 450 4.8899994e-05 478 450 0.0011445999 483 450 0.0042947978 489 450 0.00049239979 490 450 0.012303997 450 451 0.023809496 463 451 0.071428597 467 451 0.023809496 468 451 0.023809496 469 451 0.023809496 472 451 0.14285707 473 451 0.071428597 9 452 9.4999996e-06 16 452 8.849999e-05 18 452 0.0029249999 22 452 0.082447052 25 452 7.5899996e-05 65 452 0.043742198 72 452 0.0024569998 79 452 3.1999998e-06 82 452 1.26e-05 83 452 9.4999996e-06 84 452 9.4999996e-06 108 452 1.8999999e-05 113 452 2.2099994e-05 114 452 6.3199986e-05 126 452 3.1599993e-05 127 452 3.1999998e-06 135 452 2.2099994e-05 150 452 0.00039529987 187 452 7.5899996e-05 188 452 1.5799989e-05 189 452 0.00017079999 190 452 6.3199986e-05 192 452 0.00012649999 194 452 0.00027829991 195 452 6.2999998e-06 196 452 5.0599992e-05 197 452 7.5899996e-05 200 452 4.4299988e-05 201 452 5.6899997e-05 203 452 0.00027189986 204 452 0.00064819981 206 452 0.0010529999 207 452 0.00020549999 209 452 6.3199986e-05 214 452 0.00078419992 217 452 6.2999998e-06 219 452 1.26e-05 223 452 0.0029187 228 452 2.8499999e-05 229 452 5.6899997e-05 230 452 2.8499999e-05 231 452 2.8499999e-05 234 452 0.044997599 237 452 0.00031309994 240 452 0.00023719999 241 452 6.2999998e-06 242 452 0.00077469996 248 452 9.4999996e-06 250 452 6.2999998e-06 251 452 3.1999998e-06 252 452 7.5899996e-05 254 452 0.0001107 263 452 3.1999998e-06 272 452 3.1999998e-06 277 452 0.0001581 279 452 9.4999996e-06 295 452 0.00032249978 315 452 9.4999996e-06 317 452 6.9599992e-05 322 452 0.00010439999 327 452 0.0027037 328 452 0.00056599989 351 452 0.00027829991 352 452 7.9099991e-05 356 452 0.00029409979 357 452 9.4999996e-06 358 452 3.1599993e-05 359 452 0.00016129999 363 452 1.5799989e-05 369 452 8.849999e-05 370 452 0.00058819982 371 452 1.5799989e-05 375 452 0.0001107 380 452 3.1999998e-06 384 452 0.0016442998 387 452 2.2099994e-05 393 452 3.1599993e-05 394 452 3.4799988e-05 396 452 2.2099994e-05 397 452 3.1999998e-06 402 452 0.00028459984 412 452 7.2699986e-05 413 452 9.4999996e-06 414 452 4.7399997e-05 417 452 2.2099994e-05 419 452 3.1999998e-06 422 452 0.0003668 423 452 6.2999998e-06 425 452 3.1999998e-06 430 452 1.5799989e-05 431 452 3.7899998e-05 432 452 5.6899997e-05 433 452 0.0001486 434 452 0.0001929 438 452 6.2999998e-06 443 452 0.0075670965 444 452 0.00020549999 445 452 0.0060207993 446 452 0.0020521998 447 452 0.00059759989 448 452 0.0002024 449 452 6.2999998e-06 450 452 0.0044997968 452 452 0.11142516 453 452 0.038730197 454 452 0.0012078998 455 452 0.012642298 456 452 0.00047429977 457 452 0.0035700998 458 452 0.0002024 459 452 0.0063021965 460 452 0.0017676998 463 452 0.011465997 464 452 0.00038259989 465 452 0.0057234988 467 452 0.012964897 468 452 0.0017835 469 452 0.0033455999 470 452 0.0033233999 471 452 0.0028743998 472 452 0.00014229999 473 452 6.0099992e-05 475 452 2.5299989e-05 477 452 6.0099992e-05 478 452 0.00036359997 483 452 0.0032096 489 452 0.00018019999 490 452 0.00026879995 491 452 6.2999998e-06 7 453 4.7999993e-06 9 453 4.7999993e-06 16 453 7.1999995e-05 18 453 1.9199986e-05 19 453 6.7199988e-05 22 453 4.3199994e-05 23 453 0.17643529 25 453 4.7999993e-06 60 453 0.00033609988 66 453 0.0191787 68 453 0.0037838998 69 453 0.0017766999 73 453 0.00035049999 74 453 0.00052819983 75 453 0.00023529999 79 453 4.7999993e-06 82 453 4.7999993e-06 83 453 4.7999993e-06 84 453 4.7999993e-06 108 453 4.7999993e-06 113 453 9.5999994e-06 114 453 2.3999994e-05 126 453 1.44e-05 127 453 4.7999993e-06 150 453 0.0001489 153 453 4.7999993e-06 187 453 9.5999994e-06 189 453 8.1599996e-05 190 453 3.3599994e-05 192 453 1.44e-05 194 453 4.7999987e-05 196 453 4.7999993e-06 197 453 1.44e-05 200 453 1.44e-05 201 453 9.5999994e-06 203 453 3.3599994e-05 204 453 8.6399989e-05 206 453 0.00032649981 207 453 2.8799986e-05 209 453 4.7999993e-06 214 453 0.00066749984 215 453 4.7999993e-06 217 453 4.3199994e-05 223 453 3.8399987e-05 228 453 4.7999993e-06 229 453 3.3599994e-05 230 453 1.44e-05 231 453 1.9199986e-05 233 453 4.7999993e-06 234 453 0.00079229986 237 453 0.00018249999 248 453 4.7999993e-06 250 453 4.7999993e-06 252 453 2.3999994e-05 267 453 1.9199986e-05 272 453 4.7999993e-06 277 453 0.00023529999 278 453 2.3999994e-05 281 453 4.7999993e-06 282 453 1.44e-05 288 453 4.7999993e-06 290 453 9.5999994e-06 307 453 1.44e-05 312 453 4.7999993e-06 317 453 2.8799986e-05 319 453 4.7999993e-06 324 453 4.7999987e-05 326 453 1.9199986e-05 328 453 3.8399987e-05 330 453 9.5999994e-06 331 453 5.2799995e-05 333 453 8.6399989e-05 340 453 9.5999994e-06 350 453 3.8399987e-05 351 453 4.7999993e-06 354 453 1.9199986e-05 356 453 0.00020169999 358 453 5.7599987e-05 359 453 5.7599987e-05 368 453 4.7999993e-06 369 453 4.7999993e-06 370 453 4.7999993e-06 372 453 7.1999995e-05 374 453 1.44e-05 375 453 4.7999993e-06 384 453 0.00033129985 385 453 4.7999993e-06 387 453 9.5999994e-06 393 453 4.3199994e-05 394 453 2.3999994e-05 402 453 6.2399995e-05 404 453 4.7999993e-06 412 453 0.0001008 413 453 9.5999994e-06 414 453 0.00011519999 419 453 4.7999993e-06 422 453 5.2799995e-05 423 453 4.7999993e-06 425 453 4.7999993e-06 430 453 4.7999993e-06 431 453 9.5999994e-06 432 453 4.7999993e-06 433 453 1.44e-05 434 453 4.3199994e-05 438 453 4.7999993e-06 442 453 4.7999993e-06 443 453 0.00013449999 444 453 0.00038409978 445 453 0.00035049999 446 453 5.2799995e-05 447 453 0.0008882999 448 453 1.44e-05 450 453 0.0022761 452 453 0.0028426999 453 453 0.35604936 454 453 0.00068669999 455 453 0.0008882999 456 453 0.00034569995 457 453 0.0036109998 458 453 0.0001585 459 453 0.0021559999 460 453 0.0012965 463 453 0.0092051998 464 453 0.00066749984 465 453 0.0021849 467 453 0.0065641999 468 453 0.00093159988 469 453 0.0030491999 470 453 0.0012772998 471 453 0.0010084 473 453 2.3999994e-05 474 453 4.7999993e-06 478 453 0.00052339979 483 453 0.0026554 489 453 0.00018249999 490 453 9.5999989e-05 491 453 2.3999994e-05 7 454 0.000118 9 454 3.3699995e-05 16 454 0.00013479999 18 454 0.00025279983 22 454 0.00067409989 25 454 0.000118 60 454 0.0063873976 65 454 0.00023589999 66 454 0.00091009983 68 454 0.1192531 69 454 0.043632898 72 454 1.6899998e-05 73 454 0.0083759986 75 454 0.0056794994 79 454 1.6899998e-05 82 454 5.0599992e-05 83 454 3.3699995e-05 84 454 3.3699995e-05 108 454 5.0599992e-05 113 454 8.4299987e-05 114 454 0.00013479999 126 454 6.7399989e-05 127 454 1.6899998e-05 134 454 5.0599992e-05 150 454 0.0010785998 152 454 5.0599992e-05 153 454 6.7399989e-05 187 454 0.00016849999 188 454 1.6899998e-05 189 454 0.00016849999 190 454 0.00026969984 192 454 5.0599992e-05 194 454 0.00015169999 196 454 5.0599992e-05 197 454 6.7399989e-05 200 454 3.3699995e-05 201 454 1.6899998e-05 202 454 3.3699995e-05 203 454 0.0001011 204 454 0.0011292 206 454 0.00025279983 207 454 8.4299987e-05 209 454 3.3699995e-05 214 454 0.015386898 215 454 0.000118 217 454 0.00097749988 218 454 5.0599992e-05 219 454 1.6899998e-05 223 454 0.000118 228 454 0.00016849999 229 454 0.00074149994 230 454 0.00030339998 231 454 0.00047189998 234 454 0.011207398 237 454 0.00094379997 240 454 5.0599992e-05 248 454 1.6899998e-05 250 454 1.6899998e-05 252 454 0.00016849999 267 454 0.00033709989 272 454 6.7399989e-05 317 454 0.00074149994 327 454 1.6899998e-05 329 454 3.3699995e-05 330 454 0.00023589999 331 454 0.0010617999 356 454 0.00030339998 358 454 5.0599992e-05 359 454 1.6899998e-05 363 454 1.6899998e-05 368 454 0.000118 384 454 0.0041458979 387 454 6.7399989e-05 393 454 1.6899998e-05 394 454 0.00026969984 397 454 1.6899998e-05 402 454 0.00032019988 412 454 0.00018539999 413 454 0.0002022 414 454 0.00040449994 419 454 1.6899998e-05 422 454 0.00016849999 423 454 3.3699995e-05 425 454 1.6899998e-05 430 454 5.0599992e-05 431 454 5.0599992e-05 432 454 1.6899998e-05 433 454 6.7399989e-05 434 454 8.4299987e-05 438 454 6.7399989e-05 442 454 1.6899998e-05 443 454 0.0020728998 444 454 0.00015169999 445 454 0.013583697 446 454 0.00092689996 447 454 0.0012302999 448 454 0.00023589999 450 454 0.011881497 452 454 0.009555798 453 454 0.017678998 454 454 0.028802097 455 454 0.0066401996 456 454 0.0029829999 457 454 0.0030503999 458 454 3.3699995e-05 459 454 0.0042469986 460 454 0.0039435998 463 454 0.017173398 464 454 0.0002022 465 454 0.0011459999 467 454 0.019920498 468 454 0.0013987999 469 454 0.0089826994 470 454 0.0066738985 471 454 0.0062524974 473 454 0.00013479999 474 454 0.000118 475 454 3.3699995e-05 476 454 1.6899998e-05 477 454 3.3699995e-05 478 454 0.00021909999 483 454 0.0034717999 489 454 0.00032019988 490 454 0.00050559989 491 454 1.6899998e-05 9 455 4.7999993e-06 16 455 0.0001165 17 455 7.6999995e-06 18 455 0.00072969985 60 455 0.0024815998 75 455 0.0002407 79 455 1.3499999e-05 82 455 3.0799987e-05 83 455 3.4699988e-05 84 455 0.00014629999 97 455 0.0001223 101 455 4.6199988e-05 105 455 3.9499995e-05 108 455 4.1399995e-05 113 455 0.0002483998 114 455 0.00017809999 115 455 4.8099988e-05 123 455 3.2699987e-05 126 455 9.5299998e-05 127 455 2.7899994e-05 141 455 4.9099996e-05 149 455 3.2699987e-05 150 455 0.00020699999 153 455 0.00071519986 158 455 7.5999997e-05 162 455 2.2099994e-05 169 455 0.00030129985 171 455 1.5399986e-05 187 455 0.000978 189 455 0.00082399999 190 455 0.000128 192 455 0.00084039988 193 455 0.0015776998 194 455 0.00020309999 195 455 9.2399991e-05 196 455 4.7199996e-05 197 455 0.00045049982 198 455 0.0022304 200 455 4.1399995e-05 201 455 4.0399987e-05 203 455 0.00023779999 204 455 0.0010974 206 455 0.0008278999 207 455 0.0002387 209 455 7.1199989e-05 219 455 1.8299994e-05 223 455 6.7399989e-05 229 455 0.00020309999 230 455 0.0002002 234 455 0.0086067989 237 455 0.0011339998 240 455 6.3499989e-05 241 455 0.0013341999 242 455 4.8099988e-05 248 455 3.7499995e-05 250 455 8.6999999e-06 251 455 1.25e-05 252 455 6.8299996e-05 253 455 0.00031289994 263 455 7.6999995e-06 272 455 1.7299986e-05 276 455 3.2699987e-05 279 455 9.5999994e-06 284 455 2.6999987e-05 316 455 9.2399991e-05 318 455 2.3099987e-05 322 455 9.429999e-05 323 455 3.8999997e-06 326 455 2.4999987e-05 330 455 7.2199997e-05 335 455 6.6999992e-06 337 455 6.1599989e-05 340 455 0.00014439999 356 455 7.6999995e-06 358 455 0.00038219988 359 455 6.7399989e-05 362 455 1.06e-05 363 455 2.0199994e-05 366 455 0.00048029982 368 455 8.279999e-05 380 455 6.2599996e-05 384 455 5.5799988e-05 387 455 1.5399986e-05 393 455 3.1799995e-05 394 455 0.00010199999 397 455 9.429999e-05 402 455 0.00037929998 412 455 0.00011359999 419 455 3.4699988e-05 422 455 0.00030799978 423 455 2.7899994e-05 425 455 1.25e-05 430 455 1.5399986e-05 431 455 4.8099988e-05 432 455 5.2899995e-05 433 455 0.00014539999 434 455 0.0001944 438 455 8.089999e-05 442 455 2.6999987e-05 443 455 0.00051309983 444 455 0.0022341998 445 455 0.015707098 446 455 0.00039269985 447 455 0.0032046 448 455 0.0001848 449 455 0.00037639984 450 455 0.019686598 452 455 0.0056803972 453 455 0.0006920998 454 455 0.0016643999 455 455 0.017598599 456 455 0.0033912999 457 455 0.0067344978 458 455 0.00034939987 459 455 0.00043609994 460 455 0.0051172972 463 455 0.023017198 464 455 0.0041546971 465 455 0.0031746998 467 455 0.018062599 468 455 0.029311799 469 455 0.0131003 470 455 0.0187345 471 455 0.020459499 473 455 0.00024349999 477 455 0.0001107 478 455 0.0023930999 483 455 0.0033960999 489 455 0.00096939993 490 455 0.0011935998 491 455 3.7499995e-05 7 456 8.9999997e-07 9 456 1.3999999e-05 16 456 6.9999996e-06 17 456 8.9999997e-07 18 456 0.00025359984 22 456 1.6999993e-06 25 456 8.9999997e-07 59 456 1.1399999e-05 60 456 0.0048253983 64 456 9.5999994e-06 66 456 8.6999999e-06 68 456 0.00090249977 69 456 0.00042409985 73 456 8.3999999e-05 75 456 0.00039609987 79 456 3.4999994e-06 82 456 1.9199986e-05 83 456 1.5699989e-05 84 456 1.49e-05 108 456 2.539999e-05 113 456 3.499999e-05 114 456 8.659999e-05 126 456 4.2e-05 127 456 5.1999996e-06 134 456 1.6999993e-06 135 456 3.3199991e-05 141 456 7.8999992e-06 142 456 5.9499987e-05 150 456 0.00013029999 152 456 3.4999994e-06 153 456 8.9999997e-07 154 456 6.3799991e-05 171 456 8.9999997e-07 187 456 0.00058769993 189 456 0.00022649999 190 456 0.00030339998 192 456 0.0003209 193 456 0.0035722998 194 456 4.3999999e-06 195 456 0.00021079999 196 456 8.9999997e-07 197 456 0.0001583 198 456 0.0011787999 201 456 7.8999992e-06 203 456 4.3999999e-06 204 456 0.001129 206 456 9.36e-05 207 456 3.4999994e-06 209 456 8.9999997e-07 214 456 0.00014339999 215 456 1.6999993e-06 217 456 9.5999994e-06 220 456 8.9999997e-07 223 456 4.8099988e-05 228 456 1.6999993e-06 229 456 7.8699988e-05 230 456 0.00055619981 231 456 4.3999999e-06 233 456 3.4999994e-06 234 456 0.0058432966 237 456 0.00092429994 240 456 5.3299998e-05 241 456 0.00083509996 242 456 1.49e-05 248 456 6.3799991e-05 250 456 6.0999992e-06 251 456 4.3999999e-06 252 456 1.6599995e-05 253 456 0.00020899999 260 456 8.9999997e-07 263 456 2.5999998e-06 267 456 3.4999994e-06 272 456 1.31e-05 275 456 1.6999993e-06 282 456 3.4999994e-06 283 456 1.31e-05 284 456 1.05e-05 295 456 2.5999998e-06 296 456 6.9999996e-06 307 456 8.9999997e-07 315 456 3.3199991e-05 316 456 7.8999992e-06 317 456 7.8999992e-06 319 456 2.5999998e-06 322 456 0.00032009999 323 456 2.5999998e-06 324 456 8.9999997e-07 326 456 1.6999993e-06 328 456 3.4999994e-06 330 456 2.5999998e-06 331 456 1.2199999e-05 335 456 5.1999996e-06 340 456 6.9999995e-05 346 456 1.05e-05 350 456 5.1999996e-06 351 456 5.1999996e-06 356 456 1.1399999e-05 358 456 0.00010059999 359 456 2.8899987e-05 364 456 0.0001679 366 456 6.8199995e-05 368 456 3.4999994e-06 370 456 8.9999997e-07 374 456 8.9999997e-07 377 456 6.0999992e-06 380 456 1.2199999e-05 382 456 1.1399999e-05 384 456 0.00015129999 387 456 3.5899997e-05 389 456 8.9999997e-07 390 456 2.5999998e-06 393 456 2.4499997e-05 394 456 9.0099988e-05 397 456 8.0499987e-05 402 456 0.00026849983 406 456 7.5199991e-05 407 456 2.5999998e-06 408 456 5.1999996e-06 412 456 1.31e-05 413 456 1.6999993e-06 414 456 2.5999998e-06 419 456 7.8999992e-06 422 456 0.0001163 423 456 8.6999999e-06 425 456 1.3999999e-05 430 456 2.2699998e-05 431 456 4.3999999e-06 432 456 8.9999997e-07 433 456 3.4999994e-06 434 456 1.49e-05 435 456 0.0001758 438 456 3.4999994e-06 442 456 7.5199991e-05 443 456 0.0002789998 444 456 0.00011889999 445 456 0.0026951998 446 456 0.00071359985 447 456 0.00030779978 448 456 0.00012069999 449 456 3.1499992e-05 450 456 0.0089713968 452 456 0.0184194 453 456 0.0026033998 454 456 0.00090069999 455 456 0.0057663992 456 456 0.0016273998 457 456 0.0090911984 458 456 0.00036729989 459 456 0.00049059978 460 456 0.005153399 463 456 0.057630599 464 456 0.00014949999 465 456 0.0014648 467 456 0.012564696 468 456 0.034562498 469 456 0.0053561963 470 456 0.0044021979 471 456 0.0065061972 472 456 8.9199995e-05 473 456 9.1799986e-05 474 456 8.9999997e-07 477 456 0.00031309994 478 456 0.0015679998 483 456 0.0057698973 486 456 4.3699998e-05 489 456 0.00052029989 490 456 0.0016230999 491 456 2.4499997e-05 9 457 2.7499991e-05 16 457 1.5699989e-05 17 457 3.8999997e-06 18 457 2.7499991e-05 60 457 0.0075417981 68 457 5.4899996e-05 69 457 2.7499991e-05 73 457 3.8999997e-06 75 457 3.8999997e-06 79 457 1.18e-05 82 457 3.9199993e-05 83 457 2.7499991e-05 84 457 2.7499991e-05 108 457 5.4899996e-05 113 457 6.6699999e-05 114 457 0.00017269999 126 457 7.8499987e-05 127 457 1.18e-05 150 457 3.8999997e-06 153 457 0.0017147998 171 457 3.8999997e-06 187 457 0.00089469994 189 457 0.00087499991 190 457 0.0001373 192 457 0.00017659999 194 457 0.00039629987 196 457 7.4599986e-05 197 457 0.00011379999 199 457 7.4599986e-05 200 457 0.0001295 201 457 5.4899996e-05 203 457 0.00037669996 204 457 0.0097470991 206 457 0.0035903999 207 457 0.0073612966 209 457 0.0012987999 214 457 7.7999994e-06 219 457 1.9599989e-05 223 457 1.9599989e-05 230 457 0.00014909999 234 457 0.0020915 237 457 5.4899996e-05 240 457 1.9599989e-05 241 457 1.18e-05 248 457 3.1399992e-05 250 457 1.5699989e-05 251 457 7.7999994e-06 252 457 2.349999e-05 263 457 7.7999994e-06 279 457 1.18e-05 322 457 7.7999994e-06 326 457 3.8999997e-06 359 457 0.00078089978 363 457 2.349999e-05 380 457 1.18e-05 384 457 0.0001256 387 457 7.0599999e-05 393 457 0.00029039988 394 457 3.8999997e-06 397 457 3.8999997e-06 402 457 2.349999e-05 412 457 7.4599986e-05 419 457 1.5699989e-05 422 457 0.00043159979 423 457 1.5699989e-05 425 457 1.5699989e-05 430 457 4.7099995e-05 431 457 6.2799998e-05 432 457 7.8499987e-05 433 457 0.000204 434 457 0.00040809996 442 457 3.8999997e-06 443 457 0.0001295 444 457 0.0002158 445 457 0.0010476999 446 457 8.6299988e-05 447 457 0.00060819997 448 457 3.5299992e-05 449 457 1.5699989e-05 450 457 0.015079699 452 457 0.0082402974 453 457 0.00081229978 454 457 0.0018324999 455 457 0.0029899999 456 457 0.00058859983 457 457 0.013529699 458 457 0.0038257998 459 457 0.027820699 460 457 0.0026917998 463 457 0.022617597 464 457 0.00027469988 465 457 0.0027780998 467 457 0.063218594 468 457 0.0166061 469 457 0.015166 470 457 0.0082794987 471 457 0.0012085999 472 457 0.0001452 473 457 0.00017269999 477 457 7.8499987e-05 478 457 0.0025622998 483 457 0.018540598 486 457 0.0086090975 489 457 0.00036489987 490 457 0.00076119998 9 458 7.0599999e-05 16 458 3.5299992e-05 18 458 7.0599999e-05 60 458 0.0077514984 79 458 1.7699989e-05 82 458 0.0001236 83 458 8.8299988e-05 84 458 7.0599999e-05 108 458 0.00015889999 113 458 0.00019419999 114 458 0.00047669979 126 458 0.00022949999 127 458 3.5299992e-05 187 458 1.7699989e-05 189 458 0.002472 190 458 0.00024719979 192 458 0.00040609995 194 458 0.00091819977 196 458 0.00015889999 197 458 0.00026489981 200 458 0.00031779986 201 458 0.0001413 203 458 0.00086519984 204 458 0.023660697 206 458 0.0019952999 207 458 0.00065329997 209 458 0.00075929984 219 458 5.2999996e-05 223 458 8.8299988e-05 229 458 5.2999996e-05 231 458 3.5299992e-05 234 458 0.0056149997 237 458 0.00086519984 240 458 5.2999996e-05 241 458 3.5299992e-05 242 458 0.00044139987 248 458 7.0599999e-05 250 458 5.2999996e-05 251 458 1.7699989e-05 252 458 7.0599999e-05 263 458 1.7699989e-05 272 458 1.7699989e-05 279 458 3.5299992e-05 322 458 1.7699989e-05 352 458 0.0001236 363 458 5.2999996e-05 380 458 1.7699989e-05 384 458 0.00042379997 387 458 0.00019419999 394 458 7.0599999e-05 397 458 8.8299988e-05 402 458 0.0003707998 412 458 0.00040609995 419 458 3.5299992e-05 422 458 0.00097109983 423 458 7.0599999e-05 425 458 5.2999996e-05 430 458 0.0001413 431 458 0.0001236 432 458 0.00017659999 433 458 0.00049439981 434 458 0.00061799982 442 458 0.0006002998 443 458 0.00022949999 444 458 0.0022953998 445 458 0.0021364999 446 458 0.00022949999 447 458 0.0034254999 448 458 0.0001236 449 458 5.2999996e-05 450 458 0.037115499 452 458 0.020164598 453 458 0.0034607998 454 458 0.0088462979 455 458 0.0061270967 456 458 0.0024366998 457 458 0.16089267 458 458 0.036056098 459 458 0.13617259 460 458 0.0064271986 463 458 0.11118758 464 458 0.0035138 465 458 0.0018187 467 458 0.15382987 468 458 0.022512998 469 458 0.056891598 470 458 0.023837298 471 458 0.0099409968 473 458 0.00049439981 477 458 0.00019419999 478 458 0.004537899 483 458 0.018416498 486 458 0.0380513 489 458 0.00061799982 490 458 0.0018187 9 459 6.11e-05 16 459 2.4399997e-05 17 459 1.2199999e-05 18 459 3.6599988e-05 60 459 0.0011967998 79 459 1.2199999e-05 82 459 9.7699987e-05 83 459 7.3299991e-05 84 459 6.11e-05 108 459 0.00010989999 113 459 0.00015879999 114 459 0.00039079995 126 459 0.00019539999 127 459 2.4399997e-05 153 459 4.8799993e-05 187 459 0.0017708 189 459 0.0017463998 190 459 7.3299991e-05 192 459 0.00013429999 194 459 0.00029309979 196 459 4.8799993e-05 197 459 9.7699987e-05 200 459 0.0001465 201 459 7.3299991e-05 203 459 0.00028089993 204 459 0.012065798 206 459 0.0015020999 207 459 0.0004151999 209 459 9.7699987e-05 219 459 1.2199999e-05 223 459 2.4399997e-05 234 459 0.00074499985 237 459 0.00015879999 240 459 1.2199999e-05 241 459 2.4399997e-05 248 459 6.11e-05 250 459 3.6599988e-05 251 459 1.2199999e-05 252 459 4.8799993e-05 263 459 1.2199999e-05 279 459 1.2199999e-05 326 459 1.2199999e-05 359 459 2.4399997e-05 363 459 2.4399997e-05 380 459 2.4399997e-05 384 459 2.4399997e-05 387 459 0.00015879999 393 459 1.2199999e-05 394 459 1.2199999e-05 397 459 1.2199999e-05 402 459 3.6599988e-05 412 459 0.00040299981 419 459 3.6599988e-05 422 459 0.00031749997 423 459 3.6599988e-05 425 459 3.6599988e-05 430 459 9.7699987e-05 431 459 3.6599988e-05 432 459 4.8799993e-05 433 459 0.00015879999 434 459 0.00019539999 442 459 1.2199999e-05 443 459 0.00010989999 444 459 0.00052509992 445 459 0.0011479999 446 459 7.3299991e-05 447 459 0.0012945 448 459 1.2199999e-05 449 459 3.6599988e-05 450 459 0.032094199 452 459 0.0012335 453 459 0.00029309979 454 459 0.00087929983 455 459 0.0025646 456 459 0.0015020999 457 459 0.018049899 458 459 0.00065949978 459 459 0.067595541 460 459 0.0026011998 461 459 0.002992 463 459 0.040838297 464 459 0.00067169988 465 459 0.0015753999 467 459 0.042035099 468 459 0.0093057975 469 459 0.012016997 470 459 0.019918397 471 459 0.0014898998 473 459 0.00040299981 474 459 3.6599988e-05 477 459 8.5499996e-05 478 459 0.0016730998 483 459 0.017683599 486 459 0.00025649997 489 459 9.7699987e-05 490 459 0.0015264999 9 460 4.3099993e-05 16 460 2.5199988e-05 17 460 3.5999992e-06 18 460 1.44e-05 79 460 1.0799999e-05 82 460 7.5499993e-05 83 460 5.7499987e-05 84 460 5.3899988e-05 108 460 9.6999996e-05 113 460 0.0001294 114 460 0.00031979987 126 460 0.0001509 127 460 2.159999e-05 150 460 3.5999992e-06 171 460 3.5999992e-06 187 460 0.0012612999 189 460 0.0010636998 190 460 1.44e-05 192 460 0.00019759999 194 460 0.00043119979 196 460 7.9099991e-05 197 460 0.0007689998 200 460 0.00045639998 201 460 0.00054259994 203 460 0.00040969998 204 460 0.0024614998 206 460 0.0019619998 207 460 0.00033059996 209 460 0.00010419999 219 460 2.159999e-05 223 460 3.2299999e-05 229 460 3.5999992e-06 230 460 3.5999992e-06 234 460 0.00048149982 237 460 0.00024079999 240 460 2.159999e-05 241 460 2.5199988e-05 242 460 0.00017249999 248 460 4.6699992e-05 250 460 3.2299999e-05 251 460 1.0799999e-05 252 460 3.9499995e-05 263 460 1.0799999e-05 272 460 3.5999992e-06 279 460 7.1999993e-06 315 460 3.5999992e-06 322 460 7.1999993e-06 326 460 7.1999993e-06 359 460 0.0003054 363 460 2.8699986e-05 380 460 1.7999992e-05 384 460 3.9499995e-05 387 460 0.0001294 393 460 0.00023719999 394 460 1.7999992e-05 397 460 2.5199988e-05 402 460 0.00011499999 412 460 6.8299996e-05 419 460 2.8699986e-05 422 460 0.00048509985 423 460 3.5899997e-05 425 460 2.8699986e-05 430 460 8.2599989e-05 431 460 6.4699998e-05 432 460 7.9099991e-05 433 460 0.00022999999 434 460 0.00040609995 442 460 7.1999993e-06 443 460 0.00013299999 444 460 0.00041679991 445 460 0.0016385999 446 460 6.8299996e-05 447 460 0.00086959987 448 460 1.0799999e-05 449 460 2.8699986e-05 450 460 0.011437897 452 460 0.0014660999 453 460 0.00062529999 454 460 0.0012612999 455 460 0.0023681 456 460 0.0012182 457 460 0.017967198 458 460 0.0020661999 459 460 0.0095082 460 460 0.0083259977 461 460 0.36792135 463 460 0.012663297 464 460 0.0005245998 465 460 0.00033059996 467 460 0.016109399 468 460 0.0044594966 469 460 0.0043587983 470 460 0.015724897 471 460 0.0023357 472 460 0.00013659999 473 460 0.00033419998 474 460 0.0051888973 477 460 0.00011859999 478 460 0.0041036978 483 460 0.0041072965 486 460 3.5999992e-06 489 460 0.00017609999 490 460 0.0026375998 9 461 0.0001068 16 461 3.879999e-05 17 461 9.6999993e-06 60 461 0.004794199 79 461 2.9099989e-05 82 461 0.00017469999 83 461 0.00013589999 84 461 0.00013589999 108 461 0.00020379999 113 461 0.00029109977 114 461 0.00072789984 126 461 0.00033969991 127 461 4.8499991e-05 171 461 9.6999993e-06 187 461 0.0043768995 189 461 0.0033093998 190 461 8.7299995e-05 192 461 0.00015529999 194 461 0.00033969991 196 461 5.8199992e-05 197 461 0.00040759984 200 461 0.0006114 201 461 0.0002135 203 461 0.00032999995 204 461 0.014780499 206 461 0.0042312965 207 461 0.00025229994 209 461 8.7299995e-05 219 461 1.9399988e-05 223 461 0.00013589999 234 461 0.0050561987 237 461 0.0010384 240 461 1.9399988e-05 241 461 4.8499991e-05 242 461 0.00038819993 248 461 0.0001068 250 461 6.7899993e-05 251 461 3.879999e-05 252 461 6.7899993e-05 263 461 1.9399988e-05 272 461 9.6999993e-06 279 461 9.6999993e-06 322 461 9.6999993e-06 326 461 9.6999993e-06 363 461 1.9399988e-05 380 461 4.8499991e-05 384 461 4.8499991e-05 387 461 0.00028139981 394 461 0.00017469999 397 461 0.00020379999 402 461 0.00017469999 412 461 0.00029109977 419 461 5.8199992e-05 422 461 0.00042699999 423 461 6.7899993e-05 425 461 5.8199992e-05 430 461 0.00019409999 431 461 6.7899993e-05 432 461 5.8199992e-05 433 461 0.00019409999 434 461 0.0002329 442 461 1.9399988e-05 443 461 0.00035909982 444 461 0.0028531998 445 461 0.0032607999 446 461 0.00030089985 447 461 0.0043671988 448 461 0.00015529999 449 461 0.00080549996 450 461 0.059908196 452 461 0.0070359968 453 461 0.00035909982 454 461 0.0015915998 455 461 0.0072300993 456 461 0.0042215995 457 461 0.021515697 458 461 0.00066959998 459 461 0.0039983988 460 461 0.0042506978 463 461 0.055492498 464 461 0.0048717968 465 461 0.0096465982 467 461 0.0523481 468 461 0.024621297 469 461 0.024533898 470 461 0.0414689 471 461 0.0150523 473 461 0.00075699994 477 461 9.6999996e-05 478 461 0.017332897 483 461 0.016721498 486 461 0.00046579982 489 461 0.0007375998 490 461 0.0027561998 7 462 0.00021519999 18 462 0.0066920966 59 462 0.069293857 61 462 0.0034294999 215 462 0.00046419981 217 462 0.0001773 241 462 0.0012935998 242 462 0.00036509987 303 462 0.00011739999 330 462 0.00027379999 412 462 7.1699993e-05 443 462 5.35e-05 445 462 0.00042769988 446 462 5.1999996e-06 447 462 2.5999998e-06 455 462 0.000489 457 462 0.0045078993 458 462 0.0029508998 460 462 0.015934698 463 462 0.023242299 467 462 0.0036289999 469 462 0.0064351968 486 462 0.0054233 7 463 3.5599995e-05 9 463 9.1999991e-06 11 463 9.9999943e-07 13 463 8.8599991e-05 16 463 0.00094469986 17 463 9.9999943e-07 18 463 0.0009680998 22 463 1.6299993e-05 59 463 0.047734197 60 463 0.0039569996 61 463 0.00045709987 62 463 0.0007685998 75 463 0.00017199999 79 463 3.1e-06 82 463 1.8299994e-05 83 463 1.2199999e-05 84 463 1.12e-05 85 463 1.9999998e-06 90 463 1.9999998e-06 93 463 9.9999943e-07 94 463 9.9999943e-07 105 463 9.9999943e-07 108 463 1.7299986e-05 113 463 2.549999e-05 114 463 6.4099993e-05 126 463 2.9499992e-05 127 463 5.0999997e-06 130 463 1.9999998e-06 142 463 9.9999943e-07 150 463 3.0499999e-05 151 463 5.0999997e-06 152 463 8.0999998e-06 171 463 3.1e-06 187 463 4.6799993e-05 189 463 4.6799993e-05 190 463 3.3599994e-05 192 463 4.1699997e-05 194 463 9.2599992e-05 196 463 2.6499998e-05 197 463 2.7499991e-05 198 463 9.9999943e-07 200 463 5.3999989e-05 201 463 2.1399988e-05 203 463 9.0599991e-05 204 463 0.00012619999 206 463 0.00021069999 207 463 6.9199989e-05 209 463 2.2399996e-05 215 463 7.0199996e-05 217 463 1.0199999e-05 219 463 4.0999994e-06 223 463 4.3799999e-05 229 463 3.8699989e-05 230 463 1.43e-05 231 463 1.0199999e-05 234 463 0.0045748986 237 463 0.00049369992 240 463 4.0999994e-06 241 463 0.00039799977 242 463 0.0001812 248 463 1.2199999e-05 250 463 6.0999992e-06 251 463 3.1e-06 252 463 1.12e-05 263 463 1.9999998e-06 272 463 1.9999998e-06 279 463 3.1e-06 303 463 4.069999e-05 315 463 9.9999943e-07 322 463 3.1e-06 326 463 9.9999943e-07 329 463 2.6499998e-05 330 463 4.0999994e-06 352 463 2.8499999e-05 357 463 3.1e-06 358 463 1.0199999e-05 363 463 6.0999992e-06 380 463 3.1e-06 384 463 7.8399986e-05 387 463 2.549999e-05 394 463 4.6799993e-05 397 463 4.8899994e-05 402 463 4.069999e-05 412 463 9.9999943e-07 419 463 4.0999994e-06 422 463 0.0001008 423 463 6.0999992e-06 425 463 4.0999994e-06 428 463 9.9999943e-07 430 463 1.7299986e-05 431 463 1.32e-05 432 463 1.8299994e-05 433 463 4.8899994e-05 434 463 6.0099992e-05 435 463 3.1599993e-05 438 463 8.0999998e-06 441 463 9.9999943e-07 442 463 1.43e-05 443 463 0.00011299999 444 463 8.5499996e-05 445 463 0.0014842998 446 463 0.0001354 447 463 0.00031049992 448 463 0.0001008 449 463 0.00011299999 450 463 0.0030061998 452 463 0.0062219985 453 463 0.0014648999 454 463 0.0016166 455 463 0.0029531999 456 463 0.0018863999 457 463 0.0058534965 458 463 0.00089889998 459 463 0.00079199998 460 463 0.0083455965 461 463 0.00041639991 463 463 0.10133928 464 463 0.0001089 465 463 0.0019646999 467 463 0.0052253976 468 463 0.0086590983 469 463 0.0039314963 470 463 0.0032127998 471 463 0.0034194998 473 463 6.7199988e-05 474 463 6.0999992e-06 476 463 1.7299986e-05 477 463 2.9499992e-05 478 463 0.00033189985 483 463 0.00049069989 486 463 0.00063319993 489 463 0.00060369982 490 463 0.00025039981 9 464 2.3999994e-05 11 464 0.00065869978 16 464 0.0012573998 18 464 0.0020597999 22 464 0.00052689994 60 464 0.023771297 64 464 1.2e-05 75 464 0.00098199979 79 464 2.3999994e-05 82 464 0.0011376999 83 464 2.3999994e-05 84 464 2.3999994e-05 85 464 0.0010298998 90 464 0.0010658 93 464 0.00039519998 94 464 0.00038319989 105 464 0.00043109991 106 464 7.1899995e-05 107 464 0.00020359999 108 464 2.3999994e-05 113 464 4.7899986e-05 114 464 9.5799987e-05 126 464 4.7899986e-05 127 464 2.3999994e-05 130 464 0.00082629989 142 464 0.00033529988 150 464 0.0031015999 151 464 0.0021197 152 464 0.0037362999 171 464 0.0010897999 187 464 0.00064669992 189 464 0.00034729997 190 464 0.0034967999 192 464 0.00010779999 194 464 0.00022749999 196 464 0.00035929983 197 464 5.989999e-05 198 464 0.00041909982 200 464 0.0003711998 201 464 7.1899995e-05 203 464 0.0012693999 204 464 0.0041314997 206 464 0.00049099978 207 464 0.0001677 209 464 0.0002156 215 464 0.00056279986 217 464 0.00010779999 219 464 1.2e-05 223 464 0.00014369999 229 464 0.0033292 230 464 0.0036165998 234 464 0.010753997 237 464 0.00034729997 240 464 1.2e-05 241 464 0.0058918968 248 464 3.5899997e-05 250 464 2.3999994e-05 252 464 0.0017603999 263 464 0.00046699983 279 464 1.2e-05 315 464 0.0005987999 322 464 0.00035929983 356 464 5.989999e-05 363 464 1.2e-05 384 464 0.00063469983 387 464 4.7899986e-05 394 464 2.3999994e-05 397 464 3.5899997e-05 402 464 4.7899986e-05 412 464 0.0002156 419 464 2.3999994e-05 422 464 0.00022749999 423 464 2.3999994e-05 425 464 2.3999994e-05 428 464 0.00043109991 430 464 2.3999994e-05 431 464 4.7899986e-05 432 464 3.5899997e-05 433 464 0.0001198 434 464 0.00015569999 435 464 0.0010058999 438 464 8.3799998e-05 441 464 0.0004431 442 464 0.00094609987 443 464 0.00075449981 444 464 0.0001317 445 464 0.0029099998 446 464 0.00051489985 447 464 0.00041909982 448 464 0.00023949999 449 464 0.0014250998 450 464 0.0034967999 452 464 0.034968399 453 464 0.0075804964 454 464 0.0075205974 455 464 0.0090055987 456 464 0.0036165998 457 464 0.0091971979 458 464 0.0070774965 459 464 0.00067059998 460 464 0.013388596 463 464 0.12847286 464 464 0.0001677 465 464 0.025807098 467 464 0.043039899 468 464 0.014238797 469 464 0.0053050965 470 464 0.0046344995 471 464 0.0071612969 473 464 9.5799987e-05 477 464 0.0001198 478 464 0.0016645999 483 464 0.0038800999 489 464 0.0017962998 490 464 0.0003711998 9 465 2.2699998e-05 16 465 1.13e-05 18 465 9.6399992e-05 22 465 0.0001872 60 465 0.0067609996 79 465 5.6999997e-06 82 465 3.9699997e-05 83 465 2.8399998e-05 84 465 2.2699998e-05 104 465 0.00016449999 108 465 5.0999995e-05 113 465 6.2399995e-05 114 465 0.00015879999 117 465 6.2399995e-05 126 465 7.3699994e-05 127 465 1.13e-05 130 465 0.0043843985 133 465 5.6999997e-06 137 465 0.00027229986 139 465 0.00042539998 149 465 3.9699997e-05 150 465 0.022103697 152 465 0.0065284967 153 465 0.00068059983 156 465 0.0001928 158 465 0.0013612998 160 465 0.00076569989 161 465 0.0002099 169 465 0.0002948998 187 465 0.0006295999 189 465 8.5099993e-05 190 465 0.00014179999 192 465 7.3699994e-05 193 465 0.0051047988 194 465 0.00015309999 196 465 2.8399998e-05 197 465 0.00093019987 198 465 0.0039022998 200 465 0.00036299997 201 465 4.5399996e-05 203 465 0.00036299997 204 465 0.00085649989 206 465 0.00034599984 207 465 0.00011339999 209 465 3.3999997e-05 214 465 0.0059215985 215 465 5.6999997e-06 219 465 2.2699998e-05 223 465 0.00060119992 229 465 0.0049516 230 465 0.0013498999 231 465 0.00013609999 233 465 0.0006465998 234 465 0.0118942 237 465 0.0026715 240 465 0.0050990991 241 465 0.0052181967 242 465 0.00017019999 244 465 0.0072147995 248 465 2.8399998e-05 250 465 1.6999998e-05 251 465 5.6999997e-06 252 465 6.2399995e-05 263 465 5.6999997e-06 265 465 0.0041575991 271 465 5.6999997e-06 272 465 3.3999997e-05 279 465 0.0002948998 284 465 2.2699998e-05 285 465 2.8399998e-05 295 465 0.000397 312 465 0.0016675999 315 465 0.0010209999 316 465 0.00089619984 317 465 0.0018887999 319 465 0.00030629989 322 465 0.0057173967 323 465 5.6999997e-06 326 465 0.00014179999 328 465 0.0026431 340 465 9.6399992e-05 351 465 0.00036299997 356 465 0.00010779999 358 465 0.0025354 360 465 0.0027111999 363 465 0.0029210998 364 465 0.00037439982 365 465 0.00074299984 366 465 0.0023708998 368 465 0.0010152999 372 465 0.0016845998 376 465 0.00095859985 377 465 0.00075999997 379 465 0.0049686991 380 465 0.001038 381 465 0.0019340999 382 465 3.3999997e-05 383 465 5.6699995e-05 384 465 0.00014179999 387 465 9.0799993e-05 391 465 0.0090070963 392 465 0.0091148987 393 465 0.00031199981 394 465 0.0002212 397 465 0.00013609999 402 465 0.0007487 403 465 5.6999997e-06 404 465 1.13e-05 405 465 1.13e-05 409 465 0.0016107999 412 465 0.00031199981 419 465 0.004089497 422 465 0.013164699 423 465 2.2699998e-05 424 465 0.0029040999 425 465 1.6999998e-05 430 465 4.5399996e-05 431 465 2.2699998e-05 432 465 2.8399998e-05 433 465 7.9399993e-05 434 465 0.00010779999 437 465 0.00089049991 440 465 0.019591 442 465 0.0033634999 443 465 0.0016107999 444 465 0.00060119992 445 465 0.005836498 446 465 0.00060689985 447 465 0.0013839998 448 465 0.0002269 449 465 3.3999997e-05 450 465 0.021598898 452 465 0.0067893974 453 465 0.0018717998 454 465 0.0011741 455 465 0.030180696 456 465 0.0026657998 457 465 0.0057910979 458 465 0.00034599984 459 465 0.0012080998 460 465 0.0047190972 463 465 0.039312597 464 465 0.0010265999 465 465 0.037849199 467 465 0.036969997 468 465 0.0083944984 469 465 0.0122572 470 465 0.0078443997 471 465 0.017815698 473 465 0.00016449999 477 465 5.6699995e-05 478 465 0.0020589 483 465 0.0019738998 489 465 0.0010435998 490 465 0.0006295999 491 465 1.13e-05 9 466 2.3199987e-05 60 466 0.0092115998 82 466 2.3199987e-05 108 466 2.3199987e-05 114 466 4.639999e-05 126 466 2.3199987e-05 149 466 0.0016705999 150 466 0.00051049981 187 466 2.3199987e-05 189 466 9.2799994e-05 190 466 0.0004176998 192 466 2.3199987e-05 194 466 4.639999e-05 200 466 4.639999e-05 203 466 2.3199987e-05 204 466 2.3199987e-05 206 466 6.9599992e-05 207 466 2.3199987e-05 223 466 6.9599992e-05 230 466 0.00039439998 232 466 0.043366298 234 466 0.0054990984 237 466 2.3199987e-05 240 466 0.00018559999 241 466 0.0043156967 242 466 0.00034799986 316 466 0.0017865999 356 466 9.2799994e-05 380 466 0.0014385998 384 466 0.0001624 387 466 2.3199987e-05 394 466 0.000116 397 466 0.000116 402 466 2.3199987e-05 422 466 2.3199987e-05 430 466 2.3199987e-05 433 466 2.3199987e-05 434 466 2.3199987e-05 435 466 0.00023199999 438 466 0.00027839979 442 466 0.0090722963 443 466 0.0001624 444 466 6.9599992e-05 445 466 0.0021811 446 466 0.0001624 447 466 0.0001392 448 466 0.000116 450 466 0.0073785 452 466 0.0069608986 453 466 0.00092809997 454 466 0.0018097998 455 466 0.013666499 456 466 0.0009976998 457 466 0.0061255991 458 466 4.639999e-05 459 466 0.0024595 460 466 2.3199987e-05 463 466 0.078518689 464 466 9.2799994e-05 465 466 0.016218897 467 466 0.0080513991 468 466 0.0071000978 469 466 0.0052206963 470 466 0.0018097998 471 466 0.008561898 473 466 4.639999e-05 478 466 0.0022042999 483 466 0.0016241998 489 466 0.00076569989 490 466 0.0001624 6 467 3.2199998e-05 9 467 2.9499992e-05 16 467 1.3399999e-05 17 467 2.6999996e-06 18 467 7.509999e-05 60 467 0.0067344978 75 467 0.0014568998 79 467 0.00054199994 82 467 4.0199986e-05 83 467 2.9499992e-05 84 467 2.9499992e-05 102 467 4.5599998e-05 108 467 5.3699987e-05 113 467 6.7099987e-05 114 467 0.0001717 126 467 8.3199993e-05 127 467 1.3399999e-05 141 467 0.0002307 149 467 0.0001851 150 467 0.00056879991 152 467 0.00014219999 153 467 1.6099992e-05 160 467 0.00041319989 171 467 0.0002442 187 467 0.00028709997 189 467 0.0010356999 190 467 0.00026559993 192 467 0.0017976998 194 467 0.0002388 196 467 4.0199986e-05 197 467 6.7099987e-05 198 467 0.0010248998 200 467 0.00036489987 201 467 0.00043999986 202 467 0.00051779998 203 467 0.00045609986 204 467 0.0014972 206 467 0.0036489998 207 467 0.00045609986 209 467 6.7099987e-05 210 467 0.00045879977 214 467 0.0027071999 217 467 0.0014836998 218 467 8.3199993e-05 219 467 1.07e-05 223 467 0.0010195998 228 467 0.00016899999 229 467 0.0011670999 230 467 0.0018485999 231 467 0.00020929999 233 467 0.00040779985 234 467 0.0080975965 237 467 0.0013442 238 467 1.3399999e-05 240 467 0.00022809999 241 467 0.0051058978 242 467 0.00054469984 247 467 2.9499992e-05 248 467 3.4899989e-05 250 467 1.6099992e-05 251 467 0.0001181 252 467 0.00082099997 263 467 0.00017439999 270 467 0.00034609996 271 467 8.0499987e-05 272 467 0.00024679978 279 467 0.00041319989 284 467 3.7599995e-05 301 467 0.00023339999 312 467 0.00099009997 314 467 0.00026559993 315 467 0.0019506 316 467 0.00016899999 317 467 0.00061979983 319 467 0.00017439999 322 467 0.0012985999 323 467 5.3999993e-06 324 467 5.3999993e-06 326 467 0.0026535999 328 467 0.0022779 329 467 0.0024952998 330 467 0.0019612999 340 467 0.00018239999 341 467 0.00024149999 348 467 0.00025489996 351 467 0.0010731998 352 467 6.4399996e-05 356 467 0.00028439984 358 467 0.0032358 359 467 0.0016527998 361 467 0.00080759986 362 467 9.3899987e-05 363 467 0.00039439998 368 467 0.00066809985 370 467 0.00040509994 372 467 0.0020472 373 467 0.00050979992 374 467 0.0011053998 375 467 0.0004453999 376 467 0.0006438999 380 467 8e-06 382 467 0.00032729981 384 467 4.2899992e-05 387 467 6.9799993e-05 392 467 0.0044350997 393 467 0.00059829978 394 467 0.00011539999 395 467 8.3199993e-05 397 467 6.169999e-05 402 467 0.00037289993 404 467 2.6999996e-06 405 467 2.6999996e-06 406 467 5.3999993e-06 409 467 0.0018781999 412 467 0.0003515 413 467 5.6299992e-05 414 467 5.8999998e-05 419 467 1.6099992e-05 422 467 0.010463998 423 467 2.1499989e-05 425 467 1.6099992e-05 427 467 0.00051779998 430 467 4.8299989e-05 431 467 4.2899992e-05 432 467 0.00031929999 433 467 0.00012339999 434 467 0.00039979978 435 467 0.00028169993 437 467 8.0499987e-05 438 467 0.00032729981 441 467 0.0001985 442 467 0.0012583998 443 467 0.0022296 444 467 0.0023261998 445 467 0.007056497 446 467 0.00055539981 447 467 0.0083711967 448 467 0.00019319999 449 467 1.3399999e-05 450 467 0.021086399 452 467 0.0052400976 453 467 0.0010409998 454 467 0.0024630998 455 467 0.014257897 456 467 0.0014032999 457 467 0.0054868981 458 467 0.0010007999 459 467 0.0021088999 460 467 0.0035416998 463 467 0.046736699 464 467 0.0049797967 465 467 0.0034961 467 467 0.045102697 468 467 0.018735997 469 467 0.015781898 470 467 0.0093585998 471 467 0.013571098 473 467 0.00016899999 477 467 0.0001449 478 467 0.0022242998 483 467 0.011212599 486 467 7.7799996e-05 489 467 0.00046689995 490 467 0.00061439979 491 467 5.3999993e-06 9 468 4.6699992e-05 16 468 2.1199987e-05 18 468 0.00025459984 22 468 8.4999992e-06 60 468 0.003756 63 468 0.0011415998 75 468 8.9099995e-05 79 468 5.5199998e-05 82 468 6.369999e-05 83 468 4.6699992e-05 84 468 4.2399988e-05 102 468 4.1999992e-06 108 468 8.4899992e-05 113 468 0.0001103 114 468 0.00026309979 126 468 0.0001316 127 468 2.549999e-05 139 468 4.1999992e-06 141 468 8.0599988e-05 149 468 1.2699999e-05 150 468 0.00028429995 151 468 6.7899993e-05 152 468 8.4999992e-06 160 468 0.00028429995 165 468 0.00032249978 170 468 0.00010609999 171 468 0.00025459984 172 468 8.4999992e-06 187 468 0.080585241 188 468 0.0010270998 189 468 0.00055169989 190 468 0.00015699999 192 468 0.0026651998 194 468 0.0008403 196 468 5.5199998e-05 197 468 0.00024189999 198 468 0.0011119 199 468 8.4999992e-06 200 468 0.0010397998 201 468 0.00012729999 202 468 0.0048805997 203 468 0.00060259993 204 468 0.022247098 205 468 0.0027798 206 468 0.0010992 207 468 0.00024619978 209 468 0.0010354999 210 468 0.0023979 211 468 0.0043458976 212 468 0.0026015998 213 468 0.00050499989 214 468 0.0020498999 217 468 8.9099995e-05 218 468 8.4999992e-06 219 468 0.00012729999 221 468 0.0057972968 223 468 9.7599986e-05 224 468 0.0011797999 228 468 8.4999992e-06 229 468 7.2099996e-05 230 468 0.0001103 231 468 1.2699999e-05 233 468 0.0005092998 234 468 0.0024487998 237 468 0.00047109998 240 468 0.00039039995 241 468 0.0032382 242 468 3.3999997e-05 248 468 4.6699992e-05 250 468 2.549999e-05 251 468 2.549999e-05 252 468 0.0001103 263 468 2.549999e-05 270 468 7.2099996e-05 271 468 4.1999992e-06 272 468 0.00044989982 277 468 0.0011713 279 468 7.2099996e-05 284 468 8.4999992e-06 287 468 0.00016549999 292 468 0.0001528 293 468 0.00095909997 294 468 0.0002249 295 468 0.00045409985 301 468 1.2699999e-05 312 468 0.00010189999 314 468 1.6999998e-05 315 468 0.00011879999 316 468 8.4999992e-06 317 468 0.00012309999 319 468 0.000208 320 468 9.3399998e-05 321 468 0.0001146 322 468 8.0599988e-05 325 468 0.0004584 326 468 0.00024619978 328 468 0.00013579999 329 468 0.0001485 330 468 0.00011879999 334 468 0.00010609999 340 468 0.0001316 341 468 1.2699999e-05 348 468 0.0017315999 351 468 6.369999e-05 352 468 4.1999992e-06 356 468 7.64e-05 358 468 0.00043709995 359 468 0.00010609999 361 468 5.0899995e-05 362 468 4.1999992e-06 363 468 4.6699992e-05 368 468 3.82e-05 370 468 0.00052629993 371 468 0.0001103 372 468 0.00012309999 373 468 9.7599986e-05 374 468 6.7899993e-05 375 468 2.549999e-05 376 468 0.00010609999 380 468 1.6999998e-05 382 468 2.1199987e-05 384 468 0.0001867 385 468 4.1999992e-06 386 468 0.00016549999 387 468 0.0001103 388 468 0.0003564998 389 468 0.00071299984 390 468 8.9099995e-05 391 468 0.0015320999 392 468 0.00031829998 393 468 4.2399988e-05 394 468 3.3999997e-05 395 468 8.4999992e-06 397 468 2.9699993e-05 401 468 4.1999992e-06 402 468 0.0001316 404 468 4.1999992e-06 409 468 0.0001146 412 468 0.00021639999 413 468 4.1999992e-06 414 468 4.1999992e-06 417 468 1.6999998e-05 419 468 2.549999e-05 421 468 4.1999992e-06 422 468 0.0059840977 423 468 3.82e-05 425 468 2.549999e-05 427 468 2.9699993e-05 430 468 7.2099996e-05 431 468 0.00011879999 432 468 0.00014429999 433 468 0.0001485 434 468 0.00037349993 435 468 1.6999998e-05 437 468 4.1999992e-06 438 468 2.1199987e-05 441 468 0.00043289992 442 468 0.0024614998 443 468 0.0031235998 444 468 0.0051309988 445 468 0.0057251975 446 468 0.000208 447 468 0.0114928 448 468 4.6699992e-05 449 468 2.549999e-05 450 468 0.016933598 451 468 0.00017399999 452 468 0.0053431988 453 468 0.0010439998 454 468 0.00089549995 455 468 0.017527796 456 468 0.0012010999 457 468 0.0064466968 458 468 0.00062389998 459 468 0.0018078999 460 468 0.0033951998 463 468 0.043382298 464 468 0.0079320967 465 468 0.0021346998 467 468 0.030531399 468 468 0.016916599 469 468 0.0119766 470 468 0.012464698 471 468 0.0049017966 472 468 0.031647597 473 468 0.021988198 477 468 0.0001316 478 468 0.0036032 483 468 0.010113496 489 468 0.00038619991 490 468 0.0018036999 491 468 0.00010609999 9 469 3.6599988e-05 16 469 1.4599999e-05 17 469 3.7e-06 18 469 1.4599999e-05 60 469 0.00046439981 79 469 7.2999992e-06 82 469 6.2199993e-05 83 469 4.7499998e-05 84 469 4.39e-05 108 469 7.3099989e-05 113 469 0.00010599999 114 469 0.00025959988 126 469 0.00012069999 127 469 2.1899992e-05 150 469 9.1399997e-05 171 469 3.7e-06 187 469 3.7e-06 189 469 0.00033279997 190 469 0.00011339999 192 469 9.5099997e-05 194 469 0.0002121 196 469 3.2899989e-05 197 469 0.00068379985 200 469 0.00054849987 201 469 0.0051302984 203 469 0.00020109999 204 469 0.0026437999 206 469 0.0011298999 207 469 0.00015359999 209 469 4.7499998e-05 210 469 0.00054849987 214 469 3.7e-06 219 469 1.0999999e-05 223 469 2.5599991e-05 230 469 8.4099986e-05 233 469 0.00010239999 234 469 0.0026217999 237 469 0.00033639977 240 469 1.8299994e-05 241 469 0.00074229995 242 469 0.00018649999 248 469 5.4899996e-05 250 469 2.1899992e-05 251 469 1.0999999e-05 252 469 0.00036569987 263 469 7.6799988e-05 279 469 7.2999992e-06 322 469 3.7e-06 326 469 3.7e-06 356 469 3.6599988e-05 359 469 0.00011339999 363 469 1.0999999e-05 380 469 1.0999999e-05 384 469 1.0999999e-05 387 469 0.00010599999 393 469 8.7799999e-05 394 469 2.5599991e-05 397 469 2.5599991e-05 402 469 1.0999999e-05 412 469 8.4099986e-05 419 469 1.4599999e-05 422 469 0.00086299982 423 469 2.929999e-05 425 469 1.4599999e-05 430 469 6.5799992e-05 431 469 3.2899989e-05 432 469 9.8699995e-05 433 469 0.00011339999 434 469 0.00019009999 438 469 0.00010239999 441 469 0.00037659984 442 469 0.0011884 443 469 0.00018649999 444 469 0.0073352978 445 469 0.0026071998 446 469 0.0001755 447 469 0.011339299 448 469 7.3099989e-05 449 469 2.1899992e-05 450 469 0.018243097 452 469 0.00046809996 453 469 0.000128 454 469 0.00086299982 455 469 0.0035762 456 469 0.0011847999 457 469 0.0082237981 458 469 0.00072399992 459 469 0.00047539989 460 469 0.0022012999 463 469 0.043547299 464 469 0.014926497 465 469 0.0007642 467 469 0.029885899 468 469 0.0067428984 469 469 0.040234298 470 469 0.015537199 471 469 0.011763498 473 469 0.00027429988 477 469 0.0001755 478 469 0.0022817999 483 469 0.0051448978 489 469 0.00010239999 490 469 0.0011664999 491 469 3.7e-06 1 470 0.0051065981 9 470 0.0013710998 11 470 0.010274697 16 470 2.8699986e-05 17 470 0.0064303987 59 470 4.0999994e-06 60 470 0.0034871998 64 470 4.0999994e-06 75 470 0.00015189999 82 470 0.07518667 83 470 0.018761799 84 470 0.010701697 85 470 0.0014962999 86 470 0.0035919 87 470 0.0061553977 88 470 0.0024013999 89 470 0.0083884969 90 470 0.013706498 91 470 0.001956 92 470 0.0013771998 93 470 0.0096179992 94 470 0.0010817 95 470 0.0050757974 96 470 0.0096774995 97 470 0.0070563965 98 470 0.0013730999 99 470 0.00027299998 100 470 0.0008578999 103 470 0.00056649977 104 470 3.0799987e-05 105 470 0.022238698 106 470 0.0015947998 107 470 0.0016747999 108 470 0.0032676 109 470 0.00049879984 111 470 0.029477797 113 470 0.0066725984 114 470 0.0311937 115 470 0.0072760992 116 470 0.008080598 121 470 0.0089980997 122 470 0.0052625984 123 470 0.00073679979 124 470 0.00051309983 125 470 0.0093326978 152 470 0.00051309983 187 470 4.0999994e-06 189 470 0.00010059999 190 470 0.0012601998 192 470 2.8699986e-05 193 470 0.0014634 194 470 2.0999996e-06 195 470 0.00025659986 197 470 0.00038789981 198 470 0.0062764995 203 470 2.0999996e-06 204 470 0.00091129984 206 470 7.9999998e-05 214 470 4.0999992e-05 218 470 0.00015189999 223 470 0.00017449999 229 470 0.0021571999 230 470 0.00039819977 234 470 0.00023189999 237 470 3.689999e-05 240 470 2.0999996e-06 241 470 0.0031361999 252 470 0.0010713998 260 470 0.00079839979 261 470 1.8499995e-05 263 470 2.0999996e-06 296 470 0.0002422 315 470 0.0010386 316 470 7.9999998e-05 317 470 1.44e-05 322 470 2.0999996e-06 344 470 0.0003386999 351 470 2.0999996e-06 358 470 8.6199987e-05 368 470 2.0999996e-06 377 470 2.0999996e-06 380 470 4.0999994e-06 384 470 9.8499993e-05 406 470 2.0999996e-06 408 470 2.0999996e-06 412 470 4.0999994e-06 422 470 8.1999997e-06 425 470 0.00046799984 434 470 2.0999996e-06 435 470 0.0002462999 442 470 0.00042689987 443 470 0.0035281999 445 470 0.011432298 446 470 0.00046799984 447 470 0.00017859999 448 470 6.1999999e-06 450 470 0.0030828 452 470 0.011588298 453 470 0.0011041998 454 470 0.0032428999 455 470 0.061297499 456 470 4.5199995e-05 457 470 0.0045297965 458 470 0.0029719998 459 470 0.0002176 460 470 0.0030294999 463 470 0.041891199 465 470 0.011153199 467 470 0.011684798 468 470 0.010305498 469 470 0.0054287985 470 470 2.8699986e-05 471 470 0.00045149983 472 470 3.8999991e-05 473 470 0.0086244978 477 470 0.00013959999 478 470 0.0012848999 479 470 0.0019888999 483 470 0.0012786998 486 470 1.6399994e-05 489 470 0.00067939982 490 470 0.00066909986 9 471 1.2199999e-05 16 471 8.0999998e-06 18 471 4.0999994e-06 22 471 4.0999994e-06 60 471 0.0052297972 66 471 1.2199999e-05 68 471 0.0013929999 69 471 0.00065579987 73 471 0.00013029999 75 471 0.00081869983 79 471 4.0999994e-06 82 471 1.6299993e-05 83 471 1.2199999e-05 84 471 1.2199999e-05 108 471 1.6299993e-05 113 471 2.4399997e-05 114 471 5.6999997e-05 126 471 2.4399997e-05 127 471 4.0999994e-06 150 471 0.0022034999 187 471 4.0999994e-06 189 471 1.6299993e-05 190 471 5.6999997e-05 192 471 0.0012341 194 471 3.6699988e-05 196 471 4.0999994e-06 197 471 1.2199999e-05 200 471 2.0399995e-05 201 471 1.2199999e-05 203 471 2.4399997e-05 204 471 5.2999996e-05 206 471 6.5199987e-05 207 471 2.0399995e-05 209 471 4.0999994e-06 214 471 0.00021989999 217 471 1.6299993e-05 223 471 8.9599998e-05 228 471 4.0999994e-06 229 471 1.2199999e-05 230 471 4.0999994e-06 231 471 8.0999998e-06 233 471 0.0042481981 234 471 0.0074577965 237 471 0.010687798 240 471 0.0037757999 241 471 4.0999994e-06 242 471 0.0001222 248 471 1.2199999e-05 250 471 4.0999994e-06 251 471 4.0999994e-06 252 471 0.0048550963 263 471 4.0999994e-06 267 471 4.0999994e-06 272 471 0.0069975965 312 471 0.00024849991 313 471 0.012805797 317 471 0.0022320999 319 471 0.0045007989 323 471 0.0016496 328 471 0.0018206998 330 471 4.0999994e-06 331 471 1.6299993e-05 340 471 7.7399993e-05 356 471 0.00035839994 357 471 0.0062236972 358 471 0.00023619999 366 471 0.034645699 376 471 0.00046429993 380 471 4.0999994e-06 384 471 9.7799988e-05 385 471 0.0040567964 387 471 0.0055678971 394 471 0.0001222 397 471 0.0024601 402 471 0.23339194 412 471 0.00044799992 413 471 4.0999994e-06 419 471 4.0999994e-06 422 471 4.4799992e-05 423 471 8.0999998e-06 425 471 4.0999994e-06 430 471 1.2199999e-05 431 471 8.0999998e-06 432 471 4.0999994e-06 433 471 1.2199999e-05 434 471 1.6299993e-05 442 471 9.3699986e-05 443 471 0.0064150989 444 471 7.3299991e-05 445 471 0.0042807981 446 471 0.00025659986 447 471 0.00086759985 448 471 0.00013439999 449 471 0.00027699978 450 471 0.0062236972 452 471 0.0041096993 453 471 0.0013685999 454 471 0.0010589999 455 471 0.047207098 456 471 0.012357697 457 471 0.0018328999 458 471 0.00048059993 459 471 0.00031359983 460 471 0.0090992972 463 471 0.037012096 464 471 9.7799988e-05 465 471 0.0013440999 467 471 0.011502396 468 471 0.0053316988 469 471 0.0058896989 470 471 0.0028837 471 471 0.0027655999 473 471 5.6999997e-05 477 471 1.2199999e-05 478 471 0.00060279993 483 471 0.00045619998 489 471 0.00066389982 490 471 0.00021989999 491 471 0.0025374999 9 472 6.9099988e-05 16 472 2.2999986e-05 18 472 0.00027639978 60 472 0.012623798 79 472 2.2999986e-05 82 472 9.2099988e-05 83 472 6.9099988e-05 84 472 6.9099988e-05 108 472 9.2099988e-05 113 472 0.00013819999 114 472 0.00029949984 126 472 0.00013819999 127 472 2.2999986e-05 189 472 0.00011519999 190 472 4.6099987e-05 197 472 2.2999986e-05 200 472 0.00029949984 201 472 4.6099987e-05 203 472 0.00071409997 204 472 2.2999986e-05 223 472 2.2999986e-05 229 472 4.6099987e-05 230 472 2.2999986e-05 234 472 0.0014281999 237 472 0.00032249978 241 472 4.6099987e-05 248 472 4.6099987e-05 250 472 2.2999986e-05 251 472 2.2999986e-05 252 472 4.6099987e-05 263 472 2.2999986e-05 315 472 2.2999986e-05 356 472 0.00016129999 380 472 2.2999986e-05 384 472 0.00016129999 387 472 0.00013819999 394 472 2.2999986e-05 397 472 2.2999986e-05 402 472 0.00013819999 412 472 0.00069109979 419 472 2.2999986e-05 422 472 0.0218383 423 472 4.6099987e-05 425 472 2.2999986e-05 430 472 6.9099988e-05 431 472 2.2999986e-05 443 472 6.9099988e-05 444 472 0.00039159996 445 472 0.0066343993 446 472 9.2099988e-05 447 472 0.00089839986 448 472 2.2999986e-05 449 472 2.2999986e-05 450 472 0.0025801 452 472 0.0088688992 453 472 0.0024648998 454 472 0.0016124998 455 472 0.0057359971 456 472 0.0013130999 457 472 0.0077631995 458 472 0.00025339983 459 472 0.00082929991 460 472 0.0027643 463 472 0.060124397 464 472 0.0005067999 465 472 0.00059889979 467 472 0.0063809976 468 472 0.039506998 469 472 0.0066113994 470 472 0.015272997 471 472 0.0048145987 472 472 0.30955994 473 472 0.00029949984 477 472 4.6099987e-05 478 472 0.0017046998 483 472 0.0031559998 486 472 2.2999986e-05 489 472 0.0004606999 490 472 0.044137299 0 473 2.3899993e-05 2 473 0.0013367999 3 473 0.0051442981 5 473 4.7699999e-05 6 473 0.0423957 9 473 7.1599992e-05 14 473 1.19e-05 16 473 7.1599992e-05 17 473 1.19e-05 18 473 0.0094053969 60 473 0.0069226995 62 473 2.3899993e-05 75 473 0.0089517981 79 473 2.3899993e-05 82 473 0.00010739999 83 473 8.3599996e-05 84 473 8.3599996e-05 101 473 0.0021125998 102 473 0.00039389986 105 473 0.000179 108 473 0.0001313 113 473 0.00021479999 114 473 0.00048939977 118 473 5.9699989e-05 126 473 0.00021479999 127 473 3.5799996e-05 141 473 0.00096679991 150 473 0.0003819 154 473 0.0013249 171 473 1.19e-05 189 473 8.3599996e-05 190 473 0.0002387 192 473 8.3599996e-05 194 473 0.0002268 196 473 2.3899993e-05 197 473 0.00035809982 200 473 0.0002625999 201 473 0.00011939999 203 473 0.0016828999 204 473 0.0030913998 206 473 0.00041779992 207 473 0.00010739999 209 473 2.3899993e-05 214 473 3.5799996e-05 215 473 0.0016232999 217 473 0.00054899999 223 473 0.00039389986 230 473 0.00040579983 234 473 0.0026974999 237 473 0.00062069995 241 473 4.7699999e-05 242 473 0.00033419998 244 473 0.0002387 245 473 0.0016590999 248 473 8.3599996e-05 250 473 4.7699999e-05 251 473 0.0020528999 252 473 7.1599992e-05 263 473 1.19e-05 283 473 1.19e-05 322 473 0.00015519999 326 473 1.19e-05 329 473 2.3899993e-05 356 473 0.00015519999 364 473 0.00093099987 380 473 3.5799996e-05 384 473 0.0002625999 387 473 0.00020289999 388 473 1.19e-05 391 473 5.9699989e-05 394 473 4.7699999e-05 397 473 4.7699999e-05 402 473 5.9699989e-05 406 473 5.9699989e-05 412 473 0.00065649999 419 473 2.3899993e-05 422 473 0.00027449988 423 473 4.7699999e-05 425 473 3.5799996e-05 430 473 0.0020291 431 473 4.7699999e-05 432 473 2.3899993e-05 433 473 7.1599992e-05 434 473 9.55e-05 442 473 0.0014680999 443 473 0.0010264998 444 473 0.00066839997 445 473 0.0024348998 446 473 0.00081159989 447 473 0.0016709999 448 473 5.9699989e-05 449 473 7.1599992e-05 450 473 0.0087130964 451 473 1.19e-05 452 473 0.0070181973 453 473 0.0019335998 454 473 0.001862 455 473 0.016483299 456 473 0.0022677998 457 473 0.0066004992 458 473 8.3599996e-05 459 473 0.00041779992 460 473 0.010467596 463 473 0.074001551 464 473 0.00085939979 465 473 0.0123774 467 473 0.037716899 468 473 0.016972598 469 473 0.0066481978 470 473 0.024468299 471 473 0.0039745979 472 473 0.0010861999 473 473 0.069263041 476 473 2.3899993e-05 477 473 0.00015519999 478 473 0.0033180998 483 473 0.0013128999 489 473 0.00047739991 490 473 0.0021841999 1 474 4.259999e-05 9 474 3.4099998e-05 11 474 1.2799999e-05 16 474 8.4999992e-06 17 474 4.2999991e-06 18 474 4.6899993e-05 60 474 0.00067789992 79 474 8.4999992e-06 82 474 0.00014069999 83 474 6.8199995e-05 84 474 5.9699989e-05 86 474 4.2999991e-06 87 474 8.4999992e-06 88 474 4.2999991e-06 89 474 8.4999992e-06 90 474 7.6699987e-05 91 474 1.7099999e-05 92 474 1.2799999e-05 93 474 8.0999991e-05 94 474 4.2999991e-06 95 474 4.2999991e-06 96 474 4.2999991e-06 97 474 3.8399987e-05 98 474 4.2999991e-06 99 474 8.4999992e-06 100 474 4.2999991e-06 101 474 2.1299988e-05 105 474 2.5599991e-05 106 474 4.2999991e-06 107 474 4.2999991e-06 108 474 4.6899993e-05 113 474 8.0999991e-05 114 474 0.0001791 115 474 4.2999991e-06 121 474 2.9799994e-05 122 474 8.4999992e-06 125 474 2.5599991e-05 126 474 8.0999991e-05 127 474 1.2799999e-05 150 474 0.00017059999 151 474 4.2999991e-06 152 474 2.5599991e-05 171 474 1.2799999e-05 187 474 4.2999991e-06 189 474 0.00090819993 190 474 0.00069929985 192 474 0.00014919999 194 474 0.00030269986 196 474 5.54e-05 197 474 9.3799987e-05 198 474 0.0007205999 200 474 0.00089969998 201 474 0.0024175998 203 474 0.00030269986 204 474 0.00040929997 206 474 0.00072909985 207 474 0.00023019999 209 474 7.6699987e-05 214 474 0.00057129981 219 474 1.7099999e-05 223 474 0.0001279 228 474 0.019135799 229 474 1.7099999e-05 230 474 0.0001279 234 474 0.0019655998 237 474 0.00071629998 240 474 0.00059689977 241 474 0.00057129981 242 474 0.00015779999 248 474 3.8399987e-05 250 474 2.1299988e-05 251 474 8.4999992e-06 252 474 6.3999993e-05 253 474 1.2799999e-05 263 474 1.2799999e-05 279 474 8.4999992e-06 315 474 1.2799999e-05 322 474 8.4999992e-06 326 474 4.2999991e-06 356 474 3.8399987e-05 359 474 4.2999991e-06 363 474 2.1299988e-05 380 474 1.2799999e-05 384 474 2.5599991e-05 387 474 7.6699987e-05 393 474 4.2999991e-06 394 474 3.4099998e-05 397 474 4.259999e-05 412 474 4.2999991e-06 416 474 0.0023365 417 474 0.0058924966 418 474 0.0024089999 419 474 8.4999992e-06 422 474 0.0017907999 423 474 1.7099999e-05 424 474 2.1299988e-05 425 474 1.2799999e-05 430 474 4.259999e-05 431 474 4.6899993e-05 432 474 5.9699989e-05 433 474 0.00017059999 434 474 0.00020889999 435 474 4.2999991e-06 438 474 8.4999992e-06 441 474 0.00011509999 442 474 0.00011939999 443 474 0.0002388 444 474 0.00025579985 445 474 0.00092519983 446 474 9.3799987e-05 447 474 0.00055859983 448 474 3.8399987e-05 449 474 1.7099999e-05 450 474 0.0040505975 452 474 0.0013857 453 474 0.00030269986 454 474 0.0018163999 455 474 0.010433499 456 474 0.0011170998 457 474 0.0026733999 458 474 0.00019189999 459 474 1.7099999e-05 460 474 0.015814297 463 474 0.042249698 464 474 0.00032399991 465 474 0.012509897 467 474 0.018717997 468 474 5.54e-05 469 474 0.0092821978 470 474 0.0090988986 471 474 0.003973797 473 474 0.00018759999 476 474 0.040394999 477 474 0.00014919999 478 474 0.0012663 483 474 0.0065704994 489 474 0.00015349999 490 474 0.00069069979 1 475 0.0018086999 9 475 0.00035729981 11 475 0.000795 16 475 4.4999997e-06 17 475 0.00017419999 18 475 0.0008709 22 475 0.00030369987 60 475 0.025831498 79 475 4.4999997e-06 82 475 0.0079539977 83 475 0.0019649998 84 475 0.0015407999 86 475 0.0005090998 87 475 0.00035729981 88 475 9.3799987e-05 89 475 0.0013577 90 475 0.0040684976 91 475 0.0002233 92 475 0.00045999978 93 475 0.0024964998 94 475 0.00026799995 95 475 0.00027239998 96 475 0.00095129991 97 475 0.0010405998 98 475 8.9299996e-05 99 475 0.00024119999 100 475 0.0001027 103 475 3.1299991e-05 104 475 4.4999997e-06 105 475 0.001706 106 475 0.0002233 107 475 0.00025009993 108 475 0.00020099999 109 475 4.4699991e-05 113 475 2.6799986e-05 114 475 6.2499996e-05 115 475 0.0005806 116 475 0.0001965 121 475 0.0021123998 122 475 0.00033499999 124 475 4.0199986e-05 125 475 0.00093339989 126 475 2.6799986e-05 127 475 4.4999997e-06 142 475 8.9299996e-05 149 475 0.00037069991 150 475 0.0078646988 151 475 0.00053149997 152 475 0.0072081983 153 475 4.4999997e-06 189 475 0.00020539999 190 475 0.0015719999 192 475 8.9299996e-05 194 475 0.00020099999 196 475 3.5699995e-05 197 475 5.8099991e-05 198 475 0.00075479993 199 475 9.8299992e-05 200 475 0.00065649999 201 475 0.00010719999 203 475 0.00018759999 204 475 0.00093339989 206 475 0.00077709998 207 475 0.00014739999 209 475 4.4699991e-05 214 475 0.011634 215 475 0.00013839999 217 475 0.00013839999 219 475 1.3399999e-05 223 475 1.3399999e-05 228 475 0.0246346 229 475 0.0016389999 230 475 0.0013978998 233 475 0.00010719999 234 475 0.0067972988 237 475 5.8099991e-05 240 475 0.0061585978 241 475 0.0085345991 248 475 1.7899991e-05 250 475 4.4999997e-06 251 475 4.4999997e-06 252 475 0.0015274 253 475 0.00044209999 261 475 7.1499991e-05 263 475 0.00026349979 279 475 4.4999997e-06 315 475 0.00043319981 316 475 0.00024119999 322 475 3.1299991e-05 356 475 4.0199986e-05 363 475 8.8999996e-06 366 475 7.1499991e-05 380 475 4.4999997e-06 384 475 0.000795 387 475 2.6799986e-05 394 475 4.4999997e-06 397 475 4.4999997e-06 402 475 2.2299995e-05 412 475 0.00060739997 414 475 0.00012499999 416 475 0.0019695 417 475 0.0097269975 418 475 6.6999986e-05 419 475 4.4999997e-06 420 475 8.9299996e-05 422 475 0.010798797 423 475 8.8999996e-06 425 475 0.00035279989 430 475 1.3399999e-05 431 475 2.6799986e-05 432 475 4.0199986e-05 433 475 0.00010719999 434 475 0.00013399999 435 475 0.00012059999 438 475 0.0001831 442 475 0.0016836999 443 475 0.0018846998 444 475 0.0020721999 445 475 0.0056717992 446 475 0.00039299997 447 475 0.0076904967 448 475 3.5699995e-05 449 475 4.4999997e-06 450 475 0.008248698 452 475 0.010289699 453 475 0.0063506998 454 475 0.0052564964 455 475 0.020950098 456 475 0.00026349979 457 475 0.0065739974 458 475 0.00058949995 459 475 1.7899991e-05 460 475 0.0047383979 463 475 0.042681798 464 475 0.0035861998 465 475 0.0086684972 467 475 0.0309227 469 475 0.013197098 470 475 0.011781398 471 475 0.0024696998 472 475 0.00033049984 473 475 6.2499996e-05 477 475 0.00021879999 478 475 0.0015183999 483 475 0.0046088994 489 475 0.00025899988 490 475 0.00033499999 1 476 0.0024945999 9 476 0.00036999979 11 476 0.00081389979 16 476 1.06e-05 17 476 6.3399988e-05 18 476 0.00012679999 60 476 0.010115899 79 476 1.06e-05 82 476 0.0060144998 83 476 0.0023995 84 476 0.0017123998 86 476 0.00034879986 87 476 0.00060249981 88 476 0.00035939994 89 476 0.00060249981 90 476 0.0044289976 91 476 0.0011204998 92 476 0.00086679985 93 476 0.0048094988 94 476 0.0003382999 95 476 0.0002642998 96 476 0.00038049999 97 476 0.0023148998 98 476 0.00020079999 99 476 0.00046509993 100 476 0.00020079999 101 476 0.0012895998 103 476 6.3399988e-05 104 476 1.06e-05 105 476 0.0015009998 106 476 0.00028539984 107 476 0.00032769982 108 476 7.3999996e-05 109 476 2.1099986e-05 113 476 3.1699994e-05 114 476 7.3999996e-05 115 476 0.00036999979 116 476 2.1099986e-05 121 476 0.0016594999 122 476 0.00059189997 124 476 0.00012679999 125 476 0.0014692999 126 476 3.1699994e-05 127 476 1.06e-05 130 476 2.1099986e-05 150 476 0.00057079992 151 476 1.06e-05 152 476 0.0014058999 153 476 1.06e-05 171 476 0.00048619998 187 476 1.06e-05 189 476 0.00034879986 190 476 0.00022199999 192 476 5.2899995e-05 194 476 0.00012679999 196 476 2.1099986e-05 197 476 2.1099986e-05 198 476 0.0017123998 200 476 0.00099359988 201 476 8.4599989e-05 203 476 0.00010569999 204 476 0.00083509996 206 476 0.00048619998 207 476 7.3999996e-05 209 476 2.1099986e-05 214 476 0.0043443963 219 476 1.06e-05 223 476 0.00060249981 228 476 0.022768598 229 476 0.00089849997 230 476 0.0011415998 233 476 3.1699994e-05 234 476 0.0012895998 237 476 0.00031709997 240 476 0.0029491 241 476 0.0075471997 248 476 3.1699994e-05 250 476 0.00017969999 252 476 0.0016594999 253 476 0.00041219988 263 476 0.00052849995 315 476 0.00073989993 322 476 0.00012679999 356 476 4.2299987e-05 359 476 0.0001586 363 476 1.06e-05 384 476 0.00082449988 387 476 3.1699994e-05 393 476 0.00012679999 394 476 3.1699994e-05 397 476 2.1099986e-05 402 476 4.2299987e-05 412 476 0.00019029999 416 476 0.00065539987 417 476 0.0020083999 418 476 0.010781799 419 476 1.06e-05 422 476 0.0062893964 423 476 1.06e-05 424 476 0.0013424 425 476 1.06e-05 430 476 2.1099986e-05 431 476 3.1699994e-05 432 476 2.1099986e-05 433 476 6.3399988e-05 434 476 0.0001374 435 476 0.00028539984 438 476 0.00041219988 441 476 0.0002642998 442 476 0.001131 443 476 0.0011099 444 476 0.00091959978 445 476 0.0045663975 446 476 0.0001586 447 476 0.0013740999 448 476 3.1699994e-05 449 476 1.06e-05 450 476 0.0097775981 452 476 0.013826098 453 476 0.0094710998 454 476 0.0048517995 455 476 0.016891498 456 476 0.00046509993 457 476 0.0056551993 458 476 0.00012679999 459 476 0.00012679999 460 476 0.0042175986 463 476 0.038169596 464 476 0.0013846999 465 476 0.014650498 467 476 0.020760197 468 476 0.0032767998 469 476 0.015992999 470 476 0.0069129989 471 476 0.0032133998 473 476 7.3999996e-05 476 476 0.0059510991 477 476 0.00025369995 478 476 0.0015538 483 476 0.0065535977 489 476 0.00052849995 490 476 0.00041219988 3 477 0.00081139989 9 477 2.4599998e-05 16 477 8.1999997e-06 18 477 0.0033439 22 477 0.0011391998 60 477 0.021226898 79 477 8.1999997e-06 82 477 3.2799988e-05 83 477 2.4599998e-05 84 477 2.4599998e-05 101 477 0.00028679986 105 477 0.00024589989 108 477 3.2799988e-05 113 477 4.9199996e-05 114 477 0.00011469999 126 477 4.9199996e-05 127 477 8.1999997e-06 150 477 9.8299992e-05 187 477 0.0010326998 189 477 0.00022949999 190 477 0.00026229979 192 477 0.0001065 194 477 0.00025409996 196 477 4.0999992e-05 197 477 0.00076219998 198 477 0.00062289997 199 477 9.8299992e-05 200 477 0.0011391998 201 477 0.010260999 202 477 0.0012293998 203 477 0.00068019982 204 477 0.0050321966 206 477 0.0012620999 207 477 0.00018849999 209 477 5.7399986e-05 210 477 0.0019506 214 477 0.00086869998 215 477 0.00027049985 217 477 0.00030319998 218 477 7.3799994e-05 219 477 1.6399994e-05 223 477 6.559999e-05 228 477 0.0011145999 229 477 0.00021309999 230 477 0.00024589989 234 477 0.010842897 237 477 0.00031959987 240 477 0.00072939997 241 477 8.1999997e-06 248 477 2.4599998e-05 250 477 8.1999997e-06 251 477 8.1999997e-06 252 477 0.0019013998 253 477 0.000336 263 477 8.1999997e-06 279 477 8.1999997e-06 317 477 1.6399994e-05 318 477 4.0999992e-05 322 477 8.1999997e-06 356 477 4.0999992e-05 359 477 0.00059009995 363 477 1.6399994e-05 366 477 0.00013109999 380 477 8.1999997e-06 384 477 0.00091789989 385 477 0.00036879978 387 477 4.9199996e-05 388 477 0.00024589989 393 477 0.0018685998 394 477 4.0999992e-05 397 477 1.6399994e-05 402 477 4.0999992e-05 412 477 0.00018849999 417 477 0.00023769999 419 477 8.1999997e-06 422 477 0.0010326998 423 477 1.6399994e-05 425 477 8.1999997e-06 428 477 0.00030319998 430 477 0.000336 431 477 4.0999992e-05 432 477 4.9199996e-05 433 477 0.00013109999 434 477 0.0004015998 438 477 0.00050809979 442 477 0.0017211 443 477 0.00082779978 444 477 0.0005655 445 477 0.0052288994 446 477 0.00037699984 447 477 0.0045075975 448 477 0.0001639 449 477 8.1999997e-06 450 477 0.010982297 452 477 0.013957299 453 477 0.0050812997 454 477 0.0041305982 455 477 0.0067368969 456 477 0.0009506999 457 477 0.0028766999 458 477 0.00074579986 459 477 0.0039584972 460 477 0.0032782999 463 477 0.10760146 464 477 0.00018849999 465 477 0.0043600984 467 477 0.028389998 468 477 0.010490499 469 477 0.0046305992 470 477 0.0067778975 471 477 0.0063762963 472 477 0.0029177 473 477 0.0025406999 477 477 0.00036879978 478 477 0.0027947 483 477 0.004056897 489 477 0.00090969983 490 477 0.00043439982 9 478 0.00012089999 16 478 4.6999994e-05 18 478 0.00081929984 60 478 0.028722197 75 478 0.0010072999 79 478 4.0299987e-05 82 478 0.00020149999 83 478 0.000141 84 478 0.00013429999 101 478 0.00050369999 105 478 0.00017459999 106 478 3.3599994e-05 108 478 0.000235 113 478 0.00030889991 114 478 0.00075209979 126 478 0.00034919987 127 478 6.7199988e-05 150 478 0.00096699991 187 478 6.6999992e-06 189 478 0.00049019977 190 478 0.00030889991 192 478 0.0001545 194 478 0.00034249993 196 478 6.0399994e-05 197 478 0.00012089999 200 478 0.0029481 201 478 0.0039352998 202 478 0.0047679991 203 478 0.00032229978 204 478 0.012074497 206 478 0.00075889984 207 478 0.00027529988 209 478 8.0599988e-05 214 478 6.6999992e-06 215 478 0.00013429999 217 478 5.3699987e-05 219 478 2.0099993e-05 223 478 2.0099993e-05 229 478 0.00066479994 230 478 0.0013094998 234 478 0.0050634965 237 478 0.00016119999 240 478 2.0099993e-05 241 478 5.3699987e-05 248 478 0.00013429999 250 478 7.3899995e-05 251 478 4.0299987e-05 252 478 0.0001276 263 478 4.0299987e-05 279 478 1.3399999e-05 316 478 0.00026189978 322 478 0.0001813 356 478 4.0299987e-05 363 478 2.0099993e-05 366 478 0.00062449998 380 478 5.3699987e-05 384 478 0.00049019977 387 478 0.00031559984 394 478 1.3399999e-05 397 478 1.3399999e-05 402 478 5.3699987e-05 412 478 0.00014769999 419 478 6.7199988e-05 422 478 0.00099389977 423 478 0.00010739999 425 478 7.3899995e-05 428 478 2.6899987e-05 430 478 0.0002082 431 478 8.7299995e-05 432 478 6.7199988e-05 433 478 0.00018799999 434 478 0.00022829999 435 478 0.00082599977 441 478 0.00026189978 442 478 0.0029346999 443 478 0.00032229978 444 478 0.0010139998 445 478 0.0033106999 446 478 0.00024179999 447 478 0.0022161 448 478 0.00010739999 449 478 6.7199988e-05 450 478 0.016379099 452 478 0.025747299 453 478 0.0030622999 454 478 0.0048149973 455 478 0.0058088973 456 478 0.0026055998 457 478 0.0005371999 459 478 0.00055069989 460 478 0.0045732968 463 478 0.073460996 464 478 0.0012826999 465 478 0.0021086999 467 478 0.025156297 468 478 0.012739297 469 478 0.022228297 470 478 0.037714299 471 478 0.0013833998 472 478 0.0019071999 473 478 0.0027868999 477 478 0.0096098967 478 478 0.0049022995 483 478 0.0188572 489 478 0.0013497998 490 478 0.0029010999 60 479 0.0089971982 114 479 0.00016359999 130 479 0.014722697 171 479 0.015213497 190 479 0.00032719993 192 479 0.0107967 194 479 0.00049079978 196 479 0.00016359999 197 479 0.00016359999 198 479 0.0042531975 200 479 0.00065429998 201 479 0.00016359999 203 479 0.00049079978 204 479 0.00049079978 206 479 0.00065429998 207 479 0.00032719993 209 479 0.00016359999 233 479 0.013086896 234 479 0.00081789983 237 479 0.00016359999 241 479 0.016522199 279 479 0.013577599 312 479 0.014559098 315 479 0.014886297 316 479 0.015540697 317 479 0.0068705976 318 479 0.0081792995 319 479 0.016849298 322 479 0.015213497 384 479 0.00016359999 422 479 0.00049079978 428 479 0.0075248964 432 479 0.00016359999 433 479 0.00032719993 434 479 0.00032719993 441 479 0.0063797981 442 479 0.0053982995 443 479 0.0014722999 445 479 0.022247698 447 479 0.00016359999 452 479 0.056437097 453 479 0.010960199 454 479 0.0049075969 455 479 0.020284597 456 479 0.00016359999 459 479 0.0055618994 460 479 0.00016359999 463 479 0.021756899 464 479 0.00016359999 465 479 0.0016358998 467 479 0.014231998 468 479 0.0070341974 470 479 0.0022902 471 479 0.0011451 472 479 0.0089971982 478 479 0.0026173999 483 479 0.017667297 489 479 0.0042531975 490 479 0.00032719993 1 480 0.0012118998 9 480 0.00030299998 11 480 0.0013633999 60 480 0.0089379996 82 480 0.011664897 83 480 0.0039387979 84 480 0.0024238999 86 480 0.00060599996 87 480 0.00090899994 88 480 0.00045449985 89 480 0.0022723998 90 480 0.007271599 91 480 0.00045449985 92 480 0.00045449985 93 480 0.0031812999 94 480 0.00060599996 95 480 0.00060599996 96 480 0.0015148998 97 480 0.0015148998 98 480 0.00030299998 99 480 0.00045449985 100 480 0.00075749983 104 480 0.0022723998 105 480 0.0031812999 106 480 0.00045449985 107 480 0.00030299998 108 480 0.0019693999 114 480 0.00015149999 116 480 0.0010603999 122 480 0.00075749983 149 480 0.00015149999 190 480 0.00030299998 192 480 0.00030299998 194 480 0.00075749983 196 480 0.00015149999 197 480 0.00015149999 200 480 0.00060599996 201 480 0.00015149999 203 480 0.00045449985 204 480 0.00045449985 206 480 0.00090899994 207 480 0.00030299998 209 480 0.00015149999 234 480 0.00090899994 237 480 0.00015149999 356 480 0.00015149999 384 480 0.00015149999 422 480 0.00045449985 428 480 0.00015149999 432 480 0.00015149999 433 480 0.00030299998 434 480 0.00030299998 438 480 0.0027268999 442 480 0.0054536983 443 480 0.00045449985 445 480 0.0051506981 450 480 0.0019693999 452 480 0.0180276 453 480 0.0034842999 454 480 0.004999198 455 480 0.0083320998 456 480 0.00015149999 457 480 0.00015149999 460 480 0.00015149999 463 480 0.10013628 465 480 0.0016663999 467 480 0.012119398 470 480 0.0010603999 471 480 0.0021209 478 480 0.0027268999 490 480 0.00015149999 1 481 0.008002799 9 481 0.0012178 11 481 0.0050451979 17 481 0.0013917999 18 481 0.0029575999 60 481 0.015483599 82 481 0.041579697 83 481 0.017919298 84 481 0.0092205964 86 481 0.0020876999 87 481 0.0026095998 88 481 0.0012178 89 481 0.0036533999 90 481 0.026965898 91 481 0.00086989999 92 481 0.0033054999 93 481 0.012178097 94 481 0.0012178 95 481 0.0015657998 96 481 0.0027835998 97 481 0.0033054999 98 481 0.0017396999 99 481 0.0046972968 100 481 0.00034789997 103 481 0.00086989999 104 481 0.00017399999 105 481 0.024530299 106 481 0.0052191988 107 481 0.0022616999 108 481 0.0005218999 109 481 0.00017399999 114 481 0.00017399999 115 481 0.0015657998 116 481 0.00034789997 121 481 0.0043492988 122 481 0.0020876999 124 481 0.0005218999 125 481 0.006610997 152 481 0.016005598 190 481 0.00017399999 194 481 0.00034789997 198 481 0.0064369999 200 481 0.00017399999 204 481 0.0026095998 206 481 0.00034789997 223 481 0.00017399999 229 481 0.0038273998 234 481 0.0109603 241 481 0.017571297 384 481 0.00034789997 422 481 0.00034789997 441 481 0.0041753985 442 481 0.0064369999 443 481 0.0020876999 445 481 0.015831597 446 481 0.00034789997 448 481 0.00017399999 450 481 0.013395999 452 481 0.032011099 453 481 0.006262999 454 481 0.008872699 455 481 0.030619297 457 481 0.0046972968 459 481 0.011134297 463 481 0.19432849 465 481 0.008872699 467 481 0.0311413 468 481 0.0048712976 470 481 0.0012178 471 481 0.00017399999 478 481 0.00069589983 483 481 0.008002799 490 481 0.0012178 60 482 0.011436399 105 482 0.0099115968 106 482 0.00091489987 114 482 0.0001525 190 482 0.00045749987 192 482 0.00030499999 194 482 0.00060989987 196 482 0.0001525 197 482 0.0001525 200 482 0.00076239998 201 482 0.00076239998 202 482 0.0056419969 203 482 0.00060989987 204 482 0.029429697 206 482 0.0013724 207 482 0.00045749987 209 482 0.0001525 234 482 0.004879497 237 482 0.00030499999 384 482 0.0001525 422 482 0.00045749987 431 482 0.0001525 432 482 0.0001525 433 482 0.00030499999 434 482 0.00030499999 441 482 0.0051844977 442 482 0.0041170977 444 482 0.0073192976 445 482 0.011131398 446 482 0.0001525 447 482 0.0050319992 450 482 0.021957897 452 482 0.014028698 453 482 0.0027446998 454 482 0.0094540976 455 482 0.0050319992 457 482 0.0057943985 459 482 0.0096065998 460 482 0.00030499999 463 482 0.011283897 464 482 0.0042695999 465 482 0.0019822998 467 482 0.037816398 468 482 0.019365698 469 482 0.012656298 470 482 0.0021348 471 482 0.0073192976 472 482 0.0065568984 478 482 0.0035071999 483 482 0.020890497 490 482 0.00030499999 9 483 1.2199999e-05 22 483 6.0999999e-05 60 483 0.0036364999 82 483 1.2199999e-05 83 483 1.2199999e-05 84 483 1.2199999e-05 108 483 2.4399997e-05 113 483 2.4399997e-05 114 483 4.8799993e-05 126 483 2.4399997e-05 130 483 0.00029289979 139 483 6.0999999e-05 141 483 8.5399995e-05 150 483 1.2199999e-05 153 483 0.0016229998 154 483 0.0010738999 158 483 7.319999e-05 187 483 0.00023189999 189 483 0.00014639999 190 483 0.0002197 192 483 7.319999e-05 194 483 4.8799993e-05 196 483 1.2199999e-05 197 483 3.6599988e-05 198 483 0.00034169992 200 483 8.5399995e-05 201 483 2.4399997e-05 202 483 0.00036609988 203 483 6.0999999e-05 204 483 0.0012690998 206 483 4.8799993e-05 207 483 3.6599988e-05 209 483 0.0033801999 223 483 0.0001586 228 483 1.2199999e-05 229 483 0.00035389978 230 483 0.00036609988 234 483 0.0045150965 237 483 0.00075659994 242 483 4.8799993e-05 243 483 1.2199999e-05 251 483 0.00029289979 252 483 1.2199999e-05 272 483 1.2199999e-05 277 483 2.4399997e-05 297 483 1.2199999e-05 312 483 3.6599988e-05 335 483 3.6599988e-05 337 483 4.8799993e-05 359 483 6.0999999e-05 362 483 3.6599988e-05 363 483 0.000183 364 483 0.0001586 384 483 7.319999e-05 387 483 2.4399997e-05 390 483 7.319999e-05 394 483 4.8799993e-05 397 483 0.000183 402 483 0.0014155 417 483 6.0999999e-05 422 483 6.0999999e-05 423 483 1.2199999e-05 430 483 1.2199999e-05 431 483 2.4399997e-05 432 483 1.2199999e-05 433 483 2.4399997e-05 434 483 2.4399997e-05 443 483 0.0120808 444 483 0.00046369992 445 483 0.028920799 446 483 0.0022940999 447 483 0.036754999 448 483 8.5399995e-05 450 483 0.0020988998 452 483 0.005466897 453 483 0.0011958999 454 483 0.0011105 455 483 0.0020134998 456 483 4.8799993e-05 457 483 4.8799993e-05 460 483 0.00058569992 463 483 0.024759598 464 483 6.0999999e-05 465 483 3.6599988e-05 467 483 0.013581797 468 483 0.0002441 469 483 0.0024527998 470 483 0.0016107999 471 483 0.0074558966 472 483 2.4399997e-05 473 483 3.6599988e-05 477 483 0.00032949983 478 483 0.00013419999 489 483 0.00054909987 490 483 0.0020134998 9 486 0.00014559999 59 486 0.0012377 64 486 0.0010920998 75 486 0.00014559999 82 486 7.2799987e-05 83 486 7.2799987e-05 84 486 7.2799987e-05 108 486 0.00014559999 113 486 7.2799987e-05 114 486 0.00036399998 126 486 0.00014559999 141 486 0.00021839999 152 486 0.00021839999 187 486 0.0014560998 189 486 0.00043679983 190 486 0.00087369978 192 486 0.00014559999 193 486 7.2799987e-05 194 486 0.00043679983 195 486 0.00014559999 196 486 7.2799987e-05 197 486 0.00021839999 198 486 0.00021839999 200 486 7.2799987e-05 201 486 7.2799987e-05 202 486 7.2799987e-05 203 486 0.00043679983 204 486 0.0025481998 206 486 0.00072809984 207 486 0.00021839999 209 486 7.2799987e-05 214 486 0.0005824999 219 486 7.2799987e-05 220 486 0.00014559999 223 486 7.2799987e-05 229 486 0.0080814995 230 486 0.0038587998 233 486 0.00014559999 234 486 0.0051692985 237 486 0.00043679983 240 486 0.00065529998 241 486 0.0059700981 252 486 0.00080089993 260 486 7.2799987e-05 261 486 7.2799987e-05 275 486 0.00014559999 282 486 7.2799987e-05 283 486 0.00014559999 295 486 0.00014559999 296 486 0.00072809984 307 486 7.2799987e-05 308 486 7.2799987e-05 315 486 0.0037858998 316 486 0.00043679983 319 486 0.00014559999 322 486 0.00029119989 328 486 7.2799987e-05 331 486 0.00014559999 340 486 7.2799987e-05 350 486 7.2799987e-05 351 486 0.00043679983 368 486 0.00036399998 370 486 0.00014559999 377 486 0.00072809984 380 486 0.00087369978 384 486 0.00036399998 387 486 0.00014559999 389 486 7.2799987e-05 390 486 7.2799987e-05 393 486 0.00014559999 402 486 0.00014559999 406 486 0.00065529998 408 486 0.0005824999 412 486 0.00087369978 422 486 0.0023297998 423 486 7.2799987e-05 425 486 0.00087369978 430 486 7.2799987e-05 431 486 0.00014559999 432 486 7.2799987e-05 433 486 0.00021839999 434 486 0.00029119989 438 486 0.00029119989 443 486 0.00094649987 444 486 0.00021839999 445 486 0.0040043965 446 486 0.00029119989 447 486 0.0005824999 448 486 7.2799987e-05 450 486 0.0048779994 452 486 0.0144885 453 486 0.010411397 454 486 0.0034947 455 486 0.0061885975 456 486 0.00014559999 457 486 0.039242797 458 486 0.010192897 459 486 0.0015288999 460 486 0.0018201999 463 486 0.018929698 464 486 0.00029119989 465 486 0.019075397 467 486 0.067054987 469 486 0.0014560998 470 486 0.0082999989 471 486 0.00050959992 472 486 0.0033490998 473 486 0.00021839999 477 486 7.2799987e-05 483 486 0.0046595968 486 486 0.004441198 489 486 0.00065529998 490 486 0.13673097 7 489 0.00021439999 9 489 3.5699995e-05 16 489 0.00021439999 18 489 0.00028589997 22 489 0.00039309985 25 489 0.00021439999 60 489 0.011398599 66 489 0.0016078998 68 489 0.16208094 69 489 0.076145172 73 489 0.0150075 75 489 0.010147899 82 489 3.5699995e-05 83 489 3.5699995e-05 84 489 3.5699995e-05 108 489 7.1499991e-05 113 489 7.1499991e-05 114 489 0.00017869999 126 489 0.00010719999 127 489 3.5699995e-05 134 489 0.00010719999 150 489 0.0019294999 152 489 0.00010719999 153 489 0.0001429 187 489 0.00032159989 189 489 0.00010719999 190 489 0.00042879977 192 489 7.1499991e-05 194 489 0.00017869999 196 489 7.1499991e-05 197 489 0.00010719999 201 489 3.5699995e-05 202 489 3.5699995e-05 203 489 0.0001429 204 489 0.0019652999 206 489 0.00032159989 207 489 0.00010719999 209 489 3.5699995e-05 214 489 0.024833798 215 489 0.00021439999 217 489 0.0017508999 218 489 7.1499991e-05 223 489 0.0001429 228 489 0.00028589997 229 489 0.0013577999 230 489 0.00057169981 231 489 0.00085759978 234 489 0.0095047988 237 489 0.00017869999 240 489 7.1499991e-05 248 489 3.5699995e-05 252 489 0.00021439999 267 489 0.00060739997 272 489 7.1499991e-05 317 489 0.0013220999 329 489 3.5699995e-05 330 489 0.00039309985 331 489 0.0019294999 356 489 0.00021439999 358 489 7.1499991e-05 368 489 0.00017869999 384 489 0.00078609982 387 489 7.1499991e-05 394 489 0.00035729981 402 489 0.0001429 412 489 0.00032159989 413 489 0.00035729981 414 489 3.5699995e-05 419 489 3.5699995e-05 422 489 0.00021439999 423 489 3.5699995e-05 425 489 3.5699995e-05 430 489 3.5699995e-05 431 489 7.1499991e-05 432 489 3.5699995e-05 433 489 7.1499991e-05 434 489 0.00010719999 438 489 0.00010719999 442 489 3.5699995e-05 443 489 0.0030014999 444 489 0.00017869999 445 489 0.0054312982 446 489 0.0012863998 447 489 0.0017865999 448 489 0.00017869999 450 489 0.0078967996 452 489 0.012899298 453 489 0.030658197 454 489 0.0060386993 455 489 0.0057170987 456 489 0.0033230998 457 489 0.00085759978 459 489 0.0069677979 460 489 0.0035017999 463 489 0.020760398 464 489 0.00025009993 465 489 0.0010004998 467 489 0.023547497 468 489 0.0020366998 469 489 0.012113199 470 489 0.0085756965 471 489 0.0027514 473 489 0.0001429 474 489 0.00021439999 475 489 7.1499991e-05 476 489 3.5699995e-05 477 489 7.1499991e-05 478 489 0.00010719999 483 489 0.0012148998 489 489 7.1499991e-05 490 489 0.00057169981 SuiteSparse/CXSparse/Matrix/ash2190000644001170100242450000000713110336455624015647 0ustar davisfac0 0 1 1 0 1 2 0 1 3 0 1 0 1 1 4 1 1 5 1 1 6 1 1 7 1 1 4 2 1 8 2 1 9 2 1 8 3 1 10 3 1 11 3 1 12 3 1 13 3 1 10 4 1 14 4 1 15 4 1 3 5 1 16 5 1 17 5 1 18 5 1 19 5 1 2 6 1 16 6 1 20 6 1 21 6 1 22 6 1 23 6 1 1 7 1 7 7 1 22 7 1 24 7 1 25 7 1 26 7 1 6 8 1 26 8 1 27 8 1 28 8 1 29 8 1 30 8 1 31 8 1 5 9 1 9 9 1 13 9 1 29 9 1 32 9 1 12 10 1 30 10 1 32 10 1 33 10 1 34 10 1 35 10 1 36 10 1 11 11 1 15 11 1 34 11 1 37 11 1 38 11 1 19 12 1 39 12 1 40 12 1 17 13 1 21 13 1 41 13 1 42 13 1 43 13 1 44 13 1 20 14 1 44 14 1 45 14 1 46 14 1 47 14 1 48 14 1 49 14 1 23 15 1 25 15 1 48 15 1 50 15 1 51 15 1 49 16 1 50 16 1 52 16 1 53 16 1 54 16 1 55 16 1 24 17 1 28 17 1 51 17 1 54 17 1 56 17 1 57 17 1 58 17 1 27 18 1 57 18 1 59 18 1 60 18 1 61 18 1 31 19 1 33 19 1 60 19 1 62 19 1 63 19 1 36 20 1 63 20 1 64 20 1 65 20 1 66 20 1 67 20 1 68 20 1 35 21 1 37 21 1 66 21 1 69 21 1 70 21 1 14 22 1 38 22 1 69 22 1 71 22 1 72 22 1 67 23 1 70 23 1 72 23 1 73 23 1 74 23 1 75 23 1 76 23 1 68 24 1 74 24 1 77 24 1 78 24 1 64 25 1 77 25 1 79 25 1 80 25 1 81 25 1 82 25 1 61 26 1 62 26 1 65 26 1 81 26 1 83 26 1 84 26 1 85 26 1 58 27 1 59 27 1 85 27 1 86 27 1 87 27 1 55 28 1 56 28 1 87 28 1 88 28 1 89 28 1 90 28 1 52 29 1 89 29 1 91 29 1 92 29 1 93 29 1 94 29 1 45 30 1 53 30 1 93 30 1 95 30 1 96 30 1 97 30 1 71 31 1 75 31 1 98 31 1 99 31 1 76 32 1 99 32 1 100 32 1 101 32 1 102 32 1 73 33 1 78 33 1 82 33 1 102 33 1 103 33 1 104 33 1 105 33 1 106 33 1 104 34 1 107 34 1 108 34 1 109 34 1 110 34 1 79 35 1 105 35 1 109 35 1 111 35 1 112 35 1 80 36 1 83 36 1 112 36 1 113 36 1 114 36 1 108 37 1 111 37 1 114 37 1 115 37 1 116 37 1 117 37 1 118 37 1 84 38 1 86 38 1 90 38 1 113 38 1 116 38 1 119 38 1 120 38 1 121 38 1 122 38 1 88 39 1 94 39 1 121 39 1 123 39 1 124 39 1 125 39 1 120 40 1 125 40 1 126 40 1 127 40 1 91 41 1 124 41 1 128 41 1 129 41 1 130 41 1 131 41 1 92 42 1 95 42 1 130 42 1 132 42 1 133 42 1 134 42 1 40 43 1 135 43 1 136 43 1 137 43 1 138 43 1 18 44 1 39 44 1 43 44 1 135 44 1 139 44 1 140 44 1 141 44 1 42 45 1 139 45 1 142 45 1 143 45 1 144 45 1 41 46 1 47 46 1 142 46 1 145 46 1 146 46 1 46 47 1 97 47 1 145 47 1 147 47 1 148 47 1 149 47 1 96 48 1 134 48 1 147 48 1 150 48 1 151 48 1 152 48 1 129 49 1 132 49 1 153 49 1 154 49 1 155 49 1 133 50 1 150 50 1 154 50 1 156 50 1 157 50 1 158 50 1 136 51 1 141 51 1 159 51 1 160 51 1 161 51 1 138 52 1 162 52 1 163 52 1 164 52 1 137 53 1 161 53 1 162 53 1 165 53 1 166 53 1 167 53 1 163 54 1 167 54 1 168 54 1 169 54 1 170 54 1 171 54 1 166 55 1 168 55 1 172 55 1 173 55 1 174 55 1 140 56 1 144 56 1 159 56 1 175 56 1 176 56 1 177 56 1 143 57 1 146 57 1 149 57 1 177 57 1 178 57 1 179 57 1 148 58 1 152 58 1 178 58 1 180 58 1 181 58 1 182 58 1 183 58 1 151 59 1 158 59 1 183 59 1 184 59 1 157 60 1 180 60 1 184 60 1 185 60 1 186 60 1 187 60 1 188 60 1 189 60 1 185 61 1 190 61 1 191 61 1 192 61 1 193 61 1 100 62 1 194 62 1 98 63 1 101 63 1 106 63 1 194 63 1 195 63 1 103 64 1 110 64 1 195 64 1 196 64 1 107 65 1 117 65 1 196 65 1 197 65 1 118 66 1 197 66 1 198 66 1 199 66 1 198 67 1 200 67 1 115 68 1 122 68 1 199 68 1 200 68 1 201 68 1 119 69 1 127 69 1 201 69 1 202 69 1 123 70 1 126 70 1 131 70 1 202 70 1 203 70 1 128 71 1 155 71 1 203 71 1 204 71 1 153 72 1 156 72 1 189 72 1 193 72 1 204 72 1 205 72 1 190 73 1 205 73 1 206 73 1 207 73 1 206 74 1 208 74 1 186 75 1 191 75 1 207 75 1 208 75 1 209 75 1 210 75 1 209 76 1 211 76 1 187 77 1 192 77 1 210 77 1 211 77 1 212 77 1 181 78 1 188 78 1 212 78 1 213 78 1 175 79 1 179 79 1 182 79 1 213 79 1 214 79 1 160 80 1 165 80 1 172 80 1 176 80 1 214 80 1 215 80 1 173 81 1 215 81 1 216 81 1 169 82 1 174 82 1 216 82 1 217 82 1 170 83 1 217 83 1 218 83 1 164 84 1 171 84 1 218 84 1 SuiteSparse/CXSparse/Matrix/ibm32a0000644001170100242450000000156610533354710015714 0ustar davisfac0 0 1 1 0 1 2 0 1 3 0 1 6 0 1 25 0 1 0 1 1 1 1 1 8 1 1 20 1 1 27 1 1 1 2 1 2 2 1 5 2 1 7 2 1 8 2 1 28 2 1 2 3 1 3 3 1 4 3 1 11 3 1 2 4 1 4 4 1 22 4 1 26 4 1 0 5 1 5 5 1 15 5 1 2 6 1 6 6 1 13 6 1 20 6 1 30 6 1 0 7 1 7 7 1 11 7 1 16 7 1 26 7 1 6 8 1 8 8 1 9 8 1 12 8 1 18 8 1 22 8 1 26 8 1 0 9 1 9 9 1 10 9 1 20 9 1 22 9 1 24 9 1 26 9 1 1 10 1 10 10 1 14 10 1 17 10 1 28 10 1 5 11 1 11 11 1 23 11 1 10 12 1 12 12 1 2 13 1 13 13 1 1 14 1 14 14 1 19 14 1 3 15 1 15 15 1 21 15 1 3 16 1 15 16 1 16 16 1 5 17 1 9 17 1 17 17 1 19 17 1 29 17 1 0 18 1 18 18 1 25 18 1 7 19 1 15 19 1 19 19 1 2 20 1 20 20 1 31 20 1 10 21 1 21 21 1 1 22 1 16 22 1 20 22 1 22 22 1 11 23 1 23 23 1 25 23 1 5 24 1 14 24 1 17 24 1 23 24 1 24 24 1 12 25 1 17 25 1 21 25 1 25 25 1 4 26 1 23 26 1 25 26 1 26 26 1 8 27 1 27 27 1 2 28 1 4 28 1 26 28 1 28 28 1 31 28 1 11 29 1 16 29 1 22 29 1 29 29 1 12 30 1 13 30 1 30 30 1 SuiteSparse/CXSparse/Matrix/ibm32b0000644001170100242450000000156610533354751015722 0ustar davisfac0 0 1 1 0 1 5 0 1 7 0 1 9 0 1 18 0 1 0 1 1 1 1 1 2 1 1 10 1 1 14 1 1 22 1 1 0 2 1 2 2 1 3 2 1 4 2 1 6 2 1 13 2 1 20 2 1 28 2 1 0 3 1 3 3 1 15 3 1 16 3 1 3 4 1 4 4 1 26 4 1 28 4 1 2 5 1 5 5 1 11 5 1 17 5 1 24 5 1 0 6 1 6 6 1 8 6 1 2 7 1 7 7 1 19 7 1 1 8 1 2 8 1 8 8 1 27 8 1 8 9 1 9 9 1 17 9 1 9 10 1 10 10 1 12 10 1 21 10 1 3 11 1 7 11 1 11 11 1 23 11 1 29 11 1 8 12 1 12 12 1 25 12 1 30 12 1 6 13 1 13 13 1 30 13 1 10 14 1 14 14 1 24 14 1 5 15 1 15 15 1 16 15 1 19 15 1 7 16 1 16 16 1 22 16 1 29 16 1 10 17 1 17 17 1 24 17 1 25 17 1 8 18 1 18 18 1 14 19 1 17 19 1 19 19 1 1 20 1 6 20 1 9 20 1 20 20 1 22 20 1 15 21 1 21 21 1 25 21 1 4 22 1 8 22 1 9 22 1 22 22 1 29 22 1 11 23 1 23 23 1 24 23 1 26 23 1 9 24 1 24 24 1 0 25 1 18 25 1 23 25 1 25 25 1 26 25 1 4 26 1 7 26 1 8 26 1 9 26 1 26 26 1 28 26 1 1 27 1 27 27 1 2 28 1 10 28 1 28 28 1 17 29 1 29 29 1 6 30 1 30 30 1 20 31 1 28 31 1 SuiteSparse/CXSparse/Matrix/fs_183_10000644001170100242450000005746410326006636016073 0ustar davisfac0 0 0.002560366756349 1 0 -1.1708957011e-07 19 0 -2.586020978498e-09 20 0 -4.21919637073e-09 21 0 -1.539733401845e-09 22 0 -6.992289087251e-10 23 0 -4.146605957406e-10 25 0 -9.308915110713e-10 26 0 -9.604355274254e-10 41 0 2.171877777815e-10 42 0 3.647892785308e-08 43 0 -1.336119643102e-08 48 0 1.408677324709e-08 49 0 1.305985310558e-09 50 0 -1.305985310558e-09 55 0 1.913774718225e-09 56 0 1.157436047015e-08 58 0 8.188399588829e-10 59 0 3.175236018339e-10 60 0 2.641174449437e-10 61 0 1.806834262368e-09 63 0 1.282846930985e-09 64 0 4.905553913699e-10 66 0 -1.222950896396e-09 67 0 3.400474955813e-09 69 0 7.424492418032e-10 70 0 2.273214423366e-10 71 0 -5.283442852457e-09 72 0 3.062630817767e-09 73 0 3.065874619571e-10 74 0 -5.094621858827e-11 75 0 3.960494500802e-10 77 0 4.877537231018e-10 78 0 -4.040563386643e-11 79 0 2.816301020271e-10 80 0 5.826517970276e-10 81 0 4.086508172586e-10 82 0 -3.911529194823e-11 83 0 2.678169982465e-10 85 0 -8.092386069823e-11 86 0 2.232108616543e-10 88 0 -5.675705795258e-11 89 0 2.189991319367e-10 90 0 3.291028612829e-10 91 0 2.716647717251e-10 92 0 5.497860474784e-10 93 0 6.707083412842e-10 94 0 -4.570873073371e-11 95 0 2.972566894958e-10 97 0 -3.773121829515e-11 98 0 3.084061767158e-10 100 0 -7.635917326112e-11 101 0 -9.31539362895e-11 102 0 1.426533063689e-09 103 0 -3.117499412749e-09 104 0 3.663312222128e-10 105 0 -1.573096874488e-09 106 0 4.411931980445e-10 108 0 5.849297948125e-10 109 0 -5.849297948125e-10 111 0 2.37578324949e-09 112 0 -3.466111061052e-09 113 0 3.907987277182e-10 114 0 9.58833451452e-10 115 0 4.195017191123e-10 117 0 4.11819413623e-10 118 0 -4.11819413623e-10 121 0 1.09032781156e-09 122 0 7.32132897605e-10 123 0 -7.32132897605e-10 124 0 4.496357023427e-10 125 0 4.955473972382e-10 126 0 7.153774580173e-10 127 0 1.479748156533e-09 128 0 6.992289087255e-10 129 0 8.243559438288e-10 130 0 9.604355274199e-10 131 0 4.146605957404e-10 132 0 4.353441138305e-10 135 0 -1.811030893479e-25 136 0 -3.789615200312e-08 139 0 9.673369514853e-13 143 0 -1.408677324709e-08 157 0 -1.157436047015e-08 158 0 -3.720608980593e-09 159 0 -1.116096648379e-09 160 0 -5.853406000804e-10 161 0 -1.773402322355e-09 162 0 -3.400474955813e-09 163 0 -1.138498691883e-09 164 0 -2.273214423366e-10 165 0 -3.062630817767e-09 166 0 -5.640474200845e-10 167 0 -4.473480892354e-10 168 0 -2.425148100789e-10 169 0 -5.017279363293e-10 170 0 -3.51893759306e-10 171 0 -2.232108616543e-10 172 0 -2.189991319367e-10 173 0 -2.833941305492e-10 174 0 -2.3393355343e-10 175 0 -4.734268742175e-10 176 0 -5.775544049947e-10 178 0 -4.411931980445e-10 181 0 -4.195017191123e-10 0 1 -3.383430159138e-16 1 1 0.002562768415974 41 1 3.592572729579e-13 42 1 6.776264827548e-09 44 1 -1.22477633951e-08 45 1 -6.776264827554e-09 50 1 2.084654127474e-09 51 1 -2.084654127467e-09 52 1 -2.084654127479e-09 56 1 6.232347945464e-09 57 1 -6.232347945464e-09 61 1 1.051739346752e-09 62 1 -1.051739346751e-09 64 1 2.855471681108e-10 65 1 -2.855471681108e-10 75 1 2.305362470616e-10 76 1 -2.305362470616e-10 83 1 1.558934765912e-10 84 1 -1.558934765912e-10 95 1 1.730300132886e-10 96 1 -1.730300132886e-10 98 1 1.795200133122e-10 99 1 -1.795200133122e-10 107 1 -7.358794192803e-10 108 1 7.358794192803e-10 109 1 1.097807355488e-09 110 1 -1.097807355488e-09 117 1 5.180953913322e-10 118 1 8.609286077266e-10 119 1 -8.609286077266e-10 120 1 -5.180953913322e-10 135 1 -7.712897469546e-25 136 1 1.224776339511e-08 139 1 -1.998289194383e-13 140 1 -1.59089384321e-13 146 1 -2.5e-06 2 2 0.002580237047555 48 2 3.732994910464e-11 136 2 1.224776339511e-09 141 2 -1.224776339511e-09 142 2 -3.732994910478e-11 143 2 -3.732994910464e-11 145 2 -2e-05 3 3 0.002560236106991 136 3 3.215427927254e-10 137 3 -3.215427927254e-10 4 4 0.002560235791703 136 4 6.25497283521e-12 157 4 -6.25497283521e-12 5 5 0.002560236045299 55 5 -2.598512597553e-10 136 5 2.598512597553e-10 6 6 0.002560238207518 63 6 -1.197293314616e-09 69 6 -1.224776339511e-09 136 6 2.422069654126e-09 7 7 0.002560238204238 58 7 -2.073248123406e-09 59 7 -3.45541353901e-10 136 7 2.418789477308e-09 8 8 0.002560238221515 73 8 -6.046973693266e-10 77 8 -1.831369175675e-09 136 8 2.436066545003e-09 9 9 0.002560239760404 79 9 -4.119702232899e-10 80 9 -2.338209375429e-09 81 9 -1.224776339511e-09 136 9 3.974955938231e-09 10 10 0.002560239292762 90 10 -4.1197022329e-10 91 10 -2.004179464654e-10 92 10 -1.224776339511e-09 93 10 -1.670149553878e-09 136 10 3.507314063145e-09 11 11 0.002560245365513 19 11 -1.824940942984e-14 41 11 1.824919610165e-14 67 11 -9.580046406017e-09 68 11 -1.824919610165e-14 136 11 9.580046406017e-09 12 12 0.002560267253745 19 12 -6.406758531213e-14 20 12 -6.406758531213e-14 41 12 1.281355477283e-13 42 12 -6.406777544864e-14 68 12 -6.406777386417e-14 72 12 -3.146816878888e-08 136 12 3.146816878888e-08 157 12 -6.406777386417e-14 13 13 0.002560236483522 124 13 -6.980733871843e-10 136 13 6.980733871849e-10 14 14 0.00256024291142 102 14 -6.012538393961e-09 136 14 7.125971429882e-09 177 14 -1.113433035919e-09 15 15 0.002560251373511 114 15 -1.224776339511e-08 136 15 1.558806250287e-08 180 15 -3.340299107757e-09 16 16 0.002560262507841 111 16 -2.672239286205e-08 136 16 2.672239286205e-08 17 17 0.002560252486944 121 17 -1.670149553878e-08 136 17 1.670149553879e-08 18 18 0.002560244136196 122 18 -8.350747769391e-09 136 18 8.350747769386e-09 3 19 -1.019050359178e-08 19 19 0.002560245975952 42 19 -1.019050349627e-08 44 19 -4.038103921654e-17 47 19 0 136 19 1.019050345554e-08 137 19 0 139 19 4.072997690462e-17 3 20 0 20 20 0.002560254946453 42 20 0 44 20 -1.865674463727e-17 56 20 -1.916100433649e-08 136 20 1.916100431562e-08 139 20 2.087411316368e-17 157 20 0 3 21 0 5 21 0 21 21 0.002560258054109 42 21 0 55 21 0 61 21 -2.226866071837e-08 136 21 2.226866071836e-08 3 22 0 6 22 0 11 22 0 20 22 0 22 22 0.002560252486944 42 22 0 63 22 0 64 22 -1.670149553878e-08 136 22 1.670149553866e-08 3 23 0 6 23 0 23 23 0.002560252486944 42 23 0 69 23 0 75 23 -1.67014955388e-08 136 23 1.670149553893e-08 3 24 0 7 24 0 12 24 0 20 24 0 24 24 0.002560237455598 42 24 0 59 24 0 83 24 -1.670149553913e-09 136 24 1.670149553913e-09 3 25 0 25 25 0.002560236342165 56 25 0 70 25 -5.567165179605e-10 136 25 5.567165179645e-10 157 25 0 26 26 0.002560239571121 55 26 0 56 26 0 60 26 -3.785672322123e-09 136 26 3.78567232212e-09 27 27 0.002560242132017 55 27 0 61 27 0 89 27 -6.346568304741e-09 136 27 6.346568305847e-09 28 28 0.002560242132017 56 28 0 63 28 0 64 28 0 86 28 -6.346568304728e-09 136 28 6.346568304223e-09 157 28 0 29 29 0.002560235785448 56 29 0 69 29 0 75 29 0 157 29 0 19 30 -1.22477647953e-09 30 30 0.002560237010225 42 30 -1.224776353574e-09 136 30 1.224776337829e-09 20 31 -3.674329017938e-09 31 31 0.002560239459777 42 31 -3.67432901844e-09 136 31 3.674329018535e-09 32 32 0.002560280507511 126 32 -4.472206250153e-08 136 32 4.472206250153e-08 33 33 0.002560311921433 127 33 -7.613598441436e-08 136 33 7.613598441436e-08 34 34 0.002560335994421 129 34 -1.002089732327e-07 136 34 1.002089732327e-07 35 35 0.002560272421112 128 35 -3.663566345244e-08 136 35 3.663566345244e-08 36 36 0.002560307793476 130 36 -7.200802816513e-08 136 36 7.200802816513e-08 37 37 0.002560274529531 131 37 -3.874408291661e-08 136 37 3.874408291661e-08 38 38 0.002560246586652 132 38 -1.080120422477e-08 136 38 1.080120422477e-08 39 39 0.002560297068413 125 39 -6.128296525551e-08 136 39 6.128296525557e-08 40 40 0.002560250260078 136 40 1.447462946702e-08 179 40 -1.447462946694e-08 0 41 0.01959713882917 1 41 -0.0195734543737 11 41 5.470666548231e-07 12 41 1.045301631314e-06 19 41 -1.06971747048e-06 20 41 -5.22650815657e-07 41 41 0.02219765160175 42 41 -5.227136107366e-07 68 41 -1.069713542891e-06 135 41 0 136 41 6.298045247717e-11 138 41 0 139 41 -2.368449673054e-05 147 41 -1.5e-05 157 41 -5.226505491834e-07 0 42 12.85660947467 1 42 -11.61477992426 41 42 3.155818156655e-11 42 42 14.10099940671 45 42 -1.241829550736 46 42 -3.95951429917e-08 48 42 9.156397070899e-09 54 42 -9.156402619557e-09 135 42 -2.952908677967e-24 136 42 -12.85660941827 0 43 0 1 43 -7.348658035297e-09 43 43 0.002560243134106 136 43 7.348658037033e-09 1 44 0 44 44 0.002615235874523 52 44 -3e-05 136 44 8.907464288464e-11 139 44 -8.90746428735e-11 144 44 -2.5e-05 1 45 -0.009866610928398 42 45 -0.009866610928589 45 45 0.01242684671403 42 46 -7.813937183221e-10 44 46 0 46 46 0.002590236566843 53 46 -3e-05 136 46 7.81394413174e-10 139 46 2.086591291478e-17 47 47 0.002560235789603 136 47 4.154625999537e-12 137 47 -4.154625999537e-12 0 48 3.174471475334 1 48 -3.174471475334 2 48 0.007477326419287 19 48 -4.660849919314e-09 30 48 -4.651519116252e-09 42 48 8.206737146991e-09 48 48 3.18450906156 54 48 -8.226488015661e-09 55 48 2.3273038548e-10 56 48 1.157409717687e-10 58 48 6.432076925481e-11 59 48 3.955350175667e-11 60 48 2.130154064686e-11 61 48 6.741586490436e-11 63 48 1.015204377654e-10 64 48 1.830397952409e-11 66 48 -2.130154064686e-11 67 48 2.742345777721e-10 69 48 7.703276924401e-11 70 48 1.832998873123e-11 72 48 2.46989933294e-10 73 48 3.397452682535e-11 75 48 1.477973195675e-11 77 48 3.607477030183e-11 79 48 1.955892376855e-11 80 48 4.046382400654e-11 81 48 2.837604498868e-11 86 48 1.800487364199e-11 89 48 1.76602516474e-11 90 48 2.285559077342e-11 91 48 1.886317747758e-11 92 48 3.818151608009e-11 93 48 4.657598768421e-11 95 48 1.109292684479e-11 98 48 1.150907415902e-11 142 48 -0.007477326380339 143 48 -3.181948808246 157 48 -1.157409717687e-10 158 48 -3.001462503844e-10 159 48 -7.541369609961e-11 160 48 -3.955350175667e-11 161 48 -1.198244172895e-10 162 48 -2.742410800739e-10 163 48 -9.181250120076e-11 164 48 -1.832998873123e-11 165 48 -2.469834309922e-10 166 48 -4.548360098437e-11 167 48 -3.607477030183e-11 168 48 -1.955892376855e-11 169 48 -4.046382400654e-11 170 48 -2.838254729046e-11 171 48 -1.800487364199e-11 172 48 -1.76602516474e-11 173 48 -2.285559077342e-11 174 48 -1.886317747758e-11 175 48 -3.818151608009e-11 176 48 -4.657598768421e-11 0 49 1.587235737478 1 49 -1.587235737627 49 49 1.589795973443 50 49 -1.587235737657 1 50 1.15969220199 50 50 1.16225243772 51 50 -1.159692201935 52 50 -1.159692201935 51 51 0.002560235785448 52 52 0.002560235785448 53 53 0.002560235785448 54 54 0.002560235785448 0 55 0.4920430785978 1 55 -0.4920430786783 48 55 1.760841129905e-10 55 55 0.4946033146353 143 55 -1.760846653791e-10 158 55 -0.4920430788498 0 56 4.126812917873 1 56 -2.503243835186 48 56 1.831229970625e-10 56 56 5.752942236585 57 56 -1.623569082708 143 56 -1.83128052366e-10 157 56 -4.126812918092 1 57 -4.20505517238e-05 56 57 -4.205055172407e-05 57 57 0.002607286337172 148 57 -5e-06 0 58 0.5872772225917 1 58 -0.5872772229227 48 58 1.760985569519e-10 58 58 0.5898374588947 143 58 -1.76084666663e-10 159 58 -0.5872772231093 0 59 0.5872772226272 1 59 -0.5872772228874 48 59 1.761039768105e-10 59 59 0.5898374588947 143 59 -1.760846658855e-10 160 59 -0.5872772231093 0 60 0.4920430782541 1 60 -0.4920430787321 42 60 -0.4920430788507 48 60 1.761058645096e-10 60 60 0.4946033146353 66 60 -0.4920430788499 143 60 -1.760846663789e-10 0 61 1.063447943607 1 61 -0.611167985462 48 61 1.760796391616e-10 55 61 -1.063447944406 61 61 1.518288138946 62 61 -0.4522799587544 143 61 -1.760846641892e-10 1 62 -4.205055172351e-05 61 62 -4.205055172407e-05 62 62 0.002607286337172 149 62 -5e-06 0 63 0.587277222639 1 63 -0.5872772229313 48 63 1.760915824221e-10 63 63 0.5898374588947 143 63 -1.760846645129e-10 161 63 -0.5872772231093 0 64 1.063447944716 1 64 -0.6111679856255 48 64 1.760485001368e-10 63 64 -1.063447944406 64 64 1.518288138946 65 64 -0.4522799587544 143 64 -1.760846620023e-10 1 65 -4.205055171448e-05 64 65 -4.205055172407e-05 65 65 0.002607286337172 150 65 -5e-06 56 66 0 66 66 0.002560235785448 0 67 0.4920430786916 1 67 -0.4920430786737 48 67 1.76087455517e-10 67 67 0.4946033146353 143 67 -1.760846658223e-10 162 67 -0.4920430788499 42 68 -4471.999999998 68 68 2236.002560236 0 69 0.4920430781392 1 69 -0.4920430786817 48 69 1.76081375747e-10 69 69 0.4946033146558 143 69 -1.760846641579e-10 163 69 -0.4920430788704 0 70 0.4920430784468 1 70 -0.4920430787271 48 70 1.76045894176e-10 70 70 0.4946033146352 143 70 -1.760846630309e-10 164 70 -0.4920430788498 3 71 0 20 71 0 71 71 0.002560235785448 0 72 0.4920430786528 1 72 -0.4920430786728 48 72 1.760879170302e-10 72 72 0.4946033146352 143 72 -1.760846649084e-10 165 72 -0.4920430788498 0 73 0.5364856792436 1 73 -0.4920430786501 48 73 1.76076432387e-10 73 73 0.5390459152896 74 73 -0.04444260065442 143 73 -1.760846654441e-10 166 73 -0.4920430788498 52 74 -3.000000000035e-05 74 74 0.002590235785448 0 75 1.063447942908 1 75 -0.611167985407 48 75 1.760890988945e-10 69 75 -1.063447944406 75 75 1.518288138946 76 75 -0.4522799587544 143 75 -1.760846677221e-10 1 76 -4.20505517325e-05 75 76 -4.205055172408e-05 76 76 0.002607286337172 151 76 -5e-06 0 77 0.5364856784025 1 77 -0.4920430785641 48 77 1.760864303599e-10 77 77 0.5390459152898 78 77 -0.04444260065443 143 77 -1.760846692902e-10 167 77 -0.4920430788499 52 78 -3.000000000004e-05 78 78 0.002590235785448 0 79 0.5714048638366 1 79 -0.4920430788403 48 79 1.761313366208e-10 79 79 0.5739651015182 82 79 -0.07936178688284 143 79 -1.760846606554e-10 168 79 -0.4920430788499 0 80 0.5714048658603 1 80 -0.4920430786621 48 80 1.760978635704e-10 80 80 0.5739651015181 85 80 -0.07936178688274 143 80 -1.7608466099e-10 169 80 -0.4920430788498 0 81 0.5714048637404 1 81 -0.4920430786228 48 81 1.76111764434e-10 81 81 0.5739651015181 88 81 -0.07936178688285 143 81 -1.760846745068e-10 170 81 -0.4920430788498 52 82 -2.999999999955e-05 82 82 0.002590235785448 0 83 1.063447940963 1 83 -0.6111679852405 59 83 -1.06344794423 83 83 1.51828813877 84 83 -0.4522799587544 1 84 -4.205055174117e-05 83 84 -4.205055172408e-05 84 84 0.002607286337172 152 84 -5e-06 52 85 -3.000000000001e-05 85 85 0.002590235785448 0 86 0.4920430770882 1 86 -0.492043078801 48 86 1.76116592985e-10 86 86 0.4946033146353 143 86 -1.760846726148e-10 171 86 -0.4920430788499 56 87 0 61 87 0 87 87 0.002560235785448 52 88 -2.999999999991e-05 88 88 0.002590235785448 0 89 0.4920430795657 1 89 -0.4920430786908 48 89 1.760903935369e-10 89 89 0.4946033146352 143 89 -1.760846741761e-10 172 89 -0.4920430788498 0 90 0.5714048645668 1 90 -0.4920430787554 48 90 1.761092705536e-10 90 90 0.5739651015181 94 90 -0.07936178688281 143 90 -1.760846678343e-10 173 90 -0.4920430788498 0 91 0.5714048628028 1 91 -0.4920430784636 48 91 1.760938499993e-10 91 91 0.5739651015181 97 91 -0.07936178688285 143 91 -1.760846559022e-10 174 91 -0.4920430788499 0 92 0.5714048647635 1 92 -0.4920430786719 48 92 1.760842468591e-10 92 92 0.5739651015181 100 92 -0.07936178688332 143 92 -1.760846666463e-10 175 92 -0.4920430788498 0 93 0.5714048650255 1 93 -0.4920430786659 48 93 1.760701683169e-10 93 93 0.5739651015181 101 93 -0.07936178688317 143 93 -1.760846640724e-10 176 93 -0.4920430788498 52 94 -2.999999999991e-05 94 94 0.002590235785448 0 95 1.063447939988 1 95 -0.6111679854925 48 95 1.760865894972e-10 58 95 -1.063447944406 95 95 1.518288138946 96 95 -0.4522799587544 143 95 -1.760846670718e-10 1 96 -4.20505517104e-05 95 96 -4.205055172407e-05 96 96 0.002607286337172 153 96 -5e-06 52 97 -3.000000000023e-05 97 97 0.002590235785448 0 98 1.063447942306 1 98 -0.6111679855538 48 98 1.761258586564e-10 73 98 -1.063447944406 98 98 1.518288138946 99 98 -0.4522799587544 143 98 -1.76084677565e-10 1 99 -4.205055174038e-05 98 99 -4.205055172407e-05 99 99 0.002607286337172 154 99 -5e-06 52 100 -3.000000000001e-05 100 100 0.002590235785448 52 101 -3.000000000001e-05 101 101 0.002590235785448 0 102 0.4920430783954 1 102 -0.4920430786518 42 102 -0.4920430786736 71 102 -0.4920430786731 102 102 0.4946033144592 103 102 -0.4920430786731 103 103 0.002560258054109 104 103 -2.226866071837e-08 136 103 2.226866071835e-08 0 104 0.4920430785024 1 104 -0.4920430786679 42 104 -0.4920430786738 104 104 0.4946033144592 105 104 -0.9840861573462 3 105 0 19 105 0 105 105 0.002560235785448 0 106 0.4920430787744 1 106 -0.4920430786336 106 106 0.4946033144592 178 106 -0.4920430786737 1 107 -4.205055172973e-05 107 107 0.002607286337172 108 107 -4.205055172408e-05 155 107 -5e-06 0 108 0.492043078665 1 108 -0.0397631199438 107 108 -0.4522799587544 108 108 0.9468832732136 109 108 -0.4920430786737 1 109 0.4522799587133 109 109 0.4548401945398 110 109 -0.4522799587545 52 110 -3.000000000002e-05 110 110 0.002590235785448 0 111 0.4920430787639 1 111 -0.4920430786612 42 111 -0.4920430786738 71 111 -0.4920430786741 111 111 0.4946033144592 112 111 -0.4920430786741 112 112 0.002560258054109 113 112 -2.226866071837e-08 136 112 2.226866071842e-08 0 113 0.492043077127 1 113 -0.4920430786716 42 113 -0.4920430786734 71 113 -0.4920430786716 105 113 -0.4920430786716 113 113 0.4946033144592 0 114 0.4920430789374 1 114 -0.4920430786817 42 114 -0.4920430786738 66 114 -0.4920430786737 103 114 -0.4920430786738 114 114 0.4946033144592 0 115 0.4920430771209 1 115 -0.4920430786049 115 115 0.4946033144592 181 115 -0.4920430786738 116 116 0.002560258054109 136 116 2.226866071865e-08 182 116 -2.226866071838e-08 0 117 0.4920430792701 1 117 -0.03976312002707 117 117 0.9468832732136 118 117 -0.4920430786737 120 117 -0.4522799587544 1 118 0.4522799587949 118 118 0.4548401945399 119 118 -0.4522799587544 52 119 -2.999999999999e-05 119 119 0.002590235785448 1 120 -4.210351212105e-05 117 120 -4.210351211667e-05 120 120 0.002607339297565 156 120 -5e-06 0 121 0.4920430788121 1 121 -0.4920430786437 42 121 -0.4920430786738 71 121 -0.4920430786718 112 121 -0.4920430786718 121 121 0.4946033144592 0 122 0.4920430783275 1 122 -0.4920430786632 42 122 -0.4920430786737 103 122 -0.4920430786737 122 122 0.4946033144592 123 122 -0.4920430786737 3 123 0 21 123 0 123 123 0.002560235785448 0 124 0.4920430781638 1 124 -0.4920430787149 42 124 -0.492043078674 105 124 -0.4920430786718 124 124 0.4946033144592 0 125 0.4920430783304 1 125 -0.4920430787081 19 125 -0.4920430787081 25 125 -0.4920430786766 42 125 -0.4920430786737 125 125 0.4946033144592 0 126 0.4920430788384 1 126 -0.4920430786653 19 126 -0.4920430786653 21 126 -0.4920430786707 42 126 -0.4920430786738 126 126 0.4946033144592 0 127 0.4920430782251 1 127 -0.4920430786839 20 127 -0.9840861573261 42 127 -0.4920430786736 127 127 0.4946033144592 0 128 4.920430783576 1 128 -4.920430786231 22 128 -4.920430786735 42 128 -9.840861573471 128 128 4.922991022523 0 129 0.4920430784622 1 129 -0.4920430786878 20 129 -0.4920430786878 21 129 -0.4920430786737 42 129 -0.4920430786737 129 129 0.4946033144592 0 130 0.492043078061 1 130 -0.4920430786408 19 130 -0.4920430787053 26 130 -0.4920430786771 42 130 -0.4920430786737 130 130 0.4946033144592 0 131 0.4920430786715 1 131 -0.4920430786715 19 131 -0.4920430786715 23 131 -0.4920430786738 42 131 -0.4920430786737 131 131 0.4946033144591 0 132 0.4920430771688 1 132 -0.4920430787426 20 132 -0.4920430785995 25 132 -0.4920430786711 42 132 -0.4920430786737 132 132 0.4946033144591 3 133 0 7 133 0 12 133 0 20 133 0 42 133 0 58 133 0 95 133 -1.670149553868e-08 133 133 0.002560252486944 136 133 1.670149553899e-08 3 134 0 8 134 0 12 134 0 20 134 0 42 134 0 73 134 0 98 134 -5.344478572417e-08 134 134 0.002560289230234 136 134 5.344478572347e-08 0 135 -7.111615739898 1 135 7.17828713746 41 135 -88821.07168099 42 135 0 135 135 88835.01890368 136 135 0 137 135 0 0 136 19.04682885138 1 136 12.69780942333 2 136 1.551897928024 3 136 4.542268257074 4 136 0.5229845102146 5 136 0.7613816461353 6 136 1.480230569393 7 136 1.000339760513 8 136 0.512851928463 9 136 0.8853929618887 10 136 1.357290834111 11 136 4.537130330448 12 136 4.055676354829 13 136 0.3312138382014 14 136 2.042784344269 15 136 1.34525930264 16 136 3.076618012512 17 136 1.244411855421 18 136 0.7338649798254 19 136 1.348270950961 20 136 0.6469882275473 21 136 0.2369911487333 22 136 0.04863623886552 23 136 0.02521370220331 24 136 0.0007713506269431 25 136 0.01435088885521 26 136 0.06679405394823 27 136 0.002489159161422 28 136 0.00849074313382 30 136 0.0001270842306168 31 136 0.382161620131 32 136 0.7100070793526 33 136 1.799538208012 34 136 0.865355063926 35 136 0.6870828123593 36 136 1.059317102324 37 136 0.2813771214523 38 136 0.31085305976 39 136 0.3966738983409 40 136 0.0580211220974 41 136 1.174501910599e-09 42 136 -1.730690936564 43 136 -18.9880240538 44 136 -12.75561059991 46 136 4.518678508122e-06 47 136 0.05235981401697 55 136 -0.7613816459101 56 136 -1.029149847639 58 136 -0.8574340804235 59 136 -0.1429056800706 60 136 -0.06679405395313 61 136 -0.2369911487297 63 136 -0.7317172575218 64 136 -0.04863623886561 67 136 -4.537130330346 69 136 -0.7485133118877 70 136 -0.01435088885262 72 136 -4.055676354803 73 136 -0.1273036701897 75 136 -0.02521370220349 77 136 -0.3855482582889 79 136 -0.09176341623108 80 136 -0.5208193894197 81 136 -0.2728101563627 83 136 -0.0007713506269865 86 136 -0.008490743133777 89 136 -0.002489159161422 90 136 -0.1594278122623 91 136 -0.07755947623575 92 136 -0.4739745769963 93 136 -0.6463289686313 95 136 -0.005294262221911 98 136 -0.007368421405836 102 136 -1.723599290493 103 136 0.2124294538529 104 136 -0.2124294538527 111 136 -3.076618012459 112 136 0.2472943022219 113 136 -0.247294302222 114 136 -1.056989452061 116 136 0.01727652875782 121 136 -1.244411855365 122 136 -0.7338649797077 124 136 -0.3312138382308 125 136 -0.3966738983424 126 136 -0.710007079354 127 136 -1.799538208108 128 136 -0.6870828123639 129 136 -0.8653550639193 130 136 -1.059317102321 131 136 -0.2813771214472 132 136 -0.3108530598792 133 136 0.005294262221824 134 136 0.007368421405836 135 136 -3.782226733727e-24 136 136 73.06959962922 137 136 -5.943026113463 139 136 -0.001003621431071 141 136 -1.551897927995 157 136 -0.52298446947 177 136 -0.319185053795 179 136 -0.0580211220982 180 136 -0.2882698505622 182 136 -0.01727652875733 42 137 -7778510.286871 137 137 7778510.289384 135 138 -765000000 136 138 -115453078.1193 138 138 822724342.888 0 139 30.14975346743 1 139 -56.69119543686 3 139 0 19 139 0.0001184669871946 20 139 2.369339743891e-05 42 139 -0.0001178587861442 44 139 -0.0001421603846335 46 139 2.634022891202e-09 56 139 -2.451314668066e-05 135 139 0 139 139 33.79163103904 140 139 -3.623762789545 1 140 -0.01666608622337 52 140 -6.000026836812e-05 139 140 -0.01666609507463 140 140 0.01922185093315 49 141 -5200 141 141 5200.002525756 51 142 -228387.6175097 142 142 228387.6200291 19 143 -9360.000000003 42 143 -9360 143 143 9360.002525756 144 144 0.00252575585851 145 145 0.00252575585851 146 146 0.00252575585851 147 147 0.00252575585851 148 148 0.00252575585851 149 149 0.00252575585851 150 150 0.00252575585851 151 151 0.00252575585851 152 152 0.00252575585851 153 153 0.00252575585851 154 154 0.00252575585851 155 155 0.00252575585851 156 156 0.00252575585851 48 157 -2652000 157 157 2652000.002526 19 158 -33.00000000199 20 158 -192.3999999996 42 158 -192.4 157 158 -33 158 158 225.4025257558 20 159 -1199.999999857 26 159 -1092.000000009 42 159 -1092 55 159 -1200.000000001 159 159 2292.002525756 19 160 -3200.000000038 22 160 -192.3999999999 42 160 -192.3999999999 63 160 -3200 160 160 3392.402525756 21 161 -192.3999999995 42 161 -192.4 161 161 192.4025257559 19 162 -4472.000000018 42 162 -2236 162 162 2236.002525756 20 163 -1099.999999993 25 163 -192.4000000026 42 163 -192.3999999997 157 163 -1100 163 163 1292.402525756 42 164 -192.3999999999 71 164 -192.3999999969 164 164 192.4025257558 19 165 -2236.000000018 20 165 -2236.000000018 42 165 -2236 165 165 2236.002525756 23 166 -192.4000000001 42 166 -192.3999999999 166 166 192.4025257559 25 167 -33.30000000023 157 167 -33.3 167 167 33.30252575586 24 168 -192.4000000003 42 168 -192.4000000003 168 168 192.4025257559 28 169 -192.4000000001 42 169 -192.3999999999 169 169 192.4025257559 27 170 -192.4 42 170 -192.4 170 170 192.4025257559 42 171 -192.3999999997 87 171 -192.4 171 171 192.4025257559 42 172 -192.3999999998 87 172 -192.4 172 172 192.4025257558 42 173 -192.4000000002 133 173 -192.3999999999 173 173 192.4025257559 134 174 -192.4000000002 174 174 192.4025257558 29 175 -192.4 42 175 -192.4 175 175 192.4025257559 25 176 -3199.999999985 55 176 -3200 176 176 3200.002525756 106 177 -2236 177 177 2236.002525756 40 178 -2236.000000006 42 178 -2236.000000001 178 178 2236.002525756 108 179 -2236 179 179 2236.002525756 115 180 -2236 180 180 2236.002525756 42 181 -2236.000000002 116 181 -2235.999999999 181 181 2236.002525756 117 182 -2236.000000002 182 182 2236.002525756 SuiteSparse/CXSparse/Matrix/lp_afiro0000644001170100242450000000161710336456056016436 0ustar davisfac2 0 1 3 1 1 6 2 1 7 3 1 8 4 1 9 5 1 12 6 1 13 7 1 16 8 1 17 9 1 18 10 1 19 11 1 20 12 1 21 13 1 22 14 1 23 15 1 24 16 1 25 17 1 26 18 1 0 19 -1 1 19 -1.06 2 19 1 23 19 0.301 0 20 1 3 20 -1 0 21 1 21 21 -1 1 22 1 25 22 1 4 23 -1 5 23 -1.06 6 23 1 24 23 0.301 4 24 -1 5 24 -1.06 7 24 1 24 24 0.313 4 25 -1 5 25 -0.96 8 25 1 24 25 0.313 4 26 -1 5 26 -0.86 9 26 1 24 26 0.326 6 27 -1 20 27 2.364 7 28 -1 20 28 2.386 8 29 -1 20 29 2.408 9 30 -1 20 30 2.429 3 31 1.4 4 31 1 4 32 1 22 32 -1 5 33 1 26 33 1 10 34 -1 11 34 -0.43 12 34 1 21 34 0.109 10 35 1 13 35 -1 10 36 1 23 36 -1 10 37 1 20 37 -1 11 38 1 25 38 1 14 39 -0.43 15 39 1 16 39 1 22 39 0.109 14 40 -0.43 15 40 1 17 40 1 22 40 0.108 14 41 -0.39 15 41 1 18 41 1 22 41 0.108 14 42 -0.37 15 42 1 19 42 1 22 42 0.107 16 43 -1 20 43 2.191 17 44 -1 20 44 2.219 18 45 -1 20 45 2.249 19 46 -1 20 46 2.279 13 47 1.4 15 47 -1 15 48 1 24 48 -1 14 49 1 26 49 1 15 50 1 SuiteSparse/CXSparse/Matrix/c40000644001170100242450000000026110567667105015150 0ustar davisfac0 0 9.27539 0 1 0 14.7693 -1.04429 2 0 7.96934 2.8854 3 0 13.0094 -2.32583 1 1 23.8338 0 2 1 12.4165 5.57382 3 1 21.3387 -2.14682 2 2 8.10265 0 3 2 10.755 -6.1787 3 3 19.8115 0 SuiteSparse/CXSparse/Matrix/t20000644001170100242450000000022010375605276015160 0ustar davisfac2 2 3.0 3.141592653589793238 1 0 3.1 42 3 3 1.0 7 0 2 3.2 0.1 1 1 2.9 1.3 3 0 3.5 0 3 1 0.4 2.718281828459045235 1 3 0.9 99 0 0 4.5 6 2 1 1.7 1 SuiteSparse/CXSparse/Matrix/t30000644001170100242450000000041010376373521015156 0ustar davisfac0 0 0.670692 0.112853 1 0 0.496053 0.837454 2 0 0.138338 0.421069 0 1 0.911648 0.990658 1 1 0.219918 0.819335 2 1 0.113621 0.853857 0 2 0.819675 0.868119 1 2 0.233877 0.707132 2 2 0.148821 0.955367 0 3 0.688959 0.201198 1 3 0.262135 0.502488 2 3 0.857967 0.776792 SuiteSparse/CXSparse/Matrix/t40000644001170100242450000000003010376374076015163 0ustar davisfac0 0 1 1 0 1 1 1 1 1 1 1 SuiteSparse/CXSparse/Matrix/c_ibm32a0000644001170100242450000000215410533356041016207 0ustar davisfac0 0 1 1 1 0 1 1 2 0 1 1 3 0 1 1 6 0 1 1 25 0 1 1 0 1 1 1 1 1 1 1 8 1 1 1 20 1 1 1 27 1 1 1 1 2 1 1 2 2 1 1 5 2 1 1 7 2 1 1 8 2 1 1 28 2 1 1 2 3 1 1 3 3 1 1 4 3 1 1 11 3 1 1 2 4 1 1 4 4 1 1 22 4 1 1 26 4 1 1 0 5 1 1 5 5 1 1 15 5 1 1 2 6 1 1 6 6 1 1 13 6 1 1 20 6 1 1 30 6 1 1 0 7 1 1 7 7 1 1 11 7 1 1 16 7 1 1 26 7 1 1 6 8 1 1 8 8 1 1 9 8 1 1 12 8 1 1 18 8 1 1 22 8 1 1 26 8 1 1 0 9 1 1 9 9 1 1 10 9 1 1 20 9 1 1 22 9 1 1 24 9 1 1 26 9 1 1 1 10 1 1 10 10 1 1 14 10 1 1 17 10 1 1 28 10 1 1 5 11 1 1 11 11 1 1 23 11 1 1 10 12 1 1 12 12 1 1 2 13 1 1 13 13 1 1 1 14 1 1 14 14 1 1 19 14 1 1 3 15 1 1 15 15 1 1 21 15 1 1 3 16 1 1 15 16 1 1 16 16 1 1 5 17 1 1 9 17 1 1 17 17 1 1 19 17 1 1 29 17 1 1 0 18 1 1 18 18 1 1 25 18 1 1 7 19 1 1 15 19 1 1 19 19 1 1 2 20 1 1 20 20 1 1 31 20 1 1 10 21 1 1 21 21 1 1 1 22 1 1 16 22 1 1 20 22 1 1 22 22 1 1 11 23 1 1 23 23 1 1 25 23 1 1 5 24 1 1 14 24 1 1 17 24 1 1 23 24 1 1 24 24 1 1 12 25 1 1 17 25 1 1 21 25 1 1 25 25 1 1 4 26 1 1 23 26 1 1 25 26 1 1 26 26 1 1 8 27 1 1 27 27 1 1 2 28 1 1 4 28 1 1 26 28 1 1 28 28 1 1 31 28 1 1 11 29 1 1 16 29 1 1 22 29 1 1 29 29 1 1 12 30 1 1 13 30 1 1 30 30 1 1 SuiteSparse/CXSparse/Matrix/c_ibm32b0000644001170100242450000000215410533356076016220 0ustar davisfac0 0 1 1 1 0 1 1 5 0 1 1 7 0 1 1 9 0 1 1 18 0 1 1 0 1 1 1 1 1 1 1 2 1 1 1 10 1 1 1 14 1 1 1 22 1 1 1 0 2 1 1 2 2 1 1 3 2 1 1 4 2 1 1 6 2 1 1 13 2 1 1 20 2 1 1 28 2 1 1 0 3 1 1 3 3 1 1 15 3 1 1 16 3 1 1 3 4 1 1 4 4 1 1 26 4 1 1 28 4 1 1 2 5 1 1 5 5 1 1 11 5 1 1 17 5 1 1 24 5 1 1 0 6 1 1 6 6 1 1 8 6 1 1 2 7 1 1 7 7 1 1 19 7 1 1 1 8 1 1 2 8 1 1 8 8 1 1 27 8 1 1 8 9 1 1 9 9 1 1 17 9 1 1 9 10 1 1 10 10 1 1 12 10 1 1 21 10 1 1 3 11 1 1 7 11 1 1 11 11 1 1 23 11 1 1 29 11 1 1 8 12 1 1 12 12 1 1 25 12 1 1 30 12 1 1 6 13 1 1 13 13 1 1 30 13 1 1 10 14 1 1 14 14 1 1 24 14 1 1 5 15 1 1 15 15 1 1 16 15 1 1 19 15 1 1 7 16 1 1 16 16 1 1 22 16 1 1 29 16 1 1 10 17 1 1 17 17 1 1 24 17 1 1 25 17 1 1 8 18 1 1 18 18 1 1 14 19 1 1 17 19 1 1 19 19 1 1 1 20 1 1 6 20 1 1 9 20 1 1 20 20 1 1 22 20 1 1 15 21 1 1 21 21 1 1 25 21 1 1 4 22 1 1 8 22 1 1 9 22 1 1 22 22 1 1 29 22 1 1 11 23 1 1 23 23 1 1 24 23 1 1 26 23 1 1 9 24 1 1 24 24 1 1 0 25 1 1 18 25 1 1 23 25 1 1 25 25 1 1 26 25 1 1 4 26 1 1 7 26 1 1 8 26 1 1 9 26 1 1 26 26 1 1 28 26 1 1 1 27 1 1 27 27 1 1 2 28 1 1 10 28 1 1 28 28 1 1 17 29 1 1 29 29 1 1 6 30 1 1 30 30 1 1 20 31 1 1 28 31 1 1 SuiteSparse/CXSparse/Matrix/qc3240000644001170100242450000334374710375437451015520 0ustar davisfac0 0 0.3907881 -0.05085988 1 0 -0.06393453 0.01031772 2 0 0.01597157 -0.002577484 3 0 -0.007089509 0.001144101 4 0 0.003980742 -0.0006424099 5 0 -0.002541777 0.0004101906 6 0 0.001760065 -0.0002840383 7 0 -0.001288661 0.0002079635 8 0 0.0009826448 -0.0001585787 9 0 -0.0007727812 0.000124711 10 0 0.0006226054 -0.0001004757 11 0 -0.0005114288 8.253411e-05 12 0 0.0004268045 -6.887749e-05 13 0 -0.0003608797 5.823857e-05 14 0 0.0003085011 -4.978574e-05 15 0 -0.0002661734 4.295492e-05 16 0 0.0002314578 -3.735254e-05 17 0 -0.0002026106 3.26972e-05 18 0 0.0001783582 -2.878335e-05 19 0 -0.0001577525 2.545802e-05 20 0 0.000140076 -2.26054e-05 21 0 -0.0001247774 2.013652e-05 22 0 0.0001114272 -1.798207e-05 23 0 -9.968672e-05 1.608739e-05 24 0 8.928565e-05 -1.440887e-05 25 0 -8.000611e-05 1.291134e-05 26 0 7.167061e-05 -1.156616e-05 27 0 -6.413319e-05 1.034978e-05 28 0 5.727273e-05 -9.242642e-06 29 0 -5.098776e-05 8.228377e-06 30 0 4.519256e-05 -7.293151e-06 31 0 -3.981401e-05 6.425164e-06 32 0 3.478917e-05 -5.614257e-06 33 0 -3.00633e-05 4.851599e-06 34 0 2.558831e-05 -4.129428e-06 35 0 -2.132146e-05 3.440846e-06 36 0 1.722429e-05 -2.779647e-06 37 0 -1.326172e-05 2.14017e-06 38 0 9.401297e-06 -1.517176e-06 39 0 -5.612495e-06 9.057414e-07 40 0 1.866144e-06 -3.011573e-07 41 0 1.866144e-06 -3.011573e-07 42 0 -5.612495e-06 9.057414e-07 43 0 9.401297e-06 -1.517176e-06 44 0 -1.326172e-05 2.14017e-06 45 0 1.722429e-05 -2.779647e-06 46 0 -2.132146e-05 3.440846e-06 47 0 2.558831e-05 -4.129428e-06 48 0 -3.00633e-05 4.851599e-06 49 0 3.478917e-05 -5.614257e-06 50 0 -3.981401e-05 6.425164e-06 51 0 4.519256e-05 -7.293151e-06 52 0 -5.098776e-05 8.228377e-06 53 0 5.727273e-05 -9.242642e-06 54 0 -6.413319e-05 1.034978e-05 55 0 7.167061e-05 -1.156616e-05 56 0 -8.000611e-05 1.291134e-05 57 0 8.928565e-05 -1.440887e-05 58 0 -9.968672e-05 1.608739e-05 59 0 0.0001114272 -1.798207e-05 60 0 -0.0001247774 2.013652e-05 61 0 0.000140076 -2.26054e-05 62 0 -0.0001577525 2.545802e-05 63 0 0.0001783582 -2.878335e-05 64 0 -0.0002026106 3.26972e-05 65 0 0.0002314578 -3.735254e-05 66 0 -0.0002661734 4.295492e-05 67 0 0.0003085011 -4.978574e-05 68 0 -0.0003608797 5.823857e-05 69 0 0.0004268045 -6.887749e-05 70 0 -0.0005114288 8.253411e-05 71 0 0.0006226054 -0.0001004757 72 0 -0.0007727812 0.000124711 73 0 0.0009826448 -0.0001585787 74 0 -0.001288661 0.0002079635 75 0 0.001760065 -0.0002840383 76 0 -0.002541777 0.0004101906 77 0 0.003980742 -0.0006424099 78 0 -0.007089509 0.001144101 79 0 0.01597157 -0.002577484 80 0 -0.06393453 0.01031772 81 0 0.0001315499 3.980931e-06 0 1 -0.06393453 0.01031772 1 1 0.2927527 -0.05061033 2 1 -0.06393453 0.01031772 3 1 0.01597157 -0.002577484 4 1 -0.007089509 0.001144101 5 1 0.003980742 -0.0006424099 6 1 -0.002541777 0.0004101906 7 1 0.001760065 -0.0002840383 8 1 -0.001288661 0.0002079635 9 1 0.0009826448 -0.0001585787 10 1 -0.0007727812 0.000124711 11 1 0.0006226054 -0.0001004757 12 1 -0.0005114288 8.253411e-05 13 1 0.0004268045 -6.887749e-05 14 1 -0.0003608797 5.823857e-05 15 1 0.0003085011 -4.978574e-05 16 1 -0.0002661734 4.295492e-05 17 1 0.0002314578 -3.735254e-05 18 1 -0.0002026106 3.26972e-05 19 1 0.0001783582 -2.878335e-05 20 1 -0.0001577525 2.545802e-05 21 1 0.000140076 -2.26054e-05 22 1 -0.0001247774 2.013652e-05 23 1 0.0001114272 -1.798207e-05 24 1 -9.968672e-05 1.608739e-05 25 1 8.928565e-05 -1.440887e-05 26 1 -8.000611e-05 1.291134e-05 27 1 7.167061e-05 -1.156616e-05 28 1 -6.413319e-05 1.034978e-05 29 1 5.727273e-05 -9.242642e-06 30 1 -5.098776e-05 8.228377e-06 31 1 4.519256e-05 -7.293151e-06 32 1 -3.981401e-05 6.425164e-06 33 1 3.478917e-05 -5.614257e-06 34 1 -3.00633e-05 4.851599e-06 35 1 2.558831e-05 -4.129428e-06 36 1 -2.132146e-05 3.440846e-06 37 1 1.722429e-05 -2.779647e-06 38 1 -1.326172e-05 2.14017e-06 39 1 9.401297e-06 -1.517176e-06 40 1 -5.612495e-06 9.057414e-07 41 1 1.866144e-06 -3.011573e-07 42 1 1.866144e-06 -3.011573e-07 43 1 -5.612495e-06 9.057414e-07 44 1 9.401297e-06 -1.517176e-06 45 1 -1.326172e-05 2.14017e-06 46 1 1.722429e-05 -2.779647e-06 47 1 -2.132146e-05 3.440846e-06 48 1 2.558831e-05 -4.129428e-06 49 1 -3.00633e-05 4.851599e-06 50 1 3.478917e-05 -5.614257e-06 51 1 -3.981401e-05 6.425164e-06 52 1 4.519256e-05 -7.293151e-06 53 1 -5.098776e-05 8.228377e-06 54 1 5.727273e-05 -9.242642e-06 55 1 -6.413319e-05 1.034978e-05 56 1 7.167061e-05 -1.156616e-05 57 1 -8.000611e-05 1.291134e-05 58 1 8.928565e-05 -1.440887e-05 59 1 -9.968672e-05 1.608739e-05 60 1 0.0001114272 -1.798207e-05 61 1 -0.0001247774 2.013652e-05 62 1 0.000140076 -2.26054e-05 63 1 -0.0001577525 2.545802e-05 64 1 0.0001783582 -2.878335e-05 65 1 -0.0002026106 3.26972e-05 66 1 0.0002314578 -3.735254e-05 67 1 -0.0002661734 4.295492e-05 68 1 0.0003085011 -4.978574e-05 69 1 -0.0003608797 5.823857e-05 70 1 0.0004268045 -6.887749e-05 71 1 -0.0005114288 8.253411e-05 72 1 0.0006226054 -0.0001004757 73 1 -0.0007727812 0.000124711 74 1 0.0009826448 -0.0001585787 75 1 -0.001288661 0.0002079635 76 1 0.001760065 -0.0002840383 77 1 -0.002541777 0.0004101906 78 1 0.003980742 -0.0006424099 79 1 -0.007089509 0.001144101 80 1 0.01597157 -0.002577484 82 1 0.0001444547 5.03874e-06 0 2 0.01597157 -0.002577484 1 2 -0.06393453 0.01031772 2 2 0.2157239 -0.04868037 3 2 -0.06393453 0.01031772 4 2 0.01597157 -0.002577484 5 2 -0.007089509 0.001144101 6 2 0.003980742 -0.0006424099 7 2 -0.002541777 0.0004101906 8 2 0.001760065 -0.0002840383 9 2 -0.001288661 0.0002079635 10 2 0.0009826448 -0.0001585787 11 2 -0.0007727812 0.000124711 12 2 0.0006226054 -0.0001004757 13 2 -0.0005114288 8.253411e-05 14 2 0.0004268045 -6.887749e-05 15 2 -0.0003608797 5.823857e-05 16 2 0.0003085011 -4.978574e-05 17 2 -0.0002661734 4.295492e-05 18 2 0.0002314578 -3.735254e-05 19 2 -0.0002026106 3.26972e-05 20 2 0.0001783582 -2.878335e-05 21 2 -0.0001577525 2.545802e-05 22 2 0.000140076 -2.26054e-05 23 2 -0.0001247774 2.013652e-05 24 2 0.0001114272 -1.798207e-05 25 2 -9.968672e-05 1.608739e-05 26 2 8.928565e-05 -1.440887e-05 27 2 -8.000611e-05 1.291134e-05 28 2 7.167061e-05 -1.156616e-05 29 2 -6.413319e-05 1.034978e-05 30 2 5.727273e-05 -9.242642e-06 31 2 -5.098776e-05 8.228377e-06 32 2 4.519256e-05 -7.293151e-06 33 2 -3.981401e-05 6.425164e-06 34 2 3.478917e-05 -5.614257e-06 35 2 -3.00633e-05 4.851599e-06 36 2 2.558831e-05 -4.129428e-06 37 2 -2.132146e-05 3.440846e-06 38 2 1.722429e-05 -2.779647e-06 39 2 -1.326172e-05 2.14017e-06 40 2 9.401297e-06 -1.517176e-06 41 2 -5.612495e-06 9.057414e-07 42 2 1.866144e-06 -3.011573e-07 43 2 1.866144e-06 -3.011573e-07 44 2 -5.612495e-06 9.057414e-07 45 2 9.401297e-06 -1.517176e-06 46 2 -1.326172e-05 2.14017e-06 47 2 1.722429e-05 -2.779647e-06 48 2 -2.132146e-05 3.440846e-06 49 2 2.558831e-05 -4.129428e-06 50 2 -3.00633e-05 4.851599e-06 51 2 3.478917e-05 -5.614257e-06 52 2 -3.981401e-05 6.425164e-06 53 2 4.519256e-05 -7.293151e-06 54 2 -5.098776e-05 8.228377e-06 55 2 5.727273e-05 -9.242642e-06 56 2 -6.413319e-05 1.034978e-05 57 2 7.167061e-05 -1.156616e-05 58 2 -8.000611e-05 1.291134e-05 59 2 8.928565e-05 -1.440887e-05 60 2 -9.968672e-05 1.608739e-05 61 2 0.0001114272 -1.798207e-05 62 2 -0.0001247774 2.013652e-05 63 2 0.000140076 -2.26054e-05 64 2 -0.0001577525 2.545802e-05 65 2 0.0001783582 -2.878335e-05 66 2 -0.0002026106 3.26972e-05 67 2 0.0002314578 -3.735254e-05 68 2 -0.0002661734 4.295492e-05 69 2 0.0003085011 -4.978574e-05 70 2 -0.0003608797 5.823857e-05 71 2 0.0004268045 -6.887749e-05 72 2 -0.0005114288 8.253411e-05 73 2 0.0006226054 -0.0001004757 74 2 -0.0007727812 0.000124711 75 2 0.0009826448 -0.0001585787 76 2 -0.001288661 0.0002079635 77 2 0.001760065 -0.0002840383 78 2 -0.002541777 0.0004101906 79 2 0.003980742 -0.0006424099 80 2 -0.007089509 0.001144101 83 2 0.0001574252 6.107297e-06 0 3 -0.007089509 0.001144101 1 3 0.01597157 -0.002577484 2 3 -0.06393453 0.01031772 3 3 0.155771 -0.04569037 4 3 -0.06393453 0.01031772 5 3 0.01597157 -0.002577484 6 3 -0.007089509 0.001144101 7 3 0.003980742 -0.0006424099 8 3 -0.002541777 0.0004101906 9 3 0.001760065 -0.0002840383 10 3 -0.001288661 0.0002079635 11 3 0.0009826448 -0.0001585787 12 3 -0.0007727812 0.000124711 13 3 0.0006226054 -0.0001004757 14 3 -0.0005114288 8.253411e-05 15 3 0.0004268045 -6.887749e-05 16 3 -0.0003608797 5.823857e-05 17 3 0.0003085011 -4.978574e-05 18 3 -0.0002661734 4.295492e-05 19 3 0.0002314578 -3.735254e-05 20 3 -0.0002026106 3.26972e-05 21 3 0.0001783582 -2.878335e-05 22 3 -0.0001577525 2.545802e-05 23 3 0.000140076 -2.26054e-05 24 3 -0.0001247774 2.013652e-05 25 3 0.0001114272 -1.798207e-05 26 3 -9.968672e-05 1.608739e-05 27 3 8.928565e-05 -1.440887e-05 28 3 -8.000611e-05 1.291134e-05 29 3 7.167061e-05 -1.156616e-05 30 3 -6.413319e-05 1.034978e-05 31 3 5.727273e-05 -9.242642e-06 32 3 -5.098776e-05 8.228377e-06 33 3 4.519256e-05 -7.293151e-06 34 3 -3.981401e-05 6.425164e-06 35 3 3.478917e-05 -5.614257e-06 36 3 -3.00633e-05 4.851599e-06 37 3 2.558831e-05 -4.129428e-06 38 3 -2.132146e-05 3.440846e-06 39 3 1.722429e-05 -2.779647e-06 40 3 -1.326172e-05 2.14017e-06 41 3 9.401297e-06 -1.517176e-06 42 3 -5.612495e-06 9.057414e-07 43 3 1.866144e-06 -3.011573e-07 44 3 1.866144e-06 -3.011573e-07 45 3 -5.612495e-06 9.057414e-07 46 3 9.401297e-06 -1.517176e-06 47 3 -1.326172e-05 2.14017e-06 48 3 1.722429e-05 -2.779647e-06 49 3 -2.132146e-05 3.440846e-06 50 3 2.558831e-05 -4.129428e-06 51 3 -3.00633e-05 4.851599e-06 52 3 3.478917e-05 -5.614257e-06 53 3 -3.981401e-05 6.425164e-06 54 3 4.519256e-05 -7.293151e-06 55 3 -5.098776e-05 8.228377e-06 56 3 5.727273e-05 -9.242642e-06 57 3 -6.413319e-05 1.034978e-05 58 3 7.167061e-05 -1.156616e-05 59 3 -8.000611e-05 1.291134e-05 60 3 8.928565e-05 -1.440887e-05 61 3 -9.968672e-05 1.608739e-05 62 3 0.0001114272 -1.798207e-05 63 3 -0.0001247774 2.013652e-05 64 3 0.000140076 -2.26054e-05 65 3 -0.0001577525 2.545802e-05 66 3 0.0001783582 -2.878335e-05 67 3 -0.0002026106 3.26972e-05 68 3 0.0002314578 -3.735254e-05 69 3 -0.0002661734 4.295492e-05 70 3 0.0003085011 -4.978574e-05 71 3 -0.0003608797 5.823857e-05 72 3 0.0004268045 -6.887749e-05 73 3 -0.0005114288 8.253411e-05 74 3 0.0006226054 -0.0001004757 75 3 -0.0007727812 0.000124711 76 3 0.0009826448 -0.0001585787 77 3 -0.001288661 0.0002079635 78 3 0.001760065 -0.0002840383 79 3 -0.002541777 0.0004101906 80 3 0.003980742 -0.0006424099 84 3 0.0001704618 7.186683e-06 0 4 0.003980742 -0.0006424099 1 4 -0.007089509 0.001144101 2 4 0.01597157 -0.002577484 3 4 -0.06393453 0.01031772 4 4 0.1096566 -0.0420974 5 4 -0.06393453 0.01031772 6 4 0.01597157 -0.002577484 7 4 -0.007089509 0.001144101 8 4 0.003980742 -0.0006424099 9 4 -0.002541777 0.0004101906 10 4 0.001760065 -0.0002840383 11 4 -0.001288661 0.0002079635 12 4 0.0009826448 -0.0001585787 13 4 -0.0007727812 0.000124711 14 4 0.0006226054 -0.0001004757 15 4 -0.0005114288 8.253411e-05 16 4 0.0004268045 -6.887749e-05 17 4 -0.0003608797 5.823857e-05 18 4 0.0003085011 -4.978574e-05 19 4 -0.0002661734 4.295492e-05 20 4 0.0002314578 -3.735254e-05 21 4 -0.0002026106 3.26972e-05 22 4 0.0001783582 -2.878335e-05 23 4 -0.0001577525 2.545802e-05 24 4 0.000140076 -2.26054e-05 25 4 -0.0001247774 2.013652e-05 26 4 0.0001114272 -1.798207e-05 27 4 -9.968672e-05 1.608739e-05 28 4 8.928565e-05 -1.440887e-05 29 4 -8.000611e-05 1.291134e-05 30 4 7.167061e-05 -1.156616e-05 31 4 -6.413319e-05 1.034978e-05 32 4 5.727273e-05 -9.242642e-06 33 4 -5.098776e-05 8.228377e-06 34 4 4.519256e-05 -7.293151e-06 35 4 -3.981401e-05 6.425164e-06 36 4 3.478917e-05 -5.614257e-06 37 4 -3.00633e-05 4.851599e-06 38 4 2.558831e-05 -4.129428e-06 39 4 -2.132146e-05 3.440846e-06 40 4 1.722429e-05 -2.779647e-06 41 4 -1.326172e-05 2.14017e-06 42 4 9.401297e-06 -1.517176e-06 43 4 -5.612495e-06 9.057414e-07 44 4 1.866144e-06 -3.011573e-07 45 4 1.866144e-06 -3.011573e-07 46 4 -5.612495e-06 9.057414e-07 47 4 9.401297e-06 -1.517176e-06 48 4 -1.326172e-05 2.14017e-06 49 4 1.722429e-05 -2.779647e-06 50 4 -2.132146e-05 3.440846e-06 51 4 2.558831e-05 -4.129428e-06 52 4 -3.00633e-05 4.851599e-06 53 4 3.478917e-05 -5.614257e-06 54 4 -3.981401e-05 6.425164e-06 55 4 4.519256e-05 -7.293151e-06 56 4 -5.098776e-05 8.228377e-06 57 4 5.727273e-05 -9.242642e-06 58 4 -6.413319e-05 1.034978e-05 59 4 7.167061e-05 -1.156616e-05 60 4 -8.000611e-05 1.291134e-05 61 4 8.928565e-05 -1.440887e-05 62 4 -9.968672e-05 1.608739e-05 63 4 0.0001114272 -1.798207e-05 64 4 -0.0001247774 2.013652e-05 65 4 0.000140076 -2.26054e-05 66 4 -0.0001577525 2.545802e-05 67 4 0.0001783582 -2.878335e-05 68 4 -0.0002026106 3.26972e-05 69 4 0.0002314578 -3.735254e-05 70 4 -0.0002661734 4.295492e-05 71 4 0.0003085011 -4.978574e-05 72 4 -0.0003608797 5.823857e-05 73 4 0.0004268045 -6.887749e-05 74 4 -0.0005114288 8.253411e-05 75 4 0.0006226054 -0.0001004757 76 4 -0.0007727812 0.000124711 77 4 0.0009826448 -0.0001585787 78 4 -0.001288661 0.0002079635 79 4 0.001760065 -0.0002840383 80 4 -0.002541777 0.0004101906 85 4 0.0001835649 8.276982e-06 0 5 -0.002541777 0.0004101906 1 5 0.003980742 -0.0006424099 2 5 -0.007089509 0.001144101 3 5 0.01597157 -0.002577484 4 5 -0.06393453 0.01031772 5 5 0.07471859 -0.03823259 6 5 -0.06393453 0.01031772 7 5 0.01597157 -0.002577484 8 5 -0.007089509 0.001144101 9 5 0.003980742 -0.0006424099 10 5 -0.002541777 0.0004101906 11 5 0.001760065 -0.0002840383 12 5 -0.001288661 0.0002079635 13 5 0.0009826448 -0.0001585787 14 5 -0.0007727812 0.000124711 15 5 0.0006226054 -0.0001004757 16 5 -0.0005114288 8.253411e-05 17 5 0.0004268045 -6.887749e-05 18 5 -0.0003608797 5.823857e-05 19 5 0.0003085011 -4.978574e-05 20 5 -0.0002661734 4.295492e-05 21 5 0.0002314578 -3.735254e-05 22 5 -0.0002026106 3.26972e-05 23 5 0.0001783582 -2.878335e-05 24 5 -0.0001577525 2.545802e-05 25 5 0.000140076 -2.26054e-05 26 5 -0.0001247774 2.013652e-05 27 5 0.0001114272 -1.798207e-05 28 5 -9.968672e-05 1.608739e-05 29 5 8.928565e-05 -1.440887e-05 30 5 -8.000611e-05 1.291134e-05 31 5 7.167061e-05 -1.156616e-05 32 5 -6.413319e-05 1.034978e-05 33 5 5.727273e-05 -9.242642e-06 34 5 -5.098776e-05 8.228377e-06 35 5 4.519256e-05 -7.293151e-06 36 5 -3.981401e-05 6.425164e-06 37 5 3.478917e-05 -5.614257e-06 38 5 -3.00633e-05 4.851599e-06 39 5 2.558831e-05 -4.129428e-06 40 5 -2.132146e-05 3.440846e-06 41 5 1.722429e-05 -2.779647e-06 42 5 -1.326172e-05 2.14017e-06 43 5 9.401297e-06 -1.517176e-06 44 5 -5.612495e-06 9.057414e-07 45 5 1.866144e-06 -3.011573e-07 46 5 1.866144e-06 -3.011573e-07 47 5 -5.612495e-06 9.057414e-07 48 5 9.401297e-06 -1.517176e-06 49 5 -1.326172e-05 2.14017e-06 50 5 1.722429e-05 -2.779647e-06 51 5 -2.132146e-05 3.440846e-06 52 5 2.558831e-05 -4.129428e-06 53 5 -3.00633e-05 4.851599e-06 54 5 3.478917e-05 -5.614257e-06 55 5 -3.981401e-05 6.425164e-06 56 5 4.519256e-05 -7.293151e-06 57 5 -5.098776e-05 8.228377e-06 58 5 5.727273e-05 -9.242642e-06 59 5 -6.413319e-05 1.034978e-05 60 5 7.167061e-05 -1.156616e-05 61 5 -8.000611e-05 1.291134e-05 62 5 8.928565e-05 -1.440887e-05 63 5 -9.968672e-05 1.608739e-05 64 5 0.0001114272 -1.798207e-05 65 5 -0.0001247774 2.013652e-05 66 5 0.000140076 -2.26054e-05 67 5 -0.0001577525 2.545802e-05 68 5 0.0001783582 -2.878335e-05 69 5 -0.0002026106 3.26972e-05 70 5 0.0002314578 -3.735254e-05 71 5 -0.0002661734 4.295492e-05 72 5 0.0003085011 -4.978574e-05 73 5 -0.0003608797 5.823857e-05 74 5 0.0004268045 -6.887749e-05 75 5 -0.0005114288 8.253411e-05 76 5 0.0006226054 -0.0001004757 77 5 -0.0007727812 0.000124711 78 5 0.0009826448 -0.0001585787 79 5 -0.001288661 0.0002079635 80 5 0.001760065 -0.0002840383 86 5 0.0001967347 9.378277e-06 0 6 0.001760065 -0.0002840383 1 6 -0.002541777 0.0004101906 2 6 0.003980742 -0.0006424099 3 6 -0.007089509 0.001144101 4 6 0.01597157 -0.002577484 5 6 -0.06393453 0.01031772 6 6 0.04877068 -0.03433059 7 6 -0.06393453 0.01031772 8 6 0.01597157 -0.002577484 9 6 -0.007089509 0.001144101 10 6 0.003980742 -0.0006424099 11 6 -0.002541777 0.0004101906 12 6 0.001760065 -0.0002840383 13 6 -0.001288661 0.0002079635 14 6 0.0009826448 -0.0001585787 15 6 -0.0007727812 0.000124711 16 6 0.0006226054 -0.0001004757 17 6 -0.0005114288 8.253411e-05 18 6 0.0004268045 -6.887749e-05 19 6 -0.0003608797 5.823857e-05 20 6 0.0003085011 -4.978574e-05 21 6 -0.0002661734 4.295492e-05 22 6 0.0002314578 -3.735254e-05 23 6 -0.0002026106 3.26972e-05 24 6 0.0001783582 -2.878335e-05 25 6 -0.0001577525 2.545802e-05 26 6 0.000140076 -2.26054e-05 27 6 -0.0001247774 2.013652e-05 28 6 0.0001114272 -1.798207e-05 29 6 -9.968672e-05 1.608739e-05 30 6 8.928565e-05 -1.440887e-05 31 6 -8.000611e-05 1.291134e-05 32 6 7.167061e-05 -1.156616e-05 33 6 -6.413319e-05 1.034978e-05 34 6 5.727273e-05 -9.242642e-06 35 6 -5.098776e-05 8.228377e-06 36 6 4.519256e-05 -7.293151e-06 37 6 -3.981401e-05 6.425164e-06 38 6 3.478917e-05 -5.614257e-06 39 6 -3.00633e-05 4.851599e-06 40 6 2.558831e-05 -4.129428e-06 41 6 -2.132146e-05 3.440846e-06 42 6 1.722429e-05 -2.779647e-06 43 6 -1.326172e-05 2.14017e-06 44 6 9.401297e-06 -1.517176e-06 45 6 -5.612495e-06 9.057414e-07 46 6 1.866144e-06 -3.011573e-07 47 6 1.866144e-06 -3.011573e-07 48 6 -5.612495e-06 9.057414e-07 49 6 9.401297e-06 -1.517176e-06 50 6 -1.326172e-05 2.14017e-06 51 6 1.722429e-05 -2.779647e-06 52 6 -2.132146e-05 3.440846e-06 53 6 2.558831e-05 -4.129428e-06 54 6 -3.00633e-05 4.851599e-06 55 6 3.478917e-05 -5.614257e-06 56 6 -3.981401e-05 6.425164e-06 57 6 4.519256e-05 -7.293151e-06 58 6 -5.098776e-05 8.228377e-06 59 6 5.727273e-05 -9.242642e-06 60 6 -6.413319e-05 1.034978e-05 61 6 7.167061e-05 -1.156616e-05 62 6 -8.000611e-05 1.291134e-05 63 6 8.928565e-05 -1.440887e-05 64 6 -9.968672e-05 1.608739e-05 65 6 0.0001114272 -1.798207e-05 66 6 -0.0001247774 2.013652e-05 67 6 0.000140076 -2.26054e-05 68 6 -0.0001577525 2.545802e-05 69 6 0.0001783582 -2.878335e-05 70 6 -0.0002026106 3.26972e-05 71 6 0.0002314578 -3.735254e-05 72 6 -0.0002661734 4.295492e-05 73 6 0.0003085011 -4.978574e-05 74 6 -0.0003608797 5.823857e-05 75 6 0.0004268045 -6.887749e-05 76 6 -0.0005114288 8.253411e-05 77 6 0.0006226054 -0.0001004757 78 6 -0.0007727812 0.000124711 79 6 0.0009826448 -0.0001585787 80 6 -0.001288661 0.0002079635 87 6 0.0002099716 1.049065e-05 0 7 -0.001288661 0.0002079635 1 7 0.001760065 -0.0002840383 2 7 -0.002541777 0.0004101906 3 7 0.003980742 -0.0006424099 4 7 -0.007089509 0.001144101 5 7 0.01597157 -0.002577484 6 7 -0.06393453 0.01031772 7 7 0.03002069 -0.03055269 8 7 -0.06393453 0.01031772 9 7 0.01597157 -0.002577484 10 7 -0.007089509 0.001144101 11 7 0.003980742 -0.0006424099 12 7 -0.002541777 0.0004101906 13 7 0.001760065 -0.0002840383 14 7 -0.001288661 0.0002079635 15 7 0.0009826448 -0.0001585787 16 7 -0.0007727812 0.000124711 17 7 0.0006226054 -0.0001004757 18 7 -0.0005114288 8.253411e-05 19 7 0.0004268045 -6.887749e-05 20 7 -0.0003608797 5.823857e-05 21 7 0.0003085011 -4.978574e-05 22 7 -0.0002661734 4.295492e-05 23 7 0.0002314578 -3.735254e-05 24 7 -0.0002026106 3.26972e-05 25 7 0.0001783582 -2.878335e-05 26 7 -0.0001577525 2.545802e-05 27 7 0.000140076 -2.26054e-05 28 7 -0.0001247774 2.013652e-05 29 7 0.0001114272 -1.798207e-05 30 7 -9.968672e-05 1.608739e-05 31 7 8.928565e-05 -1.440887e-05 32 7 -8.000611e-05 1.291134e-05 33 7 7.167061e-05 -1.156616e-05 34 7 -6.413319e-05 1.034978e-05 35 7 5.727273e-05 -9.242642e-06 36 7 -5.098776e-05 8.228377e-06 37 7 4.519256e-05 -7.293151e-06 38 7 -3.981401e-05 6.425164e-06 39 7 3.478917e-05 -5.614257e-06 40 7 -3.00633e-05 4.851599e-06 41 7 2.558831e-05 -4.129428e-06 42 7 -2.132146e-05 3.440846e-06 43 7 1.722429e-05 -2.779647e-06 44 7 -1.326172e-05 2.14017e-06 45 7 9.401297e-06 -1.517176e-06 46 7 -5.612495e-06 9.057414e-07 47 7 1.866144e-06 -3.011573e-07 48 7 1.866144e-06 -3.011573e-07 49 7 -5.612495e-06 9.057414e-07 50 7 9.401297e-06 -1.517176e-06 51 7 -1.326172e-05 2.14017e-06 52 7 1.722429e-05 -2.779647e-06 53 7 -2.132146e-05 3.440846e-06 54 7 2.558831e-05 -4.129428e-06 55 7 -3.00633e-05 4.851599e-06 56 7 3.478917e-05 -5.614257e-06 57 7 -3.981401e-05 6.425164e-06 58 7 4.519256e-05 -7.293151e-06 59 7 -5.098776e-05 8.228377e-06 60 7 5.727273e-05 -9.242642e-06 61 7 -6.413319e-05 1.034978e-05 62 7 7.167061e-05 -1.156616e-05 63 7 -8.000611e-05 1.291134e-05 64 7 8.928565e-05 -1.440887e-05 65 7 -9.968672e-05 1.608739e-05 66 7 0.0001114272 -1.798207e-05 67 7 -0.0001247774 2.013652e-05 68 7 0.000140076 -2.26054e-05 69 7 -0.0001577525 2.545802e-05 70 7 0.0001783582 -2.878335e-05 71 7 -0.0002026106 3.26972e-05 72 7 0.0002314578 -3.735254e-05 73 7 -0.0002661734 4.295492e-05 74 7 0.0003085011 -4.978574e-05 75 7 -0.0003608797 5.823857e-05 76 7 0.0004268045 -6.887749e-05 77 7 -0.0005114288 8.253411e-05 78 7 0.0006226054 -0.0001004757 79 7 -0.0007727812 0.000124711 80 7 0.0009826448 -0.0001585787 88 7 0.000223276 1.161419e-05 0 8 0.0009826448 -0.0001585787 1 8 -0.001288661 0.0002079635 2 8 0.001760065 -0.0002840383 3 8 -0.002541777 0.0004101906 4 8 0.003980742 -0.0006424099 5 8 -0.007089509 0.001144101 6 8 0.01597157 -0.002577484 7 8 -0.06393453 0.01031772 8 8 0.01700217 -0.0270049 9 8 -0.06393453 0.01031772 10 8 0.01597157 -0.002577484 11 8 -0.007089509 0.001144101 12 8 0.003980742 -0.0006424099 13 8 -0.002541777 0.0004101906 14 8 0.001760065 -0.0002840383 15 8 -0.001288661 0.0002079635 16 8 0.0009826448 -0.0001585787 17 8 -0.0007727812 0.000124711 18 8 0.0006226054 -0.0001004757 19 8 -0.0005114288 8.253411e-05 20 8 0.0004268045 -6.887749e-05 21 8 -0.0003608797 5.823857e-05 22 8 0.0003085011 -4.978574e-05 23 8 -0.0002661734 4.295492e-05 24 8 0.0002314578 -3.735254e-05 25 8 -0.0002026106 3.26972e-05 26 8 0.0001783582 -2.878335e-05 27 8 -0.0001577525 2.545802e-05 28 8 0.000140076 -2.26054e-05 29 8 -0.0001247774 2.013652e-05 30 8 0.0001114272 -1.798207e-05 31 8 -9.968672e-05 1.608739e-05 32 8 8.928565e-05 -1.440887e-05 33 8 -8.000611e-05 1.291134e-05 34 8 7.167061e-05 -1.156616e-05 35 8 -6.413319e-05 1.034978e-05 36 8 5.727273e-05 -9.242642e-06 37 8 -5.098776e-05 8.228377e-06 38 8 4.519256e-05 -7.293151e-06 39 8 -3.981401e-05 6.425164e-06 40 8 3.478917e-05 -5.614257e-06 41 8 -3.00633e-05 4.851599e-06 42 8 2.558831e-05 -4.129428e-06 43 8 -2.132146e-05 3.440846e-06 44 8 1.722429e-05 -2.779647e-06 45 8 -1.326172e-05 2.14017e-06 46 8 9.401297e-06 -1.517176e-06 47 8 -5.612495e-06 9.057414e-07 48 8 1.866144e-06 -3.011573e-07 49 8 1.866144e-06 -3.011573e-07 50 8 -5.612495e-06 9.057414e-07 51 8 9.401297e-06 -1.517176e-06 52 8 -1.326172e-05 2.14017e-06 53 8 1.722429e-05 -2.779647e-06 54 8 -2.132146e-05 3.440846e-06 55 8 2.558831e-05 -4.129428e-06 56 8 -3.00633e-05 4.851599e-06 57 8 3.478917e-05 -5.614257e-06 58 8 -3.981401e-05 6.425164e-06 59 8 4.519256e-05 -7.293151e-06 60 8 -5.098776e-05 8.228377e-06 61 8 5.727273e-05 -9.242642e-06 62 8 -6.413319e-05 1.034978e-05 63 8 7.167061e-05 -1.156616e-05 64 8 -8.000611e-05 1.291134e-05 65 8 8.928565e-05 -1.440887e-05 66 8 -9.968672e-05 1.608739e-05 67 8 0.0001114272 -1.798207e-05 68 8 -0.0001247774 2.013652e-05 69 8 0.000140076 -2.26054e-05 70 8 -0.0001577525 2.545802e-05 71 8 0.0001783582 -2.878335e-05 72 8 -0.0002026106 3.26972e-05 73 8 0.0002314578 -3.735254e-05 74 8 -0.0002661734 4.295492e-05 75 8 0.0003085011 -4.978574e-05 76 8 -0.0003608797 5.823857e-05 77 8 0.0004268045 -6.887749e-05 78 8 -0.0005114288 8.253411e-05 79 8 0.0006226054 -0.0001004757 80 8 -0.0007727812 0.000124711 89 8 0.0002366482 1.274898e-05 0 9 -0.0007727812 0.000124711 1 9 0.0009826448 -0.0001585787 2 9 -0.001288661 0.0002079635 3 9 0.001760065 -0.0002840383 4 9 -0.002541777 0.0004101906 5 9 0.003980742 -0.0006424099 6 9 -0.007089509 0.001144101 7 9 0.01597157 -0.002577484 8 9 -0.06393453 0.01031772 9 9 0.008517736 -0.02375204 10 9 -0.06393453 0.01031772 11 9 0.01597157 -0.002577484 12 9 -0.007089509 0.001144101 13 9 0.003980742 -0.0006424099 14 9 -0.002541777 0.0004101906 15 9 0.001760065 -0.0002840383 16 9 -0.001288661 0.0002079635 17 9 0.0009826448 -0.0001585787 18 9 -0.0007727812 0.000124711 19 9 0.0006226054 -0.0001004757 20 9 -0.0005114288 8.253411e-05 21 9 0.0004268045 -6.887749e-05 22 9 -0.0003608797 5.823857e-05 23 9 0.0003085011 -4.978574e-05 24 9 -0.0002661734 4.295492e-05 25 9 0.0002314578 -3.735254e-05 26 9 -0.0002026106 3.26972e-05 27 9 0.0001783582 -2.878335e-05 28 9 -0.0001577525 2.545802e-05 29 9 0.000140076 -2.26054e-05 30 9 -0.0001247774 2.013652e-05 31 9 0.0001114272 -1.798207e-05 32 9 -9.968672e-05 1.608739e-05 33 9 8.928565e-05 -1.440887e-05 34 9 -8.000611e-05 1.291134e-05 35 9 7.167061e-05 -1.156616e-05 36 9 -6.413319e-05 1.034978e-05 37 9 5.727273e-05 -9.242642e-06 38 9 -5.098776e-05 8.228377e-06 39 9 4.519256e-05 -7.293151e-06 40 9 -3.981401e-05 6.425164e-06 41 9 3.478917e-05 -5.614257e-06 42 9 -3.00633e-05 4.851599e-06 43 9 2.558831e-05 -4.129428e-06 44 9 -2.132146e-05 3.440846e-06 45 9 1.722429e-05 -2.779647e-06 46 9 -1.326172e-05 2.14017e-06 47 9 9.401297e-06 -1.517176e-06 48 9 -5.612495e-06 9.057414e-07 49 9 1.866144e-06 -3.011573e-07 50 9 1.866144e-06 -3.011573e-07 51 9 -5.612495e-06 9.057414e-07 52 9 9.401297e-06 -1.517176e-06 53 9 -1.326172e-05 2.14017e-06 54 9 1.722429e-05 -2.779647e-06 55 9 -2.132146e-05 3.440846e-06 56 9 2.558831e-05 -4.129428e-06 57 9 -3.00633e-05 4.851599e-06 58 9 3.478917e-05 -5.614257e-06 59 9 -3.981401e-05 6.425164e-06 60 9 4.519256e-05 -7.293151e-06 61 9 -5.098776e-05 8.228377e-06 62 9 5.727273e-05 -9.242642e-06 63 9 -6.413319e-05 1.034978e-05 64 9 7.167061e-05 -1.156616e-05 65 9 -8.000611e-05 1.291134e-05 66 9 8.928565e-05 -1.440887e-05 67 9 -9.968672e-05 1.608739e-05 68 9 0.0001114272 -1.798207e-05 69 9 -0.0001247774 2.013652e-05 70 9 0.000140076 -2.26054e-05 71 9 -0.0001577525 2.545802e-05 72 9 0.0001783582 -2.878335e-05 73 9 -0.0002026106 3.26972e-05 74 9 0.0002314578 -3.735254e-05 75 9 -0.0002661734 4.295492e-05 76 9 0.0003085011 -4.978574e-05 77 9 -0.0003608797 5.823857e-05 78 9 0.0004268045 -6.887749e-05 79 9 -0.0005114288 8.253411e-05 80 9 0.0006226054 -0.0001004757 90 9 0.0002500884 1.38951e-05 0 10 0.0006226054 -0.0001004757 1 10 -0.0007727812 0.000124711 2 10 0.0009826448 -0.0001585787 3 10 -0.001288661 0.0002079635 4 10 0.001760065 -0.0002840383 5 10 -0.002541777 0.0004101906 6 10 0.003980742 -0.0006424099 7 10 -0.007089509 0.001144101 8 10 0.01597157 -0.002577484 9 10 -0.06393453 0.01031772 10 10 0.003592011 -0.02082867 11 10 -0.06393453 0.01031772 12 10 0.01597157 -0.002577484 13 10 -0.007089509 0.001144101 14 10 0.003980742 -0.0006424099 15 10 -0.002541777 0.0004101906 16 10 0.001760065 -0.0002840383 17 10 -0.001288661 0.0002079635 18 10 0.0009826448 -0.0001585787 19 10 -0.0007727812 0.000124711 20 10 0.0006226054 -0.0001004757 21 10 -0.0005114288 8.253411e-05 22 10 0.0004268045 -6.887749e-05 23 10 -0.0003608797 5.823857e-05 24 10 0.0003085011 -4.978574e-05 25 10 -0.0002661734 4.295492e-05 26 10 0.0002314578 -3.735254e-05 27 10 -0.0002026106 3.26972e-05 28 10 0.0001783582 -2.878335e-05 29 10 -0.0001577525 2.545802e-05 30 10 0.000140076 -2.26054e-05 31 10 -0.0001247774 2.013652e-05 32 10 0.0001114272 -1.798207e-05 33 10 -9.968672e-05 1.608739e-05 34 10 8.928565e-05 -1.440887e-05 35 10 -8.000611e-05 1.291134e-05 36 10 7.167061e-05 -1.156616e-05 37 10 -6.413319e-05 1.034978e-05 38 10 5.727273e-05 -9.242642e-06 39 10 -5.098776e-05 8.228377e-06 40 10 4.519256e-05 -7.293151e-06 41 10 -3.981401e-05 6.425164e-06 42 10 3.478917e-05 -5.614257e-06 43 10 -3.00633e-05 4.851599e-06 44 10 2.558831e-05 -4.129428e-06 45 10 -2.132146e-05 3.440846e-06 46 10 1.722429e-05 -2.779647e-06 47 10 -1.326172e-05 2.14017e-06 48 10 9.401297e-06 -1.517176e-06 49 10 -5.612495e-06 9.057414e-07 50 10 1.866144e-06 -3.011573e-07 51 10 1.866144e-06 -3.011573e-07 52 10 -5.612495e-06 9.057414e-07 53 10 9.401297e-06 -1.517176e-06 54 10 -1.326172e-05 2.14017e-06 55 10 1.722429e-05 -2.779647e-06 56 10 -2.132146e-05 3.440846e-06 57 10 2.558831e-05 -4.129428e-06 58 10 -3.00633e-05 4.851599e-06 59 10 3.478917e-05 -5.614257e-06 60 10 -3.981401e-05 6.425164e-06 61 10 4.519256e-05 -7.293151e-06 62 10 -5.098776e-05 8.228377e-06 63 10 5.727273e-05 -9.242642e-06 64 10 -6.413319e-05 1.034978e-05 65 10 7.167061e-05 -1.156616e-05 66 10 -8.000611e-05 1.291134e-05 67 10 8.928565e-05 -1.440887e-05 68 10 -9.968672e-05 1.608739e-05 69 10 0.0001114272 -1.798207e-05 70 10 -0.0001247774 2.013652e-05 71 10 0.000140076 -2.26054e-05 72 10 -0.0001577525 2.545802e-05 73 10 0.0001783582 -2.878335e-05 74 10 -0.0002026106 3.26972e-05 75 10 0.0002314578 -3.735254e-05 76 10 -0.0002661734 4.295492e-05 77 10 0.0003085011 -4.978574e-05 78 10 -0.0003608797 5.823857e-05 79 10 0.0004268045 -6.887749e-05 80 10 -0.0005114288 8.253411e-05 91 10 0.0002635972 1.505265e-05 0 11 -0.0005114288 8.253411e-05 1 11 0.0006226054 -0.0001004757 2 11 -0.0007727812 0.000124711 3 11 0.0009826448 -0.0001585787 4 11 -0.001288661 0.0002079635 5 11 0.001760065 -0.0002840383 6 11 -0.002541777 0.0004101906 7 11 0.003980742 -0.0006424099 8 11 -0.007089509 0.001144101 9 11 0.01597157 -0.002577484 10 11 -0.06393453 0.01031772 11 11 0.001432594 -0.01824749 12 11 -0.06393453 0.01031772 13 11 0.01597157 -0.002577484 14 11 -0.007089509 0.001144101 15 11 0.003980742 -0.0006424099 16 11 -0.002541777 0.0004101906 17 11 0.001760065 -0.0002840383 18 11 -0.001288661 0.0002079635 19 11 0.0009826448 -0.0001585787 20 11 -0.0007727812 0.000124711 21 11 0.0006226054 -0.0001004757 22 11 -0.0005114288 8.253411e-05 23 11 0.0004268045 -6.887749e-05 24 11 -0.0003608797 5.823857e-05 25 11 0.0003085011 -4.978574e-05 26 11 -0.0002661734 4.295492e-05 27 11 0.0002314578 -3.735254e-05 28 11 -0.0002026106 3.26972e-05 29 11 0.0001783582 -2.878335e-05 30 11 -0.0001577525 2.545802e-05 31 11 0.000140076 -2.26054e-05 32 11 -0.0001247774 2.013652e-05 33 11 0.0001114272 -1.798207e-05 34 11 -9.968672e-05 1.608739e-05 35 11 8.928565e-05 -1.440887e-05 36 11 -8.000611e-05 1.291134e-05 37 11 7.167061e-05 -1.156616e-05 38 11 -6.413319e-05 1.034978e-05 39 11 5.727273e-05 -9.242642e-06 40 11 -5.098776e-05 8.228377e-06 41 11 4.519256e-05 -7.293151e-06 42 11 -3.981401e-05 6.425164e-06 43 11 3.478917e-05 -5.614257e-06 44 11 -3.00633e-05 4.851599e-06 45 11 2.558831e-05 -4.129428e-06 46 11 -2.132146e-05 3.440846e-06 47 11 1.722429e-05 -2.779647e-06 48 11 -1.326172e-05 2.14017e-06 49 11 9.401297e-06 -1.517176e-06 50 11 -5.612495e-06 9.057414e-07 51 11 1.866144e-06 -3.011573e-07 52 11 1.866144e-06 -3.011573e-07 53 11 -5.612495e-06 9.057414e-07 54 11 9.401297e-06 -1.517176e-06 55 11 -1.326172e-05 2.14017e-06 56 11 1.722429e-05 -2.779647e-06 57 11 -2.132146e-05 3.440846e-06 58 11 2.558831e-05 -4.129428e-06 59 11 -3.00633e-05 4.851599e-06 60 11 3.478917e-05 -5.614257e-06 61 11 -3.981401e-05 6.425164e-06 62 11 4.519256e-05 -7.293151e-06 63 11 -5.098776e-05 8.228377e-06 64 11 5.727273e-05 -9.242642e-06 65 11 -6.413319e-05 1.034978e-05 66 11 7.167061e-05 -1.156616e-05 67 11 -8.000611e-05 1.291134e-05 68 11 8.928565e-05 -1.440887e-05 69 11 -9.968672e-05 1.608739e-05 70 11 0.0001114272 -1.798207e-05 71 11 -0.0001247774 2.013652e-05 72 11 0.000140076 -2.26054e-05 73 11 -0.0001577525 2.545802e-05 74 11 0.0001783582 -2.878335e-05 75 11 -0.0002026106 3.26972e-05 76 11 0.0002314578 -3.735254e-05 77 11 -0.0002661734 4.295492e-05 78 11 0.0003085011 -4.978574e-05 79 11 -0.0003608797 5.823857e-05 80 11 0.0004268045 -6.887749e-05 92 11 0.0002771748 1.62217e-05 0 12 0.0004268045 -6.887749e-05 1 12 -0.0005114288 8.253411e-05 2 12 0.0006226054 -0.0001004757 3 12 -0.0007727812 0.000124711 4 12 0.0009826448 -0.0001585787 5 12 -0.001288661 0.0002079635 6 12 0.001760065 -0.0002840383 7 12 -0.002541777 0.0004101906 8 12 0.003980742 -0.0006424099 9 12 -0.007089509 0.001144101 10 12 0.01597157 -0.002577484 11 12 -0.06393453 0.01031772 12 12 0.001397702 -0.0160058 13 12 -0.06393453 0.01031772 14 12 0.01597157 -0.002577484 15 12 -0.007089509 0.001144101 16 12 0.003980742 -0.0006424099 17 12 -0.002541777 0.0004101906 18 12 0.001760065 -0.0002840383 19 12 -0.001288661 0.0002079635 20 12 0.0009826448 -0.0001585787 21 12 -0.0007727812 0.000124711 22 12 0.0006226054 -0.0001004757 23 12 -0.0005114288 8.253411e-05 24 12 0.0004268045 -6.887749e-05 25 12 -0.0003608797 5.823857e-05 26 12 0.0003085011 -4.978574e-05 27 12 -0.0002661734 4.295492e-05 28 12 0.0002314578 -3.735254e-05 29 12 -0.0002026106 3.26972e-05 30 12 0.0001783582 -2.878335e-05 31 12 -0.0001577525 2.545802e-05 32 12 0.000140076 -2.26054e-05 33 12 -0.0001247774 2.013652e-05 34 12 0.0001114272 -1.798207e-05 35 12 -9.968672e-05 1.608739e-05 36 12 8.928565e-05 -1.440887e-05 37 12 -8.000611e-05 1.291134e-05 38 12 7.167061e-05 -1.156616e-05 39 12 -6.413319e-05 1.034978e-05 40 12 5.727273e-05 -9.242642e-06 41 12 -5.098776e-05 8.228377e-06 42 12 4.519256e-05 -7.293151e-06 43 12 -3.981401e-05 6.425164e-06 44 12 3.478917e-05 -5.614257e-06 45 12 -3.00633e-05 4.851599e-06 46 12 2.558831e-05 -4.129428e-06 47 12 -2.132146e-05 3.440846e-06 48 12 1.722429e-05 -2.779647e-06 49 12 -1.326172e-05 2.14017e-06 50 12 9.401297e-06 -1.517176e-06 51 12 -5.612495e-06 9.057414e-07 52 12 1.866144e-06 -3.011573e-07 53 12 1.866144e-06 -3.011573e-07 54 12 -5.612495e-06 9.057414e-07 55 12 9.401297e-06 -1.517176e-06 56 12 -1.326172e-05 2.14017e-06 57 12 1.722429e-05 -2.779647e-06 58 12 -2.132146e-05 3.440846e-06 59 12 2.558831e-05 -4.129428e-06 60 12 -3.00633e-05 4.851599e-06 61 12 3.478917e-05 -5.614257e-06 62 12 -3.981401e-05 6.425164e-06 63 12 4.519256e-05 -7.293151e-06 64 12 -5.098776e-05 8.228377e-06 65 12 5.727273e-05 -9.242642e-06 66 12 -6.413319e-05 1.034978e-05 67 12 7.167061e-05 -1.156616e-05 68 12 -8.000611e-05 1.291134e-05 69 12 8.928565e-05 -1.440887e-05 70 12 -9.968672e-05 1.608739e-05 71 12 0.0001114272 -1.798207e-05 72 12 -0.0001247774 2.013652e-05 73 12 0.000140076 -2.26054e-05 74 12 -0.0001577525 2.545802e-05 75 12 0.0001783582 -2.878335e-05 76 12 -0.0002026106 3.26972e-05 77 12 0.0002314578 -3.735254e-05 78 12 -0.0002661734 4.295492e-05 79 12 0.0003085011 -4.978574e-05 80 12 -0.0003608797 5.823857e-05 93 12 0.0002908216 1.740235e-05 0 13 -0.0003608797 5.823857e-05 1 13 0.0004268045 -6.887749e-05 2 13 -0.0005114288 8.253411e-05 3 13 0.0006226054 -0.0001004757 4 13 -0.0007727812 0.000124711 5 13 0.0009826448 -0.0001585787 6 13 -0.001288661 0.0002079635 7 13 0.001760065 -0.0002840383 8 13 -0.002541777 0.0004101906 9 13 0.003980742 -0.0006424099 10 13 -0.007089509 0.001144101 11 13 0.01597157 -0.002577484 12 13 -0.06393453 0.01031772 13 13 0.002969361 -0.01409039 14 13 -0.06393453 0.01031772 15 13 0.01597157 -0.002577484 16 13 -0.007089509 0.001144101 17 13 0.003980742 -0.0006424099 18 13 -0.002541777 0.0004101906 19 13 0.001760065 -0.0002840383 20 13 -0.001288661 0.0002079635 21 13 0.0009826448 -0.0001585787 22 13 -0.0007727812 0.000124711 23 13 0.0006226054 -0.0001004757 24 13 -0.0005114288 8.253411e-05 25 13 0.0004268045 -6.887749e-05 26 13 -0.0003608797 5.823857e-05 27 13 0.0003085011 -4.978574e-05 28 13 -0.0002661734 4.295492e-05 29 13 0.0002314578 -3.735254e-05 30 13 -0.0002026106 3.26972e-05 31 13 0.0001783582 -2.878335e-05 32 13 -0.0001577525 2.545802e-05 33 13 0.000140076 -2.26054e-05 34 13 -0.0001247774 2.013652e-05 35 13 0.0001114272 -1.798207e-05 36 13 -9.968672e-05 1.608739e-05 37 13 8.928565e-05 -1.440887e-05 38 13 -8.000611e-05 1.291134e-05 39 13 7.167061e-05 -1.156616e-05 40 13 -6.413319e-05 1.034978e-05 41 13 5.727273e-05 -9.242642e-06 42 13 -5.098776e-05 8.228377e-06 43 13 4.519256e-05 -7.293151e-06 44 13 -3.981401e-05 6.425164e-06 45 13 3.478917e-05 -5.614257e-06 46 13 -3.00633e-05 4.851599e-06 47 13 2.558831e-05 -4.129428e-06 48 13 -2.132146e-05 3.440846e-06 49 13 1.722429e-05 -2.779647e-06 50 13 -1.326172e-05 2.14017e-06 51 13 9.401297e-06 -1.517176e-06 52 13 -5.612495e-06 9.057414e-07 53 13 1.866144e-06 -3.011573e-07 54 13 1.866144e-06 -3.011573e-07 55 13 -5.612495e-06 9.057414e-07 56 13 9.401297e-06 -1.517176e-06 57 13 -1.326172e-05 2.14017e-06 58 13 1.722429e-05 -2.779647e-06 59 13 -2.132146e-05 3.440846e-06 60 13 2.558831e-05 -4.129428e-06 61 13 -3.00633e-05 4.851599e-06 62 13 3.478917e-05 -5.614257e-06 63 13 -3.981401e-05 6.425164e-06 64 13 4.519256e-05 -7.293151e-06 65 13 -5.098776e-05 8.228377e-06 66 13 5.727273e-05 -9.242642e-06 67 13 -6.413319e-05 1.034978e-05 68 13 7.167061e-05 -1.156616e-05 69 13 -8.000611e-05 1.291134e-05 70 13 8.928565e-05 -1.440887e-05 71 13 -9.968672e-05 1.608739e-05 72 13 0.0001114272 -1.798207e-05 73 13 -0.0001247774 2.013652e-05 74 13 0.000140076 -2.26054e-05 75 13 -0.0001577525 2.545802e-05 76 13 0.0001783582 -2.878335e-05 77 13 -0.0002026106 3.26972e-05 78 13 0.0002314578 -3.735254e-05 79 13 -0.0002661734 4.295492e-05 80 13 0.0003085011 -4.978574e-05 94 13 0.0003045378 1.859469e-05 0 14 0.0003085011 -4.978574e-05 1 14 -0.0003608797 5.823857e-05 2 14 0.0004268045 -6.887749e-05 3 14 -0.0005114288 8.253411e-05 4 14 0.0006226054 -0.0001004757 5 14 -0.0007727812 0.000124711 6 14 0.0009826448 -0.0001585787 7 14 -0.001288661 0.0002079635 8 14 0.001760065 -0.0002840383 9 14 -0.002541777 0.0004101906 10 14 0.003980742 -0.0006424099 11 14 -0.007089509 0.001144101 12 14 0.01597157 -0.002577484 13 14 -0.06393453 0.01031772 14 14 0.005731212 -0.01248123 15 14 -0.06393453 0.01031772 16 14 0.01597157 -0.002577484 17 14 -0.007089509 0.001144101 18 14 0.003980742 -0.0006424099 19 14 -0.002541777 0.0004101906 20 14 0.001760065 -0.0002840383 21 14 -0.001288661 0.0002079635 22 14 0.0009826448 -0.0001585787 23 14 -0.0007727812 0.000124711 24 14 0.0006226054 -0.0001004757 25 14 -0.0005114288 8.253411e-05 26 14 0.0004268045 -6.887749e-05 27 14 -0.0003608797 5.823857e-05 28 14 0.0003085011 -4.978574e-05 29 14 -0.0002661734 4.295492e-05 30 14 0.0002314578 -3.735254e-05 31 14 -0.0002026106 3.26972e-05 32 14 0.0001783582 -2.878335e-05 33 14 -0.0001577525 2.545802e-05 34 14 0.000140076 -2.26054e-05 35 14 -0.0001247774 2.013652e-05 36 14 0.0001114272 -1.798207e-05 37 14 -9.968672e-05 1.608739e-05 38 14 8.928565e-05 -1.440887e-05 39 14 -8.000611e-05 1.291134e-05 40 14 7.167061e-05 -1.156616e-05 41 14 -6.413319e-05 1.034978e-05 42 14 5.727273e-05 -9.242642e-06 43 14 -5.098776e-05 8.228377e-06 44 14 4.519256e-05 -7.293151e-06 45 14 -3.981401e-05 6.425164e-06 46 14 3.478917e-05 -5.614257e-06 47 14 -3.00633e-05 4.851599e-06 48 14 2.558831e-05 -4.129428e-06 49 14 -2.132146e-05 3.440846e-06 50 14 1.722429e-05 -2.779647e-06 51 14 -1.326172e-05 2.14017e-06 52 14 9.401297e-06 -1.517176e-06 53 14 -5.612495e-06 9.057414e-07 54 14 1.866144e-06 -3.011573e-07 55 14 1.866144e-06 -3.011573e-07 56 14 -5.612495e-06 9.057414e-07 57 14 9.401297e-06 -1.517176e-06 58 14 -1.326172e-05 2.14017e-06 59 14 1.722429e-05 -2.779647e-06 60 14 -2.132146e-05 3.440846e-06 61 14 2.558831e-05 -4.129428e-06 62 14 -3.00633e-05 4.851599e-06 63 14 3.478917e-05 -5.614257e-06 64 14 -3.981401e-05 6.425164e-06 65 14 4.519256e-05 -7.293151e-06 66 14 -5.098776e-05 8.228377e-06 67 14 5.727273e-05 -9.242642e-06 68 14 -6.413319e-05 1.034978e-05 69 14 7.167061e-05 -1.156616e-05 70 14 -8.000611e-05 1.291134e-05 71 14 8.928565e-05 -1.440887e-05 72 14 -9.968672e-05 1.608739e-05 73 14 0.0001114272 -1.798207e-05 74 14 -0.0001247774 2.013652e-05 75 14 0.000140076 -2.26054e-05 76 14 -0.0001577525 2.545802e-05 77 14 0.0001783582 -2.878335e-05 78 14 -0.0002026106 3.26972e-05 79 14 0.0002314578 -3.735254e-05 80 14 -0.0002661734 4.295492e-05 95 14 0.000318324 1.979879e-05 0 15 -0.0002661734 4.295492e-05 1 15 0.0003085011 -4.978574e-05 2 15 -0.0003608797 5.823857e-05 3 15 0.0004268045 -6.887749e-05 4 15 -0.0005114288 8.253411e-05 5 15 0.0006226054 -0.0001004757 6 15 -0.0007727812 0.000124711 7 15 0.0009826448 -0.0001585787 8 15 -0.001288661 0.0002079635 9 15 0.001760065 -0.0002840383 10 15 -0.002541777 0.0004101906 11 15 0.003980742 -0.0006424099 12 15 -0.007089509 0.001144101 13 15 0.01597157 -0.002577484 14 15 -0.06393453 0.01031772 15 15 0.009350157 -0.01115419 16 15 -0.06393453 0.01031772 17 15 0.01597157 -0.002577484 18 15 -0.007089509 0.001144101 19 15 0.003980742 -0.0006424099 20 15 -0.002541777 0.0004101906 21 15 0.001760065 -0.0002840383 22 15 -0.001288661 0.0002079635 23 15 0.0009826448 -0.0001585787 24 15 -0.0007727812 0.000124711 25 15 0.0006226054 -0.0001004757 26 15 -0.0005114288 8.253411e-05 27 15 0.0004268045 -6.887749e-05 28 15 -0.0003608797 5.823857e-05 29 15 0.0003085011 -4.978574e-05 30 15 -0.0002661734 4.295492e-05 31 15 0.0002314578 -3.735254e-05 32 15 -0.0002026106 3.26972e-05 33 15 0.0001783582 -2.878335e-05 34 15 -0.0001577525 2.545802e-05 35 15 0.000140076 -2.26054e-05 36 15 -0.0001247774 2.013652e-05 37 15 0.0001114272 -1.798207e-05 38 15 -9.968672e-05 1.608739e-05 39 15 8.928565e-05 -1.440887e-05 40 15 -8.000611e-05 1.291134e-05 41 15 7.167061e-05 -1.156616e-05 42 15 -6.413319e-05 1.034978e-05 43 15 5.727273e-05 -9.242642e-06 44 15 -5.098776e-05 8.228377e-06 45 15 4.519256e-05 -7.293151e-06 46 15 -3.981401e-05 6.425164e-06 47 15 3.478917e-05 -5.614257e-06 48 15 -3.00633e-05 4.851599e-06 49 15 2.558831e-05 -4.129428e-06 50 15 -2.132146e-05 3.440846e-06 51 15 1.722429e-05 -2.779647e-06 52 15 -1.326172e-05 2.14017e-06 53 15 9.401297e-06 -1.517176e-06 54 15 -5.612495e-06 9.057414e-07 55 15 1.866144e-06 -3.011573e-07 56 15 1.866144e-06 -3.011573e-07 57 15 -5.612495e-06 9.057414e-07 58 15 9.401297e-06 -1.517176e-06 59 15 -1.326172e-05 2.14017e-06 60 15 1.722429e-05 -2.779647e-06 61 15 -2.132146e-05 3.440846e-06 62 15 2.558831e-05 -4.129428e-06 63 15 -3.00633e-05 4.851599e-06 64 15 3.478917e-05 -5.614257e-06 65 15 -3.981401e-05 6.425164e-06 66 15 4.519256e-05 -7.293151e-06 67 15 -5.098776e-05 8.228377e-06 68 15 5.727273e-05 -9.242642e-06 69 15 -6.413319e-05 1.034978e-05 70 15 7.167061e-05 -1.156616e-05 71 15 -8.000611e-05 1.291134e-05 72 15 8.928565e-05 -1.440887e-05 73 15 -9.968672e-05 1.608739e-05 74 15 0.0001114272 -1.798207e-05 75 15 -0.0001247774 2.013652e-05 76 15 0.000140076 -2.26054e-05 77 15 -0.0001577525 2.545802e-05 78 15 0.0001783582 -2.878335e-05 79 15 -0.0002026106 3.26972e-05 80 15 0.0002314578 -3.735254e-05 96 15 0.0003321804 2.101476e-05 0 16 0.0002314578 -3.735254e-05 1 16 -0.0002661734 4.295492e-05 2 16 0.0003085011 -4.978574e-05 3 16 -0.0003608797 5.823857e-05 4 16 0.0004268045 -6.887749e-05 5 16 -0.0005114288 8.253411e-05 6 16 0.0006226054 -0.0001004757 7 16 -0.0007727812 0.000124711 8 16 0.0009826448 -0.0001585787 9 16 -0.001288661 0.0002079635 10 16 0.001760065 -0.0002840383 11 16 -0.002541777 0.0004101906 12 16 0.003980742 -0.0006424099 13 16 -0.007089509 0.001144101 14 16 0.01597157 -0.002577484 15 16 -0.06393453 0.01031772 16 16 0.01356119 -0.01008311 17 16 -0.06393453 0.01031772 18 16 0.01597157 -0.002577484 19 16 -0.007089509 0.001144101 20 16 0.003980742 -0.0006424099 21 16 -0.002541777 0.0004101906 22 16 0.001760065 -0.0002840383 23 16 -0.001288661 0.0002079635 24 16 0.0009826448 -0.0001585787 25 16 -0.0007727812 0.000124711 26 16 0.0006226054 -0.0001004757 27 16 -0.0005114288 8.253411e-05 28 16 0.0004268045 -6.887749e-05 29 16 -0.0003608797 5.823857e-05 30 16 0.0003085011 -4.978574e-05 31 16 -0.0002661734 4.295492e-05 32 16 0.0002314578 -3.735254e-05 33 16 -0.0002026106 3.26972e-05 34 16 0.0001783582 -2.878335e-05 35 16 -0.0001577525 2.545802e-05 36 16 0.000140076 -2.26054e-05 37 16 -0.0001247774 2.013652e-05 38 16 0.0001114272 -1.798207e-05 39 16 -9.968672e-05 1.608739e-05 40 16 8.928565e-05 -1.440887e-05 41 16 -8.000611e-05 1.291134e-05 42 16 7.167061e-05 -1.156616e-05 43 16 -6.413319e-05 1.034978e-05 44 16 5.727273e-05 -9.242642e-06 45 16 -5.098776e-05 8.228377e-06 46 16 4.519256e-05 -7.293151e-06 47 16 -3.981401e-05 6.425164e-06 48 16 3.478917e-05 -5.614257e-06 49 16 -3.00633e-05 4.851599e-06 50 16 2.558831e-05 -4.129428e-06 51 16 -2.132146e-05 3.440846e-06 52 16 1.722429e-05 -2.779647e-06 53 16 -1.326172e-05 2.14017e-06 54 16 9.401297e-06 -1.517176e-06 55 16 -5.612495e-06 9.057414e-07 56 16 1.866144e-06 -3.011573e-07 57 16 1.866144e-06 -3.011573e-07 58 16 -5.612495e-06 9.057414e-07 59 16 9.401297e-06 -1.517176e-06 60 16 -1.326172e-05 2.14017e-06 61 16 1.722429e-05 -2.779647e-06 62 16 -2.132146e-05 3.440846e-06 63 16 2.558831e-05 -4.129428e-06 64 16 -3.00633e-05 4.851599e-06 65 16 3.478917e-05 -5.614257e-06 66 16 -3.981401e-05 6.425164e-06 67 16 4.519256e-05 -7.293151e-06 68 16 -5.098776e-05 8.228377e-06 69 16 5.727273e-05 -9.242642e-06 70 16 -6.413319e-05 1.034978e-05 71 16 7.167061e-05 -1.156616e-05 72 16 -8.000611e-05 1.291134e-05 73 16 8.928565e-05 -1.440887e-05 74 16 -9.968672e-05 1.608739e-05 75 16 0.0001114272 -1.798207e-05 76 16 -0.0001247774 2.013652e-05 77 16 0.000140076 -2.26054e-05 78 16 -0.0001577525 2.545802e-05 79 16 0.0001783582 -2.878335e-05 80 16 -0.0002026106 3.26972e-05 97 16 0.0003461073 2.224268e-05 0 17 -0.0002026106 3.26972e-05 1 17 0.0002314578 -3.735254e-05 2 17 -0.0002661734 4.295492e-05 3 17 0.0003085011 -4.978574e-05 4 17 -0.0003608797 5.823857e-05 5 17 0.0004268045 -6.887749e-05 6 17 -0.0005114288 8.253411e-05 7 17 0.0006226054 -0.0001004757 8 17 -0.0007727812 0.000124711 9 17 0.0009826448 -0.0001585787 10 17 -0.001288661 0.0002079635 11 17 0.001760065 -0.0002840383 12 17 -0.002541777 0.0004101906 13 17 0.003980742 -0.0006424099 14 17 -0.007089509 0.001144101 15 17 0.01597157 -0.002577484 16 17 -0.06393453 0.01031772 17 17 0.01815487 -0.009241196 18 17 -0.06393453 0.01031772 19 17 0.01597157 -0.002577484 20 17 -0.007089509 0.001144101 21 17 0.003980742 -0.0006424099 22 17 -0.002541777 0.0004101906 23 17 0.001760065 -0.0002840383 24 17 -0.001288661 0.0002079635 25 17 0.0009826448 -0.0001585787 26 17 -0.0007727812 0.000124711 27 17 0.0006226054 -0.0001004757 28 17 -0.0005114288 8.253411e-05 29 17 0.0004268045 -6.887749e-05 30 17 -0.0003608797 5.823857e-05 31 17 0.0003085011 -4.978574e-05 32 17 -0.0002661734 4.295492e-05 33 17 0.0002314578 -3.735254e-05 34 17 -0.0002026106 3.26972e-05 35 17 0.0001783582 -2.878335e-05 36 17 -0.0001577525 2.545802e-05 37 17 0.000140076 -2.26054e-05 38 17 -0.0001247774 2.013652e-05 39 17 0.0001114272 -1.798207e-05 40 17 -9.968672e-05 1.608739e-05 41 17 8.928565e-05 -1.440887e-05 42 17 -8.000611e-05 1.291134e-05 43 17 7.167061e-05 -1.156616e-05 44 17 -6.413319e-05 1.034978e-05 45 17 5.727273e-05 -9.242642e-06 46 17 -5.098776e-05 8.228377e-06 47 17 4.519256e-05 -7.293151e-06 48 17 -3.981401e-05 6.425164e-06 49 17 3.478917e-05 -5.614257e-06 50 17 -3.00633e-05 4.851599e-06 51 17 2.558831e-05 -4.129428e-06 52 17 -2.132146e-05 3.440846e-06 53 17 1.722429e-05 -2.779647e-06 54 17 -1.326172e-05 2.14017e-06 55 17 9.401297e-06 -1.517176e-06 56 17 -5.612495e-06 9.057414e-07 57 17 1.866144e-06 -3.011573e-07 58 17 1.866144e-06 -3.011573e-07 59 17 -5.612495e-06 9.057414e-07 60 17 9.401297e-06 -1.517176e-06 61 17 -1.326172e-05 2.14017e-06 62 17 1.722429e-05 -2.779647e-06 63 17 -2.132146e-05 3.440846e-06 64 17 2.558831e-05 -4.129428e-06 65 17 -3.00633e-05 4.851599e-06 66 17 3.478917e-05 -5.614257e-06 67 17 -3.981401e-05 6.425164e-06 68 17 4.519256e-05 -7.293151e-06 69 17 -5.098776e-05 8.228377e-06 70 17 5.727273e-05 -9.242642e-06 71 17 -6.413319e-05 1.034978e-05 72 17 7.167061e-05 -1.156616e-05 73 17 -8.000611e-05 1.291134e-05 74 17 8.928565e-05 -1.440887e-05 75 17 -9.968672e-05 1.608739e-05 76 17 0.0001114272 -1.798207e-05 77 17 -0.0001247774 2.013652e-05 78 17 0.000140076 -2.26054e-05 79 17 -0.0001577525 2.545802e-05 80 17 0.0001783582 -2.878335e-05 98 17 0.0003601052 2.348264e-05 0 18 0.0001783582 -2.878335e-05 1 18 -0.0002026106 3.26972e-05 2 18 0.0002314578 -3.735254e-05 3 18 -0.0002661734 4.295492e-05 4 18 0.0003085011 -4.978574e-05 5 18 -0.0003608797 5.823857e-05 6 18 0.0004268045 -6.887749e-05 7 18 -0.0005114288 8.253411e-05 8 18 0.0006226054 -0.0001004757 9 18 -0.0007727812 0.000124711 10 18 0.0009826448 -0.0001585787 11 18 -0.001288661 0.0002079635 12 18 0.001760065 -0.0002840383 13 18 -0.002541777 0.0004101906 14 18 0.003980742 -0.0006424099 15 18 -0.007089509 0.001144101 16 18 0.01597157 -0.002577484 17 18 -0.06393453 0.01031772 18 18 0.02296699 -0.00860207 19 18 -0.06393453 0.01031772 20 18 0.01597157 -0.002577484 21 18 -0.007089509 0.001144101 22 18 0.003980742 -0.0006424099 23 18 -0.002541777 0.0004101906 24 18 0.001760065 -0.0002840383 25 18 -0.001288661 0.0002079635 26 18 0.0009826448 -0.0001585787 27 18 -0.0007727812 0.000124711 28 18 0.0006226054 -0.0001004757 29 18 -0.0005114288 8.253411e-05 30 18 0.0004268045 -6.887749e-05 31 18 -0.0003608797 5.823857e-05 32 18 0.0003085011 -4.978574e-05 33 18 -0.0002661734 4.295492e-05 34 18 0.0002314578 -3.735254e-05 35 18 -0.0002026106 3.26972e-05 36 18 0.0001783582 -2.878335e-05 37 18 -0.0001577525 2.545802e-05 38 18 0.000140076 -2.26054e-05 39 18 -0.0001247774 2.013652e-05 40 18 0.0001114272 -1.798207e-05 41 18 -9.968672e-05 1.608739e-05 42 18 8.928565e-05 -1.440887e-05 43 18 -8.000611e-05 1.291134e-05 44 18 7.167061e-05 -1.156616e-05 45 18 -6.413319e-05 1.034978e-05 46 18 5.727273e-05 -9.242642e-06 47 18 -5.098776e-05 8.228377e-06 48 18 4.519256e-05 -7.293151e-06 49 18 -3.981401e-05 6.425164e-06 50 18 3.478917e-05 -5.614257e-06 51 18 -3.00633e-05 4.851599e-06 52 18 2.558831e-05 -4.129428e-06 53 18 -2.132146e-05 3.440846e-06 54 18 1.722429e-05 -2.779647e-06 55 18 -1.326172e-05 2.14017e-06 56 18 9.401297e-06 -1.517176e-06 57 18 -5.612495e-06 9.057414e-07 58 18 1.866144e-06 -3.011573e-07 59 18 1.866144e-06 -3.011573e-07 60 18 -5.612495e-06 9.057414e-07 61 18 9.401297e-06 -1.517176e-06 62 18 -1.326172e-05 2.14017e-06 63 18 1.722429e-05 -2.779647e-06 64 18 -2.132146e-05 3.440846e-06 65 18 2.558831e-05 -4.129428e-06 66 18 -3.00633e-05 4.851599e-06 67 18 3.478917e-05 -5.614257e-06 68 18 -3.981401e-05 6.425164e-06 69 18 4.519256e-05 -7.293151e-06 70 18 -5.098776e-05 8.228377e-06 71 18 5.727273e-05 -9.242642e-06 72 18 -6.413319e-05 1.034978e-05 73 18 7.167061e-05 -1.156616e-05 74 18 -8.000611e-05 1.291134e-05 75 18 8.928565e-05 -1.440887e-05 76 18 -9.968672e-05 1.608739e-05 77 18 0.0001114272 -1.798207e-05 78 18 -0.0001247774 2.013652e-05 79 18 0.000140076 -2.26054e-05 80 18 -0.0001577525 2.545802e-05 99 18 0.0003741744 2.473473e-05 0 19 -0.0001577525 2.545802e-05 1 19 0.0001783582 -2.878335e-05 2 19 -0.0002026106 3.26972e-05 3 19 0.0002314578 -3.735254e-05 4 19 -0.0002661734 4.295492e-05 5 19 0.0003085011 -4.978574e-05 6 19 -0.0003608797 5.823857e-05 7 19 0.0004268045 -6.887749e-05 8 19 -0.0005114288 8.253411e-05 9 19 0.0006226054 -0.0001004757 10 19 -0.0007727812 0.000124711 11 19 0.0009826448 -0.0001585787 12 19 -0.001288661 0.0002079635 13 19 0.001760065 -0.0002840383 14 19 -0.002541777 0.0004101906 15 19 0.003980742 -0.0006424099 16 19 -0.007089509 0.001144101 17 19 0.01597157 -0.002577484 18 19 -0.06393453 0.01031772 19 19 0.02787009 -0.008140449 20 19 -0.06393453 0.01031772 21 19 0.01597157 -0.002577484 22 19 -0.007089509 0.001144101 23 19 0.003980742 -0.0006424099 24 19 -0.002541777 0.0004101906 25 19 0.001760065 -0.0002840383 26 19 -0.001288661 0.0002079635 27 19 0.0009826448 -0.0001585787 28 19 -0.0007727812 0.000124711 29 19 0.0006226054 -0.0001004757 30 19 -0.0005114288 8.253411e-05 31 19 0.0004268045 -6.887749e-05 32 19 -0.0003608797 5.823857e-05 33 19 0.0003085011 -4.978574e-05 34 19 -0.0002661734 4.295492e-05 35 19 0.0002314578 -3.735254e-05 36 19 -0.0002026106 3.26972e-05 37 19 0.0001783582 -2.878335e-05 38 19 -0.0001577525 2.545802e-05 39 19 0.000140076 -2.26054e-05 40 19 -0.0001247774 2.013652e-05 41 19 0.0001114272 -1.798207e-05 42 19 -9.968672e-05 1.608739e-05 43 19 8.928565e-05 -1.440887e-05 44 19 -8.000611e-05 1.291134e-05 45 19 7.167061e-05 -1.156616e-05 46 19 -6.413319e-05 1.034978e-05 47 19 5.727273e-05 -9.242642e-06 48 19 -5.098776e-05 8.228377e-06 49 19 4.519256e-05 -7.293151e-06 50 19 -3.981401e-05 6.425164e-06 51 19 3.478917e-05 -5.614257e-06 52 19 -3.00633e-05 4.851599e-06 53 19 2.558831e-05 -4.129428e-06 54 19 -2.132146e-05 3.440846e-06 55 19 1.722429e-05 -2.779647e-06 56 19 -1.326172e-05 2.14017e-06 57 19 9.401297e-06 -1.517176e-06 58 19 -5.612495e-06 9.057414e-07 59 19 1.866144e-06 -3.011573e-07 60 19 1.866144e-06 -3.011573e-07 61 19 -5.612495e-06 9.057414e-07 62 19 9.401297e-06 -1.517176e-06 63 19 -1.326172e-05 2.14017e-06 64 19 1.722429e-05 -2.779647e-06 65 19 -2.132146e-05 3.440846e-06 66 19 2.558831e-05 -4.129428e-06 67 19 -3.00633e-05 4.851599e-06 68 19 3.478917e-05 -5.614257e-06 69 19 -3.981401e-05 6.425164e-06 70 19 4.519256e-05 -7.293151e-06 71 19 -5.098776e-05 8.228377e-06 72 19 5.727273e-05 -9.242642e-06 73 19 -6.413319e-05 1.034978e-05 74 19 7.167061e-05 -1.156616e-05 75 19 -8.000611e-05 1.291134e-05 76 19 8.928565e-05 -1.440887e-05 77 19 -9.968672e-05 1.608739e-05 78 19 0.0001114272 -1.798207e-05 79 19 -0.0001247774 2.013652e-05 80 19 0.000140076 -2.26054e-05 100 19 0.0003883153 2.599905e-05 0 20 0.000140076 -2.26054e-05 1 20 -0.0001577525 2.545802e-05 2 20 0.0001783582 -2.878335e-05 3 20 -0.0002026106 3.26972e-05 4 20 0.0002314578 -3.735254e-05 5 20 -0.0002661734 4.295492e-05 6 20 0.0003085011 -4.978574e-05 7 20 -0.0003608797 5.823857e-05 8 20 0.0004268045 -6.887749e-05 9 20 -0.0005114288 8.253411e-05 10 20 0.0006226054 -0.0001004757 11 20 -0.0007727812 0.000124711 12 20 0.0009826448 -0.0001585787 13 20 -0.001288661 0.0002079635 14 20 0.001760065 -0.0002840383 15 20 -0.002541777 0.0004101906 16 20 0.003980742 -0.0006424099 17 20 -0.007089509 0.001144101 18 20 0.01597157 -0.002577484 19 20 -0.06393453 0.01031772 20 20 0.03276642 -0.007832596 21 20 -0.06393453 0.01031772 22 20 0.01597157 -0.002577484 23 20 -0.007089509 0.001144101 24 20 0.003980742 -0.0006424099 25 20 -0.002541777 0.0004101906 26 20 0.001760065 -0.0002840383 27 20 -0.001288661 0.0002079635 28 20 0.0009826448 -0.0001585787 29 20 -0.0007727812 0.000124711 30 20 0.0006226054 -0.0001004757 31 20 -0.0005114288 8.253411e-05 32 20 0.0004268045 -6.887749e-05 33 20 -0.0003608797 5.823857e-05 34 20 0.0003085011 -4.978574e-05 35 20 -0.0002661734 4.295492e-05 36 20 0.0002314578 -3.735254e-05 37 20 -0.0002026106 3.26972e-05 38 20 0.0001783582 -2.878335e-05 39 20 -0.0001577525 2.545802e-05 40 20 0.000140076 -2.26054e-05 41 20 -0.0001247774 2.013652e-05 42 20 0.0001114272 -1.798207e-05 43 20 -9.968672e-05 1.608739e-05 44 20 8.928565e-05 -1.440887e-05 45 20 -8.000611e-05 1.291134e-05 46 20 7.167061e-05 -1.156616e-05 47 20 -6.413319e-05 1.034978e-05 48 20 5.727273e-05 -9.242642e-06 49 20 -5.098776e-05 8.228377e-06 50 20 4.519256e-05 -7.293151e-06 51 20 -3.981401e-05 6.425164e-06 52 20 3.478917e-05 -5.614257e-06 53 20 -3.00633e-05 4.851599e-06 54 20 2.558831e-05 -4.129428e-06 55 20 -2.132146e-05 3.440846e-06 56 20 1.722429e-05 -2.779647e-06 57 20 -1.326172e-05 2.14017e-06 58 20 9.401297e-06 -1.517176e-06 59 20 -5.612495e-06 9.057414e-07 60 20 1.866144e-06 -3.011573e-07 61 20 1.866144e-06 -3.011573e-07 62 20 -5.612495e-06 9.057414e-07 63 20 9.401297e-06 -1.517176e-06 64 20 -1.326172e-05 2.14017e-06 65 20 1.722429e-05 -2.779647e-06 66 20 -2.132146e-05 3.440846e-06 67 20 2.558831e-05 -4.129428e-06 68 20 -3.00633e-05 4.851599e-06 69 20 3.478917e-05 -5.614257e-06 70 20 -3.981401e-05 6.425164e-06 71 20 4.519256e-05 -7.293151e-06 72 20 -5.098776e-05 8.228377e-06 73 20 5.727273e-05 -9.242642e-06 74 20 -6.413319e-05 1.034978e-05 75 20 7.167061e-05 -1.156616e-05 76 20 -8.000611e-05 1.291134e-05 77 20 8.928565e-05 -1.440887e-05 78 20 -9.968672e-05 1.608739e-05 79 20 0.0001114272 -1.798207e-05 80 20 -0.0001247774 2.013652e-05 101 20 0.0004025281 2.727568e-05 0 21 -0.0001247774 2.013652e-05 1 21 0.000140076 -2.26054e-05 2 21 -0.0001577525 2.545802e-05 3 21 0.0001783582 -2.878335e-05 4 21 -0.0002026106 3.26972e-05 5 21 0.0002314578 -3.735254e-05 6 21 -0.0002661734 4.295492e-05 7 21 0.0003085011 -4.978574e-05 8 21 -0.0003608797 5.823857e-05 9 21 0.0004268045 -6.887749e-05 10 21 -0.0005114288 8.253411e-05 11 21 0.0006226054 -0.0001004757 12 21 -0.0007727812 0.000124711 13 21 0.0009826448 -0.0001585787 14 21 -0.001288661 0.0002079635 15 21 0.001760065 -0.0002840383 16 21 -0.002541777 0.0004101906 17 21 0.003980742 -0.0006424099 18 21 -0.007089509 0.001144101 19 21 0.01597157 -0.002577484 20 21 -0.06393453 0.01031772 21 21 0.03758223 -0.007656581 22 21 -0.06393453 0.01031772 23 21 0.01597157 -0.002577484 24 21 -0.007089509 0.001144101 25 21 0.003980742 -0.0006424099 26 21 -0.002541777 0.0004101906 27 21 0.001760065 -0.0002840383 28 21 -0.001288661 0.0002079635 29 21 0.0009826448 -0.0001585787 30 21 -0.0007727812 0.000124711 31 21 0.0006226054 -0.0001004757 32 21 -0.0005114288 8.253411e-05 33 21 0.0004268045 -6.887749e-05 34 21 -0.0003608797 5.823857e-05 35 21 0.0003085011 -4.978574e-05 36 21 -0.0002661734 4.295492e-05 37 21 0.0002314578 -3.735254e-05 38 21 -0.0002026106 3.26972e-05 39 21 0.0001783582 -2.878335e-05 40 21 -0.0001577525 2.545802e-05 41 21 0.000140076 -2.26054e-05 42 21 -0.0001247774 2.013652e-05 43 21 0.0001114272 -1.798207e-05 44 21 -9.968672e-05 1.608739e-05 45 21 8.928565e-05 -1.440887e-05 46 21 -8.000611e-05 1.291134e-05 47 21 7.167061e-05 -1.156616e-05 48 21 -6.413319e-05 1.034978e-05 49 21 5.727273e-05 -9.242642e-06 50 21 -5.098776e-05 8.228377e-06 51 21 4.519256e-05 -7.293151e-06 52 21 -3.981401e-05 6.425164e-06 53 21 3.478917e-05 -5.614257e-06 54 21 -3.00633e-05 4.851599e-06 55 21 2.558831e-05 -4.129428e-06 56 21 -2.132146e-05 3.440846e-06 57 21 1.722429e-05 -2.779647e-06 58 21 -1.326172e-05 2.14017e-06 59 21 9.401297e-06 -1.517176e-06 60 21 -5.612495e-06 9.057414e-07 61 21 1.866144e-06 -3.011573e-07 62 21 1.866144e-06 -3.011573e-07 63 21 -5.612495e-06 9.057414e-07 64 21 9.401297e-06 -1.517176e-06 65 21 -1.326172e-05 2.14017e-06 66 21 1.722429e-05 -2.779647e-06 67 21 -2.132146e-05 3.440846e-06 68 21 2.558831e-05 -4.129428e-06 69 21 -3.00633e-05 4.851599e-06 70 21 3.478917e-05 -5.614257e-06 71 21 -3.981401e-05 6.425164e-06 72 21 4.519256e-05 -7.293151e-06 73 21 -5.098776e-05 8.228377e-06 74 21 5.727273e-05 -9.242642e-06 75 21 -6.413319e-05 1.034978e-05 76 21 7.167061e-05 -1.156616e-05 77 21 -8.000611e-05 1.291134e-05 78 21 8.928565e-05 -1.440887e-05 79 21 -9.968672e-05 1.608739e-05 80 21 0.0001114272 -1.798207e-05 102 21 0.0004168134 2.856472e-05 0 22 0.0001114272 -1.798207e-05 1 22 -0.0001247774 2.013652e-05 2 22 0.000140076 -2.26054e-05 3 22 -0.0001577525 2.545802e-05 4 22 0.0001783582 -2.878335e-05 5 22 -0.0002026106 3.26972e-05 6 22 0.0002314578 -3.735254e-05 7 22 -0.0002661734 4.295492e-05 8 22 0.0003085011 -4.978574e-05 9 22 -0.0003608797 5.823857e-05 10 22 0.0004268045 -6.887749e-05 11 22 -0.0005114288 8.253411e-05 12 22 0.0006226054 -0.0001004757 13 22 -0.0007727812 0.000124711 14 22 0.0009826448 -0.0001585787 15 22 -0.001288661 0.0002079635 16 22 0.001760065 -0.0002840383 17 22 -0.002541777 0.0004101906 18 22 0.003980742 -0.0006424099 19 22 -0.007089509 0.001144101 20 22 0.01597157 -0.002577484 21 22 -0.06393453 0.01031772 22 22 0.04226301 -0.007592411 23 22 -0.06393453 0.01031772 24 22 0.01597157 -0.002577484 25 22 -0.007089509 0.001144101 26 22 0.003980742 -0.0006424099 27 22 -0.002541777 0.0004101906 28 22 0.001760065 -0.0002840383 29 22 -0.001288661 0.0002079635 30 22 0.0009826448 -0.0001585787 31 22 -0.0007727812 0.000124711 32 22 0.0006226054 -0.0001004757 33 22 -0.0005114288 8.253411e-05 34 22 0.0004268045 -6.887749e-05 35 22 -0.0003608797 5.823857e-05 36 22 0.0003085011 -4.978574e-05 37 22 -0.0002661734 4.295492e-05 38 22 0.0002314578 -3.735254e-05 39 22 -0.0002026106 3.26972e-05 40 22 0.0001783582 -2.878335e-05 41 22 -0.0001577525 2.545802e-05 42 22 0.000140076 -2.26054e-05 43 22 -0.0001247774 2.013652e-05 44 22 0.0001114272 -1.798207e-05 45 22 -9.968672e-05 1.608739e-05 46 22 8.928565e-05 -1.440887e-05 47 22 -8.000611e-05 1.291134e-05 48 22 7.167061e-05 -1.156616e-05 49 22 -6.413319e-05 1.034978e-05 50 22 5.727273e-05 -9.242642e-06 51 22 -5.098776e-05 8.228377e-06 52 22 4.519256e-05 -7.293151e-06 53 22 -3.981401e-05 6.425164e-06 54 22 3.478917e-05 -5.614257e-06 55 22 -3.00633e-05 4.851599e-06 56 22 2.558831e-05 -4.129428e-06 57 22 -2.132146e-05 3.440846e-06 58 22 1.722429e-05 -2.779647e-06 59 22 -1.326172e-05 2.14017e-06 60 22 9.401297e-06 -1.517176e-06 61 22 -5.612495e-06 9.057414e-07 62 22 1.866144e-06 -3.011573e-07 63 22 1.866144e-06 -3.011573e-07 64 22 -5.612495e-06 9.057414e-07 65 22 9.401297e-06 -1.517176e-06 66 22 -1.326172e-05 2.14017e-06 67 22 1.722429e-05 -2.779647e-06 68 22 -2.132146e-05 3.440846e-06 69 22 2.558831e-05 -4.129428e-06 70 22 -3.00633e-05 4.851599e-06 71 22 3.478917e-05 -5.614257e-06 72 22 -3.981401e-05 6.425164e-06 73 22 4.519256e-05 -7.293151e-06 74 22 -5.098776e-05 8.228377e-06 75 22 5.727273e-05 -9.242642e-06 76 22 -6.413319e-05 1.034978e-05 77 22 7.167061e-05 -1.156616e-05 78 22 -8.000611e-05 1.291134e-05 79 22 8.928565e-05 -1.440887e-05 80 22 -9.968672e-05 1.608739e-05 103 22 0.0004311714 2.986627e-05 0 23 -9.968672e-05 1.608739e-05 1 23 0.0001114272 -1.798207e-05 2 23 -0.0001247774 2.013652e-05 3 23 0.000140076 -2.26054e-05 4 23 -0.0001577525 2.545802e-05 5 23 0.0001783582 -2.878335e-05 6 23 -0.0002026106 3.26972e-05 7 23 0.0002314578 -3.735254e-05 8 23 -0.0002661734 4.295492e-05 9 23 0.0003085011 -4.978574e-05 10 23 -0.0003608797 5.823857e-05 11 23 0.0004268045 -6.887749e-05 12 23 -0.0005114288 8.253411e-05 13 23 0.0006226054 -0.0001004757 14 23 -0.0007727812 0.000124711 15 23 0.0009826448 -0.0001585787 16 23 -0.001288661 0.0002079635 17 23 0.001760065 -0.0002840383 18 23 -0.002541777 0.0004101906 19 23 0.003980742 -0.0006424099 20 23 -0.007089509 0.001144101 21 23 0.01597157 -0.002577484 22 23 -0.06393453 0.01031772 23 23 0.04676966 -0.007622058 24 23 -0.06393453 0.01031772 25 23 0.01597157 -0.002577484 26 23 -0.007089509 0.001144101 27 23 0.003980742 -0.0006424099 28 23 -0.002541777 0.0004101906 29 23 0.001760065 -0.0002840383 30 23 -0.001288661 0.0002079635 31 23 0.0009826448 -0.0001585787 32 23 -0.0007727812 0.000124711 33 23 0.0006226054 -0.0001004757 34 23 -0.0005114288 8.253411e-05 35 23 0.0004268045 -6.887749e-05 36 23 -0.0003608797 5.823857e-05 37 23 0.0003085011 -4.978574e-05 38 23 -0.0002661734 4.295492e-05 39 23 0.0002314578 -3.735254e-05 40 23 -0.0002026106 3.26972e-05 41 23 0.0001783582 -2.878335e-05 42 23 -0.0001577525 2.545802e-05 43 23 0.000140076 -2.26054e-05 44 23 -0.0001247774 2.013652e-05 45 23 0.0001114272 -1.798207e-05 46 23 -9.968672e-05 1.608739e-05 47 23 8.928565e-05 -1.440887e-05 48 23 -8.000611e-05 1.291134e-05 49 23 7.167061e-05 -1.156616e-05 50 23 -6.413319e-05 1.034978e-05 51 23 5.727273e-05 -9.242642e-06 52 23 -5.098776e-05 8.228377e-06 53 23 4.519256e-05 -7.293151e-06 54 23 -3.981401e-05 6.425164e-06 55 23 3.478917e-05 -5.614257e-06 56 23 -3.00633e-05 4.851599e-06 57 23 2.558831e-05 -4.129428e-06 58 23 -2.132146e-05 3.440846e-06 59 23 1.722429e-05 -2.779647e-06 60 23 -1.326172e-05 2.14017e-06 61 23 9.401297e-06 -1.517176e-06 62 23 -5.612495e-06 9.057414e-07 63 23 1.866144e-06 -3.011573e-07 64 23 1.866144e-06 -3.011573e-07 65 23 -5.612495e-06 9.057414e-07 66 23 9.401297e-06 -1.517176e-06 67 23 -1.326172e-05 2.14017e-06 68 23 1.722429e-05 -2.779647e-06 69 23 -2.132146e-05 3.440846e-06 70 23 2.558831e-05 -4.129428e-06 71 23 -3.00633e-05 4.851599e-06 72 23 3.478917e-05 -5.614257e-06 73 23 -3.981401e-05 6.425164e-06 74 23 4.519256e-05 -7.293151e-06 75 23 -5.098776e-05 8.228377e-06 76 23 5.727273e-05 -9.242642e-06 77 23 -6.413319e-05 1.034978e-05 78 23 7.167061e-05 -1.156616e-05 79 23 -8.000611e-05 1.291134e-05 80 23 8.928565e-05 -1.440887e-05 104 23 0.0004456025 3.118041e-05 0 24 8.928565e-05 -1.440887e-05 1 24 -9.968672e-05 1.608739e-05 2 24 0.0001114272 -1.798207e-05 3 24 -0.0001247774 2.013652e-05 4 24 0.000140076 -2.26054e-05 5 24 -0.0001577525 2.545802e-05 6 24 0.0001783582 -2.878335e-05 7 24 -0.0002026106 3.26972e-05 8 24 0.0002314578 -3.735254e-05 9 24 -0.0002661734 4.295492e-05 10 24 0.0003085011 -4.978574e-05 11 24 -0.0003608797 5.823857e-05 12 24 0.0004268045 -6.887749e-05 13 24 -0.0005114288 8.253411e-05 14 24 0.0006226054 -0.0001004757 15 24 -0.0007727812 0.000124711 16 24 0.0009826448 -0.0001585787 17 24 -0.001288661 0.0002079635 18 24 0.001760065 -0.0002840383 19 24 -0.002541777 0.0004101906 20 24 0.003980742 -0.0006424099 21 24 -0.007089509 0.001144101 22 24 0.01597157 -0.002577484 23 24 -0.06393453 0.01031772 24 24 0.05107531 -0.007729427 25 24 -0.06393453 0.01031772 26 24 0.01597157 -0.002577484 27 24 -0.007089509 0.001144101 28 24 0.003980742 -0.0006424099 29 24 -0.002541777 0.0004101906 30 24 0.001760065 -0.0002840383 31 24 -0.001288661 0.0002079635 32 24 0.0009826448 -0.0001585787 33 24 -0.0007727812 0.000124711 34 24 0.0006226054 -0.0001004757 35 24 -0.0005114288 8.253411e-05 36 24 0.0004268045 -6.887749e-05 37 24 -0.0003608797 5.823857e-05 38 24 0.0003085011 -4.978574e-05 39 24 -0.0002661734 4.295492e-05 40 24 0.0002314578 -3.735254e-05 41 24 -0.0002026106 3.26972e-05 42 24 0.0001783582 -2.878335e-05 43 24 -0.0001577525 2.545802e-05 44 24 0.000140076 -2.26054e-05 45 24 -0.0001247774 2.013652e-05 46 24 0.0001114272 -1.798207e-05 47 24 -9.968672e-05 1.608739e-05 48 24 8.928565e-05 -1.440887e-05 49 24 -8.000611e-05 1.291134e-05 50 24 7.167061e-05 -1.156616e-05 51 24 -6.413319e-05 1.034978e-05 52 24 5.727273e-05 -9.242642e-06 53 24 -5.098776e-05 8.228377e-06 54 24 4.519256e-05 -7.293151e-06 55 24 -3.981401e-05 6.425164e-06 56 24 3.478917e-05 -5.614257e-06 57 24 -3.00633e-05 4.851599e-06 58 24 2.558831e-05 -4.129428e-06 59 24 -2.132146e-05 3.440846e-06 60 24 1.722429e-05 -2.779647e-06 61 24 -1.326172e-05 2.14017e-06 62 24 9.401297e-06 -1.517176e-06 63 24 -5.612495e-06 9.057414e-07 64 24 1.866144e-06 -3.011573e-07 65 24 1.866144e-06 -3.011573e-07 66 24 -5.612495e-06 9.057414e-07 67 24 9.401297e-06 -1.517176e-06 68 24 -1.326172e-05 2.14017e-06 69 24 1.722429e-05 -2.779647e-06 70 24 -2.132146e-05 3.440846e-06 71 24 2.558831e-05 -4.129428e-06 72 24 -3.00633e-05 4.851599e-06 73 24 3.478917e-05 -5.614257e-06 74 24 -3.981401e-05 6.425164e-06 75 24 4.519256e-05 -7.293151e-06 76 24 -5.098776e-05 8.228377e-06 77 24 5.727273e-05 -9.242642e-06 78 24 -6.413319e-05 1.034978e-05 79 24 7.167061e-05 -1.156616e-05 80 24 -8.000611e-05 1.291134e-05 105 24 0.0004601072 3.250725e-05 0 25 -8.000611e-05 1.291134e-05 1 25 8.928565e-05 -1.440887e-05 2 25 -9.968672e-05 1.608739e-05 3 25 0.0001114272 -1.798207e-05 4 25 -0.0001247774 2.013652e-05 5 25 0.000140076 -2.26054e-05 6 25 -0.0001577525 2.545802e-05 7 25 0.0001783582 -2.878335e-05 8 25 -0.0002026106 3.26972e-05 9 25 0.0002314578 -3.735254e-05 10 25 -0.0002661734 4.295492e-05 11 25 0.0003085011 -4.978574e-05 12 25 -0.0003608797 5.823857e-05 13 25 0.0004268045 -6.887749e-05 14 25 -0.0005114288 8.253411e-05 15 25 0.0006226054 -0.0001004757 16 25 -0.0007727812 0.000124711 17 25 0.0009826448 -0.0001585787 18 25 -0.001288661 0.0002079635 19 25 0.001760065 -0.0002840383 20 25 -0.002541777 0.0004101906 21 25 0.003980742 -0.0006424099 22 25 -0.007089509 0.001144101 23 25 0.01597157 -0.002577484 24 25 -0.06393453 0.01031772 25 25 0.05516275 -0.007900271 26 25 -0.06393453 0.01031772 27 25 0.01597157 -0.002577484 28 25 -0.007089509 0.001144101 29 25 0.003980742 -0.0006424099 30 25 -0.002541777 0.0004101906 31 25 0.001760065 -0.0002840383 32 25 -0.001288661 0.0002079635 33 25 0.0009826448 -0.0001585787 34 25 -0.0007727812 0.000124711 35 25 0.0006226054 -0.0001004757 36 25 -0.0005114288 8.253411e-05 37 25 0.0004268045 -6.887749e-05 38 25 -0.0003608797 5.823857e-05 39 25 0.0003085011 -4.978574e-05 40 25 -0.0002661734 4.295492e-05 41 25 0.0002314578 -3.735254e-05 42 25 -0.0002026106 3.26972e-05 43 25 0.0001783582 -2.878335e-05 44 25 -0.0001577525 2.545802e-05 45 25 0.000140076 -2.26054e-05 46 25 -0.0001247774 2.013652e-05 47 25 0.0001114272 -1.798207e-05 48 25 -9.968672e-05 1.608739e-05 49 25 8.928565e-05 -1.440887e-05 50 25 -8.000611e-05 1.291134e-05 51 25 7.167061e-05 -1.156616e-05 52 25 -6.413319e-05 1.034978e-05 53 25 5.727273e-05 -9.242642e-06 54 25 -5.098776e-05 8.228377e-06 55 25 4.519256e-05 -7.293151e-06 56 25 -3.981401e-05 6.425164e-06 57 25 3.478917e-05 -5.614257e-06 58 25 -3.00633e-05 4.851599e-06 59 25 2.558831e-05 -4.129428e-06 60 25 -2.132146e-05 3.440846e-06 61 25 1.722429e-05 -2.779647e-06 62 25 -1.326172e-05 2.14017e-06 63 25 9.401297e-06 -1.517176e-06 64 25 -5.612495e-06 9.057414e-07 65 25 1.866144e-06 -3.011573e-07 66 25 1.866144e-06 -3.011573e-07 67 25 -5.612495e-06 9.057414e-07 68 25 9.401297e-06 -1.517176e-06 69 25 -1.326172e-05 2.14017e-06 70 25 1.722429e-05 -2.779647e-06 71 25 -2.132146e-05 3.440846e-06 72 25 2.558831e-05 -4.129428e-06 73 25 -3.00633e-05 4.851599e-06 74 25 3.478917e-05 -5.614257e-06 75 25 -3.981401e-05 6.425164e-06 76 25 4.519256e-05 -7.293151e-06 77 25 -5.098776e-05 8.228377e-06 78 25 5.727273e-05 -9.242642e-06 79 25 -6.413319e-05 1.034978e-05 80 25 7.167061e-05 -1.156616e-05 106 25 0.0004746856 3.384687e-05 0 26 7.167061e-05 -1.156616e-05 1 26 -8.000611e-05 1.291134e-05 2 26 8.928565e-05 -1.440887e-05 3 26 -9.968672e-05 1.608739e-05 4 26 0.0001114272 -1.798207e-05 5 26 -0.0001247774 2.013652e-05 6 26 0.000140076 -2.26054e-05 7 26 -0.0001577525 2.545802e-05 8 26 0.0001783582 -2.878335e-05 9 26 -0.0002026106 3.26972e-05 10 26 0.0002314578 -3.735254e-05 11 26 -0.0002661734 4.295492e-05 12 26 0.0003085011 -4.978574e-05 13 26 -0.0003608797 5.823857e-05 14 26 0.0004268045 -6.887749e-05 15 26 -0.0005114288 8.253411e-05 16 26 0.0006226054 -0.0001004757 17 26 -0.0007727812 0.000124711 18 26 0.0009826448 -0.0001585787 19 26 -0.001288661 0.0002079635 20 26 0.001760065 -0.0002840383 21 26 -0.002541777 0.0004101906 22 26 0.003980742 -0.0006424099 23 26 -0.007089509 0.001144101 24 26 0.01597157 -0.002577484 25 26 -0.06393453 0.01031772 26 26 0.05902236 -0.008122077 27 26 -0.06393453 0.01031772 28 26 0.01597157 -0.002577484 29 26 -0.007089509 0.001144101 30 26 0.003980742 -0.0006424099 31 26 -0.002541777 0.0004101906 32 26 0.001760065 -0.0002840383 33 26 -0.001288661 0.0002079635 34 26 0.0009826448 -0.0001585787 35 26 -0.0007727812 0.000124711 36 26 0.0006226054 -0.0001004757 37 26 -0.0005114288 8.253411e-05 38 26 0.0004268045 -6.887749e-05 39 26 -0.0003608797 5.823857e-05 40 26 0.0003085011 -4.978574e-05 41 26 -0.0002661734 4.295492e-05 42 26 0.0002314578 -3.735254e-05 43 26 -0.0002026106 3.26972e-05 44 26 0.0001783582 -2.878335e-05 45 26 -0.0001577525 2.545802e-05 46 26 0.000140076 -2.26054e-05 47 26 -0.0001247774 2.013652e-05 48 26 0.0001114272 -1.798207e-05 49 26 -9.968672e-05 1.608739e-05 50 26 8.928565e-05 -1.440887e-05 51 26 -8.000611e-05 1.291134e-05 52 26 7.167061e-05 -1.156616e-05 53 26 -6.413319e-05 1.034978e-05 54 26 5.727273e-05 -9.242642e-06 55 26 -5.098776e-05 8.228377e-06 56 26 4.519256e-05 -7.293151e-06 57 26 -3.981401e-05 6.425164e-06 58 26 3.478917e-05 -5.614257e-06 59 26 -3.00633e-05 4.851599e-06 60 26 2.558831e-05 -4.129428e-06 61 26 -2.132146e-05 3.440846e-06 62 26 1.722429e-05 -2.779647e-06 63 26 -1.326172e-05 2.14017e-06 64 26 9.401297e-06 -1.517176e-06 65 26 -5.612495e-06 9.057414e-07 66 26 1.866144e-06 -3.011573e-07 67 26 1.866144e-06 -3.011573e-07 68 26 -5.612495e-06 9.057414e-07 69 26 9.401297e-06 -1.517176e-06 70 26 -1.326172e-05 2.14017e-06 71 26 1.722429e-05 -2.779647e-06 72 26 -2.132146e-05 3.440846e-06 73 26 2.558831e-05 -4.129428e-06 74 26 -3.00633e-05 4.851599e-06 75 26 3.478917e-05 -5.614257e-06 76 26 -3.981401e-05 6.425164e-06 77 26 4.519256e-05 -7.293151e-06 78 26 -5.098776e-05 8.228377e-06 79 26 5.727273e-05 -9.242642e-06 80 26 -6.413319e-05 1.034978e-05 107 26 0.0004893383 3.519938e-05 0 27 -6.413319e-05 1.034978e-05 1 27 7.167061e-05 -1.156616e-05 2 27 -8.000611e-05 1.291134e-05 3 27 8.928565e-05 -1.440887e-05 4 27 -9.968672e-05 1.608739e-05 5 27 0.0001114272 -1.798207e-05 6 27 -0.0001247774 2.013652e-05 7 27 0.000140076 -2.26054e-05 8 27 -0.0001577525 2.545802e-05 9 27 0.0001783582 -2.878335e-05 10 27 -0.0002026106 3.26972e-05 11 27 0.0002314578 -3.735254e-05 12 27 -0.0002661734 4.295492e-05 13 27 0.0003085011 -4.978574e-05 14 27 -0.0003608797 5.823857e-05 15 27 0.0004268045 -6.887749e-05 16 27 -0.0005114288 8.253411e-05 17 27 0.0006226054 -0.0001004757 18 27 -0.0007727812 0.000124711 19 27 0.0009826448 -0.0001585787 20 27 -0.001288661 0.0002079635 21 27 0.001760065 -0.0002840383 22 27 -0.002541777 0.0004101906 23 27 0.003980742 -0.0006424099 24 27 -0.007089509 0.001144101 25 27 0.01597157 -0.002577484 26 27 -0.06393453 0.01031772 27 27 0.06265036 -0.008383944 28 27 -0.06393453 0.01031772 29 27 0.01597157 -0.002577484 30 27 -0.007089509 0.001144101 31 27 0.003980742 -0.0006424099 32 27 -0.002541777 0.0004101906 33 27 0.001760065 -0.0002840383 34 27 -0.001288661 0.0002079635 35 27 0.0009826448 -0.0001585787 36 27 -0.0007727812 0.000124711 37 27 0.0006226054 -0.0001004757 38 27 -0.0005114288 8.253411e-05 39 27 0.0004268045 -6.887749e-05 40 27 -0.0003608797 5.823857e-05 41 27 0.0003085011 -4.978574e-05 42 27 -0.0002661734 4.295492e-05 43 27 0.0002314578 -3.735254e-05 44 27 -0.0002026106 3.26972e-05 45 27 0.0001783582 -2.878335e-05 46 27 -0.0001577525 2.545802e-05 47 27 0.000140076 -2.26054e-05 48 27 -0.0001247774 2.013652e-05 49 27 0.0001114272 -1.798207e-05 50 27 -9.968672e-05 1.608739e-05 51 27 8.928565e-05 -1.440887e-05 52 27 -8.000611e-05 1.291134e-05 53 27 7.167061e-05 -1.156616e-05 54 27 -6.413319e-05 1.034978e-05 55 27 5.727273e-05 -9.242642e-06 56 27 -5.098776e-05 8.228377e-06 57 27 4.519256e-05 -7.293151e-06 58 27 -3.981401e-05 6.425164e-06 59 27 3.478917e-05 -5.614257e-06 60 27 -3.00633e-05 4.851599e-06 61 27 2.558831e-05 -4.129428e-06 62 27 -2.132146e-05 3.440846e-06 63 27 1.722429e-05 -2.779647e-06 64 27 -1.326172e-05 2.14017e-06 65 27 9.401297e-06 -1.517176e-06 66 27 -5.612495e-06 9.057414e-07 67 27 1.866144e-06 -3.011573e-07 68 27 1.866144e-06 -3.011573e-07 69 27 -5.612495e-06 9.057414e-07 70 27 9.401297e-06 -1.517176e-06 71 27 -1.326172e-05 2.14017e-06 72 27 1.722429e-05 -2.779647e-06 73 27 -2.132146e-05 3.440846e-06 74 27 2.558831e-05 -4.129428e-06 75 27 -3.00633e-05 4.851599e-06 76 27 3.478917e-05 -5.614257e-06 77 27 -3.981401e-05 6.425164e-06 78 27 4.519256e-05 -7.293151e-06 79 27 -5.098776e-05 8.228377e-06 80 27 5.727273e-05 -9.242642e-06 108 27 0.0005040657 3.656486e-05 0 28 5.727273e-05 -9.242642e-06 1 28 -6.413319e-05 1.034978e-05 2 28 7.167061e-05 -1.156616e-05 3 28 -8.000611e-05 1.291134e-05 4 28 8.928565e-05 -1.440887e-05 5 28 -9.968672e-05 1.608739e-05 6 28 0.0001114272 -1.798207e-05 7 28 -0.0001247774 2.013652e-05 8 28 0.000140076 -2.26054e-05 9 28 -0.0001577525 2.545802e-05 10 28 0.0001783582 -2.878335e-05 11 28 -0.0002026106 3.26972e-05 12 28 0.0002314578 -3.735254e-05 13 28 -0.0002661734 4.295492e-05 14 28 0.0003085011 -4.978574e-05 15 28 -0.0003608797 5.823857e-05 16 28 0.0004268045 -6.887749e-05 17 28 -0.0005114288 8.253411e-05 18 28 0.0006226054 -0.0001004757 19 28 -0.0007727812 0.000124711 20 28 0.0009826448 -0.0001585787 21 28 -0.001288661 0.0002079635 22 28 0.001760065 -0.0002840383 23 28 -0.002541777 0.0004101906 24 28 0.003980742 -0.0006424099 25 28 -0.007089509 0.001144101 26 28 0.01597157 -0.002577484 27 28 -0.06393453 0.01031772 28 28 0.06604746 -0.008676436 29 28 -0.06393453 0.01031772 30 28 0.01597157 -0.002577484 31 28 -0.007089509 0.001144101 32 28 0.003980742 -0.0006424099 33 28 -0.002541777 0.0004101906 34 28 0.001760065 -0.0002840383 35 28 -0.001288661 0.0002079635 36 28 0.0009826448 -0.0001585787 37 28 -0.0007727812 0.000124711 38 28 0.0006226054 -0.0001004757 39 28 -0.0005114288 8.253411e-05 40 28 0.0004268045 -6.887749e-05 41 28 -0.0003608797 5.823857e-05 42 28 0.0003085011 -4.978574e-05 43 28 -0.0002661734 4.295492e-05 44 28 0.0002314578 -3.735254e-05 45 28 -0.0002026106 3.26972e-05 46 28 0.0001783582 -2.878335e-05 47 28 -0.0001577525 2.545802e-05 48 28 0.000140076 -2.26054e-05 49 28 -0.0001247774 2.013652e-05 50 28 0.0001114272 -1.798207e-05 51 28 -9.968672e-05 1.608739e-05 52 28 8.928565e-05 -1.440887e-05 53 28 -8.000611e-05 1.291134e-05 54 28 7.167061e-05 -1.156616e-05 55 28 -6.413319e-05 1.034978e-05 56 28 5.727273e-05 -9.242642e-06 57 28 -5.098776e-05 8.228377e-06 58 28 4.519256e-05 -7.293151e-06 59 28 -3.981401e-05 6.425164e-06 60 28 3.478917e-05 -5.614257e-06 61 28 -3.00633e-05 4.851599e-06 62 28 2.558831e-05 -4.129428e-06 63 28 -2.132146e-05 3.440846e-06 64 28 1.722429e-05 -2.779647e-06 65 28 -1.326172e-05 2.14017e-06 66 28 9.401297e-06 -1.517176e-06 67 28 -5.612495e-06 9.057414e-07 68 28 1.866144e-06 -3.011573e-07 69 28 1.866144e-06 -3.011573e-07 70 28 -5.612495e-06 9.057414e-07 71 28 9.401297e-06 -1.517176e-06 72 28 -1.326172e-05 2.14017e-06 73 28 1.722429e-05 -2.779647e-06 74 28 -2.132146e-05 3.440846e-06 75 28 2.558831e-05 -4.129428e-06 76 28 -3.00633e-05 4.851599e-06 77 28 3.478917e-05 -5.614257e-06 78 28 -3.981401e-05 6.425164e-06 79 28 4.519256e-05 -7.293151e-06 80 28 -5.098776e-05 8.228377e-06 109 28 0.000518868 3.794342e-05 0 29 -5.098776e-05 8.228377e-06 1 29 5.727273e-05 -9.242642e-06 2 29 -6.413319e-05 1.034978e-05 3 29 7.167061e-05 -1.156616e-05 4 29 -8.000611e-05 1.291134e-05 5 29 8.928565e-05 -1.440887e-05 6 29 -9.968672e-05 1.608739e-05 7 29 0.0001114272 -1.798207e-05 8 29 -0.0001247774 2.013652e-05 9 29 0.000140076 -2.26054e-05 10 29 -0.0001577525 2.545802e-05 11 29 0.0001783582 -2.878335e-05 12 29 -0.0002026106 3.26972e-05 13 29 0.0002314578 -3.735254e-05 14 29 -0.0002661734 4.295492e-05 15 29 0.0003085011 -4.978574e-05 16 29 -0.0003608797 5.823857e-05 17 29 0.0004268045 -6.887749e-05 18 29 -0.0005114288 8.253411e-05 19 29 0.0006226054 -0.0001004757 20 29 -0.0007727812 0.000124711 21 29 0.0009826448 -0.0001585787 22 29 -0.001288661 0.0002079635 23 29 0.001760065 -0.0002840383 24 29 -0.002541777 0.0004101906 25 29 0.003980742 -0.0006424099 26 29 -0.007089509 0.001144101 27 29 0.01597157 -0.002577484 28 29 -0.06393453 0.01031772 29 29 0.06921778 -0.008991451 30 29 -0.06393453 0.01031772 31 29 0.01597157 -0.002577484 32 29 -0.007089509 0.001144101 33 29 0.003980742 -0.0006424099 34 29 -0.002541777 0.0004101906 35 29 0.001760065 -0.0002840383 36 29 -0.001288661 0.0002079635 37 29 0.0009826448 -0.0001585787 38 29 -0.0007727812 0.000124711 39 29 0.0006226054 -0.0001004757 40 29 -0.0005114288 8.253411e-05 41 29 0.0004268045 -6.887749e-05 42 29 -0.0003608797 5.823857e-05 43 29 0.0003085011 -4.978574e-05 44 29 -0.0002661734 4.295492e-05 45 29 0.0002314578 -3.735254e-05 46 29 -0.0002026106 3.26972e-05 47 29 0.0001783582 -2.878335e-05 48 29 -0.0001577525 2.545802e-05 49 29 0.000140076 -2.26054e-05 50 29 -0.0001247774 2.013652e-05 51 29 0.0001114272 -1.798207e-05 52 29 -9.968672e-05 1.608739e-05 53 29 8.928565e-05 -1.440887e-05 54 29 -8.000611e-05 1.291134e-05 55 29 7.167061e-05 -1.156616e-05 56 29 -6.413319e-05 1.034978e-05 57 29 5.727273e-05 -9.242642e-06 58 29 -5.098776e-05 8.228377e-06 59 29 4.519256e-05 -7.293151e-06 60 29 -3.981401e-05 6.425164e-06 61 29 3.478917e-05 -5.614257e-06 62 29 -3.00633e-05 4.851599e-06 63 29 2.558831e-05 -4.129428e-06 64 29 -2.132146e-05 3.440846e-06 65 29 1.722429e-05 -2.779647e-06 66 29 -1.326172e-05 2.14017e-06 67 29 9.401297e-06 -1.517176e-06 68 29 -5.612495e-06 9.057414e-07 69 29 1.866144e-06 -3.011573e-07 70 29 1.866144e-06 -3.011573e-07 71 29 -5.612495e-06 9.057414e-07 72 29 9.401297e-06 -1.517176e-06 73 29 -1.326172e-05 2.14017e-06 74 29 1.722429e-05 -2.779647e-06 75 29 -2.132146e-05 3.440846e-06 76 29 2.558831e-05 -4.129428e-06 77 29 -3.00633e-05 4.851599e-06 78 29 3.478917e-05 -5.614257e-06 79 29 -3.981401e-05 6.425164e-06 80 29 4.519256e-05 -7.293151e-06 110 29 0.0005337456 3.933516e-05 0 30 4.519256e-05 -7.293151e-06 1 30 -5.098776e-05 8.228377e-06 2 30 5.727273e-05 -9.242642e-06 3 30 -6.413319e-05 1.034978e-05 4 30 7.167061e-05 -1.156616e-05 5 30 -8.000611e-05 1.291134e-05 6 30 8.928565e-05 -1.440887e-05 7 30 -9.968672e-05 1.608739e-05 8 30 0.0001114272 -1.798207e-05 9 30 -0.0001247774 2.013652e-05 10 30 0.000140076 -2.26054e-05 11 30 -0.0001577525 2.545802e-05 12 30 0.0001783582 -2.878335e-05 13 30 -0.0002026106 3.26972e-05 14 30 0.0002314578 -3.735254e-05 15 30 -0.0002661734 4.295492e-05 16 30 0.0003085011 -4.978574e-05 17 30 -0.0003608797 5.823857e-05 18 30 0.0004268045 -6.887749e-05 19 30 -0.0005114288 8.253411e-05 20 30 0.0006226054 -0.0001004757 21 30 -0.0007727812 0.000124711 22 30 0.0009826448 -0.0001585787 23 30 -0.001288661 0.0002079635 24 30 0.001760065 -0.0002840383 25 30 -0.002541777 0.0004101906 26 30 0.003980742 -0.0006424099 27 30 -0.007089509 0.001144101 28 30 0.01597157 -0.002577484 29 30 -0.06393453 0.01031772 30 30 0.0721679 -0.009322081 31 30 -0.06393453 0.01031772 32 30 0.01597157 -0.002577484 33 30 -0.007089509 0.001144101 34 30 0.003980742 -0.0006424099 35 30 -0.002541777 0.0004101906 36 30 0.001760065 -0.0002840383 37 30 -0.001288661 0.0002079635 38 30 0.0009826448 -0.0001585787 39 30 -0.0007727812 0.000124711 40 30 0.0006226054 -0.0001004757 41 30 -0.0005114288 8.253411e-05 42 30 0.0004268045 -6.887749e-05 43 30 -0.0003608797 5.823857e-05 44 30 0.0003085011 -4.978574e-05 45 30 -0.0002661734 4.295492e-05 46 30 0.0002314578 -3.735254e-05 47 30 -0.0002026106 3.26972e-05 48 30 0.0001783582 -2.878335e-05 49 30 -0.0001577525 2.545802e-05 50 30 0.000140076 -2.26054e-05 51 30 -0.0001247774 2.013652e-05 52 30 0.0001114272 -1.798207e-05 53 30 -9.968672e-05 1.608739e-05 54 30 8.928565e-05 -1.440887e-05 55 30 -8.000611e-05 1.291134e-05 56 30 7.167061e-05 -1.156616e-05 57 30 -6.413319e-05 1.034978e-05 58 30 5.727273e-05 -9.242642e-06 59 30 -5.098776e-05 8.228377e-06 60 30 4.519256e-05 -7.293151e-06 61 30 -3.981401e-05 6.425164e-06 62 30 3.478917e-05 -5.614257e-06 63 30 -3.00633e-05 4.851599e-06 64 30 2.558831e-05 -4.129428e-06 65 30 -2.132146e-05 3.440846e-06 66 30 1.722429e-05 -2.779647e-06 67 30 -1.326172e-05 2.14017e-06 68 30 9.401297e-06 -1.517176e-06 69 30 -5.612495e-06 9.057414e-07 70 30 1.866144e-06 -3.011573e-07 71 30 1.866144e-06 -3.011573e-07 72 30 -5.612495e-06 9.057414e-07 73 30 9.401297e-06 -1.517176e-06 74 30 -1.326172e-05 2.14017e-06 75 30 1.722429e-05 -2.779647e-06 76 30 -2.132146e-05 3.440846e-06 77 30 2.558831e-05 -4.129428e-06 78 30 -3.00633e-05 4.851599e-06 79 30 3.478917e-05 -5.614257e-06 80 30 -3.981401e-05 6.425164e-06 111 30 0.0005486991 4.074018e-05 0 31 -3.981401e-05 6.425164e-06 1 31 4.519256e-05 -7.293151e-06 2 31 -5.098776e-05 8.228377e-06 3 31 5.727273e-05 -9.242642e-06 4 31 -6.413319e-05 1.034978e-05 5 31 7.167061e-05 -1.156616e-05 6 31 -8.000611e-05 1.291134e-05 7 31 8.928565e-05 -1.440887e-05 8 31 -9.968672e-05 1.608739e-05 9 31 0.0001114272 -1.798207e-05 10 31 -0.0001247774 2.013652e-05 11 31 0.000140076 -2.26054e-05 12 31 -0.0001577525 2.545802e-05 13 31 0.0001783582 -2.878335e-05 14 31 -0.0002026106 3.26972e-05 15 31 0.0002314578 -3.735254e-05 16 31 -0.0002661734 4.295492e-05 17 31 0.0003085011 -4.978574e-05 18 31 -0.0003608797 5.823857e-05 19 31 0.0004268045 -6.887749e-05 20 31 -0.0005114288 8.253411e-05 21 31 0.0006226054 -0.0001004757 22 31 -0.0007727812 0.000124711 23 31 0.0009826448 -0.0001585787 24 31 -0.001288661 0.0002079635 25 31 0.001760065 -0.0002840383 26 31 -0.002541777 0.0004101906 27 31 0.003980742 -0.0006424099 28 31 -0.007089509 0.001144101 29 31 0.01597157 -0.002577484 30 31 -0.06393453 0.01031772 31 31 0.07490619 -0.009662483 32 31 -0.06393453 0.01031772 33 31 0.01597157 -0.002577484 34 31 -0.007089509 0.001144101 35 31 0.003980742 -0.0006424099 36 31 -0.002541777 0.0004101906 37 31 0.001760065 -0.0002840383 38 31 -0.001288661 0.0002079635 39 31 0.0009826448 -0.0001585787 40 31 -0.0007727812 0.000124711 41 31 0.0006226054 -0.0001004757 42 31 -0.0005114288 8.253411e-05 43 31 0.0004268045 -6.887749e-05 44 31 -0.0003608797 5.823857e-05 45 31 0.0003085011 -4.978574e-05 46 31 -0.0002661734 4.295492e-05 47 31 0.0002314578 -3.735254e-05 48 31 -0.0002026106 3.26972e-05 49 31 0.0001783582 -2.878335e-05 50 31 -0.0001577525 2.545802e-05 51 31 0.000140076 -2.26054e-05 52 31 -0.0001247774 2.013652e-05 53 31 0.0001114272 -1.798207e-05 54 31 -9.968672e-05 1.608739e-05 55 31 8.928565e-05 -1.440887e-05 56 31 -8.000611e-05 1.291134e-05 57 31 7.167061e-05 -1.156616e-05 58 31 -6.413319e-05 1.034978e-05 59 31 5.727273e-05 -9.242642e-06 60 31 -5.098776e-05 8.228377e-06 61 31 4.519256e-05 -7.293151e-06 62 31 -3.981401e-05 6.425164e-06 63 31 3.478917e-05 -5.614257e-06 64 31 -3.00633e-05 4.851599e-06 65 31 2.558831e-05 -4.129428e-06 66 31 -2.132146e-05 3.440846e-06 67 31 1.722429e-05 -2.779647e-06 68 31 -1.326172e-05 2.14017e-06 69 31 9.401297e-06 -1.517176e-06 70 31 -5.612495e-06 9.057414e-07 71 31 1.866144e-06 -3.011573e-07 72 31 1.866144e-06 -3.011573e-07 73 31 -5.612495e-06 9.057414e-07 74 31 9.401297e-06 -1.517176e-06 75 31 -1.326172e-05 2.14017e-06 76 31 1.722429e-05 -2.779647e-06 77 31 -2.132146e-05 3.440846e-06 78 31 2.558831e-05 -4.129428e-06 79 31 -3.00633e-05 4.851599e-06 80 31 3.478917e-05 -5.614257e-06 112 31 0.0005637286 4.215856e-05 0 32 3.478917e-05 -5.614257e-06 1 32 -3.981401e-05 6.425164e-06 2 32 4.519256e-05 -7.293151e-06 3 32 -5.098776e-05 8.228377e-06 4 32 5.727273e-05 -9.242642e-06 5 32 -6.413319e-05 1.034978e-05 6 32 7.167061e-05 -1.156616e-05 7 32 -8.000611e-05 1.291134e-05 8 32 8.928565e-05 -1.440887e-05 9 32 -9.968672e-05 1.608739e-05 10 32 0.0001114272 -1.798207e-05 11 32 -0.0001247774 2.013652e-05 12 32 0.000140076 -2.26054e-05 13 32 -0.0001577525 2.545802e-05 14 32 0.0001783582 -2.878335e-05 15 32 -0.0002026106 3.26972e-05 16 32 0.0002314578 -3.735254e-05 17 32 -0.0002661734 4.295492e-05 18 32 0.0003085011 -4.978574e-05 19 32 -0.0003608797 5.823857e-05 20 32 0.0004268045 -6.887749e-05 21 32 -0.0005114288 8.253411e-05 22 32 0.0006226054 -0.0001004757 23 32 -0.0007727812 0.000124711 24 32 0.0009826448 -0.0001585787 25 32 -0.001288661 0.0002079635 26 32 0.001760065 -0.0002840383 27 32 -0.002541777 0.0004101906 28 32 0.003980742 -0.0006424099 29 32 -0.007089509 0.001144101 30 32 0.01597157 -0.002577484 31 32 -0.06393453 0.01031772 32 32 0.07744224 -0.01000776 33 32 -0.06393453 0.01031772 34 32 0.01597157 -0.002577484 35 32 -0.007089509 0.001144101 36 32 0.003980742 -0.0006424099 37 32 -0.002541777 0.0004101906 38 32 0.001760065 -0.0002840383 39 32 -0.001288661 0.0002079635 40 32 0.0009826448 -0.0001585787 41 32 -0.0007727812 0.000124711 42 32 0.0006226054 -0.0001004757 43 32 -0.0005114288 8.253411e-05 44 32 0.0004268045 -6.887749e-05 45 32 -0.0003608797 5.823857e-05 46 32 0.0003085011 -4.978574e-05 47 32 -0.0002661734 4.295492e-05 48 32 0.0002314578 -3.735254e-05 49 32 -0.0002026106 3.26972e-05 50 32 0.0001783582 -2.878335e-05 51 32 -0.0001577525 2.545802e-05 52 32 0.000140076 -2.26054e-05 53 32 -0.0001247774 2.013652e-05 54 32 0.0001114272 -1.798207e-05 55 32 -9.968672e-05 1.608739e-05 56 32 8.928565e-05 -1.440887e-05 57 32 -8.000611e-05 1.291134e-05 58 32 7.167061e-05 -1.156616e-05 59 32 -6.413319e-05 1.034978e-05 60 32 5.727273e-05 -9.242642e-06 61 32 -5.098776e-05 8.228377e-06 62 32 4.519256e-05 -7.293151e-06 63 32 -3.981401e-05 6.425164e-06 64 32 3.478917e-05 -5.614257e-06 65 32 -3.00633e-05 4.851599e-06 66 32 2.558831e-05 -4.129428e-06 67 32 -2.132146e-05 3.440846e-06 68 32 1.722429e-05 -2.779647e-06 69 32 -1.326172e-05 2.14017e-06 70 32 9.401297e-06 -1.517176e-06 71 32 -5.612495e-06 9.057414e-07 72 32 1.866144e-06 -3.011573e-07 73 32 1.866144e-06 -3.011573e-07 74 32 -5.612495e-06 9.057414e-07 75 32 9.401297e-06 -1.517176e-06 76 32 -1.326172e-05 2.14017e-06 77 32 1.722429e-05 -2.779647e-06 78 32 -2.132146e-05 3.440846e-06 79 32 2.558831e-05 -4.129428e-06 80 32 -3.00633e-05 4.851599e-06 113 32 0.0005788347 4.359042e-05 0 33 -3.00633e-05 4.851599e-06 1 33 3.478917e-05 -5.614257e-06 2 33 -3.981401e-05 6.425164e-06 3 33 4.519256e-05 -7.293151e-06 4 33 -5.098776e-05 8.228377e-06 5 33 5.727273e-05 -9.242642e-06 6 33 -6.413319e-05 1.034978e-05 7 33 7.167061e-05 -1.156616e-05 8 33 -8.000611e-05 1.291134e-05 9 33 8.928565e-05 -1.440887e-05 10 33 -9.968672e-05 1.608739e-05 11 33 0.0001114272 -1.798207e-05 12 33 -0.0001247774 2.013652e-05 13 33 0.000140076 -2.26054e-05 14 33 -0.0001577525 2.545802e-05 15 33 0.0001783582 -2.878335e-05 16 33 -0.0002026106 3.26972e-05 17 33 0.0002314578 -3.735254e-05 18 33 -0.0002661734 4.295492e-05 19 33 0.0003085011 -4.978574e-05 20 33 -0.0003608797 5.823857e-05 21 33 0.0004268045 -6.887749e-05 22 33 -0.0005114288 8.253411e-05 23 33 0.0006226054 -0.0001004757 24 33 -0.0007727812 0.000124711 25 33 0.0009826448 -0.0001585787 26 33 -0.001288661 0.0002079635 27 33 0.001760065 -0.0002840383 28 33 -0.002541777 0.0004101906 29 33 0.003980742 -0.0006424099 30 33 -0.007089509 0.001144101 31 33 0.01597157 -0.002577484 32 33 -0.06393453 0.01031772 33 33 0.07978642 -0.01035382 34 33 -0.06393453 0.01031772 35 33 0.01597157 -0.002577484 36 33 -0.007089509 0.001144101 37 33 0.003980742 -0.0006424099 38 33 -0.002541777 0.0004101906 39 33 0.001760065 -0.0002840383 40 33 -0.001288661 0.0002079635 41 33 0.0009826448 -0.0001585787 42 33 -0.0007727812 0.000124711 43 33 0.0006226054 -0.0001004757 44 33 -0.0005114288 8.253411e-05 45 33 0.0004268045 -6.887749e-05 46 33 -0.0003608797 5.823857e-05 47 33 0.0003085011 -4.978574e-05 48 33 -0.0002661734 4.295492e-05 49 33 0.0002314578 -3.735254e-05 50 33 -0.0002026106 3.26972e-05 51 33 0.0001783582 -2.878335e-05 52 33 -0.0001577525 2.545802e-05 53 33 0.000140076 -2.26054e-05 54 33 -0.0001247774 2.013652e-05 55 33 0.0001114272 -1.798207e-05 56 33 -9.968672e-05 1.608739e-05 57 33 8.928565e-05 -1.440887e-05 58 33 -8.000611e-05 1.291134e-05 59 33 7.167061e-05 -1.156616e-05 60 33 -6.413319e-05 1.034978e-05 61 33 5.727273e-05 -9.242642e-06 62 33 -5.098776e-05 8.228377e-06 63 33 4.519256e-05 -7.293151e-06 64 33 -3.981401e-05 6.425164e-06 65 33 3.478917e-05 -5.614257e-06 66 33 -3.00633e-05 4.851599e-06 67 33 2.558831e-05 -4.129428e-06 68 33 -2.132146e-05 3.440846e-06 69 33 1.722429e-05 -2.779647e-06 70 33 -1.326172e-05 2.14017e-06 71 33 9.401297e-06 -1.517176e-06 72 33 -5.612495e-06 9.057414e-07 73 33 1.866144e-06 -3.011573e-07 74 33 1.866144e-06 -3.011573e-07 75 33 -5.612495e-06 9.057414e-07 76 33 9.401297e-06 -1.517176e-06 77 33 -1.326172e-05 2.14017e-06 78 33 1.722429e-05 -2.779647e-06 79 33 -2.132146e-05 3.440846e-06 80 33 2.558831e-05 -4.129428e-06 114 33 0.0005940177 4.503586e-05 0 34 2.558831e-05 -4.129428e-06 1 34 -3.00633e-05 4.851599e-06 2 34 3.478917e-05 -5.614257e-06 3 34 -3.981401e-05 6.425164e-06 4 34 4.519256e-05 -7.293151e-06 5 34 -5.098776e-05 8.228377e-06 6 34 5.727273e-05 -9.242642e-06 7 34 -6.413319e-05 1.034978e-05 8 34 7.167061e-05 -1.156616e-05 9 34 -8.000611e-05 1.291134e-05 10 34 8.928565e-05 -1.440887e-05 11 34 -9.968672e-05 1.608739e-05 12 34 0.0001114272 -1.798207e-05 13 34 -0.0001247774 2.013652e-05 14 34 0.000140076 -2.26054e-05 15 34 -0.0001577525 2.545802e-05 16 34 0.0001783582 -2.878335e-05 17 34 -0.0002026106 3.26972e-05 18 34 0.0002314578 -3.735254e-05 19 34 -0.0002661734 4.295492e-05 20 34 0.0003085011 -4.978574e-05 21 34 -0.0003608797 5.823857e-05 22 34 0.0004268045 -6.887749e-05 23 34 -0.0005114288 8.253411e-05 24 34 0.0006226054 -0.0001004757 25 34 -0.0007727812 0.000124711 26 34 0.0009826448 -0.0001585787 27 34 -0.001288661 0.0002079635 28 34 0.001760065 -0.0002840383 29 34 -0.002541777 0.0004101906 30 34 0.003980742 -0.0006424099 31 34 -0.007089509 0.001144101 32 34 0.01597157 -0.002577484 33 34 -0.06393453 0.01031772 34 34 0.0819495 -0.01069733 35 34 -0.06393453 0.01031772 36 34 0.01597157 -0.002577484 37 34 -0.007089509 0.001144101 38 34 0.003980742 -0.0006424099 39 34 -0.002541777 0.0004101906 40 34 0.001760065 -0.0002840383 41 34 -0.001288661 0.0002079635 42 34 0.0009826448 -0.0001585787 43 34 -0.0007727812 0.000124711 44 34 0.0006226054 -0.0001004757 45 34 -0.0005114288 8.253411e-05 46 34 0.0004268045 -6.887749e-05 47 34 -0.0003608797 5.823857e-05 48 34 0.0003085011 -4.978574e-05 49 34 -0.0002661734 4.295492e-05 50 34 0.0002314578 -3.735254e-05 51 34 -0.0002026106 3.26972e-05 52 34 0.0001783582 -2.878335e-05 53 34 -0.0001577525 2.545802e-05 54 34 0.000140076 -2.26054e-05 55 34 -0.0001247774 2.013652e-05 56 34 0.0001114272 -1.798207e-05 57 34 -9.968672e-05 1.608739e-05 58 34 8.928565e-05 -1.440887e-05 59 34 -8.000611e-05 1.291134e-05 60 34 7.167061e-05 -1.156616e-05 61 34 -6.413319e-05 1.034978e-05 62 34 5.727273e-05 -9.242642e-06 63 34 -5.098776e-05 8.228377e-06 64 34 4.519256e-05 -7.293151e-06 65 34 -3.981401e-05 6.425164e-06 66 34 3.478917e-05 -5.614257e-06 67 34 -3.00633e-05 4.851599e-06 68 34 2.558831e-05 -4.129428e-06 69 34 -2.132146e-05 3.440846e-06 70 34 1.722429e-05 -2.779647e-06 71 34 -1.326172e-05 2.14017e-06 72 34 9.401297e-06 -1.517176e-06 73 34 -5.612495e-06 9.057414e-07 74 34 1.866144e-06 -3.011573e-07 75 34 1.866144e-06 -3.011573e-07 76 34 -5.612495e-06 9.057414e-07 77 34 9.401297e-06 -1.517176e-06 78 34 -1.326172e-05 2.14017e-06 79 34 1.722429e-05 -2.779647e-06 80 34 -2.132146e-05 3.440846e-06 115 34 0.0006092779 4.649497e-05 0 35 -2.132146e-05 3.440846e-06 1 35 2.558831e-05 -4.129428e-06 2 35 -3.00633e-05 4.851599e-06 3 35 3.478917e-05 -5.614257e-06 4 35 -3.981401e-05 6.425164e-06 5 35 4.519256e-05 -7.293151e-06 6 35 -5.098776e-05 8.228377e-06 7 35 5.727273e-05 -9.242642e-06 8 35 -6.413319e-05 1.034978e-05 9 35 7.167061e-05 -1.156616e-05 10 35 -8.000611e-05 1.291134e-05 11 35 8.928565e-05 -1.440887e-05 12 35 -9.968672e-05 1.608739e-05 13 35 0.0001114272 -1.798207e-05 14 35 -0.0001247774 2.013652e-05 15 35 0.000140076 -2.26054e-05 16 35 -0.0001577525 2.545802e-05 17 35 0.0001783582 -2.878335e-05 18 35 -0.0002026106 3.26972e-05 19 35 0.0002314578 -3.735254e-05 20 35 -0.0002661734 4.295492e-05 21 35 0.0003085011 -4.978574e-05 22 35 -0.0003608797 5.823857e-05 23 35 0.0004268045 -6.887749e-05 24 35 -0.0005114288 8.253411e-05 25 35 0.0006226054 -0.0001004757 26 35 -0.0007727812 0.000124711 27 35 0.0009826448 -0.0001585787 28 35 -0.001288661 0.0002079635 29 35 0.001760065 -0.0002840383 30 35 -0.002541777 0.0004101906 31 35 0.003980742 -0.0006424099 32 35 -0.007089509 0.001144101 33 35 0.01597157 -0.002577484 34 35 -0.06393453 0.01031772 35 35 0.08394242 -0.01103557 36 35 -0.06393453 0.01031772 37 35 0.01597157 -0.002577484 38 35 -0.007089509 0.001144101 39 35 0.003980742 -0.0006424099 40 35 -0.002541777 0.0004101906 41 35 0.001760065 -0.0002840383 42 35 -0.001288661 0.0002079635 43 35 0.0009826448 -0.0001585787 44 35 -0.0007727812 0.000124711 45 35 0.0006226054 -0.0001004757 46 35 -0.0005114288 8.253411e-05 47 35 0.0004268045 -6.887749e-05 48 35 -0.0003608797 5.823857e-05 49 35 0.0003085011 -4.978574e-05 50 35 -0.0002661734 4.295492e-05 51 35 0.0002314578 -3.735254e-05 52 35 -0.0002026106 3.26972e-05 53 35 0.0001783582 -2.878335e-05 54 35 -0.0001577525 2.545802e-05 55 35 0.000140076 -2.26054e-05 56 35 -0.0001247774 2.013652e-05 57 35 0.0001114272 -1.798207e-05 58 35 -9.968672e-05 1.608739e-05 59 35 8.928565e-05 -1.440887e-05 60 35 -8.000611e-05 1.291134e-05 61 35 7.167061e-05 -1.156616e-05 62 35 -6.413319e-05 1.034978e-05 63 35 5.727273e-05 -9.242642e-06 64 35 -5.098776e-05 8.228377e-06 65 35 4.519256e-05 -7.293151e-06 66 35 -3.981401e-05 6.425164e-06 67 35 3.478917e-05 -5.614257e-06 68 35 -3.00633e-05 4.851599e-06 69 35 2.558831e-05 -4.129428e-06 70 35 -2.132146e-05 3.440846e-06 71 35 1.722429e-05 -2.779647e-06 72 35 -1.326172e-05 2.14017e-06 73 35 9.401297e-06 -1.517176e-06 74 35 -5.612495e-06 9.057414e-07 75 35 1.866144e-06 -3.011573e-07 76 35 1.866144e-06 -3.011573e-07 77 35 -5.612495e-06 9.057414e-07 78 35 9.401297e-06 -1.517176e-06 79 35 -1.326172e-05 2.14017e-06 80 35 1.722429e-05 -2.779647e-06 116 35 0.0006246159 4.796785e-05 0 36 1.722429e-05 -2.779647e-06 1 36 -2.132146e-05 3.440846e-06 2 36 2.558831e-05 -4.129428e-06 3 36 -3.00633e-05 4.851599e-06 4 36 3.478917e-05 -5.614257e-06 5 36 -3.981401e-05 6.425164e-06 6 36 4.519256e-05 -7.293151e-06 7 36 -5.098776e-05 8.228377e-06 8 36 5.727273e-05 -9.242642e-06 9 36 -6.413319e-05 1.034978e-05 10 36 7.167061e-05 -1.156616e-05 11 36 -8.000611e-05 1.291134e-05 12 36 8.928565e-05 -1.440887e-05 13 36 -9.968672e-05 1.608739e-05 14 36 0.0001114272 -1.798207e-05 15 36 -0.0001247774 2.013652e-05 16 36 0.000140076 -2.26054e-05 17 36 -0.0001577525 2.545802e-05 18 36 0.0001783582 -2.878335e-05 19 36 -0.0002026106 3.26972e-05 20 36 0.0002314578 -3.735254e-05 21 36 -0.0002661734 4.295492e-05 22 36 0.0003085011 -4.978574e-05 23 36 -0.0003608797 5.823857e-05 24 36 0.0004268045 -6.887749e-05 25 36 -0.0005114288 8.253411e-05 26 36 0.0006226054 -0.0001004757 27 36 -0.0007727812 0.000124711 28 36 0.0009826448 -0.0001585787 29 36 -0.001288661 0.0002079635 30 36 0.001760065 -0.0002840383 31 36 -0.002541777 0.0004101906 32 36 0.003980742 -0.0006424099 33 36 -0.007089509 0.001144101 34 36 0.01597157 -0.002577484 35 36 -0.06393453 0.01031772 36 36 0.08577606 -0.01136635 37 36 -0.06393453 0.01031772 38 36 0.01597157 -0.002577484 39 36 -0.007089509 0.001144101 40 36 0.003980742 -0.0006424099 41 36 -0.002541777 0.0004101906 42 36 0.001760065 -0.0002840383 43 36 -0.001288661 0.0002079635 44 36 0.0009826448 -0.0001585787 45 36 -0.0007727812 0.000124711 46 36 0.0006226054 -0.0001004757 47 36 -0.0005114288 8.253411e-05 48 36 0.0004268045 -6.887749e-05 49 36 -0.0003608797 5.823857e-05 50 36 0.0003085011 -4.978574e-05 51 36 -0.0002661734 4.295492e-05 52 36 0.0002314578 -3.735254e-05 53 36 -0.0002026106 3.26972e-05 54 36 0.0001783582 -2.878335e-05 55 36 -0.0001577525 2.545802e-05 56 36 0.000140076 -2.26054e-05 57 36 -0.0001247774 2.013652e-05 58 36 0.0001114272 -1.798207e-05 59 36 -9.968672e-05 1.608739e-05 60 36 8.928565e-05 -1.440887e-05 61 36 -8.000611e-05 1.291134e-05 62 36 7.167061e-05 -1.156616e-05 63 36 -6.413319e-05 1.034978e-05 64 36 5.727273e-05 -9.242642e-06 65 36 -5.098776e-05 8.228377e-06 66 36 4.519256e-05 -7.293151e-06 67 36 -3.981401e-05 6.425164e-06 68 36 3.478917e-05 -5.614257e-06 69 36 -3.00633e-05 4.851599e-06 70 36 2.558831e-05 -4.129428e-06 71 36 -2.132146e-05 3.440846e-06 72 36 1.722429e-05 -2.779647e-06 73 36 -1.326172e-05 2.14017e-06 74 36 9.401297e-06 -1.517176e-06 75 36 -5.612495e-06 9.057414e-07 76 36 1.866144e-06 -3.011573e-07 77 36 1.866144e-06 -3.011573e-07 78 36 -5.612495e-06 9.057414e-07 79 36 9.401297e-06 -1.517176e-06 80 36 -1.326172e-05 2.14017e-06 117 36 0.0006400319 4.945462e-05 0 37 -1.326172e-05 2.14017e-06 1 37 1.722429e-05 -2.779647e-06 2 37 -2.132146e-05 3.440846e-06 3 37 2.558831e-05 -4.129428e-06 4 37 -3.00633e-05 4.851599e-06 5 37 3.478917e-05 -5.614257e-06 6 37 -3.981401e-05 6.425164e-06 7 37 4.519256e-05 -7.293151e-06 8 37 -5.098776e-05 8.228377e-06 9 37 5.727273e-05 -9.242642e-06 10 37 -6.413319e-05 1.034978e-05 11 37 7.167061e-05 -1.156616e-05 12 37 -8.000611e-05 1.291134e-05 13 37 8.928565e-05 -1.440887e-05 14 37 -9.968672e-05 1.608739e-05 15 37 0.0001114272 -1.798207e-05 16 37 -0.0001247774 2.013652e-05 17 37 0.000140076 -2.26054e-05 18 37 -0.0001577525 2.545802e-05 19 37 0.0001783582 -2.878335e-05 20 37 -0.0002026106 3.26972e-05 21 37 0.0002314578 -3.735254e-05 22 37 -0.0002661734 4.295492e-05 23 37 0.0003085011 -4.978574e-05 24 37 -0.0003608797 5.823857e-05 25 37 0.0004268045 -6.887749e-05 26 37 -0.0005114288 8.253411e-05 27 37 0.0006226054 -0.0001004757 28 37 -0.0007727812 0.000124711 29 37 0.0009826448 -0.0001585787 30 37 -0.001288661 0.0002079635 31 37 0.001760065 -0.0002840383 32 37 -0.002541777 0.0004101906 33 37 0.003980742 -0.0006424099 34 37 -0.007089509 0.001144101 35 37 0.01597157 -0.002577484 36 37 -0.06393453 0.01031772 37 37 0.0874611 -0.01168797 38 37 -0.06393453 0.01031772 39 37 0.01597157 -0.002577484 40 37 -0.007089509 0.001144101 41 37 0.003980742 -0.0006424099 42 37 -0.002541777 0.0004101906 43 37 0.001760065 -0.0002840383 44 37 -0.001288661 0.0002079635 45 37 0.0009826448 -0.0001585787 46 37 -0.0007727812 0.000124711 47 37 0.0006226054 -0.0001004757 48 37 -0.0005114288 8.253411e-05 49 37 0.0004268045 -6.887749e-05 50 37 -0.0003608797 5.823857e-05 51 37 0.0003085011 -4.978574e-05 52 37 -0.0002661734 4.295492e-05 53 37 0.0002314578 -3.735254e-05 54 37 -0.0002026106 3.26972e-05 55 37 0.0001783582 -2.878335e-05 56 37 -0.0001577525 2.545802e-05 57 37 0.000140076 -2.26054e-05 58 37 -0.0001247774 2.013652e-05 59 37 0.0001114272 -1.798207e-05 60 37 -9.968672e-05 1.608739e-05 61 37 8.928565e-05 -1.440887e-05 62 37 -8.000611e-05 1.291134e-05 63 37 7.167061e-05 -1.156616e-05 64 37 -6.413319e-05 1.034978e-05 65 37 5.727273e-05 -9.242642e-06 66 37 -5.098776e-05 8.228377e-06 67 37 4.519256e-05 -7.293151e-06 68 37 -3.981401e-05 6.425164e-06 69 37 3.478917e-05 -5.614257e-06 70 37 -3.00633e-05 4.851599e-06 71 37 2.558831e-05 -4.129428e-06 72 37 -2.132146e-05 3.440846e-06 73 37 1.722429e-05 -2.779647e-06 74 37 -1.326172e-05 2.14017e-06 75 37 9.401297e-06 -1.517176e-06 76 37 -5.612495e-06 9.057414e-07 77 37 1.866144e-06 -3.011573e-07 78 37 1.866144e-06 -3.011573e-07 79 37 -5.612495e-06 9.057414e-07 80 37 9.401297e-06 -1.517176e-06 118 37 0.0006555264 5.095537e-05 0 38 9.401297e-06 -1.517176e-06 1 38 -1.326172e-05 2.14017e-06 2 38 1.722429e-05 -2.779647e-06 3 38 -2.132146e-05 3.440846e-06 4 38 2.558831e-05 -4.129428e-06 5 38 -3.00633e-05 4.851599e-06 6 38 3.478917e-05 -5.614257e-06 7 38 -3.981401e-05 6.425164e-06 8 38 4.519256e-05 -7.293151e-06 9 38 -5.098776e-05 8.228377e-06 10 38 5.727273e-05 -9.242642e-06 11 38 -6.413319e-05 1.034978e-05 12 38 7.167061e-05 -1.156616e-05 13 38 -8.000611e-05 1.291134e-05 14 38 8.928565e-05 -1.440887e-05 15 38 -9.968672e-05 1.608739e-05 16 38 0.0001114272 -1.798207e-05 17 38 -0.0001247774 2.013652e-05 18 38 0.000140076 -2.26054e-05 19 38 -0.0001577525 2.545802e-05 20 38 0.0001783582 -2.878335e-05 21 38 -0.0002026106 3.26972e-05 22 38 0.0002314578 -3.735254e-05 23 38 -0.0002661734 4.295492e-05 24 38 0.0003085011 -4.978574e-05 25 38 -0.0003608797 5.823857e-05 26 38 0.0004268045 -6.887749e-05 27 38 -0.0005114288 8.253411e-05 28 38 0.0006226054 -0.0001004757 29 38 -0.0007727812 0.000124711 30 38 0.0009826448 -0.0001585787 31 38 -0.001288661 0.0002079635 32 38 0.001760065 -0.0002840383 33 38 -0.002541777 0.0004101906 34 38 0.003980742 -0.0006424099 35 38 -0.007089509 0.001144101 36 38 0.01597157 -0.002577484 37 38 -0.06393453 0.01031772 38 38 0.08900789 -0.01199912 39 38 -0.06393453 0.01031772 40 38 0.01597157 -0.002577484 41 38 -0.007089509 0.001144101 42 38 0.003980742 -0.0006424099 43 38 -0.002541777 0.0004101906 44 38 0.001760065 -0.0002840383 45 38 -0.001288661 0.0002079635 46 38 0.0009826448 -0.0001585787 47 38 -0.0007727812 0.000124711 48 38 0.0006226054 -0.0001004757 49 38 -0.0005114288 8.253411e-05 50 38 0.0004268045 -6.887749e-05 51 38 -0.0003608797 5.823857e-05 52 38 0.0003085011 -4.978574e-05 53 38 -0.0002661734 4.295492e-05 54 38 0.0002314578 -3.735254e-05 55 38 -0.0002026106 3.26972e-05 56 38 0.0001783582 -2.878335e-05 57 38 -0.0001577525 2.545802e-05 58 38 0.000140076 -2.26054e-05 59 38 -0.0001247774 2.013652e-05 60 38 0.0001114272 -1.798207e-05 61 38 -9.968672e-05 1.608739e-05 62 38 8.928565e-05 -1.440887e-05 63 38 -8.000611e-05 1.291134e-05 64 38 7.167061e-05 -1.156616e-05 65 38 -6.413319e-05 1.034978e-05 66 38 5.727273e-05 -9.242642e-06 67 38 -5.098776e-05 8.228377e-06 68 38 4.519256e-05 -7.293151e-06 69 38 -3.981401e-05 6.425164e-06 70 38 3.478917e-05 -5.614257e-06 71 38 -3.00633e-05 4.851599e-06 72 38 2.558831e-05 -4.129428e-06 73 38 -2.132146e-05 3.440846e-06 74 38 1.722429e-05 -2.779647e-06 75 38 -1.326172e-05 2.14017e-06 76 38 9.401297e-06 -1.517176e-06 77 38 -5.612495e-06 9.057414e-07 78 38 1.866144e-06 -3.011573e-07 79 38 1.866144e-06 -3.011573e-07 80 38 -5.612495e-06 9.057414e-07 119 38 0.0006710998 5.247021e-05 0 39 -5.612495e-06 9.057414e-07 1 39 9.401297e-06 -1.517176e-06 2 39 -1.326172e-05 2.14017e-06 3 39 1.722429e-05 -2.779647e-06 4 39 -2.132146e-05 3.440846e-06 5 39 2.558831e-05 -4.129428e-06 6 39 -3.00633e-05 4.851599e-06 7 39 3.478917e-05 -5.614257e-06 8 39 -3.981401e-05 6.425164e-06 9 39 4.519256e-05 -7.293151e-06 10 39 -5.098776e-05 8.228377e-06 11 39 5.727273e-05 -9.242642e-06 12 39 -6.413319e-05 1.034978e-05 13 39 7.167061e-05 -1.156616e-05 14 39 -8.000611e-05 1.291134e-05 15 39 8.928565e-05 -1.440887e-05 16 39 -9.968672e-05 1.608739e-05 17 39 0.0001114272 -1.798207e-05 18 39 -0.0001247774 2.013652e-05 19 39 0.000140076 -2.26054e-05 20 39 -0.0001577525 2.545802e-05 21 39 0.0001783582 -2.878335e-05 22 39 -0.0002026106 3.26972e-05 23 39 0.0002314578 -3.735254e-05 24 39 -0.0002661734 4.295492e-05 25 39 0.0003085011 -4.978574e-05 26 39 -0.0003608797 5.823857e-05 27 39 0.0004268045 -6.887749e-05 28 39 -0.0005114288 8.253411e-05 29 39 0.0006226054 -0.0001004757 30 39 -0.0007727812 0.000124711 31 39 0.0009826448 -0.0001585787 32 39 -0.001288661 0.0002079635 33 39 0.001760065 -0.0002840383 34 39 -0.002541777 0.0004101906 35 39 0.003980742 -0.0006424099 36 39 -0.007089509 0.001144101 37 39 0.01597157 -0.002577484 38 39 -0.06393453 0.01031772 39 39 0.09042639 -0.01229882 40 39 -0.06393453 0.01031772 41 39 0.01597157 -0.002577484 42 39 -0.007089509 0.001144101 43 39 0.003980742 -0.0006424099 44 39 -0.002541777 0.0004101906 45 39 0.001760065 -0.0002840383 46 39 -0.001288661 0.0002079635 47 39 0.0009826448 -0.0001585787 48 39 -0.0007727812 0.000124711 49 39 0.0006226054 -0.0001004757 50 39 -0.0005114288 8.253411e-05 51 39 0.0004268045 -6.887749e-05 52 39 -0.0003608797 5.823857e-05 53 39 0.0003085011 -4.978574e-05 54 39 -0.0002661734 4.295492e-05 55 39 0.0002314578 -3.735254e-05 56 39 -0.0002026106 3.26972e-05 57 39 0.0001783582 -2.878335e-05 58 39 -0.0001577525 2.545802e-05 59 39 0.000140076 -2.26054e-05 60 39 -0.0001247774 2.013652e-05 61 39 0.0001114272 -1.798207e-05 62 39 -9.968672e-05 1.608739e-05 63 39 8.928565e-05 -1.440887e-05 64 39 -8.000611e-05 1.291134e-05 65 39 7.167061e-05 -1.156616e-05 66 39 -6.413319e-05 1.034978e-05 67 39 5.727273e-05 -9.242642e-06 68 39 -5.098776e-05 8.228377e-06 69 39 4.519256e-05 -7.293151e-06 70 39 -3.981401e-05 6.425164e-06 71 39 3.478917e-05 -5.614257e-06 72 39 -3.00633e-05 4.851599e-06 73 39 2.558831e-05 -4.129428e-06 74 39 -2.132146e-05 3.440846e-06 75 39 1.722429e-05 -2.779647e-06 76 39 -1.326172e-05 2.14017e-06 77 39 9.401297e-06 -1.517176e-06 78 39 -5.612495e-06 9.057414e-07 79 39 1.866144e-06 -3.011573e-07 80 39 1.866144e-06 -3.011573e-07 120 39 0.0006867524 5.399924e-05 0 40 1.866144e-06 -3.011573e-07 1 40 -5.612495e-06 9.057414e-07 2 40 9.401297e-06 -1.517176e-06 3 40 -1.326172e-05 2.14017e-06 4 40 1.722429e-05 -2.779647e-06 5 40 -2.132146e-05 3.440846e-06 6 40 2.558831e-05 -4.129428e-06 7 40 -3.00633e-05 4.851599e-06 8 40 3.478917e-05 -5.614257e-06 9 40 -3.981401e-05 6.425164e-06 10 40 4.519256e-05 -7.293151e-06 11 40 -5.098776e-05 8.228377e-06 12 40 5.727273e-05 -9.242642e-06 13 40 -6.413319e-05 1.034978e-05 14 40 7.167061e-05 -1.156616e-05 15 40 -8.000611e-05 1.291134e-05 16 40 8.928565e-05 -1.440887e-05 17 40 -9.968672e-05 1.608739e-05 18 40 0.0001114272 -1.798207e-05 19 40 -0.0001247774 2.013652e-05 20 40 0.000140076 -2.26054e-05 21 40 -0.0001577525 2.545802e-05 22 40 0.0001783582 -2.878335e-05 23 40 -0.0002026106 3.26972e-05 24 40 0.0002314578 -3.735254e-05 25 40 -0.0002661734 4.295492e-05 26 40 0.0003085011 -4.978574e-05 27 40 -0.0003608797 5.823857e-05 28 40 0.0004268045 -6.887749e-05 29 40 -0.0005114288 8.253411e-05 30 40 0.0006226054 -0.0001004757 31 40 -0.0007727812 0.000124711 32 40 0.0009826448 -0.0001585787 33 40 -0.001288661 0.0002079635 34 40 0.001760065 -0.0002840383 35 40 -0.002541777 0.0004101906 36 40 0.003980742 -0.0006424099 37 40 -0.007089509 0.001144101 38 40 0.01597157 -0.002577484 39 40 -0.06393453 0.01031772 40 40 0.09172607 -0.01258639 41 40 -0.06393453 0.01031772 42 40 0.01597157 -0.002577484 43 40 -0.007089509 0.001144101 44 40 0.003980742 -0.0006424099 45 40 -0.002541777 0.0004101906 46 40 0.001760065 -0.0002840383 47 40 -0.001288661 0.0002079635 48 40 0.0009826448 -0.0001585787 49 40 -0.0007727812 0.000124711 50 40 0.0006226054 -0.0001004757 51 40 -0.0005114288 8.253411e-05 52 40 0.0004268045 -6.887749e-05 53 40 -0.0003608797 5.823857e-05 54 40 0.0003085011 -4.978574e-05 55 40 -0.0002661734 4.295492e-05 56 40 0.0002314578 -3.735254e-05 57 40 -0.0002026106 3.26972e-05 58 40 0.0001783582 -2.878335e-05 59 40 -0.0001577525 2.545802e-05 60 40 0.000140076 -2.26054e-05 61 40 -0.0001247774 2.013652e-05 62 40 0.0001114272 -1.798207e-05 63 40 -9.968672e-05 1.608739e-05 64 40 8.928565e-05 -1.440887e-05 65 40 -8.000611e-05 1.291134e-05 66 40 7.167061e-05 -1.156616e-05 67 40 -6.413319e-05 1.034978e-05 68 40 5.727273e-05 -9.242642e-06 69 40 -5.098776e-05 8.228377e-06 70 40 4.519256e-05 -7.293151e-06 71 40 -3.981401e-05 6.425164e-06 72 40 3.478917e-05 -5.614257e-06 73 40 -3.00633e-05 4.851599e-06 74 40 2.558831e-05 -4.129428e-06 75 40 -2.132146e-05 3.440846e-06 76 40 1.722429e-05 -2.779647e-06 77 40 -1.326172e-05 2.14017e-06 78 40 9.401297e-06 -1.517176e-06 79 40 -5.612495e-06 9.057414e-07 80 40 1.866144e-06 -3.011573e-07 121 40 0.0007024847 5.554257e-05 0 41 1.866144e-06 -3.011573e-07 1 41 1.866144e-06 -3.011573e-07 2 41 -5.612495e-06 9.057414e-07 3 41 9.401297e-06 -1.517176e-06 4 41 -1.326172e-05 2.14017e-06 5 41 1.722429e-05 -2.779647e-06 6 41 -2.132146e-05 3.440846e-06 7 41 2.558831e-05 -4.129428e-06 8 41 -3.00633e-05 4.851599e-06 9 41 3.478917e-05 -5.614257e-06 10 41 -3.981401e-05 6.425164e-06 11 41 4.519256e-05 -7.293151e-06 12 41 -5.098776e-05 8.228377e-06 13 41 5.727273e-05 -9.242642e-06 14 41 -6.413319e-05 1.034978e-05 15 41 7.167061e-05 -1.156616e-05 16 41 -8.000611e-05 1.291134e-05 17 41 8.928565e-05 -1.440887e-05 18 41 -9.968672e-05 1.608739e-05 19 41 0.0001114272 -1.798207e-05 20 41 -0.0001247774 2.013652e-05 21 41 0.000140076 -2.26054e-05 22 41 -0.0001577525 2.545802e-05 23 41 0.0001783582 -2.878335e-05 24 41 -0.0002026106 3.26972e-05 25 41 0.0002314578 -3.735254e-05 26 41 -0.0002661734 4.295492e-05 27 41 0.0003085011 -4.978574e-05 28 41 -0.0003608797 5.823857e-05 29 41 0.0004268045 -6.887749e-05 30 41 -0.0005114288 8.253411e-05 31 41 0.0006226054 -0.0001004757 32 41 -0.0007727812 0.000124711 33 41 0.0009826448 -0.0001585787 34 41 -0.001288661 0.0002079635 35 41 0.001760065 -0.0002840383 36 41 -0.002541777 0.0004101906 37 41 0.003980742 -0.0006424099 38 41 -0.007089509 0.001144101 39 41 0.01597157 -0.002577484 40 41 -0.06393453 0.01031772 41 41 0.09291596 -0.0128614 42 41 -0.06393453 0.01031772 43 41 0.01597157 -0.002577484 44 41 -0.007089509 0.001144101 45 41 0.003980742 -0.0006424099 46 41 -0.002541777 0.0004101906 47 41 0.001760065 -0.0002840383 48 41 -0.001288661 0.0002079635 49 41 0.0009826448 -0.0001585787 50 41 -0.0007727812 0.000124711 51 41 0.0006226054 -0.0001004757 52 41 -0.0005114288 8.253411e-05 53 41 0.0004268045 -6.887749e-05 54 41 -0.0003608797 5.823857e-05 55 41 0.0003085011 -4.978574e-05 56 41 -0.0002661734 4.295492e-05 57 41 0.0002314578 -3.735254e-05 58 41 -0.0002026106 3.26972e-05 59 41 0.0001783582 -2.878335e-05 60 41 -0.0001577525 2.545802e-05 61 41 0.000140076 -2.26054e-05 62 41 -0.0001247774 2.013652e-05 63 41 0.0001114272 -1.798207e-05 64 41 -9.968672e-05 1.608739e-05 65 41 8.928565e-05 -1.440887e-05 66 41 -8.000611e-05 1.291134e-05 67 41 7.167061e-05 -1.156616e-05 68 41 -6.413319e-05 1.034978e-05 69 41 5.727273e-05 -9.242642e-06 70 41 -5.098776e-05 8.228377e-06 71 41 4.519256e-05 -7.293151e-06 72 41 -3.981401e-05 6.425164e-06 73 41 3.478917e-05 -5.614257e-06 74 41 -3.00633e-05 4.851599e-06 75 41 2.558831e-05 -4.129428e-06 76 41 -2.132146e-05 3.440846e-06 77 41 1.722429e-05 -2.779647e-06 78 41 -1.326172e-05 2.14017e-06 79 41 9.401297e-06 -1.517176e-06 80 41 -5.612495e-06 9.057414e-07 122 41 0.000718297 5.71003e-05 0 42 -5.612495e-06 9.057414e-07 1 42 1.866144e-06 -3.011573e-07 2 42 1.866144e-06 -3.011573e-07 3 42 -5.612495e-06 9.057414e-07 4 42 9.401297e-06 -1.517176e-06 5 42 -1.326172e-05 2.14017e-06 6 42 1.722429e-05 -2.779647e-06 7 42 -2.132146e-05 3.440846e-06 8 42 2.558831e-05 -4.129428e-06 9 42 -3.00633e-05 4.851599e-06 10 42 3.478917e-05 -5.614257e-06 11 42 -3.981401e-05 6.425164e-06 12 42 4.519256e-05 -7.293151e-06 13 42 -5.098776e-05 8.228377e-06 14 42 5.727273e-05 -9.242642e-06 15 42 -6.413319e-05 1.034978e-05 16 42 7.167061e-05 -1.156616e-05 17 42 -8.000611e-05 1.291134e-05 18 42 8.928565e-05 -1.440887e-05 19 42 -9.968672e-05 1.608739e-05 20 42 0.0001114272 -1.798207e-05 21 42 -0.0001247774 2.013652e-05 22 42 0.000140076 -2.26054e-05 23 42 -0.0001577525 2.545802e-05 24 42 0.0001783582 -2.878335e-05 25 42 -0.0002026106 3.26972e-05 26 42 0.0002314578 -3.735254e-05 27 42 -0.0002661734 4.295492e-05 28 42 0.0003085011 -4.978574e-05 29 42 -0.0003608797 5.823857e-05 30 42 0.0004268045 -6.887749e-05 31 42 -0.0005114288 8.253411e-05 32 42 0.0006226054 -0.0001004757 33 42 -0.0007727812 0.000124711 34 42 0.0009826448 -0.0001585787 35 42 -0.001288661 0.0002079635 36 42 0.001760065 -0.0002840383 37 42 -0.002541777 0.0004101906 38 42 0.003980742 -0.0006424099 39 42 -0.007089509 0.001144101 40 42 0.01597157 -0.002577484 41 42 -0.06393453 0.01031772 42 42 0.09400453 -0.0131236 43 42 -0.06393453 0.01031772 44 42 0.01597157 -0.002577484 45 42 -0.007089509 0.001144101 46 42 0.003980742 -0.0006424099 47 42 -0.002541777 0.0004101906 48 42 0.001760065 -0.0002840383 49 42 -0.001288661 0.0002079635 50 42 0.0009826448 -0.0001585787 51 42 -0.0007727812 0.000124711 52 42 0.0006226054 -0.0001004757 53 42 -0.0005114288 8.253411e-05 54 42 0.0004268045 -6.887749e-05 55 42 -0.0003608797 5.823857e-05 56 42 0.0003085011 -4.978574e-05 57 42 -0.0002661734 4.295492e-05 58 42 0.0002314578 -3.735254e-05 59 42 -0.0002026106 3.26972e-05 60 42 0.0001783582 -2.878335e-05 61 42 -0.0001577525 2.545802e-05 62 42 0.000140076 -2.26054e-05 63 42 -0.0001247774 2.013652e-05 64 42 0.0001114272 -1.798207e-05 65 42 -9.968672e-05 1.608739e-05 66 42 8.928565e-05 -1.440887e-05 67 42 -8.000611e-05 1.291134e-05 68 42 7.167061e-05 -1.156616e-05 69 42 -6.413319e-05 1.034978e-05 70 42 5.727273e-05 -9.242642e-06 71 42 -5.098776e-05 8.228377e-06 72 42 4.519256e-05 -7.293151e-06 73 42 -3.981401e-05 6.425164e-06 74 42 3.478917e-05 -5.614257e-06 75 42 -3.00633e-05 4.851599e-06 76 42 2.558831e-05 -4.129428e-06 77 42 -2.132146e-05 3.440846e-06 78 42 1.722429e-05 -2.779647e-06 79 42 -1.326172e-05 2.14017e-06 80 42 9.401297e-06 -1.517176e-06 123 42 0.0007341899 5.867254e-05 0 43 9.401297e-06 -1.517176e-06 1 43 -5.612495e-06 9.057414e-07 2 43 1.866144e-06 -3.011573e-07 3 43 1.866144e-06 -3.011573e-07 4 43 -5.612495e-06 9.057414e-07 5 43 9.401297e-06 -1.517176e-06 6 43 -1.326172e-05 2.14017e-06 7 43 1.722429e-05 -2.779647e-06 8 43 -2.132146e-05 3.440846e-06 9 43 2.558831e-05 -4.129428e-06 10 43 -3.00633e-05 4.851599e-06 11 43 3.478917e-05 -5.614257e-06 12 43 -3.981401e-05 6.425164e-06 13 43 4.519256e-05 -7.293151e-06 14 43 -5.098776e-05 8.228377e-06 15 43 5.727273e-05 -9.242642e-06 16 43 -6.413319e-05 1.034978e-05 17 43 7.167061e-05 -1.156616e-05 18 43 -8.000611e-05 1.291134e-05 19 43 8.928565e-05 -1.440887e-05 20 43 -9.968672e-05 1.608739e-05 21 43 0.0001114272 -1.798207e-05 22 43 -0.0001247774 2.013652e-05 23 43 0.000140076 -2.26054e-05 24 43 -0.0001577525 2.545802e-05 25 43 0.0001783582 -2.878335e-05 26 43 -0.0002026106 3.26972e-05 27 43 0.0002314578 -3.735254e-05 28 43 -0.0002661734 4.295492e-05 29 43 0.0003085011 -4.978574e-05 30 43 -0.0003608797 5.823857e-05 31 43 0.0004268045 -6.887749e-05 32 43 -0.0005114288 8.253411e-05 33 43 0.0006226054 -0.0001004757 34 43 -0.0007727812 0.000124711 35 43 0.0009826448 -0.0001585787 36 43 -0.001288661 0.0002079635 37 43 0.001760065 -0.0002840383 38 43 -0.002541777 0.0004101906 39 43 0.003980742 -0.0006424099 40 43 -0.007089509 0.001144101 41 43 0.01597157 -0.002577484 42 43 -0.06393453 0.01031772 43 43 0.09499977 -0.01337292 44 43 -0.06393453 0.01031772 45 43 0.01597157 -0.002577484 46 43 -0.007089509 0.001144101 47 43 0.003980742 -0.0006424099 48 43 -0.002541777 0.0004101906 49 43 0.001760065 -0.0002840383 50 43 -0.001288661 0.0002079635 51 43 0.0009826448 -0.0001585787 52 43 -0.0007727812 0.000124711 53 43 0.0006226054 -0.0001004757 54 43 -0.0005114288 8.253411e-05 55 43 0.0004268045 -6.887749e-05 56 43 -0.0003608797 5.823857e-05 57 43 0.0003085011 -4.978574e-05 58 43 -0.0002661734 4.295492e-05 59 43 0.0002314578 -3.735254e-05 60 43 -0.0002026106 3.26972e-05 61 43 0.0001783582 -2.878335e-05 62 43 -0.0001577525 2.545802e-05 63 43 0.000140076 -2.26054e-05 64 43 -0.0001247774 2.013652e-05 65 43 0.0001114272 -1.798207e-05 66 43 -9.968672e-05 1.608739e-05 67 43 8.928565e-05 -1.440887e-05 68 43 -8.000611e-05 1.291134e-05 69 43 7.167061e-05 -1.156616e-05 70 43 -6.413319e-05 1.034978e-05 71 43 5.727273e-05 -9.242642e-06 72 43 -5.098776e-05 8.228377e-06 73 43 4.519256e-05 -7.293151e-06 74 43 -3.981401e-05 6.425164e-06 75 43 3.478917e-05 -5.614257e-06 76 43 -3.00633e-05 4.851599e-06 77 43 2.558831e-05 -4.129428e-06 78 43 -2.132146e-05 3.440846e-06 79 43 1.722429e-05 -2.779647e-06 80 43 -1.326172e-05 2.14017e-06 124 43 0.0007501636 6.025941e-05 0 44 -1.326172e-05 2.14017e-06 1 44 9.401297e-06 -1.517176e-06 2 44 -5.612495e-06 9.057414e-07 3 44 1.866144e-06 -3.011573e-07 4 44 1.866144e-06 -3.011573e-07 5 44 -5.612495e-06 9.057414e-07 6 44 9.401297e-06 -1.517176e-06 7 44 -1.326172e-05 2.14017e-06 8 44 1.722429e-05 -2.779647e-06 9 44 -2.132146e-05 3.440846e-06 10 44 2.558831e-05 -4.129428e-06 11 44 -3.00633e-05 4.851599e-06 12 44 3.478917e-05 -5.614257e-06 13 44 -3.981401e-05 6.425164e-06 14 44 4.519256e-05 -7.293151e-06 15 44 -5.098776e-05 8.228377e-06 16 44 5.727273e-05 -9.242642e-06 17 44 -6.413319e-05 1.034978e-05 18 44 7.167061e-05 -1.156616e-05 19 44 -8.000611e-05 1.291134e-05 20 44 8.928565e-05 -1.440887e-05 21 44 -9.968672e-05 1.608739e-05 22 44 0.0001114272 -1.798207e-05 23 44 -0.0001247774 2.013652e-05 24 44 0.000140076 -2.26054e-05 25 44 -0.0001577525 2.545802e-05 26 44 0.0001783582 -2.878335e-05 27 44 -0.0002026106 3.26972e-05 28 44 0.0002314578 -3.735254e-05 29 44 -0.0002661734 4.295492e-05 30 44 0.0003085011 -4.978574e-05 31 44 -0.0003608797 5.823857e-05 32 44 0.0004268045 -6.887749e-05 33 44 -0.0005114288 8.253411e-05 34 44 0.0006226054 -0.0001004757 35 44 -0.0007727812 0.000124711 36 44 0.0009826448 -0.0001585787 37 44 -0.001288661 0.0002079635 38 44 0.001760065 -0.0002840383 39 44 -0.002541777 0.0004101906 40 44 0.003980742 -0.0006424099 41 44 -0.007089509 0.001144101 42 44 0.01597157 -0.002577484 43 44 -0.06393453 0.01031772 44 44 0.09590914 -0.01360941 45 44 -0.06393453 0.01031772 46 44 0.01597157 -0.002577484 47 44 -0.007089509 0.001144101 48 44 0.003980742 -0.0006424099 49 44 -0.002541777 0.0004101906 50 44 0.001760065 -0.0002840383 51 44 -0.001288661 0.0002079635 52 44 0.0009826448 -0.0001585787 53 44 -0.0007727812 0.000124711 54 44 0.0006226054 -0.0001004757 55 44 -0.0005114288 8.253411e-05 56 44 0.0004268045 -6.887749e-05 57 44 -0.0003608797 5.823857e-05 58 44 0.0003085011 -4.978574e-05 59 44 -0.0002661734 4.295492e-05 60 44 0.0002314578 -3.735254e-05 61 44 -0.0002026106 3.26972e-05 62 44 0.0001783582 -2.878335e-05 63 44 -0.0001577525 2.545802e-05 64 44 0.000140076 -2.26054e-05 65 44 -0.0001247774 2.013652e-05 66 44 0.0001114272 -1.798207e-05 67 44 -9.968672e-05 1.608739e-05 68 44 8.928565e-05 -1.440887e-05 69 44 -8.000611e-05 1.291134e-05 70 44 7.167061e-05 -1.156616e-05 71 44 -6.413319e-05 1.034978e-05 72 44 5.727273e-05 -9.242642e-06 73 44 -5.098776e-05 8.228377e-06 74 44 4.519256e-05 -7.293151e-06 75 44 -3.981401e-05 6.425164e-06 76 44 3.478917e-05 -5.614257e-06 77 44 -3.00633e-05 4.851599e-06 78 44 2.558831e-05 -4.129428e-06 79 44 -2.132146e-05 3.440846e-06 80 44 1.722429e-05 -2.779647e-06 125 44 0.0007662186 6.186099e-05 0 45 1.722429e-05 -2.779647e-06 1 45 -1.326172e-05 2.14017e-06 2 45 9.401297e-06 -1.517176e-06 3 45 -5.612495e-06 9.057414e-07 4 45 1.866144e-06 -3.011573e-07 5 45 1.866144e-06 -3.011573e-07 6 45 -5.612495e-06 9.057414e-07 7 45 9.401297e-06 -1.517176e-06 8 45 -1.326172e-05 2.14017e-06 9 45 1.722429e-05 -2.779647e-06 10 45 -2.132146e-05 3.440846e-06 11 45 2.558831e-05 -4.129428e-06 12 45 -3.00633e-05 4.851599e-06 13 45 3.478917e-05 -5.614257e-06 14 45 -3.981401e-05 6.425164e-06 15 45 4.519256e-05 -7.293151e-06 16 45 -5.098776e-05 8.228377e-06 17 45 5.727273e-05 -9.242642e-06 18 45 -6.413319e-05 1.034978e-05 19 45 7.167061e-05 -1.156616e-05 20 45 -8.000611e-05 1.291134e-05 21 45 8.928565e-05 -1.440887e-05 22 45 -9.968672e-05 1.608739e-05 23 45 0.0001114272 -1.798207e-05 24 45 -0.0001247774 2.013652e-05 25 45 0.000140076 -2.26054e-05 26 45 -0.0001577525 2.545802e-05 27 45 0.0001783582 -2.878335e-05 28 45 -0.0002026106 3.26972e-05 29 45 0.0002314578 -3.735254e-05 30 45 -0.0002661734 4.295492e-05 31 45 0.0003085011 -4.978574e-05 32 45 -0.0003608797 5.823857e-05 33 45 0.0004268045 -6.887749e-05 34 45 -0.0005114288 8.253411e-05 35 45 0.0006226054 -0.0001004757 36 45 -0.0007727812 0.000124711 37 45 0.0009826448 -0.0001585787 38 45 -0.001288661 0.0002079635 39 45 0.001760065 -0.0002840383 40 45 -0.002541777 0.0004101906 41 45 0.003980742 -0.0006424099 42 45 -0.007089509 0.001144101 43 45 0.01597157 -0.002577484 44 45 -0.06393453 0.01031772 45 45 0.09673961 -0.01383326 46 45 -0.06393453 0.01031772 47 45 0.01597157 -0.002577484 48 45 -0.007089509 0.001144101 49 45 0.003980742 -0.0006424099 50 45 -0.002541777 0.0004101906 51 45 0.001760065 -0.0002840383 52 45 -0.001288661 0.0002079635 53 45 0.0009826448 -0.0001585787 54 45 -0.0007727812 0.000124711 55 45 0.0006226054 -0.0001004757 56 45 -0.0005114288 8.253411e-05 57 45 0.0004268045 -6.887749e-05 58 45 -0.0003608797 5.823857e-05 59 45 0.0003085011 -4.978574e-05 60 45 -0.0002661734 4.295492e-05 61 45 0.0002314578 -3.735254e-05 62 45 -0.0002026106 3.26972e-05 63 45 0.0001783582 -2.878335e-05 64 45 -0.0001577525 2.545802e-05 65 45 0.000140076 -2.26054e-05 66 45 -0.0001247774 2.013652e-05 67 45 0.0001114272 -1.798207e-05 68 45 -9.968672e-05 1.608739e-05 69 45 8.928565e-05 -1.440887e-05 70 45 -8.000611e-05 1.291134e-05 71 45 7.167061e-05 -1.156616e-05 72 45 -6.413319e-05 1.034978e-05 73 45 5.727273e-05 -9.242642e-06 74 45 -5.098776e-05 8.228377e-06 75 45 4.519256e-05 -7.293151e-06 76 45 -3.981401e-05 6.425164e-06 77 45 3.478917e-05 -5.614257e-06 78 45 -3.00633e-05 4.851599e-06 79 45 2.558831e-05 -4.129428e-06 80 45 -2.132146e-05 3.440846e-06 126 45 0.0007823553 6.347742e-05 0 46 -2.132146e-05 3.440846e-06 1 46 1.722429e-05 -2.779647e-06 2 46 -1.326172e-05 2.14017e-06 3 46 9.401297e-06 -1.517176e-06 4 46 -5.612495e-06 9.057414e-07 5 46 1.866144e-06 -3.011573e-07 6 46 1.866144e-06 -3.011573e-07 7 46 -5.612495e-06 9.057414e-07 8 46 9.401297e-06 -1.517176e-06 9 46 -1.326172e-05 2.14017e-06 10 46 1.722429e-05 -2.779647e-06 11 46 -2.132146e-05 3.440846e-06 12 46 2.558831e-05 -4.129428e-06 13 46 -3.00633e-05 4.851599e-06 14 46 3.478917e-05 -5.614257e-06 15 46 -3.981401e-05 6.425164e-06 16 46 4.519256e-05 -7.293151e-06 17 46 -5.098776e-05 8.228377e-06 18 46 5.727273e-05 -9.242642e-06 19 46 -6.413319e-05 1.034978e-05 20 46 7.167061e-05 -1.156616e-05 21 46 -8.000611e-05 1.291134e-05 22 46 8.928565e-05 -1.440887e-05 23 46 -9.968672e-05 1.608739e-05 24 46 0.0001114272 -1.798207e-05 25 46 -0.0001247774 2.013652e-05 26 46 0.000140076 -2.26054e-05 27 46 -0.0001577525 2.545802e-05 28 46 0.0001783582 -2.878335e-05 29 46 -0.0002026106 3.26972e-05 30 46 0.0002314578 -3.735254e-05 31 46 -0.0002661734 4.295492e-05 32 46 0.0003085011 -4.978574e-05 33 46 -0.0003608797 5.823857e-05 34 46 0.0004268045 -6.887749e-05 35 46 -0.0005114288 8.253411e-05 36 46 0.0006226054 -0.0001004757 37 46 -0.0007727812 0.000124711 38 46 0.0009826448 -0.0001585787 39 46 -0.001288661 0.0002079635 40 46 0.001760065 -0.0002840383 41 46 -0.002541777 0.0004101906 42 46 0.003980742 -0.0006424099 43 46 -0.007089509 0.001144101 44 46 0.01597157 -0.002577484 45 46 -0.06393453 0.01031772 46 46 0.09749764 -0.01404472 47 46 -0.06393453 0.01031772 48 46 0.01597157 -0.002577484 49 46 -0.007089509 0.001144101 50 46 0.003980742 -0.0006424099 51 46 -0.002541777 0.0004101906 52 46 0.001760065 -0.0002840383 53 46 -0.001288661 0.0002079635 54 46 0.0009826448 -0.0001585787 55 46 -0.0007727812 0.000124711 56 46 0.0006226054 -0.0001004757 57 46 -0.0005114288 8.253411e-05 58 46 0.0004268045 -6.887749e-05 59 46 -0.0003608797 5.823857e-05 60 46 0.0003085011 -4.978574e-05 61 46 -0.0002661734 4.295492e-05 62 46 0.0002314578 -3.735254e-05 63 46 -0.0002026106 3.26972e-05 64 46 0.0001783582 -2.878335e-05 65 46 -0.0001577525 2.545802e-05 66 46 0.000140076 -2.26054e-05 67 46 -0.0001247774 2.013652e-05 68 46 0.0001114272 -1.798207e-05 69 46 -9.968672e-05 1.608739e-05 70 46 8.928565e-05 -1.440887e-05 71 46 -8.000611e-05 1.291134e-05 72 46 7.167061e-05 -1.156616e-05 73 46 -6.413319e-05 1.034978e-05 74 46 5.727273e-05 -9.242642e-06 75 46 -5.098776e-05 8.228377e-06 76 46 4.519256e-05 -7.293151e-06 77 46 -3.981401e-05 6.425164e-06 78 46 3.478917e-05 -5.614257e-06 79 46 -3.00633e-05 4.851599e-06 80 46 2.558831e-05 -4.129428e-06 127 46 0.0007985741 6.510879e-05 0 47 2.558831e-05 -4.129428e-06 1 47 -2.132146e-05 3.440846e-06 2 47 1.722429e-05 -2.779647e-06 3 47 -1.326172e-05 2.14017e-06 4 47 9.401297e-06 -1.517176e-06 5 47 -5.612495e-06 9.057414e-07 6 47 1.866144e-06 -3.011573e-07 7 47 1.866144e-06 -3.011573e-07 8 47 -5.612495e-06 9.057414e-07 9 47 9.401297e-06 -1.517176e-06 10 47 -1.326172e-05 2.14017e-06 11 47 1.722429e-05 -2.779647e-06 12 47 -2.132146e-05 3.440846e-06 13 47 2.558831e-05 -4.129428e-06 14 47 -3.00633e-05 4.851599e-06 15 47 3.478917e-05 -5.614257e-06 16 47 -3.981401e-05 6.425164e-06 17 47 4.519256e-05 -7.293151e-06 18 47 -5.098776e-05 8.228377e-06 19 47 5.727273e-05 -9.242642e-06 20 47 -6.413319e-05 1.034978e-05 21 47 7.167061e-05 -1.156616e-05 22 47 -8.000611e-05 1.291134e-05 23 47 8.928565e-05 -1.440887e-05 24 47 -9.968672e-05 1.608739e-05 25 47 0.0001114272 -1.798207e-05 26 47 -0.0001247774 2.013652e-05 27 47 0.000140076 -2.26054e-05 28 47 -0.0001577525 2.545802e-05 29 47 0.0001783582 -2.878335e-05 30 47 -0.0002026106 3.26972e-05 31 47 0.0002314578 -3.735254e-05 32 47 -0.0002661734 4.295492e-05 33 47 0.0003085011 -4.978574e-05 34 47 -0.0003608797 5.823857e-05 35 47 0.0004268045 -6.887749e-05 36 47 -0.0005114288 8.253411e-05 37 47 0.0006226054 -0.0001004757 38 47 -0.0007727812 0.000124711 39 47 0.0009826448 -0.0001585787 40 47 -0.001288661 0.0002079635 41 47 0.001760065 -0.0002840383 42 47 -0.002541777 0.0004101906 43 47 0.003980742 -0.0006424099 44 47 -0.007089509 0.001144101 45 47 0.01597157 -0.002577484 46 47 -0.06393453 0.01031772 47 47 0.09818924 -0.01424411 48 47 -0.06393453 0.01031772 49 47 0.01597157 -0.002577484 50 47 -0.007089509 0.001144101 51 47 0.003980742 -0.0006424099 52 47 -0.002541777 0.0004101906 53 47 0.001760065 -0.0002840383 54 47 -0.001288661 0.0002079635 55 47 0.0009826448 -0.0001585787 56 47 -0.0007727812 0.000124711 57 47 0.0006226054 -0.0001004757 58 47 -0.0005114288 8.253411e-05 59 47 0.0004268045 -6.887749e-05 60 47 -0.0003608797 5.823857e-05 61 47 0.0003085011 -4.978574e-05 62 47 -0.0002661734 4.295492e-05 63 47 0.0002314578 -3.735254e-05 64 47 -0.0002026106 3.26972e-05 65 47 0.0001783582 -2.878335e-05 66 47 -0.0001577525 2.545802e-05 67 47 0.000140076 -2.26054e-05 68 47 -0.0001247774 2.013652e-05 69 47 0.0001114272 -1.798207e-05 70 47 -9.968672e-05 1.608739e-05 71 47 8.928565e-05 -1.440887e-05 72 47 -8.000611e-05 1.291134e-05 73 47 7.167061e-05 -1.156616e-05 74 47 -6.413319e-05 1.034978e-05 75 47 5.727273e-05 -9.242642e-06 76 47 -5.098776e-05 8.228377e-06 77 47 4.519256e-05 -7.293151e-06 78 47 -3.981401e-05 6.425164e-06 79 47 3.478917e-05 -5.614257e-06 80 47 -3.00633e-05 4.851599e-06 128 47 0.0008148755 6.675522e-05 0 48 -3.00633e-05 4.851599e-06 1 48 2.558831e-05 -4.129428e-06 2 48 -2.132146e-05 3.440846e-06 3 48 1.722429e-05 -2.779647e-06 4 48 -1.326172e-05 2.14017e-06 5 48 9.401297e-06 -1.517176e-06 6 48 -5.612495e-06 9.057414e-07 7 48 1.866144e-06 -3.011573e-07 8 48 1.866144e-06 -3.011573e-07 9 48 -5.612495e-06 9.057414e-07 10 48 9.401297e-06 -1.517176e-06 11 48 -1.326172e-05 2.14017e-06 12 48 1.722429e-05 -2.779647e-06 13 48 -2.132146e-05 3.440846e-06 14 48 2.558831e-05 -4.129428e-06 15 48 -3.00633e-05 4.851599e-06 16 48 3.478917e-05 -5.614257e-06 17 48 -3.981401e-05 6.425164e-06 18 48 4.519256e-05 -7.293151e-06 19 48 -5.098776e-05 8.228377e-06 20 48 5.727273e-05 -9.242642e-06 21 48 -6.413319e-05 1.034978e-05 22 48 7.167061e-05 -1.156616e-05 23 48 -8.000611e-05 1.291134e-05 24 48 8.928565e-05 -1.440887e-05 25 48 -9.968672e-05 1.608739e-05 26 48 0.0001114272 -1.798207e-05 27 48 -0.0001247774 2.013652e-05 28 48 0.000140076 -2.26054e-05 29 48 -0.0001577525 2.545802e-05 30 48 0.0001783582 -2.878335e-05 31 48 -0.0002026106 3.26972e-05 32 48 0.0002314578 -3.735254e-05 33 48 -0.0002661734 4.295492e-05 34 48 0.0003085011 -4.978574e-05 35 48 -0.0003608797 5.823857e-05 36 48 0.0004268045 -6.887749e-05 37 48 -0.0005114288 8.253411e-05 38 48 0.0006226054 -0.0001004757 39 48 -0.0007727812 0.000124711 40 48 0.0009826448 -0.0001585787 41 48 -0.001288661 0.0002079635 42 48 0.001760065 -0.0002840383 43 48 -0.002541777 0.0004101906 44 48 0.003980742 -0.0006424099 45 48 -0.007089509 0.001144101 46 48 0.01597157 -0.002577484 47 48 -0.06393453 0.01031772 48 48 0.09881998 -0.01443183 49 48 -0.06393453 0.01031772 50 48 0.01597157 -0.002577484 51 48 -0.007089509 0.001144101 52 48 0.003980742 -0.0006424099 53 48 -0.002541777 0.0004101906 54 48 0.001760065 -0.0002840383 55 48 -0.001288661 0.0002079635 56 48 0.0009826448 -0.0001585787 57 48 -0.0007727812 0.000124711 58 48 0.0006226054 -0.0001004757 59 48 -0.0005114288 8.253411e-05 60 48 0.0004268045 -6.887749e-05 61 48 -0.0003608797 5.823857e-05 62 48 0.0003085011 -4.978574e-05 63 48 -0.0002661734 4.295492e-05 64 48 0.0002314578 -3.735254e-05 65 48 -0.0002026106 3.26972e-05 66 48 0.0001783582 -2.878335e-05 67 48 -0.0001577525 2.545802e-05 68 48 0.000140076 -2.26054e-05 69 48 -0.0001247774 2.013652e-05 70 48 0.0001114272 -1.798207e-05 71 48 -9.968672e-05 1.608739e-05 72 48 8.928565e-05 -1.440887e-05 73 48 -8.000611e-05 1.291134e-05 74 48 7.167061e-05 -1.156616e-05 75 48 -6.413319e-05 1.034978e-05 76 48 5.727273e-05 -9.242642e-06 77 48 -5.098776e-05 8.228377e-06 78 48 4.519256e-05 -7.293151e-06 79 48 -3.981401e-05 6.425164e-06 80 48 3.478917e-05 -5.614257e-06 129 48 0.0008312598 6.841681e-05 0 49 3.478917e-05 -5.614257e-06 1 49 -3.00633e-05 4.851599e-06 2 49 2.558831e-05 -4.129428e-06 3 49 -2.132146e-05 3.440846e-06 4 49 1.722429e-05 -2.779647e-06 5 49 -1.326172e-05 2.14017e-06 6 49 9.401297e-06 -1.517176e-06 7 49 -5.612495e-06 9.057414e-07 8 49 1.866144e-06 -3.011573e-07 9 49 1.866144e-06 -3.011573e-07 10 49 -5.612495e-06 9.057414e-07 11 49 9.401297e-06 -1.517176e-06 12 49 -1.326172e-05 2.14017e-06 13 49 1.722429e-05 -2.779647e-06 14 49 -2.132146e-05 3.440846e-06 15 49 2.558831e-05 -4.129428e-06 16 49 -3.00633e-05 4.851599e-06 17 49 3.478917e-05 -5.614257e-06 18 49 -3.981401e-05 6.425164e-06 19 49 4.519256e-05 -7.293151e-06 20 49 -5.098776e-05 8.228377e-06 21 49 5.727273e-05 -9.242642e-06 22 49 -6.413319e-05 1.034978e-05 23 49 7.167061e-05 -1.156616e-05 24 49 -8.000611e-05 1.291134e-05 25 49 8.928565e-05 -1.440887e-05 26 49 -9.968672e-05 1.608739e-05 27 49 0.0001114272 -1.798207e-05 28 49 -0.0001247774 2.013652e-05 29 49 0.000140076 -2.26054e-05 30 49 -0.0001577525 2.545802e-05 31 49 0.0001783582 -2.878335e-05 32 49 -0.0002026106 3.26972e-05 33 49 0.0002314578 -3.735254e-05 34 49 -0.0002661734 4.295492e-05 35 49 0.0003085011 -4.978574e-05 36 49 -0.0003608797 5.823857e-05 37 49 0.0004268045 -6.887749e-05 38 49 -0.0005114288 8.253411e-05 39 49 0.0006226054 -0.0001004757 40 49 -0.0007727812 0.000124711 41 49 0.0009826448 -0.0001585787 42 49 -0.001288661 0.0002079635 43 49 0.001760065 -0.0002840383 44 49 -0.002541777 0.0004101906 45 49 0.003980742 -0.0006424099 46 49 -0.007089509 0.001144101 47 49 0.01597157 -0.002577484 48 49 -0.06393453 0.01031772 49 49 0.09939499 -0.01460829 50 49 -0.06393453 0.01031772 51 49 0.01597157 -0.002577484 52 49 -0.007089509 0.001144101 53 49 0.003980742 -0.0006424099 54 49 -0.002541777 0.0004101906 55 49 0.001760065 -0.0002840383 56 49 -0.001288661 0.0002079635 57 49 0.0009826448 -0.0001585787 58 49 -0.0007727812 0.000124711 59 49 0.0006226054 -0.0001004757 60 49 -0.0005114288 8.253411e-05 61 49 0.0004268045 -6.887749e-05 62 49 -0.0003608797 5.823857e-05 63 49 0.0003085011 -4.978574e-05 64 49 -0.0002661734 4.295492e-05 65 49 0.0002314578 -3.735254e-05 66 49 -0.0002026106 3.26972e-05 67 49 0.0001783582 -2.878335e-05 68 49 -0.0001577525 2.545802e-05 69 49 0.000140076 -2.26054e-05 70 49 -0.0001247774 2.013652e-05 71 49 0.0001114272 -1.798207e-05 72 49 -9.968672e-05 1.608739e-05 73 49 8.928565e-05 -1.440887e-05 74 49 -8.000611e-05 1.291134e-05 75 49 7.167061e-05 -1.156616e-05 76 49 -6.413319e-05 1.034978e-05 77 49 5.727273e-05 -9.242642e-06 78 49 -5.098776e-05 8.228377e-06 79 49 4.519256e-05 -7.293151e-06 80 49 -3.981401e-05 6.425164e-06 130 49 0.0008477274 7.009369e-05 0 50 -3.981401e-05 6.425164e-06 1 50 3.478917e-05 -5.614257e-06 2 50 -3.00633e-05 4.851599e-06 3 50 2.558831e-05 -4.129428e-06 4 50 -2.132146e-05 3.440846e-06 5 50 1.722429e-05 -2.779647e-06 6 50 -1.326172e-05 2.14017e-06 7 50 9.401297e-06 -1.517176e-06 8 50 -5.612495e-06 9.057414e-07 9 50 1.866144e-06 -3.011573e-07 10 50 1.866144e-06 -3.011573e-07 11 50 -5.612495e-06 9.057414e-07 12 50 9.401297e-06 -1.517176e-06 13 50 -1.326172e-05 2.14017e-06 14 50 1.722429e-05 -2.779647e-06 15 50 -2.132146e-05 3.440846e-06 16 50 2.558831e-05 -4.129428e-06 17 50 -3.00633e-05 4.851599e-06 18 50 3.478917e-05 -5.614257e-06 19 50 -3.981401e-05 6.425164e-06 20 50 4.519256e-05 -7.293151e-06 21 50 -5.098776e-05 8.228377e-06 22 50 5.727273e-05 -9.242642e-06 23 50 -6.413319e-05 1.034978e-05 24 50 7.167061e-05 -1.156616e-05 25 50 -8.000611e-05 1.291134e-05 26 50 8.928565e-05 -1.440887e-05 27 50 -9.968672e-05 1.608739e-05 28 50 0.0001114272 -1.798207e-05 29 50 -0.0001247774 2.013652e-05 30 50 0.000140076 -2.26054e-05 31 50 -0.0001577525 2.545802e-05 32 50 0.0001783582 -2.878335e-05 33 50 -0.0002026106 3.26972e-05 34 50 0.0002314578 -3.735254e-05 35 50 -0.0002661734 4.295492e-05 36 50 0.0003085011 -4.978574e-05 37 50 -0.0003608797 5.823857e-05 38 50 0.0004268045 -6.887749e-05 39 50 -0.0005114288 8.253411e-05 40 50 0.0006226054 -0.0001004757 41 50 -0.0007727812 0.000124711 42 50 0.0009826448 -0.0001585787 43 50 -0.001288661 0.0002079635 44 50 0.001760065 -0.0002840383 45 50 -0.002541777 0.0004101906 46 50 0.003980742 -0.0006424099 47 50 -0.007089509 0.001144101 48 50 0.01597157 -0.002577484 49 50 -0.06393453 0.01031772 50 50 0.09991903 -0.01477394 51 50 -0.06393453 0.01031772 52 50 0.01597157 -0.002577484 53 50 -0.007089509 0.001144101 54 50 0.003980742 -0.0006424099 55 50 -0.002541777 0.0004101906 56 50 0.001760065 -0.0002840383 57 50 -0.001288661 0.0002079635 58 50 0.0009826448 -0.0001585787 59 50 -0.0007727812 0.000124711 60 50 0.0006226054 -0.0001004757 61 50 -0.0005114288 8.253411e-05 62 50 0.0004268045 -6.887749e-05 63 50 -0.0003608797 5.823857e-05 64 50 0.0003085011 -4.978574e-05 65 50 -0.0002661734 4.295492e-05 66 50 0.0002314578 -3.735254e-05 67 50 -0.0002026106 3.26972e-05 68 50 0.0001783582 -2.878335e-05 69 50 -0.0001577525 2.545802e-05 70 50 0.000140076 -2.26054e-05 71 50 -0.0001247774 2.013652e-05 72 50 0.0001114272 -1.798207e-05 73 50 -9.968672e-05 1.608739e-05 74 50 8.928565e-05 -1.440887e-05 75 50 -8.000611e-05 1.291134e-05 76 50 7.167061e-05 -1.156616e-05 77 50 -6.413319e-05 1.034978e-05 78 50 5.727273e-05 -9.242642e-06 79 50 -5.098776e-05 8.228377e-06 80 50 4.519256e-05 -7.293151e-06 131 50 0.0008642789 7.178596e-05 0 51 4.519256e-05 -7.293151e-06 1 51 -3.981401e-05 6.425164e-06 2 51 3.478917e-05 -5.614257e-06 3 51 -3.00633e-05 4.851599e-06 4 51 2.558831e-05 -4.129428e-06 5 51 -2.132146e-05 3.440846e-06 6 51 1.722429e-05 -2.779647e-06 7 51 -1.326172e-05 2.14017e-06 8 51 9.401297e-06 -1.517176e-06 9 51 -5.612495e-06 9.057414e-07 10 51 1.866144e-06 -3.011573e-07 11 51 1.866144e-06 -3.011573e-07 12 51 -5.612495e-06 9.057414e-07 13 51 9.401297e-06 -1.517176e-06 14 51 -1.326172e-05 2.14017e-06 15 51 1.722429e-05 -2.779647e-06 16 51 -2.132146e-05 3.440846e-06 17 51 2.558831e-05 -4.129428e-06 18 51 -3.00633e-05 4.851599e-06 19 51 3.478917e-05 -5.614257e-06 20 51 -3.981401e-05 6.425164e-06 21 51 4.519256e-05 -7.293151e-06 22 51 -5.098776e-05 8.228377e-06 23 51 5.727273e-05 -9.242642e-06 24 51 -6.413319e-05 1.034978e-05 25 51 7.167061e-05 -1.156616e-05 26 51 -8.000611e-05 1.291134e-05 27 51 8.928565e-05 -1.440887e-05 28 51 -9.968672e-05 1.608739e-05 29 51 0.0001114272 -1.798207e-05 30 51 -0.0001247774 2.013652e-05 31 51 0.000140076 -2.26054e-05 32 51 -0.0001577525 2.545802e-05 33 51 0.0001783582 -2.878335e-05 34 51 -0.0002026106 3.26972e-05 35 51 0.0002314578 -3.735254e-05 36 51 -0.0002661734 4.295492e-05 37 51 0.0003085011 -4.978574e-05 38 51 -0.0003608797 5.823857e-05 39 51 0.0004268045 -6.887749e-05 40 51 -0.0005114288 8.253411e-05 41 51 0.0006226054 -0.0001004757 42 51 -0.0007727812 0.000124711 43 51 0.0009826448 -0.0001585787 44 51 -0.001288661 0.0002079635 45 51 0.001760065 -0.0002840383 46 51 -0.002541777 0.0004101906 47 51 0.003980742 -0.0006424099 48 51 -0.007089509 0.001144101 49 51 0.01597157 -0.002577484 50 51 -0.06393453 0.01031772 51 51 0.1003965 -0.01492925 52 51 -0.06393453 0.01031772 53 51 0.01597157 -0.002577484 54 51 -0.007089509 0.001144101 55 51 0.003980742 -0.0006424099 56 51 -0.002541777 0.0004101906 57 51 0.001760065 -0.0002840383 58 51 -0.001288661 0.0002079635 59 51 0.0009826448 -0.0001585787 60 51 -0.0007727812 0.000124711 61 51 0.0006226054 -0.0001004757 62 51 -0.0005114288 8.253411e-05 63 51 0.0004268045 -6.887749e-05 64 51 -0.0003608797 5.823857e-05 65 51 0.0003085011 -4.978574e-05 66 51 -0.0002661734 4.295492e-05 67 51 0.0002314578 -3.735254e-05 68 51 -0.0002026106 3.26972e-05 69 51 0.0001783582 -2.878335e-05 70 51 -0.0001577525 2.545802e-05 71 51 0.000140076 -2.26054e-05 72 51 -0.0001247774 2.013652e-05 73 51 0.0001114272 -1.798207e-05 74 51 -9.968672e-05 1.608739e-05 75 51 8.928565e-05 -1.440887e-05 76 51 -8.000611e-05 1.291134e-05 77 51 7.167061e-05 -1.156616e-05 78 51 -6.413319e-05 1.034978e-05 79 51 5.727273e-05 -9.242642e-06 80 51 -5.098776e-05 8.228377e-06 132 51 0.0008809146 7.349373e-05 0 52 -5.098776e-05 8.228377e-06 1 52 4.519256e-05 -7.293151e-06 2 52 -3.981401e-05 6.425164e-06 3 52 3.478917e-05 -5.614257e-06 4 52 -3.00633e-05 4.851599e-06 5 52 2.558831e-05 -4.129428e-06 6 52 -2.132146e-05 3.440846e-06 7 52 1.722429e-05 -2.779647e-06 8 52 -1.326172e-05 2.14017e-06 9 52 9.401297e-06 -1.517176e-06 10 52 -5.612495e-06 9.057414e-07 11 52 1.866144e-06 -3.011573e-07 12 52 1.866144e-06 -3.011573e-07 13 52 -5.612495e-06 9.057414e-07 14 52 9.401297e-06 -1.517176e-06 15 52 -1.326172e-05 2.14017e-06 16 52 1.722429e-05 -2.779647e-06 17 52 -2.132146e-05 3.440846e-06 18 52 2.558831e-05 -4.129428e-06 19 52 -3.00633e-05 4.851599e-06 20 52 3.478917e-05 -5.614257e-06 21 52 -3.981401e-05 6.425164e-06 22 52 4.519256e-05 -7.293151e-06 23 52 -5.098776e-05 8.228377e-06 24 52 5.727273e-05 -9.242642e-06 25 52 -6.413319e-05 1.034978e-05 26 52 7.167061e-05 -1.156616e-05 27 52 -8.000611e-05 1.291134e-05 28 52 8.928565e-05 -1.440887e-05 29 52 -9.968672e-05 1.608739e-05 30 52 0.0001114272 -1.798207e-05 31 52 -0.0001247774 2.013652e-05 32 52 0.000140076 -2.26054e-05 33 52 -0.0001577525 2.545802e-05 34 52 0.0001783582 -2.878335e-05 35 52 -0.0002026106 3.26972e-05 36 52 0.0002314578 -3.735254e-05 37 52 -0.0002661734 4.295492e-05 38 52 0.0003085011 -4.978574e-05 39 52 -0.0003608797 5.823857e-05 40 52 0.0004268045 -6.887749e-05 41 52 -0.0005114288 8.253411e-05 42 52 0.0006226054 -0.0001004757 43 52 -0.0007727812 0.000124711 44 52 0.0009826448 -0.0001585787 45 52 -0.001288661 0.0002079635 46 52 0.001760065 -0.0002840383 47 52 -0.002541777 0.0004101906 48 52 0.003980742 -0.0006424099 49 52 -0.007089509 0.001144101 50 52 0.01597157 -0.002577484 51 52 -0.06393453 0.01031772 52 52 0.1008313 -0.01507469 53 52 -0.06393453 0.01031772 54 52 0.01597157 -0.002577484 55 52 -0.007089509 0.001144101 56 52 0.003980742 -0.0006424099 57 52 -0.002541777 0.0004101906 58 52 0.001760065 -0.0002840383 59 52 -0.001288661 0.0002079635 60 52 0.0009826448 -0.0001585787 61 52 -0.0007727812 0.000124711 62 52 0.0006226054 -0.0001004757 63 52 -0.0005114288 8.253411e-05 64 52 0.0004268045 -6.887749e-05 65 52 -0.0003608797 5.823857e-05 66 52 0.0003085011 -4.978574e-05 67 52 -0.0002661734 4.295492e-05 68 52 0.0002314578 -3.735254e-05 69 52 -0.0002026106 3.26972e-05 70 52 0.0001783582 -2.878335e-05 71 52 -0.0001577525 2.545802e-05 72 52 0.000140076 -2.26054e-05 73 52 -0.0001247774 2.013652e-05 74 52 0.0001114272 -1.798207e-05 75 52 -9.968672e-05 1.608739e-05 76 52 8.928565e-05 -1.440887e-05 77 52 -8.000611e-05 1.291134e-05 78 52 7.167061e-05 -1.156616e-05 79 52 -6.413319e-05 1.034978e-05 80 52 5.727273e-05 -9.242642e-06 133 52 0.0008976348 7.521712e-05 0 53 5.727273e-05 -9.242642e-06 1 53 -5.098776e-05 8.228377e-06 2 53 4.519256e-05 -7.293151e-06 3 53 -3.981401e-05 6.425164e-06 4 53 3.478917e-05 -5.614257e-06 5 53 -3.00633e-05 4.851599e-06 6 53 2.558831e-05 -4.129428e-06 7 53 -2.132146e-05 3.440846e-06 8 53 1.722429e-05 -2.779647e-06 9 53 -1.326172e-05 2.14017e-06 10 53 9.401297e-06 -1.517176e-06 11 53 -5.612495e-06 9.057414e-07 12 53 1.866144e-06 -3.011573e-07 13 53 1.866144e-06 -3.011573e-07 14 53 -5.612495e-06 9.057414e-07 15 53 9.401297e-06 -1.517176e-06 16 53 -1.326172e-05 2.14017e-06 17 53 1.722429e-05 -2.779647e-06 18 53 -2.132146e-05 3.440846e-06 19 53 2.558831e-05 -4.129428e-06 20 53 -3.00633e-05 4.851599e-06 21 53 3.478917e-05 -5.614257e-06 22 53 -3.981401e-05 6.425164e-06 23 53 4.519256e-05 -7.293151e-06 24 53 -5.098776e-05 8.228377e-06 25 53 5.727273e-05 -9.242642e-06 26 53 -6.413319e-05 1.034978e-05 27 53 7.167061e-05 -1.156616e-05 28 53 -8.000611e-05 1.291134e-05 29 53 8.928565e-05 -1.440887e-05 30 53 -9.968672e-05 1.608739e-05 31 53 0.0001114272 -1.798207e-05 32 53 -0.0001247774 2.013652e-05 33 53 0.000140076 -2.26054e-05 34 53 -0.0001577525 2.545802e-05 35 53 0.0001783582 -2.878335e-05 36 53 -0.0002026106 3.26972e-05 37 53 0.0002314578 -3.735254e-05 38 53 -0.0002661734 4.295492e-05 39 53 0.0003085011 -4.978574e-05 40 53 -0.0003608797 5.823857e-05 41 53 0.0004268045 -6.887749e-05 42 53 -0.0005114288 8.253411e-05 43 53 0.0006226054 -0.0001004757 44 53 -0.0007727812 0.000124711 45 53 0.0009826448 -0.0001585787 46 53 -0.001288661 0.0002079635 47 53 0.001760065 -0.0002840383 48 53 -0.002541777 0.0004101906 49 53 0.003980742 -0.0006424099 50 53 -0.007089509 0.001144101 51 53 0.01597157 -0.002577484 52 53 -0.06393453 0.01031772 53 53 0.1012272 -0.01521075 54 53 -0.06393453 0.01031772 55 53 0.01597157 -0.002577484 56 53 -0.007089509 0.001144101 57 53 0.003980742 -0.0006424099 58 53 -0.002541777 0.0004101906 59 53 0.001760065 -0.0002840383 60 53 -0.001288661 0.0002079635 61 53 0.0009826448 -0.0001585787 62 53 -0.0007727812 0.000124711 63 53 0.0006226054 -0.0001004757 64 53 -0.0005114288 8.253411e-05 65 53 0.0004268045 -6.887749e-05 66 53 -0.0003608797 5.823857e-05 67 53 0.0003085011 -4.978574e-05 68 53 -0.0002661734 4.295492e-05 69 53 0.0002314578 -3.735254e-05 70 53 -0.0002026106 3.26972e-05 71 53 0.0001783582 -2.878335e-05 72 53 -0.0001577525 2.545802e-05 73 53 0.000140076 -2.26054e-05 74 53 -0.0001247774 2.013652e-05 75 53 0.0001114272 -1.798207e-05 76 53 -9.968672e-05 1.608739e-05 77 53 8.928565e-05 -1.440887e-05 78 53 -8.000611e-05 1.291134e-05 79 53 7.167061e-05 -1.156616e-05 80 53 -6.413319e-05 1.034978e-05 134 53 0.0009144402 7.695625e-05 0 54 -6.413319e-05 1.034978e-05 1 54 5.727273e-05 -9.242642e-06 2 54 -5.098776e-05 8.228377e-06 3 54 4.519256e-05 -7.293151e-06 4 54 -3.981401e-05 6.425164e-06 5 54 3.478917e-05 -5.614257e-06 6 54 -3.00633e-05 4.851599e-06 7 54 2.558831e-05 -4.129428e-06 8 54 -2.132146e-05 3.440846e-06 9 54 1.722429e-05 -2.779647e-06 10 54 -1.326172e-05 2.14017e-06 11 54 9.401297e-06 -1.517176e-06 12 54 -5.612495e-06 9.057414e-07 13 54 1.866144e-06 -3.011573e-07 14 54 1.866144e-06 -3.011573e-07 15 54 -5.612495e-06 9.057414e-07 16 54 9.401297e-06 -1.517176e-06 17 54 -1.326172e-05 2.14017e-06 18 54 1.722429e-05 -2.779647e-06 19 54 -2.132146e-05 3.440846e-06 20 54 2.558831e-05 -4.129428e-06 21 54 -3.00633e-05 4.851599e-06 22 54 3.478917e-05 -5.614257e-06 23 54 -3.981401e-05 6.425164e-06 24 54 4.519256e-05 -7.293151e-06 25 54 -5.098776e-05 8.228377e-06 26 54 5.727273e-05 -9.242642e-06 27 54 -6.413319e-05 1.034978e-05 28 54 7.167061e-05 -1.156616e-05 29 54 -8.000611e-05 1.291134e-05 30 54 8.928565e-05 -1.440887e-05 31 54 -9.968672e-05 1.608739e-05 32 54 0.0001114272 -1.798207e-05 33 54 -0.0001247774 2.013652e-05 34 54 0.000140076 -2.26054e-05 35 54 -0.0001577525 2.545802e-05 36 54 0.0001783582 -2.878335e-05 37 54 -0.0002026106 3.26972e-05 38 54 0.0002314578 -3.735254e-05 39 54 -0.0002661734 4.295492e-05 40 54 0.0003085011 -4.978574e-05 41 54 -0.0003608797 5.823857e-05 42 54 0.0004268045 -6.887749e-05 43 54 -0.0005114288 8.253411e-05 44 54 0.0006226054 -0.0001004757 45 54 -0.0007727812 0.000124711 46 54 0.0009826448 -0.0001585787 47 54 -0.001288661 0.0002079635 48 54 0.001760065 -0.0002840383 49 54 -0.002541777 0.0004101906 50 54 0.003980742 -0.0006424099 51 54 -0.007089509 0.001144101 52 54 0.01597157 -0.002577484 53 54 -0.06393453 0.01031772 54 54 0.1015876 -0.0153379 55 54 -0.06393453 0.01031772 56 54 0.01597157 -0.002577484 57 54 -0.007089509 0.001144101 58 54 0.003980742 -0.0006424099 59 54 -0.002541777 0.0004101906 60 54 0.001760065 -0.0002840383 61 54 -0.001288661 0.0002079635 62 54 0.0009826448 -0.0001585787 63 54 -0.0007727812 0.000124711 64 54 0.0006226054 -0.0001004757 65 54 -0.0005114288 8.253411e-05 66 54 0.0004268045 -6.887749e-05 67 54 -0.0003608797 5.823857e-05 68 54 0.0003085011 -4.978574e-05 69 54 -0.0002661734 4.295492e-05 70 54 0.0002314578 -3.735254e-05 71 54 -0.0002026106 3.26972e-05 72 54 0.0001783582 -2.878335e-05 73 54 -0.0001577525 2.545802e-05 74 54 0.000140076 -2.26054e-05 75 54 -0.0001247774 2.013652e-05 76 54 0.0001114272 -1.798207e-05 77 54 -9.968672e-05 1.608739e-05 78 54 8.928565e-05 -1.440887e-05 79 54 -8.000611e-05 1.291134e-05 80 54 7.167061e-05 -1.156616e-05 135 54 0.0009313311 7.871123e-05 0 55 7.167061e-05 -1.156616e-05 1 55 -6.413319e-05 1.034978e-05 2 55 5.727273e-05 -9.242642e-06 3 55 -5.098776e-05 8.228377e-06 4 55 4.519256e-05 -7.293151e-06 5 55 -3.981401e-05 6.425164e-06 6 55 3.478917e-05 -5.614257e-06 7 55 -3.00633e-05 4.851599e-06 8 55 2.558831e-05 -4.129428e-06 9 55 -2.132146e-05 3.440846e-06 10 55 1.722429e-05 -2.779647e-06 11 55 -1.326172e-05 2.14017e-06 12 55 9.401297e-06 -1.517176e-06 13 55 -5.612495e-06 9.057414e-07 14 55 1.866144e-06 -3.011573e-07 15 55 1.866144e-06 -3.011573e-07 16 55 -5.612495e-06 9.057414e-07 17 55 9.401297e-06 -1.517176e-06 18 55 -1.326172e-05 2.14017e-06 19 55 1.722429e-05 -2.779647e-06 20 55 -2.132146e-05 3.440846e-06 21 55 2.558831e-05 -4.129428e-06 22 55 -3.00633e-05 4.851599e-06 23 55 3.478917e-05 -5.614257e-06 24 55 -3.981401e-05 6.425164e-06 25 55 4.519256e-05 -7.293151e-06 26 55 -5.098776e-05 8.228377e-06 27 55 5.727273e-05 -9.242642e-06 28 55 -6.413319e-05 1.034978e-05 29 55 7.167061e-05 -1.156616e-05 30 55 -8.000611e-05 1.291134e-05 31 55 8.928565e-05 -1.440887e-05 32 55 -9.968672e-05 1.608739e-05 33 55 0.0001114272 -1.798207e-05 34 55 -0.0001247774 2.013652e-05 35 55 0.000140076 -2.26054e-05 36 55 -0.0001577525 2.545802e-05 37 55 0.0001783582 -2.878335e-05 38 55 -0.0002026106 3.26972e-05 39 55 0.0002314578 -3.735254e-05 40 55 -0.0002661734 4.295492e-05 41 55 0.0003085011 -4.978574e-05 42 55 -0.0003608797 5.823857e-05 43 55 0.0004268045 -6.887749e-05 44 55 -0.0005114288 8.253411e-05 45 55 0.0006226054 -0.0001004757 46 55 -0.0007727812 0.000124711 47 55 0.0009826448 -0.0001585787 48 55 -0.001288661 0.0002079635 49 55 0.001760065 -0.0002840383 50 55 -0.002541777 0.0004101906 51 55 0.003980742 -0.0006424099 52 55 -0.007089509 0.001144101 53 55 0.01597157 -0.002577484 54 55 -0.06393453 0.01031772 55 55 0.1019156 -0.01545662 56 55 -0.06393453 0.01031772 57 55 0.01597157 -0.002577484 58 55 -0.007089509 0.001144101 59 55 0.003980742 -0.0006424099 60 55 -0.002541777 0.0004101906 61 55 0.001760065 -0.0002840383 62 55 -0.001288661 0.0002079635 63 55 0.0009826448 -0.0001585787 64 55 -0.0007727812 0.000124711 65 55 0.0006226054 -0.0001004757 66 55 -0.0005114288 8.253411e-05 67 55 0.0004268045 -6.887749e-05 68 55 -0.0003608797 5.823857e-05 69 55 0.0003085011 -4.978574e-05 70 55 -0.0002661734 4.295492e-05 71 55 0.0002314578 -3.735254e-05 72 55 -0.0002026106 3.26972e-05 73 55 0.0001783582 -2.878335e-05 74 55 -0.0001577525 2.545802e-05 75 55 0.000140076 -2.26054e-05 76 55 -0.0001247774 2.013652e-05 77 55 0.0001114272 -1.798207e-05 78 55 -9.968672e-05 1.608739e-05 79 55 8.928565e-05 -1.440887e-05 80 55 -8.000611e-05 1.291134e-05 136 55 0.0009483078 8.048218e-05 0 56 -8.000611e-05 1.291134e-05 1 56 7.167061e-05 -1.156616e-05 2 56 -6.413319e-05 1.034978e-05 3 56 5.727273e-05 -9.242642e-06 4 56 -5.098776e-05 8.228377e-06 5 56 4.519256e-05 -7.293151e-06 6 56 -3.981401e-05 6.425164e-06 7 56 3.478917e-05 -5.614257e-06 8 56 -3.00633e-05 4.851599e-06 9 56 2.558831e-05 -4.129428e-06 10 56 -2.132146e-05 3.440846e-06 11 56 1.722429e-05 -2.779647e-06 12 56 -1.326172e-05 2.14017e-06 13 56 9.401297e-06 -1.517176e-06 14 56 -5.612495e-06 9.057414e-07 15 56 1.866144e-06 -3.011573e-07 16 56 1.866144e-06 -3.011573e-07 17 56 -5.612495e-06 9.057414e-07 18 56 9.401297e-06 -1.517176e-06 19 56 -1.326172e-05 2.14017e-06 20 56 1.722429e-05 -2.779647e-06 21 56 -2.132146e-05 3.440846e-06 22 56 2.558831e-05 -4.129428e-06 23 56 -3.00633e-05 4.851599e-06 24 56 3.478917e-05 -5.614257e-06 25 56 -3.981401e-05 6.425164e-06 26 56 4.519256e-05 -7.293151e-06 27 56 -5.098776e-05 8.228377e-06 28 56 5.727273e-05 -9.242642e-06 29 56 -6.413319e-05 1.034978e-05 30 56 7.167061e-05 -1.156616e-05 31 56 -8.000611e-05 1.291134e-05 32 56 8.928565e-05 -1.440887e-05 33 56 -9.968672e-05 1.608739e-05 34 56 0.0001114272 -1.798207e-05 35 56 -0.0001247774 2.013652e-05 36 56 0.000140076 -2.26054e-05 37 56 -0.0001577525 2.545802e-05 38 56 0.0001783582 -2.878335e-05 39 56 -0.0002026106 3.26972e-05 40 56 0.0002314578 -3.735254e-05 41 56 -0.0002661734 4.295492e-05 42 56 0.0003085011 -4.978574e-05 43 56 -0.0003608797 5.823857e-05 44 56 0.0004268045 -6.887749e-05 45 56 -0.0005114288 8.253411e-05 46 56 0.0006226054 -0.0001004757 47 56 -0.0007727812 0.000124711 48 56 0.0009826448 -0.0001585787 49 56 -0.001288661 0.0002079635 50 56 0.001760065 -0.0002840383 51 56 -0.002541777 0.0004101906 52 56 0.003980742 -0.0006424099 53 56 -0.007089509 0.001144101 54 56 0.01597157 -0.002577484 55 56 -0.06393453 0.01031772 56 56 0.1022141 -0.01556737 57 56 -0.06393453 0.01031772 58 56 0.01597157 -0.002577484 59 56 -0.007089509 0.001144101 60 56 0.003980742 -0.0006424099 61 56 -0.002541777 0.0004101906 62 56 0.001760065 -0.0002840383 63 56 -0.001288661 0.0002079635 64 56 0.0009826448 -0.0001585787 65 56 -0.0007727812 0.000124711 66 56 0.0006226054 -0.0001004757 67 56 -0.0005114288 8.253411e-05 68 56 0.0004268045 -6.887749e-05 69 56 -0.0003608797 5.823857e-05 70 56 0.0003085011 -4.978574e-05 71 56 -0.0002661734 4.295492e-05 72 56 0.0002314578 -3.735254e-05 73 56 -0.0002026106 3.26972e-05 74 56 0.0001783582 -2.878335e-05 75 56 -0.0001577525 2.545802e-05 76 56 0.000140076 -2.26054e-05 77 56 -0.0001247774 2.013652e-05 78 56 0.0001114272 -1.798207e-05 79 56 -9.968672e-05 1.608739e-05 80 56 8.928565e-05 -1.440887e-05 137 56 0.000965371 8.226921e-05 0 57 8.928565e-05 -1.440887e-05 1 57 -8.000611e-05 1.291134e-05 2 57 7.167061e-05 -1.156616e-05 3 57 -6.413319e-05 1.034978e-05 4 57 5.727273e-05 -9.242642e-06 5 57 -5.098776e-05 8.228377e-06 6 57 4.519256e-05 -7.293151e-06 7 57 -3.981401e-05 6.425164e-06 8 57 3.478917e-05 -5.614257e-06 9 57 -3.00633e-05 4.851599e-06 10 57 2.558831e-05 -4.129428e-06 11 57 -2.132146e-05 3.440846e-06 12 57 1.722429e-05 -2.779647e-06 13 57 -1.326172e-05 2.14017e-06 14 57 9.401297e-06 -1.517176e-06 15 57 -5.612495e-06 9.057414e-07 16 57 1.866144e-06 -3.011573e-07 17 57 1.866144e-06 -3.011573e-07 18 57 -5.612495e-06 9.057414e-07 19 57 9.401297e-06 -1.517176e-06 20 57 -1.326172e-05 2.14017e-06 21 57 1.722429e-05 -2.779647e-06 22 57 -2.132146e-05 3.440846e-06 23 57 2.558831e-05 -4.129428e-06 24 57 -3.00633e-05 4.851599e-06 25 57 3.478917e-05 -5.614257e-06 26 57 -3.981401e-05 6.425164e-06 27 57 4.519256e-05 -7.293151e-06 28 57 -5.098776e-05 8.228377e-06 29 57 5.727273e-05 -9.242642e-06 30 57 -6.413319e-05 1.034978e-05 31 57 7.167061e-05 -1.156616e-05 32 57 -8.000611e-05 1.291134e-05 33 57 8.928565e-05 -1.440887e-05 34 57 -9.968672e-05 1.608739e-05 35 57 0.0001114272 -1.798207e-05 36 57 -0.0001247774 2.013652e-05 37 57 0.000140076 -2.26054e-05 38 57 -0.0001577525 2.545802e-05 39 57 0.0001783582 -2.878335e-05 40 57 -0.0002026106 3.26972e-05 41 57 0.0002314578 -3.735254e-05 42 57 -0.0002661734 4.295492e-05 43 57 0.0003085011 -4.978574e-05 44 57 -0.0003608797 5.823857e-05 45 57 0.0004268045 -6.887749e-05 46 57 -0.0005114288 8.253411e-05 47 57 0.0006226054 -0.0001004757 48 57 -0.0007727812 0.000124711 49 57 0.0009826448 -0.0001585787 50 57 -0.001288661 0.0002079635 51 57 0.001760065 -0.0002840383 52 57 -0.002541777 0.0004101906 53 57 0.003980742 -0.0006424099 54 57 -0.007089509 0.001144101 55 57 0.01597157 -0.002577484 56 57 -0.06393453 0.01031772 57 57 0.1024856 -0.0156706 58 57 -0.06393453 0.01031772 59 57 0.01597157 -0.002577484 60 57 -0.007089509 0.001144101 61 57 0.003980742 -0.0006424099 62 57 -0.002541777 0.0004101906 63 57 0.001760065 -0.0002840383 64 57 -0.001288661 0.0002079635 65 57 0.0009826448 -0.0001585787 66 57 -0.0007727812 0.000124711 67 57 0.0006226054 -0.0001004757 68 57 -0.0005114288 8.253411e-05 69 57 0.0004268045 -6.887749e-05 70 57 -0.0003608797 5.823857e-05 71 57 0.0003085011 -4.978574e-05 72 57 -0.0002661734 4.295492e-05 73 57 0.0002314578 -3.735254e-05 74 57 -0.0002026106 3.26972e-05 75 57 0.0001783582 -2.878335e-05 76 57 -0.0001577525 2.545802e-05 77 57 0.000140076 -2.26054e-05 78 57 -0.0001247774 2.013652e-05 79 57 0.0001114272 -1.798207e-05 80 57 -9.968672e-05 1.608739e-05 138 57 0.0009825209 8.407245e-05 0 58 -9.968672e-05 1.608739e-05 1 58 8.928565e-05 -1.440887e-05 2 58 -8.000611e-05 1.291134e-05 3 58 7.167061e-05 -1.156616e-05 4 58 -6.413319e-05 1.034978e-05 5 58 5.727273e-05 -9.242642e-06 6 58 -5.098776e-05 8.228377e-06 7 58 4.519256e-05 -7.293151e-06 8 58 -3.981401e-05 6.425164e-06 9 58 3.478917e-05 -5.614257e-06 10 58 -3.00633e-05 4.851599e-06 11 58 2.558831e-05 -4.129428e-06 12 58 -2.132146e-05 3.440846e-06 13 58 1.722429e-05 -2.779647e-06 14 58 -1.326172e-05 2.14017e-06 15 58 9.401297e-06 -1.517176e-06 16 58 -5.612495e-06 9.057414e-07 17 58 1.866144e-06 -3.011573e-07 18 58 1.866144e-06 -3.011573e-07 19 58 -5.612495e-06 9.057414e-07 20 58 9.401297e-06 -1.517176e-06 21 58 -1.326172e-05 2.14017e-06 22 58 1.722429e-05 -2.779647e-06 23 58 -2.132146e-05 3.440846e-06 24 58 2.558831e-05 -4.129428e-06 25 58 -3.00633e-05 4.851599e-06 26 58 3.478917e-05 -5.614257e-06 27 58 -3.981401e-05 6.425164e-06 28 58 4.519256e-05 -7.293151e-06 29 58 -5.098776e-05 8.228377e-06 30 58 5.727273e-05 -9.242642e-06 31 58 -6.413319e-05 1.034978e-05 32 58 7.167061e-05 -1.156616e-05 33 58 -8.000611e-05 1.291134e-05 34 58 8.928565e-05 -1.440887e-05 35 58 -9.968672e-05 1.608739e-05 36 58 0.0001114272 -1.798207e-05 37 58 -0.0001247774 2.013652e-05 38 58 0.000140076 -2.26054e-05 39 58 -0.0001577525 2.545802e-05 40 58 0.0001783582 -2.878335e-05 41 58 -0.0002026106 3.26972e-05 42 58 0.0002314578 -3.735254e-05 43 58 -0.0002661734 4.295492e-05 44 58 0.0003085011 -4.978574e-05 45 58 -0.0003608797 5.823857e-05 46 58 0.0004268045 -6.887749e-05 47 58 -0.0005114288 8.253411e-05 48 58 0.0006226054 -0.0001004757 49 58 -0.0007727812 0.000124711 50 58 0.0009826448 -0.0001585787 51 58 -0.001288661 0.0002079635 52 58 0.001760065 -0.0002840383 53 58 -0.002541777 0.0004101906 54 58 0.003980742 -0.0006424099 55 58 -0.007089509 0.001144101 56 58 0.01597157 -0.002577484 57 58 -0.06393453 0.01031772 58 58 0.1027326 -0.01576676 59 58 -0.06393453 0.01031772 60 58 0.01597157 -0.002577484 61 58 -0.007089509 0.001144101 62 58 0.003980742 -0.0006424099 63 58 -0.002541777 0.0004101906 64 58 0.001760065 -0.0002840383 65 58 -0.001288661 0.0002079635 66 58 0.0009826448 -0.0001585787 67 58 -0.0007727812 0.000124711 68 58 0.0006226054 -0.0001004757 69 58 -0.0005114288 8.253411e-05 70 58 0.0004268045 -6.887749e-05 71 58 -0.0003608797 5.823857e-05 72 58 0.0003085011 -4.978574e-05 73 58 -0.0002661734 4.295492e-05 74 58 0.0002314578 -3.735254e-05 75 58 -0.0002026106 3.26972e-05 76 58 0.0001783582 -2.878335e-05 77 58 -0.0001577525 2.545802e-05 78 58 0.000140076 -2.26054e-05 79 58 -0.0001247774 2.013652e-05 80 58 0.0001114272 -1.798207e-05 139 58 0.0009997581 8.589201e-05 0 59 0.0001114272 -1.798207e-05 1 59 -9.968672e-05 1.608739e-05 2 59 8.928565e-05 -1.440887e-05 3 59 -8.000611e-05 1.291134e-05 4 59 7.167061e-05 -1.156616e-05 5 59 -6.413319e-05 1.034978e-05 6 59 5.727273e-05 -9.242642e-06 7 59 -5.098776e-05 8.228377e-06 8 59 4.519256e-05 -7.293151e-06 9 59 -3.981401e-05 6.425164e-06 10 59 3.478917e-05 -5.614257e-06 11 59 -3.00633e-05 4.851599e-06 12 59 2.558831e-05 -4.129428e-06 13 59 -2.132146e-05 3.440846e-06 14 59 1.722429e-05 -2.779647e-06 15 59 -1.326172e-05 2.14017e-06 16 59 9.401297e-06 -1.517176e-06 17 59 -5.612495e-06 9.057414e-07 18 59 1.866144e-06 -3.011573e-07 19 59 1.866144e-06 -3.011573e-07 20 59 -5.612495e-06 9.057414e-07 21 59 9.401297e-06 -1.517176e-06 22 59 -1.326172e-05 2.14017e-06 23 59 1.722429e-05 -2.779647e-06 24 59 -2.132146e-05 3.440846e-06 25 59 2.558831e-05 -4.129428e-06 26 59 -3.00633e-05 4.851599e-06 27 59 3.478917e-05 -5.614257e-06 28 59 -3.981401e-05 6.425164e-06 29 59 4.519256e-05 -7.293151e-06 30 59 -5.098776e-05 8.228377e-06 31 59 5.727273e-05 -9.242642e-06 32 59 -6.413319e-05 1.034978e-05 33 59 7.167061e-05 -1.156616e-05 34 59 -8.000611e-05 1.291134e-05 35 59 8.928565e-05 -1.440887e-05 36 59 -9.968672e-05 1.608739e-05 37 59 0.0001114272 -1.798207e-05 38 59 -0.0001247774 2.013652e-05 39 59 0.000140076 -2.26054e-05 40 59 -0.0001577525 2.545802e-05 41 59 0.0001783582 -2.878335e-05 42 59 -0.0002026106 3.26972e-05 43 59 0.0002314578 -3.735254e-05 44 59 -0.0002661734 4.295492e-05 45 59 0.0003085011 -4.978574e-05 46 59 -0.0003608797 5.823857e-05 47 59 0.0004268045 -6.887749e-05 48 59 -0.0005114288 8.253411e-05 49 59 0.0006226054 -0.0001004757 50 59 -0.0007727812 0.000124711 51 59 0.0009826448 -0.0001585787 52 59 -0.001288661 0.0002079635 53 59 0.001760065 -0.0002840383 54 59 -0.002541777 0.0004101906 55 59 0.003980742 -0.0006424099 56 59 -0.007089509 0.001144101 57 59 0.01597157 -0.002577484 58 59 -0.06393453 0.01031772 59 59 0.1029571 -0.01585626 60 59 -0.06393453 0.01031772 61 59 0.01597157 -0.002577484 62 59 -0.007089509 0.001144101 63 59 0.003980742 -0.0006424099 64 59 -0.002541777 0.0004101906 65 59 0.001760065 -0.0002840383 66 59 -0.001288661 0.0002079635 67 59 0.0009826448 -0.0001585787 68 59 -0.0007727812 0.000124711 69 59 0.0006226054 -0.0001004757 70 59 -0.0005114288 8.253411e-05 71 59 0.0004268045 -6.887749e-05 72 59 -0.0003608797 5.823857e-05 73 59 0.0003085011 -4.978574e-05 74 59 -0.0002661734 4.295492e-05 75 59 0.0002314578 -3.735254e-05 76 59 -0.0002026106 3.26972e-05 77 59 0.0001783582 -2.878335e-05 78 59 -0.0001577525 2.545802e-05 79 59 0.000140076 -2.26054e-05 80 59 -0.0001247774 2.013652e-05 140 59 0.001017083 8.772801e-05 0 60 -0.0001247774 2.013652e-05 1 60 0.0001114272 -1.798207e-05 2 60 -9.968672e-05 1.608739e-05 3 60 8.928565e-05 -1.440887e-05 4 60 -8.000611e-05 1.291134e-05 5 60 7.167061e-05 -1.156616e-05 6 60 -6.413319e-05 1.034978e-05 7 60 5.727273e-05 -9.242642e-06 8 60 -5.098776e-05 8.228377e-06 9 60 4.519256e-05 -7.293151e-06 10 60 -3.981401e-05 6.425164e-06 11 60 3.478917e-05 -5.614257e-06 12 60 -3.00633e-05 4.851599e-06 13 60 2.558831e-05 -4.129428e-06 14 60 -2.132146e-05 3.440846e-06 15 60 1.722429e-05 -2.779647e-06 16 60 -1.326172e-05 2.14017e-06 17 60 9.401297e-06 -1.517176e-06 18 60 -5.612495e-06 9.057414e-07 19 60 1.866144e-06 -3.011573e-07 20 60 1.866144e-06 -3.011573e-07 21 60 -5.612495e-06 9.057414e-07 22 60 9.401297e-06 -1.517176e-06 23 60 -1.326172e-05 2.14017e-06 24 60 1.722429e-05 -2.779647e-06 25 60 -2.132146e-05 3.440846e-06 26 60 2.558831e-05 -4.129428e-06 27 60 -3.00633e-05 4.851599e-06 28 60 3.478917e-05 -5.614257e-06 29 60 -3.981401e-05 6.425164e-06 30 60 4.519256e-05 -7.293151e-06 31 60 -5.098776e-05 8.228377e-06 32 60 5.727273e-05 -9.242642e-06 33 60 -6.413319e-05 1.034978e-05 34 60 7.167061e-05 -1.156616e-05 35 60 -8.000611e-05 1.291134e-05 36 60 8.928565e-05 -1.440887e-05 37 60 -9.968672e-05 1.608739e-05 38 60 0.0001114272 -1.798207e-05 39 60 -0.0001247774 2.013652e-05 40 60 0.000140076 -2.26054e-05 41 60 -0.0001577525 2.545802e-05 42 60 0.0001783582 -2.878335e-05 43 60 -0.0002026106 3.26972e-05 44 60 0.0002314578 -3.735254e-05 45 60 -0.0002661734 4.295492e-05 46 60 0.0003085011 -4.978574e-05 47 60 -0.0003608797 5.823857e-05 48 60 0.0004268045 -6.887749e-05 49 60 -0.0005114288 8.253411e-05 50 60 0.0006226054 -0.0001004757 51 60 -0.0007727812 0.000124711 52 60 0.0009826448 -0.0001585787 53 60 -0.001288661 0.0002079635 54 60 0.001760065 -0.0002840383 55 60 -0.002541777 0.0004101906 56 60 0.003980742 -0.0006424099 57 60 -0.007089509 0.001144101 58 60 0.01597157 -0.002577484 59 60 -0.06393453 0.01031772 60 60 0.1031613 -0.01593952 61 60 -0.06393453 0.01031772 62 60 0.01597157 -0.002577484 63 60 -0.007089509 0.001144101 64 60 0.003980742 -0.0006424099 65 60 -0.002541777 0.0004101906 66 60 0.001760065 -0.0002840383 67 60 -0.001288661 0.0002079635 68 60 0.0009826448 -0.0001585787 69 60 -0.0007727812 0.000124711 70 60 0.0006226054 -0.0001004757 71 60 -0.0005114288 8.253411e-05 72 60 0.0004268045 -6.887749e-05 73 60 -0.0003608797 5.823857e-05 74 60 0.0003085011 -4.978574e-05 75 60 -0.0002661734 4.295492e-05 76 60 0.0002314578 -3.735254e-05 77 60 -0.0002026106 3.26972e-05 78 60 0.0001783582 -2.878335e-05 79 60 -0.0001577525 2.545802e-05 80 60 0.000140076 -2.26054e-05 141 60 0.001034496 8.958057e-05 0 61 0.000140076 -2.26054e-05 1 61 -0.0001247774 2.013652e-05 2 61 0.0001114272 -1.798207e-05 3 61 -9.968672e-05 1.608739e-05 4 61 8.928565e-05 -1.440887e-05 5 61 -8.000611e-05 1.291134e-05 6 61 7.167061e-05 -1.156616e-05 7 61 -6.413319e-05 1.034978e-05 8 61 5.727273e-05 -9.242642e-06 9 61 -5.098776e-05 8.228377e-06 10 61 4.519256e-05 -7.293151e-06 11 61 -3.981401e-05 6.425164e-06 12 61 3.478917e-05 -5.614257e-06 13 61 -3.00633e-05 4.851599e-06 14 61 2.558831e-05 -4.129428e-06 15 61 -2.132146e-05 3.440846e-06 16 61 1.722429e-05 -2.779647e-06 17 61 -1.326172e-05 2.14017e-06 18 61 9.401297e-06 -1.517176e-06 19 61 -5.612495e-06 9.057414e-07 20 61 1.866144e-06 -3.011573e-07 21 61 1.866144e-06 -3.011573e-07 22 61 -5.612495e-06 9.057414e-07 23 61 9.401297e-06 -1.517176e-06 24 61 -1.326172e-05 2.14017e-06 25 61 1.722429e-05 -2.779647e-06 26 61 -2.132146e-05 3.440846e-06 27 61 2.558831e-05 -4.129428e-06 28 61 -3.00633e-05 4.851599e-06 29 61 3.478917e-05 -5.614257e-06 30 61 -3.981401e-05 6.425164e-06 31 61 4.519256e-05 -7.293151e-06 32 61 -5.098776e-05 8.228377e-06 33 61 5.727273e-05 -9.242642e-06 34 61 -6.413319e-05 1.034978e-05 35 61 7.167061e-05 -1.156616e-05 36 61 -8.000611e-05 1.291134e-05 37 61 8.928565e-05 -1.440887e-05 38 61 -9.968672e-05 1.608739e-05 39 61 0.0001114272 -1.798207e-05 40 61 -0.0001247774 2.013652e-05 41 61 0.000140076 -2.26054e-05 42 61 -0.0001577525 2.545802e-05 43 61 0.0001783582 -2.878335e-05 44 61 -0.0002026106 3.26972e-05 45 61 0.0002314578 -3.735254e-05 46 61 -0.0002661734 4.295492e-05 47 61 0.0003085011 -4.978574e-05 48 61 -0.0003608797 5.823857e-05 49 61 0.0004268045 -6.887749e-05 50 61 -0.0005114288 8.253411e-05 51 61 0.0006226054 -0.0001004757 52 61 -0.0007727812 0.000124711 53 61 0.0009826448 -0.0001585787 54 61 -0.001288661 0.0002079635 55 61 0.001760065 -0.0002840383 56 61 -0.002541777 0.0004101906 57 61 0.003980742 -0.0006424099 58 61 -0.007089509 0.001144101 59 61 0.01597157 -0.002577484 60 61 -0.06393453 0.01031772 61 61 0.1033469 -0.01601691 62 61 -0.06393453 0.01031772 63 61 0.01597157 -0.002577484 64 61 -0.007089509 0.001144101 65 61 0.003980742 -0.0006424099 66 61 -0.002541777 0.0004101906 67 61 0.001760065 -0.0002840383 68 61 -0.001288661 0.0002079635 69 61 0.0009826448 -0.0001585787 70 61 -0.0007727812 0.000124711 71 61 0.0006226054 -0.0001004757 72 61 -0.0005114288 8.253411e-05 73 61 0.0004268045 -6.887749e-05 74 61 -0.0003608797 5.823857e-05 75 61 0.0003085011 -4.978574e-05 76 61 -0.0002661734 4.295492e-05 77 61 0.0002314578 -3.735254e-05 78 61 -0.0002026106 3.26972e-05 79 61 0.0001783582 -2.878335e-05 80 61 -0.0001577525 2.545802e-05 142 61 0.001051997 9.144981e-05 0 62 -0.0001577525 2.545802e-05 1 62 0.000140076 -2.26054e-05 2 62 -0.0001247774 2.013652e-05 3 62 0.0001114272 -1.798207e-05 4 62 -9.968672e-05 1.608739e-05 5 62 8.928565e-05 -1.440887e-05 6 62 -8.000611e-05 1.291134e-05 7 62 7.167061e-05 -1.156616e-05 8 62 -6.413319e-05 1.034978e-05 9 62 5.727273e-05 -9.242642e-06 10 62 -5.098776e-05 8.228377e-06 11 62 4.519256e-05 -7.293151e-06 12 62 -3.981401e-05 6.425164e-06 13 62 3.478917e-05 -5.614257e-06 14 62 -3.00633e-05 4.851599e-06 15 62 2.558831e-05 -4.129428e-06 16 62 -2.132146e-05 3.440846e-06 17 62 1.722429e-05 -2.779647e-06 18 62 -1.326172e-05 2.14017e-06 19 62 9.401297e-06 -1.517176e-06 20 62 -5.612495e-06 9.057414e-07 21 62 1.866144e-06 -3.011573e-07 22 62 1.866144e-06 -3.011573e-07 23 62 -5.612495e-06 9.057414e-07 24 62 9.401297e-06 -1.517176e-06 25 62 -1.326172e-05 2.14017e-06 26 62 1.722429e-05 -2.779647e-06 27 62 -2.132146e-05 3.440846e-06 28 62 2.558831e-05 -4.129428e-06 29 62 -3.00633e-05 4.851599e-06 30 62 3.478917e-05 -5.614257e-06 31 62 -3.981401e-05 6.425164e-06 32 62 4.519256e-05 -7.293151e-06 33 62 -5.098776e-05 8.228377e-06 34 62 5.727273e-05 -9.242642e-06 35 62 -6.413319e-05 1.034978e-05 36 62 7.167061e-05 -1.156616e-05 37 62 -8.000611e-05 1.291134e-05 38 62 8.928565e-05 -1.440887e-05 39 62 -9.968672e-05 1.608739e-05 40 62 0.0001114272 -1.798207e-05 41 62 -0.0001247774 2.013652e-05 42 62 0.000140076 -2.26054e-05 43 62 -0.0001577525 2.545802e-05 44 62 0.0001783582 -2.878335e-05 45 62 -0.0002026106 3.26972e-05 46 62 0.0002314578 -3.735254e-05 47 62 -0.0002661734 4.295492e-05 48 62 0.0003085011 -4.978574e-05 49 62 -0.0003608797 5.823857e-05 50 62 0.0004268045 -6.887749e-05 51 62 -0.0005114288 8.253411e-05 52 62 0.0006226054 -0.0001004757 53 62 -0.0007727812 0.000124711 54 62 0.0009826448 -0.0001585787 55 62 -0.001288661 0.0002079635 56 62 0.001760065 -0.0002840383 57 62 -0.002541777 0.0004101906 58 62 0.003980742 -0.0006424099 59 62 -0.007089509 0.001144101 60 62 0.01597157 -0.002577484 61 62 -0.06393453 0.01031772 62 62 0.1035157 -0.01608881 63 62 -0.06393453 0.01031772 64 62 0.01597157 -0.002577484 65 62 -0.007089509 0.001144101 66 62 0.003980742 -0.0006424099 67 62 -0.002541777 0.0004101906 68 62 0.001760065 -0.0002840383 69 62 -0.001288661 0.0002079635 70 62 0.0009826448 -0.0001585787 71 62 -0.0007727812 0.000124711 72 62 0.0006226054 -0.0001004757 73 62 -0.0005114288 8.253411e-05 74 62 0.0004268045 -6.887749e-05 75 62 -0.0003608797 5.823857e-05 76 62 0.0003085011 -4.978574e-05 77 62 -0.0002661734 4.295492e-05 78 62 0.0002314578 -3.735254e-05 79 62 -0.0002026106 3.26972e-05 80 62 0.0001783582 -2.878335e-05 143 62 0.001069588 9.333586e-05 0 63 0.0001783582 -2.878335e-05 1 63 -0.0001577525 2.545802e-05 2 63 0.000140076 -2.26054e-05 3 63 -0.0001247774 2.013652e-05 4 63 0.0001114272 -1.798207e-05 5 63 -9.968672e-05 1.608739e-05 6 63 8.928565e-05 -1.440887e-05 7 63 -8.000611e-05 1.291134e-05 8 63 7.167061e-05 -1.156616e-05 9 63 -6.413319e-05 1.034978e-05 10 63 5.727273e-05 -9.242642e-06 11 63 -5.098776e-05 8.228377e-06 12 63 4.519256e-05 -7.293151e-06 13 63 -3.981401e-05 6.425164e-06 14 63 3.478917e-05 -5.614257e-06 15 63 -3.00633e-05 4.851599e-06 16 63 2.558831e-05 -4.129428e-06 17 63 -2.132146e-05 3.440846e-06 18 63 1.722429e-05 -2.779647e-06 19 63 -1.326172e-05 2.14017e-06 20 63 9.401297e-06 -1.517176e-06 21 63 -5.612495e-06 9.057414e-07 22 63 1.866144e-06 -3.011573e-07 23 63 1.866144e-06 -3.011573e-07 24 63 -5.612495e-06 9.057414e-07 25 63 9.401297e-06 -1.517176e-06 26 63 -1.326172e-05 2.14017e-06 27 63 1.722429e-05 -2.779647e-06 28 63 -2.132146e-05 3.440846e-06 29 63 2.558831e-05 -4.129428e-06 30 63 -3.00633e-05 4.851599e-06 31 63 3.478917e-05 -5.614257e-06 32 63 -3.981401e-05 6.425164e-06 33 63 4.519256e-05 -7.293151e-06 34 63 -5.098776e-05 8.228377e-06 35 63 5.727273e-05 -9.242642e-06 36 63 -6.413319e-05 1.034978e-05 37 63 7.167061e-05 -1.156616e-05 38 63 -8.000611e-05 1.291134e-05 39 63 8.928565e-05 -1.440887e-05 40 63 -9.968672e-05 1.608739e-05 41 63 0.0001114272 -1.798207e-05 42 63 -0.0001247774 2.013652e-05 43 63 0.000140076 -2.26054e-05 44 63 -0.0001577525 2.545802e-05 45 63 0.0001783582 -2.878335e-05 46 63 -0.0002026106 3.26972e-05 47 63 0.0002314578 -3.735254e-05 48 63 -0.0002661734 4.295492e-05 49 63 0.0003085011 -4.978574e-05 50 63 -0.0003608797 5.823857e-05 51 63 0.0004268045 -6.887749e-05 52 63 -0.0005114288 8.253411e-05 53 63 0.0006226054 -0.0001004757 54 63 -0.0007727812 0.000124711 55 63 0.0009826448 -0.0001585787 56 63 -0.001288661 0.0002079635 57 63 0.001760065 -0.0002840383 58 63 -0.002541777 0.0004101906 59 63 0.003980742 -0.0006424099 60 63 -0.007089509 0.001144101 61 63 0.01597157 -0.002577484 62 63 -0.06393453 0.01031772 63 63 0.103669 -0.01615558 64 63 -0.06393453 0.01031772 65 63 0.01597157 -0.002577484 66 63 -0.007089509 0.001144101 67 63 0.003980742 -0.0006424099 68 63 -0.002541777 0.0004101906 69 63 0.001760065 -0.0002840383 70 63 -0.001288661 0.0002079635 71 63 0.0009826448 -0.0001585787 72 63 -0.0007727812 0.000124711 73 63 0.0006226054 -0.0001004757 74 63 -0.0005114288 8.253411e-05 75 63 0.0004268045 -6.887749e-05 76 63 -0.0003608797 5.823857e-05 77 63 0.0003085011 -4.978574e-05 78 63 -0.0002661734 4.295492e-05 79 63 0.0002314578 -3.735254e-05 80 63 -0.0002026106 3.26972e-05 144 63 0.001087268 9.523884e-05 0 64 -0.0002026106 3.26972e-05 1 64 0.0001783582 -2.878335e-05 2 64 -0.0001577525 2.545802e-05 3 64 0.000140076 -2.26054e-05 4 64 -0.0001247774 2.013652e-05 5 64 0.0001114272 -1.798207e-05 6 64 -9.968672e-05 1.608739e-05 7 64 8.928565e-05 -1.440887e-05 8 64 -8.000611e-05 1.291134e-05 9 64 7.167061e-05 -1.156616e-05 10 64 -6.413319e-05 1.034978e-05 11 64 5.727273e-05 -9.242642e-06 12 64 -5.098776e-05 8.228377e-06 13 64 4.519256e-05 -7.293151e-06 14 64 -3.981401e-05 6.425164e-06 15 64 3.478917e-05 -5.614257e-06 16 64 -3.00633e-05 4.851599e-06 17 64 2.558831e-05 -4.129428e-06 18 64 -2.132146e-05 3.440846e-06 19 64 1.722429e-05 -2.779647e-06 20 64 -1.326172e-05 2.14017e-06 21 64 9.401297e-06 -1.517176e-06 22 64 -5.612495e-06 9.057414e-07 23 64 1.866144e-06 -3.011573e-07 24 64 1.866144e-06 -3.011573e-07 25 64 -5.612495e-06 9.057414e-07 26 64 9.401297e-06 -1.517176e-06 27 64 -1.326172e-05 2.14017e-06 28 64 1.722429e-05 -2.779647e-06 29 64 -2.132146e-05 3.440846e-06 30 64 2.558831e-05 -4.129428e-06 31 64 -3.00633e-05 4.851599e-06 32 64 3.478917e-05 -5.614257e-06 33 64 -3.981401e-05 6.425164e-06 34 64 4.519256e-05 -7.293151e-06 35 64 -5.098776e-05 8.228377e-06 36 64 5.727273e-05 -9.242642e-06 37 64 -6.413319e-05 1.034978e-05 38 64 7.167061e-05 -1.156616e-05 39 64 -8.000611e-05 1.291134e-05 40 64 8.928565e-05 -1.440887e-05 41 64 -9.968672e-05 1.608739e-05 42 64 0.0001114272 -1.798207e-05 43 64 -0.0001247774 2.013652e-05 44 64 0.000140076 -2.26054e-05 45 64 -0.0001577525 2.545802e-05 46 64 0.0001783582 -2.878335e-05 47 64 -0.0002026106 3.26972e-05 48 64 0.0002314578 -3.735254e-05 49 64 -0.0002661734 4.295492e-05 50 64 0.0003085011 -4.978574e-05 51 64 -0.0003608797 5.823857e-05 52 64 0.0004268045 -6.887749e-05 53 64 -0.0005114288 8.253411e-05 54 64 0.0006226054 -0.0001004757 55 64 -0.0007727812 0.000124711 56 64 0.0009826448 -0.0001585787 57 64 -0.001288661 0.0002079635 58 64 0.001760065 -0.0002840383 59 64 -0.002541777 0.0004101906 60 64 0.003980742 -0.0006424099 61 64 -0.007089509 0.001144101 62 64 0.01597157 -0.002577484 63 64 -0.06393453 0.01031772 64 64 0.1038083 -0.01621755 65 64 -0.06393453 0.01031772 66 64 0.01597157 -0.002577484 67 64 -0.007089509 0.001144101 68 64 0.003980742 -0.0006424099 69 64 -0.002541777 0.0004101906 70 64 0.001760065 -0.0002840383 71 64 -0.001288661 0.0002079635 72 64 0.0009826448 -0.0001585787 73 64 -0.0007727812 0.000124711 74 64 0.0006226054 -0.0001004757 75 64 -0.0005114288 8.253411e-05 76 64 0.0004268045 -6.887749e-05 77 64 -0.0003608797 5.823857e-05 78 64 0.0003085011 -4.978574e-05 79 64 -0.0002661734 4.295492e-05 80 64 0.0002314578 -3.735254e-05 145 64 0.001105038 9.715887e-05 0 65 0.0002314578 -3.735254e-05 1 65 -0.0002026106 3.26972e-05 2 65 0.0001783582 -2.878335e-05 3 65 -0.0001577525 2.545802e-05 4 65 0.000140076 -2.26054e-05 5 65 -0.0001247774 2.013652e-05 6 65 0.0001114272 -1.798207e-05 7 65 -9.968672e-05 1.608739e-05 8 65 8.928565e-05 -1.440887e-05 9 65 -8.000611e-05 1.291134e-05 10 65 7.167061e-05 -1.156616e-05 11 65 -6.413319e-05 1.034978e-05 12 65 5.727273e-05 -9.242642e-06 13 65 -5.098776e-05 8.228377e-06 14 65 4.519256e-05 -7.293151e-06 15 65 -3.981401e-05 6.425164e-06 16 65 3.478917e-05 -5.614257e-06 17 65 -3.00633e-05 4.851599e-06 18 65 2.558831e-05 -4.129428e-06 19 65 -2.132146e-05 3.440846e-06 20 65 1.722429e-05 -2.779647e-06 21 65 -1.326172e-05 2.14017e-06 22 65 9.401297e-06 -1.517176e-06 23 65 -5.612495e-06 9.057414e-07 24 65 1.866144e-06 -3.011573e-07 25 65 1.866144e-06 -3.011573e-07 26 65 -5.612495e-06 9.057414e-07 27 65 9.401297e-06 -1.517176e-06 28 65 -1.326172e-05 2.14017e-06 29 65 1.722429e-05 -2.779647e-06 30 65 -2.132146e-05 3.440846e-06 31 65 2.558831e-05 -4.129428e-06 32 65 -3.00633e-05 4.851599e-06 33 65 3.478917e-05 -5.614257e-06 34 65 -3.981401e-05 6.425164e-06 35 65 4.519256e-05 -7.293151e-06 36 65 -5.098776e-05 8.228377e-06 37 65 5.727273e-05 -9.242642e-06 38 65 -6.413319e-05 1.034978e-05 39 65 7.167061e-05 -1.156616e-05 40 65 -8.000611e-05 1.291134e-05 41 65 8.928565e-05 -1.440887e-05 42 65 -9.968672e-05 1.608739e-05 43 65 0.0001114272 -1.798207e-05 44 65 -0.0001247774 2.013652e-05 45 65 0.000140076 -2.26054e-05 46 65 -0.0001577525 2.545802e-05 47 65 0.0001783582 -2.878335e-05 48 65 -0.0002026106 3.26972e-05 49 65 0.0002314578 -3.735254e-05 50 65 -0.0002661734 4.295492e-05 51 65 0.0003085011 -4.978574e-05 52 65 -0.0003608797 5.823857e-05 53 65 0.0004268045 -6.887749e-05 54 65 -0.0005114288 8.253411e-05 55 65 0.0006226054 -0.0001004757 56 65 -0.0007727812 0.000124711 57 65 0.0009826448 -0.0001585787 58 65 -0.001288661 0.0002079635 59 65 0.001760065 -0.0002840383 60 65 -0.002541777 0.0004101906 61 65 0.003980742 -0.0006424099 62 65 -0.007089509 0.001144101 63 65 0.01597157 -0.002577484 64 65 -0.06393453 0.01031772 65 65 0.1039349 -0.01627503 66 65 -0.06393453 0.01031772 67 65 0.01597157 -0.002577484 68 65 -0.007089509 0.001144101 69 65 0.003980742 -0.0006424099 70 65 -0.002541777 0.0004101906 71 65 0.001760065 -0.0002840383 72 65 -0.001288661 0.0002079635 73 65 0.0009826448 -0.0001585787 74 65 -0.0007727812 0.000124711 75 65 0.0006226054 -0.0001004757 76 65 -0.0005114288 8.253411e-05 77 65 0.0004268045 -6.887749e-05 78 65 -0.0003608797 5.823857e-05 79 65 0.0003085011 -4.978574e-05 80 65 -0.0002661734 4.295492e-05 146 65 0.001122898 9.909608e-05 0 66 -0.0002661734 4.295492e-05 1 66 0.0002314578 -3.735254e-05 2 66 -0.0002026106 3.26972e-05 3 66 0.0001783582 -2.878335e-05 4 66 -0.0001577525 2.545802e-05 5 66 0.000140076 -2.26054e-05 6 66 -0.0001247774 2.013652e-05 7 66 0.0001114272 -1.798207e-05 8 66 -9.968672e-05 1.608739e-05 9 66 8.928565e-05 -1.440887e-05 10 66 -8.000611e-05 1.291134e-05 11 66 7.167061e-05 -1.156616e-05 12 66 -6.413319e-05 1.034978e-05 13 66 5.727273e-05 -9.242642e-06 14 66 -5.098776e-05 8.228377e-06 15 66 4.519256e-05 -7.293151e-06 16 66 -3.981401e-05 6.425164e-06 17 66 3.478917e-05 -5.614257e-06 18 66 -3.00633e-05 4.851599e-06 19 66 2.558831e-05 -4.129428e-06 20 66 -2.132146e-05 3.440846e-06 21 66 1.722429e-05 -2.779647e-06 22 66 -1.326172e-05 2.14017e-06 23 66 9.401297e-06 -1.517176e-06 24 66 -5.612495e-06 9.057414e-07 25 66 1.866144e-06 -3.011573e-07 26 66 1.866144e-06 -3.011573e-07 27 66 -5.612495e-06 9.057414e-07 28 66 9.401297e-06 -1.517176e-06 29 66 -1.326172e-05 2.14017e-06 30 66 1.722429e-05 -2.779647e-06 31 66 -2.132146e-05 3.440846e-06 32 66 2.558831e-05 -4.129428e-06 33 66 -3.00633e-05 4.851599e-06 34 66 3.478917e-05 -5.614257e-06 35 66 -3.981401e-05 6.425164e-06 36 66 4.519256e-05 -7.293151e-06 37 66 -5.098776e-05 8.228377e-06 38 66 5.727273e-05 -9.242642e-06 39 66 -6.413319e-05 1.034978e-05 40 66 7.167061e-05 -1.156616e-05 41 66 -8.000611e-05 1.291134e-05 42 66 8.928565e-05 -1.440887e-05 43 66 -9.968672e-05 1.608739e-05 44 66 0.0001114272 -1.798207e-05 45 66 -0.0001247774 2.013652e-05 46 66 0.000140076 -2.26054e-05 47 66 -0.0001577525 2.545802e-05 48 66 0.0001783582 -2.878335e-05 49 66 -0.0002026106 3.26972e-05 50 66 0.0002314578 -3.735254e-05 51 66 -0.0002661734 4.295492e-05 52 66 0.0003085011 -4.978574e-05 53 66 -0.0003608797 5.823857e-05 54 66 0.0004268045 -6.887749e-05 55 66 -0.0005114288 8.253411e-05 56 66 0.0006226054 -0.0001004757 57 66 -0.0007727812 0.000124711 58 66 0.0009826448 -0.0001585787 59 66 -0.001288661 0.0002079635 60 66 0.001760065 -0.0002840383 61 66 -0.002541777 0.0004101906 62 66 0.003980742 -0.0006424099 63 66 -0.007089509 0.001144101 64 66 0.01597157 -0.002577484 65 66 -0.06393453 0.01031772 66 66 0.10405 -0.01632833 67 66 -0.06393453 0.01031772 68 66 0.01597157 -0.002577484 69 66 -0.007089509 0.001144101 70 66 0.003980742 -0.0006424099 71 66 -0.002541777 0.0004101906 72 66 0.001760065 -0.0002840383 73 66 -0.001288661 0.0002079635 74 66 0.0009826448 -0.0001585787 75 66 -0.0007727812 0.000124711 76 66 0.0006226054 -0.0001004757 77 66 -0.0005114288 8.253411e-05 78 66 0.0004268045 -6.887749e-05 79 66 -0.0003608797 5.823857e-05 80 66 0.0003085011 -4.978574e-05 147 66 0.001140849 0.0001010506 0 67 0.0003085011 -4.978574e-05 1 67 -0.0002661734 4.295492e-05 2 67 0.0002314578 -3.735254e-05 3 67 -0.0002026106 3.26972e-05 4 67 0.0001783582 -2.878335e-05 5 67 -0.0001577525 2.545802e-05 6 67 0.000140076 -2.26054e-05 7 67 -0.0001247774 2.013652e-05 8 67 0.0001114272 -1.798207e-05 9 67 -9.968672e-05 1.608739e-05 10 67 8.928565e-05 -1.440887e-05 11 67 -8.000611e-05 1.291134e-05 12 67 7.167061e-05 -1.156616e-05 13 67 -6.413319e-05 1.034978e-05 14 67 5.727273e-05 -9.242642e-06 15 67 -5.098776e-05 8.228377e-06 16 67 4.519256e-05 -7.293151e-06 17 67 -3.981401e-05 6.425164e-06 18 67 3.478917e-05 -5.614257e-06 19 67 -3.00633e-05 4.851599e-06 20 67 2.558831e-05 -4.129428e-06 21 67 -2.132146e-05 3.440846e-06 22 67 1.722429e-05 -2.779647e-06 23 67 -1.326172e-05 2.14017e-06 24 67 9.401297e-06 -1.517176e-06 25 67 -5.612495e-06 9.057414e-07 26 67 1.866144e-06 -3.011573e-07 27 67 1.866144e-06 -3.011573e-07 28 67 -5.612495e-06 9.057414e-07 29 67 9.401297e-06 -1.517176e-06 30 67 -1.326172e-05 2.14017e-06 31 67 1.722429e-05 -2.779647e-06 32 67 -2.132146e-05 3.440846e-06 33 67 2.558831e-05 -4.129428e-06 34 67 -3.00633e-05 4.851599e-06 35 67 3.478917e-05 -5.614257e-06 36 67 -3.981401e-05 6.425164e-06 37 67 4.519256e-05 -7.293151e-06 38 67 -5.098776e-05 8.228377e-06 39 67 5.727273e-05 -9.242642e-06 40 67 -6.413319e-05 1.034978e-05 41 67 7.167061e-05 -1.156616e-05 42 67 -8.000611e-05 1.291134e-05 43 67 8.928565e-05 -1.440887e-05 44 67 -9.968672e-05 1.608739e-05 45 67 0.0001114272 -1.798207e-05 46 67 -0.0001247774 2.013652e-05 47 67 0.000140076 -2.26054e-05 48 67 -0.0001577525 2.545802e-05 49 67 0.0001783582 -2.878335e-05 50 67 -0.0002026106 3.26972e-05 51 67 0.0002314578 -3.735254e-05 52 67 -0.0002661734 4.295492e-05 53 67 0.0003085011 -4.978574e-05 54 67 -0.0003608797 5.823857e-05 55 67 0.0004268045 -6.887749e-05 56 67 -0.0005114288 8.253411e-05 57 67 0.0006226054 -0.0001004757 58 67 -0.0007727812 0.000124711 59 67 0.0009826448 -0.0001585787 60 67 -0.001288661 0.0002079635 61 67 0.001760065 -0.0002840383 62 67 -0.002541777 0.0004101906 63 67 0.003980742 -0.0006424099 64 67 -0.007089509 0.001144101 65 67 0.01597157 -0.002577484 66 67 -0.06393453 0.01031772 67 67 0.1041544 -0.01637773 68 67 -0.06393453 0.01031772 69 67 0.01597157 -0.002577484 70 67 -0.007089509 0.001144101 71 67 0.003980742 -0.0006424099 72 67 -0.002541777 0.0004101906 73 67 0.001760065 -0.0002840383 74 67 -0.001288661 0.0002079635 75 67 0.0009826448 -0.0001585787 76 67 -0.0007727812 0.000124711 77 67 0.0006226054 -0.0001004757 78 67 -0.0005114288 8.253411e-05 79 67 0.0004268045 -6.887749e-05 80 67 -0.0003608797 5.823857e-05 148 67 0.001158892 0.0001030225 0 68 -0.0003608797 5.823857e-05 1 68 0.0003085011 -4.978574e-05 2 68 -0.0002661734 4.295492e-05 3 68 0.0002314578 -3.735254e-05 4 68 -0.0002026106 3.26972e-05 5 68 0.0001783582 -2.878335e-05 6 68 -0.0001577525 2.545802e-05 7 68 0.000140076 -2.26054e-05 8 68 -0.0001247774 2.013652e-05 9 68 0.0001114272 -1.798207e-05 10 68 -9.968672e-05 1.608739e-05 11 68 8.928565e-05 -1.440887e-05 12 68 -8.000611e-05 1.291134e-05 13 68 7.167061e-05 -1.156616e-05 14 68 -6.413319e-05 1.034978e-05 15 68 5.727273e-05 -9.242642e-06 16 68 -5.098776e-05 8.228377e-06 17 68 4.519256e-05 -7.293151e-06 18 68 -3.981401e-05 6.425164e-06 19 68 3.478917e-05 -5.614257e-06 20 68 -3.00633e-05 4.851599e-06 21 68 2.558831e-05 -4.129428e-06 22 68 -2.132146e-05 3.440846e-06 23 68 1.722429e-05 -2.779647e-06 24 68 -1.326172e-05 2.14017e-06 25 68 9.401297e-06 -1.517176e-06 26 68 -5.612495e-06 9.057414e-07 27 68 1.866144e-06 -3.011573e-07 28 68 1.866144e-06 -3.011573e-07 29 68 -5.612495e-06 9.057414e-07 30 68 9.401297e-06 -1.517176e-06 31 68 -1.326172e-05 2.14017e-06 32 68 1.722429e-05 -2.779647e-06 33 68 -2.132146e-05 3.440846e-06 34 68 2.558831e-05 -4.129428e-06 35 68 -3.00633e-05 4.851599e-06 36 68 3.478917e-05 -5.614257e-06 37 68 -3.981401e-05 6.425164e-06 38 68 4.519256e-05 -7.293151e-06 39 68 -5.098776e-05 8.228377e-06 40 68 5.727273e-05 -9.242642e-06 41 68 -6.413319e-05 1.034978e-05 42 68 7.167061e-05 -1.156616e-05 43 68 -8.000611e-05 1.291134e-05 44 68 8.928565e-05 -1.440887e-05 45 68 -9.968672e-05 1.608739e-05 46 68 0.0001114272 -1.798207e-05 47 68 -0.0001247774 2.013652e-05 48 68 0.000140076 -2.26054e-05 49 68 -0.0001577525 2.545802e-05 50 68 0.0001783582 -2.878335e-05 51 68 -0.0002026106 3.26972e-05 52 68 0.0002314578 -3.735254e-05 53 68 -0.0002661734 4.295492e-05 54 68 0.0003085011 -4.978574e-05 55 68 -0.0003608797 5.823857e-05 56 68 0.0004268045 -6.887749e-05 57 68 -0.0005114288 8.253411e-05 58 68 0.0006226054 -0.0001004757 59 68 -0.0007727812 0.000124711 60 68 0.0009826448 -0.0001585787 61 68 -0.001288661 0.0002079635 62 68 0.001760065 -0.0002840383 63 68 -0.002541777 0.0004101906 64 68 0.003980742 -0.0006424099 65 68 -0.007089509 0.001144101 66 68 0.01597157 -0.002577484 67 68 -0.06393453 0.01031772 68 68 0.1042493 -0.01642349 69 68 -0.06393453 0.01031772 70 68 0.01597157 -0.002577484 71 68 -0.007089509 0.001144101 72 68 0.003980742 -0.0006424099 73 68 -0.002541777 0.0004101906 74 68 0.001760065 -0.0002840383 75 68 -0.001288661 0.0002079635 76 68 0.0009826448 -0.0001585787 77 68 -0.0007727812 0.000124711 78 68 0.0006226054 -0.0001004757 79 68 -0.0005114288 8.253411e-05 80 68 0.0004268045 -6.887749e-05 149 68 0.001177026 0.000105012 0 69 0.0004268045 -6.887749e-05 1 69 -0.0003608797 5.823857e-05 2 69 0.0003085011 -4.978574e-05 3 69 -0.0002661734 4.295492e-05 4 69 0.0002314578 -3.735254e-05 5 69 -0.0002026106 3.26972e-05 6 69 0.0001783582 -2.878335e-05 7 69 -0.0001577525 2.545802e-05 8 69 0.000140076 -2.26054e-05 9 69 -0.0001247774 2.013652e-05 10 69 0.0001114272 -1.798207e-05 11 69 -9.968672e-05 1.608739e-05 12 69 8.928565e-05 -1.440887e-05 13 69 -8.000611e-05 1.291134e-05 14 69 7.167061e-05 -1.156616e-05 15 69 -6.413319e-05 1.034978e-05 16 69 5.727273e-05 -9.242642e-06 17 69 -5.098776e-05 8.228377e-06 18 69 4.519256e-05 -7.293151e-06 19 69 -3.981401e-05 6.425164e-06 20 69 3.478917e-05 -5.614257e-06 21 69 -3.00633e-05 4.851599e-06 22 69 2.558831e-05 -4.129428e-06 23 69 -2.132146e-05 3.440846e-06 24 69 1.722429e-05 -2.779647e-06 25 69 -1.326172e-05 2.14017e-06 26 69 9.401297e-06 -1.517176e-06 27 69 -5.612495e-06 9.057414e-07 28 69 1.866144e-06 -3.011573e-07 29 69 1.866144e-06 -3.011573e-07 30 69 -5.612495e-06 9.057414e-07 31 69 9.401297e-06 -1.517176e-06 32 69 -1.326172e-05 2.14017e-06 33 69 1.722429e-05 -2.779647e-06 34 69 -2.132146e-05 3.440846e-06 35 69 2.558831e-05 -4.129428e-06 36 69 -3.00633e-05 4.851599e-06 37 69 3.478917e-05 -5.614257e-06 38 69 -3.981401e-05 6.425164e-06 39 69 4.519256e-05 -7.293151e-06 40 69 -5.098776e-05 8.228377e-06 41 69 5.727273e-05 -9.242642e-06 42 69 -6.413319e-05 1.034978e-05 43 69 7.167061e-05 -1.156616e-05 44 69 -8.000611e-05 1.291134e-05 45 69 8.928565e-05 -1.440887e-05 46 69 -9.968672e-05 1.608739e-05 47 69 0.0001114272 -1.798207e-05 48 69 -0.0001247774 2.013652e-05 49 69 0.000140076 -2.26054e-05 50 69 -0.0001577525 2.545802e-05 51 69 0.0001783582 -2.878335e-05 52 69 -0.0002026106 3.26972e-05 53 69 0.0002314578 -3.735254e-05 54 69 -0.0002661734 4.295492e-05 55 69 0.0003085011 -4.978574e-05 56 69 -0.0003608797 5.823857e-05 57 69 0.0004268045 -6.887749e-05 58 69 -0.0005114288 8.253411e-05 59 69 0.0006226054 -0.0001004757 60 69 -0.0007727812 0.000124711 61 69 0.0009826448 -0.0001585787 62 69 -0.001288661 0.0002079635 63 69 0.001760065 -0.0002840383 64 69 -0.002541777 0.0004101906 65 69 0.003980742 -0.0006424099 66 69 -0.007089509 0.001144101 67 69 0.01597157 -0.002577484 68 69 -0.06393453 0.01031772 69 69 0.1043355 -0.01646587 70 69 -0.06393453 0.01031772 71 69 0.01597157 -0.002577484 72 69 -0.007089509 0.001144101 73 69 0.003980742 -0.0006424099 74 69 -0.002541777 0.0004101906 75 69 0.001760065 -0.0002840383 76 69 -0.001288661 0.0002079635 77 69 0.0009826448 -0.0001585787 78 69 -0.0007727812 0.000124711 79 69 0.0006226054 -0.0001004757 80 69 -0.0005114288 8.253411e-05 150 69 0.001195252 0.0001070192 0 70 -0.0005114288 8.253411e-05 1 70 0.0004268045 -6.887749e-05 2 70 -0.0003608797 5.823857e-05 3 70 0.0003085011 -4.978574e-05 4 70 -0.0002661734 4.295492e-05 5 70 0.0002314578 -3.735254e-05 6 70 -0.0002026106 3.26972e-05 7 70 0.0001783582 -2.878335e-05 8 70 -0.0001577525 2.545802e-05 9 70 0.000140076 -2.26054e-05 10 70 -0.0001247774 2.013652e-05 11 70 0.0001114272 -1.798207e-05 12 70 -9.968672e-05 1.608739e-05 13 70 8.928565e-05 -1.440887e-05 14 70 -8.000611e-05 1.291134e-05 15 70 7.167061e-05 -1.156616e-05 16 70 -6.413319e-05 1.034978e-05 17 70 5.727273e-05 -9.242642e-06 18 70 -5.098776e-05 8.228377e-06 19 70 4.519256e-05 -7.293151e-06 20 70 -3.981401e-05 6.425164e-06 21 70 3.478917e-05 -5.614257e-06 22 70 -3.00633e-05 4.851599e-06 23 70 2.558831e-05 -4.129428e-06 24 70 -2.132146e-05 3.440846e-06 25 70 1.722429e-05 -2.779647e-06 26 70 -1.326172e-05 2.14017e-06 27 70 9.401297e-06 -1.517176e-06 28 70 -5.612495e-06 9.057414e-07 29 70 1.866144e-06 -3.011573e-07 30 70 1.866144e-06 -3.011573e-07 31 70 -5.612495e-06 9.057414e-07 32 70 9.401297e-06 -1.517176e-06 33 70 -1.326172e-05 2.14017e-06 34 70 1.722429e-05 -2.779647e-06 35 70 -2.132146e-05 3.440846e-06 36 70 2.558831e-05 -4.129428e-06 37 70 -3.00633e-05 4.851599e-06 38 70 3.478917e-05 -5.614257e-06 39 70 -3.981401e-05 6.425164e-06 40 70 4.519256e-05 -7.293151e-06 41 70 -5.098776e-05 8.228377e-06 42 70 5.727273e-05 -9.242642e-06 43 70 -6.413319e-05 1.034978e-05 44 70 7.167061e-05 -1.156616e-05 45 70 -8.000611e-05 1.291134e-05 46 70 8.928565e-05 -1.440887e-05 47 70 -9.968672e-05 1.608739e-05 48 70 0.0001114272 -1.798207e-05 49 70 -0.0001247774 2.013652e-05 50 70 0.000140076 -2.26054e-05 51 70 -0.0001577525 2.545802e-05 52 70 0.0001783582 -2.878335e-05 53 70 -0.0002026106 3.26972e-05 54 70 0.0002314578 -3.735254e-05 55 70 -0.0002661734 4.295492e-05 56 70 0.0003085011 -4.978574e-05 57 70 -0.0003608797 5.823857e-05 58 70 0.0004268045 -6.887749e-05 59 70 -0.0005114288 8.253411e-05 60 70 0.0006226054 -0.0001004757 61 70 -0.0007727812 0.000124711 62 70 0.0009826448 -0.0001585787 63 70 -0.001288661 0.0002079635 64 70 0.001760065 -0.0002840383 65 70 -0.002541777 0.0004101906 66 70 0.003980742 -0.0006424099 67 70 -0.007089509 0.001144101 68 70 0.01597157 -0.002577484 69 70 -0.06393453 0.01031772 70 70 0.1044138 -0.0165051 71 70 -0.06393453 0.01031772 72 70 0.01597157 -0.002577484 73 70 -0.007089509 0.001144101 74 70 0.003980742 -0.0006424099 75 70 -0.002541777 0.0004101906 76 70 0.001760065 -0.0002840383 77 70 -0.001288661 0.0002079635 78 70 0.0009826448 -0.0001585787 79 70 -0.0007727812 0.000124711 80 70 0.0006226054 -0.0001004757 151 70 0.001213571 0.0001090442 0 71 0.0006226054 -0.0001004757 1 71 -0.0005114288 8.253411e-05 2 71 0.0004268045 -6.887749e-05 3 71 -0.0003608797 5.823857e-05 4 71 0.0003085011 -4.978574e-05 5 71 -0.0002661734 4.295492e-05 6 71 0.0002314578 -3.735254e-05 7 71 -0.0002026106 3.26972e-05 8 71 0.0001783582 -2.878335e-05 9 71 -0.0001577525 2.545802e-05 10 71 0.000140076 -2.26054e-05 11 71 -0.0001247774 2.013652e-05 12 71 0.0001114272 -1.798207e-05 13 71 -9.968672e-05 1.608739e-05 14 71 8.928565e-05 -1.440887e-05 15 71 -8.000611e-05 1.291134e-05 16 71 7.167061e-05 -1.156616e-05 17 71 -6.413319e-05 1.034978e-05 18 71 5.727273e-05 -9.242642e-06 19 71 -5.098776e-05 8.228377e-06 20 71 4.519256e-05 -7.293151e-06 21 71 -3.981401e-05 6.425164e-06 22 71 3.478917e-05 -5.614257e-06 23 71 -3.00633e-05 4.851599e-06 24 71 2.558831e-05 -4.129428e-06 25 71 -2.132146e-05 3.440846e-06 26 71 1.722429e-05 -2.779647e-06 27 71 -1.326172e-05 2.14017e-06 28 71 9.401297e-06 -1.517176e-06 29 71 -5.612495e-06 9.057414e-07 30 71 1.866144e-06 -3.011573e-07 31 71 1.866144e-06 -3.011573e-07 32 71 -5.612495e-06 9.057414e-07 33 71 9.401297e-06 -1.517176e-06 34 71 -1.326172e-05 2.14017e-06 35 71 1.722429e-05 -2.779647e-06 36 71 -2.132146e-05 3.440846e-06 37 71 2.558831e-05 -4.129428e-06 38 71 -3.00633e-05 4.851599e-06 39 71 3.478917e-05 -5.614257e-06 40 71 -3.981401e-05 6.425164e-06 41 71 4.519256e-05 -7.293151e-06 42 71 -5.098776e-05 8.228377e-06 43 71 5.727273e-05 -9.242642e-06 44 71 -6.413319e-05 1.034978e-05 45 71 7.167061e-05 -1.156616e-05 46 71 -8.000611e-05 1.291134e-05 47 71 8.928565e-05 -1.440887e-05 48 71 -9.968672e-05 1.608739e-05 49 71 0.0001114272 -1.798207e-05 50 71 -0.0001247774 2.013652e-05 51 71 0.000140076 -2.26054e-05 52 71 -0.0001577525 2.545802e-05 53 71 0.0001783582 -2.878335e-05 54 71 -0.0002026106 3.26972e-05 55 71 0.0002314578 -3.735254e-05 56 71 -0.0002661734 4.295492e-05 57 71 0.0003085011 -4.978574e-05 58 71 -0.0003608797 5.823857e-05 59 71 0.0004268045 -6.887749e-05 60 71 -0.0005114288 8.253411e-05 61 71 0.0006226054 -0.0001004757 62 71 -0.0007727812 0.000124711 63 71 0.0009826448 -0.0001585787 64 71 -0.001288661 0.0002079635 65 71 0.001760065 -0.0002840383 66 71 -0.002541777 0.0004101906 67 71 0.003980742 -0.0006424099 68 71 -0.007089509 0.001144101 69 71 0.01597157 -0.002577484 70 71 -0.06393453 0.01031772 71 71 0.1044848 -0.0165414 72 71 -0.06393453 0.01031772 73 71 0.01597157 -0.002577484 74 71 -0.007089509 0.001144101 75 71 0.003980742 -0.0006424099 76 71 -0.002541777 0.0004101906 77 71 0.001760065 -0.0002840383 78 71 -0.001288661 0.0002079635 79 71 0.0009826448 -0.0001585787 80 71 -0.0007727812 0.000124711 152 71 0.001231983 0.0001110871 0 72 -0.0007727812 0.000124711 1 72 0.0006226054 -0.0001004757 2 72 -0.0005114288 8.253411e-05 3 72 0.0004268045 -6.887749e-05 4 72 -0.0003608797 5.823857e-05 5 72 0.0003085011 -4.978574e-05 6 72 -0.0002661734 4.295492e-05 7 72 0.0002314578 -3.735254e-05 8 72 -0.0002026106 3.26972e-05 9 72 0.0001783582 -2.878335e-05 10 72 -0.0001577525 2.545802e-05 11 72 0.000140076 -2.26054e-05 12 72 -0.0001247774 2.013652e-05 13 72 0.0001114272 -1.798207e-05 14 72 -9.968672e-05 1.608739e-05 15 72 8.928565e-05 -1.440887e-05 16 72 -8.000611e-05 1.291134e-05 17 72 7.167061e-05 -1.156616e-05 18 72 -6.413319e-05 1.034978e-05 19 72 5.727273e-05 -9.242642e-06 20 72 -5.098776e-05 8.228377e-06 21 72 4.519256e-05 -7.293151e-06 22 72 -3.981401e-05 6.425164e-06 23 72 3.478917e-05 -5.614257e-06 24 72 -3.00633e-05 4.851599e-06 25 72 2.558831e-05 -4.129428e-06 26 72 -2.132146e-05 3.440846e-06 27 72 1.722429e-05 -2.779647e-06 28 72 -1.326172e-05 2.14017e-06 29 72 9.401297e-06 -1.517176e-06 30 72 -5.612495e-06 9.057414e-07 31 72 1.866144e-06 -3.011573e-07 32 72 1.866144e-06 -3.011573e-07 33 72 -5.612495e-06 9.057414e-07 34 72 9.401297e-06 -1.517176e-06 35 72 -1.326172e-05 2.14017e-06 36 72 1.722429e-05 -2.779647e-06 37 72 -2.132146e-05 3.440846e-06 38 72 2.558831e-05 -4.129428e-06 39 72 -3.00633e-05 4.851599e-06 40 72 3.478917e-05 -5.614257e-06 41 72 -3.981401e-05 6.425164e-06 42 72 4.519256e-05 -7.293151e-06 43 72 -5.098776e-05 8.228377e-06 44 72 5.727273e-05 -9.242642e-06 45 72 -6.413319e-05 1.034978e-05 46 72 7.167061e-05 -1.156616e-05 47 72 -8.000611e-05 1.291134e-05 48 72 8.928565e-05 -1.440887e-05 49 72 -9.968672e-05 1.608739e-05 50 72 0.0001114272 -1.798207e-05 51 72 -0.0001247774 2.013652e-05 52 72 0.000140076 -2.26054e-05 53 72 -0.0001577525 2.545802e-05 54 72 0.0001783582 -2.878335e-05 55 72 -0.0002026106 3.26972e-05 56 72 0.0002314578 -3.735254e-05 57 72 -0.0002661734 4.295492e-05 58 72 0.0003085011 -4.978574e-05 59 72 -0.0003608797 5.823857e-05 60 72 0.0004268045 -6.887749e-05 61 72 -0.0005114288 8.253411e-05 62 72 0.0006226054 -0.0001004757 63 72 -0.0007727812 0.000124711 64 72 0.0009826448 -0.0001585787 65 72 -0.001288661 0.0002079635 66 72 0.001760065 -0.0002840383 67 72 -0.002541777 0.0004101906 68 72 0.003980742 -0.0006424099 69 72 -0.007089509 0.001144101 70 72 0.01597157 -0.002577484 71 72 -0.06393453 0.01031772 72 72 0.1045493 -0.01657498 73 72 -0.06393453 0.01031772 74 72 0.01597157 -0.002577484 75 72 -0.007089509 0.001144101 76 72 0.003980742 -0.0006424099 77 72 -0.002541777 0.0004101906 78 72 0.001760065 -0.0002840383 79 72 -0.001288661 0.0002079635 80 72 0.0009826448 -0.0001585787 153 72 0.001250489 0.0001131481 0 73 0.0009826448 -0.0001585787 1 73 -0.0007727812 0.000124711 2 73 0.0006226054 -0.0001004757 3 73 -0.0005114288 8.253411e-05 4 73 0.0004268045 -6.887749e-05 5 73 -0.0003608797 5.823857e-05 6 73 0.0003085011 -4.978574e-05 7 73 -0.0002661734 4.295492e-05 8 73 0.0002314578 -3.735254e-05 9 73 -0.0002026106 3.26972e-05 10 73 0.0001783582 -2.878335e-05 11 73 -0.0001577525 2.545802e-05 12 73 0.000140076 -2.26054e-05 13 73 -0.0001247774 2.013652e-05 14 73 0.0001114272 -1.798207e-05 15 73 -9.968672e-05 1.608739e-05 16 73 8.928565e-05 -1.440887e-05 17 73 -8.000611e-05 1.291134e-05 18 73 7.167061e-05 -1.156616e-05 19 73 -6.413319e-05 1.034978e-05 20 73 5.727273e-05 -9.242642e-06 21 73 -5.098776e-05 8.228377e-06 22 73 4.519256e-05 -7.293151e-06 23 73 -3.981401e-05 6.425164e-06 24 73 3.478917e-05 -5.614257e-06 25 73 -3.00633e-05 4.851599e-06 26 73 2.558831e-05 -4.129428e-06 27 73 -2.132146e-05 3.440846e-06 28 73 1.722429e-05 -2.779647e-06 29 73 -1.326172e-05 2.14017e-06 30 73 9.401297e-06 -1.517176e-06 31 73 -5.612495e-06 9.057414e-07 32 73 1.866144e-06 -3.011573e-07 33 73 1.866144e-06 -3.011573e-07 34 73 -5.612495e-06 9.057414e-07 35 73 9.401297e-06 -1.517176e-06 36 73 -1.326172e-05 2.14017e-06 37 73 1.722429e-05 -2.779647e-06 38 73 -2.132146e-05 3.440846e-06 39 73 2.558831e-05 -4.129428e-06 40 73 -3.00633e-05 4.851599e-06 41 73 3.478917e-05 -5.614257e-06 42 73 -3.981401e-05 6.425164e-06 43 73 4.519256e-05 -7.293151e-06 44 73 -5.098776e-05 8.228377e-06 45 73 5.727273e-05 -9.242642e-06 46 73 -6.413319e-05 1.034978e-05 47 73 7.167061e-05 -1.156616e-05 48 73 -8.000611e-05 1.291134e-05 49 73 8.928565e-05 -1.440887e-05 50 73 -9.968672e-05 1.608739e-05 51 73 0.0001114272 -1.798207e-05 52 73 -0.0001247774 2.013652e-05 53 73 0.000140076 -2.26054e-05 54 73 -0.0001577525 2.545802e-05 55 73 0.0001783582 -2.878335e-05 56 73 -0.0002026106 3.26972e-05 57 73 0.0002314578 -3.735254e-05 58 73 -0.0002661734 4.295492e-05 59 73 0.0003085011 -4.978574e-05 60 73 -0.0003608797 5.823857e-05 61 73 0.0004268045 -6.887749e-05 62 73 -0.0005114288 8.253411e-05 63 73 0.0006226054 -0.0001004757 64 73 -0.0007727812 0.000124711 65 73 0.0009826448 -0.0001585787 66 73 -0.001288661 0.0002079635 67 73 0.001760065 -0.0002840383 68 73 -0.002541777 0.0004101906 69 73 0.003980742 -0.0006424099 70 73 -0.007089509 0.001144101 71 73 0.01597157 -0.002577484 72 73 -0.06393453 0.01031772 73 73 0.1046079 -0.01660604 74 73 -0.06393453 0.01031772 75 73 0.01597157 -0.002577484 76 73 -0.007089509 0.001144101 77 73 0.003980742 -0.0006424099 78 73 -0.002541777 0.0004101906 79 73 0.001760065 -0.0002840383 80 73 -0.001288661 0.0002079635 154 73 0.001269089 0.0001152273 0 74 -0.001288661 0.0002079635 1 74 0.0009826448 -0.0001585787 2 74 -0.0007727812 0.000124711 3 74 0.0006226054 -0.0001004757 4 74 -0.0005114288 8.253411e-05 5 74 0.0004268045 -6.887749e-05 6 74 -0.0003608797 5.823857e-05 7 74 0.0003085011 -4.978574e-05 8 74 -0.0002661734 4.295492e-05 9 74 0.0002314578 -3.735254e-05 10 74 -0.0002026106 3.26972e-05 11 74 0.0001783582 -2.878335e-05 12 74 -0.0001577525 2.545802e-05 13 74 0.000140076 -2.26054e-05 14 74 -0.0001247774 2.013652e-05 15 74 0.0001114272 -1.798207e-05 16 74 -9.968672e-05 1.608739e-05 17 74 8.928565e-05 -1.440887e-05 18 74 -8.000611e-05 1.291134e-05 19 74 7.167061e-05 -1.156616e-05 20 74 -6.413319e-05 1.034978e-05 21 74 5.727273e-05 -9.242642e-06 22 74 -5.098776e-05 8.228377e-06 23 74 4.519256e-05 -7.293151e-06 24 74 -3.981401e-05 6.425164e-06 25 74 3.478917e-05 -5.614257e-06 26 74 -3.00633e-05 4.851599e-06 27 74 2.558831e-05 -4.129428e-06 28 74 -2.132146e-05 3.440846e-06 29 74 1.722429e-05 -2.779647e-06 30 74 -1.326172e-05 2.14017e-06 31 74 9.401297e-06 -1.517176e-06 32 74 -5.612495e-06 9.057414e-07 33 74 1.866144e-06 -3.011573e-07 34 74 1.866144e-06 -3.011573e-07 35 74 -5.612495e-06 9.057414e-07 36 74 9.401297e-06 -1.517176e-06 37 74 -1.326172e-05 2.14017e-06 38 74 1.722429e-05 -2.779647e-06 39 74 -2.132146e-05 3.440846e-06 40 74 2.558831e-05 -4.129428e-06 41 74 -3.00633e-05 4.851599e-06 42 74 3.478917e-05 -5.614257e-06 43 74 -3.981401e-05 6.425164e-06 44 74 4.519256e-05 -7.293151e-06 45 74 -5.098776e-05 8.228377e-06 46 74 5.727273e-05 -9.242642e-06 47 74 -6.413319e-05 1.034978e-05 48 74 7.167061e-05 -1.156616e-05 49 74 -8.000611e-05 1.291134e-05 50 74 8.928565e-05 -1.440887e-05 51 74 -9.968672e-05 1.608739e-05 52 74 0.0001114272 -1.798207e-05 53 74 -0.0001247774 2.013652e-05 54 74 0.000140076 -2.26054e-05 55 74 -0.0001577525 2.545802e-05 56 74 0.0001783582 -2.878335e-05 57 74 -0.0002026106 3.26972e-05 58 74 0.0002314578 -3.735254e-05 59 74 -0.0002661734 4.295492e-05 60 74 0.0003085011 -4.978574e-05 61 74 -0.0003608797 5.823857e-05 62 74 0.0004268045 -6.887749e-05 63 74 -0.0005114288 8.253411e-05 64 74 0.0006226054 -0.0001004757 65 74 -0.0007727812 0.000124711 66 74 0.0009826448 -0.0001585787 67 74 -0.001288661 0.0002079635 68 74 0.001760065 -0.0002840383 69 74 -0.002541777 0.0004101906 70 74 0.003980742 -0.0006424099 71 74 -0.007089509 0.001144101 72 74 0.01597157 -0.002577484 73 74 -0.06393453 0.01031772 74 74 0.104661 -0.01663475 75 74 -0.06393453 0.01031772 76 74 0.01597157 -0.002577484 77 74 -0.007089509 0.001144101 78 74 0.003980742 -0.0006424099 79 74 -0.002541777 0.0004101906 80 74 0.001760065 -0.0002840383 155 74 0.001287783 0.0001173249 0 75 0.001760065 -0.0002840383 1 75 -0.001288661 0.0002079635 2 75 0.0009826448 -0.0001585787 3 75 -0.0007727812 0.000124711 4 75 0.0006226054 -0.0001004757 5 75 -0.0005114288 8.253411e-05 6 75 0.0004268045 -6.887749e-05 7 75 -0.0003608797 5.823857e-05 8 75 0.0003085011 -4.978574e-05 9 75 -0.0002661734 4.295492e-05 10 75 0.0002314578 -3.735254e-05 11 75 -0.0002026106 3.26972e-05 12 75 0.0001783582 -2.878335e-05 13 75 -0.0001577525 2.545802e-05 14 75 0.000140076 -2.26054e-05 15 75 -0.0001247774 2.013652e-05 16 75 0.0001114272 -1.798207e-05 17 75 -9.968672e-05 1.608739e-05 18 75 8.928565e-05 -1.440887e-05 19 75 -8.000611e-05 1.291134e-05 20 75 7.167061e-05 -1.156616e-05 21 75 -6.413319e-05 1.034978e-05 22 75 5.727273e-05 -9.242642e-06 23 75 -5.098776e-05 8.228377e-06 24 75 4.519256e-05 -7.293151e-06 25 75 -3.981401e-05 6.425164e-06 26 75 3.478917e-05 -5.614257e-06 27 75 -3.00633e-05 4.851599e-06 28 75 2.558831e-05 -4.129428e-06 29 75 -2.132146e-05 3.440846e-06 30 75 1.722429e-05 -2.779647e-06 31 75 -1.326172e-05 2.14017e-06 32 75 9.401297e-06 -1.517176e-06 33 75 -5.612495e-06 9.057414e-07 34 75 1.866144e-06 -3.011573e-07 35 75 1.866144e-06 -3.011573e-07 36 75 -5.612495e-06 9.057414e-07 37 75 9.401297e-06 -1.517176e-06 38 75 -1.326172e-05 2.14017e-06 39 75 1.722429e-05 -2.779647e-06 40 75 -2.132146e-05 3.440846e-06 41 75 2.558831e-05 -4.129428e-06 42 75 -3.00633e-05 4.851599e-06 43 75 3.478917e-05 -5.614257e-06 44 75 -3.981401e-05 6.425164e-06 45 75 4.519256e-05 -7.293151e-06 46 75 -5.098776e-05 8.228377e-06 47 75 5.727273e-05 -9.242642e-06 48 75 -6.413319e-05 1.034978e-05 49 75 7.167061e-05 -1.156616e-05 50 75 -8.000611e-05 1.291134e-05 51 75 8.928565e-05 -1.440887e-05 52 75 -9.968672e-05 1.608739e-05 53 75 0.0001114272 -1.798207e-05 54 75 -0.0001247774 2.013652e-05 55 75 0.000140076 -2.26054e-05 56 75 -0.0001577525 2.545802e-05 57 75 0.0001783582 -2.878335e-05 58 75 -0.0002026106 3.26972e-05 59 75 0.0002314578 -3.735254e-05 60 75 -0.0002661734 4.295492e-05 61 75 0.0003085011 -4.978574e-05 62 75 -0.0003608797 5.823857e-05 63 75 0.0004268045 -6.887749e-05 64 75 -0.0005114288 8.253411e-05 65 75 0.0006226054 -0.0001004757 66 75 -0.0007727812 0.000124711 67 75 0.0009826448 -0.0001585787 68 75 -0.001288661 0.0002079635 69 75 0.001760065 -0.0002840383 70 75 -0.002541777 0.0004101906 71 75 0.003980742 -0.0006424099 72 75 -0.007089509 0.001144101 73 75 0.01597157 -0.002577484 74 75 -0.06393453 0.01031772 75 75 0.1047093 -0.01666128 76 75 -0.06393453 0.01031772 77 75 0.01597157 -0.002577484 78 75 -0.007089509 0.001144101 79 75 0.003980742 -0.0006424099 80 75 -0.002541777 0.0004101906 156 75 0.001306573 0.0001194409 0 76 -0.002541777 0.0004101906 1 76 0.001760065 -0.0002840383 2 76 -0.001288661 0.0002079635 3 76 0.0009826448 -0.0001585787 4 76 -0.0007727812 0.000124711 5 76 0.0006226054 -0.0001004757 6 76 -0.0005114288 8.253411e-05 7 76 0.0004268045 -6.887749e-05 8 76 -0.0003608797 5.823857e-05 9 76 0.0003085011 -4.978574e-05 10 76 -0.0002661734 4.295492e-05 11 76 0.0002314578 -3.735254e-05 12 76 -0.0002026106 3.26972e-05 13 76 0.0001783582 -2.878335e-05 14 76 -0.0001577525 2.545802e-05 15 76 0.000140076 -2.26054e-05 16 76 -0.0001247774 2.013652e-05 17 76 0.0001114272 -1.798207e-05 18 76 -9.968672e-05 1.608739e-05 19 76 8.928565e-05 -1.440887e-05 20 76 -8.000611e-05 1.291134e-05 21 76 7.167061e-05 -1.156616e-05 22 76 -6.413319e-05 1.034978e-05 23 76 5.727273e-05 -9.242642e-06 24 76 -5.098776e-05 8.228377e-06 25 76 4.519256e-05 -7.293151e-06 26 76 -3.981401e-05 6.425164e-06 27 76 3.478917e-05 -5.614257e-06 28 76 -3.00633e-05 4.851599e-06 29 76 2.558831e-05 -4.129428e-06 30 76 -2.132146e-05 3.440846e-06 31 76 1.722429e-05 -2.779647e-06 32 76 -1.326172e-05 2.14017e-06 33 76 9.401297e-06 -1.517176e-06 34 76 -5.612495e-06 9.057414e-07 35 76 1.866144e-06 -3.011573e-07 36 76 1.866144e-06 -3.011573e-07 37 76 -5.612495e-06 9.057414e-07 38 76 9.401297e-06 -1.517176e-06 39 76 -1.326172e-05 2.14017e-06 40 76 1.722429e-05 -2.779647e-06 41 76 -2.132146e-05 3.440846e-06 42 76 2.558831e-05 -4.129428e-06 43 76 -3.00633e-05 4.851599e-06 44 76 3.478917e-05 -5.614257e-06 45 76 -3.981401e-05 6.425164e-06 46 76 4.519256e-05 -7.293151e-06 47 76 -5.098776e-05 8.228377e-06 48 76 5.727273e-05 -9.242642e-06 49 76 -6.413319e-05 1.034978e-05 50 76 7.167061e-05 -1.156616e-05 51 76 -8.000611e-05 1.291134e-05 52 76 8.928565e-05 -1.440887e-05 53 76 -9.968672e-05 1.608739e-05 54 76 0.0001114272 -1.798207e-05 55 76 -0.0001247774 2.013652e-05 56 76 0.000140076 -2.26054e-05 57 76 -0.0001577525 2.545802e-05 58 76 0.0001783582 -2.878335e-05 59 76 -0.0002026106 3.26972e-05 60 76 0.0002314578 -3.735254e-05 61 76 -0.0002661734 4.295492e-05 62 76 0.0003085011 -4.978574e-05 63 76 -0.0003608797 5.823857e-05 64 76 0.0004268045 -6.887749e-05 65 76 -0.0005114288 8.253411e-05 66 76 0.0006226054 -0.0001004757 67 76 -0.0007727812 0.000124711 68 76 0.0009826448 -0.0001585787 69 76 -0.001288661 0.0002079635 70 76 0.001760065 -0.0002840383 71 76 -0.002541777 0.0004101906 72 76 0.003980742 -0.0006424099 73 76 -0.007089509 0.001144101 74 76 0.01597157 -0.002577484 75 76 -0.06393453 0.01031772 76 76 0.1047531 -0.01668579 77 76 -0.06393453 0.01031772 78 76 0.01597157 -0.002577484 79 76 -0.007089509 0.001144101 80 76 0.003980742 -0.0006424099 157 76 0.001325458 0.0001215755 0 77 0.003980742 -0.0006424099 1 77 -0.002541777 0.0004101906 2 77 0.001760065 -0.0002840383 3 77 -0.001288661 0.0002079635 4 77 0.0009826448 -0.0001585787 5 77 -0.0007727812 0.000124711 6 77 0.0006226054 -0.0001004757 7 77 -0.0005114288 8.253411e-05 8 77 0.0004268045 -6.887749e-05 9 77 -0.0003608797 5.823857e-05 10 77 0.0003085011 -4.978574e-05 11 77 -0.0002661734 4.295492e-05 12 77 0.0002314578 -3.735254e-05 13 77 -0.0002026106 3.26972e-05 14 77 0.0001783582 -2.878335e-05 15 77 -0.0001577525 2.545802e-05 16 77 0.000140076 -2.26054e-05 17 77 -0.0001247774 2.013652e-05 18 77 0.0001114272 -1.798207e-05 19 77 -9.968672e-05 1.608739e-05 20 77 8.928565e-05 -1.440887e-05 21 77 -8.000611e-05 1.291134e-05 22 77 7.167061e-05 -1.156616e-05 23 77 -6.413319e-05 1.034978e-05 24 77 5.727273e-05 -9.242642e-06 25 77 -5.098776e-05 8.228377e-06 26 77 4.519256e-05 -7.293151e-06 27 77 -3.981401e-05 6.425164e-06 28 77 3.478917e-05 -5.614257e-06 29 77 -3.00633e-05 4.851599e-06 30 77 2.558831e-05 -4.129428e-06 31 77 -2.132146e-05 3.440846e-06 32 77 1.722429e-05 -2.779647e-06 33 77 -1.326172e-05 2.14017e-06 34 77 9.401297e-06 -1.517176e-06 35 77 -5.612495e-06 9.057414e-07 36 77 1.866144e-06 -3.011573e-07 37 77 1.866144e-06 -3.011573e-07 38 77 -5.612495e-06 9.057414e-07 39 77 9.401297e-06 -1.517176e-06 40 77 -1.326172e-05 2.14017e-06 41 77 1.722429e-05 -2.779647e-06 42 77 -2.132146e-05 3.440846e-06 43 77 2.558831e-05 -4.129428e-06 44 77 -3.00633e-05 4.851599e-06 45 77 3.478917e-05 -5.614257e-06 46 77 -3.981401e-05 6.425164e-06 47 77 4.519256e-05 -7.293151e-06 48 77 -5.098776e-05 8.228377e-06 49 77 5.727273e-05 -9.242642e-06 50 77 -6.413319e-05 1.034978e-05 51 77 7.167061e-05 -1.156616e-05 52 77 -8.000611e-05 1.291134e-05 53 77 8.928565e-05 -1.440887e-05 54 77 -9.968672e-05 1.608739e-05 55 77 0.0001114272 -1.798207e-05 56 77 -0.0001247774 2.013652e-05 57 77 0.000140076 -2.26054e-05 58 77 -0.0001577525 2.545802e-05 59 77 0.0001783582 -2.878335e-05 60 77 -0.0002026106 3.26972e-05 61 77 0.0002314578 -3.735254e-05 62 77 -0.0002661734 4.295492e-05 63 77 0.0003085011 -4.978574e-05 64 77 -0.0003608797 5.823857e-05 65 77 0.0004268045 -6.887749e-05 66 77 -0.0005114288 8.253411e-05 67 77 0.0006226054 -0.0001004757 68 77 -0.0007727812 0.000124711 69 77 0.0009826448 -0.0001585787 70 77 -0.001288661 0.0002079635 71 77 0.001760065 -0.0002840383 72 77 -0.002541777 0.0004101906 73 77 0.003980742 -0.0006424099 74 77 -0.007089509 0.001144101 75 77 0.01597157 -0.002577484 76 77 -0.06393453 0.01031772 77 77 0.1047928 -0.01670843 78 77 -0.06393453 0.01031772 79 77 0.01597157 -0.002577484 80 77 -0.007089509 0.001144101 158 77 0.001344439 0.0001237288 0 78 -0.007089509 0.001144101 1 78 0.003980742 -0.0006424099 2 78 -0.002541777 0.0004101906 3 78 0.001760065 -0.0002840383 4 78 -0.001288661 0.0002079635 5 78 0.0009826448 -0.0001585787 6 78 -0.0007727812 0.000124711 7 78 0.0006226054 -0.0001004757 8 78 -0.0005114288 8.253411e-05 9 78 0.0004268045 -6.887749e-05 10 78 -0.0003608797 5.823857e-05 11 78 0.0003085011 -4.978574e-05 12 78 -0.0002661734 4.295492e-05 13 78 0.0002314578 -3.735254e-05 14 78 -0.0002026106 3.26972e-05 15 78 0.0001783582 -2.878335e-05 16 78 -0.0001577525 2.545802e-05 17 78 0.000140076 -2.26054e-05 18 78 -0.0001247774 2.013652e-05 19 78 0.0001114272 -1.798207e-05 20 78 -9.968672e-05 1.608739e-05 21 78 8.928565e-05 -1.440887e-05 22 78 -8.000611e-05 1.291134e-05 23 78 7.167061e-05 -1.156616e-05 24 78 -6.413319e-05 1.034978e-05 25 78 5.727273e-05 -9.242642e-06 26 78 -5.098776e-05 8.228377e-06 27 78 4.519256e-05 -7.293151e-06 28 78 -3.981401e-05 6.425164e-06 29 78 3.478917e-05 -5.614257e-06 30 78 -3.00633e-05 4.851599e-06 31 78 2.558831e-05 -4.129428e-06 32 78 -2.132146e-05 3.440846e-06 33 78 1.722429e-05 -2.779647e-06 34 78 -1.326172e-05 2.14017e-06 35 78 9.401297e-06 -1.517176e-06 36 78 -5.612495e-06 9.057414e-07 37 78 1.866144e-06 -3.011573e-07 38 78 1.866144e-06 -3.011573e-07 39 78 -5.612495e-06 9.057414e-07 40 78 9.401297e-06 -1.517176e-06 41 78 -1.326172e-05 2.14017e-06 42 78 1.722429e-05 -2.779647e-06 43 78 -2.132146e-05 3.440846e-06 44 78 2.558831e-05 -4.129428e-06 45 78 -3.00633e-05 4.851599e-06 46 78 3.478917e-05 -5.614257e-06 47 78 -3.981401e-05 6.425164e-06 48 78 4.519256e-05 -7.293151e-06 49 78 -5.098776e-05 8.228377e-06 50 78 5.727273e-05 -9.242642e-06 51 78 -6.413319e-05 1.034978e-05 52 78 7.167061e-05 -1.156616e-05 53 78 -8.000611e-05 1.291134e-05 54 78 8.928565e-05 -1.440887e-05 55 78 -9.968672e-05 1.608739e-05 56 78 0.0001114272 -1.798207e-05 57 78 -0.0001247774 2.013652e-05 58 78 0.000140076 -2.26054e-05 59 78 -0.0001577525 2.545802e-05 60 78 0.0001783582 -2.878335e-05 61 78 -0.0002026106 3.26972e-05 62 78 0.0002314578 -3.735254e-05 63 78 -0.0002661734 4.295492e-05 64 78 0.0003085011 -4.978574e-05 65 78 -0.0003608797 5.823857e-05 66 78 0.0004268045 -6.887749e-05 67 78 -0.0005114288 8.253411e-05 68 78 0.0006226054 -0.0001004757 69 78 -0.0007727812 0.000124711 70 78 0.0009826448 -0.0001585787 71 78 -0.001288661 0.0002079635 72 78 0.001760065 -0.0002840383 73 78 -0.002541777 0.0004101906 74 78 0.003980742 -0.0006424099 75 78 -0.007089509 0.001144101 76 78 0.01597157 -0.002577484 77 78 -0.06393453 0.01031772 78 78 0.1048289 -0.01672934 79 78 -0.06393453 0.01031772 80 78 0.01597157 -0.002577484 159 78 0.001363516 0.0001259011 0 79 0.01597157 -0.002577484 1 79 -0.007089509 0.001144101 2 79 0.003980742 -0.0006424099 3 79 -0.002541777 0.0004101906 4 79 0.001760065 -0.0002840383 5 79 -0.001288661 0.0002079635 6 79 0.0009826448 -0.0001585787 7 79 -0.0007727812 0.000124711 8 79 0.0006226054 -0.0001004757 9 79 -0.0005114288 8.253411e-05 10 79 0.0004268045 -6.887749e-05 11 79 -0.0003608797 5.823857e-05 12 79 0.0003085011 -4.978574e-05 13 79 -0.0002661734 4.295492e-05 14 79 0.0002314578 -3.735254e-05 15 79 -0.0002026106 3.26972e-05 16 79 0.0001783582 -2.878335e-05 17 79 -0.0001577525 2.545802e-05 18 79 0.000140076 -2.26054e-05 19 79 -0.0001247774 2.013652e-05 20 79 0.0001114272 -1.798207e-05 21 79 -9.968672e-05 1.608739e-05 22 79 8.928565e-05 -1.440887e-05 23 79 -8.000611e-05 1.291134e-05 24 79 7.167061e-05 -1.156616e-05 25 79 -6.413319e-05 1.034978e-05 26 79 5.727273e-05 -9.242642e-06 27 79 -5.098776e-05 8.228377e-06 28 79 4.519256e-05 -7.293151e-06 29 79 -3.981401e-05 6.425164e-06 30 79 3.478917e-05 -5.614257e-06 31 79 -3.00633e-05 4.851599e-06 32 79 2.558831e-05 -4.129428e-06 33 79 -2.132146e-05 3.440846e-06 34 79 1.722429e-05 -2.779647e-06 35 79 -1.326172e-05 2.14017e-06 36 79 9.401297e-06 -1.517176e-06 37 79 -5.612495e-06 9.057414e-07 38 79 1.866144e-06 -3.011573e-07 39 79 1.866144e-06 -3.011573e-07 40 79 -5.612495e-06 9.057414e-07 41 79 9.401297e-06 -1.517176e-06 42 79 -1.326172e-05 2.14017e-06 43 79 1.722429e-05 -2.779647e-06 44 79 -2.132146e-05 3.440846e-06 45 79 2.558831e-05 -4.129428e-06 46 79 -3.00633e-05 4.851599e-06 47 79 3.478917e-05 -5.614257e-06 48 79 -3.981401e-05 6.425164e-06 49 79 4.519256e-05 -7.293151e-06 50 79 -5.098776e-05 8.228377e-06 51 79 5.727273e-05 -9.242642e-06 52 79 -6.413319e-05 1.034978e-05 53 79 7.167061e-05 -1.156616e-05 54 79 -8.000611e-05 1.291134e-05 55 79 8.928565e-05 -1.440887e-05 56 79 -9.968672e-05 1.608739e-05 57 79 0.0001114272 -1.798207e-05 58 79 -0.0001247774 2.013652e-05 59 79 0.000140076 -2.26054e-05 60 79 -0.0001577525 2.545802e-05 61 79 0.0001783582 -2.878335e-05 62 79 -0.0002026106 3.26972e-05 63 79 0.0002314578 -3.735254e-05 64 79 -0.0002661734 4.295492e-05 65 79 0.0003085011 -4.978574e-05 66 79 -0.0003608797 5.823857e-05 67 79 0.0004268045 -6.887749e-05 68 79 -0.0005114288 8.253411e-05 69 79 0.0006226054 -0.0001004757 70 79 -0.0007727812 0.000124711 71 79 0.0009826448 -0.0001585787 72 79 -0.001288661 0.0002079635 73 79 0.001760065 -0.0002840383 74 79 -0.002541777 0.0004101906 75 79 0.003980742 -0.0006424099 76 79 -0.007089509 0.001144101 77 79 0.01597157 -0.002577484 78 79 -0.06393453 0.01031772 79 79 0.1048616 -0.01674864 80 79 -0.06393453 0.01031772 160 79 0.00138269 0.0001280923 0 80 -0.06393453 0.01031772 1 80 0.01597157 -0.002577484 2 80 -0.007089509 0.001144101 3 80 0.003980742 -0.0006424099 4 80 -0.002541777 0.0004101906 5 80 0.001760065 -0.0002840383 6 80 -0.001288661 0.0002079635 7 80 0.0009826448 -0.0001585787 8 80 -0.0007727812 0.000124711 9 80 0.0006226054 -0.0001004757 10 80 -0.0005114288 8.253411e-05 11 80 0.0004268045 -6.887749e-05 12 80 -0.0003608797 5.823857e-05 13 80 0.0003085011 -4.978574e-05 14 80 -0.0002661734 4.295492e-05 15 80 0.0002314578 -3.735254e-05 16 80 -0.0002026106 3.26972e-05 17 80 0.0001783582 -2.878335e-05 18 80 -0.0001577525 2.545802e-05 19 80 0.000140076 -2.26054e-05 20 80 -0.0001247774 2.013652e-05 21 80 0.0001114272 -1.798207e-05 22 80 -9.968672e-05 1.608739e-05 23 80 8.928565e-05 -1.440887e-05 24 80 -8.000611e-05 1.291134e-05 25 80 7.167061e-05 -1.156616e-05 26 80 -6.413319e-05 1.034978e-05 27 80 5.727273e-05 -9.242642e-06 28 80 -5.098776e-05 8.228377e-06 29 80 4.519256e-05 -7.293151e-06 30 80 -3.981401e-05 6.425164e-06 31 80 3.478917e-05 -5.614257e-06 32 80 -3.00633e-05 4.851599e-06 33 80 2.558831e-05 -4.129428e-06 34 80 -2.132146e-05 3.440846e-06 35 80 1.722429e-05 -2.779647e-06 36 80 -1.326172e-05 2.14017e-06 37 80 9.401297e-06 -1.517176e-06 38 80 -5.612495e-06 9.057414e-07 39 80 1.866144e-06 -3.011573e-07 40 80 1.866144e-06 -3.011573e-07 41 80 -5.612495e-06 9.057414e-07 42 80 9.401297e-06 -1.517176e-06 43 80 -1.326172e-05 2.14017e-06 44 80 1.722429e-05 -2.779647e-06 45 80 -2.132146e-05 3.440846e-06 46 80 2.558831e-05 -4.129428e-06 47 80 -3.00633e-05 4.851599e-06 48 80 3.478917e-05 -5.614257e-06 49 80 -3.981401e-05 6.425164e-06 50 80 4.519256e-05 -7.293151e-06 51 80 -5.098776e-05 8.228377e-06 52 80 5.727273e-05 -9.242642e-06 53 80 -6.413319e-05 1.034978e-05 54 80 7.167061e-05 -1.156616e-05 55 80 -8.000611e-05 1.291134e-05 56 80 8.928565e-05 -1.440887e-05 57 80 -9.968672e-05 1.608739e-05 58 80 0.0001114272 -1.798207e-05 59 80 -0.0001247774 2.013652e-05 60 80 0.000140076 -2.26054e-05 61 80 -0.0001577525 2.545802e-05 62 80 0.0001783582 -2.878335e-05 63 80 -0.0002026106 3.26972e-05 64 80 0.0002314578 -3.735254e-05 65 80 -0.0002661734 4.295492e-05 66 80 0.0003085011 -4.978574e-05 67 80 -0.0003608797 5.823857e-05 68 80 0.0004268045 -6.887749e-05 69 80 -0.0005114288 8.253411e-05 70 80 0.0006226054 -0.0001004757 71 80 -0.0007727812 0.000124711 72 80 0.0009826448 -0.0001585787 73 80 -0.001288661 0.0002079635 74 80 0.001760065 -0.0002840383 75 80 -0.002541777 0.0004101906 76 80 0.003980742 -0.0006424099 77 80 -0.007089509 0.001144101 78 80 0.01597157 -0.002577484 79 80 -0.06393453 0.01031772 80 80 0.1048912 -0.01676645 161 80 0.001401962 0.0001303027 0 81 0.0001315499 3.980931e-06 81 81 1.495713 -0.08758582 82 81 -0.06393453 0.01031772 83 81 0.01597157 -0.002577484 84 81 -0.007089509 0.001144101 85 81 0.003980742 -0.0006424099 86 81 -0.002541777 0.0004101906 87 81 0.001760065 -0.0002840383 88 81 -0.001288661 0.0002079635 89 81 0.0009826448 -0.0001585787 90 81 -0.0007727812 0.000124711 91 81 0.0006226054 -0.0001004757 92 81 -0.0005114288 8.253411e-05 93 81 0.0004268045 -6.887749e-05 94 81 -0.0003608797 5.823857e-05 95 81 0.0003085011 -4.978574e-05 96 81 -0.0002661734 4.295492e-05 97 81 0.0002314578 -3.735254e-05 98 81 -0.0002026106 3.26972e-05 99 81 0.0001783582 -2.878335e-05 100 81 -0.0001577525 2.545802e-05 101 81 0.000140076 -2.26054e-05 102 81 -0.0001247774 2.013652e-05 103 81 0.0001114272 -1.798207e-05 104 81 -9.968672e-05 1.608739e-05 105 81 8.928565e-05 -1.440887e-05 106 81 -8.000611e-05 1.291134e-05 107 81 7.167061e-05 -1.156616e-05 108 81 -6.413319e-05 1.034978e-05 109 81 5.727273e-05 -9.242642e-06 110 81 -5.098776e-05 8.228377e-06 111 81 4.519256e-05 -7.293151e-06 112 81 -3.981401e-05 6.425164e-06 113 81 3.478917e-05 -5.614257e-06 114 81 -3.00633e-05 4.851599e-06 115 81 2.558831e-05 -4.129428e-06 116 81 -2.132146e-05 3.440846e-06 117 81 1.722429e-05 -2.779647e-06 118 81 -1.326172e-05 2.14017e-06 119 81 9.401297e-06 -1.517176e-06 120 81 -5.612495e-06 9.057414e-07 121 81 1.866144e-06 -3.011573e-07 122 81 1.866144e-06 -3.011573e-07 123 81 -5.612495e-06 9.057414e-07 124 81 9.401297e-06 -1.517176e-06 125 81 -1.326172e-05 2.14017e-06 126 81 1.722429e-05 -2.779647e-06 127 81 -2.132146e-05 3.440846e-06 128 81 2.558831e-05 -4.129428e-06 129 81 -3.00633e-05 4.851599e-06 130 81 3.478917e-05 -5.614257e-06 131 81 -3.981401e-05 6.425164e-06 132 81 4.519256e-05 -7.293151e-06 133 81 -5.098776e-05 8.228377e-06 134 81 5.727273e-05 -9.242642e-06 135 81 -6.413319e-05 1.034978e-05 136 81 7.167061e-05 -1.156616e-05 137 81 -8.000611e-05 1.291134e-05 138 81 8.928565e-05 -1.440887e-05 139 81 -9.968672e-05 1.608739e-05 140 81 0.0001114272 -1.798207e-05 141 81 -0.0001247774 2.013652e-05 142 81 0.000140076 -2.26054e-05 143 81 -0.0001577525 2.545802e-05 144 81 0.0001783582 -2.878335e-05 145 81 -0.0002026106 3.26972e-05 146 81 0.0002314578 -3.735254e-05 147 81 -0.0002661734 4.295492e-05 148 81 0.0003085011 -4.978574e-05 149 81 -0.0003608797 5.823857e-05 150 81 0.0004268045 -6.887749e-05 151 81 -0.0005114288 8.253411e-05 152 81 0.0006226054 -0.0001004757 153 81 -0.0007727812 0.000124711 154 81 0.0009826448 -0.0001585787 155 81 -0.001288661 0.0002079635 156 81 0.001760065 -0.0002840383 157 81 -0.002541777 0.0004101906 158 81 0.003980742 -0.0006424099 159 81 -0.007089509 0.001144101 160 81 0.01597157 -0.002577484 161 81 -0.06393453 0.01031772 162 81 0.0001315499 3.980931e-06 1 82 0.0001444547 5.03874e-06 81 82 -0.06393453 0.01031772 82 82 1.284019 -0.09274586 83 82 -0.06393453 0.01031772 84 82 0.01597157 -0.002577484 85 82 -0.007089509 0.001144101 86 82 0.003980742 -0.0006424099 87 82 -0.002541777 0.0004101906 88 82 0.001760065 -0.0002840383 89 82 -0.001288661 0.0002079635 90 82 0.0009826448 -0.0001585787 91 82 -0.0007727812 0.000124711 92 82 0.0006226054 -0.0001004757 93 82 -0.0005114288 8.253411e-05 94 82 0.0004268045 -6.887749e-05 95 82 -0.0003608797 5.823857e-05 96 82 0.0003085011 -4.978574e-05 97 82 -0.0002661734 4.295492e-05 98 82 0.0002314578 -3.735254e-05 99 82 -0.0002026106 3.26972e-05 100 82 0.0001783582 -2.878335e-05 101 82 -0.0001577525 2.545802e-05 102 82 0.000140076 -2.26054e-05 103 82 -0.0001247774 2.013652e-05 104 82 0.0001114272 -1.798207e-05 105 82 -9.968672e-05 1.608739e-05 106 82 8.928565e-05 -1.440887e-05 107 82 -8.000611e-05 1.291134e-05 108 82 7.167061e-05 -1.156616e-05 109 82 -6.413319e-05 1.034978e-05 110 82 5.727273e-05 -9.242642e-06 111 82 -5.098776e-05 8.228377e-06 112 82 4.519256e-05 -7.293151e-06 113 82 -3.981401e-05 6.425164e-06 114 82 3.478917e-05 -5.614257e-06 115 82 -3.00633e-05 4.851599e-06 116 82 2.558831e-05 -4.129428e-06 117 82 -2.132146e-05 3.440846e-06 118 82 1.722429e-05 -2.779647e-06 119 82 -1.326172e-05 2.14017e-06 120 82 9.401297e-06 -1.517176e-06 121 82 -5.612495e-06 9.057414e-07 122 82 1.866144e-06 -3.011573e-07 123 82 1.866144e-06 -3.011573e-07 124 82 -5.612495e-06 9.057414e-07 125 82 9.401297e-06 -1.517176e-06 126 82 -1.326172e-05 2.14017e-06 127 82 1.722429e-05 -2.779647e-06 128 82 -2.132146e-05 3.440846e-06 129 82 2.558831e-05 -4.129428e-06 130 82 -3.00633e-05 4.851599e-06 131 82 3.478917e-05 -5.614257e-06 132 82 -3.981401e-05 6.425164e-06 133 82 4.519256e-05 -7.293151e-06 134 82 -5.098776e-05 8.228377e-06 135 82 5.727273e-05 -9.242642e-06 136 82 -6.413319e-05 1.034978e-05 137 82 7.167061e-05 -1.156616e-05 138 82 -8.000611e-05 1.291134e-05 139 82 8.928565e-05 -1.440887e-05 140 82 -9.968672e-05 1.608739e-05 141 82 0.0001114272 -1.798207e-05 142 82 -0.0001247774 2.013652e-05 143 82 0.000140076 -2.26054e-05 144 82 -0.0001577525 2.545802e-05 145 82 0.0001783582 -2.878335e-05 146 82 -0.0002026106 3.26972e-05 147 82 0.0002314578 -3.735254e-05 148 82 -0.0002661734 4.295492e-05 149 82 0.0003085011 -4.978574e-05 150 82 -0.0003608797 5.823857e-05 151 82 0.0004268045 -6.887749e-05 152 82 -0.0005114288 8.253411e-05 153 82 0.0006226054 -0.0001004757 154 82 -0.0007727812 0.000124711 155 82 0.0009826448 -0.0001585787 156 82 -0.001288661 0.0002079635 157 82 0.001760065 -0.0002840383 158 82 -0.002541777 0.0004101906 159 82 0.003980742 -0.0006424099 160 82 -0.007089509 0.001144101 161 82 0.01597157 -0.002577484 163 82 0.0001444547 5.03874e-06 2 83 0.0001574252 6.107297e-06 81 83 0.01597157 -0.002577484 82 83 -0.06393453 0.01031772 83 83 1.103395 -0.09497235 84 83 -0.06393453 0.01031772 85 83 0.01597157 -0.002577484 86 83 -0.007089509 0.001144101 87 83 0.003980742 -0.0006424099 88 83 -0.002541777 0.0004101906 89 83 0.001760065 -0.0002840383 90 83 -0.001288661 0.0002079635 91 83 0.0009826448 -0.0001585787 92 83 -0.0007727812 0.000124711 93 83 0.0006226054 -0.0001004757 94 83 -0.0005114288 8.253411e-05 95 83 0.0004268045 -6.887749e-05 96 83 -0.0003608797 5.823857e-05 97 83 0.0003085011 -4.978574e-05 98 83 -0.0002661734 4.295492e-05 99 83 0.0002314578 -3.735254e-05 100 83 -0.0002026106 3.26972e-05 101 83 0.0001783582 -2.878335e-05 102 83 -0.0001577525 2.545802e-05 103 83 0.000140076 -2.26054e-05 104 83 -0.0001247774 2.013652e-05 105 83 0.0001114272 -1.798207e-05 106 83 -9.968672e-05 1.608739e-05 107 83 8.928565e-05 -1.440887e-05 108 83 -8.000611e-05 1.291134e-05 109 83 7.167061e-05 -1.156616e-05 110 83 -6.413319e-05 1.034978e-05 111 83 5.727273e-05 -9.242642e-06 112 83 -5.098776e-05 8.228377e-06 113 83 4.519256e-05 -7.293151e-06 114 83 -3.981401e-05 6.425164e-06 115 83 3.478917e-05 -5.614257e-06 116 83 -3.00633e-05 4.851599e-06 117 83 2.558831e-05 -4.129428e-06 118 83 -2.132146e-05 3.440846e-06 119 83 1.722429e-05 -2.779647e-06 120 83 -1.326172e-05 2.14017e-06 121 83 9.401297e-06 -1.517176e-06 122 83 -5.612495e-06 9.057414e-07 123 83 1.866144e-06 -3.011573e-07 124 83 1.866144e-06 -3.011573e-07 125 83 -5.612495e-06 9.057414e-07 126 83 9.401297e-06 -1.517176e-06 127 83 -1.326172e-05 2.14017e-06 128 83 1.722429e-05 -2.779647e-06 129 83 -2.132146e-05 3.440846e-06 130 83 2.558831e-05 -4.129428e-06 131 83 -3.00633e-05 4.851599e-06 132 83 3.478917e-05 -5.614257e-06 133 83 -3.981401e-05 6.425164e-06 134 83 4.519256e-05 -7.293151e-06 135 83 -5.098776e-05 8.228377e-06 136 83 5.727273e-05 -9.242642e-06 137 83 -6.413319e-05 1.034978e-05 138 83 7.167061e-05 -1.156616e-05 139 83 -8.000611e-05 1.291134e-05 140 83 8.928565e-05 -1.440887e-05 141 83 -9.968672e-05 1.608739e-05 142 83 0.0001114272 -1.798207e-05 143 83 -0.0001247774 2.013652e-05 144 83 0.000140076 -2.26054e-05 145 83 -0.0001577525 2.545802e-05 146 83 0.0001783582 -2.878335e-05 147 83 -0.0002026106 3.26972e-05 148 83 0.0002314578 -3.735254e-05 149 83 -0.0002661734 4.295492e-05 150 83 0.0003085011 -4.978574e-05 151 83 -0.0003608797 5.823857e-05 152 83 0.0004268045 -6.887749e-05 153 83 -0.0005114288 8.253411e-05 154 83 0.0006226054 -0.0001004757 155 83 -0.0007727812 0.000124711 156 83 0.0009826448 -0.0001585787 157 83 -0.001288661 0.0002079635 158 83 0.001760065 -0.0002840383 159 83 -0.002541777 0.0004101906 160 83 0.003980742 -0.0006424099 161 83 -0.007089509 0.001144101 164 83 0.0001574252 6.107297e-06 3 84 0.0001704618 7.186683e-06 81 84 -0.007089509 0.001144101 82 84 0.01597157 -0.002577484 83 84 -0.06393453 0.01031772 84 84 0.949024 -0.0950654 85 84 -0.06393453 0.01031772 86 84 0.01597157 -0.002577484 87 84 -0.007089509 0.001144101 88 84 0.003980742 -0.0006424099 89 84 -0.002541777 0.0004101906 90 84 0.001760065 -0.0002840383 91 84 -0.001288661 0.0002079635 92 84 0.0009826448 -0.0001585787 93 84 -0.0007727812 0.000124711 94 84 0.0006226054 -0.0001004757 95 84 -0.0005114288 8.253411e-05 96 84 0.0004268045 -6.887749e-05 97 84 -0.0003608797 5.823857e-05 98 84 0.0003085011 -4.978574e-05 99 84 -0.0002661734 4.295492e-05 100 84 0.0002314578 -3.735254e-05 101 84 -0.0002026106 3.26972e-05 102 84 0.0001783582 -2.878335e-05 103 84 -0.0001577525 2.545802e-05 104 84 0.000140076 -2.26054e-05 105 84 -0.0001247774 2.013652e-05 106 84 0.0001114272 -1.798207e-05 107 84 -9.968672e-05 1.608739e-05 108 84 8.928565e-05 -1.440887e-05 109 84 -8.000611e-05 1.291134e-05 110 84 7.167061e-05 -1.156616e-05 111 84 -6.413319e-05 1.034978e-05 112 84 5.727273e-05 -9.242642e-06 113 84 -5.098776e-05 8.228377e-06 114 84 4.519256e-05 -7.293151e-06 115 84 -3.981401e-05 6.425164e-06 116 84 3.478917e-05 -5.614257e-06 117 84 -3.00633e-05 4.851599e-06 118 84 2.558831e-05 -4.129428e-06 119 84 -2.132146e-05 3.440846e-06 120 84 1.722429e-05 -2.779647e-06 121 84 -1.326172e-05 2.14017e-06 122 84 9.401297e-06 -1.517176e-06 123 84 -5.612495e-06 9.057414e-07 124 84 1.866144e-06 -3.011573e-07 125 84 1.866144e-06 -3.011573e-07 126 84 -5.612495e-06 9.057414e-07 127 84 9.401297e-06 -1.517176e-06 128 84 -1.326172e-05 2.14017e-06 129 84 1.722429e-05 -2.779647e-06 130 84 -2.132146e-05 3.440846e-06 131 84 2.558831e-05 -4.129428e-06 132 84 -3.00633e-05 4.851599e-06 133 84 3.478917e-05 -5.614257e-06 134 84 -3.981401e-05 6.425164e-06 135 84 4.519256e-05 -7.293151e-06 136 84 -5.098776e-05 8.228377e-06 137 84 5.727273e-05 -9.242642e-06 138 84 -6.413319e-05 1.034978e-05 139 84 7.167061e-05 -1.156616e-05 140 84 -8.000611e-05 1.291134e-05 141 84 8.928565e-05 -1.440887e-05 142 84 -9.968672e-05 1.608739e-05 143 84 0.0001114272 -1.798207e-05 144 84 -0.0001247774 2.013652e-05 145 84 0.000140076 -2.26054e-05 146 84 -0.0001577525 2.545802e-05 147 84 0.0001783582 -2.878335e-05 148 84 -0.0002026106 3.26972e-05 149 84 0.0002314578 -3.735254e-05 150 84 -0.0002661734 4.295492e-05 151 84 0.0003085011 -4.978574e-05 152 84 -0.0003608797 5.823857e-05 153 84 0.0004268045 -6.887749e-05 154 84 -0.0005114288 8.253411e-05 155 84 0.0006226054 -0.0001004757 156 84 -0.0007727812 0.000124711 157 84 0.0009826448 -0.0001585787 158 84 -0.001288661 0.0002079635 159 84 0.001760065 -0.0002840383 160 84 -0.002541777 0.0004101906 161 84 0.003980742 -0.0006424099 165 84 0.0001704618 7.186683e-06 4 85 0.0001835649 8.276982e-06 81 85 0.003980742 -0.0006424099 82 85 -0.007089509 0.001144101 83 85 0.01597157 -0.002577484 84 85 -0.06393453 0.01031772 85 85 0.8168613 -0.09363985 86 85 -0.06393453 0.01031772 87 85 0.01597157 -0.002577484 88 85 -0.007089509 0.001144101 89 85 0.003980742 -0.0006424099 90 85 -0.002541777 0.0004101906 91 85 0.001760065 -0.0002840383 92 85 -0.001288661 0.0002079635 93 85 0.0009826448 -0.0001585787 94 85 -0.0007727812 0.000124711 95 85 0.0006226054 -0.0001004757 96 85 -0.0005114288 8.253411e-05 97 85 0.0004268045 -6.887749e-05 98 85 -0.0003608797 5.823857e-05 99 85 0.0003085011 -4.978574e-05 100 85 -0.0002661734 4.295492e-05 101 85 0.0002314578 -3.735254e-05 102 85 -0.0002026106 3.26972e-05 103 85 0.0001783582 -2.878335e-05 104 85 -0.0001577525 2.545802e-05 105 85 0.000140076 -2.26054e-05 106 85 -0.0001247774 2.013652e-05 107 85 0.0001114272 -1.798207e-05 108 85 -9.968672e-05 1.608739e-05 109 85 8.928565e-05 -1.440887e-05 110 85 -8.000611e-05 1.291134e-05 111 85 7.167061e-05 -1.156616e-05 112 85 -6.413319e-05 1.034978e-05 113 85 5.727273e-05 -9.242642e-06 114 85 -5.098776e-05 8.228377e-06 115 85 4.519256e-05 -7.293151e-06 116 85 -3.981401e-05 6.425164e-06 117 85 3.478917e-05 -5.614257e-06 118 85 -3.00633e-05 4.851599e-06 119 85 2.558831e-05 -4.129428e-06 120 85 -2.132146e-05 3.440846e-06 121 85 1.722429e-05 -2.779647e-06 122 85 -1.326172e-05 2.14017e-06 123 85 9.401297e-06 -1.517176e-06 124 85 -5.612495e-06 9.057414e-07 125 85 1.866144e-06 -3.011573e-07 126 85 1.866144e-06 -3.011573e-07 127 85 -5.612495e-06 9.057414e-07 128 85 9.401297e-06 -1.517176e-06 129 85 -1.326172e-05 2.14017e-06 130 85 1.722429e-05 -2.779647e-06 131 85 -2.132146e-05 3.440846e-06 132 85 2.558831e-05 -4.129428e-06 133 85 -3.00633e-05 4.851599e-06 134 85 3.478917e-05 -5.614257e-06 135 85 -3.981401e-05 6.425164e-06 136 85 4.519256e-05 -7.293151e-06 137 85 -5.098776e-05 8.228377e-06 138 85 5.727273e-05 -9.242642e-06 139 85 -6.413319e-05 1.034978e-05 140 85 7.167061e-05 -1.156616e-05 141 85 -8.000611e-05 1.291134e-05 142 85 8.928565e-05 -1.440887e-05 143 85 -9.968672e-05 1.608739e-05 144 85 0.0001114272 -1.798207e-05 145 85 -0.0001247774 2.013652e-05 146 85 0.000140076 -2.26054e-05 147 85 -0.0001577525 2.545802e-05 148 85 0.0001783582 -2.878335e-05 149 85 -0.0002026106 3.26972e-05 150 85 0.0002314578 -3.735254e-05 151 85 -0.0002661734 4.295492e-05 152 85 0.0003085011 -4.978574e-05 153 85 -0.0003608797 5.823857e-05 154 85 0.0004268045 -6.887749e-05 155 85 -0.0005114288 8.253411e-05 156 85 0.0006226054 -0.0001004757 157 85 -0.0007727812 0.000124711 158 85 0.0009826448 -0.0001585787 159 85 -0.001288661 0.0002079635 160 85 0.001760065 -0.0002840383 161 85 -0.002541777 0.0004101906 166 85 0.0001835649 8.276982e-06 5 86 0.0001967347 9.378277e-06 81 86 -0.002541777 0.0004101906 82 86 0.003980742 -0.0006424099 83 86 -0.007089509 0.001144101 84 86 0.01597157 -0.002577484 85 86 -0.06393453 0.01031772 86 86 0.7035068 -0.09116507 87 86 -0.06393453 0.01031772 88 86 0.01597157 -0.002577484 89 86 -0.007089509 0.001144101 90 86 0.003980742 -0.0006424099 91 86 -0.002541777 0.0004101906 92 86 0.001760065 -0.0002840383 93 86 -0.001288661 0.0002079635 94 86 0.0009826448 -0.0001585787 95 86 -0.0007727812 0.000124711 96 86 0.0006226054 -0.0001004757 97 86 -0.0005114288 8.253411e-05 98 86 0.0004268045 -6.887749e-05 99 86 -0.0003608797 5.823857e-05 100 86 0.0003085011 -4.978574e-05 101 86 -0.0002661734 4.295492e-05 102 86 0.0002314578 -3.735254e-05 103 86 -0.0002026106 3.26972e-05 104 86 0.0001783582 -2.878335e-05 105 86 -0.0001577525 2.545802e-05 106 86 0.000140076 -2.26054e-05 107 86 -0.0001247774 2.013652e-05 108 86 0.0001114272 -1.798207e-05 109 86 -9.968672e-05 1.608739e-05 110 86 8.928565e-05 -1.440887e-05 111 86 -8.000611e-05 1.291134e-05 112 86 7.167061e-05 -1.156616e-05 113 86 -6.413319e-05 1.034978e-05 114 86 5.727273e-05 -9.242642e-06 115 86 -5.098776e-05 8.228377e-06 116 86 4.519256e-05 -7.293151e-06 117 86 -3.981401e-05 6.425164e-06 118 86 3.478917e-05 -5.614257e-06 119 86 -3.00633e-05 4.851599e-06 120 86 2.558831e-05 -4.129428e-06 121 86 -2.132146e-05 3.440846e-06 122 86 1.722429e-05 -2.779647e-06 123 86 -1.326172e-05 2.14017e-06 124 86 9.401297e-06 -1.517176e-06 125 86 -5.612495e-06 9.057414e-07 126 86 1.866144e-06 -3.011573e-07 127 86 1.866144e-06 -3.011573e-07 128 86 -5.612495e-06 9.057414e-07 129 86 9.401297e-06 -1.517176e-06 130 86 -1.326172e-05 2.14017e-06 131 86 1.722429e-05 -2.779647e-06 132 86 -2.132146e-05 3.440846e-06 133 86 2.558831e-05 -4.129428e-06 134 86 -3.00633e-05 4.851599e-06 135 86 3.478917e-05 -5.614257e-06 136 86 -3.981401e-05 6.425164e-06 137 86 4.519256e-05 -7.293151e-06 138 86 -5.098776e-05 8.228377e-06 139 86 5.727273e-05 -9.242642e-06 140 86 -6.413319e-05 1.034978e-05 141 86 7.167061e-05 -1.156616e-05 142 86 -8.000611e-05 1.291134e-05 143 86 8.928565e-05 -1.440887e-05 144 86 -9.968672e-05 1.608739e-05 145 86 0.0001114272 -1.798207e-05 146 86 -0.0001247774 2.013652e-05 147 86 0.000140076 -2.26054e-05 148 86 -0.0001577525 2.545802e-05 149 86 0.0001783582 -2.878335e-05 150 86 -0.0002026106 3.26972e-05 151 86 0.0002314578 -3.735254e-05 152 86 -0.0002661734 4.295492e-05 153 86 0.0003085011 -4.978574e-05 154 86 -0.0003608797 5.823857e-05 155 86 0.0004268045 -6.887749e-05 156 86 -0.0005114288 8.253411e-05 157 86 0.0006226054 -0.0001004757 158 86 -0.0007727812 0.000124711 159 86 0.0009826448 -0.0001585787 160 86 -0.001288661 0.0002079635 161 86 0.001760065 -0.0002840383 167 86 0.0001967347 9.378277e-06 6 87 0.0002099716 1.049065e-05 81 87 0.001760065 -0.0002840383 82 87 -0.002541777 0.0004101906 83 87 0.003980742 -0.0006424099 84 87 -0.007089509 0.001144101 85 87 0.01597157 -0.002577484 86 87 -0.06393453 0.01031772 87 87 0.6061013 -0.08799666 88 87 -0.06393453 0.01031772 89 87 0.01597157 -0.002577484 90 87 -0.007089509 0.001144101 91 87 0.003980742 -0.0006424099 92 87 -0.002541777 0.0004101906 93 87 0.001760065 -0.0002840383 94 87 -0.001288661 0.0002079635 95 87 0.0009826448 -0.0001585787 96 87 -0.0007727812 0.000124711 97 87 0.0006226054 -0.0001004757 98 87 -0.0005114288 8.253411e-05 99 87 0.0004268045 -6.887749e-05 100 87 -0.0003608797 5.823857e-05 101 87 0.0003085011 -4.978574e-05 102 87 -0.0002661734 4.295492e-05 103 87 0.0002314578 -3.735254e-05 104 87 -0.0002026106 3.26972e-05 105 87 0.0001783582 -2.878335e-05 106 87 -0.0001577525 2.545802e-05 107 87 0.000140076 -2.26054e-05 108 87 -0.0001247774 2.013652e-05 109 87 0.0001114272 -1.798207e-05 110 87 -9.968672e-05 1.608739e-05 111 87 8.928565e-05 -1.440887e-05 112 87 -8.000611e-05 1.291134e-05 113 87 7.167061e-05 -1.156616e-05 114 87 -6.413319e-05 1.034978e-05 115 87 5.727273e-05 -9.242642e-06 116 87 -5.098776e-05 8.228377e-06 117 87 4.519256e-05 -7.293151e-06 118 87 -3.981401e-05 6.425164e-06 119 87 3.478917e-05 -5.614257e-06 120 87 -3.00633e-05 4.851599e-06 121 87 2.558831e-05 -4.129428e-06 122 87 -2.132146e-05 3.440846e-06 123 87 1.722429e-05 -2.779647e-06 124 87 -1.326172e-05 2.14017e-06 125 87 9.401297e-06 -1.517176e-06 126 87 -5.612495e-06 9.057414e-07 127 87 1.866144e-06 -3.011573e-07 128 87 1.866144e-06 -3.011573e-07 129 87 -5.612495e-06 9.057414e-07 130 87 9.401297e-06 -1.517176e-06 131 87 -1.326172e-05 2.14017e-06 132 87 1.722429e-05 -2.779647e-06 133 87 -2.132146e-05 3.440846e-06 134 87 2.558831e-05 -4.129428e-06 135 87 -3.00633e-05 4.851599e-06 136 87 3.478917e-05 -5.614257e-06 137 87 -3.981401e-05 6.425164e-06 138 87 4.519256e-05 -7.293151e-06 139 87 -5.098776e-05 8.228377e-06 140 87 5.727273e-05 -9.242642e-06 141 87 -6.413319e-05 1.034978e-05 142 87 7.167061e-05 -1.156616e-05 143 87 -8.000611e-05 1.291134e-05 144 87 8.928565e-05 -1.440887e-05 145 87 -9.968672e-05 1.608739e-05 146 87 0.0001114272 -1.798207e-05 147 87 -0.0001247774 2.013652e-05 148 87 0.000140076 -2.26054e-05 149 87 -0.0001577525 2.545802e-05 150 87 0.0001783582 -2.878335e-05 151 87 -0.0002026106 3.26972e-05 152 87 0.0002314578 -3.735254e-05 153 87 -0.0002661734 4.295492e-05 154 87 0.0003085011 -4.978574e-05 155 87 -0.0003608797 5.823857e-05 156 87 0.0004268045 -6.887749e-05 157 87 -0.0005114288 8.253411e-05 158 87 0.0006226054 -0.0001004757 159 87 -0.0007727812 0.000124711 160 87 0.0009826448 -0.0001585787 161 87 -0.001288661 0.0002079635 168 87 0.0002099716 1.049065e-05 7 88 0.000223276 1.161419e-05 81 88 -0.001288661 0.0002079635 82 88 0.001760065 -0.0002840383 83 88 -0.002541777 0.0004101906 84 88 0.003980742 -0.0006424099 85 88 -0.007089509 0.001144101 86 88 0.01597157 -0.002577484 87 88 -0.06393453 0.01031772 88 88 0.5222387 -0.08440152 89 88 -0.06393453 0.01031772 90 88 0.01597157 -0.002577484 91 88 -0.007089509 0.001144101 92 88 0.003980742 -0.0006424099 93 88 -0.002541777 0.0004101906 94 88 0.001760065 -0.0002840383 95 88 -0.001288661 0.0002079635 96 88 0.0009826448 -0.0001585787 97 88 -0.0007727812 0.000124711 98 88 0.0006226054 -0.0001004757 99 88 -0.0005114288 8.253411e-05 100 88 0.0004268045 -6.887749e-05 101 88 -0.0003608797 5.823857e-05 102 88 0.0003085011 -4.978574e-05 103 88 -0.0002661734 4.295492e-05 104 88 0.0002314578 -3.735254e-05 105 88 -0.0002026106 3.26972e-05 106 88 0.0001783582 -2.878335e-05 107 88 -0.0001577525 2.545802e-05 108 88 0.000140076 -2.26054e-05 109 88 -0.0001247774 2.013652e-05 110 88 0.0001114272 -1.798207e-05 111 88 -9.968672e-05 1.608739e-05 112 88 8.928565e-05 -1.440887e-05 113 88 -8.000611e-05 1.291134e-05 114 88 7.167061e-05 -1.156616e-05 115 88 -6.413319e-05 1.034978e-05 116 88 5.727273e-05 -9.242642e-06 117 88 -5.098776e-05 8.228377e-06 118 88 4.519256e-05 -7.293151e-06 119 88 -3.981401e-05 6.425164e-06 120 88 3.478917e-05 -5.614257e-06 121 88 -3.00633e-05 4.851599e-06 122 88 2.558831e-05 -4.129428e-06 123 88 -2.132146e-05 3.440846e-06 124 88 1.722429e-05 -2.779647e-06 125 88 -1.326172e-05 2.14017e-06 126 88 9.401297e-06 -1.517176e-06 127 88 -5.612495e-06 9.057414e-07 128 88 1.866144e-06 -3.011573e-07 129 88 1.866144e-06 -3.011573e-07 130 88 -5.612495e-06 9.057414e-07 131 88 9.401297e-06 -1.517176e-06 132 88 -1.326172e-05 2.14017e-06 133 88 1.722429e-05 -2.779647e-06 134 88 -2.132146e-05 3.440846e-06 135 88 2.558831e-05 -4.129428e-06 136 88 -3.00633e-05 4.851599e-06 137 88 3.478917e-05 -5.614257e-06 138 88 -3.981401e-05 6.425164e-06 139 88 4.519256e-05 -7.293151e-06 140 88 -5.098776e-05 8.228377e-06 141 88 5.727273e-05 -9.242642e-06 142 88 -6.413319e-05 1.034978e-05 143 88 7.167061e-05 -1.156616e-05 144 88 -8.000611e-05 1.291134e-05 145 88 8.928565e-05 -1.440887e-05 146 88 -9.968672e-05 1.608739e-05 147 88 0.0001114272 -1.798207e-05 148 88 -0.0001247774 2.013652e-05 149 88 0.000140076 -2.26054e-05 150 88 -0.0001577525 2.545802e-05 151 88 0.0001783582 -2.878335e-05 152 88 -0.0002026106 3.26972e-05 153 88 0.0002314578 -3.735254e-05 154 88 -0.0002661734 4.295492e-05 155 88 0.0003085011 -4.978574e-05 156 88 -0.0003608797 5.823857e-05 157 88 0.0004268045 -6.887749e-05 158 88 -0.0005114288 8.253411e-05 159 88 0.0006226054 -0.0001004757 160 88 -0.0007727812 0.000124711 161 88 0.0009826448 -0.0001585787 169 88 0.000223276 1.161419e-05 8 89 0.0002366482 1.274898e-05 81 89 0.0009826448 -0.0001585787 82 89 -0.001288661 0.0002079635 83 89 0.001760065 -0.0002840383 84 89 -0.002541777 0.0004101906 85 89 0.003980742 -0.0006424099 86 89 -0.007089509 0.001144101 87 89 0.01597157 -0.002577484 88 89 -0.06393453 0.01031772 89 89 0.4498925 -0.08057775 90 89 -0.06393453 0.01031772 91 89 0.01597157 -0.002577484 92 89 -0.007089509 0.001144101 93 89 0.003980742 -0.0006424099 94 89 -0.002541777 0.0004101906 95 89 0.001760065 -0.0002840383 96 89 -0.001288661 0.0002079635 97 89 0.0009826448 -0.0001585787 98 89 -0.0007727812 0.000124711 99 89 0.0006226054 -0.0001004757 100 89 -0.0005114288 8.253411e-05 101 89 0.0004268045 -6.887749e-05 102 89 -0.0003608797 5.823857e-05 103 89 0.0003085011 -4.978574e-05 104 89 -0.0002661734 4.295492e-05 105 89 0.0002314578 -3.735254e-05 106 89 -0.0002026106 3.26972e-05 107 89 0.0001783582 -2.878335e-05 108 89 -0.0001577525 2.545802e-05 109 89 0.000140076 -2.26054e-05 110 89 -0.0001247774 2.013652e-05 111 89 0.0001114272 -1.798207e-05 112 89 -9.968672e-05 1.608739e-05 113 89 8.928565e-05 -1.440887e-05 114 89 -8.000611e-05 1.291134e-05 115 89 7.167061e-05 -1.156616e-05 116 89 -6.413319e-05 1.034978e-05 117 89 5.727273e-05 -9.242642e-06 118 89 -5.098776e-05 8.228377e-06 119 89 4.519256e-05 -7.293151e-06 120 89 -3.981401e-05 6.425164e-06 121 89 3.478917e-05 -5.614257e-06 122 89 -3.00633e-05 4.851599e-06 123 89 2.558831e-05 -4.129428e-06 124 89 -2.132146e-05 3.440846e-06 125 89 1.722429e-05 -2.779647e-06 126 89 -1.326172e-05 2.14017e-06 127 89 9.401297e-06 -1.517176e-06 128 89 -5.612495e-06 9.057414e-07 129 89 1.866144e-06 -3.011573e-07 130 89 1.866144e-06 -3.011573e-07 131 89 -5.612495e-06 9.057414e-07 132 89 9.401297e-06 -1.517176e-06 133 89 -1.326172e-05 2.14017e-06 134 89 1.722429e-05 -2.779647e-06 135 89 -2.132146e-05 3.440846e-06 136 89 2.558831e-05 -4.129428e-06 137 89 -3.00633e-05 4.851599e-06 138 89 3.478917e-05 -5.614257e-06 139 89 -3.981401e-05 6.425164e-06 140 89 4.519256e-05 -7.293151e-06 141 89 -5.098776e-05 8.228377e-06 142 89 5.727273e-05 -9.242642e-06 143 89 -6.413319e-05 1.034978e-05 144 89 7.167061e-05 -1.156616e-05 145 89 -8.000611e-05 1.291134e-05 146 89 8.928565e-05 -1.440887e-05 147 89 -9.968672e-05 1.608739e-05 148 89 0.0001114272 -1.798207e-05 149 89 -0.0001247774 2.013652e-05 150 89 0.000140076 -2.26054e-05 151 89 -0.0001577525 2.545802e-05 152 89 0.0001783582 -2.878335e-05 153 89 -0.0002026106 3.26972e-05 154 89 0.0002314578 -3.735254e-05 155 89 -0.0002661734 4.295492e-05 156 89 0.0003085011 -4.978574e-05 157 89 -0.0003608797 5.823857e-05 158 89 0.0004268045 -6.887749e-05 159 89 -0.0005114288 8.253411e-05 160 89 0.0006226054 -0.0001004757 161 89 -0.0007727812 0.000124711 170 89 0.0002366482 1.274898e-05 9 90 0.0002500884 1.38951e-05 81 90 -0.0007727812 0.000124711 82 90 0.0009826448 -0.0001585787 83 90 -0.001288661 0.0002079635 84 90 0.001760065 -0.0002840383 85 90 -0.002541777 0.0004101906 86 90 0.003980742 -0.0006424099 87 90 -0.007089509 0.001144101 88 90 0.01597157 -0.002577484 89 90 -0.06393453 0.01031772 90 90 0.3873543 -0.07667025 91 90 -0.06393453 0.01031772 92 90 0.01597157 -0.002577484 93 90 -0.007089509 0.001144101 94 90 0.003980742 -0.0006424099 95 90 -0.002541777 0.0004101906 96 90 0.001760065 -0.0002840383 97 90 -0.001288661 0.0002079635 98 90 0.0009826448 -0.0001585787 99 90 -0.0007727812 0.000124711 100 90 0.0006226054 -0.0001004757 101 90 -0.0005114288 8.253411e-05 102 90 0.0004268045 -6.887749e-05 103 90 -0.0003608797 5.823857e-05 104 90 0.0003085011 -4.978574e-05 105 90 -0.0002661734 4.295492e-05 106 90 0.0002314578 -3.735254e-05 107 90 -0.0002026106 3.26972e-05 108 90 0.0001783582 -2.878335e-05 109 90 -0.0001577525 2.545802e-05 110 90 0.000140076 -2.26054e-05 111 90 -0.0001247774 2.013652e-05 112 90 0.0001114272 -1.798207e-05 113 90 -9.968672e-05 1.608739e-05 114 90 8.928565e-05 -1.440887e-05 115 90 -8.000611e-05 1.291134e-05 116 90 7.167061e-05 -1.156616e-05 117 90 -6.413319e-05 1.034978e-05 118 90 5.727273e-05 -9.242642e-06 119 90 -5.098776e-05 8.228377e-06 120 90 4.519256e-05 -7.293151e-06 121 90 -3.981401e-05 6.425164e-06 122 90 3.478917e-05 -5.614257e-06 123 90 -3.00633e-05 4.851599e-06 124 90 2.558831e-05 -4.129428e-06 125 90 -2.132146e-05 3.440846e-06 126 90 1.722429e-05 -2.779647e-06 127 90 -1.326172e-05 2.14017e-06 128 90 9.401297e-06 -1.517176e-06 129 90 -5.612495e-06 9.057414e-07 130 90 1.866144e-06 -3.011573e-07 131 90 1.866144e-06 -3.011573e-07 132 90 -5.612495e-06 9.057414e-07 133 90 9.401297e-06 -1.517176e-06 134 90 -1.326172e-05 2.14017e-06 135 90 1.722429e-05 -2.779647e-06 136 90 -2.132146e-05 3.440846e-06 137 90 2.558831e-05 -4.129428e-06 138 90 -3.00633e-05 4.851599e-06 139 90 3.478917e-05 -5.614257e-06 140 90 -3.981401e-05 6.425164e-06 141 90 4.519256e-05 -7.293151e-06 142 90 -5.098776e-05 8.228377e-06 143 90 5.727273e-05 -9.242642e-06 144 90 -6.413319e-05 1.034978e-05 145 90 7.167061e-05 -1.156616e-05 146 90 -8.000611e-05 1.291134e-05 147 90 8.928565e-05 -1.440887e-05 148 90 -9.968672e-05 1.608739e-05 149 90 0.0001114272 -1.798207e-05 150 90 -0.0001247774 2.013652e-05 151 90 0.000140076 -2.26054e-05 152 90 -0.0001577525 2.545802e-05 153 90 0.0001783582 -2.878335e-05 154 90 -0.0002026106 3.26972e-05 155 90 0.0002314578 -3.735254e-05 156 90 -0.0002661734 4.295492e-05 157 90 0.0003085011 -4.978574e-05 158 90 -0.0003608797 5.823857e-05 159 90 0.0004268045 -6.887749e-05 160 90 -0.0005114288 8.253411e-05 161 90 0.0006226054 -0.0001004757 171 90 0.0002500884 1.38951e-05 10 91 0.0002635972 1.505265e-05 81 91 0.0006226054 -0.0001004757 82 91 -0.0007727812 0.000124711 83 91 0.0009826448 -0.0001585787 84 91 -0.001288661 0.0002079635 85 91 0.001760065 -0.0002840383 86 91 -0.002541777 0.0004101906 87 91 0.003980742 -0.0006424099 88 91 -0.007089509 0.001144101 89 91 0.01597157 -0.002577484 90 91 -0.06393453 0.01031772 91 91 0.3331826 -0.07278305 92 91 -0.06393453 0.01031772 93 91 0.01597157 -0.002577484 94 91 -0.007089509 0.001144101 95 91 0.003980742 -0.0006424099 96 91 -0.002541777 0.0004101906 97 91 0.001760065 -0.0002840383 98 91 -0.001288661 0.0002079635 99 91 0.0009826448 -0.0001585787 100 91 -0.0007727812 0.000124711 101 91 0.0006226054 -0.0001004757 102 91 -0.0005114288 8.253411e-05 103 91 0.0004268045 -6.887749e-05 104 91 -0.0003608797 5.823857e-05 105 91 0.0003085011 -4.978574e-05 106 91 -0.0002661734 4.295492e-05 107 91 0.0002314578 -3.735254e-05 108 91 -0.0002026106 3.26972e-05 109 91 0.0001783582 -2.878335e-05 110 91 -0.0001577525 2.545802e-05 111 91 0.000140076 -2.26054e-05 112 91 -0.0001247774 2.013652e-05 113 91 0.0001114272 -1.798207e-05 114 91 -9.968672e-05 1.608739e-05 115 91 8.928565e-05 -1.440887e-05 116 91 -8.000611e-05 1.291134e-05 117 91 7.167061e-05 -1.156616e-05 118 91 -6.413319e-05 1.034978e-05 119 91 5.727273e-05 -9.242642e-06 120 91 -5.098776e-05 8.228377e-06 121 91 4.519256e-05 -7.293151e-06 122 91 -3.981401e-05 6.425164e-06 123 91 3.478917e-05 -5.614257e-06 124 91 -3.00633e-05 4.851599e-06 125 91 2.558831e-05 -4.129428e-06 126 91 -2.132146e-05 3.440846e-06 127 91 1.722429e-05 -2.779647e-06 128 91 -1.326172e-05 2.14017e-06 129 91 9.401297e-06 -1.517176e-06 130 91 -5.612495e-06 9.057414e-07 131 91 1.866144e-06 -3.011573e-07 132 91 1.866144e-06 -3.011573e-07 133 91 -5.612495e-06 9.057414e-07 134 91 9.401297e-06 -1.517176e-06 135 91 -1.326172e-05 2.14017e-06 136 91 1.722429e-05 -2.779647e-06 137 91 -2.132146e-05 3.440846e-06 138 91 2.558831e-05 -4.129428e-06 139 91 -3.00633e-05 4.851599e-06 140 91 3.478917e-05 -5.614257e-06 141 91 -3.981401e-05 6.425164e-06 142 91 4.519256e-05 -7.293151e-06 143 91 -5.098776e-05 8.228377e-06 144 91 5.727273e-05 -9.242642e-06 145 91 -6.413319e-05 1.034978e-05 146 91 7.167061e-05 -1.156616e-05 147 91 -8.000611e-05 1.291134e-05 148 91 8.928565e-05 -1.440887e-05 149 91 -9.968672e-05 1.608739e-05 150 91 0.0001114272 -1.798207e-05 151 91 -0.0001247774 2.013652e-05 152 91 0.000140076 -2.26054e-05 153 91 -0.0001577525 2.545802e-05 154 91 0.0001783582 -2.878335e-05 155 91 -0.0002026106 3.26972e-05 156 91 0.0002314578 -3.735254e-05 157 91 -0.0002661734 4.295492e-05 158 91 0.0003085011 -4.978574e-05 159 91 -0.0003608797 5.823857e-05 160 91 0.0004268045 -6.887749e-05 161 91 -0.0005114288 8.253411e-05 172 91 0.0002635972 1.505265e-05 11 92 0.0002771748 1.62217e-05 81 92 -0.0005114288 8.253411e-05 82 92 0.0006226054 -0.0001004757 83 92 -0.0007727812 0.000124711 84 92 0.0009826448 -0.0001585787 85 92 -0.001288661 0.0002079635 86 92 0.001760065 -0.0002840383 87 92 -0.002541777 0.0004101906 88 92 0.003980742 -0.0006424099 89 92 -0.007089509 0.001144101 90 92 0.01597157 -0.002577484 91 92 -0.06393453 0.01031772 92 92 0.28616 -0.06898902 93 92 -0.06393453 0.01031772 94 92 0.01597157 -0.002577484 95 92 -0.007089509 0.001144101 96 92 0.003980742 -0.0006424099 97 92 -0.002541777 0.0004101906 98 92 0.001760065 -0.0002840383 99 92 -0.001288661 0.0002079635 100 92 0.0009826448 -0.0001585787 101 92 -0.0007727812 0.000124711 102 92 0.0006226054 -0.0001004757 103 92 -0.0005114288 8.253411e-05 104 92 0.0004268045 -6.887749e-05 105 92 -0.0003608797 5.823857e-05 106 92 0.0003085011 -4.978574e-05 107 92 -0.0002661734 4.295492e-05 108 92 0.0002314578 -3.735254e-05 109 92 -0.0002026106 3.26972e-05 110 92 0.0001783582 -2.878335e-05 111 92 -0.0001577525 2.545802e-05 112 92 0.000140076 -2.26054e-05 113 92 -0.0001247774 2.013652e-05 114 92 0.0001114272 -1.798207e-05 115 92 -9.968672e-05 1.608739e-05 116 92 8.928565e-05 -1.440887e-05 117 92 -8.000611e-05 1.291134e-05 118 92 7.167061e-05 -1.156616e-05 119 92 -6.413319e-05 1.034978e-05 120 92 5.727273e-05 -9.242642e-06 121 92 -5.098776e-05 8.228377e-06 122 92 4.519256e-05 -7.293151e-06 123 92 -3.981401e-05 6.425164e-06 124 92 3.478917e-05 -5.614257e-06 125 92 -3.00633e-05 4.851599e-06 126 92 2.558831e-05 -4.129428e-06 127 92 -2.132146e-05 3.440846e-06 128 92 1.722429e-05 -2.779647e-06 129 92 -1.326172e-05 2.14017e-06 130 92 9.401297e-06 -1.517176e-06 131 92 -5.612495e-06 9.057414e-07 132 92 1.866144e-06 -3.011573e-07 133 92 1.866144e-06 -3.011573e-07 134 92 -5.612495e-06 9.057414e-07 135 92 9.401297e-06 -1.517176e-06 136 92 -1.326172e-05 2.14017e-06 137 92 1.722429e-05 -2.779647e-06 138 92 -2.132146e-05 3.440846e-06 139 92 2.558831e-05 -4.129428e-06 140 92 -3.00633e-05 4.851599e-06 141 92 3.478917e-05 -5.614257e-06 142 92 -3.981401e-05 6.425164e-06 143 92 4.519256e-05 -7.293151e-06 144 92 -5.098776e-05 8.228377e-06 145 92 5.727273e-05 -9.242642e-06 146 92 -6.413319e-05 1.034978e-05 147 92 7.167061e-05 -1.156616e-05 148 92 -8.000611e-05 1.291134e-05 149 92 8.928565e-05 -1.440887e-05 150 92 -9.968672e-05 1.608739e-05 151 92 0.0001114272 -1.798207e-05 152 92 -0.0001247774 2.013652e-05 153 92 0.000140076 -2.26054e-05 154 92 -0.0001577525 2.545802e-05 155 92 0.0001783582 -2.878335e-05 156 92 -0.0002026106 3.26972e-05 157 92 0.0002314578 -3.735254e-05 158 92 -0.0002661734 4.295492e-05 159 92 0.0003085011 -4.978574e-05 160 92 -0.0003608797 5.823857e-05 161 92 0.0004268045 -6.887749e-05 173 92 0.0002771748 1.62217e-05 12 93 0.0002908216 1.740235e-05 81 93 0.0004268045 -6.887749e-05 82 93 -0.0005114288 8.253411e-05 83 93 0.0006226054 -0.0001004757 84 93 -0.0007727812 0.000124711 85 93 0.0009826448 -0.0001585787 86 93 -0.001288661 0.0002079635 87 93 0.001760065 -0.0002840383 88 93 -0.002541777 0.0004101906 89 93 0.003980742 -0.0006424099 90 93 -0.007089509 0.001144101 91 93 0.01597157 -0.002577484 92 93 -0.06393453 0.01031772 93 93 0.2452569 -0.06533737 94 93 -0.06393453 0.01031772 95 93 0.01597157 -0.002577484 96 93 -0.007089509 0.001144101 97 93 0.003980742 -0.0006424099 98 93 -0.002541777 0.0004101906 99 93 0.001760065 -0.0002840383 100 93 -0.001288661 0.0002079635 101 93 0.0009826448 -0.0001585787 102 93 -0.0007727812 0.000124711 103 93 0.0006226054 -0.0001004757 104 93 -0.0005114288 8.253411e-05 105 93 0.0004268045 -6.887749e-05 106 93 -0.0003608797 5.823857e-05 107 93 0.0003085011 -4.978574e-05 108 93 -0.0002661734 4.295492e-05 109 93 0.0002314578 -3.735254e-05 110 93 -0.0002026106 3.26972e-05 111 93 0.0001783582 -2.878335e-05 112 93 -0.0001577525 2.545802e-05 113 93 0.000140076 -2.26054e-05 114 93 -0.0001247774 2.013652e-05 115 93 0.0001114272 -1.798207e-05 116 93 -9.968672e-05 1.608739e-05 117 93 8.928565e-05 -1.440887e-05 118 93 -8.000611e-05 1.291134e-05 119 93 7.167061e-05 -1.156616e-05 120 93 -6.413319e-05 1.034978e-05 121 93 5.727273e-05 -9.242642e-06 122 93 -5.098776e-05 8.228377e-06 123 93 4.519256e-05 -7.293151e-06 124 93 -3.981401e-05 6.425164e-06 125 93 3.478917e-05 -5.614257e-06 126 93 -3.00633e-05 4.851599e-06 127 93 2.558831e-05 -4.129428e-06 128 93 -2.132146e-05 3.440846e-06 129 93 1.722429e-05 -2.779647e-06 130 93 -1.326172e-05 2.14017e-06 131 93 9.401297e-06 -1.517176e-06 132 93 -5.612495e-06 9.057414e-07 133 93 1.866144e-06 -3.011573e-07 134 93 1.866144e-06 -3.011573e-07 135 93 -5.612495e-06 9.057414e-07 136 93 9.401297e-06 -1.517176e-06 137 93 -1.326172e-05 2.14017e-06 138 93 1.722429e-05 -2.779647e-06 139 93 -2.132146e-05 3.440846e-06 140 93 2.558831e-05 -4.129428e-06 141 93 -3.00633e-05 4.851599e-06 142 93 3.478917e-05 -5.614257e-06 143 93 -3.981401e-05 6.425164e-06 144 93 4.519256e-05 -7.293151e-06 145 93 -5.098776e-05 8.228377e-06 146 93 5.727273e-05 -9.242642e-06 147 93 -6.413319e-05 1.034978e-05 148 93 7.167061e-05 -1.156616e-05 149 93 -8.000611e-05 1.291134e-05 150 93 8.928565e-05 -1.440887e-05 151 93 -9.968672e-05 1.608739e-05 152 93 0.0001114272 -1.798207e-05 153 93 -0.0001247774 2.013652e-05 154 93 0.000140076 -2.26054e-05 155 93 -0.0001577525 2.545802e-05 156 93 0.0001783582 -2.878335e-05 157 93 -0.0002026106 3.26972e-05 158 93 0.0002314578 -3.735254e-05 159 93 -0.0002661734 4.295492e-05 160 93 0.0003085011 -4.978574e-05 161 93 -0.0003608797 5.823857e-05 174 93 0.0002908216 1.740235e-05 13 94 0.0003045378 1.859469e-05 81 94 -0.0003608797 5.823857e-05 82 94 0.0004268045 -6.887749e-05 83 94 -0.0005114288 8.253411e-05 84 94 0.0006226054 -0.0001004757 85 94 -0.0007727812 0.000124711 86 94 0.0009826448 -0.0001585787 87 94 -0.001288661 0.0002079635 88 94 0.001760065 -0.0002840383 89 94 -0.002541777 0.0004101906 90 94 0.003980742 -0.0006424099 91 94 -0.007089509 0.001144101 92 94 0.01597157 -0.002577484 93 94 -0.06393453 0.01031772 94 94 0.2096016 -0.06185955 95 94 -0.06393453 0.01031772 96 94 0.01597157 -0.002577484 97 94 -0.007089509 0.001144101 98 94 0.003980742 -0.0006424099 99 94 -0.002541777 0.0004101906 100 94 0.001760065 -0.0002840383 101 94 -0.001288661 0.0002079635 102 94 0.0009826448 -0.0001585787 103 94 -0.0007727812 0.000124711 104 94 0.0006226054 -0.0001004757 105 94 -0.0005114288 8.253411e-05 106 94 0.0004268045 -6.887749e-05 107 94 -0.0003608797 5.823857e-05 108 94 0.0003085011 -4.978574e-05 109 94 -0.0002661734 4.295492e-05 110 94 0.0002314578 -3.735254e-05 111 94 -0.0002026106 3.26972e-05 112 94 0.0001783582 -2.878335e-05 113 94 -0.0001577525 2.545802e-05 114 94 0.000140076 -2.26054e-05 115 94 -0.0001247774 2.013652e-05 116 94 0.0001114272 -1.798207e-05 117 94 -9.968672e-05 1.608739e-05 118 94 8.928565e-05 -1.440887e-05 119 94 -8.000611e-05 1.291134e-05 120 94 7.167061e-05 -1.156616e-05 121 94 -6.413319e-05 1.034978e-05 122 94 5.727273e-05 -9.242642e-06 123 94 -5.098776e-05 8.228377e-06 124 94 4.519256e-05 -7.293151e-06 125 94 -3.981401e-05 6.425164e-06 126 94 3.478917e-05 -5.614257e-06 127 94 -3.00633e-05 4.851599e-06 128 94 2.558831e-05 -4.129428e-06 129 94 -2.132146e-05 3.440846e-06 130 94 1.722429e-05 -2.779647e-06 131 94 -1.326172e-05 2.14017e-06 132 94 9.401297e-06 -1.517176e-06 133 94 -5.612495e-06 9.057414e-07 134 94 1.866144e-06 -3.011573e-07 135 94 1.866144e-06 -3.011573e-07 136 94 -5.612495e-06 9.057414e-07 137 94 9.401297e-06 -1.517176e-06 138 94 -1.326172e-05 2.14017e-06 139 94 1.722429e-05 -2.779647e-06 140 94 -2.132146e-05 3.440846e-06 141 94 2.558831e-05 -4.129428e-06 142 94 -3.00633e-05 4.851599e-06 143 94 3.478917e-05 -5.614257e-06 144 94 -3.981401e-05 6.425164e-06 145 94 4.519256e-05 -7.293151e-06 146 94 -5.098776e-05 8.228377e-06 147 94 5.727273e-05 -9.242642e-06 148 94 -6.413319e-05 1.034978e-05 149 94 7.167061e-05 -1.156616e-05 150 94 -8.000611e-05 1.291134e-05 151 94 8.928565e-05 -1.440887e-05 152 94 -9.968672e-05 1.608739e-05 153 94 0.0001114272 -1.798207e-05 154 94 -0.0001247774 2.013652e-05 155 94 0.000140076 -2.26054e-05 156 94 -0.0001577525 2.545802e-05 157 94 0.0001783582 -2.878335e-05 158 94 -0.0002026106 3.26972e-05 159 94 0.0002314578 -3.735254e-05 160 94 -0.0002661734 4.295492e-05 161 94 0.0003085011 -4.978574e-05 175 94 0.0003045378 1.859469e-05 14 95 0.000318324 1.979879e-05 81 95 0.0003085011 -4.978574e-05 82 95 -0.0003608797 5.823857e-05 83 95 0.0004268045 -6.887749e-05 84 95 -0.0005114288 8.253411e-05 85 95 0.0006226054 -0.0001004757 86 95 -0.0007727812 0.000124711 87 95 0.0009826448 -0.0001585787 88 95 -0.001288661 0.0002079635 89 95 0.001760065 -0.0002840383 90 95 -0.002541777 0.0004101906 91 95 0.003980742 -0.0006424099 92 95 -0.007089509 0.001144101 93 95 0.01597157 -0.002577484 94 95 -0.06393453 0.01031772 95 95 0.1784553 -0.05857382 96 95 -0.06393453 0.01031772 97 95 0.01597157 -0.002577484 98 95 -0.007089509 0.001144101 99 95 0.003980742 -0.0006424099 100 95 -0.002541777 0.0004101906 101 95 0.001760065 -0.0002840383 102 95 -0.001288661 0.0002079635 103 95 0.0009826448 -0.0001585787 104 95 -0.0007727812 0.000124711 105 95 0.0006226054 -0.0001004757 106 95 -0.0005114288 8.253411e-05 107 95 0.0004268045 -6.887749e-05 108 95 -0.0003608797 5.823857e-05 109 95 0.0003085011 -4.978574e-05 110 95 -0.0002661734 4.295492e-05 111 95 0.0002314578 -3.735254e-05 112 95 -0.0002026106 3.26972e-05 113 95 0.0001783582 -2.878335e-05 114 95 -0.0001577525 2.545802e-05 115 95 0.000140076 -2.26054e-05 116 95 -0.0001247774 2.013652e-05 117 95 0.0001114272 -1.798207e-05 118 95 -9.968672e-05 1.608739e-05 119 95 8.928565e-05 -1.440887e-05 120 95 -8.000611e-05 1.291134e-05 121 95 7.167061e-05 -1.156616e-05 122 95 -6.413319e-05 1.034978e-05 123 95 5.727273e-05 -9.242642e-06 124 95 -5.098776e-05 8.228377e-06 125 95 4.519256e-05 -7.293151e-06 126 95 -3.981401e-05 6.425164e-06 127 95 3.478917e-05 -5.614257e-06 128 95 -3.00633e-05 4.851599e-06 129 95 2.558831e-05 -4.129428e-06 130 95 -2.132146e-05 3.440846e-06 131 95 1.722429e-05 -2.779647e-06 132 95 -1.326172e-05 2.14017e-06 133 95 9.401297e-06 -1.517176e-06 134 95 -5.612495e-06 9.057414e-07 135 95 1.866144e-06 -3.011573e-07 136 95 1.866144e-06 -3.011573e-07 137 95 -5.612495e-06 9.057414e-07 138 95 9.401297e-06 -1.517176e-06 139 95 -1.326172e-05 2.14017e-06 140 95 1.722429e-05 -2.779647e-06 141 95 -2.132146e-05 3.440846e-06 142 95 2.558831e-05 -4.129428e-06 143 95 -3.00633e-05 4.851599e-06 144 95 3.478917e-05 -5.614257e-06 145 95 -3.981401e-05 6.425164e-06 146 95 4.519256e-05 -7.293151e-06 147 95 -5.098776e-05 8.228377e-06 148 95 5.727273e-05 -9.242642e-06 149 95 -6.413319e-05 1.034978e-05 150 95 7.167061e-05 -1.156616e-05 151 95 -8.000611e-05 1.291134e-05 152 95 8.928565e-05 -1.440887e-05 153 95 -9.968672e-05 1.608739e-05 154 95 0.0001114272 -1.798207e-05 155 95 -0.0001247774 2.013652e-05 156 95 0.000140076 -2.26054e-05 157 95 -0.0001577525 2.545802e-05 158 95 0.0001783582 -2.878335e-05 159 95 -0.0002026106 3.26972e-05 160 95 0.0002314578 -3.735254e-05 161 95 -0.0002661734 4.295492e-05 176 95 0.000318324 1.979879e-05 15 96 0.0003321804 2.101476e-05 81 96 -0.0002661734 4.295492e-05 82 96 0.0003085011 -4.978574e-05 83 96 -0.0003608797 5.823857e-05 84 96 0.0004268045 -6.887749e-05 85 96 -0.0005114288 8.253411e-05 86 96 0.0006226054 -0.0001004757 87 96 -0.0007727812 0.000124711 88 96 0.0009826448 -0.0001585787 89 96 -0.001288661 0.0002079635 90 96 0.001760065 -0.0002840383 91 96 -0.002541777 0.0004101906 92 96 0.003980742 -0.0006424099 93 96 -0.007089509 0.001144101 94 96 0.01597157 -0.002577484 95 96 -0.06393453 0.01031772 96 96 0.1511906 -0.05548876 97 96 -0.06393453 0.01031772 98 96 0.01597157 -0.002577484 99 96 -0.007089509 0.001144101 100 96 0.003980742 -0.0006424099 101 96 -0.002541777 0.0004101906 102 96 0.001760065 -0.0002840383 103 96 -0.001288661 0.0002079635 104 96 0.0009826448 -0.0001585787 105 96 -0.0007727812 0.000124711 106 96 0.0006226054 -0.0001004757 107 96 -0.0005114288 8.253411e-05 108 96 0.0004268045 -6.887749e-05 109 96 -0.0003608797 5.823857e-05 110 96 0.0003085011 -4.978574e-05 111 96 -0.0002661734 4.295492e-05 112 96 0.0002314578 -3.735254e-05 113 96 -0.0002026106 3.26972e-05 114 96 0.0001783582 -2.878335e-05 115 96 -0.0001577525 2.545802e-05 116 96 0.000140076 -2.26054e-05 117 96 -0.0001247774 2.013652e-05 118 96 0.0001114272 -1.798207e-05 119 96 -9.968672e-05 1.608739e-05 120 96 8.928565e-05 -1.440887e-05 121 96 -8.000611e-05 1.291134e-05 122 96 7.167061e-05 -1.156616e-05 123 96 -6.413319e-05 1.034978e-05 124 96 5.727273e-05 -9.242642e-06 125 96 -5.098776e-05 8.228377e-06 126 96 4.519256e-05 -7.293151e-06 127 96 -3.981401e-05 6.425164e-06 128 96 3.478917e-05 -5.614257e-06 129 96 -3.00633e-05 4.851599e-06 130 96 2.558831e-05 -4.129428e-06 131 96 -2.132146e-05 3.440846e-06 132 96 1.722429e-05 -2.779647e-06 133 96 -1.326172e-05 2.14017e-06 134 96 9.401297e-06 -1.517176e-06 135 96 -5.612495e-06 9.057414e-07 136 96 1.866144e-06 -3.011573e-07 137 96 1.866144e-06 -3.011573e-07 138 96 -5.612495e-06 9.057414e-07 139 96 9.401297e-06 -1.517176e-06 140 96 -1.326172e-05 2.14017e-06 141 96 1.722429e-05 -2.779647e-06 142 96 -2.132146e-05 3.440846e-06 143 96 2.558831e-05 -4.129428e-06 144 96 -3.00633e-05 4.851599e-06 145 96 3.478917e-05 -5.614257e-06 146 96 -3.981401e-05 6.425164e-06 147 96 4.519256e-05 -7.293151e-06 148 96 -5.098776e-05 8.228377e-06 149 96 5.727273e-05 -9.242642e-06 150 96 -6.413319e-05 1.034978e-05 151 96 7.167061e-05 -1.156616e-05 152 96 -8.000611e-05 1.291134e-05 153 96 8.928565e-05 -1.440887e-05 154 96 -9.968672e-05 1.608739e-05 155 96 0.0001114272 -1.798207e-05 156 96 -0.0001247774 2.013652e-05 157 96 0.000140076 -2.26054e-05 158 96 -0.0001577525 2.545802e-05 159 96 0.0001783582 -2.878335e-05 160 96 -0.0002026106 3.26972e-05 161 96 0.0002314578 -3.735254e-05 177 96 0.0003321804 2.101476e-05 16 97 0.0003461073 2.224268e-05 81 97 0.0002314578 -3.735254e-05 82 97 -0.0002661734 4.295492e-05 83 97 0.0003085011 -4.978574e-05 84 97 -0.0003608797 5.823857e-05 85 97 0.0004268045 -6.887749e-05 86 97 -0.0005114288 8.253411e-05 87 97 0.0006226054 -0.0001004757 88 97 -0.0007727812 0.000124711 89 97 0.0009826448 -0.0001585787 90 97 -0.001288661 0.0002079635 91 97 0.001760065 -0.0002840383 92 97 -0.002541777 0.0004101906 93 97 0.003980742 -0.0006424099 94 97 -0.007089509 0.001144101 95 97 0.01597157 -0.002577484 96 97 -0.06393453 0.01031772 97 97 0.1272744 -0.052606 98 97 -0.06393453 0.01031772 99 97 0.01597157 -0.002577484 100 97 -0.007089509 0.001144101 101 97 0.003980742 -0.0006424099 102 97 -0.002541777 0.0004101906 103 97 0.001760065 -0.0002840383 104 97 -0.001288661 0.0002079635 105 97 0.0009826448 -0.0001585787 106 97 -0.0007727812 0.000124711 107 97 0.0006226054 -0.0001004757 108 97 -0.0005114288 8.253411e-05 109 97 0.0004268045 -6.887749e-05 110 97 -0.0003608797 5.823857e-05 111 97 0.0003085011 -4.978574e-05 112 97 -0.0002661734 4.295492e-05 113 97 0.0002314578 -3.735254e-05 114 97 -0.0002026106 3.26972e-05 115 97 0.0001783582 -2.878335e-05 116 97 -0.0001577525 2.545802e-05 117 97 0.000140076 -2.26054e-05 118 97 -0.0001247774 2.013652e-05 119 97 0.0001114272 -1.798207e-05 120 97 -9.968672e-05 1.608739e-05 121 97 8.928565e-05 -1.440887e-05 122 97 -8.000611e-05 1.291134e-05 123 97 7.167061e-05 -1.156616e-05 124 97 -6.413319e-05 1.034978e-05 125 97 5.727273e-05 -9.242642e-06 126 97 -5.098776e-05 8.228377e-06 127 97 4.519256e-05 -7.293151e-06 128 97 -3.981401e-05 6.425164e-06 129 97 3.478917e-05 -5.614257e-06 130 97 -3.00633e-05 4.851599e-06 131 97 2.558831e-05 -4.129428e-06 132 97 -2.132146e-05 3.440846e-06 133 97 1.722429e-05 -2.779647e-06 134 97 -1.326172e-05 2.14017e-06 135 97 9.401297e-06 -1.517176e-06 136 97 -5.612495e-06 9.057414e-07 137 97 1.866144e-06 -3.011573e-07 138 97 1.866144e-06 -3.011573e-07 139 97 -5.612495e-06 9.057414e-07 140 97 9.401297e-06 -1.517176e-06 141 97 -1.326172e-05 2.14017e-06 142 97 1.722429e-05 -2.779647e-06 143 97 -2.132146e-05 3.440846e-06 144 97 2.558831e-05 -4.129428e-06 145 97 -3.00633e-05 4.851599e-06 146 97 3.478917e-05 -5.614257e-06 147 97 -3.981401e-05 6.425164e-06 148 97 4.519256e-05 -7.293151e-06 149 97 -5.098776e-05 8.228377e-06 150 97 5.727273e-05 -9.242642e-06 151 97 -6.413319e-05 1.034978e-05 152 97 7.167061e-05 -1.156616e-05 153 97 -8.000611e-05 1.291134e-05 154 97 8.928565e-05 -1.440887e-05 155 97 -9.968672e-05 1.608739e-05 156 97 0.0001114272 -1.798207e-05 157 97 -0.0001247774 2.013652e-05 158 97 0.000140076 -2.26054e-05 159 97 -0.0001577525 2.545802e-05 160 97 0.0001783582 -2.878335e-05 161 97 -0.0002026106 3.26972e-05 178 97 0.0003461073 2.224268e-05 17 98 0.0003601052 2.348264e-05 81 98 -0.0002026106 3.26972e-05 82 98 0.0002314578 -3.735254e-05 83 98 -0.0002661734 4.295492e-05 84 98 0.0003085011 -4.978574e-05 85 98 -0.0003608797 5.823857e-05 86 98 0.0004268045 -6.887749e-05 87 98 -0.0005114288 8.253411e-05 88 98 0.0006226054 -0.0001004757 89 98 -0.0007727812 0.000124711 90 98 0.0009826448 -0.0001585787 91 98 -0.001288661 0.0002079635 92 98 0.001760065 -0.0002840383 93 98 -0.002541777 0.0004101906 94 98 0.003980742 -0.0006424099 95 98 -0.007089509 0.001144101 96 98 0.01597157 -0.002577484 97 98 -0.06393453 0.01031772 98 98 0.1062526 -0.04992224 99 98 -0.06393453 0.01031772 100 98 0.01597157 -0.002577484 101 98 -0.007089509 0.001144101 102 98 0.003980742 -0.0006424099 103 98 -0.002541777 0.0004101906 104 98 0.001760065 -0.0002840383 105 98 -0.001288661 0.0002079635 106 98 0.0009826448 -0.0001585787 107 98 -0.0007727812 0.000124711 108 98 0.0006226054 -0.0001004757 109 98 -0.0005114288 8.253411e-05 110 98 0.0004268045 -6.887749e-05 111 98 -0.0003608797 5.823857e-05 112 98 0.0003085011 -4.978574e-05 113 98 -0.0002661734 4.295492e-05 114 98 0.0002314578 -3.735254e-05 115 98 -0.0002026106 3.26972e-05 116 98 0.0001783582 -2.878335e-05 117 98 -0.0001577525 2.545802e-05 118 98 0.000140076 -2.26054e-05 119 98 -0.0001247774 2.013652e-05 120 98 0.0001114272 -1.798207e-05 121 98 -9.968672e-05 1.608739e-05 122 98 8.928565e-05 -1.440887e-05 123 98 -8.000611e-05 1.291134e-05 124 98 7.167061e-05 -1.156616e-05 125 98 -6.413319e-05 1.034978e-05 126 98 5.727273e-05 -9.242642e-06 127 98 -5.098776e-05 8.228377e-06 128 98 4.519256e-05 -7.293151e-06 129 98 -3.981401e-05 6.425164e-06 130 98 3.478917e-05 -5.614257e-06 131 98 -3.00633e-05 4.851599e-06 132 98 2.558831e-05 -4.129428e-06 133 98 -2.132146e-05 3.440846e-06 134 98 1.722429e-05 -2.779647e-06 135 98 -1.326172e-05 2.14017e-06 136 98 9.401297e-06 -1.517176e-06 137 98 -5.612495e-06 9.057414e-07 138 98 1.866144e-06 -3.011573e-07 139 98 1.866144e-06 -3.011573e-07 140 98 -5.612495e-06 9.057414e-07 141 98 9.401297e-06 -1.517176e-06 142 98 -1.326172e-05 2.14017e-06 143 98 1.722429e-05 -2.779647e-06 144 98 -2.132146e-05 3.440846e-06 145 98 2.558831e-05 -4.129428e-06 146 98 -3.00633e-05 4.851599e-06 147 98 3.478917e-05 -5.614257e-06 148 98 -3.981401e-05 6.425164e-06 149 98 4.519256e-05 -7.293151e-06 150 98 -5.098776e-05 8.228377e-06 151 98 5.727273e-05 -9.242642e-06 152 98 -6.413319e-05 1.034978e-05 153 98 7.167061e-05 -1.156616e-05 154 98 -8.000611e-05 1.291134e-05 155 98 8.928565e-05 -1.440887e-05 156 98 -9.968672e-05 1.608739e-05 157 98 0.0001114272 -1.798207e-05 158 98 -0.0001247774 2.013652e-05 159 98 0.000140076 -2.26054e-05 160 98 -0.0001577525 2.545802e-05 161 98 0.0001783582 -2.878335e-05 179 98 0.0003601052 2.348264e-05 18 99 0.0003741744 2.473473e-05 81 99 0.0001783582 -2.878335e-05 82 99 -0.0002026106 3.26972e-05 83 99 0.0002314578 -3.735254e-05 84 99 -0.0002661734 4.295492e-05 85 99 0.0003085011 -4.978574e-05 86 99 -0.0003608797 5.823857e-05 87 99 0.0004268045 -6.887749e-05 88 99 -0.0005114288 8.253411e-05 89 99 0.0006226054 -0.0001004757 90 99 -0.0007727812 0.000124711 91 99 0.0009826448 -0.0001585787 92 99 -0.001288661 0.0002079635 93 99 0.001760065 -0.0002840383 94 99 -0.002541777 0.0004101906 95 99 0.003980742 -0.0006424099 96 99 -0.007089509 0.001144101 97 99 0.01597157 -0.002577484 98 99 -0.06393453 0.01031772 99 99 0.08773809 -0.04743086 100 99 -0.06393453 0.01031772 101 99 0.01597157 -0.002577484 102 99 -0.007089509 0.001144101 103 99 0.003980742 -0.0006424099 104 99 -0.002541777 0.0004101906 105 99 0.001760065 -0.0002840383 106 99 -0.001288661 0.0002079635 107 99 0.0009826448 -0.0001585787 108 99 -0.0007727812 0.000124711 109 99 0.0006226054 -0.0001004757 110 99 -0.0005114288 8.253411e-05 111 99 0.0004268045 -6.887749e-05 112 99 -0.0003608797 5.823857e-05 113 99 0.0003085011 -4.978574e-05 114 99 -0.0002661734 4.295492e-05 115 99 0.0002314578 -3.735254e-05 116 99 -0.0002026106 3.26972e-05 117 99 0.0001783582 -2.878335e-05 118 99 -0.0001577525 2.545802e-05 119 99 0.000140076 -2.26054e-05 120 99 -0.0001247774 2.013652e-05 121 99 0.0001114272 -1.798207e-05 122 99 -9.968672e-05 1.608739e-05 123 99 8.928565e-05 -1.440887e-05 124 99 -8.000611e-05 1.291134e-05 125 99 7.167061e-05 -1.156616e-05 126 99 -6.413319e-05 1.034978e-05 127 99 5.727273e-05 -9.242642e-06 128 99 -5.098776e-05 8.228377e-06 129 99 4.519256e-05 -7.293151e-06 130 99 -3.981401e-05 6.425164e-06 131 99 3.478917e-05 -5.614257e-06 132 99 -3.00633e-05 4.851599e-06 133 99 2.558831e-05 -4.129428e-06 134 99 -2.132146e-05 3.440846e-06 135 99 1.722429e-05 -2.779647e-06 136 99 -1.326172e-05 2.14017e-06 137 99 9.401297e-06 -1.517176e-06 138 99 -5.612495e-06 9.057414e-07 139 99 1.866144e-06 -3.011573e-07 140 99 1.866144e-06 -3.011573e-07 141 99 -5.612495e-06 9.057414e-07 142 99 9.401297e-06 -1.517176e-06 143 99 -1.326172e-05 2.14017e-06 144 99 1.722429e-05 -2.779647e-06 145 99 -2.132146e-05 3.440846e-06 146 99 2.558831e-05 -4.129428e-06 147 99 -3.00633e-05 4.851599e-06 148 99 3.478917e-05 -5.614257e-06 149 99 -3.981401e-05 6.425164e-06 150 99 4.519256e-05 -7.293151e-06 151 99 -5.098776e-05 8.228377e-06 152 99 5.727273e-05 -9.242642e-06 153 99 -6.413319e-05 1.034978e-05 154 99 7.167061e-05 -1.156616e-05 155 99 -8.000611e-05 1.291134e-05 156 99 8.928565e-05 -1.440887e-05 157 99 -9.968672e-05 1.608739e-05 158 99 0.0001114272 -1.798207e-05 159 99 -0.0001247774 2.013652e-05 160 99 0.000140076 -2.26054e-05 161 99 -0.0001577525 2.545802e-05 180 99 0.0003741744 2.473473e-05 19 100 0.0003883153 2.599905e-05 81 100 -0.0001577525 2.545802e-05 82 100 0.0001783582 -2.878335e-05 83 100 -0.0002026106 3.26972e-05 84 100 0.0002314578 -3.735254e-05 85 100 -0.0002661734 4.295492e-05 86 100 0.0003085011 -4.978574e-05 87 100 -0.0003608797 5.823857e-05 88 100 0.0004268045 -6.887749e-05 89 100 -0.0005114288 8.253411e-05 90 100 0.0006226054 -0.0001004757 91 100 -0.0007727812 0.000124711 92 100 0.0009826448 -0.0001585787 93 100 -0.001288661 0.0002079635 94 100 0.001760065 -0.0002840383 95 100 -0.002541777 0.0004101906 96 100 0.003980742 -0.0006424099 97 100 -0.007089509 0.001144101 98 100 0.01597157 -0.002577484 99 100 -0.06393453 0.01031772 100 100 0.07140002 -0.04512305 101 100 -0.06393453 0.01031772 102 100 0.01597157 -0.002577484 103 100 -0.007089509 0.001144101 104 100 0.003980742 -0.0006424099 105 100 -0.002541777 0.0004101906 106 100 0.001760065 -0.0002840383 107 100 -0.001288661 0.0002079635 108 100 0.0009826448 -0.0001585787 109 100 -0.0007727812 0.000124711 110 100 0.0006226054 -0.0001004757 111 100 -0.0005114288 8.253411e-05 112 100 0.0004268045 -6.887749e-05 113 100 -0.0003608797 5.823857e-05 114 100 0.0003085011 -4.978574e-05 115 100 -0.0002661734 4.295492e-05 116 100 0.0002314578 -3.735254e-05 117 100 -0.0002026106 3.26972e-05 118 100 0.0001783582 -2.878335e-05 119 100 -0.0001577525 2.545802e-05 120 100 0.000140076 -2.26054e-05 121 100 -0.0001247774 2.013652e-05 122 100 0.0001114272 -1.798207e-05 123 100 -9.968672e-05 1.608739e-05 124 100 8.928565e-05 -1.440887e-05 125 100 -8.000611e-05 1.291134e-05 126 100 7.167061e-05 -1.156616e-05 127 100 -6.413319e-05 1.034978e-05 128 100 5.727273e-05 -9.242642e-06 129 100 -5.098776e-05 8.228377e-06 130 100 4.519256e-05 -7.293151e-06 131 100 -3.981401e-05 6.425164e-06 132 100 3.478917e-05 -5.614257e-06 133 100 -3.00633e-05 4.851599e-06 134 100 2.558831e-05 -4.129428e-06 135 100 -2.132146e-05 3.440846e-06 136 100 1.722429e-05 -2.779647e-06 137 100 -1.326172e-05 2.14017e-06 138 100 9.401297e-06 -1.517176e-06 139 100 -5.612495e-06 9.057414e-07 140 100 1.866144e-06 -3.011573e-07 141 100 1.866144e-06 -3.011573e-07 142 100 -5.612495e-06 9.057414e-07 143 100 9.401297e-06 -1.517176e-06 144 100 -1.326172e-05 2.14017e-06 145 100 1.722429e-05 -2.779647e-06 146 100 -2.132146e-05 3.440846e-06 147 100 2.558831e-05 -4.129428e-06 148 100 -3.00633e-05 4.851599e-06 149 100 3.478917e-05 -5.614257e-06 150 100 -3.981401e-05 6.425164e-06 151 100 4.519256e-05 -7.293151e-06 152 100 -5.098776e-05 8.228377e-06 153 100 5.727273e-05 -9.242642e-06 154 100 -6.413319e-05 1.034978e-05 155 100 7.167061e-05 -1.156616e-05 156 100 -8.000611e-05 1.291134e-05 157 100 8.928565e-05 -1.440887e-05 158 100 -9.968672e-05 1.608739e-05 159 100 0.0001114272 -1.798207e-05 160 100 -0.0001247774 2.013652e-05 161 100 0.000140076 -2.26054e-05 181 100 0.0003883153 2.599905e-05 20 101 0.0004025281 2.727568e-05 81 101 0.000140076 -2.26054e-05 82 101 -0.0001577525 2.545802e-05 83 101 0.0001783582 -2.878335e-05 84 101 -0.0002026106 3.26972e-05 85 101 0.0002314578 -3.735254e-05 86 101 -0.0002661734 4.295492e-05 87 101 0.0003085011 -4.978574e-05 88 101 -0.0003608797 5.823857e-05 89 101 0.0004268045 -6.887749e-05 90 101 -0.0005114288 8.253411e-05 91 101 0.0006226054 -0.0001004757 92 101 -0.0007727812 0.000124711 93 101 0.0009826448 -0.0001585787 94 101 -0.001288661 0.0002079635 95 101 0.001760065 -0.0002840383 96 101 -0.002541777 0.0004101906 97 101 0.003980742 -0.0006424099 98 101 -0.007089509 0.001144101 99 101 0.01597157 -0.002577484 100 101 -0.06393453 0.01031772 101 101 0.0569553 -0.04298872 102 101 -0.06393453 0.01031772 103 101 0.01597157 -0.002577484 104 101 -0.007089509 0.001144101 105 101 0.003980742 -0.0006424099 106 101 -0.002541777 0.0004101906 107 101 0.001760065 -0.0002840383 108 101 -0.001288661 0.0002079635 109 101 0.0009826448 -0.0001585787 110 101 -0.0007727812 0.000124711 111 101 0.0006226054 -0.0001004757 112 101 -0.0005114288 8.253411e-05 113 101 0.0004268045 -6.887749e-05 114 101 -0.0003608797 5.823857e-05 115 101 0.0003085011 -4.978574e-05 116 101 -0.0002661734 4.295492e-05 117 101 0.0002314578 -3.735254e-05 118 101 -0.0002026106 3.26972e-05 119 101 0.0001783582 -2.878335e-05 120 101 -0.0001577525 2.545802e-05 121 101 0.000140076 -2.26054e-05 122 101 -0.0001247774 2.013652e-05 123 101 0.0001114272 -1.798207e-05 124 101 -9.968672e-05 1.608739e-05 125 101 8.928565e-05 -1.440887e-05 126 101 -8.000611e-05 1.291134e-05 127 101 7.167061e-05 -1.156616e-05 128 101 -6.413319e-05 1.034978e-05 129 101 5.727273e-05 -9.242642e-06 130 101 -5.098776e-05 8.228377e-06 131 101 4.519256e-05 -7.293151e-06 132 101 -3.981401e-05 6.425164e-06 133 101 3.478917e-05 -5.614257e-06 134 101 -3.00633e-05 4.851599e-06 135 101 2.558831e-05 -4.129428e-06 136 101 -2.132146e-05 3.440846e-06 137 101 1.722429e-05 -2.779647e-06 138 101 -1.326172e-05 2.14017e-06 139 101 9.401297e-06 -1.517176e-06 140 101 -5.612495e-06 9.057414e-07 141 101 1.866144e-06 -3.011573e-07 142 101 1.866144e-06 -3.011573e-07 143 101 -5.612495e-06 9.057414e-07 144 101 9.401297e-06 -1.517176e-06 145 101 -1.326172e-05 2.14017e-06 146 101 1.722429e-05 -2.779647e-06 147 101 -2.132146e-05 3.440846e-06 148 101 2.558831e-05 -4.129428e-06 149 101 -3.00633e-05 4.851599e-06 150 101 3.478917e-05 -5.614257e-06 151 101 -3.981401e-05 6.425164e-06 152 101 4.519256e-05 -7.293151e-06 153 101 -5.098776e-05 8.228377e-06 154 101 5.727273e-05 -9.242642e-06 155 101 -6.413319e-05 1.034978e-05 156 101 7.167061e-05 -1.156616e-05 157 101 -8.000611e-05 1.291134e-05 158 101 8.928565e-05 -1.440887e-05 159 101 -9.968672e-05 1.608739e-05 160 101 0.0001114272 -1.798207e-05 161 101 -0.0001247774 2.013652e-05 182 101 0.0004025281 2.727568e-05 21 102 0.0004168134 2.856472e-05 81 102 -0.0001247774 2.013652e-05 82 102 0.000140076 -2.26054e-05 83 102 -0.0001577525 2.545802e-05 84 102 0.0001783582 -2.878335e-05 85 102 -0.0002026106 3.26972e-05 86 102 0.0002314578 -3.735254e-05 87 102 -0.0002661734 4.295492e-05 88 102 0.0003085011 -4.978574e-05 89 102 -0.0003608797 5.823857e-05 90 102 0.0004268045 -6.887749e-05 91 102 -0.0005114288 8.253411e-05 92 102 0.0006226054 -0.0001004757 93 102 -0.0007727812 0.000124711 94 102 0.0009826448 -0.0001585787 95 102 -0.001288661 0.0002079635 96 102 0.001760065 -0.0002840383 97 102 -0.002541777 0.0004101906 98 102 0.003980742 -0.0006424099 99 102 -0.007089509 0.001144101 100 102 0.01597157 -0.002577484 101 102 -0.06393453 0.01031772 102 102 0.04416118 -0.04101709 103 102 -0.06393453 0.01031772 104 102 0.01597157 -0.002577484 105 102 -0.007089509 0.001144101 106 102 0.003980742 -0.0006424099 107 102 -0.002541777 0.0004101906 108 102 0.001760065 -0.0002840383 109 102 -0.001288661 0.0002079635 110 102 0.0009826448 -0.0001585787 111 102 -0.0007727812 0.000124711 112 102 0.0006226054 -0.0001004757 113 102 -0.0005114288 8.253411e-05 114 102 0.0004268045 -6.887749e-05 115 102 -0.0003608797 5.823857e-05 116 102 0.0003085011 -4.978574e-05 117 102 -0.0002661734 4.295492e-05 118 102 0.0002314578 -3.735254e-05 119 102 -0.0002026106 3.26972e-05 120 102 0.0001783582 -2.878335e-05 121 102 -0.0001577525 2.545802e-05 122 102 0.000140076 -2.26054e-05 123 102 -0.0001247774 2.013652e-05 124 102 0.0001114272 -1.798207e-05 125 102 -9.968672e-05 1.608739e-05 126 102 8.928565e-05 -1.440887e-05 127 102 -8.000611e-05 1.291134e-05 128 102 7.167061e-05 -1.156616e-05 129 102 -6.413319e-05 1.034978e-05 130 102 5.727273e-05 -9.242642e-06 131 102 -5.098776e-05 8.228377e-06 132 102 4.519256e-05 -7.293151e-06 133 102 -3.981401e-05 6.425164e-06 134 102 3.478917e-05 -5.614257e-06 135 102 -3.00633e-05 4.851599e-06 136 102 2.558831e-05 -4.129428e-06 137 102 -2.132146e-05 3.440846e-06 138 102 1.722429e-05 -2.779647e-06 139 102 -1.326172e-05 2.14017e-06 140 102 9.401297e-06 -1.517176e-06 141 102 -5.612495e-06 9.057414e-07 142 102 1.866144e-06 -3.011573e-07 143 102 1.866144e-06 -3.011573e-07 144 102 -5.612495e-06 9.057414e-07 145 102 9.401297e-06 -1.517176e-06 146 102 -1.326172e-05 2.14017e-06 147 102 1.722429e-05 -2.779647e-06 148 102 -2.132146e-05 3.440846e-06 149 102 2.558831e-05 -4.129428e-06 150 102 -3.00633e-05 4.851599e-06 151 102 3.478917e-05 -5.614257e-06 152 102 -3.981401e-05 6.425164e-06 153 102 4.519256e-05 -7.293151e-06 154 102 -5.098776e-05 8.228377e-06 155 102 5.727273e-05 -9.242642e-06 156 102 -6.413319e-05 1.034978e-05 157 102 7.167061e-05 -1.156616e-05 158 102 -8.000611e-05 1.291134e-05 159 102 8.928565e-05 -1.440887e-05 160 102 -9.968672e-05 1.608739e-05 161 102 0.0001114272 -1.798207e-05 183 102 0.0004168134 2.856472e-05 22 103 0.0004311714 2.986627e-05 81 103 0.0001114272 -1.798207e-05 82 103 -0.0001247774 2.013652e-05 83 103 0.000140076 -2.26054e-05 84 103 -0.0001577525 2.545802e-05 85 103 0.0001783582 -2.878335e-05 86 103 -0.0002026106 3.26972e-05 87 103 0.0002314578 -3.735254e-05 88 103 -0.0002661734 4.295492e-05 89 103 0.0003085011 -4.978574e-05 90 103 -0.0003608797 5.823857e-05 91 103 0.0004268045 -6.887749e-05 92 103 -0.0005114288 8.253411e-05 93 103 0.0006226054 -0.0001004757 94 103 -0.0007727812 0.000124711 95 103 0.0009826448 -0.0001585787 96 103 -0.001288661 0.0002079635 97 103 0.001760065 -0.0002840383 98 103 -0.002541777 0.0004101906 99 103 0.003980742 -0.0006424099 100 103 -0.007089509 0.001144101 101 103 0.01597157 -0.002577484 102 103 -0.06393453 0.01031772 103 103 0.03280911 -0.03919719 104 103 -0.06393453 0.01031772 105 103 0.01597157 -0.002577484 106 103 -0.007089509 0.001144101 107 103 0.003980742 -0.0006424099 108 103 -0.002541777 0.0004101906 109 103 0.001760065 -0.0002840383 110 103 -0.001288661 0.0002079635 111 103 0.0009826448 -0.0001585787 112 103 -0.0007727812 0.000124711 113 103 0.0006226054 -0.0001004757 114 103 -0.0005114288 8.253411e-05 115 103 0.0004268045 -6.887749e-05 116 103 -0.0003608797 5.823857e-05 117 103 0.0003085011 -4.978574e-05 118 103 -0.0002661734 4.295492e-05 119 103 0.0002314578 -3.735254e-05 120 103 -0.0002026106 3.26972e-05 121 103 0.0001783582 -2.878335e-05 122 103 -0.0001577525 2.545802e-05 123 103 0.000140076 -2.26054e-05 124 103 -0.0001247774 2.013652e-05 125 103 0.0001114272 -1.798207e-05 126 103 -9.968672e-05 1.608739e-05 127 103 8.928565e-05 -1.440887e-05 128 103 -8.000611e-05 1.291134e-05 129 103 7.167061e-05 -1.156616e-05 130 103 -6.413319e-05 1.034978e-05 131 103 5.727273e-05 -9.242642e-06 132 103 -5.098776e-05 8.228377e-06 133 103 4.519256e-05 -7.293151e-06 134 103 -3.981401e-05 6.425164e-06 135 103 3.478917e-05 -5.614257e-06 136 103 -3.00633e-05 4.851599e-06 137 103 2.558831e-05 -4.129428e-06 138 103 -2.132146e-05 3.440846e-06 139 103 1.722429e-05 -2.779647e-06 140 103 -1.326172e-05 2.14017e-06 141 103 9.401297e-06 -1.517176e-06 142 103 -5.612495e-06 9.057414e-07 143 103 1.866144e-06 -3.011573e-07 144 103 1.866144e-06 -3.011573e-07 145 103 -5.612495e-06 9.057414e-07 146 103 9.401297e-06 -1.517176e-06 147 103 -1.326172e-05 2.14017e-06 148 103 1.722429e-05 -2.779647e-06 149 103 -2.132146e-05 3.440846e-06 150 103 2.558831e-05 -4.129428e-06 151 103 -3.00633e-05 4.851599e-06 152 103 3.478917e-05 -5.614257e-06 153 103 -3.981401e-05 6.425164e-06 154 103 4.519256e-05 -7.293151e-06 155 103 -5.098776e-05 8.228377e-06 156 103 5.727273e-05 -9.242642e-06 157 103 -6.413319e-05 1.034978e-05 158 103 7.167061e-05 -1.156616e-05 159 103 -8.000611e-05 1.291134e-05 160 103 8.928565e-05 -1.440887e-05 161 103 -9.968672e-05 1.608739e-05 184 103 0.0004311714 2.986627e-05 23 104 0.0004456025 3.118041e-05 81 104 -9.968672e-05 1.608739e-05 82 104 0.0001114272 -1.798207e-05 83 104 -0.0001247774 2.013652e-05 84 104 0.000140076 -2.26054e-05 85 104 -0.0001577525 2.545802e-05 86 104 0.0001783582 -2.878335e-05 87 104 -0.0002026106 3.26972e-05 88 104 0.0002314578 -3.735254e-05 89 104 -0.0002661734 4.295492e-05 90 104 0.0003085011 -4.978574e-05 91 104 -0.0003608797 5.823857e-05 92 104 0.0004268045 -6.887749e-05 93 104 -0.0005114288 8.253411e-05 94 104 0.0006226054 -0.0001004757 95 104 -0.0007727812 0.000124711 96 104 0.0009826448 -0.0001585787 97 104 -0.001288661 0.0002079635 98 104 0.001760065 -0.0002840383 99 104 -0.002541777 0.0004101906 100 104 0.003980742 -0.0006424099 101 104 -0.007089509 0.001144101 102 104 0.01597157 -0.002577484 103 104 -0.06393453 0.01031772 104 104 0.02271958 -0.03751817 105 104 -0.06393453 0.01031772 106 104 0.01597157 -0.002577484 107 104 -0.007089509 0.001144101 108 104 0.003980742 -0.0006424099 109 104 -0.002541777 0.0004101906 110 104 0.001760065 -0.0002840383 111 104 -0.001288661 0.0002079635 112 104 0.0009826448 -0.0001585787 113 104 -0.0007727812 0.000124711 114 104 0.0006226054 -0.0001004757 115 104 -0.0005114288 8.253411e-05 116 104 0.0004268045 -6.887749e-05 117 104 -0.0003608797 5.823857e-05 118 104 0.0003085011 -4.978574e-05 119 104 -0.0002661734 4.295492e-05 120 104 0.0002314578 -3.735254e-05 121 104 -0.0002026106 3.26972e-05 122 104 0.0001783582 -2.878335e-05 123 104 -0.0001577525 2.545802e-05 124 104 0.000140076 -2.26054e-05 125 104 -0.0001247774 2.013652e-05 126 104 0.0001114272 -1.798207e-05 127 104 -9.968672e-05 1.608739e-05 128 104 8.928565e-05 -1.440887e-05 129 104 -8.000611e-05 1.291134e-05 130 104 7.167061e-05 -1.156616e-05 131 104 -6.413319e-05 1.034978e-05 132 104 5.727273e-05 -9.242642e-06 133 104 -5.098776e-05 8.228377e-06 134 104 4.519256e-05 -7.293151e-06 135 104 -3.981401e-05 6.425164e-06 136 104 3.478917e-05 -5.614257e-06 137 104 -3.00633e-05 4.851599e-06 138 104 2.558831e-05 -4.129428e-06 139 104 -2.132146e-05 3.440846e-06 140 104 1.722429e-05 -2.779647e-06 141 104 -1.326172e-05 2.14017e-06 142 104 9.401297e-06 -1.517176e-06 143 104 -5.612495e-06 9.057414e-07 144 104 1.866144e-06 -3.011573e-07 145 104 1.866144e-06 -3.011573e-07 146 104 -5.612495e-06 9.057414e-07 147 104 9.401297e-06 -1.517176e-06 148 104 -1.326172e-05 2.14017e-06 149 104 1.722429e-05 -2.779647e-06 150 104 -2.132146e-05 3.440846e-06 151 104 2.558831e-05 -4.129428e-06 152 104 -3.00633e-05 4.851599e-06 153 104 3.478917e-05 -5.614257e-06 154 104 -3.981401e-05 6.425164e-06 155 104 4.519256e-05 -7.293151e-06 156 104 -5.098776e-05 8.228377e-06 157 104 5.727273e-05 -9.242642e-06 158 104 -6.413319e-05 1.034978e-05 159 104 7.167061e-05 -1.156616e-05 160 104 -8.000611e-05 1.291134e-05 161 104 8.928565e-05 -1.440887e-05 185 104 0.0004456025 3.118041e-05 24 105 0.0004601072 3.250725e-05 81 105 8.928565e-05 -1.440887e-05 82 105 -9.968672e-05 1.608739e-05 83 105 0.0001114272 -1.798207e-05 84 105 -0.0001247774 2.013652e-05 85 105 0.000140076 -2.26054e-05 86 105 -0.0001577525 2.545802e-05 87 105 0.0001783582 -2.878335e-05 88 105 -0.0002026106 3.26972e-05 89 105 0.0002314578 -3.735254e-05 90 105 -0.0002661734 4.295492e-05 91 105 0.0003085011 -4.978574e-05 92 105 -0.0003608797 5.823857e-05 93 105 0.0004268045 -6.887749e-05 94 105 -0.0005114288 8.253411e-05 95 105 0.0006226054 -0.0001004757 96 105 -0.0007727812 0.000124711 97 105 0.0009826448 -0.0001585787 98 105 -0.001288661 0.0002079635 99 105 0.001760065 -0.0002840383 100 105 -0.002541777 0.0004101906 101 105 0.003980742 -0.0006424099 102 105 -0.007089509 0.001144101 103 105 0.01597157 -0.002577484 104 105 -0.06393453 0.01031772 105 105 0.01373774 -0.03596951 106 105 -0.06393453 0.01031772 107 105 0.01597157 -0.002577484 108 105 -0.007089509 0.001144101 109 105 0.003980742 -0.0006424099 110 105 -0.002541777 0.0004101906 111 105 0.001760065 -0.0002840383 112 105 -0.001288661 0.0002079635 113 105 0.0009826448 -0.0001585787 114 105 -0.0007727812 0.000124711 115 105 0.0006226054 -0.0001004757 116 105 -0.0005114288 8.253411e-05 117 105 0.0004268045 -6.887749e-05 118 105 -0.0003608797 5.823857e-05 119 105 0.0003085011 -4.978574e-05 120 105 -0.0002661734 4.295492e-05 121 105 0.0002314578 -3.735254e-05 122 105 -0.0002026106 3.26972e-05 123 105 0.0001783582 -2.878335e-05 124 105 -0.0001577525 2.545802e-05 125 105 0.000140076 -2.26054e-05 126 105 -0.0001247774 2.013652e-05 127 105 0.0001114272 -1.798207e-05 128 105 -9.968672e-05 1.608739e-05 129 105 8.928565e-05 -1.440887e-05 130 105 -8.000611e-05 1.291134e-05 131 105 7.167061e-05 -1.156616e-05 132 105 -6.413319e-05 1.034978e-05 133 105 5.727273e-05 -9.242642e-06 134 105 -5.098776e-05 8.228377e-06 135 105 4.519256e-05 -7.293151e-06 136 105 -3.981401e-05 6.425164e-06 137 105 3.478917e-05 -5.614257e-06 138 105 -3.00633e-05 4.851599e-06 139 105 2.558831e-05 -4.129428e-06 140 105 -2.132146e-05 3.440846e-06 141 105 1.722429e-05 -2.779647e-06 142 105 -1.326172e-05 2.14017e-06 143 105 9.401297e-06 -1.517176e-06 144 105 -5.612495e-06 9.057414e-07 145 105 1.866144e-06 -3.011573e-07 146 105 1.866144e-06 -3.011573e-07 147 105 -5.612495e-06 9.057414e-07 148 105 9.401297e-06 -1.517176e-06 149 105 -1.326172e-05 2.14017e-06 150 105 1.722429e-05 -2.779647e-06 151 105 -2.132146e-05 3.440846e-06 152 105 2.558831e-05 -4.129428e-06 153 105 -3.00633e-05 4.851599e-06 154 105 3.478917e-05 -5.614257e-06 155 105 -3.981401e-05 6.425164e-06 156 105 4.519256e-05 -7.293151e-06 157 105 -5.098776e-05 8.228377e-06 158 105 5.727273e-05 -9.242642e-06 159 105 -6.413319e-05 1.034978e-05 160 105 7.167061e-05 -1.156616e-05 161 105 -8.000611e-05 1.291134e-05 186 105 0.0004601072 3.250725e-05 25 106 0.0004746856 3.384687e-05 81 106 -8.000611e-05 1.291134e-05 82 106 8.928565e-05 -1.440887e-05 83 106 -9.968672e-05 1.608739e-05 84 106 0.0001114272 -1.798207e-05 85 106 -0.0001247774 2.013652e-05 86 106 0.000140076 -2.26054e-05 87 106 -0.0001577525 2.545802e-05 88 106 0.0001783582 -2.878335e-05 89 106 -0.0002026106 3.26972e-05 90 106 0.0002314578 -3.735254e-05 91 106 -0.0002661734 4.295492e-05 92 106 0.0003085011 -4.978574e-05 93 106 -0.0003608797 5.823857e-05 94 106 0.0004268045 -6.887749e-05 95 106 -0.0005114288 8.253411e-05 96 106 0.0006226054 -0.0001004757 97 106 -0.0007727812 0.000124711 98 106 0.0009826448 -0.0001585787 99 106 -0.001288661 0.0002079635 100 106 0.001760065 -0.0002840383 101 106 -0.002541777 0.0004101906 102 106 0.003980742 -0.0006424099 103 106 -0.007089509 0.001144101 104 106 0.01597157 -0.002577484 105 106 -0.06393453 0.01031772 106 106 0.005729718 -0.03454119 107 106 -0.06393453 0.01031772 108 106 0.01597157 -0.002577484 109 106 -0.007089509 0.001144101 110 106 0.003980742 -0.0006424099 111 106 -0.002541777 0.0004101906 112 106 0.001760065 -0.0002840383 113 106 -0.001288661 0.0002079635 114 106 0.0009826448 -0.0001585787 115 106 -0.0007727812 0.000124711 116 106 0.0006226054 -0.0001004757 117 106 -0.0005114288 8.253411e-05 118 106 0.0004268045 -6.887749e-05 119 106 -0.0003608797 5.823857e-05 120 106 0.0003085011 -4.978574e-05 121 106 -0.0002661734 4.295492e-05 122 106 0.0002314578 -3.735254e-05 123 106 -0.0002026106 3.26972e-05 124 106 0.0001783582 -2.878335e-05 125 106 -0.0001577525 2.545802e-05 126 106 0.000140076 -2.26054e-05 127 106 -0.0001247774 2.013652e-05 128 106 0.0001114272 -1.798207e-05 129 106 -9.968672e-05 1.608739e-05 130 106 8.928565e-05 -1.440887e-05 131 106 -8.000611e-05 1.291134e-05 132 106 7.167061e-05 -1.156616e-05 133 106 -6.413319e-05 1.034978e-05 134 106 5.727273e-05 -9.242642e-06 135 106 -5.098776e-05 8.228377e-06 136 106 4.519256e-05 -7.293151e-06 137 106 -3.981401e-05 6.425164e-06 138 106 3.478917e-05 -5.614257e-06 139 106 -3.00633e-05 4.851599e-06 140 106 2.558831e-05 -4.129428e-06 141 106 -2.132146e-05 3.440846e-06 142 106 1.722429e-05 -2.779647e-06 143 106 -1.326172e-05 2.14017e-06 144 106 9.401297e-06 -1.517176e-06 145 106 -5.612495e-06 9.057414e-07 146 106 1.866144e-06 -3.011573e-07 147 106 1.866144e-06 -3.011573e-07 148 106 -5.612495e-06 9.057414e-07 149 106 9.401297e-06 -1.517176e-06 150 106 -1.326172e-05 2.14017e-06 151 106 1.722429e-05 -2.779647e-06 152 106 -2.132146e-05 3.440846e-06 153 106 2.558831e-05 -4.129428e-06 154 106 -3.00633e-05 4.851599e-06 155 106 3.478917e-05 -5.614257e-06 156 106 -3.981401e-05 6.425164e-06 157 106 4.519256e-05 -7.293151e-06 158 106 -5.098776e-05 8.228377e-06 159 106 5.727273e-05 -9.242642e-06 160 106 -6.413319e-05 1.034978e-05 161 106 7.167061e-05 -1.156616e-05 187 106 0.0004746856 3.384687e-05 26 107 0.0004893383 3.519938e-05 81 107 7.167061e-05 -1.156616e-05 82 107 -8.000611e-05 1.291134e-05 83 107 8.928565e-05 -1.440887e-05 84 107 -9.968672e-05 1.608739e-05 85 107 0.0001114272 -1.798207e-05 86 107 -0.0001247774 2.013652e-05 87 107 0.000140076 -2.26054e-05 88 107 -0.0001577525 2.545802e-05 89 107 0.0001783582 -2.878335e-05 90 107 -0.0002026106 3.26972e-05 91 107 0.0002314578 -3.735254e-05 92 107 -0.0002661734 4.295492e-05 93 107 0.0003085011 -4.978574e-05 94 107 -0.0003608797 5.823857e-05 95 107 0.0004268045 -6.887749e-05 96 107 -0.0005114288 8.253411e-05 97 107 0.0006226054 -0.0001004757 98 107 -0.0007727812 0.000124711 99 107 0.0009826448 -0.0001585787 100 107 -0.001288661 0.0002079635 101 107 0.001760065 -0.0002840383 102 107 -0.002541777 0.0004101906 103 107 0.003980742 -0.0006424099 104 107 -0.007089509 0.001144101 105 107 0.01597157 -0.002577484 106 107 -0.06393453 0.01031772 107 107 -0.001420426 -0.03322374 108 107 -0.06393453 0.01031772 109 107 0.01597157 -0.002577484 110 107 -0.007089509 0.001144101 111 107 0.003980742 -0.0006424099 112 107 -0.002541777 0.0004101906 113 107 0.001760065 -0.0002840383 114 107 -0.001288661 0.0002079635 115 107 0.0009826448 -0.0001585787 116 107 -0.0007727812 0.000124711 117 107 0.0006226054 -0.0001004757 118 107 -0.0005114288 8.253411e-05 119 107 0.0004268045 -6.887749e-05 120 107 -0.0003608797 5.823857e-05 121 107 0.0003085011 -4.978574e-05 122 107 -0.0002661734 4.295492e-05 123 107 0.0002314578 -3.735254e-05 124 107 -0.0002026106 3.26972e-05 125 107 0.0001783582 -2.878335e-05 126 107 -0.0001577525 2.545802e-05 127 107 0.000140076 -2.26054e-05 128 107 -0.0001247774 2.013652e-05 129 107 0.0001114272 -1.798207e-05 130 107 -9.968672e-05 1.608739e-05 131 107 8.928565e-05 -1.440887e-05 132 107 -8.000611e-05 1.291134e-05 133 107 7.167061e-05 -1.156616e-05 134 107 -6.413319e-05 1.034978e-05 135 107 5.727273e-05 -9.242642e-06 136 107 -5.098776e-05 8.228377e-06 137 107 4.519256e-05 -7.293151e-06 138 107 -3.981401e-05 6.425164e-06 139 107 3.478917e-05 -5.614257e-06 140 107 -3.00633e-05 4.851599e-06 141 107 2.558831e-05 -4.129428e-06 142 107 -2.132146e-05 3.440846e-06 143 107 1.722429e-05 -2.779647e-06 144 107 -1.326172e-05 2.14017e-06 145 107 9.401297e-06 -1.517176e-06 146 107 -5.612495e-06 9.057414e-07 147 107 1.866144e-06 -3.011573e-07 148 107 1.866144e-06 -3.011573e-07 149 107 -5.612495e-06 9.057414e-07 150 107 9.401297e-06 -1.517176e-06 151 107 -1.326172e-05 2.14017e-06 152 107 1.722429e-05 -2.779647e-06 153 107 -2.132146e-05 3.440846e-06 154 107 2.558831e-05 -4.129428e-06 155 107 -3.00633e-05 4.851599e-06 156 107 3.478917e-05 -5.614257e-06 157 107 -3.981401e-05 6.425164e-06 158 107 4.519256e-05 -7.293151e-06 159 107 -5.098776e-05 8.228377e-06 160 107 5.727273e-05 -9.242642e-06 161 107 -6.413319e-05 1.034978e-05 188 107 0.0004893383 3.519938e-05 27 108 0.0005040657 3.656486e-05 81 108 -6.413319e-05 1.034978e-05 82 108 7.167061e-05 -1.156616e-05 83 108 -8.000611e-05 1.291134e-05 84 108 8.928565e-05 -1.440887e-05 85 108 -9.968672e-05 1.608739e-05 86 108 0.0001114272 -1.798207e-05 87 108 -0.0001247774 2.013652e-05 88 108 0.000140076 -2.26054e-05 89 108 -0.0001577525 2.545802e-05 90 108 0.0001783582 -2.878335e-05 91 108 -0.0002026106 3.26972e-05 92 108 0.0002314578 -3.735254e-05 93 108 -0.0002661734 4.295492e-05 94 108 0.0003085011 -4.978574e-05 95 108 -0.0003608797 5.823857e-05 96 108 0.0004268045 -6.887749e-05 97 108 -0.0005114288 8.253411e-05 98 108 0.0006226054 -0.0001004757 99 108 -0.0007727812 0.000124711 100 108 0.0009826448 -0.0001585787 101 108 -0.001288661 0.0002079635 102 108 0.001760065 -0.0002840383 103 108 -0.002541777 0.0004101906 104 108 0.003980742 -0.0006424099 105 108 -0.007089509 0.001144101 106 108 0.01597157 -0.002577484 107 108 -0.06393453 0.01031772 108 108 -0.007813354 -0.0320083 109 108 -0.06393453 0.01031772 110 108 0.01597157 -0.002577484 111 108 -0.007089509 0.001144101 112 108 0.003980742 -0.0006424099 113 108 -0.002541777 0.0004101906 114 108 0.001760065 -0.0002840383 115 108 -0.001288661 0.0002079635 116 108 0.0009826448 -0.0001585787 117 108 -0.0007727812 0.000124711 118 108 0.0006226054 -0.0001004757 119 108 -0.0005114288 8.253411e-05 120 108 0.0004268045 -6.887749e-05 121 108 -0.0003608797 5.823857e-05 122 108 0.0003085011 -4.978574e-05 123 108 -0.0002661734 4.295492e-05 124 108 0.0002314578 -3.735254e-05 125 108 -0.0002026106 3.26972e-05 126 108 0.0001783582 -2.878335e-05 127 108 -0.0001577525 2.545802e-05 128 108 0.000140076 -2.26054e-05 129 108 -0.0001247774 2.013652e-05 130 108 0.0001114272 -1.798207e-05 131 108 -9.968672e-05 1.608739e-05 132 108 8.928565e-05 -1.440887e-05 133 108 -8.000611e-05 1.291134e-05 134 108 7.167061e-05 -1.156616e-05 135 108 -6.413319e-05 1.034978e-05 136 108 5.727273e-05 -9.242642e-06 137 108 -5.098776e-05 8.228377e-06 138 108 4.519256e-05 -7.293151e-06 139 108 -3.981401e-05 6.425164e-06 140 108 3.478917e-05 -5.614257e-06 141 108 -3.00633e-05 4.851599e-06 142 108 2.558831e-05 -4.129428e-06 143 108 -2.132146e-05 3.440846e-06 144 108 1.722429e-05 -2.779647e-06 145 108 -1.326172e-05 2.14017e-06 146 108 9.401297e-06 -1.517176e-06 147 108 -5.612495e-06 9.057414e-07 148 108 1.866144e-06 -3.011573e-07 149 108 1.866144e-06 -3.011573e-07 150 108 -5.612495e-06 9.057414e-07 151 108 9.401297e-06 -1.517176e-06 152 108 -1.326172e-05 2.14017e-06 153 108 1.722429e-05 -2.779647e-06 154 108 -2.132146e-05 3.440846e-06 155 108 2.558831e-05 -4.129428e-06 156 108 -3.00633e-05 4.851599e-06 157 108 3.478917e-05 -5.614257e-06 158 108 -3.981401e-05 6.425164e-06 159 108 4.519256e-05 -7.293151e-06 160 108 -5.098776e-05 8.228377e-06 161 108 5.727273e-05 -9.242642e-06 189 108 0.0005040657 3.656486e-05 28 109 0.000518868 3.794342e-05 81 109 5.727273e-05 -9.242642e-06 82 109 -6.413319e-05 1.034978e-05 83 109 7.167061e-05 -1.156616e-05 84 109 -8.000611e-05 1.291134e-05 85 109 8.928565e-05 -1.440887e-05 86 109 -9.968672e-05 1.608739e-05 87 109 0.0001114272 -1.798207e-05 88 109 -0.0001247774 2.013652e-05 89 109 0.000140076 -2.26054e-05 90 109 -0.0001577525 2.545802e-05 91 109 0.0001783582 -2.878335e-05 92 109 -0.0002026106 3.26972e-05 93 109 0.0002314578 -3.735254e-05 94 109 -0.0002661734 4.295492e-05 95 109 0.0003085011 -4.978574e-05 96 109 -0.0003608797 5.823857e-05 97 109 0.0004268045 -6.887749e-05 98 109 -0.0005114288 8.253411e-05 99 109 0.0006226054 -0.0001004757 100 109 -0.0007727812 0.000124711 101 109 0.0009826448 -0.0001585787 102 109 -0.001288661 0.0002079635 103 109 0.001760065 -0.0002840383 104 109 -0.002541777 0.0004101906 105 109 0.003980742 -0.0006424099 106 109 -0.007089509 0.001144101 107 109 0.01597157 -0.002577484 108 109 -0.06393453 0.01031772 109 109 -0.01353664 -0.03088667 110 109 -0.06393453 0.01031772 111 109 0.01597157 -0.002577484 112 109 -0.007089509 0.001144101 113 109 0.003980742 -0.0006424099 114 109 -0.002541777 0.0004101906 115 109 0.001760065 -0.0002840383 116 109 -0.001288661 0.0002079635 117 109 0.0009826448 -0.0001585787 118 109 -0.0007727812 0.000124711 119 109 0.0006226054 -0.0001004757 120 109 -0.0005114288 8.253411e-05 121 109 0.0004268045 -6.887749e-05 122 109 -0.0003608797 5.823857e-05 123 109 0.0003085011 -4.978574e-05 124 109 -0.0002661734 4.295492e-05 125 109 0.0002314578 -3.735254e-05 126 109 -0.0002026106 3.26972e-05 127 109 0.0001783582 -2.878335e-05 128 109 -0.0001577525 2.545802e-05 129 109 0.000140076 -2.26054e-05 130 109 -0.0001247774 2.013652e-05 131 109 0.0001114272 -1.798207e-05 132 109 -9.968672e-05 1.608739e-05 133 109 8.928565e-05 -1.440887e-05 134 109 -8.000611e-05 1.291134e-05 135 109 7.167061e-05 -1.156616e-05 136 109 -6.413319e-05 1.034978e-05 137 109 5.727273e-05 -9.242642e-06 138 109 -5.098776e-05 8.228377e-06 139 109 4.519256e-05 -7.293151e-06 140 109 -3.981401e-05 6.425164e-06 141 109 3.478917e-05 -5.614257e-06 142 109 -3.00633e-05 4.851599e-06 143 109 2.558831e-05 -4.129428e-06 144 109 -2.132146e-05 3.440846e-06 145 109 1.722429e-05 -2.779647e-06 146 109 -1.326172e-05 2.14017e-06 147 109 9.401297e-06 -1.517176e-06 148 109 -5.612495e-06 9.057414e-07 149 109 1.866144e-06 -3.011573e-07 150 109 1.866144e-06 -3.011573e-07 151 109 -5.612495e-06 9.057414e-07 152 109 9.401297e-06 -1.517176e-06 153 109 -1.326172e-05 2.14017e-06 154 109 1.722429e-05 -2.779647e-06 155 109 -2.132146e-05 3.440846e-06 156 109 2.558831e-05 -4.129428e-06 157 109 -3.00633e-05 4.851599e-06 158 109 3.478917e-05 -5.614257e-06 159 109 -3.981401e-05 6.425164e-06 160 109 4.519256e-05 -7.293151e-06 161 109 -5.098776e-05 8.228377e-06 190 109 0.000518868 3.794342e-05 29 110 0.0005337456 3.933516e-05 81 110 -5.098776e-05 8.228377e-06 82 110 5.727273e-05 -9.242642e-06 83 110 -6.413319e-05 1.034978e-05 84 110 7.167061e-05 -1.156616e-05 85 110 -8.000611e-05 1.291134e-05 86 110 8.928565e-05 -1.440887e-05 87 110 -9.968672e-05 1.608739e-05 88 110 0.0001114272 -1.798207e-05 89 110 -0.0001247774 2.013652e-05 90 110 0.000140076 -2.26054e-05 91 110 -0.0001577525 2.545802e-05 92 110 0.0001783582 -2.878335e-05 93 110 -0.0002026106 3.26972e-05 94 110 0.0002314578 -3.735254e-05 95 110 -0.0002661734 4.295492e-05 96 110 0.0003085011 -4.978574e-05 97 110 -0.0003608797 5.823857e-05 98 110 0.0004268045 -6.887749e-05 99 110 -0.0005114288 8.253411e-05 100 110 0.0006226054 -0.0001004757 101 110 -0.0007727812 0.000124711 102 110 0.0009826448 -0.0001585787 103 110 -0.001288661 0.0002079635 104 110 0.001760065 -0.0002840383 105 110 -0.002541777 0.0004101906 106 110 0.003980742 -0.0006424099 107 110 -0.007089509 0.001144101 108 110 0.01597157 -0.002577484 109 110 -0.06393453 0.01031772 110 110 -0.01866663 -0.02985125 111 110 -0.06393453 0.01031772 112 110 0.01597157 -0.002577484 113 110 -0.007089509 0.001144101 114 110 0.003980742 -0.0006424099 115 110 -0.002541777 0.0004101906 116 110 0.001760065 -0.0002840383 117 110 -0.001288661 0.0002079635 118 110 0.0009826448 -0.0001585787 119 110 -0.0007727812 0.000124711 120 110 0.0006226054 -0.0001004757 121 110 -0.0005114288 8.253411e-05 122 110 0.0004268045 -6.887749e-05 123 110 -0.0003608797 5.823857e-05 124 110 0.0003085011 -4.978574e-05 125 110 -0.0002661734 4.295492e-05 126 110 0.0002314578 -3.735254e-05 127 110 -0.0002026106 3.26972e-05 128 110 0.0001783582 -2.878335e-05 129 110 -0.0001577525 2.545802e-05 130 110 0.000140076 -2.26054e-05 131 110 -0.0001247774 2.013652e-05 132 110 0.0001114272 -1.798207e-05 133 110 -9.968672e-05 1.608739e-05 134 110 8.928565e-05 -1.440887e-05 135 110 -8.000611e-05 1.291134e-05 136 110 7.167061e-05 -1.156616e-05 137 110 -6.413319e-05 1.034978e-05 138 110 5.727273e-05 -9.242642e-06 139 110 -5.098776e-05 8.228377e-06 140 110 4.519256e-05 -7.293151e-06 141 110 -3.981401e-05 6.425164e-06 142 110 3.478917e-05 -5.614257e-06 143 110 -3.00633e-05 4.851599e-06 144 110 2.558831e-05 -4.129428e-06 145 110 -2.132146e-05 3.440846e-06 146 110 1.722429e-05 -2.779647e-06 147 110 -1.326172e-05 2.14017e-06 148 110 9.401297e-06 -1.517176e-06 149 110 -5.612495e-06 9.057414e-07 150 110 1.866144e-06 -3.011573e-07 151 110 1.866144e-06 -3.011573e-07 152 110 -5.612495e-06 9.057414e-07 153 110 9.401297e-06 -1.517176e-06 154 110 -1.326172e-05 2.14017e-06 155 110 1.722429e-05 -2.779647e-06 156 110 -2.132146e-05 3.440846e-06 157 110 2.558831e-05 -4.129428e-06 158 110 -3.00633e-05 4.851599e-06 159 110 3.478917e-05 -5.614257e-06 160 110 -3.981401e-05 6.425164e-06 161 110 4.519256e-05 -7.293151e-06 191 110 0.0005337456 3.933516e-05 30 111 0.0005486991 4.074018e-05 81 111 4.519256e-05 -7.293151e-06 82 111 -5.098776e-05 8.228377e-06 83 111 5.727273e-05 -9.242642e-06 84 111 -6.413319e-05 1.034978e-05 85 111 7.167061e-05 -1.156616e-05 86 111 -8.000611e-05 1.291134e-05 87 111 8.928565e-05 -1.440887e-05 88 111 -9.968672e-05 1.608739e-05 89 111 0.0001114272 -1.798207e-05 90 111 -0.0001247774 2.013652e-05 91 111 0.000140076 -2.26054e-05 92 111 -0.0001577525 2.545802e-05 93 111 0.0001783582 -2.878335e-05 94 111 -0.0002026106 3.26972e-05 95 111 0.0002314578 -3.735254e-05 96 111 -0.0002661734 4.295492e-05 97 111 0.0003085011 -4.978574e-05 98 111 -0.0003608797 5.823857e-05 99 111 0.0004268045 -6.887749e-05 100 111 -0.0005114288 8.253411e-05 101 111 0.0006226054 -0.0001004757 102 111 -0.0007727812 0.000124711 103 111 0.0009826448 -0.0001585787 104 111 -0.001288661 0.0002079635 105 111 0.001760065 -0.0002840383 106 111 -0.002541777 0.0004101906 107 111 0.003980742 -0.0006424099 108 111 -0.007089509 0.001144101 109 111 0.01597157 -0.002577484 110 111 -0.06393453 0.01031772 111 111 -0.02327005 -0.02889503 112 111 -0.06393453 0.01031772 113 111 0.01597157 -0.002577484 114 111 -0.007089509 0.001144101 115 111 0.003980742 -0.0006424099 116 111 -0.002541777 0.0004101906 117 111 0.001760065 -0.0002840383 118 111 -0.001288661 0.0002079635 119 111 0.0009826448 -0.0001585787 120 111 -0.0007727812 0.000124711 121 111 0.0006226054 -0.0001004757 122 111 -0.0005114288 8.253411e-05 123 111 0.0004268045 -6.887749e-05 124 111 -0.0003608797 5.823857e-05 125 111 0.0003085011 -4.978574e-05 126 111 -0.0002661734 4.295492e-05 127 111 0.0002314578 -3.735254e-05 128 111 -0.0002026106 3.26972e-05 129 111 0.0001783582 -2.878335e-05 130 111 -0.0001577525 2.545802e-05 131 111 0.000140076 -2.26054e-05 132 111 -0.0001247774 2.013652e-05 133 111 0.0001114272 -1.798207e-05 134 111 -9.968672e-05 1.608739e-05 135 111 8.928565e-05 -1.440887e-05 136 111 -8.000611e-05 1.291134e-05 137 111 7.167061e-05 -1.156616e-05 138 111 -6.413319e-05 1.034978e-05 139 111 5.727273e-05 -9.242642e-06 140 111 -5.098776e-05 8.228377e-06 141 111 4.519256e-05 -7.293151e-06 142 111 -3.981401e-05 6.425164e-06 143 111 3.478917e-05 -5.614257e-06 144 111 -3.00633e-05 4.851599e-06 145 111 2.558831e-05 -4.129428e-06 146 111 -2.132146e-05 3.440846e-06 147 111 1.722429e-05 -2.779647e-06 148 111 -1.326172e-05 2.14017e-06 149 111 9.401297e-06 -1.517176e-06 150 111 -5.612495e-06 9.057414e-07 151 111 1.866144e-06 -3.011573e-07 152 111 1.866144e-06 -3.011573e-07 153 111 -5.612495e-06 9.057414e-07 154 111 9.401297e-06 -1.517176e-06 155 111 -1.326172e-05 2.14017e-06 156 111 1.722429e-05 -2.779647e-06 157 111 -2.132146e-05 3.440846e-06 158 111 2.558831e-05 -4.129428e-06 159 111 -3.00633e-05 4.851599e-06 160 111 3.478917e-05 -5.614257e-06 161 111 -3.981401e-05 6.425164e-06 192 111 0.0005486991 4.074018e-05 31 112 0.0005637286 4.215856e-05 81 112 -3.981401e-05 6.425164e-06 82 112 4.519256e-05 -7.293151e-06 83 112 -5.098776e-05 8.228377e-06 84 112 5.727273e-05 -9.242642e-06 85 112 -6.413319e-05 1.034978e-05 86 112 7.167061e-05 -1.156616e-05 87 112 -8.000611e-05 1.291134e-05 88 112 8.928565e-05 -1.440887e-05 89 112 -9.968672e-05 1.608739e-05 90 112 0.0001114272 -1.798207e-05 91 112 -0.0001247774 2.013652e-05 92 112 0.000140076 -2.26054e-05 93 112 -0.0001577525 2.545802e-05 94 112 0.0001783582 -2.878335e-05 95 112 -0.0002026106 3.26972e-05 96 112 0.0002314578 -3.735254e-05 97 112 -0.0002661734 4.295492e-05 98 112 0.0003085011 -4.978574e-05 99 112 -0.0003608797 5.823857e-05 100 112 0.0004268045 -6.887749e-05 101 112 -0.0005114288 8.253411e-05 102 112 0.0006226054 -0.0001004757 103 112 -0.0007727812 0.000124711 104 112 0.0009826448 -0.0001585787 105 112 -0.001288661 0.0002079635 106 112 0.001760065 -0.0002840383 107 112 -0.002541777 0.0004101906 108 112 0.003980742 -0.0006424099 109 112 -0.007089509 0.001144101 110 112 0.01597157 -0.002577484 111 112 -0.06393453 0.01031772 112 112 -0.02740531 -0.02801161 113 112 -0.06393453 0.01031772 114 112 0.01597157 -0.002577484 115 112 -0.007089509 0.001144101 116 112 0.003980742 -0.0006424099 117 112 -0.002541777 0.0004101906 118 112 0.001760065 -0.0002840383 119 112 -0.001288661 0.0002079635 120 112 0.0009826448 -0.0001585787 121 112 -0.0007727812 0.000124711 122 112 0.0006226054 -0.0001004757 123 112 -0.0005114288 8.253411e-05 124 112 0.0004268045 -6.887749e-05 125 112 -0.0003608797 5.823857e-05 126 112 0.0003085011 -4.978574e-05 127 112 -0.0002661734 4.295492e-05 128 112 0.0002314578 -3.735254e-05 129 112 -0.0002026106 3.26972e-05 130 112 0.0001783582 -2.878335e-05 131 112 -0.0001577525 2.545802e-05 132 112 0.000140076 -2.26054e-05 133 112 -0.0001247774 2.013652e-05 134 112 0.0001114272 -1.798207e-05 135 112 -9.968672e-05 1.608739e-05 136 112 8.928565e-05 -1.440887e-05 137 112 -8.000611e-05 1.291134e-05 138 112 7.167061e-05 -1.156616e-05 139 112 -6.413319e-05 1.034978e-05 140 112 5.727273e-05 -9.242642e-06 141 112 -5.098776e-05 8.228377e-06 142 112 4.519256e-05 -7.293151e-06 143 112 -3.981401e-05 6.425164e-06 144 112 3.478917e-05 -5.614257e-06 145 112 -3.00633e-05 4.851599e-06 146 112 2.558831e-05 -4.129428e-06 147 112 -2.132146e-05 3.440846e-06 148 112 1.722429e-05 -2.779647e-06 149 112 -1.326172e-05 2.14017e-06 150 112 9.401297e-06 -1.517176e-06 151 112 -5.612495e-06 9.057414e-07 152 112 1.866144e-06 -3.011573e-07 153 112 1.866144e-06 -3.011573e-07 154 112 -5.612495e-06 9.057414e-07 155 112 9.401297e-06 -1.517176e-06 156 112 -1.326172e-05 2.14017e-06 157 112 1.722429e-05 -2.779647e-06 158 112 -2.132146e-05 3.440846e-06 159 112 2.558831e-05 -4.129428e-06 160 112 -3.00633e-05 4.851599e-06 161 112 3.478917e-05 -5.614257e-06 193 112 0.0005637286 4.215856e-05 32 113 0.0005788347 4.359042e-05 81 113 3.478917e-05 -5.614257e-06 82 113 -3.981401e-05 6.425164e-06 83 113 4.519256e-05 -7.293151e-06 84 113 -5.098776e-05 8.228377e-06 85 113 5.727273e-05 -9.242642e-06 86 113 -6.413319e-05 1.034978e-05 87 113 7.167061e-05 -1.156616e-05 88 113 -8.000611e-05 1.291134e-05 89 113 8.928565e-05 -1.440887e-05 90 113 -9.968672e-05 1.608739e-05 91 113 0.0001114272 -1.798207e-05 92 113 -0.0001247774 2.013652e-05 93 113 0.000140076 -2.26054e-05 94 113 -0.0001577525 2.545802e-05 95 113 0.0001783582 -2.878335e-05 96 113 -0.0002026106 3.26972e-05 97 113 0.0002314578 -3.735254e-05 98 113 -0.0002661734 4.295492e-05 99 113 0.0003085011 -4.978574e-05 100 113 -0.0003608797 5.823857e-05 101 113 0.0004268045 -6.887749e-05 102 113 -0.0005114288 8.253411e-05 103 113 0.0006226054 -0.0001004757 104 113 -0.0007727812 0.000124711 105 113 0.0009826448 -0.0001585787 106 113 -0.001288661 0.0002079635 107 113 0.001760065 -0.0002840383 108 113 -0.002541777 0.0004101906 109 113 0.003980742 -0.0006424099 110 113 -0.007089509 0.001144101 111 113 0.01597157 -0.002577484 112 113 -0.06393453 0.01031772 113 113 -0.03112369 -0.02719509 114 113 -0.06393453 0.01031772 115 113 0.01597157 -0.002577484 116 113 -0.007089509 0.001144101 117 113 0.003980742 -0.0006424099 118 113 -0.002541777 0.0004101906 119 113 0.001760065 -0.0002840383 120 113 -0.001288661 0.0002079635 121 113 0.0009826448 -0.0001585787 122 113 -0.0007727812 0.000124711 123 113 0.0006226054 -0.0001004757 124 113 -0.0005114288 8.253411e-05 125 113 0.0004268045 -6.887749e-05 126 113 -0.0003608797 5.823857e-05 127 113 0.0003085011 -4.978574e-05 128 113 -0.0002661734 4.295492e-05 129 113 0.0002314578 -3.735254e-05 130 113 -0.0002026106 3.26972e-05 131 113 0.0001783582 -2.878335e-05 132 113 -0.0001577525 2.545802e-05 133 113 0.000140076 -2.26054e-05 134 113 -0.0001247774 2.013652e-05 135 113 0.0001114272 -1.798207e-05 136 113 -9.968672e-05 1.608739e-05 137 113 8.928565e-05 -1.440887e-05 138 113 -8.000611e-05 1.291134e-05 139 113 7.167061e-05 -1.156616e-05 140 113 -6.413319e-05 1.034978e-05 141 113 5.727273e-05 -9.242642e-06 142 113 -5.098776e-05 8.228377e-06 143 113 4.519256e-05 -7.293151e-06 144 113 -3.981401e-05 6.425164e-06 145 113 3.478917e-05 -5.614257e-06 146 113 -3.00633e-05 4.851599e-06 147 113 2.558831e-05 -4.129428e-06 148 113 -2.132146e-05 3.440846e-06 149 113 1.722429e-05 -2.779647e-06 150 113 -1.326172e-05 2.14017e-06 151 113 9.401297e-06 -1.517176e-06 152 113 -5.612495e-06 9.057414e-07 153 113 1.866144e-06 -3.011573e-07 154 113 1.866144e-06 -3.011573e-07 155 113 -5.612495e-06 9.057414e-07 156 113 9.401297e-06 -1.517176e-06 157 113 -1.326172e-05 2.14017e-06 158 113 1.722429e-05 -2.779647e-06 159 113 -2.132146e-05 3.440846e-06 160 113 2.558831e-05 -4.129428e-06 161 113 -3.00633e-05 4.851599e-06 194 113 0.0005788347 4.359042e-05 33 114 0.0005940177 4.503586e-05 81 114 -3.00633e-05 4.851599e-06 82 114 3.478917e-05 -5.614257e-06 83 114 -3.981401e-05 6.425164e-06 84 114 4.519256e-05 -7.293151e-06 85 114 -5.098776e-05 8.228377e-06 86 114 5.727273e-05 -9.242642e-06 87 114 -6.413319e-05 1.034978e-05 88 114 7.167061e-05 -1.156616e-05 89 114 -8.000611e-05 1.291134e-05 90 114 8.928565e-05 -1.440887e-05 91 114 -9.968672e-05 1.608739e-05 92 114 0.0001114272 -1.798207e-05 93 114 -0.0001247774 2.013652e-05 94 114 0.000140076 -2.26054e-05 95 114 -0.0001577525 2.545802e-05 96 114 0.0001783582 -2.878335e-05 97 114 -0.0002026106 3.26972e-05 98 114 0.0002314578 -3.735254e-05 99 114 -0.0002661734 4.295492e-05 100 114 0.0003085011 -4.978574e-05 101 114 -0.0003608797 5.823857e-05 102 114 0.0004268045 -6.887749e-05 103 114 -0.0005114288 8.253411e-05 104 114 0.0006226054 -0.0001004757 105 114 -0.0007727812 0.000124711 106 114 0.0009826448 -0.0001585787 107 114 -0.001288661 0.0002079635 108 114 0.001760065 -0.0002840383 109 114 -0.002541777 0.0004101906 110 114 0.003980742 -0.0006424099 111 114 -0.007089509 0.001144101 112 114 0.01597157 -0.002577484 113 114 -0.06393453 0.01031772 114 114 -0.03447026 -0.02644011 115 114 -0.06393453 0.01031772 116 114 0.01597157 -0.002577484 117 114 -0.007089509 0.001144101 118 114 0.003980742 -0.0006424099 119 114 -0.002541777 0.0004101906 120 114 0.001760065 -0.0002840383 121 114 -0.001288661 0.0002079635 122 114 0.0009826448 -0.0001585787 123 114 -0.0007727812 0.000124711 124 114 0.0006226054 -0.0001004757 125 114 -0.0005114288 8.253411e-05 126 114 0.0004268045 -6.887749e-05 127 114 -0.0003608797 5.823857e-05 128 114 0.0003085011 -4.978574e-05 129 114 -0.0002661734 4.295492e-05 130 114 0.0002314578 -3.735254e-05 131 114 -0.0002026106 3.26972e-05 132 114 0.0001783582 -2.878335e-05 133 114 -0.0001577525 2.545802e-05 134 114 0.000140076 -2.26054e-05 135 114 -0.0001247774 2.013652e-05 136 114 0.0001114272 -1.798207e-05 137 114 -9.968672e-05 1.608739e-05 138 114 8.928565e-05 -1.440887e-05 139 114 -8.000611e-05 1.291134e-05 140 114 7.167061e-05 -1.156616e-05 141 114 -6.413319e-05 1.034978e-05 142 114 5.727273e-05 -9.242642e-06 143 114 -5.098776e-05 8.228377e-06 144 114 4.519256e-05 -7.293151e-06 145 114 -3.981401e-05 6.425164e-06 146 114 3.478917e-05 -5.614257e-06 147 114 -3.00633e-05 4.851599e-06 148 114 2.558831e-05 -4.129428e-06 149 114 -2.132146e-05 3.440846e-06 150 114 1.722429e-05 -2.779647e-06 151 114 -1.326172e-05 2.14017e-06 152 114 9.401297e-06 -1.517176e-06 153 114 -5.612495e-06 9.057414e-07 154 114 1.866144e-06 -3.011573e-07 155 114 1.866144e-06 -3.011573e-07 156 114 -5.612495e-06 9.057414e-07 157 114 9.401297e-06 -1.517176e-06 158 114 -1.326172e-05 2.14017e-06 159 114 1.722429e-05 -2.779647e-06 160 114 -2.132146e-05 3.440846e-06 161 114 2.558831e-05 -4.129428e-06 195 114 0.0005940177 4.503586e-05 34 115 0.0006092779 4.649497e-05 81 115 2.558831e-05 -4.129428e-06 82 115 -3.00633e-05 4.851599e-06 83 115 3.478917e-05 -5.614257e-06 84 115 -3.981401e-05 6.425164e-06 85 115 4.519256e-05 -7.293151e-06 86 115 -5.098776e-05 8.228377e-06 87 115 5.727273e-05 -9.242642e-06 88 115 -6.413319e-05 1.034978e-05 89 115 7.167061e-05 -1.156616e-05 90 115 -8.000611e-05 1.291134e-05 91 115 8.928565e-05 -1.440887e-05 92 115 -9.968672e-05 1.608739e-05 93 115 0.0001114272 -1.798207e-05 94 115 -0.0001247774 2.013652e-05 95 115 0.000140076 -2.26054e-05 96 115 -0.0001577525 2.545802e-05 97 115 0.0001783582 -2.878335e-05 98 115 -0.0002026106 3.26972e-05 99 115 0.0002314578 -3.735254e-05 100 115 -0.0002661734 4.295492e-05 101 115 0.0003085011 -4.978574e-05 102 115 -0.0003608797 5.823857e-05 103 115 0.0004268045 -6.887749e-05 104 115 -0.0005114288 8.253411e-05 105 115 0.0006226054 -0.0001004757 106 115 -0.0007727812 0.000124711 107 115 0.0009826448 -0.0001585787 108 115 -0.001288661 0.0002079635 109 115 0.001760065 -0.0002840383 110 115 -0.002541777 0.0004101906 111 115 0.003980742 -0.0006424099 112 115 -0.007089509 0.001144101 113 115 0.01597157 -0.002577484 114 115 -0.06393453 0.01031772 115 115 -0.03748474 -0.02574174 116 115 -0.06393453 0.01031772 117 115 0.01597157 -0.002577484 118 115 -0.007089509 0.001144101 119 115 0.003980742 -0.0006424099 120 115 -0.002541777 0.0004101906 121 115 0.001760065 -0.0002840383 122 115 -0.001288661 0.0002079635 123 115 0.0009826448 -0.0001585787 124 115 -0.0007727812 0.000124711 125 115 0.0006226054 -0.0001004757 126 115 -0.0005114288 8.253411e-05 127 115 0.0004268045 -6.887749e-05 128 115 -0.0003608797 5.823857e-05 129 115 0.0003085011 -4.978574e-05 130 115 -0.0002661734 4.295492e-05 131 115 0.0002314578 -3.735254e-05 132 115 -0.0002026106 3.26972e-05 133 115 0.0001783582 -2.878335e-05 134 115 -0.0001577525 2.545802e-05 135 115 0.000140076 -2.26054e-05 136 115 -0.0001247774 2.013652e-05 137 115 0.0001114272 -1.798207e-05 138 115 -9.968672e-05 1.608739e-05 139 115 8.928565e-05 -1.440887e-05 140 115 -8.000611e-05 1.291134e-05 141 115 7.167061e-05 -1.156616e-05 142 115 -6.413319e-05 1.034978e-05 143 115 5.727273e-05 -9.242642e-06 144 115 -5.098776e-05 8.228377e-06 145 115 4.519256e-05 -7.293151e-06 146 115 -3.981401e-05 6.425164e-06 147 115 3.478917e-05 -5.614257e-06 148 115 -3.00633e-05 4.851599e-06 149 115 2.558831e-05 -4.129428e-06 150 115 -2.132146e-05 3.440846e-06 151 115 1.722429e-05 -2.779647e-06 152 115 -1.326172e-05 2.14017e-06 153 115 9.401297e-06 -1.517176e-06 154 115 -5.612495e-06 9.057414e-07 155 115 1.866144e-06 -3.011573e-07 156 115 1.866144e-06 -3.011573e-07 157 115 -5.612495e-06 9.057414e-07 158 115 9.401297e-06 -1.517176e-06 159 115 -1.326172e-05 2.14017e-06 160 115 1.722429e-05 -2.779647e-06 161 115 -2.132146e-05 3.440846e-06 196 115 0.0006092779 4.649497e-05 35 116 0.0006246159 4.796785e-05 81 116 -2.132146e-05 3.440846e-06 82 116 2.558831e-05 -4.129428e-06 83 116 -3.00633e-05 4.851599e-06 84 116 3.478917e-05 -5.614257e-06 85 116 -3.981401e-05 6.425164e-06 86 116 4.519256e-05 -7.293151e-06 87 116 -5.098776e-05 8.228377e-06 88 116 5.727273e-05 -9.242642e-06 89 116 -6.413319e-05 1.034978e-05 90 116 7.167061e-05 -1.156616e-05 91 116 -8.000611e-05 1.291134e-05 92 116 8.928565e-05 -1.440887e-05 93 116 -9.968672e-05 1.608739e-05 94 116 0.0001114272 -1.798207e-05 95 116 -0.0001247774 2.013652e-05 96 116 0.000140076 -2.26054e-05 97 116 -0.0001577525 2.545802e-05 98 116 0.0001783582 -2.878335e-05 99 116 -0.0002026106 3.26972e-05 100 116 0.0002314578 -3.735254e-05 101 116 -0.0002661734 4.295492e-05 102 116 0.0003085011 -4.978574e-05 103 116 -0.0003608797 5.823857e-05 104 116 0.0004268045 -6.887749e-05 105 116 -0.0005114288 8.253411e-05 106 116 0.0006226054 -0.0001004757 107 116 -0.0007727812 0.000124711 108 116 0.0009826448 -0.0001585787 109 116 -0.001288661 0.0002079635 110 116 0.001760065 -0.0002840383 111 116 -0.002541777 0.0004101906 112 116 0.003980742 -0.0006424099 113 116 -0.007089509 0.001144101 114 116 0.01597157 -0.002577484 115 116 -0.06393453 0.01031772 116 116 -0.0402022 -0.0250955 117 116 -0.06393453 0.01031772 118 116 0.01597157 -0.002577484 119 116 -0.007089509 0.001144101 120 116 0.003980742 -0.0006424099 121 116 -0.002541777 0.0004101906 122 116 0.001760065 -0.0002840383 123 116 -0.001288661 0.0002079635 124 116 0.0009826448 -0.0001585787 125 116 -0.0007727812 0.000124711 126 116 0.0006226054 -0.0001004757 127 116 -0.0005114288 8.253411e-05 128 116 0.0004268045 -6.887749e-05 129 116 -0.0003608797 5.823857e-05 130 116 0.0003085011 -4.978574e-05 131 116 -0.0002661734 4.295492e-05 132 116 0.0002314578 -3.735254e-05 133 116 -0.0002026106 3.26972e-05 134 116 0.0001783582 -2.878335e-05 135 116 -0.0001577525 2.545802e-05 136 116 0.000140076 -2.26054e-05 137 116 -0.0001247774 2.013652e-05 138 116 0.0001114272 -1.798207e-05 139 116 -9.968672e-05 1.608739e-05 140 116 8.928565e-05 -1.440887e-05 141 116 -8.000611e-05 1.291134e-05 142 116 7.167061e-05 -1.156616e-05 143 116 -6.413319e-05 1.034978e-05 144 116 5.727273e-05 -9.242642e-06 145 116 -5.098776e-05 8.228377e-06 146 116 4.519256e-05 -7.293151e-06 147 116 -3.981401e-05 6.425164e-06 148 116 3.478917e-05 -5.614257e-06 149 116 -3.00633e-05 4.851599e-06 150 116 2.558831e-05 -4.129428e-06 151 116 -2.132146e-05 3.440846e-06 152 116 1.722429e-05 -2.779647e-06 153 116 -1.326172e-05 2.14017e-06 154 116 9.401297e-06 -1.517176e-06 155 116 -5.612495e-06 9.057414e-07 156 116 1.866144e-06 -3.011573e-07 157 116 1.866144e-06 -3.011573e-07 158 116 -5.612495e-06 9.057414e-07 159 116 9.401297e-06 -1.517176e-06 160 116 -1.326172e-05 2.14017e-06 161 116 1.722429e-05 -2.779647e-06 197 116 0.0006246159 4.796785e-05 36 117 0.0006400319 4.945462e-05 81 117 1.722429e-05 -2.779647e-06 82 117 -2.132146e-05 3.440846e-06 83 117 2.558831e-05 -4.129428e-06 84 117 -3.00633e-05 4.851599e-06 85 117 3.478917e-05 -5.614257e-06 86 117 -3.981401e-05 6.425164e-06 87 117 4.519256e-05 -7.293151e-06 88 117 -5.098776e-05 8.228377e-06 89 117 5.727273e-05 -9.242642e-06 90 117 -6.413319e-05 1.034978e-05 91 117 7.167061e-05 -1.156616e-05 92 117 -8.000611e-05 1.291134e-05 93 117 8.928565e-05 -1.440887e-05 94 117 -9.968672e-05 1.608739e-05 95 117 0.0001114272 -1.798207e-05 96 117 -0.0001247774 2.013652e-05 97 117 0.000140076 -2.26054e-05 98 117 -0.0001577525 2.545802e-05 99 117 0.0001783582 -2.878335e-05 100 117 -0.0002026106 3.26972e-05 101 117 0.0002314578 -3.735254e-05 102 117 -0.0002661734 4.295492e-05 103 117 0.0003085011 -4.978574e-05 104 117 -0.0003608797 5.823857e-05 105 117 0.0004268045 -6.887749e-05 106 117 -0.0005114288 8.253411e-05 107 117 0.0006226054 -0.0001004757 108 117 -0.0007727812 0.000124711 109 117 0.0009826448 -0.0001585787 110 117 -0.001288661 0.0002079635 111 117 0.001760065 -0.0002840383 112 117 -0.002541777 0.0004101906 113 117 0.003980742 -0.0006424099 114 117 -0.007089509 0.001144101 115 117 0.01597157 -0.002577484 116 117 -0.06393453 0.01031772 117 117 -0.04265367 -0.02449727 118 117 -0.06393453 0.01031772 119 117 0.01597157 -0.002577484 120 117 -0.007089509 0.001144101 121 117 0.003980742 -0.0006424099 122 117 -0.002541777 0.0004101906 123 117 0.001760065 -0.0002840383 124 117 -0.001288661 0.0002079635 125 117 0.0009826448 -0.0001585787 126 117 -0.0007727812 0.000124711 127 117 0.0006226054 -0.0001004757 128 117 -0.0005114288 8.253411e-05 129 117 0.0004268045 -6.887749e-05 130 117 -0.0003608797 5.823857e-05 131 117 0.0003085011 -4.978574e-05 132 117 -0.0002661734 4.295492e-05 133 117 0.0002314578 -3.735254e-05 134 117 -0.0002026106 3.26972e-05 135 117 0.0001783582 -2.878335e-05 136 117 -0.0001577525 2.545802e-05 137 117 0.000140076 -2.26054e-05 138 117 -0.0001247774 2.013652e-05 139 117 0.0001114272 -1.798207e-05 140 117 -9.968672e-05 1.608739e-05 141 117 8.928565e-05 -1.440887e-05 142 117 -8.000611e-05 1.291134e-05 143 117 7.167061e-05 -1.156616e-05 144 117 -6.413319e-05 1.034978e-05 145 117 5.727273e-05 -9.242642e-06 146 117 -5.098776e-05 8.228377e-06 147 117 4.519256e-05 -7.293151e-06 148 117 -3.981401e-05 6.425164e-06 149 117 3.478917e-05 -5.614257e-06 150 117 -3.00633e-05 4.851599e-06 151 117 2.558831e-05 -4.129428e-06 152 117 -2.132146e-05 3.440846e-06 153 117 1.722429e-05 -2.779647e-06 154 117 -1.326172e-05 2.14017e-06 155 117 9.401297e-06 -1.517176e-06 156 117 -5.612495e-06 9.057414e-07 157 117 1.866144e-06 -3.011573e-07 158 117 1.866144e-06 -3.011573e-07 159 117 -5.612495e-06 9.057414e-07 160 117 9.401297e-06 -1.517176e-06 161 117 -1.326172e-05 2.14017e-06 198 117 0.0006400319 4.945462e-05 37 118 0.0006555264 5.095537e-05 81 118 -1.326172e-05 2.14017e-06 82 118 1.722429e-05 -2.779647e-06 83 118 -2.132146e-05 3.440846e-06 84 118 2.558831e-05 -4.129428e-06 85 118 -3.00633e-05 4.851599e-06 86 118 3.478917e-05 -5.614257e-06 87 118 -3.981401e-05 6.425164e-06 88 118 4.519256e-05 -7.293151e-06 89 118 -5.098776e-05 8.228377e-06 90 118 5.727273e-05 -9.242642e-06 91 118 -6.413319e-05 1.034978e-05 92 118 7.167061e-05 -1.156616e-05 93 118 -8.000611e-05 1.291134e-05 94 118 8.928565e-05 -1.440887e-05 95 118 -9.968672e-05 1.608739e-05 96 118 0.0001114272 -1.798207e-05 97 118 -0.0001247774 2.013652e-05 98 118 0.000140076 -2.26054e-05 99 118 -0.0001577525 2.545802e-05 100 118 0.0001783582 -2.878335e-05 101 118 -0.0002026106 3.26972e-05 102 118 0.0002314578 -3.735254e-05 103 118 -0.0002661734 4.295492e-05 104 118 0.0003085011 -4.978574e-05 105 118 -0.0003608797 5.823857e-05 106 118 0.0004268045 -6.887749e-05 107 118 -0.0005114288 8.253411e-05 108 118 0.0006226054 -0.0001004757 109 118 -0.0007727812 0.000124711 110 118 0.0009826448 -0.0001585787 111 118 -0.001288661 0.0002079635 112 118 0.001760065 -0.0002840383 113 118 -0.002541777 0.0004101906 114 118 0.003980742 -0.0006424099 115 118 -0.007089509 0.001144101 116 118 0.01597157 -0.002577484 117 118 -0.06393453 0.01031772 118 118 -0.04486664 -0.02394331 119 118 -0.06393453 0.01031772 120 118 0.01597157 -0.002577484 121 118 -0.007089509 0.001144101 122 118 0.003980742 -0.0006424099 123 118 -0.002541777 0.0004101906 124 118 0.001760065 -0.0002840383 125 118 -0.001288661 0.0002079635 126 118 0.0009826448 -0.0001585787 127 118 -0.0007727812 0.000124711 128 118 0.0006226054 -0.0001004757 129 118 -0.0005114288 8.253411e-05 130 118 0.0004268045 -6.887749e-05 131 118 -0.0003608797 5.823857e-05 132 118 0.0003085011 -4.978574e-05 133 118 -0.0002661734 4.295492e-05 134 118 0.0002314578 -3.735254e-05 135 118 -0.0002026106 3.26972e-05 136 118 0.0001783582 -2.878335e-05 137 118 -0.0001577525 2.545802e-05 138 118 0.000140076 -2.26054e-05 139 118 -0.0001247774 2.013652e-05 140 118 0.0001114272 -1.798207e-05 141 118 -9.968672e-05 1.608739e-05 142 118 8.928565e-05 -1.440887e-05 143 118 -8.000611e-05 1.291134e-05 144 118 7.167061e-05 -1.156616e-05 145 118 -6.413319e-05 1.034978e-05 146 118 5.727273e-05 -9.242642e-06 147 118 -5.098776e-05 8.228377e-06 148 118 4.519256e-05 -7.293151e-06 149 118 -3.981401e-05 6.425164e-06 150 118 3.478917e-05 -5.614257e-06 151 118 -3.00633e-05 4.851599e-06 152 118 2.558831e-05 -4.129428e-06 153 118 -2.132146e-05 3.440846e-06 154 118 1.722429e-05 -2.779647e-06 155 118 -1.326172e-05 2.14017e-06 156 118 9.401297e-06 -1.517176e-06 157 118 -5.612495e-06 9.057414e-07 158 118 1.866144e-06 -3.011573e-07 159 118 1.866144e-06 -3.011573e-07 160 118 -5.612495e-06 9.057414e-07 161 118 9.401297e-06 -1.517176e-06 199 118 0.0006555264 5.095537e-05 38 119 0.0006710998 5.247021e-05 81 119 9.401297e-06 -1.517176e-06 82 119 -1.326172e-05 2.14017e-06 83 119 1.722429e-05 -2.779647e-06 84 119 -2.132146e-05 3.440846e-06 85 119 2.558831e-05 -4.129428e-06 86 119 -3.00633e-05 4.851599e-06 87 119 3.478917e-05 -5.614257e-06 88 119 -3.981401e-05 6.425164e-06 89 119 4.519256e-05 -7.293151e-06 90 119 -5.098776e-05 8.228377e-06 91 119 5.727273e-05 -9.242642e-06 92 119 -6.413319e-05 1.034978e-05 93 119 7.167061e-05 -1.156616e-05 94 119 -8.000611e-05 1.291134e-05 95 119 8.928565e-05 -1.440887e-05 96 119 -9.968672e-05 1.608739e-05 97 119 0.0001114272 -1.798207e-05 98 119 -0.0001247774 2.013652e-05 99 119 0.000140076 -2.26054e-05 100 119 -0.0001577525 2.545802e-05 101 119 0.0001783582 -2.878335e-05 102 119 -0.0002026106 3.26972e-05 103 119 0.0002314578 -3.735254e-05 104 119 -0.0002661734 4.295492e-05 105 119 0.0003085011 -4.978574e-05 106 119 -0.0003608797 5.823857e-05 107 119 0.0004268045 -6.887749e-05 108 119 -0.0005114288 8.253411e-05 109 119 0.0006226054 -0.0001004757 110 119 -0.0007727812 0.000124711 111 119 0.0009826448 -0.0001585787 112 119 -0.001288661 0.0002079635 113 119 0.001760065 -0.0002840383 114 119 -0.002541777 0.0004101906 115 119 0.003980742 -0.0006424099 116 119 -0.007089509 0.001144101 117 119 0.01597157 -0.002577484 118 119 -0.06393453 0.01031772 119 119 -0.04686551 -0.02343019 120 119 -0.06393453 0.01031772 121 119 0.01597157 -0.002577484 122 119 -0.007089509 0.001144101 123 119 0.003980742 -0.0006424099 124 119 -0.002541777 0.0004101906 125 119 0.001760065 -0.0002840383 126 119 -0.001288661 0.0002079635 127 119 0.0009826448 -0.0001585787 128 119 -0.0007727812 0.000124711 129 119 0.0006226054 -0.0001004757 130 119 -0.0005114288 8.253411e-05 131 119 0.0004268045 -6.887749e-05 132 119 -0.0003608797 5.823857e-05 133 119 0.0003085011 -4.978574e-05 134 119 -0.0002661734 4.295492e-05 135 119 0.0002314578 -3.735254e-05 136 119 -0.0002026106 3.26972e-05 137 119 0.0001783582 -2.878335e-05 138 119 -0.0001577525 2.545802e-05 139 119 0.000140076 -2.26054e-05 140 119 -0.0001247774 2.013652e-05 141 119 0.0001114272 -1.798207e-05 142 119 -9.968672e-05 1.608739e-05 143 119 8.928565e-05 -1.440887e-05 144 119 -8.000611e-05 1.291134e-05 145 119 7.167061e-05 -1.156616e-05 146 119 -6.413319e-05 1.034978e-05 147 119 5.727273e-05 -9.242642e-06 148 119 -5.098776e-05 8.228377e-06 149 119 4.519256e-05 -7.293151e-06 150 119 -3.981401e-05 6.425164e-06 151 119 3.478917e-05 -5.614257e-06 152 119 -3.00633e-05 4.851599e-06 153 119 2.558831e-05 -4.129428e-06 154 119 -2.132146e-05 3.440846e-06 155 119 1.722429e-05 -2.779647e-06 156 119 -1.326172e-05 2.14017e-06 157 119 9.401297e-06 -1.517176e-06 158 119 -5.612495e-06 9.057414e-07 159 119 1.866144e-06 -3.011573e-07 160 119 1.866144e-06 -3.011573e-07 161 119 -5.612495e-06 9.057414e-07 200 119 0.0006710998 5.247021e-05 39 120 0.0006867524 5.399924e-05 81 120 -5.612495e-06 9.057414e-07 82 120 9.401297e-06 -1.517176e-06 83 120 -1.326172e-05 2.14017e-06 84 120 1.722429e-05 -2.779647e-06 85 120 -2.132146e-05 3.440846e-06 86 120 2.558831e-05 -4.129428e-06 87 120 -3.00633e-05 4.851599e-06 88 120 3.478917e-05 -5.614257e-06 89 120 -3.981401e-05 6.425164e-06 90 120 4.519256e-05 -7.293151e-06 91 120 -5.098776e-05 8.228377e-06 92 120 5.727273e-05 -9.242642e-06 93 120 -6.413319e-05 1.034978e-05 94 120 7.167061e-05 -1.156616e-05 95 120 -8.000611e-05 1.291134e-05 96 120 8.928565e-05 -1.440887e-05 97 120 -9.968672e-05 1.608739e-05 98 120 0.0001114272 -1.798207e-05 99 120 -0.0001247774 2.013652e-05 100 120 0.000140076 -2.26054e-05 101 120 -0.0001577525 2.545802e-05 102 120 0.0001783582 -2.878335e-05 103 120 -0.0002026106 3.26972e-05 104 120 0.0002314578 -3.735254e-05 105 120 -0.0002661734 4.295492e-05 106 120 0.0003085011 -4.978574e-05 107 120 -0.0003608797 5.823857e-05 108 120 0.0004268045 -6.887749e-05 109 120 -0.0005114288 8.253411e-05 110 120 0.0006226054 -0.0001004757 111 120 -0.0007727812 0.000124711 112 120 0.0009826448 -0.0001585787 113 120 -0.001288661 0.0002079635 114 120 0.001760065 -0.0002840383 115 120 -0.002541777 0.0004101906 116 120 0.003980742 -0.0006424099 117 120 -0.007089509 0.001144101 118 120 0.01597157 -0.002577484 119 120 -0.06393453 0.01031772 120 120 -0.04867201 -0.02295479 121 120 -0.06393453 0.01031772 122 120 0.01597157 -0.002577484 123 120 -0.007089509 0.001144101 124 120 0.003980742 -0.0006424099 125 120 -0.002541777 0.0004101906 126 120 0.001760065 -0.0002840383 127 120 -0.001288661 0.0002079635 128 120 0.0009826448 -0.0001585787 129 120 -0.0007727812 0.000124711 130 120 0.0006226054 -0.0001004757 131 120 -0.0005114288 8.253411e-05 132 120 0.0004268045 -6.887749e-05 133 120 -0.0003608797 5.823857e-05 134 120 0.0003085011 -4.978574e-05 135 120 -0.0002661734 4.295492e-05 136 120 0.0002314578 -3.735254e-05 137 120 -0.0002026106 3.26972e-05 138 120 0.0001783582 -2.878335e-05 139 120 -0.0001577525 2.545802e-05 140 120 0.000140076 -2.26054e-05 141 120 -0.0001247774 2.013652e-05 142 120 0.0001114272 -1.798207e-05 143 120 -9.968672e-05 1.608739e-05 144 120 8.928565e-05 -1.440887e-05 145 120 -8.000611e-05 1.291134e-05 146 120 7.167061e-05 -1.156616e-05 147 120 -6.413319e-05 1.034978e-05 148 120 5.727273e-05 -9.242642e-06 149 120 -5.098776e-05 8.228377e-06 150 120 4.519256e-05 -7.293151e-06 151 120 -3.981401e-05 6.425164e-06 152 120 3.478917e-05 -5.614257e-06 153 120 -3.00633e-05 4.851599e-06 154 120 2.558831e-05 -4.129428e-06 155 120 -2.132146e-05 3.440846e-06 156 120 1.722429e-05 -2.779647e-06 157 120 -1.326172e-05 2.14017e-06 158 120 9.401297e-06 -1.517176e-06 159 120 -5.612495e-06 9.057414e-07 160 120 1.866144e-06 -3.011573e-07 161 120 1.866144e-06 -3.011573e-07 201 120 0.0006867524 5.399924e-05 40 121 0.0007024847 5.554257e-05 81 121 1.866144e-06 -3.011573e-07 82 121 -5.612495e-06 9.057414e-07 83 121 9.401297e-06 -1.517176e-06 84 121 -1.326172e-05 2.14017e-06 85 121 1.722429e-05 -2.779647e-06 86 121 -2.132146e-05 3.440846e-06 87 121 2.558831e-05 -4.129428e-06 88 121 -3.00633e-05 4.851599e-06 89 121 3.478917e-05 -5.614257e-06 90 121 -3.981401e-05 6.425164e-06 91 121 4.519256e-05 -7.293151e-06 92 121 -5.098776e-05 8.228377e-06 93 121 5.727273e-05 -9.242642e-06 94 121 -6.413319e-05 1.034978e-05 95 121 7.167061e-05 -1.156616e-05 96 121 -8.000611e-05 1.291134e-05 97 121 8.928565e-05 -1.440887e-05 98 121 -9.968672e-05 1.608739e-05 99 121 0.0001114272 -1.798207e-05 100 121 -0.0001247774 2.013652e-05 101 121 0.000140076 -2.26054e-05 102 121 -0.0001577525 2.545802e-05 103 121 0.0001783582 -2.878335e-05 104 121 -0.0002026106 3.26972e-05 105 121 0.0002314578 -3.735254e-05 106 121 -0.0002661734 4.295492e-05 107 121 0.0003085011 -4.978574e-05 108 121 -0.0003608797 5.823857e-05 109 121 0.0004268045 -6.887749e-05 110 121 -0.0005114288 8.253411e-05 111 121 0.0006226054 -0.0001004757 112 121 -0.0007727812 0.000124711 113 121 0.0009826448 -0.0001585787 114 121 -0.001288661 0.0002079635 115 121 0.001760065 -0.0002840383 116 121 -0.002541777 0.0004101906 117 121 0.003980742 -0.0006424099 118 121 -0.007089509 0.001144101 119 121 0.01597157 -0.002577484 120 121 -0.06393453 0.01031772 121 121 -0.05030545 -0.02251421 122 121 -0.06393453 0.01031772 123 121 0.01597157 -0.002577484 124 121 -0.007089509 0.001144101 125 121 0.003980742 -0.0006424099 126 121 -0.002541777 0.0004101906 127 121 0.001760065 -0.0002840383 128 121 -0.001288661 0.0002079635 129 121 0.0009826448 -0.0001585787 130 121 -0.0007727812 0.000124711 131 121 0.0006226054 -0.0001004757 132 121 -0.0005114288 8.253411e-05 133 121 0.0004268045 -6.887749e-05 134 121 -0.0003608797 5.823857e-05 135 121 0.0003085011 -4.978574e-05 136 121 -0.0002661734 4.295492e-05 137 121 0.0002314578 -3.735254e-05 138 121 -0.0002026106 3.26972e-05 139 121 0.0001783582 -2.878335e-05 140 121 -0.0001577525 2.545802e-05 141 121 0.000140076 -2.26054e-05 142 121 -0.0001247774 2.013652e-05 143 121 0.0001114272 -1.798207e-05 144 121 -9.968672e-05 1.608739e-05 145 121 8.928565e-05 -1.440887e-05 146 121 -8.000611e-05 1.291134e-05 147 121 7.167061e-05 -1.156616e-05 148 121 -6.413319e-05 1.034978e-05 149 121 5.727273e-05 -9.242642e-06 150 121 -5.098776e-05 8.228377e-06 151 121 4.519256e-05 -7.293151e-06 152 121 -3.981401e-05 6.425164e-06 153 121 3.478917e-05 -5.614257e-06 154 121 -3.00633e-05 4.851599e-06 155 121 2.558831e-05 -4.129428e-06 156 121 -2.132146e-05 3.440846e-06 157 121 1.722429e-05 -2.779647e-06 158 121 -1.326172e-05 2.14017e-06 159 121 9.401297e-06 -1.517176e-06 160 121 -5.612495e-06 9.057414e-07 161 121 1.866144e-06 -3.011573e-07 202 121 0.0007024847 5.554257e-05 41 122 0.000718297 5.71003e-05 81 122 1.866144e-06 -3.011573e-07 82 122 1.866144e-06 -3.011573e-07 83 122 -5.612495e-06 9.057414e-07 84 122 9.401297e-06 -1.517176e-06 85 122 -1.326172e-05 2.14017e-06 86 122 1.722429e-05 -2.779647e-06 87 122 -2.132146e-05 3.440846e-06 88 122 2.558831e-05 -4.129428e-06 89 122 -3.00633e-05 4.851599e-06 90 122 3.478917e-05 -5.614257e-06 91 122 -3.981401e-05 6.425164e-06 92 122 4.519256e-05 -7.293151e-06 93 122 -5.098776e-05 8.228377e-06 94 122 5.727273e-05 -9.242642e-06 95 122 -6.413319e-05 1.034978e-05 96 122 7.167061e-05 -1.156616e-05 97 122 -8.000611e-05 1.291134e-05 98 122 8.928565e-05 -1.440887e-05 99 122 -9.968672e-05 1.608739e-05 100 122 0.0001114272 -1.798207e-05 101 122 -0.0001247774 2.013652e-05 102 122 0.000140076 -2.26054e-05 103 122 -0.0001577525 2.545802e-05 104 122 0.0001783582 -2.878335e-05 105 122 -0.0002026106 3.26972e-05 106 122 0.0002314578 -3.735254e-05 107 122 -0.0002661734 4.295492e-05 108 122 0.0003085011 -4.978574e-05 109 122 -0.0003608797 5.823857e-05 110 122 0.0004268045 -6.887749e-05 111 122 -0.0005114288 8.253411e-05 112 122 0.0006226054 -0.0001004757 113 122 -0.0007727812 0.000124711 114 122 0.0009826448 -0.0001585787 115 122 -0.001288661 0.0002079635 116 122 0.001760065 -0.0002840383 117 122 -0.002541777 0.0004101906 118 122 0.003980742 -0.0006424099 119 122 -0.007089509 0.001144101 120 122 0.01597157 -0.002577484 121 122 -0.06393453 0.01031772 122 122 -0.0517831 -0.02210584 123 122 -0.06393453 0.01031772 124 122 0.01597157 -0.002577484 125 122 -0.007089509 0.001144101 126 122 0.003980742 -0.0006424099 127 122 -0.002541777 0.0004101906 128 122 0.001760065 -0.0002840383 129 122 -0.001288661 0.0002079635 130 122 0.0009826448 -0.0001585787 131 122 -0.0007727812 0.000124711 132 122 0.0006226054 -0.0001004757 133 122 -0.0005114288 8.253411e-05 134 122 0.0004268045 -6.887749e-05 135 122 -0.0003608797 5.823857e-05 136 122 0.0003085011 -4.978574e-05 137 122 -0.0002661734 4.295492e-05 138 122 0.0002314578 -3.735254e-05 139 122 -0.0002026106 3.26972e-05 140 122 0.0001783582 -2.878335e-05 141 122 -0.0001577525 2.545802e-05 142 122 0.000140076 -2.26054e-05 143 122 -0.0001247774 2.013652e-05 144 122 0.0001114272 -1.798207e-05 145 122 -9.968672e-05 1.608739e-05 146 122 8.928565e-05 -1.440887e-05 147 122 -8.000611e-05 1.291134e-05 148 122 7.167061e-05 -1.156616e-05 149 122 -6.413319e-05 1.034978e-05 150 122 5.727273e-05 -9.242642e-06 151 122 -5.098776e-05 8.228377e-06 152 122 4.519256e-05 -7.293151e-06 153 122 -3.981401e-05 6.425164e-06 154 122 3.478917e-05 -5.614257e-06 155 122 -3.00633e-05 4.851599e-06 156 122 2.558831e-05 -4.129428e-06 157 122 -2.132146e-05 3.440846e-06 158 122 1.722429e-05 -2.779647e-06 159 122 -1.326172e-05 2.14017e-06 160 122 9.401297e-06 -1.517176e-06 161 122 -5.612495e-06 9.057414e-07 203 122 0.000718297 5.71003e-05 42 123 0.0007341899 5.867254e-05 81 123 -5.612495e-06 9.057414e-07 82 123 1.866144e-06 -3.011573e-07 83 123 1.866144e-06 -3.011573e-07 84 123 -5.612495e-06 9.057414e-07 85 123 9.401297e-06 -1.517176e-06 86 123 -1.326172e-05 2.14017e-06 87 123 1.722429e-05 -2.779647e-06 88 123 -2.132146e-05 3.440846e-06 89 123 2.558831e-05 -4.129428e-06 90 123 -3.00633e-05 4.851599e-06 91 123 3.478917e-05 -5.614257e-06 92 123 -3.981401e-05 6.425164e-06 93 123 4.519256e-05 -7.293151e-06 94 123 -5.098776e-05 8.228377e-06 95 123 5.727273e-05 -9.242642e-06 96 123 -6.413319e-05 1.034978e-05 97 123 7.167061e-05 -1.156616e-05 98 123 -8.000611e-05 1.291134e-05 99 123 8.928565e-05 -1.440887e-05 100 123 -9.968672e-05 1.608739e-05 101 123 0.0001114272 -1.798207e-05 102 123 -0.0001247774 2.013652e-05 103 123 0.000140076 -2.26054e-05 104 123 -0.0001577525 2.545802e-05 105 123 0.0001783582 -2.878335e-05 106 123 -0.0002026106 3.26972e-05 107 123 0.0002314578 -3.735254e-05 108 123 -0.0002661734 4.295492e-05 109 123 0.0003085011 -4.978574e-05 110 123 -0.0003608797 5.823857e-05 111 123 0.0004268045 -6.887749e-05 112 123 -0.0005114288 8.253411e-05 113 123 0.0006226054 -0.0001004757 114 123 -0.0007727812 0.000124711 115 123 0.0009826448 -0.0001585787 116 123 -0.001288661 0.0002079635 117 123 0.001760065 -0.0002840383 118 123 -0.002541777 0.0004101906 119 123 0.003980742 -0.0006424099 120 123 -0.007089509 0.001144101 121 123 0.01597157 -0.002577484 122 123 -0.06393453 0.01031772 123 123 -0.05312037 -0.02172727 124 123 -0.06393453 0.01031772 125 123 0.01597157 -0.002577484 126 123 -0.007089509 0.001144101 127 123 0.003980742 -0.0006424099 128 123 -0.002541777 0.0004101906 129 123 0.001760065 -0.0002840383 130 123 -0.001288661 0.0002079635 131 123 0.0009826448 -0.0001585787 132 123 -0.0007727812 0.000124711 133 123 0.0006226054 -0.0001004757 134 123 -0.0005114288 8.253411e-05 135 123 0.0004268045 -6.887749e-05 136 123 -0.0003608797 5.823857e-05 137 123 0.0003085011 -4.978574e-05 138 123 -0.0002661734 4.295492e-05 139 123 0.0002314578 -3.735254e-05 140 123 -0.0002026106 3.26972e-05 141 123 0.0001783582 -2.878335e-05 142 123 -0.0001577525 2.545802e-05 143 123 0.000140076 -2.26054e-05 144 123 -0.0001247774 2.013652e-05 145 123 0.0001114272 -1.798207e-05 146 123 -9.968672e-05 1.608739e-05 147 123 8.928565e-05 -1.440887e-05 148 123 -8.000611e-05 1.291134e-05 149 123 7.167061e-05 -1.156616e-05 150 123 -6.413319e-05 1.034978e-05 151 123 5.727273e-05 -9.242642e-06 152 123 -5.098776e-05 8.228377e-06 153 123 4.519256e-05 -7.293151e-06 154 123 -3.981401e-05 6.425164e-06 155 123 3.478917e-05 -5.614257e-06 156 123 -3.00633e-05 4.851599e-06 157 123 2.558831e-05 -4.129428e-06 158 123 -2.132146e-05 3.440846e-06 159 123 1.722429e-05 -2.779647e-06 160 123 -1.326172e-05 2.14017e-06 161 123 9.401297e-06 -1.517176e-06 204 123 0.0007341899 5.867254e-05 43 124 0.0007501636 6.025941e-05 81 124 9.401297e-06 -1.517176e-06 82 124 -5.612495e-06 9.057414e-07 83 124 1.866144e-06 -3.011573e-07 84 124 1.866144e-06 -3.011573e-07 85 124 -5.612495e-06 9.057414e-07 86 124 9.401297e-06 -1.517176e-06 87 124 -1.326172e-05 2.14017e-06 88 124 1.722429e-05 -2.779647e-06 89 124 -2.132146e-05 3.440846e-06 90 124 2.558831e-05 -4.129428e-06 91 124 -3.00633e-05 4.851599e-06 92 124 3.478917e-05 -5.614257e-06 93 124 -3.981401e-05 6.425164e-06 94 124 4.519256e-05 -7.293151e-06 95 124 -5.098776e-05 8.228377e-06 96 124 5.727273e-05 -9.242642e-06 97 124 -6.413319e-05 1.034978e-05 98 124 7.167061e-05 -1.156616e-05 99 124 -8.000611e-05 1.291134e-05 100 124 8.928565e-05 -1.440887e-05 101 124 -9.968672e-05 1.608739e-05 102 124 0.0001114272 -1.798207e-05 103 124 -0.0001247774 2.013652e-05 104 124 0.000140076 -2.26054e-05 105 124 -0.0001577525 2.545802e-05 106 124 0.0001783582 -2.878335e-05 107 124 -0.0002026106 3.26972e-05 108 124 0.0002314578 -3.735254e-05 109 124 -0.0002661734 4.295492e-05 110 124 0.0003085011 -4.978574e-05 111 124 -0.0003608797 5.823857e-05 112 124 0.0004268045 -6.887749e-05 113 124 -0.0005114288 8.253411e-05 114 124 0.0006226054 -0.0001004757 115 124 -0.0007727812 0.000124711 116 124 0.0009826448 -0.0001585787 117 124 -0.001288661 0.0002079635 118 124 0.001760065 -0.0002840383 119 124 -0.002541777 0.0004101906 120 124 0.003980742 -0.0006424099 121 124 -0.007089509 0.001144101 122 124 0.01597157 -0.002577484 123 124 -0.06393453 0.01031772 124 124 -0.05433105 -0.02137626 125 124 -0.06393453 0.01031772 126 124 0.01597157 -0.002577484 127 124 -0.007089509 0.001144101 128 124 0.003980742 -0.0006424099 129 124 -0.002541777 0.0004101906 130 124 0.001760065 -0.0002840383 131 124 -0.001288661 0.0002079635 132 124 0.0009826448 -0.0001585787 133 124 -0.0007727812 0.000124711 134 124 0.0006226054 -0.0001004757 135 124 -0.0005114288 8.253411e-05 136 124 0.0004268045 -6.887749e-05 137 124 -0.0003608797 5.823857e-05 138 124 0.0003085011 -4.978574e-05 139 124 -0.0002661734 4.295492e-05 140 124 0.0002314578 -3.735254e-05 141 124 -0.0002026106 3.26972e-05 142 124 0.0001783582 -2.878335e-05 143 124 -0.0001577525 2.545802e-05 144 124 0.000140076 -2.26054e-05 145 124 -0.0001247774 2.013652e-05 146 124 0.0001114272 -1.798207e-05 147 124 -9.968672e-05 1.608739e-05 148 124 8.928565e-05 -1.440887e-05 149 124 -8.000611e-05 1.291134e-05 150 124 7.167061e-05 -1.156616e-05 151 124 -6.413319e-05 1.034978e-05 152 124 5.727273e-05 -9.242642e-06 153 124 -5.098776e-05 8.228377e-06 154 124 4.519256e-05 -7.293151e-06 155 124 -3.981401e-05 6.425164e-06 156 124 3.478917e-05 -5.614257e-06 157 124 -3.00633e-05 4.851599e-06 158 124 2.558831e-05 -4.129428e-06 159 124 -2.132146e-05 3.440846e-06 160 124 1.722429e-05 -2.779647e-06 161 124 -1.326172e-05 2.14017e-06 205 124 0.0007501636 6.025941e-05 44 125 0.0007662186 6.186099e-05 81 125 -1.326172e-05 2.14017e-06 82 125 9.401297e-06 -1.517176e-06 83 125 -5.612495e-06 9.057414e-07 84 125 1.866144e-06 -3.011573e-07 85 125 1.866144e-06 -3.011573e-07 86 125 -5.612495e-06 9.057414e-07 87 125 9.401297e-06 -1.517176e-06 88 125 -1.326172e-05 2.14017e-06 89 125 1.722429e-05 -2.779647e-06 90 125 -2.132146e-05 3.440846e-06 91 125 2.558831e-05 -4.129428e-06 92 125 -3.00633e-05 4.851599e-06 93 125 3.478917e-05 -5.614257e-06 94 125 -3.981401e-05 6.425164e-06 95 125 4.519256e-05 -7.293151e-06 96 125 -5.098776e-05 8.228377e-06 97 125 5.727273e-05 -9.242642e-06 98 125 -6.413319e-05 1.034978e-05 99 125 7.167061e-05 -1.156616e-05 100 125 -8.000611e-05 1.291134e-05 101 125 8.928565e-05 -1.440887e-05 102 125 -9.968672e-05 1.608739e-05 103 125 0.0001114272 -1.798207e-05 104 125 -0.0001247774 2.013652e-05 105 125 0.000140076 -2.26054e-05 106 125 -0.0001577525 2.545802e-05 107 125 0.0001783582 -2.878335e-05 108 125 -0.0002026106 3.26972e-05 109 125 0.0002314578 -3.735254e-05 110 125 -0.0002661734 4.295492e-05 111 125 0.0003085011 -4.978574e-05 112 125 -0.0003608797 5.823857e-05 113 125 0.0004268045 -6.887749e-05 114 125 -0.0005114288 8.253411e-05 115 125 0.0006226054 -0.0001004757 116 125 -0.0007727812 0.000124711 117 125 0.0009826448 -0.0001585787 118 125 -0.001288661 0.0002079635 119 125 0.001760065 -0.0002840383 120 125 -0.002541777 0.0004101906 121 125 0.003980742 -0.0006424099 122 125 -0.007089509 0.001144101 123 125 0.01597157 -0.002577484 124 125 -0.06393453 0.01031772 125 125 -0.0554275 -0.02105079 126 125 -0.06393453 0.01031772 127 125 0.01597157 -0.002577484 128 125 -0.007089509 0.001144101 129 125 0.003980742 -0.0006424099 130 125 -0.002541777 0.0004101906 131 125 0.001760065 -0.0002840383 132 125 -0.001288661 0.0002079635 133 125 0.0009826448 -0.0001585787 134 125 -0.0007727812 0.000124711 135 125 0.0006226054 -0.0001004757 136 125 -0.0005114288 8.253411e-05 137 125 0.0004268045 -6.887749e-05 138 125 -0.0003608797 5.823857e-05 139 125 0.0003085011 -4.978574e-05 140 125 -0.0002661734 4.295492e-05 141 125 0.0002314578 -3.735254e-05 142 125 -0.0002026106 3.26972e-05 143 125 0.0001783582 -2.878335e-05 144 125 -0.0001577525 2.545802e-05 145 125 0.000140076 -2.26054e-05 146 125 -0.0001247774 2.013652e-05 147 125 0.0001114272 -1.798207e-05 148 125 -9.968672e-05 1.608739e-05 149 125 8.928565e-05 -1.440887e-05 150 125 -8.000611e-05 1.291134e-05 151 125 7.167061e-05 -1.156616e-05 152 125 -6.413319e-05 1.034978e-05 153 125 5.727273e-05 -9.242642e-06 154 125 -5.098776e-05 8.228377e-06 155 125 4.519256e-05 -7.293151e-06 156 125 -3.981401e-05 6.425164e-06 157 125 3.478917e-05 -5.614257e-06 158 125 -3.00633e-05 4.851599e-06 159 125 2.558831e-05 -4.129428e-06 160 125 -2.132146e-05 3.440846e-06 161 125 1.722429e-05 -2.779647e-06 206 125 0.0007662186 6.186099e-05 45 126 0.0007823553 6.347742e-05 81 126 1.722429e-05 -2.779647e-06 82 126 -1.326172e-05 2.14017e-06 83 126 9.401297e-06 -1.517176e-06 84 126 -5.612495e-06 9.057414e-07 85 126 1.866144e-06 -3.011573e-07 86 126 1.866144e-06 -3.011573e-07 87 126 -5.612495e-06 9.057414e-07 88 126 9.401297e-06 -1.517176e-06 89 126 -1.326172e-05 2.14017e-06 90 126 1.722429e-05 -2.779647e-06 91 126 -2.132146e-05 3.440846e-06 92 126 2.558831e-05 -4.129428e-06 93 126 -3.00633e-05 4.851599e-06 94 126 3.478917e-05 -5.614257e-06 95 126 -3.981401e-05 6.425164e-06 96 126 4.519256e-05 -7.293151e-06 97 126 -5.098776e-05 8.228377e-06 98 126 5.727273e-05 -9.242642e-06 99 126 -6.413319e-05 1.034978e-05 100 126 7.167061e-05 -1.156616e-05 101 126 -8.000611e-05 1.291134e-05 102 126 8.928565e-05 -1.440887e-05 103 126 -9.968672e-05 1.608739e-05 104 126 0.0001114272 -1.798207e-05 105 126 -0.0001247774 2.013652e-05 106 126 0.000140076 -2.26054e-05 107 126 -0.0001577525 2.545802e-05 108 126 0.0001783582 -2.878335e-05 109 126 -0.0002026106 3.26972e-05 110 126 0.0002314578 -3.735254e-05 111 126 -0.0002661734 4.295492e-05 112 126 0.0003085011 -4.978574e-05 113 126 -0.0003608797 5.823857e-05 114 126 0.0004268045 -6.887749e-05 115 126 -0.0005114288 8.253411e-05 116 126 0.0006226054 -0.0001004757 117 126 -0.0007727812 0.000124711 118 126 0.0009826448 -0.0001585787 119 126 -0.001288661 0.0002079635 120 126 0.001760065 -0.0002840383 121 126 -0.002541777 0.0004101906 122 126 0.003980742 -0.0006424099 123 126 -0.007089509 0.001144101 124 126 0.01597157 -0.002577484 125 126 -0.06393453 0.01031772 126 126 -0.05642079 -0.02074898 127 126 -0.06393453 0.01031772 128 126 0.01597157 -0.002577484 129 126 -0.007089509 0.001144101 130 126 0.003980742 -0.0006424099 131 126 -0.002541777 0.0004101906 132 126 0.001760065 -0.0002840383 133 126 -0.001288661 0.0002079635 134 126 0.0009826448 -0.0001585787 135 126 -0.0007727812 0.000124711 136 126 0.0006226054 -0.0001004757 137 126 -0.0005114288 8.253411e-05 138 126 0.0004268045 -6.887749e-05 139 126 -0.0003608797 5.823857e-05 140 126 0.0003085011 -4.978574e-05 141 126 -0.0002661734 4.295492e-05 142 126 0.0002314578 -3.735254e-05 143 126 -0.0002026106 3.26972e-05 144 126 0.0001783582 -2.878335e-05 145 126 -0.0001577525 2.545802e-05 146 126 0.000140076 -2.26054e-05 147 126 -0.0001247774 2.013652e-05 148 126 0.0001114272 -1.798207e-05 149 126 -9.968672e-05 1.608739e-05 150 126 8.928565e-05 -1.440887e-05 151 126 -8.000611e-05 1.291134e-05 152 126 7.167061e-05 -1.156616e-05 153 126 -6.413319e-05 1.034978e-05 154 126 5.727273e-05 -9.242642e-06 155 126 -5.098776e-05 8.228377e-06 156 126 4.519256e-05 -7.293151e-06 157 126 -3.981401e-05 6.425164e-06 158 126 3.478917e-05 -5.614257e-06 159 126 -3.00633e-05 4.851599e-06 160 126 2.558831e-05 -4.129428e-06 161 126 -2.132146e-05 3.440846e-06 207 126 0.0007823553 6.347742e-05 46 127 0.0007985741 6.510879e-05 81 127 -2.132146e-05 3.440846e-06 82 127 1.722429e-05 -2.779647e-06 83 127 -1.326172e-05 2.14017e-06 84 127 9.401297e-06 -1.517176e-06 85 127 -5.612495e-06 9.057414e-07 86 127 1.866144e-06 -3.011573e-07 87 127 1.866144e-06 -3.011573e-07 88 127 -5.612495e-06 9.057414e-07 89 127 9.401297e-06 -1.517176e-06 90 127 -1.326172e-05 2.14017e-06 91 127 1.722429e-05 -2.779647e-06 92 127 -2.132146e-05 3.440846e-06 93 127 2.558831e-05 -4.129428e-06 94 127 -3.00633e-05 4.851599e-06 95 127 3.478917e-05 -5.614257e-06 96 127 -3.981401e-05 6.425164e-06 97 127 4.519256e-05 -7.293151e-06 98 127 -5.098776e-05 8.228377e-06 99 127 5.727273e-05 -9.242642e-06 100 127 -6.413319e-05 1.034978e-05 101 127 7.167061e-05 -1.156616e-05 102 127 -8.000611e-05 1.291134e-05 103 127 8.928565e-05 -1.440887e-05 104 127 -9.968672e-05 1.608739e-05 105 127 0.0001114272 -1.798207e-05 106 127 -0.0001247774 2.013652e-05 107 127 0.000140076 -2.26054e-05 108 127 -0.0001577525 2.545802e-05 109 127 0.0001783582 -2.878335e-05 110 127 -0.0002026106 3.26972e-05 111 127 0.0002314578 -3.735254e-05 112 127 -0.0002661734 4.295492e-05 113 127 0.0003085011 -4.978574e-05 114 127 -0.0003608797 5.823857e-05 115 127 0.0004268045 -6.887749e-05 116 127 -0.0005114288 8.253411e-05 117 127 0.0006226054 -0.0001004757 118 127 -0.0007727812 0.000124711 119 127 0.0009826448 -0.0001585787 120 127 -0.001288661 0.0002079635 121 127 0.001760065 -0.0002840383 122 127 -0.002541777 0.0004101906 123 127 0.003980742 -0.0006424099 124 127 -0.007089509 0.001144101 125 127 0.01597157 -0.002577484 126 127 -0.06393453 0.01031772 127 127 -0.05732087 -0.02046909 128 127 -0.06393453 0.01031772 129 127 0.01597157 -0.002577484 130 127 -0.007089509 0.001144101 131 127 0.003980742 -0.0006424099 132 127 -0.002541777 0.0004101906 133 127 0.001760065 -0.0002840383 134 127 -0.001288661 0.0002079635 135 127 0.0009826448 -0.0001585787 136 127 -0.0007727812 0.000124711 137 127 0.0006226054 -0.0001004757 138 127 -0.0005114288 8.253411e-05 139 127 0.0004268045 -6.887749e-05 140 127 -0.0003608797 5.823857e-05 141 127 0.0003085011 -4.978574e-05 142 127 -0.0002661734 4.295492e-05 143 127 0.0002314578 -3.735254e-05 144 127 -0.0002026106 3.26972e-05 145 127 0.0001783582 -2.878335e-05 146 127 -0.0001577525 2.545802e-05 147 127 0.000140076 -2.26054e-05 148 127 -0.0001247774 2.013652e-05 149 127 0.0001114272 -1.798207e-05 150 127 -9.968672e-05 1.608739e-05 151 127 8.928565e-05 -1.440887e-05 152 127 -8.000611e-05 1.291134e-05 153 127 7.167061e-05 -1.156616e-05 154 127 -6.413319e-05 1.034978e-05 155 127 5.727273e-05 -9.242642e-06 156 127 -5.098776e-05 8.228377e-06 157 127 4.519256e-05 -7.293151e-06 158 127 -3.981401e-05 6.425164e-06 159 127 3.478917e-05 -5.614257e-06 160 127 -3.00633e-05 4.851599e-06 161 127 2.558831e-05 -4.129428e-06 208 127 0.0007985741 6.510879e-05 47 128 0.0008148755 6.675522e-05 81 128 2.558831e-05 -4.129428e-06 82 128 -2.132146e-05 3.440846e-06 83 128 1.722429e-05 -2.779647e-06 84 128 -1.326172e-05 2.14017e-06 85 128 9.401297e-06 -1.517176e-06 86 128 -5.612495e-06 9.057414e-07 87 128 1.866144e-06 -3.011573e-07 88 128 1.866144e-06 -3.011573e-07 89 128 -5.612495e-06 9.057414e-07 90 128 9.401297e-06 -1.517176e-06 91 128 -1.326172e-05 2.14017e-06 92 128 1.722429e-05 -2.779647e-06 93 128 -2.132146e-05 3.440846e-06 94 128 2.558831e-05 -4.129428e-06 95 128 -3.00633e-05 4.851599e-06 96 128 3.478917e-05 -5.614257e-06 97 128 -3.981401e-05 6.425164e-06 98 128 4.519256e-05 -7.293151e-06 99 128 -5.098776e-05 8.228377e-06 100 128 5.727273e-05 -9.242642e-06 101 128 -6.413319e-05 1.034978e-05 102 128 7.167061e-05 -1.156616e-05 103 128 -8.000611e-05 1.291134e-05 104 128 8.928565e-05 -1.440887e-05 105 128 -9.968672e-05 1.608739e-05 106 128 0.0001114272 -1.798207e-05 107 128 -0.0001247774 2.013652e-05 108 128 0.000140076 -2.26054e-05 109 128 -0.0001577525 2.545802e-05 110 128 0.0001783582 -2.878335e-05 111 128 -0.0002026106 3.26972e-05 112 128 0.0002314578 -3.735254e-05 113 128 -0.0002661734 4.295492e-05 114 128 0.0003085011 -4.978574e-05 115 128 -0.0003608797 5.823857e-05 116 128 0.0004268045 -6.887749e-05 117 128 -0.0005114288 8.253411e-05 118 128 0.0006226054 -0.0001004757 119 128 -0.0007727812 0.000124711 120 128 0.0009826448 -0.0001585787 121 128 -0.001288661 0.0002079635 122 128 0.001760065 -0.0002840383 123 128 -0.002541777 0.0004101906 124 128 0.003980742 -0.0006424099 125 128 -0.007089509 0.001144101 126 128 0.01597157 -0.002577484 127 128 -0.06393453 0.01031772 128 128 -0.0581367 -0.02020954 129 128 -0.06393453 0.01031772 130 128 0.01597157 -0.002577484 131 128 -0.007089509 0.001144101 132 128 0.003980742 -0.0006424099 133 128 -0.002541777 0.0004101906 134 128 0.001760065 -0.0002840383 135 128 -0.001288661 0.0002079635 136 128 0.0009826448 -0.0001585787 137 128 -0.0007727812 0.000124711 138 128 0.0006226054 -0.0001004757 139 128 -0.0005114288 8.253411e-05 140 128 0.0004268045 -6.887749e-05 141 128 -0.0003608797 5.823857e-05 142 128 0.0003085011 -4.978574e-05 143 128 -0.0002661734 4.295492e-05 144 128 0.0002314578 -3.735254e-05 145 128 -0.0002026106 3.26972e-05 146 128 0.0001783582 -2.878335e-05 147 128 -0.0001577525 2.545802e-05 148 128 0.000140076 -2.26054e-05 149 128 -0.0001247774 2.013652e-05 150 128 0.0001114272 -1.798207e-05 151 128 -9.968672e-05 1.608739e-05 152 128 8.928565e-05 -1.440887e-05 153 128 -8.000611e-05 1.291134e-05 154 128 7.167061e-05 -1.156616e-05 155 128 -6.413319e-05 1.034978e-05 156 128 5.727273e-05 -9.242642e-06 157 128 -5.098776e-05 8.228377e-06 158 128 4.519256e-05 -7.293151e-06 159 128 -3.981401e-05 6.425164e-06 160 128 3.478917e-05 -5.614257e-06 161 128 -3.00633e-05 4.851599e-06 209 128 0.0008148755 6.675522e-05 48 129 0.0008312598 6.841681e-05 81 129 -3.00633e-05 4.851599e-06 82 129 2.558831e-05 -4.129428e-06 83 129 -2.132146e-05 3.440846e-06 84 129 1.722429e-05 -2.779647e-06 85 129 -1.326172e-05 2.14017e-06 86 129 9.401297e-06 -1.517176e-06 87 129 -5.612495e-06 9.057414e-07 88 129 1.866144e-06 -3.011573e-07 89 129 1.866144e-06 -3.011573e-07 90 129 -5.612495e-06 9.057414e-07 91 129 9.401297e-06 -1.517176e-06 92 129 -1.326172e-05 2.14017e-06 93 129 1.722429e-05 -2.779647e-06 94 129 -2.132146e-05 3.440846e-06 95 129 2.558831e-05 -4.129428e-06 96 129 -3.00633e-05 4.851599e-06 97 129 3.478917e-05 -5.614257e-06 98 129 -3.981401e-05 6.425164e-06 99 129 4.519256e-05 -7.293151e-06 100 129 -5.098776e-05 8.228377e-06 101 129 5.727273e-05 -9.242642e-06 102 129 -6.413319e-05 1.034978e-05 103 129 7.167061e-05 -1.156616e-05 104 129 -8.000611e-05 1.291134e-05 105 129 8.928565e-05 -1.440887e-05 106 129 -9.968672e-05 1.608739e-05 107 129 0.0001114272 -1.798207e-05 108 129 -0.0001247774 2.013652e-05 109 129 0.000140076 -2.26054e-05 110 129 -0.0001577525 2.545802e-05 111 129 0.0001783582 -2.878335e-05 112 129 -0.0002026106 3.26972e-05 113 129 0.0002314578 -3.735254e-05 114 129 -0.0002661734 4.295492e-05 115 129 0.0003085011 -4.978574e-05 116 129 -0.0003608797 5.823857e-05 117 129 0.0004268045 -6.887749e-05 118 129 -0.0005114288 8.253411e-05 119 129 0.0006226054 -0.0001004757 120 129 -0.0007727812 0.000124711 121 129 0.0009826448 -0.0001585787 122 129 -0.001288661 0.0002079635 123 129 0.001760065 -0.0002840383 124 129 -0.002541777 0.0004101906 125 129 0.003980742 -0.0006424099 126 129 -0.007089509 0.001144101 127 129 0.01597157 -0.002577484 128 129 -0.06393453 0.01031772 129 129 -0.05887631 -0.01996885 130 129 -0.06393453 0.01031772 131 129 0.01597157 -0.002577484 132 129 -0.007089509 0.001144101 133 129 0.003980742 -0.0006424099 134 129 -0.002541777 0.0004101906 135 129 0.001760065 -0.0002840383 136 129 -0.001288661 0.0002079635 137 129 0.0009826448 -0.0001585787 138 129 -0.0007727812 0.000124711 139 129 0.0006226054 -0.0001004757 140 129 -0.0005114288 8.253411e-05 141 129 0.0004268045 -6.887749e-05 142 129 -0.0003608797 5.823857e-05 143 129 0.0003085011 -4.978574e-05 144 129 -0.0002661734 4.295492e-05 145 129 0.0002314578 -3.735254e-05 146 129 -0.0002026106 3.26972e-05 147 129 0.0001783582 -2.878335e-05 148 129 -0.0001577525 2.545802e-05 149 129 0.000140076 -2.26054e-05 150 129 -0.0001247774 2.013652e-05 151 129 0.0001114272 -1.798207e-05 152 129 -9.968672e-05 1.608739e-05 153 129 8.928565e-05 -1.440887e-05 154 129 -8.000611e-05 1.291134e-05 155 129 7.167061e-05 -1.156616e-05 156 129 -6.413319e-05 1.034978e-05 157 129 5.727273e-05 -9.242642e-06 158 129 -5.098776e-05 8.228377e-06 159 129 4.519256e-05 -7.293151e-06 160 129 -3.981401e-05 6.425164e-06 161 129 3.478917e-05 -5.614257e-06 210 129 0.0008312598 6.841681e-05 49 130 0.0008477274 7.009369e-05 81 130 3.478917e-05 -5.614257e-06 82 130 -3.00633e-05 4.851599e-06 83 130 2.558831e-05 -4.129428e-06 84 130 -2.132146e-05 3.440846e-06 85 130 1.722429e-05 -2.779647e-06 86 130 -1.326172e-05 2.14017e-06 87 130 9.401297e-06 -1.517176e-06 88 130 -5.612495e-06 9.057414e-07 89 130 1.866144e-06 -3.011573e-07 90 130 1.866144e-06 -3.011573e-07 91 130 -5.612495e-06 9.057414e-07 92 130 9.401297e-06 -1.517176e-06 93 130 -1.326172e-05 2.14017e-06 94 130 1.722429e-05 -2.779647e-06 95 130 -2.132146e-05 3.440846e-06 96 130 2.558831e-05 -4.129428e-06 97 130 -3.00633e-05 4.851599e-06 98 130 3.478917e-05 -5.614257e-06 99 130 -3.981401e-05 6.425164e-06 100 130 4.519256e-05 -7.293151e-06 101 130 -5.098776e-05 8.228377e-06 102 130 5.727273e-05 -9.242642e-06 103 130 -6.413319e-05 1.034978e-05 104 130 7.167061e-05 -1.156616e-05 105 130 -8.000611e-05 1.291134e-05 106 130 8.928565e-05 -1.440887e-05 107 130 -9.968672e-05 1.608739e-05 108 130 0.0001114272 -1.798207e-05 109 130 -0.0001247774 2.013652e-05 110 130 0.000140076 -2.26054e-05 111 130 -0.0001577525 2.545802e-05 112 130 0.0001783582 -2.878335e-05 113 130 -0.0002026106 3.26972e-05 114 130 0.0002314578 -3.735254e-05 115 130 -0.0002661734 4.295492e-05 116 130 0.0003085011 -4.978574e-05 117 130 -0.0003608797 5.823857e-05 118 130 0.0004268045 -6.887749e-05 119 130 -0.0005114288 8.253411e-05 120 130 0.0006226054 -0.0001004757 121 130 -0.0007727812 0.000124711 122 130 0.0009826448 -0.0001585787 123 130 -0.001288661 0.0002079635 124 130 0.001760065 -0.0002840383 125 130 -0.002541777 0.0004101906 126 130 0.003980742 -0.0006424099 127 130 -0.007089509 0.001144101 128 130 0.01597157 -0.002577484 129 130 -0.06393453 0.01031772 130 130 -0.05954697 -0.01974566 131 130 -0.06393453 0.01031772 132 130 0.01597157 -0.002577484 133 130 -0.007089509 0.001144101 134 130 0.003980742 -0.0006424099 135 130 -0.002541777 0.0004101906 136 130 0.001760065 -0.0002840383 137 130 -0.001288661 0.0002079635 138 130 0.0009826448 -0.0001585787 139 130 -0.0007727812 0.000124711 140 130 0.0006226054 -0.0001004757 141 130 -0.0005114288 8.253411e-05 142 130 0.0004268045 -6.887749e-05 143 130 -0.0003608797 5.823857e-05 144 130 0.0003085011 -4.978574e-05 145 130 -0.0002661734 4.295492e-05 146 130 0.0002314578 -3.735254e-05 147 130 -0.0002026106 3.26972e-05 148 130 0.0001783582 -2.878335e-05 149 130 -0.0001577525 2.545802e-05 150 130 0.000140076 -2.26054e-05 151 130 -0.0001247774 2.013652e-05 152 130 0.0001114272 -1.798207e-05 153 130 -9.968672e-05 1.608739e-05 154 130 8.928565e-05 -1.440887e-05 155 130 -8.000611e-05 1.291134e-05 156 130 7.167061e-05 -1.156616e-05 157 130 -6.413319e-05 1.034978e-05 158 130 5.727273e-05 -9.242642e-06 159 130 -5.098776e-05 8.228377e-06 160 130 4.519256e-05 -7.293151e-06 161 130 -3.981401e-05 6.425164e-06 211 130 0.0008477274 7.009369e-05 50 131 0.0008642789 7.178596e-05 81 131 -3.981401e-05 6.425164e-06 82 131 3.478917e-05 -5.614257e-06 83 131 -3.00633e-05 4.851599e-06 84 131 2.558831e-05 -4.129428e-06 85 131 -2.132146e-05 3.440846e-06 86 131 1.722429e-05 -2.779647e-06 87 131 -1.326172e-05 2.14017e-06 88 131 9.401297e-06 -1.517176e-06 89 131 -5.612495e-06 9.057414e-07 90 131 1.866144e-06 -3.011573e-07 91 131 1.866144e-06 -3.011573e-07 92 131 -5.612495e-06 9.057414e-07 93 131 9.401297e-06 -1.517176e-06 94 131 -1.326172e-05 2.14017e-06 95 131 1.722429e-05 -2.779647e-06 96 131 -2.132146e-05 3.440846e-06 97 131 2.558831e-05 -4.129428e-06 98 131 -3.00633e-05 4.851599e-06 99 131 3.478917e-05 -5.614257e-06 100 131 -3.981401e-05 6.425164e-06 101 131 4.519256e-05 -7.293151e-06 102 131 -5.098776e-05 8.228377e-06 103 131 5.727273e-05 -9.242642e-06 104 131 -6.413319e-05 1.034978e-05 105 131 7.167061e-05 -1.156616e-05 106 131 -8.000611e-05 1.291134e-05 107 131 8.928565e-05 -1.440887e-05 108 131 -9.968672e-05 1.608739e-05 109 131 0.0001114272 -1.798207e-05 110 131 -0.0001247774 2.013652e-05 111 131 0.000140076 -2.26054e-05 112 131 -0.0001577525 2.545802e-05 113 131 0.0001783582 -2.878335e-05 114 131 -0.0002026106 3.26972e-05 115 131 0.0002314578 -3.735254e-05 116 131 -0.0002661734 4.295492e-05 117 131 0.0003085011 -4.978574e-05 118 131 -0.0003608797 5.823857e-05 119 131 0.0004268045 -6.887749e-05 120 131 -0.0005114288 8.253411e-05 121 131 0.0006226054 -0.0001004757 122 131 -0.0007727812 0.000124711 123 131 0.0009826448 -0.0001585787 124 131 -0.001288661 0.0002079635 125 131 0.001760065 -0.0002840383 126 131 -0.002541777 0.0004101906 127 131 0.003980742 -0.0006424099 128 131 -0.007089509 0.001144101 129 131 0.01597157 -0.002577484 130 131 -0.06393453 0.01031772 131 131 -0.06015519 -0.01953871 132 131 -0.06393453 0.01031772 133 131 0.01597157 -0.002577484 134 131 -0.007089509 0.001144101 135 131 0.003980742 -0.0006424099 136 131 -0.002541777 0.0004101906 137 131 0.001760065 -0.0002840383 138 131 -0.001288661 0.0002079635 139 131 0.0009826448 -0.0001585787 140 131 -0.0007727812 0.000124711 141 131 0.0006226054 -0.0001004757 142 131 -0.0005114288 8.253411e-05 143 131 0.0004268045 -6.887749e-05 144 131 -0.0003608797 5.823857e-05 145 131 0.0003085011 -4.978574e-05 146 131 -0.0002661734 4.295492e-05 147 131 0.0002314578 -3.735254e-05 148 131 -0.0002026106 3.26972e-05 149 131 0.0001783582 -2.878335e-05 150 131 -0.0001577525 2.545802e-05 151 131 0.000140076 -2.26054e-05 152 131 -0.0001247774 2.013652e-05 153 131 0.0001114272 -1.798207e-05 154 131 -9.968672e-05 1.608739e-05 155 131 8.928565e-05 -1.440887e-05 156 131 -8.000611e-05 1.291134e-05 157 131 7.167061e-05 -1.156616e-05 158 131 -6.413319e-05 1.034978e-05 159 131 5.727273e-05 -9.242642e-06 160 131 -5.098776e-05 8.228377e-06 161 131 4.519256e-05 -7.293151e-06 212 131 0.0008642789 7.178596e-05 51 132 0.0008809146 7.349373e-05 81 132 4.519256e-05 -7.293151e-06 82 132 -3.981401e-05 6.425164e-06 83 132 3.478917e-05 -5.614257e-06 84 132 -3.00633e-05 4.851599e-06 85 132 2.558831e-05 -4.129428e-06 86 132 -2.132146e-05 3.440846e-06 87 132 1.722429e-05 -2.779647e-06 88 132 -1.326172e-05 2.14017e-06 89 132 9.401297e-06 -1.517176e-06 90 132 -5.612495e-06 9.057414e-07 91 132 1.866144e-06 -3.011573e-07 92 132 1.866144e-06 -3.011573e-07 93 132 -5.612495e-06 9.057414e-07 94 132 9.401297e-06 -1.517176e-06 95 132 -1.326172e-05 2.14017e-06 96 132 1.722429e-05 -2.779647e-06 97 132 -2.132146e-05 3.440846e-06 98 132 2.558831e-05 -4.129428e-06 99 132 -3.00633e-05 4.851599e-06 100 132 3.478917e-05 -5.614257e-06 101 132 -3.981401e-05 6.425164e-06 102 132 4.519256e-05 -7.293151e-06 103 132 -5.098776e-05 8.228377e-06 104 132 5.727273e-05 -9.242642e-06 105 132 -6.413319e-05 1.034978e-05 106 132 7.167061e-05 -1.156616e-05 107 132 -8.000611e-05 1.291134e-05 108 132 8.928565e-05 -1.440887e-05 109 132 -9.968672e-05 1.608739e-05 110 132 0.0001114272 -1.798207e-05 111 132 -0.0001247774 2.013652e-05 112 132 0.000140076 -2.26054e-05 113 132 -0.0001577525 2.545802e-05 114 132 0.0001783582 -2.878335e-05 115 132 -0.0002026106 3.26972e-05 116 132 0.0002314578 -3.735254e-05 117 132 -0.0002661734 4.295492e-05 118 132 0.0003085011 -4.978574e-05 119 132 -0.0003608797 5.823857e-05 120 132 0.0004268045 -6.887749e-05 121 132 -0.0005114288 8.253411e-05 122 132 0.0006226054 -0.0001004757 123 132 -0.0007727812 0.000124711 124 132 0.0009826448 -0.0001585787 125 132 -0.001288661 0.0002079635 126 132 0.001760065 -0.0002840383 127 132 -0.002541777 0.0004101906 128 132 0.003980742 -0.0006424099 129 132 -0.007089509 0.001144101 130 132 0.01597157 -0.002577484 131 132 -0.06393453 0.01031772 132 132 -0.06070688 -0.01934683 133 132 -0.06393453 0.01031772 134 132 0.01597157 -0.002577484 135 132 -0.007089509 0.001144101 136 132 0.003980742 -0.0006424099 137 132 -0.002541777 0.0004101906 138 132 0.001760065 -0.0002840383 139 132 -0.001288661 0.0002079635 140 132 0.0009826448 -0.0001585787 141 132 -0.0007727812 0.000124711 142 132 0.0006226054 -0.0001004757 143 132 -0.0005114288 8.253411e-05 144 132 0.0004268045 -6.887749e-05 145 132 -0.0003608797 5.823857e-05 146 132 0.0003085011 -4.978574e-05 147 132 -0.0002661734 4.295492e-05 148 132 0.0002314578 -3.735254e-05 149 132 -0.0002026106 3.26972e-05 150 132 0.0001783582 -2.878335e-05 151 132 -0.0001577525 2.545802e-05 152 132 0.000140076 -2.26054e-05 153 132 -0.0001247774 2.013652e-05 154 132 0.0001114272 -1.798207e-05 155 132 -9.968672e-05 1.608739e-05 156 132 8.928565e-05 -1.440887e-05 157 132 -8.000611e-05 1.291134e-05 158 132 7.167061e-05 -1.156616e-05 159 132 -6.413319e-05 1.034978e-05 160 132 5.727273e-05 -9.242642e-06 161 132 -5.098776e-05 8.228377e-06 213 132 0.0008809146 7.349373e-05 52 133 0.0008976348 7.521712e-05 81 133 -5.098776e-05 8.228377e-06 82 133 4.519256e-05 -7.293151e-06 83 133 -3.981401e-05 6.425164e-06 84 133 3.478917e-05 -5.614257e-06 85 133 -3.00633e-05 4.851599e-06 86 133 2.558831e-05 -4.129428e-06 87 133 -2.132146e-05 3.440846e-06 88 133 1.722429e-05 -2.779647e-06 89 133 -1.326172e-05 2.14017e-06 90 133 9.401297e-06 -1.517176e-06 91 133 -5.612495e-06 9.057414e-07 92 133 1.866144e-06 -3.011573e-07 93 133 1.866144e-06 -3.011573e-07 94 133 -5.612495e-06 9.057414e-07 95 133 9.401297e-06 -1.517176e-06 96 133 -1.326172e-05 2.14017e-06 97 133 1.722429e-05 -2.779647e-06 98 133 -2.132146e-05 3.440846e-06 99 133 2.558831e-05 -4.129428e-06 100 133 -3.00633e-05 4.851599e-06 101 133 3.478917e-05 -5.614257e-06 102 133 -3.981401e-05 6.425164e-06 103 133 4.519256e-05 -7.293151e-06 104 133 -5.098776e-05 8.228377e-06 105 133 5.727273e-05 -9.242642e-06 106 133 -6.413319e-05 1.034978e-05 107 133 7.167061e-05 -1.156616e-05 108 133 -8.000611e-05 1.291134e-05 109 133 8.928565e-05 -1.440887e-05 110 133 -9.968672e-05 1.608739e-05 111 133 0.0001114272 -1.798207e-05 112 133 -0.0001247774 2.013652e-05 113 133 0.000140076 -2.26054e-05 114 133 -0.0001577525 2.545802e-05 115 133 0.0001783582 -2.878335e-05 116 133 -0.0002026106 3.26972e-05 117 133 0.0002314578 -3.735254e-05 118 133 -0.0002661734 4.295492e-05 119 133 0.0003085011 -4.978574e-05 120 133 -0.0003608797 5.823857e-05 121 133 0.0004268045 -6.887749e-05 122 133 -0.0005114288 8.253411e-05 123 133 0.0006226054 -0.0001004757 124 133 -0.0007727812 0.000124711 125 133 0.0009826448 -0.0001585787 126 133 -0.001288661 0.0002079635 127 133 0.001760065 -0.0002840383 128 133 -0.002541777 0.0004101906 129 133 0.003980742 -0.0006424099 130 133 -0.007089509 0.001144101 131 133 0.01597157 -0.002577484 132 133 -0.06393453 0.01031772 133 133 -0.06120735 -0.01916894 134 133 -0.06393453 0.01031772 135 133 0.01597157 -0.002577484 136 133 -0.007089509 0.001144101 137 133 0.003980742 -0.0006424099 138 133 -0.002541777 0.0004101906 139 133 0.001760065 -0.0002840383 140 133 -0.001288661 0.0002079635 141 133 0.0009826448 -0.0001585787 142 133 -0.0007727812 0.000124711 143 133 0.0006226054 -0.0001004757 144 133 -0.0005114288 8.253411e-05 145 133 0.0004268045 -6.887749e-05 146 133 -0.0003608797 5.823857e-05 147 133 0.0003085011 -4.978574e-05 148 133 -0.0002661734 4.295492e-05 149 133 0.0002314578 -3.735254e-05 150 133 -0.0002026106 3.26972e-05 151 133 0.0001783582 -2.878335e-05 152 133 -0.0001577525 2.545802e-05 153 133 0.000140076 -2.26054e-05 154 133 -0.0001247774 2.013652e-05 155 133 0.0001114272 -1.798207e-05 156 133 -9.968672e-05 1.608739e-05 157 133 8.928565e-05 -1.440887e-05 158 133 -8.000611e-05 1.291134e-05 159 133 7.167061e-05 -1.156616e-05 160 133 -6.413319e-05 1.034978e-05 161 133 5.727273e-05 -9.242642e-06 214 133 0.0008976348 7.521712e-05 53 134 0.0009144402 7.695625e-05 81 134 5.727273e-05 -9.242642e-06 82 134 -5.098776e-05 8.228377e-06 83 134 4.519256e-05 -7.293151e-06 84 134 -3.981401e-05 6.425164e-06 85 134 3.478917e-05 -5.614257e-06 86 134 -3.00633e-05 4.851599e-06 87 134 2.558831e-05 -4.129428e-06 88 134 -2.132146e-05 3.440846e-06 89 134 1.722429e-05 -2.779647e-06 90 134 -1.326172e-05 2.14017e-06 91 134 9.401297e-06 -1.517176e-06 92 134 -5.612495e-06 9.057414e-07 93 134 1.866144e-06 -3.011573e-07 94 134 1.866144e-06 -3.011573e-07 95 134 -5.612495e-06 9.057414e-07 96 134 9.401297e-06 -1.517176e-06 97 134 -1.326172e-05 2.14017e-06 98 134 1.722429e-05 -2.779647e-06 99 134 -2.132146e-05 3.440846e-06 100 134 2.558831e-05 -4.129428e-06 101 134 -3.00633e-05 4.851599e-06 102 134 3.478917e-05 -5.614257e-06 103 134 -3.981401e-05 6.425164e-06 104 134 4.519256e-05 -7.293151e-06 105 134 -5.098776e-05 8.228377e-06 106 134 5.727273e-05 -9.242642e-06 107 134 -6.413319e-05 1.034978e-05 108 134 7.167061e-05 -1.156616e-05 109 134 -8.000611e-05 1.291134e-05 110 134 8.928565e-05 -1.440887e-05 111 134 -9.968672e-05 1.608739e-05 112 134 0.0001114272 -1.798207e-05 113 134 -0.0001247774 2.013652e-05 114 134 0.000140076 -2.26054e-05 115 134 -0.0001577525 2.545802e-05 116 134 0.0001783582 -2.878335e-05 117 134 -0.0002026106 3.26972e-05 118 134 0.0002314578 -3.735254e-05 119 134 -0.0002661734 4.295492e-05 120 134 0.0003085011 -4.978574e-05 121 134 -0.0003608797 5.823857e-05 122 134 0.0004268045 -6.887749e-05 123 134 -0.0005114288 8.253411e-05 124 134 0.0006226054 -0.0001004757 125 134 -0.0007727812 0.000124711 126 134 0.0009826448 -0.0001585787 127 134 -0.001288661 0.0002079635 128 134 0.001760065 -0.0002840383 129 134 -0.002541777 0.0004101906 130 134 0.003980742 -0.0006424099 131 134 -0.007089509 0.001144101 132 134 0.01597157 -0.002577484 133 134 -0.06393453 0.01031772 134 134 -0.06166141 -0.01900404 135 134 -0.06393453 0.01031772 136 134 0.01597157 -0.002577484 137 134 -0.007089509 0.001144101 138 134 0.003980742 -0.0006424099 139 134 -0.002541777 0.0004101906 140 134 0.001760065 -0.0002840383 141 134 -0.001288661 0.0002079635 142 134 0.0009826448 -0.0001585787 143 134 -0.0007727812 0.000124711 144 134 0.0006226054 -0.0001004757 145 134 -0.0005114288 8.253411e-05 146 134 0.0004268045 -6.887749e-05 147 134 -0.0003608797 5.823857e-05 148 134 0.0003085011 -4.978574e-05 149 134 -0.0002661734 4.295492e-05 150 134 0.0002314578 -3.735254e-05 151 134 -0.0002026106 3.26972e-05 152 134 0.0001783582 -2.878335e-05 153 134 -0.0001577525 2.545802e-05 154 134 0.000140076 -2.26054e-05 155 134 -0.0001247774 2.013652e-05 156 134 0.0001114272 -1.798207e-05 157 134 -9.968672e-05 1.608739e-05 158 134 8.928565e-05 -1.440887e-05 159 134 -8.000611e-05 1.291134e-05 160 134 7.167061e-05 -1.156616e-05 161 134 -6.413319e-05 1.034978e-05 215 134 0.0009144402 7.695625e-05 54 135 0.0009313311 7.871123e-05 81 135 -6.413319e-05 1.034978e-05 82 135 5.727273e-05 -9.242642e-06 83 135 -5.098776e-05 8.228377e-06 84 135 4.519256e-05 -7.293151e-06 85 135 -3.981401e-05 6.425164e-06 86 135 3.478917e-05 -5.614257e-06 87 135 -3.00633e-05 4.851599e-06 88 135 2.558831e-05 -4.129428e-06 89 135 -2.132146e-05 3.440846e-06 90 135 1.722429e-05 -2.779647e-06 91 135 -1.326172e-05 2.14017e-06 92 135 9.401297e-06 -1.517176e-06 93 135 -5.612495e-06 9.057414e-07 94 135 1.866144e-06 -3.011573e-07 95 135 1.866144e-06 -3.011573e-07 96 135 -5.612495e-06 9.057414e-07 97 135 9.401297e-06 -1.517176e-06 98 135 -1.326172e-05 2.14017e-06 99 135 1.722429e-05 -2.779647e-06 100 135 -2.132146e-05 3.440846e-06 101 135 2.558831e-05 -4.129428e-06 102 135 -3.00633e-05 4.851599e-06 103 135 3.478917e-05 -5.614257e-06 104 135 -3.981401e-05 6.425164e-06 105 135 4.519256e-05 -7.293151e-06 106 135 -5.098776e-05 8.228377e-06 107 135 5.727273e-05 -9.242642e-06 108 135 -6.413319e-05 1.034978e-05 109 135 7.167061e-05 -1.156616e-05 110 135 -8.000611e-05 1.291134e-05 111 135 8.928565e-05 -1.440887e-05 112 135 -9.968672e-05 1.608739e-05 113 135 0.0001114272 -1.798207e-05 114 135 -0.0001247774 2.013652e-05 115 135 0.000140076 -2.26054e-05 116 135 -0.0001577525 2.545802e-05 117 135 0.0001783582 -2.878335e-05 118 135 -0.0002026106 3.26972e-05 119 135 0.0002314578 -3.735254e-05 120 135 -0.0002661734 4.295492e-05 121 135 0.0003085011 -4.978574e-05 122 135 -0.0003608797 5.823857e-05 123 135 0.0004268045 -6.887749e-05 124 135 -0.0005114288 8.253411e-05 125 135 0.0006226054 -0.0001004757 126 135 -0.0007727812 0.000124711 127 135 0.0009826448 -0.0001585787 128 135 -0.001288661 0.0002079635 129 135 0.001760065 -0.0002840383 130 135 -0.002541777 0.0004101906 131 135 0.003980742 -0.0006424099 132 135 -0.007089509 0.001144101 133 135 0.01597157 -0.002577484 134 135 -0.06393453 0.01031772 135 135 -0.06207341 -0.01885121 136 135 -0.06393453 0.01031772 137 135 0.01597157 -0.002577484 138 135 -0.007089509 0.001144101 139 135 0.003980742 -0.0006424099 140 135 -0.002541777 0.0004101906 141 135 0.001760065 -0.0002840383 142 135 -0.001288661 0.0002079635 143 135 0.0009826448 -0.0001585787 144 135 -0.0007727812 0.000124711 145 135 0.0006226054 -0.0001004757 146 135 -0.0005114288 8.253411e-05 147 135 0.0004268045 -6.887749e-05 148 135 -0.0003608797 5.823857e-05 149 135 0.0003085011 -4.978574e-05 150 135 -0.0002661734 4.295492e-05 151 135 0.0002314578 -3.735254e-05 152 135 -0.0002026106 3.26972e-05 153 135 0.0001783582 -2.878335e-05 154 135 -0.0001577525 2.545802e-05 155 135 0.000140076 -2.26054e-05 156 135 -0.0001247774 2.013652e-05 157 135 0.0001114272 -1.798207e-05 158 135 -9.968672e-05 1.608739e-05 159 135 8.928565e-05 -1.440887e-05 160 135 -8.000611e-05 1.291134e-05 161 135 7.167061e-05 -1.156616e-05 216 135 0.0009313311 7.871123e-05 55 136 0.0009483078 8.048218e-05 81 136 7.167061e-05 -1.156616e-05 82 136 -6.413319e-05 1.034978e-05 83 136 5.727273e-05 -9.242642e-06 84 136 -5.098776e-05 8.228377e-06 85 136 4.519256e-05 -7.293151e-06 86 136 -3.981401e-05 6.425164e-06 87 136 3.478917e-05 -5.614257e-06 88 136 -3.00633e-05 4.851599e-06 89 136 2.558831e-05 -4.129428e-06 90 136 -2.132146e-05 3.440846e-06 91 136 1.722429e-05 -2.779647e-06 92 136 -1.326172e-05 2.14017e-06 93 136 9.401297e-06 -1.517176e-06 94 136 -5.612495e-06 9.057414e-07 95 136 1.866144e-06 -3.011573e-07 96 136 1.866144e-06 -3.011573e-07 97 136 -5.612495e-06 9.057414e-07 98 136 9.401297e-06 -1.517176e-06 99 136 -1.326172e-05 2.14017e-06 100 136 1.722429e-05 -2.779647e-06 101 136 -2.132146e-05 3.440846e-06 102 136 2.558831e-05 -4.129428e-06 103 136 -3.00633e-05 4.851599e-06 104 136 3.478917e-05 -5.614257e-06 105 136 -3.981401e-05 6.425164e-06 106 136 4.519256e-05 -7.293151e-06 107 136 -5.098776e-05 8.228377e-06 108 136 5.727273e-05 -9.242642e-06 109 136 -6.413319e-05 1.034978e-05 110 136 7.167061e-05 -1.156616e-05 111 136 -8.000611e-05 1.291134e-05 112 136 8.928565e-05 -1.440887e-05 113 136 -9.968672e-05 1.608739e-05 114 136 0.0001114272 -1.798207e-05 115 136 -0.0001247774 2.013652e-05 116 136 0.000140076 -2.26054e-05 117 136 -0.0001577525 2.545802e-05 118 136 0.0001783582 -2.878335e-05 119 136 -0.0002026106 3.26972e-05 120 136 0.0002314578 -3.735254e-05 121 136 -0.0002661734 4.295492e-05 122 136 0.0003085011 -4.978574e-05 123 136 -0.0003608797 5.823857e-05 124 136 0.0004268045 -6.887749e-05 125 136 -0.0005114288 8.253411e-05 126 136 0.0006226054 -0.0001004757 127 136 -0.0007727812 0.000124711 128 136 0.0009826448 -0.0001585787 129 136 -0.001288661 0.0002079635 130 136 0.001760065 -0.0002840383 131 136 -0.002541777 0.0004101906 132 136 0.003980742 -0.0006424099 133 136 -0.007089509 0.001144101 134 136 0.01597157 -0.002577484 135 136 -0.06393453 0.01031772 136 136 -0.06244726 -0.01870957 137 136 -0.06393453 0.01031772 138 136 0.01597157 -0.002577484 139 136 -0.007089509 0.001144101 140 136 0.003980742 -0.0006424099 141 136 -0.002541777 0.0004101906 142 136 0.001760065 -0.0002840383 143 136 -0.001288661 0.0002079635 144 136 0.0009826448 -0.0001585787 145 136 -0.0007727812 0.000124711 146 136 0.0006226054 -0.0001004757 147 136 -0.0005114288 8.253411e-05 148 136 0.0004268045 -6.887749e-05 149 136 -0.0003608797 5.823857e-05 150 136 0.0003085011 -4.978574e-05 151 136 -0.0002661734 4.295492e-05 152 136 0.0002314578 -3.735254e-05 153 136 -0.0002026106 3.26972e-05 154 136 0.0001783582 -2.878335e-05 155 136 -0.0001577525 2.545802e-05 156 136 0.000140076 -2.26054e-05 157 136 -0.0001247774 2.013652e-05 158 136 0.0001114272 -1.798207e-05 159 136 -9.968672e-05 1.608739e-05 160 136 8.928565e-05 -1.440887e-05 161 136 -8.000611e-05 1.291134e-05 217 136 0.0009483078 8.048218e-05 56 137 0.000965371 8.226921e-05 81 137 -8.000611e-05 1.291134e-05 82 137 7.167061e-05 -1.156616e-05 83 137 -6.413319e-05 1.034978e-05 84 137 5.727273e-05 -9.242642e-06 85 137 -5.098776e-05 8.228377e-06 86 137 4.519256e-05 -7.293151e-06 87 137 -3.981401e-05 6.425164e-06 88 137 3.478917e-05 -5.614257e-06 89 137 -3.00633e-05 4.851599e-06 90 137 2.558831e-05 -4.129428e-06 91 137 -2.132146e-05 3.440846e-06 92 137 1.722429e-05 -2.779647e-06 93 137 -1.326172e-05 2.14017e-06 94 137 9.401297e-06 -1.517176e-06 95 137 -5.612495e-06 9.057414e-07 96 137 1.866144e-06 -3.011573e-07 97 137 1.866144e-06 -3.011573e-07 98 137 -5.612495e-06 9.057414e-07 99 137 9.401297e-06 -1.517176e-06 100 137 -1.326172e-05 2.14017e-06 101 137 1.722429e-05 -2.779647e-06 102 137 -2.132146e-05 3.440846e-06 103 137 2.558831e-05 -4.129428e-06 104 137 -3.00633e-05 4.851599e-06 105 137 3.478917e-05 -5.614257e-06 106 137 -3.981401e-05 6.425164e-06 107 137 4.519256e-05 -7.293151e-06 108 137 -5.098776e-05 8.228377e-06 109 137 5.727273e-05 -9.242642e-06 110 137 -6.413319e-05 1.034978e-05 111 137 7.167061e-05 -1.156616e-05 112 137 -8.000611e-05 1.291134e-05 113 137 8.928565e-05 -1.440887e-05 114 137 -9.968672e-05 1.608739e-05 115 137 0.0001114272 -1.798207e-05 116 137 -0.0001247774 2.013652e-05 117 137 0.000140076 -2.26054e-05 118 137 -0.0001577525 2.545802e-05 119 137 0.0001783582 -2.878335e-05 120 137 -0.0002026106 3.26972e-05 121 137 0.0002314578 -3.735254e-05 122 137 -0.0002661734 4.295492e-05 123 137 0.0003085011 -4.978574e-05 124 137 -0.0003608797 5.823857e-05 125 137 0.0004268045 -6.887749e-05 126 137 -0.0005114288 8.253411e-05 127 137 0.0006226054 -0.0001004757 128 137 -0.0007727812 0.000124711 129 137 0.0009826448 -0.0001585787 130 137 -0.001288661 0.0002079635 131 137 0.001760065 -0.0002840383 132 137 -0.002541777 0.0004101906 133 137 0.003980742 -0.0006424099 134 137 -0.007089509 0.001144101 135 137 0.01597157 -0.002577484 136 137 -0.06393453 0.01031772 137 137 -0.06278653 -0.01857833 138 137 -0.06393453 0.01031772 139 137 0.01597157 -0.002577484 140 137 -0.007089509 0.001144101 141 137 0.003980742 -0.0006424099 142 137 -0.002541777 0.0004101906 143 137 0.001760065 -0.0002840383 144 137 -0.001288661 0.0002079635 145 137 0.0009826448 -0.0001585787 146 137 -0.0007727812 0.000124711 147 137 0.0006226054 -0.0001004757 148 137 -0.0005114288 8.253411e-05 149 137 0.0004268045 -6.887749e-05 150 137 -0.0003608797 5.823857e-05 151 137 0.0003085011 -4.978574e-05 152 137 -0.0002661734 4.295492e-05 153 137 0.0002314578 -3.735254e-05 154 137 -0.0002026106 3.26972e-05 155 137 0.0001783582 -2.878335e-05 156 137 -0.0001577525 2.545802e-05 157 137 0.000140076 -2.26054e-05 158 137 -0.0001247774 2.013652e-05 159 137 0.0001114272 -1.798207e-05 160 137 -9.968672e-05 1.608739e-05 161 137 8.928565e-05 -1.440887e-05 218 137 0.000965371 8.226921e-05 57 138 0.0009825209 8.407245e-05 81 138 8.928565e-05 -1.440887e-05 82 138 -8.000611e-05 1.291134e-05 83 138 7.167061e-05 -1.156616e-05 84 138 -6.413319e-05 1.034978e-05 85 138 5.727273e-05 -9.242642e-06 86 138 -5.098776e-05 8.228377e-06 87 138 4.519256e-05 -7.293151e-06 88 138 -3.981401e-05 6.425164e-06 89 138 3.478917e-05 -5.614257e-06 90 138 -3.00633e-05 4.851599e-06 91 138 2.558831e-05 -4.129428e-06 92 138 -2.132146e-05 3.440846e-06 93 138 1.722429e-05 -2.779647e-06 94 138 -1.326172e-05 2.14017e-06 95 138 9.401297e-06 -1.517176e-06 96 138 -5.612495e-06 9.057414e-07 97 138 1.866144e-06 -3.011573e-07 98 138 1.866144e-06 -3.011573e-07 99 138 -5.612495e-06 9.057414e-07 100 138 9.401297e-06 -1.517176e-06 101 138 -1.326172e-05 2.14017e-06 102 138 1.722429e-05 -2.779647e-06 103 138 -2.132146e-05 3.440846e-06 104 138 2.558831e-05 -4.129428e-06 105 138 -3.00633e-05 4.851599e-06 106 138 3.478917e-05 -5.614257e-06 107 138 -3.981401e-05 6.425164e-06 108 138 4.519256e-05 -7.293151e-06 109 138 -5.098776e-05 8.228377e-06 110 138 5.727273e-05 -9.242642e-06 111 138 -6.413319e-05 1.034978e-05 112 138 7.167061e-05 -1.156616e-05 113 138 -8.000611e-05 1.291134e-05 114 138 8.928565e-05 -1.440887e-05 115 138 -9.968672e-05 1.608739e-05 116 138 0.0001114272 -1.798207e-05 117 138 -0.0001247774 2.013652e-05 118 138 0.000140076 -2.26054e-05 119 138 -0.0001577525 2.545802e-05 120 138 0.0001783582 -2.878335e-05 121 138 -0.0002026106 3.26972e-05 122 138 0.0002314578 -3.735254e-05 123 138 -0.0002661734 4.295492e-05 124 138 0.0003085011 -4.978574e-05 125 138 -0.0003608797 5.823857e-05 126 138 0.0004268045 -6.887749e-05 127 138 -0.0005114288 8.253411e-05 128 138 0.0006226054 -0.0001004757 129 138 -0.0007727812 0.000124711 130 138 0.0009826448 -0.0001585787 131 138 -0.001288661 0.0002079635 132 138 0.001760065 -0.0002840383 133 138 -0.002541777 0.0004101906 134 138 0.003980742 -0.0006424099 135 138 -0.007089509 0.001144101 136 138 0.01597157 -0.002577484 137 138 -0.06393453 0.01031772 138 138 -0.06309443 -0.01845675 139 138 -0.06393453 0.01031772 140 138 0.01597157 -0.002577484 141 138 -0.007089509 0.001144101 142 138 0.003980742 -0.0006424099 143 138 -0.002541777 0.0004101906 144 138 0.001760065 -0.0002840383 145 138 -0.001288661 0.0002079635 146 138 0.0009826448 -0.0001585787 147 138 -0.0007727812 0.000124711 148 138 0.0006226054 -0.0001004757 149 138 -0.0005114288 8.253411e-05 150 138 0.0004268045 -6.887749e-05 151 138 -0.0003608797 5.823857e-05 152 138 0.0003085011 -4.978574e-05 153 138 -0.0002661734 4.295492e-05 154 138 0.0002314578 -3.735254e-05 155 138 -0.0002026106 3.26972e-05 156 138 0.0001783582 -2.878335e-05 157 138 -0.0001577525 2.545802e-05 158 138 0.000140076 -2.26054e-05 159 138 -0.0001247774 2.013652e-05 160 138 0.0001114272 -1.798207e-05 161 138 -9.968672e-05 1.608739e-05 219 138 0.0009825209 8.407245e-05 58 139 0.0009997581 8.589201e-05 81 139 -9.968672e-05 1.608739e-05 82 139 8.928565e-05 -1.440887e-05 83 139 -8.000611e-05 1.291134e-05 84 139 7.167061e-05 -1.156616e-05 85 139 -6.413319e-05 1.034978e-05 86 139 5.727273e-05 -9.242642e-06 87 139 -5.098776e-05 8.228377e-06 88 139 4.519256e-05 -7.293151e-06 89 139 -3.981401e-05 6.425164e-06 90 139 3.478917e-05 -5.614257e-06 91 139 -3.00633e-05 4.851599e-06 92 139 2.558831e-05 -4.129428e-06 93 139 -2.132146e-05 3.440846e-06 94 139 1.722429e-05 -2.779647e-06 95 139 -1.326172e-05 2.14017e-06 96 139 9.401297e-06 -1.517176e-06 97 139 -5.612495e-06 9.057414e-07 98 139 1.866144e-06 -3.011573e-07 99 139 1.866144e-06 -3.011573e-07 100 139 -5.612495e-06 9.057414e-07 101 139 9.401297e-06 -1.517176e-06 102 139 -1.326172e-05 2.14017e-06 103 139 1.722429e-05 -2.779647e-06 104 139 -2.132146e-05 3.440846e-06 105 139 2.558831e-05 -4.129428e-06 106 139 -3.00633e-05 4.851599e-06 107 139 3.478917e-05 -5.614257e-06 108 139 -3.981401e-05 6.425164e-06 109 139 4.519256e-05 -7.293151e-06 110 139 -5.098776e-05 8.228377e-06 111 139 5.727273e-05 -9.242642e-06 112 139 -6.413319e-05 1.034978e-05 113 139 7.167061e-05 -1.156616e-05 114 139 -8.000611e-05 1.291134e-05 115 139 8.928565e-05 -1.440887e-05 116 139 -9.968672e-05 1.608739e-05 117 139 0.0001114272 -1.798207e-05 118 139 -0.0001247774 2.013652e-05 119 139 0.000140076 -2.26054e-05 120 139 -0.0001577525 2.545802e-05 121 139 0.0001783582 -2.878335e-05 122 139 -0.0002026106 3.26972e-05 123 139 0.0002314578 -3.735254e-05 124 139 -0.0002661734 4.295492e-05 125 139 0.0003085011 -4.978574e-05 126 139 -0.0003608797 5.823857e-05 127 139 0.0004268045 -6.887749e-05 128 139 -0.0005114288 8.253411e-05 129 139 0.0006226054 -0.0001004757 130 139 -0.0007727812 0.000124711 131 139 0.0009826448 -0.0001585787 132 139 -0.001288661 0.0002079635 133 139 0.001760065 -0.0002840383 134 139 -0.002541777 0.0004101906 135 139 0.003980742 -0.0006424099 136 139 -0.007089509 0.001144101 137 139 0.01597157 -0.002577484 138 139 -0.06393453 0.01031772 139 139 -0.06337388 -0.01834413 140 139 -0.06393453 0.01031772 141 139 0.01597157 -0.002577484 142 139 -0.007089509 0.001144101 143 139 0.003980742 -0.0006424099 144 139 -0.002541777 0.0004101906 145 139 0.001760065 -0.0002840383 146 139 -0.001288661 0.0002079635 147 139 0.0009826448 -0.0001585787 148 139 -0.0007727812 0.000124711 149 139 0.0006226054 -0.0001004757 150 139 -0.0005114288 8.253411e-05 151 139 0.0004268045 -6.887749e-05 152 139 -0.0003608797 5.823857e-05 153 139 0.0003085011 -4.978574e-05 154 139 -0.0002661734 4.295492e-05 155 139 0.0002314578 -3.735254e-05 156 139 -0.0002026106 3.26972e-05 157 139 0.0001783582 -2.878335e-05 158 139 -0.0001577525 2.545802e-05 159 139 0.000140076 -2.26054e-05 160 139 -0.0001247774 2.013652e-05 161 139 0.0001114272 -1.798207e-05 220 139 0.0009997581 8.589201e-05 59 140 0.001017083 8.772801e-05 81 140 0.0001114272 -1.798207e-05 82 140 -9.968672e-05 1.608739e-05 83 140 8.928565e-05 -1.440887e-05 84 140 -8.000611e-05 1.291134e-05 85 140 7.167061e-05 -1.156616e-05 86 140 -6.413319e-05 1.034978e-05 87 140 5.727273e-05 -9.242642e-06 88 140 -5.098776e-05 8.228377e-06 89 140 4.519256e-05 -7.293151e-06 90 140 -3.981401e-05 6.425164e-06 91 140 3.478917e-05 -5.614257e-06 92 140 -3.00633e-05 4.851599e-06 93 140 2.558831e-05 -4.129428e-06 94 140 -2.132146e-05 3.440846e-06 95 140 1.722429e-05 -2.779647e-06 96 140 -1.326172e-05 2.14017e-06 97 140 9.401297e-06 -1.517176e-06 98 140 -5.612495e-06 9.057414e-07 99 140 1.866144e-06 -3.011573e-07 100 140 1.866144e-06 -3.011573e-07 101 140 -5.612495e-06 9.057414e-07 102 140 9.401297e-06 -1.517176e-06 103 140 -1.326172e-05 2.14017e-06 104 140 1.722429e-05 -2.779647e-06 105 140 -2.132146e-05 3.440846e-06 106 140 2.558831e-05 -4.129428e-06 107 140 -3.00633e-05 4.851599e-06 108 140 3.478917e-05 -5.614257e-06 109 140 -3.981401e-05 6.425164e-06 110 140 4.519256e-05 -7.293151e-06 111 140 -5.098776e-05 8.228377e-06 112 140 5.727273e-05 -9.242642e-06 113 140 -6.413319e-05 1.034978e-05 114 140 7.167061e-05 -1.156616e-05 115 140 -8.000611e-05 1.291134e-05 116 140 8.928565e-05 -1.440887e-05 117 140 -9.968672e-05 1.608739e-05 118 140 0.0001114272 -1.798207e-05 119 140 -0.0001247774 2.013652e-05 120 140 0.000140076 -2.26054e-05 121 140 -0.0001577525 2.545802e-05 122 140 0.0001783582 -2.878335e-05 123 140 -0.0002026106 3.26972e-05 124 140 0.0002314578 -3.735254e-05 125 140 -0.0002661734 4.295492e-05 126 140 0.0003085011 -4.978574e-05 127 140 -0.0003608797 5.823857e-05 128 140 0.0004268045 -6.887749e-05 129 140 -0.0005114288 8.253411e-05 130 140 0.0006226054 -0.0001004757 131 140 -0.0007727812 0.000124711 132 140 0.0009826448 -0.0001585787 133 140 -0.001288661 0.0002079635 134 140 0.001760065 -0.0002840383 135 140 -0.002541777 0.0004101906 136 140 0.003980742 -0.0006424099 137 140 -0.007089509 0.001144101 138 140 0.01597157 -0.002577484 139 140 -0.06393453 0.01031772 140 140 -0.0636275 -0.01823983 141 140 -0.06393453 0.01031772 142 140 0.01597157 -0.002577484 143 140 -0.007089509 0.001144101 144 140 0.003980742 -0.0006424099 145 140 -0.002541777 0.0004101906 146 140 0.001760065 -0.0002840383 147 140 -0.001288661 0.0002079635 148 140 0.0009826448 -0.0001585787 149 140 -0.0007727812 0.000124711 150 140 0.0006226054 -0.0001004757 151 140 -0.0005114288 8.253411e-05 152 140 0.0004268045 -6.887749e-05 153 140 -0.0003608797 5.823857e-05 154 140 0.0003085011 -4.978574e-05 155 140 -0.0002661734 4.295492e-05 156 140 0.0002314578 -3.735254e-05 157 140 -0.0002026106 3.26972e-05 158 140 0.0001783582 -2.878335e-05 159 140 -0.0001577525 2.545802e-05 160 140 0.000140076 -2.26054e-05 161 140 -0.0001247774 2.013652e-05 221 140 0.001017083 8.772801e-05 60 141 0.001034496 8.958057e-05 81 141 -0.0001247774 2.013652e-05 82 141 0.0001114272 -1.798207e-05 83 141 -9.968672e-05 1.608739e-05 84 141 8.928565e-05 -1.440887e-05 85 141 -8.000611e-05 1.291134e-05 86 141 7.167061e-05 -1.156616e-05 87 141 -6.413319e-05 1.034978e-05 88 141 5.727273e-05 -9.242642e-06 89 141 -5.098776e-05 8.228377e-06 90 141 4.519256e-05 -7.293151e-06 91 141 -3.981401e-05 6.425164e-06 92 141 3.478917e-05 -5.614257e-06 93 141 -3.00633e-05 4.851599e-06 94 141 2.558831e-05 -4.129428e-06 95 141 -2.132146e-05 3.440846e-06 96 141 1.722429e-05 -2.779647e-06 97 141 -1.326172e-05 2.14017e-06 98 141 9.401297e-06 -1.517176e-06 99 141 -5.612495e-06 9.057414e-07 100 141 1.866144e-06 -3.011573e-07 101 141 1.866144e-06 -3.011573e-07 102 141 -5.612495e-06 9.057414e-07 103 141 9.401297e-06 -1.517176e-06 104 141 -1.326172e-05 2.14017e-06 105 141 1.722429e-05 -2.779647e-06 106 141 -2.132146e-05 3.440846e-06 107 141 2.558831e-05 -4.129428e-06 108 141 -3.00633e-05 4.851599e-06 109 141 3.478917e-05 -5.614257e-06 110 141 -3.981401e-05 6.425164e-06 111 141 4.519256e-05 -7.293151e-06 112 141 -5.098776e-05 8.228377e-06 113 141 5.727273e-05 -9.242642e-06 114 141 -6.413319e-05 1.034978e-05 115 141 7.167061e-05 -1.156616e-05 116 141 -8.000611e-05 1.291134e-05 117 141 8.928565e-05 -1.440887e-05 118 141 -9.968672e-05 1.608739e-05 119 141 0.0001114272 -1.798207e-05 120 141 -0.0001247774 2.013652e-05 121 141 0.000140076 -2.26054e-05 122 141 -0.0001577525 2.545802e-05 123 141 0.0001783582 -2.878335e-05 124 141 -0.0002026106 3.26972e-05 125 141 0.0002314578 -3.735254e-05 126 141 -0.0002661734 4.295492e-05 127 141 0.0003085011 -4.978574e-05 128 141 -0.0003608797 5.823857e-05 129 141 0.0004268045 -6.887749e-05 130 141 -0.0005114288 8.253411e-05 131 141 0.0006226054 -0.0001004757 132 141 -0.0007727812 0.000124711 133 141 0.0009826448 -0.0001585787 134 141 -0.001288661 0.0002079635 135 141 0.001760065 -0.0002840383 136 141 -0.002541777 0.0004101906 137 141 0.003980742 -0.0006424099 138 141 -0.007089509 0.001144101 139 141 0.01597157 -0.002577484 140 141 -0.06393453 0.01031772 141 141 -0.0638577 -0.01814325 142 141 -0.06393453 0.01031772 143 141 0.01597157 -0.002577484 144 141 -0.007089509 0.001144101 145 141 0.003980742 -0.0006424099 146 141 -0.002541777 0.0004101906 147 141 0.001760065 -0.0002840383 148 141 -0.001288661 0.0002079635 149 141 0.0009826448 -0.0001585787 150 141 -0.0007727812 0.000124711 151 141 0.0006226054 -0.0001004757 152 141 -0.0005114288 8.253411e-05 153 141 0.0004268045 -6.887749e-05 154 141 -0.0003608797 5.823857e-05 155 141 0.0003085011 -4.978574e-05 156 141 -0.0002661734 4.295492e-05 157 141 0.0002314578 -3.735254e-05 158 141 -0.0002026106 3.26972e-05 159 141 0.0001783582 -2.878335e-05 160 141 -0.0001577525 2.545802e-05 161 141 0.000140076 -2.26054e-05 222 141 0.001034496 8.958057e-05 61 142 0.001051997 9.144981e-05 81 142 0.000140076 -2.26054e-05 82 142 -0.0001247774 2.013652e-05 83 142 0.0001114272 -1.798207e-05 84 142 -9.968672e-05 1.608739e-05 85 142 8.928565e-05 -1.440887e-05 86 142 -8.000611e-05 1.291134e-05 87 142 7.167061e-05 -1.156616e-05 88 142 -6.413319e-05 1.034978e-05 89 142 5.727273e-05 -9.242642e-06 90 142 -5.098776e-05 8.228377e-06 91 142 4.519256e-05 -7.293151e-06 92 142 -3.981401e-05 6.425164e-06 93 142 3.478917e-05 -5.614257e-06 94 142 -3.00633e-05 4.851599e-06 95 142 2.558831e-05 -4.129428e-06 96 142 -2.132146e-05 3.440846e-06 97 142 1.722429e-05 -2.779647e-06 98 142 -1.326172e-05 2.14017e-06 99 142 9.401297e-06 -1.517176e-06 100 142 -5.612495e-06 9.057414e-07 101 142 1.866144e-06 -3.011573e-07 102 142 1.866144e-06 -3.011573e-07 103 142 -5.612495e-06 9.057414e-07 104 142 9.401297e-06 -1.517176e-06 105 142 -1.326172e-05 2.14017e-06 106 142 1.722429e-05 -2.779647e-06 107 142 -2.132146e-05 3.440846e-06 108 142 2.558831e-05 -4.129428e-06 109 142 -3.00633e-05 4.851599e-06 110 142 3.478917e-05 -5.614257e-06 111 142 -3.981401e-05 6.425164e-06 112 142 4.519256e-05 -7.293151e-06 113 142 -5.098776e-05 8.228377e-06 114 142 5.727273e-05 -9.242642e-06 115 142 -6.413319e-05 1.034978e-05 116 142 7.167061e-05 -1.156616e-05 117 142 -8.000611e-05 1.291134e-05 118 142 8.928565e-05 -1.440887e-05 119 142 -9.968672e-05 1.608739e-05 120 142 0.0001114272 -1.798207e-05 121 142 -0.0001247774 2.013652e-05 122 142 0.000140076 -2.26054e-05 123 142 -0.0001577525 2.545802e-05 124 142 0.0001783582 -2.878335e-05 125 142 -0.0002026106 3.26972e-05 126 142 0.0002314578 -3.735254e-05 127 142 -0.0002661734 4.295492e-05 128 142 0.0003085011 -4.978574e-05 129 142 -0.0003608797 5.823857e-05 130 142 0.0004268045 -6.887749e-05 131 142 -0.0005114288 8.253411e-05 132 142 0.0006226054 -0.0001004757 133 142 -0.0007727812 0.000124711 134 142 0.0009826448 -0.0001585787 135 142 -0.001288661 0.0002079635 136 142 0.001760065 -0.0002840383 137 142 -0.002541777 0.0004101906 138 142 0.003980742 -0.0006424099 139 142 -0.007089509 0.001144101 140 142 0.01597157 -0.002577484 141 142 -0.06393453 0.01031772 142 142 -0.06406664 -0.01805384 143 142 -0.06393453 0.01031772 144 142 0.01597157 -0.002577484 145 142 -0.007089509 0.001144101 146 142 0.003980742 -0.0006424099 147 142 -0.002541777 0.0004101906 148 142 0.001760065 -0.0002840383 149 142 -0.001288661 0.0002079635 150 142 0.0009826448 -0.0001585787 151 142 -0.0007727812 0.000124711 152 142 0.0006226054 -0.0001004757 153 142 -0.0005114288 8.253411e-05 154 142 0.0004268045 -6.887749e-05 155 142 -0.0003608797 5.823857e-05 156 142 0.0003085011 -4.978574e-05 157 142 -0.0002661734 4.295492e-05 158 142 0.0002314578 -3.735254e-05 159 142 -0.0002026106 3.26972e-05 160 142 0.0001783582 -2.878335e-05 161 142 -0.0001577525 2.545802e-05 223 142 0.001051997 9.144981e-05 62 143 0.001069588 9.333586e-05 81 143 -0.0001577525 2.545802e-05 82 143 0.000140076 -2.26054e-05 83 143 -0.0001247774 2.013652e-05 84 143 0.0001114272 -1.798207e-05 85 143 -9.968672e-05 1.608739e-05 86 143 8.928565e-05 -1.440887e-05 87 143 -8.000611e-05 1.291134e-05 88 143 7.167061e-05 -1.156616e-05 89 143 -6.413319e-05 1.034978e-05 90 143 5.727273e-05 -9.242642e-06 91 143 -5.098776e-05 8.228377e-06 92 143 4.519256e-05 -7.293151e-06 93 143 -3.981401e-05 6.425164e-06 94 143 3.478917e-05 -5.614257e-06 95 143 -3.00633e-05 4.851599e-06 96 143 2.558831e-05 -4.129428e-06 97 143 -2.132146e-05 3.440846e-06 98 143 1.722429e-05 -2.779647e-06 99 143 -1.326172e-05 2.14017e-06 100 143 9.401297e-06 -1.517176e-06 101 143 -5.612495e-06 9.057414e-07 102 143 1.866144e-06 -3.011573e-07 103 143 1.866144e-06 -3.011573e-07 104 143 -5.612495e-06 9.057414e-07 105 143 9.401297e-06 -1.517176e-06 106 143 -1.326172e-05 2.14017e-06 107 143 1.722429e-05 -2.779647e-06 108 143 -2.132146e-05 3.440846e-06 109 143 2.558831e-05 -4.129428e-06 110 143 -3.00633e-05 4.851599e-06 111 143 3.478917e-05 -5.614257e-06 112 143 -3.981401e-05 6.425164e-06 113 143 4.519256e-05 -7.293151e-06 114 143 -5.098776e-05 8.228377e-06 115 143 5.727273e-05 -9.242642e-06 116 143 -6.413319e-05 1.034978e-05 117 143 7.167061e-05 -1.156616e-05 118 143 -8.000611e-05 1.291134e-05 119 143 8.928565e-05 -1.440887e-05 120 143 -9.968672e-05 1.608739e-05 121 143 0.0001114272 -1.798207e-05 122 143 -0.0001247774 2.013652e-05 123 143 0.000140076 -2.26054e-05 124 143 -0.0001577525 2.545802e-05 125 143 0.0001783582 -2.878335e-05 126 143 -0.0002026106 3.26972e-05 127 143 0.0002314578 -3.735254e-05 128 143 -0.0002661734 4.295492e-05 129 143 0.0003085011 -4.978574e-05 130 143 -0.0003608797 5.823857e-05 131 143 0.0004268045 -6.887749e-05 132 143 -0.0005114288 8.253411e-05 133 143 0.0006226054 -0.0001004757 134 143 -0.0007727812 0.000124711 135 143 0.0009826448 -0.0001585787 136 143 -0.001288661 0.0002079635 137 143 0.001760065 -0.0002840383 138 143 -0.002541777 0.0004101906 139 143 0.003980742 -0.0006424099 140 143 -0.007089509 0.001144101 141 143 0.01597157 -0.002577484 142 143 -0.06393453 0.01031772 143 143 -0.06425629 -0.01797109 144 143 -0.06393453 0.01031772 145 143 0.01597157 -0.002577484 146 143 -0.007089509 0.001144101 147 143 0.003980742 -0.0006424099 148 143 -0.002541777 0.0004101906 149 143 0.001760065 -0.0002840383 150 143 -0.001288661 0.0002079635 151 143 0.0009826448 -0.0001585787 152 143 -0.0007727812 0.000124711 153 143 0.0006226054 -0.0001004757 154 143 -0.0005114288 8.253411e-05 155 143 0.0004268045 -6.887749e-05 156 143 -0.0003608797 5.823857e-05 157 143 0.0003085011 -4.978574e-05 158 143 -0.0002661734 4.295492e-05 159 143 0.0002314578 -3.735254e-05 160 143 -0.0002026106 3.26972e-05 161 143 0.0001783582 -2.878335e-05 224 143 0.001069588 9.333586e-05 63 144 0.001087268 9.523884e-05 81 144 0.0001783582 -2.878335e-05 82 144 -0.0001577525 2.545802e-05 83 144 0.000140076 -2.26054e-05 84 144 -0.0001247774 2.013652e-05 85 144 0.0001114272 -1.798207e-05 86 144 -9.968672e-05 1.608739e-05 87 144 8.928565e-05 -1.440887e-05 88 144 -8.000611e-05 1.291134e-05 89 144 7.167061e-05 -1.156616e-05 90 144 -6.413319e-05 1.034978e-05 91 144 5.727273e-05 -9.242642e-06 92 144 -5.098776e-05 8.228377e-06 93 144 4.519256e-05 -7.293151e-06 94 144 -3.981401e-05 6.425164e-06 95 144 3.478917e-05 -5.614257e-06 96 144 -3.00633e-05 4.851599e-06 97 144 2.558831e-05 -4.129428e-06 98 144 -2.132146e-05 3.440846e-06 99 144 1.722429e-05 -2.779647e-06 100 144 -1.326172e-05 2.14017e-06 101 144 9.401297e-06 -1.517176e-06 102 144 -5.612495e-06 9.057414e-07 103 144 1.866144e-06 -3.011573e-07 104 144 1.866144e-06 -3.011573e-07 105 144 -5.612495e-06 9.057414e-07 106 144 9.401297e-06 -1.517176e-06 107 144 -1.326172e-05 2.14017e-06 108 144 1.722429e-05 -2.779647e-06 109 144 -2.132146e-05 3.440846e-06 110 144 2.558831e-05 -4.129428e-06 111 144 -3.00633e-05 4.851599e-06 112 144 3.478917e-05 -5.614257e-06 113 144 -3.981401e-05 6.425164e-06 114 144 4.519256e-05 -7.293151e-06 115 144 -5.098776e-05 8.228377e-06 116 144 5.727273e-05 -9.242642e-06 117 144 -6.413319e-05 1.034978e-05 118 144 7.167061e-05 -1.156616e-05 119 144 -8.000611e-05 1.291134e-05 120 144 8.928565e-05 -1.440887e-05 121 144 -9.968672e-05 1.608739e-05 122 144 0.0001114272 -1.798207e-05 123 144 -0.0001247774 2.013652e-05 124 144 0.000140076 -2.26054e-05 125 144 -0.0001577525 2.545802e-05 126 144 0.0001783582 -2.878335e-05 127 144 -0.0002026106 3.26972e-05 128 144 0.0002314578 -3.735254e-05 129 144 -0.0002661734 4.295492e-05 130 144 0.0003085011 -4.978574e-05 131 144 -0.0003608797 5.823857e-05 132 144 0.0004268045 -6.887749e-05 133 144 -0.0005114288 8.253411e-05 134 144 0.0006226054 -0.0001004757 135 144 -0.0007727812 0.000124711 136 144 0.0009826448 -0.0001585787 137 144 -0.001288661 0.0002079635 138 144 0.001760065 -0.0002840383 139 144 -0.002541777 0.0004101906 140 144 0.003980742 -0.0006424099 141 144 -0.007089509 0.001144101 142 144 0.01597157 -0.002577484 143 144 -0.06393453 0.01031772 144 144 -0.06442842 -0.0178945 145 144 -0.06393453 0.01031772 146 144 0.01597157 -0.002577484 147 144 -0.007089509 0.001144101 148 144 0.003980742 -0.0006424099 149 144 -0.002541777 0.0004101906 150 144 0.001760065 -0.0002840383 151 144 -0.001288661 0.0002079635 152 144 0.0009826448 -0.0001585787 153 144 -0.0007727812 0.000124711 154 144 0.0006226054 -0.0001004757 155 144 -0.0005114288 8.253411e-05 156 144 0.0004268045 -6.887749e-05 157 144 -0.0003608797 5.823857e-05 158 144 0.0003085011 -4.978574e-05 159 144 -0.0002661734 4.295492e-05 160 144 0.0002314578 -3.735254e-05 161 144 -0.0002026106 3.26972e-05 225 144 0.001087268 9.523884e-05 64 145 0.001105038 9.715887e-05 81 145 -0.0002026106 3.26972e-05 82 145 0.0001783582 -2.878335e-05 83 145 -0.0001577525 2.545802e-05 84 145 0.000140076 -2.26054e-05 85 145 -0.0001247774 2.013652e-05 86 145 0.0001114272 -1.798207e-05 87 145 -9.968672e-05 1.608739e-05 88 145 8.928565e-05 -1.440887e-05 89 145 -8.000611e-05 1.291134e-05 90 145 7.167061e-05 -1.156616e-05 91 145 -6.413319e-05 1.034978e-05 92 145 5.727273e-05 -9.242642e-06 93 145 -5.098776e-05 8.228377e-06 94 145 4.519256e-05 -7.293151e-06 95 145 -3.981401e-05 6.425164e-06 96 145 3.478917e-05 -5.614257e-06 97 145 -3.00633e-05 4.851599e-06 98 145 2.558831e-05 -4.129428e-06 99 145 -2.132146e-05 3.440846e-06 100 145 1.722429e-05 -2.779647e-06 101 145 -1.326172e-05 2.14017e-06 102 145 9.401297e-06 -1.517176e-06 103 145 -5.612495e-06 9.057414e-07 104 145 1.866144e-06 -3.011573e-07 105 145 1.866144e-06 -3.011573e-07 106 145 -5.612495e-06 9.057414e-07 107 145 9.401297e-06 -1.517176e-06 108 145 -1.326172e-05 2.14017e-06 109 145 1.722429e-05 -2.779647e-06 110 145 -2.132146e-05 3.440846e-06 111 145 2.558831e-05 -4.129428e-06 112 145 -3.00633e-05 4.851599e-06 113 145 3.478917e-05 -5.614257e-06 114 145 -3.981401e-05 6.425164e-06 115 145 4.519256e-05 -7.293151e-06 116 145 -5.098776e-05 8.228377e-06 117 145 5.727273e-05 -9.242642e-06 118 145 -6.413319e-05 1.034978e-05 119 145 7.167061e-05 -1.156616e-05 120 145 -8.000611e-05 1.291134e-05 121 145 8.928565e-05 -1.440887e-05 122 145 -9.968672e-05 1.608739e-05 123 145 0.0001114272 -1.798207e-05 124 145 -0.0001247774 2.013652e-05 125 145 0.000140076 -2.26054e-05 126 145 -0.0001577525 2.545802e-05 127 145 0.0001783582 -2.878335e-05 128 145 -0.0002026106 3.26972e-05 129 145 0.0002314578 -3.735254e-05 130 145 -0.0002661734 4.295492e-05 131 145 0.0003085011 -4.978574e-05 132 145 -0.0003608797 5.823857e-05 133 145 0.0004268045 -6.887749e-05 134 145 -0.0005114288 8.253411e-05 135 145 0.0006226054 -0.0001004757 136 145 -0.0007727812 0.000124711 137 145 0.0009826448 -0.0001585787 138 145 -0.001288661 0.0002079635 139 145 0.001760065 -0.0002840383 140 145 -0.002541777 0.0004101906 141 145 0.003980742 -0.0006424099 142 145 -0.007089509 0.001144101 143 145 0.01597157 -0.002577484 144 145 -0.06393453 0.01031772 145 145 -0.06458465 -0.01782364 146 145 -0.06393453 0.01031772 147 145 0.01597157 -0.002577484 148 145 -0.007089509 0.001144101 149 145 0.003980742 -0.0006424099 150 145 -0.002541777 0.0004101906 151 145 0.001760065 -0.0002840383 152 145 -0.001288661 0.0002079635 153 145 0.0009826448 -0.0001585787 154 145 -0.0007727812 0.000124711 155 145 0.0006226054 -0.0001004757 156 145 -0.0005114288 8.253411e-05 157 145 0.0004268045 -6.887749e-05 158 145 -0.0003608797 5.823857e-05 159 145 0.0003085011 -4.978574e-05 160 145 -0.0002661734 4.295492e-05 161 145 0.0002314578 -3.735254e-05 226 145 0.001105038 9.715887e-05 65 146 0.001122898 9.909608e-05 81 146 0.0002314578 -3.735254e-05 82 146 -0.0002026106 3.26972e-05 83 146 0.0001783582 -2.878335e-05 84 146 -0.0001577525 2.545802e-05 85 146 0.000140076 -2.26054e-05 86 146 -0.0001247774 2.013652e-05 87 146 0.0001114272 -1.798207e-05 88 146 -9.968672e-05 1.608739e-05 89 146 8.928565e-05 -1.440887e-05 90 146 -8.000611e-05 1.291134e-05 91 146 7.167061e-05 -1.156616e-05 92 146 -6.413319e-05 1.034978e-05 93 146 5.727273e-05 -9.242642e-06 94 146 -5.098776e-05 8.228377e-06 95 146 4.519256e-05 -7.293151e-06 96 146 -3.981401e-05 6.425164e-06 97 146 3.478917e-05 -5.614257e-06 98 146 -3.00633e-05 4.851599e-06 99 146 2.558831e-05 -4.129428e-06 100 146 -2.132146e-05 3.440846e-06 101 146 1.722429e-05 -2.779647e-06 102 146 -1.326172e-05 2.14017e-06 103 146 9.401297e-06 -1.517176e-06 104 146 -5.612495e-06 9.057414e-07 105 146 1.866144e-06 -3.011573e-07 106 146 1.866144e-06 -3.011573e-07 107 146 -5.612495e-06 9.057414e-07 108 146 9.401297e-06 -1.517176e-06 109 146 -1.326172e-05 2.14017e-06 110 146 1.722429e-05 -2.779647e-06 111 146 -2.132146e-05 3.440846e-06 112 146 2.558831e-05 -4.129428e-06 113 146 -3.00633e-05 4.851599e-06 114 146 3.478917e-05 -5.614257e-06 115 146 -3.981401e-05 6.425164e-06 116 146 4.519256e-05 -7.293151e-06 117 146 -5.098776e-05 8.228377e-06 118 146 5.727273e-05 -9.242642e-06 119 146 -6.413319e-05 1.034978e-05 120 146 7.167061e-05 -1.156616e-05 121 146 -8.000611e-05 1.291134e-05 122 146 8.928565e-05 -1.440887e-05 123 146 -9.968672e-05 1.608739e-05 124 146 0.0001114272 -1.798207e-05 125 146 -0.0001247774 2.013652e-05 126 146 0.000140076 -2.26054e-05 127 146 -0.0001577525 2.545802e-05 128 146 0.0001783582 -2.878335e-05 129 146 -0.0002026106 3.26972e-05 130 146 0.0002314578 -3.735254e-05 131 146 -0.0002661734 4.295492e-05 132 146 0.0003085011 -4.978574e-05 133 146 -0.0003608797 5.823857e-05 134 146 0.0004268045 -6.887749e-05 135 146 -0.0005114288 8.253411e-05 136 146 0.0006226054 -0.0001004757 137 146 -0.0007727812 0.000124711 138 146 0.0009826448 -0.0001585787 139 146 -0.001288661 0.0002079635 140 146 0.001760065 -0.0002840383 141 146 -0.002541777 0.0004101906 142 146 0.003980742 -0.0006424099 143 146 -0.007089509 0.001144101 144 146 0.01597157 -0.002577484 145 146 -0.06393453 0.01031772 146 146 -0.06472646 -0.0177581 147 146 -0.06393453 0.01031772 148 146 0.01597157 -0.002577484 149 146 -0.007089509 0.001144101 150 146 0.003980742 -0.0006424099 151 146 -0.002541777 0.0004101906 152 146 0.001760065 -0.0002840383 153 146 -0.001288661 0.0002079635 154 146 0.0009826448 -0.0001585787 155 146 -0.0007727812 0.000124711 156 146 0.0006226054 -0.0001004757 157 146 -0.0005114288 8.253411e-05 158 146 0.0004268045 -6.887749e-05 159 146 -0.0003608797 5.823857e-05 160 146 0.0003085011 -4.978574e-05 161 146 -0.0002661734 4.295492e-05 227 146 0.001122898 9.909608e-05 66 147 0.001140849 0.0001010506 81 147 -0.0002661734 4.295492e-05 82 147 0.0002314578 -3.735254e-05 83 147 -0.0002026106 3.26972e-05 84 147 0.0001783582 -2.878335e-05 85 147 -0.0001577525 2.545802e-05 86 147 0.000140076 -2.26054e-05 87 147 -0.0001247774 2.013652e-05 88 147 0.0001114272 -1.798207e-05 89 147 -9.968672e-05 1.608739e-05 90 147 8.928565e-05 -1.440887e-05 91 147 -8.000611e-05 1.291134e-05 92 147 7.167061e-05 -1.156616e-05 93 147 -6.413319e-05 1.034978e-05 94 147 5.727273e-05 -9.242642e-06 95 147 -5.098776e-05 8.228377e-06 96 147 4.519256e-05 -7.293151e-06 97 147 -3.981401e-05 6.425164e-06 98 147 3.478917e-05 -5.614257e-06 99 147 -3.00633e-05 4.851599e-06 100 147 2.558831e-05 -4.129428e-06 101 147 -2.132146e-05 3.440846e-06 102 147 1.722429e-05 -2.779647e-06 103 147 -1.326172e-05 2.14017e-06 104 147 9.401297e-06 -1.517176e-06 105 147 -5.612495e-06 9.057414e-07 106 147 1.866144e-06 -3.011573e-07 107 147 1.866144e-06 -3.011573e-07 108 147 -5.612495e-06 9.057414e-07 109 147 9.401297e-06 -1.517176e-06 110 147 -1.326172e-05 2.14017e-06 111 147 1.722429e-05 -2.779647e-06 112 147 -2.132146e-05 3.440846e-06 113 147 2.558831e-05 -4.129428e-06 114 147 -3.00633e-05 4.851599e-06 115 147 3.478917e-05 -5.614257e-06 116 147 -3.981401e-05 6.425164e-06 117 147 4.519256e-05 -7.293151e-06 118 147 -5.098776e-05 8.228377e-06 119 147 5.727273e-05 -9.242642e-06 120 147 -6.413319e-05 1.034978e-05 121 147 7.167061e-05 -1.156616e-05 122 147 -8.000611e-05 1.291134e-05 123 147 8.928565e-05 -1.440887e-05 124 147 -9.968672e-05 1.608739e-05 125 147 0.0001114272 -1.798207e-05 126 147 -0.0001247774 2.013652e-05 127 147 0.000140076 -2.26054e-05 128 147 -0.0001577525 2.545802e-05 129 147 0.0001783582 -2.878335e-05 130 147 -0.0002026106 3.26972e-05 131 147 0.0002314578 -3.735254e-05 132 147 -0.0002661734 4.295492e-05 133 147 0.0003085011 -4.978574e-05 134 147 -0.0003608797 5.823857e-05 135 147 0.0004268045 -6.887749e-05 136 147 -0.0005114288 8.253411e-05 137 147 0.0006226054 -0.0001004757 138 147 -0.0007727812 0.000124711 139 147 0.0009826448 -0.0001585787 140 147 -0.001288661 0.0002079635 141 147 0.001760065 -0.0002840383 142 147 -0.002541777 0.0004101906 143 147 0.003980742 -0.0006424099 144 147 -0.007089509 0.001144101 145 147 0.01597157 -0.002577484 146 147 -0.06393453 0.01031772 147 147 -0.06485516 -0.01769747 148 147 -0.06393453 0.01031772 149 147 0.01597157 -0.002577484 150 147 -0.007089509 0.001144101 151 147 0.003980742 -0.0006424099 152 147 -0.002541777 0.0004101906 153 147 0.001760065 -0.0002840383 154 147 -0.001288661 0.0002079635 155 147 0.0009826448 -0.0001585787 156 147 -0.0007727812 0.000124711 157 147 0.0006226054 -0.0001004757 158 147 -0.0005114288 8.253411e-05 159 147 0.0004268045 -6.887749e-05 160 147 -0.0003608797 5.823857e-05 161 147 0.0003085011 -4.978574e-05 228 147 0.001140849 0.0001010506 67 148 0.001158892 0.0001030225 81 148 0.0003085011 -4.978574e-05 82 148 -0.0002661734 4.295492e-05 83 148 0.0002314578 -3.735254e-05 84 148 -0.0002026106 3.26972e-05 85 148 0.0001783582 -2.878335e-05 86 148 -0.0001577525 2.545802e-05 87 148 0.000140076 -2.26054e-05 88 148 -0.0001247774 2.013652e-05 89 148 0.0001114272 -1.798207e-05 90 148 -9.968672e-05 1.608739e-05 91 148 8.928565e-05 -1.440887e-05 92 148 -8.000611e-05 1.291134e-05 93 148 7.167061e-05 -1.156616e-05 94 148 -6.413319e-05 1.034978e-05 95 148 5.727273e-05 -9.242642e-06 96 148 -5.098776e-05 8.228377e-06 97 148 4.519256e-05 -7.293151e-06 98 148 -3.981401e-05 6.425164e-06 99 148 3.478917e-05 -5.614257e-06 100 148 -3.00633e-05 4.851599e-06 101 148 2.558831e-05 -4.129428e-06 102 148 -2.132146e-05 3.440846e-06 103 148 1.722429e-05 -2.779647e-06 104 148 -1.326172e-05 2.14017e-06 105 148 9.401297e-06 -1.517176e-06 106 148 -5.612495e-06 9.057414e-07 107 148 1.866144e-06 -3.011573e-07 108 148 1.866144e-06 -3.011573e-07 109 148 -5.612495e-06 9.057414e-07 110 148 9.401297e-06 -1.517176e-06 111 148 -1.326172e-05 2.14017e-06 112 148 1.722429e-05 -2.779647e-06 113 148 -2.132146e-05 3.440846e-06 114 148 2.558831e-05 -4.129428e-06 115 148 -3.00633e-05 4.851599e-06 116 148 3.478917e-05 -5.614257e-06 117 148 -3.981401e-05 6.425164e-06 118 148 4.519256e-05 -7.293151e-06 119 148 -5.098776e-05 8.228377e-06 120 148 5.727273e-05 -9.242642e-06 121 148 -6.413319e-05 1.034978e-05 122 148 7.167061e-05 -1.156616e-05 123 148 -8.000611e-05 1.291134e-05 124 148 8.928565e-05 -1.440887e-05 125 148 -9.968672e-05 1.608739e-05 126 148 0.0001114272 -1.798207e-05 127 148 -0.0001247774 2.013652e-05 128 148 0.000140076 -2.26054e-05 129 148 -0.0001577525 2.545802e-05 130 148 0.0001783582 -2.878335e-05 131 148 -0.0002026106 3.26972e-05 132 148 0.0002314578 -3.735254e-05 133 148 -0.0002661734 4.295492e-05 134 148 0.0003085011 -4.978574e-05 135 148 -0.0003608797 5.823857e-05 136 148 0.0004268045 -6.887749e-05 137 148 -0.0005114288 8.253411e-05 138 148 0.0006226054 -0.0001004757 139 148 -0.0007727812 0.000124711 140 148 0.0009826448 -0.0001585787 141 148 -0.001288661 0.0002079635 142 148 0.001760065 -0.0002840383 143 148 -0.002541777 0.0004101906 144 148 0.003980742 -0.0006424099 145 148 -0.007089509 0.001144101 146 148 0.01597157 -0.002577484 147 148 -0.06393453 0.01031772 148 148 -0.06497197 -0.01764141 149 148 -0.06393453 0.01031772 150 148 0.01597157 -0.002577484 151 148 -0.007089509 0.001144101 152 148 0.003980742 -0.0006424099 153 148 -0.002541777 0.0004101906 154 148 0.001760065 -0.0002840383 155 148 -0.001288661 0.0002079635 156 148 0.0009826448 -0.0001585787 157 148 -0.0007727812 0.000124711 158 148 0.0006226054 -0.0001004757 159 148 -0.0005114288 8.253411e-05 160 148 0.0004268045 -6.887749e-05 161 148 -0.0003608797 5.823857e-05 229 148 0.001158892 0.0001030225 68 149 0.001177026 0.000105012 81 149 -0.0003608797 5.823857e-05 82 149 0.0003085011 -4.978574e-05 83 149 -0.0002661734 4.295492e-05 84 149 0.0002314578 -3.735254e-05 85 149 -0.0002026106 3.26972e-05 86 149 0.0001783582 -2.878335e-05 87 149 -0.0001577525 2.545802e-05 88 149 0.000140076 -2.26054e-05 89 149 -0.0001247774 2.013652e-05 90 149 0.0001114272 -1.798207e-05 91 149 -9.968672e-05 1.608739e-05 92 149 8.928565e-05 -1.440887e-05 93 149 -8.000611e-05 1.291134e-05 94 149 7.167061e-05 -1.156616e-05 95 149 -6.413319e-05 1.034978e-05 96 149 5.727273e-05 -9.242642e-06 97 149 -5.098776e-05 8.228377e-06 98 149 4.519256e-05 -7.293151e-06 99 149 -3.981401e-05 6.425164e-06 100 149 3.478917e-05 -5.614257e-06 101 149 -3.00633e-05 4.851599e-06 102 149 2.558831e-05 -4.129428e-06 103 149 -2.132146e-05 3.440846e-06 104 149 1.722429e-05 -2.779647e-06 105 149 -1.326172e-05 2.14017e-06 106 149 9.401297e-06 -1.517176e-06 107 149 -5.612495e-06 9.057414e-07 108 149 1.866144e-06 -3.011573e-07 109 149 1.866144e-06 -3.011573e-07 110 149 -5.612495e-06 9.057414e-07 111 149 9.401297e-06 -1.517176e-06 112 149 -1.326172e-05 2.14017e-06 113 149 1.722429e-05 -2.779647e-06 114 149 -2.132146e-05 3.440846e-06 115 149 2.558831e-05 -4.129428e-06 116 149 -3.00633e-05 4.851599e-06 117 149 3.478917e-05 -5.614257e-06 118 149 -3.981401e-05 6.425164e-06 119 149 4.519256e-05 -7.293151e-06 120 149 -5.098776e-05 8.228377e-06 121 149 5.727273e-05 -9.242642e-06 122 149 -6.413319e-05 1.034978e-05 123 149 7.167061e-05 -1.156616e-05 124 149 -8.000611e-05 1.291134e-05 125 149 8.928565e-05 -1.440887e-05 126 149 -9.968672e-05 1.608739e-05 127 149 0.0001114272 -1.798207e-05 128 149 -0.0001247774 2.013652e-05 129 149 0.000140076 -2.26054e-05 130 149 -0.0001577525 2.545802e-05 131 149 0.0001783582 -2.878335e-05 132 149 -0.0002026106 3.26972e-05 133 149 0.0002314578 -3.735254e-05 134 149 -0.0002661734 4.295492e-05 135 149 0.0003085011 -4.978574e-05 136 149 -0.0003608797 5.823857e-05 137 149 0.0004268045 -6.887749e-05 138 149 -0.0005114288 8.253411e-05 139 149 0.0006226054 -0.0001004757 140 149 -0.0007727812 0.000124711 141 149 0.0009826448 -0.0001585787 142 149 -0.001288661 0.0002079635 143 149 0.001760065 -0.0002840383 144 149 -0.002541777 0.0004101906 145 149 0.003980742 -0.0006424099 146 149 -0.007089509 0.001144101 147 149 0.01597157 -0.002577484 148 149 -0.06393453 0.01031772 149 149 -0.06507798 -0.01758959 150 149 -0.06393453 0.01031772 151 149 0.01597157 -0.002577484 152 149 -0.007089509 0.001144101 153 149 0.003980742 -0.0006424099 154 149 -0.002541777 0.0004101906 155 149 0.001760065 -0.0002840383 156 149 -0.001288661 0.0002079635 157 149 0.0009826448 -0.0001585787 158 149 -0.0007727812 0.000124711 159 149 0.0006226054 -0.0001004757 160 149 -0.0005114288 8.253411e-05 161 149 0.0004268045 -6.887749e-05 230 149 0.001177026 0.000105012 69 150 0.001195252 0.0001070192 81 150 0.0004268045 -6.887749e-05 82 150 -0.0003608797 5.823857e-05 83 150 0.0003085011 -4.978574e-05 84 150 -0.0002661734 4.295492e-05 85 150 0.0002314578 -3.735254e-05 86 150 -0.0002026106 3.26972e-05 87 150 0.0001783582 -2.878335e-05 88 150 -0.0001577525 2.545802e-05 89 150 0.000140076 -2.26054e-05 90 150 -0.0001247774 2.013652e-05 91 150 0.0001114272 -1.798207e-05 92 150 -9.968672e-05 1.608739e-05 93 150 8.928565e-05 -1.440887e-05 94 150 -8.000611e-05 1.291134e-05 95 150 7.167061e-05 -1.156616e-05 96 150 -6.413319e-05 1.034978e-05 97 150 5.727273e-05 -9.242642e-06 98 150 -5.098776e-05 8.228377e-06 99 150 4.519256e-05 -7.293151e-06 100 150 -3.981401e-05 6.425164e-06 101 150 3.478917e-05 -5.614257e-06 102 150 -3.00633e-05 4.851599e-06 103 150 2.558831e-05 -4.129428e-06 104 150 -2.132146e-05 3.440846e-06 105 150 1.722429e-05 -2.779647e-06 106 150 -1.326172e-05 2.14017e-06 107 150 9.401297e-06 -1.517176e-06 108 150 -5.612495e-06 9.057414e-07 109 150 1.866144e-06 -3.011573e-07 110 150 1.866144e-06 -3.011573e-07 111 150 -5.612495e-06 9.057414e-07 112 150 9.401297e-06 -1.517176e-06 113 150 -1.326172e-05 2.14017e-06 114 150 1.722429e-05 -2.779647e-06 115 150 -2.132146e-05 3.440846e-06 116 150 2.558831e-05 -4.129428e-06 117 150 -3.00633e-05 4.851599e-06 118 150 3.478917e-05 -5.614257e-06 119 150 -3.981401e-05 6.425164e-06 120 150 4.519256e-05 -7.293151e-06 121 150 -5.098776e-05 8.228377e-06 122 150 5.727273e-05 -9.242642e-06 123 150 -6.413319e-05 1.034978e-05 124 150 7.167061e-05 -1.156616e-05 125 150 -8.000611e-05 1.291134e-05 126 150 8.928565e-05 -1.440887e-05 127 150 -9.968672e-05 1.608739e-05 128 150 0.0001114272 -1.798207e-05 129 150 -0.0001247774 2.013652e-05 130 150 0.000140076 -2.26054e-05 131 150 -0.0001577525 2.545802e-05 132 150 0.0001783582 -2.878335e-05 133 150 -0.0002026106 3.26972e-05 134 150 0.0002314578 -3.735254e-05 135 150 -0.0002661734 4.295492e-05 136 150 0.0003085011 -4.978574e-05 137 150 -0.0003608797 5.823857e-05 138 150 0.0004268045 -6.887749e-05 139 150 -0.0005114288 8.253411e-05 140 150 0.0006226054 -0.0001004757 141 150 -0.0007727812 0.000124711 142 150 0.0009826448 -0.0001585787 143 150 -0.001288661 0.0002079635 144 150 0.001760065 -0.0002840383 145 150 -0.002541777 0.0004101906 146 150 0.003980742 -0.0006424099 147 150 -0.007089509 0.001144101 148 150 0.01597157 -0.002577484 149 150 -0.06393453 0.01031772 150 150 -0.0651742 -0.01754169 151 150 -0.06393453 0.01031772 152 150 0.01597157 -0.002577484 153 150 -0.007089509 0.001144101 154 150 0.003980742 -0.0006424099 155 150 -0.002541777 0.0004101906 156 150 0.001760065 -0.0002840383 157 150 -0.001288661 0.0002079635 158 150 0.0009826448 -0.0001585787 159 150 -0.0007727812 0.000124711 160 150 0.0006226054 -0.0001004757 161 150 -0.0005114288 8.253411e-05 231 150 0.001195252 0.0001070192 70 151 0.001213571 0.0001090442 81 151 -0.0005114288 8.253411e-05 82 151 0.0004268045 -6.887749e-05 83 151 -0.0003608797 5.823857e-05 84 151 0.0003085011 -4.978574e-05 85 151 -0.0002661734 4.295492e-05 86 151 0.0002314578 -3.735254e-05 87 151 -0.0002026106 3.26972e-05 88 151 0.0001783582 -2.878335e-05 89 151 -0.0001577525 2.545802e-05 90 151 0.000140076 -2.26054e-05 91 151 -0.0001247774 2.013652e-05 92 151 0.0001114272 -1.798207e-05 93 151 -9.968672e-05 1.608739e-05 94 151 8.928565e-05 -1.440887e-05 95 151 -8.000611e-05 1.291134e-05 96 151 7.167061e-05 -1.156616e-05 97 151 -6.413319e-05 1.034978e-05 98 151 5.727273e-05 -9.242642e-06 99 151 -5.098776e-05 8.228377e-06 100 151 4.519256e-05 -7.293151e-06 101 151 -3.981401e-05 6.425164e-06 102 151 3.478917e-05 -5.614257e-06 103 151 -3.00633e-05 4.851599e-06 104 151 2.558831e-05 -4.129428e-06 105 151 -2.132146e-05 3.440846e-06 106 151 1.722429e-05 -2.779647e-06 107 151 -1.326172e-05 2.14017e-06 108 151 9.401297e-06 -1.517176e-06 109 151 -5.612495e-06 9.057414e-07 110 151 1.866144e-06 -3.011573e-07 111 151 1.866144e-06 -3.011573e-07 112 151 -5.612495e-06 9.057414e-07 113 151 9.401297e-06 -1.517176e-06 114 151 -1.326172e-05 2.14017e-06 115 151 1.722429e-05 -2.779647e-06 116 151 -2.132146e-05 3.440846e-06 117 151 2.558831e-05 -4.129428e-06 118 151 -3.00633e-05 4.851599e-06 119 151 3.478917e-05 -5.614257e-06 120 151 -3.981401e-05 6.425164e-06 121 151 4.519256e-05 -7.293151e-06 122 151 -5.098776e-05 8.228377e-06 123 151 5.727273e-05 -9.242642e-06 124 151 -6.413319e-05 1.034978e-05 125 151 7.167061e-05 -1.156616e-05 126 151 -8.000611e-05 1.291134e-05 127 151 8.928565e-05 -1.440887e-05 128 151 -9.968672e-05 1.608739e-05 129 151 0.0001114272 -1.798207e-05 130 151 -0.0001247774 2.013652e-05 131 151 0.000140076 -2.26054e-05 132 151 -0.0001577525 2.545802e-05 133 151 0.0001783582 -2.878335e-05 134 151 -0.0002026106 3.26972e-05 135 151 0.0002314578 -3.735254e-05 136 151 -0.0002661734 4.295492e-05 137 151 0.0003085011 -4.978574e-05 138 151 -0.0003608797 5.823857e-05 139 151 0.0004268045 -6.887749e-05 140 151 -0.0005114288 8.253411e-05 141 151 0.0006226054 -0.0001004757 142 151 -0.0007727812 0.000124711 143 151 0.0009826448 -0.0001585787 144 151 -0.001288661 0.0002079635 145 151 0.001760065 -0.0002840383 146 151 -0.002541777 0.0004101906 147 151 0.003980742 -0.0006424099 148 151 -0.007089509 0.001144101 149 151 0.01597157 -0.002577484 150 151 -0.06393453 0.01031772 151 151 -0.06526151 -0.01749742 152 151 -0.06393453 0.01031772 153 151 0.01597157 -0.002577484 154 151 -0.007089509 0.001144101 155 151 0.003980742 -0.0006424099 156 151 -0.002541777 0.0004101906 157 151 0.001760065 -0.0002840383 158 151 -0.001288661 0.0002079635 159 151 0.0009826448 -0.0001585787 160 151 -0.0007727812 0.000124711 161 151 0.0006226054 -0.0001004757 232 151 0.001213571 0.0001090442 71 152 0.001231983 0.0001110871 81 152 0.0006226054 -0.0001004757 82 152 -0.0005114288 8.253411e-05 83 152 0.0004268045 -6.887749e-05 84 152 -0.0003608797 5.823857e-05 85 152 0.0003085011 -4.978574e-05 86 152 -0.0002661734 4.295492e-05 87 152 0.0002314578 -3.735254e-05 88 152 -0.0002026106 3.26972e-05 89 152 0.0001783582 -2.878335e-05 90 152 -0.0001577525 2.545802e-05 91 152 0.000140076 -2.26054e-05 92 152 -0.0001247774 2.013652e-05 93 152 0.0001114272 -1.798207e-05 94 152 -9.968672e-05 1.608739e-05 95 152 8.928565e-05 -1.440887e-05 96 152 -8.000611e-05 1.291134e-05 97 152 7.167061e-05 -1.156616e-05 98 152 -6.413319e-05 1.034978e-05 99 152 5.727273e-05 -9.242642e-06 100 152 -5.098776e-05 8.228377e-06 101 152 4.519256e-05 -7.293151e-06 102 152 -3.981401e-05 6.425164e-06 103 152 3.478917e-05 -5.614257e-06 104 152 -3.00633e-05 4.851599e-06 105 152 2.558831e-05 -4.129428e-06 106 152 -2.132146e-05 3.440846e-06 107 152 1.722429e-05 -2.779647e-06 108 152 -1.326172e-05 2.14017e-06 109 152 9.401297e-06 -1.517176e-06 110 152 -5.612495e-06 9.057414e-07 111 152 1.866144e-06 -3.011573e-07 112 152 1.866144e-06 -3.011573e-07 113 152 -5.612495e-06 9.057414e-07 114 152 9.401297e-06 -1.517176e-06 115 152 -1.326172e-05 2.14017e-06 116 152 1.722429e-05 -2.779647e-06 117 152 -2.132146e-05 3.440846e-06 118 152 2.558831e-05 -4.129428e-06 119 152 -3.00633e-05 4.851599e-06 120 152 3.478917e-05 -5.614257e-06 121 152 -3.981401e-05 6.425164e-06 122 152 4.519256e-05 -7.293151e-06 123 152 -5.098776e-05 8.228377e-06 124 152 5.727273e-05 -9.242642e-06 125 152 -6.413319e-05 1.034978e-05 126 152 7.167061e-05 -1.156616e-05 127 152 -8.000611e-05 1.291134e-05 128 152 8.928565e-05 -1.440887e-05 129 152 -9.968672e-05 1.608739e-05 130 152 0.0001114272 -1.798207e-05 131 152 -0.0001247774 2.013652e-05 132 152 0.000140076 -2.26054e-05 133 152 -0.0001577525 2.545802e-05 134 152 0.0001783582 -2.878335e-05 135 152 -0.0002026106 3.26972e-05 136 152 0.0002314578 -3.735254e-05 137 152 -0.0002661734 4.295492e-05 138 152 0.0003085011 -4.978574e-05 139 152 -0.0003608797 5.823857e-05 140 152 0.0004268045 -6.887749e-05 141 152 -0.0005114288 8.253411e-05 142 152 0.0006226054 -0.0001004757 143 152 -0.0007727812 0.000124711 144 152 0.0009826448 -0.0001585787 145 152 -0.001288661 0.0002079635 146 152 0.001760065 -0.0002840383 147 152 -0.002541777 0.0004101906 148 152 0.003980742 -0.0006424099 149 152 -0.007089509 0.001144101 150 152 0.01597157 -0.002577484 151 152 -0.06393453 0.01031772 152 152 -0.06534074 -0.01745652 153 152 -0.06393453 0.01031772 154 152 0.01597157 -0.002577484 155 152 -0.007089509 0.001144101 156 152 0.003980742 -0.0006424099 157 152 -0.002541777 0.0004101906 158 152 0.001760065 -0.0002840383 159 152 -0.001288661 0.0002079635 160 152 0.0009826448 -0.0001585787 161 152 -0.0007727812 0.000124711 233 152 0.001231983 0.0001110871 72 153 0.001250489 0.0001131481 81 153 -0.0007727812 0.000124711 82 153 0.0006226054 -0.0001004757 83 153 -0.0005114288 8.253411e-05 84 153 0.0004268045 -6.887749e-05 85 153 -0.0003608797 5.823857e-05 86 153 0.0003085011 -4.978574e-05 87 153 -0.0002661734 4.295492e-05 88 153 0.0002314578 -3.735254e-05 89 153 -0.0002026106 3.26972e-05 90 153 0.0001783582 -2.878335e-05 91 153 -0.0001577525 2.545802e-05 92 153 0.000140076 -2.26054e-05 93 153 -0.0001247774 2.013652e-05 94 153 0.0001114272 -1.798207e-05 95 153 -9.968672e-05 1.608739e-05 96 153 8.928565e-05 -1.440887e-05 97 153 -8.000611e-05 1.291134e-05 98 153 7.167061e-05 -1.156616e-05 99 153 -6.413319e-05 1.034978e-05 100 153 5.727273e-05 -9.242642e-06 101 153 -5.098776e-05 8.228377e-06 102 153 4.519256e-05 -7.293151e-06 103 153 -3.981401e-05 6.425164e-06 104 153 3.478917e-05 -5.614257e-06 105 153 -3.00633e-05 4.851599e-06 106 153 2.558831e-05 -4.129428e-06 107 153 -2.132146e-05 3.440846e-06 108 153 1.722429e-05 -2.779647e-06 109 153 -1.326172e-05 2.14017e-06 110 153 9.401297e-06 -1.517176e-06 111 153 -5.612495e-06 9.057414e-07 112 153 1.866144e-06 -3.011573e-07 113 153 1.866144e-06 -3.011573e-07 114 153 -5.612495e-06 9.057414e-07 115 153 9.401297e-06 -1.517176e-06 116 153 -1.326172e-05 2.14017e-06 117 153 1.722429e-05 -2.779647e-06 118 153 -2.132146e-05 3.440846e-06 119 153 2.558831e-05 -4.129428e-06 120 153 -3.00633e-05 4.851599e-06 121 153 3.478917e-05 -5.614257e-06 122 153 -3.981401e-05 6.425164e-06 123 153 4.519256e-05 -7.293151e-06 124 153 -5.098776e-05 8.228377e-06 125 153 5.727273e-05 -9.242642e-06 126 153 -6.413319e-05 1.034978e-05 127 153 7.167061e-05 -1.156616e-05 128 153 -8.000611e-05 1.291134e-05 129 153 8.928565e-05 -1.440887e-05 130 153 -9.968672e-05 1.608739e-05 131 153 0.0001114272 -1.798207e-05 132 153 -0.0001247774 2.013652e-05 133 153 0.000140076 -2.26054e-05 134 153 -0.0001577525 2.545802e-05 135 153 0.0001783582 -2.878335e-05 136 153 -0.0002026106 3.26972e-05 137 153 0.0002314578 -3.735254e-05 138 153 -0.0002661734 4.295492e-05 139 153 0.0003085011 -4.978574e-05 140 153 -0.0003608797 5.823857e-05 141 153 0.0004268045 -6.887749e-05 142 153 -0.0005114288 8.253411e-05 143 153 0.0006226054 -0.0001004757 144 153 -0.0007727812 0.000124711 145 153 0.0009826448 -0.0001585787 146 153 -0.001288661 0.0002079635 147 153 0.001760065 -0.0002840383 148 153 -0.002541777 0.0004101906 149 153 0.003980742 -0.0006424099 150 153 -0.007089509 0.001144101 151 153 0.01597157 -0.002577484 152 153 -0.06393453 0.01031772 153 153 -0.06541264 -0.01741874 154 153 -0.06393453 0.01031772 155 153 0.01597157 -0.002577484 156 153 -0.007089509 0.001144101 157 153 0.003980742 -0.0006424099 158 153 -0.002541777 0.0004101906 159 153 0.001760065 -0.0002840383 160 153 -0.001288661 0.0002079635 161 153 0.0009826448 -0.0001585787 234 153 0.001250489 0.0001131481 73 154 0.001269089 0.0001152273 81 154 0.0009826448 -0.0001585787 82 154 -0.0007727812 0.000124711 83 154 0.0006226054 -0.0001004757 84 154 -0.0005114288 8.253411e-05 85 154 0.0004268045 -6.887749e-05 86 154 -0.0003608797 5.823857e-05 87 154 0.0003085011 -4.978574e-05 88 154 -0.0002661734 4.295492e-05 89 154 0.0002314578 -3.735254e-05 90 154 -0.0002026106 3.26972e-05 91 154 0.0001783582 -2.878335e-05 92 154 -0.0001577525 2.545802e-05 93 154 0.000140076 -2.26054e-05 94 154 -0.0001247774 2.013652e-05 95 154 0.0001114272 -1.798207e-05 96 154 -9.968672e-05 1.608739e-05 97 154 8.928565e-05 -1.440887e-05 98 154 -8.000611e-05 1.291134e-05 99 154 7.167061e-05 -1.156616e-05 100 154 -6.413319e-05 1.034978e-05 101 154 5.727273e-05 -9.242642e-06 102 154 -5.098776e-05 8.228377e-06 103 154 4.519256e-05 -7.293151e-06 104 154 -3.981401e-05 6.425164e-06 105 154 3.478917e-05 -5.614257e-06 106 154 -3.00633e-05 4.851599e-06 107 154 2.558831e-05 -4.129428e-06 108 154 -2.132146e-05 3.440846e-06 109 154 1.722429e-05 -2.779647e-06 110 154 -1.326172e-05 2.14017e-06 111 154 9.401297e-06 -1.517176e-06 112 154 -5.612495e-06 9.057414e-07 113 154 1.866144e-06 -3.011573e-07 114 154 1.866144e-06 -3.011573e-07 115 154 -5.612495e-06 9.057414e-07 116 154 9.401297e-06 -1.517176e-06 117 154 -1.326172e-05 2.14017e-06 118 154 1.722429e-05 -2.779647e-06 119 154 -2.132146e-05 3.440846e-06 120 154 2.558831e-05 -4.129428e-06 121 154 -3.00633e-05 4.851599e-06 122 154 3.478917e-05 -5.614257e-06 123 154 -3.981401e-05 6.425164e-06 124 154 4.519256e-05 -7.293151e-06 125 154 -5.098776e-05 8.228377e-06 126 154 5.727273e-05 -9.242642e-06 127 154 -6.413319e-05 1.034978e-05 128 154 7.167061e-05 -1.156616e-05 129 154 -8.000611e-05 1.291134e-05 130 154 8.928565e-05 -1.440887e-05 131 154 -9.968672e-05 1.608739e-05 132 154 0.0001114272 -1.798207e-05 133 154 -0.0001247774 2.013652e-05 134 154 0.000140076 -2.26054e-05 135 154 -0.0001577525 2.545802e-05 136 154 0.0001783582 -2.878335e-05 137 154 -0.0002026106 3.26972e-05 138 154 0.0002314578 -3.735254e-05 139 154 -0.0002661734 4.295492e-05 140 154 0.0003085011 -4.978574e-05 141 154 -0.0003608797 5.823857e-05 142 154 0.0004268045 -6.887749e-05 143 154 -0.0005114288 8.253411e-05 144 154 0.0006226054 -0.0001004757 145 154 -0.0007727812 0.000124711 146 154 0.0009826448 -0.0001585787 147 154 -0.001288661 0.0002079635 148 154 0.001760065 -0.0002840383 149 154 -0.002541777 0.0004101906 150 154 0.003980742 -0.0006424099 151 154 -0.007089509 0.001144101 152 154 0.01597157 -0.002577484 153 154 -0.06393453 0.01031772 154 154 -0.06547788 -0.01738384 155 154 -0.06393453 0.01031772 156 154 0.01597157 -0.002577484 157 154 -0.007089509 0.001144101 158 154 0.003980742 -0.0006424099 159 154 -0.002541777 0.0004101906 160 154 0.001760065 -0.0002840383 161 154 -0.001288661 0.0002079635 235 154 0.001269089 0.0001152273 74 155 0.001287783 0.0001173249 81 155 -0.001288661 0.0002079635 82 155 0.0009826448 -0.0001585787 83 155 -0.0007727812 0.000124711 84 155 0.0006226054 -0.0001004757 85 155 -0.0005114288 8.253411e-05 86 155 0.0004268045 -6.887749e-05 87 155 -0.0003608797 5.823857e-05 88 155 0.0003085011 -4.978574e-05 89 155 -0.0002661734 4.295492e-05 90 155 0.0002314578 -3.735254e-05 91 155 -0.0002026106 3.26972e-05 92 155 0.0001783582 -2.878335e-05 93 155 -0.0001577525 2.545802e-05 94 155 0.000140076 -2.26054e-05 95 155 -0.0001247774 2.013652e-05 96 155 0.0001114272 -1.798207e-05 97 155 -9.968672e-05 1.608739e-05 98 155 8.928565e-05 -1.440887e-05 99 155 -8.000611e-05 1.291134e-05 100 155 7.167061e-05 -1.156616e-05 101 155 -6.413319e-05 1.034978e-05 102 155 5.727273e-05 -9.242642e-06 103 155 -5.098776e-05 8.228377e-06 104 155 4.519256e-05 -7.293151e-06 105 155 -3.981401e-05 6.425164e-06 106 155 3.478917e-05 -5.614257e-06 107 155 -3.00633e-05 4.851599e-06 108 155 2.558831e-05 -4.129428e-06 109 155 -2.132146e-05 3.440846e-06 110 155 1.722429e-05 -2.779647e-06 111 155 -1.326172e-05 2.14017e-06 112 155 9.401297e-06 -1.517176e-06 113 155 -5.612495e-06 9.057414e-07 114 155 1.866144e-06 -3.011573e-07 115 155 1.866144e-06 -3.011573e-07 116 155 -5.612495e-06 9.057414e-07 117 155 9.401297e-06 -1.517176e-06 118 155 -1.326172e-05 2.14017e-06 119 155 1.722429e-05 -2.779647e-06 120 155 -2.132146e-05 3.440846e-06 121 155 2.558831e-05 -4.129428e-06 122 155 -3.00633e-05 4.851599e-06 123 155 3.478917e-05 -5.614257e-06 124 155 -3.981401e-05 6.425164e-06 125 155 4.519256e-05 -7.293151e-06 126 155 -5.098776e-05 8.228377e-06 127 155 5.727273e-05 -9.242642e-06 128 155 -6.413319e-05 1.034978e-05 129 155 7.167061e-05 -1.156616e-05 130 155 -8.000611e-05 1.291134e-05 131 155 8.928565e-05 -1.440887e-05 132 155 -9.968672e-05 1.608739e-05 133 155 0.0001114272 -1.798207e-05 134 155 -0.0001247774 2.013652e-05 135 155 0.000140076 -2.26054e-05 136 155 -0.0001577525 2.545802e-05 137 155 0.0001783582 -2.878335e-05 138 155 -0.0002026106 3.26972e-05 139 155 0.0002314578 -3.735254e-05 140 155 -0.0002661734 4.295492e-05 141 155 0.0003085011 -4.978574e-05 142 155 -0.0003608797 5.823857e-05 143 155 0.0004268045 -6.887749e-05 144 155 -0.0005114288 8.253411e-05 145 155 0.0006226054 -0.0001004757 146 155 -0.0007727812 0.000124711 147 155 0.0009826448 -0.0001585787 148 155 -0.001288661 0.0002079635 149 155 0.001760065 -0.0002840383 150 155 -0.002541777 0.0004101906 151 155 0.003980742 -0.0006424099 152 155 -0.007089509 0.001144101 153 155 0.01597157 -0.002577484 154 155 -0.06393453 0.01031772 155 155 -0.06553708 -0.01735162 156 155 -0.06393453 0.01031772 157 155 0.01597157 -0.002577484 158 155 -0.007089509 0.001144101 159 155 0.003980742 -0.0006424099 160 155 -0.002541777 0.0004101906 161 155 0.001760065 -0.0002840383 236 155 0.001287783 0.0001173249 75 156 0.001306573 0.0001194409 81 156 0.001760065 -0.0002840383 82 156 -0.001288661 0.0002079635 83 156 0.0009826448 -0.0001585787 84 156 -0.0007727812 0.000124711 85 156 0.0006226054 -0.0001004757 86 156 -0.0005114288 8.253411e-05 87 156 0.0004268045 -6.887749e-05 88 156 -0.0003608797 5.823857e-05 89 156 0.0003085011 -4.978574e-05 90 156 -0.0002661734 4.295492e-05 91 156 0.0002314578 -3.735254e-05 92 156 -0.0002026106 3.26972e-05 93 156 0.0001783582 -2.878335e-05 94 156 -0.0001577525 2.545802e-05 95 156 0.000140076 -2.26054e-05 96 156 -0.0001247774 2.013652e-05 97 156 0.0001114272 -1.798207e-05 98 156 -9.968672e-05 1.608739e-05 99 156 8.928565e-05 -1.440887e-05 100 156 -8.000611e-05 1.291134e-05 101 156 7.167061e-05 -1.156616e-05 102 156 -6.413319e-05 1.034978e-05 103 156 5.727273e-05 -9.242642e-06 104 156 -5.098776e-05 8.228377e-06 105 156 4.519256e-05 -7.293151e-06 106 156 -3.981401e-05 6.425164e-06 107 156 3.478917e-05 -5.614257e-06 108 156 -3.00633e-05 4.851599e-06 109 156 2.558831e-05 -4.129428e-06 110 156 -2.132146e-05 3.440846e-06 111 156 1.722429e-05 -2.779647e-06 112 156 -1.326172e-05 2.14017e-06 113 156 9.401297e-06 -1.517176e-06 114 156 -5.612495e-06 9.057414e-07 115 156 1.866144e-06 -3.011573e-07 116 156 1.866144e-06 -3.011573e-07 117 156 -5.612495e-06 9.057414e-07 118 156 9.401297e-06 -1.517176e-06 119 156 -1.326172e-05 2.14017e-06 120 156 1.722429e-05 -2.779647e-06 121 156 -2.132146e-05 3.440846e-06 122 156 2.558831e-05 -4.129428e-06 123 156 -3.00633e-05 4.851599e-06 124 156 3.478917e-05 -5.614257e-06 125 156 -3.981401e-05 6.425164e-06 126 156 4.519256e-05 -7.293151e-06 127 156 -5.098776e-05 8.228377e-06 128 156 5.727273e-05 -9.242642e-06 129 156 -6.413319e-05 1.034978e-05 130 156 7.167061e-05 -1.156616e-05 131 156 -8.000611e-05 1.291134e-05 132 156 8.928565e-05 -1.440887e-05 133 156 -9.968672e-05 1.608739e-05 134 156 0.0001114272 -1.798207e-05 135 156 -0.0001247774 2.013652e-05 136 156 0.000140076 -2.26054e-05 137 156 -0.0001577525 2.545802e-05 138 156 0.0001783582 -2.878335e-05 139 156 -0.0002026106 3.26972e-05 140 156 0.0002314578 -3.735254e-05 141 156 -0.0002661734 4.295492e-05 142 156 0.0003085011 -4.978574e-05 143 156 -0.0003608797 5.823857e-05 144 156 0.0004268045 -6.887749e-05 145 156 -0.0005114288 8.253411e-05 146 156 0.0006226054 -0.0001004757 147 156 -0.0007727812 0.000124711 148 156 0.0009826448 -0.0001585787 149 156 -0.001288661 0.0002079635 150 156 0.001760065 -0.0002840383 151 156 -0.002541777 0.0004101906 152 156 0.003980742 -0.0006424099 153 156 -0.007089509 0.001144101 154 156 0.01597157 -0.002577484 155 156 -0.06393453 0.01031772 156 156 -0.06559079 -0.01732187 157 156 -0.06393453 0.01031772 158 156 0.01597157 -0.002577484 159 156 -0.007089509 0.001144101 160 156 0.003980742 -0.0006424099 161 156 -0.002541777 0.0004101906 237 156 0.001306573 0.0001194409 76 157 0.001325458 0.0001215755 81 157 -0.002541777 0.0004101906 82 157 0.001760065 -0.0002840383 83 157 -0.001288661 0.0002079635 84 157 0.0009826448 -0.0001585787 85 157 -0.0007727812 0.000124711 86 157 0.0006226054 -0.0001004757 87 157 -0.0005114288 8.253411e-05 88 157 0.0004268045 -6.887749e-05 89 157 -0.0003608797 5.823857e-05 90 157 0.0003085011 -4.978574e-05 91 157 -0.0002661734 4.295492e-05 92 157 0.0002314578 -3.735254e-05 93 157 -0.0002026106 3.26972e-05 94 157 0.0001783582 -2.878335e-05 95 157 -0.0001577525 2.545802e-05 96 157 0.000140076 -2.26054e-05 97 157 -0.0001247774 2.013652e-05 98 157 0.0001114272 -1.798207e-05 99 157 -9.968672e-05 1.608739e-05 100 157 8.928565e-05 -1.440887e-05 101 157 -8.000611e-05 1.291134e-05 102 157 7.167061e-05 -1.156616e-05 103 157 -6.413319e-05 1.034978e-05 104 157 5.727273e-05 -9.242642e-06 105 157 -5.098776e-05 8.228377e-06 106 157 4.519256e-05 -7.293151e-06 107 157 -3.981401e-05 6.425164e-06 108 157 3.478917e-05 -5.614257e-06 109 157 -3.00633e-05 4.851599e-06 110 157 2.558831e-05 -4.129428e-06 111 157 -2.132146e-05 3.440846e-06 112 157 1.722429e-05 -2.779647e-06 113 157 -1.326172e-05 2.14017e-06 114 157 9.401297e-06 -1.517176e-06 115 157 -5.612495e-06 9.057414e-07 116 157 1.866144e-06 -3.011573e-07 117 157 1.866144e-06 -3.011573e-07 118 157 -5.612495e-06 9.057414e-07 119 157 9.401297e-06 -1.517176e-06 120 157 -1.326172e-05 2.14017e-06 121 157 1.722429e-05 -2.779647e-06 122 157 -2.132146e-05 3.440846e-06 123 157 2.558831e-05 -4.129428e-06 124 157 -3.00633e-05 4.851599e-06 125 157 3.478917e-05 -5.614257e-06 126 157 -3.981401e-05 6.425164e-06 127 157 4.519256e-05 -7.293151e-06 128 157 -5.098776e-05 8.228377e-06 129 157 5.727273e-05 -9.242642e-06 130 157 -6.413319e-05 1.034978e-05 131 157 7.167061e-05 -1.156616e-05 132 157 -8.000611e-05 1.291134e-05 133 157 8.928565e-05 -1.440887e-05 134 157 -9.968672e-05 1.608739e-05 135 157 0.0001114272 -1.798207e-05 136 157 -0.0001247774 2.013652e-05 137 157 0.000140076 -2.26054e-05 138 157 -0.0001577525 2.545802e-05 139 157 0.0001783582 -2.878335e-05 140 157 -0.0002026106 3.26972e-05 141 157 0.0002314578 -3.735254e-05 142 157 -0.0002661734 4.295492e-05 143 157 0.0003085011 -4.978574e-05 144 157 -0.0003608797 5.823857e-05 145 157 0.0004268045 -6.887749e-05 146 157 -0.0005114288 8.253411e-05 147 157 0.0006226054 -0.0001004757 148 157 -0.0007727812 0.000124711 149 157 0.0009826448 -0.0001585787 150 157 -0.001288661 0.0002079635 151 157 0.001760065 -0.0002840383 152 157 -0.002541777 0.0004101906 153 157 0.003980742 -0.0006424099 154 157 -0.007089509 0.001144101 155 157 0.01597157 -0.002577484 156 157 -0.06393453 0.01031772 157 157 -0.06563951 -0.01729441 158 157 -0.06393453 0.01031772 159 157 0.01597157 -0.002577484 160 157 -0.007089509 0.001144101 161 157 0.003980742 -0.0006424099 238 157 0.001325458 0.0001215755 77 158 0.001344439 0.0001237288 81 158 0.003980742 -0.0006424099 82 158 -0.002541777 0.0004101906 83 158 0.001760065 -0.0002840383 84 158 -0.001288661 0.0002079635 85 158 0.0009826448 -0.0001585787 86 158 -0.0007727812 0.000124711 87 158 0.0006226054 -0.0001004757 88 158 -0.0005114288 8.253411e-05 89 158 0.0004268045 -6.887749e-05 90 158 -0.0003608797 5.823857e-05 91 158 0.0003085011 -4.978574e-05 92 158 -0.0002661734 4.295492e-05 93 158 0.0002314578 -3.735254e-05 94 158 -0.0002026106 3.26972e-05 95 158 0.0001783582 -2.878335e-05 96 158 -0.0001577525 2.545802e-05 97 158 0.000140076 -2.26054e-05 98 158 -0.0001247774 2.013652e-05 99 158 0.0001114272 -1.798207e-05 100 158 -9.968672e-05 1.608739e-05 101 158 8.928565e-05 -1.440887e-05 102 158 -8.000611e-05 1.291134e-05 103 158 7.167061e-05 -1.156616e-05 104 158 -6.413319e-05 1.034978e-05 105 158 5.727273e-05 -9.242642e-06 106 158 -5.098776e-05 8.228377e-06 107 158 4.519256e-05 -7.293151e-06 108 158 -3.981401e-05 6.425164e-06 109 158 3.478917e-05 -5.614257e-06 110 158 -3.00633e-05 4.851599e-06 111 158 2.558831e-05 -4.129428e-06 112 158 -2.132146e-05 3.440846e-06 113 158 1.722429e-05 -2.779647e-06 114 158 -1.326172e-05 2.14017e-06 115 158 9.401297e-06 -1.517176e-06 116 158 -5.612495e-06 9.057414e-07 117 158 1.866144e-06 -3.011573e-07 118 158 1.866144e-06 -3.011573e-07 119 158 -5.612495e-06 9.057414e-07 120 158 9.401297e-06 -1.517176e-06 121 158 -1.326172e-05 2.14017e-06 122 158 1.722429e-05 -2.779647e-06 123 158 -2.132146e-05 3.440846e-06 124 158 2.558831e-05 -4.129428e-06 125 158 -3.00633e-05 4.851599e-06 126 158 3.478917e-05 -5.614257e-06 127 158 -3.981401e-05 6.425164e-06 128 158 4.519256e-05 -7.293151e-06 129 158 -5.098776e-05 8.228377e-06 130 158 5.727273e-05 -9.242642e-06 131 158 -6.413319e-05 1.034978e-05 132 158 7.167061e-05 -1.156616e-05 133 158 -8.000611e-05 1.291134e-05 134 158 8.928565e-05 -1.440887e-05 135 158 -9.968672e-05 1.608739e-05 136 158 0.0001114272 -1.798207e-05 137 158 -0.0001247774 2.013652e-05 138 158 0.000140076 -2.26054e-05 139 158 -0.0001577525 2.545802e-05 140 158 0.0001783582 -2.878335e-05 141 158 -0.0002026106 3.26972e-05 142 158 0.0002314578 -3.735254e-05 143 158 -0.0002661734 4.295492e-05 144 158 0.0003085011 -4.978574e-05 145 158 -0.0003608797 5.823857e-05 146 158 0.0004268045 -6.887749e-05 147 158 -0.0005114288 8.253411e-05 148 158 0.0006226054 -0.0001004757 149 158 -0.0007727812 0.000124711 150 158 0.0009826448 -0.0001585787 151 158 -0.001288661 0.0002079635 152 158 0.001760065 -0.0002840383 153 158 -0.002541777 0.0004101906 154 158 0.003980742 -0.0006424099 155 158 -0.007089509 0.001144101 156 158 0.01597157 -0.002577484 157 158 -0.06393453 0.01031772 158 158 -0.06568372 -0.01726907 159 158 -0.06393453 0.01031772 160 158 0.01597157 -0.002577484 161 158 -0.007089509 0.001144101 239 158 0.001344439 0.0001237288 78 159 0.001363516 0.0001259011 81 159 -0.007089509 0.001144101 82 159 0.003980742 -0.0006424099 83 159 -0.002541777 0.0004101906 84 159 0.001760065 -0.0002840383 85 159 -0.001288661 0.0002079635 86 159 0.0009826448 -0.0001585787 87 159 -0.0007727812 0.000124711 88 159 0.0006226054 -0.0001004757 89 159 -0.0005114288 8.253411e-05 90 159 0.0004268045 -6.887749e-05 91 159 -0.0003608797 5.823857e-05 92 159 0.0003085011 -4.978574e-05 93 159 -0.0002661734 4.295492e-05 94 159 0.0002314578 -3.735254e-05 95 159 -0.0002026106 3.26972e-05 96 159 0.0001783582 -2.878335e-05 97 159 -0.0001577525 2.545802e-05 98 159 0.000140076 -2.26054e-05 99 159 -0.0001247774 2.013652e-05 100 159 0.0001114272 -1.798207e-05 101 159 -9.968672e-05 1.608739e-05 102 159 8.928565e-05 -1.440887e-05 103 159 -8.000611e-05 1.291134e-05 104 159 7.167061e-05 -1.156616e-05 105 159 -6.413319e-05 1.034978e-05 106 159 5.727273e-05 -9.242642e-06 107 159 -5.098776e-05 8.228377e-06 108 159 4.519256e-05 -7.293151e-06 109 159 -3.981401e-05 6.425164e-06 110 159 3.478917e-05 -5.614257e-06 111 159 -3.00633e-05 4.851599e-06 112 159 2.558831e-05 -4.129428e-06 113 159 -2.132146e-05 3.440846e-06 114 159 1.722429e-05 -2.779647e-06 115 159 -1.326172e-05 2.14017e-06 116 159 9.401297e-06 -1.517176e-06 117 159 -5.612495e-06 9.057414e-07 118 159 1.866144e-06 -3.011573e-07 119 159 1.866144e-06 -3.011573e-07 120 159 -5.612495e-06 9.057414e-07 121 159 9.401297e-06 -1.517176e-06 122 159 -1.326172e-05 2.14017e-06 123 159 1.722429e-05 -2.779647e-06 124 159 -2.132146e-05 3.440846e-06 125 159 2.558831e-05 -4.129428e-06 126 159 -3.00633e-05 4.851599e-06 127 159 3.478917e-05 -5.614257e-06 128 159 -3.981401e-05 6.425164e-06 129 159 4.519256e-05 -7.293151e-06 130 159 -5.098776e-05 8.228377e-06 131 159 5.727273e-05 -9.242642e-06 132 159 -6.413319e-05 1.034978e-05 133 159 7.167061e-05 -1.156616e-05 134 159 -8.000611e-05 1.291134e-05 135 159 8.928565e-05 -1.440887e-05 136 159 -9.968672e-05 1.608739e-05 137 159 0.0001114272 -1.798207e-05 138 159 -0.0001247774 2.013652e-05 139 159 0.000140076 -2.26054e-05 140 159 -0.0001577525 2.545802e-05 141 159 0.0001783582 -2.878335e-05 142 159 -0.0002026106 3.26972e-05 143 159 0.0002314578 -3.735254e-05 144 159 -0.0002661734 4.295492e-05 145 159 0.0003085011 -4.978574e-05 146 159 -0.0003608797 5.823857e-05 147 159 0.0004268045 -6.887749e-05 148 159 -0.0005114288 8.253411e-05 149 159 0.0006226054 -0.0001004757 150 159 -0.0007727812 0.000124711 151 159 0.0009826448 -0.0001585787 152 159 -0.001288661 0.0002079635 153 159 0.001760065 -0.0002840383 154 159 -0.002541777 0.0004101906 155 159 0.003980742 -0.0006424099 156 159 -0.007089509 0.001144101 157 159 0.01597157 -0.002577484 158 159 -0.06393453 0.01031772 159 159 -0.06572382 -0.01724569 160 159 -0.06393453 0.01031772 161 159 0.01597157 -0.002577484 240 159 0.001363516 0.0001259011 79 160 0.00138269 0.0001280923 81 160 0.01597157 -0.002577484 82 160 -0.007089509 0.001144101 83 160 0.003980742 -0.0006424099 84 160 -0.002541777 0.0004101906 85 160 0.001760065 -0.0002840383 86 160 -0.001288661 0.0002079635 87 160 0.0009826448 -0.0001585787 88 160 -0.0007727812 0.000124711 89 160 0.0006226054 -0.0001004757 90 160 -0.0005114288 8.253411e-05 91 160 0.0004268045 -6.887749e-05 92 160 -0.0003608797 5.823857e-05 93 160 0.0003085011 -4.978574e-05 94 160 -0.0002661734 4.295492e-05 95 160 0.0002314578 -3.735254e-05 96 160 -0.0002026106 3.26972e-05 97 160 0.0001783582 -2.878335e-05 98 160 -0.0001577525 2.545802e-05 99 160 0.000140076 -2.26054e-05 100 160 -0.0001247774 2.013652e-05 101 160 0.0001114272 -1.798207e-05 102 160 -9.968672e-05 1.608739e-05 103 160 8.928565e-05 -1.440887e-05 104 160 -8.000611e-05 1.291134e-05 105 160 7.167061e-05 -1.156616e-05 106 160 -6.413319e-05 1.034978e-05 107 160 5.727273e-05 -9.242642e-06 108 160 -5.098776e-05 8.228377e-06 109 160 4.519256e-05 -7.293151e-06 110 160 -3.981401e-05 6.425164e-06 111 160 3.478917e-05 -5.614257e-06 112 160 -3.00633e-05 4.851599e-06 113 160 2.558831e-05 -4.129428e-06 114 160 -2.132146e-05 3.440846e-06 115 160 1.722429e-05 -2.779647e-06 116 160 -1.326172e-05 2.14017e-06 117 160 9.401297e-06 -1.517176e-06 118 160 -5.612495e-06 9.057414e-07 119 160 1.866144e-06 -3.011573e-07 120 160 1.866144e-06 -3.011573e-07 121 160 -5.612495e-06 9.057414e-07 122 160 9.401297e-06 -1.517176e-06 123 160 -1.326172e-05 2.14017e-06 124 160 1.722429e-05 -2.779647e-06 125 160 -2.132146e-05 3.440846e-06 126 160 2.558831e-05 -4.129428e-06 127 160 -3.00633e-05 4.851599e-06 128 160 3.478917e-05 -5.614257e-06 129 160 -3.981401e-05 6.425164e-06 130 160 4.519256e-05 -7.293151e-06 131 160 -5.098776e-05 8.228377e-06 132 160 5.727273e-05 -9.242642e-06 133 160 -6.413319e-05 1.034978e-05 134 160 7.167061e-05 -1.156616e-05 135 160 -8.000611e-05 1.291134e-05 136 160 8.928565e-05 -1.440887e-05 137 160 -9.968672e-05 1.608739e-05 138 160 0.0001114272 -1.798207e-05 139 160 -0.0001247774 2.013652e-05 140 160 0.000140076 -2.26054e-05 141 160 -0.0001577525 2.545802e-05 142 160 0.0001783582 -2.878335e-05 143 160 -0.0002026106 3.26972e-05 144 160 0.0002314578 -3.735254e-05 145 160 -0.0002661734 4.295492e-05 146 160 0.0003085011 -4.978574e-05 147 160 -0.0003608797 5.823857e-05 148 160 0.0004268045 -6.887749e-05 149 160 -0.0005114288 8.253411e-05 150 160 0.0006226054 -0.0001004757 151 160 -0.0007727812 0.000124711 152 160 0.0009826448 -0.0001585787 153 160 -0.001288661 0.0002079635 154 160 0.001760065 -0.0002840383 155 160 -0.002541777 0.0004101906 156 160 0.003980742 -0.0006424099 157 160 -0.007089509 0.001144101 158 160 0.01597157 -0.002577484 159 160 -0.06393453 0.01031772 160 160 -0.06576019 -0.01722412 161 160 -0.06393453 0.01031772 241 160 0.00138269 0.0001280923 80 161 0.001401962 0.0001303027 81 161 -0.06393453 0.01031772 82 161 0.01597157 -0.002577484 83 161 -0.007089509 0.001144101 84 161 0.003980742 -0.0006424099 85 161 -0.002541777 0.0004101906 86 161 0.001760065 -0.0002840383 87 161 -0.001288661 0.0002079635 88 161 0.0009826448 -0.0001585787 89 161 -0.0007727812 0.000124711 90 161 0.0006226054 -0.0001004757 91 161 -0.0005114288 8.253411e-05 92 161 0.0004268045 -6.887749e-05 93 161 -0.0003608797 5.823857e-05 94 161 0.0003085011 -4.978574e-05 95 161 -0.0002661734 4.295492e-05 96 161 0.0002314578 -3.735254e-05 97 161 -0.0002026106 3.26972e-05 98 161 0.0001783582 -2.878335e-05 99 161 -0.0001577525 2.545802e-05 100 161 0.000140076 -2.26054e-05 101 161 -0.0001247774 2.013652e-05 102 161 0.0001114272 -1.798207e-05 103 161 -9.968672e-05 1.608739e-05 104 161 8.928565e-05 -1.440887e-05 105 161 -8.000611e-05 1.291134e-05 106 161 7.167061e-05 -1.156616e-05 107 161 -6.413319e-05 1.034978e-05 108 161 5.727273e-05 -9.242642e-06 109 161 -5.098776e-05 8.228377e-06 110 161 4.519256e-05 -7.293151e-06 111 161 -3.981401e-05 6.425164e-06 112 161 3.478917e-05 -5.614257e-06 113 161 -3.00633e-05 4.851599e-06 114 161 2.558831e-05 -4.129428e-06 115 161 -2.132146e-05 3.440846e-06 116 161 1.722429e-05 -2.779647e-06 117 161 -1.326172e-05 2.14017e-06 118 161 9.401297e-06 -1.517176e-06 119 161 -5.612495e-06 9.057414e-07 120 161 1.866144e-06 -3.011573e-07 121 161 1.866144e-06 -3.011573e-07 122 161 -5.612495e-06 9.057414e-07 123 161 9.401297e-06 -1.517176e-06 124 161 -1.326172e-05 2.14017e-06 125 161 1.722429e-05 -2.779647e-06 126 161 -2.132146e-05 3.440846e-06 127 161 2.558831e-05 -4.129428e-06 128 161 -3.00633e-05 4.851599e-06 129 161 3.478917e-05 -5.614257e-06 130 161 -3.981401e-05 6.425164e-06 131 161 4.519256e-05 -7.293151e-06 132 161 -5.098776e-05 8.228377e-06 133 161 5.727273e-05 -9.242642e-06 134 161 -6.413319e-05 1.034978e-05 135 161 7.167061e-05 -1.156616e-05 136 161 -8.000611e-05 1.291134e-05 137 161 8.928565e-05 -1.440887e-05 138 161 -9.968672e-05 1.608739e-05 139 161 0.0001114272 -1.798207e-05 140 161 -0.0001247774 2.013652e-05 141 161 0.000140076 -2.26054e-05 142 161 -0.0001577525 2.545802e-05 143 161 0.0001783582 -2.878335e-05 144 161 -0.0002026106 3.26972e-05 145 161 0.0002314578 -3.735254e-05 146 161 -0.0002661734 4.295492e-05 147 161 0.0003085011 -4.978574e-05 148 161 -0.0003608797 5.823857e-05 149 161 0.0004268045 -6.887749e-05 150 161 -0.0005114288 8.253411e-05 151 161 0.0006226054 -0.0001004757 152 161 -0.0007727812 0.000124711 153 161 0.0009826448 -0.0001585787 154 161 -0.001288661 0.0002079635 155 161 0.001760065 -0.0002840383 156 161 -0.002541777 0.0004101906 157 161 0.003980742 -0.0006424099 158 161 -0.007089509 0.001144101 159 161 0.01597157 -0.002577484 160 161 -0.06393453 0.01031772 161 161 -0.06579318 -0.01720423 242 161 0.001401962 0.0001303027 81 162 0.0001315499 3.980931e-06 162 162 0.04820686 -0.05085988 163 162 -0.06393453 0.01031772 164 162 0.01597157 -0.002577484 165 162 -0.007089509 0.001144101 166 162 0.003980742 -0.0006424099 167 162 -0.002541777 0.0004101906 168 162 0.001760065 -0.0002840383 169 162 -0.001288661 0.0002079635 170 162 0.0009826448 -0.0001585787 171 162 -0.0007727812 0.000124711 172 162 0.0006226054 -0.0001004757 173 162 -0.0005114288 8.253411e-05 174 162 0.0004268045 -6.887749e-05 175 162 -0.0003608797 5.823857e-05 176 162 0.0003085011 -4.978574e-05 177 162 -0.0002661734 4.295492e-05 178 162 0.0002314578 -3.735254e-05 179 162 -0.0002026106 3.26972e-05 180 162 0.0001783582 -2.878335e-05 181 162 -0.0001577525 2.545802e-05 182 162 0.000140076 -2.26054e-05 183 162 -0.0001247774 2.013652e-05 184 162 0.0001114272 -1.798207e-05 185 162 -9.968672e-05 1.608739e-05 186 162 8.928565e-05 -1.440887e-05 187 162 -8.000611e-05 1.291134e-05 188 162 7.167061e-05 -1.156616e-05 189 162 -6.413319e-05 1.034978e-05 190 162 5.727273e-05 -9.242642e-06 191 162 -5.098776e-05 8.228377e-06 192 162 4.519256e-05 -7.293151e-06 193 162 -3.981401e-05 6.425164e-06 194 162 3.478917e-05 -5.614257e-06 195 162 -3.00633e-05 4.851599e-06 196 162 2.558831e-05 -4.129428e-06 197 162 -2.132146e-05 3.440846e-06 198 162 1.722429e-05 -2.779647e-06 199 162 -1.326172e-05 2.14017e-06 200 162 9.401297e-06 -1.517176e-06 201 162 -5.612495e-06 9.057414e-07 202 162 1.866144e-06 -3.011573e-07 203 162 1.866144e-06 -3.011573e-07 204 162 -5.612495e-06 9.057414e-07 205 162 9.401297e-06 -1.517176e-06 206 162 -1.326172e-05 2.14017e-06 207 162 1.722429e-05 -2.779647e-06 208 162 -2.132146e-05 3.440846e-06 209 162 2.558831e-05 -4.129428e-06 210 162 -3.00633e-05 4.851599e-06 211 162 3.478917e-05 -5.614257e-06 212 162 -3.981401e-05 6.425164e-06 213 162 4.519256e-05 -7.293151e-06 214 162 -5.098776e-05 8.228377e-06 215 162 5.727273e-05 -9.242642e-06 216 162 -6.413319e-05 1.034978e-05 217 162 7.167061e-05 -1.156616e-05 218 162 -8.000611e-05 1.291134e-05 219 162 8.928565e-05 -1.440887e-05 220 162 -9.968672e-05 1.608739e-05 221 162 0.0001114272 -1.798207e-05 222 162 -0.0001247774 2.013652e-05 223 162 0.000140076 -2.26054e-05 224 162 -0.0001577525 2.545802e-05 225 162 0.0001783582 -2.878335e-05 226 162 -0.0002026106 3.26972e-05 227 162 0.0002314578 -3.735254e-05 228 162 -0.0002661734 4.295492e-05 229 162 0.0003085011 -4.978574e-05 230 162 -0.0003608797 5.823857e-05 231 162 0.0004268045 -6.887749e-05 232 162 -0.0005114288 8.253411e-05 233 162 0.0006226054 -0.0001004757 234 162 -0.0007727812 0.000124711 235 162 0.0009826448 -0.0001585787 236 162 -0.001288661 0.0002079635 237 162 0.001760065 -0.0002840383 238 162 -0.002541777 0.0004101906 239 162 0.003980742 -0.0006424099 240 162 -0.007089509 0.001144101 241 162 0.01597157 -0.002577484 242 162 -0.06393453 0.01031772 243 162 0.0001315499 3.980931e-06 82 163 0.0001444547 5.03874e-06 162 163 -0.06393453 0.01031772 163 163 -0.04982849 -0.05061033 164 163 -0.06393453 0.01031772 165 163 0.01597157 -0.002577484 166 163 -0.007089509 0.001144101 167 163 0.003980742 -0.0006424099 168 163 -0.002541777 0.0004101906 169 163 0.001760065 -0.0002840383 170 163 -0.001288661 0.0002079635 171 163 0.0009826448 -0.0001585787 172 163 -0.0007727812 0.000124711 173 163 0.0006226054 -0.0001004757 174 163 -0.0005114288 8.253411e-05 175 163 0.0004268045 -6.887749e-05 176 163 -0.0003608797 5.823857e-05 177 163 0.0003085011 -4.978574e-05 178 163 -0.0002661734 4.295492e-05 179 163 0.0002314578 -3.735254e-05 180 163 -0.0002026106 3.26972e-05 181 163 0.0001783582 -2.878335e-05 182 163 -0.0001577525 2.545802e-05 183 163 0.000140076 -2.26054e-05 184 163 -0.0001247774 2.013652e-05 185 163 0.0001114272 -1.798207e-05 186 163 -9.968672e-05 1.608739e-05 187 163 8.928565e-05 -1.440887e-05 188 163 -8.000611e-05 1.291134e-05 189 163 7.167061e-05 -1.156616e-05 190 163 -6.413319e-05 1.034978e-05 191 163 5.727273e-05 -9.242642e-06 192 163 -5.098776e-05 8.228377e-06 193 163 4.519256e-05 -7.293151e-06 194 163 -3.981401e-05 6.425164e-06 195 163 3.478917e-05 -5.614257e-06 196 163 -3.00633e-05 4.851599e-06 197 163 2.558831e-05 -4.129428e-06 198 163 -2.132146e-05 3.440846e-06 199 163 1.722429e-05 -2.779647e-06 200 163 -1.326172e-05 2.14017e-06 201 163 9.401297e-06 -1.517176e-06 202 163 -5.612495e-06 9.057414e-07 203 163 1.866144e-06 -3.011573e-07 204 163 1.866144e-06 -3.011573e-07 205 163 -5.612495e-06 9.057414e-07 206 163 9.401297e-06 -1.517176e-06 207 163 -1.326172e-05 2.14017e-06 208 163 1.722429e-05 -2.779647e-06 209 163 -2.132146e-05 3.440846e-06 210 163 2.558831e-05 -4.129428e-06 211 163 -3.00633e-05 4.851599e-06 212 163 3.478917e-05 -5.614257e-06 213 163 -3.981401e-05 6.425164e-06 214 163 4.519256e-05 -7.293151e-06 215 163 -5.098776e-05 8.228377e-06 216 163 5.727273e-05 -9.242642e-06 217 163 -6.413319e-05 1.034978e-05 218 163 7.167061e-05 -1.156616e-05 219 163 -8.000611e-05 1.291134e-05 220 163 8.928565e-05 -1.440887e-05 221 163 -9.968672e-05 1.608739e-05 222 163 0.0001114272 -1.798207e-05 223 163 -0.0001247774 2.013652e-05 224 163 0.000140076 -2.26054e-05 225 163 -0.0001577525 2.545802e-05 226 163 0.0001783582 -2.878335e-05 227 163 -0.0002026106 3.26972e-05 228 163 0.0002314578 -3.735254e-05 229 163 -0.0002661734 4.295492e-05 230 163 0.0003085011 -4.978574e-05 231 163 -0.0003608797 5.823857e-05 232 163 0.0004268045 -6.887749e-05 233 163 -0.0005114288 8.253411e-05 234 163 0.0006226054 -0.0001004757 235 163 -0.0007727812 0.000124711 236 163 0.0009826448 -0.0001585787 237 163 -0.001288661 0.0002079635 238 163 0.001760065 -0.0002840383 239 163 -0.002541777 0.0004101906 240 163 0.003980742 -0.0006424099 241 163 -0.007089509 0.001144101 242 163 0.01597157 -0.002577484 244 163 0.0001444547 5.03874e-06 83 164 0.0001574252 6.107297e-06 162 164 0.01597157 -0.002577484 163 164 -0.06393453 0.01031772 164 164 -0.1268573 -0.04868037 165 164 -0.06393453 0.01031772 166 164 0.01597157 -0.002577484 167 164 -0.007089509 0.001144101 168 164 0.003980742 -0.0006424099 169 164 -0.002541777 0.0004101906 170 164 0.001760065 -0.0002840383 171 164 -0.001288661 0.0002079635 172 164 0.0009826448 -0.0001585787 173 164 -0.0007727812 0.000124711 174 164 0.0006226054 -0.0001004757 175 164 -0.0005114288 8.253411e-05 176 164 0.0004268045 -6.887749e-05 177 164 -0.0003608797 5.823857e-05 178 164 0.0003085011 -4.978574e-05 179 164 -0.0002661734 4.295492e-05 180 164 0.0002314578 -3.735254e-05 181 164 -0.0002026106 3.26972e-05 182 164 0.0001783582 -2.878335e-05 183 164 -0.0001577525 2.545802e-05 184 164 0.000140076 -2.26054e-05 185 164 -0.0001247774 2.013652e-05 186 164 0.0001114272 -1.798207e-05 187 164 -9.968672e-05 1.608739e-05 188 164 8.928565e-05 -1.440887e-05 189 164 -8.000611e-05 1.291134e-05 190 164 7.167061e-05 -1.156616e-05 191 164 -6.413319e-05 1.034978e-05 192 164 5.727273e-05 -9.242642e-06 193 164 -5.098776e-05 8.228377e-06 194 164 4.519256e-05 -7.293151e-06 195 164 -3.981401e-05 6.425164e-06 196 164 3.478917e-05 -5.614257e-06 197 164 -3.00633e-05 4.851599e-06 198 164 2.558831e-05 -4.129428e-06 199 164 -2.132146e-05 3.440846e-06 200 164 1.722429e-05 -2.779647e-06 201 164 -1.326172e-05 2.14017e-06 202 164 9.401297e-06 -1.517176e-06 203 164 -5.612495e-06 9.057414e-07 204 164 1.866144e-06 -3.011573e-07 205 164 1.866144e-06 -3.011573e-07 206 164 -5.612495e-06 9.057414e-07 207 164 9.401297e-06 -1.517176e-06 208 164 -1.326172e-05 2.14017e-06 209 164 1.722429e-05 -2.779647e-06 210 164 -2.132146e-05 3.440846e-06 211 164 2.558831e-05 -4.129428e-06 212 164 -3.00633e-05 4.851599e-06 213 164 3.478917e-05 -5.614257e-06 214 164 -3.981401e-05 6.425164e-06 215 164 4.519256e-05 -7.293151e-06 216 164 -5.098776e-05 8.228377e-06 217 164 5.727273e-05 -9.242642e-06 218 164 -6.413319e-05 1.034978e-05 219 164 7.167061e-05 -1.156616e-05 220 164 -8.000611e-05 1.291134e-05 221 164 8.928565e-05 -1.440887e-05 222 164 -9.968672e-05 1.608739e-05 223 164 0.0001114272 -1.798207e-05 224 164 -0.0001247774 2.013652e-05 225 164 0.000140076 -2.26054e-05 226 164 -0.0001577525 2.545802e-05 227 164 0.0001783582 -2.878335e-05 228 164 -0.0002026106 3.26972e-05 229 164 0.0002314578 -3.735254e-05 230 164 -0.0002661734 4.295492e-05 231 164 0.0003085011 -4.978574e-05 232 164 -0.0003608797 5.823857e-05 233 164 0.0004268045 -6.887749e-05 234 164 -0.0005114288 8.253411e-05 235 164 0.0006226054 -0.0001004757 236 164 -0.0007727812 0.000124711 237 164 0.0009826448 -0.0001585787 238 164 -0.001288661 0.0002079635 239 164 0.001760065 -0.0002840383 240 164 -0.002541777 0.0004101906 241 164 0.003980742 -0.0006424099 242 164 -0.007089509 0.001144101 245 164 0.0001574252 6.107297e-06 84 165 0.0001704618 7.186683e-06 162 165 -0.007089509 0.001144101 163 165 0.01597157 -0.002577484 164 165 -0.06393453 0.01031772 165 165 -0.1868102 -0.04569037 166 165 -0.06393453 0.01031772 167 165 0.01597157 -0.002577484 168 165 -0.007089509 0.001144101 169 165 0.003980742 -0.0006424099 170 165 -0.002541777 0.0004101906 171 165 0.001760065 -0.0002840383 172 165 -0.001288661 0.0002079635 173 165 0.0009826448 -0.0001585787 174 165 -0.0007727812 0.000124711 175 165 0.0006226054 -0.0001004757 176 165 -0.0005114288 8.253411e-05 177 165 0.0004268045 -6.887749e-05 178 165 -0.0003608797 5.823857e-05 179 165 0.0003085011 -4.978574e-05 180 165 -0.0002661734 4.295492e-05 181 165 0.0002314578 -3.735254e-05 182 165 -0.0002026106 3.26972e-05 183 165 0.0001783582 -2.878335e-05 184 165 -0.0001577525 2.545802e-05 185 165 0.000140076 -2.26054e-05 186 165 -0.0001247774 2.013652e-05 187 165 0.0001114272 -1.798207e-05 188 165 -9.968672e-05 1.608739e-05 189 165 8.928565e-05 -1.440887e-05 190 165 -8.000611e-05 1.291134e-05 191 165 7.167061e-05 -1.156616e-05 192 165 -6.413319e-05 1.034978e-05 193 165 5.727273e-05 -9.242642e-06 194 165 -5.098776e-05 8.228377e-06 195 165 4.519256e-05 -7.293151e-06 196 165 -3.981401e-05 6.425164e-06 197 165 3.478917e-05 -5.614257e-06 198 165 -3.00633e-05 4.851599e-06 199 165 2.558831e-05 -4.129428e-06 200 165 -2.132146e-05 3.440846e-06 201 165 1.722429e-05 -2.779647e-06 202 165 -1.326172e-05 2.14017e-06 203 165 9.401297e-06 -1.517176e-06 204 165 -5.612495e-06 9.057414e-07 205 165 1.866144e-06 -3.011573e-07 206 165 1.866144e-06 -3.011573e-07 207 165 -5.612495e-06 9.057414e-07 208 165 9.401297e-06 -1.517176e-06 209 165 -1.326172e-05 2.14017e-06 210 165 1.722429e-05 -2.779647e-06 211 165 -2.132146e-05 3.440846e-06 212 165 2.558831e-05 -4.129428e-06 213 165 -3.00633e-05 4.851599e-06 214 165 3.478917e-05 -5.614257e-06 215 165 -3.981401e-05 6.425164e-06 216 165 4.519256e-05 -7.293151e-06 217 165 -5.098776e-05 8.228377e-06 218 165 5.727273e-05 -9.242642e-06 219 165 -6.413319e-05 1.034978e-05 220 165 7.167061e-05 -1.156616e-05 221 165 -8.000611e-05 1.291134e-05 222 165 8.928565e-05 -1.440887e-05 223 165 -9.968672e-05 1.608739e-05 224 165 0.0001114272 -1.798207e-05 225 165 -0.0001247774 2.013652e-05 226 165 0.000140076 -2.26054e-05 227 165 -0.0001577525 2.545802e-05 228 165 0.0001783582 -2.878335e-05 229 165 -0.0002026106 3.26972e-05 230 165 0.0002314578 -3.735254e-05 231 165 -0.0002661734 4.295492e-05 232 165 0.0003085011 -4.978574e-05 233 165 -0.0003608797 5.823857e-05 234 165 0.0004268045 -6.887749e-05 235 165 -0.0005114288 8.253411e-05 236 165 0.0006226054 -0.0001004757 237 165 -0.0007727812 0.000124711 238 165 0.0009826448 -0.0001585787 239 165 -0.001288661 0.0002079635 240 165 0.001760065 -0.0002840383 241 165 -0.002541777 0.0004101906 242 165 0.003980742 -0.0006424099 246 165 0.0001704618 7.186683e-06 85 166 0.0001835649 8.276982e-06 162 166 0.003980742 -0.0006424099 163 166 -0.007089509 0.001144101 164 166 0.01597157 -0.002577484 165 166 -0.06393453 0.01031772 166 166 -0.2329246 -0.0420974 167 166 -0.06393453 0.01031772 168 166 0.01597157 -0.002577484 169 166 -0.007089509 0.001144101 170 166 0.003980742 -0.0006424099 171 166 -0.002541777 0.0004101906 172 166 0.001760065 -0.0002840383 173 166 -0.001288661 0.0002079635 174 166 0.0009826448 -0.0001585787 175 166 -0.0007727812 0.000124711 176 166 0.0006226054 -0.0001004757 177 166 -0.0005114288 8.253411e-05 178 166 0.0004268045 -6.887749e-05 179 166 -0.0003608797 5.823857e-05 180 166 0.0003085011 -4.978574e-05 181 166 -0.0002661734 4.295492e-05 182 166 0.0002314578 -3.735254e-05 183 166 -0.0002026106 3.26972e-05 184 166 0.0001783582 -2.878335e-05 185 166 -0.0001577525 2.545802e-05 186 166 0.000140076 -2.26054e-05 187 166 -0.0001247774 2.013652e-05 188 166 0.0001114272 -1.798207e-05 189 166 -9.968672e-05 1.608739e-05 190 166 8.928565e-05 -1.440887e-05 191 166 -8.000611e-05 1.291134e-05 192 166 7.167061e-05 -1.156616e-05 193 166 -6.413319e-05 1.034978e-05 194 166 5.727273e-05 -9.242642e-06 195 166 -5.098776e-05 8.228377e-06 196 166 4.519256e-05 -7.293151e-06 197 166 -3.981401e-05 6.425164e-06 198 166 3.478917e-05 -5.614257e-06 199 166 -3.00633e-05 4.851599e-06 200 166 2.558831e-05 -4.129428e-06 201 166 -2.132146e-05 3.440846e-06 202 166 1.722429e-05 -2.779647e-06 203 166 -1.326172e-05 2.14017e-06 204 166 9.401297e-06 -1.517176e-06 205 166 -5.612495e-06 9.057414e-07 206 166 1.866144e-06 -3.011573e-07 207 166 1.866144e-06 -3.011573e-07 208 166 -5.612495e-06 9.057414e-07 209 166 9.401297e-06 -1.517176e-06 210 166 -1.326172e-05 2.14017e-06 211 166 1.722429e-05 -2.779647e-06 212 166 -2.132146e-05 3.440846e-06 213 166 2.558831e-05 -4.129428e-06 214 166 -3.00633e-05 4.851599e-06 215 166 3.478917e-05 -5.614257e-06 216 166 -3.981401e-05 6.425164e-06 217 166 4.519256e-05 -7.293151e-06 218 166 -5.098776e-05 8.228377e-06 219 166 5.727273e-05 -9.242642e-06 220 166 -6.413319e-05 1.034978e-05 221 166 7.167061e-05 -1.156616e-05 222 166 -8.000611e-05 1.291134e-05 223 166 8.928565e-05 -1.440887e-05 224 166 -9.968672e-05 1.608739e-05 225 166 0.0001114272 -1.798207e-05 226 166 -0.0001247774 2.013652e-05 227 166 0.000140076 -2.26054e-05 228 166 -0.0001577525 2.545802e-05 229 166 0.0001783582 -2.878335e-05 230 166 -0.0002026106 3.26972e-05 231 166 0.0002314578 -3.735254e-05 232 166 -0.0002661734 4.295492e-05 233 166 0.0003085011 -4.978574e-05 234 166 -0.0003608797 5.823857e-05 235 166 0.0004268045 -6.887749e-05 236 166 -0.0005114288 8.253411e-05 237 166 0.0006226054 -0.0001004757 238 166 -0.0007727812 0.000124711 239 166 0.0009826448 -0.0001585787 240 166 -0.001288661 0.0002079635 241 166 0.001760065 -0.0002840383 242 166 -0.002541777 0.0004101906 247 166 0.0001835649 8.276982e-06 86 167 0.0001967347 9.378277e-06 162 167 -0.002541777 0.0004101906 163 167 0.003980742 -0.0006424099 164 167 -0.007089509 0.001144101 165 167 0.01597157 -0.002577484 166 167 -0.06393453 0.01031772 167 167 -0.2678626 -0.03823259 168 167 -0.06393453 0.01031772 169 167 0.01597157 -0.002577484 170 167 -0.007089509 0.001144101 171 167 0.003980742 -0.0006424099 172 167 -0.002541777 0.0004101906 173 167 0.001760065 -0.0002840383 174 167 -0.001288661 0.0002079635 175 167 0.0009826448 -0.0001585787 176 167 -0.0007727812 0.000124711 177 167 0.0006226054 -0.0001004757 178 167 -0.0005114288 8.253411e-05 179 167 0.0004268045 -6.887749e-05 180 167 -0.0003608797 5.823857e-05 181 167 0.0003085011 -4.978574e-05 182 167 -0.0002661734 4.295492e-05 183 167 0.0002314578 -3.735254e-05 184 167 -0.0002026106 3.26972e-05 185 167 0.0001783582 -2.878335e-05 186 167 -0.0001577525 2.545802e-05 187 167 0.000140076 -2.26054e-05 188 167 -0.0001247774 2.013652e-05 189 167 0.0001114272 -1.798207e-05 190 167 -9.968672e-05 1.608739e-05 191 167 8.928565e-05 -1.440887e-05 192 167 -8.000611e-05 1.291134e-05 193 167 7.167061e-05 -1.156616e-05 194 167 -6.413319e-05 1.034978e-05 195 167 5.727273e-05 -9.242642e-06 196 167 -5.098776e-05 8.228377e-06 197 167 4.519256e-05 -7.293151e-06 198 167 -3.981401e-05 6.425164e-06 199 167 3.478917e-05 -5.614257e-06 200 167 -3.00633e-05 4.851599e-06 201 167 2.558831e-05 -4.129428e-06 202 167 -2.132146e-05 3.440846e-06 203 167 1.722429e-05 -2.779647e-06 204 167 -1.326172e-05 2.14017e-06 205 167 9.401297e-06 -1.517176e-06 206 167 -5.612495e-06 9.057414e-07 207 167 1.866144e-06 -3.011573e-07 208 167 1.866144e-06 -3.011573e-07 209 167 -5.612495e-06 9.057414e-07 210 167 9.401297e-06 -1.517176e-06 211 167 -1.326172e-05 2.14017e-06 212 167 1.722429e-05 -2.779647e-06 213 167 -2.132146e-05 3.440846e-06 214 167 2.558831e-05 -4.129428e-06 215 167 -3.00633e-05 4.851599e-06 216 167 3.478917e-05 -5.614257e-06 217 167 -3.981401e-05 6.425164e-06 218 167 4.519256e-05 -7.293151e-06 219 167 -5.098776e-05 8.228377e-06 220 167 5.727273e-05 -9.242642e-06 221 167 -6.413319e-05 1.034978e-05 222 167 7.167061e-05 -1.156616e-05 223 167 -8.000611e-05 1.291134e-05 224 167 8.928565e-05 -1.440887e-05 225 167 -9.968672e-05 1.608739e-05 226 167 0.0001114272 -1.798207e-05 227 167 -0.0001247774 2.013652e-05 228 167 0.000140076 -2.26054e-05 229 167 -0.0001577525 2.545802e-05 230 167 0.0001783582 -2.878335e-05 231 167 -0.0002026106 3.26972e-05 232 167 0.0002314578 -3.735254e-05 233 167 -0.0002661734 4.295492e-05 234 167 0.0003085011 -4.978574e-05 235 167 -0.0003608797 5.823857e-05 236 167 0.0004268045 -6.887749e-05 237 167 -0.0005114288 8.253411e-05 238 167 0.0006226054 -0.0001004757 239 167 -0.0007727812 0.000124711 240 167 0.0009826448 -0.0001585787 241 167 -0.001288661 0.0002079635 242 167 0.001760065 -0.0002840383 248 167 0.0001967347 9.378277e-06 87 168 0.0002099716 1.049065e-05 162 168 0.001760065 -0.0002840383 163 168 -0.002541777 0.0004101906 164 168 0.003980742 -0.0006424099 165 168 -0.007089509 0.001144101 166 168 0.01597157 -0.002577484 167 168 -0.06393453 0.01031772 168 168 -0.2938105 -0.03433059 169 168 -0.06393453 0.01031772 170 168 0.01597157 -0.002577484 171 168 -0.007089509 0.001144101 172 168 0.003980742 -0.0006424099 173 168 -0.002541777 0.0004101906 174 168 0.001760065 -0.0002840383 175 168 -0.001288661 0.0002079635 176 168 0.0009826448 -0.0001585787 177 168 -0.0007727812 0.000124711 178 168 0.0006226054 -0.0001004757 179 168 -0.0005114288 8.253411e-05 180 168 0.0004268045 -6.887749e-05 181 168 -0.0003608797 5.823857e-05 182 168 0.0003085011 -4.978574e-05 183 168 -0.0002661734 4.295492e-05 184 168 0.0002314578 -3.735254e-05 185 168 -0.0002026106 3.26972e-05 186 168 0.0001783582 -2.878335e-05 187 168 -0.0001577525 2.545802e-05 188 168 0.000140076 -2.26054e-05 189 168 -0.0001247774 2.013652e-05 190 168 0.0001114272 -1.798207e-05 191 168 -9.968672e-05 1.608739e-05 192 168 8.928565e-05 -1.440887e-05 193 168 -8.000611e-05 1.291134e-05 194 168 7.167061e-05 -1.156616e-05 195 168 -6.413319e-05 1.034978e-05 196 168 5.727273e-05 -9.242642e-06 197 168 -5.098776e-05 8.228377e-06 198 168 4.519256e-05 -7.293151e-06 199 168 -3.981401e-05 6.425164e-06 200 168 3.478917e-05 -5.614257e-06 201 168 -3.00633e-05 4.851599e-06 202 168 2.558831e-05 -4.129428e-06 203 168 -2.132146e-05 3.440846e-06 204 168 1.722429e-05 -2.779647e-06 205 168 -1.326172e-05 2.14017e-06 206 168 9.401297e-06 -1.517176e-06 207 168 -5.612495e-06 9.057414e-07 208 168 1.866144e-06 -3.011573e-07 209 168 1.866144e-06 -3.011573e-07 210 168 -5.612495e-06 9.057414e-07 211 168 9.401297e-06 -1.517176e-06 212 168 -1.326172e-05 2.14017e-06 213 168 1.722429e-05 -2.779647e-06 214 168 -2.132146e-05 3.440846e-06 215 168 2.558831e-05 -4.129428e-06 216 168 -3.00633e-05 4.851599e-06 217 168 3.478917e-05 -5.614257e-06 218 168 -3.981401e-05 6.425164e-06 219 168 4.519256e-05 -7.293151e-06 220 168 -5.098776e-05 8.228377e-06 221 168 5.727273e-05 -9.242642e-06 222 168 -6.413319e-05 1.034978e-05 223 168 7.167061e-05 -1.156616e-05 224 168 -8.000611e-05 1.291134e-05 225 168 8.928565e-05 -1.440887e-05 226 168 -9.968672e-05 1.608739e-05 227 168 0.0001114272 -1.798207e-05 228 168 -0.0001247774 2.013652e-05 229 168 0.000140076 -2.26054e-05 230 168 -0.0001577525 2.545802e-05 231 168 0.0001783582 -2.878335e-05 232 168 -0.0002026106 3.26972e-05 233 168 0.0002314578 -3.735254e-05 234 168 -0.0002661734 4.295492e-05 235 168 0.0003085011 -4.978574e-05 236 168 -0.0003608797 5.823857e-05 237 168 0.0004268045 -6.887749e-05 238 168 -0.0005114288 8.253411e-05 239 168 0.0006226054 -0.0001004757 240 168 -0.0007727812 0.000124711 241 168 0.0009826448 -0.0001585787 242 168 -0.001288661 0.0002079635 249 168 0.0002099716 1.049065e-05 88 169 0.000223276 1.161419e-05 162 169 -0.001288661 0.0002079635 163 169 0.001760065 -0.0002840383 164 169 -0.002541777 0.0004101906 165 169 0.003980742 -0.0006424099 166 169 -0.007089509 0.001144101 167 169 0.01597157 -0.002577484 168 169 -0.06393453 0.01031772 169 169 -0.3125605 -0.03055269 170 169 -0.06393453 0.01031772 171 169 0.01597157 -0.002577484 172 169 -0.007089509 0.001144101 173 169 0.003980742 -0.0006424099 174 169 -0.002541777 0.0004101906 175 169 0.001760065 -0.0002840383 176 169 -0.001288661 0.0002079635 177 169 0.0009826448 -0.0001585787 178 169 -0.0007727812 0.000124711 179 169 0.0006226054 -0.0001004757 180 169 -0.0005114288 8.253411e-05 181 169 0.0004268045 -6.887749e-05 182 169 -0.0003608797 5.823857e-05 183 169 0.0003085011 -4.978574e-05 184 169 -0.0002661734 4.295492e-05 185 169 0.0002314578 -3.735254e-05 186 169 -0.0002026106 3.26972e-05 187 169 0.0001783582 -2.878335e-05 188 169 -0.0001577525 2.545802e-05 189 169 0.000140076 -2.26054e-05 190 169 -0.0001247774 2.013652e-05 191 169 0.0001114272 -1.798207e-05 192 169 -9.968672e-05 1.608739e-05 193 169 8.928565e-05 -1.440887e-05 194 169 -8.000611e-05 1.291134e-05 195 169 7.167061e-05 -1.156616e-05 196 169 -6.413319e-05 1.034978e-05 197 169 5.727273e-05 -9.242642e-06 198 169 -5.098776e-05 8.228377e-06 199 169 4.519256e-05 -7.293151e-06 200 169 -3.981401e-05 6.425164e-06 201 169 3.478917e-05 -5.614257e-06 202 169 -3.00633e-05 4.851599e-06 203 169 2.558831e-05 -4.129428e-06 204 169 -2.132146e-05 3.440846e-06 205 169 1.722429e-05 -2.779647e-06 206 169 -1.326172e-05 2.14017e-06 207 169 9.401297e-06 -1.517176e-06 208 169 -5.612495e-06 9.057414e-07 209 169 1.866144e-06 -3.011573e-07 210 169 1.866144e-06 -3.011573e-07 211 169 -5.612495e-06 9.057414e-07 212 169 9.401297e-06 -1.517176e-06 213 169 -1.326172e-05 2.14017e-06 214 169 1.722429e-05 -2.779647e-06 215 169 -2.132146e-05 3.440846e-06 216 169 2.558831e-05 -4.129428e-06 217 169 -3.00633e-05 4.851599e-06 218 169 3.478917e-05 -5.614257e-06 219 169 -3.981401e-05 6.425164e-06 220 169 4.519256e-05 -7.293151e-06 221 169 -5.098776e-05 8.228377e-06 222 169 5.727273e-05 -9.242642e-06 223 169 -6.413319e-05 1.034978e-05 224 169 7.167061e-05 -1.156616e-05 225 169 -8.000611e-05 1.291134e-05 226 169 8.928565e-05 -1.440887e-05 227 169 -9.968672e-05 1.608739e-05 228 169 0.0001114272 -1.798207e-05 229 169 -0.0001247774 2.013652e-05 230 169 0.000140076 -2.26054e-05 231 169 -0.0001577525 2.545802e-05 232 169 0.0001783582 -2.878335e-05 233 169 -0.0002026106 3.26972e-05 234 169 0.0002314578 -3.735254e-05 235 169 -0.0002661734 4.295492e-05 236 169 0.0003085011 -4.978574e-05 237 169 -0.0003608797 5.823857e-05 238 169 0.0004268045 -6.887749e-05 239 169 -0.0005114288 8.253411e-05 240 169 0.0006226054 -0.0001004757 241 169 -0.0007727812 0.000124711 242 169 0.0009826448 -0.0001585787 250 169 0.000223276 1.161419e-05 89 170 0.0002366482 1.274898e-05 162 170 0.0009826448 -0.0001585787 163 170 -0.001288661 0.0002079635 164 170 0.001760065 -0.0002840383 165 170 -0.002541777 0.0004101906 166 170 0.003980742 -0.0006424099 167 170 -0.007089509 0.001144101 168 170 0.01597157 -0.002577484 169 170 -0.06393453 0.01031772 170 170 -0.325579 -0.0270049 171 170 -0.06393453 0.01031772 172 170 0.01597157 -0.002577484 173 170 -0.007089509 0.001144101 174 170 0.003980742 -0.0006424099 175 170 -0.002541777 0.0004101906 176 170 0.001760065 -0.0002840383 177 170 -0.001288661 0.0002079635 178 170 0.0009826448 -0.0001585787 179 170 -0.0007727812 0.000124711 180 170 0.0006226054 -0.0001004757 181 170 -0.0005114288 8.253411e-05 182 170 0.0004268045 -6.887749e-05 183 170 -0.0003608797 5.823857e-05 184 170 0.0003085011 -4.978574e-05 185 170 -0.0002661734 4.295492e-05 186 170 0.0002314578 -3.735254e-05 187 170 -0.0002026106 3.26972e-05 188 170 0.0001783582 -2.878335e-05 189 170 -0.0001577525 2.545802e-05 190 170 0.000140076 -2.26054e-05 191 170 -0.0001247774 2.013652e-05 192 170 0.0001114272 -1.798207e-05 193 170 -9.968672e-05 1.608739e-05 194 170 8.928565e-05 -1.440887e-05 195 170 -8.000611e-05 1.291134e-05 196 170 7.167061e-05 -1.156616e-05 197 170 -6.413319e-05 1.034978e-05 198 170 5.727273e-05 -9.242642e-06 199 170 -5.098776e-05 8.228377e-06 200 170 4.519256e-05 -7.293151e-06 201 170 -3.981401e-05 6.425164e-06 202 170 3.478917e-05 -5.614257e-06 203 170 -3.00633e-05 4.851599e-06 204 170 2.558831e-05 -4.129428e-06 205 170 -2.132146e-05 3.440846e-06 206 170 1.722429e-05 -2.779647e-06 207 170 -1.326172e-05 2.14017e-06 208 170 9.401297e-06 -1.517176e-06 209 170 -5.612495e-06 9.057414e-07 210 170 1.866144e-06 -3.011573e-07 211 170 1.866144e-06 -3.011573e-07 212 170 -5.612495e-06 9.057414e-07 213 170 9.401297e-06 -1.517176e-06 214 170 -1.326172e-05 2.14017e-06 215 170 1.722429e-05 -2.779647e-06 216 170 -2.132146e-05 3.440846e-06 217 170 2.558831e-05 -4.129428e-06 218 170 -3.00633e-05 4.851599e-06 219 170 3.478917e-05 -5.614257e-06 220 170 -3.981401e-05 6.425164e-06 221 170 4.519256e-05 -7.293151e-06 222 170 -5.098776e-05 8.228377e-06 223 170 5.727273e-05 -9.242642e-06 224 170 -6.413319e-05 1.034978e-05 225 170 7.167061e-05 -1.156616e-05 226 170 -8.000611e-05 1.291134e-05 227 170 8.928565e-05 -1.440887e-05 228 170 -9.968672e-05 1.608739e-05 229 170 0.0001114272 -1.798207e-05 230 170 -0.0001247774 2.013652e-05 231 170 0.000140076 -2.26054e-05 232 170 -0.0001577525 2.545802e-05 233 170 0.0001783582 -2.878335e-05 234 170 -0.0002026106 3.26972e-05 235 170 0.0002314578 -3.735254e-05 236 170 -0.0002661734 4.295492e-05 237 170 0.0003085011 -4.978574e-05 238 170 -0.0003608797 5.823857e-05 239 170 0.0004268045 -6.887749e-05 240 170 -0.0005114288 8.253411e-05 241 170 0.0006226054 -0.0001004757 242 170 -0.0007727812 0.000124711 251 170 0.0002366482 1.274898e-05 90 171 0.0002500884 1.38951e-05 162 171 -0.0007727812 0.000124711 163 171 0.0009826448 -0.0001585787 164 171 -0.001288661 0.0002079635 165 171 0.001760065 -0.0002840383 166 171 -0.002541777 0.0004101906 167 171 0.003980742 -0.0006424099 168 171 -0.007089509 0.001144101 169 171 0.01597157 -0.002577484 170 171 -0.06393453 0.01031772 171 171 -0.3340635 -0.02375204 172 171 -0.06393453 0.01031772 173 171 0.01597157 -0.002577484 174 171 -0.007089509 0.001144101 175 171 0.003980742 -0.0006424099 176 171 -0.002541777 0.0004101906 177 171 0.001760065 -0.0002840383 178 171 -0.001288661 0.0002079635 179 171 0.0009826448 -0.0001585787 180 171 -0.0007727812 0.000124711 181 171 0.0006226054 -0.0001004757 182 171 -0.0005114288 8.253411e-05 183 171 0.0004268045 -6.887749e-05 184 171 -0.0003608797 5.823857e-05 185 171 0.0003085011 -4.978574e-05 186 171 -0.0002661734 4.295492e-05 187 171 0.0002314578 -3.735254e-05 188 171 -0.0002026106 3.26972e-05 189 171 0.0001783582 -2.878335e-05 190 171 -0.0001577525 2.545802e-05 191 171 0.000140076 -2.26054e-05 192 171 -0.0001247774 2.013652e-05 193 171 0.0001114272 -1.798207e-05 194 171 -9.968672e-05 1.608739e-05 195 171 8.928565e-05 -1.440887e-05 196 171 -8.000611e-05 1.291134e-05 197 171 7.167061e-05 -1.156616e-05 198 171 -6.413319e-05 1.034978e-05 199 171 5.727273e-05 -9.242642e-06 200 171 -5.098776e-05 8.228377e-06 201 171 4.519256e-05 -7.293151e-06 202 171 -3.981401e-05 6.425164e-06 203 171 3.478917e-05 -5.614257e-06 204 171 -3.00633e-05 4.851599e-06 205 171 2.558831e-05 -4.129428e-06 206 171 -2.132146e-05 3.440846e-06 207 171 1.722429e-05 -2.779647e-06 208 171 -1.326172e-05 2.14017e-06 209 171 9.401297e-06 -1.517176e-06 210 171 -5.612495e-06 9.057414e-07 211 171 1.866144e-06 -3.011573e-07 212 171 1.866144e-06 -3.011573e-07 213 171 -5.612495e-06 9.057414e-07 214 171 9.401297e-06 -1.517176e-06 215 171 -1.326172e-05 2.14017e-06 216 171 1.722429e-05 -2.779647e-06 217 171 -2.132146e-05 3.440846e-06 218 171 2.558831e-05 -4.129428e-06 219 171 -3.00633e-05 4.851599e-06 220 171 3.478917e-05 -5.614257e-06 221 171 -3.981401e-05 6.425164e-06 222 171 4.519256e-05 -7.293151e-06 223 171 -5.098776e-05 8.228377e-06 224 171 5.727273e-05 -9.242642e-06 225 171 -6.413319e-05 1.034978e-05 226 171 7.167061e-05 -1.156616e-05 227 171 -8.000611e-05 1.291134e-05 228 171 8.928565e-05 -1.440887e-05 229 171 -9.968672e-05 1.608739e-05 230 171 0.0001114272 -1.798207e-05 231 171 -0.0001247774 2.013652e-05 232 171 0.000140076 -2.26054e-05 233 171 -0.0001577525 2.545802e-05 234 171 0.0001783582 -2.878335e-05 235 171 -0.0002026106 3.26972e-05 236 171 0.0002314578 -3.735254e-05 237 171 -0.0002661734 4.295492e-05 238 171 0.0003085011 -4.978574e-05 239 171 -0.0003608797 5.823857e-05 240 171 0.0004268045 -6.887749e-05 241 171 -0.0005114288 8.253411e-05 242 171 0.0006226054 -0.0001004757 252 171 0.0002500884 1.38951e-05 91 172 0.0002635972 1.505265e-05 162 172 0.0006226054 -0.0001004757 163 172 -0.0007727812 0.000124711 164 172 0.0009826448 -0.0001585787 165 172 -0.001288661 0.0002079635 166 172 0.001760065 -0.0002840383 167 172 -0.002541777 0.0004101906 168 172 0.003980742 -0.0006424099 169 172 -0.007089509 0.001144101 170 172 0.01597157 -0.002577484 171 172 -0.06393453 0.01031772 172 172 -0.3389892 -0.02082867 173 172 -0.06393453 0.01031772 174 172 0.01597157 -0.002577484 175 172 -0.007089509 0.001144101 176 172 0.003980742 -0.0006424099 177 172 -0.002541777 0.0004101906 178 172 0.001760065 -0.0002840383 179 172 -0.001288661 0.0002079635 180 172 0.0009826448 -0.0001585787 181 172 -0.0007727812 0.000124711 182 172 0.0006226054 -0.0001004757 183 172 -0.0005114288 8.253411e-05 184 172 0.0004268045 -6.887749e-05 185 172 -0.0003608797 5.823857e-05 186 172 0.0003085011 -4.978574e-05 187 172 -0.0002661734 4.295492e-05 188 172 0.0002314578 -3.735254e-05 189 172 -0.0002026106 3.26972e-05 190 172 0.0001783582 -2.878335e-05 191 172 -0.0001577525 2.545802e-05 192 172 0.000140076 -2.26054e-05 193 172 -0.0001247774 2.013652e-05 194 172 0.0001114272 -1.798207e-05 195 172 -9.968672e-05 1.608739e-05 196 172 8.928565e-05 -1.440887e-05 197 172 -8.000611e-05 1.291134e-05 198 172 7.167061e-05 -1.156616e-05 199 172 -6.413319e-05 1.034978e-05 200 172 5.727273e-05 -9.242642e-06 201 172 -5.098776e-05 8.228377e-06 202 172 4.519256e-05 -7.293151e-06 203 172 -3.981401e-05 6.425164e-06 204 172 3.478917e-05 -5.614257e-06 205 172 -3.00633e-05 4.851599e-06 206 172 2.558831e-05 -4.129428e-06 207 172 -2.132146e-05 3.440846e-06 208 172 1.722429e-05 -2.779647e-06 209 172 -1.326172e-05 2.14017e-06 210 172 9.401297e-06 -1.517176e-06 211 172 -5.612495e-06 9.057414e-07 212 172 1.866144e-06 -3.011573e-07 213 172 1.866144e-06 -3.011573e-07 214 172 -5.612495e-06 9.057414e-07 215 172 9.401297e-06 -1.517176e-06 216 172 -1.326172e-05 2.14017e-06 217 172 1.722429e-05 -2.779647e-06 218 172 -2.132146e-05 3.440846e-06 219 172 2.558831e-05 -4.129428e-06 220 172 -3.00633e-05 4.851599e-06 221 172 3.478917e-05 -5.614257e-06 222 172 -3.981401e-05 6.425164e-06 223 172 4.519256e-05 -7.293151e-06 224 172 -5.098776e-05 8.228377e-06 225 172 5.727273e-05 -9.242642e-06 226 172 -6.413319e-05 1.034978e-05 227 172 7.167061e-05 -1.156616e-05 228 172 -8.000611e-05 1.291134e-05 229 172 8.928565e-05 -1.440887e-05 230 172 -9.968672e-05 1.608739e-05 231 172 0.0001114272 -1.798207e-05 232 172 -0.0001247774 2.013652e-05 233 172 0.000140076 -2.26054e-05 234 172 -0.0001577525 2.545802e-05 235 172 0.0001783582 -2.878335e-05 236 172 -0.0002026106 3.26972e-05 237 172 0.0002314578 -3.735254e-05 238 172 -0.0002661734 4.295492e-05 239 172 0.0003085011 -4.978574e-05 240 172 -0.0003608797 5.823857e-05 241 172 0.0004268045 -6.887749e-05 242 172 -0.0005114288 8.253411e-05 253 172 0.0002635972 1.505265e-05 92 173 0.0002771748 1.62217e-05 162 173 -0.0005114288 8.253411e-05 163 173 0.0006226054 -0.0001004757 164 173 -0.0007727812 0.000124711 165 173 0.0009826448 -0.0001585787 166 173 -0.001288661 0.0002079635 167 173 0.001760065 -0.0002840383 168 173 -0.002541777 0.0004101906 169 173 0.003980742 -0.0006424099 170 173 -0.007089509 0.001144101 171 173 0.01597157 -0.002577484 172 173 -0.06393453 0.01031772 173 173 -0.3411486 -0.01824749 174 173 -0.06393453 0.01031772 175 173 0.01597157 -0.002577484 176 173 -0.007089509 0.001144101 177 173 0.003980742 -0.0006424099 178 173 -0.002541777 0.0004101906 179 173 0.001760065 -0.0002840383 180 173 -0.001288661 0.0002079635 181 173 0.0009826448 -0.0001585787 182 173 -0.0007727812 0.000124711 183 173 0.0006226054 -0.0001004757 184 173 -0.0005114288 8.253411e-05 185 173 0.0004268045 -6.887749e-05 186 173 -0.0003608797 5.823857e-05 187 173 0.0003085011 -4.978574e-05 188 173 -0.0002661734 4.295492e-05 189 173 0.0002314578 -3.735254e-05 190 173 -0.0002026106 3.26972e-05 191 173 0.0001783582 -2.878335e-05 192 173 -0.0001577525 2.545802e-05 193 173 0.000140076 -2.26054e-05 194 173 -0.0001247774 2.013652e-05 195 173 0.0001114272 -1.798207e-05 196 173 -9.968672e-05 1.608739e-05 197 173 8.928565e-05 -1.440887e-05 198 173 -8.000611e-05 1.291134e-05 199 173 7.167061e-05 -1.156616e-05 200 173 -6.413319e-05 1.034978e-05 201 173 5.727273e-05 -9.242642e-06 202 173 -5.098776e-05 8.228377e-06 203 173 4.519256e-05 -7.293151e-06 204 173 -3.981401e-05 6.425164e-06 205 173 3.478917e-05 -5.614257e-06 206 173 -3.00633e-05 4.851599e-06 207 173 2.558831e-05 -4.129428e-06 208 173 -2.132146e-05 3.440846e-06 209 173 1.722429e-05 -2.779647e-06 210 173 -1.326172e-05 2.14017e-06 211 173 9.401297e-06 -1.517176e-06 212 173 -5.612495e-06 9.057414e-07 213 173 1.866144e-06 -3.011573e-07 214 173 1.866144e-06 -3.011573e-07 215 173 -5.612495e-06 9.057414e-07 216 173 9.401297e-06 -1.517176e-06 217 173 -1.326172e-05 2.14017e-06 218 173 1.722429e-05 -2.779647e-06 219 173 -2.132146e-05 3.440846e-06 220 173 2.558831e-05 -4.129428e-06 221 173 -3.00633e-05 4.851599e-06 222 173 3.478917e-05 -5.614257e-06 223 173 -3.981401e-05 6.425164e-06 224 173 4.519256e-05 -7.293151e-06 225 173 -5.098776e-05 8.228377e-06 226 173 5.727273e-05 -9.242642e-06 227 173 -6.413319e-05 1.034978e-05 228 173 7.167061e-05 -1.156616e-05 229 173 -8.000611e-05 1.291134e-05 230 173 8.928565e-05 -1.440887e-05 231 173 -9.968672e-05 1.608739e-05 232 173 0.0001114272 -1.798207e-05 233 173 -0.0001247774 2.013652e-05 234 173 0.000140076 -2.26054e-05 235 173 -0.0001577525 2.545802e-05 236 173 0.0001783582 -2.878335e-05 237 173 -0.0002026106 3.26972e-05 238 173 0.0002314578 -3.735254e-05 239 173 -0.0002661734 4.295492e-05 240 173 0.0003085011 -4.978574e-05 241 173 -0.0003608797 5.823857e-05 242 173 0.0004268045 -6.887749e-05 254 173 0.0002771748 1.62217e-05 93 174 0.0002908216 1.740235e-05 162 174 0.0004268045 -6.887749e-05 163 174 -0.0005114288 8.253411e-05 164 174 0.0006226054 -0.0001004757 165 174 -0.0007727812 0.000124711 166 174 0.0009826448 -0.0001585787 167 174 -0.001288661 0.0002079635 168 174 0.001760065 -0.0002840383 169 174 -0.002541777 0.0004101906 170 174 0.003980742 -0.0006424099 171 174 -0.007089509 0.001144101 172 174 0.01597157 -0.002577484 173 174 -0.06393453 0.01031772 174 174 -0.3411835 -0.0160058 175 174 -0.06393453 0.01031772 176 174 0.01597157 -0.002577484 177 174 -0.007089509 0.001144101 178 174 0.003980742 -0.0006424099 179 174 -0.002541777 0.0004101906 180 174 0.001760065 -0.0002840383 181 174 -0.001288661 0.0002079635 182 174 0.0009826448 -0.0001585787 183 174 -0.0007727812 0.000124711 184 174 0.0006226054 -0.0001004757 185 174 -0.0005114288 8.253411e-05 186 174 0.0004268045 -6.887749e-05 187 174 -0.0003608797 5.823857e-05 188 174 0.0003085011 -4.978574e-05 189 174 -0.0002661734 4.295492e-05 190 174 0.0002314578 -3.735254e-05 191 174 -0.0002026106 3.26972e-05 192 174 0.0001783582 -2.878335e-05 193 174 -0.0001577525 2.545802e-05 194 174 0.000140076 -2.26054e-05 195 174 -0.0001247774 2.013652e-05 196 174 0.0001114272 -1.798207e-05 197 174 -9.968672e-05 1.608739e-05 198 174 8.928565e-05 -1.440887e-05 199 174 -8.000611e-05 1.291134e-05 200 174 7.167061e-05 -1.156616e-05 201 174 -6.413319e-05 1.034978e-05 202 174 5.727273e-05 -9.242642e-06 203 174 -5.098776e-05 8.228377e-06 204 174 4.519256e-05 -7.293151e-06 205 174 -3.981401e-05 6.425164e-06 206 174 3.478917e-05 -5.614257e-06 207 174 -3.00633e-05 4.851599e-06 208 174 2.558831e-05 -4.129428e-06 209 174 -2.132146e-05 3.440846e-06 210 174 1.722429e-05 -2.779647e-06 211 174 -1.326172e-05 2.14017e-06 212 174 9.401297e-06 -1.517176e-06 213 174 -5.612495e-06 9.057414e-07 214 174 1.866144e-06 -3.011573e-07 215 174 1.866144e-06 -3.011573e-07 216 174 -5.612495e-06 9.057414e-07 217 174 9.401297e-06 -1.517176e-06 218 174 -1.326172e-05 2.14017e-06 219 174 1.722429e-05 -2.779647e-06 220 174 -2.132146e-05 3.440846e-06 221 174 2.558831e-05 -4.129428e-06 222 174 -3.00633e-05 4.851599e-06 223 174 3.478917e-05 -5.614257e-06 224 174 -3.981401e-05 6.425164e-06 225 174 4.519256e-05 -7.293151e-06 226 174 -5.098776e-05 8.228377e-06 227 174 5.727273e-05 -9.242642e-06 228 174 -6.413319e-05 1.034978e-05 229 174 7.167061e-05 -1.156616e-05 230 174 -8.000611e-05 1.291134e-05 231 174 8.928565e-05 -1.440887e-05 232 174 -9.968672e-05 1.608739e-05 233 174 0.0001114272 -1.798207e-05 234 174 -0.0001247774 2.013652e-05 235 174 0.000140076 -2.26054e-05 236 174 -0.0001577525 2.545802e-05 237 174 0.0001783582 -2.878335e-05 238 174 -0.0002026106 3.26972e-05 239 174 0.0002314578 -3.735254e-05 240 174 -0.0002661734 4.295492e-05 241 174 0.0003085011 -4.978574e-05 242 174 -0.0003608797 5.823857e-05 255 174 0.0002908216 1.740235e-05 94 175 0.0003045378 1.859469e-05 162 175 -0.0003608797 5.823857e-05 163 175 0.0004268045 -6.887749e-05 164 175 -0.0005114288 8.253411e-05 165 175 0.0006226054 -0.0001004757 166 175 -0.0007727812 0.000124711 167 175 0.0009826448 -0.0001585787 168 175 -0.001288661 0.0002079635 169 175 0.001760065 -0.0002840383 170 175 -0.002541777 0.0004101906 171 175 0.003980742 -0.0006424099 172 175 -0.007089509 0.001144101 173 175 0.01597157 -0.002577484 174 175 -0.06393453 0.01031772 175 175 -0.3396118 -0.01409039 176 175 -0.06393453 0.01031772 177 175 0.01597157 -0.002577484 178 175 -0.007089509 0.001144101 179 175 0.003980742 -0.0006424099 180 175 -0.002541777 0.0004101906 181 175 0.001760065 -0.0002840383 182 175 -0.001288661 0.0002079635 183 175 0.0009826448 -0.0001585787 184 175 -0.0007727812 0.000124711 185 175 0.0006226054 -0.0001004757 186 175 -0.0005114288 8.253411e-05 187 175 0.0004268045 -6.887749e-05 188 175 -0.0003608797 5.823857e-05 189 175 0.0003085011 -4.978574e-05 190 175 -0.0002661734 4.295492e-05 191 175 0.0002314578 -3.735254e-05 192 175 -0.0002026106 3.26972e-05 193 175 0.0001783582 -2.878335e-05 194 175 -0.0001577525 2.545802e-05 195 175 0.000140076 -2.26054e-05 196 175 -0.0001247774 2.013652e-05 197 175 0.0001114272 -1.798207e-05 198 175 -9.968672e-05 1.608739e-05 199 175 8.928565e-05 -1.440887e-05 200 175 -8.000611e-05 1.291134e-05 201 175 7.167061e-05 -1.156616e-05 202 175 -6.413319e-05 1.034978e-05 203 175 5.727273e-05 -9.242642e-06 204 175 -5.098776e-05 8.228377e-06 205 175 4.519256e-05 -7.293151e-06 206 175 -3.981401e-05 6.425164e-06 207 175 3.478917e-05 -5.614257e-06 208 175 -3.00633e-05 4.851599e-06 209 175 2.558831e-05 -4.129428e-06 210 175 -2.132146e-05 3.440846e-06 211 175 1.722429e-05 -2.779647e-06 212 175 -1.326172e-05 2.14017e-06 213 175 9.401297e-06 -1.517176e-06 214 175 -5.612495e-06 9.057414e-07 215 175 1.866144e-06 -3.011573e-07 216 175 1.866144e-06 -3.011573e-07 217 175 -5.612495e-06 9.057414e-07 218 175 9.401297e-06 -1.517176e-06 219 175 -1.326172e-05 2.14017e-06 220 175 1.722429e-05 -2.779647e-06 221 175 -2.132146e-05 3.440846e-06 222 175 2.558831e-05 -4.129428e-06 223 175 -3.00633e-05 4.851599e-06 224 175 3.478917e-05 -5.614257e-06 225 175 -3.981401e-05 6.425164e-06 226 175 4.519256e-05 -7.293151e-06 227 175 -5.098776e-05 8.228377e-06 228 175 5.727273e-05 -9.242642e-06 229 175 -6.413319e-05 1.034978e-05 230 175 7.167061e-05 -1.156616e-05 231 175 -8.000611e-05 1.291134e-05 232 175 8.928565e-05 -1.440887e-05 233 175 -9.968672e-05 1.608739e-05 234 175 0.0001114272 -1.798207e-05 235 175 -0.0001247774 2.013652e-05 236 175 0.000140076 -2.26054e-05 237 175 -0.0001577525 2.545802e-05 238 175 0.0001783582 -2.878335e-05 239 175 -0.0002026106 3.26972e-05 240 175 0.0002314578 -3.735254e-05 241 175 -0.0002661734 4.295492e-05 242 175 0.0003085011 -4.978574e-05 256 175 0.0003045378 1.859469e-05 95 176 0.000318324 1.979879e-05 162 176 0.0003085011 -4.978574e-05 163 176 -0.0003608797 5.823857e-05 164 176 0.0004268045 -6.887749e-05 165 176 -0.0005114288 8.253411e-05 166 176 0.0006226054 -0.0001004757 167 176 -0.0007727812 0.000124711 168 176 0.0009826448 -0.0001585787 169 176 -0.001288661 0.0002079635 170 176 0.001760065 -0.0002840383 171 176 -0.002541777 0.0004101906 172 176 0.003980742 -0.0006424099 173 176 -0.007089509 0.001144101 174 176 0.01597157 -0.002577484 175 176 -0.06393453 0.01031772 176 176 -0.33685 -0.01248123 177 176 -0.06393453 0.01031772 178 176 0.01597157 -0.002577484 179 176 -0.007089509 0.001144101 180 176 0.003980742 -0.0006424099 181 176 -0.002541777 0.0004101906 182 176 0.001760065 -0.0002840383 183 176 -0.001288661 0.0002079635 184 176 0.0009826448 -0.0001585787 185 176 -0.0007727812 0.000124711 186 176 0.0006226054 -0.0001004757 187 176 -0.0005114288 8.253411e-05 188 176 0.0004268045 -6.887749e-05 189 176 -0.0003608797 5.823857e-05 190 176 0.0003085011 -4.978574e-05 191 176 -0.0002661734 4.295492e-05 192 176 0.0002314578 -3.735254e-05 193 176 -0.0002026106 3.26972e-05 194 176 0.0001783582 -2.878335e-05 195 176 -0.0001577525 2.545802e-05 196 176 0.000140076 -2.26054e-05 197 176 -0.0001247774 2.013652e-05 198 176 0.0001114272 -1.798207e-05 199 176 -9.968672e-05 1.608739e-05 200 176 8.928565e-05 -1.440887e-05 201 176 -8.000611e-05 1.291134e-05 202 176 7.167061e-05 -1.156616e-05 203 176 -6.413319e-05 1.034978e-05 204 176 5.727273e-05 -9.242642e-06 205 176 -5.098776e-05 8.228377e-06 206 176 4.519256e-05 -7.293151e-06 207 176 -3.981401e-05 6.425164e-06 208 176 3.478917e-05 -5.614257e-06 209 176 -3.00633e-05 4.851599e-06 210 176 2.558831e-05 -4.129428e-06 211 176 -2.132146e-05 3.440846e-06 212 176 1.722429e-05 -2.779647e-06 213 176 -1.326172e-05 2.14017e-06 214 176 9.401297e-06 -1.517176e-06 215 176 -5.612495e-06 9.057414e-07 216 176 1.866144e-06 -3.011573e-07 217 176 1.866144e-06 -3.011573e-07 218 176 -5.612495e-06 9.057414e-07 219 176 9.401297e-06 -1.517176e-06 220 176 -1.326172e-05 2.14017e-06 221 176 1.722429e-05 -2.779647e-06 222 176 -2.132146e-05 3.440846e-06 223 176 2.558831e-05 -4.129428e-06 224 176 -3.00633e-05 4.851599e-06 225 176 3.478917e-05 -5.614257e-06 226 176 -3.981401e-05 6.425164e-06 227 176 4.519256e-05 -7.293151e-06 228 176 -5.098776e-05 8.228377e-06 229 176 5.727273e-05 -9.242642e-06 230 176 -6.413319e-05 1.034978e-05 231 176 7.167061e-05 -1.156616e-05 232 176 -8.000611e-05 1.291134e-05 233 176 8.928565e-05 -1.440887e-05 234 176 -9.968672e-05 1.608739e-05 235 176 0.0001114272 -1.798207e-05 236 176 -0.0001247774 2.013652e-05 237 176 0.000140076 -2.26054e-05 238 176 -0.0001577525 2.545802e-05 239 176 0.0001783582 -2.878335e-05 240 176 -0.0002026106 3.26972e-05 241 176 0.0002314578 -3.735254e-05 242 176 -0.0002661734 4.295492e-05 257 176 0.000318324 1.979879e-05 96 177 0.0003321804 2.101476e-05 162 177 -0.0002661734 4.295492e-05 163 177 0.0003085011 -4.978574e-05 164 177 -0.0003608797 5.823857e-05 165 177 0.0004268045 -6.887749e-05 166 177 -0.0005114288 8.253411e-05 167 177 0.0006226054 -0.0001004757 168 177 -0.0007727812 0.000124711 169 177 0.0009826448 -0.0001585787 170 177 -0.001288661 0.0002079635 171 177 0.001760065 -0.0002840383 172 177 -0.002541777 0.0004101906 173 177 0.003980742 -0.0006424099 174 177 -0.007089509 0.001144101 175 177 0.01597157 -0.002577484 176 177 -0.06393453 0.01031772 177 177 -0.333231 -0.01115419 178 177 -0.06393453 0.01031772 179 177 0.01597157 -0.002577484 180 177 -0.007089509 0.001144101 181 177 0.003980742 -0.0006424099 182 177 -0.002541777 0.0004101906 183 177 0.001760065 -0.0002840383 184 177 -0.001288661 0.0002079635 185 177 0.0009826448 -0.0001585787 186 177 -0.0007727812 0.000124711 187 177 0.0006226054 -0.0001004757 188 177 -0.0005114288 8.253411e-05 189 177 0.0004268045 -6.887749e-05 190 177 -0.0003608797 5.823857e-05 191 177 0.0003085011 -4.978574e-05 192 177 -0.0002661734 4.295492e-05 193 177 0.0002314578 -3.735254e-05 194 177 -0.0002026106 3.26972e-05 195 177 0.0001783582 -2.878335e-05 196 177 -0.0001577525 2.545802e-05 197 177 0.000140076 -2.26054e-05 198 177 -0.0001247774 2.013652e-05 199 177 0.0001114272 -1.798207e-05 200 177 -9.968672e-05 1.608739e-05 201 177 8.928565e-05 -1.440887e-05 202 177 -8.000611e-05 1.291134e-05 203 177 7.167061e-05 -1.156616e-05 204 177 -6.413319e-05 1.034978e-05 205 177 5.727273e-05 -9.242642e-06 206 177 -5.098776e-05 8.228377e-06 207 177 4.519256e-05 -7.293151e-06 208 177 -3.981401e-05 6.425164e-06 209 177 3.478917e-05 -5.614257e-06 210 177 -3.00633e-05 4.851599e-06 211 177 2.558831e-05 -4.129428e-06 212 177 -2.132146e-05 3.440846e-06 213 177 1.722429e-05 -2.779647e-06 214 177 -1.326172e-05 2.14017e-06 215 177 9.401297e-06 -1.517176e-06 216 177 -5.612495e-06 9.057414e-07 217 177 1.866144e-06 -3.011573e-07 218 177 1.866144e-06 -3.011573e-07 219 177 -5.612495e-06 9.057414e-07 220 177 9.401297e-06 -1.517176e-06 221 177 -1.326172e-05 2.14017e-06 222 177 1.722429e-05 -2.779647e-06 223 177 -2.132146e-05 3.440846e-06 224 177 2.558831e-05 -4.129428e-06 225 177 -3.00633e-05 4.851599e-06 226 177 3.478917e-05 -5.614257e-06 227 177 -3.981401e-05 6.425164e-06 228 177 4.519256e-05 -7.293151e-06 229 177 -5.098776e-05 8.228377e-06 230 177 5.727273e-05 -9.242642e-06 231 177 -6.413319e-05 1.034978e-05 232 177 7.167061e-05 -1.156616e-05 233 177 -8.000611e-05 1.291134e-05 234 177 8.928565e-05 -1.440887e-05 235 177 -9.968672e-05 1.608739e-05 236 177 0.0001114272 -1.798207e-05 237 177 -0.0001247774 2.013652e-05 238 177 0.000140076 -2.26054e-05 239 177 -0.0001577525 2.545802e-05 240 177 0.0001783582 -2.878335e-05 241 177 -0.0002026106 3.26972e-05 242 177 0.0002314578 -3.735254e-05 258 177 0.0003321804 2.101476e-05 97 178 0.0003461073 2.224268e-05 162 178 0.0002314578 -3.735254e-05 163 178 -0.0002661734 4.295492e-05 164 178 0.0003085011 -4.978574e-05 165 178 -0.0003608797 5.823857e-05 166 178 0.0004268045 -6.887749e-05 167 178 -0.0005114288 8.253411e-05 168 178 0.0006226054 -0.0001004757 169 178 -0.0007727812 0.000124711 170 178 0.0009826448 -0.0001585787 171 178 -0.001288661 0.0002079635 172 178 0.001760065 -0.0002840383 173 178 -0.002541777 0.0004101906 174 178 0.003980742 -0.0006424099 175 178 -0.007089509 0.001144101 176 178 0.01597157 -0.002577484 177 178 -0.06393453 0.01031772 178 178 -0.32902 -0.01008311 179 178 -0.06393453 0.01031772 180 178 0.01597157 -0.002577484 181 178 -0.007089509 0.001144101 182 178 0.003980742 -0.0006424099 183 178 -0.002541777 0.0004101906 184 178 0.001760065 -0.0002840383 185 178 -0.001288661 0.0002079635 186 178 0.0009826448 -0.0001585787 187 178 -0.0007727812 0.000124711 188 178 0.0006226054 -0.0001004757 189 178 -0.0005114288 8.253411e-05 190 178 0.0004268045 -6.887749e-05 191 178 -0.0003608797 5.823857e-05 192 178 0.0003085011 -4.978574e-05 193 178 -0.0002661734 4.295492e-05 194 178 0.0002314578 -3.735254e-05 195 178 -0.0002026106 3.26972e-05 196 178 0.0001783582 -2.878335e-05 197 178 -0.0001577525 2.545802e-05 198 178 0.000140076 -2.26054e-05 199 178 -0.0001247774 2.013652e-05 200 178 0.0001114272 -1.798207e-05 201 178 -9.968672e-05 1.608739e-05 202 178 8.928565e-05 -1.440887e-05 203 178 -8.000611e-05 1.291134e-05 204 178 7.167061e-05 -1.156616e-05 205 178 -6.413319e-05 1.034978e-05 206 178 5.727273e-05 -9.242642e-06 207 178 -5.098776e-05 8.228377e-06 208 178 4.519256e-05 -7.293151e-06 209 178 -3.981401e-05 6.425164e-06 210 178 3.478917e-05 -5.614257e-06 211 178 -3.00633e-05 4.851599e-06 212 178 2.558831e-05 -4.129428e-06 213 178 -2.132146e-05 3.440846e-06 214 178 1.722429e-05 -2.779647e-06 215 178 -1.326172e-05 2.14017e-06 216 178 9.401297e-06 -1.517176e-06 217 178 -5.612495e-06 9.057414e-07 218 178 1.866144e-06 -3.011573e-07 219 178 1.866144e-06 -3.011573e-07 220 178 -5.612495e-06 9.057414e-07 221 178 9.401297e-06 -1.517176e-06 222 178 -1.326172e-05 2.14017e-06 223 178 1.722429e-05 -2.779647e-06 224 178 -2.132146e-05 3.440846e-06 225 178 2.558831e-05 -4.129428e-06 226 178 -3.00633e-05 4.851599e-06 227 178 3.478917e-05 -5.614257e-06 228 178 -3.981401e-05 6.425164e-06 229 178 4.519256e-05 -7.293151e-06 230 178 -5.098776e-05 8.228377e-06 231 178 5.727273e-05 -9.242642e-06 232 178 -6.413319e-05 1.034978e-05 233 178 7.167061e-05 -1.156616e-05 234 178 -8.000611e-05 1.291134e-05 235 178 8.928565e-05 -1.440887e-05 236 178 -9.968672e-05 1.608739e-05 237 178 0.0001114272 -1.798207e-05 238 178 -0.0001247774 2.013652e-05 239 178 0.000140076 -2.26054e-05 240 178 -0.0001577525 2.545802e-05 241 178 0.0001783582 -2.878335e-05 242 178 -0.0002026106 3.26972e-05 259 178 0.0003461073 2.224268e-05 98 179 0.0003601052 2.348264e-05 162 179 -0.0002026106 3.26972e-05 163 179 0.0002314578 -3.735254e-05 164 179 -0.0002661734 4.295492e-05 165 179 0.0003085011 -4.978574e-05 166 179 -0.0003608797 5.823857e-05 167 179 0.0004268045 -6.887749e-05 168 179 -0.0005114288 8.253411e-05 169 179 0.0006226054 -0.0001004757 170 179 -0.0007727812 0.000124711 171 179 0.0009826448 -0.0001585787 172 179 -0.001288661 0.0002079635 173 179 0.001760065 -0.0002840383 174 179 -0.002541777 0.0004101906 175 179 0.003980742 -0.0006424099 176 179 -0.007089509 0.001144101 177 179 0.01597157 -0.002577484 178 179 -0.06393453 0.01031772 179 179 -0.3244263 -0.009241196 180 179 -0.06393453 0.01031772 181 179 0.01597157 -0.002577484 182 179 -0.007089509 0.001144101 183 179 0.003980742 -0.0006424099 184 179 -0.002541777 0.0004101906 185 179 0.001760065 -0.0002840383 186 179 -0.001288661 0.0002079635 187 179 0.0009826448 -0.0001585787 188 179 -0.0007727812 0.000124711 189 179 0.0006226054 -0.0001004757 190 179 -0.0005114288 8.253411e-05 191 179 0.0004268045 -6.887749e-05 192 179 -0.0003608797 5.823857e-05 193 179 0.0003085011 -4.978574e-05 194 179 -0.0002661734 4.295492e-05 195 179 0.0002314578 -3.735254e-05 196 179 -0.0002026106 3.26972e-05 197 179 0.0001783582 -2.878335e-05 198 179 -0.0001577525 2.545802e-05 199 179 0.000140076 -2.26054e-05 200 179 -0.0001247774 2.013652e-05 201 179 0.0001114272 -1.798207e-05 202 179 -9.968672e-05 1.608739e-05 203 179 8.928565e-05 -1.440887e-05 204 179 -8.000611e-05 1.291134e-05 205 179 7.167061e-05 -1.156616e-05 206 179 -6.413319e-05 1.034978e-05 207 179 5.727273e-05 -9.242642e-06 208 179 -5.098776e-05 8.228377e-06 209 179 4.519256e-05 -7.293151e-06 210 179 -3.981401e-05 6.425164e-06 211 179 3.478917e-05 -5.614257e-06 212 179 -3.00633e-05 4.851599e-06 213 179 2.558831e-05 -4.129428e-06 214 179 -2.132146e-05 3.440846e-06 215 179 1.722429e-05 -2.779647e-06 216 179 -1.326172e-05 2.14017e-06 217 179 9.401297e-06 -1.517176e-06 218 179 -5.612495e-06 9.057414e-07 219 179 1.866144e-06 -3.011573e-07 220 179 1.866144e-06 -3.011573e-07 221 179 -5.612495e-06 9.057414e-07 222 179 9.401297e-06 -1.517176e-06 223 179 -1.326172e-05 2.14017e-06 224 179 1.722429e-05 -2.779647e-06 225 179 -2.132146e-05 3.440846e-06 226 179 2.558831e-05 -4.129428e-06 227 179 -3.00633e-05 4.851599e-06 228 179 3.478917e-05 -5.614257e-06 229 179 -3.981401e-05 6.425164e-06 230 179 4.519256e-05 -7.293151e-06 231 179 -5.098776e-05 8.228377e-06 232 179 5.727273e-05 -9.242642e-06 233 179 -6.413319e-05 1.034978e-05 234 179 7.167061e-05 -1.156616e-05 235 179 -8.000611e-05 1.291134e-05 236 179 8.928565e-05 -1.440887e-05 237 179 -9.968672e-05 1.608739e-05 238 179 0.0001114272 -1.798207e-05 239 179 -0.0001247774 2.013652e-05 240 179 0.000140076 -2.26054e-05 241 179 -0.0001577525 2.545802e-05 242 179 0.0001783582 -2.878335e-05 260 179 0.0003601052 2.348264e-05 99 180 0.0003741744 2.473473e-05 162 180 0.0001783582 -2.878335e-05 163 180 -0.0002026106 3.26972e-05 164 180 0.0002314578 -3.735254e-05 165 180 -0.0002661734 4.295492e-05 166 180 0.0003085011 -4.978574e-05 167 180 -0.0003608797 5.823857e-05 168 180 0.0004268045 -6.887749e-05 169 180 -0.0005114288 8.253411e-05 170 180 0.0006226054 -0.0001004757 171 180 -0.0007727812 0.000124711 172 180 0.0009826448 -0.0001585787 173 180 -0.001288661 0.0002079635 174 180 0.001760065 -0.0002840383 175 180 -0.002541777 0.0004101906 176 180 0.003980742 -0.0006424099 177 180 -0.007089509 0.001144101 178 180 0.01597157 -0.002577484 179 180 -0.06393453 0.01031772 180 180 -0.3196142 -0.00860207 181 180 -0.06393453 0.01031772 182 180 0.01597157 -0.002577484 183 180 -0.007089509 0.001144101 184 180 0.003980742 -0.0006424099 185 180 -0.002541777 0.0004101906 186 180 0.001760065 -0.0002840383 187 180 -0.001288661 0.0002079635 188 180 0.0009826448 -0.0001585787 189 180 -0.0007727812 0.000124711 190 180 0.0006226054 -0.0001004757 191 180 -0.0005114288 8.253411e-05 192 180 0.0004268045 -6.887749e-05 193 180 -0.0003608797 5.823857e-05 194 180 0.0003085011 -4.978574e-05 195 180 -0.0002661734 4.295492e-05 196 180 0.0002314578 -3.735254e-05 197 180 -0.0002026106 3.26972e-05 198 180 0.0001783582 -2.878335e-05 199 180 -0.0001577525 2.545802e-05 200 180 0.000140076 -2.26054e-05 201 180 -0.0001247774 2.013652e-05 202 180 0.0001114272 -1.798207e-05 203 180 -9.968672e-05 1.608739e-05 204 180 8.928565e-05 -1.440887e-05 205 180 -8.000611e-05 1.291134e-05 206 180 7.167061e-05 -1.156616e-05 207 180 -6.413319e-05 1.034978e-05 208 180 5.727273e-05 -9.242642e-06 209 180 -5.098776e-05 8.228377e-06 210 180 4.519256e-05 -7.293151e-06 211 180 -3.981401e-05 6.425164e-06 212 180 3.478917e-05 -5.614257e-06 213 180 -3.00633e-05 4.851599e-06 214 180 2.558831e-05 -4.129428e-06 215 180 -2.132146e-05 3.440846e-06 216 180 1.722429e-05 -2.779647e-06 217 180 -1.326172e-05 2.14017e-06 218 180 9.401297e-06 -1.517176e-06 219 180 -5.612495e-06 9.057414e-07 220 180 1.866144e-06 -3.011573e-07 221 180 1.866144e-06 -3.011573e-07 222 180 -5.612495e-06 9.057414e-07 223 180 9.401297e-06 -1.517176e-06 224 180 -1.326172e-05 2.14017e-06 225 180 1.722429e-05 -2.779647e-06 226 180 -2.132146e-05 3.440846e-06 227 180 2.558831e-05 -4.129428e-06 228 180 -3.00633e-05 4.851599e-06 229 180 3.478917e-05 -5.614257e-06 230 180 -3.981401e-05 6.425164e-06 231 180 4.519256e-05 -7.293151e-06 232 180 -5.098776e-05 8.228377e-06 233 180 5.727273e-05 -9.242642e-06 234 180 -6.413319e-05 1.034978e-05 235 180 7.167061e-05 -1.156616e-05 236 180 -8.000611e-05 1.291134e-05 237 180 8.928565e-05 -1.440887e-05 238 180 -9.968672e-05 1.608739e-05 239 180 0.0001114272 -1.798207e-05 240 180 -0.0001247774 2.013652e-05 241 180 0.000140076 -2.26054e-05 242 180 -0.0001577525 2.545802e-05 261 180 0.0003741744 2.473473e-05 100 181 0.0003883153 2.599905e-05 162 181 -0.0001577525 2.545802e-05 163 181 0.0001783582 -2.878335e-05 164 181 -0.0002026106 3.26972e-05 165 181 0.0002314578 -3.735254e-05 166 181 -0.0002661734 4.295492e-05 167 181 0.0003085011 -4.978574e-05 168 181 -0.0003608797 5.823857e-05 169 181 0.0004268045 -6.887749e-05 170 181 -0.0005114288 8.253411e-05 171 181 0.0006226054 -0.0001004757 172 181 -0.0007727812 0.000124711 173 181 0.0009826448 -0.0001585787 174 181 -0.001288661 0.0002079635 175 181 0.001760065 -0.0002840383 176 181 -0.002541777 0.0004101906 177 181 0.003980742 -0.0006424099 178 181 -0.007089509 0.001144101 179 181 0.01597157 -0.002577484 180 181 -0.06393453 0.01031772 181 181 -0.3147111 -0.008140449 182 181 -0.06393453 0.01031772 183 181 0.01597157 -0.002577484 184 181 -0.007089509 0.001144101 185 181 0.003980742 -0.0006424099 186 181 -0.002541777 0.0004101906 187 181 0.001760065 -0.0002840383 188 181 -0.001288661 0.0002079635 189 181 0.0009826448 -0.0001585787 190 181 -0.0007727812 0.000124711 191 181 0.0006226054 -0.0001004757 192 181 -0.0005114288 8.253411e-05 193 181 0.0004268045 -6.887749e-05 194 181 -0.0003608797 5.823857e-05 195 181 0.0003085011 -4.978574e-05 196 181 -0.0002661734 4.295492e-05 197 181 0.0002314578 -3.735254e-05 198 181 -0.0002026106 3.26972e-05 199 181 0.0001783582 -2.878335e-05 200 181 -0.0001577525 2.545802e-05 201 181 0.000140076 -2.26054e-05 202 181 -0.0001247774 2.013652e-05 203 181 0.0001114272 -1.798207e-05 204 181 -9.968672e-05 1.608739e-05 205 181 8.928565e-05 -1.440887e-05 206 181 -8.000611e-05 1.291134e-05 207 181 7.167061e-05 -1.156616e-05 208 181 -6.413319e-05 1.034978e-05 209 181 5.727273e-05 -9.242642e-06 210 181 -5.098776e-05 8.228377e-06 211 181 4.519256e-05 -7.293151e-06 212 181 -3.981401e-05 6.425164e-06 213 181 3.478917e-05 -5.614257e-06 214 181 -3.00633e-05 4.851599e-06 215 181 2.558831e-05 -4.129428e-06 216 181 -2.132146e-05 3.440846e-06 217 181 1.722429e-05 -2.779647e-06 218 181 -1.326172e-05 2.14017e-06 219 181 9.401297e-06 -1.517176e-06 220 181 -5.612495e-06 9.057414e-07 221 181 1.866144e-06 -3.011573e-07 222 181 1.866144e-06 -3.011573e-07 223 181 -5.612495e-06 9.057414e-07 224 181 9.401297e-06 -1.517176e-06 225 181 -1.326172e-05 2.14017e-06 226 181 1.722429e-05 -2.779647e-06 227 181 -2.132146e-05 3.440846e-06 228 181 2.558831e-05 -4.129428e-06 229 181 -3.00633e-05 4.851599e-06 230 181 3.478917e-05 -5.614257e-06 231 181 -3.981401e-05 6.425164e-06 232 181 4.519256e-05 -7.293151e-06 233 181 -5.098776e-05 8.228377e-06 234 181 5.727273e-05 -9.242642e-06 235 181 -6.413319e-05 1.034978e-05 236 181 7.167061e-05 -1.156616e-05 237 181 -8.000611e-05 1.291134e-05 238 181 8.928565e-05 -1.440887e-05 239 181 -9.968672e-05 1.608739e-05 240 181 0.0001114272 -1.798207e-05 241 181 -0.0001247774 2.013652e-05 242 181 0.000140076 -2.26054e-05 262 181 0.0003883153 2.599905e-05 101 182 0.0004025281 2.727568e-05 162 182 0.000140076 -2.26054e-05 163 182 -0.0001577525 2.545802e-05 164 182 0.0001783582 -2.878335e-05 165 182 -0.0002026106 3.26972e-05 166 182 0.0002314578 -3.735254e-05 167 182 -0.0002661734 4.295492e-05 168 182 0.0003085011 -4.978574e-05 169 182 -0.0003608797 5.823857e-05 170 182 0.0004268045 -6.887749e-05 171 182 -0.0005114288 8.253411e-05 172 182 0.0006226054 -0.0001004757 173 182 -0.0007727812 0.000124711 174 182 0.0009826448 -0.0001585787 175 182 -0.001288661 0.0002079635 176 182 0.001760065 -0.0002840383 177 182 -0.002541777 0.0004101906 178 182 0.003980742 -0.0006424099 179 182 -0.007089509 0.001144101 180 182 0.01597157 -0.002577484 181 182 -0.06393453 0.01031772 182 182 -0.3098148 -0.007832596 183 182 -0.06393453 0.01031772 184 182 0.01597157 -0.002577484 185 182 -0.007089509 0.001144101 186 182 0.003980742 -0.0006424099 187 182 -0.002541777 0.0004101906 188 182 0.001760065 -0.0002840383 189 182 -0.001288661 0.0002079635 190 182 0.0009826448 -0.0001585787 191 182 -0.0007727812 0.000124711 192 182 0.0006226054 -0.0001004757 193 182 -0.0005114288 8.253411e-05 194 182 0.0004268045 -6.887749e-05 195 182 -0.0003608797 5.823857e-05 196 182 0.0003085011 -4.978574e-05 197 182 -0.0002661734 4.295492e-05 198 182 0.0002314578 -3.735254e-05 199 182 -0.0002026106 3.26972e-05 200 182 0.0001783582 -2.878335e-05 201 182 -0.0001577525 2.545802e-05 202 182 0.000140076 -2.26054e-05 203 182 -0.0001247774 2.013652e-05 204 182 0.0001114272 -1.798207e-05 205 182 -9.968672e-05 1.608739e-05 206 182 8.928565e-05 -1.440887e-05 207 182 -8.000611e-05 1.291134e-05 208 182 7.167061e-05 -1.156616e-05 209 182 -6.413319e-05 1.034978e-05 210 182 5.727273e-05 -9.242642e-06 211 182 -5.098776e-05 8.228377e-06 212 182 4.519256e-05 -7.293151e-06 213 182 -3.981401e-05 6.425164e-06 214 182 3.478917e-05 -5.614257e-06 215 182 -3.00633e-05 4.851599e-06 216 182 2.558831e-05 -4.129428e-06 217 182 -2.132146e-05 3.440846e-06 218 182 1.722429e-05 -2.779647e-06 219 182 -1.326172e-05 2.14017e-06 220 182 9.401297e-06 -1.517176e-06 221 182 -5.612495e-06 9.057414e-07 222 182 1.866144e-06 -3.011573e-07 223 182 1.866144e-06 -3.011573e-07 224 182 -5.612495e-06 9.057414e-07 225 182 9.401297e-06 -1.517176e-06 226 182 -1.326172e-05 2.14017e-06 227 182 1.722429e-05 -2.779647e-06 228 182 -2.132146e-05 3.440846e-06 229 182 2.558831e-05 -4.129428e-06 230 182 -3.00633e-05 4.851599e-06 231 182 3.478917e-05 -5.614257e-06 232 182 -3.981401e-05 6.425164e-06 233 182 4.519256e-05 -7.293151e-06 234 182 -5.098776e-05 8.228377e-06 235 182 5.727273e-05 -9.242642e-06 236 182 -6.413319e-05 1.034978e-05 237 182 7.167061e-05 -1.156616e-05 238 182 -8.000611e-05 1.291134e-05 239 182 8.928565e-05 -1.440887e-05 240 182 -9.968672e-05 1.608739e-05 241 182 0.0001114272 -1.798207e-05 242 182 -0.0001247774 2.013652e-05 263 182 0.0004025281 2.727568e-05 102 183 0.0004168134 2.856472e-05 162 183 -0.0001247774 2.013652e-05 163 183 0.000140076 -2.26054e-05 164 183 -0.0001577525 2.545802e-05 165 183 0.0001783582 -2.878335e-05 166 183 -0.0002026106 3.26972e-05 167 183 0.0002314578 -3.735254e-05 168 183 -0.0002661734 4.295492e-05 169 183 0.0003085011 -4.978574e-05 170 183 -0.0003608797 5.823857e-05 171 183 0.0004268045 -6.887749e-05 172 183 -0.0005114288 8.253411e-05 173 183 0.0006226054 -0.0001004757 174 183 -0.0007727812 0.000124711 175 183 0.0009826448 -0.0001585787 176 183 -0.001288661 0.0002079635 177 183 0.001760065 -0.0002840383 178 183 -0.002541777 0.0004101906 179 183 0.003980742 -0.0006424099 180 183 -0.007089509 0.001144101 181 183 0.01597157 -0.002577484 182 183 -0.06393453 0.01031772 183 183 -0.304999 -0.007656581 184 183 -0.06393453 0.01031772 185 183 0.01597157 -0.002577484 186 183 -0.007089509 0.001144101 187 183 0.003980742 -0.0006424099 188 183 -0.002541777 0.0004101906 189 183 0.001760065 -0.0002840383 190 183 -0.001288661 0.0002079635 191 183 0.0009826448 -0.0001585787 192 183 -0.0007727812 0.000124711 193 183 0.0006226054 -0.0001004757 194 183 -0.0005114288 8.253411e-05 195 183 0.0004268045 -6.887749e-05 196 183 -0.0003608797 5.823857e-05 197 183 0.0003085011 -4.978574e-05 198 183 -0.0002661734 4.295492e-05 199 183 0.0002314578 -3.735254e-05 200 183 -0.0002026106 3.26972e-05 201 183 0.0001783582 -2.878335e-05 202 183 -0.0001577525 2.545802e-05 203 183 0.000140076 -2.26054e-05 204 183 -0.0001247774 2.013652e-05 205 183 0.0001114272 -1.798207e-05 206 183 -9.968672e-05 1.608739e-05 207 183 8.928565e-05 -1.440887e-05 208 183 -8.000611e-05 1.291134e-05 209 183 7.167061e-05 -1.156616e-05 210 183 -6.413319e-05 1.034978e-05 211 183 5.727273e-05 -9.242642e-06 212 183 -5.098776e-05 8.228377e-06 213 183 4.519256e-05 -7.293151e-06 214 183 -3.981401e-05 6.425164e-06 215 183 3.478917e-05 -5.614257e-06 216 183 -3.00633e-05 4.851599e-06 217 183 2.558831e-05 -4.129428e-06 218 183 -2.132146e-05 3.440846e-06 219 183 1.722429e-05 -2.779647e-06 220 183 -1.326172e-05 2.14017e-06 221 183 9.401297e-06 -1.517176e-06 222 183 -5.612495e-06 9.057414e-07 223 183 1.866144e-06 -3.011573e-07 224 183 1.866144e-06 -3.011573e-07 225 183 -5.612495e-06 9.057414e-07 226 183 9.401297e-06 -1.517176e-06 227 183 -1.326172e-05 2.14017e-06 228 183 1.722429e-05 -2.779647e-06 229 183 -2.132146e-05 3.440846e-06 230 183 2.558831e-05 -4.129428e-06 231 183 -3.00633e-05 4.851599e-06 232 183 3.478917e-05 -5.614257e-06 233 183 -3.981401e-05 6.425164e-06 234 183 4.519256e-05 -7.293151e-06 235 183 -5.098776e-05 8.228377e-06 236 183 5.727273e-05 -9.242642e-06 237 183 -6.413319e-05 1.034978e-05 238 183 7.167061e-05 -1.156616e-05 239 183 -8.000611e-05 1.291134e-05 240 183 8.928565e-05 -1.440887e-05 241 183 -9.968672e-05 1.608739e-05 242 183 0.0001114272 -1.798207e-05 264 183 0.0004168134 2.856472e-05 103 184 0.0004311714 2.986627e-05 162 184 0.0001114272 -1.798207e-05 163 184 -0.0001247774 2.013652e-05 164 184 0.000140076 -2.26054e-05 165 184 -0.0001577525 2.545802e-05 166 184 0.0001783582 -2.878335e-05 167 184 -0.0002026106 3.26972e-05 168 184 0.0002314578 -3.735254e-05 169 184 -0.0002661734 4.295492e-05 170 184 0.0003085011 -4.978574e-05 171 184 -0.0003608797 5.823857e-05 172 184 0.0004268045 -6.887749e-05 173 184 -0.0005114288 8.253411e-05 174 184 0.0006226054 -0.0001004757 175 184 -0.0007727812 0.000124711 176 184 0.0009826448 -0.0001585787 177 184 -0.001288661 0.0002079635 178 184 0.001760065 -0.0002840383 179 184 -0.002541777 0.0004101906 180 184 0.003980742 -0.0006424099 181 184 -0.007089509 0.001144101 182 184 0.01597157 -0.002577484 183 184 -0.06393453 0.01031772 184 184 -0.3003182 -0.007592411 185 184 -0.06393453 0.01031772 186 184 0.01597157 -0.002577484 187 184 -0.007089509 0.001144101 188 184 0.003980742 -0.0006424099 189 184 -0.002541777 0.0004101906 190 184 0.001760065 -0.0002840383 191 184 -0.001288661 0.0002079635 192 184 0.0009826448 -0.0001585787 193 184 -0.0007727812 0.000124711 194 184 0.0006226054 -0.0001004757 195 184 -0.0005114288 8.253411e-05 196 184 0.0004268045 -6.887749e-05 197 184 -0.0003608797 5.823857e-05 198 184 0.0003085011 -4.978574e-05 199 184 -0.0002661734 4.295492e-05 200 184 0.0002314578 -3.735254e-05 201 184 -0.0002026106 3.26972e-05 202 184 0.0001783582 -2.878335e-05 203 184 -0.0001577525 2.545802e-05 204 184 0.000140076 -2.26054e-05 205 184 -0.0001247774 2.013652e-05 206 184 0.0001114272 -1.798207e-05 207 184 -9.968672e-05 1.608739e-05 208 184 8.928565e-05 -1.440887e-05 209 184 -8.000611e-05 1.291134e-05 210 184 7.167061e-05 -1.156616e-05 211 184 -6.413319e-05 1.034978e-05 212 184 5.727273e-05 -9.242642e-06 213 184 -5.098776e-05 8.228377e-06 214 184 4.519256e-05 -7.293151e-06 215 184 -3.981401e-05 6.425164e-06 216 184 3.478917e-05 -5.614257e-06 217 184 -3.00633e-05 4.851599e-06 218 184 2.558831e-05 -4.129428e-06 219 184 -2.132146e-05 3.440846e-06 220 184 1.722429e-05 -2.779647e-06 221 184 -1.326172e-05 2.14017e-06 222 184 9.401297e-06 -1.517176e-06 223 184 -5.612495e-06 9.057414e-07 224 184 1.866144e-06 -3.011573e-07 225 184 1.866144e-06 -3.011573e-07 226 184 -5.612495e-06 9.057414e-07 227 184 9.401297e-06 -1.517176e-06 228 184 -1.326172e-05 2.14017e-06 229 184 1.722429e-05 -2.779647e-06 230 184 -2.132146e-05 3.440846e-06 231 184 2.558831e-05 -4.129428e-06 232 184 -3.00633e-05 4.851599e-06 233 184 3.478917e-05 -5.614257e-06 234 184 -3.981401e-05 6.425164e-06 235 184 4.519256e-05 -7.293151e-06 236 184 -5.098776e-05 8.228377e-06 237 184 5.727273e-05 -9.242642e-06 238 184 -6.413319e-05 1.034978e-05 239 184 7.167061e-05 -1.156616e-05 240 184 -8.000611e-05 1.291134e-05 241 184 8.928565e-05 -1.440887e-05 242 184 -9.968672e-05 1.608739e-05 265 184 0.0004311714 2.986627e-05 104 185 0.0004456025 3.118041e-05 162 185 -9.968672e-05 1.608739e-05 163 185 0.0001114272 -1.798207e-05 164 185 -0.0001247774 2.013652e-05 165 185 0.000140076 -2.26054e-05 166 185 -0.0001577525 2.545802e-05 167 185 0.0001783582 -2.878335e-05 168 185 -0.0002026106 3.26972e-05 169 185 0.0002314578 -3.735254e-05 170 185 -0.0002661734 4.295492e-05 171 185 0.0003085011 -4.978574e-05 172 185 -0.0003608797 5.823857e-05 173 185 0.0004268045 -6.887749e-05 174 185 -0.0005114288 8.253411e-05 175 185 0.0006226054 -0.0001004757 176 185 -0.0007727812 0.000124711 177 185 0.0009826448 -0.0001585787 178 185 -0.001288661 0.0002079635 179 185 0.001760065 -0.0002840383 180 185 -0.002541777 0.0004101906 181 185 0.003980742 -0.0006424099 182 185 -0.007089509 0.001144101 183 185 0.01597157 -0.002577484 184 185 -0.06393453 0.01031772 185 185 -0.2958115 -0.007622058 186 185 -0.06393453 0.01031772 187 185 0.01597157 -0.002577484 188 185 -0.007089509 0.001144101 189 185 0.003980742 -0.0006424099 190 185 -0.002541777 0.0004101906 191 185 0.001760065 -0.0002840383 192 185 -0.001288661 0.0002079635 193 185 0.0009826448 -0.0001585787 194 185 -0.0007727812 0.000124711 195 185 0.0006226054 -0.0001004757 196 185 -0.0005114288 8.253411e-05 197 185 0.0004268045 -6.887749e-05 198 185 -0.0003608797 5.823857e-05 199 185 0.0003085011 -4.978574e-05 200 185 -0.0002661734 4.295492e-05 201 185 0.0002314578 -3.735254e-05 202 185 -0.0002026106 3.26972e-05 203 185 0.0001783582 -2.878335e-05 204 185 -0.0001577525 2.545802e-05 205 185 0.000140076 -2.26054e-05 206 185 -0.0001247774 2.013652e-05 207 185 0.0001114272 -1.798207e-05 208 185 -9.968672e-05 1.608739e-05 209 185 8.928565e-05 -1.440887e-05 210 185 -8.000611e-05 1.291134e-05 211 185 7.167061e-05 -1.156616e-05 212 185 -6.413319e-05 1.034978e-05 213 185 5.727273e-05 -9.242642e-06 214 185 -5.098776e-05 8.228377e-06 215 185 4.519256e-05 -7.293151e-06 216 185 -3.981401e-05 6.425164e-06 217 185 3.478917e-05 -5.614257e-06 218 185 -3.00633e-05 4.851599e-06 219 185 2.558831e-05 -4.129428e-06 220 185 -2.132146e-05 3.440846e-06 221 185 1.722429e-05 -2.779647e-06 222 185 -1.326172e-05 2.14017e-06 223 185 9.401297e-06 -1.517176e-06 224 185 -5.612495e-06 9.057414e-07 225 185 1.866144e-06 -3.011573e-07 226 185 1.866144e-06 -3.011573e-07 227 185 -5.612495e-06 9.057414e-07 228 185 9.401297e-06 -1.517176e-06 229 185 -1.326172e-05 2.14017e-06 230 185 1.722429e-05 -2.779647e-06 231 185 -2.132146e-05 3.440846e-06 232 185 2.558831e-05 -4.129428e-06 233 185 -3.00633e-05 4.851599e-06 234 185 3.478917e-05 -5.614257e-06 235 185 -3.981401e-05 6.425164e-06 236 185 4.519256e-05 -7.293151e-06 237 185 -5.098776e-05 8.228377e-06 238 185 5.727273e-05 -9.242642e-06 239 185 -6.413319e-05 1.034978e-05 240 185 7.167061e-05 -1.156616e-05 241 185 -8.000611e-05 1.291134e-05 242 185 8.928565e-05 -1.440887e-05 266 185 0.0004456025 3.118041e-05 105 186 0.0004601072 3.250725e-05 162 186 8.928565e-05 -1.440887e-05 163 186 -9.968672e-05 1.608739e-05 164 186 0.0001114272 -1.798207e-05 165 186 -0.0001247774 2.013652e-05 166 186 0.000140076 -2.26054e-05 167 186 -0.0001577525 2.545802e-05 168 186 0.0001783582 -2.878335e-05 169 186 -0.0002026106 3.26972e-05 170 186 0.0002314578 -3.735254e-05 171 186 -0.0002661734 4.295492e-05 172 186 0.0003085011 -4.978574e-05 173 186 -0.0003608797 5.823857e-05 174 186 0.0004268045 -6.887749e-05 175 186 -0.0005114288 8.253411e-05 176 186 0.0006226054 -0.0001004757 177 186 -0.0007727812 0.000124711 178 186 0.0009826448 -0.0001585787 179 186 -0.001288661 0.0002079635 180 186 0.001760065 -0.0002840383 181 186 -0.002541777 0.0004101906 182 186 0.003980742 -0.0006424099 183 186 -0.007089509 0.001144101 184 186 0.01597157 -0.002577484 185 186 -0.06393453 0.01031772 186 186 -0.2915059 -0.007729427 187 186 -0.06393453 0.01031772 188 186 0.01597157 -0.002577484 189 186 -0.007089509 0.001144101 190 186 0.003980742 -0.0006424099 191 186 -0.002541777 0.0004101906 192 186 0.001760065 -0.0002840383 193 186 -0.001288661 0.0002079635 194 186 0.0009826448 -0.0001585787 195 186 -0.0007727812 0.000124711 196 186 0.0006226054 -0.0001004757 197 186 -0.0005114288 8.253411e-05 198 186 0.0004268045 -6.887749e-05 199 186 -0.0003608797 5.823857e-05 200 186 0.0003085011 -4.978574e-05 201 186 -0.0002661734 4.295492e-05 202 186 0.0002314578 -3.735254e-05 203 186 -0.0002026106 3.26972e-05 204 186 0.0001783582 -2.878335e-05 205 186 -0.0001577525 2.545802e-05 206 186 0.000140076 -2.26054e-05 207 186 -0.0001247774 2.013652e-05 208 186 0.0001114272 -1.798207e-05 209 186 -9.968672e-05 1.608739e-05 210 186 8.928565e-05 -1.440887e-05 211 186 -8.000611e-05 1.291134e-05 212 186 7.167061e-05 -1.156616e-05 213 186 -6.413319e-05 1.034978e-05 214 186 5.727273e-05 -9.242642e-06 215 186 -5.098776e-05 8.228377e-06 216 186 4.519256e-05 -7.293151e-06 217 186 -3.981401e-05 6.425164e-06 218 186 3.478917e-05 -5.614257e-06 219 186 -3.00633e-05 4.851599e-06 220 186 2.558831e-05 -4.129428e-06 221 186 -2.132146e-05 3.440846e-06 222 186 1.722429e-05 -2.779647e-06 223 186 -1.326172e-05 2.14017e-06 224 186 9.401297e-06 -1.517176e-06 225 186 -5.612495e-06 9.057414e-07 226 186 1.866144e-06 -3.011573e-07 227 186 1.866144e-06 -3.011573e-07 228 186 -5.612495e-06 9.057414e-07 229 186 9.401297e-06 -1.517176e-06 230 186 -1.326172e-05 2.14017e-06 231 186 1.722429e-05 -2.779647e-06 232 186 -2.132146e-05 3.440846e-06 233 186 2.558831e-05 -4.129428e-06 234 186 -3.00633e-05 4.851599e-06 235 186 3.478917e-05 -5.614257e-06 236 186 -3.981401e-05 6.425164e-06 237 186 4.519256e-05 -7.293151e-06 238 186 -5.098776e-05 8.228377e-06 239 186 5.727273e-05 -9.242642e-06 240 186 -6.413319e-05 1.034978e-05 241 186 7.167061e-05 -1.156616e-05 242 186 -8.000611e-05 1.291134e-05 267 186 0.0004601072 3.250725e-05 106 187 0.0004746856 3.384687e-05 162 187 -8.000611e-05 1.291134e-05 163 187 8.928565e-05 -1.440887e-05 164 187 -9.968672e-05 1.608739e-05 165 187 0.0001114272 -1.798207e-05 166 187 -0.0001247774 2.013652e-05 167 187 0.000140076 -2.26054e-05 168 187 -0.0001577525 2.545802e-05 169 187 0.0001783582 -2.878335e-05 170 187 -0.0002026106 3.26972e-05 171 187 0.0002314578 -3.735254e-05 172 187 -0.0002661734 4.295492e-05 173 187 0.0003085011 -4.978574e-05 174 187 -0.0003608797 5.823857e-05 175 187 0.0004268045 -6.887749e-05 176 187 -0.0005114288 8.253411e-05 177 187 0.0006226054 -0.0001004757 178 187 -0.0007727812 0.000124711 179 187 0.0009826448 -0.0001585787 180 187 -0.001288661 0.0002079635 181 187 0.001760065 -0.0002840383 182 187 -0.002541777 0.0004101906 183 187 0.003980742 -0.0006424099 184 187 -0.007089509 0.001144101 185 187 0.01597157 -0.002577484 186 187 -0.06393453 0.01031772 187 187 -0.2874185 -0.007900271 188 187 -0.06393453 0.01031772 189 187 0.01597157 -0.002577484 190 187 -0.007089509 0.001144101 191 187 0.003980742 -0.0006424099 192 187 -0.002541777 0.0004101906 193 187 0.001760065 -0.0002840383 194 187 -0.001288661 0.0002079635 195 187 0.0009826448 -0.0001585787 196 187 -0.0007727812 0.000124711 197 187 0.0006226054 -0.0001004757 198 187 -0.0005114288 8.253411e-05 199 187 0.0004268045 -6.887749e-05 200 187 -0.0003608797 5.823857e-05 201 187 0.0003085011 -4.978574e-05 202 187 -0.0002661734 4.295492e-05 203 187 0.0002314578 -3.735254e-05 204 187 -0.0002026106 3.26972e-05 205 187 0.0001783582 -2.878335e-05 206 187 -0.0001577525 2.545802e-05 207 187 0.000140076 -2.26054e-05 208 187 -0.0001247774 2.013652e-05 209 187 0.0001114272 -1.798207e-05 210 187 -9.968672e-05 1.608739e-05 211 187 8.928565e-05 -1.440887e-05 212 187 -8.000611e-05 1.291134e-05 213 187 7.167061e-05 -1.156616e-05 214 187 -6.413319e-05 1.034978e-05 215 187 5.727273e-05 -9.242642e-06 216 187 -5.098776e-05 8.228377e-06 217 187 4.519256e-05 -7.293151e-06 218 187 -3.981401e-05 6.425164e-06 219 187 3.478917e-05 -5.614257e-06 220 187 -3.00633e-05 4.851599e-06 221 187 2.558831e-05 -4.129428e-06 222 187 -2.132146e-05 3.440846e-06 223 187 1.722429e-05 -2.779647e-06 224 187 -1.326172e-05 2.14017e-06 225 187 9.401297e-06 -1.517176e-06 226 187 -5.612495e-06 9.057414e-07 227 187 1.866144e-06 -3.011573e-07 228 187 1.866144e-06 -3.011573e-07 229 187 -5.612495e-06 9.057414e-07 230 187 9.401297e-06 -1.517176e-06 231 187 -1.326172e-05 2.14017e-06 232 187 1.722429e-05 -2.779647e-06 233 187 -2.132146e-05 3.440846e-06 234 187 2.558831e-05 -4.129428e-06 235 187 -3.00633e-05 4.851599e-06 236 187 3.478917e-05 -5.614257e-06 237 187 -3.981401e-05 6.425164e-06 238 187 4.519256e-05 -7.293151e-06 239 187 -5.098776e-05 8.228377e-06 240 187 5.727273e-05 -9.242642e-06 241 187 -6.413319e-05 1.034978e-05 242 187 7.167061e-05 -1.156616e-05 268 187 0.0004746856 3.384687e-05 107 188 0.0004893383 3.519938e-05 162 188 7.167061e-05 -1.156616e-05 163 188 -8.000611e-05 1.291134e-05 164 188 8.928565e-05 -1.440887e-05 165 188 -9.968672e-05 1.608739e-05 166 188 0.0001114272 -1.798207e-05 167 188 -0.0001247774 2.013652e-05 168 188 0.000140076 -2.26054e-05 169 188 -0.0001577525 2.545802e-05 170 188 0.0001783582 -2.878335e-05 171 188 -0.0002026106 3.26972e-05 172 188 0.0002314578 -3.735254e-05 173 188 -0.0002661734 4.295492e-05 174 188 0.0003085011 -4.978574e-05 175 188 -0.0003608797 5.823857e-05 176 188 0.0004268045 -6.887749e-05 177 188 -0.0005114288 8.253411e-05 178 188 0.0006226054 -0.0001004757 179 188 -0.0007727812 0.000124711 180 188 0.0009826448 -0.0001585787 181 188 -0.001288661 0.0002079635 182 188 0.001760065 -0.0002840383 183 188 -0.002541777 0.0004101906 184 188 0.003980742 -0.0006424099 185 188 -0.007089509 0.001144101 186 188 0.01597157 -0.002577484 187 188 -0.06393453 0.01031772 188 188 -0.2835588 -0.008122077 189 188 -0.06393453 0.01031772 190 188 0.01597157 -0.002577484 191 188 -0.007089509 0.001144101 192 188 0.003980742 -0.0006424099 193 188 -0.002541777 0.0004101906 194 188 0.001760065 -0.0002840383 195 188 -0.001288661 0.0002079635 196 188 0.0009826448 -0.0001585787 197 188 -0.0007727812 0.000124711 198 188 0.0006226054 -0.0001004757 199 188 -0.0005114288 8.253411e-05 200 188 0.0004268045 -6.887749e-05 201 188 -0.0003608797 5.823857e-05 202 188 0.0003085011 -4.978574e-05 203 188 -0.0002661734 4.295492e-05 204 188 0.0002314578 -3.735254e-05 205 188 -0.0002026106 3.26972e-05 206 188 0.0001783582 -2.878335e-05 207 188 -0.0001577525 2.545802e-05 208 188 0.000140076 -2.26054e-05 209 188 -0.0001247774 2.013652e-05 210 188 0.0001114272 -1.798207e-05 211 188 -9.968672e-05 1.608739e-05 212 188 8.928565e-05 -1.440887e-05 213 188 -8.000611e-05 1.291134e-05 214 188 7.167061e-05 -1.156616e-05 215 188 -6.413319e-05 1.034978e-05 216 188 5.727273e-05 -9.242642e-06 217 188 -5.098776e-05 8.228377e-06 218 188 4.519256e-05 -7.293151e-06 219 188 -3.981401e-05 6.425164e-06 220 188 3.478917e-05 -5.614257e-06 221 188 -3.00633e-05 4.851599e-06 222 188 2.558831e-05 -4.129428e-06 223 188 -2.132146e-05 3.440846e-06 224 188 1.722429e-05 -2.779647e-06 225 188 -1.326172e-05 2.14017e-06 226 188 9.401297e-06 -1.517176e-06 227 188 -5.612495e-06 9.057414e-07 228 188 1.866144e-06 -3.011573e-07 229 188 1.866144e-06 -3.011573e-07 230 188 -5.612495e-06 9.057414e-07 231 188 9.401297e-06 -1.517176e-06 232 188 -1.326172e-05 2.14017e-06 233 188 1.722429e-05 -2.779647e-06 234 188 -2.132146e-05 3.440846e-06 235 188 2.558831e-05 -4.129428e-06 236 188 -3.00633e-05 4.851599e-06 237 188 3.478917e-05 -5.614257e-06 238 188 -3.981401e-05 6.425164e-06 239 188 4.519256e-05 -7.293151e-06 240 188 -5.098776e-05 8.228377e-06 241 188 5.727273e-05 -9.242642e-06 242 188 -6.413319e-05 1.034978e-05 269 188 0.0004893383 3.519938e-05 108 189 0.0005040657 3.656486e-05 162 189 -6.413319e-05 1.034978e-05 163 189 7.167061e-05 -1.156616e-05 164 189 -8.000611e-05 1.291134e-05 165 189 8.928565e-05 -1.440887e-05 166 189 -9.968672e-05 1.608739e-05 167 189 0.0001114272 -1.798207e-05 168 189 -0.0001247774 2.013652e-05 169 189 0.000140076 -2.26054e-05 170 189 -0.0001577525 2.545802e-05 171 189 0.0001783582 -2.878335e-05 172 189 -0.0002026106 3.26972e-05 173 189 0.0002314578 -3.735254e-05 174 189 -0.0002661734 4.295492e-05 175 189 0.0003085011 -4.978574e-05 176 189 -0.0003608797 5.823857e-05 177 189 0.0004268045 -6.887749e-05 178 189 -0.0005114288 8.253411e-05 179 189 0.0006226054 -0.0001004757 180 189 -0.0007727812 0.000124711 181 189 0.0009826448 -0.0001585787 182 189 -0.001288661 0.0002079635 183 189 0.001760065 -0.0002840383 184 189 -0.002541777 0.0004101906 185 189 0.003980742 -0.0006424099 186 189 -0.007089509 0.001144101 187 189 0.01597157 -0.002577484 188 189 -0.06393453 0.01031772 189 189 -0.2799308 -0.008383944 190 189 -0.06393453 0.01031772 191 189 0.01597157 -0.002577484 192 189 -0.007089509 0.001144101 193 189 0.003980742 -0.0006424099 194 189 -0.002541777 0.0004101906 195 189 0.001760065 -0.0002840383 196 189 -0.001288661 0.0002079635 197 189 0.0009826448 -0.0001585787 198 189 -0.0007727812 0.000124711 199 189 0.0006226054 -0.0001004757 200 189 -0.0005114288 8.253411e-05 201 189 0.0004268045 -6.887749e-05 202 189 -0.0003608797 5.823857e-05 203 189 0.0003085011 -4.978574e-05 204 189 -0.0002661734 4.295492e-05 205 189 0.0002314578 -3.735254e-05 206 189 -0.0002026106 3.26972e-05 207 189 0.0001783582 -2.878335e-05 208 189 -0.0001577525 2.545802e-05 209 189 0.000140076 -2.26054e-05 210 189 -0.0001247774 2.013652e-05 211 189 0.0001114272 -1.798207e-05 212 189 -9.968672e-05 1.608739e-05 213 189 8.928565e-05 -1.440887e-05 214 189 -8.000611e-05 1.291134e-05 215 189 7.167061e-05 -1.156616e-05 216 189 -6.413319e-05 1.034978e-05 217 189 5.727273e-05 -9.242642e-06 218 189 -5.098776e-05 8.228377e-06 219 189 4.519256e-05 -7.293151e-06 220 189 -3.981401e-05 6.425164e-06 221 189 3.478917e-05 -5.614257e-06 222 189 -3.00633e-05 4.851599e-06 223 189 2.558831e-05 -4.129428e-06 224 189 -2.132146e-05 3.440846e-06 225 189 1.722429e-05 -2.779647e-06 226 189 -1.326172e-05 2.14017e-06 227 189 9.401297e-06 -1.517176e-06 228 189 -5.612495e-06 9.057414e-07 229 189 1.866144e-06 -3.011573e-07 230 189 1.866144e-06 -3.011573e-07 231 189 -5.612495e-06 9.057414e-07 232 189 9.401297e-06 -1.517176e-06 233 189 -1.326172e-05 2.14017e-06 234 189 1.722429e-05 -2.779647e-06 235 189 -2.132146e-05 3.440846e-06 236 189 2.558831e-05 -4.129428e-06 237 189 -3.00633e-05 4.851599e-06 238 189 3.478917e-05 -5.614257e-06 239 189 -3.981401e-05 6.425164e-06 240 189 4.519256e-05 -7.293151e-06 241 189 -5.098776e-05 8.228377e-06 242 189 5.727273e-05 -9.242642e-06 270 189 0.0005040657 3.656486e-05 109 190 0.000518868 3.794342e-05 162 190 5.727273e-05 -9.242642e-06 163 190 -6.413319e-05 1.034978e-05 164 190 7.167061e-05 -1.156616e-05 165 190 -8.000611e-05 1.291134e-05 166 190 8.928565e-05 -1.440887e-05 167 190 -9.968672e-05 1.608739e-05 168 190 0.0001114272 -1.798207e-05 169 190 -0.0001247774 2.013652e-05 170 190 0.000140076 -2.26054e-05 171 190 -0.0001577525 2.545802e-05 172 190 0.0001783582 -2.878335e-05 173 190 -0.0002026106 3.26972e-05 174 190 0.0002314578 -3.735254e-05 175 190 -0.0002661734 4.295492e-05 176 190 0.0003085011 -4.978574e-05 177 190 -0.0003608797 5.823857e-05 178 190 0.0004268045 -6.887749e-05 179 190 -0.0005114288 8.253411e-05 180 190 0.0006226054 -0.0001004757 181 190 -0.0007727812 0.000124711 182 190 0.0009826448 -0.0001585787 183 190 -0.001288661 0.0002079635 184 190 0.001760065 -0.0002840383 185 190 -0.002541777 0.0004101906 186 190 0.003980742 -0.0006424099 187 190 -0.007089509 0.001144101 188 190 0.01597157 -0.002577484 189 190 -0.06393453 0.01031772 190 190 -0.2765337 -0.008676436 191 190 -0.06393453 0.01031772 192 190 0.01597157 -0.002577484 193 190 -0.007089509 0.001144101 194 190 0.003980742 -0.0006424099 195 190 -0.002541777 0.0004101906 196 190 0.001760065 -0.0002840383 197 190 -0.001288661 0.0002079635 198 190 0.0009826448 -0.0001585787 199 190 -0.0007727812 0.000124711 200 190 0.0006226054 -0.0001004757 201 190 -0.0005114288 8.253411e-05 202 190 0.0004268045 -6.887749e-05 203 190 -0.0003608797 5.823857e-05 204 190 0.0003085011 -4.978574e-05 205 190 -0.0002661734 4.295492e-05 206 190 0.0002314578 -3.735254e-05 207 190 -0.0002026106 3.26972e-05 208 190 0.0001783582 -2.878335e-05 209 190 -0.0001577525 2.545802e-05 210 190 0.000140076 -2.26054e-05 211 190 -0.0001247774 2.013652e-05 212 190 0.0001114272 -1.798207e-05 213 190 -9.968672e-05 1.608739e-05 214 190 8.928565e-05 -1.440887e-05 215 190 -8.000611e-05 1.291134e-05 216 190 7.167061e-05 -1.156616e-05 217 190 -6.413319e-05 1.034978e-05 218 190 5.727273e-05 -9.242642e-06 219 190 -5.098776e-05 8.228377e-06 220 190 4.519256e-05 -7.293151e-06 221 190 -3.981401e-05 6.425164e-06 222 190 3.478917e-05 -5.614257e-06 223 190 -3.00633e-05 4.851599e-06 224 190 2.558831e-05 -4.129428e-06 225 190 -2.132146e-05 3.440846e-06 226 190 1.722429e-05 -2.779647e-06 227 190 -1.326172e-05 2.14017e-06 228 190 9.401297e-06 -1.517176e-06 229 190 -5.612495e-06 9.057414e-07 230 190 1.866144e-06 -3.011573e-07 231 190 1.866144e-06 -3.011573e-07 232 190 -5.612495e-06 9.057414e-07 233 190 9.401297e-06 -1.517176e-06 234 190 -1.326172e-05 2.14017e-06 235 190 1.722429e-05 -2.779647e-06 236 190 -2.132146e-05 3.440846e-06 237 190 2.558831e-05 -4.129428e-06 238 190 -3.00633e-05 4.851599e-06 239 190 3.478917e-05 -5.614257e-06 240 190 -3.981401e-05 6.425164e-06 241 190 4.519256e-05 -7.293151e-06 242 190 -5.098776e-05 8.228377e-06 271 190 0.000518868 3.794342e-05 110 191 0.0005337456 3.933516e-05 162 191 -5.098776e-05 8.228377e-06 163 191 5.727273e-05 -9.242642e-06 164 191 -6.413319e-05 1.034978e-05 165 191 7.167061e-05 -1.156616e-05 166 191 -8.000611e-05 1.291134e-05 167 191 8.928565e-05 -1.440887e-05 168 191 -9.968672e-05 1.608739e-05 169 191 0.0001114272 -1.798207e-05 170 191 -0.0001247774 2.013652e-05 171 191 0.000140076 -2.26054e-05 172 191 -0.0001577525 2.545802e-05 173 191 0.0001783582 -2.878335e-05 174 191 -0.0002026106 3.26972e-05 175 191 0.0002314578 -3.735254e-05 176 191 -0.0002661734 4.295492e-05 177 191 0.0003085011 -4.978574e-05 178 191 -0.0003608797 5.823857e-05 179 191 0.0004268045 -6.887749e-05 180 191 -0.0005114288 8.253411e-05 181 191 0.0006226054 -0.0001004757 182 191 -0.0007727812 0.000124711 183 191 0.0009826448 -0.0001585787 184 191 -0.001288661 0.0002079635 185 191 0.001760065 -0.0002840383 186 191 -0.002541777 0.0004101906 187 191 0.003980742 -0.0006424099 188 191 -0.007089509 0.001144101 189 191 0.01597157 -0.002577484 190 191 -0.06393453 0.01031772 191 191 -0.2733634 -0.008991451 192 191 -0.06393453 0.01031772 193 191 0.01597157 -0.002577484 194 191 -0.007089509 0.001144101 195 191 0.003980742 -0.0006424099 196 191 -0.002541777 0.0004101906 197 191 0.001760065 -0.0002840383 198 191 -0.001288661 0.0002079635 199 191 0.0009826448 -0.0001585787 200 191 -0.0007727812 0.000124711 201 191 0.0006226054 -0.0001004757 202 191 -0.0005114288 8.253411e-05 203 191 0.0004268045 -6.887749e-05 204 191 -0.0003608797 5.823857e-05 205 191 0.0003085011 -4.978574e-05 206 191 -0.0002661734 4.295492e-05 207 191 0.0002314578 -3.735254e-05 208 191 -0.0002026106 3.26972e-05 209 191 0.0001783582 -2.878335e-05 210 191 -0.0001577525 2.545802e-05 211 191 0.000140076 -2.26054e-05 212 191 -0.0001247774 2.013652e-05 213 191 0.0001114272 -1.798207e-05 214 191 -9.968672e-05 1.608739e-05 215 191 8.928565e-05 -1.440887e-05 216 191 -8.000611e-05 1.291134e-05 217 191 7.167061e-05 -1.156616e-05 218 191 -6.413319e-05 1.034978e-05 219 191 5.727273e-05 -9.242642e-06 220 191 -5.098776e-05 8.228377e-06 221 191 4.519256e-05 -7.293151e-06 222 191 -3.981401e-05 6.425164e-06 223 191 3.478917e-05 -5.614257e-06 224 191 -3.00633e-05 4.851599e-06 225 191 2.558831e-05 -4.129428e-06 226 191 -2.132146e-05 3.440846e-06 227 191 1.722429e-05 -2.779647e-06 228 191 -1.326172e-05 2.14017e-06 229 191 9.401297e-06 -1.517176e-06 230 191 -5.612495e-06 9.057414e-07 231 191 1.866144e-06 -3.011573e-07 232 191 1.866144e-06 -3.011573e-07 233 191 -5.612495e-06 9.057414e-07 234 191 9.401297e-06 -1.517176e-06 235 191 -1.326172e-05 2.14017e-06 236 191 1.722429e-05 -2.779647e-06 237 191 -2.132146e-05 3.440846e-06 238 191 2.558831e-05 -4.129428e-06 239 191 -3.00633e-05 4.851599e-06 240 191 3.478917e-05 -5.614257e-06 241 191 -3.981401e-05 6.425164e-06 242 191 4.519256e-05 -7.293151e-06 272 191 0.0005337456 3.933516e-05 111 192 0.0005486991 4.074018e-05 162 192 4.519256e-05 -7.293151e-06 163 192 -5.098776e-05 8.228377e-06 164 192 5.727273e-05 -9.242642e-06 165 192 -6.413319e-05 1.034978e-05 166 192 7.167061e-05 -1.156616e-05 167 192 -8.000611e-05 1.291134e-05 168 192 8.928565e-05 -1.440887e-05 169 192 -9.968672e-05 1.608739e-05 170 192 0.0001114272 -1.798207e-05 171 192 -0.0001247774 2.013652e-05 172 192 0.000140076 -2.26054e-05 173 192 -0.0001577525 2.545802e-05 174 192 0.0001783582 -2.878335e-05 175 192 -0.0002026106 3.26972e-05 176 192 0.0002314578 -3.735254e-05 177 192 -0.0002661734 4.295492e-05 178 192 0.0003085011 -4.978574e-05 179 192 -0.0003608797 5.823857e-05 180 192 0.0004268045 -6.887749e-05 181 192 -0.0005114288 8.253411e-05 182 192 0.0006226054 -0.0001004757 183 192 -0.0007727812 0.000124711 184 192 0.0009826448 -0.0001585787 185 192 -0.001288661 0.0002079635 186 192 0.001760065 -0.0002840383 187 192 -0.002541777 0.0004101906 188 192 0.003980742 -0.0006424099 189 192 -0.007089509 0.001144101 190 192 0.01597157 -0.002577484 191 192 -0.06393453 0.01031772 192 192 -0.2704133 -0.009322081 193 192 -0.06393453 0.01031772 194 192 0.01597157 -0.002577484 195 192 -0.007089509 0.001144101 196 192 0.003980742 -0.0006424099 197 192 -0.002541777 0.0004101906 198 192 0.001760065 -0.0002840383 199 192 -0.001288661 0.0002079635 200 192 0.0009826448 -0.0001585787 201 192 -0.0007727812 0.000124711 202 192 0.0006226054 -0.0001004757 203 192 -0.0005114288 8.253411e-05 204 192 0.0004268045 -6.887749e-05 205 192 -0.0003608797 5.823857e-05 206 192 0.0003085011 -4.978574e-05 207 192 -0.0002661734 4.295492e-05 208 192 0.0002314578 -3.735254e-05 209 192 -0.0002026106 3.26972e-05 210 192 0.0001783582 -2.878335e-05 211 192 -0.0001577525 2.545802e-05 212 192 0.000140076 -2.26054e-05 213 192 -0.0001247774 2.013652e-05 214 192 0.0001114272 -1.798207e-05 215 192 -9.968672e-05 1.608739e-05 216 192 8.928565e-05 -1.440887e-05 217 192 -8.000611e-05 1.291134e-05 218 192 7.167061e-05 -1.156616e-05 219 192 -6.413319e-05 1.034978e-05 220 192 5.727273e-05 -9.242642e-06 221 192 -5.098776e-05 8.228377e-06 222 192 4.519256e-05 -7.293151e-06 223 192 -3.981401e-05 6.425164e-06 224 192 3.478917e-05 -5.614257e-06 225 192 -3.00633e-05 4.851599e-06 226 192 2.558831e-05 -4.129428e-06 227 192 -2.132146e-05 3.440846e-06 228 192 1.722429e-05 -2.779647e-06 229 192 -1.326172e-05 2.14017e-06 230 192 9.401297e-06 -1.517176e-06 231 192 -5.612495e-06 9.057414e-07 232 192 1.866144e-06 -3.011573e-07 233 192 1.866144e-06 -3.011573e-07 234 192 -5.612495e-06 9.057414e-07 235 192 9.401297e-06 -1.517176e-06 236 192 -1.326172e-05 2.14017e-06 237 192 1.722429e-05 -2.779647e-06 238 192 -2.132146e-05 3.440846e-06 239 192 2.558831e-05 -4.129428e-06 240 192 -3.00633e-05 4.851599e-06 241 192 3.478917e-05 -5.614257e-06 242 192 -3.981401e-05 6.425164e-06 273 192 0.0005486991 4.074018e-05 112 193 0.0005637286 4.215856e-05 162 193 -3.981401e-05 6.425164e-06 163 193 4.519256e-05 -7.293151e-06 164 193 -5.098776e-05 8.228377e-06 165 193 5.727273e-05 -9.242642e-06 166 193 -6.413319e-05 1.034978e-05 167 193 7.167061e-05 -1.156616e-05 168 193 -8.000611e-05 1.291134e-05 169 193 8.928565e-05 -1.440887e-05 170 193 -9.968672e-05 1.608739e-05 171 193 0.0001114272 -1.798207e-05 172 193 -0.0001247774 2.013652e-05 173 193 0.000140076 -2.26054e-05 174 193 -0.0001577525 2.545802e-05 175 193 0.0001783582 -2.878335e-05 176 193 -0.0002026106 3.26972e-05 177 193 0.0002314578 -3.735254e-05 178 193 -0.0002661734 4.295492e-05 179 193 0.0003085011 -4.978574e-05 180 193 -0.0003608797 5.823857e-05 181 193 0.0004268045 -6.887749e-05 182 193 -0.0005114288 8.253411e-05 183 193 0.0006226054 -0.0001004757 184 193 -0.0007727812 0.000124711 185 193 0.0009826448 -0.0001585787 186 193 -0.001288661 0.0002079635 187 193 0.001760065 -0.0002840383 188 193 -0.002541777 0.0004101906 189 193 0.003980742 -0.0006424099 190 193 -0.007089509 0.001144101 191 193 0.01597157 -0.002577484 192 193 -0.06393453 0.01031772 193 193 -0.267675 -0.009662483 194 193 -0.06393453 0.01031772 195 193 0.01597157 -0.002577484 196 193 -0.007089509 0.001144101 197 193 0.003980742 -0.0006424099 198 193 -0.002541777 0.0004101906 199 193 0.001760065 -0.0002840383 200 193 -0.001288661 0.0002079635 201 193 0.0009826448 -0.0001585787 202 193 -0.0007727812 0.000124711 203 193 0.0006226054 -0.0001004757 204 193 -0.0005114288 8.253411e-05 205 193 0.0004268045 -6.887749e-05 206 193 -0.0003608797 5.823857e-05 207 193 0.0003085011 -4.978574e-05 208 193 -0.0002661734 4.295492e-05 209 193 0.0002314578 -3.735254e-05 210 193 -0.0002026106 3.26972e-05 211 193 0.0001783582 -2.878335e-05 212 193 -0.0001577525 2.545802e-05 213 193 0.000140076 -2.26054e-05 214 193 -0.0001247774 2.013652e-05 215 193 0.0001114272 -1.798207e-05 216 193 -9.968672e-05 1.608739e-05 217 193 8.928565e-05 -1.440887e-05 218 193 -8.000611e-05 1.291134e-05 219 193 7.167061e-05 -1.156616e-05 220 193 -6.413319e-05 1.034978e-05 221 193 5.727273e-05 -9.242642e-06 222 193 -5.098776e-05 8.228377e-06 223 193 4.519256e-05 -7.293151e-06 224 193 -3.981401e-05 6.425164e-06 225 193 3.478917e-05 -5.614257e-06 226 193 -3.00633e-05 4.851599e-06 227 193 2.558831e-05 -4.129428e-06 228 193 -2.132146e-05 3.440846e-06 229 193 1.722429e-05 -2.779647e-06 230 193 -1.326172e-05 2.14017e-06 231 193 9.401297e-06 -1.517176e-06 232 193 -5.612495e-06 9.057414e-07 233 193 1.866144e-06 -3.011573e-07 234 193 1.866144e-06 -3.011573e-07 235 193 -5.612495e-06 9.057414e-07 236 193 9.401297e-06 -1.517176e-06 237 193 -1.326172e-05 2.14017e-06 238 193 1.722429e-05 -2.779647e-06 239 193 -2.132146e-05 3.440846e-06 240 193 2.558831e-05 -4.129428e-06 241 193 -3.00633e-05 4.851599e-06 242 193 3.478917e-05 -5.614257e-06 274 193 0.0005637286 4.215856e-05 113 194 0.0005788347 4.359042e-05 162 194 3.478917e-05 -5.614257e-06 163 194 -3.981401e-05 6.425164e-06 164 194 4.519256e-05 -7.293151e-06 165 194 -5.098776e-05 8.228377e-06 166 194 5.727273e-05 -9.242642e-06 167 194 -6.413319e-05 1.034978e-05 168 194 7.167061e-05 -1.156616e-05 169 194 -8.000611e-05 1.291134e-05 170 194 8.928565e-05 -1.440887e-05 171 194 -9.968672e-05 1.608739e-05 172 194 0.0001114272 -1.798207e-05 173 194 -0.0001247774 2.013652e-05 174 194 0.000140076 -2.26054e-05 175 194 -0.0001577525 2.545802e-05 176 194 0.0001783582 -2.878335e-05 177 194 -0.0002026106 3.26972e-05 178 194 0.0002314578 -3.735254e-05 179 194 -0.0002661734 4.295492e-05 180 194 0.0003085011 -4.978574e-05 181 194 -0.0003608797 5.823857e-05 182 194 0.0004268045 -6.887749e-05 183 194 -0.0005114288 8.253411e-05 184 194 0.0006226054 -0.0001004757 185 194 -0.0007727812 0.000124711 186 194 0.0009826448 -0.0001585787 187 194 -0.001288661 0.0002079635 188 194 0.001760065 -0.0002840383 189 194 -0.002541777 0.0004101906 190 194 0.003980742 -0.0006424099 191 194 -0.007089509 0.001144101 192 194 0.01597157 -0.002577484 193 194 -0.06393453 0.01031772 194 194 -0.265139 -0.01000776 195 194 -0.06393453 0.01031772 196 194 0.01597157 -0.002577484 197 194 -0.007089509 0.001144101 198 194 0.003980742 -0.0006424099 199 194 -0.002541777 0.0004101906 200 194 0.001760065 -0.0002840383 201 194 -0.001288661 0.0002079635 202 194 0.0009826448 -0.0001585787 203 194 -0.0007727812 0.000124711 204 194 0.0006226054 -0.0001004757 205 194 -0.0005114288 8.253411e-05 206 194 0.0004268045 -6.887749e-05 207 194 -0.0003608797 5.823857e-05 208 194 0.0003085011 -4.978574e-05 209 194 -0.0002661734 4.295492e-05 210 194 0.0002314578 -3.735254e-05 211 194 -0.0002026106 3.26972e-05 212 194 0.0001783582 -2.878335e-05 213 194 -0.0001577525 2.545802e-05 214 194 0.000140076 -2.26054e-05 215 194 -0.0001247774 2.013652e-05 216 194 0.0001114272 -1.798207e-05 217 194 -9.968672e-05 1.608739e-05 218 194 8.928565e-05 -1.440887e-05 219 194 -8.000611e-05 1.291134e-05 220 194 7.167061e-05 -1.156616e-05 221 194 -6.413319e-05 1.034978e-05 222 194 5.727273e-05 -9.242642e-06 223 194 -5.098776e-05 8.228377e-06 224 194 4.519256e-05 -7.293151e-06 225 194 -3.981401e-05 6.425164e-06 226 194 3.478917e-05 -5.614257e-06 227 194 -3.00633e-05 4.851599e-06 228 194 2.558831e-05 -4.129428e-06 229 194 -2.132146e-05 3.440846e-06 230 194 1.722429e-05 -2.779647e-06 231 194 -1.326172e-05 2.14017e-06 232 194 9.401297e-06 -1.517176e-06 233 194 -5.612495e-06 9.057414e-07 234 194 1.866144e-06 -3.011573e-07 235 194 1.866144e-06 -3.011573e-07 236 194 -5.612495e-06 9.057414e-07 237 194 9.401297e-06 -1.517176e-06 238 194 -1.326172e-05 2.14017e-06 239 194 1.722429e-05 -2.779647e-06 240 194 -2.132146e-05 3.440846e-06 241 194 2.558831e-05 -4.129428e-06 242 194 -3.00633e-05 4.851599e-06 275 194 0.0005788347 4.359042e-05 114 195 0.0005940177 4.503586e-05 162 195 -3.00633e-05 4.851599e-06 163 195 3.478917e-05 -5.614257e-06 164 195 -3.981401e-05 6.425164e-06 165 195 4.519256e-05 -7.293151e-06 166 195 -5.098776e-05 8.228377e-06 167 195 5.727273e-05 -9.242642e-06 168 195 -6.413319e-05 1.034978e-05 169 195 7.167061e-05 -1.156616e-05 170 195 -8.000611e-05 1.291134e-05 171 195 8.928565e-05 -1.440887e-05 172 195 -9.968672e-05 1.608739e-05 173 195 0.0001114272 -1.798207e-05 174 195 -0.0001247774 2.013652e-05 175 195 0.000140076 -2.26054e-05 176 195 -0.0001577525 2.545802e-05 177 195 0.0001783582 -2.878335e-05 178 195 -0.0002026106 3.26972e-05 179 195 0.0002314578 -3.735254e-05 180 195 -0.0002661734 4.295492e-05 181 195 0.0003085011 -4.978574e-05 182 195 -0.0003608797 5.823857e-05 183 195 0.0004268045 -6.887749e-05 184 195 -0.0005114288 8.253411e-05 185 195 0.0006226054 -0.0001004757 186 195 -0.0007727812 0.000124711 187 195 0.0009826448 -0.0001585787 188 195 -0.001288661 0.0002079635 189 195 0.001760065 -0.0002840383 190 195 -0.002541777 0.0004101906 191 195 0.003980742 -0.0006424099 192 195 -0.007089509 0.001144101 193 195 0.01597157 -0.002577484 194 195 -0.06393453 0.01031772 195 195 -0.2627948 -0.01035382 196 195 -0.06393453 0.01031772 197 195 0.01597157 -0.002577484 198 195 -0.007089509 0.001144101 199 195 0.003980742 -0.0006424099 200 195 -0.002541777 0.0004101906 201 195 0.001760065 -0.0002840383 202 195 -0.001288661 0.0002079635 203 195 0.0009826448 -0.0001585787 204 195 -0.0007727812 0.000124711 205 195 0.0006226054 -0.0001004757 206 195 -0.0005114288 8.253411e-05 207 195 0.0004268045 -6.887749e-05 208 195 -0.0003608797 5.823857e-05 209 195 0.0003085011 -4.978574e-05 210 195 -0.0002661734 4.295492e-05 211 195 0.0002314578 -3.735254e-05 212 195 -0.0002026106 3.26972e-05 213 195 0.0001783582 -2.878335e-05 214 195 -0.0001577525 2.545802e-05 215 195 0.000140076 -2.26054e-05 216 195 -0.0001247774 2.013652e-05 217 195 0.0001114272 -1.798207e-05 218 195 -9.968672e-05 1.608739e-05 219 195 8.928565e-05 -1.440887e-05 220 195 -8.000611e-05 1.291134e-05 221 195 7.167061e-05 -1.156616e-05 222 195 -6.413319e-05 1.034978e-05 223 195 5.727273e-05 -9.242642e-06 224 195 -5.098776e-05 8.228377e-06 225 195 4.519256e-05 -7.293151e-06 226 195 -3.981401e-05 6.425164e-06 227 195 3.478917e-05 -5.614257e-06 228 195 -3.00633e-05 4.851599e-06 229 195 2.558831e-05 -4.129428e-06 230 195 -2.132146e-05 3.440846e-06 231 195 1.722429e-05 -2.779647e-06 232 195 -1.326172e-05 2.14017e-06 233 195 9.401297e-06 -1.517176e-06 234 195 -5.612495e-06 9.057414e-07 235 195 1.866144e-06 -3.011573e-07 236 195 1.866144e-06 -3.011573e-07 237 195 -5.612495e-06 9.057414e-07 238 195 9.401297e-06 -1.517176e-06 239 195 -1.326172e-05 2.14017e-06 240 195 1.722429e-05 -2.779647e-06 241 195 -2.132146e-05 3.440846e-06 242 195 2.558831e-05 -4.129428e-06 276 195 0.0005940177 4.503586e-05 115 196 0.0006092779 4.649497e-05 162 196 2.558831e-05 -4.129428e-06 163 196 -3.00633e-05 4.851599e-06 164 196 3.478917e-05 -5.614257e-06 165 196 -3.981401e-05 6.425164e-06 166 196 4.519256e-05 -7.293151e-06 167 196 -5.098776e-05 8.228377e-06 168 196 5.727273e-05 -9.242642e-06 169 196 -6.413319e-05 1.034978e-05 170 196 7.167061e-05 -1.156616e-05 171 196 -8.000611e-05 1.291134e-05 172 196 8.928565e-05 -1.440887e-05 173 196 -9.968672e-05 1.608739e-05 174 196 0.0001114272 -1.798207e-05 175 196 -0.0001247774 2.013652e-05 176 196 0.000140076 -2.26054e-05 177 196 -0.0001577525 2.545802e-05 178 196 0.0001783582 -2.878335e-05 179 196 -0.0002026106 3.26972e-05 180 196 0.0002314578 -3.735254e-05 181 196 -0.0002661734 4.295492e-05 182 196 0.0003085011 -4.978574e-05 183 196 -0.0003608797 5.823857e-05 184 196 0.0004268045 -6.887749e-05 185 196 -0.0005114288 8.253411e-05 186 196 0.0006226054 -0.0001004757 187 196 -0.0007727812 0.000124711 188 196 0.0009826448 -0.0001585787 189 196 -0.001288661 0.0002079635 190 196 0.001760065 -0.0002840383 191 196 -0.002541777 0.0004101906 192 196 0.003980742 -0.0006424099 193 196 -0.007089509 0.001144101 194 196 0.01597157 -0.002577484 195 196 -0.06393453 0.01031772 196 196 -0.2606317 -0.01069733 197 196 -0.06393453 0.01031772 198 196 0.01597157 -0.002577484 199 196 -0.007089509 0.001144101 200 196 0.003980742 -0.0006424099 201 196 -0.002541777 0.0004101906 202 196 0.001760065 -0.0002840383 203 196 -0.001288661 0.0002079635 204 196 0.0009826448 -0.0001585787 205 196 -0.0007727812 0.000124711 206 196 0.0006226054 -0.0001004757 207 196 -0.0005114288 8.253411e-05 208 196 0.0004268045 -6.887749e-05 209 196 -0.0003608797 5.823857e-05 210 196 0.0003085011 -4.978574e-05 211 196 -0.0002661734 4.295492e-05 212 196 0.0002314578 -3.735254e-05 213 196 -0.0002026106 3.26972e-05 214 196 0.0001783582 -2.878335e-05 215 196 -0.0001577525 2.545802e-05 216 196 0.000140076 -2.26054e-05 217 196 -0.0001247774 2.013652e-05 218 196 0.0001114272 -1.798207e-05 219 196 -9.968672e-05 1.608739e-05 220 196 8.928565e-05 -1.440887e-05 221 196 -8.000611e-05 1.291134e-05 222 196 7.167061e-05 -1.156616e-05 223 196 -6.413319e-05 1.034978e-05 224 196 5.727273e-05 -9.242642e-06 225 196 -5.098776e-05 8.228377e-06 226 196 4.519256e-05 -7.293151e-06 227 196 -3.981401e-05 6.425164e-06 228 196 3.478917e-05 -5.614257e-06 229 196 -3.00633e-05 4.851599e-06 230 196 2.558831e-05 -4.129428e-06 231 196 -2.132146e-05 3.440846e-06 232 196 1.722429e-05 -2.779647e-06 233 196 -1.326172e-05 2.14017e-06 234 196 9.401297e-06 -1.517176e-06 235 196 -5.612495e-06 9.057414e-07 236 196 1.866144e-06 -3.011573e-07 237 196 1.866144e-06 -3.011573e-07 238 196 -5.612495e-06 9.057414e-07 239 196 9.401297e-06 -1.517176e-06 240 196 -1.326172e-05 2.14017e-06 241 196 1.722429e-05 -2.779647e-06 242 196 -2.132146e-05 3.440846e-06 277 196 0.0006092779 4.649497e-05 116 197 0.0006246159 4.796785e-05 162 197 -2.132146e-05 3.440846e-06 163 197 2.558831e-05 -4.129428e-06 164 197 -3.00633e-05 4.851599e-06 165 197 3.478917e-05 -5.614257e-06 166 197 -3.981401e-05 6.425164e-06 167 197 4.519256e-05 -7.293151e-06 168 197 -5.098776e-05 8.228377e-06 169 197 5.727273e-05 -9.242642e-06 170 197 -6.413319e-05 1.034978e-05 171 197 7.167061e-05 -1.156616e-05 172 197 -8.000611e-05 1.291134e-05 173 197 8.928565e-05 -1.440887e-05 174 197 -9.968672e-05 1.608739e-05 175 197 0.0001114272 -1.798207e-05 176 197 -0.0001247774 2.013652e-05 177 197 0.000140076 -2.26054e-05 178 197 -0.0001577525 2.545802e-05 179 197 0.0001783582 -2.878335e-05 180 197 -0.0002026106 3.26972e-05 181 197 0.0002314578 -3.735254e-05 182 197 -0.0002661734 4.295492e-05 183 197 0.0003085011 -4.978574e-05 184 197 -0.0003608797 5.823857e-05 185 197 0.0004268045 -6.887749e-05 186 197 -0.0005114288 8.253411e-05 187 197 0.0006226054 -0.0001004757 188 197 -0.0007727812 0.000124711 189 197 0.0009826448 -0.0001585787 190 197 -0.001288661 0.0002079635 191 197 0.001760065 -0.0002840383 192 197 -0.002541777 0.0004101906 193 197 0.003980742 -0.0006424099 194 197 -0.007089509 0.001144101 195 197 0.01597157 -0.002577484 196 197 -0.06393453 0.01031772 197 197 -0.2586388 -0.01103557 198 197 -0.06393453 0.01031772 199 197 0.01597157 -0.002577484 200 197 -0.007089509 0.001144101 201 197 0.003980742 -0.0006424099 202 197 -0.002541777 0.0004101906 203 197 0.001760065 -0.0002840383 204 197 -0.001288661 0.0002079635 205 197 0.0009826448 -0.0001585787 206 197 -0.0007727812 0.000124711 207 197 0.0006226054 -0.0001004757 208 197 -0.0005114288 8.253411e-05 209 197 0.0004268045 -6.887749e-05 210 197 -0.0003608797 5.823857e-05 211 197 0.0003085011 -4.978574e-05 212 197 -0.0002661734 4.295492e-05 213 197 0.0002314578 -3.735254e-05 214 197 -0.0002026106 3.26972e-05 215 197 0.0001783582 -2.878335e-05 216 197 -0.0001577525 2.545802e-05 217 197 0.000140076 -2.26054e-05 218 197 -0.0001247774 2.013652e-05 219 197 0.0001114272 -1.798207e-05 220 197 -9.968672e-05 1.608739e-05 221 197 8.928565e-05 -1.440887e-05 222 197 -8.000611e-05 1.291134e-05 223 197 7.167061e-05 -1.156616e-05 224 197 -6.413319e-05 1.034978e-05 225 197 5.727273e-05 -9.242642e-06 226 197 -5.098776e-05 8.228377e-06 227 197 4.519256e-05 -7.293151e-06 228 197 -3.981401e-05 6.425164e-06 229 197 3.478917e-05 -5.614257e-06 230 197 -3.00633e-05 4.851599e-06 231 197 2.558831e-05 -4.129428e-06 232 197 -2.132146e-05 3.440846e-06 233 197 1.722429e-05 -2.779647e-06 234 197 -1.326172e-05 2.14017e-06 235 197 9.401297e-06 -1.517176e-06 236 197 -5.612495e-06 9.057414e-07 237 197 1.866144e-06 -3.011573e-07 238 197 1.866144e-06 -3.011573e-07 239 197 -5.612495e-06 9.057414e-07 240 197 9.401297e-06 -1.517176e-06 241 197 -1.326172e-05 2.14017e-06 242 197 1.722429e-05 -2.779647e-06 278 197 0.0006246159 4.796785e-05 117 198 0.0006400319 4.945462e-05 162 198 1.722429e-05 -2.779647e-06 163 198 -2.132146e-05 3.440846e-06 164 198 2.558831e-05 -4.129428e-06 165 198 -3.00633e-05 4.851599e-06 166 198 3.478917e-05 -5.614257e-06 167 198 -3.981401e-05 6.425164e-06 168 198 4.519256e-05 -7.293151e-06 169 198 -5.098776e-05 8.228377e-06 170 198 5.727273e-05 -9.242642e-06 171 198 -6.413319e-05 1.034978e-05 172 198 7.167061e-05 -1.156616e-05 173 198 -8.000611e-05 1.291134e-05 174 198 8.928565e-05 -1.440887e-05 175 198 -9.968672e-05 1.608739e-05 176 198 0.0001114272 -1.798207e-05 177 198 -0.0001247774 2.013652e-05 178 198 0.000140076 -2.26054e-05 179 198 -0.0001577525 2.545802e-05 180 198 0.0001783582 -2.878335e-05 181 198 -0.0002026106 3.26972e-05 182 198 0.0002314578 -3.735254e-05 183 198 -0.0002661734 4.295492e-05 184 198 0.0003085011 -4.978574e-05 185 198 -0.0003608797 5.823857e-05 186 198 0.0004268045 -6.887749e-05 187 198 -0.0005114288 8.253411e-05 188 198 0.0006226054 -0.0001004757 189 198 -0.0007727812 0.000124711 190 198 0.0009826448 -0.0001585787 191 198 -0.001288661 0.0002079635 192 198 0.001760065 -0.0002840383 193 198 -0.002541777 0.0004101906 194 198 0.003980742 -0.0006424099 195 198 -0.007089509 0.001144101 196 198 0.01597157 -0.002577484 197 198 -0.06393453 0.01031772 198 198 -0.2568051 -0.01136635 199 198 -0.06393453 0.01031772 200 198 0.01597157 -0.002577484 201 198 -0.007089509 0.001144101 202 198 0.003980742 -0.0006424099 203 198 -0.002541777 0.0004101906 204 198 0.001760065 -0.0002840383 205 198 -0.001288661 0.0002079635 206 198 0.0009826448 -0.0001585787 207 198 -0.0007727812 0.000124711 208 198 0.0006226054 -0.0001004757 209 198 -0.0005114288 8.253411e-05 210 198 0.0004268045 -6.887749e-05 211 198 -0.0003608797 5.823857e-05 212 198 0.0003085011 -4.978574e-05 213 198 -0.0002661734 4.295492e-05 214 198 0.0002314578 -3.735254e-05 215 198 -0.0002026106 3.26972e-05 216 198 0.0001783582 -2.878335e-05 217 198 -0.0001577525 2.545802e-05 218 198 0.000140076 -2.26054e-05 219 198 -0.0001247774 2.013652e-05 220 198 0.0001114272 -1.798207e-05 221 198 -9.968672e-05 1.608739e-05 222 198 8.928565e-05 -1.440887e-05 223 198 -8.000611e-05 1.291134e-05 224 198 7.167061e-05 -1.156616e-05 225 198 -6.413319e-05 1.034978e-05 226 198 5.727273e-05 -9.242642e-06 227 198 -5.098776e-05 8.228377e-06 228 198 4.519256e-05 -7.293151e-06 229 198 -3.981401e-05 6.425164e-06 230 198 3.478917e-05 -5.614257e-06 231 198 -3.00633e-05 4.851599e-06 232 198 2.558831e-05 -4.129428e-06 233 198 -2.132146e-05 3.440846e-06 234 198 1.722429e-05 -2.779647e-06 235 198 -1.326172e-05 2.14017e-06 236 198 9.401297e-06 -1.517176e-06 237 198 -5.612495e-06 9.057414e-07 238 198 1.866144e-06 -3.011573e-07 239 198 1.866144e-06 -3.011573e-07 240 198 -5.612495e-06 9.057414e-07 241 198 9.401297e-06 -1.517176e-06 242 198 -1.326172e-05 2.14017e-06 279 198 0.0006400319 4.945462e-05 118 199 0.0006555264 5.095537e-05 162 199 -1.326172e-05 2.14017e-06 163 199 1.722429e-05 -2.779647e-06 164 199 -2.132146e-05 3.440846e-06 165 199 2.558831e-05 -4.129428e-06 166 199 -3.00633e-05 4.851599e-06 167 199 3.478917e-05 -5.614257e-06 168 199 -3.981401e-05 6.425164e-06 169 199 4.519256e-05 -7.293151e-06 170 199 -5.098776e-05 8.228377e-06 171 199 5.727273e-05 -9.242642e-06 172 199 -6.413319e-05 1.034978e-05 173 199 7.167061e-05 -1.156616e-05 174 199 -8.000611e-05 1.291134e-05 175 199 8.928565e-05 -1.440887e-05 176 199 -9.968672e-05 1.608739e-05 177 199 0.0001114272 -1.798207e-05 178 199 -0.0001247774 2.013652e-05 179 199 0.000140076 -2.26054e-05 180 199 -0.0001577525 2.545802e-05 181 199 0.0001783582 -2.878335e-05 182 199 -0.0002026106 3.26972e-05 183 199 0.0002314578 -3.735254e-05 184 199 -0.0002661734 4.295492e-05 185 199 0.0003085011 -4.978574e-05 186 199 -0.0003608797 5.823857e-05 187 199 0.0004268045 -6.887749e-05 188 199 -0.0005114288 8.253411e-05 189 199 0.0006226054 -0.0001004757 190 199 -0.0007727812 0.000124711 191 199 0.0009826448 -0.0001585787 192 199 -0.001288661 0.0002079635 193 199 0.001760065 -0.0002840383 194 199 -0.002541777 0.0004101906 195 199 0.003980742 -0.0006424099 196 199 -0.007089509 0.001144101 197 199 0.01597157 -0.002577484 198 199 -0.06393453 0.01031772 199 199 -0.2551201 -0.01168797 200 199 -0.06393453 0.01031772 201 199 0.01597157 -0.002577484 202 199 -0.007089509 0.001144101 203 199 0.003980742 -0.0006424099 204 199 -0.002541777 0.0004101906 205 199 0.001760065 -0.0002840383 206 199 -0.001288661 0.0002079635 207 199 0.0009826448 -0.0001585787 208 199 -0.0007727812 0.000124711 209 199 0.0006226054 -0.0001004757 210 199 -0.0005114288 8.253411e-05 211 199 0.0004268045 -6.887749e-05 212 199 -0.0003608797 5.823857e-05 213 199 0.0003085011 -4.978574e-05 214 199 -0.0002661734 4.295492e-05 215 199 0.0002314578 -3.735254e-05 216 199 -0.0002026106 3.26972e-05 217 199 0.0001783582 -2.878335e-05 218 199 -0.0001577525 2.545802e-05 219 199 0.000140076 -2.26054e-05 220 199 -0.0001247774 2.013652e-05 221 199 0.0001114272 -1.798207e-05 222 199 -9.968672e-05 1.608739e-05 223 199 8.928565e-05 -1.440887e-05 224 199 -8.000611e-05 1.291134e-05 225 199 7.167061e-05 -1.156616e-05 226 199 -6.413319e-05 1.034978e-05 227 199 5.727273e-05 -9.242642e-06 228 199 -5.098776e-05 8.228377e-06 229 199 4.519256e-05 -7.293151e-06 230 199 -3.981401e-05 6.425164e-06 231 199 3.478917e-05 -5.614257e-06 232 199 -3.00633e-05 4.851599e-06 233 199 2.558831e-05 -4.129428e-06 234 199 -2.132146e-05 3.440846e-06 235 199 1.722429e-05 -2.779647e-06 236 199 -1.326172e-05 2.14017e-06 237 199 9.401297e-06 -1.517176e-06 238 199 -5.612495e-06 9.057414e-07 239 199 1.866144e-06 -3.011573e-07 240 199 1.866144e-06 -3.011573e-07 241 199 -5.612495e-06 9.057414e-07 242 199 9.401297e-06 -1.517176e-06 280 199 0.0006555264 5.095537e-05 119 200 0.0006710998 5.247021e-05 162 200 9.401297e-06 -1.517176e-06 163 200 -1.326172e-05 2.14017e-06 164 200 1.722429e-05 -2.779647e-06 165 200 -2.132146e-05 3.440846e-06 166 200 2.558831e-05 -4.129428e-06 167 200 -3.00633e-05 4.851599e-06 168 200 3.478917e-05 -5.614257e-06 169 200 -3.981401e-05 6.425164e-06 170 200 4.519256e-05 -7.293151e-06 171 200 -5.098776e-05 8.228377e-06 172 200 5.727273e-05 -9.242642e-06 173 200 -6.413319e-05 1.034978e-05 174 200 7.167061e-05 -1.156616e-05 175 200 -8.000611e-05 1.291134e-05 176 200 8.928565e-05 -1.440887e-05 177 200 -9.968672e-05 1.608739e-05 178 200 0.0001114272 -1.798207e-05 179 200 -0.0001247774 2.013652e-05 180 200 0.000140076 -2.26054e-05 181 200 -0.0001577525 2.545802e-05 182 200 0.0001783582 -2.878335e-05 183 200 -0.0002026106 3.26972e-05 184 200 0.0002314578 -3.735254e-05 185 200 -0.0002661734 4.295492e-05 186 200 0.0003085011 -4.978574e-05 187 200 -0.0003608797 5.823857e-05 188 200 0.0004268045 -6.887749e-05 189 200 -0.0005114288 8.253411e-05 190 200 0.0006226054 -0.0001004757 191 200 -0.0007727812 0.000124711 192 200 0.0009826448 -0.0001585787 193 200 -0.001288661 0.0002079635 194 200 0.001760065 -0.0002840383 195 200 -0.002541777 0.0004101906 196 200 0.003980742 -0.0006424099 197 200 -0.007089509 0.001144101 198 200 0.01597157 -0.002577484 199 200 -0.06393453 0.01031772 200 200 -0.2535733 -0.01199912 201 200 -0.06393453 0.01031772 202 200 0.01597157 -0.002577484 203 200 -0.007089509 0.001144101 204 200 0.003980742 -0.0006424099 205 200 -0.002541777 0.0004101906 206 200 0.001760065 -0.0002840383 207 200 -0.001288661 0.0002079635 208 200 0.0009826448 -0.0001585787 209 200 -0.0007727812 0.000124711 210 200 0.0006226054 -0.0001004757 211 200 -0.0005114288 8.253411e-05 212 200 0.0004268045 -6.887749e-05 213 200 -0.0003608797 5.823857e-05 214 200 0.0003085011 -4.978574e-05 215 200 -0.0002661734 4.295492e-05 216 200 0.0002314578 -3.735254e-05 217 200 -0.0002026106 3.26972e-05 218 200 0.0001783582 -2.878335e-05 219 200 -0.0001577525 2.545802e-05 220 200 0.000140076 -2.26054e-05 221 200 -0.0001247774 2.013652e-05 222 200 0.0001114272 -1.798207e-05 223 200 -9.968672e-05 1.608739e-05 224 200 8.928565e-05 -1.440887e-05 225 200 -8.000611e-05 1.291134e-05 226 200 7.167061e-05 -1.156616e-05 227 200 -6.413319e-05 1.034978e-05 228 200 5.727273e-05 -9.242642e-06 229 200 -5.098776e-05 8.228377e-06 230 200 4.519256e-05 -7.293151e-06 231 200 -3.981401e-05 6.425164e-06 232 200 3.478917e-05 -5.614257e-06 233 200 -3.00633e-05 4.851599e-06 234 200 2.558831e-05 -4.129428e-06 235 200 -2.132146e-05 3.440846e-06 236 200 1.722429e-05 -2.779647e-06 237 200 -1.326172e-05 2.14017e-06 238 200 9.401297e-06 -1.517176e-06 239 200 -5.612495e-06 9.057414e-07 240 200 1.866144e-06 -3.011573e-07 241 200 1.866144e-06 -3.011573e-07 242 200 -5.612495e-06 9.057414e-07 281 200 0.0006710998 5.247021e-05 120 201 0.0006867524 5.399924e-05 162 201 -5.612495e-06 9.057414e-07 163 201 9.401297e-06 -1.517176e-06 164 201 -1.326172e-05 2.14017e-06 165 201 1.722429e-05 -2.779647e-06 166 201 -2.132146e-05 3.440846e-06 167 201 2.558831e-05 -4.129428e-06 168 201 -3.00633e-05 4.851599e-06 169 201 3.478917e-05 -5.614257e-06 170 201 -3.981401e-05 6.425164e-06 171 201 4.519256e-05 -7.293151e-06 172 201 -5.098776e-05 8.228377e-06 173 201 5.727273e-05 -9.242642e-06 174 201 -6.413319e-05 1.034978e-05 175 201 7.167061e-05 -1.156616e-05 176 201 -8.000611e-05 1.291134e-05 177 201 8.928565e-05 -1.440887e-05 178 201 -9.968672e-05 1.608739e-05 179 201 0.0001114272 -1.798207e-05 180 201 -0.0001247774 2.013652e-05 181 201 0.000140076 -2.26054e-05 182 201 -0.0001577525 2.545802e-05 183 201 0.0001783582 -2.878335e-05 184 201 -0.0002026106 3.26972e-05 185 201 0.0002314578 -3.735254e-05 186 201 -0.0002661734 4.295492e-05 187 201 0.0003085011 -4.978574e-05 188 201 -0.0003608797 5.823857e-05 189 201 0.0004268045 -6.887749e-05 190 201 -0.0005114288 8.253411e-05 191 201 0.0006226054 -0.0001004757 192 201 -0.0007727812 0.000124711 193 201 0.0009826448 -0.0001585787 194 201 -0.001288661 0.0002079635 195 201 0.001760065 -0.0002840383 196 201 -0.002541777 0.0004101906 197 201 0.003980742 -0.0006424099 198 201 -0.007089509 0.001144101 199 201 0.01597157 -0.002577484 200 201 -0.06393453 0.01031772 201 201 -0.2521548 -0.01229882 202 201 -0.06393453 0.01031772 203 201 0.01597157 -0.002577484 204 201 -0.007089509 0.001144101 205 201 0.003980742 -0.0006424099 206 201 -0.002541777 0.0004101906 207 201 0.001760065 -0.0002840383 208 201 -0.001288661 0.0002079635 209 201 0.0009826448 -0.0001585787 210 201 -0.0007727812 0.000124711 211 201 0.0006226054 -0.0001004757 212 201 -0.0005114288 8.253411e-05 213 201 0.0004268045 -6.887749e-05 214 201 -0.0003608797 5.823857e-05 215 201 0.0003085011 -4.978574e-05 216 201 -0.0002661734 4.295492e-05 217 201 0.0002314578 -3.735254e-05 218 201 -0.0002026106 3.26972e-05 219 201 0.0001783582 -2.878335e-05 220 201 -0.0001577525 2.545802e-05 221 201 0.000140076 -2.26054e-05 222 201 -0.0001247774 2.013652e-05 223 201 0.0001114272 -1.798207e-05 224 201 -9.968672e-05 1.608739e-05 225 201 8.928565e-05 -1.440887e-05 226 201 -8.000611e-05 1.291134e-05 227 201 7.167061e-05 -1.156616e-05 228 201 -6.413319e-05 1.034978e-05 229 201 5.727273e-05 -9.242642e-06 230 201 -5.098776e-05 8.228377e-06 231 201 4.519256e-05 -7.293151e-06 232 201 -3.981401e-05 6.425164e-06 233 201 3.478917e-05 -5.614257e-06 234 201 -3.00633e-05 4.851599e-06 235 201 2.558831e-05 -4.129428e-06 236 201 -2.132146e-05 3.440846e-06 237 201 1.722429e-05 -2.779647e-06 238 201 -1.326172e-05 2.14017e-06 239 201 9.401297e-06 -1.517176e-06 240 201 -5.612495e-06 9.057414e-07 241 201 1.866144e-06 -3.011573e-07 242 201 1.866144e-06 -3.011573e-07 282 201 0.0006867524 5.399924e-05 121 202 0.0007024847 5.554257e-05 162 202 1.866144e-06 -3.011573e-07 163 202 -5.612495e-06 9.057414e-07 164 202 9.401297e-06 -1.517176e-06 165 202 -1.326172e-05 2.14017e-06 166 202 1.722429e-05 -2.779647e-06 167 202 -2.132146e-05 3.440846e-06 168 202 2.558831e-05 -4.129428e-06 169 202 -3.00633e-05 4.851599e-06 170 202 3.478917e-05 -5.614257e-06 171 202 -3.981401e-05 6.425164e-06 172 202 4.519256e-05 -7.293151e-06 173 202 -5.098776e-05 8.228377e-06 174 202 5.727273e-05 -9.242642e-06 175 202 -6.413319e-05 1.034978e-05 176 202 7.167061e-05 -1.156616e-05 177 202 -8.000611e-05 1.291134e-05 178 202 8.928565e-05 -1.440887e-05 179 202 -9.968672e-05 1.608739e-05 180 202 0.0001114272 -1.798207e-05 181 202 -0.0001247774 2.013652e-05 182 202 0.000140076 -2.26054e-05 183 202 -0.0001577525 2.545802e-05 184 202 0.0001783582 -2.878335e-05 185 202 -0.0002026106 3.26972e-05 186 202 0.0002314578 -3.735254e-05 187 202 -0.0002661734 4.295492e-05 188 202 0.0003085011 -4.978574e-05 189 202 -0.0003608797 5.823857e-05 190 202 0.0004268045 -6.887749e-05 191 202 -0.0005114288 8.253411e-05 192 202 0.0006226054 -0.0001004757 193 202 -0.0007727812 0.000124711 194 202 0.0009826448 -0.0001585787 195 202 -0.001288661 0.0002079635 196 202 0.001760065 -0.0002840383 197 202 -0.002541777 0.0004101906 198 202 0.003980742 -0.0006424099 199 202 -0.007089509 0.001144101 200 202 0.01597157 -0.002577484 201 202 -0.06393453 0.01031772 202 202 -0.2508551 -0.01258639 203 202 -0.06393453 0.01031772 204 202 0.01597157 -0.002577484 205 202 -0.007089509 0.001144101 206 202 0.003980742 -0.0006424099 207 202 -0.002541777 0.0004101906 208 202 0.001760065 -0.0002840383 209 202 -0.001288661 0.0002079635 210 202 0.0009826448 -0.0001585787 211 202 -0.0007727812 0.000124711 212 202 0.0006226054 -0.0001004757 213 202 -0.0005114288 8.253411e-05 214 202 0.0004268045 -6.887749e-05 215 202 -0.0003608797 5.823857e-05 216 202 0.0003085011 -4.978574e-05 217 202 -0.0002661734 4.295492e-05 218 202 0.0002314578 -3.735254e-05 219 202 -0.0002026106 3.26972e-05 220 202 0.0001783582 -2.878335e-05 221 202 -0.0001577525 2.545802e-05 222 202 0.000140076 -2.26054e-05 223 202 -0.0001247774 2.013652e-05 224 202 0.0001114272 -1.798207e-05 225 202 -9.968672e-05 1.608739e-05 226 202 8.928565e-05 -1.440887e-05 227 202 -8.000611e-05 1.291134e-05 228 202 7.167061e-05 -1.156616e-05 229 202 -6.413319e-05 1.034978e-05 230 202 5.727273e-05 -9.242642e-06 231 202 -5.098776e-05 8.228377e-06 232 202 4.519256e-05 -7.293151e-06 233 202 -3.981401e-05 6.425164e-06 234 202 3.478917e-05 -5.614257e-06 235 202 -3.00633e-05 4.851599e-06 236 202 2.558831e-05 -4.129428e-06 237 202 -2.132146e-05 3.440846e-06 238 202 1.722429e-05 -2.779647e-06 239 202 -1.326172e-05 2.14017e-06 240 202 9.401297e-06 -1.517176e-06 241 202 -5.612495e-06 9.057414e-07 242 202 1.866144e-06 -3.011573e-07 283 202 0.0007024847 5.554257e-05 122 203 0.000718297 5.71003e-05 162 203 1.866144e-06 -3.011573e-07 163 203 1.866144e-06 -3.011573e-07 164 203 -5.612495e-06 9.057414e-07 165 203 9.401297e-06 -1.517176e-06 166 203 -1.326172e-05 2.14017e-06 167 203 1.722429e-05 -2.779647e-06 168 203 -2.132146e-05 3.440846e-06 169 203 2.558831e-05 -4.129428e-06 170 203 -3.00633e-05 4.851599e-06 171 203 3.478917e-05 -5.614257e-06 172 203 -3.981401e-05 6.425164e-06 173 203 4.519256e-05 -7.293151e-06 174 203 -5.098776e-05 8.228377e-06 175 203 5.727273e-05 -9.242642e-06 176 203 -6.413319e-05 1.034978e-05 177 203 7.167061e-05 -1.156616e-05 178 203 -8.000611e-05 1.291134e-05 179 203 8.928565e-05 -1.440887e-05 180 203 -9.968672e-05 1.608739e-05 181 203 0.0001114272 -1.798207e-05 182 203 -0.0001247774 2.013652e-05 183 203 0.000140076 -2.26054e-05 184 203 -0.0001577525 2.545802e-05 185 203 0.0001783582 -2.878335e-05 186 203 -0.0002026106 3.26972e-05 187 203 0.0002314578 -3.735254e-05 188 203 -0.0002661734 4.295492e-05 189 203 0.0003085011 -4.978574e-05 190 203 -0.0003608797 5.823857e-05 191 203 0.0004268045 -6.887749e-05 192 203 -0.0005114288 8.253411e-05 193 203 0.0006226054 -0.0001004757 194 203 -0.0007727812 0.000124711 195 203 0.0009826448 -0.0001585787 196 203 -0.001288661 0.0002079635 197 203 0.001760065 -0.0002840383 198 203 -0.002541777 0.0004101906 199 203 0.003980742 -0.0006424099 200 203 -0.007089509 0.001144101 201 203 0.01597157 -0.002577484 202 203 -0.06393453 0.01031772 203 203 -0.2496652 -0.0128614 204 203 -0.06393453 0.01031772 205 203 0.01597157 -0.002577484 206 203 -0.007089509 0.001144101 207 203 0.003980742 -0.0006424099 208 203 -0.002541777 0.0004101906 209 203 0.001760065 -0.0002840383 210 203 -0.001288661 0.0002079635 211 203 0.0009826448 -0.0001585787 212 203 -0.0007727812 0.000124711 213 203 0.0006226054 -0.0001004757 214 203 -0.0005114288 8.253411e-05 215 203 0.0004268045 -6.887749e-05 216 203 -0.0003608797 5.823857e-05 217 203 0.0003085011 -4.978574e-05 218 203 -0.0002661734 4.295492e-05 219 203 0.0002314578 -3.735254e-05 220 203 -0.0002026106 3.26972e-05 221 203 0.0001783582 -2.878335e-05 222 203 -0.0001577525 2.545802e-05 223 203 0.000140076 -2.26054e-05 224 203 -0.0001247774 2.013652e-05 225 203 0.0001114272 -1.798207e-05 226 203 -9.968672e-05 1.608739e-05 227 203 8.928565e-05 -1.440887e-05 228 203 -8.000611e-05 1.291134e-05 229 203 7.167061e-05 -1.156616e-05 230 203 -6.413319e-05 1.034978e-05 231 203 5.727273e-05 -9.242642e-06 232 203 -5.098776e-05 8.228377e-06 233 203 4.519256e-05 -7.293151e-06 234 203 -3.981401e-05 6.425164e-06 235 203 3.478917e-05 -5.614257e-06 236 203 -3.00633e-05 4.851599e-06 237 203 2.558831e-05 -4.129428e-06 238 203 -2.132146e-05 3.440846e-06 239 203 1.722429e-05 -2.779647e-06 240 203 -1.326172e-05 2.14017e-06 241 203 9.401297e-06 -1.517176e-06 242 203 -5.612495e-06 9.057414e-07 284 203 0.000718297 5.71003e-05 123 204 0.0007341899 5.867254e-05 162 204 -5.612495e-06 9.057414e-07 163 204 1.866144e-06 -3.011573e-07 164 204 1.866144e-06 -3.011573e-07 165 204 -5.612495e-06 9.057414e-07 166 204 9.401297e-06 -1.517176e-06 167 204 -1.326172e-05 2.14017e-06 168 204 1.722429e-05 -2.779647e-06 169 204 -2.132146e-05 3.440846e-06 170 204 2.558831e-05 -4.129428e-06 171 204 -3.00633e-05 4.851599e-06 172 204 3.478917e-05 -5.614257e-06 173 204 -3.981401e-05 6.425164e-06 174 204 4.519256e-05 -7.293151e-06 175 204 -5.098776e-05 8.228377e-06 176 204 5.727273e-05 -9.242642e-06 177 204 -6.413319e-05 1.034978e-05 178 204 7.167061e-05 -1.156616e-05 179 204 -8.000611e-05 1.291134e-05 180 204 8.928565e-05 -1.440887e-05 181 204 -9.968672e-05 1.608739e-05 182 204 0.0001114272 -1.798207e-05 183 204 -0.0001247774 2.013652e-05 184 204 0.000140076 -2.26054e-05 185 204 -0.0001577525 2.545802e-05 186 204 0.0001783582 -2.878335e-05 187 204 -0.0002026106 3.26972e-05 188 204 0.0002314578 -3.735254e-05 189 204 -0.0002661734 4.295492e-05 190 204 0.0003085011 -4.978574e-05 191 204 -0.0003608797 5.823857e-05 192 204 0.0004268045 -6.887749e-05 193 204 -0.0005114288 8.253411e-05 194 204 0.0006226054 -0.0001004757 195 204 -0.0007727812 0.000124711 196 204 0.0009826448 -0.0001585787 197 204 -0.001288661 0.0002079635 198 204 0.001760065 -0.0002840383 199 204 -0.002541777 0.0004101906 200 204 0.003980742 -0.0006424099 201 204 -0.007089509 0.001144101 202 204 0.01597157 -0.002577484 203 204 -0.06393453 0.01031772 204 204 -0.2485767 -0.0131236 205 204 -0.06393453 0.01031772 206 204 0.01597157 -0.002577484 207 204 -0.007089509 0.001144101 208 204 0.003980742 -0.0006424099 209 204 -0.002541777 0.0004101906 210 204 0.001760065 -0.0002840383 211 204 -0.001288661 0.0002079635 212 204 0.0009826448 -0.0001585787 213 204 -0.0007727812 0.000124711 214 204 0.0006226054 -0.0001004757 215 204 -0.0005114288 8.253411e-05 216 204 0.0004268045 -6.887749e-05 217 204 -0.0003608797 5.823857e-05 218 204 0.0003085011 -4.978574e-05 219 204 -0.0002661734 4.295492e-05 220 204 0.0002314578 -3.735254e-05 221 204 -0.0002026106 3.26972e-05 222 204 0.0001783582 -2.878335e-05 223 204 -0.0001577525 2.545802e-05 224 204 0.000140076 -2.26054e-05 225 204 -0.0001247774 2.013652e-05 226 204 0.0001114272 -1.798207e-05 227 204 -9.968672e-05 1.608739e-05 228 204 8.928565e-05 -1.440887e-05 229 204 -8.000611e-05 1.291134e-05 230 204 7.167061e-05 -1.156616e-05 231 204 -6.413319e-05 1.034978e-05 232 204 5.727273e-05 -9.242642e-06 233 204 -5.098776e-05 8.228377e-06 234 204 4.519256e-05 -7.293151e-06 235 204 -3.981401e-05 6.425164e-06 236 204 3.478917e-05 -5.614257e-06 237 204 -3.00633e-05 4.851599e-06 238 204 2.558831e-05 -4.129428e-06 239 204 -2.132146e-05 3.440846e-06 240 204 1.722429e-05 -2.779647e-06 241 204 -1.326172e-05 2.14017e-06 242 204 9.401297e-06 -1.517176e-06 285 204 0.0007341899 5.867254e-05 124 205 0.0007501636 6.025941e-05 162 205 9.401297e-06 -1.517176e-06 163 205 -5.612495e-06 9.057414e-07 164 205 1.866144e-06 -3.011573e-07 165 205 1.866144e-06 -3.011573e-07 166 205 -5.612495e-06 9.057414e-07 167 205 9.401297e-06 -1.517176e-06 168 205 -1.326172e-05 2.14017e-06 169 205 1.722429e-05 -2.779647e-06 170 205 -2.132146e-05 3.440846e-06 171 205 2.558831e-05 -4.129428e-06 172 205 -3.00633e-05 4.851599e-06 173 205 3.478917e-05 -5.614257e-06 174 205 -3.981401e-05 6.425164e-06 175 205 4.519256e-05 -7.293151e-06 176 205 -5.098776e-05 8.228377e-06 177 205 5.727273e-05 -9.242642e-06 178 205 -6.413319e-05 1.034978e-05 179 205 7.167061e-05 -1.156616e-05 180 205 -8.000611e-05 1.291134e-05 181 205 8.928565e-05 -1.440887e-05 182 205 -9.968672e-05 1.608739e-05 183 205 0.0001114272 -1.798207e-05 184 205 -0.0001247774 2.013652e-05 185 205 0.000140076 -2.26054e-05 186 205 -0.0001577525 2.545802e-05 187 205 0.0001783582 -2.878335e-05 188 205 -0.0002026106 3.26972e-05 189 205 0.0002314578 -3.735254e-05 190 205 -0.0002661734 4.295492e-05 191 205 0.0003085011 -4.978574e-05 192 205 -0.0003608797 5.823857e-05 193 205 0.0004268045 -6.887749e-05 194 205 -0.0005114288 8.253411e-05 195 205 0.0006226054 -0.0001004757 196 205 -0.0007727812 0.000124711 197 205 0.0009826448 -0.0001585787 198 205 -0.001288661 0.0002079635 199 205 0.001760065 -0.0002840383 200 205 -0.002541777 0.0004101906 201 205 0.003980742 -0.0006424099 202 205 -0.007089509 0.001144101 203 205 0.01597157 -0.002577484 204 205 -0.06393453 0.01031772 205 205 -0.2475814 -0.01337292 206 205 -0.06393453 0.01031772 207 205 0.01597157 -0.002577484 208 205 -0.007089509 0.001144101 209 205 0.003980742 -0.0006424099 210 205 -0.002541777 0.0004101906 211 205 0.001760065 -0.0002840383 212 205 -0.001288661 0.0002079635 213 205 0.0009826448 -0.0001585787 214 205 -0.0007727812 0.000124711 215 205 0.0006226054 -0.0001004757 216 205 -0.0005114288 8.253411e-05 217 205 0.0004268045 -6.887749e-05 218 205 -0.0003608797 5.823857e-05 219 205 0.0003085011 -4.978574e-05 220 205 -0.0002661734 4.295492e-05 221 205 0.0002314578 -3.735254e-05 222 205 -0.0002026106 3.26972e-05 223 205 0.0001783582 -2.878335e-05 224 205 -0.0001577525 2.545802e-05 225 205 0.000140076 -2.26054e-05 226 205 -0.0001247774 2.013652e-05 227 205 0.0001114272 -1.798207e-05 228 205 -9.968672e-05 1.608739e-05 229 205 8.928565e-05 -1.440887e-05 230 205 -8.000611e-05 1.291134e-05 231 205 7.167061e-05 -1.156616e-05 232 205 -6.413319e-05 1.034978e-05 233 205 5.727273e-05 -9.242642e-06 234 205 -5.098776e-05 8.228377e-06 235 205 4.519256e-05 -7.293151e-06 236 205 -3.981401e-05 6.425164e-06 237 205 3.478917e-05 -5.614257e-06 238 205 -3.00633e-05 4.851599e-06 239 205 2.558831e-05 -4.129428e-06 240 205 -2.132146e-05 3.440846e-06 241 205 1.722429e-05 -2.779647e-06 242 205 -1.326172e-05 2.14017e-06 286 205 0.0007501636 6.025941e-05 125 206 0.0007662186 6.186099e-05 162 206 -1.326172e-05 2.14017e-06 163 206 9.401297e-06 -1.517176e-06 164 206 -5.612495e-06 9.057414e-07 165 206 1.866144e-06 -3.011573e-07 166 206 1.866144e-06 -3.011573e-07 167 206 -5.612495e-06 9.057414e-07 168 206 9.401297e-06 -1.517176e-06 169 206 -1.326172e-05 2.14017e-06 170 206 1.722429e-05 -2.779647e-06 171 206 -2.132146e-05 3.440846e-06 172 206 2.558831e-05 -4.129428e-06 173 206 -3.00633e-05 4.851599e-06 174 206 3.478917e-05 -5.614257e-06 175 206 -3.981401e-05 6.425164e-06 176 206 4.519256e-05 -7.293151e-06 177 206 -5.098776e-05 8.228377e-06 178 206 5.727273e-05 -9.242642e-06 179 206 -6.413319e-05 1.034978e-05 180 206 7.167061e-05 -1.156616e-05 181 206 -8.000611e-05 1.291134e-05 182 206 8.928565e-05 -1.440887e-05 183 206 -9.968672e-05 1.608739e-05 184 206 0.0001114272 -1.798207e-05 185 206 -0.0001247774 2.013652e-05 186 206 0.000140076 -2.26054e-05 187 206 -0.0001577525 2.545802e-05 188 206 0.0001783582 -2.878335e-05 189 206 -0.0002026106 3.26972e-05 190 206 0.0002314578 -3.735254e-05 191 206 -0.0002661734 4.295492e-05 192 206 0.0003085011 -4.978574e-05 193 206 -0.0003608797 5.823857e-05 194 206 0.0004268045 -6.887749e-05 195 206 -0.0005114288 8.253411e-05 196 206 0.0006226054 -0.0001004757 197 206 -0.0007727812 0.000124711 198 206 0.0009826448 -0.0001585787 199 206 -0.001288661 0.0002079635 200 206 0.001760065 -0.0002840383 201 206 -0.002541777 0.0004101906 202 206 0.003980742 -0.0006424099 203 206 -0.007089509 0.001144101 204 206 0.01597157 -0.002577484 205 206 -0.06393453 0.01031772 206 206 -0.2466721 -0.01360941 207 206 -0.06393453 0.01031772 208 206 0.01597157 -0.002577484 209 206 -0.007089509 0.001144101 210 206 0.003980742 -0.0006424099 211 206 -0.002541777 0.0004101906 212 206 0.001760065 -0.0002840383 213 206 -0.001288661 0.0002079635 214 206 0.0009826448 -0.0001585787 215 206 -0.0007727812 0.000124711 216 206 0.0006226054 -0.0001004757 217 206 -0.0005114288 8.253411e-05 218 206 0.0004268045 -6.887749e-05 219 206 -0.0003608797 5.823857e-05 220 206 0.0003085011 -4.978574e-05 221 206 -0.0002661734 4.295492e-05 222 206 0.0002314578 -3.735254e-05 223 206 -0.0002026106 3.26972e-05 224 206 0.0001783582 -2.878335e-05 225 206 -0.0001577525 2.545802e-05 226 206 0.000140076 -2.26054e-05 227 206 -0.0001247774 2.013652e-05 228 206 0.0001114272 -1.798207e-05 229 206 -9.968672e-05 1.608739e-05 230 206 8.928565e-05 -1.440887e-05 231 206 -8.000611e-05 1.291134e-05 232 206 7.167061e-05 -1.156616e-05 233 206 -6.413319e-05 1.034978e-05 234 206 5.727273e-05 -9.242642e-06 235 206 -5.098776e-05 8.228377e-06 236 206 4.519256e-05 -7.293151e-06 237 206 -3.981401e-05 6.425164e-06 238 206 3.478917e-05 -5.614257e-06 239 206 -3.00633e-05 4.851599e-06 240 206 2.558831e-05 -4.129428e-06 241 206 -2.132146e-05 3.440846e-06 242 206 1.722429e-05 -2.779647e-06 287 206 0.0007662186 6.186099e-05 126 207 0.0007823553 6.347742e-05 162 207 1.722429e-05 -2.779647e-06 163 207 -1.326172e-05 2.14017e-06 164 207 9.401297e-06 -1.517176e-06 165 207 -5.612495e-06 9.057414e-07 166 207 1.866144e-06 -3.011573e-07 167 207 1.866144e-06 -3.011573e-07 168 207 -5.612495e-06 9.057414e-07 169 207 9.401297e-06 -1.517176e-06 170 207 -1.326172e-05 2.14017e-06 171 207 1.722429e-05 -2.779647e-06 172 207 -2.132146e-05 3.440846e-06 173 207 2.558831e-05 -4.129428e-06 174 207 -3.00633e-05 4.851599e-06 175 207 3.478917e-05 -5.614257e-06 176 207 -3.981401e-05 6.425164e-06 177 207 4.519256e-05 -7.293151e-06 178 207 -5.098776e-05 8.228377e-06 179 207 5.727273e-05 -9.242642e-06 180 207 -6.413319e-05 1.034978e-05 181 207 7.167061e-05 -1.156616e-05 182 207 -8.000611e-05 1.291134e-05 183 207 8.928565e-05 -1.440887e-05 184 207 -9.968672e-05 1.608739e-05 185 207 0.0001114272 -1.798207e-05 186 207 -0.0001247774 2.013652e-05 187 207 0.000140076 -2.26054e-05 188 207 -0.0001577525 2.545802e-05 189 207 0.0001783582 -2.878335e-05 190 207 -0.0002026106 3.26972e-05 191 207 0.0002314578 -3.735254e-05 192 207 -0.0002661734 4.295492e-05 193 207 0.0003085011 -4.978574e-05 194 207 -0.0003608797 5.823857e-05 195 207 0.0004268045 -6.887749e-05 196 207 -0.0005114288 8.253411e-05 197 207 0.0006226054 -0.0001004757 198 207 -0.0007727812 0.000124711 199 207 0.0009826448 -0.0001585787 200 207 -0.001288661 0.0002079635 201 207 0.001760065 -0.0002840383 202 207 -0.002541777 0.0004101906 203 207 0.003980742 -0.0006424099 204 207 -0.007089509 0.001144101 205 207 0.01597157 -0.002577484 206 207 -0.06393453 0.01031772 207 207 -0.2458416 -0.01383326 208 207 -0.06393453 0.01031772 209 207 0.01597157 -0.002577484 210 207 -0.007089509 0.001144101 211 207 0.003980742 -0.0006424099 212 207 -0.002541777 0.0004101906 213 207 0.001760065 -0.0002840383 214 207 -0.001288661 0.0002079635 215 207 0.0009826448 -0.0001585787 216 207 -0.0007727812 0.000124711 217 207 0.0006226054 -0.0001004757 218 207 -0.0005114288 8.253411e-05 219 207 0.0004268045 -6.887749e-05 220 207 -0.0003608797 5.823857e-05 221 207 0.0003085011 -4.978574e-05 222 207 -0.0002661734 4.295492e-05 223 207 0.0002314578 -3.735254e-05 224 207 -0.0002026106 3.26972e-05 225 207 0.0001783582 -2.878335e-05 226 207 -0.0001577525 2.545802e-05 227 207 0.000140076 -2.26054e-05 228 207 -0.0001247774 2.013652e-05 229 207 0.0001114272 -1.798207e-05 230 207 -9.968672e-05 1.608739e-05 231 207 8.928565e-05 -1.440887e-05 232 207 -8.000611e-05 1.291134e-05 233 207 7.167061e-05 -1.156616e-05 234 207 -6.413319e-05 1.034978e-05 235 207 5.727273e-05 -9.242642e-06 236 207 -5.098776e-05 8.228377e-06 237 207 4.519256e-05 -7.293151e-06 238 207 -3.981401e-05 6.425164e-06 239 207 3.478917e-05 -5.614257e-06 240 207 -3.00633e-05 4.851599e-06 241 207 2.558831e-05 -4.129428e-06 242 207 -2.132146e-05 3.440846e-06 288 207 0.0007823553 6.347742e-05 127 208 0.0007985741 6.510879e-05 162 208 -2.132146e-05 3.440846e-06 163 208 1.722429e-05 -2.779647e-06 164 208 -1.326172e-05 2.14017e-06 165 208 9.401297e-06 -1.517176e-06 166 208 -5.612495e-06 9.057414e-07 167 208 1.866144e-06 -3.011573e-07 168 208 1.866144e-06 -3.011573e-07 169 208 -5.612495e-06 9.057414e-07 170 208 9.401297e-06 -1.517176e-06 171 208 -1.326172e-05 2.14017e-06 172 208 1.722429e-05 -2.779647e-06 173 208 -2.132146e-05 3.440846e-06 174 208 2.558831e-05 -4.129428e-06 175 208 -3.00633e-05 4.851599e-06 176 208 3.478917e-05 -5.614257e-06 177 208 -3.981401e-05 6.425164e-06 178 208 4.519256e-05 -7.293151e-06 179 208 -5.098776e-05 8.228377e-06 180 208 5.727273e-05 -9.242642e-06 181 208 -6.413319e-05 1.034978e-05 182 208 7.167061e-05 -1.156616e-05 183 208 -8.000611e-05 1.291134e-05 184 208 8.928565e-05 -1.440887e-05 185 208 -9.968672e-05 1.608739e-05 186 208 0.0001114272 -1.798207e-05 187 208 -0.0001247774 2.013652e-05 188 208 0.000140076 -2.26054e-05 189 208 -0.0001577525 2.545802e-05 190 208 0.0001783582 -2.878335e-05 191 208 -0.0002026106 3.26972e-05 192 208 0.0002314578 -3.735254e-05 193 208 -0.0002661734 4.295492e-05 194 208 0.0003085011 -4.978574e-05 195 208 -0.0003608797 5.823857e-05 196 208 0.0004268045 -6.887749e-05 197 208 -0.0005114288 8.253411e-05 198 208 0.0006226054 -0.0001004757 199 208 -0.0007727812 0.000124711 200 208 0.0009826448 -0.0001585787 201 208 -0.001288661 0.0002079635 202 208 0.001760065 -0.0002840383 203 208 -0.002541777 0.0004101906 204 208 0.003980742 -0.0006424099 205 208 -0.007089509 0.001144101 206 208 0.01597157 -0.002577484 207 208 -0.06393453 0.01031772 208 208 -0.2450836 -0.01404472 209 208 -0.06393453 0.01031772 210 208 0.01597157 -0.002577484 211 208 -0.007089509 0.001144101 212 208 0.003980742 -0.0006424099 213 208 -0.002541777 0.0004101906 214 208 0.001760065 -0.0002840383 215 208 -0.001288661 0.0002079635 216 208 0.0009826448 -0.0001585787 217 208 -0.0007727812 0.000124711 218 208 0.0006226054 -0.0001004757 219 208 -0.0005114288 8.253411e-05 220 208 0.0004268045 -6.887749e-05 221 208 -0.0003608797 5.823857e-05 222 208 0.0003085011 -4.978574e-05 223 208 -0.0002661734 4.295492e-05 224 208 0.0002314578 -3.735254e-05 225 208 -0.0002026106 3.26972e-05 226 208 0.0001783582 -2.878335e-05 227 208 -0.0001577525 2.545802e-05 228 208 0.000140076 -2.26054e-05 229 208 -0.0001247774 2.013652e-05 230 208 0.0001114272 -1.798207e-05 231 208 -9.968672e-05 1.608739e-05 232 208 8.928565e-05 -1.440887e-05 233 208 -8.000611e-05 1.291134e-05 234 208 7.167061e-05 -1.156616e-05 235 208 -6.413319e-05 1.034978e-05 236 208 5.727273e-05 -9.242642e-06 237 208 -5.098776e-05 8.228377e-06 238 208 4.519256e-05 -7.293151e-06 239 208 -3.981401e-05 6.425164e-06 240 208 3.478917e-05 -5.614257e-06 241 208 -3.00633e-05 4.851599e-06 242 208 2.558831e-05 -4.129428e-06 289 208 0.0007985741 6.510879e-05 128 209 0.0008148755 6.675522e-05 162 209 2.558831e-05 -4.129428e-06 163 209 -2.132146e-05 3.440846e-06 164 209 1.722429e-05 -2.779647e-06 165 209 -1.326172e-05 2.14017e-06 166 209 9.401297e-06 -1.517176e-06 167 209 -5.612495e-06 9.057414e-07 168 209 1.866144e-06 -3.011573e-07 169 209 1.866144e-06 -3.011573e-07 170 209 -5.612495e-06 9.057414e-07 171 209 9.401297e-06 -1.517176e-06 172 209 -1.326172e-05 2.14017e-06 173 209 1.722429e-05 -2.779647e-06 174 209 -2.132146e-05 3.440846e-06 175 209 2.558831e-05 -4.129428e-06 176 209 -3.00633e-05 4.851599e-06 177 209 3.478917e-05 -5.614257e-06 178 209 -3.981401e-05 6.425164e-06 179 209 4.519256e-05 -7.293151e-06 180 209 -5.098776e-05 8.228377e-06 181 209 5.727273e-05 -9.242642e-06 182 209 -6.413319e-05 1.034978e-05 183 209 7.167061e-05 -1.156616e-05 184 209 -8.000611e-05 1.291134e-05 185 209 8.928565e-05 -1.440887e-05 186 209 -9.968672e-05 1.608739e-05 187 209 0.0001114272 -1.798207e-05 188 209 -0.0001247774 2.013652e-05 189 209 0.000140076 -2.26054e-05 190 209 -0.0001577525 2.545802e-05 191 209 0.0001783582 -2.878335e-05 192 209 -0.0002026106 3.26972e-05 193 209 0.0002314578 -3.735254e-05 194 209 -0.0002661734 4.295492e-05 195 209 0.0003085011 -4.978574e-05 196 209 -0.0003608797 5.823857e-05 197 209 0.0004268045 -6.887749e-05 198 209 -0.0005114288 8.253411e-05 199 209 0.0006226054 -0.0001004757 200 209 -0.0007727812 0.000124711 201 209 0.0009826448 -0.0001585787 202 209 -0.001288661 0.0002079635 203 209 0.001760065 -0.0002840383 204 209 -0.002541777 0.0004101906 205 209 0.003980742 -0.0006424099 206 209 -0.007089509 0.001144101 207 209 0.01597157 -0.002577484 208 209 -0.06393453 0.01031772 209 209 -0.244392 -0.01424411 210 209 -0.06393453 0.01031772 211 209 0.01597157 -0.002577484 212 209 -0.007089509 0.001144101 213 209 0.003980742 -0.0006424099 214 209 -0.002541777 0.0004101906 215 209 0.001760065 -0.0002840383 216 209 -0.001288661 0.0002079635 217 209 0.0009826448 -0.0001585787 218 209 -0.0007727812 0.000124711 219 209 0.0006226054 -0.0001004757 220 209 -0.0005114288 8.253411e-05 221 209 0.0004268045 -6.887749e-05 222 209 -0.0003608797 5.823857e-05 223 209 0.0003085011 -4.978574e-05 224 209 -0.0002661734 4.295492e-05 225 209 0.0002314578 -3.735254e-05 226 209 -0.0002026106 3.26972e-05 227 209 0.0001783582 -2.878335e-05 228 209 -0.0001577525 2.545802e-05 229 209 0.000140076 -2.26054e-05 230 209 -0.0001247774 2.013652e-05 231 209 0.0001114272 -1.798207e-05 232 209 -9.968672e-05 1.608739e-05 233 209 8.928565e-05 -1.440887e-05 234 209 -8.000611e-05 1.291134e-05 235 209 7.167061e-05 -1.156616e-05 236 209 -6.413319e-05 1.034978e-05 237 209 5.727273e-05 -9.242642e-06 238 209 -5.098776e-05 8.228377e-06 239 209 4.519256e-05 -7.293151e-06 240 209 -3.981401e-05 6.425164e-06 241 209 3.478917e-05 -5.614257e-06 242 209 -3.00633e-05 4.851599e-06 290 209 0.0008148755 6.675522e-05 129 210 0.0008312598 6.841681e-05 162 210 -3.00633e-05 4.851599e-06 163 210 2.558831e-05 -4.129428e-06 164 210 -2.132146e-05 3.440846e-06 165 210 1.722429e-05 -2.779647e-06 166 210 -1.326172e-05 2.14017e-06 167 210 9.401297e-06 -1.517176e-06 168 210 -5.612495e-06 9.057414e-07 169 210 1.866144e-06 -3.011573e-07 170 210 1.866144e-06 -3.011573e-07 171 210 -5.612495e-06 9.057414e-07 172 210 9.401297e-06 -1.517176e-06 173 210 -1.326172e-05 2.14017e-06 174 210 1.722429e-05 -2.779647e-06 175 210 -2.132146e-05 3.440846e-06 176 210 2.558831e-05 -4.129428e-06 177 210 -3.00633e-05 4.851599e-06 178 210 3.478917e-05 -5.614257e-06 179 210 -3.981401e-05 6.425164e-06 180 210 4.519256e-05 -7.293151e-06 181 210 -5.098776e-05 8.228377e-06 182 210 5.727273e-05 -9.242642e-06 183 210 -6.413319e-05 1.034978e-05 184 210 7.167061e-05 -1.156616e-05 185 210 -8.000611e-05 1.291134e-05 186 210 8.928565e-05 -1.440887e-05 187 210 -9.968672e-05 1.608739e-05 188 210 0.0001114272 -1.798207e-05 189 210 -0.0001247774 2.013652e-05 190 210 0.000140076 -2.26054e-05 191 210 -0.0001577525 2.545802e-05 192 210 0.0001783582 -2.878335e-05 193 210 -0.0002026106 3.26972e-05 194 210 0.0002314578 -3.735254e-05 195 210 -0.0002661734 4.295492e-05 196 210 0.0003085011 -4.978574e-05 197 210 -0.0003608797 5.823857e-05 198 210 0.0004268045 -6.887749e-05 199 210 -0.0005114288 8.253411e-05 200 210 0.0006226054 -0.0001004757 201 210 -0.0007727812 0.000124711 202 210 0.0009826448 -0.0001585787 203 210 -0.001288661 0.0002079635 204 210 0.001760065 -0.0002840383 205 210 -0.002541777 0.0004101906 206 210 0.003980742 -0.0006424099 207 210 -0.007089509 0.001144101 208 210 0.01597157 -0.002577484 209 210 -0.06393453 0.01031772 210 210 -0.2437612 -0.01443183 211 210 -0.06393453 0.01031772 212 210 0.01597157 -0.002577484 213 210 -0.007089509 0.001144101 214 210 0.003980742 -0.0006424099 215 210 -0.002541777 0.0004101906 216 210 0.001760065 -0.0002840383 217 210 -0.001288661 0.0002079635 218 210 0.0009826448 -0.0001585787 219 210 -0.0007727812 0.000124711 220 210 0.0006226054 -0.0001004757 221 210 -0.0005114288 8.253411e-05 222 210 0.0004268045 -6.887749e-05 223 210 -0.0003608797 5.823857e-05 224 210 0.0003085011 -4.978574e-05 225 210 -0.0002661734 4.295492e-05 226 210 0.0002314578 -3.735254e-05 227 210 -0.0002026106 3.26972e-05 228 210 0.0001783582 -2.878335e-05 229 210 -0.0001577525 2.545802e-05 230 210 0.000140076 -2.26054e-05 231 210 -0.0001247774 2.013652e-05 232 210 0.0001114272 -1.798207e-05 233 210 -9.968672e-05 1.608739e-05 234 210 8.928565e-05 -1.440887e-05 235 210 -8.000611e-05 1.291134e-05 236 210 7.167061e-05 -1.156616e-05 237 210 -6.413319e-05 1.034978e-05 238 210 5.727273e-05 -9.242642e-06 239 210 -5.098776e-05 8.228377e-06 240 210 4.519256e-05 -7.293151e-06 241 210 -3.981401e-05 6.425164e-06 242 210 3.478917e-05 -5.614257e-06 291 210 0.0008312598 6.841681e-05 130 211 0.0008477274 7.009369e-05 162 211 3.478917e-05 -5.614257e-06 163 211 -3.00633e-05 4.851599e-06 164 211 2.558831e-05 -4.129428e-06 165 211 -2.132146e-05 3.440846e-06 166 211 1.722429e-05 -2.779647e-06 167 211 -1.326172e-05 2.14017e-06 168 211 9.401297e-06 -1.517176e-06 169 211 -5.612495e-06 9.057414e-07 170 211 1.866144e-06 -3.011573e-07 171 211 1.866144e-06 -3.011573e-07 172 211 -5.612495e-06 9.057414e-07 173 211 9.401297e-06 -1.517176e-06 174 211 -1.326172e-05 2.14017e-06 175 211 1.722429e-05 -2.779647e-06 176 211 -2.132146e-05 3.440846e-06 177 211 2.558831e-05 -4.129428e-06 178 211 -3.00633e-05 4.851599e-06 179 211 3.478917e-05 -5.614257e-06 180 211 -3.981401e-05 6.425164e-06 181 211 4.519256e-05 -7.293151e-06 182 211 -5.098776e-05 8.228377e-06 183 211 5.727273e-05 -9.242642e-06 184 211 -6.413319e-05 1.034978e-05 185 211 7.167061e-05 -1.156616e-05 186 211 -8.000611e-05 1.291134e-05 187 211 8.928565e-05 -1.440887e-05 188 211 -9.968672e-05 1.608739e-05 189 211 0.0001114272 -1.798207e-05 190 211 -0.0001247774 2.013652e-05 191 211 0.000140076 -2.26054e-05 192 211 -0.0001577525 2.545802e-05 193 211 0.0001783582 -2.878335e-05 194 211 -0.0002026106 3.26972e-05 195 211 0.0002314578 -3.735254e-05 196 211 -0.0002661734 4.295492e-05 197 211 0.0003085011 -4.978574e-05 198 211 -0.0003608797 5.823857e-05 199 211 0.0004268045 -6.887749e-05 200 211 -0.0005114288 8.253411e-05 201 211 0.0006226054 -0.0001004757 202 211 -0.0007727812 0.000124711 203 211 0.0009826448 -0.0001585787 204 211 -0.001288661 0.0002079635 205 211 0.001760065 -0.0002840383 206 211 -0.002541777 0.0004101906 207 211 0.003980742 -0.0006424099 208 211 -0.007089509 0.001144101 209 211 0.01597157 -0.002577484 210 211 -0.06393453 0.01031772 211 211 -0.2431862 -0.01460829 212 211 -0.06393453 0.01031772 213 211 0.01597157 -0.002577484 214 211 -0.007089509 0.001144101 215 211 0.003980742 -0.0006424099 216 211 -0.002541777 0.0004101906 217 211 0.001760065 -0.0002840383 218 211 -0.001288661 0.0002079635 219 211 0.0009826448 -0.0001585787 220 211 -0.0007727812 0.000124711 221 211 0.0006226054 -0.0001004757 222 211 -0.0005114288 8.253411e-05 223 211 0.0004268045 -6.887749e-05 224 211 -0.0003608797 5.823857e-05 225 211 0.0003085011 -4.978574e-05 226 211 -0.0002661734 4.295492e-05 227 211 0.0002314578 -3.735254e-05 228 211 -0.0002026106 3.26972e-05 229 211 0.0001783582 -2.878335e-05 230 211 -0.0001577525 2.545802e-05 231 211 0.000140076 -2.26054e-05 232 211 -0.0001247774 2.013652e-05 233 211 0.0001114272 -1.798207e-05 234 211 -9.968672e-05 1.608739e-05 235 211 8.928565e-05 -1.440887e-05 236 211 -8.000611e-05 1.291134e-05 237 211 7.167061e-05 -1.156616e-05 238 211 -6.413319e-05 1.034978e-05 239 211 5.727273e-05 -9.242642e-06 240 211 -5.098776e-05 8.228377e-06 241 211 4.519256e-05 -7.293151e-06 242 211 -3.981401e-05 6.425164e-06 292 211 0.0008477274 7.009369e-05 131 212 0.0008642789 7.178596e-05 162 212 -3.981401e-05 6.425164e-06 163 212 3.478917e-05 -5.614257e-06 164 212 -3.00633e-05 4.851599e-06 165 212 2.558831e-05 -4.129428e-06 166 212 -2.132146e-05 3.440846e-06 167 212 1.722429e-05 -2.779647e-06 168 212 -1.326172e-05 2.14017e-06 169 212 9.401297e-06 -1.517176e-06 170 212 -5.612495e-06 9.057414e-07 171 212 1.866144e-06 -3.011573e-07 172 212 1.866144e-06 -3.011573e-07 173 212 -5.612495e-06 9.057414e-07 174 212 9.401297e-06 -1.517176e-06 175 212 -1.326172e-05 2.14017e-06 176 212 1.722429e-05 -2.779647e-06 177 212 -2.132146e-05 3.440846e-06 178 212 2.558831e-05 -4.129428e-06 179 212 -3.00633e-05 4.851599e-06 180 212 3.478917e-05 -5.614257e-06 181 212 -3.981401e-05 6.425164e-06 182 212 4.519256e-05 -7.293151e-06 183 212 -5.098776e-05 8.228377e-06 184 212 5.727273e-05 -9.242642e-06 185 212 -6.413319e-05 1.034978e-05 186 212 7.167061e-05 -1.156616e-05 187 212 -8.000611e-05 1.291134e-05 188 212 8.928565e-05 -1.440887e-05 189 212 -9.968672e-05 1.608739e-05 190 212 0.0001114272 -1.798207e-05 191 212 -0.0001247774 2.013652e-05 192 212 0.000140076 -2.26054e-05 193 212 -0.0001577525 2.545802e-05 194 212 0.0001783582 -2.878335e-05 195 212 -0.0002026106 3.26972e-05 196 212 0.0002314578 -3.735254e-05 197 212 -0.0002661734 4.295492e-05 198 212 0.0003085011 -4.978574e-05 199 212 -0.0003608797 5.823857e-05 200 212 0.0004268045 -6.887749e-05 201 212 -0.0005114288 8.253411e-05 202 212 0.0006226054 -0.0001004757 203 212 -0.0007727812 0.000124711 204 212 0.0009826448 -0.0001585787 205 212 -0.001288661 0.0002079635 206 212 0.001760065 -0.0002840383 207 212 -0.002541777 0.0004101906 208 212 0.003980742 -0.0006424099 209 212 -0.007089509 0.001144101 210 212 0.01597157 -0.002577484 211 212 -0.06393453 0.01031772 212 212 -0.2426622 -0.01477394 213 212 -0.06393453 0.01031772 214 212 0.01597157 -0.002577484 215 212 -0.007089509 0.001144101 216 212 0.003980742 -0.0006424099 217 212 -0.002541777 0.0004101906 218 212 0.001760065 -0.0002840383 219 212 -0.001288661 0.0002079635 220 212 0.0009826448 -0.0001585787 221 212 -0.0007727812 0.000124711 222 212 0.0006226054 -0.0001004757 223 212 -0.0005114288 8.253411e-05 224 212 0.0004268045 -6.887749e-05 225 212 -0.0003608797 5.823857e-05 226 212 0.0003085011 -4.978574e-05 227 212 -0.0002661734 4.295492e-05 228 212 0.0002314578 -3.735254e-05 229 212 -0.0002026106 3.26972e-05 230 212 0.0001783582 -2.878335e-05 231 212 -0.0001577525 2.545802e-05 232 212 0.000140076 -2.26054e-05 233 212 -0.0001247774 2.013652e-05 234 212 0.0001114272 -1.798207e-05 235 212 -9.968672e-05 1.608739e-05 236 212 8.928565e-05 -1.440887e-05 237 212 -8.000611e-05 1.291134e-05 238 212 7.167061e-05 -1.156616e-05 239 212 -6.413319e-05 1.034978e-05 240 212 5.727273e-05 -9.242642e-06 241 212 -5.098776e-05 8.228377e-06 242 212 4.519256e-05 -7.293151e-06 293 212 0.0008642789 7.178596e-05 132 213 0.0008809146 7.349373e-05 162 213 4.519256e-05 -7.293151e-06 163 213 -3.981401e-05 6.425164e-06 164 213 3.478917e-05 -5.614257e-06 165 213 -3.00633e-05 4.851599e-06 166 213 2.558831e-05 -4.129428e-06 167 213 -2.132146e-05 3.440846e-06 168 213 1.722429e-05 -2.779647e-06 169 213 -1.326172e-05 2.14017e-06 170 213 9.401297e-06 -1.517176e-06 171 213 -5.612495e-06 9.057414e-07 172 213 1.866144e-06 -3.011573e-07 173 213 1.866144e-06 -3.011573e-07 174 213 -5.612495e-06 9.057414e-07 175 213 9.401297e-06 -1.517176e-06 176 213 -1.326172e-05 2.14017e-06 177 213 1.722429e-05 -2.779647e-06 178 213 -2.132146e-05 3.440846e-06 179 213 2.558831e-05 -4.129428e-06 180 213 -3.00633e-05 4.851599e-06 181 213 3.478917e-05 -5.614257e-06 182 213 -3.981401e-05 6.425164e-06 183 213 4.519256e-05 -7.293151e-06 184 213 -5.098776e-05 8.228377e-06 185 213 5.727273e-05 -9.242642e-06 186 213 -6.413319e-05 1.034978e-05 187 213 7.167061e-05 -1.156616e-05 188 213 -8.000611e-05 1.291134e-05 189 213 8.928565e-05 -1.440887e-05 190 213 -9.968672e-05 1.608739e-05 191 213 0.0001114272 -1.798207e-05 192 213 -0.0001247774 2.013652e-05 193 213 0.000140076 -2.26054e-05 194 213 -0.0001577525 2.545802e-05 195 213 0.0001783582 -2.878335e-05 196 213 -0.0002026106 3.26972e-05 197 213 0.0002314578 -3.735254e-05 198 213 -0.0002661734 4.295492e-05 199 213 0.0003085011 -4.978574e-05 200 213 -0.0003608797 5.823857e-05 201 213 0.0004268045 -6.887749e-05 202 213 -0.0005114288 8.253411e-05 203 213 0.0006226054 -0.0001004757 204 213 -0.0007727812 0.000124711 205 213 0.0009826448 -0.0001585787 206 213 -0.001288661 0.0002079635 207 213 0.001760065 -0.0002840383 208 213 -0.002541777 0.0004101906 209 213 0.003980742 -0.0006424099 210 213 -0.007089509 0.001144101 211 213 0.01597157 -0.002577484 212 213 -0.06393453 0.01031772 213 213 -0.2421848 -0.01492925 214 213 -0.06393453 0.01031772 215 213 0.01597157 -0.002577484 216 213 -0.007089509 0.001144101 217 213 0.003980742 -0.0006424099 218 213 -0.002541777 0.0004101906 219 213 0.001760065 -0.0002840383 220 213 -0.001288661 0.0002079635 221 213 0.0009826448 -0.0001585787 222 213 -0.0007727812 0.000124711 223 213 0.0006226054 -0.0001004757 224 213 -0.0005114288 8.253411e-05 225 213 0.0004268045 -6.887749e-05 226 213 -0.0003608797 5.823857e-05 227 213 0.0003085011 -4.978574e-05 228 213 -0.0002661734 4.295492e-05 229 213 0.0002314578 -3.735254e-05 230 213 -0.0002026106 3.26972e-05 231 213 0.0001783582 -2.878335e-05 232 213 -0.0001577525 2.545802e-05 233 213 0.000140076 -2.26054e-05 234 213 -0.0001247774 2.013652e-05 235 213 0.0001114272 -1.798207e-05 236 213 -9.968672e-05 1.608739e-05 237 213 8.928565e-05 -1.440887e-05 238 213 -8.000611e-05 1.291134e-05 239 213 7.167061e-05 -1.156616e-05 240 213 -6.413319e-05 1.034978e-05 241 213 5.727273e-05 -9.242642e-06 242 213 -5.098776e-05 8.228377e-06 294 213 0.0008809146 7.349373e-05 133 214 0.0008976348 7.521712e-05 162 214 -5.098776e-05 8.228377e-06 163 214 4.519256e-05 -7.293151e-06 164 214 -3.981401e-05 6.425164e-06 165 214 3.478917e-05 -5.614257e-06 166 214 -3.00633e-05 4.851599e-06 167 214 2.558831e-05 -4.129428e-06 168 214 -2.132146e-05 3.440846e-06 169 214 1.722429e-05 -2.779647e-06 170 214 -1.326172e-05 2.14017e-06 171 214 9.401297e-06 -1.517176e-06 172 214 -5.612495e-06 9.057414e-07 173 214 1.866144e-06 -3.011573e-07 174 214 1.866144e-06 -3.011573e-07 175 214 -5.612495e-06 9.057414e-07 176 214 9.401297e-06 -1.517176e-06 177 214 -1.326172e-05 2.14017e-06 178 214 1.722429e-05 -2.779647e-06 179 214 -2.132146e-05 3.440846e-06 180 214 2.558831e-05 -4.129428e-06 181 214 -3.00633e-05 4.851599e-06 182 214 3.478917e-05 -5.614257e-06 183 214 -3.981401e-05 6.425164e-06 184 214 4.519256e-05 -7.293151e-06 185 214 -5.098776e-05 8.228377e-06 186 214 5.727273e-05 -9.242642e-06 187 214 -6.413319e-05 1.034978e-05 188 214 7.167061e-05 -1.156616e-05 189 214 -8.000611e-05 1.291134e-05 190 214 8.928565e-05 -1.440887e-05 191 214 -9.968672e-05 1.608739e-05 192 214 0.0001114272 -1.798207e-05 193 214 -0.0001247774 2.013652e-05 194 214 0.000140076 -2.26054e-05 195 214 -0.0001577525 2.545802e-05 196 214 0.0001783582 -2.878335e-05 197 214 -0.0002026106 3.26972e-05 198 214 0.0002314578 -3.735254e-05 199 214 -0.0002661734 4.295492e-05 200 214 0.0003085011 -4.978574e-05 201 214 -0.0003608797 5.823857e-05 202 214 0.0004268045 -6.887749e-05 203 214 -0.0005114288 8.253411e-05 204 214 0.0006226054 -0.0001004757 205 214 -0.0007727812 0.000124711 206 214 0.0009826448 -0.0001585787 207 214 -0.001288661 0.0002079635 208 214 0.001760065 -0.0002840383 209 214 -0.002541777 0.0004101906 210 214 0.003980742 -0.0006424099 211 214 -0.007089509 0.001144101 212 214 0.01597157 -0.002577484 213 214 -0.06393453 0.01031772 214 214 -0.2417499 -0.01507469 215 214 -0.06393453 0.01031772 216 214 0.01597157 -0.002577484 217 214 -0.007089509 0.001144101 218 214 0.003980742 -0.0006424099 219 214 -0.002541777 0.0004101906 220 214 0.001760065 -0.0002840383 221 214 -0.001288661 0.0002079635 222 214 0.0009826448 -0.0001585787 223 214 -0.0007727812 0.000124711 224 214 0.0006226054 -0.0001004757 225 214 -0.0005114288 8.253411e-05 226 214 0.0004268045 -6.887749e-05 227 214 -0.0003608797 5.823857e-05 228 214 0.0003085011 -4.978574e-05 229 214 -0.0002661734 4.295492e-05 230 214 0.0002314578 -3.735254e-05 231 214 -0.0002026106 3.26972e-05 232 214 0.0001783582 -2.878335e-05 233 214 -0.0001577525 2.545802e-05 234 214 0.000140076 -2.26054e-05 235 214 -0.0001247774 2.013652e-05 236 214 0.0001114272 -1.798207e-05 237 214 -9.968672e-05 1.608739e-05 238 214 8.928565e-05 -1.440887e-05 239 214 -8.000611e-05 1.291134e-05 240 214 7.167061e-05 -1.156616e-05 241 214 -6.413319e-05 1.034978e-05 242 214 5.727273e-05 -9.242642e-06 295 214 0.0008976348 7.521712e-05 134 215 0.0009144402 7.695625e-05 162 215 5.727273e-05 -9.242642e-06 163 215 -5.098776e-05 8.228377e-06 164 215 4.519256e-05 -7.293151e-06 165 215 -3.981401e-05 6.425164e-06 166 215 3.478917e-05 -5.614257e-06 167 215 -3.00633e-05 4.851599e-06 168 215 2.558831e-05 -4.129428e-06 169 215 -2.132146e-05 3.440846e-06 170 215 1.722429e-05 -2.779647e-06 171 215 -1.326172e-05 2.14017e-06 172 215 9.401297e-06 -1.517176e-06 173 215 -5.612495e-06 9.057414e-07 174 215 1.866144e-06 -3.011573e-07 175 215 1.866144e-06 -3.011573e-07 176 215 -5.612495e-06 9.057414e-07 177 215 9.401297e-06 -1.517176e-06 178 215 -1.326172e-05 2.14017e-06 179 215 1.722429e-05 -2.779647e-06 180 215 -2.132146e-05 3.440846e-06 181 215 2.558831e-05 -4.129428e-06 182 215 -3.00633e-05 4.851599e-06 183 215 3.478917e-05 -5.614257e-06 184 215 -3.981401e-05 6.425164e-06 185 215 4.519256e-05 -7.293151e-06 186 215 -5.098776e-05 8.228377e-06 187 215 5.727273e-05 -9.242642e-06 188 215 -6.413319e-05 1.034978e-05 189 215 7.167061e-05 -1.156616e-05 190 215 -8.000611e-05 1.291134e-05 191 215 8.928565e-05 -1.440887e-05 192 215 -9.968672e-05 1.608739e-05 193 215 0.0001114272 -1.798207e-05 194 215 -0.0001247774 2.013652e-05 195 215 0.000140076 -2.26054e-05 196 215 -0.0001577525 2.545802e-05 197 215 0.0001783582 -2.878335e-05 198 215 -0.0002026106 3.26972e-05 199 215 0.0002314578 -3.735254e-05 200 215 -0.0002661734 4.295492e-05 201 215 0.0003085011 -4.978574e-05 202 215 -0.0003608797 5.823857e-05 203 215 0.0004268045 -6.887749e-05 204 215 -0.0005114288 8.253411e-05 205 215 0.0006226054 -0.0001004757 206 215 -0.0007727812 0.000124711 207 215 0.0009826448 -0.0001585787 208 215 -0.001288661 0.0002079635 209 215 0.001760065 -0.0002840383 210 215 -0.002541777 0.0004101906 211 215 0.003980742 -0.0006424099 212 215 -0.007089509 0.001144101 213 215 0.01597157 -0.002577484 214 215 -0.06393453 0.01031772 215 215 -0.241354 -0.01521075 216 215 -0.06393453 0.01031772 217 215 0.01597157 -0.002577484 218 215 -0.007089509 0.001144101 219 215 0.003980742 -0.0006424099 220 215 -0.002541777 0.0004101906 221 215 0.001760065 -0.0002840383 222 215 -0.001288661 0.0002079635 223 215 0.0009826448 -0.0001585787 224 215 -0.0007727812 0.000124711 225 215 0.0006226054 -0.0001004757 226 215 -0.0005114288 8.253411e-05 227 215 0.0004268045 -6.887749e-05 228 215 -0.0003608797 5.823857e-05 229 215 0.0003085011 -4.978574e-05 230 215 -0.0002661734 4.295492e-05 231 215 0.0002314578 -3.735254e-05 232 215 -0.0002026106 3.26972e-05 233 215 0.0001783582 -2.878335e-05 234 215 -0.0001577525 2.545802e-05 235 215 0.000140076 -2.26054e-05 236 215 -0.0001247774 2.013652e-05 237 215 0.0001114272 -1.798207e-05 238 215 -9.968672e-05 1.608739e-05 239 215 8.928565e-05 -1.440887e-05 240 215 -8.000611e-05 1.291134e-05 241 215 7.167061e-05 -1.156616e-05 242 215 -6.413319e-05 1.034978e-05 296 215 0.0009144402 7.695625e-05 135 216 0.0009313311 7.871123e-05 162 216 -6.413319e-05 1.034978e-05 163 216 5.727273e-05 -9.242642e-06 164 216 -5.098776e-05 8.228377e-06 165 216 4.519256e-05 -7.293151e-06 166 216 -3.981401e-05 6.425164e-06 167 216 3.478917e-05 -5.614257e-06 168 216 -3.00633e-05 4.851599e-06 169 216 2.558831e-05 -4.129428e-06 170 216 -2.132146e-05 3.440846e-06 171 216 1.722429e-05 -2.779647e-06 172 216 -1.326172e-05 2.14017e-06 173 216 9.401297e-06 -1.517176e-06 174 216 -5.612495e-06 9.057414e-07 175 216 1.866144e-06 -3.011573e-07 176 216 1.866144e-06 -3.011573e-07 177 216 -5.612495e-06 9.057414e-07 178 216 9.401297e-06 -1.517176e-06 179 216 -1.326172e-05 2.14017e-06 180 216 1.722429e-05 -2.779647e-06 181 216 -2.132146e-05 3.440846e-06 182 216 2.558831e-05 -4.129428e-06 183 216 -3.00633e-05 4.851599e-06 184 216 3.478917e-05 -5.614257e-06 185 216 -3.981401e-05 6.425164e-06 186 216 4.519256e-05 -7.293151e-06 187 216 -5.098776e-05 8.228377e-06 188 216 5.727273e-05 -9.242642e-06 189 216 -6.413319e-05 1.034978e-05 190 216 7.167061e-05 -1.156616e-05 191 216 -8.000611e-05 1.291134e-05 192 216 8.928565e-05 -1.440887e-05 193 216 -9.968672e-05 1.608739e-05 194 216 0.0001114272 -1.798207e-05 195 216 -0.0001247774 2.013652e-05 196 216 0.000140076 -2.26054e-05 197 216 -0.0001577525 2.545802e-05 198 216 0.0001783582 -2.878335e-05 199 216 -0.0002026106 3.26972e-05 200 216 0.0002314578 -3.735254e-05 201 216 -0.0002661734 4.295492e-05 202 216 0.0003085011 -4.978574e-05 203 216 -0.0003608797 5.823857e-05 204 216 0.0004268045 -6.887749e-05 205 216 -0.0005114288 8.253411e-05 206 216 0.0006226054 -0.0001004757 207 216 -0.0007727812 0.000124711 208 216 0.0009826448 -0.0001585787 209 216 -0.001288661 0.0002079635 210 216 0.001760065 -0.0002840383 211 216 -0.002541777 0.0004101906 212 216 0.003980742 -0.0006424099 213 216 -0.007089509 0.001144101 214 216 0.01597157 -0.002577484 215 216 -0.06393453 0.01031772 216 216 -0.2409936 -0.0153379 217 216 -0.06393453 0.01031772 218 216 0.01597157 -0.002577484 219 216 -0.007089509 0.001144101 220 216 0.003980742 -0.0006424099 221 216 -0.002541777 0.0004101906 222 216 0.001760065 -0.0002840383 223 216 -0.001288661 0.0002079635 224 216 0.0009826448 -0.0001585787 225 216 -0.0007727812 0.000124711 226 216 0.0006226054 -0.0001004757 227 216 -0.0005114288 8.253411e-05 228 216 0.0004268045 -6.887749e-05 229 216 -0.0003608797 5.823857e-05 230 216 0.0003085011 -4.978574e-05 231 216 -0.0002661734 4.295492e-05 232 216 0.0002314578 -3.735254e-05 233 216 -0.0002026106 3.26972e-05 234 216 0.0001783582 -2.878335e-05 235 216 -0.0001577525 2.545802e-05 236 216 0.000140076 -2.26054e-05 237 216 -0.0001247774 2.013652e-05 238 216 0.0001114272 -1.798207e-05 239 216 -9.968672e-05 1.608739e-05 240 216 8.928565e-05 -1.440887e-05 241 216 -8.000611e-05 1.291134e-05 242 216 7.167061e-05 -1.156616e-05 297 216 0.0009313311 7.871123e-05 136 217 0.0009483078 8.048218e-05 162 217 7.167061e-05 -1.156616e-05 163 217 -6.413319e-05 1.034978e-05 164 217 5.727273e-05 -9.242642e-06 165 217 -5.098776e-05 8.228377e-06 166 217 4.519256e-05 -7.293151e-06 167 217 -3.981401e-05 6.425164e-06 168 217 3.478917e-05 -5.614257e-06 169 217 -3.00633e-05 4.851599e-06 170 217 2.558831e-05 -4.129428e-06 171 217 -2.132146e-05 3.440846e-06 172 217 1.722429e-05 -2.779647e-06 173 217 -1.326172e-05 2.14017e-06 174 217 9.401297e-06 -1.517176e-06 175 217 -5.612495e-06 9.057414e-07 176 217 1.866144e-06 -3.011573e-07 177 217 1.866144e-06 -3.011573e-07 178 217 -5.612495e-06 9.057414e-07 179 217 9.401297e-06 -1.517176e-06 180 217 -1.326172e-05 2.14017e-06 181 217 1.722429e-05 -2.779647e-06 182 217 -2.132146e-05 3.440846e-06 183 217 2.558831e-05 -4.129428e-06 184 217 -3.00633e-05 4.851599e-06 185 217 3.478917e-05 -5.614257e-06 186 217 -3.981401e-05 6.425164e-06 187 217 4.519256e-05 -7.293151e-06 188 217 -5.098776e-05 8.228377e-06 189 217 5.727273e-05 -9.242642e-06 190 217 -6.413319e-05 1.034978e-05 191 217 7.167061e-05 -1.156616e-05 192 217 -8.000611e-05 1.291134e-05 193 217 8.928565e-05 -1.440887e-05 194 217 -9.968672e-05 1.608739e-05 195 217 0.0001114272 -1.798207e-05 196 217 -0.0001247774 2.013652e-05 197 217 0.000140076 -2.26054e-05 198 217 -0.0001577525 2.545802e-05 199 217 0.0001783582 -2.878335e-05 200 217 -0.0002026106 3.26972e-05 201 217 0.0002314578 -3.735254e-05 202 217 -0.0002661734 4.295492e-05 203 217 0.0003085011 -4.978574e-05 204 217 -0.0003608797 5.823857e-05 205 217 0.0004268045 -6.887749e-05 206 217 -0.0005114288 8.253411e-05 207 217 0.0006226054 -0.0001004757 208 217 -0.0007727812 0.000124711 209 217 0.0009826448 -0.0001585787 210 217 -0.001288661 0.0002079635 211 217 0.001760065 -0.0002840383 212 217 -0.002541777 0.0004101906 213 217 0.003980742 -0.0006424099 214 217 -0.007089509 0.001144101 215 217 0.01597157 -0.002577484 216 217 -0.06393453 0.01031772 217 217 -0.2406656 -0.01545662 218 217 -0.06393453 0.01031772 219 217 0.01597157 -0.002577484 220 217 -0.007089509 0.001144101 221 217 0.003980742 -0.0006424099 222 217 -0.002541777 0.0004101906 223 217 0.001760065 -0.0002840383 224 217 -0.001288661 0.0002079635 225 217 0.0009826448 -0.0001585787 226 217 -0.0007727812 0.000124711 227 217 0.0006226054 -0.0001004757 228 217 -0.0005114288 8.253411e-05 229 217 0.0004268045 -6.887749e-05 230 217 -0.0003608797 5.823857e-05 231 217 0.0003085011 -4.978574e-05 232 217 -0.0002661734 4.295492e-05 233 217 0.0002314578 -3.735254e-05 234 217 -0.0002026106 3.26972e-05 235 217 0.0001783582 -2.878335e-05 236 217 -0.0001577525 2.545802e-05 237 217 0.000140076 -2.26054e-05 238 217 -0.0001247774 2.013652e-05 239 217 0.0001114272 -1.798207e-05 240 217 -9.968672e-05 1.608739e-05 241 217 8.928565e-05 -1.440887e-05 242 217 -8.000611e-05 1.291134e-05 298 217 0.0009483078 8.048218e-05 137 218 0.000965371 8.226921e-05 162 218 -8.000611e-05 1.291134e-05 163 218 7.167061e-05 -1.156616e-05 164 218 -6.413319e-05 1.034978e-05 165 218 5.727273e-05 -9.242642e-06 166 218 -5.098776e-05 8.228377e-06 167 218 4.519256e-05 -7.293151e-06 168 218 -3.981401e-05 6.425164e-06 169 218 3.478917e-05 -5.614257e-06 170 218 -3.00633e-05 4.851599e-06 171 218 2.558831e-05 -4.129428e-06 172 218 -2.132146e-05 3.440846e-06 173 218 1.722429e-05 -2.779647e-06 174 218 -1.326172e-05 2.14017e-06 175 218 9.401297e-06 -1.517176e-06 176 218 -5.612495e-06 9.057414e-07 177 218 1.866144e-06 -3.011573e-07 178 218 1.866144e-06 -3.011573e-07 179 218 -5.612495e-06 9.057414e-07 180 218 9.401297e-06 -1.517176e-06 181 218 -1.326172e-05 2.14017e-06 182 218 1.722429e-05 -2.779647e-06 183 218 -2.132146e-05 3.440846e-06 184 218 2.558831e-05 -4.129428e-06 185 218 -3.00633e-05 4.851599e-06 186 218 3.478917e-05 -5.614257e-06 187 218 -3.981401e-05 6.425164e-06 188 218 4.519256e-05 -7.293151e-06 189 218 -5.098776e-05 8.228377e-06 190 218 5.727273e-05 -9.242642e-06 191 218 -6.413319e-05 1.034978e-05 192 218 7.167061e-05 -1.156616e-05 193 218 -8.000611e-05 1.291134e-05 194 218 8.928565e-05 -1.440887e-05 195 218 -9.968672e-05 1.608739e-05 196 218 0.0001114272 -1.798207e-05 197 218 -0.0001247774 2.013652e-05 198 218 0.000140076 -2.26054e-05 199 218 -0.0001577525 2.545802e-05 200 218 0.0001783582 -2.878335e-05 201 218 -0.0002026106 3.26972e-05 202 218 0.0002314578 -3.735254e-05 203 218 -0.0002661734 4.295492e-05 204 218 0.0003085011 -4.978574e-05 205 218 -0.0003608797 5.823857e-05 206 218 0.0004268045 -6.887749e-05 207 218 -0.0005114288 8.253411e-05 208 218 0.0006226054 -0.0001004757 209 218 -0.0007727812 0.000124711 210 218 0.0009826448 -0.0001585787 211 218 -0.001288661 0.0002079635 212 218 0.001760065 -0.0002840383 213 218 -0.002541777 0.0004101906 214 218 0.003980742 -0.0006424099 215 218 -0.007089509 0.001144101 216 218 0.01597157 -0.002577484 217 218 -0.06393453 0.01031772 218 218 -0.2403671 -0.01556737 219 218 -0.06393453 0.01031772 220 218 0.01597157 -0.002577484 221 218 -0.007089509 0.001144101 222 218 0.003980742 -0.0006424099 223 218 -0.002541777 0.0004101906 224 218 0.001760065 -0.0002840383 225 218 -0.001288661 0.0002079635 226 218 0.0009826448 -0.0001585787 227 218 -0.0007727812 0.000124711 228 218 0.0006226054 -0.0001004757 229 218 -0.0005114288 8.253411e-05 230 218 0.0004268045 -6.887749e-05 231 218 -0.0003608797 5.823857e-05 232 218 0.0003085011 -4.978574e-05 233 218 -0.0002661734 4.295492e-05 234 218 0.0002314578 -3.735254e-05 235 218 -0.0002026106 3.26972e-05 236 218 0.0001783582 -2.878335e-05 237 218 -0.0001577525 2.545802e-05 238 218 0.000140076 -2.26054e-05 239 218 -0.0001247774 2.013652e-05 240 218 0.0001114272 -1.798207e-05 241 218 -9.968672e-05 1.608739e-05 242 218 8.928565e-05 -1.440887e-05 299 218 0.000965371 8.226921e-05 138 219 0.0009825209 8.407245e-05 162 219 8.928565e-05 -1.440887e-05 163 219 -8.000611e-05 1.291134e-05 164 219 7.167061e-05 -1.156616e-05 165 219 -6.413319e-05 1.034978e-05 166 219 5.727273e-05 -9.242642e-06 167 219 -5.098776e-05 8.228377e-06 168 219 4.519256e-05 -7.293151e-06 169 219 -3.981401e-05 6.425164e-06 170 219 3.478917e-05 -5.614257e-06 171 219 -3.00633e-05 4.851599e-06 172 219 2.558831e-05 -4.129428e-06 173 219 -2.132146e-05 3.440846e-06 174 219 1.722429e-05 -2.779647e-06 175 219 -1.326172e-05 2.14017e-06 176 219 9.401297e-06 -1.517176e-06 177 219 -5.612495e-06 9.057414e-07 178 219 1.866144e-06 -3.011573e-07 179 219 1.866144e-06 -3.011573e-07 180 219 -5.612495e-06 9.057414e-07 181 219 9.401297e-06 -1.517176e-06 182 219 -1.326172e-05 2.14017e-06 183 219 1.722429e-05 -2.779647e-06 184 219 -2.132146e-05 3.440846e-06 185 219 2.558831e-05 -4.129428e-06 186 219 -3.00633e-05 4.851599e-06 187 219 3.478917e-05 -5.614257e-06 188 219 -3.981401e-05 6.425164e-06 189 219 4.519256e-05 -7.293151e-06 190 219 -5.098776e-05 8.228377e-06 191 219 5.727273e-05 -9.242642e-06 192 219 -6.413319e-05 1.034978e-05 193 219 7.167061e-05 -1.156616e-05 194 219 -8.000611e-05 1.291134e-05 195 219 8.928565e-05 -1.440887e-05 196 219 -9.968672e-05 1.608739e-05 197 219 0.0001114272 -1.798207e-05 198 219 -0.0001247774 2.013652e-05 199 219 0.000140076 -2.26054e-05 200 219 -0.0001577525 2.545802e-05 201 219 0.0001783582 -2.878335e-05 202 219 -0.0002026106 3.26972e-05 203 219 0.0002314578 -3.735254e-05 204 219 -0.0002661734 4.295492e-05 205 219 0.0003085011 -4.978574e-05 206 219 -0.0003608797 5.823857e-05 207 219 0.0004268045 -6.887749e-05 208 219 -0.0005114288 8.253411e-05 209 219 0.0006226054 -0.0001004757 210 219 -0.0007727812 0.000124711 211 219 0.0009826448 -0.0001585787 212 219 -0.001288661 0.0002079635 213 219 0.001760065 -0.0002840383 214 219 -0.002541777 0.0004101906 215 219 0.003980742 -0.0006424099 216 219 -0.007089509 0.001144101 217 219 0.01597157 -0.002577484 218 219 -0.06393453 0.01031772 219 219 -0.2400956 -0.0156706 220 219 -0.06393453 0.01031772 221 219 0.01597157 -0.002577484 222 219 -0.007089509 0.001144101 223 219 0.003980742 -0.0006424099 224 219 -0.002541777 0.0004101906 225 219 0.001760065 -0.0002840383 226 219 -0.001288661 0.0002079635 227 219 0.0009826448 -0.0001585787 228 219 -0.0007727812 0.000124711 229 219 0.0006226054 -0.0001004757 230 219 -0.0005114288 8.253411e-05 231 219 0.0004268045 -6.887749e-05 232 219 -0.0003608797 5.823857e-05 233 219 0.0003085011 -4.978574e-05 234 219 -0.0002661734 4.295492e-05 235 219 0.0002314578 -3.735254e-05 236 219 -0.0002026106 3.26972e-05 237 219 0.0001783582 -2.878335e-05 238 219 -0.0001577525 2.545802e-05 239 219 0.000140076 -2.26054e-05 240 219 -0.0001247774 2.013652e-05 241 219 0.0001114272 -1.798207e-05 242 219 -9.968672e-05 1.608739e-05 300 219 0.0009825209 8.407245e-05 139 220 0.0009997581 8.589201e-05 162 220 -9.968672e-05 1.608739e-05 163 220 8.928565e-05 -1.440887e-05 164 220 -8.000611e-05 1.291134e-05 165 220 7.167061e-05 -1.156616e-05 166 220 -6.413319e-05 1.034978e-05 167 220 5.727273e-05 -9.242642e-06 168 220 -5.098776e-05 8.228377e-06 169 220 4.519256e-05 -7.293151e-06 170 220 -3.981401e-05 6.425164e-06 171 220 3.478917e-05 -5.614257e-06 172 220 -3.00633e-05 4.851599e-06 173 220 2.558831e-05 -4.129428e-06 174 220 -2.132146e-05 3.440846e-06 175 220 1.722429e-05 -2.779647e-06 176 220 -1.326172e-05 2.14017e-06 177 220 9.401297e-06 -1.517176e-06 178 220 -5.612495e-06 9.057414e-07 179 220 1.866144e-06 -3.011573e-07 180 220 1.866144e-06 -3.011573e-07 181 220 -5.612495e-06 9.057414e-07 182 220 9.401297e-06 -1.517176e-06 183 220 -1.326172e-05 2.14017e-06 184 220 1.722429e-05 -2.779647e-06 185 220 -2.132146e-05 3.440846e-06 186 220 2.558831e-05 -4.129428e-06 187 220 -3.00633e-05 4.851599e-06 188 220 3.478917e-05 -5.614257e-06 189 220 -3.981401e-05 6.425164e-06 190 220 4.519256e-05 -7.293151e-06 191 220 -5.098776e-05 8.228377e-06 192 220 5.727273e-05 -9.242642e-06 193 220 -6.413319e-05 1.034978e-05 194 220 7.167061e-05 -1.156616e-05 195 220 -8.000611e-05 1.291134e-05 196 220 8.928565e-05 -1.440887e-05 197 220 -9.968672e-05 1.608739e-05 198 220 0.0001114272 -1.798207e-05 199 220 -0.0001247774 2.013652e-05 200 220 0.000140076 -2.26054e-05 201 220 -0.0001577525 2.545802e-05 202 220 0.0001783582 -2.878335e-05 203 220 -0.0002026106 3.26972e-05 204 220 0.0002314578 -3.735254e-05 205 220 -0.0002661734 4.295492e-05 206 220 0.0003085011 -4.978574e-05 207 220 -0.0003608797 5.823857e-05 208 220 0.0004268045 -6.887749e-05 209 220 -0.0005114288 8.253411e-05 210 220 0.0006226054 -0.0001004757 211 220 -0.0007727812 0.000124711 212 220 0.0009826448 -0.0001585787 213 220 -0.001288661 0.0002079635 214 220 0.001760065 -0.0002840383 215 220 -0.002541777 0.0004101906 216 220 0.003980742 -0.0006424099 217 220 -0.007089509 0.001144101 218 220 0.01597157 -0.002577484 219 220 -0.06393453 0.01031772 220 220 -0.2398487 -0.01576676 221 220 -0.06393453 0.01031772 222 220 0.01597157 -0.002577484 223 220 -0.007089509 0.001144101 224 220 0.003980742 -0.0006424099 225 220 -0.002541777 0.0004101906 226 220 0.001760065 -0.0002840383 227 220 -0.001288661 0.0002079635 228 220 0.0009826448 -0.0001585787 229 220 -0.0007727812 0.000124711 230 220 0.0006226054 -0.0001004757 231 220 -0.0005114288 8.253411e-05 232 220 0.0004268045 -6.887749e-05 233 220 -0.0003608797 5.823857e-05 234 220 0.0003085011 -4.978574e-05 235 220 -0.0002661734 4.295492e-05 236 220 0.0002314578 -3.735254e-05 237 220 -0.0002026106 3.26972e-05 238 220 0.0001783582 -2.878335e-05 239 220 -0.0001577525 2.545802e-05 240 220 0.000140076 -2.26054e-05 241 220 -0.0001247774 2.013652e-05 242 220 0.0001114272 -1.798207e-05 301 220 0.0009997581 8.589201e-05 140 221 0.001017083 8.772801e-05 162 221 0.0001114272 -1.798207e-05 163 221 -9.968672e-05 1.608739e-05 164 221 8.928565e-05 -1.440887e-05 165 221 -8.000611e-05 1.291134e-05 166 221 7.167061e-05 -1.156616e-05 167 221 -6.413319e-05 1.034978e-05 168 221 5.727273e-05 -9.242642e-06 169 221 -5.098776e-05 8.228377e-06 170 221 4.519256e-05 -7.293151e-06 171 221 -3.981401e-05 6.425164e-06 172 221 3.478917e-05 -5.614257e-06 173 221 -3.00633e-05 4.851599e-06 174 221 2.558831e-05 -4.129428e-06 175 221 -2.132146e-05 3.440846e-06 176 221 1.722429e-05 -2.779647e-06 177 221 -1.326172e-05 2.14017e-06 178 221 9.401297e-06 -1.517176e-06 179 221 -5.612495e-06 9.057414e-07 180 221 1.866144e-06 -3.011573e-07 181 221 1.866144e-06 -3.011573e-07 182 221 -5.612495e-06 9.057414e-07 183 221 9.401297e-06 -1.517176e-06 184 221 -1.326172e-05 2.14017e-06 185 221 1.722429e-05 -2.779647e-06 186 221 -2.132146e-05 3.440846e-06 187 221 2.558831e-05 -4.129428e-06 188 221 -3.00633e-05 4.851599e-06 189 221 3.478917e-05 -5.614257e-06 190 221 -3.981401e-05 6.425164e-06 191 221 4.519256e-05 -7.293151e-06 192 221 -5.098776e-05 8.228377e-06 193 221 5.727273e-05 -9.242642e-06 194 221 -6.413319e-05 1.034978e-05 195 221 7.167061e-05 -1.156616e-05 196 221 -8.000611e-05 1.291134e-05 197 221 8.928565e-05 -1.440887e-05 198 221 -9.968672e-05 1.608739e-05 199 221 0.0001114272 -1.798207e-05 200 221 -0.0001247774 2.013652e-05 201 221 0.000140076 -2.26054e-05 202 221 -0.0001577525 2.545802e-05 203 221 0.0001783582 -2.878335e-05 204 221 -0.0002026106 3.26972e-05 205 221 0.0002314578 -3.735254e-05 206 221 -0.0002661734 4.295492e-05 207 221 0.0003085011 -4.978574e-05 208 221 -0.0003608797 5.823857e-05 209 221 0.0004268045 -6.887749e-05 210 221 -0.0005114288 8.253411e-05 211 221 0.0006226054 -0.0001004757 212 221 -0.0007727812 0.000124711 213 221 0.0009826448 -0.0001585787 214 221 -0.001288661 0.0002079635 215 221 0.001760065 -0.0002840383 216 221 -0.002541777 0.0004101906 217 221 0.003980742 -0.0006424099 218 221 -0.007089509 0.001144101 219 221 0.01597157 -0.002577484 220 221 -0.06393453 0.01031772 221 221 -0.2396241 -0.01585626 222 221 -0.06393453 0.01031772 223 221 0.01597157 -0.002577484 224 221 -0.007089509 0.001144101 225 221 0.003980742 -0.0006424099 226 221 -0.002541777 0.0004101906 227 221 0.001760065 -0.0002840383 228 221 -0.001288661 0.0002079635 229 221 0.0009826448 -0.0001585787 230 221 -0.0007727812 0.000124711 231 221 0.0006226054 -0.0001004757 232 221 -0.0005114288 8.253411e-05 233 221 0.0004268045 -6.887749e-05 234 221 -0.0003608797 5.823857e-05 235 221 0.0003085011 -4.978574e-05 236 221 -0.0002661734 4.295492e-05 237 221 0.0002314578 -3.735254e-05 238 221 -0.0002026106 3.26972e-05 239 221 0.0001783582 -2.878335e-05 240 221 -0.0001577525 2.545802e-05 241 221 0.000140076 -2.26054e-05 242 221 -0.0001247774 2.013652e-05 302 221 0.001017083 8.772801e-05 141 222 0.001034496 8.958057e-05 162 222 -0.0001247774 2.013652e-05 163 222 0.0001114272 -1.798207e-05 164 222 -9.968672e-05 1.608739e-05 165 222 8.928565e-05 -1.440887e-05 166 222 -8.000611e-05 1.291134e-05 167 222 7.167061e-05 -1.156616e-05 168 222 -6.413319e-05 1.034978e-05 169 222 5.727273e-05 -9.242642e-06 170 222 -5.098776e-05 8.228377e-06 171 222 4.519256e-05 -7.293151e-06 172 222 -3.981401e-05 6.425164e-06 173 222 3.478917e-05 -5.614257e-06 174 222 -3.00633e-05 4.851599e-06 175 222 2.558831e-05 -4.129428e-06 176 222 -2.132146e-05 3.440846e-06 177 222 1.722429e-05 -2.779647e-06 178 222 -1.326172e-05 2.14017e-06 179 222 9.401297e-06 -1.517176e-06 180 222 -5.612495e-06 9.057414e-07 181 222 1.866144e-06 -3.011573e-07 182 222 1.866144e-06 -3.011573e-07 183 222 -5.612495e-06 9.057414e-07 184 222 9.401297e-06 -1.517176e-06 185 222 -1.326172e-05 2.14017e-06 186 222 1.722429e-05 -2.779647e-06 187 222 -2.132146e-05 3.440846e-06 188 222 2.558831e-05 -4.129428e-06 189 222 -3.00633e-05 4.851599e-06 190 222 3.478917e-05 -5.614257e-06 191 222 -3.981401e-05 6.425164e-06 192 222 4.519256e-05 -7.293151e-06 193 222 -5.098776e-05 8.228377e-06 194 222 5.727273e-05 -9.242642e-06 195 222 -6.413319e-05 1.034978e-05 196 222 7.167061e-05 -1.156616e-05 197 222 -8.000611e-05 1.291134e-05 198 222 8.928565e-05 -1.440887e-05 199 222 -9.968672e-05 1.608739e-05 200 222 0.0001114272 -1.798207e-05 201 222 -0.0001247774 2.013652e-05 202 222 0.000140076 -2.26054e-05 203 222 -0.0001577525 2.545802e-05 204 222 0.0001783582 -2.878335e-05 205 222 -0.0002026106 3.26972e-05 206 222 0.0002314578 -3.735254e-05 207 222 -0.0002661734 4.295492e-05 208 222 0.0003085011 -4.978574e-05 209 222 -0.0003608797 5.823857e-05 210 222 0.0004268045 -6.887749e-05 211 222 -0.0005114288 8.253411e-05 212 222 0.0006226054 -0.0001004757 213 222 -0.0007727812 0.000124711 214 222 0.0009826448 -0.0001585787 215 222 -0.001288661 0.0002079635 216 222 0.001760065 -0.0002840383 217 222 -0.002541777 0.0004101906 218 222 0.003980742 -0.0006424099 219 222 -0.007089509 0.001144101 220 222 0.01597157 -0.002577484 221 222 -0.06393453 0.01031772 222 222 -0.2394199 -0.01593952 223 222 -0.06393453 0.01031772 224 222 0.01597157 -0.002577484 225 222 -0.007089509 0.001144101 226 222 0.003980742 -0.0006424099 227 222 -0.002541777 0.0004101906 228 222 0.001760065 -0.0002840383 229 222 -0.001288661 0.0002079635 230 222 0.0009826448 -0.0001585787 231 222 -0.0007727812 0.000124711 232 222 0.0006226054 -0.0001004757 233 222 -0.0005114288 8.253411e-05 234 222 0.0004268045 -6.887749e-05 235 222 -0.0003608797 5.823857e-05 236 222 0.0003085011 -4.978574e-05 237 222 -0.0002661734 4.295492e-05 238 222 0.0002314578 -3.735254e-05 239 222 -0.0002026106 3.26972e-05 240 222 0.0001783582 -2.878335e-05 241 222 -0.0001577525 2.545802e-05 242 222 0.000140076 -2.26054e-05 303 222 0.001034496 8.958057e-05 142 223 0.001051997 9.144981e-05 162 223 0.000140076 -2.26054e-05 163 223 -0.0001247774 2.013652e-05 164 223 0.0001114272 -1.798207e-05 165 223 -9.968672e-05 1.608739e-05 166 223 8.928565e-05 -1.440887e-05 167 223 -8.000611e-05 1.291134e-05 168 223 7.167061e-05 -1.156616e-05 169 223 -6.413319e-05 1.034978e-05 170 223 5.727273e-05 -9.242642e-06 171 223 -5.098776e-05 8.228377e-06 172 223 4.519256e-05 -7.293151e-06 173 223 -3.981401e-05 6.425164e-06 174 223 3.478917e-05 -5.614257e-06 175 223 -3.00633e-05 4.851599e-06 176 223 2.558831e-05 -4.129428e-06 177 223 -2.132146e-05 3.440846e-06 178 223 1.722429e-05 -2.779647e-06 179 223 -1.326172e-05 2.14017e-06 180 223 9.401297e-06 -1.517176e-06 181 223 -5.612495e-06 9.057414e-07 182 223 1.866144e-06 -3.011573e-07 183 223 1.866144e-06 -3.011573e-07 184 223 -5.612495e-06 9.057414e-07 185 223 9.401297e-06 -1.517176e-06 186 223 -1.326172e-05 2.14017e-06 187 223 1.722429e-05 -2.779647e-06 188 223 -2.132146e-05 3.440846e-06 189 223 2.558831e-05 -4.129428e-06 190 223 -3.00633e-05 4.851599e-06 191 223 3.478917e-05 -5.614257e-06 192 223 -3.981401e-05 6.425164e-06 193 223 4.519256e-05 -7.293151e-06 194 223 -5.098776e-05 8.228377e-06 195 223 5.727273e-05 -9.242642e-06 196 223 -6.413319e-05 1.034978e-05 197 223 7.167061e-05 -1.156616e-05 198 223 -8.000611e-05 1.291134e-05 199 223 8.928565e-05 -1.440887e-05 200 223 -9.968672e-05 1.608739e-05 201 223 0.0001114272 -1.798207e-05 202 223 -0.0001247774 2.013652e-05 203 223 0.000140076 -2.26054e-05 204 223 -0.0001577525 2.545802e-05 205 223 0.0001783582 -2.878335e-05 206 223 -0.0002026106 3.26972e-05 207 223 0.0002314578 -3.735254e-05 208 223 -0.0002661734 4.295492e-05 209 223 0.0003085011 -4.978574e-05 210 223 -0.0003608797 5.823857e-05 211 223 0.0004268045 -6.887749e-05 212 223 -0.0005114288 8.253411e-05 213 223 0.0006226054 -0.0001004757 214 223 -0.0007727812 0.000124711 215 223 0.0009826448 -0.0001585787 216 223 -0.001288661 0.0002079635 217 223 0.001760065 -0.0002840383 218 223 -0.002541777 0.0004101906 219 223 0.003980742 -0.0006424099 220 223 -0.007089509 0.001144101 221 223 0.01597157 -0.002577484 222 223 -0.06393453 0.01031772 223 223 -0.2392343 -0.01601691 224 223 -0.06393453 0.01031772 225 223 0.01597157 -0.002577484 226 223 -0.007089509 0.001144101 227 223 0.003980742 -0.0006424099 228 223 -0.002541777 0.0004101906 229 223 0.001760065 -0.0002840383 230 223 -0.001288661 0.0002079635 231 223 0.0009826448 -0.0001585787 232 223 -0.0007727812 0.000124711 233 223 0.0006226054 -0.0001004757 234 223 -0.0005114288 8.253411e-05 235 223 0.0004268045 -6.887749e-05 236 223 -0.0003608797 5.823857e-05 237 223 0.0003085011 -4.978574e-05 238 223 -0.0002661734 4.295492e-05 239 223 0.0002314578 -3.735254e-05 240 223 -0.0002026106 3.26972e-05 241 223 0.0001783582 -2.878335e-05 242 223 -0.0001577525 2.545802e-05 304 223 0.001051997 9.144981e-05 143 224 0.001069588 9.333586e-05 162 224 -0.0001577525 2.545802e-05 163 224 0.000140076 -2.26054e-05 164 224 -0.0001247774 2.013652e-05 165 224 0.0001114272 -1.798207e-05 166 224 -9.968672e-05 1.608739e-05 167 224 8.928565e-05 -1.440887e-05 168 224 -8.000611e-05 1.291134e-05 169 224 7.167061e-05 -1.156616e-05 170 224 -6.413319e-05 1.034978e-05 171 224 5.727273e-05 -9.242642e-06 172 224 -5.098776e-05 8.228377e-06 173 224 4.519256e-05 -7.293151e-06 174 224 -3.981401e-05 6.425164e-06 175 224 3.478917e-05 -5.614257e-06 176 224 -3.00633e-05 4.851599e-06 177 224 2.558831e-05 -4.129428e-06 178 224 -2.132146e-05 3.440846e-06 179 224 1.722429e-05 -2.779647e-06 180 224 -1.326172e-05 2.14017e-06 181 224 9.401297e-06 -1.517176e-06 182 224 -5.612495e-06 9.057414e-07 183 224 1.866144e-06 -3.011573e-07 184 224 1.866144e-06 -3.011573e-07 185 224 -5.612495e-06 9.057414e-07 186 224 9.401297e-06 -1.517176e-06 187 224 -1.326172e-05 2.14017e-06 188 224 1.722429e-05 -2.779647e-06 189 224 -2.132146e-05 3.440846e-06 190 224 2.558831e-05 -4.129428e-06 191 224 -3.00633e-05 4.851599e-06 192 224 3.478917e-05 -5.614257e-06 193 224 -3.981401e-05 6.425164e-06 194 224 4.519256e-05 -7.293151e-06 195 224 -5.098776e-05 8.228377e-06 196 224 5.727273e-05 -9.242642e-06 197 224 -6.413319e-05 1.034978e-05 198 224 7.167061e-05 -1.156616e-05 199 224 -8.000611e-05 1.291134e-05 200 224 8.928565e-05 -1.440887e-05 201 224 -9.968672e-05 1.608739e-05 202 224 0.0001114272 -1.798207e-05 203 224 -0.0001247774 2.013652e-05 204 224 0.000140076 -2.26054e-05 205 224 -0.0001577525 2.545802e-05 206 224 0.0001783582 -2.878335e-05 207 224 -0.0002026106 3.26972e-05 208 224 0.0002314578 -3.735254e-05 209 224 -0.0002661734 4.295492e-05 210 224 0.0003085011 -4.978574e-05 211 224 -0.0003608797 5.823857e-05 212 224 0.0004268045 -6.887749e-05 213 224 -0.0005114288 8.253411e-05 214 224 0.0006226054 -0.0001004757 215 224 -0.0007727812 0.000124711 216 224 0.0009826448 -0.0001585787 217 224 -0.001288661 0.0002079635 218 224 0.001760065 -0.0002840383 219 224 -0.002541777 0.0004101906 220 224 0.003980742 -0.0006424099 221 224 -0.007089509 0.001144101 222 224 0.01597157 -0.002577484 223 224 -0.06393453 0.01031772 224 224 -0.2390655 -0.01608881 225 224 -0.06393453 0.01031772 226 224 0.01597157 -0.002577484 227 224 -0.007089509 0.001144101 228 224 0.003980742 -0.0006424099 229 224 -0.002541777 0.0004101906 230 224 0.001760065 -0.0002840383 231 224 -0.001288661 0.0002079635 232 224 0.0009826448 -0.0001585787 233 224 -0.0007727812 0.000124711 234 224 0.0006226054 -0.0001004757 235 224 -0.0005114288 8.253411e-05 236 224 0.0004268045 -6.887749e-05 237 224 -0.0003608797 5.823857e-05 238 224 0.0003085011 -4.978574e-05 239 224 -0.0002661734 4.295492e-05 240 224 0.0002314578 -3.735254e-05 241 224 -0.0002026106 3.26972e-05 242 224 0.0001783582 -2.878335e-05 305 224 0.001069588 9.333586e-05 144 225 0.001087268 9.523884e-05 162 225 0.0001783582 -2.878335e-05 163 225 -0.0001577525 2.545802e-05 164 225 0.000140076 -2.26054e-05 165 225 -0.0001247774 2.013652e-05 166 225 0.0001114272 -1.798207e-05 167 225 -9.968672e-05 1.608739e-05 168 225 8.928565e-05 -1.440887e-05 169 225 -8.000611e-05 1.291134e-05 170 225 7.167061e-05 -1.156616e-05 171 225 -6.413319e-05 1.034978e-05 172 225 5.727273e-05 -9.242642e-06 173 225 -5.098776e-05 8.228377e-06 174 225 4.519256e-05 -7.293151e-06 175 225 -3.981401e-05 6.425164e-06 176 225 3.478917e-05 -5.614257e-06 177 225 -3.00633e-05 4.851599e-06 178 225 2.558831e-05 -4.129428e-06 179 225 -2.132146e-05 3.440846e-06 180 225 1.722429e-05 -2.779647e-06 181 225 -1.326172e-05 2.14017e-06 182 225 9.401297e-06 -1.517176e-06 183 225 -5.612495e-06 9.057414e-07 184 225 1.866144e-06 -3.011573e-07 185 225 1.866144e-06 -3.011573e-07 186 225 -5.612495e-06 9.057414e-07 187 225 9.401297e-06 -1.517176e-06 188 225 -1.326172e-05 2.14017e-06 189 225 1.722429e-05 -2.779647e-06 190 225 -2.132146e-05 3.440846e-06 191 225 2.558831e-05 -4.129428e-06 192 225 -3.00633e-05 4.851599e-06 193 225 3.478917e-05 -5.614257e-06 194 225 -3.981401e-05 6.425164e-06 195 225 4.519256e-05 -7.293151e-06 196 225 -5.098776e-05 8.228377e-06 197 225 5.727273e-05 -9.242642e-06 198 225 -6.413319e-05 1.034978e-05 199 225 7.167061e-05 -1.156616e-05 200 225 -8.000611e-05 1.291134e-05 201 225 8.928565e-05 -1.440887e-05 202 225 -9.968672e-05 1.608739e-05 203 225 0.0001114272 -1.798207e-05 204 225 -0.0001247774 2.013652e-05 205 225 0.000140076 -2.26054e-05 206 225 -0.0001577525 2.545802e-05 207 225 0.0001783582 -2.878335e-05 208 225 -0.0002026106 3.26972e-05 209 225 0.0002314578 -3.735254e-05 210 225 -0.0002661734 4.295492e-05 211 225 0.0003085011 -4.978574e-05 212 225 -0.0003608797 5.823857e-05 213 225 0.0004268045 -6.887749e-05 214 225 -0.0005114288 8.253411e-05 215 225 0.0006226054 -0.0001004757 216 225 -0.0007727812 0.000124711 217 225 0.0009826448 -0.0001585787 218 225 -0.001288661 0.0002079635 219 225 0.001760065 -0.0002840383 220 225 -0.002541777 0.0004101906 221 225 0.003980742 -0.0006424099 222 225 -0.007089509 0.001144101 223 225 0.01597157 -0.002577484 224 225 -0.06393453 0.01031772 225 225 -0.2389122 -0.01615558 226 225 -0.06393453 0.01031772 227 225 0.01597157 -0.002577484 228 225 -0.007089509 0.001144101 229 225 0.003980742 -0.0006424099 230 225 -0.002541777 0.0004101906 231 225 0.001760065 -0.0002840383 232 225 -0.001288661 0.0002079635 233 225 0.0009826448 -0.0001585787 234 225 -0.0007727812 0.000124711 235 225 0.0006226054 -0.0001004757 236 225 -0.0005114288 8.253411e-05 237 225 0.0004268045 -6.887749e-05 238 225 -0.0003608797 5.823857e-05 239 225 0.0003085011 -4.978574e-05 240 225 -0.0002661734 4.295492e-05 241 225 0.0002314578 -3.735254e-05 242 225 -0.0002026106 3.26972e-05 306 225 0.001087268 9.523884e-05 145 226 0.001105038 9.715887e-05 162 226 -0.0002026106 3.26972e-05 163 226 0.0001783582 -2.878335e-05 164 226 -0.0001577525 2.545802e-05 165 226 0.000140076 -2.26054e-05 166 226 -0.0001247774 2.013652e-05 167 226 0.0001114272 -1.798207e-05 168 226 -9.968672e-05 1.608739e-05 169 226 8.928565e-05 -1.440887e-05 170 226 -8.000611e-05 1.291134e-05 171 226 7.167061e-05 -1.156616e-05 172 226 -6.413319e-05 1.034978e-05 173 226 5.727273e-05 -9.242642e-06 174 226 -5.098776e-05 8.228377e-06 175 226 4.519256e-05 -7.293151e-06 176 226 -3.981401e-05 6.425164e-06 177 226 3.478917e-05 -5.614257e-06 178 226 -3.00633e-05 4.851599e-06 179 226 2.558831e-05 -4.129428e-06 180 226 -2.132146e-05 3.440846e-06 181 226 1.722429e-05 -2.779647e-06 182 226 -1.326172e-05 2.14017e-06 183 226 9.401297e-06 -1.517176e-06 184 226 -5.612495e-06 9.057414e-07 185 226 1.866144e-06 -3.011573e-07 186 226 1.866144e-06 -3.011573e-07 187 226 -5.612495e-06 9.057414e-07 188 226 9.401297e-06 -1.517176e-06 189 226 -1.326172e-05 2.14017e-06 190 226 1.722429e-05 -2.779647e-06 191 226 -2.132146e-05 3.440846e-06 192 226 2.558831e-05 -4.129428e-06 193 226 -3.00633e-05 4.851599e-06 194 226 3.478917e-05 -5.614257e-06 195 226 -3.981401e-05 6.425164e-06 196 226 4.519256e-05 -7.293151e-06 197 226 -5.098776e-05 8.228377e-06 198 226 5.727273e-05 -9.242642e-06 199 226 -6.413319e-05 1.034978e-05 200 226 7.167061e-05 -1.156616e-05 201 226 -8.000611e-05 1.291134e-05 202 226 8.928565e-05 -1.440887e-05 203 226 -9.968672e-05 1.608739e-05 204 226 0.0001114272 -1.798207e-05 205 226 -0.0001247774 2.013652e-05 206 226 0.000140076 -2.26054e-05 207 226 -0.0001577525 2.545802e-05 208 226 0.0001783582 -2.878335e-05 209 226 -0.0002026106 3.26972e-05 210 226 0.0002314578 -3.735254e-05 211 226 -0.0002661734 4.295492e-05 212 226 0.0003085011 -4.978574e-05 213 226 -0.0003608797 5.823857e-05 214 226 0.0004268045 -6.887749e-05 215 226 -0.0005114288 8.253411e-05 216 226 0.0006226054 -0.0001004757 217 226 -0.0007727812 0.000124711 218 226 0.0009826448 -0.0001585787 219 226 -0.001288661 0.0002079635 220 226 0.001760065 -0.0002840383 221 226 -0.002541777 0.0004101906 222 226 0.003980742 -0.0006424099 223 226 -0.007089509 0.001144101 224 226 0.01597157 -0.002577484 225 226 -0.06393453 0.01031772 226 226 -0.2387729 -0.01621755 227 226 -0.06393453 0.01031772 228 226 0.01597157 -0.002577484 229 226 -0.007089509 0.001144101 230 226 0.003980742 -0.0006424099 231 226 -0.002541777 0.0004101906 232 226 0.001760065 -0.0002840383 233 226 -0.001288661 0.0002079635 234 226 0.0009826448 -0.0001585787 235 226 -0.0007727812 0.000124711 236 226 0.0006226054 -0.0001004757 237 226 -0.0005114288 8.253411e-05 238 226 0.0004268045 -6.887749e-05 239 226 -0.0003608797 5.823857e-05 240 226 0.0003085011 -4.978574e-05 241 226 -0.0002661734 4.295492e-05 242 226 0.0002314578 -3.735254e-05 307 226 0.001105038 9.715887e-05 146 227 0.001122898 9.909608e-05 162 227 0.0002314578 -3.735254e-05 163 227 -0.0002026106 3.26972e-05 164 227 0.0001783582 -2.878335e-05 165 227 -0.0001577525 2.545802e-05 166 227 0.000140076 -2.26054e-05 167 227 -0.0001247774 2.013652e-05 168 227 0.0001114272 -1.798207e-05 169 227 -9.968672e-05 1.608739e-05 170 227 8.928565e-05 -1.440887e-05 171 227 -8.000611e-05 1.291134e-05 172 227 7.167061e-05 -1.156616e-05 173 227 -6.413319e-05 1.034978e-05 174 227 5.727273e-05 -9.242642e-06 175 227 -5.098776e-05 8.228377e-06 176 227 4.519256e-05 -7.293151e-06 177 227 -3.981401e-05 6.425164e-06 178 227 3.478917e-05 -5.614257e-06 179 227 -3.00633e-05 4.851599e-06 180 227 2.558831e-05 -4.129428e-06 181 227 -2.132146e-05 3.440846e-06 182 227 1.722429e-05 -2.779647e-06 183 227 -1.326172e-05 2.14017e-06 184 227 9.401297e-06 -1.517176e-06 185 227 -5.612495e-06 9.057414e-07 186 227 1.866144e-06 -3.011573e-07 187 227 1.866144e-06 -3.011573e-07 188 227 -5.612495e-06 9.057414e-07 189 227 9.401297e-06 -1.517176e-06 190 227 -1.326172e-05 2.14017e-06 191 227 1.722429e-05 -2.779647e-06 192 227 -2.132146e-05 3.440846e-06 193 227 2.558831e-05 -4.129428e-06 194 227 -3.00633e-05 4.851599e-06 195 227 3.478917e-05 -5.614257e-06 196 227 -3.981401e-05 6.425164e-06 197 227 4.519256e-05 -7.293151e-06 198 227 -5.098776e-05 8.228377e-06 199 227 5.727273e-05 -9.242642e-06 200 227 -6.413319e-05 1.034978e-05 201 227 7.167061e-05 -1.156616e-05 202 227 -8.000611e-05 1.291134e-05 203 227 8.928565e-05 -1.440887e-05 204 227 -9.968672e-05 1.608739e-05 205 227 0.0001114272 -1.798207e-05 206 227 -0.0001247774 2.013652e-05 207 227 0.000140076 -2.26054e-05 208 227 -0.0001577525 2.545802e-05 209 227 0.0001783582 -2.878335e-05 210 227 -0.0002026106 3.26972e-05 211 227 0.0002314578 -3.735254e-05 212 227 -0.0002661734 4.295492e-05 213 227 0.0003085011 -4.978574e-05 214 227 -0.0003608797 5.823857e-05 215 227 0.0004268045 -6.887749e-05 216 227 -0.0005114288 8.253411e-05 217 227 0.0006226054 -0.0001004757 218 227 -0.0007727812 0.000124711 219 227 0.0009826448 -0.0001585787 220 227 -0.001288661 0.0002079635 221 227 0.001760065 -0.0002840383 222 227 -0.002541777 0.0004101906 223 227 0.003980742 -0.0006424099 224 227 -0.007089509 0.001144101 225 227 0.01597157 -0.002577484 226 227 -0.06393453 0.01031772 227 227 -0.2386463 -0.01627503 228 227 -0.06393453 0.01031772 229 227 0.01597157 -0.002577484 230 227 -0.007089509 0.001144101 231 227 0.003980742 -0.0006424099 232 227 -0.002541777 0.0004101906 233 227 0.001760065 -0.0002840383 234 227 -0.001288661 0.0002079635 235 227 0.0009826448 -0.0001585787 236 227 -0.0007727812 0.000124711 237 227 0.0006226054 -0.0001004757 238 227 -0.0005114288 8.253411e-05 239 227 0.0004268045 -6.887749e-05 240 227 -0.0003608797 5.823857e-05 241 227 0.0003085011 -4.978574e-05 242 227 -0.0002661734 4.295492e-05 308 227 0.001122898 9.909608e-05 147 228 0.001140849 0.0001010506 162 228 -0.0002661734 4.295492e-05 163 228 0.0002314578 -3.735254e-05 164 228 -0.0002026106 3.26972e-05 165 228 0.0001783582 -2.878335e-05 166 228 -0.0001577525 2.545802e-05 167 228 0.000140076 -2.26054e-05 168 228 -0.0001247774 2.013652e-05 169 228 0.0001114272 -1.798207e-05 170 228 -9.968672e-05 1.608739e-05 171 228 8.928565e-05 -1.440887e-05 172 228 -8.000611e-05 1.291134e-05 173 228 7.167061e-05 -1.156616e-05 174 228 -6.413319e-05 1.034978e-05 175 228 5.727273e-05 -9.242642e-06 176 228 -5.098776e-05 8.228377e-06 177 228 4.519256e-05 -7.293151e-06 178 228 -3.981401e-05 6.425164e-06 179 228 3.478917e-05 -5.614257e-06 180 228 -3.00633e-05 4.851599e-06 181 228 2.558831e-05 -4.129428e-06 182 228 -2.132146e-05 3.440846e-06 183 228 1.722429e-05 -2.779647e-06 184 228 -1.326172e-05 2.14017e-06 185 228 9.401297e-06 -1.517176e-06 186 228 -5.612495e-06 9.057414e-07 187 228 1.866144e-06 -3.011573e-07 188 228 1.866144e-06 -3.011573e-07 189 228 -5.612495e-06 9.057414e-07 190 228 9.401297e-06 -1.517176e-06 191 228 -1.326172e-05 2.14017e-06 192 228 1.722429e-05 -2.779647e-06 193 228 -2.132146e-05 3.440846e-06 194 228 2.558831e-05 -4.129428e-06 195 228 -3.00633e-05 4.851599e-06 196 228 3.478917e-05 -5.614257e-06 197 228 -3.981401e-05 6.425164e-06 198 228 4.519256e-05 -7.293151e-06 199 228 -5.098776e-05 8.228377e-06 200 228 5.727273e-05 -9.242642e-06 201 228 -6.413319e-05 1.034978e-05 202 228 7.167061e-05 -1.156616e-05 203 228 -8.000611e-05 1.291134e-05 204 228 8.928565e-05 -1.440887e-05 205 228 -9.968672e-05 1.608739e-05 206 228 0.0001114272 -1.798207e-05 207 228 -0.0001247774 2.013652e-05 208 228 0.000140076 -2.26054e-05 209 228 -0.0001577525 2.545802e-05 210 228 0.0001783582 -2.878335e-05 211 228 -0.0002026106 3.26972e-05 212 228 0.0002314578 -3.735254e-05 213 228 -0.0002661734 4.295492e-05 214 228 0.0003085011 -4.978574e-05 215 228 -0.0003608797 5.823857e-05 216 228 0.0004268045 -6.887749e-05 217 228 -0.0005114288 8.253411e-05 218 228 0.0006226054 -0.0001004757 219 228 -0.0007727812 0.000124711 220 228 0.0009826448 -0.0001585787 221 228 -0.001288661 0.0002079635 222 228 0.001760065 -0.0002840383 223 228 -0.002541777 0.0004101906 224 228 0.003980742 -0.0006424099 225 228 -0.007089509 0.001144101 226 228 0.01597157 -0.002577484 227 228 -0.06393453 0.01031772 228 228 -0.2385312 -0.01632833 229 228 -0.06393453 0.01031772 230 228 0.01597157 -0.002577484 231 228 -0.007089509 0.001144101 232 228 0.003980742 -0.0006424099 233 228 -0.002541777 0.0004101906 234 228 0.001760065 -0.0002840383 235 228 -0.001288661 0.0002079635 236 228 0.0009826448 -0.0001585787 237 228 -0.0007727812 0.000124711 238 228 0.0006226054 -0.0001004757 239 228 -0.0005114288 8.253411e-05 240 228 0.0004268045 -6.887749e-05 241 228 -0.0003608797 5.823857e-05 242 228 0.0003085011 -4.978574e-05 309 228 0.001140849 0.0001010506 148 229 0.001158892 0.0001030225 162 229 0.0003085011 -4.978574e-05 163 229 -0.0002661734 4.295492e-05 164 229 0.0002314578 -3.735254e-05 165 229 -0.0002026106 3.26972e-05 166 229 0.0001783582 -2.878335e-05 167 229 -0.0001577525 2.545802e-05 168 229 0.000140076 -2.26054e-05 169 229 -0.0001247774 2.013652e-05 170 229 0.0001114272 -1.798207e-05 171 229 -9.968672e-05 1.608739e-05 172 229 8.928565e-05 -1.440887e-05 173 229 -8.000611e-05 1.291134e-05 174 229 7.167061e-05 -1.156616e-05 175 229 -6.413319e-05 1.034978e-05 176 229 5.727273e-05 -9.242642e-06 177 229 -5.098776e-05 8.228377e-06 178 229 4.519256e-05 -7.293151e-06 179 229 -3.981401e-05 6.425164e-06 180 229 3.478917e-05 -5.614257e-06 181 229 -3.00633e-05 4.851599e-06 182 229 2.558831e-05 -4.129428e-06 183 229 -2.132146e-05 3.440846e-06 184 229 1.722429e-05 -2.779647e-06 185 229 -1.326172e-05 2.14017e-06 186 229 9.401297e-06 -1.517176e-06 187 229 -5.612495e-06 9.057414e-07 188 229 1.866144e-06 -3.011573e-07 189 229 1.866144e-06 -3.011573e-07 190 229 -5.612495e-06 9.057414e-07 191 229 9.401297e-06 -1.517176e-06 192 229 -1.326172e-05 2.14017e-06 193 229 1.722429e-05 -2.779647e-06 194 229 -2.132146e-05 3.440846e-06 195 229 2.558831e-05 -4.129428e-06 196 229 -3.00633e-05 4.851599e-06 197 229 3.478917e-05 -5.614257e-06 198 229 -3.981401e-05 6.425164e-06 199 229 4.519256e-05 -7.293151e-06 200 229 -5.098776e-05 8.228377e-06 201 229 5.727273e-05 -9.242642e-06 202 229 -6.413319e-05 1.034978e-05 203 229 7.167061e-05 -1.156616e-05 204 229 -8.000611e-05 1.291134e-05 205 229 8.928565e-05 -1.440887e-05 206 229 -9.968672e-05 1.608739e-05 207 229 0.0001114272 -1.798207e-05 208 229 -0.0001247774 2.013652e-05 209 229 0.000140076 -2.26054e-05 210 229 -0.0001577525 2.545802e-05 211 229 0.0001783582 -2.878335e-05 212 229 -0.0002026106 3.26972e-05 213 229 0.0002314578 -3.735254e-05 214 229 -0.0002661734 4.295492e-05 215 229 0.0003085011 -4.978574e-05 216 229 -0.0003608797 5.823857e-05 217 229 0.0004268045 -6.887749e-05 218 229 -0.0005114288 8.253411e-05 219 229 0.0006226054 -0.0001004757 220 229 -0.0007727812 0.000124711 221 229 0.0009826448 -0.0001585787 222 229 -0.001288661 0.0002079635 223 229 0.001760065 -0.0002840383 224 229 -0.002541777 0.0004101906 225 229 0.003980742 -0.0006424099 226 229 -0.007089509 0.001144101 227 229 0.01597157 -0.002577484 228 229 -0.06393453 0.01031772 229 229 -0.2384268 -0.01637773 230 229 -0.06393453 0.01031772 231 229 0.01597157 -0.002577484 232 229 -0.007089509 0.001144101 233 229 0.003980742 -0.0006424099 234 229 -0.002541777 0.0004101906 235 229 0.001760065 -0.0002840383 236 229 -0.001288661 0.0002079635 237 229 0.0009826448 -0.0001585787 238 229 -0.0007727812 0.000124711 239 229 0.0006226054 -0.0001004757 240 229 -0.0005114288 8.253411e-05 241 229 0.0004268045 -6.887749e-05 242 229 -0.0003608797 5.823857e-05 310 229 0.001158892 0.0001030225 149 230 0.001177026 0.000105012 162 230 -0.0003608797 5.823857e-05 163 230 0.0003085011 -4.978574e-05 164 230 -0.0002661734 4.295492e-05 165 230 0.0002314578 -3.735254e-05 166 230 -0.0002026106 3.26972e-05 167 230 0.0001783582 -2.878335e-05 168 230 -0.0001577525 2.545802e-05 169 230 0.000140076 -2.26054e-05 170 230 -0.0001247774 2.013652e-05 171 230 0.0001114272 -1.798207e-05 172 230 -9.968672e-05 1.608739e-05 173 230 8.928565e-05 -1.440887e-05 174 230 -8.000611e-05 1.291134e-05 175 230 7.167061e-05 -1.156616e-05 176 230 -6.413319e-05 1.034978e-05 177 230 5.727273e-05 -9.242642e-06 178 230 -5.098776e-05 8.228377e-06 179 230 4.519256e-05 -7.293151e-06 180 230 -3.981401e-05 6.425164e-06 181 230 3.478917e-05 -5.614257e-06 182 230 -3.00633e-05 4.851599e-06 183 230 2.558831e-05 -4.129428e-06 184 230 -2.132146e-05 3.440846e-06 185 230 1.722429e-05 -2.779647e-06 186 230 -1.326172e-05 2.14017e-06 187 230 9.401297e-06 -1.517176e-06 188 230 -5.612495e-06 9.057414e-07 189 230 1.866144e-06 -3.011573e-07 190 230 1.866144e-06 -3.011573e-07 191 230 -5.612495e-06 9.057414e-07 192 230 9.401297e-06 -1.517176e-06 193 230 -1.326172e-05 2.14017e-06 194 230 1.722429e-05 -2.779647e-06 195 230 -2.132146e-05 3.440846e-06 196 230 2.558831e-05 -4.129428e-06 197 230 -3.00633e-05 4.851599e-06 198 230 3.478917e-05 -5.614257e-06 199 230 -3.981401e-05 6.425164e-06 200 230 4.519256e-05 -7.293151e-06 201 230 -5.098776e-05 8.228377e-06 202 230 5.727273e-05 -9.242642e-06 203 230 -6.413319e-05 1.034978e-05 204 230 7.167061e-05 -1.156616e-05 205 230 -8.000611e-05 1.291134e-05 206 230 8.928565e-05 -1.440887e-05 207 230 -9.968672e-05 1.608739e-05 208 230 0.0001114272 -1.798207e-05 209 230 -0.0001247774 2.013652e-05 210 230 0.000140076 -2.26054e-05 211 230 -0.0001577525 2.545802e-05 212 230 0.0001783582 -2.878335e-05 213 230 -0.0002026106 3.26972e-05 214 230 0.0002314578 -3.735254e-05 215 230 -0.0002661734 4.295492e-05 216 230 0.0003085011 -4.978574e-05 217 230 -0.0003608797 5.823857e-05 218 230 0.0004268045 -6.887749e-05 219 230 -0.0005114288 8.253411e-05 220 230 0.0006226054 -0.0001004757 221 230 -0.0007727812 0.000124711 222 230 0.0009826448 -0.0001585787 223 230 -0.001288661 0.0002079635 224 230 0.001760065 -0.0002840383 225 230 -0.002541777 0.0004101906 226 230 0.003980742 -0.0006424099 227 230 -0.007089509 0.001144101 228 230 0.01597157 -0.002577484 229 230 -0.06393453 0.01031772 230 230 -0.2383319 -0.01642349 231 230 -0.06393453 0.01031772 232 230 0.01597157 -0.002577484 233 230 -0.007089509 0.001144101 234 230 0.003980742 -0.0006424099 235 230 -0.002541777 0.0004101906 236 230 0.001760065 -0.0002840383 237 230 -0.001288661 0.0002079635 238 230 0.0009826448 -0.0001585787 239 230 -0.0007727812 0.000124711 240 230 0.0006226054 -0.0001004757 241 230 -0.0005114288 8.253411e-05 242 230 0.0004268045 -6.887749e-05 311 230 0.001177026 0.000105012 150 231 0.001195252 0.0001070192 162 231 0.0004268045 -6.887749e-05 163 231 -0.0003608797 5.823857e-05 164 231 0.0003085011 -4.978574e-05 165 231 -0.0002661734 4.295492e-05 166 231 0.0002314578 -3.735254e-05 167 231 -0.0002026106 3.26972e-05 168 231 0.0001783582 -2.878335e-05 169 231 -0.0001577525 2.545802e-05 170 231 0.000140076 -2.26054e-05 171 231 -0.0001247774 2.013652e-05 172 231 0.0001114272 -1.798207e-05 173 231 -9.968672e-05 1.608739e-05 174 231 8.928565e-05 -1.440887e-05 175 231 -8.000611e-05 1.291134e-05 176 231 7.167061e-05 -1.156616e-05 177 231 -6.413319e-05 1.034978e-05 178 231 5.727273e-05 -9.242642e-06 179 231 -5.098776e-05 8.228377e-06 180 231 4.519256e-05 -7.293151e-06 181 231 -3.981401e-05 6.425164e-06 182 231 3.478917e-05 -5.614257e-06 183 231 -3.00633e-05 4.851599e-06 184 231 2.558831e-05 -4.129428e-06 185 231 -2.132146e-05 3.440846e-06 186 231 1.722429e-05 -2.779647e-06 187 231 -1.326172e-05 2.14017e-06 188 231 9.401297e-06 -1.517176e-06 189 231 -5.612495e-06 9.057414e-07 190 231 1.866144e-06 -3.011573e-07 191 231 1.866144e-06 -3.011573e-07 192 231 -5.612495e-06 9.057414e-07 193 231 9.401297e-06 -1.517176e-06 194 231 -1.326172e-05 2.14017e-06 195 231 1.722429e-05 -2.779647e-06 196 231 -2.132146e-05 3.440846e-06 197 231 2.558831e-05 -4.129428e-06 198 231 -3.00633e-05 4.851599e-06 199 231 3.478917e-05 -5.614257e-06 200 231 -3.981401e-05 6.425164e-06 201 231 4.519256e-05 -7.293151e-06 202 231 -5.098776e-05 8.228377e-06 203 231 5.727273e-05 -9.242642e-06 204 231 -6.413319e-05 1.034978e-05 205 231 7.167061e-05 -1.156616e-05 206 231 -8.000611e-05 1.291134e-05 207 231 8.928565e-05 -1.440887e-05 208 231 -9.968672e-05 1.608739e-05 209 231 0.0001114272 -1.798207e-05 210 231 -0.0001247774 2.013652e-05 211 231 0.000140076 -2.26054e-05 212 231 -0.0001577525 2.545802e-05 213 231 0.0001783582 -2.878335e-05 214 231 -0.0002026106 3.26972e-05 215 231 0.0002314578 -3.735254e-05 216 231 -0.0002661734 4.295492e-05 217 231 0.0003085011 -4.978574e-05 218 231 -0.0003608797 5.823857e-05 219 231 0.0004268045 -6.887749e-05 220 231 -0.0005114288 8.253411e-05 221 231 0.0006226054 -0.0001004757 222 231 -0.0007727812 0.000124711 223 231 0.0009826448 -0.0001585787 224 231 -0.001288661 0.0002079635 225 231 0.001760065 -0.0002840383 226 231 -0.002541777 0.0004101906 227 231 0.003980742 -0.0006424099 228 231 -0.007089509 0.001144101 229 231 0.01597157 -0.002577484 230 231 -0.06393453 0.01031772 231 231 -0.2382457 -0.01646587 232 231 -0.06393453 0.01031772 233 231 0.01597157 -0.002577484 234 231 -0.007089509 0.001144101 235 231 0.003980742 -0.0006424099 236 231 -0.002541777 0.0004101906 237 231 0.001760065 -0.0002840383 238 231 -0.001288661 0.0002079635 239 231 0.0009826448 -0.0001585787 240 231 -0.0007727812 0.000124711 241 231 0.0006226054 -0.0001004757 242 231 -0.0005114288 8.253411e-05 312 231 0.001195252 0.0001070192 151 232 0.001213571 0.0001090442 162 232 -0.0005114288 8.253411e-05 163 232 0.0004268045 -6.887749e-05 164 232 -0.0003608797 5.823857e-05 165 232 0.0003085011 -4.978574e-05 166 232 -0.0002661734 4.295492e-05 167 232 0.0002314578 -3.735254e-05 168 232 -0.0002026106 3.26972e-05 169 232 0.0001783582 -2.878335e-05 170 232 -0.0001577525 2.545802e-05 171 232 0.000140076 -2.26054e-05 172 232 -0.0001247774 2.013652e-05 173 232 0.0001114272 -1.798207e-05 174 232 -9.968672e-05 1.608739e-05 175 232 8.928565e-05 -1.440887e-05 176 232 -8.000611e-05 1.291134e-05 177 232 7.167061e-05 -1.156616e-05 178 232 -6.413319e-05 1.034978e-05 179 232 5.727273e-05 -9.242642e-06 180 232 -5.098776e-05 8.228377e-06 181 232 4.519256e-05 -7.293151e-06 182 232 -3.981401e-05 6.425164e-06 183 232 3.478917e-05 -5.614257e-06 184 232 -3.00633e-05 4.851599e-06 185 232 2.558831e-05 -4.129428e-06 186 232 -2.132146e-05 3.440846e-06 187 232 1.722429e-05 -2.779647e-06 188 232 -1.326172e-05 2.14017e-06 189 232 9.401297e-06 -1.517176e-06 190 232 -5.612495e-06 9.057414e-07 191 232 1.866144e-06 -3.011573e-07 192 232 1.866144e-06 -3.011573e-07 193 232 -5.612495e-06 9.057414e-07 194 232 9.401297e-06 -1.517176e-06 195 232 -1.326172e-05 2.14017e-06 196 232 1.722429e-05 -2.779647e-06 197 232 -2.132146e-05 3.440846e-06 198 232 2.558831e-05 -4.129428e-06 199 232 -3.00633e-05 4.851599e-06 200 232 3.478917e-05 -5.614257e-06 201 232 -3.981401e-05 6.425164e-06 202 232 4.519256e-05 -7.293151e-06 203 232 -5.098776e-05 8.228377e-06 204 232 5.727273e-05 -9.242642e-06 205 232 -6.413319e-05 1.034978e-05 206 232 7.167061e-05 -1.156616e-05 207 232 -8.000611e-05 1.291134e-05 208 232 8.928565e-05 -1.440887e-05 209 232 -9.968672e-05 1.608739e-05 210 232 0.0001114272 -1.798207e-05 211 232 -0.0001247774 2.013652e-05 212 232 0.000140076 -2.26054e-05 213 232 -0.0001577525 2.545802e-05 214 232 0.0001783582 -2.878335e-05 215 232 -0.0002026106 3.26972e-05 216 232 0.0002314578 -3.735254e-05 217 232 -0.0002661734 4.295492e-05 218 232 0.0003085011 -4.978574e-05 219 232 -0.0003608797 5.823857e-05 220 232 0.0004268045 -6.887749e-05 221 232 -0.0005114288 8.253411e-05 222 232 0.0006226054 -0.0001004757 223 232 -0.0007727812 0.000124711 224 232 0.0009826448 -0.0001585787 225 232 -0.001288661 0.0002079635 226 232 0.001760065 -0.0002840383 227 232 -0.002541777 0.0004101906 228 232 0.003980742 -0.0006424099 229 232 -0.007089509 0.001144101 230 232 0.01597157 -0.002577484 231 232 -0.06393453 0.01031772 232 232 -0.2381674 -0.0165051 233 232 -0.06393453 0.01031772 234 232 0.01597157 -0.002577484 235 232 -0.007089509 0.001144101 236 232 0.003980742 -0.0006424099 237 232 -0.002541777 0.0004101906 238 232 0.001760065 -0.0002840383 239 232 -0.001288661 0.0002079635 240 232 0.0009826448 -0.0001585787 241 232 -0.0007727812 0.000124711 242 232 0.0006226054 -0.0001004757 313 232 0.001213571 0.0001090442 152 233 0.001231983 0.0001110871 162 233 0.0006226054 -0.0001004757 163 233 -0.0005114288 8.253411e-05 164 233 0.0004268045 -6.887749e-05 165 233 -0.0003608797 5.823857e-05 166 233 0.0003085011 -4.978574e-05 167 233 -0.0002661734 4.295492e-05 168 233 0.0002314578 -3.735254e-05 169 233 -0.0002026106 3.26972e-05 170 233 0.0001783582 -2.878335e-05 171 233 -0.0001577525 2.545802e-05 172 233 0.000140076 -2.26054e-05 173 233 -0.0001247774 2.013652e-05 174 233 0.0001114272 -1.798207e-05 175 233 -9.968672e-05 1.608739e-05 176 233 8.928565e-05 -1.440887e-05 177 233 -8.000611e-05 1.291134e-05 178 233 7.167061e-05 -1.156616e-05 179 233 -6.413319e-05 1.034978e-05 180 233 5.727273e-05 -9.242642e-06 181 233 -5.098776e-05 8.228377e-06 182 233 4.519256e-05 -7.293151e-06 183 233 -3.981401e-05 6.425164e-06 184 233 3.478917e-05 -5.614257e-06 185 233 -3.00633e-05 4.851599e-06 186 233 2.558831e-05 -4.129428e-06 187 233 -2.132146e-05 3.440846e-06 188 233 1.722429e-05 -2.779647e-06 189 233 -1.326172e-05 2.14017e-06 190 233 9.401297e-06 -1.517176e-06 191 233 -5.612495e-06 9.057414e-07 192 233 1.866144e-06 -3.011573e-07 193 233 1.866144e-06 -3.011573e-07 194 233 -5.612495e-06 9.057414e-07 195 233 9.401297e-06 -1.517176e-06 196 233 -1.326172e-05 2.14017e-06 197 233 1.722429e-05 -2.779647e-06 198 233 -2.132146e-05 3.440846e-06 199 233 2.558831e-05 -4.129428e-06 200 233 -3.00633e-05 4.851599e-06 201 233 3.478917e-05 -5.614257e-06 202 233 -3.981401e-05 6.425164e-06 203 233 4.519256e-05 -7.293151e-06 204 233 -5.098776e-05 8.228377e-06 205 233 5.727273e-05 -9.242642e-06 206 233 -6.413319e-05 1.034978e-05 207 233 7.167061e-05 -1.156616e-05 208 233 -8.000611e-05 1.291134e-05 209 233 8.928565e-05 -1.440887e-05 210 233 -9.968672e-05 1.608739e-05 211 233 0.0001114272 -1.798207e-05 212 233 -0.0001247774 2.013652e-05 213 233 0.000140076 -2.26054e-05 214 233 -0.0001577525 2.545802e-05 215 233 0.0001783582 -2.878335e-05 216 233 -0.0002026106 3.26972e-05 217 233 0.0002314578 -3.735254e-05 218 233 -0.0002661734 4.295492e-05 219 233 0.0003085011 -4.978574e-05 220 233 -0.0003608797 5.823857e-05 221 233 0.0004268045 -6.887749e-05 222 233 -0.0005114288 8.253411e-05 223 233 0.0006226054 -0.0001004757 224 233 -0.0007727812 0.000124711 225 233 0.0009826448 -0.0001585787 226 233 -0.001288661 0.0002079635 227 233 0.001760065 -0.0002840383 228 233 -0.002541777 0.0004101906 229 233 0.003980742 -0.0006424099 230 233 -0.007089509 0.001144101 231 233 0.01597157 -0.002577484 232 233 -0.06393453 0.01031772 233 233 -0.2380964 -0.0165414 234 233 -0.06393453 0.01031772 235 233 0.01597157 -0.002577484 236 233 -0.007089509 0.001144101 237 233 0.003980742 -0.0006424099 238 233 -0.002541777 0.0004101906 239 233 0.001760065 -0.0002840383 240 233 -0.001288661 0.0002079635 241 233 0.0009826448 -0.0001585787 242 233 -0.0007727812 0.000124711 314 233 0.001231983 0.0001110871 153 234 0.001250489 0.0001131481 162 234 -0.0007727812 0.000124711 163 234 0.0006226054 -0.0001004757 164 234 -0.0005114288 8.253411e-05 165 234 0.0004268045 -6.887749e-05 166 234 -0.0003608797 5.823857e-05 167 234 0.0003085011 -4.978574e-05 168 234 -0.0002661734 4.295492e-05 169 234 0.0002314578 -3.735254e-05 170 234 -0.0002026106 3.26972e-05 171 234 0.0001783582 -2.878335e-05 172 234 -0.0001577525 2.545802e-05 173 234 0.000140076 -2.26054e-05 174 234 -0.0001247774 2.013652e-05 175 234 0.0001114272 -1.798207e-05 176 234 -9.968672e-05 1.608739e-05 177 234 8.928565e-05 -1.440887e-05 178 234 -8.000611e-05 1.291134e-05 179 234 7.167061e-05 -1.156616e-05 180 234 -6.413319e-05 1.034978e-05 181 234 5.727273e-05 -9.242642e-06 182 234 -5.098776e-05 8.228377e-06 183 234 4.519256e-05 -7.293151e-06 184 234 -3.981401e-05 6.425164e-06 185 234 3.478917e-05 -5.614257e-06 186 234 -3.00633e-05 4.851599e-06 187 234 2.558831e-05 -4.129428e-06 188 234 -2.132146e-05 3.440846e-06 189 234 1.722429e-05 -2.779647e-06 190 234 -1.326172e-05 2.14017e-06 191 234 9.401297e-06 -1.517176e-06 192 234 -5.612495e-06 9.057414e-07 193 234 1.866144e-06 -3.011573e-07 194 234 1.866144e-06 -3.011573e-07 195 234 -5.612495e-06 9.057414e-07 196 234 9.401297e-06 -1.517176e-06 197 234 -1.326172e-05 2.14017e-06 198 234 1.722429e-05 -2.779647e-06 199 234 -2.132146e-05 3.440846e-06 200 234 2.558831e-05 -4.129428e-06 201 234 -3.00633e-05 4.851599e-06 202 234 3.478917e-05 -5.614257e-06 203 234 -3.981401e-05 6.425164e-06 204 234 4.519256e-05 -7.293151e-06 205 234 -5.098776e-05 8.228377e-06 206 234 5.727273e-05 -9.242642e-06 207 234 -6.413319e-05 1.034978e-05 208 234 7.167061e-05 -1.156616e-05 209 234 -8.000611e-05 1.291134e-05 210 234 8.928565e-05 -1.440887e-05 211 234 -9.968672e-05 1.608739e-05 212 234 0.0001114272 -1.798207e-05 213 234 -0.0001247774 2.013652e-05 214 234 0.000140076 -2.26054e-05 215 234 -0.0001577525 2.545802e-05 216 234 0.0001783582 -2.878335e-05 217 234 -0.0002026106 3.26972e-05 218 234 0.0002314578 -3.735254e-05 219 234 -0.0002661734 4.295492e-05 220 234 0.0003085011 -4.978574e-05 221 234 -0.0003608797 5.823857e-05 222 234 0.0004268045 -6.887749e-05 223 234 -0.0005114288 8.253411e-05 224 234 0.0006226054 -0.0001004757 225 234 -0.0007727812 0.000124711 226 234 0.0009826448 -0.0001585787 227 234 -0.001288661 0.0002079635 228 234 0.001760065 -0.0002840383 229 234 -0.002541777 0.0004101906 230 234 0.003980742 -0.0006424099 231 234 -0.007089509 0.001144101 232 234 0.01597157 -0.002577484 233 234 -0.06393453 0.01031772 234 234 -0.2380319 -0.01657498 235 234 -0.06393453 0.01031772 236 234 0.01597157 -0.002577484 237 234 -0.007089509 0.001144101 238 234 0.003980742 -0.0006424099 239 234 -0.002541777 0.0004101906 240 234 0.001760065 -0.0002840383 241 234 -0.001288661 0.0002079635 242 234 0.0009826448 -0.0001585787 315 234 0.001250489 0.0001131481 154 235 0.001269089 0.0001152273 162 235 0.0009826448 -0.0001585787 163 235 -0.0007727812 0.000124711 164 235 0.0006226054 -0.0001004757 165 235 -0.0005114288 8.253411e-05 166 235 0.0004268045 -6.887749e-05 167 235 -0.0003608797 5.823857e-05 168 235 0.0003085011 -4.978574e-05 169 235 -0.0002661734 4.295492e-05 170 235 0.0002314578 -3.735254e-05 171 235 -0.0002026106 3.26972e-05 172 235 0.0001783582 -2.878335e-05 173 235 -0.0001577525 2.545802e-05 174 235 0.000140076 -2.26054e-05 175 235 -0.0001247774 2.013652e-05 176 235 0.0001114272 -1.798207e-05 177 235 -9.968672e-05 1.608739e-05 178 235 8.928565e-05 -1.440887e-05 179 235 -8.000611e-05 1.291134e-05 180 235 7.167061e-05 -1.156616e-05 181 235 -6.413319e-05 1.034978e-05 182 235 5.727273e-05 -9.242642e-06 183 235 -5.098776e-05 8.228377e-06 184 235 4.519256e-05 -7.293151e-06 185 235 -3.981401e-05 6.425164e-06 186 235 3.478917e-05 -5.614257e-06 187 235 -3.00633e-05 4.851599e-06 188 235 2.558831e-05 -4.129428e-06 189 235 -2.132146e-05 3.440846e-06 190 235 1.722429e-05 -2.779647e-06 191 235 -1.326172e-05 2.14017e-06 192 235 9.401297e-06 -1.517176e-06 193 235 -5.612495e-06 9.057414e-07 194 235 1.866144e-06 -3.011573e-07 195 235 1.866144e-06 -3.011573e-07 196 235 -5.612495e-06 9.057414e-07 197 235 9.401297e-06 -1.517176e-06 198 235 -1.326172e-05 2.14017e-06 199 235 1.722429e-05 -2.779647e-06 200 235 -2.132146e-05 3.440846e-06 201 235 2.558831e-05 -4.129428e-06 202 235 -3.00633e-05 4.851599e-06 203 235 3.478917e-05 -5.614257e-06 204 235 -3.981401e-05 6.425164e-06 205 235 4.519256e-05 -7.293151e-06 206 235 -5.098776e-05 8.228377e-06 207 235 5.727273e-05 -9.242642e-06 208 235 -6.413319e-05 1.034978e-05 209 235 7.167061e-05 -1.156616e-05 210 235 -8.000611e-05 1.291134e-05 211 235 8.928565e-05 -1.440887e-05 212 235 -9.968672e-05 1.608739e-05 213 235 0.0001114272 -1.798207e-05 214 235 -0.0001247774 2.013652e-05 215 235 0.000140076 -2.26054e-05 216 235 -0.0001577525 2.545802e-05 217 235 0.0001783582 -2.878335e-05 218 235 -0.0002026106 3.26972e-05 219 235 0.0002314578 -3.735254e-05 220 235 -0.0002661734 4.295492e-05 221 235 0.0003085011 -4.978574e-05 222 235 -0.0003608797 5.823857e-05 223 235 0.0004268045 -6.887749e-05 224 235 -0.0005114288 8.253411e-05 225 235 0.0006226054 -0.0001004757 226 235 -0.0007727812 0.000124711 227 235 0.0009826448 -0.0001585787 228 235 -0.001288661 0.0002079635 229 235 0.001760065 -0.0002840383 230 235 -0.002541777 0.0004101906 231 235 0.003980742 -0.0006424099 232 235 -0.007089509 0.001144101 233 235 0.01597157 -0.002577484 234 235 -0.06393453 0.01031772 235 235 -0.2379733 -0.01660604 236 235 -0.06393453 0.01031772 237 235 0.01597157 -0.002577484 238 235 -0.007089509 0.001144101 239 235 0.003980742 -0.0006424099 240 235 -0.002541777 0.0004101906 241 235 0.001760065 -0.0002840383 242 235 -0.001288661 0.0002079635 316 235 0.001269089 0.0001152273 155 236 0.001287783 0.0001173249 162 236 -0.001288661 0.0002079635 163 236 0.0009826448 -0.0001585787 164 236 -0.0007727812 0.000124711 165 236 0.0006226054 -0.0001004757 166 236 -0.0005114288 8.253411e-05 167 236 0.0004268045 -6.887749e-05 168 236 -0.0003608797 5.823857e-05 169 236 0.0003085011 -4.978574e-05 170 236 -0.0002661734 4.295492e-05 171 236 0.0002314578 -3.735254e-05 172 236 -0.0002026106 3.26972e-05 173 236 0.0001783582 -2.878335e-05 174 236 -0.0001577525 2.545802e-05 175 236 0.000140076 -2.26054e-05 176 236 -0.0001247774 2.013652e-05 177 236 0.0001114272 -1.798207e-05 178 236 -9.968672e-05 1.608739e-05 179 236 8.928565e-05 -1.440887e-05 180 236 -8.000611e-05 1.291134e-05 181 236 7.167061e-05 -1.156616e-05 182 236 -6.413319e-05 1.034978e-05 183 236 5.727273e-05 -9.242642e-06 184 236 -5.098776e-05 8.228377e-06 185 236 4.519256e-05 -7.293151e-06 186 236 -3.981401e-05 6.425164e-06 187 236 3.478917e-05 -5.614257e-06 188 236 -3.00633e-05 4.851599e-06 189 236 2.558831e-05 -4.129428e-06 190 236 -2.132146e-05 3.440846e-06 191 236 1.722429e-05 -2.779647e-06 192 236 -1.326172e-05 2.14017e-06 193 236 9.401297e-06 -1.517176e-06 194 236 -5.612495e-06 9.057414e-07 195 236 1.866144e-06 -3.011573e-07 196 236 1.866144e-06 -3.011573e-07 197 236 -5.612495e-06 9.057414e-07 198 236 9.401297e-06 -1.517176e-06 199 236 -1.326172e-05 2.14017e-06 200 236 1.722429e-05 -2.779647e-06 201 236 -2.132146e-05 3.440846e-06 202 236 2.558831e-05 -4.129428e-06 203 236 -3.00633e-05 4.851599e-06 204 236 3.478917e-05 -5.614257e-06 205 236 -3.981401e-05 6.425164e-06 206 236 4.519256e-05 -7.293151e-06 207 236 -5.098776e-05 8.228377e-06 208 236 5.727273e-05 -9.242642e-06 209 236 -6.413319e-05 1.034978e-05 210 236 7.167061e-05 -1.156616e-05 211 236 -8.000611e-05 1.291134e-05 212 236 8.928565e-05 -1.440887e-05 213 236 -9.968672e-05 1.608739e-05 214 236 0.0001114272 -1.798207e-05 215 236 -0.0001247774 2.013652e-05 216 236 0.000140076 -2.26054e-05 217 236 -0.0001577525 2.545802e-05 218 236 0.0001783582 -2.878335e-05 219 236 -0.0002026106 3.26972e-05 220 236 0.0002314578 -3.735254e-05 221 236 -0.0002661734 4.295492e-05 222 236 0.0003085011 -4.978574e-05 223 236 -0.0003608797 5.823857e-05 224 236 0.0004268045 -6.887749e-05 225 236 -0.0005114288 8.253411e-05 226 236 0.0006226054 -0.0001004757 227 236 -0.0007727812 0.000124711 228 236 0.0009826448 -0.0001585787 229 236 -0.001288661 0.0002079635 230 236 0.001760065 -0.0002840383 231 236 -0.002541777 0.0004101906 232 236 0.003980742 -0.0006424099 233 236 -0.007089509 0.001144101 234 236 0.01597157 -0.002577484 235 236 -0.06393453 0.01031772 236 236 -0.2379202 -0.01663475 237 236 -0.06393453 0.01031772 238 236 0.01597157 -0.002577484 239 236 -0.007089509 0.001144101 240 236 0.003980742 -0.0006424099 241 236 -0.002541777 0.0004101906 242 236 0.001760065 -0.0002840383 317 236 0.001287783 0.0001173249 156 237 0.001306573 0.0001194409 162 237 0.001760065 -0.0002840383 163 237 -0.001288661 0.0002079635 164 237 0.0009826448 -0.0001585787 165 237 -0.0007727812 0.000124711 166 237 0.0006226054 -0.0001004757 167 237 -0.0005114288 8.253411e-05 168 237 0.0004268045 -6.887749e-05 169 237 -0.0003608797 5.823857e-05 170 237 0.0003085011 -4.978574e-05 171 237 -0.0002661734 4.295492e-05 172 237 0.0002314578 -3.735254e-05 173 237 -0.0002026106 3.26972e-05 174 237 0.0001783582 -2.878335e-05 175 237 -0.0001577525 2.545802e-05 176 237 0.000140076 -2.26054e-05 177 237 -0.0001247774 2.013652e-05 178 237 0.0001114272 -1.798207e-05 179 237 -9.968672e-05 1.608739e-05 180 237 8.928565e-05 -1.440887e-05 181 237 -8.000611e-05 1.291134e-05 182 237 7.167061e-05 -1.156616e-05 183 237 -6.413319e-05 1.034978e-05 184 237 5.727273e-05 -9.242642e-06 185 237 -5.098776e-05 8.228377e-06 186 237 4.519256e-05 -7.293151e-06 187 237 -3.981401e-05 6.425164e-06 188 237 3.478917e-05 -5.614257e-06 189 237 -3.00633e-05 4.851599e-06 190 237 2.558831e-05 -4.129428e-06 191 237 -2.132146e-05 3.440846e-06 192 237 1.722429e-05 -2.779647e-06 193 237 -1.326172e-05 2.14017e-06 194 237 9.401297e-06 -1.517176e-06 195 237 -5.612495e-06 9.057414e-07 196 237 1.866144e-06 -3.011573e-07 197 237 1.866144e-06 -3.011573e-07 198 237 -5.612495e-06 9.057414e-07 199 237 9.401297e-06 -1.517176e-06 200 237 -1.326172e-05 2.14017e-06 201 237 1.722429e-05 -2.779647e-06 202 237 -2.132146e-05 3.440846e-06 203 237 2.558831e-05 -4.129428e-06 204 237 -3.00633e-05 4.851599e-06 205 237 3.478917e-05 -5.614257e-06 206 237 -3.981401e-05 6.425164e-06 207 237 4.519256e-05 -7.293151e-06 208 237 -5.098776e-05 8.228377e-06 209 237 5.727273e-05 -9.242642e-06 210 237 -6.413319e-05 1.034978e-05 211 237 7.167061e-05 -1.156616e-05 212 237 -8.000611e-05 1.291134e-05 213 237 8.928565e-05 -1.440887e-05 214 237 -9.968672e-05 1.608739e-05 215 237 0.0001114272 -1.798207e-05 216 237 -0.0001247774 2.013652e-05 217 237 0.000140076 -2.26054e-05 218 237 -0.0001577525 2.545802e-05 219 237 0.0001783582 -2.878335e-05 220 237 -0.0002026106 3.26972e-05 221 237 0.0002314578 -3.735254e-05 222 237 -0.0002661734 4.295492e-05 223 237 0.0003085011 -4.978574e-05 224 237 -0.0003608797 5.823857e-05 225 237 0.0004268045 -6.887749e-05 226 237 -0.0005114288 8.253411e-05 227 237 0.0006226054 -0.0001004757 228 237 -0.0007727812 0.000124711 229 237 0.0009826448 -0.0001585787 230 237 -0.001288661 0.0002079635 231 237 0.001760065 -0.0002840383 232 237 -0.002541777 0.0004101906 233 237 0.003980742 -0.0006424099 234 237 -0.007089509 0.001144101 235 237 0.01597157 -0.002577484 236 237 -0.06393453 0.01031772 237 237 -0.2378719 -0.01666128 238 237 -0.06393453 0.01031772 239 237 0.01597157 -0.002577484 240 237 -0.007089509 0.001144101 241 237 0.003980742 -0.0006424099 242 237 -0.002541777 0.0004101906 318 237 0.001306573 0.0001194409 157 238 0.001325458 0.0001215755 162 238 -0.002541777 0.0004101906 163 238 0.001760065 -0.0002840383 164 238 -0.001288661 0.0002079635 165 238 0.0009826448 -0.0001585787 166 238 -0.0007727812 0.000124711 167 238 0.0006226054 -0.0001004757 168 238 -0.0005114288 8.253411e-05 169 238 0.0004268045 -6.887749e-05 170 238 -0.0003608797 5.823857e-05 171 238 0.0003085011 -4.978574e-05 172 238 -0.0002661734 4.295492e-05 173 238 0.0002314578 -3.735254e-05 174 238 -0.0002026106 3.26972e-05 175 238 0.0001783582 -2.878335e-05 176 238 -0.0001577525 2.545802e-05 177 238 0.000140076 -2.26054e-05 178 238 -0.0001247774 2.013652e-05 179 238 0.0001114272 -1.798207e-05 180 238 -9.968672e-05 1.608739e-05 181 238 8.928565e-05 -1.440887e-05 182 238 -8.000611e-05 1.291134e-05 183 238 7.167061e-05 -1.156616e-05 184 238 -6.413319e-05 1.034978e-05 185 238 5.727273e-05 -9.242642e-06 186 238 -5.098776e-05 8.228377e-06 187 238 4.519256e-05 -7.293151e-06 188 238 -3.981401e-05 6.425164e-06 189 238 3.478917e-05 -5.614257e-06 190 238 -3.00633e-05 4.851599e-06 191 238 2.558831e-05 -4.129428e-06 192 238 -2.132146e-05 3.440846e-06 193 238 1.722429e-05 -2.779647e-06 194 238 -1.326172e-05 2.14017e-06 195 238 9.401297e-06 -1.517176e-06 196 238 -5.612495e-06 9.057414e-07 197 238 1.866144e-06 -3.011573e-07 198 238 1.866144e-06 -3.011573e-07 199 238 -5.612495e-06 9.057414e-07 200 238 9.401297e-06 -1.517176e-06 201 238 -1.326172e-05 2.14017e-06 202 238 1.722429e-05 -2.779647e-06 203 238 -2.132146e-05 3.440846e-06 204 238 2.558831e-05 -4.129428e-06 205 238 -3.00633e-05 4.851599e-06 206 238 3.478917e-05 -5.614257e-06 207 238 -3.981401e-05 6.425164e-06 208 238 4.519256e-05 -7.293151e-06 209 238 -5.098776e-05 8.228377e-06 210 238 5.727273e-05 -9.242642e-06 211 238 -6.413319e-05 1.034978e-05 212 238 7.167061e-05 -1.156616e-05 213 238 -8.000611e-05 1.291134e-05 214 238 8.928565e-05 -1.440887e-05 215 238 -9.968672e-05 1.608739e-05 216 238 0.0001114272 -1.798207e-05 217 238 -0.0001247774 2.013652e-05 218 238 0.000140076 -2.26054e-05 219 238 -0.0001577525 2.545802e-05 220 238 0.0001783582 -2.878335e-05 221 238 -0.0002026106 3.26972e-05 222 238 0.0002314578 -3.735254e-05 223 238 -0.0002661734 4.295492e-05 224 238 0.0003085011 -4.978574e-05 225 238 -0.0003608797 5.823857e-05 226 238 0.0004268045 -6.887749e-05 227 238 -0.0005114288 8.253411e-05 228 238 0.0006226054 -0.0001004757 229 238 -0.0007727812 0.000124711 230 238 0.0009826448 -0.0001585787 231 238 -0.001288661 0.0002079635 232 238 0.001760065 -0.0002840383 233 238 -0.002541777 0.0004101906 234 238 0.003980742 -0.0006424099 235 238 -0.007089509 0.001144101 236 238 0.01597157 -0.002577484 237 238 -0.06393453 0.01031772 238 238 -0.2378281 -0.01668579 239 238 -0.06393453 0.01031772 240 238 0.01597157 -0.002577484 241 238 -0.007089509 0.001144101 242 238 0.003980742 -0.0006424099 319 238 0.001325458 0.0001215755 158 239 0.001344439 0.0001237288 162 239 0.003980742 -0.0006424099 163 239 -0.002541777 0.0004101906 164 239 0.001760065 -0.0002840383 165 239 -0.001288661 0.0002079635 166 239 0.0009826448 -0.0001585787 167 239 -0.0007727812 0.000124711 168 239 0.0006226054 -0.0001004757 169 239 -0.0005114288 8.253411e-05 170 239 0.0004268045 -6.887749e-05 171 239 -0.0003608797 5.823857e-05 172 239 0.0003085011 -4.978574e-05 173 239 -0.0002661734 4.295492e-05 174 239 0.0002314578 -3.735254e-05 175 239 -0.0002026106 3.26972e-05 176 239 0.0001783582 -2.878335e-05 177 239 -0.0001577525 2.545802e-05 178 239 0.000140076 -2.26054e-05 179 239 -0.0001247774 2.013652e-05 180 239 0.0001114272 -1.798207e-05 181 239 -9.968672e-05 1.608739e-05 182 239 8.928565e-05 -1.440887e-05 183 239 -8.000611e-05 1.291134e-05 184 239 7.167061e-05 -1.156616e-05 185 239 -6.413319e-05 1.034978e-05 186 239 5.727273e-05 -9.242642e-06 187 239 -5.098776e-05 8.228377e-06 188 239 4.519256e-05 -7.293151e-06 189 239 -3.981401e-05 6.425164e-06 190 239 3.478917e-05 -5.614257e-06 191 239 -3.00633e-05 4.851599e-06 192 239 2.558831e-05 -4.129428e-06 193 239 -2.132146e-05 3.440846e-06 194 239 1.722429e-05 -2.779647e-06 195 239 -1.326172e-05 2.14017e-06 196 239 9.401297e-06 -1.517176e-06 197 239 -5.612495e-06 9.057414e-07 198 239 1.866144e-06 -3.011573e-07 199 239 1.866144e-06 -3.011573e-07 200 239 -5.612495e-06 9.057414e-07 201 239 9.401297e-06 -1.517176e-06 202 239 -1.326172e-05 2.14017e-06 203 239 1.722429e-05 -2.779647e-06 204 239 -2.132146e-05 3.440846e-06 205 239 2.558831e-05 -4.129428e-06 206 239 -3.00633e-05 4.851599e-06 207 239 3.478917e-05 -5.614257e-06 208 239 -3.981401e-05 6.425164e-06 209 239 4.519256e-05 -7.293151e-06 210 239 -5.098776e-05 8.228377e-06 211 239 5.727273e-05 -9.242642e-06 212 239 -6.413319e-05 1.034978e-05 213 239 7.167061e-05 -1.156616e-05 214 239 -8.000611e-05 1.291134e-05 215 239 8.928565e-05 -1.440887e-05 216 239 -9.968672e-05 1.608739e-05 217 239 0.0001114272 -1.798207e-05 218 239 -0.0001247774 2.013652e-05 219 239 0.000140076 -2.26054e-05 220 239 -0.0001577525 2.545802e-05 221 239 0.0001783582 -2.878335e-05 222 239 -0.0002026106 3.26972e-05 223 239 0.0002314578 -3.735254e-05 224 239 -0.0002661734 4.295492e-05 225 239 0.0003085011 -4.978574e-05 226 239 -0.0003608797 5.823857e-05 227 239 0.0004268045 -6.887749e-05 228 239 -0.0005114288 8.253411e-05 229 239 0.0006226054 -0.0001004757 230 239 -0.0007727812 0.000124711 231 239 0.0009826448 -0.0001585787 232 239 -0.001288661 0.0002079635 233 239 0.001760065 -0.0002840383 234 239 -0.002541777 0.0004101906 235 239 0.003980742 -0.0006424099 236 239 -0.007089509 0.001144101 237 239 0.01597157 -0.002577484 238 239 -0.06393453 0.01031772 239 239 -0.2377884 -0.01670843 240 239 -0.06393453 0.01031772 241 239 0.01597157 -0.002577484 242 239 -0.007089509 0.001144101 320 239 0.001344439 0.0001237288 159 240 0.001363516 0.0001259011 162 240 -0.007089509 0.001144101 163 240 0.003980742 -0.0006424099 164 240 -0.002541777 0.0004101906 165 240 0.001760065 -0.0002840383 166 240 -0.001288661 0.0002079635 167 240 0.0009826448 -0.0001585787 168 240 -0.0007727812 0.000124711 169 240 0.0006226054 -0.0001004757 170 240 -0.0005114288 8.253411e-05 171 240 0.0004268045 -6.887749e-05 172 240 -0.0003608797 5.823857e-05 173 240 0.0003085011 -4.978574e-05 174 240 -0.0002661734 4.295492e-05 175 240 0.0002314578 -3.735254e-05 176 240 -0.0002026106 3.26972e-05 177 240 0.0001783582 -2.878335e-05 178 240 -0.0001577525 2.545802e-05 179 240 0.000140076 -2.26054e-05 180 240 -0.0001247774 2.013652e-05 181 240 0.0001114272 -1.798207e-05 182 240 -9.968672e-05 1.608739e-05 183 240 8.928565e-05 -1.440887e-05 184 240 -8.000611e-05 1.291134e-05 185 240 7.167061e-05 -1.156616e-05 186 240 -6.413319e-05 1.034978e-05 187 240 5.727273e-05 -9.242642e-06 188 240 -5.098776e-05 8.228377e-06 189 240 4.519256e-05 -7.293151e-06 190 240 -3.981401e-05 6.425164e-06 191 240 3.478917e-05 -5.614257e-06 192 240 -3.00633e-05 4.851599e-06 193 240 2.558831e-05 -4.129428e-06 194 240 -2.132146e-05 3.440846e-06 195 240 1.722429e-05 -2.779647e-06 196 240 -1.326172e-05 2.14017e-06 197 240 9.401297e-06 -1.517176e-06 198 240 -5.612495e-06 9.057414e-07 199 240 1.866144e-06 -3.011573e-07 200 240 1.866144e-06 -3.011573e-07 201 240 -5.612495e-06 9.057414e-07 202 240 9.401297e-06 -1.517176e-06 203 240 -1.326172e-05 2.14017e-06 204 240 1.722429e-05 -2.779647e-06 205 240 -2.132146e-05 3.440846e-06 206 240 2.558831e-05 -4.129428e-06 207 240 -3.00633e-05 4.851599e-06 208 240 3.478917e-05 -5.614257e-06 209 240 -3.981401e-05 6.425164e-06 210 240 4.519256e-05 -7.293151e-06 211 240 -5.098776e-05 8.228377e-06 212 240 5.727273e-05 -9.242642e-06 213 240 -6.413319e-05 1.034978e-05 214 240 7.167061e-05 -1.156616e-05 215 240 -8.000611e-05 1.291134e-05 216 240 8.928565e-05 -1.440887e-05 217 240 -9.968672e-05 1.608739e-05 218 240 0.0001114272 -1.798207e-05 219 240 -0.0001247774 2.013652e-05 220 240 0.000140076 -2.26054e-05 221 240 -0.0001577525 2.545802e-05 222 240 0.0001783582 -2.878335e-05 223 240 -0.0002026106 3.26972e-05 224 240 0.0002314578 -3.735254e-05 225 240 -0.0002661734 4.295492e-05 226 240 0.0003085011 -4.978574e-05 227 240 -0.0003608797 5.823857e-05 228 240 0.0004268045 -6.887749e-05 229 240 -0.0005114288 8.253411e-05 230 240 0.0006226054 -0.0001004757 231 240 -0.0007727812 0.000124711 232 240 0.0009826448 -0.0001585787 233 240 -0.001288661 0.0002079635 234 240 0.001760065 -0.0002840383 235 240 -0.002541777 0.0004101906 236 240 0.003980742 -0.0006424099 237 240 -0.007089509 0.001144101 238 240 0.01597157 -0.002577484 239 240 -0.06393453 0.01031772 240 240 -0.2377523 -0.01672934 241 240 -0.06393453 0.01031772 242 240 0.01597157 -0.002577484 321 240 0.001363516 0.0001259011 160 241 0.00138269 0.0001280923 162 241 0.01597157 -0.002577484 163 241 -0.007089509 0.001144101 164 241 0.003980742 -0.0006424099 165 241 -0.002541777 0.0004101906 166 241 0.001760065 -0.0002840383 167 241 -0.001288661 0.0002079635 168 241 0.0009826448 -0.0001585787 169 241 -0.0007727812 0.000124711 170 241 0.0006226054 -0.0001004757 171 241 -0.0005114288 8.253411e-05 172 241 0.0004268045 -6.887749e-05 173 241 -0.0003608797 5.823857e-05 174 241 0.0003085011 -4.978574e-05 175 241 -0.0002661734 4.295492e-05 176 241 0.0002314578 -3.735254e-05 177 241 -0.0002026106 3.26972e-05 178 241 0.0001783582 -2.878335e-05 179 241 -0.0001577525 2.545802e-05 180 241 0.000140076 -2.26054e-05 181 241 -0.0001247774 2.013652e-05 182 241 0.0001114272 -1.798207e-05 183 241 -9.968672e-05 1.608739e-05 184 241 8.928565e-05 -1.440887e-05 185 241 -8.000611e-05 1.291134e-05 186 241 7.167061e-05 -1.156616e-05 187 241 -6.413319e-05 1.034978e-05 188 241 5.727273e-05 -9.242642e-06 189 241 -5.098776e-05 8.228377e-06 190 241 4.519256e-05 -7.293151e-06 191 241 -3.981401e-05 6.425164e-06 192 241 3.478917e-05 -5.614257e-06 193 241 -3.00633e-05 4.851599e-06 194 241 2.558831e-05 -4.129428e-06 195 241 -2.132146e-05 3.440846e-06 196 241 1.722429e-05 -2.779647e-06 197 241 -1.326172e-05 2.14017e-06 198 241 9.401297e-06 -1.517176e-06 199 241 -5.612495e-06 9.057414e-07 200 241 1.866144e-06 -3.011573e-07 201 241 1.866144e-06 -3.011573e-07 202 241 -5.612495e-06 9.057414e-07 203 241 9.401297e-06 -1.517176e-06 204 241 -1.326172e-05 2.14017e-06 205 241 1.722429e-05 -2.779647e-06 206 241 -2.132146e-05 3.440846e-06 207 241 2.558831e-05 -4.129428e-06 208 241 -3.00633e-05 4.851599e-06 209 241 3.478917e-05 -5.614257e-06 210 241 -3.981401e-05 6.425164e-06 211 241 4.519256e-05 -7.293151e-06 212 241 -5.098776e-05 8.228377e-06 213 241 5.727273e-05 -9.242642e-06 214 241 -6.413319e-05 1.034978e-05 215 241 7.167061e-05 -1.156616e-05 216 241 -8.000611e-05 1.291134e-05 217 241 8.928565e-05 -1.440887e-05 218 241 -9.968672e-05 1.608739e-05 219 241 0.0001114272 -1.798207e-05 220 241 -0.0001247774 2.013652e-05 221 241 0.000140076 -2.26054e-05 222 241 -0.0001577525 2.545802e-05 223 241 0.0001783582 -2.878335e-05 224 241 -0.0002026106 3.26972e-05 225 241 0.0002314578 -3.735254e-05 226 241 -0.0002661734 4.295492e-05 227 241 0.0003085011 -4.978574e-05 228 241 -0.0003608797 5.823857e-05 229 241 0.0004268045 -6.887749e-05 230 241 -0.0005114288 8.253411e-05 231 241 0.0006226054 -0.0001004757 232 241 -0.0007727812 0.000124711 233 241 0.0009826448 -0.0001585787 234 241 -0.001288661 0.0002079635 235 241 0.001760065 -0.0002840383 236 241 -0.002541777 0.0004101906 237 241 0.003980742 -0.0006424099 238 241 -0.007089509 0.001144101 239 241 0.01597157 -0.002577484 240 241 -0.06393453 0.01031772 241 241 -0.2377196 -0.01674864 242 241 -0.06393453 0.01031772 322 241 0.00138269 0.0001280923 161 242 0.001401962 0.0001303027 162 242 -0.06393453 0.01031772 163 242 0.01597157 -0.002577484 164 242 -0.007089509 0.001144101 165 242 0.003980742 -0.0006424099 166 242 -0.002541777 0.0004101906 167 242 0.001760065 -0.0002840383 168 242 -0.001288661 0.0002079635 169 242 0.0009826448 -0.0001585787 170 242 -0.0007727812 0.000124711 171 242 0.0006226054 -0.0001004757 172 242 -0.0005114288 8.253411e-05 173 242 0.0004268045 -6.887749e-05 174 242 -0.0003608797 5.823857e-05 175 242 0.0003085011 -4.978574e-05 176 242 -0.0002661734 4.295492e-05 177 242 0.0002314578 -3.735254e-05 178 242 -0.0002026106 3.26972e-05 179 242 0.0001783582 -2.878335e-05 180 242 -0.0001577525 2.545802e-05 181 242 0.000140076 -2.26054e-05 182 242 -0.0001247774 2.013652e-05 183 242 0.0001114272 -1.798207e-05 184 242 -9.968672e-05 1.608739e-05 185 242 8.928565e-05 -1.440887e-05 186 242 -8.000611e-05 1.291134e-05 187 242 7.167061e-05 -1.156616e-05 188 242 -6.413319e-05 1.034978e-05 189 242 5.727273e-05 -9.242642e-06 190 242 -5.098776e-05 8.228377e-06 191 242 4.519256e-05 -7.293151e-06 192 242 -3.981401e-05 6.425164e-06 193 242 3.478917e-05 -5.614257e-06 194 242 -3.00633e-05 4.851599e-06 195 242 2.558831e-05 -4.129428e-06 196 242 -2.132146e-05 3.440846e-06 197 242 1.722429e-05 -2.779647e-06 198 242 -1.326172e-05 2.14017e-06 199 242 9.401297e-06 -1.517176e-06 200 242 -5.612495e-06 9.057414e-07 201 242 1.866144e-06 -3.011573e-07 202 242 1.866144e-06 -3.011573e-07 203 242 -5.612495e-06 9.057414e-07 204 242 9.401297e-06 -1.517176e-06 205 242 -1.326172e-05 2.14017e-06 206 242 1.722429e-05 -2.779647e-06 207 242 -2.132146e-05 3.440846e-06 208 242 2.558831e-05 -4.129428e-06 209 242 -3.00633e-05 4.851599e-06 210 242 3.478917e-05 -5.614257e-06 211 242 -3.981401e-05 6.425164e-06 212 242 4.519256e-05 -7.293151e-06 213 242 -5.098776e-05 8.228377e-06 214 242 5.727273e-05 -9.242642e-06 215 242 -6.413319e-05 1.034978e-05 216 242 7.167061e-05 -1.156616e-05 217 242 -8.000611e-05 1.291134e-05 218 242 8.928565e-05 -1.440887e-05 219 242 -9.968672e-05 1.608739e-05 220 242 0.0001114272 -1.798207e-05 221 242 -0.0001247774 2.013652e-05 222 242 0.000140076 -2.26054e-05 223 242 -0.0001577525 2.545802e-05 224 242 0.0001783582 -2.878335e-05 225 242 -0.0002026106 3.26972e-05 226 242 0.0002314578 -3.735254e-05 227 242 -0.0002661734 4.295492e-05 228 242 0.0003085011 -4.978574e-05 229 242 -0.0003608797 5.823857e-05 230 242 0.0004268045 -6.887749e-05 231 242 -0.0005114288 8.253411e-05 232 242 0.0006226054 -0.0001004757 233 242 -0.0007727812 0.000124711 234 242 0.0009826448 -0.0001585787 235 242 -0.001288661 0.0002079635 236 242 0.001760065 -0.0002840383 237 242 -0.002541777 0.0004101906 238 242 0.003980742 -0.0006424099 239 242 -0.007089509 0.001144101 240 242 0.01597157 -0.002577484 241 242 -0.06393453 0.01031772 242 242 -0.23769 -0.01676645 323 242 0.001401962 0.0001303027 162 243 0.0001315499 3.980931e-06 243 243 1.153132 -0.08758582 244 243 -0.06393453 0.01031772 245 243 0.01597157 -0.002577484 246 243 -0.007089509 0.001144101 247 243 0.003980742 -0.0006424099 248 243 -0.002541777 0.0004101906 249 243 0.001760065 -0.0002840383 250 243 -0.001288661 0.0002079635 251 243 0.0009826448 -0.0001585787 252 243 -0.0007727812 0.000124711 253 243 0.0006226054 -0.0001004757 254 243 -0.0005114288 8.253411e-05 255 243 0.0004268045 -6.887749e-05 256 243 -0.0003608797 5.823857e-05 257 243 0.0003085011 -4.978574e-05 258 243 -0.0002661734 4.295492e-05 259 243 0.0002314578 -3.735254e-05 260 243 -0.0002026106 3.26972e-05 261 243 0.0001783582 -2.878335e-05 262 243 -0.0001577525 2.545802e-05 263 243 0.000140076 -2.26054e-05 264 243 -0.0001247774 2.013652e-05 265 243 0.0001114272 -1.798207e-05 266 243 -9.968672e-05 1.608739e-05 267 243 8.928565e-05 -1.440887e-05 268 243 -8.000611e-05 1.291134e-05 269 243 7.167061e-05 -1.156616e-05 270 243 -6.413319e-05 1.034978e-05 271 243 5.727273e-05 -9.242642e-06 272 243 -5.098776e-05 8.228377e-06 273 243 4.519256e-05 -7.293151e-06 274 243 -3.981401e-05 6.425164e-06 275 243 3.478917e-05 -5.614257e-06 276 243 -3.00633e-05 4.851599e-06 277 243 2.558831e-05 -4.129428e-06 278 243 -2.132146e-05 3.440846e-06 279 243 1.722429e-05 -2.779647e-06 280 243 -1.326172e-05 2.14017e-06 281 243 9.401297e-06 -1.517176e-06 282 243 -5.612495e-06 9.057414e-07 283 243 1.866144e-06 -3.011573e-07 284 243 1.866144e-06 -3.011573e-07 285 243 -5.612495e-06 9.057414e-07 286 243 9.401297e-06 -1.517176e-06 287 243 -1.326172e-05 2.14017e-06 288 243 1.722429e-05 -2.779647e-06 289 243 -2.132146e-05 3.440846e-06 290 243 2.558831e-05 -4.129428e-06 291 243 -3.00633e-05 4.851599e-06 292 243 3.478917e-05 -5.614257e-06 293 243 -3.981401e-05 6.425164e-06 294 243 4.519256e-05 -7.293151e-06 295 243 -5.098776e-05 8.228377e-06 296 243 5.727273e-05 -9.242642e-06 297 243 -6.413319e-05 1.034978e-05 298 243 7.167061e-05 -1.156616e-05 299 243 -8.000611e-05 1.291134e-05 300 243 8.928565e-05 -1.440887e-05 301 243 -9.968672e-05 1.608739e-05 302 243 0.0001114272 -1.798207e-05 303 243 -0.0001247774 2.013652e-05 304 243 0.000140076 -2.26054e-05 305 243 -0.0001577525 2.545802e-05 306 243 0.0001783582 -2.878335e-05 307 243 -0.0002026106 3.26972e-05 308 243 0.0002314578 -3.735254e-05 309 243 -0.0002661734 4.295492e-05 310 243 0.0003085011 -4.978574e-05 311 243 -0.0003608797 5.823857e-05 312 243 0.0004268045 -6.887749e-05 313 243 -0.0005114288 8.253411e-05 314 243 0.0006226054 -0.0001004757 315 243 -0.0007727812 0.000124711 316 243 0.0009826448 -0.0001585787 317 243 -0.001288661 0.0002079635 318 243 0.001760065 -0.0002840383 319 243 -0.002541777 0.0004101906 320 243 0.003980742 -0.0006424099 321 243 -0.007089509 0.001144101 322 243 0.01597157 -0.002577484 323 243 -0.06393453 0.01031772 163 244 0.0001444547 5.03874e-06 243 244 -0.06393453 0.01031772 244 244 0.9414376 -0.09274586 245 244 -0.06393453 0.01031772 246 244 0.01597157 -0.002577484 247 244 -0.007089509 0.001144101 248 244 0.003980742 -0.0006424099 249 244 -0.002541777 0.0004101906 250 244 0.001760065 -0.0002840383 251 244 -0.001288661 0.0002079635 252 244 0.0009826448 -0.0001585787 253 244 -0.0007727812 0.000124711 254 244 0.0006226054 -0.0001004757 255 244 -0.0005114288 8.253411e-05 256 244 0.0004268045 -6.887749e-05 257 244 -0.0003608797 5.823857e-05 258 244 0.0003085011 -4.978574e-05 259 244 -0.0002661734 4.295492e-05 260 244 0.0002314578 -3.735254e-05 261 244 -0.0002026106 3.26972e-05 262 244 0.0001783582 -2.878335e-05 263 244 -0.0001577525 2.545802e-05 264 244 0.000140076 -2.26054e-05 265 244 -0.0001247774 2.013652e-05 266 244 0.0001114272 -1.798207e-05 267 244 -9.968672e-05 1.608739e-05 268 244 8.928565e-05 -1.440887e-05 269 244 -8.000611e-05 1.291134e-05 270 244 7.167061e-05 -1.156616e-05 271 244 -6.413319e-05 1.034978e-05 272 244 5.727273e-05 -9.242642e-06 273 244 -5.098776e-05 8.228377e-06 274 244 4.519256e-05 -7.293151e-06 275 244 -3.981401e-05 6.425164e-06 276 244 3.478917e-05 -5.614257e-06 277 244 -3.00633e-05 4.851599e-06 278 244 2.558831e-05 -4.129428e-06 279 244 -2.132146e-05 3.440846e-06 280 244 1.722429e-05 -2.779647e-06 281 244 -1.326172e-05 2.14017e-06 282 244 9.401297e-06 -1.517176e-06 283 244 -5.612495e-06 9.057414e-07 284 244 1.866144e-06 -3.011573e-07 285 244 1.866144e-06 -3.011573e-07 286 244 -5.612495e-06 9.057414e-07 287 244 9.401297e-06 -1.517176e-06 288 244 -1.326172e-05 2.14017e-06 289 244 1.722429e-05 -2.779647e-06 290 244 -2.132146e-05 3.440846e-06 291 244 2.558831e-05 -4.129428e-06 292 244 -3.00633e-05 4.851599e-06 293 244 3.478917e-05 -5.614257e-06 294 244 -3.981401e-05 6.425164e-06 295 244 4.519256e-05 -7.293151e-06 296 244 -5.098776e-05 8.228377e-06 297 244 5.727273e-05 -9.242642e-06 298 244 -6.413319e-05 1.034978e-05 299 244 7.167061e-05 -1.156616e-05 300 244 -8.000611e-05 1.291134e-05 301 244 8.928565e-05 -1.440887e-05 302 244 -9.968672e-05 1.608739e-05 303 244 0.0001114272 -1.798207e-05 304 244 -0.0001247774 2.013652e-05 305 244 0.000140076 -2.26054e-05 306 244 -0.0001577525 2.545802e-05 307 244 0.0001783582 -2.878335e-05 308 244 -0.0002026106 3.26972e-05 309 244 0.0002314578 -3.735254e-05 310 244 -0.0002661734 4.295492e-05 311 244 0.0003085011 -4.978574e-05 312 244 -0.0003608797 5.823857e-05 313 244 0.0004268045 -6.887749e-05 314 244 -0.0005114288 8.253411e-05 315 244 0.0006226054 -0.0001004757 316 244 -0.0007727812 0.000124711 317 244 0.0009826448 -0.0001585787 318 244 -0.001288661 0.0002079635 319 244 0.001760065 -0.0002840383 320 244 -0.002541777 0.0004101906 321 244 0.003980742 -0.0006424099 322 244 -0.007089509 0.001144101 323 244 0.01597157 -0.002577484 164 245 0.0001574252 6.107297e-06 243 245 0.01597157 -0.002577484 244 245 -0.06393453 0.01031772 245 245 0.7608135 -0.09497235 246 245 -0.06393453 0.01031772 247 245 0.01597157 -0.002577484 248 245 -0.007089509 0.001144101 249 245 0.003980742 -0.0006424099 250 245 -0.002541777 0.0004101906 251 245 0.001760065 -0.0002840383 252 245 -0.001288661 0.0002079635 253 245 0.0009826448 -0.0001585787 254 245 -0.0007727812 0.000124711 255 245 0.0006226054 -0.0001004757 256 245 -0.0005114288 8.253411e-05 257 245 0.0004268045 -6.887749e-05 258 245 -0.0003608797 5.823857e-05 259 245 0.0003085011 -4.978574e-05 260 245 -0.0002661734 4.295492e-05 261 245 0.0002314578 -3.735254e-05 262 245 -0.0002026106 3.26972e-05 263 245 0.0001783582 -2.878335e-05 264 245 -0.0001577525 2.545802e-05 265 245 0.000140076 -2.26054e-05 266 245 -0.0001247774 2.013652e-05 267 245 0.0001114272 -1.798207e-05 268 245 -9.968672e-05 1.608739e-05 269 245 8.928565e-05 -1.440887e-05 270 245 -8.000611e-05 1.291134e-05 271 245 7.167061e-05 -1.156616e-05 272 245 -6.413319e-05 1.034978e-05 273 245 5.727273e-05 -9.242642e-06 274 245 -5.098776e-05 8.228377e-06 275 245 4.519256e-05 -7.293151e-06 276 245 -3.981401e-05 6.425164e-06 277 245 3.478917e-05 -5.614257e-06 278 245 -3.00633e-05 4.851599e-06 279 245 2.558831e-05 -4.129428e-06 280 245 -2.132146e-05 3.440846e-06 281 245 1.722429e-05 -2.779647e-06 282 245 -1.326172e-05 2.14017e-06 283 245 9.401297e-06 -1.517176e-06 284 245 -5.612495e-06 9.057414e-07 285 245 1.866144e-06 -3.011573e-07 286 245 1.866144e-06 -3.011573e-07 287 245 -5.612495e-06 9.057414e-07 288 245 9.401297e-06 -1.517176e-06 289 245 -1.326172e-05 2.14017e-06 290 245 1.722429e-05 -2.779647e-06 291 245 -2.132146e-05 3.440846e-06 292 245 2.558831e-05 -4.129428e-06 293 245 -3.00633e-05 4.851599e-06 294 245 3.478917e-05 -5.614257e-06 295 245 -3.981401e-05 6.425164e-06 296 245 4.519256e-05 -7.293151e-06 297 245 -5.098776e-05 8.228377e-06 298 245 5.727273e-05 -9.242642e-06 299 245 -6.413319e-05 1.034978e-05 300 245 7.167061e-05 -1.156616e-05 301 245 -8.000611e-05 1.291134e-05 302 245 8.928565e-05 -1.440887e-05 303 245 -9.968672e-05 1.608739e-05 304 245 0.0001114272 -1.798207e-05 305 245 -0.0001247774 2.013652e-05 306 245 0.000140076 -2.26054e-05 307 245 -0.0001577525 2.545802e-05 308 245 0.0001783582 -2.878335e-05 309 245 -0.0002026106 3.26972e-05 310 245 0.0002314578 -3.735254e-05 311 245 -0.0002661734 4.295492e-05 312 245 0.0003085011 -4.978574e-05 313 245 -0.0003608797 5.823857e-05 314 245 0.0004268045 -6.887749e-05 315 245 -0.0005114288 8.253411e-05 316 245 0.0006226054 -0.0001004757 317 245 -0.0007727812 0.000124711 318 245 0.0009826448 -0.0001585787 319 245 -0.001288661 0.0002079635 320 245 0.001760065 -0.0002840383 321 245 -0.002541777 0.0004101906 322 245 0.003980742 -0.0006424099 323 245 -0.007089509 0.001144101 165 246 0.0001704618 7.186683e-06 243 246 -0.007089509 0.001144101 244 246 0.01597157 -0.002577484 245 246 -0.06393453 0.01031772 246 246 0.6064428 -0.0950654 247 246 -0.06393453 0.01031772 248 246 0.01597157 -0.002577484 249 246 -0.007089509 0.001144101 250 246 0.003980742 -0.0006424099 251 246 -0.002541777 0.0004101906 252 246 0.001760065 -0.0002840383 253 246 -0.001288661 0.0002079635 254 246 0.0009826448 -0.0001585787 255 246 -0.0007727812 0.000124711 256 246 0.0006226054 -0.0001004757 257 246 -0.0005114288 8.253411e-05 258 246 0.0004268045 -6.887749e-05 259 246 -0.0003608797 5.823857e-05 260 246 0.0003085011 -4.978574e-05 261 246 -0.0002661734 4.295492e-05 262 246 0.0002314578 -3.735254e-05 263 246 -0.0002026106 3.26972e-05 264 246 0.0001783582 -2.878335e-05 265 246 -0.0001577525 2.545802e-05 266 246 0.000140076 -2.26054e-05 267 246 -0.0001247774 2.013652e-05 268 246 0.0001114272 -1.798207e-05 269 246 -9.968672e-05 1.608739e-05 270 246 8.928565e-05 -1.440887e-05 271 246 -8.000611e-05 1.291134e-05 272 246 7.167061e-05 -1.156616e-05 273 246 -6.413319e-05 1.034978e-05 274 246 5.727273e-05 -9.242642e-06 275 246 -5.098776e-05 8.228377e-06 276 246 4.519256e-05 -7.293151e-06 277 246 -3.981401e-05 6.425164e-06 278 246 3.478917e-05 -5.614257e-06 279 246 -3.00633e-05 4.851599e-06 280 246 2.558831e-05 -4.129428e-06 281 246 -2.132146e-05 3.440846e-06 282 246 1.722429e-05 -2.779647e-06 283 246 -1.326172e-05 2.14017e-06 284 246 9.401297e-06 -1.517176e-06 285 246 -5.612495e-06 9.057414e-07 286 246 1.866144e-06 -3.011573e-07 287 246 1.866144e-06 -3.011573e-07 288 246 -5.612495e-06 9.057414e-07 289 246 9.401297e-06 -1.517176e-06 290 246 -1.326172e-05 2.14017e-06 291 246 1.722429e-05 -2.779647e-06 292 246 -2.132146e-05 3.440846e-06 293 246 2.558831e-05 -4.129428e-06 294 246 -3.00633e-05 4.851599e-06 295 246 3.478917e-05 -5.614257e-06 296 246 -3.981401e-05 6.425164e-06 297 246 4.519256e-05 -7.293151e-06 298 246 -5.098776e-05 8.228377e-06 299 246 5.727273e-05 -9.242642e-06 300 246 -6.413319e-05 1.034978e-05 301 246 7.167061e-05 -1.156616e-05 302 246 -8.000611e-05 1.291134e-05 303 246 8.928565e-05 -1.440887e-05 304 246 -9.968672e-05 1.608739e-05 305 246 0.0001114272 -1.798207e-05 306 246 -0.0001247774 2.013652e-05 307 246 0.000140076 -2.26054e-05 308 246 -0.0001577525 2.545802e-05 309 246 0.0001783582 -2.878335e-05 310 246 -0.0002026106 3.26972e-05 311 246 0.0002314578 -3.735254e-05 312 246 -0.0002661734 4.295492e-05 313 246 0.0003085011 -4.978574e-05 314 246 -0.0003608797 5.823857e-05 315 246 0.0004268045 -6.887749e-05 316 246 -0.0005114288 8.253411e-05 317 246 0.0006226054 -0.0001004757 318 246 -0.0007727812 0.000124711 319 246 0.0009826448 -0.0001585787 320 246 -0.001288661 0.0002079635 321 246 0.001760065 -0.0002840383 322 246 -0.002541777 0.0004101906 323 246 0.003980742 -0.0006424099 166 247 0.0001835649 8.276982e-06 243 247 0.003980742 -0.0006424099 244 247 -0.007089509 0.001144101 245 247 0.01597157 -0.002577484 246 247 -0.06393453 0.01031772 247 247 0.4742801 -0.09363985 248 247 -0.06393453 0.01031772 249 247 0.01597157 -0.002577484 250 247 -0.007089509 0.001144101 251 247 0.003980742 -0.0006424099 252 247 -0.002541777 0.0004101906 253 247 0.001760065 -0.0002840383 254 247 -0.001288661 0.0002079635 255 247 0.0009826448 -0.0001585787 256 247 -0.0007727812 0.000124711 257 247 0.0006226054 -0.0001004757 258 247 -0.0005114288 8.253411e-05 259 247 0.0004268045 -6.887749e-05 260 247 -0.0003608797 5.823857e-05 261 247 0.0003085011 -4.978574e-05 262 247 -0.0002661734 4.295492e-05 263 247 0.0002314578 -3.735254e-05 264 247 -0.0002026106 3.26972e-05 265 247 0.0001783582 -2.878335e-05 266 247 -0.0001577525 2.545802e-05 267 247 0.000140076 -2.26054e-05 268 247 -0.0001247774 2.013652e-05 269 247 0.0001114272 -1.798207e-05 270 247 -9.968672e-05 1.608739e-05 271 247 8.928565e-05 -1.440887e-05 272 247 -8.000611e-05 1.291134e-05 273 247 7.167061e-05 -1.156616e-05 274 247 -6.413319e-05 1.034978e-05 275 247 5.727273e-05 -9.242642e-06 276 247 -5.098776e-05 8.228377e-06 277 247 4.519256e-05 -7.293151e-06 278 247 -3.981401e-05 6.425164e-06 279 247 3.478917e-05 -5.614257e-06 280 247 -3.00633e-05 4.851599e-06 281 247 2.558831e-05 -4.129428e-06 282 247 -2.132146e-05 3.440846e-06 283 247 1.722429e-05 -2.779647e-06 284 247 -1.326172e-05 2.14017e-06 285 247 9.401297e-06 -1.517176e-06 286 247 -5.612495e-06 9.057414e-07 287 247 1.866144e-06 -3.011573e-07 288 247 1.866144e-06 -3.011573e-07 289 247 -5.612495e-06 9.057414e-07 290 247 9.401297e-06 -1.517176e-06 291 247 -1.326172e-05 2.14017e-06 292 247 1.722429e-05 -2.779647e-06 293 247 -2.132146e-05 3.440846e-06 294 247 2.558831e-05 -4.129428e-06 295 247 -3.00633e-05 4.851599e-06 296 247 3.478917e-05 -5.614257e-06 297 247 -3.981401e-05 6.425164e-06 298 247 4.519256e-05 -7.293151e-06 299 247 -5.098776e-05 8.228377e-06 300 247 5.727273e-05 -9.242642e-06 301 247 -6.413319e-05 1.034978e-05 302 247 7.167061e-05 -1.156616e-05 303 247 -8.000611e-05 1.291134e-05 304 247 8.928565e-05 -1.440887e-05 305 247 -9.968672e-05 1.608739e-05 306 247 0.0001114272 -1.798207e-05 307 247 -0.0001247774 2.013652e-05 308 247 0.000140076 -2.26054e-05 309 247 -0.0001577525 2.545802e-05 310 247 0.0001783582 -2.878335e-05 311 247 -0.0002026106 3.26972e-05 312 247 0.0002314578 -3.735254e-05 313 247 -0.0002661734 4.295492e-05 314 247 0.0003085011 -4.978574e-05 315 247 -0.0003608797 5.823857e-05 316 247 0.0004268045 -6.887749e-05 317 247 -0.0005114288 8.253411e-05 318 247 0.0006226054 -0.0001004757 319 247 -0.0007727812 0.000124711 320 247 0.0009826448 -0.0001585787 321 247 -0.001288661 0.0002079635 322 247 0.001760065 -0.0002840383 323 247 -0.002541777 0.0004101906 167 248 0.0001967347 9.378277e-06 243 248 -0.002541777 0.0004101906 244 248 0.003980742 -0.0006424099 245 248 -0.007089509 0.001144101 246 248 0.01597157 -0.002577484 247 248 -0.06393453 0.01031772 248 248 0.3609256 -0.09116507 249 248 -0.06393453 0.01031772 250 248 0.01597157 -0.002577484 251 248 -0.007089509 0.001144101 252 248 0.003980742 -0.0006424099 253 248 -0.002541777 0.0004101906 254 248 0.001760065 -0.0002840383 255 248 -0.001288661 0.0002079635 256 248 0.0009826448 -0.0001585787 257 248 -0.0007727812 0.000124711 258 248 0.0006226054 -0.0001004757 259 248 -0.0005114288 8.253411e-05 260 248 0.0004268045 -6.887749e-05 261 248 -0.0003608797 5.823857e-05 262 248 0.0003085011 -4.978574e-05 263 248 -0.0002661734 4.295492e-05 264 248 0.0002314578 -3.735254e-05 265 248 -0.0002026106 3.26972e-05 266 248 0.0001783582 -2.878335e-05 267 248 -0.0001577525 2.545802e-05 268 248 0.000140076 -2.26054e-05 269 248 -0.0001247774 2.013652e-05 270 248 0.0001114272 -1.798207e-05 271 248 -9.968672e-05 1.608739e-05 272 248 8.928565e-05 -1.440887e-05 273 248 -8.000611e-05 1.291134e-05 274 248 7.167061e-05 -1.156616e-05 275 248 -6.413319e-05 1.034978e-05 276 248 5.727273e-05 -9.242642e-06 277 248 -5.098776e-05 8.228377e-06 278 248 4.519256e-05 -7.293151e-06 279 248 -3.981401e-05 6.425164e-06 280 248 3.478917e-05 -5.614257e-06 281 248 -3.00633e-05 4.851599e-06 282 248 2.558831e-05 -4.129428e-06 283 248 -2.132146e-05 3.440846e-06 284 248 1.722429e-05 -2.779647e-06 285 248 -1.326172e-05 2.14017e-06 286 248 9.401297e-06 -1.517176e-06 287 248 -5.612495e-06 9.057414e-07 288 248 1.866144e-06 -3.011573e-07 289 248 1.866144e-06 -3.011573e-07 290 248 -5.612495e-06 9.057414e-07 291 248 9.401297e-06 -1.517176e-06 292 248 -1.326172e-05 2.14017e-06 293 248 1.722429e-05 -2.779647e-06 294 248 -2.132146e-05 3.440846e-06 295 248 2.558831e-05 -4.129428e-06 296 248 -3.00633e-05 4.851599e-06 297 248 3.478917e-05 -5.614257e-06 298 248 -3.981401e-05 6.425164e-06 299 248 4.519256e-05 -7.293151e-06 300 248 -5.098776e-05 8.228377e-06 301 248 5.727273e-05 -9.242642e-06 302 248 -6.413319e-05 1.034978e-05 303 248 7.167061e-05 -1.156616e-05 304 248 -8.000611e-05 1.291134e-05 305 248 8.928565e-05 -1.440887e-05 306 248 -9.968672e-05 1.608739e-05 307 248 0.0001114272 -1.798207e-05 308 248 -0.0001247774 2.013652e-05 309 248 0.000140076 -2.26054e-05 310 248 -0.0001577525 2.545802e-05 311 248 0.0001783582 -2.878335e-05 312 248 -0.0002026106 3.26972e-05 313 248 0.0002314578 -3.735254e-05 314 248 -0.0002661734 4.295492e-05 315 248 0.0003085011 -4.978574e-05 316 248 -0.0003608797 5.823857e-05 317 248 0.0004268045 -6.887749e-05 318 248 -0.0005114288 8.253411e-05 319 248 0.0006226054 -0.0001004757 320 248 -0.0007727812 0.000124711 321 248 0.0009826448 -0.0001585787 322 248 -0.001288661 0.0002079635 323 248 0.001760065 -0.0002840383 168 249 0.0002099716 1.049065e-05 243 249 0.001760065 -0.0002840383 244 249 -0.002541777 0.0004101906 245 249 0.003980742 -0.0006424099 246 249 -0.007089509 0.001144101 247 249 0.01597157 -0.002577484 248 249 -0.06393453 0.01031772 249 249 0.2635201 -0.08799666 250 249 -0.06393453 0.01031772 251 249 0.01597157 -0.002577484 252 249 -0.007089509 0.001144101 253 249 0.003980742 -0.0006424099 254 249 -0.002541777 0.0004101906 255 249 0.001760065 -0.0002840383 256 249 -0.001288661 0.0002079635 257 249 0.0009826448 -0.0001585787 258 249 -0.0007727812 0.000124711 259 249 0.0006226054 -0.0001004757 260 249 -0.0005114288 8.253411e-05 261 249 0.0004268045 -6.887749e-05 262 249 -0.0003608797 5.823857e-05 263 249 0.0003085011 -4.978574e-05 264 249 -0.0002661734 4.295492e-05 265 249 0.0002314578 -3.735254e-05 266 249 -0.0002026106 3.26972e-05 267 249 0.0001783582 -2.878335e-05 268 249 -0.0001577525 2.545802e-05 269 249 0.000140076 -2.26054e-05 270 249 -0.0001247774 2.013652e-05 271 249 0.0001114272 -1.798207e-05 272 249 -9.968672e-05 1.608739e-05 273 249 8.928565e-05 -1.440887e-05 274 249 -8.000611e-05 1.291134e-05 275 249 7.167061e-05 -1.156616e-05 276 249 -6.413319e-05 1.034978e-05 277 249 5.727273e-05 -9.242642e-06 278 249 -5.098776e-05 8.228377e-06 279 249 4.519256e-05 -7.293151e-06 280 249 -3.981401e-05 6.425164e-06 281 249 3.478917e-05 -5.614257e-06 282 249 -3.00633e-05 4.851599e-06 283 249 2.558831e-05 -4.129428e-06 284 249 -2.132146e-05 3.440846e-06 285 249 1.722429e-05 -2.779647e-06 286 249 -1.326172e-05 2.14017e-06 287 249 9.401297e-06 -1.517176e-06 288 249 -5.612495e-06 9.057414e-07 289 249 1.866144e-06 -3.011573e-07 290 249 1.866144e-06 -3.011573e-07 291 249 -5.612495e-06 9.057414e-07 292 249 9.401297e-06 -1.517176e-06 293 249 -1.326172e-05 2.14017e-06 294 249 1.722429e-05 -2.779647e-06 295 249 -2.132146e-05 3.440846e-06 296 249 2.558831e-05 -4.129428e-06 297 249 -3.00633e-05 4.851599e-06 298 249 3.478917e-05 -5.614257e-06 299 249 -3.981401e-05 6.425164e-06 300 249 4.519256e-05 -7.293151e-06 301 249 -5.098776e-05 8.228377e-06 302 249 5.727273e-05 -9.242642e-06 303 249 -6.413319e-05 1.034978e-05 304 249 7.167061e-05 -1.156616e-05 305 249 -8.000611e-05 1.291134e-05 306 249 8.928565e-05 -1.440887e-05 307 249 -9.968672e-05 1.608739e-05 308 249 0.0001114272 -1.798207e-05 309 249 -0.0001247774 2.013652e-05 310 249 0.000140076 -2.26054e-05 311 249 -0.0001577525 2.545802e-05 312 249 0.0001783582 -2.878335e-05 313 249 -0.0002026106 3.26972e-05 314 249 0.0002314578 -3.735254e-05 315 249 -0.0002661734 4.295492e-05 316 249 0.0003085011 -4.978574e-05 317 249 -0.0003608797 5.823857e-05 318 249 0.0004268045 -6.887749e-05 319 249 -0.0005114288 8.253411e-05 320 249 0.0006226054 -0.0001004757 321 249 -0.0007727812 0.000124711 322 249 0.0009826448 -0.0001585787 323 249 -0.001288661 0.0002079635 169 250 0.000223276 1.161419e-05 243 250 -0.001288661 0.0002079635 244 250 0.001760065 -0.0002840383 245 250 -0.002541777 0.0004101906 246 250 0.003980742 -0.0006424099 247 250 -0.007089509 0.001144101 248 250 0.01597157 -0.002577484 249 250 -0.06393453 0.01031772 250 250 0.1796575 -0.08440152 251 250 -0.06393453 0.01031772 252 250 0.01597157 -0.002577484 253 250 -0.007089509 0.001144101 254 250 0.003980742 -0.0006424099 255 250 -0.002541777 0.0004101906 256 250 0.001760065 -0.0002840383 257 250 -0.001288661 0.0002079635 258 250 0.0009826448 -0.0001585787 259 250 -0.0007727812 0.000124711 260 250 0.0006226054 -0.0001004757 261 250 -0.0005114288 8.253411e-05 262 250 0.0004268045 -6.887749e-05 263 250 -0.0003608797 5.823857e-05 264 250 0.0003085011 -4.978574e-05 265 250 -0.0002661734 4.295492e-05 266 250 0.0002314578 -3.735254e-05 267 250 -0.0002026106 3.26972e-05 268 250 0.0001783582 -2.878335e-05 269 250 -0.0001577525 2.545802e-05 270 250 0.000140076 -2.26054e-05 271 250 -0.0001247774 2.013652e-05 272 250 0.0001114272 -1.798207e-05 273 250 -9.968672e-05 1.608739e-05 274 250 8.928565e-05 -1.440887e-05 275 250 -8.000611e-05 1.291134e-05 276 250 7.167061e-05 -1.156616e-05 277 250 -6.413319e-05 1.034978e-05 278 250 5.727273e-05 -9.242642e-06 279 250 -5.098776e-05 8.228377e-06 280 250 4.519256e-05 -7.293151e-06 281 250 -3.981401e-05 6.425164e-06 282 250 3.478917e-05 -5.614257e-06 283 250 -3.00633e-05 4.851599e-06 284 250 2.558831e-05 -4.129428e-06 285 250 -2.132146e-05 3.440846e-06 286 250 1.722429e-05 -2.779647e-06 287 250 -1.326172e-05 2.14017e-06 288 250 9.401297e-06 -1.517176e-06 289 250 -5.612495e-06 9.057414e-07 290 250 1.866144e-06 -3.011573e-07 291 250 1.866144e-06 -3.011573e-07 292 250 -5.612495e-06 9.057414e-07 293 250 9.401297e-06 -1.517176e-06 294 250 -1.326172e-05 2.14017e-06 295 250 1.722429e-05 -2.779647e-06 296 250 -2.132146e-05 3.440846e-06 297 250 2.558831e-05 -4.129428e-06 298 250 -3.00633e-05 4.851599e-06 299 250 3.478917e-05 -5.614257e-06 300 250 -3.981401e-05 6.425164e-06 301 250 4.519256e-05 -7.293151e-06 302 250 -5.098776e-05 8.228377e-06 303 250 5.727273e-05 -9.242642e-06 304 250 -6.413319e-05 1.034978e-05 305 250 7.167061e-05 -1.156616e-05 306 250 -8.000611e-05 1.291134e-05 307 250 8.928565e-05 -1.440887e-05 308 250 -9.968672e-05 1.608739e-05 309 250 0.0001114272 -1.798207e-05 310 250 -0.0001247774 2.013652e-05 311 250 0.000140076 -2.26054e-05 312 250 -0.0001577525 2.545802e-05 313 250 0.0001783582 -2.878335e-05 314 250 -0.0002026106 3.26972e-05 315 250 0.0002314578 -3.735254e-05 316 250 -0.0002661734 4.295492e-05 317 250 0.0003085011 -4.978574e-05 318 250 -0.0003608797 5.823857e-05 319 250 0.0004268045 -6.887749e-05 320 250 -0.0005114288 8.253411e-05 321 250 0.0006226054 -0.0001004757 322 250 -0.0007727812 0.000124711 323 250 0.0009826448 -0.0001585787 170 251 0.0002366482 1.274898e-05 243 251 0.0009826448 -0.0001585787 244 251 -0.001288661 0.0002079635 245 251 0.001760065 -0.0002840383 246 251 -0.002541777 0.0004101906 247 251 0.003980742 -0.0006424099 248 251 -0.007089509 0.001144101 249 251 0.01597157 -0.002577484 250 251 -0.06393453 0.01031772 251 251 0.1073113 -0.08057775 252 251 -0.06393453 0.01031772 253 251 0.01597157 -0.002577484 254 251 -0.007089509 0.001144101 255 251 0.003980742 -0.0006424099 256 251 -0.002541777 0.0004101906 257 251 0.001760065 -0.0002840383 258 251 -0.001288661 0.0002079635 259 251 0.0009826448 -0.0001585787 260 251 -0.0007727812 0.000124711 261 251 0.0006226054 -0.0001004757 262 251 -0.0005114288 8.253411e-05 263 251 0.0004268045 -6.887749e-05 264 251 -0.0003608797 5.823857e-05 265 251 0.0003085011 -4.978574e-05 266 251 -0.0002661734 4.295492e-05 267 251 0.0002314578 -3.735254e-05 268 251 -0.0002026106 3.26972e-05 269 251 0.0001783582 -2.878335e-05 270 251 -0.0001577525 2.545802e-05 271 251 0.000140076 -2.26054e-05 272 251 -0.0001247774 2.013652e-05 273 251 0.0001114272 -1.798207e-05 274 251 -9.968672e-05 1.608739e-05 275 251 8.928565e-05 -1.440887e-05 276 251 -8.000611e-05 1.291134e-05 277 251 7.167061e-05 -1.156616e-05 278 251 -6.413319e-05 1.034978e-05 279 251 5.727273e-05 -9.242642e-06 280 251 -5.098776e-05 8.228377e-06 281 251 4.519256e-05 -7.293151e-06 282 251 -3.981401e-05 6.425164e-06 283 251 3.478917e-05 -5.614257e-06 284 251 -3.00633e-05 4.851599e-06 285 251 2.558831e-05 -4.129428e-06 286 251 -2.132146e-05 3.440846e-06 287 251 1.722429e-05 -2.779647e-06 288 251 -1.326172e-05 2.14017e-06 289 251 9.401297e-06 -1.517176e-06 290 251 -5.612495e-06 9.057414e-07 291 251 1.866144e-06 -3.011573e-07 292 251 1.866144e-06 -3.011573e-07 293 251 -5.612495e-06 9.057414e-07 294 251 9.401297e-06 -1.517176e-06 295 251 -1.326172e-05 2.14017e-06 296 251 1.722429e-05 -2.779647e-06 297 251 -2.132146e-05 3.440846e-06 298 251 2.558831e-05 -4.129428e-06 299 251 -3.00633e-05 4.851599e-06 300 251 3.478917e-05 -5.614257e-06 301 251 -3.981401e-05 6.425164e-06 302 251 4.519256e-05 -7.293151e-06 303 251 -5.098776e-05 8.228377e-06 304 251 5.727273e-05 -9.242642e-06 305 251 -6.413319e-05 1.034978e-05 306 251 7.167061e-05 -1.156616e-05 307 251 -8.000611e-05 1.291134e-05 308 251 8.928565e-05 -1.440887e-05 309 251 -9.968672e-05 1.608739e-05 310 251 0.0001114272 -1.798207e-05 311 251 -0.0001247774 2.013652e-05 312 251 0.000140076 -2.26054e-05 313 251 -0.0001577525 2.545802e-05 314 251 0.0001783582 -2.878335e-05 315 251 -0.0002026106 3.26972e-05 316 251 0.0002314578 -3.735254e-05 317 251 -0.0002661734 4.295492e-05 318 251 0.0003085011 -4.978574e-05 319 251 -0.0003608797 5.823857e-05 320 251 0.0004268045 -6.887749e-05 321 251 -0.0005114288 8.253411e-05 322 251 0.0006226054 -0.0001004757 323 251 -0.0007727812 0.000124711 171 252 0.0002500884 1.38951e-05 243 252 -0.0007727812 0.000124711 244 252 0.0009826448 -0.0001585787 245 252 -0.001288661 0.0002079635 246 252 0.001760065 -0.0002840383 247 252 -0.002541777 0.0004101906 248 252 0.003980742 -0.0006424099 249 252 -0.007089509 0.001144101 250 252 0.01597157 -0.002577484 251 252 -0.06393453 0.01031772 252 252 0.04477307 -0.07667025 253 252 -0.06393453 0.01031772 254 252 0.01597157 -0.002577484 255 252 -0.007089509 0.001144101 256 252 0.003980742 -0.0006424099 257 252 -0.002541777 0.0004101906 258 252 0.001760065 -0.0002840383 259 252 -0.001288661 0.0002079635 260 252 0.0009826448 -0.0001585787 261 252 -0.0007727812 0.000124711 262 252 0.0006226054 -0.0001004757 263 252 -0.0005114288 8.253411e-05 264 252 0.0004268045 -6.887749e-05 265 252 -0.0003608797 5.823857e-05 266 252 0.0003085011 -4.978574e-05 267 252 -0.0002661734 4.295492e-05 268 252 0.0002314578 -3.735254e-05 269 252 -0.0002026106 3.26972e-05 270 252 0.0001783582 -2.878335e-05 271 252 -0.0001577525 2.545802e-05 272 252 0.000140076 -2.26054e-05 273 252 -0.0001247774 2.013652e-05 274 252 0.0001114272 -1.798207e-05 275 252 -9.968672e-05 1.608739e-05 276 252 8.928565e-05 -1.440887e-05 277 252 -8.000611e-05 1.291134e-05 278 252 7.167061e-05 -1.156616e-05 279 252 -6.413319e-05 1.034978e-05 280 252 5.727273e-05 -9.242642e-06 281 252 -5.098776e-05 8.228377e-06 282 252 4.519256e-05 -7.293151e-06 283 252 -3.981401e-05 6.425164e-06 284 252 3.478917e-05 -5.614257e-06 285 252 -3.00633e-05 4.851599e-06 286 252 2.558831e-05 -4.129428e-06 287 252 -2.132146e-05 3.440846e-06 288 252 1.722429e-05 -2.779647e-06 289 252 -1.326172e-05 2.14017e-06 290 252 9.401297e-06 -1.517176e-06 291 252 -5.612495e-06 9.057414e-07 292 252 1.866144e-06 -3.011573e-07 293 252 1.866144e-06 -3.011573e-07 294 252 -5.612495e-06 9.057414e-07 295 252 9.401297e-06 -1.517176e-06 296 252 -1.326172e-05 2.14017e-06 297 252 1.722429e-05 -2.779647e-06 298 252 -2.132146e-05 3.440846e-06 299 252 2.558831e-05 -4.129428e-06 300 252 -3.00633e-05 4.851599e-06 301 252 3.478917e-05 -5.614257e-06 302 252 -3.981401e-05 6.425164e-06 303 252 4.519256e-05 -7.293151e-06 304 252 -5.098776e-05 8.228377e-06 305 252 5.727273e-05 -9.242642e-06 306 252 -6.413319e-05 1.034978e-05 307 252 7.167061e-05 -1.156616e-05 308 252 -8.000611e-05 1.291134e-05 309 252 8.928565e-05 -1.440887e-05 310 252 -9.968672e-05 1.608739e-05 311 252 0.0001114272 -1.798207e-05 312 252 -0.0001247774 2.013652e-05 313 252 0.000140076 -2.26054e-05 314 252 -0.0001577525 2.545802e-05 315 252 0.0001783582 -2.878335e-05 316 252 -0.0002026106 3.26972e-05 317 252 0.0002314578 -3.735254e-05 318 252 -0.0002661734 4.295492e-05 319 252 0.0003085011 -4.978574e-05 320 252 -0.0003608797 5.823857e-05 321 252 0.0004268045 -6.887749e-05 322 252 -0.0005114288 8.253411e-05 323 252 0.0006226054 -0.0001004757 172 253 0.0002635972 1.505265e-05 243 253 0.0006226054 -0.0001004757 244 253 -0.0007727812 0.000124711 245 253 0.0009826448 -0.0001585787 246 253 -0.001288661 0.0002079635 247 253 0.001760065 -0.0002840383 248 253 -0.002541777 0.0004101906 249 253 0.003980742 -0.0006424099 250 253 -0.007089509 0.001144101 251 253 0.01597157 -0.002577484 252 253 -0.06393453 0.01031772 253 253 -0.009398557 -0.07278305 254 253 -0.06393453 0.01031772 255 253 0.01597157 -0.002577484 256 253 -0.007089509 0.001144101 257 253 0.003980742 -0.0006424099 258 253 -0.002541777 0.0004101906 259 253 0.001760065 -0.0002840383 260 253 -0.001288661 0.0002079635 261 253 0.0009826448 -0.0001585787 262 253 -0.0007727812 0.000124711 263 253 0.0006226054 -0.0001004757 264 253 -0.0005114288 8.253411e-05 265 253 0.0004268045 -6.887749e-05 266 253 -0.0003608797 5.823857e-05 267 253 0.0003085011 -4.978574e-05 268 253 -0.0002661734 4.295492e-05 269 253 0.0002314578 -3.735254e-05 270 253 -0.0002026106 3.26972e-05 271 253 0.0001783582 -2.878335e-05 272 253 -0.0001577525 2.545802e-05 273 253 0.000140076 -2.26054e-05 274 253 -0.0001247774 2.013652e-05 275 253 0.0001114272 -1.798207e-05 276 253 -9.968672e-05 1.608739e-05 277 253 8.928565e-05 -1.440887e-05 278 253 -8.000611e-05 1.291134e-05 279 253 7.167061e-05 -1.156616e-05 280 253 -6.413319e-05 1.034978e-05 281 253 5.727273e-05 -9.242642e-06 282 253 -5.098776e-05 8.228377e-06 283 253 4.519256e-05 -7.293151e-06 284 253 -3.981401e-05 6.425164e-06 285 253 3.478917e-05 -5.614257e-06 286 253 -3.00633e-05 4.851599e-06 287 253 2.558831e-05 -4.129428e-06 288 253 -2.132146e-05 3.440846e-06 289 253 1.722429e-05 -2.779647e-06 290 253 -1.326172e-05 2.14017e-06 291 253 9.401297e-06 -1.517176e-06 292 253 -5.612495e-06 9.057414e-07 293 253 1.866144e-06 -3.011573e-07 294 253 1.866144e-06 -3.011573e-07 295 253 -5.612495e-06 9.057414e-07 296 253 9.401297e-06 -1.517176e-06 297 253 -1.326172e-05 2.14017e-06 298 253 1.722429e-05 -2.779647e-06 299 253 -2.132146e-05 3.440846e-06 300 253 2.558831e-05 -4.129428e-06 301 253 -3.00633e-05 4.851599e-06 302 253 3.478917e-05 -5.614257e-06 303 253 -3.981401e-05 6.425164e-06 304 253 4.519256e-05 -7.293151e-06 305 253 -5.098776e-05 8.228377e-06 306 253 5.727273e-05 -9.242642e-06 307 253 -6.413319e-05 1.034978e-05 308 253 7.167061e-05 -1.156616e-05 309 253 -8.000611e-05 1.291134e-05 310 253 8.928565e-05 -1.440887e-05 311 253 -9.968672e-05 1.608739e-05 312 253 0.0001114272 -1.798207e-05 313 253 -0.0001247774 2.013652e-05 314 253 0.000140076 -2.26054e-05 315 253 -0.0001577525 2.545802e-05 316 253 0.0001783582 -2.878335e-05 317 253 -0.0002026106 3.26972e-05 318 253 0.0002314578 -3.735254e-05 319 253 -0.0002661734 4.295492e-05 320 253 0.0003085011 -4.978574e-05 321 253 -0.0003608797 5.823857e-05 322 253 0.0004268045 -6.887749e-05 323 253 -0.0005114288 8.253411e-05 173 254 0.0002771748 1.62217e-05 243 254 -0.0005114288 8.253411e-05 244 254 0.0006226054 -0.0001004757 245 254 -0.0007727812 0.000124711 246 254 0.0009826448 -0.0001585787 247 254 -0.001288661 0.0002079635 248 254 0.001760065 -0.0002840383 249 254 -0.002541777 0.0004101906 250 254 0.003980742 -0.0006424099 251 254 -0.007089509 0.001144101 252 254 0.01597157 -0.002577484 253 254 -0.06393453 0.01031772 254 254 -0.05642116 -0.06898902 255 254 -0.06393453 0.01031772 256 254 0.01597157 -0.002577484 257 254 -0.007089509 0.001144101 258 254 0.003980742 -0.0006424099 259 254 -0.002541777 0.0004101906 260 254 0.001760065 -0.0002840383 261 254 -0.001288661 0.0002079635 262 254 0.0009826448 -0.0001585787 263 254 -0.0007727812 0.000124711 264 254 0.0006226054 -0.0001004757 265 254 -0.0005114288 8.253411e-05 266 254 0.0004268045 -6.887749e-05 267 254 -0.0003608797 5.823857e-05 268 254 0.0003085011 -4.978574e-05 269 254 -0.0002661734 4.295492e-05 270 254 0.0002314578 -3.735254e-05 271 254 -0.0002026106 3.26972e-05 272 254 0.0001783582 -2.878335e-05 273 254 -0.0001577525 2.545802e-05 274 254 0.000140076 -2.26054e-05 275 254 -0.0001247774 2.013652e-05 276 254 0.0001114272 -1.798207e-05 277 254 -9.968672e-05 1.608739e-05 278 254 8.928565e-05 -1.440887e-05 279 254 -8.000611e-05 1.291134e-05 280 254 7.167061e-05 -1.156616e-05 281 254 -6.413319e-05 1.034978e-05 282 254 5.727273e-05 -9.242642e-06 283 254 -5.098776e-05 8.228377e-06 284 254 4.519256e-05 -7.293151e-06 285 254 -3.981401e-05 6.425164e-06 286 254 3.478917e-05 -5.614257e-06 287 254 -3.00633e-05 4.851599e-06 288 254 2.558831e-05 -4.129428e-06 289 254 -2.132146e-05 3.440846e-06 290 254 1.722429e-05 -2.779647e-06 291 254 -1.326172e-05 2.14017e-06 292 254 9.401297e-06 -1.517176e-06 293 254 -5.612495e-06 9.057414e-07 294 254 1.866144e-06 -3.011573e-07 295 254 1.866144e-06 -3.011573e-07 296 254 -5.612495e-06 9.057414e-07 297 254 9.401297e-06 -1.517176e-06 298 254 -1.326172e-05 2.14017e-06 299 254 1.722429e-05 -2.779647e-06 300 254 -2.132146e-05 3.440846e-06 301 254 2.558831e-05 -4.129428e-06 302 254 -3.00633e-05 4.851599e-06 303 254 3.478917e-05 -5.614257e-06 304 254 -3.981401e-05 6.425164e-06 305 254 4.519256e-05 -7.293151e-06 306 254 -5.098776e-05 8.228377e-06 307 254 5.727273e-05 -9.242642e-06 308 254 -6.413319e-05 1.034978e-05 309 254 7.167061e-05 -1.156616e-05 310 254 -8.000611e-05 1.291134e-05 311 254 8.928565e-05 -1.440887e-05 312 254 -9.968672e-05 1.608739e-05 313 254 0.0001114272 -1.798207e-05 314 254 -0.0001247774 2.013652e-05 315 254 0.000140076 -2.26054e-05 316 254 -0.0001577525 2.545802e-05 317 254 0.0001783582 -2.878335e-05 318 254 -0.0002026106 3.26972e-05 319 254 0.0002314578 -3.735254e-05 320 254 -0.0002661734 4.295492e-05 321 254 0.0003085011 -4.978574e-05 322 254 -0.0003608797 5.823857e-05 323 254 0.0004268045 -6.887749e-05 174 255 0.0002908216 1.740235e-05 243 255 0.0004268045 -6.887749e-05 244 255 -0.0005114288 8.253411e-05 245 255 0.0006226054 -0.0001004757 246 255 -0.0007727812 0.000124711 247 255 0.0009826448 -0.0001585787 248 255 -0.001288661 0.0002079635 249 255 0.001760065 -0.0002840383 250 255 -0.002541777 0.0004101906 251 255 0.003980742 -0.0006424099 252 255 -0.007089509 0.001144101 253 255 0.01597157 -0.002577484 254 255 -0.06393453 0.01031772 255 255 -0.09732428 -0.06533737 256 255 -0.06393453 0.01031772 257 255 0.01597157 -0.002577484 258 255 -0.007089509 0.001144101 259 255 0.003980742 -0.0006424099 260 255 -0.002541777 0.0004101906 261 255 0.001760065 -0.0002840383 262 255 -0.001288661 0.0002079635 263 255 0.0009826448 -0.0001585787 264 255 -0.0007727812 0.000124711 265 255 0.0006226054 -0.0001004757 266 255 -0.0005114288 8.253411e-05 267 255 0.0004268045 -6.887749e-05 268 255 -0.0003608797 5.823857e-05 269 255 0.0003085011 -4.978574e-05 270 255 -0.0002661734 4.295492e-05 271 255 0.0002314578 -3.735254e-05 272 255 -0.0002026106 3.26972e-05 273 255 0.0001783582 -2.878335e-05 274 255 -0.0001577525 2.545802e-05 275 255 0.000140076 -2.26054e-05 276 255 -0.0001247774 2.013652e-05 277 255 0.0001114272 -1.798207e-05 278 255 -9.968672e-05 1.608739e-05 279 255 8.928565e-05 -1.440887e-05 280 255 -8.000611e-05 1.291134e-05 281 255 7.167061e-05 -1.156616e-05 282 255 -6.413319e-05 1.034978e-05 283 255 5.727273e-05 -9.242642e-06 284 255 -5.098776e-05 8.228377e-06 285 255 4.519256e-05 -7.293151e-06 286 255 -3.981401e-05 6.425164e-06 287 255 3.478917e-05 -5.614257e-06 288 255 -3.00633e-05 4.851599e-06 289 255 2.558831e-05 -4.129428e-06 290 255 -2.132146e-05 3.440846e-06 291 255 1.722429e-05 -2.779647e-06 292 255 -1.326172e-05 2.14017e-06 293 255 9.401297e-06 -1.517176e-06 294 255 -5.612495e-06 9.057414e-07 295 255 1.866144e-06 -3.011573e-07 296 255 1.866144e-06 -3.011573e-07 297 255 -5.612495e-06 9.057414e-07 298 255 9.401297e-06 -1.517176e-06 299 255 -1.326172e-05 2.14017e-06 300 255 1.722429e-05 -2.779647e-06 301 255 -2.132146e-05 3.440846e-06 302 255 2.558831e-05 -4.129428e-06 303 255 -3.00633e-05 4.851599e-06 304 255 3.478917e-05 -5.614257e-06 305 255 -3.981401e-05 6.425164e-06 306 255 4.519256e-05 -7.293151e-06 307 255 -5.098776e-05 8.228377e-06 308 255 5.727273e-05 -9.242642e-06 309 255 -6.413319e-05 1.034978e-05 310 255 7.167061e-05 -1.156616e-05 311 255 -8.000611e-05 1.291134e-05 312 255 8.928565e-05 -1.440887e-05 313 255 -9.968672e-05 1.608739e-05 314 255 0.0001114272 -1.798207e-05 315 255 -0.0001247774 2.013652e-05 316 255 0.000140076 -2.26054e-05 317 255 -0.0001577525 2.545802e-05 318 255 0.0001783582 -2.878335e-05 319 255 -0.0002026106 3.26972e-05 320 255 0.0002314578 -3.735254e-05 321 255 -0.0002661734 4.295492e-05 322 255 0.0003085011 -4.978574e-05 323 255 -0.0003608797 5.823857e-05 175 256 0.0003045378 1.859469e-05 243 256 -0.0003608797 5.823857e-05 244 256 0.0004268045 -6.887749e-05 245 256 -0.0005114288 8.253411e-05 246 256 0.0006226054 -0.0001004757 247 256 -0.0007727812 0.000124711 248 256 0.0009826448 -0.0001585787 249 256 -0.001288661 0.0002079635 250 256 0.001760065 -0.0002840383 251 256 -0.002541777 0.0004101906 252 256 0.003980742 -0.0006424099 253 256 -0.007089509 0.001144101 254 256 0.01597157 -0.002577484 255 256 -0.06393453 0.01031772 256 256 -0.1329796 -0.06185955 257 256 -0.06393453 0.01031772 258 256 0.01597157 -0.002577484 259 256 -0.007089509 0.001144101 260 256 0.003980742 -0.0006424099 261 256 -0.002541777 0.0004101906 262 256 0.001760065 -0.0002840383 263 256 -0.001288661 0.0002079635 264 256 0.0009826448 -0.0001585787 265 256 -0.0007727812 0.000124711 266 256 0.0006226054 -0.0001004757 267 256 -0.0005114288 8.253411e-05 268 256 0.0004268045 -6.887749e-05 269 256 -0.0003608797 5.823857e-05 270 256 0.0003085011 -4.978574e-05 271 256 -0.0002661734 4.295492e-05 272 256 0.0002314578 -3.735254e-05 273 256 -0.0002026106 3.26972e-05 274 256 0.0001783582 -2.878335e-05 275 256 -0.0001577525 2.545802e-05 276 256 0.000140076 -2.26054e-05 277 256 -0.0001247774 2.013652e-05 278 256 0.0001114272 -1.798207e-05 279 256 -9.968672e-05 1.608739e-05 280 256 8.928565e-05 -1.440887e-05 281 256 -8.000611e-05 1.291134e-05 282 256 7.167061e-05 -1.156616e-05 283 256 -6.413319e-05 1.034978e-05 284 256 5.727273e-05 -9.242642e-06 285 256 -5.098776e-05 8.228377e-06 286 256 4.519256e-05 -7.293151e-06 287 256 -3.981401e-05 6.425164e-06 288 256 3.478917e-05 -5.614257e-06 289 256 -3.00633e-05 4.851599e-06 290 256 2.558831e-05 -4.129428e-06 291 256 -2.132146e-05 3.440846e-06 292 256 1.722429e-05 -2.779647e-06 293 256 -1.326172e-05 2.14017e-06 294 256 9.401297e-06 -1.517176e-06 295 256 -5.612495e-06 9.057414e-07 296 256 1.866144e-06 -3.011573e-07 297 256 1.866144e-06 -3.011573e-07 298 256 -5.612495e-06 9.057414e-07 299 256 9.401297e-06 -1.517176e-06 300 256 -1.326172e-05 2.14017e-06 301 256 1.722429e-05 -2.779647e-06 302 256 -2.132146e-05 3.440846e-06 303 256 2.558831e-05 -4.129428e-06 304 256 -3.00633e-05 4.851599e-06 305 256 3.478917e-05 -5.614257e-06 306 256 -3.981401e-05 6.425164e-06 307 256 4.519256e-05 -7.293151e-06 308 256 -5.098776e-05 8.228377e-06 309 256 5.727273e-05 -9.242642e-06 310 256 -6.413319e-05 1.034978e-05 311 256 7.167061e-05 -1.156616e-05 312 256 -8.000611e-05 1.291134e-05 313 256 8.928565e-05 -1.440887e-05 314 256 -9.968672e-05 1.608739e-05 315 256 0.0001114272 -1.798207e-05 316 256 -0.0001247774 2.013652e-05 317 256 0.000140076 -2.26054e-05 318 256 -0.0001577525 2.545802e-05 319 256 0.0001783582 -2.878335e-05 320 256 -0.0002026106 3.26972e-05 321 256 0.0002314578 -3.735254e-05 322 256 -0.0002661734 4.295492e-05 323 256 0.0003085011 -4.978574e-05 176 257 0.000318324 1.979879e-05 243 257 0.0003085011 -4.978574e-05 244 257 -0.0003608797 5.823857e-05 245 257 0.0004268045 -6.887749e-05 246 257 -0.0005114288 8.253411e-05 247 257 0.0006226054 -0.0001004757 248 257 -0.0007727812 0.000124711 249 257 0.0009826448 -0.0001585787 250 257 -0.001288661 0.0002079635 251 257 0.001760065 -0.0002840383 252 257 -0.002541777 0.0004101906 253 257 0.003980742 -0.0006424099 254 257 -0.007089509 0.001144101 255 257 0.01597157 -0.002577484 256 257 -0.06393453 0.01031772 257 257 -0.1641259 -0.05857382 258 257 -0.06393453 0.01031772 259 257 0.01597157 -0.002577484 260 257 -0.007089509 0.001144101 261 257 0.003980742 -0.0006424099 262 257 -0.002541777 0.0004101906 263 257 0.001760065 -0.0002840383 264 257 -0.001288661 0.0002079635 265 257 0.0009826448 -0.0001585787 266 257 -0.0007727812 0.000124711 267 257 0.0006226054 -0.0001004757 268 257 -0.0005114288 8.253411e-05 269 257 0.0004268045 -6.887749e-05 270 257 -0.0003608797 5.823857e-05 271 257 0.0003085011 -4.978574e-05 272 257 -0.0002661734 4.295492e-05 273 257 0.0002314578 -3.735254e-05 274 257 -0.0002026106 3.26972e-05 275 257 0.0001783582 -2.878335e-05 276 257 -0.0001577525 2.545802e-05 277 257 0.000140076 -2.26054e-05 278 257 -0.0001247774 2.013652e-05 279 257 0.0001114272 -1.798207e-05 280 257 -9.968672e-05 1.608739e-05 281 257 8.928565e-05 -1.440887e-05 282 257 -8.000611e-05 1.291134e-05 283 257 7.167061e-05 -1.156616e-05 284 257 -6.413319e-05 1.034978e-05 285 257 5.727273e-05 -9.242642e-06 286 257 -5.098776e-05 8.228377e-06 287 257 4.519256e-05 -7.293151e-06 288 257 -3.981401e-05 6.425164e-06 289 257 3.478917e-05 -5.614257e-06 290 257 -3.00633e-05 4.851599e-06 291 257 2.558831e-05 -4.129428e-06 292 257 -2.132146e-05 3.440846e-06 293 257 1.722429e-05 -2.779647e-06 294 257 -1.326172e-05 2.14017e-06 295 257 9.401297e-06 -1.517176e-06 296 257 -5.612495e-06 9.057414e-07 297 257 1.866144e-06 -3.011573e-07 298 257 1.866144e-06 -3.011573e-07 299 257 -5.612495e-06 9.057414e-07 300 257 9.401297e-06 -1.517176e-06 301 257 -1.326172e-05 2.14017e-06 302 257 1.722429e-05 -2.779647e-06 303 257 -2.132146e-05 3.440846e-06 304 257 2.558831e-05 -4.129428e-06 305 257 -3.00633e-05 4.851599e-06 306 257 3.478917e-05 -5.614257e-06 307 257 -3.981401e-05 6.425164e-06 308 257 4.519256e-05 -7.293151e-06 309 257 -5.098776e-05 8.228377e-06 310 257 5.727273e-05 -9.242642e-06 311 257 -6.413319e-05 1.034978e-05 312 257 7.167061e-05 -1.156616e-05 313 257 -8.000611e-05 1.291134e-05 314 257 8.928565e-05 -1.440887e-05 315 257 -9.968672e-05 1.608739e-05 316 257 0.0001114272 -1.798207e-05 317 257 -0.0001247774 2.013652e-05 318 257 0.000140076 -2.26054e-05 319 257 -0.0001577525 2.545802e-05 320 257 0.0001783582 -2.878335e-05 321 257 -0.0002026106 3.26972e-05 322 257 0.0002314578 -3.735254e-05 323 257 -0.0002661734 4.295492e-05 177 258 0.0003321804 2.101476e-05 243 258 -0.0002661734 4.295492e-05 244 258 0.0003085011 -4.978574e-05 245 258 -0.0003608797 5.823857e-05 246 258 0.0004268045 -6.887749e-05 247 258 -0.0005114288 8.253411e-05 248 258 0.0006226054 -0.0001004757 249 258 -0.0007727812 0.000124711 250 258 0.0009826448 -0.0001585787 251 258 -0.001288661 0.0002079635 252 258 0.001760065 -0.0002840383 253 258 -0.002541777 0.0004101906 254 258 0.003980742 -0.0006424099 255 258 -0.007089509 0.001144101 256 258 0.01597157 -0.002577484 257 258 -0.06393453 0.01031772 258 258 -0.1913906 -0.05548876 259 258 -0.06393453 0.01031772 260 258 0.01597157 -0.002577484 261 258 -0.007089509 0.001144101 262 258 0.003980742 -0.0006424099 263 258 -0.002541777 0.0004101906 264 258 0.001760065 -0.0002840383 265 258 -0.001288661 0.0002079635 266 258 0.0009826448 -0.0001585787 267 258 -0.0007727812 0.000124711 268 258 0.0006226054 -0.0001004757 269 258 -0.0005114288 8.253411e-05 270 258 0.0004268045 -6.887749e-05 271 258 -0.0003608797 5.823857e-05 272 258 0.0003085011 -4.978574e-05 273 258 -0.0002661734 4.295492e-05 274 258 0.0002314578 -3.735254e-05 275 258 -0.0002026106 3.26972e-05 276 258 0.0001783582 -2.878335e-05 277 258 -0.0001577525 2.545802e-05 278 258 0.000140076 -2.26054e-05 279 258 -0.0001247774 2.013652e-05 280 258 0.0001114272 -1.798207e-05 281 258 -9.968672e-05 1.608739e-05 282 258 8.928565e-05 -1.440887e-05 283 258 -8.000611e-05 1.291134e-05 284 258 7.167061e-05 -1.156616e-05 285 258 -6.413319e-05 1.034978e-05 286 258 5.727273e-05 -9.242642e-06 287 258 -5.098776e-05 8.228377e-06 288 258 4.519256e-05 -7.293151e-06 289 258 -3.981401e-05 6.425164e-06 290 258 3.478917e-05 -5.614257e-06 291 258 -3.00633e-05 4.851599e-06 292 258 2.558831e-05 -4.129428e-06 293 258 -2.132146e-05 3.440846e-06 294 258 1.722429e-05 -2.779647e-06 295 258 -1.326172e-05 2.14017e-06 296 258 9.401297e-06 -1.517176e-06 297 258 -5.612495e-06 9.057414e-07 298 258 1.866144e-06 -3.011573e-07 299 258 1.866144e-06 -3.011573e-07 300 258 -5.612495e-06 9.057414e-07 301 258 9.401297e-06 -1.517176e-06 302 258 -1.326172e-05 2.14017e-06 303 258 1.722429e-05 -2.779647e-06 304 258 -2.132146e-05 3.440846e-06 305 258 2.558831e-05 -4.129428e-06 306 258 -3.00633e-05 4.851599e-06 307 258 3.478917e-05 -5.614257e-06 308 258 -3.981401e-05 6.425164e-06 309 258 4.519256e-05 -7.293151e-06 310 258 -5.098776e-05 8.228377e-06 311 258 5.727273e-05 -9.242642e-06 312 258 -6.413319e-05 1.034978e-05 313 258 7.167061e-05 -1.156616e-05 314 258 -8.000611e-05 1.291134e-05 315 258 8.928565e-05 -1.440887e-05 316 258 -9.968672e-05 1.608739e-05 317 258 0.0001114272 -1.798207e-05 318 258 -0.0001247774 2.013652e-05 319 258 0.000140076 -2.26054e-05 320 258 -0.0001577525 2.545802e-05 321 258 0.0001783582 -2.878335e-05 322 258 -0.0002026106 3.26972e-05 323 258 0.0002314578 -3.735254e-05 178 259 0.0003461073 2.224268e-05 243 259 0.0002314578 -3.735254e-05 244 259 -0.0002661734 4.295492e-05 245 259 0.0003085011 -4.978574e-05 246 259 -0.0003608797 5.823857e-05 247 259 0.0004268045 -6.887749e-05 248 259 -0.0005114288 8.253411e-05 249 259 0.0006226054 -0.0001004757 250 259 -0.0007727812 0.000124711 251 259 0.0009826448 -0.0001585787 252 259 -0.001288661 0.0002079635 253 259 0.001760065 -0.0002840383 254 259 -0.002541777 0.0004101906 255 259 0.003980742 -0.0006424099 256 259 -0.007089509 0.001144101 257 259 0.01597157 -0.002577484 258 259 -0.06393453 0.01031772 259 259 -0.2153068 -0.052606 260 259 -0.06393453 0.01031772 261 259 0.01597157 -0.002577484 262 259 -0.007089509 0.001144101 263 259 0.003980742 -0.0006424099 264 259 -0.002541777 0.0004101906 265 259 0.001760065 -0.0002840383 266 259 -0.001288661 0.0002079635 267 259 0.0009826448 -0.0001585787 268 259 -0.0007727812 0.000124711 269 259 0.0006226054 -0.0001004757 270 259 -0.0005114288 8.253411e-05 271 259 0.0004268045 -6.887749e-05 272 259 -0.0003608797 5.823857e-05 273 259 0.0003085011 -4.978574e-05 274 259 -0.0002661734 4.295492e-05 275 259 0.0002314578 -3.735254e-05 276 259 -0.0002026106 3.26972e-05 277 259 0.0001783582 -2.878335e-05 278 259 -0.0001577525 2.545802e-05 279 259 0.000140076 -2.26054e-05 280 259 -0.0001247774 2.013652e-05 281 259 0.0001114272 -1.798207e-05 282 259 -9.968672e-05 1.608739e-05 283 259 8.928565e-05 -1.440887e-05 284 259 -8.000611e-05 1.291134e-05 285 259 7.167061e-05 -1.156616e-05 286 259 -6.413319e-05 1.034978e-05 287 259 5.727273e-05 -9.242642e-06 288 259 -5.098776e-05 8.228377e-06 289 259 4.519256e-05 -7.293151e-06 290 259 -3.981401e-05 6.425164e-06 291 259 3.478917e-05 -5.614257e-06 292 259 -3.00633e-05 4.851599e-06 293 259 2.558831e-05 -4.129428e-06 294 259 -2.132146e-05 3.440846e-06 295 259 1.722429e-05 -2.779647e-06 296 259 -1.326172e-05 2.14017e-06 297 259 9.401297e-06 -1.517176e-06 298 259 -5.612495e-06 9.057414e-07 299 259 1.866144e-06 -3.011573e-07 300 259 1.866144e-06 -3.011573e-07 301 259 -5.612495e-06 9.057414e-07 302 259 9.401297e-06 -1.517176e-06 303 259 -1.326172e-05 2.14017e-06 304 259 1.722429e-05 -2.779647e-06 305 259 -2.132146e-05 3.440846e-06 306 259 2.558831e-05 -4.129428e-06 307 259 -3.00633e-05 4.851599e-06 308 259 3.478917e-05 -5.614257e-06 309 259 -3.981401e-05 6.425164e-06 310 259 4.519256e-05 -7.293151e-06 311 259 -5.098776e-05 8.228377e-06 312 259 5.727273e-05 -9.242642e-06 313 259 -6.413319e-05 1.034978e-05 314 259 7.167061e-05 -1.156616e-05 315 259 -8.000611e-05 1.291134e-05 316 259 8.928565e-05 -1.440887e-05 317 259 -9.968672e-05 1.608739e-05 318 259 0.0001114272 -1.798207e-05 319 259 -0.0001247774 2.013652e-05 320 259 0.000140076 -2.26054e-05 321 259 -0.0001577525 2.545802e-05 322 259 0.0001783582 -2.878335e-05 323 259 -0.0002026106 3.26972e-05 179 260 0.0003601052 2.348264e-05 243 260 -0.0002026106 3.26972e-05 244 260 0.0002314578 -3.735254e-05 245 260 -0.0002661734 4.295492e-05 246 260 0.0003085011 -4.978574e-05 247 260 -0.0003608797 5.823857e-05 248 260 0.0004268045 -6.887749e-05 249 260 -0.0005114288 8.253411e-05 250 260 0.0006226054 -0.0001004757 251 260 -0.0007727812 0.000124711 252 260 0.0009826448 -0.0001585787 253 260 -0.001288661 0.0002079635 254 260 0.001760065 -0.0002840383 255 260 -0.002541777 0.0004101906 256 260 0.003980742 -0.0006424099 257 260 -0.007089509 0.001144101 258 260 0.01597157 -0.002577484 259 260 -0.06393453 0.01031772 260 260 -0.2363286 -0.04992224 261 260 -0.06393453 0.01031772 262 260 0.01597157 -0.002577484 263 260 -0.007089509 0.001144101 264 260 0.003980742 -0.0006424099 265 260 -0.002541777 0.0004101906 266 260 0.001760065 -0.0002840383 267 260 -0.001288661 0.0002079635 268 260 0.0009826448 -0.0001585787 269 260 -0.0007727812 0.000124711 270 260 0.0006226054 -0.0001004757 271 260 -0.0005114288 8.253411e-05 272 260 0.0004268045 -6.887749e-05 273 260 -0.0003608797 5.823857e-05 274 260 0.0003085011 -4.978574e-05 275 260 -0.0002661734 4.295492e-05 276 260 0.0002314578 -3.735254e-05 277 260 -0.0002026106 3.26972e-05 278 260 0.0001783582 -2.878335e-05 279 260 -0.0001577525 2.545802e-05 280 260 0.000140076 -2.26054e-05 281 260 -0.0001247774 2.013652e-05 282 260 0.0001114272 -1.798207e-05 283 260 -9.968672e-05 1.608739e-05 284 260 8.928565e-05 -1.440887e-05 285 260 -8.000611e-05 1.291134e-05 286 260 7.167061e-05 -1.156616e-05 287 260 -6.413319e-05 1.034978e-05 288 260 5.727273e-05 -9.242642e-06 289 260 -5.098776e-05 8.228377e-06 290 260 4.519256e-05 -7.293151e-06 291 260 -3.981401e-05 6.425164e-06 292 260 3.478917e-05 -5.614257e-06 293 260 -3.00633e-05 4.851599e-06 294 260 2.558831e-05 -4.129428e-06 295 260 -2.132146e-05 3.440846e-06 296 260 1.722429e-05 -2.779647e-06 297 260 -1.326172e-05 2.14017e-06 298 260 9.401297e-06 -1.517176e-06 299 260 -5.612495e-06 9.057414e-07 300 260 1.866144e-06 -3.011573e-07 301 260 1.866144e-06 -3.011573e-07 302 260 -5.612495e-06 9.057414e-07 303 260 9.401297e-06 -1.517176e-06 304 260 -1.326172e-05 2.14017e-06 305 260 1.722429e-05 -2.779647e-06 306 260 -2.132146e-05 3.440846e-06 307 260 2.558831e-05 -4.129428e-06 308 260 -3.00633e-05 4.851599e-06 309 260 3.478917e-05 -5.614257e-06 310 260 -3.981401e-05 6.425164e-06 311 260 4.519256e-05 -7.293151e-06 312 260 -5.098776e-05 8.228377e-06 313 260 5.727273e-05 -9.242642e-06 314 260 -6.413319e-05 1.034978e-05 315 260 7.167061e-05 -1.156616e-05 316 260 -8.000611e-05 1.291134e-05 317 260 8.928565e-05 -1.440887e-05 318 260 -9.968672e-05 1.608739e-05 319 260 0.0001114272 -1.798207e-05 320 260 -0.0001247774 2.013652e-05 321 260 0.000140076 -2.26054e-05 322 260 -0.0001577525 2.545802e-05 323 260 0.0001783582 -2.878335e-05 180 261 0.0003741744 2.473473e-05 243 261 0.0001783582 -2.878335e-05 244 261 -0.0002026106 3.26972e-05 245 261 0.0002314578 -3.735254e-05 246 261 -0.0002661734 4.295492e-05 247 261 0.0003085011 -4.978574e-05 248 261 -0.0003608797 5.823857e-05 249 261 0.0004268045 -6.887749e-05 250 261 -0.0005114288 8.253411e-05 251 261 0.0006226054 -0.0001004757 252 261 -0.0007727812 0.000124711 253 261 0.0009826448 -0.0001585787 254 261 -0.001288661 0.0002079635 255 261 0.001760065 -0.0002840383 256 261 -0.002541777 0.0004101906 257 261 0.003980742 -0.0006424099 258 261 -0.007089509 0.001144101 259 261 0.01597157 -0.002577484 260 261 -0.06393453 0.01031772 261 261 -0.2548431 -0.04743086 262 261 -0.06393453 0.01031772 263 261 0.01597157 -0.002577484 264 261 -0.007089509 0.001144101 265 261 0.003980742 -0.0006424099 266 261 -0.002541777 0.0004101906 267 261 0.001760065 -0.0002840383 268 261 -0.001288661 0.0002079635 269 261 0.0009826448 -0.0001585787 270 261 -0.0007727812 0.000124711 271 261 0.0006226054 -0.0001004757 272 261 -0.0005114288 8.253411e-05 273 261 0.0004268045 -6.887749e-05 274 261 -0.0003608797 5.823857e-05 275 261 0.0003085011 -4.978574e-05 276 261 -0.0002661734 4.295492e-05 277 261 0.0002314578 -3.735254e-05 278 261 -0.0002026106 3.26972e-05 279 261 0.0001783582 -2.878335e-05 280 261 -0.0001577525 2.545802e-05 281 261 0.000140076 -2.26054e-05 282 261 -0.0001247774 2.013652e-05 283 261 0.0001114272 -1.798207e-05 284 261 -9.968672e-05 1.608739e-05 285 261 8.928565e-05 -1.440887e-05 286 261 -8.000611e-05 1.291134e-05 287 261 7.167061e-05 -1.156616e-05 288 261 -6.413319e-05 1.034978e-05 289 261 5.727273e-05 -9.242642e-06 290 261 -5.098776e-05 8.228377e-06 291 261 4.519256e-05 -7.293151e-06 292 261 -3.981401e-05 6.425164e-06 293 261 3.478917e-05 -5.614257e-06 294 261 -3.00633e-05 4.851599e-06 295 261 2.558831e-05 -4.129428e-06 296 261 -2.132146e-05 3.440846e-06 297 261 1.722429e-05 -2.779647e-06 298 261 -1.326172e-05 2.14017e-06 299 261 9.401297e-06 -1.517176e-06 300 261 -5.612495e-06 9.057414e-07 301 261 1.866144e-06 -3.011573e-07 302 261 1.866144e-06 -3.011573e-07 303 261 -5.612495e-06 9.057414e-07 304 261 9.401297e-06 -1.517176e-06 305 261 -1.326172e-05 2.14017e-06 306 261 1.722429e-05 -2.779647e-06 307 261 -2.132146e-05 3.440846e-06 308 261 2.558831e-05 -4.129428e-06 309 261 -3.00633e-05 4.851599e-06 310 261 3.478917e-05 -5.614257e-06 311 261 -3.981401e-05 6.425164e-06 312 261 4.519256e-05 -7.293151e-06 313 261 -5.098776e-05 8.228377e-06 314 261 5.727273e-05 -9.242642e-06 315 261 -6.413319e-05 1.034978e-05 316 261 7.167061e-05 -1.156616e-05 317 261 -8.000611e-05 1.291134e-05 318 261 8.928565e-05 -1.440887e-05 319 261 -9.968672e-05 1.608739e-05 320 261 0.0001114272 -1.798207e-05 321 261 -0.0001247774 2.013652e-05 322 261 0.000140076 -2.26054e-05 323 261 -0.0001577525 2.545802e-05 181 262 0.0003883153 2.599905e-05 243 262 -0.0001577525 2.545802e-05 244 262 0.0001783582 -2.878335e-05 245 262 -0.0002026106 3.26972e-05 246 262 0.0002314578 -3.735254e-05 247 262 -0.0002661734 4.295492e-05 248 262 0.0003085011 -4.978574e-05 249 262 -0.0003608797 5.823857e-05 250 262 0.0004268045 -6.887749e-05 251 262 -0.0005114288 8.253411e-05 252 262 0.0006226054 -0.0001004757 253 262 -0.0007727812 0.000124711 254 262 0.0009826448 -0.0001585787 255 262 -0.001288661 0.0002079635 256 262 0.001760065 -0.0002840383 257 262 -0.002541777 0.0004101906 258 262 0.003980742 -0.0006424099 259 262 -0.007089509 0.001144101 260 262 0.01597157 -0.002577484 261 262 -0.06393453 0.01031772 262 262 -0.2711812 -0.04512305 263 262 -0.06393453 0.01031772 264 262 0.01597157 -0.002577484 265 262 -0.007089509 0.001144101 266 262 0.003980742 -0.0006424099 267 262 -0.002541777 0.0004101906 268 262 0.001760065 -0.0002840383 269 262 -0.001288661 0.0002079635 270 262 0.0009826448 -0.0001585787 271 262 -0.0007727812 0.000124711 272 262 0.0006226054 -0.0001004757 273 262 -0.0005114288 8.253411e-05 274 262 0.0004268045 -6.887749e-05 275 262 -0.0003608797 5.823857e-05 276 262 0.0003085011 -4.978574e-05 277 262 -0.0002661734 4.295492e-05 278 262 0.0002314578 -3.735254e-05 279 262 -0.0002026106 3.26972e-05 280 262 0.0001783582 -2.878335e-05 281 262 -0.0001577525 2.545802e-05 282 262 0.000140076 -2.26054e-05 283 262 -0.0001247774 2.013652e-05 284 262 0.0001114272 -1.798207e-05 285 262 -9.968672e-05 1.608739e-05 286 262 8.928565e-05 -1.440887e-05 287 262 -8.000611e-05 1.291134e-05 288 262 7.167061e-05 -1.156616e-05 289 262 -6.413319e-05 1.034978e-05 290 262 5.727273e-05 -9.242642e-06 291 262 -5.098776e-05 8.228377e-06 292 262 4.519256e-05 -7.293151e-06 293 262 -3.981401e-05 6.425164e-06 294 262 3.478917e-05 -5.614257e-06 295 262 -3.00633e-05 4.851599e-06 296 262 2.558831e-05 -4.129428e-06 297 262 -2.132146e-05 3.440846e-06 298 262 1.722429e-05 -2.779647e-06 299 262 -1.326172e-05 2.14017e-06 300 262 9.401297e-06 -1.517176e-06 301 262 -5.612495e-06 9.057414e-07 302 262 1.866144e-06 -3.011573e-07 303 262 1.866144e-06 -3.011573e-07 304 262 -5.612495e-06 9.057414e-07 305 262 9.401297e-06 -1.517176e-06 306 262 -1.326172e-05 2.14017e-06 307 262 1.722429e-05 -2.779647e-06 308 262 -2.132146e-05 3.440846e-06 309 262 2.558831e-05 -4.129428e-06 310 262 -3.00633e-05 4.851599e-06 311 262 3.478917e-05 -5.614257e-06 312 262 -3.981401e-05 6.425164e-06 313 262 4.519256e-05 -7.293151e-06 314 262 -5.098776e-05 8.228377e-06 315 262 5.727273e-05 -9.242642e-06 316 262 -6.413319e-05 1.034978e-05 317 262 7.167061e-05 -1.156616e-05 318 262 -8.000611e-05 1.291134e-05 319 262 8.928565e-05 -1.440887e-05 320 262 -9.968672e-05 1.608739e-05 321 262 0.0001114272 -1.798207e-05 322 262 -0.0001247774 2.013652e-05 323 262 0.000140076 -2.26054e-05 182 263 0.0004025281 2.727568e-05 243 263 0.000140076 -2.26054e-05 244 263 -0.0001577525 2.545802e-05 245 263 0.0001783582 -2.878335e-05 246 263 -0.0002026106 3.26972e-05 247 263 0.0002314578 -3.735254e-05 248 263 -0.0002661734 4.295492e-05 249 263 0.0003085011 -4.978574e-05 250 263 -0.0003608797 5.823857e-05 251 263 0.0004268045 -6.887749e-05 252 263 -0.0005114288 8.253411e-05 253 263 0.0006226054 -0.0001004757 254 263 -0.0007727812 0.000124711 255 263 0.0009826448 -0.0001585787 256 263 -0.001288661 0.0002079635 257 263 0.001760065 -0.0002840383 258 263 -0.002541777 0.0004101906 259 263 0.003980742 -0.0006424099 260 263 -0.007089509 0.001144101 261 263 0.01597157 -0.002577484 262 263 -0.06393453 0.01031772 263 263 -0.2856259 -0.04298872 264 263 -0.06393453 0.01031772 265 263 0.01597157 -0.002577484 266 263 -0.007089509 0.001144101 267 263 0.003980742 -0.0006424099 268 263 -0.002541777 0.0004101906 269 263 0.001760065 -0.0002840383 270 263 -0.001288661 0.0002079635 271 263 0.0009826448 -0.0001585787 272 263 -0.0007727812 0.000124711 273 263 0.0006226054 -0.0001004757 274 263 -0.0005114288 8.253411e-05 275 263 0.0004268045 -6.887749e-05 276 263 -0.0003608797 5.823857e-05 277 263 0.0003085011 -4.978574e-05 278 263 -0.0002661734 4.295492e-05 279 263 0.0002314578 -3.735254e-05 280 263 -0.0002026106 3.26972e-05 281 263 0.0001783582 -2.878335e-05 282 263 -0.0001577525 2.545802e-05 283 263 0.000140076 -2.26054e-05 284 263 -0.0001247774 2.013652e-05 285 263 0.0001114272 -1.798207e-05 286 263 -9.968672e-05 1.608739e-05 287 263 8.928565e-05 -1.440887e-05 288 263 -8.000611e-05 1.291134e-05 289 263 7.167061e-05 -1.156616e-05 290 263 -6.413319e-05 1.034978e-05 291 263 5.727273e-05 -9.242642e-06 292 263 -5.098776e-05 8.228377e-06 293 263 4.519256e-05 -7.293151e-06 294 263 -3.981401e-05 6.425164e-06 295 263 3.478917e-05 -5.614257e-06 296 263 -3.00633e-05 4.851599e-06 297 263 2.558831e-05 -4.129428e-06 298 263 -2.132146e-05 3.440846e-06 299 263 1.722429e-05 -2.779647e-06 300 263 -1.326172e-05 2.14017e-06 301 263 9.401297e-06 -1.517176e-06 302 263 -5.612495e-06 9.057414e-07 303 263 1.866144e-06 -3.011573e-07 304 263 1.866144e-06 -3.011573e-07 305 263 -5.612495e-06 9.057414e-07 306 263 9.401297e-06 -1.517176e-06 307 263 -1.326172e-05 2.14017e-06 308 263 1.722429e-05 -2.779647e-06 309 263 -2.132146e-05 3.440846e-06 310 263 2.558831e-05 -4.129428e-06 311 263 -3.00633e-05 4.851599e-06 312 263 3.478917e-05 -5.614257e-06 313 263 -3.981401e-05 6.425164e-06 314 263 4.519256e-05 -7.293151e-06 315 263 -5.098776e-05 8.228377e-06 316 263 5.727273e-05 -9.242642e-06 317 263 -6.413319e-05 1.034978e-05 318 263 7.167061e-05 -1.156616e-05 319 263 -8.000611e-05 1.291134e-05 320 263 8.928565e-05 -1.440887e-05 321 263 -9.968672e-05 1.608739e-05 322 263 0.0001114272 -1.798207e-05 323 263 -0.0001247774 2.013652e-05 183 264 0.0004168134 2.856472e-05 243 264 -0.0001247774 2.013652e-05 244 264 0.000140076 -2.26054e-05 245 264 -0.0001577525 2.545802e-05 246 264 0.0001783582 -2.878335e-05 247 264 -0.0002026106 3.26972e-05 248 264 0.0002314578 -3.735254e-05 249 264 -0.0002661734 4.295492e-05 250 264 0.0003085011 -4.978574e-05 251 264 -0.0003608797 5.823857e-05 252 264 0.0004268045 -6.887749e-05 253 264 -0.0005114288 8.253411e-05 254 264 0.0006226054 -0.0001004757 255 264 -0.0007727812 0.000124711 256 264 0.0009826448 -0.0001585787 257 264 -0.001288661 0.0002079635 258 264 0.001760065 -0.0002840383 259 264 -0.002541777 0.0004101906 260 264 0.003980742 -0.0006424099 261 264 -0.007089509 0.001144101 262 264 0.01597157 -0.002577484 263 264 -0.06393453 0.01031772 264 264 -0.29842 -0.04101709 265 264 -0.06393453 0.01031772 266 264 0.01597157 -0.002577484 267 264 -0.007089509 0.001144101 268 264 0.003980742 -0.0006424099 269 264 -0.002541777 0.0004101906 270 264 0.001760065 -0.0002840383 271 264 -0.001288661 0.0002079635 272 264 0.0009826448 -0.0001585787 273 264 -0.0007727812 0.000124711 274 264 0.0006226054 -0.0001004757 275 264 -0.0005114288 8.253411e-05 276 264 0.0004268045 -6.887749e-05 277 264 -0.0003608797 5.823857e-05 278 264 0.0003085011 -4.978574e-05 279 264 -0.0002661734 4.295492e-05 280 264 0.0002314578 -3.735254e-05 281 264 -0.0002026106 3.26972e-05 282 264 0.0001783582 -2.878335e-05 283 264 -0.0001577525 2.545802e-05 284 264 0.000140076 -2.26054e-05 285 264 -0.0001247774 2.013652e-05 286 264 0.0001114272 -1.798207e-05 287 264 -9.968672e-05 1.608739e-05 288 264 8.928565e-05 -1.440887e-05 289 264 -8.000611e-05 1.291134e-05 290 264 7.167061e-05 -1.156616e-05 291 264 -6.413319e-05 1.034978e-05 292 264 5.727273e-05 -9.242642e-06 293 264 -5.098776e-05 8.228377e-06 294 264 4.519256e-05 -7.293151e-06 295 264 -3.981401e-05 6.425164e-06 296 264 3.478917e-05 -5.614257e-06 297 264 -3.00633e-05 4.851599e-06 298 264 2.558831e-05 -4.129428e-06 299 264 -2.132146e-05 3.440846e-06 300 264 1.722429e-05 -2.779647e-06 301 264 -1.326172e-05 2.14017e-06 302 264 9.401297e-06 -1.517176e-06 303 264 -5.612495e-06 9.057414e-07 304 264 1.866144e-06 -3.011573e-07 305 264 1.866144e-06 -3.011573e-07 306 264 -5.612495e-06 9.057414e-07 307 264 9.401297e-06 -1.517176e-06 308 264 -1.326172e-05 2.14017e-06 309 264 1.722429e-05 -2.779647e-06 310 264 -2.132146e-05 3.440846e-06 311 264 2.558831e-05 -4.129428e-06 312 264 -3.00633e-05 4.851599e-06 313 264 3.478917e-05 -5.614257e-06 314 264 -3.981401e-05 6.425164e-06 315 264 4.519256e-05 -7.293151e-06 316 264 -5.098776e-05 8.228377e-06 317 264 5.727273e-05 -9.242642e-06 318 264 -6.413319e-05 1.034978e-05 319 264 7.167061e-05 -1.156616e-05 320 264 -8.000611e-05 1.291134e-05 321 264 8.928565e-05 -1.440887e-05 322 264 -9.968672e-05 1.608739e-05 323 264 0.0001114272 -1.798207e-05 184 265 0.0004311714 2.986627e-05 243 265 0.0001114272 -1.798207e-05 244 265 -0.0001247774 2.013652e-05 245 265 0.000140076 -2.26054e-05 246 265 -0.0001577525 2.545802e-05 247 265 0.0001783582 -2.878335e-05 248 265 -0.0002026106 3.26972e-05 249 265 0.0002314578 -3.735254e-05 250 265 -0.0002661734 4.295492e-05 251 265 0.0003085011 -4.978574e-05 252 265 -0.0003608797 5.823857e-05 253 265 0.0004268045 -6.887749e-05 254 265 -0.0005114288 8.253411e-05 255 265 0.0006226054 -0.0001004757 256 265 -0.0007727812 0.000124711 257 265 0.0009826448 -0.0001585787 258 265 -0.001288661 0.0002079635 259 265 0.001760065 -0.0002840383 260 265 -0.002541777 0.0004101906 261 265 0.003980742 -0.0006424099 262 265 -0.007089509 0.001144101 263 265 0.01597157 -0.002577484 264 265 -0.06393453 0.01031772 265 265 -0.3097721 -0.03919719 266 265 -0.06393453 0.01031772 267 265 0.01597157 -0.002577484 268 265 -0.007089509 0.001144101 269 265 0.003980742 -0.0006424099 270 265 -0.002541777 0.0004101906 271 265 0.001760065 -0.0002840383 272 265 -0.001288661 0.0002079635 273 265 0.0009826448 -0.0001585787 274 265 -0.0007727812 0.000124711 275 265 0.0006226054 -0.0001004757 276 265 -0.0005114288 8.253411e-05 277 265 0.0004268045 -6.887749e-05 278 265 -0.0003608797 5.823857e-05 279 265 0.0003085011 -4.978574e-05 280 265 -0.0002661734 4.295492e-05 281 265 0.0002314578 -3.735254e-05 282 265 -0.0002026106 3.26972e-05 283 265 0.0001783582 -2.878335e-05 284 265 -0.0001577525 2.545802e-05 285 265 0.000140076 -2.26054e-05 286 265 -0.0001247774 2.013652e-05 287 265 0.0001114272 -1.798207e-05 288 265 -9.968672e-05 1.608739e-05 289 265 8.928565e-05 -1.440887e-05 290 265 -8.000611e-05 1.291134e-05 291 265 7.167061e-05 -1.156616e-05 292 265 -6.413319e-05 1.034978e-05 293 265 5.727273e-05 -9.242642e-06 294 265 -5.098776e-05 8.228377e-06 295 265 4.519256e-05 -7.293151e-06 296 265 -3.981401e-05 6.425164e-06 297 265 3.478917e-05 -5.614257e-06 298 265 -3.00633e-05 4.851599e-06 299 265 2.558831e-05 -4.129428e-06 300 265 -2.132146e-05 3.440846e-06 301 265 1.722429e-05 -2.779647e-06 302 265 -1.326172e-05 2.14017e-06 303 265 9.401297e-06 -1.517176e-06 304 265 -5.612495e-06 9.057414e-07 305 265 1.866144e-06 -3.011573e-07 306 265 1.866144e-06 -3.011573e-07 307 265 -5.612495e-06 9.057414e-07 308 265 9.401297e-06 -1.517176e-06 309 265 -1.326172e-05 2.14017e-06 310 265 1.722429e-05 -2.779647e-06 311 265 -2.132146e-05 3.440846e-06 312 265 2.558831e-05 -4.129428e-06 313 265 -3.00633e-05 4.851599e-06 314 265 3.478917e-05 -5.614257e-06 315 265 -3.981401e-05 6.425164e-06 316 265 4.519256e-05 -7.293151e-06 317 265 -5.098776e-05 8.228377e-06 318 265 5.727273e-05 -9.242642e-06 319 265 -6.413319e-05 1.034978e-05 320 265 7.167061e-05 -1.156616e-05 321 265 -8.000611e-05 1.291134e-05 322 265 8.928565e-05 -1.440887e-05 323 265 -9.968672e-05 1.608739e-05 185 266 0.0004456025 3.118041e-05 243 266 -9.968672e-05 1.608739e-05 244 266 0.0001114272 -1.798207e-05 245 266 -0.0001247774 2.013652e-05 246 266 0.000140076 -2.26054e-05 247 266 -0.0001577525 2.545802e-05 248 266 0.0001783582 -2.878335e-05 249 266 -0.0002026106 3.26972e-05 250 266 0.0002314578 -3.735254e-05 251 266 -0.0002661734 4.295492e-05 252 266 0.0003085011 -4.978574e-05 253 266 -0.0003608797 5.823857e-05 254 266 0.0004268045 -6.887749e-05 255 266 -0.0005114288 8.253411e-05 256 266 0.0006226054 -0.0001004757 257 266 -0.0007727812 0.000124711 258 266 0.0009826448 -0.0001585787 259 266 -0.001288661 0.0002079635 260 266 0.001760065 -0.0002840383 261 266 -0.002541777 0.0004101906 262 266 0.003980742 -0.0006424099 263 266 -0.007089509 0.001144101 264 266 0.01597157 -0.002577484 265 266 -0.06393453 0.01031772 266 266 -0.3198616 -0.03751817 267 266 -0.06393453 0.01031772 268 266 0.01597157 -0.002577484 269 266 -0.007089509 0.001144101 270 266 0.003980742 -0.0006424099 271 266 -0.002541777 0.0004101906 272 266 0.001760065 -0.0002840383 273 266 -0.001288661 0.0002079635 274 266 0.0009826448 -0.0001585787 275 266 -0.0007727812 0.000124711 276 266 0.0006226054 -0.0001004757 277 266 -0.0005114288 8.253411e-05 278 266 0.0004268045 -6.887749e-05 279 266 -0.0003608797 5.823857e-05 280 266 0.0003085011 -4.978574e-05 281 266 -0.0002661734 4.295492e-05 282 266 0.0002314578 -3.735254e-05 283 266 -0.0002026106 3.26972e-05 284 266 0.0001783582 -2.878335e-05 285 266 -0.0001577525 2.545802e-05 286 266 0.000140076 -2.26054e-05 287 266 -0.0001247774 2.013652e-05 288 266 0.0001114272 -1.798207e-05 289 266 -9.968672e-05 1.608739e-05 290 266 8.928565e-05 -1.440887e-05 291 266 -8.000611e-05 1.291134e-05 292 266 7.167061e-05 -1.156616e-05 293 266 -6.413319e-05 1.034978e-05 294 266 5.727273e-05 -9.242642e-06 295 266 -5.098776e-05 8.228377e-06 296 266 4.519256e-05 -7.293151e-06 297 266 -3.981401e-05 6.425164e-06 298 266 3.478917e-05 -5.614257e-06 299 266 -3.00633e-05 4.851599e-06 300 266 2.558831e-05 -4.129428e-06 301 266 -2.132146e-05 3.440846e-06 302 266 1.722429e-05 -2.779647e-06 303 266 -1.326172e-05 2.14017e-06 304 266 9.401297e-06 -1.517176e-06 305 266 -5.612495e-06 9.057414e-07 306 266 1.866144e-06 -3.011573e-07 307 266 1.866144e-06 -3.011573e-07 308 266 -5.612495e-06 9.057414e-07 309 266 9.401297e-06 -1.517176e-06 310 266 -1.326172e-05 2.14017e-06 311 266 1.722429e-05 -2.779647e-06 312 266 -2.132146e-05 3.440846e-06 313 266 2.558831e-05 -4.129428e-06 314 266 -3.00633e-05 4.851599e-06 315 266 3.478917e-05 -5.614257e-06 316 266 -3.981401e-05 6.425164e-06 317 266 4.519256e-05 -7.293151e-06 318 266 -5.098776e-05 8.228377e-06 319 266 5.727273e-05 -9.242642e-06 320 266 -6.413319e-05 1.034978e-05 321 266 7.167061e-05 -1.156616e-05 322 266 -8.000611e-05 1.291134e-05 323 266 8.928565e-05 -1.440887e-05 186 267 0.0004601072 3.250725e-05 243 267 8.928565e-05 -1.440887e-05 244 267 -9.968672e-05 1.608739e-05 245 267 0.0001114272 -1.798207e-05 246 267 -0.0001247774 2.013652e-05 247 267 0.000140076 -2.26054e-05 248 267 -0.0001577525 2.545802e-05 249 267 0.0001783582 -2.878335e-05 250 267 -0.0002026106 3.26972e-05 251 267 0.0002314578 -3.735254e-05 252 267 -0.0002661734 4.295492e-05 253 267 0.0003085011 -4.978574e-05 254 267 -0.0003608797 5.823857e-05 255 267 0.0004268045 -6.887749e-05 256 267 -0.0005114288 8.253411e-05 257 267 0.0006226054 -0.0001004757 258 267 -0.0007727812 0.000124711 259 267 0.0009826448 -0.0001585787 260 267 -0.001288661 0.0002079635 261 267 0.001760065 -0.0002840383 262 267 -0.002541777 0.0004101906 263 267 0.003980742 -0.0006424099 264 267 -0.007089509 0.001144101 265 267 0.01597157 -0.002577484 266 267 -0.06393453 0.01031772 267 267 -0.3288435 -0.03596951 268 267 -0.06393453 0.01031772 269 267 0.01597157 -0.002577484 270 267 -0.007089509 0.001144101 271 267 0.003980742 -0.0006424099 272 267 -0.002541777 0.0004101906 273 267 0.001760065 -0.0002840383 274 267 -0.001288661 0.0002079635 275 267 0.0009826448 -0.0001585787 276 267 -0.0007727812 0.000124711 277 267 0.0006226054 -0.0001004757 278 267 -0.0005114288 8.253411e-05 279 267 0.0004268045 -6.887749e-05 280 267 -0.0003608797 5.823857e-05 281 267 0.0003085011 -4.978574e-05 282 267 -0.0002661734 4.295492e-05 283 267 0.0002314578 -3.735254e-05 284 267 -0.0002026106 3.26972e-05 285 267 0.0001783582 -2.878335e-05 286 267 -0.0001577525 2.545802e-05 287 267 0.000140076 -2.26054e-05 288 267 -0.0001247774 2.013652e-05 289 267 0.0001114272 -1.798207e-05 290 267 -9.968672e-05 1.608739e-05 291 267 8.928565e-05 -1.440887e-05 292 267 -8.000611e-05 1.291134e-05 293 267 7.167061e-05 -1.156616e-05 294 267 -6.413319e-05 1.034978e-05 295 267 5.727273e-05 -9.242642e-06 296 267 -5.098776e-05 8.228377e-06 297 267 4.519256e-05 -7.293151e-06 298 267 -3.981401e-05 6.425164e-06 299 267 3.478917e-05 -5.614257e-06 300 267 -3.00633e-05 4.851599e-06 301 267 2.558831e-05 -4.129428e-06 302 267 -2.132146e-05 3.440846e-06 303 267 1.722429e-05 -2.779647e-06 304 267 -1.326172e-05 2.14017e-06 305 267 9.401297e-06 -1.517176e-06 306 267 -5.612495e-06 9.057414e-07 307 267 1.866144e-06 -3.011573e-07 308 267 1.866144e-06 -3.011573e-07 309 267 -5.612495e-06 9.057414e-07 310 267 9.401297e-06 -1.517176e-06 311 267 -1.326172e-05 2.14017e-06 312 267 1.722429e-05 -2.779647e-06 313 267 -2.132146e-05 3.440846e-06 314 267 2.558831e-05 -4.129428e-06 315 267 -3.00633e-05 4.851599e-06 316 267 3.478917e-05 -5.614257e-06 317 267 -3.981401e-05 6.425164e-06 318 267 4.519256e-05 -7.293151e-06 319 267 -5.098776e-05 8.228377e-06 320 267 5.727273e-05 -9.242642e-06 321 267 -6.413319e-05 1.034978e-05 322 267 7.167061e-05 -1.156616e-05 323 267 -8.000611e-05 1.291134e-05 187 268 0.0004746856 3.384687e-05 243 268 -8.000611e-05 1.291134e-05 244 268 8.928565e-05 -1.440887e-05 245 268 -9.968672e-05 1.608739e-05 246 268 0.0001114272 -1.798207e-05 247 268 -0.0001247774 2.013652e-05 248 268 0.000140076 -2.26054e-05 249 268 -0.0001577525 2.545802e-05 250 268 0.0001783582 -2.878335e-05 251 268 -0.0002026106 3.26972e-05 252 268 0.0002314578 -3.735254e-05 253 268 -0.0002661734 4.295492e-05 254 268 0.0003085011 -4.978574e-05 255 268 -0.0003608797 5.823857e-05 256 268 0.0004268045 -6.887749e-05 257 268 -0.0005114288 8.253411e-05 258 268 0.0006226054 -0.0001004757 259 268 -0.0007727812 0.000124711 260 268 0.0009826448 -0.0001585787 261 268 -0.001288661 0.0002079635 262 268 0.001760065 -0.0002840383 263 268 -0.002541777 0.0004101906 264 268 0.003980742 -0.0006424099 265 268 -0.007089509 0.001144101 266 268 0.01597157 -0.002577484 267 268 -0.06393453 0.01031772 268 268 -0.3368515 -0.03454119 269 268 -0.06393453 0.01031772 270 268 0.01597157 -0.002577484 271 268 -0.007089509 0.001144101 272 268 0.003980742 -0.0006424099 273 268 -0.002541777 0.0004101906 274 268 0.001760065 -0.0002840383 275 268 -0.001288661 0.0002079635 276 268 0.0009826448 -0.0001585787 277 268 -0.0007727812 0.000124711 278 268 0.0006226054 -0.0001004757 279 268 -0.0005114288 8.253411e-05 280 268 0.0004268045 -6.887749e-05 281 268 -0.0003608797 5.823857e-05 282 268 0.0003085011 -4.978574e-05 283 268 -0.0002661734 4.295492e-05 284 268 0.0002314578 -3.735254e-05 285 268 -0.0002026106 3.26972e-05 286 268 0.0001783582 -2.878335e-05 287 268 -0.0001577525 2.545802e-05 288 268 0.000140076 -2.26054e-05 289 268 -0.0001247774 2.013652e-05 290 268 0.0001114272 -1.798207e-05 291 268 -9.968672e-05 1.608739e-05 292 268 8.928565e-05 -1.440887e-05 293 268 -8.000611e-05 1.291134e-05 294 268 7.167061e-05 -1.156616e-05 295 268 -6.413319e-05 1.034978e-05 296 268 5.727273e-05 -9.242642e-06 297 268 -5.098776e-05 8.228377e-06 298 268 4.519256e-05 -7.293151e-06 299 268 -3.981401e-05 6.425164e-06 300 268 3.478917e-05 -5.614257e-06 301 268 -3.00633e-05 4.851599e-06 302 268 2.558831e-05 -4.129428e-06 303 268 -2.132146e-05 3.440846e-06 304 268 1.722429e-05 -2.779647e-06 305 268 -1.326172e-05 2.14017e-06 306 268 9.401297e-06 -1.517176e-06 307 268 -5.612495e-06 9.057414e-07 308 268 1.866144e-06 -3.011573e-07 309 268 1.866144e-06 -3.011573e-07 310 268 -5.612495e-06 9.057414e-07 311 268 9.401297e-06 -1.517176e-06 312 268 -1.326172e-05 2.14017e-06 313 268 1.722429e-05 -2.779647e-06 314 268 -2.132146e-05 3.440846e-06 315 268 2.558831e-05 -4.129428e-06 316 268 -3.00633e-05 4.851599e-06 317 268 3.478917e-05 -5.614257e-06 318 268 -3.981401e-05 6.425164e-06 319 268 4.519256e-05 -7.293151e-06 320 268 -5.098776e-05 8.228377e-06 321 268 5.727273e-05 -9.242642e-06 322 268 -6.413319e-05 1.034978e-05 323 268 7.167061e-05 -1.156616e-05 188 269 0.0004893383 3.519938e-05 243 269 7.167061e-05 -1.156616e-05 244 269 -8.000611e-05 1.291134e-05 245 269 8.928565e-05 -1.440887e-05 246 269 -9.968672e-05 1.608739e-05 247 269 0.0001114272 -1.798207e-05 248 269 -0.0001247774 2.013652e-05 249 269 0.000140076 -2.26054e-05 250 269 -0.0001577525 2.545802e-05 251 269 0.0001783582 -2.878335e-05 252 269 -0.0002026106 3.26972e-05 253 269 0.0002314578 -3.735254e-05 254 269 -0.0002661734 4.295492e-05 255 269 0.0003085011 -4.978574e-05 256 269 -0.0003608797 5.823857e-05 257 269 0.0004268045 -6.887749e-05 258 269 -0.0005114288 8.253411e-05 259 269 0.0006226054 -0.0001004757 260 269 -0.0007727812 0.000124711 261 269 0.0009826448 -0.0001585787 262 269 -0.001288661 0.0002079635 263 269 0.001760065 -0.0002840383 264 269 -0.002541777 0.0004101906 265 269 0.003980742 -0.0006424099 266 269 -0.007089509 0.001144101 267 269 0.01597157 -0.002577484 268 269 -0.06393453 0.01031772 269 269 -0.3440016 -0.03322374 270 269 -0.06393453 0.01031772 271 269 0.01597157 -0.002577484 272 269 -0.007089509 0.001144101 273 269 0.003980742 -0.0006424099 274 269 -0.002541777 0.0004101906 275 269 0.001760065 -0.0002840383 276 269 -0.001288661 0.0002079635 277 269 0.0009826448 -0.0001585787 278 269 -0.0007727812 0.000124711 279 269 0.0006226054 -0.0001004757 280 269 -0.0005114288 8.253411e-05 281 269 0.0004268045 -6.887749e-05 282 269 -0.0003608797 5.823857e-05 283 269 0.0003085011 -4.978574e-05 284 269 -0.0002661734 4.295492e-05 285 269 0.0002314578 -3.735254e-05 286 269 -0.0002026106 3.26972e-05 287 269 0.0001783582 -2.878335e-05 288 269 -0.0001577525 2.545802e-05 289 269 0.000140076 -2.26054e-05 290 269 -0.0001247774 2.013652e-05 291 269 0.0001114272 -1.798207e-05 292 269 -9.968672e-05 1.608739e-05 293 269 8.928565e-05 -1.440887e-05 294 269 -8.000611e-05 1.291134e-05 295 269 7.167061e-05 -1.156616e-05 296 269 -6.413319e-05 1.034978e-05 297 269 5.727273e-05 -9.242642e-06 298 269 -5.098776e-05 8.228377e-06 299 269 4.519256e-05 -7.293151e-06 300 269 -3.981401e-05 6.425164e-06 301 269 3.478917e-05 -5.614257e-06 302 269 -3.00633e-05 4.851599e-06 303 269 2.558831e-05 -4.129428e-06 304 269 -2.132146e-05 3.440846e-06 305 269 1.722429e-05 -2.779647e-06 306 269 -1.326172e-05 2.14017e-06 307 269 9.401297e-06 -1.517176e-06 308 269 -5.612495e-06 9.057414e-07 309 269 1.866144e-06 -3.011573e-07 310 269 1.866144e-06 -3.011573e-07 311 269 -5.612495e-06 9.057414e-07 312 269 9.401297e-06 -1.517176e-06 313 269 -1.326172e-05 2.14017e-06 314 269 1.722429e-05 -2.779647e-06 315 269 -2.132146e-05 3.440846e-06 316 269 2.558831e-05 -4.129428e-06 317 269 -3.00633e-05 4.851599e-06 318 269 3.478917e-05 -5.614257e-06 319 269 -3.981401e-05 6.425164e-06 320 269 4.519256e-05 -7.293151e-06 321 269 -5.098776e-05 8.228377e-06 322 269 5.727273e-05 -9.242642e-06 323 269 -6.413319e-05 1.034978e-05 189 270 0.0005040657 3.656486e-05 243 270 -6.413319e-05 1.034978e-05 244 270 7.167061e-05 -1.156616e-05 245 270 -8.000611e-05 1.291134e-05 246 270 8.928565e-05 -1.440887e-05 247 270 -9.968672e-05 1.608739e-05 248 270 0.0001114272 -1.798207e-05 249 270 -0.0001247774 2.013652e-05 250 270 0.000140076 -2.26054e-05 251 270 -0.0001577525 2.545802e-05 252 270 0.0001783582 -2.878335e-05 253 270 -0.0002026106 3.26972e-05 254 270 0.0002314578 -3.735254e-05 255 270 -0.0002661734 4.295492e-05 256 270 0.0003085011 -4.978574e-05 257 270 -0.0003608797 5.823857e-05 258 270 0.0004268045 -6.887749e-05 259 270 -0.0005114288 8.253411e-05 260 270 0.0006226054 -0.0001004757 261 270 -0.0007727812 0.000124711 262 270 0.0009826448 -0.0001585787 263 270 -0.001288661 0.0002079635 264 270 0.001760065 -0.0002840383 265 270 -0.002541777 0.0004101906 266 270 0.003980742 -0.0006424099 267 270 -0.007089509 0.001144101 268 270 0.01597157 -0.002577484 269 270 -0.06393453 0.01031772 270 270 -0.3503946 -0.0320083 271 270 -0.06393453 0.01031772 272 270 0.01597157 -0.002577484 273 270 -0.007089509 0.001144101 274 270 0.003980742 -0.0006424099 275 270 -0.002541777 0.0004101906 276 270 0.001760065 -0.0002840383 277 270 -0.001288661 0.0002079635 278 270 0.0009826448 -0.0001585787 279 270 -0.0007727812 0.000124711 280 270 0.0006226054 -0.0001004757 281 270 -0.0005114288 8.253411e-05 282 270 0.0004268045 -6.887749e-05 283 270 -0.0003608797 5.823857e-05 284 270 0.0003085011 -4.978574e-05 285 270 -0.0002661734 4.295492e-05 286 270 0.0002314578 -3.735254e-05 287 270 -0.0002026106 3.26972e-05 288 270 0.0001783582 -2.878335e-05 289 270 -0.0001577525 2.545802e-05 290 270 0.000140076 -2.26054e-05 291 270 -0.0001247774 2.013652e-05 292 270 0.0001114272 -1.798207e-05 293 270 -9.968672e-05 1.608739e-05 294 270 8.928565e-05 -1.440887e-05 295 270 -8.000611e-05 1.291134e-05 296 270 7.167061e-05 -1.156616e-05 297 270 -6.413319e-05 1.034978e-05 298 270 5.727273e-05 -9.242642e-06 299 270 -5.098776e-05 8.228377e-06 300 270 4.519256e-05 -7.293151e-06 301 270 -3.981401e-05 6.425164e-06 302 270 3.478917e-05 -5.614257e-06 303 270 -3.00633e-05 4.851599e-06 304 270 2.558831e-05 -4.129428e-06 305 270 -2.132146e-05 3.440846e-06 306 270 1.722429e-05 -2.779647e-06 307 270 -1.326172e-05 2.14017e-06 308 270 9.401297e-06 -1.517176e-06 309 270 -5.612495e-06 9.057414e-07 310 270 1.866144e-06 -3.011573e-07 311 270 1.866144e-06 -3.011573e-07 312 270 -5.612495e-06 9.057414e-07 313 270 9.401297e-06 -1.517176e-06 314 270 -1.326172e-05 2.14017e-06 315 270 1.722429e-05 -2.779647e-06 316 270 -2.132146e-05 3.440846e-06 317 270 2.558831e-05 -4.129428e-06 318 270 -3.00633e-05 4.851599e-06 319 270 3.478917e-05 -5.614257e-06 320 270 -3.981401e-05 6.425164e-06 321 270 4.519256e-05 -7.293151e-06 322 270 -5.098776e-05 8.228377e-06 323 270 5.727273e-05 -9.242642e-06 190 271 0.000518868 3.794342e-05 243 271 5.727273e-05 -9.242642e-06 244 271 -6.413319e-05 1.034978e-05 245 271 7.167061e-05 -1.156616e-05 246 271 -8.000611e-05 1.291134e-05 247 271 8.928565e-05 -1.440887e-05 248 271 -9.968672e-05 1.608739e-05 249 271 0.0001114272 -1.798207e-05 250 271 -0.0001247774 2.013652e-05 251 271 0.000140076 -2.26054e-05 252 271 -0.0001577525 2.545802e-05 253 271 0.0001783582 -2.878335e-05 254 271 -0.0002026106 3.26972e-05 255 271 0.0002314578 -3.735254e-05 256 271 -0.0002661734 4.295492e-05 257 271 0.0003085011 -4.978574e-05 258 271 -0.0003608797 5.823857e-05 259 271 0.0004268045 -6.887749e-05 260 271 -0.0005114288 8.253411e-05 261 271 0.0006226054 -0.0001004757 262 271 -0.0007727812 0.000124711 263 271 0.0009826448 -0.0001585787 264 271 -0.001288661 0.0002079635 265 271 0.001760065 -0.0002840383 266 271 -0.002541777 0.0004101906 267 271 0.003980742 -0.0006424099 268 271 -0.007089509 0.001144101 269 271 0.01597157 -0.002577484 270 271 -0.06393453 0.01031772 271 271 -0.3561178 -0.03088667 272 271 -0.06393453 0.01031772 273 271 0.01597157 -0.002577484 274 271 -0.007089509 0.001144101 275 271 0.003980742 -0.0006424099 276 271 -0.002541777 0.0004101906 277 271 0.001760065 -0.0002840383 278 271 -0.001288661 0.0002079635 279 271 0.0009826448 -0.0001585787 280 271 -0.0007727812 0.000124711 281 271 0.0006226054 -0.0001004757 282 271 -0.0005114288 8.253411e-05 283 271 0.0004268045 -6.887749e-05 284 271 -0.0003608797 5.823857e-05 285 271 0.0003085011 -4.978574e-05 286 271 -0.0002661734 4.295492e-05 287 271 0.0002314578 -3.735254e-05 288 271 -0.0002026106 3.26972e-05 289 271 0.0001783582 -2.878335e-05 290 271 -0.0001577525 2.545802e-05 291 271 0.000140076 -2.26054e-05 292 271 -0.0001247774 2.013652e-05 293 271 0.0001114272 -1.798207e-05 294 271 -9.968672e-05 1.608739e-05 295 271 8.928565e-05 -1.440887e-05 296 271 -8.000611e-05 1.291134e-05 297 271 7.167061e-05 -1.156616e-05 298 271 -6.413319e-05 1.034978e-05 299 271 5.727273e-05 -9.242642e-06 300 271 -5.098776e-05 8.228377e-06 301 271 4.519256e-05 -7.293151e-06 302 271 -3.981401e-05 6.425164e-06 303 271 3.478917e-05 -5.614257e-06 304 271 -3.00633e-05 4.851599e-06 305 271 2.558831e-05 -4.129428e-06 306 271 -2.132146e-05 3.440846e-06 307 271 1.722429e-05 -2.779647e-06 308 271 -1.326172e-05 2.14017e-06 309 271 9.401297e-06 -1.517176e-06 310 271 -5.612495e-06 9.057414e-07 311 271 1.866144e-06 -3.011573e-07 312 271 1.866144e-06 -3.011573e-07 313 271 -5.612495e-06 9.057414e-07 314 271 9.401297e-06 -1.517176e-06 315 271 -1.326172e-05 2.14017e-06 316 271 1.722429e-05 -2.779647e-06 317 271 -2.132146e-05 3.440846e-06 318 271 2.558831e-05 -4.129428e-06 319 271 -3.00633e-05 4.851599e-06 320 271 3.478917e-05 -5.614257e-06 321 271 -3.981401e-05 6.425164e-06 322 271 4.519256e-05 -7.293151e-06 323 271 -5.098776e-05 8.228377e-06 191 272 0.0005337456 3.933516e-05 243 272 -5.098776e-05 8.228377e-06 244 272 5.727273e-05 -9.242642e-06 245 272 -6.413319e-05 1.034978e-05 246 272 7.167061e-05 -1.156616e-05 247 272 -8.000611e-05 1.291134e-05 248 272 8.928565e-05 -1.440887e-05 249 272 -9.968672e-05 1.608739e-05 250 272 0.0001114272 -1.798207e-05 251 272 -0.0001247774 2.013652e-05 252 272 0.000140076 -2.26054e-05 253 272 -0.0001577525 2.545802e-05 254 272 0.0001783582 -2.878335e-05 255 272 -0.0002026106 3.26972e-05 256 272 0.0002314578 -3.735254e-05 257 272 -0.0002661734 4.295492e-05 258 272 0.0003085011 -4.978574e-05 259 272 -0.0003608797 5.823857e-05 260 272 0.0004268045 -6.887749e-05 261 272 -0.0005114288 8.253411e-05 262 272 0.0006226054 -0.0001004757 263 272 -0.0007727812 0.000124711 264 272 0.0009826448 -0.0001585787 265 272 -0.001288661 0.0002079635 266 272 0.001760065 -0.0002840383 267 272 -0.002541777 0.0004101906 268 272 0.003980742 -0.0006424099 269 272 -0.007089509 0.001144101 270 272 0.01597157 -0.002577484 271 272 -0.06393453 0.01031772 272 272 -0.3612478 -0.02985125 273 272 -0.06393453 0.01031772 274 272 0.01597157 -0.002577484 275 272 -0.007089509 0.001144101 276 272 0.003980742 -0.0006424099 277 272 -0.002541777 0.0004101906 278 272 0.001760065 -0.0002840383 279 272 -0.001288661 0.0002079635 280 272 0.0009826448 -0.0001585787 281 272 -0.0007727812 0.000124711 282 272 0.0006226054 -0.0001004757 283 272 -0.0005114288 8.253411e-05 284 272 0.0004268045 -6.887749e-05 285 272 -0.0003608797 5.823857e-05 286 272 0.0003085011 -4.978574e-05 287 272 -0.0002661734 4.295492e-05 288 272 0.0002314578 -3.735254e-05 289 272 -0.0002026106 3.26972e-05 290 272 0.0001783582 -2.878335e-05 291 272 -0.0001577525 2.545802e-05 292 272 0.000140076 -2.26054e-05 293 272 -0.0001247774 2.013652e-05 294 272 0.0001114272 -1.798207e-05 295 272 -9.968672e-05 1.608739e-05 296 272 8.928565e-05 -1.440887e-05 297 272 -8.000611e-05 1.291134e-05 298 272 7.167061e-05 -1.156616e-05 299 272 -6.413319e-05 1.034978e-05 300 272 5.727273e-05 -9.242642e-06 301 272 -5.098776e-05 8.228377e-06 302 272 4.519256e-05 -7.293151e-06 303 272 -3.981401e-05 6.425164e-06 304 272 3.478917e-05 -5.614257e-06 305 272 -3.00633e-05 4.851599e-06 306 272 2.558831e-05 -4.129428e-06 307 272 -2.132146e-05 3.440846e-06 308 272 1.722429e-05 -2.779647e-06 309 272 -1.326172e-05 2.14017e-06 310 272 9.401297e-06 -1.517176e-06 311 272 -5.612495e-06 9.057414e-07 312 272 1.866144e-06 -3.011573e-07 313 272 1.866144e-06 -3.011573e-07 314 272 -5.612495e-06 9.057414e-07 315 272 9.401297e-06 -1.517176e-06 316 272 -1.326172e-05 2.14017e-06 317 272 1.722429e-05 -2.779647e-06 318 272 -2.132146e-05 3.440846e-06 319 272 2.558831e-05 -4.129428e-06 320 272 -3.00633e-05 4.851599e-06 321 272 3.478917e-05 -5.614257e-06 322 272 -3.981401e-05 6.425164e-06 323 272 4.519256e-05 -7.293151e-06 192 273 0.0005486991 4.074018e-05 243 273 4.519256e-05 -7.293151e-06 244 273 -5.098776e-05 8.228377e-06 245 273 5.727273e-05 -9.242642e-06 246 273 -6.413319e-05 1.034978e-05 247 273 7.167061e-05 -1.156616e-05 248 273 -8.000611e-05 1.291134e-05 249 273 8.928565e-05 -1.440887e-05 250 273 -9.968672e-05 1.608739e-05 251 273 0.0001114272 -1.798207e-05 252 273 -0.0001247774 2.013652e-05 253 273 0.000140076 -2.26054e-05 254 273 -0.0001577525 2.545802e-05 255 273 0.0001783582 -2.878335e-05 256 273 -0.0002026106 3.26972e-05 257 273 0.0002314578 -3.735254e-05 258 273 -0.0002661734 4.295492e-05 259 273 0.0003085011 -4.978574e-05 260 273 -0.0003608797 5.823857e-05 261 273 0.0004268045 -6.887749e-05 262 273 -0.0005114288 8.253411e-05 263 273 0.0006226054 -0.0001004757 264 273 -0.0007727812 0.000124711 265 273 0.0009826448 -0.0001585787 266 273 -0.001288661 0.0002079635 267 273 0.001760065 -0.0002840383 268 273 -0.002541777 0.0004101906 269 273 0.003980742 -0.0006424099 270 273 -0.007089509 0.001144101 271 273 0.01597157 -0.002577484 272 273 -0.06393453 0.01031772 273 273 -0.3658513 -0.02889503 274 273 -0.06393453 0.01031772 275 273 0.01597157 -0.002577484 276 273 -0.007089509 0.001144101 277 273 0.003980742 -0.0006424099 278 273 -0.002541777 0.0004101906 279 273 0.001760065 -0.0002840383 280 273 -0.001288661 0.0002079635 281 273 0.0009826448 -0.0001585787 282 273 -0.0007727812 0.000124711 283 273 0.0006226054 -0.0001004757 284 273 -0.0005114288 8.253411e-05 285 273 0.0004268045 -6.887749e-05 286 273 -0.0003608797 5.823857e-05 287 273 0.0003085011 -4.978574e-05 288 273 -0.0002661734 4.295492e-05 289 273 0.0002314578 -3.735254e-05 290 273 -0.0002026106 3.26972e-05 291 273 0.0001783582 -2.878335e-05 292 273 -0.0001577525 2.545802e-05 293 273 0.000140076 -2.26054e-05 294 273 -0.0001247774 2.013652e-05 295 273 0.0001114272 -1.798207e-05 296 273 -9.968672e-05 1.608739e-05 297 273 8.928565e-05 -1.440887e-05 298 273 -8.000611e-05 1.291134e-05 299 273 7.167061e-05 -1.156616e-05 300 273 -6.413319e-05 1.034978e-05 301 273 5.727273e-05 -9.242642e-06 302 273 -5.098776e-05 8.228377e-06 303 273 4.519256e-05 -7.293151e-06 304 273 -3.981401e-05 6.425164e-06 305 273 3.478917e-05 -5.614257e-06 306 273 -3.00633e-05 4.851599e-06 307 273 2.558831e-05 -4.129428e-06 308 273 -2.132146e-05 3.440846e-06 309 273 1.722429e-05 -2.779647e-06 310 273 -1.326172e-05 2.14017e-06 311 273 9.401297e-06 -1.517176e-06 312 273 -5.612495e-06 9.057414e-07 313 273 1.866144e-06 -3.011573e-07 314 273 1.866144e-06 -3.011573e-07 315 273 -5.612495e-06 9.057414e-07 316 273 9.401297e-06 -1.517176e-06 317 273 -1.326172e-05 2.14017e-06 318 273 1.722429e-05 -2.779647e-06 319 273 -2.132146e-05 3.440846e-06 320 273 2.558831e-05 -4.129428e-06 321 273 -3.00633e-05 4.851599e-06 322 273 3.478917e-05 -5.614257e-06 323 273 -3.981401e-05 6.425164e-06 193 274 0.0005637286 4.215856e-05 243 274 -3.981401e-05 6.425164e-06 244 274 4.519256e-05 -7.293151e-06 245 274 -5.098776e-05 8.228377e-06 246 274 5.727273e-05 -9.242642e-06 247 274 -6.413319e-05 1.034978e-05 248 274 7.167061e-05 -1.156616e-05 249 274 -8.000611e-05 1.291134e-05 250 274 8.928565e-05 -1.440887e-05 251 274 -9.968672e-05 1.608739e-05 252 274 0.0001114272 -1.798207e-05 253 274 -0.0001247774 2.013652e-05 254 274 0.000140076 -2.26054e-05 255 274 -0.0001577525 2.545802e-05 256 274 0.0001783582 -2.878335e-05 257 274 -0.0002026106 3.26972e-05 258 274 0.0002314578 -3.735254e-05 259 274 -0.0002661734 4.295492e-05 260 274 0.0003085011 -4.978574e-05 261 274 -0.0003608797 5.823857e-05 262 274 0.0004268045 -6.887749e-05 263 274 -0.0005114288 8.253411e-05 264 274 0.0006226054 -0.0001004757 265 274 -0.0007727812 0.000124711 266 274 0.0009826448 -0.0001585787 267 274 -0.001288661 0.0002079635 268 274 0.001760065 -0.0002840383 269 274 -0.002541777 0.0004101906 270 274 0.003980742 -0.0006424099 271 274 -0.007089509 0.001144101 272 274 0.01597157 -0.002577484 273 274 -0.06393453 0.01031772 274 274 -0.3699865 -0.02801161 275 274 -0.06393453 0.01031772 276 274 0.01597157 -0.002577484 277 274 -0.007089509 0.001144101 278 274 0.003980742 -0.0006424099 279 274 -0.002541777 0.0004101906 280 274 0.001760065 -0.0002840383 281 274 -0.001288661 0.0002079635 282 274 0.0009826448 -0.0001585787 283 274 -0.0007727812 0.000124711 284 274 0.0006226054 -0.0001004757 285 274 -0.0005114288 8.253411e-05 286 274 0.0004268045 -6.887749e-05 287 274 -0.0003608797 5.823857e-05 288 274 0.0003085011 -4.978574e-05 289 274 -0.0002661734 4.295492e-05 290 274 0.0002314578 -3.735254e-05 291 274 -0.0002026106 3.26972e-05 292 274 0.0001783582 -2.878335e-05 293 274 -0.0001577525 2.545802e-05 294 274 0.000140076 -2.26054e-05 295 274 -0.0001247774 2.013652e-05 296 274 0.0001114272 -1.798207e-05 297 274 -9.968672e-05 1.608739e-05 298 274 8.928565e-05 -1.440887e-05 299 274 -8.000611e-05 1.291134e-05 300 274 7.167061e-05 -1.156616e-05 301 274 -6.413319e-05 1.034978e-05 302 274 5.727273e-05 -9.242642e-06 303 274 -5.098776e-05 8.228377e-06 304 274 4.519256e-05 -7.293151e-06 305 274 -3.981401e-05 6.425164e-06 306 274 3.478917e-05 -5.614257e-06 307 274 -3.00633e-05 4.851599e-06 308 274 2.558831e-05 -4.129428e-06 309 274 -2.132146e-05 3.440846e-06 310 274 1.722429e-05 -2.779647e-06 311 274 -1.326172e-05 2.14017e-06 312 274 9.401297e-06 -1.517176e-06 313 274 -5.612495e-06 9.057414e-07 314 274 1.866144e-06 -3.011573e-07 315 274 1.866144e-06 -3.011573e-07 316 274 -5.612495e-06 9.057414e-07 317 274 9.401297e-06 -1.517176e-06 318 274 -1.326172e-05 2.14017e-06 319 274 1.722429e-05 -2.779647e-06 320 274 -2.132146e-05 3.440846e-06 321 274 2.558831e-05 -4.129428e-06 322 274 -3.00633e-05 4.851599e-06 323 274 3.478917e-05 -5.614257e-06 194 275 0.0005788347 4.359042e-05 243 275 3.478917e-05 -5.614257e-06 244 275 -3.981401e-05 6.425164e-06 245 275 4.519256e-05 -7.293151e-06 246 275 -5.098776e-05 8.228377e-06 247 275 5.727273e-05 -9.242642e-06 248 275 -6.413319e-05 1.034978e-05 249 275 7.167061e-05 -1.156616e-05 250 275 -8.000611e-05 1.291134e-05 251 275 8.928565e-05 -1.440887e-05 252 275 -9.968672e-05 1.608739e-05 253 275 0.0001114272 -1.798207e-05 254 275 -0.0001247774 2.013652e-05 255 275 0.000140076 -2.26054e-05 256 275 -0.0001577525 2.545802e-05 257 275 0.0001783582 -2.878335e-05 258 275 -0.0002026106 3.26972e-05 259 275 0.0002314578 -3.735254e-05 260 275 -0.0002661734 4.295492e-05 261 275 0.0003085011 -4.978574e-05 262 275 -0.0003608797 5.823857e-05 263 275 0.0004268045 -6.887749e-05 264 275 -0.0005114288 8.253411e-05 265 275 0.0006226054 -0.0001004757 266 275 -0.0007727812 0.000124711 267 275 0.0009826448 -0.0001585787 268 275 -0.001288661 0.0002079635 269 275 0.001760065 -0.0002840383 270 275 -0.002541777 0.0004101906 271 275 0.003980742 -0.0006424099 272 275 -0.007089509 0.001144101 273 275 0.01597157 -0.002577484 274 275 -0.06393453 0.01031772 275 275 -0.3737049 -0.02719509 276 275 -0.06393453 0.01031772 277 275 0.01597157 -0.002577484 278 275 -0.007089509 0.001144101 279 275 0.003980742 -0.0006424099 280 275 -0.002541777 0.0004101906 281 275 0.001760065 -0.0002840383 282 275 -0.001288661 0.0002079635 283 275 0.0009826448 -0.0001585787 284 275 -0.0007727812 0.000124711 285 275 0.0006226054 -0.0001004757 286 275 -0.0005114288 8.253411e-05 287 275 0.0004268045 -6.887749e-05 288 275 -0.0003608797 5.823857e-05 289 275 0.0003085011 -4.978574e-05 290 275 -0.0002661734 4.295492e-05 291 275 0.0002314578 -3.735254e-05 292 275 -0.0002026106 3.26972e-05 293 275 0.0001783582 -2.878335e-05 294 275 -0.0001577525 2.545802e-05 295 275 0.000140076 -2.26054e-05 296 275 -0.0001247774 2.013652e-05 297 275 0.0001114272 -1.798207e-05 298 275 -9.968672e-05 1.608739e-05 299 275 8.928565e-05 -1.440887e-05 300 275 -8.000611e-05 1.291134e-05 301 275 7.167061e-05 -1.156616e-05 302 275 -6.413319e-05 1.034978e-05 303 275 5.727273e-05 -9.242642e-06 304 275 -5.098776e-05 8.228377e-06 305 275 4.519256e-05 -7.293151e-06 306 275 -3.981401e-05 6.425164e-06 307 275 3.478917e-05 -5.614257e-06 308 275 -3.00633e-05 4.851599e-06 309 275 2.558831e-05 -4.129428e-06 310 275 -2.132146e-05 3.440846e-06 311 275 1.722429e-05 -2.779647e-06 312 275 -1.326172e-05 2.14017e-06 313 275 9.401297e-06 -1.517176e-06 314 275 -5.612495e-06 9.057414e-07 315 275 1.866144e-06 -3.011573e-07 316 275 1.866144e-06 -3.011573e-07 317 275 -5.612495e-06 9.057414e-07 318 275 9.401297e-06 -1.517176e-06 319 275 -1.326172e-05 2.14017e-06 320 275 1.722429e-05 -2.779647e-06 321 275 -2.132146e-05 3.440846e-06 322 275 2.558831e-05 -4.129428e-06 323 275 -3.00633e-05 4.851599e-06 195 276 0.0005940177 4.503586e-05 243 276 -3.00633e-05 4.851599e-06 244 276 3.478917e-05 -5.614257e-06 245 276 -3.981401e-05 6.425164e-06 246 276 4.519256e-05 -7.293151e-06 247 276 -5.098776e-05 8.228377e-06 248 276 5.727273e-05 -9.242642e-06 249 276 -6.413319e-05 1.034978e-05 250 276 7.167061e-05 -1.156616e-05 251 276 -8.000611e-05 1.291134e-05 252 276 8.928565e-05 -1.440887e-05 253 276 -9.968672e-05 1.608739e-05 254 276 0.0001114272 -1.798207e-05 255 276 -0.0001247774 2.013652e-05 256 276 0.000140076 -2.26054e-05 257 276 -0.0001577525 2.545802e-05 258 276 0.0001783582 -2.878335e-05 259 276 -0.0002026106 3.26972e-05 260 276 0.0002314578 -3.735254e-05 261 276 -0.0002661734 4.295492e-05 262 276 0.0003085011 -4.978574e-05 263 276 -0.0003608797 5.823857e-05 264 276 0.0004268045 -6.887749e-05 265 276 -0.0005114288 8.253411e-05 266 276 0.0006226054 -0.0001004757 267 276 -0.0007727812 0.000124711 268 276 0.0009826448 -0.0001585787 269 276 -0.001288661 0.0002079635 270 276 0.001760065 -0.0002840383 271 276 -0.002541777 0.0004101906 272 276 0.003980742 -0.0006424099 273 276 -0.007089509 0.001144101 274 276 0.01597157 -0.002577484 275 276 -0.06393453 0.01031772 276 276 -0.3770515 -0.02644011 277 276 -0.06393453 0.01031772 278 276 0.01597157 -0.002577484 279 276 -0.007089509 0.001144101 280 276 0.003980742 -0.0006424099 281 276 -0.002541777 0.0004101906 282 276 0.001760065 -0.0002840383 283 276 -0.001288661 0.0002079635 284 276 0.0009826448 -0.0001585787 285 276 -0.0007727812 0.000124711 286 276 0.0006226054 -0.0001004757 287 276 -0.0005114288 8.253411e-05 288 276 0.0004268045 -6.887749e-05 289 276 -0.0003608797 5.823857e-05 290 276 0.0003085011 -4.978574e-05 291 276 -0.0002661734 4.295492e-05 292 276 0.0002314578 -3.735254e-05 293 276 -0.0002026106 3.26972e-05 294 276 0.0001783582 -2.878335e-05 295 276 -0.0001577525 2.545802e-05 296 276 0.000140076 -2.26054e-05 297 276 -0.0001247774 2.013652e-05 298 276 0.0001114272 -1.798207e-05 299 276 -9.968672e-05 1.608739e-05 300 276 8.928565e-05 -1.440887e-05 301 276 -8.000611e-05 1.291134e-05 302 276 7.167061e-05 -1.156616e-05 303 276 -6.413319e-05 1.034978e-05 304 276 5.727273e-05 -9.242642e-06 305 276 -5.098776e-05 8.228377e-06 306 276 4.519256e-05 -7.293151e-06 307 276 -3.981401e-05 6.425164e-06 308 276 3.478917e-05 -5.614257e-06 309 276 -3.00633e-05 4.851599e-06 310 276 2.558831e-05 -4.129428e-06 311 276 -2.132146e-05 3.440846e-06 312 276 1.722429e-05 -2.779647e-06 313 276 -1.326172e-05 2.14017e-06 314 276 9.401297e-06 -1.517176e-06 315 276 -5.612495e-06 9.057414e-07 316 276 1.866144e-06 -3.011573e-07 317 276 1.866144e-06 -3.011573e-07 318 276 -5.612495e-06 9.057414e-07 319 276 9.401297e-06 -1.517176e-06 320 276 -1.326172e-05 2.14017e-06 321 276 1.722429e-05 -2.779647e-06 322 276 -2.132146e-05 3.440846e-06 323 276 2.558831e-05 -4.129428e-06 196 277 0.0006092779 4.649497e-05 243 277 2.558831e-05 -4.129428e-06 244 277 -3.00633e-05 4.851599e-06 245 277 3.478917e-05 -5.614257e-06 246 277 -3.981401e-05 6.425164e-06 247 277 4.519256e-05 -7.293151e-06 248 277 -5.098776e-05 8.228377e-06 249 277 5.727273e-05 -9.242642e-06 250 277 -6.413319e-05 1.034978e-05 251 277 7.167061e-05 -1.156616e-05 252 277 -8.000611e-05 1.291134e-05 253 277 8.928565e-05 -1.440887e-05 254 277 -9.968672e-05 1.608739e-05 255 277 0.0001114272 -1.798207e-05 256 277 -0.0001247774 2.013652e-05 257 277 0.000140076 -2.26054e-05 258 277 -0.0001577525 2.545802e-05 259 277 0.0001783582 -2.878335e-05 260 277 -0.0002026106 3.26972e-05 261 277 0.0002314578 -3.735254e-05 262 277 -0.0002661734 4.295492e-05 263 277 0.0003085011 -4.978574e-05 264 277 -0.0003608797 5.823857e-05 265 277 0.0004268045 -6.887749e-05 266 277 -0.0005114288 8.253411e-05 267 277 0.0006226054 -0.0001004757 268 277 -0.0007727812 0.000124711 269 277 0.0009826448 -0.0001585787 270 277 -0.001288661 0.0002079635 271 277 0.001760065 -0.0002840383 272 277 -0.002541777 0.0004101906 273 277 0.003980742 -0.0006424099 274 277 -0.007089509 0.001144101 275 277 0.01597157 -0.002577484 276 277 -0.06393453 0.01031772 277 277 -0.3800659 -0.02574174 278 277 -0.06393453 0.01031772 279 277 0.01597157 -0.002577484 280 277 -0.007089509 0.001144101 281 277 0.003980742 -0.0006424099 282 277 -0.002541777 0.0004101906 283 277 0.001760065 -0.0002840383 284 277 -0.001288661 0.0002079635 285 277 0.0009826448 -0.0001585787 286 277 -0.0007727812 0.000124711 287 277 0.0006226054 -0.0001004757 288 277 -0.0005114288 8.253411e-05 289 277 0.0004268045 -6.887749e-05 290 277 -0.0003608797 5.823857e-05 291 277 0.0003085011 -4.978574e-05 292 277 -0.0002661734 4.295492e-05 293 277 0.0002314578 -3.735254e-05 294 277 -0.0002026106 3.26972e-05 295 277 0.0001783582 -2.878335e-05 296 277 -0.0001577525 2.545802e-05 297 277 0.000140076 -2.26054e-05 298 277 -0.0001247774 2.013652e-05 299 277 0.0001114272 -1.798207e-05 300 277 -9.968672e-05 1.608739e-05 301 277 8.928565e-05 -1.440887e-05 302 277 -8.000611e-05 1.291134e-05 303 277 7.167061e-05 -1.156616e-05 304 277 -6.413319e-05 1.034978e-05 305 277 5.727273e-05 -9.242642e-06 306 277 -5.098776e-05 8.228377e-06 307 277 4.519256e-05 -7.293151e-06 308 277 -3.981401e-05 6.425164e-06 309 277 3.478917e-05 -5.614257e-06 310 277 -3.00633e-05 4.851599e-06 311 277 2.558831e-05 -4.129428e-06 312 277 -2.132146e-05 3.440846e-06 313 277 1.722429e-05 -2.779647e-06 314 277 -1.326172e-05 2.14017e-06 315 277 9.401297e-06 -1.517176e-06 316 277 -5.612495e-06 9.057414e-07 317 277 1.866144e-06 -3.011573e-07 318 277 1.866144e-06 -3.011573e-07 319 277 -5.612495e-06 9.057414e-07 320 277 9.401297e-06 -1.517176e-06 321 277 -1.326172e-05 2.14017e-06 322 277 1.722429e-05 -2.779647e-06 323 277 -2.132146e-05 3.440846e-06 197 278 0.0006246159 4.796785e-05 243 278 -2.132146e-05 3.440846e-06 244 278 2.558831e-05 -4.129428e-06 245 278 -3.00633e-05 4.851599e-06 246 278 3.478917e-05 -5.614257e-06 247 278 -3.981401e-05 6.425164e-06 248 278 4.519256e-05 -7.293151e-06 249 278 -5.098776e-05 8.228377e-06 250 278 5.727273e-05 -9.242642e-06 251 278 -6.413319e-05 1.034978e-05 252 278 7.167061e-05 -1.156616e-05 253 278 -8.000611e-05 1.291134e-05 254 278 8.928565e-05 -1.440887e-05 255 278 -9.968672e-05 1.608739e-05 256 278 0.0001114272 -1.798207e-05 257 278 -0.0001247774 2.013652e-05 258 278 0.000140076 -2.26054e-05 259 278 -0.0001577525 2.545802e-05 260 278 0.0001783582 -2.878335e-05 261 278 -0.0002026106 3.26972e-05 262 278 0.0002314578 -3.735254e-05 263 278 -0.0002661734 4.295492e-05 264 278 0.0003085011 -4.978574e-05 265 278 -0.0003608797 5.823857e-05 266 278 0.0004268045 -6.887749e-05 267 278 -0.0005114288 8.253411e-05 268 278 0.0006226054 -0.0001004757 269 278 -0.0007727812 0.000124711 270 278 0.0009826448 -0.0001585787 271 278 -0.001288661 0.0002079635 272 278 0.001760065 -0.0002840383 273 278 -0.002541777 0.0004101906 274 278 0.003980742 -0.0006424099 275 278 -0.007089509 0.001144101 276 278 0.01597157 -0.002577484 277 278 -0.06393453 0.01031772 278 278 -0.3827834 -0.0250955 279 278 -0.06393453 0.01031772 280 278 0.01597157 -0.002577484 281 278 -0.007089509 0.001144101 282 278 0.003980742 -0.0006424099 283 278 -0.002541777 0.0004101906 284 278 0.001760065 -0.0002840383 285 278 -0.001288661 0.0002079635 286 278 0.0009826448 -0.0001585787 287 278 -0.0007727812 0.000124711 288 278 0.0006226054 -0.0001004757 289 278 -0.0005114288 8.253411e-05 290 278 0.0004268045 -6.887749e-05 291 278 -0.0003608797 5.823857e-05 292 278 0.0003085011 -4.978574e-05 293 278 -0.0002661734 4.295492e-05 294 278 0.0002314578 -3.735254e-05 295 278 -0.0002026106 3.26972e-05 296 278 0.0001783582 -2.878335e-05 297 278 -0.0001577525 2.545802e-05 298 278 0.000140076 -2.26054e-05 299 278 -0.0001247774 2.013652e-05 300 278 0.0001114272 -1.798207e-05 301 278 -9.968672e-05 1.608739e-05 302 278 8.928565e-05 -1.440887e-05 303 278 -8.000611e-05 1.291134e-05 304 278 7.167061e-05 -1.156616e-05 305 278 -6.413319e-05 1.034978e-05 306 278 5.727273e-05 -9.242642e-06 307 278 -5.098776e-05 8.228377e-06 308 278 4.519256e-05 -7.293151e-06 309 278 -3.981401e-05 6.425164e-06 310 278 3.478917e-05 -5.614257e-06 311 278 -3.00633e-05 4.851599e-06 312 278 2.558831e-05 -4.129428e-06 313 278 -2.132146e-05 3.440846e-06 314 278 1.722429e-05 -2.779647e-06 315 278 -1.326172e-05 2.14017e-06 316 278 9.401297e-06 -1.517176e-06 317 278 -5.612495e-06 9.057414e-07 318 278 1.866144e-06 -3.011573e-07 319 278 1.866144e-06 -3.011573e-07 320 278 -5.612495e-06 9.057414e-07 321 278 9.401297e-06 -1.517176e-06 322 278 -1.326172e-05 2.14017e-06 323 278 1.722429e-05 -2.779647e-06 198 279 0.0006400319 4.945462e-05 243 279 1.722429e-05 -2.779647e-06 244 279 -2.132146e-05 3.440846e-06 245 279 2.558831e-05 -4.129428e-06 246 279 -3.00633e-05 4.851599e-06 247 279 3.478917e-05 -5.614257e-06 248 279 -3.981401e-05 6.425164e-06 249 279 4.519256e-05 -7.293151e-06 250 279 -5.098776e-05 8.228377e-06 251 279 5.727273e-05 -9.242642e-06 252 279 -6.413319e-05 1.034978e-05 253 279 7.167061e-05 -1.156616e-05 254 279 -8.000611e-05 1.291134e-05 255 279 8.928565e-05 -1.440887e-05 256 279 -9.968672e-05 1.608739e-05 257 279 0.0001114272 -1.798207e-05 258 279 -0.0001247774 2.013652e-05 259 279 0.000140076 -2.26054e-05 260 279 -0.0001577525 2.545802e-05 261 279 0.0001783582 -2.878335e-05 262 279 -0.0002026106 3.26972e-05 263 279 0.0002314578 -3.735254e-05 264 279 -0.0002661734 4.295492e-05 265 279 0.0003085011 -4.978574e-05 266 279 -0.0003608797 5.823857e-05 267 279 0.0004268045 -6.887749e-05 268 279 -0.0005114288 8.253411e-05 269 279 0.0006226054 -0.0001004757 270 279 -0.0007727812 0.000124711 271 279 0.0009826448 -0.0001585787 272 279 -0.001288661 0.0002079635 273 279 0.001760065 -0.0002840383 274 279 -0.002541777 0.0004101906 275 279 0.003980742 -0.0006424099 276 279 -0.007089509 0.001144101 277 279 0.01597157 -0.002577484 278 279 -0.06393453 0.01031772 279 279 -0.3852349 -0.02449727 280 279 -0.06393453 0.01031772 281 279 0.01597157 -0.002577484 282 279 -0.007089509 0.001144101 283 279 0.003980742 -0.0006424099 284 279 -0.002541777 0.0004101906 285 279 0.001760065 -0.0002840383 286 279 -0.001288661 0.0002079635 287 279 0.0009826448 -0.0001585787 288 279 -0.0007727812 0.000124711 289 279 0.0006226054 -0.0001004757 290 279 -0.0005114288 8.253411e-05 291 279 0.0004268045 -6.887749e-05 292 279 -0.0003608797 5.823857e-05 293 279 0.0003085011 -4.978574e-05 294 279 -0.0002661734 4.295492e-05 295 279 0.0002314578 -3.735254e-05 296 279 -0.0002026106 3.26972e-05 297 279 0.0001783582 -2.878335e-05 298 279 -0.0001577525 2.545802e-05 299 279 0.000140076 -2.26054e-05 300 279 -0.0001247774 2.013652e-05 301 279 0.0001114272 -1.798207e-05 302 279 -9.968672e-05 1.608739e-05 303 279 8.928565e-05 -1.440887e-05 304 279 -8.000611e-05 1.291134e-05 305 279 7.167061e-05 -1.156616e-05 306 279 -6.413319e-05 1.034978e-05 307 279 5.727273e-05 -9.242642e-06 308 279 -5.098776e-05 8.228377e-06 309 279 4.519256e-05 -7.293151e-06 310 279 -3.981401e-05 6.425164e-06 311 279 3.478917e-05 -5.614257e-06 312 279 -3.00633e-05 4.851599e-06 313 279 2.558831e-05 -4.129428e-06 314 279 -2.132146e-05 3.440846e-06 315 279 1.722429e-05 -2.779647e-06 316 279 -1.326172e-05 2.14017e-06 317 279 9.401297e-06 -1.517176e-06 318 279 -5.612495e-06 9.057414e-07 319 279 1.866144e-06 -3.011573e-07 320 279 1.866144e-06 -3.011573e-07 321 279 -5.612495e-06 9.057414e-07 322 279 9.401297e-06 -1.517176e-06 323 279 -1.326172e-05 2.14017e-06 199 280 0.0006555264 5.095537e-05 243 280 -1.326172e-05 2.14017e-06 244 280 1.722429e-05 -2.779647e-06 245 280 -2.132146e-05 3.440846e-06 246 280 2.558831e-05 -4.129428e-06 247 280 -3.00633e-05 4.851599e-06 248 280 3.478917e-05 -5.614257e-06 249 280 -3.981401e-05 6.425164e-06 250 280 4.519256e-05 -7.293151e-06 251 280 -5.098776e-05 8.228377e-06 252 280 5.727273e-05 -9.242642e-06 253 280 -6.413319e-05 1.034978e-05 254 280 7.167061e-05 -1.156616e-05 255 280 -8.000611e-05 1.291134e-05 256 280 8.928565e-05 -1.440887e-05 257 280 -9.968672e-05 1.608739e-05 258 280 0.0001114272 -1.798207e-05 259 280 -0.0001247774 2.013652e-05 260 280 0.000140076 -2.26054e-05 261 280 -0.0001577525 2.545802e-05 262 280 0.0001783582 -2.878335e-05 263 280 -0.0002026106 3.26972e-05 264 280 0.0002314578 -3.735254e-05 265 280 -0.0002661734 4.295492e-05 266 280 0.0003085011 -4.978574e-05 267 280 -0.0003608797 5.823857e-05 268 280 0.0004268045 -6.887749e-05 269 280 -0.0005114288 8.253411e-05 270 280 0.0006226054 -0.0001004757 271 280 -0.0007727812 0.000124711 272 280 0.0009826448 -0.0001585787 273 280 -0.001288661 0.0002079635 274 280 0.001760065 -0.0002840383 275 280 -0.002541777 0.0004101906 276 280 0.003980742 -0.0006424099 277 280 -0.007089509 0.001144101 278 280 0.01597157 -0.002577484 279 280 -0.06393453 0.01031772 280 280 -0.3874478 -0.02394331 281 280 -0.06393453 0.01031772 282 280 0.01597157 -0.002577484 283 280 -0.007089509 0.001144101 284 280 0.003980742 -0.0006424099 285 280 -0.002541777 0.0004101906 286 280 0.001760065 -0.0002840383 287 280 -0.001288661 0.0002079635 288 280 0.0009826448 -0.0001585787 289 280 -0.0007727812 0.000124711 290 280 0.0006226054 -0.0001004757 291 280 -0.0005114288 8.253411e-05 292 280 0.0004268045 -6.887749e-05 293 280 -0.0003608797 5.823857e-05 294 280 0.0003085011 -4.978574e-05 295 280 -0.0002661734 4.295492e-05 296 280 0.0002314578 -3.735254e-05 297 280 -0.0002026106 3.26972e-05 298 280 0.0001783582 -2.878335e-05 299 280 -0.0001577525 2.545802e-05 300 280 0.000140076 -2.26054e-05 301 280 -0.0001247774 2.013652e-05 302 280 0.0001114272 -1.798207e-05 303 280 -9.968672e-05 1.608739e-05 304 280 8.928565e-05 -1.440887e-05 305 280 -8.000611e-05 1.291134e-05 306 280 7.167061e-05 -1.156616e-05 307 280 -6.413319e-05 1.034978e-05 308 280 5.727273e-05 -9.242642e-06 309 280 -5.098776e-05 8.228377e-06 310 280 4.519256e-05 -7.293151e-06 311 280 -3.981401e-05 6.425164e-06 312 280 3.478917e-05 -5.614257e-06 313 280 -3.00633e-05 4.851599e-06 314 280 2.558831e-05 -4.129428e-06 315 280 -2.132146e-05 3.440846e-06 316 280 1.722429e-05 -2.779647e-06 317 280 -1.326172e-05 2.14017e-06 318 280 9.401297e-06 -1.517176e-06 319 280 -5.612495e-06 9.057414e-07 320 280 1.866144e-06 -3.011573e-07 321 280 1.866144e-06 -3.011573e-07 322 280 -5.612495e-06 9.057414e-07 323 280 9.401297e-06 -1.517176e-06 200 281 0.0006710998 5.247021e-05 243 281 9.401297e-06 -1.517176e-06 244 281 -1.326172e-05 2.14017e-06 245 281 1.722429e-05 -2.779647e-06 246 281 -2.132146e-05 3.440846e-06 247 281 2.558831e-05 -4.129428e-06 248 281 -3.00633e-05 4.851599e-06 249 281 3.478917e-05 -5.614257e-06 250 281 -3.981401e-05 6.425164e-06 251 281 4.519256e-05 -7.293151e-06 252 281 -5.098776e-05 8.228377e-06 253 281 5.727273e-05 -9.242642e-06 254 281 -6.413319e-05 1.034978e-05 255 281 7.167061e-05 -1.156616e-05 256 281 -8.000611e-05 1.291134e-05 257 281 8.928565e-05 -1.440887e-05 258 281 -9.968672e-05 1.608739e-05 259 281 0.0001114272 -1.798207e-05 260 281 -0.0001247774 2.013652e-05 261 281 0.000140076 -2.26054e-05 262 281 -0.0001577525 2.545802e-05 263 281 0.0001783582 -2.878335e-05 264 281 -0.0002026106 3.26972e-05 265 281 0.0002314578 -3.735254e-05 266 281 -0.0002661734 4.295492e-05 267 281 0.0003085011 -4.978574e-05 268 281 -0.0003608797 5.823857e-05 269 281 0.0004268045 -6.887749e-05 270 281 -0.0005114288 8.253411e-05 271 281 0.0006226054 -0.0001004757 272 281 -0.0007727812 0.000124711 273 281 0.0009826448 -0.0001585787 274 281 -0.001288661 0.0002079635 275 281 0.001760065 -0.0002840383 276 281 -0.002541777 0.0004101906 277 281 0.003980742 -0.0006424099 278 281 -0.007089509 0.001144101 279 281 0.01597157 -0.002577484 280 281 -0.06393453 0.01031772 281 281 -0.3894467 -0.02343019 282 281 -0.06393453 0.01031772 283 281 0.01597157 -0.002577484 284 281 -0.007089509 0.001144101 285 281 0.003980742 -0.0006424099 286 281 -0.002541777 0.0004101906 287 281 0.001760065 -0.0002840383 288 281 -0.001288661 0.0002079635 289 281 0.0009826448 -0.0001585787 290 281 -0.0007727812 0.000124711 291 281 0.0006226054 -0.0001004757 292 281 -0.0005114288 8.253411e-05 293 281 0.0004268045 -6.887749e-05 294 281 -0.0003608797 5.823857e-05 295 281 0.0003085011 -4.978574e-05 296 281 -0.0002661734 4.295492e-05 297 281 0.0002314578 -3.735254e-05 298 281 -0.0002026106 3.26972e-05 299 281 0.0001783582 -2.878335e-05 300 281 -0.0001577525 2.545802e-05 301 281 0.000140076 -2.26054e-05 302 281 -0.0001247774 2.013652e-05 303 281 0.0001114272 -1.798207e-05 304 281 -9.968672e-05 1.608739e-05 305 281 8.928565e-05 -1.440887e-05 306 281 -8.000611e-05 1.291134e-05 307 281 7.167061e-05 -1.156616e-05 308 281 -6.413319e-05 1.034978e-05 309 281 5.727273e-05 -9.242642e-06 310 281 -5.098776e-05 8.228377e-06 311 281 4.519256e-05 -7.293151e-06 312 281 -3.981401e-05 6.425164e-06 313 281 3.478917e-05 -5.614257e-06 314 281 -3.00633e-05 4.851599e-06 315 281 2.558831e-05 -4.129428e-06 316 281 -2.132146e-05 3.440846e-06 317 281 1.722429e-05 -2.779647e-06 318 281 -1.326172e-05 2.14017e-06 319 281 9.401297e-06 -1.517176e-06 320 281 -5.612495e-06 9.057414e-07 321 281 1.866144e-06 -3.011573e-07 322 281 1.866144e-06 -3.011573e-07 323 281 -5.612495e-06 9.057414e-07 201 282 0.0006867524 5.399924e-05 243 282 -5.612495e-06 9.057414e-07 244 282 9.401297e-06 -1.517176e-06 245 282 -1.326172e-05 2.14017e-06 246 282 1.722429e-05 -2.779647e-06 247 282 -2.132146e-05 3.440846e-06 248 282 2.558831e-05 -4.129428e-06 249 282 -3.00633e-05 4.851599e-06 250 282 3.478917e-05 -5.614257e-06 251 282 -3.981401e-05 6.425164e-06 252 282 4.519256e-05 -7.293151e-06 253 282 -5.098776e-05 8.228377e-06 254 282 5.727273e-05 -9.242642e-06 255 282 -6.413319e-05 1.034978e-05 256 282 7.167061e-05 -1.156616e-05 257 282 -8.000611e-05 1.291134e-05 258 282 8.928565e-05 -1.440887e-05 259 282 -9.968672e-05 1.608739e-05 260 282 0.0001114272 -1.798207e-05 261 282 -0.0001247774 2.013652e-05 262 282 0.000140076 -2.26054e-05 263 282 -0.0001577525 2.545802e-05 264 282 0.0001783582 -2.878335e-05 265 282 -0.0002026106 3.26972e-05 266 282 0.0002314578 -3.735254e-05 267 282 -0.0002661734 4.295492e-05 268 282 0.0003085011 -4.978574e-05 269 282 -0.0003608797 5.823857e-05 270 282 0.0004268045 -6.887749e-05 271 282 -0.0005114288 8.253411e-05 272 282 0.0006226054 -0.0001004757 273 282 -0.0007727812 0.000124711 274 282 0.0009826448 -0.0001585787 275 282 -0.001288661 0.0002079635 276 282 0.001760065 -0.0002840383 277 282 -0.002541777 0.0004101906 278 282 0.003980742 -0.0006424099 279 282 -0.007089509 0.001144101 280 282 0.01597157 -0.002577484 281 282 -0.06393453 0.01031772 282 282 -0.3912532 -0.02295479 283 282 -0.06393453 0.01031772 284 282 0.01597157 -0.002577484 285 282 -0.007089509 0.001144101 286 282 0.003980742 -0.0006424099 287 282 -0.002541777 0.0004101906 288 282 0.001760065 -0.0002840383 289 282 -0.001288661 0.0002079635 290 282 0.0009826448 -0.0001585787 291 282 -0.0007727812 0.000124711 292 282 0.0006226054 -0.0001004757 293 282 -0.0005114288 8.253411e-05 294 282 0.0004268045 -6.887749e-05 295 282 -0.0003608797 5.823857e-05 296 282 0.0003085011 -4.978574e-05 297 282 -0.0002661734 4.295492e-05 298 282 0.0002314578 -3.735254e-05 299 282 -0.0002026106 3.26972e-05 300 282 0.0001783582 -2.878335e-05 301 282 -0.0001577525 2.545802e-05 302 282 0.000140076 -2.26054e-05 303 282 -0.0001247774 2.013652e-05 304 282 0.0001114272 -1.798207e-05 305 282 -9.968672e-05 1.608739e-05 306 282 8.928565e-05 -1.440887e-05 307 282 -8.000611e-05 1.291134e-05 308 282 7.167061e-05 -1.156616e-05 309 282 -6.413319e-05 1.034978e-05 310 282 5.727273e-05 -9.242642e-06 311 282 -5.098776e-05 8.228377e-06 312 282 4.519256e-05 -7.293151e-06 313 282 -3.981401e-05 6.425164e-06 314 282 3.478917e-05 -5.614257e-06 315 282 -3.00633e-05 4.851599e-06 316 282 2.558831e-05 -4.129428e-06 317 282 -2.132146e-05 3.440846e-06 318 282 1.722429e-05 -2.779647e-06 319 282 -1.326172e-05 2.14017e-06 320 282 9.401297e-06 -1.517176e-06 321 282 -5.612495e-06 9.057414e-07 322 282 1.866144e-06 -3.011573e-07 323 282 1.866144e-06 -3.011573e-07 202 283 0.0007024847 5.554257e-05 243 283 1.866144e-06 -3.011573e-07 244 283 -5.612495e-06 9.057414e-07 245 283 9.401297e-06 -1.517176e-06 246 283 -1.326172e-05 2.14017e-06 247 283 1.722429e-05 -2.779647e-06 248 283 -2.132146e-05 3.440846e-06 249 283 2.558831e-05 -4.129428e-06 250 283 -3.00633e-05 4.851599e-06 251 283 3.478917e-05 -5.614257e-06 252 283 -3.981401e-05 6.425164e-06 253 283 4.519256e-05 -7.293151e-06 254 283 -5.098776e-05 8.228377e-06 255 283 5.727273e-05 -9.242642e-06 256 283 -6.413319e-05 1.034978e-05 257 283 7.167061e-05 -1.156616e-05 258 283 -8.000611e-05 1.291134e-05 259 283 8.928565e-05 -1.440887e-05 260 283 -9.968672e-05 1.608739e-05 261 283 0.0001114272 -1.798207e-05 262 283 -0.0001247774 2.013652e-05 263 283 0.000140076 -2.26054e-05 264 283 -0.0001577525 2.545802e-05 265 283 0.0001783582 -2.878335e-05 266 283 -0.0002026106 3.26972e-05 267 283 0.0002314578 -3.735254e-05 268 283 -0.0002661734 4.295492e-05 269 283 0.0003085011 -4.978574e-05 270 283 -0.0003608797 5.823857e-05 271 283 0.0004268045 -6.887749e-05 272 283 -0.0005114288 8.253411e-05 273 283 0.0006226054 -0.0001004757 274 283 -0.0007727812 0.000124711 275 283 0.0009826448 -0.0001585787 276 283 -0.001288661 0.0002079635 277 283 0.001760065 -0.0002840383 278 283 -0.002541777 0.0004101906 279 283 0.003980742 -0.0006424099 280 283 -0.007089509 0.001144101 281 283 0.01597157 -0.002577484 282 283 -0.06393453 0.01031772 283 283 -0.3928867 -0.02251421 284 283 -0.06393453 0.01031772 285 283 0.01597157 -0.002577484 286 283 -0.007089509 0.001144101 287 283 0.003980742 -0.0006424099 288 283 -0.002541777 0.0004101906 289 283 0.001760065 -0.0002840383 290 283 -0.001288661 0.0002079635 291 283 0.0009826448 -0.0001585787 292 283 -0.0007727812 0.000124711 293 283 0.0006226054 -0.0001004757 294 283 -0.0005114288 8.253411e-05 295 283 0.0004268045 -6.887749e-05 296 283 -0.0003608797 5.823857e-05 297 283 0.0003085011 -4.978574e-05 298 283 -0.0002661734 4.295492e-05 299 283 0.0002314578 -3.735254e-05 300 283 -0.0002026106 3.26972e-05 301 283 0.0001783582 -2.878335e-05 302 283 -0.0001577525 2.545802e-05 303 283 0.000140076 -2.26054e-05 304 283 -0.0001247774 2.013652e-05 305 283 0.0001114272 -1.798207e-05 306 283 -9.968672e-05 1.608739e-05 307 283 8.928565e-05 -1.440887e-05 308 283 -8.000611e-05 1.291134e-05 309 283 7.167061e-05 -1.156616e-05 310 283 -6.413319e-05 1.034978e-05 311 283 5.727273e-05 -9.242642e-06 312 283 -5.098776e-05 8.228377e-06 313 283 4.519256e-05 -7.293151e-06 314 283 -3.981401e-05 6.425164e-06 315 283 3.478917e-05 -5.614257e-06 316 283 -3.00633e-05 4.851599e-06 317 283 2.558831e-05 -4.129428e-06 318 283 -2.132146e-05 3.440846e-06 319 283 1.722429e-05 -2.779647e-06 320 283 -1.326172e-05 2.14017e-06 321 283 9.401297e-06 -1.517176e-06 322 283 -5.612495e-06 9.057414e-07 323 283 1.866144e-06 -3.011573e-07 203 284 0.000718297 5.71003e-05 243 284 1.866144e-06 -3.011573e-07 244 284 1.866144e-06 -3.011573e-07 245 284 -5.612495e-06 9.057414e-07 246 284 9.401297e-06 -1.517176e-06 247 284 -1.326172e-05 2.14017e-06 248 284 1.722429e-05 -2.779647e-06 249 284 -2.132146e-05 3.440846e-06 250 284 2.558831e-05 -4.129428e-06 251 284 -3.00633e-05 4.851599e-06 252 284 3.478917e-05 -5.614257e-06 253 284 -3.981401e-05 6.425164e-06 254 284 4.519256e-05 -7.293151e-06 255 284 -5.098776e-05 8.228377e-06 256 284 5.727273e-05 -9.242642e-06 257 284 -6.413319e-05 1.034978e-05 258 284 7.167061e-05 -1.156616e-05 259 284 -8.000611e-05 1.291134e-05 260 284 8.928565e-05 -1.440887e-05 261 284 -9.968672e-05 1.608739e-05 262 284 0.0001114272 -1.798207e-05 263 284 -0.0001247774 2.013652e-05 264 284 0.000140076 -2.26054e-05 265 284 -0.0001577525 2.545802e-05 266 284 0.0001783582 -2.878335e-05 267 284 -0.0002026106 3.26972e-05 268 284 0.0002314578 -3.735254e-05 269 284 -0.0002661734 4.295492e-05 270 284 0.0003085011 -4.978574e-05 271 284 -0.0003608797 5.823857e-05 272 284 0.0004268045 -6.887749e-05 273 284 -0.0005114288 8.253411e-05 274 284 0.0006226054 -0.0001004757 275 284 -0.0007727812 0.000124711 276 284 0.0009826448 -0.0001585787 277 284 -0.001288661 0.0002079635 278 284 0.001760065 -0.0002840383 279 284 -0.002541777 0.0004101906 280 284 0.003980742 -0.0006424099 281 284 -0.007089509 0.001144101 282 284 0.01597157 -0.002577484 283 284 -0.06393453 0.01031772 284 284 -0.3943643 -0.02210584 285 284 -0.06393453 0.01031772 286 284 0.01597157 -0.002577484 287 284 -0.007089509 0.001144101 288 284 0.003980742 -0.0006424099 289 284 -0.002541777 0.0004101906 290 284 0.001760065 -0.0002840383 291 284 -0.001288661 0.0002079635 292 284 0.0009826448 -0.0001585787 293 284 -0.0007727812 0.000124711 294 284 0.0006226054 -0.0001004757 295 284 -0.0005114288 8.253411e-05 296 284 0.0004268045 -6.887749e-05 297 284 -0.0003608797 5.823857e-05 298 284 0.0003085011 -4.978574e-05 299 284 -0.0002661734 4.295492e-05 300 284 0.0002314578 -3.735254e-05 301 284 -0.0002026106 3.26972e-05 302 284 0.0001783582 -2.878335e-05 303 284 -0.0001577525 2.545802e-05 304 284 0.000140076 -2.26054e-05 305 284 -0.0001247774 2.013652e-05 306 284 0.0001114272 -1.798207e-05 307 284 -9.968672e-05 1.608739e-05 308 284 8.928565e-05 -1.440887e-05 309 284 -8.000611e-05 1.291134e-05 310 284 7.167061e-05 -1.156616e-05 311 284 -6.413319e-05 1.034978e-05 312 284 5.727273e-05 -9.242642e-06 313 284 -5.098776e-05 8.228377e-06 314 284 4.519256e-05 -7.293151e-06 315 284 -3.981401e-05 6.425164e-06 316 284 3.478917e-05 -5.614257e-06 317 284 -3.00633e-05 4.851599e-06 318 284 2.558831e-05 -4.129428e-06 319 284 -2.132146e-05 3.440846e-06 320 284 1.722429e-05 -2.779647e-06 321 284 -1.326172e-05 2.14017e-06 322 284 9.401297e-06 -1.517176e-06 323 284 -5.612495e-06 9.057414e-07 204 285 0.0007341899 5.867254e-05 243 285 -5.612495e-06 9.057414e-07 244 285 1.866144e-06 -3.011573e-07 245 285 1.866144e-06 -3.011573e-07 246 285 -5.612495e-06 9.057414e-07 247 285 9.401297e-06 -1.517176e-06 248 285 -1.326172e-05 2.14017e-06 249 285 1.722429e-05 -2.779647e-06 250 285 -2.132146e-05 3.440846e-06 251 285 2.558831e-05 -4.129428e-06 252 285 -3.00633e-05 4.851599e-06 253 285 3.478917e-05 -5.614257e-06 254 285 -3.981401e-05 6.425164e-06 255 285 4.519256e-05 -7.293151e-06 256 285 -5.098776e-05 8.228377e-06 257 285 5.727273e-05 -9.242642e-06 258 285 -6.413319e-05 1.034978e-05 259 285 7.167061e-05 -1.156616e-05 260 285 -8.000611e-05 1.291134e-05 261 285 8.928565e-05 -1.440887e-05 262 285 -9.968672e-05 1.608739e-05 263 285 0.0001114272 -1.798207e-05 264 285 -0.0001247774 2.013652e-05 265 285 0.000140076 -2.26054e-05 266 285 -0.0001577525 2.545802e-05 267 285 0.0001783582 -2.878335e-05 268 285 -0.0002026106 3.26972e-05 269 285 0.0002314578 -3.735254e-05 270 285 -0.0002661734 4.295492e-05 271 285 0.0003085011 -4.978574e-05 272 285 -0.0003608797 5.823857e-05 273 285 0.0004268045 -6.887749e-05 274 285 -0.0005114288 8.253411e-05 275 285 0.0006226054 -0.0001004757 276 285 -0.0007727812 0.000124711 277 285 0.0009826448 -0.0001585787 278 285 -0.001288661 0.0002079635 279 285 0.001760065 -0.0002840383 280 285 -0.002541777 0.0004101906 281 285 0.003980742 -0.0006424099 282 285 -0.007089509 0.001144101 283 285 0.01597157 -0.002577484 284 285 -0.06393453 0.01031772 285 285 -0.3957016 -0.02172727 286 285 -0.06393453 0.01031772 287 285 0.01597157 -0.002577484 288 285 -0.007089509 0.001144101 289 285 0.003980742 -0.0006424099 290 285 -0.002541777 0.0004101906 291 285 0.001760065 -0.0002840383 292 285 -0.001288661 0.0002079635 293 285 0.0009826448 -0.0001585787 294 285 -0.0007727812 0.000124711 295 285 0.0006226054 -0.0001004757 296 285 -0.0005114288 8.253411e-05 297 285 0.0004268045 -6.887749e-05 298 285 -0.0003608797 5.823857e-05 299 285 0.0003085011 -4.978574e-05 300 285 -0.0002661734 4.295492e-05 301 285 0.0002314578 -3.735254e-05 302 285 -0.0002026106 3.26972e-05 303 285 0.0001783582 -2.878335e-05 304 285 -0.0001577525 2.545802e-05 305 285 0.000140076 -2.26054e-05 306 285 -0.0001247774 2.013652e-05 307 285 0.0001114272 -1.798207e-05 308 285 -9.968672e-05 1.608739e-05 309 285 8.928565e-05 -1.440887e-05 310 285 -8.000611e-05 1.291134e-05 311 285 7.167061e-05 -1.156616e-05 312 285 -6.413319e-05 1.034978e-05 313 285 5.727273e-05 -9.242642e-06 314 285 -5.098776e-05 8.228377e-06 315 285 4.519256e-05 -7.293151e-06 316 285 -3.981401e-05 6.425164e-06 317 285 3.478917e-05 -5.614257e-06 318 285 -3.00633e-05 4.851599e-06 319 285 2.558831e-05 -4.129428e-06 320 285 -2.132146e-05 3.440846e-06 321 285 1.722429e-05 -2.779647e-06 322 285 -1.326172e-05 2.14017e-06 323 285 9.401297e-06 -1.517176e-06 205 286 0.0007501636 6.025941e-05 243 286 9.401297e-06 -1.517176e-06 244 286 -5.612495e-06 9.057414e-07 245 286 1.866144e-06 -3.011573e-07 246 286 1.866144e-06 -3.011573e-07 247 286 -5.612495e-06 9.057414e-07 248 286 9.401297e-06 -1.517176e-06 249 286 -1.326172e-05 2.14017e-06 250 286 1.722429e-05 -2.779647e-06 251 286 -2.132146e-05 3.440846e-06 252 286 2.558831e-05 -4.129428e-06 253 286 -3.00633e-05 4.851599e-06 254 286 3.478917e-05 -5.614257e-06 255 286 -3.981401e-05 6.425164e-06 256 286 4.519256e-05 -7.293151e-06 257 286 -5.098776e-05 8.228377e-06 258 286 5.727273e-05 -9.242642e-06 259 286 -6.413319e-05 1.034978e-05 260 286 7.167061e-05 -1.156616e-05 261 286 -8.000611e-05 1.291134e-05 262 286 8.928565e-05 -1.440887e-05 263 286 -9.968672e-05 1.608739e-05 264 286 0.0001114272 -1.798207e-05 265 286 -0.0001247774 2.013652e-05 266 286 0.000140076 -2.26054e-05 267 286 -0.0001577525 2.545802e-05 268 286 0.0001783582 -2.878335e-05 269 286 -0.0002026106 3.26972e-05 270 286 0.0002314578 -3.735254e-05 271 286 -0.0002661734 4.295492e-05 272 286 0.0003085011 -4.978574e-05 273 286 -0.0003608797 5.823857e-05 274 286 0.0004268045 -6.887749e-05 275 286 -0.0005114288 8.253411e-05 276 286 0.0006226054 -0.0001004757 277 286 -0.0007727812 0.000124711 278 286 0.0009826448 -0.0001585787 279 286 -0.001288661 0.0002079635 280 286 0.001760065 -0.0002840383 281 286 -0.002541777 0.0004101906 282 286 0.003980742 -0.0006424099 283 286 -0.007089509 0.001144101 284 286 0.01597157 -0.002577484 285 286 -0.06393453 0.01031772 286 286 -0.3969123 -0.02137626 287 286 -0.06393453 0.01031772 288 286 0.01597157 -0.002577484 289 286 -0.007089509 0.001144101 290 286 0.003980742 -0.0006424099 291 286 -0.002541777 0.0004101906 292 286 0.001760065 -0.0002840383 293 286 -0.001288661 0.0002079635 294 286 0.0009826448 -0.0001585787 295 286 -0.0007727812 0.000124711 296 286 0.0006226054 -0.0001004757 297 286 -0.0005114288 8.253411e-05 298 286 0.0004268045 -6.887749e-05 299 286 -0.0003608797 5.823857e-05 300 286 0.0003085011 -4.978574e-05 301 286 -0.0002661734 4.295492e-05 302 286 0.0002314578 -3.735254e-05 303 286 -0.0002026106 3.26972e-05 304 286 0.0001783582 -2.878335e-05 305 286 -0.0001577525 2.545802e-05 306 286 0.000140076 -2.26054e-05 307 286 -0.0001247774 2.013652e-05 308 286 0.0001114272 -1.798207e-05 309 286 -9.968672e-05 1.608739e-05 310 286 8.928565e-05 -1.440887e-05 311 286 -8.000611e-05 1.291134e-05 312 286 7.167061e-05 -1.156616e-05 313 286 -6.413319e-05 1.034978e-05 314 286 5.727273e-05 -9.242642e-06 315 286 -5.098776e-05 8.228377e-06 316 286 4.519256e-05 -7.293151e-06 317 286 -3.981401e-05 6.425164e-06 318 286 3.478917e-05 -5.614257e-06 319 286 -3.00633e-05 4.851599e-06 320 286 2.558831e-05 -4.129428e-06 321 286 -2.132146e-05 3.440846e-06 322 286 1.722429e-05 -2.779647e-06 323 286 -1.326172e-05 2.14017e-06 206 287 0.0007662186 6.186099e-05 243 287 -1.326172e-05 2.14017e-06 244 287 9.401297e-06 -1.517176e-06 245 287 -5.612495e-06 9.057414e-07 246 287 1.866144e-06 -3.011573e-07 247 287 1.866144e-06 -3.011573e-07 248 287 -5.612495e-06 9.057414e-07 249 287 9.401297e-06 -1.517176e-06 250 287 -1.326172e-05 2.14017e-06 251 287 1.722429e-05 -2.779647e-06 252 287 -2.132146e-05 3.440846e-06 253 287 2.558831e-05 -4.129428e-06 254 287 -3.00633e-05 4.851599e-06 255 287 3.478917e-05 -5.614257e-06 256 287 -3.981401e-05 6.425164e-06 257 287 4.519256e-05 -7.293151e-06 258 287 -5.098776e-05 8.228377e-06 259 287 5.727273e-05 -9.242642e-06 260 287 -6.413319e-05 1.034978e-05 261 287 7.167061e-05 -1.156616e-05 262 287 -8.000611e-05 1.291134e-05 263 287 8.928565e-05 -1.440887e-05 264 287 -9.968672e-05 1.608739e-05 265 287 0.0001114272 -1.798207e-05 266 287 -0.0001247774 2.013652e-05 267 287 0.000140076 -2.26054e-05 268 287 -0.0001577525 2.545802e-05 269 287 0.0001783582 -2.878335e-05 270 287 -0.0002026106 3.26972e-05 271 287 0.0002314578 -3.735254e-05 272 287 -0.0002661734 4.295492e-05 273 287 0.0003085011 -4.978574e-05 274 287 -0.0003608797 5.823857e-05 275 287 0.0004268045 -6.887749e-05 276 287 -0.0005114288 8.253411e-05 277 287 0.0006226054 -0.0001004757 278 287 -0.0007727812 0.000124711 279 287 0.0009826448 -0.0001585787 280 287 -0.001288661 0.0002079635 281 287 0.001760065 -0.0002840383 282 287 -0.002541777 0.0004101906 283 287 0.003980742 -0.0006424099 284 287 -0.007089509 0.001144101 285 287 0.01597157 -0.002577484 286 287 -0.06393453 0.01031772 287 287 -0.3980087 -0.02105079 288 287 -0.06393453 0.01031772 289 287 0.01597157 -0.002577484 290 287 -0.007089509 0.001144101 291 287 0.003980742 -0.0006424099 292 287 -0.002541777 0.0004101906 293 287 0.001760065 -0.0002840383 294 287 -0.001288661 0.0002079635 295 287 0.0009826448 -0.0001585787 296 287 -0.0007727812 0.000124711 297 287 0.0006226054 -0.0001004757 298 287 -0.0005114288 8.253411e-05 299 287 0.0004268045 -6.887749e-05 300 287 -0.0003608797 5.823857e-05 301 287 0.0003085011 -4.978574e-05 302 287 -0.0002661734 4.295492e-05 303 287 0.0002314578 -3.735254e-05 304 287 -0.0002026106 3.26972e-05 305 287 0.0001783582 -2.878335e-05 306 287 -0.0001577525 2.545802e-05 307 287 0.000140076 -2.26054e-05 308 287 -0.0001247774 2.013652e-05 309 287 0.0001114272 -1.798207e-05 310 287 -9.968672e-05 1.608739e-05 311 287 8.928565e-05 -1.440887e-05 312 287 -8.000611e-05 1.291134e-05 313 287 7.167061e-05 -1.156616e-05 314 287 -6.413319e-05 1.034978e-05 315 287 5.727273e-05 -9.242642e-06 316 287 -5.098776e-05 8.228377e-06 317 287 4.519256e-05 -7.293151e-06 318 287 -3.981401e-05 6.425164e-06 319 287 3.478917e-05 -5.614257e-06 320 287 -3.00633e-05 4.851599e-06 321 287 2.558831e-05 -4.129428e-06 322 287 -2.132146e-05 3.440846e-06 323 287 1.722429e-05 -2.779647e-06 207 288 0.0007823553 6.347742e-05 243 288 1.722429e-05 -2.779647e-06 244 288 -1.326172e-05 2.14017e-06 245 288 9.401297e-06 -1.517176e-06 246 288 -5.612495e-06 9.057414e-07 247 288 1.866144e-06 -3.011573e-07 248 288 1.866144e-06 -3.011573e-07 249 288 -5.612495e-06 9.057414e-07 250 288 9.401297e-06 -1.517176e-06 251 288 -1.326172e-05 2.14017e-06 252 288 1.722429e-05 -2.779647e-06 253 288 -2.132146e-05 3.440846e-06 254 288 2.558831e-05 -4.129428e-06 255 288 -3.00633e-05 4.851599e-06 256 288 3.478917e-05 -5.614257e-06 257 288 -3.981401e-05 6.425164e-06 258 288 4.519256e-05 -7.293151e-06 259 288 -5.098776e-05 8.228377e-06 260 288 5.727273e-05 -9.242642e-06 261 288 -6.413319e-05 1.034978e-05 262 288 7.167061e-05 -1.156616e-05 263 288 -8.000611e-05 1.291134e-05 264 288 8.928565e-05 -1.440887e-05 265 288 -9.968672e-05 1.608739e-05 266 288 0.0001114272 -1.798207e-05 267 288 -0.0001247774 2.013652e-05 268 288 0.000140076 -2.26054e-05 269 288 -0.0001577525 2.545802e-05 270 288 0.0001783582 -2.878335e-05 271 288 -0.0002026106 3.26972e-05 272 288 0.0002314578 -3.735254e-05 273 288 -0.0002661734 4.295492e-05 274 288 0.0003085011 -4.978574e-05 275 288 -0.0003608797 5.823857e-05 276 288 0.0004268045 -6.887749e-05 277 288 -0.0005114288 8.253411e-05 278 288 0.0006226054 -0.0001004757 279 288 -0.0007727812 0.000124711 280 288 0.0009826448 -0.0001585787 281 288 -0.001288661 0.0002079635 282 288 0.001760065 -0.0002840383 283 288 -0.002541777 0.0004101906 284 288 0.003980742 -0.0006424099 285 288 -0.007089509 0.001144101 286 288 0.01597157 -0.002577484 287 288 -0.06393453 0.01031772 288 288 -0.399002 -0.02074898 289 288 -0.06393453 0.01031772 290 288 0.01597157 -0.002577484 291 288 -0.007089509 0.001144101 292 288 0.003980742 -0.0006424099 293 288 -0.002541777 0.0004101906 294 288 0.001760065 -0.0002840383 295 288 -0.001288661 0.0002079635 296 288 0.0009826448 -0.0001585787 297 288 -0.0007727812 0.000124711 298 288 0.0006226054 -0.0001004757 299 288 -0.0005114288 8.253411e-05 300 288 0.0004268045 -6.887749e-05 301 288 -0.0003608797 5.823857e-05 302 288 0.0003085011 -4.978574e-05 303 288 -0.0002661734 4.295492e-05 304 288 0.0002314578 -3.735254e-05 305 288 -0.0002026106 3.26972e-05 306 288 0.0001783582 -2.878335e-05 307 288 -0.0001577525 2.545802e-05 308 288 0.000140076 -2.26054e-05 309 288 -0.0001247774 2.013652e-05 310 288 0.0001114272 -1.798207e-05 311 288 -9.968672e-05 1.608739e-05 312 288 8.928565e-05 -1.440887e-05 313 288 -8.000611e-05 1.291134e-05 314 288 7.167061e-05 -1.156616e-05 315 288 -6.413319e-05 1.034978e-05 316 288 5.727273e-05 -9.242642e-06 317 288 -5.098776e-05 8.228377e-06 318 288 4.519256e-05 -7.293151e-06 319 288 -3.981401e-05 6.425164e-06 320 288 3.478917e-05 -5.614257e-06 321 288 -3.00633e-05 4.851599e-06 322 288 2.558831e-05 -4.129428e-06 323 288 -2.132146e-05 3.440846e-06 208 289 0.0007985741 6.510879e-05 243 289 -2.132146e-05 3.440846e-06 244 289 1.722429e-05 -2.779647e-06 245 289 -1.326172e-05 2.14017e-06 246 289 9.401297e-06 -1.517176e-06 247 289 -5.612495e-06 9.057414e-07 248 289 1.866144e-06 -3.011573e-07 249 289 1.866144e-06 -3.011573e-07 250 289 -5.612495e-06 9.057414e-07 251 289 9.401297e-06 -1.517176e-06 252 289 -1.326172e-05 2.14017e-06 253 289 1.722429e-05 -2.779647e-06 254 289 -2.132146e-05 3.440846e-06 255 289 2.558831e-05 -4.129428e-06 256 289 -3.00633e-05 4.851599e-06 257 289 3.478917e-05 -5.614257e-06 258 289 -3.981401e-05 6.425164e-06 259 289 4.519256e-05 -7.293151e-06 260 289 -5.098776e-05 8.228377e-06 261 289 5.727273e-05 -9.242642e-06 262 289 -6.413319e-05 1.034978e-05 263 289 7.167061e-05 -1.156616e-05 264 289 -8.000611e-05 1.291134e-05 265 289 8.928565e-05 -1.440887e-05 266 289 -9.968672e-05 1.608739e-05 267 289 0.0001114272 -1.798207e-05 268 289 -0.0001247774 2.013652e-05 269 289 0.000140076 -2.26054e-05 270 289 -0.0001577525 2.545802e-05 271 289 0.0001783582 -2.878335e-05 272 289 -0.0002026106 3.26972e-05 273 289 0.0002314578 -3.735254e-05 274 289 -0.0002661734 4.295492e-05 275 289 0.0003085011 -4.978574e-05 276 289 -0.0003608797 5.823857e-05 277 289 0.0004268045 -6.887749e-05 278 289 -0.0005114288 8.253411e-05 279 289 0.0006226054 -0.0001004757 280 289 -0.0007727812 0.000124711 281 289 0.0009826448 -0.0001585787 282 289 -0.001288661 0.0002079635 283 289 0.001760065 -0.0002840383 284 289 -0.002541777 0.0004101906 285 289 0.003980742 -0.0006424099 286 289 -0.007089509 0.001144101 287 289 0.01597157 -0.002577484 288 289 -0.06393453 0.01031772 289 289 -0.3999021 -0.02046909 290 289 -0.06393453 0.01031772 291 289 0.01597157 -0.002577484 292 289 -0.007089509 0.001144101 293 289 0.003980742 -0.0006424099 294 289 -0.002541777 0.0004101906 295 289 0.001760065 -0.0002840383 296 289 -0.001288661 0.0002079635 297 289 0.0009826448 -0.0001585787 298 289 -0.0007727812 0.000124711 299 289 0.0006226054 -0.0001004757 300 289 -0.0005114288 8.253411e-05 301 289 0.0004268045 -6.887749e-05 302 289 -0.0003608797 5.823857e-05 303 289 0.0003085011 -4.978574e-05 304 289 -0.0002661734 4.295492e-05 305 289 0.0002314578 -3.735254e-05 306 289 -0.0002026106 3.26972e-05 307 289 0.0001783582 -2.878335e-05 308 289 -0.0001577525 2.545802e-05 309 289 0.000140076 -2.26054e-05 310 289 -0.0001247774 2.013652e-05 311 289 0.0001114272 -1.798207e-05 312 289 -9.968672e-05 1.608739e-05 313 289 8.928565e-05 -1.440887e-05 314 289 -8.000611e-05 1.291134e-05 315 289 7.167061e-05 -1.156616e-05 316 289 -6.413319e-05 1.034978e-05 317 289 5.727273e-05 -9.242642e-06 318 289 -5.098776e-05 8.228377e-06 319 289 4.519256e-05 -7.293151e-06 320 289 -3.981401e-05 6.425164e-06 321 289 3.478917e-05 -5.614257e-06 322 289 -3.00633e-05 4.851599e-06 323 289 2.558831e-05 -4.129428e-06 209 290 0.0008148755 6.675522e-05 243 290 2.558831e-05 -4.129428e-06 244 290 -2.132146e-05 3.440846e-06 245 290 1.722429e-05 -2.779647e-06 246 290 -1.326172e-05 2.14017e-06 247 290 9.401297e-06 -1.517176e-06 248 290 -5.612495e-06 9.057414e-07 249 290 1.866144e-06 -3.011573e-07 250 290 1.866144e-06 -3.011573e-07 251 290 -5.612495e-06 9.057414e-07 252 290 9.401297e-06 -1.517176e-06 253 290 -1.326172e-05 2.14017e-06 254 290 1.722429e-05 -2.779647e-06 255 290 -2.132146e-05 3.440846e-06 256 290 2.558831e-05 -4.129428e-06 257 290 -3.00633e-05 4.851599e-06 258 290 3.478917e-05 -5.614257e-06 259 290 -3.981401e-05 6.425164e-06 260 290 4.519256e-05 -7.293151e-06 261 290 -5.098776e-05 8.228377e-06 262 290 5.727273e-05 -9.242642e-06 263 290 -6.413319e-05 1.034978e-05 264 290 7.167061e-05 -1.156616e-05 265 290 -8.000611e-05 1.291134e-05 266 290 8.928565e-05 -1.440887e-05 267 290 -9.968672e-05 1.608739e-05 268 290 0.0001114272 -1.798207e-05 269 290 -0.0001247774 2.013652e-05 270 290 0.000140076 -2.26054e-05 271 290 -0.0001577525 2.545802e-05 272 290 0.0001783582 -2.878335e-05 273 290 -0.0002026106 3.26972e-05 274 290 0.0002314578 -3.735254e-05 275 290 -0.0002661734 4.295492e-05 276 290 0.0003085011 -4.978574e-05 277 290 -0.0003608797 5.823857e-05 278 290 0.0004268045 -6.887749e-05 279 290 -0.0005114288 8.253411e-05 280 290 0.0006226054 -0.0001004757 281 290 -0.0007727812 0.000124711 282 290 0.0009826448 -0.0001585787 283 290 -0.001288661 0.0002079635 284 290 0.001760065 -0.0002840383 285 290 -0.002541777 0.0004101906 286 290 0.003980742 -0.0006424099 287 290 -0.007089509 0.001144101 288 290 0.01597157 -0.002577484 289 290 -0.06393453 0.01031772 290 290 -0.4007179 -0.02020954 291 290 -0.06393453 0.01031772 292 290 0.01597157 -0.002577484 293 290 -0.007089509 0.001144101 294 290 0.003980742 -0.0006424099 295 290 -0.002541777 0.0004101906 296 290 0.001760065 -0.0002840383 297 290 -0.001288661 0.0002079635 298 290 0.0009826448 -0.0001585787 299 290 -0.0007727812 0.000124711 300 290 0.0006226054 -0.0001004757 301 290 -0.0005114288 8.253411e-05 302 290 0.0004268045 -6.887749e-05 303 290 -0.0003608797 5.823857e-05 304 290 0.0003085011 -4.978574e-05 305 290 -0.0002661734 4.295492e-05 306 290 0.0002314578 -3.735254e-05 307 290 -0.0002026106 3.26972e-05 308 290 0.0001783582 -2.878335e-05 309 290 -0.0001577525 2.545802e-05 310 290 0.000140076 -2.26054e-05 311 290 -0.0001247774 2.013652e-05 312 290 0.0001114272 -1.798207e-05 313 290 -9.968672e-05 1.608739e-05 314 290 8.928565e-05 -1.440887e-05 315 290 -8.000611e-05 1.291134e-05 316 290 7.167061e-05 -1.156616e-05 317 290 -6.413319e-05 1.034978e-05 318 290 5.727273e-05 -9.242642e-06 319 290 -5.098776e-05 8.228377e-06 320 290 4.519256e-05 -7.293151e-06 321 290 -3.981401e-05 6.425164e-06 322 290 3.478917e-05 -5.614257e-06 323 290 -3.00633e-05 4.851599e-06 210 291 0.0008312598 6.841681e-05 243 291 -3.00633e-05 4.851599e-06 244 291 2.558831e-05 -4.129428e-06 245 291 -2.132146e-05 3.440846e-06 246 291 1.722429e-05 -2.779647e-06 247 291 -1.326172e-05 2.14017e-06 248 291 9.401297e-06 -1.517176e-06 249 291 -5.612495e-06 9.057414e-07 250 291 1.866144e-06 -3.011573e-07 251 291 1.866144e-06 -3.011573e-07 252 291 -5.612495e-06 9.057414e-07 253 291 9.401297e-06 -1.517176e-06 254 291 -1.326172e-05 2.14017e-06 255 291 1.722429e-05 -2.779647e-06 256 291 -2.132146e-05 3.440846e-06 257 291 2.558831e-05 -4.129428e-06 258 291 -3.00633e-05 4.851599e-06 259 291 3.478917e-05 -5.614257e-06 260 291 -3.981401e-05 6.425164e-06 261 291 4.519256e-05 -7.293151e-06 262 291 -5.098776e-05 8.228377e-06 263 291 5.727273e-05 -9.242642e-06 264 291 -6.413319e-05 1.034978e-05 265 291 7.167061e-05 -1.156616e-05 266 291 -8.000611e-05 1.291134e-05 267 291 8.928565e-05 -1.440887e-05 268 291 -9.968672e-05 1.608739e-05 269 291 0.0001114272 -1.798207e-05 270 291 -0.0001247774 2.013652e-05 271 291 0.000140076 -2.26054e-05 272 291 -0.0001577525 2.545802e-05 273 291 0.0001783582 -2.878335e-05 274 291 -0.0002026106 3.26972e-05 275 291 0.0002314578 -3.735254e-05 276 291 -0.0002661734 4.295492e-05 277 291 0.0003085011 -4.978574e-05 278 291 -0.0003608797 5.823857e-05 279 291 0.0004268045 -6.887749e-05 280 291 -0.0005114288 8.253411e-05 281 291 0.0006226054 -0.0001004757 282 291 -0.0007727812 0.000124711 283 291 0.0009826448 -0.0001585787 284 291 -0.001288661 0.0002079635 285 291 0.001760065 -0.0002840383 286 291 -0.002541777 0.0004101906 287 291 0.003980742 -0.0006424099 288 291 -0.007089509 0.001144101 289 291 0.01597157 -0.002577484 290 291 -0.06393453 0.01031772 291 291 -0.4014575 -0.01996885 292 291 -0.06393453 0.01031772 293 291 0.01597157 -0.002577484 294 291 -0.007089509 0.001144101 295 291 0.003980742 -0.0006424099 296 291 -0.002541777 0.0004101906 297 291 0.001760065 -0.0002840383 298 291 -0.001288661 0.0002079635 299 291 0.0009826448 -0.0001585787 300 291 -0.0007727812 0.000124711 301 291 0.0006226054 -0.0001004757 302 291 -0.0005114288 8.253411e-05 303 291 0.0004268045 -6.887749e-05 304 291 -0.0003608797 5.823857e-05 305 291 0.0003085011 -4.978574e-05 306 291 -0.0002661734 4.295492e-05 307 291 0.0002314578 -3.735254e-05 308 291 -0.0002026106 3.26972e-05 309 291 0.0001783582 -2.878335e-05 310 291 -0.0001577525 2.545802e-05 311 291 0.000140076 -2.26054e-05 312 291 -0.0001247774 2.013652e-05 313 291 0.0001114272 -1.798207e-05 314 291 -9.968672e-05 1.608739e-05 315 291 8.928565e-05 -1.440887e-05 316 291 -8.000611e-05 1.291134e-05 317 291 7.167061e-05 -1.156616e-05 318 291 -6.413319e-05 1.034978e-05 319 291 5.727273e-05 -9.242642e-06 320 291 -5.098776e-05 8.228377e-06 321 291 4.519256e-05 -7.293151e-06 322 291 -3.981401e-05 6.425164e-06 323 291 3.478917e-05 -5.614257e-06 211 292 0.0008477274 7.009369e-05 243 292 3.478917e-05 -5.614257e-06 244 292 -3.00633e-05 4.851599e-06 245 292 2.558831e-05 -4.129428e-06 246 292 -2.132146e-05 3.440846e-06 247 292 1.722429e-05 -2.779647e-06 248 292 -1.326172e-05 2.14017e-06 249 292 9.401297e-06 -1.517176e-06 250 292 -5.612495e-06 9.057414e-07 251 292 1.866144e-06 -3.011573e-07 252 292 1.866144e-06 -3.011573e-07 253 292 -5.612495e-06 9.057414e-07 254 292 9.401297e-06 -1.517176e-06 255 292 -1.326172e-05 2.14017e-06 256 292 1.722429e-05 -2.779647e-06 257 292 -2.132146e-05 3.440846e-06 258 292 2.558831e-05 -4.129428e-06 259 292 -3.00633e-05 4.851599e-06 260 292 3.478917e-05 -5.614257e-06 261 292 -3.981401e-05 6.425164e-06 262 292 4.519256e-05 -7.293151e-06 263 292 -5.098776e-05 8.228377e-06 264 292 5.727273e-05 -9.242642e-06 265 292 -6.413319e-05 1.034978e-05 266 292 7.167061e-05 -1.156616e-05 267 292 -8.000611e-05 1.291134e-05 268 292 8.928565e-05 -1.440887e-05 269 292 -9.968672e-05 1.608739e-05 270 292 0.0001114272 -1.798207e-05 271 292 -0.0001247774 2.013652e-05 272 292 0.000140076 -2.26054e-05 273 292 -0.0001577525 2.545802e-05 274 292 0.0001783582 -2.878335e-05 275 292 -0.0002026106 3.26972e-05 276 292 0.0002314578 -3.735254e-05 277 292 -0.0002661734 4.295492e-05 278 292 0.0003085011 -4.978574e-05 279 292 -0.0003608797 5.823857e-05 280 292 0.0004268045 -6.887749e-05 281 292 -0.0005114288 8.253411e-05 282 292 0.0006226054 -0.0001004757 283 292 -0.0007727812 0.000124711 284 292 0.0009826448 -0.0001585787 285 292 -0.001288661 0.0002079635 286 292 0.001760065 -0.0002840383 287 292 -0.002541777 0.0004101906 288 292 0.003980742 -0.0006424099 289 292 -0.007089509 0.001144101 290 292 0.01597157 -0.002577484 291 292 -0.06393453 0.01031772 292 292 -0.4021282 -0.01974566 293 292 -0.06393453 0.01031772 294 292 0.01597157 -0.002577484 295 292 -0.007089509 0.001144101 296 292 0.003980742 -0.0006424099 297 292 -0.002541777 0.0004101906 298 292 0.001760065 -0.0002840383 299 292 -0.001288661 0.0002079635 300 292 0.0009826448 -0.0001585787 301 292 -0.0007727812 0.000124711 302 292 0.0006226054 -0.0001004757 303 292 -0.0005114288 8.253411e-05 304 292 0.0004268045 -6.887749e-05 305 292 -0.0003608797 5.823857e-05 306 292 0.0003085011 -4.978574e-05 307 292 -0.0002661734 4.295492e-05 308 292 0.0002314578 -3.735254e-05 309 292 -0.0002026106 3.26972e-05 310 292 0.0001783582 -2.878335e-05 311 292 -0.0001577525 2.545802e-05 312 292 0.000140076 -2.26054e-05 313 292 -0.0001247774 2.013652e-05 314 292 0.0001114272 -1.798207e-05 315 292 -9.968672e-05 1.608739e-05 316 292 8.928565e-05 -1.440887e-05 317 292 -8.000611e-05 1.291134e-05 318 292 7.167061e-05 -1.156616e-05 319 292 -6.413319e-05 1.034978e-05 320 292 5.727273e-05 -9.242642e-06 321 292 -5.098776e-05 8.228377e-06 322 292 4.519256e-05 -7.293151e-06 323 292 -3.981401e-05 6.425164e-06 212 293 0.0008642789 7.178596e-05 243 293 -3.981401e-05 6.425164e-06 244 293 3.478917e-05 -5.614257e-06 245 293 -3.00633e-05 4.851599e-06 246 293 2.558831e-05 -4.129428e-06 247 293 -2.132146e-05 3.440846e-06 248 293 1.722429e-05 -2.779647e-06 249 293 -1.326172e-05 2.14017e-06 250 293 9.401297e-06 -1.517176e-06 251 293 -5.612495e-06 9.057414e-07 252 293 1.866144e-06 -3.011573e-07 253 293 1.866144e-06 -3.011573e-07 254 293 -5.612495e-06 9.057414e-07 255 293 9.401297e-06 -1.517176e-06 256 293 -1.326172e-05 2.14017e-06 257 293 1.722429e-05 -2.779647e-06 258 293 -2.132146e-05 3.440846e-06 259 293 2.558831e-05 -4.129428e-06 260 293 -3.00633e-05 4.851599e-06 261 293 3.478917e-05 -5.614257e-06 262 293 -3.981401e-05 6.425164e-06 263 293 4.519256e-05 -7.293151e-06 264 293 -5.098776e-05 8.228377e-06 265 293 5.727273e-05 -9.242642e-06 266 293 -6.413319e-05 1.034978e-05 267 293 7.167061e-05 -1.156616e-05 268 293 -8.000611e-05 1.291134e-05 269 293 8.928565e-05 -1.440887e-05 270 293 -9.968672e-05 1.608739e-05 271 293 0.0001114272 -1.798207e-05 272 293 -0.0001247774 2.013652e-05 273 293 0.000140076 -2.26054e-05 274 293 -0.0001577525 2.545802e-05 275 293 0.0001783582 -2.878335e-05 276 293 -0.0002026106 3.26972e-05 277 293 0.0002314578 -3.735254e-05 278 293 -0.0002661734 4.295492e-05 279 293 0.0003085011 -4.978574e-05 280 293 -0.0003608797 5.823857e-05 281 293 0.0004268045 -6.887749e-05 282 293 -0.0005114288 8.253411e-05 283 293 0.0006226054 -0.0001004757 284 293 -0.0007727812 0.000124711 285 293 0.0009826448 -0.0001585787 286 293 -0.001288661 0.0002079635 287 293 0.001760065 -0.0002840383 288 293 -0.002541777 0.0004101906 289 293 0.003980742 -0.0006424099 290 293 -0.007089509 0.001144101 291 293 0.01597157 -0.002577484 292 293 -0.06393453 0.01031772 293 293 -0.4027364 -0.01953871 294 293 -0.06393453 0.01031772 295 293 0.01597157 -0.002577484 296 293 -0.007089509 0.001144101 297 293 0.003980742 -0.0006424099 298 293 -0.002541777 0.0004101906 299 293 0.001760065 -0.0002840383 300 293 -0.001288661 0.0002079635 301 293 0.0009826448 -0.0001585787 302 293 -0.0007727812 0.000124711 303 293 0.0006226054 -0.0001004757 304 293 -0.0005114288 8.253411e-05 305 293 0.0004268045 -6.887749e-05 306 293 -0.0003608797 5.823857e-05 307 293 0.0003085011 -4.978574e-05 308 293 -0.0002661734 4.295492e-05 309 293 0.0002314578 -3.735254e-05 310 293 -0.0002026106 3.26972e-05 311 293 0.0001783582 -2.878335e-05 312 293 -0.0001577525 2.545802e-05 313 293 0.000140076 -2.26054e-05 314 293 -0.0001247774 2.013652e-05 315 293 0.0001114272 -1.798207e-05 316 293 -9.968672e-05 1.608739e-05 317 293 8.928565e-05 -1.440887e-05 318 293 -8.000611e-05 1.291134e-05 319 293 7.167061e-05 -1.156616e-05 320 293 -6.413319e-05 1.034978e-05 321 293 5.727273e-05 -9.242642e-06 322 293 -5.098776e-05 8.228377e-06 323 293 4.519256e-05 -7.293151e-06 213 294 0.0008809146 7.349373e-05 243 294 4.519256e-05 -7.293151e-06 244 294 -3.981401e-05 6.425164e-06 245 294 3.478917e-05 -5.614257e-06 246 294 -3.00633e-05 4.851599e-06 247 294 2.558831e-05 -4.129428e-06 248 294 -2.132146e-05 3.440846e-06 249 294 1.722429e-05 -2.779647e-06 250 294 -1.326172e-05 2.14017e-06 251 294 9.401297e-06 -1.517176e-06 252 294 -5.612495e-06 9.057414e-07 253 294 1.866144e-06 -3.011573e-07 254 294 1.866144e-06 -3.011573e-07 255 294 -5.612495e-06 9.057414e-07 256 294 9.401297e-06 -1.517176e-06 257 294 -1.326172e-05 2.14017e-06 258 294 1.722429e-05 -2.779647e-06 259 294 -2.132146e-05 3.440846e-06 260 294 2.558831e-05 -4.129428e-06 261 294 -3.00633e-05 4.851599e-06 262 294 3.478917e-05 -5.614257e-06 263 294 -3.981401e-05 6.425164e-06 264 294 4.519256e-05 -7.293151e-06 265 294 -5.098776e-05 8.228377e-06 266 294 5.727273e-05 -9.242642e-06 267 294 -6.413319e-05 1.034978e-05 268 294 7.167061e-05 -1.156616e-05 269 294 -8.000611e-05 1.291134e-05 270 294 8.928565e-05 -1.440887e-05 271 294 -9.968672e-05 1.608739e-05 272 294 0.0001114272 -1.798207e-05 273 294 -0.0001247774 2.013652e-05 274 294 0.000140076 -2.26054e-05 275 294 -0.0001577525 2.545802e-05 276 294 0.0001783582 -2.878335e-05 277 294 -0.0002026106 3.26972e-05 278 294 0.0002314578 -3.735254e-05 279 294 -0.0002661734 4.295492e-05 280 294 0.0003085011 -4.978574e-05 281 294 -0.0003608797 5.823857e-05 282 294 0.0004268045 -6.887749e-05 283 294 -0.0005114288 8.253411e-05 284 294 0.0006226054 -0.0001004757 285 294 -0.0007727812 0.000124711 286 294 0.0009826448 -0.0001585787 287 294 -0.001288661 0.0002079635 288 294 0.001760065 -0.0002840383 289 294 -0.002541777 0.0004101906 290 294 0.003980742 -0.0006424099 291 294 -0.007089509 0.001144101 292 294 0.01597157 -0.002577484 293 294 -0.06393453 0.01031772 294 294 -0.4032881 -0.01934683 295 294 -0.06393453 0.01031772 296 294 0.01597157 -0.002577484 297 294 -0.007089509 0.001144101 298 294 0.003980742 -0.0006424099 299 294 -0.002541777 0.0004101906 300 294 0.001760065 -0.0002840383 301 294 -0.001288661 0.0002079635 302 294 0.0009826448 -0.0001585787 303 294 -0.0007727812 0.000124711 304 294 0.0006226054 -0.0001004757 305 294 -0.0005114288 8.253411e-05 306 294 0.0004268045 -6.887749e-05 307 294 -0.0003608797 5.823857e-05 308 294 0.0003085011 -4.978574e-05 309 294 -0.0002661734 4.295492e-05 310 294 0.0002314578 -3.735254e-05 311 294 -0.0002026106 3.26972e-05 312 294 0.0001783582 -2.878335e-05 313 294 -0.0001577525 2.545802e-05 314 294 0.000140076 -2.26054e-05 315 294 -0.0001247774 2.013652e-05 316 294 0.0001114272 -1.798207e-05 317 294 -9.968672e-05 1.608739e-05 318 294 8.928565e-05 -1.440887e-05 319 294 -8.000611e-05 1.291134e-05 320 294 7.167061e-05 -1.156616e-05 321 294 -6.413319e-05 1.034978e-05 322 294 5.727273e-05 -9.242642e-06 323 294 -5.098776e-05 8.228377e-06 214 295 0.0008976348 7.521712e-05 243 295 -5.098776e-05 8.228377e-06 244 295 4.519256e-05 -7.293151e-06 245 295 -3.981401e-05 6.425164e-06 246 295 3.478917e-05 -5.614257e-06 247 295 -3.00633e-05 4.851599e-06 248 295 2.558831e-05 -4.129428e-06 249 295 -2.132146e-05 3.440846e-06 250 295 1.722429e-05 -2.779647e-06 251 295 -1.326172e-05 2.14017e-06 252 295 9.401297e-06 -1.517176e-06 253 295 -5.612495e-06 9.057414e-07 254 295 1.866144e-06 -3.011573e-07 255 295 1.866144e-06 -3.011573e-07 256 295 -5.612495e-06 9.057414e-07 257 295 9.401297e-06 -1.517176e-06 258 295 -1.326172e-05 2.14017e-06 259 295 1.722429e-05 -2.779647e-06 260 295 -2.132146e-05 3.440846e-06 261 295 2.558831e-05 -4.129428e-06 262 295 -3.00633e-05 4.851599e-06 263 295 3.478917e-05 -5.614257e-06 264 295 -3.981401e-05 6.425164e-06 265 295 4.519256e-05 -7.293151e-06 266 295 -5.098776e-05 8.228377e-06 267 295 5.727273e-05 -9.242642e-06 268 295 -6.413319e-05 1.034978e-05 269 295 7.167061e-05 -1.156616e-05 270 295 -8.000611e-05 1.291134e-05 271 295 8.928565e-05 -1.440887e-05 272 295 -9.968672e-05 1.608739e-05 273 295 0.0001114272 -1.798207e-05 274 295 -0.0001247774 2.013652e-05 275 295 0.000140076 -2.26054e-05 276 295 -0.0001577525 2.545802e-05 277 295 0.0001783582 -2.878335e-05 278 295 -0.0002026106 3.26972e-05 279 295 0.0002314578 -3.735254e-05 280 295 -0.0002661734 4.295492e-05 281 295 0.0003085011 -4.978574e-05 282 295 -0.0003608797 5.823857e-05 283 295 0.0004268045 -6.887749e-05 284 295 -0.0005114288 8.253411e-05 285 295 0.0006226054 -0.0001004757 286 295 -0.0007727812 0.000124711 287 295 0.0009826448 -0.0001585787 288 295 -0.001288661 0.0002079635 289 295 0.001760065 -0.0002840383 290 295 -0.002541777 0.0004101906 291 295 0.003980742 -0.0006424099 292 295 -0.007089509 0.001144101 293 295 0.01597157 -0.002577484 294 295 -0.06393453 0.01031772 295 295 -0.4037886 -0.01916894 296 295 -0.06393453 0.01031772 297 295 0.01597157 -0.002577484 298 295 -0.007089509 0.001144101 299 295 0.003980742 -0.0006424099 300 295 -0.002541777 0.0004101906 301 295 0.001760065 -0.0002840383 302 295 -0.001288661 0.0002079635 303 295 0.0009826448 -0.0001585787 304 295 -0.0007727812 0.000124711 305 295 0.0006226054 -0.0001004757 306 295 -0.0005114288 8.253411e-05 307 295 0.0004268045 -6.887749e-05 308 295 -0.0003608797 5.823857e-05 309 295 0.0003085011 -4.978574e-05 310 295 -0.0002661734 4.295492e-05 311 295 0.0002314578 -3.735254e-05 312 295 -0.0002026106 3.26972e-05 313 295 0.0001783582 -2.878335e-05 314 295 -0.0001577525 2.545802e-05 315 295 0.000140076 -2.26054e-05 316 295 -0.0001247774 2.013652e-05 317 295 0.0001114272 -1.798207e-05 318 295 -9.968672e-05 1.608739e-05 319 295 8.928565e-05 -1.440887e-05 320 295 -8.000611e-05 1.291134e-05 321 295 7.167061e-05 -1.156616e-05 322 295 -6.413319e-05 1.034978e-05 323 295 5.727273e-05 -9.242642e-06 215 296 0.0009144402 7.695625e-05 243 296 5.727273e-05 -9.242642e-06 244 296 -5.098776e-05 8.228377e-06 245 296 4.519256e-05 -7.293151e-06 246 296 -3.981401e-05 6.425164e-06 247 296 3.478917e-05 -5.614257e-06 248 296 -3.00633e-05 4.851599e-06 249 296 2.558831e-05 -4.129428e-06 250 296 -2.132146e-05 3.440846e-06 251 296 1.722429e-05 -2.779647e-06 252 296 -1.326172e-05 2.14017e-06 253 296 9.401297e-06 -1.517176e-06 254 296 -5.612495e-06 9.057414e-07 255 296 1.866144e-06 -3.011573e-07 256 296 1.866144e-06 -3.011573e-07 257 296 -5.612495e-06 9.057414e-07 258 296 9.401297e-06 -1.517176e-06 259 296 -1.326172e-05 2.14017e-06 260 296 1.722429e-05 -2.779647e-06 261 296 -2.132146e-05 3.440846e-06 262 296 2.558831e-05 -4.129428e-06 263 296 -3.00633e-05 4.851599e-06 264 296 3.478917e-05 -5.614257e-06 265 296 -3.981401e-05 6.425164e-06 266 296 4.519256e-05 -7.293151e-06 267 296 -5.098776e-05 8.228377e-06 268 296 5.727273e-05 -9.242642e-06 269 296 -6.413319e-05 1.034978e-05 270 296 7.167061e-05 -1.156616e-05 271 296 -8.000611e-05 1.291134e-05 272 296 8.928565e-05 -1.440887e-05 273 296 -9.968672e-05 1.608739e-05 274 296 0.0001114272 -1.798207e-05 275 296 -0.0001247774 2.013652e-05 276 296 0.000140076 -2.26054e-05 277 296 -0.0001577525 2.545802e-05 278 296 0.0001783582 -2.878335e-05 279 296 -0.0002026106 3.26972e-05 280 296 0.0002314578 -3.735254e-05 281 296 -0.0002661734 4.295492e-05 282 296 0.0003085011 -4.978574e-05 283 296 -0.0003608797 5.823857e-05 284 296 0.0004268045 -6.887749e-05 285 296 -0.0005114288 8.253411e-05 286 296 0.0006226054 -0.0001004757 287 296 -0.0007727812 0.000124711 288 296 0.0009826448 -0.0001585787 289 296 -0.001288661 0.0002079635 290 296 0.001760065 -0.0002840383 291 296 -0.002541777 0.0004101906 292 296 0.003980742 -0.0006424099 293 296 -0.007089509 0.001144101 294 296 0.01597157 -0.002577484 295 296 -0.06393453 0.01031772 296 296 -0.4042426 -0.01900404 297 296 -0.06393453 0.01031772 298 296 0.01597157 -0.002577484 299 296 -0.007089509 0.001144101 300 296 0.003980742 -0.0006424099 301 296 -0.002541777 0.0004101906 302 296 0.001760065 -0.0002840383 303 296 -0.001288661 0.0002079635 304 296 0.0009826448 -0.0001585787 305 296 -0.0007727812 0.000124711 306 296 0.0006226054 -0.0001004757 307 296 -0.0005114288 8.253411e-05 308 296 0.0004268045 -6.887749e-05 309 296 -0.0003608797 5.823857e-05 310 296 0.0003085011 -4.978574e-05 311 296 -0.0002661734 4.295492e-05 312 296 0.0002314578 -3.735254e-05 313 296 -0.0002026106 3.26972e-05 314 296 0.0001783582 -2.878335e-05 315 296 -0.0001577525 2.545802e-05 316 296 0.000140076 -2.26054e-05 317 296 -0.0001247774 2.013652e-05 318 296 0.0001114272 -1.798207e-05 319 296 -9.968672e-05 1.608739e-05 320 296 8.928565e-05 -1.440887e-05 321 296 -8.000611e-05 1.291134e-05 322 296 7.167061e-05 -1.156616e-05 323 296 -6.413319e-05 1.034978e-05 216 297 0.0009313311 7.871123e-05 243 297 -6.413319e-05 1.034978e-05 244 297 5.727273e-05 -9.242642e-06 245 297 -5.098776e-05 8.228377e-06 246 297 4.519256e-05 -7.293151e-06 247 297 -3.981401e-05 6.425164e-06 248 297 3.478917e-05 -5.614257e-06 249 297 -3.00633e-05 4.851599e-06 250 297 2.558831e-05 -4.129428e-06 251 297 -2.132146e-05 3.440846e-06 252 297 1.722429e-05 -2.779647e-06 253 297 -1.326172e-05 2.14017e-06 254 297 9.401297e-06 -1.517176e-06 255 297 -5.612495e-06 9.057414e-07 256 297 1.866144e-06 -3.011573e-07 257 297 1.866144e-06 -3.011573e-07 258 297 -5.612495e-06 9.057414e-07 259 297 9.401297e-06 -1.517176e-06 260 297 -1.326172e-05 2.14017e-06 261 297 1.722429e-05 -2.779647e-06 262 297 -2.132146e-05 3.440846e-06 263 297 2.558831e-05 -4.129428e-06 264 297 -3.00633e-05 4.851599e-06 265 297 3.478917e-05 -5.614257e-06 266 297 -3.981401e-05 6.425164e-06 267 297 4.519256e-05 -7.293151e-06 268 297 -5.098776e-05 8.228377e-06 269 297 5.727273e-05 -9.242642e-06 270 297 -6.413319e-05 1.034978e-05 271 297 7.167061e-05 -1.156616e-05 272 297 -8.000611e-05 1.291134e-05 273 297 8.928565e-05 -1.440887e-05 274 297 -9.968672e-05 1.608739e-05 275 297 0.0001114272 -1.798207e-05 276 297 -0.0001247774 2.013652e-05 277 297 0.000140076 -2.26054e-05 278 297 -0.0001577525 2.545802e-05 279 297 0.0001783582 -2.878335e-05 280 297 -0.0002026106 3.26972e-05 281 297 0.0002314578 -3.735254e-05 282 297 -0.0002661734 4.295492e-05 283 297 0.0003085011 -4.978574e-05 284 297 -0.0003608797 5.823857e-05 285 297 0.0004268045 -6.887749e-05 286 297 -0.0005114288 8.253411e-05 287 297 0.0006226054 -0.0001004757 288 297 -0.0007727812 0.000124711 289 297 0.0009826448 -0.0001585787 290 297 -0.001288661 0.0002079635 291 297 0.001760065 -0.0002840383 292 297 -0.002541777 0.0004101906 293 297 0.003980742 -0.0006424099 294 297 -0.007089509 0.001144101 295 297 0.01597157 -0.002577484 296 297 -0.06393453 0.01031772 297 297 -0.4046546 -0.01885121 298 297 -0.06393453 0.01031772 299 297 0.01597157 -0.002577484 300 297 -0.007089509 0.001144101 301 297 0.003980742 -0.0006424099 302 297 -0.002541777 0.0004101906 303 297 0.001760065 -0.0002840383 304 297 -0.001288661 0.0002079635 305 297 0.0009826448 -0.0001585787 306 297 -0.0007727812 0.000124711 307 297 0.0006226054 -0.0001004757 308 297 -0.0005114288 8.253411e-05 309 297 0.0004268045 -6.887749e-05 310 297 -0.0003608797 5.823857e-05 311 297 0.0003085011 -4.978574e-05 312 297 -0.0002661734 4.295492e-05 313 297 0.0002314578 -3.735254e-05 314 297 -0.0002026106 3.26972e-05 315 297 0.0001783582 -2.878335e-05 316 297 -0.0001577525 2.545802e-05 317 297 0.000140076 -2.26054e-05 318 297 -0.0001247774 2.013652e-05 319 297 0.0001114272 -1.798207e-05 320 297 -9.968672e-05 1.608739e-05 321 297 8.928565e-05 -1.440887e-05 322 297 -8.000611e-05 1.291134e-05 323 297 7.167061e-05 -1.156616e-05 217 298 0.0009483078 8.048218e-05 243 298 7.167061e-05 -1.156616e-05 244 298 -6.413319e-05 1.034978e-05 245 298 5.727273e-05 -9.242642e-06 246 298 -5.098776e-05 8.228377e-06 247 298 4.519256e-05 -7.293151e-06 248 298 -3.981401e-05 6.425164e-06 249 298 3.478917e-05 -5.614257e-06 250 298 -3.00633e-05 4.851599e-06 251 298 2.558831e-05 -4.129428e-06 252 298 -2.132146e-05 3.440846e-06 253 298 1.722429e-05 -2.779647e-06 254 298 -1.326172e-05 2.14017e-06 255 298 9.401297e-06 -1.517176e-06 256 298 -5.612495e-06 9.057414e-07 257 298 1.866144e-06 -3.011573e-07 258 298 1.866144e-06 -3.011573e-07 259 298 -5.612495e-06 9.057414e-07 260 298 9.401297e-06 -1.517176e-06 261 298 -1.326172e-05 2.14017e-06 262 298 1.722429e-05 -2.779647e-06 263 298 -2.132146e-05 3.440846e-06 264 298 2.558831e-05 -4.129428e-06 265 298 -3.00633e-05 4.851599e-06 266 298 3.478917e-05 -5.614257e-06 267 298 -3.981401e-05 6.425164e-06 268 298 4.519256e-05 -7.293151e-06 269 298 -5.098776e-05 8.228377e-06 270 298 5.727273e-05 -9.242642e-06 271 298 -6.413319e-05 1.034978e-05 272 298 7.167061e-05 -1.156616e-05 273 298 -8.000611e-05 1.291134e-05 274 298 8.928565e-05 -1.440887e-05 275 298 -9.968672e-05 1.608739e-05 276 298 0.0001114272 -1.798207e-05 277 298 -0.0001247774 2.013652e-05 278 298 0.000140076 -2.26054e-05 279 298 -0.0001577525 2.545802e-05 280 298 0.0001783582 -2.878335e-05 281 298 -0.0002026106 3.26972e-05 282 298 0.0002314578 -3.735254e-05 283 298 -0.0002661734 4.295492e-05 284 298 0.0003085011 -4.978574e-05 285 298 -0.0003608797 5.823857e-05 286 298 0.0004268045 -6.887749e-05 287 298 -0.0005114288 8.253411e-05 288 298 0.0006226054 -0.0001004757 289 298 -0.0007727812 0.000124711 290 298 0.0009826448 -0.0001585787 291 298 -0.001288661 0.0002079635 292 298 0.001760065 -0.0002840383 293 298 -0.002541777 0.0004101906 294 298 0.003980742 -0.0006424099 295 298 -0.007089509 0.001144101 296 298 0.01597157 -0.002577484 297 298 -0.06393453 0.01031772 298 298 -0.4050285 -0.01870957 299 298 -0.06393453 0.01031772 300 298 0.01597157 -0.002577484 301 298 -0.007089509 0.001144101 302 298 0.003980742 -0.0006424099 303 298 -0.002541777 0.0004101906 304 298 0.001760065 -0.0002840383 305 298 -0.001288661 0.0002079635 306 298 0.0009826448 -0.0001585787 307 298 -0.0007727812 0.000124711 308 298 0.0006226054 -0.0001004757 309 298 -0.0005114288 8.253411e-05 310 298 0.0004268045 -6.887749e-05 311 298 -0.0003608797 5.823857e-05 312 298 0.0003085011 -4.978574e-05 313 298 -0.0002661734 4.295492e-05 314 298 0.0002314578 -3.735254e-05 315 298 -0.0002026106 3.26972e-05 316 298 0.0001783582 -2.878335e-05 317 298 -0.0001577525 2.545802e-05 318 298 0.000140076 -2.26054e-05 319 298 -0.0001247774 2.013652e-05 320 298 0.0001114272 -1.798207e-05 321 298 -9.968672e-05 1.608739e-05 322 298 8.928565e-05 -1.440887e-05 323 298 -8.000611e-05 1.291134e-05 218 299 0.000965371 8.226921e-05 243 299 -8.000611e-05 1.291134e-05 244 299 7.167061e-05 -1.156616e-05 245 299 -6.413319e-05 1.034978e-05 246 299 5.727273e-05 -9.242642e-06 247 299 -5.098776e-05 8.228377e-06 248 299 4.519256e-05 -7.293151e-06 249 299 -3.981401e-05 6.425164e-06 250 299 3.478917e-05 -5.614257e-06 251 299 -3.00633e-05 4.851599e-06 252 299 2.558831e-05 -4.129428e-06 253 299 -2.132146e-05 3.440846e-06 254 299 1.722429e-05 -2.779647e-06 255 299 -1.326172e-05 2.14017e-06 256 299 9.401297e-06 -1.517176e-06 257 299 -5.612495e-06 9.057414e-07 258 299 1.866144e-06 -3.011573e-07 259 299 1.866144e-06 -3.011573e-07 260 299 -5.612495e-06 9.057414e-07 261 299 9.401297e-06 -1.517176e-06 262 299 -1.326172e-05 2.14017e-06 263 299 1.722429e-05 -2.779647e-06 264 299 -2.132146e-05 3.440846e-06 265 299 2.558831e-05 -4.129428e-06 266 299 -3.00633e-05 4.851599e-06 267 299 3.478917e-05 -5.614257e-06 268 299 -3.981401e-05 6.425164e-06 269 299 4.519256e-05 -7.293151e-06 270 299 -5.098776e-05 8.228377e-06 271 299 5.727273e-05 -9.242642e-06 272 299 -6.413319e-05 1.034978e-05 273 299 7.167061e-05 -1.156616e-05 274 299 -8.000611e-05 1.291134e-05 275 299 8.928565e-05 -1.440887e-05 276 299 -9.968672e-05 1.608739e-05 277 299 0.0001114272 -1.798207e-05 278 299 -0.0001247774 2.013652e-05 279 299 0.000140076 -2.26054e-05 280 299 -0.0001577525 2.545802e-05 281 299 0.0001783582 -2.878335e-05 282 299 -0.0002026106 3.26972e-05 283 299 0.0002314578 -3.735254e-05 284 299 -0.0002661734 4.295492e-05 285 299 0.0003085011 -4.978574e-05 286 299 -0.0003608797 5.823857e-05 287 299 0.0004268045 -6.887749e-05 288 299 -0.0005114288 8.253411e-05 289 299 0.0006226054 -0.0001004757 290 299 -0.0007727812 0.000124711 291 299 0.0009826448 -0.0001585787 292 299 -0.001288661 0.0002079635 293 299 0.001760065 -0.0002840383 294 299 -0.002541777 0.0004101906 295 299 0.003980742 -0.0006424099 296 299 -0.007089509 0.001144101 297 299 0.01597157 -0.002577484 298 299 -0.06393453 0.01031772 299 299 -0.4053677 -0.01857833 300 299 -0.06393453 0.01031772 301 299 0.01597157 -0.002577484 302 299 -0.007089509 0.001144101 303 299 0.003980742 -0.0006424099 304 299 -0.002541777 0.0004101906 305 299 0.001760065 -0.0002840383 306 299 -0.001288661 0.0002079635 307 299 0.0009826448 -0.0001585787 308 299 -0.0007727812 0.000124711 309 299 0.0006226054 -0.0001004757 310 299 -0.0005114288 8.253411e-05 311 299 0.0004268045 -6.887749e-05 312 299 -0.0003608797 5.823857e-05 313 299 0.0003085011 -4.978574e-05 314 299 -0.0002661734 4.295492e-05 315 299 0.0002314578 -3.735254e-05 316 299 -0.0002026106 3.26972e-05 317 299 0.0001783582 -2.878335e-05 318 299 -0.0001577525 2.545802e-05 319 299 0.000140076 -2.26054e-05 320 299 -0.0001247774 2.013652e-05 321 299 0.0001114272 -1.798207e-05 322 299 -9.968672e-05 1.608739e-05 323 299 8.928565e-05 -1.440887e-05 219 300 0.0009825209 8.407245e-05 243 300 8.928565e-05 -1.440887e-05 244 300 -8.000611e-05 1.291134e-05 245 300 7.167061e-05 -1.156616e-05 246 300 -6.413319e-05 1.034978e-05 247 300 5.727273e-05 -9.242642e-06 248 300 -5.098776e-05 8.228377e-06 249 300 4.519256e-05 -7.293151e-06 250 300 -3.981401e-05 6.425164e-06 251 300 3.478917e-05 -5.614257e-06 252 300 -3.00633e-05 4.851599e-06 253 300 2.558831e-05 -4.129428e-06 254 300 -2.132146e-05 3.440846e-06 255 300 1.722429e-05 -2.779647e-06 256 300 -1.326172e-05 2.14017e-06 257 300 9.401297e-06 -1.517176e-06 258 300 -5.612495e-06 9.057414e-07 259 300 1.866144e-06 -3.011573e-07 260 300 1.866144e-06 -3.011573e-07 261 300 -5.612495e-06 9.057414e-07 262 300 9.401297e-06 -1.517176e-06 263 300 -1.326172e-05 2.14017e-06 264 300 1.722429e-05 -2.779647e-06 265 300 -2.132146e-05 3.440846e-06 266 300 2.558831e-05 -4.129428e-06 267 300 -3.00633e-05 4.851599e-06 268 300 3.478917e-05 -5.614257e-06 269 300 -3.981401e-05 6.425164e-06 270 300 4.519256e-05 -7.293151e-06 271 300 -5.098776e-05 8.228377e-06 272 300 5.727273e-05 -9.242642e-06 273 300 -6.413319e-05 1.034978e-05 274 300 7.167061e-05 -1.156616e-05 275 300 -8.000611e-05 1.291134e-05 276 300 8.928565e-05 -1.440887e-05 277 300 -9.968672e-05 1.608739e-05 278 300 0.0001114272 -1.798207e-05 279 300 -0.0001247774 2.013652e-05 280 300 0.000140076 -2.26054e-05 281 300 -0.0001577525 2.545802e-05 282 300 0.0001783582 -2.878335e-05 283 300 -0.0002026106 3.26972e-05 284 300 0.0002314578 -3.735254e-05 285 300 -0.0002661734 4.295492e-05 286 300 0.0003085011 -4.978574e-05 287 300 -0.0003608797 5.823857e-05 288 300 0.0004268045 -6.887749e-05 289 300 -0.0005114288 8.253411e-05 290 300 0.0006226054 -0.0001004757 291 300 -0.0007727812 0.000124711 292 300 0.0009826448 -0.0001585787 293 300 -0.001288661 0.0002079635 294 300 0.001760065 -0.0002840383 295 300 -0.002541777 0.0004101906 296 300 0.003980742 -0.0006424099 297 300 -0.007089509 0.001144101 298 300 0.01597157 -0.002577484 299 300 -0.06393453 0.01031772 300 300 -0.4056756 -0.01845675 301 300 -0.06393453 0.01031772 302 300 0.01597157 -0.002577484 303 300 -0.007089509 0.001144101 304 300 0.003980742 -0.0006424099 305 300 -0.002541777 0.0004101906 306 300 0.001760065 -0.0002840383 307 300 -0.001288661 0.0002079635 308 300 0.0009826448 -0.0001585787 309 300 -0.0007727812 0.000124711 310 300 0.0006226054 -0.0001004757 311 300 -0.0005114288 8.253411e-05 312 300 0.0004268045 -6.887749e-05 313 300 -0.0003608797 5.823857e-05 314 300 0.0003085011 -4.978574e-05 315 300 -0.0002661734 4.295492e-05 316 300 0.0002314578 -3.735254e-05 317 300 -0.0002026106 3.26972e-05 318 300 0.0001783582 -2.878335e-05 319 300 -0.0001577525 2.545802e-05 320 300 0.000140076 -2.26054e-05 321 300 -0.0001247774 2.013652e-05 322 300 0.0001114272 -1.798207e-05 323 300 -9.968672e-05 1.608739e-05 220 301 0.0009997581 8.589201e-05 243 301 -9.968672e-05 1.608739e-05 244 301 8.928565e-05 -1.440887e-05 245 301 -8.000611e-05 1.291134e-05 246 301 7.167061e-05 -1.156616e-05 247 301 -6.413319e-05 1.034978e-05 248 301 5.727273e-05 -9.242642e-06 249 301 -5.098776e-05 8.228377e-06 250 301 4.519256e-05 -7.293151e-06 251 301 -3.981401e-05 6.425164e-06 252 301 3.478917e-05 -5.614257e-06 253 301 -3.00633e-05 4.851599e-06 254 301 2.558831e-05 -4.129428e-06 255 301 -2.132146e-05 3.440846e-06 256 301 1.722429e-05 -2.779647e-06 257 301 -1.326172e-05 2.14017e-06 258 301 9.401297e-06 -1.517176e-06 259 301 -5.612495e-06 9.057414e-07 260 301 1.866144e-06 -3.011573e-07 261 301 1.866144e-06 -3.011573e-07 262 301 -5.612495e-06 9.057414e-07 263 301 9.401297e-06 -1.517176e-06 264 301 -1.326172e-05 2.14017e-06 265 301 1.722429e-05 -2.779647e-06 266 301 -2.132146e-05 3.440846e-06 267 301 2.558831e-05 -4.129428e-06 268 301 -3.00633e-05 4.851599e-06 269 301 3.478917e-05 -5.614257e-06 270 301 -3.981401e-05 6.425164e-06 271 301 4.519256e-05 -7.293151e-06 272 301 -5.098776e-05 8.228377e-06 273 301 5.727273e-05 -9.242642e-06 274 301 -6.413319e-05 1.034978e-05 275 301 7.167061e-05 -1.156616e-05 276 301 -8.000611e-05 1.291134e-05 277 301 8.928565e-05 -1.440887e-05 278 301 -9.968672e-05 1.608739e-05 279 301 0.0001114272 -1.798207e-05 280 301 -0.0001247774 2.013652e-05 281 301 0.000140076 -2.26054e-05 282 301 -0.0001577525 2.545802e-05 283 301 0.0001783582 -2.878335e-05 284 301 -0.0002026106 3.26972e-05 285 301 0.0002314578 -3.735254e-05 286 301 -0.0002661734 4.295492e-05 287 301 0.0003085011 -4.978574e-05 288 301 -0.0003608797 5.823857e-05 289 301 0.0004268045 -6.887749e-05 290 301 -0.0005114288 8.253411e-05 291 301 0.0006226054 -0.0001004757 292 301 -0.0007727812 0.000124711 293 301 0.0009826448 -0.0001585787 294 301 -0.001288661 0.0002079635 295 301 0.001760065 -0.0002840383 296 301 -0.002541777 0.0004101906 297 301 0.003980742 -0.0006424099 298 301 -0.007089509 0.001144101 299 301 0.01597157 -0.002577484 300 301 -0.06393453 0.01031772 301 301 -0.4059551 -0.01834413 302 301 -0.06393453 0.01031772 303 301 0.01597157 -0.002577484 304 301 -0.007089509 0.001144101 305 301 0.003980742 -0.0006424099 306 301 -0.002541777 0.0004101906 307 301 0.001760065 -0.0002840383 308 301 -0.001288661 0.0002079635 309 301 0.0009826448 -0.0001585787 310 301 -0.0007727812 0.000124711 311 301 0.0006226054 -0.0001004757 312 301 -0.0005114288 8.253411e-05 313 301 0.0004268045 -6.887749e-05 314 301 -0.0003608797 5.823857e-05 315 301 0.0003085011 -4.978574e-05 316 301 -0.0002661734 4.295492e-05 317 301 0.0002314578 -3.735254e-05 318 301 -0.0002026106 3.26972e-05 319 301 0.0001783582 -2.878335e-05 320 301 -0.0001577525 2.545802e-05 321 301 0.000140076 -2.26054e-05 322 301 -0.0001247774 2.013652e-05 323 301 0.0001114272 -1.798207e-05 221 302 0.001017083 8.772801e-05 243 302 0.0001114272 -1.798207e-05 244 302 -9.968672e-05 1.608739e-05 245 302 8.928565e-05 -1.440887e-05 246 302 -8.000611e-05 1.291134e-05 247 302 7.167061e-05 -1.156616e-05 248 302 -6.413319e-05 1.034978e-05 249 302 5.727273e-05 -9.242642e-06 250 302 -5.098776e-05 8.228377e-06 251 302 4.519256e-05 -7.293151e-06 252 302 -3.981401e-05 6.425164e-06 253 302 3.478917e-05 -5.614257e-06 254 302 -3.00633e-05 4.851599e-06 255 302 2.558831e-05 -4.129428e-06 256 302 -2.132146e-05 3.440846e-06 257 302 1.722429e-05 -2.779647e-06 258 302 -1.326172e-05 2.14017e-06 259 302 9.401297e-06 -1.517176e-06 260 302 -5.612495e-06 9.057414e-07 261 302 1.866144e-06 -3.011573e-07 262 302 1.866144e-06 -3.011573e-07 263 302 -5.612495e-06 9.057414e-07 264 302 9.401297e-06 -1.517176e-06 265 302 -1.326172e-05 2.14017e-06 266 302 1.722429e-05 -2.779647e-06 267 302 -2.132146e-05 3.440846e-06 268 302 2.558831e-05 -4.129428e-06 269 302 -3.00633e-05 4.851599e-06 270 302 3.478917e-05 -5.614257e-06 271 302 -3.981401e-05 6.425164e-06 272 302 4.519256e-05 -7.293151e-06 273 302 -5.098776e-05 8.228377e-06 274 302 5.727273e-05 -9.242642e-06 275 302 -6.413319e-05 1.034978e-05 276 302 7.167061e-05 -1.156616e-05 277 302 -8.000611e-05 1.291134e-05 278 302 8.928565e-05 -1.440887e-05 279 302 -9.968672e-05 1.608739e-05 280 302 0.0001114272 -1.798207e-05 281 302 -0.0001247774 2.013652e-05 282 302 0.000140076 -2.26054e-05 283 302 -0.0001577525 2.545802e-05 284 302 0.0001783582 -2.878335e-05 285 302 -0.0002026106 3.26972e-05 286 302 0.0002314578 -3.735254e-05 287 302 -0.0002661734 4.295492e-05 288 302 0.0003085011 -4.978574e-05 289 302 -0.0003608797 5.823857e-05 290 302 0.0004268045 -6.887749e-05 291 302 -0.0005114288 8.253411e-05 292 302 0.0006226054 -0.0001004757 293 302 -0.0007727812 0.000124711 294 302 0.0009826448 -0.0001585787 295 302 -0.001288661 0.0002079635 296 302 0.001760065 -0.0002840383 297 302 -0.002541777 0.0004101906 298 302 0.003980742 -0.0006424099 299 302 -0.007089509 0.001144101 300 302 0.01597157 -0.002577484 301 302 -0.06393453 0.01031772 302 302 -0.4062087 -0.01823983 303 302 -0.06393453 0.01031772 304 302 0.01597157 -0.002577484 305 302 -0.007089509 0.001144101 306 302 0.003980742 -0.0006424099 307 302 -0.002541777 0.0004101906 308 302 0.001760065 -0.0002840383 309 302 -0.001288661 0.0002079635 310 302 0.0009826448 -0.0001585787 311 302 -0.0007727812 0.000124711 312 302 0.0006226054 -0.0001004757 313 302 -0.0005114288 8.253411e-05 314 302 0.0004268045 -6.887749e-05 315 302 -0.0003608797 5.823857e-05 316 302 0.0003085011 -4.978574e-05 317 302 -0.0002661734 4.295492e-05 318 302 0.0002314578 -3.735254e-05 319 302 -0.0002026106 3.26972e-05 320 302 0.0001783582 -2.878335e-05 321 302 -0.0001577525 2.545802e-05 322 302 0.000140076 -2.26054e-05 323 302 -0.0001247774 2.013652e-05 222 303 0.001034496 8.958057e-05 243 303 -0.0001247774 2.013652e-05 244 303 0.0001114272 -1.798207e-05 245 303 -9.968672e-05 1.608739e-05 246 303 8.928565e-05 -1.440887e-05 247 303 -8.000611e-05 1.291134e-05 248 303 7.167061e-05 -1.156616e-05 249 303 -6.413319e-05 1.034978e-05 250 303 5.727273e-05 -9.242642e-06 251 303 -5.098776e-05 8.228377e-06 252 303 4.519256e-05 -7.293151e-06 253 303 -3.981401e-05 6.425164e-06 254 303 3.478917e-05 -5.614257e-06 255 303 -3.00633e-05 4.851599e-06 256 303 2.558831e-05 -4.129428e-06 257 303 -2.132146e-05 3.440846e-06 258 303 1.722429e-05 -2.779647e-06 259 303 -1.326172e-05 2.14017e-06 260 303 9.401297e-06 -1.517176e-06 261 303 -5.612495e-06 9.057414e-07 262 303 1.866144e-06 -3.011573e-07 263 303 1.866144e-06 -3.011573e-07 264 303 -5.612495e-06 9.057414e-07 265 303 9.401297e-06 -1.517176e-06 266 303 -1.326172e-05 2.14017e-06 267 303 1.722429e-05 -2.779647e-06 268 303 -2.132146e-05 3.440846e-06 269 303 2.558831e-05 -4.129428e-06 270 303 -3.00633e-05 4.851599e-06 271 303 3.478917e-05 -5.614257e-06 272 303 -3.981401e-05 6.425164e-06 273 303 4.519256e-05 -7.293151e-06 274 303 -5.098776e-05 8.228377e-06 275 303 5.727273e-05 -9.242642e-06 276 303 -6.413319e-05 1.034978e-05 277 303 7.167061e-05 -1.156616e-05 278 303 -8.000611e-05 1.291134e-05 279 303 8.928565e-05 -1.440887e-05 280 303 -9.968672e-05 1.608739e-05 281 303 0.0001114272 -1.798207e-05 282 303 -0.0001247774 2.013652e-05 283 303 0.000140076 -2.26054e-05 284 303 -0.0001577525 2.545802e-05 285 303 0.0001783582 -2.878335e-05 286 303 -0.0002026106 3.26972e-05 287 303 0.0002314578 -3.735254e-05 288 303 -0.0002661734 4.295492e-05 289 303 0.0003085011 -4.978574e-05 290 303 -0.0003608797 5.823857e-05 291 303 0.0004268045 -6.887749e-05 292 303 -0.0005114288 8.253411e-05 293 303 0.0006226054 -0.0001004757 294 303 -0.0007727812 0.000124711 295 303 0.0009826448 -0.0001585787 296 303 -0.001288661 0.0002079635 297 303 0.001760065 -0.0002840383 298 303 -0.002541777 0.0004101906 299 303 0.003980742 -0.0006424099 300 303 -0.007089509 0.001144101 301 303 0.01597157 -0.002577484 302 303 -0.06393453 0.01031772 303 303 -0.4064389 -0.01814325 304 303 -0.06393453 0.01031772 305 303 0.01597157 -0.002577484 306 303 -0.007089509 0.001144101 307 303 0.003980742 -0.0006424099 308 303 -0.002541777 0.0004101906 309 303 0.001760065 -0.0002840383 310 303 -0.001288661 0.0002079635 311 303 0.0009826448 -0.0001585787 312 303 -0.0007727812 0.000124711 313 303 0.0006226054 -0.0001004757 314 303 -0.0005114288 8.253411e-05 315 303 0.0004268045 -6.887749e-05 316 303 -0.0003608797 5.823857e-05 317 303 0.0003085011 -4.978574e-05 318 303 -0.0002661734 4.295492e-05 319 303 0.0002314578 -3.735254e-05 320 303 -0.0002026106 3.26972e-05 321 303 0.0001783582 -2.878335e-05 322 303 -0.0001577525 2.545802e-05 323 303 0.000140076 -2.26054e-05 223 304 0.001051997 9.144981e-05 243 304 0.000140076 -2.26054e-05 244 304 -0.0001247774 2.013652e-05 245 304 0.0001114272 -1.798207e-05 246 304 -9.968672e-05 1.608739e-05 247 304 8.928565e-05 -1.440887e-05 248 304 -8.000611e-05 1.291134e-05 249 304 7.167061e-05 -1.156616e-05 250 304 -6.413319e-05 1.034978e-05 251 304 5.727273e-05 -9.242642e-06 252 304 -5.098776e-05 8.228377e-06 253 304 4.519256e-05 -7.293151e-06 254 304 -3.981401e-05 6.425164e-06 255 304 3.478917e-05 -5.614257e-06 256 304 -3.00633e-05 4.851599e-06 257 304 2.558831e-05 -4.129428e-06 258 304 -2.132146e-05 3.440846e-06 259 304 1.722429e-05 -2.779647e-06 260 304 -1.326172e-05 2.14017e-06 261 304 9.401297e-06 -1.517176e-06 262 304 -5.612495e-06 9.057414e-07 263 304 1.866144e-06 -3.011573e-07 264 304 1.866144e-06 -3.011573e-07 265 304 -5.612495e-06 9.057414e-07 266 304 9.401297e-06 -1.517176e-06 267 304 -1.326172e-05 2.14017e-06 268 304 1.722429e-05 -2.779647e-06 269 304 -2.132146e-05 3.440846e-06 270 304 2.558831e-05 -4.129428e-06 271 304 -3.00633e-05 4.851599e-06 272 304 3.478917e-05 -5.614257e-06 273 304 -3.981401e-05 6.425164e-06 274 304 4.519256e-05 -7.293151e-06 275 304 -5.098776e-05 8.228377e-06 276 304 5.727273e-05 -9.242642e-06 277 304 -6.413319e-05 1.034978e-05 278 304 7.167061e-05 -1.156616e-05 279 304 -8.000611e-05 1.291134e-05 280 304 8.928565e-05 -1.440887e-05 281 304 -9.968672e-05 1.608739e-05 282 304 0.0001114272 -1.798207e-05 283 304 -0.0001247774 2.013652e-05 284 304 0.000140076 -2.26054e-05 285 304 -0.0001577525 2.545802e-05 286 304 0.0001783582 -2.878335e-05 287 304 -0.0002026106 3.26972e-05 288 304 0.0002314578 -3.735254e-05 289 304 -0.0002661734 4.295492e-05 290 304 0.0003085011 -4.978574e-05 291 304 -0.0003608797 5.823857e-05 292 304 0.0004268045 -6.887749e-05 293 304 -0.0005114288 8.253411e-05 294 304 0.0006226054 -0.0001004757 295 304 -0.0007727812 0.000124711 296 304 0.0009826448 -0.0001585787 297 304 -0.001288661 0.0002079635 298 304 0.001760065 -0.0002840383 299 304 -0.002541777 0.0004101906 300 304 0.003980742 -0.0006424099 301 304 -0.007089509 0.001144101 302 304 0.01597157 -0.002577484 303 304 -0.06393453 0.01031772 304 304 -0.4066478 -0.01805384 305 304 -0.06393453 0.01031772 306 304 0.01597157 -0.002577484 307 304 -0.007089509 0.001144101 308 304 0.003980742 -0.0006424099 309 304 -0.002541777 0.0004101906 310 304 0.001760065 -0.0002840383 311 304 -0.001288661 0.0002079635 312 304 0.0009826448 -0.0001585787 313 304 -0.0007727812 0.000124711 314 304 0.0006226054 -0.0001004757 315 304 -0.0005114288 8.253411e-05 316 304 0.0004268045 -6.887749e-05 317 304 -0.0003608797 5.823857e-05 318 304 0.0003085011 -4.978574e-05 319 304 -0.0002661734 4.295492e-05 320 304 0.0002314578 -3.735254e-05 321 304 -0.0002026106 3.26972e-05 322 304 0.0001783582 -2.878335e-05 323 304 -0.0001577525 2.545802e-05 224 305 0.001069588 9.333586e-05 243 305 -0.0001577525 2.545802e-05 244 305 0.000140076 -2.26054e-05 245 305 -0.0001247774 2.013652e-05 246 305 0.0001114272 -1.798207e-05 247 305 -9.968672e-05 1.608739e-05 248 305 8.928565e-05 -1.440887e-05 249 305 -8.000611e-05 1.291134e-05 250 305 7.167061e-05 -1.156616e-05 251 305 -6.413319e-05 1.034978e-05 252 305 5.727273e-05 -9.242642e-06 253 305 -5.098776e-05 8.228377e-06 254 305 4.519256e-05 -7.293151e-06 255 305 -3.981401e-05 6.425164e-06 256 305 3.478917e-05 -5.614257e-06 257 305 -3.00633e-05 4.851599e-06 258 305 2.558831e-05 -4.129428e-06 259 305 -2.132146e-05 3.440846e-06 260 305 1.722429e-05 -2.779647e-06 261 305 -1.326172e-05 2.14017e-06 262 305 9.401297e-06 -1.517176e-06 263 305 -5.612495e-06 9.057414e-07 264 305 1.866144e-06 -3.011573e-07 265 305 1.866144e-06 -3.011573e-07 266 305 -5.612495e-06 9.057414e-07 267 305 9.401297e-06 -1.517176e-06 268 305 -1.326172e-05 2.14017e-06 269 305 1.722429e-05 -2.779647e-06 270 305 -2.132146e-05 3.440846e-06 271 305 2.558831e-05 -4.129428e-06 272 305 -3.00633e-05 4.851599e-06 273 305 3.478917e-05 -5.614257e-06 274 305 -3.981401e-05 6.425164e-06 275 305 4.519256e-05 -7.293151e-06 276 305 -5.098776e-05 8.228377e-06 277 305 5.727273e-05 -9.242642e-06 278 305 -6.413319e-05 1.034978e-05 279 305 7.167061e-05 -1.156616e-05 280 305 -8.000611e-05 1.291134e-05 281 305 8.928565e-05 -1.440887e-05 282 305 -9.968672e-05 1.608739e-05 283 305 0.0001114272 -1.798207e-05 284 305 -0.0001247774 2.013652e-05 285 305 0.000140076 -2.26054e-05 286 305 -0.0001577525 2.545802e-05 287 305 0.0001783582 -2.878335e-05 288 305 -0.0002026106 3.26972e-05 289 305 0.0002314578 -3.735254e-05 290 305 -0.0002661734 4.295492e-05 291 305 0.0003085011 -4.978574e-05 292 305 -0.0003608797 5.823857e-05 293 305 0.0004268045 -6.887749e-05 294 305 -0.0005114288 8.253411e-05 295 305 0.0006226054 -0.0001004757 296 305 -0.0007727812 0.000124711 297 305 0.0009826448 -0.0001585787 298 305 -0.001288661 0.0002079635 299 305 0.001760065 -0.0002840383 300 305 -0.002541777 0.0004101906 301 305 0.003980742 -0.0006424099 302 305 -0.007089509 0.001144101 303 305 0.01597157 -0.002577484 304 305 -0.06393453 0.01031772 305 305 -0.4068375 -0.01797109 306 305 -0.06393453 0.01031772 307 305 0.01597157 -0.002577484 308 305 -0.007089509 0.001144101 309 305 0.003980742 -0.0006424099 310 305 -0.002541777 0.0004101906 311 305 0.001760065 -0.0002840383 312 305 -0.001288661 0.0002079635 313 305 0.0009826448 -0.0001585787 314 305 -0.0007727812 0.000124711 315 305 0.0006226054 -0.0001004757 316 305 -0.0005114288 8.253411e-05 317 305 0.0004268045 -6.887749e-05 318 305 -0.0003608797 5.823857e-05 319 305 0.0003085011 -4.978574e-05 320 305 -0.0002661734 4.295492e-05 321 305 0.0002314578 -3.735254e-05 322 305 -0.0002026106 3.26972e-05 323 305 0.0001783582 -2.878335e-05 225 306 0.001087268 9.523884e-05 243 306 0.0001783582 -2.878335e-05 244 306 -0.0001577525 2.545802e-05 245 306 0.000140076 -2.26054e-05 246 306 -0.0001247774 2.013652e-05 247 306 0.0001114272 -1.798207e-05 248 306 -9.968672e-05 1.608739e-05 249 306 8.928565e-05 -1.440887e-05 250 306 -8.000611e-05 1.291134e-05 251 306 7.167061e-05 -1.156616e-05 252 306 -6.413319e-05 1.034978e-05 253 306 5.727273e-05 -9.242642e-06 254 306 -5.098776e-05 8.228377e-06 255 306 4.519256e-05 -7.293151e-06 256 306 -3.981401e-05 6.425164e-06 257 306 3.478917e-05 -5.614257e-06 258 306 -3.00633e-05 4.851599e-06 259 306 2.558831e-05 -4.129428e-06 260 306 -2.132146e-05 3.440846e-06 261 306 1.722429e-05 -2.779647e-06 262 306 -1.326172e-05 2.14017e-06 263 306 9.401297e-06 -1.517176e-06 264 306 -5.612495e-06 9.057414e-07 265 306 1.866144e-06 -3.011573e-07 266 306 1.866144e-06 -3.011573e-07 267 306 -5.612495e-06 9.057414e-07 268 306 9.401297e-06 -1.517176e-06 269 306 -1.326172e-05 2.14017e-06 270 306 1.722429e-05 -2.779647e-06 271 306 -2.132146e-05 3.440846e-06 272 306 2.558831e-05 -4.129428e-06 273 306 -3.00633e-05 4.851599e-06 274 306 3.478917e-05 -5.614257e-06 275 306 -3.981401e-05 6.425164e-06 276 306 4.519256e-05 -7.293151e-06 277 306 -5.098776e-05 8.228377e-06 278 306 5.727273e-05 -9.242642e-06 279 306 -6.413319e-05 1.034978e-05 280 306 7.167061e-05 -1.156616e-05 281 306 -8.000611e-05 1.291134e-05 282 306 8.928565e-05 -1.440887e-05 283 306 -9.968672e-05 1.608739e-05 284 306 0.0001114272 -1.798207e-05 285 306 -0.0001247774 2.013652e-05 286 306 0.000140076 -2.26054e-05 287 306 -0.0001577525 2.545802e-05 288 306 0.0001783582 -2.878335e-05 289 306 -0.0002026106 3.26972e-05 290 306 0.0002314578 -3.735254e-05 291 306 -0.0002661734 4.295492e-05 292 306 0.0003085011 -4.978574e-05 293 306 -0.0003608797 5.823857e-05 294 306 0.0004268045 -6.887749e-05 295 306 -0.0005114288 8.253411e-05 296 306 0.0006226054 -0.0001004757 297 306 -0.0007727812 0.000124711 298 306 0.0009826448 -0.0001585787 299 306 -0.001288661 0.0002079635 300 306 0.001760065 -0.0002840383 301 306 -0.002541777 0.0004101906 302 306 0.003980742 -0.0006424099 303 306 -0.007089509 0.001144101 304 306 0.01597157 -0.002577484 305 306 -0.06393453 0.01031772 306 306 -0.4070096 -0.0178945 307 306 -0.06393453 0.01031772 308 306 0.01597157 -0.002577484 309 306 -0.007089509 0.001144101 310 306 0.003980742 -0.0006424099 311 306 -0.002541777 0.0004101906 312 306 0.001760065 -0.0002840383 313 306 -0.001288661 0.0002079635 314 306 0.0009826448 -0.0001585787 315 306 -0.0007727812 0.000124711 316 306 0.0006226054 -0.0001004757 317 306 -0.0005114288 8.253411e-05 318 306 0.0004268045 -6.887749e-05 319 306 -0.0003608797 5.823857e-05 320 306 0.0003085011 -4.978574e-05 321 306 -0.0002661734 4.295492e-05 322 306 0.0002314578 -3.735254e-05 323 306 -0.0002026106 3.26972e-05 226 307 0.001105038 9.715887e-05 243 307 -0.0002026106 3.26972e-05 244 307 0.0001783582 -2.878335e-05 245 307 -0.0001577525 2.545802e-05 246 307 0.000140076 -2.26054e-05 247 307 -0.0001247774 2.013652e-05 248 307 0.0001114272 -1.798207e-05 249 307 -9.968672e-05 1.608739e-05 250 307 8.928565e-05 -1.440887e-05 251 307 -8.000611e-05 1.291134e-05 252 307 7.167061e-05 -1.156616e-05 253 307 -6.413319e-05 1.034978e-05 254 307 5.727273e-05 -9.242642e-06 255 307 -5.098776e-05 8.228377e-06 256 307 4.519256e-05 -7.293151e-06 257 307 -3.981401e-05 6.425164e-06 258 307 3.478917e-05 -5.614257e-06 259 307 -3.00633e-05 4.851599e-06 260 307 2.558831e-05 -4.129428e-06 261 307 -2.132146e-05 3.440846e-06 262 307 1.722429e-05 -2.779647e-06 263 307 -1.326172e-05 2.14017e-06 264 307 9.401297e-06 -1.517176e-06 265 307 -5.612495e-06 9.057414e-07 266 307 1.866144e-06 -3.011573e-07 267 307 1.866144e-06 -3.011573e-07 268 307 -5.612495e-06 9.057414e-07 269 307 9.401297e-06 -1.517176e-06 270 307 -1.326172e-05 2.14017e-06 271 307 1.722429e-05 -2.779647e-06 272 307 -2.132146e-05 3.440846e-06 273 307 2.558831e-05 -4.129428e-06 274 307 -3.00633e-05 4.851599e-06 275 307 3.478917e-05 -5.614257e-06 276 307 -3.981401e-05 6.425164e-06 277 307 4.519256e-05 -7.293151e-06 278 307 -5.098776e-05 8.228377e-06 279 307 5.727273e-05 -9.242642e-06 280 307 -6.413319e-05 1.034978e-05 281 307 7.167061e-05 -1.156616e-05 282 307 -8.000611e-05 1.291134e-05 283 307 8.928565e-05 -1.440887e-05 284 307 -9.968672e-05 1.608739e-05 285 307 0.0001114272 -1.798207e-05 286 307 -0.0001247774 2.013652e-05 287 307 0.000140076 -2.26054e-05 288 307 -0.0001577525 2.545802e-05 289 307 0.0001783582 -2.878335e-05 290 307 -0.0002026106 3.26972e-05 291 307 0.0002314578 -3.735254e-05 292 307 -0.0002661734 4.295492e-05 293 307 0.0003085011 -4.978574e-05 294 307 -0.0003608797 5.823857e-05 295 307 0.0004268045 -6.887749e-05 296 307 -0.0005114288 8.253411e-05 297 307 0.0006226054 -0.0001004757 298 307 -0.0007727812 0.000124711 299 307 0.0009826448 -0.0001585787 300 307 -0.001288661 0.0002079635 301 307 0.001760065 -0.0002840383 302 307 -0.002541777 0.0004101906 303 307 0.003980742 -0.0006424099 304 307 -0.007089509 0.001144101 305 307 0.01597157 -0.002577484 306 307 -0.06393453 0.01031772 307 307 -0.4071659 -0.01782364 308 307 -0.06393453 0.01031772 309 307 0.01597157 -0.002577484 310 307 -0.007089509 0.001144101 311 307 0.003980742 -0.0006424099 312 307 -0.002541777 0.0004101906 313 307 0.001760065 -0.0002840383 314 307 -0.001288661 0.0002079635 315 307 0.0009826448 -0.0001585787 316 307 -0.0007727812 0.000124711 317 307 0.0006226054 -0.0001004757 318 307 -0.0005114288 8.253411e-05 319 307 0.0004268045 -6.887749e-05 320 307 -0.0003608797 5.823857e-05 321 307 0.0003085011 -4.978574e-05 322 307 -0.0002661734 4.295492e-05 323 307 0.0002314578 -3.735254e-05 227 308 0.001122898 9.909608e-05 243 308 0.0002314578 -3.735254e-05 244 308 -0.0002026106 3.26972e-05 245 308 0.0001783582 -2.878335e-05 246 308 -0.0001577525 2.545802e-05 247 308 0.000140076 -2.26054e-05 248 308 -0.0001247774 2.013652e-05 249 308 0.0001114272 -1.798207e-05 250 308 -9.968672e-05 1.608739e-05 251 308 8.928565e-05 -1.440887e-05 252 308 -8.000611e-05 1.291134e-05 253 308 7.167061e-05 -1.156616e-05 254 308 -6.413319e-05 1.034978e-05 255 308 5.727273e-05 -9.242642e-06 256 308 -5.098776e-05 8.228377e-06 257 308 4.519256e-05 -7.293151e-06 258 308 -3.981401e-05 6.425164e-06 259 308 3.478917e-05 -5.614257e-06 260 308 -3.00633e-05 4.851599e-06 261 308 2.558831e-05 -4.129428e-06 262 308 -2.132146e-05 3.440846e-06 263 308 1.722429e-05 -2.779647e-06 264 308 -1.326172e-05 2.14017e-06 265 308 9.401297e-06 -1.517176e-06 266 308 -5.612495e-06 9.057414e-07 267 308 1.866144e-06 -3.011573e-07 268 308 1.866144e-06 -3.011573e-07 269 308 -5.612495e-06 9.057414e-07 270 308 9.401297e-06 -1.517176e-06 271 308 -1.326172e-05 2.14017e-06 272 308 1.722429e-05 -2.779647e-06 273 308 -2.132146e-05 3.440846e-06 274 308 2.558831e-05 -4.129428e-06 275 308 -3.00633e-05 4.851599e-06 276 308 3.478917e-05 -5.614257e-06 277 308 -3.981401e-05 6.425164e-06 278 308 4.519256e-05 -7.293151e-06 279 308 -5.098776e-05 8.228377e-06 280 308 5.727273e-05 -9.242642e-06 281 308 -6.413319e-05 1.034978e-05 282 308 7.167061e-05 -1.156616e-05 283 308 -8.000611e-05 1.291134e-05 284 308 8.928565e-05 -1.440887e-05 285 308 -9.968672e-05 1.608739e-05 286 308 0.0001114272 -1.798207e-05 287 308 -0.0001247774 2.013652e-05 288 308 0.000140076 -2.26054e-05 289 308 -0.0001577525 2.545802e-05 290 308 0.0001783582 -2.878335e-05 291 308 -0.0002026106 3.26972e-05 292 308 0.0002314578 -3.735254e-05 293 308 -0.0002661734 4.295492e-05 294 308 0.0003085011 -4.978574e-05 295 308 -0.0003608797 5.823857e-05 296 308 0.0004268045 -6.887749e-05 297 308 -0.0005114288 8.253411e-05 298 308 0.0006226054 -0.0001004757 299 308 -0.0007727812 0.000124711 300 308 0.0009826448 -0.0001585787 301 308 -0.001288661 0.0002079635 302 308 0.001760065 -0.0002840383 303 308 -0.002541777 0.0004101906 304 308 0.003980742 -0.0006424099 305 308 -0.007089509 0.001144101 306 308 0.01597157 -0.002577484 307 308 -0.06393453 0.01031772 308 308 -0.4073077 -0.0177581 309 308 -0.06393453 0.01031772 310 308 0.01597157 -0.002577484 311 308 -0.007089509 0.001144101 312 308 0.003980742 -0.0006424099 313 308 -0.002541777 0.0004101906 314 308 0.001760065 -0.0002840383 315 308 -0.001288661 0.0002079635 316 308 0.0009826448 -0.0001585787 317 308 -0.0007727812 0.000124711 318 308 0.0006226054 -0.0001004757 319 308 -0.0005114288 8.253411e-05 320 308 0.0004268045 -6.887749e-05 321 308 -0.0003608797 5.823857e-05 322 308 0.0003085011 -4.978574e-05 323 308 -0.0002661734 4.295492e-05 228 309 0.001140849 0.0001010506 243 309 -0.0002661734 4.295492e-05 244 309 0.0002314578 -3.735254e-05 245 309 -0.0002026106 3.26972e-05 246 309 0.0001783582 -2.878335e-05 247 309 -0.0001577525 2.545802e-05 248 309 0.000140076 -2.26054e-05 249 309 -0.0001247774 2.013652e-05 250 309 0.0001114272 -1.798207e-05 251 309 -9.968672e-05 1.608739e-05 252 309 8.928565e-05 -1.440887e-05 253 309 -8.000611e-05 1.291134e-05 254 309 7.167061e-05 -1.156616e-05 255 309 -6.413319e-05 1.034978e-05 256 309 5.727273e-05 -9.242642e-06 257 309 -5.098776e-05 8.228377e-06 258 309 4.519256e-05 -7.293151e-06 259 309 -3.981401e-05 6.425164e-06 260 309 3.478917e-05 -5.614257e-06 261 309 -3.00633e-05 4.851599e-06 262 309 2.558831e-05 -4.129428e-06 263 309 -2.132146e-05 3.440846e-06 264 309 1.722429e-05 -2.779647e-06 265 309 -1.326172e-05 2.14017e-06 266 309 9.401297e-06 -1.517176e-06 267 309 -5.612495e-06 9.057414e-07 268 309 1.866144e-06 -3.011573e-07 269 309 1.866144e-06 -3.011573e-07 270 309 -5.612495e-06 9.057414e-07 271 309 9.401297e-06 -1.517176e-06 272 309 -1.326172e-05 2.14017e-06 273 309 1.722429e-05 -2.779647e-06 274 309 -2.132146e-05 3.440846e-06 275 309 2.558831e-05 -4.129428e-06 276 309 -3.00633e-05 4.851599e-06 277 309 3.478917e-05 -5.614257e-06 278 309 -3.981401e-05 6.425164e-06 279 309 4.519256e-05 -7.293151e-06 280 309 -5.098776e-05 8.228377e-06 281 309 5.727273e-05 -9.242642e-06 282 309 -6.413319e-05 1.034978e-05 283 309 7.167061e-05 -1.156616e-05 284 309 -8.000611e-05 1.291134e-05 285 309 8.928565e-05 -1.440887e-05 286 309 -9.968672e-05 1.608739e-05 287 309 0.0001114272 -1.798207e-05 288 309 -0.0001247774 2.013652e-05 289 309 0.000140076 -2.26054e-05 290 309 -0.0001577525 2.545802e-05 291 309 0.0001783582 -2.878335e-05 292 309 -0.0002026106 3.26972e-05 293 309 0.0002314578 -3.735254e-05 294 309 -0.0002661734 4.295492e-05 295 309 0.0003085011 -4.978574e-05 296 309 -0.0003608797 5.823857e-05 297 309 0.0004268045 -6.887749e-05 298 309 -0.0005114288 8.253411e-05 299 309 0.0006226054 -0.0001004757 300 309 -0.0007727812 0.000124711 301 309 0.0009826448 -0.0001585787 302 309 -0.001288661 0.0002079635 303 309 0.001760065 -0.0002840383 304 309 -0.002541777 0.0004101906 305 309 0.003980742 -0.0006424099 306 309 -0.007089509 0.001144101 307 309 0.01597157 -0.002577484 308 309 -0.06393453 0.01031772 309 309 -0.4074364 -0.01769747 310 309 -0.06393453 0.01031772 311 309 0.01597157 -0.002577484 312 309 -0.007089509 0.001144101 313 309 0.003980742 -0.0006424099 314 309 -0.002541777 0.0004101906 315 309 0.001760065 -0.0002840383 316 309 -0.001288661 0.0002079635 317 309 0.0009826448 -0.0001585787 318 309 -0.0007727812 0.000124711 319 309 0.0006226054 -0.0001004757 320 309 -0.0005114288 8.253411e-05 321 309 0.0004268045 -6.887749e-05 322 309 -0.0003608797 5.823857e-05 323 309 0.0003085011 -4.978574e-05 229 310 0.001158892 0.0001030225 243 310 0.0003085011 -4.978574e-05 244 310 -0.0002661734 4.295492e-05 245 310 0.0002314578 -3.735254e-05 246 310 -0.0002026106 3.26972e-05 247 310 0.0001783582 -2.878335e-05 248 310 -0.0001577525 2.545802e-05 249 310 0.000140076 -2.26054e-05 250 310 -0.0001247774 2.013652e-05 251 310 0.0001114272 -1.798207e-05 252 310 -9.968672e-05 1.608739e-05 253 310 8.928565e-05 -1.440887e-05 254 310 -8.000611e-05 1.291134e-05 255 310 7.167061e-05 -1.156616e-05 256 310 -6.413319e-05 1.034978e-05 257 310 5.727273e-05 -9.242642e-06 258 310 -5.098776e-05 8.228377e-06 259 310 4.519256e-05 -7.293151e-06 260 310 -3.981401e-05 6.425164e-06 261 310 3.478917e-05 -5.614257e-06 262 310 -3.00633e-05 4.851599e-06 263 310 2.558831e-05 -4.129428e-06 264 310 -2.132146e-05 3.440846e-06 265 310 1.722429e-05 -2.779647e-06 266 310 -1.326172e-05 2.14017e-06 267 310 9.401297e-06 -1.517176e-06 268 310 -5.612495e-06 9.057414e-07 269 310 1.866144e-06 -3.011573e-07 270 310 1.866144e-06 -3.011573e-07 271 310 -5.612495e-06 9.057414e-07 272 310 9.401297e-06 -1.517176e-06 273 310 -1.326172e-05 2.14017e-06 274 310 1.722429e-05 -2.779647e-06 275 310 -2.132146e-05 3.440846e-06 276 310 2.558831e-05 -4.129428e-06 277 310 -3.00633e-05 4.851599e-06 278 310 3.478917e-05 -5.614257e-06 279 310 -3.981401e-05 6.425164e-06 280 310 4.519256e-05 -7.293151e-06 281 310 -5.098776e-05 8.228377e-06 282 310 5.727273e-05 -9.242642e-06 283 310 -6.413319e-05 1.034978e-05 284 310 7.167061e-05 -1.156616e-05 285 310 -8.000611e-05 1.291134e-05 286 310 8.928565e-05 -1.440887e-05 287 310 -9.968672e-05 1.608739e-05 288 310 0.0001114272 -1.798207e-05 289 310 -0.0001247774 2.013652e-05 290 310 0.000140076 -2.26054e-05 291 310 -0.0001577525 2.545802e-05 292 310 0.0001783582 -2.878335e-05 293 310 -0.0002026106 3.26972e-05 294 310 0.0002314578 -3.735254e-05 295 310 -0.0002661734 4.295492e-05 296 310 0.0003085011 -4.978574e-05 297 310 -0.0003608797 5.823857e-05 298 310 0.0004268045 -6.887749e-05 299 310 -0.0005114288 8.253411e-05 300 310 0.0006226054 -0.0001004757 301 310 -0.0007727812 0.000124711 302 310 0.0009826448 -0.0001585787 303 310 -0.001288661 0.0002079635 304 310 0.001760065 -0.0002840383 305 310 -0.002541777 0.0004101906 306 310 0.003980742 -0.0006424099 307 310 -0.007089509 0.001144101 308 310 0.01597157 -0.002577484 309 310 -0.06393453 0.01031772 310 310 -0.4075532 -0.01764141 311 310 -0.06393453 0.01031772 312 310 0.01597157 -0.002577484 313 310 -0.007089509 0.001144101 314 310 0.003980742 -0.0006424099 315 310 -0.002541777 0.0004101906 316 310 0.001760065 -0.0002840383 317 310 -0.001288661 0.0002079635 318 310 0.0009826448 -0.0001585787 319 310 -0.0007727812 0.000124711 320 310 0.0006226054 -0.0001004757 321 310 -0.0005114288 8.253411e-05 322 310 0.0004268045 -6.887749e-05 323 310 -0.0003608797 5.823857e-05 230 311 0.001177026 0.000105012 243 311 -0.0003608797 5.823857e-05 244 311 0.0003085011 -4.978574e-05 245 311 -0.0002661734 4.295492e-05 246 311 0.0002314578 -3.735254e-05 247 311 -0.0002026106 3.26972e-05 248 311 0.0001783582 -2.878335e-05 249 311 -0.0001577525 2.545802e-05 250 311 0.000140076 -2.26054e-05 251 311 -0.0001247774 2.013652e-05 252 311 0.0001114272 -1.798207e-05 253 311 -9.968672e-05 1.608739e-05 254 311 8.928565e-05 -1.440887e-05 255 311 -8.000611e-05 1.291134e-05 256 311 7.167061e-05 -1.156616e-05 257 311 -6.413319e-05 1.034978e-05 258 311 5.727273e-05 -9.242642e-06 259 311 -5.098776e-05 8.228377e-06 260 311 4.519256e-05 -7.293151e-06 261 311 -3.981401e-05 6.425164e-06 262 311 3.478917e-05 -5.614257e-06 263 311 -3.00633e-05 4.851599e-06 264 311 2.558831e-05 -4.129428e-06 265 311 -2.132146e-05 3.440846e-06 266 311 1.722429e-05 -2.779647e-06 267 311 -1.326172e-05 2.14017e-06 268 311 9.401297e-06 -1.517176e-06 269 311 -5.612495e-06 9.057414e-07 270 311 1.866144e-06 -3.011573e-07 271 311 1.866144e-06 -3.011573e-07 272 311 -5.612495e-06 9.057414e-07 273 311 9.401297e-06 -1.517176e-06 274 311 -1.326172e-05 2.14017e-06 275 311 1.722429e-05 -2.779647e-06 276 311 -2.132146e-05 3.440846e-06 277 311 2.558831e-05 -4.129428e-06 278 311 -3.00633e-05 4.851599e-06 279 311 3.478917e-05 -5.614257e-06 280 311 -3.981401e-05 6.425164e-06 281 311 4.519256e-05 -7.293151e-06 282 311 -5.098776e-05 8.228377e-06 283 311 5.727273e-05 -9.242642e-06 284 311 -6.413319e-05 1.034978e-05 285 311 7.167061e-05 -1.156616e-05 286 311 -8.000611e-05 1.291134e-05 287 311 8.928565e-05 -1.440887e-05 288 311 -9.968672e-05 1.608739e-05 289 311 0.0001114272 -1.798207e-05 290 311 -0.0001247774 2.013652e-05 291 311 0.000140076 -2.26054e-05 292 311 -0.0001577525 2.545802e-05 293 311 0.0001783582 -2.878335e-05 294 311 -0.0002026106 3.26972e-05 295 311 0.0002314578 -3.735254e-05 296 311 -0.0002661734 4.295492e-05 297 311 0.0003085011 -4.978574e-05 298 311 -0.0003608797 5.823857e-05 299 311 0.0004268045 -6.887749e-05 300 311 -0.0005114288 8.253411e-05 301 311 0.0006226054 -0.0001004757 302 311 -0.0007727812 0.000124711 303 311 0.0009826448 -0.0001585787 304 311 -0.001288661 0.0002079635 305 311 0.001760065 -0.0002840383 306 311 -0.002541777 0.0004101906 307 311 0.003980742 -0.0006424099 308 311 -0.007089509 0.001144101 309 311 0.01597157 -0.002577484 310 311 -0.06393453 0.01031772 311 311 -0.4076592 -0.01758959 312 311 -0.06393453 0.01031772 313 311 0.01597157 -0.002577484 314 311 -0.007089509 0.001144101 315 311 0.003980742 -0.0006424099 316 311 -0.002541777 0.0004101906 317 311 0.001760065 -0.0002840383 318 311 -0.001288661 0.0002079635 319 311 0.0009826448 -0.0001585787 320 311 -0.0007727812 0.000124711 321 311 0.0006226054 -0.0001004757 322 311 -0.0005114288 8.253411e-05 323 311 0.0004268045 -6.887749e-05 231 312 0.001195252 0.0001070192 243 312 0.0004268045 -6.887749e-05 244 312 -0.0003608797 5.823857e-05 245 312 0.0003085011 -4.978574e-05 246 312 -0.0002661734 4.295492e-05 247 312 0.0002314578 -3.735254e-05 248 312 -0.0002026106 3.26972e-05 249 312 0.0001783582 -2.878335e-05 250 312 -0.0001577525 2.545802e-05 251 312 0.000140076 -2.26054e-05 252 312 -0.0001247774 2.013652e-05 253 312 0.0001114272 -1.798207e-05 254 312 -9.968672e-05 1.608739e-05 255 312 8.928565e-05 -1.440887e-05 256 312 -8.000611e-05 1.291134e-05 257 312 7.167061e-05 -1.156616e-05 258 312 -6.413319e-05 1.034978e-05 259 312 5.727273e-05 -9.242642e-06 260 312 -5.098776e-05 8.228377e-06 261 312 4.519256e-05 -7.293151e-06 262 312 -3.981401e-05 6.425164e-06 263 312 3.478917e-05 -5.614257e-06 264 312 -3.00633e-05 4.851599e-06 265 312 2.558831e-05 -4.129428e-06 266 312 -2.132146e-05 3.440846e-06 267 312 1.722429e-05 -2.779647e-06 268 312 -1.326172e-05 2.14017e-06 269 312 9.401297e-06 -1.517176e-06 270 312 -5.612495e-06 9.057414e-07 271 312 1.866144e-06 -3.011573e-07 272 312 1.866144e-06 -3.011573e-07 273 312 -5.612495e-06 9.057414e-07 274 312 9.401297e-06 -1.517176e-06 275 312 -1.326172e-05 2.14017e-06 276 312 1.722429e-05 -2.779647e-06 277 312 -2.132146e-05 3.440846e-06 278 312 2.558831e-05 -4.129428e-06 279 312 -3.00633e-05 4.851599e-06 280 312 3.478917e-05 -5.614257e-06 281 312 -3.981401e-05 6.425164e-06 282 312 4.519256e-05 -7.293151e-06 283 312 -5.098776e-05 8.228377e-06 284 312 5.727273e-05 -9.242642e-06 285 312 -6.413319e-05 1.034978e-05 286 312 7.167061e-05 -1.156616e-05 287 312 -8.000611e-05 1.291134e-05 288 312 8.928565e-05 -1.440887e-05 289 312 -9.968672e-05 1.608739e-05 290 312 0.0001114272 -1.798207e-05 291 312 -0.0001247774 2.013652e-05 292 312 0.000140076 -2.26054e-05 293 312 -0.0001577525 2.545802e-05 294 312 0.0001783582 -2.878335e-05 295 312 -0.0002026106 3.26972e-05 296 312 0.0002314578 -3.735254e-05 297 312 -0.0002661734 4.295492e-05 298 312 0.0003085011 -4.978574e-05 299 312 -0.0003608797 5.823857e-05 300 312 0.0004268045 -6.887749e-05 301 312 -0.0005114288 8.253411e-05 302 312 0.0006226054 -0.0001004757 303 312 -0.0007727812 0.000124711 304 312 0.0009826448 -0.0001585787 305 312 -0.001288661 0.0002079635 306 312 0.001760065 -0.0002840383 307 312 -0.002541777 0.0004101906 308 312 0.003980742 -0.0006424099 309 312 -0.007089509 0.001144101 310 312 0.01597157 -0.002577484 311 312 -0.06393453 0.01031772 312 312 -0.4077554 -0.01754169 313 312 -0.06393453 0.01031772 314 312 0.01597157 -0.002577484 315 312 -0.007089509 0.001144101 316 312 0.003980742 -0.0006424099 317 312 -0.002541777 0.0004101906 318 312 0.001760065 -0.0002840383 319 312 -0.001288661 0.0002079635 320 312 0.0009826448 -0.0001585787 321 312 -0.0007727812 0.000124711 322 312 0.0006226054 -0.0001004757 323 312 -0.0005114288 8.253411e-05 232 313 0.001213571 0.0001090442 243 313 -0.0005114288 8.253411e-05 244 313 0.0004268045 -6.887749e-05 245 313 -0.0003608797 5.823857e-05 246 313 0.0003085011 -4.978574e-05 247 313 -0.0002661734 4.295492e-05 248 313 0.0002314578 -3.735254e-05 249 313 -0.0002026106 3.26972e-05 250 313 0.0001783582 -2.878335e-05 251 313 -0.0001577525 2.545802e-05 252 313 0.000140076 -2.26054e-05 253 313 -0.0001247774 2.013652e-05 254 313 0.0001114272 -1.798207e-05 255 313 -9.968672e-05 1.608739e-05 256 313 8.928565e-05 -1.440887e-05 257 313 -8.000611e-05 1.291134e-05 258 313 7.167061e-05 -1.156616e-05 259 313 -6.413319e-05 1.034978e-05 260 313 5.727273e-05 -9.242642e-06 261 313 -5.098776e-05 8.228377e-06 262 313 4.519256e-05 -7.293151e-06 263 313 -3.981401e-05 6.425164e-06 264 313 3.478917e-05 -5.614257e-06 265 313 -3.00633e-05 4.851599e-06 266 313 2.558831e-05 -4.129428e-06 267 313 -2.132146e-05 3.440846e-06 268 313 1.722429e-05 -2.779647e-06 269 313 -1.326172e-05 2.14017e-06 270 313 9.401297e-06 -1.517176e-06 271 313 -5.612495e-06 9.057414e-07 272 313 1.866144e-06 -3.011573e-07 273 313 1.866144e-06 -3.011573e-07 274 313 -5.612495e-06 9.057414e-07 275 313 9.401297e-06 -1.517176e-06 276 313 -1.326172e-05 2.14017e-06 277 313 1.722429e-05 -2.779647e-06 278 313 -2.132146e-05 3.440846e-06 279 313 2.558831e-05 -4.129428e-06 280 313 -3.00633e-05 4.851599e-06 281 313 3.478917e-05 -5.614257e-06 282 313 -3.981401e-05 6.425164e-06 283 313 4.519256e-05 -7.293151e-06 284 313 -5.098776e-05 8.228377e-06 285 313 5.727273e-05 -9.242642e-06 286 313 -6.413319e-05 1.034978e-05 287 313 7.167061e-05 -1.156616e-05 288 313 -8.000611e-05 1.291134e-05 289 313 8.928565e-05 -1.440887e-05 290 313 -9.968672e-05 1.608739e-05 291 313 0.0001114272 -1.798207e-05 292 313 -0.0001247774 2.013652e-05 293 313 0.000140076 -2.26054e-05 294 313 -0.0001577525 2.545802e-05 295 313 0.0001783582 -2.878335e-05 296 313 -0.0002026106 3.26972e-05 297 313 0.0002314578 -3.735254e-05 298 313 -0.0002661734 4.295492e-05 299 313 0.0003085011 -4.978574e-05 300 313 -0.0003608797 5.823857e-05 301 313 0.0004268045 -6.887749e-05 302 313 -0.0005114288 8.253411e-05 303 313 0.0006226054 -0.0001004757 304 313 -0.0007727812 0.000124711 305 313 0.0009826448 -0.0001585787 306 313 -0.001288661 0.0002079635 307 313 0.001760065 -0.0002840383 308 313 -0.002541777 0.0004101906 309 313 0.003980742 -0.0006424099 310 313 -0.007089509 0.001144101 311 313 0.01597157 -0.002577484 312 313 -0.06393453 0.01031772 313 313 -0.4078427 -0.01749742 314 313 -0.06393453 0.01031772 315 313 0.01597157 -0.002577484 316 313 -0.007089509 0.001144101 317 313 0.003980742 -0.0006424099 318 313 -0.002541777 0.0004101906 319 313 0.001760065 -0.0002840383 320 313 -0.001288661 0.0002079635 321 313 0.0009826448 -0.0001585787 322 313 -0.0007727812 0.000124711 323 313 0.0006226054 -0.0001004757 233 314 0.001231983 0.0001110871 243 314 0.0006226054 -0.0001004757 244 314 -0.0005114288 8.253411e-05 245 314 0.0004268045 -6.887749e-05 246 314 -0.0003608797 5.823857e-05 247 314 0.0003085011 -4.978574e-05 248 314 -0.0002661734 4.295492e-05 249 314 0.0002314578 -3.735254e-05 250 314 -0.0002026106 3.26972e-05 251 314 0.0001783582 -2.878335e-05 252 314 -0.0001577525 2.545802e-05 253 314 0.000140076 -2.26054e-05 254 314 -0.0001247774 2.013652e-05 255 314 0.0001114272 -1.798207e-05 256 314 -9.968672e-05 1.608739e-05 257 314 8.928565e-05 -1.440887e-05 258 314 -8.000611e-05 1.291134e-05 259 314 7.167061e-05 -1.156616e-05 260 314 -6.413319e-05 1.034978e-05 261 314 5.727273e-05 -9.242642e-06 262 314 -5.098776e-05 8.228377e-06 263 314 4.519256e-05 -7.293151e-06 264 314 -3.981401e-05 6.425164e-06 265 314 3.478917e-05 -5.614257e-06 266 314 -3.00633e-05 4.851599e-06 267 314 2.558831e-05 -4.129428e-06 268 314 -2.132146e-05 3.440846e-06 269 314 1.722429e-05 -2.779647e-06 270 314 -1.326172e-05 2.14017e-06 271 314 9.401297e-06 -1.517176e-06 272 314 -5.612495e-06 9.057414e-07 273 314 1.866144e-06 -3.011573e-07 274 314 1.866144e-06 -3.011573e-07 275 314 -5.612495e-06 9.057414e-07 276 314 9.401297e-06 -1.517176e-06 277 314 -1.326172e-05 2.14017e-06 278 314 1.722429e-05 -2.779647e-06 279 314 -2.132146e-05 3.440846e-06 280 314 2.558831e-05 -4.129428e-06 281 314 -3.00633e-05 4.851599e-06 282 314 3.478917e-05 -5.614257e-06 283 314 -3.981401e-05 6.425164e-06 284 314 4.519256e-05 -7.293151e-06 285 314 -5.098776e-05 8.228377e-06 286 314 5.727273e-05 -9.242642e-06 287 314 -6.413319e-05 1.034978e-05 288 314 7.167061e-05 -1.156616e-05 289 314 -8.000611e-05 1.291134e-05 290 314 8.928565e-05 -1.440887e-05 291 314 -9.968672e-05 1.608739e-05 292 314 0.0001114272 -1.798207e-05 293 314 -0.0001247774 2.013652e-05 294 314 0.000140076 -2.26054e-05 295 314 -0.0001577525 2.545802e-05 296 314 0.0001783582 -2.878335e-05 297 314 -0.0002026106 3.26972e-05 298 314 0.0002314578 -3.735254e-05 299 314 -0.0002661734 4.295492e-05 300 314 0.0003085011 -4.978574e-05 301 314 -0.0003608797 5.823857e-05 302 314 0.0004268045 -6.887749e-05 303 314 -0.0005114288 8.253411e-05 304 314 0.0006226054 -0.0001004757 305 314 -0.0007727812 0.000124711 306 314 0.0009826448 -0.0001585787 307 314 -0.001288661 0.0002079635 308 314 0.001760065 -0.0002840383 309 314 -0.002541777 0.0004101906 310 314 0.003980742 -0.0006424099 311 314 -0.007089509 0.001144101 312 314 0.01597157 -0.002577484 313 314 -0.06393453 0.01031772 314 314 -0.4079219 -0.01745652 315 314 -0.06393453 0.01031772 316 314 0.01597157 -0.002577484 317 314 -0.007089509 0.001144101 318 314 0.003980742 -0.0006424099 319 314 -0.002541777 0.0004101906 320 314 0.001760065 -0.0002840383 321 314 -0.001288661 0.0002079635 322 314 0.0009826448 -0.0001585787 323 314 -0.0007727812 0.000124711 234 315 0.001250489 0.0001131481 243 315 -0.0007727812 0.000124711 244 315 0.0006226054 -0.0001004757 245 315 -0.0005114288 8.253411e-05 246 315 0.0004268045 -6.887749e-05 247 315 -0.0003608797 5.823857e-05 248 315 0.0003085011 -4.978574e-05 249 315 -0.0002661734 4.295492e-05 250 315 0.0002314578 -3.735254e-05 251 315 -0.0002026106 3.26972e-05 252 315 0.0001783582 -2.878335e-05 253 315 -0.0001577525 2.545802e-05 254 315 0.000140076 -2.26054e-05 255 315 -0.0001247774 2.013652e-05 256 315 0.0001114272 -1.798207e-05 257 315 -9.968672e-05 1.608739e-05 258 315 8.928565e-05 -1.440887e-05 259 315 -8.000611e-05 1.291134e-05 260 315 7.167061e-05 -1.156616e-05 261 315 -6.413319e-05 1.034978e-05 262 315 5.727273e-05 -9.242642e-06 263 315 -5.098776e-05 8.228377e-06 264 315 4.519256e-05 -7.293151e-06 265 315 -3.981401e-05 6.425164e-06 266 315 3.478917e-05 -5.614257e-06 267 315 -3.00633e-05 4.851599e-06 268 315 2.558831e-05 -4.129428e-06 269 315 -2.132146e-05 3.440846e-06 270 315 1.722429e-05 -2.779647e-06 271 315 -1.326172e-05 2.14017e-06 272 315 9.401297e-06 -1.517176e-06 273 315 -5.612495e-06 9.057414e-07 274 315 1.866144e-06 -3.011573e-07 275 315 1.866144e-06 -3.011573e-07 276 315 -5.612495e-06 9.057414e-07 277 315 9.401297e-06 -1.517176e-06 278 315 -1.326172e-05 2.14017e-06 279 315 1.722429e-05 -2.779647e-06 280 315 -2.132146e-05 3.440846e-06 281 315 2.558831e-05 -4.129428e-06 282 315 -3.00633e-05 4.851599e-06 283 315 3.478917e-05 -5.614257e-06 284 315 -3.981401e-05 6.425164e-06 285 315 4.519256e-05 -7.293151e-06 286 315 -5.098776e-05 8.228377e-06 287 315 5.727273e-05 -9.242642e-06 288 315 -6.413319e-05 1.034978e-05 289 315 7.167061e-05 -1.156616e-05 290 315 -8.000611e-05 1.291134e-05 291 315 8.928565e-05 -1.440887e-05 292 315 -9.968672e-05 1.608739e-05 293 315 0.0001114272 -1.798207e-05 294 315 -0.0001247774 2.013652e-05 295 315 0.000140076 -2.26054e-05 296 315 -0.0001577525 2.545802e-05 297 315 0.0001783582 -2.878335e-05 298 315 -0.0002026106 3.26972e-05 299 315 0.0002314578 -3.735254e-05 300 315 -0.0002661734 4.295492e-05 301 315 0.0003085011 -4.978574e-05 302 315 -0.0003608797 5.823857e-05 303 315 0.0004268045 -6.887749e-05 304 315 -0.0005114288 8.253411e-05 305 315 0.0006226054 -0.0001004757 306 315 -0.0007727812 0.000124711 307 315 0.0009826448 -0.0001585787 308 315 -0.001288661 0.0002079635 309 315 0.001760065 -0.0002840383 310 315 -0.002541777 0.0004101906 311 315 0.003980742 -0.0006424099 312 315 -0.007089509 0.001144101 313 315 0.01597157 -0.002577484 314 315 -0.06393453 0.01031772 315 315 -0.4079938 -0.01741874 316 315 -0.06393453 0.01031772 317 315 0.01597157 -0.002577484 318 315 -0.007089509 0.001144101 319 315 0.003980742 -0.0006424099 320 315 -0.002541777 0.0004101906 321 315 0.001760065 -0.0002840383 322 315 -0.001288661 0.0002079635 323 315 0.0009826448 -0.0001585787 235 316 0.001269089 0.0001152273 243 316 0.0009826448 -0.0001585787 244 316 -0.0007727812 0.000124711 245 316 0.0006226054 -0.0001004757 246 316 -0.0005114288 8.253411e-05 247 316 0.0004268045 -6.887749e-05 248 316 -0.0003608797 5.823857e-05 249 316 0.0003085011 -4.978574e-05 250 316 -0.0002661734 4.295492e-05 251 316 0.0002314578 -3.735254e-05 252 316 -0.0002026106 3.26972e-05 253 316 0.0001783582 -2.878335e-05 254 316 -0.0001577525 2.545802e-05 255 316 0.000140076 -2.26054e-05 256 316 -0.0001247774 2.013652e-05 257 316 0.0001114272 -1.798207e-05 258 316 -9.968672e-05 1.608739e-05 259 316 8.928565e-05 -1.440887e-05 260 316 -8.000611e-05 1.291134e-05 261 316 7.167061e-05 -1.156616e-05 262 316 -6.413319e-05 1.034978e-05 263 316 5.727273e-05 -9.242642e-06 264 316 -5.098776e-05 8.228377e-06 265 316 4.519256e-05 -7.293151e-06 266 316 -3.981401e-05 6.425164e-06 267 316 3.478917e-05 -5.614257e-06 268 316 -3.00633e-05 4.851599e-06 269 316 2.558831e-05 -4.129428e-06 270 316 -2.132146e-05 3.440846e-06 271 316 1.722429e-05 -2.779647e-06 272 316 -1.326172e-05 2.14017e-06 273 316 9.401297e-06 -1.517176e-06 274 316 -5.612495e-06 9.057414e-07 275 316 1.866144e-06 -3.011573e-07 276 316 1.866144e-06 -3.011573e-07 277 316 -5.612495e-06 9.057414e-07 278 316 9.401297e-06 -1.517176e-06 279 316 -1.326172e-05 2.14017e-06 280 316 1.722429e-05 -2.779647e-06 281 316 -2.132146e-05 3.440846e-06 282 316 2.558831e-05 -4.129428e-06 283 316 -3.00633e-05 4.851599e-06 284 316 3.478917e-05 -5.614257e-06 285 316 -3.981401e-05 6.425164e-06 286 316 4.519256e-05 -7.293151e-06 287 316 -5.098776e-05 8.228377e-06 288 316 5.727273e-05 -9.242642e-06 289 316 -6.413319e-05 1.034978e-05 290 316 7.167061e-05 -1.156616e-05 291 316 -8.000611e-05 1.291134e-05 292 316 8.928565e-05 -1.440887e-05 293 316 -9.968672e-05 1.608739e-05 294 316 0.0001114272 -1.798207e-05 295 316 -0.0001247774 2.013652e-05 296 316 0.000140076 -2.26054e-05 297 316 -0.0001577525 2.545802e-05 298 316 0.0001783582 -2.878335e-05 299 316 -0.0002026106 3.26972e-05 300 316 0.0002314578 -3.735254e-05 301 316 -0.0002661734 4.295492e-05 302 316 0.0003085011 -4.978574e-05 303 316 -0.0003608797 5.823857e-05 304 316 0.0004268045 -6.887749e-05 305 316 -0.0005114288 8.253411e-05 306 316 0.0006226054 -0.0001004757 307 316 -0.0007727812 0.000124711 308 316 0.0009826448 -0.0001585787 309 316 -0.001288661 0.0002079635 310 316 0.001760065 -0.0002840383 311 316 -0.002541777 0.0004101906 312 316 0.003980742 -0.0006424099 313 316 -0.007089509 0.001144101 314 316 0.01597157 -0.002577484 315 316 -0.06393453 0.01031772 316 316 -0.4080591 -0.01738384 317 316 -0.06393453 0.01031772 318 316 0.01597157 -0.002577484 319 316 -0.007089509 0.001144101 320 316 0.003980742 -0.0006424099 321 316 -0.002541777 0.0004101906 322 316 0.001760065 -0.0002840383 323 316 -0.001288661 0.0002079635 236 317 0.001287783 0.0001173249 243 317 -0.001288661 0.0002079635 244 317 0.0009826448 -0.0001585787 245 317 -0.0007727812 0.000124711 246 317 0.0006226054 -0.0001004757 247 317 -0.0005114288 8.253411e-05 248 317 0.0004268045 -6.887749e-05 249 317 -0.0003608797 5.823857e-05 250 317 0.0003085011 -4.978574e-05 251 317 -0.0002661734 4.295492e-05 252 317 0.0002314578 -3.735254e-05 253 317 -0.0002026106 3.26972e-05 254 317 0.0001783582 -2.878335e-05 255 317 -0.0001577525 2.545802e-05 256 317 0.000140076 -2.26054e-05 257 317 -0.0001247774 2.013652e-05 258 317 0.0001114272 -1.798207e-05 259 317 -9.968672e-05 1.608739e-05 260 317 8.928565e-05 -1.440887e-05 261 317 -8.000611e-05 1.291134e-05 262 317 7.167061e-05 -1.156616e-05 263 317 -6.413319e-05 1.034978e-05 264 317 5.727273e-05 -9.242642e-06 265 317 -5.098776e-05 8.228377e-06 266 317 4.519256e-05 -7.293151e-06 267 317 -3.981401e-05 6.425164e-06 268 317 3.478917e-05 -5.614257e-06 269 317 -3.00633e-05 4.851599e-06 270 317 2.558831e-05 -4.129428e-06 271 317 -2.132146e-05 3.440846e-06 272 317 1.722429e-05 -2.779647e-06 273 317 -1.326172e-05 2.14017e-06 274 317 9.401297e-06 -1.517176e-06 275 317 -5.612495e-06 9.057414e-07 276 317 1.866144e-06 -3.011573e-07 277 317 1.866144e-06 -3.011573e-07 278 317 -5.612495e-06 9.057414e-07 279 317 9.401297e-06 -1.517176e-06 280 317 -1.326172e-05 2.14017e-06 281 317 1.722429e-05 -2.779647e-06 282 317 -2.132146e-05 3.440846e-06 283 317 2.558831e-05 -4.129428e-06 284 317 -3.00633e-05 4.851599e-06 285 317 3.478917e-05 -5.614257e-06 286 317 -3.981401e-05 6.425164e-06 287 317 4.519256e-05 -7.293151e-06 288 317 -5.098776e-05 8.228377e-06 289 317 5.727273e-05 -9.242642e-06 290 317 -6.413319e-05 1.034978e-05 291 317 7.167061e-05 -1.156616e-05 292 317 -8.000611e-05 1.291134e-05 293 317 8.928565e-05 -1.440887e-05 294 317 -9.968672e-05 1.608739e-05 295 317 0.0001114272 -1.798207e-05 296 317 -0.0001247774 2.013652e-05 297 317 0.000140076 -2.26054e-05 298 317 -0.0001577525 2.545802e-05 299 317 0.0001783582 -2.878335e-05 300 317 -0.0002026106 3.26972e-05 301 317 0.0002314578 -3.735254e-05 302 317 -0.0002661734 4.295492e-05 303 317 0.0003085011 -4.978574e-05 304 317 -0.0003608797 5.823857e-05 305 317 0.0004268045 -6.887749e-05 306 317 -0.0005114288 8.253411e-05 307 317 0.0006226054 -0.0001004757 308 317 -0.0007727812 0.000124711 309 317 0.0009826448 -0.0001585787 310 317 -0.001288661 0.0002079635 311 317 0.001760065 -0.0002840383 312 317 -0.002541777 0.0004101906 313 317 0.003980742 -0.0006424099 314 317 -0.007089509 0.001144101 315 317 0.01597157 -0.002577484 316 317 -0.06393453 0.01031772 317 317 -0.4081183 -0.01735162 318 317 -0.06393453 0.01031772 319 317 0.01597157 -0.002577484 320 317 -0.007089509 0.001144101 321 317 0.003980742 -0.0006424099 322 317 -0.002541777 0.0004101906 323 317 0.001760065 -0.0002840383 237 318 0.001306573 0.0001194409 243 318 0.001760065 -0.0002840383 244 318 -0.001288661 0.0002079635 245 318 0.0009826448 -0.0001585787 246 318 -0.0007727812 0.000124711 247 318 0.0006226054 -0.0001004757 248 318 -0.0005114288 8.253411e-05 249 318 0.0004268045 -6.887749e-05 250 318 -0.0003608797 5.823857e-05 251 318 0.0003085011 -4.978574e-05 252 318 -0.0002661734 4.295492e-05 253 318 0.0002314578 -3.735254e-05 254 318 -0.0002026106 3.26972e-05 255 318 0.0001783582 -2.878335e-05 256 318 -0.0001577525 2.545802e-05 257 318 0.000140076 -2.26054e-05 258 318 -0.0001247774 2.013652e-05 259 318 0.0001114272 -1.798207e-05 260 318 -9.968672e-05 1.608739e-05 261 318 8.928565e-05 -1.440887e-05 262 318 -8.000611e-05 1.291134e-05 263 318 7.167061e-05 -1.156616e-05 264 318 -6.413319e-05 1.034978e-05 265 318 5.727273e-05 -9.242642e-06 266 318 -5.098776e-05 8.228377e-06 267 318 4.519256e-05 -7.293151e-06 268 318 -3.981401e-05 6.425164e-06 269 318 3.478917e-05 -5.614257e-06 270 318 -3.00633e-05 4.851599e-06 271 318 2.558831e-05 -4.129428e-06 272 318 -2.132146e-05 3.440846e-06 273 318 1.722429e-05 -2.779647e-06 274 318 -1.326172e-05 2.14017e-06 275 318 9.401297e-06 -1.517176e-06 276 318 -5.612495e-06 9.057414e-07 277 318 1.866144e-06 -3.011573e-07 278 318 1.866144e-06 -3.011573e-07 279 318 -5.612495e-06 9.057414e-07 280 318 9.401297e-06 -1.517176e-06 281 318 -1.326172e-05 2.14017e-06 282 318 1.722429e-05 -2.779647e-06 283 318 -2.132146e-05 3.440846e-06 284 318 2.558831e-05 -4.129428e-06 285 318 -3.00633e-05 4.851599e-06 286 318 3.478917e-05 -5.614257e-06 287 318 -3.981401e-05 6.425164e-06 288 318 4.519256e-05 -7.293151e-06 289 318 -5.098776e-05 8.228377e-06 290 318 5.727273e-05 -9.242642e-06 291 318 -6.413319e-05 1.034978e-05 292 318 7.167061e-05 -1.156616e-05 293 318 -8.000611e-05 1.291134e-05 294 318 8.928565e-05 -1.440887e-05 295 318 -9.968672e-05 1.608739e-05 296 318 0.0001114272 -1.798207e-05 297 318 -0.0001247774 2.013652e-05 298 318 0.000140076 -2.26054e-05 299 318 -0.0001577525 2.545802e-05 300 318 0.0001783582 -2.878335e-05 301 318 -0.0002026106 3.26972e-05 302 318 0.0002314578 -3.735254e-05 303 318 -0.0002661734 4.295492e-05 304 318 0.0003085011 -4.978574e-05 305 318 -0.0003608797 5.823857e-05 306 318 0.0004268045 -6.887749e-05 307 318 -0.0005114288 8.253411e-05 308 318 0.0006226054 -0.0001004757 309 318 -0.0007727812 0.000124711 310 318 0.0009826448 -0.0001585787 311 318 -0.001288661 0.0002079635 312 318 0.001760065 -0.0002840383 313 318 -0.002541777 0.0004101906 314 318 0.003980742 -0.0006424099 315 318 -0.007089509 0.001144101 316 318 0.01597157 -0.002577484 317 318 -0.06393453 0.01031772 318 318 -0.408172 -0.01732187 319 318 -0.06393453 0.01031772 320 318 0.01597157 -0.002577484 321 318 -0.007089509 0.001144101 322 318 0.003980742 -0.0006424099 323 318 -0.002541777 0.0004101906 238 319 0.001325458 0.0001215755 243 319 -0.002541777 0.0004101906 244 319 0.001760065 -0.0002840383 245 319 -0.001288661 0.0002079635 246 319 0.0009826448 -0.0001585787 247 319 -0.0007727812 0.000124711 248 319 0.0006226054 -0.0001004757 249 319 -0.0005114288 8.253411e-05 250 319 0.0004268045 -6.887749e-05 251 319 -0.0003608797 5.823857e-05 252 319 0.0003085011 -4.978574e-05 253 319 -0.0002661734 4.295492e-05 254 319 0.0002314578 -3.735254e-05 255 319 -0.0002026106 3.26972e-05 256 319 0.0001783582 -2.878335e-05 257 319 -0.0001577525 2.545802e-05 258 319 0.000140076 -2.26054e-05 259 319 -0.0001247774 2.013652e-05 260 319 0.0001114272 -1.798207e-05 261 319 -9.968672e-05 1.608739e-05 262 319 8.928565e-05 -1.440887e-05 263 319 -8.000611e-05 1.291134e-05 264 319 7.167061e-05 -1.156616e-05 265 319 -6.413319e-05 1.034978e-05 266 319 5.727273e-05 -9.242642e-06 267 319 -5.098776e-05 8.228377e-06 268 319 4.519256e-05 -7.293151e-06 269 319 -3.981401e-05 6.425164e-06 270 319 3.478917e-05 -5.614257e-06 271 319 -3.00633e-05 4.851599e-06 272 319 2.558831e-05 -4.129428e-06 273 319 -2.132146e-05 3.440846e-06 274 319 1.722429e-05 -2.779647e-06 275 319 -1.326172e-05 2.14017e-06 276 319 9.401297e-06 -1.517176e-06 277 319 -5.612495e-06 9.057414e-07 278 319 1.866144e-06 -3.011573e-07 279 319 1.866144e-06 -3.011573e-07 280 319 -5.612495e-06 9.057414e-07 281 319 9.401297e-06 -1.517176e-06 282 319 -1.326172e-05 2.14017e-06 283 319 1.722429e-05 -2.779647e-06 284 319 -2.132146e-05 3.440846e-06 285 319 2.558831e-05 -4.129428e-06 286 319 -3.00633e-05 4.851599e-06 287 319 3.478917e-05 -5.614257e-06 288 319 -3.981401e-05 6.425164e-06 289 319 4.519256e-05 -7.293151e-06 290 319 -5.098776e-05 8.228377e-06 291 319 5.727273e-05 -9.242642e-06 292 319 -6.413319e-05 1.034978e-05 293 319 7.167061e-05 -1.156616e-05 294 319 -8.000611e-05 1.291134e-05 295 319 8.928565e-05 -1.440887e-05 296 319 -9.968672e-05 1.608739e-05 297 319 0.0001114272 -1.798207e-05 298 319 -0.0001247774 2.013652e-05 299 319 0.000140076 -2.26054e-05 300 319 -0.0001577525 2.545802e-05 301 319 0.0001783582 -2.878335e-05 302 319 -0.0002026106 3.26972e-05 303 319 0.0002314578 -3.735254e-05 304 319 -0.0002661734 4.295492e-05 305 319 0.0003085011 -4.978574e-05 306 319 -0.0003608797 5.823857e-05 307 319 0.0004268045 -6.887749e-05 308 319 -0.0005114288 8.253411e-05 309 319 0.0006226054 -0.0001004757 310 319 -0.0007727812 0.000124711 311 319 0.0009826448 -0.0001585787 312 319 -0.001288661 0.0002079635 313 319 0.001760065 -0.0002840383 314 319 -0.002541777 0.0004101906 315 319 0.003980742 -0.0006424099 316 319 -0.007089509 0.001144101 317 319 0.01597157 -0.002577484 318 319 -0.06393453 0.01031772 319 319 -0.4082207 -0.01729441 320 319 -0.06393453 0.01031772 321 319 0.01597157 -0.002577484 322 319 -0.007089509 0.001144101 323 319 0.003980742 -0.0006424099 239 320 0.001344439 0.0001237288 243 320 0.003980742 -0.0006424099 244 320 -0.002541777 0.0004101906 245 320 0.001760065 -0.0002840383 246 320 -0.001288661 0.0002079635 247 320 0.0009826448 -0.0001585787 248 320 -0.0007727812 0.000124711 249 320 0.0006226054 -0.0001004757 250 320 -0.0005114288 8.253411e-05 251 320 0.0004268045 -6.887749e-05 252 320 -0.0003608797 5.823857e-05 253 320 0.0003085011 -4.978574e-05 254 320 -0.0002661734 4.295492e-05 255 320 0.0002314578 -3.735254e-05 256 320 -0.0002026106 3.26972e-05 257 320 0.0001783582 -2.878335e-05 258 320 -0.0001577525 2.545802e-05 259 320 0.000140076 -2.26054e-05 260 320 -0.0001247774 2.013652e-05 261 320 0.0001114272 -1.798207e-05 262 320 -9.968672e-05 1.608739e-05 263 320 8.928565e-05 -1.440887e-05 264 320 -8.000611e-05 1.291134e-05 265 320 7.167061e-05 -1.156616e-05 266 320 -6.413319e-05 1.034978e-05 267 320 5.727273e-05 -9.242642e-06 268 320 -5.098776e-05 8.228377e-06 269 320 4.519256e-05 -7.293151e-06 270 320 -3.981401e-05 6.425164e-06 271 320 3.478917e-05 -5.614257e-06 272 320 -3.00633e-05 4.851599e-06 273 320 2.558831e-05 -4.129428e-06 274 320 -2.132146e-05 3.440846e-06 275 320 1.722429e-05 -2.779647e-06 276 320 -1.326172e-05 2.14017e-06 277 320 9.401297e-06 -1.517176e-06 278 320 -5.612495e-06 9.057414e-07 279 320 1.866144e-06 -3.011573e-07 280 320 1.866144e-06 -3.011573e-07 281 320 -5.612495e-06 9.057414e-07 282 320 9.401297e-06 -1.517176e-06 283 320 -1.326172e-05 2.14017e-06 284 320 1.722429e-05 -2.779647e-06 285 320 -2.132146e-05 3.440846e-06 286 320 2.558831e-05 -4.129428e-06 287 320 -3.00633e-05 4.851599e-06 288 320 3.478917e-05 -5.614257e-06 289 320 -3.981401e-05 6.425164e-06 290 320 4.519256e-05 -7.293151e-06 291 320 -5.098776e-05 8.228377e-06 292 320 5.727273e-05 -9.242642e-06 293 320 -6.413319e-05 1.034978e-05 294 320 7.167061e-05 -1.156616e-05 295 320 -8.000611e-05 1.291134e-05 296 320 8.928565e-05 -1.440887e-05 297 320 -9.968672e-05 1.608739e-05 298 320 0.0001114272 -1.798207e-05 299 320 -0.0001247774 2.013652e-05 300 320 0.000140076 -2.26054e-05 301 320 -0.0001577525 2.545802e-05 302 320 0.0001783582 -2.878335e-05 303 320 -0.0002026106 3.26972e-05 304 320 0.0002314578 -3.735254e-05 305 320 -0.0002661734 4.295492e-05 306 320 0.0003085011 -4.978574e-05 307 320 -0.0003608797 5.823857e-05 308 320 0.0004268045 -6.887749e-05 309 320 -0.0005114288 8.253411e-05 310 320 0.0006226054 -0.0001004757 311 320 -0.0007727812 0.000124711 312 320 0.0009826448 -0.0001585787 313 320 -0.001288661 0.0002079635 314 320 0.001760065 -0.0002840383 315 320 -0.002541777 0.0004101906 316 320 0.003980742 -0.0006424099 317 320 -0.007089509 0.001144101 318 320 0.01597157 -0.002577484 319 320 -0.06393453 0.01031772 320 320 -0.4082649 -0.01726907 321 320 -0.06393453 0.01031772 322 320 0.01597157 -0.002577484 323 320 -0.007089509 0.001144101 240 321 0.001363516 0.0001259011 243 321 -0.007089509 0.001144101 244 321 0.003980742 -0.0006424099 245 321 -0.002541777 0.0004101906 246 321 0.001760065 -0.0002840383 247 321 -0.001288661 0.0002079635 248 321 0.0009826448 -0.0001585787 249 321 -0.0007727812 0.000124711 250 321 0.0006226054 -0.0001004757 251 321 -0.0005114288 8.253411e-05 252 321 0.0004268045 -6.887749e-05 253 321 -0.0003608797 5.823857e-05 254 321 0.0003085011 -4.978574e-05 255 321 -0.0002661734 4.295492e-05 256 321 0.0002314578 -3.735254e-05 257 321 -0.0002026106 3.26972e-05 258 321 0.0001783582 -2.878335e-05 259 321 -0.0001577525 2.545802e-05 260 321 0.000140076 -2.26054e-05 261 321 -0.0001247774 2.013652e-05 262 321 0.0001114272 -1.798207e-05 263 321 -9.968672e-05 1.608739e-05 264 321 8.928565e-05 -1.440887e-05 265 321 -8.000611e-05 1.291134e-05 266 321 7.167061e-05 -1.156616e-05 267 321 -6.413319e-05 1.034978e-05 268 321 5.727273e-05 -9.242642e-06 269 321 -5.098776e-05 8.228377e-06 270 321 4.519256e-05 -7.293151e-06 271 321 -3.981401e-05 6.425164e-06 272 321 3.478917e-05 -5.614257e-06 273 321 -3.00633e-05 4.851599e-06 274 321 2.558831e-05 -4.129428e-06 275 321 -2.132146e-05 3.440846e-06 276 321 1.722429e-05 -2.779647e-06 277 321 -1.326172e-05 2.14017e-06 278 321 9.401297e-06 -1.517176e-06 279 321 -5.612495e-06 9.057414e-07 280 321 1.866144e-06 -3.011573e-07 281 321 1.866144e-06 -3.011573e-07 282 321 -5.612495e-06 9.057414e-07 283 321 9.401297e-06 -1.517176e-06 284 321 -1.326172e-05 2.14017e-06 285 321 1.722429e-05 -2.779647e-06 286 321 -2.132146e-05 3.440846e-06 287 321 2.558831e-05 -4.129428e-06 288 321 -3.00633e-05 4.851599e-06 289 321 3.478917e-05 -5.614257e-06 290 321 -3.981401e-05 6.425164e-06 291 321 4.519256e-05 -7.293151e-06 292 321 -5.098776e-05 8.228377e-06 293 321 5.727273e-05 -9.242642e-06 294 321 -6.413319e-05 1.034978e-05 295 321 7.167061e-05 -1.156616e-05 296 321 -8.000611e-05 1.291134e-05 297 321 8.928565e-05 -1.440887e-05 298 321 -9.968672e-05 1.608739e-05 299 321 0.0001114272 -1.798207e-05 300 321 -0.0001247774 2.013652e-05 301 321 0.000140076 -2.26054e-05 302 321 -0.0001577525 2.545802e-05 303 321 0.0001783582 -2.878335e-05 304 321 -0.0002026106 3.26972e-05 305 321 0.0002314578 -3.735254e-05 306 321 -0.0002661734 4.295492e-05 307 321 0.0003085011 -4.978574e-05 308 321 -0.0003608797 5.823857e-05 309 321 0.0004268045 -6.887749e-05 310 321 -0.0005114288 8.253411e-05 311 321 0.0006226054 -0.0001004757 312 321 -0.0007727812 0.000124711 313 321 0.0009826448 -0.0001585787 314 321 -0.001288661 0.0002079635 315 321 0.001760065 -0.0002840383 316 321 -0.002541777 0.0004101906 317 321 0.003980742 -0.0006424099 318 321 -0.007089509 0.001144101 319 321 0.01597157 -0.002577484 320 321 -0.06393453 0.01031772 321 321 -0.408305 -0.01724569 322 321 -0.06393453 0.01031772 323 321 0.01597157 -0.002577484 241 322 0.00138269 0.0001280923 243 322 0.01597157 -0.002577484 244 322 -0.007089509 0.001144101 245 322 0.003980742 -0.0006424099 246 322 -0.002541777 0.0004101906 247 322 0.001760065 -0.0002840383 248 322 -0.001288661 0.0002079635 249 322 0.0009826448 -0.0001585787 250 322 -0.0007727812 0.000124711 251 322 0.0006226054 -0.0001004757 252 322 -0.0005114288 8.253411e-05 253 322 0.0004268045 -6.887749e-05 254 322 -0.0003608797 5.823857e-05 255 322 0.0003085011 -4.978574e-05 256 322 -0.0002661734 4.295492e-05 257 322 0.0002314578 -3.735254e-05 258 322 -0.0002026106 3.26972e-05 259 322 0.0001783582 -2.878335e-05 260 322 -0.0001577525 2.545802e-05 261 322 0.000140076 -2.26054e-05 262 322 -0.0001247774 2.013652e-05 263 322 0.0001114272 -1.798207e-05 264 322 -9.968672e-05 1.608739e-05 265 322 8.928565e-05 -1.440887e-05 266 322 -8.000611e-05 1.291134e-05 267 322 7.167061e-05 -1.156616e-05 268 322 -6.413319e-05 1.034978e-05 269 322 5.727273e-05 -9.242642e-06 270 322 -5.098776e-05 8.228377e-06 271 322 4.519256e-05 -7.293151e-06 272 322 -3.981401e-05 6.425164e-06 273 322 3.478917e-05 -5.614257e-06 274 322 -3.00633e-05 4.851599e-06 275 322 2.558831e-05 -4.129428e-06 276 322 -2.132146e-05 3.440846e-06 277 322 1.722429e-05 -2.779647e-06 278 322 -1.326172e-05 2.14017e-06 279 322 9.401297e-06 -1.517176e-06 280 322 -5.612495e-06 9.057414e-07 281 322 1.866144e-06 -3.011573e-07 282 322 1.866144e-06 -3.011573e-07 283 322 -5.612495e-06 9.057414e-07 284 322 9.401297e-06 -1.517176e-06 285 322 -1.326172e-05 2.14017e-06 286 322 1.722429e-05 -2.779647e-06 287 322 -2.132146e-05 3.440846e-06 288 322 2.558831e-05 -4.129428e-06 289 322 -3.00633e-05 4.851599e-06 290 322 3.478917e-05 -5.614257e-06 291 322 -3.981401e-05 6.425164e-06 292 322 4.519256e-05 -7.293151e-06 293 322 -5.098776e-05 8.228377e-06 294 322 5.727273e-05 -9.242642e-06 295 322 -6.413319e-05 1.034978e-05 296 322 7.167061e-05 -1.156616e-05 297 322 -8.000611e-05 1.291134e-05 298 322 8.928565e-05 -1.440887e-05 299 322 -9.968672e-05 1.608739e-05 300 322 0.0001114272 -1.798207e-05 301 322 -0.0001247774 2.013652e-05 302 322 0.000140076 -2.26054e-05 303 322 -0.0001577525 2.545802e-05 304 322 0.0001783582 -2.878335e-05 305 322 -0.0002026106 3.26972e-05 306 322 0.0002314578 -3.735254e-05 307 322 -0.0002661734 4.295492e-05 308 322 0.0003085011 -4.978574e-05 309 322 -0.0003608797 5.823857e-05 310 322 0.0004268045 -6.887749e-05 311 322 -0.0005114288 8.253411e-05 312 322 0.0006226054 -0.0001004757 313 322 -0.0007727812 0.000124711 314 322 0.0009826448 -0.0001585787 315 322 -0.001288661 0.0002079635 316 322 0.001760065 -0.0002840383 317 322 -0.002541777 0.0004101906 318 322 0.003980742 -0.0006424099 319 322 -0.007089509 0.001144101 320 322 0.01597157 -0.002577484 321 322 -0.06393453 0.01031772 322 322 -0.4083414 -0.01722412 323 322 -0.06393453 0.01031772 242 323 0.001401962 0.0001303027 243 323 -0.06393453 0.01031772 244 323 0.01597157 -0.002577484 245 323 -0.007089509 0.001144101 246 323 0.003980742 -0.0006424099 247 323 -0.002541777 0.0004101906 248 323 0.001760065 -0.0002840383 249 323 -0.001288661 0.0002079635 250 323 0.0009826448 -0.0001585787 251 323 -0.0007727812 0.000124711 252 323 0.0006226054 -0.0001004757 253 323 -0.0005114288 8.253411e-05 254 323 0.0004268045 -6.887749e-05 255 323 -0.0003608797 5.823857e-05 256 323 0.0003085011 -4.978574e-05 257 323 -0.0002661734 4.295492e-05 258 323 0.0002314578 -3.735254e-05 259 323 -0.0002026106 3.26972e-05 260 323 0.0001783582 -2.878335e-05 261 323 -0.0001577525 2.545802e-05 262 323 0.000140076 -2.26054e-05 263 323 -0.0001247774 2.013652e-05 264 323 0.0001114272 -1.798207e-05 265 323 -9.968672e-05 1.608739e-05 266 323 8.928565e-05 -1.440887e-05 267 323 -8.000611e-05 1.291134e-05 268 323 7.167061e-05 -1.156616e-05 269 323 -6.413319e-05 1.034978e-05 270 323 5.727273e-05 -9.242642e-06 271 323 -5.098776e-05 8.228377e-06 272 323 4.519256e-05 -7.293151e-06 273 323 -3.981401e-05 6.425164e-06 274 323 3.478917e-05 -5.614257e-06 275 323 -3.00633e-05 4.851599e-06 276 323 2.558831e-05 -4.129428e-06 277 323 -2.132146e-05 3.440846e-06 278 323 1.722429e-05 -2.779647e-06 279 323 -1.326172e-05 2.14017e-06 280 323 9.401297e-06 -1.517176e-06 281 323 -5.612495e-06 9.057414e-07 282 323 1.866144e-06 -3.011573e-07 283 323 1.866144e-06 -3.011573e-07 284 323 -5.612495e-06 9.057414e-07 285 323 9.401297e-06 -1.517176e-06 286 323 -1.326172e-05 2.14017e-06 287 323 1.722429e-05 -2.779647e-06 288 323 -2.132146e-05 3.440846e-06 289 323 2.558831e-05 -4.129428e-06 290 323 -3.00633e-05 4.851599e-06 291 323 3.478917e-05 -5.614257e-06 292 323 -3.981401e-05 6.425164e-06 293 323 4.519256e-05 -7.293151e-06 294 323 -5.098776e-05 8.228377e-06 295 323 5.727273e-05 -9.242642e-06 296 323 -6.413319e-05 1.034978e-05 297 323 7.167061e-05 -1.156616e-05 298 323 -8.000611e-05 1.291134e-05 299 323 8.928565e-05 -1.440887e-05 300 323 -9.968672e-05 1.608739e-05 301 323 0.0001114272 -1.798207e-05 302 323 -0.0001247774 2.013652e-05 303 323 0.000140076 -2.26054e-05 304 323 -0.0001577525 2.545802e-05 305 323 0.0001783582 -2.878335e-05 306 323 -0.0002026106 3.26972e-05 307 323 0.0002314578 -3.735254e-05 308 323 -0.0002661734 4.295492e-05 309 323 0.0003085011 -4.978574e-05 310 323 -0.0003608797 5.823857e-05 311 323 0.0004268045 -6.887749e-05 312 323 -0.0005114288 8.253411e-05 313 323 0.0006226054 -0.0001004757 314 323 -0.0007727812 0.000124711 315 323 0.0009826448 -0.0001585787 316 323 -0.001288661 0.0002079635 317 323 0.001760065 -0.0002840383 318 323 -0.002541777 0.0004101906 319 323 0.003980742 -0.0006424099 320 323 -0.007089509 0.001144101 321 323 0.01597157 -0.002577484 322 323 -0.06393453 0.01031772 323 323 -0.4083744 -0.01720423 SuiteSparse/CXSparse/Matrix/mhd1280b0000644001170100242450000123135510375437447016103 0ustar davisfac0 0 2 0 1 1 0.2525058 0 3 1 0.0001443808 -1.114648e-18 32 1 0.1010026 0 33 1 -0.0252507 0 34 1 7.219086e-05 -6.042257e-19 35 1 -3.609384e-05 2.083113e-19 2 2 2 0 3 3 0.2525058 0 32 3 7.219086e-05 6.042257e-19 33 3 -3.609384e-05 -2.083113e-19 34 3 0.1010026 0 35 3 -0.0252507 0 4 4 2 0 5 5 4.495093e-05 0 7 5 -2.409091e-08 -4.208044e-23 9 5 0 -1.404665e-11 11 5 4.117515e-08 -1.31036e-10 13 5 0 -1.404665e-11 15 5 4.117515e-08 -1.31036e-10 36 5 0.003462152 0 37 5 -2.247837e-05 0 38 5 -2.934405e-06 -3.632268e-21 39 5 1.765039e-08 2.420399e-23 40 5 0 -5.898861e-11 41 5 0 -2.981307e-13 42 5 4.849889e-07 -4.385329e-10 43 5 4.003321e-08 1.009301e-11 44 5 0 -5.898861e-11 45 5 0 -2.981307e-13 46 5 4.849889e-07 -4.385329e-10 47 5 4.003321e-08 1.009301e-11 6 6 2 0 7 7 4.495093e-05 0 9 7 -4.117515e-08 -1.31036e-10 11 7 0 -1.404665e-11 13 7 -4.117515e-08 -1.31036e-10 15 7 0 -1.404665e-11 36 7 -2.934405e-06 3.632268e-21 37 7 1.765039e-08 -2.420399e-23 38 7 0.003462152 0 39 7 -2.247837e-05 0 40 7 -4.849889e-07 -4.385329e-10 41 7 -4.003321e-08 1.009301e-11 42 7 0 -5.898861e-11 43 7 0 -2.981307e-13 44 7 -4.849889e-07 -4.385329e-10 45 7 -4.003321e-08 1.009301e-11 46 7 0 -5.898861e-11 47 7 0 -2.981307e-13 8 8 2 0 9 9 2.251394e-05 0 11 9 -3.866978e-06 -9.55469e-21 13 9 2.251394e-05 0 15 9 -3.866978e-06 -9.55469e-21 36 9 0 -6.326913e-10 37 9 0 2.981307e-13 38 9 1.391706e-05 -1.936455e-09 39 9 -4.003321e-08 -1.009301e-11 40 9 1.63169e-08 0 41 9 -2.248786e-05 0 42 9 -2.51329e-06 -4.589182e-21 43 9 9.710396e-08 2.67085e-21 44 9 1.63169e-08 0 45 9 -2.248786e-05 0 46 9 -2.51329e-06 -4.589182e-21 47 9 9.710396e-08 2.67085e-21 10 10 2 0 11 11 2.251394e-05 0 13 11 -3.866978e-06 9.55469e-21 15 11 2.251394e-05 0 36 11 -1.391706e-05 -1.936455e-09 37 11 4.003321e-08 -1.009301e-11 38 11 0 -6.326913e-10 39 11 0 2.981307e-13 40 11 -2.51329e-06 4.589182e-21 41 11 9.710396e-08 -2.67085e-21 42 11 1.63169e-08 0 43 11 -2.248786e-05 0 44 11 -2.51329e-06 4.589182e-21 45 11 9.710396e-08 -2.67085e-21 46 11 1.63169e-08 0 47 11 -2.248786e-05 0 12 12 2 0 13 13 53.24487 0 15 13 0.06089043 4.807985e-17 36 13 0 -6.326913e-10 37 13 0 2.981307e-13 38 13 1.391706e-05 -1.936455e-09 39 13 -4.003321e-08 -1.009301e-11 40 13 1.63169e-08 0 41 13 -2.248786e-05 0 42 13 -2.51329e-06 -4.589182e-21 43 13 9.710396e-08 2.67085e-21 44 13 21.298 0 45 13 -5.324508 0 46 13 0.03044548 3.86047e-17 47 13 -0.01522194 9.825463e-18 14 14 2 0 15 15 53.24487 0 36 15 -1.391706e-05 -1.936455e-09 37 15 4.003321e-08 -1.009301e-11 38 15 0 -6.326913e-10 39 15 0 2.981307e-13 40 15 -2.51329e-06 4.589182e-21 41 15 9.710396e-08 -2.67085e-21 42 15 1.63169e-08 0 43 15 -2.248786e-05 0 44 15 0.03044548 -3.86047e-17 45 15 -0.01522194 -9.825463e-18 46 15 21.298 0 47 15 -5.324508 0 16 16 2 0 17 17 0.2525058 0 19 17 0.0001443808 -1.114648e-18 48 17 0.1010026 0 49 17 -0.0252507 0 50 17 7.219086e-05 -6.042257e-19 51 17 -3.609384e-05 2.083113e-19 18 18 2 0 19 19 0.2525058 0 48 19 7.219086e-05 6.042257e-19 49 19 -3.609384e-05 -2.083113e-19 50 19 0.1010026 0 51 19 -0.0252507 0 20 20 2 0 21 21 2.253941e-05 0 23 21 -2.675896e-06 -4.897501e-21 25 21 0 -1.379406e-11 27 21 4.116899e-08 -1.310063e-10 52 21 3.188648e-08 0 53 21 -2.248998e-05 0 54 21 -1.739273e-06 -2.10582e-21 55 21 6.702784e-08 1.738703e-21 56 21 0 5.77059e-10 57 21 0 -1.491006e-13 58 21 -1.391771e-05 1.926151e-09 59 21 4.003609e-08 1.012275e-11 22 22 2 0 23 23 2.253941e-05 0 25 23 -4.116899e-08 -1.310063e-10 27 23 0 -1.379406e-11 52 23 -1.739273e-06 2.10582e-21 53 23 6.702784e-08 -1.738703e-21 54 23 3.188648e-08 0 55 23 -2.248998e-05 0 56 23 1.391771e-05 1.926151e-09 57 23 -4.003609e-08 1.012275e-11 58 23 0 5.77059e-10 59 23 0 -1.491006e-13 24 24 2 0 25 25 4.493934e-05 0 27 25 -1.15557e-07 7.814754e-22 52 25 0 5.657887e-11 53 25 0 1.491006e-13 54 25 -4.849692e-07 4.381761e-10 55 25 -4.003609e-08 -1.012275e-11 56 25 0.003461756 0 57 25 -2.247517e-05 0 58 25 -1.440673e-05 8.14287e-20 59 25 8.638776e-08 -5.109934e-22 26 26 2 0 27 27 4.493934e-05 0 52 27 4.849692e-07 4.381761e-10 53 27 4.003609e-08 -1.012275e-11 54 27 0 5.657887e-11 55 27 0 1.491006e-13 56 27 -1.440673e-05 -8.14287e-20 57 27 8.638776e-08 5.109934e-22 58 27 0.003461756 0 59 27 -2.247517e-05 0 28 28 8.759427e-06 0 29 28 4.423505e-08 0 60 28 6.569811e-06 0 61 28 -3.791658e-08 0 29 29 2.461808e-10 0 60 29 4.423656e-08 0 61 29 -2.461861e-10 0 30 30 8.759427e-06 0 31 30 4.423505e-08 0 62 30 6.569811e-06 0 63 30 -3.791658e-08 0 31 31 2.461808e-10 0 62 31 4.423656e-08 0 63 31 -2.461861e-10 0 32 32 0.2020076 0 33 32 2.536731e-07 0 34 32 0.0005774964 -3.332991e-18 35 32 7.218452e-05 -2.290193e-19 33 33 0.04342277 0 34 33 7.218452e-05 -2.290193e-19 35 33 0.0002887462 -9.302658e-19 64 33 0.009439714 0 65 33 -0.003540036 0 66 33 7.218483e-05 -1.920057e-19 67 33 -3.60962e-05 6.177731e-20 34 34 0.2020076 0 35 34 2.536731e-07 0 35 35 0.04342277 0 64 35 7.218483e-05 1.920057e-19 65 35 -3.60962e-05 -6.177731e-20 66 35 0.009439714 0 67 35 -0.003540036 0 36 36 1.647553 0 37 36 -0.002232054 0 38 36 -0.002655858 1.260034e-18 39 36 7.860619e-08 1.165262e-20 40 36 0 -1.166192e-08 41 36 0 -1.322132e-08 42 36 0.0001365305 -7.373275e-08 43 36 0.0002383469 -6.195047e-08 44 36 0 -1.166192e-08 45 36 0 -1.322132e-08 46 36 0.0001365305 -7.373275e-08 47 36 0.0002383469 -6.195047e-08 68 36 0.1742194 0 69 36 -0.001116984 0 70 36 -0.0004556703 1.050521e-18 71 36 2.850169e-06 -6.203773e-21 72 36 0 -1.208572e-08 73 36 0 6.072846e-10 74 36 0.0002968279 -4.306148e-08 75 36 -7.750998e-06 3.11617e-09 76 36 0 -1.208572e-08 77 36 0 6.072846e-10 78 36 0.0002968279 -4.306148e-08 79 36 -7.750998e-06 3.11617e-09 37 37 3.194032e-05 0 38 37 7.860619e-08 1.165262e-20 39 37 -4.605654e-08 2.115808e-23 40 37 0 6.018114e-11 41 37 0 -1.632629e-13 42 37 -6.451217e-07 3.981608e-10 43 37 8.005461e-08 1.53186e-11 44 37 0 6.018114e-11 45 37 0 -1.632629e-13 46 37 -6.451217e-07 3.981608e-10 47 37 8.005461e-08 1.53186e-11 68 37 0.001060364 0 69 37 -6.516707e-06 0 70 37 -2.847795e-06 6.937466e-21 71 37 1.707479e-08 -3.941283e-23 72 37 0 -6.27693e-11 73 37 0 2.374676e-14 74 37 1.60584e-06 -2.143362e-10 75 37 4.00319e-08 5.225984e-12 76 37 0 -6.27693e-11 77 37 0 2.374676e-14 78 37 1.60584e-06 -2.143362e-10 79 37 4.00319e-08 5.225984e-12 38 38 1.647553 0 39 38 -0.002232054 0 40 38 -0.0001365305 -7.373275e-08 41 38 -0.0002383469 -6.195047e-08 42 38 0 -1.166192e-08 43 38 0 -1.322132e-08 44 38 -0.0001365305 -7.373275e-08 45 38 -0.0002383469 -6.195047e-08 46 38 0 -1.166192e-08 47 38 0 -1.322132e-08 68 38 -0.0004556703 -1.050521e-18 69 38 2.850169e-06 6.203773e-21 70 38 0.1742194 0 71 38 -0.001116984 0 72 38 -0.0002968279 -4.306148e-08 73 38 7.750998e-06 3.11617e-09 74 38 0 -1.208572e-08 75 38 0 6.072846e-10 76 38 -0.0002968279 -4.306148e-08 77 38 7.750998e-06 3.11617e-09 78 38 0 -1.208572e-08 79 38 0 6.072846e-10 39 39 3.194032e-05 0 40 39 6.451217e-07 3.981608e-10 41 39 -8.005461e-08 1.53186e-11 42 39 0 6.018114e-11 43 39 0 -1.632629e-13 44 39 6.451217e-07 3.981608e-10 45 39 -8.005461e-08 1.53186e-11 46 39 0 6.018114e-11 47 39 0 -1.632629e-13 68 39 -2.847795e-06 -6.937466e-21 69 39 1.707479e-08 3.941283e-23 70 39 0.001060364 0 71 39 -6.516707e-06 0 72 39 -1.60584e-06 -2.143362e-10 73 39 -4.00319e-08 5.225984e-12 74 39 0 -6.27693e-11 75 39 0 2.374676e-14 76 39 -1.60584e-06 -2.143362e-10 77 39 -4.00319e-08 5.225984e-12 78 39 0 -6.27693e-11 79 39 0 2.374676e-14 40 40 0.0003597929 0 41 40 8.993511e-05 0 42 40 -1.554146e-06 -4.273307e-20 43 40 2.124874e-06 -6.09422e-21 44 40 0.0003597929 0 45 40 8.993511e-05 0 46 40 -1.554146e-06 -4.273307e-20 47 40 2.124874e-06 -6.09422e-21 41 41 0.0003597621 0 42 41 2.124874e-06 -6.09422e-21 43 41 8.590192e-06 -2.543427e-20 44 41 8.993511e-05 0 45 41 0.0003597621 0 46 41 2.124874e-06 -6.09422e-21 47 41 8.590192e-06 -2.543427e-20 68 41 0 -5.983103e-10 69 41 0 -2.374676e-14 70 41 2.47064e-05 -9.027101e-10 71 41 -4.00319e-08 -5.225984e-12 72 41 8.993551e-05 0 73 41 -6.746247e-05 0 74 41 1.890819e-06 -3.342437e-21 75 41 -2.482417e-06 6.478311e-21 76 41 8.993551e-05 0 77 41 -6.746247e-05 0 78 41 1.890819e-06 -3.342437e-21 79 41 -2.482417e-06 6.478311e-21 42 42 0.0003597929 0 43 42 8.993511e-05 0 44 42 -1.554146e-06 4.273307e-20 45 42 2.124874e-06 6.09422e-21 46 42 0.0003597929 0 47 42 8.993511e-05 0 43 43 0.0003597621 0 44 43 2.124874e-06 6.09422e-21 45 43 8.590192e-06 2.543427e-20 46 43 8.993511e-05 0 47 43 0.0003597621 0 68 43 -2.47064e-05 -9.027101e-10 69 43 4.00319e-08 -5.225984e-12 70 43 0 -5.983103e-10 71 43 0 -2.374676e-14 72 43 1.890819e-06 3.342437e-21 73 43 -2.482417e-06 -6.478311e-21 74 43 8.993551e-05 0 75 43 -6.746247e-05 0 76 43 1.890819e-06 3.342437e-21 77 43 -2.482417e-06 -6.478311e-21 78 43 8.993551e-05 0 79 43 -6.746247e-05 0 44 44 42.59645 0 45 44 3.45529e-05 0 46 44 0.2435488 -1.571936e-16 47 44 0.03044226 -7.790655e-17 45 45 9.156307 0 46 45 0.03044226 -7.790655e-17 47 45 0.1217725 -3.053459e-16 68 45 0 -5.983103e-10 69 45 0 -2.374676e-14 70 45 2.47064e-05 -9.027101e-10 71 45 -4.00319e-08 -5.225984e-12 72 45 8.993551e-05 0 73 45 -6.746247e-05 0 74 45 1.890819e-06 -3.342437e-21 75 45 -2.482417e-06 6.478311e-21 76 45 1.990495 0 77 45 -0.7464588 0 78 45 0.03044242 -9.432651e-17 79 45 -0.01522263 4.987261e-17 46 46 42.59645 0 47 46 3.45529e-05 0 47 47 9.156307 0 68 47 -2.47064e-05 -9.027101e-10 69 47 4.00319e-08 -5.225984e-12 70 47 0 -5.983103e-10 71 47 0 -2.374676e-14 72 47 1.890819e-06 3.342437e-21 73 47 -2.482417e-06 -6.478311e-21 74 47 8.993551e-05 0 75 47 -6.746247e-05 0 76 47 0.03044242 9.432651e-17 77 47 -0.01522263 -4.987261e-17 78 47 1.990495 0 79 47 -0.7464588 0 48 48 0.2020076 0 49 48 2.536731e-07 0 50 48 0.0005774964 -3.332991e-18 51 48 7.218452e-05 -2.290193e-19 49 49 0.04342277 0 50 49 7.218452e-05 -2.290193e-19 51 49 0.0002887462 -9.302658e-19 80 49 0.009439714 0 81 49 -0.003540036 0 82 49 7.218483e-05 -1.920057e-19 83 49 -3.60962e-05 6.177731e-20 50 50 0.2020076 0 51 50 2.536731e-07 0 51 51 0.04342277 0 80 51 7.218483e-05 1.920057e-19 81 51 -3.60962e-05 -6.177731e-20 82 51 0.009439714 0 83 51 -0.003540036 0 52 52 0.0003598268 0 53 52 8.992801e-05 0 54 52 -1.07278e-06 -2.781872e-20 55 52 1.471162e-06 -4.848993e-21 56 52 0 -1.104529e-08 57 52 0 5.717527e-11 58 52 0.0001365305 -7.363201e-08 59 52 -6.451136e-07 3.976851e-10 53 53 0.0003597323 0 54 53 1.471162e-06 -4.848993e-21 55 53 5.947467e-06 -2.009559e-20 56 53 0 -1.234573e-08 57 53 0 -8.045094e-14 58 53 0.0002383646 -6.177416e-08 59 53 8.007795e-08 1.537809e-11 84 53 8.993216e-05 0 85 53 -6.744911e-05 0 86 53 1.309044e-06 -3.029145e-21 87 53 -1.718582e-06 5.130738e-21 88 53 0 5.594732e-10 89 53 0 1.299782e-14 90 53 -2.471497e-05 8.843894e-10 91 53 4.005565e-08 5.255726e-12 54 54 0.0003598268 0 55 54 8.992801e-05 0 56 54 -0.0001365305 -7.363201e-08 57 54 6.451136e-07 3.976851e-10 58 54 0 -1.104529e-08 59 54 0 5.717527e-11 55 55 0.0003597323 0 56 55 -0.0002383646 -6.177416e-08 57 55 -8.007795e-08 1.537809e-11 58 55 0 -1.234573e-08 59 55 0 -8.045094e-14 84 55 1.309044e-06 3.029145e-21 85 55 -1.718582e-06 -5.130738e-21 86 55 8.993216e-05 0 87 55 -6.744911e-05 0 88 55 2.471497e-05 8.843894e-10 89 55 -4.005565e-08 5.255726e-12 90 55 0 5.594732e-10 91 55 0 1.299782e-14 56 56 1.64791 0 57 56 -0.002231052 0 58 56 -0.01327367 3.530512e-17 59 56 5.940606e-08 -9.258599e-20 84 56 0 1.125494e-08 85 56 0 -5.644367e-10 86 56 -0.0002968775 4.284164e-08 87 56 7.749471e-06 -3.110447e-09 88 56 0.1743318 0 89 56 -0.001117671 0 90 56 -0.002294169 1.063477e-18 91 56 1.434488e-05 -7.24079e-21 57 57 3.194487e-05 0 58 57 5.940606e-08 -9.258599e-20 59 57 -2.296472e-07 6.572728e-22 84 57 0 5.845578e-11 85 57 0 -1.299782e-14 86 57 -1.606131e-06 2.131468e-10 87 57 -4.005565e-08 -5.255726e-12 88 57 0.001061081 0 89 57 -6.520919e-06 0 90 57 -1.43428e-05 5.819599e-21 91 57 8.596734e-08 -3.753307e-23 58 58 1.64791 0 59 58 -0.002231052 0 84 58 0.0002968775 4.284164e-08 85 58 -7.749471e-06 -3.110447e-09 86 58 0 1.125494e-08 87 58 0 -5.644367e-10 88 58 -0.002294169 -1.063477e-18 89 58 1.434488e-05 7.24079e-21 90 58 0.1743318 0 91 58 -0.001117671 0 59 59 3.194487e-05 0 84 59 1.606131e-06 2.131468e-10 85 59 4.005565e-08 -5.255726e-12 86 59 0 5.845578e-11 87 59 0 -1.299782e-14 88 59 -1.43428e-05 -5.819599e-21 89 59 8.596734e-08 3.753307e-23 90 59 0.001061081 0 91 59 -6.520919e-06 0 60 60 7.592949e-05 0 61 60 8.851623e-08 0 92 60 1.97165e-05 0 93 60 -1.2011e-07 0 61 61 1.313253e-09 0 92 61 1.264371e-07 0 93 61 -7.388184e-10 0 62 62 7.592949e-05 0 63 62 8.851623e-08 0 94 62 1.97165e-05 0 95 62 -1.2011e-07 0 63 63 1.313253e-09 0 94 63 1.264371e-07 0 95 63 -7.388184e-10 0 64 64 0.05475263 0 65 64 0.004720429 0 66 64 0.0005775356 -8.141829e-19 67 64 7.219999e-05 -5.510355e-20 65 65 0.02040002 0 66 65 7.219999e-05 -5.510355e-20 67 65 0.000288803 -4.377471e-19 96 65 0.00493416 0 97 65 -0.002056069 0 98 65 7.219984e-05 -1.106595e-19 99 65 -3.610602e-05 9.745263e-20 66 66 0.05475263 0 67 66 0.004720429 0 67 67 0.02040002 0 96 67 7.219984e-05 1.106595e-19 97 67 -3.610602e-05 -9.745263e-20 98 67 0.00493416 0 99 67 -0.002056069 0 68 68 0.7593159 0 69 68 -0.0004546433 0 70 68 -0.002618177 9.704372e-18 71 68 3.57549e-08 7.00339e-21 72 68 0 -1.205714e-08 73 68 0 -1.320487e-08 74 68 0.0003523183 -3.581742e-08 75 68 0.0004757213 -3.094502e-08 76 68 0 -1.205714e-08 77 68 0 -1.320487e-08 78 68 0.0003523183 -3.581742e-08 79 68 0.0004757213 -3.094502e-08 100 68 0.1035502 0 101 68 -0.0006572898 0 102 68 -0.0004502217 2.042495e-18 103 68 2.816555e-06 -1.272997e-20 104 68 0 -1.200122e-08 105 68 0 5.981201e-10 106 68 0.0005126339 -2.386402e-08 107 68 -1.854034e-05 1.454424e-09 108 68 0 -1.200122e-08 109 68 0 5.981201e-10 110 68 0.0005126339 -2.386402e-08 111 68 -1.854034e-05 1.454424e-09 69 69 1.342562e-05 0 70 69 3.57549e-08 7.00339e-21 71 69 -4.527211e-08 1.624895e-22 72 69 0 6.267431e-11 73 69 0 3.870764e-14 74 69 -1.765968e-06 1.934323e-10 75 69 8.006613e-08 5.478245e-12 76 69 0 6.267431e-11 77 69 0 3.870764e-14 78 69 -1.765968e-06 1.934323e-10 79 69 8.006613e-08 5.478245e-12 100 69 0.0006373192 0 101 69 -3.877864e-06 0 102 69 -2.813303e-06 1.282588e-20 103 69 1.687094e-08 -7.668546e-23 104 69 0 -6.234973e-11 105 69 0 -1.250618e-14 106 69 2.726786e-06 -1.212993e-10 107 69 4.003716e-08 1.376273e-12 108 69 0 -6.234973e-11 109 69 0 -1.250618e-14 110 69 2.726786e-06 -1.212993e-10 111 69 4.003716e-08 1.376273e-12 70 70 0.7593159 0 71 70 -0.0004546433 0 72 70 -0.0003523183 -3.581742e-08 73 70 -0.0004757213 -3.094502e-08 74 70 0 -1.205714e-08 75 70 0 -1.320487e-08 76 70 -0.0003523183 -3.581742e-08 77 70 -0.0004757213 -3.094502e-08 78 70 0 -1.205714e-08 79 70 0 -1.320487e-08 100 70 -0.0004502217 -2.042495e-18 101 70 2.816555e-06 1.272997e-20 102 70 0.1035502 0 103 70 -0.0006572898 0 104 70 -0.0005126339 -2.386402e-08 105 70 1.854034e-05 1.454424e-09 106 70 0 -1.200122e-08 107 70 0 5.981201e-10 108 70 -0.0005126339 -2.386402e-08 109 70 1.854034e-05 1.454424e-09 110 70 0 -1.200122e-08 111 70 0 5.981201e-10 71 71 1.342562e-05 0 72 71 1.765968e-06 1.934323e-10 73 71 -8.006613e-08 5.478245e-12 74 71 0 6.267431e-11 75 71 0 3.870764e-14 76 71 1.765968e-06 1.934323e-10 77 71 -8.006613e-08 5.478245e-12 78 71 0 6.267431e-11 79 71 0 3.870764e-14 100 71 -2.813303e-06 -1.282588e-20 101 71 1.687094e-08 7.668546e-23 102 71 0.0006373192 0 103 71 -3.877864e-06 0 104 71 -2.726786e-06 -1.212993e-10 105 71 -4.003716e-08 1.376273e-12 106 71 0 -6.234973e-11 107 71 0 -1.250618e-14 108 71 -2.726786e-06 -1.212993e-10 109 71 -4.003716e-08 1.376273e-12 110 71 0 -6.234973e-11 111 71 0 -1.250618e-14 72 72 0.001079384 0 73 72 0.0001799144 0 74 72 3.861525e-05 -9.069933e-20 75 72 8.03885e-06 -2.257081e-20 76 72 0.001079384 0 77 72 0.0001799144 0 78 72 3.861525e-05 -9.069933e-20 79 72 8.03885e-06 -2.257081e-20 73 73 0.000719678 0 74 73 8.03885e-06 -2.257081e-20 75 73 3.369593e-05 -1.054249e-19 76 73 0.0001799144 0 77 73 0.000719678 0 78 73 8.03885e-06 -2.257081e-20 79 73 3.369593e-05 -1.054249e-19 100 73 0 -6.031351e-10 101 73 0 1.250618e-14 102 73 3.549801e-05 -8.620055e-10 103 73 -4.003716e-08 -1.376273e-12 104 73 0.0001799119 0 105 73 -0.0001124685 0 106 73 8.039351e-06 -2.886998e-20 107 73 -6.634848e-06 2.125005e-20 108 73 0.0001799119 0 109 73 -0.0001124685 0 110 73 8.039351e-06 -2.886998e-20 111 73 -6.634848e-06 2.125005e-20 74 74 0.001079384 0 75 74 0.0001799144 0 76 74 3.861525e-05 9.069933e-20 77 74 8.03885e-06 2.257081e-20 78 74 0.001079384 0 79 74 0.0001799144 0 75 75 0.000719678 0 76 75 8.03885e-06 2.257081e-20 77 75 3.369593e-05 1.054249e-19 78 75 0.0001799144 0 79 75 0.000719678 0 100 75 -3.549801e-05 -8.620055e-10 101 75 4.003716e-08 -1.376273e-12 102 75 0 -6.031351e-10 103 75 0 1.250618e-14 104 75 8.039351e-06 2.886998e-20 105 75 -6.634848e-06 -2.125005e-20 106 75 0.0001799119 0 107 75 -0.0001124685 0 108 75 8.039351e-06 2.886998e-20 109 75 -6.634848e-06 -2.125005e-20 110 75 0.0001799119 0 111 75 -0.0001124685 0 76 76 11.54524 0 77 76 0.9953399 0 78 76 0.2435606 -8.752442e-16 79 76 0.03044809 -1.051639e-16 77 77 4.301519 0 78 77 0.03044809 -1.051639e-16 79 77 0.1217935 -3.276211e-16 100 77 0 -6.031351e-10 101 77 0 1.250618e-14 102 77 3.549801e-05 -8.620055e-10 103 77 -4.003716e-08 -1.376273e-12 104 77 0.0001799119 0 105 77 -0.0001124685 0 106 77 8.039351e-06 -2.886998e-20 107 77 -6.634848e-06 2.125005e-20 108 77 1.040409 0 109 77 -0.4335312 0 110 77 0.03044803 -7.334213e-17 111 77 -0.01522628 1.767263e-17 78 78 11.54524 0 79 78 0.9953399 0 79 79 4.301519 0 100 79 -3.549801e-05 -8.620055e-10 101 79 4.003716e-08 -1.376273e-12 102 79 0 -6.031351e-10 103 79 0 1.250618e-14 104 79 8.039351e-06 2.886998e-20 105 79 -6.634848e-06 -2.125005e-20 106 79 0.0001799119 0 107 79 -0.0001124685 0 108 79 0.03044803 7.334213e-17 109 79 -0.01522628 -1.767263e-17 110 79 1.040409 0 111 79 -0.4335312 0 80 80 0.05475263 0 81 80 0.004720429 0 82 80 0.0005775356 -8.141829e-19 83 80 7.219999e-05 -5.510355e-20 81 81 0.02040002 0 82 81 7.219999e-05 -5.510355e-20 83 81 0.000288803 -4.377471e-19 112 81 0.00493416 0 113 81 -0.002056069 0 114 81 7.219984e-05 -1.106595e-19 115 81 -3.610602e-05 9.745263e-20 82 82 0.05475263 0 83 82 0.004720429 0 83 83 0.02040002 0 112 83 7.219984e-05 1.106595e-19 113 83 -3.610602e-05 -9.745263e-20 114 83 0.00493416 0 115 83 -0.002056069 0 84 84 0.001079188 0 85 84 0.0001798643 0 86 84 2.673303e-05 -7.352728e-20 87 84 5.565284e-06 -1.749381e-20 88 84 0 -1.123909e-08 89 84 0 5.840379e-11 90 84 0.0003524009 -3.555636e-08 91 84 -1.766353e-06 1.921239e-10 85 85 0.0007194519 0 86 85 5.565284e-06 -1.749381e-20 87 85 2.332817e-05 -7.937546e-20 88 85 0 -1.233081e-08 89 85 0 2.282713e-14 90 85 0.0004758836 -3.059237e-08 91 85 8.014372e-08 5.537678e-12 116 85 0.0001798639 0 117 85 -0.0001124119 0 118 85 5.565655e-06 -2.296505e-20 119 85 -4.593635e-06 1.421481e-20 120 85 0 5.612853e-10 121 85 0 -4.304413e-15 122 85 -3.55254e-05 8.356694e-10 123 85 4.009735e-08 1.406017e-12 86 86 0.001079188 0 87 86 0.0001798643 0 88 86 -0.0003524009 -3.555636e-08 89 86 1.766353e-06 1.921239e-10 90 86 0 -1.123909e-08 91 86 0 5.840379e-11 87 87 0.0007194519 0 88 87 -0.0004758836 -3.059237e-08 89 87 -8.014372e-08 5.537678e-12 90 87 0 -1.233081e-08 91 87 0 2.282713e-14 116 87 5.565655e-06 2.296505e-20 117 87 -4.593635e-06 -1.421481e-20 118 87 0.0001798639 0 119 87 -0.0001124119 0 120 87 3.55254e-05 8.356694e-10 121 87 -4.009735e-08 1.406017e-12 122 87 0 5.612853e-10 123 87 0 -4.304413e-15 88 88 0.7601524 0 89 88 -0.0004541859 0 90 88 -0.01324307 2.348748e-17 91 88 2.877434e-08 7.204698e-20 116 88 0 1.120456e-08 117 88 0 -5.596001e-10 118 88 -0.0005128774 2.348392e-08 119 88 1.854219e-05 -1.440687e-09 120 88 0.1037305 0 121 88 -0.000658399 0 122 88 -0.002289771 9.259947e-18 123 88 1.431758e-05 -5.657267e-20 89 89 1.344017e-05 0 90 89 2.877434e-08 7.204698e-20 91 89 -2.290319e-07 4.592284e-22 116 89 0 5.82022e-11 117 89 0 4.304413e-15 118 89 -2.728138e-06 1.192774e-10 119 89 -4.009735e-08 -1.406017e-12 120 89 0.0006384641 0 121 89 -3.884619e-06 0 122 89 -1.431506e-05 5.947918e-20 123 89 8.58024e-08 -3.495217e-22 90 90 0.7601524 0 91 90 -0.0004541859 0 116 90 0.0005128774 2.348392e-08 117 90 -1.854219e-05 -1.440687e-09 118 90 0 1.120456e-08 119 90 0 -5.596001e-10 120 90 -0.002289771 -9.259947e-18 121 90 1.431758e-05 5.657267e-20 122 90 0.1037305 0 123 90 -0.000658399 0 91 91 1.344017e-05 0 116 91 2.728138e-06 1.192774e-10 117 91 4.009735e-08 -1.406017e-12 118 91 0 5.82022e-11 119 91 0 4.304413e-15 120 91 -1.431506e-05 -5.947918e-20 121 91 8.58024e-08 3.495217e-22 122 91 0.0006384641 0 123 91 -3.884619e-06 0 92 92 0.0001519451 0 93 92 8.867022e-08 0 124 92 3.288609e-05 0 125 92 -2.024423e-07 0 93 93 2.627984e-09 0 124 93 2.087841e-07 0 125 93 -1.232303e-09 0 94 94 0.0001519451 0 95 94 8.867022e-08 0 126 94 3.288609e-05 0 127 94 -2.024423e-07 0 95 95 2.627984e-09 0 126 95 2.087841e-07 0 127 95 -1.232303e-09 0 96 96 0.03251468 0 97 96 0.003290114 0 98 96 0.0005776937 -1.640367e-18 99 96 7.222426e-05 -2.79151e-19 97 97 0.01352689 0 98 97 7.222426e-05 -2.79151e-19 99 97 0.0002889 -9.776643e-19 128 97 0.003328393 0 129 97 -0.001456342 0 130 97 7.222404e-05 -2.521041e-19 131 97 -3.612051e-05 1.083426e-19 98 98 0.03251468 0 99 98 0.003290114 0 99 99 0.01352689 0 128 99 7.222404e-05 2.521041e-19 129 99 -3.612051e-05 -1.083426e-19 130 99 0.003328393 0 131 99 -0.001456342 0 100 100 0.5006249 0 101 100 -0.0001962082 0 102 100 -0.002578451 1.07737e-17 103 100 5.838957e-08 -4.349838e-21 104 100 0 -1.201743e-08 105 100 0 -1.324572e-08 106 100 0.0005681317 -2.191829e-08 107 100 0.0007131237 -2.171479e-08 108 100 0 -1.201743e-08 109 100 0 -1.324572e-08 110 100 0.0005681317 -2.191829e-08 111 100 0.0007131237 -2.171479e-08 132 100 0.07384468 0 133 100 -0.0004667165 0 134 100 -0.0004415898 1.535908e-18 135 100 2.763427e-06 -9.70935e-21 136 100 0 -1.205332e-08 137 100 0 6.02137e-10 138 100 0.0007284036 -1.793882e-08 139 100 -2.933983e-05 1.041484e-09 140 100 0 -1.205332e-08 141 100 0 6.02137e-10 142 100 0.0007284036 -1.793882e-08 143 100 -2.933983e-05 1.041484e-09 101 101 8.740609e-06 0 102 101 5.838957e-08 -4.349838e-21 103 101 -4.457845e-08 1.8292e-22 104 101 0 6.239976e-11 105 101 0 -1.940025e-14 106 101 -2.886934e-06 1.157942e-10 107 101 8.007628e-08 1.863557e-12 108 101 0 6.239976e-11 109 101 0 -1.940025e-14 110 101 -2.886934e-06 1.157942e-10 111 101 8.007628e-08 1.863557e-12 132 101 0.0004565902 0 133 101 -2.76624e-06 0 134 101 -2.758471e-06 9.483706e-21 135 101 1.654733e-08 -5.742878e-23 136 101 0 -6.261318e-11 137 101 0 -2.616657e-15 138 101 3.847451e-06 -9.181968e-11 139 101 3.996719e-08 7.986372e-13 140 101 0 -6.261318e-11 141 101 0 -2.616657e-15 142 101 3.847451e-06 -9.181968e-11 143 101 3.996719e-08 7.986372e-13 102 102 0.5006249 0 103 102 -0.0001962082 0 104 102 -0.0005681317 -2.191829e-08 105 102 -0.0007131237 -2.171479e-08 106 102 0 -1.201743e-08 107 102 0 -1.324572e-08 108 102 -0.0005681317 -2.191829e-08 109 102 -0.0007131237 -2.171479e-08 110 102 0 -1.201743e-08 111 102 0 -1.324572e-08 132 102 -0.0004415898 -1.535908e-18 133 102 2.763427e-06 9.70935e-21 134 102 0.07384468 0 135 102 -0.0004667165 0 136 102 -0.0007284036 -1.793882e-08 137 102 2.933983e-05 1.041484e-09 138 102 0 -1.205332e-08 139 102 0 6.02137e-10 140 102 -0.0007284036 -1.793882e-08 141 102 2.933983e-05 1.041484e-09 142 102 0 -1.205332e-08 143 102 0 6.02137e-10 103 103 8.740609e-06 0 104 103 2.886934e-06 1.157942e-10 105 103 -8.007628e-08 1.863557e-12 106 103 0 6.239976e-11 107 103 0 -1.940025e-14 108 103 2.886934e-06 1.157942e-10 109 103 -8.007628e-08 1.863557e-12 110 103 0 6.239976e-11 111 103 0 -1.940025e-14 132 103 -2.758471e-06 -9.483706e-21 133 103 1.654733e-08 5.742878e-23 134 103 0.0004565902 0 135 103 -2.76624e-06 0 136 103 -3.847451e-06 -9.181968e-11 137 103 -3.996719e-08 7.986372e-13 138 103 0 -6.261318e-11 139 103 0 -2.616657e-15 140 103 -3.847451e-06 -9.181968e-11 141 103 -3.996719e-08 7.986372e-13 142 103 0 -6.261318e-11 143 103 0 -2.616657e-15 104 104 0.001799469 0 105 104 0.0002699621 0 106 104 0.000104956 -3.565354e-19 107 104 1.850004e-05 -5.613021e-20 108 104 0.001799469 0 109 104 0.0002699621 0 110 104 0.000104956 -3.565354e-19 111 104 1.850004e-05 -5.613021e-20 105 105 0.001079885 0 106 105 1.850004e-05 -5.613021e-20 107 105 7.548005e-05 -2.030986e-19 108 105 0.0002699621 0 109 105 0.001079885 0 110 105 1.850004e-05 -5.613021e-20 111 105 7.548005e-05 -2.030986e-19 132 105 0 -6.033041e-10 133 105 0 2.616657e-15 134 105 4.626737e-05 -7.038957e-10 135 105 -3.996719e-08 -7.986372e-13 136 105 0.00026996 0 137 105 -0.0001575211 0 138 105 1.849962e-05 -4.729471e-20 139 105 -1.290144e-05 2.767816e-20 140 105 0.00026996 0 141 105 -0.0001575211 0 142 105 1.849962e-05 -4.729471e-20 143 105 -1.290144e-05 2.767816e-20 106 106 0.001799469 0 107 106 0.0002699621 0 108 106 0.000104956 3.565354e-19 109 106 1.850004e-05 5.613021e-20 110 106 0.001799469 0 111 106 0.0002699621 0 107 107 0.001079885 0 108 107 1.850004e-05 5.613021e-20 109 107 7.548005e-05 2.030986e-19 110 107 0.0002699621 0 111 107 0.001079885 0 132 107 -4.626737e-05 -7.038957e-10 133 107 3.996719e-08 -7.986372e-13 134 107 0 -6.033041e-10 135 107 0 2.616657e-15 136 107 1.849962e-05 4.729471e-20 137 107 -1.290144e-05 -2.767816e-20 138 107 0.00026996 0 139 107 -0.0001575211 0 140 107 1.849962e-05 4.729471e-20 141 107 -1.290144e-05 -2.767816e-20 142 107 0.00026996 0 143 107 -0.0001575211 0 108 108 6.85586 0 109 108 0.6937163 0 110 108 0.2436195 -2.1175e-16 111 108 0.03045708 2.651628e-18 109 109 2.852133 0 110 109 0.03045708 2.651628e-18 111 109 0.1218294 -9.80371e-17 132 109 0 -6.033041e-10 133 109 0 2.616657e-15 134 109 4.626737e-05 -7.038957e-10 135 109 -3.996719e-08 -7.986372e-13 136 109 0.00026996 0 137 109 -0.0001575211 0 138 109 1.849962e-05 -4.729471e-20 139 109 -1.290144e-05 2.767816e-20 140 109 0.701788 0 141 109 -0.3070598 0 142 109 0.03045699 -1.486912e-17 143 109 -0.01523164 4.018418e-17 110 110 6.85586 0 111 110 0.6937163 0 111 111 2.852133 0 132 111 -4.626737e-05 -7.038957e-10 133 111 3.996719e-08 -7.986372e-13 134 111 0 -6.033041e-10 135 111 0 2.616657e-15 136 111 1.849962e-05 4.729471e-20 137 111 -1.290144e-05 -2.767816e-20 138 111 0.00026996 0 139 111 -0.0001575211 0 140 111 0.03045699 1.486912e-17 141 111 -0.01523164 -4.018418e-17 142 111 0.701788 0 143 111 -0.3070598 0 112 112 0.03251468 0 113 112 0.003290114 0 114 112 0.0005776937 -1.640367e-18 115 112 7.222426e-05 -2.79151e-19 113 113 0.01352689 0 114 113 7.222426e-05 -2.79151e-19 115 113 0.0002889 -9.776643e-19 144 113 0.003328393 0 145 113 -0.001456342 0 146 113 7.222404e-05 -2.521041e-19 147 113 -3.612051e-05 1.083426e-19 114 114 0.03251468 0 115 114 0.003290114 0 115 115 0.01352689 0 144 115 7.222404e-05 2.521041e-19 145 115 -3.612051e-05 -1.083426e-19 146 115 0.003328393 0 147 115 -0.001456342 0 116 116 0.001798593 0 117 116 0.0002697838 0 118 116 7.266604e-05 -2.447471e-19 119 116 1.280888e-05 -3.38942e-20 120 116 0 -1.120997e-08 121 116 0 5.821942e-11 122 116 0.0005684588 -2.149695e-08 123 116 -2.888527e-06 1.136533e-10 117 117 0.001079132 0 118 117 1.280888e-05 -3.38942e-20 119 117 5.226045e-05 -1.126649e-19 120 117 0 -1.233995e-08 121 117 0 -5.948733e-15 122 117 0.0007136475 -2.118573e-08 123 117 8.024622e-08 1.923201e-12 148 117 0.0002697838 0 149 117 -0.0001573695 0 150 117 1.280852e-05 -2.736256e-20 151 117 -8.932988e-06 9.435762e-21 152 117 0 5.604916e-10 153 117 0 1.777102e-15 154 117 -4.633057e-05 6.695549e-10 155 117 4.008462e-08 8.28326e-13 118 118 0.001798593 0 119 118 0.0002697838 0 120 118 -0.0005684588 -2.149695e-08 121 118 2.888527e-06 1.136533e-10 122 118 0 -1.120997e-08 123 118 0 5.821942e-11 119 119 0.001079132 0 120 119 -0.0007136475 -2.118573e-08 121 119 -8.024622e-08 1.923201e-12 122 119 0 -1.233995e-08 123 119 0 -5.948733e-15 148 119 1.280852e-05 2.736256e-20 149 119 -8.932988e-06 -9.435762e-21 150 119 0.0002697838 0 151 119 -0.0001573695 0 152 119 4.633057e-05 6.695549e-10 153 119 -4.008462e-08 8.28326e-13 154 119 0 5.604916e-10 155 119 0 1.777102e-15 120 120 0.5018792 0 121 120 -0.0001957158 0 122 120 -0.01321183 3.866182e-17 123 120 4.63976e-08 -7.541353e-20 148 120 0 1.12193e-08 149 120 0 -5.61224e-10 150 120 -0.0007290776 1.739824e-08 151 120 2.935324e-05 -1.019717e-09 152 120 0.07409811 0 153 120 -0.0004682836 0 154 120 -0.002282933 9.53436e-19 155 120 1.42755e-05 -7.594027e-21 121 121 8.762289e-06 0 122 121 4.63976e-08 -7.541353e-20 123 121 -2.284816e-07 5.944465e-22 148 121 0 5.827381e-11 149 121 0 -1.777102e-15 150 121 -3.851126e-06 8.896425e-11 151 121 -4.008462e-08 -8.28326e-13 152 121 0.0004581921 0 153 121 -2.775737e-06 0 154 121 -1.427154e-05 4.046501e-21 155 121 8.554558e-08 -3.298289e-23 122 122 0.5018792 0 123 122 -0.0001957158 0 148 122 0.0007290776 1.739824e-08 149 122 -2.935324e-05 -1.019717e-09 150 122 0 1.12193e-08 151 122 0 -5.61224e-10 152 122 -0.002282933 -9.53436e-19 153 122 1.42755e-05 7.594027e-21 154 122 0.07409811 0 155 122 -0.0004682836 0 123 123 8.762289e-06 0 148 123 3.851126e-06 8.896425e-11 149 123 4.008462e-08 -8.28326e-13 150 123 0 5.827381e-11 151 123 0 -1.777102e-15 152 123 -1.427154e-05 -4.046501e-21 153 123 8.554558e-08 3.298289e-23 154 123 0.0004581921 0 155 123 -2.775737e-06 0 124 124 0.0002281367 0 125 124 8.892393e-08 0 156 124 4.609351e-05 0 157 124 -2.850071e-07 0 125 125 3.94574e-09 0 156 125 2.913706e-07 0 157 125 -1.7272e-09 0 126 126 0.0002281367 0 127 126 8.892393e-08 0 158 126 4.609351e-05 0 159 126 -2.850071e-07 0 127 127 3.94574e-09 0 158 127 2.913706e-07 0 159 127 -1.7272e-09 0 128 128 0.02316448 0 129 128 0.002496976 0 130 128 0.0005779254 -1.714126e-18 131 128 7.225801e-05 -1.812664e-19 129 129 0.0101293 0 130 129 7.225801e-05 -1.812664e-19 131 129 0.0002890351 -7.728197e-19 160 129 0.002508701 0 161 129 -0.001129091 0 162 129 7.22578e-05 -1.922142e-19 163 129 -3.613985e-05 9.632002e-20 130 130 0.02316448 0 131 130 0.002496976 0 131 131 0.0101293 0 160 131 7.22578e-05 1.922142e-19 161 131 -3.613985e-05 -9.632002e-20 162 131 0.002508701 0 163 131 -0.001129091 0 132 132 0.3744323 0 133 132 -0.0001091893 0 134 132 -0.002519347 9.121917e-18 135 132 7.84221e-08 2.619037e-21 136 132 0 -1.205719e-08 137 132 0 -1.326839e-08 138 132 0.0007838024 -1.683447e-08 139 132 0.0009500544 -1.706105e-08 140 132 0 -1.205719e-08 141 132 0 -1.326839e-08 142 132 0.0007838024 -1.683447e-08 143 132 0.0009500544 -1.706105e-08 164 132 0.05745497 0 165 132 -0.0003622544 0 166 132 -0.000429935 1.79579e-18 167 132 2.691212e-06 -1.11589e-20 168 132 0 -1.207441e-08 169 132 0 6.019254e-10 170 132 0.0009433574 -1.453577e-08 171 132 -4.012966e-05 8.004846e-10 172 132 0 -1.207441e-08 173 132 0 6.019254e-10 174 132 0.0009433574 -1.453577e-08 175 132 -4.012966e-05 8.004846e-10 133 133 6.509851e-06 0 134 133 7.84221e-08 2.619037e-21 135 133 -4.355977e-08 1.616375e-22 136 133 0 6.262365e-11 137 133 0 -4.765393e-15 138 133 -4.00732e-06 8.862513e-11 139 133 7.967775e-08 1.102884e-12 140 133 0 6.262365e-11 141 133 0 -4.765393e-15 142 133 -4.00732e-06 8.862513e-11 143 133 7.967775e-08 1.102884e-12 164 133 0.0003561507 0 165 133 -2.152528e-06 0 166 133 -2.684933e-06 1.13072e-20 167 133 1.611052e-08 -6.73946e-23 168 133 0 -6.273048e-11 169 133 0 -1.092319e-14 170 133 4.963573e-06 -7.480282e-11 171 133 3.972719e-08 4.051399e-13 172 133 0 -6.273048e-11 173 133 0 -1.092319e-14 174 133 4.963573e-06 -7.480282e-11 175 133 3.972719e-08 4.051399e-13 134 134 0.3744323 0 135 134 -0.0001091893 0 136 134 -0.0007838024 -1.683447e-08 137 134 -0.0009500544 -1.706105e-08 138 134 0 -1.205719e-08 139 134 0 -1.326839e-08 140 134 -0.0007838024 -1.683447e-08 141 134 -0.0009500544 -1.706105e-08 142 134 0 -1.205719e-08 143 134 0 -1.326839e-08 164 134 -0.000429935 -1.79579e-18 165 134 2.691212e-06 1.11589e-20 166 134 0.05745497 0 167 134 -0.0003622544 0 168 134 -0.0009433574 -1.453577e-08 169 134 4.012966e-05 8.004846e-10 170 134 0 -1.207441e-08 171 134 0 6.019254e-10 172 134 -0.0009433574 -1.453577e-08 173 134 4.012966e-05 8.004846e-10 174 134 0 -1.207441e-08 175 134 0 6.019254e-10 135 135 6.509851e-06 0 136 135 4.00732e-06 8.862513e-11 137 135 -7.967775e-08 1.102884e-12 138 135 0 6.262365e-11 139 135 0 -4.765393e-15 140 135 4.00732e-06 8.862513e-11 141 135 -7.967775e-08 1.102884e-12 142 135 0 6.262365e-11 143 135 0 -4.765393e-15 164 135 -2.684933e-06 -1.13072e-20 165 135 1.611052e-08 6.73946e-23 166 135 0.0003561507 0 167 135 -2.152528e-06 0 168 135 -4.963573e-06 -7.480282e-11 169 135 -3.972719e-08 4.051399e-13 170 135 0 -6.273048e-11 171 135 0 -1.092319e-14 172 135 -4.963573e-06 -7.480282e-11 173 135 -3.972719e-08 4.051399e-13 174 135 0 -6.273048e-11 175 135 0 -1.092319e-14 136 136 0.002520301 0 137 136 0.0003601246 0 138 136 0.0002052329 -4.201597e-19 139 136 3.310614e-05 -6.341794e-20 140 136 0.002520301 0 141 136 0.0003601246 0 142 136 0.0002052329 -4.201597e-19 143 136 3.310614e-05 -6.341794e-20 137 137 0.001440547 0 138 137 3.310614e-05 -6.341794e-20 139 137 0.0001339154 -2.772572e-19 140 137 0.0003601246 0 141 137 0.001440547 0 142 137 3.310614e-05 -6.341794e-20 143 137 0.0001339154 -2.772572e-19 164 137 0 -6.065717e-10 165 137 0 1.092319e-14 166 137 5.695633e-05 -6.281234e-10 167 137 -3.972719e-08 -4.051399e-13 168 137 0.0003601219 0 169 137 -0.00020264 0 170 137 3.310686e-05 -8.211906e-20 171 137 -2.124763e-05 3.555467e-20 172 137 0.0003601219 0 173 137 -0.00020264 0 174 137 3.310686e-05 -8.211906e-20 175 137 -2.124763e-05 3.555467e-20 138 138 0.002520301 0 139 138 0.0003601246 0 140 138 0.0002052329 4.201597e-19 141 138 3.310614e-05 6.341794e-20 142 138 0.002520301 0 143 138 0.0003601246 0 139 139 0.001440547 0 140 139 3.310614e-05 6.341794e-20 141 139 0.0001339154 2.772572e-19 142 139 0.0003601246 0 143 139 0.001440547 0 164 139 -5.695633e-05 -6.281234e-10 165 139 3.972719e-08 -4.051399e-13 166 139 0 -6.065717e-10 167 139 0 1.092319e-14 168 139 3.310686e-05 8.211906e-20 169 139 -2.124763e-05 -3.555467e-20 170 139 0.0003601219 0 171 139 -0.00020264 0 172 139 3.310686e-05 8.211906e-20 173 139 -2.124763e-05 -3.555467e-20 174 139 0.0003601219 0 175 139 -0.00020264 0 140 140 4.884069 0 141 140 0.5264514 0 142 140 0.2437052 -6.407568e-16 143 140 0.03046955 -1.458676e-16 141 141 2.135622 0 142 141 0.03046955 -1.458676e-16 143 141 0.1218793 -5.566677e-16 164 141 0 -6.065717e-10 165 141 0 1.092319e-14 166 141 5.695633e-05 -6.281234e-10 167 141 -3.972719e-08 -4.051399e-13 168 141 0.0003601219 0 169 141 -0.00020264 0 170 141 3.310686e-05 -8.211906e-20 171 141 -2.124763e-05 3.555467e-20 172 141 0.5289239 0 173 141 -0.2380443 0 174 141 0.03046947 -1.595571e-16 175 141 -0.01523877 7.479081e-17 142 142 4.884069 0 143 142 0.5264514 0 143 143 2.135622 0 164 143 -5.695633e-05 -6.281234e-10 165 143 3.972719e-08 -4.051399e-13 166 143 0 -6.065717e-10 167 143 0 1.092319e-14 168 143 3.310686e-05 8.211906e-20 169 143 -2.124763e-05 -3.555467e-20 170 143 0.0003601219 0 171 143 -0.00020264 0 172 143 0.03046947 1.595571e-16 173 143 -0.01523877 -7.479081e-17 174 143 0.5289239 0 175 143 -0.2380443 0 144 144 0.02316448 0 145 144 0.002496976 0 146 144 0.0005779254 -1.714126e-18 147 144 7.225801e-05 -1.812664e-19 145 145 0.0101293 0 146 145 7.225801e-05 -1.812664e-19 147 145 0.0002890351 -7.728197e-19 176 145 0.002508701 0 177 145 -0.001129091 0 178 145 7.22578e-05 -1.922142e-19 179 145 -3.613985e-05 9.632002e-20 146 146 0.02316448 0 147 146 0.002496976 0 147 147 0.0101293 0 176 147 7.22578e-05 1.922142e-19 177 147 -3.613985e-05 -9.632002e-20 178 147 0.002508701 0 179 147 -0.001129091 0 148 148 0.002517916 0 149 148 0.0003596942 0 150 148 0.0001421032 -1.390449e-19 151 148 2.292344e-05 -1.038049e-20 152 148 0 -1.121692e-08 153 148 0 5.82667e-11 154 148 0.0007846394 -1.625275e-08 155 148 -4.011465e-06 8.565094e-11 149 149 0.001438771 0 150 149 2.292344e-05 -1.038049e-20 151 149 9.272685e-05 -6.329309e-20 152 149 0 -1.233221e-08 153 149 0 8.063593e-15 154 149 0.0009512797 -1.635606e-08 155 149 7.998549e-08 1.161696e-12 180 149 0.0003596936 0 181 149 -0.0002023209 0 182 149 2.292387e-05 -9.877793e-21 183 149 -1.47132e-05 1.658599e-20 184 149 0 5.615569e-10 185 149 0 -3.688147e-15 186 149 -5.70782e-05 5.856926e-10 187 149 3.992315e-08 4.351727e-13 150 150 0.002517916 0 151 150 0.0003596942 0 152 150 -0.0007846394 -1.625275e-08 153 150 4.011465e-06 8.565094e-11 154 150 0 -1.121692e-08 155 150 0 5.82667e-11 151 151 0.001438771 0 152 151 -0.0009512797 -1.635606e-08 153 151 -7.998549e-08 1.161696e-12 154 151 0 -1.233221e-08 155 151 0 8.063593e-15 180 151 2.292387e-05 9.877793e-21 181 151 -1.47132e-05 -1.658599e-20 182 151 0.0003596936 0 183 151 -0.0002023209 0 184 151 5.70782e-05 5.856926e-10 185 151 -3.992315e-08 4.351727e-13 186 151 0 5.615569e-10 187 151 0 -3.688147e-15 152 152 0.3761059 0 153 152 -0.0001087002 0 154 152 -0.01316469 1.972819e-17 155 152 6.259222e-08 7.848508e-20 180 152 0 1.120961e-08 181 152 0 -5.599621e-10 182 152 -0.0009448153 1.383548e-08 183 152 4.01685e-05 -7.707779e-10 184 152 0.05778103 0 185 152 -0.0003642755 0 186 152 -0.002273639 9.763092e-18 187 152 1.421787e-05 -5.875397e-20 153 153 6.538799e-06 0 154 153 6.259222e-08 7.848508e-20 155 153 -2.276691e-07 4.27735e-22 180 153 0 5.822714e-11 181 153 0 3.688147e-15 182 153 -4.971442e-06 7.111763e-11 183 153 -3.992315e-08 -4.351727e-13 184 153 0.0003582069 0 185 153 -2.164746e-06 0 186 153 -1.421287e-05 6.356094e-20 187 153 8.519686e-08 -3.681002e-22 154 154 0.3761059 0 155 154 -0.0001087002 0 180 154 0.0009448153 1.383548e-08 181 154 -4.01685e-05 -7.707779e-10 182 154 0 1.120961e-08 183 154 0 -5.599621e-10 184 154 -0.002273639 -9.763092e-18 185 154 1.421787e-05 5.875397e-20 186 154 0.05778103 0 187 154 -0.0003642755 0 155 155 6.538799e-06 0 180 155 4.971442e-06 7.111763e-11 181 155 3.992315e-08 -4.351727e-13 182 155 0 5.822714e-11 183 155 0 3.688147e-15 184 155 -1.421287e-05 -6.356094e-20 185 155 8.519686e-08 3.681002e-22 186 155 0.0003582069 0 187 155 -2.164746e-06 0 156 156 0.0003045903 0 157 156 8.92807e-08 0 188 156 5.935404e-05 0 189 156 -3.678997e-07 0 157 157 5.268018e-09 0 188 157 3.742925e-07 0 189 157 -2.22408e-09 0 158 158 0.0003045903 0 159 158 8.92807e-08 0 190 158 5.935404e-05 0 191 158 -3.678997e-07 0 159 159 5.268018e-09 0 190 159 3.742925e-07 0 191 159 -2.22408e-09 0 160 160 0.01800145 0 161 160 0.002007665 0 162 160 0.0005782348 -1.554622e-18 163 160 7.230159e-05 -1.930658e-19 161 161 0.008099522 0 162 161 7.230159e-05 -1.930658e-19 163 161 0.0002892094 -7.540415e-19 192 161 0.002012395 0 193 161 -0.0009225267 0 194 161 7.230137e-05 -1.804715e-19 195 161 -3.616409e-05 9.55811e-20 162 162 0.01800145 0 163 162 0.002007665 0 163 163 0.008099522 0 192 163 7.230137e-05 1.804715e-19 193 163 -3.616409e-05 -9.55811e-20 194 163 0.002012395 0 195 163 -0.0009225267 0 164 164 0.2994879 0 165 164 -6.946323e-05 0 166 164 -0.002443782 9.865756e-18 167 164 9.800586e-08 -3.076757e-21 168 164 0 -1.208963e-08 169 164 0 -1.333325e-08 170 164 0.0009984266 -1.397112e-08 171 164 0.001185641 -1.457657e-08 172 164 0 -1.208963e-08 173 164 0 -1.333325e-08 174 164 0.0009984266 -1.397112e-08 175 164 0.001185641 -1.457657e-08 196 164 0.04706867 0 197 164 -0.0002963102 0 198 164 -0.0004153882 1.423383e-18 199 164 2.600962e-06 -9.044098e-21 200 164 0 -1.213874e-08 201 164 0 6.077464e-10 202 164 0.00115712 -1.266735e-08 203 164 -5.08525e-05 6.770851e-10 204 164 0 -1.213874e-08 205 164 0 6.077464e-10 206 164 0.00115712 -1.266735e-08 207 164 -5.08525e-05 6.770851e-10 165 165 5.19686e-06 0 166 165 9.800586e-08 -3.076757e-21 167 165 -4.225166e-08 1.664574e-22 168 165 0 6.277418e-11 169 165 0 -4.108872e-14 170 165 -5.122482e-06 7.318226e-11 171 165 7.925148e-08 6.591247e-13 172 165 0 6.277418e-11 173 165 0 -4.108872e-14 174 165 -5.122482e-06 7.318226e-11 175 165 7.925148e-08 6.591247e-13 196 165 0.0002922362 0 197 165 -1.763507e-06 0 198 165 -2.593266e-06 8.750835e-21 199 165 1.556533e-08 -5.329982e-23 200 165 0 -6.305172e-11 201 165 0 7.38034e-15 202 165 6.07356e-06 -6.53761e-11 203 165 3.953195e-08 2.384106e-13 204 165 0 -6.305172e-11 205 165 0 7.38034e-15 206 165 6.07356e-06 -6.53761e-11 207 165 3.953195e-08 2.384106e-13 166 166 0.2994879 0 167 166 -6.946323e-05 0 168 166 -0.0009984266 -1.397112e-08 169 166 -0.001185641 -1.457657e-08 170 166 0 -1.208963e-08 171 166 0 -1.333325e-08 172 166 -0.0009984266 -1.397112e-08 173 166 -0.001185641 -1.457657e-08 174 166 0 -1.208963e-08 175 166 0 -1.333325e-08 196 166 -0.0004153882 -1.423383e-18 197 166 2.600962e-06 9.044098e-21 198 166 0.04706867 0 199 166 -0.0002963102 0 200 166 -0.00115712 -1.266735e-08 201 166 5.08525e-05 6.770851e-10 202 166 0 -1.213874e-08 203 166 0 6.077464e-10 204 166 -0.00115712 -1.266735e-08 205 166 5.08525e-05 6.770851e-10 206 166 0 -1.213874e-08 207 166 0 6.077464e-10 167 167 5.19686e-06 0 168 167 5.122482e-06 7.318226e-11 169 167 -7.925148e-08 6.591247e-13 170 167 0 6.277418e-11 171 167 0 -4.108872e-14 172 167 5.122482e-06 7.318226e-11 173 167 -7.925148e-08 6.591247e-13 174 167 0 6.277418e-11 175 167 0 -4.108872e-14 196 167 -2.593266e-06 -8.750835e-21 197 167 1.556533e-08 5.329982e-23 198 167 0.0002922362 0 199 167 -1.763507e-06 0 200 167 -6.07356e-06 -6.53761e-11 201 167 -3.953195e-08 2.384106e-13 202 167 0 -6.305172e-11 203 167 0 7.38034e-15 204 167 -6.07356e-06 -6.53761e-11 205 167 -3.953195e-08 2.384106e-13 206 167 0 -6.305172e-11 207 167 0 7.38034e-15 168 168 0.003242191 0 169 168 0.000450438 0 170 168 0.0003387728 -6.280183e-19 171 168 5.188366e-05 -6.009962e-20 172 168 0.003242191 0 173 168 0.000450438 0 174 168 0.0003387728 -6.280183e-19 175 168 5.188366e-05 -6.009962e-20 169 169 0.001801814 0 170 169 5.188366e-05 -6.009962e-20 171 169 0.0002090199 -1.983965e-19 172 169 0.000450438 0 173 169 0.001801814 0 174 169 5.188366e-05 -6.009962e-20 175 169 0.0002090199 -1.983965e-19 196 169 0 -6.044699e-10 197 169 0 -7.38034e-15 198 169 6.759626e-05 -5.762055e-10 199 169 -3.953195e-08 -2.384106e-13 200 169 0.0004504351 0 201 169 -0.0002478439 0 202 169 5.188383e-05 -4.960311e-21 203 169 -3.167549e-05 4.484877e-20 204 169 0.0004504351 0 205 169 -0.0002478439 0 206 169 5.188383e-05 -4.960311e-21 207 169 -3.167549e-05 4.484877e-20 170 170 0.003242191 0 171 170 0.000450438 0 172 170 0.0003387728 6.280183e-19 173 170 5.188366e-05 6.009962e-20 174 170 0.003242191 0 175 170 0.000450438 0 171 171 0.001801814 0 172 171 5.188366e-05 6.009962e-20 173 171 0.0002090199 1.983965e-19 174 171 0.000450438 0 175 171 0.001801814 0 196 171 -6.759626e-05 -5.762055e-10 197 171 3.953195e-08 -2.384106e-13 198 171 0 -6.044699e-10 199 171 0 -7.38034e-15 200 171 5.188383e-05 4.960311e-21 201 171 -3.167549e-05 -4.484877e-20 202 171 0.0004504351 0 203 171 -0.0002478439 0 204 171 5.188383e-05 4.960311e-21 205 171 -3.167549e-05 -4.484877e-20 206 171 0.0004504351 0 207 171 -0.0002478439 0 172 172 3.79521 0 173 172 0.4232531 0 174 172 0.2438193 -1.272542e-15 175 172 0.03048561 -1.396061e-16 173 173 1.707533 0 174 173 0.03048561 -1.396061e-16 175 173 0.1219435 -4.799699e-16 196 173 0 -6.044699e-10 197 173 0 -7.38034e-15 198 173 6.759626e-05 -5.762055e-10 199 173 -3.953195e-08 -2.384106e-13 200 173 0.0004504351 0 201 173 -0.0002478439 0 202 173 5.188383e-05 -4.960311e-21 203 173 -3.167549e-05 4.484877e-20 204 173 0.4242505 0 205 173 -0.1944772 0 206 173 0.03048552 -1.104063e-16 207 173 -0.01524769 3.659837e-17 174 174 3.79521 0 175 174 0.4232531 0 175 175 1.707533 0 196 175 -6.759626e-05 -5.762055e-10 197 175 3.953195e-08 -2.384106e-13 198 175 0 -6.044699e-10 199 175 0 -7.38034e-15 200 175 5.188383e-05 4.960311e-21 201 175 -3.167549e-05 -4.484877e-20 202 175 0.0004504351 0 203 175 -0.0002478439 0 204 175 0.03048552 1.104063e-16 205 175 -0.01524769 -3.659837e-17 206 175 0.4242505 0 207 175 -0.1944772 0 176 176 0.01800145 0 177 176 0.002007665 0 178 176 0.0005782348 -1.554622e-18 179 176 7.230159e-05 -1.930658e-19 177 177 0.008099522 0 178 177 7.230159e-05 -1.930658e-19 179 177 0.0002892094 -7.540415e-19 208 177 0.002012395 0 209 177 -0.0009225267 0 210 177 7.230137e-05 -1.804715e-19 211 177 -3.616409e-05 9.55811e-20 178 178 0.01800145 0 179 178 0.002007665 0 179 179 0.008099522 0 208 179 7.230137e-05 1.804715e-19 209 179 -3.616409e-05 -9.55811e-20 210 179 0.002012395 0 211 179 -0.0009225267 0 180 180 0.003237138 0 181 180 0.0004495899 0 182 180 0.0002345868 -2.470244e-19 183 180 3.592891e-05 -5.646615e-20 184 180 0 -1.121486e-08 185 180 0 5.824189e-11 186 180 0.001000156 -1.322918e-08 187 180 -5.131135e-06 6.937694e-11 181 181 0.001798352 0 182 181 3.592891e-05 -5.646615e-20 183 181 0.0001447453 -2.458794e-19 184 181 0 -1.235541e-08 185 181 0 -2.753309e-14 186 181 0.001188032 -1.369329e-08 187 181 7.973277e-08 7.210386e-13 212 181 0.0004495891 0 213 181 -0.0002472642 0 214 181 3.592891e-05 -5.947312e-20 215 181 -2.193646e-05 5.120987e-20 216 181 0 5.565937e-10 217 181 0 1.762913e-14 218 181 -6.78041e-05 5.261955e-10 219 181 3.982423e-08 2.665894e-13 182 182 0.003237138 0 183 182 0.0004495899 0 184 182 -0.001000156 -1.322918e-08 185 182 5.131135e-06 6.937694e-11 186 182 0 -1.121486e-08 187 182 0 5.824189e-11 183 183 0.001798352 0 184 183 -0.001188032 -1.369329e-08 185 183 -7.973277e-08 7.210386e-13 186 183 0 -1.235541e-08 187 183 0 -2.753309e-14 212 183 3.592891e-05 5.947312e-20 213 183 -2.193646e-05 -5.120987e-20 214 183 0.0004495891 0 215 183 -0.0002472642 0 216 183 6.78041e-05 5.261955e-10 217 183 -3.982423e-08 2.665894e-13 218 183 0 5.565937e-10 219 183 0 1.762913e-14 184 184 0.3015826 0 185 184 -6.897165e-05 0 186 184 -0.01310445 5.555215e-17 187 184 7.831121e-08 -4.0549e-20 212 184 0 1.123332e-08 213 184 0 -5.642291e-10 214 184 -0.001159819 1.180472e-08 215 184 5.09365e-05 -6.389944e-10 216 184 0.04746775 0 217 184 -0.0002987877 0 218 184 -0.00226203 5.826614e-18 219 184 1.414582e-05 -3.802911e-20 185 185 5.233088e-06 0 186 185 7.831121e-08 -4.0549e-20 187 185 -2.266248e-07 8.827604e-22 212 185 0 5.833401e-11 213 185 0 -1.762913e-14 214 185 -6.088028e-06 6.084909e-11 215 185 -3.982423e-08 -2.665894e-13 216 185 0.0002947489 0 217 185 -1.778461e-06 0 218 185 -1.413967e-05 3.47039e-20 219 185 8.476131e-08 -2.171066e-22 186 186 0.3015826 0 187 186 -6.897165e-05 0 212 186 0.001159819 1.180472e-08 213 186 -5.09365e-05 -6.389944e-10 214 186 0 1.123332e-08 215 186 0 -5.642291e-10 216 186 -0.00226203 -5.826614e-18 217 186 1.414582e-05 3.802911e-20 218 186 0.04746775 0 219 186 -0.0002987877 0 187 187 5.233088e-06 0 212 187 6.088028e-06 6.084909e-11 213 187 3.982423e-08 -2.665894e-13 214 187 0 5.833401e-11 215 187 0 -1.762913e-14 216 187 -1.413967e-05 -3.47039e-20 217 187 8.476131e-08 2.171066e-22 218 187 0.0002947489 0 219 187 -1.778461e-06 0 188 188 0.0003813963 0 189 188 8.974314e-08 0 220 188 7.268339e-05 0 221 188 -4.512183e-07 0 189 189 6.596372e-09 0 220 189 4.57648e-07 0 221 189 -2.723534e-09 0 190 190 0.0003813963 0 191 190 8.974314e-08 0 222 190 7.268339e-05 0 223 190 -4.512183e-07 0 191 191 6.596372e-09 0 222 191 4.57648e-07 0 223 191 -2.723534e-09 0 192 192 0.01472549 0 193 192 0.001677712 0 194 192 0.0005786226 -1.490713e-18 195 192 7.2355e-05 -2.018529e-19 193 193 0.006749446 0 194 193 7.2355e-05 -2.018529e-19 195 193 0.0002894231 -8.513367e-19 224 193 0.001679974 0 225 193 -0.0007801697 0 226 193 7.235479e-05 -2.153148e-19 227 193 -3.619328e-05 1.246111e-19 194 194 0.01472549 0 195 194 0.001677712 0 195 195 0.006749446 0 224 195 7.235479e-05 2.153148e-19 225 195 -3.619328e-05 -1.246111e-19 226 195 0.001679974 0 227 195 -0.0007801697 0 196 196 0.2498297 0 197 196 -4.802688e-05 0 198 196 -0.002351336 7.066065e-18 199 196 1.174471e-07 -1.807108e-21 200 196 0 -1.212791e-08 201 196 0 -1.327538e-08 202 196 0.001211918 -1.233727e-08 203 196 0.001420039 -1.317105e-08 204 196 0 -1.212791e-08 205 196 0 -1.327538e-08 206 196 0.001211918 -1.233727e-08 207 196 0.001420039 -1.317105e-08 228 196 0.03990249 0 229 196 -0.0002509265 0 230 196 -0.0003979409 1.132708e-18 231 196 2.492573e-06 -7.101487e-21 232 196 0 -1.197528e-08 233 196 0 6.067728e-10 234 196 0.00136974 -1.173151e-08 235 196 -6.153051e-05 6.046201e-10 236 196 0 -1.197528e-08 237 196 0 6.067728e-10 238 196 0.00136974 -1.173151e-08 239 196 -6.153051e-05 6.046201e-10 197 197 4.33066e-06 0 198 197 1.174471e-07 -1.807108e-21 199 197 -4.065276e-08 1.245059e-22 200 197 0 6.30222e-11 201 197 0 9.582963e-14 202 197 -6.231688e-06 6.442246e-11 203 197 7.883946e-08 2.748063e-13 204 197 0 6.30222e-11 205 197 0 9.582963e-14 206 197 -6.231688e-06 6.442246e-11 207 197 7.883946e-08 2.748063e-13 228 197 0.0002480179 0 229 197 -1.495058e-06 0 230 197 -2.483472e-06 7.061023e-21 231 197 1.491148e-08 -4.243059e-23 232 197 0 -6.212685e-11 233 197 0 4.448376e-14 234 197 7.177513e-06 -6.076405e-11 235 197 3.926026e-08 9.915866e-14 236 197 0 -6.212685e-11 237 197 0 4.448376e-14 238 197 7.177513e-06 -6.076405e-11 239 197 3.926026e-08 9.915866e-14 198 198 0.2498297 0 199 198 -4.802688e-05 0 200 198 -0.001211918 -1.233727e-08 201 198 -0.001420039 -1.317105e-08 202 198 0 -1.212791e-08 203 198 0 -1.327538e-08 204 198 -0.001211918 -1.233727e-08 205 198 -0.001420039 -1.317105e-08 206 198 0 -1.212791e-08 207 198 0 -1.327538e-08 228 198 -0.0003979409 -1.132708e-18 229 198 2.492573e-06 7.101487e-21 230 198 0.03990249 0 231 198 -0.0002509265 0 232 198 -0.00136974 -1.173151e-08 233 198 6.153051e-05 6.046201e-10 234 198 0 -1.197528e-08 235 198 0 6.067728e-10 236 198 -0.00136974 -1.173151e-08 237 198 6.153051e-05 6.046201e-10 238 198 0 -1.197528e-08 239 198 0 6.067728e-10 199 199 4.33066e-06 0 200 199 6.231688e-06 6.442246e-11 201 199 -7.883946e-08 2.748063e-13 202 199 0 6.30222e-11 203 199 0 9.582963e-14 204 199 6.231688e-06 6.442246e-11 205 199 -7.883946e-08 2.748063e-13 206 199 0 6.30222e-11 207 199 0 9.582963e-14 228 199 -2.483472e-06 -7.061023e-21 229 199 1.491148e-08 4.243059e-23 230 199 0.0002480179 0 231 199 -1.495058e-06 0 232 199 -7.177513e-06 -6.076405e-11 233 199 -3.926026e-08 9.915866e-14 234 199 0 -6.212685e-11 235 199 0 4.448376e-14 236 199 -7.177513e-06 -6.076405e-11 237 199 -3.926026e-08 9.915866e-14 238 199 0 -6.212685e-11 239 199 0 4.448376e-14 200 200 0.003965442 0 201 200 0.0005409404 0 202 200 0.0005056204 -5.321319e-19 203 200 7.481814e-05 -1.744348e-19 204 200 0.003965442 0 205 200 0.0005409404 0 206 200 0.0005056204 -5.321319e-19 207 200 7.481814e-05 -1.744348e-19 201 201 0.002163836 0 202 201 7.481814e-05 -1.744348e-19 203 201 0.0003007559 -8.582638e-19 204 201 0.0005409404 0 205 201 0.002163836 0 206 201 7.481814e-05 -1.744348e-19 207 201 0.0003007559 -8.582638e-19 228 201 0 -5.881131e-10 229 201 0 -4.448376e-14 230 201 7.815921e-05 -5.623481e-10 231 201 -3.926026e-08 -9.915866e-14 232 201 0.000540937 0 233 201 -0.0002931517 0 234 201 7.48186e-05 -2.808129e-19 235 201 -4.418045e-05 1.454556e-19 236 201 0.000540937 0 237 201 -0.0002931517 0 238 201 7.48186e-05 -2.808129e-19 239 201 -4.418045e-05 1.454556e-19 202 202 0.003965442 0 203 202 0.0005409404 0 204 202 0.0005056204 5.321319e-19 205 202 7.481814e-05 1.744348e-19 206 202 0.003965442 0 207 202 0.0005409404 0 203 203 0.002163836 0 204 203 7.481814e-05 1.744348e-19 205 203 0.0003007559 8.582638e-19 206 203 0.0005409404 0 207 203 0.002163836 0 228 203 -7.815921e-05 -5.623481e-10 229 203 3.926026e-08 -9.915866e-14 230 203 0 -5.881131e-10 231 203 0 -4.448376e-14 232 203 7.48186e-05 2.808129e-19 233 203 -4.418045e-05 -1.454556e-19 234 203 0.000540937 0 235 203 -0.0002931517 0 236 203 7.48186e-05 2.808129e-19 237 203 -4.418045e-05 -1.454556e-19 238 203 0.000540937 0 239 203 -0.0002931517 0 204 204 3.104268 0 205 204 0.3536582 0 206 204 0.243962 -5.247708e-16 207 204 0.03050523 -3.598719e-17 205 205 1.422771 0 206 205 0.03050523 -3.598719e-17 207 205 0.122022 -2.212302e-16 228 205 0 -5.881131e-10 229 205 0 -4.448376e-14 230 205 7.815921e-05 -5.623481e-10 231 205 -3.926026e-08 -9.915866e-14 232 205 0.000540937 0 233 205 -0.0002931517 0 234 205 7.48186e-05 -2.808129e-19 235 205 -4.418045e-05 1.454556e-19 236 205 0.354135 0 237 205 -0.1644493 0 238 205 0.03050515 -5.497542e-17 239 205 -0.01525839 3.569227e-17 206 206 3.104268 0 207 206 0.3536582 0 207 207 1.422771 0 228 207 -7.815921e-05 -5.623481e-10 229 207 3.926026e-08 -9.915866e-14 230 207 0 -5.881131e-10 231 207 0 -4.448376e-14 232 207 7.48186e-05 2.808129e-19 233 207 -4.418045e-05 -1.454556e-19 234 207 0.000540937 0 235 207 -0.0002931517 0 236 207 0.03050515 5.497542e-17 237 207 -0.01525839 -3.569227e-17 238 207 0.354135 0 239 207 -0.1644493 0 208 208 0.01472549 0 209 208 0.001677712 0 210 208 0.0005786226 -1.490713e-18 211 208 7.2355e-05 -2.018529e-19 209 209 0.006749446 0 210 209 7.2355e-05 -2.018529e-19 211 209 0.0002894231 -8.513367e-19 240 209 0.001679974 0 241 209 -0.0007801697 0 242 209 7.235479e-05 -2.153148e-19 243 209 -3.619328e-05 1.246111e-19 210 210 0.01472549 0 211 210 0.001677712 0 211 211 0.006749446 0 240 211 7.235479e-05 2.153148e-19 241 211 -3.619328e-05 -1.246111e-19 242 211 0.001679974 0 243 211 -0.0007801697 0 212 212 0.003956232 0 213 212 0.0005394677 0 214 212 0.0003501596 -8.149022e-19 215 212 5.181693e-05 -1.453664e-19 216 212 0 -1.120821e-08 217 212 0 5.82635e-11 218 212 0.001215022 -1.143564e-08 219 212 -6.247325e-06 5.978273e-11 213 213 0.002157861 0 214 213 5.181693e-05 -1.453664e-19 215 213 0.0002082969 -5.922927e-19 216 213 0 -1.2235e-08 217 213 0 1.26358e-13 218 213 0.001424167 -1.212222e-08 219 213 7.9534e-08 3.229122e-13 244 213 0.0005394663 0 245 213 -0.0002921975 0 246 213 5.181719e-05 -1.38519e-19 247 213 -3.060058e-05 1.075901e-19 248 213 0 5.3515e-10 249 213 0 6.107762e-14 250 213 -7.848557e-05 5.064726e-10 251 213 3.966768e-08 1.227016e-13 214 214 0.003956232 0 215 214 0.0005394677 0 216 214 -0.001215022 -1.143564e-08 217 214 6.247325e-06 5.978273e-11 218 214 0 -1.120821e-08 219 214 0 5.82635e-11 215 215 0.002157861 0 216 215 -0.001424167 -1.212222e-08 217 215 -7.9534e-08 3.229122e-13 218 215 0 -1.2235e-08 219 215 0 1.26358e-13 244 215 5.181719e-05 1.38519e-19 245 215 -3.060058e-05 -1.075901e-19 246 215 0.0005394663 0 247 215 -0.0002921975 0 248 215 7.848557e-05 5.064726e-10 249 215 -3.966768e-08 1.227016e-13 250 215 0 5.3515e-10 251 215 0 6.107762e-14 216 216 0.2523471 0 217 216 -4.753315e-05 0 218 216 -0.01303061 2.970778e-17 219 216 9.394038e-08 1.097978e-20 244 216 0 1.099775e-08 245 216 0 -5.608217e-10 246 216 -0.001374239 1.073033e-08 247 216 6.168427e-05 -5.587322e-10 248 216 0.0403749 0 249 216 -0.0002538624 0 250 216 -0.002248084 6.290916e-18 251 216 1.405915e-05 -3.894866e-20 217 217 4.374199e-06 0 218 217 9.394038e-08 1.097978e-20 219 217 -2.253466e-07 5.523798e-22 244 217 0 5.702319e-11 245 217 0 -6.107762e-14 246 217 -7.201513e-06 5.552606e-11 247 217 -3.966768e-08 -1.227016e-13 248 217 0.0002509892 0 249 217 -1.51276e-06 0 250 217 -1.405187e-05 3.978177e-20 251 217 8.423826e-08 -2.363713e-22 218 218 0.2523471 0 219 218 -4.753315e-05 0 244 218 0.001374239 1.073033e-08 245 218 -6.168427e-05 -5.587322e-10 246 218 0 1.099775e-08 247 218 0 -5.608217e-10 248 218 -0.002248084 -6.290916e-18 249 218 1.405915e-05 3.894866e-20 250 218 0.0403749 0 251 218 -0.0002538624 0 219 219 4.374199e-06 0 244 219 7.201513e-06 5.552606e-11 245 219 3.966768e-08 -1.227016e-13 246 219 0 5.702319e-11 247 219 0 -6.107762e-14 248 219 -1.405187e-05 -3.978177e-20 249 219 8.423826e-08 2.363713e-22 250 219 0.0002509892 0 251 219 -1.51276e-06 0 220 220 0.0004586456 0 221 220 9.031262e-08 0 252 220 8.609744e-05 0 253 220 -5.350621e-07 0 221 221 7.932378e-09 0 252 221 5.415364e-07 0 253 221 -3.226155e-09 0 222 222 0.0004586456 0 223 222 9.031262e-08 0 254 222 8.609744e-05 0 255 222 -5.350621e-07 0 223 223 7.932378e-09 0 254 223 5.415364e-07 0 255 223 -3.226155e-09 0 224 224 0.01246159 0 225 224 0.001440705 0 226 224 0.0005790897 -2.012319e-18 227 224 7.241834e-05 -2.831295e-19 225 225 0.00578659 0 226 225 7.241834e-05 -2.831295e-19 227 225 0.0002896765 -1.116029e-18 256 225 0.001441918 0 257 225 -0.0006760833 0 258 225 7.24181e-05 -2.715735e-19 259 225 -3.622745e-05 1.570547e-19 226 226 0.01246159 0 227 226 0.001440705 0 227 227 0.00578659 0 256 227 7.24181e-05 2.715735e-19 257 227 -3.622745e-05 -1.570547e-19 258 227 0.001441918 0 259 227 -0.0006760833 0 228 228 0.2145235 0 229 228 -3.515091e-05 0 230 228 -0.002241979 6.526293e-18 231 228 1.374739e-07 4.442257e-22 232 228 0 -1.191435e-08 233 228 0 -1.303127e-08 234 228 0.001424161 -1.159297e-08 235 228 0.001652827 -1.255307e-08 236 228 0 -1.191435e-08 237 228 0 -1.303127e-08 238 228 0.001424161 -1.159297e-08 239 228 0.001652827 -1.255307e-08 260 228 0.03466415 0 261 228 -0.0002178117 0 262 228 -0.000377533 1.221006e-18 263 228 2.365675e-06 -7.540537e-21 264 228 0 -1.180552e-08 265 228 0 5.929785e-10 266 228 0.001580731 -1.125536e-08 267 228 -7.213212e-05 5.752392e-10 268 228 0 -1.180552e-08 269 228 0 5.929785e-10 270 228 0.001580731 -1.125536e-08 271 228 -7.213212e-05 5.752392e-10 229 229 3.716317e-06 0 230 229 1.374739e-07 4.442257e-22 231 229 -3.876126e-08 1.148129e-22 232 229 0 6.194891e-11 233 229 0 5.041697e-14 234 229 -7.334554e-06 6.036741e-11 235 229 7.816089e-08 1.696811e-13 236 229 0 6.194891e-11 237 229 0 5.041697e-14 238 229 -7.334554e-06 6.036741e-11 239 229 7.816089e-08 1.696811e-13 260 229 0.0002156337 0 261 229 -1.29881e-06 0 262 229 -2.355165e-06 7.722325e-21 263 229 1.414667e-08 -4.570267e-23 264 229 0 -6.12925e-11 265 229 0 1.442564e-14 266 229 8.272922e-06 -5.834487e-11 267 229 3.897118e-08 6.898352e-14 268 229 0 -6.12925e-11 269 229 0 1.442564e-14 270 229 8.272922e-06 -5.834487e-11 271 229 3.897118e-08 6.898352e-14 230 230 0.2145235 0 231 230 -3.515091e-05 0 232 230 -0.001424161 -1.159297e-08 233 230 -0.001652827 -1.255307e-08 234 230 0 -1.191435e-08 235 230 0 -1.303127e-08 236 230 -0.001424161 -1.159297e-08 237 230 -0.001652827 -1.255307e-08 238 230 0 -1.191435e-08 239 230 0 -1.303127e-08 260 230 -0.000377533 -1.221006e-18 261 230 2.365675e-06 7.540537e-21 262 230 0.03466415 0 263 230 -0.0002178117 0 264 230 -0.001580731 -1.125536e-08 265 230 7.213212e-05 5.752392e-10 266 230 0 -1.180552e-08 267 230 0 5.929785e-10 268 230 -0.001580731 -1.125536e-08 269 230 7.213212e-05 5.752392e-10 270 230 0 -1.180552e-08 271 230 0 5.929785e-10 231 231 3.716317e-06 0 232 231 7.334554e-06 6.036741e-11 233 231 -7.816089e-08 1.696811e-13 234 231 0 6.194891e-11 235 231 0 5.041697e-14 236 231 7.334554e-06 6.036741e-11 237 231 -7.816089e-08 1.696811e-13 238 231 0 6.194891e-11 239 231 0 5.041697e-14 260 231 -2.355165e-06 -7.722325e-21 261 231 1.414667e-08 4.570267e-23 262 231 0.0002156337 0 263 231 -1.29881e-06 0 264 231 -8.272922e-06 -5.834487e-11 265 231 -3.897118e-08 6.898352e-14 266 231 0 -6.12925e-11 267 231 0 1.442564e-14 268 231 -8.272922e-06 -5.834487e-11 269 231 -3.897118e-08 6.898352e-14 270 231 0 -6.12925e-11 271 231 0 1.442564e-14 232 232 0.004690356 0 233 232 0.0006316697 0 234 232 0.0007057028 -2.605611e-18 235 232 0.0001019032 -3.010094e-19 236 232 0.004690356 0 237 232 0.0006316697 0 238 232 0.0007057028 -2.605611e-18 239 232 0.0001019032 -3.010094e-19 233 233 0.002526766 0 234 233 0.0001019032 -3.010094e-19 235 233 0.0004090918 -9.670359e-19 236 233 0.0006316697 0 237 233 0.002526766 0 238 233 0.0001019032 -3.010094e-19 239 233 0.0004090918 -9.670359e-19 260 233 0 -5.868336e-10 261 233 0 -1.442564e-14 262 233 8.863848e-05 -5.46021e-10 263 233 -3.897118e-08 -6.898352e-14 264 233 0.0006316661 0 265 233 -0.0003385825 0 266 233 0.0001019032 -1.606e-19 267 233 -5.875793e-05 1.171296e-19 268 233 0.0006316661 0 269 233 -0.0003385825 0 270 233 0.0001019032 -1.606e-19 271 233 -5.875793e-05 1.171296e-19 234 234 0.004690356 0 235 234 0.0006316697 0 236 234 0.0007057028 2.605611e-18 237 234 0.0001019032 3.010094e-19 238 234 0.004690356 0 239 234 0.0006316697 0 235 235 0.002526766 0 236 235 0.0001019032 3.010094e-19 237 235 0.0004090918 9.670359e-19 238 235 0.0006316697 0 239 235 0.002526766 0 260 235 -8.863848e-05 -5.46021e-10 261 235 3.897118e-08 -6.898352e-14 262 235 0 -5.868336e-10 263 235 0 -1.442564e-14 264 235 0.0001019032 1.606e-19 265 235 -5.875793e-05 -1.171296e-19 266 235 0.0006316661 0 267 235 -0.0003385825 0 268 235 0.0001019032 1.606e-19 269 235 -5.875793e-05 -1.171296e-19 270 235 0.0006316661 0 271 235 -0.0003385825 0 236 236 2.626734 0 237 236 0.303662 0 238 236 0.2441332 -5.881046e-16 239 236 0.03052841 -8.779367e-17 237 237 1.21966 0 238 237 0.03052841 -8.779367e-17 239 237 0.1221147 -3.293495e-16 260 237 0 -5.868336e-10 261 237 0 -1.442564e-14 262 237 8.863848e-05 -5.46021e-10 263 237 -3.897118e-08 -6.898352e-14 264 237 0.0006316661 0 265 237 -0.0003385825 0 266 237 0.0001019032 -1.606e-19 267 237 -5.875793e-05 1.171296e-19 268 237 0.3039178 0 269 237 -0.1424912 0 270 237 0.03052831 -7.865533e-17 271 237 -0.01527086 4.534623e-17 238 238 2.626734 0 239 238 0.303662 0 239 239 1.21966 0 260 239 -8.863848e-05 -5.46021e-10 261 239 3.897118e-08 -6.898352e-14 262 239 0 -5.868336e-10 263 239 0 -1.442564e-14 264 239 0.0001019032 1.606e-19 265 239 -5.875793e-05 -1.171296e-19 266 239 0.0006316661 0 267 239 -0.0003385825 0 268 239 0.03052831 7.865533e-17 269 239 -0.01527086 -4.534623e-17 270 239 0.3039178 0 271 239 -0.1424912 0 240 240 0.01246159 0 241 240 0.001440705 0 242 240 0.0005790897 -2.012319e-18 243 240 7.241834e-05 -2.831295e-19 241 241 0.00578659 0 242 241 7.241834e-05 -2.831295e-19 243 241 0.0002896765 -1.116029e-18 272 241 0.001441918 0 273 241 -0.0006760833 0 274 241 7.24181e-05 -2.715735e-19 275 241 -3.622745e-05 1.570547e-19 242 242 0.01246159 0 243 242 0.001440705 0 243 243 0.00578659 0 272 243 7.24181e-05 2.715735e-19 273 243 -3.622745e-05 -1.570547e-19 274 243 0.001441918 0 275 243 -0.0006760833 0 244 244 0.004675167 0 245 244 0.0006293238 0 246 244 0.0004887872 -1.69394e-18 247 244 7.058513e-05 -2.918412e-19 248 244 0 -1.091388e-08 249 244 0 5.677888e-11 250 244 0.001429225 -1.055909e-08 251 244 -7.360184e-06 5.503525e-11 245 245 0.002517284 0 246 245 7.058513e-05 -2.918412e-19 247 245 0.0002833674 -1.167134e-18 248 245 0 -1.189429e-08 249 245 0 8.334773e-14 250 245 0.001659375 -1.136289e-08 251 245 7.910198e-08 2.185462e-13 276 245 0.0006293223 0 277 245 -0.0003371193 0 278 245 7.058498e-05 -3.227228e-19 279 245 -4.070344e-05 1.567442e-19 280 245 0 5.293787e-10 281 245 0 3.110904e-14 282 245 -8.912092e-05 4.832779e-10 283 245 3.951291e-08 9.40021e-14 246 246 0.004675167 0 247 246 0.0006293238 0 248 246 -0.001429225 -1.055909e-08 249 246 7.360184e-06 5.503525e-11 250 246 0 -1.091388e-08 251 246 0 5.677888e-11 247 247 0.002517284 0 248 247 -0.001659375 -1.136289e-08 249 247 -7.910198e-08 2.185462e-13 250 247 0 -1.189429e-08 251 247 0 8.334773e-14 276 247 7.058498e-05 3.227228e-19 277 247 -4.070344e-05 -1.567442e-19 278 247 0.0006293223 0 279 247 -0.0003371193 0 280 247 8.912092e-05 4.832779e-10 281 247 -3.951291e-08 9.40021e-14 282 247 0 5.293787e-10 283 247 0 3.110904e-14 248 248 0.2174656 0 249 248 -3.465461e-05 0 250 248 -0.01294306 3.357085e-17 251 248 1.103198e-07 -1.606776e-20 276 248 0 1.073876e-08 277 248 0 -5.425912e-10 278 248 -0.001587687 1.012394e-08 279 248 7.238508e-05 -5.230916e-10 280 248 0.03521028 0 281 248 -0.0002212084 0 282 248 -0.002231721 4.470142e-18 283 248 1.395738e-05 -2.85041e-20 249 249 3.767202e-06 0 250 249 1.103198e-07 -1.606776e-20 251 249 -2.238311e-07 5.628276e-22 276 249 0 5.572502e-11 277 249 0 -3.110904e-14 278 249 -8.30989e-06 5.242831e-11 279 249 -3.951291e-08 -9.40021e-14 280 249 0.0002190659 0 281 249 -1.319274e-06 0 282 249 -1.394895e-05 2.735776e-20 283 249 8.362463e-08 -1.671635e-22 250 250 0.2174656 0 251 250 -3.465461e-05 0 276 250 0.001587687 1.012394e-08 277 250 -7.238508e-05 -5.230916e-10 278 250 0 1.073876e-08 279 250 0 -5.425912e-10 280 250 -0.002231721 -4.470142e-18 281 250 1.395738e-05 2.85041e-20 282 250 0.03521028 0 283 250 -0.0002212084 0 251 251 3.767202e-06 0 276 251 8.30989e-06 5.242831e-11 277 251 3.951291e-08 -9.40021e-14 278 251 0 5.572502e-11 279 251 0 -3.110904e-14 280 251 -1.394895e-05 -2.735776e-20 281 251 8.362463e-08 1.671635e-22 282 251 0.0002190659 0 283 251 -1.319274e-06 0 252 252 0.0005364307 0 253 252 9.099083e-08 0 284 252 9.961237e-05 0 285 252 -6.195322e-07 0 253 253 9.277639e-09 0 284 253 6.26059e-07 0 285 253 -3.732551e-09 0 254 254 0.0005364307 0 255 254 9.099083e-08 0 286 254 9.961237e-05 0 287 254 -6.195322e-07 0 255 255 9.277639e-09 0 286 255 6.26059e-07 0 287 255 -3.732551e-09 0 256 256 0.0108036 0 257 256 0.001262415 0 258 256 0.0005796363 -2.495417e-18 259 256 7.249169e-05 -3.566452e-19 257 257 0.005065326 0 258 257 7.249169e-05 -3.566452e-19 259 257 0.00028997 -1.401625e-18 288 257 0.001263123 0 289 257 -0.000596661 0 290 257 7.249149e-05 -3.914784e-19 291 257 -3.626667e-05 1.516025e-19 258 258 0.0108036 0 259 258 0.001262415 0 259 259 0.005065326 0 288 259 7.249149e-05 3.914784e-19 289 259 -3.626667e-05 -1.516025e-19 290 259 0.001263123 0 291 259 -0.000596661 0 260 260 0.1881529 0 261 260 -2.681069e-05 0 262 260 -0.002115703 8.606245e-18 263 260 1.569073e-07 4.164141e-21 264 260 0 -1.178538e-08 265 260 0 -1.294165e-08 266 260 0.001634751 -1.115973e-08 267 260 0.001883901 -1.214404e-08 268 260 0 -1.178538e-08 269 260 0 -1.294165e-08 270 260 0.001634751 -1.115973e-08 271 260 0.001883901 -1.214404e-08 292 260 0.03067188 0 293 260 -0.0001926081 0 294 260 -0.0003542239 1.806287e-18 295 260 2.220646e-06 -1.114854e-20 296 260 0 -1.175745e-08 297 260 0 5.879163e-10 298 260 0.001790231 -1.094352e-08 299 260 -8.2666e-05 5.547596e-10 300 260 0 -1.175745e-08 301 260 0 5.879163e-10 302 260 0.001790231 -1.094352e-08 303 260 -8.2666e-05 5.547596e-10 261 261 3.258155e-06 0 262 261 1.569073e-07 4.164141e-21 263 261 -3.657705e-08 1.498317e-22 264 261 0 6.12348e-11 265 261 0 1.402987e-14 266 261 -8.428807e-06 5.806894e-11 267 261 7.768482e-08 1.057519e-13 268 261 0 6.12348e-11 269 261 0 1.402987e-14 270 261 -8.428807e-06 5.806894e-11 271 261 7.768482e-08 1.057519e-13 292 261 0.000190918 0 293 261 -1.149236e-06 0 294 261 -2.208717e-06 1.144134e-20 295 261 1.32732e-08 -6.771605e-23 296 261 0 -6.106727e-11 297 261 0 -3.913232e-16 298 261 9.360565e-06 -5.677067e-11 299 261 3.862893e-08 4.190202e-14 300 261 0 -6.106727e-11 301 261 0 -3.913232e-16 302 261 9.360565e-06 -5.677067e-11 303 261 3.862893e-08 4.190202e-14 262 262 0.1881529 0 263 262 -2.681069e-05 0 264 262 -0.001634751 -1.115973e-08 265 262 -0.001883901 -1.214404e-08 266 262 0 -1.178538e-08 267 262 0 -1.294165e-08 268 262 -0.001634751 -1.115973e-08 269 262 -0.001883901 -1.214404e-08 270 262 0 -1.178538e-08 271 262 0 -1.294165e-08 292 262 -0.0003542239 -1.806287e-18 293 262 2.220646e-06 1.114854e-20 294 262 0.03067188 0 295 262 -0.0001926081 0 296 262 -0.001790231 -1.094352e-08 297 262 8.2666e-05 5.547596e-10 298 262 0 -1.175745e-08 299 262 0 5.879163e-10 300 262 -0.001790231 -1.094352e-08 301 262 8.2666e-05 5.547596e-10 302 262 0 -1.175745e-08 303 262 0 5.879163e-10 263 263 3.258155e-06 0 264 263 8.428807e-06 5.806894e-11 265 263 -7.768482e-08 1.057519e-13 266 263 0 6.12348e-11 267 263 0 1.402987e-14 268 263 8.428807e-06 5.806894e-11 269 263 -7.768482e-08 1.057519e-13 270 263 0 6.12348e-11 271 263 0 1.402987e-14 292 263 -2.208717e-06 -1.144134e-20 293 263 1.32732e-08 6.771605e-23 294 263 0.000190918 0 295 263 -1.149236e-06 0 296 263 -9.360565e-06 -5.677067e-11 297 263 -3.862893e-08 4.190202e-14 298 263 0 -6.106727e-11 299 263 0 -3.913232e-16 300 263 -9.360565e-06 -5.677067e-11 301 263 -3.862893e-08 4.190202e-14 302 263 0 -6.106727e-11 303 263 0 -3.913232e-16 264 264 0.005417238 0 265 264 0.0007226638 0 266 264 0.0009389447 -1.550852e-18 267 264 0.0001331285 -3.079183e-19 268 264 0.005417238 0 269 264 0.0007226638 0 270 264 0.0009389447 -1.550852e-18 271 264 0.0001331285 -3.079183e-19 265 265 0.002890756 0 266 265 0.0001331285 -3.079183e-19 267 265 0.0005339893 -1.491271e-18 268 265 0.0007226638 0 269 265 0.002890756 0 270 265 0.0001331285 -3.079183e-19 271 265 0.0005339893 -1.491271e-18 292 265 0 -5.88076e-10 293 265 0 3.913232e-16 294 265 9.902751e-05 -5.36995e-10 295 265 -3.862893e-08 -4.190202e-14 296 265 0.0007226597 0 297 265 -0.0003841553 0 298 265 0.0001331289 -4.515737e-19 299 265 -7.540289e-05 2.424938e-19 300 265 0.0007226597 0 301 265 -0.0003841553 0 302 265 0.0001331289 -4.515737e-19 303 265 -7.540289e-05 2.424938e-19 266 266 0.005417238 0 267 266 0.0007226638 0 268 266 0.0009389447 1.550852e-18 269 266 0.0001331285 3.079183e-19 270 266 0.005417238 0 271 266 0.0007226638 0 267 267 0.002890756 0 268 267 0.0001331285 3.079183e-19 269 267 0.0005339893 1.491271e-18 270 267 0.0007226638 0 271 267 0.002890756 0 292 267 -9.902751e-05 -5.36995e-10 293 267 3.862893e-08 -4.190202e-14 294 267 0 -5.88076e-10 295 267 0 3.913232e-16 296 267 0.0001331289 4.515737e-19 297 267 -7.540289e-05 -2.424938e-19 298 267 0.0007226597 0 299 267 -0.0003841553 0 300 267 0.0001331289 4.515737e-19 301 267 -7.540289e-05 -2.424938e-19 302 267 0.0007226597 0 303 267 -0.0003841553 0 268 268 2.276964 0 269 268 0.2660471 0 270 268 0.2443327 -7.093226e-16 271 268 0.03055512 -1.027296e-16 269 269 1.067492 0 270 269 0.03055512 -1.027296e-16 271 269 0.1222216 -4.217929e-16 292 269 0 -5.88076e-10 293 269 0 3.913232e-16 294 269 9.902751e-05 -5.36995e-10 295 269 -3.862893e-08 -4.190202e-14 296 269 0.0007226597 0 297 269 -0.0003841553 0 298 269 0.0001331289 -4.515737e-19 299 269 -7.540289e-05 2.424938e-19 300 269 0.2661964 0 301 269 -0.1257339 0 302 269 0.03055504 -1.122242e-16 303 269 -0.0152851 5.639614e-17 270 270 2.276964 0 271 270 0.2660471 0 271 271 1.067492 0 292 271 -9.902751e-05 -5.36995e-10 293 271 3.862893e-08 -4.190202e-14 294 271 0 -5.88076e-10 295 271 0 3.913232e-16 296 271 0.0001331289 4.515737e-19 297 271 -7.540289e-05 -2.424938e-19 298 271 0.0007226597 0 299 271 -0.0003841553 0 300 271 0.03055504 1.122242e-16 301 271 -0.0152851 -5.639614e-17 302 271 0.2661964 0 303 271 -0.1257339 0 272 272 0.0108036 0 273 272 0.001262415 0 274 272 0.0005796363 -2.495417e-18 275 272 7.249169e-05 -3.566452e-19 273 273 0.005065326 0 274 273 7.249169e-05 -3.566452e-19 275 273 0.00028997 -1.401625e-18 304 273 0.001263123 0 305 273 -0.000596661 0 306 273 7.249149e-05 -3.914784e-19 307 273 -3.626667e-05 1.516025e-19 274 274 0.0108036 0 275 274 0.001262415 0 275 275 0.005065326 0 304 275 7.249149e-05 3.914784e-19 305 275 -3.626667e-05 -1.516025e-19 306 275 0.001263123 0 307 275 -0.000596661 0 276 276 0.005393915 0 277 276 0.0007191547 0 278 276 0.0006504334 -2.611017e-18 279 276 9.222878e-05 -3.042541e-19 280 276 0 -1.069549e-08 281 276 0 5.560059e-11 282 276 0.001642459 -9.99364e-09 283 276 -8.467942e-06 5.20523e-11 277 277 0.002876605 0 278 277 9.222878e-05 -3.042541e-19 279 277 0.0003699406 -1.148394e-18 280 277 0 -1.170559e-08 281 277 0 4.809096e-14 282 277 0.001893666 -1.080566e-08 283 277 7.891679e-08 1.566842e-13 308 277 0.0007191526 0 309 277 -0.0003820275 0 310 277 9.2229e-05 -2.534883e-19 311 277 -5.224293e-05 1.449626e-19 312 277 0 5.259205e-10 313 277 0 1.686673e-14 314 277 -9.970879e-05 4.67158e-10 315 277 3.932346e-08 6.794533e-14 278 278 0.005393915 0 279 278 0.0007191547 0 280 278 -0.001642459 -9.99364e-09 281 278 8.467942e-06 5.20523e-11 282 278 0 -1.069549e-08 283 278 0 5.560059e-11 279 279 0.002876605 0 280 279 -0.001893666 -1.080566e-08 281 279 -7.891679e-08 1.566842e-13 282 279 0 -1.170559e-08 283 279 0 4.809096e-14 308 279 9.2229e-05 2.534883e-19 309 279 -5.224293e-05 -1.449626e-19 310 279 0.0007191526 0 311 279 -0.0003820275 0 312 279 9.970879e-05 4.67158e-10 313 279 -3.932346e-08 6.794533e-14 314 279 0 5.259205e-10 315 279 0 1.686673e-14 280 280 0.1915223 0 281 280 -2.631128e-05 0 282 280 -0.01284172 2.474872e-17 283 280 1.261237e-07 7.54976e-21 308 280 0 1.059946e-08 309 280 0 -5.330704e-10 310 280 -0.001800409 9.67532e-09 311 280 8.305308e-05 -4.959536e-10 312 280 0.03129218 0 313 280 -0.0001964684 0 314 280 -0.002212994 5.66376e-18 315 280 1.384084e-05 -3.415366e-20 281 281 3.316428e-06 0 282 281 1.261237e-07 7.54976e-21 283 281 -2.22077e-07 4.6058e-22 308 281 0 5.502502e-11 309 281 0 -1.686673e-14 310 281 -9.414508e-06 5.014206e-11 311 281 -3.932346e-08 -6.794533e-14 312 281 0.0001948141 0 313 281 -1.172479e-06 0 314 281 -1.383124e-05 3.662505e-20 315 281 8.292243e-08 -2.118063e-22 282 282 0.1915223 0 283 282 -2.631128e-05 0 308 282 0.001800409 9.67532e-09 309 282 -8.305308e-05 -4.959536e-10 310 282 0 1.059946e-08 311 282 0 -5.330704e-10 312 282 -0.002212994 -5.66376e-18 313 282 1.384084e-05 3.415366e-20 314 282 0.03129218 0 315 282 -0.0001964684 0 283 283 3.316428e-06 0 308 283 9.414508e-06 5.014206e-11 309 283 3.932346e-08 -6.794533e-14 310 283 0 5.502502e-11 311 283 0 -1.686673e-14 312 283 -1.383124e-05 -3.662505e-20 313 283 8.292243e-08 2.118063e-22 314 283 0.0001948141 0 315 283 -1.172479e-06 0 284 284 0.000614847 0 285 284 9.178232e-08 0 316 284 0.000113245 0 317 284 -7.047333e-07 0 285 285 1.06338e-08 0 316 285 7.113208e-07 0 317 285 -4.243349e-09 0 286 286 0.000614847 0 287 286 9.178232e-08 0 318 286 0.000113245 0 319 286 -7.047333e-07 0 287 287 1.06338e-08 0 318 287 7.113208e-07 0 319 287 -4.243349e-09 0 288 288 0.009537151 0 289 288 0.001123521 0 290 288 0.0005802639 -2.54809e-18 291 288 7.25752e-05 -2.149314e-19 289 289 0.004504948 0 290 289 7.25752e-05 -2.149314e-19 291 289 0.000290304 -7.912575e-19 320 289 0.001123961 0 321 289 -0.0005340693 0 322 289 7.257497e-05 -1.578293e-19 323 289 -3.631097e-05 6.670367e-20 290 290 0.009537151 0 291 290 0.001123521 0 291 291 0.004504948 0 320 291 7.257497e-05 1.578293e-19 321 291 -3.631097e-05 -6.670367e-20 322 291 0.001123961 0 323 291 -0.0005340693 0 292 292 0.1677245 0 293 292 -2.11038e-05 0 294 292 -0.001972418 1.132431e-17 295 292 1.770044e-07 2.934292e-22 296 292 0 -1.175797e-08 297 292 0 -1.294327e-08 298 292 0.001843778 -1.088537e-08 299 292 0.002112953 -1.189354e-08 300 292 0 -1.175797e-08 301 292 0 -1.294327e-08 302 292 0.001843778 -1.088537e-08 303 292 0.002112953 -1.189354e-08 324 292 0.02753119 0 325 292 -0.0001728013 0 326 292 -0.0003279448 1.799262e-18 327 292 2.057037e-06 -1.146812e-20 328 292 0 -1.178545e-08 329 292 0 5.87161e-10 330 292 0.001997622 -1.075425e-08 331 292 -9.310553e-05 5.421403e-10 332 292 0 -1.178545e-08 333 292 0 5.87161e-10 334 292 0.001997622 -1.075425e-08 335 292 -9.310553e-05 5.421403e-10 293 293 2.903591e-06 0 294 293 1.770044e-07 2.934292e-22 295 293 -3.409909e-08 1.892356e-22 296 293 0 6.106883e-11 297 293 0 -1.442442e-14 298 293 -9.515081e-06 5.660306e-11 299 293 7.679856e-08 6.501625e-14 300 293 0 6.106883e-11 301 293 0 -1.442442e-14 302 293 -9.515081e-06 5.660306e-11 303 293 7.679856e-08 6.501625e-14 324 293 0.0001714532 0 325 293 -1.031563e-06 0 326 293 -2.043709e-06 1.104172e-20 327 293 1.228842e-08 -6.752914e-23 328 293 0 -6.123259e-11 329 293 0 -1.235233e-14 330 293 1.04371e-05 -5.581659e-11 331 293 3.823872e-08 2.429823e-14 332 293 0 -6.123259e-11 333 293 0 -1.235233e-14 334 293 1.04371e-05 -5.581659e-11 335 293 3.823872e-08 2.429823e-14 294 294 0.1677245 0 295 294 -2.11038e-05 0 296 294 -0.001843778 -1.088537e-08 297 294 -0.002112953 -1.189354e-08 298 294 0 -1.175797e-08 299 294 0 -1.294327e-08 300 294 -0.001843778 -1.088537e-08 301 294 -0.002112953 -1.189354e-08 302 294 0 -1.175797e-08 303 294 0 -1.294327e-08 324 294 -0.0003279448 -1.799262e-18 325 294 2.057037e-06 1.146812e-20 326 294 0.02753119 0 327 294 -0.0001728013 0 328 294 -0.001997622 -1.075425e-08 329 294 9.310553e-05 5.421403e-10 330 294 0 -1.178545e-08 331 294 0 5.87161e-10 332 294 -0.001997622 -1.075425e-08 333 294 9.310553e-05 5.421403e-10 334 294 0 -1.178545e-08 335 294 0 5.87161e-10 295 295 2.903591e-06 0 296 295 9.515081e-06 5.660306e-11 297 295 -7.679856e-08 6.501625e-14 298 295 0 6.106883e-11 299 295 0 -1.442442e-14 300 295 9.515081e-06 5.660306e-11 301 295 -7.679856e-08 6.501625e-14 302 295 0 6.106883e-11 303 295 0 -1.442442e-14 324 295 -2.043709e-06 -1.104172e-20 325 295 1.228842e-08 6.752914e-23 326 295 0.0001714532 0 327 295 -1.031563e-06 0 328 295 -1.04371e-05 -5.581659e-11 329 295 -3.823872e-08 2.429823e-14 330 295 0 -6.123259e-11 331 295 0 -1.235233e-14 332 295 -1.04371e-05 -5.581659e-11 333 295 -3.823872e-08 2.429823e-14 334 295 0 -6.123259e-11 335 295 0 -1.235233e-14 296 296 0.006146392 0 297 296 0.0008139614 0 298 296 0.001205269 -4.169813e-18 299 296 0.0001684827 -5.184016e-19 300 296 0.006146392 0 301 296 0.0008139614 0 302 296 0.001205269 -4.169813e-18 303 296 0.0001684827 -5.184016e-19 297 297 0.003255959 0 298 297 0.0001684827 -5.184016e-19 299 297 0.0006754007 -1.871513e-18 300 297 0.0008139614 0 301 297 0.003255959 0 302 297 0.0001684827 -5.184016e-19 303 297 0.0006754007 -1.871513e-18 324 297 0 -5.923873e-10 325 297 0 1.235233e-14 326 297 0.0001093017 -5.318405e-10 327 297 -3.823872e-08 -2.429823e-14 328 297 0.0008139573 0 329 297 -0.0004298893 0 330 297 0.0001684825 -3.95612e-19 331 297 -9.410885e-05 2.453095e-19 332 297 0.0008139573 0 333 297 -0.0004298893 0 334 297 0.0001684825 -3.95612e-19 335 297 -9.410885e-05 2.453095e-19 298 298 0.006146392 0 299 298 0.0008139614 0 300 298 0.001205269 4.169813e-18 301 298 0.0001684827 5.184016e-19 302 298 0.006146392 0 303 298 0.0008139614 0 299 299 0.003255959 0 300 299 0.0001684827 5.184016e-19 301 299 0.0006754007 1.871513e-18 302 299 0.0008139614 0 303 299 0.003255959 0 324 299 -0.0001093017 -5.318405e-10 325 299 3.823872e-08 -2.429823e-14 326 299 0 -5.923873e-10 327 299 0 1.235233e-14 328 299 0.0001684825 3.95612e-19 329 299 -9.410885e-05 -2.453095e-19 330 299 0.0008139573 0 331 299 -0.0004298893 0 332 299 0.0001684825 3.95612e-19 333 299 -9.410885e-05 -2.453095e-19 334 299 0.0008139573 0 335 299 -0.0004298893 0 300 300 2.009755 0 301 300 0.2367393 0 302 300 0.2445607 -9.265768e-16 303 300 0.03058537 -1.133604e-16 301 301 0.9492479 0 302 301 0.03058537 -1.133604e-16 303 301 0.1223425 -4.336483e-16 324 301 0 -5.923873e-10 325 301 0 1.235233e-14 326 301 0.0001093017 -5.318405e-10 327 301 -3.823872e-08 -2.429823e-14 328 301 0.0008139573 0 329 301 -0.0004298893 0 330 301 0.0001684825 -3.95612e-19 331 301 -9.410885e-05 2.453095e-19 332 301 0.236832 0 333 301 -0.1125255 0 334 301 0.03058527 -1.051338e-16 335 301 -0.0153011 5.059049e-17 302 302 2.009755 0 303 302 0.2367393 0 303 303 0.9492479 0 324 303 -0.0001093017 -5.318405e-10 325 303 3.823872e-08 -2.429823e-14 326 303 0 -5.923873e-10 327 303 0 1.235233e-14 328 303 0.0001684825 3.95612e-19 329 303 -9.410885e-05 -2.453095e-19 330 303 0.0008139573 0 331 303 -0.0004298893 0 332 303 0.03058527 1.051338e-16 333 303 -0.0153011 -5.059049e-17 334 303 0.236832 0 335 303 -0.1125255 0 304 304 0.009537151 0 305 304 0.001123521 0 306 304 0.0005802639 -2.54809e-18 307 304 7.25752e-05 -2.149314e-19 305 305 0.004504948 0 306 305 7.25752e-05 -2.149314e-19 307 305 0.000290304 -7.912575e-19 336 305 0.001123961 0 337 305 -0.0005340693 0 338 305 7.257497e-05 -1.578293e-19 339 305 -3.631097e-05 6.670367e-20 306 306 0.009537151 0 307 306 0.001123521 0 307 307 0.004504948 0 336 307 7.257497e-05 1.578293e-19 337 307 -3.631097e-05 -6.670367e-20 338 307 0.001123961 0 339 307 -0.0005340693 0 308 308 0.006112448 0 309 308 0.0008089575 0 310 308 0.000835068 -2.202868e-18 311 308 0.0001167427 -3.263619e-19 312 308 0 -1.057606e-08 313 308 0 5.495755e-11 314 308 0.001854918 -9.581068e-09 315 308 -9.571802e-06 4.987028e-11 309 309 0.003235814 0 310 309 0.0001167427 -3.263619e-19 311 309 0.0004679935 -1.383902e-18 312 309 0 -1.16049e-08 313 309 0 2.049086e-14 314 309 0.00212684 -1.04007e-08 315 309 7.835137e-08 1.182721e-13 340 309 0.0008089553 0 341 309 -0.0004269208 0 342 309 0.0001167423 -3.751704e-19 343 309 -6.521589e-05 1.925808e-19 344 309 0 5.254278e-10 345 309 0 5.349975e-15 346 309 -0.0001102296 4.54586e-10 347 309 3.91055e-08 5.148655e-14 310 310 0.006112448 0 311 310 0.0008089575 0 312 310 -0.001854918 -9.581068e-09 313 310 9.571802e-06 4.987028e-11 314 310 0 -1.057606e-08 315 310 0 5.495755e-11 311 311 0.003235814 0 312 311 -0.00212684 -1.04007e-08 313 311 -7.835137e-08 1.182721e-13 314 311 0 -1.16049e-08 315 311 0 2.049086e-14 340 311 0.0001167423 3.751704e-19 341 311 -6.521589e-05 -1.925808e-19 342 311 0.0008089553 0 343 311 -0.0004269208 0 344 311 0.0001102296 4.54586e-10 345 311 -3.91055e-08 5.148655e-14 346 311 0 5.254278e-10 347 311 0 5.349975e-15 312 312 0.1715239 0 313 312 -2.060101e-05 0 314 312 -0.01272638 4.834752e-17 315 312 1.428421e-07 3.359045e-20 340 312 0 1.053358e-08 341 312 0 -5.276995e-10 342 312 -0.002011879 9.343336e-09 343 312 9.366625e-05 -4.764016e-10 344 312 0.02822618 0 345 312 -0.0001771284 0 346 312 -0.002191801 1.00474e-17 347 312 1.370888e-05 -6.276309e-20 313 313 2.969301e-06 0 314 313 1.428421e-07 3.359045e-20 315 313 -2.20081e-07 8.140423e-22 340 313 0 5.470204e-11 341 313 0 -5.349975e-15 342 313 -1.05125e-05 4.844486e-11 343 313 -3.91055e-08 -5.148655e-14 344 313 0.0001758163 0 345 313 -1.057604e-06 0 346 313 -1.369812e-05 6.295018e-20 347 313 8.212783e-08 -3.772339e-22 314 314 0.1715239 0 315 314 -2.060101e-05 0 340 314 0.002011879 9.343336e-09 341 314 -9.366625e-05 -4.764016e-10 342 314 0 1.053358e-08 343 314 0 -5.276995e-10 344 314 -0.002191801 -1.00474e-17 345 314 1.370888e-05 6.276309e-20 346 314 0.02822618 0 347 314 -0.0001771284 0 315 315 2.969301e-06 0 340 315 1.05125e-05 4.844486e-11 341 315 3.91055e-08 -5.148655e-14 342 315 0 5.470204e-11 343 315 0 -5.349975e-15 344 315 -1.369812e-05 -6.295018e-20 345 315 8.212783e-08 3.772339e-22 346 315 0.0001758163 0 347 315 -1.057604e-06 0 316 316 0.0006939918 0 317 316 9.268767e-08 0 348 316 0.0001270122 0 349 316 -7.907716e-07 0 317 317 1.200255e-08 0 348 317 7.974281e-07 0 349 317 -4.759187e-09 0 318 318 0.0006939918 0 319 318 9.268767e-08 0 350 318 0.0001270122 0 351 318 -7.907716e-07 0 319 319 1.200255e-08 0 350 319 7.974281e-07 0 351 319 -4.759187e-09 0 320 320 0.00853836 0 321 320 0.001012316 0 322 320 0.0005809726 -9.272779e-19 323 320 7.266893e-05 -1.089854e-19 321 321 0.004057108 0 322 321 7.266893e-05 -1.089854e-19 323 321 0.000290679 -5.583205e-19 352 321 0.001012604 0 353 321 -0.000483478 0 354 321 7.266872e-05 -1.447023e-19 355 321 -3.636045e-05 9.519647e-20 322 322 0.00853836 0 323 322 0.001012316 0 323 323 0.004057108 0 352 323 7.266872e-05 1.447023e-19 353 323 -3.636045e-05 -9.519647e-20 354 323 0.001012604 0 355 323 -0.000483478 0 324 324 0.1514488 0 325 324 -1.702342e-05 0 326 324 -0.001812238 7.356266e-18 327 324 1.964681e-07 -7.082107e-21 328 324 0 -1.180255e-08 329 324 0 -1.301579e-08 330 324 0.002050627 -1.072054e-08 331 324 0.002339684 -1.174849e-08 332 324 0 -1.180255e-08 333 324 0 -1.301579e-08 334 324 0.002050627 -1.072054e-08 335 324 0.002339684 -1.174849e-08 356 324 0.02499872 0 357 324 -0.0001568435 0 358 324 -0.0002987599 8.547101e-19 359 324 1.875281e-06 -5.442144e-21 360 324 0 -1.186976e-08 361 324 0 5.89856e-10 362 324 0.002203004 -1.065188e-08 363 324 -0.0001034442 5.345943e-10 364 324 0 -1.186976e-08 365 324 0 5.89856e-10 366 324 0.002203004 -1.065188e-08 367 324 -0.0001034442 5.345943e-10 325 325 2.621302e-06 0 326 325 1.964681e-07 -7.082107e-21 327 325 -3.132835e-08 1.297156e-22 328 325 0 6.1282e-11 329 325 0 -3.379248e-14 330 325 -1.059005e-05 5.57194e-11 331 325 7.610836e-08 3.374677e-14 332 325 0 6.1282e-11 333 325 0 -3.379248e-14 334 325 -1.059005e-05 5.57194e-11 335 325 7.610836e-08 3.374677e-14 356 325 0.0001557443 0 357 325 -9.366755e-07 0 358 325 -1.860518e-06 5.235552e-21 359 325 1.11948e-08 -3.193031e-23 360 325 0 -6.168438e-11 361 325 0 -2.083989e-14 362 325 1.150323e-05 -5.530715e-11 363 325 3.784063e-08 1.077588e-14 364 325 0 -6.168438e-11 365 325 0 -2.083989e-14 366 325 1.150323e-05 -5.530715e-11 367 325 3.784063e-08 1.077588e-14 326 326 0.1514488 0 327 326 -1.702342e-05 0 328 326 -0.002050627 -1.072054e-08 329 326 -0.002339684 -1.174849e-08 330 326 0 -1.180255e-08 331 326 0 -1.301579e-08 332 326 -0.002050627 -1.072054e-08 333 326 -0.002339684 -1.174849e-08 334 326 0 -1.180255e-08 335 326 0 -1.301579e-08 356 326 -0.0002987599 -8.547101e-19 357 326 1.875281e-06 5.442144e-21 358 326 0.02499872 0 359 326 -0.0001568435 0 360 326 -0.002203004 -1.065188e-08 361 326 0.0001034442 5.345943e-10 362 326 0 -1.186976e-08 363 326 0 5.89856e-10 364 326 -0.002203004 -1.065188e-08 365 326 0.0001034442 5.345943e-10 366 326 0 -1.186976e-08 367 326 0 5.89856e-10 327 327 2.621302e-06 0 328 327 1.059005e-05 5.57194e-11 329 327 -7.610836e-08 3.374677e-14 330 327 0 6.1282e-11 331 327 0 -3.379248e-14 332 327 1.059005e-05 5.57194e-11 333 327 -7.610836e-08 3.374677e-14 334 327 0 6.1282e-11 335 327 0 -3.379248e-14 356 327 -1.860518e-06 -5.235552e-21 357 327 1.11948e-08 3.193031e-23 358 327 0.0001557443 0 359 327 -9.366755e-07 0 360 327 -1.150323e-05 -5.530715e-11 361 327 -3.784063e-08 1.077588e-14 362 327 0 -6.168438e-11 363 327 0 -2.083989e-14 364 327 -1.150323e-05 -5.530715e-11 365 327 -3.784063e-08 1.077588e-14 366 327 0 -6.168438e-11 367 327 0 -2.083989e-14 328 328 0.006878126 0 329 328 0.0009056001 0 330 328 0.001504567 -3.679332e-18 331 328 0.0002079529 -5.856259e-19 332 328 0.006878126 0 333 328 0.0009056001 0 334 328 0.001504567 -3.679332e-18 335 328 0.0002079529 -5.856259e-19 329 329 0.003622527 0 330 329 0.0002079529 -5.856259e-19 331 329 0.0008332769 -2.510649e-18 332 329 0.0009056001 0 333 329 0.003622527 0 334 329 0.0002079529 -5.856259e-19 335 329 0.0008332769 -2.510649e-18 356 329 0 -5.986792e-10 357 329 0 2.083989e-14 358 329 0.0001194717 -5.300247e-10 359 329 -3.784063e-08 -1.077588e-14 360 329 0.0009055954 0 361 329 -0.0004758035 0 362 329 0.0002079531 -6.722958e-19 363 329 -0.0001148695 3.792722e-19 364 329 0.0009055954 0 365 329 -0.0004758035 0 366 329 0.0002079531 -6.722958e-19 367 329 -0.0001148695 3.792722e-19 330 330 0.006878126 0 331 330 0.0009056001 0 332 330 0.001504567 3.679332e-18 333 330 0.0002079529 5.856259e-19 334 330 0.006878126 0 335 330 0.0009056001 0 331 331 0.003622527 0 332 331 0.0002079529 5.856259e-19 333 331 0.0008332769 2.510649e-18 334 331 0.0009056001 0 335 331 0.003622527 0 356 331 -0.0001194717 -5.300247e-10 357 331 3.784063e-08 -1.077588e-14 358 331 0 -5.986792e-10 359 331 0 2.083989e-14 360 331 0.0002079531 6.722958e-19 361 331 -0.0001148695 -3.792722e-19 362 331 0.0009055954 0 363 331 -0.0004758035 0 364 331 0.0002079531 6.722958e-19 365 331 -0.0001148695 -3.792722e-19 366 331 0.0009055954 0 367 331 -0.0004758035 0 332 332 1.798985 0 333 332 0.21327 0 334 332 0.2448165 -7.960214e-16 335 332 0.03061911 -9.722819e-17 333 333 0.8547335 0 334 333 0.03061911 -9.722819e-17 335 333 0.1224775 -4.008728e-16 356 333 0 -5.986792e-10 357 333 0 2.083989e-14 358 333 0.0001194717 -5.300247e-10 359 333 -3.784063e-08 -1.077588e-14 360 333 0.0009055954 0 361 333 -0.0004758035 0 362 333 0.0002079531 -6.722958e-19 363 333 -0.0001148695 3.792722e-19 364 333 0.2133306 0 365 333 -0.1018474 0 366 333 0.03061903 -1.003217e-16 367 333 -0.01531885 5.221778e-17 334 334 1.798985 0 335 334 0.21327 0 335 335 0.8547335 0 356 335 -0.0001194717 -5.300247e-10 357 335 3.784063e-08 -1.077588e-14 358 335 0 -5.986792e-10 359 335 0 2.083989e-14 360 335 0.0002079531 6.722958e-19 361 335 -0.0001148695 -3.792722e-19 362 335 0.0009055954 0 363 335 -0.0004758035 0 364 335 0.03061903 1.003217e-16 365 335 -0.01531885 -5.221778e-17 366 335 0.2133306 0 367 335 -0.1018474 0 336 336 0.00853836 0 337 336 0.001012316 0 338 336 0.0005809726 -9.272779e-19 339 336 7.266893e-05 -1.089854e-19 337 337 0.004057108 0 338 337 7.266893e-05 -1.089854e-19 339 337 0.000290679 -5.583205e-19 368 337 0.001012604 0 369 337 -0.000483478 0 370 337 7.266872e-05 -1.447023e-19 371 337 -3.636045e-05 9.519647e-20 338 338 0.00853836 0 339 338 0.001012316 0 339 339 0.004057108 0 368 339 7.266872e-05 1.447023e-19 369 339 -3.636045e-05 -9.519647e-20 370 339 0.001012604 0 371 339 -0.000483478 0 340 340 0.006830742 0 341 340 0.0008987277 0 342 340 0.001042636 -3.17149e-18 343 340 0.0001441212 -3.951527e-19 344 340 0 -1.052614e-08 345 340 0 5.468064e-11 346 340 0.002066086 -9.271934e-09 347 340 -1.066892e-05 4.823891e-11 341 341 0.003594893 0 342 341 0.0001441212 -3.951527e-19 343 341 0.0005775057 -1.542452e-18 344 341 0 -1.157245e-08 345 341 0 2.085635e-15 346 341 0.002358716 -1.009444e-08 347 341 7.802798e-08 8.92185e-14 372 341 0.000898725 0 373 341 -0.0004717969 0 374 341 0.0001441213 -3.537184e-19 375 341 -7.961977e-05 2.129716e-19 376 341 0 5.267835e-10 377 341 0 -2.662625e-15 378 341 -0.0001206992 4.450562e-10 379 341 3.889814e-08 3.907884e-14 342 342 0.006830742 0 343 342 0.0008987277 0 344 342 -0.002066086 -9.271934e-09 345 342 1.066892e-05 4.823891e-11 346 342 0 -1.052614e-08 347 342 0 5.468064e-11 343 343 0.003594893 0 344 343 -0.002358716 -1.009444e-08 345 343 -7.802798e-08 8.92185e-14 346 343 0 -1.157245e-08 347 343 0 2.085635e-15 372 343 0.0001441213 3.537184e-19 373 343 -7.961977e-05 -2.129716e-19 374 343 0.000898725 0 375 343 -0.0004717969 0 376 343 0.0001206992 4.450562e-10 377 343 -3.889814e-08 3.907884e-14 378 343 0 5.267835e-10 379 343 0 -2.662625e-15 344 344 0.1556814 0 345 344 -1.651661e-05 0 346 344 -0.01259704 5.270236e-17 347 344 1.589419e-07 -2.006011e-20 372 344 0 1.052151e-08 373 344 0 -5.256595e-10 374 344 -0.002222311 9.092177e-09 375 344 0.0001042237 -4.616137e-10 376 344 0.02576898 0 377 344 -0.0001616411 0 378 344 -0.0021682 7.496652e-18 379 344 1.356188e-05 -4.762435e-20 345 345 2.694503e-06 0 346 345 1.589419e-07 -2.006011e-20 347 345 -2.178424e-07 8.977412e-22 372 345 0 5.465246e-11 373 345 0 2.662625e-15 374 345 -1.160516e-05 4.716086e-11 375 345 -3.889814e-08 -3.907884e-14 376 345 0.0001605783 0 377 345 -9.655374e-07 0 378 345 -1.354992e-05 4.60997e-20 379 345 8.124301e-08 -2.807432e-22 346 346 0.1556814 0 347 346 -1.651661e-05 0 372 346 0.002222311 9.092177e-09 373 346 -0.0001042237 -4.616137e-10 374 346 0 1.052151e-08 375 346 0 -5.256595e-10 376 346 -0.0021682 -7.496652e-18 377 346 1.356188e-05 4.762435e-20 378 346 0.02576898 0 379 346 -0.0001616411 0 347 347 2.694503e-06 0 372 347 1.160516e-05 4.716086e-11 373 347 3.889814e-08 -3.907884e-14 374 347 0 5.465246e-11 375 347 0 2.662625e-15 376 347 -1.354992e-05 -4.60997e-20 377 347 8.124301e-08 2.807432e-22 378 347 0.0001605783 0 379 347 -9.655374e-07 0 348 348 0.0007739658 0 349 348 9.371385e-08 0 380 348 0.000140932 0 381 348 -8.777586e-07 0 349 349 1.338562e-08 0 380 349 8.844928e-07 0 381 349 -5.280733e-09 0 350 350 0.0007739658 0 351 350 9.371385e-08 0 382 350 0.000140932 0 383 350 -8.777586e-07 0 351 351 1.338562e-08 0 382 351 8.844928e-07 0 383 351 -5.280733e-09 0 352 352 0.007730652 0 353 352 0.0009213081 0 354 352 0.0005817642 -1.562416e-18 355 352 7.277307e-05 -2.360836e-19 353 353 0.003691076 0 354 353 7.277307e-05 -2.360836e-19 355 353 0.0002910956 -8.895893e-19 384 353 0.0009215034 0 385 353 -0.0004417451 0 386 353 7.277285e-05 -2.321394e-19 387 353 -3.641515e-05 1.063684e-19 354 354 0.007730652 0 355 354 0.0009213081 0 355 355 0.003691076 0 384 355 7.277285e-05 2.321394e-19 385 355 -3.641515e-05 -1.063684e-19 386 355 0.0009215034 0 387 355 -0.0004417451 0 356 356 0.1381905 0 357 356 -1.400794e-05 0 358 356 -0.001634929 4.295518e-18 359 356 2.167307e-07 -1.0314e-21 360 356 0 -1.189864e-08 361 356 0 -1.31389e-08 362 356 0.002255458 -1.063692e-08 363 356 0.002564038 -1.168391e-08 364 356 0 -1.189864e-08 365 356 0 -1.31389e-08 366 356 0.002255458 -1.063692e-08 367 356 0.002564038 -1.168391e-08 388 356 0.02291547 0 389 356 -0.0001437253 0 390 356 -0.0002665771 6.368398e-19 391 356 1.674773e-06 -4.067794e-21 392 356 0 -1.199584e-08 393 356 0 5.949871e-10 394 356 0.002405988 -1.061539e-08 395 356 -0.0001136837 5.309172e-10 396 356 0 -1.199584e-08 397 356 0 5.949871e-10 398 356 0.002405988 -1.061539e-08 399 356 -0.0001136837 5.309172e-10 357 357 2.391463e-06 0 358 357 2.167307e-07 -1.0314e-21 359 357 -2.826202e-08 7.414152e-23 360 357 0 6.176774e-11 361 357 0 -4.873276e-14 362 357 -1.165459e-05 5.526405e-11 363 357 7.517764e-08 1.046772e-14 364 357 0 6.176774e-11 365 357 0 -4.873276e-14 366 357 -1.165459e-05 5.526405e-11 367 357 7.517764e-08 1.046772e-14 388 357 0.0001428129 0 389 357 -8.586179e-07 0 390 357 -1.658592e-06 3.898556e-21 391 357 9.988833e-09 -2.389303e-23 392 357 0 -6.234988e-11 393 357 0 -2.738132e-14 394 357 1.25567e-05 -5.513451e-11 395 357 3.73271e-08 4.256755e-16 396 357 0 -6.234988e-11 397 357 0 -2.738132e-14 398 357 1.25567e-05 -5.513451e-11 399 357 3.73271e-08 4.256755e-16 358 358 0.1381905 0 359 358 -1.400794e-05 0 360 358 -0.002255458 -1.063692e-08 361 358 -0.002564038 -1.168391e-08 362 358 0 -1.189864e-08 363 358 0 -1.31389e-08 364 358 -0.002255458 -1.063692e-08 365 358 -0.002564038 -1.168391e-08 366 358 0 -1.189864e-08 367 358 0 -1.31389e-08 388 358 -0.0002665771 -6.368398e-19 389 358 1.674773e-06 4.067794e-21 390 358 0.02291547 0 391 358 -0.0001437253 0 392 358 -0.002405988 -1.061539e-08 393 358 0.0001136837 5.309172e-10 394 358 0 -1.199584e-08 395 358 0 5.949871e-10 396 358 -0.002405988 -1.061539e-08 397 358 0.0001136837 5.309172e-10 398 358 0 -1.199584e-08 399 358 0 5.949871e-10 359 359 2.391463e-06 0 360 359 1.165459e-05 5.526405e-11 361 359 -7.517764e-08 1.046772e-14 362 359 0 6.176774e-11 363 359 0 -4.873276e-14 364 359 1.165459e-05 5.526405e-11 365 359 -7.517764e-08 1.046772e-14 366 359 0 6.176774e-11 367 359 0 -4.873276e-14 388 359 -1.658592e-06 -3.898556e-21 389 359 9.988833e-09 2.389303e-23 390 359 0.0001428129 0 391 359 -8.586179e-07 0 392 359 -1.25567e-05 -5.513451e-11 393 359 -3.73271e-08 4.256755e-16 394 359 0 -6.234988e-11 395 359 0 -2.738132e-14 396 359 -1.25567e-05 -5.513451e-11 397 359 -3.73271e-08 4.256755e-16 398 359 0 -6.234988e-11 399 359 0 -2.738132e-14 360 360 0.007612741 0 361 360 0.0009976185 0 362 360 0.001836742 -6.230847e-18 363 360 0.0002515248 -8.44793e-19 364 360 0.007612741 0 365 360 0.0009976185 0 366 360 0.001836742 -6.230847e-18 367 360 0.0002515248 -8.44793e-19 361 361 0.003990614 0 362 361 0.0002515248 -8.44793e-19 363 361 0.001007558 -3.233182e-18 364 361 0.0009976185 0 365 361 0.003990614 0 366 361 0.0002515248 -8.44793e-19 367 361 0.001007558 -3.233182e-18 388 361 0 -6.065823e-10 389 361 0 2.738132e-14 390 361 0.0001294942 -5.307331e-10 391 361 -3.73271e-08 -4.256755e-16 392 361 0.0009976137 0 393 361 -0.0005219172 0 394 361 0.0002515245 -8.085693e-19 395 361 -0.0001376767 3.966178e-19 396 361 0.0009976137 0 397 361 -0.0005219172 0 398 361 0.0002515245 -8.085693e-19 399 361 -0.0001376767 3.966178e-19 362 362 0.007612741 0 363 362 0.0009976185 0 364 362 0.001836742 6.230847e-18 365 362 0.0002515248 8.44793e-19 366 362 0.007612741 0 367 362 0.0009976185 0 363 363 0.003990614 0 364 363 0.0002515248 8.44793e-19 365 363 0.001007558 3.233182e-18 366 363 0.0009976185 0 367 363 0.003990614 0 388 363 -0.0001294942 -5.307331e-10 389 363 3.73271e-08 -4.256755e-16 390 363 0 -6.065823e-10 391 363 0 2.738132e-14 392 363 0.0002515245 8.085693e-19 393 363 -0.0001376767 -3.966178e-19 394 363 0.0009976137 0 395 363 -0.0005219172 0 396 363 0.0002515245 8.085693e-19 397 363 -0.0001376767 -3.966178e-19 398 363 0.0009976137 0 399 363 -0.0005219172 0 364 364 1.628505 0 365 364 0.1940591 0 366 364 0.2451005 -8.3335e-16 367 364 0.03065635 -1.085495e-16 365 365 0.7774685 0 366 365 0.03065635 -1.085495e-16 367 365 0.1226265 -4.448801e-16 388 365 0 -6.065823e-10 389 365 0 2.738132e-14 390 365 0.0001294942 -5.307331e-10 391 365 -3.73271e-08 -4.256755e-16 392 365 0.0009976137 0 393 365 -0.0005219172 0 394 365 0.0002515245 -8.085693e-19 395 365 -0.0001376767 3.966178e-19 396 365 0.1941003 0 397 365 -0.09303713 0 398 365 0.03065626 -1.068123e-16 399 365 -0.01533833 6.537406e-17 366 366 1.628505 0 367 366 0.1940591 0 367 367 0.7774685 0 388 367 -0.0001294942 -5.307331e-10 389 367 3.73271e-08 -4.256755e-16 390 367 0 -6.065823e-10 391 367 0 2.738132e-14 392 367 0.0002515245 8.085693e-19 393 367 -0.0001376767 -3.966178e-19 394 367 0.0009976137 0 395 367 -0.0005219172 0 396 367 0.03065626 1.068123e-16 397 367 -0.01533833 -6.537406e-17 398 367 0.1941003 0 399 367 -0.09303713 0 368 368 0.007730652 0 369 368 0.0009213081 0 370 368 0.0005817642 -1.562416e-18 371 368 7.277307e-05 -2.360836e-19 369 369 0.003691076 0 370 369 7.277307e-05 -2.360836e-19 371 369 0.0002910956 -8.895893e-19 400 369 0.0009215034 0 401 369 -0.0004417451 0 402 369 7.277285e-05 -2.321394e-19 403 369 -3.641515e-05 1.063684e-19 370 370 0.007730652 0 371 370 0.0009213081 0 371 371 0.003691076 0 400 371 7.277285e-05 2.321394e-19 401 371 -3.641515e-05 -1.063684e-19 402 371 0.0009215034 0 403 371 -0.0004417451 0 372 372 0.00754876 0 373 372 0.0009884625 0 374 372 0.001273101 -3.323157e-18 375 372 0.0001743578 -4.98168e-19 376 372 0 -1.052519e-08 377 372 0 5.466311e-11 378 372 0.00227623 -9.037985e-09 379 372 -1.176075e-05 4.700455e-11 373 373 0.00395383 0 374 373 0.0001743578 -4.98168e-19 375 373 0.0006984485 -2.017719e-18 376 373 0 -1.158777e-08 377 373 0 -1.192149e-14 378 373 0.002589344 -9.862042e-09 379 373 7.749296e-08 6.81815e-14 404 373 0.0009884597 0 405 373 -0.0005166544 0 406 373 0.0001743573 -5.332891e-19 407 373 -9.545061e-05 2.707712e-19 408 373 0 5.296244e-10 409 373 0 -8.73364e-15 410 373 -0.000131078 4.377487e-10 411 373 3.859092e-08 2.984588e-14 374 374 0.00754876 0 375 374 0.0009884625 0 376 374 -0.00227623 -9.037985e-09 377 374 1.176075e-05 4.700455e-11 378 374 0 -1.052519e-08 379 374 0 5.466311e-11 375 375 0.00395383 0 376 375 -0.002589344 -9.862042e-09 377 375 -7.749296e-08 6.81815e-14 378 375 0 -1.158777e-08 379 375 0 -1.192149e-14 404 375 0.0001743573 5.332891e-19 405 375 -9.545061e-05 -2.707712e-19 406 375 0.0009884597 0 407 375 -0.0005166544 0 408 375 0.000131078 4.377487e-10 409 375 -3.859092e-08 2.984588e-14 410 375 0 5.296244e-10 411 375 0 -8.73364e-15 376 376 0.1428598 0 377 376 -1.349683e-05 0 378 376 -0.01245333 3.663798e-17 379 376 1.761292e-07 -1.136729e-20 404 376 0 1.054866e-08 405 376 0 -5.259277e-10 406 376 -0.002431402 8.900876e-09 407 376 0.0001147322 -4.503941e-10 408 376 0.02376165 0 409 376 -0.0001489974 0 410 376 -0.002142059 5.785564e-18 411 376 1.3399e-05 -3.626998e-20 377 377 2.472216e-06 0 378 377 1.761292e-07 -1.136729e-20 379 377 -2.15356e-07 6.466354e-22 404 377 0 5.48034e-11 405 377 0 8.73364e-15 406 377 -1.269068e-05 4.618237e-11 407 377 -3.859092e-08 -2.984588e-14 408 377 0.0001481216 0 409 377 -8.903242e-07 0 410 377 -1.338584e-05 3.607253e-20 411 377 8.026301e-08 -2.167694e-22 378 378 0.1428598 0 379 378 -1.349683e-05 0 404 378 0.002431402 8.900876e-09 405 378 -0.0001147322 -4.503941e-10 406 378 0 1.054866e-08 407 378 0 -5.259277e-10 408 378 -0.002142059 -5.785564e-18 409 378 1.3399e-05 3.626998e-20 410 378 0.02376165 0 411 378 -0.0001489974 0 379 379 2.472216e-06 0 404 379 1.269068e-05 4.618237e-11 405 379 3.859092e-08 -2.984588e-14 406 379 0 5.48034e-11 407 379 0 8.73364e-15 408 379 -1.338584e-05 -3.607253e-20 409 379 8.026301e-08 2.167694e-22 410 379 0.0001481216 0 411 379 -8.903242e-07 0 380 380 0.0008548735 0 381 380 9.486257e-08 0 412 380 0.0001550225 0 413 380 -9.658084e-07 0 381 381 1.478482e-08 0 412 381 9.726292e-07 0 413 381 -5.808672e-09 0 382 382 0.0008548735 0 383 382 9.486257e-08 0 414 382 0.0001550225 0 415 382 -9.658084e-07 0 383 383 1.478482e-08 0 414 383 9.726292e-07 0 415 383 -5.808672e-09 0 384 384 0.00706412 0 385 384 0.0008454769 0 386 384 0.0005826393 -1.703687e-18 387 384 7.288773e-05 -1.933343e-19 385 385 0.003386379 0 386 385 7.288773e-05 -1.933343e-19 387 385 0.0002915543 -8.191253e-19 416 385 0.0008456142 0 417 385 -0.0004067384 0 418 385 7.288751e-05 -1.84191e-19 419 385 -3.647516e-05 1.282022e-19 386 386 0.00706412 0 387 386 0.0008454769 0 387 387 0.003386379 0 416 387 7.288751e-05 1.84191e-19 417 387 -3.647516e-05 -1.282022e-19 418 387 0.0008456142 0 419 387 -0.0004067384 0 388 388 0.1271923 0 389 388 -1.171572e-05 0 390 388 -0.001440484 2.606082e-18 391 388 2.365646e-07 -2.340056e-21 392 388 0 -1.203379e-08 393 388 0 -1.330093e-08 394 388 0.002457732 -1.061478e-08 395 388 0.002785391 -1.16809e-08 396 388 0 -1.203379e-08 397 388 0 -1.330093e-08 398 388 0.002457732 -1.061478e-08 399 388 0.002785391 -1.16809e-08 420 388 0.02117351 0 421 388 -0.0001327623 0 422 388 -0.0002314411 3.22011e-19 423 388 1.455815e-06 -2.035446e-21 424 388 0 -1.215409e-08 425 388 0 6.019845e-10 426 388 0.002606199 -1.063026e-08 427 388 -0.000123782 5.301856e-10 428 388 0 -1.215409e-08 429 388 0 6.019845e-10 430 388 0.002606199 -1.063026e-08 431 388 -0.000123782 5.301856e-10 389 389 2.200878e-06 0 390 389 2.365646e-07 -2.340056e-21 391 389 -2.48989e-08 4.635158e-23 392 389 0 6.24594e-11 393 389 0 -6.017571e-14 394 389 -1.270601e-05 5.513281e-11 395 389 7.412622e-08 -7.92732e-15 396 389 0 6.24594e-11 397 389 0 -6.017571e-14 398 389 -1.270601e-05 5.513281e-11 399 389 7.412622e-08 -7.92732e-15 420 389 0.0001319938 0 421 389 -7.933474e-07 0 422 389 -1.438194e-06 1.986949e-21 423 389 8.672242e-09 -1.202576e-23 424 389 0 -6.318005e-11 425 389 0 -3.249467e-14 426 389 1.359577e-05 -5.522514e-11 427 389 3.683374e-08 -7.820657e-15 428 389 0 -6.318005e-11 429 389 0 -3.249467e-14 430 389 1.359577e-05 -5.522514e-11 431 389 3.683374e-08 -7.820657e-15 390 390 0.1271923 0 391 390 -1.171572e-05 0 392 390 -0.002457732 -1.061478e-08 393 390 -0.002785391 -1.16809e-08 394 390 0 -1.203379e-08 395 390 0 -1.330093e-08 396 390 -0.002457732 -1.061478e-08 397 390 -0.002785391 -1.16809e-08 398 390 0 -1.203379e-08 399 390 0 -1.330093e-08 420 390 -0.0002314411 -3.22011e-19 421 390 1.455815e-06 2.035446e-21 422 390 0.02117351 0 423 390 -0.0001327623 0 424 390 -0.002606199 -1.063026e-08 425 390 0.000123782 5.301856e-10 426 390 0 -1.215409e-08 427 390 0 6.019845e-10 428 390 -0.002606199 -1.063026e-08 429 390 0.000123782 5.301856e-10 430 390 0 -1.215409e-08 431 390 0 6.019845e-10 391 391 2.200878e-06 0 392 391 1.270601e-05 5.513281e-11 393 391 -7.412622e-08 -7.92732e-15 394 391 0 6.24594e-11 395 391 0 -6.017571e-14 396 391 1.270601e-05 5.513281e-11 397 391 -7.412622e-08 -7.92732e-15 398 391 0 6.24594e-11 399 391 0 -6.017571e-14 420 391 -1.438194e-06 -1.986949e-21 421 391 8.672242e-09 1.202576e-23 422 391 0.0001319938 0 423 391 -7.933474e-07 0 424 391 -1.359577e-05 -5.522514e-11 425 391 -3.683374e-08 -7.820657e-15 426 391 0 -6.318005e-11 427 391 0 -3.249467e-14 428 391 -1.359577e-05 -5.522514e-11 429 391 -3.683374e-08 -7.820657e-15 430 391 0 -6.318005e-11 431 391 0 -3.249467e-14 392 392 0.00835055 0 393 392 0.001090055 0 394 392 0.002201662 -6.309329e-18 395 392 0.0002991825 -7.779018e-19 396 392 0.00835055 0 397 392 0.001090055 0 398 392 0.002201662 -6.309329e-18 399 392 0.0002991825 -7.779018e-19 393 393 0.004360373 0 394 393 0.0002991825 -7.779018e-19 395 393 0.001198183 -3.19071e-18 396 393 0.001090055 0 397 393 0.004360373 0 398 393 0.0002991825 -7.779018e-19 399 393 0.001198183 -3.19071e-18 420 393 0 -6.157462e-10 421 393 0 3.249467e-14 422 393 0.0001393831 -5.334955e-10 423 393 -3.683374e-08 7.820657e-15 424 393 0.00109005 0 425 393 -0.0005682495 0 426 393 0.0002991824 -7.815949e-19 427 393 -0.0001625226 4.343943e-19 428 393 0.00109005 0 429 393 -0.0005682495 0 430 393 0.0002991824 -7.815949e-19 431 393 -0.0001625226 4.343943e-19 394 394 0.00835055 0 395 394 0.001090055 0 396 394 0.002201662 6.309329e-18 397 394 0.0002991825 7.779018e-19 398 394 0.00835055 0 399 394 0.001090055 0 395 395 0.004360373 0 396 395 0.0002991825 7.779018e-19 397 395 0.001198183 3.19071e-18 398 395 0.001090055 0 399 395 0.004360373 0 420 395 -0.0001393831 -5.334955e-10 421 395 3.683374e-08 7.820657e-15 422 395 0 -6.157462e-10 423 395 0 3.249467e-14 424 395 0.0002991824 7.815949e-19 425 395 -0.0001625226 -4.343943e-19 426 395 0.00109005 0 427 395 -0.0005682495 0 428 395 0.0002991824 7.815949e-19 429 395 -0.0001625226 -4.343943e-19 430 395 0.00109005 0 431 395 -0.0005682495 0 396 396 1.487793 0 397 396 0.1780483 0 398 396 0.2454123 -1.045259e-15 399 396 0.03069705 -1.54684e-16 397 397 0.7131358 0 398 397 0.03069705 -1.54684e-16 399 397 0.1227892 -5.945257e-16 420 397 0 -6.157462e-10 421 397 0 3.249467e-14 422 397 0.0001393831 -5.334955e-10 423 397 -3.683374e-08 7.820657e-15 424 397 0.00109005 0 425 397 -0.0005682495 0 426 397 0.0002991824 -7.815949e-19 427 397 -0.0001625226 4.343943e-19 428 397 0.1780772 0 429 397 -0.08564501 0 430 397 0.03069696 -1.611025e-16 431 397 -0.01535954 6.615796e-17 398 398 1.487793 0 399 398 0.1780483 0 399 399 0.7131358 0 420 399 -0.0001393831 -5.334955e-10 421 399 3.683374e-08 7.820657e-15 422 399 0 -6.157462e-10 423 399 0 3.249467e-14 424 399 0.0002991824 7.815949e-19 425 399 -0.0001625226 -4.343943e-19 426 399 0.00109005 0 427 399 -0.0005682495 0 428 399 0.03069696 1.611025e-16 429 399 -0.01535954 -6.615796e-17 430 399 0.1780772 0 431 399 -0.08564501 0 400 400 0.00706412 0 401 400 0.0008454769 0 402 400 0.0005826393 -1.703687e-18 403 400 7.288773e-05 -1.933343e-19 401 401 0.003386379 0 402 401 7.288773e-05 -1.933343e-19 403 401 0.0002915543 -8.191253e-19 432 401 0.0008456142 0 433 401 -0.0004067384 0 434 401 7.288751e-05 -1.84191e-19 435 401 -3.647516e-05 1.282022e-19 402 402 0.00706412 0 403 402 0.0008454769 0 403 403 0.003386379 0 432 403 7.288751e-05 1.84191e-19 433 403 -3.647516e-05 -1.282022e-19 434 403 0.0008456142 0 435 403 -0.0004067384 0 404 404 0.008266483 0 405 404 0.001078158 0 406 404 0.001526396 -4.402856e-18 407 404 0.0002074451 -5.497956e-19 408 404 0 -1.056076e-08 409 404 0 5.483834e-11 410 404 0.002484897 -8.859489e-09 411 404 -1.284505e-05 4.606298e-11 405 405 0.004312611 0 406 405 0.0002074451 -5.497956e-19 407 405 0.0008307953 -2.180548e-18 408 405 0 -1.163923e-08 409 405 0 -2.241863e-14 410 405 0.002818196 -9.684582e-09 411 405 7.687329e-08 5.201248e-14 436 405 0.001078155 0 437 405 -0.0005614914 0 438 405 0.000207445 -5.247632e-19 439 405 -0.000112705 2.89433e-19 440 405 0 5.335982e-10 441 405 0 -1.337357e-14 442 405 -0.0001413859 4.321958e-10 443 405 3.832452e-08 2.271236e-14 406 406 0.008266483 0 407 406 0.001078158 0 408 406 -0.002484897 -8.859489e-09 409 406 1.284505e-05 4.606298e-11 410 406 0 -1.056076e-08 411 406 0 5.483834e-11 407 407 0.004312611 0 408 407 -0.002818196 -9.684582e-09 409 407 -7.687329e-08 5.201248e-14 410 407 0 -1.163923e-08 411 407 0 -2.241863e-14 436 407 0.000207445 5.247632e-19 437 407 -0.000112705 -2.89433e-19 438 407 0.001078155 0 439 407 -0.0005614914 0 440 407 0.0001413859 4.321958e-10 441 407 -3.832452e-08 2.271236e-14 442 407 0 5.335982e-10 443 407 0 -1.337357e-14 408 408 0.1323023 0 409 408 -1.119978e-05 0 410 408 -0.01229506 2.978085e-17 411 408 1.930376e-07 -1.424758e-20 436 408 0 1.060544e-08 437 408 0 -5.279355e-10 438 408 -0.002638872 8.754923e-09 439 408 0.0001251534 -4.418186e-10 440 408 0.02209633 0 441 408 -0.0001385133 0 442 408 -0.002113399 3.551275e-18 443 408 1.32204e-05 -2.332064e-20 409 409 2.289252e-06 0 410 409 1.930376e-07 -1.424758e-20 411 409 -2.126172e-07 4.927326e-22 436 409 0 5.51058e-11 437 409 0 1.337357e-14 438 409 -1.376782e-05 4.543593e-11 439 409 -3.832452e-08 -2.271236e-14 440 409 0.0001377818 0 441 409 -8.27925e-07 0 442 409 -1.320599e-05 2.109287e-20 443 409 7.918865e-08 -1.331397e-22 410 410 0.1323023 0 411 410 -1.119978e-05 0 436 410 0.002638872 8.754923e-09 437 410 -0.0001251534 -4.418186e-10 438 410 0 1.060544e-08 439 410 0 -5.279355e-10 440 410 -0.002113399 -3.551275e-18 441 410 1.32204e-05 2.332064e-20 442 410 0.02209633 0 443 410 -0.0001385133 0 411 411 2.289252e-06 0 436 411 1.376782e-05 4.543593e-11 437 411 3.832452e-08 -2.271236e-14 438 411 0 5.51058e-11 439 411 0 1.337357e-14 440 411 -1.320599e-05 -2.109287e-20 441 411 7.918865e-08 1.331397e-22 442 411 0.0001377818 0 443 411 -8.27925e-07 0 412 412 0.0009368227 0 413 412 9.614066e-08 0 444 412 0.000169303 0 445 412 -1.055041e-06 0 413 413 1.620203e-08 0 444 413 1.061958e-06 0 445 413 -6.343723e-09 0 414 414 0.0009368227 0 415 414 9.614066e-08 0 446 414 0.000169303 0 447 414 -1.055041e-06 0 415 415 1.620203e-08 0 446 415 1.061958e-06 0 447 415 -6.343723e-09 0 416 416 0.006504854 0 417 416 0.0007813394 0 418 416 0.0005835995 -2.036648e-18 419 416 7.301314e-05 -3.286177e-19 417 417 0.003128854 0 418 417 7.301314e-05 -3.286177e-19 419 417 0.000292056 -1.244602e-18 448 417 0.0007814385 0 449 417 -0.0003769597 0 450 417 7.301291e-05 -3.46541e-19 451 417 -3.654059e-05 1.327857e-19 418 418 0.006504854 0 419 418 0.0007813394 0 419 419 0.003128854 0 448 419 7.301291e-05 3.46541e-19 449 419 -3.654059e-05 -1.327857e-19 450 419 0.0007814385 0 451 419 -0.0003769597 0 420 420 0.1179324 0 421 420 -9.931545e-06 0 422 420 -0.001228836 1.989672e-18 423 420 2.566389e-07 8.996726e-22 424 420 0 -1.219912e-08 425 420 0 -1.349336e-08 426 420 0.002657257 -1.064109e-08 427 420 0.003003771 -1.172692e-08 428 420 0 -1.219912e-08 429 420 0 -1.349336e-08 430 420 0.002657257 -1.064109e-08 431 420 0.003003771 -1.172692e-08 452 420 0.01969708 0 453 420 -0.0001234749 0 454 420 -0.000193327 4.363576e-19 455 420 1.218226e-06 -2.675718e-21 456 420 0 -1.233777e-08 457 420 0 6.104346e-10 458 420 0.002803655 -1.068633e-08 459 420 -0.0001337545 5.317884e-10 460 420 0 -1.233777e-08 461 420 0 6.104346e-10 462 420 0.002803655 -1.068633e-08 463 420 -0.0001337545 5.317884e-10 421 421 2.040461e-06 0 422 421 2.566389e-07 8.996726e-22 423 421 -2.123889e-08 3.592428e-23 424 421 0 6.331003e-11 425 421 0 -6.929392e-14 426 421 -1.374311e-05 5.525642e-11 427 421 7.31134e-08 -2.271693e-14 428 421 0 6.331003e-11 429 421 0 -6.929392e-14 430 421 -1.374311e-05 5.525642e-11 431 421 7.31134e-08 -2.271693e-14 452 421 0.0001228193 0 453 421 -7.380255e-07 0 454 421 -1.199189e-06 2.781894e-21 455 421 7.244074e-09 -1.636299e-23 456 421 0 -6.414066e-11 457 421 0 -3.660035e-14 458 421 1.462044e-05 -5.552723e-11 459 421 3.626608e-08 -1.454268e-14 460 421 0 -6.414066e-11 461 421 0 -3.660035e-14 462 421 1.462044e-05 -5.552723e-11 463 421 3.626608e-08 -1.454268e-14 422 422 0.1179324 0 423 422 -9.931545e-06 0 424 422 -0.002657257 -1.064109e-08 425 422 -0.003003771 -1.172692e-08 426 422 0 -1.219912e-08 427 422 0 -1.349336e-08 428 422 -0.002657257 -1.064109e-08 429 422 -0.003003771 -1.172692e-08 430 422 0 -1.219912e-08 431 422 0 -1.349336e-08 452 422 -0.000193327 -4.363576e-19 453 422 1.218226e-06 2.675718e-21 454 422 0.01969708 0 455 422 -0.0001234749 0 456 422 -0.002803655 -1.068633e-08 457 422 0.0001337545 5.317884e-10 458 422 0 -1.233777e-08 459 422 0 6.104346e-10 460 422 -0.002803655 -1.068633e-08 461 422 0.0001337545 5.317884e-10 462 422 0 -1.233777e-08 463 422 0 6.104346e-10 423 423 2.040461e-06 0 424 423 1.374311e-05 5.525642e-11 425 423 -7.31134e-08 -2.271693e-14 426 423 0 6.331003e-11 427 423 0 -6.929392e-14 428 423 1.374311e-05 5.525642e-11 429 423 -7.31134e-08 -2.271693e-14 430 423 0 6.331003e-11 431 423 0 -6.929392e-14 452 423 -1.199189e-06 -2.781894e-21 453 423 7.244074e-09 1.636299e-23 454 423 0.0001228193 0 455 423 -7.380255e-07 0 456 423 -1.462044e-05 -5.552723e-11 457 423 -3.626608e-08 -1.454268e-14 458 423 0 -6.414066e-11 459 423 0 -3.660035e-14 460 423 -1.462044e-05 -5.552723e-11 461 423 -3.626608e-08 -1.454268e-14 462 423 0 -6.414066e-11 463 423 0 -3.660035e-14 424 424 0.009091855 0 425 424 0.001182948 0 426 424 0.002599203 -6.98169e-18 427 424 0.0003509081 -9.559822e-19 428 424 0.009091855 0 429 424 0.001182948 0 430 424 0.002599203 -6.98169e-18 431 424 0.0003509081 -9.559822e-19 425 425 0.004731958 0 426 425 0.0003509081 -9.559822e-19 427 425 0.001405078 -3.658459e-18 428 425 0.001182948 0 429 425 0.004731958 0 430 425 0.0003509081 -9.559822e-19 431 425 0.001405078 -3.658459e-18 452 425 0 -6.259357e-10 453 425 0 3.660035e-14 454 425 0.0001491155 -5.379461e-10 455 425 -3.626608e-08 1.454268e-14 456 425 0.001182943 0 457 425 -0.0006148197 0 458 425 0.0003509078 -9.603421e-19 459 425 -0.0001893976 3.962497e-19 460 425 0.001182943 0 461 425 -0.0006148197 0 462 425 0.0003509078 -9.603421e-19 463 425 -0.0001893976 3.962497e-19 426 426 0.009091855 0 427 426 0.001182948 0 428 426 0.002599203 6.98169e-18 429 426 0.0003509081 9.559822e-19 430 426 0.009091855 0 431 426 0.001182948 0 427 427 0.004731958 0 428 427 0.0003509081 9.559822e-19 429 427 0.001405078 3.658459e-18 430 427 0.001182948 0 431 427 0.004731958 0 452 427 -0.0001491155 -5.379461e-10 453 427 3.626608e-08 1.454268e-14 454 427 0 -6.259357e-10 455 427 0 3.660035e-14 456 427 0.0003509078 9.603421e-19 457 427 -0.0001893976 -3.962497e-19 458 427 0.001182943 0 459 427 -0.0006148197 0 460 427 0.0003509078 9.603421e-19 461 427 -0.0001893976 -3.962497e-19 462 427 0.001182943 0 463 427 -0.0006148197 0 428 428 1.369696 0 429 428 0.1645028 0 430 428 0.2457516 -1.079483e-15 431 428 0.03074119 -1.035293e-16 429 429 0.6587487 0 430 429 0.03074119 -1.035293e-16 431 429 0.1229658 -4.227459e-16 452 429 0 -6.259357e-10 453 429 0 3.660035e-14 454 429 0.0001491155 -5.379461e-10 455 429 -3.626608e-08 1.454268e-14 456 429 0.001182943 0 457 429 -0.0006148197 0 458 429 0.0003509078 -9.603421e-19 459 429 -0.0001893976 3.962497e-19 460 429 0.1645237 0 461 429 -0.07935512 0 462 429 0.0307411 -9.486812e-17 463 429 -0.01538246 5.209489e-17 430 430 1.369696 0 431 430 0.1645028 0 431 431 0.6587487 0 452 431 -0.0001491155 -5.379461e-10 453 431 3.626608e-08 1.454268e-14 454 431 0 -6.259357e-10 455 431 0 3.660035e-14 456 431 0.0003509078 9.603421e-19 457 431 -0.0001893976 -3.962497e-19 458 431 0.001182943 0 459 431 -0.0006148197 0 460 431 0.0307411 9.486812e-17 461 431 -0.01538246 -5.209489e-17 462 431 0.1645237 0 463 431 -0.07935512 0 432 432 0.006504854 0 433 432 0.0007813394 0 434 432 0.0005835995 -2.036648e-18 435 432 7.301314e-05 -3.286177e-19 433 433 0.003128854 0 434 433 7.301314e-05 -3.286177e-19 435 433 0.000292056 -1.244602e-18 464 433 0.0007814385 0 465 433 -0.0003769597 0 466 433 7.301291e-05 -3.46541e-19 467 433 -3.654059e-05 1.327857e-19 434 434 0.006504854 0 435 434 0.0007813394 0 435 435 0.003128854 0 464 435 7.301291e-05 3.46541e-19 465 435 -3.654059e-05 -1.327857e-19 466 435 0.0007814385 0 467 435 -0.0003769597 0 436 436 0.008983876 0 437 436 0.001167811 0 438 436 0.001802469 -4.584842e-18 439 436 0.000243375 -6.329689e-19 440 436 0 -1.062397e-08 441 436 0 5.51593e-11 442 436 0.002691997 -8.723428e-09 443 436 -1.392111e-05 4.534508e-11 437 437 0.00467122 0 438 437 0.000243375 -6.329689e-19 439 437 0.0009745113 -2.544446e-18 440 437 0 -1.171829e-08 441 437 0 -3.058991e-14 442 437 0.003045419 -9.549553e-09 443 437 7.633498e-08 3.944451e-14 468 437 0.001167808 0 469 437 -0.0006063062 0 470 437 0.0002433746 -6.319216e-19 471 437 -0.0001313783 3.510027e-19 472 437 0 5.384695e-10 473 437 0 -1.70043e-14 474 437 -0.0001516051 4.280325e-10 475 437 3.800245e-08 1.709951e-14 438 438 0.008983876 0 439 438 0.001167811 0 440 438 -0.002691997 -8.723428e-09 441 438 1.392111e-05 4.534508e-11 442 438 0 -1.062397e-08 443 438 0 5.51593e-11 439 439 0.00467122 0 440 439 -0.003045419 -9.549553e-09 441 439 -7.633498e-08 3.944451e-14 442 439 0 -1.171829e-08 443 439 0 -3.058991e-14 468 439 0.0002433746 6.319216e-19 469 439 -0.0001313783 -3.510027e-19 470 439 0.001167808 0 471 439 -0.0006063062 0 472 439 0.0001516051 4.280325e-10 473 439 -3.800245e-08 1.709951e-14 474 439 0 5.384695e-10 475 439 0 -1.70043e-14 440 440 0.1234874 0 441 440 -9.410289e-06 0 442 440 -0.01212202 1.101244e-17 443 440 2.103872e-07 -1.262512e-20 468 440 0 1.06851e-08 469 440 0 -5.312685e-10 470 440 -0.00284485 8.644181e-09 471 440 0.0001355086 -4.352772e-10 472 440 0.02069733 0 473 440 -0.0001297097 0 474 440 -0.002082165 1.992505e-18 475 440 1.30257e-05 -1.165773e-20 441 441 2.136531e-06 0 442 441 2.103872e-07 -1.262512e-20 443 441 -2.096236e-07 2.288557e-22 468 441 0 5.552538e-11 469 441 0 1.70043e-14 470 441 -1.483714e-05 4.486984e-11 471 441 -3.800245e-08 -1.709951e-14 472 441 0.0001290916 0 473 441 -7.75504e-07 0 474 441 -1.301006e-05 1.319843e-20 475 441 7.801787e-08 -7.408884e-23 442 442 0.1234874 0 443 442 -9.410289e-06 0 468 442 0.00284485 8.644181e-09 469 442 -0.0001355086 -4.352772e-10 470 442 0 1.06851e-08 471 442 0 -5.312685e-10 472 442 -0.002082165 -1.992505e-18 473 442 1.30257e-05 1.165773e-20 474 442 0.02069733 0 475 442 -0.0001297097 0 443 443 2.136531e-06 0 468 443 1.483714e-05 4.486984e-11 469 443 3.800245e-08 -1.709951e-14 470 443 0 5.552538e-11 471 443 0 1.70043e-14 472 443 -1.301006e-05 -1.319843e-20 473 443 7.801787e-08 7.408884e-23 474 443 0.0001290916 0 475 443 -7.75504e-07 0 444 444 0.001019927 0 445 444 9.755302e-08 0 476 444 0.0001837934 0 477 444 -1.14558e-06 0 445 445 1.763919e-08 0 476 445 1.152603e-06 0 477 445 -6.886634e-09 0 446 446 0.001019927 0 447 446 9.755302e-08 0 478 446 0.0001837934 0 479 446 -1.14558e-06 0 447 447 1.763919e-08 0 478 447 1.152603e-06 0 479 447 -6.886634e-09 0 448 448 0.006029006 0 449 448 0.0007264004 0 450 448 0.0005846463 -2.180029e-18 451 448 7.314944e-05 -1.846018e-19 449 449 0.002908388 0 450 449 7.314944e-05 -1.846018e-19 451 449 0.0002926013 -7.630897e-19 480 449 0.0007264736 0 481 449 -0.0003513254 0 482 449 7.314921e-05 -1.638561e-19 483 449 -3.661152e-05 9.063973e-20 450 450 0.006029006 0 451 450 0.0007264004 0 451 451 0.002908388 0 480 451 7.314921e-05 1.638561e-19 481 451 -3.661152e-05 -9.063973e-20 482 451 0.0007264736 0 483 451 -0.0003513254 0 452 452 0.1100376 0 453 452 -8.516697e-06 0 454 452 -0.001000055 2.754264e-18 455 452 2.767518e-07 -2.098192e-22 456 452 0 -1.23885e-08 457 452 0 -1.37102e-08 458 452 0.002853927 -1.070648e-08 459 452 0.003218818 -1.181289e-08 460 452 0 -1.23885e-08 461 452 0 -1.37102e-08 462 452 0.002853927 -1.070648e-08 463 452 0.003218818 -1.181289e-08 484 452 0.01843117 0 485 452 -0.0001155148 0 486 452 -0.0001522229 4.220381e-19 487 452 9.619698e-07 -2.672873e-21 488 452 0 -1.254201e-08 489 452 0 6.200458e-10 490 452 0.002997962 -1.077628e-08 491 452 -0.0001435756 5.352853e-10 492 452 0 -1.254201e-08 493 452 0 6.200458e-10 494 452 0.002997962 -1.077628e-08 495 452 -0.0001435756 5.352853e-10 453 453 1.903726e-06 0 454 453 2.767518e-07 -2.098192e-22 455 453 -1.728175e-08 4.525165e-23 456 453 0 6.428706e-11 457 453 0 -7.668336e-14 458 453 -1.47655e-05 5.55854e-11 459 453 7.192038e-08 -3.493369e-14 460 453 0 6.428706e-11 461 453 0 -7.668336e-14 462 453 -1.47655e-05 5.55854e-11 463 453 7.192038e-08 -3.493369e-14 484 453 0.0001149498 0 485 453 -6.905912e-07 0 486 453 -9.414667e-07 2.600245e-21 487 453 5.703892e-09 -1.577352e-23 488 453 0 -6.520682e-11 489 453 0 -3.996427e-14 490 453 1.562868e-05 -5.600345e-11 491 453 3.566794e-08 -2.014956e-14 492 453 0 -6.520682e-11 493 453 0 -3.996427e-14 494 453 1.562868e-05 -5.600345e-11 495 453 3.566794e-08 -2.014956e-14 454 454 0.1100376 0 455 454 -8.516697e-06 0 456 454 -0.002853927 -1.070648e-08 457 454 -0.003218818 -1.181289e-08 458 454 0 -1.23885e-08 459 454 0 -1.37102e-08 460 454 -0.002853927 -1.070648e-08 461 454 -0.003218818 -1.181289e-08 462 454 0 -1.23885e-08 463 454 0 -1.37102e-08 484 454 -0.0001522229 -4.220381e-19 485 454 9.619698e-07 2.672873e-21 486 454 0.01843117 0 487 454 -0.0001155148 0 488 454 -0.002997962 -1.077628e-08 489 454 0.0001435756 5.352853e-10 490 454 0 -1.254201e-08 491 454 0 6.200458e-10 492 454 -0.002997962 -1.077628e-08 493 454 0.0001435756 5.352853e-10 494 454 0 -1.254201e-08 495 454 0 6.200458e-10 455 455 1.903726e-06 0 456 455 1.47655e-05 5.55854e-11 457 455 -7.192038e-08 -3.493369e-14 458 455 0 6.428706e-11 459 455 0 -7.668336e-14 460 455 1.47655e-05 5.55854e-11 461 455 -7.192038e-08 -3.493369e-14 462 455 0 6.428706e-11 463 455 0 -7.668336e-14 484 455 -9.414667e-07 -2.600245e-21 485 455 5.703892e-09 1.577352e-23 486 455 0.0001149498 0 487 455 -6.905912e-07 0 488 455 -1.562868e-05 -5.600345e-11 489 455 -3.566794e-08 -2.014956e-14 490 455 0 -6.520682e-11 491 455 0 -3.996427e-14 492 455 -1.562868e-05 -5.600345e-11 493 455 -3.566794e-08 -2.014956e-14 494 455 0 -6.520682e-11 495 455 0 -3.996427e-14 456 456 0.009836968 0 457 456 0.001276336 0 458 456 0.003029208 -6.316378e-18 459 456 0.0004066827 -6.246568e-19 460 456 0.009836968 0 461 456 0.001276336 0 462 456 0.003029208 -6.316378e-18 463 456 0.0004066827 -6.246568e-19 457 457 0.005105524 0 458 457 0.0004066827 -6.246568e-19 459 457 0.001628169 -2.77288e-18 460 457 0.001276336 0 461 457 0.005105524 0 462 457 0.0004066827 -6.246568e-19 463 457 0.001628169 -2.77288e-18 484 457 0 -6.369722e-10 485 457 0 3.996427e-14 486 457 0.0001586831 -5.438183e-10 487 457 -3.566794e-08 2.014956e-14 488 457 0.00127633 0 489 457 -0.0006616469 0 490 457 0.0004066824 -6.074132e-19 491 457 -0.000218292 4.470946e-19 492 457 0.00127633 0 493 457 -0.0006616469 0 494 457 0.0004066824 -6.074132e-19 495 457 -0.000218292 4.470946e-19 458 458 0.009836968 0 459 458 0.001276336 0 460 458 0.003029208 6.316378e-18 461 458 0.0004066827 6.246568e-19 462 458 0.009836968 0 463 458 0.001276336 0 459 459 0.005105524 0 460 459 0.0004066827 6.246568e-19 461 459 0.001628169 2.77288e-18 462 459 0.001276336 0 463 459 0.005105524 0 484 459 -0.0001586831 -5.438183e-10 485 459 3.566794e-08 2.014956e-14 486 459 0 -6.369722e-10 487 459 0 3.996427e-14 488 459 0.0004066824 6.074132e-19 489 459 -0.000218292 -4.470946e-19 490 459 0.00127633 0 491 459 -0.0006616469 0 492 459 0.0004066824 6.074132e-19 493 459 -0.000218292 -4.470946e-19 494 459 0.00127633 0 495 459 -0.0006616469 0 460 460 1.269187 0 461 460 0.1528967 0 462 460 0.2461184 -8.153501e-16 463 460 0.03078874 -1.135114e-16 461 461 0.6121744 0 462 461 0.03078874 -1.135114e-16 463 461 0.123156 -4.480732e-16 484 461 0 -6.369722e-10 485 461 0 3.996427e-14 486 461 0.0001586831 -5.438183e-10 487 461 -3.566794e-08 2.014956e-14 488 461 0.00127633 0 489 461 -0.0006616469 0 490 461 0.0004066824 -6.074132e-19 491 461 -0.000218292 4.470946e-19 492 461 0.1529122 0 493 461 -0.07393894 0 494 461 0.03078865 -1.2061e-16 495 461 -0.01540708 5.004643e-17 462 462 1.269187 0 463 462 0.1528967 0 463 463 0.6121744 0 484 463 -0.0001586831 -5.438183e-10 485 463 3.566794e-08 2.014956e-14 486 463 0 -6.369722e-10 487 463 0 3.996427e-14 488 463 0.0004066824 6.074132e-19 489 463 -0.000218292 -4.470946e-19 490 463 0.00127633 0 491 463 -0.0006616469 0 492 463 0.03078865 1.2061e-16 493 463 -0.01540708 -5.004643e-17 494 463 0.1529122 0 495 463 -0.07393894 0 464 464 0.006029006 0 465 464 0.0007264004 0 466 464 0.0005846463 -2.180029e-18 467 464 7.314944e-05 -1.846018e-19 465 465 0.002908388 0 466 465 7.314944e-05 -1.846018e-19 467 465 0.0002926013 -7.630897e-19 496 465 0.0007264736 0 497 465 -0.0003513254 0 498 465 7.314921e-05 -1.638561e-19 499 465 -3.661152e-05 9.063973e-20 466 466 0.006029006 0 467 466 0.0007264004 0 467 467 0.002908388 0 496 467 7.314921e-05 1.638561e-19 497 467 -3.661152e-05 -9.063973e-20 498 467 0.0007264736 0 499 467 -0.0003513254 0 468 468 0.009700913 0 469 468 0.001257417 0 470 468 0.002101244 -5.530473e-18 471 468 0.0002821386 -7.720893e-19 472 468 0 -1.070867e-08 473 468 0 5.55934e-11 474 468 0.002897529 -8.62047e-09 475 468 -1.498915e-05 4.480144e-11 469 469 0.005029644 0 470 469 0.0002821386 -7.720893e-19 471 469 0.001129562 -3.288441e-18 472 469 0 -1.181893e-08 473 469 0 -3.70281e-14 474 469 0.003270766 -9.447889e-09 475 469 7.564665e-08 2.944072e-14 500 469 0.001257414 0 501 469 -0.0006510967 0 502 469 0.0002821382 -8.113037e-19 503 469 -0.0001514661 5.347419e-19 504 469 0 5.440589e-10 505 469 0 -1.989114e-14 506 469 -0.0001617304 4.249931e-10 507 469 3.766348e-08 1.259789e-14 470 470 0.009700913 0 471 470 0.001257417 0 472 470 -0.002897529 -8.62047e-09 473 470 1.498915e-05 4.480144e-11 474 470 0 -1.070867e-08 475 470 0 5.55934e-11 471 471 0.005029644 0 472 471 -0.003270766 -9.447889e-09 473 471 -7.564665e-08 2.944072e-14 474 471 0 -1.181893e-08 475 471 0 -3.70281e-14 500 471 0.0002821382 8.113037e-19 501 471 -0.0001514661 -5.347419e-19 502 471 0.001257414 0 503 471 -0.0006510967 0 504 471 0.0001617304 4.249931e-10 505 471 -3.766348e-08 1.259789e-14 506 471 0 5.440589e-10 507 471 0 -1.989114e-14 472 472 0.1160424 0 473 472 -7.989645e-06 0 474 472 -0.01193408 2.465323e-17 475 472 2.280202e-07 3.439269e-20 500 472 0 1.078275e-08 501 472 0 -5.356348e-10 502 472 -0.003049031 8.561348e-09 503 472 0.0001457776 -4.303307e-10 504 472 0.0195097 0 505 472 -0.0001222389 0 506 472 -0.002048309 6.706204e-18 507 472 1.281464e-05 -4.097837e-20 473 473 2.007574e-06 0 474 473 2.280202e-07 3.439269e-20 475 473 -2.063714e-07 4.296167e-22 500 473 0 5.603719e-11 501 473 0 1.989114e-14 502 473 -1.589707e-05 4.444687e-11 503 473 -3.766348e-08 -1.259789e-14 504 473 0.0001217118 0 505 473 -7.310028e-07 0 506 473 -1.279771e-05 4.292022e-20 507 473 7.674888e-08 -2.516986e-22 474 474 0.1160424 0 475 474 -7.989645e-06 0 500 474 0.003049031 8.561348e-09 501 474 -0.0001457776 -4.303307e-10 502 474 0 1.078275e-08 503 474 0 -5.356348e-10 504 474 -0.002048309 -6.706204e-18 505 474 1.281464e-05 4.097837e-20 506 474 0.0195097 0 507 474 -0.0001222389 0 475 475 2.007574e-06 0 500 475 1.589707e-05 4.444687e-11 501 475 3.766348e-08 -1.259789e-14 502 475 0 5.603719e-11 503 475 0 1.989114e-14 504 475 -1.279771e-05 -4.292022e-20 505 475 7.674888e-08 2.516986e-22 506 475 0.0001217118 0 507 475 -7.310028e-07 0 476 476 0.001104304 0 477 476 9.910605e-08 0 508 476 0.0001985147 0 509 476 -1.237557e-06 0 477 477 1.909835e-08 0 508 477 1.244696e-06 0 509 477 -7.438187e-09 0 478 478 0.001104304 0 479 478 9.910605e-08 0 510 478 0.0001985147 0 511 478 -1.237557e-06 0 479 479 1.909835e-08 0 510 479 1.244696e-06 0 511 479 -7.438187e-09 0 480 480 0.005619311 0 481 480 0.0006788281 0 482 480 0.0005857811 -1.397738e-18 483 480 7.329687e-05 -1.987029e-19 481 481 0.002717569 0 482 481 7.329687e-05 -1.987029e-19 483 481 0.0002931911 -8.080221e-19 512 481 0.0006788833 0 513 481 -0.0003290324 0 514 481 7.329664e-05 -2.065502e-19 515 481 -3.668807e-05 1.083703e-19 482 482 0.005619311 0 483 482 0.0006788281 0 483 483 0.002717569 0 512 483 7.329664e-05 2.065502e-19 513 483 -3.668807e-05 -1.083703e-19 514 483 0.0006788833 0 515 483 -0.0003290324 0 484 484 0.1032347 0 485 484 -7.375372e-06 0 486 484 -0.0007538061 3.052492e-18 487 484 2.970321e-07 3.303784e-21 488 484 0 -1.259741e-08 489 484 0 -1.394702e-08 490 484 0.003047405 -1.080421e-08 491 484 0.003430292 -1.193216e-08 492 484 0 -1.259741e-08 493 484 0 -1.394702e-08 494 484 0.003047405 -1.080421e-08 495 484 0.003430292 -1.193216e-08 516 484 0.01733503 0 517 484 -0.0001086247 0 518 484 -0.0001081076 8.660024e-19 519 484 6.868693e-07 -5.231053e-21 520 484 0 -1.276321e-08 521 484 0 6.30605e-10 522 484 0.003188919 -1.089469e-08 523 484 -0.0001532406 5.403554e-10 524 484 0 -1.276321e-08 525 484 0 6.30605e-10 526 484 0.003188919 -1.089469e-08 527 484 -0.0001532406 5.403554e-10 485 485 1.785921e-06 0 486 485 2.970321e-07 3.303784e-21 487 485 -1.302365e-08 5.847923e-23 488 485 0 6.536668e-11 489 485 0 -8.280024e-14 490 485 -1.577135e-05 5.608405e-11 491 485 7.066227e-08 -4.522866e-14 492 485 0 6.536668e-11 493 485 0 -8.280024e-14 494 485 -1.577135e-05 5.608405e-11 495 485 7.066227e-08 -4.522866e-14 516 485 0.0001081332 0 517 485 -6.495178e-07 0 518 485 -6.649398e-07 5.605556e-21 519 485 4.0509e-09 -3.252653e-23 520 485 0 -6.636015e-11 521 485 0 -4.277103e-14 522 485 1.661941e-05 -5.662609e-11 523 485 3.500434e-08 -2.491864e-14 524 485 0 -6.636015e-11 525 485 0 -4.277103e-14 526 485 1.661941e-05 -5.662609e-11 527 485 3.500434e-08 -2.491864e-14 486 486 0.1032347 0 487 486 -7.375372e-06 0 488 486 -0.003047405 -1.080421e-08 489 486 -0.003430292 -1.193216e-08 490 486 0 -1.259741e-08 491 486 0 -1.394702e-08 492 486 -0.003047405 -1.080421e-08 493 486 -0.003430292 -1.193216e-08 494 486 0 -1.259741e-08 495 486 0 -1.394702e-08 516 486 -0.0001081076 -8.660024e-19 517 486 6.868693e-07 5.231053e-21 518 486 0.01733503 0 519 486 -0.0001086247 0 520 486 -0.003188919 -1.089469e-08 521 486 0.0001532406 5.403554e-10 522 486 0 -1.276321e-08 523 486 0 6.30605e-10 524 486 -0.003188919 -1.089469e-08 525 486 0.0001532406 5.403554e-10 526 486 0 -1.276321e-08 527 486 0 6.30605e-10 487 487 1.785921e-06 0 488 487 1.577135e-05 5.608405e-11 489 487 -7.066227e-08 -4.522866e-14 490 487 0 6.536668e-11 491 487 0 -8.280024e-14 492 487 1.577135e-05 5.608405e-11 493 487 -7.066227e-08 -4.522866e-14 494 487 0 6.536668e-11 495 487 0 -8.280024e-14 516 487 -6.649398e-07 -5.605556e-21 517 487 4.0509e-09 3.252653e-23 518 487 0.0001081332 0 519 487 -6.495178e-07 0 520 487 -1.661941e-05 -5.662609e-11 521 487 -3.500434e-08 -2.491864e-14 522 487 0 -6.636015e-11 523 487 0 -4.277103e-14 524 487 -1.661941e-05 -5.662609e-11 525 487 -3.500434e-08 -2.491864e-14 526 487 0 -6.636015e-11 527 487 0 -4.277103e-14 488 488 0.01058619 0 489 488 0.001370257 0 490 488 0.003491524 -7.09142e-18 491 488 0.0004664855 -1.180965e-18 492 488 0.01058619 0 493 488 0.001370257 0 494 488 0.003491524 -7.09142e-18 495 488 0.0004664855 -1.180965e-18 489 489 0.005481222 0 490 489 0.0004664855 -1.180965e-18 491 489 0.001867372 -4.522589e-18 492 489 0.001370257 0 493 489 0.005481222 0 494 489 0.0004664855 -1.180965e-18 495 489 0.001867372 -4.522589e-18 516 489 0 -6.487205e-10 517 489 0 4.277103e-14 518 489 0.0001680672 -5.509088e-10 519 489 -3.500434e-08 2.491864e-14 520 489 0.001370251 0 521 489 -0.0007087509 0 522 489 0.0004664852 -1.175113e-18 523 489 -0.0002491951 5.836825e-19 524 489 0.001370251 0 525 489 -0.0007087509 0 526 489 0.0004664852 -1.175113e-18 527 489 -0.0002491951 5.836825e-19 490 490 0.01058619 0 491 490 0.001370257 0 492 490 0.003491524 7.09142e-18 493 490 0.0004664855 1.180965e-18 494 490 0.01058619 0 495 490 0.001370257 0 491 491 0.005481222 0 492 491 0.0004664855 1.180965e-18 493 491 0.001867372 4.522589e-18 494 491 0.001370257 0 495 491 0.005481222 0 516 491 -0.0001680672 -5.509088e-10 517 491 3.500434e-08 2.491864e-14 518 491 0 -6.487205e-10 519 491 0 4.277103e-14 520 491 0.0004664852 1.175113e-18 521 491 -0.0002491951 -5.836825e-19 522 491 0.001370251 0 523 491 -0.0007087509 0 524 491 0.0004664852 1.175113e-18 525 491 -0.0002491951 -5.836825e-19 526 491 0.001370251 0 527 491 -0.0007087509 0 492 492 1.182623 0 493 492 0.1428436 0 494 492 0.2465123 -8.20577e-16 495 492 0.03083967 -7.957571e-17 493 493 0.5718499 0 494 493 0.03083967 -7.957571e-17 495 493 0.1233597 -3.07814e-16 516 493 0 -6.487205e-10 517 493 0 4.277103e-14 518 493 0.0001680672 -5.509088e-10 519 493 -3.500434e-08 2.491864e-14 520 493 0.001370251 0 521 493 -0.0007087509 0 522 493 0.0004664852 -1.175113e-18 523 493 -0.0002491951 5.836825e-19 524 493 0.1428552 0 525 493 -0.06922708 0 526 493 0.03083958 -7.1175e-17 527 493 -0.01543338 2.965977e-17 494 494 1.182623 0 495 494 0.1428436 0 495 495 0.5718499 0 516 495 -0.0001680672 -5.509088e-10 517 495 3.500434e-08 2.491864e-14 518 495 0 -6.487205e-10 519 495 0 4.277103e-14 520 495 0.0004664852 1.175113e-18 521 495 -0.0002491951 -5.836825e-19 522 495 0.001370251 0 523 495 -0.0007087509 0 524 495 0.03083958 7.1175e-17 525 495 -0.01543338 -2.965977e-17 526 495 0.1428552 0 527 495 -0.06922708 0 496 496 0.005619311 0 497 496 0.0006788281 0 498 496 0.0005857811 -1.397738e-18 499 496 7.329687e-05 -1.987029e-19 497 497 0.002717569 0 498 497 7.329687e-05 -1.987029e-19 499 497 0.0002931911 -8.080221e-19 528 497 0.0006788833 0 529 497 -0.0003290324 0 530 497 7.329664e-05 -2.065502e-19 531 497 -3.668807e-05 1.083703e-19 498 498 0.005619311 0 499 498 0.0006788281 0 499 499 0.002717569 0 528 499 7.329664e-05 2.065502e-19 529 499 -3.668807e-05 -1.083703e-19 530 499 0.0006788833 0 531 499 -0.0003290324 0 500 500 0.01041756 0 501 500 0.001346973 0 502 500 0.002422652 -8.757894e-18 503 500 0.0003237263 -1.327664e-18 504 500 0 -1.081032e-08 505 500 0 5.611675e-11 506 500 0.00310124 -8.543879e-09 507 500 -1.604772e-05 4.439648e-11 501 501 0.005387866 0 502 501 0.0003237263 -1.327664e-18 503 501 0.001295909 -4.780187e-18 504 501 0 -1.193672e-08 505 501 0 -4.218961e-14 506 501 0.003494078 -9.372977e-09 507 501 7.492636e-08 2.135073e-14 532 501 0.001346969 0 533 501 -0.0006958613 0 534 501 0.0003237258 -1.267817e-18 535 501 -0.0001729636 4.557519e-19 536 501 0 5.502309e-10 537 501 0 -2.221865e-14 538 501 -0.000171749 4.228755e-10 539 501 3.727939e-08 8.929766e-15 502 502 0.01041756 0 503 502 0.001346973 0 504 502 -0.00310124 -8.543879e-09 505 502 1.604772e-05 4.439648e-11 506 502 0 -1.081032e-08 507 502 0 5.611675e-11 503 503 0.005387866 0 504 503 -0.003494078 -9.372977e-09 505 503 -7.492636e-08 2.135073e-14 506 503 0 -1.193672e-08 507 503 0 -4.218961e-14 532 503 0.0003237258 1.267817e-18 533 503 -0.0001729636 -4.557519e-19 534 503 0.001346969 0 535 503 -0.0006958613 0 536 503 0.000171749 4.228755e-10 537 503 -3.727939e-08 8.929766e-15 538 503 0 5.502309e-10 539 503 0 -2.221865e-14 504 504 0.1096945 0 505 504 -6.842032e-06 0 506 504 -0.01173068 4.312297e-17 507 504 2.460977e-07 -2.322312e-21 532 504 0 1.089479e-08 533 504 0 -5.408207e-10 534 504 -0.003251297 8.501025e-09 535 504 0.0001559587 -4.266591e-10 536 504 0.01849278 0 537 504 -0.0001158438 0 538 504 -0.00201177 6.471889e-18 539 504 1.25868e-05 -4.140526e-20 505 505 1.897637e-06 0 506 505 2.460977e-07 -2.322312e-21 507 505 -2.028531e-07 7.069286e-22 532 505 0 5.662278e-11 533 505 0 2.221865e-14 534 505 -1.694699e-05 4.413943e-11 535 505 -3.727939e-08 -8.929766e-15 536 505 0.0001153907 0 537 505 -6.928976e-07 0 538 505 -1.256859e-05 3.953451e-20 539 505 7.537933e-08 -2.426384e-22 506 506 0.1096945 0 507 506 -6.842032e-06 0 532 506 0.003251297 8.501025e-09 533 506 -0.0001559587 -4.266591e-10 534 506 0 1.089479e-08 535 506 0 -5.408207e-10 536 506 -0.00201177 -6.471889e-18 537 506 1.25868e-05 4.140526e-20 538 506 0.01849278 0 539 506 -0.0001158438 0 507 507 1.897637e-06 0 532 507 1.694699e-05 4.413943e-11 533 507 3.727939e-08 -8.929766e-15 534 507 0 5.662278e-11 535 507 0 2.221865e-14 536 507 -1.256859e-05 -3.953451e-20 537 507 7.537933e-08 2.426384e-22 538 507 0.0001153907 0 539 507 -6.928976e-07 0 508 508 0.001190077 0 509 508 1.008072e-07 0 540 508 0.0002134888 0 541 508 -1.331108e-06 0 509 509 2.058165e-08 0 540 509 1.338374e-06 0 541 509 -7.999206e-09 0 510 510 0.001190077 0 511 510 1.008072e-07 0 542 510 0.0002134888 0 543 510 -1.331108e-06 0 511 511 2.058165e-08 0 542 511 1.338374e-06 0 543 511 -7.999206e-09 0 512 512 0.005262965 0 513 512 0.0006372462 0 514 512 0.0005870058 -1.727658e-18 515 512 7.345564e-05 -2.269308e-19 513 513 0.002550837 0 514 513 7.345564e-05 -2.269308e-19 515 513 0.0002938263 -9.398216e-19 544 513 0.0006372884 0 545 513 -0.0003094725 0 546 513 7.345541e-05 -2.360903e-19 547 513 -3.677036e-05 1.345588e-19 514 514 0.005262965 0 515 514 0.0006372462 0 515 515 0.002550837 0 544 515 7.345541e-05 2.360903e-19 545 515 -3.677036e-05 -1.345588e-19 546 515 0.0006372884 0 547 515 -0.0003094725 0 516 516 0.09731856 0 517 516 -6.441057e-06 0 518 516 -0.0004902652 5.258846e-18 519 516 3.173688e-07 -2.919361e-21 520 516 0 -1.28225e-08 521 516 0 -1.420052e-08 522 516 0.003237442 -1.092923e-08 523 516 0.003637862 -1.207974e-08 524 516 0 -1.28225e-08 525 516 0 -1.420052e-08 526 516 0.003237442 -1.092923e-08 527 516 0.003637862 -1.207974e-08 548 516 0.01637784 0 549 516 -0.0001026097 0 550 516 -6.097153e-05 5.024908e-19 551 516 3.929108e-07 -3.410225e-21 552 516 0 -1.299865e-08 553 516 0 6.419523e-10 554 516 0.003376281 -1.103747e-08 555 516 -0.0001627277 5.467584e-10 556 516 0 -1.299865e-08 557 516 0 6.419523e-10 558 516 0.003376281 -1.103747e-08 559 516 -0.0001627277 5.467584e-10 517 517 1.68349e-06 0 518 517 3.173688e-07 -2.919361e-21 519 517 -8.465467e-09 8.027249e-23 520 517 0 6.653124e-11 521 517 0 -8.794809e-14 522 517 -1.675943e-05 5.672577e-11 523 517 6.932578e-08 -5.406845e-14 524 517 0 6.653124e-11 525 517 0 -8.794809e-14 526 517 -1.675943e-05 5.672577e-11 527 517 6.932578e-08 -5.406845e-14 548 517 0.0001021789 0 549 517 -6.136507e-07 0 550 517 -3.695024e-07 2.866262e-21 551 517 2.284743e-09 -1.876263e-23 552 517 0 -6.758671e-11 553 517 0 -4.51514e-14 554 517 1.759145e-05 -5.737421e-11 555 517 3.433085e-08 -2.904667e-14 556 517 0 -6.758671e-11 557 517 0 -4.51514e-14 558 517 1.759145e-05 -5.737421e-11 559 517 3.433085e-08 -2.904667e-14 518 518 0.09731856 0 519 518 -6.441057e-06 0 520 518 -0.003237442 -1.092923e-08 521 518 -0.003637862 -1.207974e-08 522 518 0 -1.28225e-08 523 518 0 -1.420052e-08 524 518 -0.003237442 -1.092923e-08 525 518 -0.003637862 -1.207974e-08 526 518 0 -1.28225e-08 527 518 0 -1.420052e-08 548 518 -6.097153e-05 -5.024908e-19 549 518 3.929108e-07 3.410225e-21 550 518 0.01637784 0 551 518 -0.0001026097 0 552 518 -0.003376281 -1.103747e-08 553 518 0.0001627277 5.467584e-10 554 518 0 -1.299865e-08 555 518 0 6.419523e-10 556 518 -0.003376281 -1.103747e-08 557 518 0.0001627277 5.467584e-10 558 518 0 -1.299865e-08 559 518 0 6.419523e-10 519 519 1.68349e-06 0 520 519 1.675943e-05 5.672577e-11 521 519 -6.932578e-08 -5.406845e-14 522 519 0 6.653124e-11 523 519 0 -8.794809e-14 524 519 1.675943e-05 5.672577e-11 525 519 -6.932578e-08 -5.406845e-14 526 519 0 6.653124e-11 527 519 0 -8.794809e-14 548 519 -3.695024e-07 -2.866262e-21 549 519 2.284743e-09 1.876263e-23 550 519 0.0001021789 0 551 519 -6.136507e-07 0 552 519 -1.759145e-05 -5.737421e-11 553 519 -3.433085e-08 -2.904667e-14 554 519 0 -6.758671e-11 555 519 0 -4.51514e-14 556 519 -1.759145e-05 -5.737421e-11 557 519 -3.433085e-08 -2.904667e-14 558 519 0 -6.758671e-11 559 519 0 -4.51514e-14 520 520 0.01133984 0 521 520 0.001464752 0 522 520 0.003985981 -9.234136e-18 523 520 0.0005302954 -1.159617e-18 524 520 0.01133984 0 525 520 0.001464752 0 526 520 0.003985981 -9.234136e-18 527 520 0.0005302954 -1.159617e-18 521 521 0.005859215 0 522 521 0.0005302954 -1.159617e-18 523 521 0.002122603 -5.046498e-18 524 521 0.001464752 0 525 521 0.005859215 0 526 521 0.0005302954 -1.159617e-18 527 521 0.002122603 -5.046498e-18 548 521 0 -6.610762e-10 549 521 0 4.51514e-14 550 521 0.0001772689 -5.590606e-10 551 521 -3.433085e-08 2.904667e-14 552 521 0.001464746 0 553 521 -0.000756151 0 554 521 0.0005302951 -1.217867e-18 555 521 -0.0002820957 8.256332e-19 556 521 0.001464746 0 557 521 -0.000756151 0 558 521 0.0005302951 -1.217867e-18 559 521 -0.0002820957 8.256332e-19 522 522 0.01133984 0 523 522 0.001464752 0 524 522 0.003985981 9.234136e-18 525 522 0.0005302954 1.159617e-18 526 522 0.01133984 0 527 522 0.001464752 0 523 523 0.005859215 0 524 523 0.0005302954 1.159617e-18 525 523 0.002122603 5.046498e-18 526 523 0.001464752 0 527 523 0.005859215 0 548 523 -0.0001772689 -5.590606e-10 549 523 3.433085e-08 2.904667e-14 550 523 0 -6.610762e-10 551 523 0 4.51514e-14 552 523 0.0005302951 1.217867e-18 553 523 -0.0002820957 -8.256332e-19 554 523 0.001464746 0 555 523 -0.000756151 0 556 523 0.0005302951 1.217867e-18 557 523 -0.0002820957 -8.256332e-19 558 523 0.001464746 0 559 523 -0.000756151 0 524 524 1.107306 0 525 524 0.1340531 0 526 524 0.2469331 -4.438216e-16 527 524 0.03089395 -4.746409e-17 525 525 0.5366029 0 526 525 0.03089395 -4.746409e-17 527 525 0.1235768 -2.388251e-16 548 525 0 -6.610762e-10 549 525 0 4.51514e-14 550 525 0.0001772689 -5.590606e-10 551 525 -3.433085e-08 2.904667e-14 552 525 0.001464746 0 553 525 -0.000756151 0 554 525 0.0005302951 -1.217867e-18 555 525 -0.0002820957 8.256332e-19 556 525 0.134062 0 557 525 -0.06509133 0 558 525 0.03089386 -5.426046e-17 559 525 -0.01546135 4.696469e-17 526 526 1.107306 0 527 526 0.1340531 0 527 527 0.5366029 0 548 527 -0.0001772689 -5.590606e-10 549 527 3.433085e-08 2.904667e-14 550 527 0 -6.610762e-10 551 527 0 4.51514e-14 552 527 0.0005302951 1.217867e-18 553 527 -0.0002820957 -8.256332e-19 554 527 0.001464746 0 555 527 -0.000756151 0 556 527 0.03089386 5.426046e-17 557 527 -0.01546135 -4.696469e-17 558 527 0.134062 0 559 527 -0.06509133 0 528 528 0.005262965 0 529 528 0.0006372462 0 530 528 0.0005870058 -1.727658e-18 531 528 7.345564e-05 -2.269308e-19 529 529 0.002550837 0 530 529 7.345564e-05 -2.269308e-19 531 529 0.0002938263 -9.398216e-19 560 529 0.0006372884 0 561 529 -0.0003094725 0 562 529 7.345541e-05 -2.360903e-19 563 529 -3.677036e-05 1.345588e-19 530 530 0.005262965 0 531 530 0.0006372462 0 531 531 0.002550837 0 560 531 7.345541e-05 2.360903e-19 561 531 -3.677036e-05 -1.345588e-19 562 531 0.0006372884 0 563 531 -0.0003094725 0 532 532 0.0111338 0 533 532 0.001436476 0 534 532 0.002766615 -7.123963e-18 535 532 0.0003681286 -5.55191e-19 536 532 0 -1.092559e-08 537 532 0 5.671165e-11 538 532 0.003302975 -8.488642e-09 539 532 -1.709611e-05 4.410371e-11 533 533 0.005745876 0 534 533 0.0003681286 -5.55191e-19 535 533 0.001473514 -2.88705e-18 536 533 0 -1.206835e-08 537 533 0 -4.637698e-14 538 533 0.003715141 -9.319857e-09 539 533 7.416362e-08 1.470743e-14 564 533 0.001436472 0 565 533 -0.0007405982 0 566 533 0.0003681281 -5.808106e-19 567 533 -0.0001958654 5.642759e-19 568 533 0 5.568802e-10 569 533 0 -2.411704e-14 570 533 -0.0001816656 4.21524e-10 571 533 3.68998e-08 5.898399e-15 534 534 0.0111338 0 535 534 0.001436476 0 536 534 -0.003302975 -8.488642e-09 537 534 1.709611e-05 4.410371e-11 538 534 0 -1.092559e-08 539 534 0 5.671165e-11 535 535 0.005745876 0 536 535 -0.003715141 -9.319857e-09 537 535 -7.416362e-08 1.470743e-14 538 535 0 -1.206835e-08 539 535 0 -4.637698e-14 564 535 0.0003681281 5.808106e-19 565 535 -0.0001958654 -5.642759e-19 566 535 0.001436472 0 567 535 -0.0007405982 0 568 535 0.0001816656 4.21524e-10 569 535 -3.68998e-08 5.898399e-15 570 535 0 5.568802e-10 571 535 0 -2.411704e-14 536 536 0.104239 0 537 536 -5.900875e-06 0 538 536 -0.01151176 2.782178e-17 539 536 2.644957e-07 -1.791457e-20 564 536 0 1.101848e-08 565 536 0 -5.466657e-10 566 536 -0.003451506 8.459138e-09 567 536 0.0001660363 -4.240233e-10 568 536 0.01761583 0 569 536 -0.0001103303 0 570 536 -0.001972497 3.848201e-18 571 536 1.23419e-05 -2.432892e-20 537 537 1.803171e-06 0 538 537 2.644957e-07 -1.791457e-20 539 537 -1.990653e-07 4.981009e-22 564 537 0 5.726815e-11 565 537 0 2.411704e-14 566 537 -1.798622e-05 4.392671e-11 567 537 -3.68998e-08 -5.898399e-15 568 537 0.0001099383 0 569 537 -6.600367e-07 0 570 537 -1.232234e-05 2.378768e-20 571 537 7.390739e-08 -1.441727e-22 538 538 0.104239 0 539 538 -5.900875e-06 0 564 538 0.003451506 8.459138e-09 565 538 -0.0001660363 -4.240233e-10 566 538 0 1.101848e-08 567 538 0 -5.466657e-10 568 538 -0.001972497 -3.848201e-18 569 538 1.23419e-05 2.432892e-20 570 538 0.01761583 0 571 538 -0.0001103303 0 539 539 1.803171e-06 0 564 539 1.798622e-05 4.392671e-11 565 539 3.68998e-08 -5.898399e-15 566 539 0 5.726815e-11 567 539 0 2.411704e-14 568 539 -1.232234e-05 -2.378768e-20 569 539 7.390739e-08 1.441727e-22 570 539 0.0001099383 0 571 539 -6.600367e-07 0 540 540 0.001277377 0 541 540 1.026645e-07 0 572 540 0.0002287389 0 573 540 -1.426379e-06 0 541 541 2.209135e-08 0 572 541 1.433784e-06 0 573 541 -8.570562e-09 0 542 542 0.001277377 0 543 542 1.026645e-07 0 574 542 0.0002287389 0 575 542 -1.426379e-06 0 543 543 2.209135e-08 0 574 543 1.433784e-06 0 575 543 -8.570562e-09 0 544 544 0.004950273 0 545 544 0.0006006017 0 546 544 0.0005883224 -2.194002e-18 547 544 7.362603e-05 -3.021448e-19 545 545 0.002403946 0 546 545 7.362603e-05 -3.021448e-19 547 545 0.0002945079 -1.118689e-18 576 545 0.0006006345 0 577 545 -0.0002921772 0 578 545 7.36258e-05 -2.993827e-19 579 545 -3.685852e-05 1.057572e-19 546 546 0.004950273 0 547 546 0.0006006017 0 547 547 0.002403946 0 576 547 7.36258e-05 2.993827e-19 577 547 -3.685852e-05 -1.057572e-19 578 547 0.0006006345 0 579 547 -0.0002921772 0 548 548 0.0921332 0 549 548 -5.666646e-06 0 550 548 -0.0002090918 1.74733e-18 551 548 3.378396e-07 1.126192e-21 552 548 0 -1.306124e-08 553 548 0 -1.446814e-08 554 548 0.00342387 -1.107773e-08 555 548 0.003841404 -1.225184e-08 556 548 0 -1.306124e-08 557 548 0 -1.446814e-08 558 548 0.00342387 -1.107773e-08 559 548 0.003841404 -1.225184e-08 580 548 0.0155358 0 581 548 -9.731982e-05 0 582 548 -1.07935e-05 6.254939e-19 583 548 7.992099e-08 -3.6314e-21 584 548 0 -1.324622e-08 585 548 0 6.53966e-10 586 548 0.003559858 -1.120144e-08 587 548 -0.0001720389 5.543113e-10 588 548 0 -1.324622e-08 589 548 0 6.53966e-10 590 548 0.003559858 -1.120144e-08 591 548 -0.0001720389 5.543113e-10 549 549 1.59372e-06 0 550 549 3.378396e-07 1.126192e-21 551 549 -3.603384e-09 4.219317e-23 552 549 0 6.776731e-11 553 549 0 -9.234576e-14 554 549 -1.772878e-05 5.74904e-11 555 549 6.789932e-08 -6.17814e-14 556 549 0 6.776731e-11 557 549 0 -9.234576e-14 558 549 -1.772878e-05 5.74904e-11 559 549 6.789932e-08 -6.17814e-14 580 549 9.693945e-05 0 581 549 -5.820983e-07 0 582 549 -5.506294e-08 4.188199e-21 583 549 4.046299e-10 -2.342091e-23 584 549 0 -6.887573e-11 585 549 0 -4.719815e-14 586 549 1.85437e-05 -5.823165e-11 587 549 3.358091e-08 -3.267421e-14 588 549 0 -6.887573e-11 589 549 0 -4.719815e-14 590 549 1.85437e-05 -5.823165e-11 591 549 3.358091e-08 -3.267421e-14 550 550 0.0921332 0 551 550 -5.666646e-06 0 552 550 -0.00342387 -1.107773e-08 553 550 -0.003841404 -1.225184e-08 554 550 0 -1.306124e-08 555 550 0 -1.446814e-08 556 550 -0.00342387 -1.107773e-08 557 550 -0.003841404 -1.225184e-08 558 550 0 -1.306124e-08 559 550 0 -1.446814e-08 580 550 -1.07935e-05 -6.254939e-19 581 550 7.992099e-08 3.6314e-21 582 550 0.0155358 0 583 550 -9.731982e-05 0 584 550 -0.003559858 -1.120144e-08 585 550 0.0001720389 5.543113e-10 586 550 0 -1.324622e-08 587 550 0 6.53966e-10 588 550 -0.003559858 -1.120144e-08 589 550 0.0001720389 5.543113e-10 590 550 0 -1.324622e-08 591 550 0 6.53966e-10 551 551 1.59372e-06 0 552 551 1.772878e-05 5.74904e-11 553 551 -6.789932e-08 -6.17814e-14 554 551 0 6.776731e-11 555 551 0 -9.234576e-14 556 551 1.772878e-05 5.74904e-11 557 551 -6.789932e-08 -6.17814e-14 558 551 0 6.776731e-11 559 551 0 -9.234576e-14 580 551 -5.506294e-08 -4.188199e-21 581 551 4.046299e-10 2.342091e-23 582 551 9.693945e-05 0 583 551 -5.820983e-07 0 584 551 -1.85437e-05 -5.823165e-11 585 551 -3.358091e-08 -3.267421e-14 586 551 0 -6.887573e-11 587 551 0 -4.719815e-14 588 551 -1.85437e-05 -5.823165e-11 589 551 -3.358091e-08 -3.267421e-14 590 551 0 -6.887573e-11 591 551 0 -4.719815e-14 552 552 0.01209824 0 553 552 0.001559858 0 554 552 0.004512397 -1.338348e-17 555 552 0.0005980878 -2.084666e-18 556 552 0.01209824 0 557 552 0.001559858 0 558 552 0.004512397 -1.338348e-17 559 552 0.0005980878 -2.084666e-18 553 553 0.006239651 0 554 553 0.0005980878 -2.084666e-18 555 553 0.002393764 -7.827645e-18 556 553 0.001559858 0 557 553 0.006239651 0 558 553 0.0005980878 -2.084666e-18 559 553 0.002393764 -7.827645e-18 580 553 0 -6.739571e-10 581 553 0 4.719815e-14 582 553 0.0001862627 -5.681503e-10 583 553 -3.358091e-08 3.267421e-14 584 553 0.001559851 0 585 553 -0.0008038664 0 586 553 0.0005980874 -1.972104e-18 587 553 -0.0003169812 9.863594e-19 588 553 0.001559851 0 589 553 -0.0008038664 0 590 553 0.0005980874 -1.972104e-18 591 553 -0.0003169812 9.863594e-19 554 554 0.01209824 0 555 554 0.001559858 0 556 554 0.004512397 1.338348e-17 557 554 0.0005980878 2.084666e-18 558 554 0.01209824 0 559 554 0.001559858 0 555 555 0.006239651 0 556 555 0.0005980878 2.084666e-18 557 555 0.002393764 7.827645e-18 558 555 0.001559858 0 559 555 0.006239651 0 580 555 -0.0001862627 -5.681503e-10 581 555 3.358091e-08 3.267421e-14 582 555 0 -6.739571e-10 583 555 0 4.719815e-14 584 555 0.0005980874 1.972104e-18 585 555 -0.0003169812 -9.863594e-19 586 555 0.001559851 0 587 555 -0.0008038664 0 588 555 0.0005980874 1.972104e-18 589 555 -0.0003169812 -9.863594e-19 590 555 0.001559851 0 591 555 -0.0008038664 0 556 556 1.04119 0 557 556 0.1263033 0 558 556 0.2473807 -7.572009e-16 559 556 0.03095154 -1.335983e-16 557 557 0.5055375 0 558 557 0.03095154 -1.335983e-16 559 557 0.1238072 -5.0223e-16 580 557 0 -6.739571e-10 581 557 0 4.719815e-14 582 557 0.0001862627 -5.681503e-10 583 557 -3.358091e-08 3.267421e-14 584 557 0.001559851 0 585 557 -0.0008038664 0 586 557 0.0005980874 -1.972104e-18 587 557 -0.0003169812 9.863594e-19 588 557 0.1263102 0 589 557 -0.06143281 0 590 557 0.03095145 -1.354743e-16 591 557 -0.01549097 6.174971e-17 558 558 1.04119 0 559 558 0.1263033 0 559 559 0.5055375 0 580 559 -0.0001862627 -5.681503e-10 581 559 3.358091e-08 3.267421e-14 582 559 0 -6.739571e-10 583 559 0 4.719815e-14 584 559 0.0005980874 1.972104e-18 585 559 -0.0003169812 -9.863594e-19 586 559 0.001559851 0 587 559 -0.0008038664 0 588 559 0.03095145 1.354743e-16 589 559 -0.01549097 -6.174971e-17 590 559 0.1263102 0 591 559 -0.06143281 0 560 560 0.004950273 0 561 560 0.0006006017 0 562 560 0.0005883224 -2.194002e-18 563 560 7.362603e-05 -3.021448e-19 561 561 0.002403946 0 562 561 7.362603e-05 -3.021448e-19 563 561 0.0002945079 -1.118689e-18 592 561 0.0006006345 0 593 561 -0.0002921772 0 594 561 7.36258e-05 -2.993827e-19 595 561 -3.685852e-05 1.057572e-19 562 562 0.004950273 0 563 562 0.0006006017 0 563 563 0.002403946 0 592 563 7.36258e-05 2.993827e-19 593 563 -3.685852e-05 -1.057572e-19 594 563 0.0006006345 0 595 563 -0.0002921772 0 564 564 0.01184959 0 565 564 0.001525921 0 566 564 0.003133048 -8.920486e-18 567 564 0.0004153336 -1.676293e-18 568 564 0 -1.105191e-08 569 564 0 5.736462e-11 570 564 0.003502657 -8.450958e-09 571 564 -1.813382e-05 4.390311e-11 565 565 0.006103653 0 566 565 0.0004153336 -1.676293e-18 567 565 0.00166233 -6.43442e-18 568 565 0 -1.221125e-08 569 565 0 -4.98097e-14 570 565 0.003933922 -9.284742e-09 571 565 7.334411e-08 9.18089e-15 596 565 0.001525917 0 597 565 -0.0007853054 0 598 565 0.000415333 -1.764025e-18 599 565 -0.0002201656 8.359613e-19 600 565 0 5.63924e-10 601 565 0 -2.567975e-14 602 565 -0.0001914599 4.208167e-10 603 565 3.646221e-08 3.362012e-15 566 566 0.01184959 0 567 566 0.001525921 0 568 566 -0.003502657 -8.450958e-09 569 566 1.813382e-05 4.390311e-11 570 566 0 -1.105191e-08 571 566 0 5.736462e-11 567 567 0.006103653 0 568 567 -0.003933922 -9.284742e-09 569 567 -7.334411e-08 9.18089e-15 570 567 0 -1.221125e-08 571 567 0 -4.98097e-14 596 567 0.000415333 1.764025e-18 597 567 -0.0002201656 -8.359613e-19 598 567 0.001525917 0 599 567 -0.0007853054 0 600 567 0.0001914599 4.208167e-10 601 567 -3.646221e-08 3.362012e-15 602 567 0 5.63924e-10 603 567 0 -2.567975e-14 568 568 0.09952033 0 569 568 -5.119079e-06 0 570 568 -0.01127675 1.77023e-17 571 568 2.83346e-07 -1.264159e-20 596 568 0 1.11517e-08 597 568 0 -5.530474e-10 598 568 -0.003649551 8.432555e-09 599 568 0.0001760157 -4.222415e-10 600 568 0.01685513 0 601 568 -0.0001055486 0 602 568 -0.001930424 2.181459e-18 603 568 1.207949e-05 -1.387891e-20 569 569 1.721473e-06 0 570 569 2.83346e-07 -1.264159e-20 571 569 -1.950002e-07 3.017447e-22 596 569 0 5.796247e-11 597 569 0 2.567975e-14 598 569 -1.901412e-05 4.379265e-11 599 569 -3.646221e-08 -3.362012e-15 600 569 0.0001052076 0 601 569 -6.315316e-07 0 602 569 -1.205859e-05 1.335454e-20 603 569 7.233052e-08 -8.131199e-23 570 570 0.09952033 0 571 570 -5.119079e-06 0 596 570 0.003649551 8.432555e-09 597 570 -0.0001760157 -4.222415e-10 598 570 0 1.11517e-08 599 570 0 -5.530474e-10 600 570 -0.001930424 -2.181459e-18 601 570 1.207949e-05 1.387891e-20 602 570 0.01685513 0 603 570 -0.0001055486 0 571 571 1.721473e-06 0 596 571 1.901412e-05 4.379265e-11 597 571 3.646221e-08 -3.362012e-15 598 571 0 5.796247e-11 599 571 0 2.567975e-14 600 571 -1.205859e-05 -1.335454e-20 601 571 7.233052e-08 8.131199e-23 602 571 0.0001052076 0 603 571 -6.315316e-07 0 572 572 0.001366342 0 573 572 1.046865e-07 0 604 572 0.0002442895 0 605 572 -1.523522e-06 0 573 573 2.362982e-08 0 604 573 1.531077e-06 0 605 573 -9.153169e-09 0 574 574 0.001366342 0 575 574 1.046865e-07 0 606 574 0.0002442895 0 607 574 -1.523522e-06 0 575 575 2.362982e-08 0 606 575 1.531077e-06 0 607 575 -9.153169e-09 0 576 576 0.004673756 0 577 576 0.0005680742 0 578 576 0.0005897329 -1.731494e-18 579 576 7.380828e-05 -1.236462e-19 577 577 0.00227359 0 578 577 7.380828e-05 -1.236462e-19 579 577 0.000295237 -4.793581e-19 608 577 0.0005681001 0 609 577 -0.0002767792 0 610 577 7.380805e-05 -1.009576e-19 611 577 -3.69527e-05 2.744492e-20 578 578 0.004673756 0 579 578 0.0005680742 0 579 579 0.00227359 0 608 579 7.380805e-05 1.009576e-19 609 579 -3.69527e-05 -2.744492e-20 610 579 0.0005681001 0 611 579 -0.0002767792 0 580 580 0.08755647 0 581 580 -5.017686e-06 0 582 580 8.96016e-05 6.056718e-18 583 580 3.584151e-07 3.622046e-21 584 580 0 -1.331165e-08 585 580 0 -1.474793e-08 586 580 0.003606408 -1.124674e-08 587 580 0.004040525 -1.244547e-08 588 580 0 -1.331165e-08 589 580 0 -1.474793e-08 590 580 0.003606408 -1.124674e-08 591 580 0.004040525 -1.244547e-08 612 580 0.01479024 0 613 580 -9.263707e-05 0 614 580 4.244014e-05 1.098018e-18 615 580 -2.521515e-07 -7.014803e-21 616 580 0 -1.350428e-08 617 580 0 6.66551e-10 618 580 0.003739339 -1.138416e-08 619 580 -0.0001811504 5.628714e-10 620 580 0 -1.350428e-08 621 580 0 6.66551e-10 622 580 0.003739339 -1.138416e-08 623 580 -0.0001811504 5.628714e-10 581 581 1.514496e-06 0 582 581 3.584151e-07 3.622046e-21 583 581 1.562391e-09 9.672735e-23 584 581 0 6.906452e-11 585 581 0 -9.615487e-14 586 581 -1.867803e-05 5.836234e-11 587 581 6.637266e-08 -6.861078e-14 588 581 0 6.906452e-11 589 581 0 -9.615487e-14 590 581 -1.867803e-05 5.836234e-11 591 581 6.637266e-08 -6.861078e-14 612 581 9.229928e-05 0 613 581 -5.54161e-07 0 614 581 2.784972e-07 6.732844e-21 615 581 -1.58995e-09 -4.13167e-23 616 581 0 -7.021877e-11 617 581 0 -4.898253e-14 618 581 1.947463e-05 -5.918572e-11 619 581 3.280326e-08 -3.590762e-14 620 581 0 -7.021877e-11 621 581 0 -4.898253e-14 622 581 1.947463e-05 -5.918572e-11 623 581 3.280326e-08 -3.590762e-14 582 582 0.08755647 0 583 582 -5.017686e-06 0 584 582 -0.003606408 -1.124674e-08 585 582 -0.004040525 -1.244547e-08 586 582 0 -1.331165e-08 587 582 0 -1.474793e-08 588 582 -0.003606408 -1.124674e-08 589 582 -0.004040525 -1.244547e-08 590 582 0 -1.331165e-08 591 582 0 -1.474793e-08 612 582 4.244014e-05 -1.098018e-18 613 582 -2.521515e-07 7.014803e-21 614 582 0.01479024 0 615 582 -9.263707e-05 0 616 582 -0.003739339 -1.138416e-08 617 582 0.0001811504 5.628714e-10 618 582 0 -1.350428e-08 619 582 0 6.66551e-10 620 582 -0.003739339 -1.138416e-08 621 582 0.0001811504 5.628714e-10 622 582 0 -1.350428e-08 623 582 0 6.66551e-10 583 583 1.514496e-06 0 584 583 1.867803e-05 5.836234e-11 585 583 -6.637266e-08 -6.861078e-14 586 583 0 6.906452e-11 587 583 0 -9.615487e-14 588 583 1.867803e-05 5.836234e-11 589 583 -6.637266e-08 -6.861078e-14 590 583 0 6.906452e-11 591 583 0 -9.615487e-14 612 583 2.784972e-07 -6.732844e-21 613 583 -1.58995e-09 4.13167e-23 614 583 9.229928e-05 0 615 583 -5.54161e-07 0 616 583 -1.947463e-05 -5.918572e-11 617 583 -3.280326e-08 -3.590762e-14 618 583 0 -7.021877e-11 619 583 0 -4.898253e-14 620 583 -1.947463e-05 -5.918572e-11 621 583 -3.280326e-08 -3.590762e-14 622 583 0 -7.021877e-11 623 583 0 -4.898253e-14 584 584 0.01286167 0 585 584 0.001655614 0 586 584 0.005070572 -1.545429e-17 587 584 0.0006698374 -1.973334e-18 588 584 0.01286167 0 589 584 0.001655614 0 590 584 0.005070572 -1.545429e-17 591 584 0.0006698374 -1.973334e-18 585 585 0.00662269 0 586 585 0.0006698374 -1.973334e-18 587 585 0.002680752 -8.537595e-18 588 585 0.001655614 0 589 585 0.00662269 0 590 585 0.0006698374 -1.973334e-18 591 585 0.002680752 -8.537595e-18 612 585 0 -6.87298e-10 613 585 0 4.898253e-14 614 585 0.0001950447 -5.780802e-10 615 585 -3.280326e-08 3.590762e-14 616 585 0.001655608 0 617 585 -0.000851917 0 618 585 0.0006698369 -2.25684e-18 619 585 -0.0003538387 1.19874e-18 620 585 0.001655608 0 621 585 -0.000851917 0 622 585 0.0006698369 -2.25684e-18 623 585 -0.0003538387 1.19874e-18 586 586 0.01286167 0 587 586 0.001655614 0 588 586 0.005070572 1.545429e-17 589 586 0.0006698374 1.973334e-18 590 586 0.01286167 0 591 586 0.001655614 0 587 587 0.00662269 0 588 587 0.0006698374 1.973334e-18 589 587 0.002680752 8.537595e-18 590 587 0.001655614 0 591 587 0.00662269 0 612 587 -0.0001950447 -5.780802e-10 613 587 3.280326e-08 3.590762e-14 614 587 0 -6.87298e-10 615 587 0 4.898253e-14 616 587 0.0006698369 2.25684e-18 617 587 -0.0003538387 -1.19874e-18 618 587 0.001655608 0 619 587 -0.000851917 0 620 587 0.0006698369 2.25684e-18 621 587 -0.0003538387 -1.19874e-18 622 587 0.001655608 0 623 587 -0.000851917 0 588 588 0.9826976 0 589 588 0.119421 0 590 588 0.2478545 -1.012351e-15 591 588 0.03101241 -1.115246e-16 589 589 0.4779567 0 590 589 0.03101241 -1.115246e-16 591 589 0.1240506 -4.259564e-16 612 589 0 -6.87298e-10 613 589 0 4.898253e-14 614 589 0.0001950447 -5.780802e-10 615 589 -3.280326e-08 3.590762e-14 616 589 0.001655608 0 617 589 -0.000851917 0 618 589 0.0006698369 -2.25684e-18 619 589 -0.0003538387 1.19874e-18 620 589 0.1194265 0 621 589 -0.05817408 0 622 589 0.03101232 -1.06033e-16 623 589 -0.01552221 4.061537e-17 590 590 0.9826976 0 591 590 0.119421 0 591 591 0.4779567 0 612 591 -0.0001950447 -5.780802e-10 613 591 3.280326e-08 3.590762e-14 614 591 0 -6.87298e-10 615 591 0 4.898253e-14 616 591 0.0006698369 2.25684e-18 617 591 -0.0003538387 -1.19874e-18 618 591 0.001655608 0 619 591 -0.000851917 0 620 591 0.03101232 1.06033e-16 621 591 -0.01552221 -4.061537e-17 622 591 0.1194265 0 623 591 -0.05817408 0 592 592 0.004673756 0 593 592 0.0005680742 0 594 592 0.0005897329 -1.731494e-18 595 592 7.380828e-05 -1.236462e-19 593 593 0.00227359 0 594 593 7.380828e-05 -1.236462e-19 595 593 0.000295237 -4.793581e-19 624 593 0.0005681001 0 625 593 -0.0002767792 0 626 593 7.380805e-05 -1.009576e-19 627 593 -3.69527e-05 2.744492e-20 594 594 0.004673756 0 595 594 0.0005680742 0 595 595 0.00227359 0 624 595 7.380805e-05 1.009576e-19 625 595 -3.69527e-05 -2.744492e-20 626 595 0.0005681001 0 627 595 -0.0002767792 0 596 596 0.0125649 0 597 596 0.001615305 0 598 596 0.003521854 -1.387555e-17 599 596 0.0004653293 -1.57982e-18 600 596 0 -1.118729e-08 601 596 0 5.806519e-11 602 596 0.003700096 -8.427892e-09 603 596 -1.915997e-05 4.37792e-11 597 597 0.006461187 0 598 597 0.0004653293 -1.57982e-18 599 597 0.001862308 -5.818102e-18 600 597 0 -1.236343e-08 601 597 0 -5.264846e-14 602 597 0.00415013 -9.264691e-09 603 597 7.245464e-08 4.527534e-15 628 597 0.0016153 0 629 597 -0.000829981 0 630 597 0.0004653286 -1.33246e-18 631 597 -0.000245858 6.083222e-19 632 597 0 5.712962e-10 633 597 0 -2.697683e-14 634 597 -0.0002011311 4.206571e-10 635 597 3.600984e-08 1.214861e-15 598 598 0.0125649 0 599 598 0.001615305 0 600 598 -0.003700096 -8.427892e-09 601 598 1.915997e-05 4.37792e-11 602 598 0 -1.118729e-08 603 598 0 5.806519e-11 599 599 0.006461187 0 600 599 -0.00415013 -9.264691e-09 601 599 -7.245464e-08 4.527534e-15 602 599 0 -1.236343e-08 603 599 0 -5.264846e-14 628 599 0.0004653286 1.33246e-18 629 599 -0.000245858 -6.083222e-19 630 599 0.0016153 0 631 599 -0.000829981 0 632 599 0.0002011311 4.206571e-10 633 599 -3.600984e-08 1.214861e-15 634 599 0 5.712962e-10 635 599 0 -2.697683e-14 600 600 0.09541692 0 601 600 -4.462172e-06 0 602 600 -0.01102546 1.611782e-17 603 600 3.026359e-07 1.808265e-20 628 600 0 1.129278e-08 629 600 0 -5.598701e-10 630 600 -0.00384521 8.418833e-09 631 600 0.0001858785 -4.211723e-10 632 600 0.01619209 0 633 600 -0.0001013814 0 634 600 -0.001885485 4.463302e-18 635 600 1.179921e-05 -2.707744e-20 601 601 1.650433e-06 0 602 601 3.026359e-07 1.808265e-20 603 601 -1.906529e-07 3.033402e-22 628 601 0 5.869722e-11 629 601 0 2.697683e-14 630 601 -2.002959e-05 4.372476e-11 631 601 -3.600984e-08 -1.214861e-15 632 601 0.0001010836 0 633 601 -6.066858e-07 0 634 601 -1.177689e-05 2.876713e-20 635 601 7.064632e-08 -1.675786e-22 602 602 0.09541692 0 603 602 -4.462172e-06 0 628 602 0.00384521 8.418833e-09 629 602 -0.0001858785 -4.211723e-10 630 602 0 1.129278e-08 631 602 0 -5.598701e-10 632 602 -0.001885485 -4.463302e-18 633 602 1.179921e-05 2.707744e-20 634 602 0.01619209 0 635 602 -0.0001013814 0 603 603 1.650433e-06 0 628 603 2.002959e-05 4.372476e-11 629 603 3.600984e-08 -1.214861e-15 630 603 0 5.869722e-11 631 603 0 2.697683e-14 632 603 -1.177689e-05 -2.876713e-20 633 603 7.064632e-08 1.675786e-22 634 603 0.0001010836 0 635 603 -6.066858e-07 0 604 604 0.001457118 0 605 604 1.068834e-07 0 636 604 0.0002601666 0 637 604 -1.622699e-06 0 605 605 2.519958e-08 0 636 605 1.630418e-06 0 637 605 -9.748003e-09 0 606 606 0.001457118 0 607 606 1.068834e-07 0 638 606 0.0002601666 0 639 606 -1.622699e-06 0 607 607 2.519958e-08 0 638 607 1.630418e-06 0 639 607 -9.748003e-09 0 608 608 0.004427554 0 609 608 0.0005390167 0 610 608 0.0005912396 -3.468364e-19 611 608 7.400273e-05 -8.822057e-21 609 609 0.002157164 0 610 609 7.400273e-05 -8.822057e-21 611 609 0.0002960149 -1.706268e-19 640 609 0.0005390373 0 641 609 -0.000262987 0 642 609 7.40025e-05 -2.086579e-20 643 609 -3.705304e-05 6.543608e-20 610 610 0.004427554 0 611 610 0.0005390167 0 611 611 0.002157164 0 640 611 7.40025e-05 2.086579e-20 641 611 -3.705304e-05 -6.543608e-20 642 611 0.0005390373 0 643 611 -0.000262987 0 612 612 0.08349258 0 613 612 -4.468208e-06 0 614 612 0.0004061063 2.836434e-18 615 612 3.792123e-07 -1.034383e-20 616 612 0 -1.357218e-08 617 612 0 -1.50383e-08 618 612 0.003784811 -1.143393e-08 619 612 0.00423502 -1.265829e-08 620 612 0 -1.357218e-08 621 612 0 -1.50383e-08 622 612 0.003784811 -1.143393e-08 623 612 0.00423502 -1.265829e-08 644 612 0.01412637 0 645 612 -8.846822e-05 0 646 612 9.876253e-05 -2.682394e-19 647 612 -6.035362e-07 1.391136e-21 648 612 0 -1.377152e-08 649 612 0 6.796327e-10 650 612 0.003914516 -1.158364e-08 651 612 -0.0001900559 5.723267e-10 652 612 0 -1.377152e-08 653 612 0 6.796327e-10 654 612 0.003914516 -1.158364e-08 655 612 -0.0001900559 5.723267e-10 613 613 1.444155e-06 0 614 613 3.792123e-07 -1.034383e-20 615 613 7.035634e-09 4.548087e-23 616 613 0 7.04147e-11 617 613 0 -9.949522e-14 618 613 -1.960584e-05 5.932935e-11 619 613 6.475775e-08 -7.473677e-14 620 613 0 7.04147e-11 621 613 0 -9.949522e-14 622 613 -1.960584e-05 5.932935e-11 623 613 6.475775e-08 -7.473677e-14 644 613 8.816664e-05 0 645 613 -5.292844e-07 0 646 613 6.313633e-07 -1.981959e-21 647 613 -3.700238e-09 1.02359e-23 648 613 0 -7.160914e-11 649 613 0 -5.05558e-14 650 613 2.038312e-05 -6.022638e-11 651 613 3.197356e-08 -3.882453e-14 652 613 0 -7.160914e-11 653 613 0 -5.05558e-14 654 613 2.038312e-05 -6.022638e-11 655 613 3.197356e-08 -3.882453e-14 614 614 0.08349258 0 615 614 -4.468208e-06 0 616 614 -0.003784811 -1.143393e-08 617 614 -0.00423502 -1.265829e-08 618 614 0 -1.357218e-08 619 614 0 -1.50383e-08 620 614 -0.003784811 -1.143393e-08 621 614 -0.00423502 -1.265829e-08 622 614 0 -1.357218e-08 623 614 0 -1.50383e-08 644 614 9.876253e-05 2.682394e-19 645 614 -6.035362e-07 -1.391136e-21 646 614 0.01412637 0 647 614 -8.846822e-05 0 648 614 -0.003914516 -1.158364e-08 649 614 0.0001900559 5.723267e-10 650 614 0 -1.377152e-08 651 614 0 6.796327e-10 652 614 -0.003914516 -1.158364e-08 653 614 0.0001900559 5.723267e-10 654 614 0 -1.377152e-08 655 614 0 6.796327e-10 615 615 1.444155e-06 0 616 615 1.960584e-05 5.932935e-11 617 615 -6.475775e-08 -7.473677e-14 618 615 0 7.04147e-11 619 615 0 -9.949522e-14 620 615 1.960584e-05 5.932935e-11 621 615 -6.475775e-08 -7.473677e-14 622 615 0 7.04147e-11 623 615 0 -9.949522e-14 644 615 6.313633e-07 1.981959e-21 645 615 -3.700238e-09 -1.02359e-23 646 615 8.816664e-05 0 647 615 -5.292844e-07 0 648 615 -2.038312e-05 -6.022638e-11 649 615 -3.197356e-08 -3.882453e-14 650 615 0 -7.160914e-11 651 615 0 -5.05558e-14 652 615 -2.038312e-05 -6.022638e-11 653 615 -3.197356e-08 -3.882453e-14 654 615 0 -7.160914e-11 655 615 0 -5.05558e-14 616 616 0.01363047 0 617 616 0.001752061 0 618 616 0.0056603 -2.01821e-17 619 616 0.0007455178 -2.538122e-18 620 616 0.01363047 0 621 616 0.001752061 0 622 616 0.0056603 -2.01821e-17 623 616 0.0007455178 -2.538122e-18 617 617 0.007008489 0 618 617 0.0007455178 -2.538122e-18 619 617 0.002983464 -8.707314e-18 620 617 0.001752061 0 621 617 0.007008489 0 622 617 0.0007455178 -2.538122e-18 623 617 0.002983464 -8.707314e-18 644 617 0 -7.010462e-10 645 617 0 5.05558e-14 646 617 0.0002035989 -5.887711e-10 647 617 -3.197356e-08 3.882453e-14 648 617 0.001752054 0 649 617 -0.0009003224 0 650 617 0.0007455171 -1.932321e-18 651 617 -0.0003926543 8.608634e-19 652 617 0.001752054 0 653 617 -0.0009003224 0 654 617 0.0007455171 -1.932321e-18 655 617 -0.0003926543 8.608634e-19 618 618 0.01363047 0 619 618 0.001752061 0 620 618 0.0056603 2.01821e-17 621 618 0.0007455178 2.538122e-18 622 618 0.01363047 0 623 618 0.001752061 0 619 619 0.007008489 0 620 619 0.0007455178 2.538122e-18 621 619 0.002983464 8.707314e-18 622 619 0.001752061 0 623 619 0.007008489 0 644 619 -0.0002035989 -5.887711e-10 645 619 3.197356e-08 3.882453e-14 646 619 0 -7.010462e-10 647 619 0 5.05558e-14 648 619 0.0007455171 1.932321e-18 649 619 -0.0003926543 -8.608634e-19 650 619 0.001752054 0 651 619 -0.0009003224 0 652 619 0.0007455171 1.932321e-18 653 619 -0.0003926543 -8.608634e-19 654 619 0.001752054 0 655 619 -0.0009003224 0 620 620 0.9305929 0 621 620 0.1132699 0 622 620 0.2483545 -6.412481e-16 623 620 0.03107652 -5.642845e-17 621 621 0.4533105 0 622 621 0.03107652 -5.642845e-17 623 621 0.1243071 -2.438997e-16 644 621 0 -7.010462e-10 645 621 0 5.05558e-14 646 621 0.0002035989 -5.887711e-10 647 621 -3.197356e-08 3.882453e-14 648 621 0.001752054 0 649 621 -0.0009003224 0 650 621 0.0007455171 -1.932321e-18 651 621 -0.0003926543 8.608634e-19 652 621 0.1132742 0 653 621 -0.05525363 0 654 621 0.03107643 -5.372893e-17 655 621 -0.01555506 3.095197e-17 622 622 0.9305929 0 623 622 0.1132699 0 623 623 0.4533105 0 644 623 -0.0002035989 -5.887711e-10 645 623 3.197356e-08 3.882453e-14 646 623 0 -7.010462e-10 647 623 0 5.05558e-14 648 623 0.0007455171 1.932321e-18 649 623 -0.0003926543 -8.608634e-19 650 623 0.001752054 0 651 623 -0.0009003224 0 652 623 0.03107643 5.372893e-17 653 623 -0.01555506 -3.095197e-17 654 623 0.1132742 0 655 623 -0.05525363 0 624 624 0.004427554 0 625 624 0.0005390167 0 626 624 0.0005912396 -3.468364e-19 627 624 7.400273e-05 -8.822057e-21 625 625 0.002157164 0 626 625 7.400273e-05 -8.822057e-21 627 625 0.0002960149 -1.706268e-19 656 625 0.0005390373 0 657 625 -0.000262987 0 658 625 7.40025e-05 -2.086579e-20 659 625 -3.705304e-05 6.543608e-20 626 626 0.004427554 0 627 626 0.0005390167 0 627 627 0.002157164 0 656 627 7.40025e-05 2.086579e-20 657 627 -3.705304e-05 -6.543608e-20 658 627 0.0005390373 0 659 627 -0.000262987 0 628 628 0.01327971 0 629 628 0.001704624 0 630 628 0.003932936 -8.917779e-18 631 628 0.0005181033 -1.100829e-18 632 628 0 -1.133018e-08 633 628 0 5.880513e-11 634 628 0.003895128 -8.417146e-09 635 628 -2.017363e-05 4.37199e-11 629 629 0.00681846 0 630 629 0.0005181033 -1.100829e-18 631 629 0.002073399 -5.573135e-18 632 629 0 -1.252332e-08 633 629 0 -5.501207e-14 634 629 0.004363644 -9.257389e-09 635 629 7.150654e-08 5.669496e-16 660 629 0.001704619 0 661 629 -0.000874623 0 662 629 0.0005181025 -1.480722e-18 663 629 -0.0002729359 9.771171e-19 664 629 0 5.789434e-10 665 629 0 -2.805965e-14 666 629 -0.0002106682 4.209678e-10 667 629 3.552297e-08 -6.214899e-16 630 630 0.01327971 0 631 630 0.001704624 0 632 630 -0.003895128 -8.417146e-09 633 630 2.017363e-05 4.37199e-11 634 630 0 -1.133018e-08 635 630 0 5.880513e-11 631 631 0.00681846 0 632 631 -0.004363644 -9.257389e-09 633 631 -7.150654e-08 5.669496e-16 634 631 0 -1.252332e-08 635 631 0 -5.501207e-14 660 631 0.0005181025 1.480722e-18 661 631 -0.0002729359 -9.771171e-19 662 631 0.001704619 0 663 631 -0.000874623 0 664 631 0.0002106682 4.209678e-10 665 631 -3.552297e-08 -6.214899e-16 666 631 0 5.789434e-10 667 631 0 -2.805965e-14 632 632 0.09183341 0 633 632 -3.904171e-06 0 634 632 -0.01075731 2.970105e-17 635 632 3.225289e-07 -8.670186e-23 660 632 0 1.144042e-08 661 632 0 -5.670585e-10 662 632 -0.004038353 8.416037e-09 663 632 0.0001956217 -4.207051e-10 664 632 0.015612 0 665 632 -9.773603e-05 0 666 632 -0.001837592 4.834939e-18 667 632 1.150046e-05 -3.039603e-20 633 633 1.588399e-06 0 634 633 3.225289e-07 -8.670186e-23 635 633 -1.860144e-07 4.911313e-22 660 633 0 5.946562e-11 661 633 0 2.805965e-14 662 633 -2.103193e-05 4.37131e-11 663 633 -3.552297e-08 6.214899e-16 664 633 9.747506e-05 0 665 633 -5.849482e-07 0 666 633 -1.147672e-05 3.00296e-20 667 633 6.885145e-08 -1.808623e-22 634 634 0.09183341 0 635 634 -3.904171e-06 0 660 634 0.004038353 8.416037e-09 661 634 -0.0001956217 -4.207051e-10 662 634 0 1.144042e-08 663 634 0 -5.670585e-10 664 634 -0.001837592 -4.834939e-18 665 634 1.150046e-05 3.039603e-20 666 634 0.015612 0 667 634 -9.773603e-05 0 635 635 1.588399e-06 0 660 635 2.103193e-05 4.37131e-11 661 635 3.552297e-08 6.214899e-16 662 635 0 5.946562e-11 663 635 0 2.805965e-14 664 635 -1.147672e-05 -3.00296e-20 665 635 6.885145e-08 1.808623e-22 666 635 9.747506e-05 0 667 635 -5.849482e-07 0 636 636 0.001549859 0 637 636 1.092667e-07 0 668 636 0.0002763979 0 669 636 -1.724083e-06 0 637 637 2.680332e-08 0 668 637 1.731979e-06 0 669 637 -1.03561e-08 0 638 638 0.001549859 0 639 638 1.092667e-07 0 670 638 0.0002763979 0 671 638 -1.724083e-06 0 639 639 2.680332e-08 0 670 639 1.731979e-06 0 671 639 -1.03561e-08 0 640 640 0.004207011 0 641 640 0.0005129106 0 642 640 0.0005928451 -1.005593e-18 643 640 7.420968e-05 -2.408785e-19 641 641 0.002052581 0 642 641 7.420968e-05 -2.408785e-19 643 641 0.0002968428 -9.63051e-19 672 641 0.0005129271 0 673 641 -0.0002505658 0 674 641 7.420944e-05 -2.851466e-19 675 641 -3.715973e-05 1.359382e-19 642 642 0.004207011 0 643 642 0.0005129106 0 643 643 0.002052581 0 672 643 7.420944e-05 2.851466e-19 673 643 -3.715973e-05 -1.359382e-19 674 643 0.0005129271 0 675 643 -0.0002505658 0 644 644 0.07986473 0 645 644 -3.998776e-06 0 646 644 0.0007404214 -2.412832e-18 647 644 3.999479e-07 1.829007e-21 648 644 0 -1.38416e-08 649 644 0 -1.533801e-08 650 644 0.003958838 -1.163746e-08 651 644 0.004424603 -1.288843e-08 652 644 0 -1.38416e-08 653 644 0 -1.533801e-08 654 644 0.003958838 -1.163746e-08 655 644 0.004424603 -1.288843e-08 676 644 0.01353227 0 677 644 -8.473818e-05 0 678 644 0.0001581664 -1.384375e-19 679 644 -9.741818e-07 1.041217e-21 680 644 0 -1.404689e-08 681 644 0 6.931512e-10 682 644 0.00408515 -1.179832e-08 683 644 -0.0001987417 5.825874e-10 684 644 0 -1.404689e-08 685 644 0 6.931512e-10 686 644 0.00408515 -1.179832e-08 687 644 -0.0001987417 5.825874e-10 645 645 1.381366e-06 0 646 645 3.999479e-07 1.829007e-21 647 645 1.281692e-08 -3.241076e-23 648 645 0 7.181136e-11 649 645 0 -1.024578e-13 650 645 -2.051101e-05 6.038168e-11 651 645 6.30679e-08 -8.029588e-14 652 645 0 7.181136e-11 653 645 0 -1.024578e-13 654 645 -2.051101e-05 6.038168e-11 655 645 6.30679e-08 -8.029588e-14 676 645 8.446765e-05 0 677 645 -5.070222e-07 0 678 645 1.003495e-06 -6.840299e-22 679 645 -5.925956e-09 5.130845e-24 680 645 0 -7.304143e-11 681 645 0 -5.195846e-14 682 645 2.126793e-05 -6.134552e-11 683 645 3.110092e-08 -4.148536e-14 684 645 0 -7.304143e-11 685 645 0 -5.195846e-14 686 645 2.126793e-05 -6.134552e-11 687 645 3.110092e-08 -4.148536e-14 646 646 0.07986473 0 647 646 -3.998776e-06 0 648 646 -0.003958838 -1.163746e-08 649 646 -0.004424603 -1.288843e-08 650 646 0 -1.38416e-08 651 646 0 -1.533801e-08 652 646 -0.003958838 -1.163746e-08 653 646 -0.004424603 -1.288843e-08 654 646 0 -1.38416e-08 655 646 0 -1.533801e-08 676 646 0.0001581664 1.384375e-19 677 646 -9.741818e-07 -1.041217e-21 678 646 0.01353227 0 679 646 -8.473818e-05 0 680 646 -0.00408515 -1.179832e-08 681 646 0.0001987417 5.825874e-10 682 646 0 -1.404689e-08 683 646 0 6.931512e-10 684 646 -0.00408515 -1.179832e-08 685 646 0.0001987417 5.825874e-10 686 646 0 -1.404689e-08 687 646 0 6.931512e-10 647 647 1.381366e-06 0 648 647 2.051101e-05 6.038168e-11 649 647 -6.30679e-08 -8.029588e-14 650 647 0 7.181136e-11 651 647 0 -1.024578e-13 652 647 2.051101e-05 6.038168e-11 653 647 -6.30679e-08 -8.029588e-14 654 647 0 7.181136e-11 655 647 0 -1.024578e-13 676 647 1.003495e-06 6.840299e-22 677 647 -5.925956e-09 -5.130845e-24 678 647 8.446765e-05 0 679 647 -5.070222e-07 0 680 647 -2.126793e-05 -6.134552e-11 681 647 -3.110092e-08 -4.148536e-14 682 647 0 -7.304143e-11 683 647 0 -5.195846e-14 684 647 -2.126793e-05 -6.134552e-11 685 647 -3.110092e-08 -4.148536e-14 686 647 0 -7.304143e-11 687 647 0 -5.195846e-14 648 648 0.01440494 0 649 648 0.001849236 0 650 648 0.006281358 -1.194315e-17 651 648 0.0008251001 -1.511132e-18 652 648 0.01440494 0 653 648 0.001849236 0 654 648 0.006281358 -1.194315e-17 655 648 0.0008251001 -1.511132e-18 649 649 0.007397204 0 650 649 0.0008251001 -1.511132e-18 651 649 0.003301782 -8.743388e-18 652 649 0.001849236 0 653 649 0.007397204 0 654 649 0.0008251001 -1.511132e-18 655 649 0.003301782 -8.743388e-18 676 649 0 -7.15159e-10 677 649 0 5.195846e-14 678 649 0.000211915 -6.00159e-10 679 649 -3.110092e-08 4.148536e-14 680 649 0.001849229 0 681 649 -0.0009491022 0 682 649 0.0008250993 -2.13808e-18 683 649 -0.0004334134 1.968899e-18 684 649 0.001849229 0 685 649 -0.0009491022 0 686 649 0.0008250993 -2.13808e-18 687 649 -0.0004334134 1.968899e-18 650 650 0.01440494 0 651 650 0.001849236 0 652 650 0.006281358 1.194315e-17 653 650 0.0008251001 1.511132e-18 654 650 0.01440494 0 655 650 0.001849236 0 651 651 0.007397204 0 652 651 0.0008251001 1.511132e-18 653 651 0.003301782 8.743388e-18 654 651 0.001849236 0 655 651 0.007397204 0 676 651 -0.000211915 -6.00159e-10 677 651 3.110092e-08 4.148536e-14 678 651 0 -7.15159e-10 679 651 0 5.195846e-14 680 651 0.0008250993 2.13808e-18 681 651 -0.0004334134 -1.968899e-18 682 651 0.001849229 0 683 651 -0.0009491022 0 684 651 0.0008250993 2.13808e-18 685 651 -0.0004334134 -1.968899e-18 686 651 0.001849229 0 687 651 -0.0009491022 0 652 652 0.8838938 0 653 652 0.1077403 0 654 652 0.2488801 -4.697834e-16 655 652 0.03114383 -7.007893e-17 653 653 0.4311591 0 654 653 0.03114383 -7.007893e-17 655 653 0.1245763 -3.078038e-16 676 653 0 -7.15159e-10 677 653 0 5.195846e-14 678 653 0.000211915 -6.00159e-10 679 653 -3.110092e-08 4.148536e-14 680 653 0.001849229 0 681 653 -0.0009491022 0 682 653 0.0008250993 -2.13808e-18 683 653 -0.0004334134 1.968899e-18 684 653 0.1077438 0 685 653 -0.05262195 0 686 653 0.03114374 -7.908311e-17 687 653 -0.0155895 5.020766e-17 654 654 0.8838938 0 655 654 0.1077403 0 655 655 0.4311591 0 676 655 -0.000211915 -6.00159e-10 677 655 3.110092e-08 4.148536e-14 678 655 0 -7.15159e-10 679 655 0 5.195846e-14 680 655 0.0008250993 2.13808e-18 681 655 -0.0004334134 -1.968899e-18 682 655 0.001849229 0 683 655 -0.0009491022 0 684 655 0.03114374 7.908311e-17 685 655 -0.0155895 -5.020766e-17 686 655 0.1077438 0 687 655 -0.05262195 0 656 656 0.004207011 0 657 656 0.0005129106 0 658 656 0.0005928451 -1.005593e-18 659 656 7.420968e-05 -2.408785e-19 657 657 0.002052581 0 658 657 7.420968e-05 -2.408785e-19 659 657 0.0002968428 -9.63051e-19 688 657 0.0005129271 0 689 657 -0.0002505658 0 690 657 7.420944e-05 -2.851466e-19 691 657 -3.715973e-05 1.359382e-19 658 658 0.004207011 0 659 658 0.0005129106 0 659 659 0.002052581 0 688 659 7.420944e-05 2.851466e-19 689 659 -3.715973e-05 -1.359382e-19 690 659 0.0005129271 0 691 659 -0.0002505658 0 660 660 0.01399399 0 661 660 0.001793873 0 662 660 0.004366187 -1.658124e-17 663 660 0.0005736413 -2.427746e-18 664 660 0 -1.147931e-08 665 660 0 5.957786e-11 666 660 0.004087596 -8.416897e-09 667 660 -2.117402e-05 4.371559e-11 661 661 0.007175457 0 662 661 0.0005736413 -2.427746e-18 663 661 0.002295545 -8.229644e-18 664 661 0 -1.268964e-08 665 661 0 -5.699115e-14 666 661 0.004574278 -9.26099e-09 667 661 7.052107e-08 -2.838379e-15 692 661 0.001793868 0 693 661 -0.0009192296 0 694 661 0.0005736404 -2.081634e-18 695 661 -0.0003013923 7.285328e-19 696 661 0 5.868216e-10 697 661 0 -2.896826e-14 698 661 -0.0002200652 4.216862e-10 699 661 3.500906e-08 -2.20766e-15 662 662 0.01399399 0 663 662 0.001793873 0 664 662 -0.004087596 -8.416897e-09 665 662 2.117402e-05 4.371559e-11 666 662 0 -1.147931e-08 667 662 0 5.957786e-11 663 663 0.007175457 0 664 663 -0.004574278 -9.26099e-09 665 663 -7.052107e-08 -2.838379e-15 666 663 0 -1.268964e-08 667 663 0 -5.699115e-14 692 663 0.0005736404 2.081634e-18 693 663 -0.0003013923 -7.285328e-19 694 663 0.001793868 0 695 663 -0.0009192296 0 696 663 0.0002200652 4.216862e-10 697 663 -3.500906e-08 -2.20766e-15 698 663 0 5.868216e-10 699 663 0 -2.896826e-14 664 664 0.08869355 0 665 664 -3.425513e-06 0 666 664 -0.01047195 3.072659e-17 667 664 3.427601e-07 1.363598e-20 692 664 0 1.159353e-08 693 664 0 -5.745518e-10 694 664 -0.004228836 8.422621e-09 695 664 0.0002052365 -4.207515e-10 696 664 0.01510305 0 697 664 -9.453801e-05 0 698 664 -0.001786693 6.559475e-18 699 664 1.118294e-05 -4.038213e-20 665 665 1.534048e-06 0 666 665 3.427601e-07 1.363598e-20 667 665 -1.810783e-07 5.481525e-22 692 665 0 6.026217e-11 693 665 0 2.896826e-14 694 665 -2.202041e-05 4.374975e-11 695 665 -3.500906e-08 2.20766e-15 696 665 9.430878e-05 0 697 665 -5.658763e-07 0 698 665 -1.115773e-05 4.16548e-20 699 665 6.694394e-08 -2.459439e-22 666 666 0.08869355 0 667 666 -3.425513e-06 0 692 666 0.004228836 8.422621e-09 693 666 -0.0002052365 -4.207515e-10 694 666 0 1.159353e-08 695 666 0 -5.745518e-10 696 666 -0.001786693 -6.559475e-18 697 666 1.118294e-05 4.038213e-20 698 666 0.01510305 0 699 666 -9.453801e-05 0 667 667 1.534048e-06 0 692 667 2.202041e-05 4.374975e-11 693 667 3.500906e-08 2.20766e-15 694 667 0 6.026217e-11 695 667 0 2.896826e-14 696 667 -1.115773e-05 -4.16548e-20 697 667 6.694394e-08 2.459439e-22 698 667 9.430878e-05 0 699 667 -5.658763e-07 0 668 668 0.001644729 0 669 668 1.118481e-07 0 700 668 0.0002930128 0 701 668 -1.827857e-06 0 669 669 2.844389e-08 0 700 669 1.835945e-06 0 701 669 -1.097856e-08 0 670 670 0.001644729 0 671 670 1.118481e-07 0 702 670 0.0002930128 0 703 670 -1.827857e-06 0 671 671 2.844389e-08 0 702 671 1.835945e-06 0 703 671 -1.097856e-08 0 672 672 0.004008381 0 673 672 0.0004893362 0 674 672 0.000594552 -2.363794e-18 675 672 7.442949e-05 -2.58606e-19 673 673 0.001958154 0 674 673 7.442949e-05 -2.58606e-19 675 673 0.0002977222 -8.369059e-19 704 673 0.0004893496 0 705 673 -0.0002393249 0 706 673 7.442925e-05 -1.667545e-19 707 673 -3.727295e-05 6.738347e-20 674 674 0.004008381 0 675 674 0.0004893362 0 675 675 0.001958154 0 704 675 7.442925e-05 1.667545e-19 705 675 -3.727295e-05 -6.738347e-20 706 675 0.0004893496 0 707 675 -0.0002393249 0 676 676 0.07661073 0 677 676 -3.594989e-06 0 678 676 0.001092599 3.995183e-19 679 676 4.208643e-07 1.70103e-21 680 676 0 -1.411891e-08 681 676 0 -1.564604e-08 682 676 0.004128263 -1.185582e-08 683 676 0.004609002 -1.313435e-08 684 676 0 -1.411891e-08 685 676 0 -1.564604e-08 686 676 0.004128263 -1.185582e-08 687 676 0.004609002 -1.313435e-08 708 676 0.01299819 0 709 676 -8.138551e-05 0 710 676 0.0002206775 2.228423e-19 711 676 -1.364243e-06 -1.257178e-21 712 676 0 -1.432952e-08 713 676 0 7.070584e-10 714 676 0.004250945 -1.20269e-08 715 676 -0.0002071961 5.935811e-10 716 676 0 -1.432952e-08 717 676 0 7.070584e-10 718 676 0.004250945 -1.20269e-08 719 676 -0.0002071961 5.935811e-10 677 677 1.32505e-06 0 678 677 4.208643e-07 1.70103e-21 679 677 1.890715e-08 5.537601e-24 680 677 0 7.324926e-11 681 677 0 -1.051117e-13 682 677 -2.139234e-05 6.151147e-11 683 677 6.124755e-08 -8.53922e-14 684 677 0 7.324926e-11 685 677 0 -1.051117e-13 686 677 -2.139234e-05 6.151147e-11 687 677 6.124755e-08 -8.53922e-14 708 677 8.11418e-05 0 709 677 -4.87009e-07 0 710 677 1.395059e-06 1.518641e-21 711 677 -8.268068e-09 -8.246429e-24 712 677 0 -7.451125e-11 713 677 0 -5.322061e-14 714 677 2.212751e-05 -6.253655e-11 715 677 3.016908e-08 -4.393576e-14 716 677 0 -7.451125e-11 717 677 0 -5.322061e-14 718 677 2.212751e-05 -6.253655e-11 719 677 3.016908e-08 -4.393576e-14 678 678 0.07661073 0 679 678 -3.594989e-06 0 680 678 -0.004128263 -1.185582e-08 681 678 -0.004609002 -1.313435e-08 682 678 0 -1.411891e-08 683 678 0 -1.564604e-08 684 678 -0.004128263 -1.185582e-08 685 678 -0.004609002 -1.313435e-08 686 678 0 -1.411891e-08 687 678 0 -1.564604e-08 708 678 0.0002206775 -2.228423e-19 709 678 -1.364243e-06 1.257178e-21 710 678 0.01299819 0 711 678 -8.138551e-05 0 712 678 -0.004250945 -1.20269e-08 713 678 0.0002071961 5.935811e-10 714 678 0 -1.432952e-08 715 678 0 7.070584e-10 716 678 -0.004250945 -1.20269e-08 717 678 0.0002071961 5.935811e-10 718 678 0 -1.432952e-08 719 678 0 7.070584e-10 679 679 1.32505e-06 0 680 679 2.139234e-05 6.151147e-11 681 679 -6.124755e-08 -8.53922e-14 682 679 0 7.324926e-11 683 679 0 -1.051117e-13 684 679 2.139234e-05 6.151147e-11 685 679 -6.124755e-08 -8.53922e-14 686 679 0 7.324926e-11 687 679 0 -1.051117e-13 708 679 1.395059e-06 -1.518641e-21 709 679 -8.268068e-09 8.246429e-24 710 679 8.11418e-05 0 711 679 -4.87009e-07 0 712 679 -2.212751e-05 -6.253655e-11 713 679 -3.016908e-08 -4.393576e-14 714 679 0 -7.451125e-11 715 679 0 -5.322061e-14 716 679 -2.212751e-05 -6.253655e-11 717 679 -3.016908e-08 -4.393576e-14 718 679 0 -7.451125e-11 719 679 0 -5.322061e-14 680 680 0.01518541 0 681 680 0.00194718 0 682 680 0.006933512 -3.237464e-17 683 680 0.0009085544 -5.737515e-18 684 680 0.01518541 0 685 680 0.00194718 0 686 680 0.006933512 -3.237464e-17 687 680 0.0009085544 -5.737515e-18 681 681 0.007788995 0 682 681 0.0009085544 -5.737515e-18 683 681 0.003635587 -2.111996e-17 684 681 0.00194718 0 685 681 0.007788995 0 686 681 0.0009085544 -5.737515e-18 687 681 0.003635587 -2.111996e-17 708 681 0 -7.296009e-10 709 681 0 5.322061e-14 710 681 0.0002199749 -6.121907e-10 711 681 -3.016908e-08 4.393576e-14 712 681 0.001947173 0 713 681 -0.0009982765 0 714 681 0.0009085533 -5.741394e-18 715 681 -0.0004761006 2.501735e-18 716 681 0.001947173 0 717 681 -0.0009982765 0 718 681 0.0009085533 -5.741394e-18 719 681 -0.0004761006 2.501735e-18 682 682 0.01518541 0 683 682 0.00194718 0 684 682 0.006933512 3.237464e-17 685 682 0.0009085544 5.737515e-18 686 682 0.01518541 0 687 682 0.00194718 0 683 683 0.007788995 0 684 683 0.0009085544 5.737515e-18 685 683 0.003635587 2.111996e-17 686 683 0.00194718 0 687 683 0.007788995 0 708 683 -0.0002199749 -6.121907e-10 709 683 3.016908e-08 4.393576e-14 710 683 0 -7.296009e-10 711 683 0 5.322061e-14 712 683 0.0009085533 5.741394e-18 713 683 -0.0004761006 -2.501735e-18 714 683 0.001947173 0 715 683 -0.0009982765 0 716 683 0.0009085533 5.741394e-18 717 683 -0.0004761006 -2.501735e-18 718 683 0.001947173 0 719 683 -0.0009982765 0 684 684 0.8418097 0 685 684 0.102744 0 686 684 0.2494312 -8.237392e-16 687 684 0.03121428 -1.217475e-16 685 685 0.4111462 0 686 685 0.03121428 -1.217475e-16 687 685 0.1248581 -4.482778e-16 708 685 0 -7.296009e-10 709 685 0 5.322061e-14 710 685 0.0002199749 -6.121907e-10 711 685 -3.016908e-08 4.393576e-14 712 685 0.001947173 0 713 685 -0.0009982765 0 714 685 0.0009085533 -5.741394e-18 715 685 -0.0004761006 2.501735e-18 716 685 0.1027468 0 717 685 -0.05023875 0 718 685 0.03121419 -1.261926e-16 719 685 -0.01562551 4.093943e-17 686 686 0.8418097 0 687 686 0.102744 0 687 687 0.4111462 0 708 687 -0.0002199749 -6.121907e-10 709 687 3.016908e-08 4.393576e-14 710 687 0 -7.296009e-10 711 687 0 5.322061e-14 712 687 0.0009085533 5.741394e-18 713 687 -0.0004761006 -2.501735e-18 714 687 0.001947173 0 715 687 -0.0009982765 0 716 687 0.03121419 1.261926e-16 717 687 -0.01562551 -4.093943e-17 718 687 0.1027468 0 719 687 -0.05023875 0 688 688 0.004008381 0 689 688 0.0004893362 0 690 688 0.000594552 -2.363794e-18 691 688 7.442949e-05 -2.58606e-19 689 689 0.001958154 0 690 689 7.442949e-05 -2.58606e-19 691 689 0.0002977222 -8.369059e-19 720 689 0.0004893496 0 721 689 -0.0002393249 0 722 689 7.442925e-05 -1.667545e-19 723 689 -3.727295e-05 6.738347e-20 690 690 0.004008381 0 691 690 0.0004893362 0 691 691 0.001958154 0 720 691 7.442925e-05 1.667545e-19 721 691 -3.727295e-05 -6.738347e-20 722 691 0.0004893496 0 723 691 -0.0002393249 0 692 692 0.01470769 0 693 692 0.00188305 0 694 692 0.004821494 -1.116781e-17 695 692 0.0006319289 -8.324972e-19 696 692 0 -1.163368e-08 697 692 0 6.037805e-11 698 692 0.004277366 -8.42568e-09 699 692 -2.216044e-05 4.375858e-11 693 693 0.007532163 0 694 693 0.0006319289 -8.324972e-19 695 693 0.00252869 -4.28147e-18 696 693 0 -1.286135e-08 697 693 0 -5.865422e-14 698 693 0.004781854 -9.274007e-09 699 693 6.942782e-08 -5.793253e-15 724 693 0.001883045 0 725 693 -0.0009637989 0 726 693 0.0006319278 -9.187266e-19 727 693 -0.0003312196 6.836136e-19 728 693 0 5.948944e-10 729 693 0 -2.97325e-14 730 693 -0.0002293066 4.227611e-10 731 693 3.444727e-08 -3.589826e-15 694 694 0.01470769 0 695 694 0.00188305 0 696 694 -0.004277366 -8.42568e-09 697 694 2.216044e-05 4.375858e-11 698 694 0 -1.163368e-08 699 694 0 6.037805e-11 695 695 0.007532163 0 696 695 -0.004781854 -9.274007e-09 697 695 -6.942782e-08 -5.793253e-15 698 695 0 -1.286135e-08 699 695 0 -5.865422e-14 724 695 0.0006319278 9.187266e-19 725 695 -0.0003312196 -6.836136e-19 726 695 0.001883045 0 727 695 -0.0009637989 0 728 695 0.0002293066 4.227611e-10 729 695 -3.444727e-08 -3.589826e-15 730 695 0 5.948944e-10 731 695 0 -2.97325e-14 696 696 0.08593572 0 697 696 -3.011912e-06 0 698 696 -0.01016897 4.270028e-17 699 696 3.636154e-07 7.240264e-21 724 696 0 1.175124e-08 725 696 0 -5.823008e-10 726 696 -0.004416434 8.437332e-09 727 696 0.0002147157 -4.212408e-10 728 696 0.01465559 0 729 696 -9.172646e-05 0 730 696 -0.001732695 7.803887e-18 731 696 1.084607e-05 -4.861523e-20 697 697 1.486312e-06 0 698 697 3.636154e-07 7.240264e-21 699 697 -1.758375e-07 7.294275e-22 724 697 0 6.108237e-11 725 697 0 2.97325e-14 726 697 -2.299382e-05 4.382828e-11 727 697 -3.444727e-08 3.589826e-15 728 697 9.152478e-05 0 729 697 -5.49108e-07 0 730 697 -1.081935e-05 4.895801e-20 731 697 6.492038e-08 -2.923397e-22 698 698 0.08593572 0 699 698 -3.011912e-06 0 724 698 0.004416434 8.437332e-09 725 698 -0.0002147157 -4.212408e-10 726 698 0 1.175124e-08 727 698 0 -5.823008e-10 728 698 -0.001732695 -7.803887e-18 729 698 1.084607e-05 4.861523e-20 730 698 0.01465559 0 731 698 -9.172646e-05 0 699 699 1.486312e-06 0 724 699 2.299382e-05 4.382828e-11 725 699 3.444727e-08 3.589826e-15 726 699 0 6.108237e-11 727 699 0 2.97325e-14 728 699 -1.081935e-05 -4.895801e-20 729 699 6.492038e-08 2.923397e-22 730 699 9.152478e-05 0 731 699 -5.49108e-07 0 700 700 0.001741907 0 701 700 1.146418e-07 0 732 700 0.0003100428 0 733 700 -1.934219e-06 0 701 701 3.012433e-08 0 732 701 1.942514e-06 0 733 701 -1.161657e-08 0 702 702 0.001741907 0 703 702 1.146418e-07 0 734 702 0.0003100428 0 735 702 -1.934219e-06 0 703 703 3.012433e-08 0 734 703 1.942514e-06 0 735 703 -1.161657e-08 0 704 704 0.003828616 0 705 704 0.0004679501 0 706 704 0.0005963633 -8.455897e-19 707 704 7.466254e-05 -1.027794e-19 705 705 0.001872503 0 706 705 7.466254e-05 -1.027794e-19 707 705 0.0002986546 -6.77569e-19 736 705 0.000467961 0 737 705 -0.0002291074 0 738 705 7.46623e-05 -1.988284e-19 739 705 -3.739289e-05 1.337117e-19 706 706 0.003828616 0 707 706 0.0004679501 0 707 707 0.001872503 0 736 707 7.46623e-05 1.988284e-19 737 707 -3.739289e-05 -1.337117e-19 738 707 0.000467961 0 739 707 -0.0002291074 0 708 708 0.07367959 0 709 708 -3.244613e-06 0 710 708 0.001462833 3.450214e-18 711 708 4.420182e-07 4.767494e-21 712 708 0 -1.44033e-08 713 708 0 -1.596157e-08 714 708 0.004292766 -1.208781e-08 715 708 0.004787884 -1.339481e-08 716 708 0 -1.44033e-08 717 708 0 -1.596157e-08 718 708 0.004292766 -1.208781e-08 719 708 0.004787884 -1.339481e-08 740 708 0.01251618 0 741 708 -7.836013e-05 0 742 708 0.0002863309 7.033094e-19 743 708 -1.773939e-06 -4.602153e-21 744 708 0 -1.461872e-08 745 708 0 7.213145e-10 746 708 0.00441165 -1.226834e-08 747 708 -0.0002154026 6.052484e-10 748 708 0 -1.461872e-08 749 708 0 7.213145e-10 750 708 0.00441165 -1.226834e-08 751 708 -0.0002154026 6.052484e-10 709 709 1.274325e-06 0 710 709 4.420182e-07 4.767494e-21 711 709 2.530954e-08 5.426176e-23 712 709 0 7.472413e-11 713 709 0 -1.075104e-13 714 709 -2.224819e-05 6.27123e-11 715 709 5.935279e-08 -9.010657e-14 716 709 0 7.472413e-11 717 709 0 -1.075104e-13 718 709 -2.224819e-05 6.27123e-11 719 709 5.935279e-08 -9.010657e-14 740 709 7.813978e-05 0 741 709 -4.689469e-07 0 742 709 1.806273e-06 4.222694e-21 743 709 -1.072789e-08 -2.665102e-23 744 709 0 -7.601495e-11 745 709 0 -5.436626e-14 746 709 2.296059e-05 -6.379403e-11 747 709 2.920021e-08 -4.621188e-14 748 709 0 -7.601495e-11 749 709 0 -5.436626e-14 750 709 2.296059e-05 -6.379403e-11 751 709 2.920021e-08 -4.621188e-14 710 710 0.07367959 0 711 710 -3.244613e-06 0 712 710 -0.004292766 -1.208781e-08 713 710 -0.004787884 -1.339481e-08 714 710 0 -1.44033e-08 715 710 0 -1.596157e-08 716 710 -0.004292766 -1.208781e-08 717 710 -0.004787884 -1.339481e-08 718 710 0 -1.44033e-08 719 710 0 -1.596157e-08 740 710 0.0002863309 -7.033094e-19 741 710 -1.773939e-06 4.602153e-21 742 710 0.01251618 0 743 710 -7.836013e-05 0 744 710 -0.00441165 -1.226834e-08 745 710 0.0002154026 6.052484e-10 746 710 0 -1.461872e-08 747 710 0 7.213145e-10 748 710 -0.00441165 -1.226834e-08 749 710 0.0002154026 6.052484e-10 750 710 0 -1.461872e-08 751 710 0 7.213145e-10 711 711 1.274325e-06 0 712 711 2.224819e-05 6.27123e-11 713 711 -5.935279e-08 -9.010657e-14 714 711 0 7.472413e-11 715 711 0 -1.075104e-13 716 711 2.224819e-05 6.27123e-11 717 711 -5.935279e-08 -9.010657e-14 718 711 0 7.472413e-11 719 711 0 -1.075104e-13 740 711 1.806273e-06 -4.222694e-21 741 711 -1.072789e-08 2.665102e-23 742 711 7.813978e-05 0 743 711 -4.689469e-07 0 744 711 -2.296059e-05 -6.379403e-11 745 711 -2.920021e-08 -4.621188e-14 746 711 0 -7.601495e-11 747 711 0 -5.436626e-14 748 711 -2.296059e-05 -6.379403e-11 749 711 -2.920021e-08 -4.621188e-14 750 711 0 -7.601495e-11 751 711 0 -5.436626e-14 712 712 0.01597219 0 713 712 0.002045933 0 714 712 0.007616516 -4.132416e-17 715 712 0.000995849 -4.265544e-18 716 712 0.01597219 0 717 712 0.002045933 0 718 712 0.007616516 -4.132416e-17 719 712 0.000995849 -4.265544e-18 713 713 0.008184021 0 714 713 0.000995849 -4.265544e-18 715 713 0.003984753 -1.597087e-17 716 713 0.002045933 0 717 713 0.008184021 0 718 713 0.000995849 -4.265544e-18 719 713 0.003984753 -1.597087e-17 740 713 0 -7.443425e-10 741 713 0 5.436626e-14 742 713 0.000227771 -6.248223e-10 743 713 -2.920021e-08 4.621188e-14 744 713 0.002045926 0 745 713 -0.001047865 0 746 713 0.0009958478 -3.804125e-18 747 713 -0.0005206995 1.416758e-18 748 713 0.002045926 0 749 713 -0.001047865 0 750 713 0.0009958478 -3.804125e-18 751 713 -0.0005206995 1.416758e-18 714 714 0.01597219 0 715 714 0.002045933 0 716 714 0.007616516 4.132416e-17 717 714 0.000995849 4.265544e-18 718 714 0.01597219 0 719 714 0.002045933 0 715 715 0.008184021 0 716 715 0.000995849 4.265544e-18 717 715 0.003984753 1.597087e-17 718 715 0.002045933 0 719 715 0.008184021 0 740 715 -0.000227771 -6.248223e-10 741 715 2.920021e-08 4.621188e-14 742 715 0 -7.443425e-10 743 715 0 5.436626e-14 744 715 0.0009958478 3.804125e-18 745 715 -0.0005206995 -1.416758e-18 746 715 0.002045926 0 747 715 -0.001047865 0 748 715 0.0009958478 3.804125e-18 749 715 -0.0005206995 -1.416758e-18 750 715 0.002045926 0 751 715 -0.001047865 0 716 716 0.8036973 0 717 716 0.09820821 0 718 716 0.2500073 -6.971287e-16 719 716 0.03128784 -3.756517e-17 717 717 0.3929807 0 718 717 0.03128784 -3.756517e-17 719 717 0.1251523 -1.293288e-16 740 717 0 -7.443425e-10 741 717 0 5.436626e-14 742 717 0.000227771 -6.248223e-10 743 717 -2.920021e-08 4.621188e-14 744 717 0.002045926 0 745 717 -0.001047865 0 746 717 0.0009958478 -3.804125e-18 747 717 -0.0005206995 1.416758e-18 748 717 0.09821051 0 749 717 -0.04807093 0 750 717 0.03128775 -4.665959e-18 751 717 -0.01566305 1.106091e-17 718 718 0.8036973 0 719 718 0.09820821 0 719 719 0.3929807 0 740 719 -0.000227771 -6.248223e-10 741 719 2.920021e-08 4.621188e-14 742 719 0 -7.443425e-10 743 719 0 5.436626e-14 744 719 0.0009958478 3.804125e-18 745 719 -0.0005206995 -1.416758e-18 746 719 0.002045926 0 747 719 -0.001047865 0 748 719 0.03128775 4.665959e-18 749 719 -0.01566305 -1.106091e-17 750 719 0.09821051 0 751 719 -0.04807093 0 720 720 0.003828616 0 721 720 0.0004679501 0 722 720 0.0005963633 -8.455897e-19 723 720 7.466254e-05 -1.027794e-19 721 721 0.001872503 0 722 721 7.466254e-05 -1.027794e-19 723 721 0.0002986546 -6.77569e-19 752 721 0.000467961 0 753 721 -0.0002291074 0 754 721 7.46623e-05 -1.988284e-19 755 721 -3.739289e-05 1.337117e-19 722 722 0.003828616 0 723 722 0.0004679501 0 723 723 0.001872503 0 752 723 7.46623e-05 1.988284e-19 753 723 -3.739289e-05 -1.337117e-19 754 723 0.000467961 0 755 723 -0.0002291074 0 724 724 0.0154208 0 725 724 0.001972151 0 726 724 0.005298734 -1.062631e-17 727 724 0.0006929505 -1.815728e-18 728 724 0 -1.179245e-08 729 724 0 6.12013e-11 730 724 0.004464186 -8.442307e-09 731 724 -2.313161e-05 4.384264e-11 725 725 0.007888563 0 726 725 0.0006929505 -1.815728e-18 727 725 0.00277277 -7.455699e-18 728 725 0 -1.30376e-08 729 725 0 -6.005398e-14 730 725 0.004986109 -9.29523e-09 731 725 6.828763e-08 -8.379669e-15 756 725 0.001972145 0 757 725 -0.001008329 0 758 725 0.0006929493 -1.910141e-18 759 725 -0.0003624096 1.183324e-18 760 725 0 6.031312e-10 761 725 0 -3.037604e-14 762 725 -0.0002383888 4.241501e-10 763 725 3.386247e-08 -4.804682e-15 726 726 0.0154208 0 727 726 0.001972151 0 728 726 -0.004464186 -8.442307e-09 729 726 2.313161e-05 4.384264e-11 730 726 0 -1.179245e-08 731 726 0 6.12013e-11 727 727 0.007888563 0 728 727 -0.004986109 -9.29523e-09 729 727 -6.828763e-08 -8.379669e-15 730 727 0 -1.30376e-08 731 727 0 -6.005398e-14 756 727 0.0006929493 1.910141e-18 757 727 -0.0003624096 -1.183324e-18 758 727 0.001972145 0 759 727 -0.001008329 0 760 727 0.0002383888 4.241501e-10 761 727 -3.386247e-08 -4.804682e-15 762 727 0 6.031312e-10 763 727 0 -3.037604e-14 728 728 0.08350946 0 729 728 -2.651039e-06 0 730 728 -0.009847789 4.726432e-17 731 728 3.851947e-07 4.020781e-21 756 728 0 1.191282e-08 757 728 0 -5.902649e-10 758 728 -0.004600967 8.459148e-09 759 728 0.0002240456 -4.221153e-10 760 728 0.01426175 0 761 728 -8.925192e-05 0 762 728 -0.001675492 8.169008e-18 763 728 1.04892e-05 -5.138066e-20 729 729 1.444317e-06 0 730 729 3.851947e-07 4.020781e-21 731 729 -1.702818e-07 8.094706e-22 756 729 0 6.192248e-11 757 729 0 3.037604e-14 758 729 -2.395127e-05 4.394344e-11 759 729 -3.386247e-08 4.804682e-15 760 729 8.907437e-05 0 761 729 -5.343492e-07 0 762 729 -1.04609e-05 5.079897e-20 763 729 6.277673e-08 -3.0642e-22 730 730 0.08350946 0 731 730 -2.651039e-06 0 756 730 0.004600967 8.459148e-09 757 730 -0.0002240456 -4.221153e-10 758 730 0 1.191282e-08 759 730 0 -5.902649e-10 760 730 -0.001675492 -8.169008e-18 761 730 1.04892e-05 5.138066e-20 762 730 0.01426175 0 763 730 -8.925192e-05 0 731 731 1.444317e-06 0 756 731 2.395127e-05 4.394344e-11 757 731 3.386247e-08 4.804682e-15 758 731 0 6.192248e-11 759 731 0 3.037604e-14 760 731 -1.04609e-05 -5.079897e-20 761 731 6.277673e-08 3.0642e-22 762 731 8.907437e-05 0 763 731 -5.343492e-07 0 732 732 0.001841579 0 733 732 1.176631e-07 0 764 732 0.0003275219 0 765 732 -2.043378e-06 0 733 733 3.18479e-08 0 764 733 2.051898e-06 0 765 733 -1.22714e-08 0 734 734 0.001841579 0 735 734 1.176631e-07 0 766 734 0.0003275219 0 767 734 -2.043378e-06 0 735 735 3.18479e-08 0 766 735 2.051898e-06 0 767 735 -1.22714e-08 0 736 736 0.00366521 0 737 736 0.0004484686 0 738 736 0.0005982823 -2.325062e-18 739 736 7.490926e-05 -3.360183e-19 737 737 0.001794489 0 738 737 7.490926e-05 -3.360183e-19 739 737 0.0002996416 -1.11532e-18 768 737 0.0004484776 0 769 737 -0.0002197833 0 770 737 7.490901e-05 -2.825643e-19 771 737 -3.751977e-05 9.256096e-20 738 738 0.00366521 0 739 738 0.0004484686 0 739 739 0.001794489 0 768 739 7.490901e-05 2.825643e-19 769 739 -3.751977e-05 -9.256096e-20 770 739 0.0004484776 0 771 739 -0.0002197833 0 740 740 0.07102956 0 741 740 -2.938649e-06 0 742 740 0.001851301 -6.448481e-19 743 740 4.633309e-07 -1.2976e-20 744 740 0 -1.469408e-08 745 740 0 -1.628389e-08 746 740 0.004452129 -1.23324e-08 747 740 0.004961016 -1.366878e-08 748 740 0 -1.469408e-08 749 740 0 -1.628389e-08 750 740 0.004452129 -1.23324e-08 751 740 0.004961016 -1.366878e-08 772 740 0.01207964 0 773 740 -7.562048e-05 0 774 740 0.0003551495 -8.919381e-19 775 740 -2.203418e-06 5.438993e-21 776 740 0 -1.491389e-08 777 740 0 7.358868e-10 778 740 0.004567028 -1.252174e-08 779 740 -0.0002233521 6.175401e-10 780 740 0 -1.491389e-08 781 740 0 7.358868e-10 782 740 0.004567028 -1.252174e-08 783 740 -0.0002233521 6.175401e-10 741 741 1.228466e-06 0 742 741 4.633309e-07 -1.2976e-20 743 741 3.202708e-08 -1.037057e-23 744 741 0 7.623241e-11 745 741 0 -1.096969e-13 746 741 -2.30774e-05 6.397888e-11 747 741 5.736203e-08 -9.450316e-14 748 741 0 7.623241e-11 749 741 0 -1.096969e-13 750 741 -2.30774e-05 6.397888e-11 751 741 5.736203e-08 -9.450316e-14 772 741 7.542058e-05 0 773 741 -4.525885e-07 0 774 741 2.237276e-06 -5.74488e-21 775 741 -1.330627e-08 3.372292e-23 776 741 0 -7.754952e-11 777 741 0 -5.541483e-14 778 741 2.376592e-05 -6.511343e-11 779 741 2.817861e-08 -4.834254e-14 780 741 0 -7.754952e-11 781 741 0 -5.541483e-14 782 741 2.376592e-05 -6.511343e-11 783 741 2.817861e-08 -4.834254e-14 742 742 0.07102956 0 743 742 -2.938649e-06 0 744 742 -0.004452129 -1.23324e-08 745 742 -0.004961016 -1.366878e-08 746 742 0 -1.469408e-08 747 742 0 -1.628389e-08 748 742 -0.004452129 -1.23324e-08 749 742 -0.004961016 -1.366878e-08 750 742 0 -1.469408e-08 751 742 0 -1.628389e-08 772 742 0.0003551495 8.919381e-19 773 742 -2.203418e-06 -5.438993e-21 774 742 0.01207964 0 775 742 -7.562048e-05 0 776 742 -0.004567028 -1.252174e-08 777 742 0.0002233521 6.175401e-10 778 742 0 -1.491389e-08 779 742 0 7.358868e-10 780 742 -0.004567028 -1.252174e-08 781 742 0.0002233521 6.175401e-10 782 742 0 -1.491389e-08 783 742 0 7.358868e-10 743 743 1.228466e-06 0 744 743 2.30774e-05 6.397888e-11 745 743 -5.736203e-08 -9.450316e-14 746 743 0 7.623241e-11 747 743 0 -1.096969e-13 748 743 2.30774e-05 6.397888e-11 749 743 -5.736203e-08 -9.450316e-14 750 743 0 7.623241e-11 751 743 0 -1.096969e-13 772 743 2.237276e-06 5.74488e-21 773 743 -1.330627e-08 -3.372292e-23 774 743 7.542058e-05 0 775 743 -4.525885e-07 0 776 743 -2.376592e-05 -6.511343e-11 777 743 -2.817861e-08 -4.834254e-14 778 743 0 -7.754952e-11 779 743 0 -5.541483e-14 780 743 -2.376592e-05 -6.511343e-11 781 743 -2.817861e-08 -4.834254e-14 782 743 0 -7.754952e-11 783 743 0 -5.541483e-14 744 744 0.01676559 0 745 744 0.002145535 0 746 744 0.00833011 -2.157385e-17 747 744 0.00108695 -1.862905e-18 748 744 0.01676559 0 749 744 0.002145535 0 750 744 0.00833011 -2.157385e-17 751 744 0.00108695 -1.862905e-18 745 745 0.008582441 0 746 745 0.00108695 -1.862905e-18 747 745 0.004349146 -9.060317e-18 748 745 0.002145535 0 749 745 0.008582441 0 750 745 0.00108695 -1.862905e-18 751 745 0.004349146 -9.060317e-18 772 745 0 -7.59359e-10 773 745 0 5.541483e-14 774 745 0.0002352877 -6.380166e-10 775 745 -2.817861e-08 4.834254e-14 776 745 0.002145527 0 777 745 -0.001097888 0 778 745 0.001086949 -1.906137e-18 779 745 -0.0005671932 1.512177e-18 780 745 0.002145527 0 781 745 -0.001097888 0 782 745 0.001086949 -1.906137e-18 783 745 -0.0005671932 1.512177e-18 746 746 0.01676559 0 747 746 0.002145535 0 748 746 0.00833011 2.157385e-17 749 746 0.00108695 1.862905e-18 750 746 0.01676559 0 751 746 0.002145535 0 747 747 0.008582441 0 748 747 0.00108695 1.862905e-18 749 747 0.004349146 9.060317e-18 750 747 0.002145535 0 751 747 0.008582441 0 772 747 -0.0002352877 -6.380166e-10 773 747 2.817861e-08 4.834254e-14 774 747 0 -7.59359e-10 775 747 0 5.541483e-14 776 747 0.001086949 1.906137e-18 777 747 -0.0005671932 -1.512177e-18 778 747 0.002145527 0 779 747 -0.001097888 0 780 747 0.001086949 1.906137e-18 781 747 -0.0005671932 -1.512177e-18 782 747 0.002145527 0 783 747 -0.001097888 0 748 748 0.7690278 0 749 748 0.0940732 0 750 748 0.250608 -7.047337e-17 751 748 0.03136445 -3.957767e-17 749 749 0.376422 0 750 749 0.03136445 -3.957767e-17 751 749 0.1254587 -2.485691e-16 772 749 0 -7.59359e-10 773 749 0 5.541483e-14 774 749 0.0002352877 -6.380166e-10 775 749 -2.817861e-08 4.834254e-14 776 749 0.002145527 0 777 749 -0.001097888 0 778 749 0.001086949 -1.906137e-18 779 749 -0.0005671932 1.512177e-18 780 749 0.0940751 0 781 749 -0.04609103 0 782 749 0.03136436 -9.029204e-17 783 749 -0.01570211 4.625626e-17 750 750 0.7690278 0 751 750 0.0940732 0 751 751 0.376422 0 772 751 -0.0002352877 -6.380166e-10 773 751 2.817861e-08 4.834254e-14 774 751 0 -7.59359e-10 775 751 0 5.541483e-14 776 751 0.001086949 1.906137e-18 777 751 -0.0005671932 -1.512177e-18 778 751 0.002145527 0 779 751 -0.001097888 0 780 751 0.03136436 9.029204e-17 781 751 -0.01570211 -4.625626e-17 782 751 0.0940751 0 783 751 -0.04609103 0 752 752 0.00366521 0 753 752 0.0004484686 0 754 752 0.0005982823 -2.325062e-18 755 752 7.490926e-05 -3.360183e-19 753 753 0.001794489 0 754 753 7.490926e-05 -3.360183e-19 755 753 0.0002996416 -1.11532e-18 784 753 0.0004484776 0 785 753 -0.0002197833 0 786 753 7.490901e-05 -2.825643e-19 787 753 -3.751977e-05 9.256096e-20 754 754 0.00366521 0 755 754 0.0004484686 0 755 755 0.001794489 0 784 755 7.490901e-05 2.825643e-19 785 755 -3.751977e-05 -9.256096e-20 786 755 0.0004484776 0 787 755 -0.0002197833 0 756 756 0.01613328 0 757 756 0.00206117 0 758 756 0.00579778 -1.919049e-17 759 756 0.0007566893 -2.823155e-18 760 756 0 -1.195492e-08 761 756 0 6.204398e-11 762 756 0.004647908 -8.465808e-09 763 756 -2.408672e-05 4.396266e-11 757 757 0.008244638 0 758 757 0.0007566893 -2.823155e-18 759 757 0.003027719 -1.087352e-17 760 757 0 -1.321767e-08 761 757 0 -6.123265e-14 762 757 0.00518689 -9.323663e-09 763 757 6.70776e-08 -1.066268e-14 788 757 0.002061164 0 789 757 -0.001052817 0 790 757 0.0007566878 -2.855316e-18 791 757 -0.0003949539 1.323244e-18 792 757 0 6.11506e-10 793 757 0 -3.091777e-14 794 757 -0.0002472997 4.258185e-10 795 757 3.323794e-08 -5.881398e-15 758 758 0.01613328 0 759 758 0.00206117 0 760 758 -0.004647908 -8.465808e-09 761 758 2.408672e-05 4.396266e-11 762 758 0 -1.195492e-08 763 758 0 6.204398e-11 759 759 0.008244638 0 760 759 -0.00518689 -9.323663e-09 761 759 -6.70776e-08 -1.066268e-14 762 759 0 -1.321767e-08 763 759 0 -6.123265e-14 788 759 0.0007566878 2.855316e-18 789 759 -0.0003949539 -1.323244e-18 790 759 0.002061164 0 791 759 -0.001052817 0 792 759 0.0002472997 4.258185e-10 793 759 -3.323794e-08 -5.881398e-15 794 759 0 6.11506e-10 795 759 0 -3.091777e-14 760 760 0.08137364 0 761 760 -2.333848e-06 0 762 760 -0.009507785 4.048294e-17 763 760 4.074529e-07 -1.917574e-20 788 760 0 1.207766e-08 789 760 0 -5.984102e-10 790 760 -0.004782268 8.487227e-09 791 760 0.000233221 -4.233275e-10 792 760 0.01391505 0 793 760 -8.707351e-05 0 794 760 -0.001614982 5.604471e-18 795 760 1.011167e-05 -3.561493e-20 761 761 1.40735e-06 0 762 761 4.074529e-07 -1.917574e-20 763 761 -1.644008e-07 6.952991e-22 788 761 0 6.277934e-11 789 761 0 3.091777e-14 790 761 -2.489186e-05 4.409089e-11 791 761 -3.323794e-08 5.881398e-15 792 761 8.691724e-05 0 793 761 -5.213565e-07 0 794 761 -1.008177e-05 3.444895e-20 795 761 6.050925e-08 -2.098547e-22 762 762 0.08137364 0 763 762 -2.333848e-06 0 788 762 0.004782268 8.487227e-09 789 762 -0.000233221 -4.233275e-10 790 762 0 1.207766e-08 791 762 0 -5.984102e-10 792 762 -0.001614982 -5.604471e-18 793 762 1.011167e-05 3.561493e-20 794 762 0.01391505 0 795 762 -8.707351e-05 0 763 763 1.40735e-06 0 788 763 2.489186e-05 4.409089e-11 789 763 3.323794e-08 5.881398e-15 790 763 0 6.277934e-11 791 763 0 3.091777e-14 792 763 -1.008177e-05 -3.444895e-20 793 763 6.050925e-08 2.098547e-22 794 763 8.691724e-05 0 795 763 -5.213565e-07 0 764 764 0.001943949 0 765 764 1.209292e-07 0 796 764 0.0003454862 0 797 764 -2.155562e-06 0 765 765 3.361812e-08 0 796 765 2.164325e-06 0 797 765 -1.29444e-08 0 766 766 0.001943949 0 767 766 1.209292e-07 0 798 766 0.0003454862 0 799 766 -2.155562e-06 0 767 767 3.361812e-08 0 798 767 2.164325e-06 0 799 767 -1.29444e-08 0 768 768 0.003516085 0 769 768 0.0004306554 0 770 768 0.0006003122 -1.435978e-18 771 768 7.517007e-05 -8.767953e-20 769 769 0.001723162 0 770 769 7.517007e-05 -8.767953e-20 771 769 0.000300685 -4.41861e-19 800 769 0.0004306628 0 801 769 -0.0002112437 0 802 769 7.516983e-05 -8.231446e-20 803 769 -3.765383e-05 6.201764e-20 770 770 0.003516085 0 771 770 0.0004306554 0 771 771 0.001723162 0 800 771 7.516983e-05 8.231446e-20 801 771 -3.765383e-05 -6.201764e-20 802 771 0.0004306628 0 803 771 -0.0002112437 0 772 772 0.06862561 0 773 772 -2.670032e-06 0 774 772 0.002258084 -4.379203e-18 775 772 4.847153e-07 4.370968e-21 776 772 0 -1.499071e-08 777 772 0 -1.661244e-08 778 772 0.00460609 -1.258876e-08 779 772 0.005128092 -1.395538e-08 780 772 0 -1.499071e-08 781 772 0 -1.661244e-08 782 772 0.00460609 -1.258876e-08 783 772 0.005128092 -1.395538e-08 804 772 0.01168301 0 805 772 -7.313163e-05 0 806 772 0.0004271469 -5.194292e-19 807 772 -2.652761e-06 3.212832e-21 808 772 0 -1.521455e-08 809 772 0 7.507479e-10 810 772 0.004716804 -1.278638e-08 811 772 -0.0002310293 6.304155e-10 812 772 0 -1.521455e-08 813 772 0 7.507479e-10 814 772 0.004716804 -1.278638e-08 815 772 -0.0002310293 6.304155e-10 773 773 1.186867e-06 0 774 773 4.847153e-07 4.370968e-21 775 773 3.906133e-08 -7.37331e-23 776 773 0 7.777118e-11 777 773 0 -1.117055e-13 778 773 -2.387863e-05 6.53068e-11 779 773 5.526761e-08 -9.863331e-14 780 773 0 7.777118e-11 781 773 0 -1.117055e-13 782 773 -2.387863e-05 6.53068e-11 783 773 5.526761e-08 -9.863331e-14 804 773 7.294974e-05 0 805 773 -4.377258e-07 0 806 773 2.688159e-06 -3.259401e-21 807 773 -1.600372e-08 1.924153e-23 808 773 0 -7.911243e-11 809 773 0 -5.63813e-14 810 773 2.454206e-05 -6.649097e-11 811 773 2.71131e-08 -5.035033e-14 812 773 0 -7.911243e-11 813 773 0 -5.63813e-14 814 773 2.454206e-05 -6.649097e-11 815 773 2.71131e-08 -5.035033e-14 774 774 0.06862561 0 775 774 -2.670032e-06 0 776 774 -0.00460609 -1.258876e-08 777 774 -0.005128092 -1.395538e-08 778 774 0 -1.499071e-08 779 774 0 -1.661244e-08 780 774 -0.00460609 -1.258876e-08 781 774 -0.005128092 -1.395538e-08 782 774 0 -1.499071e-08 783 774 0 -1.661244e-08 804 774 0.0004271469 5.194292e-19 805 774 -2.652761e-06 -3.212832e-21 806 774 0.01168301 0 807 774 -7.313163e-05 0 808 774 -0.004716804 -1.278638e-08 809 774 0.0002310293 6.304155e-10 810 774 0 -1.521455e-08 811 774 0 7.507479e-10 812 774 -0.004716804 -1.278638e-08 813 774 0.0002310293 6.304155e-10 814 774 0 -1.521455e-08 815 774 0 7.507479e-10 775 775 1.186867e-06 0 776 775 2.387863e-05 6.53068e-11 777 775 -5.526761e-08 -9.863331e-14 778 775 0 7.777118e-11 779 775 0 -1.117055e-13 780 775 2.387863e-05 6.53068e-11 781 775 -5.526761e-08 -9.863331e-14 782 775 0 7.777118e-11 783 775 0 -1.117055e-13 804 775 2.688159e-06 3.259401e-21 805 775 -1.600372e-08 -1.924153e-23 806 775 7.294974e-05 0 807 775 -4.377258e-07 0 808 775 -2.454206e-05 -6.649097e-11 809 775 -2.71131e-08 -5.035033e-14 810 775 0 -7.911243e-11 811 775 0 -5.63813e-14 812 775 -2.454206e-05 -6.649097e-11 813 775 -2.71131e-08 -5.035033e-14 814 775 0 -7.911243e-11 815 775 0 -5.63813e-14 776 776 0.01756595 0 777 776 0.002246025 0 778 776 0.009074017 -2.340198e-17 779 776 0.001181824 -4.142569e-18 780 776 0.01756595 0 781 776 0.002246025 0 782 776 0.009074017 -2.340198e-17 783 776 0.001181824 -4.142569e-18 777 777 0.008984416 0 778 777 0.001181824 -4.142569e-18 779 777 0.004728626 -1.667131e-17 780 777 0.002246025 0 781 777 0.008984416 0 782 777 0.001181824 -4.142569e-18 783 777 0.004728626 -1.667131e-17 804 777 0 -7.746295e-10 805 777 0 5.63813e-14 806 777 0.0002425137 -6.517425e-10 807 777 -2.71131e-08 5.035033e-14 808 777 0.002246017 0 809 777 -0.001148366 0 810 777 0.001181822 -4.736579e-18 811 777 -0.0006155638 2.178644e-18 812 777 0.002246017 0 813 777 -0.001148366 0 814 777 0.001181822 -4.736579e-18 815 777 -0.0006155638 2.178644e-18 778 778 0.01756595 0 779 778 0.002246025 0 780 778 0.009074017 2.340198e-17 781 778 0.001181824 4.142569e-18 782 778 0.01756595 0 783 778 0.002246025 0 779 779 0.008984416 0 780 779 0.001181824 4.142569e-18 781 779 0.004728626 1.667131e-17 782 779 0.002246025 0 783 779 0.008984416 0 804 779 -0.0002425137 -6.517425e-10 805 779 2.71131e-08 5.035033e-14 806 779 0 -7.746295e-10 807 779 0 5.63813e-14 808 779 0.001181822 4.736579e-18 809 779 -0.0006155638 -2.178644e-18 810 779 0.002246017 0 811 779 -0.001148366 0 812 779 0.001181822 4.736579e-18 813 779 -0.0006155638 -2.178644e-18 814 779 0.002246017 0 815 779 -0.001148366 0 780 780 0.7373624 0 781 780 0.09028901 0 782 780 0.2512329 -8.540024e-16 783 780 0.03144407 -9.473299e-17 781 781 0.3612696 0 782 781 0.03144407 -9.473299e-17 783 781 0.1257771 -2.856901e-16 804 781 0 -7.746295e-10 805 781 0 5.63813e-14 806 781 0.0002425137 -6.517425e-10 807 781 -2.71131e-08 5.035033e-14 808 781 0.002246017 0 809 781 -0.001148366 0 810 781 0.001181822 -4.736579e-18 811 781 -0.0006155638 2.178644e-18 812 781 0.09029058 0 813 781 -0.04427607 0 814 781 0.03144398 -4.53434e-17 815 781 -0.01574265 2.755393e-17 782 782 0.7373624 0 783 782 0.09028901 0 783 783 0.3612696 0 804 783 -0.0002425137 -6.517425e-10 805 783 2.71131e-08 5.035033e-14 806 783 0 -7.746295e-10 807 783 0 5.63813e-14 808 783 0.001181822 4.736579e-18 809 783 -0.0006155638 -2.178644e-18 810 783 0.002246017 0 811 783 -0.001148366 0 812 783 0.03144398 4.53434e-17 813 783 -0.01574265 -2.755393e-17 814 783 0.09029058 0 815 783 -0.04427607 0 784 784 0.003516085 0 785 784 0.0004306554 0 786 784 0.0006003122 -1.435978e-18 787 784 7.517007e-05 -8.767953e-20 785 785 0.001723162 0 786 785 7.517007e-05 -8.767953e-20 787 785 0.000300685 -4.41861e-19 816 785 0.0004306628 0 817 785 -0.0002112437 0 818 785 7.516983e-05 -8.231446e-20 819 785 -3.765383e-05 6.201764e-20 786 786 0.003516085 0 787 786 0.0004306554 0 787 787 0.001723162 0 816 787 7.516983e-05 8.231446e-20 817 787 -3.765383e-05 -6.201764e-20 818 787 0.0004306628 0 819 787 -0.0002112437 0 788 788 0.0168451 0 789 788 0.002150104 0 790 788 0.006318493 -2.153517e-17 791 788 0.0008231278 -2.437662e-18 792 788 0 -1.212052e-08 793 788 0 6.290301e-11 794 788 0.004828344 -8.49538e-09 795 788 -2.502481e-05 4.411442e-11 789 789 0.008600373 0 790 789 0.0008231278 -2.437662e-18 791 789 0.003293466 -9.577927e-18 792 789 0 -1.340095e-08 793 789 0 -6.222368e-14 794 789 0.00538397 -9.358487e-09 795 789 6.579003e-08 -1.269435e-14 820 789 0.002150098 0 821 789 -0.001097262 0 822 789 0.0008231263 -2.237487e-18 823 789 -0.0004288435 1.1694e-18 824 789 0 6.199965e-10 825 789 0 -3.137239e-14 826 789 -0.000256031 4.277371e-10 827 789 3.258164e-08 -6.843238e-15 790 790 0.0168451 0 791 790 0.002150104 0 792 790 -0.004828344 -8.49538e-09 793 790 2.502481e-05 4.411442e-11 794 790 0 -1.212052e-08 795 790 0 6.290301e-11 791 791 0.008600373 0 792 791 -0.00538397 -9.358487e-09 793 791 -6.579003e-08 -1.269435e-14 794 791 0 -1.340095e-08 795 791 0 -6.222368e-14 820 791 0.0008231263 2.237487e-18 821 791 -0.0004288435 -1.1694e-18 822 791 0.002150098 0 823 791 -0.001097262 0 824 791 0.000256031 4.277371e-10 825 791 -3.258164e-08 -6.843238e-15 826 791 0 6.199965e-10 827 791 0 -3.137239e-14 792 792 0.07949387 0 793 792 -2.053227e-06 0 794 792 -0.009148411 2.499574e-17 795 792 4.303589e-07 -2.013542e-20 820 792 0 1.224524e-08 821 792 0 -6.067081e-10 822 792 -0.004960133 8.520874e-09 823 792 0.0002422303 -4.248386e-10 824 792 0.01361006 0 825 792 -8.515703e-05 0 826 792 -0.001551069 2.273074e-18 827 792 9.712896e-06 -1.565896e-20 793 793 1.374815e-06 0 794 793 4.303589e-07 -2.013542e-20 795 793 -1.581849e-07 4.154744e-22 820 793 0 6.365029e-11 821 793 0 3.137239e-14 822 793 -2.581455e-05 4.426708e-11 823 793 -3.258164e-08 6.843238e-15 824 793 8.501966e-05 0 825 793 -5.099265e-07 0 826 793 -9.681321e-06 1.278826e-20 827 793 5.811424e-08 -8.541132e-23 794 794 0.07949387 0 795 794 -2.053227e-06 0 820 794 0.004960133 8.520874e-09 821 794 -0.0002422303 -4.248386e-10 822 794 0 1.224524e-08 823 794 0 -6.067081e-10 824 794 -0.001551069 -2.273074e-18 825 794 9.712896e-06 1.565896e-20 826 794 0.01361006 0 827 794 -8.515703e-05 0 795 795 1.374815e-06 0 820 795 2.581455e-05 4.426708e-11 821 795 3.258164e-08 6.843238e-15 822 795 0 6.365029e-11 823 795 0 3.137239e-14 824 795 -9.681321e-06 -1.278826e-20 825 795 5.811424e-08 8.541132e-23 826 795 8.501966e-05 0 827 795 -5.099265e-07 0 796 796 0.002049234 0 797 796 1.244592e-07 0 828 796 0.0003639751 0 829 796 -2.271015e-06 0 797 797 3.543874e-08 0 828 797 2.280039e-06 0 829 797 -1.363704e-08 0 798 798 0.002049234 0 799 798 1.244592e-07 0 830 798 0.0003639751 0 831 798 -2.271015e-06 0 799 799 3.543874e-08 0 830 799 2.280039e-06 0 831 799 -1.363704e-08 0 800 800 0.003379504 0 801 800 0.0004143119 0 802 800 0.000602457 -9.234746e-19 803 800 7.544548e-05 -1.657561e-19 801 801 0.001657725 0 802 801 7.544548e-05 -1.657561e-19 803 801 0.0003017868 -6.890246e-19 832 801 0.000414318 0 833 801 -0.0002033971 0 834 801 7.544523e-05 -2.003721e-19 835 801 -3.779531e-05 9.165644e-20 802 802 0.003379504 0 803 802 0.0004143119 0 803 803 0.001657725 0 832 803 7.544523e-05 2.003721e-19 833 803 -3.779531e-05 -9.165644e-20 834 803 0.000414318 0 835 803 -0.0002033971 0 804 804 0.06643848 0 805 804 -2.432488e-06 0 806 804 0.002683359 -5.842072e-18 807 804 5.064258e-07 -1.033027e-20 808 804 0 -1.529271e-08 809 804 0 -1.694672e-08 810 804 0.004754389 -1.285618e-08 811 804 0.00528885 -1.42539e-08 812 804 0 -1.529271e-08 813 804 0 -1.694672e-08 814 804 0.004754389 -1.285618e-08 815 804 0.00528885 -1.42539e-08 836 804 0.01132169 0 837 804 -7.086448e-05 0 838 804 0.0005023682 -1.973977e-18 839 804 -3.122248e-06 1.176984e-20 840 804 0 -1.552028e-08 841 804 0 7.658746e-10 842 804 0.004860756 -1.306163e-08 843 804 -0.0002384227 6.438398e-10 844 804 0 -1.552028e-08 845 804 0 7.658746e-10 846 804 0.004860756 -1.306163e-08 847 804 -0.0002384227 6.438398e-10 805 805 1.149022e-06 0 806 805 5.064258e-07 -1.033027e-20 807 805 4.641531e-08 -1.107671e-22 808 805 0 7.933796e-11 809 805 0 -1.135632e-13 810 805 -2.465052e-05 6.669237e-11 811 805 5.309811e-08 -1.025373e-13 812 805 0 7.933796e-11 813 805 0 -1.135632e-13 814 805 -2.465052e-05 6.669237e-11 815 805 5.309811e-08 -1.025373e-13 836 805 7.069857e-05 0 837 805 -4.241858e-07 0 838 805 3.159203e-06 -1.290986e-20 839 805 -1.882193e-08 7.393566e-23 840 805 0 -8.070154e-11 841 805 0 -5.727907e-14 842 805 2.52879e-05 -6.792344e-11 843 805 2.600521e-08 -5.225471e-14 844 805 0 -8.070154e-11 845 805 0 -5.727907e-14 846 805 2.52879e-05 -6.792344e-11 847 805 2.600521e-08 -5.225471e-14 806 806 0.06643848 0 807 806 -2.432488e-06 0 808 806 -0.004754389 -1.285618e-08 809 806 -0.00528885 -1.42539e-08 810 806 0 -1.529271e-08 811 806 0 -1.694672e-08 812 806 -0.004754389 -1.285618e-08 813 806 -0.00528885 -1.42539e-08 814 806 0 -1.529271e-08 815 806 0 -1.694672e-08 836 806 0.0005023682 1.973977e-18 837 806 -3.122248e-06 -1.176984e-20 838 806 0.01132169 0 839 806 -7.086448e-05 0 840 806 -0.004860756 -1.306163e-08 841 806 0.0002384227 6.438398e-10 842 806 0 -1.552028e-08 843 806 0 7.658746e-10 844 806 -0.004860756 -1.306163e-08 845 806 0.0002384227 6.438398e-10 846 806 0 -1.552028e-08 847 806 0 7.658746e-10 807 807 1.149022e-06 0 808 807 2.465052e-05 6.669237e-11 809 807 -5.309811e-08 -1.025373e-13 810 807 0 7.933796e-11 811 807 0 -1.135632e-13 812 807 2.465052e-05 6.669237e-11 813 807 -5.309811e-08 -1.025373e-13 814 807 0 7.933796e-11 815 807 0 -1.135632e-13 836 807 3.159203e-06 1.290986e-20 837 807 -1.882193e-08 -7.393566e-23 838 807 7.069857e-05 0 839 807 -4.241858e-07 0 840 807 -2.52879e-05 -6.792344e-11 841 807 -2.600521e-08 -5.225471e-14 842 807 0 -8.070154e-11 843 807 0 -5.727907e-14 844 807 -2.52879e-05 -6.792344e-11 845 807 -2.600521e-08 -5.225471e-14 846 807 0 -8.070154e-11 847 807 0 -5.727907e-14 808 808 0.01837358 0 809 808 0.002347445 0 810 808 0.009847959 -3.6831e-17 811 808 0.001280433 -3.977997e-18 812 808 0.01837358 0 813 808 0.002347445 0 814 808 0.009847959 -3.6831e-17 815 808 0.001280433 -3.977997e-18 809 809 0.009390111 0 810 809 0.001280433 -3.977997e-18 811 809 0.005123049 -1.410163e-17 812 809 0.002347445 0 813 809 0.009390111 0 814 809 0.001280433 -3.977997e-18 815 809 0.005123049 -1.410163e-17 836 809 0 -7.901366e-10 837 809 0 5.727907e-14 838 809 0.0002494378 -6.659735e-10 839 809 -2.600521e-08 5.225471e-14 840 809 0.002347437 0 841 809 -0.001199318 0 842 809 0.001280431 -3.407777e-18 843 809 -0.0006657925 1.062403e-18 844 809 0.002347437 0 845 809 -0.001199318 0 846 809 0.001280431 -3.407777e-18 847 809 -0.0006657925 1.062403e-18 810 810 0.01837358 0 811 810 0.002347445 0 812 810 0.009847959 3.6831e-17 813 810 0.001280433 3.977997e-18 814 810 0.01837358 0 815 810 0.002347445 0 811 811 0.009390111 0 812 811 0.001280433 3.977997e-18 813 811 0.005123049 1.410163e-17 814 811 0.002347445 0 815 811 0.009390111 0 836 811 -0.0002494378 -6.659735e-10 837 811 2.600521e-08 5.225471e-14 838 811 0 -7.901366e-10 839 811 0 5.727907e-14 840 811 0.001280431 3.407777e-18 841 811 -0.0006657925 -1.062403e-18 842 811 0.002347437 0 843 811 -0.001199318 0 844 811 0.001280431 3.407777e-18 845 811 -0.0006657925 -1.062403e-18 846 811 0.002347437 0 847 811 -0.001199318 0 812 812 0.7083341 0 813 812 0.08681369 0 814 812 0.2518815 -3.43812e-16 815 812 0.03152662 -6.487231e-17 813 813 0.3473551 0 814 813 0.03152662 -6.487231e-17 815 813 0.1261073 -3.28536e-16 836 813 0 -7.901366e-10 837 813 0 5.727907e-14 838 813 0.0002494378 -6.659735e-10 839 813 -2.600521e-08 5.225471e-14 840 813 0.002347437 0 841 813 -0.001199318 0 842 813 0.001280431 -3.407777e-18 843 813 -0.0006657925 1.062403e-18 844 813 0.08681499 0 845 813 -0.04260669 0 846 813 0.03152653 -1.0465e-16 847 813 -0.01578465 4.98622e-17 814 814 0.7083341 0 815 814 0.08681369 0 815 815 0.3473551 0 836 815 -0.0002494378 -6.659735e-10 837 815 2.600521e-08 5.225471e-14 838 815 0 -7.901366e-10 839 815 0 5.727907e-14 840 815 0.001280431 3.407777e-18 841 815 -0.0006657925 -1.062403e-18 842 815 0.002347437 0 843 815 -0.001199318 0 844 815 0.03152653 1.0465e-16 845 815 -0.01578465 -4.98622e-17 846 815 0.08681499 0 847 815 -0.04260669 0 816 816 0.003379504 0 817 816 0.0004143119 0 818 816 0.000602457 -9.234746e-19 819 816 7.544548e-05 -1.657561e-19 817 817 0.001657725 0 818 817 7.544548e-05 -1.657561e-19 819 817 0.0003017868 -6.890246e-19 848 817 0.000414318 0 849 817 -0.0002033971 0 850 817 7.544523e-05 -2.003721e-19 851 817 -3.779531e-05 9.165644e-20 818 818 0.003379504 0 819 818 0.0004143119 0 819 819 0.001657725 0 848 819 7.544523e-05 2.003721e-19 849 819 -3.779531e-05 -9.165644e-20 850 819 0.000414318 0 851 819 -0.0002033971 0 820 820 0.01755622 0 821 820 0.00223895 0 822 820 0.006860733 -1.818488e-17 823 820 0.0008922478 -2.440115e-18 824 820 0 -1.228873e-08 825 820 0 6.377578e-11 826 820 0.005005299 -8.530359e-09 827 820 -2.594488e-05 4.429445e-11 821 821 0.008955755 0 822 821 0.0008922478 -2.440115e-18 823 821 0.003569938 -1.01307e-17 824 821 0 -1.358693e-08 825 821 0 -6.30531e-14 826 821 0.005577159 -9.39902e-09 827 821 6.445e-08 -1.451651e-14 852 821 0.002238944 0 853 821 -0.001141662 0 854 821 0.000892246 -2.644867e-18 855 821 -0.0004640687 1.346388e-18 856 821 0 6.285835e-10 857 821 0 -3.175225e-14 858 821 -0.0002645749 4.298817e-10 859 821 3.189465e-08 -7.709698e-15 822 822 0.01755622 0 823 822 0.00223895 0 824 822 -0.005005299 -8.530359e-09 825 822 2.594488e-05 4.429445e-11 826 822 0 -1.228873e-08 827 822 0 6.377578e-11 823 823 0.008955755 0 824 823 -0.005577159 -9.39902e-09 825 823 -6.445e-08 -1.451651e-14 826 823 0 -1.358693e-08 827 823 0 -6.30531e-14 852 823 0.000892246 2.644867e-18 853 823 -0.0004640687 -1.346388e-18 854 823 0.002238944 0 855 823 -0.001141662 0 856 823 0.0002645749 4.298817e-10 857 823 -3.189465e-08 -7.709698e-15 858 823 0 6.285835e-10 859 823 0 -3.175225e-14 824 824 0.07784156 0 825 824 -1.802883e-06 0 826 824 -0.008768988 7.931207e-19 827 824 4.541807e-07 -1.356448e-20 852 824 0 1.241512e-08 853 824 0 -6.151341e-10 854 824 -0.005134403 8.559508e-09 855 824 0.0002510652 -4.266161e-10 856 824 0.01334226 0 857 824 -8.34741e-05 0 858 824 -0.001483617 1.26829e-18 859 824 9.292035e-06 -5.646968e-21 825 825 1.346217e-06 0 826 825 4.541807e-07 -1.356448e-20 827 825 -1.516222e-07 8.380779e-23 852 825 0 6.453304e-11 853 825 0 3.175225e-14 854 825 -2.671852e-05 4.446901e-11 855 825 -3.189465e-08 7.709698e-15 856 825 8.335365e-05 0 857 825 -4.998902e-07 0 858 825 -9.258728e-06 1.007968e-20 859 825 5.55867e-08 -4.623627e-23 826 826 0.07784156 0 827 826 -1.802883e-06 0 852 826 0.005134403 8.559508e-09 853 826 -0.0002510652 -4.266161e-10 854 826 0 1.241512e-08 855 826 0 -6.151341e-10 856 826 -0.001483617 -1.26829e-18 857 826 9.292035e-06 5.646968e-21 858 826 0.01334226 0 859 826 -8.34741e-05 0 827 827 1.346217e-06 0 852 827 2.671852e-05 4.446901e-11 853 827 3.189465e-08 7.709698e-15 854 827 0 6.453304e-11 855 827 0 3.175225e-14 856 827 -9.258728e-06 -1.007968e-20 857 827 5.55867e-08 4.623627e-23 858 827 8.335365e-05 0 859 827 -4.998902e-07 0 828 828 0.002157671 0 829 828 1.282743e-07 0 860 828 0.0003830309 0 861 828 -2.390001e-06 0 829 829 3.731385e-08 0 860 829 2.399309e-06 0 861 829 -1.435092e-08 0 830 830 0.002157671 0 831 830 1.282743e-07 0 862 830 0.0003830309 0 863 830 -2.390001e-06 0 831 831 3.731385e-08 0 862 831 2.399309e-06 0 863 831 -1.435092e-08 0 832 832 0.003254002 0 833 832 0.0003992702 0 834 832 0.0006047206 -1.544741e-18 835 832 7.573602e-05 -1.662536e-19 833 833 0.001597505 0 834 833 7.573602e-05 -1.662536e-19 835 833 0.0003029492 -6.388168e-19 864 833 0.0003992754 0 865 833 -0.0001961657 0 866 833 7.573577e-05 -1.270615e-19 867 833 -3.794451e-05 9.152319e-20 834 834 0.003254002 0 835 834 0.0003992702 0 835 835 0.001597505 0 864 835 7.573577e-05 1.270615e-19 865 835 -3.794451e-05 -9.152319e-20 866 835 0.0003992754 0 867 835 -0.0001961657 0 836 836 0.06444351 0 837 836 -2.221634e-06 0 838 836 0.003127331 -1.714656e-17 839 836 5.282301e-07 -1.044884e-20 840 836 0 -1.559968e-08 841 836 0 -1.728633e-08 842 836 0.004896805 -1.313407e-08 843 836 0.005443031 -1.456371e-08 844 836 0 -1.559968e-08 845 836 0 -1.728633e-08 846 836 0.004896805 -1.313407e-08 847 836 0.005443031 -1.456371e-08 868 836 0.01099169 0 869 836 -6.879408e-05 0 870 836 0.000580828 -3.360507e-18 871 836 -3.611979e-06 2.114217e-20 872 836 0 -1.583072e-08 873 836 0 7.81248e-10 874 836 0.004998613 -1.334696e-08 875 836 -0.0002455228 6.577842e-10 876 836 0 -1.583072e-08 877 836 0 7.81248e-10 878 836 0.004998613 -1.334696e-08 879 836 -0.0002455228 6.577842e-10 837 837 1.114502e-06 0 838 837 5.282301e-07 -1.044884e-20 839 837 5.409231e-08 -2.838426e-22 840 837 0 8.093066e-11 841 837 0 -1.152943e-13 842 837 -2.539192e-05 6.813246e-11 843 837 5.082365e-08 -1.062507e-13 844 837 0 8.093066e-11 845 837 0 -1.152943e-13 846 837 -2.539192e-05 6.813246e-11 847 837 5.082365e-08 -1.062507e-13 868 837 6.864237e-05 0 869 837 -4.118196e-07 0 870 837 3.65049e-06 -2.090856e-20 871 837 -2.176144e-08 1.262185e-22 872 837 0 -8.231505e-11 873 837 0 -5.811641e-14 874 837 2.600197e-05 -6.940812e-11 875 837 2.483243e-08 -5.406891e-14 876 837 0 -8.231505e-11 877 837 0 -5.811641e-14 878 837 2.600197e-05 -6.940812e-11 879 837 2.483243e-08 -5.406891e-14 838 838 0.06444351 0 839 838 -2.221634e-06 0 840 838 -0.004896805 -1.313407e-08 841 838 -0.005443031 -1.456371e-08 842 838 0 -1.559968e-08 843 838 0 -1.728633e-08 844 838 -0.004896805 -1.313407e-08 845 838 -0.005443031 -1.456371e-08 846 838 0 -1.559968e-08 847 838 0 -1.728633e-08 868 838 0.000580828 3.360507e-18 869 838 -3.611979e-06 -2.114217e-20 870 838 0.01099169 0 871 838 -6.879408e-05 0 872 838 -0.004998613 -1.334696e-08 873 838 0.0002455228 6.577842e-10 874 838 0 -1.583072e-08 875 838 0 7.81248e-10 876 838 -0.004998613 -1.334696e-08 877 838 0.0002455228 6.577842e-10 878 838 0 -1.583072e-08 879 838 0 7.81248e-10 839 839 1.114502e-06 0 840 839 2.539192e-05 6.813246e-11 841 839 -5.082365e-08 -1.062507e-13 842 839 0 8.093066e-11 843 839 0 -1.152943e-13 844 839 2.539192e-05 6.813246e-11 845 839 -5.082365e-08 -1.062507e-13 846 839 0 8.093066e-11 847 839 0 -1.152943e-13 868 839 3.65049e-06 2.090856e-20 869 839 -2.176144e-08 -1.262185e-22 870 839 6.864237e-05 0 871 839 -4.118196e-07 0 872 839 -2.600197e-05 -6.940812e-11 873 839 -2.483243e-08 -5.406891e-14 874 839 0 -8.231505e-11 875 839 0 -5.811641e-14 876 839 -2.600197e-05 -6.940812e-11 877 839 -2.483243e-08 -5.406891e-14 878 839 0 -8.231505e-11 879 839 0 -5.811641e-14 840 840 0.0191888 0 841 840 0.002449836 0 842 840 0.01065163 -1.572706e-17 843 840 0.001382739 -8.418356e-19 844 840 0.0191888 0 845 840 0.002449836 0 846 840 0.01065163 -1.572706e-17 847 840 0.001382739 -8.418356e-19 841 841 0.009799685 0 842 841 0.001382739 -8.418356e-19 843 841 0.005532258 -6.101194e-18 844 841 0.002449836 0 845 841 0.009799685 0 846 841 0.001382739 -8.418356e-19 847 841 0.005532258 -6.101194e-18 868 841 0 -8.058647e-10 869 841 0 5.811641e-14 870 841 0.0002560412 -6.806865e-10 871 841 -2.483243e-08 5.406891e-14 872 841 0.002449826 0 873 841 -0.001250766 0 874 841 0.001382737 -5.454475e-19 875 841 -0.0007178598 1.935567e-18 876 841 0.002449826 0 877 841 -0.001250766 0 878 841 0.001382737 -5.454475e-19 879 841 -0.0007178598 1.935567e-18 842 842 0.0191888 0 843 842 0.002449836 0 844 842 0.01065163 1.572706e-17 845 842 0.001382739 8.418356e-19 846 842 0.0191888 0 847 842 0.002449836 0 843 843 0.009799685 0 844 843 0.001382739 8.418356e-19 845 843 0.005532258 6.101194e-18 846 843 0.002449836 0 847 843 0.009799685 0 868 843 -0.0002560412 -6.806865e-10 869 843 2.483243e-08 5.406891e-14 870 843 0 -8.058647e-10 871 843 0 5.811641e-14 872 843 0.001382737 5.454475e-19 873 843 -0.0007178598 -1.935567e-18 874 843 0.002449826 0 875 843 -0.001250766 0 876 843 0.001382737 5.454475e-19 877 843 -0.0007178598 -1.935567e-18 878 843 0.002449826 0 879 843 -0.001250766 0 844 844 0.6816334 0 845 844 0.08361176 0 846 844 0.2525535 -8.766032e-16 847 844 0.03161206 -9.479884e-17 845 845 0.3345361 0 846 845 0.03161206 -9.479884e-17 847 845 0.1264491 -3.194605e-16 868 845 0 -8.058647e-10 869 845 0 5.811641e-14 870 845 0.0002560412 -6.806865e-10 871 845 -2.483243e-08 5.406891e-14 872 845 0.002449826 0 873 845 -0.001250766 0 874 845 0.001382737 -5.454475e-19 875 845 -0.0007178598 1.935567e-18 876 845 0.08361284 0 877 845 -0.04106645 0 878 845 0.03161197 -7.045887e-17 879 845 -0.01582807 2.525265e-17 846 846 0.6816334 0 847 846 0.08361176 0 847 847 0.3345361 0 868 847 -0.0002560412 -6.806865e-10 869 847 2.483243e-08 5.406891e-14 870 847 0 -8.058647e-10 871 847 0 5.811641e-14 872 847 0.001382737 5.454475e-19 873 847 -0.0007178598 -1.935567e-18 874 847 0.002449826 0 875 847 -0.001250766 0 876 847 0.03161197 7.045887e-17 877 847 -0.01582807 -2.525265e-17 878 847 0.08361284 0 879 847 -0.04106645 0 848 848 0.003254002 0 849 848 0.0003992702 0 850 848 0.0006047206 -1.544741e-18 851 848 7.573602e-05 -1.662536e-19 849 849 0.001597505 0 850 849 7.573602e-05 -1.662536e-19 851 849 0.0003029492 -6.388168e-19 880 849 0.0003992754 0 881 849 -0.0001961657 0 882 849 7.573577e-05 -1.270615e-19 883 849 -3.794451e-05 9.152319e-20 850 850 0.003254002 0 851 850 0.0003992702 0 851 851 0.001597505 0 880 851 7.573577e-05 1.270615e-19 881 851 -3.794451e-05 -9.152319e-20 882 851 0.0003992754 0 883 851 -0.0001961657 0 852 852 0.01826661 0 853 852 0.002327703 0 854 852 0.007424341 -2.19332e-17 855 852 0.0009640286 -2.740685e-18 856 852 0 -1.245913e-08 857 852 0 6.466005e-11 858 852 0.005178617 -8.570195e-09 859 852 -2.68461e-05 4.449985e-11 853 853 0.009310763 0 854 853 0.0009640286 -2.740685e-18 855 853 0.003857054 -1.068091e-17 856 853 0 -1.377517e-08 857 853 0 -6.374329e-14 858 853 0.005766266 -9.444694e-09 859 853 6.302823e-08 -1.616448e-14 884 853 0.002327696 0 885 853 -0.001186013 0 886 853 0.0009640267 -2.602368e-18 887 853 -0.0005006192 1.32331e-18 888 853 0 6.3725e-10 889 853 0 -3.206599e-14 890 853 -0.000272915 4.322317e-10 891 853 3.11526e-08 -8.495573e-15 854 854 0.01826661 0 855 854 0.002327703 0 856 854 -0.005178617 -8.570195e-09 857 854 2.68461e-05 4.449985e-11 858 854 0 -1.245913e-08 859 854 0 6.466005e-11 855 855 0.009310763 0 856 855 -0.005766266 -9.444694e-09 857 855 -6.302823e-08 -1.616448e-14 858 855 0 -1.377517e-08 859 855 0 -6.374329e-14 884 855 0.0009640267 2.602368e-18 885 855 -0.0005006192 -1.32331e-18 886 855 0.002327696 0 887 855 -0.001186013 0 888 855 0.000272915 4.322317e-10 889 855 -3.11526e-08 -8.495573e-15 890 855 0 6.3725e-10 891 855 0 -3.206599e-14 856 856 0.07639278 0 857 856 -1.578346e-06 0 858 856 -0.008368771 3.510979e-17 859 856 4.78776e-07 5.403374e-20 884 856 0 1.258691e-08 885 856 0 -6.236676e-10 886 856 -0.005304869 8.602647e-09 887 856 0.0002597194 -4.286333e-10 888 856 0.01310783 0 889 856 -8.200061e-05 0 890 856 -0.001412512 7.641868e-18 891 856 8.848361e-06 -4.910799e-20 857 857 1.321141e-06 0 858 857 4.78776e-07 5.403374e-20 859 857 -1.447003e-07 5.345122e-22 884 857 0 6.542562e-11 885 857 0 3.206599e-14 886 857 -2.760264e-05 4.469421e-11 887 857 -3.11526e-08 8.495573e-15 888 857 8.189536e-05 0 889 857 -4.91104e-07 0 890 857 -8.813274e-06 4.661096e-20 891 857 5.292231e-08 -2.879453e-22 858 858 0.07639278 0 859 858 -1.578346e-06 0 884 858 0.005304869 8.602647e-09 885 858 -0.0002597194 -4.286333e-10 886 858 0 1.258691e-08 887 858 0 -6.236676e-10 888 858 -0.001412512 -7.641868e-18 889 858 8.848361e-06 4.910799e-20 890 858 0.01310783 0 891 858 -8.200061e-05 0 859 859 1.321141e-06 0 884 859 2.760264e-05 4.469421e-11 885 859 3.11526e-08 8.495573e-15 886 859 0 6.542562e-11 887 859 0 3.206599e-14 888 859 -8.813274e-06 -4.661096e-20 889 859 5.292231e-08 2.879453e-22 890 859 8.189536e-05 0 891 859 -4.91104e-07 0 860 860 0.002269514 0 861 860 1.323992e-07 0 892 860 0.0004026997 0 893 860 -2.512806e-06 0 861 861 3.924785e-08 0 892 861 2.522421e-06 0 893 861 -1.508775e-08 0 862 862 0.002269514 0 863 862 1.323992e-07 0 894 862 0.0004026997 0 895 862 -2.512806e-06 0 863 863 3.924785e-08 0 894 863 2.522421e-06 0 895 863 -1.508775e-08 0 864 864 0.003138339 0 865 864 0.0003853875 0 866 864 0.0006071075 -1.362446e-18 867 864 7.604226e-05 -2.390313e-19 865 865 0.001541929 0 866 865 7.604226e-05 -2.390313e-19 867 865 0.0003041743 -1.03595e-18 896 865 0.0003853918 0 897 865 -0.0001894833 0 898 865 7.6042e-05 -2.710787e-19 899 865 -3.81017e-05 1.743148e-19 866 866 0.003138339 0 867 866 0.0003853875 0 867 867 0.001541929 0 896 867 7.6042e-05 2.710787e-19 897 867 -3.81017e-05 -1.743148e-19 898 867 0.0003853918 0 899 867 -0.0001894833 0 868 868 0.06261928 0 869 868 -2.033852e-06 0 870 868 0.003590021 -1.484701e-17 871 868 5.501138e-07 1.502817e-20 872 868 0 -1.591128e-08 873 868 0 -1.76309e-08 874 868 0.005033037 -1.342191e-08 875 868 0.005590267 -1.488429e-08 876 868 0 -1.591128e-08 877 868 0 -1.76309e-08 878 868 0.005033037 -1.342191e-08 879 868 0.005590267 -1.488429e-08 900 868 0.0106896 0 901 868 -6.689891e-05 0 902 868 0.0006625413 -1.281366e-18 903 868 -4.122036e-06 8.679922e-21 904 868 0 -1.614557e-08 905 868 0 7.968508e-10 906 868 0.005130046 -1.364191e-08 907 868 -0.0002523097 6.722235e-10 908 868 0 -1.614557e-08 909 868 0 7.968508e-10 910 868 0.005130046 -1.364191e-08 911 868 -0.0002523097 6.722235e-10 869 869 1.082937e-06 0 870 869 5.501138e-07 1.502817e-20 871 869 6.209318e-08 -2.4606e-22 872 869 0 8.254751e-11 873 869 0 -1.16912e-13 874 869 -2.61013e-05 6.962439e-11 875 869 4.842014e-08 -1.097952e-13 876 869 0 8.254751e-11 877 869 0 -1.16912e-13 878 869 -2.61013e-05 6.962439e-11 879 869 4.842014e-08 -1.097952e-13 900 869 6.675989e-05 0 901 869 -4.00499e-07 0 902 869 4.162126e-06 -7.329804e-21 903 869 -2.482281e-08 4.789103e-23 904 869 0 -8.395135e-11 905 869 0 -5.89028e-14 906 869 2.668259e-05 -7.094263e-11 907 869 2.361558e-08 -5.580633e-14 908 869 0 -8.395135e-11 909 869 0 -5.89028e-14 910 869 2.668259e-05 -7.094263e-11 911 869 2.361558e-08 -5.580633e-14 870 870 0.06261928 0 871 870 -2.033852e-06 0 872 870 -0.005033037 -1.342191e-08 873 870 -0.005590267 -1.488429e-08 874 870 0 -1.591128e-08 875 870 0 -1.76309e-08 876 870 -0.005033037 -1.342191e-08 877 870 -0.005590267 -1.488429e-08 878 870 0 -1.591128e-08 879 870 0 -1.76309e-08 900 870 0.0006625413 1.281366e-18 901 870 -4.122036e-06 -8.679922e-21 902 870 0.0106896 0 903 870 -6.689891e-05 0 904 870 -0.005130046 -1.364191e-08 905 870 0.0002523097 6.722235e-10 906 870 0 -1.614557e-08 907 870 0 7.968508e-10 908 870 -0.005130046 -1.364191e-08 909 870 0.0002523097 6.722235e-10 910 870 0 -1.614557e-08 911 870 0 7.968508e-10 871 871 1.082937e-06 0 872 871 2.61013e-05 6.962439e-11 873 871 -4.842014e-08 -1.097952e-13 874 871 0 8.254751e-11 875 871 0 -1.16912e-13 876 871 2.61013e-05 6.962439e-11 877 871 -4.842014e-08 -1.097952e-13 878 871 0 8.254751e-11 879 871 0 -1.16912e-13 900 871 4.162126e-06 7.329804e-21 901 871 -2.482281e-08 -4.789103e-23 902 871 6.675989e-05 0 903 871 -4.00499e-07 0 904 871 -2.668259e-05 -7.094263e-11 905 871 -2.361558e-08 -5.580633e-14 906 871 0 -8.395135e-11 907 871 0 -5.89028e-14 908 871 -2.668259e-05 -7.094263e-11 909 871 -2.361558e-08 -5.580633e-14 910 871 0 -8.395135e-11 911 871 0 -5.89028e-14 872 872 0.02001196 0 873 872 0.002553236 0 874 872 0.01148472 -2.961866e-17 875 872 0.001488702 -7.196819e-18 876 872 0.02001196 0 877 872 0.002553236 0 878 872 0.01148472 -2.961866e-17 879 872 0.001488702 -7.196819e-18 873 873 0.0102133 0 874 873 0.001488702 -7.196819e-18 875 873 0.005956095 -2.673045e-17 876 873 0.002553236 0 877 873 0.0102133 0 878 873 0.001488702 -7.196819e-18 879 873 0.005956095 -2.673045e-17 900 873 0 -8.218008e-10 901 873 0 5.89028e-14 902 873 0.0002623127 -6.958618e-10 903 873 -2.361558e-08 5.580633e-14 904 873 0.002553227 0 905 873 -0.001302729 0 906 873 0.0014887 -8.514736e-18 907 873 -0.0007717451 2.606887e-18 908 873 0.002553227 0 909 873 -0.001302729 0 910 873 0.0014887 -8.514736e-18 911 873 -0.0007717451 2.606887e-18 874 874 0.02001196 0 875 874 0.002553236 0 876 874 0.01148472 2.961866e-17 877 874 0.001488702 7.196819e-18 878 874 0.02001196 0 879 874 0.002553236 0 875 875 0.0102133 0 876 875 0.001488702 7.196819e-18 877 875 0.005956095 2.673045e-17 878 875 0.002553236 0 879 875 0.0102133 0 900 875 -0.0002623127 -6.958618e-10 901 875 2.361558e-08 5.580633e-14 902 875 0 -8.218008e-10 903 875 0 5.89028e-14 904 875 0.0014887 8.514736e-18 905 875 -0.0007717451 -2.606887e-18 906 875 0.002553227 0 907 875 -0.001302729 0 908 875 0.0014887 8.514736e-18 909 875 -0.0007717451 -2.606887e-18 910 875 0.002553227 0 911 875 -0.001302729 0 876 876 0.6569976 0 877 876 0.08065296 0 878 876 0.2532484 -3.6627e-16 879 876 0.03170032 -3.055174e-17 877 877 0.3226913 0 878 877 0.03170032 -3.055174e-17 879 877 0.1268021 -1.587695e-16 900 877 0 -8.218008e-10 901 877 0 5.89028e-14 902 877 0.0002623127 -6.958618e-10 903 877 -2.361558e-08 5.580633e-14 904 877 0.002553227 0 905 877 -0.001302729 0 906 877 0.0014887 -8.514736e-18 907 877 -0.0007717451 2.606887e-18 908 877 0.08065387 0 909 877 -0.03964131 0 910 877 0.03170023 -3.725921e-17 911 877 -0.01587289 2.471575e-17 878 878 0.6569976 0 879 878 0.08065296 0 879 879 0.3226913 0 900 879 -0.0002623127 -6.958618e-10 901 879 2.361558e-08 5.580633e-14 902 879 0 -8.218008e-10 903 879 0 5.89028e-14 904 879 0.0014887 8.514736e-18 905 879 -0.0007717451 -2.606887e-18 906 879 0.002553227 0 907 879 -0.001302729 0 908 879 0.03170023 3.725921e-17 909 879 -0.01587289 -2.471575e-17 910 879 0.08065387 0 911 879 -0.03964131 0 880 880 0.003138339 0 881 880 0.0003853875 0 882 880 0.0006071075 -1.362446e-18 883 880 7.604226e-05 -2.390313e-19 881 881 0.001541929 0 882 881 7.604226e-05 -2.390313e-19 883 881 0.0003041743 -1.03595e-18 912 881 0.0003853918 0 913 881 -0.0001894833 0 914 881 7.6042e-05 -2.710787e-19 915 881 -3.81017e-05 1.743148e-19 882 882 0.003138339 0 883 882 0.0003853875 0 883 883 0.001541929 0 912 883 7.6042e-05 2.710787e-19 913 883 -3.81017e-05 -1.743148e-19 914 883 0.0003853918 0 915 883 -0.0001894833 0 884 884 0.01897624 0 885 884 0.002416358 0 886 884 0.008009155 -2.084501e-17 887 884 0.00103845 -2.690871e-18 888 884 0 -1.263136e-08 889 884 0 6.555389e-11 890 884 0.005348055 -8.614423e-09 891 884 -2.772725e-05 4.472819e-11 885 885 0.00966538 0 886 885 0.00103845 -2.690871e-18 887 885 0.004154731 -1.123291e-17 888 885 0 -1.396527e-08 889 885 0 -6.430889e-14 890 885 0.005950982 -9.495031e-09 891 885 6.149443e-08 -1.76643e-14 916 885 0.002416351 0 917 885 -0.001230315 0 918 885 0.001038448 -2.743717e-18 919 885 -0.0005384843 1.649832e-18 920 885 0 6.459808e-10 921 885 0 -3.232192e-14 922 885 -0.0002810421 4.347702e-10 923 885 3.037496e-08 -9.214277e-15 886 886 0.01897624 0 887 886 0.002416358 0 888 886 -0.005348055 -8.614423e-09 889 886 2.772725e-05 4.472819e-11 890 886 0 -1.263136e-08 891 886 0 6.555389e-11 887 887 0.00966538 0 888 887 -0.005950982 -9.495031e-09 889 887 -6.149443e-08 -1.76643e-14 890 887 0 -1.396527e-08 891 887 0 -6.430889e-14 916 887 0.001038448 2.743717e-18 917 887 -0.0005384843 -1.649832e-18 918 887 0.002416351 0 919 887 -0.001230315 0 920 887 0.0002810421 4.347702e-10 921 887 -3.037496e-08 -9.214277e-15 922 887 0 6.459808e-10 923 887 0 -3.232192e-14 888 888 0.07512686 0 889 888 -1.376005e-06 0 890 888 -0.007947128 2.416558e-17 891 888 5.041895e-07 -4.247395e-20 916 888 0 1.276027e-08 917 888 0 -6.3229e-10 918 888 -0.00547125 8.649883e-09 919 888 0.000268176 -4.308673e-10 920 888 0.01290346 0 921 888 -8.071582e-05 0 922 888 -0.001337629 2.814358e-18 923 888 8.38111e-06 -1.671296e-20 889 889 1.299231e-06 0 890 889 5.041895e-07 -4.247395e-20 891 889 -1.374075e-07 4.678838e-22 916 889 0 6.632627e-11 917 889 0 3.232192e-14 918 889 -2.846547e-05 4.494058e-11 919 889 -3.037496e-08 9.214277e-15 920 889 8.062435e-05 0 921 889 -4.834444e-07 0 922 889 -8.344163e-06 1.83542e-20 923 889 5.011642e-08 -1.042501e-22 890 890 0.07512686 0 891 890 -1.376005e-06 0 916 890 0.00547125 8.649883e-09 917 890 -0.000268176 -4.308673e-10 918 890 0 1.276027e-08 919 890 0 -6.3229e-10 920 890 -0.001337629 -2.814358e-18 921 890 8.38111e-06 1.671296e-20 922 890 0.01290346 0 923 890 -8.071582e-05 0 891 891 1.299231e-06 0 916 891 2.846547e-05 4.494058e-11 917 891 3.037496e-08 9.214277e-15 918 891 0 6.632627e-11 919 891 0 3.232192e-14 920 891 -8.344163e-06 -1.83542e-20 921 891 5.011642e-08 1.042501e-22 922 891 8.062435e-05 0 923 891 -4.834444e-07 0 892 892 0.00238504 0 893 892 1.368599e-07 0 924 892 0.0004230313 0 925 892 -2.639743e-06 0 893 893 4.124554e-08 0 924 893 2.649689e-06 0 925 893 -1.584941e-08 0 894 894 0.00238504 0 895 894 1.368599e-07 0 926 894 0.0004230313 0 927 894 -2.639743e-06 0 895 895 4.124554e-08 0 926 895 2.649689e-06 0 927 895 -1.584941e-08 0 896 896 0.003031452 0 897 896 0.0003725413 0 898 896 0.0006096225 -2.880745e-18 899 896 7.63648e-05 -4.261805e-19 897 897 0.001490505 0 898 897 7.63648e-05 -4.261805e-19 899 897 0.0003054648 -1.526816e-18 928 897 0.0003725448 0 929 897 -0.0001832928 0 930 897 7.636455e-05 -4.234367e-19 931 897 -3.826722e-05 1.270813e-19 898 898 0.003031452 0 899 898 0.0003725413 0 899 899 0.001490505 0 928 899 7.636455e-05 4.234367e-19 929 899 -3.826722e-05 -1.270813e-19 930 899 0.0003725448 0 931 899 -0.0001832928 0 900 900 0.06094778 0 901 900 -1.86534e-06 0 902 900 0.004071674 -3.218574e-18 903 900 5.723693e-07 1.766179e-21 904 900 0 -1.622723e-08 905 900 0 -1.798014e-08 906 900 0.005162783 -1.371927e-08 907 900 0.005730279 -1.521516e-08 908 900 0 -1.622723e-08 909 900 0 -1.798014e-08 910 900 0.005162783 -1.371927e-08 911 900 0.005730279 -1.521516e-08 932 900 0.01041254 0 933 900 -6.51609e-05 0 934 900 0.0007475593 -1.135755e-18 935 900 -4.652742e-06 6.342735e-21 936 900 0 -1.646457e-08 937 900 0 8.126692e-10 938 900 0.005254817 -1.394609e-08 939 900 -0.0002587731 6.871363e-10 940 900 0 -1.646457e-08 941 900 0 8.126692e-10 942 900 0.005254817 -1.394609e-08 943 900 -0.0002587731 6.871363e-10 901 901 1.054016e-06 0 902 901 5.723693e-07 1.766179e-21 903 901 7.042172e-08 -8.448242e-23 904 901 0 8.418696e-11 905 901 0 -1.184345e-13 906 901 -2.677705e-05 7.116586e-11 907 901 4.593876e-08 -1.131968e-13 908 901 0 8.418696e-11 909 901 0 -1.184345e-13 910 901 -2.677705e-05 7.116586e-11 911 901 4.593876e-08 -1.131968e-13 932 901 6.503328e-05 0 933 901 -3.901165e-07 0 934 901 4.694427e-06 -7.832655e-21 935 901 -2.800796e-08 4.230262e-23 936 901 0 -8.56091e-11 937 901 0 -5.964268e-14 938 901 2.732853e-05 -7.252495e-11 939 901 2.234363e-08 -5.74751e-14 940 901 0 -8.56091e-11 941 901 0 -5.964268e-14 942 901 2.732853e-05 -7.252495e-11 943 901 2.234363e-08 -5.74751e-14 902 902 0.06094778 0 903 902 -1.86534e-06 0 904 902 -0.005162783 -1.371927e-08 905 902 -0.005730279 -1.521516e-08 906 902 0 -1.622723e-08 907 902 0 -1.798014e-08 908 902 -0.005162783 -1.371927e-08 909 902 -0.005730279 -1.521516e-08 910 902 0 -1.622723e-08 911 902 0 -1.798014e-08 932 902 0.0007475593 1.135755e-18 933 902 -4.652742e-06 -6.342735e-21 934 902 0.01041254 0 935 902 -6.51609e-05 0 936 902 -0.005254817 -1.394609e-08 937 902 0.0002587731 6.871363e-10 938 902 0 -1.646457e-08 939 902 0 8.126692e-10 940 902 -0.005254817 -1.394609e-08 941 902 0.0002587731 6.871363e-10 942 902 0 -1.646457e-08 943 902 0 8.126692e-10 903 903 1.054016e-06 0 904 903 2.677705e-05 7.116586e-11 905 903 -4.593876e-08 -1.131968e-13 906 903 0 8.418696e-11 907 903 0 -1.184345e-13 908 903 2.677705e-05 7.116586e-11 909 903 -4.593876e-08 -1.131968e-13 910 903 0 8.418696e-11 911 903 0 -1.184345e-13 932 903 4.694427e-06 7.832655e-21 933 903 -2.800796e-08 -4.230262e-23 934 903 6.503328e-05 0 935 903 -3.901165e-07 0 936 903 -2.732853e-05 -7.252495e-11 937 903 -2.234363e-08 -5.74751e-14 938 903 0 -8.56091e-11 939 903 0 -5.964268e-14 940 903 -2.732853e-05 -7.252495e-11 941 903 -2.234363e-08 -5.74751e-14 942 903 0 -8.56091e-11 943 903 0 -5.964268e-14 904 904 0.02084336 0 905 904 0.002657689 0 906 904 0.01234689 -4.538678e-17 907 904 0.001598281 -1.912814e-18 908 904 0.02084336 0 909 904 0.002657689 0 910 904 0.01234689 -4.538678e-17 911 904 0.001598281 -1.912814e-18 905 905 0.01063113 0 906 905 0.001598281 -1.912814e-18 907 905 0.006394393 -7.945746e-18 908 905 0.002657689 0 909 905 0.01063113 0 910 905 0.001598281 -1.912814e-18 911 905 0.006394393 -7.945746e-18 932 905 0 -8.379327e-10 933 905 0 5.964268e-14 934 905 0.0002682374 -7.114815e-10 935 905 -2.234363e-08 5.74751e-14 936 905 0.002657679 0 937 905 -0.001355229 0 938 905 0.001598278 -3.071941e-19 939 905 -0.0008274272 1.049349e-18 940 905 0.002657679 0 941 905 -0.001355229 0 942 905 0.001598278 -3.071941e-19 943 905 -0.0008274272 1.049349e-18 906 906 0.02084336 0 907 906 0.002657689 0 908 906 0.01234689 4.538678e-17 909 906 0.001598281 1.912814e-18 910 906 0.02084336 0 911 906 0.002657689 0 907 907 0.01063113 0 908 907 0.001598281 1.912814e-18 909 907 0.006394393 7.945746e-18 910 907 0.002657689 0 911 907 0.01063113 0 932 907 -0.0002682374 -7.114815e-10 933 907 2.234363e-08 5.74751e-14 934 907 0 -8.379327e-10 935 907 0 5.964268e-14 936 907 0.001598278 3.071941e-19 937 907 -0.0008274272 -1.049349e-18 938 907 0.002657679 0 939 907 -0.001355229 0 940 907 0.001598278 3.071941e-19 941 907 -0.0008274272 -1.049349e-18 942 907 0.002657679 0 943 907 -0.001355229 0 908 908 0.6342023 0 909 908 0.07791139 0 910 908 0.2539655 -3.930437e-16 911 908 0.03179134 -6.160378e-17 909 909 0.3117167 0 910 909 0.03179134 -6.160378e-17 911 909 0.1271661 -2.454324e-16 932 909 0 -8.379327e-10 933 909 0 5.964268e-14 934 909 0.0002682374 -7.114815e-10 935 909 -2.234363e-08 5.74751e-14 936 909 0.002657679 0 937 909 -0.001355229 0 938 909 0.001598278 -3.071941e-19 939 909 -0.0008274272 1.049349e-18 940 909 0.07791215 0 941 909 -0.03831921 0 942 909 0.03179125 -6.246042e-17 943 909 -0.01591908 3.534647e-17 910 910 0.6342023 0 911 910 0.07791139 0 911 911 0.3117167 0 932 911 -0.0002682374 -7.114815e-10 933 911 2.234363e-08 5.74751e-14 934 911 0 -8.379327e-10 935 911 0 5.964268e-14 936 911 0.001598278 3.071941e-19 937 911 -0.0008274272 -1.049349e-18 938 911 0.002657679 0 939 911 -0.001355229 0 940 911 0.03179125 6.246042e-17 941 911 -0.01591908 -3.534647e-17 942 911 0.07791215 0 943 911 -0.03831921 0 912 912 0.003031452 0 913 912 0.0003725413 0 914 912 0.0006096225 -2.880745e-18 915 912 7.63648e-05 -4.261805e-19 913 913 0.001490505 0 914 913 7.63648e-05 -4.261805e-19 915 913 0.0003054648 -1.526816e-18 944 913 0.0003725448 0 945 913 -0.0001832928 0 946 913 7.636455e-05 -4.234367e-19 947 913 -3.826722e-05 1.270813e-19 914 914 0.003031452 0 915 914 0.0003725413 0 915 915 0.001490505 0 944 915 7.636455e-05 4.234367e-19 945 915 -3.826722e-05 -1.270813e-19 946 915 0.0003725448 0 947 915 -0.0001832928 0 916 916 0.01968507 0 917 916 0.00250491 0 918 916 0.008615004 -2.662189e-17 919 916 0.001115489 -3.855611e-18 920 916 0 -1.280508e-08 921 916 0 6.645556e-11 922 916 0.005513357 -8.662656e-09 923 916 -2.858697e-05 4.497744e-11 917 917 0.01001959 0 918 917 0.001115489 -3.855611e-18 919 917 0.004462879 -1.444819e-17 920 917 0 -1.415689e-08 921 917 0 -6.476424e-14 922 917 0.006131078 -9.549632e-09 923 917 5.989806e-08 -1.904116e-14 948 917 0.002504903 0 949 917 -0.001274565 0 950 917 0.001115487 -3.966377e-18 951 917 -0.0005776525 1.403428e-18 952 917 0 6.547621e-10 953 917 0 -3.252424e-14 954 917 -0.0002889432 4.374825e-10 955 917 2.954871e-08 -9.87567e-15 918 918 0.01968507 0 919 918 0.00250491 0 920 918 -0.005513357 -8.662656e-09 921 918 2.858697e-05 4.497744e-11 922 918 0 -1.280508e-08 923 918 0 6.645556e-11 919 919 0.01001959 0 920 919 -0.006131078 -9.549632e-09 921 919 -5.989806e-08 -1.904116e-14 922 919 0 -1.415689e-08 923 919 0 -6.476424e-14 948 919 0.001115487 3.966377e-18 949 919 -0.0005776525 -1.403428e-18 950 919 0.002504903 0 951 919 -0.001274565 0 952 919 0.0002889432 4.374825e-10 953 919 -2.954871e-08 -9.87567e-15 954 919 0 6.547621e-10 955 919 0 -3.252424e-14 920 920 0.07402657 0 921 920 -1.191992e-06 0 922 920 -0.007503152 3.033717e-17 923 920 5.307804e-07 3.169512e-20 948 920 0 1.29349e-08 949 920 0 -6.409855e-10 950 920 -0.00563335 8.700876e-09 951 920 0.0002764269 -4.332994e-10 952 920 0.01272643 0 953 920 -7.960257e-05 0 954 920 -0.001258797 6.648154e-18 955 920 7.889213e-06 -4.169239e-20 921 921 1.280186e-06 0 922 921 5.307804e-07 3.169512e-20 923 921 -1.297288e-07 4.976485e-22 948 921 0 6.723342e-11 949 921 0 3.252424e-14 950 921 -2.930599e-05 4.520636e-11 951 921 -2.954871e-08 9.87567e-15 952 921 7.952364e-05 0 953 921 -4.768091e-07 0 954 921 -7.850332e-06 4.149219e-20 955 921 4.716262e-08 -2.496518e-22 922 922 0.07402657 0 923 922 -1.191992e-06 0 948 922 0.00563335 8.700876e-09 949 922 -0.0002764269 -4.332994e-10 950 922 0 1.29349e-08 951 922 0 -6.409855e-10 952 922 -0.001258797 -6.648154e-18 953 922 7.889213e-06 4.169239e-20 954 922 0.01272643 0 955 922 -7.960257e-05 0 923 923 1.280186e-06 0 948 923 2.930599e-05 4.520636e-11 949 923 2.954871e-08 9.87567e-15 950 923 0 6.723342e-11 951 923 0 3.252424e-14 952 923 -7.850332e-06 -4.149219e-20 953 923 4.716262e-08 2.496518e-22 954 923 7.952364e-05 0 955 923 -4.768091e-07 0 924 924 0.00250455 0 925 924 1.416872e-07 0 956 924 0.0004440803 0 957 924 -2.771149e-06 0 925 925 4.331212e-08 0 956 925 2.781454e-06 0 957 925 -1.663794e-08 0 926 926 0.00250455 0 927 926 1.416872e-07 0 958 926 0.0004440803 0 959 926 -2.771149e-06 0 927 927 4.331212e-08 0 958 927 2.781454e-06 0 959 927 -1.663794e-08 0 928 928 0.002932431 0 929 928 0.0003606262 0 930 928 0.0006122706 -2.038758e-18 931 928 7.670434e-05 -8.48885e-20 929 929 0.001442811 0 930 929 7.670434e-05 -8.48885e-20 931 929 0.0003068232 -5.297415e-19 960 929 0.0003606291 0 961 929 -0.000177545 0 962 929 7.670408e-05 -5.805476e-20 963 929 -3.844142e-05 1.22974e-19 930 930 0.002932431 0 931 930 0.0003606262 0 931 931 0.001442811 0 960 931 7.670408e-05 5.805476e-20 961 931 -3.844142e-05 -1.22974e-19 962 931 0.0003606291 0 963 931 -0.000177545 0 932 932 0.05941344 0 933 932 -1.713619e-06 0 934 932 0.004572497 -1.482709e-17 935 932 5.948187e-07 -1.552639e-20 936 932 0 -1.654725e-08 937 932 0 -1.833377e-08 938 932 0.005285792 -1.402576e-08 939 932 0.005862759 -1.555594e-08 940 932 0 -1.654725e-08 941 932 0 -1.833377e-08 942 932 0.005285792 -1.402576e-08 943 932 0.005862759 -1.555594e-08 964 932 0.01015802 0 965 932 -6.356439e-05 0 966 932 0.0008359135 -3.189892e-18 967 932 -5.204291e-06 2.003896e-20 968 932 0 -1.678748e-08 969 932 0 8.286898e-10 970 932 0.005372655 -1.425915e-08 971 932 -0.0002648961 7.025032e-10 972 932 0 -1.678748e-08 973 932 0 8.286898e-10 974 932 0.005372655 -1.425915e-08 975 932 -0.0002648961 7.025032e-10 933 933 1.027468e-06 0 934 933 5.948187e-07 -1.552639e-20 935 933 7.908177e-08 -2.375145e-22 936 933 0 8.584767e-11 937 933 0 -1.198759e-13 938 933 -2.74179e-05 7.275485e-11 939 933 4.335217e-08 -1.164733e-13 940 933 0 8.584767e-11 941 933 0 -1.198759e-13 942 933 -2.74179e-05 7.275485e-11 943 933 4.335217e-08 -1.164733e-13 964 933 6.344709e-05 0 965 933 -3.805787e-07 0 966 933 5.247593e-06 -1.98748e-20 967 933 -3.131807e-08 1.197918e-22 968 933 0 -8.728712e-11 969 933 0 -6.034644e-14 970 933 2.793839e-05 -7.415328e-11 971 933 2.103724e-08 -5.908663e-14 972 933 0 -8.728712e-11 973 933 0 -6.034644e-14 974 933 2.793839e-05 -7.415328e-11 975 933 2.103724e-08 -5.908663e-14 934 934 0.05941344 0 935 934 -1.713619e-06 0 936 934 -0.005285792 -1.402576e-08 937 934 -0.005862759 -1.555594e-08 938 934 0 -1.654725e-08 939 934 0 -1.833377e-08 940 934 -0.005285792 -1.402576e-08 941 934 -0.005862759 -1.555594e-08 942 934 0 -1.654725e-08 943 934 0 -1.833377e-08 964 934 0.0008359135 3.189892e-18 965 934 -5.204291e-06 -2.003896e-20 966 934 0.01015802 0 967 934 -6.356439e-05 0 968 934 -0.005372655 -1.425915e-08 969 934 0.0002648961 7.025032e-10 970 934 0 -1.678748e-08 971 934 0 8.286898e-10 972 934 -0.005372655 -1.425915e-08 973 934 0.0002648961 7.025032e-10 974 934 0 -1.678748e-08 975 934 0 8.286898e-10 935 935 1.027468e-06 0 936 935 2.74179e-05 7.275485e-11 937 935 -4.335217e-08 -1.164733e-13 938 935 0 8.584767e-11 939 935 0 -1.198759e-13 940 935 2.74179e-05 7.275485e-11 941 935 -4.335217e-08 -1.164733e-13 942 935 0 8.584767e-11 943 935 0 -1.198759e-13 964 935 5.247593e-06 1.98748e-20 965 935 -3.131807e-08 -1.197918e-22 966 935 6.344709e-05 0 967 935 -3.805787e-07 0 968 935 -2.793839e-05 -7.415328e-11 969 935 -2.103724e-08 -5.908663e-14 970 935 0 -8.728712e-11 971 935 0 -6.034644e-14 972 935 -2.793839e-05 -7.415328e-11 973 935 -2.103724e-08 -5.908663e-14 974 935 0 -8.728712e-11 975 935 0 -6.034644e-14 936 936 0.02168334 0 937 936 0.002763236 0 938 936 0.01323782 -1.315002e-17 939 936 0.001711431 -3.890202e-18 940 936 0.02168334 0 941 936 0.002763236 0 942 936 0.01323782 -1.315002e-17 943 936 0.001711431 -3.890202e-18 937 937 0.01105333 0 938 937 0.001711431 -3.890202e-18 939 937 0.006846977 -1.63571e-17 940 937 0.002763236 0 941 937 0.01105333 0 942 937 0.001711431 -3.890202e-18 943 937 0.006846977 -1.63571e-17 964 937 0 -8.542514e-10 965 937 0 6.034644e-14 966 937 0.000273807 -7.275311e-10 967 937 -2.103724e-08 5.908663e-14 968 937 0.002763226 0 969 937 -0.001408286 0 970 937 0.001711428 -5.041844e-18 971 937 -0.000884884 2.270332e-18 972 937 0.002763226 0 973 937 -0.001408286 0 974 937 0.001711428 -5.041844e-18 975 937 -0.000884884 2.270332e-18 938 938 0.02168334 0 939 938 0.002763236 0 940 938 0.01323782 1.315002e-17 941 938 0.001711431 3.890202e-18 942 938 0.02168334 0 943 938 0.002763236 0 939 939 0.01105333 0 940 939 0.001711431 3.890202e-18 941 939 0.006846977 1.63571e-17 942 939 0.002763236 0 943 939 0.01105333 0 964 939 -0.000273807 -7.275311e-10 965 939 2.103724e-08 5.908663e-14 966 939 0 -8.542514e-10 967 939 0 6.034644e-14 968 939 0.001711428 5.041844e-18 969 939 -0.000884884 -2.270332e-18 970 939 0.002763226 0 971 939 -0.001408286 0 972 939 0.001711428 5.041844e-18 973 939 -0.000884884 -2.270332e-18 974 939 0.002763226 0 975 939 -0.001408286 0 940 940 0.6130545 0 941 940 0.07536469 0 942 940 0.2547044 -5.66112e-16 943 940 0.03188505 -7.892546e-17 941 941 0.3015228 0 942 941 0.03188505 -7.892546e-17 943 941 0.1275409 -3.199916e-16 964 941 0 -8.542514e-10 965 941 0 6.034644e-14 966 941 0.000273807 -7.275311e-10 967 941 -2.103724e-08 5.908663e-14 968 941 0.002763226 0 969 941 -0.001408286 0 970 941 0.001711428 -5.041844e-18 971 941 -0.000884884 2.270332e-18 972 941 0.07536533 0 973 941 -0.03708971 0 974 941 0.03188496 -7.868954e-17 975 941 -0.01596658 4.703715e-17 942 942 0.6130545 0 943 942 0.07536469 0 943 943 0.3015228 0 964 943 -0.000273807 -7.275311e-10 965 943 2.103724e-08 5.908663e-14 966 943 0 -8.542514e-10 967 943 0 6.034644e-14 968 943 0.001711428 5.041844e-18 969 943 -0.000884884 -2.270332e-18 970 943 0.002763226 0 971 943 -0.001408286 0 972 943 0.03188496 7.868954e-17 973 943 -0.01596658 -4.703715e-17 974 943 0.07536533 0 975 943 -0.03708971 0 944 944 0.002932431 0 945 944 0.0003606262 0 946 944 0.0006122706 -2.038758e-18 947 944 7.670434e-05 -8.48885e-20 945 945 0.001442811 0 946 945 7.670434e-05 -8.48885e-20 947 945 0.0003068232 -5.297415e-19 976 945 0.0003606291 0 977 945 -0.000177545 0 978 945 7.670408e-05 -5.805476e-20 979 945 -3.844142e-05 1.22974e-19 946 946 0.002932431 0 947 946 0.0003606262 0 947 947 0.001442811 0 976 947 7.670408e-05 5.805476e-20 977 947 -3.844142e-05 -1.22974e-19 978 947 0.0003606291 0 979 947 -0.000177545 0 948 948 0.02039307 0 949 948 0.002593357 0 950 948 0.009241701 -2.281712e-17 951 948 0.001195123 -1.647336e-18 952 948 0 -1.297999e-08 953 948 0 6.736352e-11 954 948 0.005674312 -8.714566e-09 955 948 -2.942418e-05 4.524586e-11 949 949 0.01037337 0 950 949 0.001195123 -1.647336e-18 951 949 0.004781405 -7.412716e-18 952 949 0 -1.434972e-08 953 949 0 -6.512367e-14 954 949 0.006306286 -9.608158e-09 955 949 5.821239e-08 -2.031322e-14 980 949 0.00259335 0 981 949 -0.001318761 0 982 949 0.001195121 -1.396899e-18 983 949 -0.0006181119 1.089646e-18 984 949 0 6.635824e-10 985 949 0 -3.268232e-14 986 949 -0.0002966128 4.403565e-10 987 949 2.869843e-08 -1.048964e-14 950 950 0.02039307 0 951 950 0.002593357 0 952 950 -0.005674312 -8.714566e-09 953 950 2.942418e-05 4.524586e-11 954 950 0 -1.297999e-08 955 950 0 6.736352e-11 951 951 0.01037337 0 952 951 -0.006306286 -9.608158e-09 953 951 -5.821239e-08 -2.031322e-14 954 951 0 -1.434972e-08 955 951 0 -6.512367e-14 980 951 0.001195121 1.396899e-18 981 951 -0.0006181119 -1.089646e-18 982 951 0.00259335 0 983 951 -0.001318761 0 984 951 0.0002966128 4.403565e-10 985 951 -2.869843e-08 -1.048964e-14 986 951 0 6.635824e-10 987 951 0 -3.268232e-14 952 952 0.07307718 0 953 952 -1.023713e-06 0 954 952 -0.007035929 3.572634e-17 955 952 5.58396e-07 -4.931331e-21 980 952 0 1.311054e-08 981 952 0 -6.497389e-10 982 952 -0.005790939 8.755337e-09 983 952 0.0002844568 -4.359133e-10 984 952 0.01257441 0 985 952 -7.864615e-05 0 986 952 -0.001175862 6.180934e-18 987 952 7.371704e-06 -3.84376e-20 953 953 1.263753e-06 0 954 953 5.58396e-07 -4.931331e-21 955 953 -1.216481e-07 6.317392e-22 980 953 0 6.814571e-11 981 953 0 3.268232e-14 982 953 -3.012303e-05 4.549008e-11 983 953 -2.869843e-08 1.048964e-14 984 953 7.857876e-05 0 985 953 -4.711107e-07 0 986 953 -7.330806e-06 3.885572e-20 987 953 4.405509e-08 -2.316675e-22 954 954 0.07307718 0 955 954 -1.023713e-06 0 980 954 0.005790939 8.755337e-09 981 954 -0.0002844568 -4.359133e-10 982 954 0 1.311054e-08 983 954 0 -6.497389e-10 984 954 -0.001175862 -6.180934e-18 985 954 7.371704e-06 3.84376e-20 986 954 0.01257441 0 987 954 -7.864615e-05 0 955 955 1.263753e-06 0 980 955 3.012303e-05 4.549008e-11 981 955 2.869843e-08 1.048964e-14 982 955 0 6.814571e-11 983 955 0 3.268232e-14 984 955 -7.330806e-06 -3.885572e-20 985 955 4.405509e-08 2.316675e-22 986 955 7.857876e-05 0 987 955 -4.711107e-07 0 956 956 0.002628374 0 957 956 1.46915e-07 0 988 956 0.0004659061 0 989 956 -2.907396e-06 0 957 957 4.545329e-08 0 988 957 2.91809e-06 0 989 957 -1.745556e-08 0 958 958 0.002628374 0 959 958 1.46915e-07 0 990 958 0.0004659061 0 991 958 -2.907396e-06 0 959 959 4.545329e-08 0 990 959 2.91809e-06 0 991 959 -1.745556e-08 0 960 960 0.002840492 0 961 960 0.000349551 0 962 960 0.0006150575 -1.896093e-18 963 960 7.706159e-05 -4.338414e-19 961 961 0.001398481 0 962 961 7.706159e-05 -4.338414e-19 963 961 0.0003082525 -1.575479e-18 992 961 0.0003495535 0 993 961 -0.0001721975 0 994 961 7.706133e-05 -4.710242e-19 995 961 -3.862467e-05 1.556258e-19 962 962 0.002840492 0 963 962 0.000349551 0 963 963 0.001398481 0 992 963 7.706133e-05 4.710242e-19 993 963 -3.862467e-05 -1.556258e-19 994 963 0.0003495535 0 995 963 -0.0001721975 0 964 964 0.05800308 0 965 964 -1.576252e-06 0 966 964 0.005092741 -1.599786e-17 967 964 6.175935e-07 6.56463e-21 968 964 0 -1.687114e-08 969 964 0 -1.869156e-08 970 964 0.005401818 -1.434106e-08 971 964 0.005987478 -1.590627e-08 972 964 0 -1.687114e-08 973 964 0 -1.869156e-08 974 964 0.005401818 -1.434106e-08 975 964 0.005987478 -1.590627e-08 996 964 0.009923912 0 997 964 -6.209595e-05 0 998 964 0.0009276496 -2.381002e-18 999 964 -5.776974e-06 1.496635e-20 1000 964 0 -1.711408e-08 1001 964 0 8.449027e-10 1002 964 0.005483334 -1.458076e-08 1003 964 -0.0002706723 7.183085e-10 1004 964 0 -1.711408e-08 1005 964 0 8.449027e-10 1006 964 0.005483334 -1.458076e-08 1007 964 -0.0002706723 7.183085e-10 965 965 1.003066e-06 0 966 965 6.175935e-07 6.56463e-21 967 965 8.807745e-08 -2.781637e-22 968 965 0 8.752851e-11 969 965 0 -1.212177e-13 970 965 -2.802254e-05 7.438963e-11 971 965 4.068597e-08 -1.196218e-13 972 965 0 8.752851e-11 973 965 0 -1.212177e-13 974 965 -2.802254e-05 7.438963e-11 975 965 4.068597e-08 -1.196218e-13 996 965 6.198796e-05 0 997 965 -3.718054e-07 0 998 965 5.821907e-06 -1.479195e-20 999 965 -3.475485e-08 8.908275e-23 1000 965 0 -8.898419e-11 1001 965 0 -6.100605e-14 1002 965 2.851097e-05 -7.582594e-11 1003 965 1.966668e-08 -6.063984e-14 1004 965 0 -8.898419e-11 1005 965 0 -6.100605e-14 1006 965 2.851097e-05 -7.582594e-11 1007 965 1.966668e-08 -6.063984e-14 966 966 0.05800308 0 967 966 -1.576252e-06 0 968 966 -0.005401818 -1.434106e-08 969 966 -0.005987478 -1.590627e-08 970 966 0 -1.687114e-08 971 966 0 -1.869156e-08 972 966 -0.005401818 -1.434106e-08 973 966 -0.005987478 -1.590627e-08 974 966 0 -1.687114e-08 975 966 0 -1.869156e-08 996 966 0.0009276496 2.381002e-18 997 966 -5.776974e-06 -1.496635e-20 998 966 0.009923912 0 999 966 -6.209595e-05 0 1000 966 -0.005483334 -1.458076e-08 1001 966 0.0002706723 7.183085e-10 1002 966 0 -1.711408e-08 1003 966 0 8.449027e-10 1004 966 -0.005483334 -1.458076e-08 1005 966 0.0002706723 7.183085e-10 1006 966 0 -1.711408e-08 1007 966 0 8.449027e-10 967 967 1.003066e-06 0 968 967 2.802254e-05 7.438963e-11 969 967 -4.068597e-08 -1.196218e-13 970 967 0 8.752851e-11 971 967 0 -1.212177e-13 972 967 2.802254e-05 7.438963e-11 973 967 -4.068597e-08 -1.196218e-13 974 967 0 8.752851e-11 975 967 0 -1.212177e-13 996 967 5.821907e-06 1.479195e-20 997 967 -3.475485e-08 -8.908275e-23 998 967 6.198796e-05 0 999 967 -3.718054e-07 0 1000 967 -2.851097e-05 -7.582594e-11 1001 967 -1.966668e-08 -6.063984e-14 1002 967 0 -8.898419e-11 1003 967 0 -6.100605e-14 1004 967 -2.851097e-05 -7.582594e-11 1005 967 -1.966668e-08 -6.063984e-14 1006 967 0 -8.898419e-11 1007 967 0 -6.100605e-14 968 968 0.02253225 0 969 968 0.002869919 0 970 968 0.01415714 -3.861439e-17 971 968 0.001828108 -4.039483e-18 972 968 0.02253225 0 973 968 0.002869919 0 974 968 0.01415714 -3.861439e-17 975 968 0.001828108 -4.039483e-18 969 969 0.01148007 0 970 969 0.001828108 -4.039483e-18 971 969 0.007313669 -1.498567e-17 972 969 0.002869919 0 973 969 0.01148007 0 974 969 0.001828108 -4.039483e-18 975 969 0.007313669 -1.498567e-17 996 969 0 -8.707442e-10 997 969 0 6.100605e-14 998 969 0.0002790027 -7.439947e-10 999 969 -1.966668e-08 6.063984e-14 1000 969 0.002869908 0 1001 969 -0.001461922 0 1002 969 0.001828105 -3.302223e-18 1003 969 -0.0009440926 1.631823e-18 1004 969 0.002869908 0 1005 969 -0.001461922 0 1006 969 0.001828105 -3.302223e-18 1007 969 -0.0009440926 1.631823e-18 970 970 0.02253225 0 971 970 0.002869919 0 972 970 0.01415714 3.861439e-17 973 970 0.001828108 4.039483e-18 974 970 0.02253225 0 975 970 0.002869919 0 971 971 0.01148007 0 972 971 0.001828108 4.039483e-18 973 971 0.007313669 1.498567e-17 974 971 0.002869919 0 975 971 0.01148007 0 996 971 -0.0002790027 -7.439947e-10 997 971 1.966668e-08 6.063984e-14 998 971 0 -8.707442e-10 999 971 0 6.100605e-14 1000 971 0.001828105 3.302223e-18 1001 971 -0.0009440926 -1.631823e-18 1002 971 0.002869908 0 1003 971 -0.001461922 0 1004 971 0.001828105 3.302223e-18 1005 971 -0.0009440926 -1.631823e-18 1006 971 0.002869908 0 1007 971 -0.001461922 0 972 972 0.5933876 0 973 972 0.0729935 0 974 972 0.2554646 -7.543427e-16 975 972 0.03198137 -1.09459e-16 973 973 0.2920318 0 974 973 0.03198137 -1.09459e-16 975 973 0.1279262 -4.270828e-16 996 973 0 -8.707442e-10 997 973 0 6.100605e-14 998 973 0.0002790027 -7.439947e-10 999 973 -1.966668e-08 6.063984e-14 1000 973 0.002869908 0 1001 973 -0.001461922 0 1002 973 0.001828105 -3.302223e-18 1003 973 -0.0009440926 1.631823e-18 1004 973 0.07299403 0 1005 973 -0.03594375 0 1006 973 0.03198128 -1.107101e-16 1007 973 -0.01601538 5.342706e-17 974 974 0.5933876 0 975 974 0.0729935 0 975 975 0.2920318 0 996 975 -0.0002790027 -7.439947e-10 997 975 1.966668e-08 6.063984e-14 998 975 0 -8.707442e-10 999 975 0 6.100605e-14 1000 975 0.001828105 3.302223e-18 1001 975 -0.0009440926 -1.631823e-18 1002 975 0.002869908 0 1003 975 -0.001461922 0 1004 975 0.03198128 1.107101e-16 1005 975 -0.01601538 -5.342706e-17 1006 975 0.07299403 0 1007 975 -0.03594375 0 976 976 0.002840492 0 977 976 0.000349551 0 978 976 0.0006150575 -1.896093e-18 979 976 7.706159e-05 -4.338414e-19 977 977 0.001398481 0 978 977 7.706159e-05 -4.338414e-19 979 977 0.0003082525 -1.575479e-18 1008 977 0.0003495535 0 1009 977 -0.0001721975 0 1010 977 7.706133e-05 -4.710242e-19 1011 977 -3.862467e-05 1.556258e-19 978 978 0.002840492 0 979 978 0.000349551 0 979 979 0.001398481 0 1008 979 7.706133e-05 4.710242e-19 1009 979 -3.862467e-05 -1.556258e-19 1010 979 0.0003495535 0 1011 979 -0.0001721975 0 980 980 0.0211002 0 981 980 0.002681692 0 982 980 0.00988906 -1.676336e-17 983 980 0.001277327 -2.961685e-18 984 980 0 -1.315585e-08 985 980 0 6.827644e-11 986 980 0.005830722 -8.769878e-09 987 980 -3.023783e-05 4.553203e-11 981 981 0.01072671 0 982 981 0.001277327 -2.961685e-18 983 981 0.005110211 -1.147051e-17 984 981 0 -1.454347e-08 985 981 0 -6.536931e-14 986 981 0.006476436 -9.670325e-09 987 981 5.646264e-08 -2.149501e-14 1012 981 0.002681685 0 1013 981 -0.001362899 0 1014 981 0.001277324 -3.057315e-18 1015 981 -0.0006598499 1.466266e-18 1016 981 0 6.724271e-10 1017 981 0 -3.27883e-14 1018 981 -0.0003040325 4.433818e-10 1019 981 2.778664e-08 -1.106297e-14 982 982 0.0211002 0 983 982 0.002681692 0 984 982 -0.005830722 -8.769878e-09 985 982 3.023783e-05 4.553203e-11 986 982 0 -1.315585e-08 987 982 0 6.827644e-11 983 983 0.01072671 0 984 983 -0.006476436 -9.670325e-09 985 983 -5.646264e-08 -2.149501e-14 986 983 0 -1.454347e-08 987 983 0 -6.536931e-14 1012 983 0.001277324 3.057315e-18 1013 983 -0.0006598499 -1.466266e-18 1014 983 0.002681685 0 1015 983 -0.001362899 0 1016 983 0.0003040325 4.433818e-10 1017 983 -2.778664e-08 -1.106297e-14 1018 983 0 6.724271e-10 1019 983 0 -3.27883e-14 984 984 0.0722665 0 985 984 -8.686532e-07 0 986 984 -0.006544465 3.24185e-17 987 984 5.872721e-07 -1.944937e-20 1012 984 0 1.328691e-08 1013 984 0 -6.585382e-10 1014 984 -0.005943836 8.81302e-09 1015 984 0.0002922626 -4.386957e-10 1016 984 0.01244542 0 1017 984 -7.783419e-05 0 1018 984 -0.001088638 3.329072e-18 1019 984 6.82743e-06 -2.232924e-20 985 985 1.249719e-06 0 986 985 5.872721e-07 -1.944937e-20 987 985 -1.131482e-07 5.199894e-22 1012 985 0 6.906168e-11 1013 985 0 3.27883e-14 1014 985 -3.091561e-05 4.579046e-11 1015 985 -2.778664e-08 1.106297e-14 1016 985 7.777742e-05 0 1017 985 -4.662752e-07 0 1018 985 -6.784427e-06 1.928699e-20 1019 985 4.078693e-08 -1.246389e-22 986 986 0.0722665 0 987 986 -8.686532e-07 0 1012 986 0.005943836 8.81302e-09 1013 986 -0.0002922626 -4.386957e-10 1014 986 0 1.328691e-08 1015 986 0 -6.585382e-10 1016 986 -0.001088638 -3.329072e-18 1017 986 6.82743e-06 2.232924e-20 1018 986 0.01244542 0 1019 986 -7.783419e-05 0 987 987 1.249719e-06 0 1012 987 3.091561e-05 4.579046e-11 1013 987 2.778664e-08 1.106297e-14 1014 987 0 6.906168e-11 1015 987 0 3.27883e-14 1016 987 -6.784427e-06 -1.928699e-20 1017 987 4.078693e-08 1.246389e-22 1018 987 7.777742e-05 0 1019 987 -4.662752e-07 0 988 988 0.002756871 0 989 988 1.525823e-07 0 1020 988 0.000488574 0 1021 988 -3.048891e-06 0 989 989 4.767527e-08 0 1020 989 3.060007e-06 0 1021 989 -1.830472e-08 0 990 990 0.002756871 0 991 990 1.525823e-07 0 1022 990 0.000488574 0 1023 990 -3.048891e-06 0 991 991 4.767527e-08 0 1022 991 3.060007e-06 0 1023 991 -1.830472e-08 0 992 992 0.002754952 0 993 992 0.0003392364 0 994 992 0.0006179894 -2.603081e-18 995 992 7.743737e-05 -1.51479e-19 993 993 0.001357197 0 994 993 7.743737e-05 -1.51479e-19 995 993 0.0003097558 -6.560749e-19 1024 993 0.0003392384 0 1025 993 -0.0001672129 0 1026 993 7.74371e-05 -1.121239e-19 1027 993 -3.88174e-05 7.221728e-20 994 994 0.002754952 0 995 994 0.0003392364 0 995 995 0.001357197 0 1024 995 7.74371e-05 1.121239e-19 1025 995 -3.88174e-05 -7.221728e-20 1026 995 0.0003392384 0 1027 995 -0.0001672129 0 996 996 0.05670477 0 997 996 -1.45218e-06 0 998 996 0.005632553 -1.42367e-17 999 996 6.40353e-07 -3.424449e-21 1000 996 0 -1.719865e-08 1001 996 0 -1.905331e-08 1002 996 0.005510597 -1.466482e-08 1003 996 0.006104073 -1.626584e-08 1004 996 0 -1.719865e-08 1005 996 0 -1.905331e-08 1006 996 0.005510597 -1.466482e-08 1007 996 0.006104073 -1.626584e-08 1028 996 0.009708236 0 1029 996 -6.07432e-05 0 1030 996 0.001022768 -2.82493e-18 1031 996 -6.370801e-06 1.744784e-20 1032 996 0 -1.744432e-08 1033 996 0 8.612996e-10 1034 996 0.005586493 -1.491075e-08 1035 996 -0.0002760838 7.34539e-10 1036 996 0 -1.744432e-08 1037 996 0 8.612996e-10 1038 996 0.005586493 -1.491075e-08 1039 996 -0.0002760838 7.34539e-10 997 997 9.806023e-07 0 998 997 6.40353e-07 -3.424449e-21 999 997 9.741118e-08 -2.523613e-22 1000 997 0 8.922821e-11 1001 997 0 -1.226259e-13 1002 997 -2.858963e-05 7.60685e-11 1003 997 3.787689e-08 -1.227598e-13 1004 997 0 8.922821e-11 1005 997 0 -1.226259e-13 1006 997 -2.858963e-05 7.60685e-11 1007 997 3.787689e-08 -1.227598e-13 1028 997 6.064365e-05 0 1029 997 -3.637229e-07 0 1030 997 6.41736e-06 -1.787738e-20 1031 997 -3.83183e-08 1.058736e-22 1032 997 0 -9.070019e-11 1033 997 0 -6.164595e-14 1034 997 2.904439e-05 -7.754206e-11 1035 997 1.823256e-08 -6.214973e-14 1036 997 0 -9.070019e-11 1037 997 0 -6.164595e-14 1038 997 2.904439e-05 -7.754206e-11 1039 997 1.823256e-08 -6.214973e-14 998 998 0.05670477 0 999 998 -1.45218e-06 0 1000 998 -0.005510597 -1.466482e-08 1001 998 -0.006104073 -1.626584e-08 1002 998 0 -1.719865e-08 1003 998 0 -1.905331e-08 1004 998 -0.005510597 -1.466482e-08 1005 998 -0.006104073 -1.626584e-08 1006 998 0 -1.719865e-08 1007 998 0 -1.905331e-08 1028 998 0.001022768 2.82493e-18 1029 998 -6.370801e-06 -1.744784e-20 1030 998 0.009708236 0 1031 998 -6.07432e-05 0 1032 998 -0.005586493 -1.491075e-08 1033 998 0.0002760838 7.34539e-10 1034 998 0 -1.744432e-08 1035 998 0 8.612996e-10 1036 998 -0.005586493 -1.491075e-08 1037 998 0.0002760838 7.34539e-10 1038 998 0 -1.744432e-08 1039 998 0 8.612996e-10 999 999 9.806023e-07 0 1000 999 2.858963e-05 7.60685e-11 1001 999 -3.787689e-08 -1.227598e-13 1002 999 0 8.922821e-11 1003 999 0 -1.226259e-13 1004 999 2.858963e-05 7.60685e-11 1005 999 -3.787689e-08 -1.227598e-13 1006 999 0 8.922821e-11 1007 999 0 -1.226259e-13 1028 999 6.41736e-06 1.787738e-20 1029 999 -3.83183e-08 -1.058736e-22 1030 999 6.064365e-05 0 1031 999 -3.637229e-07 0 1032 999 -2.904439e-05 -7.754206e-11 1033 999 -1.823256e-08 -6.214973e-14 1034 999 0 -9.070019e-11 1035 999 0 -6.164595e-14 1036 999 -2.904439e-05 -7.754206e-11 1037 999 -1.823256e-08 -6.214973e-14 1038 999 0 -9.070019e-11 1039 999 0 -6.164595e-14 1000 1000 0.02339041 0 1001 1000 0.00297778 0 1002 1000 0.01510449 -2.405049e-17 1003 1000 0.001948266 -3.225067e-18 1004 1000 0.02339041 0 1005 1000 0.00297778 0 1006 1000 0.01510449 -2.405049e-17 1007 1000 0.001948266 -3.225067e-18 1001 1001 0.01191153 0 1002 1001 0.001948266 -3.225067e-18 1003 1001 0.007794281 -1.593351e-17 1004 1001 0.00297778 0 1005 1001 0.01191153 0 1006 1001 0.001948266 -3.225067e-18 1007 1001 0.007794281 -1.593351e-17 1028 1001 0 -8.874104e-10 1029 1001 0 6.164595e-14 1030 1001 0.0002838067 -7.608636e-10 1031 1001 -1.823256e-08 6.214973e-14 1032 1001 0.002977769 0 1033 1001 -0.001516158 0 1034 1001 0.001948262 -3.722509e-18 1035 1001 -0.001005029 3.334166e-18 1036 1001 0.002977769 0 1037 1001 -0.001516158 0 1038 1001 0.001948262 -3.722509e-18 1039 1001 -0.001005029 3.334166e-18 1002 1002 0.02339041 0 1003 1002 0.00297778 0 1004 1002 0.01510449 2.405049e-17 1005 1002 0.001948266 3.225067e-18 1006 1002 0.02339041 0 1007 1002 0.00297778 0 1003 1003 0.01191153 0 1004 1003 0.001948266 3.225067e-18 1005 1003 0.007794281 1.593351e-17 1006 1003 0.00297778 0 1007 1003 0.01191153 0 1028 1003 -0.0002838067 -7.608636e-10 1029 1003 1.823256e-08 6.214973e-14 1030 1003 0 -8.874104e-10 1031 1003 0 6.164595e-14 1032 1003 0.001948262 3.722509e-18 1033 1003 -0.001005029 -3.334166e-18 1034 1003 0.002977769 0 1035 1003 -0.001516158 0 1036 1003 0.001948262 3.722509e-18 1037 1003 -0.001005029 -3.334166e-18 1038 1003 0.002977769 0 1039 1003 -0.001516158 0 1004 1004 0.5750568 0 1005 1004 0.07078095 0 1006 1004 0.2562454 -8.627544e-16 1007 1004 0.03208024 -1.029981e-16 1005 1005 0.2831761 0 1006 1005 0.03208024 -1.029981e-16 1007 1005 0.1283217 -4.08688e-16 1028 1005 0 -8.874104e-10 1029 1005 0 6.164595e-14 1030 1005 0.0002838067 -7.608636e-10 1031 1005 -1.823256e-08 6.214973e-14 1032 1005 0.002977769 0 1033 1005 -0.001516158 0 1034 1005 0.001948262 -3.722509e-18 1035 1005 -0.001005029 3.334166e-18 1036 1005 0.0707814 0 1037 1005 -0.03487342 0 1038 1005 0.03208015 -1.019688e-16 1039 1005 -0.01606543 4.841346e-17 1006 1006 0.5750568 0 1007 1006 0.07078095 0 1007 1007 0.2831761 0 1028 1007 -0.0002838067 -7.608636e-10 1029 1007 1.823256e-08 6.214973e-14 1030 1007 0 -8.874104e-10 1031 1007 0 6.164595e-14 1032 1007 0.001948262 3.722509e-18 1033 1007 -0.001005029 -3.334166e-18 1034 1007 0.002977769 0 1035 1007 -0.001516158 0 1036 1007 0.03208015 1.019688e-16 1037 1007 -0.01606543 -4.841346e-17 1038 1007 0.0707814 0 1039 1007 -0.03487342 0 1008 1008 0.002754952 0 1009 1008 0.0003392364 0 1010 1008 0.0006179894 -2.603081e-18 1011 1008 7.743737e-05 -1.51479e-19 1009 1009 0.001357197 0 1010 1009 7.743737e-05 -1.51479e-19 1011 1009 0.0003097558 -6.560749e-19 1040 1009 0.0003392384 0 1041 1009 -0.0001672129 0 1042 1009 7.74371e-05 -1.121239e-19 1043 1009 -3.88174e-05 7.221728e-20 1010 1010 0.002754952 0 1011 1010 0.0003392364 0 1011 1011 0.001357197 0 1040 1011 7.74371e-05 1.121239e-19 1041 1011 -3.88174e-05 -7.221728e-20 1042 1011 0.0003392384 0 1043 1011 -0.0001672129 0 1012 1012 0.02180642 0 1013 1012 0.002769913 0 1014 1012 0.01055687 -2.314237e-17 1015 1012 0.001362075 -2.807748e-18 1016 1012 0 -1.333236e-08 1017 1012 0 6.919283e-11 1018 1012 0.005982356 -8.828356e-09 1019 1012 -3.102676e-05 4.583471e-11 1013 1013 0.01107959 0 1014 1013 0.001362075 -2.807748e-18 1015 1013 0.005449194 -1.277383e-17 1016 1013 0 -1.473789e-08 1017 1013 0 -6.564963e-14 1018 1013 0.006641185 -9.7359e-09 1019 1013 5.45773e-08 -2.262493e-14 1044 1013 0.002769905 0 1045 1013 -0.00140698 0 1046 1013 0.001362072 -3.040088e-18 1047 1013 -0.000702853 2.28779e-18 1048 1013 0 6.812928e-10 1049 1013 0 -3.286655e-14 1050 1013 -0.0003111861 4.465489e-10 1051 1013 2.681667e-08 -1.159832e-14 1014 1014 0.02180642 0 1015 1014 0.002769913 0 1016 1014 -0.005982356 -8.828356e-09 1017 1014 3.102676e-05 4.583471e-11 1018 1014 0 -1.333236e-08 1019 1014 0 6.919283e-11 1015 1015 0.01107959 0 1016 1015 -0.006641185 -9.7359e-09 1017 1015 -5.45773e-08 -2.262493e-14 1018 1015 0 -1.473789e-08 1019 1015 0 -6.564963e-14 1044 1015 0.001362072 3.040088e-18 1045 1015 -0.000702853 -2.28779e-18 1046 1015 0.002769905 0 1047 1015 -0.00140698 0 1048 1015 0.0003111861 4.465489e-10 1049 1015 -2.681667e-08 -1.159832e-14 1050 1015 0 6.812928e-10 1051 1015 0 -3.286655e-14 1016 1016 0.07158352 0 1017 1016 -7.25735e-07 0 1018 1016 -0.00602774 8.268502e-18 1019 1016 6.171967e-07 -1.057206e-20 1044 1016 0 1.34639e-08 1045 1016 0 -6.673724e-10 1046 1016 -0.006091699 8.873743e-09 1047 1016 0.0002998271 -4.416364e-10 1048 1016 0.01233766 0 1049 1016 -7.715538e-05 0 1050 1016 -0.0009969667 1.816761e-18 1051 1016 6.255394e-06 -1.046796e-20 1017 1017 1.237895e-06 0 1018 1017 6.171967e-07 -1.057206e-20 1019 1017 -1.042119e-07 1.954294e-22 1044 1017 0 6.99809e-11 1045 1017 0 3.286655e-14 1046 1017 -3.168194e-05 4.610658e-11 1047 1017 -2.681667e-08 1.159832e-14 1048 1017 7.710844e-05 0 1049 1017 -4.622354e-07 0 1050 1017 -6.210216e-06 1.221911e-20 1051 1017 3.73522e-08 -6.778533e-23 1018 1018 0.07158352 0 1019 1018 -7.25735e-07 0 1044 1018 0.006091699 8.873743e-09 1045 1018 -0.0002998271 -4.416364e-10 1046 1018 0 1.34639e-08 1047 1018 0 -6.673724e-10 1048 1018 -0.0009969667 -1.816761e-18 1049 1018 6.255394e-06 1.046796e-20 1050 1018 0.01233766 0 1051 1018 -7.715538e-05 0 1019 1019 1.237895e-06 0 1044 1019 3.168194e-05 4.610658e-11 1045 1019 2.681667e-08 1.159832e-14 1046 1019 0 6.99809e-11 1047 1019 0 3.286655e-14 1048 1019 -6.210216e-06 -1.221911e-20 1049 1019 3.73522e-08 6.778533e-23 1050 1019 7.710844e-05 0 1051 1019 -4.622354e-07 0 1020 1020 0.002890437 0 1021 1020 1.587312e-07 0 1052 1020 0.0005121556 0 1053 1020 -3.19608e-06 0 1021 1021 4.998489e-08 0 1052 1021 3.207653e-06 0 1053 1021 -1.918811e-08 0 1022 1022 0.002890437 0 1023 1022 1.587312e-07 0 1054 1022 0.0005121556 0 1055 1022 -3.19608e-06 0 1023 1023 4.998489e-08 0 1054 1023 3.207653e-06 0 1055 1023 -1.918811e-08 0 1024 1024 0.002675217 0 1025 1024 0.000329613 0 1026 1024 0.0006210727 -1.026121e-18 1027 1024 7.78325e-05 -1.767452e-19 1025 1025 0.001318681 0 1026 1025 7.78325e-05 -1.767452e-19 1027 1025 0.0003113367 -8.062545e-19 1056 1025 0.0003296148 0 1057 1025 -0.0001625588 0 1058 1025 7.783222e-05 -2.089339e-19 1059 1025 -3.902004e-05 1.448708e-19 1026 1026 0.002675217 0 1027 1026 0.000329613 0 1027 1027 0.001318681 0 1056 1027 7.783222e-05 2.089339e-19 1057 1027 -3.902004e-05 -1.448708e-19 1058 1027 0.0003296148 0 1059 1027 -0.0001625588 0 1028 1028 0.05550795 0 1029 1028 -1.339424e-06 0 1030 1028 0.006191949 -1.766788e-17 1031 1028 6.633519e-07 -7.998015e-22 1032 1028 0 -1.752977e-08 1033 1028 0 -1.941865e-08 1034 1028 0.005611768 -1.49969e-08 1035 1028 0.006212164 -1.663423e-08 1036 1028 0 -1.752977e-08 1037 1028 0 -1.941865e-08 1038 1028 0.005611768 -1.49969e-08 1039 1028 0.006212164 -1.663423e-08 1060 1028 0.009509317 0 1061 1028 -5.949558e-05 0 1062 1028 0.001121305 -2.945249e-18 1063 1028 -6.985976e-06 1.857284e-20 1064 1028 0 -1.777718e-08 1065 1028 0 8.77866e-10 1066 1028 0.005681806 -1.524822e-08 1067 1028 -0.000281112 7.511813e-10 1068 1028 0 -1.777718e-08 1069 1028 0 8.77866e-10 1070 1028 0.005681806 -1.524822e-08 1071 1028 -0.000281112 7.511813e-10 1029 1029 9.598949e-07 0 1030 1029 6.633519e-07 -7.998015e-22 1031 1029 1.070839e-07 -2.977514e-22 1032 1029 0 9.094677e-11 1033 1029 0 -1.233209e-13 1034 1029 -2.911732e-05 7.779066e-11 1035 1029 3.494461e-08 -1.253516e-13 1036 1029 0 9.094677e-11 1037 1029 0 -1.233209e-13 1038 1029 -2.911732e-05 7.779066e-11 1039 1029 3.494461e-08 -1.253516e-13 1060 1029 5.940373e-05 0 1061 1029 -3.562683e-07 0 1062 1029 7.034201e-06 -1.825852e-20 1063 1029 -4.200979e-08 1.103985e-22 1064 1029 0 -9.242938e-11 1065 1029 0 -6.210255e-14 1066 1029 2.953696e-05 -7.929666e-11 1067 1029 1.674858e-08 -6.346631e-14 1068 1029 0 -9.242938e-11 1069 1029 0 -6.210255e-14 1070 1029 2.953696e-05 -7.929666e-11 1071 1029 1.674858e-08 -6.346631e-14 1030 1030 0.05550795 0 1031 1030 -1.339424e-06 0 1032 1030 -0.005611768 -1.49969e-08 1033 1030 -0.006212164 -1.663423e-08 1034 1030 0 -1.752977e-08 1035 1030 0 -1.941865e-08 1036 1030 -0.005611768 -1.49969e-08 1037 1030 -0.006212164 -1.663423e-08 1038 1030 0 -1.752977e-08 1039 1030 0 -1.941865e-08 1060 1030 0.001121305 2.945249e-18 1061 1030 -6.985976e-06 -1.857284e-20 1062 1030 0.009509317 0 1063 1030 -5.949558e-05 0 1064 1030 -0.005681806 -1.524822e-08 1065 1030 0.000281112 7.511813e-10 1066 1030 0 -1.777718e-08 1067 1030 0 8.77866e-10 1068 1030 -0.005681806 -1.524822e-08 1069 1030 0.000281112 7.511813e-10 1070 1030 0 -1.777718e-08 1071 1030 0 8.77866e-10 1031 1031 9.598949e-07 0 1032 1031 2.911732e-05 7.779066e-11 1033 1031 -3.494461e-08 -1.253516e-13 1034 1031 0 9.094677e-11 1035 1031 0 -1.233209e-13 1036 1031 2.911732e-05 7.779066e-11 1037 1031 -3.494461e-08 -1.253516e-13 1038 1031 0 9.094677e-11 1039 1031 0 -1.233209e-13 1060 1031 7.034201e-06 1.825852e-20 1061 1031 -4.200979e-08 -1.103985e-22 1062 1031 5.940373e-05 0 1063 1031 -3.562683e-07 0 1064 1031 -2.953696e-05 -7.929666e-11 1065 1031 -1.674858e-08 -6.346631e-14 1066 1031 0 -9.242938e-11 1067 1031 0 -6.210255e-14 1068 1031 -2.953696e-05 -7.929666e-11 1069 1031 -1.674858e-08 -6.346631e-14 1070 1031 0 -9.242938e-11 1071 1031 0 -6.210255e-14 1032 1032 0.02425817 0 1033 1032 0.003086861 0 1034 1032 0.01607949 -5.420544e-17 1035 1032 0.002071855 -9.614154e-18 1036 1032 0.02425817 0 1037 1032 0.003086861 0 1038 1032 0.01607949 -5.420544e-17 1039 1032 0.002071855 -9.614154e-18 1033 1033 0.01234787 0 1034 1033 0.002071855 -9.614154e-18 1035 1033 0.008288618 -3.551349e-17 1036 1033 0.003086861 0 1037 1033 0.01234787 0 1038 1033 0.002071855 -9.614154e-18 1039 1033 0.008288618 -3.551349e-17 1060 1033 0 -9.041756e-10 1061 1033 0 6.210255e-14 1062 1033 0.0002882065 -7.780669e-10 1063 1033 -1.674858e-08 6.346631e-14 1064 1033 0.00308685 0 1065 1033 -0.001571014 0 1066 1033 0.002071851 -9.586772e-18 1067 1033 -0.001067668 4.170324e-18 1068 1033 0.00308685 0 1069 1033 -0.001571014 0 1070 1033 0.002071851 -9.586772e-18 1071 1033 -0.001067668 4.170324e-18 1034 1034 0.02425817 0 1035 1034 0.003086861 0 1036 1034 0.01607949 5.420544e-17 1037 1034 0.002071855 9.614154e-18 1038 1034 0.02425817 0 1039 1034 0.003086861 0 1035 1035 0.01234787 0 1036 1035 0.002071855 9.614154e-18 1037 1035 0.008288618 3.551349e-17 1038 1035 0.003086861 0 1039 1035 0.01234787 0 1060 1035 -0.0002882065 -7.780669e-10 1061 1035 1.674858e-08 6.346631e-14 1062 1035 0 -9.041756e-10 1063 1035 0 6.210255e-14 1064 1035 0.002071851 9.586772e-18 1065 1035 -0.001067668 -4.170324e-18 1066 1035 0.00308685 0 1067 1035 -0.001571014 0 1068 1035 0.002071851 9.586772e-18 1069 1035 -0.001067668 -4.170324e-18 1070 1035 0.00308685 0 1071 1035 -0.001571014 0 1036 1036 0.5579355 0 1037 1036 0.06871228 0 1038 1036 0.2570461 -7.761171e-16 1039 1036 0.03218156 -9.168509e-17 1037 1037 0.2748967 0 1038 1037 0.03218156 -9.168509e-17 1039 1037 0.1287269 -3.627017e-16 1060 1037 0 -9.041756e-10 1061 1037 0 6.210255e-14 1062 1037 0.0002882065 -7.780669e-10 1063 1037 -1.674858e-08 6.346631e-14 1064 1037 0.00308685 0 1065 1037 -0.001571014 0 1066 1037 0.002071851 -9.586772e-18 1067 1037 -0.001067668 4.170324e-18 1068 1037 0.06871266 0 1069 1037 -0.0338718 0 1070 1037 0.03218147 -8.978028e-17 1071 1037 -0.01611668 4.194321e-17 1038 1038 0.5579355 0 1039 1038 0.06871228 0 1039 1039 0.2748967 0 1060 1039 -0.0002882065 -7.780669e-10 1061 1039 1.674858e-08 6.346631e-14 1062 1039 0 -9.041756e-10 1063 1039 0 6.210255e-14 1064 1039 0.002071851 9.586772e-18 1065 1039 -0.001067668 -4.170324e-18 1066 1039 0.00308685 0 1067 1039 -0.001571014 0 1068 1039 0.03218147 8.978028e-17 1069 1039 -0.01611668 -4.194321e-17 1070 1039 0.06871266 0 1071 1039 -0.0338718 0 1040 1040 0.002675217 0 1041 1040 0.000329613 0 1042 1040 0.0006210727 -1.026121e-18 1043 1040 7.78325e-05 -1.767452e-19 1041 1041 0.001318681 0 1042 1041 7.78325e-05 -1.767452e-19 1043 1041 0.0003113367 -8.062545e-19 1072 1041 0.0003296148 0 1073 1041 -0.0001625588 0 1074 1041 7.783222e-05 -2.089339e-19 1075 1041 -3.902004e-05 1.448708e-19 1042 1042 0.002675217 0 1043 1042 0.000329613 0 1043 1043 0.001318681 0 1072 1043 7.783222e-05 2.089339e-19 1073 1043 -3.902004e-05 -1.448708e-19 1074 1043 0.0003296148 0 1075 1043 -0.0001625588 0 1044 1044 0.02251171 0 1045 1044 0.002858014 0 1046 1044 0.01124493 -3.760203e-17 1047 1044 0.00144934 -6.111073e-18 1048 1044 0 -1.350946e-08 1049 1044 0 7.011237e-11 1050 1044 0.006128873 -8.88982e-09 1051 1044 -3.178921e-05 4.615297e-11 1045 1045 0.01143199 0 1046 1045 0.00144934 -6.111073e-18 1047 1045 0.00579824 -2.16372e-17 1048 1045 0 -1.49326e-08 1049 1045 0 -6.527653e-14 1050 1045 0.006800177 -9.804611e-09 1051 1045 5.256771e-08 -2.356069e-14 1076 1045 0.002858005 0 1077 1045 -0.001450998 0 1078 1045 0.001449337 -5.680132e-18 1079 1045 -0.0007471066 2.155996e-18 1080 1045 0 6.901193e-10 1081 1045 0 -3.279831e-14 1082 1045 -0.0003180597 4.498168e-10 1083 1045 2.579443e-08 -1.200782e-14 1046 1046 0.02251171 0 1047 1046 0.002858014 0 1048 1046 -0.006128873 -8.88982e-09 1049 1046 3.178921e-05 4.615297e-11 1050 1046 0 -1.350946e-08 1051 1046 0 7.011237e-11 1047 1047 0.01143199 0 1048 1047 -0.006800177 -9.804611e-09 1049 1047 -5.256771e-08 -2.356069e-14 1050 1047 0 -1.49326e-08 1051 1047 0 -6.527653e-14 1076 1047 0.001449337 5.680132e-18 1077 1047 -0.0007471066 -2.155996e-18 1078 1047 0.002858005 0 1079 1047 -0.001450998 0 1080 1047 0.0003180597 4.498168e-10 1081 1047 -2.579443e-08 -1.200782e-14 1082 1047 0 6.901193e-10 1083 1047 0 -3.279831e-14 1048 1048 0.07101874 0 1049 1048 -5.929399e-07 0 1050 1048 -0.005484811 1.964289e-17 1051 1048 6.484789e-07 1.62302e-20 1076 1048 0 1.364058e-08 1077 1048 0 -6.762227e-10 1078 1048 -0.006234209 8.937089e-09 1079 1048 0.0003071334 -4.447305e-10 1080 1048 0.01224964 0 1081 1048 -7.660029e-05 0 1082 1048 -0.0009006467 3.973065e-18 1083 1048 5.65436e-06 -2.504659e-20 1049 1049 1.228116e-06 0 1050 1049 6.484789e-07 1.62302e-20 1051 1049 -9.482193e-08 3.165239e-22 1076 1049 0 7.089814e-11 1077 1049 0 3.279831e-14 1078 1049 -3.242038e-05 4.643612e-11 1079 1049 -2.579443e-08 1.200782e-14 1080 1049 7.656253e-05 0 1081 1049 -4.589351e-07 0 1082 1049 -5.606881e-06 2.467527e-20 1083 1049 3.374334e-08 -1.492881e-22 1050 1050 0.07101874 0 1051 1050 -5.929399e-07 0 1076 1050 0.006234209 8.937089e-09 1077 1050 -0.0003071334 -4.447305e-10 1078 1050 0 1.364058e-08 1079 1050 0 -6.762227e-10 1080 1050 -0.0009006467 -3.973065e-18 1081 1050 5.65436e-06 2.504659e-20 1082 1050 0.01224964 0 1083 1050 -7.660029e-05 0 1051 1051 1.228116e-06 0 1076 1051 3.242038e-05 4.643612e-11 1077 1051 2.579443e-08 1.200782e-14 1078 1051 0 7.089814e-11 1079 1051 0 3.279831e-14 1080 1051 -5.606881e-06 -2.467527e-20 1081 1051 3.374334e-08 1.492881e-22 1082 1051 7.656253e-05 0 1083 1051 -4.589351e-07 0 1052 1052 0.003029505 0 1053 1052 1.654126e-07 0 1084 1052 0.0005367301 0 1085 1052 -3.349454e-06 0 1053 1053 5.238968e-08 0 1084 1053 3.361525e-06 0 1085 1053 -2.010868e-08 0 1054 1054 0.003029505 0 1055 1054 1.654126e-07 0 1086 1054 0.0005367301 0 1087 1054 -3.349454e-06 0 1055 1055 5.238968e-08 0 1086 1055 3.361525e-06 0 1087 1055 -2.010868e-08 0 1056 1056 0.002600768 0 1057 1056 0.0003206204 0 1058 1056 0.0006243148 -2.382908e-18 1059 1056 7.824796e-05 -3.705495e-19 1057 1057 0.001282691 0 1058 1057 7.824796e-05 -3.705495e-19 1059 1057 0.0003129989 -1.366819e-18 1088 1057 0.0003206218 0 1089 1057 -0.0001582067 0 1090 1057 7.824767e-05 -3.587141e-19 1091 1057 -3.92331e-05 1.540923e-19 1058 1058 0.002600768 0 1059 1058 0.0003206204 0 1059 1059 0.001282691 0 1088 1059 7.824767e-05 3.587141e-19 1089 1059 -3.92331e-05 -1.540923e-19 1090 1059 0.0003206218 0 1091 1059 -0.0001582067 0 1060 1060 0.05440389 0 1061 1060 -1.235617e-06 0 1062 1060 0.00677136 -1.519155e-17 1063 1060 6.869546e-07 3.46301e-21 1064 1060 0 -1.786329e-08 1065 1060 0 -1.978728e-08 1066 1060 0.005705024 -1.533622e-08 1067 1060 0.006311469 -1.701077e-08 1068 1060 0 -1.786329e-08 1069 1060 0 -1.978728e-08 1070 1060 0.005705024 -1.533622e-08 1071 1060 0.006311469 -1.701077e-08 1092 1060 0.00932581 0 1093 1060 -5.834462e-05 0 1094 1060 0.001223346 -2.561103e-18 1095 1060 -7.623039e-06 1.585335e-20 1096 1060 0 -1.811334e-08 1097 1060 0 8.947569e-10 1098 1060 0.005769086 -1.559292e-08 1099 1060 -0.0002857434 7.683409e-10 1100 1060 0 -1.811334e-08 1101 1060 0 8.947569e-10 1102 1060 0.005769086 -1.559292e-08 1103 1060 -0.0002857434 7.683409e-10 1061 1061 9.407932e-07 0 1062 1061 6.869546e-07 3.46301e-21 1063 1061 1.171025e-07 -2.675685e-22 1064 1061 0 9.267779e-11 1065 1061 0 -1.258576e-13 1066 1061 -2.960395e-05 7.955052e-11 1067 1061 3.196912e-08 -1.289121e-13 1068 1061 0 9.267779e-11 1069 1061 0 -1.258576e-13 1070 1061 -2.960395e-05 7.955052e-11 1071 1061 3.196912e-08 -1.289121e-13 1092 1061 5.825988e-05 0 1093 1061 -3.493912e-07 0 1094 1061 7.672961e-06 -1.614256e-20 1095 1061 -4.583252e-08 9.569229e-23 1096 1061 0 -9.417495e-11 1097 1061 0 -6.140347e-14 1098 1061 2.998778e-05 -8.108786e-11 1099 1061 1.52363e-08 -6.371512e-14 1100 1061 0 -9.417495e-11 1101 1061 0 -6.140347e-14 1102 1061 2.998778e-05 -8.108786e-11 1103 1061 1.52363e-08 -6.371512e-14 1062 1062 0.05440389 0 1063 1062 -1.235617e-06 0 1064 1062 -0.005705024 -1.533622e-08 1065 1062 -0.006311469 -1.701077e-08 1066 1062 0 -1.786329e-08 1067 1062 0 -1.978728e-08 1068 1062 -0.005705024 -1.533622e-08 1069 1062 -0.006311469 -1.701077e-08 1070 1062 0 -1.786329e-08 1071 1062 0 -1.978728e-08 1092 1062 0.001223346 2.561103e-18 1093 1062 -7.623039e-06 -1.585335e-20 1094 1062 0.00932581 0 1095 1062 -5.834462e-05 0 1096 1062 -0.005769086 -1.559292e-08 1097 1062 0.0002857434 7.683409e-10 1098 1062 0 -1.811334e-08 1099 1062 0 8.947569e-10 1100 1062 -0.005769086 -1.559292e-08 1101 1062 0.0002857434 7.683409e-10 1102 1062 0 -1.811334e-08 1103 1062 0 8.947569e-10 1063 1063 9.407932e-07 0 1064 1063 2.960395e-05 7.955052e-11 1065 1063 -3.196912e-08 -1.289121e-13 1066 1063 0 9.267779e-11 1067 1063 0 -1.258576e-13 1068 1063 2.960395e-05 7.955052e-11 1069 1063 -3.196912e-08 -1.289121e-13 1070 1063 0 9.267779e-11 1071 1063 0 -1.258576e-13 1092 1063 7.672961e-06 1.614256e-20 1093 1063 -4.583252e-08 -9.569229e-23 1094 1063 5.825988e-05 0 1095 1063 -3.493912e-07 0 1096 1063 -2.998778e-05 -8.108786e-11 1097 1063 -1.52363e-08 -6.371512e-14 1098 1063 0 -9.417495e-11 1099 1063 0 -6.140347e-14 1100 1063 -2.998778e-05 -8.108786e-11 1101 1063 -1.52363e-08 -6.371512e-14 1102 1063 0 -9.417495e-11 1103 1063 0 -6.140347e-14 1064 1064 0.02513585 0 1065 1064 0.003197204 0 1066 1064 0.01708173 -6.789007e-17 1067 1064 0.002198822 -7.094522e-18 1068 1064 0.02513585 0 1069 1064 0.003197204 0 1070 1064 0.01708173 -6.789007e-17 1071 1064 0.002198822 -7.094522e-18 1065 1065 0.01278926 0 1066 1065 0.002198822 -7.094522e-18 1067 1065 0.008796471 -2.82352e-17 1068 1065 0.003197204 0 1069 1065 0.01278926 0 1070 1065 0.002198822 -7.094522e-18 1071 1065 0.008796471 -2.82352e-17 1092 1065 0 -9.207445e-10 1093 1065 0 6.140347e-14 1094 1065 0.0002921971 -7.953136e-10 1095 1065 -1.52363e-08 6.371512e-14 1096 1065 0.003197193 0 1097 1065 -0.001626512 0 1098 1065 0.002198818 -6.784365e-18 1099 1065 -0.001131984 3.122911e-18 1100 1065 0.003197193 0 1101 1065 -0.001626512 0 1102 1065 0.002198818 -6.784365e-18 1103 1065 -0.001131984 3.122911e-18 1066 1066 0.02513585 0 1067 1066 0.003197204 0 1068 1066 0.01708173 6.789007e-17 1069 1066 0.002198822 7.094522e-18 1070 1066 0.02513585 0 1071 1066 0.003197204 0 1067 1067 0.01278926 0 1068 1067 0.002198822 7.094522e-18 1069 1067 0.008796471 2.82352e-17 1070 1067 0.003197204 0 1071 1067 0.01278926 0 1092 1067 -0.0002921971 -7.953136e-10 1093 1067 1.52363e-08 6.371512e-14 1094 1067 0 -9.207445e-10 1095 1067 0 6.140347e-14 1096 1067 0.002198818 6.784365e-18 1097 1067 -0.001131984 -3.122911e-18 1098 1067 0.003197193 0 1099 1067 -0.001626512 0 1100 1067 0.002198818 6.784365e-18 1101 1067 -0.001131984 -3.122911e-18 1102 1067 0.003197193 0 1103 1067 -0.001626512 0 1068 1068 0.5419131 0 1069 1068 0.06677453 0 1070 1068 0.2578662 -6.625367e-16 1071 1068 0.03228526 -7.799257e-17 1069 1069 0.2671414 0 1070 1069 0.03228526 -7.799257e-17 1071 1069 0.1291417 -3.266058e-16 1092 1069 0 -9.207445e-10 1093 1069 0 6.140347e-14 1094 1069 0.0002921971 -7.953136e-10 1095 1069 -1.52363e-08 6.371512e-14 1096 1069 0.003197193 0 1097 1069 -0.001626512 0 1098 1069 0.002198818 -6.784365e-18 1099 1069 -0.001131984 3.122911e-18 1100 1069 0.06677484 0 1101 1069 -0.03293278 0 1102 1069 0.03228516 -8.260357e-17 1103 1069 -0.0161691 4.24754e-17 1070 1070 0.5419131 0 1071 1070 0.06677453 0 1071 1071 0.2671414 0 1092 1071 -0.0002921971 -7.953136e-10 1093 1071 1.52363e-08 6.371512e-14 1094 1071 0 -9.207445e-10 1095 1071 0 6.140347e-14 1096 1071 0.002198818 6.784365e-18 1097 1071 -0.001131984 -3.122911e-18 1098 1071 0.003197193 0 1099 1071 -0.001626512 0 1100 1071 0.03228516 8.260357e-17 1101 1071 -0.0161691 -4.24754e-17 1102 1071 0.06677484 0 1103 1071 -0.03293278 0 1072 1072 0.002600768 0 1073 1072 0.0003206204 0 1074 1072 0.0006243148 -2.382908e-18 1075 1072 7.824796e-05 -3.705495e-19 1073 1073 0.001282691 0 1074 1073 7.824796e-05 -3.705495e-19 1075 1073 0.0003129989 -1.366819e-18 1104 1073 0.0003206218 0 1105 1073 -0.0001582067 0 1106 1073 7.824767e-05 -3.587141e-19 1107 1073 -3.92331e-05 1.540923e-19 1074 1074 0.002600768 0 1075 1074 0.0003206204 0 1075 1075 0.001282691 0 1104 1075 7.824767e-05 3.587141e-19 1105 1075 -3.92331e-05 -1.540923e-19 1106 1075 0.0003206218 0 1107 1075 -0.0001582067 0 1076 1076 0.02321601 0 1077 1076 0.002945987 0 1078 1076 0.011953 -3.347993e-17 1079 1076 0.00153909 -2.943851e-18 1080 1076 0 -1.368607e-08 1081 1076 0 7.102934e-11 1082 1076 0.006269967 -8.953735e-09 1083 1076 -3.252356e-05 4.648415e-11 1077 1077 0.01178389 0 1078 1077 0.00153909 -2.943851e-18 1079 1077 0.00615723 -1.481081e-17 1080 1077 0 -1.512744e-08 1081 1077 0 -6.667503e-14 1082 1077 0.006953129 -9.875781e-09 1083 1077 5.052982e-08 -2.440135e-14 1108 1077 0.002945979 0 1109 1077 -0.001494953 0 1110 1077 0.001539087 -3.421849e-18 1111 1077 -0.0007925958 2.552708e-18 1112 1077 0 6.98698e-10 1113 1077 0 -3.186705e-14 1114 1077 -0.0003246516 4.529984e-10 1115 1077 2.475244e-08 -1.179425e-14 1078 1078 0.02321601 0 1079 1078 0.002945987 0 1080 1078 -0.006269967 -8.953735e-09 1081 1078 3.252356e-05 4.648415e-11 1082 1078 0 -1.368607e-08 1083 1078 0 7.102934e-11 1079 1079 0.01178389 0 1080 1079 -0.006953129 -9.875781e-09 1081 1079 -5.052982e-08 -2.440135e-14 1082 1079 0 -1.512744e-08 1083 1079 0 -6.667503e-14 1108 1079 0.001539087 3.421849e-18 1109 1079 -0.0007925958 -2.552708e-18 1110 1079 0.002945979 0 1111 1079 -0.001494953 0 1112 1079 0.0003246516 4.529984e-10 1113 1079 -2.475244e-08 -1.179425e-14 1114 1079 0 6.98698e-10 1115 1079 0 -3.186705e-14 1080 1080 0.07056452 0 1081 1080 -4.675961e-07 0 1082 1080 -0.004914251 1.645882e-17 1083 1080 6.815511e-07 -2.034093e-20 1108 1080 0 1.381788e-08 1109 1080 0 -6.852184e-10 1110 1080 -0.0063712 9.002123e-09 1111 1080 0.000314167 -4.480081e-10 1112 1080 0.01218023 0 1113 1080 -7.616178e-05 0 1114 1080 -0.0007994153 1.338648e-18 1115 1080 5.022684e-06 -8.920905e-21 1081 1081 1.220251e-06 0 1082 1081 6.815511e-07 -2.034093e-20 1083 1081 -8.495444e-08 2.754584e-22 1108 1081 0 7.181818e-11 1109 1081 0 3.186705e-14 1110 1081 -3.313013e-05 4.677372e-11 1111 1081 -2.475244e-08 1.179425e-14 1112 1081 7.613273e-05 0 1113 1081 -4.56332e-07 0 1114 1081 -4.972786e-06 7.771232e-21 1115 1081 2.995051e-08 -4.970896e-23 1082 1082 0.07056452 0 1083 1082 -4.675961e-07 0 1108 1082 0.0063712 9.002123e-09 1109 1082 -0.000314167 -4.480081e-10 1110 1082 0 1.381788e-08 1111 1082 0 -6.852184e-10 1112 1082 -0.0007994153 -1.338648e-18 1113 1082 5.022684e-06 8.920905e-21 1114 1082 0.01218023 0 1115 1082 -7.616178e-05 0 1083 1083 1.220251e-06 0 1108 1083 3.313013e-05 4.677372e-11 1109 1083 2.475244e-08 1.179425e-14 1110 1083 0 7.181818e-11 1111 1083 0 3.186705e-14 1112 1083 -4.972786e-06 -7.771232e-21 1113 1083 2.995051e-08 4.970896e-23 1114 1083 7.613273e-05 0 1115 1083 -4.56332e-07 0 1084 1084 0.003174558 0 1085 1084 1.726818e-07 0 1116 1084 0.0005623848 0 1117 1084 -3.509559e-06 0 1085 1085 5.489795e-08 0 1116 1085 3.522172e-06 0 1117 1085 -2.106971e-08 0 1086 1086 0.003174558 0 1087 1086 1.726818e-07 0 1118 1086 0.0005623848 0 1119 1086 -3.509559e-06 0 1087 1087 5.489795e-08 0 1118 1087 3.522172e-06 0 1119 1087 -2.106971e-08 0 1088 1088 0.00253115 0 1089 1088 0.0003122051 0 1090 1088 0.0006277234 -2.480992e-18 1091 1088 7.868475e-05 -2.576552e-19 1089 1089 0.001249012 0 1090 1089 7.868475e-05 -2.576552e-19 1091 1089 0.0003147465 -1.05101e-18 1120 1089 0.0003122064 0 1121 1089 -0.0001541316 0 1122 1089 7.868449e-05 -2.517026e-19 1123 1089 -3.945712e-05 1.23546e-19 1090 1090 0.00253115 0 1091 1090 0.0003122051 0 1091 1091 0.001249012 0 1120 1091 7.868449e-05 2.517026e-19 1121 1091 -3.945712e-05 -1.23546e-19 1122 1091 0.0003122064 0 1123 1091 -0.0001541316 0 1092 1092 0.05338506 0 1093 1092 -1.141003e-06 0 1094 1092 0.007371119 -1.971889e-17 1095 1092 7.106741e-07 -1.553151e-20 1096 1092 0 -1.819837e-08 1097 1092 0 -2.014917e-08 1098 1092 0.005790207 -1.568118e-08 1099 1092 0.006401776 -1.738695e-08 1100 1092 0 -1.819837e-08 1101 1092 0 -2.014917e-08 1102 1092 0.005790207 -1.568118e-08 1103 1092 0.006401776 -1.738695e-08 1124 1092 0.009156364 0 1125 1092 -5.728191e-05 0 1126 1092 0.001328912 -4.567337e-18 1127 1092 -8.282133e-06 2.81402e-20 1128 1092 0 -1.84361e-08 1129 1092 0 9.108883e-10 1130 1092 0.005848012 -1.593144e-08 1131 1092 -0.0002899737 7.852076e-10 1132 1092 0 -1.84361e-08 1133 1092 0 9.108883e-10 1134 1092 0.005848012 -1.593144e-08 1135 1092 -0.0002899737 7.852076e-10 1093 1093 9.231648e-07 0 1094 1093 7.106741e-07 -1.553151e-20 1095 1093 1.274725e-07 -3.484561e-22 1096 1093 0 9.442056e-11 1097 1093 0 -1.147397e-13 1098 1093 -3.004872e-05 8.134272e-11 1099 1093 2.883894e-08 -1.222772e-13 1100 1093 0 9.442056e-11 1101 1093 0 -1.147397e-13 1102 1093 -3.004872e-05 8.134272e-11 1103 1093 2.883894e-08 -1.222772e-13 1124 1093 5.720362e-05 0 1125 1093 -3.43041e-07 0 1126 1093 8.333749e-06 -2.900414e-20 1127 1093 -4.978725e-08 1.714763e-22 1128 1093 0 -9.584882e-11 1129 1093 0 -6.218392e-14 1130 1093 3.039505e-05 -8.284488e-11 1131 1093 1.363026e-08 -6.454373e-14 1132 1093 0 -9.584882e-11 1133 1093 0 -6.218392e-14 1134 1093 3.039505e-05 -8.284488e-11 1135 1093 1.363026e-08 -6.454373e-14 1094 1094 0.05338506 0 1095 1094 -1.141003e-06 0 1096 1094 -0.005790207 -1.568118e-08 1097 1094 -0.006401776 -1.738695e-08 1098 1094 0 -1.819837e-08 1099 1094 0 -2.014917e-08 1100 1094 -0.005790207 -1.568118e-08 1101 1094 -0.006401776 -1.738695e-08 1102 1094 0 -1.819837e-08 1103 1094 0 -2.014917e-08 1124 1094 0.001328912 4.567337e-18 1125 1094 -8.282133e-06 -2.81402e-20 1126 1094 0.009156364 0 1127 1094 -5.728191e-05 0 1128 1094 -0.005848012 -1.593144e-08 1129 1094 0.0002899737 7.852076e-10 1130 1094 0 -1.84361e-08 1131 1094 0 9.108883e-10 1132 1094 -0.005848012 -1.593144e-08 1133 1094 0.0002899737 7.852076e-10 1134 1094 0 -1.84361e-08 1135 1094 0 9.108883e-10 1095 1095 9.231648e-07 0 1096 1095 3.004872e-05 8.134272e-11 1097 1095 -2.883894e-08 -1.222772e-13 1098 1095 0 9.442056e-11 1099 1095 0 -1.147397e-13 1100 1095 3.004872e-05 8.134272e-11 1101 1095 -2.883894e-08 -1.222772e-13 1102 1095 0 9.442056e-11 1103 1095 0 -1.147397e-13 1124 1095 8.333749e-06 2.900414e-20 1125 1095 -4.978725e-08 -1.714763e-22 1126 1095 5.720362e-05 0 1127 1095 -3.43041e-07 0 1128 1095 -3.039505e-05 -8.284488e-11 1129 1095 -1.363026e-08 -6.454373e-14 1130 1095 0 -9.584882e-11 1131 1095 0 -6.218392e-14 1132 1095 -3.039505e-05 -8.284488e-11 1133 1095 -1.363026e-08 -6.454373e-14 1134 1095 0 -9.584882e-11 1135 1095 0 -6.218392e-14 1096 1096 0.02602381 0 1097 1096 0.003308855 0 1098 1096 0.01811081 -4.898527e-17 1099 1096 0.002329119 -5.707281e-18 1100 1096 0.02602381 0 1101 1096 0.003308855 0 1102 1096 0.01811081 -4.898527e-17 1103 1096 0.002329119 -5.707281e-18 1097 1097 0.01323588 0 1098 1097 0.002329119 -5.707281e-18 1099 1097 0.009317638 -2.384773e-17 1100 1097 0.003308855 0 1101 1097 0.01323588 0 1102 1097 0.002329119 -5.707281e-18 1103 1097 0.009317638 -2.384773e-17 1124 1097 0 -9.372843e-10 1125 1097 0 6.218392e-14 1126 1097 0.0002957473 -8.125839e-10 1127 1097 -1.363026e-08 6.454373e-14 1128 1097 0.003308844 0 1129 1097 -0.001682675 0 1130 1097 0.002329116 -6.231956e-18 1131 1097 -0.001197951 2.838339e-18 1132 1097 0.003308844 0 1133 1097 -0.001682675 0 1134 1097 0.002329116 -6.231956e-18 1135 1097 -0.001197951 2.838339e-18 1098 1098 0.02602381 0 1099 1098 0.003308855 0 1100 1098 0.01811081 4.898527e-17 1101 1098 0.002329119 5.707281e-18 1102 1098 0.02602381 0 1103 1098 0.003308855 0 1099 1099 0.01323588 0 1100 1099 0.002329119 5.707281e-18 1101 1099 0.009317638 2.384773e-17 1102 1099 0.003308855 0 1103 1099 0.01323588 0 1124 1099 -0.0002957473 -8.125839e-10 1125 1099 1.363026e-08 6.454373e-14 1126 1099 0 -9.372843e-10 1127 1099 0 6.218392e-14 1128 1099 0.002329116 6.231956e-18 1129 1099 -0.001197951 -2.838339e-18 1130 1099 0.003308844 0 1131 1099 -0.001682675 0 1132 1099 0.002329116 6.231956e-18 1133 1099 -0.001197951 -2.838339e-18 1134 1099 0.003308844 0 1135 1099 -0.001682675 0 1100 1100 0.5268917 0 1101 1100 0.06495626 0 1102 1100 0.258705 -6.938504e-16 1103 1100 0.03239124 -8.729805e-17 1101 1101 0.2598647 0 1102 1101 0.03239124 -8.729805e-17 1103 1101 0.1295656 -3.245118e-16 1124 1101 0 -9.372843e-10 1125 1101 0 6.218392e-14 1126 1101 0.0002957473 -8.125839e-10 1127 1101 -1.363026e-08 6.454373e-14 1128 1101 0.003308844 0 1129 1101 -0.001682675 0 1130 1101 0.002329116 -6.231956e-18 1131 1101 -0.001197951 2.838339e-18 1132 1101 0.06495654 0 1133 1101 -0.03205096 0 1134 1101 0.03239116 -8.029211e-17 1135 1101 -0.01622264 3.355927e-17 1102 1102 0.5268917 0 1103 1102 0.06495626 0 1103 1103 0.2598647 0 1124 1103 -0.0002957473 -8.125839e-10 1125 1103 1.363026e-08 6.454373e-14 1126 1103 0 -9.372843e-10 1127 1103 0 6.218392e-14 1128 1103 0.002329116 6.231956e-18 1129 1103 -0.001197951 -2.838339e-18 1130 1103 0.003308844 0 1131 1103 -0.001682675 0 1132 1103 0.03239116 8.029211e-17 1133 1103 -0.01622264 -3.355927e-17 1134 1103 0.06495654 0 1135 1103 -0.03205096 0 1104 1104 0.00253115 0 1105 1104 0.0003122051 0 1106 1104 0.0006277234 -2.480992e-18 1107 1104 7.868475e-05 -2.576552e-19 1105 1105 0.001249012 0 1106 1105 7.868475e-05 -2.576552e-19 1107 1105 0.0003147465 -1.05101e-18 1136 1105 0.0003122064 0 1137 1105 -0.0001541316 0 1138 1105 7.868449e-05 -2.517026e-19 1139 1105 -3.945712e-05 1.23546e-19 1106 1106 0.00253115 0 1107 1106 0.0003122051 0 1107 1107 0.001249012 0 1136 1107 7.868449e-05 2.517026e-19 1137 1107 -3.945712e-05 -1.23546e-19 1138 1107 0.0003122064 0 1139 1107 -0.0001541316 0 1108 1108 0.02391928 0 1109 1108 0.003033832 0 1110 1108 0.01268084 -4.166445e-17 1111 1108 0.001631297 -6.788982e-18 1112 1108 0 -1.386199e-08 1113 1108 0 7.194565e-11 1114 1108 0.006405512 -9.018451e-09 1115 1108 -3.322914e-05 4.682089e-11 1109 1109 0.01213526 0 1110 1109 0.001631297 -6.788982e-18 1111 1109 0.006526047 -2.48104e-17 1112 1109 0 -1.531451e-08 1113 1109 0 -5.650268e-14 1114 1109 0.007099862 -9.945125e-09 1115 1109 4.832397e-08 -2.149721e-14 1140 1109 0.003033824 0 1141 1109 -0.001538841 0 1142 1109 0.001631294 -6.1682e-18 1143 1109 -0.0008393052 3.117048e-18 1144 1109 0 7.072699e-10 1145 1109 0 -3.25415e-14 1146 1109 -0.0003309257 4.559288e-10 1147 1109 2.360503e-08 -1.121926e-14 1110 1110 0.02391928 0 1111 1110 0.003033832 0 1112 1110 -0.006405512 -9.018451e-09 1113 1110 3.322914e-05 4.682089e-11 1114 1110 0 -1.386199e-08 1115 1110 0 7.194565e-11 1111 1111 0.01213526 0 1112 1111 -0.007099862 -9.945125e-09 1113 1111 -4.832397e-08 -2.149721e-14 1114 1111 0 -1.531451e-08 1115 1111 0 -5.650268e-14 1140 1111 0.001631294 6.1682e-18 1141 1111 -0.0008393052 -3.117048e-18 1142 1111 0.003033824 0 1143 1111 -0.001538841 0 1144 1111 0.0003309257 4.559288e-10 1145 1111 -2.360503e-08 -1.121926e-14 1146 1111 0 7.072699e-10 1147 1111 0 -3.25415e-14 1112 1112 0.07021465 0 1113 1112 -3.501052e-07 0 1114 1112 -0.004314658 7.541902e-18 1115 1112 7.160794e-07 9.09801e-21 1140 1112 0 1.398223e-08 1141 1112 0 -6.934351e-10 1142 1112 -0.006502344 9.062906e-09 1143 1112 0.0003209269 -4.51169e-10 1144 1112 0.01212828 0 1145 1112 -7.583274e-05 0 1146 1112 -0.0006930538 2.218196e-18 1147 1112 4.358989e-06 -1.349441e-20 1113 1113 1.214188e-06 0 1114 1113 7.160794e-07 9.09801e-21 1115 1113 -7.458523e-08 1.524478e-22 1140 1113 0 7.266952e-11 1141 1113 0 3.25415e-14 1142 1113 -3.380933e-05 4.708783e-11 1143 1113 -2.360503e-08 1.121926e-14 1144 1113 7.581182e-05 0 1145 1113 -4.543832e-07 0 1146 1113 -4.306573e-06 1.428682e-20 1147 1113 2.596553e-08 -8.355486e-23 1114 1114 0.07021465 0 1115 1114 -3.501052e-07 0 1140 1114 0.006502344 9.062906e-09 1141 1114 -0.0003209269 -4.51169e-10 1142 1114 0 1.398223e-08 1143 1114 0 -6.934351e-10 1144 1114 -0.0006930538 -2.218196e-18 1145 1114 4.358989e-06 1.349441e-20 1146 1114 0.01212828 0 1147 1114 -7.583274e-05 0 1115 1115 1.214188e-06 0 1140 1115 3.380933e-05 4.708783e-11 1141 1115 2.360503e-08 1.121926e-14 1142 1115 0 7.266952e-11 1143 1115 0 3.25415e-14 1144 1115 -4.306573e-06 -1.428682e-20 1145 1115 2.596553e-08 8.355486e-23 1146 1115 7.581182e-05 0 1147 1115 -4.543832e-07 0 1116 1116 0.003326126 0 1117 1116 1.806062e-07 0 1148 1116 0.0005892169 0 1149 1116 -3.676999e-06 0 1117 1117 5.75189e-08 0 1148 1117 3.690202e-06 0 1149 1117 -2.207484e-08 0 1118 1118 0.003326126 0 1119 1118 1.806062e-07 0 1150 1118 0.0005892169 0 1151 1118 -3.676999e-06 0 1119 1119 5.75189e-08 0 1150 1119 3.690202e-06 0 1151 1119 -2.207484e-08 0 1120 1120 0.00246596 0 1121 1120 0.0003043199 0 1122 1120 0.0006313074 -1.942648e-18 1123 1120 7.914397e-05 -2.424815e-19 1121 1121 0.001217456 0 1122 1121 7.914397e-05 -2.424815e-19 1123 1121 0.0003165837 -1.003496e-18 1152 1121 0.0003043204 0 1153 1121 -0.0001503111 0 1154 1121 7.914356e-05 -2.543468e-19 1155 1121 -3.969266e-05 1.318765e-19 1122 1122 0.00246596 0 1123 1122 0.0003043199 0 1123 1123 0.001217456 0 1152 1123 7.914356e-05 2.543468e-19 1153 1123 -3.969266e-05 -1.318765e-19 1154 1123 0.0003043204 0 1155 1123 -0.0001503111 0 1124 1124 0.0524439 0 1125 1124 -1.054136e-06 0 1126 1124 0.007991254 -2.632942e-17 1127 1124 7.345036e-07 7.378387e-21 1128 1124 0 -1.852253e-08 1129 1124 0 -2.052158e-08 1130 1124 0.005866908 -1.602106e-08 1131 1124 0.006482582 -1.777179e-08 1132 1124 0 -1.852253e-08 1133 1124 0 -2.052158e-08 1134 1124 0.005866908 -1.602106e-08 1135 1124 0.006482582 -1.777179e-08 1156 1124 0.00899982 0 1157 1124 -5.630009e-05 0 1158 1124 0.001438021 -3.838493e-18 1159 1124 -8.963362e-06 2.429661e-20 1160 1124 0 -1.876526e-08 1161 1124 0 9.322802e-10 1162 1124 0.005918206 -1.6271e-08 1163 1124 -0.0002937733 8.063167e-10 1164 1124 0 -1.876526e-08 1165 1124 0 9.322802e-10 1166 1124 0.005918206 -1.6271e-08 1167 1124 -0.0002937733 8.063167e-10 1125 1125 9.068811e-07 0 1126 1125 7.345036e-07 7.378387e-21 1127 1125 1.38195e-07 -4.392162e-22 1128 1125 0 9.609755e-11 1129 1125 0 -1.446118e-13 1130 1125 -3.044957e-05 8.310306e-11 1131 1125 2.558458e-08 -1.428369e-13 1132 1125 0 9.609755e-11 1133 1125 0 -1.446118e-13 1134 1125 -3.044957e-05 8.310306e-11 1135 1125 2.558458e-08 -1.428369e-13 1156 1125 5.622777e-05 0 1157 1125 -3.371741e-07 0 1158 1125 9.016701e-06 -2.366576e-20 1159 1125 -5.387468e-08 1.434993e-22 1160 1125 0 -9.752844e-11 1161 1125 0 -2.936056e-14 1162 1125 3.075691e-05 -8.458256e-11 1163 1125 1.199283e-08 -3.733899e-14 1164 1125 0 -9.752844e-11 1165 1125 0 -2.936056e-14 1166 1125 3.075691e-05 -8.458256e-11 1167 1125 1.199283e-08 -3.733899e-14 1126 1126 0.0524439 0 1127 1126 -1.054136e-06 0 1128 1126 -0.005866908 -1.602106e-08 1129 1126 -0.006482582 -1.777179e-08 1130 1126 0 -1.852253e-08 1131 1126 0 -2.052158e-08 1132 1126 -0.005866908 -1.602106e-08 1133 1126 -0.006482582 -1.777179e-08 1134 1126 0 -1.852253e-08 1135 1126 0 -2.052158e-08 1156 1126 0.001438021 3.838493e-18 1157 1126 -8.963362e-06 -2.429661e-20 1158 1126 0.00899982 0 1159 1126 -5.630009e-05 0 1160 1126 -0.005918206 -1.6271e-08 1161 1126 0.0002937733 8.063167e-10 1162 1126 0 -1.876526e-08 1163 1126 0 9.322802e-10 1164 1126 -0.005918206 -1.6271e-08 1165 1126 0.0002937733 8.063167e-10 1166 1126 0 -1.876526e-08 1167 1126 0 9.322802e-10 1127 1127 9.068811e-07 0 1128 1127 3.044957e-05 8.310306e-11 1129 1127 -2.558458e-08 -1.428369e-13 1130 1127 0 9.609755e-11 1131 1127 0 -1.446118e-13 1132 1127 3.044957e-05 8.310306e-11 1133 1127 -2.558458e-08 -1.428369e-13 1134 1127 0 9.609755e-11 1135 1127 0 -1.446118e-13 1156 1127 9.016701e-06 2.366576e-20 1157 1127 -5.387468e-08 -1.434993e-22 1158 1127 5.622777e-05 0 1159 1127 -3.371741e-07 0 1160 1127 -3.075691e-05 -8.458256e-11 1161 1127 -1.199283e-08 -3.733899e-14 1162 1127 0 -9.752844e-11 1163 1127 0 -2.936056e-14 1164 1127 -3.075691e-05 -8.458256e-11 1165 1127 -1.199283e-08 -3.733899e-14 1166 1127 0 -9.752844e-11 1167 1127 0 -2.936056e-14 1128 1128 0.02692241 0 1129 1128 0.003421854 0 1130 1128 0.01916629 -4.715167e-17 1131 1128 0.002462689 -5.121399e-18 1132 1128 0.02692241 0 1133 1128 0.003421854 0 1134 1128 0.01916629 -4.715167e-17 1135 1128 0.002462689 -5.121399e-18 1129 1129 0.01368789 0 1130 1129 0.002462689 -5.121399e-18 1131 1129 0.009851896 -1.826482e-17 1132 1129 0.003421854 0 1133 1129 0.01368789 0 1134 1129 0.002462689 -5.121399e-18 1135 1129 0.009851896 -1.826482e-17 1156 1129 0 -9.4443e-10 1157 1129 0 2.936056e-14 1158 1129 0.0002988532 -8.21895e-10 1159 1129 -1.199283e-08 3.733899e-14 1160 1129 0.003421838 0 1161 1129 -0.001739525 0 1162 1129 0.002462682 -4.000149e-18 1163 1129 -0.001265542 1.725715e-18 1164 1129 0.003421838 0 1165 1129 -0.001739525 0 1166 1129 0.002462682 -4.000149e-18 1167 1129 -0.001265542 1.725715e-18 1130 1130 0.02692241 0 1131 1130 0.003421854 0 1132 1130 0.01916629 4.715167e-17 1133 1130 0.002462689 5.121399e-18 1134 1130 0.02692241 0 1135 1130 0.003421854 0 1131 1131 0.01368789 0 1132 1131 0.002462689 5.121399e-18 1133 1131 0.009851896 1.826482e-17 1134 1131 0.003421854 0 1135 1131 0.01368789 0 1156 1131 -0.0002988532 -8.21895e-10 1157 1131 1.199283e-08 3.733899e-14 1158 1131 0 -9.4443e-10 1159 1131 0 2.936056e-14 1160 1131 0.002462682 4.000149e-18 1161 1131 -0.001265542 -1.725715e-18 1162 1131 0.003421838 0 1163 1131 -0.001739525 0 1164 1131 0.002462682 4.000149e-18 1165 1131 -0.001265542 -1.725715e-18 1166 1131 0.003421838 0 1167 1131 -0.001739525 0 1132 1132 0.5127856 0 1133 1132 0.0632473 0 1134 1132 0.2595617 -5.194702e-16 1135 1132 0.03249941 -5.394497e-17 1133 1133 0.2530254 0 1134 1133 0.03249941 -5.394497e-17 1135 1133 0.1299982 -2.446169e-16 1156 1133 0 -9.4443e-10 1157 1133 0 2.936056e-14 1158 1133 0.0002988532 -8.21895e-10 1159 1133 -1.199283e-08 3.733899e-14 1160 1133 0.003421838 0 1161 1133 -0.001739525 0 1162 1133 0.002462682 -4.000149e-18 1163 1133 -0.001265542 1.725715e-18 1164 1133 0.06324742 0 1165 1133 -0.03122157 0 1166 1133 0.03249927 -6.309516e-17 1167 1133 -0.01627726 3.242379e-17 1134 1134 0.5127856 0 1135 1134 0.0632473 0 1135 1135 0.2530254 0 1156 1135 -0.0002988532 -8.21895e-10 1157 1135 1.199283e-08 3.733899e-14 1158 1135 0 -9.4443e-10 1159 1135 0 2.936056e-14 1160 1135 0.002462682 4.000149e-18 1161 1135 -0.001265542 -1.725715e-18 1162 1135 0.003421838 0 1163 1135 -0.001739525 0 1164 1135 0.03249927 6.309516e-17 1165 1135 -0.01627726 -3.242379e-17 1166 1135 0.06324742 0 1167 1135 -0.03122157 0 1136 1136 0.00246596 0 1137 1136 0.0003043199 0 1138 1136 0.0006313074 -1.942648e-18 1139 1136 7.914397e-05 -2.424815e-19 1137 1137 0.001217456 0 1138 1137 7.914397e-05 -2.424815e-19 1139 1137 0.0003165837 -1.003496e-18 1168 1137 0.0003043204 0 1169 1137 -0.0001503111 0 1170 1137 7.914356e-05 -2.543468e-19 1171 1137 -3.969266e-05 1.318765e-19 1138 1138 0.00246596 0 1139 1138 0.0003043199 0 1139 1139 0.001217456 0 1168 1139 7.914356e-05 2.543468e-19 1169 1139 -3.969266e-05 -1.318765e-19 1170 1139 0.0003043204 0 1171 1139 -0.0001503111 0 1140 1140 0.02462149 0 1141 1140 0.003121539 0 1142 1140 0.0134282 -4.825057e-17 1143 1140 0.001725927 -6.299994e-18 1144 1140 0 -1.402754e-08 1145 1140 0 7.279969e-11 1146 1140 0.006535067 -9.078489e-09 1147 1140 -3.390375e-05 4.713271e-11 1141 1141 0.01248608 0 1142 1141 0.001725927 -6.299994e-18 1143 1141 0.006904553 -2.784291e-17 1144 1141 0 -1.551101e-08 1145 1141 0 -8.332309e-14 1146 1141 0.00723982 -1.001171e-08 1147 1141 4.59929e-08 -2.482056e-14 1172 1141 0.003121525 0 1173 1141 -0.00158266 0 1174 1141 0.001725921 -7.416364e-18 1175 1141 -0.0008872185 4.040887e-18 1176 1141 0 7.086565e-10 1177 1141 0 -7.009762e-15 1178 1141 -0.0003368807 4.545286e-10 1179 1141 2.243014e-08 3.071534e-15 1142 1142 0.02462149 0 1143 1142 0.003121539 0 1144 1142 -0.006535067 -9.078489e-09 1145 1142 3.390375e-05 4.713271e-11 1146 1142 0 -1.402754e-08 1147 1142 0 7.279969e-11 1143 1143 0.01248608 0 1144 1143 -0.00723982 -1.001171e-08 1145 1143 -4.59929e-08 -2.482056e-14 1146 1143 0 -1.551101e-08 1147 1143 0 -8.332309e-14 1172 1143 0.001725921 7.416364e-18 1173 1143 -0.0008872185 -4.040887e-18 1174 1143 0.003121525 0 1175 1143 -0.00158266 0 1176 1143 0.0003368807 4.545286e-10 1177 1143 -2.243014e-08 3.071534e-15 1178 1143 0 7.086565e-10 1179 1143 0 -7.009762e-15 1144 1144 0.06996273 0 1145 1144 -2.387055e-07 0 1146 1144 -0.003684782 9.979118e-18 1147 1144 7.522085e-07 -1.803453e-20 1172 1144 0 1.41557e-08 1173 1144 0 -7.059115e-10 1174 1144 -0.006627239 9.113582e-09 1175 1144 0.0003273796 -4.559447e-10 1176 1144 0.01209288 0 1177 1144 -7.560731e-05 0 1178 1144 -0.0005813196 -1.103337e-19 1179 1144 3.661783e-06 -3.812709e-22 1145 1145 1.209822e-06 0 1146 1145 7.522085e-07 -1.803453e-20 1147 1145 -6.369208e-08 1.429952e-22 1172 1145 0 7.354812e-11 1173 1145 0 7.009762e-15 1174 1145 -3.445603e-05 4.733554e-11 1175 1145 -2.243014e-08 -3.071534e-15 1176 1145 7.559416e-05 0 1177 1145 -4.530542e-07 0 1178 1145 -3.606704e-06 -1.772774e-21 1179 1145 2.177933e-08 4.250096e-24 1146 1146 0.06996273 0 1147 1146 -2.387055e-07 0 1172 1146 0.006627239 9.113582e-09 1173 1146 -0.0003273796 -4.559447e-10 1174 1146 0 1.41557e-08 1175 1146 0 -7.059115e-10 1176 1146 -0.0005813196 1.103337e-19 1177 1146 3.661783e-06 3.812709e-22 1178 1146 0.01209288 0 1179 1146 -7.560731e-05 0 1147 1147 1.209822e-06 0 1172 1147 3.445603e-05 4.733554e-11 1173 1147 2.243014e-08 -3.071534e-15 1174 1147 0 7.354812e-11 1175 1147 0 7.009762e-15 1176 1147 -3.606704e-06 1.772774e-21 1177 1147 2.177933e-08 -4.250096e-24 1178 1147 7.559416e-05 0 1179 1147 -4.530542e-07 0 1148 1148 0.003484798 0 1149 1148 1.892446e-07 0 1180 1148 0.0006173334 0 1181 1148 -3.852439e-06 0 1149 1149 6.02627e-08 0 1180 1149 3.86629e-06 0 1181 1149 -2.312807e-08 0 1150 1150 0.003484798 0 1151 1150 1.892446e-07 0 1182 1150 0.0006173334 0 1183 1150 -3.852439e-06 0 1151 1151 6.02627e-08 0 1182 1151 3.86629e-06 0 1183 1151 -2.312807e-08 0 1152 1152 0.002404842 0 1153 1152 0.000296924 0 1154 1152 0.0006350752 -2.137738e-18 1155 1152 7.962709e-05 -2.731592e-19 1153 1153 0.00118786 0 1154 1153 7.962709e-05 -2.731592e-19 1155 1153 0.000318517 -1.055243e-18 1184 1153 0.0002969266 0 1185 1153 -0.0001467256 0 1186 1153 7.962726e-05 -2.594216e-19 1187 1153 -3.994035e-05 1.275346e-19 1154 1154 0.002404842 0 1155 1154 0.000296924 0 1155 1155 0.00118786 0 1184 1155 7.962726e-05 2.594216e-19 1185 1155 -3.994035e-05 -1.275346e-19 1186 1155 0.0002969266 0 1187 1155 -0.0001467256 0 1156 1156 0.05157438 0 1157 1156 -9.739825e-07 0 1158 1156 0.008632089 -2.327332e-17 1159 1156 7.588632e-07 -9.582705e-21 1160 1156 0 -1.880481e-08 1161 1156 0 -2.06697e-08 1162 1156 0.005934832 -1.632181e-08 1163 1156 0.00655367 -1.797001e-08 1164 1156 0 -1.880481e-08 1165 1156 0 -2.06697e-08 1166 1156 0.005934832 -1.632181e-08 1167 1156 0.00655367 -1.797001e-08 1188 1156 0.00885519 0 1189 1156 -5.539299e-05 0 1190 1156 0.001550739 -5.007785e-18 1191 1156 -9.667148e-06 3.075255e-20 1192 1156 0 -1.87359e-08 1193 1156 0 9.397714e-10 1194 1156 0.005979452 -1.629305e-08 1195 1156 -0.0002971414 8.195994e-10 1196 1156 0 -1.87359e-08 1197 1156 0 9.397714e-10 1198 1156 0.005979452 -1.629305e-08 1199 1156 -0.0002971414 8.195994e-10 1157 1157 8.918368e-07 0 1158 1157 7.588632e-07 -9.582705e-21 1159 1157 1.492751e-07 -4.195481e-22 1160 1157 0 9.764588e-11 1161 1157 0 7.679511e-14 1162 1157 -3.080489e-05 8.473191e-11 1163 1157 2.227822e-08 3.515165e-14 1164 1157 0 9.764588e-11 1165 1157 0 7.679511e-14 1166 1157 -3.080489e-05 8.473191e-11 1167 1157 2.227822e-08 3.515165e-14 1188 1157 5.532619e-05 0 1189 1157 -3.317537e-07 0 1190 1157 9.722206e-06 -3.187072e-20 1191 1157 -5.809727e-08 1.877046e-22 1192 1157 0 -9.727491e-11 1193 1157 0 1.46095e-14 1194 1157 3.107217e-05 -8.458e-11 1195 1157 1.025865e-08 2.916388e-14 1196 1157 0 -9.727491e-11 1197 1157 0 1.46095e-14 1198 1157 3.107217e-05 -8.458e-11 1199 1157 1.025865e-08 2.916388e-14 1158 1158 0.05157438 0 1159 1158 -9.739825e-07 0 1160 1158 -0.005934832 -1.632181e-08 1161 1158 -0.00655367 -1.797001e-08 1162 1158 0 -1.880481e-08 1163 1158 0 -2.06697e-08 1164 1158 -0.005934832 -1.632181e-08 1165 1158 -0.00655367 -1.797001e-08 1166 1158 0 -1.880481e-08 1167 1158 0 -2.06697e-08 1188 1158 0.001550739 5.007785e-18 1189 1158 -9.667148e-06 -3.075255e-20 1190 1158 0.00885519 0 1191 1158 -5.539299e-05 0 1192 1158 -0.005979452 -1.629305e-08 1193 1158 0.0002971414 8.195994e-10 1194 1158 0 -1.87359e-08 1195 1158 0 9.397714e-10 1196 1158 -0.005979452 -1.629305e-08 1197 1158 0.0002971414 8.195994e-10 1198 1158 0 -1.87359e-08 1199 1158 0 9.397714e-10 1159 1159 8.918368e-07 0 1160 1159 3.080489e-05 8.473191e-11 1161 1159 -2.227822e-08 3.515165e-14 1162 1159 0 9.764588e-11 1163 1159 0 7.679511e-14 1164 1159 3.080489e-05 8.473191e-11 1165 1159 -2.227822e-08 3.515165e-14 1166 1159 0 9.764588e-11 1167 1159 0 7.679511e-14 1188 1159 9.722206e-06 3.187072e-20 1189 1159 -5.809727e-08 -1.877046e-22 1190 1159 5.532619e-05 0 1191 1159 -3.317537e-07 0 1192 1159 -3.107217e-05 -8.458e-11 1193 1159 -1.025865e-08 2.916388e-14 1194 1159 0 -9.727491e-11 1195 1159 0 1.46095e-14 1196 1159 -3.107217e-05 -8.458e-11 1197 1159 -1.025865e-08 2.916388e-14 1198 1159 0 -9.727491e-11 1199 1159 0 1.46095e-14 1160 1160 0.02783197 0 1161 1160 0.003536261 0 1162 1160 0.02024775 -2.40475e-17 1163 1160 0.002599487 -2.902709e-18 1164 1160 0.02783197 0 1165 1160 0.003536261 0 1166 1160 0.02024775 -2.40475e-17 1167 1160 0.002599487 -2.902709e-18 1161 1161 0.01414555 0 1162 1161 0.002599487 -2.902709e-18 1163 1161 0.01039908 -1.642532e-17 1164 1161 0.003536261 0 1165 1161 0.01414555 0 1166 1161 0.002599487 -2.902709e-18 1167 1161 0.01039908 -1.642532e-17 1188 1161 0 -9.326504e-10 1189 1161 0 -1.46095e-14 1190 1161 0.0003014867 -8.0633e-10 1191 1161 -1.025865e-08 -2.916388e-14 1192 1161 0.003536269 0 1193 1161 -0.001797082 0 1194 1161 0.002599496 -4.276726e-18 1195 1161 -0.001334727 3.295121e-18 1196 1161 0.003536269 0 1197 1161 -0.001797082 0 1198 1161 0.002599496 -4.276726e-18 1199 1161 -0.001334727 3.295121e-18 1162 1162 0.02783197 0 1163 1162 0.003536261 0 1164 1162 0.02024775 2.40475e-17 1165 1162 0.002599487 2.902709e-18 1166 1162 0.02783197 0 1167 1162 0.003536261 0 1163 1163 0.01414555 0 1164 1163 0.002599487 2.902709e-18 1165 1163 0.01039908 1.642532e-17 1166 1163 0.003536261 0 1167 1163 0.01414555 0 1188 1163 -0.0003014867 -8.0633e-10 1189 1163 1.025865e-08 -2.916388e-14 1190 1163 0 -9.326504e-10 1191 1163 0 -1.46095e-14 1192 1163 0.002599496 4.276726e-18 1193 1163 -0.001334727 -3.295121e-18 1194 1163 0.003536269 0 1195 1163 -0.001797082 0 1196 1163 0.002599496 4.276726e-18 1197 1163 -0.001334727 -3.295121e-18 1198 1163 0.003536269 0 1199 1163 -0.001797082 0 1164 1164 0.4995173 0 1165 1164 0.06163885 0 1166 1164 0.2604354 -5.409078e-16 1167 1164 0.03260977 -6.66e-17 1165 1165 0.246589 0 1166 1165 0.03260977 -6.66e-17 1167 1165 0.1304397 -2.327666e-16 1188 1165 0 -9.326504e-10 1189 1165 0 -1.46095e-14 1190 1165 0.0003014867 -8.0633e-10 1191 1165 -1.025865e-08 -2.916388e-14 1192 1165 0.003536269 0 1193 1165 -0.001797082 0 1194 1165 0.002599496 -4.276726e-18 1195 1165 -0.001334727 3.295121e-18 1196 1165 0.0616394 0 1197 1165 -0.03044031 0 1198 1165 0.03260987 -5.780763e-17 1199 1165 -0.01633288 1.872485e-17 1166 1166 0.4995173 0 1167 1166 0.06163885 0 1167 1167 0.246589 0 1188 1167 -0.0003014867 -8.0633e-10 1189 1167 1.025865e-08 -2.916388e-14 1190 1167 0 -9.326504e-10 1191 1167 0 -1.46095e-14 1192 1167 0.002599496 4.276726e-18 1193 1167 -0.001334727 -3.295121e-18 1194 1167 0.003536269 0 1195 1167 -0.001797082 0 1196 1167 0.03260987 5.780763e-17 1197 1167 -0.01633288 -1.872485e-17 1198 1167 0.0616394 0 1199 1167 -0.03044031 0 1168 1168 0.002404842 0 1169 1168 0.000296924 0 1170 1168 0.0006350752 -2.137738e-18 1171 1168 7.962709e-05 -2.731592e-19 1169 1169 0.00118786 0 1170 1169 7.962709e-05 -2.731592e-19 1171 1169 0.000318517 -1.055243e-18 1200 1169 0.0002969266 0 1201 1169 -0.0001467256 0 1202 1169 7.962726e-05 -2.594216e-19 1203 1169 -3.994035e-05 1.275346e-19 1170 1170 0.002404842 0 1171 1170 0.000296924 0 1171 1171 0.00118786 0 1200 1171 7.962726e-05 2.594216e-19 1201 1171 -3.994035e-05 -1.275346e-19 1202 1171 0.0002969266 0 1203 1171 -0.0001467256 0 1172 1172 0.02532259 0 1173 1172 0.003209116 0 1174 1172 0.01419481 -6.796462e-17 1175 1172 0.001822953 -8.747183e-18 1176 1172 0 -1.416452e-08 1177 1172 0 7.357616e-11 1178 1172 0.006658333 -9.108864e-09 1179 1172 -3.454575e-05 4.732325e-11 1173 1173 0.01283641 0 1174 1173 0.001822953 -8.747183e-18 1175 1173 0.007292652 -3.049683e-17 1176 1173 0 -1.553352e-08 1177 1173 0 9.367624e-14 1178 1173 0.007372799 -9.980625e-09 1179 1173 4.360466e-08 5.774037e-14 1204 1173 0.003209125 0 1205 1173 -0.001626407 0 1206 1173 0.001822959 -7.248896e-18 1207 1173 -0.0009363172 2.922485e-18 1208 1173 0 7.022003e-10 1209 1173 0 4.626203e-15 1210 1173 -0.0003424838 4.315535e-10 1211 1173 2.114592e-08 6.663004e-14 1174 1174 0.02532259 0 1175 1174 0.003209116 0 1176 1174 -0.006658333 -9.108864e-09 1177 1174 3.454575e-05 4.732325e-11 1178 1174 0 -1.416452e-08 1179 1174 0 7.357616e-11 1175 1175 0.01283641 0 1176 1175 -0.007372799 -9.980625e-09 1177 1175 -4.360466e-08 5.774037e-14 1178 1175 0 -1.553352e-08 1179 1175 0 9.367624e-14 1204 1175 0.001822959 7.248896e-18 1205 1175 -0.0009363172 -2.922485e-18 1206 1175 0.003209125 0 1207 1175 -0.001626407 0 1208 1175 0.0003424838 4.315535e-10 1209 1175 -2.114592e-08 6.663004e-14 1210 1175 0 7.022003e-10 1211 1175 0 4.626203e-15 1176 1176 0.06980425 0 1177 1176 -1.323311e-07 0 1178 1176 -0.003022906 -9.26259e-18 1179 1176 7.905842e-07 -1.146859e-20 1204 1176 0 1.406488e-08 1205 1176 0 -7.047759e-10 1206 1176 -0.006745661 8.984322e-09 1207 1176 0.0003335267 -4.603588e-10 1208 1176 0.0120733 0 1209 1176 -7.548091e-05 0 1210 1176 -0.0004639023 -1.58583e-18 1211 1176 2.929097e-06 1.062109e-20 1177 1177 1.207072e-06 0 1178 1177 7.905842e-07 -1.146859e-20 1179 1177 -5.224614e-08 -1.287983e-22 1204 1177 0 7.302267e-11 1205 1177 0 -4.626203e-15 1206 1177 -3.506896e-05 4.657228e-11 1207 1177 -2.114592e-08 -6.663004e-14 1208 1177 7.547524e-05 0 1209 1177 -4.523179e-07 0 1210 1177 -2.871261e-06 -9.277706e-21 1211 1177 1.738022e-08 6.010026e-23 1178 1178 0.06980425 0 1179 1178 -1.323311e-07 0 1204 1178 0.006745661 8.984322e-09 1205 1178 -0.0003335267 -4.603588e-10 1206 1178 0 1.406488e-08 1207 1178 0 -7.047759e-10 1208 1178 -0.0004639023 1.58583e-18 1209 1178 2.929097e-06 -1.062109e-20 1210 1178 0.0120733 0 1211 1178 -7.548091e-05 0 1179 1179 1.207072e-06 0 1204 1179 3.506896e-05 4.657228e-11 1205 1179 2.114592e-08 -6.663004e-14 1206 1179 0 7.302267e-11 1207 1179 0 -4.626203e-15 1208 1179 -2.871261e-06 9.277706e-21 1209 1179 1.738022e-08 -6.010026e-23 1210 1179 7.547524e-05 0 1211 1179 -4.523179e-07 0 1180 1180 0.00365125 0 1181 1180 1.987366e-07 0 1212 1180 0.0006468575 0 1213 1180 -4.036652e-06 0 1181 1181 6.314098e-08 0 1212 1181 4.051203e-06 0 1213 1181 -2.423403e-08 0 1182 1182 0.00365125 0 1183 1182 1.987366e-07 0 1214 1182 0.0006468575 0 1215 1182 -4.036652e-06 0 1183 1183 6.314098e-08 0 1214 1183 4.051203e-06 0 1215 1183 -2.423403e-08 0 1184 1184 0.002347491 0 1185 1184 0.0002899758 0 1186 1184 0.0006390398 -2.008854e-18 1187 1184 8.013413e-05 -2.507169e-19 1185 1185 0.001017605 0 1186 1185 8.013413e-05 -2.507169e-19 1187 1185 0.0002809272 -9.088635e-19 1216 1185 0.0002184066 0 1217 1185 -0.0001082726 0 1218 1185 6.035381e-05 -1.98005e-19 1219 1185 -3.025281e-05 1.022234e-19 1186 1186 0.002347491 0 1187 1186 0.0002899758 0 1187 1187 0.001017605 0 1216 1187 6.035381e-05 1.98005e-19 1217 1187 -3.025281e-05 -1.022234e-19 1218 1187 0.0002184066 0 1219 1187 -0.0001082726 0 1188 1188 0.04454328 0 1189 1188 -4.087583e-05 0 1190 1188 0.008112937 -2.924983e-17 1191 1188 -6.806579e-06 2.048429e-20 1192 1188 0 -1.871192e-08 1193 1188 0 -1.793674e-08 1194 1188 0.005993673 -1.624895e-08 1195 1188 0.005796747 -1.550957e-08 1196 1188 0 -1.871192e-08 1197 1188 0 -1.793674e-08 1198 1188 0.005993673 -1.624895e-08 1199 1188 0.005796747 -1.550957e-08 1220 1188 0.006580725 0 1221 1188 -3.099877e-05 0 1222 1188 0.001244584 -4.667179e-18 1223 1188 -5.848036e-06 2.191954e-20 1224 1188 0 -1.344608e-08 1225 1188 0 7.614827e-10 1226 1188 0.00453927 -1.156471e-08 1227 1188 -0.0002260753 6.596472e-10 1228 1188 0 -1.344608e-08 1229 1188 0 7.614827e-10 1230 1188 0.00453927 -1.156471e-08 1231 1188 -0.0002260753 6.596472e-10 1189 1189 6.282042e-07 0 1190 1189 -6.806579e-06 2.048429e-20 1191 1189 1.132083e-07 -3.956265e-22 1192 1189 0 9.721648e-11 1193 1189 0 1.060946e-11 1194 1189 -3.111321e-05 8.446334e-11 1195 1189 -3.36541e-06 9.249575e-12 1196 1189 0 9.721648e-11 1197 1189 0 1.060946e-11 1198 1189 -3.111321e-05 8.446334e-11 1199 1189 -3.36541e-06 9.249575e-12 1220 1189 3.097211e-05 0 1221 1189 -1.398523e-07 0 1222 1189 5.872246e-06 -2.203353e-20 1223 1189 -2.644963e-08 9.920148e-23 1224 1189 0 -5.209228e-11 1225 1189 0 4.131971e-13 1226 1189 1.776232e-05 -4.476993e-11 1227 1189 3.755707e-09 3.748795e-13 1228 1189 0 -5.209228e-11 1229 1189 0 4.131971e-13 1230 1189 1.776232e-05 -4.476993e-11 1231 1189 3.755707e-09 3.748795e-13 1190 1190 0.04454328 0 1191 1190 -4.087583e-05 0 1192 1190 -0.005993673 -1.624895e-08 1193 1190 -0.005796747 -1.550957e-08 1194 1190 0 -1.871192e-08 1195 1190 0 -1.793674e-08 1196 1190 -0.005993673 -1.624895e-08 1197 1190 -0.005796747 -1.550957e-08 1198 1190 0 -1.871192e-08 1199 1190 0 -1.793674e-08 1220 1190 0.001244584 4.667179e-18 1221 1190 -5.848036e-06 -2.191954e-20 1222 1190 0.006580725 0 1223 1190 -3.099877e-05 0 1224 1190 -0.00453927 -1.156471e-08 1225 1190 0.0002260753 6.596472e-10 1226 1190 0 -1.344608e-08 1227 1190 0 7.614827e-10 1228 1190 -0.00453927 -1.156471e-08 1229 1190 0.0002260753 6.596472e-10 1230 1190 0 -1.344608e-08 1231 1190 0 7.614827e-10 1191 1191 6.282042e-07 0 1192 1191 3.111321e-05 8.446334e-11 1193 1191 3.36541e-06 9.249575e-12 1194 1191 0 9.721648e-11 1195 1191 0 1.060946e-11 1196 1191 3.111321e-05 8.446334e-11 1197 1191 3.36541e-06 9.249575e-12 1198 1191 0 9.721648e-11 1199 1191 0 1.060946e-11 1220 1191 5.872246e-06 2.203353e-20 1221 1191 -2.644963e-08 -9.920148e-23 1222 1191 3.097211e-05 0 1223 1191 -1.398523e-07 0 1224 1191 -1.776232e-05 -4.476993e-11 1225 1191 -3.755707e-09 3.748795e-13 1226 1191 0 -5.209228e-11 1227 1191 0 4.131971e-13 1228 1191 -1.776232e-05 -4.476993e-11 1229 1191 -3.755707e-09 3.748795e-13 1230 1191 0 -5.209228e-11 1231 1191 0 4.131971e-13 1192 1192 0.02875297 0 1193 1192 0.00365206 0 1194 1192 0.02135479 -5.520553e-17 1195 1192 0.002739412 -8.903759e-18 1196 1192 0.02875297 0 1197 1192 0.00365206 0 1198 1192 0.02135479 -5.520553e-17 1199 1192 0.002739412 -8.903759e-18 1193 1193 0.01279311 0 1194 1193 0.002739412 -8.903759e-18 1195 1193 0.009590881 -2.795001e-17 1196 1193 0.00365206 0 1197 1193 0.01279311 0 1198 1193 0.002739412 -8.903759e-18 1199 1193 0.009590881 -2.795001e-17 1220 1193 0 -5.267127e-10 1221 1193 0 -4.131971e-13 1222 1193 0.0002281879 -4.468904e-10 1223 1193 -3.755707e-09 -3.748795e-13 1224 1193 0.002750595 0 1225 1193 -0.001391932 0 1226 1193 0.002063273 -6.165598e-18 1227 1193 -0.001051885 2.799498e-18 1228 1193 0.002750595 0 1229 1193 -0.001391932 0 1230 1193 0.002063273 -6.165598e-18 1231 1193 -0.001051885 2.799498e-18 1194 1194 0.02875297 0 1195 1194 0.00365206 0 1196 1194 0.02135479 5.520553e-17 1197 1194 0.002739412 8.903759e-18 1198 1194 0.02875297 0 1199 1194 0.00365206 0 1195 1195 0.01279311 0 1196 1195 0.002739412 8.903759e-18 1197 1195 0.009590881 2.795001e-17 1198 1195 0.00365206 0 1199 1195 0.01279311 0 1220 1195 -0.0002281879 -4.468904e-10 1221 1195 3.755707e-09 -3.748795e-13 1222 1195 0 -5.267127e-10 1223 1195 0 -4.131971e-13 1224 1195 0.002063273 6.165598e-18 1225 1195 -0.001051885 -2.799498e-18 1226 1195 0.002750595 0 1227 1195 -0.001391932 0 1228 1195 0.002063273 6.165598e-18 1229 1195 -0.001051885 -2.799498e-18 1230 1195 0.002750595 0 1231 1195 -0.001391932 0 1196 1196 0.4870209 0 1197 1196 0.06012184 0 1198 1196 0.2613262 -2.847119e-16 1199 1196 0.03272166 -1.709176e-17 1197 1197 0.2109919 0 1198 1197 0.03272166 -1.709176e-17 1199 1197 0.1147209 -8.363345e-17 1220 1197 0 -5.267127e-10 1221 1197 0 -4.131971e-13 1222 1197 0.0002281879 -4.468904e-10 1223 1197 -3.755707e-09 -3.748795e-13 1224 1197 0.002750595 0 1225 1197 -0.001391932 0 1226 1197 0.002063273 -6.165598e-18 1227 1197 -0.001051885 2.799498e-18 1228 1197 0.04528308 0 1229 1197 -0.02243753 0 1230 1197 0.02464446 -1.479076e-17 1231 1197 -0.01233862 1.096084e-17 1198 1198 0.4870209 0 1199 1198 0.06012184 0 1199 1199 0.2109919 0 1220 1199 -0.0002281879 -4.468904e-10 1221 1199 3.755707e-09 -3.748795e-13 1222 1199 0 -5.267127e-10 1223 1199 0 -4.131971e-13 1224 1199 0.002063273 6.165598e-18 1225 1199 -0.001051885 -2.799498e-18 1226 1199 0.002750595 0 1227 1199 -0.001391932 0 1228 1199 0.02464446 1.479076e-17 1229 1199 -0.01233862 -1.096084e-17 1230 1199 0.04528308 0 1231 1199 -0.02243753 0 1200 1200 0.002347491 0 1201 1200 0.0002899758 0 1202 1200 0.0006390398 -2.008854e-18 1203 1200 8.013413e-05 -2.507169e-19 1201 1201 0.001017605 0 1202 1201 8.013413e-05 -2.507169e-19 1203 1201 0.0002809272 -9.088635e-19 1232 1201 0.0002184066 0 1233 1201 -0.0001082726 0 1234 1201 6.035381e-05 -1.98005e-19 1235 1201 -3.025281e-05 1.022234e-19 1202 1202 0.002347491 0 1203 1202 0.0002899758 0 1203 1203 0.001017605 0 1232 1203 6.035381e-05 1.98005e-19 1233 1203 -3.025281e-05 -1.022234e-19 1234 1203 0.0002184066 0 1235 1203 -0.0001082726 0 1204 1204 0.02602262 0 1205 1204 0.003296505 0 1206 1204 0.01498044 -4.353582e-17 1207 1204 0.00192231 -4.441044e-18 1208 1204 0 -1.4056e-08 1209 1204 0 7.300416e-11 1210 1204 0.006774975 -8.889627e-09 1211 1204 -3.515354e-05 4.630576e-11 1205 1205 0.0115491 0 1206 1205 0.00192231 -4.441044e-18 1207 1205 0.006730054 -1.908635e-17 1208 1205 0 -1.351331e-08 1209 1205 0 7.943374e-12 1210 1205 0.006569706 -8.361244e-09 1211 1205 -3.800943e-06 5.104011e-12 1236 1205 0.00248277 0 1237 1205 -0.001253785 0 1238 1205 0.00144785 -4.146985e-18 1239 1205 -0.0007383167 2.502817e-18 1240 1205 0 4.025349e-10 1241 1205 0 2.994427e-13 1242 1205 -0.000260655 2.283005e-10 1243 1205 8.577065e-09 2.275729e-13 1206 1206 0.02602262 0 1207 1206 0.003296505 0 1208 1206 -0.006774975 -8.889627e-09 1209 1206 3.515354e-05 4.630576e-11 1210 1206 0 -1.4056e-08 1211 1206 0 7.300416e-11 1207 1207 0.0115491 0 1208 1207 -0.006569706 -8.361244e-09 1209 1207 3.800943e-06 5.104011e-12 1210 1207 0 -1.351331e-08 1211 1207 0 7.943374e-12 1236 1207 0.00144785 4.146985e-18 1237 1207 -0.0007383167 -2.502817e-18 1238 1207 0.00248277 0 1239 1207 -0.001253785 0 1240 1207 0.000260655 2.283005e-10 1241 1207 -8.577065e-09 2.275729e-13 1242 1207 0 4.025349e-10 1243 1207 0 2.994427e-13 1208 1208 0.06112968 0 1209 1208 -5.528345e-05 0 1210 1208 -0.002076316 2.50051e-18 1211 1208 2.435107e-06 2.330542e-20 1236 1208 0 1.017087e-08 1237 1208 0 -5.728404e-10 1238 1208 -0.005157025 6.139829e-09 1239 1208 0.0002558307 -3.571533e-10 1240 1208 0.009089616 0 1241 1208 -4.279848e-05 0 1242 1208 -0.0002682671 2.122967e-18 1243 1208 1.276079e-06 -9.594714e-21 1209 1209 8.605797e-07 0 1210 1209 2.435107e-06 2.330542e-20 1211 1209 -3.027575e-08 -8.893975e-24 1236 1209 0 3.942606e-11 1237 1209 0 -2.994427e-13 1238 1209 -2.018648e-05 2.371874e-11 1239 1209 -8.577065e-09 -2.275729e-13 1240 1209 4.27987e-05 0 1241 1209 -1.931708e-07 0 1242 1209 -1.250218e-06 1.042343e-20 1243 1209 5.701294e-09 -4.530835e-23 1210 1210 0.06112968 0 1211 1210 -5.528345e-05 0 1236 1210 0.005157025 6.139829e-09 1237 1210 -0.0002558307 -3.571533e-10 1238 1210 0 1.017087e-08 1239 1210 0 -5.728404e-10 1240 1210 -0.0002682671 -2.122967e-18 1241 1210 1.276079e-06 9.594714e-21 1242 1210 0.009089616 0 1243 1210 -4.279848e-05 0 1211 1211 8.605797e-07 0 1236 1211 2.018648e-05 2.371874e-11 1237 1211 8.577065e-09 -2.275729e-13 1238 1211 0 3.942606e-11 1239 1211 0 -2.994427e-13 1240 1211 -1.250218e-06 -1.042343e-20 1241 1211 5.701294e-09 4.530835e-23 1242 1211 4.27987e-05 0 1243 1211 -1.931708e-07 0 1212 1212 0.003344908 0 1213 1212 -2.883146e-06 0 1244 1212 0.0005076161 0 1245 1212 -2.386859e-06 0 1213 1213 4.682134e-08 0 1244 1213 2.393374e-06 0 1245 1213 -1.078774e-08 0 1214 1214 0.003344908 0 1215 1214 -2.883146e-06 0 1246 1214 0.0005076161 0 1247 1214 -2.386859e-06 0 1215 1215 4.682134e-08 0 1246 1215 2.393374e-06 0 1247 1215 -1.078774e-08 0 1216 1216 0.001732302 0 1217 1216 0.000214684 0 1218 1216 0.0004840388 -1.650721e-18 1219 1216 6.065742e-05 -2.108887e-19 1217 1217 0.0008588082 0 1218 1217 6.065742e-05 -2.108887e-19 1219 1217 0.0002426368 -8.170413e-19 1248 1217 0.0002146914 0 1249 1217 -0.0001064552 0 1250 1217 6.065933e-05 -2.119156e-19 1251 1217 -3.040792e-05 8.917966e-20 1218 1218 0.001732302 0 1219 1218 0.000214684 0 1219 1219 0.0008588082 0 1248 1219 6.065933e-05 2.119156e-19 1249 1219 -3.040792e-05 -8.917966e-20 1250 1219 0.0002146914 0 1251 1219 -0.0001064552 0 1220 1220 0.03781296 0 1221 1220 -3.624085e-07 0 1222 1220 0.007385604 -2.767498e-17 1223 1220 3.435106e-07 -1.043808e-21 1224 1220 0 -1.267601e-08 1225 1220 0 -1.188443e-08 1226 1220 0.004546184 -1.086702e-08 1227 1220 0.005011404 -1.014647e-08 1228 1220 0 -1.267601e-08 1229 1220 0 -1.188443e-08 1230 1220 0.004546184 -1.086702e-08 1231 1220 0.005011404 -1.014647e-08 1252 1220 0.006509281 0 1253 1220 -3.066157e-05 0 1254 1220 0.001312302 -4.876508e-18 1255 1220 -6.166596e-06 2.293882e-20 1256 1220 0 -7.661435e-09 1257 1220 0 7.275701e-10 1258 1220 0.004564803 -6.522564e-09 1259 1220 -0.0002274883 6.204679e-10 1260 1220 0 -7.661435e-09 1261 1220 0 7.275701e-10 1262 1220 0.004564803 -6.522564e-09 1263 1220 -0.0002274883 6.204679e-10 1221 1221 3.709004e-07 0 1222 1221 3.435106e-07 -1.043808e-21 1223 1221 7.244588e-08 -2.710609e-22 1224 1221 0 5.04395e-11 1225 1221 0 1.857166e-12 1226 1221 -1.777735e-05 4.327041e-11 1227 1221 7.070393e-09 1.610556e-12 1228 1221 0 5.04395e-11 1229 1221 0 1.857166e-12 1230 1221 -1.777735e-05 4.327041e-11 1231 1221 7.070393e-09 1.610556e-12 1252 1221 3.063652e-05 0 1253 1221 -1.38334e-07 0 1254 1221 6.191387e-06 -2.298433e-20 1255 1221 -2.788878e-08 1.036414e-22 1256 1221 0 -2.777735e-11 1257 1221 0 1.515345e-12 1258 1221 1.786132e-05 -2.363825e-11 1259 1221 3.162069e-09 1.293608e-12 1260 1221 0 -2.777735e-11 1261 1221 0 1.515345e-12 1262 1221 1.786132e-05 -2.363825e-11 1263 1221 3.162069e-09 1.293608e-12 1222 1222 0.03781296 0 1223 1222 -3.624085e-07 0 1224 1222 -0.004546184 -1.086702e-08 1225 1222 -0.005011404 -1.014647e-08 1226 1222 0 -1.267601e-08 1227 1222 0 -1.188443e-08 1228 1222 -0.004546184 -1.086702e-08 1229 1222 -0.005011404 -1.014647e-08 1230 1222 0 -1.267601e-08 1231 1222 0 -1.188443e-08 1252 1222 0.001312302 4.876508e-18 1253 1222 -6.166596e-06 -2.293882e-20 1254 1222 0.006509281 0 1255 1222 -3.066157e-05 0 1256 1222 -0.004564803 -6.522564e-09 1257 1222 0.0002274883 6.204679e-10 1258 1222 0 -7.661435e-09 1259 1222 0 7.275701e-10 1260 1222 -0.004564803 -6.522564e-09 1261 1222 0.0002274883 6.204679e-10 1262 1222 0 -7.661435e-09 1263 1222 0 7.275701e-10 1223 1223 3.709004e-07 0 1224 1223 1.777735e-05 4.327041e-11 1225 1223 -7.070393e-09 1.610556e-12 1226 1223 0 5.04395e-11 1227 1223 0 1.857166e-12 1228 1223 1.777735e-05 4.327041e-11 1229 1223 -7.070393e-09 1.610556e-12 1230 1223 0 5.04395e-11 1231 1223 0 1.857166e-12 1252 1223 6.191387e-06 2.298433e-20 1253 1223 -2.788878e-08 -1.036414e-22 1254 1223 3.063652e-05 0 1255 1223 -1.38334e-07 0 1256 1223 -1.786132e-05 -2.363825e-11 1257 1223 -3.162069e-09 1.293608e-12 1258 1223 0 -2.777735e-11 1259 1223 0 1.515345e-12 1260 1223 -1.786132e-05 -2.363825e-11 1261 1223 -3.162069e-09 1.293608e-12 1262 1223 0 -2.777735e-11 1263 1223 0 1.515345e-12 1224 1224 0.02227061 0 1225 1224 0.002817133 0 1226 1224 0.0168297 -4.484064e-17 1227 1224 0.002144266 -5.032394e-18 1228 1224 0.02227061 0 1229 1224 0.002817133 0 1230 1224 0.0168297 -4.484064e-17 1231 1224 0.002144266 -5.032394e-18 1225 1225 0.01126889 0 1226 1225 0.002144266 -5.032394e-18 1227 1225 0.008577622 -2.043194e-17 1228 1225 0.002817133 0 1229 1225 0.01126889 0 1230 1225 0.002144266 -5.032394e-18 1231 1225 0.008577622 -2.043194e-17 1252 1225 0 1.248277e-10 1253 1225 0 -1.515345e-12 1254 1225 0.0002292653 1.071975e-10 1255 1225 -3.162069e-09 -1.293608e-12 1256 1225 0.002817217 0 1257 1225 -0.001425376 0 1258 1225 0.002144327 -4.982625e-18 1259 1225 -0.001092717 2.489438e-18 1260 1225 0.002817217 0 1261 1225 -0.001425376 0 1262 1225 0.002144327 -4.982625e-18 1263 1225 -0.001092717 2.489438e-18 1226 1226 0.02227061 0 1227 1226 0.002817133 0 1228 1226 0.0168297 4.484064e-17 1229 1226 0.002144266 5.032394e-18 1230 1226 0.02227061 0 1231 1226 0.002817133 0 1227 1227 0.01126889 0 1228 1227 0.002144266 5.032394e-18 1229 1227 0.008577622 2.043194e-17 1230 1227 0.002817133 0 1231 1227 0.01126889 0 1252 1227 -0.0002292653 1.071975e-10 1253 1227 3.162069e-09 -1.293608e-12 1254 1227 0 1.248277e-10 1255 1227 0 -1.515345e-12 1256 1227 0.002144327 4.982625e-18 1257 1227 -0.001092717 -2.489438e-18 1258 1227 0.002817217 0 1259 1227 -0.001425376 0 1260 1227 0.002144327 4.982625e-18 1261 1227 -0.001092717 -2.489438e-18 1262 1227 0.002817217 0 1263 1227 -0.001425376 0 1228 1228 0.3589884 0 1229 1228 0.04446706 0 1230 1228 0.1974165 -1.668356e-16 1231 1228 0.02471001 -2.905258e-17 1229 1229 0.1778829 0 1230 1229 0.02471001 -2.905258e-17 1231 1229 0.09884151 -1.263605e-16 1252 1229 0 1.248277e-10 1253 1229 0 -1.515345e-12 1254 1229 0.0002292653 1.071975e-10 1255 1229 -3.162069e-09 -1.293608e-12 1256 1229 0.002817217 0 1257 1229 -0.001425376 0 1258 1229 0.002144327 -4.982625e-18 1259 1229 -0.001092717 2.489438e-18 1260 1229 0.0444686 0 1261 1229 -0.02203839 0 1262 1229 0.02471079 -2.913596e-17 1263 1229 -0.01237172 2.51217e-17 1230 1230 0.3589884 0 1231 1230 0.04446706 0 1231 1231 0.1778829 0 1252 1231 -0.0002292653 1.071975e-10 1253 1231 3.162069e-09 -1.293608e-12 1254 1231 0 1.248277e-10 1255 1231 0 -1.515345e-12 1256 1231 0.002144327 4.982625e-18 1257 1231 -0.001092717 -2.489438e-18 1258 1231 0.002817217 0 1259 1231 -0.001425376 0 1260 1231 0.02471079 2.913596e-17 1261 1231 -0.01237172 -2.51217e-17 1262 1231 0.0444686 0 1263 1231 -0.02203839 0 1232 1232 0.001732302 0 1233 1232 0.000214684 0 1234 1232 0.0004840388 -1.650721e-18 1235 1232 6.065742e-05 -2.108887e-19 1233 1233 0.0008588082 0 1234 1233 6.065742e-05 -2.108887e-19 1235 1233 0.0002426368 -8.170413e-19 1264 1233 0.0002146914 0 1265 1233 -0.0001064552 0 1266 1233 6.065933e-05 -2.119156e-19 1267 1233 -3.040792e-05 8.917966e-20 1234 1234 0.001732302 0 1235 1234 0.000214684 0 1235 1235 0.0008588082 0 1264 1235 6.065933e-05 2.119156e-19 1265 1235 -3.040792e-05 -8.917966e-20 1266 1235 0.0002146914 0 1267 1235 -0.0001064552 0 1236 1236 0.02006047 0 1237 1236 0.002532371 0 1238 1236 0.01181273 -4.07589e-17 1239 1236 0.001505417 -5.864283e-18 1240 1236 0 -9.612125e-09 1241 1236 0 3.822829e-11 1242 1236 0.005172814 -5.717502e-09 1243 1236 -2.022078e-05 2.280845e-11 1237 1237 0.01012957 0 1238 1237 0.001505417 -5.864283e-18 1239 1237 0.006022079 -2.195876e-17 1240 1237 0 -9.040208e-09 1241 1237 0 1.395769e-12 1242 1237 0.005714927 -5.277563e-09 1243 1237 1.686926e-08 8.737505e-13 1268 1237 0.002532447 0 1269 1237 -0.001278581 0 1270 1237 0.001505459 -5.946672e-18 1271 1237 -0.0007673506 2.238294e-18 1272 1237 0 -9.453109e-11 1273 1237 0 1.15278e-12 1274 1237 -0.0002635222 -5.666305e-11 1275 1237 8.121719e-09 6.726616e-13 1238 1238 0.02006047 0 1239 1238 0.002532371 0 1240 1238 -0.005172814 -5.717502e-09 1241 1238 2.022078e-05 2.280845e-11 1242 1238 0 -9.612125e-09 1243 1238 0 3.822829e-11 1239 1239 0.01012957 0 1240 1239 -0.005714927 -5.277563e-09 1241 1239 -1.686926e-08 8.737505e-13 1242 1239 0 -9.040208e-09 1243 1239 0 1.395769e-12 1268 1239 0.001505459 5.946672e-18 1269 1239 -0.0007673506 -2.238294e-18 1270 1239 0.002532447 0 1271 1239 -0.001278581 0 1272 1239 0.0002635222 -5.666305e-11 1273 1239 -8.121719e-09 6.726616e-13 1274 1239 0 -9.453109e-11 1275 1239 0 1.15278e-12 1240 1240 0.05252462 0 1241 1240 1.833697e-08 0 1242 1240 -0.001341034 1.343027e-17 1243 1240 3.698507e-07 -4.920497e-21 1268 1240 0 5.840381e-09 1269 1240 0 -5.539221e-10 1270 1240 -0.005217465 3.365862e-09 1271 1240 0.0002589561 -3.217104e-10 1272 1240 0.009093288 0 1273 1240 -4.28146e-05 0 1274 1240 -0.0001953778 1.118754e-18 1275 1240 9.333653e-07 -6.102684e-21 1241 1241 5.152049e-07 0 1242 1241 3.698507e-07 -4.920497e-21 1243 1241 -1.314702e-08 1.151478e-22 1268 1241 0 2.118169e-11 1269 1241 0 -1.15278e-12 1270 1241 -2.042224e-05 1.218359e-11 1271 1241 -8.121719e-09 -6.726616e-13 1272 1241 4.281715e-05 0 1273 1241 -1.932488e-07 0 1274 1241 -9.065231e-07 4.470181e-21 1275 1241 4.152204e-09 -2.405079e-23 1242 1242 0.05252462 0 1243 1242 1.833697e-08 0 1268 1242 0.005217465 3.365862e-09 1269 1242 -0.0002589561 -3.217104e-10 1270 1242 0 5.840381e-09 1271 1242 0 -5.539221e-10 1272 1242 -0.0001953778 -1.118754e-18 1273 1242 9.333653e-07 6.102684e-21 1274 1242 0.009093288 0 1275 1242 -4.28146e-05 0 1243 1243 5.152049e-07 0 1268 1243 2.042224e-05 1.218359e-11 1269 1243 8.121719e-09 -6.726616e-13 1270 1243 0 2.118169e-11 1271 1243 0 -1.15278e-12 1272 1243 -9.065231e-07 -4.470181e-21 1273 1243 4.152204e-09 2.405079e-23 1274 1243 4.281715e-05 0 1275 1243 -1.932488e-07 0 1244 1244 0.002985534 0 1245 1244 9.319611e-08 0 1276 1244 0.0005259869 0 1277 1244 -2.473228e-06 0 1245 1245 2.928548e-08 0 1276 1245 2.480005e-06 0 1277 1245 -1.117817e-08 0 1246 1246 0.002985534 0 1247 1246 9.319611e-08 0 1278 1246 0.0005259869 0 1279 1246 -2.473228e-06 0 1247 1247 2.928548e-08 0 1278 1247 2.480005e-06 0 1279 1247 -1.117817e-08 0 1248 1248 0.001703261 0 1249 1248 0.0002111293 0 1250 1248 0.0004865304 -1.451455e-18 1251 1248 6.097235e-05 -1.448031e-19 1249 1249 0.0004231516 0 1250 1249 6.097235e-05 -1.448031e-19 1251 1249 0.0001218653 -3.017823e-19 1250 1250 0.001703261 0 1251 1250 0.0002111293 0 1251 1251 0.0004231516 0 1252 1252 0.01875129 0 1253 1252 -5.176797e-05 0 1254 1252 0.003844417 -1.416887e-17 1255 1252 -1.055602e-05 3.902192e-20 1256 1252 0 -4.871666e-09 1257 1252 0 -9.384626e-10 1258 1252 0.004570617 -4.141028e-09 1259 1252 0.002516835 -7.960523e-10 1260 1252 0 -4.871666e-09 1261 1252 0 -9.384626e-10 1262 1252 0.004570617 -4.141028e-09 1263 1252 0.002516835 -7.960523e-10 1253 1253 1.84201e-07 0 1254 1253 -1.055602e-05 3.902192e-20 1255 1253 3.742761e-08 -1.386136e-22 1256 1253 0 2.171597e-11 1257 1253 0 2.104598e-12 1258 1253 -1.787396e-05 1.846382e-11 1259 1253 -4.474588e-06 1.784207e-12 1260 1253 0 2.171597e-11 1261 1253 0 2.104598e-12 1262 1253 -1.787396e-05 1.846382e-11 1263 1253 -4.474588e-06 1.784207e-12 1254 1254 0.01875129 0 1255 1254 -5.176797e-05 0 1256 1254 -0.004570617 -4.141028e-09 1257 1254 -0.002516835 -7.960523e-10 1258 1254 0 -4.871666e-09 1259 1254 0 -9.384626e-10 1260 1254 -0.004570617 -4.141028e-09 1261 1254 -0.002516835 -7.960523e-10 1262 1254 0 -4.871666e-09 1263 1254 0 -9.384626e-10 1255 1255 1.84201e-07 0 1256 1255 1.787396e-05 1.846382e-11 1257 1255 4.474588e-06 1.784207e-12 1258 1255 0 2.171597e-11 1259 1255 0 2.104598e-12 1260 1255 1.787396e-05 1.846382e-11 1261 1255 4.474588e-06 1.784207e-12 1262 1255 0 2.171597e-11 1263 1255 0 2.104598e-12 1256 1256 0.02280615 0 1257 1256 0.002884287 0 1258 1256 0.01748333 -3.942485e-17 1259 1256 0.002226539 -4.975126e-18 1260 1256 0.02280615 0 1261 1256 0.002884287 0 1262 1256 0.01748333 -3.942485e-17 1263 1256 0.002226539 -4.975126e-18 1257 1257 0.005751761 0 1258 1257 0.002226539 -4.975126e-18 1259 1257 0.004432536 -1.002809e-17 1260 1257 0.002884287 0 1261 1257 0.005751761 0 1262 1257 0.002226539 -4.975126e-18 1263 1257 0.004432536 -1.002809e-17 1258 1258 0.02280615 0 1259 1258 0.002884287 0 1260 1258 0.01748333 3.942485e-17 1261 1258 0.002226539 4.975126e-18 1262 1258 0.02280615 0 1263 1258 0.002884287 0 1259 1259 0.005751761 0 1260 1259 0.002226539 4.975126e-18 1261 1259 0.004432536 1.002809e-17 1262 1259 0.002884287 0 1263 1259 0.005751761 0 1260 1260 0.35261 0 1261 1260 0.04368494 0 1262 1260 0.1979503 -3.941225e-16 1263 1260 0.02477611 -7.135086e-17 1261 1261 0.08756625 0 1262 1261 0.02477611 -7.135086e-17 1263 1261 0.0495352 -1.336125e-16 1262 1262 0.35261 0 1263 1262 0.04368494 0 1263 1263 0.08756625 0 1264 1264 0.001703261 0 1265 1264 0.0002111293 0 1266 1264 0.0004865304 -1.451455e-18 1267 1264 6.097235e-05 -1.448031e-19 1265 1265 0.0004231516 0 1266 1265 6.097235e-05 -1.448031e-19 1267 1265 0.0001218653 -3.017823e-19 1266 1266 0.001703261 0 1267 1266 0.0002111293 0 1267 1267 0.0004231516 0 1268 1268 0.0204576 0 1269 1268 0.002581877 0 1270 1268 0.01227749 -3.728226e-17 1271 1268 0.001563943 -3.006504e-18 1272 1268 0 -3.71809e-09 1273 1268 0 1.657057e-11 1274 1268 0.005232407 -2.127507e-09 1275 1268 -2.045473e-05 9.492944e-12 1269 1269 0.00515132 0 1270 1269 0.001563943 -3.006504e-18 1271 1269 0.003113276 -6.472977e-18 1272 1269 0 -7.173663e-10 1273 1269 0 1.609458e-12 1274 1269 0.002885808 -4.065613e-10 1275 1269 -5.129722e-06 9.097432e-13 1270 1270 0.0204576 0 1271 1270 0.002581877 0 1272 1270 -0.005232407 -2.127507e-09 1273 1270 2.045473e-05 9.492944e-12 1274 1270 0 -3.71809e-09 1275 1270 0 1.657057e-11 1271 1271 0.00515132 0 1272 1271 -0.002885808 -4.065613e-10 1273 1271 5.129722e-06 9.097432e-13 1274 1271 0 -7.173663e-10 1275 1271 0 1.609458e-12 1272 1272 0.02627571 0 1273 1272 -7.246864e-05 0 1274 1272 -0.0005066484 -9.311711e-19 1275 1272 1.449306e-06 -1.689561e-21 1273 1273 2.576909e-07 0 1274 1273 1.449306e-06 -1.689561e-21 1275 1273 -5.273578e-09 1.527746e-23 1274 1274 0.02627571 0 1275 1274 -7.246864e-05 0 1275 1275 2.576909e-07 0 1276 1276 0.001534117 0 1277 1276 -4.218357e-06 0 1277 1277 1.497056e-08 0 1278 1278 0.001534117 0 1279 1278 -4.218357e-06 0 1279 1279 1.497056e-08 0 SuiteSparse/CXSparse/Matrix/young1c0000644001170100242450000017671010375437451016240 0ustar davisfac0 0 -218.46 0 1 0 128 0 29 0 128 0 0 1 128 0 1 1 -218.46 0 2 1 128 0 30 1 128 0 1 2 128 0 2 2 -218.46 0 3 2 128 0 31 2 128 0 2 3 128 0 3 3 -218.46 0 4 3 128 0 32 3 128 0 3 4 128 0 4 4 -218.46 0 5 4 128 0 33 4 128 0 4 5 128 0 5 5 -218.46 0 6 5 128 0 34 5 128 0 5 6 128 0 6 6 -218.46 0 7 6 128 0 35 6 128 0 6 7 128 0 7 7 -218.46 0 8 7 128 0 36 7 128 0 7 8 128 0 8 8 -218.46 0 9 8 128 0 37 8 128 0 8 9 128 0 9 9 -218.46 0 10 9 128 0 38 9 128 0 9 10 128 0 10 10 -218.46 0 11 10 128 0 39 10 128 0 10 11 128 0 11 11 -218.46 0 12 11 128 0 40 11 128 0 11 12 128 0 12 12 -218.46 0 13 12 128 0 41 12 128 0 12 13 128 0 13 13 -218.46 0 14 13 128 0 42 13 128 0 13 14 128 0 14 14 -218.46 0 15 14 128 0 43 14 128 0 14 15 128 0 15 15 -218.46 0 16 15 128 0 44 15 128 0 15 16 128 0 16 16 -218.46 0 17 16 128 0 45 16 128 0 16 17 128 0 17 17 -218.46 0 18 17 128 0 46 17 128 0 17 18 128 0 18 18 -218.46 0 19 18 128 0 47 18 128 0 18 19 128 0 19 19 -218.46 0 20 19 128 0 48 19 128 0 19 20 128 0 20 20 -218.46 0 21 20 128 0 49 20 128 0 20 21 128 0 21 21 -218.46 0 22 21 128 0 50 21 128 0 21 22 128 0 22 22 -218.46 0 23 22 128 0 51 22 128 0 22 23 128 0 23 23 -218.46 0 24 23 128 0 52 23 128 0 23 24 128 0 24 24 -218.46 0 25 24 128 0 53 24 128 0 24 25 128 0 25 25 -218.46 0 26 25 128 0 54 25 128 0 25 26 128 0 26 26 -218.46 0 27 26 128 0 55 26 128 0 26 27 128 0 27 27 -218.46 0 28 27 128 0 56 27 128 0 27 28 128 0 28 28 -218.46 0 57 28 128 0 0 29 128 0 29 29 -218.46 0 30 29 128 0 58 29 128 0 1 30 128 0 29 30 128 0 30 30 -218.46 0 31 30 128 0 59 30 128 0 2 31 128 0 30 31 128 0 31 31 -218.46 0 32 31 128 0 60 31 128 0 3 32 128 0 31 32 128 0 32 32 -218.46 0 33 32 128 0 61 32 128 0 4 33 128 0 32 33 128 0 33 33 -218.46 0 34 33 128 0 62 33 128 0 5 34 128 0 33 34 128 0 34 34 -218.46 0 35 34 128 0 63 34 128 0 6 35 128 0 34 35 128 0 35 35 -218.46 0 36 35 128 0 64 35 128 0 7 36 128 0 35 36 128 0 36 36 -218.46 0 37 36 128 0 65 36 128 0 8 37 128 0 36 37 128 0 37 37 -218.46 0 38 37 128 0 66 37 128 0 9 38 128 0 37 38 128 0 38 38 -218.46 0 39 38 128 0 67 38 128 0 10 39 128 0 38 39 128 0 39 39 -218.46 0 40 39 128 0 68 39 128 0 11 40 128 0 39 40 128 0 40 40 -218.46 0 41 40 128 0 69 40 128 0 12 41 128 0 40 41 128 0 41 41 -218.46 0 42 41 128 0 70 41 128 0 13 42 128 0 41 42 128 0 42 42 -218.46 0 43 42 128 0 71 42 128 0 14 43 128 0 42 43 128 0 43 43 -218.46 0 44 43 128 0 72 43 128 0 15 44 128 0 43 44 128 0 44 44 -218.46 0 45 44 128 0 73 44 128 0 16 45 128 0 44 45 128 0 45 45 -218.46 0 46 45 128 0 74 45 128 0 17 46 128 0 45 46 128 0 46 46 -218.46 0 47 46 128 0 75 46 128 0 18 47 128 0 46 47 128 0 47 47 -218.46 0 48 47 128 0 76 47 128 0 19 48 128 0 47 48 128 0 48 48 -218.46 0 49 48 128 0 77 48 128 0 20 49 128 0 48 49 128 0 49 49 -218.46 0 50 49 128 0 78 49 128 0 21 50 128 0 49 50 128 0 50 50 -218.46 0 51 50 128 0 79 50 128 0 22 51 128 0 50 51 128 0 51 51 -218.46 0 52 51 128 0 80 51 128 0 23 52 128 0 51 52 128 0 52 52 -218.46 0 53 52 128 0 81 52 128 0 24 53 128 0 52 53 128 0 53 53 -218.46 0 54 53 128 0 82 53 128 0 25 54 128 0 53 54 128 0 54 54 -218.46 0 55 54 128 0 83 54 128 0 26 55 128 0 54 55 128 0 55 55 -218.46 0 56 55 128 0 84 55 128 0 27 56 128 0 55 56 128 0 56 56 -218.46 0 57 56 128 0 85 56 128 0 28 57 128 0 56 57 128 0 57 57 -218.46 0 86 57 128 0 29 58 128 0 58 58 -218.46 0 59 58 128 0 87 58 128 0 30 59 128 0 58 59 128 0 59 59 -218.46 0 60 59 128 0 88 59 128 0 31 60 128 0 59 60 128 0 60 60 -218.46 0 61 60 128 0 89 60 128 0 32 61 128 0 60 61 128 0 61 61 -218.46 0 62 61 128 0 90 61 128 0 33 62 128 0 61 62 128 0 62 62 -218.46 0 63 62 128 0 91 62 128 0 34 63 128 0 62 63 128 0 63 63 -218.46 0 64 63 128 0 92 63 128 0 35 64 128 0 63 64 128 0 64 64 -218.46 0 65 64 128 0 93 64 128 0 36 65 128 0 64 65 128 0 65 65 -218.46 0 66 65 128 0 94 65 128 0 37 66 128 0 65 66 128 0 66 66 -218.46 0 67 66 128 0 95 66 128 0 38 67 128 0 66 67 128 0 67 67 -218.46 0 68 67 128 0 96 67 128 0 39 68 128 0 67 68 128 0 68 68 -218.46 0 69 68 128 0 97 68 86.627 0 40 69 128 0 68 69 128 0 69 69 -218.46 0 70 69 128 0 98 69 86.627 0 41 70 128 0 69 70 128 0 70 70 -218.46 0 71 70 128 0 99 70 86.627 0 42 71 128 0 70 71 128 0 71 71 -218.46 0 72 71 128 0 100 71 128 0 43 72 128 0 71 72 128 0 72 72 -218.46 0 73 72 128 0 101 72 128 0 44 73 128 0 72 73 128 0 73 73 -218.46 0 74 73 128 0 102 73 128 0 45 74 128 0 73 74 128 0 74 74 -218.46 0 75 74 128 0 103 74 86.627 0 46 75 128 0 74 75 128 0 75 75 -218.46 0 76 75 128 0 104 75 86.627 0 47 76 128 0 75 76 128 0 76 76 -218.46 0 77 76 128 0 105 76 86.627 0 48 77 128 0 76 77 128 0 77 77 -218.46 0 78 77 128 0 106 77 128 0 49 78 128 0 77 78 128 0 78 78 -218.46 0 79 78 128 0 107 78 128 0 50 79 128 0 78 79 128 0 79 79 -218.46 0 80 79 128 0 108 79 128 0 51 80 128 0 79 80 128 0 80 80 -218.46 0 81 80 128 0 109 80 128 0 52 81 128 0 80 81 128 0 81 81 -218.46 0 82 81 128 0 110 81 128 0 53 82 128 0 81 82 128 0 82 82 -218.46 0 83 82 128 0 111 82 128 0 54 83 128 0 82 83 128 0 83 83 -218.46 0 84 83 128 0 112 83 128 0 55 84 128 0 83 84 128 0 84 84 -218.46 0 85 84 128 0 113 84 128 0 56 85 128 0 84 85 128 0 85 85 -218.46 0 86 85 128 0 114 85 128 0 57 86 128 0 85 86 128 0 86 86 -218.46 0 115 86 128 0 58 87 128 0 87 87 -218.46 0 88 87 128 0 116 87 128 0 59 88 128 0 87 88 128 0 88 88 -218.46 0 89 88 128 0 117 88 128 0 60 89 128 0 88 89 128 0 89 89 -218.46 0 90 89 128 0 118 89 128 0 61 90 128 0 89 90 128 0 90 90 -218.46 0 91 90 128 0 119 90 128 0 62 91 128 0 90 91 128 0 91 91 -218.46 0 92 91 128 0 120 91 128 0 63 92 128 0 91 92 128 0 92 92 -218.46 0 93 92 128 0 121 92 128 0 64 93 128 0 92 93 128 0 93 93 -218.46 0 94 93 128 0 122 93 128 0 65 94 128 0 93 94 128 0 94 94 -218.46 0 95 94 128 0 123 94 128 0 66 95 128 0 94 95 128 0 95 95 -218.46 0 96 95 128 0 124 95 86.627 0 67 96 128 0 95 96 128 0 96 96 -218.46 0 97 96 86.627 0 125 96 86.627 0 68 97 86.627 0 96 97 86.627 0 97 97 -63.965 -26.544 98 97 45.254 0 126 97 45.254 0 69 98 86.627 0 97 98 45.254 0 98 98 -63.965 -26.544 99 98 45.254 0 127 98 45.254 0 70 99 86.627 0 98 99 45.254 0 99 99 -63.965 -26.544 100 99 86.627 0 128 99 22.627064 0 71 100 128 0 99 100 86.627 0 100 100 -218.46 0 101 100 128 0 129 100 128 0 72 101 128 0 100 101 128 0 101 101 -218.46 0 102 101 128 0 130 101 128 0 73 102 128 0 101 102 128 0 102 102 -218.46 0 103 102 86.627 0 131 102 128 0 74 103 86.627 0 102 103 86.627 0 103 103 -63.965 -26.544 104 103 45.254 0 132 103 22.627064 0 75 104 86.627 0 103 104 45.254 0 104 104 -63.965 -26.544 105 104 45.254 0 133 104 45.254 0 76 105 86.627 0 104 105 45.254 0 105 105 -63.965 -26.544 106 105 86.627 0 134 105 45.254 0 77 106 128 0 105 106 86.627 0 106 106 -218.46 0 107 106 128 0 135 106 86.627 0 78 107 128 0 106 107 128 0 107 107 -218.46 0 108 107 128 0 136 107 86.627 0 79 108 128 0 107 108 128 0 108 108 -218.46 0 109 108 128 0 137 108 128 0 80 109 128 0 108 109 128 0 109 109 -218.46 0 110 109 128 0 138 109 128 0 81 110 128 0 109 110 128 0 110 110 -218.46 0 111 110 128 0 139 110 128 0 82 111 128 0 110 111 128 0 111 111 -218.46 0 112 111 128 0 140 111 128 0 83 112 128 0 111 112 128 0 112 112 -218.46 0 113 112 128 0 141 112 128 0 84 113 128 0 112 113 128 0 113 113 -218.46 0 114 113 128 0 142 113 128 0 85 114 128 0 113 114 128 0 114 114 -218.46 0 115 114 128 0 143 114 128 0 86 115 128 0 114 115 128 0 115 115 -218.46 0 144 115 128 0 87 116 128 0 116 116 -218.46 0 117 116 128 0 145 116 128 0 88 117 128 0 116 117 128 0 117 117 -218.46 0 118 117 128 0 146 117 128 0 89 118 128 0 117 118 128 0 118 118 -218.46 0 119 118 128 0 147 118 128 0 90 119 128 0 118 119 128 0 119 119 -218.46 0 120 119 128 0 148 119 128 0 91 120 128 0 119 120 128 0 120 120 -218.46 0 121 120 128 0 149 120 128 0 92 121 128 0 120 121 128 0 121 121 -218.46 0 122 121 128 0 150 121 128 0 93 122 128 0 121 122 128 0 122 122 -218.46 0 123 122 128 0 151 122 128 0 94 123 128 0 122 123 128 0 123 123 -218.46 0 124 123 86.627 0 152 123 86.627 0 95 124 86.627 0 123 124 86.627 0 124 124 -63.965 -26.544 125 124 45.254 0 153 124 45.254 0 96 125 86.627 0 124 125 45.254 0 125 125 -63.965 -26.544 126 125 45.254 0 154 125 22.627064 0 97 126 45.254 0 125 126 45.254 0 126 126 -63.965 -26.544 127 126 45.254 0 155 126 22.627064 0 98 127 45.254 0 126 127 45.254 0 127 127 -63.965 -26.544 128 127 22.627064 0 156 127 22.627064 0 99 128 22.627064 0 127 128 22.627064 0 128 128 -0.000218 -37.54 129 128 64.000064 0 157 128 0.000128 0 100 129 128 0 128 129 64.000064 0 129 129 -218.46 0 130 129 128 0 158 129 128 0 101 130 128 0 129 130 128 0 130 130 -218.46 0 131 130 128 0 159 130 128 0 102 131 128 0 130 131 128 0 131 131 -218.46 0 132 131 64.000064 0 160 131 128 0 103 132 22.627064 0 131 132 64.000064 0 132 132 -0.000218 -37.54 133 132 22.627064 0 161 132 0.000128 0 104 133 45.254 0 132 133 22.627064 0 133 133 -63.965 -26.544 134 133 45.254 0 162 133 22.627064 0 105 134 45.254 0 133 134 45.254 0 134 134 -63.965 -26.544 135 134 45.254 0 163 134 22.627064 0 106 135 86.627 0 134 135 45.254 0 135 135 -63.965 -26.544 136 135 45.254 0 164 135 22.627064 0 107 136 86.627 0 135 136 45.254 0 136 136 -63.965 -26.544 137 136 86.627 0 165 136 45.254 0 108 137 128 0 136 137 86.627 0 137 137 -218.46 0 138 137 128 0 166 137 86.627 0 109 138 128 0 137 138 128 0 138 138 -218.46 0 139 138 128 0 167 138 128 0 110 139 128 0 138 139 128 0 139 139 -218.46 0 140 139 128 0 168 139 128 0 111 140 128 0 139 140 128 0 140 140 -218.46 0 141 140 128 0 169 140 128 0 112 141 128 0 140 141 128 0 141 141 -218.46 0 142 141 128 0 170 141 128 0 113 142 128 0 141 142 128 0 142 142 -218.46 0 143 142 128 0 171 142 128 0 114 143 128 0 142 143 128 0 143 143 -218.46 0 144 143 128 0 172 143 128 0 115 144 128 0 143 144 128 0 144 144 -218.46 0 173 144 128 0 116 145 128 0 145 145 -218.46 0 146 145 128 0 174 145 128 0 117 146 128 0 145 146 128 0 146 146 -218.46 0 147 146 128 0 175 146 128 0 118 147 128 0 146 147 128 0 147 147 -218.46 0 148 147 128 0 176 147 128 0 119 148 128 0 147 148 128 0 148 148 -218.46 0 149 148 128 0 177 148 128 0 120 149 128 0 148 149 128 0 149 149 -218.46 0 150 149 128 0 178 149 128 0 121 150 128 0 149 150 128 0 150 150 -218.46 0 151 150 128 0 179 150 128 0 122 151 128 0 150 151 128 0 151 151 -218.46 0 152 151 86.627 0 180 151 86.627 0 123 152 86.627 0 151 152 86.627 0 152 152 -63.965 -26.544 153 152 45.254 0 181 152 45.254 0 124 153 45.254 0 152 153 45.254 0 153 153 -63.965 -26.544 154 153 22.627064 0 182 153 22.627064 0 125 154 22.627064 0 153 154 22.627064 0 154 154 -0.000218 -37.54 155 154 0.000128 0 183 154 0.000128 0 126 155 22.627064 0 154 155 0.000128 0 155 155 -0.000218 -37.54 156 155 0.000128 0 184 155 0.000128 0 127 156 22.627064 0 155 156 0.000128 0 156 156 -0.000218 -37.54 157 156 0.000128 0 185 156 64.000064 0 128 157 0.000128 0 156 157 0.000128 0 157 157 -0.000218 -37.54 158 157 64.000064 0 186 157 64.000064 0 129 158 128 0 157 158 64.000064 0 158 158 -218.46 0 159 158 128 0 187 158 128 0 130 159 128 0 158 159 128 0 159 159 -218.46 0 160 159 128 0 188 159 128 0 131 160 128 0 159 160 128 0 160 160 -218.46 0 161 160 64.000064 0 189 160 128 0 132 161 0.000128 0 160 161 64.000064 0 161 161 -0.000218 -37.54 162 161 0.000128 0 190 161 64.000064 0 133 162 22.627064 0 161 162 0.000128 0 162 162 -0.000218 -37.54 163 162 0.000128 0 191 162 64.000064 0 134 163 22.627064 0 162 163 0.000128 0 163 163 -0.000218 -37.54 164 163 0.000128 0 192 163 0.000128 0 135 164 22.627064 0 163 164 0.000128 0 164 164 -0.000218 -37.54 165 164 22.627064 0 193 164 0.000128 0 136 165 45.254 0 164 165 22.627064 0 165 165 -63.965 -26.544 166 165 45.254 0 194 165 22.627064 0 137 166 86.627 0 165 166 45.254 0 166 166 -63.965 -26.544 167 166 86.627 0 195 166 45.254 0 138 167 128 0 166 167 86.627 0 167 167 -218.46 0 168 167 128 0 196 167 86.627 0 139 168 128 0 167 168 128 0 168 168 -218.46 0 169 168 128 0 197 168 128 0 140 169 128 0 168 169 128 0 169 169 -218.46 0 170 169 128 0 198 169 128 0 141 170 128 0 169 170 128 0 170 170 -218.46 0 171 170 128 0 199 170 128 0 142 171 128 0 170 171 128 0 171 171 -218.46 0 172 171 128 0 200 171 128 0 143 172 128 0 171 172 128 0 172 172 -218.46 0 173 172 128 0 201 172 128 0 144 173 128 0 172 173 128 0 173 173 -218.46 0 202 173 128 0 145 174 128 0 174 174 -218.46 0 175 174 128 0 203 174 128 0 146 175 128 0 174 175 128 0 175 175 -218.46 0 176 175 128 0 204 175 128 0 147 176 128 0 175 176 128 0 176 176 -218.46 0 177 176 128 0 205 176 128 0 148 177 128 0 176 177 128 0 177 177 -218.46 0 178 177 128 0 206 177 128 0 149 178 128 0 177 178 128 0 178 178 -218.46 0 179 178 128 0 207 178 128 0 150 179 128 0 178 179 128 0 179 179 -218.46 0 180 179 86.627 0 208 179 86.627 0 151 180 86.627 0 179 180 86.627 0 180 180 -63.965 -26.544 181 180 45.254 0 209 180 45.254 0 152 181 45.254 0 180 181 45.254 0 181 181 -63.965 -26.544 182 181 22.627064 0 210 181 22.627064 0 153 182 22.627064 0 181 182 22.627064 0 182 182 -0.000218 -37.54 183 182 0.000128 0 211 182 0.000128 0 154 183 0.000128 0 182 183 0.000128 0 183 183 -0.000218 -37.54 184 183 0.000128 0 212 183 64.000064 0 155 184 0.000128 0 183 184 0.000128 0 184 184 -0.000218 -37.54 185 184 64.000064 0 213 184 64.000064 0 156 185 64.000064 0 184 185 64.000064 0 185 185 -218.46 0 186 185 128 0 214 185 128 0 157 186 64.000064 0 185 186 128 0 186 186 -218.46 0 187 186 128 0 215 186 128 0 158 187 128 0 186 187 128 0 187 187 -218.46 0 188 187 128 0 216 187 128 0 159 188 128 0 187 188 128 0 188 188 -218.46 0 189 188 128 0 217 188 128 0 160 189 128 0 188 189 128 0 189 189 -218.46 0 190 189 128 0 218 189 128 0 161 190 64.000064 0 189 190 128 0 190 190 -218.46 0 191 190 128 0 219 190 128 0 162 191 64.000064 0 190 191 128 0 191 191 -218.46 0 192 191 64.000064 0 220 191 128 0 163 192 0.000128 0 191 192 64.000064 0 192 192 -0.000218 -37.54 193 192 0.000128 0 221 192 64.000064 0 164 193 0.000128 0 192 193 0.000128 0 193 193 -0.000218 -37.54 194 193 0.000128 0 222 193 64.000064 0 165 194 22.627064 0 193 194 0.000128 0 194 194 -0.000218 -37.54 195 194 22.627064 0 223 194 0.000128 0 166 195 45.254 0 194 195 22.627064 0 195 195 -63.965 -26.544 196 195 45.254 0 224 195 22.627064 0 167 196 86.627 0 195 196 45.254 0 196 196 -63.965 -26.544 197 196 86.627 0 225 196 45.254 0 168 197 128 0 196 197 86.627 0 197 197 -218.46 0 198 197 128 0 226 197 86.627 0 169 198 128 0 197 198 128 0 198 198 -218.46 0 199 198 128 0 227 198 128 0 170 199 128 0 198 199 128 0 199 199 -218.46 0 200 199 128 0 228 199 128 0 171 200 128 0 199 200 128 0 200 200 -218.46 0 201 200 128 0 229 200 128 0 172 201 128 0 200 201 128 0 201 201 -218.46 0 202 201 128 0 230 201 128 0 173 202 128 0 201 202 128 0 202 202 -218.46 0 231 202 128 0 174 203 128 0 203 203 -218.46 0 204 203 128 0 232 203 128 0 175 204 128 0 203 204 128 0 204 204 -218.46 0 205 204 128 0 233 204 128 0 176 205 128 0 204 205 128 0 205 205 -218.46 0 206 205 128 0 234 205 128 0 177 206 128 0 205 206 128 0 206 206 -218.46 0 207 206 128 0 235 206 128 0 178 207 128 0 206 207 128 0 207 207 -218.46 0 208 207 86.627 0 236 207 86.627 0 179 208 86.627 0 207 208 86.627 0 208 208 -63.965 -26.544 209 208 45.254 0 237 208 45.254 0 180 209 45.254 0 208 209 45.254 0 209 209 -63.965 -26.544 210 209 22.627064 0 238 209 22.627064 0 181 210 22.627064 0 209 210 22.627064 0 210 210 -0.000218 -37.54 211 210 0.000128 0 239 210 0.000128 0 182 211 0.000128 0 210 211 0.000128 0 211 211 -0.000218 -37.54 212 211 64.000064 0 240 211 64.000064 0 183 212 64.000064 0 211 212 64.000064 0 212 212 -218.46 0 213 212 128 0 241 212 128 0 184 213 64.000064 0 212 213 128 0 213 213 -218.46 0 214 213 128 0 242 213 128 0 185 214 128 0 213 214 128 0 214 214 -218.46 0 215 214 128 0 243 214 128 0 186 215 128 0 214 215 128 0 215 215 -218.46 0 216 215 128 0 244 215 128 0 187 216 128 0 215 216 128 0 216 216 -218.46 0 217 216 128 0 245 216 128 0 188 217 128 0 216 217 128 0 217 217 -218.46 0 218 217 128 0 246 217 128 0 189 218 128 0 217 218 128 0 218 218 -218.46 0 219 218 128 0 247 218 128 0 190 219 128 0 218 219 128 0 219 219 -218.46 0 220 219 128 0 248 219 128 0 191 220 128 0 219 220 128 0 220 220 -218.46 0 221 220 128 0 249 220 128 0 192 221 64.000064 0 220 221 128 0 221 221 -218.46 0 222 221 128 0 250 221 128 0 193 222 64.000064 0 221 222 128 0 222 222 -218.46 0 223 222 64.000064 0 251 222 128 0 194 223 0.000128 0 222 223 64.000064 0 223 223 -0.000218 -37.54 224 223 0.000128 0 252 223 64.000064 0 195 224 22.627064 0 223 224 0.000128 0 224 224 -0.000218 -37.54 225 224 22.627064 0 253 224 0.000128 0 196 225 45.254 0 224 225 22.627064 0 225 225 -63.965 -26.544 226 225 45.254 0 254 225 22.627064 0 197 226 86.627 0 225 226 45.254 0 226 226 -63.965 -26.544 227 226 86.627 0 255 226 45.254 0 198 227 128 0 226 227 86.627 0 227 227 -218.46 0 228 227 128 0 256 227 86.627 0 199 228 128 0 227 228 128 0 228 228 -218.46 0 229 228 128 0 257 228 128 0 200 229 128 0 228 229 128 0 229 229 -218.46 0 230 229 128 0 258 229 128 0 201 230 128 0 229 230 128 0 230 230 -218.46 0 231 230 128 0 259 230 128 0 202 231 128 0 230 231 128 0 231 231 -218.46 0 260 231 128 0 203 232 128 0 232 232 -218.46 0 233 232 128 0 261 232 128 0 204 233 128 0 232 233 128 0 233 233 -218.46 0 234 233 128 0 262 233 128 0 205 234 128 0 233 234 128 0 234 234 -218.46 0 235 234 128 0 263 234 128 0 206 235 128 0 234 235 128 0 235 235 -218.46 0 236 235 86.627 0 264 235 128 0 207 236 86.627 0 235 236 86.627 0 236 236 -63.965 -26.544 237 236 45.254 0 265 236 45.254 0 208 237 45.254 0 236 237 45.254 0 237 237 -63.965 -26.544 238 237 22.627064 0 266 237 22.627064 0 209 238 22.627064 0 237 238 22.627064 0 238 238 -0.000218 -37.54 239 238 0.000128 0 267 238 0.000128 0 210 239 0.000128 0 238 239 0.000128 0 239 239 -0.000218 -37.54 240 239 64.000064 0 268 239 64.000064 0 211 240 64.000064 0 239 240 64.000064 0 240 240 -218.46 0 241 240 128 0 269 240 128 0 212 241 128 0 240 241 128 0 241 241 -218.46 0 242 241 128 0 270 241 128 0 213 242 128 0 241 242 128 0 242 242 -218.46 0 243 242 128 0 271 242 128 0 214 243 128 0 242 243 128 0 243 243 -218.46 0 244 243 128 0 272 243 128 0 215 244 128 0 243 244 128 0 244 244 -218.46 0 245 244 128 0 273 244 128 0 216 245 128 0 244 245 128 0 245 245 -218.46 0 246 245 128 0 274 245 128 0 217 246 128 0 245 246 128 0 246 246 -218.46 0 247 246 128 0 275 246 128 0 218 247 128 0 246 247 128 0 247 247 -218.46 0 248 247 128 0 276 247 128 0 219 248 128 0 247 248 128 0 248 248 -218.46 0 249 248 128 0 277 248 128 0 220 249 128 0 248 249 128 0 249 249 -218.46 0 250 249 128 0 278 249 128 0 221 250 128 0 249 250 128 0 250 250 -218.46 0 251 250 128 0 279 250 128 0 222 251 128 0 250 251 128 0 251 251 -218.46 0 252 251 128 0 280 251 128 0 223 252 64.000064 0 251 252 128 0 252 252 -218.46 0 253 252 64.000064 0 281 252 128 0 224 253 0.000128 0 252 253 64.000064 0 253 253 -0.000218 -37.54 254 253 0.000128 0 282 253 64.000064 0 225 254 22.627064 0 253 254 0.000128 0 254 254 -0.000218 -37.54 255 254 22.627064 0 283 254 0.000128 0 226 255 45.254 0 254 255 22.627064 0 255 255 -63.965 -26.544 256 255 45.254 0 284 255 22.627064 0 227 256 86.627 0 255 256 45.254 0 256 256 -63.965 -26.544 257 256 86.627 0 285 256 45.254 0 228 257 128 0 256 257 86.627 0 257 257 -218.46 0 258 257 128 0 286 257 128 0 229 258 128 0 257 258 128 0 258 258 -218.46 0 259 258 128 0 287 258 128 0 230 259 128 0 258 259 128 0 259 259 -218.46 0 260 259 128 0 288 259 128 0 231 260 128 0 259 260 128 0 260 260 -218.46 0 289 260 128 0 232 261 128 0 261 261 -218.46 0 262 261 128 0 290 261 128 0 233 262 128 0 261 262 128 0 262 262 -218.46 0 263 262 128 0 291 262 128 0 234 263 128 0 262 263 128 0 263 263 -218.46 0 264 263 128 0 292 263 128 0 235 264 128 0 263 264 128 0 264 264 -218.46 0 265 264 86.627 0 293 264 86.627 0 236 265 45.254 0 264 265 86.627 0 265 265 -63.965 -26.544 266 265 22.627064 0 294 265 45.254 0 237 266 22.627064 0 265 266 22.627064 0 266 266 -0.000218 -37.54 267 266 0.000128 0 295 266 0.000128 0 238 267 0.000128 0 266 267 0.000128 0 267 267 -0.000218 -37.54 268 267 64.000064 0 296 267 0.000128 0 239 268 64.000064 0 267 268 64.000064 0 268 268 -218.46 0 269 268 128 0 297 268 128 0 240 269 128 0 268 269 128 0 269 269 -218.46 0 270 269 128 0 298 269 128 0 241 270 128 0 269 270 128 0 270 270 -218.46 0 271 270 128 0 299 270 128 0 242 271 128 0 270 271 128 0 271 271 -218.46 0 272 271 128 0 300 271 128 0 243 272 128 0 271 272 128 0 272 272 -218.46 0 273 272 128 0 301 272 128 0 244 273 128 0 272 273 128 0 273 273 -218.46 0 274 273 128 0 302 273 128 0 245 274 128 0 273 274 128 0 274 274 -218.46 0 275 274 128 0 303 274 128 0 246 275 128 0 274 275 128 0 275 275 -218.46 0 276 275 128 0 304 275 128 0 247 276 128 0 275 276 128 0 276 276 -218.46 0 277 276 128 0 305 276 128 0 248 277 128 0 276 277 128 0 277 277 -218.46 0 278 277 128 0 306 277 128 0 249 278 128 0 277 278 128 0 278 278 -218.46 0 279 278 128 0 307 278 128 0 250 279 128 0 278 279 128 0 279 279 -218.46 0 280 279 128 0 308 279 128 0 251 280 128 0 279 280 128 0 280 280 -218.46 0 281 280 128 0 309 280 128 0 252 281 128 0 280 281 128 0 281 281 -218.46 0 282 281 128 0 310 281 128 0 253 282 64.000064 0 281 282 128 0 282 282 -218.46 0 283 282 64.000064 0 311 282 128 0 254 283 0.000128 0 282 283 64.000064 0 283 283 -0.000218 -37.54 284 283 0.000128 0 312 283 0.000128 0 255 284 22.627064 0 283 284 0.000128 0 284 284 -0.000218 -37.54 285 284 22.627064 0 313 284 0.000128 0 256 285 45.254 0 284 285 22.627064 0 285 285 -63.965 -26.544 286 285 86.627 0 314 285 45.254 0 257 286 128 0 285 286 86.627 0 286 286 -218.46 0 287 286 128 0 315 286 86.627 0 258 287 128 0 286 287 128 0 287 287 -218.46 0 288 287 128 0 316 287 128 0 259 288 128 0 287 288 128 0 288 288 -218.46 0 289 288 128 0 317 288 128 0 260 289 128 0 288 289 128 0 289 289 -218.46 0 318 289 128 0 261 290 128 0 290 290 -218.46 0 291 290 128 0 319 290 128 0 262 291 128 0 290 291 128 0 291 291 -218.46 0 292 291 128 0 320 291 128 0 263 292 128 0 291 292 128 0 292 292 -218.46 0 293 292 86.627 0 321 292 128 0 264 293 86.627 0 292 293 86.627 0 293 293 -63.965 -26.544 294 293 45.254 0 322 293 45.254 0 265 294 45.254 0 293 294 45.254 0 294 294 -63.965 -26.544 295 294 22.627064 0 323 294 45.254 0 266 295 0.000128 0 294 295 22.627064 0 295 295 -0.000218 -37.54 296 295 0.000128 0 324 295 0.000128 0 267 296 0.000128 0 295 296 0.000128 0 296 296 -0.000218 -37.54 297 296 64.000064 0 325 296 64.000064 0 268 297 128 0 296 297 64.000064 0 297 297 -218.46 0 298 297 128 0 326 297 128 0 269 298 128 0 297 298 128 0 298 298 -218.46 0 299 298 128 0 327 298 128 0 270 299 128 0 298 299 128 0 299 299 -218.46 0 300 299 128 0 328 299 128 0 271 300 128 0 299 300 128 0 300 300 -218.46 0 301 300 128 0 329 300 128 0 272 301 128 0 300 301 128 0 301 301 -218.46 0 302 301 128 0 330 301 128 0 273 302 128 0 301 302 128 0 302 302 -218.46 0 303 302 128 0 331 302 128 0 274 303 128 0 302 303 128 0 303 303 -218.46 0 304 303 128 0 332 303 128 0 275 304 128 0 303 304 128 0 304 304 -218.46 0 305 304 128 0 333 304 128 0 276 305 128 0 304 305 128 0 305 305 -218.46 0 306 305 128 0 334 305 128 0 277 306 128 0 305 306 128 0 306 306 -218.46 0 307 306 128 0 335 306 128 0 278 307 128 0 306 307 128 0 307 307 -218.46 0 308 307 128 0 336 307 128 0 279 308 128 0 307 308 128 0 308 308 -218.46 0 309 308 128 0 337 308 128 0 280 309 128 0 308 309 128 0 309 309 -218.46 0 310 309 128 0 338 309 128 0 281 310 128 0 309 310 128 0 310 310 -218.46 0 311 310 128 0 339 310 128 0 282 311 128 0 310 311 128 0 311 311 -218.46 0 312 311 64.000064 0 340 311 128 0 283 312 0.000128 0 311 312 64.000064 0 312 312 -0.000218 -37.54 313 312 0.000128 0 341 312 64.000064 0 284 313 0.000128 0 312 313 0.000128 0 313 313 -0.000218 -37.54 314 313 22.627064 0 342 313 0.000128 0 285 314 45.254 0 313 314 22.627064 0 314 314 -63.965 -26.544 315 314 45.254 0 343 314 45.254 0 286 315 86.627 0 314 315 45.254 0 315 315 -63.965 -26.544 316 315 86.627 0 344 315 45.254 0 287 316 128 0 315 316 86.627 0 316 316 -218.46 0 317 316 128 0 345 316 128 0 288 317 128 0 316 317 128 0 317 317 -218.46 0 318 317 128 0 346 317 128 0 289 318 128 0 317 318 128 0 318 318 -218.46 0 347 318 128 0 290 319 128 0 319 319 -218.46 0 320 319 128 0 348 319 128 0 291 320 128 0 319 320 128 0 320 320 -218.46 0 321 320 128 0 349 320 128 0 292 321 128 0 320 321 128 0 321 321 -218.46 0 322 321 86.627 0 350 321 128 0 293 322 45.254 0 321 322 86.627 0 322 322 -63.965 -26.544 323 322 45.254 0 351 322 45.254 0 294 323 45.254 0 322 323 45.254 0 323 323 -63.965 -26.544 324 323 22.627064 0 352 323 22.627064 0 295 324 0.000128 0 323 324 22.627064 0 324 324 -0.000218 -37.54 325 324 64.000064 0 353 324 0.000128 0 296 325 64.000064 0 324 325 64.000064 0 325 325 -218.46 0 326 325 128 0 354 325 128 0 297 326 128 0 325 326 128 0 326 326 -218.46 0 327 326 128 0 355 326 128 0 298 327 128 0 326 327 128 0 327 327 -218.46 0 328 327 128 0 356 327 128 0 299 328 128 0 327 328 128 0 328 328 -218.46 0 329 328 128 0 357 328 128 0 300 329 128 0 328 329 128 0 329 329 -218.46 0 330 329 128 0 358 329 128 0 301 330 128 0 329 330 128 0 330 330 -218.46 0 331 330 128 0 359 330 128 0 302 331 128 0 330 331 128 0 331 331 -218.46 0 332 331 128 0 360 331 128 0 303 332 128 0 331 332 128 0 332 332 -218.46 0 333 332 128 0 361 332 128 0 304 333 128 0 332 333 128 0 333 333 -218.46 0 334 333 128 0 362 333 128 0 305 334 128 0 333 334 128 0 334 334 -218.46 0 335 334 128 0 363 334 128 0 306 335 128 0 334 335 128 0 335 335 -218.46 0 336 335 128 0 364 335 128 0 307 336 128 0 335 336 128 0 336 336 -218.46 0 337 336 128 0 365 336 128 0 308 337 128 0 336 337 128 0 337 337 -218.46 0 338 337 128 0 366 337 128 0 309 338 128 0 337 338 128 0 338 338 -218.46 0 339 338 128 0 367 338 128 0 310 339 128 0 338 339 128 0 339 339 -218.46 0 340 339 128 0 368 339 128 0 311 340 128 0 339 340 128 0 340 340 -218.46 0 341 340 128 0 369 340 128 0 312 341 64.000064 0 340 341 128 0 341 341 -218.46 0 342 341 64.000064 0 370 341 128 0 313 342 0.000128 0 341 342 64.000064 0 342 342 -0.000218 -37.54 343 342 22.627064 0 371 342 0.000128 0 314 343 45.254 0 342 343 22.627064 0 343 343 -63.965 -26.544 344 343 45.254 0 372 343 22.627064 0 315 344 45.254 0 343 344 45.254 0 344 344 -63.965 -26.544 345 344 86.627 0 373 344 45.254 0 316 345 128 0 344 345 86.627 0 345 345 -218.46 0 346 345 128 0 374 345 128 0 317 346 128 0 345 346 128 0 346 346 -218.46 0 347 346 128 0 375 346 128 0 318 347 128 0 346 347 128 0 347 347 -218.46 0 376 347 128 0 319 348 128 0 348 348 -218.46 0 349 348 128 0 377 348 128 0 320 349 128 0 348 349 128 0 349 349 -218.46 0 350 349 128 0 378 349 128 0 321 350 128 0 349 350 128 0 350 350 -218.46 0 351 350 86.627 0 379 350 128 0 322 351 45.254 0 350 351 86.627 0 351 351 -63.965 -26.544 352 351 22.627064 0 380 351 45.254 0 323 352 22.627064 0 351 352 22.627064 0 352 352 -0.000218 -37.54 353 352 0.000128 0 381 352 0.000128 0 324 353 0.000128 0 352 353 0.000128 0 353 353 -0.000218 -37.54 354 353 64.000064 0 382 353 0.000128 0 325 354 128 0 353 354 64.000064 0 354 354 -218.46 0 355 354 128 0 383 354 128 0 326 355 128 0 354 355 128 0 355 355 -218.46 0 356 355 128 0 384 355 128 0 327 356 128 0 355 356 128 0 356 356 -218.46 0 357 356 128 0 385 356 128 0 328 357 128 0 356 357 128 0 357 357 -218.46 0 358 357 128 0 386 357 128 0 329 358 128 0 357 358 128 0 358 358 -218.46 0 359 358 128 0 387 358 128 0 330 359 128 0 358 359 128 0 359 359 -218.46 0 360 359 128 0 388 359 128 0 331 360 128 0 359 360 128 0 360 360 -218.46 0 361 360 128 0 389 360 128 0 332 361 128 0 360 361 128 0 361 361 -218.46 0 362 361 128 0 390 361 128 0 333 362 128 0 361 362 128 0 362 362 -218.46 0 363 362 128 0 391 362 128 0 334 363 128 0 362 363 128 0 363 363 -218.46 0 364 363 128 0 392 363 128 0 335 364 128 0 363 364 128 0 364 364 -218.46 0 365 364 128 0 393 364 128 0 336 365 128 0 364 365 128 0 365 365 -218.46 0 366 365 128 0 394 365 128 0 337 366 128 0 365 366 128 0 366 366 -218.46 0 367 366 128 0 395 366 128 0 338 367 128 0 366 367 128 0 367 367 -218.46 0 368 367 128 0 396 367 128 0 339 368 128 0 367 368 128 0 368 368 -218.46 0 369 368 128 0 397 368 128 0 340 369 128 0 368 369 128 0 369 369 -218.46 0 370 369 128 0 398 369 128 0 341 370 128 0 369 370 128 0 370 370 -218.46 0 371 370 64.000064 0 399 370 128 0 342 371 0.000128 0 370 371 64.000064 0 371 371 -0.000218 -37.54 372 371 0.000128 0 400 371 0.000128 0 343 372 22.627064 0 371 372 0.000128 0 372 372 -0.000218 -37.54 373 372 22.627064 0 401 372 0.000128 0 344 373 45.254 0 372 373 22.627064 0 373 373 -63.965 -26.544 374 373 86.627 0 402 373 45.254 0 345 374 128 0 373 374 86.627 0 374 374 -218.46 0 375 374 128 0 403 374 128 0 346 375 128 0 374 375 128 0 375 375 -218.46 0 376 375 128 0 404 375 128 0 347 376 128 0 375 376 128 0 376 376 -218.46 0 405 376 128 0 348 377 128 0 377 377 -218.46 0 378 377 128 0 406 377 128 0 349 378 128 0 377 378 128 0 378 378 -218.46 0 379 378 128 0 407 378 128 0 350 379 128 0 378 379 128 0 379 379 -218.46 0 380 379 86.627 0 408 379 86.627 0 351 380 45.254 0 379 380 86.627 0 380 380 -63.965 -26.544 381 380 22.627064 0 409 380 45.254 0 352 381 0.000128 0 380 381 22.627064 0 381 381 -0.000218 -37.54 382 381 0.000128 0 410 381 0.000128 0 353 382 0.000128 0 381 382 0.000128 0 382 382 -0.000218 -37.54 383 382 64.000064 0 411 382 0.000128 0 354 383 128 0 382 383 64.000064 0 383 383 -218.46 0 384 383 128 0 412 383 128 0 355 384 128 0 383 384 128 0 384 384 -218.46 0 385 384 128 0 413 384 128 0 356 385 128 0 384 385 128 0 385 385 -218.46 0 386 385 128 0 414 385 128 0 357 386 128 0 385 386 128 0 386 386 -218.46 0 387 386 128 0 415 386 128 0 358 387 128 0 386 387 128 0 387 387 -218.46 0 388 387 128 0 416 387 128 0 359 388 128 0 387 388 128 0 388 388 -218.46 0 389 388 128 0 417 388 128 0 360 389 128 0 388 389 128 0 389 389 -218.46 0 390 389 128 0 418 389 128 0 361 390 128 0 389 390 128 0 390 390 -218.46 0 391 390 128 0 419 390 128 0 362 391 128 0 390 391 128 0 391 391 -218.46 0 392 391 128 0 420 391 128 0 363 392 128 0 391 392 128 0 392 392 -218.46 0 393 392 128 0 421 392 128 0 364 393 128 0 392 393 128 0 393 393 -218.46 0 394 393 128 0 422 393 128 0 365 394 128 0 393 394 128 0 394 394 -218.46 0 395 394 128 0 423 394 128 0 366 395 128 0 394 395 128 0 395 395 -218.46 0 396 395 128 0 424 395 128 0 367 396 128 0 395 396 128 0 396 396 -218.46 0 397 396 128 0 425 396 128 0 368 397 128 0 396 397 128 0 397 397 -218.46 0 398 397 128 0 426 397 128 0 369 398 128 0 397 398 128 0 398 398 -218.46 0 399 398 128 0 427 398 128 0 370 399 128 0 398 399 128 0 399 399 -218.46 0 400 399 64.000064 0 428 399 128 0 371 400 0.000128 0 399 400 64.000064 0 400 400 -0.000218 -37.54 401 400 0.000128 0 429 400 0.000128 0 372 401 0.000128 0 400 401 0.000128 0 401 401 -0.000218 -37.54 402 401 22.627064 0 430 401 0.000128 0 373 402 45.254 0 401 402 22.627064 0 402 402 -63.965 -26.544 403 402 86.627 0 431 402 45.254 0 374 403 128 0 402 403 86.627 0 403 403 -218.46 0 404 403 128 0 432 403 86.627 0 375 404 128 0 403 404 128 0 404 404 -218.46 0 405 404 128 0 433 404 128 0 376 405 128 0 404 405 128 0 405 405 -218.46 0 434 405 128 0 377 406 128 0 406 406 -218.46 0 407 406 128 0 435 406 128 0 378 407 128 0 406 407 128 0 407 407 -218.46 0 408 407 86.627 0 436 407 128 0 379 408 86.627 0 407 408 86.627 0 408 408 -63.965 -26.544 409 408 45.254 0 437 408 86.627 0 380 409 45.254 0 408 409 45.254 0 409 409 -63.965 -26.544 410 409 22.627064 0 438 409 45.254 0 381 410 0.000128 0 409 410 22.627064 0 410 410 -0.000218 -37.54 411 410 0.000128 0 439 410 0.000128 0 382 411 0.000128 0 410 411 0.000128 0 411 411 -0.000218 -37.54 412 411 64.000064 0 440 411 0.000128 0 383 412 128 0 411 412 64.000064 0 412 412 -218.46 0 413 412 128 0 441 412 128 0 384 413 128 0 412 413 128 0 413 413 -218.46 0 414 413 128 0 442 413 128 0 385 414 128 0 413 414 128 0 414 414 -218.46 0 415 414 128 0 443 414 128 0 386 415 128 0 414 415 128 0 415 415 -218.46 0 416 415 128 0 444 415 128 0 387 416 128 0 415 416 128 0 416 416 -218.46 0 417 416 128 0 445 416 128 0 388 417 128 0 416 417 128 0 417 417 -218.46 0 418 417 128 0 446 417 128 0 389 418 128 0 417 418 128 0 418 418 -218.46 0 419 418 128 0 447 418 128 0 390 419 128 0 418 419 128 0 419 419 -218.46 0 420 419 128 0 448 419 128 0 391 420 128 0 419 420 128 0 420 420 -218.46 0 421 420 128 0 449 420 128 0 392 421 128 0 420 421 128 0 421 421 -218.46 0 422 421 128 0 450 421 128 0 393 422 128 0 421 422 128 0 422 422 -218.46 0 423 422 128 0 451 422 128 0 394 423 128 0 422 423 128 0 423 423 -218.46 0 424 423 128 0 452 423 128 0 395 424 128 0 423 424 128 0 424 424 -218.46 0 425 424 128 0 453 424 128 0 396 425 128 0 424 425 128 0 425 425 -218.46 0 426 425 128 0 454 425 128 0 397 426 128 0 425 426 128 0 426 426 -218.46 0 427 426 128 0 455 426 128 0 398 427 128 0 426 427 128 0 427 427 -218.46 0 428 427 128 0 456 427 128 0 399 428 128 0 427 428 128 0 428 428 -218.46 0 429 428 64.000064 0 457 428 128 0 400 429 0.000128 0 428 429 64.000064 0 429 429 -0.000218 -37.54 430 429 0.000128 0 458 429 0.000128 0 401 430 0.000128 0 429 430 0.000128 0 430 430 -0.000218 -37.54 431 430 22.627064 0 459 430 0.000128 0 402 431 45.254 0 430 431 22.627064 0 431 431 -63.965 -26.544 432 431 45.254 0 460 431 45.254 0 403 432 86.627 0 431 432 45.254 0 432 432 -63.965 -26.544 433 432 86.627 0 461 432 86.627 0 404 433 128 0 432 433 86.627 0 433 433 -218.46 0 434 433 128 0 462 433 128 0 405 434 128 0 433 434 128 0 434 434 -218.46 0 463 434 128 0 406 435 128 0 435 435 -218.46 0 436 435 128 0 464 435 128 0 407 436 128 0 435 436 128 0 436 436 -218.46 0 437 436 128 0 465 436 128 0 408 437 86.627 0 436 437 128 0 437 437 -218.46 0 438 437 86.627 0 466 437 128 0 409 438 45.254 0 437 438 86.627 0 438 438 -63.965 -26.544 439 438 22.627064 0 467 438 45.254 0 410 439 0.000128 0 438 439 22.627064 0 439 439 -0.000218 -37.54 440 439 0.000128 0 468 439 0.000128 0 411 440 0.000128 0 439 440 0.000128 0 440 440 -0.000218 -37.54 441 440 64.000064 0 469 440 0.000128 0 412 441 128 0 440 441 64.000064 0 441 441 -218.46 0 442 441 128 0 470 441 128 0 413 442 128 0 441 442 128 0 442 442 -218.46 0 443 442 128 0 471 442 128 0 414 443 128 0 442 443 128 0 443 443 -218.46 0 444 443 128 0 472 443 128 0 415 444 128 0 443 444 128 0 444 444 -218.46 0 445 444 128 0 473 444 128 0 416 445 128 0 444 445 128 0 445 445 -218.46 0 446 445 128 0 474 445 128 0 417 446 128 0 445 446 128 0 446 446 -218.46 0 447 446 128 0 475 446 128 0 418 447 128 0 446 447 128 0 447 447 -218.46 0 448 447 128 0 476 447 128 0 419 448 128 0 447 448 128 0 448 448 -218.46 0 449 448 128 0 477 448 128 0 420 449 128 0 448 449 128 0 449 449 -218.46 0 450 449 128 0 478 449 128 0 421 450 128 0 449 450 128 0 450 450 -218.46 0 451 450 128 0 479 450 128 0 422 451 128 0 450 451 128 0 451 451 -218.46 0 452 451 128 0 480 451 128 0 423 452 128 0 451 452 128 0 452 452 -218.46 0 453 452 128 0 481 452 128 0 424 453 128 0 452 453 128 0 453 453 -218.46 0 454 453 128 0 482 453 128 0 425 454 128 0 453 454 128 0 454 454 -218.46 0 455 454 128 0 483 454 128 0 426 455 128 0 454 455 128 0 455 455 -218.46 0 456 455 128 0 484 455 128 0 427 456 128 0 455 456 128 0 456 456 -218.46 0 457 456 128 0 485 456 128 0 428 457 128 0 456 457 128 0 457 457 -218.46 0 458 457 64.000064 0 486 457 128 0 429 458 0.000128 0 457 458 64.000064 0 458 458 -0.000218 -37.54 459 458 0.000128 0 487 458 0.000128 0 430 459 0.000128 0 458 459 0.000128 0 459 459 -0.000218 -37.54 460 459 22.627064 0 488 459 0.000128 0 431 460 45.254 0 459 460 22.627064 0 460 460 -63.965 -26.544 461 460 86.627 0 489 460 45.254 0 432 461 86.627 0 460 461 86.627 0 461 461 -218.46 0 462 461 128 0 490 461 128 0 433 462 128 0 461 462 128 0 462 462 -218.46 0 463 462 128 0 491 462 128 0 434 463 128 0 462 463 128 0 463 463 -218.46 0 492 463 128 0 435 464 128 0 464 464 -218.46 0 465 464 128 0 493 464 128 0 436 465 128 0 464 465 128 0 465 465 -218.46 0 466 465 128 0 494 465 128 0 437 466 128 0 465 466 128 0 466 466 -218.46 0 467 466 86.627 0 495 466 128 0 438 467 45.254 0 466 467 86.627 0 467 467 -63.965 -26.544 468 467 22.627064 0 496 467 45.254 0 439 468 0.000128 0 467 468 22.627064 0 468 468 -0.000218 -37.54 469 468 0.000128 0 497 468 22.627064 0 440 469 0.000128 0 468 469 0.000128 0 469 469 -0.000218 -37.54 470 469 64.000064 0 498 469 0.000128 0 441 470 128 0 469 470 64.000064 0 470 470 -218.46 0 471 470 128 0 499 470 128 0 442 471 128 0 470 471 128 0 471 471 -218.46 0 472 471 128 0 500 471 128 0 443 472 128 0 471 472 128 0 472 472 -218.46 0 473 472 128 0 501 472 128 0 444 473 128 0 472 473 128 0 473 473 -218.46 0 474 473 128 0 502 473 128 0 445 474 128 0 473 474 128 0 474 474 -218.46 0 475 474 128 0 503 474 128 0 446 475 128 0 474 475 128 0 475 475 -218.46 0 476 475 128 0 504 475 128 0 447 476 128 0 475 476 128 0 476 476 -218.46 0 477 476 128 0 505 476 128 0 448 477 128 0 476 477 128 0 477 477 -218.46 0 478 477 128 0 506 477 128 0 449 478 128 0 477 478 128 0 478 478 -218.46 0 479 478 128 0 507 478 128 0 450 479 128 0 478 479 128 0 479 479 -218.46 0 480 479 128 0 508 479 128 0 451 480 128 0 479 480 128 0 480 480 -218.46 0 481 480 128 0 509 480 128 0 452 481 128 0 480 481 128 0 481 481 -218.46 0 482 481 128 0 510 481 128 0 453 482 128 0 481 482 128 0 482 482 -218.46 0 483 482 128 0 511 482 128 0 454 483 128 0 482 483 128 0 483 483 -218.46 0 484 483 128 0 512 483 128 0 455 484 128 0 483 484 128 0 484 484 -218.46 0 485 484 128 0 513 484 128 0 456 485 128 0 484 485 128 0 485 485 -218.46 0 486 485 128 0 514 485 128 0 457 486 128 0 485 486 128 0 486 486 -218.46 0 487 486 64.000064 0 515 486 128 0 458 487 0.000128 0 486 487 64.000064 0 487 487 -0.000218 -37.54 488 487 0.000128 0 516 487 0.000128 0 459 488 0.000128 0 487 488 0.000128 0 488 488 -0.000218 -37.54 489 488 22.627064 0 517 488 22.627064 0 460 489 45.254 0 488 489 22.627064 0 489 489 -63.965 -26.544 490 489 86.627 0 518 489 45.254 0 461 490 128 0 489 490 86.627 0 490 490 -218.46 0 491 490 128 0 519 490 128 0 462 491 128 0 490 491 128 0 491 491 -218.46 0 492 491 128 0 520 491 128 0 463 492 128 0 491 492 128 0 492 492 -218.46 0 521 492 128 0 464 493 128 0 493 493 -218.46 0 494 493 128 0 522 493 128 0 465 494 128 0 493 494 128 0 494 494 -218.46 0 495 494 128 0 523 494 128 0 466 495 128 0 494 495 128 0 495 495 -218.46 0 496 495 86.627 0 524 495 128 0 467 496 45.254 0 495 496 86.627 0 496 496 -63.965 -26.544 497 496 45.254 0 525 496 45.254 0 468 497 22.627064 0 496 497 45.254 0 497 497 -63.965 -26.544 498 497 22.627064 0 526 497 45.254 0 469 498 0.000128 0 497 498 22.627064 0 498 498 -0.000218 -37.54 499 498 64.000064 0 527 498 0.000128 0 470 499 128 0 498 499 64.000064 0 499 499 -218.46 0 500 499 128 0 528 499 64.000064 0 471 500 128 0 499 500 128 0 500 500 -218.46 0 501 500 128 0 529 500 128 0 472 501 128 0 500 501 128 0 501 501 -218.46 0 502 501 128 0 530 501 128 0 473 502 128 0 501 502 128 0 502 502 -218.46 0 503 502 128 0 531 502 128 0 474 503 128 0 502 503 128 0 503 503 -218.46 0 504 503 128 0 532 503 128 0 475 504 128 0 503 504 128 0 504 504 -218.46 0 505 504 128 0 533 504 128 0 476 505 128 0 504 505 128 0 505 505 -218.46 0 506 505 128 0 534 505 128 0 477 506 128 0 505 506 128 0 506 506 -218.46 0 507 506 128 0 535 506 128 0 478 507 128 0 506 507 128 0 507 507 -218.46 0 508 507 128 0 536 507 128 0 479 508 128 0 507 508 128 0 508 508 -218.46 0 509 508 128 0 537 508 128 0 480 509 128 0 508 509 128 0 509 509 -218.46 0 510 509 128 0 538 509 128 0 481 510 128 0 509 510 128 0 510 510 -218.46 0 511 510 128 0 539 510 128 0 482 511 128 0 510 511 128 0 511 511 -218.46 0 512 511 128 0 540 511 128 0 483 512 128 0 511 512 128 0 512 512 -218.46 0 513 512 128 0 541 512 128 0 484 513 128 0 512 513 128 0 513 513 -218.46 0 514 513 128 0 542 513 128 0 485 514 128 0 513 514 128 0 514 514 -218.46 0 515 514 128 0 543 514 128 0 486 515 128 0 514 515 128 0 515 515 -218.46 0 516 515 64.000064 0 544 515 64.000064 0 487 516 0.000128 0 515 516 64.000064 0 516 516 -0.000218 -37.54 517 516 22.627064 0 545 516 0.000128 0 488 517 22.627064 0 516 517 22.627064 0 517 517 -63.965 -26.544 518 517 45.254 0 546 517 45.254 0 489 518 45.254 0 517 518 45.254 0 518 518 -63.965 -26.544 519 518 86.627 0 547 518 45.254 0 490 519 128 0 518 519 86.627 0 519 519 -218.46 0 520 519 128 0 548 519 128 0 491 520 128 0 519 520 128 0 520 520 -218.46 0 521 520 128 0 549 520 128 0 492 521 128 0 520 521 128 0 521 521 -218.46 0 550 521 128 0 493 522 128 0 522 522 -218.46 0 523 522 128 0 551 522 128 0 494 523 128 0 522 523 128 0 523 523 -218.46 0 524 523 128 0 552 523 128 0 495 524 128 0 523 524 128 0 524 524 -218.46 0 525 524 86.627 0 553 524 128 0 496 525 45.254 0 524 525 86.627 0 525 525 -63.965 -26.544 526 525 45.254 0 554 525 86.627 0 497 526 45.254 0 525 526 45.254 0 526 526 -63.965 -26.544 527 526 22.627064 0 555 526 45.254 0 498 527 0.000128 0 526 527 22.627064 0 527 527 -0.000218 -37.54 528 527 0.000128 0 556 527 0.000128 0 499 528 64.000064 0 527 528 0.000128 0 528 528 -0.000218 -37.54 529 528 64.000064 0 557 528 0.000128 0 500 529 128 0 528 529 64.000064 0 529 529 -218.46 0 530 529 128 0 558 529 128 0 501 530 128 0 529 530 128 0 530 530 -218.46 0 531 530 128 0 559 530 128 0 502 531 128 0 530 531 128 0 531 531 -218.46 0 532 531 128 0 560 531 128 0 503 532 128 0 531 532 128 0 532 532 -218.46 0 533 532 128 0 561 532 128 0 504 533 128 0 532 533 128 0 533 533 -218.46 0 534 533 128 0 562 533 128 0 505 534 128 0 533 534 128 0 534 534 -218.46 0 535 534 128 0 563 534 128 0 506 535 128 0 534 535 128 0 535 535 -218.46 0 536 535 128 0 564 535 128 0 507 536 128 0 535 536 128 0 536 536 -218.46 0 537 536 128 0 565 536 128 0 508 537 128 0 536 537 128 0 537 537 -218.46 0 538 537 128 0 566 537 128 0 509 538 128 0 537 538 128 0 538 538 -218.46 0 539 538 128 0 567 538 128 0 510 539 128 0 538 539 128 0 539 539 -218.46 0 540 539 128 0 568 539 128 0 511 540 128 0 539 540 128 0 540 540 -218.46 0 541 540 128 0 569 540 128 0 512 541 128 0 540 541 128 0 541 541 -218.46 0 542 541 128 0 570 541 128 0 513 542 128 0 541 542 128 0 542 542 -218.46 0 543 542 128 0 571 542 128 0 514 543 128 0 542 543 128 0 543 543 -218.46 0 544 543 64.000064 0 572 543 128 0 515 544 64.000064 0 543 544 64.000064 0 544 544 -0.000218 -37.54 545 544 0.000128 0 573 544 0.000128 0 516 545 0.000128 0 544 545 0.000128 0 545 545 -0.000218 -37.54 546 545 22.627064 0 574 545 0.000128 0 517 546 45.254 0 545 546 22.627064 0 546 546 -63.965 -26.544 547 546 45.254 0 575 546 45.254 0 518 547 45.254 0 546 547 45.254 0 547 547 -63.965 -26.544 548 547 86.627 0 576 547 86.627 0 519 548 128 0 547 548 86.627 0 548 548 -218.46 0 549 548 128 0 577 548 128 0 520 549 128 0 548 549 128 0 549 549 -218.46 0 550 549 128 0 578 549 128 0 521 550 128 0 549 550 128 0 550 550 -218.46 0 579 550 128 0 522 551 128 0 551 551 -218.46 0 552 551 128 0 580 551 128 0 523 552 128 0 551 552 128 0 552 552 -218.46 0 553 552 128 0 581 552 128 0 524 553 128 0 552 553 128 0 553 553 -218.46 0 554 553 128 0 582 553 128 0 525 554 86.627 0 553 554 128 0 554 554 -218.46 0 555 554 86.627 0 583 554 128 0 526 555 45.254 0 554 555 86.627 0 555 555 -63.965 -26.544 556 555 22.627064 0 584 555 45.254 0 527 556 0.000128 0 555 556 22.627064 0 556 556 -0.000218 -37.54 557 556 0.000128 0 585 556 22.627064 0 528 557 0.000128 0 556 557 0.000128 0 557 557 -0.000218 -37.54 558 557 64.000064 0 586 557 0.000128 0 529 558 128 0 557 558 64.000064 0 558 558 -218.46 0 559 558 128 0 587 558 64.000064 0 530 559 128 0 558 559 128 0 559 559 -218.46 0 560 559 128 0 588 559 128 0 531 560 128 0 559 560 128 0 560 560 -218.46 0 561 560 128 0 589 560 128 0 532 561 128 0 560 561 128 0 561 561 -218.46 0 562 561 128 0 590 561 128 0 533 562 128 0 561 562 128 0 562 562 -218.46 0 563 562 128 0 591 562 128 0 534 563 128 0 562 563 128 0 563 563 -218.46 0 564 563 128 0 592 563 128 0 535 564 128 0 563 564 128 0 564 564 -218.46 0 565 564 128 0 593 564 128 0 536 565 128 0 564 565 128 0 565 565 -218.46 0 566 565 128 0 594 565 128 0 537 566 128 0 565 566 128 0 566 566 -218.46 0 567 566 128 0 595 566 128 0 538 567 128 0 566 567 128 0 567 567 -218.46 0 568 567 128 0 596 567 128 0 539 568 128 0 567 568 128 0 568 568 -218.46 0 569 568 128 0 597 568 128 0 540 569 128 0 568 569 128 0 569 569 -218.46 0 570 569 128 0 598 569 128 0 541 570 128 0 569 570 128 0 570 570 -218.46 0 571 570 128 0 599 570 128 0 542 571 128 0 570 571 128 0 571 571 -218.46 0 572 571 128 0 600 571 128 0 543 572 128 0 571 572 128 0 572 572 -218.46 0 573 572 64.000064 0 601 572 64.000064 0 544 573 0.000128 0 572 573 64.000064 0 573 573 -0.000218 -37.54 574 573 0.000128 0 602 573 0.000128 0 545 574 0.000128 0 573 574 0.000128 0 574 574 -0.000218 -37.54 575 574 22.627064 0 603 574 22.627064 0 546 575 45.254 0 574 575 22.627064 0 575 575 -63.965 -26.544 576 575 86.627 0 604 575 45.254 0 547 576 86.627 0 575 576 86.627 0 576 576 -218.46 0 577 576 128 0 605 576 128 0 548 577 128 0 576 577 128 0 577 577 -218.46 0 578 577 128 0 606 577 128 0 549 578 128 0 577 578 128 0 578 578 -218.46 0 579 578 128 0 607 578 128 0 550 579 128 0 578 579 128 0 579 579 -218.46 0 608 579 128 0 551 580 128 0 580 580 -218.46 0 581 580 128 0 609 580 128 0 552 581 128 0 580 581 128 0 581 581 -218.46 0 582 581 128 0 610 581 128 0 553 582 128 0 581 582 128 0 582 582 -218.46 0 583 582 128 0 611 582 128 0 554 583 128 0 582 583 128 0 583 583 -218.46 0 584 583 86.627 0 612 583 128 0 555 584 45.254 0 583 584 86.627 0 584 584 -63.965 -26.544 585 584 45.254 0 613 584 86.627 0 556 585 22.627064 0 584 585 45.254 0 585 585 -63.965 -26.544 586 585 22.627064 0 614 585 45.254 0 557 586 0.000128 0 585 586 22.627064 0 586 586 -0.000218 -37.54 587 586 0.000128 0 615 586 22.627064 0 558 587 64.000064 0 586 587 0.000128 0 587 587 -0.000218 -37.54 588 587 64.000064 0 616 587 0.000128 0 559 588 128 0 587 588 64.000064 0 588 588 -218.46 0 589 588 128 0 617 588 64.000064 0 560 589 128 0 588 589 128 0 589 589 -218.46 0 590 589 128 0 618 589 128 0 561 590 128 0 589 590 128 0 590 590 -218.46 0 591 590 128 0 619 590 128 0 562 591 128 0 590 591 128 0 591 591 -218.46 0 592 591 128 0 620 591 128 0 563 592 128 0 591 592 128 0 592 592 -218.46 0 593 592 128 0 621 592 128 0 564 593 128 0 592 593 128 0 593 593 -218.46 0 594 593 128 0 622 593 128 0 565 594 128 0 593 594 128 0 594 594 -218.46 0 595 594 128 0 623 594 128 0 566 595 128 0 594 595 128 0 595 595 -218.46 0 596 595 128 0 624 595 128 0 567 596 128 0 595 596 128 0 596 596 -218.46 0 597 596 128 0 625 596 128 0 568 597 128 0 596 597 128 0 597 597 -218.46 0 598 597 128 0 626 597 128 0 569 598 128 0 597 598 128 0 598 598 -218.46 0 599 598 128 0 627 598 128 0 570 599 128 0 598 599 128 0 599 599 -218.46 0 600 599 128 0 628 599 128 0 571 600 128 0 599 600 128 0 600 600 -218.46 0 601 600 64.000064 0 629 600 64.000064 0 572 601 64.000064 0 600 601 64.000064 0 601 601 -0.000218 -37.54 602 601 0.000128 0 630 601 0.000128 0 573 602 0.000128 0 601 602 0.000128 0 602 602 -0.000218 -37.54 603 602 22.627064 0 631 602 22.627064 0 574 603 22.627064 0 602 603 22.627064 0 603 603 -63.965 -26.544 604 603 45.254 0 632 603 45.254 0 575 604 45.254 0 603 604 45.254 0 604 604 -63.965 -26.544 605 604 86.627 0 633 604 86.627 0 576 605 128 0 604 605 86.627 0 605 605 -218.46 0 606 605 128 0 634 605 128 0 577 606 128 0 605 606 128 0 606 606 -218.46 0 607 606 128 0 635 606 128 0 578 607 128 0 606 607 128 0 607 607 -218.46 0 608 607 128 0 636 607 128 0 579 608 128 0 607 608 128 0 608 608 -218.46 0 637 608 128 0 580 609 128 0 609 609 -218.46 0 610 609 128 0 638 609 128 0 581 610 128 0 609 610 128 0 610 610 -218.46 0 611 610 128 0 639 610 128 0 582 611 128 0 610 611 128 0 611 611 -218.46 0 612 611 128 0 640 611 128 0 583 612 128 0 611 612 128 0 612 612 -218.46 0 613 612 128 0 641 612 128 0 584 613 86.627 0 612 613 128 0 613 613 -218.46 0 614 613 86.627 0 642 613 128 0 585 614 45.254 0 613 614 86.627 0 614 614 -63.965 -26.544 615 614 45.254 0 643 614 86.627 0 586 615 22.627064 0 614 615 45.254 0 615 615 -63.965 -26.544 616 615 22.627064 0 644 615 45.254 0 587 616 0.000128 0 615 616 22.627064 0 616 616 -0.000218 -37.54 617 616 0.000128 0 645 616 22.627064 0 588 617 64.000064 0 616 617 0.000128 0 617 617 -0.000218 -37.54 618 617 64.000064 0 646 617 0.000128 0 589 618 128 0 617 618 64.000064 0 618 618 -218.46 0 619 618 128 0 647 618 64.000064 0 590 619 128 0 618 619 128 0 619 619 -218.46 0 620 619 128 0 648 619 64.000064 0 591 620 128 0 619 620 128 0 620 620 -218.46 0 621 620 128 0 649 620 128 0 592 621 128 0 620 621 128 0 621 621 -218.46 0 622 621 128 0 650 621 128 0 593 622 128 0 621 622 128 0 622 622 -218.46 0 623 622 128 0 651 622 128 0 594 623 128 0 622 623 128 0 623 623 -218.46 0 624 623 128 0 652 623 128 0 595 624 128 0 623 624 128 0 624 624 -218.46 0 625 624 128 0 653 624 128 0 596 625 128 0 624 625 128 0 625 625 -218.46 0 626 625 128 0 654 625 128 0 597 626 128 0 625 626 128 0 626 626 -218.46 0 627 626 128 0 655 626 128 0 598 627 128 0 626 627 128 0 627 627 -218.46 0 628 627 128 0 656 627 64.000064 0 599 628 128 0 627 628 128 0 628 628 -218.46 0 629 628 64.000064 0 657 628 64.000064 0 600 629 64.000064 0 628 629 64.000064 0 629 629 -0.000218 -37.54 630 629 0.000128 0 658 629 0.000128 0 601 630 0.000128 0 629 630 0.000128 0 630 630 -0.000218 -37.54 631 630 22.627064 0 659 630 22.627064 0 602 631 22.627064 0 630 631 22.627064 0 631 631 -63.965 -26.544 632 631 45.254 0 660 631 45.254 0 603 632 45.254 0 631 632 45.254 0 632 632 -63.965 -26.544 633 632 86.627 0 661 632 86.627 0 604 633 86.627 0 632 633 86.627 0 633 633 -218.46 0 634 633 128 0 662 633 128 0 605 634 128 0 633 634 128 0 634 634 -218.46 0 635 634 128 0 663 634 128 0 606 635 128 0 634 635 128 0 635 635 -218.46 0 636 635 128 0 664 635 128 0 607 636 128 0 635 636 128 0 636 636 -218.46 0 637 636 128 0 665 636 128 0 608 637 128 0 636 637 128 0 637 637 -218.46 0 666 637 128 0 609 638 128 0 638 638 -218.46 0 639 638 128 0 667 638 128 0 610 639 128 0 638 639 128 0 639 639 -218.46 0 640 639 128 0 668 639 128 0 611 640 128 0 639 640 128 0 640 640 -218.46 0 641 640 128 0 669 640 128 0 612 641 128 0 640 641 128 0 641 641 -218.46 0 642 641 128 0 670 641 128 0 613 642 128 0 641 642 128 0 642 642 -218.46 0 643 642 128 0 671 642 128 0 614 643 86.627 0 642 643 128 0 643 643 -218.46 0 644 643 86.627 0 672 643 128 0 615 644 45.254 0 643 644 86.627 0 644 644 -63.965 -26.544 645 644 45.254 0 673 644 86.627 0 616 645 22.627064 0 644 645 45.254 0 645 645 -63.965 -26.544 646 645 22.627064 0 674 645 45.254 0 617 646 0.000128 0 645 646 22.627064 0 646 646 -0.000218 -37.54 647 646 0.000128 0 675 646 22.627064 0 618 647 64.000064 0 646 647 0.000128 0 647 647 -0.000218 -37.54 648 647 0.000128 0 676 647 0.000128 0 619 648 64.000064 0 647 648 0.000128 0 648 648 -0.000218 -37.54 649 648 64.000064 0 677 648 0.000128 0 620 649 128 0 648 649 64.000064 0 649 649 -218.46 0 650 649 128 0 678 649 64.000064 0 621 650 128 0 649 650 128 0 650 650 -218.46 0 651 650 128 0 679 650 64.000064 0 622 651 128 0 650 651 128 0 651 651 -218.46 0 652 651 128 0 680 651 64.000064 0 623 652 128 0 651 652 128 0 652 652 -218.46 0 653 652 128 0 681 652 64.000064 0 624 653 128 0 652 653 128 0 653 653 -218.46 0 654 653 128 0 682 653 64.000064 0 625 654 128 0 653 654 128 0 654 654 -218.46 0 655 654 128 0 683 654 64.000064 0 626 655 128 0 654 655 128 0 655 655 -218.46 0 656 655 64.000064 0 684 655 64.000064 0 627 656 64.000064 0 655 656 64.000064 0 656 656 -0.000218 -37.54 657 656 0.000128 0 685 656 0.000128 0 628 657 64.000064 0 656 657 0.000128 0 657 657 -0.000218 -37.54 658 657 0.000128 0 686 657 0.000128 0 629 658 0.000128 0 657 658 0.000128 0 658 658 -0.000218 -37.54 659 658 22.627064 0 687 658 22.627064 0 630 659 22.627064 0 658 659 22.627064 0 659 659 -63.965 -26.544 660 659 45.254 0 688 659 45.254 0 631 660 45.254 0 659 660 45.254 0 660 660 -63.965 -26.544 661 660 86.627 0 689 660 86.627 0 632 661 86.627 0 660 661 86.627 0 661 661 -218.46 0 662 661 128 0 690 661 128 0 633 662 128 0 661 662 128 0 662 662 -218.46 0 663 662 128 0 691 662 128 0 634 663 128 0 662 663 128 0 663 663 -218.46 0 664 663 128 0 692 663 128 0 635 664 128 0 663 664 128 0 664 664 -218.46 0 665 664 128 0 693 664 128 0 636 665 128 0 664 665 128 0 665 665 -218.46 0 666 665 128 0 694 665 128 0 637 666 128 0 665 666 128 0 666 666 -218.46 0 695 666 128 0 638 667 128 0 667 667 -218.46 0 668 667 128 0 696 667 128 0 639 668 128 0 667 668 128 0 668 668 -218.46 0 669 668 128 0 697 668 128 0 640 669 128 0 668 669 128 0 669 669 -218.46 0 670 669 128 0 698 669 128 0 641 670 128 0 669 670 128 0 670 670 -218.46 0 671 670 128 0 699 670 128 0 642 671 128 0 670 671 128 0 671 671 -218.46 0 672 671 128 0 700 671 128 0 643 672 128 0 671 672 128 0 672 672 -218.46 0 673 672 128 0 701 672 128 0 644 673 86.627 0 672 673 128 0 673 673 -218.46 0 674 673 86.627 0 702 673 128 0 645 674 45.254 0 673 674 86.627 0 674 674 -63.965 -26.544 675 674 45.254 0 703 674 86.627 0 646 675 22.627064 0 674 675 45.254 0 675 675 -63.965 -26.544 676 675 22.627064 0 704 675 45.254 0 647 676 0.000128 0 675 676 22.627064 0 676 676 -0.000218 -37.54 677 676 0.000128 0 705 676 22.627064 0 648 677 0.000128 0 676 677 0.000128 0 677 677 -0.000218 -37.54 678 677 0.000128 0 706 677 22.627064 0 649 678 64.000064 0 677 678 0.000128 0 678 678 -0.000218 -37.54 679 678 0.000128 0 707 678 22.627064 0 650 679 64.000064 0 678 679 0.000128 0 679 679 -0.000218 -37.54 680 679 0.000128 0 708 679 0.000128 0 651 680 64.000064 0 679 680 0.000128 0 680 680 -0.000218 -37.54 681 680 0.000128 0 709 680 0.000128 0 652 681 64.000064 0 680 681 0.000128 0 681 681 -0.000218 -37.54 682 681 0.000128 0 710 681 0.000128 0 653 682 64.000064 0 681 682 0.000128 0 682 682 -0.000218 -37.54 683 682 0.000128 0 711 682 0.000128 0 654 683 64.000064 0 682 683 0.000128 0 683 683 -0.000218 -37.54 684 683 0.000128 0 712 683 0.000128 0 655 684 64.000064 0 683 684 0.000128 0 684 684 -0.000218 -37.54 685 684 0.000128 0 713 684 22.627064 0 656 685 0.000128 0 684 685 0.000128 0 685 685 -0.000218 -37.54 686 685 0.000128 0 714 685 22.627064 0 657 686 0.000128 0 685 686 0.000128 0 686 686 -0.000218 -37.54 687 686 22.627064 0 715 686 22.627064 0 658 687 22.627064 0 686 687 22.627064 0 687 687 -63.965 -26.544 688 687 45.254 0 716 687 45.254 0 659 688 45.254 0 687 688 45.254 0 688 688 -63.965 -26.544 689 688 86.627 0 717 688 86.627 0 660 689 86.627 0 688 689 86.627 0 689 689 -218.46 0 690 689 128 0 718 689 128 0 661 690 128 0 689 690 128 0 690 690 -218.46 0 691 690 128 0 719 690 128 0 662 691 128 0 690 691 128 0 691 691 -218.46 0 692 691 128 0 720 691 128 0 663 692 128 0 691 692 128 0 692 692 -218.46 0 693 692 128 0 721 692 128 0 664 693 128 0 692 693 128 0 693 693 -218.46 0 694 693 128 0 722 693 128 0 665 694 128 0 693 694 128 0 694 694 -218.46 0 695 694 128 0 723 694 128 0 666 695 128 0 694 695 128 0 695 695 -218.46 0 724 695 128 0 667 696 128 0 696 696 -218.46 0 697 696 128 0 725 696 128 0 668 697 128 0 696 697 128 0 697 697 -218.46 0 698 697 128 0 726 697 128 0 669 698 128 0 697 698 128 0 698 698 -218.46 0 699 698 128 0 727 698 128 0 670 699 128 0 698 699 128 0 699 699 -218.46 0 700 699 128 0 728 699 128 0 671 700 128 0 699 700 128 0 700 700 -218.46 0 701 700 128 0 729 700 128 0 672 701 128 0 700 701 128 0 701 701 -218.46 0 702 701 128 0 730 701 128 0 673 702 128 0 701 702 128 0 702 702 -218.46 0 703 702 128 0 731 702 128 0 674 703 86.627 0 702 703 128 0 703 703 -218.46 0 704 703 86.627 0 732 703 128 0 675 704 45.254 0 703 704 86.627 0 704 704 -63.965 -26.544 705 704 45.254 0 733 704 86.627 0 676 705 22.627064 0 704 705 45.254 0 705 705 -63.965 -26.544 706 705 45.254 0 734 705 86.627 0 677 706 22.627064 0 705 706 45.254 0 706 706 -63.965 -26.544 707 706 45.254 0 735 706 45.254 0 678 707 22.627064 0 706 707 45.254 0 707 707 -63.965 -26.544 708 707 22.627064 0 736 707 45.254 0 679 708 0.000128 0 707 708 22.627064 0 708 708 -0.000218 -37.54 709 708 0.000128 0 737 708 22.627064 0 680 709 0.000128 0 708 709 0.000128 0 709 709 -0.000218 -37.54 710 709 0.000128 0 738 709 22.627064 0 681 710 0.000128 0 709 710 0.000128 0 710 710 -0.000218 -37.54 711 710 0.000128 0 739 710 22.627064 0 682 711 0.000128 0 710 711 0.000128 0 711 711 -0.000218 -37.54 712 711 0.000128 0 740 711 22.627064 0 683 712 0.000128 0 711 712 0.000128 0 712 712 -0.000218 -37.54 713 712 22.627064 0 741 712 22.627064 0 684 713 22.627064 0 712 713 22.627064 0 713 713 -63.965 -26.544 714 713 45.254 0 742 713 45.254 0 685 714 22.627064 0 713 714 45.254 0 714 714 -63.965 -26.544 715 714 45.254 0 743 714 45.254 0 686 715 22.627064 0 714 715 45.254 0 715 715 -63.965 -26.544 716 715 45.254 0 744 715 86.627 0 687 716 45.254 0 715 716 45.254 0 716 716 -63.965 -26.544 717 716 86.627 0 745 716 86.627 0 688 717 86.627 0 716 717 86.627 0 717 717 -218.46 0 718 717 128 0 746 717 128 0 689 718 128 0 717 718 128 0 718 718 -218.46 0 719 718 128 0 747 718 128 0 690 719 128 0 718 719 128 0 719 719 -218.46 0 720 719 128 0 748 719 128 0 691 720 128 0 719 720 128 0 720 720 -218.46 0 721 720 128 0 749 720 128 0 692 721 128 0 720 721 128 0 721 721 -218.46 0 722 721 128 0 750 721 128 0 693 722 128 0 721 722 128 0 722 722 -218.46 0 723 722 128 0 751 722 128 0 694 723 128 0 722 723 128 0 723 723 -218.46 0 724 723 128 0 752 723 128 0 695 724 128 0 723 724 128 0 724 724 -218.46 0 753 724 128 0 696 725 128 0 725 725 -218.46 0 726 725 128 0 754 725 128 0 697 726 128 0 725 726 128 0 726 726 -218.46 0 727 726 128 0 755 726 128 0 698 727 128 0 726 727 128 0 727 727 -218.46 0 728 727 128 0 756 727 128 0 699 728 128 0 727 728 128 0 728 728 -218.46 0 729 728 128 0 757 728 128 0 700 729 128 0 728 729 128 0 729 729 -218.46 0 730 729 128 0 758 729 128 0 701 730 128 0 729 730 128 0 730 730 -218.46 0 731 730 128 0 759 730 128 0 702 731 128 0 730 731 128 0 731 731 -218.46 0 732 731 128 0 760 731 128 0 703 732 128 0 731 732 128 0 732 732 -218.46 0 733 732 128 0 761 732 128 0 704 733 86.627 0 732 733 128 0 733 733 -218.46 0 734 733 128 0 762 733 128 0 705 734 86.627 0 733 734 128 0 734 734 -218.46 0 735 734 86.627 0 763 734 128 0 706 735 45.254 0 734 735 86.627 0 735 735 -63.965 -26.544 736 735 45.254 0 764 735 86.627 0 707 736 45.254 0 735 736 45.254 0 736 736 -63.965 -26.544 737 736 45.254 0 765 736 86.627 0 708 737 22.627064 0 736 737 45.254 0 737 737 -63.965 -26.544 738 737 45.254 0 766 737 86.627 0 709 738 22.627064 0 737 738 45.254 0 738 738 -63.965 -26.544 739 738 45.254 0 767 738 86.627 0 710 739 22.627064 0 738 739 45.254 0 739 739 -63.965 -26.544 740 739 45.254 0 768 739 45.254 0 711 740 22.627064 0 739 740 45.254 0 740 740 -63.965 -26.544 741 740 45.254 0 769 740 86.627 0 712 741 22.627064 0 740 741 45.254 0 741 741 -63.965 -26.544 742 741 45.254 0 770 741 86.627 0 713 742 45.254 0 741 742 45.254 0 742 742 -63.965 -26.544 743 742 45.254 0 771 742 86.627 0 714 743 45.254 0 742 743 45.254 0 743 743 -63.965 -26.544 744 743 86.627 0 772 743 86.627 0 715 744 86.627 0 743 744 86.627 0 744 744 -218.46 0 745 744 128 0 773 744 128 0 716 745 86.627 0 744 745 128 0 745 745 -218.46 0 746 745 128 0 774 745 128 0 717 746 128 0 745 746 128 0 746 746 -218.46 0 747 746 128 0 775 746 128 0 718 747 128 0 746 747 128 0 747 747 -218.46 0 748 747 128 0 776 747 128 0 719 748 128 0 747 748 128 0 748 748 -218.46 0 749 748 128 0 777 748 128 0 720 749 128 0 748 749 128 0 749 749 -218.46 0 750 749 128 0 778 749 128 0 721 750 128 0 749 750 128 0 750 750 -218.46 0 751 750 128 0 779 750 128 0 722 751 128 0 750 751 128 0 751 751 -218.46 0 752 751 128 0 780 751 128 0 723 752 128 0 751 752 128 0 752 752 -218.46 0 753 752 128 0 781 752 128 0 724 753 128 0 752 753 128 0 753 753 -218.46 0 782 753 128 0 725 754 128 0 754 754 -218.46 0 755 754 128 0 783 754 128 0 726 755 128 0 754 755 128 0 755 755 -218.46 0 756 755 128 0 784 755 128 0 727 756 128 0 755 756 128 0 756 756 -218.46 0 757 756 128 0 785 756 128 0 728 757 128 0 756 757 128 0 757 757 -218.46 0 758 757 128 0 786 757 128 0 729 758 128 0 757 758 128 0 758 758 -218.46 0 759 758 128 0 787 758 128 0 730 759 128 0 758 759 128 0 759 759 -218.46 0 760 759 128 0 788 759 128 0 731 760 128 0 759 760 128 0 760 760 -218.46 0 761 760 128 0 789 760 128 0 732 761 128 0 760 761 128 0 761 761 -218.46 0 762 761 128 0 790 761 128 0 733 762 128 0 761 762 128 0 762 762 -218.46 0 763 762 128 0 791 762 128 0 734 763 128 0 762 763 128 0 763 763 -218.46 0 764 763 128 0 792 763 128 0 735 764 86.627 0 763 764 128 0 764 764 -218.46 0 765 764 128 0 793 764 128 0 736 765 86.627 0 764 765 128 0 765 765 -218.46 0 766 765 128 0 794 765 128 0 737 766 86.627 0 765 766 128 0 766 766 -218.46 0 767 766 128 0 795 766 128 0 738 767 86.627 0 766 767 128 0 767 767 -218.46 0 768 767 86.627 0 796 767 128 0 739 768 45.254 0 767 768 86.627 0 768 768 -63.965 -26.544 769 768 86.627 0 797 768 86.627 0 740 769 86.627 0 768 769 86.627 0 769 769 -218.46 0 770 769 128 0 798 769 128 0 741 770 86.627 0 769 770 128 0 770 770 -218.46 0 771 770 128 0 799 770 128 0 742 771 86.627 0 770 771 128 0 771 771 -218.46 0 772 771 128 0 800 771 128 0 743 772 86.627 0 771 772 128 0 772 772 -218.46 0 773 772 128 0 801 772 128 0 744 773 128 0 772 773 128 0 773 773 -218.46 0 774 773 128 0 802 773 128 0 745 774 128 0 773 774 128 0 774 774 -218.46 0 775 774 128 0 803 774 128 0 746 775 128 0 774 775 128 0 775 775 -218.46 0 776 775 128 0 804 775 128 0 747 776 128 0 775 776 128 0 776 776 -218.46 0 777 776 128 0 805 776 128 0 748 777 128 0 776 777 128 0 777 777 -218.46 0 778 777 128 0 806 777 128 0 749 778 128 0 777 778 128 0 778 778 -218.46 0 779 778 128 0 807 778 128 0 750 779 128 0 778 779 128 0 779 779 -218.46 0 780 779 128 0 808 779 128 0 751 780 128 0 779 780 128 0 780 780 -218.46 0 781 780 128 0 809 780 128 0 752 781 128 0 780 781 128 0 781 781 -218.46 0 782 781 128 0 810 781 128 0 753 782 128 0 781 782 128 0 782 782 -218.46 0 811 782 128 0 754 783 128 0 783 783 -218.46 0 784 783 128 0 812 783 128 0 755 784 128 0 783 784 128 0 784 784 -218.46 0 785 784 128 0 813 784 128 0 756 785 128 0 784 785 128 0 785 785 -218.46 0 786 785 128 0 814 785 128 0 757 786 128 0 785 786 128 0 786 786 -218.46 0 787 786 128 0 815 786 128 0 758 787 128 0 786 787 128 0 787 787 -218.46 0 788 787 128 0 816 787 128 0 759 788 128 0 787 788 128 0 788 788 -218.46 0 789 788 128 0 817 788 128 0 760 789 128 0 788 789 128 0 789 789 -218.46 0 790 789 128 0 818 789 128 0 761 790 128 0 789 790 128 0 790 790 -218.46 0 791 790 128 0 819 790 128 0 762 791 128 0 790 791 128 0 791 791 -218.46 0 792 791 128 0 820 791 128 0 763 792 128 0 791 792 128 0 792 792 -218.46 0 793 792 128 0 821 792 128 0 764 793 128 0 792 793 128 0 793 793 -218.46 0 794 793 128 0 822 793 128 0 765 794 128 0 793 794 128 0 794 794 -218.46 0 795 794 128 0 823 794 128 0 766 795 128 0 794 795 128 0 795 795 -218.46 0 796 795 128 0 824 795 128 0 767 796 128 0 795 796 128 0 796 796 -218.46 0 797 796 128 0 825 796 128 0 768 797 86.627 0 796 797 128 0 797 797 -218.46 0 798 797 128 0 826 797 128 0 769 798 128 0 797 798 128 0 798 798 -218.46 0 799 798 128 0 827 798 128 0 770 799 128 0 798 799 128 0 799 799 -218.46 0 800 799 128 0 828 799 128 0 771 800 128 0 799 800 128 0 800 800 -218.46 0 801 800 128 0 829 800 128 0 772 801 128 0 800 801 128 0 801 801 -218.46 0 802 801 128 0 830 801 128 0 773 802 128 0 801 802 128 0 802 802 -218.46 0 803 802 128 0 831 802 128 0 774 803 128 0 802 803 128 0 803 803 -218.46 0 804 803 128 0 832 803 128 0 775 804 128 0 803 804 128 0 804 804 -218.46 0 805 804 128 0 833 804 128 0 776 805 128 0 804 805 128 0 805 805 -218.46 0 806 805 128 0 834 805 128 0 777 806 128 0 805 806 128 0 806 806 -218.46 0 807 806 128 0 835 806 128 0 778 807 128 0 806 807 128 0 807 807 -218.46 0 808 807 128 0 836 807 128 0 779 808 128 0 807 808 128 0 808 808 -218.46 0 809 808 128 0 837 808 128 0 780 809 128 0 808 809 128 0 809 809 -218.46 0 810 809 128 0 838 809 128 0 781 810 128 0 809 810 128 0 810 810 -218.46 0 811 810 128 0 839 810 128 0 782 811 128 0 810 811 128 0 811 811 -218.46 0 840 811 128 0 783 812 128 0 812 812 -218.46 0 813 812 128 0 784 813 128 0 812 813 128 0 813 813 -218.46 0 814 813 128 0 785 814 128 0 813 814 128 0 814 814 -218.46 0 815 814 128 0 786 815 128 0 814 815 128 0 815 815 -218.46 0 816 815 128 0 787 816 128 0 815 816 128 0 816 816 -218.46 0 817 816 128 0 788 817 128 0 816 817 128 0 817 817 -218.46 0 818 817 128 0 789 818 128 0 817 818 128 0 818 818 -218.46 0 819 818 128 0 790 819 128 0 818 819 128 0 819 819 -218.46 0 820 819 128 0 791 820 128 0 819 820 128 0 820 820 -218.46 0 821 820 128 0 792 821 128 0 820 821 128 0 821 821 -218.46 0 822 821 128 0 793 822 128 0 821 822 128 0 822 822 -218.46 0 823 822 128 0 794 823 128 0 822 823 128 0 823 823 -218.46 0 824 823 128 0 795 824 128 0 823 824 128 0 824 824 -218.46 0 825 824 128 0 796 825 128 0 824 825 128 0 825 825 -218.46 0 826 825 128 0 797 826 128 0 825 826 128 0 826 826 -218.46 0 827 826 128 0 798 827 128 0 826 827 128 0 827 827 -218.46 0 828 827 128 0 799 828 128 0 827 828 128 0 828 828 -218.46 0 829 828 128 0 800 829 128 0 828 829 128 0 829 829 -218.46 0 830 829 128 0 801 830 128 0 829 830 128 0 830 830 -218.46 0 831 830 128 0 802 831 128 0 830 831 128 0 831 831 -218.46 0 832 831 128 0 803 832 128 0 831 832 128 0 832 832 -218.46 0 833 832 128 0 804 833 128 0 832 833 128 0 833 833 -218.46 0 834 833 128 0 805 834 128 0 833 834 128 0 834 834 -218.46 0 835 834 128 0 806 835 128 0 834 835 128 0 835 835 -218.46 0 836 835 128 0 807 836 128 0 835 836 128 0 836 836 -218.46 0 837 836 128 0 808 837 128 0 836 837 128 0 837 837 -218.46 0 838 837 128 0 809 838 128 0 837 838 128 0 838 838 -218.46 0 839 838 128 0 810 839 128 0 838 839 128 0 839 839 -218.46 0 840 839 128 0 811 840 128 0 839 840 128 0 840 840 -218.46 0 SuiteSparse/CXSparse/Matrix/c_mbeacxc0000644001170100242450000470760210376375430016562 0ustar davisfac5 0 0.0045458972 1e-6 6 0 0.24555165 1e-6 18 0 0.025517598 1e-6 24 0 7.0999988e-05 1e-6 62 0 0.0068898983 1e-6 98 0 0.0028766999 1e-6 102 0 0.11666727 1e-6 103 0 8.8799992e-05 1e-6 104 0 0.0011898 1e-6 107 0 0.0042084977 1e-6 108 0 1.779999e-05 1e-6 111 0 0.00094119995 1e-6 114 0 8.8799992e-05 1e-6 117 0 0.0014915999 1e-6 118 0 0.012057398 1e-6 119 0 0.0002308 1e-6 120 0 0.0001776 1e-6 126 0 1.779999e-05 1e-6 141 0 3.5499994e-05 1e-6 143 0 0.0015626999 1e-6 160 0 0.0002485998 1e-6 171 0 8.8799992e-05 1e-6 172 0 1.779999e-05 1e-6 189 0 1.779999e-05 1e-6 194 0 1.779999e-05 1e-6 198 0 0.00014209999 1e-6 200 0 8.8799992e-05 1e-6 201 0 7.0999988e-05 1e-6 206 0 3.5499994e-05 1e-6 214 0 0.00062149996 1e-6 217 0 0.0011719998 1e-6 223 0 0.00095889997 1e-6 228 0 0.00037289993 1e-6 229 0 0.0037113 1e-6 234 0 0.0047767982 1e-6 237 0 0.0039421991 1e-6 242 0 1.779999e-05 1e-6 253 0 0.00039069983 1e-6 279 0 8.8799992e-05 1e-6 283 0 3.5499994e-05 1e-6 307 0 0.0001065 1e-6 315 0 0.0017402 1e-6 317 0 0.00095889997 1e-6 318 0 1.779999e-05 1e-6 322 0 5.3299998e-05 1e-6 329 0 0.0049720965 1e-6 356 0 8.8799992e-05 1e-6 357 0 0.00014209999 1e-6 358 0 8.8799992e-05 1e-6 384 0 7.0999988e-05 1e-6 387 0 1.779999e-05 1e-6 394 0 0.00026639993 1e-6 397 0 5.3299998e-05 1e-6 402 0 0.00062149996 1e-6 422 0 1.779999e-05 1e-6 438 0 3.5499994e-05 1e-6 442 0 3.5499994e-05 1e-6 443 0 0.0044926964 1e-6 444 0 1.779999e-05 1e-6 445 0 0.032176699 1e-6 446 0 0.00053269998 1e-6 447 0 3.5499994e-05 1e-6 448 0 0.00012429999 1e-6 450 0 0.0026991998 1e-6 452 0 0.0080086999 1e-6 454 0 0.0002308 1e-6 455 0 0.021841798 1e-6 456 0 0.00078129978 1e-6 457 0 0.0098198988 1e-6 458 0 0.00037289993 1e-6 459 0 3.5499994e-05 1e-6 460 0 0.0055580996 1e-6 463 0 0.029246699 1e-6 464 0 1.779999e-05 1e-6 467 0 0.0031963999 1e-6 468 0 0.00021309999 1e-6 469 0 0.0013851 1e-6 470 0 0.00040839985 1e-6 471 0 0.0032495998 1e-6 473 0 1.779999e-05 1e-6 476 0 0.0017402 1e-6 478 0 0.00035519991 1e-6 483 0 0.00014209999 1e-6 490 0 3.5499994e-05 1e-6 6 1 0.16098946 1e-6 18 1 0.12319708 1e-6 62 1 0.0048390999 1e-6 102 1 0.38757879 1e-6 114 1 2.3599991e-05 1e-6 117 1 0.0025966 1e-6 118 1 0.020938098 1e-6 119 1 0.00040129991 1e-6 120 1 0.00030689989 1e-6 126 1 2.3599991e-05 1e-6 141 1 4.7199996e-05 1e-6 171 1 9.4399991e-05 1e-6 172 1 2.3599991e-05 1e-6 194 1 0.0046738982 1e-6 195 1 0.011023797 1e-6 200 1 9.4399991e-05 1e-6 201 1 9.4399991e-05 1e-6 206 1 4.7199996e-05 1e-6 214 1 0.00028329995 1e-6 217 1 0.00054289983 1e-6 223 1 0.00092059979 1e-6 228 1 0.0059249997 1e-6 229 1 0.00068459986 1e-6 234 1 0.0055944994 1e-6 237 1 0.0020772999 1e-6 279 1 0.00014159999 1e-6 283 1 4.7199996e-05 1e-6 307 1 0.000118 1e-6 317 1 0.00096779992 1e-6 318 1 2.3599991e-05 1e-6 322 1 2.3599991e-05 1e-6 329 1 0.0028326998 1e-6 356 1 9.4399991e-05 1e-6 357 1 7.0799986e-05 1e-6 358 1 4.7199996e-05 1e-6 384 1 4.7199996e-05 1e-6 394 1 0.00016519999 1e-6 397 1 4.7199996e-05 1e-6 402 1 0.00028329995 1e-6 438 1 4.7199996e-05 1e-6 442 1 4.7199996e-05 1e-6 443 1 0.010575298 1e-6 445 1 0.0052403994 1e-6 446 1 0.0011094999 1e-6 447 1 4.7199996e-05 1e-6 448 1 0.00014159999 1e-6 450 1 0.0026909998 1e-6 452 1 0.0080494992 1e-6 453 1 0.00051929988 1e-6 454 1 0.00023609999 1e-6 455 1 0.042230196 1e-6 456 1 0.012062397 1e-6 457 1 0.0048862994 1e-6 458 1 0.00037769997 1e-6 459 1 2.3599991e-05 1e-6 460 1 0.0033047998 1e-6 463 1 0.0162878 1e-6 464 1 2.3599991e-05 1e-6 467 1 0.0015815999 1e-6 468 1 0.00021239999 1e-6 469 1 0.0014398999 1e-6 470 1 0.00040129991 1e-6 471 1 0.0017467998 1e-6 473 1 2.3599991e-05 1e-6 476 1 0.027901698 1e-6 478 1 0.00035409979 1e-6 483 1 0.00014159999 1e-6 490 1 4.7199996e-05 1e-6 0 2 0.0031091999 1e-6 2 2 0.36019218 1e-6 3 2 0.0014519999 1e-6 5 2 0.0087651983 1e-6 6 2 0.22969705 1e-6 9 2 3.2999997e-06 1e-6 11 2 7.9399993e-05 1e-6 14 2 0.00015219999 1e-6 18 2 0.016207296 1e-6 62 2 0.0048456974 1e-6 82 2 1.32e-05 1e-6 83 2 3.2999997e-06 1e-6 84 2 3.2999997e-06 1e-6 98 2 0.00080039981 1e-6 102 2 0.058878798 1e-6 103 2 2.9799994e-05 1e-6 104 2 0.00033739978 1e-6 107 2 0.0011741999 1e-6 108 2 3.2999997e-06 1e-6 111 2 0.00025799987 1e-6 113 2 6.5999993e-06 1e-6 114 2 5.2899995e-05 1e-6 117 2 0.0015479999 1e-6 118 2 0.012585498 1e-6 119 2 0.00022819999 1e-6 120 2 0.00017859999 1e-6 126 2 6.5999993e-06 1e-6 141 2 2.6499998e-05 1e-6 171 2 8.5999985e-05 1e-6 172 2 1.9799991e-05 1e-6 189 2 6.5999993e-06 1e-6 193 2 1.6499995e-05 1e-6 194 2 9.8999999e-06 1e-6 197 2 3.2999997e-06 1e-6 200 2 9.5899988e-05 1e-6 201 2 7.2799987e-05 1e-6 203 2 6.5999993e-06 1e-6 204 2 6.5999993e-06 1e-6 206 2 1.32e-05 1e-6 207 2 3.2999997e-06 1e-6 214 2 0.00036709988 1e-6 217 2 0.0007077998 1e-6 223 2 0.00086989999 1e-6 228 2 0.00048289984 1e-6 234 2 0.0037838998 1e-6 237 2 0.0030958999 1e-6 242 2 9.8999999e-06 1e-6 252 2 3.2999997e-06 1e-6 279 2 9.5899988e-05 1e-6 283 2 4.9599999e-05 1e-6 307 2 0.00010579999 1e-6 317 2 0.00093609979 1e-6 318 2 9.8999999e-06 1e-6 322 2 3.6399986e-05 1e-6 329 2 0.0040253997 1e-6 356 2 8.9299996e-05 1e-6 357 2 0.00010919999 1e-6 358 2 5.6199991e-05 1e-6 384 2 4.9599999e-05 1e-6 387 2 3.2999997e-06 1e-6 394 2 0.00020839999 1e-6 397 2 4.6299989e-05 1e-6 402 2 0.00043659983 1e-6 419 2 3.2999997e-06 1e-6 422 2 9.8999999e-06 1e-6 423 2 3.2999997e-06 1e-6 425 2 3.2999997e-06 1e-6 430 2 3.2999997e-06 1e-6 431 2 3.2999997e-06 1e-6 433 2 3.2999997e-06 1e-6 434 2 3.2999997e-06 1e-6 438 2 2.9799994e-05 1e-6 442 2 3.9699997e-05 1e-6 443 2 0.0041576996 1e-6 444 2 9.8999999e-06 1e-6 445 2 0.004623998 1e-6 446 2 0.00069129979 1e-6 447 2 3.6399986e-05 1e-6 448 2 7.9399993e-05 1e-6 450 2 0.0026791999 1e-6 452 2 0.0080043972 1e-6 454 2 0.00015219999 1e-6 455 2 0.032106999 1e-6 456 2 0.0010187 1e-6 457 2 0.0087452978 1e-6 458 2 4.6299989e-05 1e-6 459 2 1.6499995e-05 1e-6 460 2 0.0044586994 1e-6 463 2 0.022627398 1e-6 464 2 1.32e-05 1e-6 467 2 0.0026625998 1e-6 468 2 0.0002249 1e-6 469 2 0.0014056999 1e-6 470 2 0.00039689988 1e-6 471 2 0.0028014998 1e-6 473 2 9.8999999e-06 1e-6 476 2 0.0022987998 1e-6 478 2 0.00035389978 1e-6 483 2 0.0001389 1e-6 490 2 3.309999e-05 1e-6 3 3 0.068147898 1e-6 5 3 0.00082899979 1e-6 6 3 0.21903497 1e-6 18 3 0.0076272972 1e-6 62 3 0.0031503998 1e-6 98 3 0.012104098 1e-6 101 3 0.037307199 1e-6 102 3 0.16630739 1e-6 103 3 0.00049739983 1e-6 104 3 0.0049742982 1e-6 107 3 0.017741699 1e-6 111 3 0.0039793998 1e-6 114 3 0.0014922998 1e-6 117 3 0.00066319993 1e-6 118 3 0.0051400997 1e-6 119 3 0.0001658 1e-6 200 3 0.0001658 1e-6 201 3 0.0001658 1e-6 214 3 0.00066319993 1e-6 217 3 0.00099489978 1e-6 223 3 0.0024871 1e-6 228 3 0.0021555 1e-6 234 3 0.0084562972 1e-6 237 3 0.0013265 1e-6 251 3 0.023379199 1e-6 279 3 0.0001658 1e-6 307 3 0.0001658 1e-6 317 3 0.00082899979 1e-6 322 3 0.0016580999 1e-6 329 3 0.00082899979 1e-6 356 3 0.0001658 1e-6 394 3 0.0001658 1e-6 402 3 0.0001658 1e-6 443 3 0.0061349981 1e-6 445 3 0.0051400997 1e-6 446 3 0.00066319993 1e-6 447 3 0.00049739983 1e-6 448 3 0.0001658 1e-6 450 3 0.0026529999 1e-6 452 3 0.0079588965 1e-6 453 3 0.00066319993 1e-6 454 3 0.0001658 1e-6 455 3 0.030343197 1e-6 456 3 0.0043110996 1e-6 457 3 0.0024871 1e-6 458 3 0.00049739983 1e-6 460 3 0.0023212999 1e-6 463 3 0.028685097 1e-6 467 3 0.0021555 1e-6 468 3 0.0001658 1e-6 469 3 0.0014922998 1e-6 470 3 0.00049739983 1e-6 471 3 0.0013265 1e-6 476 3 0.0096169971 1e-6 478 3 0.00033159996 1e-6 483 3 0.0001658 1e-6 490 3 0.0001658 1e-6 0 4 0.00024319999 1e-6 1 4 0.00072969985 1e-6 2 4 0.0031619 1e-6 3 4 0.0087560974 1e-6 4 4 0.012696397 1e-6 18 4 0.18679768 1e-6 24 4 0.0016538999 1e-6 25 4 0.0018485 1e-6 62 4 0.0087074973 1e-6 114 4 4.8599992e-05 1e-6 171 4 9.7299999e-05 1e-6 200 4 9.7299999e-05 1e-6 201 4 9.7299999e-05 1e-6 206 4 4.8599992e-05 1e-6 214 4 0.028019696 1e-6 215 4 0.078124166 1e-6 217 4 0.045775197 1e-6 223 4 0.00029189978 1e-6 234 4 0.022765998 1e-6 237 4 0.0063724965 1e-6 273 4 9.7299999e-05 1e-6 279 4 4.8599992e-05 1e-6 283 4 4.8599992e-05 1e-6 307 4 9.7299999e-05 1e-6 317 4 0.00097289984 1e-6 322 4 9.7299999e-05 1e-6 329 4 0.0094857998 1e-6 356 4 0.00029189978 1e-6 357 4 0.0001946 1e-6 358 4 9.7299999e-05 1e-6 384 4 4.8599992e-05 1e-6 394 4 0.00087559992 1e-6 397 4 9.7299999e-05 1e-6 402 4 0.00068099983 1e-6 438 4 4.8599992e-05 1e-6 442 4 4.8599992e-05 1e-6 443 4 0.0069075972 1e-6 445 4 0.0049617998 1e-6 446 4 0.0019944999 1e-6 447 4 4.8599992e-05 1e-6 448 4 0.00048649986 1e-6 450 4 0.0026268 1e-6 453 4 0.006858997 1e-6 454 4 0.0070535988 1e-6 455 4 0.038672999 1e-6 457 4 0.010118198 1e-6 458 4 0.00034049992 1e-6 460 4 0.009388499 1e-6 463 4 0.17463636 1e-6 467 4 0.012745097 1e-6 468 4 0.0001946 1e-6 469 4 0.0014106999 1e-6 470 4 0.00038919994 1e-6 471 4 0.0042807981 1e-6 478 4 0.00034049992 1e-6 483 4 0.00014589999 1e-6 490 4 4.8599992e-05 1e-6 0 5 0.00028399983 1e-6 1 5 0.00099389977 1e-6 2 5 0.023086797 1e-6 3 5 0.0034359999 1e-6 5 5 0.043362197 1e-6 18 5 0.017066598 1e-6 24 5 0.0023852999 1e-6 25 5 0.0011642999 1e-6 62 5 0.010109298 1e-6 114 5 2.8399998e-05 1e-6 141 5 2.8399998e-05 1e-6 171 5 8.5199994e-05 1e-6 172 5 2.8399998e-05 1e-6 200 5 8.5199994e-05 1e-6 201 5 8.5199994e-05 1e-6 206 5 5.6799996e-05 1e-6 214 5 0.0090017989 1e-6 215 5 0.037569199 1e-6 217 5 0.0083486997 1e-6 223 5 0.00017039999 1e-6 234 5 0.025670897 1e-6 237 5 0.0047706999 1e-6 242 5 2.8399998e-05 1e-6 273 5 8.5199994e-05 1e-6 279 5 0.00017039999 1e-6 283 5 5.6799996e-05 1e-6 307 5 0.00011359999 1e-6 317 5 0.0009370998 1e-6 318 5 2.8399998e-05 1e-6 322 5 5.6799996e-05 1e-6 329 5 0.0070991963 1e-6 356 5 0.00031239982 1e-6 357 5 0.00011359999 1e-6 358 5 5.6799996e-05 1e-6 384 5 2.8399998e-05 1e-6 394 5 0.00070989993 1e-6 397 5 5.6799996e-05 1e-6 402 5 0.00045439997 1e-6 438 5 2.8399998e-05 1e-6 442 5 5.6799996e-05 1e-6 443 5 0.0051114969 1e-6 445 5 0.0034075999 1e-6 446 5 0.0017037999 1e-6 447 5 5.6799996e-05 1e-6 448 5 0.0005394998 1e-6 450 5 0.0026409 1e-6 453 5 0.0031804999 1e-6 454 5 0.0026125 1e-6 455 5 0.0240523 1e-6 457 5 0.0058497973 1e-6 458 5 0.00036919978 1e-6 459 5 2.8399998e-05 1e-6 460 5 0.0082350969 1e-6 463 5 0.15800089 1e-6 464 5 2.8399998e-05 1e-6 467 5 0.010506898 1e-6 468 5 0.0002272 1e-6 469 5 0.0013914998 1e-6 470 5 0.00039759977 1e-6 471 5 0.0026976999 1e-6 478 5 0.00036919978 1e-6 483 5 0.00014199999 1e-6 490 5 5.6799996e-05 1e-6 0 6 0.0077898987 1e-6 1 6 0.0020032998 1e-6 2 6 0.028940197 1e-6 3 6 0.0054982975 1e-6 6 6 0.023989499 1e-6 7 6 0.0047560968 1e-6 13 6 0.0006773998 1e-6 18 6 0.018692899 1e-6 24 6 0.0040714964 1e-6 25 6 0.0020754 1e-6 62 6 0.0094761997 1e-6 108 6 7.1999993e-06 1e-6 114 6 7.1999993e-06 1e-6 126 6 7.1999993e-06 1e-6 141 6 0.0035670998 1e-6 171 6 8.6499989e-05 1e-6 172 6 2.159999e-05 1e-6 189 6 0.0001657 1e-6 194 6 1.44e-05 1e-6 200 6 9.3699986e-05 1e-6 201 6 7.2099996e-05 1e-6 203 6 7.1999993e-06 1e-6 204 6 7.1999993e-06 1e-6 206 6 1.44e-05 1e-6 214 6 0.020516098 1e-6 215 6 0.054731198 1e-6 217 6 0.019910797 1e-6 223 6 0.0001946 1e-6 234 6 0.031282198 1e-6 237 6 0.0060171969 1e-6 241 6 0.00040349993 1e-6 242 6 1.44e-05 1e-6 273 6 0.00020179999 1e-6 279 6 8.6499989e-05 1e-6 283 6 5.0399991e-05 1e-6 307 6 0.0001009 1e-6 317 6 0.00093679992 1e-6 318 6 1.44e-05 1e-6 322 6 0.0012683 1e-6 329 6 0.009490598 1e-6 356 6 0.00030989992 1e-6 357 6 0.00010809999 1e-6 358 6 6.4899999e-05 1e-6 384 6 2.8799986e-05 1e-6 387 6 7.1999993e-06 1e-6 394 6 0.0010016998 1e-6 397 6 5.0399991e-05 1e-6 402 6 0.00046839984 1e-6 422 6 7.1999993e-06 1e-6 430 6 7.1999993e-06 1e-6 434 6 7.1999993e-06 1e-6 438 6 2.159999e-05 1e-6 442 6 5.0399991e-05 1e-6 443 6 0.0065648966 1e-6 444 6 1.44e-05 1e-6 445 6 0.0085104965 1e-6 446 6 0.0025221999 1e-6 447 6 0.00011529999 1e-6 448 6 0.00069179991 1e-6 450 6 0.0026590999 1e-6 453 6 0.0036175 1e-6 454 6 0.006672997 1e-6 455 6 0.039324299 1e-6 456 6 2.159999e-05 1e-6 457 6 0.0064423978 1e-6 458 6 0.00036749989 1e-6 459 6 2.159999e-05 1e-6 460 6 0.0073791966 1e-6 463 6 0.1141609 1e-6 464 6 2.159999e-05 1e-6 467 6 0.015197899 1e-6 468 6 0.0002234 1e-6 469 6 0.0013907999 1e-6 470 6 0.00039629987 1e-6 471 6 0.0029400999 1e-6 473 6 7.1999993e-06 1e-6 478 6 0.00036029983 1e-6 483 6 0.00013689999 1e-6 490 6 3.5999998e-05 1e-6 3 7 0.0092790984 1e-6 7 7 0.0563883 1e-6 18 7 0.0513919 1e-6 24 7 0.00071379985 1e-6 62 7 0.0028551 1e-6 153 7 0.00071379985 1e-6 154 7 0.0028551 1e-6 172 7 0.00071379985 1e-6 193 7 0.0028551 1e-6 214 7 0.0107066 1e-6 215 7 0.044967897 1e-6 217 7 0.015703097 1e-6 223 7 0.00071379985 1e-6 234 7 0.030692399 1e-6 237 7 0.0099928975 1e-6 241 7 0.024982199 1e-6 317 7 0.0014275999 1e-6 329 7 0.014275499 1e-6 357 7 0.00071379985 1e-6 394 7 0.0014275999 1e-6 402 7 0.00071379985 1e-6 443 7 0.0035688998 1e-6 445 7 0.0135617 1e-6 446 7 0.00071379985 1e-6 448 7 0.00071379985 1e-6 450 7 0.0028551 1e-6 453 7 0.00071379985 1e-6 454 7 0.0064239986 1e-6 455 7 0.037116297 1e-6 457 7 0.016416799 1e-6 460 7 0.011420399 1e-6 463 7 0.084225595 1e-6 467 7 0.016416799 1e-6 469 7 0.0014275999 1e-6 470 7 0.00071379985 1e-6 471 7 0.0064239986 1e-6 478 7 0.00071379985 1e-6 0 8 0.00013659999 1e-6 1 8 0.00020489999 1e-6 2 8 0.00027319998 1e-6 3 8 0.0088114999 1e-6 8 8 0.00095629995 1e-6 18 8 0.019398898 1e-6 24 8 0.0011612 1e-6 25 8 0.00013659999 1e-6 62 8 0.0118852 1e-6 114 8 6.8299996e-05 1e-6 130 8 0.0064890981 1e-6 171 8 0.00013659999 1e-6 200 8 0.00013659999 1e-6 201 8 6.8299996e-05 1e-6 206 8 6.8299996e-05 1e-6 214 8 0.0077185966 1e-6 217 8 0.0088114999 1e-6 223 8 0.00040979986 1e-6 234 8 0.014275998 1e-6 237 8 0.0064207986 1e-6 241 8 0.0020491998 1e-6 273 8 6.8299996e-05 1e-6 279 8 6.8299996e-05 1e-6 283 8 6.8299996e-05 1e-6 307 8 0.00013659999 1e-6 317 8 0.00088799978 1e-6 329 8 0.0085382983 1e-6 356 8 0.00027319998 1e-6 357 8 0.00020489999 1e-6 358 8 0.00013659999 1e-6 384 8 6.8299996e-05 1e-6 394 8 0.00054639997 1e-6 397 8 0.00013659999 1e-6 402 8 0.00081969984 1e-6 438 8 6.8299996e-05 1e-6 442 8 6.8299996e-05 1e-6 443 8 0.00081969984 1e-6 445 8 0.0017759998 1e-6 446 8 0.0004780998 1e-6 448 8 0.00034149992 1e-6 450 8 0.0027321998 1e-6 454 8 0.00034149992 1e-6 455 8 0.048497297 1e-6 457 8 0.0061474964 1e-6 458 8 0.00034149992 1e-6 460 8 0.011816896 1e-6 463 8 0.12233609 1e-6 467 8 0.0062157996 1e-6 468 8 0.00020489999 1e-6 469 8 0.0013660998 1e-6 470 8 0.00040979986 1e-6 471 8 0.0049179979 1e-6 478 8 0.00034149992 1e-6 483 8 0.00013659999 1e-6 490 8 6.8299996e-05 1e-6 0 9 4.4799992e-05 1e-6 1 9 0.0001792 1e-6 2 9 0.00013439999 1e-6 3 9 0.00094079995 1e-6 16 9 0.011827398 1e-6 18 9 0.073786974 1e-6 24 9 0.0014783998 1e-6 25 9 8.9599998e-05 1e-6 62 9 0.0079297982 1e-6 114 9 4.4799992e-05 1e-6 141 9 4.4799992e-05 1e-6 153 9 0.00062719989 1e-6 154 9 0.0023743999 1e-6 171 9 8.9599998e-05 1e-6 172 9 0.049460098 1e-6 189 9 4.4799992e-05 1e-6 193 9 0.0023743999 1e-6 198 9 8.9599998e-05 1e-6 200 9 0.00013439999 1e-6 201 9 8.9599998e-05 1e-6 206 9 4.4799992e-05 1e-6 214 9 0.0173827 1e-6 215 9 0.12580079 1e-6 217 9 0.0284485 1e-6 223 9 0.0001792 1e-6 234 9 0.030823 1e-6 237 9 0.0035392998 1e-6 273 9 4.4799992e-05 1e-6 283 9 4.4799992e-05 1e-6 307 9 0.00013439999 1e-6 317 9 0.0010751998 1e-6 322 9 4.4799992e-05 1e-6 329 9 0.0050176978 1e-6 356 9 0.00031359983 1e-6 357 9 8.9599998e-05 1e-6 358 9 8.9599998e-05 1e-6 384 9 4.4799992e-05 1e-6 394 9 0.00044799992 1e-6 397 9 4.4799992e-05 1e-6 402 9 0.00035839994 1e-6 438 9 4.4799992e-05 1e-6 442 9 4.4799992e-05 1e-6 443 9 0.010259397 1e-6 445 9 0.0056896992 1e-6 446 9 0.0021952 1e-6 447 9 4.4799992e-05 1e-6 448 9 0.00058239978 1e-6 450 9 0.0026433 1e-6 453 9 0.00022399999 1e-6 454 9 0.0046144985 1e-6 455 9 0.053178597 1e-6 456 9 0.0053760968 1e-6 457 9 0.0056448989 1e-6 458 9 0.00040319981 1e-6 460 9 0.0054208972 1e-6 463 9 0.021862797 1e-6 467 9 0.0072577 1e-6 468 9 0.00022399999 1e-6 469 9 0.0014336 1e-6 470 9 0.00044799992 1e-6 471 9 0.0022847999 1e-6 478 9 0.00035839994 1e-6 483 9 0.00013439999 1e-6 490 9 4.4799992e-05 1e-6 3 10 0.0016096998 1e-6 16 10 0.0072434992 1e-6 18 10 0.074849069 1e-6 24 10 0.0016096998 1e-6 62 10 0.013279699 1e-6 153 10 0.00080479984 1e-6 154 10 0.0024144999 1e-6 172 10 0.00080479984 1e-6 193 10 0.0024144999 1e-6 214 10 0.012072399 1e-6 215 10 0.1191147 1e-6 217 10 0.016498998 1e-6 234 10 0.029376298 1e-6 237 10 0.0040240996 1e-6 317 10 0.0012071999 1e-6 329 10 0.0028168999 1e-6 356 10 0.0004023998 1e-6 394 10 0.0004023998 1e-6 443 10 0.0088530965 1e-6 445 10 0.0040240996 1e-6 446 10 0.0016096998 1e-6 448 10 0.00080479984 1e-6 450 10 0.0028168999 1e-6 453 10 0.0016096998 1e-6 455 10 0.047082499 1e-6 456 10 0.0040240996 1e-6 457 10 0.0060361996 1e-6 458 10 0.0004023998 1e-6 460 10 0.006438598 1e-6 463 10 0.024144899 1e-6 467 10 0.0100604 1e-6 468 10 0.0004023998 1e-6 469 10 0.0016096998 1e-6 470 10 0.0004023998 1e-6 471 10 0.0024144999 1e-6 478 10 0.0004023998 1e-6 0 11 0.0001144 1e-6 1 11 0.0001716 1e-6 2 11 0.00028599985 1e-6 3 11 0.0028891 1e-6 11 11 0.015704099 1e-6 16 11 0.016247597 1e-6 18 11 0.048456799 1e-6 24 11 0.001373 1e-6 25 11 0.0011441999 1e-6 62 11 0.0060069971 1e-6 114 11 2.8599999e-05 1e-6 141 11 2.8599999e-05 1e-6 153 11 0.00062929979 1e-6 154 11 0.0024027999 1e-6 171 11 8.5799998e-05 1e-6 172 11 0.00077229994 1e-6 193 11 0.0024599999 1e-6 198 11 8.5799998e-05 1e-6 200 11 8.5799998e-05 1e-6 201 11 8.5799998e-05 1e-6 206 11 5.7199999e-05 1e-6 214 11 0.0097256973 1e-6 215 11 0.046883497 1e-6 217 11 0.0125576 1e-6 223 11 0.0001716 1e-6 234 11 0.011356197 1e-6 237 11 0.0036613999 1e-6 273 11 8.5799998e-05 1e-6 283 11 5.7199999e-05 1e-6 307 11 0.0001144 1e-6 317 11 0.0010583999 1e-6 322 11 5.7199999e-05 1e-6 329 11 0.0051202998 1e-6 356 11 0.00028599985 1e-6 357 11 0.0001144 1e-6 358 11 8.5799998e-05 1e-6 384 11 2.8599999e-05 1e-6 394 11 0.00042909989 1e-6 397 11 5.7199999e-05 1e-6 402 11 0.00037189992 1e-6 438 11 2.8599999e-05 1e-6 442 11 5.7199999e-05 1e-6 443 11 0.0042620972 1e-6 445 11 0.0073514991 1e-6 446 11 0.0010869999 1e-6 447 11 5.7199999e-05 1e-6 448 11 0.0002288 1e-6 450 11 0.0026602999 1e-6 453 11 0.0001144 1e-6 454 11 0.0031178999 1e-6 455 11 0.051946599 1e-6 456 11 0.0074086972 1e-6 457 11 0.0062930994 1e-6 458 11 0.00037189992 1e-6 459 11 2.8599999e-05 1e-6 460 11 0.0046339966 1e-6 463 11 0.044938397 1e-6 464 11 2.8599999e-05 1e-6 467 11 0.0062358975 1e-6 468 11 0.0002288 1e-6 469 11 0.0014016 1e-6 470 11 0.00040049991 1e-6 471 11 0.0025743998 1e-6 478 11 0.00037189992 1e-6 483 11 0.000143 1e-6 490 11 5.7199999e-05 1e-6 3 12 0.0059012994 1e-6 12 12 0.0362124 1e-6 18 12 0.046405599 1e-6 24 12 0.0020118 1e-6 25 12 0.00013409999 1e-6 62 12 0.008851897 1e-6 171 12 0.00013409999 1e-6 200 12 0.00013409999 1e-6 201 12 0.00013409999 1e-6 214 12 0.014216699 1e-6 215 12 0.10005355 1e-6 217 12 0.0189109 1e-6 223 12 0.00026819995 1e-6 234 12 0.017972097 1e-6 237 12 0.0046941973 1e-6 273 12 0.00013409999 1e-6 279 12 0.00013409999 1e-6 307 12 0.00013409999 1e-6 317 12 0.00093879993 1e-6 329 12 0.0060353987 1e-6 356 12 0.0004023998 1e-6 357 12 0.00013409999 1e-6 394 12 0.00080469996 1e-6 397 12 0.00013409999 1e-6 402 12 0.00026819995 1e-6 442 12 0.00013409999 1e-6 443 12 0.0068400986 1e-6 445 12 0.0040235966 1e-6 446 12 0.0013412 1e-6 448 12 0.0004023998 1e-6 450 12 0.0028164999 1e-6 453 12 0.00093879993 1e-6 455 12 0.032188799 1e-6 457 12 0.010058999 1e-6 458 12 0.0004023998 1e-6 460 12 0.0115343 1e-6 463 12 0.11614805 1e-6 467 12 0.0107296 1e-6 468 12 0.00026819995 1e-6 469 12 0.0014752999 1e-6 470 12 0.0004023998 1e-6 471 12 0.0033529999 1e-6 478 12 0.0004023998 1e-6 483 12 0.00013409999 1e-6 490 12 0.00013409999 1e-6 3 13 0.0014612998 1e-6 13 13 0.010715999 1e-6 16 13 0.0029225999 1e-6 18 13 0.049683399 1e-6 24 13 0.0053579994 1e-6 25 13 0.00048709987 1e-6 62 13 0.0014612998 1e-6 214 13 0.017535299 1e-6 215 13 0.2513395 1e-6 217 13 0.014612798 1e-6 234 13 0.014612798 1e-6 237 13 0.0043837987 1e-6 273 13 0.00048709987 1e-6 317 13 0.0014612998 1e-6 329 13 0.0043837987 1e-6 443 13 0.017048199 1e-6 445 13 0.007306397 1e-6 446 13 0.0019483999 1e-6 450 13 0.0024354998 1e-6 453 13 0.00097419997 1e-6 455 13 0.069654167 1e-6 457 13 0.009741798 1e-6 460 13 0.004870899 1e-6 463 13 0.07355088 1e-6 467 13 0.010715999 1e-6 469 13 0.0014612998 1e-6 470 13 0.00048709987 1e-6 471 13 0.0038967 1e-6 478 13 0.00048709987 1e-6 0 14 0.0011772998 1e-6 1 14 0.0014295999 1e-6 2 14 0.011142597 1e-6 3 14 0.0033006999 1e-6 14 14 0.056007598 1e-6 18 14 0.021213099 1e-6 24 14 0.00058869994 1e-6 25 14 0.00077789999 1e-6 62 14 0.0082623996 1e-6 114 14 2.1e-05 1e-6 126 14 2.1e-05 1e-6 141 14 4.2e-05 1e-6 171 14 0.0001051 1e-6 172 14 2.1e-05 1e-6 194 14 2.1e-05 1e-6 200 14 8.4099986e-05 1e-6 201 14 8.4099986e-05 1e-6 206 14 4.2e-05 1e-6 214 14 0.015767898 1e-6 215 14 0.010911398 1e-6 217 14 0.026931599 1e-6 223 14 0.00016819999 1e-6 234 14 0.022348396 1e-6 237 14 0.0057184994 1e-6 242 14 2.1e-05 1e-6 273 14 2.1e-05 1e-6 279 14 0.00014719999 1e-6 283 14 4.2e-05 1e-6 307 14 0.0001051 1e-6 317 14 0.0009670998 1e-6 318 14 2.1e-05 1e-6 322 14 4.2e-05 1e-6 329 14 0.0089350976 1e-6 356 14 0.00031539984 1e-6 357 14 0.0001261 1e-6 358 14 0.0001051 1e-6 384 14 4.2e-05 1e-6 394 14 0.0009039999 1e-6 397 14 6.3099986e-05 1e-6 402 14 0.00054659997 1e-6 438 14 4.2e-05 1e-6 442 14 6.3099986e-05 1e-6 443 14 0.0023546999 1e-6 444 14 2.1e-05 1e-6 445 14 0.0030063998 1e-6 446 14 0.0012403999 1e-6 447 14 4.2e-05 1e-6 448 14 0.00046249991 1e-6 450 14 0.0026910999 1e-6 453 14 0.00031539984 1e-6 454 14 0.00086199981 1e-6 455 14 0.020182896 1e-6 457 14 0.0066434965 1e-6 458 14 0.00037839985 1e-6 459 14 2.1e-05 1e-6 460 14 0.0073162988 1e-6 463 14 0.10947114 1e-6 464 14 2.1e-05 1e-6 467 14 0.013875697 1e-6 468 14 0.0002102 1e-6 469 14 0.0013875999 1e-6 470 14 0.0003994999 1e-6 471 14 0.0029222998 1e-6 473 14 2.1e-05 1e-6 478 14 0.00035739993 1e-6 483 14 0.00014719999 1e-6 490 14 4.2e-05 1e-6 1 16 0.00035179988 1e-6 3 16 0.0021813998 1e-6 16 16 0.054183397 1e-6 18 16 0.013932899 1e-6 22 16 0.00056289998 1e-6 24 16 0.0019703 1e-6 25 16 7.0399998e-05 1e-6 60 16 0.00014069999 1e-6 62 16 0.0052775964 1e-6 101 16 7.0399998e-05 1e-6 114 16 7.0399998e-05 1e-6 141 16 0.00091479998 1e-6 143 16 0.0015480998 1e-6 171 16 7.0399998e-05 1e-6 198 16 0.0033072999 1e-6 200 16 7.0399998e-05 1e-6 201 16 7.0399998e-05 1e-6 206 16 7.0399998e-05 1e-6 214 16 0.0030961998 1e-6 215 16 0.00014069999 1e-6 217 16 0.0026035998 1e-6 223 16 0.00021109999 1e-6 234 16 0.016114298 1e-6 237 16 0.0038701999 1e-6 241 16 0.010766298 1e-6 263 16 0.0040109977 1e-6 273 16 7.0399998e-05 1e-6 279 16 7.0399998e-05 1e-6 283 16 7.0399998e-05 1e-6 307 16 7.0399998e-05 1e-6 317 16 0.00077399984 1e-6 328 16 7.0399998e-05 1e-6 329 16 0.005840499 1e-6 356 16 0.00028149993 1e-6 357 16 0.00014069999 1e-6 394 16 0.00056289998 1e-6 397 16 7.0399998e-05 1e-6 402 16 0.00028149993 1e-6 442 16 7.0399998e-05 1e-6 443 16 0.0012665999 1e-6 444 16 7.0399998e-05 1e-6 445 16 0.0052775964 1e-6 446 16 0.00063329982 1e-6 447 16 0.00014069999 1e-6 448 16 0.00028149993 1e-6 450 16 0.0023924999 1e-6 452 16 0.0069663972 1e-6 453 16 0.0074589998 1e-6 454 16 0.00049259979 1e-6 455 16 0.053550098 1e-6 456 16 0.0247695 1e-6 457 16 0.0041516982 1e-6 458 16 0.00035179988 1e-6 460 16 0.0045738965 1e-6 463 16 0.0157624 1e-6 467 16 0.0066849999 1e-6 468 16 0.012806997 1e-6 469 16 0.0013369999 1e-6 470 16 0.00042219996 1e-6 471 16 0.0028851 1e-6 478 16 0.00028149993 1e-6 483 16 0.00014069999 1e-6 490 16 7.0399998e-05 1e-6 3 17 0.0019595998 1e-6 6 17 0.0056116991 1e-6 12 17 0.00017809999 1e-6 16 17 0.00093529979 1e-6 17 17 0.0040973984 1e-6 18 17 0.023560297 1e-6 62 17 0.0004453999 1e-6 98 17 0.00031179981 1e-6 101 17 0.010822598 1e-6 102 17 0.0042755976 1e-6 104 17 0.0001336 1e-6 107 17 0.0004453999 1e-6 108 17 4.449999e-05 1e-6 111 17 8.9099995e-05 1e-6 114 17 0.00017809999 1e-6 118 17 0.0001336 1e-6 123 17 0.010599896 1e-6 126 17 4.449999e-05 1e-6 139 17 0.0083284974 1e-6 141 17 0.011401597 1e-6 143 17 0.0035184999 1e-6 154 17 0.010020897 1e-6 194 17 4.449999e-05 1e-6 200 17 4.449999e-05 1e-6 206 17 8.9099995e-05 1e-6 207 17 0.001737 1e-6 214 17 0.0089965984 1e-6 215 17 0.00071259984 1e-6 217 17 0.00075709983 1e-6 223 17 0.0016923998 1e-6 228 17 0.0001336 1e-6 233 17 0.0037856998 1e-6 234 17 0.023248598 1e-6 237 17 0.0018259999 1e-6 240 17 4.449999e-05 1e-6 251 17 0.00062349997 1e-6 252 17 0.0001336 1e-6 300 17 0.017414197 1e-6 317 17 0.0013806999 1e-6 319 17 0.004587397 1e-6 322 17 0.0084620975 1e-6 326 17 0.0042755976 1e-6 328 17 0.0079721995 1e-6 329 17 0.00031179981 1e-6 350 17 0.0076603964 1e-6 356 17 8.9099995e-05 1e-6 384 17 0.0011133999 1e-6 387 17 4.449999e-05 1e-6 394 17 8.9099995e-05 1e-6 397 17 4.449999e-05 1e-6 402 17 8.9099995e-05 1e-6 404 17 4.449999e-05 1e-6 406 17 0.020353597 1e-6 407 17 0.0082393996 1e-6 414 17 0.0036074999 1e-6 422 17 4.449999e-05 1e-6 430 17 0.0031621999 1e-6 443 17 0.0021378 1e-6 444 17 0.0016033 1e-6 445 17 0.011134397 1e-6 446 17 0.00080169993 1e-6 447 17 0.0016033 1e-6 448 17 0.0004453999 1e-6 450 17 0.0021378 1e-6 452 17 0.0003562998 1e-6 453 17 0.00031179981 1e-6 454 17 4.449999e-05 1e-6 455 17 0.031443499 1e-6 456 17 0.00066809985 1e-6 457 17 0.0050326996 1e-6 458 17 4.449999e-05 1e-6 459 17 8.9099995e-05 1e-6 460 17 0.0068141967 1e-6 463 17 0.010688998 1e-6 464 17 0.0022713998 1e-6 465 17 0.00062349997 1e-6 467 17 0.017235998 1e-6 468 17 0.0019150998 1e-6 469 17 0.0035629999 1e-6 470 17 0.0019150998 1e-6 471 17 0.0096200965 1e-6 473 17 4.449999e-05 1e-6 476 17 0.00026719994 1e-6 477 17 0.0004453999 1e-6 478 17 0.0001336 1e-6 483 17 0.00026719994 1e-6 489 17 0.00017809999 1e-6 490 17 0.00026719994 1e-6 491 17 0.0011133999 1e-6 0 18 0.0003849999 1e-6 1 18 0.045257699 1e-6 2 18 0.019127999 1e-6 3 18 0.00055339979 1e-6 4 18 9.619999e-05 1e-6 5 18 0.00076989993 1e-6 6 18 0.016721997 1e-6 7 18 0.0018044999 1e-6 9 18 2.4099994e-05 1e-6 11 18 9.619999e-05 1e-6 12 18 9.619999e-05 1e-6 13 18 2.4099994e-05 1e-6 14 18 0.00052929996 1e-6 16 18 0.0096481964 1e-6 17 18 0.0025262998 1e-6 18 18 0.030460499 1e-6 24 18 0.00045709987 1e-6 25 18 9.619999e-05 1e-6 60 18 0.013112899 1e-6 62 18 0.00096239988 1e-6 79 18 2.4099994e-05 1e-6 82 18 2.4099994e-05 1e-6 83 18 2.4099994e-05 1e-6 84 18 2.4099994e-05 1e-6 98 18 0.00055339979 1e-6 101 18 0.0049564987 1e-6 102 18 0.0056061 1e-6 104 18 0.00057749986 1e-6 107 18 0.0001203 1e-6 108 18 4.8099988e-05 1e-6 111 18 2.4099994e-05 1e-6 113 18 7.2199997e-05 1e-6 114 18 0.0001203 1e-6 117 18 9.619999e-05 1e-6 118 18 0.00079399999 1e-6 126 18 7.2199997e-05 1e-6 127 18 2.4099994e-05 1e-6 130 18 2.4099994e-05 1e-6 141 18 9.619999e-05 1e-6 143 18 0.010249697 1e-6 153 18 0.0031518999 1e-6 154 18 4.8099988e-05 1e-6 172 18 0.0043789968 1e-6 192 18 0.00021649999 1e-6 193 18 4.8099988e-05 1e-6 194 18 0.00048119994 1e-6 195 18 4.8099988e-05 1e-6 196 18 7.2199997e-05 1e-6 197 18 0.0001203 1e-6 198 18 0.027837899 1e-6 201 18 7.2199997e-05 1e-6 203 18 0.0003849999 1e-6 204 18 0.00055339979 1e-6 206 18 0.00093839993 1e-6 207 18 0.00031279982 1e-6 209 18 9.619999e-05 1e-6 214 18 0.0013714 1e-6 215 18 0.017564099 1e-6 217 18 0.014508396 1e-6 219 18 2.4099994e-05 1e-6 223 18 0.0001203 1e-6 228 18 4.8099988e-05 1e-6 229 18 2.4099994e-05 1e-6 234 18 0.0194408 1e-6 237 18 0.0015399 1e-6 240 18 2.4099994e-05 1e-6 241 18 0.0001203 1e-6 248 18 2.4099994e-05 1e-6 250 18 2.4099994e-05 1e-6 251 18 0.00079399999 1e-6 252 18 0.00033679977 1e-6 263 18 2.4099994e-05 1e-6 267 18 0.0022856998 1e-6 279 18 2.4099994e-05 1e-6 315 18 2.4099994e-05 1e-6 317 18 7.2199997e-05 1e-6 322 18 0.0037774998 1e-6 326 18 0.0036090999 1e-6 328 18 0.0042827986 1e-6 329 18 0.0027188 1e-6 330 18 0.0027669999 1e-6 356 18 4.8099988e-05 1e-6 363 18 2.4099994e-05 1e-6 387 18 4.8099988e-05 1e-6 394 18 0.00014439999 1e-6 397 18 7.2199997e-05 1e-6 398 18 0.0019007998 1e-6 402 18 0.0038977999 1e-6 404 18 0.0013714 1e-6 412 18 0.00079399999 1e-6 419 18 2.4099994e-05 1e-6 422 18 0.00043309992 1e-6 423 18 2.4099994e-05 1e-6 425 18 2.4099994e-05 1e-6 430 18 4.8099988e-05 1e-6 431 18 7.2199997e-05 1e-6 432 18 7.2199997e-05 1e-6 433 18 0.0002406 1e-6 434 18 0.00028869999 1e-6 438 18 0.00055339979 1e-6 443 18 0.0034647 1e-6 444 18 0.0045714974 1e-6 445 18 0.0066406988 1e-6 446 18 0.00089019979 1e-6 447 18 0.017179199 1e-6 448 18 0.0003849999 1e-6 449 18 2.4099994e-05 1e-6 450 18 0.0056541972 1e-6 452 18 0.0075308979 1e-6 453 18 0.0026225999 1e-6 454 18 0.00033679977 1e-6 455 18 0.031446997 1e-6 456 18 0.0060872994 1e-6 457 18 0.0045233965 1e-6 458 18 0.0041383989 1e-6 459 18 7.2199997e-05 1e-6 460 18 0.0058706999 1e-6 463 18 0.035681598 1e-6 464 18 0.0041383989 1e-6 465 18 0.0012270999 1e-6 467 18 0.047423098 1e-6 468 18 0.0051007979 1e-6 469 18 0.0114046 1e-6 470 18 0.0067849979 1e-6 471 18 0.016000196 1e-6 473 18 0.00014439999 1e-6 474 18 4.8099988e-05 1e-6 476 18 0.00098649994 1e-6 477 18 7.2199997e-05 1e-6 478 18 0.0027909998 1e-6 483 18 0.0013714 1e-6 489 18 0.0002406 1e-6 490 18 0.00052929996 1e-6 491 18 9.619999e-05 1e-6 19 19 0.018687297 1e-6 20 19 0.0071814992 1e-6 21 19 0.0027798999 1e-6 22 19 0.0033976999 1e-6 24 19 0.0048648976 1e-6 60 19 0.025250997 1e-6 114 19 7.7199991e-05 1e-6 126 19 7.7199991e-05 1e-6 159 19 0.00054049981 1e-6 160 19 0.0015443999 1e-6 206 19 0.0001544 1e-6 214 19 0.0068725981 1e-6 215 19 0.00092659984 1e-6 220 19 0.010965299 1e-6 234 19 0.010115799 1e-6 237 19 0.010038599 1e-6 242 19 0.0026254999 1e-6 252 19 0.00030889991 1e-6 254 19 0.00030889991 1e-6 267 19 0.0012355 1e-6 272 19 0.00023169999 1e-6 277 19 0.010656398 1e-6 282 19 0.014517397 1e-6 283 19 0.0108108 1e-6 294 19 7.7199991e-05 1e-6 295 19 0.0041699 1e-6 312 19 0.0016215998 1e-6 317 19 0.00061779981 1e-6 322 19 0.011196896 1e-6 328 19 0.0035520999 1e-6 331 19 0.009034697 1e-6 332 19 0.009034697 1e-6 335 19 0.0020848999 1e-6 336 19 7.7199991e-05 1e-6 340 19 0.00023169999 1e-6 343 19 7.7199991e-05 1e-6 350 19 0.00092659984 1e-6 352 19 0.0019304999 1e-6 356 19 0.00030889991 1e-6 372 19 0.0020076998 1e-6 374 19 0.00023169999 1e-6 384 19 0.0003860998 1e-6 398 19 0.0001544 1e-6 402 19 0.018455599 1e-6 408 19 0.0016215998 1e-6 442 19 0.0020848999 1e-6 443 19 0.0056370981 1e-6 444 19 0.0035520999 1e-6 445 19 0.0078763999 1e-6 446 19 0.00069499994 1e-6 447 19 0.0030887998 1e-6 448 19 7.7199991e-05 1e-6 450 19 0.00077219983 1e-6 452 19 0.038146697 1e-6 453 19 0.0203861 1e-6 454 19 0.0064864978 1e-6 455 19 0.023629297 1e-6 456 19 0.00030889991 1e-6 457 19 0.0030115999 1e-6 459 19 0.0014672 1e-6 460 19 0.0010038998 1e-6 463 19 0.19752896 1e-6 464 19 0.00023169999 1e-6 465 19 0.00030889991 1e-6 467 19 0.019845597 1e-6 468 19 0.0097296983 1e-6 469 19 0.0013126999 1e-6 470 19 0.0012355 1e-6 471 19 0.0019304999 1e-6 473 19 7.7199991e-05 1e-6 477 19 0.0003860998 1e-6 478 19 0.00069499994 1e-6 483 19 0.0013899999 1e-6 489 19 0.0029344 1e-6 490 19 0.0001544 1e-6 491 19 0.0094207972 1e-6 19 20 6.4199994e-05 1e-6 20 20 0.13482279 1e-6 21 20 0.0053928979 1e-6 22 20 0.0001926 1e-6 24 20 0.00038519991 1e-6 60 20 0.0049434975 1e-6 114 20 6.4199994e-05 1e-6 126 20 6.4199994e-05 1e-6 130 20 0.00038519991 1e-6 143 20 6.4199994e-05 1e-6 159 20 0.0026322999 1e-6 160 20 6.4199994e-05 1e-6 194 20 6.4199994e-05 1e-6 206 20 0.00012839999 1e-6 214 20 0.026001498 1e-6 215 20 0.0015407999 1e-6 220 20 0.006805297 1e-6 234 20 0.010336399 1e-6 237 20 0.024011299 1e-6 242 20 0.00070619979 1e-6 252 20 0.00038519991 1e-6 254 20 0.00077039981 1e-6 265 20 0.0001926 1e-6 267 20 0.0069978982 1e-6 277 20 0.0044298992 1e-6 282 20 0.010464799 1e-6 283 20 0.0079609975 1e-6 284 20 6.4199994e-05 1e-6 294 20 0.001926 1e-6 312 20 0.0030174998 1e-6 317 20 0.00051359995 1e-6 322 20 0.0082177967 1e-6 328 20 6.4199994e-05 1e-6 331 20 0.0093733966 1e-6 332 20 0.0090523995 1e-6 335 20 0.001284 1e-6 336 20 0.00089879986 1e-6 350 20 6.4199994e-05 1e-6 356 20 0.00038519991 1e-6 358 20 0.00012839999 1e-6 372 20 0.00070619979 1e-6 384 20 0.00025679986 1e-6 386 20 0.00025679986 1e-6 398 20 0.00044939993 1e-6 402 20 0.00077039981 1e-6 408 20 0.0017976 1e-6 413 20 0.00032099988 1e-6 422 20 6.4199994e-05 1e-6 442 20 6.4199994e-05 1e-6 443 20 0.0041731 1e-6 444 20 0.00012839999 1e-6 445 20 0.0041731 1e-6 446 20 0.00096299988 1e-6 447 20 0.00038519991 1e-6 448 20 0.0001926 1e-6 450 20 0.00077039981 1e-6 452 20 0.027413998 1e-6 453 20 0.0050076991 1e-6 454 20 0.0012198 1e-6 455 20 0.032999497 1e-6 456 20 0.00051359995 1e-6 457 20 0.0059706978 1e-6 458 20 6.4199994e-05 1e-6 459 20 0.0030174998 1e-6 460 20 0.00083459984 1e-6 463 20 0.010528997 1e-6 464 20 6.4199994e-05 1e-6 465 20 0.00044939993 1e-6 467 20 0.014766298 1e-6 468 20 0.00083459984 1e-6 469 20 0.0013481998 1e-6 470 20 0.0015407999 1e-6 471 20 0.0023753999 1e-6 473 20 6.4199994e-05 1e-6 477 20 0.00032099988 1e-6 478 20 0.00077039981 1e-6 483 20 0.00070619979 1e-6 489 20 0.00070619979 1e-6 490 20 0.0001926 1e-6 491 20 0.022984099 1e-6 20 21 0.0012299998 1e-6 21 21 0.045971699 1e-6 22 21 0.00015379999 1e-6 24 21 0.00015379999 1e-6 60 21 0.013837598 1e-6 114 21 0.00015379999 1e-6 159 21 0.0053812973 1e-6 160 21 0.0039974973 1e-6 206 21 0.0003074999 1e-6 214 21 0.021678999 1e-6 215 21 0.0003074999 1e-6 220 21 0.0087637976 1e-6 223 21 0.0015374999 1e-6 224 21 0.0003074999 1e-6 234 21 0.012915097 1e-6 237 21 0.0063037984 1e-6 242 21 0.0007687998 1e-6 252 21 0.00061499979 1e-6 254 21 0.00061499979 1e-6 272 21 0.0038437999 1e-6 277 21 0.017681397 1e-6 282 21 0.00015379999 1e-6 295 21 0.0003074999 1e-6 305 21 0.00015379999 1e-6 312 21 0.0044588 1e-6 322 21 0.0072262995 1e-6 328 21 0.010762598 1e-6 331 21 0.014145099 1e-6 332 21 0.0133764 1e-6 335 21 0.0018449998 1e-6 336 21 0.0010762999 1e-6 341 21 0.0010762999 1e-6 350 21 0.00015379999 1e-6 352 21 0.0003074999 1e-6 356 21 0.0004612999 1e-6 358 21 0.0130689 1e-6 372 21 0.0026137999 1e-6 384 21 0.0003074999 1e-6 398 21 0.0018449998 1e-6 402 21 0.0015374999 1e-6 442 21 0.0063037984 1e-6 443 21 0.0030749999 1e-6 444 21 0.0070725977 1e-6 445 21 0.0047662966 1e-6 446 21 0.0004612999 1e-6 447 21 0.0044588 1e-6 450 21 0.0007687998 1e-6 452 21 0.029520299 1e-6 453 21 0.0035362998 1e-6 454 21 0.0024599999 1e-6 455 21 0.019372698 1e-6 456 21 0.00061499979 1e-6 457 21 0.011377599 1e-6 458 21 0.0041512996 1e-6 459 21 0.0069187991 1e-6 460 21 0.0052275993 1e-6 463 21 0.0435117 1e-6 464 21 0.0027674998 1e-6 465 21 0.00061499979 1e-6 467 21 0.023216497 1e-6 468 21 0.0010762999 1e-6 469 21 0.0018449998 1e-6 470 21 0.0012299998 1e-6 471 21 0.0033824998 1e-6 477 21 0.0007687998 1e-6 478 21 0.0010762999 1e-6 483 21 0.0013837998 1e-6 489 21 0.00061499979 1e-6 490 21 0.00015379999 1e-6 491 21 0.0047662966 1e-6 19 22 0.00029419991 1e-6 22 22 0.12051398 1e-6 60 22 0.0083099976 1e-6 82 22 1.8399995e-05 1e-6 108 22 1.8399995e-05 1e-6 114 22 1.8399995e-05 1e-6 126 22 1.8399995e-05 1e-6 130 22 0.0020774999 1e-6 150 22 0.00071699987 1e-6 159 22 0.0068943985 1e-6 189 22 1.8399995e-05 1e-6 190 22 9.1899987e-05 1e-6 192 22 1.8399995e-05 1e-6 193 22 0.0022796998 1e-6 194 22 1.8399995e-05 1e-6 200 22 1.8399995e-05 1e-6 203 22 1.8399995e-05 1e-6 204 22 3.6799989e-05 1e-6 206 22 5.5199998e-05 1e-6 207 22 1.8399995e-05 1e-6 214 22 0.00051479996 1e-6 215 22 0.0025738999 1e-6 220 22 0.0070965998 1e-6 223 22 3.6799989e-05 1e-6 234 22 0.014395498 1e-6 237 22 0.0050558969 1e-6 242 22 0.0036401998 1e-6 252 22 3.6799989e-05 1e-6 264 22 0.00049639982 1e-6 265 22 0.0012502 1e-6 267 22 0.00012869999 1e-6 272 22 5.5199998e-05 1e-6 273 22 0.0029048 1e-6 277 22 0.0097991973 1e-6 282 22 1.8399995e-05 1e-6 284 22 1.8399995e-05 1e-6 295 22 0.0026841999 1e-6 305 22 1.8399995e-05 1e-6 312 22 0.012299597 1e-6 317 22 0.00029419991 1e-6 322 22 0.0033276998 1e-6 328 22 0.0015626999 1e-6 331 22 0.031125899 1e-6 332 22 0.016270798 1e-6 335 22 0.0027760998 1e-6 340 22 0.00018389999 1e-6 352 22 0.00068019982 1e-6 356 22 0.00034929998 1e-6 358 22 0.00064349989 1e-6 372 22 0.00049639982 1e-6 374 22 5.5199998e-05 1e-6 384 22 0.0001103 1e-6 385 22 0.0020223998 1e-6 387 22 1.8399995e-05 1e-6 394 22 3.6799989e-05 1e-6 397 22 3.6799989e-05 1e-6 402 22 0.00022059999 1e-6 417 22 0.00012869999 1e-6 422 22 1.8399995e-05 1e-6 430 22 1.8399995e-05 1e-6 433 22 1.8399995e-05 1e-6 434 22 1.8399995e-05 1e-6 442 22 0.00068019982 1e-6 443 22 0.0030334999 1e-6 444 22 0.00022059999 1e-6 445 22 0.0035299 1e-6 446 22 0.00047799991 1e-6 447 22 0.0022429998 1e-6 448 22 0.00018389999 1e-6 450 22 0.00093759992 1e-6 452 22 0.019524898 1e-6 453 22 0.0001103 1e-6 454 22 0.00055159978 1e-6 455 22 0.030004397 1e-6 456 22 0.00064349989 1e-6 457 22 0.0031989999 1e-6 458 22 9.1899987e-05 1e-6 459 22 0.00080889999 1e-6 460 22 0.0025370999 1e-6 463 22 0.041090596 1e-6 464 22 9.1899987e-05 1e-6 465 22 0.00064349989 1e-6 467 22 0.022742298 1e-6 468 22 0.0010478999 1e-6 469 22 0.0025922998 1e-6 470 22 0.0013052998 1e-6 471 22 0.0035850999 1e-6 473 22 3.6799989e-05 1e-6 477 22 0.00027579977 1e-6 478 22 0.0009192999 1e-6 483 22 0.0005698998 1e-6 489 22 0.00027579977 1e-6 490 22 0.0001103 1e-6 491 22 0.0050926991 1e-6 9 23 1.7899991e-05 1e-6 16 23 5.9999993e-06 1e-6 21 23 2.3899993e-05 1e-6 22 23 5.9999993e-06 1e-6 23 23 0.033729199 1e-6 24 23 3.5899997e-05 1e-6 25 23 5.9999993e-06 1e-6 60 23 0.0041899979 1e-6 66 23 4.1799998e-05 1e-6 74 23 0.036938999 1e-6 79 23 5.9999993e-06 1e-6 82 23 2.3899993e-05 1e-6 83 23 2.3899993e-05 1e-6 84 23 1.7899991e-05 1e-6 108 23 2.9899995e-05 1e-6 113 23 4.1799998e-05 1e-6 114 23 9.5599986e-05 1e-6 126 23 4.7799986e-05 1e-6 127 23 5.9999993e-06 1e-6 150 23 0.0001255 1e-6 189 23 4.1799998e-05 1e-6 190 23 2.3899993e-05 1e-6 192 23 1.2e-05 1e-6 194 23 1.7899991e-05 1e-6 196 23 5.9999993e-06 1e-6 197 23 1.2e-05 1e-6 200 23 2.3899993e-05 1e-6 201 23 1.2e-05 1e-6 203 23 1.7899991e-05 1e-6 204 23 1.7899991e-05 1e-6 206 23 3.5899997e-05 1e-6 207 23 1.2e-05 1e-6 209 23 5.9999993e-06 1e-6 214 23 0.0043453984 1e-6 215 23 5.9999993e-06 1e-6 223 23 0.0021098999 1e-6 233 23 0.00019129999 1e-6 234 23 0.0036699998 1e-6 237 23 0.0002331 1e-6 241 23 1.2e-05 1e-6 242 23 5.9999993e-06 1e-6 248 23 1.7899991e-05 1e-6 250 23 1.2e-05 1e-6 251 23 5.9999993e-06 1e-6 252 23 0.0002331 1e-6 254 23 0.0001255 1e-6 263 23 5.9999993e-06 1e-6 272 23 8.3699997e-05 1e-6 277 23 0.006281998 1e-6 281 23 0.00028689997 1e-6 287 23 5.9999993e-06 1e-6 307 23 0.00093839993 1e-6 311 23 2.3899993e-05 1e-6 317 23 5.9999993e-06 1e-6 319 23 0.0001853 1e-6 324 23 0.0032754999 1e-6 326 23 0.0010758999 1e-6 328 23 0.0025462999 1e-6 331 23 0.00053789979 1e-6 333 23 0.0060369968 1e-6 340 23 0.00016739999 1e-6 349 23 5.9999993e-06 1e-6 350 23 0.0024924998 1e-6 351 23 0.0001375 1e-6 354 23 0.0010519999 1e-6 356 23 0.00039449986 1e-6 358 23 0.0041301996 1e-6 369 23 0.00028089993 1e-6 370 23 0.0004482998 1e-6 372 23 0.0051223971 1e-6 374 23 0.00094439997 1e-6 380 23 5.9999993e-06 1e-6 385 23 0.0002331 1e-6 386 23 0.00010159999 1e-6 387 23 3.5899997e-05 1e-6 390 23 0.00016139999 1e-6 394 23 1.7899991e-05 1e-6 397 23 1.7899991e-05 1e-6 402 23 0.00010759999 1e-6 404 23 0.0001853 1e-6 414 23 0.00047819992 1e-6 419 23 5.9999993e-06 1e-6 422 23 2.9899995e-05 1e-6 423 23 1.2e-05 1e-6 425 23 5.9999993e-06 1e-6 430 23 2.3899993e-05 1e-6 431 23 5.9999993e-06 1e-6 432 23 5.9999993e-06 1e-6 433 23 1.2e-05 1e-6 434 23 1.2e-05 1e-6 442 23 0.0002271 1e-6 443 23 0.00059169997 1e-6 444 23 0.0005857998 1e-6 445 23 0.0013149998 1e-6 446 23 0.0001733 1e-6 447 23 0.0033053998 1e-6 448 23 7.7699995e-05 1e-6 449 23 1.2e-05 1e-6 450 23 0.0026000999 1e-6 452 23 0.0088342987 1e-6 453 23 0.0029348 1e-6 454 23 0.0021756999 1e-6 455 23 0.0046322979 1e-6 456 23 0.00054389983 1e-6 457 23 0.0033710999 1e-6 458 23 8.9699999e-05 1e-6 459 23 0.00082489988 1e-6 460 23 0.0020740998 1e-6 463 23 0.15183824 1e-6 464 23 0.00059769978 1e-6 465 23 0.00030479999 1e-6 467 23 0.014524497 1e-6 468 23 0.00026299991 1e-6 469 23 0.007280197 1e-6 470 23 0.0056543984 1e-6 471 23 0.0014344999 1e-6 473 23 0.00010159999 1e-6 477 23 1.7899991e-05 1e-6 478 23 0.00035859994 1e-6 483 23 0.00055589993 1e-6 489 23 0.00039449986 1e-6 490 23 0.00035859994 1e-6 491 23 5.3799988e-05 1e-6 22 24 0.0014771998 1e-6 24 24 0.025145996 1e-6 25 24 3.4399985e-05 1e-6 60 24 0.0065956973 1e-6 108 24 3.4399985e-05 1e-6 114 24 6.8699999e-05 1e-6 126 24 3.4399985e-05 1e-6 150 24 0.00072139991 1e-6 160 24 6.8699999e-05 1e-6 169 24 0.0002061 1e-6 171 24 3.4399985e-05 1e-6 190 24 0.0001374 1e-6 191 24 3.4399985e-05 1e-6 192 24 0.0001374 1e-6 193 24 0.0040535964 1e-6 194 24 0.0001031 1e-6 197 24 3.4399985e-05 1e-6 198 24 0.0001374 1e-6 200 24 6.8699999e-05 1e-6 203 24 6.8699999e-05 1e-6 204 24 6.8699999e-05 1e-6 206 24 0.0001374 1e-6 207 24 3.4399985e-05 1e-6 214 24 0.0023015998 1e-6 215 24 0.0015115 1e-6 218 24 3.4399985e-05 1e-6 220 24 0.009275198 1e-6 223 24 0.0002748 1e-6 231 24 0.0001718 1e-6 233 24 6.8699999e-05 1e-6 234 24 0.030951597 1e-6 235 24 0.0001031 1e-6 237 24 0.0067673996 1e-6 240 24 0.00034349994 1e-6 241 24 0.0002061 1e-6 242 24 0.0021986 1e-6 252 24 0.0001374 1e-6 254 24 0.0083132982 1e-6 266 24 0.0002061 1e-6 267 24 3.4399985e-05 1e-6 269 24 3.4399985e-05 1e-6 270 24 0.0001031 1e-6 272 24 0.00061829994 1e-6 273 24 0.00037789997 1e-6 276 24 3.4399985e-05 1e-6 277 24 0.011954699 1e-6 282 24 0.0089659989 1e-6 283 24 0.00079009985 1e-6 289 24 0.00079009985 1e-6 292 24 0.00030919979 1e-6 295 24 0.0015801999 1e-6 297 24 0.0009961999 1e-6 300 24 3.4399985e-05 1e-6 301 24 3.4399985e-05 1e-6 305 24 0.0012367 1e-6 307 24 0.00037789997 1e-6 312 24 0.0018206998 1e-6 317 24 0.0002748 1e-6 322 24 0.0071452968 1e-6 326 24 3.4399985e-05 1e-6 328 24 0.011130199 1e-6 331 24 0.020336699 1e-6 332 24 0.015218098 1e-6 335 24 0.0041909963 1e-6 336 24 0.0029199999 1e-6 337 24 0.0014771998 1e-6 341 24 6.8699999e-05 1e-6 350 24 0.0002405 1e-6 351 24 0.0018549999 1e-6 352 24 0.00034349994 1e-6 354 24 0.0020611 1e-6 356 24 0.00048089982 1e-6 358 24 0.00085879979 1e-6 371 24 0.0001031 1e-6 372 24 0.0012023 1e-6 373 24 3.4399985e-05 1e-6 374 24 0.0002061 1e-6 384 24 0.0001031 1e-6 386 24 0.00030919979 1e-6 387 24 3.4399985e-05 1e-6 394 24 0.0001031 1e-6 397 24 6.8699999e-05 1e-6 402 24 0.0059772991 1e-6 422 24 0.0001031 1e-6 433 24 3.4399985e-05 1e-6 434 24 3.4399985e-05 1e-6 438 24 3.4399985e-05 1e-6 442 24 0.0012023 1e-6 443 24 0.0036413998 1e-6 444 24 0.0017519998 1e-6 445 24 0.009275198 1e-6 446 24 0.0012709999 1e-6 447 24 0.0022328999 1e-6 448 24 0.00044659991 1e-6 450 24 0.0012709999 1e-6 452 24 0.025523897 1e-6 453 24 0.0073857978 1e-6 454 24 0.0037101 1e-6 455 24 0.0282721 1e-6 456 24 0.0018549999 1e-6 457 24 0.0065269992 1e-6 458 24 0.0002748 1e-6 459 24 0.0027137999 1e-6 460 24 0.004637599 1e-6 463 24 0.0366541 1e-6 464 24 0.0012023 1e-6 465 24 0.00085879979 1e-6 467 24 0.0297492 1e-6 468 24 0.0016832999 1e-6 469 24 0.0038130998 1e-6 470 24 0.0011679998 1e-6 471 24 0.0098247975 1e-6 473 24 3.4399985e-05 1e-6 477 24 3.4399985e-05 1e-6 478 24 0.0012367 1e-6 483 24 0.00054959999 1e-6 489 24 0.00092749996 1e-6 490 24 0.0001031 1e-6 491 24 0.0042253993 1e-6 22 25 0.0014227999 1e-6 24 25 0.017073199 1e-6 25 25 0.032520298 1e-6 60 25 0.011788599 1e-6 104 25 0.00020329999 1e-6 114 25 0.00020329999 1e-6 126 25 0.00020329999 1e-6 130 25 0.00060979999 1e-6 160 25 0.0008129999 1e-6 190 25 0.00020329999 1e-6 193 25 0.0028454999 1e-6 194 25 0.00020329999 1e-6 206 25 0.00020329999 1e-6 214 25 0.015243899 1e-6 218 25 0.00060979999 1e-6 220 25 0.0044714995 1e-6 223 25 0.0012194999 1e-6 231 25 0.00020329999 1e-6 234 25 0.016869899 1e-6 237 25 0.0028454999 1e-6 240 25 0.00020329999 1e-6 242 25 0.00040649995 1e-6 252 25 0.00020329999 1e-6 257 25 0.00020329999 1e-6 272 25 0.00020329999 1e-6 277 25 0.017886199 1e-6 282 25 0.0028454999 1e-6 283 25 0.0024389999 1e-6 292 25 0.00060979999 1e-6 295 25 0.00060979999 1e-6 297 25 0.00020329999 1e-6 305 25 0.0020325 1e-6 308 25 0.00020329999 1e-6 312 25 0.0071137995 1e-6 322 25 0.0022357998 1e-6 328 25 0.0079267994 1e-6 331 25 0.013821099 1e-6 332 25 0.0097560994 1e-6 333 25 0.00020329999 1e-6 335 25 0.0008129999 1e-6 336 25 0.0020325 1e-6 337 25 0.0012194999 1e-6 350 25 0.0008129999 1e-6 351 25 0.00060979999 1e-6 352 25 0.0008129999 1e-6 354 25 0.0010162999 1e-6 356 25 0.0010162999 1e-6 371 25 0.00040649995 1e-6 372 25 0.0016259998 1e-6 374 25 0.00060979999 1e-6 384 25 0.00020329999 1e-6 394 25 0.00020329999 1e-6 402 25 0.0020325 1e-6 408 25 0.00060979999 1e-6 442 25 0.0054877996 1e-6 443 25 0.0065040998 1e-6 444 25 0.0044714995 1e-6 445 25 0.0032519998 1e-6 446 25 0.00060979999 1e-6 447 25 0.0038617998 1e-6 448 25 0.00020329999 1e-6 450 25 0.0014227999 1e-6 452 25 0.038008098 1e-6 453 25 0.041260198 1e-6 454 25 0.0091462992 1e-6 455 25 0.014837399 1e-6 456 25 0.0014227999 1e-6 457 25 0.015447199 1e-6 458 25 0.00020329999 1e-6 459 25 0.0014227999 1e-6 460 25 0.0018292998 1e-6 463 25 0.045934997 1e-6 464 25 0.00060979999 1e-6 465 25 0.00040649995 1e-6 467 25 0.034349598 1e-6 468 25 0.0010162999 1e-6 469 25 0.0022357998 1e-6 470 25 0.0022357998 1e-6 471 25 0.0063007995 1e-6 473 25 0.00020329999 1e-6 478 25 0.0010162999 1e-6 483 25 0.0034552999 1e-6 489 25 0.0014227999 1e-6 490 25 0.00020329999 1e-6 491 25 0.0052846 1e-6 7 26 0.00024609989 1e-6 9 26 2.0499996e-05 1e-6 16 26 0.0015481999 1e-6 17 26 3.3999995e-06 1e-6 18 26 0.0011995998 1e-6 24 26 0.0024024998 1e-6 60 26 0.00048529985 1e-6 79 26 1.7099999e-05 1e-6 80 26 2.729999e-05 1e-6 82 26 3.7599995e-05 1e-6 83 26 2.729999e-05 1e-6 84 26 2.729999e-05 1e-6 108 26 3.7599995e-05 1e-6 113 26 4.4399989e-05 1e-6 114 26 0.00015379999 1e-6 126 26 7.1799994e-05 1e-6 127 26 1.0299999e-05 1e-6 134 26 0.010697 1e-6 135 26 0.00015379999 1e-6 139 26 0.0018010999 1e-6 141 26 2.729999e-05 1e-6 142 26 0.0001162 1e-6 150 26 0.00012299999 1e-6 154 26 2.3899993e-05 1e-6 160 26 0.051157497 1e-6 161 26 0.0011312 1e-6 162 26 0.0035849998 1e-6 163 26 0.038553499 1e-6 164 26 0.0095007978 1e-6 165 26 0.024753399 1e-6 167 26 0.023434199 1e-6 168 26 2.3899993e-05 1e-6 170 26 0.00059119985 1e-6 171 26 0.0032124999 1e-6 177 26 0.0012063999 1e-6 182 26 0.0015207999 1e-6 189 26 3.7599995e-05 1e-6 191 26 0.0027818999 1e-6 192 26 0.00058439979 1e-6 194 26 4.0999992e-05 1e-6 195 26 3.0799987e-05 1e-6 196 26 6.7999999e-06 1e-6 197 26 0.001432 1e-6 198 26 4.4399989e-05 1e-6 201 26 3.0799987e-05 1e-6 203 26 4.7799986e-05 1e-6 204 26 7.1799994e-05 1e-6 206 26 0.0001504 1e-6 207 26 3.7599995e-05 1e-6 209 26 1.37e-05 1e-6 214 26 0.0002153 1e-6 215 26 0.00011959999 1e-6 218 26 1.7099999e-05 1e-6 219 26 0.00026999996 1e-6 223 26 0.00023919999 1e-6 233 26 0.0032295999 1e-6 234 26 0.00068689999 1e-6 235 26 0.00024949992 1e-6 236 26 0.0061754994 1e-6 237 26 0.0013601999 1e-6 240 26 0.00090909982 1e-6 241 26 0.0094802976 1e-6 242 26 0.00021869999 1e-6 248 26 3.0799987e-05 1e-6 250 26 1.37e-05 1e-6 251 26 6.7999999e-06 1e-6 252 26 0.0011586 1e-6 254 26 0.0029424999 1e-6 255 26 0.0065069981 1e-6 256 26 0.0031817998 1e-6 257 26 0.00080649997 1e-6 258 26 0.0017497998 1e-6 259 26 0.0032090999 1e-6 263 26 3.3999995e-06 1e-6 264 26 0.010167297 1e-6 265 26 0.0019172998 1e-6 266 26 0.0312468 1e-6 267 26 9.229999e-05 1e-6 268 26 0.0056013986 1e-6 269 26 0.0021940998 1e-6 270 26 4.7799986e-05 1e-6 271 26 0.0014079998 1e-6 272 26 8.8899993e-05 1e-6 273 26 0.00046139979 1e-6 274 26 0.0028126999 1e-6 277 26 0.0026348999 1e-6 279 26 0.0020915 1e-6 282 26 0.0013020998 1e-6 285 26 3.0799987e-05 1e-6 292 26 0.0030109 1e-6 293 26 4.7799986e-05 1e-6 295 26 0.0049144998 1e-6 302 26 0.0050374977 1e-6 303 26 0.004220698 1e-6 304 26 0.0028331999 1e-6 305 26 2.0499996e-05 1e-6 306 26 0.015512299 1e-6 307 26 0.0004784998 1e-6 308 26 0.01055 1e-6 309 26 0.00057069981 1e-6 310 26 0.00022209999 1e-6 311 26 0.0017497998 1e-6 312 26 0.0001299 1e-6 317 26 0.0024913999 1e-6 318 26 7.5199991e-05 1e-6 319 26 0.0058884993 1e-6 322 26 0.0011687998 1e-6 323 26 6.7999999e-06 1e-6 324 26 0.00042379997 1e-6 326 26 3.3999995e-06 1e-6 331 26 0.0014524998 1e-6 341 26 0.00020509999 1e-6 350 26 0.0020949999 1e-6 352 26 0.00039639999 1e-6 356 26 4.0999992e-05 1e-6 358 26 0.00016059999 1e-6 363 26 3.3999995e-06 1e-6 366 26 0.012026399 1e-6 368 26 0.00056389999 1e-6 371 26 0.0032398999 1e-6 374 26 6.7999999e-06 1e-6 380 26 0.0010799998 1e-6 383 26 0.0015207999 1e-6 384 26 3.7599995e-05 1e-6 385 26 0.0040019974 1e-6 386 26 0.0019479999 1e-6 387 26 6.8399997e-05 1e-6 390 26 0.00065279985 1e-6 394 26 0.0001333 1e-6 397 26 3.3999995e-06 1e-6 398 26 0.00053659989 1e-6 402 26 0.00028019981 1e-6 412 26 6.7999999e-06 1e-6 414 26 1.0299999e-05 1e-6 415 26 0.0013840999 1e-6 419 26 1.0299999e-05 1e-6 422 26 0.0001948 1e-6 423 26 2.3899993e-05 1e-6 425 26 1.0299999e-05 1e-6 430 26 3.4199998e-05 1e-6 431 26 2.3899993e-05 1e-6 432 26 1.0299999e-05 1e-6 433 26 2.729999e-05 1e-6 434 26 3.0799987e-05 1e-6 438 26 0.00026659993 1e-6 439 26 0.0014729998 1e-6 441 26 6.7999999e-06 1e-6 442 26 3.3999995e-06 1e-6 443 26 0.010608099 1e-6 444 26 0.00020509999 1e-6 445 26 0.0136429 1e-6 446 26 0.0016814 1e-6 447 26 0.0010115998 1e-6 448 26 3.3999995e-06 1e-6 449 26 1.37e-05 1e-6 450 26 0.0049417987 1e-6 452 26 0.00074499985 1e-6 453 26 8.8899993e-05 1e-6 454 26 0.0014660999 1e-6 455 26 0.046813797 1e-6 456 26 0.059373397 1e-6 457 26 0.0051946975 1e-6 458 26 0.00037929998 1e-6 459 26 2.729999e-05 1e-6 460 26 0.0038002999 1e-6 463 26 0.010515798 1e-6 464 26 0.00026319991 1e-6 465 26 0.00015719999 1e-6 467 26 0.012781698 1e-6 468 26 0.00077919988 1e-6 469 26 0.033734798 1e-6 470 26 0.0076621994 1e-6 471 26 0.0042445995 1e-6 473 26 0.00017429999 1e-6 477 26 5.1299998e-05 1e-6 478 26 0.00086119981 1e-6 483 26 0.00054679997 1e-6 489 26 9.9099998e-05 1e-6 490 26 0.00061519979 1e-6 491 26 0.00019139999 1e-6 7 27 0.00040699984 1e-6 16 27 0.0021831999 1e-6 18 27 0.0016281998 1e-6 24 27 0.0034043998 1e-6 60 27 0.00014799999 1e-6 80 27 7.3999996e-05 1e-6 108 27 3.6999991e-05 1e-6 113 27 3.6999991e-05 1e-6 114 27 7.3999996e-05 1e-6 126 27 3.6999991e-05 1e-6 134 27 0.011175297 1e-6 135 27 0.00014799999 1e-6 139 27 0.0010730999 1e-6 141 27 3.6999991e-05 1e-6 142 27 7.3999996e-05 1e-6 150 27 3.6999991e-05 1e-6 154 27 7.3999996e-05 1e-6 160 27 0.033488799 1e-6 161 27 0.00070309988 1e-6 162 27 0.0018871999 1e-6 163 27 0.026161898 1e-6 164 27 0.0076228976 1e-6 165 27 0.021869399 1e-6 167 27 0.0045144968 1e-6 168 27 0.00048109982 1e-6 170 27 0.00055509992 1e-6 171 27 0.0026642999 1e-6 177 27 0.00099909981 1e-6 182 27 0.0012210999 1e-6 191 27 0.0023312999 1e-6 192 27 0.00055509992 1e-6 195 27 0.00040699984 1e-6 197 27 0.00096209999 1e-6 198 27 3.6999991e-05 1e-6 206 27 7.3999996e-05 1e-6 214 27 0.00029599993 1e-6 215 27 0.00011099999 1e-6 219 27 0.0017392 1e-6 223 27 0.00036999979 1e-6 233 27 0.0055875964 1e-6 234 27 0.0017392 1e-6 235 27 0.0014062 1e-6 236 27 0.0037743999 1e-6 237 27 0.0010360999 1e-6 240 27 0.00092509994 1e-6 241 27 0.0099540986 1e-6 242 27 0.000185 1e-6 252 27 0.00085109985 1e-6 254 27 0.0026642999 1e-6 255 27 0.0043294989 1e-6 256 27 0.0021092 1e-6 257 27 0.00059209997 1e-6 258 27 0.0012951 1e-6 259 27 0.0022201999 1e-6 262 27 3.6999991e-05 1e-6 264 27 0.0068827979 1e-6 265 27 0.0042554997 1e-6 266 27 0.025939897 1e-6 267 27 0.00025899988 1e-6 268 27 0.0059946999 1e-6 269 27 0.0013320998 1e-6 270 27 3.6999991e-05 1e-6 271 27 0.0023683 1e-6 272 27 7.3999996e-05 1e-6 273 27 0.00029599993 1e-6 274 27 0.0027382998 1e-6 277 27 0.0046254992 1e-6 279 27 0.0016651999 1e-6 282 27 0.0019611998 1e-6 285 27 0.00014799999 1e-6 292 27 0.0025902998 1e-6 293 27 0.00011099999 1e-6 295 27 0.0052175969 1e-6 302 27 0.0028122999 1e-6 303 27 0.0038113999 1e-6 304 27 0.0027013 1e-6 305 27 0.00025899988 1e-6 306 27 0.016577899 1e-6 307 27 0.00048109982 1e-6 308 27 0.0099910982 1e-6 309 27 0.0017021999 1e-6 310 27 0.00022199999 1e-6 311 27 0.0028863 1e-6 312 27 0.00025899988 1e-6 317 27 0.00092509994 1e-6 318 27 3.6999991e-05 1e-6 319 27 0.0049955994 1e-6 322 27 0.0017761998 1e-6 324 27 0.00044399989 1e-6 331 27 0.0010730999 1e-6 334 27 0.00025899988 1e-6 341 27 7.3999996e-05 1e-6 350 27 0.0030713 1e-6 352 27 0.0010730999 1e-6 356 27 7.3999996e-05 1e-6 358 27 3.6999991e-05 1e-6 366 27 0.013173498 1e-6 368 27 0.0011470998 1e-6 371 27 0.0042554997 1e-6 380 27 0.0012951 1e-6 381 27 0.0012210999 1e-6 383 27 0.0017761998 1e-6 384 27 0.00011099999 1e-6 385 27 0.0032933999 1e-6 386 27 0.0027382998 1e-6 387 27 3.6999991e-05 1e-6 390 27 0.00066609983 1e-6 394 27 7.3999996e-05 1e-6 398 27 0.00040699984 1e-6 402 27 0.00025899988 1e-6 415 27 0.0012951 1e-6 422 27 3.6999991e-05 1e-6 430 27 3.6999991e-05 1e-6 438 27 0.00025899988 1e-6 439 27 0.00096209999 1e-6 441 27 3.6999991e-05 1e-6 443 27 0.0071787983 1e-6 444 27 7.3999996e-05 1e-6 445 27 0.013617497 1e-6 446 27 0.00085109985 1e-6 447 27 0.00036999979 1e-6 450 27 0.0016651999 1e-6 452 27 0.00025899988 1e-6 453 27 3.6999991e-05 1e-6 454 27 0.00048109982 1e-6 455 27 0.037374198 1e-6 456 27 0.045145098 1e-6 457 27 0.0017392 1e-6 458 27 0.00022199999 1e-6 460 27 0.0022942999 1e-6 463 27 0.0035523998 1e-6 464 27 7.3999996e-05 1e-6 465 27 3.6999991e-05 1e-6 467 27 0.008547999 1e-6 468 27 0.00025899988 1e-6 469 27 0.065201283 1e-6 470 27 0.0025902998 1e-6 471 27 0.0027752998 1e-6 473 27 7.3999996e-05 1e-6 478 27 0.00029599993 1e-6 483 27 0.000185 1e-6 489 27 3.6999991e-05 1e-6 490 27 0.00022199999 1e-6 491 27 0.00014799999 1e-6 7 28 0.00049079978 1e-6 9 28 8.2999995e-06 1e-6 16 28 0.0028199998 1e-6 18 28 0.0021046 1e-6 24 28 0.0045419969 1e-6 60 28 0.00010809999 1e-6 80 28 7.4899988e-05 1e-6 82 28 8.2999995e-06 1e-6 83 28 8.2999995e-06 1e-6 84 28 8.2999995e-06 1e-6 108 28 1.6599995e-05 1e-6 113 28 1.6599995e-05 1e-6 114 28 3.3299992e-05 1e-6 126 28 2.4999987e-05 1e-6 127 28 8.2999995e-06 1e-6 134 28 0.012502898 1e-6 135 28 0.00019129999 1e-6 139 28 0.00054899999 1e-6 141 28 2.4999987e-05 1e-6 142 28 4.1599997e-05 1e-6 150 28 3.3299992e-05 1e-6 154 28 9.1499998e-05 1e-6 159 28 8.2999995e-06 1e-6 160 28 0.0223605 1e-6 161 28 0.00031609996 1e-6 162 28 0.00069879997 1e-6 163 28 0.018567197 1e-6 164 28 0.013417996 1e-6 165 28 0.021229196 1e-6 167 28 0.0083601996 1e-6 168 28 0.0009066998 1e-6 170 28 0.00054069981 1e-6 171 28 0.0023873998 1e-6 177 28 0.0017386 1e-6 182 28 0.0021627999 1e-6 183 28 1.6599995e-05 1e-6 189 28 8.2999995e-06 1e-6 191 28 0.0021378999 1e-6 192 28 0.00049909996 1e-6 194 28 8.2999995e-06 1e-6 195 28 0.0007487 1e-6 197 28 0.00069879997 1e-6 198 28 3.3299992e-05 1e-6 201 28 8.2999995e-06 1e-6 203 28 8.2999995e-06 1e-6 204 28 1.6599995e-05 1e-6 206 28 4.1599997e-05 1e-6 207 28 8.2999995e-06 1e-6 214 28 0.00029119989 1e-6 215 28 0.00010809999 1e-6 218 28 2.4999987e-05 1e-6 219 28 0.0021545 1e-6 220 28 8.2999995e-06 1e-6 223 28 0.00048249983 1e-6 233 28 0.0054736994 1e-6 234 28 0.0026868999 1e-6 235 28 0.0023624999 1e-6 236 28 0.0021627999 1e-6 237 28 0.00064049987 1e-6 240 28 0.00092339981 1e-6 241 28 0.010914098 1e-6 242 28 0.000183 1e-6 248 28 8.2999995e-06 1e-6 250 28 8.2999995e-06 1e-6 252 28 0.00066549983 1e-6 254 28 0.0025787998 1e-6 255 28 0.0029281999 1e-6 256 28 0.0012643998 1e-6 257 28 0.00049079978 1e-6 258 28 0.00095659983 1e-6 259 28 0.0015472998 1e-6 262 28 7.4899988e-05 1e-6 264 28 0.0048413984 1e-6 265 28 0.0064219981 1e-6 266 28 0.023990899 1e-6 267 28 0.00034939987 1e-6 268 28 0.0068461969 1e-6 269 28 0.00059059984 1e-6 270 28 2.4999987e-05 1e-6 271 28 0.0028948998 1e-6 272 28 7.4899988e-05 1e-6 273 28 0.00019129999 1e-6 274 28 0.0030029998 1e-6 277 28 0.0063969977 1e-6 279 28 0.0014308 1e-6 282 28 0.0026785999 1e-6 285 28 0.00014969999 1e-6 292 28 0.0025121998 1e-6 293 28 0.0001581 1e-6 295 28 0.0057481974 1e-6 302 28 0.0021046 1e-6 303 28 0.0046583973 1e-6 304 28 0.0027700998 1e-6 305 28 0.00031609996 1e-6 306 28 0.018883299 1e-6 307 28 0.00045749987 1e-6 308 28 0.020472199 1e-6 309 28 0.0026452998 1e-6 310 28 0.00025789998 1e-6 311 28 0.0038681999 1e-6 312 28 0.0003992999 1e-6 317 28 0.00057399995 1e-6 318 28 1.6599995e-05 1e-6 319 28 0.004724998 1e-6 322 28 0.0022127999 1e-6 324 28 0.00048249983 1e-6 331 28 0.00066549983 1e-6 334 28 0.00044089998 1e-6 335 28 8.2999995e-06 1e-6 341 28 4.1599997e-05 1e-6 350 28 0.004009597 1e-6 352 28 0.0013392998 1e-6 356 28 0.00014969999 1e-6 358 28 4.1599997e-05 1e-6 366 28 0.011454798 1e-6 368 28 0.0014640999 1e-6 371 28 0.0054736994 1e-6 374 28 2.4999987e-05 1e-6 380 28 0.0015305998 1e-6 383 28 0.0020879998 1e-6 384 28 0.0001581 1e-6 385 28 0.0029447998 1e-6 386 28 0.0034605998 1e-6 387 28 1.6599995e-05 1e-6 390 28 0.00074039982 1e-6 394 28 4.1599997e-05 1e-6 397 28 8.2999995e-06 1e-6 398 28 0.00032439991 1e-6 402 28 0.00016639999 1e-6 412 28 8.2999995e-06 1e-6 414 28 8.2999995e-06 1e-6 415 28 0.0013059999 1e-6 419 28 3.3299992e-05 1e-6 422 28 4.9899987e-05 1e-6 423 28 8.2999995e-06 1e-6 425 28 8.2999995e-06 1e-6 430 28 1.6599995e-05 1e-6 431 28 8.2999995e-06 1e-6 433 28 8.2999995e-06 1e-6 434 28 8.2999995e-06 1e-6 438 28 0.00029119989 1e-6 439 28 0.00041589979 1e-6 441 28 6.6499997e-05 1e-6 443 28 0.0068212971 1e-6 444 28 4.9899987e-05 1e-6 445 28 0.017810199 1e-6 446 28 0.00080689997 1e-6 447 28 0.0003992999 1e-6 448 28 8.2999995e-06 1e-6 450 28 0.0011063998 1e-6 452 28 0.00016639999 1e-6 453 28 1.6599995e-05 1e-6 454 28 0.00033269986 1e-6 455 28 0.0379912 1e-6 456 28 0.041984197 1e-6 457 28 0.0011562998 1e-6 458 28 0.00013309999 1e-6 460 28 0.0017551999 1e-6 463 28 0.0023542 1e-6 464 28 5.8199992e-05 1e-6 465 28 3.3299992e-05 1e-6 467 28 0.0056566969 1e-6 468 28 0.00017469999 1e-6 469 28 0.060168698 1e-6 470 28 0.0017135998 1e-6 471 28 0.0017718999 1e-6 473 28 4.1599997e-05 1e-6 477 28 8.2999995e-06 1e-6 478 28 0.00019129999 1e-6 483 28 0.0001165 1e-6 489 28 2.4999987e-05 1e-6 490 28 0.0001414 1e-6 491 28 6.6499997e-05 1e-6 7 29 0.00025089993 1e-6 9 29 2.5099987e-05 1e-6 16 29 0.0013299999 1e-6 18 29 0.0010038 1e-6 24 29 0.0021329999 1e-6 60 29 0.00030109985 1e-6 80 29 0.00022579999 1e-6 82 29 2.5099987e-05 1e-6 83 29 2.5099987e-05 1e-6 84 29 2.5099987e-05 1e-6 108 29 5.0199989e-05 1e-6 113 29 5.0199989e-05 1e-6 114 29 0.00010039999 1e-6 126 29 7.5299991e-05 1e-6 127 29 2.5099987e-05 1e-6 139 29 0.00030109985 1e-6 141 29 5.0199989e-05 1e-6 142 29 2.5099987e-05 1e-6 150 29 0.00010039999 1e-6 154 29 0.00010039999 1e-6 160 29 0.0070262998 1e-6 161 29 0.00087829982 1e-6 162 29 2.5099987e-05 1e-6 163 29 0.0124969 1e-6 164 29 0.0074528977 1e-6 165 29 0.0085821971 1e-6 168 29 0.00022579999 1e-6 170 29 0.00022579999 1e-6 171 29 0.0026850998 1e-6 177 29 0.00097869989 1e-6 182 29 0.0012546999 1e-6 183 29 2.5099987e-05 1e-6 189 29 2.5099987e-05 1e-6 191 29 0.00020079999 1e-6 192 29 0.00032619992 1e-6 194 29 2.5099987e-05 1e-6 197 29 0.0011292 1e-6 198 29 5.0199989e-05 1e-6 201 29 2.5099987e-05 1e-6 203 29 2.5099987e-05 1e-6 204 29 5.0199989e-05 1e-6 206 29 0.0001255 1e-6 207 29 2.5099987e-05 1e-6 214 29 7.5299991e-05 1e-6 215 29 7.5299991e-05 1e-6 219 29 0.0030866 1e-6 223 29 0.0003513 1e-6 233 29 0.0041655973 1e-6 234 29 0.0017064 1e-6 235 29 0.0010038 1e-6 236 29 0.00037639984 1e-6 237 29 0.00095359981 1e-6 240 29 0.0008280999 1e-6 241 29 0.00040149991 1e-6 242 29 0.00010039999 1e-6 252 29 0.00037639984 1e-6 254 29 0.0025093998 1e-6 255 29 0.0077540986 1e-6 256 29 0.0014052999 1e-6 257 29 0.00020079999 1e-6 258 29 0.00045169983 1e-6 259 29 0.0023337998 1e-6 264 29 0.0091592968 1e-6 265 29 0.0091342963 1e-6 266 29 0.035558298 1e-6 267 29 0.0001757 1e-6 268 29 0.0074027963 1e-6 269 29 0.00040149991 1e-6 270 29 5.0199989e-05 1e-6 271 29 0.0032872998 1e-6 272 29 0.00022579999 1e-6 273 29 0.00020079999 1e-6 274 29 0.0020325999 1e-6 277 29 0.011467997 1e-6 279 29 0.00090339989 1e-6 282 29 0.0032119998 1e-6 285 29 7.5299991e-05 1e-6 292 29 0.0027353 1e-6 293 29 0.00020079999 1e-6 295 29 0.0055206977 1e-6 302 29 0.0031116998 1e-6 303 29 0.0045419969 1e-6 304 29 0.0030363998 1e-6 305 29 0.0047678985 1e-6 306 29 0.033726498 1e-6 307 29 0.00095359981 1e-6 308 29 0.026599698 1e-6 309 29 0.0032621999 1e-6 310 29 0.0035132 1e-6 311 29 0.0069259964 1e-6 312 29 0.0011292 1e-6 317 29 0.0015808998 1e-6 318 29 5.0199989e-05 1e-6 319 29 0.0050689988 1e-6 322 29 0.0084064975 1e-6 324 29 0.0016311 1e-6 331 29 0.00095359981 1e-6 334 29 0.0085068978 1e-6 335 29 2.5099987e-05 1e-6 341 29 0.0001255 1e-6 350 29 0.0024089999 1e-6 352 29 0.0036887999 1e-6 356 29 0.0019071999 1e-6 358 29 0.00010039999 1e-6 366 29 0.0050940998 1e-6 368 29 0.00097869989 1e-6 371 29 0.0062985979 1e-6 374 29 0.0001757 1e-6 380 29 0.00092849997 1e-6 383 29 0.00077789999 1e-6 384 29 0.0001757 1e-6 385 29 0.0027853998 1e-6 386 29 0.0039648972 1e-6 387 29 5.0199989e-05 1e-6 390 29 0.0016059999 1e-6 394 29 0.00010039999 1e-6 398 29 0.00022579999 1e-6 402 29 0.00020079999 1e-6 412 29 2.5099987e-05 1e-6 414 29 2.5099987e-05 1e-6 415 29 0.0044416972 1e-6 419 29 0.00020079999 1e-6 422 29 0.0001506 1e-6 423 29 2.5099987e-05 1e-6 425 29 2.5099987e-05 1e-6 430 29 5.0199989e-05 1e-6 431 29 2.5099987e-05 1e-6 433 29 2.5099987e-05 1e-6 434 29 2.5099987e-05 1e-6 438 29 0.00020079999 1e-6 439 29 0.00045169983 1e-6 441 29 5.0199989e-05 1e-6 443 29 0.0043161996 1e-6 444 29 0.0001255 1e-6 445 29 0.011066496 1e-6 446 29 0.00072769984 1e-6 447 29 0.00060229981 1e-6 450 29 0.0030614999 1e-6 452 29 0.00045169983 1e-6 453 29 5.0199989e-05 1e-6 454 29 0.00092849997 1e-6 455 29 0.034479298 1e-6 456 29 0.028030097 1e-6 457 29 0.0032119998 1e-6 458 29 0.00022579999 1e-6 460 29 0.0025344999 1e-6 463 29 0.0065495968 1e-6 464 29 0.0001757 1e-6 465 29 0.00010039999 1e-6 467 29 0.0081304982 1e-6 468 29 0.00047679991 1e-6 469 29 0.072547078 1e-6 470 29 0.0047678985 1e-6 471 29 0.00266 1e-6 473 29 0.00010039999 1e-6 477 29 2.5099987e-05 1e-6 478 29 0.00052699982 1e-6 483 29 0.00032619992 1e-6 489 29 7.5299991e-05 1e-6 490 29 0.00037639984 1e-6 491 29 0.00020079999 1e-6 9 30 1.3399999e-05 1e-6 16 30 4.0199986e-05 1e-6 24 30 0.0016213998 1e-6 60 30 0.00012059999 1e-6 80 30 1.3399999e-05 1e-6 82 30 1.3399999e-05 1e-6 83 30 1.3399999e-05 1e-6 84 30 1.3399999e-05 1e-6 108 30 1.3399999e-05 1e-6 113 30 2.6799986e-05 1e-6 114 30 5.3599986e-05 1e-6 126 30 2.6799986e-05 1e-6 134 30 0.0025459998 1e-6 135 30 4.0199986e-05 1e-6 139 30 0.00072359992 1e-6 141 30 2.6799986e-05 1e-6 142 30 5.3599986e-05 1e-6 150 30 4.0199986e-05 1e-6 160 30 0.040333398 1e-6 161 30 0.00033499999 1e-6 162 30 0.0014605999 1e-6 163 30 0.050034799 1e-6 164 30 0.022015899 1e-6 165 30 0.031891499 1e-6 167 30 0.010009598 1e-6 170 30 0.00080399984 1e-6 171 30 0.0067802966 1e-6 177 30 0.0028541998 1e-6 182 30 0.0034973 1e-6 189 30 1.3399999e-05 1e-6 191 30 0.003082 1e-6 192 30 0.0020367999 1e-6 194 30 1.3399999e-05 1e-6 195 30 1.3399999e-05 1e-6 197 30 0.0011925998 1e-6 198 30 2.6799986e-05 1e-6 203 30 1.3399999e-05 1e-6 204 30 1.3399999e-05 1e-6 206 30 4.0199986e-05 1e-6 207 30 1.3399999e-05 1e-6 214 30 0.00013399999 1e-6 215 30 4.0199986e-05 1e-6 218 30 4.0199986e-05 1e-6 219 30 0.00095139979 1e-6 223 30 0.00016079999 1e-6 233 30 0.010545596 1e-6 234 30 0.00077719986 1e-6 235 30 0.00010719999 1e-6 236 30 0.0021439998 1e-6 237 30 0.00077719986 1e-6 240 30 0.00054939999 1e-6 241 30 0.017205298 1e-6 242 30 0.00030819979 1e-6 252 30 0.00046899985 1e-6 254 30 0.0018759998 1e-6 255 30 0.0026397998 1e-6 256 30 0.0044754967 1e-6 257 30 0.00032159989 1e-6 258 30 0.0009782 1e-6 259 30 0.0035642998 1e-6 264 30 0.0041538998 1e-6 265 30 0.0016213998 1e-6 266 30 0.021734498 1e-6 267 30 9.3799987e-05 1e-6 268 30 0.0076378994 1e-6 269 30 0.00049579982 1e-6 270 30 2.6799986e-05 1e-6 271 30 0.0017553999 1e-6 272 30 2.6799986e-05 1e-6 273 30 0.00020099999 1e-6 274 30 0.0039126985 1e-6 277 30 0.0031355999 1e-6 279 30 0.0014739998 1e-6 282 30 0.0011657998 1e-6 285 30 1.3399999e-05 1e-6 292 30 0.003966298 1e-6 293 30 4.0199986e-05 1e-6 295 30 0.018196899 1e-6 302 30 0.0028541998 1e-6 303 30 0.023275398 1e-6 304 30 0.0019161999 1e-6 306 30 0.019228697 1e-6 307 30 0.00053599989 1e-6 308 30 0.0144316 1e-6 309 30 0.0016615998 1e-6 310 30 0.007879097 1e-6 311 30 0.0019697999 1e-6 312 30 5.3599986e-05 1e-6 317 30 0.0006163998 1e-6 318 30 2.6799986e-05 1e-6 319 30 0.0043548979 1e-6 322 30 0.0062442981 1e-6 324 30 0.00025459984 1e-6 331 30 0.00079059997 1e-6 334 30 8.0399986e-05 1e-6 341 30 5.3599986e-05 1e-6 350 30 0.0018357998 1e-6 352 30 0.00017419999 1e-6 356 30 2.6799986e-05 1e-6 358 30 4.0199986e-05 1e-6 366 30 0.011992797 1e-6 368 30 0.00068339985 1e-6 371 30 0.0128638 1e-6 380 30 0.0019295998 1e-6 383 30 0.0013533998 1e-6 385 30 0.013614196 1e-6 386 30 0.0025727998 1e-6 387 30 1.3399999e-05 1e-6 390 30 0.0021573999 1e-6 394 30 4.0199986e-05 1e-6 397 30 1.3399999e-05 1e-6 398 30 0.00033499999 1e-6 402 30 0.00020099999 1e-6 414 30 1.3399999e-05 1e-6 415 30 0.0013935999 1e-6 422 30 6.6999986e-05 1e-6 423 30 1.3399999e-05 1e-6 425 30 1.3399999e-05 1e-6 430 30 1.3399999e-05 1e-6 431 30 1.3399999e-05 1e-6 433 30 1.3399999e-05 1e-6 434 30 1.3399999e-05 1e-6 438 30 0.00057619996 1e-6 439 30 0.00071019982 1e-6 441 30 1.3399999e-05 1e-6 443 30 0.0095942989 1e-6 444 30 5.3599986e-05 1e-6 445 30 0.011228997 1e-6 446 30 0.00091119995 1e-6 447 30 0.00036179996 1e-6 450 30 0.0011925998 1e-6 452 30 0.00017419999 1e-6 453 30 2.6799986e-05 1e-6 454 30 0.00036179996 1e-6 455 30 0.051950999 1e-6 456 30 0.068982184 1e-6 457 30 0.0012461999 1e-6 458 30 0.00014739999 1e-6 460 30 0.0017955999 1e-6 463 30 0.0025459998 1e-6 464 30 6.6999986e-05 1e-6 465 30 2.6799986e-05 1e-6 467 30 0.006740097 1e-6 468 30 0.00018759999 1e-6 469 30 0.0037518998 1e-6 470 30 0.0018491999 1e-6 471 30 0.0021171998 1e-6 473 30 4.0199986e-05 1e-6 477 30 1.3399999e-05 1e-6 478 30 0.00020099999 1e-6 483 30 0.00012059999 1e-6 489 30 2.6799986e-05 1e-6 490 30 0.00014739999 1e-6 491 30 8.0399986e-05 1e-6 7 31 0.00010629999 1e-6 9 31 5.3099997e-05 1e-6 16 31 0.00042509986 1e-6 18 31 0.00026569981 1e-6 24 31 0.0066949986 1e-6 60 31 0.00037189992 1e-6 80 31 0.00010629999 1e-6 82 31 5.3099997e-05 1e-6 83 31 5.3099997e-05 1e-6 84 31 5.3099997e-05 1e-6 108 31 5.3099997e-05 1e-6 113 31 0.00010629999 1e-6 114 31 0.00015939999 1e-6 126 31 5.3099997e-05 1e-6 134 31 0.0017002998 1e-6 135 31 5.3099997e-05 1e-6 139 31 0.00031879987 1e-6 141 31 5.3099997e-05 1e-6 150 31 0.00010629999 1e-6 154 31 0.00010629999 1e-6 160 31 0.007704597 1e-6 162 31 0.00031879987 1e-6 163 31 0.0030286999 1e-6 164 31 0.0019659998 1e-6 165 31 0.0065886974 1e-6 166 31 0.012646098 1e-6 167 31 0.0034538 1e-6 168 31 0.0013814999 1e-6 170 31 0.00021249999 1e-6 171 31 0.00085019995 1e-6 177 31 0.00026569981 1e-6 182 31 0.005313497 1e-6 183 31 0.0034005998 1e-6 189 31 5.3099997e-05 1e-6 191 31 0.0006907999 1e-6 192 31 0.00085019995 1e-6 194 31 5.3099997e-05 1e-6 197 31 0.00015939999 1e-6 198 31 5.3099997e-05 1e-6 203 31 5.3099997e-05 1e-6 204 31 5.3099997e-05 1e-6 206 31 0.00015939999 1e-6 207 31 5.3099997e-05 1e-6 214 31 0.00010629999 1e-6 219 31 0.0030286999 1e-6 223 31 0.00042509986 1e-6 233 31 0.0077576973 1e-6 234 31 0.0034005998 1e-6 235 31 0.0054197982 1e-6 236 31 0.0028692998 1e-6 237 31 0.00074389996 1e-6 240 31 0.00026569981 1e-6 241 31 0.008554697 1e-6 242 31 5.3099997e-05 1e-6 252 31 0.0044632964 1e-6 254 31 0.0042507984 1e-6 255 31 0.004728999 1e-6 256 31 0.0030818 1e-6 257 31 0.00026569981 1e-6 258 31 0.00074389996 1e-6 259 31 0.0020722998 1e-6 262 31 0.00015939999 1e-6 264 31 0.0074919984 1e-6 265 31 0.011105198 1e-6 266 31 0.037353899 1e-6 267 31 0.00058449991 1e-6 268 31 0.0073325969 1e-6 269 31 0.00058449991 1e-6 271 31 0.0028161998 1e-6 272 31 0.00015939999 1e-6 273 31 0.00010629999 1e-6 274 31 0.0070137978 1e-6 277 31 0.010573898 1e-6 279 31 0.0011689998 1e-6 282 31 0.0038256999 1e-6 292 31 0.0042507984 1e-6 293 31 0.00015939999 1e-6 295 31 0.011105198 1e-6 302 31 0.0031349999 1e-6 303 31 0.0026566999 1e-6 304 31 0.0057916977 1e-6 305 31 0.020669498 1e-6 306 31 0.016524997 1e-6 307 31 0.00079699978 1e-6 308 31 0.014665198 1e-6 309 31 0.0037725999 1e-6 310 31 0.0063761994 1e-6 311 31 0.010254998 1e-6 312 31 0.00047819992 1e-6 315 31 0.00015939999 1e-6 317 31 0.0019659998 1e-6 318 31 5.3099997e-05 1e-6 319 31 0.013974499 1e-6 322 31 0.0040382966 1e-6 324 31 0.0013814999 1e-6 331 31 0.00063759997 1e-6 334 31 0.0071200989 1e-6 335 31 0.0019659998 1e-6 341 31 0.00015939999 1e-6 350 31 0.00090329978 1e-6 352 31 0.0021784999 1e-6 356 31 0.00079699978 1e-6 358 31 0.00010629999 1e-6 366 31 0.011530299 1e-6 368 31 0.00026569981 1e-6 371 31 0.011689696 1e-6 380 31 0.00095639983 1e-6 383 31 0.0014877999 1e-6 384 31 0.00031879987 1e-6 385 31 0.0038788998 1e-6 386 31 0.0071200989 1e-6 387 31 5.3099997e-05 1e-6 390 31 0.0012220999 1e-6 394 31 0.00015939999 1e-6 398 31 0.00031879987 1e-6 402 31 0.00015939999 1e-6 414 31 0.00026569981 1e-6 415 31 0.0032943999 1e-6 419 31 0.00010629999 1e-6 422 31 0.00015939999 1e-6 423 31 5.3099997e-05 1e-6 430 31 5.3099997e-05 1e-6 431 31 5.3099997e-05 1e-6 433 31 5.3099997e-05 1e-6 434 31 5.3099997e-05 1e-6 438 31 0.00037189992 1e-6 439 31 0.00037189992 1e-6 441 31 0.00015939999 1e-6 443 31 0.0047820993 1e-6 444 31 0.00015939999 1e-6 445 31 0.017481398 1e-6 446 31 0.00042509986 1e-6 447 31 0.00058449991 1e-6 450 31 0.0038256999 1e-6 452 31 0.00058449991 1e-6 453 31 5.3099997e-05 1e-6 454 31 0.0011157999 1e-6 455 31 0.036769398 1e-6 456 31 0.028799098 1e-6 457 31 0.0040382966 1e-6 458 31 0.00021249999 1e-6 460 31 0.0027098998 1e-6 463 31 0.0081827976 1e-6 464 31 0.00021249999 1e-6 465 31 0.00010629999 1e-6 467 31 0.0064292997 1e-6 468 31 0.00058449991 1e-6 469 31 0.085440993 1e-6 470 31 0.0059510991 1e-6 471 31 0.0021253999 1e-6 473 31 0.00010629999 1e-6 478 31 0.0006907999 1e-6 483 31 0.00042509986 1e-6 489 31 5.3099997e-05 1e-6 490 31 0.00047819992 1e-6 491 31 0.00026569981 1e-6 16 32 0.00054049981 1e-6 18 32 0.00027029985 1e-6 24 32 0.0064864978 1e-6 60 32 0.00054049981 1e-6 114 32 0.00027029985 1e-6 126 32 0.00027029985 1e-6 134 32 0.0056756996 1e-6 139 32 0.00027029985 1e-6 160 32 0.0078377984 1e-6 162 32 0.00027029985 1e-6 163 32 0.0032431998 1e-6 164 32 0.0018918999 1e-6 165 32 0.0070269965 1e-6 166 32 0.012432396 1e-6 167 32 0.0035134999 1e-6 168 32 0.0027027 1e-6 170 32 0.00027029985 1e-6 171 32 0.00081079989 1e-6 177 32 0.00027029985 1e-6 182 32 0.0043242984 1e-6 183 32 0.0029729998 1e-6 191 32 0.0010811 1e-6 192 32 0.00054049981 1e-6 214 32 0.00027029985 1e-6 219 32 0.0027027 1e-6 223 32 0.00054049981 1e-6 233 32 0.004594598 1e-6 234 32 0.0016215998 1e-6 235 32 0.0013513998 1e-6 236 32 0.0021621999 1e-6 237 32 0.0010811 1e-6 240 32 0.00027029985 1e-6 241 32 0.0081080981 1e-6 242 32 0.00027029985 1e-6 252 32 0.0021621999 1e-6 254 32 0.0072972998 1e-6 255 32 0.010270298 1e-6 256 32 0.0029729998 1e-6 257 32 0.00054049981 1e-6 258 32 0.0010811 1e-6 259 32 0.0024323999 1e-6 262 32 0.00027029985 1e-6 264 32 0.0162162 1e-6 265 32 0.014054097 1e-6 266 32 0.045135099 1e-6 267 32 0.0010811 1e-6 268 32 0.0024323999 1e-6 269 32 0.0029729998 1e-6 271 32 0.0040540993 1e-6 273 32 0.00027029985 1e-6 274 32 0.0067567974 1e-6 277 32 0.010270298 1e-6 279 32 0.0010811 1e-6 282 32 0.0043242984 1e-6 285 32 0.00027029985 1e-6 292 32 0.0043242984 1e-6 293 32 0.00027029985 1e-6 295 32 0.0083783977 1e-6 302 32 0.0037837999 1e-6 303 32 0.0032431998 1e-6 304 32 0.0043242984 1e-6 305 32 0.0075675994 1e-6 306 32 0.034054097 1e-6 307 32 0.00054049981 1e-6 308 32 0.012432396 1e-6 309 32 0.0081080981 1e-6 310 32 0.0097296983 1e-6 311 32 0.012162197 1e-6 312 32 0.00027029985 1e-6 315 32 0.00027029985 1e-6 317 32 0.0021621999 1e-6 319 32 0.013783798 1e-6 322 32 0.004594598 1e-6 324 32 0.0010811 1e-6 331 32 0.00081079989 1e-6 334 32 0.0072972998 1e-6 335 32 0.0016215998 1e-6 341 32 0.00027029985 1e-6 350 32 0.0010811 1e-6 352 32 0.0016215998 1e-6 356 32 0.00054049981 1e-6 366 32 0.0078377984 1e-6 368 32 0.00054049981 1e-6 371 32 0.0091891997 1e-6 380 32 0.0010811 1e-6 383 32 0.0018918999 1e-6 384 32 0.00027029985 1e-6 385 32 0.0040540993 1e-6 386 32 0.0054053999 1e-6 390 32 0.00081079989 1e-6 394 32 0.00027029985 1e-6 398 32 0.00027029985 1e-6 402 32 0.00027029985 1e-6 414 32 0.00027029985 1e-6 415 32 0.0018918999 1e-6 438 32 0.00027029985 1e-6 439 32 0.00027029985 1e-6 441 32 0.00027029985 1e-6 443 32 0.0035134999 1e-6 444 32 0.00027029985 1e-6 445 32 0.012432396 1e-6 446 32 0.00054049981 1e-6 447 32 0.00054049981 1e-6 450 32 0.0040540993 1e-6 452 32 0.00054049981 1e-6 454 32 0.0010811 1e-6 455 32 0.031621598 1e-6 456 32 0.024054099 1e-6 457 32 0.0043242984 1e-6 458 32 0.00027029985 1e-6 460 32 0.0027027 1e-6 463 32 0.0086485967 1e-6 464 32 0.00027029985 1e-6 467 32 0.0072972998 1e-6 468 32 0.00054049981 1e-6 469 32 0.085945845 1e-6 470 32 0.0064864978 1e-6 471 32 0.0024323999 1e-6 473 32 0.00027029985 1e-6 478 32 0.00054049981 1e-6 483 32 0.00054049981 1e-6 490 32 0.00054049981 1e-6 491 32 0.00027029985 1e-6 7 33 5.7599987e-05 1e-6 16 33 0.00026869983 1e-6 18 33 0.00023029999 1e-6 24 33 0.0027830999 1e-6 80 33 5.7599987e-05 1e-6 134 33 0.00021109999 1e-6 139 33 3.8399987e-05 1e-6 141 33 1.9199986e-05 1e-6 154 33 1.9199986e-05 1e-6 159 33 1.9199986e-05 1e-6 160 33 0.0011515999 1e-6 162 33 0.00011519999 1e-6 163 33 0.00042229984 1e-6 164 33 0.00028789998 1e-6 165 33 0.0014203 1e-6 166 33 0.0017273999 1e-6 167 33 0.00051819999 1e-6 168 33 0.0012476 1e-6 170 33 5.7599987e-05 1e-6 171 33 0.00015359999 1e-6 177 33 3.8399987e-05 1e-6 182 33 0.00069099991 1e-6 183 33 0.00044149999 1e-6 191 33 0.00023029999 1e-6 192 33 0.00030709989 1e-6 197 33 1.9199986e-05 1e-6 198 33 1.9199986e-05 1e-6 214 33 3.8399987e-05 1e-6 215 33 1.9199986e-05 1e-6 219 33 0.0004606999 1e-6 223 33 0.00011519999 1e-6 233 33 0.0058348998 1e-6 234 33 0.0018809999 1e-6 235 33 0.0012859998 1e-6 236 33 0.0023991999 1e-6 237 33 0.00024949992 1e-6 240 33 3.8399987e-05 1e-6 241 33 0.0029558998 1e-6 242 33 1.9199986e-05 1e-6 252 33 0.00084449979 1e-6 254 33 0.0013436 1e-6 255 33 0.0020344998 1e-6 256 33 0.00013439999 1e-6 257 33 0.0025527999 1e-6 258 33 0.00015359999 1e-6 259 33 0.00042229984 1e-6 262 33 7.6799988e-05 1e-6 264 33 0.0031478 1e-6 265 33 0.00044149999 1e-6 266 33 0.011784997 1e-6 267 33 0.00015359999 1e-6 268 33 0.00038389978 1e-6 269 33 0.00069099991 1e-6 271 33 0.0016122998 1e-6 272 33 7.6799988e-05 1e-6 273 33 0.00086369994 1e-6 274 33 0.0050671995 1e-6 275 33 0.023781199 1e-6 276 33 0.0015354999 1e-6 277 33 0.0068905987 1e-6 279 33 0.00030709989 1e-6 282 33 0.0010556998 1e-6 285 33 7.6799988e-05 1e-6 292 33 0.0018809999 1e-6 293 33 0.00036469987 1e-6 295 33 0.0047216974 1e-6 302 33 0.00069099991 1e-6 303 33 0.00057579996 1e-6 304 33 0.004875198 1e-6 305 33 0.098656356 1e-6 306 33 0.0040882975 1e-6 307 33 0.055930898 1e-6 308 33 0.012322497 1e-6 309 33 0.0128599 1e-6 310 33 0.0025336 1e-6 311 33 0.0035316998 1e-6 312 33 0.00026869983 1e-6 315 33 7.6799988e-05 1e-6 319 33 0.0012476 1e-6 322 33 0.0013627999 1e-6 324 33 0.11134356 1e-6 331 33 0.00028789998 1e-6 334 33 0.00049899984 1e-6 335 33 0.00023029999 1e-6 336 33 0.030153599 1e-6 350 33 0.0004606999 1e-6 351 33 0.00030709989 1e-6 352 33 0.0012283998 1e-6 354 33 0.00024949992 1e-6 356 33 0.0004606999 1e-6 366 33 0.0061035976 1e-6 368 33 5.7599987e-05 1e-6 371 33 0.004875198 1e-6 374 33 1.9199986e-05 1e-6 380 33 0.00038389978 1e-6 383 33 0.00042229984 1e-6 384 33 0.00013439999 1e-6 385 33 0.011458699 1e-6 386 33 0.0031478 1e-6 390 33 0.00049899984 1e-6 398 33 0.00021109999 1e-6 402 33 7.6799988e-05 1e-6 414 33 0.00090209977 1e-6 415 33 0.0019769999 1e-6 419 33 3.8399987e-05 1e-6 438 33 9.5999989e-05 1e-6 439 33 5.7599987e-05 1e-6 441 33 0.00015359999 1e-6 443 33 0.006161198 1e-6 445 33 0.014299396 1e-6 446 33 0.00057579996 1e-6 447 33 0.00017269999 1e-6 455 33 0.041708298 1e-6 456 33 0.020921297 1e-6 458 33 3.8399987e-05 1e-6 460 33 0.00049899984 1e-6 467 33 0.0027062998 1e-6 469 33 0.033301298 1e-6 471 33 0.00071019982 1e-6 7 34 0.00020759999 1e-6 9 34 3.1899996e-05 1e-6 16 34 0.0010856998 1e-6 18 34 0.00079829991 1e-6 24 34 0.0053009987 1e-6 60 34 0.00036719977 1e-6 79 34 1.5999991e-05 1e-6 80 34 0.00011179999 1e-6 82 34 3.1899996e-05 1e-6 83 34 3.1899996e-05 1e-6 84 34 3.1899996e-05 1e-6 108 34 4.7899986e-05 1e-6 113 34 7.9799996e-05 1e-6 114 34 0.00014369999 1e-6 126 34 7.9799996e-05 1e-6 127 34 1.5999991e-05 1e-6 134 34 0.0025227999 1e-6 135 34 4.7899986e-05 1e-6 139 34 9.5799987e-05 1e-6 141 34 4.7899986e-05 1e-6 150 34 0.00011179999 1e-6 154 34 3.1899996e-05 1e-6 159 34 1.5999991e-05 1e-6 160 34 0.002874 1e-6 162 34 7.9799996e-05 1e-6 163 34 0.00094199996 1e-6 164 34 0.00065459986 1e-6 165 34 0.0030496998 1e-6 166 34 0.0038959 1e-6 167 34 0.0010537999 1e-6 168 34 0.0023630999 1e-6 170 34 7.9799996e-05 1e-6 171 34 0.0004629998 1e-6 177 34 9.5799987e-05 1e-6 182 34 0.0025386999 1e-6 183 34 0.0016445999 1e-6 189 34 3.1899996e-05 1e-6 191 34 0.00075039989 1e-6 192 34 0.00076639978 1e-6 194 34 4.7899986e-05 1e-6 196 34 3.1899996e-05 1e-6 197 34 7.9799996e-05 1e-6 198 34 4.7899986e-05 1e-6 201 34 4.7899986e-05 1e-6 203 34 4.7899986e-05 1e-6 204 34 6.3899992e-05 1e-6 206 34 0.0001277 1e-6 207 34 4.7899986e-05 1e-6 209 34 1.5999991e-05 1e-6 214 34 0.00023949999 1e-6 215 34 4.7899986e-05 1e-6 219 34 0.0017084 1e-6 223 34 0.00038319989 1e-6 233 34 0.0027462998 1e-6 234 34 0.0018041998 1e-6 235 34 0.0024269999 1e-6 236 34 0.0017084 1e-6 237 34 0.00070249988 1e-6 240 34 0.0003513 1e-6 241 34 0.0072329976 1e-6 242 34 0.0001277 1e-6 248 34 4.7899986e-05 1e-6 250 34 3.1899996e-05 1e-6 251 34 1.5999991e-05 1e-6 252 34 0.0052370988 1e-6 254 34 0.0042311996 1e-6 255 34 0.0035605999 1e-6 256 34 0.0016285998 1e-6 257 34 0.00019159999 1e-6 258 34 0.00033529988 1e-6 259 34 0.0010698 1e-6 262 34 0.00020759999 1e-6 263 34 1.5999991e-05 1e-6 264 34 0.0056042969 1e-6 265 34 0.0083665997 1e-6 266 34 0.030768 1e-6 267 34 0.0004629998 1e-6 268 34 0.0023790998 1e-6 269 34 0.0035126999 1e-6 270 34 4.7899986e-05 1e-6 271 34 0.0033849999 1e-6 272 34 0.0001756 1e-6 273 34 0.0002235 1e-6 274 34 0.0098674968 1e-6 277 34 0.0091968998 1e-6 279 34 0.00075039989 1e-6 282 34 0.0024269999 1e-6 285 34 0.00011179999 1e-6 292 34 0.0032891999 1e-6 293 34 0.00039919978 1e-6 294 34 3.1899996e-05 1e-6 295 34 0.011543997 1e-6 302 34 0.0016285998 1e-6 303 34 0.0015008999 1e-6 304 34 0.0074245967 1e-6 305 34 0.0407153 1e-6 306 34 0.013172597 1e-6 307 34 0.0010698 1e-6 308 34 0.024045996 1e-6 309 34 0.0075841993 1e-6 310 34 0.026504897 1e-6 311 34 0.020102199 1e-6 312 34 0.00052689994 1e-6 315 34 0.0007185 1e-6 317 34 0.0019159999 1e-6 318 34 9.5799987e-05 1e-6 319 34 0.0056362972 1e-6 322 34 0.0038959 1e-6 323 34 1.5999991e-05 1e-6 324 34 0.0011974999 1e-6 331 34 0.00060669985 1e-6 334 34 0.010553997 1e-6 335 34 0.00095799984 1e-6 341 34 0.00015969999 1e-6 350 34 0.00051089982 1e-6 352 34 0.0028261 1e-6 356 34 0.00083029992 1e-6 358 34 0.0001277 1e-6 363 34 1.5999991e-05 1e-6 366 34 0.016365997 1e-6 368 34 0.00014369999 1e-6 371 34 0.012102798 1e-6 374 34 3.1899996e-05 1e-6 380 34 0.00095799984 1e-6 383 34 0.00094199996 1e-6 384 34 0.00036719977 1e-6 385 34 0.0107616 1e-6 386 34 0.0073446967 1e-6 387 34 4.7899986e-05 1e-6 390 34 0.0012613998 1e-6 394 34 0.00011179999 1e-6 398 34 0.00049499981 1e-6 402 34 0.00014369999 1e-6 412 34 1.5999991e-05 1e-6 414 34 0.00015969999 1e-6 415 34 0.0047261976 1e-6 419 34 0.00011179999 1e-6 422 34 0.00020759999 1e-6 423 34 3.1899996e-05 1e-6 425 34 1.5999991e-05 1e-6 430 34 3.1899996e-05 1e-6 431 34 3.1899996e-05 1e-6 432 34 1.5999991e-05 1e-6 433 34 4.7899986e-05 1e-6 434 34 3.1899996e-05 1e-6 438 34 0.0001277 1e-6 439 34 0.00020759999 1e-6 443 34 0.0047899969 1e-6 444 34 0.00015969999 1e-6 445 34 0.017898798 1e-6 446 34 0.00086219981 1e-6 447 34 0.00079829991 1e-6 449 34 1.5999991e-05 1e-6 450 34 0.0036882998 1e-6 452 34 0.00055879983 1e-6 453 34 7.9799996e-05 1e-6 454 34 0.0011335998 1e-6 455 34 0.037553899 1e-6 456 34 0.027047697 1e-6 457 34 0.0038959 1e-6 458 34 0.00020759999 1e-6 459 34 4.7899986e-05 1e-6 460 34 0.0025546998 1e-6 463 34 0.0078556985 1e-6 464 34 0.00019159999 1e-6 465 34 0.00011179999 1e-6 467 34 0.0058916993 1e-6 468 34 0.00059079984 1e-6 469 34 0.074852288 1e-6 470 34 0.0057160966 1e-6 471 34 0.0019159999 1e-6 473 34 0.0001277 1e-6 477 34 6.3899992e-05 1e-6 478 34 0.00068659987 1e-6 483 34 0.00039919978 1e-6 489 34 7.9799996e-05 1e-6 490 34 0.0004629998 1e-6 491 34 0.0002235 1e-6 7 35 0.00016639999 1e-6 9 35 5.5499986e-05 1e-6 16 35 0.0010537999 1e-6 18 35 0.00077649998 1e-6 24 35 0.0083194971 1e-6 60 35 0.00033279997 1e-6 80 35 0.00011089999 1e-6 82 35 5.5499986e-05 1e-6 108 35 5.5499986e-05 1e-6 113 35 5.5499986e-05 1e-6 114 35 0.00011089999 1e-6 126 35 5.5499986e-05 1e-6 139 35 5.5499986e-05 1e-6 141 35 5.5499986e-05 1e-6 150 35 0.00011089999 1e-6 154 35 5.5499986e-05 1e-6 160 35 0.0023294999 1e-6 162 35 0.00033279997 1e-6 163 35 0.00083189993 1e-6 164 35 0.0005545998 1e-6 165 35 0.0032168999 1e-6 166 35 0.0034941998 1e-6 167 35 0.0009982998 1e-6 168 35 0.0026621998 1e-6 170 35 0.00011089999 1e-6 171 35 0.00044369977 1e-6 177 35 0.00011089999 1e-6 182 35 0.0012202 1e-6 183 35 0.00077649998 1e-6 189 35 5.5499986e-05 1e-6 191 35 0.0007209999 1e-6 192 35 0.0005545998 1e-6 194 35 5.5499986e-05 1e-6 197 35 5.5499986e-05 1e-6 198 35 5.5499986e-05 1e-6 203 35 5.5499986e-05 1e-6 206 35 0.00011089999 1e-6 214 35 5.5499986e-05 1e-6 215 35 5.5499986e-05 1e-6 219 35 0.0010537999 1e-6 223 35 0.00038819993 1e-6 233 35 0.017914597 1e-6 234 35 0.0065445974 1e-6 235 35 0.0046588965 1e-6 236 35 0.0085967965 1e-6 237 35 0.0007209999 1e-6 240 35 5.5499986e-05 1e-6 241 35 0.0061008967 1e-6 242 35 5.5499986e-05 1e-6 252 35 0.0021076 1e-6 254 35 0.0034941998 1e-6 255 35 0.0038824 1e-6 256 35 0.00022189999 1e-6 257 35 0.00016639999 1e-6 258 35 0.0002772999 1e-6 259 35 0.00077649998 1e-6 262 35 0.00016639999 1e-6 264 35 0.0059899986 1e-6 265 35 0.0066000968 1e-6 266 35 0.025013898 1e-6 267 35 0.0002772999 1e-6 268 35 0.00083189993 1e-6 269 35 0.0038824 1e-6 270 35 5.5499986e-05 1e-6 271 35 0.0028285999 1e-6 272 35 0.00011089999 1e-6 273 35 0.0002772999 1e-6 274 35 0.0063227974 1e-6 277 35 0.011258997 1e-6 279 35 0.0007209999 1e-6 282 35 0.0018302999 1e-6 285 35 0.00016639999 1e-6 292 35 0.0037159999 1e-6 293 35 0.00016639999 1e-6 294 35 5.5499986e-05 1e-6 295 35 0.007820297 1e-6 302 35 0.0012756998 1e-6 303 35 0.0011646999 1e-6 304 35 0.0047697984 1e-6 305 35 0.072157443 1e-6 306 35 0.018635597 1e-6 307 35 0.049473099 1e-6 308 35 0.014808699 1e-6 309 35 0.0074320994 1e-6 310 35 0.012756497 1e-6 311 35 0.0167499 1e-6 312 35 0.00061009987 1e-6 315 35 0.00038819993 1e-6 317 35 0.0017193998 1e-6 318 35 5.5499986e-05 1e-6 319 35 0.0027731999 1e-6 322 35 0.0024957999 1e-6 324 35 0.0023294999 1e-6 331 35 0.00066559995 1e-6 334 35 0.00016639999 1e-6 335 35 0.00044369977 1e-6 341 35 0.00016639999 1e-6 350 35 0.00033279997 1e-6 352 35 0.0018302999 1e-6 356 35 0.00066559995 1e-6 358 35 0.00011089999 1e-6 366 35 0.0091513991 1e-6 368 35 0.00011089999 1e-6 371 35 0.0082639977 1e-6 380 35 0.00061009987 1e-6 383 35 0.00066559995 1e-6 384 35 0.0002772999 1e-6 385 35 0.007820297 1e-6 386 35 0.0050470978 1e-6 387 35 5.5499986e-05 1e-6 390 35 0.00083189993 1e-6 394 35 0.00011089999 1e-6 398 35 0.00033279997 1e-6 402 35 0.00011089999 1e-6 414 35 0.00011089999 1e-6 415 35 0.002995 1e-6 419 35 5.5499986e-05 1e-6 422 35 0.00016639999 1e-6 430 35 5.5499986e-05 1e-6 434 35 5.5499986e-05 1e-6 438 35 0.00016639999 1e-6 439 35 0.00011089999 1e-6 441 35 0.00011089999 1e-6 443 35 0.0051580966 1e-6 444 35 0.00011089999 1e-6 445 35 0.0253466 1e-6 446 35 0.0009982998 1e-6 447 35 0.00049919984 1e-6 450 35 0.0033278 1e-6 452 35 0.00049919984 1e-6 453 35 5.5499986e-05 1e-6 454 35 0.0009982998 1e-6 455 35 0.035607297 1e-6 456 35 0.028618999 1e-6 457 35 0.0034941998 1e-6 458 35 0.00022189999 1e-6 460 35 0.0024404 1e-6 463 35 0.0070992969 1e-6 464 35 0.00016639999 1e-6 465 35 0.00011089999 1e-6 467 35 0.0058235973 1e-6 468 35 0.00049919984 1e-6 469 35 0.065723777 1e-6 470 35 0.0051580966 1e-6 471 35 0.0019967 1e-6 473 35 0.00011089999 1e-6 478 35 0.0005545998 1e-6 483 35 0.00033279997 1e-6 489 35 5.5499986e-05 1e-6 490 35 0.00038819993 1e-6 491 35 0.00022189999 1e-6 7 36 0.00045729987 1e-6 16 36 0.0022865999 1e-6 18 36 0.0015244 1e-6 24 36 0.0057926998 1e-6 60 36 0.00030489988 1e-6 80 36 0.0001524 1e-6 114 36 0.0001524 1e-6 126 36 0.0001524 1e-6 150 36 0.0001524 1e-6 160 36 0.0042682998 1e-6 162 36 0.00030489988 1e-6 163 36 0.0036584998 1e-6 164 36 0.00045729987 1e-6 165 36 0.0038109999 1e-6 166 36 0.0022865999 1e-6 167 36 0.00076219998 1e-6 168 36 0.0033536998 1e-6 170 36 0.0001524 1e-6 171 36 0.00030489988 1e-6 182 36 0.0092987977 1e-6 183 36 0.0060975999 1e-6 191 36 0.00076219998 1e-6 192 36 0.00045729987 1e-6 214 36 0.00045729987 1e-6 215 36 0.0001524 1e-6 219 36 0.0018292998 1e-6 223 36 0.00060979999 1e-6 233 36 0.0030487999 1e-6 234 36 0.0045731999 1e-6 235 36 0.0032011999 1e-6 236 36 0.0054877996 1e-6 237 36 0.00060979999 1e-6 241 36 0.0050304979 1e-6 252 36 0.0022865999 1e-6 254 36 0.0042682998 1e-6 255 36 0.0025914998 1e-6 256 36 0.00091459998 1e-6 257 36 0.0001524 1e-6 258 36 0.00030489988 1e-6 259 36 0.00076219998 1e-6 262 36 0.0001524 1e-6 264 36 0.005335398 1e-6 265 36 0.010823198 1e-6 266 36 0.046951197 1e-6 267 36 0.00045729987 1e-6 268 36 0.00091459998 1e-6 269 36 0.0015244 1e-6 271 36 0.0024389999 1e-6 272 36 0.0001524 1e-6 273 36 0.00030489988 1e-6 274 36 0.0056401975 1e-6 277 36 0.010213397 1e-6 279 36 0.00060979999 1e-6 282 36 0.001372 1e-6 285 36 0.0001524 1e-6 292 36 0.0024389999 1e-6 293 36 0.00030489988 1e-6 295 36 0.0065548979 1e-6 302 36 0.00091459998 1e-6 303 36 0.001372 1e-6 304 36 0.0047255978 1e-6 305 36 0.046341497 1e-6 306 36 0.021036599 1e-6 307 36 0.0035060998 1e-6 308 36 0.016006097 1e-6 309 36 0.0065548979 1e-6 310 36 0.010975599 1e-6 311 36 0.017530497 1e-6 312 36 0.00045729987 1e-6 315 36 0.00045729987 1e-6 317 36 0.0012194999 1e-6 319 36 0.0018292998 1e-6 322 36 0.0041158982 1e-6 324 36 0.0018292998 1e-6 331 36 0.00045729987 1e-6 334 36 0.056097597 1e-6 335 36 0.0035060998 1e-6 341 36 0.0001524 1e-6 350 36 0.0001524 1e-6 352 36 0.0015244 1e-6 356 36 0.00045729987 1e-6 358 36 0.0001524 1e-6 366 36 0.0079267994 1e-6 368 36 0.00091459998 1e-6 371 36 0.0082316995 1e-6 380 36 0.00045729987 1e-6 383 36 0.00045729987 1e-6 384 36 0.00030489988 1e-6 385 36 0.018140197 1e-6 386 36 0.0048779994 1e-6 390 36 0.00060979999 1e-6 394 36 0.0001524 1e-6 398 36 0.00030489988 1e-6 402 36 0.0001524 1e-6 415 36 0.0028962998 1e-6 438 36 0.0001524 1e-6 441 36 0.0030487999 1e-6 443 36 0.0035060998 1e-6 444 36 0.0001524 1e-6 445 36 0.023323197 1e-6 446 36 0.00045729987 1e-6 447 36 0.00030489988 1e-6 450 36 0.0027438998 1e-6 452 36 0.00045729987 1e-6 454 36 0.00076219998 1e-6 455 36 0.035975598 1e-6 456 36 0.021493897 1e-6 457 36 0.0028962998 1e-6 458 36 0.0001524 1e-6 460 36 0.0015244 1e-6 463 36 0.0057926998 1e-6 464 36 0.0001524 1e-6 467 36 0.0051828995 1e-6 468 36 0.00045729987 1e-6 469 36 0.062652349 1e-6 470 36 0.0041158982 1e-6 471 36 0.0015244 1e-6 473 36 0.0001524 1e-6 478 36 0.00030489988 1e-6 483 36 0.00030489988 1e-6 490 36 0.00030489988 1e-6 491 36 0.0001524 1e-6 7 37 5.2299991e-05 1e-6 9 37 3.4899989e-05 1e-6 16 37 0.00034869998 1e-6 18 37 0.0002441 1e-6 24 37 0.0072867982 1e-6 60 37 0.00034869998 1e-6 79 37 1.7399987e-05 1e-6 80 37 0.0001395 1e-6 82 37 3.4899989e-05 1e-6 83 37 3.4899989e-05 1e-6 84 37 3.4899989e-05 1e-6 108 37 5.2299991e-05 1e-6 113 37 5.2299991e-05 1e-6 114 37 0.000122 1e-6 126 37 6.9699992e-05 1e-6 127 37 1.7399987e-05 1e-6 134 37 6.9699992e-05 1e-6 139 37 0.0001395 1e-6 141 37 3.4899989e-05 1e-6 142 37 1.7399987e-05 1e-6 150 37 0.0001046 1e-6 154 37 3.4899989e-05 1e-6 159 37 1.7399987e-05 1e-6 160 37 0.0036259999 1e-6 162 37 0.00020919999 1e-6 163 37 0.0012899998 1e-6 164 37 0.00081929984 1e-6 165 37 0.0039048998 1e-6 166 37 0.0053691976 1e-6 167 37 0.0014294998 1e-6 168 37 0.0028763998 1e-6 170 37 0.0001046 1e-6 171 37 0.00041839993 1e-6 177 37 0.000122 1e-6 182 37 0.0014294998 1e-6 183 37 0.0008890999 1e-6 189 37 3.4899989e-05 1e-6 191 37 0.0010284998 1e-6 192 37 0.00092389993 1e-6 194 37 3.4899989e-05 1e-6 196 37 1.7399987e-05 1e-6 197 37 6.9699992e-05 1e-6 198 37 3.4899989e-05 1e-6 201 37 5.2299991e-05 1e-6 203 37 3.4899989e-05 1e-6 204 37 5.2299991e-05 1e-6 206 37 0.0001395 1e-6 207 37 3.4899989e-05 1e-6 209 37 1.7399987e-05 1e-6 214 37 0.00015689999 1e-6 215 37 1.7399987e-05 1e-6 218 37 1.7399987e-05 1e-6 219 37 0.0016909998 1e-6 223 37 0.00034869998 1e-6 233 37 0.0037479999 1e-6 234 37 0.0047938973 1e-6 235 37 0.0036084999 1e-6 236 37 0.0058398992 1e-6 237 37 0.00059269997 1e-6 240 37 0.00026149978 1e-6 241 37 0.008507099 1e-6 242 37 6.9699992e-05 1e-6 248 37 1.7399987e-05 1e-6 250 37 1.7399987e-05 1e-6 252 37 0.0040442981 1e-6 254 37 0.0039222986 1e-6 255 37 0.0050205998 1e-6 256 37 0.00083679985 1e-6 257 37 0.00022659999 1e-6 258 37 0.00031379983 1e-6 259 37 0.00083679985 1e-6 264 37 0.0078794993 1e-6 265 37 0.0077399984 1e-6 266 37 0.029129799 1e-6 267 37 0.00052299979 1e-6 268 37 0.0029634999 1e-6 269 37 0.0022314 1e-6 270 37 3.4899989e-05 1e-6 271 37 0.0044452995 1e-6 272 37 0.00019179999 1e-6 273 37 0.00027889991 1e-6 274 37 0.013318498 1e-6 277 37 0.013684496 1e-6 279 37 0.0011504998 1e-6 282 37 0.0021964998 1e-6 285 37 0.00015689999 1e-6 292 37 0.0040617995 1e-6 293 37 0.00027889991 1e-6 294 37 3.4899989e-05 1e-6 295 37 0.0139286 1e-6 302 37 0.0012725999 1e-6 303 37 0.0011157 1e-6 304 37 0.0080363974 1e-6 305 37 0.051443398 1e-6 306 37 0.010041099 1e-6 307 37 0.0011157 1e-6 308 37 0.020570397 1e-6 309 37 0.0080712996 1e-6 310 37 0.0038176998 1e-6 311 37 0.0119587 1e-6 312 37 0.00066239992 1e-6 315 37 0.0001046 1e-6 317 37 0.0017955999 1e-6 318 37 6.9699992e-05 1e-6 319 37 0.0042534992 1e-6 322 37 0.0042360984 1e-6 324 37 0.0027019999 1e-6 331 37 0.00048809987 1e-6 334 37 0.0027542999 1e-6 335 37 0.00050549977 1e-6 341 37 0.00015689999 1e-6 350 37 0.00080189994 1e-6 352 37 0.0030856 1e-6 356 37 0.0010807998 1e-6 358 37 0.000122 1e-6 366 37 0.016142499 1e-6 368 37 0.0001046 1e-6 371 37 0.0148177 1e-6 374 37 3.4899989e-05 1e-6 380 37 0.0010982 1e-6 383 37 0.00080189994 1e-6 384 37 0.00043579983 1e-6 385 37 0.0128478 1e-6 386 37 0.0088382997 1e-6 387 37 6.9699992e-05 1e-6 390 37 0.0014991998 1e-6 394 37 0.0001046 1e-6 398 37 0.00054039992 1e-6 402 37 0.0001046 1e-6 412 37 1.7399987e-05 1e-6 414 37 0.00015689999 1e-6 415 37 0.0052297972 1e-6 419 37 0.00015689999 1e-6 422 37 0.00017429999 1e-6 423 37 1.7399987e-05 1e-6 425 37 1.7399987e-05 1e-6 430 37 3.4899989e-05 1e-6 431 37 1.7399987e-05 1e-6 432 37 1.7399987e-05 1e-6 433 37 1.7399987e-05 1e-6 434 37 3.4899989e-05 1e-6 438 37 0.00017429999 1e-6 439 37 0.00022659999 1e-6 441 37 0.00022659999 1e-6 443 37 0.0057178997 1e-6 444 37 0.0001395 1e-6 445 37 0.023655999 1e-6 446 37 0.00081929984 1e-6 447 37 0.00062759989 1e-6 450 37 0.0034864999 1e-6 452 37 0.00052299979 1e-6 453 37 5.2299991e-05 1e-6 454 37 0.0010284998 1e-6 455 37 0.037288196 1e-6 456 37 0.027403899 1e-6 457 37 0.0036783 1e-6 458 37 0.00019179999 1e-6 459 37 1.7399987e-05 1e-6 460 37 0.0024406 1e-6 463 37 0.0074262992 1e-6 464 37 0.00019179999 1e-6 465 37 0.000122 1e-6 467 37 0.0046021976 1e-6 468 37 0.00054039992 1e-6 469 37 0.077069163 1e-6 470 37 0.0054214969 1e-6 471 37 0.0015689 1e-6 473 37 0.000122 1e-6 477 37 3.4899989e-05 1e-6 478 37 0.00061009987 1e-6 483 37 0.00036609988 1e-6 489 37 6.9699992e-05 1e-6 490 37 0.00043579983 1e-6 491 37 0.00020919999 1e-6 24 38 0.0020142 1e-6 60 38 0.00011849999 1e-6 114 38 0.00011849999 1e-6 162 38 0.0003554998 1e-6 163 38 0.0033175 1e-6 164 38 0.0020142 1e-6 165 38 0.005568698 1e-6 166 38 0.24111366 1e-6 167 38 0.062085297 1e-6 168 38 0.00011849999 1e-6 170 38 0.00023699999 1e-6 171 38 0.0003554998 1e-6 177 38 0.00023699999 1e-6 182 38 0.0034359999 1e-6 183 38 0.0021326998 1e-6 191 38 0.00059239985 1e-6 192 38 0.0004739 1e-6 219 38 0.0008293998 1e-6 223 38 0.00011849999 1e-6 233 38 0.0034359999 1e-6 234 38 0.0017772999 1e-6 235 38 0.00059239985 1e-6 236 38 0.0024881999 1e-6 237 38 0.0004739 1e-6 241 38 0.0023697 1e-6 252 38 0.0014217999 1e-6 254 38 0.0015403 1e-6 255 38 0.0033175 1e-6 256 38 0.00011849999 1e-6 257 38 0.00011849999 1e-6 258 38 0.00011849999 1e-6 259 38 0.0004739 1e-6 262 38 0.00011849999 1e-6 264 38 0.0052132979 1e-6 265 38 0.0028436 1e-6 266 38 0.0088862963 1e-6 267 38 0.00023699999 1e-6 268 38 0.00071089994 1e-6 269 38 0.00023699999 1e-6 271 38 0.0018956999 1e-6 272 38 0.00011849999 1e-6 273 38 0.00011849999 1e-6 274 38 0.0034359999 1e-6 277 38 0.0034359999 1e-6 279 38 0.00071089994 1e-6 282 38 0.00094789988 1e-6 285 38 0.00011849999 1e-6 292 38 0.0016587998 1e-6 295 38 0.0042653978 1e-6 302 38 0.00071089994 1e-6 303 38 0.0004739 1e-6 304 38 0.0029620999 1e-6 305 38 0.0063980967 1e-6 306 38 0.0068719983 1e-6 307 38 0.00011849999 1e-6 308 38 0.0068719983 1e-6 309 38 0.0049762987 1e-6 311 38 0.0041468963 1e-6 312 38 0.00023699999 1e-6 315 38 0.00011849999 1e-6 317 38 0.0004739 1e-6 319 38 0.004502397 1e-6 322 38 0.0015403 1e-6 324 38 0.0004739 1e-6 331 38 0.00023699999 1e-6 334 38 0.00011849999 1e-6 335 38 0.0011847999 1e-6 350 38 0.00011849999 1e-6 352 38 0.0013032998 1e-6 356 38 0.00023699999 1e-6 366 38 0.0059241988 1e-6 368 38 0.00011849999 1e-6 371 38 0.004502397 1e-6 380 38 0.0003554998 1e-6 383 38 0.0004739 1e-6 384 38 0.00011849999 1e-6 385 38 0.0042653978 1e-6 386 38 0.0026065998 1e-6 390 38 0.0004739 1e-6 398 38 0.00023699999 1e-6 415 38 0.0018956999 1e-6 438 38 0.00023699999 1e-6 439 38 0.00011849999 1e-6 441 38 0.00011849999 1e-6 443 38 0.0028436 1e-6 445 38 0.0074644983 1e-6 446 38 0.0011847999 1e-6 447 38 0.00011849999 1e-6 450 38 0.0010664 1e-6 452 38 0.00011849999 1e-6 454 38 0.00023699999 1e-6 455 38 0.036611397 1e-6 456 38 0.021919399 1e-6 457 38 0.0010664 1e-6 460 38 0.0004739 1e-6 463 38 0.0022511999 1e-6 467 38 0.0023697 1e-6 468 38 0.00011849999 1e-6 469 38 0.0479858 1e-6 470 38 0.0016587998 1e-6 471 38 0.0008293998 1e-6 478 38 0.00011849999 1e-6 483 38 0.00011849999 1e-6 490 38 0.00011849999 1e-6 7 39 0.00021789999 1e-6 9 39 3.1099989e-05 1e-6 16 39 0.0013229998 1e-6 18 39 0.0009804999 1e-6 24 39 0.0079221986 1e-6 60 39 0.00031129993 1e-6 79 39 1.5599988e-05 1e-6 80 39 0.00012449999 1e-6 82 39 3.1099989e-05 1e-6 83 39 3.1099989e-05 1e-6 84 39 3.1099989e-05 1e-6 108 39 4.6699992e-05 1e-6 113 39 6.2299994e-05 1e-6 114 39 0.0001089 1e-6 126 39 6.2299994e-05 1e-6 127 39 1.5599988e-05 1e-6 134 39 0.0097120963 1e-6 135 39 0.00015559999 1e-6 139 39 9.3399998e-05 1e-6 141 39 3.1099989e-05 1e-6 150 39 0.0001089 1e-6 154 39 3.1099989e-05 1e-6 159 39 1.5599988e-05 1e-6 160 39 0.0035330998 1e-6 162 39 0.00014009999 1e-6 163 39 0.0014475 1e-6 164 39 0.00088719977 1e-6 165 39 0.003393 1e-6 166 39 0.0056030974 1e-6 167 39 0.0015409 1e-6 168 39 0.0022100999 1e-6 170 39 9.3399998e-05 1e-6 171 39 0.00045139994 1e-6 177 39 0.00012449999 1e-6 181 39 0.0011672999 1e-6 182 39 0.0014008 1e-6 183 39 0.0008405 1e-6 189 39 3.1099989e-05 1e-6 191 39 0.0011517999 1e-6 192 39 0.00082489988 1e-6 194 39 4.6699992e-05 1e-6 196 39 1.5599988e-05 1e-6 197 39 7.7799996e-05 1e-6 198 39 3.1099989e-05 1e-6 201 39 4.6699992e-05 1e-6 203 39 3.1099989e-05 1e-6 204 39 4.6699992e-05 1e-6 206 39 0.00012449999 1e-6 207 39 3.1099989e-05 1e-6 209 39 1.5599988e-05 1e-6 214 39 0.00026459992 1e-6 215 39 6.2299994e-05 1e-6 218 39 1.5599988e-05 1e-6 219 39 0.0017120999 1e-6 223 39 0.00032679993 1e-6 233 39 0.0035641999 1e-6 234 39 0.0041244999 1e-6 235 39 0.0070194975 1e-6 236 39 0.0034397 1e-6 237 39 0.00082489988 1e-6 240 39 0.00062259985 1e-6 241 39 0.0071127973 1e-6 242 39 0.00012449999 1e-6 248 39 3.1099989e-05 1e-6 250 39 1.5599988e-05 1e-6 252 39 0.0027548999 1e-6 254 39 0.0035797998 1e-6 255 39 0.0049649999 1e-6 256 39 0.00077819987 1e-6 257 39 0.0002023 1e-6 258 39 0.00034239981 1e-6 259 39 0.0010427998 1e-6 262 39 0.00021789999 1e-6 264 39 0.0077197999 1e-6 265 39 0.0059921965 1e-6 266 39 0.0221323 1e-6 267 39 0.00054469984 1e-6 268 39 0.0023657999 1e-6 269 39 0.0020544999 1e-6 270 39 3.1099989e-05 1e-6 271 39 0.0026925998 1e-6 272 39 0.00014009999 1e-6 273 39 0.0002489998 1e-6 274 39 0.0094785988 1e-6 277 39 0.0075952969 1e-6 279 39 0.000856 1e-6 282 39 0.0023035 1e-6 285 39 0.00012449999 1e-6 292 39 0.0034552999 1e-6 293 39 0.0002023 1e-6 294 39 4.6699992e-05 1e-6 295 39 0.011782099 1e-6 302 39 0.0015874999 1e-6 303 39 0.0014942 1e-6 304 39 0.0062411986 1e-6 305 39 0.050972797 1e-6 306 39 0.023797698 1e-6 307 39 0.00088719977 1e-6 308 39 0.015766498 1e-6 309 39 0.011595298 1e-6 310 39 0.0058365986 1e-6 311 39 0.012964997 1e-6 312 39 0.00057589984 1e-6 315 39 0.00017119999 1e-6 317 39 0.0016186999 1e-6 318 39 7.7799996e-05 1e-6 319 39 0.0081555992 1e-6 322 39 0.0039376989 1e-6 323 39 1.5599988e-05 1e-6 324 39 0.000856 1e-6 331 39 0.00073149987 1e-6 334 39 0.0016031 1e-6 335 39 0.00048249983 1e-6 341 39 0.00014009999 1e-6 350 39 0.00046689995 1e-6 352 39 0.0023657999 1e-6 356 39 0.00079379999 1e-6 358 39 0.0001089 1e-6 366 39 0.0123735 1e-6 368 39 0.00014009999 1e-6 371 39 0.012638099 1e-6 374 39 4.6699992e-05 1e-6 380 39 0.0009649999 1e-6 383 39 0.00087159988 1e-6 384 39 0.00038909982 1e-6 385 39 0.011891097 1e-6 386 39 0.0075952969 1e-6 387 39 4.6699992e-05 1e-6 390 39 0.0012762998 1e-6 394 39 9.3399998e-05 1e-6 397 39 1.5599988e-05 1e-6 398 39 0.00042019994 1e-6 402 39 0.0002023 1e-6 412 39 1.5599988e-05 1e-6 414 39 0.00014009999 1e-6 415 39 0.0039532967 1e-6 419 39 0.0001089 1e-6 422 39 0.00015559999 1e-6 423 39 1.5599988e-05 1e-6 425 39 1.5599988e-05 1e-6 430 39 3.1099989e-05 1e-6 431 39 3.1099989e-05 1e-6 432 39 1.5599988e-05 1e-6 433 39 3.1099989e-05 1e-6 434 39 3.1099989e-05 1e-6 438 39 0.00015559999 1e-6 439 39 0.00015559999 1e-6 441 39 0.0002023 1e-6 443 39 0.0054629967 1e-6 444 39 0.00012449999 1e-6 445 39 0.019937698 1e-6 446 39 0.00094939978 1e-6 447 39 0.00063809985 1e-6 449 39 1.5599988e-05 1e-6 450 39 0.003144 1e-6 452 39 0.00046689995 1e-6 453 39 6.2299994e-05 1e-6 454 39 0.00094939978 1e-6 455 39 0.035844397 1e-6 456 39 0.026381299 1e-6 457 39 0.0033151999 1e-6 458 39 0.00021789999 1e-6 459 39 1.5599988e-05 1e-6 460 39 0.0026303998 1e-6 463 39 0.0067081973 1e-6 464 39 0.00017119999 1e-6 465 39 0.0001089 1e-6 467 39 0.0065057985 1e-6 468 39 0.00051359995 1e-6 469 39 0.11573535 1e-6 470 39 0.0048559979 1e-6 471 39 0.0022256998 1e-6 473 39 0.0001089 1e-6 477 39 4.6699992e-05 1e-6 478 39 0.00054469984 1e-6 483 39 0.00034239981 1e-6 489 39 7.7799996e-05 1e-6 490 39 0.00038909982 1e-6 491 39 0.0002023 1e-6 7 40 7.1799994e-05 1e-6 9 40 2.3899993e-05 1e-6 16 40 0.00035889982 1e-6 18 40 0.00028709997 1e-6 24 40 0.0048085973 1e-6 60 40 0.00026319991 1e-6 80 40 9.5699987e-05 1e-6 82 40 2.3899993e-05 1e-6 83 40 2.3899993e-05 1e-6 84 40 2.3899993e-05 1e-6 108 40 4.7799986e-05 1e-6 113 40 4.7799986e-05 1e-6 114 40 9.5699987e-05 1e-6 126 40 7.1799994e-05 1e-6 127 40 2.3899993e-05 1e-6 134 40 0.0011243999 1e-6 135 40 2.3899993e-05 1e-6 139 40 0.00023919999 1e-6 141 40 2.3899993e-05 1e-6 142 40 2.3899993e-05 1e-6 150 40 7.1799994e-05 1e-6 154 40 4.7799986e-05 1e-6 159 40 2.3899993e-05 1e-6 160 40 0.0047846995 1e-6 162 40 9.5699987e-05 1e-6 163 40 0.0018659998 1e-6 164 40 0.0012679 1e-6 165 40 0.0040190965 1e-6 166 40 0.0077989995 1e-6 167 40 0.0021052998 1e-6 168 40 0.0014354 1e-6 170 40 9.5699987e-05 1e-6 171 40 0.00071769999 1e-6 177 40 0.00016749999 1e-6 182 40 0.00081339991 1e-6 183 40 0.00040669995 1e-6 189 40 2.3899993e-05 1e-6 191 40 0.0011482998 1e-6 192 40 0.00093299989 1e-6 194 40 2.3899993e-05 1e-6 197 40 9.5699987e-05 1e-6 198 40 2.3899993e-05 1e-6 201 40 2.3899993e-05 1e-6 203 40 2.3899993e-05 1e-6 204 40 4.7799986e-05 1e-6 206 40 0.00011959999 1e-6 207 40 2.3899993e-05 1e-6 214 40 0.0002153 1e-6 215 40 2.3899993e-05 1e-6 219 40 0.00189 1e-6 223 40 0.00026319991 1e-6 233 40 0.004162699 1e-6 234 40 0.001555 1e-6 235 40 0.0013875999 1e-6 236 40 0.0016985999 1e-6 237 40 0.00045449985 1e-6 240 40 0.00031099981 1e-6 241 40 0.0091147982 1e-6 242 40 7.1799994e-05 1e-6 252 40 0.00088519999 1e-6 254 40 0.0031339999 1e-6 255 40 0.0023206 1e-6 256 40 0.0012439999 1e-6 257 40 0.00011959999 1e-6 258 40 0.00062199985 1e-6 259 40 0.0018420999 1e-6 262 40 0.00023919999 1e-6 264 40 0.0036841999 1e-6 265 40 0.0065549985 1e-6 266 40 0.021626797 1e-6 267 40 0.00052629993 1e-6 268 40 0.0054305978 1e-6 269 40 0.0018420999 1e-6 270 40 2.3899993e-05 1e-6 271 40 0.0035885 1e-6 272 40 0.00023919999 1e-6 273 40 0.00014349999 1e-6 274 40 0.0099760965 1e-6 277 40 0.010287099 1e-6 279 40 0.0009808999 1e-6 282 40 0.0038516999 1e-6 285 40 0.00014349999 1e-6 292 40 0.0048085973 1e-6 293 40 0.0002153 1e-6 294 40 2.3899993e-05 1e-6 295 40 0.013468899 1e-6 302 40 0.0028468999 1e-6 304 40 0.010071799 1e-6 305 40 0.031674597 1e-6 306 40 0.012416299 1e-6 307 40 0.0012439999 1e-6 308 40 0.019928198 1e-6 309 40 0.0046650991 1e-6 311 40 0.0082535967 1e-6 312 40 0.0005502 1e-6 315 40 7.1799994e-05 1e-6 317 40 0.0014114999 1e-6 318 40 4.7799986e-05 1e-6 319 40 0.011770297 1e-6 322 40 0.0045454986 1e-6 324 40 0.0013875999 1e-6 331 40 0.00035889982 1e-6 334 40 0.0089233965 1e-6 335 40 0.0002153 1e-6 341 40 0.00011959999 1e-6 350 40 0.00078949984 1e-6 352 40 0.0038037999 1e-6 356 40 0.00093299989 1e-6 358 40 9.5699987e-05 1e-6 366 40 0.020909097 1e-6 368 40 0.00026319991 1e-6 371 40 0.014162697 1e-6 374 40 2.3899993e-05 1e-6 380 40 0.0011482998 1e-6 383 40 0.0014832998 1e-6 384 40 0.00035889982 1e-6 385 40 0.011770297 1e-6 386 40 0.0085884966 1e-6 387 40 4.7799986e-05 1e-6 390 40 0.0014354 1e-6 394 40 9.5699987e-05 1e-6 398 40 0.00066989986 1e-6 402 40 9.5699987e-05 1e-6 412 40 2.3899993e-05 1e-6 414 40 0.00028709997 1e-6 415 40 0.0062678978 1e-6 419 40 0.00011959999 1e-6 422 40 0.00014349999 1e-6 423 40 2.3899993e-05 1e-6 425 40 2.3899993e-05 1e-6 430 40 4.7799986e-05 1e-6 431 40 2.3899993e-05 1e-6 433 40 2.3899993e-05 1e-6 434 40 2.3899993e-05 1e-6 438 40 0.0002153 1e-6 439 40 0.00026319991 1e-6 441 40 0.0002153 1e-6 443 40 0.0043779984 1e-6 444 40 0.00011959999 1e-6 445 40 0.0179426 1e-6 446 40 0.00052629993 1e-6 447 40 0.0004784998 1e-6 450 40 0.0027272999 1e-6 452 40 0.00040669995 1e-6 453 40 4.7799986e-05 1e-6 454 40 0.00078949984 1e-6 455 40 0.033803798 1e-6 456 40 0.024880398 1e-6 457 40 0.0028468999 1e-6 458 40 0.00014349999 1e-6 460 40 0.0018420999 1e-6 463 40 0.0057655983 1e-6 464 40 0.00014349999 1e-6 465 40 9.5699987e-05 1e-6 467 40 0.0039233975 1e-6 468 40 0.00043059979 1e-6 469 40 0.11217695 1e-6 470 40 0.0042104982 1e-6 471 40 0.0012200999 1e-6 473 40 9.5699987e-05 1e-6 477 40 2.3899993e-05 1e-6 478 40 0.00045449985 1e-6 483 40 0.00028709997 1e-6 489 40 7.1799994e-05 1e-6 490 40 0.00033489987 1e-6 491 40 0.00016749999 1e-6 7 41 6.8799985e-05 1e-6 9 41 3.4399985e-05 1e-6 16 41 0.00020639999 1e-6 18 41 0.00013759999 1e-6 24 41 0.0057435967 1e-6 60 41 0.00037829997 1e-6 80 41 0.00010319999 1e-6 82 41 3.4399985e-05 1e-6 83 41 3.4399985e-05 1e-6 84 41 3.4399985e-05 1e-6 108 41 6.8799985e-05 1e-6 113 41 6.8799985e-05 1e-6 114 41 0.00013759999 1e-6 126 41 0.00010319999 1e-6 134 41 0.0020291999 1e-6 135 41 3.4399985e-05 1e-6 139 41 0.00013759999 1e-6 141 41 3.4399985e-05 1e-6 150 41 0.00010319999 1e-6 154 41 3.4399985e-05 1e-6 159 41 3.4399985e-05 1e-6 160 41 0.0044365972 1e-6 162 41 0.00020639999 1e-6 163 41 0.0016508 1e-6 164 41 0.0010662 1e-6 165 41 0.0042990968 1e-6 166 41 0.0068096966 1e-6 167 41 0.0018227999 1e-6 168 41 0.0024074998 1e-6 170 41 0.00013759999 1e-6 171 41 0.00061909994 1e-6 177 41 0.00013759999 1e-6 181 41 0.0026481999 1e-6 182 41 0.011383999 1e-6 183 41 0.0073255971 1e-6 189 41 3.4399985e-05 1e-6 191 41 0.00079099997 1e-6 192 41 0.00072219991 1e-6 194 41 3.4399985e-05 1e-6 197 41 6.8799985e-05 1e-6 198 41 3.4399985e-05 1e-6 201 41 3.4399985e-05 1e-6 203 41 3.4399985e-05 1e-6 204 41 6.8799985e-05 1e-6 206 41 0.00017199999 1e-6 207 41 3.4399985e-05 1e-6 214 41 0.00027509988 1e-6 219 41 0.001926 1e-6 223 41 0.00037829997 1e-6 233 41 0.0034049 1e-6 234 41 0.0020635999 1e-6 235 41 0.0010317999 1e-6 236 41 0.0026825999 1e-6 237 41 0.00075659994 1e-6 240 41 0.00030949991 1e-6 241 41 0.0082541965 1e-6 242 41 0.00010319999 1e-6 252 41 0.0023387 1e-6 254 41 0.0058123991 1e-6 255 41 0.0036455998 1e-6 256 41 0.0011349998 1e-6 257 41 0.00020639999 1e-6 258 41 0.00051589985 1e-6 259 41 0.0014444999 1e-6 262 41 0.00017199999 1e-6 264 41 0.0057091974 1e-6 265 41 0.0091827996 1e-6 266 41 0.032672998 1e-6 267 41 0.0004127 1e-6 269 41 0.0073255971 1e-6 270 41 0.00010319999 1e-6 271 41 0.0035079999 1e-6 272 41 0.00020639999 1e-6 273 41 0.00017199999 1e-6 274 41 0.010902498 1e-6 277 41 0.012622099 1e-6 282 41 0.0031297 1e-6 285 41 0.00013759999 1e-6 292 41 0.0044022985 1e-6 293 41 0.00027509988 1e-6 295 41 0.010489799 1e-6 302 41 0.0022010999 1e-6 303 41 0.0018916 1e-6 304 41 0.0090108998 1e-6 305 41 0.023490198 1e-6 306 41 0.017196298 1e-6 307 41 0.00079099997 1e-6 308 41 0.0208763 1e-6 309 41 0.007875897 1e-6 310 41 0.0073599964 1e-6 311 41 0.010386597 1e-6 312 41 0.00055029988 1e-6 315 41 0.00020639999 1e-6 317 41 0.0019947998 1e-6 318 41 6.8799985e-05 1e-6 319 41 0.0088732988 1e-6 322 41 0.0037143999 1e-6 324 41 0.0019947998 1e-6 331 41 0.00061909994 1e-6 334 41 0.0060874969 1e-6 335 41 0.0042646974 1e-6 341 41 0.00017199999 1e-6 350 41 0.00065349997 1e-6 352 41 0.0034736998 1e-6 356 41 0.0008254 1e-6 358 41 0.00010319999 1e-6 366 41 0.018675197 1e-6 368 41 0.00017199999 1e-6 371 41 0.011005599 1e-6 374 41 6.8799985e-05 1e-6 380 41 0.00089419982 1e-6 383 41 0.0011349998 1e-6 384 41 0.00027509988 1e-6 385 41 0.0098706968 1e-6 386 41 0.0067409985 1e-6 387 41 6.8799985e-05 1e-6 390 41 0.0011006 1e-6 394 41 0.00013759999 1e-6 398 41 0.00061909994 1e-6 402 41 0.00020639999 1e-6 412 41 3.4399985e-05 1e-6 414 41 0.00020639999 1e-6 415 41 0.0057091974 1e-6 419 41 0.00013759999 1e-6 422 41 0.00020639999 1e-6 423 41 3.4399985e-05 1e-6 425 41 3.4399985e-05 1e-6 430 41 6.8799985e-05 1e-6 431 41 3.4399985e-05 1e-6 433 41 3.4399985e-05 1e-6 434 41 3.4399985e-05 1e-6 438 41 0.00017199999 1e-6 439 41 0.0002407 1e-6 441 41 0.00020639999 1e-6 443 41 0.0044022985 1e-6 444 41 0.00017199999 1e-6 445 41 0.016233299 1e-6 446 41 0.0010317999 1e-6 447 41 0.00061909994 1e-6 450 41 0.0037487999 1e-6 452 41 0.00055029988 1e-6 453 41 6.8799985e-05 1e-6 454 41 0.0011006 1e-6 455 41 0.037281599 1e-6 456 41 0.024143599 1e-6 457 41 0.0039207973 1e-6 458 41 0.0002407 1e-6 460 41 0.0024074998 1e-6 463 41 0.0079790987 1e-6 464 41 0.00020639999 1e-6 465 41 0.00013759999 1e-6 467 41 0.0060186982 1e-6 468 41 0.00058469991 1e-6 469 41 0.10001379 1e-6 470 41 0.0058123991 1e-6 471 41 0.0020635999 1e-6 473 41 0.00013759999 1e-6 477 41 3.4399985e-05 1e-6 478 41 0.00065349997 1e-6 483 41 0.00037829997 1e-6 489 41 0.00010319999 1e-6 490 41 0.00048149982 1e-6 491 41 0.00020639999 1e-6 7 42 6.179999e-05 1e-6 16 42 0.00030909991 1e-6 18 42 0.00018549999 1e-6 24 42 0.0051932 1e-6 60 42 0.0001236 1e-6 80 42 9.2699993e-05 1e-6 108 42 3.0899988e-05 1e-6 113 42 3.0899988e-05 1e-6 114 42 6.179999e-05 1e-6 126 42 3.0899988e-05 1e-6 134 42 0.00046369992 1e-6 139 42 3.0899988e-05 1e-6 141 42 3.0899988e-05 1e-6 150 42 3.0899988e-05 1e-6 159 42 6.179999e-05 1e-6 160 42 0.0017001999 1e-6 162 42 6.179999e-05 1e-6 163 42 0.00021639999 1e-6 164 42 0.00018549999 1e-6 165 42 0.00095829996 1e-6 166 42 0.00095829996 1e-6 167 42 0.00027819979 1e-6 168 42 0.0066460967 1e-6 170 42 3.0899988e-05 1e-6 171 42 0.0001546 1e-6 182 42 0.00055639981 1e-6 183 42 0.00033999979 1e-6 191 42 0.00018549999 1e-6 192 42 0.0002472999 1e-6 195 42 0.00046369992 1e-6 197 42 3.0899988e-05 1e-6 198 42 3.0899988e-05 1e-6 206 42 6.179999e-05 1e-6 214 42 3.0899988e-05 1e-6 219 42 0.00040189992 1e-6 223 42 0.00021639999 1e-6 233 42 0.0012365 1e-6 234 42 0.0051004998 1e-6 235 42 0.0096753985 1e-6 236 42 0.00095829996 1e-6 237 42 0.0012055999 1e-6 240 42 3.0899988e-05 1e-6 241 42 0.0017310998 1e-6 242 42 3.0899988e-05 1e-6 252 42 0.0011747 1e-6 254 42 0.0014218998 1e-6 255 42 0.00092739984 1e-6 256 42 0.00030909991 1e-6 257 42 6.179999e-05 1e-6 258 42 0.0013291999 1e-6 259 42 0.0002472999 1e-6 262 42 0.0017001999 1e-6 264 42 0.0014837999 1e-6 265 42 0.0059041977 1e-6 266 42 0.016043298 1e-6 267 42 0.0001236 1e-6 268 42 0.00046369992 1e-6 269 42 0.0011127999 1e-6 271 42 0.0034311998 1e-6 272 42 3.0899988e-05 1e-6 273 42 6.179999e-05 1e-6 274 42 0.0022874998 1e-6 277 42 0.0034620999 1e-6 279 42 0.00018549999 1e-6 282 42 0.0013291999 1e-6 285 42 3.0899988e-05 1e-6 292 42 0.00083459984 1e-6 293 42 9.2699993e-05 1e-6 295 42 0.27020085 1e-6 302 42 0.00037089991 1e-6 303 42 0.00037089991 1e-6 304 42 0.0016691999 1e-6 305 42 0.027573399 1e-6 306 42 0.0035857998 1e-6 307 42 0.0002472999 1e-6 308 42 0.0058732964 1e-6 309 42 0.0022256998 1e-6 310 42 0.005656898 1e-6 311 42 0.0059968978 1e-6 312 42 0.0004327998 1e-6 315 42 0.0001546 1e-6 317 42 0.00068009994 1e-6 318 42 3.0899988e-05 1e-6 319 42 0.0012055999 1e-6 322 42 0.0029365998 1e-6 324 42 0.016723298 1e-6 331 42 0.0013291999 1e-6 334 42 0.0018855999 1e-6 335 42 0.00021639999 1e-6 341 42 6.179999e-05 1e-6 350 42 9.2699993e-05 1e-6 352 42 0.0012673999 1e-6 356 42 0.00068009994 1e-6 358 42 3.0899988e-05 1e-6 366 42 0.0036166999 1e-6 368 42 3.0899988e-05 1e-6 371 42 0.0027202 1e-6 380 42 0.00021639999 1e-6 383 42 0.00021639999 1e-6 384 42 0.0010509999 1e-6 385 42 0.0040803999 1e-6 386 42 0.030757297 1e-6 387 42 3.0899988e-05 1e-6 390 42 0.00027819979 1e-6 394 42 3.0899988e-05 1e-6 397 42 3.0899988e-05 1e-6 398 42 0.0001236 1e-6 402 42 0.00033999979 1e-6 414 42 3.0899988e-05 1e-6 415 42 0.0010201 1e-6 419 42 3.0899988e-05 1e-6 422 42 3.0899988e-05 1e-6 430 42 3.0899988e-05 1e-6 438 42 6.179999e-05 1e-6 439 42 6.179999e-05 1e-6 441 42 6.179999e-05 1e-6 443 42 0.0033075998 1e-6 444 42 6.179999e-05 1e-6 445 42 0.016383298 1e-6 446 42 0.00089639984 1e-6 447 42 0.00018549999 1e-6 448 42 3.0899988e-05 1e-6 450 42 0.0011747 1e-6 452 42 0.00018549999 1e-6 453 42 3.0899988e-05 1e-6 454 42 0.00033999979 1e-6 455 42 0.037341598 1e-6 456 42 0.013137598 1e-6 457 42 0.0012365 1e-6 458 42 0.00021639999 1e-6 460 42 0.0018546998 1e-6 463 42 0.0025348 1e-6 464 42 6.179999e-05 1e-6 465 42 3.0899988e-05 1e-6 467 42 0.010324597 1e-6 468 42 0.00018549999 1e-6 469 42 0.018485297 1e-6 470 42 0.0018546998 1e-6 471 42 0.0034311998 1e-6 473 42 3.0899988e-05 1e-6 478 42 0.00018549999 1e-6 483 42 0.0001236 1e-6 489 42 3.0899988e-05 1e-6 490 42 0.0001546 1e-6 491 42 0.0001236 1e-6 24 43 0.013648998 1e-6 134 43 0.00027859979 1e-6 160 43 0.004735399 1e-6 163 43 0.0011141999 1e-6 164 43 0.00055709993 1e-6 165 43 0.0013927999 1e-6 166 43 0.0033425998 1e-6 167 43 0.00083569996 1e-6 168 43 0.019220099 1e-6 191 43 0.00027859979 1e-6 192 43 0.00083569996 1e-6 233 43 0.00027859979 1e-6 234 43 0.0019498998 1e-6 235 43 0.0066851974 1e-6 236 43 0.00055709993 1e-6 237 43 0.00083569996 1e-6 241 43 0.0027854999 1e-6 252 43 0.00027859979 1e-6 255 43 0.00055709993 1e-6 262 43 0.00027859979 1e-6 264 43 0.00055709993 1e-6 265 43 0.011977699 1e-6 266 43 0.0061280988 1e-6 268 43 0.00027859979 1e-6 271 43 0.00055709993 1e-6 274 43 0.0011141999 1e-6 277 43 0.14512527 1e-6 279 43 0.00027859979 1e-6 282 43 0.00027859979 1e-6 285 43 0.00027859979 1e-6 292 43 0.00055709993 1e-6 295 43 0.013091899 1e-6 302 43 0.00027859979 1e-6 303 43 0.00027859979 1e-6 304 43 0.00055709993 1e-6 305 43 0.021726999 1e-6 306 43 0.0011141999 1e-6 308 43 0.0011141999 1e-6 309 43 0.0011141999 1e-6 310 43 0.0016712998 1e-6 311 43 0.0019498998 1e-6 317 43 0.00027859979 1e-6 319 43 0.00083569996 1e-6 322 43 0.0036211999 1e-6 324 43 0.084958196 1e-6 326 43 0.067687988 1e-6 331 43 0.00055709993 1e-6 334 43 0.00055709993 1e-6 356 43 0.00083569996 1e-6 366 43 0.0011141999 1e-6 371 43 0.0144847 1e-6 380 43 0.00083569996 1e-6 384 43 0.00055709993 1e-6 385 43 0.020055696 1e-6 386 43 0.029247899 1e-6 390 43 0.0013927999 1e-6 402 43 0.00027859979 1e-6 415 43 0.00027859979 1e-6 441 43 0.00027859979 1e-6 443 43 0.0055709966 1e-6 445 43 0.0231198 1e-6 446 43 0.00055709993 1e-6 450 43 0.00055709993 1e-6 455 43 0.0462396 1e-6 456 43 0.0064066984 1e-6 457 43 0.00055709993 1e-6 460 43 0.00083569996 1e-6 463 43 0.0011141999 1e-6 467 43 0.0066851974 1e-6 469 43 0.010306399 1e-6 470 43 0.00083569996 1e-6 471 43 0.0019498998 1e-6 7 44 2.4899986e-05 1e-6 9 44 1.24e-05 1e-6 16 44 8.7099994e-05 1e-6 18 44 6.2199993e-05 1e-6 24 44 0.0012937 1e-6 60 44 7.4599986e-05 1e-6 80 44 7.4599986e-05 1e-6 82 44 1.24e-05 1e-6 108 44 1.24e-05 1e-6 113 44 1.24e-05 1e-6 114 44 2.4899986e-05 1e-6 126 44 1.24e-05 1e-6 134 44 4.9799986e-05 1e-6 141 44 2.4899986e-05 1e-6 150 44 2.4899986e-05 1e-6 159 44 0.00011199999 1e-6 160 44 0.0042542964 1e-6 162 44 2.4899986e-05 1e-6 163 44 6.2199993e-05 1e-6 164 44 6.2199993e-05 1e-6 165 44 0.0010076 1e-6 166 44 0.00027369987 1e-6 167 44 7.4599986e-05 1e-6 168 44 0.022316199 1e-6 170 44 3.7299993e-05 1e-6 171 44 0.00018659999 1e-6 182 44 0.00012439999 1e-6 183 44 7.4599986e-05 1e-6 189 44 1.24e-05 1e-6 191 44 6.2199993e-05 1e-6 192 44 0.00018659999 1e-6 194 44 1.24e-05 1e-6 195 44 0.00080859987 1e-6 198 44 2.4899986e-05 1e-6 203 44 1.24e-05 1e-6 206 44 2.4899986e-05 1e-6 214 44 0.00013679999 1e-6 219 44 0.00013679999 1e-6 220 44 2.4899986e-05 1e-6 223 44 0.00016169999 1e-6 233 44 0.00079609989 1e-6 234 44 0.00083339983 1e-6 235 44 0.00077119982 1e-6 236 44 0.00059709977 1e-6 237 44 0.0010324998 1e-6 241 44 0.00073389988 1e-6 242 44 6.2199993e-05 1e-6 252 44 0.00023629999 1e-6 254 44 0.0019405 1e-6 255 44 0.0011816998 1e-6 256 44 2.4899986e-05 1e-6 257 44 0.0010698 1e-6 258 44 0.0005349 1e-6 259 44 6.2199993e-05 1e-6 262 44 0.013733096 1e-6 264 44 0.0010698 1e-6 265 44 0.015511896 1e-6 266 44 0.016730897 1e-6 267 44 8.7099994e-05 1e-6 268 44 8.7099994e-05 1e-6 269 44 0.00033589988 1e-6 271 44 0.0074138977 1e-6 272 44 0.0007836998 1e-6 273 44 0.00039809989 1e-6 274 44 0.0008582999 1e-6 277 44 0.024605099 1e-6 279 44 0.0012563998 1e-6 282 44 0.00075879996 1e-6 285 44 1.24e-05 1e-6 292 44 0.00055979984 1e-6 293 44 1.24e-05 1e-6 294 44 1.24e-05 1e-6 295 44 0.0496579 1e-6 302 44 9.9499986e-05 1e-6 303 44 9.9499986e-05 1e-6 304 44 0.00069659995 1e-6 305 44 0.058265999 1e-6 306 44 0.0013807998 1e-6 307 44 0.06998378 1e-6 308 44 0.0015299998 1e-6 309 44 0.0016668998 1e-6 310 44 0.0012314999 1e-6 311 44 0.0072520971 1e-6 312 44 0.00059709977 1e-6 315 44 3.7299993e-05 1e-6 317 44 0.00038559991 1e-6 318 44 1.24e-05 1e-6 319 44 0.00028609997 1e-6 322 44 0.0016543998 1e-6 324 44 0.099614382 1e-6 331 44 0.0011443999 1e-6 334 44 0.00022389999 1e-6 335 44 4.9799986e-05 1e-6 341 44 3.7299993e-05 1e-6 350 44 2.4899986e-05 1e-6 352 44 0.00079609989 1e-6 356 44 0.00062199985 1e-6 358 44 2.4899986e-05 1e-6 366 44 0.00087079988 1e-6 368 44 1.24e-05 1e-6 371 44 0.00072149979 1e-6 374 44 0.00073389988 1e-6 380 44 6.2199993e-05 1e-6 383 44 8.7099994e-05 1e-6 384 44 2.4899986e-05 1e-6 385 44 0.0225899 1e-6 386 44 0.021619599 1e-6 387 44 1.24e-05 1e-6 390 44 7.4599986e-05 1e-6 394 44 2.4899986e-05 1e-6 397 44 2.4899986e-05 1e-6 398 44 2.4899986e-05 1e-6 402 44 0.00028609997 1e-6 414 44 0.0061698966 1e-6 415 44 0.0002487998 1e-6 422 44 3.7299993e-05 1e-6 430 44 1.24e-05 1e-6 438 44 6.2199993e-05 1e-6 439 44 1.24e-05 1e-6 441 44 7.4599986e-05 1e-6 443 44 0.0043661967 1e-6 444 44 2.4899986e-05 1e-6 445 44 0.0088318996 1e-6 446 44 0.0011568998 1e-6 447 44 0.00026119989 1e-6 450 44 0.00073389988 1e-6 452 44 0.00011199999 1e-6 453 44 1.24e-05 1e-6 454 44 0.0002115 1e-6 455 44 0.0447568 1e-6 456 44 0.016880199 1e-6 457 44 0.00077119982 1e-6 458 44 0.00018659999 1e-6 460 44 0.0016917998 1e-6 463 44 0.0015673998 1e-6 464 44 3.7299993e-05 1e-6 465 44 2.4899986e-05 1e-6 467 44 0.0087572969 1e-6 468 44 0.00011199999 1e-6 469 44 0.035539199 1e-6 470 44 0.0011443999 1e-6 471 44 0.0028859 1e-6 473 44 2.4899986e-05 1e-6 478 44 0.00012439999 1e-6 483 44 7.4599986e-05 1e-6 489 44 1.24e-05 1e-6 490 44 8.7099994e-05 1e-6 491 44 6.2199993e-05 1e-6 16 45 0.00012079999 1e-6 18 45 6.0399994e-05 1e-6 24 45 0.010453198 1e-6 60 45 0.00024169999 1e-6 108 45 6.0399994e-05 1e-6 113 45 6.0399994e-05 1e-6 114 45 0.00012079999 1e-6 126 45 6.0399994e-05 1e-6 134 45 6.0399994e-05 1e-6 141 45 6.0399994e-05 1e-6 150 45 6.0399994e-05 1e-6 160 45 0.00030209986 1e-6 163 45 6.0399994e-05 1e-6 164 45 6.0399994e-05 1e-6 165 45 0.0001813 1e-6 166 45 0.0001813 1e-6 168 45 0.00030209986 1e-6 171 45 6.0399994e-05 1e-6 182 45 0.00012079999 1e-6 183 45 6.0399994e-05 1e-6 191 45 6.0399994e-05 1e-6 192 45 0.00012079999 1e-6 198 45 6.0399994e-05 1e-6 206 45 0.00012079999 1e-6 214 45 0.0033232998 1e-6 219 45 6.0399994e-05 1e-6 220 45 0.0010271999 1e-6 223 45 0.00024169999 1e-6 233 45 0.0045316964 1e-6 234 45 0.060120799 1e-6 235 45 0.0087008998 1e-6 236 45 0.00036249985 1e-6 237 45 0.0016917998 1e-6 241 45 0.0070090964 1e-6 242 45 0.00012079999 1e-6 252 45 0.00024169999 1e-6 254 45 0.00030209986 1e-6 255 45 0.00024169999 1e-6 256 45 6.0399994e-05 1e-6 259 45 6.0399994e-05 1e-6 264 45 0.00036249985 1e-6 265 45 0.0016917998 1e-6 266 45 0.023867097 1e-6 268 45 0.00012079999 1e-6 269 45 0.00012079999 1e-6 271 45 0.0001813 1e-6 274 45 0.00036249985 1e-6 277 45 0.088157058 1e-6 279 45 6.0399994e-05 1e-6 282 45 0.00012079999 1e-6 292 45 0.00060419994 1e-6 295 45 0.0069485977 1e-6 302 45 0.00012079999 1e-6 303 45 0.00012079999 1e-6 304 45 0.00024169999 1e-6 305 45 0.010876097 1e-6 306 45 0.0009062998 1e-6 307 45 0.086344361 1e-6 308 45 0.006525699 1e-6 309 45 0.0087008998 1e-6 310 45 0.0009062998 1e-6 311 45 0.0032627999 1e-6 312 45 6.0399994e-05 1e-6 317 45 0.0013897 1e-6 318 45 6.0399994e-05 1e-6 319 45 0.00024169999 1e-6 322 45 0.004048299 1e-6 324 45 0.083504498 1e-6 331 45 0.0018126999 1e-6 334 45 0.00024169999 1e-6 335 45 6.0399994e-05 1e-6 341 45 0.00012079999 1e-6 352 45 0.00012079999 1e-6 356 45 0.0029002998 1e-6 358 45 6.0399994e-05 1e-6 366 45 0.00066469982 1e-6 371 45 0.012144998 1e-6 374 45 0.0039274991 1e-6 380 45 6.0399994e-05 1e-6 385 45 0.0018730999 1e-6 386 45 0.0012689 1e-6 387 45 6.0399994e-05 1e-6 390 45 6.0399994e-05 1e-6 394 45 6.0399994e-05 1e-6 402 45 0.00042299996 1e-6 414 45 0.039154097 1e-6 415 45 0.0001813 1e-6 422 45 6.0399994e-05 1e-6 430 45 6.0399994e-05 1e-6 443 45 0.0048942976 1e-6 444 45 0.00012079999 1e-6 445 45 0.011842899 1e-6 446 45 0.0025982 1e-6 447 45 0.00078549981 1e-6 448 45 0.0012084998 1e-6 450 45 0.0024772999 1e-6 452 45 0.00036249985 1e-6 453 45 6.0399994e-05 1e-6 454 45 0.00072509982 1e-6 455 45 0.067190289 1e-6 456 45 0.028398797 1e-6 457 45 0.0025982 1e-6 458 45 0.00030209986 1e-6 460 45 0.0029002998 1e-6 463 45 0.0053172 1e-6 464 45 0.00012079999 1e-6 465 45 6.0399994e-05 1e-6 467 45 0.013534699 1e-6 468 45 0.00036249985 1e-6 469 45 0.015528698 1e-6 470 45 0.0038671 1e-6 471 45 0.0045920983 1e-6 473 45 6.0399994e-05 1e-6 478 45 0.00042299996 1e-6 483 45 0.00024169999 1e-6 489 45 6.0399994e-05 1e-6 490 45 0.00030209986 1e-6 491 45 0.00024169999 1e-6 24 46 0.0098591968 1e-6 214 46 0.0031689999 1e-6 220 46 0.0014084999 1e-6 233 46 0.015140798 1e-6 234 46 0.058098599 1e-6 235 46 0.0056337975 1e-6 237 46 0.0021126999 1e-6 265 46 0.0014084999 1e-6 266 46 0.0038731999 1e-6 277 46 0.20352107 1e-6 295 46 0.011619698 1e-6 305 46 0.0014084999 1e-6 306 46 0.00035209977 1e-6 307 46 0.12746477 1e-6 311 46 0.00070419977 1e-6 317 46 0.00035209977 1e-6 322 46 0.0031689999 1e-6 324 46 0.025704198 1e-6 331 46 0.0024647999 1e-6 356 46 0.0028168999 1e-6 371 46 0.021830998 1e-6 374 46 0.0021126999 1e-6 385 46 0.0028168999 1e-6 386 46 0.0017605999 1e-6 390 46 0.0014084999 1e-6 402 46 0.00070419977 1e-6 414 46 0.0098591968 1e-6 443 46 0.0056337975 1e-6 445 46 0.010211296 1e-6 446 46 0.0024647999 1e-6 448 46 0.0010562998 1e-6 450 46 0.00070419977 1e-6 455 46 0.063028157 1e-6 456 46 0.020774599 1e-6 457 46 0.00070419977 1e-6 458 46 0.00035209977 1e-6 460 46 0.0021126999 1e-6 463 46 0.0014084999 1e-6 467 46 0.019718297 1e-6 469 46 0.011971798 1e-6 470 46 0.0010562998 1e-6 471 46 0.0063379966 1e-6 16 47 0.00018589999 1e-6 24 47 0.0015798998 1e-6 60 47 9.2899994e-05 1e-6 114 47 9.2899994e-05 1e-6 160 47 0.00037169992 1e-6 165 47 0.00046469993 1e-6 214 47 9.2899994e-05 1e-6 220 47 9.2899994e-05 1e-6 223 47 9.2899994e-05 1e-6 233 47 0.00092939986 1e-6 234 47 0.0045538992 1e-6 235 47 0.00083639985 1e-6 236 47 9.2899994e-05 1e-6 237 47 0.00065059983 1e-6 241 47 0.010408897 1e-6 254 47 0.0028809998 1e-6 255 47 0.00027879979 1e-6 258 47 9.2899994e-05 1e-6 259 47 0.00018589999 1e-6 264 47 0.00055759982 1e-6 265 47 0.019330896 1e-6 266 47 0.0096653998 1e-6 271 47 0.020817798 1e-6 274 47 0.00037169992 1e-6 277 47 0.013196997 1e-6 282 47 0.20836425 1e-6 292 47 0.00027879979 1e-6 295 47 0.00055759982 1e-6 302 47 9.2899994e-05 1e-6 306 47 0.00046469993 1e-6 307 47 0.071840048 1e-6 308 47 0.0070631988 1e-6 309 47 0.0010223 1e-6 310 47 0.0055761971 1e-6 311 47 0.0013010998 1e-6 312 47 9.2899994e-05 1e-6 317 47 0.00027879979 1e-6 319 47 0.00018589999 1e-6 322 47 0.00018589999 1e-6 324 47 0.096096694 1e-6 331 47 0.00065059983 1e-6 350 47 9.2899994e-05 1e-6 356 47 0.00083639985 1e-6 371 47 0.004089199 1e-6 374 47 0.00065059983 1e-6 385 47 0.0043679997 1e-6 386 47 0.00046469993 1e-6 402 47 9.2899994e-05 1e-6 414 47 0.0098512992 1e-6 443 47 0.0029739998 1e-6 445 47 0.0092936978 1e-6 446 47 0.00065059983 1e-6 447 47 0.00018589999 1e-6 448 47 9.2899994e-05 1e-6 450 47 0.00074349996 1e-6 452 47 9.2899994e-05 1e-6 454 47 0.00018589999 1e-6 455 47 0.039405197 1e-6 456 47 0.029182199 1e-6 457 47 0.00074349996 1e-6 458 47 9.2899994e-05 1e-6 460 47 0.0072490983 1e-6 463 47 0.0015798998 1e-6 467 47 0.015613399 1e-6 468 47 9.2899994e-05 1e-6 469 47 0.022676598 1e-6 470 47 0.0012081999 1e-6 471 47 0.0016728998 1e-6 478 47 9.2899994e-05 1e-6 483 47 9.2899994e-05 1e-6 490 47 9.2899994e-05 1e-6 7 48 0.00019979999 1e-6 16 48 0.0013486999 1e-6 18 48 0.00094909989 1e-6 24 48 0.012986999 1e-6 60 48 0.00024979981 1e-6 80 48 9.9899989e-05 1e-6 82 48 4.9999988e-05 1e-6 108 48 4.9999988e-05 1e-6 113 48 4.9999988e-05 1e-6 114 48 9.9899989e-05 1e-6 126 48 4.9999988e-05 1e-6 134 48 4.9999988e-05 1e-6 139 48 9.9899989e-05 1e-6 141 48 4.9999988e-05 1e-6 150 48 9.9899989e-05 1e-6 154 48 4.9999988e-05 1e-6 160 48 0.0023975999 1e-6 163 48 0.00024979981 1e-6 165 48 0.0012987 1e-6 166 48 4.9999988e-05 1e-6 168 48 0.00089909998 1e-6 170 48 4.9999988e-05 1e-6 171 48 4.9999988e-05 1e-6 182 48 0.00014989999 1e-6 183 48 9.9899989e-05 1e-6 189 48 4.9999988e-05 1e-6 191 48 9.9899989e-05 1e-6 192 48 9.9899989e-05 1e-6 194 48 4.9999988e-05 1e-6 197 48 4.9999988e-05 1e-6 198 48 4.9999988e-05 1e-6 203 48 4.9999988e-05 1e-6 206 48 9.9899989e-05 1e-6 214 48 4.9999988e-05 1e-6 215 48 9.9899989e-05 1e-6 219 48 0.00074929977 1e-6 220 48 0.00069929985 1e-6 223 48 0.00034969999 1e-6 233 48 0.0010988999 1e-6 234 48 0.0015484998 1e-6 235 48 0.0051448978 1e-6 236 48 0.00019979999 1e-6 237 48 0.0016982998 1e-6 241 48 0.0035963999 1e-6 242 48 0.00024979981 1e-6 252 48 4.9999988e-05 1e-6 254 48 0.00069929985 1e-6 255 48 0.00059939991 1e-6 256 48 4.9999988e-05 1e-6 257 48 9.9899989e-05 1e-6 258 48 0.015734296 1e-6 259 48 4.9999988e-05 1e-6 264 48 0.0013486999 1e-6 265 48 0.075074852 1e-6 266 48 0.022827197 1e-6 267 48 4.9999988e-05 1e-6 268 48 4.9999988e-05 1e-6 269 48 0.00029969984 1e-6 271 48 0.0143856 1e-6 273 48 9.9899989e-05 1e-6 274 48 0.004245799 1e-6 277 48 0.012287699 1e-6 279 48 0.00049949996 1e-6 282 48 0.084765196 1e-6 285 48 4.9999988e-05 1e-6 292 48 0.00014989999 1e-6 293 48 4.9999988e-05 1e-6 295 48 0.0023476998 1e-6 302 48 4.9999988e-05 1e-6 303 48 0.0024974998 1e-6 304 48 0.0056942999 1e-6 305 48 0.017981999 1e-6 306 48 0.0028471998 1e-6 307 48 0.0020978998 1e-6 308 48 0.0065933987 1e-6 309 48 0.0019480998 1e-6 310 48 0.0019480998 1e-6 311 48 0.0049450994 1e-6 312 48 0.00039959978 1e-6 317 48 0.0013985999 1e-6 318 48 4.9999988e-05 1e-6 319 48 0.00069929985 1e-6 322 48 0.0015484998 1e-6 324 48 0.00089909998 1e-6 331 48 0.0017982 1e-6 334 48 4.9999988e-05 1e-6 335 48 0.0021478999 1e-6 336 48 0.0027971999 1e-6 341 48 0.00014989999 1e-6 350 48 0.00089909998 1e-6 352 48 0.0015484998 1e-6 356 48 9.9899989e-05 1e-6 358 48 9.9899989e-05 1e-6 366 48 0.00014989999 1e-6 368 48 0.039210796 1e-6 371 48 0.0091408975 1e-6 374 48 9.9899989e-05 1e-6 380 48 9.9899989e-05 1e-6 384 48 4.9999988e-05 1e-6 385 48 0.0014984999 1e-6 386 48 0.0014984999 1e-6 387 48 4.9999988e-05 1e-6 394 48 9.9899989e-05 1e-6 402 48 0.00039959978 1e-6 414 48 0.0031468999 1e-6 415 48 0.0016982998 1e-6 422 48 0.00014989999 1e-6 430 48 4.9999988e-05 1e-6 438 48 4.9999988e-05 1e-6 439 48 4.9999988e-05 1e-6 441 48 4.9999988e-05 1e-6 443 48 0.0033965998 1e-6 444 48 9.9899989e-05 1e-6 445 48 0.015534498 1e-6 446 48 0.00089909998 1e-6 447 48 0.00049949996 1e-6 450 48 0.0026473999 1e-6 452 48 0.00039959978 1e-6 453 48 4.9999988e-05 1e-6 454 48 0.0007991998 1e-6 455 48 0.0412088 1e-6 456 48 0.011438597 1e-6 457 48 0.0027971999 1e-6 458 48 0.00034969999 1e-6 460 48 0.0053945966 1e-6 463 48 0.0056942999 1e-6 464 48 0.00014989999 1e-6 465 48 9.9899989e-05 1e-6 467 48 0.016683299 1e-6 468 48 0.00039959978 1e-6 469 48 0.026923098 1e-6 470 48 0.0041458979 1e-6 471 48 0.0046453997 1e-6 473 48 9.9899989e-05 1e-6 478 48 0.00044959993 1e-6 483 48 0.00029969984 1e-6 489 48 4.9999988e-05 1e-6 490 48 0.00034969999 1e-6 491 48 0.00019979999 1e-6 7 49 0.00058139977 1e-6 16 49 0.0027131999 1e-6 18 49 0.0017441998 1e-6 24 49 0.014534898 1e-6 60 49 0.00019379999 1e-6 114 49 0.00019379999 1e-6 160 49 0.006395299 1e-6 165 49 0.0015503999 1e-6 166 49 0.00019379999 1e-6 168 49 0.0015503999 1e-6 192 49 0.00019379999 1e-6 215 49 0.00019379999 1e-6 219 49 0.00019379999 1e-6 223 49 0.00038759992 1e-6 233 49 0.00058139977 1e-6 234 49 0.0021317999 1e-6 235 49 0.006007798 1e-6 236 49 0.00058139977 1e-6 237 49 0.0015503999 1e-6 241 49 0.0017441998 1e-6 252 49 0.00038759992 1e-6 254 49 0.0025193999 1e-6 255 49 0.00038759992 1e-6 257 49 0.00019379999 1e-6 258 49 0.00038759992 1e-6 259 49 0.00019379999 1e-6 264 49 0.00038759992 1e-6 265 49 0.014728699 1e-6 266 49 0.032364298 1e-6 267 49 0.00038759992 1e-6 268 49 0.00019379999 1e-6 269 49 0.00019379999 1e-6 271 49 0.00058139977 1e-6 273 49 0.00019379999 1e-6 274 49 0.0019379999 1e-6 277 49 0.0093022995 1e-6 279 49 0.00019379999 1e-6 282 49 0.00077519985 1e-6 292 49 0.00058139977 1e-6 295 49 0.013372097 1e-6 302 49 0.00019379999 1e-6 303 49 0.00058139977 1e-6 304 49 0.00077519985 1e-6 305 49 0.06996119 1e-6 306 49 0.0029069998 1e-6 307 49 0.0050387979 1e-6 308 49 0.0023255998 1e-6 309 49 0.0032945999 1e-6 310 49 0.0029069998 1e-6 311 49 0.0071704984 1e-6 312 49 0.00038759992 1e-6 317 49 0.0015503999 1e-6 319 49 0.00038759992 1e-6 322 49 0.0029069998 1e-6 324 49 0.017829496 1e-6 326 49 0.00096899993 1e-6 331 49 0.0017441998 1e-6 334 49 0.012984499 1e-6 341 49 0.00019379999 1e-6 352 49 0.0034883998 1e-6 356 49 0.00019379999 1e-6 366 49 0.0038759999 1e-6 371 49 0.0054263994 1e-6 380 49 0.00019379999 1e-6 385 49 0.0050387979 1e-6 386 49 0.0067828968 1e-6 390 49 0.00038759992 1e-6 394 49 0.00019379999 1e-6 402 49 0.00038759992 1e-6 415 49 0.00038759992 1e-6 441 49 0.0034883998 1e-6 443 49 0.0032945999 1e-6 444 49 0.00019379999 1e-6 445 49 0.049418598 1e-6 446 49 0.00038759992 1e-6 447 49 0.00038759992 1e-6 450 49 0.0029069998 1e-6 452 49 0.00038759992 1e-6 454 49 0.00077519985 1e-6 455 49 0.020736396 1e-6 456 49 0.0073642991 1e-6 457 49 0.0029069998 1e-6 458 49 0.00038759992 1e-6 460 49 0.0027131999 1e-6 463 49 0.0058139972 1e-6 464 49 0.00019379999 1e-6 467 49 0.013953499 1e-6 468 49 0.00038759992 1e-6 469 49 0.096705377 1e-6 470 49 0.0044573992 1e-6 471 49 0.0046511963 1e-6 473 49 0.00019379999 1e-6 478 49 0.00038759992 1e-6 483 49 0.00038759992 1e-6 490 49 0.00038759992 1e-6 491 49 0.00019379999 1e-6 7 50 8.6299988e-05 1e-6 9 50 9.5999994e-06 1e-6 16 50 0.00047939993 1e-6 18 50 0.00035479991 1e-6 24 50 0.043887198 1e-6 60 50 0.00012469999 1e-6 82 50 9.5999994e-06 1e-6 83 50 9.5999994e-06 1e-6 84 50 9.5999994e-06 1e-6 108 50 1.9199986e-05 1e-6 113 50 1.9199986e-05 1e-6 114 50 3.8399987e-05 1e-6 126 50 2.8799986e-05 1e-6 127 50 9.5999994e-06 1e-6 141 50 4.7899986e-05 1e-6 150 50 3.8399987e-05 1e-6 159 50 9.5999994e-06 1e-6 160 50 0.0011026999 1e-6 165 50 0.0043340996 1e-6 168 50 0.00093969982 1e-6 170 50 0.00010549999 1e-6 171 50 3.8399987e-05 1e-6 189 50 9.5999994e-06 1e-6 192 50 0.00020139999 1e-6 194 50 9.5999994e-06 1e-6 198 50 4.7899986e-05 1e-6 201 50 9.5999994e-06 1e-6 203 50 9.5999994e-06 1e-6 204 50 1.9199986e-05 1e-6 206 50 4.7899986e-05 1e-6 207 50 9.5999994e-06 1e-6 215 50 0.00070959982 1e-6 218 50 9.5999994e-06 1e-6 220 50 0.0011697998 1e-6 223 50 0.00024929992 1e-6 233 50 0.005781997 1e-6 234 50 0.043580398 1e-6 235 50 0.032093197 1e-6 237 50 0.0017450999 1e-6 241 50 0.00012469999 1e-6 242 50 3.8399987e-05 1e-6 248 50 9.5999994e-06 1e-6 250 50 9.5999994e-06 1e-6 252 50 9.5999994e-06 1e-6 254 50 0.016645897 1e-6 255 50 0.00012469999 1e-6 258 50 0.0015628999 1e-6 265 50 0.070208073 1e-6 266 50 0.032745197 1e-6 269 50 4.7899986e-05 1e-6 270 50 0.00014379999 1e-6 274 50 0.0026464998 1e-6 277 50 0.010806397 1e-6 279 50 0.00068079983 1e-6 282 50 0.00017259999 1e-6 295 50 0.0011409998 1e-6 305 50 0.028391998 1e-6 308 50 0.013232298 1e-6 309 50 0.0077283978 1e-6 311 50 0.016003497 1e-6 312 50 1.9199986e-05 1e-6 317 50 0.00064239977 1e-6 318 50 1.9199986e-05 1e-6 319 50 2.8799986e-05 1e-6 322 50 0.007440798 1e-6 331 50 0.0019943998 1e-6 341 50 4.7899986e-05 1e-6 358 50 3.8399987e-05 1e-6 371 50 0.00026849983 1e-6 385 50 0.0078818984 1e-6 386 50 0.0014094999 1e-6 387 50 1.9199986e-05 1e-6 394 50 4.7899986e-05 1e-6 397 50 2.8799986e-05 1e-6 402 50 0.000489 1e-6 412 50 9.5999994e-06 1e-6 419 50 9.5999994e-06 1e-6 422 50 5.7499987e-05 1e-6 423 50 9.5999994e-06 1e-6 425 50 9.5999994e-06 1e-6 430 50 1.9199986e-05 1e-6 431 50 9.5999994e-06 1e-6 433 50 9.5999994e-06 1e-6 434 50 9.5999994e-06 1e-6 438 50 0.00026849983 1e-6 441 50 0.0048230998 1e-6 443 50 0.0090708993 1e-6 444 50 4.7899986e-05 1e-6 445 50 0.026196197 1e-6 446 50 0.0030491999 1e-6 447 50 0.00045069982 1e-6 448 50 0.00089169992 1e-6 450 50 0.0012464998 1e-6 452 50 0.00018219999 1e-6 453 50 1.9199986e-05 1e-6 454 50 0.00037399982 1e-6 455 50 0.047914498 1e-6 456 50 0.018026698 1e-6 457 50 0.0013040998 1e-6 458 50 0.00030679977 1e-6 460 50 0.00373 1e-6 463 50 0.0026464998 1e-6 464 50 6.7099987e-05 1e-6 465 50 3.8399987e-05 1e-6 467 50 0.0151213 1e-6 468 50 0.00019179999 1e-6 469 50 0.0253428 1e-6 470 50 0.0019272999 1e-6 471 50 0.0050244965 1e-6 473 50 3.8399987e-05 1e-6 477 50 9.5999994e-06 1e-6 478 50 0.00022049999 1e-6 483 50 0.00013419999 1e-6 489 50 2.8799986e-05 1e-6 490 50 0.00015339999 1e-6 491 50 8.6299988e-05 1e-6 7 51 0.0001736 1e-6 16 51 0.00086809997 1e-6 18 51 0.00069439993 1e-6 24 51 0.0022568998 1e-6 60 51 0.0001736 1e-6 114 51 0.0001736 1e-6 134 51 0.0062499978 1e-6 135 51 0.0001736 1e-6 139 51 0.0012152998 1e-6 142 51 0.0001736 1e-6 160 51 0.0446181 1e-6 161 51 0.00086809997 1e-6 162 51 0.0027778 1e-6 163 51 0.043402798 1e-6 164 51 0.0119792 1e-6 165 51 0.027777798 1e-6 167 51 0.016145799 1e-6 170 51 0.00069439993 1e-6 171 51 0.0024305999 1e-6 177 51 0.0015624999 1e-6 182 51 0.0019097 1e-6 191 51 0.0031249998 1e-6 192 51 0.0015624999 1e-6 197 51 0.00086809997 1e-6 214 51 0.0001736 1e-6 215 51 0.0001736 1e-6 219 51 0.0010416999 1e-6 223 51 0.0001736 1e-6 233 51 0.0086805969 1e-6 234 51 0.00069439993 1e-6 235 51 0.0001736 1e-6 236 51 0.0041666999 1e-6 237 51 0.0012152998 1e-6 240 51 0.00052079977 1e-6 241 51 0.013715297 1e-6 242 51 0.00034719985 1e-6 252 51 0.00069439993 1e-6 254 51 0.0024305999 1e-6 255 51 0.004513897 1e-6 256 51 0.0043402985 1e-6 257 51 0.00069439993 1e-6 258 51 0.0013889 1e-6 259 51 0.0032986 1e-6 264 51 0.0071180984 1e-6 265 51 0.0015624999 1e-6 266 51 0.025694396 1e-6 267 51 0.0001736 1e-6 268 51 0.0062499978 1e-6 269 51 0.0013889 1e-6 271 51 0.0017360998 1e-6 273 51 0.00034719985 1e-6 274 51 0.0036457998 1e-6 277 51 0.0029513999 1e-6 279 51 0.0017360998 1e-6 282 51 0.0012152998 1e-6 292 51 0.0034721999 1e-6 295 51 0.0119792 1e-6 302 51 0.0039930977 1e-6 303 51 0.013888899 1e-6 304 51 0.0024305999 1e-6 306 51 0.0170139 1e-6 307 51 0.00052079977 1e-6 308 51 0.013020799 1e-6 309 51 0.0010416999 1e-6 310 51 0.0043402985 1e-6 311 51 0.0019097 1e-6 312 51 0.0001736 1e-6 317 51 0.00086809997 1e-6 319 51 0.0050346963 1e-6 322 51 0.0043402985 1e-6 324 51 0.00034719985 1e-6 331 51 0.0012152998 1e-6 341 51 0.0001736 1e-6 350 51 0.0019097 1e-6 352 51 0.00034719985 1e-6 366 51 0.011805598 1e-6 368 51 0.00086809997 1e-6 371 51 0.0085068978 1e-6 380 51 0.00069439993 1e-6 383 51 0.0017360998 1e-6 385 51 0.0093749985 1e-6 386 51 0.0043402985 1e-6 390 51 0.0013889 1e-6 398 51 0.00052079977 1e-6 402 51 0.00034719985 1e-6 415 51 0.0012152998 1e-6 438 51 0.00052079977 1e-6 439 51 0.0010416999 1e-6 443 51 0.0083332993 1e-6 445 51 0.0088541992 1e-6 446 51 0.00086809997 1e-6 447 51 0.00034719985 1e-6 450 51 0.0019097 1e-6 452 51 0.00034719985 1e-6 454 51 0.00052079977 1e-6 455 51 0.0432292 1e-6 456 51 0.057638898 1e-6 457 51 0.0019097 1e-6 458 51 0.0001736 1e-6 460 51 0.0024305999 1e-6 463 51 0.0039930977 1e-6 464 51 0.0001736 1e-6 467 51 0.0105903 1e-6 468 51 0.00034719985 1e-6 469 51 0.031423599 1e-6 470 51 0.0029513999 1e-6 471 51 0.0034721999 1e-6 478 51 0.0001736 1e-6 483 51 0.0001736 1e-6 490 51 0.0001736 1e-6 491 51 0.0001736 1e-6 24 52 0.011103399 1e-6 60 52 6.9799993e-05 1e-6 114 52 6.9799993e-05 1e-6 141 52 6.9799993e-05 1e-6 159 52 0.00013969999 1e-6 160 52 0.035265397 1e-6 162 52 0.0025837999 1e-6 163 52 0.014804497 1e-6 165 52 0.020530697 1e-6 168 52 0.015642498 1e-6 170 52 0.00055869995 1e-6 171 52 0.00069829985 1e-6 191 52 0.0038407999 1e-6 192 52 0.00090779993 1e-6 197 52 0.00013969999 1e-6 198 52 6.9799993e-05 1e-6 214 52 6.9799993e-05 1e-6 223 52 0.0004888 1e-6 233 52 0.0055865981 1e-6 234 52 0.0023742998 1e-6 235 52 0.0035615 1e-6 236 52 0.0065641999 1e-6 237 52 0.00090779993 1e-6 241 52 0.0147346 1e-6 254 52 0.0045390986 1e-6 255 52 0.00027929991 1e-6 262 52 0.0047485977 1e-6 264 52 0.0111732 1e-6 265 52 0.032681599 1e-6 266 52 0.071298897 1e-6 268 52 0.0036312998 1e-6 274 52 0.00069829985 1e-6 277 52 0.008379899 1e-6 279 52 0.011871498 1e-6 292 52 0.00090779993 1e-6 293 52 0.0037010999 1e-6 295 52 0.015921798 1e-6 304 52 6.9799993e-05 1e-6 306 52 0.0050278977 1e-6 307 52 0.0097764991 1e-6 308 52 0.099860251 1e-6 309 52 0.0023742998 1e-6 310 52 0.046159197 1e-6 311 52 0.00083799986 1e-6 317 52 0.0004888 1e-6 319 52 0.0030027998 1e-6 322 52 0.037150797 1e-6 324 52 0.0017457998 1e-6 331 52 0.00090779993 1e-6 341 52 6.9799993e-05 1e-6 350 52 0.0011172998 1e-6 356 52 0.00020949999 1e-6 366 52 6.9799993e-05 1e-6 371 52 0.0023742998 1e-6 385 52 0.0071228966 1e-6 386 52 0.0027234999 1e-6 398 52 0.00020949999 1e-6 402 52 0.00020949999 1e-6 415 52 0.0007681998 1e-6 438 52 0.00034919987 1e-6 443 52 0.010125697 1e-6 444 52 6.9799993e-05 1e-6 445 52 0.016969297 1e-6 446 52 0.0011172998 1e-6 447 52 0.00083799986 1e-6 450 52 0.00090779993 1e-6 452 52 0.00013969999 1e-6 454 52 0.00020949999 1e-6 455 52 0.051815599 1e-6 456 52 0.054189898 1e-6 457 52 0.00097769988 1e-6 458 52 0.00013969999 1e-6 460 52 0.002933 1e-6 463 52 0.0019552999 1e-6 464 52 6.9799993e-05 1e-6 467 52 0.0078910999 1e-6 468 52 0.00013969999 1e-6 469 52 0.0062150992 1e-6 470 52 0.0014664999 1e-6 471 52 0.0025139998 1e-6 478 52 0.00013969999 1e-6 483 52 6.9799993e-05 1e-6 490 52 0.00013969999 1e-6 491 52 6.9799993e-05 1e-6 24 53 0.00089739985 1e-6 60 53 4.269999e-05 1e-6 80 53 0.00029909983 1e-6 114 53 4.269999e-05 1e-6 160 53 0.00029909983 1e-6 192 53 4.269999e-05 1e-6 214 53 0.014828399 1e-6 220 53 0.00051279995 1e-6 223 53 0.021152899 1e-6 233 53 0.0012392998 1e-6 234 53 0.021323897 1e-6 237 53 0.0061107986 1e-6 241 53 0.00025639986 1e-6 242 53 0.00025639986 1e-6 254 53 0.0276911 1e-6 273 53 0.012050796 1e-6 277 53 0.17024904 1e-6 312 53 0.0014101998 1e-6 317 53 0.00025639986 1e-6 319 53 0.00081189978 1e-6 322 53 0.00094009982 1e-6 324 53 0.0018374999 1e-6 331 53 0.0071363971 1e-6 333 53 0.048630398 1e-6 341 53 4.269999e-05 1e-6 350 53 0.006794598 1e-6 356 53 0.00068369997 1e-6 374 53 0.0014528998 1e-6 397 53 8.5499996e-05 1e-6 402 53 0.0017092999 1e-6 438 53 8.5499996e-05 1e-6 443 53 0.014272898 1e-6 445 53 0.0099567994 1e-6 446 53 0.0043587983 1e-6 447 53 0.00017089999 1e-6 448 53 0.00042729988 1e-6 450 53 0.00047009997 1e-6 452 53 8.5499996e-05 1e-6 454 53 0.00012819999 1e-6 455 53 0.041322999 1e-6 456 53 0.0062817968 1e-6 457 53 0.00051279995 1e-6 458 53 0.00098289992 1e-6 460 53 0.0068799965 1e-6 463 53 0.0010255999 1e-6 464 53 4.269999e-05 1e-6 467 53 0.053459298 1e-6 468 53 8.5499996e-05 1e-6 469 53 0.00068369997 1e-6 470 53 0.0007691998 1e-6 471 53 0.017606098 1e-6 478 53 8.5499996e-05 1e-6 483 53 4.269999e-05 1e-6 490 53 4.269999e-05 1e-6 491 53 8.5499996e-05 1e-6 60 54 0.00026829983 1e-6 114 54 0.00026829983 1e-6 214 54 0.0085859969 1e-6 220 54 0.035148896 1e-6 234 54 0.036222197 1e-6 237 54 0.0053661987 1e-6 317 54 0.0018781999 1e-6 331 54 0.0059028976 1e-6 341 54 0.00026829983 1e-6 394 54 0.00026829983 1e-6 402 54 0.0016098998 1e-6 443 54 0.0026830998 1e-6 444 54 0.00026829983 1e-6 445 54 0.007244397 1e-6 446 54 0.0021464999 1e-6 447 54 0.00053659989 1e-6 448 54 0.00053659989 1e-6 450 54 0.0037564 1e-6 452 54 0.00053659989 1e-6 454 54 0.00080489996 1e-6 455 54 0.0238798 1e-6 456 54 0.0056345984 1e-6 457 54 0.0040246993 1e-6 458 54 0.00080489996 1e-6 460 54 0.0053661987 1e-6 463 54 0.0080493987 1e-6 464 54 0.00026829983 1e-6 467 54 0.042124998 1e-6 468 54 0.00053659989 1e-6 469 54 0.0050978996 1e-6 470 54 0.0059028976 1e-6 471 54 0.014488898 1e-6 478 54 0.00053659989 1e-6 483 54 0.00026829983 1e-6 490 54 0.00053659989 1e-6 491 54 0.00026829983 1e-6 7 55 0.00027599977 1e-6 16 55 0.0018398999 1e-6 18 55 0.0012878999 1e-6 24 55 0.011315499 1e-6 60 55 0.00018399999 1e-6 80 55 9.1999987e-05 1e-6 108 55 9.1999987e-05 1e-6 113 55 9.1999987e-05 1e-6 114 55 0.00018399999 1e-6 126 55 9.1999987e-05 1e-6 134 55 0.0016558999 1e-6 139 55 9.1999987e-05 1e-6 150 55 9.1999987e-05 1e-6 160 55 0.0030359 1e-6 162 55 0.00018399999 1e-6 164 55 0.00055199978 1e-6 165 55 0.0029438999 1e-6 166 55 0.0033119 1e-6 167 55 0.0010119998 1e-6 168 55 0.0030359 1e-6 170 55 9.1999987e-05 1e-6 171 55 0.00027599977 1e-6 182 55 0.0033119 1e-6 183 55 0.0022078999 1e-6 191 55 0.00045999978 1e-6 192 55 0.00073599978 1e-6 195 55 9.1999987e-05 1e-6 197 55 9.1999987e-05 1e-6 206 55 9.1999987e-05 1e-6 214 55 0.00027599977 1e-6 215 55 0.00018399999 1e-6 219 55 0.0010119998 1e-6 220 55 0.00027599977 1e-6 223 55 0.00027599977 1e-6 233 55 0.0074516982 1e-6 234 55 0.010395598 1e-6 235 55 0.0068076998 1e-6 236 55 0.00055199978 1e-6 237 55 0.0018398999 1e-6 241 55 0.0062556975 1e-6 242 55 9.1999987e-05 1e-6 252 55 0.0014718999 1e-6 254 55 0.0050597973 1e-6 255 55 0.0022998999 1e-6 256 55 0.00064399978 1e-6 258 55 0.0018398999 1e-6 259 55 0.00073599978 1e-6 262 55 0.00091999979 1e-6 264 55 0.0037717998 1e-6 265 55 0.022999097 1e-6 266 55 0.025758997 1e-6 267 55 0.00036799978 1e-6 268 55 0.0013798999 1e-6 269 55 0.0022998999 1e-6 271 55 0.0046917982 1e-6 272 55 0.00018399999 1e-6 273 55 0.00027599977 1e-6 274 55 0.0056117997 1e-6 277 55 0.014903396 1e-6 279 55 0.00055199978 1e-6 282 55 0.0035879 1e-6 285 55 9.1999987e-05 1e-6 292 55 0.0022998999 1e-6 293 55 0.00018399999 1e-6 295 55 0.018215299 1e-6 302 55 0.0011039998 1e-6 303 55 0.0013798999 1e-6 304 55 0.0048757978 1e-6 305 55 0.025482997 1e-6 306 55 0.010487597 1e-6 307 55 0.027506899 1e-6 308 55 0.014075398 1e-6 309 55 0.0060717985 1e-6 310 55 0.0053357966 1e-6 311 55 0.014167398 1e-6 312 55 0.00036799978 1e-6 315 55 0.00018399999 1e-6 317 55 0.0011039998 1e-6 319 55 0.0043237992 1e-6 322 55 0.0045997985 1e-6 324 55 0.0111316 1e-6 326 55 0.0011039998 1e-6 331 55 0.0018398999 1e-6 334 55 0.0034959 1e-6 335 55 0.0013798999 1e-6 336 55 0.00018399999 1e-6 341 55 9.1999987e-05 1e-6 350 55 0.00045999978 1e-6 352 55 0.0046917982 1e-6 356 55 0.00082799979 1e-6 358 55 9.1999987e-05 1e-6 366 55 0.0085556991 1e-6 368 55 0.0033119 1e-6 371 55 0.010763597 1e-6 374 55 0.00027599977 1e-6 380 55 0.00073599978 1e-6 383 55 0.00064399978 1e-6 384 55 0.00027599977 1e-6 385 55 0.011959497 1e-6 386 55 0.0081876963 1e-6 387 55 9.1999987e-05 1e-6 390 55 0.0010119998 1e-6 394 55 9.1999987e-05 1e-6 398 55 0.00027599977 1e-6 402 55 0.00055199978 1e-6 414 55 0.0022078999 1e-6 415 55 0.0027598999 1e-6 419 55 9.1999987e-05 1e-6 422 55 9.1999987e-05 1e-6 438 55 0.00018399999 1e-6 439 55 0.00018399999 1e-6 441 55 0.0010119998 1e-6 443 55 0.0037717998 1e-6 444 55 9.1999987e-05 1e-6 445 55 0.017295297 1e-6 446 55 0.0010119998 1e-6 447 55 0.00027599977 1e-6 448 55 9.1999987e-05 1e-6 450 55 0.0022078999 1e-6 452 55 0.00036799978 1e-6 454 55 0.00064399978 1e-6 455 55 0.037074499 1e-6 456 55 0.023643099 1e-6 457 55 0.0022998999 1e-6 458 55 0.00036799978 1e-6 460 55 0.0028518999 1e-6 463 55 0.0045997985 1e-6 464 55 9.1999987e-05 1e-6 467 55 0.015639398 1e-6 468 55 0.00036799978 1e-6 469 55 0.081600666 1e-6 470 55 0.0034039 1e-6 471 55 0.004783798 1e-6 473 55 9.1999987e-05 1e-6 478 55 0.00036799978 1e-6 483 55 0.00018399999 1e-6 490 55 0.00027599977 1e-6 491 55 9.1999987e-05 1e-6 7 56 9.2099988e-05 1e-6 16 56 0.00032229978 1e-6 18 56 0.00023019999 1e-6 24 56 0.017541397 1e-6 60 56 9.2099988e-05 1e-6 80 56 0.00013809999 1e-6 108 56 4.5999986e-05 1e-6 113 56 4.5999986e-05 1e-6 114 56 9.2099988e-05 1e-6 126 56 4.5999986e-05 1e-6 150 56 4.5999986e-05 1e-6 159 56 4.5999986e-05 1e-6 160 56 0.0020717999 1e-6 165 56 0.0017955999 1e-6 166 56 4.5999986e-05 1e-6 168 56 0.0075045973 1e-6 170 56 9.2099988e-05 1e-6 171 56 9.2099988e-05 1e-6 191 56 4.5999986e-05 1e-6 192 56 0.00013809999 1e-6 195 56 4.5999986e-05 1e-6 206 56 4.5999986e-05 1e-6 214 56 0.00023019999 1e-6 215 56 0.00013809999 1e-6 217 56 4.5999986e-05 1e-6 220 56 0.0029006 1e-6 223 56 0.00018419999 1e-6 233 56 0.0014272998 1e-6 234 56 0.037891299 1e-6 235 56 0.0029006 1e-6 236 56 0.00023019999 1e-6 237 56 0.0029006 1e-6 240 56 9.2099988e-05 1e-6 241 56 0.004557997 1e-6 242 56 0.0014272998 1e-6 252 56 4.5999986e-05 1e-6 254 56 0.015009198 1e-6 255 56 0.00013809999 1e-6 257 56 4.5999986e-05 1e-6 258 56 0.00023019999 1e-6 259 56 4.5999986e-05 1e-6 262 56 0.0035911999 1e-6 264 56 0.00064459979 1e-6 265 56 0.0081951991 1e-6 266 56 0.0084714964 1e-6 267 56 4.5999986e-05 1e-6 268 56 4.5999986e-05 1e-6 271 56 0.0005063999 1e-6 272 56 0.00018419999 1e-6 273 56 0.00018419999 1e-6 274 56 0.0004143999 1e-6 277 56 0.011325996 1e-6 279 56 0.00073659979 1e-6 282 56 0.00027619977 1e-6 292 56 0.00013809999 1e-6 293 56 4.5999986e-05 1e-6 295 56 0.016482498 1e-6 302 56 4.5999986e-05 1e-6 303 56 9.2099988e-05 1e-6 304 56 4.5999986e-05 1e-6 305 56 0.026058897 1e-6 306 56 0.0006905999 1e-6 307 56 0.027532198 1e-6 308 56 0.0050183982 1e-6 309 56 0.0010128999 1e-6 310 56 0.00032229978 1e-6 311 56 0.0090699978 1e-6 312 56 0.0005524999 1e-6 317 56 0.00059849978 1e-6 319 56 0.0004143999 1e-6 322 56 0.0040975995 1e-6 324 56 0.0031768 1e-6 331 56 0.0031768 1e-6 333 56 0.00027619977 1e-6 334 56 4.5999986e-05 1e-6 341 56 4.5999986e-05 1e-6 352 56 0.0015192998 1e-6 356 56 0.00087479991 1e-6 358 56 4.5999986e-05 1e-6 366 56 0.00023019999 1e-6 368 56 4.5999986e-05 1e-6 371 56 0.00013809999 1e-6 374 56 0.0005524999 1e-6 380 56 4.5999986e-05 1e-6 385 56 0.0031307999 1e-6 386 56 0.0054787993 1e-6 387 56 4.5999986e-05 1e-6 394 56 4.5999986e-05 1e-6 397 56 4.5999986e-05 1e-6 402 56 0.00078269979 1e-6 414 56 0.0019336999 1e-6 415 56 4.5999986e-05 1e-6 422 56 4.5999986e-05 1e-6 438 56 9.2099988e-05 1e-6 441 56 0.00036829989 1e-6 443 56 0.0048802979 1e-6 444 56 4.5999986e-05 1e-6 445 56 0.013075497 1e-6 446 56 0.0022559999 1e-6 447 56 0.00013809999 1e-6 448 56 0.00073659979 1e-6 450 56 0.0011509999 1e-6 452 56 0.00018419999 1e-6 454 56 0.00036829989 1e-6 455 56 0.034300197 1e-6 456 56 0.012522999 1e-6 457 56 0.0011970999 1e-6 458 56 0.00046039978 1e-6 460 56 0.0031768 1e-6 463 56 0.0023941 1e-6 464 56 4.5999986e-05 1e-6 467 56 0.0240792 1e-6 468 56 0.00018419999 1e-6 469 56 0.034990799 1e-6 470 56 0.0017494999 1e-6 471 56 0.0079189986 1e-6 473 56 4.5999986e-05 1e-6 478 56 0.00018419999 1e-6 483 56 0.00013809999 1e-6 490 56 0.00013809999 1e-6 491 56 9.2099988e-05 1e-6 7 57 0.000103 1e-6 16 57 0.00056669977 1e-6 18 57 0.00036059995 1e-6 24 57 0.0215353 1e-6 60 57 0.000103 1e-6 80 57 5.1499999e-05 1e-6 114 57 5.1499999e-05 1e-6 126 57 5.1499999e-05 1e-6 134 57 0.00025759987 1e-6 141 57 5.1499999e-05 1e-6 159 57 0.000103 1e-6 160 57 0.0035548999 1e-6 161 57 5.1499999e-05 1e-6 162 57 0.000103 1e-6 163 57 0.0012365 1e-6 164 57 0.00077279983 1e-6 165 57 0.0034002999 1e-6 166 57 0.0051519983 1e-6 167 57 0.0014425998 1e-6 168 57 0.013137598 1e-6 170 57 0.000103 1e-6 171 57 0.00025759987 1e-6 177 57 0.000103 1e-6 182 57 0.00056669977 1e-6 183 57 0.00030909991 1e-6 191 57 0.00025759987 1e-6 192 57 0.0001546 1e-6 198 57 5.1499999e-05 1e-6 214 57 0.000103 1e-6 215 57 0.0001546 1e-6 219 57 0.00036059995 1e-6 220 57 0.00025759987 1e-6 223 57 0.00030909991 1e-6 233 57 0.0026789999 1e-6 234 57 0.014425598 1e-6 235 57 0.024626497 1e-6 236 57 0.0011333998 1e-6 237 57 0.0017517 1e-6 241 57 0.0031941999 1e-6 242 57 5.1499999e-05 1e-6 252 57 0.00041219988 1e-6 254 57 0.0047397986 1e-6 255 57 0.00066979998 1e-6 256 57 5.1499999e-05 1e-6 257 57 0.0021122999 1e-6 258 57 0.0019061998 1e-6 259 57 0.00041219988 1e-6 264 57 0.0011333998 1e-6 265 57 0.024574999 1e-6 266 57 0.023132399 1e-6 267 57 0.0001546 1e-6 268 57 0.0002061 1e-6 269 57 0.0013909999 1e-6 271 57 0.0048428997 1e-6 273 57 0.0010303999 1e-6 274 57 0.0029365998 1e-6 277 57 0.0092735998 1e-6 279 57 0.00041219988 1e-6 282 57 0.0042245984 1e-6 285 57 5.1499999e-05 1e-6 292 57 0.00087579992 1e-6 293 57 5.1499999e-05 1e-6 294 57 5.1499999e-05 1e-6 295 57 0.0015455999 1e-6 302 57 0.00061819982 1e-6 303 57 0.00077279983 1e-6 304 57 0.0022153999 1e-6 305 57 0.0303967 1e-6 306 57 0.0026789999 1e-6 307 57 0.018341098 1e-6 308 57 0.0065944977 1e-6 309 57 0.0045852996 1e-6 310 57 0.0032972998 1e-6 311 57 0.013807297 1e-6 312 57 0.0002061 1e-6 315 57 5.1499999e-05 1e-6 317 57 0.00041219988 1e-6 319 57 0.00097889989 1e-6 322 57 0.0067490973 1e-6 324 57 0.033642497 1e-6 331 57 0.0020607999 1e-6 334 57 0.00072129979 1e-6 335 57 0.00036059995 1e-6 336 57 0.00025759987 1e-6 341 57 5.1499999e-05 1e-6 350 57 0.00025759987 1e-6 351 57 0.00030909991 1e-6 352 57 0.00051519996 1e-6 354 57 0.0002061 1e-6 356 57 0.00051519996 1e-6 358 57 5.1499999e-05 1e-6 366 57 0.0015970999 1e-6 368 57 0.0037608999 1e-6 371 57 0.0026274999 1e-6 374 57 0.000103 1e-6 380 57 0.0001546 1e-6 383 57 0.00036059995 1e-6 385 57 0.0088613965 1e-6 386 57 0.0010819 1e-6 390 57 0.0001546 1e-6 394 57 5.1499999e-05 1e-6 398 57 5.1499999e-05 1e-6 402 57 0.00046369992 1e-6 414 57 0.0016486 1e-6 415 57 0.00061819982 1e-6 438 57 0.000103 1e-6 441 57 0.00082429987 1e-6 443 57 0.0053580999 1e-6 444 57 5.1499999e-05 1e-6 445 57 0.026944898 1e-6 446 57 0.0012879998 1e-6 447 57 0.000103 1e-6 448 57 0.000103 1e-6 450 57 0.00087579992 1e-6 452 57 0.000103 1e-6 454 57 0.0002061 1e-6 455 57 0.033642497 1e-6 456 57 0.014270999 1e-6 457 57 0.00087579992 1e-6 458 57 0.00030909991 1e-6 460 57 0.0032456999 1e-6 463 57 0.0017517 1e-6 464 57 5.1499999e-05 1e-6 467 57 0.017568298 1e-6 468 57 0.0001546 1e-6 469 57 0.059659999 1e-6 470 57 0.0013394998 1e-6 471 57 0.0050488971 1e-6 473 57 5.1499999e-05 1e-6 478 57 0.000103 1e-6 483 57 0.000103 1e-6 490 57 0.000103 1e-6 491 57 0.000103 1e-6 16 58 0.00056229997 1e-6 24 58 0.017992698 1e-6 160 58 0.0061849989 1e-6 165 58 0.0022490998 1e-6 168 58 0.0044981986 1e-6 192 58 0.0014056999 1e-6 215 58 0.00028109993 1e-6 220 58 0.00028109993 1e-6 223 58 0.00028109993 1e-6 233 58 0.0016867998 1e-6 234 58 0.0132134 1e-6 235 58 0.0081528984 1e-6 237 58 0.0022490998 1e-6 241 58 0.0042169988 1e-6 254 58 0.0053415969 1e-6 258 58 0.00028109993 1e-6 262 58 0.00056229997 1e-6 265 58 0.022209696 1e-6 266 58 0.025021099 1e-6 267 58 0.00028109993 1e-6 273 58 0.00028109993 1e-6 274 58 0.0011244998 1e-6 277 58 0.024739899 1e-6 279 58 0.00028109993 1e-6 285 58 0.00028109993 1e-6 292 58 0.00028109993 1e-6 295 58 0.021366298 1e-6 305 58 0.027832396 1e-6 308 58 0.0030924999 1e-6 309 58 0.0047792979 1e-6 311 58 0.0168681 1e-6 317 58 0.00056229997 1e-6 319 58 0.00028109993 1e-6 322 58 0.0084340982 1e-6 326 58 0.0033735998 1e-6 331 58 0.0025301999 1e-6 334 58 0.0084340982 1e-6 356 58 0.0014056999 1e-6 366 58 0.0014056999 1e-6 371 58 0.022490896 1e-6 380 58 0.0014056999 1e-6 384 58 0.0008433999 1e-6 385 58 0.019117199 1e-6 386 58 0.016586997 1e-6 390 58 0.0025301999 1e-6 402 58 0.00056229997 1e-6 419 58 0.00028109993 1e-6 441 58 0.0016867998 1e-6 443 58 0.0033735998 1e-6 445 58 0.030081499 1e-6 446 58 0.0008433999 1e-6 450 58 0.0011244998 1e-6 452 58 0.00028109993 1e-6 454 58 0.00028109993 1e-6 455 58 0.027551297 1e-6 456 58 0.014900196 1e-6 457 58 0.0011244998 1e-6 458 58 0.00028109993 1e-6 460 58 0.0025301999 1e-6 463 58 0.0022490998 1e-6 467 58 0.0205229 1e-6 468 58 0.00028109993 1e-6 469 58 0.0019679999 1e-6 470 58 0.0016867998 1e-6 471 58 0.0064660981 1e-6 478 58 0.00028109993 1e-6 9 59 9.7999991e-06 1e-6 16 59 9.7999991e-06 1e-6 24 59 0.00025509996 1e-6 60 59 0.00025509996 1e-6 79 59 9.7999991e-06 1e-6 82 59 1.9599989e-05 1e-6 83 59 9.7999991e-06 1e-6 84 59 9.7999991e-06 1e-6 108 59 2.9399991e-05 1e-6 113 59 3.9199993e-05 1e-6 114 59 7.8499987e-05 1e-6 126 59 3.9199993e-05 1e-6 127 59 9.7999991e-06 1e-6 134 59 0.0015109999 1e-6 135 59 2.9399991e-05 1e-6 139 59 0.00052979984 1e-6 141 59 2.9399991e-05 1e-6 142 59 4.9099996e-05 1e-6 150 59 7.8499987e-05 1e-6 154 59 2.9399991e-05 1e-6 158 59 0.0020309999 1e-6 160 59 0.0040913969 1e-6 161 59 0.00024529989 1e-6 162 59 0.00037279981 1e-6 163 59 0.0039147995 1e-6 164 59 0.0097917989 1e-6 165 59 0.0057003982 1e-6 168 59 1.9599989e-05 1e-6 171 59 6.8699999e-05 1e-6 177 59 0.0009321 1e-6 182 59 0.0027275998 1e-6 189 59 1.9599989e-05 1e-6 191 59 0.000206 1e-6 192 59 0.00038259989 1e-6 194 59 1.9599989e-05 1e-6 195 59 0.00010789999 1e-6 196 59 9.7999991e-06 1e-6 197 59 0.006004598 1e-6 201 59 2.9399991e-05 1e-6 203 59 2.9399991e-05 1e-6 204 59 2.9399991e-05 1e-6 206 59 7.8499987e-05 1e-6 207 59 1.9599989e-05 1e-6 209 59 9.7999991e-06 1e-6 214 59 2.9399991e-05 1e-6 218 59 3.9199993e-05 1e-6 219 59 0.0039147995 1e-6 223 59 3.9199993e-05 1e-6 233 59 0.056719799 1e-6 234 59 0.0032769998 1e-6 235 59 0.00036299997 1e-6 236 59 0.026902899 1e-6 237 59 0.0011478998 1e-6 240 59 0.00089279981 1e-6 241 59 0.0093992986 1e-6 242 59 0.00027469988 1e-6 248 59 1.9599989e-05 1e-6 250 59 9.7999991e-06 1e-6 251 59 9.7999991e-06 1e-6 252 59 0.0023546999 1e-6 254 59 0.00018639999 1e-6 255 59 0.00026489981 1e-6 256 59 0.00017659999 1e-6 258 59 0.00060829986 1e-6 259 59 0.00061809993 1e-6 263 59 9.7999991e-06 1e-6 264 59 0.00056909979 1e-6 265 59 0.0024136 1e-6 266 59 0.0012361999 1e-6 267 59 2.9399991e-05 1e-6 268 59 0.0032867999 1e-6 269 59 2.9399991e-05 1e-6 271 59 0.007397797 1e-6 273 59 4.9099996e-05 1e-6 274 59 0.00066719996 1e-6 277 59 0.0010890998 1e-6 279 59 0.00055929995 1e-6 282 59 0.00042189984 1e-6 292 59 0.0017857 1e-6 293 59 0.00052979984 1e-6 295 59 0.0015993 1e-6 303 59 0.0054158978 1e-6 304 59 0.0092619993 1e-6 305 59 7.8499987e-05 1e-6 306 59 0.0022075998 1e-6 307 59 0.0010890998 1e-6 308 59 0.016561698 1e-6 309 59 7.8499987e-05 1e-6 310 59 1.9599989e-05 1e-6 311 59 5.8899997e-05 1e-6 312 59 9.7999991e-06 1e-6 317 59 0.0013343999 1e-6 318 59 5.8899997e-05 1e-6 319 59 0.00030419999 1e-6 322 59 0.00090269977 1e-6 323 59 9.7999991e-06 1e-6 331 59 0.00049059978 1e-6 334 59 0.0065441988 1e-6 335 59 0.0010399998 1e-6 336 59 0.0045916997 1e-6 341 59 0.00036299997 1e-6 350 59 0.00091249985 1e-6 352 59 0.0001962 1e-6 356 59 0.0011282999 1e-6 358 59 0.00024529989 1e-6 366 59 0.027471997 1e-6 368 59 0.00030419999 1e-6 371 59 0.0024626998 1e-6 380 59 0.0023252999 1e-6 381 59 0.00022569999 1e-6 383 59 0.019279398 1e-6 384 59 1.9599989e-05 1e-6 385 59 0.0040716976 1e-6 386 59 0.0024037999 1e-6 387 59 2.9399991e-05 1e-6 390 59 1.9599989e-05 1e-6 394 59 7.8499987e-05 1e-6 397 59 2.9399991e-05 1e-6 398 59 0.0011086999 1e-6 402 59 0.0002942998 1e-6 412 59 9.7999991e-06 1e-6 415 59 0.005219698 1e-6 419 59 9.7999991e-06 1e-6 422 59 2.9399991e-05 1e-6 423 59 9.7999991e-06 1e-6 425 59 9.7999991e-06 1e-6 430 59 2.9399991e-05 1e-6 431 59 9.7999991e-06 1e-6 432 59 9.7999991e-06 1e-6 433 59 9.7999991e-06 1e-6 434 59 9.7999991e-06 1e-6 438 59 0.0040520988 1e-6 439 59 0.0046799965 1e-6 441 59 9.7999991e-06 1e-6 443 59 0.0037479999 1e-6 444 59 9.809999e-05 1e-6 445 59 0.016954098 1e-6 446 59 0.00084379991 1e-6 447 59 0.00057889987 1e-6 448 59 6.8699999e-05 1e-6 449 59 9.7999991e-06 1e-6 450 59 0.0025509999 1e-6 452 59 0.00038259989 1e-6 453 59 4.9099996e-05 1e-6 454 59 0.0006769998 1e-6 455 59 0.0474873 1e-6 456 59 0.064951599 1e-6 457 59 0.0026980999 1e-6 458 59 8.8299988e-05 1e-6 459 59 2.9399991e-05 1e-6 460 59 0.0033064999 1e-6 463 59 0.0053962991 1e-6 464 59 0.0001275 1e-6 465 59 9.809999e-05 1e-6 467 59 0.0048369989 1e-6 468 59 0.00040229992 1e-6 469 59 0.0040324964 1e-6 470 59 0.003953997 1e-6 471 59 0.0026294999 1e-6 473 59 8.8299988e-05 1e-6 477 59 3.9199993e-05 1e-6 478 59 0.00045129983 1e-6 483 59 0.00028449995 1e-6 489 59 5.8899997e-05 1e-6 490 59 0.00030419999 1e-6 491 59 0.0001374 1e-6 9 60 2.6099995e-05 1e-6 16 60 0.0002345 1e-6 24 60 0.00038219988 1e-6 60 60 0.00059929979 1e-6 79 60 8.6999999e-06 1e-6 82 60 4.3399996e-05 1e-6 83 60 3.4699988e-05 1e-6 84 60 3.4699988e-05 1e-6 108 60 5.2099989e-05 1e-6 113 60 7.8199999e-05 1e-6 114 60 0.0001911 1e-6 126 60 7.8199999e-05 1e-6 127 60 1.7399987e-05 1e-6 134 60 0.000139 1e-6 139 60 0.00097279996 1e-6 141 60 6.9499991e-05 1e-6 142 60 0.00010419999 1e-6 150 60 0.00018239999 1e-6 154 60 6.9499991e-05 1e-6 160 60 0.0064015985 1e-6 161 60 0.0001563 1e-6 162 60 0.00022579999 1e-6 163 60 0.0030140998 1e-6 164 60 0.00022579999 1e-6 165 60 0.0102496 1e-6 167 60 6.9499991e-05 1e-6 168 60 1.7399987e-05 1e-6 171 60 0.000139 1e-6 182 60 0.00014769999 1e-6 189 60 6.0799997e-05 1e-6 191 60 0.00043429993 1e-6 192 60 0.000139 1e-6 194 60 6.0799997e-05 1e-6 195 60 8.6899992e-05 1e-6 196 60 8.6999999e-06 1e-6 197 60 0.0002345 1e-6 198 60 8.6999999e-06 1e-6 201 60 6.0799997e-05 1e-6 203 60 5.2099989e-05 1e-6 204 60 6.9499991e-05 1e-6 206 60 0.00018239999 1e-6 207 60 4.3399996e-05 1e-6 209 60 1.7399987e-05 1e-6 214 60 0.00011289999 1e-6 218 60 1.7399987e-05 1e-6 219 60 0.0030226998 1e-6 223 60 8.6899992e-05 1e-6 233 60 0.022627197 1e-6 234 60 0.012143098 1e-6 235 60 0.00085119996 1e-6 236 60 0.011274498 1e-6 237 60 0.0027621998 1e-6 240 60 0.00057329983 1e-6 241 60 0.0073831975 1e-6 242 60 0.00031269994 1e-6 248 60 4.3399996e-05 1e-6 250 60 1.7399987e-05 1e-6 251 60 8.6999999e-06 1e-6 252 60 0.0023886999 1e-6 254 60 0.00061669992 1e-6 255 60 0.00058199978 1e-6 256 60 0.00067749992 1e-6 257 60 0.015556697 1e-6 258 60 0.00016499999 1e-6 259 60 0.0020325 1e-6 263 60 8.6999999e-06 1e-6 264 60 0.0039434992 1e-6 265 60 0.0012681999 1e-6 266 60 0.0058022998 1e-6 267 60 4.3399996e-05 1e-6 268 60 0.0013897999 1e-6 269 60 6.9499991e-05 1e-6 271 60 0.00071229995 1e-6 273 60 5.2099989e-05 1e-6 274 60 0.00044299988 1e-6 275 60 0.015930198 1e-6 277 60 0.0024667999 1e-6 279 60 0.00098149991 1e-6 282 60 0.00096419989 1e-6 292 60 0.00058199978 1e-6 293 60 0.00057329983 1e-6 295 60 0.0023104998 1e-6 302 60 0.0010162999 1e-6 303 60 0.0043516979 1e-6 304 60 0.010049798 1e-6 305 60 0.0004168998 1e-6 306 60 0.0023712998 1e-6 307 60 0.0021019999 1e-6 308 60 0.0074525997 1e-6 311 60 0.0004776998 1e-6 312 60 0.00044299988 1e-6 317 60 0.0031529998 1e-6 318 60 0.00013029999 1e-6 319 60 0.0016416998 1e-6 322 60 0.00087729981 1e-6 323 60 1.7399987e-05 1e-6 324 60 0.0015721999 1e-6 331 60 0.0011812998 1e-6 334 60 0.0042213984 1e-6 335 60 0.00067749992 1e-6 336 60 0.0029618999 1e-6 341 60 0.00026059989 1e-6 350 60 0.00030399999 1e-6 352 60 0.00028659985 1e-6 356 60 0.00071229995 1e-6 358 60 0.0003560998 1e-6 363 60 8.6999999e-06 1e-6 366 60 0.0284121 1e-6 368 60 0.00018239999 1e-6 371 60 0.0062191971 1e-6 374 60 6.0799997e-05 1e-6 380 60 0.00013029999 1e-6 381 60 8.6999999e-06 1e-6 383 60 0.0001563 1e-6 384 60 3.4699988e-05 1e-6 385 60 0.013854299 1e-6 386 60 0.018040899 1e-6 387 60 7.8199999e-05 1e-6 390 60 0.0019456998 1e-6 394 60 0.00019979999 1e-6 397 60 2.6099995e-05 1e-6 398 60 8.6999999e-06 1e-6 402 60 0.00071229995 1e-6 412 60 1.7399987e-05 1e-6 415 60 0.0042474978 1e-6 419 60 2.6099995e-05 1e-6 422 60 7.8199999e-05 1e-6 423 60 2.6099995e-05 1e-6 425 60 1.7399987e-05 1e-6 430 60 5.2099989e-05 1e-6 431 60 1.7399987e-05 1e-6 432 60 1.7399987e-05 1e-6 433 60 2.6099995e-05 1e-6 434 60 3.4699988e-05 1e-6 438 60 0.0014852998 1e-6 439 60 0.0001737 1e-6 441 60 1.7399987e-05 1e-6 443 60 0.004516799 1e-6 444 60 0.00025189994 1e-6 445 60 0.017789099 1e-6 446 60 0.0014070999 1e-6 447 60 0.0010162999 1e-6 448 60 0.00019979999 1e-6 449 60 1.7399987e-05 1e-6 450 60 0.0060888976 1e-6 452 60 0.00090339989 1e-6 453 60 0.00011289999 1e-6 454 60 0.0016156 1e-6 455 60 0.038305499 1e-6 456 60 0.036133997 1e-6 457 60 0.0064015985 1e-6 458 60 7.8199999e-05 1e-6 459 60 4.3399996e-05 1e-6 460 60 0.005072698 1e-6 463 60 0.012881398 1e-6 464 60 0.00032139989 1e-6 465 60 0.00021719999 1e-6 467 60 0.0067577995 1e-6 468 60 0.00095549994 1e-6 469 60 0.0096327998 1e-6 470 60 0.0094330981 1e-6 471 60 0.0056111999 1e-6 473 60 0.00019979999 1e-6 477 60 7.8199999e-05 1e-6 478 60 0.0010684 1e-6 483 60 0.00066009979 1e-6 489 60 0.00013029999 1e-6 490 60 0.00071229995 1e-6 491 60 0.00027799979 1e-6 24 61 0.00032479991 1e-6 60 61 0.00064959982 1e-6 108 61 0.00032479991 1e-6 114 61 0.00064959982 1e-6 126 61 0.00032479991 1e-6 134 61 0.00032479991 1e-6 139 61 0.0012991 1e-6 150 61 0.00032479991 1e-6 160 61 0.0045468993 1e-6 161 61 0.00032479991 1e-6 162 61 0.00064959982 1e-6 163 61 0.0045468993 1e-6 164 61 0.00032479991 1e-6 165 61 0.010392997 1e-6 182 61 0.0032477998 1e-6 191 61 0.00032479991 1e-6 192 61 0.00064959982 1e-6 197 61 0.0077946968 1e-6 206 61 0.00064959982 1e-6 219 61 0.0051964968 1e-6 233 61 0.069503069 1e-6 234 61 0.0074699968 1e-6 235 61 0.00032479991 1e-6 236 61 0.031828497 1e-6 237 61 0.0025982 1e-6 240 61 0.00064959982 1e-6 241 61 0.015264697 1e-6 242 61 0.00032479991 1e-6 252 61 0.0025982 1e-6 254 61 0.00032479991 1e-6 255 61 0.00032479991 1e-6 258 61 0.00032479991 1e-6 259 61 0.00064959982 1e-6 264 61 0.00064959982 1e-6 265 61 0.0029229999 1e-6 266 61 0.0016238999 1e-6 268 61 0.0035726 1e-6 271 61 0.0087690987 1e-6 273 61 0.00032479991 1e-6 274 61 0.00097429985 1e-6 277 61 0.0012991 1e-6 279 61 0.00097429985 1e-6 282 61 0.00064959982 1e-6 292 61 0.0022735 1e-6 293 61 0.00064959982 1e-6 295 61 0.0016238999 1e-6 303 61 0.0061707981 1e-6 304 61 0.011692099 1e-6 306 61 0.0025982 1e-6 307 61 0.0025982 1e-6 308 61 0.023059398 1e-6 317 61 0.0025982 1e-6 319 61 0.00032479991 1e-6 322 61 0.0016238999 1e-6 324 61 0.025332898 1e-6 331 61 0.00097429985 1e-6 334 61 0.0084442981 1e-6 335 61 0.0012991 1e-6 336 61 0.0058460981 1e-6 341 61 0.00064959982 1e-6 350 61 0.0012991 1e-6 356 61 0.0016238999 1e-6 366 61 0.011692099 1e-6 368 61 0.00032479991 1e-6 371 61 0.0032477998 1e-6 380 61 0.0025982 1e-6 381 61 0.00032479991 1e-6 383 61 0.022409897 1e-6 385 61 0.0058460981 1e-6 386 61 0.0032477998 1e-6 387 61 0.00032479991 1e-6 394 61 0.00032479991 1e-6 398 61 0.0012991 1e-6 402 61 0.00064959982 1e-6 415 61 0.0058460981 1e-6 438 61 0.0048717 1e-6 439 61 0.0051964968 1e-6 443 61 0.0019486998 1e-6 445 61 0.019811597 1e-6 446 61 0.00097429985 1e-6 447 61 0.00064959982 1e-6 450 61 0.0058460981 1e-6 452 61 0.00097429985 1e-6 454 61 0.0012991 1e-6 455 61 0.051964898 1e-6 456 61 0.070477366 1e-6 457 61 0.0058460981 1e-6 460 61 0.0055212975 1e-6 463 61 0.012341697 1e-6 464 61 0.00032479991 1e-6 467 61 0.011367299 1e-6 468 61 0.00097429985 1e-6 469 61 0.0087690987 1e-6 470 61 0.0090938993 1e-6 471 61 0.0058460981 1e-6 473 61 0.00032479991 1e-6 478 61 0.00064959982 1e-6 483 61 0.00064959982 1e-6 490 61 0.00097429985 1e-6 491 61 0.00032479991 1e-6 18 62 0.0013247 1e-6 24 62 0.029640697 1e-6 60 62 0.00016559999 1e-6 114 62 0.00016559999 1e-6 126 62 0.00016559999 1e-6 134 62 0.007948298 1e-6 139 62 0.00049679982 1e-6 160 62 0.033945996 1e-6 162 62 0.0009935 1e-6 163 62 0.0026493999 1e-6 165 62 0.015896697 1e-6 166 62 0.0011590999 1e-6 168 62 0.0155655 1e-6 170 62 0.00033119996 1e-6 171 62 0.0009935 1e-6 191 62 0.0021527 1e-6 192 62 0.00049679982 1e-6 206 62 0.00016559999 1e-6 219 62 0.00049679982 1e-6 233 62 0.055141598 1e-6 234 62 0.0099353977 1e-6 235 62 0.022685897 1e-6 236 62 0.010432199 1e-6 237 62 0.0009935 1e-6 241 62 0.012088098 1e-6 254 62 0.0041397996 1e-6 255 62 0.00016559999 1e-6 262 62 0.0019870999 1e-6 264 62 0.010266598 1e-6 265 62 0.055638399 1e-6 266 62 0.030468598 1e-6 268 62 0.0039741993 1e-6 271 62 0.0009935 1e-6 273 62 0.00033119996 1e-6 274 62 0.00049679982 1e-6 277 62 0.026825599 1e-6 279 62 0.010763399 1e-6 292 62 0.0024838999 1e-6 295 62 0.010929 1e-6 305 62 0.0061267987 1e-6 306 62 0.0018214998 1e-6 307 62 0.0038085999 1e-6 308 62 0.058287799 1e-6 311 62 0.0019870999 1e-6 317 62 0.00066239992 1e-6 319 62 0.0026493999 1e-6 322 62 0.035105098 1e-6 324 62 0.0157311 1e-6 331 62 0.005464498 1e-6 350 62 0.0011590999 1e-6 371 62 0.0016558999 1e-6 385 62 0.005464498 1e-6 386 62 0.0029805999 1e-6 398 62 0.0013247 1e-6 402 62 0.00016559999 1e-6 438 62 0.0038085999 1e-6 441 62 0.00049679982 1e-6 443 62 0.0110946 1e-6 445 62 0.025997698 1e-6 446 62 0.0009935 1e-6 447 62 0.00033119996 1e-6 450 62 0.0016558999 1e-6 452 62 0.00033119996 1e-6 454 62 0.00033119996 1e-6 455 62 0.057956599 1e-6 456 62 0.070707083 1e-6 457 62 0.0016558999 1e-6 458 62 0.00016559999 1e-6 460 62 0.0076171979 1e-6 463 62 0.0034773999 1e-6 467 62 0.0064579993 1e-6 468 62 0.00033119996 1e-6 469 62 0.0026493999 1e-6 470 62 0.0024838999 1e-6 471 62 0.0019870999 1e-6 473 62 0.00016559999 1e-6 478 62 0.00016559999 1e-6 483 62 0.00016559999 1e-6 490 62 0.00033119996 1e-6 16 63 0.00010599999 1e-6 60 63 0.00031799986 1e-6 108 63 0.00010599999 1e-6 114 63 0.00010599999 1e-6 126 63 0.00010599999 1e-6 139 63 0.00052989996 1e-6 142 63 0.00010599999 1e-6 150 63 0.00010599999 1e-6 160 63 0.00074189994 1e-6 162 63 0.00010599999 1e-6 163 63 0.00052989996 1e-6 165 63 0.042713299 1e-6 168 63 0.00095389993 1e-6 171 63 0.00010599999 1e-6 191 63 0.00010599999 1e-6 194 63 0.00010599999 1e-6 206 63 0.00031799986 1e-6 219 63 0.00063589984 1e-6 223 63 0.00010599999 1e-6 233 63 0.0047694966 1e-6 234 63 0.0076311976 1e-6 235 63 0.0057233982 1e-6 236 63 0.0014837999 1e-6 237 63 0.0018018 1e-6 241 63 0.0044514984 1e-6 242 63 0.00010599999 1e-6 252 63 0.00042399997 1e-6 254 63 0.0023316999 1e-6 255 63 0.00010599999 1e-6 256 63 0.00010599999 1e-6 259 63 0.000212 1e-6 262 63 0.0010598998 1e-6 264 63 0.00042399997 1e-6 265 63 0.00031799986 1e-6 266 63 0.0026496998 1e-6 268 63 0.00031799986 1e-6 271 63 0.00010599999 1e-6 273 63 0.000212 1e-6 277 63 0.00031799986 1e-6 279 63 0.000212 1e-6 292 63 0.00010599999 1e-6 295 63 0.0051933974 1e-6 302 63 0.000212 1e-6 303 63 0.00063589984 1e-6 304 63 0.0014837999 1e-6 305 63 0.00042399997 1e-6 306 63 0.00042399997 1e-6 307 63 0.0026496998 1e-6 308 63 0.0041334964 1e-6 309 63 0.00095389993 1e-6 310 63 0.000212 1e-6 311 63 0.000212 1e-6 312 63 0.00074189994 1e-6 317 63 0.0020138 1e-6 318 63 0.00010599999 1e-6 319 63 0.000212 1e-6 322 63 0.0012718998 1e-6 324 63 0.000212 1e-6 331 63 0.00074189994 1e-6 334 63 0.00063589984 1e-6 335 63 0.00010599999 1e-6 336 63 0.00031799986 1e-6 356 63 0.00010599999 1e-6 358 63 0.00010599999 1e-6 366 63 0.0108108 1e-6 371 63 0.00084789982 1e-6 385 63 0.019607797 1e-6 386 63 0.066772699 1e-6 387 63 0.00010599999 1e-6 390 63 0.000212 1e-6 394 63 0.00010599999 1e-6 402 63 0.00052989996 1e-6 415 63 0.0010598998 1e-6 422 63 0.00010599999 1e-6 430 63 0.00010599999 1e-6 438 63 0.00031799986 1e-6 441 63 0.000212 1e-6 443 63 0.0027556999 1e-6 444 63 0.000212 1e-6 445 63 0.0083730966 1e-6 446 63 0.00063589984 1e-6 447 63 0.00063589984 1e-6 448 63 0.00010599999 1e-6 450 63 0.0036036 1e-6 452 63 0.00052989996 1e-6 453 63 0.00010599999 1e-6 454 63 0.00095389993 1e-6 455 63 0.025649197 1e-6 456 63 0.029994696 1e-6 457 63 0.0037095998 1e-6 458 63 0.00052989996 1e-6 460 63 0.0025436999 1e-6 463 63 0.0075251982 1e-6 464 63 0.00031799986 1e-6 467 63 0.018865898 1e-6 468 63 0.00052989996 1e-6 469 63 0.0055113994 1e-6 470 63 0.0055113994 1e-6 471 63 0.0052993968 1e-6 473 63 0.00010599999 1e-6 478 63 0.00063589984 1e-6 483 63 0.00042399997 1e-6 490 63 0.00052989996 1e-6 491 63 0.000212 1e-6 9 64 5.1999989e-05 1e-6 24 64 0.010512598 1e-6 60 64 0.00031229993 1e-6 80 64 0.00010409999 1e-6 82 64 5.1999989e-05 1e-6 83 64 5.1999989e-05 1e-6 84 64 5.1999989e-05 1e-6 108 64 5.1999989e-05 1e-6 113 64 0.00010409999 1e-6 114 64 0.00010409999 1e-6 126 64 5.1999989e-05 1e-6 139 64 0.00046839984 1e-6 141 64 5.1999989e-05 1e-6 142 64 5.1999989e-05 1e-6 150 64 0.00010409999 1e-6 154 64 5.1999989e-05 1e-6 159 64 0.014675997 1e-6 160 64 0.010720797 1e-6 163 64 0.0002082 1e-6 165 64 0.0050480999 1e-6 168 64 0.032890998 1e-6 171 64 0.00010409999 1e-6 189 64 5.1999989e-05 1e-6 191 64 5.1999989e-05 1e-6 194 64 5.1999989e-05 1e-6 203 64 5.1999989e-05 1e-6 204 64 0.00010409999 1e-6 206 64 5.1999989e-05 1e-6 207 64 5.1999989e-05 1e-6 219 64 0.0001561 1e-6 220 64 0.00026019989 1e-6 223 64 5.1999989e-05 1e-6 233 64 0.0060889982 1e-6 234 64 0.0062971972 1e-6 235 64 0.00078059989 1e-6 236 64 0.0006765998 1e-6 237 64 0.0014052 1e-6 241 64 0.0036429998 1e-6 242 64 0.00010409999 1e-6 252 64 0.0002082 1e-6 254 64 0.0013530999 1e-6 255 64 5.1999989e-05 1e-6 256 64 5.1999989e-05 1e-6 259 64 0.00010409999 1e-6 264 64 0.0002082 1e-6 265 64 0.0001561 1e-6 266 64 0.00052039977 1e-6 268 64 0.00010409999 1e-6 271 64 0.0002082 1e-6 273 64 0.00026019989 1e-6 274 64 5.1999989e-05 1e-6 277 64 0.024407998 1e-6 279 64 0.00026019989 1e-6 292 64 5.1999989e-05 1e-6 293 64 5.1999989e-05 1e-6 295 64 0.0013010998 1e-6 302 64 0.00010409999 1e-6 303 64 0.0002082 1e-6 304 64 0.00046839984 1e-6 305 64 0.0083788969 1e-6 306 64 0.00010409999 1e-6 307 64 0.0023939998 1e-6 308 64 0.0034347998 1e-6 312 64 0.0039551966 1e-6 317 64 0.0016132998 1e-6 318 64 5.1999989e-05 1e-6 319 64 0.00010409999 1e-6 322 64 0.0006765998 1e-6 324 64 0.0006765998 1e-6 326 64 0.0247203 1e-6 331 64 0.00062449998 1e-6 334 64 0.00026019989 1e-6 335 64 5.1999989e-05 1e-6 336 64 0.00010409999 1e-6 356 64 5.1999989e-05 1e-6 358 64 5.1999989e-05 1e-6 366 64 0.0041633993 1e-6 371 64 0.00036429986 1e-6 374 64 0.0029663998 1e-6 385 64 0.0029143998 1e-6 386 64 0.0047358982 1e-6 387 64 5.1999989e-05 1e-6 390 64 0.016185299 1e-6 394 64 0.00010409999 1e-6 402 64 0.00036429986 1e-6 415 64 0.00036429986 1e-6 422 64 5.1999989e-05 1e-6 423 64 5.1999989e-05 1e-6 430 64 5.1999989e-05 1e-6 431 64 5.1999989e-05 1e-6 434 64 5.1999989e-05 1e-6 438 64 0.00041629979 1e-6 443 64 0.0057766996 1e-6 444 64 0.0001561 1e-6 445 64 0.014311697 1e-6 446 64 0.0037470998 1e-6 447 64 0.00062449998 1e-6 448 64 0.00010409999 1e-6 450 64 0.0031225998 1e-6 452 64 0.00046839984 1e-6 453 64 5.1999989e-05 1e-6 454 64 0.00083269994 1e-6 455 64 0.048191499 1e-6 456 64 0.0091074966 1e-6 457 64 0.0032786999 1e-6 458 64 0.00041629979 1e-6 460 64 0.0023418998 1e-6 463 64 0.0066093989 1e-6 464 64 0.0001561 1e-6 465 64 0.00010409999 1e-6 467 64 0.015872996 1e-6 468 64 0.00046839984 1e-6 469 64 0.0051001981 1e-6 470 64 0.0048399977 1e-6 471 64 0.0045276992 1e-6 473 64 0.00010409999 1e-6 478 64 0.00052039977 1e-6 483 64 0.00031229993 1e-6 489 64 5.1999989e-05 1e-6 490 64 0.00041629979 1e-6 491 64 0.00026019989 1e-6 60 65 7.2199997e-05 1e-6 114 65 7.2199997e-05 1e-6 139 65 0.00014439999 1e-6 160 65 0.00043329992 1e-6 163 65 0.00021669999 1e-6 165 65 0.0024553998 1e-6 191 65 7.2199997e-05 1e-6 195 65 0.00014439999 1e-6 206 65 7.2199997e-05 1e-6 217 65 0.00064999983 1e-6 219 65 0.00072219991 1e-6 233 65 0.0086660981 1e-6 234 65 0.0022387998 1e-6 235 65 0.0010833 1e-6 236 65 0.0007944 1e-6 237 65 0.00043329992 1e-6 241 65 0.00086659985 1e-6 252 65 0.00021669999 1e-6 254 65 0.0012276999 1e-6 255 65 7.2199997e-05 1e-6 257 65 0.0025997998 1e-6 259 65 0.00014439999 1e-6 262 65 0.0011554998 1e-6 264 65 0.00028889999 1e-6 265 65 0.0017331999 1e-6 266 65 0.00072219991 1e-6 268 65 0.00014439999 1e-6 271 65 0.0011554998 1e-6 272 65 0.00021669999 1e-6 273 65 0.00021669999 1e-6 274 65 0.00064999983 1e-6 275 65 0.052574597 1e-6 277 65 0.0064995997 1e-6 279 65 7.2199997e-05 1e-6 292 65 7.2199997e-05 1e-6 293 65 7.2199997e-05 1e-6 295 65 0.015093498 1e-6 302 65 7.2199997e-05 1e-6 303 65 0.00028889999 1e-6 304 65 0.0044052973 1e-6 305 65 0.0064273998 1e-6 306 65 0.0010833 1e-6 307 65 0.0096771978 1e-6 308 65 0.0024553998 1e-6 309 65 0.00028889999 1e-6 310 65 7.2199997e-05 1e-6 311 65 0.00014439999 1e-6 312 65 0.005127497 1e-6 317 65 0.00028889999 1e-6 319 65 0.00014439999 1e-6 322 65 0.00093879993 1e-6 324 65 0.021087598 1e-6 331 65 0.0044774972 1e-6 334 65 0.00028889999 1e-6 335 65 7.2199997e-05 1e-6 336 65 0.00014439999 1e-6 356 65 7.2199997e-05 1e-6 358 65 7.2199997e-05 1e-6 366 65 0.0052718967 1e-6 371 65 0.0023832 1e-6 374 65 0.007655099 1e-6 385 65 0.0037552998 1e-6 386 65 0.031198099 1e-6 390 65 0.00014439999 1e-6 402 65 7.2199997e-05 1e-6 414 65 0.0036831 1e-6 415 65 0.00050549977 1e-6 438 65 0.00036109984 1e-6 443 65 0.0038274999 1e-6 445 65 0.0032497998 1e-6 446 65 7.2199997e-05 1e-6 447 65 7.2199997e-05 1e-6 450 65 0.00064999983 1e-6 452 65 7.2199997e-05 1e-6 454 65 0.00014439999 1e-6 455 65 0.021376498 1e-6 456 65 0.011771496 1e-6 457 65 0.00064999983 1e-6 458 65 0.00043329992 1e-6 460 65 0.00036109984 1e-6 463 65 0.0013720999 1e-6 464 65 7.2199997e-05 1e-6 467 65 0.016393397 1e-6 468 65 7.2199997e-05 1e-6 469 65 0.0010109998 1e-6 470 65 0.0010109998 1e-6 471 65 0.0028164999 1e-6 478 65 7.2199997e-05 1e-6 483 65 7.2199997e-05 1e-6 490 65 0.00014439999 1e-6 18 66 0.00024149999 1e-6 24 66 0.014734298 1e-6 60 66 0.00024149999 1e-6 114 66 0.00024149999 1e-6 126 66 0.00024149999 1e-6 134 66 0.0024154999 1e-6 139 66 0.00048309984 1e-6 160 66 0.00072459993 1e-6 163 66 0.00024149999 1e-6 165 66 0.0050724968 1e-6 168 66 0.00024149999 1e-6 206 66 0.00024149999 1e-6 214 66 0.00096619991 1e-6 219 66 0.00072459993 1e-6 223 66 0.00048309984 1e-6 233 66 0.0084540993 1e-6 234 66 0.012077298 1e-6 235 66 0.025603898 1e-6 236 66 0.0016907998 1e-6 237 66 0.0014493 1e-6 240 66 0.00072459993 1e-6 241 66 0.0043477975 1e-6 242 66 0.00024149999 1e-6 252 66 0.00024149999 1e-6 254 66 0.00072459993 1e-6 255 66 0.00024149999 1e-6 259 66 0.00024149999 1e-6 264 66 0.00024149999 1e-6 266 66 0.015942 1e-6 268 66 0.00024149999 1e-6 269 66 0.00096619991 1e-6 273 66 0.00048309984 1e-6 274 66 0.00024149999 1e-6 277 66 0.12294686 1e-6 282 66 0.0014493 1e-6 295 66 0.00024149999 1e-6 303 66 0.00048309984 1e-6 304 66 0.00072459993 1e-6 305 66 0.0048308969 1e-6 306 66 0.00024149999 1e-6 307 66 0.0031400998 1e-6 308 66 0.0036231999 1e-6 311 66 0.0014493 1e-6 317 66 0.0014493 1e-6 322 66 0.0028986 1e-6 324 66 0.029951699 1e-6 331 66 0.00096619991 1e-6 334 66 0.00024149999 1e-6 336 66 0.00024149999 1e-6 366 66 0.0050724968 1e-6 371 66 0.00072459993 1e-6 374 66 0.0014493 1e-6 385 66 0.0016907998 1e-6 386 66 0.0014493 1e-6 390 66 0.00024149999 1e-6 402 66 0.00024149999 1e-6 414 66 0.0014493 1e-6 415 66 0.00048309984 1e-6 438 66 0.00072459993 1e-6 441 66 0.00048309984 1e-6 443 66 0.0041062981 1e-6 445 66 0.0135266 1e-6 446 66 0.00096619991 1e-6 447 66 0.00048309984 1e-6 450 66 0.0028986 1e-6 452 66 0.00048309984 1e-6 454 66 0.00072459993 1e-6 455 66 0.022946898 1e-6 456 66 0.0099033974 1e-6 457 66 0.0028986 1e-6 458 66 0.00048309984 1e-6 460 66 0.0016907998 1e-6 463 66 0.0060385987 1e-6 464 66 0.00024149999 1e-6 467 66 0.018599 1e-6 468 66 0.00048309984 1e-6 469 66 0.0045893975 1e-6 470 66 0.0045893975 1e-6 471 66 0.0048308969 1e-6 473 66 0.00024149999 1e-6 478 66 0.00048309984 1e-6 483 66 0.00024149999 1e-6 490 66 0.00048309984 1e-6 491 66 0.00024149999 1e-6 18 67 0.001003 1e-6 24 67 0.0090270974 1e-6 165 67 0.0040119998 1e-6 166 67 0.0030089999 1e-6 214 67 0.001003 1e-6 220 67 0.001003 1e-6 233 67 0.011033099 1e-6 234 67 0.041123398 1e-6 235 67 0.005014997 1e-6 237 67 0.001003 1e-6 241 67 0.0030089999 1e-6 266 67 0.0040119998 1e-6 271 67 0.001003 1e-6 273 67 0.001003 1e-6 274 67 0.001003 1e-6 277 67 0.15346038 1e-6 295 67 0.010030098 1e-6 305 67 0.023069199 1e-6 307 67 0.0080240965 1e-6 308 67 0.0020059999 1e-6 317 67 0.001003 1e-6 322 67 0.0040119998 1e-6 324 67 0.076228678 1e-6 331 67 0.0040119998 1e-6 366 67 0.001003 1e-6 371 67 0.014042098 1e-6 374 67 0.0030089999 1e-6 385 67 0.0020059999 1e-6 386 67 0.0040119998 1e-6 414 67 0.0070210993 1e-6 438 67 0.001003 1e-6 443 67 0.0030089999 1e-6 445 67 0.010030098 1e-6 450 67 0.0020059999 1e-6 455 67 0.033099297 1e-6 456 67 0.018054198 1e-6 457 67 0.0020059999 1e-6 460 67 0.0030089999 1e-6 463 67 0.0040119998 1e-6 467 67 0.018054198 1e-6 469 67 0.0030089999 1e-6 470 67 0.0030089999 1e-6 471 67 0.005014997 1e-6 490 67 0.001003 1e-6 7 68 0.00013489999 1e-6 16 68 0.00040459982 1e-6 18 68 0.0016857998 1e-6 24 68 0.020633899 1e-6 60 68 0.00026969984 1e-6 82 68 6.7399989e-05 1e-6 108 68 6.7399989e-05 1e-6 114 68 6.7399989e-05 1e-6 126 68 6.7399989e-05 1e-6 139 68 0.00040459982 1e-6 142 68 6.7399989e-05 1e-6 150 68 6.7399989e-05 1e-6 154 68 6.7399989e-05 1e-6 160 68 0.00033719977 1e-6 163 68 0.00013489999 1e-6 165 68 0.0046526976 1e-6 168 68 0.00013489999 1e-6 171 68 6.7399989e-05 1e-6 191 68 6.7399989e-05 1e-6 192 68 6.7399989e-05 1e-6 194 68 6.7399989e-05 1e-6 203 68 6.7399989e-05 1e-6 204 68 6.7399989e-05 1e-6 206 68 0.0002023 1e-6 219 68 0.00053939992 1e-6 223 68 6.7399989e-05 1e-6 233 68 0.036817297 1e-6 234 68 0.0087659992 1e-6 235 68 0.0225893 1e-6 236 68 0.00053939992 1e-6 237 68 0.0014159998 1e-6 241 68 0.011867799 1e-6 242 68 6.7399989e-05 1e-6 252 68 0.00013489999 1e-6 254 68 0.012002699 1e-6 259 68 0.00013489999 1e-6 264 68 0.0002023 1e-6 265 68 0.0095077977 1e-6 266 68 0.0093728974 1e-6 268 68 6.7399989e-05 1e-6 269 68 0.00053939992 1e-6 271 68 0.0030343998 1e-6 273 68 0.00033719977 1e-6 274 68 0.0015508998 1e-6 277 68 0.0036412999 1e-6 279 68 6.7399989e-05 1e-6 282 68 0.0071476996 1e-6 292 68 0.00013489999 1e-6 295 68 6.7399989e-05 1e-6 302 68 6.7399989e-05 1e-6 303 68 0.00013489999 1e-6 304 68 0.00040459982 1e-6 305 68 0.0048549995 1e-6 306 68 0.00013489999 1e-6 307 68 0.0022251999 1e-6 308 68 0.0043829978 1e-6 311 68 0.00013489999 1e-6 317 68 0.0014834998 1e-6 318 68 6.7399989e-05 1e-6 319 68 6.7399989e-05 1e-6 322 68 0.0016182999 1e-6 324 68 0.040391099 1e-6 331 68 0.00053939992 1e-6 334 68 0.0002023 1e-6 336 68 0.00013489999 1e-6 350 68 6.7399989e-05 1e-6 358 68 6.7399989e-05 1e-6 366 68 0.0033714999 1e-6 371 68 0.0020228999 1e-6 374 68 0.0052595995 1e-6 385 68 0.0010114999 1e-6 386 68 0.00087659992 1e-6 387 68 6.7399989e-05 1e-6 390 68 6.7399989e-05 1e-6 394 68 6.7399989e-05 1e-6 402 68 0.00040459982 1e-6 414 68 0.0025624 1e-6 415 68 0.00033719977 1e-6 430 68 6.7399989e-05 1e-6 438 68 0.0026297998 1e-6 441 68 0.00047199987 1e-6 443 68 0.0036412999 1e-6 444 68 0.0002023 1e-6 445 68 0.017464597 1e-6 446 68 0.0010788999 1e-6 447 68 0.00053939992 1e-6 448 68 6.7399989e-05 1e-6 450 68 0.0027647 1e-6 452 68 0.00040459982 1e-6 453 68 6.7399989e-05 1e-6 454 68 0.00074169994 1e-6 455 68 0.0277141 1e-6 456 68 0.030815899 1e-6 457 68 0.0028994998 1e-6 458 68 0.00040459982 1e-6 460 68 0.0017531998 1e-6 463 68 0.0057990998 1e-6 464 68 0.0002023 1e-6 465 68 6.7399989e-05 1e-6 467 68 0.015643999 1e-6 468 68 0.00040459982 1e-6 469 68 0.0051246993 1e-6 470 68 0.0042480975 1e-6 471 68 0.0041806996 1e-6 473 68 0.00013489999 1e-6 478 68 0.00047199987 1e-6 483 68 0.00026969984 1e-6 489 68 6.7399989e-05 1e-6 490 68 0.00040459982 1e-6 491 68 0.0002023 1e-6 16 69 0.0001604 1e-6 18 69 0.00048129982 1e-6 24 69 0.013637099 1e-6 60 69 0.00080219982 1e-6 82 69 0.0001604 1e-6 108 69 0.0001604 1e-6 114 69 0.0001604 1e-6 126 69 0.0001604 1e-6 134 69 0.0016043999 1e-6 139 69 0.0011230998 1e-6 141 69 0.0001604 1e-6 142 69 0.0001604 1e-6 150 69 0.0001604 1e-6 154 69 0.0001604 1e-6 160 69 0.0016043999 1e-6 162 69 0.0001604 1e-6 163 69 0.0011230998 1e-6 165 69 0.012513999 1e-6 171 69 0.0001604 1e-6 191 69 0.0001604 1e-6 194 69 0.0001604 1e-6 203 69 0.0001604 1e-6 206 69 0.0001604 1e-6 207 69 0.0001604 1e-6 219 69 0.00096259988 1e-6 220 69 0.0001604 1e-6 223 69 0.0001604 1e-6 233 69 0.014278799 1e-6 234 69 0.017166696 1e-6 235 69 0.0097865984 1e-6 236 69 0.0022461 1e-6 237 69 0.0035295999 1e-6 240 69 0.0011230998 1e-6 241 69 0.0091448985 1e-6 242 69 0.00048129982 1e-6 252 69 0.00064169988 1e-6 254 69 0.021177597 1e-6 255 69 0.0054547973 1e-6 256 69 0.0001604 1e-6 258 69 0.0028879 1e-6 259 69 0.0003209 1e-6 264 69 0.0038504999 1e-6 265 69 0.0145997 1e-6 266 69 0.012995299 1e-6 267 69 0.0001604 1e-6 268 69 0.00048129982 1e-6 269 69 0.0003209 1e-6 271 69 0.0016043999 1e-6 273 69 0.00048129982 1e-6 274 69 0.00064169988 1e-6 277 69 0.0036899999 1e-6 279 69 0.0003209 1e-6 282 69 0.004171297 1e-6 292 69 0.0001604 1e-6 293 69 0.0001604 1e-6 295 69 0.00048129982 1e-6 302 69 0.0003209 1e-6 303 69 0.00096259988 1e-6 304 69 0.0022461 1e-6 305 69 0.0027273998 1e-6 306 69 0.00080219982 1e-6 307 69 0.0044921972 1e-6 308 69 0.008503098 1e-6 311 69 0.008021798 1e-6 312 69 0.0001604 1e-6 317 69 0.0040108971 1e-6 318 69 0.0001604 1e-6 319 69 0.0003209 1e-6 322 69 0.013155799 1e-6 324 69 0.011230499 1e-6 331 69 0.0014438999 1e-6 334 69 0.00096259988 1e-6 335 69 0.0001604 1e-6 336 69 0.00048129982 1e-6 356 69 0.0001604 1e-6 358 69 0.0001604 1e-6 366 69 0.016204096 1e-6 371 69 0.00064169988 1e-6 374 69 0.0014438999 1e-6 385 69 0.0032086999 1e-6 386 69 0.0038504999 1e-6 387 69 0.0001604 1e-6 390 69 0.0003209 1e-6 394 69 0.0003209 1e-6 402 69 0.0011230998 1e-6 415 69 0.0016043999 1e-6 422 69 0.0001604 1e-6 430 69 0.0001604 1e-6 434 69 0.0001604 1e-6 438 69 0.00096259988 1e-6 441 69 0.0003209 1e-6 443 69 0.0046526976 1e-6 444 69 0.00048129982 1e-6 445 69 0.023102798 1e-6 446 69 0.0017647999 1e-6 447 69 0.0012834999 1e-6 448 69 0.0001604 1e-6 450 69 0.0073800981 1e-6 452 69 0.0011230998 1e-6 453 69 0.0001604 1e-6 454 69 0.0019252 1e-6 455 69 0.029038999 1e-6 456 69 0.022300698 1e-6 457 69 0.0077008978 1e-6 458 69 0.00064169988 1e-6 460 69 0.0062569976 1e-6 463 69 0.0155623 1e-6 464 69 0.00064169988 1e-6 465 69 0.0001604 1e-6 467 69 0.027755499 1e-6 468 69 0.0011230998 1e-6 469 69 0.012032699 1e-6 470 69 0.011390999 1e-6 471 69 0.0093052983 1e-6 473 69 0.0003209 1e-6 478 69 0.0012834999 1e-6 483 69 0.00080219982 1e-6 489 69 0.0001604 1e-6 490 69 0.00096259988 1e-6 491 69 0.00048129982 1e-6 24 70 0.0033783999 1e-6 60 70 0.00067569991 1e-6 114 70 0.00067569991 1e-6 126 70 0.00067569991 1e-6 139 70 0.0013513998 1e-6 159 70 0.0013513998 1e-6 160 70 0.0027027 1e-6 165 70 0.0094594993 1e-6 168 70 0.0027027 1e-6 206 70 0.00067569991 1e-6 233 70 0.019594599 1e-6 234 70 0.012162197 1e-6 235 70 0.00067569991 1e-6 236 70 0.0020269998 1e-6 237 70 0.0040540993 1e-6 241 70 0.0087837987 1e-6 254 70 0.0013513998 1e-6 264 70 0.00067569991 1e-6 266 70 0.0013513998 1e-6 277 70 0.0027027 1e-6 295 70 0.0060810968 1e-6 303 70 0.0013513998 1e-6 304 70 0.00067569991 1e-6 305 70 0.0020269998 1e-6 307 70 0.0020269998 1e-6 308 70 0.0081080981 1e-6 312 70 0.0047296993 1e-6 317 70 0.0033783999 1e-6 324 70 0.00067569991 1e-6 326 70 0.0027027 1e-6 331 70 0.0013513998 1e-6 334 70 0.00067569991 1e-6 366 70 0.0087837987 1e-6 371 70 0.00067569991 1e-6 374 70 0.00067569991 1e-6 385 70 0.0067567974 1e-6 386 70 0.0108108 1e-6 390 70 0.017567597 1e-6 402 70 0.00067569991 1e-6 415 70 0.00067569991 1e-6 438 70 0.0013513998 1e-6 443 70 0.00067569991 1e-6 445 70 0.013513498 1e-6 446 70 0.00067569991 1e-6 447 70 0.00067569991 1e-6 450 70 0.0074323975 1e-6 452 70 0.0013513998 1e-6 454 70 0.0020269998 1e-6 455 70 0.0162162 1e-6 456 70 0.014189199 1e-6 457 70 0.0074323975 1e-6 460 70 0.0047296993 1e-6 463 70 0.014864899 1e-6 467 70 0.0074323975 1e-6 468 70 0.0013513998 1e-6 469 70 0.011486497 1e-6 470 70 0.011486497 1e-6 471 70 0.0060810968 1e-6 473 70 0.00067569991 1e-6 478 70 0.00067569991 1e-6 483 70 0.00067569991 1e-6 490 70 0.0013513998 1e-6 491 70 0.00067569991 1e-6 16 71 0.0001258 1e-6 18 71 0.0001258 1e-6 24 71 0.018867899 1e-6 60 71 0.00037739985 1e-6 108 71 0.0001258 1e-6 114 71 0.0001258 1e-6 126 71 0.0001258 1e-6 134 71 0.00025159982 1e-6 139 71 0.00062889978 1e-6 142 71 0.0001258 1e-6 150 71 0.0001258 1e-6 160 71 0.0056603998 1e-6 161 71 0.0001258 1e-6 162 71 0.00025159982 1e-6 163 71 0.0020126 1e-6 164 71 0.0001258 1e-6 165 71 0.0085534975 1e-6 168 71 0.0001258 1e-6 171 71 0.0001258 1e-6 182 71 0.0001258 1e-6 191 71 0.00025159982 1e-6 192 71 0.0001258 1e-6 194 71 0.0001258 1e-6 195 71 0.0001258 1e-6 197 71 0.0001258 1e-6 206 71 0.00025159982 1e-6 219 71 0.0023898999 1e-6 223 71 0.0001258 1e-6 233 71 0.021006297 1e-6 234 71 0.018490598 1e-6 235 71 0.011949699 1e-6 236 71 0.0075471997 1e-6 237 71 0.0020126 1e-6 240 71 0.00025159982 1e-6 241 71 0.0057861991 1e-6 242 71 0.00025159982 1e-6 252 71 0.0017609999 1e-6 254 71 0.0016351999 1e-6 255 71 0.00050309999 1e-6 256 71 0.00050309999 1e-6 257 71 0.0001258 1e-6 258 71 0.0001258 1e-6 259 71 0.0013835998 1e-6 264 71 0.0027672998 1e-6 265 71 0.0020126 1e-6 266 71 0.0094339997 1e-6 268 71 0.00088049984 1e-6 269 71 0.0001258 1e-6 271 71 0.00075469981 1e-6 273 71 0.00025159982 1e-6 274 71 0.00037739985 1e-6 277 71 0.0023898999 1e-6 279 71 0.00075469981 1e-6 282 71 0.0010062999 1e-6 292 71 0.00037739985 1e-6 293 71 0.00037739985 1e-6 295 71 0.0022641998 1e-6 302 71 0.00075469981 1e-6 303 71 0.0027672998 1e-6 304 71 0.007169798 1e-6 305 71 0.0050313994 1e-6 306 71 0.0017609999 1e-6 307 71 0.0022641998 1e-6 308 71 0.0069181994 1e-6 309 71 0.00088049984 1e-6 310 71 0.0001258 1e-6 311 71 0.0010062999 1e-6 312 71 0.00050309999 1e-6 317 71 0.0021384 1e-6 318 71 0.0001258 1e-6 319 71 0.0010062999 1e-6 322 71 0.0022641998 1e-6 324 71 0.0038993999 1e-6 331 71 0.0010062999 1e-6 334 71 0.0027672998 1e-6 335 71 0.00050309999 1e-6 336 71 0.0018867999 1e-6 341 71 0.00025159982 1e-6 350 71 0.00025159982 1e-6 352 71 0.0001258 1e-6 356 71 0.00050309999 1e-6 358 71 0.00062889978 1e-6 366 71 0.053459097 1e-6 368 71 0.0001258 1e-6 371 71 0.004528299 1e-6 374 71 0.00062889978 1e-6 380 71 0.0001258 1e-6 385 71 0.0099370964 1e-6 386 71 0.013584897 1e-6 387 71 0.0001258 1e-6 390 71 0.0012578999 1e-6 394 71 0.0001258 1e-6 402 71 0.00050309999 1e-6 414 71 0.00025159982 1e-6 415 71 0.0054087974 1e-6 422 71 0.0001258 1e-6 430 71 0.0001258 1e-6 438 71 0.0012578999 1e-6 439 71 0.0001258 1e-6 441 71 0.00050309999 1e-6 443 71 0.0038993999 1e-6 444 71 0.00025159982 1e-6 445 71 0.017987397 1e-6 446 71 0.0011320999 1e-6 447 71 0.00062889978 1e-6 448 71 0.0001258 1e-6 450 71 0.0040251985 1e-6 452 71 0.00062889978 1e-6 453 71 0.0001258 1e-6 454 71 0.0011320999 1e-6 455 71 0.030440297 1e-6 456 71 0.0261635 1e-6 457 71 0.0041508973 1e-6 458 71 0.00025159982 1e-6 460 71 0.0032704 1e-6 463 71 0.0084276982 1e-6 464 71 0.00025159982 1e-6 467 71 0.010817599 1e-6 468 71 0.00062889978 1e-6 469 71 0.0065408982 1e-6 470 71 0.0062892996 1e-6 471 71 0.004528299 1e-6 473 71 0.0001258 1e-6 478 71 0.00062889978 1e-6 483 71 0.00037739985 1e-6 490 71 0.00050309999 1e-6 491 71 0.00025159982 1e-6 16 72 0.000166 1e-6 18 72 0.000166 1e-6 24 72 0.0041500963 1e-6 60 72 0.00033199997 1e-6 80 72 0.00049799983 1e-6 108 72 0.000166 1e-6 114 72 0.00033199997 1e-6 126 72 0.000166 1e-6 139 72 0.00049799983 1e-6 141 72 0.00049799983 1e-6 150 72 0.000166 1e-6 160 72 0.0016599998 1e-6 162 72 0.000166 1e-6 163 72 0.0008299998 1e-6 165 72 0.005478099 1e-6 182 72 0.000166 1e-6 191 72 0.000166 1e-6 206 72 0.00033199997 1e-6 217 72 0.000166 1e-6 219 72 0.0009959999 1e-6 220 72 0.0024899999 1e-6 233 72 0.012782197 1e-6 234 72 0.032868497 1e-6 235 72 0.0018259999 1e-6 236 72 0.0023239998 1e-6 237 72 0.0013279999 1e-6 240 72 0.0019919998 1e-6 241 72 0.0041500963 1e-6 242 72 0.00049799983 1e-6 252 72 0.00066399993 1e-6 255 72 0.000166 1e-6 256 72 0.000166 1e-6 257 72 0.00033199997 1e-6 259 72 0.00033199997 1e-6 262 72 0.000166 1e-6 264 72 0.00066399993 1e-6 265 72 0.00049799983 1e-6 266 72 0.0023239998 1e-6 268 72 0.0009959999 1e-6 271 72 0.00049799983 1e-6 273 72 0.000166 1e-6 274 72 0.000166 1e-6 275 72 0.000166 1e-6 277 72 0.0018259999 1e-6 279 72 0.00033199997 1e-6 292 72 0.000166 1e-6 293 72 0.000166 1e-6 295 72 0.0049800985 1e-6 302 72 0.00033199997 1e-6 303 72 0.0009959999 1e-6 304 72 0.002656 1e-6 305 72 0.0029879999 1e-6 306 72 0.0008299998 1e-6 307 72 0.0048140995 1e-6 308 72 0.0044820979 1e-6 311 72 0.0011619998 1e-6 312 72 0.0016599998 1e-6 317 72 0.0013279999 1e-6 319 72 0.00033199997 1e-6 322 72 0.0046480969 1e-6 324 72 0.007802099 1e-6 331 72 0.001494 1e-6 333 72 0.00066399993 1e-6 334 72 0.0009959999 1e-6 335 72 0.000166 1e-6 336 72 0.00049799983 1e-6 356 72 0.00066399993 1e-6 358 72 0.000166 1e-6 366 72 0.016932297 1e-6 371 72 0.001494 1e-6 374 72 0.0009959999 1e-6 385 72 0.0034860999 1e-6 386 72 0.013280198 1e-6 387 72 0.000166 1e-6 390 72 0.00049799983 1e-6 394 72 0.000166 1e-6 402 72 0.00033199997 1e-6 414 72 0.00033199997 1e-6 415 72 0.0016599998 1e-6 438 72 0.0008299998 1e-6 443 72 0.0013279999 1e-6 445 72 0.0091300979 1e-6 446 72 0.0009959999 1e-6 447 72 0.00033199997 1e-6 448 72 0.000166 1e-6 450 72 0.0028219998 1e-6 452 72 0.00049799983 1e-6 454 72 0.00066399993 1e-6 455 72 0.020916298 1e-6 456 72 0.014608197 1e-6 457 72 0.0029879999 1e-6 458 72 0.00049799983 1e-6 460 72 0.0021579999 1e-6 463 72 0.0061420985 1e-6 464 72 0.000166 1e-6 467 72 0.018094297 1e-6 468 72 0.00049799983 1e-6 469 72 0.0044820979 1e-6 470 72 0.0044820979 1e-6 471 72 0.0048140995 1e-6 473 72 0.000166 1e-6 478 72 0.00033199997 1e-6 483 72 0.00033199997 1e-6 490 72 0.00049799983 1e-6 491 72 0.000166 1e-6 9 73 2.3899993e-05 1e-6 16 73 2.3899993e-05 1e-6 24 73 0.061835498 1e-6 60 73 0.00033449987 1e-6 79 73 2.3899993e-05 1e-6 80 73 4.7799986e-05 1e-6 82 73 2.3899993e-05 1e-6 83 73 2.3899993e-05 1e-6 84 73 2.3899993e-05 1e-6 108 73 2.3899993e-05 1e-6 113 73 7.1699993e-05 1e-6 114 73 0.00011949999 1e-6 126 73 7.1699993e-05 1e-6 127 73 2.3899993e-05 1e-6 134 73 0.00038229977 1e-6 139 73 0.00054949988 1e-6 141 73 4.7799986e-05 1e-6 142 73 7.1699993e-05 1e-6 150 73 9.5599986e-05 1e-6 154 73 4.7799986e-05 1e-6 160 73 0.0054714978 1e-6 165 73 0.0093660988 1e-6 168 73 0.00062119984 1e-6 171 73 7.1699993e-05 1e-6 189 73 2.3899993e-05 1e-6 192 73 2.3899993e-05 1e-6 194 73 4.7799986e-05 1e-6 197 73 2.3899993e-05 1e-6 201 73 4.7799986e-05 1e-6 203 73 4.7799986e-05 1e-6 204 73 4.7799986e-05 1e-6 206 73 9.5599986e-05 1e-6 207 73 2.3899993e-05 1e-6 209 73 2.3899993e-05 1e-6 219 73 0.00066899997 1e-6 220 73 0.00014339999 1e-6 223 73 4.7799986e-05 1e-6 233 73 0.0071440972 1e-6 234 73 0.037679497 1e-6 235 73 0.035696398 1e-6 237 73 0.0016007998 1e-6 241 73 0.0055909976 1e-6 242 73 0.00011949999 1e-6 248 73 2.3899993e-05 1e-6 250 73 2.3899993e-05 1e-6 252 73 2.3899993e-05 1e-6 254 73 0.0018875999 1e-6 258 73 9.5599986e-05 1e-6 265 73 0.0027476999 1e-6 266 73 0.017872099 1e-6 271 73 2.3899993e-05 1e-6 273 73 0.00052559981 1e-6 277 73 0.00074069994 1e-6 305 73 0.014718197 1e-6 307 73 0.0021025999 1e-6 308 73 0.010680199 1e-6 309 73 0.0018636999 1e-6 310 73 0.00050179986 1e-6 311 73 0.0022459999 1e-6 317 73 0.0017919999 1e-6 318 73 4.7799986e-05 1e-6 322 73 0.0033210998 1e-6 324 73 0.00023889999 1e-6 331 73 0.00066899997 1e-6 384 73 2.3899993e-05 1e-6 385 73 0.00083629997 1e-6 387 73 4.7799986e-05 1e-6 394 73 0.00011949999 1e-6 397 73 2.3899993e-05 1e-6 402 73 0.00040619983 1e-6 412 73 2.3899993e-05 1e-6 419 73 2.3899993e-05 1e-6 422 73 7.1699993e-05 1e-6 423 73 2.3899993e-05 1e-6 425 73 2.3899993e-05 1e-6 430 73 2.3899993e-05 1e-6 431 73 2.3899993e-05 1e-6 433 73 2.3899993e-05 1e-6 434 73 2.3899993e-05 1e-6 438 73 0.00040619983 1e-6 441 73 0.0015052999 1e-6 443 73 0.0086731985 1e-6 444 73 0.00014339999 1e-6 445 73 0.034358297 1e-6 446 73 0.0028671999 1e-6 447 73 0.0004778998 1e-6 448 73 0.0004300999 1e-6 450 73 0.0034883998 1e-6 452 73 0.00052559981 1e-6 453 73 7.1699993e-05 1e-6 454 73 0.00093179988 1e-6 455 73 0.022029497 1e-6 456 73 0.013810199 1e-6 457 73 0.0036795 1e-6 458 73 0.00028669997 1e-6 460 73 0.0026282 1e-6 463 73 0.0073590986 1e-6 464 73 0.00016729999 1e-6 465 73 0.00011949999 1e-6 467 73 0.012496099 1e-6 468 73 0.00054949988 1e-6 469 73 0.0054475963 1e-6 470 73 0.0053998977 1e-6 471 73 0.004396297 1e-6 473 73 0.00011949999 1e-6 477 73 4.7799986e-05 1e-6 478 73 0.00062119984 1e-6 483 73 0.00035839994 1e-6 489 73 7.1699993e-05 1e-6 490 73 0.0004300999 1e-6 491 73 0.00021499999 1e-6 18 74 0.00030299998 1e-6 24 74 0.00090909982 1e-6 60 74 0.00045449985 1e-6 80 74 0.00015149999 1e-6 108 74 0.00015149999 1e-6 114 74 0.00015149999 1e-6 126 74 0.00015149999 1e-6 139 74 0.00075759995 1e-6 142 74 0.00015149999 1e-6 150 74 0.00015149999 1e-6 160 74 0.00030299998 1e-6 165 74 0.007878799 1e-6 171 74 0.00015149999 1e-6 182 74 0.0018181999 1e-6 183 74 0.00090909982 1e-6 194 74 0.00015149999 1e-6 206 74 0.00045449985 1e-6 214 74 0.013181798 1e-6 220 74 0.00060609984 1e-6 223 74 0.017878797 1e-6 233 74 0.00060609984 1e-6 234 74 0.017727297 1e-6 237 74 0.0033332999 1e-6 240 74 0.00045449985 1e-6 241 74 0.0057575963 1e-6 242 74 0.00030299998 1e-6 254 74 0.022121198 1e-6 265 74 0.0031817998 1e-6 266 74 0.00030299998 1e-6 273 74 0.010302998 1e-6 274 74 0.00030299998 1e-6 277 74 0.053484797 1e-6 305 74 0.00015149999 1e-6 307 74 0.0034848 1e-6 308 74 0.0056061 1e-6 312 74 0.0010605999 1e-6 317 74 0.0027272999 1e-6 318 74 0.00015149999 1e-6 322 74 0.0042423978 1e-6 324 74 0.0081817992 1e-6 331 74 0.0287879 1e-6 333 74 0.040757596 1e-6 350 74 0.0056061 1e-6 371 74 0.00030299998 1e-6 374 74 0.00090909982 1e-6 387 74 0.00015149999 1e-6 394 74 0.00015149999 1e-6 402 74 0.00075759995 1e-6 422 74 0.00015149999 1e-6 430 74 0.00015149999 1e-6 443 74 0.010606099 1e-6 444 74 0.00030299998 1e-6 445 74 0.014848497 1e-6 446 74 0.0015151999 1e-6 447 74 0.00090909982 1e-6 448 74 0.00015149999 1e-6 450 74 0.004999999 1e-6 452 74 0.00075759995 1e-6 453 74 0.00015149999 1e-6 454 74 0.004999999 1e-6 455 74 0.030151498 1e-6 456 74 0.0075757988 1e-6 457 74 0.0053029992 1e-6 458 74 0.00045449985 1e-6 460 74 0.0040908977 1e-6 463 74 0.010606099 1e-6 464 74 0.00030299998 1e-6 467 74 0.021818198 1e-6 468 74 0.00075759995 1e-6 469 74 0.007878799 1e-6 470 74 0.007878799 1e-6 471 74 0.0069696978 1e-6 473 74 0.00015149999 1e-6 478 74 0.00090909982 1e-6 483 74 0.00045449985 1e-6 490 74 0.00075759995 1e-6 491 74 0.00030299998 1e-6 16 75 0.0001852 1e-6 24 75 0.014999997 1e-6 60 75 0.00037039979 1e-6 108 75 0.0001852 1e-6 114 75 0.00037039979 1e-6 126 75 0.0001852 1e-6 134 75 0.0001852 1e-6 139 75 0.00055559981 1e-6 150 75 0.0001852 1e-6 160 75 0.007407397 1e-6 162 75 0.0001852 1e-6 163 75 0.0024073999 1e-6 165 75 0.0072221979 1e-6 166 75 0.0001852 1e-6 167 75 0.0012963 1e-6 182 75 0.00055559981 1e-6 191 75 0.00037039979 1e-6 192 75 0.0001852 1e-6 206 75 0.00037039979 1e-6 219 75 0.0012963 1e-6 233 75 0.025185198 1e-6 234 75 0.014259297 1e-6 235 75 0.0087036975 1e-6 236 75 0.0024073999 1e-6 237 75 0.0014815 1e-6 241 75 0.004444398 1e-6 242 75 0.0001852 1e-6 252 75 0.00074069994 1e-6 254 75 0.0012963 1e-6 255 75 0.0001852 1e-6 256 75 0.0001852 1e-6 257 75 0.0001852 1e-6 259 75 0.00037039979 1e-6 264 75 0.00074069994 1e-6 265 75 0.0022221999 1e-6 266 75 0.0092592984 1e-6 268 75 0.0024073999 1e-6 271 75 0.00037039979 1e-6 273 75 0.00037039979 1e-6 277 75 0.0014815 1e-6 279 75 0.00055559981 1e-6 292 75 0.0001852 1e-6 293 75 0.0001852 1e-6 295 75 0.0024073999 1e-6 302 75 0.00037039979 1e-6 303 75 0.00092589995 1e-6 304 75 0.0024073999 1e-6 305 75 0.0062962994 1e-6 306 75 0.0012963 1e-6 307 75 0.002963 1e-6 308 75 0.0055555999 1e-6 309 75 0.00055559981 1e-6 311 75 0.0014815 1e-6 312 75 0.00037039979 1e-6 317 75 0.0016666998 1e-6 319 75 0.0011111 1e-6 322 75 0.0025926 1e-6 324 75 0.0014815 1e-6 331 75 0.00074069994 1e-6 334 75 0.00092589995 1e-6 335 75 0.0001852 1e-6 336 75 0.00055559981 1e-6 356 75 0.0001852 1e-6 358 75 0.0001852 1e-6 366 75 0.017036997 1e-6 371 75 0.0025926 1e-6 374 75 0.00037039979 1e-6 380 75 0.0001852 1e-6 385 75 0.0038888999 1e-6 386 75 0.0062962994 1e-6 387 75 0.0001852 1e-6 390 75 0.00055559981 1e-6 394 75 0.0001852 1e-6 402 75 0.00037039979 1e-6 414 75 0.0001852 1e-6 415 75 0.0014815 1e-6 438 75 0.0016666998 1e-6 441 75 0.00037039979 1e-6 443 75 0.0031480999 1e-6 444 75 0.0001852 1e-6 445 75 0.014259297 1e-6 446 75 0.00092589995 1e-6 447 75 0.00037039979 1e-6 450 75 0.0033332999 1e-6 452 75 0.00055559981 1e-6 454 75 0.00092589995 1e-6 455 75 0.018333297 1e-6 456 75 0.022222199 1e-6 457 75 0.0035184999 1e-6 458 75 0.00055559981 1e-6 460 75 0.0025926 1e-6 463 75 0.0072221979 1e-6 464 75 0.0001852 1e-6 467 75 0.018518496 1e-6 468 75 0.00055559981 1e-6 469 75 0.005185198 1e-6 470 75 0.005185198 1e-6 471 75 0.004999999 1e-6 473 75 0.0001852 1e-6 478 75 0.00037039979 1e-6 483 75 0.00037039979 1e-6 490 75 0.00055559981 1e-6 491 75 0.0001852 1e-6 9 76 7.9199992e-05 1e-6 16 76 2.6399997e-05 1e-6 18 76 2.6399997e-05 1e-6 22 76 7.9199992e-05 1e-6 60 76 0.0039842986 1e-6 76 76 0.012955498 1e-6 79 76 2.6399997e-05 1e-6 81 76 0.00060689985 1e-6 82 76 0.0001583 1e-6 83 76 0.00010549999 1e-6 84 76 0.00010549999 1e-6 108 76 0.00018469999 1e-6 113 76 0.0002638998 1e-6 114 76 0.00055409991 1e-6 126 76 0.00029019988 1e-6 127 76 5.2799995e-05 1e-6 130 76 7.9199992e-05 1e-6 134 76 2.6399997e-05 1e-6 150 76 0.00042219996 1e-6 181 76 5.2799995e-05 1e-6 187 76 2.6399997e-05 1e-6 189 76 0.00029019988 1e-6 190 76 0.00010549999 1e-6 192 76 5.2799995e-05 1e-6 194 76 7.9199992e-05 1e-6 196 76 2.6399997e-05 1e-6 197 76 5.2799995e-05 1e-6 198 76 5.2799995e-05 1e-6 200 76 0.00010549999 1e-6 201 76 7.9199992e-05 1e-6 203 76 7.9199992e-05 1e-6 204 76 0.00010549999 1e-6 206 76 0.00021109999 1e-6 207 76 5.2799995e-05 1e-6 209 76 2.6399997e-05 1e-6 214 76 5.2799995e-05 1e-6 223 76 5.2799995e-05 1e-6 224 76 0.001161 1e-6 233 76 0.00081799994 1e-6 234 76 0.0016886999 1e-6 237 76 7.9199992e-05 1e-6 240 76 0.00047489977 1e-6 241 76 0.0015039998 1e-6 248 76 0.00010549999 1e-6 250 76 5.2799995e-05 1e-6 251 76 2.6399997e-05 1e-6 252 76 0.00023749999 1e-6 263 76 2.6399997e-05 1e-6 270 76 0.00034299982 1e-6 272 76 0.00076519977 1e-6 277 76 0.0067019984 1e-6 282 76 0.00021109999 1e-6 283 76 0.00036939979 1e-6 284 76 0.00044859992 1e-6 292 76 0.00013189999 1e-6 293 76 0.0024275 1e-6 294 76 0.00063329982 1e-6 295 76 0.00071239984 1e-6 296 76 0.00084429979 1e-6 298 76 0.0020052998 1e-6 299 76 0.0010026998 1e-6 312 76 0.0048285984 1e-6 315 76 0.0013720999 1e-6 319 76 0.0017414999 1e-6 320 76 0.00092349993 1e-6 321 76 0.00097629987 1e-6 322 76 7.9199992e-05 1e-6 324 76 0.00047489977 1e-6 326 76 0.00010549999 1e-6 338 76 2.6399997e-05 1e-6 339 76 0.00013189999 1e-6 340 76 0.003694 1e-6 350 76 0.0023482998 1e-6 351 76 0.0002638998 1e-6 354 76 0.0007387998 1e-6 356 76 2.6399997e-05 1e-6 358 76 0.0027704998 1e-6 359 76 0.0001583 1e-6 369 76 0.00039579999 1e-6 370 76 2.6399997e-05 1e-6 372 76 0.0019788998 1e-6 380 76 5.2799995e-05 1e-6 384 76 5.2799995e-05 1e-6 386 76 7.9199992e-05 1e-6 387 76 0.00029019988 1e-6 390 76 0.032058898 1e-6 391 76 0.00010549999 1e-6 392 76 0.0019788998 1e-6 393 76 0.023430698 1e-6 396 76 2.6399997e-05 1e-6 397 76 0.00010549999 1e-6 402 76 0.0029815999 1e-6 403 76 0.00010549999 1e-6 404 76 0.006965898 1e-6 405 76 0.08731097 1e-6 413 76 0.0062797964 1e-6 414 76 0.00081799994 1e-6 419 76 7.9199992e-05 1e-6 420 76 0.00010549999 1e-6 422 76 0.00021109999 1e-6 423 76 7.9199992e-05 1e-6 425 76 5.2799995e-05 1e-6 430 76 0.0001583 1e-6 431 76 2.6399997e-05 1e-6 432 76 2.6399997e-05 1e-6 433 76 5.2799995e-05 1e-6 434 76 5.2799995e-05 1e-6 443 76 0.00044859992 1e-6 444 76 0.0014775998 1e-6 445 76 0.0020844999 1e-6 446 76 0.00013189999 1e-6 447 76 0.0027704998 1e-6 449 76 5.2799995e-05 1e-6 450 76 0.0058048964 1e-6 452 76 0.0045647994 1e-6 453 76 0.00036939979 1e-6 454 76 0.00031659985 1e-6 455 76 0.0078893974 1e-6 456 76 0.0021372999 1e-6 457 76 0.0027704998 1e-6 458 76 0.0013984998 1e-6 459 76 0.00058049988 1e-6 460 76 0.00089709996 1e-6 463 76 0.0092086978 1e-6 464 76 0.0014511999 1e-6 465 76 0.0031398998 1e-6 467 76 0.023931999 1e-6 468 76 0.0011345998 1e-6 469 76 0.012981899 1e-6 470 76 0.028786998 1e-6 471 76 0.0031398998 1e-6 473 76 0.00058049988 1e-6 477 76 0.00013189999 1e-6 478 76 0.0015568 1e-6 479 76 2.6399997e-05 1e-6 483 76 0.0038786998 1e-6 490 76 0.0022427998 1e-6 491 76 0.00010549999 1e-6 9 77 7.0099995e-05 1e-6 22 77 0.0034355 1e-6 24 77 0.00035059988 1e-6 60 77 0.0043468997 1e-6 77 77 0.082521141 1e-6 78 77 0.00070109987 1e-6 82 77 7.0099995e-05 1e-6 83 77 7.0099995e-05 1e-6 84 77 7.0099995e-05 1e-6 108 77 7.0099995e-05 1e-6 113 77 0.00014019999 1e-6 114 77 0.00021029999 1e-6 126 77 0.00014019999 1e-6 127 77 7.0099995e-05 1e-6 137 77 0.00063099992 1e-6 150 77 0.008833997 1e-6 165 77 7.0099995e-05 1e-6 171 77 7.0099995e-05 1e-6 172 77 0.021173697 1e-6 189 77 7.0099995e-05 1e-6 190 77 0.00014019999 1e-6 192 77 7.0099995e-05 1e-6 194 77 7.0099995e-05 1e-6 198 77 0.010867298 1e-6 200 77 0.00014019999 1e-6 201 77 7.0099995e-05 1e-6 203 77 7.0099995e-05 1e-6 204 77 0.00014019999 1e-6 206 77 0.00028039981 1e-6 207 77 7.0099995e-05 1e-6 214 77 0.00091139995 1e-6 218 77 0.00014019999 1e-6 220 77 0.0086937994 1e-6 224 77 0.0018228998 1e-6 229 77 0.0010517 1e-6 233 77 0.00014019999 1e-6 234 77 0.0060996972 1e-6 237 77 0.00028039981 1e-6 240 77 0.00084129977 1e-6 241 77 0.0016125999 1e-6 242 77 0.00035059988 1e-6 248 77 7.0099995e-05 1e-6 250 77 7.0099995e-05 1e-6 252 77 0.00035059988 1e-6 270 77 0.00021029999 1e-6 271 77 7.0099995e-05 1e-6 272 77 7.0099995e-05 1e-6 273 77 0.00014019999 1e-6 277 77 0.15754044 1e-6 282 77 0.0051180981 1e-6 283 77 0.008833997 1e-6 284 77 0.00056089996 1e-6 285 77 0.023206897 1e-6 288 77 0.00014019999 1e-6 292 77 0.0084834993 1e-6 293 77 0.022645999 1e-6 294 77 0.00028039981 1e-6 295 77 0.0011217999 1e-6 296 77 0.0065904967 1e-6 298 77 0.00014019999 1e-6 299 77 0.0056789964 1e-6 304 77 0.00014019999 1e-6 307 77 7.0099995e-05 1e-6 308 77 7.0099995e-05 1e-6 312 77 0.0035055999 1e-6 315 77 0.0077823997 1e-6 319 77 0.00035059988 1e-6 320 77 0.0021734999 1e-6 321 77 7.0099995e-05 1e-6 322 77 0.0082731992 1e-6 324 77 0.00028039981 1e-6 326 77 0.0046974979 1e-6 328 77 0.00035059988 1e-6 331 77 0.00063099992 1e-6 333 77 7.0099995e-05 1e-6 338 77 0.00063099992 1e-6 339 77 7.0099995e-05 1e-6 340 77 0.008833997 1e-6 341 77 7.0099995e-05 1e-6 349 77 7.0099995e-05 1e-6 350 77 0.00014019999 1e-6 351 77 0.00077119982 1e-6 352 77 7.0099995e-05 1e-6 354 77 0.00070109987 1e-6 356 77 7.0099995e-05 1e-6 358 77 0.0072214976 1e-6 366 77 0.00028039981 1e-6 369 77 0.00014019999 1e-6 370 77 0.00014019999 1e-6 371 77 0.00035059988 1e-6 372 77 0.0014722999 1e-6 373 77 0.00014019999 1e-6 384 77 7.0099995e-05 1e-6 386 77 0.00028039981 1e-6 387 77 7.0099995e-05 1e-6 390 77 0.00091139995 1e-6 391 77 7.0099995e-05 1e-6 392 77 0.0072915964 1e-6 393 77 0.0051180981 1e-6 398 77 0.00014019999 1e-6 402 77 0.00028039981 1e-6 404 77 0.00021029999 1e-6 405 77 0.0011918999 1e-6 413 77 0.00021029999 1e-6 415 77 7.0099995e-05 1e-6 419 77 0.0030848999 1e-6 422 77 0.00021029999 1e-6 423 77 0.00014019999 1e-6 424 77 7.0099995e-05 1e-6 425 77 7.0099995e-05 1e-6 426 77 7.0099995e-05 1e-6 430 77 7.0099995e-05 1e-6 431 77 7.0099995e-05 1e-6 433 77 7.0099995e-05 1e-6 434 77 7.0099995e-05 1e-6 438 77 0.00014019999 1e-6 441 77 0.00014019999 1e-6 442 77 7.0099995e-05 1e-6 443 77 0.0077823997 1e-6 444 77 0.00063099992 1e-6 445 77 0.0082731992 1e-6 446 77 0.00084129977 1e-6 447 77 0.0015425 1e-6 448 77 7.0099995e-05 1e-6 450 77 0.0068007968 1e-6 452 77 0.0178083 1e-6 453 77 0.0081328973 1e-6 454 77 0.00084129977 1e-6 455 77 0.0250999 1e-6 456 77 0.00056089996 1e-6 457 77 0.00098159979 1e-6 458 77 0.0013320998 1e-6 459 77 0.00014019999 1e-6 460 77 0.0010517 1e-6 463 77 0.0058893971 1e-6 464 77 0.00077119982 1e-6 465 77 0.0022435999 1e-6 467 77 0.025941197 1e-6 468 77 0.0060996972 1e-6 469 77 0.0091144964 1e-6 470 77 0.010306399 1e-6 471 77 0.0013320998 1e-6 473 77 0.00021029999 1e-6 477 77 0.00014019999 1e-6 478 77 0.0016125999 1e-6 483 77 0.00098159979 1e-6 489 77 7.0099995e-05 1e-6 490 77 0.00091139995 1e-6 491 77 0.00098159979 1e-6 22 78 0.00031939987 1e-6 60 78 0.0022356999 1e-6 77 78 0.020121399 1e-6 78 78 0.16671985 1e-6 114 78 0.00031939987 1e-6 130 78 0.00031939987 1e-6 156 78 0.017246898 1e-6 172 78 0.00031939987 1e-6 198 78 0.00031939987 1e-6 206 78 0.00031939987 1e-6 214 78 0.00063879997 1e-6 225 78 0.00095819985 1e-6 234 78 0.0015968999 1e-6 237 78 0.00031939987 1e-6 240 78 0.0114979 1e-6 241 78 0.00063879997 1e-6 252 78 0.00031939987 1e-6 270 78 0.00031939987 1e-6 271 78 0.00031939987 1e-6 277 78 0.035451896 1e-6 278 78 0.00031939987 1e-6 282 78 0.047588598 1e-6 283 78 0.0099009983 1e-6 284 78 0.00063879997 1e-6 285 78 0.00031939987 1e-6 292 78 0.00095819985 1e-6 293 78 0.0325775 1e-6 294 78 0.0028744999 1e-6 295 78 0.028744798 1e-6 296 78 0.004152 1e-6 298 78 0.0092621967 1e-6 299 78 0.0086233988 1e-6 312 78 0.0038325998 1e-6 313 78 0.0025550998 1e-6 315 78 0.0035132999 1e-6 319 78 0.00063879997 1e-6 320 78 0.0038325998 1e-6 321 78 0.0038325998 1e-6 323 78 0.00031939987 1e-6 324 78 0.00031939987 1e-6 326 78 0.0031939 1e-6 328 78 0.0105398 1e-6 340 78 0.0092621967 1e-6 351 78 0.0083040968 1e-6 353 78 0.00063879997 1e-6 354 78 0.016288698 1e-6 357 78 0.00031939987 1e-6 358 78 0.0079846978 1e-6 366 78 0.00095819985 1e-6 369 78 0.00031939987 1e-6 372 78 0.00095819985 1e-6 373 78 0.00063879997 1e-6 375 78 0.00031939987 1e-6 386 78 0.00031939987 1e-6 387 78 0.00031939987 1e-6 390 78 0.0022356999 1e-6 391 78 0.00031939987 1e-6 392 78 0.0015968999 1e-6 393 78 0.0038325998 1e-6 397 78 0.00095819985 1e-6 398 78 0.00031939987 1e-6 401 78 0.00095819985 1e-6 402 78 0.0079846978 1e-6 404 78 0.0073458999 1e-6 405 78 0.0025550998 1e-6 414 78 0.00063879997 1e-6 443 78 0.0031939 1e-6 444 78 0.00031939987 1e-6 445 78 0.015330598 1e-6 447 78 0.0015968999 1e-6 450 78 0.004152 1e-6 452 78 0.0044713989 1e-6 453 78 0.0012774998 1e-6 454 78 0.00063879997 1e-6 455 78 0.020760097 1e-6 457 78 0.00063879997 1e-6 458 78 0.00063879997 1e-6 460 78 0.00063879997 1e-6 463 78 0.0038325998 1e-6 464 78 0.00031939987 1e-6 465 78 0.0012774998 1e-6 467 78 0.015969299 1e-6 468 78 0.0012774998 1e-6 469 78 0.0038325998 1e-6 470 78 0.0057489984 1e-6 471 78 0.0015968999 1e-6 478 78 0.00095819985 1e-6 483 78 0.0019162998 1e-6 490 78 0.00063879997 1e-6 491 78 0.013094898 1e-6 22 79 0.00051709986 1e-6 60 79 0.0033608999 1e-6 79 79 0.026628699 1e-6 108 79 0.00025849999 1e-6 114 79 0.00051709986 1e-6 126 79 0.00025849999 1e-6 161 79 0.018355697 1e-6 190 79 0.00025849999 1e-6 194 79 0.00025849999 1e-6 198 79 0.0028437998 1e-6 200 79 0.00025849999 1e-6 206 79 0.00051709986 1e-6 220 79 0.0072388984 1e-6 229 79 0.00051709986 1e-6 234 79 0.0033608999 1e-6 237 79 0.00025849999 1e-6 240 79 0.00025849999 1e-6 241 79 0.010082699 1e-6 252 79 0.00025849999 1e-6 270 79 0.00025849999 1e-6 277 79 0.036711499 1e-6 282 79 0.010082699 1e-6 283 79 0.015253399 1e-6 284 79 0.00051709986 1e-6 292 79 0.0012926999 1e-6 293 79 0.0054291971 1e-6 294 79 0.0025852998 1e-6 296 79 0.0043949969 1e-6 298 79 0.008272998 1e-6 299 79 0.0010340998 1e-6 312 79 0.012409497 1e-6 313 79 0.00025849999 1e-6 315 79 0.0080144964 1e-6 320 79 0.0072388984 1e-6 321 79 0.0031023999 1e-6 322 79 0.013443597 1e-6 340 79 0.018097199 1e-6 351 79 0.0020682998 1e-6 358 79 0.0056876987 1e-6 387 79 0.00025849999 1e-6 392 79 0.0018096999 1e-6 393 79 0.0025852998 1e-6 402 79 0.00051709986 1e-6 422 79 0.00025849999 1e-6 441 79 0.0028437998 1e-6 443 79 0.0023267998 1e-6 444 79 0.00051709986 1e-6 445 79 0.003878 1e-6 446 79 0.00025849999 1e-6 447 79 0.011892498 1e-6 450 79 0.0067217983 1e-6 452 79 0.0067217983 1e-6 453 79 0.0020682998 1e-6 454 79 0.0015511999 1e-6 455 79 0.016287498 1e-6 456 79 0.00025849999 1e-6 457 79 0.00077559985 1e-6 458 79 0.0023267998 1e-6 459 79 0.00025849999 1e-6 460 79 0.0010340998 1e-6 463 79 0.004136499 1e-6 464 79 0.00077559985 1e-6 465 79 0.0023267998 1e-6 467 79 0.028955497 1e-6 468 79 0.0074973963 1e-6 469 79 0.008272998 1e-6 470 79 0.0093070976 1e-6 471 79 0.0010340998 1e-6 473 79 0.00025849999 1e-6 477 79 0.00025849999 1e-6 478 79 0.0020682998 1e-6 483 79 0.0012926999 1e-6 490 79 0.0010340998 1e-6 491 79 0.0018096999 1e-6 22 80 0.00066919997 1e-6 24 80 0.0002231 1e-6 60 80 0.010484099 1e-6 79 80 0.009368699 1e-6 80 80 0.020521998 1e-6 108 80 0.0002231 1e-6 114 80 0.00044609979 1e-6 126 80 0.0002231 1e-6 135 80 0.0002231 1e-6 160 80 0.0022306 1e-6 171 80 0.0013383999 1e-6 191 80 0.0011153 1e-6 194 80 0.0002231 1e-6 198 80 0.013160799 1e-6 206 80 0.00044609979 1e-6 220 80 0.039036397 1e-6 225 80 0.00044609979 1e-6 229 80 0.00089229993 1e-6 234 80 0.0026767999 1e-6 237 80 0.0002231 1e-6 241 80 0.010260999 1e-6 252 80 0.0002231 1e-6 270 80 0.0071380995 1e-6 271 80 0.0002231 1e-6 277 80 0.017845199 1e-6 284 80 0.00044609979 1e-6 287 80 0.052866399 1e-6 292 80 0.16417575 1e-6 315 80 0.036805697 1e-6 320 80 0.0044612996 1e-6 321 80 0.009368699 1e-6 340 80 0.013606999 1e-6 351 80 0.0002231 1e-6 358 80 0.0040151998 1e-6 387 80 0.0002231 1e-6 443 80 0.0051304996 1e-6 444 80 0.010260999 1e-6 445 80 0.017175999 1e-6 446 80 0.00044609979 1e-6 447 80 0.0064688995 1e-6 450 80 0.0055765994 1e-6 452 80 0.0071380995 1e-6 453 80 0.0017845 1e-6 454 80 0.00089229993 1e-6 455 80 0.023867898 1e-6 456 80 0.0002231 1e-6 457 80 0.00066919997 1e-6 458 80 0.0011153 1e-6 459 80 0.0002231 1e-6 460 80 0.00089229993 1e-6 463 80 0.0017845 1e-6 464 80 0.00066919997 1e-6 465 80 0.0013383999 1e-6 467 80 0.024090998 1e-6 468 80 0.0055765994 1e-6 469 80 0.0057996996 1e-6 470 80 0.0066918992 1e-6 471 80 0.00066919997 1e-6 473 80 0.0002231 1e-6 477 80 0.0002231 1e-6 478 80 0.0013383999 1e-6 483 80 0.00066919997 1e-6 490 80 0.00066919997 1e-6 491 80 0.0013383999 1e-6 9 81 0.00017429999 1e-6 22 81 0.00052279979 1e-6 24 81 0.00017429999 1e-6 60 81 0.0060996972 1e-6 77 81 0.013419297 1e-6 79 81 0.010108098 1e-6 81 81 0.00017429999 1e-6 82 81 0.00017429999 1e-6 108 81 0.00017429999 1e-6 114 81 0.00034859986 1e-6 120 81 0.00017429999 1e-6 126 81 0.00017429999 1e-6 130 81 0.00017429999 1e-6 150 81 0.00052279979 1e-6 160 81 0.0012198999 1e-6 161 81 0.00052279979 1e-6 172 81 0.0012198999 1e-6 181 81 0.00017429999 1e-6 189 81 0.00017429999 1e-6 190 81 0.00017429999 1e-6 194 81 0.00017429999 1e-6 198 81 0.0017428 1e-6 200 81 0.00017429999 1e-6 203 81 0.00017429999 1e-6 204 81 0.00017429999 1e-6 206 81 0.00052279979 1e-6 214 81 0.00052279979 1e-6 218 81 0.00017429999 1e-6 220 81 0.005053997 1e-6 223 81 0.00017429999 1e-6 224 81 0.00017429999 1e-6 229 81 0.00052279979 1e-6 234 81 0.0033113 1e-6 237 81 0.00017429999 1e-6 240 81 0.0015685 1e-6 241 81 0.0024398998 1e-6 252 81 0.00017429999 1e-6 270 81 0.00017429999 1e-6 277 81 0.031892598 1e-6 282 81 0.011327997 1e-6 283 81 0.0087137967 1e-6 284 81 0.00052279979 1e-6 285 81 0.0012198999 1e-6 287 81 0.00017429999 1e-6 289 81 0.0024398998 1e-6 290 81 0.00017429999 1e-6 292 81 0.0020913 1e-6 293 81 0.006622497 1e-6 294 81 0.0022655998 1e-6 295 81 0.00017429999 1e-6 296 81 0.009585198 1e-6 298 81 0.0024398998 1e-6 299 81 0.0067967996 1e-6 312 81 0.0031369999 1e-6 313 81 0.00034859986 1e-6 315 81 0.0026141999 1e-6 318 81 0.0017428 1e-6 319 81 0.00034859986 1e-6 320 81 0.0087137967 1e-6 321 81 0.0013941999 1e-6 322 81 0.0078424998 1e-6 326 81 0.0043568984 1e-6 328 81 0.0017428 1e-6 333 81 0.00017429999 1e-6 338 81 0.00087139988 1e-6 340 81 0.0041825995 1e-6 351 81 0.0047054999 1e-6 354 81 0.00017429999 1e-6 358 81 0.011153698 1e-6 369 81 0.00017429999 1e-6 386 81 0.00017429999 1e-6 387 81 0.00017429999 1e-6 390 81 0.0026141999 1e-6 391 81 0.00017429999 1e-6 392 81 0.0202161 1e-6 393 81 0.0085395984 1e-6 397 81 0.00017429999 1e-6 402 81 0.00034859986 1e-6 403 81 0.00017429999 1e-6 404 81 0.0047054999 1e-6 405 81 0.026315797 1e-6 414 81 0.00017429999 1e-6 419 81 0.0013941999 1e-6 422 81 0.00017429999 1e-6 430 81 0.00017429999 1e-6 434 81 0.00017429999 1e-6 442 81 0.00017429999 1e-6 443 81 0.0017428 1e-6 444 81 0.0010456999 1e-6 445 81 0.0031369999 1e-6 447 81 0.0022655998 1e-6 450 81 0.0078424998 1e-6 452 81 0.010979399 1e-6 453 81 0.0020913 1e-6 454 81 0.0012198999 1e-6 455 81 0.012896497 1e-6 456 81 0.00069709984 1e-6 457 81 0.00087139988 1e-6 458 81 0.0017428 1e-6 459 81 0.00034859986 1e-6 460 81 0.00087139988 1e-6 463 81 0.0031369999 1e-6 464 81 0.0013941999 1e-6 465 81 0.0024398998 1e-6 467 81 0.033286899 1e-6 468 81 0.0027883998 1e-6 469 81 0.013244998 1e-6 470 81 0.016033497 1e-6 471 81 0.0013941999 1e-6 473 81 0.00034859986 1e-6 478 81 0.0020913 1e-6 483 81 0.0026141999 1e-6 490 81 0.0013941999 1e-6 491 81 0.0034854999 1e-6 0 82 6.5899992e-05 1e-6 1 82 4.2299987e-05 1e-6 2 82 0.72868645 1e-6 3 82 4.2299987e-05 1e-6 5 82 0.00035749981 1e-6 6 82 0.0049346983 1e-6 9 82 3.2899989e-05 1e-6 11 82 2.349999e-05 1e-6 14 82 4.6999994e-06 1e-6 17 82 6.5899992e-05 1e-6 18 82 0.00033399998 1e-6 22 82 0.0001317 1e-6 25 82 4.2299987e-05 1e-6 60 82 0.00076209987 1e-6 62 82 9.8799996e-05 1e-6 79 82 4.6999994e-06 1e-6 82 82 0.067349672 1e-6 83 82 0.0025684999 1e-6 84 82 2.349999e-05 1e-6 88 82 0.00019759999 1e-6 94 82 9.3999997e-06 1e-6 97 82 4.6999994e-06 1e-6 98 82 2.349999e-05 1e-6 102 82 0.0012089999 1e-6 104 82 9.3999997e-06 1e-6 107 82 2.8199996e-05 1e-6 108 82 4.6999994e-06 1e-6 111 82 4.6999994e-06 1e-6 113 82 9.3999997e-06 1e-6 114 82 1.4099999e-05 1e-6 117 82 4.2299987e-05 1e-6 118 82 0.00030109985 1e-6 119 82 1.8799998e-05 1e-6 120 82 0.0002774999 1e-6 122 82 2.349999e-05 1e-6 125 82 0.0014253999 1e-6 126 82 9.3999997e-06 1e-6 127 82 4.6999994e-06 1e-6 141 82 4.6999994e-06 1e-6 149 82 4.6999994e-06 1e-6 150 82 0.00012699999 1e-6 153 82 0.00013639999 1e-6 172 82 0.00011289999 1e-6 189 82 3.2899989e-05 1e-6 190 82 1.8799998e-05 1e-6 192 82 1.8799998e-05 1e-6 193 82 3.2899989e-05 1e-6 194 82 1.4099999e-05 1e-6 196 82 4.6999994e-06 1e-6 197 82 4.6999994e-06 1e-6 198 82 0.0048499964 1e-6 200 82 9.3999997e-06 1e-6 201 82 9.3999997e-06 1e-6 203 82 1.4099999e-05 1e-6 204 82 0.00019759999 1e-6 206 82 9.8799996e-05 1e-6 207 82 9.3999997e-06 1e-6 209 82 4.6999994e-06 1e-6 214 82 0.00036219996 1e-6 217 82 1.4099999e-05 1e-6 218 82 9.3999997e-06 1e-6 223 82 0.00013639999 1e-6 228 82 9.3999997e-06 1e-6 229 82 0.00068209996 1e-6 230 82 0.00015519999 1e-6 234 82 0.00088439998 1e-6 237 82 0.00015519999 1e-6 241 82 0.0053721964 1e-6 242 82 0.0001599 1e-6 248 82 4.6999994e-06 1e-6 250 82 4.6999994e-06 1e-6 251 82 4.6999994e-06 1e-6 252 82 1.4099999e-05 1e-6 253 82 4.6999994e-06 1e-6 272 82 0.00013639999 1e-6 279 82 0.0002023 1e-6 300 82 0.0019945998 1e-6 301 82 0.00011759999 1e-6 317 82 1.8799998e-05 1e-6 325 82 1.4099999e-05 1e-6 329 82 8.469999e-05 1e-6 344 82 0.00054099993 1e-6 356 82 6.5899992e-05 1e-6 358 82 7.0599999e-05 1e-6 384 82 9.3999997e-06 1e-6 387 82 9.3999997e-06 1e-6 394 82 9.3999997e-06 1e-6 397 82 4.6999994e-06 1e-6 402 82 4.6999994e-05 1e-6 404 82 1.8799998e-05 1e-6 414 82 0.00010819999 1e-6 419 82 4.6999994e-06 1e-6 422 82 1.8799998e-05 1e-6 423 82 4.6999994e-06 1e-6 425 82 4.6999994e-06 1e-6 430 82 4.6999994e-06 1e-6 431 82 4.6999994e-06 1e-6 432 82 4.6999994e-06 1e-6 433 82 9.3999997e-06 1e-6 434 82 9.3999997e-06 1e-6 443 82 0.0012371999 1e-6 444 82 1.8799998e-05 1e-6 445 82 0.0057108998 1e-6 446 82 0.00031519984 1e-6 447 82 6.5899992e-05 1e-6 448 82 1.4099999e-05 1e-6 450 82 0.00055979984 1e-6 452 82 0.0028036998 1e-6 453 82 0.0011336999 1e-6 454 82 0.00030109985 1e-6 455 82 0.030807696 1e-6 456 82 0.0001599 1e-6 457 82 0.0010537 1e-6 458 82 9.8799996e-05 1e-6 459 82 0.00038099987 1e-6 460 82 0.00071029994 1e-6 463 82 0.0011713 1e-6 464 82 2.349999e-05 1e-6 465 82 0.00030579977 1e-6 467 82 0.0025072999 1e-6 468 82 0.0014489 1e-6 469 82 0.00072439993 1e-6 470 82 0.00078559993 1e-6 471 82 0.00066799996 1e-6 472 82 7.9999998e-05 1e-6 473 82 1.4099999e-05 1e-6 476 82 4.6999994e-05 1e-6 477 82 4.2299987e-05 1e-6 478 82 0.00021639999 1e-6 483 82 0.00040459982 1e-6 489 82 4.2299987e-05 1e-6 490 82 6.1199986e-05 1e-6 491 82 0.00044219987 1e-6 0 83 7.9699996e-05 1e-6 1 83 0.00090279989 1e-6 2 83 0.34128594 1e-6 3 83 2.6599999e-05 1e-6 5 83 0.00037169992 1e-6 6 83 0.00023899999 1e-6 9 83 5.3099997e-05 1e-6 11 83 9.2899994e-05 1e-6 13 83 1.3299999e-05 1e-6 14 83 1.3299999e-05 1e-6 17 83 0.00018589999 1e-6 22 83 7.9699996e-05 1e-6 25 83 1.3299999e-05 1e-6 60 83 0.0011815999 1e-6 82 83 0.31769359 1e-6 83 83 0.033775397 1e-6 84 83 0.00029209978 1e-6 85 83 1.3299999e-05 1e-6 87 83 6.6399996e-05 1e-6 88 83 0.00099569978 1e-6 90 83 2.6599999e-05 1e-6 93 83 5.3099997e-05 1e-6 94 83 7.9699996e-05 1e-6 98 83 3.9799997e-05 1e-6 103 83 1.3299999e-05 1e-6 104 83 1.3299999e-05 1e-6 107 83 3.9799997e-05 1e-6 108 83 1.3299999e-05 1e-6 114 83 3.9799997e-05 1e-6 115 83 1.3299999e-05 1e-6 118 83 2.6599999e-05 1e-6 120 83 1.3299999e-05 1e-6 122 83 3.9799997e-05 1e-6 124 83 3.9799997e-05 1e-6 125 83 0.0055628978 1e-6 126 83 1.3299999e-05 1e-6 130 83 1.3299999e-05 1e-6 149 83 1.3299999e-05 1e-6 150 83 0.00022569999 1e-6 153 83 6.6399996e-05 1e-6 172 83 5.3099997e-05 1e-6 189 83 3.9799997e-05 1e-6 190 83 3.9799997e-05 1e-6 192 83 0.00087619992 1e-6 193 83 0.0072090998 1e-6 194 83 2.6599999e-05 1e-6 198 83 0.011377998 1e-6 200 83 1.3299999e-05 1e-6 203 83 1.3299999e-05 1e-6 204 83 0.010090098 1e-6 206 83 0.00019909999 1e-6 207 83 1.3299999e-05 1e-6 214 83 0.00033189985 1e-6 223 83 0.00019909999 1e-6 224 83 0.00010619999 1e-6 229 83 0.00066379993 1e-6 230 83 0.00026549981 1e-6 234 83 0.0013408998 1e-6 237 83 0.00014599999 1e-6 240 83 0.00010619999 1e-6 241 83 0.011616897 1e-6 242 83 0.00017259999 1e-6 252 83 1.3299999e-05 1e-6 253 83 0.00014599999 1e-6 272 83 0.00018589999 1e-6 277 83 1.3299999e-05 1e-6 279 83 0.00049119978 1e-6 300 83 0.0060009994 1e-6 301 83 5.3099997e-05 1e-6 314 83 2.6599999e-05 1e-6 315 83 1.3299999e-05 1e-6 316 83 0.00017259999 1e-6 318 83 1.3299999e-05 1e-6 344 83 0.00051779998 1e-6 356 83 6.6399996e-05 1e-6 358 83 0.00010619999 1e-6 384 83 1.3299999e-05 1e-6 387 83 1.3299999e-05 1e-6 394 83 1.3299999e-05 1e-6 402 83 5.3099997e-05 1e-6 404 83 1.3299999e-05 1e-6 414 83 5.3099997e-05 1e-6 422 83 2.6599999e-05 1e-6 430 83 1.3299999e-05 1e-6 433 83 1.3299999e-05 1e-6 434 83 1.3299999e-05 1e-6 442 83 6.6399996e-05 1e-6 443 83 0.0023498998 1e-6 444 83 6.6399996e-05 1e-6 445 83 0.012984399 1e-6 446 83 0.00037169992 1e-6 447 83 0.0014072999 1e-6 448 83 1.3299999e-05 1e-6 450 83 0.00082309986 1e-6 452 83 0.0034385999 1e-6 453 83 0.0017259 1e-6 454 83 0.00039829989 1e-6 455 83 0.0437859 1e-6 456 83 0.00018589999 1e-6 457 83 0.001009 1e-6 458 83 0.00023899999 1e-6 459 83 0.0010753998 1e-6 460 83 0.00086299982 1e-6 463 83 0.0031597998 1e-6 464 83 7.9699996e-05 1e-6 465 83 0.0013408998 1e-6 467 83 0.003359 1e-6 468 83 0.0026021998 1e-6 469 83 0.0012877998 1e-6 470 83 0.0014205999 1e-6 471 83 0.0010753998 1e-6 472 83 3.9799997e-05 1e-6 473 83 3.9799997e-05 1e-6 477 83 3.9799997e-05 1e-6 478 83 0.00034519983 1e-6 483 83 0.00057089981 1e-6 489 83 5.3099997e-05 1e-6 490 83 0.00014599999 1e-6 491 83 0.00029209978 1e-6 1 84 0.62848139 1e-6 2 84 0.00014199999 1e-6 3 84 0.0009937 1e-6 4 84 2.8399998e-05 1e-6 5 84 5.6799996e-05 1e-6 6 84 0.00031229993 1e-6 9 84 5.6799996e-05 1e-6 11 84 8.5199994e-05 1e-6 14 84 0.004059799 1e-6 18 84 0.0001987 1e-6 60 84 0.0010221 1e-6 82 84 0.0013626998 1e-6 83 84 0.00014199999 1e-6 84 84 0.026374798 1e-6 85 84 0.00011359999 1e-6 94 84 8.5199994e-05 1e-6 102 84 0.00059619988 1e-6 108 84 2.8399998e-05 1e-6 114 84 5.6799996e-05 1e-6 118 84 0.00017029999 1e-6 120 84 2.8399998e-05 1e-6 122 84 2.8399998e-05 1e-6 125 84 2.8399998e-05 1e-6 126 84 2.8399998e-05 1e-6 150 84 0.00045419997 1e-6 172 84 0.0029525999 1e-6 189 84 2.8399998e-05 1e-6 190 84 8.5199994e-05 1e-6 192 84 2.8399998e-05 1e-6 193 84 0.012775697 1e-6 194 84 8.5199994e-05 1e-6 195 84 0.0002271 1e-6 197 84 2.8399998e-05 1e-6 198 84 0.015728399 1e-6 200 84 2.8399998e-05 1e-6 203 84 5.6799996e-05 1e-6 204 84 0.0010787998 1e-6 206 84 0.00017029999 1e-6 207 84 2.8399998e-05 1e-6 214 84 0.0024699999 1e-6 223 84 0.00014199999 1e-6 229 84 0.00059619988 1e-6 230 84 0.00053939992 1e-6 234 84 0.0023563998 1e-6 237 84 0.00028389995 1e-6 240 84 2.8399998e-05 1e-6 241 84 0.00014199999 1e-6 242 84 0.00017029999 1e-6 252 84 2.8399998e-05 1e-6 272 84 0.00025549997 1e-6 277 84 2.8399998e-05 1e-6 279 84 0.00079489988 1e-6 300 84 0.00025549997 1e-6 325 84 2.8399998e-05 1e-6 344 84 0.00045419997 1e-6 356 84 5.6799996e-05 1e-6 358 84 0.0002271 1e-6 366 84 2.8399998e-05 1e-6 387 84 2.8399998e-05 1e-6 394 84 2.8399998e-05 1e-6 397 84 2.8399998e-05 1e-6 402 84 0.00014199999 1e-6 422 84 8.5199994e-05 1e-6 433 84 2.8399998e-05 1e-6 434 84 2.8399998e-05 1e-6 443 84 0.0009368998 1e-6 444 84 5.6799996e-05 1e-6 445 84 0.010845199 1e-6 446 84 0.00017029999 1e-6 447 84 0.00082329987 1e-6 448 84 2.8399998e-05 1e-6 450 84 0.0017317999 1e-6 452 84 0.0049682967 1e-6 453 84 0.0012492 1e-6 454 84 0.0015330999 1e-6 455 84 0.049796999 1e-6 456 84 0.00039749988 1e-6 457 84 0.00028389995 1e-6 458 84 0.00028389995 1e-6 459 84 0.00014199999 1e-6 460 84 0.0007664999 1e-6 463 84 0.0015330999 1e-6 464 84 8.5199994e-05 1e-6 465 84 0.0010787998 1e-6 467 84 0.0041449964 1e-6 468 84 0.0030377998 1e-6 469 84 0.0009937 1e-6 470 84 0.0011355998 1e-6 471 84 0.0022429 1e-6 473 84 2.8399998e-05 1e-6 476 84 5.6799996e-05 1e-6 477 84 2.8399998e-05 1e-6 478 84 0.00070979982 1e-6 483 84 0.0003690999 1e-6 489 84 0.00014199999 1e-6 490 84 0.00011359999 1e-6 491 84 0.00031229993 1e-6 1 85 0.41609979 1e-6 2 85 0.000189 1e-6 9 85 0.0032123998 1e-6 11 85 0.0022675998 1e-6 60 85 0.0015117 1e-6 82 85 0.0041571967 1e-6 83 85 0.00056689978 1e-6 84 85 0.14852607 1e-6 85 85 0.0060468987 1e-6 97 85 0.000189 1e-6 98 85 0.00037789997 1e-6 105 85 0.000189 1e-6 107 85 0.00037789997 1e-6 114 85 0.000189 1e-6 122 85 0.00094479998 1e-6 125 85 0.000189 1e-6 172 85 0.000189 1e-6 189 85 0.00037789997 1e-6 192 85 0.00075589982 1e-6 193 85 0.013416499 1e-6 194 85 0.000189 1e-6 198 85 0.034580499 1e-6 204 85 0.00037789997 1e-6 206 85 0.00037789997 1e-6 214 85 0.00056689978 1e-6 223 85 0.00056689978 1e-6 229 85 0.00056689978 1e-6 230 85 0.00075589982 1e-6 234 85 0.0032123998 1e-6 237 85 0.00037789997 1e-6 240 85 0.00094479998 1e-6 241 85 0.0011337998 1e-6 242 85 0.000189 1e-6 253 85 0.000189 1e-6 272 85 0.00056689978 1e-6 279 85 0.0015117 1e-6 300 85 0.0096371993 1e-6 325 85 0.0015117 1e-6 344 85 0.00056689978 1e-6 358 85 0.00037789997 1e-6 366 85 0.000189 1e-6 402 85 0.000189 1e-6 443 85 0.00094479998 1e-6 445 85 0.011526797 1e-6 446 85 0.00037789997 1e-6 447 85 0.00075589982 1e-6 450 85 0.0020786 1e-6 452 85 0.0056688972 1e-6 453 85 0.0020786 1e-6 454 85 0.0013227998 1e-6 455 85 0.062547147 1e-6 456 85 0.00037789997 1e-6 457 85 0.0049130991 1e-6 458 85 0.00094479998 1e-6 459 85 0.00094479998 1e-6 460 85 0.00075589982 1e-6 463 85 0.0047240965 1e-6 465 85 0.0011337998 1e-6 467 85 0.0060468987 1e-6 468 85 0.0079364963 1e-6 469 85 0.0013227998 1e-6 470 85 0.0015117 1e-6 471 85 0.0022675998 1e-6 478 85 0.00075589982 1e-6 483 85 0.00037789997 1e-6 490 85 0.000189 1e-6 491 85 0.000189 1e-6 0 86 0.32495898 1e-6 1 86 0.0032823998 1e-6 22 86 0.00025249994 1e-6 60 86 0.0020198999 1e-6 82 86 0.00025249994 1e-6 84 86 0.00050499989 1e-6 86 86 0.019820698 1e-6 87 86 0.011614699 1e-6 88 86 0.020704497 1e-6 90 86 0.31662667 1e-6 107 86 0.0036611999 1e-6 115 86 0.0013887 1e-6 125 86 0.00025249994 1e-6 192 86 0.021840699 1e-6 193 86 0.0020198999 1e-6 194 86 0.00025249994 1e-6 198 86 0.023355599 1e-6 204 86 0.0041660964 1e-6 206 86 0.00025249994 1e-6 214 86 0.00050499989 1e-6 223 86 0.00025249994 1e-6 229 86 0.00088369986 1e-6 230 86 0.00012619999 1e-6 234 86 0.0027774 1e-6 237 86 0.00025249994 1e-6 240 86 0.00012619999 1e-6 241 86 0.0045448989 1e-6 242 86 0.00050499989 1e-6 253 86 0.00012619999 1e-6 272 86 0.00025249994 1e-6 277 86 0.00012619999 1e-6 279 86 0.00012619999 1e-6 300 86 0.012119699 1e-6 325 86 0.00050499989 1e-6 344 86 0.00088369986 1e-6 350 86 0.00037869997 1e-6 351 86 0.00025249994 1e-6 356 86 0.00012619999 1e-6 366 86 0.00012619999 1e-6 443 86 0.0018936999 1e-6 444 86 0.00037869997 1e-6 445 86 0.0090897977 1e-6 446 86 0.00025249994 1e-6 447 86 0.0018936999 1e-6 450 86 0.00088369986 1e-6 452 86 0.0034087 1e-6 453 86 0.0032823998 1e-6 454 86 0.00050499989 1e-6 455 86 0.050498698 1e-6 456 86 0.00037869997 1e-6 457 86 0.0021461998 1e-6 458 86 0.00025249994 1e-6 459 86 0.00050499989 1e-6 460 86 0.0011361998 1e-6 463 86 0.0017674998 1e-6 464 86 0.00012619999 1e-6 465 86 0.0050498992 1e-6 467 86 0.0039136 1e-6 468 86 0.004797399 1e-6 469 86 0.00088369986 1e-6 470 86 0.00075749983 1e-6 471 86 0.0025248998 1e-6 478 86 0.00025249994 1e-6 483 86 0.00075749983 1e-6 490 86 0.00025249994 1e-6 491 86 0.00075749983 1e-6 0 87 0.29069388 1e-6 3 87 3.6099998e-05 1e-6 9 87 3.6099998e-05 1e-6 11 87 7.2199997e-05 1e-6 13 87 3.6099998e-05 1e-6 14 87 7.2199997e-05 1e-6 22 87 7.2199997e-05 1e-6 25 87 0.00014429999 1e-6 60 87 0.00093819993 1e-6 82 87 7.2199997e-05 1e-6 86 87 0.0014795 1e-6 87 87 0.24414527 1e-6 88 87 0.0046548992 1e-6 90 87 0.088875294 1e-6 104 87 3.6099998e-05 1e-6 105 87 3.6099998e-05 1e-6 107 87 0.0010463998 1e-6 114 87 3.6099998e-05 1e-6 122 87 7.2199997e-05 1e-6 125 87 0.0019484998 1e-6 130 87 0.0011908 1e-6 150 87 0.0012629 1e-6 151 87 0.0013712 1e-6 190 87 3.6099998e-05 1e-6 192 87 0.023887698 1e-6 193 87 0.0117273 1e-6 194 87 3.6099998e-05 1e-6 198 87 0.0105366 1e-6 203 87 3.6099998e-05 1e-6 204 87 0.0088767 1e-6 206 87 0.00018039999 1e-6 214 87 0.0037527999 1e-6 223 87 0.00050519989 1e-6 229 87 0.00079389988 1e-6 230 87 0.00014429999 1e-6 234 87 0.0029227999 1e-6 237 87 0.00036079995 1e-6 240 87 0.00021649999 1e-6 241 87 0.018727697 1e-6 242 87 0.0010103998 1e-6 253 87 3.6099998e-05 1e-6 272 87 0.00032479991 1e-6 277 87 7.2199997e-05 1e-6 279 87 0.00036079995 1e-6 300 87 0.0055569969 1e-6 317 87 0.0011908 1e-6 324 87 0.00014429999 1e-6 325 87 0.0022371998 1e-6 326 87 0.00082989992 1e-6 340 87 0.0010463998 1e-6 344 87 0.002165 1e-6 349 87 3.6099998e-05 1e-6 356 87 7.2199997e-05 1e-6 358 87 0.0001083 1e-6 366 87 0.00086599984 1e-6 394 87 3.6099998e-05 1e-6 402 87 0.00014429999 1e-6 422 87 3.6099998e-05 1e-6 434 87 3.6099998e-05 1e-6 442 87 0.00075779995 1e-6 443 87 0.0022733 1e-6 444 87 0.0016599 1e-6 445 87 0.0093457997 1e-6 446 87 0.00028869999 1e-6 447 87 0.0011185999 1e-6 448 87 7.2199997e-05 1e-6 450 87 0.0020567998 1e-6 452 87 0.0031392998 1e-6 453 87 0.0030671998 1e-6 454 87 0.0014072999 1e-6 455 87 0.071266174 1e-6 456 87 0.0004329998 1e-6 457 87 0.0020567998 1e-6 458 87 0.00032479991 1e-6 459 87 0.0018041998 1e-6 460 87 0.0011908 1e-6 463 87 0.0046908967 1e-6 464 87 0.00093819993 1e-6 465 87 0.005448699 1e-6 467 87 0.007469397 1e-6 468 87 0.0110057 1e-6 469 87 0.0004329998 1e-6 470 87 0.0004329998 1e-6 471 87 0.0024175998 1e-6 472 87 0.00036079995 1e-6 477 87 3.6099998e-05 1e-6 478 87 0.00028869999 1e-6 483 87 0.00028869999 1e-6 489 87 0.0001083 1e-6 490 87 0.00018039999 1e-6 491 87 3.6099998e-05 1e-6 0 88 0.30537045 1e-6 1 88 0.0011586999 1e-6 2 88 5.789999e-05 1e-6 3 88 5.789999e-05 1e-6 5 88 5.789999e-05 1e-6 9 88 0.00011589999 1e-6 10 88 5.789999e-05 1e-6 11 88 0.00011589999 1e-6 13 88 0.00011589999 1e-6 14 88 0.0001738 1e-6 22 88 0.00052139978 1e-6 60 88 0.0017959999 1e-6 82 88 0.00028969999 1e-6 84 88 0.00011589999 1e-6 86 88 0.0057354979 1e-6 87 88 0.0069520995 1e-6 88 88 0.071896195 1e-6 90 88 0.1147095 1e-6 98 88 0.00011589999 1e-6 104 88 0.00023169999 1e-6 105 88 0.0001738 1e-6 107 88 0.009443298 1e-6 109 88 0.00011589999 1e-6 114 88 5.789999e-05 1e-6 115 88 0.0079948977 1e-6 116 88 0.00023169999 1e-6 122 88 0.0001738 1e-6 125 88 5.789999e-05 1e-6 150 88 0.00023169999 1e-6 151 88 5.789999e-05 1e-6 172 88 5.789999e-05 1e-6 192 88 0.040495899 1e-6 193 88 0.009443298 1e-6 194 88 0.00034759985 1e-6 198 88 0.023173597 1e-6 204 88 0.0057933964 1e-6 206 88 0.00028969999 1e-6 214 88 0.0020277 1e-6 223 88 0.00011589999 1e-6 229 88 0.00063729985 1e-6 230 88 0.0001738 1e-6 234 88 0.0034180998 1e-6 237 88 0.00034759985 1e-6 240 88 0.00023169999 1e-6 241 88 0.0057933964 1e-6 242 88 0.0016800999 1e-6 253 88 0.00057929987 1e-6 272 88 0.00034759985 1e-6 277 88 5.789999e-05 1e-6 279 88 0.00040549994 1e-6 300 88 0.067261457 1e-6 301 88 5.789999e-05 1e-6 314 88 5.789999e-05 1e-6 324 88 0.0001738 1e-6 325 88 0.0018538998 1e-6 340 88 0.00011589999 1e-6 344 88 0.0012166 1e-6 350 88 0.0021435998 1e-6 351 88 0.0012166 1e-6 356 88 5.789999e-05 1e-6 358 88 0.00011589999 1e-6 366 88 0.00023169999 1e-6 402 88 0.0001738 1e-6 443 88 0.0038816 1e-6 444 88 0.0012166 1e-6 445 88 0.0064885989 1e-6 446 88 0.00052139978 1e-6 447 88 0.0019697999 1e-6 450 88 0.0010427998 1e-6 452 88 0.0047505982 1e-6 453 88 0.004171297 1e-6 454 88 0.00092689996 1e-6 455 88 0.0436823 1e-6 456 88 0.00052139978 1e-6 457 88 0.0022594 1e-6 458 88 0.00046349992 1e-6 459 88 0.00046349992 1e-6 460 88 0.0013903999 1e-6 463 88 0.0036497999 1e-6 464 88 0.00011589999 1e-6 465 88 0.0057354979 1e-6 467 88 0.0074734986 1e-6 468 88 0.016858798 1e-6 469 88 0.0011586999 1e-6 470 88 0.00086899986 1e-6 471 88 0.0029545999 1e-6 472 88 5.789999e-05 1e-6 477 88 5.789999e-05 1e-6 478 88 0.00040549994 1e-6 483 88 0.00057929987 1e-6 489 88 0.0001738 1e-6 490 88 0.00034759985 1e-6 491 88 0.001738 1e-6 0 89 0.15343666 1e-6 2 89 0.0001314 1e-6 10 89 0.0053225979 1e-6 14 89 6.5699991e-05 1e-6 22 89 6.5699991e-05 1e-6 60 89 0.0025628 1e-6 86 89 0.0048626997 1e-6 87 89 0.00072279992 1e-6 88 89 0.083322346 1e-6 89 89 0.0011170998 1e-6 90 89 0.12938625 1e-6 104 89 0.012682296 1e-6 105 89 0.0085424967 1e-6 107 89 0.027795997 1e-6 108 89 0.00019709999 1e-6 109 89 0.0076225996 1e-6 114 89 6.5699991e-05 1e-6 115 89 0.00019709999 1e-6 116 89 0.0089367963 1e-6 117 89 0.0001314 1e-6 119 89 0.00098569994 1e-6 125 89 6.5699991e-05 1e-6 126 89 6.5699991e-05 1e-6 150 89 0.0001314 1e-6 172 89 6.5699991e-05 1e-6 189 89 0.0001314 1e-6 190 89 6.5699991e-05 1e-6 192 89 0.010645296 1e-6 193 89 0.0081481971 1e-6 194 89 0.00052569993 1e-6 198 89 0.065645874 1e-6 203 89 6.5699991e-05 1e-6 204 89 0.0001314 1e-6 206 89 0.00032859994 1e-6 214 89 0.0017084999 1e-6 223 89 0.00019709999 1e-6 229 89 0.00059139985 1e-6 230 89 0.00026279991 1e-6 234 89 0.0048626997 1e-6 237 89 0.00078849983 1e-6 240 89 0.00019709999 1e-6 241 89 0.0083453991 1e-6 242 89 0.00059139985 1e-6 253 89 6.5699991e-05 1e-6 272 89 0.00059139985 1e-6 279 89 0.00039429986 1e-6 300 89 0.0017741998 1e-6 301 89 0.0001314 1e-6 314 89 6.5699991e-05 1e-6 324 89 0.00026279991 1e-6 325 89 0.00019709999 1e-6 344 89 0.00045999978 1e-6 350 89 6.5699991e-05 1e-6 351 89 0.00032859994 1e-6 356 89 6.5699991e-05 1e-6 358 89 0.00026279991 1e-6 366 89 0.00091999979 1e-6 402 89 0.00026279991 1e-6 422 89 6.5699991e-05 1e-6 434 89 6.5699991e-05 1e-6 443 89 0.0045340993 1e-6 444 89 0.00019709999 1e-6 445 89 0.0056511983 1e-6 446 89 0.0006571 1e-6 447 89 0.0032199 1e-6 448 89 6.5699991e-05 1e-6 450 89 0.0019055998 1e-6 452 89 0.0095938966 1e-6 453 89 0.0018398999 1e-6 454 89 0.00052569993 1e-6 455 89 0.048429497 1e-6 456 89 0.00098569994 1e-6 457 89 0.0022341998 1e-6 458 89 0.0006571 1e-6 459 89 0.00052569993 1e-6 460 89 0.0019055998 1e-6 463 89 0.0058482997 1e-6 464 89 0.0001314 1e-6 465 89 0.0080167986 1e-6 467 89 0.0065054968 1e-6 468 89 0.017413598 1e-6 469 89 0.0025628 1e-6 470 89 0.0024312998 1e-6 471 89 0.0061111972 1e-6 472 89 6.5699991e-05 1e-6 473 89 6.5699991e-05 1e-6 478 89 0.0006571 1e-6 483 89 0.0017084999 1e-6 489 89 0.00026279991 1e-6 490 89 0.00026279991 1e-6 491 89 6.5699991e-05 1e-6 0 90 0.3519575 1e-6 1 90 0.00019929999 1e-6 2 90 0.00029369979 1e-6 5 90 0.00087069999 1e-6 6 90 0.047343798 1e-6 9 90 2.1e-05 1e-6 10 90 1.05e-05 1e-6 11 90 1.05e-05 1e-6 18 90 0.0049200989 1e-6 22 90 0.00028319983 1e-6 24 90 1.05e-05 1e-6 60 90 0.0015840998 1e-6 62 90 0.0013322998 1e-6 79 90 1.05e-05 1e-6 82 90 1.05e-05 1e-6 83 90 1.05e-05 1e-6 84 90 3.1499992e-05 1e-6 86 90 0.0024128 1e-6 87 90 0.0039653964 1e-6 88 90 0.011634 1e-6 90 90 0.098159969 1e-6 98 90 0.00055599981 1e-6 102 90 0.022502199 1e-6 103 90 2.1e-05 1e-6 104 90 0.00026229979 1e-6 105 90 2.1e-05 1e-6 107 90 0.0067034997 1e-6 108 90 1.05e-05 1e-6 109 90 2.1e-05 1e-6 111 90 0.00017829999 1e-6 113 90 2.1e-05 1e-6 114 90 6.2899999e-05 1e-6 115 90 0.00015739999 1e-6 116 90 2.1e-05 1e-6 117 90 0.00028319983 1e-6 118 90 0.0023184 1e-6 119 90 4.2e-05 1e-6 120 90 3.1499992e-05 1e-6 122 90 2.1e-05 1e-6 125 90 2.1e-05 1e-6 126 90 3.1499992e-05 1e-6 127 90 1.05e-05 1e-6 130 90 1.05e-05 1e-6 141 90 1.05e-05 1e-6 143 90 0.00030419999 1e-6 150 90 0.00015739999 1e-6 151 90 3.1499992e-05 1e-6 160 90 5.2499992e-05 1e-6 171 90 2.1e-05 1e-6 172 90 0.00013639999 1e-6 189 90 0.00011539999 1e-6 190 90 4.2e-05 1e-6 191 90 2.1e-05 1e-6 192 90 0.0013007999 1e-6 193 90 0.00037769997 1e-6 194 90 0.0012484 1e-6 196 90 1.05e-05 1e-6 197 90 1.05e-05 1e-6 198 90 0.047238898 1e-6 200 90 4.2e-05 1e-6 201 90 3.1499992e-05 1e-6 203 90 3.1499992e-05 1e-6 204 90 0.00028319983 1e-6 206 90 0.00013639999 1e-6 207 90 2.1e-05 1e-6 209 90 1.05e-05 1e-6 214 90 0.00048259995 1e-6 217 90 0.0002308 1e-6 218 90 2.1e-05 1e-6 223 90 0.00024129999 1e-6 228 90 7.3399991e-05 1e-6 229 90 0.0012063999 1e-6 230 90 0.00017829999 1e-6 234 90 0.0041751973 1e-6 237 90 0.0013007999 1e-6 240 90 0.00015739999 1e-6 241 90 0.0055389963 1e-6 242 90 0.00030419999 1e-6 248 90 1.05e-05 1e-6 250 90 1.05e-05 1e-6 251 90 1.05e-05 1e-6 252 90 2.1e-05 1e-6 253 90 0.0002098 1e-6 272 90 0.00030419999 1e-6 279 90 0.0001888 1e-6 283 90 1.05e-05 1e-6 300 90 0.0025072 1e-6 301 90 0.00032519992 1e-6 307 90 2.1e-05 1e-6 314 90 0.0001678 1e-6 315 90 0.00033569988 1e-6 317 90 0.00019929999 1e-6 322 90 1.05e-05 1e-6 324 90 0.0001049 1e-6 325 90 8.3899999e-05 1e-6 326 90 1.05e-05 1e-6 329 90 0.00096509978 1e-6 334 90 1.05e-05 1e-6 340 90 2.1e-05 1e-6 344 90 0.00044059986 1e-6 350 90 8.3899999e-05 1e-6 351 90 0.00083919987 1e-6 356 90 9.4399991e-05 1e-6 357 90 2.1e-05 1e-6 358 90 0.0001469 1e-6 366 90 0.00087069999 1e-6 384 90 3.1499992e-05 1e-6 387 90 2.1e-05 1e-6 394 90 8.3899999e-05 1e-6 397 90 2.1e-05 1e-6 402 90 0.00032519992 1e-6 419 90 1.05e-05 1e-6 422 90 4.2e-05 1e-6 423 90 1.05e-05 1e-6 425 90 1.05e-05 1e-6 430 90 1.05e-05 1e-6 431 90 1.05e-05 1e-6 432 90 1.05e-05 1e-6 433 90 2.1e-05 1e-6 434 90 2.1e-05 1e-6 442 90 2.1e-05 1e-6 443 90 0.0019302999 1e-6 444 90 0.0001678 1e-6 445 90 0.0083399974 1e-6 446 90 0.00034619984 1e-6 447 90 0.0011119999 1e-6 448 90 9.4399991e-05 1e-6 450 90 0.0017833998 1e-6 452 90 0.0056123994 1e-6 453 90 0.0013742999 1e-6 454 90 0.00038809981 1e-6 455 90 0.026121397 1e-6 456 90 0.00093369978 1e-6 457 90 0.0036821999 1e-6 458 90 0.00055599981 1e-6 459 90 0.00071339984 1e-6 460 90 0.0023079 1e-6 463 90 0.0089064986 1e-6 464 90 9.4399991e-05 1e-6 465 90 0.0013951999 1e-6 467 90 0.0063572973 1e-6 468 90 0.0058431998 1e-6 469 90 0.0034408998 1e-6 470 90 0.0020456999 1e-6 471 90 0.0050039999 1e-6 472 90 0.0001888 1e-6 473 90 5.2499992e-05 1e-6 476 90 0.00033569988 1e-6 477 90 6.2899999e-05 1e-6 478 90 0.00070289988 1e-6 483 90 0.0014161998 1e-6 489 90 0.00015739999 1e-6 490 90 0.00017829999 1e-6 491 90 4.2e-05 1e-6 0 91 0.0030756998 1e-6 3 91 0.00096119987 1e-6 9 91 0.00019219999 1e-6 11 91 0.00096119987 1e-6 17 91 0.37677819 1e-6 22 91 0.00019219999 1e-6 60 91 0.0024989999 1e-6 82 91 0.0049980991 1e-6 83 91 0.00038449978 1e-6 84 91 0.00038449978 1e-6 90 91 0.00076889992 1e-6 91 91 0.005190298 1e-6 93 91 0.00096119987 1e-6 94 91 0.0011533999 1e-6 96 91 0.00019219999 1e-6 98 91 0.00038449978 1e-6 103 91 0.00019219999 1e-6 104 91 0.00019219999 1e-6 107 91 0.00057669985 1e-6 114 91 0.00019219999 1e-6 115 91 0.00019219999 1e-6 116 91 0.00019219999 1e-6 118 91 0.00019219999 1e-6 120 91 0.00019219999 1e-6 122 91 0.0096116997 1e-6 124 91 0.00057669985 1e-6 125 91 0.00038449978 1e-6 150 91 0.00019219999 1e-6 192 91 0.00038449978 1e-6 193 91 0.00038449978 1e-6 194 91 0.00019219999 1e-6 198 91 0.0151865 1e-6 204 91 0.017493296 1e-6 206 91 0.00096119987 1e-6 214 91 0.00096119987 1e-6 223 91 0.00076889992 1e-6 229 91 0.00038449978 1e-6 230 91 0.00076889992 1e-6 233 91 0.00019219999 1e-6 234 91 0.0028835 1e-6 237 91 0.00019219999 1e-6 240 91 0.0013455998 1e-6 241 91 0.0086504966 1e-6 242 91 0.0023067999 1e-6 252 91 0.00019219999 1e-6 253 91 0.0019222999 1e-6 272 91 0.00057669985 1e-6 277 91 0.00019219999 1e-6 300 91 0.051326398 1e-6 314 91 0.00038449978 1e-6 340 91 0.00019219999 1e-6 344 91 0.00038449978 1e-6 356 91 0.00019219999 1e-6 358 91 0.00076889992 1e-6 366 91 0.00019219999 1e-6 402 91 0.00019219999 1e-6 443 91 0.0015379 1e-6 444 91 0.00019219999 1e-6 445 91 0.0042290986 1e-6 447 91 0.0098038986 1e-6 450 91 0.0021145998 1e-6 452 91 0.0036523999 1e-6 453 91 0.0013455998 1e-6 454 91 0.0017300998 1e-6 455 91 0.10976547 1e-6 456 91 0.00019219999 1e-6 457 91 0.0017300998 1e-6 458 91 0.0011533999 1e-6 459 91 0.00038449978 1e-6 460 91 0.0017300998 1e-6 463 91 0.0065358989 1e-6 464 91 0.00038449978 1e-6 465 91 0.0013455998 1e-6 467 91 0.0078815967 1e-6 468 91 0.012110699 1e-6 469 91 0.0019222999 1e-6 470 91 0.0019222999 1e-6 471 91 0.0021145998 1e-6 478 91 0.00076889992 1e-6 483 91 0.0011533999 1e-6 489 91 0.00076889992 1e-6 490 91 0.00038449978 1e-6 491 91 0.0021145998 1e-6 0 92 0.00061319978 1e-6 1 92 0.0018396999 1e-6 2 92 0.0011037998 1e-6 3 92 6.1299987e-05 1e-6 5 92 6.1299987e-05 1e-6 9 92 0.0063775964 1e-6 11 92 0.027472898 1e-6 13 92 0.0017170999 1e-6 14 92 0.00012259999 1e-6 16 92 0.00098119979 1e-6 17 92 0.0051511973 1e-6 22 92 0.00067459978 1e-6 60 92 0.0036793998 1e-6 82 92 0.066045284 1e-6 83 92 0.00079719978 1e-6 84 92 0.010424998 1e-6 85 92 0.00018399999 1e-6 88 92 0.0019009998 1e-6 90 92 0.00018399999 1e-6 92 92 0.00024529989 1e-6 93 92 0.0226283 1e-6 94 92 0.028024796 1e-6 95 92 0.00024529989 1e-6 98 92 0.0072974972 1e-6 103 92 0.0025755998 1e-6 104 92 0.0038019998 1e-6 107 92 0.014288299 1e-6 108 92 6.1299987e-05 1e-6 114 92 0.00012259999 1e-6 115 92 0.0038633998 1e-6 116 92 0.0005518999 1e-6 118 92 0.0036181 1e-6 119 92 0.0009198999 1e-6 122 92 0.0072974972 1e-6 124 92 0.013920397 1e-6 125 92 0.010976899 1e-6 126 92 6.1299987e-05 1e-6 150 92 6.1299987e-05 1e-6 169 92 6.1299987e-05 1e-6 172 92 0.00012259999 1e-6 189 92 6.1299987e-05 1e-6 190 92 6.1299987e-05 1e-6 192 92 0.00042929989 1e-6 193 92 0.00036789989 1e-6 194 92 6.1299987e-05 1e-6 198 92 0.016128 1e-6 203 92 6.1299987e-05 1e-6 204 92 0.0172932 1e-6 206 92 0.00018399999 1e-6 214 92 0.0036793998 1e-6 223 92 0.0012877998 1e-6 229 92 0.00079719978 1e-6 230 92 0.00042929989 1e-6 234 92 0.0026981998 1e-6 237 92 0.00018399999 1e-6 240 92 0.0014717998 1e-6 241 92 0.0082172975 1e-6 242 92 0.0011650999 1e-6 252 92 6.1299987e-05 1e-6 253 92 0.045317996 1e-6 272 92 0.0005518999 1e-6 277 92 6.1299987e-05 1e-6 300 92 0.11522657 1e-6 314 92 0.0109156 1e-6 325 92 6.1299987e-05 1e-6 344 92 0.00036789989 1e-6 356 92 6.1299987e-05 1e-6 358 92 0.00042929989 1e-6 366 92 0.0016556999 1e-6 387 92 6.1299987e-05 1e-6 402 92 0.00012259999 1e-6 414 92 6.1299987e-05 1e-6 422 92 6.1299987e-05 1e-6 434 92 6.1299987e-05 1e-6 443 92 0.0065002963 1e-6 444 92 0.00030659977 1e-6 445 92 0.027104899 1e-6 446 92 0.0011037998 1e-6 447 92 0.0031274999 1e-6 448 92 6.1299987e-05 1e-6 450 92 0.0015943998 1e-6 452 92 0.0029434999 1e-6 453 92 0.0021462999 1e-6 454 92 0.0012877998 1e-6 455 92 0.057092 1e-6 456 92 0.00018399999 1e-6 457 92 0.0013490999 1e-6 458 92 0.00049059978 1e-6 459 92 0.00024529989 1e-6 460 92 0.0016556999 1e-6 463 92 0.0075427964 1e-6 464 92 0.00018399999 1e-6 465 92 0.0054577999 1e-6 467 92 0.0082172975 1e-6 468 92 0.053473998 1e-6 469 92 0.0017170999 1e-6 470 92 0.0018396999 1e-6 471 92 0.0028208999 1e-6 473 92 6.1299987e-05 1e-6 477 92 6.1299987e-05 1e-6 478 92 0.00067459978 1e-6 483 92 0.0011037998 1e-6 489 92 0.00024529989 1e-6 490 92 0.0024528999 1e-6 491 92 0.00024529989 1e-6 0 93 0.0046974979 1e-6 1 93 0.0001777 1e-6 3 93 7.6199998e-05 1e-6 5 93 5.0799994e-05 1e-6 9 93 0.053576399 1e-6 10 93 2.539999e-05 1e-6 11 93 0.060482897 1e-6 12 93 0.00010159999 1e-6 13 93 0.00022849999 1e-6 14 93 0.00010159999 1e-6 16 93 0.015742797 1e-6 17 93 0.00096489978 1e-6 21 93 2.539999e-05 1e-6 22 93 0.0001777 1e-6 24 93 7.6199998e-05 1e-6 60 93 0.0026152998 1e-6 82 93 0.0047227964 1e-6 83 93 0.00012699999 1e-6 84 93 0.0012949998 1e-6 85 93 0.00022849999 1e-6 86 93 2.539999e-05 1e-6 87 93 0.00012699999 1e-6 88 93 0.00027929991 1e-6 90 93 0.0012695999 1e-6 93 93 0.0323998 1e-6 94 93 0.0075412989 1e-6 95 93 0.0021582998 1e-6 97 93 0.00020309999 1e-6 98 93 0.0018789999 1e-6 103 93 0.00012699999 1e-6 104 93 0.006804999 1e-6 105 93 0.00010159999 1e-6 107 93 0.025924899 1e-6 108 93 7.6199998e-05 1e-6 109 93 5.0799994e-05 1e-6 114 93 5.0799994e-05 1e-6 115 93 0.0018028 1e-6 116 93 0.0045450963 1e-6 117 93 2.539999e-05 1e-6 118 93 0.00033009984 1e-6 119 93 0.00010159999 1e-6 120 93 0.00012699999 1e-6 122 93 0.0035547998 1e-6 124 93 0.0006601999 1e-6 125 93 0.0029707998 1e-6 126 93 2.539999e-05 1e-6 150 93 0.00045699999 1e-6 151 93 2.539999e-05 1e-6 160 93 0.00048239995 1e-6 169 93 0.0010410999 1e-6 172 93 0.0020566999 1e-6 189 93 5.0799994e-05 1e-6 190 93 7.6199998e-05 1e-6 192 93 0.00091409986 1e-6 193 93 0.00045699999 1e-6 194 93 0.00010159999 1e-6 197 93 2.539999e-05 1e-6 198 93 0.015996698 1e-6 200 93 2.539999e-05 1e-6 203 93 5.0799994e-05 1e-6 204 93 0.018256597 1e-6 206 93 0.00063479994 1e-6 207 93 2.539999e-05 1e-6 214 93 0.0013203998 1e-6 218 93 5.0799994e-05 1e-6 223 93 0.00096489978 1e-6 224 93 5.0799994e-05 1e-6 228 93 2.539999e-05 1e-6 229 93 0.00083789998 1e-6 230 93 0.00053319987 1e-6 234 93 0.0027676998 1e-6 237 93 0.00025389995 1e-6 240 93 0.0014726999 1e-6 241 93 0.0060939975 1e-6 242 93 0.00093949982 1e-6 252 93 0.00010159999 1e-6 253 93 0.0412107 1e-6 272 93 0.00055859983 1e-6 277 93 5.0799994e-05 1e-6 279 93 7.6199998e-05 1e-6 300 93 0.12799937 1e-6 301 93 5.0799994e-05 1e-6 314 93 0.006982699 1e-6 325 93 0.0011171999 1e-6 340 93 2.539999e-05 1e-6 344 93 0.00048239995 1e-6 350 93 2.539999e-05 1e-6 351 93 0.0003554998 1e-6 356 93 7.6199998e-05 1e-6 358 93 0.00053319987 1e-6 366 93 0.0001523 1e-6 384 93 5.0799994e-05 1e-6 387 93 2.539999e-05 1e-6 394 93 2.539999e-05 1e-6 397 93 2.539999e-05 1e-6 402 93 0.00012699999 1e-6 414 93 0.00060939998 1e-6 422 93 7.6199998e-05 1e-6 430 93 2.539999e-05 1e-6 433 93 2.539999e-05 1e-6 434 93 2.539999e-05 1e-6 443 93 0.008937899 1e-6 444 93 0.00048239995 1e-6 445 93 0.055937797 1e-6 446 93 0.0022851999 1e-6 447 93 0.0031486 1e-6 448 93 5.0799994e-05 1e-6 450 93 0.0020058998 1e-6 452 93 0.0042911991 1e-6 453 93 0.0040626973 1e-6 454 93 0.0014726999 1e-6 455 93 0.074194372 1e-6 456 93 0.00030469988 1e-6 457 93 0.0013203998 1e-6 458 93 0.00063479994 1e-6 459 93 0.00038089999 1e-6 460 93 0.0017773998 1e-6 463 93 0.0087854974 1e-6 464 93 0.00022849999 1e-6 465 93 0.0040626973 1e-6 467 93 0.0091917999 1e-6 468 93 0.014092397 1e-6 469 93 0.0017519998 1e-6 470 93 0.0018535999 1e-6 471 93 0.0018789999 1e-6 473 93 5.0799994e-05 1e-6 477 93 2.539999e-05 1e-6 478 93 0.00076169986 1e-6 483 93 0.00081249978 1e-6 489 93 0.0001523 1e-6 490 93 0.0013964998 1e-6 491 93 0.00055859983 1e-6 3 94 0.00027609989 1e-6 5 94 0.0016562999 1e-6 6 94 0.00013799999 1e-6 9 94 0.017529298 1e-6 11 94 0.067632854 1e-6 13 94 0.00069009978 1e-6 14 94 0.00041409978 1e-6 16 94 0.0019323998 1e-6 17 94 0.00013799999 1e-6 18 94 0.011594199 1e-6 24 94 0.00027609989 1e-6 60 94 0.0019323998 1e-6 62 94 0.0012421999 1e-6 82 94 0.0011041998 1e-6 84 94 0.0005520999 1e-6 85 94 0.0011041998 1e-6 88 94 0.0030365998 1e-6 93 94 0.0005520999 1e-6 94 94 0.14837819 1e-6 95 94 0.0005520999 1e-6 97 94 0.00013799999 1e-6 98 94 0.0012421999 1e-6 104 94 0.0011041998 1e-6 105 94 0.00027609989 1e-6 107 94 0.0067632981 1e-6 114 94 0.00013799999 1e-6 115 94 0.00013799999 1e-6 116 94 0.0012421999 1e-6 118 94 0.00027609989 1e-6 122 94 0.0051069967 1e-6 125 94 0.0026224998 1e-6 153 94 0.00013799999 1e-6 154 94 0.00041409978 1e-6 172 94 0.0077294968 1e-6 192 94 0.010489997 1e-6 193 94 0.0093857981 1e-6 198 94 0.067080677 1e-6 204 94 0.015182897 1e-6 206 94 0.00027609989 1e-6 214 94 0.004140798 1e-6 215 94 0.019875798 1e-6 217 94 0.0044167973 1e-6 223 94 0.0015182998 1e-6 228 94 0.00013799999 1e-6 229 94 0.00069009978 1e-6 230 94 0.00041409978 1e-6 234 94 0.0063491985 1e-6 237 94 0.00069009978 1e-6 241 94 0.0092477985 1e-6 242 94 0.00041409978 1e-6 252 94 0.00013799999 1e-6 253 94 0.0042787977 1e-6 272 94 0.0005520999 1e-6 279 94 0.00069009978 1e-6 300 94 0.0016562999 1e-6 314 94 0.00082819979 1e-6 317 94 0.00013799999 1e-6 325 94 0.0099378973 1e-6 329 94 0.00082819979 1e-6 344 94 0.00027609989 1e-6 358 94 0.00041409978 1e-6 394 94 0.00013799999 1e-6 443 94 0.0097998977 1e-6 444 94 0.00013799999 1e-6 445 94 0.026362997 1e-6 446 94 0.0011041998 1e-6 447 94 0.0026224998 1e-6 448 94 0.00013799999 1e-6 450 94 0.0019323998 1e-6 452 94 0.0048308969 1e-6 453 94 0.0075913966 1e-6 454 94 0.0017942998 1e-6 455 94 0.065286398 1e-6 456 94 0.00096619991 1e-6 457 94 0.0019323998 1e-6 458 94 0.0005520999 1e-6 459 94 0.00027609989 1e-6 460 94 0.0022083998 1e-6 463 94 0.0066252984 1e-6 464 94 0.00041409978 1e-6 465 94 0.00096619991 1e-6 467 94 0.0267771 1e-6 468 94 0.033264298 1e-6 469 94 0.0017942998 1e-6 470 94 0.0017942998 1e-6 471 94 0.0017942998 1e-6 478 94 0.0005520999 1e-6 483 94 0.00041409978 1e-6 490 94 0.0016562999 1e-6 491 94 0.0022083998 1e-6 0 95 0.018136699 1e-6 3 95 0.00051329983 1e-6 5 95 8.5599997e-05 1e-6 9 95 0.0129181 1e-6 10 95 0.00017109999 1e-6 11 95 0.035332397 1e-6 12 95 0.00034219981 1e-6 13 95 0.0106938 1e-6 14 95 0.0021388 1e-6 16 95 0.00085549988 1e-6 17 95 0.00051329983 1e-6 22 95 0.00025669998 1e-6 60 95 0.0020531998 1e-6 82 95 0.0097527988 1e-6 83 95 8.5599997e-05 1e-6 84 95 0.0004278 1e-6 85 95 0.028402798 1e-6 86 95 8.5599997e-05 1e-6 87 95 0.014543597 1e-6 88 95 0.00059889979 1e-6 90 95 0.0053896978 1e-6 93 95 0.0022242998 1e-6 94 95 0.0015399 1e-6 95 95 0.016254596 1e-6 97 95 8.5599997e-05 1e-6 98 95 0.0011121999 1e-6 103 95 8.5599997e-05 1e-6 104 95 0.0073572993 1e-6 105 95 0.00025669998 1e-6 106 95 8.5599997e-05 1e-6 107 95 0.0269484 1e-6 108 95 0.00034219981 1e-6 109 95 0.00017109999 1e-6 112 95 8.5599997e-05 1e-6 114 95 0.00017109999 1e-6 115 95 0.00025669998 1e-6 116 95 0.00094109983 1e-6 117 95 0.0012832999 1e-6 118 95 0.0091538988 1e-6 119 95 0.0023953998 1e-6 122 95 0.11925739 1e-6 124 95 0.00034219981 1e-6 125 95 0.016938999 1e-6 126 95 8.5599997e-05 1e-6 130 95 8.5599997e-05 1e-6 150 95 8.5599997e-05 1e-6 151 95 8.5599997e-05 1e-6 169 95 8.5599997e-05 1e-6 172 95 8.5599997e-05 1e-6 189 95 8.5599997e-05 1e-6 190 95 8.5599997e-05 1e-6 192 95 0.0023098998 1e-6 193 95 0.010266099 1e-6 194 95 8.5599997e-05 1e-6 198 95 0.035161298 1e-6 204 95 0.0180512 1e-6 206 95 0.00017109999 1e-6 214 95 0.0014543999 1e-6 223 95 0.0014543999 1e-6 229 95 0.00085549988 1e-6 230 95 0.0004278 1e-6 231 95 8.5599997e-05 1e-6 234 95 0.001711 1e-6 237 95 0.00025669998 1e-6 240 95 8.5599997e-05 1e-6 241 95 0.016083498 1e-6 242 95 0.00094109983 1e-6 252 95 8.5599997e-05 1e-6 253 95 0.094875455 1e-6 272 95 0.00068439986 1e-6 277 95 8.5599997e-05 1e-6 279 95 0.0011976999 1e-6 300 95 0.013003699 1e-6 301 95 8.5599997e-05 1e-6 314 95 0.018906698 1e-6 317 95 8.5599997e-05 1e-6 325 95 0.00068439986 1e-6 326 95 8.5599997e-05 1e-6 340 95 8.5599997e-05 1e-6 344 95 0.00059889979 1e-6 350 95 8.5599997e-05 1e-6 351 95 8.5599997e-05 1e-6 356 95 8.5599997e-05 1e-6 358 95 0.0004278 1e-6 366 95 0.00017109999 1e-6 387 95 8.5599997e-05 1e-6 402 95 8.5599997e-05 1e-6 422 95 8.5599997e-05 1e-6 442 95 8.5599997e-05 1e-6 443 95 0.0082127973 1e-6 444 95 0.0004278 1e-6 445 95 0.0376422 1e-6 446 95 0.0011976999 1e-6 447 95 0.0032509 1e-6 450 95 0.0015399 1e-6 452 95 0.003422 1e-6 453 95 0.0021388 1e-6 454 95 0.004619699 1e-6 455 95 0.066472769 1e-6 456 95 8.5599997e-05 1e-6 457 95 0.0014543999 1e-6 458 95 0.00068439986 1e-6 459 95 0.00051329983 1e-6 460 95 0.0017965999 1e-6 463 95 0.012233697 1e-6 464 95 0.00025669998 1e-6 465 95 0.0036787 1e-6 467 95 0.0062451996 1e-6 468 95 0.065788269 1e-6 469 95 0.0020531998 1e-6 470 95 0.0022242998 1e-6 471 95 0.0016254999 1e-6 473 95 8.5599997e-05 1e-6 478 95 0.00051329983 1e-6 483 95 0.00076999981 1e-6 489 95 8.5599997e-05 1e-6 490 95 0.003422 1e-6 491 95 0.00025669998 1e-6 3 96 0.0285137 1e-6 9 96 0.0010110999 1e-6 11 96 0.0007077998 1e-6 17 96 0.49484324 1e-6 22 96 0.0002022 1e-6 60 96 0.0070778988 1e-6 82 96 0.00050559989 1e-6 84 96 0.00030329986 1e-6 91 96 0.0001011 1e-6 96 96 0.0077855997 1e-6 97 96 0.0001011 1e-6 98 96 0.0001011 1e-6 107 96 0.0001011 1e-6 114 96 0.0001011 1e-6 120 96 0.00050559989 1e-6 122 96 0.0059655979 1e-6 125 96 0.0001011 1e-6 126 96 0.0001011 1e-6 190 96 0.0001011 1e-6 192 96 0.0029322999 1e-6 193 96 0.013346799 1e-6 194 96 0.0001011 1e-6 198 96 0.021031298 1e-6 204 96 0.021132499 1e-6 206 96 0.0002022 1e-6 214 96 0.0015166998 1e-6 223 96 0.0007077998 1e-6 229 96 0.00040439982 1e-6 230 96 0.00060669985 1e-6 234 96 0.0028310998 1e-6 237 96 0.00030329986 1e-6 241 96 0.0038422998 1e-6 242 96 0.0045500994 1e-6 252 96 0.0001011 1e-6 272 96 0.00040439982 1e-6 277 96 0.0001011 1e-6 279 96 0.00040439982 1e-6 300 96 0.004752297 1e-6 301 96 0.0024267 1e-6 325 96 0.0035388998 1e-6 344 96 0.00050559989 1e-6 356 96 0.0001011 1e-6 358 96 0.00060669985 1e-6 366 96 0.0069766976 1e-6 384 96 0.0001011 1e-6 402 96 0.0001011 1e-6 422 96 0.0001011 1e-6 443 96 0.0026288999 1e-6 444 96 0.0030333998 1e-6 445 96 0.0052577965 1e-6 446 96 0.0002022 1e-6 447 96 0.0075833984 1e-6 450 96 0.0023255998 1e-6 452 96 0.0049544983 1e-6 453 96 0.00030329986 1e-6 454 96 0.00090999994 1e-6 455 96 0.12275028 1e-6 456 96 0.00030329986 1e-6 457 96 0.0012132998 1e-6 458 96 0.00080889999 1e-6 459 96 0.0002022 1e-6 460 96 0.0021233999 1e-6 463 96 0.0079878978 1e-6 464 96 0.00030329986 1e-6 465 96 0.0010110999 1e-6 467 96 0.0089989975 1e-6 468 96 0.0078867972 1e-6 469 96 0.0019210998 1e-6 470 96 0.0022244998 1e-6 471 96 0.0019210998 1e-6 473 96 0.0001011 1e-6 478 96 0.00080889999 1e-6 483 96 0.00060669985 1e-6 489 96 0.0001011 1e-6 490 96 0.0002022 1e-6 491 96 0.0012132998 1e-6 0 97 0.00035029999 1e-6 1 97 0.0016347999 1e-6 2 97 0.0019267998 1e-6 3 97 0.00011679999 1e-6 5 97 5.8399994e-05 1e-6 6 97 5.8399994e-05 1e-6 9 97 0.069860458 1e-6 10 97 0.00011679999 1e-6 11 97 0.049862798 1e-6 13 97 2.919999e-05 1e-6 14 97 8.7599998e-05 1e-6 16 97 0.00052549993 1e-6 17 97 0.0025106999 1e-6 24 97 2.919999e-05 1e-6 60 97 0.0020436 1e-6 82 97 0.038214497 1e-6 83 97 0.0036199999 1e-6 84 97 0.0235301 1e-6 85 97 8.7599998e-05 1e-6 86 97 2.919999e-05 1e-6 87 97 2.919999e-05 1e-6 88 97 0.00014599999 1e-6 90 97 8.7599998e-05 1e-6 93 97 0.0012552999 1e-6 94 97 0.00075899996 1e-6 95 97 8.7599998e-05 1e-6 96 97 2.919999e-05 1e-6 97 97 0.0060430989 1e-6 98 97 0.010480497 1e-6 100 97 8.7599998e-05 1e-6 102 97 2.919999e-05 1e-6 103 97 2.919999e-05 1e-6 104 97 0.00037949998 1e-6 105 97 0.0023939 1e-6 107 97 0.011502299 1e-6 108 97 0.0001752 1e-6 109 97 0.0011676999 1e-6 114 97 0.00011679999 1e-6 115 97 8.7599998e-05 1e-6 116 97 0.0022186998 1e-6 118 97 0.00011679999 1e-6 119 97 2.919999e-05 1e-6 120 97 5.8399994e-05 1e-6 122 97 0.017662197 1e-6 124 97 0.00011679999 1e-6 125 97 0.0057219975 1e-6 126 97 5.8399994e-05 1e-6 150 97 0.00040869997 1e-6 151 97 2.919999e-05 1e-6 160 97 2.919999e-05 1e-6 169 97 2.919999e-05 1e-6 172 97 5.8399994e-05 1e-6 189 97 5.8399994e-05 1e-6 190 97 8.7599998e-05 1e-6 192 97 0.014480099 1e-6 193 97 0.010714099 1e-6 194 97 8.7599998e-05 1e-6 197 97 2.919999e-05 1e-6 198 97 0.058650099 1e-6 200 97 2.919999e-05 1e-6 203 97 5.8399994e-05 1e-6 204 97 0.0047001988 1e-6 206 97 0.00011679999 1e-6 207 97 2.919999e-05 1e-6 214 97 0.0097214989 1e-6 218 97 2.919999e-05 1e-6 223 97 0.0012844999 1e-6 224 97 2.919999e-05 1e-6 228 97 2.919999e-05 1e-6 229 97 0.00037949998 1e-6 230 97 0.00058389991 1e-6 234 97 0.0028025999 1e-6 237 97 0.00026269979 1e-6 240 97 0.00043789996 1e-6 241 97 0.026974998 1e-6 242 97 0.00096339989 1e-6 252 97 8.7599998e-05 1e-6 253 97 0.0020436 1e-6 272 97 0.00081739994 1e-6 277 97 2.919999e-05 1e-6 300 97 0.019326199 1e-6 301 97 0.00090499991 1e-6 314 97 0.00035029999 1e-6 325 97 0.034156598 1e-6 340 97 0.00099259987 1e-6 344 97 0.0012844999 1e-6 350 97 0.00081739994 1e-6 351 97 0.0012260999 1e-6 356 97 5.8399994e-05 1e-6 358 97 0.00058389991 1e-6 366 97 0.0021894998 1e-6 384 97 2.919999e-05 1e-6 387 97 5.8399994e-05 1e-6 394 97 2.919999e-05 1e-6 397 97 2.919999e-05 1e-6 402 97 0.00011679999 1e-6 414 97 2.919999e-05 1e-6 422 97 8.7599998e-05 1e-6 433 97 2.919999e-05 1e-6 434 97 2.919999e-05 1e-6 443 97 0.0088456981 1e-6 444 97 0.00087579992 1e-6 445 97 0.057073597 1e-6 446 97 0.0024522999 1e-6 447 97 0.0038828 1e-6 448 97 2.919999e-05 1e-6 450 97 0.0021018998 1e-6 452 97 0.0071815997 1e-6 453 97 0.0032988999 1e-6 454 97 0.0028901999 1e-6 455 97 0.076691747 1e-6 456 97 0.00029189978 1e-6 457 97 0.0013428999 1e-6 458 97 0.00075899996 1e-6 459 97 0.0013136999 1e-6 460 97 0.0017807998 1e-6 463 97 0.0060430989 1e-6 464 97 0.0011968999 1e-6 465 97 0.0023355 1e-6 467 97 0.0078238994 1e-6 468 97 0.025310896 1e-6 469 97 0.0021018998 1e-6 470 97 0.0022186998 1e-6 471 97 0.002715 1e-6 472 97 0.00029189978 1e-6 473 97 5.8399994e-05 1e-6 477 97 5.8399994e-05 1e-6 478 97 0.00081739994 1e-6 483 97 0.0006130999 1e-6 489 97 0.0002044 1e-6 490 97 0.00037949998 1e-6 491 97 0.00035029999 1e-6 1 98 0.0003554998 1e-6 3 98 4.4399989e-05 1e-6 4 98 4.4399989e-05 1e-6 5 98 0.39633876 1e-6 6 98 0.053274699 1e-6 9 98 0.00026659993 1e-6 10 98 0.00022219999 1e-6 11 98 0.00031099981 1e-6 13 98 8.8899993e-05 1e-6 14 98 0.0059983991 1e-6 16 98 8.8899993e-05 1e-6 22 98 8.8899993e-05 1e-6 25 98 4.4399989e-05 1e-6 60 98 0.0023104998 1e-6 82 98 0.00044429977 1e-6 84 98 8.8899993e-05 1e-6 85 98 0.00044429977 1e-6 88 98 0.0026659998 1e-6 91 98 4.4399989e-05 1e-6 93 98 0.0001333 1e-6 94 98 4.4399989e-05 1e-6 98 98 0.018750597 1e-6 99 98 4.4399989e-05 1e-6 102 98 0.0033324 1e-6 103 98 0.00062209996 1e-6 104 98 0.0018661998 1e-6 105 98 4.4399989e-05 1e-6 107 98 0.010086197 1e-6 108 98 4.4399989e-05 1e-6 109 98 0.00062209996 1e-6 111 98 4.4399989e-05 1e-6 114 98 0.0001333 1e-6 116 98 0.0027547998 1e-6 117 98 0.00026659993 1e-6 118 98 0.005865097 1e-6 119 98 4.4399989e-05 1e-6 120 98 0.00097749988 1e-6 122 98 0.0034212999 1e-6 126 98 4.4399989e-05 1e-6 143 98 0.0011996999 1e-6 153 98 0.0052874982 1e-6 189 98 4.4399989e-05 1e-6 190 98 4.4399989e-05 1e-6 191 98 4.4399989e-05 1e-6 192 98 0.008442197 1e-6 193 98 0.017328698 1e-6 194 98 4.4399989e-05 1e-6 198 98 0.0039545 1e-6 204 98 8.8899993e-05 1e-6 206 98 0.00066649984 1e-6 214 98 0.0010664 1e-6 215 98 8.8899993e-05 1e-6 223 98 0.00053319987 1e-6 228 98 0.0025770999 1e-6 229 98 0.00044429977 1e-6 230 98 0.0001777 1e-6 234 98 0.0011996999 1e-6 237 98 0.0001333 1e-6 241 98 0.00026659993 1e-6 242 98 0.0023548999 1e-6 252 98 4.4399989e-05 1e-6 253 98 0.00026659993 1e-6 272 98 0.00026659993 1e-6 300 98 0.00084419991 1e-6 314 98 4.4399989e-05 1e-6 325 98 8.8899993e-05 1e-6 344 98 0.00053319987 1e-6 356 98 8.8899993e-05 1e-6 358 98 0.0001777 1e-6 384 98 4.4399989e-05 1e-6 387 98 4.4399989e-05 1e-6 402 98 8.8899993e-05 1e-6 414 98 0.0003998999 1e-6 422 98 4.4399989e-05 1e-6 430 98 4.4399989e-05 1e-6 443 98 0.0379899 1e-6 444 98 0.0022660999 1e-6 445 98 0.011730198 1e-6 446 98 0.004309997 1e-6 447 98 0.0060872994 1e-6 450 98 0.0017328998 1e-6 452 98 0.0065315999 1e-6 453 98 0.00084419991 1e-6 454 98 0.00022219999 1e-6 455 98 0.035634898 1e-6 456 98 0.0001777 1e-6 457 98 0.0018216998 1e-6 458 98 4.4399989e-05 1e-6 459 98 0.0004888 1e-6 460 98 0.0024438 1e-6 463 98 0.0025770999 1e-6 464 98 0.0022215999 1e-6 465 98 0.00044429977 1e-6 467 98 0.0078200996 1e-6 468 98 0.028036997 1e-6 469 98 0.0023993999 1e-6 470 98 0.0027547998 1e-6 471 98 0.0012884999 1e-6 473 98 8.8899993e-05 1e-6 477 98 4.4399989e-05 1e-6 478 98 0.00031099981 1e-6 483 98 0.00062209996 1e-6 489 98 4.4399989e-05 1e-6 490 98 0.00031099981 1e-6 491 98 0.00097749988 1e-6 0 99 0.00053259986 1e-6 3 99 0.00063909986 1e-6 5 99 0.081699967 1e-6 6 99 0.042181499 1e-6 9 99 0.00053259986 1e-6 10 99 0.0095866993 1e-6 11 99 0.0011717 1e-6 13 99 0.00074559986 1e-6 14 99 0.00074559986 1e-6 17 99 0.00031959987 1e-6 22 99 0.0001065 1e-6 60 99 0.0019172998 1e-6 82 99 0.0056454986 1e-6 84 99 0.0012782 1e-6 85 99 0.00042609987 1e-6 88 99 0.0063910969 1e-6 90 99 0.0001065 1e-6 91 99 0.00031959987 1e-6 93 99 0.00042609987 1e-6 94 99 0.00063909986 1e-6 98 99 0.023753699 1e-6 99 99 0.0014912998 1e-6 101 99 0.00021299999 1e-6 102 99 0.00085219997 1e-6 103 99 0.021623299 1e-6 104 99 0.0021303999 1e-6 105 99 0.00021299999 1e-6 106 99 0.0001065 1e-6 107 99 0.043566298 1e-6 108 99 0.00074559986 1e-6 109 99 0.00063909986 1e-6 114 99 0.00021299999 1e-6 115 99 0.00021299999 1e-6 118 99 0.0028759998 1e-6 120 99 0.0017042998 1e-6 122 99 0.0063910969 1e-6 124 99 0.00031959987 1e-6 125 99 0.00031959987 1e-6 126 99 0.0001065 1e-6 143 99 0.00053259986 1e-6 153 99 0.00042609987 1e-6 192 99 0.016510397 1e-6 193 99 0.009480197 1e-6 194 99 0.0001065 1e-6 198 99 0.0498509 1e-6 204 99 0.00074559986 1e-6 206 99 0.00021299999 1e-6 214 99 0.00095869997 1e-6 223 99 0.00053259986 1e-6 228 99 0.0060715973 1e-6 229 99 0.00021299999 1e-6 230 99 0.00031959987 1e-6 234 99 0.0025564998 1e-6 237 99 0.00031959987 1e-6 241 99 0.010545399 1e-6 242 99 0.0025564998 1e-6 252 99 0.0001065 1e-6 253 99 0.0013846999 1e-6 272 99 0.00042609987 1e-6 277 99 0.00021299999 1e-6 300 99 0.0087345988 1e-6 314 99 0.00031959987 1e-6 325 99 0.0038347 1e-6 344 99 0.00031959987 1e-6 356 99 0.0001065 1e-6 358 99 0.00031959987 1e-6 387 99 0.0001065 1e-6 402 99 0.0001065 1e-6 443 99 0.019279897 1e-6 444 99 0.0014912998 1e-6 445 99 0.012782298 1e-6 446 99 0.0020238999 1e-6 447 99 0.0054324977 1e-6 450 99 0.0015977998 1e-6 452 99 0.0047933981 1e-6 453 99 0.0025564998 1e-6 454 99 0.00063909986 1e-6 455 99 0.037707698 1e-6 456 99 0.00031959987 1e-6 457 99 0.0025564998 1e-6 458 99 0.00021299999 1e-6 459 99 0.0033020999 1e-6 460 99 0.0026629998 1e-6 463 99 0.0027694998 1e-6 464 99 0.00042609987 1e-6 465 99 0.004473798 1e-6 467 99 0.0046867989 1e-6 468 99 0.097358286 1e-6 469 99 0.0031955999 1e-6 470 99 0.0033020999 1e-6 471 99 0.0021303999 1e-6 473 99 0.0001065 1e-6 478 99 0.00042609987 1e-6 483 99 0.00063909986 1e-6 489 99 0.0001065 1e-6 490 99 0.0013846999 1e-6 491 99 0.00063909986 1e-6 0 100 0.0015001998 1e-6 3 100 0.00024999981 1e-6 5 100 0.13676709 1e-6 6 100 0.015126899 1e-6 9 100 0.00062509999 1e-6 10 100 0.0012502 1e-6 11 100 0.0015001998 1e-6 13 100 0.00037499983 1e-6 14 100 0.00050009997 1e-6 17 100 0.00012499999 1e-6 60 100 0.0018751998 1e-6 82 100 0.0028753998 1e-6 84 100 0.00050009997 1e-6 85 100 0.0041254982 1e-6 88 100 0.025878198 1e-6 90 100 0.00037499983 1e-6 93 100 0.00062509999 1e-6 94 100 0.00087509979 1e-6 98 100 0.074884355 1e-6 99 100 0.00024999981 1e-6 102 100 0.00024999981 1e-6 103 100 0.0031253998 1e-6 104 100 0.013626698 1e-6 105 100 0.00024999981 1e-6 107 100 0.057257198 1e-6 108 100 0.0050005987 1e-6 109 100 0.0056256987 1e-6 114 100 0.00024999981 1e-6 115 100 0.00012499999 1e-6 116 100 0.00062509999 1e-6 118 100 0.0080009997 1e-6 120 100 0.00037499983 1e-6 122 100 0.0221278 1e-6 124 100 0.00050009997 1e-6 125 100 0.00062509999 1e-6 126 100 0.00012499999 1e-6 143 100 0.00037499983 1e-6 153 100 0.0011250998 1e-6 192 100 0.012501597 1e-6 193 100 0.013751697 1e-6 198 100 0.058382299 1e-6 204 100 0.00062509999 1e-6 206 100 0.00037499983 1e-6 214 100 0.0038754998 1e-6 223 100 0.00062509999 1e-6 228 100 0.0011250998 1e-6 229 100 0.00037499983 1e-6 230 100 0.00024999981 1e-6 231 100 0.00024999981 1e-6 232 100 0.00012499999 1e-6 234 100 0.0020003 1e-6 237 100 0.00024999981 1e-6 241 100 0.012126498 1e-6 242 100 0.0025002998 1e-6 252 100 0.00012499999 1e-6 253 100 0.0016251998 1e-6 272 100 0.00050009997 1e-6 300 100 0.0071258992 1e-6 314 100 0.00050009997 1e-6 325 100 0.0032503998 1e-6 344 100 0.00050009997 1e-6 356 100 0.00012499999 1e-6 358 100 0.00024999981 1e-6 387 100 0.00012499999 1e-6 402 100 0.00012499999 1e-6 414 100 0.00012499999 1e-6 443 100 0.021252699 1e-6 444 100 0.00075009977 1e-6 445 100 0.013376698 1e-6 446 100 0.0017501998 1e-6 447 100 0.0061257966 1e-6 450 100 0.0015001998 1e-6 452 100 0.0042504966 1e-6 453 100 0.0011250998 1e-6 454 100 0.00050009997 1e-6 455 100 0.0426303 1e-6 456 100 0.00024999981 1e-6 457 100 0.0022502998 1e-6 458 100 0.00012499999 1e-6 459 100 0.0010000998 1e-6 460 100 0.0027502999 1e-6 463 100 0.0053756982 1e-6 464 100 0.00075009977 1e-6 465 100 0.0056256987 1e-6 467 100 0.0052506998 1e-6 468 100 0.030628797 1e-6 469 100 0.0040004998 1e-6 470 100 0.0042504966 1e-6 471 100 0.0018751998 1e-6 473 100 0.00012499999 1e-6 478 100 0.00050009997 1e-6 483 100 0.00075009977 1e-6 490 100 0.0012502 1e-6 491 100 0.00024999981 1e-6 1 101 0.00034169992 1e-6 2 101 0.0030756998 1e-6 3 101 0.0053994991 1e-6 5 101 0.005331099 1e-6 6 101 0.036839597 1e-6 9 101 0.00047839992 1e-6 11 101 0.00054679997 1e-6 12 101 6.8299996e-05 1e-6 13 101 0.0092952996 1e-6 16 101 6.8299996e-05 1e-6 17 101 0.012165897 1e-6 22 101 6.8299996e-05 1e-6 24 101 6.8299996e-05 1e-6 25 101 0.00027339999 1e-6 60 101 0.0017769998 1e-6 82 101 0.11195409 1e-6 84 101 0.027407598 1e-6 85 101 6.8299996e-05 1e-6 88 101 0.0021187998 1e-6 91 101 0.0071081966 1e-6 93 101 0.00013669999 1e-6 94 101 6.8299996e-05 1e-6 98 101 0.0134646 1e-6 101 101 0.0041691996 1e-6 102 101 0.020914499 1e-6 103 101 0.0018453998 1e-6 104 101 0.0056728981 1e-6 107 101 0.0095686987 1e-6 111 101 0.00047839992 1e-6 112 101 0.00034169992 1e-6 114 101 0.00082019996 1e-6 116 101 6.8299996e-05 1e-6 117 101 0.0020503998 1e-6 118 101 0.049073897 1e-6 119 101 0.00034169992 1e-6 120 101 0.045178 1e-6 122 101 0.0007517999 1e-6 125 101 0.00041009998 1e-6 143 101 0.00082019996 1e-6 153 101 0.00041009998 1e-6 189 101 6.8299996e-05 1e-6 192 101 0.00013669999 1e-6 193 101 0.018043898 1e-6 194 101 6.8299996e-05 1e-6 198 101 0.023306698 1e-6 204 101 0.0069714971 1e-6 206 101 0.00013669999 1e-6 214 101 0.0047843978 1e-6 215 101 0.0013669999 1e-6 223 101 0.0013669999 1e-6 228 101 0.013942998 1e-6 229 101 0.00034169992 1e-6 230 101 0.00027339999 1e-6 231 101 0.00013669999 1e-6 232 101 6.8299996e-05 1e-6 234 101 0.0019820998 1e-6 237 101 0.00020499999 1e-6 240 101 6.8299996e-05 1e-6 241 101 0.0037590999 1e-6 242 101 0.0033490998 1e-6 252 101 6.8299996e-05 1e-6 253 101 0.00034169992 1e-6 272 101 0.00082019996 1e-6 277 101 0.00013669999 1e-6 300 101 0.06855309 1e-6 314 101 6.8299996e-05 1e-6 325 101 0.00013669999 1e-6 344 101 0.00034169992 1e-6 356 101 6.8299996e-05 1e-6 358 101 0.00020499999 1e-6 402 101 6.8299996e-05 1e-6 422 101 6.8299996e-05 1e-6 443 101 0.010115497 1e-6 444 101 0.0010935999 1e-6 445 101 0.012917798 1e-6 446 101 0.0012302999 1e-6 447 101 0.0038274999 1e-6 450 101 0.0013669999 1e-6 452 101 0.0048526973 1e-6 453 101 0.0033490998 1e-6 454 101 0.0008884999 1e-6 455 101 0.054063298 1e-6 456 101 0.00020499999 1e-6 457 101 0.0018453998 1e-6 458 101 0.00054679997 1e-6 459 101 0.0007517999 1e-6 460 101 0.0025288998 1e-6 463 101 0.0038274999 1e-6 464 101 0.00013669999 1e-6 465 101 0.00041009998 1e-6 467 101 0.0052627996 1e-6 468 101 0.058300897 1e-6 469 101 0.00068349997 1e-6 470 101 0.00068349997 1e-6 471 101 0.0015719999 1e-6 478 101 0.00034169992 1e-6 483 101 0.00068349997 1e-6 489 101 6.8299996e-05 1e-6 490 101 6.8299996e-05 1e-6 491 101 0.00034169992 1e-6 0 102 8.4199986e-05 1e-6 1 102 0.00060659996 1e-6 2 102 0.0006571 1e-6 3 102 3.3699995e-05 1e-6 4 102 0.00021899999 1e-6 5 102 0.010412797 1e-6 6 102 0.12756526 1e-6 9 102 6.7399989e-05 1e-6 10 102 1.6799997e-05 1e-6 11 102 5.0499992e-05 1e-6 13 102 6.7399989e-05 1e-6 14 102 0.011322699 1e-6 17 102 3.3699995e-05 1e-6 22 102 8.4199986e-05 1e-6 24 102 0.00084249978 1e-6 25 102 0.0006571 1e-6 60 102 0.0013647999 1e-6 82 102 0.00092669996 1e-6 84 102 0.00025269995 1e-6 88 102 0.0071608983 1e-6 90 102 1.6799997e-05 1e-6 91 102 5.0499992e-05 1e-6 93 102 0.00016849999 1e-6 98 102 0.040438097 1e-6 101 102 3.3699995e-05 1e-6 102 102 0.19804549 1e-6 103 102 0.0059308968 1e-6 104 102 0.012620099 1e-6 107 102 0.015534997 1e-6 108 102 1.6799997e-05 1e-6 111 102 0.0031339999 1e-6 112 102 0.0010277999 1e-6 114 102 0.0017859999 1e-6 116 102 1.6799997e-05 1e-6 117 102 0.016882896 1e-6 118 102 0.12475145 1e-6 119 102 0.0031675999 1e-6 120 102 0.050648697 1e-6 122 102 6.7399989e-05 1e-6 125 102 0.00047179987 1e-6 126 102 1.6799997e-05 1e-6 143 102 0.0014489999 1e-6 151 102 1.6799997e-05 1e-6 153 102 0.0018533999 1e-6 189 102 5.0499992e-05 1e-6 190 102 1.6799997e-05 1e-6 192 102 0.00013479999 1e-6 193 102 0.0064194985 1e-6 194 102 1.6799997e-05 1e-6 198 102 0.00050549977 1e-6 200 102 1.6799997e-05 1e-6 203 102 1.6799997e-05 1e-6 204 102 6.7399989e-05 1e-6 206 102 5.0499992e-05 1e-6 207 102 1.6799997e-05 1e-6 214 102 0.008744698 1e-6 215 102 0.0059140995 1e-6 217 102 1.6799997e-05 1e-6 218 102 1.6799997e-05 1e-6 223 102 0.0013142 1e-6 228 102 0.033058099 1e-6 229 102 0.00038749981 1e-6 230 102 0.0001853 1e-6 234 102 0.0016343999 1e-6 237 102 0.0001853 1e-6 241 102 0.0001179 1e-6 242 102 0.00084249978 1e-6 252 102 5.0499992e-05 1e-6 253 102 1.6799997e-05 1e-6 272 102 0.00023589999 1e-6 277 102 3.3699995e-05 1e-6 300 102 0.00053919991 1e-6 301 102 1.6799997e-05 1e-6 324 102 8.4199986e-05 1e-6 325 102 3.3699995e-05 1e-6 344 102 0.00043809996 1e-6 356 102 6.7399989e-05 1e-6 358 102 0.0001853 1e-6 384 102 1.6799997e-05 1e-6 387 102 1.6799997e-05 1e-6 394 102 1.6799997e-05 1e-6 397 102 1.6799997e-05 1e-6 402 102 8.4199986e-05 1e-6 422 102 1.6799997e-05 1e-6 433 102 1.6799997e-05 1e-6 434 102 1.6799997e-05 1e-6 443 102 0.030210599 1e-6 444 102 0.00089299981 1e-6 445 102 0.013513099 1e-6 446 102 0.0031507998 1e-6 447 102 0.00094359997 1e-6 448 102 3.3699995e-05 1e-6 450 102 0.00094359997 1e-6 452 102 0.0041280985 1e-6 453 102 0.0027126998 1e-6 454 102 0.0001011 1e-6 455 102 0.063875258 1e-6 456 102 0.0002022 1e-6 457 102 0.0022745999 1e-6 458 102 0.00025269995 1e-6 459 102 0.0012973999 1e-6 460 102 0.0020050998 1e-6 463 102 0.0025104999 1e-6 464 102 0.00015159999 1e-6 465 102 0.00032009999 1e-6 467 102 0.006924998 1e-6 468 102 0.0045323968 1e-6 469 102 0.00074139982 1e-6 470 102 0.00072449981 1e-6 471 102 0.0016848999 1e-6 473 102 1.6799997e-05 1e-6 477 102 3.3699995e-05 1e-6 478 102 0.00026959996 1e-6 483 102 0.00092669996 1e-6 489 102 5.0499992e-05 1e-6 490 102 6.7399989e-05 1e-6 491 102 0.00025269995 1e-6 5 103 0.58880275 1e-6 60 103 0.0017541 1e-6 88 103 0.00014619999 1e-6 98 103 0.0002923999 1e-6 103 103 0.0029234998 1e-6 107 103 0.0002923999 1e-6 114 103 0.00014619999 1e-6 122 103 0.00014619999 1e-6 126 103 0.00014619999 1e-6 153 103 0.014763899 1e-6 193 103 0.014617696 1e-6 198 103 0.012571298 1e-6 204 103 0.00014619999 1e-6 206 103 0.00014619999 1e-6 229 103 0.00043849996 1e-6 230 103 0.00014619999 1e-6 234 103 0.00043849996 1e-6 237 103 0.00014619999 1e-6 241 103 0.00014619999 1e-6 242 103 0.0057008974 1e-6 253 103 0.0002923999 1e-6 272 103 0.00014619999 1e-6 279 103 0.0002923999 1e-6 300 103 0.00087709981 1e-6 344 103 0.00058469991 1e-6 356 103 0.00014619999 1e-6 358 103 0.00014619999 1e-6 414 103 0.0002923999 1e-6 443 103 0.0024849998 1e-6 444 103 0.0039467998 1e-6 445 103 0.024996299 1e-6 446 103 0.0055546984 1e-6 447 103 0.0065779984 1e-6 450 103 0.00073089986 1e-6 452 103 0.0032158999 1e-6 453 103 0.0011693998 1e-6 454 103 0.00058469991 1e-6 455 103 0.10261655 1e-6 457 103 0.0017541 1e-6 458 103 0.00014619999 1e-6 459 103 0.0002923999 1e-6 460 103 0.0024849998 1e-6 463 103 0.0019002999 1e-6 464 103 0.0002923999 1e-6 465 103 0.004677698 1e-6 467 103 0.0029234998 1e-6 468 103 0.013009798 1e-6 469 103 0.0020464999 1e-6 470 103 0.0023387999 1e-6 471 103 0.00087709981 1e-6 473 103 0.00014619999 1e-6 478 103 0.00014619999 1e-6 483 103 0.00043849996 1e-6 490 103 0.0073088966 1e-6 491 103 0.011694197 1e-6 5 104 0.020244498 1e-6 6 104 0.35014009 1e-6 13 104 0.00012729999 1e-6 14 104 0.0025464999 1e-6 21 104 0.00012729999 1e-6 22 104 0.0076393969 1e-6 24 104 0.00038199988 1e-6 60 104 0.0061114989 1e-6 82 104 0.0036923999 1e-6 98 104 0.00025459984 1e-6 104 104 0.0418895 1e-6 107 104 0.00012729999 1e-6 108 104 0.00012729999 1e-6 114 104 0.00012729999 1e-6 119 104 0.00012729999 1e-6 120 104 0.0005092998 1e-6 126 104 0.00012729999 1e-6 153 104 0.00012729999 1e-6 189 104 0.00012729999 1e-6 192 104 0.00012729999 1e-6 193 104 0.0005092998 1e-6 194 104 0.00012729999 1e-6 198 104 0.020881098 1e-6 204 104 0.0057295971 1e-6 206 104 0.00025459984 1e-6 214 104 0.0020371999 1e-6 218 104 0.00038199988 1e-6 223 104 0.00025459984 1e-6 224 104 0.00025459984 1e-6 229 104 0.00038199988 1e-6 230 104 0.00038199988 1e-6 231 104 0.00012729999 1e-6 234 104 0.0034377 1e-6 237 104 0.00038199988 1e-6 241 104 0.00012729999 1e-6 242 104 0.00012729999 1e-6 252 104 0.00012729999 1e-6 272 104 0.0014006 1e-6 279 104 0.0005092998 1e-6 301 104 0.00025459984 1e-6 344 104 0.00038199988 1e-6 356 104 0.00012729999 1e-6 358 104 0.00038199988 1e-6 384 104 0.00012729999 1e-6 387 104 0.00012729999 1e-6 402 104 0.00012729999 1e-6 414 104 0.00089129992 1e-6 430 104 0.00012729999 1e-6 443 104 0.031448897 1e-6 444 104 0.00025459984 1e-6 445 104 0.0076393969 1e-6 446 104 0.0049655996 1e-6 447 104 0.00089129992 1e-6 450 104 0.0019099 1e-6 452 104 0.010822497 1e-6 453 104 0.017443299 1e-6 454 104 0.0029283999 1e-6 455 104 0.0537306 1e-6 456 104 0.0005092998 1e-6 457 104 0.0019099 1e-6 458 104 0.00076389988 1e-6 459 104 0.00089129992 1e-6 460 104 0.0029283999 1e-6 463 104 0.0021644998 1e-6 464 104 0.00038199988 1e-6 465 104 0.00063659996 1e-6 467 104 0.0099311993 1e-6 468 104 0.0031830999 1e-6 469 104 0.006366197 1e-6 470 104 0.0068754964 1e-6 471 104 0.0021644998 1e-6 473 104 0.00012729999 1e-6 478 104 0.00063659996 1e-6 483 104 0.0010185998 1e-6 489 104 0.00089129992 1e-6 490 104 0.00063659996 1e-6 491 104 0.0019099 1e-6 0 105 0.0006465998 1e-6 5 105 0.0020903 1e-6 6 105 0.00070679979 1e-6 9 105 0.00010529999 1e-6 10 105 0.004180599 1e-6 11 105 7.5199991e-05 1e-6 14 105 0.00042109983 1e-6 22 105 1.5e-05 1e-6 60 105 0.0036843999 1e-6 82 105 0.0055941977 1e-6 83 105 1.5e-05 1e-6 84 105 4.5099994e-05 1e-6 85 105 0.0062709972 1e-6 86 105 3.0099996e-05 1e-6 87 105 0.0039550997 1e-6 88 105 0.0076845996 1e-6 90 105 0.00018049999 1e-6 93 105 0.0037596 1e-6 94 105 0.0031579998 1e-6 97 105 0.0032031999 1e-6 98 105 0.11024559 1e-6 100 105 0.012256198 1e-6 103 105 0.00063159992 1e-6 104 105 0.0066318996 1e-6 105 105 0.0075341985 1e-6 106 105 0.00027069985 1e-6 107 105 0.032753397 1e-6 108 105 1.5e-05 1e-6 109 105 0.00061659981 1e-6 113 105 3.0099996e-05 1e-6 114 105 4.5099994e-05 1e-6 116 105 0.0035189998 1e-6 118 105 0.0014285999 1e-6 119 105 0.00055639981 1e-6 122 105 0.017639898 1e-6 125 105 0.013474297 1e-6 126 105 1.5e-05 1e-6 150 105 0.00093239988 1e-6 189 105 0.00022559999 1e-6 190 105 9.0199988e-05 1e-6 192 105 0.0009474 1e-6 193 105 0.012481797 1e-6 194 105 9.0199988e-05 1e-6 196 105 1.5e-05 1e-6 197 105 3.0099996e-05 1e-6 198 105 0.018331699 1e-6 200 105 4.5099994e-05 1e-6 201 105 1.5e-05 1e-6 203 105 7.5199991e-05 1e-6 204 105 0.013233699 1e-6 206 105 0.00025569997 1e-6 207 105 6.0199993e-05 1e-6 209 105 1.5e-05 1e-6 214 105 0.0063761994 1e-6 218 105 1.5e-05 1e-6 223 105 0.00034589996 1e-6 228 105 0.0024812999 1e-6 229 105 0.00016539999 1e-6 230 105 0.00072179991 1e-6 234 105 0.0048723966 1e-6 237 105 0.00076699979 1e-6 241 105 0.020542298 1e-6 242 105 0.0006616998 1e-6 252 105 3.0099996e-05 1e-6 253 105 1.5e-05 1e-6 272 105 0.00052629993 1e-6 279 105 0.00036089984 1e-6 284 105 3.0099996e-05 1e-6 300 105 4.5099994e-05 1e-6 317 105 1.5e-05 1e-6 325 105 0.0023759999 1e-6 340 105 0.00025569997 1e-6 344 105 0.00048119994 1e-6 356 105 6.0199993e-05 1e-6 358 105 0.00063159992 1e-6 384 105 3.0099996e-05 1e-6 387 105 1.5e-05 1e-6 394 105 4.5099994e-05 1e-6 397 105 3.0099996e-05 1e-6 402 105 0.00028569996 1e-6 422 105 7.5199991e-05 1e-6 423 105 1.5e-05 1e-6 430 105 1.5e-05 1e-6 431 105 3.0099996e-05 1e-6 432 105 1.5e-05 1e-6 433 105 3.0099996e-05 1e-6 434 105 6.0199993e-05 1e-6 443 105 0.012557 1e-6 444 105 0.00045109983 1e-6 445 105 0.0090379976 1e-6 446 105 0.0008270999 1e-6 447 105 0.0020601999 1e-6 448 105 0.00010529999 1e-6 450 105 0.0057445988 1e-6 452 105 0.0041354969 1e-6 453 105 0.0030377 1e-6 454 105 0.00054139993 1e-6 455 105 0.032557897 1e-6 456 105 0.0010527 1e-6 457 105 0.0031880999 1e-6 458 105 0.00037599984 1e-6 459 105 0.00085719978 1e-6 460 105 0.0015940999 1e-6 463 105 0.0077897981 1e-6 464 105 0.00060149981 1e-6 465 105 0.0032782999 1e-6 467 105 0.010496698 1e-6 468 105 0.013684798 1e-6 469 105 0.009519197 1e-6 470 105 0.0016391999 1e-6 471 105 0.0088725984 1e-6 473 105 4.5099994e-05 1e-6 477 105 6.0199993e-05 1e-6 478 105 0.0013533998 1e-6 483 105 0.0028873 1e-6 489 105 0.00022559999 1e-6 490 105 0.0016541998 1e-6 491 105 3.0099996e-05 1e-6 3 106 0.00012139999 1e-6 5 106 0.0021237 1e-6 6 106 0.0010314998 1e-6 9 106 0.0011527999 1e-6 10 106 0.0011527999 1e-6 11 106 0.0002427 1e-6 13 106 0.0002427 1e-6 14 106 0.00072809984 1e-6 22 106 0.00012139999 1e-6 60 106 0.0029123998 1e-6 82 106 0.012256499 1e-6 85 106 0.0029730999 1e-6 87 106 6.0699997e-05 1e-6 88 106 0.0024269999 1e-6 93 106 6.0699997e-05 1e-6 94 106 6.0699997e-05 1e-6 97 106 6.0699997e-05 1e-6 98 106 0.085917056 1e-6 100 106 0.0026697 1e-6 103 106 0.00030339998 1e-6 104 106 0.014683597 1e-6 105 106 0.0040045977 1e-6 106 106 0.00030339998 1e-6 107 106 0.0461744 1e-6 108 106 0.0014561999 1e-6 109 106 0.024634399 1e-6 114 106 6.0699997e-05 1e-6 116 106 0.0050967969 1e-6 118 106 0.0052787997 1e-6 122 106 0.028092999 1e-6 125 106 0.0079484992 1e-6 126 106 6.0699997e-05 1e-6 189 106 6.0699997e-05 1e-6 190 106 6.0699997e-05 1e-6 192 106 0.0058855973 1e-6 193 106 0.0074630976 1e-6 194 106 6.0699997e-05 1e-6 198 106 0.054062299 1e-6 200 106 6.0699997e-05 1e-6 203 106 6.0699997e-05 1e-6 204 106 0.017049897 1e-6 206 106 0.0002427 1e-6 207 106 6.0699997e-05 1e-6 214 106 0.0081305988 1e-6 223 106 0.00066739996 1e-6 228 106 0.0020629999 1e-6 229 106 0.00018199999 1e-6 230 106 0.00060679996 1e-6 234 106 0.0038832999 1e-6 237 106 0.00060679996 1e-6 241 106 0.020144399 1e-6 242 106 0.00012139999 1e-6 253 106 0.0002427 1e-6 272 106 0.00042469986 1e-6 277 106 6.0699997e-05 1e-6 279 106 0.00066739996 1e-6 300 106 0.0002427 1e-6 314 106 6.0699997e-05 1e-6 325 106 0.0019415999 1e-6 344 106 0.00030339998 1e-6 356 106 6.0699997e-05 1e-6 358 106 0.00054609985 1e-6 394 106 6.0699997e-05 1e-6 402 106 0.0002427 1e-6 422 106 6.0699997e-05 1e-6 433 106 6.0699997e-05 1e-6 434 106 6.0699997e-05 1e-6 443 106 0.011649799 1e-6 444 106 0.00012139999 1e-6 445 106 0.0090406984 1e-6 446 106 0.00072809984 1e-6 447 106 0.0014561999 1e-6 448 106 6.0699997e-05 1e-6 450 106 0.0023057 1e-6 452 106 0.0037011998 1e-6 453 106 0.0030944999 1e-6 454 106 0.00048539997 1e-6 455 106 0.0364662 1e-6 456 106 0.00066739996 1e-6 457 106 0.0020023 1e-6 458 106 0.00048539997 1e-6 459 106 0.00036409986 1e-6 460 106 0.0016988998 1e-6 463 106 0.0157151 1e-6 464 106 0.00012139999 1e-6 465 106 0.0043079965 1e-6 467 106 0.014440898 1e-6 468 106 0.013652097 1e-6 469 106 0.0013348998 1e-6 470 106 0.0014561999 1e-6 471 106 0.0041259974 1e-6 473 106 6.0699997e-05 1e-6 477 106 6.0699997e-05 1e-6 478 106 0.00066739996 1e-6 483 106 0.00097079994 1e-6 489 106 0.00018199999 1e-6 490 106 0.00060679996 1e-6 5 107 3.119999e-05 1e-6 11 107 3.119999e-05 1e-6 12 107 0.22531909 1e-6 18 107 3.119999e-05 1e-6 22 107 0.0014044999 1e-6 24 107 0.00059299986 1e-6 60 107 0.0024656998 1e-6 85 107 3.119999e-05 1e-6 88 107 3.119999e-05 1e-6 93 107 0.00012479999 1e-6 95 107 3.119999e-05 1e-6 98 107 3.119999e-05 1e-6 104 107 0.00053059985 1e-6 107 107 0.36892539 1e-6 108 107 3.119999e-05 1e-6 112 107 3.119999e-05 1e-6 113 107 3.119999e-05 1e-6 114 107 9.36e-05 1e-6 115 107 6.2399995e-05 1e-6 116 107 0.00062419986 1e-6 118 107 9.36e-05 1e-6 119 107 3.119999e-05 1e-6 122 107 0.00012479999 1e-6 125 107 3.119999e-05 1e-6 126 107 3.119999e-05 1e-6 150 107 3.119999e-05 1e-6 151 107 0.00068669999 1e-6 189 107 0.00012479999 1e-6 190 107 3.119999e-05 1e-6 193 107 0.0058053993 1e-6 194 107 6.2399995e-05 1e-6 198 107 0.0039950982 1e-6 200 107 3.119999e-05 1e-6 203 107 3.119999e-05 1e-6 204 107 0.0001561 1e-6 206 107 6.2399995e-05 1e-6 214 107 0.0034957 1e-6 215 107 6.2399995e-05 1e-6 223 107 0.00024969992 1e-6 228 107 6.2399995e-05 1e-6 229 107 0.00040579983 1e-6 230 107 0.00018729999 1e-6 234 107 0.0043696985 1e-6 237 107 0.00018729999 1e-6 241 107 3.119999e-05 1e-6 242 107 0.0011547999 1e-6 252 107 6.2399995e-05 1e-6 253 107 0.00040579983 1e-6 267 107 0.0040575974 1e-6 272 107 0.00056179985 1e-6 277 107 0.0012484998 1e-6 279 107 0.00012479999 1e-6 300 107 0.0001561 1e-6 301 107 0.00056179985 1e-6 314 107 6.2399995e-05 1e-6 324 107 0.00021849999 1e-6 344 107 0.00046819984 1e-6 350 107 0.0017166999 1e-6 356 107 6.2399995e-05 1e-6 358 107 0.00037449994 1e-6 384 107 3.119999e-05 1e-6 387 107 3.119999e-05 1e-6 402 107 9.36e-05 1e-6 422 107 6.2399995e-05 1e-6 434 107 3.119999e-05 1e-6 443 107 0.013358697 1e-6 444 107 0.0016853998 1e-6 445 107 0.0134211 1e-6 446 107 0.00034329994 1e-6 447 107 0.00099879992 1e-6 450 107 0.0011547999 1e-6 452 107 0.0019351 1e-6 453 107 0.010362398 1e-6 454 107 0.0025281999 1e-6 455 107 0.028434098 1e-6 456 107 0.00028089993 1e-6 457 107 0.0044008978 1e-6 458 107 0.00040579983 1e-6 459 107 0.00037449994 1e-6 460 107 0.00024969992 1e-6 463 107 0.0035581999 1e-6 464 107 0.0013732999 1e-6 465 107 0.00040579983 1e-6 467 107 0.0042447969 1e-6 468 107 0.0046817996 1e-6 469 107 0.0035269998 1e-6 470 107 0.0010611999 1e-6 471 107 0.0014044999 1e-6 473 107 3.119999e-05 1e-6 477 107 3.119999e-05 1e-6 478 107 0.00034329994 1e-6 483 107 0.00031209993 1e-6 489 107 0.00056179985 1e-6 490 107 0.00021849999 1e-6 491 107 6.2399995e-05 1e-6 0 108 0.00015159999 1e-6 3 108 0.0002274 1e-6 5 108 7.5799995e-05 1e-6 9 108 0.00041679991 1e-6 10 108 0.054111399 1e-6 11 108 0.00064419978 1e-6 13 108 0.0032587999 1e-6 14 108 0.027927198 1e-6 16 108 3.7899998e-05 1e-6 17 108 3.7899998e-05 1e-6 22 108 0.00018949999 1e-6 60 108 0.0023872999 1e-6 82 108 0.00041679991 1e-6 85 108 7.5799995e-05 1e-6 86 108 0.0019703999 1e-6 88 108 0.019439198 1e-6 90 108 3.7899998e-05 1e-6 93 108 0.00045469985 1e-6 94 108 7.5799995e-05 1e-6 95 108 3.7899998e-05 1e-6 98 108 0.00037889997 1e-6 104 108 0.015460398 1e-6 105 108 0.00015159999 1e-6 106 108 3.7899998e-05 1e-6 107 108 0.066881359 1e-6 108 108 0.083175361 1e-6 109 108 0.053164098 1e-6 110 108 0.00079579977 1e-6 112 108 3.7899998e-05 1e-6 114 108 7.5799995e-05 1e-6 115 108 3.7899998e-05 1e-6 116 108 0.030503999 1e-6 118 108 0.00037889997 1e-6 119 108 7.5799995e-05 1e-6 122 108 0.0039408989 1e-6 124 108 3.7899998e-05 1e-6 125 108 0.0053807981 1e-6 126 108 3.7899998e-05 1e-6 150 108 0.00049259979 1e-6 151 108 3.7899998e-05 1e-6 189 108 0.00011369999 1e-6 190 108 7.5799995e-05 1e-6 192 108 0.011746898 1e-6 193 108 0.0022356999 1e-6 194 108 0.00011369999 1e-6 197 108 3.7899998e-05 1e-6 198 108 0.040394098 1e-6 200 108 3.7899998e-05 1e-6 203 108 7.5799995e-05 1e-6 204 108 0.0025008998 1e-6 206 108 0.00049259979 1e-6 207 108 3.7899998e-05 1e-6 214 108 0.00060629984 1e-6 223 108 0.0012125999 1e-6 229 108 0.00030309986 1e-6 230 108 0.00060629984 1e-6 231 108 0.0002274 1e-6 234 108 0.0023494 1e-6 237 108 0.0002274 1e-6 241 108 0.010647997 1e-6 242 108 0.00015159999 1e-6 252 108 7.5799995e-05 1e-6 253 108 0.0025766999 1e-6 272 108 0.00049259979 1e-6 277 108 3.7899998e-05 1e-6 279 108 0.00068209996 1e-6 300 108 0.011367898 1e-6 301 108 0.00011369999 1e-6 314 108 0.00064419978 1e-6 324 108 0.00018949999 1e-6 325 108 0.0061007999 1e-6 344 108 0.00037889997 1e-6 356 108 7.5799995e-05 1e-6 358 108 0.00071999989 1e-6 384 108 3.7899998e-05 1e-6 387 108 3.7899998e-05 1e-6 402 108 0.00011369999 1e-6 414 108 0.00026529981 1e-6 422 108 0.00011369999 1e-6 430 108 3.7899998e-05 1e-6 433 108 3.7899998e-05 1e-6 434 108 3.7899998e-05 1e-6 443 108 0.0087911971 1e-6 444 108 0.00026529981 1e-6 445 108 0.012959499 1e-6 446 108 0.0013263 1e-6 447 108 0.00079579977 1e-6 448 108 3.7899998e-05 1e-6 450 108 0.0023494 1e-6 452 108 0.0053807981 1e-6 453 108 0.0018189 1e-6 454 108 0.00037889997 1e-6 455 108 0.061424799 1e-6 456 108 0.0003409998 1e-6 457 108 0.0024251998 1e-6 458 108 0.00037889997 1e-6 459 108 0.00045469985 1e-6 460 108 0.0016293998 1e-6 463 108 0.005342897 1e-6 464 108 0.00018949999 1e-6 465 108 0.0020082998 1e-6 467 108 0.0153846 1e-6 468 108 0.033383898 1e-6 469 108 0.0027282999 1e-6 470 108 0.0030314999 1e-6 471 108 0.0017051999 1e-6 473 108 7.5799995e-05 1e-6 477 108 3.7899998e-05 1e-6 478 108 0.00079579977 1e-6 479 108 0.00018949999 1e-6 483 108 0.0014777998 1e-6 489 108 7.5799995e-05 1e-6 490 108 0.027775697 1e-6 491 108 0.00026529981 1e-6 3 109 0.0030345998 1e-6 5 109 0.0030345998 1e-6 9 109 0.0030345998 1e-6 10 109 0.0064737983 1e-6 11 109 0.0046529993 1e-6 13 109 0.0032368999 1e-6 14 109 0.0072829984 1e-6 17 109 0.00040459982 1e-6 22 109 0.00060689985 1e-6 60 109 0.0022253999 1e-6 85 109 0.0002023 1e-6 86 109 0.012542997 1e-6 88 109 0.033380497 1e-6 98 109 0.0046529993 1e-6 104 109 0.020432897 1e-6 105 109 0.0014161 1e-6 106 109 0.00040459982 1e-6 107 109 0.087396264 1e-6 108 109 0.015375298 1e-6 109 109 0.074044049 1e-6 113 109 0.0002023 1e-6 114 109 0.0002023 1e-6 115 109 0.00040459982 1e-6 116 109 0.00060689985 1e-6 117 109 0.0002023 1e-6 118 109 0.00080919988 1e-6 119 109 0.00040459982 1e-6 122 109 0.0093060993 1e-6 125 109 0.0024277 1e-6 191 109 0.0002023 1e-6 192 109 0.0036414999 1e-6 193 109 0.0020230999 1e-6 198 109 0.038235899 1e-6 204 109 0.0052599981 1e-6 206 109 0.0002023 1e-6 214 109 0.0022253999 1e-6 223 109 0.0028322998 1e-6 229 109 0.0002023 1e-6 230 109 0.0002023 1e-6 234 109 0.0016184999 1e-6 237 109 0.0002023 1e-6 241 109 0.013352197 1e-6 242 109 0.00040459982 1e-6 253 109 0.0030345998 1e-6 272 109 0.00060689985 1e-6 279 109 0.00060689985 1e-6 300 109 0.023669798 1e-6 301 109 0.00080919988 1e-6 314 109 0.00080919988 1e-6 324 109 0.0002023 1e-6 325 109 0.0056645982 1e-6 344 109 0.00060689985 1e-6 356 109 0.0002023 1e-6 358 109 0.00060689985 1e-6 443 109 0.012947597 1e-6 444 109 0.00040459982 1e-6 445 109 0.014970697 1e-6 446 109 0.0028322998 1e-6 447 109 0.0016184999 1e-6 450 109 0.0014161 1e-6 452 109 0.0058668964 1e-6 453 109 0.0016184999 1e-6 454 109 0.00040459982 1e-6 455 109 0.066154182 1e-6 456 109 0.00040459982 1e-6 457 109 0.0026299998 1e-6 458 109 0.0002023 1e-6 459 109 0.00040459982 1e-6 460 109 0.0020230999 1e-6 463 109 0.0044506975 1e-6 464 109 0.0002023 1e-6 465 109 0.0016184999 1e-6 467 109 0.0226583 1e-6 468 109 0.027311299 1e-6 469 109 0.0022253999 1e-6 470 109 0.0022253999 1e-6 471 109 0.0016184999 1e-6 478 109 0.00060689985 1e-6 483 109 0.00080919988 1e-6 489 109 0.0002023 1e-6 490 109 0.16710496 1e-6 491 109 0.0002023 1e-6 10 110 0.0034111999 1e-6 13 110 0.0002623999 1e-6 14 110 0.0015743999 1e-6 60 110 0.0031488 1e-6 82 110 0.0002623999 1e-6 88 110 0.00078719994 1e-6 102 110 0.0002623999 1e-6 104 110 0.023091096 1e-6 107 110 0.055890799 1e-6 108 110 0.004985597 1e-6 109 110 0.002624 1e-6 110 110 0.073996246 1e-6 114 110 0.0002623999 1e-6 116 110 0.050642896 1e-6 118 110 0.0057727993 1e-6 122 110 0.0002623999 1e-6 125 110 0.0002623999 1e-6 192 110 0.0028863999 1e-6 193 110 0.0020991999 1e-6 198 110 0.048281297 1e-6 204 110 0.015481498 1e-6 206 110 0.00052479981 1e-6 214 110 0.0023615998 1e-6 223 110 0.0002623999 1e-6 228 110 0.0041983984 1e-6 230 110 0.00052479981 1e-6 234 110 0.0055103973 1e-6 237 110 0.0002623999 1e-6 241 110 0.012070298 1e-6 253 110 0.0010495998 1e-6 272 110 0.0010495998 1e-6 279 110 0.00078719994 1e-6 300 110 0.00078719994 1e-6 314 110 0.0002623999 1e-6 324 110 0.0002623999 1e-6 325 110 0.0057727993 1e-6 344 110 0.0002623999 1e-6 358 110 0.00052479981 1e-6 443 110 0.0057727993 1e-6 444 110 0.0070847981 1e-6 445 110 0.0073471963 1e-6 446 110 0.001312 1e-6 447 110 0.012070298 1e-6 450 110 0.0020991999 1e-6 452 110 0.0047231987 1e-6 453 110 0.00052479981 1e-6 454 110 0.00078719994 1e-6 455 110 0.031750198 1e-6 457 110 0.0023615998 1e-6 459 110 0.00078719994 1e-6 460 110 0.0010495998 1e-6 463 110 0.0028863999 1e-6 464 110 0.00052479981 1e-6 465 110 0.010233499 1e-6 467 110 0.0083966963 1e-6 468 110 0.047756497 1e-6 469 110 0.0034111999 1e-6 470 110 0.0036735998 1e-6 471 110 0.0010495998 1e-6 477 110 0.0002623999 1e-6 478 110 0.00078719994 1e-6 483 110 0.0015743999 1e-6 490 110 0.014431898 1e-6 491 110 0.0002623999 1e-6 5 111 0.0064279996 1e-6 6 111 0.012103099 1e-6 13 111 0.0072193965 1e-6 22 111 0.00021229999 1e-6 60 111 0.0038798999 1e-6 82 111 1.9299987e-05 1e-6 98 111 0.0092654973 1e-6 103 111 0.0063120984 1e-6 104 111 0.002104 1e-6 107 111 0.0010616998 1e-6 108 111 1.9299987e-05 1e-6 111 111 0.0027796999 1e-6 112 111 0.035575699 1e-6 113 111 3.8599988e-05 1e-6 114 111 0.00086859986 1e-6 116 111 7.7199991e-05 1e-6 118 111 3.8599988e-05 1e-6 125 111 0.0008299998 1e-6 126 111 1.9299987e-05 1e-6 151 111 1.9299987e-05 1e-6 189 111 3.8599988e-05 1e-6 190 111 3.8599988e-05 1e-6 192 111 0.0014862998 1e-6 194 111 5.789999e-05 1e-6 197 111 1.9299987e-05 1e-6 198 111 0.0283756 1e-6 200 111 1.9299987e-05 1e-6 203 111 3.8599988e-05 1e-6 204 111 0.0051731989 1e-6 206 111 0.00021229999 1e-6 207 111 1.9299987e-05 1e-6 214 111 0.00030889991 1e-6 218 111 1.9299987e-05 1e-6 223 111 1.9299987e-05 1e-6 229 111 0.00067559979 1e-6 230 111 0.0001737 1e-6 234 111 0.0025672999 1e-6 237 111 0.00021229999 1e-6 241 111 0.0008299998 1e-6 242 111 0.00055979984 1e-6 252 111 5.789999e-05 1e-6 253 111 0.0545507 1e-6 272 111 0.0005983999 1e-6 277 111 5.789999e-05 1e-6 279 111 0.00069489982 1e-6 300 111 0.22260398 1e-6 314 111 0.0065437965 1e-6 324 111 0.00030889991 1e-6 344 111 0.00027019996 1e-6 350 111 0.00079139997 1e-6 356 111 5.789999e-05 1e-6 358 111 0.00034749997 1e-6 384 111 5.789999e-05 1e-6 387 111 1.9299987e-05 1e-6 394 111 1.9299987e-05 1e-6 402 111 7.7199991e-05 1e-6 422 111 5.789999e-05 1e-6 430 111 1.9299987e-05 1e-6 433 111 1.9299987e-05 1e-6 434 111 1.9299987e-05 1e-6 443 111 0.0065437965 1e-6 444 111 0.00086859986 1e-6 445 111 0.0078177974 1e-6 446 111 0.00065629999 1e-6 447 111 0.00027019996 1e-6 448 111 1.9299987e-05 1e-6 450 111 0.0012353999 1e-6 452 111 0.0037061998 1e-6 453 111 0.0023549998 1e-6 454 111 0.0020653999 1e-6 455 111 0.0219284 1e-6 456 111 0.00032819994 1e-6 457 111 0.0034938999 1e-6 458 111 0.00032819994 1e-6 459 111 0.0003668 1e-6 460 111 0.00023159999 1e-6 463 111 0.0025479998 1e-6 464 111 0.0001351 1e-6 465 111 0.0014283999 1e-6 467 111 0.0054241978 1e-6 468 111 0.043547899 1e-6 469 111 0.0070649981 1e-6 470 111 0.0013897999 1e-6 471 111 0.0031849998 1e-6 473 111 3.8599988e-05 1e-6 477 111 1.9299987e-05 1e-6 478 111 0.00034749997 1e-6 483 111 0.00052119978 1e-6 489 111 0.0001351 1e-6 490 111 0.00011579999 1e-6 491 111 1.9299987e-05 1e-6 5 112 0.020178299 1e-6 6 112 0.49460346 1e-6 22 112 0.00046929996 1e-6 60 112 0.0065696985 1e-6 111 112 0.00046929996 1e-6 112 112 0.014077898 1e-6 114 112 0.00046929996 1e-6 116 112 0.00046929996 1e-6 198 112 0.0014077998 1e-6 229 112 0.00093849981 1e-6 234 112 0.0018771 1e-6 253 112 0.00046929996 1e-6 272 112 0.00093849981 1e-6 277 112 0.00046929996 1e-6 300 112 0.00093849981 1e-6 344 112 0.00046929996 1e-6 350 112 0.00046929996 1e-6 358 112 0.00046929996 1e-6 443 112 0.025809497 1e-6 444 112 0.00046929996 1e-6 445 112 0.029094297 1e-6 446 112 0.0046925992 1e-6 447 112 0.0098544993 1e-6 450 112 0.00093849981 1e-6 452 112 0.015954997 1e-6 453 112 0.0229939 1e-6 454 112 0.0023462998 1e-6 455 112 0.13233215 1e-6 457 112 0.0046925992 1e-6 459 112 0.00046929996 1e-6 460 112 -0.0018771 1e-6 463 112 0.0126701 1e-6 464 112 0.00046929996 1e-6 467 112 0.0056311972 1e-6 468 112 0.00046929996 1e-6 469 112 0.00046929996 1e-6 470 112 0.00093849981 1e-6 471 112 0.00046929996 1e-6 478 112 0.00046929996 1e-6 490 112 0.00046929996 1e-6 491 112 0.00093849981 1e-6 6 113 0.00015889999 1e-6 9 113 0.081519067 1e-6 11 113 0.00015889999 1e-6 60 113 0.0016684998 1e-6 93 113 0.0373431 1e-6 94 113 0.0030987 1e-6 104 113 7.9499994e-05 1e-6 107 113 0.0081041977 1e-6 112 113 0.0027013998 1e-6 113 113 0.073335469 1e-6 114 113 0.0080247968 1e-6 116 113 0.0002384 1e-6 126 113 7.9499994e-05 1e-6 171 113 0.0025424999 1e-6 172 113 0.00015889999 1e-6 192 113 0.00055619981 1e-6 194 113 7.9499994e-05 1e-6 198 113 0.0041315965 1e-6 204 113 0.013268698 1e-6 206 113 0.00031779986 1e-6 223 113 7.9499994e-05 1e-6 229 113 0.00039729988 1e-6 230 113 0.00015889999 1e-6 234 113 0.0011918 1e-6 237 113 0.0002384 1e-6 241 113 0.00063559995 1e-6 242 113 0.0025424999 1e-6 253 113 0.06991899 1e-6 272 113 0.00071509997 1e-6 279 113 0.0002384 1e-6 300 113 0.00031779986 1e-6 314 113 0.0080247968 1e-6 324 113 0.00039729988 1e-6 325 113 0.00039729988 1e-6 344 113 0.00031779986 1e-6 356 113 7.9499994e-05 1e-6 358 113 0.0002384 1e-6 402 113 7.9499994e-05 1e-6 443 113 0.0077863969 1e-6 444 113 0.0038137999 1e-6 445 113 0.039567798 1e-6 446 113 0.0025424999 1e-6 447 113 0.0032575999 1e-6 450 113 0.0008739999 1e-6 452 113 0.0021451998 1e-6 453 113 0.0014301999 1e-6 454 113 0.0002384 1e-6 455 113 0.064198256 1e-6 456 113 0.00015889999 1e-6 457 113 0.0041315965 1e-6 459 113 0.0010328998 1e-6 460 113 0.00095339981 1e-6 463 113 0.0040520988 1e-6 464 113 0.0002384 1e-6 465 113 0.0002384 1e-6 467 113 0.0026219999 1e-6 468 113 0.042984299 1e-6 469 113 0.0011123 1e-6 470 113 0.0011918 1e-6 471 113 0.0011918 1e-6 472 113 0.0015890999 1e-6 473 113 7.9499994e-05 1e-6 478 113 0.0002384 1e-6 483 113 0.0002384 1e-6 490 113 0.0002384 1e-6 5 114 0.0005551998 1e-6 6 114 0.0077535994 1e-6 9 114 0.00069409981 1e-6 22 114 0.00057509984 1e-6 60 114 0.0010707998 1e-6 93 114 0.0036288998 1e-6 98 114 0.00041639991 1e-6 102 114 0.0001586 1e-6 104 114 7.9299993e-05 1e-6 107 114 0.00021809999 1e-6 112 114 0.0019631998 1e-6 113 114 0.00059489999 1e-6 114 114 0.041227099 1e-6 117 114 1.9799991e-05 1e-6 118 114 9.9199999e-05 1e-6 120 114 3.9699997e-05 1e-6 126 114 1.9799991e-05 1e-6 169 114 0.00061469991 1e-6 171 114 0.0013682998 1e-6 172 114 0.0072776973 1e-6 190 114 1.9799991e-05 1e-6 192 114 0.0025978 1e-6 194 114 1.9799991e-05 1e-6 198 114 0.0045807995 1e-6 203 114 1.9799991e-05 1e-6 204 114 0.0059291981 1e-6 206 114 9.9199999e-05 1e-6 214 114 7.9299993e-05 1e-6 228 114 1.9799991e-05 1e-6 229 114 9.9199999e-05 1e-6 230 114 5.9499987e-05 1e-6 234 114 0.00079319999 1e-6 237 114 7.9299993e-05 1e-6 241 114 0.0027762 1e-6 242 114 0.0010311999 1e-6 252 114 1.9799991e-05 1e-6 253 114 0.031629298 1e-6 272 114 0.00013879999 1e-6 279 114 3.9699997e-05 1e-6 314 114 0.0017053999 1e-6 324 114 5.9499987e-05 1e-6 325 114 0.00023799999 1e-6 344 114 7.9299993e-05 1e-6 350 114 0.0013682998 1e-6 351 114 0.00047589978 1e-6 356 114 1.9799991e-05 1e-6 358 114 0.00011899999 1e-6 384 114 1.9799991e-05 1e-6 402 114 3.9699997e-05 1e-6 404 114 1.9799991e-05 1e-6 422 114 1.9799991e-05 1e-6 434 114 1.9799991e-05 1e-6 443 114 0.0019234999 1e-6 444 114 0.0022012 1e-6 445 114 0.0047592968 1e-6 446 114 0.0001983 1e-6 447 114 0.0093003996 1e-6 450 114 0.00043629995 1e-6 452 114 0.00085269986 1e-6 453 114 0.00045609986 1e-6 454 114 0.00033709989 1e-6 455 114 0.017073799 1e-6 456 114 7.9299993e-05 1e-6 457 114 0.0039660968 1e-6 458 114 0.00011899999 1e-6 459 114 0.0020424998 1e-6 460 114 0.00093199988 1e-6 463 114 0.0075552985 1e-6 464 114 0.0016062998 1e-6 465 114 0.00013879999 1e-6 467 114 0.0016855998 1e-6 468 114 0.042099599 1e-6 469 114 0.0012889998 1e-6 470 114 0.00031729997 1e-6 471 114 0.0005551998 1e-6 473 114 1.9799991e-05 1e-6 477 114 1.9799991e-05 1e-6 478 114 0.00011899999 1e-6 483 114 9.9199999e-05 1e-6 489 114 3.9699997e-05 1e-6 490 114 0.0016458998 1e-6 491 114 9.9199999e-05 1e-6 0 115 0.0055522993 1e-6 1 115 8.1699996e-05 1e-6 9 115 0.00081649981 1e-6 10 115 2.0399995e-05 1e-6 11 115 0.00083689997 1e-6 16 115 0.0001429 1e-6 17 115 2.0399995e-05 1e-6 22 115 0.00089819985 1e-6 60 115 0.0023882999 1e-6 82 115 0.00036739977 1e-6 83 115 4.0799991e-05 1e-6 84 115 0.00016329999 1e-6 86 115 4.0799991e-05 1e-6 87 115 2.0399995e-05 1e-6 88 115 0.00059199985 1e-6 90 115 0.0015309998 1e-6 93 115 0.0083079971 1e-6 94 115 0.0001429 1e-6 95 115 2.0399995e-05 1e-6 97 115 2.0399995e-05 1e-6 98 115 8.1699996e-05 1e-6 104 115 0.0014493 1e-6 105 115 2.0399995e-05 1e-6 107 115 0.069770753 1e-6 108 115 4.0799991e-05 1e-6 113 115 4.0799991e-05 1e-6 114 115 6.1199986e-05 1e-6 115 115 0.0053276978 1e-6 116 115 0.12029225 1e-6 118 115 4.0799991e-05 1e-6 122 115 0.00012249999 1e-6 124 115 4.0799991e-05 1e-6 125 115 0.00012249999 1e-6 126 115 4.0799991e-05 1e-6 127 115 2.0399995e-05 1e-6 150 115 0.00030619977 1e-6 151 115 2.0399995e-05 1e-6 172 115 0.0022249999 1e-6 189 115 0.0001429 1e-6 190 115 8.1699996e-05 1e-6 192 115 0.00010209999 1e-6 193 115 4.0799991e-05 1e-6 194 115 0.00010209999 1e-6 196 115 2.0399995e-05 1e-6 197 115 2.0399995e-05 1e-6 198 115 0.023066398 1e-6 200 115 6.1199986e-05 1e-6 201 115 2.0399995e-05 1e-6 203 115 6.1199986e-05 1e-6 204 115 0.0027965 1e-6 206 115 0.00032659993 1e-6 207 115 6.1199986e-05 1e-6 209 115 2.0399995e-05 1e-6 214 115 0.0031843998 1e-6 218 115 2.0399995e-05 1e-6 223 115 6.1199986e-05 1e-6 229 115 0.00091859978 1e-6 230 115 0.00042869989 1e-6 234 115 0.0039804988 1e-6 237 115 0.00057159993 1e-6 240 115 2.0399995e-05 1e-6 241 115 0.0041029975 1e-6 242 115 0.00083689997 1e-6 248 115 2.0399995e-05 1e-6 252 115 0.0001429 1e-6 253 115 0.12004739 1e-6 272 115 0.00085729989 1e-6 279 115 0.00067359977 1e-6 284 115 2.0399995e-05 1e-6 300 115 0.16075039 1e-6 314 115 0.014452197 1e-6 324 115 0.00044909981 1e-6 325 115 0.00030619977 1e-6 344 115 0.00036739977 1e-6 351 115 0.00030619977 1e-6 356 115 8.1699996e-05 1e-6 358 115 0.00087769981 1e-6 366 115 2.0399995e-05 1e-6 384 115 4.0799991e-05 1e-6 387 115 2.0399995e-05 1e-6 394 115 4.0799991e-05 1e-6 397 115 2.0399995e-05 1e-6 402 115 0.0002041 1e-6 419 115 2.0399995e-05 1e-6 422 115 8.1699996e-05 1e-6 423 115 2.0399995e-05 1e-6 425 115 2.0399995e-05 1e-6 430 115 2.0399995e-05 1e-6 431 115 4.0799991e-05 1e-6 432 115 2.0399995e-05 1e-6 433 115 4.0799991e-05 1e-6 434 115 4.0799991e-05 1e-6 443 115 0.0050827973 1e-6 444 115 0.00040829997 1e-6 445 115 0.011880197 1e-6 446 115 0.0011838998 1e-6 447 115 0.0011022999 1e-6 448 115 8.1699996e-05 1e-6 450 115 0.0031027 1e-6 452 115 0.0041233972 1e-6 453 115 0.0017758999 1e-6 454 115 0.00073489989 1e-6 455 115 0.0303129 1e-6 456 115 0.00091859978 1e-6 457 115 0.0046132989 1e-6 458 115 0.00040829997 1e-6 459 115 0.0013676998 1e-6 460 115 0.0012859998 1e-6 463 115 0.0109616 1e-6 464 115 0.00016329999 1e-6 465 115 0.0012451999 1e-6 467 115 0.011206597 1e-6 468 115 0.057380199 1e-6 469 115 0.0087161995 1e-6 470 115 0.0031639999 1e-6 471 115 0.0057155974 1e-6 473 115 6.1199986e-05 1e-6 477 115 8.1699996e-05 1e-6 478 115 0.0029189999 1e-6 483 115 0.0018575999 1e-6 489 115 0.00018369999 1e-6 490 115 0.00028579985 1e-6 491 115 2.0399995e-05 1e-6 0 116 0.00080389995 1e-6 3 116 0.00053589977 1e-6 5 116 0.0039522983 1e-6 6 116 0.0026794998 1e-6 9 116 0.0017416999 1e-6 10 116 0.00033489987 1e-6 11 116 0.0015407 1e-6 13 116 0.0013398 1e-6 14 116 0.0010717998 1e-6 16 116 6.6999986e-05 1e-6 17 116 6.6999986e-05 1e-6 60 116 0.0014736999 1e-6 82 116 0.00026799995 1e-6 84 116 6.6999986e-05 1e-6 85 116 0.00020099999 1e-6 87 116 0.00020099999 1e-6 88 116 0.00026799995 1e-6 90 116 0.00020099999 1e-6 93 116 0.0089763999 1e-6 94 116 0.00020099999 1e-6 95 116 0.00013399999 1e-6 98 116 0.0012057999 1e-6 99 116 6.6999986e-05 1e-6 102 116 0.0013398 1e-6 103 116 0.00073689991 1e-6 104 116 0.007167697 1e-6 105 116 0.00026799995 1e-6 106 116 6.6999986e-05 1e-6 107 116 0.14529735 1e-6 108 116 0.00013399999 1e-6 109 116 0.00013399999 1e-6 110 116 0.00013399999 1e-6 112 116 0.0016076998 1e-6 113 116 0.0020095999 1e-6 114 116 0.0020766 1e-6 115 116 0.0050240979 1e-6 116 116 0.044145197 1e-6 117 116 0.00013399999 1e-6 118 116 0.0063638985 1e-6 119 116 0.0014067998 1e-6 120 116 0.00040189992 1e-6 122 116 0.0020095999 1e-6 125 116 0.0013398 1e-6 126 116 6.6999986e-05 1e-6 172 116 6.6999986e-05 1e-6 192 116 0.0010048 1e-6 193 116 0.00060289982 1e-6 194 116 6.6999986e-05 1e-6 198 116 0.018957697 1e-6 204 116 0.0061628968 1e-6 206 116 0.00013399999 1e-6 214 116 0.0050910972 1e-6 215 116 6.6999986e-05 1e-6 223 116 0.016880997 1e-6 228 116 0.0041532964 1e-6 229 116 0.00066989986 1e-6 230 116 0.00013399999 1e-6 231 116 0.00013399999 1e-6 232 116 0.00013399999 1e-6 234 116 0.0018086999 1e-6 237 116 0.00020099999 1e-6 241 116 0.0044211969 1e-6 242 116 0.0030814998 1e-6 252 116 6.6999986e-05 1e-6 253 116 0.025187597 1e-6 272 116 0.00026799995 1e-6 277 116 6.6999986e-05 1e-6 279 116 0.00026799995 1e-6 300 116 0.011053097 1e-6 301 116 0.0019426998 1e-6 314 116 0.0034163999 1e-6 317 116 6.6999986e-05 1e-6 325 116 0.00040189992 1e-6 344 116 0.00033489987 1e-6 349 116 6.6999986e-05 1e-6 356 116 6.6999986e-05 1e-6 358 116 0.00026799995 1e-6 402 116 6.6999986e-05 1e-6 443 116 0.0086414963 1e-6 444 116 0.0024116 1e-6 445 116 0.0087084994 1e-6 446 116 0.0019426998 1e-6 447 116 0.0028804999 1e-6 450 116 0.0010048 1e-6 452 116 0.0024785998 1e-6 453 116 0.00087079988 1e-6 454 116 0.0010048 1e-6 455 116 0.030948598 1e-6 456 116 0.00013399999 1e-6 457 116 0.0045551993 1e-6 458 116 0.00040189992 1e-6 459 116 0.00046889996 1e-6 460 116 0.00020099999 1e-6 463 116 0.014670398 1e-6 464 116 0.0026794998 1e-6 465 116 0.00053589977 1e-6 467 116 0.0042202994 1e-6 468 116 0.016278099 1e-6 469 116 0.0014736999 1e-6 470 116 0.0013398 1e-6 471 116 0.0036173998 1e-6 473 116 6.6999986e-05 1e-6 478 116 0.00026799995 1e-6 483 116 0.00040189992 1e-6 490 116 0.0148714 1e-6 491 116 0.00093779992 1e-6 4 117 0.43876797 1e-6 5 117 0.027132697 1e-6 6 117 0.0068442971 1e-6 13 117 0.0002444 1e-6 14 117 0.12613046 1e-6 60 117 0.0034220999 1e-6 82 117 0.0031776999 1e-6 88 117 0.0002444 1e-6 98 117 0.00073329988 1e-6 102 117 0.0034220999 1e-6 104 117 0.00097779999 1e-6 107 117 0.0002444 1e-6 114 117 0.0002444 1e-6 117 117 0.032265898 1e-6 118 117 0.016132999 1e-6 119 117 0.0043998994 1e-6 120 117 0.00097779999 1e-6 122 117 0.0065998994 1e-6 198 117 0.0012222 1e-6 204 117 0.00097779999 1e-6 206 117 0.0002444 1e-6 214 117 0.0012222 1e-6 228 117 0.00048889988 1e-6 229 117 0.00048889988 1e-6 230 117 0.0002444 1e-6 231 117 0.0002444 1e-6 234 117 0.0014666 1e-6 237 117 0.0002444 1e-6 241 117 0.00073329988 1e-6 242 117 0.00048889988 1e-6 253 117 0.00073329988 1e-6 272 117 0.00048889988 1e-6 300 117 0.00097779999 1e-6 301 117 0.0014666 1e-6 314 117 0.0002444 1e-6 325 117 0.0002444 1e-6 344 117 0.00048889988 1e-6 351 117 0.0002444 1e-6 358 117 0.00048889988 1e-6 443 117 0.023710597 1e-6 444 117 0.00048889988 1e-6 445 117 0.023466099 1e-6 446 117 0.0012222 1e-6 447 117 0.00048889988 1e-6 450 117 0.0014666 1e-6 452 117 0.014177497 1e-6 453 117 0.0051331967 1e-6 454 117 0.0002444 1e-6 455 117 0.070642889 1e-6 456 117 0.0002444 1e-6 457 117 0.0024444 1e-6 459 117 0.00048889988 1e-6 460 117 0.0063553974 1e-6 463 117 0.00048889988 1e-6 464 117 0.0002444 1e-6 465 117 0.0012222 1e-6 467 117 0.0065998994 1e-6 468 117 0.0024444 1e-6 469 117 0.0012222 1e-6 470 117 0.0012222 1e-6 471 117 0.0017110999 1e-6 478 117 0.00048889988 1e-6 483 117 0.00073329988 1e-6 490 117 0.00048889988 1e-6 491 117 0.0031776999 1e-6 4 118 0.0095405988 1e-6 5 118 0.0085460991 1e-6 6 118 0.0083986968 1e-6 13 118 3.6799989e-05 1e-6 14 118 0.74266028 1e-6 17 118 7.3699994e-05 1e-6 22 118 0.00077359984 1e-6 60 118 0.0012155999 1e-6 82 118 0.007993497 1e-6 84 118 3.6799989e-05 1e-6 94 118 3.6799989e-05 1e-6 102 118 3.6799989e-05 1e-6 104 118 0.001584 1e-6 114 118 3.6799989e-05 1e-6 117 118 0.0023206999 1e-6 118 118 0.022654399 1e-6 119 118 0.0025416999 1e-6 120 118 0.00062619988 1e-6 122 118 0.0020627999 1e-6 126 118 3.6799989e-05 1e-6 151 118 3.6799989e-05 1e-6 193 118 0.00092089991 1e-6 198 118 0.0014734999 1e-6 204 118 0.0002946998 1e-6 206 118 7.3699994e-05 1e-6 214 118 0.00092089991 1e-6 224 118 3.6799989e-05 1e-6 229 118 0.00051569985 1e-6 230 118 7.3699994e-05 1e-6 231 118 3.6799989e-05 1e-6 234 118 0.0010682999 1e-6 237 118 7.3699994e-05 1e-6 241 118 0.0014366 1e-6 242 118 0.0013628998 1e-6 252 118 3.6799989e-05 1e-6 253 118 0.00033149985 1e-6 272 118 0.00022099999 1e-6 277 118 3.6799989e-05 1e-6 279 118 3.6799989e-05 1e-6 300 118 0.00040519983 1e-6 301 118 0.0015470998 1e-6 314 118 3.6799989e-05 1e-6 325 118 3.6799989e-05 1e-6 344 118 0.00058939983 1e-6 350 118 3.6799989e-05 1e-6 351 118 0.00022099999 1e-6 358 118 0.00014729999 1e-6 402 118 3.6799989e-05 1e-6 443 118 0.019891698 1e-6 444 118 0.0016207998 1e-6 445 118 0.011861298 1e-6 446 118 0.0042729974 1e-6 447 118 0.0012524 1e-6 450 118 0.00040519983 1e-6 452 118 0.0045308992 1e-6 453 118 0.0044203997 1e-6 454 118 0.00033149985 1e-6 455 118 0.015581798 1e-6 456 118 7.3699994e-05 1e-6 457 118 0.0025785998 1e-6 458 118 0.00018419999 1e-6 459 118 0.00044199987 1e-6 460 118 0.00040519983 1e-6 463 118 0.0011419 1e-6 464 118 0.0016575998 1e-6 465 118 0.00014729999 1e-6 467 118 0.0021733998 1e-6 468 118 0.00081039988 1e-6 469 118 0.0020996998 1e-6 470 118 0.0005524999 1e-6 471 118 0.0034625998 1e-6 473 118 3.6799989e-05 1e-6 477 118 3.6799989e-05 1e-6 478 118 0.0001105 1e-6 483 118 0.0001105 1e-6 489 118 3.6799989e-05 1e-6 490 118 0.00014729999 1e-6 491 118 0.0036099998 1e-6 4 119 0.030545499 1e-6 5 119 0.0025454999 1e-6 6 119 0.00072729983 1e-6 9 119 0.00036359997 1e-6 10 119 0.0036364 1e-6 11 119 0.00036359997 1e-6 13 119 0.056727298 1e-6 14 119 0.34036356 1e-6 17 119 0.0029090999 1e-6 22 119 0.00036359997 1e-6 24 119 0.0032726999 1e-6 60 119 0.0018181999 1e-6 82 119 0.0105455 1e-6 84 119 0.00072729983 1e-6 88 119 0.0010908998 1e-6 104 119 0.0029090999 1e-6 107 119 0.0036364 1e-6 108 119 0.0050908998 1e-6 109 119 0.0025454999 1e-6 116 119 0.0018181999 1e-6 117 119 0.0079999976 1e-6 118 119 0.038545497 1e-6 119 119 0.012727298 1e-6 120 119 0.021454498 1e-6 122 119 0.017454498 1e-6 125 119 0.00036359997 1e-6 192 119 0.00072729983 1e-6 198 119 0.0058181994 1e-6 204 119 0.0025454999 1e-6 214 119 0.0021817998 1e-6 215 119 0.0010908998 1e-6 231 119 0.00036359997 1e-6 234 119 0.0021817998 1e-6 241 119 0.0029090999 1e-6 242 119 0.00036359997 1e-6 253 119 0.0025454999 1e-6 272 119 0.0029090999 1e-6 300 119 0.0043635964 1e-6 301 119 0.0054544993 1e-6 314 119 0.00036359997 1e-6 325 119 0.0010908998 1e-6 344 119 0.00036359997 1e-6 350 119 0.00036359997 1e-6 351 119 0.00036359997 1e-6 356 119 0.00036359997 1e-6 443 119 0.016727298 1e-6 444 119 0.00072729983 1e-6 445 119 0.0192727 1e-6 446 119 0.0149091 1e-6 447 119 0.0021817998 1e-6 450 119 0.00036359997 1e-6 452 119 0.006545499 1e-6 453 119 0.0047272965 1e-6 454 119 0.00072729983 1e-6 455 119 0.044 1e-6 457 119 0.0025454999 1e-6 459 119 0.0101818 1e-6 460 119 0.0025454999 1e-6 463 119 0.0018181999 1e-6 464 119 0.00036359997 1e-6 465 119 0.00072729983 1e-6 467 119 0.0050908998 1e-6 468 119 0.021090899 1e-6 469 119 0.00072729983 1e-6 470 119 0.0010908998 1e-6 489 119 0.00036359997 1e-6 490 119 0.081090868 1e-6 491 119 0.0061817989 1e-6 1 120 0.004378397 1e-6 2 120 0.18949187 1e-6 6 120 0.00020359999 1e-6 13 120 0.00020359999 1e-6 14 120 0.0016291998 1e-6 17 120 0.036656097 1e-6 21 120 0.00010179999 1e-6 22 120 0.00010179999 1e-6 24 120 0.00030549988 1e-6 60 120 0.0021382999 1e-6 82 120 0.040728997 1e-6 83 120 0.00061089988 1e-6 84 120 0.0096731 1e-6 85 120 0.0011199999 1e-6 88 120 0.00010179999 1e-6 91 120 0.0019345998 1e-6 96 120 0.00091639999 1e-6 102 120 0.00010179999 1e-6 104 120 0.00030549988 1e-6 114 120 0.00010179999 1e-6 117 120 0.00081459992 1e-6 118 120 0.0046837963 1e-6 119 120 0.0016291998 1e-6 120 120 0.25180739 1e-6 122 120 0.0023418998 1e-6 125 120 0.00040729996 1e-6 126 120 0.00010179999 1e-6 153 120 0.00010179999 1e-6 193 120 0.00020359999 1e-6 194 120 0.00010179999 1e-6 198 120 0.0023418998 1e-6 204 120 0.00040729996 1e-6 206 120 0.00020359999 1e-6 214 120 0.0029528998 1e-6 218 120 0.00040729996 1e-6 223 120 0.00040729996 1e-6 224 120 0.00040729996 1e-6 225 120 0.00010179999 1e-6 229 120 0.00040729996 1e-6 230 120 0.00020359999 1e-6 231 120 0.00020359999 1e-6 232 120 0.00010179999 1e-6 234 120 0.0060075 1e-6 237 120 0.00020359999 1e-6 241 120 0.0021382999 1e-6 252 120 0.00010179999 1e-6 253 120 0.00030549988 1e-6 277 120 0.00030549988 1e-6 279 120 0.00010179999 1e-6 300 120 0.0015272999 1e-6 301 120 0.0037673998 1e-6 324 120 0.00020359999 1e-6 325 120 0.00010179999 1e-6 344 120 0.00040729996 1e-6 358 120 0.0005090998 1e-6 402 120 0.00010179999 1e-6 443 120 0.0079421997 1e-6 444 120 0.00010179999 1e-6 445 120 0.0091639981 1e-6 446 120 0.0015272999 1e-6 447 120 0.0019345998 1e-6 450 120 0.0016291998 1e-6 452 120 0.008145798 1e-6 453 120 0.0085530989 1e-6 454 120 0.00071279984 1e-6 455 120 0.044700097 1e-6 456 120 0.00020359999 1e-6 457 120 0.0021382999 1e-6 458 120 0.00010179999 1e-6 459 120 0.00061089988 1e-6 460 120 0.0016291998 1e-6 463 120 0.0047856979 1e-6 464 120 0.00020359999 1e-6 465 120 0.0065165982 1e-6 467 120 0.0054983981 1e-6 468 120 0.0039710999 1e-6 469 120 0.0019345998 1e-6 470 120 0.0021382999 1e-6 471 120 0.0016291998 1e-6 473 120 0.00010179999 1e-6 478 120 0.00040729996 1e-6 483 120 0.00071279984 1e-6 490 120 0.00040729996 1e-6 491 120 0.004378397 1e-6 3 121 0.00041569979 1e-6 5 121 4.6199988e-05 1e-6 9 121 0.00046189991 1e-6 10 121 4.6199988e-05 1e-6 11 121 0.00073899981 1e-6 13 121 0.0012469999 1e-6 14 121 0.00073899981 1e-6 17 121 4.6199988e-05 1e-6 22 121 4.6199988e-05 1e-6 60 121 0.0013394 1e-6 93 121 4.6199988e-05 1e-6 94 121 9.2399991e-05 1e-6 98 121 0.00013859999 1e-6 104 121 0.00018469999 1e-6 105 121 0.00018469999 1e-6 106 121 4.6199988e-05 1e-6 107 121 0.0006465998 1e-6 108 121 0.00013859999 1e-6 109 121 4.6199988e-05 1e-6 114 121 9.2399991e-05 1e-6 115 121 4.6199988e-05 1e-6 116 121 9.2399991e-05 1e-6 118 121 4.6199988e-05 1e-6 119 121 9.2399991e-05 1e-6 120 121 9.2399991e-05 1e-6 121 121 0.0005541998 1e-6 122 121 0.00073899981 1e-6 125 121 0.00013859999 1e-6 126 121 4.6199988e-05 1e-6 151 121 0.0015703 1e-6 153 121 0.0016627 1e-6 189 121 4.6199988e-05 1e-6 192 121 0.00032329978 1e-6 193 121 0.0078514963 1e-6 194 121 4.6199988e-05 1e-6 198 121 0.031775396 1e-6 204 121 0.0052650981 1e-6 206 121 9.2399991e-05 1e-6 214 121 0.001986 1e-6 223 121 0.0002309 1e-6 229 121 0.0003694999 1e-6 230 121 0.00013859999 1e-6 231 121 0.00018469999 1e-6 232 121 4.6199988e-05 1e-6 234 121 0.0015703 1e-6 237 121 0.00013859999 1e-6 241 121 0.0060501993 1e-6 242 121 0.0015240998 1e-6 252 121 4.6199988e-05 1e-6 253 121 0.015379597 1e-6 272 121 0.0002770999 1e-6 279 121 0.0005541998 1e-6 300 121 0.052004397 1e-6 314 121 0.0026786998 1e-6 325 121 9.2399991e-05 1e-6 344 121 0.00050799991 1e-6 356 121 4.6199988e-05 1e-6 358 121 0.0002309 1e-6 387 121 4.6199988e-05 1e-6 402 121 4.6199988e-05 1e-6 443 121 0.0036024 1e-6 444 121 0.0043875985 1e-6 445 121 0.004202798 1e-6 446 121 0.023323499 1e-6 447 121 0.0015703 1e-6 450 121 0.00073899981 1e-6 452 121 0.0023553998 1e-6 453 121 0.0013394 1e-6 454 121 0.0018936 1e-6 455 121 0.032745197 1e-6 456 121 0.00013859999 1e-6 457 121 0.0024015999 1e-6 458 121 4.6199988e-05 1e-6 459 121 0.00041569979 1e-6 460 121 0.0029557999 1e-6 463 121 0.0037872 1e-6 464 121 0.0017088 1e-6 465 121 0.00032329978 1e-6 467 121 0.0039718971 1e-6 468 121 0.042259399 1e-6 469 121 0.0033714999 1e-6 470 121 0.0013394 1e-6 471 121 0.0049879998 1e-6 473 121 4.6199988e-05 1e-6 477 121 4.6199988e-05 1e-6 478 121 0.0002309 1e-6 483 121 0.00069279992 1e-6 490 121 0.4301219 1e-6 491 121 0.00032329978 1e-6 0 122 0.0065629967 1e-6 2 122 0.0081926994 1e-6 3 122 4.3999986e-05 1e-6 4 122 0.0040082969 1e-6 5 122 0.0023345 1e-6 6 122 0.0011011998 1e-6 9 122 0.00057259994 1e-6 10 122 0.0002642998 1e-6 11 122 0.0017618998 1e-6 13 122 0.00096899993 1e-6 14 122 0.10064745 1e-6 17 122 4.3999986e-05 1e-6 22 122 0.00048449985 1e-6 24 122 4.3999986e-05 1e-6 60 122 0.0016737999 1e-6 82 122 0.041712496 1e-6 83 122 4.3999986e-05 1e-6 85 122 0.0015856999 1e-6 86 122 8.8099987e-05 1e-6 87 122 0.0051975995 1e-6 88 122 0.00017619999 1e-6 90 122 0.0025106999 1e-6 93 122 4.3999986e-05 1e-6 95 122 0.00088089984 1e-6 98 122 4.3999986e-05 1e-6 104 122 0.012377199 1e-6 107 122 0.0016297 1e-6 108 122 0.00044049998 1e-6 109 122 0.00022019999 1e-6 114 122 4.3999986e-05 1e-6 116 122 0.00017619999 1e-6 117 122 0.0342246 1e-6 118 122 0.18530589 1e-6 119 122 0.0606528 1e-6 120 122 0.0003082999 1e-6 122 122 0.096683264 1e-6 125 122 0.00096899993 1e-6 126 122 4.3999986e-05 1e-6 130 122 4.3999986e-05 1e-6 150 122 4.3999986e-05 1e-6 151 122 8.8099987e-05 1e-6 189 122 4.3999986e-05 1e-6 192 122 0.00061669992 1e-6 193 122 0.00092499983 1e-6 194 122 4.3999986e-05 1e-6 198 122 0.0198652 1e-6 204 122 0.013874799 1e-6 206 122 8.8099987e-05 1e-6 214 122 0.0064308979 1e-6 223 122 4.3999986e-05 1e-6 229 122 0.00048449985 1e-6 230 122 0.00013209999 1e-6 231 122 0.0016737999 1e-6 234 122 0.0023345 1e-6 237 122 0.00013209999 1e-6 241 122 0.012200996 1e-6 242 122 0.0013213998 1e-6 252 122 4.3999986e-05 1e-6 253 122 0.016473599 1e-6 272 122 0.00035239989 1e-6 279 122 0.00092499983 1e-6 300 122 0.014667697 1e-6 301 122 0.0015856999 1e-6 314 122 0.0027749999 1e-6 317 122 4.3999986e-05 1e-6 324 122 0.00013209999 1e-6 325 122 0.0024225998 1e-6 340 122 0.00013209999 1e-6 344 122 0.00057259994 1e-6 350 122 0.0014535999 1e-6 351 122 0.0019381 1e-6 356 122 4.3999986e-05 1e-6 358 122 0.00022019999 1e-6 402 122 4.3999986e-05 1e-6 443 122 0.018455699 1e-6 444 122 0.0021582998 1e-6 445 122 0.025371097 1e-6 446 122 0.0014535999 1e-6 447 122 0.0026427999 1e-6 450 122 0.00088089984 1e-6 452 122 0.0037439999 1e-6 453 122 0.0035677999 1e-6 454 122 0.0010130999 1e-6 455 122 0.045280397 1e-6 456 122 0.00013209999 1e-6 457 122 0.0022023998 1e-6 458 122 0.00048449985 1e-6 459 122 0.00052859983 1e-6 460 122 0.0016737999 1e-6 463 122 0.0020261998 1e-6 464 122 0.00039639999 1e-6 465 122 0.00048449985 1e-6 467 122 0.005770199 1e-6 468 122 0.0306127 1e-6 469 122 0.0012333 1e-6 470 122 0.0010570998 1e-6 471 122 0.0011892999 1e-6 473 122 4.3999986e-05 1e-6 477 122 4.3999986e-05 1e-6 478 122 0.0002642998 1e-6 483 122 0.00039639999 1e-6 490 122 0.00088089984 1e-6 491 122 0.0013213998 1e-6 17 123 0.00091659999 1e-6 22 123 0.00091659999 1e-6 60 123 0.021998197 1e-6 114 123 0.00091659999 1e-6 123 123 0.0018332 1e-6 193 123 0.0183318 1e-6 198 123 0.00091659999 1e-6 206 123 0.0018332 1e-6 230 123 0.00091659999 1e-6 234 123 0.0082492977 1e-6 237 123 0.0018332 1e-6 241 123 0.013748899 1e-6 272 123 0.0018332 1e-6 277 123 0.00091659999 1e-6 324 123 0.00091659999 1e-6 334 123 0.00091659999 1e-6 358 123 0.0027498 1e-6 366 123 0.00091659999 1e-6 444 123 0.00091659999 1e-6 445 123 0.016498599 1e-6 447 123 0.0064160973 1e-6 450 123 0.0082492977 1e-6 452 123 0.076076984 1e-6 453 123 0.00091659999 1e-6 454 123 0.012832299 1e-6 455 123 0.0073326975 1e-6 456 123 0.00091659999 1e-6 457 123 0.0027498 1e-6 458 123 0.0018332 1e-6 459 123 0.00091659999 1e-6 460 123 0.0036664 1e-6 463 123 0.010082498 1e-6 464 123 0.0018332 1e-6 465 123 0.0018332 1e-6 467 123 0.034830399 1e-6 468 123 0.0054994971 1e-6 469 123 0.010082498 1e-6 470 123 0.010999098 1e-6 471 123 0.009165898 1e-6 478 123 0.0018332 1e-6 483 123 0.0054994971 1e-6 490 123 0.0018332 1e-6 0 124 0.0088593997 1e-6 3 124 0.00055369991 1e-6 5 124 0.024640098 1e-6 9 124 0.00055369991 1e-6 11 124 0.0011073998 1e-6 13 124 0.00055369991 1e-6 14 124 0.0127353 1e-6 60 124 0.0024917 1e-6 85 124 0.020210396 1e-6 87 124 0.0074750967 1e-6 88 124 0.00055369991 1e-6 90 124 0.0027684998 1e-6 94 124 0.0019379999 1e-6 97 124 0.0002768999 1e-6 98 124 0.27380949 1e-6 104 124 0.00055369991 1e-6 105 124 0.0002768999 1e-6 107 124 0.0019379999 1e-6 114 124 0.0002768999 1e-6 118 124 0.0011073998 1e-6 122 124 0.0016611 1e-6 124 124 0.011627898 1e-6 125 124 0.0002768999 1e-6 192 124 0.013012197 1e-6 193 124 0.0096898973 1e-6 198 124 0.059523799 1e-6 204 124 0.00083059981 1e-6 206 124 0.00055369991 1e-6 214 124 0.0011073998 1e-6 223 124 0.00055369991 1e-6 228 124 0.0127353 1e-6 229 124 0.0002768999 1e-6 230 124 0.00055369991 1e-6 234 124 0.0038759999 1e-6 237 124 0.00055369991 1e-6 241 124 0.033222597 1e-6 252 124 0.0002768999 1e-6 253 124 0.00055369991 1e-6 272 124 0.0002768999 1e-6 279 124 0.0013842999 1e-6 300 124 0.0011073998 1e-6 314 124 0.0002768999 1e-6 325 124 0.0002768999 1e-6 340 124 0.0002768999 1e-6 344 124 0.0002768999 1e-6 358 124 0.00083059981 1e-6 443 124 0.023255799 1e-6 444 124 0.0002768999 1e-6 445 124 0.018826097 1e-6 446 124 0.00055369991 1e-6 447 124 0.011627898 1e-6 450 124 0.0024917 1e-6 452 124 0.0066444986 1e-6 453 124 0.0016611 1e-6 454 124 0.00055369991 1e-6 455 124 0.040974498 1e-6 456 124 0.0002768999 1e-6 457 124 0.0024917 1e-6 458 124 0.00055369991 1e-6 459 124 0.00055369991 1e-6 460 124 0.0024917 1e-6 463 124 0.0063676983 1e-6 464 124 0.00055369991 1e-6 465 124 0.0011073998 1e-6 467 124 0.0083055981 1e-6 468 124 0.026854899 1e-6 469 124 0.0033222998 1e-6 470 124 0.0035990998 1e-6 471 124 0.0024917 1e-6 478 124 0.00055369991 1e-6 483 124 0.00083059981 1e-6 490 124 0.0027684998 1e-6 0 125 0.0035058998 1e-6 1 125 0.00034269993 1e-6 2 125 0.0018189 1e-6 3 125 0.014418997 1e-6 5 125 0.0044284984 1e-6 6 125 0.0038221998 1e-6 9 125 0.017160498 1e-6 10 125 0.0001318 1e-6 11 125 0.025437597 1e-6 12 125 7.9099991e-05 1e-6 13 125 0.016079698 1e-6 14 125 0.025463898 1e-6 16 125 0.0004480998 1e-6 17 125 0.0026623998 1e-6 22 125 0.00021089999 1e-6 24 125 2.6399997e-05 1e-6 60 125 0.0020297 1e-6 82 125 0.0025042 1e-6 83 125 0.00010539999 1e-6 84 125 0.00052719982 1e-6 85 125 0.00055359979 1e-6 86 125 7.9099991e-05 1e-6 87 125 0.0006589999 1e-6 88 125 0.0011862 1e-6 90 125 0.0013970998 1e-6 91 125 2.6399997e-05 1e-6 93 125 0.0011862 1e-6 94 125 0.0010279999 1e-6 95 125 0.00028999988 1e-6 97 125 7.9099991e-05 1e-6 98 125 0.0091469996 1e-6 100 125 0.00010539999 1e-6 102 125 0.00010539999 1e-6 103 125 0.0001318 1e-6 104 125 0.0079607964 1e-6 105 125 0.006563697 1e-6 106 125 0.0020560999 1e-6 107 125 0.026043899 1e-6 108 125 0.0001582 1e-6 109 125 0.00081719994 1e-6 112 125 2.6399997e-05 1e-6 113 125 0.00063259993 1e-6 114 125 0.0001318 1e-6 115 125 0.0022143 1e-6 116 125 0.0027150998 1e-6 117 125 0.00097529986 1e-6 118 125 0.0044284984 1e-6 119 125 0.0021088 1e-6 120 125 0.00026359991 1e-6 121 125 2.6399997e-05 1e-6 122 125 0.029022597 1e-6 124 125 0.00010539999 1e-6 125 125 0.0054301992 1e-6 126 125 5.2699994e-05 1e-6 150 125 0.00036899978 1e-6 151 125 5.2699994e-05 1e-6 153 125 5.2699994e-05 1e-6 160 125 2.6399997e-05 1e-6 169 125 2.6399997e-05 1e-6 172 125 5.2699994e-05 1e-6 189 125 5.2699994e-05 1e-6 190 125 5.2699994e-05 1e-6 191 125 0.00068539986 1e-6 192 125 0.011862099 1e-6 193 125 0.0037958999 1e-6 194 125 0.00010539999 1e-6 197 125 2.6399997e-05 1e-6 198 125 0.0279154 1e-6 200 125 2.6399997e-05 1e-6 203 125 5.2699994e-05 1e-6 204 125 0.0081188977 1e-6 206 125 0.0001318 1e-6 207 125 2.6399997e-05 1e-6 214 125 0.004191298 1e-6 218 125 5.2699994e-05 1e-6 219 125 5.2699994e-05 1e-6 223 125 0.0088569969 1e-6 224 125 2.6399997e-05 1e-6 228 125 0.00023719999 1e-6 229 125 0.00031629996 1e-6 230 125 0.0004480998 1e-6 231 125 0.00028999988 1e-6 232 125 0.00010539999 1e-6 234 125 0.0031895998 1e-6 237 125 0.00034269993 1e-6 240 125 2.6399997e-05 1e-6 241 125 0.029628798 1e-6 242 125 0.0014497999 1e-6 252 125 0.0001582 1e-6 253 125 0.018715698 1e-6 270 125 2.6399997e-05 1e-6 272 125 0.00036899978 1e-6 277 125 7.9099991e-05 1e-6 279 125 0.0006589999 1e-6 300 125 0.021483596 1e-6 301 125 0.00092259981 1e-6 314 125 0.0045866966 1e-6 317 125 2.6399997e-05 1e-6 325 125 0.0043230988 1e-6 326 125 2.6399997e-05 1e-6 340 125 7.9099991e-05 1e-6 344 125 0.00092259981 1e-6 350 125 2.6399997e-05 1e-6 351 125 5.2699994e-05 1e-6 358 125 0.00068539986 1e-6 366 125 2.6399997e-05 1e-6 384 125 2.6399997e-05 1e-6 387 125 2.6399997e-05 1e-6 394 125 2.6399997e-05 1e-6 397 125 2.6399997e-05 1e-6 402 125 0.0001582 1e-6 414 125 2.6399997e-05 1e-6 419 125 2.6399997e-05 1e-6 422 125 0.00010539999 1e-6 423 125 2.6399997e-05 1e-6 425 125 2.6399997e-05 1e-6 430 125 2.6399997e-05 1e-6 431 125 2.6399997e-05 1e-6 433 125 2.6399997e-05 1e-6 434 125 2.6399997e-05 1e-6 443 125 0.0096214972 1e-6 444 125 0.0019506998 1e-6 445 125 0.0294443 1e-6 446 125 0.0036640998 1e-6 447 125 0.0058255978 1e-6 448 125 2.6399997e-05 1e-6 450 125 0.0023196999 1e-6 452 125 0.0047711991 1e-6 453 125 0.0030313998 1e-6 454 125 0.00052719982 1e-6 455 125 0.053959299 1e-6 456 125 0.00050079986 1e-6 457 125 0.0041121989 1e-6 458 125 0.00047449977 1e-6 459 125 0.00050079986 1e-6 460 125 0.0021352 1e-6 463 125 0.0137337 1e-6 464 125 0.00023719999 1e-6 465 125 0.0050083995 1e-6 467 125 0.011651199 1e-6 468 125 0.0526677 1e-6 469 125 0.0032686999 1e-6 470 125 0.0035322998 1e-6 471 125 0.0049029998 1e-6 473 125 7.9099991e-05 1e-6 477 125 5.2699994e-05 1e-6 478 125 0.00068539986 1e-6 483 125 0.00086989999 1e-6 489 125 0.00023719999 1e-6 490 125 0.049688898 1e-6 491 125 0.00026359991 1e-6 22 126 0.0002077 1e-6 60 126 0.00064049987 1e-6 104 126 0.00027699978 1e-6 108 126 1.7299986e-05 1e-6 114 126 1.7299986e-05 1e-6 126 126 1.7299986e-05 1e-6 129 126 0.19280237 1e-6 151 126 1.7299986e-05 1e-6 187 126 0.012584597 1e-6 189 126 1.7299986e-05 1e-6 190 126 1.7299986e-05 1e-6 194 126 3.4599987e-05 1e-6 198 126 0.0089147985 1e-6 200 126 1.7299986e-05 1e-6 203 126 1.7299986e-05 1e-6 204 126 0.010316998 1e-6 206 126 3.4599987e-05 1e-6 214 126 0.00015579999 1e-6 229 126 0.00076169986 1e-6 234 126 0.00070969993 1e-6 237 126 8.659999e-05 1e-6 241 126 0.016150497 1e-6 252 126 3.4599987e-05 1e-6 272 126 0.00034619984 1e-6 279 126 0.00019039999 1e-6 284 126 1.7299986e-05 1e-6 325 126 0.0047775991 1e-6 340 126 5.1899988e-05 1e-6 350 126 0.0006750999 1e-6 356 126 1.7299986e-05 1e-6 358 126 0.00032889983 1e-6 387 126 1.7299986e-05 1e-6 402 126 5.1899988e-05 1e-6 404 126 1.7299986e-05 1e-6 422 126 3.4599987e-05 1e-6 430 126 1.7299986e-05 1e-6 434 126 1.7299986e-05 1e-6 443 126 0.0009347999 1e-6 444 126 0.00079629989 1e-6 445 126 0.0020252999 1e-6 446 126 0.00012119999 1e-6 447 126 0.00076169986 1e-6 450 126 0.00060589984 1e-6 452 126 0.0010213 1e-6 453 126 0.0002597 1e-6 454 126 0.0002597 1e-6 455 126 0.0051584989 1e-6 456 126 0.00010389999 1e-6 457 126 0.0014020998 1e-6 458 126 0.00098669995 1e-6 459 126 0.0017309999 1e-6 460 126 0.0004153999 1e-6 463 126 0.0018867999 1e-6 464 126 0.000225 1e-6 465 126 0.0042063966 1e-6 467 126 0.0027003998 1e-6 468 126 0.059530199 1e-6 469 126 0.00084819994 1e-6 470 126 0.00091739977 1e-6 471 126 0.00057119993 1e-6 472 126 0.00017309999 1e-6 473 126 1.7299986e-05 1e-6 477 126 6.9199989e-05 1e-6 478 126 0.000225 1e-6 483 126 0.0018002999 1e-6 489 126 1.7299986e-05 1e-6 490 126 8.659999e-05 1e-6 491 126 0.00072699995 1e-6 8 127 0.017421599 1e-6 60 127 0.0017422 1e-6 104 127 0.00049779983 1e-6 114 127 0.00024889992 1e-6 126 127 0.00024889992 1e-6 127 127 0.0014932998 1e-6 129 127 0.25311095 1e-6 150 127 0.00024889992 1e-6 172 127 0.00049779983 1e-6 187 127 0.00099549978 1e-6 194 127 0.00024889992 1e-6 198 127 0.033847697 1e-6 204 127 0.00074659986 1e-6 206 127 0.00049779983 1e-6 229 127 0.00074659986 1e-6 234 127 0.0032354 1e-6 237 127 0.00049779983 1e-6 241 127 0.017670497 1e-6 252 127 0.00024889992 1e-6 272 127 0.00024889992 1e-6 279 127 0.00049779983 1e-6 317 127 0.00024889992 1e-6 325 127 0.0069685988 1e-6 358 127 0.0017422 1e-6 402 127 0.00024889992 1e-6 443 127 0.00024889992 1e-6 444 127 0.00024889992 1e-6 445 127 0.0037331998 1e-6 447 127 0.0017422 1e-6 450 127 0.0029865999 1e-6 452 127 0.0037331998 1e-6 453 127 0.00074659986 1e-6 454 127 0.0014932998 1e-6 455 127 0.0052264966 1e-6 456 127 0.00024889992 1e-6 457 127 0.0019909998 1e-6 458 127 0.00099549978 1e-6 459 127 0.0012443999 1e-6 460 127 0.00049779983 1e-6 463 127 0.0032354 1e-6 464 127 0.00024889992 1e-6 465 127 0.0047286972 1e-6 467 127 0.010452997 1e-6 468 127 0.020408198 1e-6 469 127 0.0037331998 1e-6 470 127 0.0039820969 1e-6 471 127 0.0029865999 1e-6 473 127 0.00024889992 1e-6 478 127 0.00099549978 1e-6 483 127 0.0037331998 1e-6 490 127 0.00049779983 1e-6 491 127 0.00024889992 1e-6 8 128 0.017788097 1e-6 22 128 0.0011600999 1e-6 60 128 0.0023202 1e-6 104 128 0.015854597 1e-6 114 128 0.0003866998 1e-6 128 128 0.0023202 1e-6 129 128 0.25870067 1e-6 187 128 0.0042536967 1e-6 192 128 0.0019334999 1e-6 193 128 0.0073472969 1e-6 198 128 0.017788097 1e-6 204 128 0.0069605969 1e-6 206 128 0.0003866998 1e-6 229 128 0.0011600999 1e-6 234 128 0.0015467999 1e-6 241 128 0.0073472969 1e-6 272 128 0.00077339984 1e-6 279 128 0.0003866998 1e-6 300 128 0.0019334999 1e-6 325 128 0.0061871968 1e-6 340 128 0.0003866998 1e-6 350 128 0.0003866998 1e-6 358 128 0.00077339984 1e-6 443 128 0.0023202 1e-6 444 128 0.0019334999 1e-6 445 128 0.0042536967 1e-6 446 128 0.0003866998 1e-6 447 128 0.018561497 1e-6 450 128 0.0015467999 1e-6 452 128 0.0019334999 1e-6 453 128 0.00077339984 1e-6 455 128 0.0058004968 1e-6 457 128 0.0023202 1e-6 458 128 0.0003866998 1e-6 459 128 0.0019334999 1e-6 460 128 0.0003866998 1e-6 463 128 0.012760997 1e-6 464 128 0.0003866998 1e-6 465 128 0.0015467999 1e-6 467 128 0.0050270967 1e-6 468 128 0.11136889 1e-6 469 128 0.0030935998 1e-6 470 128 0.0034802998 1e-6 471 128 0.0015467999 1e-6 478 128 0.0003866998 1e-6 483 128 0.0038669999 1e-6 490 128 0.0003866998 1e-6 491 128 0.0030935998 1e-6 8 129 0.5532372 1e-6 22 129 7.1599992e-05 1e-6 60 129 0.00093049998 1e-6 104 129 7.1599992e-05 1e-6 114 129 3.5799996e-05 1e-6 126 129 3.5799996e-05 1e-6 129 129 0.26316166 1e-6 130 129 3.5799996e-05 1e-6 151 129 3.5799996e-05 1e-6 159 129 0.00010739999 1e-6 160 129 0.00057259994 1e-6 172 129 0.0016104998 1e-6 186 129 0.00025049993 1e-6 187 129 0.0001432 1e-6 189 129 3.5799996e-05 1e-6 193 129 3.5799996e-05 1e-6 198 129 0.00071579986 1e-6 204 129 0.00010739999 1e-6 206 129 7.1599992e-05 1e-6 214 129 7.1599992e-05 1e-6 229 129 0.0016462998 1e-6 234 129 0.00078739994 1e-6 237 129 3.5799996e-05 1e-6 241 129 0.00017889999 1e-6 252 129 3.5799996e-05 1e-6 272 129 0.00010739999 1e-6 279 129 3.5799996e-05 1e-6 325 129 7.1599992e-05 1e-6 356 129 3.5799996e-05 1e-6 358 129 0.00021469999 1e-6 443 129 0.0017894998 1e-6 444 129 7.1599992e-05 1e-6 445 129 0.043949798 1e-6 446 129 0.00028629997 1e-6 447 129 0.00071579986 1e-6 450 129 0.00035789981 1e-6 452 129 0.0013599999 1e-6 453 129 0.00028629997 1e-6 454 129 0.00010739999 1e-6 455 129 0.0012526 1e-6 456 129 3.5799996e-05 1e-6 457 129 0.0012883998 1e-6 458 129 0.00010739999 1e-6 459 129 0.00071579986 1e-6 460 129 0.00028629997 1e-6 463 129 0.0025768999 1e-6 464 129 7.1599992e-05 1e-6 465 129 0.00010739999 1e-6 467 129 0.0091263987 1e-6 468 129 0.0015389998 1e-6 469 129 0.0007515999 1e-6 470 129 0.00085899979 1e-6 471 129 0.0005367999 1e-6 473 129 3.5799996e-05 1e-6 477 129 3.5799996e-05 1e-6 478 129 0.00010739999 1e-6 483 129 0.0019325998 1e-6 490 129 0.0070147999 1e-6 491 129 3.5799996e-05 1e-6 2 130 0.0017565 1e-6 4 130 0.0603249 1e-6 9 130 8.8999996e-06 1e-6 13 130 0.0001508 1e-6 16 130 8.8999996e-06 1e-6 18 130 8.8999996e-06 1e-6 22 130 0.00074519985 1e-6 25 130 4.4399989e-05 1e-6 60 130 0.0025903999 1e-6 79 130 8.8999996e-06 1e-6 82 130 8.8999996e-06 1e-6 83 130 8.8999996e-06 1e-6 84 130 6.2099993e-05 1e-6 104 130 0.0018451998 1e-6 108 130 1.7699989e-05 1e-6 113 130 2.6599999e-05 1e-6 114 130 6.2099993e-05 1e-6 126 130 2.6599999e-05 1e-6 127 130 8.8999996e-06 1e-6 130 130 0.32233 1e-6 131 130 0.00015969999 1e-6 132 130 0.052855197 1e-6 133 130 0.00045239995 1e-6 134 130 4.4399989e-05 1e-6 136 130 2.6599999e-05 1e-6 137 130 0.0001242 1e-6 138 130 0.0014016998 1e-6 139 130 0.00025729998 1e-6 140 130 6.2099993e-05 1e-6 141 130 1.7699989e-05 1e-6 142 130 0.00028389995 1e-6 143 130 0.0058816969 1e-6 145 130 1.7699989e-05 1e-6 146 130 2.6599999e-05 1e-6 149 130 0.0011443999 1e-6 150 130 0.00078949984 1e-6 151 130 0.00014189999 1e-6 152 130 0.00021289999 1e-6 155 130 8.8999996e-06 1e-6 156 130 8.8999996e-06 1e-6 157 130 0.00013309999 1e-6 158 130 7.0999988e-05 1e-6 171 130 0.00015969999 1e-6 186 130 1.7699989e-05 1e-6 187 130 8.8999996e-06 1e-6 189 130 7.9799996e-05 1e-6 190 130 8.8699991e-05 1e-6 192 130 0.0014282998 1e-6 193 130 0.0001065 1e-6 194 130 5.3199998e-05 1e-6 196 130 8.8999996e-06 1e-6 197 130 2.6599999e-05 1e-6 198 130 0.0062630996 1e-6 200 130 2.6599999e-05 1e-6 201 130 1.7699989e-05 1e-6 203 130 4.4399989e-05 1e-6 204 130 5.3199998e-05 1e-6 206 130 0.0001065 1e-6 207 130 3.5499994e-05 1e-6 209 130 8.8999996e-06 1e-6 214 130 0.024351697 1e-6 219 130 2.6599999e-05 1e-6 221 130 0.0012774998 1e-6 222 130 1.7699989e-05 1e-6 223 130 0.0039565973 1e-6 224 130 0.0014548998 1e-6 225 130 0.00019519999 1e-6 226 130 0.0220984 1e-6 227 130 0.043566998 1e-6 231 130 0.0045598969 1e-6 232 130 1.7699989e-05 1e-6 233 130 0.00040809996 1e-6 234 130 0.0025016998 1e-6 237 130 8.8699991e-05 1e-6 240 130 0.0001065 1e-6 241 130 0.0035662998 1e-6 242 130 5.3199998e-05 1e-6 243 130 8.8999996e-06 1e-6 248 130 8.8999996e-06 1e-6 250 130 8.8999996e-06 1e-6 251 130 8.8999996e-06 1e-6 252 130 0.0047815964 1e-6 253 130 1.7699989e-05 1e-6 263 130 8.8999996e-06 1e-6 271 130 0.0001242 1e-6 272 130 0.00050569978 1e-6 277 130 7.9799996e-05 1e-6 279 130 0.00011529999 1e-6 284 130 1.7699989e-05 1e-6 300 130 1.7699989e-05 1e-6 317 130 0.00014189999 1e-6 319 130 0.00038149999 1e-6 322 130 1.7699989e-05 1e-6 326 130 0.00079839979 1e-6 334 130 8.8999996e-06 1e-6 335 130 0.00095809996 1e-6 336 130 0.00078069977 1e-6 340 130 8.8999996e-06 1e-6 345 130 0.0062187985 1e-6 350 130 0.0002307 1e-6 351 130 1.7699989e-05 1e-6 356 130 7.0999988e-05 1e-6 358 130 0.0013927999 1e-6 365 130 0.0001774 1e-6 384 130 4.4399989e-05 1e-6 387 130 2.6599999e-05 1e-6 392 130 8.8999996e-06 1e-6 394 130 8.8999996e-06 1e-6 397 130 8.8999996e-06 1e-6 402 130 4.4399989e-05 1e-6 404 130 1.7699989e-05 1e-6 414 130 0.0001774 1e-6 419 130 8.8999996e-06 1e-6 421 130 0.00040809996 1e-6 422 130 0.00076289987 1e-6 423 130 8.8999996e-06 1e-6 425 130 8.8999996e-06 1e-6 430 130 1.7699989e-05 1e-6 431 130 1.7699989e-05 1e-6 432 130 8.8999996e-06 1e-6 433 130 1.7699989e-05 1e-6 434 130 2.6599999e-05 1e-6 435 130 2.6599999e-05 1e-6 437 130 2.6599999e-05 1e-6 442 130 8.8999996e-06 1e-6 443 130 0.0043380968 1e-6 444 130 0.0018540998 1e-6 445 130 0.0093946978 1e-6 446 130 0.00051449984 1e-6 447 130 0.0042670965 1e-6 448 130 1.7699989e-05 1e-6 449 130 8.8999996e-06 1e-6 450 130 0.0029187 1e-6 452 130 0.010015696 1e-6 453 130 0.0026169999 1e-6 454 130 0.0018806998 1e-6 455 130 0.043017 1e-6 456 130 0.000275 1e-6 457 130 0.0022089998 1e-6 458 130 0.00062989979 1e-6 459 130 0.00055889995 1e-6 460 130 0.00048789987 1e-6 463 130 0.0063518994 1e-6 464 130 0.0014725998 1e-6 465 130 0.00086049992 1e-6 467 130 0.012473099 1e-6 468 130 0.0026258999 1e-6 469 130 0.0025372 1e-6 470 130 0.0027945 1e-6 471 130 0.0010467998 1e-6 473 130 6.2099993e-05 1e-6 477 130 5.3199998e-05 1e-6 478 130 0.00096699991 1e-6 479 130 0.00079839979 1e-6 483 130 0.0012153999 1e-6 489 130 6.2099993e-05 1e-6 490 130 0.00040809996 1e-6 491 130 0.0013750999 1e-6 4 131 0.0029487999 1e-6 22 131 0.00018429999 1e-6 60 131 0.0027645 1e-6 108 131 0.00018429999 1e-6 114 131 0.00036859978 1e-6 126 131 0.00018429999 1e-6 130 131 0.014190897 1e-6 131 131 0.0086619966 1e-6 132 131 0.20586067 1e-6 138 131 0.00018429999 1e-6 139 131 0.00018429999 1e-6 142 131 0.013085097 1e-6 143 131 0.00018429999 1e-6 144 131 0.00018429999 1e-6 149 131 0.00036859978 1e-6 171 131 0.00018429999 1e-6 189 131 0.00018429999 1e-6 190 131 0.00018429999 1e-6 194 131 0.00018429999 1e-6 198 131 0.0014743998 1e-6 206 131 0.00036859978 1e-6 214 131 0.0014743998 1e-6 223 131 0.00018429999 1e-6 224 131 0.00018429999 1e-6 225 131 0.0005528999 1e-6 226 131 0.072797596 1e-6 227 131 0.10523409 1e-6 231 131 0.00018429999 1e-6 234 131 0.0031331 1e-6 237 131 0.00018429999 1e-6 240 131 0.030040499 1e-6 241 131 0.00018429999 1e-6 252 131 0.0038702998 1e-6 272 131 0.00036859978 1e-6 279 131 0.00092149992 1e-6 345 131 0.0129008 1e-6 356 131 0.00018429999 1e-6 358 131 0.0014743998 1e-6 387 131 0.00018429999 1e-6 422 131 0.00018429999 1e-6 443 131 0.0011057998 1e-6 444 131 0.0005528999 1e-6 445 131 0.0145595 1e-6 447 131 0.0064503998 1e-6 450 131 0.0031331 1e-6 452 131 0.009399198 1e-6 453 131 0.0022115998 1e-6 454 131 0.00036859978 1e-6 455 131 0.028566197 1e-6 457 131 0.0022115998 1e-6 458 131 0.0005528999 1e-6 459 131 0.00036859978 1e-6 460 131 0.0005528999 1e-6 463 131 0.016033899 1e-6 464 131 0.0005528999 1e-6 465 131 0.0014743998 1e-6 467 131 0.009399198 1e-6 468 131 0.0053445995 1e-6 469 131 0.005528897 1e-6 470 131 0.0060817972 1e-6 471 131 0.00092149992 1e-6 473 131 0.00018429999 1e-6 478 131 0.0018429998 1e-6 479 131 0.0053445995 1e-6 483 131 0.0018429998 1e-6 490 131 0.0005528999 1e-6 491 131 0.00092149992 1e-6 2 132 0.0075674988 1e-6 4 132 0.057291199 1e-6 9 132 1.9799991e-05 1e-6 13 132 0.00021789999 1e-6 18 132 1.9799991e-05 1e-6 22 132 0.00045559998 1e-6 60 132 0.0024167998 1e-6 82 132 1.9799991e-05 1e-6 83 132 1.9799991e-05 1e-6 84 132 1.9799991e-05 1e-6 104 132 0.0017432999 1e-6 108 132 1.9799991e-05 1e-6 113 132 3.9599996e-05 1e-6 114 132 7.9199992e-05 1e-6 118 132 5.9399987e-05 1e-6 126 132 3.9599996e-05 1e-6 127 132 1.9799991e-05 1e-6 130 132 0.016917899 1e-6 131 132 0.0015254 1e-6 132 132 0.087363064 1e-6 133 132 0.0001981 1e-6 134 132 0.0001981 1e-6 135 132 1.9799991e-05 1e-6 137 132 1.9799991e-05 1e-6 138 132 0.0011687998 1e-6 140 132 0.00011889999 1e-6 142 132 0.00021789999 1e-6 143 132 0.0086372979 1e-6 144 132 0.00013869999 1e-6 149 132 0.0010499 1e-6 150 132 0.0008121999 1e-6 151 132 1.9799991e-05 1e-6 155 132 3.9599996e-05 1e-6 158 132 3.9599996e-05 1e-6 171 132 0.0072703995 1e-6 186 132 0.00051509985 1e-6 189 132 1.9799991e-05 1e-6 190 132 9.9099998e-05 1e-6 192 132 9.9099998e-05 1e-6 193 132 5.9399987e-05 1e-6 194 132 0.00011889999 1e-6 197 132 1.9799991e-05 1e-6 198 132 0.009409897 1e-6 200 132 1.9799991e-05 1e-6 203 132 3.9599996e-05 1e-6 204 132 5.9399987e-05 1e-6 206 132 9.9099998e-05 1e-6 207 132 3.9599996e-05 1e-6 209 132 1.9799991e-05 1e-6 214 132 0.035856497 1e-6 215 132 9.9099998e-05 1e-6 221 132 5.9399987e-05 1e-6 223 132 0.0016243998 1e-6 224 132 0.0025356999 1e-6 225 132 0.00021789999 1e-6 226 132 0.031042598 1e-6 227 132 0.25824594 1e-6 231 132 0.0012876999 1e-6 233 132 1.9799991e-05 1e-6 234 132 0.0025752999 1e-6 237 132 7.9199992e-05 1e-6 240 132 0.00021789999 1e-6 241 132 0.0055071972 1e-6 242 132 0.00075279991 1e-6 252 132 0.00075279991 1e-6 272 132 0.0010102999 1e-6 277 132 7.9199992e-05 1e-6 279 132 0.00025749998 1e-6 284 132 1.9799991e-05 1e-6 319 132 1.9799991e-05 1e-6 324 132 3.9599996e-05 1e-6 326 132 3.9599996e-05 1e-6 334 132 1.9799991e-05 1e-6 335 132 5.9399987e-05 1e-6 336 132 3.9599996e-05 1e-6 345 132 0.0073693991 1e-6 349 132 0.00051509985 1e-6 350 132 1.9799991e-05 1e-6 351 132 3.9599996e-05 1e-6 356 132 0.00013869999 1e-6 358 132 0.0010102999 1e-6 377 132 1.9799991e-05 1e-6 382 132 0.0001585 1e-6 384 132 3.9599996e-05 1e-6 387 132 1.9799991e-05 1e-6 392 132 0.0015848 1e-6 402 132 3.9599996e-05 1e-6 404 132 3.9599996e-05 1e-6 414 132 0.0016441999 1e-6 417 132 1.9799991e-05 1e-6 419 132 1.9799991e-05 1e-6 421 132 1.9799991e-05 1e-6 422 132 0.00013869999 1e-6 423 132 1.9799991e-05 1e-6 425 132 1.9799991e-05 1e-6 430 132 1.9799991e-05 1e-6 431 132 1.9799991e-05 1e-6 432 132 1.9799991e-05 1e-6 433 132 1.9799991e-05 1e-6 434 132 3.9599996e-05 1e-6 443 132 0.0042987987 1e-6 444 132 0.00073299999 1e-6 445 132 0.0061411969 1e-6 446 132 0.00045559998 1e-6 447 132 0.00065369997 1e-6 450 132 0.0022781999 1e-6 452 132 0.0135304 1e-6 453 132 0.0021592998 1e-6 454 132 0.0010698 1e-6 455 132 0.035836697 1e-6 456 132 0.00023769999 1e-6 457 132 0.0022584 1e-6 458 132 0.00045559998 1e-6 459 132 0.0005349 1e-6 460 132 0.00073299999 1e-6 463 132 0.0063788965 1e-6 464 132 0.00033679977 1e-6 465 132 0.00099049998 1e-6 467 132 0.0069533996 1e-6 468 132 0.0029516998 1e-6 469 132 0.0030111999 1e-6 470 132 0.0030903998 1e-6 471 132 0.00067349989 1e-6 473 132 5.9399987e-05 1e-6 477 132 1.9799991e-05 1e-6 478 132 0.0010895999 1e-6 479 132 5.9399987e-05 1e-6 483 132 0.00073299999 1e-6 489 132 7.9199992e-05 1e-6 490 132 0.00057449983 1e-6 491 132 0.0016243998 1e-6 2 133 0.0011536998 1e-6 4 133 0.039515398 1e-6 22 133 0.0011536998 1e-6 60 133 0.0025958999 1e-6 104 133 0.00086529995 1e-6 114 133 0.00028839987 1e-6 130 133 0.008653 1e-6 132 133 0.28901064 1e-6 133 133 0.010383599 1e-6 138 133 0.00086529995 1e-6 143 133 0.0017305999 1e-6 171 133 0.046149399 1e-6 198 133 0.013556398 1e-6 206 133 0.00057689985 1e-6 214 133 0.029420197 1e-6 226 133 0.0028843 1e-6 227 133 0.090279758 1e-6 231 133 0.0040380992 1e-6 234 133 0.0028843 1e-6 240 133 0.00028839987 1e-6 241 133 0.011248898 1e-6 272 133 0.00057689985 1e-6 279 133 0.00057689985 1e-6 345 133 0.0106721 1e-6 358 133 0.00086529995 1e-6 443 133 0.0034611998 1e-6 444 133 0.00028839987 1e-6 445 133 0.015575398 1e-6 446 133 0.00057689985 1e-6 447 133 0.010383599 1e-6 450 133 0.0020189998 1e-6 452 133 0.012402698 1e-6 453 133 0.0017305999 1e-6 454 133 0.0020189998 1e-6 455 133 0.0409576 1e-6 457 133 0.0020189998 1e-6 458 133 0.00028839987 1e-6 460 133 0.00028839987 1e-6 463 133 0.026535898 1e-6 464 133 0.00057689985 1e-6 465 133 0.00086529995 1e-6 467 133 0.0072107986 1e-6 468 133 0.026535898 1e-6 469 133 0.0034611998 1e-6 470 133 0.0040380992 1e-6 471 133 0.0037495999 1e-6 478 133 0.00086529995 1e-6 483 133 0.0014421998 1e-6 490 133 0.0011536998 1e-6 491 133 0.00057689985 1e-6 2 134 3.2199998e-05 1e-6 4 134 0.00061109988 1e-6 22 134 0.00028939988 1e-6 60 134 0.0012863998 1e-6 82 134 3.2199998e-05 1e-6 104 134 3.2199998e-05 1e-6 108 134 3.2199998e-05 1e-6 114 134 3.2199998e-05 1e-6 126 134 3.2199998e-05 1e-6 130 134 0.028204799 1e-6 131 134 0.00032159989 1e-6 132 134 0.39058977 1e-6 133 134 3.2199998e-05 1e-6 134 134 0.035247996 1e-6 137 134 3.2199998e-05 1e-6 138 134 3.2199998e-05 1e-6 139 134 6.4299995e-05 1e-6 142 134 0.014247097 1e-6 143 134 0.046568498 1e-6 149 134 0.00028939988 1e-6 150 134 0.00041809981 1e-6 151 134 3.2199998e-05 1e-6 152 134 6.4299995e-05 1e-6 157 134 3.2199998e-05 1e-6 158 134 0.0047597997 1e-6 171 134 3.2199998e-05 1e-6 189 134 0.00048239995 1e-6 190 134 6.4299995e-05 1e-6 191 134 3.2199998e-05 1e-6 192 134 3.2199998e-05 1e-6 193 134 3.2199998e-05 1e-6 194 134 9.6499993e-05 1e-6 197 134 3.2199998e-05 1e-6 198 134 0.0052421987 1e-6 200 134 3.2199998e-05 1e-6 203 134 6.4299995e-05 1e-6 204 134 6.4299995e-05 1e-6 206 134 9.6499993e-05 1e-6 207 134 3.2199998e-05 1e-6 214 134 0.014793899 1e-6 223 134 3.2199998e-05 1e-6 224 134 3.2199998e-05 1e-6 225 134 0.018974699 1e-6 226 134 0.0019295998 1e-6 227 134 0.012542598 1e-6 231 134 0.0015758998 1e-6 234 134 0.0034411999 1e-6 237 134 9.6499993e-05 1e-6 240 134 0.027111299 1e-6 241 134 0.0048240982 1e-6 252 134 6.4299995e-05 1e-6 272 134 0.00051459996 1e-6 277 134 3.2199998e-05 1e-6 279 134 0.00012859999 1e-6 345 134 0.0020260999 1e-6 351 134 0.0027015 1e-6 356 134 6.4299995e-05 1e-6 358 134 0.00080399984 1e-6 384 134 0.00012859999 1e-6 387 134 3.2199998e-05 1e-6 402 134 3.2199998e-05 1e-6 422 134 9.6499993e-05 1e-6 430 134 3.2199998e-05 1e-6 433 134 3.2199998e-05 1e-6 434 134 3.2199998e-05 1e-6 443 134 0.0032803998 1e-6 444 134 0.0013506999 1e-6 445 134 0.0097124986 1e-6 446 134 0.0003537999 1e-6 447 134 0.0031516999 1e-6 448 134 3.2199998e-05 1e-6 450 134 0.0056923963 1e-6 452 134 0.004180897 1e-6 453 134 0.0034411999 1e-6 454 134 0.0035376998 1e-6 455 134 0.043995596 1e-6 456 134 0.00016079999 1e-6 457 134 0.0019617998 1e-6 458 134 0.00048239995 1e-6 459 134 0.00025729998 1e-6 460 134 0.00041809981 1e-6 463 134 0.0090692975 1e-6 464 134 0.000193 1e-6 465 134 0.00051459996 1e-6 467 134 0.0080400966 1e-6 468 134 0.019650098 1e-6 469 134 0.0019295998 1e-6 470 134 0.0021225999 1e-6 471 134 0.00077189994 1e-6 473 134 6.4299995e-05 1e-6 477 134 3.2199998e-05 1e-6 478 134 0.00064319978 1e-6 483 134 0.00073969993 1e-6 489 134 6.4299995e-05 1e-6 490 134 0.00032159989 1e-6 491 134 0.00025729998 1e-6 2 135 0.029029798 1e-6 23 135 0.0045836978 1e-6 60 135 0.0030558 1e-6 114 135 0.00076389988 1e-6 117 135 0.0015278999 1e-6 130 135 0.0068754964 1e-6 132 135 0.060351398 1e-6 134 135 0.0022918 1e-6 135 135 0.0022918 1e-6 138 135 0.11764705 1e-6 139 135 0.0022918 1e-6 142 135 0.0038196999 1e-6 143 135 0.073338389 1e-6 149 135 0.00076389988 1e-6 186 135 0.00076389988 1e-6 192 135 0.00076389988 1e-6 198 135 0.0022918 1e-6 206 135 0.00076389988 1e-6 214 135 0.019862499 1e-6 219 135 0.00076389988 1e-6 224 135 0.011459097 1e-6 225 135 0.0015278999 1e-6 226 135 0.0045836978 1e-6 227 135 0.033613399 1e-6 234 135 0.0068754964 1e-6 240 135 0.011459097 1e-6 241 135 0.0084033981 1e-6 243 135 0.00076389988 1e-6 272 135 0.00076389988 1e-6 279 135 0.0015278999 1e-6 345 135 0.0091672987 1e-6 358 135 0.0015278999 1e-6 442 135 0.010695197 1e-6 443 135 0.0068754964 1e-6 444 135 0.0038196999 1e-6 445 135 0.0076393969 1e-6 446 135 0.00076389988 1e-6 447 135 0.029793698 1e-6 450 135 0.0045836978 1e-6 452 135 0.0084033981 1e-6 453 135 0.0022918 1e-6 454 135 0.0015278999 1e-6 455 135 0.032849498 1e-6 457 135 0.0022918 1e-6 458 135 0.00076389988 1e-6 463 135 0.039724998 1e-6 464 135 0.00076389988 1e-6 465 135 0.00076389988 1e-6 467 135 0.0061114989 1e-6 468 135 0.0045836978 1e-6 469 135 0.0038196999 1e-6 470 135 0.0038196999 1e-6 471 135 0.00076389988 1e-6 478 135 0.00076389988 1e-6 483 135 0.0022918 1e-6 490 135 0.0015278999 1e-6 60 136 0.0062240995 1e-6 130 136 0.0020746998 1e-6 132 136 0.18672198 1e-6 136 136 0.016597498 1e-6 143 136 0.0020746998 1e-6 149 136 0.0062240995 1e-6 198 136 0.012448099 1e-6 206 136 0.0020746998 1e-6 214 136 0.0394191 1e-6 226 136 0.029045597 1e-6 227 136 0.010373399 1e-6 234 136 0.0082987994 1e-6 345 136 0.0082987994 1e-6 358 136 0.0020746998 1e-6 447 136 0.0020746998 1e-6 450 136 0.0041493997 1e-6 452 136 0.010373399 1e-6 453 136 0.0062240995 1e-6 455 136 0.018672198 1e-6 457 136 0.0020746998 1e-6 463 136 0.014522798 1e-6 467 136 0.0082987994 1e-6 468 136 0.016597498 1e-6 469 136 0.0041493997 1e-6 470 136 0.0041493997 1e-6 478 136 0.0020746998 1e-6 483 136 0.0041493997 1e-6 490 136 0.0020746998 1e-6 491 136 0.0020746998 1e-6 2 137 0.0018843999 1e-6 22 137 0.00062809978 1e-6 24 137 0.00062809978 1e-6 25 137 0.00062809978 1e-6 60 137 0.0031406998 1e-6 114 137 0.00062809978 1e-6 117 137 0.040200997 1e-6 130 137 0.010678399 1e-6 131 137 0.00062809978 1e-6 132 137 0.089195967 1e-6 133 137 0.00062809978 1e-6 134 137 0.00062809978 1e-6 135 137 0.021356799 1e-6 137 137 0.0031406998 1e-6 138 137 0.15515077 1e-6 142 137 0.0031406998 1e-6 143 137 0.0069094971 1e-6 149 137 0.00062809978 1e-6 158 137 0.00062809978 1e-6 160 137 0.00062809978 1e-6 161 137 0.00062809978 1e-6 178 137 0.00062809978 1e-6 186 137 0.00062809978 1e-6 187 137 0.0012562999 1e-6 188 137 0.00062809978 1e-6 192 137 0.0018843999 1e-6 193 137 0.0012562999 1e-6 198 137 0.015075397 1e-6 206 137 0.00062809978 1e-6 214 137 0.0050251 1e-6 219 137 0.0056532994 1e-6 223 137 0.0012562999 1e-6 224 137 0.0056532994 1e-6 225 137 0.00062809978 1e-6 226 137 0.0062813982 1e-6 227 137 0.0056532994 1e-6 234 137 0.0025125998 1e-6 240 137 0.0012562999 1e-6 241 137 0.0050251 1e-6 252 137 0.0012562999 1e-6 272 137 0.00062809978 1e-6 273 137 0.00062809978 1e-6 277 137 0.0012562999 1e-6 279 137 0.00062809978 1e-6 293 137 0.0012562999 1e-6 322 137 0.0037687998 1e-6 325 137 0.00062809978 1e-6 345 137 0.0037687998 1e-6 358 137 0.0012562999 1e-6 442 137 0.0012562999 1e-6 443 137 0.013191 1e-6 444 137 0.0012562999 1e-6 445 137 0.011934698 1e-6 446 137 0.0043969974 1e-6 447 137 0.0031406998 1e-6 450 137 0.0025125998 1e-6 452 137 0.0094220974 1e-6 453 137 0.0056532994 1e-6 454 137 0.0012562999 1e-6 455 137 0.039572898 1e-6 457 137 0.0018843999 1e-6 463 137 0.0075376965 1e-6 464 137 0.0012562999 1e-6 465 137 0.00062809978 1e-6 467 137 0.0056532994 1e-6 468 137 0.011934698 1e-6 469 137 0.0025125998 1e-6 470 137 0.0025125998 1e-6 471 137 0.00062809978 1e-6 478 137 0.00062809978 1e-6 483 137 0.0018843999 1e-6 490 137 0.026381899 1e-6 491 137 0.0012562999 1e-6 4 138 0.0418569 1e-6 60 138 0.0022830998 1e-6 130 138 0.0045661964 1e-6 132 138 0.0030440998 1e-6 138 138 0.0045661964 1e-6 142 138 0.0015220998 1e-6 143 138 0.0091323964 1e-6 186 138 0.00076099997 1e-6 192 138 0.00076099997 1e-6 198 138 0.0098934993 1e-6 206 138 0.00076099997 1e-6 214 138 0.025114197 1e-6 219 138 0.00076099997 1e-6 223 138 0.00076099997 1e-6 224 138 0.0015220998 1e-6 226 138 0.0038051999 1e-6 227 138 0.0060882978 1e-6 230 138 0.0091323964 1e-6 234 138 0.0030440998 1e-6 241 138 0.00076099997 1e-6 272 138 0.00076099997 1e-6 279 138 0.00076099997 1e-6 345 138 0.026636198 1e-6 358 138 0.0015220998 1e-6 443 138 0.0304414 1e-6 444 138 0.0068492964 1e-6 445 138 0.0053271987 1e-6 446 138 0.0022830998 1e-6 447 138 0.027397297 1e-6 450 138 0.0022830998 1e-6 452 138 0.0076103993 1e-6 453 138 0.0015220998 1e-6 454 138 0.0030440998 1e-6 455 138 0.15144598 1e-6 457 138 0.0022830998 1e-6 463 138 0.045662098 1e-6 464 138 0.00076099997 1e-6 465 138 0.042617999 1e-6 467 138 0.0045661964 1e-6 468 138 0.00076099997 1e-6 469 138 0.0022830998 1e-6 470 138 0.0022830998 1e-6 478 138 0.00076099997 1e-6 483 138 0.0015220998 1e-6 490 138 0.0015220998 1e-6 491 138 0.21308976 1e-6 2 139 0.0001161 1e-6 4 139 0.0001161 1e-6 60 139 0.0019734998 1e-6 82 139 0.0011608999 1e-6 108 139 0.0001161 1e-6 114 139 0.00023219999 1e-6 118 139 0.0001161 1e-6 126 139 0.0001161 1e-6 130 139 0.12955648 1e-6 131 139 0.020663999 1e-6 132 139 0.010215897 1e-6 134 139 0.0001161 1e-6 138 139 0.0001161 1e-6 139 139 0.0087067969 1e-6 140 139 0.0001161 1e-6 141 139 0.0001161 1e-6 142 139 0.027977698 1e-6 143 139 0.030647799 1e-6 149 139 0.068144858 1e-6 158 139 0.017993998 1e-6 160 139 0.0001161 1e-6 161 139 0.00023219999 1e-6 171 139 0.0001161 1e-6 184 139 0.00092869997 1e-6 187 139 0.00023219999 1e-6 188 139 0.0001161 1e-6 190 139 0.0001161 1e-6 194 139 0.00034829997 1e-6 198 139 0.012537699 1e-6 206 139 0.00023219999 1e-6 214 139 0.042256799 1e-6 219 139 0.0001161 1e-6 222 139 0.00023219999 1e-6 223 139 0.013930798 1e-6 224 139 0.063501298 1e-6 225 139 0.0032505 1e-6 226 139 0.00046439981 1e-6 227 139 0.00046439981 1e-6 230 139 0.0001161 1e-6 233 139 0.0069653988 1e-6 234 139 0.0033665998 1e-6 237 139 0.0001161 1e-6 239 139 0.0001161 1e-6 240 139 0.0012769999 1e-6 241 139 0.047596898 1e-6 243 139 0.00046439981 1e-6 252 139 0.00023219999 1e-6 272 139 0.00069649983 1e-6 276 139 0.0001161 1e-6 277 139 0.0012769999 1e-6 279 139 0.00058049988 1e-6 282 139 0.00034829997 1e-6 286 139 0.0001161 1e-6 290 139 0.0001161 1e-6 292 139 0.0001161 1e-6 293 139 0.00046439981 1e-6 294 139 0.0001161 1e-6 295 139 0.0001161 1e-6 300 139 0.00023219999 1e-6 312 139 0.00058049988 1e-6 315 139 0.0008125999 1e-6 319 139 0.0001161 1e-6 320 139 0.00023219999 1e-6 322 139 0.0001161 1e-6 326 139 0.00046439981 1e-6 340 139 0.00034829997 1e-6 345 139 0.0068492964 1e-6 349 139 0.00023219999 1e-6 350 139 0.0046435967 1e-6 356 139 0.0001161 1e-6 358 139 0.0011608999 1e-6 387 139 0.0001161 1e-6 392 139 0.00034829997 1e-6 393 139 0.0015091999 1e-6 422 139 0.0081262998 1e-6 443 139 0.0071975999 1e-6 444 139 0.0039470978 1e-6 445 139 0.011725098 1e-6 446 139 0.0008125999 1e-6 447 139 0.0071975999 1e-6 450 139 0.0018573999 1e-6 452 139 0.0070814975 1e-6 453 139 0.0034826999 1e-6 454 139 0.0012769999 1e-6 455 139 0.050383098 1e-6 456 139 0.0001161 1e-6 457 139 0.0035987999 1e-6 458 139 0.00034829997 1e-6 459 139 0.00034829997 1e-6 460 139 0.00069649983 1e-6 463 139 0.024611097 1e-6 464 139 0.0008125999 1e-6 465 139 0.010680299 1e-6 467 139 0.0049918965 1e-6 468 139 0.0022056999 1e-6 469 139 0.0032505 1e-6 470 139 0.0034826999 1e-6 471 139 0.004527498 1e-6 473 139 0.0001161 1e-6 478 139 0.00058049988 1e-6 483 139 0.0012769999 1e-6 490 139 0.0010447998 1e-6 491 139 0.0013930998 1e-6 4 140 0.018298399 1e-6 22 140 0.00031279982 1e-6 60 140 0.0014075998 1e-6 114 140 0.0001564 1e-6 130 140 0.0086017996 1e-6 132 140 0.0014075998 1e-6 140 140 0.022364698 1e-6 143 140 0.0001564 1e-6 186 140 0.00093839993 1e-6 187 140 0.0001564 1e-6 198 140 0.0075069964 1e-6 206 140 0.00031279982 1e-6 214 140 0.011729699 1e-6 223 140 0.0029714999 1e-6 225 140 0.017359998 1e-6 226 140 0.038160797 1e-6 227 140 0.56803244 1e-6 231 140 0.0001564 1e-6 234 140 0.00046919985 1e-6 241 140 0.0001564 1e-6 242 140 0.0064122975 1e-6 252 140 0.032999698 1e-6 272 140 0.00031279982 1e-6 279 140 0.00046919985 1e-6 334 140 0.0034406998 1e-6 345 140 0.012824498 1e-6 356 140 0.0001564 1e-6 358 140 0.00062559987 1e-6 443 140 0.0029714999 1e-6 444 140 0.0039098971 1e-6 445 140 0.0043790974 1e-6 446 140 0.0001564 1e-6 447 140 0.005317498 1e-6 450 140 0.0014075998 1e-6 452 140 0.0095401965 1e-6 453 140 0.0017203998 1e-6 454 140 0.0014075998 1e-6 455 140 0.035189196 1e-6 457 140 0.0018767999 1e-6 459 140 0.00031279982 1e-6 460 140 0.00031279982 1e-6 463 140 0.012824498 1e-6 464 140 0.0057866983 1e-6 465 140 0.0048482977 1e-6 467 140 0.0028150999 1e-6 468 140 0.0007819999 1e-6 469 140 0.0021895999 1e-6 470 140 0.0007819999 1e-6 471 140 0.00046919985 1e-6 478 140 0.00046919985 1e-6 483 140 0.0007819999 1e-6 490 140 0.0001564 1e-6 491 140 0.0001564 1e-6 2 141 0.00057939999 1e-6 4 141 0.0069524981 1e-6 60 141 0.0028968998 1e-6 114 141 0.00057939999 1e-6 130 141 0.0023174998 1e-6 132 141 0.070683658 1e-6 138 141 0.084588587 1e-6 143 141 0.018539999 1e-6 160 141 0.0011586999 1e-6 171 141 0.0011586999 1e-6 198 141 0.023754299 1e-6 206 141 0.0011586999 1e-6 214 141 0.0069524981 1e-6 224 141 0.0011586999 1e-6 227 141 0.11066049 1e-6 234 141 0.0034761999 1e-6 240 141 0.00057939999 1e-6 241 141 0.030706797 1e-6 271 141 0.0011586999 1e-6 272 141 0.00057939999 1e-6 277 141 0.0017380998 1e-6 279 141 0.0011586999 1e-6 312 141 0.00057939999 1e-6 326 141 0.00057939999 1e-6 345 141 0.0063731 1e-6 358 141 0.0023174998 1e-6 430 141 0.0011586999 1e-6 442 141 0.00057939999 1e-6 443 141 0.0069524981 1e-6 444 141 0.00057939999 1e-6 445 141 0.0086905994 1e-6 446 141 0.022595599 1e-6 447 141 0.0017380998 1e-6 450 141 0.0040555969 1e-6 452 141 0.011587497 1e-6 453 141 0.0017380998 1e-6 454 141 0.00057939999 1e-6 455 141 0.0330243 1e-6 457 141 0.0023174998 1e-6 458 141 0.00057939999 1e-6 459 141 0.0028968998 1e-6 460 141 0.00057939999 1e-6 463 141 0.011008099 1e-6 464 141 0.00057939999 1e-6 465 141 0.0040555969 1e-6 467 141 0.011587497 1e-6 468 141 0.025492497 1e-6 469 141 0.0046349987 1e-6 470 141 0.0040555969 1e-6 471 141 0.0017380998 1e-6 478 141 0.0017380998 1e-6 483 141 0.0017380998 1e-6 490 141 0.056199297 1e-6 491 141 0.00057939999 1e-6 2 142 0.00075669982 1e-6 4 142 0.00094589987 1e-6 6 142 0.00018919999 1e-6 22 142 0.0026484998 1e-6 24 142 0.00037839985 1e-6 60 142 0.0032159998 1e-6 84 142 0.00018919999 1e-6 104 142 0.00075669982 1e-6 114 142 0.00018919999 1e-6 117 142 0.00056749978 1e-6 118 142 0.00018919999 1e-6 130 142 0.012107499 1e-6 131 142 0.00018919999 1e-6 132 142 0.014755998 1e-6 133 142 0.00037839985 1e-6 135 142 0.00037839985 1e-6 137 142 0.00018919999 1e-6 138 142 0.033106297 1e-6 139 142 0.0011350999 1e-6 140 142 0.00018919999 1e-6 142 142 0.024404097 1e-6 143 142 0.031971198 1e-6 149 142 0.00018919999 1e-6 152 142 0.00037839985 1e-6 157 142 0.00018919999 1e-6 159 142 0.0034051999 1e-6 160 142 0.0013243 1e-6 171 142 0.00018919999 1e-6 186 142 0.0181612 1e-6 187 142 0.010593999 1e-6 188 142 0.00037839985 1e-6 189 142 0.00056749978 1e-6 192 142 0.011918299 1e-6 193 142 0.00018919999 1e-6 197 142 0.0032159998 1e-6 198 142 0.020431299 1e-6 204 142 0.00094589987 1e-6 206 142 0.00037839985 1e-6 208 142 0.0017025999 1e-6 214 142 0.086454749 1e-6 215 142 0.00037839985 1e-6 219 142 0.013999198 1e-6 221 142 0.00075669982 1e-6 223 142 0.0083238967 1e-6 224 142 0.016269397 1e-6 225 142 0.00037839985 1e-6 226 142 0.070942044 1e-6 227 142 0.060726397 1e-6 231 142 0.0030268999 1e-6 234 142 0.0045402981 1e-6 240 142 0.00018919999 1e-6 241 142 0.022890698 1e-6 243 142 0.00018919999 1e-6 252 142 0.00018919999 1e-6 272 142 0.00056749978 1e-6 279 142 0.00094589987 1e-6 322 142 0.00018919999 1e-6 324 142 0.00018919999 1e-6 326 142 0.00018919999 1e-6 345 142 0.0024593 1e-6 347 142 0.00018919999 1e-6 349 142 0.0017025999 1e-6 356 142 0.00018919999 1e-6 358 142 0.0011350999 1e-6 414 142 0.00018919999 1e-6 422 142 0.00018919999 1e-6 442 142 0.00018919999 1e-6 443 142 0.010404799 1e-6 444 142 0.0077562965 1e-6 445 142 0.015323497 1e-6 446 142 0.0013243 1e-6 447 142 0.0096480995 1e-6 450 142 0.0028376998 1e-6 452 142 0.0102157 1e-6 453 142 0.0017025999 1e-6 454 142 0.0054861978 1e-6 455 142 0.031782098 1e-6 457 142 0.0026484998 1e-6 458 142 0.00018919999 1e-6 459 142 0.00075669982 1e-6 460 142 0.00037839985 1e-6 463 142 0.015890997 1e-6 464 142 0.0049186982 1e-6 465 142 0.00056749978 1e-6 467 142 0.0081346966 1e-6 468 142 0.0088913999 1e-6 469 142 0.0035943999 1e-6 470 142 0.0032159998 1e-6 471 142 0.00056749978 1e-6 478 142 0.00075669982 1e-6 479 142 0.00037839985 1e-6 483 142 0.0013243 1e-6 489 142 0.00037839985 1e-6 490 142 0.00094589987 1e-6 491 142 0.0018918 1e-6 2 143 0.16462457 1e-6 4 143 0.0047124997 1e-6 60 143 0.0018849999 1e-6 114 143 0.00031419983 1e-6 117 143 0.00031419983 1e-6 130 143 0.00094249984 1e-6 132 143 0.057807099 1e-6 138 143 0.0065974966 1e-6 143 143 0.17844796 1e-6 149 143 0.0062833987 1e-6 171 143 0.0301602 1e-6 198 143 0.0087966993 1e-6 206 143 0.00062829978 1e-6 214 143 0.014451798 1e-6 223 143 0.0084825978 1e-6 224 143 0.00031419983 1e-6 226 143 0.0040841997 1e-6 227 143 0.025133498 1e-6 231 143 0.00031419983 1e-6 234 143 0.0043983981 1e-6 241 143 0.00094249984 1e-6 242 143 0.00031419983 1e-6 272 143 0.00094249984 1e-6 277 143 0.00031419983 1e-6 279 143 0.00031419983 1e-6 345 143 0.0037699998 1e-6 358 143 0.0012566999 1e-6 443 143 0.0031416998 1e-6 444 143 0.0141376 1e-6 445 143 0.016965099 1e-6 446 143 0.0018849999 1e-6 447 143 0.013823397 1e-6 450 143 0.0021992 1e-6 452 143 0.0081683993 1e-6 453 143 0.0015707999 1e-6 454 143 0.0135093 1e-6 455 143 0.033930298 1e-6 457 143 0.0015707999 1e-6 458 143 0.00094249984 1e-6 459 143 0.00031419983 1e-6 460 143 0.00031419983 1e-6 463 143 0.0094250999 1e-6 464 143 0.0081683993 1e-6 465 143 0.00031419983 1e-6 467 143 0.0053408965 1e-6 468 143 0.033301897 1e-6 469 143 0.0025133998 1e-6 470 143 0.0028275 1e-6 471 143 0.00094249984 1e-6 478 143 0.00062829978 1e-6 483 143 0.0018849999 1e-6 490 143 0.019792598 1e-6 491 143 0.0025133998 1e-6 4 144 0.00010929999 1e-6 22 144 0.00010929999 1e-6 60 144 0.0022957998 1e-6 114 144 0.00010929999 1e-6 126 144 0.00010929999 1e-6 132 144 0.22160268 1e-6 144 144 0.14245105 1e-6 145 144 0.0036076999 1e-6 146 144 0.00032799994 1e-6 149 144 0.00010929999 1e-6 150 144 0.0014211999 1e-6 187 144 0.00010929999 1e-6 189 144 0.00010929999 1e-6 190 144 0.00021869999 1e-6 193 144 0.027768698 1e-6 194 144 0.028315298 1e-6 198 144 0.0317044 1e-6 203 144 0.00010929999 1e-6 204 144 0.00076529989 1e-6 206 144 0.00021869999 1e-6 214 144 0.0027331 1e-6 227 144 0.027987298 1e-6 231 144 0.0064501986 1e-6 234 144 0.0019679 1e-6 237 144 0.00010929999 1e-6 241 144 0.0081993975 1e-6 272 144 0.00032799994 1e-6 279 144 0.00065599987 1e-6 345 144 0.0049195997 1e-6 358 144 0.0010932998 1e-6 422 144 0.00021869999 1e-6 443 144 0.0016398998 1e-6 444 144 0.0029517999 1e-6 445 144 0.0059035979 1e-6 446 144 0.00010929999 1e-6 447 144 0.0030610999 1e-6 450 144 0.0029517999 1e-6 452 144 0.0089646988 1e-6 453 144 0.0018584998 1e-6 454 144 0.00087459991 1e-6 455 144 0.042855598 1e-6 456 144 0.00010929999 1e-6 457 144 0.0067781992 1e-6 458 144 0.0010932998 1e-6 459 144 0.00021869999 1e-6 460 144 0.0017491998 1e-6 463 144 0.011479199 1e-6 464 144 0.0021864998 1e-6 465 144 0.0014211999 1e-6 467 144 0.012791097 1e-6 468 144 0.010932498 1e-6 469 144 0.0022957998 1e-6 470 144 0.0019679 1e-6 471 144 0.00087459991 1e-6 473 144 0.00010929999 1e-6 478 144 0.0016398998 1e-6 483 144 0.0025144999 1e-6 490 144 0.00021869999 1e-6 4 145 0.00033049984 1e-6 22 145 0.00033049984 1e-6 60 145 0.0019830998 1e-6 114 145 0.00016529999 1e-6 130 145 0.00066099991 1e-6 132 145 0.24838865 1e-6 144 145 0.0066104978 1e-6 145 145 0.13435799 1e-6 146 145 0.00049579982 1e-6 149 145 0.00066099991 1e-6 150 145 0.0013220999 1e-6 190 145 0.00016529999 1e-6 193 145 0.0099156983 1e-6 194 145 0.0026441999 1e-6 198 145 0.015038799 1e-6 203 145 0.00016529999 1e-6 204 145 0.011072498 1e-6 206 145 0.00033049984 1e-6 214 145 0.0072714984 1e-6 226 145 0.00033049984 1e-6 227 145 0.062303796 1e-6 231 145 0.0062799975 1e-6 234 145 0.0026441999 1e-6 237 145 0.00016529999 1e-6 241 145 0.017517798 1e-6 272 145 0.00049579982 1e-6 279 145 0.00049579982 1e-6 345 145 0.0094198994 1e-6 358 145 0.0011568 1e-6 422 145 0.00016529999 1e-6 434 145 0.00016529999 1e-6 443 145 0.0013220999 1e-6 444 145 0.0072714984 1e-6 445 145 0.0097504966 1e-6 447 145 0.007436797 1e-6 450 145 0.0029746999 1e-6 452 145 0.0064451993 1e-6 453 145 0.0023136998 1e-6 454 145 0.00066099991 1e-6 455 145 0.042472299 1e-6 456 145 0.00016529999 1e-6 457 145 0.0021483998 1e-6 459 145 0.00033049984 1e-6 460 145 0.0016525998 1e-6 463 145 0.0059493966 1e-6 464 145 0.00066099991 1e-6 465 145 0.0013220999 1e-6 467 145 0.0071062967 1e-6 468 145 0.011733599 1e-6 469 145 0.0018179 1e-6 470 145 0.0018179 1e-6 471 145 0.00082629989 1e-6 478 145 0.0016525998 1e-6 483 145 0.0026441999 1e-6 490 145 0.00033049984 1e-6 491 145 0.00016529999 1e-6 60 146 0.00088069984 1e-6 130 146 0.0017612998 1e-6 131 146 0.0074856989 1e-6 132 146 0.29854685 1e-6 133 146 0.015411697 1e-6 144 146 0.0026419999 1e-6 145 146 0.0022016999 1e-6 146 146 0.12549537 1e-6 149 146 0.015851997 1e-6 150 146 0.0030822998 1e-6 198 146 0.013650399 1e-6 226 146 0.00088069984 1e-6 227 146 0.0114487 1e-6 231 146 0.004843697 1e-6 234 146 0.0017612998 1e-6 272 146 0.00044029998 1e-6 279 146 0.00044029998 1e-6 345 146 0.0039629973 1e-6 358 146 0.00088069984 1e-6 436 146 0.004843697 1e-6 437 146 0.0079259984 1e-6 443 146 0.00044029998 1e-6 444 146 0.0022016999 1e-6 445 146 0.0070453994 1e-6 447 146 0.0017612998 1e-6 450 146 0.0035226999 1e-6 452 146 0.0044032969 1e-6 453 146 0.0013209998 1e-6 454 146 0.0017612998 1e-6 455 146 0.028181396 1e-6 457 146 0.0017612998 1e-6 458 146 0.00044029998 1e-6 459 146 0.00044029998 1e-6 460 146 0.0022016999 1e-6 463 146 0.011888999 1e-6 464 146 0.0022016999 1e-6 465 146 0.0013209998 1e-6 467 146 0.0061646998 1e-6 468 146 0.0026419999 1e-6 469 146 0.0017612998 1e-6 470 146 0.0017612998 1e-6 471 146 0.00088069984 1e-6 478 146 0.0013209998 1e-6 483 146 0.00088069984 1e-6 131 147 0.023809496 1e-6 132 147 0.28571427 1e-6 133 147 0.023809496 1e-6 147 147 0.023809496 1e-6 149 147 0.047618996 1e-6 194 147 0.023809496 1e-6 214 147 0.023809496 1e-6 226 147 0.023809496 1e-6 227 147 0.023809496 1e-6 445 147 0.023809496 1e-6 455 147 0.023809496 1e-6 467 147 0.023809496 1e-6 132 148 0.25 1e-6 227 148 0.083333254 1e-6 463 148 0.083333254 1e-6 2 149 5.3199998e-05 1e-6 4 149 0.0058772974 1e-6 18 149 0.0010372 1e-6 22 149 0.0001064 1e-6 60 149 0.00087759993 1e-6 104 149 5.3199998e-05 1e-6 108 149 2.6599999e-05 1e-6 114 149 5.3199998e-05 1e-6 126 149 2.6599999e-05 1e-6 130 149 0.011728097 1e-6 131 149 0.00023929999 1e-6 132 149 0.30360085 1e-6 133 149 0.00029249978 1e-6 138 149 5.3199998e-05 1e-6 139 149 2.6599999e-05 1e-6 142 149 5.3199998e-05 1e-6 143 149 0.00023929999 1e-6 144 149 5.3199998e-05 1e-6 145 149 5.3199998e-05 1e-6 146 149 0.0020744 1e-6 147 149 5.3199998e-05 1e-6 148 149 7.9799996e-05 1e-6 149 149 0.096138477 1e-6 150 149 0.00071799988 1e-6 151 149 0.00085099996 1e-6 171 149 0.0047337972 1e-6 190 149 7.9799996e-05 1e-6 192 149 5.3199998e-05 1e-6 193 149 2.6599999e-05 1e-6 194 149 0.0001064 1e-6 197 149 2.6599999e-05 1e-6 198 149 0.023722097 1e-6 200 149 2.6599999e-05 1e-6 203 149 5.3199998e-05 1e-6 204 149 7.9799996e-05 1e-6 206 149 5.3199998e-05 1e-6 207 149 2.6599999e-05 1e-6 214 149 0.025291197 1e-6 218 149 2.6599999e-05 1e-6 221 149 5.3199998e-05 1e-6 223 149 0.00013299999 1e-6 224 149 0.0001064 1e-6 225 149 0.0001064 1e-6 226 149 0.027604897 1e-6 227 149 0.078958571 1e-6 231 149 0.0071804971 1e-6 233 149 2.6599999e-05 1e-6 234 149 0.0029785999 1e-6 237 149 5.3199998e-05 1e-6 240 149 0.0001064 1e-6 241 149 0.011861097 1e-6 242 149 0.004122097 1e-6 252 149 0.00015959999 1e-6 272 149 0.0016488 1e-6 277 149 0.0001064 1e-6 279 149 0.00045209983 1e-6 282 149 2.6599999e-05 1e-6 315 149 2.6599999e-05 1e-6 326 149 2.6599999e-05 1e-6 335 149 0.0013828999 1e-6 336 149 2.6599999e-05 1e-6 345 149 0.0023136998 1e-6 351 149 0.0022338999 1e-6 358 149 0.00055849995 1e-6 387 149 2.6599999e-05 1e-6 402 149 2.6599999e-05 1e-6 421 149 2.6599999e-05 1e-6 422 149 0.0001064 1e-6 433 149 2.6599999e-05 1e-6 434 149 2.6599999e-05 1e-6 436 149 7.9799996e-05 1e-6 437 149 0.00013299999 1e-6 443 149 0.0030582999 1e-6 444 149 0.0013828999 1e-6 445 149 0.0065421984 1e-6 446 149 0.00031909999 1e-6 447 149 0.0012232999 1e-6 448 149 2.6599999e-05 1e-6 450 149 0.0014094999 1e-6 452 149 0.0069676973 1e-6 453 149 0.0022604999 1e-6 454 149 0.0021274998 1e-6 455 149 0.038003299 1e-6 456 149 7.9799996e-05 1e-6 457 149 0.0019147999 1e-6 458 149 0.00069149979 1e-6 459 149 0.00066489982 1e-6 460 149 0.0017551999 1e-6 463 149 0.0085633993 1e-6 464 149 0.0011435999 1e-6 465 149 0.00069149979 1e-6 467 149 0.0045741983 1e-6 468 149 0.0057709999 1e-6 469 149 0.0018881999 1e-6 470 149 0.0013563 1e-6 471 149 0.00050529977 1e-6 473 149 2.6599999e-05 1e-6 477 149 0.00082439999 1e-6 478 149 0.00079779979 1e-6 479 149 2.6599999e-05 1e-6 483 149 0.00074459985 1e-6 489 149 5.3199998e-05 1e-6 490 149 0.00015959999 1e-6 491 149 0.00018619999 1e-6 4 150 6.0799997e-05 1e-6 9 150 1.2199999e-05 1e-6 16 150 4.0999994e-06 1e-6 17 150 0.0029328 1e-6 18 150 4.0999994e-06 1e-6 22 150 3.6499987e-05 1e-6 60 150 0.00058819982 1e-6 79 150 4.0999994e-06 1e-6 82 150 1.6199992e-05 1e-6 83 150 1.6199992e-05 1e-6 84 150 0.00027579977 1e-6 108 150 2.4299996e-05 1e-6 113 150 3.2499986e-05 1e-6 114 150 8.1099992e-05 1e-6 126 150 4.0599989e-05 1e-6 127 150 4.0999994e-06 1e-6 130 150 0.16148525 1e-6 131 150 0.0065591969 1e-6 132 150 0.0249631 1e-6 133 150 0.0069688968 1e-6 135 150 7.709999e-05 1e-6 136 150 0.0019226999 1e-6 137 150 1.6199992e-05 1e-6 138 150 8.0999998e-06 1e-6 139 150 4.8699992e-05 1e-6 140 150 8.0999998e-06 1e-6 141 150 4.0999994e-06 1e-6 142 150 0.00038939994 1e-6 143 150 0.0014928 1e-6 144 150 0.00031229993 1e-6 145 150 0.00034069992 1e-6 146 150 0.0071067996 1e-6 147 150 0.00027579977 1e-6 149 150 0.12158644 1e-6 150 150 0.15409046 1e-6 151 150 4.0999994e-06 1e-6 152 150 1.2199999e-05 1e-6 155 150 0.0036954 1e-6 156 150 0.0087739974 1e-6 157 150 0.0025189999 1e-6 158 150 0.00056379987 1e-6 171 150 8.0999998e-06 1e-6 188 150 4.0999994e-06 1e-6 189 150 9.74e-05 1e-6 190 150 0.00017039999 1e-6 192 150 7.709999e-05 1e-6 193 150 0.0001947 1e-6 194 150 0.0004015998 1e-6 196 150 1.2199999e-05 1e-6 197 150 2.4299996e-05 1e-6 198 150 0.0050826967 1e-6 200 150 3.6499987e-05 1e-6 201 150 1.6199992e-05 1e-6 203 150 6.8999987e-05 1e-6 204 150 0.00029609981 1e-6 206 150 0.00017439999 1e-6 207 150 5.6799996e-05 1e-6 208 150 0.0001298 1e-6 209 150 1.6199992e-05 1e-6 214 150 0.00045029982 1e-6 219 150 4.0999994e-06 1e-6 222 150 1.2199999e-05 1e-6 223 150 2.4299996e-05 1e-6 224 150 3.2499986e-05 1e-6 225 150 0.00014599999 1e-6 226 150 0.00060849986 1e-6 227 150 0.0012290999 1e-6 231 150 0.00041779992 1e-6 234 150 0.0016711999 1e-6 237 150 0.0001582 1e-6 239 150 4.0999994e-06 1e-6 240 150 0.00018659999 1e-6 241 150 0.00064499979 1e-6 242 150 4.0999994e-06 1e-6 243 150 0.0057438985 1e-6 248 150 1.6199992e-05 1e-6 249 150 4.0999994e-06 1e-6 250 150 8.0999998e-06 1e-6 251 150 4.0999994e-06 1e-6 252 150 1.2199999e-05 1e-6 263 150 4.0999994e-06 1e-6 272 150 0.00011359999 1e-6 276 150 4.0999994e-06 1e-6 277 150 6.8999987e-05 1e-6 279 150 0.00010949999 1e-6 282 150 1.6199992e-05 1e-6 292 150 1.2199999e-05 1e-6 293 150 8.0999998e-06 1e-6 308 150 4.0999994e-06 1e-6 315 150 3.2499986e-05 1e-6 317 150 0.00079099997 1e-6 319 150 1.6199992e-05 1e-6 326 150 4.0999994e-06 1e-6 328 150 4.0999994e-06 1e-6 340 150 4.0999994e-06 1e-6 345 150 0.00034889998 1e-6 349 150 4.0999994e-06 1e-6 351 150 4.0999994e-06 1e-6 356 150 2.4299996e-05 1e-6 358 150 0.0003205 1e-6 363 150 4.0999994e-06 1e-6 380 150 4.0999994e-06 1e-6 382 150 0.00074639986 1e-6 384 150 8.0999998e-06 1e-6 387 150 3.2499986e-05 1e-6 394 150 1.2199999e-05 1e-6 397 150 1.2199999e-05 1e-6 402 150 6.0799997e-05 1e-6 409 150 4.0999994e-06 1e-6 412 150 4.0999994e-06 1e-6 419 150 4.0999994e-06 1e-6 422 150 8.1099992e-05 1e-6 423 150 8.0999998e-06 1e-6 425 150 4.0999994e-06 1e-6 430 150 2.0299995e-05 1e-6 431 150 1.2199999e-05 1e-6 432 150 1.2199999e-05 1e-6 433 150 4.459999e-05 1e-6 434 150 5.6799996e-05 1e-6 435 150 0.0010302998 1e-6 436 150 0.0035899 1e-6 437 150 0.0138404 1e-6 442 150 4.0999994e-06 1e-6 443 150 0.00054359995 1e-6 444 150 0.0022107 1e-6 445 150 0.0054842979 1e-6 446 150 0.00011359999 1e-6 447 150 0.0041374974 1e-6 448 150 2.4299996e-05 1e-6 449 150 8.0999998e-06 1e-6 450 150 0.004161898 1e-6 452 150 0.0032491998 1e-6 453 150 0.00070579979 1e-6 454 150 0.00033259997 1e-6 455 150 0.035749096 1e-6 456 150 0.00039349985 1e-6 457 150 0.0043321997 1e-6 458 150 0.00058409991 1e-6 459 150 0.00064089987 1e-6 460 150 0.00087619992 1e-6 463 150 0.0098286979 1e-6 464 150 0.0023567998 1e-6 465 150 0.0014886998 1e-6 467 150 0.012002897 1e-6 468 150 0.0055937991 1e-6 469 150 0.0033749 1e-6 470 150 0.0036791998 1e-6 471 150 0.0011357998 1e-6 472 150 8.1099992e-05 1e-6 473 150 7.709999e-05 1e-6 477 150 0.00011359999 1e-6 478 150 0.0016387999 1e-6 483 150 0.0026974999 1e-6 489 150 4.459999e-05 1e-6 490 150 0.00048679998 1e-6 491 150 0.00021499999 1e-6 4 151 0.00014559999 1e-6 84 151 0.00029119989 1e-6 114 151 0.00014559999 1e-6 126 151 0.00014559999 1e-6 130 151 0.44182318 1e-6 131 151 0.0020386998 1e-6 132 151 0.017474897 1e-6 133 151 0.0018930999 1e-6 134 151 0.00014559999 1e-6 136 151 0.0037862 1e-6 137 151 0.00072809984 1e-6 138 151 0.0005824999 1e-6 139 151 0.011795498 1e-6 141 151 0.0027669 1e-6 142 151 0.011212997 1e-6 143 151 0.00087369978 1e-6 149 151 0.00072809984 1e-6 151 151 0.030580997 1e-6 152 151 0.0013106 1e-6 155 151 0.0011649998 1e-6 157 151 0.00087369978 1e-6 158 151 0.00014559999 1e-6 171 151 0.00043689995 1e-6 184 151 0.00014559999 1e-6 190 151 0.00014559999 1e-6 193 151 0.010048099 1e-6 194 151 0.00029119989 1e-6 198 151 0.0042230971 1e-6 203 151 0.00014559999 1e-6 204 151 0.00014559999 1e-6 206 151 0.00029119989 1e-6 225 151 0.00014559999 1e-6 226 151 0.00014559999 1e-6 227 151 0.0005824999 1e-6 234 151 0.0017474999 1e-6 237 151 0.00029119989 1e-6 240 151 0.00043689995 1e-6 241 151 0.0055336989 1e-6 272 151 0.00029119989 1e-6 277 151 0.00029119989 1e-6 279 151 0.00014559999 1e-6 282 151 0.00014559999 1e-6 322 151 0.00014559999 1e-6 358 151 0.00072809984 1e-6 382 151 0.00029119989 1e-6 402 151 0.00014559999 1e-6 422 151 0.00029119989 1e-6 435 151 0.00014559999 1e-6 437 151 0.0052424967 1e-6 443 151 0.0005824999 1e-6 444 151 0.0040774979 1e-6 445 151 0.013106197 1e-6 447 151 0.0045142993 1e-6 450 151 0.0040774979 1e-6 452 151 0.0032036998 1e-6 453 151 0.00072809984 1e-6 454 151 0.00014559999 1e-6 455 151 0.036551598 1e-6 456 151 0.00014559999 1e-6 457 151 0.0026211999 1e-6 458 151 0.0005824999 1e-6 459 151 0.00029119989 1e-6 460 151 0.0016019 1e-6 463 151 0.038444698 1e-6 464 151 0.0046599992 1e-6 465 151 0.0065530986 1e-6 467 151 0.005824998 1e-6 468 151 0.015727397 1e-6 469 151 0.0027669 1e-6 470 151 0.0030580999 1e-6 471 151 0.0017474999 1e-6 473 151 0.00014559999 1e-6 477 151 0.0021843999 1e-6 478 151 0.0014561999 1e-6 483 151 0.0016019 1e-6 490 151 0.00029119989 1e-6 491 151 0.00014559999 1e-6 2 152 0.00062999991 1e-6 4 152 0.022501197 1e-6 13 152 0.00013499999 1e-6 22 152 0.00076499977 1e-6 24 152 4.4999993e-05 1e-6 60 152 0.00099009997 1e-6 84 152 0.0036001999 1e-6 104 152 0.00067499978 1e-6 108 152 4.4999993e-05 1e-6 114 152 8.9999987e-05 1e-6 117 152 4.4999993e-05 1e-6 120 152 4.4999993e-05 1e-6 126 152 4.4999993e-05 1e-6 130 152 0.33387339 1e-6 131 152 0.0040051974 1e-6 132 152 0.031906798 1e-6 133 152 0.0054452978 1e-6 136 152 0.0020250999 1e-6 137 152 0.0074703991 1e-6 138 152 0.0071103983 1e-6 139 152 0.012510698 1e-6 141 152 0.00017999999 1e-6 142 152 0.0103506 1e-6 143 152 0.0082354993 1e-6 144 152 4.4999993e-05 1e-6 145 152 4.4999993e-05 1e-6 149 152 0.0092254989 1e-6 150 152 0.0016200999 1e-6 151 152 0.00049499981 1e-6 152 152 0.014265798 1e-6 155 152 0.00031499984 1e-6 156 152 4.4999993e-05 1e-6 157 152 0.0092254989 1e-6 158 152 0.0018451 1e-6 160 152 0.00013499999 1e-6 161 152 8.9999987e-05 1e-6 171 152 0.0046802983 1e-6 178 152 4.4999993e-05 1e-6 189 152 8.9999987e-05 1e-6 190 152 0.00013499999 1e-6 192 152 0.00062999991 1e-6 193 152 0.0063452981 1e-6 194 152 8.9999987e-05 1e-6 198 152 0.0155259 1e-6 200 152 4.4999993e-05 1e-6 203 152 4.4999993e-05 1e-6 204 152 8.9999987e-05 1e-6 206 152 0.00013499999 1e-6 207 152 4.4999993e-05 1e-6 214 152 0.0096304975 1e-6 221 152 0.00049499981 1e-6 223 152 0.0016200999 1e-6 224 152 0.00080999988 1e-6 226 152 0.0096754991 1e-6 227 152 0.022096198 1e-6 230 152 8.9999987e-05 1e-6 231 152 0.0019351 1e-6 232 152 0.00017999999 1e-6 233 152 0.00017999999 1e-6 234 152 0.0018000999 1e-6 237 152 0.00013499999 1e-6 240 152 0.0027001 1e-6 241 152 0.014175799 1e-6 243 152 8.9999987e-05 1e-6 248 152 8.9999987e-05 1e-6 252 152 0.0017551 1e-6 253 152 0.00013499999 1e-6 271 152 4.4999993e-05 1e-6 272 152 0.00044999993 1e-6 277 152 0.00017999999 1e-6 279 152 0.000225 1e-6 300 152 0.00044999993 1e-6 315 152 0.00013499999 1e-6 317 152 4.4999993e-05 1e-6 319 152 0.00035999995 1e-6 322 152 0.000225 1e-6 326 152 0.00035999995 1e-6 335 152 0.00035999995 1e-6 336 152 0.00031499984 1e-6 345 152 0.0023850999 1e-6 350 152 8.9999987e-05 1e-6 356 152 8.9999987e-05 1e-6 358 152 0.00085499999 1e-6 365 152 8.9999987e-05 1e-6 382 152 0.00013499999 1e-6 387 152 4.4999993e-05 1e-6 402 152 4.4999993e-05 1e-6 414 152 4.4999993e-05 1e-6 421 152 0.00013499999 1e-6 422 152 0.00031499984 1e-6 433 152 4.4999993e-05 1e-6 434 152 8.9999987e-05 1e-6 435 152 0.0021150999 1e-6 437 152 0.00080999988 1e-6 442 152 0.00017999999 1e-6 443 152 0.0033302 1e-6 444 152 0.0018900998 1e-6 445 152 0.0117906 1e-6 446 152 0.00031499984 1e-6 447 152 0.0034651998 1e-6 450 152 0.0040501989 1e-6 452 152 0.0063903965 1e-6 453 152 0.0018451 1e-6 454 152 0.0026550998 1e-6 455 152 0.043832399 1e-6 456 152 0.00017999999 1e-6 457 152 0.0023850999 1e-6 458 152 0.00044999993 1e-6 459 152 0.00035999995 1e-6 460 152 0.0015300999 1e-6 463 152 0.010620598 1e-6 464 152 0.0027901998 1e-6 465 152 0.0010801 1e-6 467 152 0.0089104995 1e-6 468 152 0.012420699 1e-6 469 152 0.0025650999 1e-6 470 152 0.0028801998 1e-6 471 152 0.0012600999 1e-6 473 152 4.4999993e-05 1e-6 477 152 0.0010801 1e-6 478 152 0.0011250998 1e-6 479 152 0.00031499984 1e-6 483 152 0.0016200999 1e-6 489 152 4.4999993e-05 1e-6 490 152 0.00035999995 1e-6 491 152 0.00080999988 1e-6 4 153 0.0016991999 1e-6 60 153 0.0016991999 1e-6 114 153 0.00042479998 1e-6 130 153 0.15590477 1e-6 131 153 0.019965999 1e-6 132 153 0.030161399 1e-6 133 153 0.0042480975 1e-6 139 153 0.014443498 1e-6 143 153 0.28377229 1e-6 149 153 0.00084959995 1e-6 150 153 0.00084959995 1e-6 153 153 0.0046728998 1e-6 158 153 0.025913298 1e-6 187 153 0.031435899 1e-6 188 153 0.00042479998 1e-6 193 153 0.00042479998 1e-6 198 153 0.011469796 1e-6 206 153 0.00084959995 1e-6 214 153 0.0012743999 1e-6 219 153 0.00042479998 1e-6 221 153 0.00084959995 1e-6 223 153 0.00042479998 1e-6 224 153 0.0050976984 1e-6 226 153 0.00042479998 1e-6 227 153 0.0012743999 1e-6 234 153 0.00084959995 1e-6 241 153 0.0033984999 1e-6 242 153 0.0016991999 1e-6 272 153 0.00042479998 1e-6 279 153 0.00042479998 1e-6 358 153 0.00042479998 1e-6 437 153 0.00084959995 1e-6 443 153 0.0025489 1e-6 444 153 0.00042479998 1e-6 445 153 0.010195397 1e-6 450 153 0.0025489 1e-6 452 153 0.0038232999 1e-6 453 153 0.0012743999 1e-6 455 153 0.048852999 1e-6 457 153 0.0025489 1e-6 460 153 0.0012743999 1e-6 463 153 0.0093457997 1e-6 464 153 0.00042479998 1e-6 465 153 0.00084959995 1e-6 467 153 0.0042480975 1e-6 468 153 0.0016991999 1e-6 469 153 0.0025489 1e-6 470 153 0.0025489 1e-6 471 153 0.0012743999 1e-6 478 153 0.00084959995 1e-6 483 153 0.0012743999 1e-6 490 153 0.00042479998 1e-6 491 153 0.00042479998 1e-6 4 154 0.0003562998 1e-6 22 154 0.0003562998 1e-6 60 154 0.0010688 1e-6 114 154 0.0003562998 1e-6 130 154 0.19202 1e-6 131 154 0.028856397 1e-6 132 154 0.044531498 1e-6 133 154 0.0042749979 1e-6 137 154 0.0010688 1e-6 139 154 0.085500479 1e-6 141 154 0.0078374967 1e-6 142 154 0.0024937999 1e-6 143 154 0.0049874969 1e-6 149 154 0.0021374999 1e-6 150 154 0.0003562998 1e-6 152 154 0.0003562998 1e-6 154 154 0.0092625991 1e-6 157 154 0.0003562998 1e-6 158 154 0.027431399 1e-6 160 154 0.0003562998 1e-6 187 154 0.0003562998 1e-6 193 154 0.0014249999 1e-6 194 154 0.0003562998 1e-6 198 154 0.0056999996 1e-6 206 154 0.00071249995 1e-6 223 154 0.0003562998 1e-6 227 154 0.0003562998 1e-6 234 154 0.0014249999 1e-6 237 154 0.0010688 1e-6 241 154 0.0003562998 1e-6 252 154 0.0003562998 1e-6 272 154 0.0003562998 1e-6 277 154 0.0028499998 1e-6 279 154 0.0003562998 1e-6 282 154 0.00071249995 1e-6 283 154 0.0003562998 1e-6 293 154 0.0003562998 1e-6 312 154 0.0003562998 1e-6 315 154 0.0003562998 1e-6 328 154 0.0017812999 1e-6 329 154 0.00071249995 1e-6 345 154 0.0032062999 1e-6 350 154 0.0003562998 1e-6 351 154 0.0003562998 1e-6 354 154 0.00071249995 1e-6 358 154 0.0010688 1e-6 382 154 0.0003562998 1e-6 402 154 0.00071249995 1e-6 412 154 0.0003562998 1e-6 430 154 0.0003562998 1e-6 437 154 0.0363377 1e-6 443 154 0.0014249999 1e-6 444 154 0.0003562998 1e-6 445 154 0.0071249977 1e-6 447 154 0.00071249995 1e-6 450 154 0.0039187968 1e-6 452 154 0.0035624998 1e-6 453 154 0.0014249999 1e-6 455 154 0.047025297 1e-6 457 154 0.0021374999 1e-6 458 154 0.0003562998 1e-6 460 154 0.0014249999 1e-6 463 154 0.012112599 1e-6 464 154 0.00071249995 1e-6 465 154 0.0010688 1e-6 467 154 0.0067687966 1e-6 468 154 0.0024937999 1e-6 469 154 0.0042749979 1e-6 470 154 0.0042749979 1e-6 471 154 0.0014249999 1e-6 478 154 0.0014249999 1e-6 483 154 0.0021374999 1e-6 490 154 0.00071249995 1e-6 4 155 0.00033979979 1e-6 114 155 0.00033979979 1e-6 130 155 0.084947288 1e-6 132 155 0.17804956 1e-6 133 155 0.06252116 1e-6 135 155 0.0061161965 1e-6 137 155 0.0088344999 1e-6 139 155 0.00033979979 1e-6 142 155 0.032279998 1e-6 143 155 0.0040774979 1e-6 149 155 0.00033979979 1e-6 150 155 0.00067959982 1e-6 155 155 0.015630297 1e-6 157 155 0.00033979979 1e-6 171 155 0.00033979979 1e-6 187 155 0.00033979979 1e-6 190 155 0.00033979979 1e-6 193 155 0.013591599 1e-6 194 155 0.00033979979 1e-6 198 155 0.0040774979 1e-6 202 155 0.0013591999 1e-6 206 155 0.00067959982 1e-6 210 155 0.00033979979 1e-6 227 155 0.00033979979 1e-6 234 155 0.0016988998 1e-6 237 155 0.00033979979 1e-6 272 155 0.00033979979 1e-6 279 155 0.00033979979 1e-6 358 155 0.00067959982 1e-6 377 155 0.012572199 1e-6 382 155 0.00033979979 1e-6 437 155 0.0010193998 1e-6 443 155 0.00067959982 1e-6 444 155 0.0088344999 1e-6 445 155 0.0292219 1e-6 447 155 0.0142712 1e-6 450 155 0.0044172965 1e-6 452 155 0.0050967969 1e-6 453 155 0.0016988998 1e-6 455 155 0.032279998 1e-6 456 155 0.00033979979 1e-6 457 155 0.026163798 1e-6 460 155 0.0016988998 1e-6 463 155 0.027183097 1e-6 464 155 0.013591599 1e-6 465 155 0.013931397 1e-6 467 155 0.0057763979 1e-6 468 155 0.0020386998 1e-6 469 155 0.0030580999 1e-6 470 155 0.0033978999 1e-6 471 155 0.0016988998 1e-6 478 155 0.0016988998 1e-6 483 155 0.0016988998 1e-6 490 155 0.00033979979 1e-6 491 155 0.00033979979 1e-6 22 156 0.00025529996 1e-6 60 156 0.0015318999 1e-6 114 156 8.5099993e-05 1e-6 117 156 8.5099993e-05 1e-6 126 156 8.5099993e-05 1e-6 130 156 0.12017018 1e-6 131 156 0.016936198 1e-6 132 156 0.0194043 1e-6 133 156 0.011914898 1e-6 136 156 0.0013616998 1e-6 137 156 0.0065531991 1e-6 138 156 0.00017019999 1e-6 139 156 0.13455319 1e-6 142 156 0.035233997 1e-6 143 156 0.0003403998 1e-6 149 156 0.00085109985 1e-6 150 156 8.5099993e-05 1e-6 155 156 0.0068935975 1e-6 156 156 0.0020426 1e-6 157 156 8.5099993e-05 1e-6 158 156 0.0069786981 1e-6 171 156 8.5099993e-05 1e-6 172 156 8.5099993e-05 1e-6 188 156 8.5099993e-05 1e-6 189 156 8.5099993e-05 1e-6 190 156 8.5099993e-05 1e-6 194 156 0.0077446997 1e-6 198 156 0.0045956969 1e-6 203 156 8.5099993e-05 1e-6 204 156 0.006808497 1e-6 206 156 0.00017019999 1e-6 214 156 0.00051059993 1e-6 223 156 0.00017019999 1e-6 224 156 0.00068089995 1e-6 226 156 0.00025529996 1e-6 227 156 0.00051059993 1e-6 233 156 8.5099993e-05 1e-6 234 156 0.00093619991 1e-6 237 156 8.5099993e-05 1e-6 240 156 8.5099993e-05 1e-6 241 156 0.061361697 1e-6 243 156 0.026638299 1e-6 272 156 0.00017019999 1e-6 277 156 0.0094467998 1e-6 279 156 0.00025529996 1e-6 282 156 8.5099993e-05 1e-6 292 156 8.5099993e-05 1e-6 293 156 0.00017019999 1e-6 298 156 0.00017019999 1e-6 299 156 8.5099993e-05 1e-6 312 156 0.0003403998 1e-6 313 156 0.00076599978 1e-6 320 156 8.5099993e-05 1e-6 339 156 8.5099993e-05 1e-6 340 156 0.00017019999 1e-6 345 156 0.00017019999 1e-6 350 156 8.5099993e-05 1e-6 356 156 8.5099993e-05 1e-6 358 156 0.0005957 1e-6 382 156 8.5099993e-05 1e-6 402 156 8.5099993e-05 1e-6 422 156 0.00017019999 1e-6 434 156 8.5099993e-05 1e-6 437 156 0.00068089995 1e-6 443 156 0.0020426 1e-6 444 156 0.0039999969 1e-6 445 156 0.014893599 1e-6 446 156 0.00017019999 1e-6 447 156 0.0035744999 1e-6 450 156 0.0047659986 1e-6 452 156 0.0030637998 1e-6 453 156 0.0005957 1e-6 455 156 0.040680896 1e-6 456 156 8.5099993e-05 1e-6 457 156 0.0022127999 1e-6 458 156 0.0003403998 1e-6 459 156 0.00025529996 1e-6 460 156 0.0017020998 1e-6 463 156 0.013191499 1e-6 464 156 0.0029787 1e-6 465 156 0.00068089995 1e-6 467 156 0.0056169964 1e-6 468 156 0.00085109985 1e-6 469 156 0.0057871975 1e-6 470 156 0.0018722999 1e-6 471 156 0.00076599978 1e-6 473 156 8.5099993e-05 1e-6 477 156 0.0034893998 1e-6 478 156 0.00068089995 1e-6 479 156 0.0042552985 1e-6 483 156 0.0012765999 1e-6 490 156 0.00017019999 1e-6 491 156 0.00017019999 1e-6 60 157 0.0034188 1e-6 130 157 0.060683798 1e-6 132 157 0.15982908 1e-6 133 157 0.00085469987 1e-6 139 157 0.00085469987 1e-6 157 157 0.11025637 1e-6 198 157 0.0017094 1e-6 206 157 0.00085469987 1e-6 234 157 0.0025640999 1e-6 358 157 0.00085469987 1e-6 444 157 0.00085469987 1e-6 445 157 0.0025640999 1e-6 447 157 0.029059798 1e-6 450 157 0.0042734966 1e-6 452 157 0.0051281974 1e-6 455 157 0.0153846 1e-6 457 157 0.0034188 1e-6 460 157 0.00085469987 1e-6 463 157 0.041880298 1e-6 464 157 0.00085469987 1e-6 465 157 0.00085469987 1e-6 467 157 0.0051281974 1e-6 468 157 0.0017094 1e-6 469 157 0.0025640999 1e-6 470 157 0.0025640999 1e-6 471 157 0.0017094 1e-6 472 157 0.0085469969 1e-6 478 157 0.0017094 1e-6 483 157 0.0025640999 1e-6 490 157 0.00085469987 1e-6 2 158 0.0003994999 1e-6 4 158 0.0027965999 1e-6 23 158 0.0003994999 1e-6 60 158 0.0015980999 1e-6 84 158 0.0034624999 1e-6 104 158 0.00026629982 1e-6 114 158 0.0001332 1e-6 126 158 0.0001332 1e-6 130 158 0.14848846 1e-6 131 158 0.033959199 1e-6 132 158 0.094020486 1e-6 133 158 0.015181798 1e-6 134 158 0.00066589983 1e-6 135 158 0.0025302998 1e-6 137 158 0.018377896 1e-6 138 158 0.0011985998 1e-6 139 158 0.016912997 1e-6 141 158 0.014116399 1e-6 142 158 0.046077996 1e-6 143 158 0.0019975998 1e-6 149 158 0.023038998 1e-6 150 158 0.0025302998 1e-6 151 158 0.0001332 1e-6 152 158 0.0003994999 1e-6 155 158 0.0001332 1e-6 156 158 0.0001332 1e-6 157 158 0.00053269998 1e-6 158 158 0.026101999 1e-6 171 158 0.00026629982 1e-6 187 158 0.0027965999 1e-6 188 158 0.0001332 1e-6 190 158 0.0001332 1e-6 192 158 0.0001332 1e-6 193 158 0.0085230991 1e-6 194 158 0.00026629982 1e-6 198 158 0.013983198 1e-6 203 158 0.0001332 1e-6 206 158 0.00026629982 1e-6 214 158 0.0018644 1e-6 219 158 0.0001332 1e-6 221 158 0.0001332 1e-6 223 158 0.0071913972 1e-6 224 158 0.0015980999 1e-6 225 158 0.0003994999 1e-6 226 158 0.0037288999 1e-6 227 158 0.0093220994 1e-6 231 158 0.00026629982 1e-6 234 158 0.0023971 1e-6 237 158 0.0003994999 1e-6 240 158 0.00093219988 1e-6 241 158 0.0051937997 1e-6 243 158 0.0001332 1e-6 252 158 0.00026629982 1e-6 271 158 0.00026629982 1e-6 272 158 0.00066589983 1e-6 277 158 0.0038619998 1e-6 279 158 0.0003994999 1e-6 282 158 0.0026634999 1e-6 283 158 0.0010654 1e-6 292 158 0.0003994999 1e-6 293 158 0.00026629982 1e-6 295 158 0.0001332 1e-6 296 158 0.00053269998 1e-6 308 158 0.0001332 1e-6 312 158 0.0003994999 1e-6 313 158 0.00053269998 1e-6 315 158 0.0001332 1e-6 320 158 0.0001332 1e-6 326 158 0.0001332 1e-6 328 158 0.00026629982 1e-6 340 158 0.0001332 1e-6 345 158 0.0003994999 1e-6 351 158 0.00026629982 1e-6 357 158 0.00026629982 1e-6 358 158 0.0007989998 1e-6 382 158 0.00026629982 1e-6 397 158 0.0001332 1e-6 402 158 0.0023971 1e-6 412 158 0.00026629982 1e-6 422 158 0.0001332 1e-6 434 158 0.0001332 1e-6 437 158 0.012251999 1e-6 442 158 0.0001332 1e-6 443 158 0.0023971 1e-6 444 158 0.00026629982 1e-6 445 158 0.012118798 1e-6 446 158 0.00026629982 1e-6 447 158 0.0011985998 1e-6 450 158 0.0038619998 1e-6 452 158 0.0051937997 1e-6 453 158 0.0010654 1e-6 454 158 0.00026629982 1e-6 455 158 0.048475198 1e-6 456 158 0.0001332 1e-6 457 158 0.0026634999 1e-6 458 158 0.00093219988 1e-6 459 158 0.0003994999 1e-6 460 158 0.0017312998 1e-6 463 158 0.0094552971 1e-6 464 158 0.0003994999 1e-6 465 158 0.0010654 1e-6 467 158 0.0067917965 1e-6 468 158 0.0035956998 1e-6 469 158 0.0027965999 1e-6 470 158 0.0029298 1e-6 471 158 0.0021307999 1e-6 473 158 0.0001332 1e-6 478 158 0.0011985998 1e-6 483 158 0.0015980999 1e-6 490 158 0.00026629982 1e-6 491 158 0.0017312998 1e-6 3 159 4.2e-05 1e-6 9 159 2.1e-05 1e-6 16 159 0.00027299998 1e-6 17 159 0.35643339 1e-6 18 159 0.0015119999 1e-6 22 159 0.0036119998 1e-6 24 159 2.1e-05 1e-6 60 159 0.00081899995 1e-6 62 159 8.3999999e-05 1e-6 75 159 0.0018689998 1e-6 82 159 2.1e-05 1e-6 83 159 2.1e-05 1e-6 84 159 2.1e-05 1e-6 104 159 2.1e-05 1e-6 108 159 2.1e-05 1e-6 113 159 4.2e-05 1e-6 114 159 6.2999999e-05 1e-6 126 159 2.1e-05 1e-6 130 159 2.1e-05 1e-6 141 159 0.0020579998 1e-6 150 159 0.00079799979 1e-6 151 159 0.00079799979 1e-6 159 159 0.026312999 1e-6 160 159 0.003759 1e-6 161 159 2.1e-05 1e-6 165 159 0.0010289999 1e-6 170 159 2.1e-05 1e-6 186 159 0.00027299998 1e-6 190 159 6.2999999e-05 1e-6 192 159 2.1e-05 1e-6 194 159 2.1e-05 1e-6 198 159 0.00088199996 1e-6 200 159 2.1e-05 1e-6 206 159 4.2e-05 1e-6 214 159 0.00081899995 1e-6 215 159 0.00067199999 1e-6 217 159 0.000189 1e-6 218 159 0.000147 1e-6 219 159 0.000105 1e-6 220 159 0.00075599994 1e-6 223 159 6.2999999e-05 1e-6 224 159 6.2999999e-05 1e-6 233 159 0.0008609998 1e-6 234 159 0.033809997 1e-6 237 159 0.002226 1e-6 240 159 0.0017849999 1e-6 241 159 0.0041579977 1e-6 242 159 0.0013229998 1e-6 251 159 0.00062999991 1e-6 252 159 4.2e-05 1e-6 270 159 0.000105 1e-6 271 159 0.00060899998 1e-6 272 159 0.0016589998 1e-6 277 159 0.0044309981 1e-6 279 159 2.1e-05 1e-6 283 159 0.0040109977 1e-6 292 159 0.00060899998 1e-6 295 159 0.00058799982 1e-6 312 159 0.00088199996 1e-6 315 159 0.0017429998 1e-6 317 159 0.0034019998 1e-6 318 159 0.0068459995 1e-6 319 159 0.0098699965 1e-6 322 159 0.0534871 1e-6 326 159 0.0023729999 1e-6 329 159 8.3999999e-05 1e-6 331 159 0.00065099983 1e-6 334 159 0.00071399985 1e-6 335 159 4.2e-05 1e-6 337 159 0.0025829999 1e-6 340 159 0.00046199979 1e-6 341 159 0.0017219998 1e-6 346 159 0.0019739999 1e-6 349 159 0.000126 1e-6 350 159 2.1e-05 1e-6 352 159 4.2e-05 1e-6 354 159 0.0036749998 1e-6 356 159 2.1e-05 1e-6 358 159 0.00058799982 1e-6 372 159 0.00094499998 1e-6 374 159 0.00056699989 1e-6 384 159 0.00073499978 1e-6 387 159 2.1e-05 1e-6 394 159 0.000231 1e-6 397 159 4.2e-05 1e-6 398 159 0.00054599997 1e-6 400 159 0.0018059998 1e-6 401 159 2.1e-05 1e-6 402 159 0.0039269999 1e-6 412 159 0.00039899978 1e-6 417 159 0.000105 1e-6 421 159 2.1e-05 1e-6 423 159 2.1e-05 1e-6 430 159 2.1e-05 1e-6 431 159 2.1e-05 1e-6 442 159 0.00094499998 1e-6 443 159 0.0050399974 1e-6 444 159 0.0011339998 1e-6 445 159 0.006719999 1e-6 446 159 0.0021209999 1e-6 447 159 0.0026459999 1e-6 448 159 0.0008609998 1e-6 450 159 0.00079799979 1e-6 452 159 0.0011759999 1e-6 453 159 0.00048299995 1e-6 454 159 0.0008609998 1e-6 455 159 0.032697 1e-6 456 159 0.0025829999 1e-6 457 159 0.0018269999 1e-6 458 159 0.00050399988 1e-6 459 159 0.0013649999 1e-6 460 159 0.0021629999 1e-6 463 159 0.0040109977 1e-6 464 159 0.00065099983 1e-6 465 159 0.00052499981 1e-6 467 159 0.0096599981 1e-6 468 159 0.00079799979 1e-6 469 159 0.0021629999 1e-6 470 159 0.002289 1e-6 471 159 0.013250999 1e-6 473 159 4.2e-05 1e-6 477 159 0.00071399985 1e-6 478 159 0.00060899998 1e-6 483 159 0.000147 1e-6 489 159 0.00050399988 1e-6 490 159 0.000189 1e-6 491 159 8.3999999e-05 1e-6 9 160 1.6399994e-05 1e-6 17 160 0.0038231998 1e-6 18 160 0.00065629999 1e-6 22 160 0.0026089998 1e-6 60 160 0.0022971998 1e-6 75 160 0.0015915998 1e-6 82 160 1.6399994e-05 1e-6 83 160 1.6399994e-05 1e-6 84 160 1.6399994e-05 1e-6 108 160 1.6399994e-05 1e-6 113 160 3.2799988e-05 1e-6 114 160 4.9199996e-05 1e-6 117 160 1.6399994e-05 1e-6 126 160 1.6399994e-05 1e-6 130 160 6.559999e-05 1e-6 139 160 1.6399994e-05 1e-6 141 160 1.6399994e-05 1e-6 150 160 0.00049229991 1e-6 151 160 0.00044299988 1e-6 159 160 0.33716196 1e-6 160 160 0.070589364 1e-6 161 160 0.00014769999 1e-6 162 160 0.0001313 1e-6 163 160 1.6399994e-05 1e-6 165 160 0.0066782981 1e-6 170 160 0.00014769999 1e-6 171 160 0.0001313 1e-6 172 160 3.2799988e-05 1e-6 186 160 8.1999999e-05 1e-6 189 160 4.9199996e-05 1e-6 190 160 8.1999999e-05 1e-6 192 160 0.00034459983 1e-6 194 160 6.559999e-05 1e-6 197 160 1.6399994e-05 1e-6 198 160 8.1999999e-05 1e-6 200 160 3.2799988e-05 1e-6 203 160 3.2799988e-05 1e-6 204 160 3.2799988e-05 1e-6 206 160 6.559999e-05 1e-6 207 160 1.6399994e-05 1e-6 214 160 0.0016243998 1e-6 215 160 1.6399994e-05 1e-6 218 160 9.8499993e-05 1e-6 219 160 0.0005086998 1e-6 223 160 4.9199996e-05 1e-6 224 160 0.00057429983 1e-6 233 160 0.0009680998 1e-6 234 160 0.0093363971 1e-6 237 160 0.0012469999 1e-6 240 160 1.6399994e-05 1e-6 241 160 0.00068919989 1e-6 242 160 0.0005086998 1e-6 251 160 3.2799988e-05 1e-6 252 160 0.00057429983 1e-6 270 160 0.0009680998 1e-6 272 160 0.0010008998 1e-6 277 160 0.00067269988 1e-6 279 160 0.0005086998 1e-6 283 160 4.9199996e-05 1e-6 312 160 0.00060709985 1e-6 315 160 0.0012963 1e-6 317 160 0.0005086998 1e-6 318 160 0.0025104999 1e-6 319 160 0.0018048999 1e-6 322 160 0.0012635 1e-6 324 160 1.6399994e-05 1e-6 326 160 0.0069079995 1e-6 335 160 0.00063989987 1e-6 337 160 0.00082039996 1e-6 341 160 1.6399994e-05 1e-6 346 160 0.0012141999 1e-6 349 160 0.0026417999 1e-6 350 160 0.00041019986 1e-6 352 160 0.00067269988 1e-6 354 160 3.2799988e-05 1e-6 356 160 0.00014769999 1e-6 358 160 0.00063989987 1e-6 372 160 1.6399994e-05 1e-6 384 160 4.9199996e-05 1e-6 387 160 1.6399994e-05 1e-6 394 160 8.1999999e-05 1e-6 397 160 3.2799988e-05 1e-6 400 160 1.6399994e-05 1e-6 401 160 0.00031179981 1e-6 402 160 0.0010666 1e-6 417 160 0.00032819994 1e-6 421 160 4.9199996e-05 1e-6 422 160 4.9199996e-05 1e-6 423 160 1.6399994e-05 1e-6 430 160 1.6399994e-05 1e-6 431 160 1.6399994e-05 1e-6 433 160 1.6399994e-05 1e-6 434 160 1.6399994e-05 1e-6 442 160 1.6399994e-05 1e-6 443 160 0.019017499 1e-6 444 160 0.00055789994 1e-6 445 160 0.0055788979 1e-6 446 160 0.0017392999 1e-6 447 160 0.0019197999 1e-6 448 160 0.00019689999 1e-6 450 160 0.0015423999 1e-6 452 160 0.0095989965 1e-6 453 160 0.0019689999 1e-6 454 160 0.0011157999 1e-6 455 160 0.031323798 1e-6 456 160 0.0017720999 1e-6 457 160 0.0040856972 1e-6 458 160 0.00080399984 1e-6 459 160 0.0013126999 1e-6 460 160 0.0027565998 1e-6 463 160 0.0041184984 1e-6 464 160 0.00045939977 1e-6 465 160 0.00085319998 1e-6 467 160 0.010041997 1e-6 468 160 0.0027729999 1e-6 469 160 0.0027565998 1e-6 470 160 0.0016736998 1e-6 471 160 0.0091230981 1e-6 473 160 3.2799988e-05 1e-6 477 160 0.00045939977 1e-6 478 160 0.00085319998 1e-6 483 160 0.00059069996 1e-6 489 160 0.0005086998 1e-6 490 160 0.00014769999 1e-6 491 160 0.0011649998 1e-6 17 161 0.00068559987 1e-6 18 161 0.00034279982 1e-6 22 161 0.00034279982 1e-6 60 161 0.0025710999 1e-6 114 161 0.0001714 1e-6 126 161 0.0001714 1e-6 130 161 0.00034279982 1e-6 156 161 0.0001714 1e-6 159 161 0.082790494 1e-6 160 161 0.23260194 1e-6 161 161 0.014569797 1e-6 162 161 0.0001714 1e-6 165 161 0.0020568999 1e-6 170 161 0.00068559987 1e-6 171 161 0.00068559987 1e-6 190 161 0.0001714 1e-6 194 161 0.0001714 1e-6 198 161 0.0022282999 1e-6 206 161 0.00034279982 1e-6 214 161 0.0001714 1e-6 219 161 0.0017140999 1e-6 233 161 0.0022282999 1e-6 234 161 0.0059992969 1e-6 237 161 0.00068559987 1e-6 241 161 0.0011998999 1e-6 252 161 0.0001714 1e-6 270 161 0.0435379 1e-6 272 161 0.00051419996 1e-6 277 161 0.00051419996 1e-6 317 161 0.0001714 1e-6 318 161 0.0022282999 1e-6 319 161 0.00085699977 1e-6 322 161 0.0001714 1e-6 326 161 0.015940998 1e-6 346 161 0.0022282999 1e-6 349 161 0.0001714 1e-6 356 161 0.0001714 1e-6 358 161 0.0058278963 1e-6 402 161 0.0001714 1e-6 417 161 0.00068559987 1e-6 421 161 0.0001714 1e-6 422 161 0.0001714 1e-6 443 161 0.023825798 1e-6 444 161 0.0029139998 1e-6 445 161 0.0078847967 1e-6 446 161 0.0018854998 1e-6 447 161 0.0053136982 1e-6 450 161 0.0030854 1e-6 452 161 0.016112398 1e-6 453 161 0.0027424998 1e-6 454 161 0.0011998999 1e-6 455 161 0.056050699 1e-6 456 161 0.00085699977 1e-6 457 161 0.0042851977 1e-6 458 161 0.00051419996 1e-6 459 161 0.00034279982 1e-6 460 161 0.0015427 1e-6 463 161 0.010455899 1e-6 464 161 0.00051419996 1e-6 465 161 0.0015427 1e-6 467 161 0.0099416971 1e-6 468 161 0.0068563968 1e-6 469 161 0.0030854 1e-6 470 161 0.0034281998 1e-6 471 161 0.012684297 1e-6 473 161 0.0001714 1e-6 477 161 0.0001714 1e-6 478 161 0.0015427 1e-6 483 161 0.0011998999 1e-6 489 161 0.0001714 1e-6 490 161 0.00034279982 1e-6 491 161 0.0013712998 1e-6 17 162 0.0051753968 1e-6 60 162 0.0011500998 1e-6 114 162 0.00057499995 1e-6 159 162 0.29039675 1e-6 160 162 0.086256444 1e-6 161 162 0.028752197 1e-6 162 162 0.00057499995 1e-6 165 162 0.00057499995 1e-6 206 162 0.00057499995 1e-6 234 162 0.0063254982 1e-6 241 162 0.013800997 1e-6 270 162 0.00057499995 1e-6 272 162 0.00057499995 1e-6 277 162 0.00057499995 1e-6 317 162 0.00057499995 1e-6 318 162 0.0023001998 1e-6 319 162 0.0011500998 1e-6 322 162 0.00057499995 1e-6 346 162 0.0028751998 1e-6 358 162 0.0011500998 1e-6 417 162 0.00057499995 1e-6 443 162 0.021276597 1e-6 444 162 0.00057499995 1e-6 445 162 0.014951099 1e-6 446 162 0.0017251 1e-6 447 162 0.0034502998 1e-6 450 162 0.0023001998 1e-6 452 162 0.0069004968 1e-6 454 162 0.010350797 1e-6 455 162 0.033927497 1e-6 457 162 0.0028751998 1e-6 459 162 0.017826296 1e-6 460 162 0.0046002977 1e-6 463 162 0.0086255968 1e-6 464 162 0.00057499995 1e-6 465 162 0.0011500998 1e-6 467 162 0.0069004968 1e-6 468 162 0.0011500998 1e-6 469 162 0.0017251 1e-6 470 162 0.0017251 1e-6 471 162 0.0034502998 1e-6 478 162 0.0011500998 1e-6 483 162 0.0011500998 1e-6 490 162 0.00057499995 1e-6 491 162 0.0011500998 1e-6 18 163 0.00030919979 1e-6 22 163 0.00017669999 1e-6 60 163 0.0012808 1e-6 75 163 0.00013249999 1e-6 82 163 4.4199987e-05 1e-6 108 163 4.4199987e-05 1e-6 114 163 8.8299988e-05 1e-6 126 163 4.4199987e-05 1e-6 139 163 4.4199987e-05 1e-6 150 163 0.00057419995 1e-6 151 163 4.4199987e-05 1e-6 156 163 4.4199987e-05 1e-6 159 163 0.017710399 1e-6 160 163 0.24949205 1e-6 161 163 0.0032682999 1e-6 162 163 4.4199987e-05 1e-6 163 163 0.0022965998 1e-6 165 163 0.045137398 1e-6 170 163 0.006315697 1e-6 171 163 0.012852199 1e-6 184 163 4.4199987e-05 1e-6 187 163 4.4199987e-05 1e-6 189 163 4.4199987e-05 1e-6 190 163 8.8299988e-05 1e-6 192 163 0.0012365999 1e-6 194 163 8.8299988e-05 1e-6 198 163 0.0042840987 1e-6 200 163 4.4199987e-05 1e-6 203 163 4.4199987e-05 1e-6 204 163 4.4199987e-05 1e-6 206 163 8.8299988e-05 1e-6 214 163 4.4199987e-05 1e-6 215 163 0.0028265999 1e-6 219 163 0.0018107998 1e-6 224 163 4.4199987e-05 1e-6 233 163 0.0064923987 1e-6 234 163 0.0027382998 1e-6 236 163 4.4199987e-05 1e-6 237 163 0.00039749988 1e-6 240 163 0.00013249999 1e-6 241 163 0.0051673986 1e-6 252 163 0.016694598 1e-6 268 163 4.4199987e-05 1e-6 270 163 0.013338 1e-6 272 163 0.00052999984 1e-6 277 163 0.000795 1e-6 279 163 8.8299988e-05 1e-6 289 163 0.00035329978 1e-6 290 163 4.4199987e-05 1e-6 293 163 0.00070669991 1e-6 297 163 4.4199987e-05 1e-6 306 163 4.4199987e-05 1e-6 312 163 0.0063598976 1e-6 315 163 0.0077289976 1e-6 317 163 0.011041399 1e-6 318 163 0.0013249998 1e-6 319 163 0.040323298 1e-6 322 163 0.00052999984 1e-6 326 163 0.0065364987 1e-6 346 163 0.0012808 1e-6 349 163 4.4199987e-05 1e-6 358 163 0.0021640998 1e-6 387 163 4.4199987e-05 1e-6 402 163 0.00013249999 1e-6 417 163 0.00039749988 1e-6 421 163 4.4199987e-05 1e-6 422 163 8.8299988e-05 1e-6 430 163 4.4199987e-05 1e-6 434 163 4.4199987e-05 1e-6 438 163 4.4199987e-05 1e-6 443 163 0.026499398 1e-6 444 163 0.0021199998 1e-6 445 163 0.0076406971 1e-6 446 163 0.00159 1e-6 447 163 0.0041956976 1e-6 448 163 4.4199987e-05 1e-6 450 163 0.0018549999 1e-6 452 163 0.0052556992 1e-6 453 163 0.0012365999 1e-6 454 163 0.0010157998 1e-6 455 163 0.058475398 1e-6 456 163 0.00061829994 1e-6 457 163 0.006094899 1e-6 458 163 0.00057419995 1e-6 459 163 0.00039749988 1e-6 460 163 0.0022524998 1e-6 463 163 0.0094514973 1e-6 464 163 0.0014132999 1e-6 465 163 0.0010599999 1e-6 467 163 0.0071989968 1e-6 468 163 0.0052998997 1e-6 469 163 0.0029590998 1e-6 470 163 0.0032241 1e-6 471 163 0.0044165999 1e-6 473 163 8.8299988e-05 1e-6 477 163 8.8299988e-05 1e-6 478 163 0.0010157998 1e-6 483 163 0.00097159995 1e-6 489 163 8.8299988e-05 1e-6 490 163 0.00026499992 1e-6 491 163 0.00017669999 1e-6 18 164 0.00045799999 1e-6 22 164 0.000229 1e-6 60 164 0.0017175998 1e-6 108 164 0.0001145 1e-6 114 164 0.000229 1e-6 126 164 0.0001145 1e-6 139 164 0.0001145 1e-6 159 164 0.0010305999 1e-6 160 164 0.051757697 1e-6 161 164 0.035611998 1e-6 163 164 0.0001145 1e-6 164 164 0.0012595998 1e-6 165 164 0.080728292 1e-6 170 164 0.025535297 1e-6 171 164 0.015916597 1e-6 190 164 0.0001145 1e-6 192 164 0.0032062 1e-6 194 164 0.0001145 1e-6 198 164 0.0016031 1e-6 206 164 0.000229 1e-6 215 164 0.0001145 1e-6 219 164 0.013282899 1e-6 233 164 0.014771599 1e-6 234 164 0.0036642998 1e-6 237 164 0.00045799999 1e-6 240 164 0.0001145 1e-6 241 164 0.0320623 1e-6 252 164 0.00068699988 1e-6 270 164 0.0269094 1e-6 272 164 0.00068699988 1e-6 277 164 0.00057249982 1e-6 279 164 0.000229 1e-6 293 164 0.000229 1e-6 312 164 0.0018320999 1e-6 315 164 0.0067559965 1e-6 317 164 0.0069849975 1e-6 318 164 0.0017175998 1e-6 319 164 0.028512497 1e-6 326 164 0.010992799 1e-6 346 164 0.0018320999 1e-6 358 164 0.0042367987 1e-6 387 164 0.0001145 1e-6 402 164 0.000229 1e-6 417 164 0.00057249982 1e-6 421 164 0.0001145 1e-6 422 164 0.0001145 1e-6 438 164 0.0030916999 1e-6 443 164 0.018206798 1e-6 444 164 0.0027482 1e-6 445 164 0.006870497 1e-6 446 164 0.00057249982 1e-6 447 164 0.0037787999 1e-6 450 164 0.0025191999 1e-6 452 164 0.0056108981 1e-6 453 164 0.0016031 1e-6 454 164 0.00045799999 1e-6 455 164 0.048207898 1e-6 456 164 0.00045799999 1e-6 457 164 0.0042367987 1e-6 458 164 0.00080159982 1e-6 459 164 0.00045799999 1e-6 460 164 0.0064124987 1e-6 463 164 0.022100098 1e-6 464 164 0.00045799999 1e-6 465 164 0.0014885999 1e-6 467 164 0.010420199 1e-6 468 164 0.0045802966 1e-6 469 164 0.0041222982 1e-6 470 164 0.0044657998 1e-6 471 164 0.0090460964 1e-6 473 164 0.0001145 1e-6 477 164 0.0001145 1e-6 478 164 0.0014885999 1e-6 483 164 0.00091609987 1e-6 489 164 0.000229 1e-6 490 164 0.00045799999 1e-6 17 165 0.0015085 1e-6 18 165 0.00028069993 1e-6 22 165 0.0012278999 1e-6 60 165 0.0018944 1e-6 75 165 0.0074372999 1e-6 108 165 3.5099991e-05 1e-6 114 165 7.0199996e-05 1e-6 126 165 3.5099991e-05 1e-6 150 165 0.00045609986 1e-6 151 165 7.0199996e-05 1e-6 159 165 0.23322219 1e-6 160 165 0.018663399 1e-6 161 165 3.5099991e-05 1e-6 162 165 3.5099991e-05 1e-6 165 165 0.1547097 1e-6 170 165 0.0037185999 1e-6 171 165 0.00021049999 1e-6 190 165 7.0199996e-05 1e-6 192 165 0.0011225999 1e-6 194 165 7.0199996e-05 1e-6 198 165 0.00010519999 1e-6 200 165 3.5099991e-05 1e-6 203 165 3.5099991e-05 1e-6 204 165 3.5099991e-05 1e-6 206 165 7.0199996e-05 1e-6 214 165 0.00010519999 1e-6 218 165 3.5099991e-05 1e-6 219 165 0.015049998 1e-6 224 165 0.0052621998 1e-6 233 165 0.011296298 1e-6 234 165 0.0035432 1e-6 237 165 0.00031569996 1e-6 241 165 0.0025609999 1e-6 242 165 3.5099991e-05 1e-6 252 165 0.0001754 1e-6 270 165 0.0054726973 1e-6 272 165 0.00031569996 1e-6 277 165 0.00045609986 1e-6 279 165 3.5099991e-05 1e-6 312 165 7.0199996e-05 1e-6 315 165 0.00014029999 1e-6 317 165 0.0049464963 1e-6 318 165 0.0014382999 1e-6 319 165 0.0003858998 1e-6 322 165 0.00024559977 1e-6 326 165 0.0033326999 1e-6 335 165 3.5099991e-05 1e-6 337 165 0.00010519999 1e-6 346 165 0.0010173998 1e-6 349 165 0.0001754 1e-6 350 165 0.00084199989 1e-6 352 165 3.5099991e-05 1e-6 356 165 0.00014029999 1e-6 358 165 0.0015786998 1e-6 384 165 0.00014029999 1e-6 387 165 3.5099991e-05 1e-6 401 165 3.5099991e-05 1e-6 402 165 0.0001754 1e-6 404 165 7.0199996e-05 1e-6 417 165 0.00031569996 1e-6 421 165 3.5099991e-05 1e-6 422 165 7.0199996e-05 1e-6 434 165 3.5099991e-05 1e-6 443 165 0.023644999 1e-6 444 165 0.0018241999 1e-6 445 165 0.0067005977 1e-6 446 165 0.0014733998 1e-6 447 165 0.0012629 1e-6 448 165 3.5099991e-05 1e-6 450 165 0.0014382999 1e-6 452 165 0.0081739984 1e-6 453 165 0.0039641969 1e-6 454 165 0.00091209984 1e-6 455 165 0.0390458 1e-6 456 165 0.00045609986 1e-6 457 165 0.0047008991 1e-6 458 165 0.00042099995 1e-6 459 165 0.00035079988 1e-6 460 165 0.0016488 1e-6 463 165 0.0050516985 1e-6 464 165 0.0001754 1e-6 465 165 0.00080689997 1e-6 467 165 0.006139297 1e-6 468 165 0.0054726973 1e-6 469 165 0.0014382999 1e-6 470 165 0.0015085 1e-6 471 165 0.0037536998 1e-6 473 165 3.5099991e-05 1e-6 477 165 7.0199996e-05 1e-6 478 165 0.00080689997 1e-6 483 165 0.00031569996 1e-6 489 165 0.00014029999 1e-6 490 165 0.00014029999 1e-6 491 165 0.00056129997 1e-6 18 166 0.00021719999 1e-6 22 166 0.00021719999 1e-6 60 166 0.00086859986 1e-6 114 166 0.00021719999 1e-6 126 166 0.00021719999 1e-6 159 166 0.006731797 1e-6 160 166 0.33333325 1e-6 161 166 0.00086859986 1e-6 162 166 0.00043429993 1e-6 163 166 0.0017372 1e-6 164 166 0.00021719999 1e-6 165 166 0.014983699 1e-6 166 166 0.0045602992 1e-6 167 166 0.00043429993 1e-6 170 166 0.0045602992 1e-6 171 166 0.00065149995 1e-6 191 166 0.00021719999 1e-6 206 166 0.00021719999 1e-6 219 166 0.0043430999 1e-6 224 166 0.00086859986 1e-6 233 166 0.0076003969 1e-6 234 166 0.0028229998 1e-6 236 166 0.00043429993 1e-6 237 166 0.00043429993 1e-6 241 166 0.00065149995 1e-6 252 166 0.00065149995 1e-6 256 166 0.00043429993 1e-6 268 166 0.00043429993 1e-6 270 166 0.00086859986 1e-6 272 166 0.0028229998 1e-6 274 166 0.00021719999 1e-6 277 166 0.00021719999 1e-6 279 166 0.0062974989 1e-6 292 166 0.00021719999 1e-6 293 166 0.00021719999 1e-6 302 166 0.00021719999 1e-6 303 166 0.00021719999 1e-6 304 166 0.00021719999 1e-6 305 166 0.00043429993 1e-6 306 166 0.00065149995 1e-6 308 166 0.00021719999 1e-6 312 166 0.0060802996 1e-6 315 166 0.00021719999 1e-6 317 166 0.004777398 1e-6 318 166 0.0010857999 1e-6 319 166 0.0078175999 1e-6 324 166 0.00021719999 1e-6 326 166 0.020195398 1e-6 346 166 0.0013028998 1e-6 356 166 0.00021719999 1e-6 358 166 0.0056459978 1e-6 366 166 0.00043429993 1e-6 385 166 0.0052116998 1e-6 402 166 0.00021719999 1e-6 417 166 0.00043429993 1e-6 443 166 0.0286645 1e-6 444 166 0.0086861998 1e-6 445 166 0.0086861998 1e-6 446 166 0.0017372 1e-6 447 166 0.011509199 1e-6 450 166 0.0017372 1e-6 452 166 0.0028229998 1e-6 453 166 0.00086859986 1e-6 455 166 0.052117299 1e-6 456 166 0.00043429993 1e-6 457 166 0.0043430999 1e-6 458 166 0.00065149995 1e-6 459 166 0.0010857999 1e-6 460 166 0.0058631971 1e-6 463 166 0.017589599 1e-6 464 166 0.0089033991 1e-6 465 166 0.00065149995 1e-6 467 166 0.0065146983 1e-6 468 166 0.0013028998 1e-6 469 166 0.0032572998 1e-6 470 166 0.0036915999 1e-6 471 166 0.0021715998 1e-6 473 166 0.00021719999 1e-6 478 166 0.00086859986 1e-6 483 166 0.00043429993 1e-6 490 166 0.00043429993 1e-6 18 167 0.00019359999 1e-6 22 167 9.6799995e-05 1e-6 60 167 0.0008711 1e-6 108 167 9.6799995e-05 1e-6 114 167 0.00019359999 1e-6 126 167 9.6799995e-05 1e-6 134 167 0.0003870998 1e-6 139 167 9.6799995e-05 1e-6 159 167 0.0015485999 1e-6 160 167 0.16376305 1e-6 161 167 0.021196298 1e-6 162 167 0.0067750998 1e-6 163 167 0.041134298 1e-6 164 167 0.0076460987 1e-6 165 167 0.0564266 1e-6 166 167 9.6799995e-05 1e-6 167 167 0.009775497 1e-6 170 167 0.0035810999 1e-6 171 167 0.0090978965 1e-6 173 167 9.6799995e-05 1e-6 176 167 9.6799995e-05 1e-6 177 167 0.0015485999 1e-6 190 167 9.6799995e-05 1e-6 191 167 0.0061942972 1e-6 194 167 9.6799995e-05 1e-6 206 167 0.00019359999 1e-6 219 167 0.0003870998 1e-6 224 167 0.00029039988 1e-6 233 167 0.0028068 1e-6 234 167 0.0020325 1e-6 236 167 0.011033699 1e-6 237 167 0.0003870998 1e-6 240 167 9.6799995e-05 1e-6 241 167 0.0049360991 1e-6 252 167 0.00019359999 1e-6 256 167 0.0083236992 1e-6 259 167 0.0022260998 1e-6 268 167 0.010162599 1e-6 270 167 0.012679096 1e-6 272 167 0.00058069988 1e-6 274 167 0.0057103969 1e-6 277 167 0.0014517999 1e-6 279 167 0.0053232983 1e-6 289 167 0.00019359999 1e-6 292 167 0.0030003998 1e-6 293 167 0.0009678998 1e-6 295 167 0.0026131999 1e-6 302 167 0.0029036 1e-6 303 167 0.005032897 1e-6 304 167 0.0048392974 1e-6 305 167 0.0084203966 1e-6 306 167 0.013550099 1e-6 308 167 0.0039682984 1e-6 312 167 0.0010646998 1e-6 317 167 0.00019359999 1e-6 318 167 0.0009678998 1e-6 319 167 0.011227299 1e-6 324 167 0.0043553971 1e-6 326 167 0.0003870998 1e-6 346 167 0.0009678998 1e-6 356 167 0.00019359999 1e-6 358 167 0.0047424994 1e-6 366 167 0.0082268976 1e-6 377 167 0.00019359999 1e-6 378 167 0.00029039988 1e-6 383 167 0.00067749992 1e-6 385 167 0.0016454 1e-6 386 167 0.0017422 1e-6 387 167 9.6799995e-05 1e-6 402 167 0.00077429996 1e-6 415 167 0.0020325 1e-6 417 167 0.00029039988 1e-6 439 167 0.0020325 1e-6 443 167 0.023035198 1e-6 444 167 0.0009678998 1e-6 445 167 0.0133566 1e-6 446 167 0.0013549998 1e-6 447 167 0.0042585991 1e-6 450 167 0.0072589964 1e-6 452 167 0.0021292998 1e-6 453 167 0.00067749992 1e-6 454 167 0.0003870998 1e-6 455 167 0.060588498 1e-6 456 167 0.00029039988 1e-6 457 167 0.0041617975 1e-6 458 167 0.0010646998 1e-6 459 167 0.0003870998 1e-6 460 167 0.0059039965 1e-6 463 167 0.020905897 1e-6 464 167 0.00048389984 1e-6 465 167 0.0008711 1e-6 467 167 0.0063878968 1e-6 468 167 0.0036778999 1e-6 469 167 0.0032906998 1e-6 470 167 0.0037747 1e-6 471 167 0.0037747 1e-6 472 167 0.0019357 1e-6 473 167 9.6799995e-05 1e-6 477 167 9.6799995e-05 1e-6 478 167 0.0008711 1e-6 483 167 0.00058069988 1e-6 490 167 0.0003870998 1e-6 491 167 9.6799995e-05 1e-6 17 168 0.0010572998 1e-6 22 168 0.0002115 1e-6 60 168 0.0014801999 1e-6 114 168 0.0002115 1e-6 159 168 0.17635858 1e-6 160 168 0.21251845 1e-6 168 168 0.0074010976 1e-6 206 168 0.00042289984 1e-6 214 168 0.10467327 1e-6 233 168 0.010573097 1e-6 234 168 0.0046520978 1e-6 237 168 0.0002115 1e-6 272 168 0.00063439994 1e-6 317 168 0.0002115 1e-6 318 168 0.0002115 1e-6 322 168 0.0002115 1e-6 326 168 0.0088813975 1e-6 346 168 0.0012687999 1e-6 356 168 0.0002115 1e-6 358 168 0.00084579992 1e-6 417 168 0.00042289984 1e-6 443 168 0.028335799 1e-6 444 168 0.0002115 1e-6 445 168 0.0086698979 1e-6 446 168 0.002749 1e-6 447 168 0.010573097 1e-6 450 168 0.0019031998 1e-6 452 168 0.0067667998 1e-6 453 168 0.0078240968 1e-6 454 168 0.00084579992 1e-6 455 168 0.056037199 1e-6 456 168 0.0002115 1e-6 457 168 0.0025374999 1e-6 458 168 0.00063439994 1e-6 459 168 0.0002115 1e-6 460 168 0.0050750971 1e-6 463 168 0.0012687999 1e-6 464 168 0.00042289984 1e-6 465 168 0.00042289984 1e-6 467 168 0.0063437968 1e-6 468 168 0.00084579992 1e-6 469 168 0.0025374999 1e-6 470 168 0.0029604998 1e-6 471 168 0.0016917 1e-6 478 168 0.00063439994 1e-6 483 168 0.00063439994 1e-6 490 168 0.00042289984 1e-6 17 169 0.0020547998 1e-6 18 169 0.00034249993 1e-6 22 169 0.00068489998 1e-6 60 169 0.0075341985 1e-6 114 169 0.00034249993 1e-6 159 169 0.073287666 1e-6 160 169 0.28150678 1e-6 161 169 0.004794497 1e-6 162 169 0.0017122999 1e-6 165 169 0.0023973 1e-6 169 169 0.0044520982 1e-6 170 169 0.00034249993 1e-6 171 169 0.0027396998 1e-6 172 169 0.00034249993 1e-6 188 169 0.0017122999 1e-6 198 169 0.0010273999 1e-6 206 169 0.00068489998 1e-6 219 169 0.0013698998 1e-6 224 169 0.0020547998 1e-6 233 169 0.00034249993 1e-6 234 169 0.0041095987 1e-6 237 169 0.00034249993 1e-6 270 169 0.0010273999 1e-6 272 169 0.00068489998 1e-6 277 169 0.0010273999 1e-6 279 169 0.030479498 1e-6 315 169 0.00034249993 1e-6 318 169 0.0020547998 1e-6 319 169 0.00034249993 1e-6 322 169 0.00034249993 1e-6 326 169 0.00068489998 1e-6 346 169 0.0023973 1e-6 358 169 0.0017122999 1e-6 417 169 0.00068489998 1e-6 438 169 0.0027396998 1e-6 443 169 0.027397297 1e-6 444 169 0.00034249993 1e-6 445 169 0.024315096 1e-6 446 169 0.0017122999 1e-6 447 169 0.0023973 1e-6 450 169 0.0034246999 1e-6 452 169 0.0092465989 1e-6 453 169 0.0054794997 1e-6 455 169 0.044862997 1e-6 456 169 0.00034249993 1e-6 457 169 0.0023973 1e-6 458 169 0.0023973 1e-6 459 169 0.00068489998 1e-6 460 169 0.0013698998 1e-6 463 169 0.004794497 1e-6 464 169 0.00068489998 1e-6 465 169 0.00068489998 1e-6 467 169 0.013013698 1e-6 468 169 0.0051369965 1e-6 469 169 0.0037670999 1e-6 470 169 0.0041095987 1e-6 471 169 0.0034246999 1e-6 478 169 0.0013698998 1e-6 483 169 0.0010273999 1e-6 490 169 0.00068489998 1e-6 491 169 0.00034249993 1e-6 22 170 0.00067869993 1e-6 60 170 0.0023752998 1e-6 114 170 0.00033929991 1e-6 159 170 0.015269797 1e-6 160 170 0.087885976 1e-6 161 170 0.0074651986 1e-6 162 170 0.0095011964 1e-6 165 170 0.010519199 1e-6 170 170 0.00033929991 1e-6 206 170 0.00033929991 1e-6 219 170 0.17237866 1e-6 233 170 0.0010179998 1e-6 234 170 0.016966399 1e-6 241 170 0.014591098 1e-6 270 170 0.019002397 1e-6 272 170 0.0023752998 1e-6 277 170 0.00033929991 1e-6 315 170 0.0020359999 1e-6 317 170 0.00033929991 1e-6 318 170 0.00033929991 1e-6 319 170 0.00033929991 1e-6 326 170 0.012894496 1e-6 346 170 0.0016965999 1e-6 358 170 0.0010179998 1e-6 417 170 0.00033929991 1e-6 438 170 0.0074651986 1e-6 443 170 0.010858499 1e-6 444 170 0.003054 1e-6 445 170 0.024092298 1e-6 446 170 0.00067869993 1e-6 447 170 0.0159484 1e-6 450 170 0.0020359999 1e-6 452 170 0.0288429 1e-6 453 170 0.0098404996 1e-6 454 170 0.0013573 1e-6 455 170 0.047845297 1e-6 457 170 0.0023752998 1e-6 458 170 0.00067869993 1e-6 459 170 0.00067869993 1e-6 460 170 0.0010179998 1e-6 463 170 0.012215797 1e-6 464 170 0.00067869993 1e-6 465 170 0.00033929991 1e-6 467 170 0.0074651986 1e-6 468 170 0.015609097 1e-6 469 170 0.0023752998 1e-6 470 170 0.0023752998 1e-6 471 170 0.0016965999 1e-6 478 170 0.00067869993 1e-6 483 170 0.00067869993 1e-6 490 170 0.00033929991 1e-6 491 170 0.00033929991 1e-6 13 171 6.6999986e-05 1e-6 18 171 0.00033519999 1e-6 22 171 0.00093849981 1e-6 24 171 0.00046919985 1e-6 60 171 0.0024132 1e-6 75 171 6.6999986e-05 1e-6 82 171 0.00013409999 1e-6 104 171 0.00020109999 1e-6 107 171 0.00020109999 1e-6 108 171 6.6999986e-05 1e-6 114 171 6.6999986e-05 1e-6 126 171 6.6999986e-05 1e-6 130 171 0.00060329982 1e-6 131 171 6.6999986e-05 1e-6 132 171 6.6999986e-05 1e-6 139 171 6.6999986e-05 1e-6 150 171 0.00093849981 1e-6 156 171 6.6999986e-05 1e-6 159 171 0.032041799 1e-6 160 171 0.13601017 1e-6 161 171 0.011730798 1e-6 162 171 0.0065021999 1e-6 163 171 6.6999986e-05 1e-6 165 171 0.010457199 1e-6 169 171 0.0010724999 1e-6 170 171 0.013473697 1e-6 171 171 0.056374799 1e-6 172 171 0.00093849981 1e-6 186 171 0.0012065999 1e-6 187 171 0.00033519999 1e-6 188 171 6.6999986e-05 1e-6 189 171 6.6999986e-05 1e-6 190 171 0.00013409999 1e-6 191 171 0.0004021998 1e-6 192 171 0.0049604997 1e-6 193 171 0.00053629978 1e-6 194 171 0.00013409999 1e-6 198 171 0.032913297 1e-6 200 171 6.6999986e-05 1e-6 203 171 6.6999986e-05 1e-6 204 171 6.6999986e-05 1e-6 206 171 6.6999986e-05 1e-6 207 171 6.6999986e-05 1e-6 214 171 0.0010054999 1e-6 219 171 0.010993399 1e-6 223 171 6.6999986e-05 1e-6 224 171 0.0091164969 1e-6 225 171 6.6999986e-05 1e-6 233 171 0.0081109963 1e-6 234 171 0.0043571964 1e-6 237 171 0.0004021998 1e-6 240 171 0.00026809983 1e-6 241 171 0.0062340982 1e-6 252 171 0.0029495 1e-6 267 171 0.00013409999 1e-6 270 171 0.016154997 1e-6 272 171 0.0011395998 1e-6 273 171 0.00013409999 1e-6 277 171 0.0012065999 1e-6 279 171 0.00020109999 1e-6 282 171 6.6999986e-05 1e-6 285 171 6.6999986e-05 1e-6 292 171 0.00013409999 1e-6 293 171 0.00020109999 1e-6 298 171 6.6999986e-05 1e-6 312 171 0.00046919985 1e-6 313 171 0.0047593974 1e-6 315 171 0.0085801966 1e-6 317 171 0.00013409999 1e-6 318 171 0.0017428999 1e-6 319 171 0.0030834998 1e-6 322 171 0.0004021998 1e-6 325 171 6.6999986e-05 1e-6 326 171 0.0053625964 1e-6 334 171 6.6999986e-05 1e-6 340 171 0.00020109999 1e-6 346 171 0.0018098999 1e-6 347 171 6.6999986e-05 1e-6 350 171 0.00020109999 1e-6 356 171 0.00013409999 1e-6 358 171 0.0016758 1e-6 387 171 6.6999986e-05 1e-6 402 171 0.00020109999 1e-6 417 171 0.00060329982 1e-6 421 171 6.6999986e-05 1e-6 422 171 6.6999986e-05 1e-6 430 171 6.6999986e-05 1e-6 431 171 6.6999986e-05 1e-6 433 171 6.6999986e-05 1e-6 434 171 0.00013409999 1e-6 438 171 0.0018098999 1e-6 442 171 0.00026809983 1e-6 443 171 0.018836297 1e-6 444 171 0.00087139988 1e-6 445 171 0.0090494975 1e-6 446 171 0.0023461999 1e-6 447 171 0.0075076967 1e-6 448 171 6.6999986e-05 1e-6 450 171 0.0031505998 1e-6 452 171 0.0146803 1e-6 453 171 0.0089823976 1e-6 454 171 0.00087139988 1e-6 455 171 0.044040799 1e-6 456 171 0.00053629978 1e-6 457 171 0.0026143 1e-6 458 171 0.00067029987 1e-6 459 171 0.00053629978 1e-6 460 171 0.0014746999 1e-6 463 171 0.011730798 1e-6 464 171 0.0004021998 1e-6 465 171 0.0010724999 1e-6 467 171 0.0091835 1e-6 468 171 0.0095186979 1e-6 469 171 0.0042230971 1e-6 470 171 0.0045582987 1e-6 471 171 0.0057647973 1e-6 473 171 0.00013409999 1e-6 477 171 6.6999986e-05 1e-6 478 171 0.0014076999 1e-6 483 171 0.0010724999 1e-6 489 171 0.00020109999 1e-6 490 171 0.0004021998 1e-6 491 171 0.0010054999 1e-6 17 172 0.0017462999 1e-6 18 172 0.00043659983 1e-6 60 172 0.0028378 1e-6 114 172 0.00021829999 1e-6 126 172 0.00021829999 1e-6 159 172 0.058284197 1e-6 160 172 0.21305388 1e-6 161 172 0.0032743998 1e-6 162 172 0.054136697 1e-6 165 172 0.067015886 1e-6 169 172 0.0024011999 1e-6 170 172 0.00043659983 1e-6 171 172 0.00043659983 1e-6 172 172 0.0106964 1e-6 190 172 0.00021829999 1e-6 194 172 0.00021829999 1e-6 206 172 0.00043659983 1e-6 233 172 0.00021829999 1e-6 234 172 0.004584197 1e-6 237 172 0.00043659983 1e-6 241 172 0.00043659983 1e-6 252 172 0.00043659983 1e-6 270 172 0.00021829999 1e-6 272 172 0.00043659983 1e-6 277 172 0.023139097 1e-6 279 172 0.017026898 1e-6 312 172 0.0021829 1e-6 315 172 0.00021829999 1e-6 317 172 0.00021829999 1e-6 318 172 0.0017462999 1e-6 319 172 0.0010914998 1e-6 322 172 0.00021829999 1e-6 326 172 0.00021829999 1e-6 346 172 0.0019645998 1e-6 356 172 0.00021829999 1e-6 358 172 0.0019645998 1e-6 402 172 0.00021829999 1e-6 417 172 0.00065489998 1e-6 442 172 0.0010914998 1e-6 443 172 0.029906098 1e-6 444 172 0.00021829999 1e-6 445 172 0.0111329 1e-6 446 172 0.0024011999 1e-6 447 172 0.0015280999 1e-6 450 172 0.0034926999 1e-6 452 172 0.0082950965 1e-6 453 172 0.0024011999 1e-6 454 172 0.00043659983 1e-6 455 172 0.058502499 1e-6 456 172 0.00043659983 1e-6 457 172 0.0028378 1e-6 458 172 0.0008731999 1e-6 459 172 0.013752498 1e-6 460 172 0.0010914998 1e-6 463 172 0.0072036982 1e-6 464 172 0.00043659983 1e-6 465 172 0.0010914998 1e-6 467 172 0.0098231994 1e-6 468 172 0.0019645998 1e-6 469 172 0.0032743998 1e-6 470 172 0.0037109999 1e-6 471 172 0.0030560999 1e-6 473 172 0.00021829999 1e-6 478 172 0.0015280999 1e-6 483 172 0.0013098 1e-6 490 172 0.00043659983 1e-6 491 172 0.00021829999 1e-6 9 173 3.6199999e-05 1e-6 18 173 0.00018079999 1e-6 22 173 0.0005063999 1e-6 60 173 0.0027849998 1e-6 82 173 3.6199999e-05 1e-6 83 173 3.6199999e-05 1e-6 84 173 3.6199999e-05 1e-6 108 173 3.6199999e-05 1e-6 113 173 7.2299998e-05 1e-6 114 173 7.2299998e-05 1e-6 117 173 7.2299998e-05 1e-6 126 173 3.6199999e-05 1e-6 130 173 0.0043040998 1e-6 131 173 3.6199999e-05 1e-6 132 173 3.6199999e-05 1e-6 133 173 7.2299998e-05 1e-6 137 173 0.00061489991 1e-6 139 173 0.0040870979 1e-6 141 173 3.6199999e-05 1e-6 143 173 3.6199999e-05 1e-6 149 173 7.2299998e-05 1e-6 150 173 0.0011211999 1e-6 151 173 3.6199999e-05 1e-6 154 173 3.6199999e-05 1e-6 159 173 0.00018079999 1e-6 160 173 0.094437182 1e-6 161 173 0.041630499 1e-6 162 173 0.0030743999 1e-6 165 173 0.037507199 1e-6 169 173 0.0005063999 1e-6 170 173 0.019133396 1e-6 171 173 0.022280097 1e-6 172 173 0.00043399981 1e-6 173 173 0.0013382998 1e-6 175 173 3.6199999e-05 1e-6 176 173 3.6199999e-05 1e-6 178 173 3.6199999e-05 1e-6 188 173 3.6199999e-05 1e-6 189 173 7.2299998e-05 1e-6 190 173 0.0001447 1e-6 192 173 0.0014829 1e-6 194 173 0.00054249982 1e-6 198 173 0.019386597 1e-6 200 173 0.0001085 1e-6 203 173 0.0001447 1e-6 204 173 7.2299998e-05 1e-6 206 173 0.00021699999 1e-6 207 173 7.2299998e-05 1e-6 214 173 0.0001447 1e-6 219 173 0.00021699999 1e-6 223 173 3.6199999e-05 1e-6 224 173 0.00054249982 1e-6 225 173 3.6199999e-05 1e-6 227 173 3.6199999e-05 1e-6 233 173 0.018807899 1e-6 234 173 0.0030019998 1e-6 237 173 0.00036169984 1e-6 240 173 0.00021699999 1e-6 241 173 0.0326606 1e-6 243 173 0.0001447 1e-6 252 173 0.0088251978 1e-6 270 173 0.012080397 1e-6 272 173 0.00068719988 1e-6 277 173 0.0027849998 1e-6 279 173 0.00075949985 1e-6 282 173 3.6199999e-05 1e-6 283 173 3.6199999e-05 1e-6 293 173 0.00028939988 1e-6 296 173 3.6199999e-05 1e-6 312 173 0.0064380988 1e-6 315 173 0.0001085 1e-6 317 173 0.0067635998 1e-6 318 173 0.0020615999 1e-6 319 173 0.030164897 1e-6 322 173 0.0013744 1e-6 326 173 0.0014105998 1e-6 346 173 0.0026764998 1e-6 356 173 0.0001085 1e-6 358 173 0.0010851 1e-6 372 173 3.6199999e-05 1e-6 384 173 3.6199999e-05 1e-6 387 173 3.6199999e-05 1e-6 391 173 3.6199999e-05 1e-6 393 173 7.2299998e-05 1e-6 394 173 3.6199999e-05 1e-6 397 173 3.6199999e-05 1e-6 402 173 0.00018079999 1e-6 419 173 3.6199999e-05 1e-6 422 173 0.0001447 1e-6 423 173 3.6199999e-05 1e-6 427 173 3.6199999e-05 1e-6 428 173 7.2299998e-05 1e-6 430 173 0.00021699999 1e-6 431 173 3.6199999e-05 1e-6 432 173 3.6199999e-05 1e-6 433 173 7.2299998e-05 1e-6 434 173 7.2299998e-05 1e-6 437 173 7.2299998e-05 1e-6 438 173 0.0013020998 1e-6 443 173 0.017433397 1e-6 444 173 0.0013020998 1e-6 445 173 0.0073422976 1e-6 446 173 0.0010851 1e-6 447 173 0.0036531 1e-6 448 173 3.6199999e-05 1e-6 450 173 0.0038339 1e-6 452 173 0.0061848983 1e-6 453 173 0.0011574 1e-6 454 173 0.0003254998 1e-6 455 173 0.056351297 1e-6 456 173 0.00047019986 1e-6 457 173 0.0033998999 1e-6 458 173 0.00043399981 1e-6 459 173 0.0003254998 1e-6 460 173 0.0061486997 1e-6 463 173 0.0098017976 1e-6 464 173 0.0005063999 1e-6 465 173 0.0012296999 1e-6 467 173 0.014322899 1e-6 468 173 0.0112486 1e-6 469 173 0.0031466999 1e-6 470 173 0.0035446 1e-6 471 173 0.0026041998 1e-6 473 173 7.2299998e-05 1e-6 477 173 0.0001447 1e-6 478 173 0.0015913998 1e-6 483 173 0.0011574 1e-6 489 173 0.0001085 1e-6 490 173 0.00028939988 1e-6 491 173 0.0003254998 1e-6 60 174 0.0020682998 1e-6 114 174 0.00051709986 1e-6 130 174 0.0046535991 1e-6 139 174 0.0031023999 1e-6 159 174 0.0010340998 1e-6 160 174 0.0062047988 1e-6 161 174 0.043433297 1e-6 165 174 0.012926597 1e-6 170 174 0.0010340998 1e-6 171 174 0.013443597 1e-6 187 174 0.00051709986 1e-6 192 174 0.00051709986 1e-6 193 174 0.00051709986 1e-6 194 174 0.0010340998 1e-6 197 174 0.00051709986 1e-6 198 174 0.020682499 1e-6 206 174 0.00051709986 1e-6 214 174 0.0051705986 1e-6 219 174 0.020682499 1e-6 224 174 0.029472597 1e-6 225 174 0.00051709986 1e-6 233 174 0.00051709986 1e-6 234 174 0.0036193999 1e-6 240 174 0.00051709986 1e-6 241 174 0.16287488 1e-6 252 174 0.0015511999 1e-6 272 174 0.00051709986 1e-6 274 174 0.00051709986 1e-6 277 174 0.0025852998 1e-6 279 174 0.0010340998 1e-6 282 174 0.00051709986 1e-6 292 174 0.00051709986 1e-6 293 174 0.0010340998 1e-6 294 174 0.00051709986 1e-6 295 174 0.00051709986 1e-6 312 174 0.00051709986 1e-6 315 174 0.0020682998 1e-6 318 174 0.00051709986 1e-6 319 174 0.016028997 1e-6 320 174 0.0010340998 1e-6 322 174 0.0010340998 1e-6 326 174 0.0020682998 1e-6 338 174 0.00051709986 1e-6 340 174 0.0010340998 1e-6 349 174 0.00051709986 1e-6 350 174 0.00051709986 1e-6 358 174 0.0020682998 1e-6 373 174 0.00051709986 1e-6 385 174 0.00051709986 1e-6 392 174 0.0010340998 1e-6 393 174 0.0062047988 1e-6 442 174 0.00051709986 1e-6 443 174 0.0046535991 1e-6 444 174 0.008272998 1e-6 445 174 0.0087900981 1e-6 447 174 0.023267798 1e-6 450 174 0.0031023999 1e-6 452 174 0.010858297 1e-6 453 174 0.00051709986 1e-6 455 174 0.0506722 1e-6 457 174 0.004136499 1e-6 458 174 0.00051709986 1e-6 459 174 0.024301998 1e-6 460 174 0.0051705986 1e-6 463 174 0.013443597 1e-6 464 174 0.0020682998 1e-6 465 174 0.0010340998 1e-6 467 174 0.0072388984 1e-6 468 174 0.020682499 1e-6 469 174 0.0036193999 1e-6 470 174 0.004136499 1e-6 471 174 0.0025852998 1e-6 478 174 0.0010340998 1e-6 479 174 0.00051709986 1e-6 490 174 0.0067217983 1e-6 491 174 0.00051709986 1e-6 22 175 0.00063229981 1e-6 60 175 0.0022131 1e-6 114 175 0.00031619985 1e-6 126 175 0.00031619985 1e-6 150 175 0.00031619985 1e-6 159 175 0.0031615999 1e-6 160 175 0.075877249 1e-6 161 175 0.036990199 1e-6 162 175 0.0123301 1e-6 165 175 0.053430296 1e-6 170 175 0.026240896 1e-6 171 175 0.024660099 1e-6 174 175 0.00063229981 1e-6 175 175 0.0018968999 1e-6 190 175 0.00031619985 1e-6 192 175 0.00031619985 1e-6 194 175 0.00031619985 1e-6 198 175 0.0237117 1e-6 206 175 0.00063229981 1e-6 219 175 0.00063229981 1e-6 233 175 0.016756199 1e-6 234 175 0.0025291999 1e-6 237 175 0.00031619985 1e-6 241 175 0.042680997 1e-6 252 175 0.00094849989 1e-6 270 175 0.015491597 1e-6 272 175 0.00063229981 1e-6 277 175 0.00063229981 1e-6 279 175 0.0012645999 1e-6 295 175 0.00031619985 1e-6 312 175 0.00094849989 1e-6 315 175 0.00063229981 1e-6 317 175 0.0063230991 1e-6 318 175 0.0022131 1e-6 319 175 0.035093296 1e-6 322 175 0.0063230991 1e-6 326 175 0.0069553964 1e-6 340 175 0.00031619985 1e-6 358 175 0.0012645999 1e-6 386 175 0.00031619985 1e-6 387 175 0.0012645999 1e-6 391 175 0.0041099973 1e-6 392 175 0.00063229981 1e-6 393 175 0.0041099973 1e-6 422 175 0.00031619985 1e-6 443 175 0.019285496 1e-6 444 175 0.00031619985 1e-6 445 175 0.0079039 1e-6 446 175 0.0012645999 1e-6 447 175 0.0098007992 1e-6 450 175 0.0041099973 1e-6 452 175 0.0066392981 1e-6 453 175 0.0012645999 1e-6 454 175 0.00063229981 1e-6 455 175 0.046790998 1e-6 456 175 0.00031619985 1e-6 457 175 0.0018968999 1e-6 458 175 0.00094849989 1e-6 459 175 0.00031619985 1e-6 460 175 0.0053745992 1e-6 463 175 0.035409398 1e-6 464 175 0.00031619985 1e-6 465 175 0.0022131 1e-6 467 175 0.010116998 1e-6 468 175 0.011381596 1e-6 469 175 0.0034776998 1e-6 470 175 0.0037938999 1e-6 471 175 0.0028453998 1e-6 473 175 0.00031619985 1e-6 478 175 0.0015807999 1e-6 483 175 0.0015807999 1e-6 490 175 0.00063229981 1e-6 491 175 0.00031619985 1e-6 9 176 4.9599999e-05 1e-6 18 176 0.0012888999 1e-6 22 176 9.9099998e-05 1e-6 60 176 0.0014375998 1e-6 82 176 4.9599999e-05 1e-6 83 176 4.9599999e-05 1e-6 84 176 4.9599999e-05 1e-6 108 176 4.9599999e-05 1e-6 114 176 9.9099998e-05 1e-6 117 176 0.0062462986 1e-6 126 176 4.9599999e-05 1e-6 130 176 0.13315487 1e-6 131 176 0.0029247999 1e-6 132 176 0.0016854999 1e-6 133 176 0.003024 1e-6 137 176 0.011302799 1e-6 139 176 0.018193498 1e-6 141 176 0.0027265998 1e-6 143 176 0.0036684999 1e-6 149 176 0.0015864 1e-6 150 176 0.0011401998 1e-6 152 176 4.9599999e-05 1e-6 156 176 0.00039659999 1e-6 158 176 9.9099998e-05 1e-6 160 176 0.043575298 1e-6 161 176 0.052845497 1e-6 162 176 0.0016854999 1e-6 165 176 0.0052547976 1e-6 170 176 0.0011401998 1e-6 171 176 0.010360897 1e-6 172 176 0.0001983 1e-6 173 176 4.9599999e-05 1e-6 176 176 0.0016358998 1e-6 178 176 0.00024789991 1e-6 187 176 0.0006444999 1e-6 189 176 9.9099998e-05 1e-6 190 176 0.0001487 1e-6 192 176 4.9599999e-05 1e-6 194 176 0.0001983 1e-6 197 176 4.9599999e-05 1e-6 198 176 0.010013897 1e-6 200 176 4.9599999e-05 1e-6 203 176 9.9099998e-05 1e-6 204 176 4.9599999e-05 1e-6 206 176 0.0001983 1e-6 207 176 4.9599999e-05 1e-6 214 176 4.9599999e-05 1e-6 219 176 0.0014871999 1e-6 233 176 0.003024 1e-6 234 176 0.0027265998 1e-6 237 176 0.00034699985 1e-6 240 176 0.010162599 1e-6 241 176 0.044715397 1e-6 243 176 0.0066428967 1e-6 252 176 0.00034699985 1e-6 270 176 0.0017847 1e-6 272 176 0.00049569993 1e-6 277 176 0.00044619991 1e-6 279 176 0.00049569993 1e-6 293 176 4.9599999e-05 1e-6 312 176 0.0047094971 1e-6 315 176 4.9599999e-05 1e-6 317 176 0.0066923983 1e-6 318 176 0.0017350998 1e-6 319 176 0.014673799 1e-6 322 176 0.023844898 1e-6 326 176 0.00024789991 1e-6 346 176 9.9099998e-05 1e-6 356 176 9.9099998e-05 1e-6 358 176 0.0010409998 1e-6 387 176 4.9599999e-05 1e-6 402 176 0.0001487 1e-6 422 176 0.0001487 1e-6 423 176 4.9599999e-05 1e-6 430 176 4.9599999e-05 1e-6 433 176 4.9599999e-05 1e-6 434 176 4.9599999e-05 1e-6 437 176 0.0045111999 1e-6 438 176 4.9599999e-05 1e-6 442 176 4.9599999e-05 1e-6 443 176 0.0078821965 1e-6 444 176 0.0016854999 1e-6 445 176 0.0089727975 1e-6 446 176 0.00054529984 1e-6 447 176 0.0054530986 1e-6 448 176 4.9599999e-05 1e-6 450 176 0.0036189 1e-6 452 176 0.0034701999 1e-6 453 176 0.00089229993 1e-6 454 176 0.0016854999 1e-6 455 176 0.049573697 1e-6 456 176 0.00044619991 1e-6 457 176 0.0023299998 1e-6 458 176 0.00049569993 1e-6 459 176 0.00034699985 1e-6 460 176 0.0013881 1e-6 463 176 0.013682298 1e-6 464 176 0.0013881 1e-6 465 176 0.0011898 1e-6 467 176 0.012839597 1e-6 468 176 0.010063499 1e-6 469 176 0.0037675998 1e-6 470 176 0.0040649995 1e-6 471 176 0.004312899 1e-6 473 176 9.9099998e-05 1e-6 477 176 0.0020325 1e-6 478 176 0.0013384998 1e-6 483 176 0.0012392998 1e-6 489 176 9.9099998e-05 1e-6 490 176 0.00034699985 1e-6 491 176 0.0001983 1e-6 22 177 0.00022939999 1e-6 60 177 0.0017205998 1e-6 108 177 0.00011469999 1e-6 114 177 0.00022939999 1e-6 117 177 0.00011469999 1e-6 126 177 0.00011469999 1e-6 130 177 0.0020646998 1e-6 131 177 0.00057349983 1e-6 133 177 0.00057349983 1e-6 137 177 0.011126399 1e-6 139 177 0.022482198 1e-6 141 177 0.00011469999 1e-6 149 177 0.0038999999 1e-6 150 177 0.0035559 1e-6 154 177 0.0057352968 1e-6 156 177 0.00022939999 1e-6 158 177 0.00011469999 1e-6 160 177 0.0080293976 1e-6 161 177 0.0018352999 1e-6 165 177 0.012043998 1e-6 170 177 0.014452897 1e-6 171 177 0.0038999999 1e-6 178 177 0.00022939999 1e-6 188 177 0.00011469999 1e-6 189 177 0.00011469999 1e-6 190 177 0.00011469999 1e-6 194 177 0.00022939999 1e-6 198 177 0.027873397 1e-6 200 177 0.0041293986 1e-6 203 177 0.00011469999 1e-6 204 177 0.00011469999 1e-6 206 177 0.00022939999 1e-6 214 177 0.0038999999 1e-6 223 177 0.00011469999 1e-6 224 177 0.0012617998 1e-6 225 177 0.00011469999 1e-6 227 177 0.00011469999 1e-6 233 177 0.0069969967 1e-6 234 177 0.0033264998 1e-6 237 177 0.00034409994 1e-6 240 177 0.010438196 1e-6 241 177 0.085914195 1e-6 243 177 0.00011469999 1e-6 252 177 0.020188097 1e-6 270 177 0.00011469999 1e-6 272 177 0.00034409994 1e-6 277 177 0.10690528 1e-6 282 177 0.00057349983 1e-6 283 177 0.00011469999 1e-6 285 177 0.00011469999 1e-6 286 177 0.00022939999 1e-6 289 177 0.00034409994 1e-6 290 177 0.00022939999 1e-6 292 177 0.00011469999 1e-6 293 177 0.051158499 1e-6 294 177 0.00022939999 1e-6 295 177 0.00011469999 1e-6 307 177 0.00022939999 1e-6 312 177 0.0056205988 1e-6 313 177 0.00011469999 1e-6 315 177 0.013764597 1e-6 317 177 0.00022939999 1e-6 318 177 0.00011469999 1e-6 319 177 0.018926397 1e-6 320 177 0.00011469999 1e-6 321 177 0.00091759977 1e-6 322 177 0.0035559 1e-6 324 177 0.00011469999 1e-6 326 177 0.036476299 1e-6 328 177 0.00022939999 1e-6 340 177 0.0010322998 1e-6 349 177 0.00022939999 1e-6 350 177 0.00011469999 1e-6 351 177 0.00011469999 1e-6 354 177 0.00034409994 1e-6 356 177 0.00011469999 1e-6 358 177 0.0011470998 1e-6 372 177 0.00011469999 1e-6 373 177 0.00011469999 1e-6 384 177 0.0019499999 1e-6 387 177 0.00011469999 1e-6 402 177 0.00011469999 1e-6 419 177 0.0037852998 1e-6 422 177 0.0034411999 1e-6 428 177 0.00034409994 1e-6 430 177 0.00034409994 1e-6 437 177 0.00011469999 1e-6 443 177 0.0096351989 1e-6 444 177 0.00022939999 1e-6 445 177 0.011241097 1e-6 446 177 0.00045879977 1e-6 447 177 0.00091759977 1e-6 450 177 0.0032116999 1e-6 452 177 0.0048175976 1e-6 453 177 0.0030969998 1e-6 454 177 0.00068819989 1e-6 455 177 0.057008497 1e-6 456 177 0.00034409994 1e-6 457 177 0.0026381998 1e-6 458 177 0.00080289994 1e-6 459 177 0.00022939999 1e-6 460 177 0.0013764999 1e-6 463 177 0.010438196 1e-6 464 177 0.00022939999 1e-6 465 177 0.0010322998 1e-6 467 177 0.0077999979 1e-6 468 177 0.0056205988 1e-6 469 177 0.0038999999 1e-6 470 177 0.0043587983 1e-6 471 177 0.0021793998 1e-6 473 177 0.00011469999 1e-6 477 177 0.00034409994 1e-6 478 177 0.0013764999 1e-6 483 177 0.0013764999 1e-6 489 177 0.00011469999 1e-6 490 177 0.00034409994 1e-6 491 177 0.00022939999 1e-6 18 178 0.00018419999 1e-6 60 178 0.0018420999 1e-6 108 178 9.2099988e-05 1e-6 114 178 0.00018419999 1e-6 117 178 0.015658099 1e-6 126 178 9.2099988e-05 1e-6 130 178 0.10776454 1e-6 131 178 0.0013815998 1e-6 132 178 0.00036839978 1e-6 133 178 0.0046973974 1e-6 137 178 0.025329299 1e-6 138 178 9.2099988e-05 1e-6 139 178 0.008565899 1e-6 141 178 0.0045131966 1e-6 142 178 9.2099988e-05 1e-6 143 178 0.0004604999 1e-6 149 178 0.0070000999 1e-6 150 178 0.0043289997 1e-6 152 178 9.2099988e-05 1e-6 158 178 0.0076447986 1e-6 160 178 0.025881898 1e-6 161 178 0.0298425 1e-6 162 178 0.00018419999 1e-6 165 178 0.0038684998 1e-6 170 178 0.00073689991 1e-6 171 178 0.0011973998 1e-6 172 178 0.00027629989 1e-6 176 178 0.00018419999 1e-6 178 178 0.023855597 1e-6 187 178 9.2099988e-05 1e-6 189 178 9.2099988e-05 1e-6 190 178 9.2099988e-05 1e-6 194 178 0.00018419999 1e-6 198 178 0.0165792 1e-6 203 178 9.2099988e-05 1e-6 204 178 9.2099988e-05 1e-6 206 178 0.00018419999 1e-6 219 178 0.00018419999 1e-6 233 178 0.0038684998 1e-6 234 178 0.0022105998 1e-6 237 178 0.00027629989 1e-6 240 178 0.013355397 1e-6 241 178 0.0350926 1e-6 243 178 0.00073689991 1e-6 252 178 9.2099988e-05 1e-6 270 178 0.00027629989 1e-6 272 178 0.0004604999 1e-6 277 178 0.017776497 1e-6 279 178 0.00092109991 1e-6 293 178 9.2099988e-05 1e-6 312 178 0.0004604999 1e-6 315 178 0.0040526986 1e-6 317 178 0.00073689991 1e-6 318 178 0.00018419999 1e-6 319 178 0.004144799 1e-6 321 178 9.2099988e-05 1e-6 322 178 0.10905409 1e-6 326 178 0.0131712 1e-6 356 178 9.2099988e-05 1e-6 358 178 0.00073689991 1e-6 384 178 0.0019341998 1e-6 387 178 9.2099988e-05 1e-6 402 178 9.2099988e-05 1e-6 422 178 9.2099988e-05 1e-6 437 178 0.0016578999 1e-6 442 178 0.004144799 1e-6 443 178 0.0097632967 1e-6 444 178 0.0032237 1e-6 445 178 0.010407999 1e-6 446 178 0.0004604999 1e-6 447 178 0.0040526986 1e-6 450 178 0.0026711 1e-6 452 178 0.0030395 1e-6 453 178 0.0011973998 1e-6 454 178 0.00073689991 1e-6 455 178 0.049921699 1e-6 456 178 0.00036839978 1e-6 457 178 0.0024869 1e-6 458 178 0.0006446999 1e-6 459 178 0.0051579997 1e-6 460 178 0.0011973998 1e-6 463 178 0.011605397 1e-6 464 178 0.0012894999 1e-6 465 178 0.00082899979 1e-6 467 178 0.014184397 1e-6 468 178 0.0157502 1e-6 469 178 0.004144799 1e-6 470 178 0.004605297 1e-6 471 178 0.0020262999 1e-6 473 178 9.2099988e-05 1e-6 477 178 0.0004604999 1e-6 478 178 0.0011973998 1e-6 483 178 0.0015657998 1e-6 489 178 9.2099988e-05 1e-6 490 178 0.00036839978 1e-6 491 178 0.00018419999 1e-6 22 179 0.00075819995 1e-6 60 179 0.0022745 1e-6 114 179 0.00037909998 1e-6 130 179 0.0041697994 1e-6 133 179 0.0068233982 1e-6 137 179 0.011372298 1e-6 139 179 0.017058399 1e-6 141 179 0.00037909998 1e-6 149 179 0.00037909998 1e-6 150 179 0.0049279965 1e-6 156 179 0.00037909998 1e-6 158 179 0.00037909998 1e-6 160 179 0.075056851 1e-6 161 179 0.0064442977 1e-6 165 179 0.040560998 1e-6 169 179 0.00037909998 1e-6 170 179 0.015162997 1e-6 171 179 0.025018997 1e-6 179 179 0.005307097 1e-6 180 179 0.0011371998 1e-6 185 179 0.00037909998 1e-6 198 179 0.015162997 1e-6 200 179 0.00037909998 1e-6 206 179 0.00075819995 1e-6 214 179 0.00037909998 1e-6 219 179 0.0015162998 1e-6 233 179 0.007202398 1e-6 234 179 0.0026534998 1e-6 237 179 0.00037909998 1e-6 240 179 0.005307097 1e-6 241 179 0.034874897 1e-6 243 179 0.012130398 1e-6 252 179 0.00037909998 1e-6 270 179 0.012130398 1e-6 272 179 0.00037909998 1e-6 277 179 0.018953796 1e-6 279 179 0.00075819995 1e-6 293 179 0.00037909998 1e-6 312 179 0.012130398 1e-6 315 179 0.00075819995 1e-6 317 179 0.0060651973 1e-6 318 179 0.0018954 1e-6 319 179 0.042835496 1e-6 322 179 0.0022745 1e-6 326 179 0.0015162998 1e-6 351 179 0.00037909998 1e-6 358 179 0.0011371998 1e-6 437 179 0.0018954 1e-6 442 179 0.00037909998 1e-6 443 179 0.012509499 1e-6 444 179 0.010234997 1e-6 445 179 0.0060651973 1e-6 446 179 0.00037909998 1e-6 447 179 0.018195599 1e-6 450 179 0.0037908 1e-6 452 179 0.0056860968 1e-6 453 179 0.0018954 1e-6 454 179 0.0011371998 1e-6 455 179 0.052312396 1e-6 456 179 0.00037909998 1e-6 457 179 0.0034116998 1e-6 460 179 0.0060651973 1e-6 463 179 0.0094768964 1e-6 464 179 0.0015162998 1e-6 465 179 0.00075819995 1e-6 467 179 0.0094768964 1e-6 468 179 0.0056860968 1e-6 469 179 0.0045488998 1e-6 470 179 0.0049279965 1e-6 471 179 0.0022745 1e-6 478 179 0.0011371998 1e-6 483 179 0.00075819995 1e-6 490 179 0.00075819995 1e-6 22 180 0.0026427999 1e-6 60 180 0.0035237998 1e-6 108 180 0.0001258 1e-6 114 180 0.00025169994 1e-6 126 180 0.0001258 1e-6 130 180 0.0090611987 1e-6 133 180 0.0021394 1e-6 137 180 0.0057890974 1e-6 139 180 0.0090611987 1e-6 141 180 0.0001258 1e-6 149 180 0.0047822967 1e-6 150 180 0.0055373982 1e-6 156 180 0.00025169994 1e-6 158 180 0.0032720999 1e-6 160 180 0.0036495999 1e-6 161 180 0.0032720999 1e-6 165 180 0.0057890974 1e-6 169 180 0.0050339997 1e-6 170 180 0.0022652999 1e-6 171 180 0.0022652999 1e-6 172 180 0.00037749996 1e-6 180 180 0.0096903965 1e-6 185 180 0.0036495999 1e-6 187 180 0.00075509981 1e-6 188 180 0.0006291999 1e-6 189 180 0.0001258 1e-6 190 180 0.0001258 1e-6 194 180 0.0001258 1e-6 198 180 0.018877398 1e-6 200 180 0.0042788982 1e-6 203 180 0.0001258 1e-6 206 180 0.00025169994 1e-6 214 180 0.0032720999 1e-6 224 180 0.0015101999 1e-6 233 180 0.0096903965 1e-6 234 180 0.0021394 1e-6 237 180 0.00037749996 1e-6 240 180 0.0039012998 1e-6 241 180 0.040649399 1e-6 243 180 0.0001258 1e-6 252 180 0.00088089984 1e-6 270 180 0.00025169994 1e-6 272 180 0.00075509981 1e-6 277 180 0.10596526 1e-6 279 180 0.0010068 1e-6 282 180 0.00050339988 1e-6 283 180 0.00025169994 1e-6 284 180 0.0001258 1e-6 285 180 0.00037749996 1e-6 286 180 0.0001258 1e-6 289 180 0.00075509981 1e-6 290 180 0.00050339988 1e-6 292 180 0.00037749996 1e-6 293 180 0.0076767989 1e-6 294 180 0.00037749996 1e-6 295 180 0.00025169994 1e-6 296 180 0.0001258 1e-6 299 180 0.0001258 1e-6 301 180 0.0001258 1e-6 308 180 0.0001258 1e-6 312 180 0.004027199 1e-6 315 180 0.010319699 1e-6 319 180 0.038509898 1e-6 320 180 0.00037749996 1e-6 321 180 0.00075509981 1e-6 322 180 0.0023910999 1e-6 325 180 0.0001258 1e-6 326 180 0.018374 1e-6 328 180 0.0006291999 1e-6 339 180 0.0001258 1e-6 340 180 0.00088089984 1e-6 351 180 0.0035237998 1e-6 356 180 0.0001258 1e-6 358 180 0.0013842999 1e-6 387 180 0.0001258 1e-6 392 180 0.0001258 1e-6 393 180 0.0001258 1e-6 402 180 0.00025169994 1e-6 405 180 0.0001258 1e-6 413 180 0.0001258 1e-6 422 180 0.0001258 1e-6 434 180 0.0001258 1e-6 437 180 0.0006291999 1e-6 443 180 0.0045305975 1e-6 444 180 0.0045305975 1e-6 445 180 0.0064182989 1e-6 446 180 0.00050339988 1e-6 447 180 0.0055373982 1e-6 450 180 0.0028944998 1e-6 452 180 0.0059148967 1e-6 453 180 0.0035237998 1e-6 454 180 0.0015101999 1e-6 455 180 0.040523499 1e-6 456 180 0.0001258 1e-6 457 180 0.010948896 1e-6 458 180 0.00075509981 1e-6 459 180 0.00037749996 1e-6 460 180 0.0013842999 1e-6 463 180 0.014976099 1e-6 464 180 0.0056631975 1e-6 465 180 0.0010068 1e-6 467 180 0.024666499 1e-6 468 180 0.0059148967 1e-6 469 180 0.0052856989 1e-6 470 180 0.0055373982 1e-6 471 180 0.0052856989 1e-6 473 180 0.0001258 1e-6 477 180 0.0010068 1e-6 478 180 0.0011325998 1e-6 483 180 0.0013842999 1e-6 490 180 0.00050339988 1e-6 491 180 0.00050339988 1e-6 22 181 0.0005804 1e-6 60 181 0.0021280998 1e-6 108 181 0.00019349999 1e-6 114 181 0.0003868998 1e-6 117 181 0.00019349999 1e-6 126 181 0.00019349999 1e-6 130 181 0.013735697 1e-6 133 181 0.0013541998 1e-6 137 181 0.0061907992 1e-6 139 181 0.017217997 1e-6 141 181 0.00019349999 1e-6 150 181 0.0058037974 1e-6 156 181 0.032694899 1e-6 158 181 0.0071580969 1e-6 160 181 0.036370698 1e-6 161 181 0.0027084998 1e-6 165 181 0.022441499 1e-6 169 181 0.0032887999 1e-6 170 181 0.0096731 1e-6 171 181 0.0046430975 1e-6 178 181 0.00019349999 1e-6 180 181 0.00019349999 1e-6 181 181 0.0029018999 1e-6 189 181 0.00019349999 1e-6 190 181 0.00019349999 1e-6 194 181 0.00019349999 1e-6 198 181 0.012381498 1e-6 206 181 0.0003868998 1e-6 214 181 0.0005804 1e-6 219 181 0.0011608 1e-6 224 181 0.0011608 1e-6 233 181 0.0069645979 1e-6 234 181 0.0023214999 1e-6 237 181 0.0009672998 1e-6 240 181 0.0021280998 1e-6 241 181 0.055329897 1e-6 243 181 0.00019349999 1e-6 252 181 0.00077379984 1e-6 269 181 0.0003868998 1e-6 270 181 0.0077383965 1e-6 272 181 0.0005804 1e-6 277 181 0.068678677 1e-6 283 181 0.00019349999 1e-6 286 181 0.00019349999 1e-6 290 181 0.00019349999 1e-6 293 181 0.011220697 1e-6 296 181 0.00019349999 1e-6 312 181 0.017024599 1e-6 315 181 0.011220697 1e-6 317 181 0.00019349999 1e-6 318 181 0.0015476998 1e-6 319 181 0.023602199 1e-6 320 181 0.0005804 1e-6 321 181 0.0005804 1e-6 322 181 0.017411496 1e-6 325 181 0.00019349999 1e-6 326 181 0.0056103989 1e-6 328 181 0.00019349999 1e-6 330 181 0.00019349999 1e-6 340 181 0.0005804 1e-6 354 181 0.0011608 1e-6 356 181 0.00019349999 1e-6 358 181 0.0013541998 1e-6 372 181 0.00019349999 1e-6 387 181 0.00019349999 1e-6 402 181 0.0003868998 1e-6 409 181 0.0021280998 1e-6 412 181 0.0003868998 1e-6 422 181 0.00019349999 1e-6 437 181 0.0003868998 1e-6 442 181 0.00019349999 1e-6 443 181 0.0102534 1e-6 444 181 0.0096731 1e-6 445 181 0.017411496 1e-6 446 181 0.00019349999 1e-6 447 181 0.011414196 1e-6 450 181 0.0030953998 1e-6 452 181 0.0058037974 1e-6 453 181 0.0025149998 1e-6 455 181 0.0433353 1e-6 456 181 0.00019349999 1e-6 457 181 0.0090926997 1e-6 458 181 0.0011608 1e-6 459 181 0.00019349999 1e-6 460 181 0.0058037974 1e-6 463 181 0.013155296 1e-6 464 181 0.0034822999 1e-6 465 181 0.0011608 1e-6 467 181 0.0085122995 1e-6 468 181 0.0021280998 1e-6 469 181 0.0056103989 1e-6 470 181 0.0059972964 1e-6 471 181 0.0019345998 1e-6 473 181 0.00019349999 1e-6 477 181 0.0003868998 1e-6 478 181 0.0013541998 1e-6 483 181 0.0017410999 1e-6 490 181 0.0005804 1e-6 491 181 0.00019349999 1e-6 60 182 0.0017557 1e-6 108 182 0.00012539999 1e-6 114 182 0.00025079981 1e-6 126 182 0.00012539999 1e-6 130 182 0.00062699988 1e-6 137 182 0.00025079981 1e-6 139 182 0.0016303 1e-6 150 182 0.005643297 1e-6 156 182 0.00062699988 1e-6 158 182 0.00012539999 1e-6 159 182 0.00062699988 1e-6 160 182 0.040381197 1e-6 161 182 0.0051416978 1e-6 163 182 0.00012539999 1e-6 165 182 0.041008297 1e-6 169 182 0.00012539999 1e-6 170 182 0.034110896 1e-6 171 182 0.015675899 1e-6 180 182 0.00012539999 1e-6 182 182 0.0050162971 1e-6 183 182 0.00012539999 1e-6 189 182 0.00012539999 1e-6 190 182 0.00012539999 1e-6 194 182 0.00025079981 1e-6 198 182 0.0061449967 1e-6 203 182 0.00012539999 1e-6 204 182 0.00012539999 1e-6 206 182 0.00025079981 1e-6 219 182 0.0018810998 1e-6 224 182 0.00037619984 1e-6 233 182 0.0079007 1e-6 234 182 0.0025081998 1e-6 237 182 0.00037619984 1e-6 241 182 0.081514895 1e-6 243 182 0.00012539999 1e-6 252 182 0.0219463 1e-6 270 182 0.0041383989 1e-6 272 182 0.00037619984 1e-6 277 182 0.023074999 1e-6 279 182 0.0012540999 1e-6 293 182 0.0043892972 1e-6 312 182 0.005894199 1e-6 315 182 0.00087789982 1e-6 317 182 0.0067719966 1e-6 318 182 0.0015048999 1e-6 319 182 0.030850299 1e-6 320 182 0.00012539999 1e-6 321 182 0.00087789982 1e-6 322 182 0.00050159986 1e-6 326 182 0.0057686977 1e-6 340 182 0.0020064998 1e-6 354 182 0.00012539999 1e-6 356 182 0.00012539999 1e-6 358 182 0.00087789982 1e-6 372 182 0.00012539999 1e-6 385 182 0.00050159986 1e-6 387 182 0.00012539999 1e-6 402 182 0.00012539999 1e-6 422 182 0.00012539999 1e-6 442 182 0.0097817965 1e-6 443 182 0.015550498 1e-6 444 182 0.0045146979 1e-6 445 182 0.0081514977 1e-6 446 182 0.00037619984 1e-6 447 182 0.0053924993 1e-6 450 182 0.0032605999 1e-6 452 182 0.0051416978 1e-6 453 182 0.0026335998 1e-6 454 182 0.0028843998 1e-6 455 182 0.0451467 1e-6 456 182 0.00037619984 1e-6 457 182 0.0028843998 1e-6 458 182 0.00050159986 1e-6 459 182 0.00025079981 1e-6 460 182 0.0062703975 1e-6 463 182 0.0200652 1e-6 464 182 0.005643297 1e-6 465 182 0.0010032998 1e-6 467 182 0.0077752993 1e-6 468 182 0.0070227981 1e-6 469 182 0.0046400987 1e-6 470 182 0.0051416978 1e-6 471 182 0.008026097 1e-6 473 182 0.00012539999 1e-6 477 182 0.0017557 1e-6 478 182 0.0012540999 1e-6 483 182 0.0015048999 1e-6 489 182 0.00012539999 1e-6 490 182 0.00050159986 1e-6 491 182 0.00012539999 1e-6 60 183 0.0025807999 1e-6 108 183 0.00013579999 1e-6 114 183 0.00027169986 1e-6 126 183 0.00013579999 1e-6 130 183 0.00040749996 1e-6 137 183 0.00027169986 1e-6 139 183 0.00067919982 1e-6 149 183 0.00013579999 1e-6 150 183 0.0042107999 1e-6 156 183 0.00040749996 1e-6 158 183 0.00027169986 1e-6 160 183 0.0059765987 1e-6 161 183 0.0014942 1e-6 165 183 0.0055690967 1e-6 169 183 0.0039390996 1e-6 170 183 0.0031241998 1e-6 171 183 0.0099157989 1e-6 172 183 0.00027169986 1e-6 180 183 0.00027169986 1e-6 182 183 0.00013579999 1e-6 183 183 0.0029882998 1e-6 185 183 0.00013579999 1e-6 189 183 0.00013579999 1e-6 190 183 0.00013579999 1e-6 194 183 0.00013579999 1e-6 198 183 0.014398299 1e-6 200 183 0.00013579999 1e-6 203 183 0.00013579999 1e-6 206 183 0.00027169986 1e-6 223 183 0.00013579999 1e-6 224 183 0.00027169986 1e-6 233 183 0.012360796 1e-6 234 183 0.0023091999 1e-6 237 183 0.00027169986 1e-6 240 183 0.00013579999 1e-6 241 183 0.031648997 1e-6 242 183 0.00013579999 1e-6 252 183 0.014534097 1e-6 270 183 0.00013579999 1e-6 272 183 0.00054329983 1e-6 277 183 0.20320565 1e-6 282 183 0.00027169986 1e-6 288 183 0.00013579999 1e-6 289 183 0.00040749996 1e-6 292 183 0.00040749996 1e-6 293 183 0.012224898 1e-6 294 183 0.00013579999 1e-6 295 183 0.00040749996 1e-6 296 183 0.00013579999 1e-6 297 183 0.00013579999 1e-6 298 183 0.00013579999 1e-6 307 183 0.00027169986 1e-6 312 183 0.012224898 1e-6 315 183 0.013583299 1e-6 317 183 0.00040749996 1e-6 318 183 0.00040749996 1e-6 319 183 0.0162999 1e-6 320 183 0.00013579999 1e-6 321 183 0.027166497 1e-6 322 183 0.00013579999 1e-6 324 183 0.00027169986 1e-6 326 183 0.0039390996 1e-6 328 183 0.00013579999 1e-6 335 183 0.00027169986 1e-6 340 183 0.0036674999 1e-6 351 183 0.00027169986 1e-6 352 183 0.00013579999 1e-6 354 183 0.00027169986 1e-6 356 183 0.00013579999 1e-6 358 183 0.0010866998 1e-6 366 183 0.00040749996 1e-6 371 183 0.00013579999 1e-6 372 183 0.0012224999 1e-6 373 183 0.00027169986 1e-6 380 183 0.00013579999 1e-6 385 183 0.00040749996 1e-6 386 183 0.00027169986 1e-6 387 183 0.00013579999 1e-6 402 183 0.00013579999 1e-6 415 183 0.00013579999 1e-6 422 183 0.00013579999 1e-6 434 183 0.00013579999 1e-6 442 183 0.00013579999 1e-6 443 183 0.0051615983 1e-6 444 183 0.006248299 1e-6 445 183 0.0059765987 1e-6 446 183 0.00040749996 1e-6 447 183 0.0065199994 1e-6 450 183 0.0027166998 1e-6 452 183 0.005704999 1e-6 453 183 0.0040749982 1e-6 454 183 0.0052974969 1e-6 455 183 0.035995699 1e-6 456 183 0.00013579999 1e-6 457 183 0.0074707977 1e-6 458 183 0.00081499992 1e-6 459 183 0.00027169986 1e-6 460 183 0.0013583 1e-6 463 183 0.0152133 1e-6 464 183 0.0036674999 1e-6 465 183 0.00095079979 1e-6 467 183 0.0081499964 1e-6 468 183 0.006248299 1e-6 469 183 0.0047541 1e-6 470 183 0.0054332986 1e-6 471 183 0.006384097 1e-6 473 183 0.00013579999 1e-6 477 183 0.0046182983 1e-6 478 183 0.0012224999 1e-6 483 183 0.0019016999 1e-6 490 183 0.00054329983 1e-6 491 183 0.00027169986 1e-6 16 184 0.00032139989 1e-6 22 184 0.00064289989 1e-6 60 184 0.0025714999 1e-6 84 184 0.00064289989 1e-6 114 184 0.00032139989 1e-6 126 184 0.00032139989 1e-6 130 184 0.0022500998 1e-6 131 184 0.0022500998 1e-6 133 184 0.00032139989 1e-6 139 184 0.094503343 1e-6 141 184 0.0070716999 1e-6 160 184 0.005142998 1e-6 161 184 0.0080359988 1e-6 165 184 0.00032139989 1e-6 184 184 0.057216298 1e-6 187 184 0.00032139989 1e-6 198 184 0.0038572999 1e-6 206 184 0.00064289989 1e-6 214 184 0.011250399 1e-6 233 184 0.00032139989 1e-6 234 184 0.0028929999 1e-6 237 184 0.00032139989 1e-6 241 184 0.072966874 1e-6 272 184 0.00064289989 1e-6 277 184 0.0520733 1e-6 279 184 0.00032139989 1e-6 289 184 0.0025714999 1e-6 293 184 0.026036598 1e-6 312 184 0.022179399 1e-6 315 184 0.0057858974 1e-6 318 184 0.00032139989 1e-6 320 184 0.0016071999 1e-6 321 184 0.0035357999 1e-6 326 184 0.0073930994 1e-6 358 184 0.00096429978 1e-6 435 184 0.00032139989 1e-6 443 184 0.0070716999 1e-6 444 184 0.0016071999 1e-6 445 184 0.018964998 1e-6 447 184 0.0176792 1e-6 450 184 0.0032143998 1e-6 452 184 0.0041786991 1e-6 453 184 0.0019285998 1e-6 454 184 0.00064289989 1e-6 455 184 0.0347155 1e-6 456 184 0.00064289989 1e-6 457 184 0.0028929999 1e-6 458 184 0.00096429978 1e-6 459 184 0.0012857998 1e-6 460 184 0.00096429978 1e-6 463 184 0.018643498 1e-6 464 184 0.00064289989 1e-6 465 184 0.00064289989 1e-6 467 184 0.0077145994 1e-6 468 184 0.016071998 1e-6 469 184 0.005464498 1e-6 470 184 0.0061073974 1e-6 471 184 0.0016071999 1e-6 473 184 0.00032139989 1e-6 477 184 0.00032139989 1e-6 478 184 0.0012857998 1e-6 479 184 0.0012857998 1e-6 483 184 0.0019285998 1e-6 490 184 0.0019285998 1e-6 491 184 0.00064289989 1e-6 22 185 0.00025809999 1e-6 60 185 0.0010322998 1e-6 114 185 0.00025809999 1e-6 117 185 0.00025809999 1e-6 126 185 0.00025809999 1e-6 130 185 0.0025805999 1e-6 137 185 0.0015483999 1e-6 139 185 0.0136774 1e-6 142 185 0.00025809999 1e-6 149 185 0.0028386998 1e-6 150 185 0.0018064999 1e-6 156 185 0.00077419984 1e-6 158 185 0.00025809999 1e-6 160 185 0.0229677 1e-6 161 185 0.0072257966 1e-6 165 185 0.017548397 1e-6 169 185 0.00025809999 1e-6 170 185 0.0087741986 1e-6 171 185 0.0043870993 1e-6 178 185 0.0049031973 1e-6 183 185 0.00025809999 1e-6 185 185 0.0046451986 1e-6 186 185 0.00025809999 1e-6 187 185 0.0020644998 1e-6 193 185 0.00025809999 1e-6 194 185 0.00025809999 1e-6 198 185 0.0077418983 1e-6 206 185 0.00051609986 1e-6 214 185 0.00025809999 1e-6 233 185 0.0064515993 1e-6 234 185 0.0028386998 1e-6 237 185 0.00025809999 1e-6 240 185 0.0041289963 1e-6 241 185 0.0335484 1e-6 242 185 0.00025809999 1e-6 252 185 0.0018064999 1e-6 253 185 0.00025809999 1e-6 270 185 0.0077418983 1e-6 272 185 0.00077419984 1e-6 277 185 0.078451574 1e-6 279 185 0.00051609986 1e-6 286 185 0.00077419984 1e-6 290 185 0.00077419984 1e-6 293 185 0.0061934963 1e-6 312 185 0.0098064989 1e-6 315 185 0.010838699 1e-6 317 185 0.00051609986 1e-6 318 185 0.0015483999 1e-6 319 185 0.014451597 1e-6 320 185 0.0092902966 1e-6 321 185 0.011870999 1e-6 322 185 0.0020644998 1e-6 325 185 0.00051609986 1e-6 326 185 0.0079999976 1e-6 328 185 0.00051609986 1e-6 340 185 0.0012902999 1e-6 354 185 0.0085160993 1e-6 358 185 0.00077419984 1e-6 366 185 0.00025809999 1e-6 372 185 0.017290298 1e-6 401 185 0.00051609986 1e-6 402 185 0.00051609986 1e-6 414 185 0.00025809999 1e-6 416 185 0.00025809999 1e-6 422 185 0.00025809999 1e-6 443 185 0.0074838996 1e-6 444 185 0.010064498 1e-6 445 185 0.0054193996 1e-6 447 185 0.013161298 1e-6 450 185 0.0030967998 1e-6 452 185 0.0051612966 1e-6 453 185 0.0015483999 1e-6 454 185 0.0015483999 1e-6 455 185 0.038967699 1e-6 456 185 0.00025809999 1e-6 457 185 0.0030967998 1e-6 458 185 0.00025809999 1e-6 459 185 0.00025809999 1e-6 460 185 0.0056773983 1e-6 463 185 0.038709696 1e-6 464 185 0.0015483999 1e-6 465 185 0.00051609986 1e-6 467 185 0.0079999976 1e-6 468 185 0.0054193996 1e-6 469 185 0.0046451986 1e-6 470 185 0.0054193996 1e-6 471 185 0.0023226 1e-6 473 185 0.00025809999 1e-6 477 185 0.00051609986 1e-6 478 185 0.0010322998 1e-6 483 185 0.00077419984 1e-6 490 185 0.00051609986 1e-6 491 185 0.00077419984 1e-6 6 186 0.00053219986 1e-6 17 186 0.0001774 1e-6 18 186 8.8699991e-05 1e-6 21 186 0.0001774 1e-6 22 186 0.0046127997 1e-6 24 186 0.0025724999 1e-6 25 186 0.0020402998 1e-6 60 186 0.011443298 1e-6 75 186 0.015878599 1e-6 104 186 0.0041692965 1e-6 114 186 8.8699991e-05 1e-6 117 186 0.0062981993 1e-6 126 186 8.8699991e-05 1e-6 130 186 0.0038143999 1e-6 139 186 0.0011531999 1e-6 150 186 0.0001774 1e-6 159 186 0.1312871 1e-6 160 186 0.076554596 1e-6 169 186 0.00079839979 1e-6 171 186 0.00044349977 1e-6 186 186 0.043821499 1e-6 187 186 0.00079839979 1e-6 192 186 0.00053219986 1e-6 193 186 0.00044349977 1e-6 198 186 0.0015079998 1e-6 206 186 0.0001774 1e-6 209 186 0.0001774 1e-6 214 186 0.050563298 1e-6 215 186 0.00035479991 1e-6 218 186 0.00035479991 1e-6 219 186 0.0001774 1e-6 223 186 0.0028386 1e-6 224 186 0.0020402998 1e-6 225 186 0.0013305999 1e-6 231 186 0.0015966999 1e-6 233 186 0.0001774 1e-6 234 186 0.018184997 1e-6 240 186 0.00035479991 1e-6 241 186 0.0017741998 1e-6 267 186 0.0018628999 1e-6 272 186 0.0029272998 1e-6 273 186 8.8699991e-05 1e-6 277 186 0.00062099984 1e-6 287 186 8.8699991e-05 1e-6 318 186 0.00035479991 1e-6 322 186 0.0021289999 1e-6 324 186 0.0094029978 1e-6 326 186 0.0011531999 1e-6 347 186 0.0031935 1e-6 349 186 8.8699991e-05 1e-6 350 186 0.00088709989 1e-6 356 186 0.00044349977 1e-6 358 186 0.00088709989 1e-6 384 186 0.00035479991 1e-6 414 186 0.0018628999 1e-6 442 186 8.8699991e-05 1e-6 443 186 0.038676497 1e-6 444 186 0.0014193 1e-6 445 186 0.011088397 1e-6 446 186 0.0037256998 1e-6 447 186 0.0066530965 1e-6 448 186 8.8699991e-05 1e-6 450 186 0.0015966999 1e-6 452 186 0.017475396 1e-6 453 186 0.015612498 1e-6 454 186 0.020491399 1e-6 455 186 0.038853899 1e-6 456 186 8.8699991e-05 1e-6 457 186 0.0031935 1e-6 458 186 0.0010644998 1e-6 459 186 0.0017741998 1e-6 460 186 0.0012418998 1e-6 463 186 0.010999698 1e-6 464 186 0.00097579998 1e-6 465 186 0.00044349977 1e-6 467 186 0.015257698 1e-6 468 186 0.0031935 1e-6 469 186 0.0041692965 1e-6 470 186 0.0039030998 1e-6 471 186 0.00062099984 1e-6 473 186 8.8699991e-05 1e-6 477 186 8.8699991e-05 1e-6 478 186 0.00062099984 1e-6 483 186 0.0012418998 1e-6 489 186 0.0028386 1e-6 490 186 0.00044349977 1e-6 491 186 0.020313997 1e-6 4 187 1.589999e-05 1e-6 6 187 0.0022057998 1e-6 9 187 1.589999e-05 1e-6 16 187 1.589999e-05 1e-6 17 187 0.00058719981 1e-6 18 187 0.0002063 1e-6 21 187 0.00042849989 1e-6 22 187 0.0086645968 1e-6 24 187 0.0089025982 1e-6 25 187 0.00041259988 1e-6 60 187 0.012679499 1e-6 79 187 1.589999e-05 1e-6 82 187 1.589999e-05 1e-6 83 187 1.589999e-05 1e-6 84 187 1.589999e-05 1e-6 104 187 0.011584498 1e-6 108 187 3.1699994e-05 1e-6 113 187 4.7599999e-05 1e-6 114 187 7.9299993e-05 1e-6 117 187 0.00092039979 1e-6 126 187 4.7599999e-05 1e-6 127 187 1.589999e-05 1e-6 130 187 0.011235397 1e-6 132 187 1.589999e-05 1e-6 139 187 7.9299993e-05 1e-6 142 187 6.3499989e-05 1e-6 143 187 3.1699994e-05 1e-6 150 187 0.0004918999 1e-6 151 187 1.589999e-05 1e-6 159 187 0.072744548 1e-6 160 187 0.027564898 1e-6 161 187 7.9299993e-05 1e-6 169 187 0.0019359998 1e-6 170 187 0.00012699999 1e-6 171 187 0.00017459999 1e-6 172 187 0.00017459999 1e-6 186 187 0.14163285 1e-6 187 187 0.0062524974 1e-6 188 187 0.00031739986 1e-6 189 187 7.9299993e-05 1e-6 190 187 6.3499989e-05 1e-6 192 187 0.0012694998 1e-6 193 187 0.0013170999 1e-6 194 187 6.3499989e-05 1e-6 198 187 0.005189199 1e-6 200 187 3.1699994e-05 1e-6 201 187 3.1699994e-05 1e-6 203 187 6.3499989e-05 1e-6 204 187 3.1699994e-05 1e-6 206 187 7.9299993e-05 1e-6 207 187 3.1699994e-05 1e-6 208 187 3.1699994e-05 1e-6 209 187 4.7599999e-05 1e-6 214 187 0.038514599 1e-6 215 187 0.00099979993 1e-6 217 187 1.589999e-05 1e-6 218 187 0.00012699999 1e-6 219 187 0.00055539981 1e-6 221 187 0.00017459999 1e-6 223 187 0.0040624999 1e-6 224 187 0.005649399 1e-6 225 187 0.0031579998 1e-6 231 187 0.0019677998 1e-6 233 187 0.00023799999 1e-6 234 187 0.014361698 1e-6 237 187 7.9299993e-05 1e-6 240 187 0.0008886999 1e-6 241 187 0.0074584968 1e-6 248 187 1.589999e-05 1e-6 250 187 1.589999e-05 1e-6 251 187 4.7599999e-05 1e-6 252 187 7.9299993e-05 1e-6 267 187 0.0013647999 1e-6 272 187 0.0012061 1e-6 273 187 6.3499989e-05 1e-6 277 187 0.00033329986 1e-6 279 187 1.589999e-05 1e-6 284 187 1.589999e-05 1e-6 290 187 3.1699994e-05 1e-6 293 187 0.00011109999 1e-6 294 187 1.589999e-05 1e-6 317 187 1.589999e-05 1e-6 318 187 9.5199997e-05 1e-6 322 187 0.0051733963 1e-6 324 187 0.00069819996 1e-6 325 187 4.7599999e-05 1e-6 326 187 0.0024120999 1e-6 337 187 1.589999e-05 1e-6 347 187 0.0029199 1e-6 350 187 0.00042849989 1e-6 356 187 0.00036499999 1e-6 358 187 0.0010155998 1e-6 384 187 7.9299993e-05 1e-6 387 187 3.1699994e-05 1e-6 392 187 1.589999e-05 1e-6 402 187 3.1699994e-05 1e-6 404 187 3.1699994e-05 1e-6 414 187 0.0019995 1e-6 419 187 1.589999e-05 1e-6 420 187 1.589999e-05 1e-6 422 187 9.5199997e-05 1e-6 423 187 1.589999e-05 1e-6 425 187 1.589999e-05 1e-6 430 187 3.1699994e-05 1e-6 431 187 1.589999e-05 1e-6 432 187 1.589999e-05 1e-6 433 187 3.1699994e-05 1e-6 434 187 3.1699994e-05 1e-6 442 187 0.00042849989 1e-6 443 187 0.031421099 1e-6 444 187 0.0023804 1e-6 445 187 0.013726898 1e-6 446 187 0.0034118998 1e-6 447 187 0.008061599 1e-6 448 187 9.5199997e-05 1e-6 449 187 1.589999e-05 1e-6 450 187 0.0019995 1e-6 452 187 0.023534097 1e-6 453 187 0.013028599 1e-6 454 187 0.0056017973 1e-6 455 187 0.037340298 1e-6 456 187 0.00042849989 1e-6 457 187 0.0031420998 1e-6 458 187 0.00038089999 1e-6 459 187 0.0016504 1e-6 460 187 0.0008886999 1e-6 463 187 0.010838699 1e-6 464 187 0.0022216998 1e-6 465 187 0.00072999997 1e-6 467 187 0.014298197 1e-6 468 187 0.008109197 1e-6 469 187 0.0053002983 1e-6 470 187 0.0045702979 1e-6 471 187 0.0014123998 1e-6 473 187 9.5199997e-05 1e-6 477 187 0.00011109999 1e-6 478 187 0.00076169986 1e-6 483 187 0.001095 1e-6 489 187 0.0019202 1e-6 490 187 0.00034909998 1e-6 491 187 0.015202697 1e-6 6 188 0.00013659999 1e-6 9 188 2.729999e-05 1e-6 17 188 2.729999e-05 1e-6 18 188 0.0001639 1e-6 21 188 2.729999e-05 1e-6 22 188 0.011200298 1e-6 24 188 0.0021853999 1e-6 25 188 0.00032779993 1e-6 60 188 0.016336098 1e-6 75 188 2.729999e-05 1e-6 82 188 2.729999e-05 1e-6 83 188 2.729999e-05 1e-6 84 188 2.729999e-05 1e-6 104 188 0.008277297 1e-6 108 188 2.729999e-05 1e-6 113 188 5.4599994e-05 1e-6 114 188 8.1999999e-05 1e-6 117 188 5.4599994e-05 1e-6 126 188 5.4599994e-05 1e-6 127 188 2.729999e-05 1e-6 130 188 0.0066108964 1e-6 139 188 0.0011473999 1e-6 150 188 0.00035509979 1e-6 151 188 2.729999e-05 1e-6 159 188 0.12257546 1e-6 160 188 0.057613499 1e-6 169 188 0.0022673998 1e-6 171 188 0.0027863998 1e-6 172 188 5.4599994e-05 1e-6 186 188 0.02251 1e-6 187 188 0.00019119999 1e-6 188 188 0.0001639 1e-6 189 188 5.4599994e-05 1e-6 190 188 5.4599994e-05 1e-6 192 188 0.0015297998 1e-6 193 188 0.00071029994 1e-6 194 188 5.4599994e-05 1e-6 197 188 2.729999e-05 1e-6 198 188 0.002322 1e-6 200 188 2.729999e-05 1e-6 203 188 5.4599994e-05 1e-6 204 188 5.4599994e-05 1e-6 206 188 5.4599994e-05 1e-6 207 188 2.729999e-05 1e-6 209 188 0.00084689981 1e-6 214 188 0.028793097 1e-6 215 188 8.1999999e-05 1e-6 217 188 2.729999e-05 1e-6 218 188 0.00024589989 1e-6 219 188 0.00030049984 1e-6 223 188 0.0088509992 1e-6 224 188 0.0050810985 1e-6 225 188 0.0032235 1e-6 231 188 0.0026497999 1e-6 233 188 0.00024589989 1e-6 234 188 0.020761598 1e-6 237 188 8.1999999e-05 1e-6 240 188 0.00084689981 1e-6 241 188 0.00040979986 1e-6 248 188 2.729999e-05 1e-6 251 188 5.4599994e-05 1e-6 252 188 8.1999999e-05 1e-6 267 188 0.0013658998 1e-6 272 188 0.0015297998 1e-6 277 188 0.00076489989 1e-6 284 188 2.729999e-05 1e-6 317 188 2.729999e-05 1e-6 318 188 0.00013659999 1e-6 322 188 0.0054908991 1e-6 324 188 0.0017756999 1e-6 326 188 0.0035785998 1e-6 347 188 0.0029229999 1e-6 350 188 0.0010107998 1e-6 356 188 0.00038249977 1e-6 358 188 0.0008741999 1e-6 384 188 0.00010929999 1e-6 387 188 2.729999e-05 1e-6 402 188 2.729999e-05 1e-6 404 188 5.4599994e-05 1e-6 414 188 0.0015024999 1e-6 419 188 2.729999e-05 1e-6 422 188 0.00010929999 1e-6 423 188 2.729999e-05 1e-6 425 188 2.729999e-05 1e-6 430 188 2.729999e-05 1e-6 431 188 2.729999e-05 1e-6 433 188 2.729999e-05 1e-6 434 188 2.729999e-05 1e-6 442 188 2.729999e-05 1e-6 443 188 0.0303775 1e-6 444 188 0.0025952 1e-6 445 188 0.010353498 1e-6 446 188 0.0035239998 1e-6 447 188 0.0047259964 1e-6 448 188 0.00010929999 1e-6 450 188 0.0016937 1e-6 452 188 0.017019097 1e-6 453 188 0.017947897 1e-6 454 188 0.0038518 1e-6 455 188 0.052040599 1e-6 456 188 0.00024589989 1e-6 457 188 0.0031961999 1e-6 458 188 0.00030049984 1e-6 459 188 0.0011747 1e-6 460 188 0.00092879985 1e-6 463 188 0.015489299 1e-6 464 188 0.0018575999 1e-6 465 188 0.00054639997 1e-6 467 188 0.012866698 1e-6 468 188 0.0048352964 1e-6 469 188 0.0047259964 1e-6 470 188 0.0037971998 1e-6 471 188 0.0013385999 1e-6 473 188 8.1999999e-05 1e-6 477 188 0.00010929999 1e-6 478 188 0.00065559987 1e-6 483 188 0.0009015 1e-6 489 188 0.0017482999 1e-6 490 188 0.00030049984 1e-6 491 188 0.038436297 1e-6 60 189 0.0015085 1e-6 104 189 0.00033519999 1e-6 108 189 0.0001676 1e-6 114 189 0.00033519999 1e-6 126 189 0.0001676 1e-6 139 189 0.0001676 1e-6 187 189 0.26651019 1e-6 188 189 0.0098893978 1e-6 189 189 0.010224599 1e-6 190 189 0.0001676 1e-6 192 189 0.0018437998 1e-6 194 189 0.00033519999 1e-6 196 189 0.00033519999 1e-6 198 189 0.030841399 1e-6 203 189 0.0001676 1e-6 204 189 0.00033519999 1e-6 206 189 0.00033519999 1e-6 219 189 0.014079798 1e-6 234 189 0.0026818998 1e-6 237 189 0.0001676 1e-6 241 189 0.027991999 1e-6 252 189 0.0001676 1e-6 272 189 0.00067049987 1e-6 279 189 0.00083809998 1e-6 317 189 0.0010056999 1e-6 347 189 0.0031846999 1e-6 356 189 0.00033519999 1e-6 358 189 0.0018437998 1e-6 387 189 0.0001676 1e-6 422 189 0.0001676 1e-6 443 189 0.0095540993 1e-6 444 189 0.0001676 1e-6 445 189 0.017934997 1e-6 446 189 0.0001676 1e-6 447 189 0.0010056999 1e-6 450 189 0.0045255981 1e-6 452 189 0.007207498 1e-6 453 189 0.0011733 1e-6 454 189 0.00050279987 1e-6 455 189 0.046262197 1e-6 456 189 0.00033519999 1e-6 457 189 0.0015085 1e-6 458 189 0.00050279987 1e-6 459 189 0.00033519999 1e-6 460 189 0.00050279987 1e-6 463 189 0.031176697 1e-6 464 189 0.00033519999 1e-6 465 189 0.0092188977 1e-6 467 189 0.011733197 1e-6 468 189 0.0020113999 1e-6 469 189 0.0041903965 1e-6 470 189 0.0046932995 1e-6 471 189 0.0013408998 1e-6 473 189 0.0001676 1e-6 477 189 0.0001676 1e-6 478 189 0.0013408998 1e-6 483 189 0.0013408998 1e-6 490 189 0.00050279987 1e-6 491 189 0.0050284974 1e-6 18 190 0.00010029999 1e-6 22 190 5.0199989e-05 1e-6 60 190 0.00321 1e-6 82 190 5.0199989e-05 1e-6 108 190 5.0199989e-05 1e-6 114 190 0.00010029999 1e-6 126 190 5.0199989e-05 1e-6 130 190 0.015548199 1e-6 131 190 0.0002006 1e-6 132 190 0.0003511 1e-6 133 190 5.0199989e-05 1e-6 137 190 5.0199989e-05 1e-6 138 190 0.0003511 1e-6 139 190 0.00010029999 1e-6 141 190 5.0199989e-05 1e-6 142 190 0.040024098 1e-6 143 190 0.00030089985 1e-6 149 190 5.0199989e-05 1e-6 151 190 5.0199989e-05 1e-6 158 190 0.00010029999 1e-6 186 190 0.027334698 1e-6 187 190 0.32330215 1e-6 188 190 0.0026081 1e-6 189 190 0.0002006 1e-6 190 190 0.00070219999 1e-6 192 190 0.0014044 1e-6 193 190 5.0199989e-05 1e-6 194 190 0.0001505 1e-6 197 190 5.0199989e-05 1e-6 198 190 0.048550498 1e-6 203 190 5.0199989e-05 1e-6 204 190 0.0004011998 1e-6 206 190 0.00010029999 1e-6 208 190 0.00060189981 1e-6 214 190 0.00055169989 1e-6 219 190 0.0040123984 1e-6 221 190 0.0024575999 1e-6 223 190 5.0199989e-05 1e-6 224 190 0.0002006 1e-6 225 190 0.0001505 1e-6 226 190 0.00075229979 1e-6 227 190 0.00050159986 1e-6 228 190 0.0002006 1e-6 231 190 5.0199989e-05 1e-6 234 190 0.0019560999 1e-6 237 190 5.0199989e-05 1e-6 240 190 0.00095299981 1e-6 241 190 0.017754998 1e-6 252 190 0.00010029999 1e-6 253 190 5.0199989e-05 1e-6 272 190 0.0011535999 1e-6 277 190 5.0199989e-05 1e-6 293 190 5.0199989e-05 1e-6 300 190 5.0199989e-05 1e-6 312 190 5.0199989e-05 1e-6 347 190 0.0034606999 1e-6 356 190 0.0004011998 1e-6 358 190 0.00065199984 1e-6 384 190 5.0199989e-05 1e-6 387 190 5.0199989e-05 1e-6 393 190 5.0199989e-05 1e-6 416 190 5.0199989e-05 1e-6 417 190 5.0199989e-05 1e-6 422 190 0.0001505 1e-6 437 190 5.0199989e-05 1e-6 443 190 0.012639198 1e-6 444 190 0.0026081 1e-6 445 190 0.015899297 1e-6 446 190 0.00055169989 1e-6 447 190 0.0054167993 1e-6 450 190 0.0015548 1e-6 452 190 0.0042631999 1e-6 453 190 0.00095299981 1e-6 454 190 0.00070219999 1e-6 455 190 0.058079999 1e-6 456 190 0.00010029999 1e-6 457 190 0.0016550999 1e-6 458 190 0.00025079981 1e-6 459 190 0.00055169989 1e-6 460 190 0.00090279989 1e-6 463 190 0.0089276992 1e-6 464 190 0.00060189981 1e-6 465 190 0.0049151964 1e-6 467 190 0.0062192976 1e-6 468 190 0.024074599 1e-6 469 190 0.0013541998 1e-6 470 190 0.0015046999 1e-6 471 190 0.0017052998 1e-6 473 190 5.0199989e-05 1e-6 477 190 0.00010029999 1e-6 478 190 0.00045139994 1e-6 479 190 0.00010029999 1e-6 483 190 0.0004011998 1e-6 490 190 0.0002006 1e-6 491 190 0.00010029999 1e-6 18 191 0.00049479981 1e-6 22 191 0.0079168975 1e-6 24 191 0.016576 1e-6 60 191 0.00074219983 1e-6 104 191 0.0069272965 1e-6 107 191 0.011380497 1e-6 114 191 0.00024739979 1e-6 126 191 0.00024739979 1e-6 130 191 0.011133097 1e-6 138 191 0.00024739979 1e-6 159 191 0.036120698 1e-6 160 191 0.028698698 1e-6 161 191 0.00024739979 1e-6 165 191 0.00024739979 1e-6 169 191 0.0071746968 1e-6 170 191 0.00024739979 1e-6 171 191 0.00098959985 1e-6 186 191 0.022018798 1e-6 191 191 0.00024739979 1e-6 198 191 0.011133097 1e-6 206 191 0.00049479981 1e-6 214 191 0.028698698 1e-6 219 191 0.0242454 1e-6 223 191 0.0017317999 1e-6 224 191 0.0022266 1e-6 225 191 0.0012369999 1e-6 231 191 0.0014843999 1e-6 233 191 0.008411698 1e-6 234 191 0.010638297 1e-6 241 191 0.00024739979 1e-6 267 191 0.0059376992 1e-6 270 191 0.00024739979 1e-6 272 191 0.00098959985 1e-6 273 191 0.0054428987 1e-6 277 191 0.00074219983 1e-6 315 191 0.00024739979 1e-6 317 191 0.00024739979 1e-6 322 191 0.011627898 1e-6 326 191 0.00024739979 1e-6 334 191 0.0039583966 1e-6 340 191 0.0012369999 1e-6 347 191 0.0027213998 1e-6 350 191 0.0098960996 1e-6 356 191 0.00049479981 1e-6 358 191 0.0012369999 1e-6 443 191 0.017812997 1e-6 444 191 0.0091538988 1e-6 445 191 0.024492797 1e-6 446 191 0.0022266 1e-6 447 191 0.012617499 1e-6 450 191 0.0022266 1e-6 452 191 0.033399299 1e-6 453 191 0.021276597 1e-6 454 191 0.0049479976 1e-6 455 191 0.042058397 1e-6 457 191 0.0029687998 1e-6 458 191 0.00024739979 1e-6 459 191 0.00098959985 1e-6 460 191 0.00074219983 1e-6 463 191 0.0098960996 1e-6 464 191 0.005690299 1e-6 465 191 0.00049479981 1e-6 467 191 0.014101896 1e-6 468 191 0.013112299 1e-6 469 191 0.0037109999 1e-6 470 191 0.0039583966 1e-6 471 191 0.00074219983 1e-6 473 191 0.00024739979 1e-6 477 191 0.00049479981 1e-6 478 191 0.00098959985 1e-6 483 191 0.0012369999 1e-6 489 191 0.00049479981 1e-6 490 191 0.00049479981 1e-6 491 191 0.023503199 1e-6 18 192 0.00019119999 1e-6 21 192 6.369999e-05 1e-6 22 192 0.00063729985 1e-6 24 192 0.0013382998 1e-6 60 192 0.0027403999 1e-6 82 192 0.0001275 1e-6 104 192 0.0098782964 1e-6 108 192 6.369999e-05 1e-6 114 192 6.369999e-05 1e-6 126 192 6.369999e-05 1e-6 130 192 0.0092409998 1e-6 131 192 0.00057359994 1e-6 132 192 6.369999e-05 1e-6 138 192 6.369999e-05 1e-6 139 192 0.00031869998 1e-6 142 192 0.0042699985 1e-6 143 192 0.0014658 1e-6 149 192 0.00044609979 1e-6 150 192 0.0016569998 1e-6 158 192 0.0001275 1e-6 159 192 0.0015294999 1e-6 160 192 0.0019756998 1e-6 169 192 0.0012745999 1e-6 171 192 0.0001275 1e-6 186 192 0.0014020998 1e-6 187 192 0.1773628 1e-6 188 192 0.017462198 1e-6 189 192 6.369999e-05 1e-6 190 192 6.369999e-05 1e-6 192 192 0.0080937967 1e-6 193 192 0.0001275 1e-6 194 192 0.00019119999 1e-6 197 192 6.369999e-05 1e-6 198 192 0.032566398 1e-6 200 192 6.369999e-05 1e-6 203 192 6.369999e-05 1e-6 204 192 0.00050979992 1e-6 205 192 0.0001275 1e-6 206 192 0.0001275 1e-6 207 192 6.369999e-05 1e-6 208 192 0.0020393999 1e-6 209 192 0.0001275 1e-6 211 192 0.00019119999 1e-6 212 192 0.00019119999 1e-6 213 192 0.0001275 1e-6 214 192 0.017972097 1e-6 219 192 0.015550297 1e-6 221 192 0.0099419989 1e-6 223 192 0.0001275 1e-6 224 192 0.027786598 1e-6 229 192 6.369999e-05 1e-6 233 192 0.0013382998 1e-6 234 192 0.0073289983 1e-6 237 192 6.369999e-05 1e-6 240 192 0.0043336973 1e-6 241 192 0.040022898 1e-6 252 192 0.00019119999 1e-6 270 192 0.0015294999 1e-6 271 192 0.0001275 1e-6 272 192 0.00063729985 1e-6 273 192 0.00057359994 1e-6 276 192 6.369999e-05 1e-6 277 192 0.00044609979 1e-6 287 192 6.369999e-05 1e-6 289 192 6.369999e-05 1e-6 290 192 0.0017845 1e-6 292 192 6.369999e-05 1e-6 293 192 0.0081574991 1e-6 294 192 0.00019119999 1e-6 296 192 6.369999e-05 1e-6 300 192 6.369999e-05 1e-6 312 192 6.369999e-05 1e-6 315 192 0.00019119999 1e-6 322 192 0.0001275 1e-6 325 192 0.0026766998 1e-6 326 192 0.00019119999 1e-6 340 192 0.00038239988 1e-6 345 192 6.369999e-05 1e-6 347 192 0.0028678998 1e-6 348 192 6.369999e-05 1e-6 350 192 6.369999e-05 1e-6 356 192 0.00044609979 1e-6 358 192 0.00095599983 1e-6 387 192 6.369999e-05 1e-6 392 192 0.0001275 1e-6 393 192 0.0001275 1e-6 404 192 0.0001275 1e-6 416 192 6.369999e-05 1e-6 417 192 0.0001275 1e-6 420 192 6.369999e-05 1e-6 422 192 0.00050979992 1e-6 430 192 6.369999e-05 1e-6 433 192 6.369999e-05 1e-6 434 192 6.369999e-05 1e-6 443 192 0.011471499 1e-6 444 192 0.0015932999 1e-6 445 192 0.013765898 1e-6 446 192 0.00089219981 1e-6 447 192 0.0026766998 1e-6 450 192 0.0025491999 1e-6 452 192 0.006691698 1e-6 453 192 0.0028041999 1e-6 454 192 0.0017206999 1e-6 455 192 0.041233797 1e-6 456 192 0.00025489996 1e-6 457 192 0.0016569998 1e-6 458 192 0.00038239988 1e-6 459 192 0.00038239988 1e-6 460 192 0.00076479977 1e-6 463 192 0.0123 1e-6 464 192 0.00089219981 1e-6 465 192 0.0028678998 1e-6 467 192 0.0087948963 1e-6 468 192 0.0077113993 1e-6 469 192 0.0033139999 1e-6 470 192 0.0035688998 1e-6 471 192 0.00076479977 1e-6 473 192 0.0001275 1e-6 477 192 0.00025489996 1e-6 478 192 0.00082849991 1e-6 483 192 0.00095599983 1e-6 489 192 0.0001275 1e-6 490 192 0.00038239988 1e-6 491 192 0.0012108998 1e-6 4 193 5.4299991e-05 1e-6 10 193 5.4299991e-05 1e-6 14 193 5.4299991e-05 1e-6 18 193 0.00016279999 1e-6 22 193 5.4299991e-05 1e-6 23 193 0.0011398999 1e-6 24 193 5.4299991e-05 1e-6 60 193 0.0023341998 1e-6 104 193 0.0038540999 1e-6 107 193 5.4299991e-05 1e-6 108 193 0.00016279999 1e-6 109 193 5.4299991e-05 1e-6 114 193 5.4299991e-05 1e-6 116 193 5.4299991e-05 1e-6 126 193 5.4299991e-05 1e-6 130 193 0.011670798 1e-6 131 193 0.0001086 1e-6 132 193 0.0003256998 1e-6 138 193 5.4299991e-05 1e-6 139 193 0.0001086 1e-6 142 193 0.0012484998 1e-6 143 193 0.0019542 1e-6 150 193 0.00081419991 1e-6 153 193 5.4299991e-05 1e-6 158 193 0.00016279999 1e-6 160 193 5.4299991e-05 1e-6 169 193 5.4299991e-05 1e-6 186 193 0.00075999997 1e-6 187 193 0.24546736 1e-6 188 193 0.0094451979 1e-6 189 193 0.0001086 1e-6 190 193 0.0001086 1e-6 192 193 0.00048849988 1e-6 193 193 0.0041254982 1e-6 194 193 0.0003256998 1e-6 197 193 5.4299991e-05 1e-6 198 193 0.027467199 1e-6 200 193 5.4299991e-05 1e-6 203 193 0.0001086 1e-6 204 193 0.00037999987 1e-6 205 193 0.0001086 1e-6 206 193 0.0001086 1e-6 207 193 5.4299991e-05 1e-6 208 193 5.4299991e-05 1e-6 209 193 0.0020084998 1e-6 211 193 0.00016279999 1e-6 212 193 0.00097709987 1e-6 213 193 0.00016279999 1e-6 214 193 0.0032026998 1e-6 219 193 0.0068395995 1e-6 221 193 0.0158506 1e-6 224 193 0.062099699 1e-6 227 193 0.00016279999 1e-6 233 193 5.4299991e-05 1e-6 234 193 0.0020627999 1e-6 237 193 0.0001086 1e-6 240 193 0.00092279981 1e-6 241 193 0.060145497 1e-6 242 193 5.4299991e-05 1e-6 252 193 0.0001086 1e-6 271 193 5.4299991e-05 1e-6 272 193 0.00059709977 1e-6 277 193 0.00016279999 1e-6 290 193 5.4299991e-05 1e-6 293 193 0.0019542 1e-6 295 193 0.0001086 1e-6 296 193 5.4299991e-05 1e-6 315 193 0.0001086 1e-6 325 193 0.0034740998 1e-6 326 193 5.4299991e-05 1e-6 340 193 0.00016279999 1e-6 347 193 0.0032026998 1e-6 348 193 5.4299991e-05 1e-6 356 193 0.00037999987 1e-6 358 193 0.0011941998 1e-6 372 193 5.4299991e-05 1e-6 387 193 5.4299991e-05 1e-6 422 193 0.00027139997 1e-6 430 193 5.4299991e-05 1e-6 433 193 5.4299991e-05 1e-6 434 193 5.4299991e-05 1e-6 443 193 0.011507999 1e-6 444 193 0.0028227 1e-6 445 193 0.015036397 1e-6 446 193 0.0007056999 1e-6 447 193 0.0022798998 1e-6 448 193 5.4299991e-05 1e-6 450 193 0.0029312999 1e-6 452 193 0.0063510984 1e-6 453 193 0.0015741999 1e-6 454 193 0.0013027999 1e-6 455 193 0.047008999 1e-6 456 193 0.00016279999 1e-6 457 193 0.0016284999 1e-6 458 193 0.00043429993 1e-6 459 193 0.00027139997 1e-6 460 193 0.00086849998 1e-6 463 193 0.026815798 1e-6 464 193 0.00037999987 1e-6 465 193 0.0084138997 1e-6 467 193 0.0086852983 1e-6 468 193 0.0067310967 1e-6 469 193 0.0028227 1e-6 470 193 0.0030940999 1e-6 471 193 0.0030397999 1e-6 473 193 5.4299991e-05 1e-6 477 193 0.00016279999 1e-6 478 193 0.00081419991 1e-6 483 193 0.00092279981 1e-6 489 193 5.4299991e-05 1e-6 490 193 0.0003256998 1e-6 491 193 0.00016279999 1e-6 22 194 0.00030299998 1e-6 60 194 0.0025757998 1e-6 104 194 0.0019697 1e-6 114 194 0.00015149999 1e-6 126 194 0.00015149999 1e-6 130 194 0.00030299998 1e-6 159 194 0.0037878999 1e-6 160 194 0.0018181999 1e-6 171 194 0.00015149999 1e-6 186 194 0.0010605999 1e-6 187 194 0.15742415 1e-6 188 194 0.18045449 1e-6 192 194 0.00030299998 1e-6 194 194 0.0039393976 1e-6 198 194 0.051666699 1e-6 204 194 0.00015149999 1e-6 206 194 0.00030299998 1e-6 211 194 0.00030299998 1e-6 214 194 0.0021211999 1e-6 219 194 0.0039393976 1e-6 221 194 0.00045449985 1e-6 223 194 0.00030299998 1e-6 224 194 0.0013635999 1e-6 225 194 0.00015149999 1e-6 234 194 0.0025757998 1e-6 240 194 0.00075759995 1e-6 241 194 0.0077272989 1e-6 272 194 0.00030299998 1e-6 277 194 0.0012120998 1e-6 279 194 0.0013635999 1e-6 294 194 0.00030299998 1e-6 296 194 0.00015149999 1e-6 312 194 0.00030299998 1e-6 317 194 0.00090909982 1e-6 319 194 0.00015149999 1e-6 322 194 0.00015149999 1e-6 326 194 0.00045449985 1e-6 340 194 0.0015151999 1e-6 347 194 0.0037878999 1e-6 356 194 0.00045449985 1e-6 358 194 0.0012120998 1e-6 361 194 0.00015149999 1e-6 372 194 0.00015149999 1e-6 392 194 0.00030299998 1e-6 393 194 0.00015149999 1e-6 419 194 0.00090909982 1e-6 420 194 0.00015149999 1e-6 422 194 0.00075759995 1e-6 434 194 0.00015149999 1e-6 443 194 0.020909097 1e-6 444 194 0.0046969987 1e-6 445 194 0.012727298 1e-6 446 194 0.00090909982 1e-6 447 194 0.0068181977 1e-6 450 194 0.0027272999 1e-6 452 194 0.0042423978 1e-6 453 194 0.0015151999 1e-6 454 194 0.0025757998 1e-6 455 194 0.0375758 1e-6 457 194 0.0018181999 1e-6 458 194 0.00030299998 1e-6 459 194 0.00030299998 1e-6 460 194 0.00060609984 1e-6 463 194 0.037878796 1e-6 464 194 0.0054544993 1e-6 465 194 0.016060598 1e-6 467 194 0.0098484978 1e-6 468 194 0.0092423968 1e-6 469 194 0.0033332999 1e-6 470 194 0.0036364 1e-6 471 194 0.00060609984 1e-6 473 194 0.00015149999 1e-6 477 194 0.00015149999 1e-6 478 194 0.00075759995 1e-6 483 194 0.00090909982 1e-6 490 194 0.00030299998 1e-6 491 194 0.0033332999 1e-6 22 195 0.0087335967 1e-6 60 195 0.0074859969 1e-6 114 195 0.00062379986 1e-6 186 195 0.076731086 1e-6 187 195 0.0043667965 1e-6 188 195 0.0087335967 1e-6 192 195 0.0074859969 1e-6 195 195 0.00062379986 1e-6 198 195 0.040548999 1e-6 206 195 0.0012476998 1e-6 214 195 0.016843397 1e-6 219 195 0.0037429999 1e-6 224 195 0.0043667965 1e-6 234 195 0.0081097968 1e-6 241 195 0.026824698 1e-6 272 195 0.00062379986 1e-6 279 195 0.0018714999 1e-6 340 195 0.00062379986 1e-6 347 195 0.0043667965 1e-6 356 195 0.00062379986 1e-6 358 195 0.0018714999 1e-6 443 195 0.013100397 1e-6 444 195 0.00062379986 1e-6 445 195 0.026200898 1e-6 446 195 0.0012476998 1e-6 447 195 0.013100397 1e-6 450 195 0.0043667965 1e-6 452 195 0.036805999 1e-6 453 195 0.014348097 1e-6 454 195 0.0043667965 1e-6 455 195 0.034934498 1e-6 457 195 0.0018714999 1e-6 458 195 0.00062379986 1e-6 459 195 0.021210197 1e-6 463 195 0.0037429999 1e-6 464 195 0.00062379986 1e-6 465 195 0.0012476998 1e-6 467 195 0.010605097 1e-6 468 195 0.0012476998 1e-6 469 195 0.0037429999 1e-6 470 195 0.0037429999 1e-6 471 195 0.00062379986 1e-6 478 195 0.0012476998 1e-6 483 195 0.0012476998 1e-6 489 195 0.0018714999 1e-6 490 195 0.00062379986 1e-6 491 195 0.037429798 1e-6 60 196 0.0018582998 1e-6 114 196 0.00023229999 1e-6 126 196 0.00023229999 1e-6 131 196 0.00023229999 1e-6 138 196 0.00023229999 1e-6 139 196 0.0023228999 1e-6 187 196 0.26666665 1e-6 188 196 0.027874596 1e-6 189 196 0.0013936998 1e-6 192 196 0.005342599 1e-6 194 196 0.0011614 1e-6 196 196 0.0062717982 1e-6 198 196 0.021370497 1e-6 204 196 0.0020905999 1e-6 206 196 0.00046459981 1e-6 207 196 0.0011614 1e-6 208 196 0.0037165999 1e-6 214 196 0.00023229999 1e-6 219 196 0.0030196998 1e-6 221 196 0.0013936998 1e-6 233 196 0.00023229999 1e-6 234 196 0.0018582998 1e-6 241 196 0.080139399 1e-6 272 196 0.00046459981 1e-6 277 196 0.00092919986 1e-6 326 196 0.00046459981 1e-6 347 196 0.0032519998 1e-6 348 196 0.00023229999 1e-6 356 196 0.00046459981 1e-6 358 196 0.0016259998 1e-6 422 196 0.00069689984 1e-6 443 196 0.0109175 1e-6 444 196 0.0013936998 1e-6 445 196 0.0141696 1e-6 446 196 0.00023229999 1e-6 447 196 0.0020905999 1e-6 450 196 0.0039488971 1e-6 452 196 0.0048779994 1e-6 453 196 0.00092919986 1e-6 455 196 0.054587699 1e-6 457 196 0.0020905999 1e-6 458 196 0.00092919986 1e-6 459 196 0.00046459981 1e-6 460 196 0.00046459981 1e-6 463 196 0.0157956 1e-6 464 196 0.00069689984 1e-6 465 196 0.0016259998 1e-6 467 196 0.011614397 1e-6 468 196 0.0027874999 1e-6 469 196 0.0046457984 1e-6 470 196 0.0051102974 1e-6 471 196 0.00069689984 1e-6 473 196 0.00023229999 1e-6 478 196 0.00092919986 1e-6 479 196 0.00069689984 1e-6 483 196 0.0013936998 1e-6 490 196 0.00046459981 1e-6 22 197 0.00014729999 1e-6 60 197 0.0029463999 1e-6 104 197 0.00029459991 1e-6 114 197 0.00014729999 1e-6 126 197 0.00014729999 1e-6 130 197 0.0013259 1e-6 131 197 0.00058929995 1e-6 139 197 0.0047141984 1e-6 142 197 0.0025044 1e-6 159 197 0.00073659979 1e-6 160 197 0.0010311999 1e-6 161 197 0.00014729999 1e-6 165 197 0.00029459991 1e-6 170 197 0.00014729999 1e-6 171 197 0.00044199987 1e-6 186 197 0.0013259 1e-6 187 197 0.20035356 1e-6 188 197 0.022834398 1e-6 189 197 0.0011785999 1e-6 190 197 0.00014729999 1e-6 192 197 0.0010311999 1e-6 193 197 0.00014729999 1e-6 194 197 0.00044199987 1e-6 196 197 0.00014729999 1e-6 197 197 0.0039775968 1e-6 198 197 0.039628796 1e-6 203 197 0.00014729999 1e-6 204 197 0.0025044 1e-6 205 197 0.00014729999 1e-6 206 197 0.00029459991 1e-6 208 197 0.0033882998 1e-6 211 197 0.0017678 1e-6 212 197 0.00014729999 1e-6 214 197 0.014142599 1e-6 219 197 0.0064819977 1e-6 221 197 0.011490896 1e-6 222 197 0.0010311999 1e-6 223 197 0.00014729999 1e-6 224 197 0.0072185993 1e-6 225 197 0.00073659979 1e-6 233 197 0.00014729999 1e-6 234 197 0.0027990998 1e-6 237 197 0.00014729999 1e-6 240 197 0.00044199987 1e-6 241 197 0.059074797 1e-6 270 197 0.00014729999 1e-6 271 197 0.00014729999 1e-6 272 197 0.00058929995 1e-6 276 197 0.00014729999 1e-6 277 197 0.00058929995 1e-6 282 197 0.00014729999 1e-6 293 197 0.0066292994 1e-6 294 197 0.00029459991 1e-6 296 197 0.00014729999 1e-6 315 197 0.00044199987 1e-6 325 197 0.0048614964 1e-6 326 197 0.00044199987 1e-6 340 197 0.00044199987 1e-6 347 197 0.0029463999 1e-6 356 197 0.00029459991 1e-6 358 197 0.0013259 1e-6 392 197 0.00044199987 1e-6 393 197 0.00014729999 1e-6 420 197 0.00014729999 1e-6 422 197 0.0011785999 1e-6 434 197 0.00014729999 1e-6 443 197 0.0095756985 1e-6 444 197 0.0048614964 1e-6 445 197 0.0123748 1e-6 446 197 0.00058929995 1e-6 447 197 0.0082498975 1e-6 450 197 0.0035356998 1e-6 452 197 0.0060400963 1e-6 453 197 0.0016204999 1e-6 454 197 0.00058929995 1e-6 455 197 0.043017097 1e-6 457 197 0.0017678 1e-6 458 197 0.00029459991 1e-6 459 197 0.00029459991 1e-6 460 197 0.00073659979 1e-6 463 197 0.034767199 1e-6 464 197 0.00058929995 1e-6 465 197 0.0016204999 1e-6 467 197 0.011343498 1e-6 468 197 0.0079551972 1e-6 469 197 0.0038302999 1e-6 470 197 0.0042721964 1e-6 471 197 0.00088389986 1e-6 473 197 0.00014729999 1e-6 477 197 0.00014729999 1e-6 478 197 0.0011785999 1e-6 479 197 0.00073659979 1e-6 483 197 0.0017678 1e-6 490 197 0.00058929995 1e-6 491 197 0.0035356998 1e-6 9 198 1.26e-05 1e-6 16 198 1.26e-05 1e-6 18 198 6.2899999e-05 1e-6 22 198 0.00016339999 1e-6 24 198 1.26e-05 1e-6 60 198 0.0056322999 1e-6 79 198 1.26e-05 1e-6 82 198 1.26e-05 1e-6 83 198 1.26e-05 1e-6 84 198 1.26e-05 1e-6 104 198 1.26e-05 1e-6 108 198 2.5099987e-05 1e-6 113 198 3.7699996e-05 1e-6 114 198 7.5399992e-05 1e-6 126 198 3.7699996e-05 1e-6 127 198 1.26e-05 1e-6 130 198 2.5099987e-05 1e-6 142 198 1.26e-05 1e-6 150 198 0.00057829986 1e-6 151 198 1.26e-05 1e-6 159 198 0.00022629999 1e-6 160 198 0.00033939979 1e-6 162 198 2.5099987e-05 1e-6 165 198 3.7699996e-05 1e-6 169 198 1.26e-05 1e-6 171 198 2.5099987e-05 1e-6 186 198 3.7699996e-05 1e-6 187 198 0.025232296 1e-6 188 198 0.3545844 1e-6 189 198 0.0001509 1e-6 190 198 8.7999986e-05 1e-6 192 198 0.0021247 1e-6 194 198 0.012685299 1e-6 196 198 1.26e-05 1e-6 197 198 0.00095549994 1e-6 198 198 0.0183427 1e-6 200 198 3.7699996e-05 1e-6 201 198 2.5099987e-05 1e-6 202 198 3.7699996e-05 1e-6 203 198 6.2899999e-05 1e-6 204 198 0.00055319979 1e-6 205 198 1.26e-05 1e-6 206 198 0.00016339999 1e-6 207 198 5.029999e-05 1e-6 208 198 0.00025139982 1e-6 209 198 1.26e-05 1e-6 210 198 1.26e-05 1e-6 211 198 1.26e-05 1e-6 212 198 1.26e-05 1e-6 213 198 1.26e-05 1e-6 214 198 0.0020114998 1e-6 218 198 1.26e-05 1e-6 219 198 0.0070906989 1e-6 221 198 0.0099570975 1e-6 223 198 2.5099987e-05 1e-6 224 198 0.0090896972 1e-6 229 198 1.26e-05 1e-6 233 198 0.00013829999 1e-6 234 198 0.0061602965 1e-6 237 198 0.0001886 1e-6 240 198 0.00023889999 1e-6 241 198 0.0014583999 1e-6 248 198 1.26e-05 1e-6 250 198 1.26e-05 1e-6 252 198 5.029999e-05 1e-6 272 198 0.00052799983 1e-6 273 198 1.26e-05 1e-6 277 198 0.0053305998 1e-6 279 198 0.0012824 1e-6 282 198 1.26e-05 1e-6 284 198 1.26e-05 1e-6 285 198 1.26e-05 1e-6 287 198 3.7699996e-05 1e-6 289 198 0.00057829986 1e-6 290 198 2.5099987e-05 1e-6 292 198 2.5099987e-05 1e-6 293 198 0.0022127 1e-6 295 198 3.7699996e-05 1e-6 296 198 1.26e-05 1e-6 297 198 1.26e-05 1e-6 299 198 1.26e-05 1e-6 300 198 1.26e-05 1e-6 301 198 1.26e-05 1e-6 312 198 3.7699996e-05 1e-6 315 198 6.2899999e-05 1e-6 317 198 0.0002137 1e-6 319 198 1.26e-05 1e-6 320 198 2.5099987e-05 1e-6 321 198 2.5099987e-05 1e-6 322 198 2.5099987e-05 1e-6 326 198 0.0012069 1e-6 328 198 0.0001509 1e-6 330 198 5.029999e-05 1e-6 340 198 0.0022629998 1e-6 347 198 0.0033944999 1e-6 349 198 1.26e-05 1e-6 350 198 1.26e-05 1e-6 351 198 0.00013829999 1e-6 354 198 3.7699996e-05 1e-6 356 198 0.0001509 1e-6 358 198 0.0012949 1e-6 372 198 2.5099987e-05 1e-6 384 198 3.7699996e-05 1e-6 387 198 2.5099987e-05 1e-6 394 198 1.26e-05 1e-6 395 198 1.26e-05 1e-6 397 198 1.26e-05 1e-6 402 198 6.2899999e-05 1e-6 419 198 1.26e-05 1e-6 422 198 0.0001257 1e-6 423 198 1.26e-05 1e-6 425 198 1.26e-05 1e-6 430 198 2.5099987e-05 1e-6 431 198 1.26e-05 1e-6 432 198 1.26e-05 1e-6 433 198 2.5099987e-05 1e-6 434 198 3.7699996e-05 1e-6 442 198 0.0009680998 1e-6 443 198 0.029934198 1e-6 444 198 0.0025143998 1e-6 445 198 0.013514999 1e-6 446 198 0.00098059978 1e-6 447 198 0.0054185987 1e-6 448 198 2.5099987e-05 1e-6 449 198 1.26e-05 1e-6 450 198 0.0042493977 1e-6 452 198 0.0060094967 1e-6 453 198 0.0022880998 1e-6 454 198 0.00055319979 1e-6 455 198 0.0278221 1e-6 456 198 0.00045259995 1e-6 457 198 0.0016217998 1e-6 458 198 0.00056569977 1e-6 459 198 0.0010937999 1e-6 460 198 0.00093029998 1e-6 463 198 0.014030498 1e-6 464 198 0.0021749998 1e-6 465 198 0.0039350986 1e-6 467 198 0.011591498 1e-6 468 198 0.0071283989 1e-6 469 198 0.0031933 1e-6 470 198 0.0035452999 1e-6 471 198 0.0023383999 1e-6 473 198 7.5399992e-05 1e-6 477 198 0.00010059999 1e-6 478 198 0.00094289985 1e-6 479 198 5.029999e-05 1e-6 483 198 0.0010308998 1e-6 489 198 5.029999e-05 1e-6 490 198 0.00027659978 1e-6 491 198 0.0001886 1e-6 9 199 5.0899995e-05 1e-6 18 199 0.00040749996 1e-6 60 199 0.0058062971 1e-6 82 199 0.00010189999 1e-6 83 199 5.0899995e-05 1e-6 84 199 5.0899995e-05 1e-6 108 199 0.00010189999 1e-6 113 199 0.0001528 1e-6 114 199 0.0003564998 1e-6 126 199 0.0001528 1e-6 141 199 0.00025469996 1e-6 150 199 5.0899995e-05 1e-6 151 199 0.00020369999 1e-6 187 199 0.1624223 1e-6 189 199 0.00025469996 1e-6 190 199 0.00020369999 1e-6 192 199 0.0001528 1e-6 194 199 0.0003056 1e-6 196 199 5.0899995e-05 1e-6 197 199 0.00010189999 1e-6 200 199 0.0019864 1e-6 201 199 0.00010189999 1e-6 203 199 0.0003056 1e-6 204 199 0.019659799 1e-6 205 199 0.0029540998 1e-6 206 199 0.0010696 1e-6 207 199 0.00025469996 1e-6 209 199 0.00020369999 1e-6 212 199 0.0005092998 1e-6 213 199 0.00010189999 1e-6 214 199 0.00040749996 1e-6 221 199 0.0040745996 1e-6 223 199 5.0899995e-05 1e-6 233 199 0.0003056 1e-6 234 199 0.0024446999 1e-6 237 199 0.0004584 1e-6 241 199 0.0019864 1e-6 248 199 5.0899995e-05 1e-6 250 199 5.0899995e-05 1e-6 252 199 5.0899995e-05 1e-6 272 199 0.0009168 1e-6 277 199 5.0899995e-05 1e-6 317 199 0.00025469996 1e-6 334 199 0.00040749996 1e-6 340 199 0.0003564998 1e-6 348 199 0.0015788998 1e-6 356 199 5.0899995e-05 1e-6 358 199 0.00040749996 1e-6 384 199 5.0899995e-05 1e-6 387 199 0.0001528 1e-6 402 199 0.0001528 1e-6 422 199 0.0057552978 1e-6 423 199 5.0899995e-05 1e-6 425 199 5.0899995e-05 1e-6 430 199 0.00010189999 1e-6 431 199 5.0899995e-05 1e-6 432 199 5.0899995e-05 1e-6 433 199 0.0001528 1e-6 434 199 0.00020369999 1e-6 443 199 0.0049912967 1e-6 444 199 0.0123256 1e-6 445 199 0.006519299 1e-6 446 199 0.00025469996 1e-6 447 199 0.027706999 1e-6 448 199 5.0899995e-05 1e-6 449 199 5.0899995e-05 1e-6 450 199 0.021798898 1e-6 452 199 0.0045329966 1e-6 453 199 0.0006620998 1e-6 454 199 0.0003564998 1e-6 455 199 0.0251095 1e-6 456 199 0.0016297998 1e-6 457 199 0.0071304999 1e-6 458 199 0.00056029996 1e-6 459 199 0.0012732998 1e-6 460 199 0.0018336 1e-6 463 199 0.028623797 1e-6 464 199 0.019557897 1e-6 465 199 0.0014260998 1e-6 467 199 0.031781599 1e-6 468 199 0.0096261986 1e-6 469 199 0.015788898 1e-6 470 199 0.0170113 1e-6 471 199 0.0057043992 1e-6 472 199 0.00010189999 1e-6 473 199 0.0003564998 1e-6 477 199 0.00020369999 1e-6 478 199 0.0034633998 1e-6 483 199 0.011765298 1e-6 489 199 0.00010189999 1e-6 490 199 0.0013752 1e-6 9 200 7.0999988e-05 1e-6 60 200 0.0023425999 1e-6 82 200 7.0999988e-05 1e-6 83 200 7.0999988e-05 1e-6 84 200 7.0999988e-05 1e-6 108 200 7.0999988e-05 1e-6 113 200 7.0999988e-05 1e-6 114 200 0.00021299999 1e-6 126 200 0.00014199999 1e-6 139 200 0.00021299999 1e-6 150 200 0.00035489979 1e-6 187 200 0.097536683 1e-6 188 200 7.0999988e-05 1e-6 189 200 0.0034073999 1e-6 190 200 0.00014199999 1e-6 192 200 0.0095832981 1e-6 194 200 7.0999988e-05 1e-6 198 200 0.0013487998 1e-6 200 200 0.0033363998 1e-6 201 200 0.0013487998 1e-6 202 200 0.060055397 1e-6 203 200 0.00014199999 1e-6 204 200 0.1510613 1e-6 205 200 0.00014199999 1e-6 206 200 0.00085179997 1e-6 207 200 7.0999988e-05 1e-6 209 200 0.00085179997 1e-6 210 200 0.010932099 1e-6 211 200 0.014410399 1e-6 214 200 0.00092279981 1e-6 221 200 0.0041172989 1e-6 234 200 0.00078089978 1e-6 237 200 0.00014199999 1e-6 241 200 0.00035489979 1e-6 272 200 0.00028389995 1e-6 279 200 7.0999988e-05 1e-6 325 200 0.00014199999 1e-6 340 200 0.00042589987 1e-6 348 200 0.0010648 1e-6 356 200 7.0999988e-05 1e-6 358 200 0.00014199999 1e-6 387 200 0.00014199999 1e-6 402 200 7.0999988e-05 1e-6 404 200 7.0999988e-05 1e-6 422 200 0.0017746999 1e-6 430 200 7.0999988e-05 1e-6 433 200 7.0999988e-05 1e-6 434 200 7.0999988e-05 1e-6 443 200 0.0034073999 1e-6 444 200 0.0051820986 1e-6 445 200 0.0056789964 1e-6 446 200 0.00014199999 1e-6 447 200 0.012564797 1e-6 450 200 0.0047561973 1e-6 452 200 0.0015616999 1e-6 453 200 0.00021299999 1e-6 455 200 0.0203024 1e-6 456 200 0.0010648 1e-6 457 200 0.0055369996 1e-6 458 200 0.00056789978 1e-6 459 200 0.0015616999 1e-6 460 200 0.0012778 1e-6 463 200 0.12209839 1e-6 464 200 0.0056079999 1e-6 465 200 0.0026974999 1e-6 467 200 0.0326542 1e-6 468 200 0.0472776 1e-6 469 200 0.012209799 1e-6 470 200 0.013629597 1e-6 471 200 0.0040462986 1e-6 473 200 0.00028389995 1e-6 477 200 7.0999988e-05 1e-6 478 200 0.0024136 1e-6 483 200 0.054376397 1e-6 490 200 0.0010648 1e-6 491 200 0.00070989993 1e-6 9 201 3.309999e-05 1e-6 16 201 3.309999e-05 1e-6 18 201 3.309999e-05 1e-6 60 201 0.0013891 1e-6 79 201 3.309999e-05 1e-6 82 201 3.309999e-05 1e-6 83 201 3.309999e-05 1e-6 84 201 3.309999e-05 1e-6 108 201 6.6099994e-05 1e-6 113 201 9.9199999e-05 1e-6 114 201 0.00026459992 1e-6 126 201 9.9199999e-05 1e-6 127 201 3.309999e-05 1e-6 133 201 3.309999e-05 1e-6 139 201 0.0024474999 1e-6 150 201 0.00033069984 1e-6 158 201 3.309999e-05 1e-6 160 201 6.6099994e-05 1e-6 171 201 3.309999e-05 1e-6 187 201 0.058045298 1e-6 188 201 6.6099994e-05 1e-6 189 201 0.0020836999 1e-6 190 201 9.9199999e-05 1e-6 192 201 0.0011906999 1e-6 194 201 0.00013229999 1e-6 198 201 0.0021497998 1e-6 200 201 0.0014552998 1e-6 201 201 0.015941799 1e-6 202 201 0.19222754 1e-6 203 201 0.0014221999 1e-6 204 201 0.018686999 1e-6 205 201 0.0021167998 1e-6 206 201 0.00095919985 1e-6 207 201 6.6099994e-05 1e-6 208 201 0.00039689988 1e-6 209 201 9.9199999e-05 1e-6 210 201 0.037605397 1e-6 211 201 0.0056225993 1e-6 212 201 3.309999e-05 1e-6 213 201 3.309999e-05 1e-6 214 201 9.9199999e-05 1e-6 221 201 0.0030427999 1e-6 224 201 0.0001984 1e-6 234 201 0.00092609995 1e-6 237 201 0.00023149999 1e-6 240 201 3.309999e-05 1e-6 241 201 0.005324997 1e-6 243 201 0.00026459992 1e-6 248 201 3.309999e-05 1e-6 250 201 3.309999e-05 1e-6 252 201 3.309999e-05 1e-6 263 201 3.309999e-05 1e-6 272 201 0.00036379998 1e-6 277 201 6.6099994e-05 1e-6 279 201 3.309999e-05 1e-6 312 201 3.309999e-05 1e-6 317 201 3.309999e-05 1e-6 325 201 0.0014882998 1e-6 326 201 3.309999e-05 1e-6 340 201 3.309999e-05 1e-6 348 201 0.00079379999 1e-6 356 201 3.309999e-05 1e-6 358 201 0.0001984 1e-6 372 201 3.309999e-05 1e-6 387 201 9.9199999e-05 1e-6 388 201 3.309999e-05 1e-6 390 201 3.309999e-05 1e-6 402 201 6.6099994e-05 1e-6 404 201 3.309999e-05 1e-6 405 201 6.6099994e-05 1e-6 419 201 3.309999e-05 1e-6 422 201 0.0014552998 1e-6 423 201 3.309999e-05 1e-6 425 201 3.309999e-05 1e-6 428 201 0.00013229999 1e-6 430 201 6.6099994e-05 1e-6 431 201 3.309999e-05 1e-6 432 201 3.309999e-05 1e-6 433 201 6.6099994e-05 1e-6 434 201 6.6099994e-05 1e-6 443 201 0.0019182998 1e-6 444 201 0.0068793967 1e-6 445 201 0.0051264986 1e-6 446 201 6.6099994e-05 1e-6 447 201 0.014486499 1e-6 449 201 3.309999e-05 1e-6 450 201 0.0051264986 1e-6 452 201 0.0016205998 1e-6 453 201 0.00029769982 1e-6 454 201 9.9199999e-05 1e-6 455 201 0.012898996 1e-6 456 201 0.00079379999 1e-6 457 201 0.0054902993 1e-6 458 201 0.0006614998 1e-6 459 201 0.0006614998 1e-6 460 201 0.0014221999 1e-6 463 201 0.11992717 1e-6 464 201 0.0058210976 1e-6 465 201 0.0012236999 1e-6 467 201 0.0168017 1e-6 468 201 0.025632497 1e-6 469 201 0.011179097 1e-6 470 201 0.012435898 1e-6 471 201 0.0023482998 1e-6 473 201 0.00026459992 1e-6 477 201 6.6099994e-05 1e-6 478 201 0.0019514 1e-6 479 201 9.9199999e-05 1e-6 483 201 0.031817399 1e-6 489 201 3.309999e-05 1e-6 490 201 0.0011906999 1e-6 491 201 0.0013229998 1e-6 60 202 0.0036038999 1e-6 82 202 9.4799994e-05 1e-6 108 202 9.4799994e-05 1e-6 114 202 9.4799994e-05 1e-6 126 202 9.4799994e-05 1e-6 130 202 9.4799994e-05 1e-6 132 202 9.4799994e-05 1e-6 139 202 0.0027504 1e-6 150 202 0.0034142998 1e-6 158 202 9.4799994e-05 1e-6 160 202 0.00028449995 1e-6 165 202 9.4799994e-05 1e-6 171 202 0.00018969999 1e-6 172 202 9.4799994e-05 1e-6 187 202 0.13154399 1e-6 188 202 0.0185888 1e-6 189 202 9.4799994e-05 1e-6 190 202 0.00037939986 1e-6 192 202 0.013941597 1e-6 194 202 0.00028449995 1e-6 197 202 9.4799994e-05 1e-6 198 202 0.0036038999 1e-6 200 202 0.0024658998 1e-6 201 202 9.4799994e-05 1e-6 202 202 0.0018967998 1e-6 203 202 0.0036038999 1e-6 204 202 0.006069798 1e-6 205 202 0.017166197 1e-6 206 202 0.0013277999 1e-6 207 202 9.4799994e-05 1e-6 209 202 0.0014225999 1e-6 210 202 0.0090098977 1e-6 211 202 0.024848297 1e-6 212 202 0.0040780976 1e-6 213 202 0.00085359998 1e-6 214 202 0.0020864999 1e-6 219 202 0.010527298 1e-6 221 202 0.016502298 1e-6 224 202 0.00075869984 1e-6 233 202 0.00028449995 1e-6 234 202 0.0021813 1e-6 237 202 0.00047419989 1e-6 241 202 0.011855099 1e-6 243 202 0.0018967998 1e-6 272 202 0.00075869984 1e-6 277 202 0.00047419989 1e-6 279 202 9.4799994e-05 1e-6 293 202 9.4799994e-05 1e-6 294 202 9.4799994e-05 1e-6 312 202 0.00018969999 1e-6 315 202 9.4799994e-05 1e-6 317 202 9.4799994e-05 1e-6 325 202 0.0043626986 1e-6 326 202 9.4799994e-05 1e-6 348 202 0.0027504 1e-6 358 202 0.00037939986 1e-6 372 202 9.4799994e-05 1e-6 387 202 9.4799994e-05 1e-6 398 202 9.4799994e-05 1e-6 402 202 9.4799994e-05 1e-6 409 202 9.4799994e-05 1e-6 422 202 0.014415797 1e-6 428 202 0.00075869984 1e-6 430 202 9.4799994e-05 1e-6 431 202 9.4799994e-05 1e-6 433 202 9.4799994e-05 1e-6 434 202 0.00037939986 1e-6 443 202 0.0063542984 1e-6 444 202 0.0027504 1e-6 445 202 0.029305797 1e-6 446 202 0.00018969999 1e-6 447 202 0.0088201985 1e-6 450 202 0.0080614984 1e-6 452 202 0.0070181973 1e-6 453 202 0.001802 1e-6 454 202 0.00047419989 1e-6 455 202 0.030348998 1e-6 456 202 0.00047419989 1e-6 457 202 0.0037935998 1e-6 458 202 0.00075869984 1e-6 459 202 0.00085359998 1e-6 460 202 0.0018967998 1e-6 463 202 0.015553899 1e-6 464 202 0.0023709999 1e-6 465 202 0.0019916999 1e-6 467 202 0.019252699 1e-6 468 202 0.018019699 1e-6 469 202 0.0065439977 1e-6 470 202 0.0073026977 1e-6 471 202 0.0061645992 1e-6 472 202 9.4799994e-05 1e-6 473 202 0.00018969999 1e-6 478 202 0.0016122998 1e-6 479 202 9.4799994e-05 1e-6 483 202 0.0022761999 1e-6 489 202 9.4799994e-05 1e-6 490 202 0.00056899991 1e-6 9 203 0.00015369999 1e-6 60 203 0.0012297998 1e-6 82 203 0.00015369999 1e-6 83 203 0.00015369999 1e-6 84 203 0.00015369999 1e-6 108 203 0.00015369999 1e-6 113 203 0.00015369999 1e-6 114 203 0.0003074999 1e-6 126 203 0.00015369999 1e-6 127 203 0.00015369999 1e-6 133 203 0.00015369999 1e-6 150 203 0.0019985 1e-6 160 203 0.00015369999 1e-6 187 203 0.0424289 1e-6 188 203 0.0003074999 1e-6 189 203 0.00046119979 1e-6 190 203 0.00015369999 1e-6 192 203 0.00046119979 1e-6 194 203 0.0003074999 1e-6 197 203 0.00015369999 1e-6 198 203 0.0013835998 1e-6 200 203 0.0033819999 1e-6 201 203 0.00046119979 1e-6 202 203 0.050576497 1e-6 203 203 0.010299798 1e-6 204 203 0.026748698 1e-6 205 203 0.0003074999 1e-6 206 203 0.0012297998 1e-6 207 203 0.00015369999 1e-6 208 203 0.00015369999 1e-6 210 203 0.069792449 1e-6 211 203 0.0064565986 1e-6 221 203 0.0015372999 1e-6 224 203 0.00015369999 1e-6 234 203 0.0015372999 1e-6 237 203 0.0003074999 1e-6 241 203 0.0073788986 1e-6 248 203 0.00015369999 1e-6 250 203 0.00015369999 1e-6 252 203 0.00015369999 1e-6 272 203 0.00046119979 1e-6 277 203 0.00015369999 1e-6 279 203 0.00015369999 1e-6 317 203 0.00015369999 1e-6 348 203 0.0007685998 1e-6 358 203 0.0003074999 1e-6 387 203 0.00015369999 1e-6 402 203 0.00015369999 1e-6 419 203 0.00015369999 1e-6 422 203 0.0084549971 1e-6 423 203 0.00015369999 1e-6 425 203 0.00015369999 1e-6 428 203 0.00015369999 1e-6 430 203 0.00015369999 1e-6 431 203 0.00015369999 1e-6 433 203 0.00015369999 1e-6 434 203 0.00015369999 1e-6 443 203 0.0012297998 1e-6 444 203 0.0081475973 1e-6 445 203 0.0027671 1e-6 446 203 0.00015369999 1e-6 447 203 0.0167563 1e-6 450 203 0.006917797 1e-6 452 203 0.0024595999 1e-6 453 203 0.0003074999 1e-6 455 203 0.010299798 1e-6 456 203 0.0007685998 1e-6 457 203 0.0039968975 1e-6 458 203 0.00061489991 1e-6 459 203 0.00046119979 1e-6 460 203 0.0012297998 1e-6 463 203 0.023674097 1e-6 464 203 0.0083012991 1e-6 465 203 0.0016909998 1e-6 467 203 0.035972297 1e-6 468 203 0.017217498 1e-6 469 203 0.013835497 1e-6 470 203 0.0152191 1e-6 471 203 0.004919298 1e-6 473 203 0.0003074999 1e-6 477 203 0.00015369999 1e-6 478 203 0.0041506998 1e-6 483 203 0.0063027963 1e-6 489 203 0.00015369999 1e-6 490 203 0.0012297998 1e-6 491 203 0.00015369999 1e-6 9 204 2.0699998e-05 1e-6 18 204 6.2199993e-05 1e-6 22 204 2.0699998e-05 1e-6 60 204 0.0037759 1e-6 82 204 2.0699998e-05 1e-6 83 204 2.0699998e-05 1e-6 84 204 2.0699998e-05 1e-6 104 204 8.2999992e-05 1e-6 108 204 2.0699998e-05 1e-6 113 204 6.2199993e-05 1e-6 114 204 0.0001452 1e-6 126 204 4.1499996e-05 1e-6 130 204 0.00029049977 1e-6 131 204 2.0699998e-05 1e-6 132 204 0.00010369999 1e-6 133 204 2.0699998e-05 1e-6 138 204 2.0699998e-05 1e-6 139 204 0.0001867 1e-6 141 204 2.0699998e-05 1e-6 142 204 6.2199993e-05 1e-6 143 204 4.1499996e-05 1e-6 150 204 0.00072609982 1e-6 151 204 2.0699998e-05 1e-6 159 204 4.1499996e-05 1e-6 160 204 2.0699998e-05 1e-6 169 204 2.0699998e-05 1e-6 171 204 2.0699998e-05 1e-6 180 204 2.0699998e-05 1e-6 187 204 0.16491359 1e-6 188 204 0.0081533976 1e-6 189 204 0.0002489998 1e-6 190 204 0.000166 1e-6 192 204 0.0082985982 1e-6 193 204 4.1499996e-05 1e-6 194 204 0.00041489978 1e-6 196 204 2.0699998e-05 1e-6 197 204 4.1499996e-05 1e-6 198 204 0.0039832965 1e-6 200 204 0.00041489978 1e-6 201 204 8.2999992e-05 1e-6 202 204 0.00062239985 1e-6 203 204 0.00064309989 1e-6 204 204 0.022240199 1e-6 205 204 0.010041296 1e-6 206 204 0.0011824998 1e-6 207 204 0.00022819999 1e-6 208 204 0.000166 1e-6 209 204 0.0040455982 1e-6 210 204 0.0018048999 1e-6 211 204 0.015352398 1e-6 212 204 0.011244599 1e-6 213 204 0.0022198998 1e-6 214 204 0.0075101964 1e-6 219 204 0.0011824998 1e-6 221 204 0.021472599 1e-6 223 204 4.1499996e-05 1e-6 224 204 0.0010372999 1e-6 225 204 2.0699998e-05 1e-6 226 204 8.2999992e-05 1e-6 227 204 6.2199993e-05 1e-6 233 204 0.00076759979 1e-6 234 204 0.0021160999 1e-6 237 204 0.00031119981 1e-6 240 204 4.1499996e-05 1e-6 241 204 0.008174099 1e-6 243 204 6.2199993e-05 1e-6 248 204 2.0699998e-05 1e-6 252 204 4.1499996e-05 1e-6 270 204 2.0699998e-05 1e-6 271 204 2.0699998e-05 1e-6 272 204 0.00078839995 1e-6 277 204 0.0026969998 1e-6 279 204 0.00012449999 1e-6 287 204 8.2999992e-05 1e-6 289 204 0.00091279997 1e-6 290 204 6.2199993e-05 1e-6 292 204 6.2199993e-05 1e-6 293 204 0.0018671998 1e-6 294 204 6.2199993e-05 1e-6 295 204 2.0699998e-05 1e-6 315 204 4.1499996e-05 1e-6 317 204 2.0699998e-05 1e-6 319 204 6.2199993e-05 1e-6 320 204 2.0699998e-05 1e-6 321 204 2.0699998e-05 1e-6 325 204 0.0024065999 1e-6 326 204 8.2999992e-05 1e-6 334 204 2.0699998e-05 1e-6 340 204 0.00010369999 1e-6 347 204 8.2999992e-05 1e-6 348 204 0.0040247999 1e-6 356 204 2.0699998e-05 1e-6 358 204 0.00035269978 1e-6 370 204 2.0699998e-05 1e-6 384 204 2.0699998e-05 1e-6 387 204 6.2199993e-05 1e-6 392 204 2.0699998e-05 1e-6 394 204 2.0699998e-05 1e-6 397 204 2.0699998e-05 1e-6 402 204 8.2999992e-05 1e-6 421 204 2.0699998e-05 1e-6 422 204 0.010829698 1e-6 430 204 4.1499996e-05 1e-6 431 204 0.00033189985 1e-6 432 204 2.0699998e-05 1e-6 433 204 8.2999992e-05 1e-6 434 204 0.0011824998 1e-6 441 204 2.0699998e-05 1e-6 442 204 2.0699998e-05 1e-6 443 204 0.0067218989 1e-6 444 204 0.0023651 1e-6 445 204 0.0089831986 1e-6 446 204 0.00029049977 1e-6 447 204 0.0070122965 1e-6 448 204 2.0699998e-05 1e-6 450 204 0.0079665966 1e-6 452 204 0.0060994998 1e-6 453 204 0.0020538999 1e-6 454 204 0.00039419997 1e-6 455 204 0.031990997 1e-6 456 204 0.00078839995 1e-6 457 204 0.0033608999 1e-6 458 204 0.00066389982 1e-6 459 204 0.0011202998 1e-6 460 204 0.0017633999 1e-6 463 204 0.014315099 1e-6 464 204 0.0024895999 1e-6 465 204 0.0024895999 1e-6 467 204 0.027924698 1e-6 468 204 0.0080080964 1e-6 469 204 0.0065973997 1e-6 470 204 0.0073441975 1e-6 471 204 0.0028007999 1e-6 472 204 0.0001867 1e-6 473 204 0.0001452 1e-6 477 204 8.2999992e-05 1e-6 478 204 0.0014936998 1e-6 479 204 4.1499996e-05 1e-6 483 204 0.0037550998 1e-6 489 204 8.2999992e-05 1e-6 490 204 0.00053939992 1e-6 491 204 0.0002489998 1e-6 60 205 0.003268 1e-6 130 205 0.00065359985 1e-6 187 205 0.014379099 1e-6 188 205 0.00065359985 1e-6 192 205 0.00065359985 1e-6 198 205 0.0013071999 1e-6 200 205 0.010457497 1e-6 203 205 0.0078430995 1e-6 204 205 0.0026143999 1e-6 205 205 0.00065359985 1e-6 206 205 0.00065359985 1e-6 208 205 0.00065359985 1e-6 209 205 0.00065359985 1e-6 211 205 0.0013071999 1e-6 212 205 0.0019607998 1e-6 214 205 0.029411796 1e-6 218 205 0.00065359985 1e-6 221 205 0.0019607998 1e-6 222 205 0.00065359985 1e-6 224 205 0.0019607998 1e-6 225 205 0.00065359985 1e-6 233 205 0.0013071999 1e-6 234 205 0.003268 1e-6 241 205 0.0071894974 1e-6 270 205 0.0071894974 1e-6 272 205 0.00065359985 1e-6 292 205 0.0045751967 1e-6 293 205 0.069934547 1e-6 294 205 0.0071894974 1e-6 301 205 0.00065359985 1e-6 320 205 0.013725497 1e-6 348 205 0.0019607998 1e-6 422 205 0.0372549 1e-6 434 205 0.0078430995 1e-6 442 205 0.011111099 1e-6 443 205 0.003268 1e-6 444 205 0.0078430995 1e-6 445 205 0.0065358989 1e-6 447 205 0.016993497 1e-6 450 205 0.0065358989 1e-6 452 205 0.0058823973 1e-6 453 205 0.0019607998 1e-6 455 205 0.022222199 1e-6 457 205 0.003268 1e-6 460 205 0.055555597 1e-6 463 205 0.018300697 1e-6 464 205 0.00065359985 1e-6 465 205 0.00065359985 1e-6 467 205 0.013725497 1e-6 468 205 0.0026143999 1e-6 469 205 0.008496698 1e-6 470 205 0.0098038986 1e-6 471 205 0.0013071999 1e-6 478 205 0.0013071999 1e-6 483 205 0.00065359985 1e-6 490 205 0.00065359985 1e-6 9 206 7.1799994e-05 1e-6 60 206 0.0017233 1e-6 82 206 7.1799994e-05 1e-6 108 206 7.1799994e-05 1e-6 114 206 0.00014359999 1e-6 126 206 7.1799994e-05 1e-6 131 206 7.1799994e-05 1e-6 139 206 7.1799994e-05 1e-6 150 206 0.0021541 1e-6 187 206 0.24965888 1e-6 188 206 0.0031593 1e-6 189 206 7.1799994e-05 1e-6 190 206 7.1799994e-05 1e-6 192 206 0.0034464998 1e-6 194 206 0.0022976999 1e-6 197 206 7.1799994e-05 1e-6 198 206 0.010554999 1e-6 200 206 0.0017233 1e-6 203 206 0.0019387 1e-6 204 206 0.0056005977 1e-6 205 206 0.00078979996 1e-6 206 206 0.0099087991 1e-6 207 206 0.00028719986 1e-6 208 206 7.1799994e-05 1e-6 209 206 0.00028719986 1e-6 210 206 7.1799994e-05 1e-6 211 206 0.018309798 1e-6 212 206 0.0016514999 1e-6 213 206 0.00028719986 1e-6 214 206 0.00050259987 1e-6 219 206 0.0028720999 1e-6 221 206 0.0055287965 1e-6 233 206 7.1799994e-05 1e-6 234 206 0.0013642998 1e-6 237 206 0.0002154 1e-6 241 206 0.00071799988 1e-6 272 206 0.00071799988 1e-6 277 206 7.1799994e-05 1e-6 279 206 0.00014359999 1e-6 317 206 7.1799994e-05 1e-6 325 206 0.00014359999 1e-6 326 206 7.1799994e-05 1e-6 348 206 0.0022976999 1e-6 358 206 0.0002154 1e-6 387 206 7.1799994e-05 1e-6 402 206 7.1799994e-05 1e-6 422 206 0.0041645989 1e-6 430 206 7.1799994e-05 1e-6 433 206 7.1799994e-05 1e-6 434 206 0.030229099 1e-6 443 206 0.0081136972 1e-6 444 206 0.0027284999 1e-6 445 206 0.010267798 1e-6 446 206 0.00035899994 1e-6 447 206 0.0081854984 1e-6 450 206 0.0053133965 1e-6 452 206 0.0053851977 1e-6 453 206 0.0010052 1e-6 454 206 0.0015079 1e-6 455 206 0.046743698 1e-6 456 206 0.00028719986 1e-6 457 206 0.0033028999 1e-6 458 206 0.00071799988 1e-6 459 206 0.00043079979 1e-6 460 206 0.0015079 1e-6 463 206 0.0078264996 1e-6 464 206 0.0021541 1e-6 465 206 0.0013642998 1e-6 467 206 0.010124199 1e-6 468 206 0.0052415989 1e-6 469 206 0.0053851977 1e-6 470 206 0.0061032996 1e-6 471 206 0.0015796998 1e-6 473 206 0.00014359999 1e-6 478 206 0.0010769998 1e-6 483 206 0.0016514999 1e-6 489 206 7.1799994e-05 1e-6 490 206 0.00050259987 1e-6 491 206 7.1799994e-05 1e-6 60 207 0.0015452998 1e-6 108 207 0.0001717 1e-6 114 207 0.00034339982 1e-6 126 207 0.0001717 1e-6 130 207 0.00034339982 1e-6 131 207 0.0072114989 1e-6 133 207 0.0001717 1e-6 139 207 0.013221197 1e-6 141 207 0.0001717 1e-6 150 207 0.0001717 1e-6 187 207 0.11933374 1e-6 188 207 0.028674498 1e-6 189 207 0.0001717 1e-6 190 207 0.0001717 1e-6 192 207 0.0015452998 1e-6 194 207 0.016998596 1e-6 196 207 0.00034339982 1e-6 198 207 0.008928597 1e-6 200 207 0.00034339982 1e-6 203 207 0.0024037999 1e-6 204 207 0.00068679987 1e-6 205 207 0.0001717 1e-6 206 207 0.00051509985 1e-6 207 207 0.026270598 1e-6 210 207 0.00034339982 1e-6 211 207 0.00034339982 1e-6 212 207 0.0001717 1e-6 214 207 0.00051509985 1e-6 219 207 0.00051509985 1e-6 221 207 0.00034339982 1e-6 224 207 0.0018886998 1e-6 234 207 0.0024037999 1e-6 237 207 0.00034339982 1e-6 241 207 0.027815897 1e-6 243 207 0.00034339982 1e-6 252 207 0.0001717 1e-6 272 207 0.00051509985 1e-6 277 207 0.0070397966 1e-6 279 207 0.0001717 1e-6 312 207 0.0001717 1e-6 315 207 0.0001717 1e-6 326 207 0.012019198 1e-6 340 207 0.0001717 1e-6 347 207 0.0001717 1e-6 348 207 0.0024037999 1e-6 358 207 0.00034339982 1e-6 387 207 0.0001717 1e-6 422 207 0.0029189999 1e-6 433 207 0.0001717 1e-6 434 207 0.0001717 1e-6 443 207 0.0065246969 1e-6 444 207 0.0010301999 1e-6 445 207 0.013221197 1e-6 446 207 0.0001717 1e-6 447 207 0.0077265985 1e-6 450 207 0.0078983977 1e-6 452 207 0.0058378987 1e-6 453 207 0.0018886998 1e-6 454 207 0.00034339982 1e-6 455 207 0.0331387 1e-6 456 207 0.0001717 1e-6 457 207 0.0029189999 1e-6 458 207 0.0010301999 1e-6 459 207 0.00034339982 1e-6 460 207 0.0017169998 1e-6 463 207 0.021291196 1e-6 464 207 0.00051509985 1e-6 465 207 0.0017169998 1e-6 467 207 0.012877699 1e-6 468 207 0.0070397966 1e-6 469 207 0.0060095973 1e-6 470 207 0.0065246969 1e-6 471 207 0.0022320999 1e-6 473 207 0.0001717 1e-6 477 207 0.0001717 1e-6 478 207 0.0018886998 1e-6 483 207 0.0017169998 1e-6 489 207 0.0001717 1e-6 490 207 0.00068679987 1e-6 491 207 0.0001717 1e-6 9 208 0.00016349999 1e-6 60 208 0.0024517998 1e-6 82 208 0.00016349999 1e-6 83 208 0.00016349999 1e-6 84 208 0.00016349999 1e-6 108 208 0.00016349999 1e-6 113 208 0.00032689981 1e-6 114 208 0.00032689981 1e-6 126 208 0.00016349999 1e-6 150 208 0.00049039978 1e-6 187 208 0.07682246 1e-6 188 208 0.00032689981 1e-6 189 208 0.018960398 1e-6 190 208 0.00016349999 1e-6 192 208 0.0034324999 1e-6 194 208 0.00032689981 1e-6 198 208 0.0068649985 1e-6 200 208 0.00016349999 1e-6 203 208 0.00016349999 1e-6 204 208 0.039065097 1e-6 205 208 0.00016349999 1e-6 206 208 0.00032689981 1e-6 207 208 0.00016349999 1e-6 208 208 0.064400077 1e-6 211 208 0.00032689981 1e-6 212 208 0.00016349999 1e-6 214 208 0.00032689981 1e-6 221 208 0.015200999 1e-6 233 208 0.0024517998 1e-6 234 208 0.001798 1e-6 237 208 0.00032689981 1e-6 241 208 0.044295497 1e-6 252 208 0.00016349999 1e-6 272 208 0.0014710999 1e-6 279 208 0.00016349999 1e-6 317 208 0.00016349999 1e-6 348 208 0.0014710999 1e-6 358 208 0.00032689981 1e-6 387 208 0.00016349999 1e-6 422 208 0.0062111989 1e-6 423 208 0.00016349999 1e-6 430 208 0.00016349999 1e-6 431 208 0.00016349999 1e-6 433 208 0.00016349999 1e-6 434 208 0.00016349999 1e-6 443 208 0.0027786999 1e-6 444 208 0.004086297 1e-6 445 208 0.009153299 1e-6 447 208 0.014383797 1e-6 450 208 0.0053939 1e-6 452 208 0.0044131987 1e-6 453 208 0.0009806999 1e-6 454 208 0.00065379986 1e-6 455 208 0.0246813 1e-6 456 208 0.00032689981 1e-6 457 208 0.0037594 1e-6 458 208 0.0013075999 1e-6 459 208 0.0009806999 1e-6 460 208 0.0014710999 1e-6 463 208 0.062602162 1e-6 464 208 0.00081729982 1e-6 465 208 0.0014710999 1e-6 467 208 0.048872199 1e-6 468 208 0.0080091991 1e-6 469 208 0.0107878 1e-6 470 208 0.0120955 1e-6 471 208 0.0014710999 1e-6 473 208 0.00032689981 1e-6 477 208 0.00016349999 1e-6 478 208 0.0014710999 1e-6 479 208 0.012912698 1e-6 483 208 0.0031055999 1e-6 490 208 0.0013075999 1e-6 491 208 0.00016349999 1e-6 60 209 0.0014450999 1e-6 114 209 0.00048169983 1e-6 126 209 0.00048169983 1e-6 130 209 0.032273598 1e-6 150 209 0.00048169983 1e-6 187 209 0.094412267 1e-6 188 209 0.0014450999 1e-6 192 209 0.00048169983 1e-6 194 209 0.00048169983 1e-6 198 209 0.0048169978 1e-6 204 209 0.0019267998 1e-6 205 209 0.00048169983 1e-6 206 209 0.00096339989 1e-6 208 209 0.00048169983 1e-6 209 209 0.0019267998 1e-6 211 209 0.0096338987 1e-6 212 209 0.00096339989 1e-6 214 209 0.0019267998 1e-6 221 209 0.0062619969 1e-6 225 209 0.0086704977 1e-6 234 209 0.0028901999 1e-6 237 209 0.00048169983 1e-6 241 209 0.0019267998 1e-6 272 209 0.00048169983 1e-6 292 209 0.0024084998 1e-6 293 209 0.00048169983 1e-6 294 209 0.00096339989 1e-6 317 209 0.00048169983 1e-6 348 209 0.0033718999 1e-6 358 209 0.00048169983 1e-6 422 209 0.0028901999 1e-6 443 209 0.0038535998 1e-6 444 209 0.00048169983 1e-6 445 209 0.0057802983 1e-6 447 209 0.0077070966 1e-6 450 209 0.008188799 1e-6 452 209 0.0067436993 1e-6 453 209 0.00096339989 1e-6 454 209 0.0014450999 1e-6 455 209 0.015896 1e-6 456 209 0.00048169983 1e-6 457 209 0.0033718999 1e-6 458 209 0.00048169983 1e-6 459 209 0.015414298 1e-6 460 209 0.0033718999 1e-6 463 209 0.025048196 1e-6 464 209 0.00096339989 1e-6 465 209 0.0014450999 1e-6 467 209 0.014450897 1e-6 468 209 0.0086704977 1e-6 469 209 0.0077070966 1e-6 470 209 0.0091521963 1e-6 471 209 0.0019267998 1e-6 472 209 0.0048169978 1e-6 473 209 0.00048169983 1e-6 478 209 0.0019267998 1e-6 483 209 0.0024084998 1e-6 490 209 0.00096339989 1e-6 60 210 0.00076079997 1e-6 108 210 0.00025359984 1e-6 114 210 0.0005071999 1e-6 126 210 0.00025359984 1e-6 131 210 0.00025359984 1e-6 139 210 0.024600599 1e-6 150 210 0.00025359984 1e-6 187 210 0.043875199 1e-6 188 210 0.029165599 1e-6 189 210 0.00025359984 1e-6 190 210 0.00025359984 1e-6 192 210 0.0010144999 1e-6 194 210 0.0010144999 1e-6 198 210 0.0017752999 1e-6 200 210 0.00025359984 1e-6 201 210 0.0005071999 1e-6 202 210 0.0076083988 1e-6 203 210 0.00025359984 1e-6 204 210 0.0017752999 1e-6 205 210 0.0005071999 1e-6 206 210 0.00076079997 1e-6 207 210 0.0053258985 1e-6 210 210 0.019274697 1e-6 211 210 0.00076079997 1e-6 212 210 0.00025359984 1e-6 214 210 0.00025359984 1e-6 219 210 0.022317998 1e-6 221 210 0.0005071999 1e-6 234 210 0.0035505998 1e-6 237 210 0.0005071999 1e-6 241 210 0.0050722994 1e-6 243 210 0.00025359984 1e-6 272 210 0.0005071999 1e-6 277 210 0.0045650974 1e-6 290 210 0.00025359984 1e-6 326 210 0.00025359984 1e-6 348 210 0.0038041999 1e-6 358 210 0.0005071999 1e-6 387 210 0.00025359984 1e-6 422 210 0.00076079997 1e-6 433 210 0.00025359984 1e-6 434 210 0.00025359984 1e-6 443 210 0.0035505998 1e-6 444 210 0.0005071999 1e-6 445 210 0.0053258985 1e-6 447 210 0.0017752999 1e-6 450 210 0.011919897 1e-6 452 210 0.0068475977 1e-6 453 210 0.00076079997 1e-6 454 210 0.00025359984 1e-6 455 210 0.015724096 1e-6 456 210 0.00025359984 1e-6 457 210 0.0035505998 1e-6 458 210 0.0005071999 1e-6 459 210 0.00025359984 1e-6 460 210 0.0015216998 1e-6 463 210 0.015470497 1e-6 464 210 0.00076079997 1e-6 465 210 0.003297 1e-6 467 210 0.017499398 1e-6 468 210 0.0043113977 1e-6 469 210 0.0063402988 1e-6 470 210 0.0071011968 1e-6 471 210 0.003297 1e-6 473 210 0.00025359984 1e-6 478 210 0.0022824998 1e-6 483 210 0.003297 1e-6 489 210 0.00025359984 1e-6 490 210 0.00076079997 1e-6 60 211 0.0014368 1e-6 114 211 0.00035919994 1e-6 150 211 0.00035919994 1e-6 187 211 0.022270098 1e-6 188 211 0.0014368 1e-6 192 211 0.0014368 1e-6 194 211 0.00035919994 1e-6 198 211 0.00035919994 1e-6 202 211 0.0010775998 1e-6 203 211 0.00035919994 1e-6 204 211 0.0025143998 1e-6 205 211 0.0014368 1e-6 206 211 0.00035919994 1e-6 209 211 0.00035919994 1e-6 210 211 0.00071839988 1e-6 211 211 0.0021551999 1e-6 212 211 0.00071839988 1e-6 214 211 0.0010775998 1e-6 219 211 0.00071839988 1e-6 221 211 0.0021551999 1e-6 234 211 0.0017959999 1e-6 237 211 0.00035919994 1e-6 241 211 0.0010775998 1e-6 272 211 0.00035919994 1e-6 287 211 0.014008597 1e-6 293 211 0.0010775998 1e-6 294 211 0.00035919994 1e-6 320 211 0.00035919994 1e-6 325 211 0.00035919994 1e-6 348 211 0.021192499 1e-6 358 211 0.00035919994 1e-6 422 211 0.026221298 1e-6 443 211 0.0010775998 1e-6 444 211 0.00071839988 1e-6 445 211 0.010057498 1e-6 447 211 0.0079022981 1e-6 450 211 0.0096982978 1e-6 452 211 0.0071838982 1e-6 453 211 0.00071839988 1e-6 455 211 0.011135098 1e-6 457 211 0.0035919999 1e-6 458 211 0.0014368 1e-6 459 211 0.00035919994 1e-6 460 211 0.0021551999 1e-6 463 211 0.024425298 1e-6 464 211 0.0010775998 1e-6 465 211 0.0014368 1e-6 467 211 0.0172414 1e-6 468 211 0.011853397 1e-6 469 211 0.0075430982 1e-6 470 211 0.0082614981 1e-6 471 211 0.0032327999 1e-6 478 211 0.0017959999 1e-6 483 211 0.0028736 1e-6 490 211 0.00071839988 1e-6 60 212 0.0015552 1e-6 114 212 0.00077759987 1e-6 130 212 0.00077759987 1e-6 187 212 0.029548999 1e-6 188 212 0.00077759987 1e-6 192 212 0.00077759987 1e-6 200 212 0.00077759987 1e-6 202 212 0.0031103999 1e-6 203 212 0.00077759987 1e-6 204 212 0.0038879998 1e-6 205 212 0.00077759987 1e-6 206 212 0.00077759987 1e-6 210 212 0.00077759987 1e-6 211 212 0.0015552 1e-6 212 212 0.0093312971 1e-6 214 212 0.0046655983 1e-6 221 212 0.0023327998 1e-6 234 212 0.0015552 1e-6 241 212 0.031881798 1e-6 270 212 0.00077759987 1e-6 292 212 0.024105798 1e-6 293 212 0.0077759996 1e-6 294 212 0.038102597 1e-6 320 212 0.0015552 1e-6 348 212 0.0031103999 1e-6 422 212 0.013996899 1e-6 434 212 0.00077759987 1e-6 442 212 0.0015552 1e-6 443 212 0.00077759987 1e-6 444 212 0.0015552 1e-6 445 212 0.013996899 1e-6 447 212 0.0062207989 1e-6 450 212 0.0093312971 1e-6 452 212 0.0062207989 1e-6 453 212 0.0015552 1e-6 455 212 0.013996899 1e-6 457 212 0.0031103999 1e-6 459 212 0.00077759987 1e-6 460 212 0.050544299 1e-6 463 212 0.022550497 1e-6 464 212 0.0023327998 1e-6 465 212 0.00077759987 1e-6 467 212 0.014774498 1e-6 468 212 0.0038879998 1e-6 469 212 0.010886498 1e-6 470 212 0.010886498 1e-6 471 212 0.0015552 1e-6 478 212 0.0015552 1e-6 483 212 0.0054431967 1e-6 490 212 0.00077759987 1e-6 114 213 0.0039840974 1e-6 187 213 0.011952199 1e-6 198 213 0.0039840974 1e-6 206 213 0.0039840974 1e-6 214 213 0.07171309 1e-6 241 213 0.0039840974 1e-6 292 213 0.023904398 1e-6 293 213 0.0039840974 1e-6 294 213 0.011952199 1e-6 348 213 0.0079680979 1e-6 422 213 0.019920297 1e-6 443 213 0.0079680979 1e-6 444 213 0.0039840974 1e-6 445 213 0.0039840974 1e-6 447 213 0.07171309 1e-6 450 213 0.0079680979 1e-6 452 213 0.0079680979 1e-6 455 213 0.011952199 1e-6 457 213 0.0039840974 1e-6 460 213 0.011952199 1e-6 463 213 0.035856597 1e-6 464 213 0.0039840974 1e-6 467 213 0.011952199 1e-6 468 213 0.0039840974 1e-6 469 213 0.0079680979 1e-6 470 213 0.0079680979 1e-6 478 213 0.0039840974 1e-6 483 213 0.0079680979 1e-6 490 213 0.0039840974 1e-6 5 214 1.7299986e-05 1e-6 6 214 0.00015029999 1e-6 9 214 2.8899987e-05 1e-6 10 214 6.359999e-05 1e-6 12 214 1.1599999e-05 1e-6 13 214 5.1999989e-05 1e-6 14 214 4.6199988e-05 1e-6 16 214 1.7299986e-05 1e-6 17 214 0.0001734 1e-6 18 214 0.0002138 1e-6 19 214 0.0024389999 1e-6 20 214 0.00068779988 1e-6 21 214 0.0076001994 1e-6 22 214 0.0053634979 1e-6 23 214 0.047849398 1e-6 24 214 0.0022598 1e-6 25 214 0.0090277977 1e-6 60 214 0.011460997 1e-6 66 214 6.939999e-05 1e-6 75 214 1.7299986e-05 1e-6 79 214 1.7299986e-05 1e-6 82 214 0.00050859991 1e-6 83 214 2.3099987e-05 1e-6 84 214 2.3099987e-05 1e-6 88 214 0.00012139999 1e-6 98 214 0.00071669999 1e-6 102 214 0.00010399999 1e-6 103 214 5.7999996e-06 1e-6 104 214 0.00053749979 1e-6 107 214 0.0004623998 1e-6 108 214 0.00014449999 1e-6 109 214 5.1999989e-05 1e-6 113 214 6.359999e-05 1e-6 114 214 0.0001734 1e-6 116 214 4.0499988e-05 1e-6 117 214 8.6699991e-05 1e-6 118 214 0.00014449999 1e-6 119 214 0.00030629989 1e-6 120 214 0.00062419986 1e-6 122 214 5.7999996e-06 1e-6 125 214 5.7999996e-06 1e-6 126 214 6.359999e-05 1e-6 127 214 1.7299986e-05 1e-6 130 214 3.4699988e-05 1e-6 131 214 1.1599999e-05 1e-6 132 214 2.8899987e-05 1e-6 139 214 1.1599999e-05 1e-6 140 214 0.00012139999 1e-6 150 214 0.0002023 1e-6 151 214 0.00010399999 1e-6 153 214 5.7999996e-06 1e-6 158 214 5.7999996e-06 1e-6 159 214 0.0001965 1e-6 160 214 0.00015599999 1e-6 162 214 5.7999996e-06 1e-6 169 214 5.7999996e-06 1e-6 171 214 4.0499988e-05 1e-6 186 214 0.0022308999 1e-6 187 214 0.0002023 1e-6 188 214 1.1599999e-05 1e-6 189 214 8.089999e-05 1e-6 190 214 4.0499988e-05 1e-6 192 214 0.00052589993 1e-6 193 214 0.0007050999 1e-6 194 214 6.359999e-05 1e-6 196 214 5.7999996e-06 1e-6 197 214 1.1599999e-05 1e-6 198 214 0.0035601999 1e-6 200 214 4.6199988e-05 1e-6 201 214 2.8899987e-05 1e-6 202 214 5.7999996e-06 1e-6 203 214 2.8899987e-05 1e-6 204 214 0.00010979999 1e-6 206 214 0.00046809996 1e-6 207 214 2.3099987e-05 1e-6 209 214 5.7999996e-06 1e-6 214 214 0.17221504 1e-6 215 214 0.0048374981 1e-6 217 214 0.00058949995 1e-6 218 214 0.00062999991 1e-6 219 214 1.1599999e-05 1e-6 220 214 8.089999e-05 1e-6 222 214 0.0001907 1e-6 223 214 0.0035023999 1e-6 224 214 0.0036122999 1e-6 225 214 0.00023699999 1e-6 226 214 5.7999996e-06 1e-6 227 214 2.8899987e-05 1e-6 228 214 0.00028899987 1e-6 229 214 0.0001849 1e-6 230 214 1.1599999e-05 1e-6 231 214 0.00073979981 1e-6 232 214 5.7799989e-05 1e-6 233 214 0.0014044 1e-6 234 214 0.013911497 1e-6 237 214 0.00011559999 1e-6 239 214 5.7999996e-06 1e-6 240 214 9.2499991e-05 1e-6 241 214 0.0076290965 1e-6 242 214 1.1599999e-05 1e-6 248 214 2.3099987e-05 1e-6 250 214 1.7299986e-05 1e-6 251 214 0.00023699999 1e-6 252 214 0.00039879978 1e-6 253 214 0.00010979999 1e-6 254 214 5.7999996e-06 1e-6 257 214 5.7999996e-06 1e-6 263 214 1.7299986e-05 1e-6 267 214 0.0013581999 1e-6 270 214 2.3099987e-05 1e-6 272 214 0.0002254 1e-6 273 214 0.00035259989 1e-6 276 214 5.7999996e-06 1e-6 277 214 0.0051727965 1e-6 278 214 6.939999e-05 1e-6 279 214 2.3099987e-05 1e-6 282 214 9.8299992e-05 1e-6 283 214 4.6199988e-05 1e-6 284 214 2.8899987e-05 1e-6 285 214 0.0018032 1e-6 286 214 0.00078599993 1e-6 287 214 0.0064731985 1e-6 288 214 0.0012830999 1e-6 289 214 0.00082069985 1e-6 290 214 0.0031093999 1e-6 291 214 5.7999996e-06 1e-6 292 214 4.0499988e-05 1e-6 293 214 1.7299986e-05 1e-6 294 214 0.00082649989 1e-6 295 214 3.4699988e-05 1e-6 297 214 1.7299986e-05 1e-6 298 214 1.7299986e-05 1e-6 300 214 0.0011038999 1e-6 301 214 0.0036527 1e-6 305 214 4.0499988e-05 1e-6 307 214 4.6199988e-05 1e-6 308 214 5.7999996e-06 1e-6 312 214 0.00014449999 1e-6 314 214 1.7299986e-05 1e-6 315 214 2.8899987e-05 1e-6 317 214 5.7999996e-06 1e-6 320 214 5.7999996e-06 1e-6 321 214 1.7299986e-05 1e-6 322 214 5.1999989e-05 1e-6 324 214 0.0014564998 1e-6 325 214 2.3099987e-05 1e-6 326 214 0.0002427 1e-6 328 214 0.00012139999 1e-6 331 214 0.0002081 1e-6 332 214 0.00015029999 1e-6 333 214 5.7999996e-06 1e-6 335 214 1.1599999e-05 1e-6 336 214 2.8899987e-05 1e-6 337 214 2.3099987e-05 1e-6 340 214 4.6199988e-05 1e-6 341 214 5.7999996e-06 1e-6 343 214 5.7999996e-06 1e-6 349 214 0.0099986978 1e-6 350 214 0.0044040978 1e-6 351 214 5.1999989e-05 1e-6 352 214 2.3099987e-05 1e-6 354 214 4.6199988e-05 1e-6 356 214 0.0014853999 1e-6 358 214 0.00076289987 1e-6 359 214 5.7999996e-06 1e-6 364 214 5.7999996e-06 1e-6 366 214 0.0010287999 1e-6 370 214 2.3099987e-05 1e-6 371 214 1.7299986e-05 1e-6 372 214 3.4699988e-05 1e-6 373 214 1.1599999e-05 1e-6 374 214 1.7299986e-05 1e-6 375 214 0.00059529999 1e-6 380 214 1.1599999e-05 1e-6 384 214 8.089999e-05 1e-6 386 214 5.7999996e-06 1e-6 387 214 6.359999e-05 1e-6 392 214 5.7999996e-06 1e-6 393 214 5.7999996e-06 1e-6 394 214 5.7999996e-06 1e-6 397 214 5.7999996e-06 1e-6 402 214 7.509999e-05 1e-6 404 214 1.7299986e-05 1e-6 408 214 1.1599999e-05 1e-6 414 214 0.0010346 1e-6 416 214 5.7999996e-06 1e-6 417 214 0.00015029999 1e-6 419 214 2.3099987e-05 1e-6 421 214 8.089999e-05 1e-6 422 214 7.509999e-05 1e-6 423 214 1.7299986e-05 1e-6 425 214 1.7299986e-05 1e-6 430 214 5.1999989e-05 1e-6 431 214 2.3099987e-05 1e-6 432 214 5.7999996e-06 1e-6 433 214 1.1599999e-05 1e-6 434 214 1.7299986e-05 1e-6 441 214 5.7999996e-06 1e-6 442 214 0.00013289999 1e-6 443 214 0.014957599 1e-6 444 214 0.00278 1e-6 445 214 0.011374298 1e-6 446 214 0.0048721991 1e-6 447 214 0.0071493983 1e-6 448 214 0.0033753 1e-6 449 214 1.7299986e-05 1e-6 450 214 0.0031382998 1e-6 452 214 0.023696396 1e-6 453 214 0.024459299 1e-6 454 214 0.0027279998 1e-6 455 214 0.022164799 1e-6 456 214 0.00061839982 1e-6 457 214 0.0034330999 1e-6 458 214 0.00071089994 1e-6 459 214 0.0013581999 1e-6 460 214 0.0014910998 1e-6 463 214 0.0194542 1e-6 464 214 0.0027973 1e-6 465 214 0.00071089994 1e-6 467 214 0.017697196 1e-6 468 214 0.008941099 1e-6 469 214 0.010102797 1e-6 470 214 0.0076001994 1e-6 471 214 0.0015604999 1e-6 472 214 5.7999996e-06 1e-6 473 214 0.0001676 1e-6 477 214 0.00043349992 1e-6 478 214 0.00068779988 1e-6 483 214 0.0011500998 1e-6 489 214 0.0015315998 1e-6 490 214 0.0025603999 1e-6 491 214 0.00087849982 1e-6 6 215 0.00011199999 1e-6 9 215 7.4699987e-05 1e-6 10 215 3.7299993e-05 1e-6 11 215 3.7299993e-05 1e-6 14 215 0.00033609988 1e-6 17 215 3.7299993e-05 1e-6 18 215 0.00014939999 1e-6 19 215 0.00056019984 1e-6 21 215 0.00093369978 1e-6 22 215 0.0020915999 1e-6 23 215 0.0058638975 1e-6 24 215 0.0077313967 1e-6 25 215 0.046799097 1e-6 60 215 0.0043698996 1e-6 72 215 0.00052289991 1e-6 82 215 0.0025397998 1e-6 84 215 3.7299993e-05 1e-6 98 215 7.4699987e-05 1e-6 102 215 0.0001867 1e-6 104 215 3.7299993e-05 1e-6 107 215 7.4699987e-05 1e-6 108 215 0.00014939999 1e-6 109 215 3.7299993e-05 1e-6 114 215 0.00011199999 1e-6 116 215 3.7299993e-05 1e-6 118 215 0.00011199999 1e-6 120 215 0.00029879995 1e-6 122 215 3.7299993e-05 1e-6 126 215 7.4699987e-05 1e-6 153 215 0.0029505999 1e-6 171 215 3.7299993e-05 1e-6 186 215 0.00014939999 1e-6 189 215 7.4699987e-05 1e-6 190 215 3.7299993e-05 1e-6 192 215 0.0015312999 1e-6 193 215 0.0090385973 1e-6 194 215 0.00011199999 1e-6 198 215 0.002353 1e-6 200 215 3.7299993e-05 1e-6 203 215 3.7299993e-05 1e-6 204 215 3.7299993e-05 1e-6 206 215 0.00037349993 1e-6 214 215 0.089452446 1e-6 215 215 0.13501894 1e-6 216 215 0.0024277 1e-6 217 215 0.0013446 1e-6 218 215 7.4699987e-05 1e-6 220 215 7.4699987e-05 1e-6 222 215 3.7299993e-05 1e-6 223 215 0.00029879995 1e-6 224 215 0.00022409999 1e-6 228 215 3.7299993e-05 1e-6 229 215 7.4699987e-05 1e-6 231 215 3.7299993e-05 1e-6 233 215 0.00014939999 1e-6 234 215 0.0051542968 1e-6 237 215 0.0001867 1e-6 240 215 3.7299993e-05 1e-6 241 215 0.0042578988 1e-6 251 215 3.7299993e-05 1e-6 252 215 0.00037349993 1e-6 267 215 0.00026139989 1e-6 272 215 0.00082169985 1e-6 273 215 3.7299993e-05 1e-6 277 215 0.0013818999 1e-6 278 215 0.00014939999 1e-6 282 215 7.4699987e-05 1e-6 284 215 3.7299993e-05 1e-6 285 215 0.00014939999 1e-6 286 215 3.7299993e-05 1e-6 287 215 0.00052289991 1e-6 288 215 0.00014939999 1e-6 289 215 0.0011951998 1e-6 290 215 0.00044819992 1e-6 294 215 7.4699987e-05 1e-6 295 215 3.7299993e-05 1e-6 300 215 0.0017553999 1e-6 301 215 0.0084036998 1e-6 312 215 3.7299993e-05 1e-6 324 215 0.0012698998 1e-6 325 215 3.7299993e-05 1e-6 326 215 3.7299993e-05 1e-6 340 215 3.7299993e-05 1e-6 349 215 0.0040710978 1e-6 350 215 0.0027264999 1e-6 351 215 3.7299993e-05 1e-6 354 215 3.7299993e-05 1e-6 356 215 0.0013818999 1e-6 358 215 0.00041079987 1e-6 366 215 7.4699987e-05 1e-6 370 215 3.7299993e-05 1e-6 371 215 3.7299993e-05 1e-6 375 215 7.4699987e-05 1e-6 384 215 7.4699987e-05 1e-6 387 215 7.4699987e-05 1e-6 402 215 3.7299993e-05 1e-6 414 215 0.00041079987 1e-6 417 215 0.00011199999 1e-6 421 215 7.4699987e-05 1e-6 422 215 0.00011199999 1e-6 430 215 3.7299993e-05 1e-6 434 215 3.7299993e-05 1e-6 443 215 0.023119397 1e-6 444 215 0.0017180999 1e-6 445 215 0.03664 1e-6 446 215 0.011727799 1e-6 447 215 0.0040337965 1e-6 448 215 0.00044819992 1e-6 450 215 0.0025770999 1e-6 452 215 0.024688099 1e-6 453 215 0.059087198 1e-6 454 215 0.0045192987 1e-6 455 215 0.023156799 1e-6 456 215 0.00026139989 1e-6 457 215 0.0010457998 1e-6 458 215 0.00085899979 1e-6 459 215 0.00048549986 1e-6 460 215 0.0015312999 1e-6 463 215 0.013819396 1e-6 464 215 0.0019047998 1e-6 465 215 0.00037349993 1e-6 467 215 0.010943498 1e-6 468 215 0.0056770965 1e-6 469 215 0.0045192987 1e-6 470 215 0.0046686977 1e-6 471 215 0.0011951998 1e-6 473 215 0.00011199999 1e-6 477 215 0.00022409999 1e-6 478 215 0.00056019984 1e-6 483 215 0.00082169985 1e-6 489 215 0.00093369978 1e-6 490 215 0.0070216991 1e-6 491 215 0.0022035998 1e-6 24 216 0.023255799 1e-6 60 216 0.007751897 1e-6 82 216 0.007751897 1e-6 153 216 0.007751897 1e-6 192 216 0.007751897 1e-6 193 216 0.015503898 1e-6 198 216 0.007751897 1e-6 214 216 0.13178289 1e-6 215 216 0.28682166 1e-6 216 216 0.007751897 1e-6 217 216 0.007751897 1e-6 300 216 0.007751897 1e-6 301 216 0.007751897 1e-6 350 216 0.007751897 1e-6 443 216 0.023255799 1e-6 444 216 0.007751897 1e-6 445 216 0.031007797 1e-6 446 216 0.007751897 1e-6 447 216 0.007751897 1e-6 452 216 0.007751897 1e-6 455 216 0.038759697 1e-6 463 216 0.038759697 1e-6 464 216 0.007751897 1e-6 467 216 0.015503898 1e-6 468 216 0.007751897 1e-6 469 216 0.007751897 1e-6 470 216 0.007751897 1e-6 3 217 0.0001661 1e-6 6 217 0.0037368999 1e-6 10 217 8.2999992e-05 1e-6 13 217 8.2999992e-05 1e-6 14 217 8.2999992e-05 1e-6 17 217 0.00033219997 1e-6 18 217 0.0001661 1e-6 19 217 0.00024909992 1e-6 20 217 0.00049829995 1e-6 21 217 0.0012455999 1e-6 22 217 0.0011625998 1e-6 23 217 0.0004151999 1e-6 24 217 0.0082211979 1e-6 25 217 0.0053977966 1e-6 60 217 0.00382 1e-6 82 217 0.00033219997 1e-6 98 217 0.0074737966 1e-6 102 217 0.00049829995 1e-6 104 217 0.0021590998 1e-6 107 217 0.0001661 1e-6 108 217 0.00024909992 1e-6 109 217 8.2999992e-05 1e-6 114 217 8.2999992e-05 1e-6 116 217 8.2999992e-05 1e-6 118 217 0.00066429982 1e-6 119 217 0.00033219997 1e-6 120 217 0.00058129989 1e-6 122 217 8.2999992e-05 1e-6 126 217 8.2999992e-05 1e-6 153 217 0.0001661 1e-6 159 217 0.0011625998 1e-6 160 217 0.0017438999 1e-6 186 217 0.00049829995 1e-6 189 217 8.2999992e-05 1e-6 192 217 0.0033216998 1e-6 193 217 0.0048164986 1e-6 194 217 8.2999992e-05 1e-6 198 217 0.0070585981 1e-6 204 217 0.00033219997 1e-6 206 217 0.00074739987 1e-6 214 217 0.20445108 1e-6 215 217 0.0047333986 1e-6 216 217 8.2999992e-05 1e-6 217 217 0.024414498 1e-6 218 217 0.0032386999 1e-6 223 217 0.0015777999 1e-6 224 217 0.0012455999 1e-6 228 217 0.00091349985 1e-6 229 217 8.2999992e-05 1e-6 230 217 0.0014948 1e-6 231 217 0.0015777999 1e-6 232 217 0.00066429982 1e-6 233 217 0.0008303998 1e-6 234 217 0.012622498 1e-6 237 217 0.0001661 1e-6 240 217 8.2999992e-05 1e-6 241 217 0.0076398998 1e-6 252 217 0.00033219997 1e-6 253 217 0.00074739987 1e-6 267 217 0.00049829995 1e-6 273 217 0.00091349985 1e-6 277 217 0.00066429982 1e-6 279 217 0.0001661 1e-6 285 217 0.00024909992 1e-6 286 217 0.00049829995 1e-6 287 217 0.0008303998 1e-6 288 217 0.0001661 1e-6 289 217 0.0010795998 1e-6 290 217 0.00049829995 1e-6 294 217 8.2999992e-05 1e-6 300 217 0.018435497 1e-6 301 217 0.0088024996 1e-6 314 217 0.00033219997 1e-6 315 217 0.00066429982 1e-6 324 217 0.0015777999 1e-6 325 217 8.2999992e-05 1e-6 326 217 0.0014948 1e-6 349 217 0.0013287 1e-6 350 217 0.0031555998 1e-6 356 217 0.0013287 1e-6 358 217 0.00033219997 1e-6 366 217 0.0001661 1e-6 375 217 8.2999992e-05 1e-6 387 217 8.2999992e-05 1e-6 414 217 0.0004151999 1e-6 417 217 8.2999992e-05 1e-6 421 217 0.0001661 1e-6 422 217 8.2999992e-05 1e-6 430 217 8.2999992e-05 1e-6 443 217 0.011792097 1e-6 444 217 0.0047333986 1e-6 445 217 0.012207299 1e-6 446 217 0.0048994981 1e-6 447 217 0.0064772964 1e-6 448 217 0.0001661 1e-6 450 217 0.0023251998 1e-6 452 217 0.0087194964 1e-6 453 217 0.0064772964 1e-6 454 217 0.0042351969 1e-6 455 217 0.030891899 1e-6 456 217 0.00033219997 1e-6 457 217 0.0085533969 1e-6 458 217 0.00058129989 1e-6 459 217 0.00066429982 1e-6 460 217 0.0014116999 1e-6 463 217 0.032137498 1e-6 464 217 0.0046503991 1e-6 465 217 0.0008303998 1e-6 467 217 0.025078896 1e-6 468 217 0.024746697 1e-6 469 217 0.0057298988 1e-6 470 217 0.0058129989 1e-6 471 217 0.0011625998 1e-6 473 217 8.2999992e-05 1e-6 477 217 0.00024909992 1e-6 478 217 0.00066429982 1e-6 483 217 0.0010795998 1e-6 489 217 0.00033219997 1e-6 490 217 0.014698599 1e-6 491 217 0.0017438999 1e-6 17 218 0.013446998 1e-6 22 218 0.0019679 1e-6 24 218 0.00098389992 1e-6 60 218 0.0052475967 1e-6 75 218 0.00032799994 1e-6 82 218 0.00032799994 1e-6 104 218 0.0013118999 1e-6 114 218 0.00032799994 1e-6 120 218 0.00032799994 1e-6 130 218 0.0013118999 1e-6 139 218 0.00032799994 1e-6 159 218 0.069858968 1e-6 160 218 0.075434566 1e-6 169 218 0.00032799994 1e-6 171 218 0.00032799994 1e-6 186 218 0.018694699 1e-6 192 218 0.00032799994 1e-6 193 218 0.015086897 1e-6 198 218 0.0085273981 1e-6 206 218 0.00098389992 1e-6 214 218 0.020662498 1e-6 218 218 0.1197114 1e-6 219 218 0.00032799994 1e-6 223 218 0.0016398998 1e-6 224 218 0.0032797998 1e-6 225 218 0.00098389992 1e-6 231 218 0.00032799994 1e-6 234 218 0.011151198 1e-6 240 218 0.00032799994 1e-6 241 218 0.00065599987 1e-6 252 218 0.00032799994 1e-6 267 218 0.00032799994 1e-6 272 218 0.00098389992 1e-6 277 218 0.00098389992 1e-6 279 218 0.00032799994 1e-6 284 218 0.00032799994 1e-6 287 218 0.00032799994 1e-6 300 218 0.0059035979 1e-6 301 218 0.0022957998 1e-6 322 218 0.00098389992 1e-6 324 218 0.0016398998 1e-6 326 218 0.00098389992 1e-6 347 218 0.00032799994 1e-6 350 218 0.0075434968 1e-6 356 218 0.00098389992 1e-6 358 218 0.00065599987 1e-6 414 218 0.00032799994 1e-6 417 218 0.00032799994 1e-6 421 218 0.00065599987 1e-6 443 218 0.0242703 1e-6 444 218 0.0042636991 1e-6 445 218 0.010495197 1e-6 446 218 0.0029517999 1e-6 447 218 0.015086897 1e-6 450 218 0.0026238 1e-6 452 218 0.0098392963 1e-6 453 218 0.011479199 1e-6 454 218 0.0045916997 1e-6 455 218 0.042308997 1e-6 457 218 0.0026238 1e-6 458 218 0.00065599987 1e-6 459 218 0.0081993975 1e-6 460 218 0.00065599987 1e-6 463 218 0.0121351 1e-6 464 218 0.00065599987 1e-6 465 218 0.00032799994 1e-6 467 218 0.010167297 1e-6 468 218 0.022958297 1e-6 469 218 0.0032797998 1e-6 470 218 0.0032797998 1e-6 471 218 0.0088553987 1e-6 477 218 0.00032799994 1e-6 478 218 0.00098389992 1e-6 483 218 0.00098389992 1e-6 489 218 0.00065599987 1e-6 490 218 0.011479199 1e-6 491 218 0.0091832988 1e-6 0 219 0.00031229993 1e-6 5 219 0.00010409999 1e-6 6 219 0.00031229993 1e-6 12 219 0.00041639991 1e-6 13 219 0.00010409999 1e-6 14 219 0.0070781969 1e-6 17 219 0.00031229993 1e-6 18 219 0.0002082 1e-6 21 219 0.0002082 1e-6 22 219 0.0002082 1e-6 23 219 0.00052049989 1e-6 24 219 0.0057249963 1e-6 60 219 0.0023941 1e-6 82 219 0.0087435991 1e-6 87 219 0.0002082 1e-6 90 219 0.0015613998 1e-6 104 219 0.0047881976 1e-6 107 219 0.00062449998 1e-6 108 219 0.00010409999 1e-6 114 219 0.00010409999 1e-6 118 219 0.0010408999 1e-6 119 219 0.0030185999 1e-6 120 219 0.00093679992 1e-6 126 219 0.00010409999 1e-6 130 219 0.0014572998 1e-6 131 219 0.00010409999 1e-6 142 219 0.00010409999 1e-6 149 219 0.00010409999 1e-6 159 219 0.00041639991 1e-6 160 219 0.00031229993 1e-6 161 219 0.00010409999 1e-6 169 219 0.00010409999 1e-6 187 219 0.0029145 1e-6 188 219 0.0002082 1e-6 191 219 0.00093679992 1e-6 192 219 0.00229 1e-6 193 219 0.0026022999 1e-6 194 219 0.0002082 1e-6 198 219 0.0087435991 1e-6 204 219 0.00031229993 1e-6 206 219 0.0002082 1e-6 208 219 0.00010409999 1e-6 214 219 0.16519195 1e-6 215 219 0.00093679992 1e-6 218 219 0.018736299 1e-6 219 219 0.0091599971 1e-6 222 219 0.00031229993 1e-6 223 219 0.0066617988 1e-6 224 219 0.060372598 1e-6 225 219 0.030498598 1e-6 227 219 0.00010409999 1e-6 228 219 0.00010409999 1e-6 229 219 0.0002082 1e-6 230 219 0.00010409999 1e-6 231 219 0.00031229993 1e-6 232 219 0.00010409999 1e-6 233 219 0.00052049989 1e-6 234 219 0.021026298 1e-6 237 219 0.00010409999 1e-6 240 219 0.0069740973 1e-6 241 219 0.0052044988 1e-6 243 219 0.00031229993 1e-6 252 219 0.00041639991 1e-6 273 219 0.0011449999 1e-6 277 219 0.00041639991 1e-6 279 219 0.0002082 1e-6 282 219 0.0002082 1e-6 284 219 0.00010409999 1e-6 285 219 0.00010409999 1e-6 287 219 0.0066617988 1e-6 288 219 0.00010409999 1e-6 290 219 0.00010409999 1e-6 300 219 0.0086394995 1e-6 301 219 0.026439097 1e-6 315 219 0.0002082 1e-6 317 219 0.00010409999 1e-6 319 219 0.00010409999 1e-6 322 219 0.00010409999 1e-6 324 219 0.00062449998 1e-6 326 219 0.0092640966 1e-6 337 219 0.00010409999 1e-6 340 219 0.0002082 1e-6 349 219 0.00010409999 1e-6 350 219 0.0031226999 1e-6 356 219 0.0012490998 1e-6 358 219 0.00052049989 1e-6 387 219 0.00010409999 1e-6 393 219 0.00010409999 1e-6 402 219 0.00010409999 1e-6 417 219 0.0002082 1e-6 421 219 0.0002082 1e-6 422 219 0.00010409999 1e-6 430 219 0.00010409999 1e-6 442 219 0.00010409999 1e-6 443 219 0.011866298 1e-6 444 219 0.00229 1e-6 445 219 0.012699097 1e-6 446 219 0.0028104999 1e-6 447 219 0.006245397 1e-6 448 219 0.00031229993 1e-6 450 219 0.0029145 1e-6 452 219 0.0063494965 1e-6 453 219 0.0029145 1e-6 454 219 0.00229 1e-6 455 219 0.031643599 1e-6 456 219 0.0002082 1e-6 457 219 0.0020817998 1e-6 458 219 0.00041639991 1e-6 459 219 0.00041639991 1e-6 460 219 0.0017694999 1e-6 463 219 0.046112198 1e-6 464 219 0.00093679992 1e-6 465 219 0.00083269994 1e-6 467 219 0.010825399 1e-6 468 219 0.050483998 1e-6 469 219 0.0059331991 1e-6 470 219 0.0065576993 1e-6 471 219 0.0010408999 1e-6 473 219 0.00010409999 1e-6 477 219 0.0002082 1e-6 478 219 0.00072859996 1e-6 483 219 0.0010408999 1e-6 490 219 0.0030185999 1e-6 491 219 0.00093679992 1e-6 18 220 0.00050529977 1e-6 21 220 0.00025269995 1e-6 22 220 0.0149065 1e-6 25 220 0.00025269995 1e-6 60 220 0.0058109984 1e-6 77 220 0.00025269995 1e-6 104 220 0.0017686 1e-6 108 220 0.00025269995 1e-6 114 220 0.00025269995 1e-6 126 220 0.00025269995 1e-6 171 220 0.0063162968 1e-6 189 220 0.00025269995 1e-6 190 220 0.00025269995 1e-6 192 220 0.0050530992 1e-6 193 220 0.00025269995 1e-6 194 220 0.00025269995 1e-6 198 220 0.0078321993 1e-6 200 220 0.00025269995 1e-6 203 220 0.00025269995 1e-6 206 220 0.00050529977 1e-6 214 220 0.044214197 1e-6 215 220 0.043708898 1e-6 220 220 0.016927697 1e-6 223 220 0.00025269995 1e-6 229 220 0.0096007995 1e-6 234 220 0.0073268972 1e-6 237 220 0.00050529977 1e-6 241 220 0.0098534971 1e-6 252 220 0.0010105998 1e-6 272 220 0.0015158998 1e-6 277 220 0.0027792 1e-6 282 220 0.00025269995 1e-6 284 220 0.00050529977 1e-6 287 220 0.00025269995 1e-6 292 220 0.0025264998 1e-6 301 220 0.032844897 1e-6 333 220 0.00025269995 1e-6 349 220 0.00025269995 1e-6 350 220 0.0078321993 1e-6 356 220 0.0012633 1e-6 358 220 0.0017686 1e-6 387 220 0.00025269995 1e-6 417 220 0.00050529977 1e-6 421 220 0.00050529977 1e-6 422 220 0.00025269995 1e-6 430 220 0.00025269995 1e-6 434 220 0.00025269995 1e-6 443 220 0.0149065 1e-6 444 220 0.00075799995 1e-6 445 220 0.0060636997 1e-6 446 220 0.0017686 1e-6 447 220 0.0012633 1e-6 450 220 0.0070742965 1e-6 452 220 0.017180398 1e-6 453 220 0.0078321993 1e-6 454 220 0.0010105998 1e-6 455 220 0.017685696 1e-6 456 220 0.00050529977 1e-6 457 220 0.0010105998 1e-6 459 220 0.00050529977 1e-6 460 220 0.015159197 1e-6 463 220 0.0083374977 1e-6 464 220 0.00075799995 1e-6 465 220 0.0012633 1e-6 467 220 0.017685696 1e-6 468 220 0.0020211998 1e-6 469 220 0.011116698 1e-6 470 220 0.012379996 1e-6 471 220 0.0020211998 1e-6 473 220 0.00025269995 1e-6 477 220 0.00025269995 1e-6 478 220 0.0022739 1e-6 483 220 0.0020211998 1e-6 489 220 0.0025264998 1e-6 490 220 0.0010105998 1e-6 491 220 0.00050529977 1e-6 13 221 0.0001981 1e-6 21 221 0.0001981 1e-6 22 221 0.0001981 1e-6 24 221 0.0025752999 1e-6 25 221 0.0001981 1e-6 60 221 0.0021790999 1e-6 108 221 0.0001981 1e-6 114 221 0.00039619999 1e-6 118 221 0.0001981 1e-6 119 221 0.0063390993 1e-6 120 221 0.00039619999 1e-6 126 221 0.0001981 1e-6 131 221 0.00039619999 1e-6 171 221 0.00039619999 1e-6 187 221 0.0011886 1e-6 192 221 0.0017829 1e-6 193 221 0.0001981 1e-6 194 221 0.0001981 1e-6 198 221 0.004754398 1e-6 206 221 0.00039619999 1e-6 214 221 0.29793978 1e-6 215 221 0.0035657999 1e-6 218 221 0.014659297 1e-6 221 221 0.00039619999 1e-6 222 221 0.011093497 1e-6 223 221 0.0031695999 1e-6 224 221 0.036846299 1e-6 225 221 0.0093105994 1e-6 230 221 0.0015848 1e-6 233 221 0.031893797 1e-6 234 221 0.034865297 1e-6 237 221 0.0001981 1e-6 240 221 0.0001981 1e-6 241 221 0.0013867 1e-6 252 221 0.00039619999 1e-6 276 221 0.0001981 1e-6 277 221 0.00099049998 1e-6 279 221 0.0001981 1e-6 284 221 0.0001981 1e-6 287 221 0.0001981 1e-6 292 221 0.0001981 1e-6 293 221 0.00039619999 1e-6 294 221 0.0001981 1e-6 300 221 0.0021790999 1e-6 301 221 0.010499198 1e-6 312 221 0.0001981 1e-6 315 221 0.00039619999 1e-6 324 221 0.00059429999 1e-6 326 221 0.0001981 1e-6 349 221 0.0001981 1e-6 350 221 0.0063390993 1e-6 356 221 0.0013867 1e-6 358 221 0.00079239998 1e-6 359 221 0.0001981 1e-6 361 221 0.0001981 1e-6 363 221 0.0001981 1e-6 372 221 0.0001981 1e-6 387 221 0.0001981 1e-6 392 221 0.0001981 1e-6 417 221 0.0001981 1e-6 419 221 0.0001981 1e-6 422 221 0.0001981 1e-6 443 221 0.014263097 1e-6 444 221 0.001981 1e-6 445 221 0.011093497 1e-6 446 221 0.0027733999 1e-6 447 221 0.010895398 1e-6 448 221 0.00059429999 1e-6 450 221 0.0029714999 1e-6 452 221 0.0063390993 1e-6 453 221 0.0015848 1e-6 454 221 0.00059429999 1e-6 455 221 0.043977797 1e-6 457 221 0.0011886 1e-6 458 221 0.0001981 1e-6 459 221 0.00059429999 1e-6 460 221 0.0013867 1e-6 463 221 0.015847899 1e-6 464 221 0.00059429999 1e-6 465 221 0.00059429999 1e-6 467 221 0.0089143999 1e-6 468 221 0.017036498 1e-6 469 221 0.006537199 1e-6 470 221 0.0073295981 1e-6 471 221 0.00079239998 1e-6 473 221 0.0001981 1e-6 477 221 0.0001981 1e-6 478 221 0.00099049998 1e-6 483 221 0.0011886 1e-6 490 221 0.00059429999 1e-6 491 221 0.00039619999 1e-6 23 222 0.051610097 1e-6 60 222 0.0039699972 1e-6 114 222 0.00044109998 1e-6 153 222 0.0066166967 1e-6 169 222 0.0066166967 1e-6 193 222 0.034406699 1e-6 198 222 0.0022055998 1e-6 206 222 0.00044109998 1e-6 214 222 0.00044109998 1e-6 223 222 0.00044109998 1e-6 234 222 0.16453457 1e-6 252 222 0.00044109998 1e-6 272 222 0.00088219997 1e-6 277 222 0.00044109998 1e-6 350 222 0.014556699 1e-6 358 222 0.00044109998 1e-6 443 222 0.0022055998 1e-6 444 222 0.00044109998 1e-6 445 222 0.0083810985 1e-6 446 222 0.0039699972 1e-6 447 222 0.016321097 1e-6 450 222 0.0022055998 1e-6 452 222 0.021173399 1e-6 453 222 0.022496697 1e-6 454 222 0.0017643999 1e-6 455 222 0.0410234 1e-6 457 222 0.0017643999 1e-6 459 222 0.029995598 1e-6 460 222 0.0013232999 1e-6 463 222 0.029113397 1e-6 464 222 0.00044109998 1e-6 467 222 0.0070577972 1e-6 468 222 0.037494499 1e-6 469 222 0.0026466998 1e-6 470 222 0.0022055998 1e-6 478 222 0.00044109998 1e-6 483 222 0.00088219997 1e-6 489 222 0.00044109998 1e-6 490 222 0.00044109998 1e-6 491 222 0.0013232999 1e-6 0 223 0.00043869996 1e-6 2 223 0.00035099988 1e-6 3 223 4.39e-05 1e-6 6 223 0.00026319991 1e-6 9 223 0.00048259995 1e-6 11 223 0.00030709989 1e-6 13 223 0.0089061968 1e-6 14 223 4.39e-05 1e-6 17 223 0.00035099988 1e-6 18 223 0.0002194 1e-6 19 223 0.0002194 1e-6 21 223 0.0064054988 1e-6 22 223 0.0019303998 1e-6 23 223 0.0025008 1e-6 24 223 0.022594698 1e-6 25 223 0.00065809977 1e-6 60 223 0.0034220999 1e-6 77 223 0.00074579986 1e-6 82 223 0.0083358996 1e-6 83 223 4.39e-05 1e-6 84 223 0.0001755 1e-6 88 223 0.0001755 1e-6 90 223 0.0001316 1e-6 97 223 4.39e-05 1e-6 98 223 0.00057039992 1e-6 102 223 0.0010090999 1e-6 104 223 0.0010090999 1e-6 107 223 0.00048259995 1e-6 108 223 4.39e-05 1e-6 113 223 8.7699998e-05 1e-6 114 223 0.0001755 1e-6 116 223 0.0001755 1e-6 117 223 0.0001755 1e-6 118 223 0.00061419979 1e-6 119 223 0.0046066977 1e-6 120 223 0.030755099 1e-6 122 223 0.00035099988 1e-6 125 223 4.39e-05 1e-6 126 223 8.7699998e-05 1e-6 130 223 0.00039489986 1e-6 131 223 0.0001316 1e-6 135 223 4.39e-05 1e-6 140 223 4.39e-05 1e-6 142 223 4.39e-05 1e-6 150 223 0.0001316 1e-6 151 223 4.39e-05 1e-6 159 223 0.0015355998 1e-6 160 223 0.0019742998 1e-6 171 223 0.0001755 1e-6 172 223 0.0001755 1e-6 186 223 0.00043869996 1e-6 187 223 0.00070199999 1e-6 189 223 8.7699998e-05 1e-6 190 223 4.39e-05 1e-6 191 223 4.39e-05 1e-6 192 223 0.00070199999 1e-6 193 223 0.011494797 1e-6 194 223 0.00026319991 1e-6 197 223 4.39e-05 1e-6 198 223 0.0165402 1e-6 200 223 4.39e-05 1e-6 203 223 4.39e-05 1e-6 204 223 0.00048259995 1e-6 206 223 0.00039489986 1e-6 207 223 4.39e-05 1e-6 214 223 0.12438029 1e-6 215 223 0.00039489986 1e-6 217 223 0.00030709989 1e-6 218 223 0.020795897 1e-6 219 223 8.7699998e-05 1e-6 220 223 0.00061419979 1e-6 222 223 0.00083359983 1e-6 223 223 0.018689897 1e-6 224 223 0.019084796 1e-6 225 223 0.0020181998 1e-6 228 223 0.00048259995 1e-6 229 223 0.0001755 1e-6 230 223 0.00039489986 1e-6 231 223 0.0048698969 1e-6 232 223 0.00083359983 1e-6 233 223 0.00083359983 1e-6 234 223 0.016496297 1e-6 237 223 0.0001316 1e-6 240 223 0.00030709989 1e-6 241 223 0.009081699 1e-6 252 223 0.00057039992 1e-6 253 223 0.00057039992 1e-6 254 223 0.0010090999 1e-6 267 223 8.7699998e-05 1e-6 270 223 8.7699998e-05 1e-6 273 223 0.00083359983 1e-6 274 223 4.39e-05 1e-6 277 223 0.0048698969 1e-6 278 223 4.39e-05 1e-6 282 223 0.00035099988 1e-6 283 223 8.7699998e-05 1e-6 284 223 0.0001755 1e-6 285 223 0.00035099988 1e-6 286 223 4.39e-05 1e-6 287 223 0.00052649993 1e-6 288 223 0.0001755 1e-6 289 223 0.0002194 1e-6 290 223 0.00057039992 1e-6 292 223 0.00026319991 1e-6 293 223 0.00061419979 1e-6 294 223 0.0001755 1e-6 295 223 0.0001755 1e-6 296 223 0.0001316 1e-6 297 223 4.39e-05 1e-6 298 223 4.39e-05 1e-6 299 223 4.39e-05 1e-6 300 223 0.0044750981 1e-6 301 223 0.012547698 1e-6 307 223 4.39e-05 1e-6 312 223 0.0001755 1e-6 314 223 0.0014477998 1e-6 315 223 0.00057039992 1e-6 319 223 4.39e-05 1e-6 322 223 0.0002194 1e-6 324 223 0.00087749981 1e-6 325 223 0.00026319991 1e-6 326 223 0.00057039992 1e-6 328 223 8.7699998e-05 1e-6 338 223 0.0002194 1e-6 340 223 0.00039489986 1e-6 349 223 0.00083359983 1e-6 350 223 0.002413 1e-6 351 223 4.39e-05 1e-6 354 223 8.7699998e-05 1e-6 355 223 4.39e-05 1e-6 356 223 0.0013161998 1e-6 358 223 0.00092129991 1e-6 366 223 8.7699998e-05 1e-6 370 223 0.0001316 1e-6 372 223 0.0002194 1e-6 373 223 0.00039489986 1e-6 374 223 0.0001316 1e-6 375 223 4.39e-05 1e-6 384 223 4.39e-05 1e-6 385 223 4.39e-05 1e-6 387 223 4.39e-05 1e-6 392 223 0.0001316 1e-6 393 223 8.7699998e-05 1e-6 402 223 8.7699998e-05 1e-6 414 223 8.7699998e-05 1e-6 417 223 0.0002194 1e-6 419 223 4.39e-05 1e-6 420 223 4.39e-05 1e-6 421 223 8.7699998e-05 1e-6 422 223 0.0002194 1e-6 423 223 4.39e-05 1e-6 425 223 4.39e-05 1e-6 430 223 4.39e-05 1e-6 431 223 8.7699998e-05 1e-6 433 223 4.39e-05 1e-6 434 223 4.39e-05 1e-6 442 223 4.39e-05 1e-6 443 223 0.013512898 1e-6 444 223 0.0021497998 1e-6 445 223 0.017066598 1e-6 446 223 0.0036414999 1e-6 447 223 0.0044311993 1e-6 448 223 0.00043869996 1e-6 450 223 0.0041678995 1e-6 452 223 0.0075899996 1e-6 453 223 0.0065370984 1e-6 454 223 0.0012722998 1e-6 455 223 0.035712697 1e-6 456 223 0.00035099988 1e-6 457 223 0.0055718981 1e-6 458 223 0.00048259995 1e-6 459 223 0.0028078998 1e-6 460 223 0.0015793999 1e-6 463 223 0.023428198 1e-6 464 223 0.00078969984 1e-6 465 223 0.0022813999 1e-6 467 223 0.023472097 1e-6 468 223 0.025753498 1e-6 469 223 0.0062299967 1e-6 470 223 0.0065370984 1e-6 471 223 0.0023691 1e-6 473 223 0.0001316 1e-6 477 223 0.0002194 1e-6 478 223 0.00078969984 1e-6 479 223 4.39e-05 1e-6 483 223 0.0011407 1e-6 489 223 0.00026319991 1e-6 490 223 0.0021058999 1e-6 491 223 0.0030711 1e-6 9 224 2.2099994e-05 1e-6 13 224 2.2099994e-05 1e-6 14 224 6.6199995e-05 1e-6 16 224 2.2099994e-05 1e-6 17 224 0.00013249999 1e-6 18 224 0.00017669999 1e-6 19 224 0.00037539983 1e-6 20 224 4.4199987e-05 1e-6 21 224 0.0014574998 1e-6 22 224 0.0032241 1e-6 23 224 0.0043502972 1e-6 24 224 0.00044169999 1e-6 25 224 0.0014574998 1e-6 60 224 0.0091864988 1e-6 79 224 2.2099994e-05 1e-6 82 224 0.00022079999 1e-6 83 224 2.2099994e-05 1e-6 84 224 2.2099994e-05 1e-6 88 224 2.2099994e-05 1e-6 98 224 0.0001104 1e-6 104 224 0.0001104 1e-6 107 224 6.6199995e-05 1e-6 108 224 2.2099994e-05 1e-6 113 224 6.6199995e-05 1e-6 114 224 0.00013249999 1e-6 118 224 0.0020758 1e-6 119 224 0.0026719999 1e-6 120 224 0.0001987 1e-6 126 224 8.8299988e-05 1e-6 127 224 2.2099994e-05 1e-6 130 224 0.00072869984 1e-6 131 224 4.4199987e-05 1e-6 140 224 0.00046369992 1e-6 149 224 2.2099994e-05 1e-6 150 224 0.0001987 1e-6 151 224 4.4199987e-05 1e-6 159 224 0.00024289999 1e-6 160 224 0.00033119996 1e-6 171 224 0.00081709982 1e-6 186 224 0.0014354 1e-6 187 224 0.0001104 1e-6 188 224 8.8299988e-05 1e-6 189 224 6.6199995e-05 1e-6 190 224 4.4199987e-05 1e-6 192 224 0.0071989968 1e-6 193 224 0.00090539991 1e-6 194 224 0.00013249999 1e-6 197 224 2.2099994e-05 1e-6 198 224 0.0083472989 1e-6 200 224 4.4199987e-05 1e-6 201 224 2.2099994e-05 1e-6 202 224 4.4199987e-05 1e-6 203 224 2.2099994e-05 1e-6 204 224 0.0001546 1e-6 206 224 0.00048579997 1e-6 207 224 2.2099994e-05 1e-6 208 224 2.2099994e-05 1e-6 214 224 0.30310929 1e-6 215 224 0.0022745 1e-6 217 224 6.6199995e-05 1e-6 218 224 0.0037319998 1e-6 219 224 4.4199987e-05 1e-6 222 224 0.0010821 1e-6 223 224 0.0061831996 1e-6 224 224 0.023164898 1e-6 225 224 0.0022745 1e-6 226 224 4.4199987e-05 1e-6 227 224 0.00026499992 1e-6 229 224 0.0025173998 1e-6 231 224 0.0014354 1e-6 233 224 0.0027162 1e-6 234 224 0.010555599 1e-6 237 224 8.8299988e-05 1e-6 239 224 4.4199987e-05 1e-6 240 224 0.00028709997 1e-6 241 224 0.022126999 1e-6 248 224 2.2099994e-05 1e-6 250 224 2.2099994e-05 1e-6 251 224 6.6199995e-05 1e-6 252 224 0.0011924999 1e-6 267 224 0.00035329978 1e-6 270 224 0.00046369992 1e-6 272 224 2.2099994e-05 1e-6 273 224 0.0001546 1e-6 274 224 2.2099994e-05 1e-6 276 224 2.2099994e-05 1e-6 277 224 0.0010599999 1e-6 282 224 6.6199995e-05 1e-6 285 224 0.00033119996 1e-6 286 224 4.4199987e-05 1e-6 287 224 0.0012365999 1e-6 288 224 0.00022079999 1e-6 289 224 0.0001546 1e-6 290 224 0.0010157998 1e-6 294 224 0.00013249999 1e-6 300 224 0.00068459986 1e-6 301 224 0.0045269988 1e-6 315 224 0.00017669999 1e-6 319 224 4.4199987e-05 1e-6 322 224 2.2099994e-05 1e-6 324 224 0.0013911999 1e-6 326 224 0.00017669999 1e-6 340 224 0.00083909999 1e-6 349 224 0.0028486999 1e-6 350 224 0.0021861999 1e-6 356 224 0.0010378999 1e-6 358 224 0.00070669991 1e-6 366 224 0.00017669999 1e-6 375 224 8.8299988e-05 1e-6 384 224 8.8299988e-05 1e-6 385 224 2.2099994e-05 1e-6 387 224 6.6199995e-05 1e-6 402 224 4.4199987e-05 1e-6 404 224 4.4199987e-05 1e-6 414 224 0.00081709982 1e-6 417 224 0.0001546 1e-6 419 224 2.2099994e-05 1e-6 421 224 4.4199987e-05 1e-6 422 224 6.6199995e-05 1e-6 423 224 2.2099994e-05 1e-6 425 224 2.2099994e-05 1e-6 430 224 2.2099994e-05 1e-6 431 224 2.2099994e-05 1e-6 433 224 2.2099994e-05 1e-6 434 224 2.2099994e-05 1e-6 442 224 4.4199987e-05 1e-6 443 224 0.0093630999 1e-6 444 224 0.0025615999 1e-6 445 224 0.0096501969 1e-6 446 224 0.0033344999 1e-6 447 224 0.012189697 1e-6 448 224 0.00033119996 1e-6 450 224 0.0038645 1e-6 452 224 0.016098399 1e-6 453 224 0.0083914995 1e-6 454 224 0.0022304 1e-6 455 224 0.031843498 1e-6 456 224 0.00035329978 1e-6 457 224 0.0038423999 1e-6 458 224 0.00046369992 1e-6 459 224 0.0014795999 1e-6 460 224 0.0015678999 1e-6 463 224 0.016716696 1e-6 464 224 0.0023628999 1e-6 465 224 0.0036436999 1e-6 467 224 0.014132999 1e-6 468 224 0.021354098 1e-6 469 224 0.0075302981 1e-6 470 224 0.0070002973 1e-6 471 224 0.0024291 1e-6 473 224 0.00013249999 1e-6 477 224 0.0010157998 1e-6 478 224 0.00059619988 1e-6 479 224 2.2099994e-05 1e-6 483 224 0.00081709982 1e-6 489 224 0.00064039999 1e-6 490 224 0.0010599999 1e-6 491 224 0.0018107998 1e-6 18 225 0.00022819999 1e-6 19 225 0.00038039987 1e-6 20 225 7.6099997e-05 1e-6 21 225 0.0012933 1e-6 22 225 0.0017496999 1e-6 23 225 0.007531397 1e-6 24 225 0.00038039987 1e-6 25 225 0.0016735999 1e-6 60 225 0.0059337988 1e-6 82 225 7.6099997e-05 1e-6 98 225 0.00015209999 1e-6 104 225 7.6099997e-05 1e-6 107 225 7.6099997e-05 1e-6 108 225 7.6099997e-05 1e-6 114 225 0.00015209999 1e-6 118 225 0.00015209999 1e-6 119 225 0.0021300998 1e-6 120 225 7.6099997e-05 1e-6 126 225 7.6099997e-05 1e-6 130 225 0.00022819999 1e-6 140 225 0.0015975998 1e-6 150 225 7.6099997e-05 1e-6 171 225 7.6099997e-05 1e-6 186 225 0.00045639998 1e-6 187 225 7.6099997e-05 1e-6 189 225 7.6099997e-05 1e-6 192 225 0.0058576986 1e-6 193 225 0.00015209999 1e-6 198 225 0.0072270967 1e-6 206 225 0.00022819999 1e-6 214 225 0.31243819 1e-6 215 225 0.0055533983 1e-6 217 225 7.6099997e-05 1e-6 218 225 0.0074552968 1e-6 222 225 0.019018598 1e-6 223 225 0.0025864998 1e-6 224 225 0.0024343999 1e-6 225 225 0.0067705996 1e-6 229 225 0.011106897 1e-6 231 225 0.0064662993 1e-6 233 225 0.0031951 1e-6 234 225 0.013084799 1e-6 239 225 7.6099997e-05 1e-6 240 225 0.00030429987 1e-6 241 225 0.0031951 1e-6 251 225 7.6099997e-05 1e-6 252 225 0.00030429987 1e-6 267 225 0.00022819999 1e-6 272 225 0.00045639998 1e-6 273 225 7.6099997e-05 1e-6 277 225 0.0013692998 1e-6 282 225 7.6099997e-05 1e-6 285 225 0.00038039987 1e-6 286 225 7.6099997e-05 1e-6 287 225 0.0012933 1e-6 288 225 0.00022819999 1e-6 290 225 0.0058576986 1e-6 294 225 0.00015209999 1e-6 300 225 0.00015209999 1e-6 301 225 0.00098899985 1e-6 315 225 7.6099997e-05 1e-6 324 225 0.00091289985 1e-6 340 225 0.00030429987 1e-6 349 225 0.0050969981 1e-6 350 225 0.0034993999 1e-6 356 225 0.0011411 1e-6 358 225 0.00060859998 1e-6 366 225 0.00022819999 1e-6 375 225 7.6099997e-05 1e-6 387 225 7.6099997e-05 1e-6 402 225 7.6099997e-05 1e-6 414 225 0.00030429987 1e-6 417 225 7.6099997e-05 1e-6 421 225 0.00015209999 1e-6 443 225 0.011182997 1e-6 444 225 0.0034993999 1e-6 445 225 0.0089006983 1e-6 446 225 0.0031951 1e-6 447 225 0.0058576986 1e-6 448 225 0.00076069986 1e-6 450 225 0.0020539998 1e-6 452 225 0.014986698 1e-6 453 225 0.012095898 1e-6 454 225 0.0019778998 1e-6 455 225 0.029212598 1e-6 456 225 7.6099997e-05 1e-6 457 225 0.0038037 1e-6 458 225 0.00060859998 1e-6 459 225 0.0012172 1e-6 460 225 0.0014453998 1e-6 463 225 0.015367098 1e-6 464 225 0.0012172 1e-6 465 225 0.0041840971 1e-6 467 225 0.0095853992 1e-6 468 225 0.018105697 1e-6 469 225 0.0050969981 1e-6 470 225 0.0047926977 1e-6 471 225 0.0025864998 1e-6 473 225 7.6099997e-05 1e-6 477 225 0.00030429987 1e-6 478 225 0.00053249998 1e-6 483 225 0.00076069986 1e-6 489 225 0.00053249998 1e-6 490 225 0.0012172 1e-6 491 225 0.0026625998 1e-6 18 226 0.00014969999 1e-6 22 226 0.019760497 1e-6 60 226 0.0094310977 1e-6 114 226 0.00014969999 1e-6 118 226 0.00029939995 1e-6 126 226 0.00014969999 1e-6 130 226 0.0017963999 1e-6 132 226 0.012425099 1e-6 150 226 0.00014969999 1e-6 186 226 0.13757485 1e-6 190 226 0.00014969999 1e-6 192 226 0.00014969999 1e-6 198 226 0.011526898 1e-6 206 226 0.00089819985 1e-6 214 226 0.21347308 1e-6 215 226 0.00029939995 1e-6 223 226 0.017664697 1e-6 224 226 0.010628697 1e-6 226 226 0.00089819985 1e-6 227 226 0.0055388995 1e-6 231 226 0.0025448999 1e-6 234 226 0.002994 1e-6 241 226 0.013622798 1e-6 252 226 0.00029939995 1e-6 277 226 0.0011975998 1e-6 324 226 0.0013472999 1e-6 349 226 0.008981999 1e-6 350 226 0.00014969999 1e-6 356 226 0.0010478999 1e-6 358 226 0.001497 1e-6 384 226 0.00014969999 1e-6 414 226 0.0032933999 1e-6 417 226 0.0005987999 1e-6 443 226 0.030987997 1e-6 444 226 0.00029939995 1e-6 445 226 0.012125697 1e-6 446 226 0.0041915998 1e-6 447 226 0.0010478999 1e-6 450 226 0.0031436998 1e-6 452 226 0.010329299 1e-6 453 226 0.0077843964 1e-6 454 226 0.0028442999 1e-6 455 226 0.024401199 1e-6 457 226 0.0043412969 1e-6 458 226 0.0005987999 1e-6 459 226 0.001497 1e-6 460 226 0.0017963999 1e-6 463 226 0.0074849986 1e-6 464 226 0.00029939995 1e-6 465 226 0.0007485 1e-6 467 226 0.011826299 1e-6 468 226 0.0035927999 1e-6 469 226 0.0043412969 1e-6 470 226 0.004041899 1e-6 471 226 0.00029939995 1e-6 473 226 0.00014969999 1e-6 477 226 0.00014969999 1e-6 478 226 0.0011975998 1e-6 483 226 0.0007485 1e-6 489 226 0.0011975998 1e-6 490 226 0.00044909981 1e-6 491 226 0.0010478999 1e-6 2 227 0.00010149999 1e-6 4 227 0.00087939994 1e-6 9 227 3.3799995e-05 1e-6 18 227 0.00016909999 1e-6 22 227 0.0043630973 1e-6 25 227 0.00016909999 1e-6 60 227 0.0095717981 1e-6 82 227 3.3799995e-05 1e-6 83 227 3.3799995e-05 1e-6 84 227 3.3799995e-05 1e-6 104 227 3.3799995e-05 1e-6 108 227 3.3799995e-05 1e-6 113 227 6.7599991e-05 1e-6 114 227 0.00010149999 1e-6 118 227 0.0010485 1e-6 119 227 0.00016909999 1e-6 126 227 6.7599991e-05 1e-6 127 227 3.3799995e-05 1e-6 130 227 0.0024351999 1e-6 131 227 3.3799995e-05 1e-6 132 227 0.0013867 1e-6 143 227 0.0001353 1e-6 150 227 0.0004735 1e-6 151 227 3.3799995e-05 1e-6 171 227 0.0001353 1e-6 186 227 0.0088953972 1e-6 189 227 3.3799995e-05 1e-6 190 227 0.00010149999 1e-6 192 227 0.00010149999 1e-6 194 227 0.00010149999 1e-6 198 227 0.013224598 1e-6 200 227 6.7599991e-05 1e-6 203 227 3.3799995e-05 1e-6 204 227 3.3799995e-05 1e-6 206 227 0.00040589995 1e-6 207 227 3.3799995e-05 1e-6 214 227 0.26828104 1e-6 215 227 0.0016572999 1e-6 223 227 0.0052086972 1e-6 224 227 0.0383549 1e-6 225 227 0.00010149999 1e-6 226 227 0.0040248968 1e-6 227 227 0.029188897 1e-6 231 227 0.0015896999 1e-6 234 227 0.0046674982 1e-6 237 227 6.7599991e-05 1e-6 240 227 0.00010149999 1e-6 241 227 0.013123199 1e-6 248 227 3.3799995e-05 1e-6 252 227 0.00030439999 1e-6 277 227 3.3799995e-05 1e-6 284 227 3.3799995e-05 1e-6 315 227 6.7599991e-05 1e-6 322 227 3.3799995e-05 1e-6 324 227 0.00071029994 1e-6 326 227 6.7599991e-05 1e-6 340 227 6.7599991e-05 1e-6 345 227 0.00010149999 1e-6 349 227 0.0080835968 1e-6 350 227 3.3799995e-05 1e-6 356 227 0.0010146999 1e-6 358 227 0.0013867 1e-6 384 227 0.00010149999 1e-6 387 227 3.3799995e-05 1e-6 392 227 3.3799995e-05 1e-6 414 227 6.7599991e-05 1e-6 417 227 0.00033819978 1e-6 419 227 3.3799995e-05 1e-6 421 227 6.7599991e-05 1e-6 422 227 6.7599991e-05 1e-6 423 227 3.3799995e-05 1e-6 425 227 3.3799995e-05 1e-6 430 227 3.3799995e-05 1e-6 431 227 3.3799995e-05 1e-6 433 227 3.3799995e-05 1e-6 434 227 3.3799995e-05 1e-6 443 227 0.0065953992 1e-6 444 227 0.00020289999 1e-6 445 227 0.0069335997 1e-6 446 227 0.0023337998 1e-6 447 227 0.0011499999 1e-6 448 227 3.3799995e-05 1e-6 450 227 0.0039910972 1e-6 452 227 0.0126158 1e-6 453 227 0.0044645965 1e-6 454 227 0.0021307999 1e-6 455 227 0.021714099 1e-6 456 227 0.0002368 1e-6 457 227 0.0039571971 1e-6 458 227 0.00037199981 1e-6 459 227 0.0016911 1e-6 460 227 0.0015219999 1e-6 463 227 0.012480598 1e-6 464 227 0.0002368 1e-6 465 227 0.00064259977 1e-6 467 227 0.0097408965 1e-6 468 227 0.010112997 1e-6 469 227 0.0067644976 1e-6 470 227 0.0042616986 1e-6 471 227 0.0004735 1e-6 473 227 0.00010149999 1e-6 477 227 0.0002368 1e-6 478 227 0.00087939994 1e-6 483 227 0.00030439999 1e-6 489 227 0.00060879998 1e-6 490 227 0.00037199981 1e-6 491 227 0.00094699999 1e-6 0 228 0.00020699999 1e-6 5 228 1.2899999e-05 1e-6 6 228 0.0013325999 1e-6 9 228 7.7599994e-05 1e-6 10 228 1.2899999e-05 1e-6 13 228 0.00032349979 1e-6 14 228 1.2899999e-05 1e-6 16 228 3.879999e-05 1e-6 17 228 0.0001811 1e-6 18 228 0.0001164 1e-6 19 228 3.879999e-05 1e-6 21 228 0.0001294 1e-6 22 228 0.00032349979 1e-6 23 228 3.879999e-05 1e-6 24 228 6.4699998e-05 1e-6 25 228 0.00016819999 1e-6 60 228 0.0092896968 1e-6 79 228 2.5899993e-05 1e-6 82 228 0.0022123998 1e-6 83 228 7.7599994e-05 1e-6 84 228 7.7599994e-05 1e-6 85 228 0.00051749987 1e-6 88 228 0.00020699999 1e-6 90 228 5.1799987e-05 1e-6 98 228 6.4699998e-05 1e-6 102 228 0.0029628999 1e-6 104 228 0.0014231999 1e-6 107 228 0.0011514998 1e-6 108 228 0.00016819999 1e-6 109 228 1.2899999e-05 1e-6 110 228 0.00014229999 1e-6 113 228 0.00019409999 1e-6 114 228 0.0004916999 1e-6 115 228 1.2899999e-05 1e-6 116 228 0.00037519983 1e-6 117 228 2.5899993e-05 1e-6 118 228 9.0599991e-05 1e-6 119 228 2.5899993e-05 1e-6 120 228 0.0016949 1e-6 125 228 0.00055629993 1e-6 126 228 0.00020699999 1e-6 127 228 3.879999e-05 1e-6 130 228 9.0599991e-05 1e-6 131 228 7.7599994e-05 1e-6 133 228 1.2899999e-05 1e-6 135 228 1.2899999e-05 1e-6 138 228 5.1799987e-05 1e-6 139 228 2.5899993e-05 1e-6 142 228 3.879999e-05 1e-6 149 228 1.2899999e-05 1e-6 150 228 0.00019409999 1e-6 151 228 6.4699998e-05 1e-6 158 228 1.2899999e-05 1e-6 159 228 1.2899999e-05 1e-6 160 228 1.2899999e-05 1e-6 165 228 2.5899993e-05 1e-6 170 228 1.2899999e-05 1e-6 171 228 1.2899999e-05 1e-6 186 228 3.879999e-05 1e-6 187 228 9.0599991e-05 1e-6 188 228 1.2899999e-05 1e-6 189 228 0.00010349999 1e-6 190 228 5.1799987e-05 1e-6 192 228 0.0056151971 1e-6 193 228 0.0025487999 1e-6 194 228 0.00010349999 1e-6 196 228 1.2899999e-05 1e-6 197 228 3.879999e-05 1e-6 198 228 0.013818096 1e-6 200 228 7.7599994e-05 1e-6 201 228 7.7599994e-05 1e-6 203 228 7.7599994e-05 1e-6 204 228 0.0015137999 1e-6 206 228 0.00097039994 1e-6 207 228 6.4699998e-05 1e-6 209 228 1.2899999e-05 1e-6 214 228 0.039177097 1e-6 215 228 7.7599994e-05 1e-6 217 228 0.0019407 1e-6 222 228 1.2899999e-05 1e-6 223 228 0.0053046979 1e-6 224 228 0.00016819999 1e-6 228 228 0.058778599 1e-6 229 228 0.00080219982 1e-6 230 228 1.2899999e-05 1e-6 231 228 0.0001164 1e-6 232 228 0.00071159983 1e-6 233 228 5.1799987e-05 1e-6 234 228 0.0033380999 1e-6 237 228 0.0001294 1e-6 240 228 0.00014229999 1e-6 241 228 0.024893299 1e-6 242 228 1.2899999e-05 1e-6 248 228 6.4699998e-05 1e-6 250 228 5.1799987e-05 1e-6 251 228 1.2899999e-05 1e-6 252 228 0.00032349979 1e-6 253 228 0.016548097 1e-6 263 228 1.2899999e-05 1e-6 267 228 2.5899993e-05 1e-6 271 228 2.5899993e-05 1e-6 272 228 7.7599994e-05 1e-6 273 228 1.2899999e-05 1e-6 277 228 0.00021999999 1e-6 282 228 1.2899999e-05 1e-6 285 228 3.879999e-05 1e-6 286 228 6.4699998e-05 1e-6 287 228 0.0001294 1e-6 288 228 2.5899993e-05 1e-6 290 228 0.00054339995 1e-6 293 228 0.00020699999 1e-6 294 228 0.00024579978 1e-6 296 228 1.2899999e-05 1e-6 300 228 0.0056927986 1e-6 301 228 0.00067279977 1e-6 312 228 0.00010349999 1e-6 314 228 0.0026781999 1e-6 315 228 7.7599994e-05 1e-6 317 228 1.2899999e-05 1e-6 319 228 3.879999e-05 1e-6 320 228 2.5899993e-05 1e-6 321 228 5.1799987e-05 1e-6 324 228 3.879999e-05 1e-6 325 228 0.00075039989 1e-6 326 228 0.0018113998 1e-6 340 228 3.879999e-05 1e-6 349 228 0.00019409999 1e-6 350 228 0.00075039989 1e-6 354 228 3.879999e-05 1e-6 356 228 0.00014229999 1e-6 358 228 0.00036229985 1e-6 366 228 2.5899993e-05 1e-6 372 228 1.2899999e-05 1e-6 375 228 2.5899993e-05 1e-6 380 228 3.879999e-05 1e-6 384 228 6.4699998e-05 1e-6 387 228 0.00019409999 1e-6 391 228 3.879999e-05 1e-6 393 228 6.4699998e-05 1e-6 394 228 1.2899999e-05 1e-6 396 228 3.879999e-05 1e-6 397 228 1.2899999e-05 1e-6 402 228 3.879999e-05 1e-6 414 228 0.00016819999 1e-6 416 228 0.0016689999 1e-6 417 228 0.0001811 1e-6 419 228 3.879999e-05 1e-6 421 228 2.5899993e-05 1e-6 422 228 0.00015529999 1e-6 423 228 5.1799987e-05 1e-6 425 228 3.879999e-05 1e-6 430 228 0.0001164 1e-6 431 228 3.879999e-05 1e-6 432 228 1.2899999e-05 1e-6 433 228 3.879999e-05 1e-6 434 228 5.1799987e-05 1e-6 438 228 1.2899999e-05 1e-6 442 228 1.2899999e-05 1e-6 443 228 0.0034544999 1e-6 444 228 0.0014231999 1e-6 445 228 0.0054340996 1e-6 446 228 0.00080219982 1e-6 447 228 0.0030663998 1e-6 448 228 3.879999e-05 1e-6 449 228 3.879999e-05 1e-6 450 228 0.0056410991 1e-6 452 228 0.0049941987 1e-6 453 228 0.0017336998 1e-6 454 228 0.0012549998 1e-6 455 228 0.023469999 1e-6 456 228 0.0017207998 1e-6 457 228 0.0041013993 1e-6 458 228 0.0010091998 1e-6 459 228 0.0022123998 1e-6 460 228 0.001462 1e-6 463 228 0.026730496 1e-6 464 228 0.0015137999 1e-6 465 228 0.0081381984 1e-6 467 228 0.0363307 1e-6 468 228 0.099805892 1e-6 469 228 0.022486698 1e-6 470 228 0.023172498 1e-6 471 228 0.0022382999 1e-6 472 228 0.00024579978 1e-6 473 228 0.00050459988 1e-6 477 228 0.0023806 1e-6 478 228 0.0038426998 1e-6 479 228 1.2899999e-05 1e-6 483 228 0.0020183998 1e-6 489 228 0.00014229999 1e-6 490 228 0.0082028992 1e-6 491 228 0.0014878998 1e-6 3 229 0.0001026 1e-6 6 229 0.00017089999 1e-6 9 229 3.4199998e-05 1e-6 13 229 6.8399997e-05 1e-6 14 229 3.4199998e-05 1e-6 17 229 0.0001026 1e-6 18 229 0.00078629982 1e-6 19 229 3.4199998e-05 1e-6 21 229 0.00027349987 1e-6 22 229 0.00047859992 1e-6 23 229 0.0001026 1e-6 24 229 0.00044439989 1e-6 25 229 0.00017089999 1e-6 60 229 0.0020853998 1e-6 82 229 0.00017089999 1e-6 83 229 3.4199998e-05 1e-6 84 229 3.4199998e-05 1e-6 104 229 0.0003076999 1e-6 107 229 0.00068369997 1e-6 108 229 3.4199998e-05 1e-6 113 229 6.8399997e-05 1e-6 114 229 0.0001026 1e-6 117 229 6.8399997e-05 1e-6 118 229 0.00051279995 1e-6 119 229 0.0069398992 1e-6 120 229 0.017640397 1e-6 122 229 0.00017089999 1e-6 126 229 3.4199998e-05 1e-6 130 229 0.00071789999 1e-6 131 229 3.4199998e-05 1e-6 132 229 0.0001026 1e-6 137 229 6.8399997e-05 1e-6 138 229 3.4199998e-05 1e-6 139 229 3.4199998e-05 1e-6 142 229 6.8399997e-05 1e-6 143 229 0.00023929999 1e-6 149 229 6.8399997e-05 1e-6 151 229 0.00051279995 1e-6 152 229 3.4199998e-05 1e-6 157 229 3.4199998e-05 1e-6 158 229 6.8399997e-05 1e-6 160 229 6.8399997e-05 1e-6 186 229 3.4199998e-05 1e-6 187 229 3.4199998e-05 1e-6 189 229 6.8399997e-05 1e-6 190 229 3.4199998e-05 1e-6 192 229 0.0031794 1e-6 193 229 0.005914297 1e-6 194 229 0.0001026 1e-6 197 229 3.4199998e-05 1e-6 198 229 0.036067098 1e-6 200 229 3.4199998e-05 1e-6 202 229 0.00085469987 1e-6 203 229 6.8399997e-05 1e-6 204 229 0.0076236986 1e-6 206 229 0.00034189993 1e-6 207 229 3.4199998e-05 1e-6 214 229 0.10997909 1e-6 215 229 0.00013669999 1e-6 218 229 0.0010255999 1e-6 223 229 0.0044100992 1e-6 224 229 0.0018461 1e-6 228 229 0.00013669999 1e-6 229 229 0.0029400999 1e-6 230 229 0.00095719984 1e-6 231 229 0.039656799 1e-6 232 229 0.015110597 1e-6 233 229 0.00051279995 1e-6 234 229 0.0049912967 1e-6 237 229 6.8399997e-05 1e-6 240 229 6.8399997e-05 1e-6 241 229 0.057092097 1e-6 252 229 0.00068369997 1e-6 253 229 0.0031452 1e-6 260 229 6.8399997e-05 1e-6 261 229 3.4199998e-05 1e-6 267 229 3.4199998e-05 1e-6 270 229 0.0021537999 1e-6 273 229 3.4199998e-05 1e-6 277 229 0.00013669999 1e-6 285 229 3.4199998e-05 1e-6 287 229 0.00017089999 1e-6 288 229 3.4199998e-05 1e-6 289 229 0.00027349987 1e-6 290 229 0.0001026 1e-6 294 229 3.4199998e-05 1e-6 300 229 0.014392696 1e-6 301 229 0.0030083999 1e-6 314 229 0.0006153998 1e-6 315 229 0.00047859992 1e-6 316 229 0.00027349987 1e-6 324 229 0.0008888999 1e-6 325 229 0.0030767999 1e-6 326 229 0.00034189993 1e-6 349 229 0.00020509999 1e-6 350 229 0.0017434999 1e-6 356 229 0.00017089999 1e-6 358 229 0.0003076999 1e-6 366 229 3.4199998e-05 1e-6 384 229 3.4199998e-05 1e-6 387 229 3.4199998e-05 1e-6 402 229 3.4199998e-05 1e-6 404 229 6.8399997e-05 1e-6 414 229 0.00054699997 1e-6 417 229 0.0001026 1e-6 422 229 0.0001026 1e-6 423 229 3.4199998e-05 1e-6 425 229 0.00037609995 1e-6 426 229 0.00027349987 1e-6 428 229 0.00058119977 1e-6 430 229 3.4199998e-05 1e-6 431 229 0.00085469987 1e-6 433 229 3.4199998e-05 1e-6 434 229 3.4199998e-05 1e-6 443 229 0.0116577 1e-6 444 229 0.0035895999 1e-6 445 229 0.0094697997 1e-6 446 229 0.0030767999 1e-6 447 229 0.0133329 1e-6 448 229 3.4199998e-05 1e-6 450 229 0.0026323998 1e-6 452 229 0.0038973 1e-6 453 229 0.0030083999 1e-6 454 229 0.002017 1e-6 455 229 0.034460399 1e-6 456 229 0.00020509999 1e-6 457 229 0.0024614998 1e-6 458 229 0.00034189993 1e-6 459 229 0.0006153998 1e-6 460 229 0.0014699998 1e-6 463 229 0.026460599 1e-6 464 229 0.0031109999 1e-6 465 229 0.0047519989 1e-6 467 229 0.011623498 1e-6 468 229 0.12539738 1e-6 469 229 0.0088201985 1e-6 470 229 0.004717797 1e-6 471 229 0.00064959982 1e-6 472 229 3.4199998e-05 1e-6 473 229 0.0001026 1e-6 477 229 0.0011282 1e-6 478 229 0.00041019986 1e-6 483 229 0.0016067999 1e-6 489 229 0.00013669999 1e-6 490 229 0.0017776999 1e-6 491 229 0.00037609995 1e-6 3 230 0.0021062 1e-6 5 230 0.00073999981 1e-6 6 230 0.0059201978 1e-6 9 230 5.6899997e-05 1e-6 11 230 5.6899997e-05 1e-6 13 230 5.6899997e-05 1e-6 18 230 0.00017079999 1e-6 19 230 5.6899997e-05 1e-6 21 230 0.00017079999 1e-6 22 230 0.00022769999 1e-6 23 230 5.6899997e-05 1e-6 24 230 0.0052370988 1e-6 25 230 0.00028459984 1e-6 60 230 0.0015369998 1e-6 82 230 0.00011379999 1e-6 83 230 5.6899997e-05 1e-6 84 230 5.6899997e-05 1e-6 85 230 5.6899997e-05 1e-6 98 230 5.6899997e-05 1e-6 102 230 0.00022769999 1e-6 104 230 0.00022769999 1e-6 107 230 0.00011379999 1e-6 108 230 5.6899997e-05 1e-6 113 230 0.00011379999 1e-6 114 230 0.00017079999 1e-6 118 230 0.00017079999 1e-6 119 230 0.0017646998 1e-6 120 230 0.0025615999 1e-6 122 230 0.00022769999 1e-6 125 230 5.6899997e-05 1e-6 126 230 5.6899997e-05 1e-6 130 230 0.0009676998 1e-6 132 230 0.00011379999 1e-6 137 230 5.6899997e-05 1e-6 138 230 5.6899997e-05 1e-6 139 230 5.6899997e-05 1e-6 142 230 0.00017079999 1e-6 149 230 5.6899997e-05 1e-6 151 230 5.6899997e-05 1e-6 152 230 5.6899997e-05 1e-6 157 230 5.6899997e-05 1e-6 160 230 0.0011384999 1e-6 186 230 0.00011379999 1e-6 187 230 0.0010245999 1e-6 189 230 5.6899997e-05 1e-6 190 230 5.6899997e-05 1e-6 191 230 5.6899997e-05 1e-6 192 230 0.004440099 1e-6 193 230 0.0019353998 1e-6 194 230 0.00011379999 1e-6 198 230 0.023282297 1e-6 200 230 5.6899997e-05 1e-6 202 230 0.00011379999 1e-6 203 230 5.6899997e-05 1e-6 204 230 0.0042693987 1e-6 206 230 0.00022769999 1e-6 207 230 5.6899997e-05 1e-6 214 230 0.080890298 1e-6 215 230 0.00028459984 1e-6 217 230 5.6899997e-05 1e-6 218 230 0.00022769999 1e-6 223 230 0.010815699 1e-6 224 230 0.0048954971 1e-6 226 230 5.6899997e-05 1e-6 227 230 5.6899997e-05 1e-6 228 230 0.00028459984 1e-6 229 230 0.00051229983 1e-6 230 230 0.020720698 1e-6 231 230 0.019126799 1e-6 232 230 0.0085956976 1e-6 233 230 0.0086525977 1e-6 234 230 0.0055216998 1e-6 237 230 0.00011379999 1e-6 240 230 5.6899997e-05 1e-6 241 230 0.060226597 1e-6 242 230 0.00011379999 1e-6 252 230 0.00039849989 1e-6 253 230 0.0078555979 1e-6 270 230 0.00022769999 1e-6 277 230 0.00056919991 1e-6 282 230 0.00017079999 1e-6 285 230 5.6899997e-05 1e-6 287 230 0.00011379999 1e-6 290 230 0.00011379999 1e-6 293 230 5.6899997e-05 1e-6 294 230 5.6899997e-05 1e-6 295 230 0.00017079999 1e-6 296 230 0.00011379999 1e-6 300 230 0.06330049 1e-6 301 230 0.0033586 1e-6 307 230 5.6899997e-05 1e-6 312 230 5.6899997e-05 1e-6 314 230 0.0046677999 1e-6 315 230 0.0096202977 1e-6 319 230 5.6899997e-05 1e-6 322 230 5.6899997e-05 1e-6 324 230 0.0031309 1e-6 325 230 0.00034149992 1e-6 326 230 0.0038139999 1e-6 349 230 0.00022769999 1e-6 350 230 0.00028459984 1e-6 352 230 5.6899997e-05 1e-6 356 230 0.00017079999 1e-6 358 230 0.00045539998 1e-6 368 230 5.6899997e-05 1e-6 371 230 5.6899997e-05 1e-6 372 230 0.00017079999 1e-6 386 230 0.00011379999 1e-6 387 230 5.6899997e-05 1e-6 398 230 5.6899997e-05 1e-6 402 230 5.6899997e-05 1e-6 414 230 5.6899997e-05 1e-6 417 230 0.00011379999 1e-6 421 230 0.00011379999 1e-6 422 230 5.6899997e-05 1e-6 423 230 5.6899997e-05 1e-6 425 230 5.6899997e-05 1e-6 426 230 5.6899997e-05 1e-6 428 230 5.6899997e-05 1e-6 430 230 5.6899997e-05 1e-6 431 230 0.00017079999 1e-6 433 230 5.6899997e-05 1e-6 434 230 5.6899997e-05 1e-6 438 230 5.6899997e-05 1e-6 441 230 5.6899997e-05 1e-6 443 230 0.012466598 1e-6 444 230 0.0024477998 1e-6 445 230 0.011897299 1e-6 446 230 0.0021630998 1e-6 447 230 0.0043831989 1e-6 448 230 5.6899997e-05 1e-6 450 230 0.0027892999 1e-6 452 230 0.0042693987 1e-6 453 230 0.0026184998 1e-6 454 230 0.00085389987 1e-6 455 230 0.035236496 1e-6 456 230 0.00022769999 1e-6 457 230 0.0022769999 1e-6 458 230 0.00045539998 1e-6 459 230 0.00056919991 1e-6 460 230 0.0012522999 1e-6 463 230 0.059828099 1e-6 464 230 0.0014799999 1e-6 465 230 0.0039846972 1e-6 467 230 0.019752897 1e-6 468 230 0.11686689 1e-6 469 230 0.0059770979 1e-6 470 230 0.0056924969 1e-6 471 230 0.00062619988 1e-6 472 230 0.00051229983 1e-6 473 230 0.00011379999 1e-6 477 230 0.00062619988 1e-6 478 230 0.00062619988 1e-6 483 230 0.0012522999 1e-6 489 230 0.00011379999 1e-6 490 230 0.0020492999 1e-6 491 230 0.00034149992 1e-6 13 231 0.0003382999 1e-6 17 231 0.00016909999 1e-6 19 231 0.00050739991 1e-6 21 231 0.0018606 1e-6 22 231 0.0011839999 1e-6 23 231 0.025372099 1e-6 24 231 0.0015222998 1e-6 25 231 0.0020297999 1e-6 60 231 0.0049052984 1e-6 82 231 0.0035520999 1e-6 88 231 0.0006765998 1e-6 98 231 0.00016909999 1e-6 104 231 0.0003382999 1e-6 108 231 0.00016909999 1e-6 114 231 0.0003382999 1e-6 117 231 0.00016909999 1e-6 118 231 0.0037211999 1e-6 119 231 0.019790299 1e-6 120 231 0.0087956972 1e-6 122 231 0.0006765998 1e-6 126 231 0.00016909999 1e-6 130 231 0.00016909999 1e-6 159 231 0.00016909999 1e-6 160 231 0.00016909999 1e-6 186 231 0.0008456998 1e-6 192 231 0.00050739991 1e-6 193 231 0.0015222998 1e-6 194 231 0.00016909999 1e-6 198 231 0.015223298 1e-6 204 231 0.012347799 1e-6 206 231 0.00050739991 1e-6 214 231 0.14918804 1e-6 215 231 0.0010148999 1e-6 217 231 0.00050739991 1e-6 218 231 0.0013531998 1e-6 219 231 0.00016909999 1e-6 223 231 0.0529432 1e-6 224 231 0.0023681 1e-6 225 231 0.0008456998 1e-6 228 231 0.0003382999 1e-6 229 231 0.011332899 1e-6 230 231 0.00016909999 1e-6 231 231 0.0018606 1e-6 232 231 0.0006765998 1e-6 233 231 0.00050739991 1e-6 234 231 0.061400499 1e-6 240 231 0.00016909999 1e-6 241 231 0.027401898 1e-6 252 231 0.0003382999 1e-6 253 231 0.00016909999 1e-6 267 231 0.0003382999 1e-6 277 231 0.0013531998 1e-6 285 231 0.00050739991 1e-6 287 231 0.0015222998 1e-6 288 231 0.0003382999 1e-6 290 231 0.0006765998 1e-6 294 231 0.00016909999 1e-6 300 231 0.020466797 1e-6 301 231 0.019621097 1e-6 324 231 0.0003382999 1e-6 325 231 0.00016909999 1e-6 326 231 0.00016909999 1e-6 349 231 0.0023681 1e-6 350 231 0.0010148999 1e-6 356 231 0.00050739991 1e-6 358 231 0.00050739991 1e-6 366 231 0.00016909999 1e-6 375 231 0.00016909999 1e-6 387 231 0.00016909999 1e-6 414 231 0.00016909999 1e-6 417 231 0.00016909999 1e-6 443 231 0.0145467 1e-6 444 231 0.0011839999 1e-6 445 231 0.014884997 1e-6 446 231 0.0049052984 1e-6 447 231 0.0035520999 1e-6 448 231 0.0027063999 1e-6 450 231 0.0033828998 1e-6 452 231 0.010994598 1e-6 453 231 0.0091339983 1e-6 454 231 0.0016915 1e-6 455 231 0.038565598 1e-6 456 231 0.00016909999 1e-6 457 231 0.0028754999 1e-6 458 231 0.0003382999 1e-6 459 231 0.0010148999 1e-6 460 231 0.0013531998 1e-6 463 231 0.018606197 1e-6 464 231 0.0011839999 1e-6 465 231 0.0010148999 1e-6 467 231 0.0121786 1e-6 468 231 0.032137997 1e-6 469 231 0.0071041994 1e-6 470 231 0.0069349967 1e-6 471 231 0.0010148999 1e-6 473 231 0.00016909999 1e-6 477 231 0.0003382999 1e-6 478 231 0.00050739991 1e-6 483 231 0.0016915 1e-6 489 231 0.00050739991 1e-6 490 231 0.0013531998 1e-6 491 231 0.0013531998 1e-6 3 232 2.3399989e-05 1e-6 6 232 9.3399998e-05 1e-6 9 232 2.3399989e-05 1e-6 10 232 0.00011679999 1e-6 13 232 4.6699992e-05 1e-6 14 232 4.6699992e-05 1e-6 17 232 0.00030359998 1e-6 18 232 0.00011679999 1e-6 19 232 2.3399989e-05 1e-6 21 232 4.6699992e-05 1e-6 22 232 0.00016349999 1e-6 23 232 0.00037369994 1e-6 24 232 0.00014009999 1e-6 25 232 4.6699992e-05 1e-6 60 232 0.0019150998 1e-6 82 232 0.00030359998 1e-6 83 232 2.3399989e-05 1e-6 84 232 2.3399989e-05 1e-6 85 232 2.3399989e-05 1e-6 88 232 2.3399989e-05 1e-6 93 232 4.6699992e-05 1e-6 102 232 0.00016349999 1e-6 104 232 0.00011679999 1e-6 107 232 0.00091089983 1e-6 108 232 0.0001868 1e-6 109 232 9.3399998e-05 1e-6 113 232 7.0099995e-05 1e-6 114 232 9.3399998e-05 1e-6 115 232 2.3399989e-05 1e-6 116 232 0.00030359998 1e-6 117 232 2.3399989e-05 1e-6 118 232 2.3399989e-05 1e-6 119 232 0.0009341999 1e-6 120 232 0.0034098998 1e-6 125 232 2.3399989e-05 1e-6 126 232 7.0099995e-05 1e-6 127 232 2.3399989e-05 1e-6 130 232 0.00028029992 1e-6 131 232 0.0002102 1e-6 133 232 2.3399989e-05 1e-6 135 232 2.3399989e-05 1e-6 138 232 0.00014009999 1e-6 139 232 7.0099995e-05 1e-6 142 232 0.00014009999 1e-6 149 232 2.3399989e-05 1e-6 151 232 4.6699992e-05 1e-6 158 232 0.0009341999 1e-6 160 232 4.6699992e-05 1e-6 186 232 2.3399989e-05 1e-6 187 232 0.0021954 1e-6 188 232 4.6699992e-05 1e-6 189 232 4.6699992e-05 1e-6 190 232 4.6699992e-05 1e-6 192 232 0.0024522999 1e-6 193 232 0.00046709995 1e-6 194 232 0.00011679999 1e-6 197 232 2.3399989e-05 1e-6 198 232 0.033070996 1e-6 200 232 4.6699992e-05 1e-6 202 232 4.6699992e-05 1e-6 203 232 4.6699992e-05 1e-6 204 232 0.00058389991 1e-6 206 232 0.00051379995 1e-6 207 232 4.6699992e-05 1e-6 209 232 2.3399989e-05 1e-6 214 232 0.036364097 1e-6 215 232 2.3399989e-05 1e-6 217 232 0.00011679999 1e-6 218 232 7.0099995e-05 1e-6 223 232 0.007964097 1e-6 224 232 0.0009808999 1e-6 228 232 0.0036201 1e-6 229 232 0.0023355 1e-6 230 232 0.00028029992 1e-6 231 232 0.0074736997 1e-6 232 232 0.024733197 1e-6 233 232 0.00065389997 1e-6 234 232 0.0033397998 1e-6 237 232 9.3399998e-05 1e-6 240 232 0.0002102 1e-6 241 232 0.061050497 1e-6 242 232 2.3399989e-05 1e-6 248 232 2.3399989e-05 1e-6 250 232 9.3399998e-05 1e-6 252 232 0.00088749989 1e-6 253 232 0.026204497 1e-6 270 232 0.00011679999 1e-6 271 232 7.0099995e-05 1e-6 273 232 0.00074739987 1e-6 276 232 4.6699992e-05 1e-6 277 232 0.00030359998 1e-6 282 232 4.6699992e-05 1e-6 285 232 2.3399989e-05 1e-6 287 232 4.6699992e-05 1e-6 290 232 0.0012844999 1e-6 293 232 7.0099995e-05 1e-6 294 232 0.00037369994 1e-6 296 232 2.3399989e-05 1e-6 300 232 0.036340699 1e-6 301 232 0.00028029992 1e-6 312 232 0.0001868 1e-6 314 232 0.0039936975 1e-6 315 232 0.0019385 1e-6 319 232 2.3399989e-05 1e-6 320 232 2.3399989e-05 1e-6 324 232 0.0010742999 1e-6 325 232 0.0009341999 1e-6 326 232 0.0096456967 1e-6 340 232 0.00056049996 1e-6 349 232 7.0099995e-05 1e-6 350 232 0.00014009999 1e-6 356 232 0.00011679999 1e-6 358 232 0.00037369994 1e-6 372 232 2.3399989e-05 1e-6 384 232 2.3399989e-05 1e-6 387 232 7.0099995e-05 1e-6 393 232 0.00011679999 1e-6 402 232 2.3399989e-05 1e-6 414 232 0.00063059991 1e-6 416 232 0.00025689998 1e-6 417 232 0.00028029992 1e-6 419 232 4.6699992e-05 1e-6 421 232 4.6699992e-05 1e-6 422 232 9.3399998e-05 1e-6 423 232 7.0099995e-05 1e-6 424 232 0.00072399992 1e-6 425 232 4.6699992e-05 1e-6 426 232 2.3399989e-05 1e-6 428 232 2.3399989e-05 1e-6 430 232 2.3399989e-05 1e-6 431 232 7.0099995e-05 1e-6 432 232 2.3399989e-05 1e-6 433 232 2.3399989e-05 1e-6 434 232 4.6699992e-05 1e-6 438 232 0.0005371999 1e-6 441 232 2.3399989e-05 1e-6 442 232 2.3399989e-05 1e-6 443 232 0.0034098998 1e-6 444 232 0.0037602 1e-6 445 232 0.0071699992 1e-6 446 232 0.00074739987 1e-6 447 232 0.0159049 1e-6 448 232 4.6699992e-05 1e-6 450 232 0.0027325999 1e-6 452 232 0.0025223999 1e-6 453 232 0.00065389997 1e-6 454 232 0.00067729992 1e-6 455 232 0.0275358 1e-6 456 232 0.00035029999 1e-6 457 232 0.0024522999 1e-6 458 232 0.00042039994 1e-6 459 232 0.00060719997 1e-6 460 232 0.0014479998 1e-6 463 232 0.023401897 1e-6 464 232 0.0024756999 1e-6 465 232 0.011140399 1e-6 467 232 0.032300297 1e-6 468 232 0.20006067 1e-6 469 232 0.010673299 1e-6 470 232 0.006235797 1e-6 471 232 0.00079409988 1e-6 472 232 2.3399989e-05 1e-6 473 232 0.00011679999 1e-6 477 232 0.00063059991 1e-6 478 232 0.00074739987 1e-6 479 232 2.3399989e-05 1e-6 483 232 0.0015180998 1e-6 489 232 2.3399989e-05 1e-6 490 232 0.0009808999 1e-6 491 232 0.00042039994 1e-6 9 233 2.8099996e-05 1e-6 13 233 2.8099996e-05 1e-6 14 233 0.0054736994 1e-6 16 233 2.8099996e-05 1e-6 17 233 0.0037052999 1e-6 18 233 8.4199986e-05 1e-6 19 233 0.00047719991 1e-6 21 233 0.0019929998 1e-6 22 233 8.4199986e-05 1e-6 23 233 0.0012069999 1e-6 24 233 0.0024981999 1e-6 25 233 5.6099991e-05 1e-6 60 233 0.0028350998 1e-6 79 233 2.8099996e-05 1e-6 82 233 0.0001123 1e-6 83 233 2.8099996e-05 1e-6 84 233 2.8099996e-05 1e-6 104 233 2.8099996e-05 1e-6 108 233 2.8099996e-05 1e-6 113 233 8.4199986e-05 1e-6 114 233 0.00014039999 1e-6 118 233 0.015101798 1e-6 119 233 0.0069052987 1e-6 120 233 0.00022459999 1e-6 126 233 8.4199986e-05 1e-6 127 233 2.8099996e-05 1e-6 130 233 2.8099996e-05 1e-6 135 233 2.8099996e-05 1e-6 150 233 2.8099996e-05 1e-6 151 233 2.8099996e-05 1e-6 159 233 0.0001123 1e-6 160 233 0.00016839999 1e-6 169 233 2.8099996e-05 1e-6 187 233 0.00053329999 1e-6 188 233 0.00022459999 1e-6 189 233 0.00014039999 1e-6 190 233 5.6099991e-05 1e-6 191 233 0.0001123 1e-6 192 233 0.00014039999 1e-6 193 233 0.0012631998 1e-6 194 233 0.0001123 1e-6 196 233 2.8099996e-05 1e-6 197 233 2.8099996e-05 1e-6 198 233 0.0085052997 1e-6 200 233 5.6099991e-05 1e-6 201 233 5.6099991e-05 1e-6 203 233 8.4199986e-05 1e-6 204 233 0.0064841993 1e-6 206 233 0.00047719991 1e-6 207 233 5.6099991e-05 1e-6 208 233 0.0011788998 1e-6 209 233 2.8099996e-05 1e-6 214 233 0.19489115 1e-6 215 233 2.8099996e-05 1e-6 218 233 0.0030315998 1e-6 219 233 5.6099991e-05 1e-6 222 233 0.0012631998 1e-6 223 233 0.0058385991 1e-6 224 233 0.087663174 1e-6 225 233 0.0023578999 1e-6 226 233 0.00016839999 1e-6 227 233 0.0029473999 1e-6 229 233 0.0016841998 1e-6 230 233 8.4199986e-05 1e-6 231 233 0.00064559979 1e-6 232 233 8.4199986e-05 1e-6 233 233 0.0099648982 1e-6 234 233 0.014877196 1e-6 237 233 0.0001965 1e-6 240 233 8.4199986e-05 1e-6 241 233 0.0028350998 1e-6 242 233 2.8099996e-05 1e-6 248 233 2.8099996e-05 1e-6 250 233 2.8099996e-05 1e-6 252 233 0.00078599993 1e-6 253 233 0.00030879979 1e-6 266 233 2.8099996e-05 1e-6 267 233 2.8099996e-05 1e-6 273 233 0.0052210987 1e-6 277 233 0.00022459999 1e-6 284 233 5.6099991e-05 1e-6 285 233 0.0013754 1e-6 287 233 0.0067648999 1e-6 288 233 0.0013754 1e-6 289 233 8.4199986e-05 1e-6 290 233 0.0025825 1e-6 293 233 0.00016839999 1e-6 300 233 0.045192998 1e-6 301 233 0.0104982 1e-6 314 233 2.8099996e-05 1e-6 315 233 0.00039299997 1e-6 319 233 5.6099991e-05 1e-6 322 233 2.8099996e-05 1e-6 324 233 0.00056139985 1e-6 326 233 0.0030595998 1e-6 332 233 2.8099996e-05 1e-6 349 233 5.6099991e-05 1e-6 350 233 8.4199986e-05 1e-6 356 233 5.6099991e-05 1e-6 358 233 0.00022459999 1e-6 384 233 5.6099991e-05 1e-6 387 233 5.6099991e-05 1e-6 402 233 5.6099991e-05 1e-6 414 233 0.00025259983 1e-6 417 233 0.00014039999 1e-6 419 233 2.8099996e-05 1e-6 421 233 5.6099991e-05 1e-6 422 233 0.0001123 1e-6 423 233 2.8099996e-05 1e-6 425 233 2.8099996e-05 1e-6 430 233 2.8099996e-05 1e-6 431 233 2.8099996e-05 1e-6 432 233 2.8099996e-05 1e-6 433 233 5.6099991e-05 1e-6 434 233 5.6099991e-05 1e-6 442 233 0.0018806998 1e-6 443 233 0.010806996 1e-6 444 233 0.0028350998 1e-6 445 233 0.011059597 1e-6 446 233 0.0019929998 1e-6 447 233 0.010919299 1e-6 448 233 8.4199986e-05 1e-6 450 233 0.0054174997 1e-6 452 233 0.0045473985 1e-6 453 233 0.0019648999 1e-6 454 233 0.00053329999 1e-6 455 233 0.033459596 1e-6 456 233 0.00047719991 1e-6 457 233 0.0031999999 1e-6 458 233 0.00039299997 1e-6 459 233 0.00039299997 1e-6 460 233 0.0014876998 1e-6 463 233 0.029585999 1e-6 464 233 0.0020772 1e-6 465 233 0.0066525973 1e-6 467 233 0.0118737 1e-6 468 233 0.0168982 1e-6 469 233 0.0056701973 1e-6 470 233 0.007719297 1e-6 471 233 0.0021052998 1e-6 473 233 0.00014039999 1e-6 477 233 0.00042109983 1e-6 478 233 0.00084209978 1e-6 483 233 0.0018245999 1e-6 489 233 2.8099996e-05 1e-6 490 233 0.0019087999 1e-6 491 233 0.00047719991 1e-6 9 234 1.0399999e-05 1e-6 16 234 3.4999994e-06 1e-6 18 234 4.1599997e-05 1e-6 19 234 3.4999994e-06 1e-6 21 234 2.0799998e-05 1e-6 22 234 0.00087069999 1e-6 23 234 0.49135369 1e-6 24 234 1.0399999e-05 1e-6 25 234 2.4299996e-05 1e-6 60 234 0.017792199 1e-6 66 234 3.4999994e-06 1e-6 74 234 0.0010753998 1e-6 79 234 3.4999994e-06 1e-6 82 234 0.0001145 1e-6 83 234 6.8999998e-06 1e-6 84 234 6.8999998e-06 1e-6 104 234 3.4999994e-06 1e-6 108 234 1.0399999e-05 1e-6 113 234 2.0799998e-05 1e-6 114 234 5.1999989e-05 1e-6 117 234 0.00012839999 1e-6 118 234 0.0002081 1e-6 119 234 0.0001908 1e-6 120 234 0.00039199996 1e-6 122 234 2.0799998e-05 1e-6 126 234 2.0799998e-05 1e-6 127 234 3.4999994e-06 1e-6 135 234 3.4999994e-06 1e-6 150 234 5.8999998e-05 1e-6 151 234 3.4999994e-06 1e-6 160 234 3.4699988e-05 1e-6 186 234 3.4999994e-06 1e-6 189 234 4.1599997e-05 1e-6 190 234 1.3899999e-05 1e-6 191 234 4.1599997e-05 1e-6 192 234 2.4299996e-05 1e-6 194 234 1.3899999e-05 1e-6 196 234 3.4999994e-06 1e-6 197 234 3.4999994e-06 1e-6 198 234 0.0029451 1e-6 200 234 1.3899999e-05 1e-6 201 234 1.0399999e-05 1e-6 203 234 1.0399999e-05 1e-6 204 234 2.4299996e-05 1e-6 206 234 1.3899999e-05 1e-6 207 234 1.0399999e-05 1e-6 209 234 1.7299986e-05 1e-6 214 234 0.023873199 1e-6 215 234 6.8999998e-06 1e-6 218 234 4.5099994e-05 1e-6 223 234 0.0035660998 1e-6 224 234 3.4999994e-06 1e-6 229 234 3.4999994e-06 1e-6 230 234 6.8999998e-06 1e-6 231 234 0.0029936999 1e-6 232 234 3.4999994e-06 1e-6 233 234 2.0799998e-05 1e-6 234 234 0.064313948 1e-6 235 234 6.8999998e-06 1e-6 237 234 9.0199988e-05 1e-6 241 234 0.00074929977 1e-6 242 234 5.1999989e-05 1e-6 248 234 6.8999998e-06 1e-6 250 234 3.4999994e-06 1e-6 251 234 2.0799998e-05 1e-6 252 234 6.939999e-05 1e-6 253 234 1.0399999e-05 1e-6 254 234 3.4999994e-06 1e-6 263 234 3.4999994e-06 1e-6 267 234 0.00010059999 1e-6 272 234 0.00072499993 1e-6 273 234 6.2399995e-05 1e-6 277 234 0.00048909988 1e-6 279 234 6.8999998e-06 1e-6 281 234 6.8999998e-06 1e-6 285 234 3.4999994e-06 1e-6 287 234 1.0399999e-05 1e-6 289 234 3.119999e-05 1e-6 290 234 0.0015262999 1e-6 294 234 6.8999998e-06 1e-6 300 234 0.0038053999 1e-6 301 234 0.0047523975 1e-6 307 234 2.7799993e-05 1e-6 315 234 3.4999994e-06 1e-6 317 234 3.4999994e-06 1e-6 319 234 6.8999998e-06 1e-6 324 234 0.0002462999 1e-6 326 234 0.0014118999 1e-6 328 234 7.2799987e-05 1e-6 331 234 1.7299986e-05 1e-6 333 234 0.00017689999 1e-6 334 234 6.8999998e-06 1e-6 337 234 3.4999994e-06 1e-6 340 234 1.0399999e-05 1e-6 349 234 1.3899999e-05 1e-6 350 234 0.0010302998 1e-6 351 234 0.00029139989 1e-6 354 234 3.119999e-05 1e-6 356 234 0.00017689999 1e-6 358 234 0.00031909999 1e-6 369 234 6.8999998e-06 1e-6 370 234 1.3899999e-05 1e-6 372 234 0.00014919999 1e-6 374 234 2.7799993e-05 1e-6 380 234 3.4999994e-06 1e-6 384 234 7.9799996e-05 1e-6 385 234 6.8999998e-06 1e-6 386 234 3.4999994e-06 1e-6 387 234 2.0799998e-05 1e-6 390 234 3.4999994e-06 1e-6 394 234 6.8999998e-06 1e-6 397 234 6.8999998e-06 1e-6 402 234 4.1599997e-05 1e-6 404 234 1.7299986e-05 1e-6 414 234 0.00042319996 1e-6 417 234 3.4699988e-05 1e-6 419 234 3.4999994e-06 1e-6 421 234 1.7299986e-05 1e-6 422 234 2.7799993e-05 1e-6 423 234 3.4999994e-06 1e-6 425 234 3.4999994e-06 1e-6 430 234 1.0399999e-05 1e-6 431 234 6.8999998e-06 1e-6 432 234 3.4999994e-06 1e-6 433 234 6.8999998e-06 1e-6 434 234 6.8999998e-06 1e-6 441 234 8.6699991e-05 1e-6 442 234 6.8999998e-06 1e-6 443 234 0.0035903 1e-6 444 234 7.6299999e-05 1e-6 445 234 0.0046101995 1e-6 446 234 0.0086861998 1e-6 447 234 0.0020015999 1e-6 448 234 0.033485599 1e-6 449 234 3.4999994e-06 1e-6 450 234 0.0018177 1e-6 452 234 0.0066880994 1e-6 453 234 0.012245297 1e-6 454 234 0.0013979999 1e-6 455 234 0.0072083995 1e-6 456 234 0.0002462999 1e-6 457 234 0.0045477971 1e-6 458 234 0.00017689999 1e-6 459 234 0.00058619981 1e-6 460 234 0.0011377998 1e-6 463 234 0.013358898 1e-6 464 234 9.3699986e-05 1e-6 465 234 0.00017689999 1e-6 467 234 0.0081554987 1e-6 468 234 0.0116001 1e-6 469 234 0.0021402999 1e-6 470 234 0.0023067999 1e-6 471 234 0.00060359994 1e-6 472 234 6.5899992e-05 1e-6 473 234 4.8599992e-05 1e-6 477 234 0.0001318 1e-6 478 234 0.0001943 1e-6 483 234 0.00077009993 1e-6 489 234 0.00041279988 1e-6 490 234 0.00018389999 1e-6 18 235 0.00021619999 1e-6 22 235 0.0057284981 1e-6 23 235 0.00043229992 1e-6 24 235 0.085170746 1e-6 25 235 0.00010809999 1e-6 60 235 0.0023778998 1e-6 114 235 0.00010809999 1e-6 126 235 0.00010809999 1e-6 135 235 0.00010809999 1e-6 160 235 0.00010809999 1e-6 171 235 0.0048637986 1e-6 191 235 0.00097279996 1e-6 192 235 0.0064850971 1e-6 193 235 0.00021619999 1e-6 194 235 0.00010809999 1e-6 198 235 0.0033505999 1e-6 203 235 0.00010809999 1e-6 206 235 0.00021619999 1e-6 214 235 0.00043229992 1e-6 215 235 0.00010809999 1e-6 218 235 0.00010809999 1e-6 220 235 0.00043229992 1e-6 223 235 0.00010809999 1e-6 231 235 0.013078298 1e-6 233 235 0.0014050999 1e-6 234 235 0.21379155 1e-6 235 235 0.011565097 1e-6 237 235 0.00086469995 1e-6 241 235 0.020103797 1e-6 242 235 0.00010809999 1e-6 252 235 0.00021619999 1e-6 254 235 0.0073497966 1e-6 264 235 0.00021619999 1e-6 266 235 0.00010809999 1e-6 269 235 0.00021619999 1e-6 272 235 0.0011888999 1e-6 273 235 0.0069173984 1e-6 277 235 0.0016212999 1e-6 279 235 0.00010809999 1e-6 282 235 0.00043229992 1e-6 295 235 0.00010809999 1e-6 300 235 0.0029183 1e-6 301 235 0.0042152964 1e-6 305 235 0.00010809999 1e-6 312 235 0.00010809999 1e-6 317 235 0.00010809999 1e-6 322 235 0.00043229992 1e-6 326 235 0.0036748999 1e-6 328 235 0.00054039992 1e-6 331 235 0.00097279996 1e-6 332 235 0.00086469995 1e-6 335 235 0.00021619999 1e-6 336 235 0.00010809999 1e-6 337 235 0.00010809999 1e-6 340 235 0.00021619999 1e-6 351 235 0.00010809999 1e-6 354 235 0.00010809999 1e-6 356 235 0.00010809999 1e-6 358 235 0.00064849993 1e-6 372 235 0.00010809999 1e-6 402 235 0.00064849993 1e-6 417 235 0.00010809999 1e-6 421 235 0.00021619999 1e-6 422 235 0.00010809999 1e-6 434 235 0.00010809999 1e-6 442 235 0.00010809999 1e-6 443 235 0.011889298 1e-6 444 235 0.0019454998 1e-6 445 235 0.070146978 1e-6 446 235 0.0070254989 1e-6 447 235 0.0033505999 1e-6 448 235 0.00021619999 1e-6 450 235 0.0022697998 1e-6 452 235 0.012105498 1e-6 453 235 0.0088628978 1e-6 454 235 0.00075659994 1e-6 455 235 0.033073898 1e-6 456 235 0.00054039992 1e-6 457 235 0.0030264 1e-6 458 235 0.0014050999 1e-6 459 235 0.00054039992 1e-6 460 235 0.0022697998 1e-6 463 235 0.0155642 1e-6 464 235 0.00054039992 1e-6 465 235 0.00021619999 1e-6 467 235 0.010808498 1e-6 468 235 0.0056203976 1e-6 469 235 0.0021616998 1e-6 470 235 0.0019454998 1e-6 471 235 0.0041071996 1e-6 473 235 0.00010809999 1e-6 477 235 0.00010809999 1e-6 478 235 0.00064849993 1e-6 483 235 0.00064849993 1e-6 489 235 0.00010809999 1e-6 490 235 0.00021619999 1e-6 491 235 0.00021619999 1e-6 18 236 0.0002194 1e-6 22 236 0.0038389999 1e-6 23 236 0.0015355998 1e-6 24 236 0.0085553974 1e-6 25 236 0.00010969999 1e-6 60 236 0.0023033998 1e-6 114 236 0.00010969999 1e-6 117 236 0.0042776987 1e-6 118 236 0.0036195999 1e-6 119 236 0.0037292999 1e-6 126 236 0.00010969999 1e-6 130 236 0.00010969999 1e-6 135 236 0.010749098 1e-6 171 236 0.00010969999 1e-6 189 236 0.00010969999 1e-6 190 236 0.00010969999 1e-6 191 236 0.084347844 1e-6 192 236 0.0039486997 1e-6 194 236 0.00010969999 1e-6 198 236 0.013162199 1e-6 203 236 0.00010969999 1e-6 206 236 0.0002194 1e-6 214 236 0.0063616969 1e-6 218 236 0.00010969999 1e-6 224 236 0.0026323998 1e-6 225 236 0.00010969999 1e-6 231 236 0.0002194 1e-6 233 236 0.0014258998 1e-6 234 236 0.15761757 1e-6 235 236 0.0010968999 1e-6 237 236 0.00065809977 1e-6 241 236 0.0084457994 1e-6 252 236 0.0002194 1e-6 264 236 0.00032909983 1e-6 267 236 0.0019742998 1e-6 269 236 0.0002194 1e-6 272 236 0.00043869996 1e-6 273 236 0.055062 1e-6 277 236 0.0028517998 1e-6 279 236 0.00010969999 1e-6 300 236 0.0043873973 1e-6 301 236 0.0106395 1e-6 315 236 0.00010969999 1e-6 317 236 0.00010969999 1e-6 326 236 0.0002194 1e-6 334 236 0.0002194 1e-6 340 236 0.0002194 1e-6 349 236 0.00010969999 1e-6 356 236 0.00010969999 1e-6 358 236 0.00076779979 1e-6 402 236 0.00032909983 1e-6 417 236 0.00010969999 1e-6 421 236 0.0002194 1e-6 422 236 0.0042776987 1e-6 434 236 0.00010969999 1e-6 443 236 0.040912598 1e-6 444 236 0.0028517998 1e-6 445 236 0.044203099 1e-6 446 236 0.0049357973 1e-6 447 236 0.0031808999 1e-6 448 236 0.0002194 1e-6 450 236 0.0025227999 1e-6 452 236 0.0062520988 1e-6 453 236 0.0084457994 1e-6 454 236 0.0017549999 1e-6 455 236 0.047932398 1e-6 456 236 0.00076779979 1e-6 457 236 0.0029614998 1e-6 458 236 0.0013161998 1e-6 459 236 0.00010969999 1e-6 460 236 0.0018646 1e-6 463 236 0.0065810978 1e-6 464 236 0.00032909983 1e-6 465 236 0.00043869996 1e-6 467 236 0.0086650997 1e-6 468 236 0.0043873973 1e-6 469 236 0.0019742998 1e-6 470 236 0.0020839998 1e-6 471 236 0.0040583983 1e-6 473 236 0.00010969999 1e-6 477 236 0.00010969999 1e-6 478 236 0.00065809977 1e-6 483 236 0.00098719983 1e-6 489 236 0.00010969999 1e-6 490 236 0.0002194 1e-6 491 236 0.00032909983 1e-6 9 237 1.7499988e-05 1e-6 18 237 0.00068069994 1e-6 22 237 0.00078539993 1e-6 24 237 0.0018151999 1e-6 25 237 0.0031241998 1e-6 60 237 0.0055676997 1e-6 79 237 1.7499988e-05 1e-6 82 237 1.7499988e-05 1e-6 83 237 1.7499988e-05 1e-6 84 237 1.7499988e-05 1e-6 108 237 1.7499988e-05 1e-6 113 237 5.2399992e-05 1e-6 114 237 8.7299995e-05 1e-6 126 237 5.2399992e-05 1e-6 127 237 1.7499988e-05 1e-6 130 237 0.0065799989 1e-6 131 237 1.7499988e-05 1e-6 140 237 0.10304558 1e-6 150 237 0.0003839999 1e-6 151 237 0.00034909998 1e-6 160 237 0.00017449999 1e-6 189 237 5.2399992e-05 1e-6 190 237 5.2399992e-05 1e-6 192 237 5.2399992e-05 1e-6 193 237 0.00099489978 1e-6 194 237 6.9799993e-05 1e-6 198 237 0.0011518998 1e-6 200 237 3.4899989e-05 1e-6 201 237 1.7499988e-05 1e-6 203 237 6.9799993e-05 1e-6 204 237 3.4899989e-05 1e-6 206 237 6.9799993e-05 1e-6 207 237 3.4899989e-05 1e-6 214 237 0.030456398 1e-6 222 237 0.022794299 1e-6 223 237 0.0019373 1e-6 224 237 0.0021292998 1e-6 225 237 0.10222524 1e-6 234 237 0.0021467998 1e-6 237 237 0.0002269 1e-6 239 237 0.0060912967 1e-6 240 237 0.0051661991 1e-6 241 237 0.0094772987 1e-6 248 237 1.7499988e-05 1e-6 250 237 1.7499988e-05 1e-6 251 237 1.7499988e-05 1e-6 252 237 0.0001222 1e-6 272 237 0.00094249984 1e-6 277 237 0.010314997 1e-6 282 237 3.4899989e-05 1e-6 284 237 3.4899989e-05 1e-6 288 237 1.7499988e-05 1e-6 312 237 1.7499988e-05 1e-6 315 237 3.4899989e-05 1e-6 319 237 0.00048869988 1e-6 326 237 1.7499988e-05 1e-6 349 237 1.7499988e-05 1e-6 350 237 0.00095989997 1e-6 356 237 0.00024429988 1e-6 358 237 0.00095989997 1e-6 384 237 3.4899989e-05 1e-6 387 237 3.4899989e-05 1e-6 402 237 0.0035430999 1e-6 404 237 6.9799993e-05 1e-6 414 237 0.00047119986 1e-6 417 237 0.00027929991 1e-6 419 237 1.7499988e-05 1e-6 421 237 3.4899989e-05 1e-6 422 237 6.9799993e-05 1e-6 423 237 1.7499988e-05 1e-6 425 237 1.7499988e-05 1e-6 430 237 3.4899989e-05 1e-6 431 237 1.7499988e-05 1e-6 432 237 1.7499988e-05 1e-6 433 237 3.4899989e-05 1e-6 434 237 3.4899989e-05 1e-6 443 237 0.0091979988 1e-6 444 237 0.0014312 1e-6 445 237 0.011938199 1e-6 446 237 0.0023910999 1e-6 447 237 0.0065450966 1e-6 448 237 1.7499988e-05 1e-6 450 237 0.0028275 1e-6 452 237 0.0078191981 1e-6 453 237 0.0026528998 1e-6 454 237 0.0013438999 1e-6 455 237 0.018134199 1e-6 456 237 0.0002617999 1e-6 457 237 0.0046425983 1e-6 458 237 6.9799993e-05 1e-6 459 237 0.0020420998 1e-6 460 237 0.001309 1e-6 463 237 0.0075049996 1e-6 464 237 0.0011169999 1e-6 465 237 0.0037175999 1e-6 467 237 0.015900198 1e-6 468 237 0.027297299 1e-6 469 237 0.0041538998 1e-6 470 237 0.0045029968 1e-6 471 237 0.0021990999 1e-6 473 237 8.7299995e-05 1e-6 477 237 0.00061089988 1e-6 478 237 0.00069809984 1e-6 483 237 0.00085519999 1e-6 489 237 5.2399992e-05 1e-6 490 237 0.024469797 1e-6 491 237 0.00041889981 1e-6 24 238 0.0001967 1e-6 60 238 0.0017698999 1e-6 108 238 0.0001967 1e-6 114 238 0.00039329985 1e-6 126 238 0.0001967 1e-6 130 238 0.075909495 1e-6 131 238 0.0078662969 1e-6 133 238 0.012192696 1e-6 149 238 0.0019665998 1e-6 150 238 0.0001967 1e-6 171 238 0.018092398 1e-6 187 238 0.0001967 1e-6 189 238 0.0001967 1e-6 190 238 0.0001967 1e-6 192 238 0.012389399 1e-6 194 238 0.00039329985 1e-6 198 238 0.024778798 1e-6 200 238 0.0001967 1e-6 203 238 0.0001967 1e-6 204 238 0.0001967 1e-6 206 238 0.00039329985 1e-6 214 238 0.017895799 1e-6 219 238 0.0070795976 1e-6 222 238 0.010816097 1e-6 224 238 0.0330383 1e-6 225 238 0.019075699 1e-6 233 238 0.0031464999 1e-6 234 238 0.0043265 1e-6 238 238 0.00098329992 1e-6 239 238 0.0001967 1e-6 240 238 0.0214356 1e-6 241 238 0.027925298 1e-6 252 238 0.00039329985 1e-6 270 238 0.0041297972 1e-6 272 238 0.00078659994 1e-6 277 238 0.0001967 1e-6 340 238 0.00039329985 1e-6 358 238 0.0031464999 1e-6 387 238 0.0001967 1e-6 417 238 0.00098329992 1e-6 421 238 0.0001967 1e-6 422 238 0.00039329985 1e-6 437 238 0.0088495985 1e-6 443 238 0.0045230985 1e-6 444 238 0.0047197975 1e-6 445 238 0.0090461969 1e-6 446 238 0.00098329992 1e-6 447 238 0.010226198 1e-6 450 238 0.0060963966 1e-6 452 238 0.0076695979 1e-6 453 238 0.00078659994 1e-6 454 238 0.0011798998 1e-6 455 238 0.026745297 1e-6 456 238 0.00039329985 1e-6 457 238 0.0033431998 1e-6 458 238 0.00098329992 1e-6 459 238 0.00058999984 1e-6 460 238 0.0011798998 1e-6 463 238 0.0078662969 1e-6 464 238 0.00078659994 1e-6 465 238 0.0019665998 1e-6 467 238 0.016322497 1e-6 468 238 0.021632299 1e-6 469 238 0.0074729994 1e-6 470 238 0.0082595982 1e-6 471 238 0.0011798998 1e-6 473 238 0.0001967 1e-6 477 238 0.0001967 1e-6 478 238 0.0021631999 1e-6 483 238 0.0019665998 1e-6 490 238 0.0104228 1e-6 21 239 0.0019607998 1e-6 22 239 0.0039215982 1e-6 25 239 0.0019607998 1e-6 60 239 0.0058823973 1e-6 130 239 0.0019607998 1e-6 140 239 0.0156863 1e-6 192 239 0.0019607998 1e-6 198 239 0.0019607998 1e-6 214 239 0.060784299 1e-6 215 239 0.0019607998 1e-6 218 239 0.0078430995 1e-6 222 239 0.0039215982 1e-6 224 239 0.0039215982 1e-6 225 239 0.021568596 1e-6 233 239 0.0019607998 1e-6 234 239 0.031372499 1e-6 236 239 0.0019607998 1e-6 239 239 0.074509799 1e-6 240 239 0.0156863 1e-6 241 239 0.0058823973 1e-6 277 239 0.0039215982 1e-6 287 239 0.0019607998 1e-6 334 239 0.0019607998 1e-6 340 239 0.0019607998 1e-6 349 239 0.0019607998 1e-6 350 239 0.0019607998 1e-6 443 239 0.013725497 1e-6 444 239 0.0019607998 1e-6 445 239 0.023529399 1e-6 446 239 0.0039215982 1e-6 447 239 0.0039215982 1e-6 450 239 0.0019607998 1e-6 452 239 0.033333298 1e-6 453 239 0.0098038986 1e-6 455 239 0.031372499 1e-6 457 239 0.0019607998 1e-6 463 239 0.0058823973 1e-6 464 239 0.0019607998 1e-6 467 239 0.0156863 1e-6 468 239 0.0078430995 1e-6 469 239 0.0058823973 1e-6 470 239 0.0058823973 1e-6 490 239 0.0078430995 1e-6 491 239 0.019607797 1e-6 0 240 0.00046659983 1e-6 4 240 0.00015549999 1e-6 9 240 3.8899991e-05 1e-6 18 240 0.00011659999 1e-6 21 240 0.0001944 1e-6 22 240 0.001283 1e-6 24 240 0.00093309977 1e-6 25 240 7.7799996e-05 1e-6 60 240 0.0031103999 1e-6 79 240 3.8899991e-05 1e-6 82 240 0.00011659999 1e-6 83 240 3.8899991e-05 1e-6 84 240 3.8899991e-05 1e-6 88 240 0.00015549999 1e-6 90 240 0.00011659999 1e-6 104 240 7.7799996e-05 1e-6 108 240 3.8899991e-05 1e-6 113 240 7.7799996e-05 1e-6 114 240 0.00015549999 1e-6 115 240 3.8899991e-05 1e-6 117 240 3.8899991e-05 1e-6 126 240 7.7799996e-05 1e-6 127 240 3.8899991e-05 1e-6 130 240 0.028887998 1e-6 131 240 0.0039268993 1e-6 132 240 0.00050539989 1e-6 133 240 0.00046659983 1e-6 135 240 0.0001944 1e-6 138 240 0.00031099981 1e-6 139 240 0.0001944 1e-6 140 240 0.0059486963 1e-6 142 240 0.00042769988 1e-6 143 240 0.00034989999 1e-6 149 240 0.00050539989 1e-6 150 240 0.00077759987 1e-6 151 240 3.8899991e-05 1e-6 152 240 3.8899991e-05 1e-6 157 240 3.8899991e-05 1e-6 158 240 0.00015549999 1e-6 160 240 0.00077759987 1e-6 161 240 3.8899991e-05 1e-6 165 240 3.8899991e-05 1e-6 169 240 0.00093309977 1e-6 171 240 0.00077759987 1e-6 186 240 7.7799996e-05 1e-6 187 240 0.0018273999 1e-6 188 240 0.0013218999 1e-6 189 240 0.00015549999 1e-6 190 240 0.00011659999 1e-6 191 240 0.00042769988 1e-6 192 240 0.0012053 1e-6 193 240 7.7799996e-05 1e-6 194 240 0.00023329999 1e-6 197 240 0.00023329999 1e-6 198 240 0.013685796 1e-6 200 240 7.7799996e-05 1e-6 201 240 3.8899991e-05 1e-6 203 240 7.7799996e-05 1e-6 204 240 0.00081649981 1e-6 206 240 0.00015549999 1e-6 207 240 7.7799996e-05 1e-6 209 240 3.8899991e-05 1e-6 214 240 0.053887997 1e-6 218 240 0.00023329999 1e-6 219 240 0.001283 1e-6 221 240 3.8899991e-05 1e-6 222 240 0.0059486963 1e-6 223 240 0.0026826998 1e-6 224 240 0.015435498 1e-6 225 240 0.077293873 1e-6 226 240 0.00038879993 1e-6 227 240 0.0024883 1e-6 228 240 7.7799996e-05 1e-6 233 240 0.00023329999 1e-6 234 240 0.0036546998 1e-6 237 240 7.7799996e-05 1e-6 239 240 0.0020607 1e-6 240 240 0.028188199 1e-6 241 240 0.031765196 1e-6 242 240 3.8899991e-05 1e-6 243 240 0.00062209996 1e-6 248 240 3.8899991e-05 1e-6 250 240 3.8899991e-05 1e-6 251 240 3.8899991e-05 1e-6 252 240 0.00050539989 1e-6 254 240 3.8899991e-05 1e-6 270 240 3.8899991e-05 1e-6 271 240 0.00011659999 1e-6 272 240 3.8899991e-05 1e-6 273 240 0.00062209996 1e-6 274 240 7.7799996e-05 1e-6 276 240 0.0020994998 1e-6 277 240 0.0088257976 1e-6 282 240 0.0096422993 1e-6 283 240 0.0001944 1e-6 284 240 7.7799996e-05 1e-6 292 240 7.7799996e-05 1e-6 293 240 0.00011659999 1e-6 296 240 7.7799996e-05 1e-6 300 240 0.0001944 1e-6 312 240 0.00015549999 1e-6 313 240 3.8899991e-05 1e-6 315 240 0.011003099 1e-6 319 240 0.0020994998 1e-6 322 240 0.00046659983 1e-6 324 240 3.8899991e-05 1e-6 326 240 0.0027604999 1e-6 340 240 0.0020607 1e-6 345 240 7.7799996e-05 1e-6 348 240 7.7799996e-05 1e-6 349 240 0.0026049998 1e-6 350 240 7.7799996e-05 1e-6 351 240 7.7799996e-05 1e-6 354 240 3.8899991e-05 1e-6 356 240 0.00027219998 1e-6 357 240 3.8899991e-05 1e-6 358 240 0.0020217998 1e-6 372 240 7.7799996e-05 1e-6 384 240 7.7799996e-05 1e-6 385 240 3.8899991e-05 1e-6 387 240 7.7799996e-05 1e-6 393 240 3.8899991e-05 1e-6 402 240 0.00027219998 1e-6 414 240 0.00093309977 1e-6 416 240 3.8899991e-05 1e-6 417 240 0.00058319978 1e-6 419 240 3.8899991e-05 1e-6 421 240 7.7799996e-05 1e-6 422 240 0.0001944 1e-6 423 240 3.8899991e-05 1e-6 425 240 3.8899991e-05 1e-6 430 240 0.00042769988 1e-6 431 240 3.8899991e-05 1e-6 432 240 3.8899991e-05 1e-6 433 240 3.8899991e-05 1e-6 434 240 0.00011659999 1e-6 437 240 3.8899991e-05 1e-6 442 240 0.00015549999 1e-6 443 240 0.0079315975 1e-6 444 240 0.0033437 1e-6 445 240 0.0087480992 1e-6 446 240 0.0019828998 1e-6 447 240 0.0077759996 1e-6 448 240 3.8899991e-05 1e-6 450 240 0.0037324999 1e-6 452 240 0.01007 1e-6 453 240 0.0033825999 1e-6 454 240 0.0013218999 1e-6 455 240 0.0315708 1e-6 456 240 0.00038879993 1e-6 457 240 0.0033047998 1e-6 458 240 0.00050539989 1e-6 459 240 0.00062209996 1e-6 460 240 0.0014385998 1e-6 463 240 0.0071539991 1e-6 464 240 0.0023327998 1e-6 465 240 0.0023716998 1e-6 467 240 0.0146579 1e-6 468 240 0.016990699 1e-6 469 240 0.0063374974 1e-6 470 240 0.0069595985 1e-6 471 240 0.00089419982 1e-6 473 240 0.00015549999 1e-6 477 240 0.00015549999 1e-6 478 240 0.0013218999 1e-6 479 240 0.00011659999 1e-6 483 240 0.0019439999 1e-6 489 240 0.00011659999 1e-6 490 240 0.0183126 1e-6 491 240 0.0027215998 1e-6 0 241 4.4299988e-05 1e-6 2 241 0.00027469988 1e-6 4 241 6.1999992e-05 1e-6 9 241 8.8999996e-06 1e-6 13 241 7.9799996e-05 1e-6 16 241 8.8999996e-06 1e-6 18 241 0.00013289999 1e-6 19 241 1.7699989e-05 1e-6 21 241 3.5399993e-05 1e-6 22 241 0.00024809991 1e-6 23 241 0.00058489991 1e-6 24 241 0.00026589981 1e-6 25 241 1.7699989e-05 1e-6 60 241 0.0055033974 1e-6 77 241 1.7699989e-05 1e-6 79 241 8.8999996e-06 1e-6 82 241 0.00016839999 1e-6 83 241 1.7699989e-05 1e-6 84 241 1.7699989e-05 1e-6 90 241 8.8999996e-06 1e-6 104 241 5.3199998e-05 1e-6 107 241 2.6599999e-05 1e-6 108 241 2.6599999e-05 1e-6 110 241 3.5399993e-05 1e-6 113 241 3.5399993e-05 1e-6 114 241 7.0899987e-05 1e-6 116 241 2.6599999e-05 1e-6 118 241 0.0002216 1e-6 119 241 9.7499986e-05 1e-6 120 241 7.0899987e-05 1e-6 126 241 3.5399993e-05 1e-6 127 241 8.8999996e-06 1e-6 130 241 0.012008198 1e-6 131 241 0.0015419999 1e-6 132 241 0.00021269999 1e-6 133 241 0.0001241 1e-6 135 241 1.7699989e-05 1e-6 137 241 8.8999996e-06 1e-6 138 241 3.5399993e-05 1e-6 139 241 0.00027469988 1e-6 140 241 9.7499986e-05 1e-6 141 241 8.8999996e-06 1e-6 142 241 0.00014179999 1e-6 143 241 0.0001507 1e-6 149 241 0.00025699986 1e-6 150 241 0.0010279999 1e-6 151 241 2.6599999e-05 1e-6 152 241 0.0001772 1e-6 157 241 8.8999996e-06 1e-6 158 241 9.7499986e-05 1e-6 159 241 0.0001772 1e-6 160 241 0.00074439985 1e-6 161 241 0.00052289991 1e-6 162 241 2.6599999e-05 1e-6 165 241 0.0001507 1e-6 169 241 0.00068239984 1e-6 170 241 0.00046079978 1e-6 171 241 0.0037486998 1e-6 172 241 2.6599999e-05 1e-6 181 241 8.8999996e-06 1e-6 184 241 5.3199998e-05 1e-6 186 241 0.0001241 1e-6 187 241 0.0040853992 1e-6 188 241 0.0011254998 1e-6 189 241 4.4299988e-05 1e-6 190 241 9.7499986e-05 1e-6 191 241 7.0899987e-05 1e-6 192 241 0.0019673998 1e-6 193 241 0.0015065998 1e-6 194 241 0.0067705996 1e-6 196 241 8.8999996e-06 1e-6 197 241 0.001799 1e-6 198 241 0.021012098 1e-6 200 241 5.3199998e-05 1e-6 201 241 2.6599999e-05 1e-6 203 241 6.1999992e-05 1e-6 204 241 0.00027469988 1e-6 206 241 0.0001507 1e-6 207 241 4.4299988e-05 1e-6 209 241 3.5399993e-05 1e-6 212 241 8.8999996e-06 1e-6 214 241 0.041448098 1e-6 215 241 0.00035449979 1e-6 218 241 0.0001507 1e-6 219 241 0.00084189977 1e-6 221 241 0.00068239984 1e-6 222 241 0.00011519999 1e-6 223 241 0.00071779988 1e-6 224 241 0.15698326 1e-6 225 241 0.0032612998 1e-6 226 241 0.00020379999 1e-6 227 241 0.0010988999 1e-6 228 241 3.5399993e-05 1e-6 229 241 0.00047859992 1e-6 230 241 2.6599999e-05 1e-6 231 241 8.8599991e-05 1e-6 232 241 4.4299988e-05 1e-6 233 241 0.0021888998 1e-6 234 241 0.0034385 1e-6 237 241 0.00010629999 1e-6 239 241 4.4299988e-05 1e-6 240 241 0.0023749999 1e-6 241 241 0.046685599 1e-6 242 241 1.7699989e-05 1e-6 243 241 7.0899987e-05 1e-6 248 241 1.7699989e-05 1e-6 250 241 1.7699989e-05 1e-6 251 241 1.7699989e-05 1e-6 252 241 0.0075504966 1e-6 253 241 5.3199998e-05 1e-6 254 241 2.6599999e-05 1e-6 262 241 1.7699989e-05 1e-6 263 241 8.8999996e-06 1e-6 269 241 8.8999996e-06 1e-6 270 241 0.00024809991 1e-6 271 241 0.0003101998 1e-6 272 241 8.8999996e-06 1e-6 273 241 0.00042539998 1e-6 274 241 0.0016128998 1e-6 276 241 7.9799996e-05 1e-6 277 241 0.0040322989 1e-6 282 241 0.00080649997 1e-6 283 241 6.1999992e-05 1e-6 284 241 4.4299988e-05 1e-6 285 241 4.4299988e-05 1e-6 286 241 0.00018609999 1e-6 287 241 3.5399993e-05 1e-6 288 241 0.00033679977 1e-6 289 241 0.00019499999 1e-6 290 241 0.00021269999 1e-6 292 241 0.0011342999 1e-6 293 241 0.0014356999 1e-6 294 241 0.00013289999 1e-6 295 241 0.00018609999 1e-6 296 241 0.00010629999 1e-6 297 241 7.9799996e-05 1e-6 298 241 6.1999992e-05 1e-6 299 241 2.6599999e-05 1e-6 300 241 0.00013289999 1e-6 301 241 0.0001772 1e-6 305 241 8.8999996e-06 1e-6 307 241 2.6599999e-05 1e-6 312 241 0.00066469982 1e-6 313 241 8.8999996e-06 1e-6 314 241 3.5399993e-05 1e-6 315 241 0.0099520981 1e-6 317 241 0.00042539998 1e-6 319 241 0.0017014998 1e-6 320 241 9.7499986e-05 1e-6 321 241 5.3199998e-05 1e-6 322 241 0.0029687998 1e-6 324 241 7.9799996e-05 1e-6 325 241 0.00094819977 1e-6 326 241 0.0083126985 1e-6 328 241 0.00010629999 1e-6 330 241 8.8999996e-06 1e-6 335 241 7.9799996e-05 1e-6 336 241 8.8599991e-05 1e-6 338 241 2.6599999e-05 1e-6 340 241 0.0061768964 1e-6 341 241 8.8999996e-06 1e-6 344 241 8.8999996e-06 1e-6 345 241 2.6599999e-05 1e-6 347 241 3.5399993e-05 1e-6 348 241 0.00060259993 1e-6 349 241 0.0035979999 1e-6 350 241 8.8599991e-05 1e-6 351 241 5.3199998e-05 1e-6 352 241 8.8999996e-06 1e-6 353 241 8.8999996e-06 1e-6 354 241 5.3199998e-05 1e-6 355 241 8.8999996e-06 1e-6 356 241 0.00058489991 1e-6 357 241 1.7699989e-05 1e-6 358 241 0.003146 1e-6 363 241 8.8999996e-06 1e-6 366 241 8.8999996e-06 1e-6 369 241 8.8999996e-06 1e-6 370 241 5.3199998e-05 1e-6 371 241 2.6599999e-05 1e-6 372 241 9.7499986e-05 1e-6 373 241 2.6599999e-05 1e-6 376 241 8.8999996e-06 1e-6 380 241 1.7699989e-05 1e-6 384 241 2.6599999e-05 1e-6 385 241 0.0014799999 1e-6 386 241 0.00035449979 1e-6 387 241 2.6599999e-05 1e-6 390 241 6.1999992e-05 1e-6 392 241 0.0001241 1e-6 393 241 0.00024809991 1e-6 394 241 8.8999996e-06 1e-6 397 241 1.7699989e-05 1e-6 398 241 2.6599999e-05 1e-6 402 241 4.4299988e-05 1e-6 404 241 2.6599999e-05 1e-6 405 241 0.00023929999 1e-6 409 241 2.6599999e-05 1e-6 414 241 0.00074439985 1e-6 416 241 8.8999996e-06 1e-6 417 241 0.00050509977 1e-6 419 241 3.5399993e-05 1e-6 420 241 8.8999996e-06 1e-6 421 241 0.0001241 1e-6 422 241 0.0001241 1e-6 423 241 8.8999996e-06 1e-6 424 241 2.6599999e-05 1e-6 425 241 8.8999996e-06 1e-6 426 241 8.8999996e-06 1e-6 428 241 0.00023929999 1e-6 430 241 0.00035449979 1e-6 431 241 2.6599999e-05 1e-6 432 241 1.7699989e-05 1e-6 433 241 3.5399993e-05 1e-6 434 241 4.4299988e-05 1e-6 437 241 0.0004164998 1e-6 438 241 1.7699989e-05 1e-6 441 241 1.7699989e-05 1e-6 442 241 0.0015596999 1e-6 443 241 0.0089240968 1e-6 444 241 0.0048209988 1e-6 445 241 0.010873798 1e-6 446 241 0.0012496 1e-6 447 241 0.014968097 1e-6 448 241 6.1999992e-05 1e-6 449 241 8.8999996e-06 1e-6 450 241 0.0045107976 1e-6 452 241 0.012442399 1e-6 453 241 0.0037308999 1e-6 454 241 0.0012317998 1e-6 455 241 0.030441299 1e-6 456 241 0.00047859992 1e-6 457 241 0.0022952999 1e-6 458 241 0.00069119991 1e-6 459 241 0.0013116 1e-6 460 241 0.0013913999 1e-6 463 241 0.014223699 1e-6 464 241 0.0044753999 1e-6 465 241 0.0025699998 1e-6 467 241 0.0080467984 1e-6 468 241 0.0087822974 1e-6 469 241 0.0036334998 1e-6 470 241 0.0048032999 1e-6 471 241 0.0017547 1e-6 473 241 7.0899987e-05 1e-6 477 241 0.00053169997 1e-6 478 241 0.0011077998 1e-6 479 241 0.0016748998 1e-6 483 241 0.00069119991 1e-6 489 241 0.00010629999 1e-6 490 241 0.00062029995 1e-6 491 241 0.00093939994 1e-6 9 242 0.0001121 1e-6 22 242 0.00056059984 1e-6 24 242 0.0001121 1e-6 25 242 0.0001121 1e-6 60 242 0.0029151 1e-6 82 242 0.0001121 1e-6 108 242 0.0001121 1e-6 114 242 0.00022419999 1e-6 126 242 0.0001121 1e-6 130 242 0.066935778 1e-6 131 242 0.0077362992 1e-6 132 242 0.00022419999 1e-6 140 242 0.0076241978 1e-6 142 242 0.0001121 1e-6 156 242 0.0001121 1e-6 158 242 0.0001121 1e-6 160 242 0.0001121 1e-6 165 242 0.0001121 1e-6 171 242 0.0001121 1e-6 187 242 0.00022419999 1e-6 189 242 0.0001121 1e-6 190 242 0.0001121 1e-6 192 242 0.00056059984 1e-6 193 242 0.0001121 1e-6 194 242 0.00044849981 1e-6 197 242 0.0024665999 1e-6 198 242 0.0065029971 1e-6 200 242 0.0001121 1e-6 203 242 0.0001121 1e-6 204 242 0.0001121 1e-6 206 242 0.00022419999 1e-6 214 242 0.026908796 1e-6 222 242 0.0107635 1e-6 223 242 0.0011211999 1e-6 224 242 0.0244422 1e-6 225 242 0.072093248 1e-6 233 242 0.0001121 1e-6 234 242 0.0038120998 1e-6 237 242 0.0001121 1e-6 239 242 0.0025787998 1e-6 240 242 0.013790797 1e-6 241 242 0.0028029999 1e-6 252 242 0.00056059984 1e-6 272 242 0.00067269988 1e-6 274 242 0.0001121 1e-6 277 242 0.013118099 1e-6 282 242 0.00056059984 1e-6 284 242 0.0001121 1e-6 307 242 0.0001121 1e-6 312 242 0.0001121 1e-6 315 242 0.00067269988 1e-6 319 242 0.011324096 1e-6 322 242 0.0077362992 1e-6 324 242 0.0001121 1e-6 326 242 0.0087453984 1e-6 328 242 0.0001121 1e-6 340 242 0.0052695982 1e-6 349 242 0.00022419999 1e-6 350 242 0.0001121 1e-6 351 242 0.0001121 1e-6 354 242 0.0001121 1e-6 356 242 0.00033639977 1e-6 358 242 0.0019059998 1e-6 372 242 0.00022419999 1e-6 385 242 0.0001121 1e-6 387 242 0.0001121 1e-6 402 242 0.00022419999 1e-6 417 242 0.00056059984 1e-6 421 242 0.0001121 1e-6 422 242 0.00022419999 1e-6 430 242 0.0001121 1e-6 443 242 0.0061665997 1e-6 444 242 0.0012333 1e-6 445 242 0.0065029971 1e-6 446 242 0.00067269988 1e-6 447 242 0.0050453991 1e-6 450 242 0.0034756998 1e-6 452 242 0.0086332969 1e-6 453 242 0.0030271998 1e-6 454 242 0.0010090999 1e-6 455 242 0.0225362 1e-6 456 242 0.00044849981 1e-6 457 242 0.0047089979 1e-6 458 242 0.00078479992 1e-6 459 242 0.00078479992 1e-6 460 242 0.0014575999 1e-6 463 242 0.009081699 1e-6 464 242 0.00078479992 1e-6 465 242 0.0014575999 1e-6 467 242 0.011996899 1e-6 468 242 0.023769498 1e-6 469 242 0.0076241978 1e-6 470 242 0.0084089972 1e-6 471 242 0.0023544999 1e-6 473 242 0.00022419999 1e-6 477 242 0.0001121 1e-6 478 242 0.0012333 1e-6 479 242 0.0001121 1e-6 483 242 0.0017938998 1e-6 490 242 0.0056059994 1e-6 491 242 0.00089699985 1e-6 22 243 0.00066699996 1e-6 25 243 0.0009527998 1e-6 60 243 0.0021914998 1e-6 82 243 0.41629344 1e-6 104 243 0.0015244999 1e-6 114 243 9.5299998e-05 1e-6 126 243 9.5299998e-05 1e-6 130 243 0.00028589997 1e-6 142 243 9.5299998e-05 1e-6 143 243 9.5299998e-05 1e-6 160 243 0.00028589997 1e-6 161 243 9.5299998e-05 1e-6 188 243 0.0001906 1e-6 189 243 9.5299998e-05 1e-6 190 243 9.5299998e-05 1e-6 194 243 9.5299998e-05 1e-6 198 243 0.00057169981 1e-6 206 243 0.0001906 1e-6 214 243 0.052786998 1e-6 218 243 0.012100998 1e-6 223 243 0.0012386998 1e-6 224 243 9.5299998e-05 1e-6 230 243 0.020867098 1e-6 231 243 0.014864199 1e-6 234 243 0.0046688989 1e-6 237 243 9.5299998e-05 1e-6 240 243 9.5299998e-05 1e-6 241 243 9.5299998e-05 1e-6 243 243 0.08575505 1e-6 252 243 9.5299998e-05 1e-6 267 243 0.0031444 1e-6 272 243 0.00028589997 1e-6 277 243 0.0004763999 1e-6 312 243 9.5299998e-05 1e-6 350 243 9.5299998e-05 1e-6 358 243 0.00076229987 1e-6 422 243 9.5299998e-05 1e-6 430 243 0.00028589997 1e-6 442 243 0.00066699996 1e-6 443 243 0.0078131966 1e-6 444 243 0.0001906 1e-6 445 243 0.016769897 1e-6 446 243 0.0012386998 1e-6 447 243 0.0014292998 1e-6 450 243 0.0015244999 1e-6 452 243 0.0059075989 1e-6 453 243 0.0033348999 1e-6 454 243 0.00038109999 1e-6 455 243 0.052120097 1e-6 456 243 9.5299998e-05 1e-6 457 243 0.0035255 1e-6 458 243 0.00057169981 1e-6 459 243 0.00028589997 1e-6 460 243 0.0004763999 1e-6 463 243 0.0071462989 1e-6 464 243 0.0001906 1e-6 465 243 0.00076229987 1e-6 467 243 0.0044782981 1e-6 468 243 0.0010480999 1e-6 469 243 0.0019057 1e-6 470 243 0.0020009999 1e-6 471 243 0.00085759978 1e-6 473 243 9.5299998e-05 1e-6 478 243 0.00076229987 1e-6 483 243 0.0012386998 1e-6 490 243 0.00076229987 1e-6 491 243 0.0014292998 1e-6 60 244 0.0025038 1e-6 82 244 0.025538299 1e-6 114 244 0.00050079986 1e-6 130 244 0.075112641 1e-6 131 244 0.00050079986 1e-6 133 244 0.00050079986 1e-6 135 244 0.0095142983 1e-6 142 244 0.035553299 1e-6 143 244 0.027541298 1e-6 149 244 0.0010014998 1e-6 158 244 0.00050079986 1e-6 160 244 0.0045067966 1e-6 161 244 0.047571398 1e-6 188 244 0.070105195 1e-6 192 244 0.00050079986 1e-6 198 244 0.010015 1e-6 206 244 0.00050079986 1e-6 214 244 0.0075112991 1e-6 218 244 0.0015022999 1e-6 223 244 0.00050079986 1e-6 224 244 0.0015022999 1e-6 225 244 0.0015022999 1e-6 230 244 0.0065097995 1e-6 231 244 0.0015022999 1e-6 234 244 0.0035052998 1e-6 240 244 0.00050079986 1e-6 241 244 0.014020998 1e-6 243 244 0.17526287 1e-6 244 244 0.0075112991 1e-6 272 244 0.00050079986 1e-6 277 244 0.010015 1e-6 279 244 0.00050079986 1e-6 317 244 0.0010014998 1e-6 358 244 0.0010014998 1e-6 443 244 0.0080119967 1e-6 444 244 0.00050079986 1e-6 445 244 0.010015 1e-6 446 244 0.0015022999 1e-6 450 244 0.0030044999 1e-6 452 244 0.0055082999 1e-6 453 244 0.00050079986 1e-6 454 244 0.0015022999 1e-6 455 244 0.045568399 1e-6 457 244 0.0035052998 1e-6 458 244 0.00050079986 1e-6 460 244 0.0010014998 1e-6 463 244 0.0080119967 1e-6 464 244 0.00050079986 1e-6 465 244 0.00050079986 1e-6 467 244 0.0065097995 1e-6 468 244 0.0020029999 1e-6 469 244 0.0030044999 1e-6 470 244 0.0035052998 1e-6 471 244 0.00050079986 1e-6 478 244 0.0015022999 1e-6 483 244 0.0065097995 1e-6 490 244 0.0010014998 1e-6 491 244 0.00050079986 1e-6 18 245 3.3199991e-05 1e-6 22 245 6.6399996e-05 1e-6 60 245 0.0011292 1e-6 108 245 6.6399996e-05 1e-6 114 245 0.00013279999 1e-6 126 245 9.9599987e-05 1e-6 130 245 0.0106606 1e-6 131 245 0.0046494976 1e-6 132 245 0.0028893 1e-6 133 245 0.0055128969 1e-6 139 245 0.020889398 1e-6 141 245 0.0015608999 1e-6 142 245 0.0029224998 1e-6 143 245 0.0070737973 1e-6 149 245 0.0027564999 1e-6 150 245 0.0016272999 1e-6 151 245 3.3199991e-05 1e-6 161 245 0.0031881998 1e-6 171 245 0.0027896999 1e-6 188 245 0.0015940999 1e-6 189 245 0.00019929999 1e-6 190 245 0.0001661 1e-6 192 245 0.0012951999 1e-6 193 245 0.0011292 1e-6 194 245 9.9599987e-05 1e-6 196 245 3.3199991e-05 1e-6 197 245 3.3199991e-05 1e-6 198 245 0.0155425 1e-6 200 245 3.3199991e-05 1e-6 203 245 9.9599987e-05 1e-6 204 245 9.9599987e-05 1e-6 206 245 0.0001661 1e-6 207 245 6.6399996e-05 1e-6 209 245 3.3199991e-05 1e-6 214 245 0.0025239999 1e-6 219 245 0.007571999 1e-6 224 245 3.3199991e-05 1e-6 230 245 0.0009631 1e-6 233 245 0.0010626998 1e-6 234 245 0.0017269 1e-6 237 245 0.00019929999 1e-6 240 245 0.0220185 1e-6 241 245 0.049217898 1e-6 243 245 0.20706719 1e-6 244 245 0.019826598 1e-6 245 245 0.0063099973 1e-6 246 245 6.6399996e-05 1e-6 251 245 0.0022914999 1e-6 272 245 0.0002325 1e-6 279 245 0.00019929999 1e-6 284 245 3.3199991e-05 1e-6 292 245 0.0057453997 1e-6 315 245 0.0062435977 1e-6 317 245 0.00099629979 1e-6 335 245 0.0017269 1e-6 349 245 0.0057453997 1e-6 356 245 6.6399996e-05 1e-6 358 245 0.0011292 1e-6 387 245 6.6399996e-05 1e-6 402 245 6.6399996e-05 1e-6 422 245 9.9599987e-05 1e-6 430 245 3.3199991e-05 1e-6 432 245 3.3199991e-05 1e-6 433 245 6.6399996e-05 1e-6 434 245 6.6399996e-05 1e-6 437 245 0.0052804984 1e-6 442 245 0.0029888998 1e-6 443 245 0.0009631 1e-6 444 245 0.0010626998 1e-6 445 245 0.0096974969 1e-6 446 245 0.00053139986 1e-6 447 245 0.0039519966 1e-6 450 245 0.0032213998 1e-6 452 245 0.0038192 1e-6 453 245 0.00033209985 1e-6 454 245 0.0001661 1e-6 455 245 0.035468798 1e-6 456 245 0.00019929999 1e-6 457 245 0.0055128969 1e-6 458 245 0.0010958998 1e-6 459 245 0.00053139986 1e-6 460 245 0.00099629979 1e-6 463 245 0.011523999 1e-6 464 245 0.00073059998 1e-6 465 245 0.0014944999 1e-6 467 245 0.015011098 1e-6 468 245 0.012453899 1e-6 469 245 0.0034538999 1e-6 470 245 0.0038855998 1e-6 471 245 0.0011623998 1e-6 473 245 9.9599987e-05 1e-6 477 245 6.6399996e-05 1e-6 478 245 0.0017269 1e-6 483 245 0.0044169985 1e-6 489 245 3.3199991e-05 1e-6 490 245 0.00033209985 1e-6 491 245 6.6399996e-05 1e-6 60 246 0.0012084998 1e-6 114 246 0.00060419994 1e-6 130 246 0.047129899 1e-6 131 246 0.027190298 1e-6 132 246 0.0054380968 1e-6 133 246 0.0018126999 1e-6 139 246 0.062839866 1e-6 143 246 0.031419899 1e-6 145 246 0.0084591992 1e-6 146 246 0.00060419994 1e-6 149 246 0.0012084998 1e-6 150 246 0.00060419994 1e-6 171 246 0.00060419994 1e-6 192 246 0.00060419994 1e-6 198 246 0.022960696 1e-6 206 246 0.00060419994 1e-6 214 246 0.00060419994 1e-6 219 246 0.010876097 1e-6 222 246 0.00060419994 1e-6 224 246 0.0012084998 1e-6 225 246 0.00060419994 1e-6 230 246 0.00060419994 1e-6 234 246 0.0018126999 1e-6 240 246 0.0277946 1e-6 241 246 0.051963698 1e-6 243 246 0.068277895 1e-6 244 246 0.0054380968 1e-6 245 246 0.00060419994 1e-6 246 246 0.030815698 1e-6 292 246 0.00060419994 1e-6 315 246 0.00060419994 1e-6 317 246 0.0012084998 1e-6 349 246 0.00060419994 1e-6 358 246 0.0012084998 1e-6 377 246 0.00060419994 1e-6 437 246 0.0012084998 1e-6 444 246 0.00060419994 1e-6 445 246 0.006646499 1e-6 447 246 0.0048337989 1e-6 450 246 0.0030210998 1e-6 452 246 0.0036253999 1e-6 453 246 0.00060419994 1e-6 455 246 0.033232599 1e-6 457 246 0.0042295977 1e-6 458 246 0.00060419994 1e-6 459 246 0.00060419994 1e-6 460 246 0.0012084998 1e-6 463 246 0.0096676983 1e-6 464 246 0.00060419994 1e-6 465 246 0.00060419994 1e-6 467 246 0.0090633966 1e-6 468 246 0.039879199 1e-6 469 246 0.0060422979 1e-6 470 246 0.0060422979 1e-6 471 246 0.00060419994 1e-6 478 246 0.0018126999 1e-6 483 246 0.0060422979 1e-6 490 246 0.0012084998 1e-6 60 247 0.0012361 1e-6 82 247 0.0074165985 1e-6 114 247 0.0012361 1e-6 130 247 0.063040793 1e-6 131 247 0.0012361 1e-6 133 247 0.034610599 1e-6 139 247 0.0037082999 1e-6 149 247 0.029666297 1e-6 150 247 0.022249699 1e-6 156 247 0.0012361 1e-6 198 247 0.0173053 1e-6 206 247 0.0012361 1e-6 214 247 0.0012361 1e-6 224 247 0.004944399 1e-6 234 247 0.0037082999 1e-6 243 247 0.31149566 1e-6 317 247 0.0012361 1e-6 358 247 0.0012361 1e-6 382 247 0.0024722 1e-6 437 247 0.009888798 1e-6 445 247 0.0086526982 1e-6 450 247 0.004944399 1e-6 452 247 0.0037082999 1e-6 453 247 0.0012361 1e-6 455 247 0.028430197 1e-6 457 247 0.004944399 1e-6 460 247 0.0012361 1e-6 463 247 0.0037082999 1e-6 465 247 0.0012361 1e-6 467 247 0.0086526982 1e-6 468 247 0.0074165985 1e-6 469 247 0.004944399 1e-6 470 247 0.0061804987 1e-6 471 247 0.0037082999 1e-6 478 247 0.0012361 1e-6 483 247 0.0037082999 1e-6 490 247 0.0012361 1e-6 491 247 0.0012361 1e-6 60 248 0.0021007999 1e-6 114 248 0.00030009984 1e-6 126 248 0.00030009984 1e-6 130 248 0.036914799 1e-6 131 248 0.023109198 1e-6 132 248 0.00030009984 1e-6 133 248 0.016206499 1e-6 135 248 0.00030009984 1e-6 139 248 0.061224498 1e-6 141 248 0.00030009984 1e-6 142 248 0.021308497 1e-6 156 248 0.0054021999 1e-6 160 248 0.0024009999 1e-6 161 248 0.0015005998 1e-6 165 248 0.006902799 1e-6 169 248 0.00030009984 1e-6 171 248 0.0018006999 1e-6 190 248 0.00030009984 1e-6 192 248 0.016206499 1e-6 194 248 0.00060019991 1e-6 198 248 0.0066025965 1e-6 206 248 0.00060019991 1e-6 224 248 0.0057022981 1e-6 234 248 0.0030011998 1e-6 237 248 0.00030009984 1e-6 241 248 0.076530576 1e-6 243 248 0.017106798 1e-6 248 248 0.027010798 1e-6 272 248 0.00060019991 1e-6 279 248 0.00030009984 1e-6 284 248 0.00030009984 1e-6 315 248 0.017106798 1e-6 317 248 0.00090039987 1e-6 319 248 0.072328866 1e-6 322 248 0.00030009984 1e-6 326 248 0.00030009984 1e-6 358 248 0.0012004999 1e-6 378 248 0.00030009984 1e-6 419 248 0.00060019991 1e-6 422 248 0.00030009984 1e-6 437 248 0.027911197 1e-6 442 248 0.021608599 1e-6 443 248 0.0024009999 1e-6 444 248 0.00060019991 1e-6 445 248 0.013505399 1e-6 447 248 0.0021007999 1e-6 450 248 0.0045017973 1e-6 452 248 0.0048018992 1e-6 453 248 0.0012004999 1e-6 454 248 0.00060019991 1e-6 455 248 0.045618199 1e-6 456 248 0.00030009984 1e-6 457 248 0.0036013999 1e-6 458 248 0.0021007999 1e-6 459 248 0.00060019991 1e-6 460 248 0.0015005998 1e-6 463 248 0.034513798 1e-6 464 248 0.00060019991 1e-6 465 248 0.0012004999 1e-6 467 248 0.0090035982 1e-6 468 248 0.014405798 1e-6 469 248 0.0057022981 1e-6 470 248 0.0063024983 1e-6 471 248 0.0021007999 1e-6 473 248 0.00030009984 1e-6 478 248 0.0015005998 1e-6 483 248 0.0030011998 1e-6 490 248 0.00060019991 1e-6 491 248 0.00090039987 1e-6 60 249 0.00085229985 1e-6 114 249 0.00028409995 1e-6 126 249 0.00028409995 1e-6 130 249 0.025568198 1e-6 131 249 0.0068181977 1e-6 133 249 0.0065340996 1e-6 139 249 0.11363637 1e-6 141 249 0.00028409995 1e-6 149 249 0.0011363998 1e-6 150 249 0.0014205 1e-6 156 249 0.0068181977 1e-6 160 249 0.00028409995 1e-6 190 249 0.00028409995 1e-6 194 249 0.00028409995 1e-6 198 249 0.0028408999 1e-6 203 249 0.00028409995 1e-6 206 249 0.0005681999 1e-6 219 249 0.0073863976 1e-6 224 249 0.00028409995 1e-6 234 249 0.0022727 1e-6 237 249 0.00028409995 1e-6 241 249 0.093181789 1e-6 243 249 0.076420486 1e-6 248 249 0.00028409995 1e-6 249 249 0.012784097 1e-6 272 249 0.00028409995 1e-6 277 249 0.00028409995 1e-6 279 249 0.00028409995 1e-6 284 249 0.00028409995 1e-6 292 249 0.00028409995 1e-6 317 249 0.0011363998 1e-6 319 249 0.025284097 1e-6 326 249 0.00028409995 1e-6 358 249 0.0014205 1e-6 422 249 0.00028409995 1e-6 430 249 0.00028409995 1e-6 434 249 0.00028409995 1e-6 437 249 0.018181797 1e-6 442 249 0.0088067986 1e-6 443 249 0.0011363998 1e-6 444 249 0.00028409995 1e-6 445 249 0.010511398 1e-6 447 249 0.00085229985 1e-6 450 249 0.0056817979 1e-6 452 249 0.0053976998 1e-6 453 249 0.00085229985 1e-6 455 249 0.0480114 1e-6 456 249 0.00028409995 1e-6 457 249 0.0034091 1e-6 458 249 0.0005681999 1e-6 459 249 0.00028409995 1e-6 460 249 0.0017044998 1e-6 463 249 0.014772698 1e-6 464 249 0.0005681999 1e-6 465 249 0.0014205 1e-6 467 249 0.0085226968 1e-6 468 249 0.0082385987 1e-6 469 249 0.0048294999 1e-6 470 249 0.0053976998 1e-6 471 249 0.0025567999 1e-6 473 249 0.00028409995 1e-6 478 249 0.0019885998 1e-6 483 249 0.0036931999 1e-6 490 249 0.0005681999 1e-6 60 250 0.0012578999 1e-6 82 250 0.0012578999 1e-6 114 250 0.00041929982 1e-6 126 250 0.00041929982 1e-6 130 250 0.027672999 1e-6 131 250 0.018029399 1e-6 133 250 0.0075471997 1e-6 139 250 0.032285098 1e-6 141 250 0.00041929982 1e-6 142 250 0.00041929982 1e-6 149 250 0.00083859987 1e-6 150 250 0.00083859987 1e-6 156 250 0.020545099 1e-6 160 250 0.0096435994 1e-6 161 250 0.00083859987 1e-6 171 250 0.00041929982 1e-6 188 250 0.00041929982 1e-6 193 250 0.0037735999 1e-6 198 250 0.018867899 1e-6 206 250 0.00083859987 1e-6 219 250 0.0075471997 1e-6 224 250 0.00041929982 1e-6 231 250 0.00041929982 1e-6 234 250 0.0033542998 1e-6 237 250 0.00041929982 1e-6 241 250 0.064570189 1e-6 243 250 0.092662454 1e-6 249 250 0.00041929982 1e-6 250 250 0.00041929982 1e-6 251 250 0.00083859987 1e-6 252 250 0.00041929982 1e-6 272 250 0.00041929982 1e-6 279 250 0.00041929982 1e-6 290 250 0.0016770998 1e-6 292 250 0.00041929982 1e-6 298 250 0.0012578999 1e-6 312 250 0.0033542998 1e-6 315 250 0.00083859987 1e-6 317 250 0.00083859987 1e-6 319 250 0.015513599 1e-6 322 250 0.012578599 1e-6 326 250 0.018867899 1e-6 358 250 0.0012578999 1e-6 378 250 0.014255799 1e-6 421 250 0.00083859987 1e-6 424 250 0.0012578999 1e-6 426 250 0.00041929982 1e-6 437 250 0.0083856992 1e-6 442 250 0.0012578999 1e-6 443 250 0.0012578999 1e-6 444 250 0.0037735999 1e-6 445 250 0.021802898 1e-6 447 250 0.020545099 1e-6 450 250 0.0041928999 1e-6 452 250 0.0037735999 1e-6 455 250 0.031027298 1e-6 456 250 0.00041929982 1e-6 457 250 0.0037735999 1e-6 458 250 0.00083859987 1e-6 460 250 0.0012578999 1e-6 463 250 0.012159299 1e-6 464 250 0.00083859987 1e-6 465 250 0.00041929982 1e-6 467 250 0.010062899 1e-6 468 250 0.019706499 1e-6 469 250 0.0062892996 1e-6 470 250 0.0075471997 1e-6 471 250 0.0016770998 1e-6 473 250 0.00041929982 1e-6 478 250 0.0012578999 1e-6 483 250 0.0041928999 1e-6 490 250 0.00083859987 1e-6 60 251 0.00065449998 1e-6 82 251 0.033376999 1e-6 114 251 0.00065449998 1e-6 130 251 0.0032722999 1e-6 133 251 0.00065449998 1e-6 139 251 0.0032722999 1e-6 142 251 0.00065449998 1e-6 149 251 0.0013088998 1e-6 150 251 0.0013088998 1e-6 161 251 0.028141398 1e-6 171 251 0.00065449998 1e-6 188 251 0.0026177999 1e-6 191 251 0.00065449998 1e-6 193 251 0.0157068 1e-6 198 251 0.0058900975 1e-6 206 251 0.0013088998 1e-6 214 251 0.0013088998 1e-6 225 251 0.00065449998 1e-6 230 251 0.00065449998 1e-6 231 251 0.021596897 1e-6 234 251 0.0045811981 1e-6 237 251 0.00065449998 1e-6 240 251 0.00065449998 1e-6 241 251 0.0039266981 1e-6 243 251 0.19437164 1e-6 251 251 0.0058900975 1e-6 312 251 0.0091622993 1e-6 315 251 0.0078534 1e-6 317 251 0.00065449998 1e-6 319 251 0.0235602 1e-6 358 251 0.0013088998 1e-6 437 251 0.059554998 1e-6 443 251 0.00065449998 1e-6 445 251 0.0045811981 1e-6 450 251 0.0045811981 1e-6 452 251 0.0052355975 1e-6 453 251 0.0019633998 1e-6 455 251 0.038612597 1e-6 457 251 0.0039266981 1e-6 458 251 0.00065449998 1e-6 460 251 -0.024869099 1e-6 463 251 0.0065444969 1e-6 464 251 0.0013088998 1e-6 465 251 0.00065449998 1e-6 467 251 0.0065444969 1e-6 468 251 0.052355997 1e-6 469 251 0.0052355975 1e-6 470 251 0.0052355975 1e-6 471 251 0.0019633998 1e-6 478 251 0.0013088998 1e-6 483 251 0.0019633998 1e-6 490 251 0.00065449998 1e-6 491 251 0.00065449998 1e-6 4 252 2.8299997e-05 1e-6 18 252 0.0011618 1e-6 22 252 0.00042499998 1e-6 24 252 0.006403897 1e-6 25 252 0.00045339996 1e-6 60 252 0.0098324977 1e-6 82 252 2.8299997e-05 1e-6 108 252 8.4999992e-05 1e-6 114 252 0.00011329999 1e-6 126 252 8.4999992e-05 1e-6 130 252 0.00028339983 1e-6 132 252 5.6699995e-05 1e-6 135 252 2.8299997e-05 1e-6 139 252 5.6699995e-05 1e-6 150 252 0.00062339986 1e-6 151 252 0.00085009984 1e-6 156 252 2.8299997e-05 1e-6 159 252 2.8299997e-05 1e-6 160 252 0.0043920986 1e-6 161 252 0.00039669988 1e-6 162 252 0.00076509989 1e-6 165 252 0.00036839978 1e-6 169 252 0.0012750998 1e-6 170 252 0.00022669999 1e-6 171 252 0.010144196 1e-6 172 252 0.0031452999 1e-6 187 252 5.6699995e-05 1e-6 189 252 8.4999992e-05 1e-6 190 252 8.4999992e-05 1e-6 192 252 0.0022384999 1e-6 193 252 0.00076509989 1e-6 194 252 0.00011329999 1e-6 197 252 2.8299997e-05 1e-6 198 252 0.01873 1e-6 200 252 2.8299997e-05 1e-6 203 252 5.6699995e-05 1e-6 204 252 8.4999992e-05 1e-6 206 252 0.00011329999 1e-6 207 252 2.8299997e-05 1e-6 214 252 0.015612997 1e-6 218 252 2.8299997e-05 1e-6 219 252 0.0016150998 1e-6 223 252 0.0024368998 1e-6 224 252 0.00028339983 1e-6 227 252 2.8299997e-05 1e-6 228 252 2.8299997e-05 1e-6 233 252 0.0028902998 1e-6 234 252 0.0026918999 1e-6 237 252 0.00017 1e-6 240 252 0.0012750998 1e-6 241 252 0.059986997 1e-6 242 252 0.0012750998 1e-6 252 252 0.12668949 1e-6 253 252 2.8299997e-05 1e-6 263 252 0.00073669991 1e-6 267 252 0.00070839981 1e-6 268 252 0.00031169993 1e-6 270 252 0.00042499998 1e-6 271 252 2.8299997e-05 1e-6 272 252 0.00073669991 1e-6 273 252 0.0047603995 1e-6 274 252 0.0009066998 1e-6 277 252 0.0013317999 1e-6 279 252 0.0010201 1e-6 282 252 0.00028339983 1e-6 283 252 8.4999992e-05 1e-6 284 252 8.4999992e-05 1e-6 285 252 2.8299997e-05 1e-6 289 252 2.8299997e-05 1e-6 290 252 0.0024935999 1e-6 292 252 0.00025499985 1e-6 293 252 0.00025499985 1e-6 295 252 0.00011329999 1e-6 296 252 0.00014169999 1e-6 298 252 8.4999992e-05 1e-6 312 252 0.00017 1e-6 313 252 2.8299997e-05 1e-6 315 252 0.0029753 1e-6 317 252 0.00028339983 1e-6 318 252 2.8299997e-05 1e-6 319 252 0.00031169993 1e-6 320 252 5.6699995e-05 1e-6 322 252 5.6699995e-05 1e-6 324 252 2.8299997e-05 1e-6 325 252 2.8299997e-05 1e-6 326 252 0.00014169999 1e-6 328 252 8.4999992e-05 1e-6 340 252 0.00036839978 1e-6 345 252 0.0010483998 1e-6 346 252 2.8299997e-05 1e-6 349 252 0.00059509999 1e-6 350 252 0.00082169985 1e-6 351 252 5.6699995e-05 1e-6 352 252 0.00011329999 1e-6 354 252 5.6699995e-05 1e-6 356 252 0.00022669999 1e-6 357 252 2.8299997e-05 1e-6 358 252 0.0030318999 1e-6 369 252 2.8299997e-05 1e-6 370 252 0.00031169993 1e-6 372 252 8.4999992e-05 1e-6 375 252 0.0013317999 1e-6 377 252 0.00059509999 1e-6 384 252 0.00017 1e-6 385 252 8.4999992e-05 1e-6 386 252 0.0010201 1e-6 387 252 8.4999992e-05 1e-6 393 252 5.6699995e-05 1e-6 397 252 2.8299997e-05 1e-6 398 252 5.6699995e-05 1e-6 401 252 5.6699995e-05 1e-6 402 252 0.00025499985 1e-6 412 252 2.8299997e-05 1e-6 414 252 0.00076509989 1e-6 417 252 0.00042499998 1e-6 419 252 0.0013885 1e-6 420 252 2.8299997e-05 1e-6 421 252 8.4999992e-05 1e-6 422 252 8.4999992e-05 1e-6 430 252 5.6699995e-05 1e-6 433 252 2.8299997e-05 1e-6 434 252 2.8299997e-05 1e-6 442 252 8.4999992e-05 1e-6 443 252 0.015131298 1e-6 444 252 0.0011333998 1e-6 445 252 0.011249296 1e-6 446 252 0.00085009984 1e-6 447 252 0.0041653998 1e-6 450 252 0.0032869999 1e-6 452 252 0.010710899 1e-6 453 252 0.020628497 1e-6 454 252 0.0017567999 1e-6 455 252 0.038423397 1e-6 456 252 0.00028339983 1e-6 457 252 0.0035702998 1e-6 458 252 0.0021819 1e-6 459 252 0.0020684998 1e-6 460 252 0.00082169985 1e-6 463 252 0.012071099 1e-6 464 252 0.0012750998 1e-6 465 252 0.00079339999 1e-6 467 252 0.015074696 1e-6 468 252 0.014196299 1e-6 469 252 0.0047320984 1e-6 470 252 0.0053554997 1e-6 471 252 0.0069138967 1e-6 473 252 8.4999992e-05 1e-6 477 252 0.00096339989 1e-6 478 252 0.0010767998 1e-6 483 252 0.0012467999 1e-6 489 252 0.00014169999 1e-6 490 252 0.00039669988 1e-6 491 252 0.0042219982 1e-6 9 253 4.7299996e-05 1e-6 18 253 0.0002366 1e-6 24 253 0.011972897 1e-6 60 253 0.0037385998 1e-6 82 253 4.7299996e-05 1e-6 108 253 4.7299996e-05 1e-6 114 253 9.4599993e-05 1e-6 126 253 4.7299996e-05 1e-6 150 253 0.00075719994 1e-6 160 253 0.00037859986 1e-6 162 253 0.0022715 1e-6 169 253 0.0021768999 1e-6 172 253 0.00099379988 1e-6 189 253 4.7299996e-05 1e-6 190 253 9.4599993e-05 1e-6 192 253 0.0032179998 1e-6 193 253 4.7299996e-05 1e-6 194 253 0.00014199999 1e-6 198 253 0.089867949 1e-6 200 253 4.7299996e-05 1e-6 203 253 4.7299996e-05 1e-6 204 253 0.0036912998 1e-6 206 253 0.00014199999 1e-6 207 253 4.7299996e-05 1e-6 214 253 0.033694599 1e-6 233 253 0.0015143999 1e-6 234 253 0.0053475983 1e-6 237 253 0.00014199999 1e-6 241 253 0.0048743971 1e-6 252 253 0.00033129985 1e-6 253 253 0.0031706998 1e-6 267 253 0.0065779984 1e-6 270 253 0.0020821998 1e-6 273 253 0.015948098 1e-6 276 253 9.4599993e-05 1e-6 277 253 9.4599993e-05 1e-6 279 253 0.0041171983 1e-6 284 253 9.4599993e-05 1e-6 314 253 0.0026027998 1e-6 317 253 0.0010410999 1e-6 326 253 4.7299996e-05 1e-6 340 253 0.0056788996 1e-6 349 253 0.0128721 1e-6 356 253 0.00018929999 1e-6 358 253 0.0035492999 1e-6 384 253 4.7299996e-05 1e-6 387 253 4.7299996e-05 1e-6 402 253 4.7299996e-05 1e-6 414 253 0.00094649987 1e-6 417 253 0.00052059977 1e-6 421 253 9.4599993e-05 1e-6 422 253 4.7299996e-05 1e-6 430 253 4.7299996e-05 1e-6 433 253 4.7299996e-05 1e-6 434 253 4.7299996e-05 1e-6 442 253 0.0032652998 1e-6 443 253 0.0387582 1e-6 444 253 0.00014199999 1e-6 445 253 0.015096299 1e-6 446 253 0.0019403 1e-6 447 253 0.00056789978 1e-6 448 253 4.7299996e-05 1e-6 450 253 0.0026974999 1e-6 452 253 0.017604496 1e-6 453 253 0.030145299 1e-6 454 253 0.0022241999 1e-6 455 253 0.0234253 1e-6 456 253 0.00033129985 1e-6 457 253 0.0026974999 1e-6 458 253 0.00033129985 1e-6 459 253 0.00080449996 1e-6 460 253 0.00085179997 1e-6 463 253 0.017415199 1e-6 464 253 0.00018929999 1e-6 465 253 0.00099379988 1e-6 467 253 0.0090861991 1e-6 468 253 0.0043537989 1e-6 469 253 0.0031706998 1e-6 470 253 0.0035019999 1e-6 471 253 0.0010410999 1e-6 472 253 0.00047319988 1e-6 473 253 9.4599993e-05 1e-6 477 253 4.7299996e-05 1e-6 478 253 0.0012303998 1e-6 483 253 0.0010883999 1e-6 489 253 9.4599993e-05 1e-6 490 253 0.00028389995 1e-6 491 253 0.0077137984 1e-6 18 254 0.00061059999 1e-6 19 254 0.00088809989 1e-6 21 254 5.5499986e-05 1e-6 22 254 0.025312196 1e-6 24 254 0.0511241 1e-6 25 254 5.5499986e-05 1e-6 60 254 0.034415796 1e-6 68 254 0.00088809989 1e-6 69 254 0.00044409977 1e-6 73 254 0.00011099999 1e-6 75 254 5.5499986e-05 1e-6 108 254 5.5499986e-05 1e-6 114 254 0.00011099999 1e-6 126 254 5.5499986e-05 1e-6 160 254 0.0017762999 1e-6 169 254 0.0027754998 1e-6 189 254 5.5499986e-05 1e-6 190 254 5.5499986e-05 1e-6 193 254 0.012323096 1e-6 194 254 0.00011099999 1e-6 200 254 5.5499986e-05 1e-6 203 254 5.5499986e-05 1e-6 204 254 5.5499986e-05 1e-6 206 254 0.00011099999 1e-6 214 254 0.025978398 1e-6 219 254 0.0015542998 1e-6 220 254 0.0023313998 1e-6 224 254 0.0016097999 1e-6 234 254 0.014654499 1e-6 235 254 0.00272 1e-6 237 254 0.00066609983 1e-6 241 254 5.5499986e-05 1e-6 242 254 0.0044406988 1e-6 251 254 0.00011099999 1e-6 252 254 5.5499986e-05 1e-6 254 254 0.0020537998 1e-6 270 254 0.0029419998 1e-6 273 254 0.014987499 1e-6 277 254 0.0032195 1e-6 287 254 5.5499986e-05 1e-6 295 254 0.0018872998 1e-6 305 254 0.00016649999 1e-6 320 254 0.0019427999 1e-6 322 254 0.0013321999 1e-6 324 254 0.00049959985 1e-6 328 254 0.00055509992 1e-6 331 254 0.0049957968 1e-6 349 254 0.0011656999 1e-6 350 254 0.0023868999 1e-6 356 254 0.00038859993 1e-6 358 254 0.00038859993 1e-6 384 254 0.00016649999 1e-6 386 254 0.0025533999 1e-6 387 254 5.5499986e-05 1e-6 402 254 0.00016649999 1e-6 404 254 5.5499986e-05 1e-6 414 254 0.00049959985 1e-6 417 254 0.00016649999 1e-6 422 254 5.5499986e-05 1e-6 442 254 0.0044962987 1e-6 443 254 0.0329725 1e-6 444 254 0.0021094 1e-6 445 254 0.0286428 1e-6 446 254 0.0036636 1e-6 447 254 0.0022759 1e-6 448 254 0.00016649999 1e-6 450 254 0.0021094 1e-6 452 254 0.050402399 1e-6 453 254 0.043297298 1e-6 454 254 0.0032749998 1e-6 455 254 0.016097698 1e-6 456 254 0.00066609983 1e-6 457 254 0.017596398 1e-6 458 254 0.00038859993 1e-6 459 254 0.0013321999 1e-6 460 254 0.0018318 1e-6 463 254 0.0085483976 1e-6 464 254 0.0016097999 1e-6 465 254 0.00044409977 1e-6 467 254 0.018706597 1e-6 468 254 0.0026089 1e-6 469 254 0.0064945966 1e-6 470 254 0.0020537998 1e-6 471 254 0.0062169991 1e-6 473 254 5.5499986e-05 1e-6 477 254 0.0017762999 1e-6 478 254 0.00061059999 1e-6 483 254 0.00044409977 1e-6 489 254 0.00044409977 1e-6 490 254 0.00016649999 1e-6 491 254 5.5499986e-05 1e-6 18 255 0.00042859977 1e-6 22 255 0.0021431998 1e-6 24 255 0.051007297 1e-6 60 255 0.0092155971 1e-6 108 255 0.00021429999 1e-6 114 255 0.00042859977 1e-6 126 255 0.00021429999 1e-6 160 255 0.0032146999 1e-6 169 255 0.0021431998 1e-6 189 255 0.00021429999 1e-6 190 255 0.00021429999 1e-6 194 255 0.00021429999 1e-6 198 255 0.0062151998 1e-6 206 255 0.00042859977 1e-6 214 255 0.0070723966 1e-6 218 255 0.00021429999 1e-6 220 255 0.00064289989 1e-6 233 255 0.0060008988 1e-6 234 255 0.0098585971 1e-6 235 255 0.0034290999 1e-6 237 255 0.00042859977 1e-6 240 255 0.0012858999 1e-6 252 255 0.00021429999 1e-6 254 255 0.00042859977 1e-6 255 255 0.0032146999 1e-6 260 255 0.0021431998 1e-6 271 255 0.00021429999 1e-6 272 255 0.0017144999 1e-6 273 255 0.00085729989 1e-6 277 255 0.0045005977 1e-6 282 255 0.0019287998 1e-6 283 255 0.00042859977 1e-6 284 255 0.00021429999 1e-6 292 255 0.00021429999 1e-6 295 255 0.00042859977 1e-6 297 255 0.00042859977 1e-6 305 255 0.00085729989 1e-6 322 255 0.0010715998 1e-6 324 255 0.00042859977 1e-6 326 255 0.010930099 1e-6 328 255 0.0034290999 1e-6 331 255 0.0045005977 1e-6 335 255 0.0027860999 1e-6 351 255 0.0017144999 1e-6 354 255 0.0034290999 1e-6 356 255 0.00042859977 1e-6 358 255 0.0021431998 1e-6 372 255 0.00085729989 1e-6 387 255 0.00021429999 1e-6 402 255 0.0021431998 1e-6 417 255 0.00064289989 1e-6 443 255 0.010501496 1e-6 444 255 0.0070723966 1e-6 445 255 0.034933597 1e-6 446 255 0.0021431998 1e-6 447 255 0.0062151998 1e-6 448 255 0.00021429999 1e-6 450 255 0.0038576999 1e-6 452 255 0.025932297 1e-6 453 255 0.076082289 1e-6 454 255 0.00064289989 1e-6 455 255 0.012430299 1e-6 456 255 0.00042859977 1e-6 457 255 0.0070723966 1e-6 458 255 0.0012858999 1e-6 459 255 0.00085729989 1e-6 460 255 0.0077153966 1e-6 463 255 0.0117874 1e-6 464 255 0.00064289989 1e-6 465 255 0.0012858999 1e-6 467 255 0.0145735 1e-6 468 255 0.0079296976 1e-6 469 255 0.0057864971 1e-6 470 255 0.0062151998 1e-6 471 255 0.013501897 1e-6 473 255 0.00021429999 1e-6 478 255 0.0017144999 1e-6 483 255 0.0017144999 1e-6 490 255 0.00064289989 1e-6 19 256 0.0012429999 1e-6 24 256 0.011187099 1e-6 60 256 0.0074579976 1e-6 114 256 0.00062149996 1e-6 160 256 0.0055934973 1e-6 198 256 0.032939699 1e-6 206 256 0.00062149996 1e-6 214 256 0.070229948 1e-6 223 256 0.025481697 1e-6 233 256 0.013051599 1e-6 234 256 0.0018644999 1e-6 235 256 0.003729 1e-6 240 256 0.0055934973 1e-6 256 256 0.0031074998 1e-6 263 256 0.0012429999 1e-6 268 256 0.00062149996 1e-6 272 256 0.0012429999 1e-6 273 256 0.011808597 1e-6 279 256 0.0018644999 1e-6 340 256 0.0012429999 1e-6 356 256 0.00062149996 1e-6 358 256 0.0024859998 1e-6 417 256 0.00062149996 1e-6 443 256 0.0074579976 1e-6 444 256 0.022374097 1e-6 445 256 0.010565598 1e-6 446 256 0.00062149996 1e-6 447 256 0.028589197 1e-6 450 256 0.0043504983 1e-6 452 256 0.0149161 1e-6 453 256 0.025481697 1e-6 454 256 0.0018644999 1e-6 455 256 0.016159099 1e-6 457 256 0.011808597 1e-6 458 256 0.0012429999 1e-6 459 256 0.00062149996 1e-6 460 256 0.0074579976 1e-6 463 256 0.0074579976 1e-6 464 256 0.0012429999 1e-6 465 256 0.00062149996 1e-6 467 256 0.010565598 1e-6 468 256 0.013051599 1e-6 469 256 0.0074579976 1e-6 470 256 0.0074579976 1e-6 471 256 0.003729 1e-6 478 256 0.0012429999 1e-6 483 256 0.0031074998 1e-6 490 256 0.0012429999 1e-6 18 257 0.00032939995 1e-6 19 257 0.0013174999 1e-6 21 257 0.056324098 1e-6 22 257 0.0029644 1e-6 24 257 0.072463751 1e-6 60 257 0.0062581971 1e-6 114 257 0.00032939995 1e-6 126 257 0.00032939995 1e-6 160 257 0.0059288964 1e-6 169 257 0.012516499 1e-6 193 257 0.00032939995 1e-6 198 257 0.00032939995 1e-6 206 257 0.00065879989 1e-6 214 257 0.0108696 1e-6 220 257 0.00032939995 1e-6 234 257 0.0042818971 1e-6 237 257 0.00065879989 1e-6 240 257 0.00032939995 1e-6 241 257 0.00032939995 1e-6 257 257 0.030961797 1e-6 267 257 0.00032939995 1e-6 270 257 0.00032939995 1e-6 272 257 0.00065879989 1e-6 273 257 0.0075757988 1e-6 275 257 0.0046112984 1e-6 277 257 0.0023057 1e-6 278 257 0.00032939995 1e-6 282 257 0.00032939995 1e-6 284 257 0.00032939995 1e-6 286 257 0.00032939995 1e-6 287 257 0.00032939995 1e-6 288 257 0.00032939995 1e-6 289 257 0.00098809996 1e-6 290 257 0.0088932998 1e-6 291 257 0.00032939995 1e-6 301 257 0.0042818971 1e-6 324 257 0.00032939995 1e-6 326 257 0.00032939995 1e-6 328 257 0.00065879989 1e-6 331 257 0.00098809996 1e-6 335 257 0.00065879989 1e-6 340 257 0.00032939995 1e-6 351 257 0.00032939995 1e-6 354 257 0.00065879989 1e-6 356 257 0.00032939995 1e-6 358 257 0.0013174999 1e-6 370 257 0.00098809996 1e-6 402 257 0.00032939995 1e-6 417 257 0.00032939995 1e-6 443 257 0.024374198 1e-6 444 257 0.00065879989 1e-6 445 257 0.062582254 1e-6 446 257 0.0023057 1e-6 447 257 0.0082344972 1e-6 450 257 0.0029644 1e-6 452 257 0.014163397 1e-6 453 257 0.0408432 1e-6 454 257 0.00065879989 1e-6 455 257 0.019104097 1e-6 456 257 0.00032939995 1e-6 457 257 0.0029644 1e-6 458 257 0.00065879989 1e-6 459 257 0.00065879989 1e-6 460 257 0.0065875985 1e-6 463 257 0.015151497 1e-6 464 257 0.00065879989 1e-6 465 257 0.00065879989 1e-6 467 257 0.0079050995 1e-6 468 257 0.0059288964 1e-6 469 257 0.0059288964 1e-6 470 257 0.0065875985 1e-6 471 257 0.0016468999 1e-6 473 257 0.00032939995 1e-6 478 257 0.00098809996 1e-6 483 257 0.0013174999 1e-6 490 257 0.00065879989 1e-6 491 257 0.0026349998 1e-6 22 258 0.0040863976 1e-6 24 258 0.061295997 1e-6 60 258 0.0087565966 1e-6 114 258 0.00058379979 1e-6 160 258 0.004670199 1e-6 169 258 0.0029189 1e-6 198 258 0.0017512999 1e-6 206 258 0.00058379979 1e-6 214 258 0.0017512999 1e-6 220 258 0.00058379979 1e-6 223 258 0.00058379979 1e-6 233 258 0.0011674999 1e-6 234 258 0.006421499 1e-6 237 258 0.0023351 1e-6 240 258 0.0011674999 1e-6 258 258 0.0017512999 1e-6 268 258 0.004670199 1e-6 272 258 0.0011674999 1e-6 273 258 0.00058379979 1e-6 277 258 0.0023351 1e-6 282 258 0.0017512999 1e-6 283 258 0.00058379979 1e-6 295 258 0.00058379979 1e-6 297 258 0.00058379979 1e-6 305 258 0.00058379979 1e-6 322 258 0.0011674999 1e-6 326 258 0.00058379979 1e-6 328 258 0.0035025999 1e-6 331 258 0.004670199 1e-6 335 258 0.0029189 1e-6 351 258 0.0017512999 1e-6 354 258 0.0029189 1e-6 358 258 0.0017512999 1e-6 372 258 0.00058379979 1e-6 402 258 0.0023351 1e-6 417 258 0.00058379979 1e-6 443 258 0.012842998 1e-6 444 258 0.0052538998 1e-6 445 258 0.067133665 1e-6 446 258 0.0023351 1e-6 447 258 0.016929399 1e-6 450 258 0.0035025999 1e-6 452 258 0.018096898 1e-6 453 258 0.060128398 1e-6 455 258 0.0075889975 1e-6 457 258 0.0035025999 1e-6 458 258 0.0023351 1e-6 459 258 0.00058379979 1e-6 460 258 0.0075889975 1e-6 463 258 0.004670199 1e-6 464 258 0.00058379979 1e-6 465 258 0.00058379979 1e-6 467 258 0.011675399 1e-6 468 258 0.0017512999 1e-6 469 258 0.0058376975 1e-6 470 258 0.0058376975 1e-6 471 258 0.0040863976 1e-6 478 258 0.0011674999 1e-6 483 258 0.0017512999 1e-6 490 258 0.0011674999 1e-6 22 259 0.00040019979 1e-6 24 259 0.036814697 1e-6 25 259 0.00040019979 1e-6 60 259 0.0052020997 1e-6 114 259 0.00040019979 1e-6 160 259 0.0016005998 1e-6 198 259 0.028011199 1e-6 206 259 0.00080029992 1e-6 214 259 0.075630248 1e-6 223 259 0.0028010998 1e-6 224 259 0.00040019979 1e-6 233 259 0.0024009999 1e-6 234 259 0.0024009999 1e-6 240 259 0.00040019979 1e-6 241 259 0.00040019979 1e-6 267 259 0.00080029992 1e-6 268 259 0.0024009999 1e-6 270 259 0.0016005998 1e-6 272 259 0.00040019979 1e-6 273 259 0.016406599 1e-6 277 259 0.008803498 1e-6 279 259 0.00080029992 1e-6 282 259 0.00080029992 1e-6 284 259 0.00040019979 1e-6 288 259 0.00080029992 1e-6 292 259 0.00080029992 1e-6 295 259 0.00040019979 1e-6 297 259 0.0012004999 1e-6 298 259 0.00040019979 1e-6 312 259 0.00080029992 1e-6 315 259 0.00080029992 1e-6 317 259 0.00040019979 1e-6 319 259 0.00040019979 1e-6 320 259 0.00040019979 1e-6 321 259 0.0012004999 1e-6 324 259 0.00040019979 1e-6 340 259 0.00040019979 1e-6 356 259 0.00040019979 1e-6 358 259 0.0032012998 1e-6 372 259 0.00080029992 1e-6 380 259 0.00040019979 1e-6 386 259 0.00040019979 1e-6 415 259 0.00080029992 1e-6 417 259 0.00040019979 1e-6 422 259 0.010003999 1e-6 443 259 0.012805097 1e-6 444 259 0.0052020997 1e-6 445 259 0.041216496 1e-6 446 259 0.0016005998 1e-6 447 259 0.0172069 1e-6 450 259 0.0032012998 1e-6 452 259 0.008803498 1e-6 453 259 0.016006399 1e-6 454 259 0.0024009999 1e-6 455 259 0.016806699 1e-6 457 259 0.0032012998 1e-6 458 259 0.00040019979 1e-6 459 259 0.00040019979 1e-6 460 259 0.00080029992 1e-6 463 259 0.0172069 1e-6 464 259 0.00040019979 1e-6 465 259 0.00080029992 1e-6 467 259 0.0068026967 1e-6 468 259 0.022409 1e-6 469 259 0.0032012998 1e-6 470 259 0.0032012998 1e-6 471 259 0.0016005998 1e-6 478 259 0.0012004999 1e-6 483 259 0.0012004999 1e-6 490 259 0.00040019979 1e-6 491 259 0.00080029992 1e-6 22 260 0.0012135999 1e-6 24 260 0.0072815977 1e-6 60 260 0.0060679987 1e-6 114 260 0.0012135999 1e-6 198 260 0.0097086988 1e-6 206 260 0.0012135999 1e-6 214 260 0.040048499 1e-6 223 260 0.0133495 1e-6 234 260 0.0048543997 1e-6 260 260 0.0012135999 1e-6 263 260 0.0024271999 1e-6 267 260 0.0012135999 1e-6 268 260 0.0133495 1e-6 273 260 0.0133495 1e-6 358 260 0.0072815977 1e-6 417 260 0.0012135999 1e-6 443 260 0.0097086988 1e-6 444 260 0.0012135999 1e-6 445 260 0.0097086988 1e-6 446 260 0.0012135999 1e-6 447 260 0.0048543997 1e-6 450 260 0.0060679987 1e-6 452 260 0.0097086988 1e-6 453 260 0.016990297 1e-6 454 260 0.0012135999 1e-6 455 260 0.0072815977 1e-6 457 260 0.0024271999 1e-6 463 260 0.033980597 1e-6 464 260 0.0012135999 1e-6 465 260 0.0012135999 1e-6 467 260 0.0097086988 1e-6 468 260 0.0084950998 1e-6 469 260 0.0097086988 1e-6 470 260 0.0097086988 1e-6 478 260 0.0024271999 1e-6 483 260 0.0024271999 1e-6 490 260 0.0012135999 1e-6 491 260 0.0012135999 1e-6 24 261 0.020134199 1e-6 60 261 0.0033556998 1e-6 114 261 0.0016778999 1e-6 160 261 0.0033556998 1e-6 198 261 0.011744998 1e-6 206 261 0.0016778999 1e-6 214 261 0.050335597 1e-6 223 261 0.020134199 1e-6 234 261 0.0050335974 1e-6 263 261 0.026845597 1e-6 268 261 0.0218121 1e-6 272 261 0.0016778999 1e-6 273 261 0.0083892979 1e-6 284 261 0.0016778999 1e-6 358 261 0.0067113973 1e-6 417 261 0.0016778999 1e-6 443 261 0.0067113973 1e-6 444 261 0.0067113973 1e-6 445 261 0.018456399 1e-6 446 261 0.0016778999 1e-6 447 261 0.036912799 1e-6 450 261 0.0067113973 1e-6 452 261 0.0083892979 1e-6 453 261 0.020134199 1e-6 455 261 0.010067098 1e-6 457 261 0.0050335974 1e-6 464 261 0.0016778999 1e-6 465 261 0.0016778999 1e-6 467 261 0.010067098 1e-6 468 261 0.0067113973 1e-6 469 261 0.0083892979 1e-6 470 261 0.010067098 1e-6 471 261 0.0016778999 1e-6 478 261 0.0033556998 1e-6 483 261 0.0033556998 1e-6 490 261 0.0016778999 1e-6 18 262 0.00038309977 1e-6 22 262 0.0137931 1e-6 24 262 0.047892697 1e-6 60 262 0.0042145997 1e-6 114 262 0.00038309977 1e-6 126 262 0.00038309977 1e-6 160 262 0.0015325998 1e-6 198 262 0.016475096 1e-6 206 262 0.0007662999 1e-6 214 262 0.062835157 1e-6 233 262 0.00038309977 1e-6 234 262 0.0042145997 1e-6 240 262 0.00038309977 1e-6 241 262 0.0007662999 1e-6 252 262 0.0007662999 1e-6 262 262 0.0011493999 1e-6 263 262 0.00038309977 1e-6 268 262 0.0022988999 1e-6 272 262 0.00038309977 1e-6 273 262 0.023754798 1e-6 277 262 0.0007662999 1e-6 279 262 0.0007662999 1e-6 284 262 0.00038309977 1e-6 286 262 0.00038309977 1e-6 287 262 0.00038309977 1e-6 288 262 0.00038309977 1e-6 289 262 0.0049807988 1e-6 290 262 0.0084290989 1e-6 291 262 0.00038309977 1e-6 292 262 0.00038309977 1e-6 294 262 0.00038309977 1e-6 295 262 0.0007662999 1e-6 315 262 0.00038309977 1e-6 317 262 0.00038309977 1e-6 326 262 0.00038309977 1e-6 340 262 0.0007662999 1e-6 356 262 0.00038309977 1e-6 358 262 0.0038313998 1e-6 385 262 0.023754798 1e-6 386 262 0.0007662999 1e-6 417 262 0.0007662999 1e-6 438 262 0.014559399 1e-6 443 262 0.014559399 1e-6 444 262 0.0019156998 1e-6 445 262 0.027969297 1e-6 446 262 0.0030650999 1e-6 447 262 0.013409998 1e-6 450 262 0.0038313998 1e-6 452 262 0.011494298 1e-6 453 262 0.013026796 1e-6 454 262 0.0026819999 1e-6 455 262 0.017624497 1e-6 456 262 0.00038309977 1e-6 457 262 0.0030650999 1e-6 458 262 0.00038309977 1e-6 459 262 0.00038309977 1e-6 460 262 0.0007662999 1e-6 463 262 0.0038313998 1e-6 464 262 0.0007662999 1e-6 465 262 0.0011493999 1e-6 467 262 0.0095784999 1e-6 468 262 0.0019156998 1e-6 469 262 0.0061302967 1e-6 470 262 0.0068965964 1e-6 471 262 0.0015325998 1e-6 473 262 0.00038309977 1e-6 478 262 0.0019156998 1e-6 483 262 0.0019156998 1e-6 490 262 0.0007662999 1e-6 491 262 0.0019156998 1e-6 21 263 0.00067749992 1e-6 22 263 0.00067749992 1e-6 24 263 0.014905099 1e-6 25 263 0.00067749992 1e-6 60 263 0.0060975999 1e-6 114 263 0.00067749992 1e-6 160 263 0.0013549998 1e-6 198 263 0.012195099 1e-6 206 263 0.0013549998 1e-6 214 263 0.0616531 1e-6 223 263 0.018292699 1e-6 234 263 0.0033874998 1e-6 241 263 0.0013549998 1e-6 263 263 0.0040649995 1e-6 268 263 0.018292699 1e-6 272 263 0.00067749992 1e-6 273 263 0.018970199 1e-6 279 263 0.00067749992 1e-6 284 263 0.00067749992 1e-6 287 263 0.00067749992 1e-6 349 263 0.00067749992 1e-6 356 263 0.00067749992 1e-6 358 263 0.0054200999 1e-6 385 263 0.00067749992 1e-6 393 263 0.00067749992 1e-6 417 263 0.00067749992 1e-6 420 263 0.0013549998 1e-6 438 263 0.00067749992 1e-6 443 263 0.013550099 1e-6 444 263 0.00067749992 1e-6 445 263 0.018970199 1e-6 446 263 0.0013549998 1e-6 447 263 0.0088075995 1e-6 450 263 0.0047424994 1e-6 452 263 0.010840099 1e-6 453 263 0.017615199 1e-6 454 263 0.0033874998 1e-6 455 263 0.017615199 1e-6 457 263 0.0027099999 1e-6 460 263 0.00067749992 1e-6 463 263 0.017615199 1e-6 464 263 0.00067749992 1e-6 465 263 0.0013549998 1e-6 467 263 0.010162599 1e-6 468 263 0.0094850995 1e-6 469 263 0.0074525997 1e-6 470 263 0.0074525997 1e-6 471 263 0.0027099999 1e-6 478 263 0.0020325 1e-6 483 263 0.0020325 1e-6 490 263 0.0013549998 1e-6 491 263 0.00067749992 1e-6 18 264 0.0002485998 1e-6 22 264 0.00074589998 1e-6 24 264 0.090377867 1e-6 60 264 0.0031078998 1e-6 108 264 0.00012429999 1e-6 114 264 0.0002485998 1e-6 126 264 0.00012429999 1e-6 160 264 0.0016160998 1e-6 169 264 0.00012429999 1e-6 189 264 0.00012429999 1e-6 190 264 0.00012429999 1e-6 193 264 0.00012429999 1e-6 194 264 0.00012429999 1e-6 198 264 0.0013674998 1e-6 203 264 0.00012429999 1e-6 206 264 0.0002485998 1e-6 214 264 0.0042267963 1e-6 218 264 0.00012429999 1e-6 223 264 0.00049729994 1e-6 231 264 0.00037289993 1e-6 233 264 0.0014918 1e-6 234 264 0.0104426 1e-6 235 264 0.00074589998 1e-6 237 264 0.00099449977 1e-6 240 264 0.00012429999 1e-6 242 264 0.00012429999 1e-6 252 264 0.00012429999 1e-6 254 264 0.14022869 1e-6 264 264 0.0012431999 1e-6 265 264 0.00049729994 1e-6 266 264 0.0012431999 1e-6 269 264 0.0002485998 1e-6 270 264 0.015290897 1e-6 272 264 0.0012431999 1e-6 273 264 0.033316799 1e-6 276 264 0.00012429999 1e-6 277 264 0.0037294999 1e-6 317 264 0.00012429999 1e-6 322 264 0.0039780997 1e-6 326 264 0.005842898 1e-6 332 264 0.00037289993 1e-6 356 264 0.00037289993 1e-6 358 264 0.00074589998 1e-6 387 264 0.00012429999 1e-6 402 264 0.00037289993 1e-6 417 264 0.0002485998 1e-6 422 264 0.00012429999 1e-6 434 264 0.00012429999 1e-6 438 264 0.00012429999 1e-6 442 264 0.00037289993 1e-6 443 264 0.034062698 1e-6 444 264 0.0026105999 1e-6 445 264 0.059298899 1e-6 446 264 0.0041023977 1e-6 447 264 0.0070859976 1e-6 448 264 0.0002485998 1e-6 450 264 0.0036052 1e-6 452 264 0.0085777976 1e-6 453 264 0.0068373978 1e-6 454 264 0.00062159984 1e-6 455 264 0.023744397 1e-6 456 264 0.0013674998 1e-6 457 264 0.0032321999 1e-6 458 264 0.00099449977 1e-6 459 264 0.00074589998 1e-6 460 264 0.0021133998 1e-6 463 264 0.031576298 1e-6 464 264 0.00099449977 1e-6 465 264 0.00087019987 1e-6 467 264 0.017031297 1e-6 468 264 0.005842898 1e-6 469 264 0.0057184994 1e-6 470 264 0.0060914978 1e-6 471 264 0.0064643994 1e-6 473 264 0.00012429999 1e-6 478 264 0.0012431999 1e-6 483 264 0.0011187999 1e-6 489 264 0.0002485998 1e-6 490 264 0.00049729994 1e-6 9 265 5.2299991e-05 1e-6 18 265 0.00036609988 1e-6 22 265 0.0023534 1e-6 24 265 0.035929099 1e-6 60 265 0.0023534 1e-6 82 265 5.2299991e-05 1e-6 83 265 5.2299991e-05 1e-6 84 265 5.2299991e-05 1e-6 108 265 5.2299991e-05 1e-6 114 265 0.0001046 1e-6 120 265 5.2299991e-05 1e-6 126 265 5.2299991e-05 1e-6 130 265 5.2299991e-05 1e-6 137 265 5.2299991e-05 1e-6 150 265 0.00041839993 1e-6 160 265 0.0015689998 1e-6 169 265 0.0025626 1e-6 189 265 5.2299991e-05 1e-6 190 265 0.0001046 1e-6 191 265 0.0001046 1e-6 193 265 0.0046545975 1e-6 194 265 0.00015689999 1e-6 197 265 5.2299991e-05 1e-6 198 265 5.2299991e-05 1e-6 200 265 5.2299991e-05 1e-6 203 265 0.0001046 1e-6 204 265 0.0001046 1e-6 206 265 0.0001046 1e-6 207 265 5.2299991e-05 1e-6 214 265 0.018147599 1e-6 218 265 0.00015689999 1e-6 223 265 0.0047068968 1e-6 231 265 0.00020919999 1e-6 233 265 0.0073740967 1e-6 234 265 0.0088906996 1e-6 235 265 0.0019872999 1e-6 237 265 0.0010982999 1e-6 240 265 0.0014644 1e-6 242 265 0.0019872999 1e-6 252 265 0.00015689999 1e-6 254 265 0.078761578 1e-6 264 265 0.0013597999 1e-6 265 265 0.016212497 1e-6 266 265 0.025103297 1e-6 269 265 0.0013074998 1e-6 270 265 0.0043407977 1e-6 272 265 0.0010459998 1e-6 273 265 0.0026671998 1e-6 277 265 0.0151143 1e-6 293 265 0.0001046 1e-6 317 265 5.2299991e-05 1e-6 319 265 5.2299991e-05 1e-6 322 265 0.060875498 1e-6 326 265 0.0001046 1e-6 332 265 0.0025102999 1e-6 340 265 0.00015689999 1e-6 356 265 0.00041839993 1e-6 358 265 0.0008890999 1e-6 384 265 0.00094139995 1e-6 386 265 0.0012551998 1e-6 387 265 5.2299991e-05 1e-6 394 265 5.2299991e-05 1e-6 397 265 5.2299991e-05 1e-6 402 265 0.00041839993 1e-6 404 265 5.2299991e-05 1e-6 417 265 0.00031379983 1e-6 421 265 5.2299991e-05 1e-6 422 265 0.00015689999 1e-6 423 265 5.2299991e-05 1e-6 430 265 5.2299991e-05 1e-6 433 265 5.2299991e-05 1e-6 434 265 5.2299991e-05 1e-6 440 265 0.0001046 1e-6 442 265 0.0020395999 1e-6 443 265 0.0157419 1e-6 444 265 0.0020919 1e-6 445 265 0.041315798 1e-6 446 265 0.0025626 1e-6 447 265 0.0050729997 1e-6 448 265 0.00015689999 1e-6 450 265 0.0040269978 1e-6 452 265 0.0055958964 1e-6 453 265 0.0030332999 1e-6 454 265 0.00067989994 1e-6 455 265 0.031065296 1e-6 456 265 0.0015689998 1e-6 457 265 0.0028763998 1e-6 458 265 0.00073219999 1e-6 459 265 0.00052299979 1e-6 460 265 0.0018304 1e-6 463 265 0.0136499 1e-6 464 265 0.0007844998 1e-6 465 265 0.0008890999 1e-6 467 265 0.014172897 1e-6 468 265 0.0040792972 1e-6 469 265 0.004236199 1e-6 470 265 0.0047068968 1e-6 471 265 0.0071125999 1e-6 473 265 0.0001046 1e-6 477 265 0.00020919999 1e-6 478 265 0.0012029 1e-6 483 265 0.00067989994 1e-6 489 265 0.00031379983 1e-6 490 265 0.00036609988 1e-6 9 266 2.739999e-05 1e-6 18 266 0.0002193 1e-6 22 266 0.0041934997 1e-6 24 266 0.10689318 1e-6 60 266 0.0023023 1e-6 79 266 2.739999e-05 1e-6 82 266 2.739999e-05 1e-6 83 266 2.739999e-05 1e-6 84 266 2.739999e-05 1e-6 108 266 2.739999e-05 1e-6 113 266 5.4799995e-05 1e-6 114 266 8.2199986e-05 1e-6 126 266 5.4799995e-05 1e-6 127 266 2.739999e-05 1e-6 150 266 0.00032889983 1e-6 151 266 2.739999e-05 1e-6 160 266 0.0017815998 1e-6 169 266 2.739999e-05 1e-6 171 266 2.739999e-05 1e-6 189 266 5.4799995e-05 1e-6 190 266 8.2199986e-05 1e-6 192 266 2.739999e-05 1e-6 193 266 8.2199986e-05 1e-6 194 266 0.00010959999 1e-6 197 266 2.739999e-05 1e-6 198 266 0.0013155998 1e-6 200 266 5.4799995e-05 1e-6 201 266 2.739999e-05 1e-6 203 266 5.4799995e-05 1e-6 204 266 2.739999e-05 1e-6 206 266 0.00010959999 1e-6 207 266 2.739999e-05 1e-6 214 266 0.0024941999 1e-6 218 266 0.00019189999 1e-6 220 266 0.00043849996 1e-6 223 266 0.0037823999 1e-6 231 266 0.0015075 1e-6 233 266 0.00010959999 1e-6 234 266 0.010771498 1e-6 235 266 5.4799995e-05 1e-6 237 266 0.00073999981 1e-6 241 266 8.2199986e-05 1e-6 242 266 2.739999e-05 1e-6 248 266 2.739999e-05 1e-6 250 266 2.739999e-05 1e-6 252 266 0.00010959999 1e-6 254 266 0.23031378 1e-6 265 266 0.00010959999 1e-6 266 266 0.0048512965 1e-6 270 266 0.00010959999 1e-6 272 266 0.0012881998 1e-6 273 266 0.0055090971 1e-6 277 266 0.0002193 1e-6 282 266 5.4799995e-05 1e-6 284 266 2.739999e-05 1e-6 301 266 2.739999e-05 1e-6 317 266 2.739999e-05 1e-6 322 266 0.0024667999 1e-6 326 266 5.4799995e-05 1e-6 328 266 8.2199986e-05 1e-6 331 266 0.000137 1e-6 332 266 0.0018638 1e-6 335 266 2.739999e-05 1e-6 336 266 2.739999e-05 1e-6 340 266 2.739999e-05 1e-6 351 266 0.000137 1e-6 354 266 0.00010959999 1e-6 358 266 0.0010688999 1e-6 384 266 5.4799995e-05 1e-6 386 266 8.2199986e-05 1e-6 387 266 5.4799995e-05 1e-6 394 266 2.739999e-05 1e-6 397 266 2.739999e-05 1e-6 402 266 0.00032889983 1e-6 417 266 0.0002193 1e-6 419 266 2.739999e-05 1e-6 421 266 2.739999e-05 1e-6 422 266 0.00010959999 1e-6 423 266 2.739999e-05 1e-6 425 266 2.739999e-05 1e-6 430 266 2.739999e-05 1e-6 431 266 2.739999e-05 1e-6 433 266 2.739999e-05 1e-6 434 266 2.739999e-05 1e-6 438 266 0.00057559996 1e-6 442 266 0.0026311998 1e-6 443 266 0.033383597 1e-6 444 266 0.002412 1e-6 445 266 0.097793579 1e-6 446 266 0.0064409971 1e-6 447 266 0.0060024969 1e-6 448 266 0.00019189999 1e-6 450 266 0.0040290989 1e-6 452 266 0.004714299 1e-6 453 266 0.0012059999 1e-6 454 266 0.00060299993 1e-6 455 266 0.0260107 1e-6 456 266 0.0011236998 1e-6 457 266 0.0029600998 1e-6 458 266 0.00071259984 1e-6 459 266 0.00063039991 1e-6 460 266 0.0027682998 1e-6 463 266 0.010853797 1e-6 464 266 0.002686 1e-6 465 266 0.00060299993 1e-6 467 266 0.014087997 1e-6 468 266 0.0055090971 1e-6 469 266 0.0054542981 1e-6 470 266 0.0046319999 1e-6 471 266 0.0046045966 1e-6 473 266 0.00010959999 1e-6 477 266 0.00010959999 1e-6 478 266 0.0007948 1e-6 483 266 0.0007948 1e-6 489 266 0.0002193 1e-6 490 266 0.00038369978 1e-6 491 266 2.739999e-05 1e-6 19 267 0.0012536999 1e-6 21 267 0.00041789981 1e-6 22 267 0.047221098 1e-6 24 267 0.0589219 1e-6 60 267 0.0058503971 1e-6 114 267 0.00041789981 1e-6 160 267 0.0025072999 1e-6 169 267 0.026744697 1e-6 192 267 0.0091934986 1e-6 193 267 0.026744697 1e-6 198 267 0.0071040988 1e-6 206 267 0.00041789981 1e-6 214 267 0.011282898 1e-6 220 267 0.0029251999 1e-6 233 267 0.0087755993 1e-6 234 267 0.015043899 1e-6 237 267 0.00041789981 1e-6 240 267 0.00083579984 1e-6 254 267 0.0020893998 1e-6 265 267 0.00041789981 1e-6 266 267 0.00083579984 1e-6 267 267 0.0033431 1e-6 270 267 0.00041789981 1e-6 272 267 0.0029251999 1e-6 273 267 0.0041788965 1e-6 275 267 0.00041789981 1e-6 277 267 0.0033431 1e-6 282 267 0.0016714998 1e-6 283 267 0.0016714998 1e-6 289 267 0.0016714998 1e-6 295 267 0.00041789981 1e-6 296 267 0.00041789981 1e-6 305 267 0.00041789981 1e-6 317 267 0.00041789981 1e-6 322 267 0.0025072999 1e-6 328 267 0.00041789981 1e-6 331 267 0.00083579984 1e-6 340 267 0.00083579984 1e-6 356 267 0.00041789981 1e-6 358 267 0.00041789981 1e-6 370 267 0.0016714998 1e-6 386 267 0.0104471 1e-6 402 267 0.0020893998 1e-6 417 267 0.00041789981 1e-6 443 267 0.042206399 1e-6 444 267 0.014208097 1e-6 445 267 0.028416198 1e-6 446 267 0.0041788965 1e-6 447 267 0.021729998 1e-6 450 267 0.0025072999 1e-6 452 267 0.032177199 1e-6 453 267 0.071040452 1e-6 454 267 0.0029251999 1e-6 455 267 0.021729998 1e-6 456 267 0.00083579984 1e-6 457 267 0.0025072999 1e-6 459 267 0.0012536999 1e-6 460 267 0.0020893998 1e-6 463 267 0.0075218976 1e-6 464 267 0.00083579984 1e-6 465 267 0.00041789981 1e-6 467 267 0.0071040988 1e-6 468 267 0.013790198 1e-6 469 267 0.0033431 1e-6 470 267 0.0029251999 1e-6 471 267 0.0041788965 1e-6 478 267 0.00083579984 1e-6 483 267 0.00083579984 1e-6 490 267 0.00041789981 1e-6 22 268 0.0059717 1e-6 24 268 0.097082376 1e-6 60 268 0.0092133991 1e-6 114 268 0.00017059999 1e-6 160 268 0.0078484975 1e-6 169 268 0.013137698 1e-6 188 268 0.085650861 1e-6 192 268 0.0061422996 1e-6 193 268 0.0324177 1e-6 206 268 0.0003411998 1e-6 214 268 0.00051189982 1e-6 220 268 0.00017059999 1e-6 223 268 0.0054597966 1e-6 231 268 0.0030711 1e-6 233 268 0.0059717 1e-6 234 268 0.0095546991 1e-6 237 268 0.00051189982 1e-6 240 268 0.00051189982 1e-6 241 268 0.0040948987 1e-6 242 268 0.0058010966 1e-6 254 268 0.0010237 1e-6 266 268 0.0063128993 1e-6 272 268 0.00085309986 1e-6 273 268 0.028322797 1e-6 276 268 0.00017059999 1e-6 277 268 0.0010237 1e-6 282 268 0.00068249996 1e-6 283 268 0.00017059999 1e-6 295 268 0.00017059999 1e-6 297 268 0.00017059999 1e-6 305 268 0.00017059999 1e-6 317 268 0.00017059999 1e-6 322 268 0.0003411998 1e-6 328 268 0.0010237 1e-6 331 268 0.0013649999 1e-6 332 268 0.0056303963 1e-6 335 268 0.0010237 1e-6 340 268 0.0018767999 1e-6 351 268 0.00051189982 1e-6 354 268 0.0010237 1e-6 356 268 0.0003411998 1e-6 358 268 0.00051189982 1e-6 372 268 0.00017059999 1e-6 384 268 0.00017059999 1e-6 402 268 0.00068249996 1e-6 417 268 0.00017059999 1e-6 443 268 0.030882098 1e-6 444 268 0.005289197 1e-6 445 268 0.034123898 1e-6 446 268 0.005289197 1e-6 447 268 0.0059717 1e-6 450 268 0.0022180998 1e-6 452 268 0.018768098 1e-6 453 268 0.026616599 1e-6 454 268 0.0022180998 1e-6 455 268 0.021497998 1e-6 456 268 0.00068249996 1e-6 457 268 0.0027298999 1e-6 459 268 0.00051189982 1e-6 460 268 0.0015355998 1e-6 463 268 0.010237198 1e-6 464 268 0.0068247989 1e-6 465 268 0.00017059999 1e-6 467 268 0.0066541992 1e-6 468 268 0.0059717 1e-6 469 268 0.0020474 1e-6 470 268 0.0022180998 1e-6 471 268 0.0035829998 1e-6 478 268 0.00051189982 1e-6 483 268 0.00051189982 1e-6 489 268 0.00017059999 1e-6 490 268 0.0003411998 1e-6 491 268 0.00017059999 1e-6 22 269 0.00033639977 1e-6 24 269 0.057853997 1e-6 60 269 0.0036999998 1e-6 114 269 0.00033639977 1e-6 126 269 0.00033639977 1e-6 160 269 0.0057180971 1e-6 188 269 0.0033635998 1e-6 193 269 0.051126797 1e-6 194 269 0.00033639977 1e-6 206 269 0.00067269988 1e-6 214 269 0.00033639977 1e-6 218 269 0.00033639977 1e-6 233 269 0.0043726973 1e-6 234 269 0.0063908994 1e-6 237 269 0.00067269988 1e-6 241 269 0.0016817998 1e-6 252 269 0.00033639977 1e-6 254 269 0.0026908999 1e-6 266 269 0.00033639977 1e-6 269 269 0.0084089972 1e-6 270 269 0.028254297 1e-6 272 269 0.0010090999 1e-6 276 269 0.016481698 1e-6 277 269 0.00067269988 1e-6 282 269 0.00033639977 1e-6 284 269 0.00033639977 1e-6 317 269 0.00033639977 1e-6 322 269 0.00067269988 1e-6 332 269 0.0023544999 1e-6 340 269 0.0010090999 1e-6 356 269 0.00033639977 1e-6 358 269 0.012781698 1e-6 386 269 0.0043726973 1e-6 417 269 0.00067269988 1e-6 443 269 0.0070635974 1e-6 444 269 0.0057180971 1e-6 445 269 0.043390498 1e-6 446 269 0.053481299 1e-6 447 269 0.0094180964 1e-6 450 269 0.0057180971 1e-6 452 269 0.013790797 1e-6 453 269 0.0013454 1e-6 454 269 0.0013454 1e-6 455 269 0.021190699 1e-6 456 269 0.00033639977 1e-6 457 269 0.0050453991 1e-6 458 269 0.00033639977 1e-6 459 269 0.00067269988 1e-6 460 269 0.0013454 1e-6 463 269 0.042045098 1e-6 464 269 0.0010090999 1e-6 465 269 0.0010090999 1e-6 467 269 0.011436298 1e-6 468 269 0.019172598 1e-6 469 269 0.0057180971 1e-6 470 269 0.0063908994 1e-6 471 269 0.016817998 1e-6 473 269 0.00033639977 1e-6 478 269 0.0016817998 1e-6 483 269 0.0020181998 1e-6 490 269 0.00067269988 1e-6 18 270 0.00022099999 1e-6 21 270 0.005857598 1e-6 22 270 0.00033159996 1e-6 24 270 0.014367796 1e-6 60 270 0.0045313984 1e-6 104 270 0.00066309981 1e-6 108 270 0.0001105 1e-6 114 270 0.0001105 1e-6 120 270 0.0001105 1e-6 126 270 0.0001105 1e-6 130 270 0.025640998 1e-6 131 270 0.016246699 1e-6 142 270 0.00022099999 1e-6 143 270 0.00033159996 1e-6 150 270 0.0001105 1e-6 160 270 0.00033159996 1e-6 169 270 0.0001105 1e-6 187 270 0.018346597 1e-6 188 270 0.0011051998 1e-6 189 270 0.00022099999 1e-6 190 270 0.0001105 1e-6 192 270 0.00055259978 1e-6 193 270 0.0022103998 1e-6 194 270 0.00022099999 1e-6 198 270 0.012599498 1e-6 203 270 0.0001105 1e-6 204 270 0.0001105 1e-6 206 270 0.00022099999 1e-6 208 270 0.0001105 1e-6 214 270 0.020004399 1e-6 219 270 0.024425298 1e-6 221 270 0.00066309981 1e-6 224 270 0.0081785992 1e-6 227 270 0.0020998998 1e-6 233 270 0.0001105 1e-6 234 270 0.0050839968 1e-6 237 270 0.00033159996 1e-6 240 270 0.00033159996 1e-6 241 270 0.0036471998 1e-6 242 270 0.0001105 1e-6 252 270 0.00022099999 1e-6 270 270 0.11063218 1e-6 273 270 0.0011051998 1e-6 277 270 0.0080680996 1e-6 282 270 0.0016577998 1e-6 283 270 0.00033159996 1e-6 284 270 0.00033159996 1e-6 285 270 0.0001105 1e-6 286 270 0.00033159996 1e-6 289 270 0.0062996969 1e-6 290 270 0.0013263 1e-6 292 270 0.00022099999 1e-6 293 270 0.00055259978 1e-6 294 270 0.002321 1e-6 296 270 0.0001105 1e-6 297 270 0.0001105 1e-6 307 270 0.0011051998 1e-6 312 270 0.00022099999 1e-6 317 270 0.0001105 1e-6 320 270 0.0001105 1e-6 321 270 0.00033159996 1e-6 322 270 0.00022099999 1e-6 324 270 0.00044209999 1e-6 325 270 0.0001105 1e-6 326 270 0.00022099999 1e-6 328 270 0.00022099999 1e-6 335 270 0.0001105 1e-6 338 270 0.00044209999 1e-6 339 270 0.0001105 1e-6 340 270 0.00055259978 1e-6 347 270 0.00033159996 1e-6 349 270 0.00088419998 1e-6 350 270 0.00044209999 1e-6 351 270 0.00044209999 1e-6 352 270 0.0001105 1e-6 354 270 0.0013263 1e-6 356 270 0.00033159996 1e-6 358 270 0.0028736 1e-6 371 270 0.0001105 1e-6 372 270 0.00066309981 1e-6 373 270 0.00077369995 1e-6 375 270 0.0011051998 1e-6 387 270 0.0001105 1e-6 393 270 0.0001105 1e-6 402 270 0.00033159996 1e-6 417 270 0.00033159996 1e-6 422 270 0.0001105 1e-6 424 270 0.0019893998 1e-6 430 270 0.0001105 1e-6 443 270 0.0087311976 1e-6 444 270 0.0011051998 1e-6 445 270 0.017020296 1e-6 446 270 0.0013263 1e-6 447 270 0.0097258985 1e-6 450 270 0.0035366998 1e-6 452 270 0.0099468976 1e-6 453 270 0.0032050998 1e-6 454 270 0.00099469977 1e-6 455 270 0.037577398 1e-6 456 270 0.00033159996 1e-6 457 270 0.0028736 1e-6 458 270 0.00088419998 1e-6 459 270 0.00033159996 1e-6 460 270 0.002321 1e-6 463 270 0.0172414 1e-6 464 270 0.00055259978 1e-6 465 270 0.00088419998 1e-6 467 270 0.0119363 1e-6 468 270 0.016799297 1e-6 469 270 0.0059681982 1e-6 470 270 0.0065207966 1e-6 471 270 0.0054155998 1e-6 473 270 0.0001105 1e-6 477 270 0.0001105 1e-6 478 270 0.0011051998 1e-6 483 270 0.0025419998 1e-6 490 270 0.00055259978 1e-6 491 270 0.0039787963 1e-6 4 271 0.0001318 1e-6 17 271 0.0017127998 1e-6 18 271 0.00026349979 1e-6 22 271 0.00065879989 1e-6 24 271 0.049407098 1e-6 60 271 0.0044795983 1e-6 108 271 0.0001318 1e-6 114 271 0.00026349979 1e-6 117 271 0.0001318 1e-6 118 271 0.0001318 1e-6 119 271 0.0042160973 1e-6 126 271 0.0001318 1e-6 130 271 0.00052699982 1e-6 135 271 0.00065879989 1e-6 160 271 0.0018445 1e-6 169 271 0.00026349979 1e-6 171 271 0.0023714998 1e-6 172 271 0.0038208 1e-6 186 271 0.0039525963 1e-6 189 271 0.0001318 1e-6 190 271 0.0001318 1e-6 191 271 0.0088273995 1e-6 192 271 0.0001318 1e-6 194 271 0.00026349979 1e-6 198 271 0.014360998 1e-6 203 271 0.0001318 1e-6 206 271 0.00026349979 1e-6 214 271 0.049143597 1e-6 219 271 0.032938097 1e-6 224 271 0.012121197 1e-6 225 271 0.00092229992 1e-6 227 271 0.0052700974 1e-6 234 271 0.016205497 1e-6 237 271 0.00026349979 1e-6 239 271 0.0001318 1e-6 240 271 0.0054017976 1e-6 241 271 0.027667999 1e-6 252 271 0.00026349979 1e-6 254 271 0.013043497 1e-6 267 271 0.0001318 1e-6 270 271 0.0014493 1e-6 271 271 0.0028986 1e-6 272 271 0.0001318 1e-6 273 271 0.0038208 1e-6 274 271 0.0001318 1e-6 276 271 0.0068510994 1e-6 277 271 0.0061923973 1e-6 282 271 0.0001318 1e-6 283 271 0.0001318 1e-6 284 271 0.00026349979 1e-6 285 271 0.0080368966 1e-6 300 271 0.0001318 1e-6 301 271 0.00039529987 1e-6 315 271 0.0060605966 1e-6 317 271 0.00026349979 1e-6 322 271 0.0043477975 1e-6 326 271 0.0001318 1e-6 328 271 0.0001318 1e-6 331 271 0.00026349979 1e-6 337 271 0.00026349979 1e-6 340 271 0.0001318 1e-6 349 271 0.0001318 1e-6 354 271 0.0001318 1e-6 356 271 0.00039529987 1e-6 358 271 0.0018445 1e-6 386 271 0.0047430992 1e-6 387 271 0.0001318 1e-6 417 271 0.00039529987 1e-6 422 271 0.00026349979 1e-6 434 271 0.0001318 1e-6 442 271 0.0038208 1e-6 443 271 0.015942 1e-6 444 271 0.0064558983 1e-6 445 271 0.058893297 1e-6 446 271 0.0035573 1e-6 447 271 0.0044795983 1e-6 448 271 0.0001318 1e-6 450 271 0.0035573 1e-6 452 271 0.011989497 1e-6 453 271 0.0054017976 1e-6 454 271 0.0018445 1e-6 455 271 0.027536198 1e-6 456 271 0.00026349979 1e-6 457 271 0.0038208 1e-6 458 271 0.00092229992 1e-6 459 271 0.00092229992 1e-6 460 271 0.0019762998 1e-6 463 271 0.0094861984 1e-6 464 271 0.0013174999 1e-6 465 271 0.0010539999 1e-6 467 271 0.0118577 1e-6 468 271 0.012252998 1e-6 469 271 0.0048747994 1e-6 470 271 0.0048747994 1e-6 471 271 0.002108 1e-6 473 271 0.0001318 1e-6 477 271 0.0001318 1e-6 478 271 0.0015809999 1e-6 483 271 0.0014493 1e-6 490 271 0.00052699982 1e-6 491 271 0.0046112984 1e-6 13 272 0.0001356 1e-6 18 272 0.00027109985 1e-6 21 272 0.0001356 1e-6 22 272 0.00027109985 1e-6 24 272 0.011522297 1e-6 25 272 0.0001356 1e-6 60 272 0.0020333 1e-6 82 272 0.00054219994 1e-6 108 272 0.0001356 1e-6 114 272 0.0001356 1e-6 119 272 0.00027109985 1e-6 120 272 0.00067779981 1e-6 126 272 0.0001356 1e-6 130 272 0.0035244999 1e-6 131 272 0.00040669995 1e-6 135 272 0.0085400976 1e-6 138 272 0.0001356 1e-6 140 272 0.00067779981 1e-6 143 272 0.0001356 1e-6 150 272 0.0001356 1e-6 160 272 0.0013555998 1e-6 161 272 0.0001356 1e-6 169 272 0.0001356 1e-6 171 272 0.06466037 1e-6 172 272 0.0001356 1e-6 186 272 0.0040666983 1e-6 187 272 0.0001356 1e-6 188 272 0.0001356 1e-6 189 272 0.0001356 1e-6 190 272 0.0001356 1e-6 191 272 0.056255899 1e-6 192 272 0.0001356 1e-6 193 272 0.00027109985 1e-6 194 272 0.00054219994 1e-6 197 272 0.0020333 1e-6 198 272 0.0126068 1e-6 200 272 0.0001356 1e-6 203 272 0.0001356 1e-6 204 272 0.0001356 1e-6 206 272 0.00027109985 1e-6 214 272 0.0094889998 1e-6 218 272 0.00040669995 1e-6 219 272 0.0044733994 1e-6 222 272 0.00081329979 1e-6 223 272 0.00067779981 1e-6 224 272 0.0036599999 1e-6 225 272 0.036057997 1e-6 227 272 0.0001356 1e-6 231 272 0.0001356 1e-6 233 272 0.0001356 1e-6 234 272 0.0066422969 1e-6 237 272 0.00040669995 1e-6 239 272 0.0048799999 1e-6 240 272 0.0032533999 1e-6 241 272 0.0044733994 1e-6 243 272 0.00067779981 1e-6 252 272 0.00027109985 1e-6 254 272 0.00054219994 1e-6 271 272 0.0070488974 1e-6 272 272 0.0028466999 1e-6 273 272 0.0010845 1e-6 274 272 0.0040666983 1e-6 276 272 0.00040669995 1e-6 277 272 0.0032533999 1e-6 279 272 0.00054219994 1e-6 282 272 0.0010845 1e-6 284 272 0.00040669995 1e-6 285 272 0.00040669995 1e-6 293 272 0.0001356 1e-6 301 272 0.00027109985 1e-6 312 272 0.0001356 1e-6 315 272 0.0014910998 1e-6 317 272 0.0001356 1e-6 319 272 0.00027109985 1e-6 322 272 0.00027109985 1e-6 326 272 0.00054219994 1e-6 340 272 0.00040669995 1e-6 349 272 0.00027109985 1e-6 356 272 0.00040669995 1e-6 358 272 0.0029821999 1e-6 386 272 0.00027109985 1e-6 387 272 0.0001356 1e-6 402 272 0.00027109985 1e-6 404 272 0.0001356 1e-6 414 272 0.0001356 1e-6 417 272 0.00054219994 1e-6 421 272 0.0001356 1e-6 422 272 0.0001356 1e-6 430 272 0.0001356 1e-6 434 272 0.0001356 1e-6 437 272 0.0001356 1e-6 442 272 0.0001356 1e-6 443 272 0.013284497 1e-6 444 272 0.00094889989 1e-6 445 272 0.035515796 1e-6 446 272 0.0027110998 1e-6 447 272 0.0014910998 1e-6 450 272 0.0046088994 1e-6 452 272 0.0085400976 1e-6 453 272 0.0020333 1e-6 454 272 0.00067779981 1e-6 455 272 0.0322624 1e-6 456 272 0.00054219994 1e-6 457 272 0.0028466999 1e-6 458 272 0.00081329979 1e-6 459 272 0.00054219994 1e-6 460 272 0.00122 1e-6 463 272 0.0070488974 1e-6 464 272 0.00067779981 1e-6 465 272 0.00122 1e-6 467 272 0.010573398 1e-6 468 272 0.0043377988 1e-6 469 272 0.0066422969 1e-6 470 272 0.0074555986 1e-6 471 272 0.00244 1e-6 473 272 0.0001356 1e-6 477 272 0.0001356 1e-6 478 272 0.0014910998 1e-6 483 272 0.0020333 1e-6 490 272 0.0040666983 1e-6 491 272 0.0010845 1e-6 19 273 0.014090497 1e-6 21 273 0.0002135 1e-6 22 273 0.0017078998 1e-6 23 273 0.00042699999 1e-6 24 273 0.075362861 1e-6 25 273 0.043552499 1e-6 60 273 0.0070452988 1e-6 114 273 0.0002135 1e-6 126 273 0.0002135 1e-6 160 273 0.0019214 1e-6 169 273 0.00042699999 1e-6 188 273 0.0034158998 1e-6 192 273 0.0002135 1e-6 193 273 0.013876997 1e-6 206 273 0.00042699999 1e-6 214 273 0.0215628 1e-6 215 273 0.0002135 1e-6 218 273 0.0002135 1e-6 220 273 0.0010674999 1e-6 223 273 0.0002135 1e-6 224 273 0.00064049987 1e-6 225 273 0.0002135 1e-6 231 273 0.0002135 1e-6 233 273 0.0002135 1e-6 234 273 0.0098206997 1e-6 237 273 0.0010674999 1e-6 241 273 0.0002135 1e-6 242 273 0.00042699999 1e-6 254 273 0.0029888998 1e-6 257 273 0.0002135 1e-6 266 273 0.0002135 1e-6 267 273 0.0017078998 1e-6 268 273 0.0002135 1e-6 270 273 0.00042699999 1e-6 273 273 0.047395397 1e-6 276 273 0.00085399998 1e-6 277 273 0.048676297 1e-6 282 273 0.0010674999 1e-6 283 273 0.0002135 1e-6 284 273 0.0002135 1e-6 295 273 0.0002135 1e-6 301 273 0.0002135 1e-6 305 273 0.0002135 1e-6 312 273 0.00064049987 1e-6 322 273 0.00064049987 1e-6 326 273 0.0002135 1e-6 328 273 0.0014944 1e-6 331 273 0.0023484 1e-6 332 273 0.0019214 1e-6 335 273 0.00042699999 1e-6 336 273 0.0002135 1e-6 337 273 0.0002135 1e-6 351 273 0.0002135 1e-6 354 273 0.0002135 1e-6 356 273 0.00042699999 1e-6 358 273 0.0010674999 1e-6 402 273 0.00042699999 1e-6 417 273 0.0002135 1e-6 442 273 0.0002135 1e-6 443 273 0.056789096 1e-6 444 273 0.00085399998 1e-6 445 273 0.058069997 1e-6 446 273 0.0053372979 1e-6 447 273 0.001281 1e-6 450 273 0.0021348998 1e-6 452 273 0.0213493 1e-6 453 273 0.019214299 1e-6 454 273 0.0027753999 1e-6 455 273 0.016865898 1e-6 456 273 0.00042699999 1e-6 457 273 0.0040563978 1e-6 458 273 0.0010674999 1e-6 459 273 0.0010674999 1e-6 460 273 0.0017078998 1e-6 463 273 0.0098206997 1e-6 464 273 0.0002135 1e-6 465 273 0.0002135 1e-6 467 273 0.011528596 1e-6 468 273 0.0014944 1e-6 469 273 0.0029888998 1e-6 470 273 0.0029888998 1e-6 471 273 0.0023484 1e-6 473 273 0.0002135 1e-6 478 273 0.00085399998 1e-6 483 273 0.00085399998 1e-6 489 273 0.00042699999 1e-6 490 273 0.00042699999 1e-6 491 273 0.00085399998 1e-6 18 274 0.00027009984 1e-6 21 274 0.00027009984 1e-6 22 274 0.00081029977 1e-6 24 274 0.010263298 1e-6 25 274 0.0054017976 1e-6 60 274 0.0035110998 1e-6 104 274 0.0024307999 1e-6 107 274 0.00054019992 1e-6 108 274 0.00013499999 1e-6 114 274 0.00027009984 1e-6 126 274 0.00013499999 1e-6 130 274 0.014989898 1e-6 159 274 0.0010803998 1e-6 160 274 0.0032410999 1e-6 169 274 0.00040509994 1e-6 171 274 0.00013499999 1e-6 186 274 0.0010803998 1e-6 187 274 0.0171506 1e-6 190 274 0.00013499999 1e-6 191 274 0.0033761 1e-6 192 274 0.0066171996 1e-6 193 274 0.011343699 1e-6 194 274 0.00013499999 1e-6 198 274 0.0094530992 1e-6 206 274 0.00027009984 1e-6 214 274 0.011073597 1e-6 219 274 0.0540176 1e-6 223 274 0.0059418976 1e-6 224 274 0.0239028 1e-6 225 274 0.0031059999 1e-6 231 274 0.00013499999 1e-6 233 274 0.00054019992 1e-6 234 274 0.0054017976 1e-6 237 274 0.00013499999 1e-6 241 274 0.031330198 1e-6 252 274 0.011748798 1e-6 254 274 0.00094529986 1e-6 257 274 0.00013499999 1e-6 265 274 0.00027009984 1e-6 266 274 0.00027009984 1e-6 267 274 0.0016204999 1e-6 270 274 0.0033761 1e-6 273 274 0.0094530992 1e-6 276 274 0.00013499999 1e-6 277 274 0.0059418976 1e-6 284 274 0.00027009984 1e-6 290 274 0.0013503998 1e-6 293 274 0.0118839 1e-6 322 274 0.013774499 1e-6 325 274 0.0082376972 1e-6 334 274 0.00013499999 1e-6 340 274 0.00013499999 1e-6 347 274 0.00013499999 1e-6 350 274 0.00054019992 1e-6 356 274 0.00040509994 1e-6 358 274 0.0017555999 1e-6 387 274 0.00013499999 1e-6 417 274 0.00027009984 1e-6 422 274 0.00013499999 1e-6 443 274 0.014449697 1e-6 444 274 0.0010803998 1e-6 445 274 0.0201215 1e-6 446 274 0.0018906 1e-6 447 274 0.0064820983 1e-6 450 274 0.0028358998 1e-6 452 274 0.019446298 1e-6 453 274 0.023092497 1e-6 454 274 0.0022956999 1e-6 455 274 0.034571197 1e-6 456 274 0.00027009984 1e-6 457 274 0.0029709998 1e-6 458 274 0.0010803998 1e-6 459 274 0.00067519979 1e-6 460 274 0.0012153999 1e-6 463 274 0.015529998 1e-6 464 274 0.00054019992 1e-6 465 274 0.00054019992 1e-6 467 274 0.0074273981 1e-6 468 274 0.0059418976 1e-6 469 274 0.0033761 1e-6 470 274 0.0037811999 1e-6 471 274 0.0014854998 1e-6 473 274 0.00013499999 1e-6 478 274 0.00081029977 1e-6 483 274 0.00081029977 1e-6 490 274 0.00040509994 1e-6 491 274 0.0081025995 1e-6 19 275 0.019535098 1e-6 21 275 0.012116697 1e-6 22 275 0.0039564967 1e-6 24 275 0.044263098 1e-6 25 275 0.0046982989 1e-6 60 275 0.0059346966 1e-6 114 275 0.0002472999 1e-6 120 275 0.0002472999 1e-6 126 275 0.0002472999 1e-6 130 275 0.00074179983 1e-6 131 275 0.00049459981 1e-6 160 275 0.0029673998 1e-6 169 275 0.0061819963 1e-6 187 275 0.0002472999 1e-6 192 275 0.0002472999 1e-6 193 275 0.0061819963 1e-6 198 275 0.0037091998 1e-6 206 275 0.00049459981 1e-6 214 275 0.010632999 1e-6 218 275 0.0002472999 1e-6 219 275 0.00074179983 1e-6 223 275 0.0002472999 1e-6 224 275 0.0027200999 1e-6 233 275 0.0002472999 1e-6 234 275 0.0044509992 1e-6 241 275 0.0002472999 1e-6 254 275 0.00049459981 1e-6 257 275 0.0024728 1e-6 267 275 0.0093965977 1e-6 270 275 0.0066765994 1e-6 273 275 0.064787269 1e-6 275 275 0.0064292997 1e-6 277 275 0.005687397 1e-6 284 275 0.0002472999 1e-6 289 275 0.022255197 1e-6 301 275 0.00049459981 1e-6 340 275 0.0002472999 1e-6 349 275 0.0022254998 1e-6 356 275 0.0002472999 1e-6 358 275 0.0014836998 1e-6 370 275 0.025717098 1e-6 386 275 0.0002472999 1e-6 417 275 0.0002472999 1e-6 443 275 0.051186897 1e-6 444 275 0.00074179983 1e-6 445 275 0.037091997 1e-6 446 275 0.0029673998 1e-6 447 275 0.0096438974 1e-6 450 275 0.0027200999 1e-6 452 275 0.015084099 1e-6 453 275 0.019287799 1e-6 454 275 0.00098909996 1e-6 455 275 0.017062299 1e-6 457 275 0.0027200999 1e-6 458 275 0.00049459981 1e-6 459 275 0.00049459981 1e-6 460 275 0.0017309999 1e-6 463 275 0.014836799 1e-6 464 275 0.00049459981 1e-6 465 275 0.0002472999 1e-6 467 275 0.0071710981 1e-6 468 275 0.0022254998 1e-6 469 275 0.0044509992 1e-6 470 275 0.0046982989 1e-6 471 275 0.0042037964 1e-6 473 275 0.0002472999 1e-6 478 275 0.00049459981 1e-6 483 275 0.00098909996 1e-6 490 275 0.00049459981 1e-6 491 275 0.0022254998 1e-6 21 276 0.00059769978 1e-6 24 276 0.0101614 1e-6 25 276 0.00059769978 1e-6 60 276 0.0023908999 1e-6 114 276 0.00059769978 1e-6 118 276 0.00059769978 1e-6 130 276 0.0017931999 1e-6 131 276 0.0011954999 1e-6 160 276 0.0011954999 1e-6 187 276 0.00059769978 1e-6 193 276 0.050806899 1e-6 198 276 0.0059772991 1e-6 206 276 0.00059769978 1e-6 214 276 0.023311399 1e-6 219 276 0.0041840971 1e-6 224 276 0.0035863998 1e-6 233 276 0.0059772991 1e-6 234 276 0.0059772991 1e-6 241 276 0.00059769978 1e-6 252 276 0.00059769978 1e-6 268 276 0.0203228 1e-6 270 276 0.0071726963 1e-6 272 276 0.00059769978 1e-6 273 276 0.0017931999 1e-6 276 276 0.083084285 1e-6 277 276 0.0017931999 1e-6 284 276 0.00059769978 1e-6 289 276 0.00059769978 1e-6 300 276 0.0017931999 1e-6 301 276 0.00059769978 1e-6 326 276 0.026300099 1e-6 340 276 0.0011954999 1e-6 356 276 0.00059769978 1e-6 358 276 0.0023908999 1e-6 417 276 0.00059769978 1e-6 443 276 0.011954598 1e-6 444 276 0.0101614 1e-6 445 276 0.022713698 1e-6 447 276 0.028690998 1e-6 450 276 0.0047817975 1e-6 452 276 0.011356797 1e-6 453 276 0.0173341 1e-6 454 276 0.0011954999 1e-6 455 276 0.034070499 1e-6 457 276 0.0029885999 1e-6 459 276 0.019724999 1e-6 460 276 0.00059769978 1e-6 463 276 0.037059199 1e-6 464 276 0.0011954999 1e-6 465 276 0.00059769978 1e-6 467 276 0.0083681978 1e-6 468 276 0.0029885999 1e-6 469 276 0.0053795986 1e-6 470 276 0.0053795986 1e-6 471 276 0.0029885999 1e-6 478 276 0.0011954999 1e-6 483 276 0.0017931999 1e-6 490 276 0.00059769978 1e-6 491 276 0.00059769978 1e-6 9 277 1.17e-05 1e-6 16 277 3.8999997e-06 1e-6 18 277 0.00011659999 1e-6 19 277 0.057920396 1e-6 21 277 0.00047409977 1e-6 22 277 0.027266096 1e-6 23 277 0.00014769999 1e-6 24 277 0.0018845999 1e-6 25 277 0.0011034999 1e-6 60 277 0.0140002 1e-6 66 277 1.5499987e-05 1e-6 79 277 3.8999997e-06 1e-6 82 277 1.17e-05 1e-6 83 277 7.7999994e-06 1e-6 84 277 7.7999994e-06 1e-6 108 277 1.9399988e-05 1e-6 113 277 1.9399988e-05 1e-6 114 277 6.6099994e-05 1e-6 126 277 2.7199989e-05 1e-6 127 277 3.8999997e-06 1e-6 150 277 0.00035749981 1e-6 151 277 2.7199989e-05 1e-6 153 277 1.17e-05 1e-6 154 277 0.0001127 1e-6 160 277 0.0020826999 1e-6 161 277 6.9899994e-05 1e-6 165 277 0.00057119993 1e-6 169 277 0.0011656999 1e-6 171 277 0.000101 1e-6 172 277 0.0002293 1e-6 183 277 0.00058669993 1e-6 189 277 6.6099994e-05 1e-6 190 277 6.6099994e-05 1e-6 192 277 1.5499987e-05 1e-6 194 277 4.269999e-05 1e-6 195 277 0.00039629987 1e-6 196 277 1.17e-05 1e-6 197 277 7.7999994e-06 1e-6 198 277 0.00054399995 1e-6 200 277 1.9399988e-05 1e-6 201 277 7.7999994e-06 1e-6 203 277 0.00034189993 1e-6 204 277 4.269999e-05 1e-6 206 277 0.00048179994 1e-6 207 277 2.3299988e-05 1e-6 209 277 7.7999994e-06 1e-6 214 277 0.020030897 1e-6 218 277 5.0499992e-05 1e-6 223 277 0.00064109988 1e-6 224 277 2.3299988e-05 1e-6 233 277 0.00048959977 1e-6 234 277 0.0049153976 1e-6 237 277 6.9899994e-05 1e-6 240 277 0.00048569986 1e-6 241 277 0.00042349985 1e-6 242 277 0.0002137 1e-6 248 277 7.7999994e-06 1e-6 250 277 3.8999997e-06 1e-6 251 277 4.6599991e-05 1e-6 252 277 0.00011659999 1e-6 262 277 3.8999997e-06 1e-6 263 277 3.8999997e-06 1e-6 267 277 0.0029958999 1e-6 270 277 0.0017990998 1e-6 272 277 0.00076159998 1e-6 273 277 0.0011463 1e-6 276 277 0.00013209999 1e-6 277 277 0.17267716 1e-6 278 277 0.019902598 1e-6 279 277 0.0001049 1e-6 280 277 0.00092479982 1e-6 281 277 1.9399988e-05 1e-6 282 277 0.012259398 1e-6 283 277 0.00037299981 1e-6 284 277 0.0022421 1e-6 285 277 3.8999997e-06 1e-6 286 277 0.00062949979 1e-6 287 277 0.00045849988 1e-6 288 277 0.0045229979 1e-6 289 277 0.0016786 1e-6 290 277 0.010495298 1e-6 291 277 0.0015153999 1e-6 292 277 0.00015149999 1e-6 293 277 0.000101 1e-6 294 277 1.5499987e-05 1e-6 295 277 0.0018728999 1e-6 296 277 7.7999994e-06 1e-6 297 277 3.499999e-05 1e-6 298 277 7.7999994e-06 1e-6 300 277 0.0001088 1e-6 301 277 0.00037299981 1e-6 302 277 0.00018259999 1e-6 303 277 0.0001127 1e-6 306 277 0.00032249978 1e-6 307 277 3.8999997e-06 1e-6 308 277 0.00033029984 1e-6 309 277 8.5499996e-05 1e-6 310 277 0.0004778998 1e-6 312 277 0.0068737976 1e-6 313 277 3.8999997e-06 1e-6 315 277 0.0018223999 1e-6 317 277 0.000101 1e-6 318 277 0.0001088 1e-6 319 277 0.00038859993 1e-6 320 277 0.0018145998 1e-6 321 277 0.0022926 1e-6 322 277 0.0019622999 1e-6 324 277 0.00086649996 1e-6 326 277 0.0067805983 1e-6 328 277 7.7999994e-06 1e-6 330 277 3.8999997e-06 1e-6 331 277 3.8999997e-06 1e-6 333 277 3.8999997e-06 1e-6 336 277 0.00024869991 1e-6 337 277 0.00083929999 1e-6 338 277 0.000101 1e-6 339 277 0.00012819999 1e-6 340 277 0.0039866976 1e-6 341 277 0.0001088 1e-6 342 277 0.00068779988 1e-6 343 277 0.00082379999 1e-6 349 277 0.00030309986 1e-6 350 277 0.0035593 1e-6 351 277 0.0033572998 1e-6 352 277 0.0021060999 1e-6 353 277 1.9399988e-05 1e-6 354 277 0.0045384988 1e-6 355 277 0.00036139996 1e-6 356 277 0.00042349985 1e-6 357 277 0.00012049999 1e-6 358 277 0.0026305998 1e-6 359 277 0.0014260998 1e-6 362 277 5.0499992e-05 1e-6 363 277 0.000101 1e-6 368 277 0.00013989999 1e-6 370 277 0.0017018998 1e-6 371 277 0.00058669993 1e-6 372 277 0.0001049 1e-6 373 277 0.00091309985 1e-6 374 277 0.00047019986 1e-6 375 277 0.0026655998 1e-6 376 277 0.00011659999 1e-6 380 277 3.8999997e-06 1e-6 384 277 0.0032017999 1e-6 385 277 0.00027199998 1e-6 386 277 0.00013989999 1e-6 387 277 3.1099989e-05 1e-6 393 277 3.8999997e-06 1e-6 394 277 3.8999997e-06 1e-6 395 277 0.00013599999 1e-6 397 277 3.8999997e-06 1e-6 402 277 3.1099989e-05 1e-6 404 277 2.3299988e-05 1e-6 408 277 0.00083929999 1e-6 409 277 4.269999e-05 1e-6 412 277 9.3299997e-05 1e-6 413 277 0.00062169996 1e-6 414 277 0.00082379999 1e-6 415 277 0.00017489999 1e-6 417 277 0.00024479977 1e-6 419 277 0.0001088 1e-6 421 277 0.00014379999 1e-6 422 277 3.8899991e-05 1e-6 423 277 3.8999997e-06 1e-6 425 277 3.8999997e-06 1e-6 430 277 1.9399988e-05 1e-6 431 277 7.7999994e-06 1e-6 432 277 7.7999994e-06 1e-6 433 277 1.9399988e-05 1e-6 434 277 2.3299988e-05 1e-6 438 277 0.00029139989 1e-6 441 277 0.00014769999 1e-6 442 277 8.9399997e-05 1e-6 443 277 0.037411597 1e-6 444 277 0.0020088998 1e-6 445 277 0.0133591 1e-6 446 277 0.008540798 1e-6 447 277 0.0046472996 1e-6 448 277 0.0002176 1e-6 449 277 3.8999997e-06 1e-6 450 277 0.0018106999 1e-6 452 277 0.016898997 1e-6 453 277 0.014497597 1e-6 454 277 0.0019701 1e-6 455 277 0.0368676 1e-6 456 277 0.00026809983 1e-6 457 277 0.0021448999 1e-6 458 277 0.00040019979 1e-6 459 277 0.00054009981 1e-6 460 277 0.0022964999 1e-6 463 277 0.0014648999 1e-6 464 277 0.0019583998 1e-6 465 277 0.00076159998 1e-6 467 277 0.011863098 1e-6 468 277 0.0030075 1e-6 469 277 0.0039866976 1e-6 470 277 0.0024518999 1e-6 471 277 0.0010064 1e-6 472 277 7.7699995e-05 1e-6 473 277 5.8299993e-05 1e-6 477 277 0.00042739999 1e-6 478 277 0.00067999982 1e-6 483 277 0.00083539984 1e-6 489 277 0.0014260998 1e-6 490 277 0.0001943 1e-6 491 277 0.019747198 1e-6 19 278 0.20604849 1e-6 21 278 0.032901298 1e-6 22 278 0.016118299 1e-6 24 278 0.026088398 1e-6 25 278 0.0001662 1e-6 60 278 0.0144566 1e-6 114 278 0.0001662 1e-6 130 278 0.00049849995 1e-6 131 278 0.00033229985 1e-6 160 278 0.0023263998 1e-6 169 278 0.0069790967 1e-6 172 278 0.00049849995 1e-6 187 278 0.0001662 1e-6 198 278 0.0001662 1e-6 206 278 0.00049849995 1e-6 214 278 0.0018277999 1e-6 219 278 0.00049849995 1e-6 223 278 0.00049849995 1e-6 224 278 0.0001662 1e-6 234 278 0.0021601999 1e-6 252 278 0.0001662 1e-6 267 278 0.00033229985 1e-6 270 278 0.0023263998 1e-6 272 278 0.00083079981 1e-6 273 278 0.0001662 1e-6 276 278 0.0069790967 1e-6 277 278 0.024426699 1e-6 278 278 0.010634799 1e-6 282 278 0.00099699991 1e-6 284 278 0.0019939998 1e-6 286 278 0.00049849995 1e-6 288 278 0.0011631998 1e-6 289 278 0.016949199 1e-6 290 278 0.027251597 1e-6 291 278 0.0001662 1e-6 295 278 0.0001662 1e-6 312 278 0.00049849995 1e-6 315 278 0.0001662 1e-6 320 278 0.0001662 1e-6 321 278 0.0001662 1e-6 322 278 0.0001662 1e-6 324 278 0.00049849995 1e-6 326 278 0.00033229985 1e-6 340 278 0.00033229985 1e-6 350 278 0.00033229985 1e-6 351 278 0.00033229985 1e-6 352 278 0.0001662 1e-6 354 278 0.00033229985 1e-6 355 278 0.00083079981 1e-6 356 278 0.0001662 1e-6 358 278 0.0011631998 1e-6 359 278 0.0001662 1e-6 375 278 0.028248597 1e-6 384 278 0.00033229985 1e-6 417 278 0.0001662 1e-6 443 278 0.023429699 1e-6 444 278 0.0084745996 1e-6 445 278 0.019773997 1e-6 446 278 0.0034894999 1e-6 447 278 0.0054834969 1e-6 450 278 0.0014954999 1e-6 452 278 0.086739779 1e-6 453 278 0.0034894999 1e-6 454 278 0.0053173974 1e-6 455 278 0.0224327 1e-6 457 278 0.0019939998 1e-6 459 278 0.00049849995 1e-6 460 278 0.0019939998 1e-6 463 278 0.0058158971 1e-6 464 278 0.0046526976 1e-6 465 278 0.00049849995 1e-6 467 278 0.016616799 1e-6 468 278 0.0084745996 1e-6 469 278 0.0023263998 1e-6 470 278 0.0021601999 1e-6 471 278 0.0001662 1e-6 478 278 0.00049849995 1e-6 483 278 0.00083079981 1e-6 489 278 0.0036556998 1e-6 490 278 0.0018277999 1e-6 491 278 0.013958097 1e-6 19 279 0.0188291 1e-6 21 279 0.00029419991 1e-6 22 279 0.0088260993 1e-6 24 279 0.0011767999 1e-6 25 279 0.00029419991 1e-6 60 279 0.0079434998 1e-6 160 279 0.0023536 1e-6 165 279 0.00029419991 1e-6 169 279 0.00029419991 1e-6 171 279 0.0029419998 1e-6 172 279 0.00029419991 1e-6 183 279 0.00029419991 1e-6 187 279 0.00029419991 1e-6 198 279 0.0067666993 1e-6 203 279 0.0026477999 1e-6 206 279 0.00029419991 1e-6 214 279 0.015592799 1e-6 223 279 0.017652299 1e-6 233 279 0.00029419991 1e-6 234 279 0.0047072992 1e-6 241 279 0.00088259997 1e-6 267 279 0.0035305 1e-6 270 279 0.00029419991 1e-6 272 279 0.00058839982 1e-6 273 279 0.00029419991 1e-6 277 279 0.22418356 1e-6 278 279 0.0064724982 1e-6 279 279 0.0055898987 1e-6 280 279 0.00029419991 1e-6 282 279 0.0038246999 1e-6 284 279 0.0044130981 1e-6 286 279 0.0082376972 1e-6 287 279 0.00058839982 1e-6 288 279 0.0061782971 1e-6 289 279 0.0011767999 1e-6 290 279 0.0035305 1e-6 291 279 0.00058839982 1e-6 293 279 0.00029419991 1e-6 295 279 0.0023536 1e-6 310 279 0.00029419991 1e-6 312 279 0.0067666993 1e-6 315 279 0.00058839982 1e-6 320 279 0.00058839982 1e-6 321 279 0.00058839982 1e-6 322 279 0.00058839982 1e-6 324 279 0.00058839982 1e-6 326 279 0.0035305 1e-6 337 279 0.00029419991 1e-6 340 279 0.029420398 1e-6 343 279 0.00029419991 1e-6 350 279 0.0032362 1e-6 351 279 0.0050014965 1e-6 352 279 0.00058839982 1e-6 354 279 0.0032362 1e-6 355 279 0.00029419991 1e-6 356 279 0.00029419991 1e-6 358 279 0.0017651999 1e-6 359 279 0.00058839982 1e-6 361 279 0.00029419991 1e-6 370 279 0.00029419991 1e-6 372 279 0.00029419991 1e-6 373 279 0.0011767999 1e-6 374 279 0.00058839982 1e-6 375 279 0.00088259997 1e-6 384 279 0.0011767999 1e-6 408 279 0.00029419991 1e-6 413 279 0.00029419991 1e-6 414 279 0.00029419991 1e-6 417 279 0.00029419991 1e-6 419 279 0.00029419991 1e-6 443 279 0.017652299 1e-6 444 279 0.0020593998 1e-6 445 279 0.0097086988 1e-6 446 279 0.0032362 1e-6 447 279 0.0038246999 1e-6 450 279 0.0020593998 1e-6 452 279 0.012650799 1e-6 453 279 0.0085318983 1e-6 454 279 0.0032362 1e-6 455 279 0.032656699 1e-6 456 279 0.00058839982 1e-6 457 279 0.0020593998 1e-6 458 279 0.00058839982 1e-6 459 279 0.00058839982 1e-6 460 279 0.0011767999 1e-6 463 279 0.0035305 1e-6 464 279 0.0026477999 1e-6 465 279 0.00088259997 1e-6 467 279 0.018240698 1e-6 468 279 0.0038246999 1e-6 469 279 0.0038246999 1e-6 470 279 0.0035305 1e-6 471 279 0.00058839982 1e-6 477 279 0.0020593998 1e-6 478 279 0.00088259997 1e-6 483 279 0.00088259997 1e-6 489 279 0.00058839982 1e-6 490 279 0.00029419991 1e-6 491 279 0.0064724982 1e-6 60 280 0.0054445975 1e-6 160 280 0.0018149 1e-6 169 280 0.0018149 1e-6 198 280 0.0018149 1e-6 203 280 0.0018149 1e-6 214 280 0.058076199 1e-6 234 280 0.0018149 1e-6 240 280 0.0036297999 1e-6 270 280 0.010889299 1e-6 277 280 0.44283116 1e-6 280 280 0.0054445975 1e-6 282 280 0.0072594993 1e-6 284 280 0.0018149 1e-6 290 280 0.010889299 1e-6 295 280 0.0018149 1e-6 312 280 0.010889299 1e-6 321 280 0.0054445975 1e-6 322 280 0.0054445975 1e-6 326 280 0.0272232 1e-6 342 280 0.0036297999 1e-6 350 280 0.0054445975 1e-6 351 280 0.0018149 1e-6 352 280 0.0090743974 1e-6 354 280 0.010889299 1e-6 358 280 0.010889299 1e-6 370 280 0.019963697 1e-6 373 280 0.0018149 1e-6 443 280 0.012704197 1e-6 444 280 0.0036297999 1e-6 445 280 0.010889299 1e-6 446 280 0.0018149 1e-6 447 280 0.0036297999 1e-6 450 280 0.0018149 1e-6 452 280 0.0072594993 1e-6 453 280 0.0054445975 1e-6 454 280 0.0036297999 1e-6 455 280 0.016333897 1e-6 457 280 0.0018149 1e-6 460 280 0.0036297999 1e-6 463 280 0.0036297999 1e-6 464 280 0.0018149 1e-6 467 280 0.025408298 1e-6 468 280 0.0018149 1e-6 469 280 0.0090743974 1e-6 470 280 0.0018149 1e-6 477 280 0.0018149 1e-6 60 281 0.0036100999 1e-6 160 281 0.0036100999 1e-6 169 281 0.0036100999 1e-6 214 281 0.07581228 1e-6 223 281 0.0072201975 1e-6 277 281 0.38267148 1e-6 282 281 0.010830298 1e-6 284 281 0.0036100999 1e-6 288 281 0.0072201975 1e-6 312 281 0.010830298 1e-6 320 281 0.0036100999 1e-6 321 281 0.0036100999 1e-6 324 281 0.0036100999 1e-6 326 281 0.0072201975 1e-6 340 281 0.0072201975 1e-6 349 281 0.0036100999 1e-6 350 281 0.0036100999 1e-6 351 281 0.0036100999 1e-6 354 281 0.018050499 1e-6 358 281 0.014440399 1e-6 370 281 0.010830298 1e-6 371 281 0.0072201975 1e-6 375 281 0.0036100999 1e-6 414 281 0.0036100999 1e-6 443 281 0.014440399 1e-6 444 281 0.0036100999 1e-6 445 281 0.010830298 1e-6 447 281 0.0036100999 1e-6 452 281 0.0072201975 1e-6 453 281 0.0072201975 1e-6 454 281 0.0036100999 1e-6 455 281 0.014440399 1e-6 457 281 0.0036100999 1e-6 460 281 0.0036100999 1e-6 463 281 0.0036100999 1e-6 464 281 0.0036100999 1e-6 467 281 0.0216606 1e-6 468 281 0.0036100999 1e-6 469 281 0.0036100999 1e-6 470 281 0.0036100999 1e-6 477 281 0.0036100999 1e-6 9 282 1.6999998e-05 1e-6 18 282 0.00015339999 1e-6 19 282 0.0019434998 1e-6 21 282 1.6999998e-05 1e-6 22 282 0.0018070999 1e-6 24 282 0.0056257993 1e-6 25 282 0.0003409998 1e-6 60 282 0.010058299 1e-6 77 282 1.6999998e-05 1e-6 78 282 0.00013639999 1e-6 79 282 1.6999998e-05 1e-6 82 282 1.6999998e-05 1e-6 83 282 1.6999998e-05 1e-6 84 282 1.6999998e-05 1e-6 98 282 1.6999998e-05 1e-6 104 282 0.00018749999 1e-6 108 282 1.6999998e-05 1e-6 113 282 3.4099998e-05 1e-6 114 282 8.5199994e-05 1e-6 126 282 5.1099996e-05 1e-6 127 282 1.6999998e-05 1e-6 134 282 6.8199995e-05 1e-6 150 282 0.00081829983 1e-6 151 282 1.6999998e-05 1e-6 156 282 0.00040919986 1e-6 158 282 0.00010229999 1e-6 159 282 3.4099998e-05 1e-6 160 282 0.0029662999 1e-6 161 282 1.6999998e-05 1e-6 162 282 1.6999998e-05 1e-6 165 282 3.4099998e-05 1e-6 169 282 0.00075009977 1e-6 170 282 1.6999998e-05 1e-6 171 282 8.5199994e-05 1e-6 172 282 0.0010910998 1e-6 181 282 8.5199994e-05 1e-6 183 282 1.6999998e-05 1e-6 189 282 6.8199995e-05 1e-6 190 282 0.00011929999 1e-6 192 282 3.4099998e-05 1e-6 194 282 0.00010229999 1e-6 195 282 1.6999998e-05 1e-6 196 282 1.6999998e-05 1e-6 197 282 1.6999998e-05 1e-6 198 282 0.0015001998 1e-6 200 282 3.4099998e-05 1e-6 201 282 3.4099998e-05 1e-6 203 282 5.1099996e-05 1e-6 204 282 8.5199994e-05 1e-6 206 282 0.00035799993 1e-6 207 282 5.1099996e-05 1e-6 209 282 1.6999998e-05 1e-6 214 282 0.00080129993 1e-6 218 282 3.4099998e-05 1e-6 219 282 5.1099996e-05 1e-6 223 282 0.0048415996 1e-6 224 282 1.6999998e-05 1e-6 233 282 0.00011929999 1e-6 234 282 0.0030685998 1e-6 236 282 1.6999998e-05 1e-6 237 282 0.00073309988 1e-6 240 282 0.00083539984 1e-6 241 282 0.00020459999 1e-6 242 282 0.00013639999 1e-6 248 282 1.6999998e-05 1e-6 250 282 1.6999998e-05 1e-6 252 282 0.0004602999 1e-6 267 282 0.00010229999 1e-6 270 282 0.0080124997 1e-6 271 282 1.6999998e-05 1e-6 272 282 0.0010058 1e-6 273 282 3.4099998e-05 1e-6 276 282 3.4099998e-05 1e-6 277 282 0.060400996 1e-6 278 282 0.022094198 1e-6 279 282 8.5199994e-05 1e-6 280 282 6.8199995e-05 1e-6 282 282 0.0060349964 1e-6 283 282 0.0023866999 1e-6 284 282 0.0077738985 1e-6 285 282 5.1099996e-05 1e-6 286 282 0.0027788 1e-6 287 282 0.00027279998 1e-6 288 282 0.0003409998 1e-6 289 282 0.001773 1e-6 290 282 0.0043983981 1e-6 291 282 5.1099996e-05 1e-6 292 282 0.00018749999 1e-6 293 282 0.00018749999 1e-6 294 282 0.00013639999 1e-6 295 282 6.8199995e-05 1e-6 296 282 0.00015339999 1e-6 297 282 0.00013639999 1e-6 298 282 8.5199994e-05 1e-6 299 282 3.4099998e-05 1e-6 301 282 1.6999998e-05 1e-6 304 282 5.1099996e-05 1e-6 305 282 1.6999998e-05 1e-6 306 282 1.6999998e-05 1e-6 307 282 0.00011929999 1e-6 308 282 1.6999998e-05 1e-6 310 282 1.6999998e-05 1e-6 312 282 0.00075009977 1e-6 313 282 0.0018070999 1e-6 315 282 0.00030689989 1e-6 319 282 0.00051139994 1e-6 320 282 8.5199994e-05 1e-6 321 282 6.8199995e-05 1e-6 322 282 0.00020459999 1e-6 323 282 0.00017049999 1e-6 324 282 0.00015339999 1e-6 326 282 0.00068189995 1e-6 328 282 0.0015683998 1e-6 329 282 0.00027279998 1e-6 330 282 5.1099996e-05 1e-6 331 282 0.00013639999 1e-6 332 282 1.6999998e-05 1e-6 333 282 1.6999998e-05 1e-6 335 282 3.4099998e-05 1e-6 337 282 3.4099998e-05 1e-6 338 282 0.00027279998 1e-6 339 282 6.8199995e-05 1e-6 340 282 0.0069215 1e-6 341 282 5.1099996e-05 1e-6 342 282 0.00011929999 1e-6 343 282 5.1099996e-05 1e-6 344 282 1.6999998e-05 1e-6 345 282 6.8199995e-05 1e-6 347 282 0.00010229999 1e-6 349 282 0.0036823999 1e-6 350 282 0.0004602999 1e-6 351 282 0.0012274999 1e-6 352 282 8.5199994e-05 1e-6 353 282 0.023509197 1e-6 354 282 0.012444999 1e-6 355 282 0.00013639999 1e-6 356 282 0.00030689989 1e-6 357 282 0.00020459999 1e-6 358 282 0.015632998 1e-6 359 282 5.1099996e-05 1e-6 366 282 0.00020459999 1e-6 370 282 1.6999998e-05 1e-6 371 282 6.8199995e-05 1e-6 372 282 0.00040919986 1e-6 373 282 0.0002387 1e-6 374 282 0.0024037999 1e-6 375 282 0.013689499 1e-6 384 282 0.00030689989 1e-6 385 282 0.00011929999 1e-6 386 282 1.6999998e-05 1e-6 387 282 0.00017049999 1e-6 392 282 1.6999998e-05 1e-6 394 282 8.5199994e-05 1e-6 397 282 0.00047729979 1e-6 399 282 5.1099996e-05 1e-6 401 282 0.00080129993 1e-6 402 282 0.0055234991 1e-6 408 282 0.0002387 1e-6 412 282 1.6999998e-05 1e-6 413 282 1.6999998e-05 1e-6 414 282 5.1099996e-05 1e-6 415 282 3.4099998e-05 1e-6 417 282 0.00054549985 1e-6 419 282 3.4099998e-05 1e-6 421 282 0.00032389979 1e-6 422 282 6.8199995e-05 1e-6 423 282 1.6999998e-05 1e-6 425 282 1.6999998e-05 1e-6 430 282 1.6999998e-05 1e-6 431 282 3.4099998e-05 1e-6 432 282 1.6999998e-05 1e-6 433 282 3.4099998e-05 1e-6 434 282 3.4099998e-05 1e-6 438 282 0.001432 1e-6 443 282 0.012922399 1e-6 444 282 0.0015513999 1e-6 445 282 0.010160599 1e-6 446 282 0.00098879985 1e-6 447 282 0.0035118998 1e-6 448 282 1.6999998e-05 1e-6 450 282 0.0040573999 1e-6 452 282 0.020269997 1e-6 453 282 0.0080806985 1e-6 454 282 0.0017217998 1e-6 455 282 0.049456198 1e-6 456 282 0.00049439981 1e-6 457 282 0.0048415996 1e-6 458 282 0.00093759992 1e-6 459 282 0.0013297 1e-6 460 282 0.0020458 1e-6 463 282 0.0021479998 1e-6 464 282 0.0012444998 1e-6 465 282 0.0010739998 1e-6 467 282 0.011405099 1e-6 468 282 0.0028640998 1e-6 469 282 0.0035289 1e-6 470 282 0.0038698998 1e-6 471 282 0.0017899999 1e-6 473 282 8.5199994e-05 1e-6 477 282 0.00010229999 1e-6 478 282 0.0012786 1e-6 483 282 0.00092059979 1e-6 489 282 0.00015339999 1e-6 490 282 0.0003409998 1e-6 491 282 0.035630297 1e-6 18 283 0.00010799999 1e-6 19 283 0.010635398 1e-6 21 283 0.00010799999 1e-6 22 283 0.0059924982 1e-6 24 283 0.00032389979 1e-6 25 283 0.0002159 1e-6 60 283 0.0078820996 1e-6 78 283 5.3999989e-05 1e-6 108 283 5.3999989e-05 1e-6 114 283 0.00010799999 1e-6 126 283 5.3999989e-05 1e-6 134 283 5.3999989e-05 1e-6 150 283 0.00010799999 1e-6 156 283 0.00032389979 1e-6 158 283 0.00010799999 1e-6 160 283 0.00032389979 1e-6 165 283 0.00010799999 1e-6 168 283 5.3999989e-05 1e-6 169 283 0.000162 1e-6 171 283 0.00037789997 1e-6 172 283 5.3999989e-05 1e-6 181 283 5.3999989e-05 1e-6 183 283 0.00010799999 1e-6 189 283 5.3999989e-05 1e-6 190 283 5.3999989e-05 1e-6 194 283 5.3999989e-05 1e-6 195 283 5.3999989e-05 1e-6 198 283 0.0025913999 1e-6 203 283 0.00010799999 1e-6 206 283 0.00048589986 1e-6 214 283 0.0026453999 1e-6 223 283 0.0002159 1e-6 224 283 0.0005398998 1e-6 229 283 0.00070179999 1e-6 233 283 0.0002159 1e-6 234 283 0.0054527 1e-6 237 283 0.00075579993 1e-6 240 283 0.0014036999 1e-6 241 283 0.0029153 1e-6 242 283 0.00043189991 1e-6 252 283 0.00037789997 1e-6 262 283 0.0002159 1e-6 267 283 0.0005398998 1e-6 270 283 0.0012416998 1e-6 271 283 0.000162 1e-6 272 283 0.00043189991 1e-6 273 283 0.0002159 1e-6 277 283 0.28499699 1e-6 278 283 0.0098795965 1e-6 279 283 0.00010799999 1e-6 280 283 0.00010799999 1e-6 282 283 0.0055606999 1e-6 283 283 0.0084758997 1e-6 284 283 0.0043189973 1e-6 286 283 0.00043189991 1e-6 287 283 0.00010799999 1e-6 288 283 0.00091779977 1e-6 289 283 0.0019975 1e-6 290 283 0.0017815998 1e-6 291 283 0.00026989984 1e-6 292 283 0.0021594998 1e-6 293 283 0.0025913999 1e-6 294 283 0.013766699 1e-6 295 283 0.00091779977 1e-6 296 283 0.00059389998 1e-6 297 283 0.00010799999 1e-6 298 283 5.3999989e-05 1e-6 299 283 0.000162 1e-6 301 283 5.3999989e-05 1e-6 302 283 5.3999989e-05 1e-6 305 283 5.3999989e-05 1e-6 306 283 5.3999989e-05 1e-6 307 283 5.3999989e-05 1e-6 308 283 5.3999989e-05 1e-6 310 283 0.00010799999 1e-6 312 283 0.0024293999 1e-6 313 283 0.0016196 1e-6 315 283 0.00097179995 1e-6 317 283 0.000162 1e-6 319 283 0.00048589986 1e-6 320 283 0.00091779977 1e-6 321 283 0.0051826984 1e-6 322 283 0.00064779981 1e-6 323 283 0.000162 1e-6 324 283 0.0027532999 1e-6 326 283 0.0051287971 1e-6 328 283 0.0010257999 1e-6 329 283 0.00048589986 1e-6 330 283 5.3999989e-05 1e-6 331 283 0.00032389979 1e-6 333 283 0.00086379983 1e-6 336 283 5.3999989e-05 1e-6 337 283 0.000162 1e-6 338 283 0.00075579993 1e-6 339 283 0.0010257999 1e-6 340 283 0.0131188 1e-6 341 283 5.3999989e-05 1e-6 342 283 0.000162 1e-6 343 283 0.0002159 1e-6 349 283 5.3999989e-05 1e-6 350 283 0.0010257999 1e-6 351 283 0.0025374 1e-6 352 283 0.00026989984 1e-6 353 283 5.3999989e-05 1e-6 354 283 0.0028072998 1e-6 355 283 0.00037789997 1e-6 356 283 0.00026989984 1e-6 357 283 0.00032389979 1e-6 358 283 0.0073961988 1e-6 359 283 0.00026989984 1e-6 366 283 0.00010799999 1e-6 370 283 0.00010799999 1e-6 371 283 0.0002159 1e-6 372 283 0.00010799999 1e-6 373 283 0.00032389979 1e-6 374 283 0.00010799999 1e-6 375 283 0.00048589986 1e-6 376 283 5.3999989e-05 1e-6 384 283 0.00070179999 1e-6 385 283 0.000162 1e-6 386 283 0.0011336999 1e-6 387 283 0.000162 1e-6 392 283 5.3999989e-05 1e-6 393 283 0.00010799999 1e-6 394 283 5.3999989e-05 1e-6 397 283 0.00048589986 1e-6 398 283 0.00010799999 1e-6 399 283 5.3999989e-05 1e-6 401 283 0.00059389998 1e-6 402 283 0.0053986982 1e-6 408 283 0.00032389979 1e-6 413 283 0.00010799999 1e-6 414 283 0.00010799999 1e-6 415 283 5.3999989e-05 1e-6 417 283 0.00032389979 1e-6 421 283 0.00010799999 1e-6 422 283 5.3999989e-05 1e-6 434 283 5.3999989e-05 1e-6 438 283 5.3999989e-05 1e-6 443 283 0.012093097 1e-6 444 283 0.0016196 1e-6 445 283 0.0080979988 1e-6 446 283 0.0023753999 1e-6 447 283 0.0028072998 1e-6 448 283 0.00010799999 1e-6 450 283 0.0022674999 1e-6 452 283 0.010419499 1e-6 453 283 0.012362998 1e-6 454 283 0.0014575999 1e-6 455 283 0.031312399 1e-6 456 283 0.0002159 1e-6 457 283 0.0022135 1e-6 458 283 0.00048589986 1e-6 459 283 0.00032389979 1e-6 460 283 0.0020514999 1e-6 463 283 0.0028612998 1e-6 464 283 0.00059389998 1e-6 465 283 0.00075579993 1e-6 467 283 0.011823099 1e-6 468 283 0.0018894998 1e-6 469 283 0.0031311999 1e-6 470 283 0.0031851998 1e-6 471 283 0.0010797 1e-6 473 283 5.3999989e-05 1e-6 477 283 0.00010799999 1e-6 478 283 0.00086379983 1e-6 483 283 0.00086379983 1e-6 489 283 0.00026989984 1e-6 490 283 0.00026989984 1e-6 491 283 0.0046428964 1e-6 60 284 0.0027506999 1e-6 114 284 0.0002116 1e-6 126 284 0.0002116 1e-6 190 284 0.0002116 1e-6 194 284 0.0002116 1e-6 206 284 0.00042319996 1e-6 214 284 0.0086753964 1e-6 218 284 0.0002116 1e-6 223 284 0.049513299 1e-6 233 284 0.0093101971 1e-6 234 284 0.018620398 1e-6 237 284 0.0002116 1e-6 240 284 0.0012695999 1e-6 241 284 0.0002116 1e-6 270 284 0.0002116 1e-6 272 284 0.0010579999 1e-6 277 284 0.055649597 1e-6 284 284 0.0080405995 1e-6 285 284 0.018197197 1e-6 286 284 0.0021159998 1e-6 287 284 0.0040202998 1e-6 288 284 0.00042319996 1e-6 289 284 0.0048666969 1e-6 290 284 0.018408798 1e-6 320 284 0.0019043998 1e-6 321 284 0.0002116 1e-6 354 284 0.0012695999 1e-6 355 284 0.0010579999 1e-6 356 284 0.0002116 1e-6 358 284 0.0029622999 1e-6 417 284 0.00063479994 1e-6 443 284 0.0050782971 1e-6 444 284 0.0019043998 1e-6 445 284 0.005924698 1e-6 446 284 0.00042319996 1e-6 447 284 0.0063478984 1e-6 450 284 0.0025390999 1e-6 452 284 0.027930599 1e-6 453 284 0.0247567 1e-6 454 284 0.0012695999 1e-6 455 284 0.015234899 1e-6 456 284 0.0027506999 1e-6 457 284 0.0016927999 1e-6 458 284 0.0010579999 1e-6 459 284 0.00063479994 1e-6 460 284 0.0014811999 1e-6 463 284 0.013753697 1e-6 464 284 0.00042319996 1e-6 465 284 0.00084639993 1e-6 467 284 0.0082521997 1e-6 468 284 0.0012695999 1e-6 469 284 0.0044434965 1e-6 470 284 0.0048666969 1e-6 471 284 0.0010579999 1e-6 473 284 0.0002116 1e-6 478 284 0.0012695999 1e-6 483 284 0.0012695999 1e-6 490 284 0.00063479994 1e-6 19 285 0.045200396 1e-6 20 285 0.0023298999 1e-6 21 285 0.0055917986 1e-6 24 285 0.00093199988 1e-6 25 285 0.00046599982 1e-6 60 285 0.0018638999 1e-6 114 285 0.000233 1e-6 169 285 0.00069899997 1e-6 171 285 0.019105297 1e-6 193 285 0.000233 1e-6 198 285 0.0067567974 1e-6 206 285 0.00069899997 1e-6 214 285 0.046365298 1e-6 223 285 0.00046599982 1e-6 224 285 0.00046599982 1e-6 225 285 0.000233 1e-6 234 285 0.0037278999 1e-6 240 285 0.0013978998 1e-6 241 285 0.0020968998 1e-6 270 285 0.00093199988 1e-6 272 285 0.0011649998 1e-6 273 285 0.00069899997 1e-6 276 285 0.000233 1e-6 277 285 0.0090866983 1e-6 278 285 0.00046599982 1e-6 279 285 0.000233 1e-6 282 285 0.0011649998 1e-6 284 285 0.0041937977 1e-6 285 285 0.0011649998 1e-6 286 285 0.023532197 1e-6 287 285 0.0044267997 1e-6 288 285 0.0039608963 1e-6 289 285 0.12744635 1e-6 290 285 0.038443599 1e-6 291 285 0.00069899997 1e-6 292 285 0.00046599982 1e-6 293 285 0.00046599982 1e-6 294 285 0.0016309 1e-6 295 285 0.046598297 1e-6 296 285 0.00069899997 1e-6 298 285 0.00069899997 1e-6 301 285 0.0072226971 1e-6 312 285 0.0011649998 1e-6 315 285 0.00046599982 1e-6 320 285 0.011882599 1e-6 321 285 0.012814499 1e-6 322 285 0.00046599982 1e-6 326 285 0.0018638999 1e-6 338 285 0.000233 1e-6 340 285 0.017707396 1e-6 351 285 0.00093199988 1e-6 354 285 0.010950599 1e-6 355 285 0.0011649998 1e-6 356 285 0.000233 1e-6 358 285 0.0032618998 1e-6 370 285 0.000233 1e-6 371 285 0.000233 1e-6 373 285 0.000233 1e-6 375 285 0.00069899997 1e-6 386 285 0.000233 1e-6 392 285 0.00046599982 1e-6 396 285 0.000233 1e-6 397 285 0.0039608963 1e-6 402 285 0.000233 1e-6 417 285 0.000233 1e-6 438 285 0.000233 1e-6 443 285 0.010950599 1e-6 444 285 0.0083876997 1e-6 445 285 0.0034949 1e-6 446 285 0.00046599982 1e-6 447 285 0.011416599 1e-6 450 285 0.0018638999 1e-6 452 285 0.017940398 1e-6 453 285 0.0097855963 1e-6 454 285 0.0016309 1e-6 455 285 0.018639296 1e-6 457 285 0.0023298999 1e-6 458 285 0.000233 1e-6 459 285 0.00069899997 1e-6 460 285 0.0016309 1e-6 463 285 0.016076397 1e-6 464 285 0.0011649998 1e-6 465 285 0.00046599982 1e-6 467 285 0.0067567974 1e-6 468 285 0.0020968998 1e-6 469 285 0.0032618998 1e-6 470 285 0.0023298999 1e-6 471 285 0.00093199988 1e-6 478 285 0.00046599982 1e-6 483 285 0.0013978998 1e-6 490 285 0.00046599982 1e-6 491 285 0.0018638999 1e-6 18 286 0.00028329995 1e-6 20 286 0.35669565 1e-6 22 286 0.00033999979 1e-6 60 286 0.00079319999 1e-6 108 286 2.8299997e-05 1e-6 114 286 5.6699995e-05 1e-6 126 286 5.6699995e-05 1e-6 150 286 2.8299997e-05 1e-6 151 286 2.8299997e-05 1e-6 160 286 5.6699995e-05 1e-6 169 286 2.8299997e-05 1e-6 172 286 2.8299997e-05 1e-6 189 286 2.8299997e-05 1e-6 190 286 5.6699995e-05 1e-6 194 286 5.6699995e-05 1e-6 198 286 5.6699995e-05 1e-6 206 286 0.00042489986 1e-6 214 286 0.0034844999 1e-6 218 286 2.8299997e-05 1e-6 223 286 0.00048159994 1e-6 224 286 2.8299997e-05 1e-6 233 286 2.8299997e-05 1e-6 234 286 0.0030311998 1e-6 237 286 2.8299997e-05 1e-6 240 286 0.00033999979 1e-6 241 286 0.00093489978 1e-6 242 286 2.8299997e-05 1e-6 252 286 5.6699995e-05 1e-6 262 286 2.8299997e-05 1e-6 267 286 0.00056659989 1e-6 272 286 0.00067989994 1e-6 277 286 0.0010481998 1e-6 282 286 5.6699995e-05 1e-6 283 286 2.8299997e-05 1e-6 284 286 0.00059489999 1e-6 285 286 0.0032578998 1e-6 286 286 0.36805576 1e-6 287 286 0.0034844999 1e-6 288 286 0.0054675974 1e-6 289 286 0.0016148 1e-6 290 286 0.016601 1e-6 291 286 0.0028612998 1e-6 292 286 0.00056659989 1e-6 293 286 5.6699995e-05 1e-6 294 286 5.6699995e-05 1e-6 295 286 0.00011329999 1e-6 296 286 2.8299997e-05 1e-6 312 286 8.4999992e-05 1e-6 315 286 5.6699995e-05 1e-6 317 286 0.00017 1e-6 318 286 0.00017 1e-6 319 286 2.8299997e-05 1e-6 320 286 2.8299997e-05 1e-6 321 286 5.6699995e-05 1e-6 324 286 0.0001983 1e-6 326 286 8.4999992e-05 1e-6 340 286 0.00033999979 1e-6 350 286 2.8299997e-05 1e-6 351 286 2.8299997e-05 1e-6 354 286 0.0014730999 1e-6 356 286 0.0001983 1e-6 358 286 0.0018696999 1e-6 373 286 2.8299997e-05 1e-6 375 286 0.0011047998 1e-6 386 286 0.00011329999 1e-6 387 286 2.8299997e-05 1e-6 417 286 0.00011329999 1e-6 443 286 0.013229799 1e-6 444 286 0.00042489986 1e-6 445 286 0.0018980999 1e-6 446 286 0.00033999979 1e-6 447 286 0.00045329984 1e-6 448 286 2.8299997e-05 1e-6 450 286 0.00084989984 1e-6 452 286 0.0044476986 1e-6 453 286 0.0058924966 1e-6 454 286 0.0011614999 1e-6 455 286 0.0246749 1e-6 456 286 0.0026629998 1e-6 457 286 0.0021529999 1e-6 458 286 0.00014159999 1e-6 459 286 0.00082159997 1e-6 460 286 0.0017563999 1e-6 463 286 0.0016997999 1e-6 464 286 0.00036829989 1e-6 465 286 0.00014159999 1e-6 467 286 0.0039094985 1e-6 468 286 0.0028328998 1e-6 469 286 0.0035128 1e-6 470 286 0.00082159997 1e-6 471 286 0.00045329984 1e-6 473 286 5.6699995e-05 1e-6 477 286 5.6699995e-05 1e-6 478 286 0.00022659999 1e-6 483 286 0.0001983 1e-6 489 286 0.00011329999 1e-6 490 286 8.4999992e-05 1e-6 491 286 0.050086398 1e-6 18 287 0.00073289988 1e-6 19 287 0.00043979986 1e-6 20 287 0.00043979986 1e-6 21 287 0.13559067 1e-6 22 287 0.00073289988 1e-6 60 287 0.0016123999 1e-6 206 287 0.0002931999 1e-6 214 287 0.021108199 1e-6 223 287 0.0016123999 1e-6 234 287 0.0087950975 1e-6 240 287 0.00087949983 1e-6 241 287 0.0051304996 1e-6 272 287 0.0002931999 1e-6 277 287 0.0083552971 1e-6 278 287 0.0001466 1e-6 284 287 0.0013192999 1e-6 285 287 0.012313098 1e-6 286 287 0.0095279999 1e-6 287 287 0.22339487 1e-6 288 287 0.015391398 1e-6 289 287 0.0086484998 1e-6 290 287 0.053649999 1e-6 291 287 0.0082086995 1e-6 317 287 0.00043979986 1e-6 318 287 0.00043979986 1e-6 326 287 0.0001466 1e-6 340 287 0.0014658 1e-6 353 287 0.0002931999 1e-6 354 287 0.0038111999 1e-6 356 287 0.0002931999 1e-6 358 287 0.0043974966 1e-6 375 287 0.0032249 1e-6 417 287 0.0001466 1e-6 443 287 0.028584 1e-6 444 287 0.0042509995 1e-6 445 287 0.0055701993 1e-6 446 287 0.00058629992 1e-6 447 287 0.005423598 1e-6 450 287 0.0014658 1e-6 452 287 0.0045440979 1e-6 453 287 0.0051304996 1e-6 454 287 0.0014658 1e-6 455 287 0.061125796 1e-6 456 287 0.0077689998 1e-6 457 287 0.0023453999 1e-6 458 287 0.0001466 1e-6 459 287 0.00058629992 1e-6 460 287 0.0026385 1e-6 463 287 0.0043974966 1e-6 464 287 0.0011727 1e-6 465 287 0.0001466 1e-6 467 287 0.0055701993 1e-6 468 287 0.0071825981 1e-6 469 287 0.0095279999 1e-6 470 287 0.0013192999 1e-6 471 287 0.00087949983 1e-6 478 287 0.0033713998 1e-6 483 287 0.00043979986 1e-6 489 287 0.0001466 1e-6 490 287 0.0010260998 1e-6 491 287 0.12826145 1e-6 18 288 0.00042659999 1e-6 20 288 0.0034129999 1e-6 21 288 0.24850678 1e-6 22 288 0.0055460967 1e-6 24 288 0.00021329999 1e-6 60 288 0.0021330998 1e-6 114 288 0.00021329999 1e-6 120 288 0.00021329999 1e-6 206 288 0.00063989987 1e-6 214 288 0.0153584 1e-6 223 288 0.0010666 1e-6 234 288 0.022397596 1e-6 240 288 0.00063989987 1e-6 241 288 0.0017064998 1e-6 272 288 0.00063989987 1e-6 277 288 0.0076791979 1e-6 284 288 0.0014932 1e-6 285 288 0.0066125989 1e-6 286 288 0.010025598 1e-6 287 288 0.015571699 1e-6 288 288 0.070392489 1e-6 289 288 0.0029862998 1e-6 290 288 0.052687697 1e-6 291 288 0.0057593994 1e-6 317 288 0.00042659999 1e-6 318 288 0.00042659999 1e-6 324 288 0.00021329999 1e-6 340 288 0.00063989987 1e-6 354 288 0.0025596998 1e-6 356 288 0.00021329999 1e-6 358 288 0.0038395999 1e-6 375 288 0.0021330998 1e-6 417 288 0.00021329999 1e-6 443 288 0.036262799 1e-6 444 288 0.0012798999 1e-6 445 288 0.016638197 1e-6 446 288 0.0012798999 1e-6 447 288 0.0070391968 1e-6 450 288 0.0021330998 1e-6 452 288 0.012158699 1e-6 453 288 0.012585297 1e-6 454 288 0.011732098 1e-6 455 288 0.0505546 1e-6 456 288 0.0053327978 1e-6 457 288 0.0025596998 1e-6 458 288 0.00021329999 1e-6 459 288 0.00085319998 1e-6 460 288 0.0023463999 1e-6 463 288 0.0104522 1e-6 464 288 0.00085319998 1e-6 465 288 0.00021329999 1e-6 467 288 0.0068258978 1e-6 468 288 0.0049060993 1e-6 469 288 0.007465899 1e-6 470 288 0.0019197999 1e-6 471 288 0.00063989987 1e-6 478 288 0.00063989987 1e-6 483 288 0.00085319998 1e-6 489 288 0.0023463999 1e-6 490 288 0.00021329999 1e-6 491 288 0.10025597 1e-6 18 289 0.0012138998 1e-6 19 289 3.6799989e-05 1e-6 21 289 0.052896798 1e-6 22 289 0.0012874999 1e-6 60 289 0.010630898 1e-6 114 289 7.3599993e-05 1e-6 126 289 3.6799989e-05 1e-6 150 289 3.6799989e-05 1e-6 151 289 0.0015449999 1e-6 160 289 0.00022069999 1e-6 169 289 7.3599993e-05 1e-6 172 289 0.00025749998 1e-6 190 289 3.6799989e-05 1e-6 194 289 3.6799989e-05 1e-6 198 289 0.0001104 1e-6 206 289 0.00058859983 1e-6 214 289 0.044436298 1e-6 223 289 0.00099319988 1e-6 233 289 0.0002942998 1e-6 234 289 0.016442899 1e-6 237 289 7.3599993e-05 1e-6 240 289 0.00033109984 1e-6 241 289 0.0045612976 1e-6 242 289 0.0001471 1e-6 251 289 3.6799989e-05 1e-6 252 289 3.6799989e-05 1e-6 267 289 0.0018391998 1e-6 272 289 0.00088279997 1e-6 277 289 0.00022069999 1e-6 278 289 0.0041198991 1e-6 282 289 0.0001104 1e-6 284 289 0.00091959978 1e-6 285 289 0.0034945998 1e-6 286 289 0.0049291998 1e-6 287 289 0.0037152998 1e-6 288 289 0.0085340999 1e-6 289 289 0.19466615 1e-6 290 289 0.0337318 1e-6 291 289 0.0031266999 1e-6 292 289 3.6799989e-05 1e-6 293 289 0.0064741969 1e-6 295 289 0.0036416999 1e-6 312 289 0.0001471 1e-6 315 289 3.6799989e-05 1e-6 317 289 0.0011034999 1e-6 318 289 0.00018389999 1e-6 319 289 3.6799989e-05 1e-6 321 289 0.00018389999 1e-6 322 289 3.6799989e-05 1e-6 324 289 0.00033109984 1e-6 326 289 0.00091959978 1e-6 337 289 0.00084609981 1e-6 340 289 0.0018024999 1e-6 350 289 0.00084609981 1e-6 351 289 0.0001104 1e-6 354 289 0.0016921 1e-6 356 289 0.00018389999 1e-6 358 289 0.0022070999 1e-6 370 289 0.0053705983 1e-6 371 289 0.0029059998 1e-6 373 289 7.3599993e-05 1e-6 375 289 0.0057751983 1e-6 384 289 7.3599993e-05 1e-6 386 289 0.0010668 1e-6 404 289 7.3599993e-05 1e-6 417 289 0.00018389999 1e-6 421 289 7.3599993e-05 1e-6 422 289 3.6799989e-05 1e-6 438 289 3.6799989e-05 1e-6 443 289 0.025859799 1e-6 444 289 0.0022806998 1e-6 445 289 0.0068051964 1e-6 446 289 0.0015817999 1e-6 447 289 0.0015081998 1e-6 450 289 0.0026852998 1e-6 452 289 0.073643565 1e-6 453 289 0.011955097 1e-6 454 289 0.0031635 1e-6 455 289 0.037814997 1e-6 456 289 0.0028692 1e-6 457 289 0.0068419985 1e-6 458 289 0.00055179978 1e-6 459 289 0.00095639983 1e-6 460 289 0.0023542 1e-6 463 289 0.0049659982 1e-6 464 289 0.0018391998 1e-6 465 289 0.00033109984 1e-6 467 289 0.0082397982 1e-6 468 289 0.0020599999 1e-6 469 289 0.012139 1e-6 470 289 0.00099319988 1e-6 471 289 0.00069889985 1e-6 473 289 3.6799989e-05 1e-6 477 289 0.0001104 1e-6 478 289 0.00044139987 1e-6 483 289 0.00033109984 1e-6 489 289 0.00058859983 1e-6 490 289 0.00018389999 1e-6 491 289 0.045907699 1e-6 18 290 0.00068219984 1e-6 19 290 0.0074187964 1e-6 20 290 0.0902192 1e-6 21 290 0.093459487 1e-6 22 290 0.00025579985 1e-6 24 290 8.5299995e-05 1e-6 25 290 0.00025579985 1e-6 60 290 0.0014495999 1e-6 114 290 8.5299995e-05 1e-6 160 290 8.5299995e-05 1e-6 171 290 8.5299995e-05 1e-6 198 290 0.00025579985 1e-6 206 290 0.00068219984 1e-6 214 290 0.015519697 1e-6 223 290 0.0013643999 1e-6 233 290 8.5299995e-05 1e-6 234 290 0.0039225966 1e-6 240 290 0.00085269986 1e-6 241 290 0.0031550999 1e-6 242 290 8.5299995e-05 1e-6 267 290 0.00068219984 1e-6 270 290 8.5299995e-05 1e-6 272 290 0.00059689977 1e-6 276 290 0.00017049999 1e-6 277 290 0.0020466 1e-6 278 290 0.0038373 1e-6 282 290 8.5299995e-05 1e-6 284 290 0.0010233 1e-6 285 290 0.008953698 1e-6 286 290 0.10701799 1e-6 287 290 0.037349697 1e-6 288 290 0.023535397 1e-6 289 290 0.0050310977 1e-6 290 290 0.067280591 1e-6 291 290 0.0081009977 1e-6 292 290 0.00034109992 1e-6 294 290 8.5299995e-05 1e-6 295 290 0.00017049999 1e-6 312 290 0.00017049999 1e-6 315 290 8.5299995e-05 1e-6 317 290 0.00042639999 1e-6 318 290 0.00051159994 1e-6 320 290 8.5299995e-05 1e-6 321 290 0.00025579985 1e-6 324 290 0.00025579985 1e-6 326 290 0.00085269986 1e-6 340 290 0.0017054998 1e-6 349 290 8.5299995e-05 1e-6 350 290 8.5299995e-05 1e-6 351 290 0.00034109992 1e-6 353 290 8.5299995e-05 1e-6 354 290 0.0036668 1e-6 356 290 8.5299995e-05 1e-6 358 290 0.0047752969 1e-6 373 290 8.5299995e-05 1e-6 375 290 0.0030697999 1e-6 386 290 8.5299995e-05 1e-6 417 290 8.5299995e-05 1e-6 438 290 8.5299995e-05 1e-6 442 290 8.5299995e-05 1e-6 443 290 0.018248498 1e-6 444 290 0.0034108998 1e-6 445 290 0.0043488964 1e-6 446 290 0.00059689977 1e-6 447 290 0.0045194998 1e-6 450 290 0.0017906998 1e-6 452 290 0.016542997 1e-6 453 290 0.0070776977 1e-6 454 290 0.0019612999 1e-6 455 290 0.060288198 1e-6 456 290 0.0070776977 1e-6 457 290 0.0023876999 1e-6 458 290 0.00025579985 1e-6 459 290 0.00093799992 1e-6 460 290 0.0032404 1e-6 463 290 0.0071629994 1e-6 464 290 0.0011085998 1e-6 465 290 0.00017049999 1e-6 467 290 0.0066512972 1e-6 468 290 0.0061396994 1e-6 469 290 0.0092947967 1e-6 470 290 0.0018759998 1e-6 471 290 0.0010233 1e-6 478 290 0.00068219984 1e-6 483 290 0.00034109992 1e-6 489 290 0.0013643999 1e-6 490 290 0.0119383 1e-6 491 290 0.11469257 1e-6 18 291 0.0017605999 1e-6 60 291 0.00088029983 1e-6 214 291 0.024647899 1e-6 223 291 0.0035210999 1e-6 234 291 0.0026407999 1e-6 240 291 0.0026407999 1e-6 241 291 0.005281698 1e-6 277 291 0.00088029983 1e-6 284 291 0.00088029983 1e-6 285 291 0.023767598 1e-6 286 291 0.022007 1e-6 287 291 0.0255282 1e-6 288 291 0.036091499 1e-6 289 291 0.0105634 1e-6 290 291 0.073063374 1e-6 291 291 0.021126799 1e-6 317 291 0.00088029983 1e-6 318 291 0.00088029983 1e-6 340 291 0.00088029983 1e-6 354 291 0.0096830986 1e-6 358 291 0.0096830986 1e-6 375 291 0.0079224966 1e-6 443 291 0.0255282 1e-6 444 291 0.0026407999 1e-6 445 291 0.005281698 1e-6 446 291 0.00088029983 1e-6 447 291 0.0017605999 1e-6 450 291 0.0026407999 1e-6 452 291 0.004401397 1e-6 453 291 0.006161999 1e-6 454 291 0.0017605999 1e-6 455 291 0.12147886 1e-6 456 291 0.019366197 1e-6 457 291 0.0026407999 1e-6 459 291 0.00088029983 1e-6 460 291 0.004401397 1e-6 463 291 0.0079224966 1e-6 464 291 0.0017605999 1e-6 467 291 0.0088027976 1e-6 468 291 0.0017605999 1e-6 469 291 0.022007 1e-6 470 291 0.0026407999 1e-6 471 291 0.0026407999 1e-6 483 291 0.00088029983 1e-6 491 291 0.29577458 1e-6 18 292 0.00013619999 1e-6 22 292 0.00013619999 1e-6 60 292 0.0013275 1e-6 108 292 3.3999997e-05 1e-6 114 292 6.8099995e-05 1e-6 126 292 3.3999997e-05 1e-6 131 292 0.00010209999 1e-6 132 292 0.00013619999 1e-6 139 292 0.00010209999 1e-6 151 292 6.8099995e-05 1e-6 160 292 0.0036761998 1e-6 161 292 0.00030639977 1e-6 169 292 0.0012593998 1e-6 171 292 0.00071479985 1e-6 172 292 0.00078289979 1e-6 187 292 0.00010209999 1e-6 189 292 3.3999997e-05 1e-6 190 292 3.3999997e-05 1e-6 194 292 6.8099995e-05 1e-6 197 292 6.8099995e-05 1e-6 198 292 0.0010211999 1e-6 200 292 3.3999997e-05 1e-6 203 292 3.3999997e-05 1e-6 204 292 3.3999997e-05 1e-6 206 292 6.8099995e-05 1e-6 214 292 0.0066375993 1e-6 223 292 0.00037439982 1e-6 224 292 0.0015997998 1e-6 225 292 0.00027229986 1e-6 233 292 0.0021784999 1e-6 234 292 0.0021103998 1e-6 237 292 6.8099995e-05 1e-6 240 292 0.00017019999 1e-6 241 292 0.0066716969 1e-6 242 292 0.0011572998 1e-6 251 292 3.3999997e-05 1e-6 252 292 0.00017019999 1e-6 270 292 6.8099995e-05 1e-6 271 292 3.3999997e-05 1e-6 272 292 0.00047649979 1e-6 276 292 0.00010209999 1e-6 277 292 0.00068079983 1e-6 278 292 3.3999997e-05 1e-6 279 292 3.3999997e-05 1e-6 282 292 0.0021784999 1e-6 283 292 0.00017019999 1e-6 284 292 0.0017019999 1e-6 285 292 0.00098709995 1e-6 286 292 0.37371498 1e-6 287 292 0.0010892998 1e-6 288 292 0.026550498 1e-6 289 292 0.0080331974 1e-6 290 292 0.021274399 1e-6 291 292 0.0012253998 1e-6 292 292 0.033256199 1e-6 293 292 0.0046973974 1e-6 294 292 0.0002383 1e-6 295 292 0.0066375993 1e-6 297 292 3.3999997e-05 1e-6 299 292 3.3999997e-05 1e-6 308 292 0.00010209999 1e-6 312 292 0.0016678998 1e-6 315 292 0.0012935 1e-6 317 292 6.8099995e-05 1e-6 318 292 3.3999997e-05 1e-6 319 292 0.0013615999 1e-6 320 292 3.3999997e-05 1e-6 321 292 0.0011232998 1e-6 326 292 0.0051398985 1e-6 327 292 3.3999997e-05 1e-6 337 292 6.8099995e-05 1e-6 340 292 0.0070119984 1e-6 350 292 0.00078289979 1e-6 351 292 0.0010551999 1e-6 354 292 0.0056163967 1e-6 358 292 0.0012935 1e-6 369 292 3.3999997e-05 1e-6 370 292 3.3999997e-05 1e-6 371 292 6.8099995e-05 1e-6 372 292 0.00010209999 1e-6 373 292 0.0017019999 1e-6 375 292 3.3999997e-05 1e-6 376 292 3.3999997e-05 1e-6 386 292 0.0014976999 1e-6 387 292 3.3999997e-05 1e-6 389 292 0.00037439982 1e-6 390 292 6.8099995e-05 1e-6 392 292 0.00017019999 1e-6 393 292 0.0003403998 1e-6 417 292 0.0002042 1e-6 421 292 6.8099995e-05 1e-6 422 292 6.8099995e-05 1e-6 438 292 3.3999997e-05 1e-6 443 292 0.014977198 1e-6 444 292 0.0013955999 1e-6 445 292 0.0037443 1e-6 446 292 0.00047649979 1e-6 447 292 0.0014295999 1e-6 450 292 0.0013615999 1e-6 452 292 0.0085437968 1e-6 453 292 0.0037103 1e-6 454 292 0.0028932998 1e-6 455 292 0.0584451 1e-6 456 292 0.00010209999 1e-6 457 292 0.0024848999 1e-6 458 292 0.00040849997 1e-6 459 292 0.00078289979 1e-6 460 292 0.0014976999 1e-6 463 292 0.0049356967 1e-6 464 292 0.0012593998 1e-6 465 292 0.00051059993 1e-6 467 292 0.0099053979 1e-6 468 292 0.0039825998 1e-6 469 292 0.0020082998 1e-6 470 292 0.0016678998 1e-6 471 292 0.0018720999 1e-6 473 292 3.3999997e-05 1e-6 477 292 6.8099995e-05 1e-6 478 292 0.00051059993 1e-6 483 292 0.00071479985 1e-6 489 292 0.00010209999 1e-6 490 292 0.00017019999 1e-6 491 292 0.11202258 1e-6 18 293 0.00016649999 1e-6 19 293 5.5499986e-05 1e-6 21 293 0.0014149998 1e-6 22 293 0.00027739978 1e-6 60 293 0.0024138 1e-6 108 293 2.7699993e-05 1e-6 114 293 5.5499986e-05 1e-6 126 293 2.7699993e-05 1e-6 130 293 2.7699993e-05 1e-6 131 293 2.7699993e-05 1e-6 132 293 2.7699993e-05 1e-6 139 293 2.7699993e-05 1e-6 150 293 0.00033289986 1e-6 151 293 5.5499986e-05 1e-6 160 293 0.0029131998 1e-6 169 293 0.0010543 1e-6 171 293 0.00038839993 1e-6 172 293 0.0037455 1e-6 187 293 5.5499986e-05 1e-6 189 293 2.7699993e-05 1e-6 190 293 5.5499986e-05 1e-6 192 293 2.7699993e-05 1e-6 194 293 5.5499986e-05 1e-6 197 293 2.7699993e-05 1e-6 198 293 0.0018865999 1e-6 200 293 2.7699993e-05 1e-6 203 293 2.7699993e-05 1e-6 204 293 0.00022199999 1e-6 206 293 0.00033289986 1e-6 207 293 2.7699993e-05 1e-6 214 293 0.005105 1e-6 223 293 0.0010819999 1e-6 224 293 0.0007491 1e-6 225 293 8.3199993e-05 1e-6 233 293 0.0039674975 1e-6 234 293 0.0018865999 1e-6 237 293 8.3199993e-05 1e-6 240 293 8.3199993e-05 1e-6 241 293 0.0051327981 1e-6 242 293 0.0021917999 1e-6 251 293 2.7699993e-05 1e-6 252 293 0.00033289986 1e-6 267 293 5.5499986e-05 1e-6 270 293 2.7699993e-05 1e-6 271 293 2.7699993e-05 1e-6 272 293 0.00066589983 1e-6 276 293 2.7699993e-05 1e-6 277 293 0.0011652999 1e-6 278 293 0.0023859998 1e-6 279 293 0.00022199999 1e-6 282 293 0.0018034 1e-6 284 293 0.0021640998 1e-6 285 293 0.0012208 1e-6 286 293 0.010015797 1e-6 287 293 0.0011097998 1e-6 288 293 0.0030242 1e-6 289 293 0.40240818 1e-6 290 293 0.016147397 1e-6 291 293 0.0022195999 1e-6 292 293 0.0029964 1e-6 293 293 0.091806948 1e-6 294 293 5.5499986e-05 1e-6 295 293 0.0038564999 1e-6 297 293 2.7699993e-05 1e-6 312 293 0.0022751 1e-6 315 293 0.00080459984 1e-6 317 293 0.0013595 1e-6 318 293 0.00013869999 1e-6 319 293 0.00083229993 1e-6 321 293 0.0025247999 1e-6 322 293 0.00063809985 1e-6 324 293 2.7699993e-05 1e-6 326 293 0.0047720969 1e-6 337 293 0.0016368998 1e-6 340 293 0.0077961981 1e-6 350 293 8.3199993e-05 1e-6 351 293 0.0017756999 1e-6 354 293 0.0043003969 1e-6 356 293 0.00016649999 1e-6 358 293 0.0013316998 1e-6 370 293 0.00013869999 1e-6 371 293 0.00011099999 1e-6 373 293 0.0011374999 1e-6 375 293 0.00011099999 1e-6 384 293 5.5499986e-05 1e-6 386 293 0.00077679986 1e-6 387 293 2.7699993e-05 1e-6 401 293 2.7699993e-05 1e-6 402 293 2.7699993e-05 1e-6 408 293 2.7699993e-05 1e-6 417 293 0.00024969992 1e-6 421 293 5.5499986e-05 1e-6 422 293 2.7699993e-05 1e-6 433 293 2.7699993e-05 1e-6 434 293 2.7699993e-05 1e-6 438 293 0.00066589983 1e-6 443 293 0.013594899 1e-6 444 293 0.0012762998 1e-6 445 293 0.0055488981 1e-6 446 293 0.0003052 1e-6 447 293 0.0011097998 1e-6 450 293 0.001526 1e-6 452 293 0.013039999 1e-6 453 293 0.0095718987 1e-6 454 293 0.00099879992 1e-6 455 293 0.032100499 1e-6 456 293 0.00013869999 1e-6 457 293 0.0025803 1e-6 458 293 0.0012484998 1e-6 459 293 0.00086009991 1e-6 460 293 0.0016923998 1e-6 463 293 0.0021917999 1e-6 464 293 0.00083229993 1e-6 465 293 0.00041619991 1e-6 467 293 0.0076574981 1e-6 468 293 0.0065476969 1e-6 469 293 0.0029964 1e-6 470 293 0.0011374999 1e-6 471 293 0.0017756999 1e-6 473 293 2.7699993e-05 1e-6 477 293 0.00083229993 1e-6 478 293 0.00055489992 1e-6 483 293 0.00055489992 1e-6 489 293 8.3199993e-05 1e-6 490 293 0.00013869999 1e-6 491 293 0.029575799 1e-6 19 294 0.00075719994 1e-6 21 294 0.0019876999 1e-6 22 294 0.0004733 1e-6 60 294 0.0020822999 1e-6 108 294 9.4699993e-05 1e-6 114 294 0.00018929999 1e-6 126 294 9.4699993e-05 1e-6 160 294 0.0020822999 1e-6 189 294 9.4699993e-05 1e-6 190 294 9.4699993e-05 1e-6 194 294 9.4699993e-05 1e-6 198 294 0.0038806999 1e-6 206 294 0.00018929999 1e-6 214 294 0.027354497 1e-6 223 294 0.0021769998 1e-6 224 294 9.4699993e-05 1e-6 233 294 0.0020822999 1e-6 234 294 0.0015143999 1e-6 237 294 9.4699993e-05 1e-6 240 294 9.4699993e-05 1e-6 241 294 0.015333597 1e-6 242 294 0.0021769998 1e-6 252 294 9.4699993e-05 1e-6 272 294 0.0004733 1e-6 277 294 0.0032181998 1e-6 278 294 0.005584497 1e-6 282 294 0.0022717 1e-6 284 294 0.0015143999 1e-6 285 294 0.00028399983 1e-6 286 294 0.020350199 1e-6 287 294 0.023284398 1e-6 288 294 0.017415997 1e-6 289 294 0.0070988983 1e-6 290 294 0.42953146 1e-6 291 294 0.013724599 1e-6 292 294 0.0015143999 1e-6 293 294 0.0017036998 1e-6 294 294 0.0032181998 1e-6 295 294 0.00066259992 1e-6 312 294 0.0031234999 1e-6 315 294 0.0025555999 1e-6 317 294 9.4699993e-05 1e-6 318 294 9.4699993e-05 1e-6 320 294 9.4699993e-05 1e-6 321 294 0.0037860998 1e-6 322 294 9.4699993e-05 1e-6 326 294 0.014860399 1e-6 337 294 9.4699993e-05 1e-6 340 294 0.0107903 1e-6 350 294 0.0021769998 1e-6 351 294 0.005584497 1e-6 353 294 9.4699993e-05 1e-6 354 294 0.0023663 1e-6 356 294 0.00028399983 1e-6 358 294 0.0078560971 1e-6 373 294 0.0011357998 1e-6 375 294 0.00018929999 1e-6 386 294 0.0034075 1e-6 387 294 9.4699993e-05 1e-6 389 294 0.0019876999 1e-6 390 294 0.00037859986 1e-6 391 294 9.4699993e-05 1e-6 392 294 0.00085189985 1e-6 393 294 0.0010411998 1e-6 397 294 0.00028399983 1e-6 398 294 9.4699993e-05 1e-6 417 294 0.00028399983 1e-6 438 294 0.0029342 1e-6 442 294 0.0019876999 1e-6 443 294 0.0073828995 1e-6 444 294 0.0035020998 1e-6 445 294 0.0042592995 1e-6 446 294 0.00037859986 1e-6 447 294 0.0043539964 1e-6 450 294 0.0016090998 1e-6 452 294 0.0086132996 1e-6 453 294 0.0043539964 1e-6 454 294 0.0024609999 1e-6 455 294 0.022148598 1e-6 456 294 0.00028399983 1e-6 457 294 0.0025555999 1e-6 458 294 0.0004733 1e-6 459 294 0.00085189985 1e-6 460 294 0.0017984 1e-6 463 294 0.010317098 1e-6 464 294 0.0027448998 1e-6 465 294 0.0004733 1e-6 467 294 0.012588698 1e-6 468 294 0.0035020998 1e-6 469 294 0.0039753988 1e-6 470 294 0.0025555999 1e-6 471 294 0.0036913999 1e-6 473 294 9.4699993e-05 1e-6 477 294 0.00094649987 1e-6 478 294 0.00056789978 1e-6 483 294 0.00094649987 1e-6 490 294 0.00037859986 1e-6 491 294 0.0088972971 1e-6 9 295 2.2199994e-05 1e-6 18 295 0.00057599996 1e-6 19 295 4.4299988e-05 1e-6 21 295 2.2199994e-05 1e-6 22 295 8.8599991e-05 1e-6 25 295 2.2199994e-05 1e-6 60 295 0.0013956998 1e-6 82 295 2.2199994e-05 1e-6 83 295 2.2199994e-05 1e-6 84 295 2.2199994e-05 1e-6 108 295 2.2199994e-05 1e-6 113 295 4.4299988e-05 1e-6 114 295 4.4299988e-05 1e-6 126 295 2.2199994e-05 1e-6 130 295 2.2199994e-05 1e-6 131 295 0.0021046 1e-6 132 295 0.0025919999 1e-6 139 295 0.002016 1e-6 150 295 0.00033229985 1e-6 151 295 0.00042089983 1e-6 160 295 0.0026805999 1e-6 169 295 0.0011298 1e-6 171 295 0.0095925964 1e-6 172 295 0.00064249989 1e-6 187 295 0.0022153999 1e-6 189 295 4.4299988e-05 1e-6 190 295 4.4299988e-05 1e-6 194 295 6.6499997e-05 1e-6 197 295 0.0016393999 1e-6 198 295 0.0036774999 1e-6 200 295 2.2199994e-05 1e-6 203 295 4.4299988e-05 1e-6 204 295 4.4299988e-05 1e-6 206 295 4.4299988e-05 1e-6 207 295 2.2199994e-05 1e-6 214 295 0.010855399 1e-6 215 295 2.2199994e-05 1e-6 223 295 0.0015064999 1e-6 224 295 0.031945799 1e-6 225 295 0.005471997 1e-6 233 295 0.0016615 1e-6 234 295 0.0022374999 1e-6 237 295 6.6499997e-05 1e-6 240 295 0.0018608999 1e-6 241 295 0.010434397 1e-6 242 295 0.00062029995 1e-6 252 295 0.002016 1e-6 262 295 2.2199994e-05 1e-6 270 295 0.0015729 1e-6 271 295 0.0010854998 1e-6 272 295 0.00066459994 1e-6 276 295 0.0021488999 1e-6 277 295 0.0036553999 1e-6 278 295 0.00013289999 1e-6 279 295 0.00019939999 1e-6 282 295 0.00086399983 1e-6 283 295 0.0002215 1e-6 284 295 0.0015507999 1e-6 285 295 4.4299988e-05 1e-6 286 295 0.10673696 1e-6 287 295 0.0064023994 1e-6 288 295 0.0027027999 1e-6 289 295 0.0173021 1e-6 290 295 0.0081746988 1e-6 291 295 0.00026579993 1e-6 292 295 0.1619221 1e-6 293 295 0.0580872 1e-6 294 295 0.0038547998 1e-6 295 295 0.082389951 1e-6 296 295 0.0001772 1e-6 297 295 2.2199994e-05 1e-6 298 295 2.2199994e-05 1e-6 312 295 0.0022596999 1e-6 313 295 0.0001108 1e-6 315 295 0.0004431 1e-6 317 295 0.00090829981 1e-6 319 295 4.4299988e-05 1e-6 320 295 0.0001772 1e-6 321 295 0.0044971965 1e-6 322 295 6.6499997e-05 1e-6 324 295 2.2199994e-05 1e-6 326 295 0.0060700998 1e-6 328 295 2.2199994e-05 1e-6 337 295 0.0007974999 1e-6 340 295 0.0066682994 1e-6 349 295 2.2199994e-05 1e-6 350 295 0.0010411998 1e-6 351 295 0.0021267999 1e-6 354 295 0.0040097982 1e-6 356 295 0.00019939999 1e-6 357 295 6.6499997e-05 1e-6 358 295 0.0015950999 1e-6 370 295 0.00057599996 1e-6 371 295 0.00097479997 1e-6 372 295 0.00066459994 1e-6 373 295 0.0010411998 1e-6 375 295 0.00050949981 1e-6 376 295 2.2199994e-05 1e-6 380 295 2.2199994e-05 1e-6 384 295 0.00015509999 1e-6 386 295 0.0022374999 1e-6 387 295 2.2199994e-05 1e-6 390 295 6.6499997e-05 1e-6 391 295 2.2199994e-05 1e-6 392 295 0.0001772 1e-6 393 295 0.00035449979 1e-6 397 295 0.00024369999 1e-6 398 295 0.0007974999 1e-6 402 295 0.00048739999 1e-6 417 295 0.00024369999 1e-6 421 295 4.4299988e-05 1e-6 422 295 4.4299988e-05 1e-6 423 295 2.2199994e-05 1e-6 430 295 2.2199994e-05 1e-6 431 295 2.2199994e-05 1e-6 433 295 2.2199994e-05 1e-6 434 295 2.2199994e-05 1e-6 438 295 6.6499997e-05 1e-6 442 295 2.2199994e-05 1e-6 443 295 0.0076651983 1e-6 444 295 0.0012627998 1e-6 445 295 0.0082190968 1e-6 446 295 0.00073109986 1e-6 447 295 0.0027470998 1e-6 448 295 2.2199994e-05 1e-6 450 295 0.0028799998 1e-6 452 295 0.0079974979 1e-6 453 295 0.0021931999 1e-6 454 295 0.0014842998 1e-6 455 295 0.042003598 1e-6 456 295 0.00013289999 1e-6 457 295 0.0034337998 1e-6 458 295 0.00033229985 1e-6 459 295 0.00090829981 1e-6 460 295 0.0016615 1e-6 463 295 0.0047187991 1e-6 464 295 0.0011298 1e-6 465 295 0.00050949981 1e-6 467 295 0.0081968978 1e-6 468 295 0.0052725971 1e-6 469 295 0.0068897977 1e-6 470 295 0.0023260999 1e-6 471 295 0.002016 1e-6 473 295 4.4299988e-05 1e-6 477 295 0.0007974999 1e-6 478 295 0.00057599996 1e-6 483 295 0.00075319991 1e-6 489 295 4.4299988e-05 1e-6 490 295 0.00099689979 1e-6 491 295 0.0029020999 1e-6 9 296 8.4599989e-05 1e-6 18 296 0.00016919999 1e-6 21 296 0.00016919999 1e-6 24 296 0.0012687999 1e-6 60 296 0.013703298 1e-6 82 296 8.4599989e-05 1e-6 83 296 8.4599989e-05 1e-6 84 296 8.4599989e-05 1e-6 104 296 0.00016919999 1e-6 108 296 8.4599989e-05 1e-6 113 296 0.00016919999 1e-6 114 296 0.00033839978 1e-6 126 296 0.00016919999 1e-6 150 296 0.00059209997 1e-6 160 296 0.00016919999 1e-6 189 296 8.4599989e-05 1e-6 190 296 8.4599989e-05 1e-6 194 296 0.00016919999 1e-6 198 296 0.0036372999 1e-6 200 296 8.4599989e-05 1e-6 203 296 8.4599989e-05 1e-6 204 296 8.4599989e-05 1e-6 206 296 0.00016919999 1e-6 214 296 0.0014379998 1e-6 223 296 0.0047368966 1e-6 224 296 8.4599989e-05 1e-6 234 296 0.0025376 1e-6 237 296 0.00025379984 1e-6 241 296 0.0038065 1e-6 242 296 8.4599989e-05 1e-6 252 296 0.00025379984 1e-6 268 296 0.0016917998 1e-6 270 296 0.00042289984 1e-6 272 296 0.00059209997 1e-6 276 296 0.00059209997 1e-6 277 296 0.0035526999 1e-6 278 296 0.0020301 1e-6 279 296 0.00016919999 1e-6 282 296 0.0011841999 1e-6 283 296 8.4599989e-05 1e-6 284 296 0.0028759998 1e-6 286 296 0.014887497 1e-6 287 296 0.00016919999 1e-6 288 296 0.023600098 1e-6 289 296 0.21324646 1e-6 290 296 0.0032988999 1e-6 291 296 8.4599989e-05 1e-6 293 296 0.00016919999 1e-6 294 296 0.00016919999 1e-6 295 296 0.00016919999 1e-6 296 296 0.0014379998 1e-6 297 296 0.00025379984 1e-6 298 296 0.00025379984 1e-6 312 296 0.00059209997 1e-6 315 296 0.00016919999 1e-6 320 296 8.4599989e-05 1e-6 326 296 0.0065978989 1e-6 328 296 0.00059209997 1e-6 329 296 8.4599989e-05 1e-6 339 296 0.0016917998 1e-6 340 296 0.036372896 1e-6 341 296 8.4599989e-05 1e-6 349 296 8.4599989e-05 1e-6 350 296 0.00016919999 1e-6 351 296 0.00042289984 1e-6 353 296 0.014295399 1e-6 354 296 0.00033839978 1e-6 356 296 0.00025379984 1e-6 357 296 8.4599989e-05 1e-6 358 296 0.0073591992 1e-6 372 296 0.00025379984 1e-6 374 296 8.4599989e-05 1e-6 375 296 0.00025379984 1e-6 384 296 0.00025379984 1e-6 387 296 8.4599989e-05 1e-6 397 296 8.4599989e-05 1e-6 402 296 0.00025379984 1e-6 417 296 0.00050749979 1e-6 419 296 8.4599989e-05 1e-6 421 296 8.4599989e-05 1e-6 422 296 0.00025379984 1e-6 423 296 8.4599989e-05 1e-6 425 296 8.4599989e-05 1e-6 430 296 8.4599989e-05 1e-6 431 296 8.4599989e-05 1e-6 434 296 8.4599989e-05 1e-6 443 296 0.0084587969 1e-6 444 296 0.00059209997 1e-6 445 296 0.0074437 1e-6 446 296 8.4599989e-05 1e-6 447 296 0.0019454998 1e-6 450 296 0.0032988999 1e-6 452 296 0.011419397 1e-6 453 296 0.012011498 1e-6 454 296 0.00067669991 1e-6 455 296 0.0190323 1e-6 456 296 0.00050749979 1e-6 457 296 0.0027067999 1e-6 458 296 0.00076129986 1e-6 459 296 0.00084589981 1e-6 460 296 0.0021146999 1e-6 463 296 0.0077820979 1e-6 464 296 0.00042289984 1e-6 465 296 0.0011841999 1e-6 467 296 0.015733398 1e-6 468 296 0.0036372999 1e-6 469 296 0.0084587969 1e-6 470 296 0.0094738975 1e-6 471 296 0.0010996 1e-6 473 296 0.00025379984 1e-6 477 296 8.4599989e-05 1e-6 478 296 0.0015226 1e-6 483 296 0.00093049998 1e-6 490 296 0.00076129986 1e-6 491 296 0.017848097 1e-6 19 297 0.00042689987 1e-6 24 297 0.0029882998 1e-6 60 297 0.0087512992 1e-6 104 297 0.0002134 1e-6 108 297 0.0002134 1e-6 114 297 0.00042689987 1e-6 126 297 0.0002134 1e-6 160 297 0.0002134 1e-6 190 297 0.0002134 1e-6 194 297 0.0002134 1e-6 198 297 0.0040554963 1e-6 206 297 0.00042689987 1e-6 214 297 0.00042689987 1e-6 223 297 0.0049092993 1e-6 234 297 0.0036285999 1e-6 241 297 0.00042689987 1e-6 252 297 0.00042689987 1e-6 268 297 0.0002134 1e-6 270 297 0.00064029987 1e-6 272 297 0.00085379998 1e-6 277 297 0.010245498 1e-6 278 297 0.011739597 1e-6 279 297 0.0002134 1e-6 282 297 0.001921 1e-6 283 297 0.00064029987 1e-6 284 297 0.0034151999 1e-6 286 297 0.20234787 1e-6 288 297 0.0040554963 1e-6 289 297 0.032017097 1e-6 290 297 0.0017076 1e-6 292 297 0.0010672 1e-6 293 297 0.0002134 1e-6 295 297 0.00042689987 1e-6 296 297 0.0002134 1e-6 297 297 0.0070437975 1e-6 312 297 0.00042689987 1e-6 313 297 0.0002134 1e-6 315 297 0.0002134 1e-6 319 297 0.0002134 1e-6 322 297 0.0002134 1e-6 324 297 0.0002134 1e-6 326 297 0.00064029987 1e-6 328 297 0.00042689987 1e-6 340 297 0.011739597 1e-6 341 297 0.0002134 1e-6 349 297 0.0002134 1e-6 351 297 0.00042689987 1e-6 353 297 0.027534697 1e-6 354 297 0.0010672 1e-6 356 297 0.0002134 1e-6 358 297 0.0096050985 1e-6 374 297 0.0002134 1e-6 375 297 0.00085379998 1e-6 377 297 0.0002134 1e-6 380 297 0.0002134 1e-6 386 297 0.0002134 1e-6 387 297 0.0002134 1e-6 402 297 0.00064029987 1e-6 415 297 0.00042689987 1e-6 417 297 0.00042689987 1e-6 419 297 0.0002134 1e-6 443 297 0.010031998 1e-6 444 297 0.00042689987 1e-6 445 297 0.014514398 1e-6 447 297 0.0061899982 1e-6 450 297 0.0032016998 1e-6 452 297 0.011099298 1e-6 453 297 0.0064033978 1e-6 454 297 0.00042689987 1e-6 455 297 0.033724699 1e-6 456 297 0.0002134 1e-6 457 297 0.0027747999 1e-6 458 297 0.0002134 1e-6 459 297 0.00085379998 1e-6 460 297 0.0017076 1e-6 463 297 0.022411998 1e-6 464 297 0.00064029987 1e-6 465 297 0.00085379998 1e-6 467 297 0.011099298 1e-6 468 297 0.0017076 1e-6 469 297 0.0070437975 1e-6 470 297 0.0076840967 1e-6 471 297 0.0010672 1e-6 473 297 0.0002134 1e-6 478 297 0.0012806999 1e-6 483 297 0.0012806999 1e-6 490 297 0.00085379998 1e-6 491 297 0.052721497 1e-6 21 298 0.00081929984 1e-6 24 298 0.0001639 1e-6 60 298 0.010650497 1e-6 104 298 0.0001639 1e-6 114 298 0.0001639 1e-6 126 298 0.0001639 1e-6 150 298 0.0001639 1e-6 190 298 0.0001639 1e-6 194 298 0.0001639 1e-6 198 298 0.0075372979 1e-6 206 298 0.00032769982 1e-6 214 298 0.0086842999 1e-6 223 298 0.0045878999 1e-6 234 298 0.0026216998 1e-6 237 298 0.0001639 1e-6 241 298 0.0065541975 1e-6 252 298 0.0001639 1e-6 268 298 0.00032769982 1e-6 270 298 0.0045878999 1e-6 272 298 0.00065539987 1e-6 276 298 0.013927598 1e-6 277 298 0.0026216998 1e-6 278 298 0.0029493999 1e-6 279 298 0.00032769982 1e-6 284 298 0.0036048 1e-6 286 298 0.0058986992 1e-6 287 298 0.0052432977 1e-6 288 298 0.13747334 1e-6 289 298 0.053580198 1e-6 290 298 0.038833398 1e-6 291 298 0.00098309992 1e-6 294 298 0.00032769982 1e-6 295 298 0.00032769982 1e-6 296 298 0.0001639 1e-6 298 298 0.0022939998 1e-6 312 298 0.012125198 1e-6 321 298 0.0001639 1e-6 326 298 0.014582999 1e-6 339 298 0.0026216998 1e-6 340 298 0.061772898 1e-6 351 298 0.0062263981 1e-6 353 298 0.0077010989 1e-6 354 298 0.0001639 1e-6 356 298 0.0001639 1e-6 358 298 0.015238397 1e-6 370 298 0.0001639 1e-6 373 298 0.0001639 1e-6 374 298 0.0001639 1e-6 375 298 0.0001639 1e-6 384 298 0.0001639 1e-6 386 298 0.0001639 1e-6 417 298 0.00065539987 1e-6 422 298 0.0001639 1e-6 438 298 0.0001639 1e-6 443 298 0.0049155988 1e-6 444 298 0.0058986992 1e-6 445 298 0.0093396977 1e-6 447 298 0.0075372979 1e-6 450 298 0.0034408998 1e-6 452 298 0.011797499 1e-6 453 298 0.0091757998 1e-6 454 298 0.00098309992 1e-6 455 298 0.017532397 1e-6 456 298 0.00049159979 1e-6 457 298 0.0042601973 1e-6 458 298 0.00098309992 1e-6 459 298 0.00098309992 1e-6 460 298 0.0021300998 1e-6 463 298 0.018679298 1e-6 464 298 0.00049159979 1e-6 465 298 0.00098309992 1e-6 467 298 0.0119613 1e-6 468 298 0.0016384998 1e-6 469 298 0.0042601973 1e-6 470 298 0.0045878999 1e-6 471 298 0.0011469999 1e-6 473 298 0.0001639 1e-6 478 298 0.0011469999 1e-6 483 298 0.00098309992 1e-6 490 298 0.00065539987 1e-6 491 298 0.0044240989 1e-6 22 299 0.0013623999 1e-6 60 299 0.0030653998 1e-6 114 299 0.0003405998 1e-6 160 299 0.00068119983 1e-6 172 299 0.0003405998 1e-6 198 299 0.0047683977 1e-6 206 299 0.0003405998 1e-6 214 299 0.0061307997 1e-6 223 299 0.0003405998 1e-6 229 299 0.00068119983 1e-6 233 299 0.00068119983 1e-6 234 299 0.0023842 1e-6 240 299 0.00068119983 1e-6 241 299 0.014305197 1e-6 272 299 0.0003405998 1e-6 277 299 0.091961861 1e-6 278 299 0.0013623999 1e-6 279 299 0.0003405998 1e-6 282 299 0.0010217999 1e-6 283 299 0.0013623999 1e-6 284 299 0.0023842 1e-6 286 299 0.044959098 1e-6 288 299 0.0034059999 1e-6 289 299 0.09162128 1e-6 290 299 0.0040871985 1e-6 292 299 0.028950997 1e-6 293 299 0.070163488 1e-6 294 299 0.053814698 1e-6 295 299 0.00068119983 1e-6 299 299 0.0057901964 1e-6 307 299 0.0003405998 1e-6 312 299 0.0003405998 1e-6 320 299 0.0003405998 1e-6 321 299 0.013964597 1e-6 324 299 0.0010217999 1e-6 326 299 0.010217998 1e-6 333 299 0.0003405998 1e-6 339 299 0.0003405998 1e-6 340 299 0.016008198 1e-6 351 299 0.00068119983 1e-6 354 299 0.0013623999 1e-6 358 299 0.0051089972 1e-6 417 299 0.0003405998 1e-6 443 299 0.0071525984 1e-6 444 299 0.00068119983 1e-6 445 299 0.0207766 1e-6 447 299 0.0057901964 1e-6 450 299 0.0017029999 1e-6 452 299 0.012942798 1e-6 453 299 0.011580396 1e-6 454 299 0.0020436 1e-6 455 299 0.027588598 1e-6 457 299 0.0023842 1e-6 458 299 0.00068119983 1e-6 460 299 0.0017029999 1e-6 463 299 0.010899197 1e-6 464 299 0.0003405998 1e-6 465 299 0.00068119983 1e-6 467 299 0.009536799 1e-6 468 299 0.0013623999 1e-6 469 299 0.0047683977 1e-6 470 299 0.0037465999 1e-6 471 299 0.0003405998 1e-6 478 299 0.00068119983 1e-6 483 299 0.0010217999 1e-6 490 299 0.00068119983 1e-6 491 299 0.016008198 1e-6 0 300 0.0003052 1e-6 9 300 7.0399998e-05 1e-6 11 300 4.6899993e-05 1e-6 18 300 0.00056339987 1e-6 22 300 2.349999e-05 1e-6 60 300 0.0020187998 1e-6 82 300 2.349999e-05 1e-6 84 300 2.349999e-05 1e-6 88 300 0.00011739999 1e-6 90 300 9.3899987e-05 1e-6 93 300 2.349999e-05 1e-6 107 300 0.0003052 1e-6 108 300 2.349999e-05 1e-6 114 300 2.349999e-05 1e-6 115 300 4.6899993e-05 1e-6 116 300 0.0005398998 1e-6 122 300 2.349999e-05 1e-6 126 300 2.349999e-05 1e-6 130 300 2.349999e-05 1e-6 150 300 0.00032859994 1e-6 151 300 0.00068079983 1e-6 160 300 0.0001408 1e-6 169 300 0.0015492998 1e-6 187 300 0.0003052 1e-6 188 300 0.0013849998 1e-6 189 300 2.349999e-05 1e-6 190 300 4.6899993e-05 1e-6 192 300 0.0002347 1e-6 193 300 2.349999e-05 1e-6 194 300 7.0399998e-05 1e-6 197 300 2.349999e-05 1e-6 198 300 0.0081691965 1e-6 200 300 2.349999e-05 1e-6 203 300 4.6899993e-05 1e-6 204 300 0.050517596 1e-6 206 300 4.6899993e-05 1e-6 207 300 2.349999e-05 1e-6 214 300 0.00011739999 1e-6 219 300 0.00072769984 1e-6 221 300 0.0019248999 1e-6 224 300 0.00021129999 1e-6 229 300 0.0010797998 1e-6 233 300 0.018239897 1e-6 234 300 0.0015962999 1e-6 237 300 9.3899987e-05 1e-6 240 300 0.0010797998 1e-6 241 300 9.3899987e-05 1e-6 252 300 2.349999e-05 1e-6 253 300 0.0005398998 1e-6 270 300 0.00058689993 1e-6 272 300 0.0006573 1e-6 277 300 0.33648676 1e-6 279 300 0.00037559983 1e-6 284 300 0.00082159997 1e-6 287 300 0.0054226965 1e-6 290 300 0.00046949997 1e-6 293 300 0.090729773 1e-6 300 300 0.0022065998 1e-6 312 300 2.349999e-05 1e-6 314 300 7.0399998e-05 1e-6 315 300 0.0006573 1e-6 317 300 0.00072769984 1e-6 321 300 0.0040845983 1e-6 322 300 4.6899993e-05 1e-6 325 300 2.349999e-05 1e-6 326 300 9.3899987e-05 1e-6 339 300 0.0010563999 1e-6 340 300 0.0045305975 1e-6 341 300 4.6899993e-05 1e-6 351 300 0.00070419977 1e-6 356 300 0.0001408 1e-6 358 300 0.0026525999 1e-6 384 300 4.6899993e-05 1e-6 387 300 2.349999e-05 1e-6 401 300 2.349999e-05 1e-6 402 300 4.6899993e-05 1e-6 417 300 0.0002347 1e-6 421 300 2.349999e-05 1e-6 422 300 7.0399998e-05 1e-6 430 300 2.349999e-05 1e-6 433 300 2.349999e-05 1e-6 434 300 2.349999e-05 1e-6 443 300 0.0071832985 1e-6 444 300 0.0044366978 1e-6 445 300 0.0084039979 1e-6 446 300 0.00089199981 1e-6 447 300 0.029319897 1e-6 450 300 0.0015962999 1e-6 452 300 0.0048592985 1e-6 453 300 0.0033098999 1e-6 454 300 0.0011737 1e-6 455 300 0.031385697 1e-6 456 300 0.00018779999 1e-6 457 300 0.0020893 1e-6 458 300 0.0012910999 1e-6 459 300 0.0017136999 1e-6 460 300 0.0016901998 1e-6 463 300 0.0102585 1e-6 464 300 0.0036150999 1e-6 465 300 0.00042249984 1e-6 467 300 0.015610699 1e-6 468 300 0.012089498 1e-6 469 300 0.0064085983 1e-6 470 300 0.0031690998 1e-6 471 300 0.0015023998 1e-6 473 300 2.349999e-05 1e-6 477 300 0.0007511999 1e-6 478 300 0.00056339987 1e-6 483 300 0.00025819987 1e-6 489 300 2.349999e-05 1e-6 490 300 0.00011739999 1e-6 491 300 0.00011739999 1e-6 23 301 0.0011695998 1e-6 60 301 0.0029239999 1e-6 114 301 0.0001949 1e-6 156 301 0.0001949 1e-6 187 301 0.0001949 1e-6 188 301 0.0015594999 1e-6 198 301 0.0017543999 1e-6 204 301 0.0017543999 1e-6 206 301 0.00038989983 1e-6 214 301 0.0001949 1e-6 219 301 0.00038989983 1e-6 223 301 0.0001949 1e-6 224 301 0.012280699 1e-6 229 301 0.00097469985 1e-6 233 301 0.022806998 1e-6 234 301 0.0027289998 1e-6 237 301 0.0001949 1e-6 240 301 0.0001949 1e-6 241 301 0.00038989983 1e-6 272 301 0.00038989983 1e-6 277 301 0.3705653 1e-6 284 301 0.00097469985 1e-6 285 301 0.0001949 1e-6 287 301 0.0001949 1e-6 292 301 0.0005847998 1e-6 293 301 0.007017497 1e-6 295 301 0.0005847998 1e-6 298 301 0.00038989983 1e-6 299 301 0.0001949 1e-6 301 301 0.0011695998 1e-6 305 301 0.0001949 1e-6 312 301 0.0015594999 1e-6 313 301 0.00097469985 1e-6 315 301 0.0005847998 1e-6 319 301 0.0005847998 1e-6 320 301 0.00038989983 1e-6 321 301 0.0011695998 1e-6 322 301 0.020467799 1e-6 324 301 0.0001949 1e-6 326 301 0.043469798 1e-6 339 301 0.00097469985 1e-6 340 301 0.0050681978 1e-6 341 301 0.0001949 1e-6 351 301 0.0072124973 1e-6 356 301 0.0001949 1e-6 358 301 0.0031188999 1e-6 371 301 0.0001949 1e-6 372 301 0.0005847998 1e-6 380 301 0.0001949 1e-6 386 301 0.00038989983 1e-6 402 301 0.0001949 1e-6 415 301 0.0005847998 1e-6 417 301 0.0001949 1e-6 443 301 0.0081870966 1e-6 444 301 0.0062377974 1e-6 445 301 0.0087718964 1e-6 446 301 0.0005847998 1e-6 447 301 0.017543897 1e-6 450 301 0.0019492998 1e-6 452 301 0.0066276975 1e-6 453 301 0.0044833981 1e-6 454 301 0.00097469985 1e-6 455 301 0.0391813 1e-6 456 301 0.0001949 1e-6 457 301 0.0031188999 1e-6 458 301 0.0005847998 1e-6 459 301 0.00038989983 1e-6 460 301 0.0011695998 1e-6 463 301 0.012670599 1e-6 464 301 0.0005847998 1e-6 465 301 0.00038989983 1e-6 467 301 0.0079921968 1e-6 468 301 0.0079921968 1e-6 469 301 0.0031188999 1e-6 470 301 0.0023391999 1e-6 471 301 0.0007797 1e-6 478 301 0.0005847998 1e-6 483 301 0.0005847998 1e-6 490 301 0.00038989983 1e-6 491 301 0.00038989983 1e-6 22 302 0.0012425999 1e-6 24 302 0.0021745998 1e-6 60 302 0.0040384978 1e-6 114 302 0.00031069992 1e-6 160 302 0.0012425999 1e-6 169 302 0.0012425999 1e-6 198 302 0.012736898 1e-6 206 302 0.00062129996 1e-6 214 302 0.00093199988 1e-6 223 302 0.013358198 1e-6 224 302 0.0018638999 1e-6 229 302 0.00093199988 1e-6 233 302 0.018018 1e-6 234 302 0.0027959 1e-6 237 302 0.00031069992 1e-6 240 302 0.00093199988 1e-6 241 302 0.0012425999 1e-6 270 302 0.0096302964 1e-6 272 302 0.0040384978 1e-6 277 302 0.14103758 1e-6 279 302 0.00062129996 1e-6 282 302 0.016154099 1e-6 283 302 0.0034171999 1e-6 284 302 0.0015532998 1e-6 286 302 0.0037278999 1e-6 288 302 0.013979498 1e-6 289 302 0.0024851998 1e-6 292 302 0.010251597 1e-6 293 302 0.0034171999 1e-6 295 302 0.00031069992 1e-6 296 302 0.0034171999 1e-6 297 302 0.014290199 1e-6 299 302 0.00031069992 1e-6 302 302 0.00031069992 1e-6 303 302 0.00062129996 1e-6 312 302 0.010251597 1e-6 313 302 0.00062129996 1e-6 315 302 0.0052810982 1e-6 317 302 0.00031069992 1e-6 319 302 0.00031069992 1e-6 320 302 0.0055917986 1e-6 321 302 0.023299199 1e-6 326 302 0.00031069992 1e-6 339 302 0.0040384978 1e-6 340 302 0.0052810982 1e-6 353 302 0.0031065999 1e-6 358 302 0.0021745998 1e-6 374 302 0.00062129996 1e-6 417 302 0.00062129996 1e-6 443 302 0.0086983964 1e-6 444 302 0.0074556991 1e-6 445 302 0.014290199 1e-6 446 302 0.00031069992 1e-6 447 302 0.0080769993 1e-6 450 302 0.0031065999 1e-6 452 302 0.0083876997 1e-6 453 302 0.0083876997 1e-6 454 302 0.0015532998 1e-6 455 302 0.031065498 1e-6 456 302 0.00031069992 1e-6 457 302 0.0086983964 1e-6 458 302 0.0012425999 1e-6 459 302 0.00093199988 1e-6 460 302 0.0015532998 1e-6 463 302 0.012115598 1e-6 464 302 0.00062129996 1e-6 465 302 0.00062129996 1e-6 467 302 0.010251597 1e-6 468 302 0.013668798 1e-6 469 302 0.0031065999 1e-6 470 302 0.0027959 1e-6 471 302 0.0012425999 1e-6 478 302 0.00093199988 1e-6 483 302 0.0015532998 1e-6 490 302 0.00062129996 1e-6 491 302 0.011183597 1e-6 24 303 0.00072109979 1e-6 60 303 0.0015864 1e-6 114 303 0.00014419999 1e-6 126 303 0.00014419999 1e-6 160 303 0.0012979999 1e-6 190 303 0.00014419999 1e-6 194 303 0.00014419999 1e-6 198 303 0.0087971985 1e-6 206 303 0.00028839987 1e-6 214 303 0.00043269992 1e-6 223 303 0.0047591999 1e-6 229 303 0.00086529995 1e-6 233 303 0.00086529995 1e-6 234 303 0.0024516999 1e-6 237 303 0.00057689985 1e-6 240 303 0.0011536998 1e-6 241 303 0.0046148971 1e-6 270 303 0.0070665963 1e-6 272 303 0.0040380992 1e-6 277 303 0.0291318 1e-6 279 303 0.00028839987 1e-6 282 303 0.0067781992 1e-6 283 303 0.00057689985 1e-6 284 303 0.0015864 1e-6 286 303 0.024228398 1e-6 288 303 0.00072109979 1e-6 289 303 0.0054801963 1e-6 290 303 0.00028839987 1e-6 292 303 0.11595035 1e-6 293 303 0.0036054 1e-6 296 303 0.0015864 1e-6 297 303 0.059128899 1e-6 298 303 0.015575398 1e-6 303 303 0.006633997 1e-6 312 303 0.041534498 1e-6 315 303 0.040092297 1e-6 317 303 0.00014419999 1e-6 320 303 0.042544 1e-6 321 303 0.0011536998 1e-6 324 303 0.00043269992 1e-6 328 303 0.0023075 1e-6 330 303 0.00086529995 1e-6 339 303 0.0021632998 1e-6 340 303 0.0038939 1e-6 341 303 0.00014419999 1e-6 350 303 0.00014419999 1e-6 351 303 0.00086529995 1e-6 353 303 0.00014419999 1e-6 354 303 0.00057689985 1e-6 358 303 0.006201297 1e-6 372 303 0.00043269992 1e-6 374 303 0.00028839987 1e-6 386 303 0.00014419999 1e-6 395 303 0.00014419999 1e-6 397 303 0.00014419999 1e-6 417 303 0.00043269992 1e-6 422 303 0.00014419999 1e-6 443 303 0.0043265 1e-6 444 303 0.0015864 1e-6 445 303 0.0102394 1e-6 446 303 0.00014419999 1e-6 447 303 0.0060570985 1e-6 450 303 0.0027400998 1e-6 452 303 0.0057686977 1e-6 453 303 0.0027400998 1e-6 454 303 0.00057689985 1e-6 455 303 0.034612097 1e-6 456 303 0.00028839987 1e-6 457 303 0.0060570985 1e-6 458 303 0.00072109979 1e-6 459 303 0.00072109979 1e-6 460 303 0.0017305999 1e-6 463 303 0.0070665963 1e-6 464 303 0.00028839987 1e-6 465 303 0.00057689985 1e-6 467 303 0.0074992999 1e-6 468 303 0.0095182993 1e-6 469 303 0.0033169999 1e-6 470 303 0.0036054 1e-6 471 303 0.0011536998 1e-6 473 303 0.00014419999 1e-6 478 303 0.00086529995 1e-6 483 303 0.00072109979 1e-6 490 303 0.00043269992 1e-6 491 303 0.0030285998 1e-6 21 304 0.00010399999 1e-6 22 304 0.00010399999 1e-6 60 304 0.0033270998 1e-6 108 304 0.00010399999 1e-6 114 304 0.00010399999 1e-6 126 304 0.00010399999 1e-6 135 304 0.00010399999 1e-6 160 304 0.0023912999 1e-6 169 304 0.00093569979 1e-6 171 304 0.0002079 1e-6 172 304 0.0023912999 1e-6 189 304 0.00010399999 1e-6 190 304 0.00010399999 1e-6 194 304 0.0002079 1e-6 198 304 0.0091494992 1e-6 203 304 0.00010399999 1e-6 206 304 0.0002079 1e-6 214 304 0.00031189993 1e-6 223 304 0.00010399999 1e-6 224 304 0.00010399999 1e-6 229 304 0.00083179981 1e-6 233 304 0.0058223978 1e-6 234 304 0.0034310999 1e-6 236 304 0.00031189993 1e-6 237 304 0.0002079 1e-6 240 304 0.0021833999 1e-6 241 304 0.00051989988 1e-6 242 304 0.0002079 1e-6 252 304 0.0002079 1e-6 270 304 0.0022874 1e-6 271 304 0.00010399999 1e-6 272 304 0.00010399999 1e-6 274 304 0.0002079 1e-6 277 304 0.078706563 1e-6 278 304 0.00010399999 1e-6 279 304 0.00010399999 1e-6 282 304 0.011748798 1e-6 283 304 0.0002079 1e-6 284 304 0.0016635 1e-6 285 304 0.00010399999 1e-6 286 304 0.0016635 1e-6 289 304 0.0016635 1e-6 292 304 0.021522097 1e-6 293 304 0.015595797 1e-6 294 304 0.00010399999 1e-6 295 304 0.00051989988 1e-6 296 304 0.0029111998 1e-6 297 304 0.0017674998 1e-6 298 304 0.0039508976 1e-6 304 304 0.040964898 1e-6 307 304 0.00041589979 1e-6 312 304 0.0066541992 1e-6 315 304 0.011644799 1e-6 319 304 0.00041589979 1e-6 320 304 0.0010396999 1e-6 321 304 0.004782699 1e-6 322 304 0.0069660991 1e-6 324 304 0.013828199 1e-6 326 304 0.013620298 1e-6 328 304 0.0011437 1e-6 339 304 0.0019754998 1e-6 340 304 0.0046786964 1e-6 343 304 0.00010399999 1e-6 350 304 0.00083179981 1e-6 351 304 0.00072779995 1e-6 352 304 0.014348097 1e-6 353 304 0.0012476998 1e-6 354 304 0.00041589979 1e-6 355 304 0.00010399999 1e-6 356 304 0.00010399999 1e-6 358 304 0.0041588992 1e-6 366 304 0.023809496 1e-6 370 304 0.0081097968 1e-6 371 304 0.00041589979 1e-6 372 304 0.039925098 1e-6 373 304 0.0019754998 1e-6 374 304 0.00083179981 1e-6 375 304 0.00010399999 1e-6 376 304 0.0042627975 1e-6 377 304 0.00010399999 1e-6 380 304 0.0002079 1e-6 386 304 0.00051989988 1e-6 387 304 0.00010399999 1e-6 402 304 0.00010399999 1e-6 415 304 0.029839899 1e-6 417 304 0.00041589979 1e-6 419 304 0.004782699 1e-6 421 304 0.00010399999 1e-6 422 304 0.00010399999 1e-6 430 304 0.00010399999 1e-6 434 304 0.00010399999 1e-6 441 304 0.0025992999 1e-6 443 304 0.0043667965 1e-6 444 304 0.0030151999 1e-6 445 304 0.0065501966 1e-6 446 304 0.0002079 1e-6 447 304 0.014867999 1e-6 450 304 0.0083176978 1e-6 452 304 0.0049905963 1e-6 453 304 0.0025992999 1e-6 454 304 0.00083179981 1e-6 455 304 0.044915799 1e-6 456 304 0.00031189993 1e-6 457 304 0.0051985979 1e-6 458 304 0.00072779995 1e-6 459 304 0.00072779995 1e-6 460 304 0.0016635 1e-6 463 304 0.016011599 1e-6 464 304 0.00051989988 1e-6 465 304 0.0010396999 1e-6 467 304 0.0085256994 1e-6 468 304 0.011020999 1e-6 469 304 0.004782699 1e-6 470 304 0.0049905963 1e-6 471 304 0.0041588992 1e-6 473 304 0.00010399999 1e-6 477 304 0.00010399999 1e-6 478 304 0.0010396999 1e-6 483 304 0.0011437 1e-6 490 304 0.00041589979 1e-6 491 304 0.0049905963 1e-6 9 305 2.9599993e-05 1e-6 18 305 0.00097779999 1e-6 19 305 0.00029629981 1e-6 21 305 5.9299986e-05 1e-6 22 305 0.00023699999 1e-6 60 305 0.0025185 1e-6 79 305 2.9599993e-05 1e-6 82 305 2.9599993e-05 1e-6 83 305 2.9599993e-05 1e-6 84 305 2.9599993e-05 1e-6 108 305 2.9599993e-05 1e-6 113 305 5.9299986e-05 1e-6 114 305 0.00011849999 1e-6 126 305 5.9299986e-05 1e-6 127 305 2.9599993e-05 1e-6 150 305 0.00062219985 1e-6 151 305 0.00047409977 1e-6 160 305 0.0016295998 1e-6 169 305 0.00068149995 1e-6 172 305 8.8899993e-05 1e-6 189 305 8.8899993e-05 1e-6 190 305 8.8899993e-05 1e-6 191 305 2.9599993e-05 1e-6 192 305 5.9299986e-05 1e-6 194 305 8.8899993e-05 1e-6 197 305 2.9599993e-05 1e-6 198 305 0.0023999999 1e-6 200 305 5.9299986e-05 1e-6 201 305 5.9299986e-05 1e-6 203 305 5.9299986e-05 1e-6 204 305 8.8899993e-05 1e-6 206 305 0.00011849999 1e-6 207 305 5.9299986e-05 1e-6 209 305 2.9599993e-05 1e-6 214 305 0.00068149995 1e-6 218 305 2.9599993e-05 1e-6 224 305 2.9599993e-05 1e-6 229 305 0.00085929991 1e-6 233 305 0.0093036965 1e-6 234 305 0.0024295999 1e-6 237 305 0.00029629981 1e-6 240 305 0.00029629981 1e-6 241 305 0.0029926 1e-6 242 305 2.9599993e-05 1e-6 248 305 2.9599993e-05 1e-6 250 305 2.9599993e-05 1e-6 252 305 0.00017779999 1e-6 262 305 2.9599993e-05 1e-6 267 305 2.9599993e-05 1e-6 270 305 0.00077039981 1e-6 272 305 0.00044439989 1e-6 274 305 2.9599993e-05 1e-6 277 305 0.34613329 1e-6 278 305 0.00011849999 1e-6 279 305 0.00011849999 1e-6 280 305 0.0025185 1e-6 282 305 0.0040295981 1e-6 283 305 0.00023699999 1e-6 284 305 0.00056299986 1e-6 285 305 0.0013925999 1e-6 286 305 2.9599993e-05 1e-6 288 305 0.0019258999 1e-6 289 305 0.0034667 1e-6 290 305 0.0024295999 1e-6 292 305 0.00079999981 1e-6 293 305 0.010903697 1e-6 294 305 0.00011849999 1e-6 295 305 8.8899993e-05 1e-6 296 305 0.00017779999 1e-6 297 305 0.0024889 1e-6 299 305 8.8899993e-05 1e-6 305 305 0.013748098 1e-6 307 305 0.0004147999 1e-6 308 305 2.9599993e-05 1e-6 309 305 2.9599993e-05 1e-6 312 305 0.026370399 1e-6 315 305 0.0055703968 1e-6 317 305 0.00047409977 1e-6 318 305 0.0028740999 1e-6 319 305 0.00011849999 1e-6 320 305 0.0012147999 1e-6 321 305 0.0092443973 1e-6 322 305 0.0053036995 1e-6 324 305 0.00026669982 1e-6 326 305 0.0013629999 1e-6 327 305 0.00017779999 1e-6 328 305 0.00026669982 1e-6 331 305 8.8899993e-05 1e-6 332 305 2.9599993e-05 1e-6 338 305 0.00077039981 1e-6 339 305 0.0021332998 1e-6 340 305 0.0028147998 1e-6 341 305 2.9599993e-05 1e-6 343 305 2.9599993e-05 1e-6 349 305 8.8899993e-05 1e-6 350 305 5.9299986e-05 1e-6 351 305 0.0010074 1e-6 352 305 8.8899993e-05 1e-6 353 305 0.00097779999 1e-6 354 305 0.0004147999 1e-6 356 305 2.9599993e-05 1e-6 358 305 0.012503698 1e-6 371 305 0.00011849999 1e-6 372 305 0.0023703999 1e-6 373 305 8.8899993e-05 1e-6 374 305 0.006933298 1e-6 375 305 2.9599993e-05 1e-6 384 305 8.8899993e-05 1e-6 386 305 8.8899993e-05 1e-6 387 305 5.9299986e-05 1e-6 390 305 5.9299986e-05 1e-6 394 305 2.9599993e-05 1e-6 397 305 2.9599993e-05 1e-6 398 305 2.9599993e-05 1e-6 402 305 0.00023699999 1e-6 405 305 2.9599993e-05 1e-6 408 305 0.00044439989 1e-6 417 305 0.00044439989 1e-6 419 305 2.9599993e-05 1e-6 421 305 5.9299986e-05 1e-6 422 305 0.0012443999 1e-6 423 305 2.9599993e-05 1e-6 425 305 2.9599993e-05 1e-6 430 305 2.9599993e-05 1e-6 431 305 2.9599993e-05 1e-6 432 305 2.9599993e-05 1e-6 433 305 2.9599993e-05 1e-6 434 305 5.9299986e-05 1e-6 443 305 0.0072295964 1e-6 444 305 0.0012147999 1e-6 445 305 0.0091851987 1e-6 446 305 0.00085929991 1e-6 447 305 0.0083555989 1e-6 448 305 2.9599993e-05 1e-6 450 305 0.0033481 1e-6 452 305 0.0056592971 1e-6 453 305 0.0019556 1e-6 454 305 0.0013036998 1e-6 455 305 0.034725897 1e-6 456 305 0.00056299986 1e-6 457 305 0.0028147998 1e-6 458 305 0.00047409977 1e-6 459 305 0.0003258998 1e-6 460 305 0.0022814998 1e-6 463 305 0.010607399 1e-6 464 305 0.0015703999 1e-6 465 305 0.0008888999 1e-6 467 305 0.0096592978 1e-6 468 305 0.0042962991 1e-6 469 305 0.0093332976 1e-6 470 305 0.007407397 1e-6 471 305 0.0016888999 1e-6 473 305 0.00011849999 1e-6 477 305 0.00091849989 1e-6 478 305 0.001037 1e-6 483 305 0.001037 1e-6 489 305 8.8899993e-05 1e-6 490 305 0.00047409977 1e-6 491 305 0.0015703999 1e-6 9 306 5.1799987e-05 1e-6 18 306 0.00015539999 1e-6 24 306 0.00020719999 1e-6 60 306 0.0015538 1e-6 82 306 5.1799987e-05 1e-6 83 306 5.1799987e-05 1e-6 84 306 5.1799987e-05 1e-6 108 306 5.1799987e-05 1e-6 113 306 0.00010359999 1e-6 114 306 0.00020719999 1e-6 126 306 0.00010359999 1e-6 130 306 5.1799987e-05 1e-6 139 306 0.00010359999 1e-6 150 306 0.00077689998 1e-6 159 306 0.00020719999 1e-6 160 306 0.0062667988 1e-6 161 306 0.00010359999 1e-6 163 306 5.1799987e-05 1e-6 165 306 0.0032628998 1e-6 170 306 0.00015539999 1e-6 171 306 0.00046609994 1e-6 172 306 0.00025899988 1e-6 184 306 5.1799987e-05 1e-6 187 306 0.0060078986 1e-6 189 306 0.00010359999 1e-6 190 306 0.00010359999 1e-6 191 306 5.1799987e-05 1e-6 194 306 0.0009323 1e-6 197 306 5.1799987e-05 1e-6 198 306 0.0065775998 1e-6 200 306 5.1799987e-05 1e-6 203 306 0.00010359999 1e-6 204 306 0.00010359999 1e-6 206 306 0.00010359999 1e-6 207 306 5.1799987e-05 1e-6 214 306 0.0024859998 1e-6 215 306 5.1799987e-05 1e-6 219 306 5.1799987e-05 1e-6 224 306 0.00041429978 1e-6 229 306 0.00088049984 1e-6 233 306 0.0078205988 1e-6 234 306 0.0029520998 1e-6 237 306 0.00025899988 1e-6 240 306 5.1799987e-05 1e-6 241 306 0.0100476 1e-6 242 306 5.1799987e-05 1e-6 252 306 0.052361697 1e-6 254 306 0.00031079981 1e-6 270 306 0.0013983999 1e-6 271 306 5.1799987e-05 1e-6 272 306 0.0005696998 1e-6 273 306 0.00010359999 1e-6 274 306 0.0012947998 1e-6 277 306 0.061114598 1e-6 278 306 5.1799987e-05 1e-6 279 306 0.00025899988 1e-6 280 306 5.1799987e-05 1e-6 282 306 0.0010358 1e-6 283 306 0.00010359999 1e-6 284 306 0.00072509982 1e-6 286 306 5.1799987e-05 1e-6 287 306 5.1799987e-05 1e-6 288 306 0.00036249985 1e-6 289 306 0.06287545 1e-6 290 306 0.009633299 1e-6 291 306 5.1799987e-05 1e-6 292 306 0.0016055999 1e-6 293 306 0.11471927 1e-6 295 306 0.00010359999 1e-6 296 306 0.00062149996 1e-6 297 306 0.0076133981 1e-6 305 306 5.1799987e-05 1e-6 306 306 0.0030038999 1e-6 311 306 5.1799987e-05 1e-6 312 306 0.0082866997 1e-6 313 306 5.1799987e-05 1e-6 315 306 0.004246898 1e-6 317 306 0.00025899988 1e-6 318 306 5.1799987e-05 1e-6 319 306 0.037652798 1e-6 320 306 0.0020198999 1e-6 321 306 0.0022787999 1e-6 322 306 0.011135299 1e-6 326 306 0.0097886994 1e-6 335 306 5.1799987e-05 1e-6 337 306 5.1799987e-05 1e-6 339 306 0.0011912 1e-6 340 306 0.0012947998 1e-6 350 306 5.1799987e-05 1e-6 351 306 0.0016055999 1e-6 353 306 0.0016572999 1e-6 354 306 0.00010359999 1e-6 356 306 5.1799987e-05 1e-6 357 306 5.1799987e-05 1e-6 358 306 0.0030556999 1e-6 366 306 5.1799987e-05 1e-6 371 306 5.1799987e-05 1e-6 372 306 5.1799987e-05 1e-6 374 306 0.00015539999 1e-6 387 306 5.1799987e-05 1e-6 402 306 0.00036249985 1e-6 417 306 0.00051789987 1e-6 419 306 5.1799987e-05 1e-6 421 306 5.1799987e-05 1e-6 422 306 0.00020719999 1e-6 423 306 5.1799987e-05 1e-6 425 306 5.1799987e-05 1e-6 430 306 5.1799987e-05 1e-6 431 306 5.1799987e-05 1e-6 433 306 5.1799987e-05 1e-6 434 306 5.1799987e-05 1e-6 443 306 0.0073026977 1e-6 444 306 0.0018126999 1e-6 445 306 0.0093225986 1e-6 446 306 0.00036249985 1e-6 447 306 0.0097368993 1e-6 448 306 5.1799987e-05 1e-6 450 306 0.0040915981 1e-6 452 306 0.0053345971 1e-6 453 306 0.0038325998 1e-6 454 306 0.00041429978 1e-6 455 306 0.034182698 1e-6 456 306 0.0005696998 1e-6 457 306 0.0027967999 1e-6 458 306 0.00072509982 1e-6 459 306 0.00031079981 1e-6 460 306 0.0018126999 1e-6 463 306 0.028174799 1e-6 464 306 0.0011912 1e-6 465 306 0.0009323 1e-6 467 306 0.0097886994 1e-6 468 306 0.0047648996 1e-6 469 306 0.0060596988 1e-6 470 306 0.0066294 1e-6 471 306 0.0040397979 1e-6 473 306 0.00015539999 1e-6 477 306 0.00010359999 1e-6 478 306 0.0012947998 1e-6 483 306 0.0014501999 1e-6 489 306 5.1799987e-05 1e-6 490 306 0.0005696998 1e-6 491 306 0.0021235 1e-6 9 307 2.9699993e-05 1e-6 18 307 0.00074129994 1e-6 19 307 0.00029649981 1e-6 21 307 0.004685197 1e-6 22 307 0.00017789999 1e-6 24 307 2.9699993e-05 1e-6 60 307 0.0024611999 1e-6 77 307 5.9299986e-05 1e-6 79 307 2.9699993e-05 1e-6 82 307 2.9699993e-05 1e-6 83 307 2.9699993e-05 1e-6 84 307 2.9699993e-05 1e-6 108 307 2.9699993e-05 1e-6 113 307 5.9299986e-05 1e-6 114 307 0.00011859999 1e-6 126 307 5.9299986e-05 1e-6 127 307 2.9699993e-05 1e-6 142 307 2.9699993e-05 1e-6 150 307 0.00062269997 1e-6 151 307 0.00059309998 1e-6 160 307 0.00083029992 1e-6 161 307 2.9699993e-05 1e-6 169 307 2.9699993e-05 1e-6 171 307 8.8999994e-05 1e-6 172 307 0.00026689982 1e-6 189 307 8.8999994e-05 1e-6 190 307 8.8999994e-05 1e-6 191 307 2.9699993e-05 1e-6 194 307 0.00011859999 1e-6 197 307 2.9699993e-05 1e-6 198 307 0.00074129994 1e-6 200 307 5.9299986e-05 1e-6 201 307 5.9299986e-05 1e-6 203 307 5.9299986e-05 1e-6 204 307 5.9299986e-05 1e-6 206 307 0.00011859999 1e-6 207 307 2.9699993e-05 1e-6 214 307 0.0010082 1e-6 218 307 2.9699993e-05 1e-6 223 307 0.0014827 1e-6 224 307 2.9699993e-05 1e-6 229 307 0.00083029992 1e-6 233 307 0.0013046998 1e-6 234 307 0.0031728998 1e-6 237 307 0.00029649981 1e-6 240 307 0.00032619992 1e-6 241 307 0.0033211999 1e-6 242 307 0.00011859999 1e-6 248 307 2.9699993e-05 1e-6 250 307 2.9699993e-05 1e-6 252 307 0.0017494999 1e-6 270 307 0.0022239999 1e-6 272 307 0.00094889989 1e-6 274 307 0.0014529999 1e-6 276 307 0.00077099982 1e-6 277 307 0.25199419 1e-6 278 307 0.00017789999 1e-6 280 307 0.00011859999 1e-6 282 307 0.008480899 1e-6 283 307 0.0012750998 1e-6 284 307 0.00059309998 1e-6 285 307 0.0027280999 1e-6 286 307 5.9299986e-05 1e-6 287 307 0.0011268 1e-6 288 307 0.00014829999 1e-6 289 307 0.0033507999 1e-6 290 307 0.00085989991 1e-6 291 307 2.9699993e-05 1e-6 292 307 0.0079470985 1e-6 293 307 0.006227199 1e-6 294 307 0.0013936998 1e-6 295 307 0.00023719999 1e-6 296 307 0.00041509978 1e-6 297 307 0.0053375997 1e-6 298 307 0.00023719999 1e-6 299 307 0.00023719999 1e-6 304 307 0.00041509978 1e-6 305 307 0.0030246 1e-6 307 307 0.023248199 1e-6 308 307 0.00017789999 1e-6 312 307 0.0053079985 1e-6 313 307 2.9699993e-05 1e-6 315 307 0.00088959979 1e-6 317 307 0.00068199984 1e-6 318 307 0.00074129994 1e-6 319 307 0.0012750998 1e-6 320 307 0.0016013 1e-6 321 307 0.0023722998 1e-6 322 307 0.0028763998 1e-6 324 307 0.014144599 1e-6 326 307 0.0088069998 1e-6 327 307 0.0010972 1e-6 328 307 0.00035579992 1e-6 329 307 2.9699993e-05 1e-6 331 307 2.9699993e-05 1e-6 332 307 2.9699993e-05 1e-6 333 307 5.9299986e-05 1e-6 338 307 0.00074129994 1e-6 339 307 0.0016901998 1e-6 340 307 0.0032321999 1e-6 341 307 2.9699993e-05 1e-6 343 307 0.0032025999 1e-6 344 307 0.00014829999 1e-6 347 307 0.00014829999 1e-6 349 307 5.9299986e-05 1e-6 350 307 0.00083029992 1e-6 351 307 0.0015123 1e-6 352 307 0.0031136 1e-6 353 307 0.00020759999 1e-6 354 307 0.0020164 1e-6 355 307 2.9699993e-05 1e-6 356 307 0.00011859999 1e-6 357 307 5.9299986e-05 1e-6 358 307 0.0046555996 1e-6 366 307 0.0019274999 1e-6 369 307 2.9699993e-05 1e-6 370 307 8.8999994e-05 1e-6 371 307 0.00014829999 1e-6 372 307 0.0044182986 1e-6 373 307 0.00041509978 1e-6 374 307 0.0031432998 1e-6 375 307 0.00071169995 1e-6 380 307 2.9699993e-05 1e-6 384 307 5.9299986e-05 1e-6 386 307 8.8999994e-05 1e-6 387 307 5.9299986e-05 1e-6 390 307 0.00011859999 1e-6 392 307 5.9299986e-05 1e-6 393 307 0.00011859999 1e-6 394 307 2.9699993e-05 1e-6 397 307 5.9299986e-05 1e-6 398 307 0.00014829999 1e-6 401 307 5.9299986e-05 1e-6 402 307 0.0014529999 1e-6 404 307 0.0010674999 1e-6 405 307 0.00047449977 1e-6 408 307 0.00011859999 1e-6 414 307 0.0011564998 1e-6 415 307 0.0012750998 1e-6 417 307 0.00038549979 1e-6 419 307 5.9299986e-05 1e-6 421 307 5.9299986e-05 1e-6 422 307 0.00014829999 1e-6 423 307 2.9699993e-05 1e-6 425 307 2.9699993e-05 1e-6 430 307 2.9699993e-05 1e-6 431 307 2.9699993e-05 1e-6 433 307 2.9699993e-05 1e-6 434 307 2.9699993e-05 1e-6 441 307 0.0013343999 1e-6 442 307 2.9699993e-05 1e-6 443 307 0.0061678998 1e-6 444 307 0.0029652999 1e-6 445 307 0.0093704984 1e-6 446 307 0.00080059981 1e-6 447 307 0.011179298 1e-6 448 307 2.9699993e-05 1e-6 450 307 0.0048927963 1e-6 452 307 0.0057527982 1e-6 453 307 0.0028466999 1e-6 454 307 0.0011564998 1e-6 455 307 0.0355247 1e-6 456 307 0.00059309998 1e-6 457 307 0.0027280999 1e-6 458 307 0.00044479989 1e-6 459 307 0.00029649981 1e-6 460 307 0.0018681998 1e-6 463 307 0.0109124 1e-6 464 307 0.0024909 1e-6 465 307 0.0091924965 1e-6 467 307 0.0094890967 1e-6 468 307 0.0021646998 1e-6 469 307 0.011001397 1e-6 470 307 0.0074725971 1e-6 471 307 0.0032321999 1e-6 473 307 0.00011859999 1e-6 477 307 0.0010082 1e-6 478 307 0.0010674999 1e-6 483 307 0.0011268 1e-6 489 307 8.8999994e-05 1e-6 490 307 0.00047449977 1e-6 491 307 0.0020756999 1e-6 9 308 3.6999991e-05 1e-6 18 308 0.0014416999 1e-6 19 308 0.0014785999 1e-6 21 308 3.6999991e-05 1e-6 22 308 0.0023657999 1e-6 24 308 3.6999991e-05 1e-6 25 308 3.6999991e-05 1e-6 60 308 0.0023287998 1e-6 82 308 3.6999991e-05 1e-6 83 308 3.6999991e-05 1e-6 84 308 3.6999991e-05 1e-6 108 308 3.6999991e-05 1e-6 113 308 7.3899995e-05 1e-6 114 308 0.00014789999 1e-6 126 308 7.3899995e-05 1e-6 127 308 3.6999991e-05 1e-6 130 308 3.6999991e-05 1e-6 139 308 3.6999991e-05 1e-6 150 308 0.00055449991 1e-6 151 308 0.00048059993 1e-6 160 308 0.0044728965 1e-6 165 308 7.3899995e-05 1e-6 169 308 0.0018112999 1e-6 171 308 3.6999991e-05 1e-6 172 308 0.00022179999 1e-6 187 308 0.0001848 1e-6 189 308 7.3899995e-05 1e-6 190 308 7.3899995e-05 1e-6 191 308 0.0038443999 1e-6 194 308 0.00014789999 1e-6 197 308 3.6999991e-05 1e-6 198 308 0.0125314 1e-6 200 308 3.6999991e-05 1e-6 203 308 7.3899995e-05 1e-6 204 308 7.3899995e-05 1e-6 206 308 0.00011089999 1e-6 207 308 3.6999991e-05 1e-6 214 308 0.00096109998 1e-6 223 308 0.0003696999 1e-6 224 308 3.6999991e-05 1e-6 229 308 0.00096109998 1e-6 233 308 0.021994699 1e-6 234 308 0.0042140968 1e-6 236 308 0.0011459 1e-6 237 308 0.00033269986 1e-6 240 308 0.00025879988 1e-6 241 308 0.0059514977 1e-6 242 308 7.3899995e-05 1e-6 252 308 0.0020700998 1e-6 254 308 3.6999991e-05 1e-6 267 308 7.3899995e-05 1e-6 270 308 0.00092409994 1e-6 271 308 3.6999991e-05 1e-6 272 308 3.6999991e-05 1e-6 273 308 3.6999991e-05 1e-6 274 308 7.3899995e-05 1e-6 277 308 0.17909944 1e-6 278 308 0.00059149996 1e-6 280 308 0.0026246 1e-6 282 308 0.0040292963 1e-6 283 308 0.0001848 1e-6 284 308 0.00059149996 1e-6 285 308 0.0015155999 1e-6 286 308 7.3899995e-05 1e-6 287 308 0.0028463998 1e-6 288 308 0.0018852998 1e-6 289 308 0.018076297 1e-6 290 308 0.0011459 1e-6 291 308 0.0018483 1e-6 292 308 0.0043249987 1e-6 293 308 0.070863485 1e-6 294 308 0.00088719977 1e-6 295 308 0.00029569981 1e-6 296 308 0.0022548998 1e-6 297 308 0.0038814 1e-6 304 308 7.3899995e-05 1e-6 305 308 0.0003696999 1e-6 306 308 7.3899995e-05 1e-6 307 308 0.00022179999 1e-6 308 308 0.0011459 1e-6 310 308 3.6999991e-05 1e-6 311 308 0.0017003999 1e-6 312 308 0.012605399 1e-6 313 308 7.3899995e-05 1e-6 315 308 0.0026614999 1e-6 317 308 0.0011459 1e-6 318 308 0.0011089998 1e-6 319 308 0.0019591998 1e-6 320 308 0.0023287998 1e-6 321 308 0.0097589977 1e-6 322 308 0.0024396998 1e-6 324 308 0.0014416999 1e-6 326 308 0.0028094 1e-6 328 308 0.00011089999 1e-6 337 308 7.3899995e-05 1e-6 338 308 0.0011459 1e-6 339 308 0.0018112999 1e-6 340 308 0.0046946965 1e-6 343 308 0.00059149996 1e-6 350 308 0.0024396998 1e-6 351 308 0.0014785999 1e-6 352 308 0.0013307999 1e-6 353 308 0.0012937998 1e-6 354 308 0.0012198999 1e-6 355 308 3.6999991e-05 1e-6 356 308 0.0016635 1e-6 357 308 3.6999991e-05 1e-6 358 308 0.0047685988 1e-6 359 308 7.3899995e-05 1e-6 366 308 0.0023657999 1e-6 369 308 3.6999991e-05 1e-6 370 308 7.3899995e-05 1e-6 371 308 0.0029942 1e-6 372 308 0.0051382966 1e-6 373 308 0.00014789999 1e-6 374 308 0.00066539994 1e-6 375 308 7.3899995e-05 1e-6 377 308 3.6999991e-05 1e-6 380 308 3.6999991e-05 1e-6 384 308 0.0017003999 1e-6 385 308 3.6999991e-05 1e-6 386 308 0.00048059993 1e-6 387 308 3.6999991e-05 1e-6 390 308 3.6999991e-05 1e-6 393 308 3.6999991e-05 1e-6 397 308 3.6999991e-05 1e-6 398 308 0.0011459 1e-6 401 308 0.0015525999 1e-6 402 308 0.00066539994 1e-6 405 308 3.6999991e-05 1e-6 408 308 3.6999991e-05 1e-6 412 308 0.00092409994 1e-6 414 308 3.6999991e-05 1e-6 415 308 0.00022179999 1e-6 417 308 0.00040659984 1e-6 419 308 0.00014789999 1e-6 421 308 7.3899995e-05 1e-6 422 308 0.0001848 1e-6 423 308 3.6999991e-05 1e-6 425 308 3.6999991e-05 1e-6 430 308 3.6999991e-05 1e-6 431 308 3.6999991e-05 1e-6 433 308 3.6999991e-05 1e-6 434 308 3.6999991e-05 1e-6 438 308 3.6999991e-05 1e-6 439 308 0.0011089998 1e-6 443 308 0.0071343966 1e-6 444 308 0.0015894999 1e-6 445 308 0.0096111 1e-6 446 308 0.00092409994 1e-6 447 308 0.0084651969 1e-6 448 308 7.3899995e-05 1e-6 450 308 0.0031420998 1e-6 452 308 0.0048055984 1e-6 453 308 0.0028833 1e-6 454 308 0.0011828998 1e-6 455 308 0.036854897 1e-6 456 308 0.00044359989 1e-6 457 308 0.0027723999 1e-6 458 308 0.00033269986 1e-6 459 308 0.00033269986 1e-6 460 308 0.0018852998 1e-6 463 308 0.025802199 1e-6 464 308 0.0017003999 1e-6 465 308 0.00088719977 1e-6 467 308 0.0086499974 1e-6 468 308 0.0057296976 1e-6 469 308 0.0050273985 1e-6 470 308 0.0064689964 1e-6 471 308 0.0038074998 1e-6 473 308 0.00011089999 1e-6 477 308 0.001035 1e-6 478 308 0.0011089998 1e-6 483 308 0.0009980998 1e-6 489 308 7.3899995e-05 1e-6 490 308 0.00040659984 1e-6 491 308 0.0035118 1e-6 22 309 0.0034929998 1e-6 60 309 0.0019959998 1e-6 108 309 0.00016629999 1e-6 114 309 0.00033269986 1e-6 126 309 0.00016629999 1e-6 139 309 0.00033269986 1e-6 160 309 0.0018296998 1e-6 184 309 0.00016629999 1e-6 190 309 0.00016629999 1e-6 191 309 0.00016629999 1e-6 192 309 0.0033266998 1e-6 194 309 0.00016629999 1e-6 198 309 0.0078176968 1e-6 206 309 0.00033269986 1e-6 214 309 0.0078176968 1e-6 229 309 0.00066529983 1e-6 233 309 0.013140399 1e-6 234 309 0.0033266998 1e-6 237 309 0.00033269986 1e-6 240 309 0.00016629999 1e-6 241 309 0.012474999 1e-6 242 309 0.00016629999 1e-6 252 309 0.00083169993 1e-6 270 309 0.00016629999 1e-6 272 309 0.00049899984 1e-6 277 309 0.16566867 1e-6 279 309 0.00016629999 1e-6 280 309 0.00016629999 1e-6 282 309 0.0056553967 1e-6 284 309 0.00066529983 1e-6 285 309 0.00016629999 1e-6 287 309 0.00016629999 1e-6 288 309 0.0016633 1e-6 289 309 0.033433098 1e-6 290 309 0.00033269986 1e-6 292 309 0.001497 1e-6 293 309 0.056719899 1e-6 296 309 0.0023286999 1e-6 297 309 0.00033269986 1e-6 305 309 0.0013306998 1e-6 309 309 0.0024949999 1e-6 312 309 0.015302699 1e-6 315 309 0.0073186979 1e-6 317 309 0.00016629999 1e-6 318 309 0.00033269986 1e-6 319 309 0.00033269986 1e-6 320 309 0.0033266998 1e-6 321 309 0.0084829964 1e-6 322 309 0.0054889992 1e-6 324 309 0.00016629999 1e-6 326 309 0.029274799 1e-6 327 309 0.00016629999 1e-6 331 309 0.00016629999 1e-6 335 309 0.00033269986 1e-6 339 309 0.0033266998 1e-6 340 309 0.0039919987 1e-6 351 309 0.00016629999 1e-6 352 309 0.00033269986 1e-6 353 309 0.0041582994 1e-6 354 309 0.00033269986 1e-6 358 309 0.027944099 1e-6 366 309 0.00099799992 1e-6 370 309 0.00033269986 1e-6 371 309 0.00016629999 1e-6 372 309 0.001497 1e-6 373 309 0.00049899984 1e-6 374 309 0.0028277 1e-6 387 309 0.00016629999 1e-6 390 309 0.00016629999 1e-6 402 309 0.00033269986 1e-6 405 309 0.00016629999 1e-6 417 309 0.00049899984 1e-6 422 309 0.00033269986 1e-6 443 309 0.006486997 1e-6 444 309 0.0056553967 1e-6 445 309 0.014304698 1e-6 446 309 0.00033269986 1e-6 447 309 0.0088156983 1e-6 450 309 0.0041582994 1e-6 452 309 0.0053226985 1e-6 453 309 0.001497 1e-6 454 309 0.00066529983 1e-6 455 309 0.034930099 1e-6 456 309 0.00033269986 1e-6 457 309 0.0024949999 1e-6 458 309 0.00083169993 1e-6 459 309 0.00033269986 1e-6 460 309 0.0023286999 1e-6 463 309 0.017797697 1e-6 464 309 0.00099799992 1e-6 465 309 0.00083169993 1e-6 467 309 0.0093146972 1e-6 468 309 0.0059879981 1e-6 469 309 0.0066533983 1e-6 470 309 0.0069859996 1e-6 471 309 0.0023286999 1e-6 473 309 0.00016629999 1e-6 478 309 0.001497 1e-6 483 309 0.00099799992 1e-6 490 309 0.00066529983 1e-6 491 309 0.0046573989 1e-6 22 310 0.0055714995 1e-6 60 310 0.0021947999 1e-6 114 310 0.00016879999 1e-6 126 310 0.00016879999 1e-6 160 310 0.00033769989 1e-6 191 310 0.00016879999 1e-6 194 310 0.00016879999 1e-6 198 310 0.0047272965 1e-6 206 310 0.00033769989 1e-6 214 310 0.00016879999 1e-6 229 310 0.0010129998 1e-6 233 310 0.0064156987 1e-6 234 310 0.0018571999 1e-6 237 310 0.00016879999 1e-6 240 310 0.00016879999 1e-6 241 310 0.00033769989 1e-6 252 310 0.0013506999 1e-6 272 310 0.00033769989 1e-6 277 310 0.31723785 1e-6 279 310 0.00016879999 1e-6 280 310 0.00016879999 1e-6 282 310 0.0006752999 1e-6 283 310 0.00016879999 1e-6 284 310 0.00033769989 1e-6 289 310 0.0042207986 1e-6 290 310 0.00016879999 1e-6 292 310 0.0057402998 1e-6 293 310 0.013000198 1e-6 296 310 0.00033769989 1e-6 297 310 0.00016879999 1e-6 305 310 0.00050649978 1e-6 310 310 0.0054026991 1e-6 312 310 0.031065296 1e-6 315 310 0.0251562 1e-6 318 310 0.00016879999 1e-6 319 310 0.00016879999 1e-6 320 310 0.0016882999 1e-6 321 310 0.0060779974 1e-6 322 310 0.012155998 1e-6 326 310 0.0297147 1e-6 328 310 0.00016879999 1e-6 329 310 0.00016879999 1e-6 339 310 0.0030389999 1e-6 340 310 0.0033767 1e-6 351 310 0.0052337982 1e-6 353 310 0.0067532994 1e-6 358 310 0.0079351999 1e-6 366 310 0.00016879999 1e-6 372 310 0.00016879999 1e-6 374 310 0.0047272965 1e-6 390 310 0.00033769989 1e-6 392 310 0.00033769989 1e-6 393 310 0.00016879999 1e-6 404 310 0.00016879999 1e-6 405 310 0.0010129998 1e-6 417 310 0.00033769989 1e-6 443 310 0.0074286982 1e-6 444 310 0.0055714995 1e-6 445 310 0.0087792985 1e-6 446 310 0.00084419991 1e-6 447 310 0.0089481995 1e-6 450 310 0.0027013 1e-6 452 310 0.0037143 1e-6 453 310 0.0025324998 1e-6 454 310 0.00050649978 1e-6 455 310 0.035455 1e-6 456 310 0.00016879999 1e-6 457 310 0.0027013 1e-6 458 310 0.00084419991 1e-6 459 310 0.00033769989 1e-6 460 310 0.0015194998 1e-6 463 310 0.011142999 1e-6 464 310 0.0020259998 1e-6 465 310 0.00033769989 1e-6 467 310 0.0072597973 1e-6 468 310 0.0077662989 1e-6 469 310 0.0042207986 1e-6 470 310 0.0048961975 1e-6 471 310 0.0011817999 1e-6 473 310 0.00016879999 1e-6 478 310 0.00084419991 1e-6 483 310 0.00084419991 1e-6 490 310 0.00050649978 1e-6 491 310 0.0011817999 1e-6 18 311 9.9899989e-05 1e-6 19 311 0.005791299 1e-6 22 311 0.0027957999 1e-6 24 311 0.00039939978 1e-6 25 311 9.9899989e-05 1e-6 60 311 0.0030953998 1e-6 108 311 9.9899989e-05 1e-6 114 311 9.9899989e-05 1e-6 126 311 9.9899989e-05 1e-6 160 311 0.0027957999 1e-6 165 311 0.00019969999 1e-6 169 311 0.00069899997 1e-6 172 311 0.0012981 1e-6 183 311 9.9899989e-05 1e-6 187 311 0.00019969999 1e-6 188 311 0.00019969999 1e-6 189 311 9.9899989e-05 1e-6 190 311 9.9899989e-05 1e-6 191 311 9.9899989e-05 1e-6 193 311 9.9899989e-05 1e-6 194 311 9.9899989e-05 1e-6 198 311 0.0022965998 1e-6 206 311 0.00019969999 1e-6 214 311 0.0016974998 1e-6 229 311 0.0010984 1e-6 233 311 0.0013978998 1e-6 234 311 0.0023963999 1e-6 237 311 9.9899989e-05 1e-6 240 311 0.00019969999 1e-6 241 311 0.0007987998 1e-6 252 311 0.0030953998 1e-6 267 311 0.00029959995 1e-6 270 311 9.9899989e-05 1e-6 272 311 0.00059909979 1e-6 273 311 0.00019969999 1e-6 277 311 0.36575139 1e-6 278 311 0.0019969998 1e-6 279 311 9.9899989e-05 1e-6 280 311 0.00039939978 1e-6 282 311 0.0061906986 1e-6 284 311 0.00059909979 1e-6 285 311 9.9899989e-05 1e-6 287 311 9.9899989e-05 1e-6 288 311 0.0018971998 1e-6 289 311 0.0060908981 1e-6 290 311 0.0013978998 1e-6 291 311 0.00019969999 1e-6 292 311 0.0013978998 1e-6 293 311 0.044932596 1e-6 295 311 0.00029959995 1e-6 296 311 9.9899989e-05 1e-6 297 311 0.00059909979 1e-6 305 311 0.0007987998 1e-6 306 311 9.9899989e-05 1e-6 307 311 0.00029959995 1e-6 311 311 0.0042935982 1e-6 312 311 0.0027957999 1e-6 315 311 0.0112831 1e-6 318 311 0.00019969999 1e-6 319 311 0.0011981998 1e-6 320 311 0.0014978 1e-6 321 311 0.0017972998 1e-6 322 311 0.014677998 1e-6 324 311 0.00029959995 1e-6 326 311 0.019370899 1e-6 337 311 9.9899989e-05 1e-6 339 311 0.00059909979 1e-6 340 311 0.0025960999 1e-6 343 311 9.9899989e-05 1e-6 350 311 0.00039939978 1e-6 351 311 0.0026959998 1e-6 352 311 0.00029959995 1e-6 353 311 0.0009984998 1e-6 354 311 0.00039939978 1e-6 358 311 0.0040938966 1e-6 359 311 9.9899989e-05 1e-6 366 311 9.9899989e-05 1e-6 368 311 9.9899989e-05 1e-6 371 311 9.9899989e-05 1e-6 372 311 0.00029959995 1e-6 373 311 9.9899989e-05 1e-6 374 311 0.00059909979 1e-6 375 311 0.00029959995 1e-6 384 311 0.00029959995 1e-6 386 311 9.9899989e-05 1e-6 387 311 9.9899989e-05 1e-6 408 311 0.00029959995 1e-6 413 311 9.9899989e-05 1e-6 414 311 9.9899989e-05 1e-6 417 311 0.00029959995 1e-6 422 311 0.00019969999 1e-6 430 311 9.9899989e-05 1e-6 443 311 0.011382896 1e-6 444 311 0.0025960999 1e-6 445 311 0.0090863965 1e-6 446 311 0.0015975998 1e-6 447 311 0.0046929978 1e-6 450 311 0.0028956998 1e-6 452 311 0.0066899993 1e-6 453 311 0.0034947998 1e-6 454 311 0.00069899997 1e-6 455 311 0.0390414 1e-6 456 311 0.00029959995 1e-6 457 311 0.0029954999 1e-6 458 311 0.00049929996 1e-6 459 311 0.00049929996 1e-6 460 311 0.0019969998 1e-6 463 311 0.0091861971 1e-6 464 311 0.00069899997 1e-6 465 311 0.00069899997 1e-6 467 311 0.0075885989 1e-6 468 311 0.0054917969 1e-6 469 311 0.0053918995 1e-6 470 311 0.005791299 1e-6 471 311 0.0013978998 1e-6 473 311 9.9899989e-05 1e-6 477 311 9.9899989e-05 1e-6 478 311 0.0009984998 1e-6 483 311 0.0011981998 1e-6 489 311 9.9899989e-05 1e-6 490 311 0.00039939978 1e-6 491 311 0.0036944998 1e-6 9 312 3.1899996e-05 1e-6 18 312 0.0011181999 1e-6 19 312 0.0022043998 1e-6 21 312 3.1899996e-05 1e-6 22 312 0.0011181999 1e-6 24 312 6.3899992e-05 1e-6 25 312 3.1899996e-05 1e-6 60 312 0.0029391998 1e-6 82 312 3.1899996e-05 1e-6 83 312 3.1899996e-05 1e-6 84 312 3.1899996e-05 1e-6 108 312 3.1899996e-05 1e-6 113 312 6.3899992e-05 1e-6 114 312 9.5799987e-05 1e-6 126 312 3.1899996e-05 1e-6 150 312 0.00070289988 1e-6 153 312 0.00083059981 1e-6 160 312 6.3899992e-05 1e-6 165 312 3.1899996e-05 1e-6 169 312 0.0014056999 1e-6 172 312 0.00079869991 1e-6 183 312 3.1899996e-05 1e-6 189 312 6.3899992e-05 1e-6 190 312 9.5799987e-05 1e-6 192 312 9.5799987e-05 1e-6 193 312 0.00083059981 1e-6 194 312 0.0001278 1e-6 198 312 0.0025238998 1e-6 200 312 3.1899996e-05 1e-6 203 312 0.0001278 1e-6 204 312 6.3899992e-05 1e-6 206 312 0.00015969999 1e-6 207 312 6.3899992e-05 1e-6 214 312 0.0036420999 1e-6 223 312 3.1899996e-05 1e-6 224 312 3.1899996e-05 1e-6 229 312 0.00063899998 1e-6 233 312 3.1899996e-05 1e-6 234 312 0.0050477982 1e-6 237 312 0.00025559985 1e-6 240 312 0.0021086 1e-6 241 312 0.0071562976 1e-6 242 312 6.3899992e-05 1e-6 252 312 6.3899992e-05 1e-6 262 312 3.1899996e-05 1e-6 267 312 0.0001278 1e-6 270 312 0.0048240982 1e-6 271 312 3.1899996e-05 1e-6 272 312 0.00063899998 1e-6 273 312 3.1899996e-05 1e-6 277 312 0.19002587 1e-6 278 312 0.0007666999 1e-6 279 312 0.0001278 1e-6 280 312 3.1899996e-05 1e-6 282 312 0.0043129995 1e-6 283 312 0.00031949999 1e-6 284 312 0.0061019994 1e-6 285 312 3.1899996e-05 1e-6 286 312 0.0011820998 1e-6 287 312 9.5799987e-05 1e-6 288 312 0.0016931999 1e-6 289 312 0.00041529979 1e-6 290 312 0.00060699997 1e-6 291 312 9.5799987e-05 1e-6 292 312 0.0277946 1e-6 293 312 0.0095843971 1e-6 294 312 0.00092649995 1e-6 295 312 0.0017251999 1e-6 296 312 0.00025559985 1e-6 297 312 0.0058144964 1e-6 298 312 6.3899992e-05 1e-6 299 312 3.1899996e-05 1e-6 301 312 0.0028752999 1e-6 304 312 3.1899996e-05 1e-6 307 312 3.1899996e-05 1e-6 310 312 3.1899996e-05 1e-6 312 312 0.006836798 1e-6 313 312 9.5799987e-05 1e-6 315 312 0.0054630972 1e-6 318 312 0.00054309983 1e-6 320 312 0.013481997 1e-6 321 312 0.00095839985 1e-6 322 312 0.0011500998 1e-6 324 312 0.0001278 1e-6 326 312 0.0010543 1e-6 327 312 3.1899996e-05 1e-6 328 312 0.00067089987 1e-6 329 312 9.5799987e-05 1e-6 337 312 0.00092649995 1e-6 338 312 0.0010543 1e-6 339 312 0.00038339989 1e-6 340 312 0.027219597 1e-6 341 312 0.0001278 1e-6 342 312 3.1899996e-05 1e-6 343 312 3.1899996e-05 1e-6 350 312 0.00019169999 1e-6 351 312 0.00099039986 1e-6 352 312 6.3899992e-05 1e-6 354 312 0.00028749998 1e-6 356 312 9.5799987e-05 1e-6 357 312 0.00019169999 1e-6 358 312 0.037155397 1e-6 359 312 6.3899992e-05 1e-6 366 312 3.1899996e-05 1e-6 367 312 3.1899996e-05 1e-6 372 312 0.0001278 1e-6 373 312 9.5799987e-05 1e-6 374 312 3.1899996e-05 1e-6 375 312 9.5799987e-05 1e-6 384 312 0.00015969999 1e-6 386 312 9.5799987e-05 1e-6 387 312 3.1899996e-05 1e-6 390 312 3.1899996e-05 1e-6 392 312 3.1899996e-05 1e-6 393 312 3.1899996e-05 1e-6 397 312 0.00015969999 1e-6 398 312 0.00083059981 1e-6 402 312 0.00041529979 1e-6 405 312 0.0001278 1e-6 408 312 3.1899996e-05 1e-6 413 312 3.1899996e-05 1e-6 414 312 0.0001278 1e-6 417 312 0.00047919992 1e-6 421 312 6.3899992e-05 1e-6 422 312 9.5799987e-05 1e-6 423 312 3.1899996e-05 1e-6 430 312 3.1899996e-05 1e-6 431 312 3.1899996e-05 1e-6 432 312 3.1899996e-05 1e-6 433 312 6.3899992e-05 1e-6 434 312 6.3899992e-05 1e-6 443 312 0.0060380995 1e-6 444 312 0.0011820998 1e-6 445 312 0.0092648976 1e-6 446 312 0.00099039986 1e-6 447 312 0.008466199 1e-6 448 312 3.1899996e-05 1e-6 450 312 0.0034822999 1e-6 452 312 0.0083702989 1e-6 453 312 0.0040892996 1e-6 454 312 0.0021404999 1e-6 455 312 0.028657198 1e-6 456 312 0.00067089987 1e-6 457 312 0.0050157979 1e-6 458 312 0.00060699997 1e-6 459 312 0.00041529979 1e-6 460 312 0.0018529999 1e-6 463 312 0.011724897 1e-6 464 312 0.0010543 1e-6 465 312 0.00092649995 1e-6 467 312 0.0096801966 1e-6 468 312 0.0046962984 1e-6 469 312 0.010478899 1e-6 470 312 0.0046323985 1e-6 471 312 0.0015653998 1e-6 473 312 6.3899992e-05 1e-6 477 312 0.0014376999 1e-6 478 312 0.0011500998 1e-6 479 312 0.0031947999 1e-6 483 312 0.0013098998 1e-6 489 312 0.0001278 1e-6 490 312 0.00028749998 1e-6 491 312 0.0048560984 1e-6 9 313 1.9299987e-05 1e-6 18 313 5.789999e-05 1e-6 19 313 0.00034749997 1e-6 22 313 0.00046329992 1e-6 24 313 1.9299987e-05 1e-6 60 313 0.0044206977 1e-6 77 313 0.0005983999 1e-6 82 313 1.9299987e-05 1e-6 83 313 1.9299987e-05 1e-6 84 313 1.9299987e-05 1e-6 108 313 1.9299987e-05 1e-6 113 313 3.8599988e-05 1e-6 114 313 3.8599988e-05 1e-6 126 313 1.9299987e-05 1e-6 134 313 0.0001351 1e-6 150 313 0.00061769993 1e-6 151 313 1.9299987e-05 1e-6 156 313 0.003976699 1e-6 158 313 0.000193 1e-6 160 313 0.00042469986 1e-6 169 313 0.00054049981 1e-6 171 313 5.789999e-05 1e-6 172 313 0.0019496998 1e-6 181 313 0.0001544 1e-6 187 313 0.00061769993 1e-6 188 313 0.0015056999 1e-6 189 313 3.8599988e-05 1e-6 190 313 7.7199991e-05 1e-6 192 313 5.789999e-05 1e-6 194 313 7.7199991e-05 1e-6 197 313 1.9299987e-05 1e-6 198 313 0.0025095998 1e-6 200 313 3.8599988e-05 1e-6 203 313 3.8599988e-05 1e-6 204 313 5.789999e-05 1e-6 206 313 7.7199991e-05 1e-6 207 313 3.8599988e-05 1e-6 209 313 1.9299987e-05 1e-6 214 313 0.0016215998 1e-6 218 313 1.9299987e-05 1e-6 219 313 0.0007528998 1e-6 220 313 5.789999e-05 1e-6 223 313 0.00081079989 1e-6 224 313 0.0007528998 1e-6 229 313 0.00086869998 1e-6 233 313 0.0010616998 1e-6 234 313 0.0021042 1e-6 236 313 1.9299987e-05 1e-6 237 313 0.00084939995 1e-6 240 313 0.0013319999 1e-6 241 313 0.001525 1e-6 242 313 7.7199991e-05 1e-6 252 313 0.00067559979 1e-6 267 313 1.9299987e-05 1e-6 270 313 0.0001544 1e-6 271 313 7.7199991e-05 1e-6 272 313 0.00025099982 1e-6 274 313 3.8599988e-05 1e-6 277 313 0.31369448 1e-6 278 313 0.0001351 1e-6 279 313 3.8599988e-05 1e-6 282 313 0.0029342 1e-6 283 313 0.00042469986 1e-6 284 313 0.00084939995 1e-6 285 313 0.00025099982 1e-6 286 313 0.00057909987 1e-6 288 313 0.00092659984 1e-6 289 313 0.00023169999 1e-6 290 313 7.7199991e-05 1e-6 292 313 0.0041503981 1e-6 293 313 0.0065054968 1e-6 294 313 0.00027029985 1e-6 295 313 0.00030889991 1e-6 296 313 0.00094589987 1e-6 297 313 5.789999e-05 1e-6 298 313 0.0049611963 1e-6 299 313 0.0020462999 1e-6 301 313 5.789999e-05 1e-6 312 313 0.012547798 1e-6 313 313 0.029052898 1e-6 315 313 0.00030889991 1e-6 318 313 1.9299987e-05 1e-6 319 313 0.0016408998 1e-6 320 313 0.0040152967 1e-6 321 313 0.00034749997 1e-6 322 313 0.00086869998 1e-6 323 313 0.00028959988 1e-6 325 313 0.00046329992 1e-6 326 313 0.0012161999 1e-6 328 313 0.00042469986 1e-6 330 313 0.00061769993 1e-6 338 313 0.00048259995 1e-6 339 313 0.0016601998 1e-6 340 313 0.0049997978 1e-6 350 313 1.9299987e-05 1e-6 351 313 0.00086869998 1e-6 354 313 1.9299987e-05 1e-6 356 313 3.8599988e-05 1e-6 357 313 0.00030889991 1e-6 358 313 0.0093818977 1e-6 366 313 0.00025099982 1e-6 372 313 5.789999e-05 1e-6 373 313 0.0010231 1e-6 374 313 1.9299987e-05 1e-6 375 313 1.9299987e-05 1e-6 384 313 0.00011579999 1e-6 385 313 0.0003668 1e-6 386 313 1.9299987e-05 1e-6 387 313 0.00028959988 1e-6 392 313 7.7199991e-05 1e-6 393 313 3.8599988e-05 1e-6 394 313 0.0001351 1e-6 397 313 0.00083009992 1e-6 399 313 5.789999e-05 1e-6 401 313 0.0014863999 1e-6 402 313 0.012953199 1e-6 405 313 0.0007528998 1e-6 414 313 5.789999e-05 1e-6 417 313 0.0003668 1e-6 419 313 1.9299987e-05 1e-6 421 313 5.789999e-05 1e-6 422 313 5.789999e-05 1e-6 423 313 1.9299987e-05 1e-6 430 313 1.9299987e-05 1e-6 432 313 1.9299987e-05 1e-6 433 313 1.9299987e-05 1e-6 434 313 3.8599988e-05 1e-6 441 313 1.9299987e-05 1e-6 443 313 0.0069301985 1e-6 444 313 0.00098449993 1e-6 445 313 0.0069494992 1e-6 446 313 0.00086869998 1e-6 447 313 0.0023936999 1e-6 448 313 1.9299987e-05 1e-6 450 313 0.0019689999 1e-6 452 313 0.0071618967 1e-6 453 313 0.0017759998 1e-6 454 313 0.00052119978 1e-6 455 313 0.028937098 1e-6 456 313 0.00025099982 1e-6 457 313 0.0027990998 1e-6 458 313 0.00027029985 1e-6 459 313 0.0022199999 1e-6 460 313 0.0017374 1e-6 463 313 0.0052121989 1e-6 464 313 0.0011195999 1e-6 465 313 0.00067559979 1e-6 467 313 0.0072004981 1e-6 468 313 0.0014477998 1e-6 469 313 0.0044592991 1e-6 470 313 0.0017952998 1e-6 471 313 0.0010809998 1e-6 473 313 3.8599988e-05 1e-6 477 313 7.7199991e-05 1e-6 478 313 0.00079149986 1e-6 483 313 0.00057909987 1e-6 489 313 5.789999e-05 1e-6 490 313 0.0001351 1e-6 491 313 0.0020462999 1e-6 0 314 0.0036722999 1e-6 22 314 0.00056499988 1e-6 24 314 0.00028249994 1e-6 60 314 0.0036722999 1e-6 87 314 0.0031072998 1e-6 90 314 0.0011298999 1e-6 114 314 0.00028249994 1e-6 130 314 0.00056499988 1e-6 135 314 0.00028249994 1e-6 169 314 0.00084749982 1e-6 171 314 0.005649697 1e-6 172 314 0.0016949 1e-6 187 314 0.0050846972 1e-6 188 314 0.011299398 1e-6 191 314 0.0011298999 1e-6 192 314 0.00056499988 1e-6 193 314 0.00028249994 1e-6 194 314 0.00028249994 1e-6 198 314 0.011299398 1e-6 204 314 0.0033898 1e-6 206 314 0.00028249994 1e-6 214 314 0.003954798 1e-6 223 314 0.017231598 1e-6 224 314 0.020338997 1e-6 225 314 0.00056499988 1e-6 229 314 0.00084749982 1e-6 233 314 0.017231598 1e-6 234 314 0.0019773999 1e-6 241 314 0.019491497 1e-6 252 314 0.00056499988 1e-6 270 314 0.0031072998 1e-6 272 314 0.0064971969 1e-6 277 314 0.19039547 1e-6 284 314 0.00084749982 1e-6 287 314 0.00028249994 1e-6 292 314 0.00028249994 1e-6 293 314 0.088983059 1e-6 294 314 0.00028249994 1e-6 312 314 0.0025423998 1e-6 314 314 0.046045199 1e-6 315 314 0.00084749982 1e-6 321 314 0.0050846972 1e-6 322 314 0.00028249994 1e-6 326 314 0.00056499988 1e-6 339 314 0.0014123998 1e-6 340 314 0.005649697 1e-6 349 314 0.00028249994 1e-6 351 314 0.00028249994 1e-6 358 314 0.0045197979 1e-6 385 314 0.00028249994 1e-6 417 314 0.00028249994 1e-6 443 314 0.0079095997 1e-6 444 314 0.00084749982 1e-6 445 314 0.0093219988 1e-6 446 314 0.00028249994 1e-6 447 314 0.005649697 1e-6 450 314 0.0019773999 1e-6 452 314 0.0062146969 1e-6 453 314 0.0028249 1e-6 454 314 0.00028249994 1e-6 455 314 0.031638399 1e-6 457 314 0.0016949 1e-6 458 314 0.00028249994 1e-6 459 314 0.00028249994 1e-6 460 314 0.0014123998 1e-6 463 314 0.0084745996 1e-6 464 314 0.00084749982 1e-6 465 314 0.00028249994 1e-6 467 314 0.0081920996 1e-6 468 314 0.0019773999 1e-6 469 314 0.0022598999 1e-6 470 314 0.0022598999 1e-6 471 314 0.00084749982 1e-6 478 314 0.00056499988 1e-6 483 314 0.00056499988 1e-6 490 314 0.00028249994 1e-6 491 314 0.00056499988 1e-6 9 315 3.7899998e-05 1e-6 18 315 0.00011359999 1e-6 19 315 0.0003407998 1e-6 21 315 3.7899998e-05 1e-6 22 315 0.00060589984 1e-6 25 315 3.7899998e-05 1e-6 60 315 0.0035974998 1e-6 77 315 0.00011359999 1e-6 82 315 3.7899998e-05 1e-6 108 315 3.7899998e-05 1e-6 114 315 7.5699994e-05 1e-6 126 315 3.7899998e-05 1e-6 130 315 0.00026509981 1e-6 131 315 7.5699994e-05 1e-6 139 315 0.00015149999 1e-6 141 315 3.7899998e-05 1e-6 150 315 0.00075739995 1e-6 151 315 3.7899998e-05 1e-6 156 315 0.00011359999 1e-6 160 315 0.0010225 1e-6 169 315 0.00053019985 1e-6 171 315 0.0041655973 1e-6 172 315 0.0020827998 1e-6 187 315 0.0020069999 1e-6 188 315 0.0051500984 1e-6 189 315 3.7899998e-05 1e-6 190 315 0.00011359999 1e-6 192 315 3.7899998e-05 1e-6 194 315 0.00018929999 1e-6 197 315 3.7899998e-05 1e-6 198 315 0.014996 1e-6 200 315 3.7899998e-05 1e-6 203 315 7.5699994e-05 1e-6 204 315 0.00018929999 1e-6 206 315 0.00015149999 1e-6 207 315 3.7899998e-05 1e-6 214 315 0.0054530986 1e-6 219 315 0.0019312999 1e-6 220 315 3.7899998e-05 1e-6 221 315 3.7899998e-05 1e-6 223 315 0.0029537999 1e-6 224 315 0.001742 1e-6 225 315 0.00015149999 1e-6 229 315 0.00075739995 1e-6 233 315 0.0040140972 1e-6 234 315 0.0027643999 1e-6 237 315 0.00018929999 1e-6 240 315 0.00030289986 1e-6 241 315 0.013973597 1e-6 243 315 3.7899998e-05 1e-6 252 315 0.0036732999 1e-6 270 315 0.00037869997 1e-6 272 315 0.00053019985 1e-6 274 315 0.0027264999 1e-6 277 315 0.16366869 1e-6 278 315 0.00011359999 1e-6 279 315 3.7899998e-05 1e-6 280 315 3.7899998e-05 1e-6 282 315 0.0025750999 1e-6 283 315 0.00011359999 1e-6 284 315 0.004506398 1e-6 285 315 0.0048850998 1e-6 286 315 0.0003407998 1e-6 287 315 7.5699994e-05 1e-6 288 315 0.00083309994 1e-6 289 315 0.00079519977 1e-6 290 315 0.00026509981 1e-6 292 315 0.014314398 1e-6 293 315 0.038663998 1e-6 294 315 0.0021584998 1e-6 295 315 0.015791297 1e-6 296 315 0.0019691999 1e-6 297 315 0.00094669987 1e-6 298 315 0.00083309994 1e-6 299 315 0.0055287965 1e-6 301 315 0.0034460998 1e-6 305 315 3.7899998e-05 1e-6 307 315 3.7899998e-05 1e-6 308 315 3.7899998e-05 1e-6 312 315 0.0095807984 1e-6 313 315 0.00094669987 1e-6 314 315 3.7899998e-05 1e-6 315 315 0.017306 1e-6 318 315 0.00064379978 1e-6 319 315 0.006361898 1e-6 320 315 0.0093535967 1e-6 321 315 0.0028402 1e-6 322 315 0.0014389998 1e-6 324 315 0.00011359999 1e-6 325 315 0.0012117999 1e-6 326 315 0.004619997 1e-6 328 315 0.00011359999 1e-6 330 315 7.5699994e-05 1e-6 331 315 7.5699994e-05 1e-6 338 315 0.00060589984 1e-6 339 315 0.0018555999 1e-6 340 315 0.0063240975 1e-6 341 315 3.7899998e-05 1e-6 344 315 0.00045439997 1e-6 349 315 3.7899998e-05 1e-6 350 315 3.7899998e-05 1e-6 351 315 0.00079519977 1e-6 352 315 3.7899998e-05 1e-6 354 315 7.5699994e-05 1e-6 356 315 3.7899998e-05 1e-6 358 315 0.006361898 1e-6 359 315 0.0016661999 1e-6 366 315 3.7899998e-05 1e-6 370 315 0.0002272 1e-6 371 315 0.00015149999 1e-6 372 315 0.0033324 1e-6 373 315 0.00087099988 1e-6 375 315 3.7899998e-05 1e-6 376 315 3.7899998e-05 1e-6 377 315 7.5699994e-05 1e-6 380 315 0.00079519977 1e-6 384 315 7.5699994e-05 1e-6 385 315 0.0002272 1e-6 386 315 0.0023478998 1e-6 387 315 3.7899998e-05 1e-6 389 315 3.7899998e-05 1e-6 390 315 0.00015149999 1e-6 392 315 0.00053019985 1e-6 393 315 0.00075739995 1e-6 398 315 7.5699994e-05 1e-6 402 315 0.0049228966 1e-6 405 315 0.00011359999 1e-6 415 315 0.00041659991 1e-6 417 315 0.0005679999 1e-6 419 315 0.00018929999 1e-6 421 315 7.5699994e-05 1e-6 422 315 0.00011359999 1e-6 430 315 0.00015149999 1e-6 433 315 3.7899998e-05 1e-6 434 315 3.7899998e-05 1e-6 441 315 0.00011359999 1e-6 442 315 3.7899998e-05 1e-6 443 315 0.0059453994 1e-6 444 315 0.00094669987 1e-6 445 315 0.0065133981 1e-6 446 315 0.00068159983 1e-6 447 315 0.0055666976 1e-6 450 315 0.0028779998 1e-6 452 315 0.0069677979 1e-6 453 315 0.0024992998 1e-6 454 315 0.00053019985 1e-6 455 315 0.031052399 1e-6 456 315 0.00030289986 1e-6 457 315 0.0035597 1e-6 458 315 0.00049229991 1e-6 459 315 0.00037869997 1e-6 460 315 0.0018555999 1e-6 463 315 0.012458798 1e-6 464 315 0.0020448999 1e-6 465 315 0.00094669987 1e-6 467 315 0.0095807984 1e-6 468 315 0.0054151975 1e-6 469 315 0.0079523996 1e-6 470 315 0.0033702999 1e-6 471 315 0.0013253998 1e-6 473 315 7.5699994e-05 1e-6 477 315 7.5699994e-05 1e-6 478 315 0.0011739 1e-6 483 315 0.00064379978 1e-6 489 315 3.7899998e-05 1e-6 490 315 0.00026509981 1e-6 491 315 0.00064379978 1e-6 60 316 0.0038768998 1e-6 114 316 0.0002423 1e-6 160 316 0.00048459996 1e-6 168 316 0.0002423 1e-6 171 316 0.0055730976 1e-6 194 316 0.0002423 1e-6 198 316 0.0167192 1e-6 206 316 0.00048459996 1e-6 214 316 0.0062999986 1e-6 224 316 0.0012114998 1e-6 229 316 0.00048459996 1e-6 234 316 0.0048460998 1e-6 237 316 0.0002423 1e-6 240 316 0.010176897 1e-6 241 316 0.017930698 1e-6 272 316 0.00048459996 1e-6 277 316 0.046765197 1e-6 279 316 0.0002423 1e-6 282 316 0.0029076999 1e-6 283 316 0.0036346 1e-6 284 316 0.0046037994 1e-6 292 316 0.0065422989 1e-6 293 316 0.0048460998 1e-6 294 316 0.0012114998 1e-6 296 316 0.00048459996 1e-6 299 316 0.0002423 1e-6 312 316 0.018899899 1e-6 315 316 0.0196268 1e-6 316 316 0.0019385 1e-6 317 316 0.0002423 1e-6 319 316 0.0121153 1e-6 320 316 0.016961496 1e-6 326 316 0.033438299 1e-6 340 316 0.0048460998 1e-6 353 316 0.0072691999 1e-6 356 316 0.0002423 1e-6 358 316 0.0026653998 1e-6 417 316 0.00048459996 1e-6 441 316 0.0096922964 1e-6 443 316 0.0019385 1e-6 444 316 0.0099345967 1e-6 445 316 0.0043614991 1e-6 447 316 0.0067845993 1e-6 450 316 0.0036346 1e-6 452 316 0.0058153979 1e-6 453 316 0.0019385 1e-6 454 316 0.0031499998 1e-6 455 316 0.019142199 1e-6 456 316 0.00048459996 1e-6 457 316 0.0016961 1e-6 458 316 0.00048459996 1e-6 459 316 0.00048459996 1e-6 460 316 0.0019385 1e-6 463 316 0.0050883964 1e-6 464 316 0.00096919993 1e-6 465 316 0.00072689983 1e-6 467 316 0.0094499998 1e-6 468 316 0.1344803 1e-6 469 316 0.0031499998 1e-6 470 316 0.0033922999 1e-6 471 316 0.00096919993 1e-6 478 316 0.00096919993 1e-6 479 316 0.0048460998 1e-6 483 316 0.0012114998 1e-6 490 316 0.00048459996 1e-6 491 316 0.00096919993 1e-6 22 317 8.6699991e-05 1e-6 24 317 8.6699991e-05 1e-6 60 317 0.0027729999 1e-6 108 317 8.6699991e-05 1e-6 114 317 0.0001733 1e-6 126 317 8.6699991e-05 1e-6 142 317 0.0001733 1e-6 159 317 8.6699991e-05 1e-6 160 317 0.00086659985 1e-6 161 317 0.00034659985 1e-6 168 317 0.0036394999 1e-6 171 317 0.050606597 1e-6 172 317 0.00060659996 1e-6 189 317 8.6699991e-05 1e-6 190 317 8.6699991e-05 1e-6 192 317 8.6699991e-05 1e-6 194 317 0.0001733 1e-6 198 317 0.011525098 1e-6 200 317 8.6699991e-05 1e-6 203 317 8.6699991e-05 1e-6 204 317 8.6699991e-05 1e-6 206 317 0.0001733 1e-6 207 317 8.6699991e-05 1e-6 214 317 8.6699991e-05 1e-6 224 317 8.6699991e-05 1e-6 229 317 0.00060659996 1e-6 234 317 0.0038127999 1e-6 237 317 0.00025999988 1e-6 240 317 0.00043329992 1e-6 241 317 0.013431497 1e-6 270 317 0.0019063998 1e-6 271 317 8.6699991e-05 1e-6 272 317 0.00060659996 1e-6 277 317 0.095580578 1e-6 278 317 0.0001733 1e-6 279 317 0.00025999988 1e-6 282 317 0.017071098 1e-6 283 317 0.027902897 1e-6 284 317 0.0044193976 1e-6 285 317 0.00034659985 1e-6 286 317 8.6699991e-05 1e-6 288 317 8.6699991e-05 1e-6 289 317 0.00043329992 1e-6 290 317 8.6699991e-05 1e-6 292 317 0.0033794998 1e-6 293 317 0.0032928998 1e-6 294 317 0.0001733 1e-6 295 317 0.00043329992 1e-6 296 317 0.005632598 1e-6 297 317 8.6699991e-05 1e-6 298 317 0.00025999988 1e-6 299 317 0.0064990968 1e-6 307 317 0.00025999988 1e-6 308 317 8.6699991e-05 1e-6 312 317 0.0013865 1e-6 313 317 8.6699991e-05 1e-6 315 317 0.0048526973 1e-6 317 317 0.0045926981 1e-6 318 317 8.6699991e-05 1e-6 319 317 0.00025999988 1e-6 320 317 0.020277299 1e-6 324 317 0.0001733 1e-6 326 317 0.011785097 1e-6 328 317 0.00034659985 1e-6 330 317 8.6699991e-05 1e-6 338 317 0.0012997999 1e-6 339 317 0.00051989988 1e-6 340 317 0.0086654983 1e-6 341 317 0.0001733 1e-6 350 317 0.0001733 1e-6 351 317 0.00077989977 1e-6 353 317 0.00025999988 1e-6 354 317 0.00060659996 1e-6 355 317 8.6699991e-05 1e-6 356 317 0.00025999988 1e-6 357 317 8.6699991e-05 1e-6 358 317 0.011525098 1e-6 371 317 8.6699991e-05 1e-6 372 317 0.00025999988 1e-6 373 317 0.00069319992 1e-6 375 317 8.6699991e-05 1e-6 386 317 0.00025999988 1e-6 387 317 8.6699991e-05 1e-6 397 317 8.6699991e-05 1e-6 401 317 8.6699991e-05 1e-6 402 317 0.00095319981 1e-6 412 317 8.6699991e-05 1e-6 417 317 0.00051989988 1e-6 421 317 8.6699991e-05 1e-6 422 317 8.6699991e-05 1e-6 430 317 8.6699991e-05 1e-6 433 317 8.6699991e-05 1e-6 434 317 8.6699991e-05 1e-6 441 317 8.6699991e-05 1e-6 443 317 0.0034661999 1e-6 444 317 0.0041593984 1e-6 445 317 0.013864797 1e-6 446 317 0.00034659985 1e-6 447 317 0.005632598 1e-6 450 317 0.0036394999 1e-6 452 317 0.005979199 1e-6 453 317 0.0037262 1e-6 454 317 0.00043329992 1e-6 455 317 0.033882096 1e-6 456 317 0.00025999988 1e-6 457 317 0.0019930999 1e-6 458 317 0.00086659985 1e-6 459 317 0.00043329992 1e-6 460 317 0.0019930999 1e-6 463 317 0.0088387989 1e-6 464 317 0.0027729999 1e-6 465 317 0.0010398999 1e-6 467 317 0.017850999 1e-6 468 317 0.0076255985 1e-6 469 317 0.0069323964 1e-6 470 317 0.0040727966 1e-6 471 317 0.0016464 1e-6 473 317 8.6699991e-05 1e-6 477 317 8.6699991e-05 1e-6 478 317 0.0012131999 1e-6 479 317 0.0026862998 1e-6 483 317 0.0013865 1e-6 489 317 8.6699991e-05 1e-6 490 317 0.00043329992 1e-6 491 317 0.0026862998 1e-6 60 318 0.0023991999 1e-6 114 318 0.00047979993 1e-6 171 318 0.0062379986 1e-6 172 318 0.00047979993 1e-6 198 318 0.0052782968 1e-6 206 318 0.00095969997 1e-6 224 318 0.00047979993 1e-6 229 318 0.00047979993 1e-6 234 318 0.0033588998 1e-6 237 318 0.00095969997 1e-6 240 318 0.00047979993 1e-6 241 318 0.012475997 1e-6 270 318 0.022072896 1e-6 272 318 0.00047979993 1e-6 276 318 0.00047979993 1e-6 277 318 0.14635319 1e-6 282 318 0.0038387999 1e-6 283 318 0.0014394999 1e-6 284 318 0.0043185987 1e-6 285 318 0.0014394999 1e-6 292 318 0.00047979993 1e-6 293 318 0.00047979993 1e-6 294 318 0.0023991999 1e-6 295 318 0.0033588998 1e-6 296 318 0.0033588998 1e-6 297 318 0.00047979993 1e-6 298 318 0.00095969997 1e-6 307 318 0.00095969997 1e-6 312 318 0.0014394999 1e-6 315 318 0.0014394999 1e-6 317 318 0.00047979993 1e-6 318 318 0.0038387999 1e-6 320 318 0.047504798 1e-6 326 318 0.00047979993 1e-6 328 318 0.0052782968 1e-6 330 318 0.0019193999 1e-6 333 318 0.00047979993 1e-6 338 318 0.00047979993 1e-6 340 318 0.013435699 1e-6 341 318 0.00047979993 1e-6 351 318 0.0019193999 1e-6 354 318 0.0019193999 1e-6 358 318 0.0086371973 1e-6 371 318 0.00047979993 1e-6 372 318 0.0014394999 1e-6 373 318 0.0038387999 1e-6 386 318 0.0019193999 1e-6 398 318 0.00047979993 1e-6 417 318 0.00047979993 1e-6 443 318 0.0028790999 1e-6 444 318 0.00047979993 1e-6 445 318 0.0043185987 1e-6 447 318 0.018714 1e-6 450 318 0.0033588998 1e-6 452 318 0.006717898 1e-6 453 318 0.0019193999 1e-6 454 318 0.00047979993 1e-6 455 318 0.024951998 1e-6 457 318 0.0023991999 1e-6 458 318 0.00095969997 1e-6 459 318 0.00047979993 1e-6 460 318 0.0014394999 1e-6 463 318 0.0091170967 1e-6 464 318 0.00047979993 1e-6 465 318 0.00047979993 1e-6 467 318 0.011516299 1e-6 468 318 0.011516299 1e-6 469 318 0.0043185987 1e-6 470 318 0.0043185987 1e-6 471 318 0.0014394999 1e-6 478 318 0.00095969997 1e-6 483 318 0.0014394999 1e-6 490 318 0.00047979993 1e-6 491 318 0.0014394999 1e-6 9 319 3.1499992e-05 1e-6 18 319 9.4399991e-05 1e-6 22 319 0.00034609996 1e-6 60 319 0.0032406999 1e-6 82 319 3.1499992e-05 1e-6 83 319 3.1499992e-05 1e-6 84 319 3.1499992e-05 1e-6 108 319 3.1499992e-05 1e-6 113 319 6.2899999e-05 1e-6 114 319 9.4399991e-05 1e-6 126 319 6.2899999e-05 1e-6 139 319 0.00062929979 1e-6 150 319 0.00072369981 1e-6 151 319 3.1499992e-05 1e-6 160 319 0.00044049998 1e-6 169 319 0.00091239996 1e-6 171 319 0.0050655976 1e-6 172 319 0.00037759985 1e-6 189 319 9.4399991e-05 1e-6 190 319 9.4399991e-05 1e-6 192 319 6.2899999e-05 1e-6 194 319 0.0001259 1e-6 198 319 0.0090613998 1e-6 200 319 6.2899999e-05 1e-6 203 319 0.0001259 1e-6 204 319 6.2899999e-05 1e-6 206 319 0.00022019999 1e-6 207 319 6.2899999e-05 1e-6 214 319 0.0026429 1e-6 223 319 0.0025485 1e-6 224 319 0.0050026998 1e-6 229 319 0.00066069979 1e-6 233 319 0.0013528999 1e-6 234 319 0.0030834 1e-6 237 319 0.0010698 1e-6 240 319 0.0060723983 1e-6 241 319 0.024258297 1e-6 242 319 3.1499992e-05 1e-6 252 319 0.0020450999 1e-6 253 319 0.0016675999 1e-6 270 319 0.0014473 1e-6 272 319 3.1499992e-05 1e-6 277 319 0.10058838 1e-6 279 319 3.1499992e-05 1e-6 282 319 0.0094074979 1e-6 283 319 0.00037759985 1e-6 284 319 0.0040901974 1e-6 285 319 0.00056629977 1e-6 286 319 0.0023597998 1e-6 288 319 0.018122897 1e-6 289 319 0.00056629977 1e-6 290 319 9.4399991e-05 1e-6 292 319 0.013875298 1e-6 293 319 0.0098479986 1e-6 294 319 0.0026115 1e-6 295 319 0.0025171 1e-6 296 319 0.0024226999 1e-6 297 319 0.0033350999 1e-6 298 319 0.0023911998 1e-6 304 319 3.1499992e-05 1e-6 305 319 3.1499992e-05 1e-6 312 319 0.0182487 1e-6 313 319 6.2899999e-05 1e-6 315 319 0.0082748979 1e-6 317 319 3.1499992e-05 1e-6 319 319 0.028600197 1e-6 320 319 0.00031459983 1e-6 321 319 0.0079287998 1e-6 322 319 0.0040272996 1e-6 324 319 9.4399991e-05 1e-6 326 319 0.0072679967 1e-6 328 319 3.1499992e-05 1e-6 335 319 3.1499992e-05 1e-6 337 319 6.2899999e-05 1e-6 338 319 0.00050339988 1e-6 339 319 0.00062929979 1e-6 340 319 0.0056948997 1e-6 341 319 6.2899999e-05 1e-6 350 319 3.1499992e-05 1e-6 351 319 0.00088099996 1e-6 353 319 0.00015729999 1e-6 354 319 0.00028319983 1e-6 356 319 0.00015729999 1e-6 357 319 3.1499992e-05 1e-6 358 319 0.0042789988 1e-6 359 319 6.2899999e-05 1e-6 366 319 9.4399991e-05 1e-6 367 319 3.1499992e-05 1e-6 369 319 0.0001888 1e-6 370 319 9.4399991e-05 1e-6 372 319 0.008872699 1e-6 373 319 3.1499992e-05 1e-6 384 319 9.4399991e-05 1e-6 385 319 6.2899999e-05 1e-6 386 319 0.00022019999 1e-6 387 319 6.2899999e-05 1e-6 390 319 0.0017618998 1e-6 391 319 0.00022019999 1e-6 392 319 0.0012899998 1e-6 393 319 0.0027372998 1e-6 402 319 9.4399991e-05 1e-6 405 319 9.4399991e-05 1e-6 414 319 6.2899999e-05 1e-6 415 319 3.1499992e-05 1e-6 417 319 0.00047199987 1e-6 419 319 3.1499992e-05 1e-6 421 319 6.2899999e-05 1e-6 422 319 9.4399991e-05 1e-6 423 319 3.1499992e-05 1e-6 425 319 3.1499992e-05 1e-6 430 319 3.1499992e-05 1e-6 431 319 3.1499992e-05 1e-6 432 319 3.1499992e-05 1e-6 433 319 6.2899999e-05 1e-6 434 319 6.2899999e-05 1e-6 441 319 0.0011955998 1e-6 443 319 0.0042160973 1e-6 444 319 0.0016675999 1e-6 445 319 0.0092816986 1e-6 446 319 0.00040899985 1e-6 447 319 0.012176298 1e-6 448 319 3.1499992e-05 1e-6 450 319 0.0033979998 1e-6 452 319 0.0061038993 1e-6 453 319 0.0017933999 1e-6 454 319 0.00078659994 1e-6 455 319 0.029732898 1e-6 456 319 0.0005349 1e-6 457 319 0.0019192998 1e-6 458 319 0.0016989999 1e-6 459 319 0.00050339988 1e-6 460 319 0.0018877999 1e-6 463 319 0.009438999 1e-6 464 319 0.0018248998 1e-6 465 319 0.0010382999 1e-6 467 319 0.0128056 1e-6 468 319 0.0011640999 1e-6 469 319 0.0066387989 1e-6 470 319 0.0042160973 1e-6 471 319 0.0012584999 1e-6 473 319 9.4399991e-05 1e-6 477 319 6.2899999e-05 1e-6 478 319 0.0011326999 1e-6 483 319 0.0014159 1e-6 489 319 6.2899999e-05 1e-6 490 319 0.00034609996 1e-6 491 319 0.00069219992 1e-6 18 320 0.0001928 1e-6 22 320 9.6399992e-05 1e-6 60 320 0.015715398 1e-6 108 320 9.6399992e-05 1e-6 114 320 9.6399992e-05 1e-6 126 320 9.6399992e-05 1e-6 150 320 0.001157 1e-6 189 320 9.6399992e-05 1e-6 190 320 0.0001928 1e-6 192 320 9.6399992e-05 1e-6 194 320 0.0001928 1e-6 198 320 0.0019282999 1e-6 200 320 9.6399992e-05 1e-6 203 320 9.6399992e-05 1e-6 204 320 9.6399992e-05 1e-6 206 320 0.00028919987 1e-6 207 320 9.6399992e-05 1e-6 214 320 0.024006899 1e-6 218 320 9.6399992e-05 1e-6 223 320 0.094967186 1e-6 224 320 9.6399992e-05 1e-6 229 320 0.00038569979 1e-6 233 320 0.0037600999 1e-6 234 320 0.0062668994 1e-6 237 320 0.00038569979 1e-6 240 320 0.0010604998 1e-6 241 320 0.0034708998 1e-6 252 320 0.0031815998 1e-6 270 320 0.0071345977 1e-6 277 320 0.0086771995 1e-6 278 320 9.6399992e-05 1e-6 284 320 0.0026995998 1e-6 286 320 0.004049398 1e-6 287 320 0.0001928 1e-6 288 320 0.0074237995 1e-6 289 320 0.0016389999 1e-6 290 320 0.027767099 1e-6 291 320 0.0001928 1e-6 292 320 9.6399992e-05 1e-6 293 320 0.00048209983 1e-6 294 320 9.6399992e-05 1e-6 295 320 9.6399992e-05 1e-6 312 320 0.0012534 1e-6 315 320 0.0042421967 1e-6 320 320 0.0006748999 1e-6 326 320 0.0001928 1e-6 340 320 0.0001928 1e-6 349 320 0.0031815998 1e-6 351 320 9.6399992e-05 1e-6 356 320 0.0001928 1e-6 358 320 0.0030852 1e-6 384 320 0.00028919987 1e-6 387 320 9.6399992e-05 1e-6 392 320 0.0001928 1e-6 393 320 0.001157 1e-6 402 320 0.0001928 1e-6 417 320 0.00077129994 1e-6 421 320 9.6399992e-05 1e-6 422 320 9.6399992e-05 1e-6 430 320 9.6399992e-05 1e-6 433 320 9.6399992e-05 1e-6 434 320 9.6399992e-05 1e-6 443 320 0.0078094974 1e-6 444 320 0.00057849986 1e-6 445 320 0.013883498 1e-6 446 320 0.0006748999 1e-6 447 320 0.0041457973 1e-6 450 320 0.0052062981 1e-6 452 320 0.022271499 1e-6 453 320 0.0095448978 1e-6 454 320 0.0017353999 1e-6 455 320 0.017450798 1e-6 456 320 0.00077129994 1e-6 457 320 0.0054955967 1e-6 458 320 0.00086769997 1e-6 459 320 0.00057849986 1e-6 460 320 0.0024102998 1e-6 463 320 0.023814097 1e-6 464 320 0.00038569979 1e-6 465 320 0.0015425999 1e-6 467 320 0.014751296 1e-6 468 320 0.0019282999 1e-6 469 320 0.0046277978 1e-6 470 320 0.0051098987 1e-6 471 320 0.0026995998 1e-6 473 320 9.6399992e-05 1e-6 478 320 0.0018318999 1e-6 483 320 0.0010604998 1e-6 489 320 0.0001928 1e-6 490 320 0.00048209983 1e-6 491 320 0.00028919987 1e-6 19 321 0.0001372 1e-6 22 321 0.0001372 1e-6 24 321 0.00041159987 1e-6 25 321 0.0001372 1e-6 60 321 0.0026069998 1e-6 108 321 0.0001372 1e-6 114 321 0.00027439999 1e-6 126 321 0.0001372 1e-6 130 321 0.0001372 1e-6 160 321 0.0001372 1e-6 171 321 0.00027439999 1e-6 187 321 0.0015093 1e-6 190 321 0.0001372 1e-6 192 321 0.0001372 1e-6 194 321 0.00041159987 1e-6 198 321 0.0032930998 1e-6 203 321 0.0001372 1e-6 204 321 0.0001372 1e-6 205 321 0.0001372 1e-6 206 321 0.00027439999 1e-6 211 321 0.0001372 1e-6 212 321 0.0001372 1e-6 214 321 0.058452297 1e-6 221 321 0.0001372 1e-6 223 321 0.00027439999 1e-6 224 321 0.0024697999 1e-6 229 321 0.00068609999 1e-6 233 321 0.10812289 1e-6 234 321 0.0030186998 1e-6 237 321 0.00027439999 1e-6 240 321 0.023874898 1e-6 241 321 0.014132798 1e-6 250 321 0.0001372 1e-6 252 321 0.00027439999 1e-6 270 321 0.019072399 1e-6 272 321 0.00068609999 1e-6 273 321 0.0001372 1e-6 277 321 0.0057628974 1e-6 278 321 0.00041159987 1e-6 279 321 0.0001372 1e-6 282 321 0.00027439999 1e-6 284 321 0.0020581998 1e-6 286 321 0.00027439999 1e-6 288 321 0.0429473 1e-6 289 321 0.0042535998 1e-6 290 321 0.0017837998 1e-6 292 321 0.00068609999 1e-6 293 321 0.0021954 1e-6 295 321 0.00082329987 1e-6 298 321 0.00041159987 1e-6 308 321 0.00054879999 1e-6 312 321 0.00041159987 1e-6 315 321 0.0001372 1e-6 320 321 0.024286497 1e-6 321 321 0.026619099 1e-6 326 321 0.0001372 1e-6 340 321 0.0097419992 1e-6 353 321 0.00041159987 1e-6 354 321 0.00027439999 1e-6 356 321 0.0001372 1e-6 358 321 0.00041159987 1e-6 369 321 0.00027439999 1e-6 370 321 0.0001372 1e-6 371 321 0.00027439999 1e-6 372 321 0.00041159987 1e-6 373 321 0.0032930998 1e-6 375 321 0.00027439999 1e-6 376 321 0.0001372 1e-6 386 321 0.00041159987 1e-6 387 321 0.0001372 1e-6 393 321 0.00082329987 1e-6 402 321 0.0001372 1e-6 417 321 0.00054879999 1e-6 421 321 0.0001372 1e-6 422 321 0.00027439999 1e-6 424 321 0.00054879999 1e-6 426 321 0.0001372 1e-6 434 321 0.0001372 1e-6 442 321 0.0001372 1e-6 443 321 0.0086442977 1e-6 444 321 0.0043907985 1e-6 445 321 0.013172299 1e-6 446 321 0.001921 1e-6 447 321 0.0080954991 1e-6 450 321 0.0039790981 1e-6 452 321 0.011662997 1e-6 453 321 0.011662997 1e-6 454 321 0.0038418998 1e-6 455 321 0.037184399 1e-6 456 321 0.00027439999 1e-6 457 321 0.0031558999 1e-6 458 321 0.0010976999 1e-6 459 321 0.00041159987 1e-6 460 321 0.0017837998 1e-6 463 321 0.025932997 1e-6 464 321 0.0045279972 1e-6 465 321 0.0012349 1e-6 467 321 0.010702498 1e-6 468 321 0.0017837998 1e-6 469 321 0.0038418998 1e-6 470 321 0.0042535998 1e-6 471 321 0.001921 1e-6 473 321 0.0001372 1e-6 477 321 0.0032930998 1e-6 478 321 0.0012349 1e-6 483 321 0.00082329987 1e-6 490 321 0.00041159987 1e-6 491 321 0.0010976999 1e-6 18 322 0.00016269999 1e-6 19 322 0.0076869987 1e-6 21 322 8.1299993e-05 1e-6 22 322 0.0036604998 1e-6 24 322 0.00048809987 1e-6 25 322 0.00016269999 1e-6 60 322 0.0049212985 1e-6 77 322 8.1299993e-05 1e-6 108 322 8.1299993e-05 1e-6 114 322 8.1299993e-05 1e-6 126 322 8.1299993e-05 1e-6 131 322 4.069999e-05 1e-6 132 322 4.069999e-05 1e-6 139 322 4.069999e-05 1e-6 141 322 0.0037417999 1e-6 150 322 0.00052869995 1e-6 160 322 0.0055720992 1e-6 165 322 8.1299993e-05 1e-6 169 322 0.00044739991 1e-6 171 322 0.0018302 1e-6 172 322 0.0012607998 1e-6 183 322 8.1299993e-05 1e-6 187 322 4.069999e-05 1e-6 189 322 8.1299993e-05 1e-6 190 322 0.000122 1e-6 192 322 8.1299993e-05 1e-6 194 322 0.00016269999 1e-6 195 322 4.069999e-05 1e-6 197 322 4.069999e-05 1e-6 198 322 0.011184797 1e-6 200 322 4.069999e-05 1e-6 203 322 0.0010574998 1e-6 204 322 4.069999e-05 1e-6 206 322 0.00032539992 1e-6 207 322 4.069999e-05 1e-6 214 322 0.0093544982 1e-6 223 322 0.0065074973 1e-6 224 322 0.00069139991 1e-6 225 322 0.000122 1e-6 229 322 0.00052869995 1e-6 233 322 0.000244 1e-6 234 322 0.0039044998 1e-6 237 322 0.00081339991 1e-6 240 322 0.0037417999 1e-6 241 322 0.0117542 1e-6 242 322 4.069999e-05 1e-6 252 322 0.000122 1e-6 267 322 0.0014234998 1e-6 270 322 0.00020339999 1e-6 271 322 4.069999e-05 1e-6 272 322 0.00056939991 1e-6 273 322 0.00016269999 1e-6 276 322 4.069999e-05 1e-6 277 322 0.22190589 1e-6 278 322 0.0026842998 1e-6 279 322 0.0021555999 1e-6 280 322 8.1299993e-05 1e-6 282 322 0.014926597 1e-6 283 322 8.1299993e-05 1e-6 284 322 0.0028063999 1e-6 285 322 0.0012202 1e-6 286 322 0.0059380978 1e-6 287 322 0.00044739991 1e-6 288 322 0.0097612999 1e-6 289 322 0.00077279983 1e-6 290 322 0.0019928999 1e-6 291 322 0.00020339999 1e-6 292 322 0.010737397 1e-6 293 322 0.0057753995 1e-6 294 322 8.1299993e-05 1e-6 295 322 0.010493398 1e-6 301 322 4.069999e-05 1e-6 302 322 4.069999e-05 1e-6 306 322 4.069999e-05 1e-6 307 322 4.069999e-05 1e-6 308 322 4.069999e-05 1e-6 310 322 8.1299993e-05 1e-6 311 322 4.069999e-05 1e-6 312 322 0.0061820969 1e-6 315 322 0.0015454998 1e-6 318 322 0.00044739991 1e-6 319 322 0.0012202 1e-6 320 322 0.004189197 1e-6 321 322 0.005734697 1e-6 322 322 0.0060193986 1e-6 323 322 4.069999e-05 1e-6 324 322 0.00016269999 1e-6 326 322 0.0017082 1e-6 328 322 0.000122 1e-6 329 322 4.069999e-05 1e-6 330 322 4.069999e-05 1e-6 335 322 4.069999e-05 1e-6 336 322 4.069999e-05 1e-6 337 322 0.000122 1e-6 339 322 0.00032539992 1e-6 340 322 0.012892999 1e-6 342 322 4.069999e-05 1e-6 343 322 0.000122 1e-6 345 322 4.069999e-05 1e-6 347 322 4.069999e-05 1e-6 349 322 4.069999e-05 1e-6 350 322 0.0013014998 1e-6 351 322 0.0029689998 1e-6 352 322 0.000244 1e-6 353 322 4.069999e-05 1e-6 354 322 0.0014234998 1e-6 355 322 0.00028469996 1e-6 356 322 0.00016269999 1e-6 358 322 0.0030503999 1e-6 359 322 0.00020339999 1e-6 361 322 4.069999e-05 1e-6 370 322 4.069999e-05 1e-6 371 322 4.069999e-05 1e-6 372 322 0.000122 1e-6 373 322 0.00044739991 1e-6 374 322 0.00093549979 1e-6 375 322 0.00032539992 1e-6 384 322 0.00040669995 1e-6 385 322 4.069999e-05 1e-6 387 322 8.1299993e-05 1e-6 402 322 0.00020339999 1e-6 408 322 0.000122 1e-6 413 322 8.1299993e-05 1e-6 414 322 8.1299993e-05 1e-6 415 322 4.069999e-05 1e-6 417 322 0.00048809987 1e-6 421 322 8.1299993e-05 1e-6 422 322 8.1299993e-05 1e-6 430 322 4.069999e-05 1e-6 433 322 4.069999e-05 1e-6 434 322 8.1299993e-05 1e-6 438 322 4.069999e-05 1e-6 441 322 0.0010167998 1e-6 443 322 0.011062797 1e-6 444 322 0.0021555999 1e-6 445 322 0.0079716966 1e-6 446 322 0.0017488999 1e-6 447 322 0.0033350999 1e-6 448 322 4.069999e-05 1e-6 450 322 0.0030910999 1e-6 452 322 0.0089884996 1e-6 453 322 0.0052466989 1e-6 454 322 0.0015048999 1e-6 455 322 0.030625898 1e-6 456 322 0.00052869995 1e-6 457 322 0.0036604998 1e-6 458 322 0.00065079983 1e-6 459 322 0.00040669995 1e-6 460 322 0.0020742998 1e-6 463 322 0.0090697967 1e-6 464 322 0.0013422 1e-6 465 322 0.00093549979 1e-6 467 322 0.012160897 1e-6 468 322 0.0036197999 1e-6 469 322 0.0035384998 1e-6 470 322 0.0036604998 1e-6 471 322 0.0014234998 1e-6 473 322 8.1299993e-05 1e-6 477 322 0.00089479983 1e-6 478 322 0.0010980999 1e-6 483 322 0.0010980999 1e-6 489 322 0.00028469996 1e-6 490 322 0.00036599999 1e-6 491 322 0.0032943999 1e-6 60 323 0.0021851999 1e-6 114 323 0.00027309987 1e-6 141 323 0.00054629985 1e-6 156 323 0.00054629985 1e-6 158 323 0.00027309987 1e-6 160 323 0.00081939995 1e-6 172 323 0.00027309987 1e-6 198 323 0.015842699 1e-6 206 323 0.00054629985 1e-6 214 323 0.0081944987 1e-6 223 323 0.00027309987 1e-6 224 323 0.00027309987 1e-6 229 323 0.00081939995 1e-6 233 323 0.0090138987 1e-6 234 323 0.0021851999 1e-6 237 323 0.00054629985 1e-6 240 323 0.020213097 1e-6 241 323 0.0027315 1e-6 252 323 0.00054629985 1e-6 270 323 0.00027309987 1e-6 271 323 0.00081939995 1e-6 272 323 0.00027309987 1e-6 277 323 0.23900568 1e-6 278 323 0.00027309987 1e-6 279 323 0.00027309987 1e-6 282 323 0.011745397 1e-6 283 323 0.0032777998 1e-6 284 323 0.0016388998 1e-6 285 323 0.016935296 1e-6 288 323 0.0013656998 1e-6 292 323 0.0024583 1e-6 293 323 0.0013656998 1e-6 294 323 0.00054629985 1e-6 295 323 0.0019119999 1e-6 296 323 0.0019119999 1e-6 312 323 0.023763999 1e-6 313 323 0.0040971972 1e-6 315 323 0.00081939995 1e-6 319 323 0.0010925999 1e-6 320 323 0.0098333992 1e-6 321 323 0.00081939995 1e-6 322 323 0.0010925999 1e-6 323 323 0.0046434999 1e-6 328 323 0.0024583 1e-6 329 323 0.00027309987 1e-6 340 323 0.012018599 1e-6 351 323 0.0013656998 1e-6 354 323 0.00054629985 1e-6 355 323 0.0081944987 1e-6 357 323 0.0013656998 1e-6 358 323 0.0030045998 1e-6 366 323 0.00027309987 1e-6 374 323 0.0065555982 1e-6 385 323 0.00027309987 1e-6 387 323 0.00027309987 1e-6 397 323 0.0013656998 1e-6 401 323 0.0013656998 1e-6 402 323 0.013657499 1e-6 417 323 0.00027309987 1e-6 441 323 0.00027309987 1e-6 443 323 0.0060092993 1e-6 444 323 0.0084675997 1e-6 445 323 0.0062823966 1e-6 446 323 0.00027309987 1e-6 447 323 0.0084675997 1e-6 450 323 0.0024583 1e-6 452 323 0.0060092993 1e-6 453 323 0.0076481998 1e-6 454 323 0.0079212971 1e-6 455 323 0.031412199 1e-6 457 323 0.0032777998 1e-6 458 323 0.00027309987 1e-6 459 323 0.00027309987 1e-6 460 323 0.0016388998 1e-6 463 323 0.0114723 1e-6 464 323 0.010925997 1e-6 465 323 0.00027309987 1e-6 467 323 0.0068286993 1e-6 468 323 0.0019119999 1e-6 469 323 0.0024583 1e-6 470 323 0.0027315 1e-6 471 323 0.0038240999 1e-6 478 323 0.0010925999 1e-6 483 323 0.0010925999 1e-6 490 323 0.00027309987 1e-6 491 323 0.0010925999 1e-6 9 324 2.739999e-05 1e-6 18 324 0.00079379999 1e-6 19 324 0.00027369987 1e-6 21 324 2.739999e-05 1e-6 22 324 0.00021899999 1e-6 24 324 0.0006295999 1e-6 60 324 0.0029563999 1e-6 82 324 2.739999e-05 1e-6 83 324 2.739999e-05 1e-6 84 324 2.739999e-05 1e-6 108 324 5.4699995e-05 1e-6 113 324 5.4699995e-05 1e-6 114 324 0.00013689999 1e-6 126 324 8.2099999e-05 1e-6 135 324 2.739999e-05 1e-6 142 324 0.00010949999 1e-6 150 324 0.00065699988 1e-6 151 324 0.0010401998 1e-6 160 324 0.0003558998 1e-6 171 324 0.0006295999 1e-6 172 324 2.739999e-05 1e-6 187 324 2.739999e-05 1e-6 189 324 8.2099999e-05 1e-6 190 324 0.00010949999 1e-6 191 324 2.739999e-05 1e-6 192 324 5.4699995e-05 1e-6 194 324 0.00010949999 1e-6 198 324 0.0055021979 1e-6 200 324 5.4699995e-05 1e-6 203 324 0.00010949999 1e-6 204 324 8.2099999e-05 1e-6 206 324 0.00010949999 1e-6 207 324 5.4699995e-05 1e-6 214 324 0.00038319989 1e-6 223 324 0.0015876999 1e-6 224 324 0.00021899999 1e-6 229 324 0.00071169995 1e-6 233 324 8.2099999e-05 1e-6 234 324 0.0034218 1e-6 237 324 0.00027369987 1e-6 240 324 0.0103474 1e-6 241 324 0.0028742999 1e-6 242 324 0.0032574998 1e-6 252 324 0.00013689999 1e-6 254 324 5.4699995e-05 1e-6 262 324 8.2099999e-05 1e-6 266 324 2.739999e-05 1e-6 267 324 2.739999e-05 1e-6 270 324 0.0038596999 1e-6 272 324 0.0037228998 1e-6 277 324 0.077824295 1e-6 278 324 0.00021899999 1e-6 279 324 2.739999e-05 1e-6 282 324 0.0447018 1e-6 283 324 0.013933398 1e-6 284 324 0.0017245999 1e-6 285 324 8.2099999e-05 1e-6 286 324 0.016725499 1e-6 288 324 0.0016971999 1e-6 289 324 0.00060219993 1e-6 290 324 0.010292597 1e-6 292 324 0.023596399 1e-6 293 324 0.0034490998 1e-6 294 324 0.00049269991 1e-6 295 324 0.0029837999 1e-6 296 324 0.0044345967 1e-6 297 324 0.0130574 1e-6 298 324 0.0101831 1e-6 299 324 0.0021352 1e-6 303 324 8.2099999e-05 1e-6 304 324 0.00010949999 1e-6 305 324 8.2099999e-05 1e-6 307 324 0.00060219993 1e-6 308 324 8.2099999e-05 1e-6 312 324 0.013960697 1e-6 313 324 2.739999e-05 1e-6 315 324 0.0060222968 1e-6 317 324 0.00065699988 1e-6 318 324 0.00010949999 1e-6 319 324 0.001314 1e-6 320 324 0.0030385 1e-6 321 324 0.0019983 1e-6 322 324 0.0028468999 1e-6 324 324 0.0213244 1e-6 326 324 0.0017519 1e-6 327 324 0.00013689999 1e-6 328 324 0.00073909992 1e-6 329 324 5.4699995e-05 1e-6 330 324 0.00068439986 1e-6 333 324 0.00049269991 1e-6 335 324 2.739999e-05 1e-6 338 324 0.0012591998 1e-6 339 324 2.739999e-05 1e-6 340 324 0.0058032982 1e-6 341 324 0.00027369987 1e-6 349 324 8.2099999e-05 1e-6 350 324 0.0010401998 1e-6 351 324 0.0018340999 1e-6 352 324 0.00010949999 1e-6 353 324 0.0023542 1e-6 354 324 0.00087599992 1e-6 356 324 0.0003558998 1e-6 358 324 0.018559597 1e-6 359 324 2.739999e-05 1e-6 366 324 0.00032849982 1e-6 368 324 0.00090329978 1e-6 369 324 0.00021899999 1e-6 370 324 0.0001642 1e-6 371 324 0.0003558998 1e-6 372 324 0.0076099969 1e-6 373 324 0.00090329978 1e-6 375 324 2.739999e-05 1e-6 384 324 8.2099999e-05 1e-6 386 324 0.00027369987 1e-6 387 324 5.4699995e-05 1e-6 390 324 2.739999e-05 1e-6 392 324 8.2099999e-05 1e-6 393 324 0.0012865998 1e-6 394 324 2.739999e-05 1e-6 397 324 2.739999e-05 1e-6 398 324 2.739999e-05 1e-6 402 324 0.00024639978 1e-6 404 324 2.739999e-05 1e-6 405 324 2.739999e-05 1e-6 413 324 5.4699995e-05 1e-6 414 324 0.0006295999 1e-6 415 324 0.00013689999 1e-6 417 324 0.00043799984 1e-6 419 324 0.00013689999 1e-6 421 324 5.4699995e-05 1e-6 422 324 0.00010949999 1e-6 423 324 2.739999e-05 1e-6 425 324 2.739999e-05 1e-6 430 324 5.4699995e-05 1e-6 431 324 2.739999e-05 1e-6 432 324 2.739999e-05 1e-6 433 324 5.4699995e-05 1e-6 434 324 5.4699995e-05 1e-6 443 324 0.0039144978 1e-6 444 324 0.0027647999 1e-6 445 324 0.0051736981 1e-6 446 324 0.00038319989 1e-6 447 324 0.0081574991 1e-6 448 324 2.739999e-05 1e-6 450 324 0.0035038998 1e-6 452 324 0.0064602979 1e-6 453 324 0.0027099999 1e-6 454 324 0.0016697999 1e-6 455 324 0.031534899 1e-6 456 324 0.00052009989 1e-6 457 324 0.0069803968 1e-6 458 324 0.0017245999 1e-6 459 324 0.0028468999 1e-6 460 324 0.0017792999 1e-6 463 324 0.0082942992 1e-6 464 324 0.0024362998 1e-6 465 324 0.0010401998 1e-6 467 324 0.010210499 1e-6 468 324 0.0015876999 1e-6 469 324 0.014097597 1e-6 470 324 0.0063780993 1e-6 471 324 0.0044345967 1e-6 473 324 0.00010949999 1e-6 477 324 5.4699995e-05 1e-6 478 324 0.0011771 1e-6 483 324 0.0014507999 1e-6 489 324 0.00010949999 1e-6 490 324 0.00043799984 1e-6 491 324 0.0068160966 1e-6 24 325 0.0001928 1e-6 60 325 0.0028923999 1e-6 77 325 0.00057849986 1e-6 104 325 0.00077129994 1e-6 114 325 0.0001928 1e-6 130 325 0.001157 1e-6 139 325 0.0001928 1e-6 142 325 0.00038569979 1e-6 143 325 0.0001928 1e-6 150 325 0.00038569979 1e-6 160 325 0.001157 1e-6 169 325 0.00057849986 1e-6 171 325 0.00038569979 1e-6 172 325 0.0015425999 1e-6 187 325 0.033744697 1e-6 188 325 0.0025066999 1e-6 189 325 0.00038569979 1e-6 192 325 0.001157 1e-6 194 325 0.0001928 1e-6 197 325 0.0001928 1e-6 198 325 0.052834596 1e-6 204 325 0.0017353999 1e-6 205 325 0.00057849986 1e-6 206 325 0.00038569979 1e-6 208 325 0.001157 1e-6 209 325 0.0001928 1e-6 211 325 0.00077129994 1e-6 212 325 0.00057849986 1e-6 213 325 0.0001928 1e-6 214 325 0.004820697 1e-6 219 325 0.0015425999 1e-6 221 325 0.0026995998 1e-6 223 325 0.00077129994 1e-6 224 325 0.0088699982 1e-6 229 325 0.00057849986 1e-6 233 325 0.0019282999 1e-6 234 325 0.0026995998 1e-6 240 325 0.00057849986 1e-6 241 325 0.06440419 1e-6 242 325 0.00077129994 1e-6 252 325 0.0001928 1e-6 271 325 0.0030852 1e-6 272 325 0.00077129994 1e-6 277 325 0.0053991973 1e-6 278 325 0.00077129994 1e-6 279 325 0.0001928 1e-6 282 325 0.00057849986 1e-6 284 325 0.0013497998 1e-6 285 325 0.00057849986 1e-6 286 325 0.00057849986 1e-6 287 325 0.0025066999 1e-6 288 325 0.00077129994 1e-6 289 325 0.13825679 1e-6 290 325 0.0059775971 1e-6 291 325 0.00077129994 1e-6 292 325 0.0019282999 1e-6 293 325 0.1396066 1e-6 295 325 0.00077129994 1e-6 312 325 0.00077129994 1e-6 314 325 0.001157 1e-6 315 325 0.00057849986 1e-6 317 325 0.00038569979 1e-6 319 325 0.0001928 1e-6 321 325 0.00096409977 1e-6 322 325 0.00038569979 1e-6 325 325 0.012148097 1e-6 326 325 0.0019282999 1e-6 337 325 0.00057849986 1e-6 340 325 0.0034708998 1e-6 347 325 0.00038569979 1e-6 348 325 0.0001928 1e-6 349 325 0.0001928 1e-6 351 325 0.00057849986 1e-6 354 325 0.0015425999 1e-6 358 325 0.0013497998 1e-6 373 325 0.00038569979 1e-6 386 325 0.0001928 1e-6 417 325 0.0001928 1e-6 422 325 0.00077129994 1e-6 438 325 0.0001928 1e-6 443 325 0.0080986992 1e-6 444 325 0.0050134994 1e-6 445 325 0.010026999 1e-6 446 325 0.0001928 1e-6 447 325 0.0061704963 1e-6 450 325 0.0023138998 1e-6 452 325 0.010026999 1e-6 453 325 0.0055919997 1e-6 454 325 0.0013497998 1e-6 455 325 0.029116899 1e-6 457 325 0.0028923999 1e-6 458 325 0.00057849986 1e-6 459 325 0.00057849986 1e-6 460 325 0.0019282999 1e-6 463 325 0.014269199 1e-6 464 325 0.00096409977 1e-6 465 325 0.00077129994 1e-6 467 325 0.0084843971 1e-6 468 325 0.004049398 1e-6 469 325 0.0034708998 1e-6 470 325 0.0028923999 1e-6 471 325 0.001157 1e-6 477 325 0.00038569979 1e-6 478 325 0.00057849986 1e-6 479 325 0.0001928 1e-6 483 325 0.00077129994 1e-6 490 325 0.0001928 1e-6 491 325 0.010219797 1e-6 9 326 4.5399996e-05 1e-6 18 326 0.00013619999 1e-6 19 326 0.0032229 1e-6 21 326 4.5399996e-05 1e-6 22 326 0.0015886999 1e-6 24 326 0.0010893999 1e-6 25 326 4.5399996e-05 1e-6 60 326 0.0026781999 1e-6 77 326 0.00013619999 1e-6 82 326 9.0799993e-05 1e-6 84 326 4.5399996e-05 1e-6 108 326 4.5399996e-05 1e-6 114 326 9.0799993e-05 1e-6 126 326 4.5399996e-05 1e-6 130 326 0.00018159999 1e-6 131 326 0.00027239998 1e-6 132 326 4.5399996e-05 1e-6 135 326 4.5399996e-05 1e-6 139 326 0.00013619999 1e-6 141 326 4.5399996e-05 1e-6 142 326 9.0799993e-05 1e-6 150 326 0.00059009995 1e-6 156 326 4.5399996e-05 1e-6 159 326 0.00013619999 1e-6 160 326 0.0032682999 1e-6 161 326 4.5399996e-05 1e-6 165 326 0.00027239998 1e-6 169 326 0.00072629983 1e-6 170 326 0.00013619999 1e-6 171 326 0.0030866999 1e-6 172 326 0.000227 1e-6 175 326 4.5399996e-05 1e-6 183 326 4.5399996e-05 1e-6 188 326 0.00013619999 1e-6 189 326 4.5399996e-05 1e-6 190 326 9.0799993e-05 1e-6 191 326 4.5399996e-05 1e-6 194 326 0.000227 1e-6 197 326 4.5399996e-05 1e-6 198 326 0.0052201971 1e-6 200 326 4.5399996e-05 1e-6 203 326 9.0799993e-05 1e-6 204 326 0.00027239998 1e-6 206 326 9.0799993e-05 1e-6 207 326 4.5399996e-05 1e-6 214 326 0.0040398985 1e-6 223 326 0.0012255998 1e-6 224 326 0.0022241999 1e-6 225 326 4.5399996e-05 1e-6 227 326 4.5399996e-05 1e-6 229 326 0.00063549983 1e-6 233 326 0.0068542995 1e-6 234 326 0.0032682999 1e-6 237 326 0.00027239998 1e-6 240 326 0.0048115999 1e-6 241 326 0.0192011 1e-6 242 326 9.0799993e-05 1e-6 243 326 4.5399996e-05 1e-6 252 326 0.0023603998 1e-6 267 326 0.00018159999 1e-6 270 326 0.0016794999 1e-6 271 326 9.0799993e-05 1e-6 272 326 0.0016341 1e-6 273 326 4.5399996e-05 1e-6 274 326 4.5399996e-05 1e-6 276 326 4.5399996e-05 1e-6 277 326 0.13091236 1e-6 278 326 0.0012709999 1e-6 280 326 4.5399996e-05 1e-6 282 326 0.0088969991 1e-6 283 326 0.0022695998 1e-6 284 326 0.0015886999 1e-6 285 326 0.0067180991 1e-6 286 326 0.0024057999 1e-6 287 326 0.00063549983 1e-6 288 326 0.0018610999 1e-6 289 326 0.013708599 1e-6 290 326 0.0093054995 1e-6 291 326 0.00013619999 1e-6 292 326 0.0054470971 1e-6 293 326 0.028324999 1e-6 294 326 0.005810298 1e-6 295 326 0.0062187985 1e-6 296 326 0.0015886999 1e-6 297 326 0.0012709999 1e-6 298 326 0.000227 1e-6 299 326 0.0020881 1e-6 300 326 0.00086249993 1e-6 301 326 0.0014525999 1e-6 304 326 9.0799993e-05 1e-6 306 326 0.00063549983 1e-6 307 326 0.00013619999 1e-6 308 326 0.0011347998 1e-6 310 326 4.5399996e-05 1e-6 312 326 0.0071719997 1e-6 313 326 0.00027239998 1e-6 315 326 0.0145256 1e-6 317 326 4.5399996e-05 1e-6 319 326 0.0060825981 1e-6 320 326 0.0048115999 1e-6 321 326 0.0049931966 1e-6 322 326 0.0057648979 1e-6 324 326 0.00068089995 1e-6 326 326 0.016386699 1e-6 327 326 4.5399996e-05 1e-6 328 326 0.010304097 1e-6 329 326 9.0799993e-05 1e-6 331 326 4.5399996e-05 1e-6 332 326 4.5399996e-05 1e-6 337 326 4.5399996e-05 1e-6 338 326 4.5399996e-05 1e-6 339 326 0.0019518998 1e-6 340 326 0.013027698 1e-6 341 326 4.5399996e-05 1e-6 342 326 4.5399996e-05 1e-6 343 326 4.5399996e-05 1e-6 344 326 4.5399996e-05 1e-6 345 326 4.5399996e-05 1e-6 349 326 0.00054469984 1e-6 350 326 0.00031769997 1e-6 351 326 0.0012709999 1e-6 352 326 0.00013619999 1e-6 353 326 0.00018159999 1e-6 354 326 0.00072629983 1e-6 355 326 4.5399996e-05 1e-6 356 326 0.000227 1e-6 357 326 9.0799993e-05 1e-6 358 326 0.0077620968 1e-6 359 326 0.00013619999 1e-6 364 326 4.5399996e-05 1e-6 366 326 0.00018159999 1e-6 369 326 0.000227 1e-6 370 326 0.000227 1e-6 371 326 0.00031769997 1e-6 372 326 0.00090789981 1e-6 373 326 0.0018610999 1e-6 374 326 4.5399996e-05 1e-6 375 326 0.000227 1e-6 376 326 0.00018159999 1e-6 380 326 4.5399996e-05 1e-6 384 326 0.000227 1e-6 385 326 4.5399996e-05 1e-6 386 326 0.00059009995 1e-6 387 326 4.5399996e-05 1e-6 389 326 0.00090789981 1e-6 390 326 0.000227 1e-6 391 326 0.00013619999 1e-6 392 326 0.00045389985 1e-6 393 326 0.0012709999 1e-6 397 326 4.5399996e-05 1e-6 401 326 9.0799993e-05 1e-6 402 326 0.0011801999 1e-6 404 326 9.0799993e-05 1e-6 405 326 0.00013619999 1e-6 408 326 9.0799993e-05 1e-6 413 326 4.5399996e-05 1e-6 414 326 9.0799993e-05 1e-6 415 326 0.00013619999 1e-6 417 326 0.00040849997 1e-6 421 326 4.5399996e-05 1e-6 422 326 9.0799993e-05 1e-6 424 326 4.5399996e-05 1e-6 428 326 4.5399996e-05 1e-6 430 326 0.00018159999 1e-6 433 326 4.5399996e-05 1e-6 434 326 4.5399996e-05 1e-6 437 326 9.0799993e-05 1e-6 441 326 9.0799993e-05 1e-6 442 326 0.00013619999 1e-6 443 326 0.0062187985 1e-6 444 326 0.00081709982 1e-6 445 326 0.0072173998 1e-6 446 326 0.00077169994 1e-6 447 326 0.0061733983 1e-6 450 326 0.0034043998 1e-6 452 326 0.0077620968 1e-6 453 326 0.0037221999 1e-6 454 326 0.00040849997 1e-6 455 326 0.028778899 1e-6 456 326 0.00036309985 1e-6 457 326 0.0055832975 1e-6 458 326 0.00040849997 1e-6 459 326 0.00049929996 1e-6 460 326 0.0017249 1e-6 463 326 0.013073098 1e-6 464 326 0.0018157 1e-6 465 326 0.0010893999 1e-6 467 326 0.010213297 1e-6 468 326 0.0025419998 1e-6 469 326 0.0044484995 1e-6 470 326 0.0044484995 1e-6 471 326 0.0017702999 1e-6 473 326 9.0799993e-05 1e-6 477 326 9.0799993e-05 1e-6 478 326 0.0010439998 1e-6 483 326 0.00068089995 1e-6 489 326 0.00013619999 1e-6 490 326 0.00031769997 1e-6 491 326 0.0032682999 1e-6 9 327 4.6199988e-05 1e-6 18 327 0.00013869999 1e-6 60 327 0.0018952999 1e-6 77 327 9.2499991e-05 1e-6 79 327 9.2499991e-05 1e-6 82 327 4.6199988e-05 1e-6 83 327 4.6199988e-05 1e-6 84 327 4.6199988e-05 1e-6 108 327 4.6199988e-05 1e-6 113 327 9.2499991e-05 1e-6 114 327 0.0001849 1e-6 126 327 4.6199988e-05 1e-6 130 327 4.6199988e-05 1e-6 150 327 0.00036979979 1e-6 172 327 4.6199988e-05 1e-6 181 327 4.6199988e-05 1e-6 187 327 4.6199988e-05 1e-6 189 327 4.6199988e-05 1e-6 190 327 9.2499991e-05 1e-6 192 327 4.6199988e-05 1e-6 194 327 4.6199988e-05 1e-6 198 327 0.0002311 1e-6 200 327 4.6199988e-05 1e-6 203 327 4.6199988e-05 1e-6 204 327 4.6199988e-05 1e-6 206 327 0.0002311 1e-6 207 327 4.6199988e-05 1e-6 214 327 0.00013869999 1e-6 218 327 4.6199988e-05 1e-6 220 327 4.6199988e-05 1e-6 224 327 0.0002311 1e-6 233 327 0.00013869999 1e-6 234 327 0.0035595 1e-6 237 327 4.6199988e-05 1e-6 240 327 0.0005084998 1e-6 241 327 0.0016641999 1e-6 242 327 4.6199988e-05 1e-6 252 327 9.2499991e-05 1e-6 270 327 0.00046229991 1e-6 272 327 0.0005084998 1e-6 276 327 4.6199988e-05 1e-6 277 327 0.049509998 1e-6 282 327 0.047475997 1e-6 283 327 0.055149797 1e-6 284 327 0.001618 1e-6 289 327 0.0001849 1e-6 290 327 4.6199988e-05 1e-6 292 327 0.0066567995 1e-6 293 327 0.0013867998 1e-6 294 327 0.0012943998 1e-6 295 327 0.0068878978 1e-6 296 327 0.0011094999 1e-6 297 327 0.0012019 1e-6 298 327 0.00087829982 1e-6 299 327 0.0083209984 1e-6 305 327 0.015671197 1e-6 307 327 0.016364597 1e-6 308 327 0.010817297 1e-6 312 327 0.0065642968 1e-6 315 327 0.0002311 1e-6 318 327 4.6199988e-05 1e-6 319 327 0.00013869999 1e-6 320 327 0.00069339992 1e-6 321 327 0.0014793 1e-6 322 327 0.00013869999 1e-6 324 327 0.0096616 1e-6 326 327 0.00013869999 1e-6 327 327 0.065920889 1e-6 328 327 0.0082285963 1e-6 331 327 4.6199988e-05 1e-6 338 327 0.0010631999 1e-6 339 327 0.0002311 1e-6 340 327 0.0075813979 1e-6 341 327 0.00013869999 1e-6 343 327 4.6199988e-05 1e-6 350 327 0.0020339999 1e-6 351 327 0.0034671 1e-6 352 327 4.6199988e-05 1e-6 354 327 0.0061020963 1e-6 355 327 0.00013869999 1e-6 356 327 0.00041609979 1e-6 357 327 0.0001849 1e-6 358 327 0.014423098 1e-6 370 327 0.0023575998 1e-6 371 327 0.00013869999 1e-6 372 327 0.0046689995 1e-6 373 327 0.0023113999 1e-6 374 327 4.6199988e-05 1e-6 375 327 4.6199988e-05 1e-6 376 327 4.6199988e-05 1e-6 387 327 4.6199988e-05 1e-6 390 327 0.00087829982 1e-6 392 327 0.00092459982 1e-6 393 327 0.00069339992 1e-6 396 327 4.6199988e-05 1e-6 397 327 0.00036979979 1e-6 398 327 0.0091068968 1e-6 403 327 4.6199988e-05 1e-6 404 327 0.0054548979 1e-6 405 327 0.0042529963 1e-6 408 327 0.0001849 1e-6 413 327 9.2499991e-05 1e-6 414 327 0.0002311 1e-6 417 327 0.0003235999 1e-6 421 327 4.6199988e-05 1e-6 422 327 4.6199988e-05 1e-6 423 327 4.6199988e-05 1e-6 430 327 4.6199988e-05 1e-6 431 327 4.6199988e-05 1e-6 433 327 4.6199988e-05 1e-6 434 327 9.2499991e-05 1e-6 443 327 0.0024962998 1e-6 444 327 0.00060099992 1e-6 445 327 0.0042991973 1e-6 446 327 0.0002311 1e-6 447 327 0.0051774979 1e-6 450 327 0.0028660998 1e-6 452 327 0.0042529963 1e-6 453 327 0.0010169998 1e-6 454 327 0.00092459982 1e-6 455 327 0.018629797 1e-6 456 327 0.00046229991 1e-6 457 327 0.0028660998 1e-6 458 327 0.0002311 1e-6 459 327 0.00041609979 1e-6 460 327 0.0010631999 1e-6 463 327 0.0058247 1e-6 464 327 0.00064719981 1e-6 465 327 0.0011556998 1e-6 467 327 0.0092917979 1e-6 468 327 0.00092459982 1e-6 469 327 0.0049463995 1e-6 470 327 0.0063331984 1e-6 471 327 0.0018491 1e-6 473 327 0.00013869999 1e-6 477 327 9.2499991e-05 1e-6 478 327 0.0010169998 1e-6 483 327 0.0011556998 1e-6 489 327 0.0002311 1e-6 490 327 0.00055469992 1e-6 491 327 0.0026349998 1e-6 9 328 2.8699986e-05 1e-6 18 328 8.6099986e-05 1e-6 22 328 0.00028689997 1e-6 60 328 0.0022374999 1e-6 82 328 2.8699986e-05 1e-6 83 328 2.8699986e-05 1e-6 84 328 2.8699986e-05 1e-6 108 328 2.8699986e-05 1e-6 113 328 5.7399986e-05 1e-6 114 328 8.6099986e-05 1e-6 126 328 2.8699986e-05 1e-6 130 328 2.8699986e-05 1e-6 134 328 2.8699986e-05 1e-6 150 328 0.00045899977 1e-6 151 328 2.8699986e-05 1e-6 156 328 2.8699986e-05 1e-6 160 328 0.00022949999 1e-6 161 328 2.8699986e-05 1e-6 169 328 5.7399986e-05 1e-6 172 328 0.00011469999 1e-6 187 328 0.00045899977 1e-6 189 328 5.7399986e-05 1e-6 190 328 5.7399986e-05 1e-6 194 328 8.6099986e-05 1e-6 197 328 2.8699986e-05 1e-6 198 328 0.0039299987 1e-6 200 328 2.8699986e-05 1e-6 203 328 5.7399986e-05 1e-6 204 328 5.7399986e-05 1e-6 206 328 0.00020079999 1e-6 207 328 2.8699986e-05 1e-6 214 328 8.6099986e-05 1e-6 223 328 2.8699986e-05 1e-6 224 328 0.00011469999 1e-6 233 328 0.00077449996 1e-6 234 328 0.0027825998 1e-6 237 328 0.00091799977 1e-6 240 328 0.00077449996 1e-6 241 328 0.0038438998 1e-6 242 328 0.00034419983 1e-6 252 328 0.00014339999 1e-6 270 328 0.0044176988 1e-6 271 328 0.0004015998 1e-6 272 328 0.0059666969 1e-6 276 328 2.8699986e-05 1e-6 277 328 0.026190497 1e-6 282 328 0.069219649 1e-6 283 328 0.018932898 1e-6 284 328 0.0016637999 1e-6 285 328 2.8699986e-05 1e-6 286 328 2.8699986e-05 1e-6 289 328 0.0066551976 1e-6 290 328 2.8699986e-05 1e-6 292 328 0.0038438998 1e-6 293 328 0.00077449996 1e-6 294 328 0.013568599 1e-6 295 328 0.0018071998 1e-6 296 328 0.024555396 1e-6 297 328 0.0012908999 1e-6 298 328 0.00037289993 1e-6 299 328 0.0050200969 1e-6 307 328 0.0049913973 1e-6 312 328 0.0088926964 1e-6 313 328 0.00048769987 1e-6 315 328 0.020309798 1e-6 317 328 0.0025531 1e-6 319 328 0.00017209999 1e-6 320 328 0.0029546998 1e-6 321 328 5.7399986e-05 1e-6 322 328 0.0041307993 1e-6 323 328 0.00014339999 1e-6 324 328 0.001922 1e-6 326 328 0.00011469999 1e-6 327 328 0.0021227999 1e-6 328 328 0.1164372 1e-6 329 328 0.00028689997 1e-6 330 328 0.001004 1e-6 331 328 0.0034136998 1e-6 332 328 5.7399986e-05 1e-6 338 328 0.001463 1e-6 339 328 2.8699986e-05 1e-6 340 328 0.0094950981 1e-6 341 328 0.00028689997 1e-6 344 328 2.8699986e-05 1e-6 350 328 0.0059379973 1e-6 351 328 0.0090074986 1e-6 352 328 8.6099986e-05 1e-6 354 328 0.010728598 1e-6 356 328 0.00091799977 1e-6 357 328 0.022289198 1e-6 358 328 0.021658096 1e-6 366 328 2.8699986e-05 1e-6 370 328 0.001004 1e-6 371 328 0.00045899977 1e-6 372 328 0.0059093982 1e-6 373 328 0.0011187999 1e-6 375 328 2.8699986e-05 1e-6 376 328 2.8699986e-05 1e-6 384 328 2.8699986e-05 1e-6 387 328 5.7399986e-05 1e-6 390 328 5.7399986e-05 1e-6 392 328 2.8699986e-05 1e-6 393 328 0.00025819987 1e-6 397 328 0.011876099 1e-6 399 328 8.6099986e-05 1e-6 401 328 0.00014339999 1e-6 402 328 0.0093229972 1e-6 404 328 0.0019506998 1e-6 405 328 0.0004302999 1e-6 408 328 0.0011473999 1e-6 412 328 5.7399986e-05 1e-6 413 328 2.8699986e-05 1e-6 414 328 0.00011469999 1e-6 417 328 0.00031549996 1e-6 421 328 2.8699986e-05 1e-6 422 328 8.6099986e-05 1e-6 423 328 2.8699986e-05 1e-6 430 328 2.8699986e-05 1e-6 431 328 2.8699986e-05 1e-6 433 328 2.8699986e-05 1e-6 434 328 2.8699986e-05 1e-6 441 328 2.8699986e-05 1e-6 443 328 0.0022948999 1e-6 444 328 0.00094659999 1e-6 445 328 0.0071428977 1e-6 446 328 0.00020079999 1e-6 447 328 0.0037292 1e-6 450 328 0.0027538999 1e-6 452 328 0.0044749975 1e-6 453 328 0.0014916998 1e-6 454 328 0.0010326998 1e-6 455 328 0.031812999 1e-6 456 328 0.0004302999 1e-6 457 328 0.0028972998 1e-6 458 328 0.0013482999 1e-6 459 328 0.0004302999 1e-6 460 328 0.001004 1e-6 463 328 0.0026677998 1e-6 464 328 0.0011473999 1e-6 465 328 0.0008605998 1e-6 467 328 0.0091795996 1e-6 468 328 0.0046184994 1e-6 469 328 0.0033849999 1e-6 470 328 0.0036144999 1e-6 471 328 0.0053642988 1e-6 473 328 5.7399986e-05 1e-6 477 328 8.6099986e-05 1e-6 478 328 0.0008892999 1e-6 483 328 0.0008605998 1e-6 489 328 2.8699986e-05 1e-6 490 328 0.00034419983 1e-6 491 328 0.0038438998 1e-6 6 329 2.3299988e-05 1e-6 9 329 2.3299988e-05 1e-6 18 329 0.00016329999 1e-6 22 329 0.0002799998 1e-6 24 329 2.3299988e-05 1e-6 60 329 0.0022401998 1e-6 78 329 4.6699992e-05 1e-6 79 329 2.3299988e-05 1e-6 82 329 2.3299988e-05 1e-6 83 329 2.3299988e-05 1e-6 84 329 2.3299988e-05 1e-6 98 329 0.0014700999 1e-6 102 329 4.6699992e-05 1e-6 108 329 2.3299988e-05 1e-6 113 329 4.6699992e-05 1e-6 114 329 9.3299997e-05 1e-6 118 329 2.3299988e-05 1e-6 120 329 2.3299988e-05 1e-6 126 329 4.6699992e-05 1e-6 127 329 2.3299988e-05 1e-6 139 329 2.3299988e-05 1e-6 142 329 2.3299988e-05 1e-6 150 329 0.00046669994 1e-6 151 329 2.3299988e-05 1e-6 156 329 4.6699992e-05 1e-6 160 329 0.0020301 1e-6 161 329 9.3299997e-05 1e-6 163 329 2.3299988e-05 1e-6 165 329 4.6699992e-05 1e-6 169 329 0.00037339982 1e-6 171 329 2.3299988e-05 1e-6 172 329 0.00079339999 1e-6 173 329 2.3299988e-05 1e-6 176 329 2.3299988e-05 1e-6 189 329 0.00011669999 1e-6 190 329 6.9999995e-05 1e-6 192 329 2.3299988e-05 1e-6 194 329 9.3299997e-05 1e-6 198 329 0.0012133999 1e-6 200 329 4.6699992e-05 1e-6 201 329 4.6699992e-05 1e-6 203 329 9.3299997e-05 1e-6 204 329 6.9999995e-05 1e-6 206 329 0.0002799998 1e-6 207 329 4.6699992e-05 1e-6 214 329 0.00030339998 1e-6 224 329 2.3299988e-05 1e-6 233 329 0.0024734999 1e-6 234 329 0.0027534999 1e-6 237 329 0.017781299 1e-6 240 329 0.0072104968 1e-6 241 329 0.0020067999 1e-6 242 329 0.0021702 1e-6 248 329 2.3299988e-05 1e-6 250 329 2.3299988e-05 1e-6 252 329 0.00011669999 1e-6 270 329 2.3299988e-05 1e-6 271 329 0.0020067999 1e-6 272 329 0.00084009999 1e-6 277 329 0.087039649 1e-6 278 329 4.6699992e-05 1e-6 279 329 2.3299988e-05 1e-6 282 329 0.041209698 1e-6 283 329 0.0107341 1e-6 284 329 0.0018900998 1e-6 285 329 0.00067669991 1e-6 286 329 2.3299988e-05 1e-6 289 329 0.00016329999 1e-6 292 329 0.0022868 1e-6 293 329 0.0013533998 1e-6 294 329 6.9999995e-05 1e-6 295 329 2.3299988e-05 1e-6 296 329 0.0015633998 1e-6 297 329 6.9999995e-05 1e-6 298 329 0.00062999991 1e-6 302 329 2.3299988e-05 1e-6 304 329 2.3299988e-05 1e-6 305 329 2.3299988e-05 1e-6 306 329 9.3299997e-05 1e-6 307 329 0.00023339999 1e-6 308 329 4.6699992e-05 1e-6 312 329 0.0105941 1e-6 313 329 0.00025669998 1e-6 315 329 0.011037499 1e-6 317 329 4.6699992e-05 1e-6 318 329 0.00039669988 1e-6 319 329 9.3299997e-05 1e-6 320 329 4.6699992e-05 1e-6 321 329 4.6699992e-05 1e-6 322 329 0.0075138994 1e-6 323 329 0.0023335 1e-6 324 329 0.0001867 1e-6 326 329 6.9999995e-05 1e-6 328 329 0.037499398 1e-6 329 329 0.034022499 1e-6 330 329 0.0036169 1e-6 331 329 0.0013067999 1e-6 335 329 2.3299988e-05 1e-6 337 329 4.6699992e-05 1e-6 338 329 0.0025668999 1e-6 339 329 0.00048999977 1e-6 340 329 0.0052736998 1e-6 341 329 0.00011669999 1e-6 343 329 4.6699992e-05 1e-6 344 329 2.3299988e-05 1e-6 349 329 4.6699992e-05 1e-6 350 329 0.014117699 1e-6 351 329 0.014047697 1e-6 353 329 4.6699992e-05 1e-6 354 329 0.026205298 1e-6 356 329 0.0018667998 1e-6 357 329 0.0064637996 1e-6 358 329 0.0089372993 1e-6 366 329 0.00011669999 1e-6 371 329 6.9999995e-05 1e-6 372 329 0.0045269988 1e-6 373 329 0.00016329999 1e-6 375 329 2.3299988e-05 1e-6 377 329 2.3299988e-05 1e-6 378 329 4.6699992e-05 1e-6 383 329 2.3299988e-05 1e-6 384 329 4.6699992e-05 1e-6 386 329 0.00025669998 1e-6 387 329 6.9999995e-05 1e-6 395 329 0.00023339999 1e-6 397 329 0.0060203969 1e-6 399 329 0.0028702 1e-6 401 329 0.00011669999 1e-6 402 329 0.020814899 1e-6 412 329 2.3299988e-05 1e-6 417 329 0.00034999987 1e-6 419 329 2.3299988e-05 1e-6 421 329 4.6699992e-05 1e-6 422 329 9.3299997e-05 1e-6 423 329 2.3299988e-05 1e-6 425 329 2.3299988e-05 1e-6 430 329 2.3299988e-05 1e-6 431 329 2.3299988e-05 1e-6 432 329 2.3299988e-05 1e-6 433 329 4.6699992e-05 1e-6 434 329 4.6699992e-05 1e-6 439 329 2.3299988e-05 1e-6 441 329 0.00025669998 1e-6 442 329 0.00039669988 1e-6 443 329 0.0041069984 1e-6 444 329 0.00023339999 1e-6 445 329 0.0065104999 1e-6 446 329 0.00037339982 1e-6 447 329 0.0030568999 1e-6 450 329 0.0035003 1e-6 452 329 0.0037802998 1e-6 453 329 0.0026135 1e-6 454 329 0.00051339995 1e-6 455 329 0.039786298 1e-6 456 329 0.00044339988 1e-6 457 329 0.0032435998 1e-6 458 329 0.00039669988 1e-6 459 329 0.0012834 1e-6 460 329 0.0010733998 1e-6 463 329 0.0024734999 1e-6 464 329 0.0001867 1e-6 465 329 0.0018435 1e-6 467 329 0.0097539984 1e-6 468 329 0.011364199 1e-6 469 329 0.0039202981 1e-6 470 329 0.0043869987 1e-6 471 329 0.0012600999 1e-6 473 329 9.3299997e-05 1e-6 477 329 9.3299997e-05 1e-6 478 329 0.00088669988 1e-6 483 329 0.0015401 1e-6 489 329 6.9999995e-05 1e-6 490 329 0.00084009999 1e-6 491 329 0.0033602 1e-6 18 330 0.00016719999 1e-6 22 330 0.00016719999 1e-6 60 330 0.0015886 1e-6 98 330 8.3599996e-05 1e-6 108 330 8.3599996e-05 1e-6 114 330 0.00016719999 1e-6 126 330 8.3599996e-05 1e-6 139 330 8.3599996e-05 1e-6 160 330 0.0030099999 1e-6 172 330 0.00083609996 1e-6 189 330 8.3599996e-05 1e-6 190 330 8.3599996e-05 1e-6 194 330 8.3599996e-05 1e-6 198 330 0.0087792985 1e-6 203 330 8.3599996e-05 1e-6 206 330 0.00016719999 1e-6 214 330 8.3599996e-05 1e-6 223 330 8.3599996e-05 1e-6 224 330 8.3599996e-05 1e-6 233 330 0.0024247 1e-6 234 330 0.0020066998 1e-6 237 330 0.026672199 1e-6 240 330 0.0061036982 1e-6 241 330 0.0095317997 1e-6 242 330 0.00016719999 1e-6 270 330 0.00016719999 1e-6 271 330 0.00041809981 1e-6 272 330 0.00083609996 1e-6 276 330 0.00016719999 1e-6 277 330 0.065551758 1e-6 282 330 0.014715698 1e-6 283 330 0.0048494972 1e-6 284 330 0.0015886 1e-6 285 330 0.0027591998 1e-6 286 330 8.3599996e-05 1e-6 292 330 0.0011705998 1e-6 293 330 0.0015886 1e-6 294 330 0.00058529992 1e-6 295 330 0.00058529992 1e-6 296 330 0.010117099 1e-6 297 330 0.0067725964 1e-6 298 330 0.00058529992 1e-6 299 330 0.0018394999 1e-6 307 330 0.00033439999 1e-6 312 330 0.017056897 1e-6 313 330 0.00050169998 1e-6 315 330 0.017391298 1e-6 317 330 0.0091136992 1e-6 318 330 8.3599996e-05 1e-6 320 330 0.0011705998 1e-6 321 330 0.0031772999 1e-6 322 330 0.0013377999 1e-6 323 330 0.0010032998 1e-6 324 330 8.3599996e-05 1e-6 326 330 0.00016719999 1e-6 328 330 0.13185614 1e-6 329 330 0.0024247 1e-6 330 330 0.049581897 1e-6 338 330 0.00016719999 1e-6 340 330 0.0061872974 1e-6 341 330 0.00016719999 1e-6 350 330 0.0071069971 1e-6 351 330 0.010953199 1e-6 354 330 0.034949798 1e-6 356 330 0.0010869999 1e-6 357 330 0.0011705998 1e-6 358 330 0.0072741993 1e-6 371 330 0.00025079981 1e-6 372 330 0.018896297 1e-6 373 330 0.0012541998 1e-6 385 330 8.3599996e-05 1e-6 386 330 0.0056855977 1e-6 387 330 8.3599996e-05 1e-6 395 330 0.0057691969 1e-6 397 330 0.0058527999 1e-6 398 330 0.00016719999 1e-6 399 330 0.00016719999 1e-6 401 330 0.00016719999 1e-6 402 330 0.0036789 1e-6 409 330 0.0056019984 1e-6 412 330 0.00033439999 1e-6 417 330 0.00025079981 1e-6 419 330 8.3599996e-05 1e-6 422 330 8.3599996e-05 1e-6 434 330 8.3599996e-05 1e-6 441 330 0.0012541998 1e-6 442 330 0.0015049998 1e-6 443 330 0.0028428 1e-6 444 330 0.00083609996 1e-6 445 330 0.0064380988 1e-6 446 330 0.00025079981 1e-6 447 330 0.0056855977 1e-6 450 330 0.0025083998 1e-6 452 330 0.0032608998 1e-6 453 330 0.0016721999 1e-6 454 330 0.00025079981 1e-6 455 330 0.053344499 1e-6 456 330 0.00016719999 1e-6 457 330 0.010200698 1e-6 458 330 0.00041809981 1e-6 459 330 0.00066889985 1e-6 460 330 0.0009196999 1e-6 463 330 0.0043477975 1e-6 464 330 0.00033439999 1e-6 465 330 0.0030099999 1e-6 467 330 0.011956498 1e-6 468 330 0.013545197 1e-6 469 330 0.0039297976 1e-6 470 330 0.0042641982 1e-6 471 330 0.0026755999 1e-6 472 330 8.3599996e-05 1e-6 473 330 8.3599996e-05 1e-6 477 330 8.3599996e-05 1e-6 478 330 0.00083609996 1e-6 483 330 0.0011705998 1e-6 490 330 0.00050169998 1e-6 491 330 0.0012541998 1e-6 9 331 1.7199985e-05 1e-6 16 331 1.7199985e-05 1e-6 18 331 8.6199987e-05 1e-6 22 331 0.00031049992 1e-6 60 331 0.0054679997 1e-6 78 331 3.4499986e-05 1e-6 79 331 1.7199985e-05 1e-6 82 331 1.7199985e-05 1e-6 83 331 1.7199985e-05 1e-6 84 331 1.7199985e-05 1e-6 98 331 3.4499986e-05 1e-6 108 331 1.7199985e-05 1e-6 113 331 5.1699986e-05 1e-6 114 331 0.00010349999 1e-6 126 331 5.1699986e-05 1e-6 127 331 1.7199985e-05 1e-6 134 331 1.7199985e-05 1e-6 135 331 1.7199985e-05 1e-6 140 331 0.00010349999 1e-6 142 331 3.4499986e-05 1e-6 150 331 0.00044849981 1e-6 151 331 1.7199985e-05 1e-6 156 331 3.4499986e-05 1e-6 160 331 0.0020698998 1e-6 161 331 1.7199985e-05 1e-6 165 331 1.7199985e-05 1e-6 169 331 0.00046569994 1e-6 171 331 1.7199985e-05 1e-6 172 331 0.00043119979 1e-6 181 331 1.7199985e-05 1e-6 189 331 6.8999987e-05 1e-6 190 331 6.8999987e-05 1e-6 192 331 3.4499986e-05 1e-6 194 331 8.6199987e-05 1e-6 196 331 1.7199985e-05 1e-6 197 331 1.7199985e-05 1e-6 198 331 8.6199987e-05 1e-6 200 331 5.1699986e-05 1e-6 201 331 3.4499986e-05 1e-6 203 331 5.1699986e-05 1e-6 204 331 8.6199987e-05 1e-6 206 331 0.00024149999 1e-6 207 331 5.1699986e-05 1e-6 209 331 1.7199985e-05 1e-6 214 331 0.00024149999 1e-6 222 331 1.7199985e-05 1e-6 225 331 0.00010349999 1e-6 233 331 0.0020525998 1e-6 234 331 0.0028460999 1e-6 237 331 0.013005797 1e-6 240 331 0.0030185999 1e-6 241 331 0.00091419998 1e-6 242 331 0.0015006999 1e-6 248 331 1.7199985e-05 1e-6 250 331 1.7199985e-05 1e-6 251 331 1.7199985e-05 1e-6 252 331 0.00010349999 1e-6 263 331 1.7199985e-05 1e-6 270 331 0.00012069999 1e-6 271 331 0.0036050999 1e-6 272 331 0.0027253998 1e-6 277 331 0.069686353 1e-6 279 331 1.7199985e-05 1e-6 282 331 0.047072798 1e-6 283 331 0.028564498 1e-6 284 331 0.0018801999 1e-6 285 331 8.6199987e-05 1e-6 289 331 3.4499986e-05 1e-6 292 331 0.0010176999 1e-6 293 331 0.0007071998 1e-6 294 331 0.00010349999 1e-6 295 331 0.00048299995 1e-6 296 331 0.0024320998 1e-6 297 331 0.00060369982 1e-6 298 331 0.00086249993 1e-6 299 331 8.6199987e-05 1e-6 304 331 6.8999987e-05 1e-6 305 331 6.8999987e-05 1e-6 307 331 0.0053645 1e-6 308 331 1.7199985e-05 1e-6 312 331 0.0080897994 1e-6 313 331 0.00017249999 1e-6 315 331 0.0055024996 1e-6 318 331 1.7199985e-05 1e-6 319 331 0.00012069999 1e-6 320 331 5.1699986e-05 1e-6 321 331 3.4499986e-05 1e-6 322 331 0.0024493998 1e-6 323 331 0.0010866998 1e-6 324 331 0.0053645 1e-6 326 331 0.00018969999 1e-6 327 331 3.4499986e-05 1e-6 328 331 0.037775598 1e-6 329 331 0.00079349987 1e-6 330 331 0.00010349999 1e-6 331 331 0.061251599 1e-6 332 331 0.00032769982 1e-6 333 331 8.6199987e-05 1e-6 336 331 3.4499986e-05 1e-6 337 331 0.00015519999 1e-6 338 331 0.0010003999 1e-6 339 331 0.0005347 1e-6 340 331 0.010142498 1e-6 341 331 0.00020699999 1e-6 346 331 1.7199985e-05 1e-6 349 331 1.7199985e-05 1e-6 350 331 0.011125699 1e-6 351 331 0.011349898 1e-6 352 331 0.00051749987 1e-6 353 331 1.7199985e-05 1e-6 354 331 0.034256697 1e-6 356 331 0.0015178998 1e-6 357 331 0.00024149999 1e-6 358 331 0.015731197 1e-6 366 331 0.00010349999 1e-6 370 331 0.00012069999 1e-6 371 331 0.0033463 1e-6 372 331 0.0053645 1e-6 373 331 0.0019836 1e-6 374 331 3.4499986e-05 1e-6 376 331 3.4499986e-05 1e-6 384 331 3.4499986e-05 1e-6 387 331 5.1699986e-05 1e-6 390 331 6.8999987e-05 1e-6 392 331 3.4499986e-05 1e-6 393 331 1.7199985e-05 1e-6 394 331 1.7199985e-05 1e-6 397 331 0.00031049992 1e-6 398 331 6.8999987e-05 1e-6 399 331 0.0013626998 1e-6 401 331 0.0011556998 1e-6 402 331 0.014333997 1e-6 404 331 0.00037949998 1e-6 405 331 0.00018969999 1e-6 408 331 0.00089699985 1e-6 412 331 5.1699986e-05 1e-6 414 331 1.7199985e-05 1e-6 415 331 5.1699986e-05 1e-6 417 331 0.0002931999 1e-6 419 331 1.7199985e-05 1e-6 421 331 5.1699986e-05 1e-6 422 331 6.8999987e-05 1e-6 423 331 1.7199985e-05 1e-6 425 331 1.7199985e-05 1e-6 430 331 1.7199985e-05 1e-6 431 331 3.4499986e-05 1e-6 432 331 1.7199985e-05 1e-6 433 331 3.4499986e-05 1e-6 434 331 3.4499986e-05 1e-6 441 331 0.00041399989 1e-6 442 331 1.7199985e-05 1e-6 443 331 0.0035532999 1e-6 444 331 0.0006899999 1e-6 445 331 0.0053126998 1e-6 446 331 0.00037949998 1e-6 447 331 0.0025873999 1e-6 448 331 1.7199985e-05 1e-6 450 331 0.0045709983 1e-6 452 331 0.0044847988 1e-6 453 331 0.0018973998 1e-6 454 331 0.00062099984 1e-6 455 331 0.042156797 1e-6 456 331 0.00050019985 1e-6 457 331 0.0042259991 1e-6 458 331 0.0010521999 1e-6 459 331 0.0014316998 1e-6 460 331 0.0010348998 1e-6 463 331 0.0040362999 1e-6 464 331 0.00081069977 1e-6 465 331 0.00077619986 1e-6 467 331 0.015196498 1e-6 468 331 0.0045364983 1e-6 469 331 0.0041052997 1e-6 470 331 0.0041397996 1e-6 471 331 0.0015697 1e-6 472 331 0.00018969999 1e-6 473 331 8.6199987e-05 1e-6 477 331 0.00012069999 1e-6 478 331 0.00087969983 1e-6 483 331 0.0011211999 1e-6 489 331 3.4499986e-05 1e-6 490 331 0.00032769982 1e-6 491 331 0.00081069977 1e-6 22 332 0.00013089999 1e-6 60 332 0.0027486999 1e-6 77 332 0.0002617999 1e-6 82 332 0.00013089999 1e-6 108 332 0.00013089999 1e-6 114 332 0.0002617999 1e-6 126 332 0.00013089999 1e-6 130 332 0.00013089999 1e-6 131 332 0.00013089999 1e-6 138 332 0.00013089999 1e-6 142 332 0.0002617999 1e-6 151 332 0.00013089999 1e-6 160 332 0.0037957998 1e-6 172 332 0.00078529981 1e-6 187 332 0.00013089999 1e-6 189 332 0.00013089999 1e-6 190 332 0.00013089999 1e-6 194 332 0.00013089999 1e-6 198 332 0.0002617999 1e-6 203 332 0.00013089999 1e-6 206 332 0.00039269985 1e-6 214 332 0.00078529981 1e-6 224 332 0.00013089999 1e-6 233 332 0.0014397998 1e-6 234 332 0.0036648999 1e-6 237 332 0.0026177999 1e-6 240 332 0.0002617999 1e-6 241 332 0.0019633998 1e-6 242 332 0.010863896 1e-6 252 332 0.00013089999 1e-6 263 332 0.0011779999 1e-6 270 332 0.012565397 1e-6 271 332 0.0013088998 1e-6 272 332 0.0028795998 1e-6 277 332 0.070026159 1e-6 282 332 0.042670198 1e-6 283 332 0.024476398 1e-6 284 332 0.0024869 1e-6 285 332 0.0060208999 1e-6 286 332 0.00013089999 1e-6 289 332 0.00013089999 1e-6 292 332 0.00065449998 1e-6 293 332 0.0010470999 1e-6 294 332 0.0089004971 1e-6 295 332 0.0023559998 1e-6 296 332 0.0010470999 1e-6 297 332 0.0014397998 1e-6 298 332 0.00078529981 1e-6 305 332 0.00013089999 1e-6 307 332 0.0060208999 1e-6 312 332 0.0082460977 1e-6 315 332 0.00078529981 1e-6 320 332 0.00013089999 1e-6 321 332 0.0002617999 1e-6 322 332 0.00013089999 1e-6 324 332 0.0023559998 1e-6 326 332 0.0066753998 1e-6 328 332 0.011387397 1e-6 331 332 0.0075915977 1e-6 332 332 0.045549698 1e-6 333 332 0.0011779999 1e-6 339 332 0.00078529981 1e-6 340 332 0.014790598 1e-6 341 332 0.00013089999 1e-6 343 332 0.00013089999 1e-6 344 332 0.00013089999 1e-6 349 332 0.0002617999 1e-6 350 332 0.0058900975 1e-6 351 332 0.014005199 1e-6 352 332 0.0036648999 1e-6 354 332 0.017277498 1e-6 356 332 0.00078529981 1e-6 358 332 0.014921498 1e-6 370 332 0.00013089999 1e-6 371 332 0.0023559998 1e-6 372 332 0.015314098 1e-6 373 332 0.0013088998 1e-6 385 332 0.00013089999 1e-6 387 332 0.00013089999 1e-6 390 332 0.00013089999 1e-6 393 332 0.00013089999 1e-6 398 332 0.0091622993 1e-6 399 332 0.00013089999 1e-6 402 332 0.0010470999 1e-6 408 332 0.00013089999 1e-6 416 332 0.00013089999 1e-6 417 332 0.0005235998 1e-6 422 332 0.00013089999 1e-6 434 332 0.00013089999 1e-6 441 332 0.0030105 1e-6 443 332 0.0027486999 1e-6 444 332 0.0013088998 1e-6 445 332 0.0066753998 1e-6 446 332 0.00013089999 1e-6 447 332 0.004973799 1e-6 450 332 0.0044502988 1e-6 452 332 0.0058900975 1e-6 453 332 0.0022250998 1e-6 454 332 0.00078529981 1e-6 455 332 0.036911 1e-6 456 332 0.00039269985 1e-6 457 332 0.0030105 1e-6 458 332 0.0010470999 1e-6 459 332 0.00065449998 1e-6 460 332 0.0010470999 1e-6 463 332 0.0069371983 1e-6 464 332 0.0005235998 1e-6 465 332 0.00078529981 1e-6 467 332 0.0115183 1e-6 468 332 0.0052355975 1e-6 469 332 0.0058900975 1e-6 470 332 0.0064135976 1e-6 471 332 0.0066753998 1e-6 472 332 0.0024869 1e-6 473 332 0.00013089999 1e-6 477 332 0.00013089999 1e-6 478 332 0.0010470999 1e-6 483 332 0.0014397998 1e-6 490 332 0.0005235998 1e-6 491 332 0.0047119968 1e-6 9 333 9.2199989e-05 1e-6 19 333 9.2199989e-05 1e-6 22 333 9.2199989e-05 1e-6 60 333 0.0023961 1e-6 77 333 0.00027649989 1e-6 79 333 9.2199989e-05 1e-6 82 333 9.2199989e-05 1e-6 108 333 9.2199989e-05 1e-6 114 333 0.00018429999 1e-6 126 333 9.2199989e-05 1e-6 160 333 0.0012901998 1e-6 169 333 0.00027649989 1e-6 172 333 0.0005528999 1e-6 189 333 9.2199989e-05 1e-6 190 333 9.2199989e-05 1e-6 192 333 9.2199989e-05 1e-6 194 333 9.2199989e-05 1e-6 198 333 0.00018429999 1e-6 200 333 9.2199989e-05 1e-6 203 333 9.2199989e-05 1e-6 204 333 9.2199989e-05 1e-6 206 333 0.00027649989 1e-6 207 333 9.2199989e-05 1e-6 214 333 0.0028569 1e-6 220 333 9.2199989e-05 1e-6 233 333 0.0011058999 1e-6 234 333 0.0030411999 1e-6 237 333 0.0011979998 1e-6 240 333 0.00036859978 1e-6 241 333 0.0043313988 1e-6 242 333 0.0109667 1e-6 270 333 0.0043313988 1e-6 272 333 0.00018429999 1e-6 277 333 0.072712183 1e-6 282 333 0.0319786 1e-6 283 333 0.015851099 1e-6 284 333 0.0024881999 1e-6 285 333 9.2199989e-05 1e-6 286 333 0.00027649989 1e-6 290 333 0.00018429999 1e-6 292 333 0.0020275 1e-6 293 333 0.0011979998 1e-6 294 333 9.2199989e-05 1e-6 296 333 0.00027649989 1e-6 297 333 0.0014744999 1e-6 298 333 0.00018429999 1e-6 299 333 0.00018429999 1e-6 305 333 0.0024881999 1e-6 307 333 0.00027649989 1e-6 312 333 0.0035940998 1e-6 315 333 0.0011979998 1e-6 319 333 9.2199989e-05 1e-6 320 333 9.2199989e-05 1e-6 321 333 0.0029489999 1e-6 322 333 9.2199989e-05 1e-6 324 333 0.011335399 1e-6 326 333 0.0037784998 1e-6 327 333 9.2199989e-05 1e-6 328 333 0.010874599 1e-6 331 333 0.00027649989 1e-6 333 333 0.0359414 1e-6 338 333 0.0019353 1e-6 339 333 0.00036859978 1e-6 340 333 0.010229498 1e-6 341 333 0.00036859978 1e-6 350 333 0.0025803999 1e-6 351 333 0.012533396 1e-6 354 333 0.0073725991 1e-6 356 333 0.00046079978 1e-6 357 333 0.0008293998 1e-6 358 333 0.023684498 1e-6 370 333 9.2199989e-05 1e-6 371 333 0.0062666982 1e-6 372 333 0.0038705999 1e-6 373 333 0.0037784998 1e-6 374 333 9.2199989e-05 1e-6 376 333 0.0009215998 1e-6 387 333 9.2199989e-05 1e-6 390 333 9.2199989e-05 1e-6 392 333 0.00018429999 1e-6 393 333 9.2199989e-05 1e-6 402 333 0.0042391978 1e-6 404 333 9.2199989e-05 1e-6 405 333 0.00027649989 1e-6 408 333 0.0015666999 1e-6 417 333 0.00046079978 1e-6 421 333 9.2199989e-05 1e-6 422 333 9.2199989e-05 1e-6 430 333 9.2199989e-05 1e-6 433 333 9.2199989e-05 1e-6 434 333 0.00018429999 1e-6 443 333 0.0020275 1e-6 444 333 0.0014744999 1e-6 445 333 0.0036862998 1e-6 446 333 0.00036859978 1e-6 447 333 0.0029489999 1e-6 450 333 0.0087549984 1e-6 452 333 0.0062666982 1e-6 453 333 0.0023961 1e-6 454 333 0.00036859978 1e-6 455 333 0.026725598 1e-6 456 333 0.00046079978 1e-6 457 333 0.0035940998 1e-6 458 333 0.00027649989 1e-6 459 333 0.00073729991 1e-6 460 333 0.0010136999 1e-6 463 333 0.017509896 1e-6 464 333 0.0005528999 1e-6 465 333 0.0010136999 1e-6 467 333 0.014837299 1e-6 468 333 0.0077411979 1e-6 469 333 0.006082397 1e-6 470 333 0.0064509995 1e-6 471 333 0.0032255 1e-6 473 333 0.00018429999 1e-6 477 333 9.2199989e-05 1e-6 478 333 0.0011058999 1e-6 483 333 0.0008293998 1e-6 490 333 0.0005528999 1e-6 491 333 0.0077411979 1e-6 22 334 0.0002291 1e-6 60 334 0.0027498 1e-6 108 334 0.0002291 1e-6 114 334 0.00045829988 1e-6 126 334 0.0002291 1e-6 160 334 0.0013748999 1e-6 172 334 0.0029789 1e-6 189 334 0.0002291 1e-6 194 334 0.0002291 1e-6 198 334 0.0016039999 1e-6 206 334 0.00045829988 1e-6 214 334 0.0002291 1e-6 233 334 0.00068739988 1e-6 234 334 0.0041246973 1e-6 241 334 0.0183318 1e-6 242 334 0.00091659999 1e-6 270 334 0.0016039999 1e-6 272 334 0.00045829988 1e-6 277 334 0.086388588 1e-6 282 334 0.021310698 1e-6 283 334 0.0054994971 1e-6 284 334 0.0029789 1e-6 292 334 0.0045829974 1e-6 293 334 0.0020623 1e-6 295 334 0.009165898 1e-6 296 334 0.0061869994 1e-6 297 334 0.06393218 1e-6 312 334 0.014207099 1e-6 320 334 0.0036664 1e-6 321 334 0.0192484 1e-6 322 334 0.0075618997 1e-6 324 334 0.00091659999 1e-6 326 334 0.0107699 1e-6 328 334 0.034142997 1e-6 334 334 0.0087075979 1e-6 335 334 0.0002291 1e-6 340 334 0.020623296 1e-6 351 334 0.0087075979 1e-6 354 334 0.031164099 1e-6 358 334 0.010082498 1e-6 367 334 0.00068739988 1e-6 371 334 0.0032080999 1e-6 372 334 0.0304766 1e-6 387 334 0.0002291 1e-6 414 334 0.0018332 1e-6 417 334 0.00045829988 1e-6 422 334 0.0002291 1e-6 443 334 0.0029789 1e-6 444 334 0.0032080999 1e-6 445 334 0.0045829974 1e-6 446 334 0.0002291 1e-6 447 334 0.011228196 1e-6 450 334 0.004812099 1e-6 452 334 0.004812099 1e-6 453 334 0.0013748999 1e-6 454 334 0.0002291 1e-6 455 334 0.026122797 1e-6 456 334 0.0002291 1e-6 457 334 0.0029789 1e-6 458 334 0.00091659999 1e-6 459 334 0.0013748999 1e-6 460 334 0.00068739988 1e-6 463 334 0.0192484 1e-6 464 334 0.00068739988 1e-6 465 334 0.00091659999 1e-6 467 334 0.012603097 1e-6 468 334 0.020164996 1e-6 469 334 0.009165898 1e-6 470 334 0.0096241981 1e-6 471 334 0.0089367963 1e-6 473 334 0.0002291 1e-6 478 334 0.0013748999 1e-6 483 334 0.0020623 1e-6 490 334 0.00091659999 1e-6 491 334 0.00068739988 1e-6 22 335 0.00011339999 1e-6 24 335 0.00011339999 1e-6 60 335 0.0020419999 1e-6 82 335 0.00011339999 1e-6 108 335 0.00011339999 1e-6 114 335 0.00011339999 1e-6 120 335 0.0002269 1e-6 126 335 0.00011339999 1e-6 135 335 0.00011339999 1e-6 150 335 0.00011339999 1e-6 160 335 0.0013612998 1e-6 172 335 0.0005671999 1e-6 189 335 0.00011339999 1e-6 190 335 0.00011339999 1e-6 193 335 0.00011339999 1e-6 194 335 0.0002269 1e-6 198 335 0.00079409988 1e-6 200 335 0.00011339999 1e-6 203 335 0.00011339999 1e-6 204 335 0.00011339999 1e-6 206 335 0.00034029991 1e-6 214 335 0.0011343998 1e-6 218 335 0.00011339999 1e-6 223 335 0.00011339999 1e-6 224 335 0.0002269 1e-6 233 335 0.00045379996 1e-6 234 335 0.0037435999 1e-6 237 335 0.0049914978 1e-6 241 335 0.0014747998 1e-6 242 335 0.012705598 1e-6 270 335 0.00011339999 1e-6 271 335 0.00011339999 1e-6 277 335 0.13045937 1e-6 282 335 0.012365296 1e-6 283 335 0.0069199987 1e-6 284 335 0.0026091998 1e-6 286 335 0.00011339999 1e-6 288 335 0.00011339999 1e-6 289 335 0.00011339999 1e-6 292 335 0.0020419999 1e-6 293 335 0.0040838979 1e-6 294 335 0.00034029991 1e-6 295 335 0.0010209999 1e-6 296 335 0.0023822999 1e-6 297 335 0.00011339999 1e-6 298 335 0.00045379996 1e-6 299 335 0.00011339999 1e-6 301 335 0.00011339999 1e-6 305 335 0.0081678964 1e-6 307 335 0.0005671999 1e-6 312 335 0.0057855994 1e-6 315 335 0.0029495 1e-6 319 335 0.0039704964 1e-6 320 335 0.00011339999 1e-6 321 335 0.00011339999 1e-6 322 335 0.0010209999 1e-6 324 335 0.0039704964 1e-6 326 335 0.00011339999 1e-6 328 335 0.0015882 1e-6 329 335 0.00011339999 1e-6 331 335 0.0010209999 1e-6 332 335 0.0002269 1e-6 335 335 0.034373198 1e-6 337 335 0.0036301999 1e-6 339 335 0.0010209999 1e-6 340 335 0.0031764 1e-6 344 335 0.0002269 1e-6 347 335 0.00011339999 1e-6 349 335 0.0002269 1e-6 350 335 0.0038570999 1e-6 351 335 0.018831499 1e-6 352 335 0.0002269 1e-6 354 335 0.019739099 1e-6 355 335 0.00011339999 1e-6 356 335 0.00045379996 1e-6 357 335 0.0020419999 1e-6 358 335 0.0080544986 1e-6 371 335 0.0057855994 1e-6 372 335 0.012138397 1e-6 373 335 0.0034033 1e-6 387 335 0.00011339999 1e-6 390 335 0.00045379996 1e-6 392 335 0.00034029991 1e-6 393 335 0.0002269 1e-6 398 335 0.00011339999 1e-6 402 335 0.00034029991 1e-6 404 335 0.0002269 1e-6 405 335 0.0013612998 1e-6 417 335 0.00045379996 1e-6 421 335 0.00011339999 1e-6 422 335 0.0002269 1e-6 430 335 0.00011339999 1e-6 443 335 0.0027225998 1e-6 444 335 0.0015882 1e-6 445 335 0.0063527972 1e-6 446 335 0.00011339999 1e-6 447 335 0.0043107979 1e-6 450 335 0.0044242963 1e-6 452 335 0.0049914978 1e-6 453 335 0.0018151 1e-6 454 335 0.00011339999 1e-6 455 335 0.034146298 1e-6 456 335 0.00045379996 1e-6 457 335 0.0030629998 1e-6 458 335 0.0005671999 1e-6 459 335 0.00045379996 1e-6 460 335 0.0010209999 1e-6 463 335 0.016789597 1e-6 464 335 0.00068069994 1e-6 465 335 0.00090749981 1e-6 467 335 0.011571199 1e-6 468 335 0.0060124993 1e-6 469 335 0.0076006986 1e-6 470 335 0.008508198 1e-6 471 335 0.0057855994 1e-6 473 335 0.0002269 1e-6 477 335 0.00011339999 1e-6 478 335 0.0012478998 1e-6 483 335 0.0018151 1e-6 490 335 0.00068069994 1e-6 491 335 0.0014747998 1e-6 60 336 0.0024917 1e-6 108 336 0.00020759999 1e-6 114 336 0.00041529979 1e-6 126 336 0.00020759999 1e-6 160 336 0.0018687998 1e-6 165 336 0.00020759999 1e-6 181 336 0.00020759999 1e-6 190 336 0.00020759999 1e-6 194 336 0.00020759999 1e-6 198 336 0.00020759999 1e-6 206 336 0.00062289997 1e-6 214 336 0.00020759999 1e-6 233 336 0.00062289997 1e-6 234 336 0.0033222998 1e-6 237 336 0.0020764 1e-6 241 336 0.0078903995 1e-6 242 336 0.0083055981 1e-6 252 336 0.00020759999 1e-6 270 336 0.00062289997 1e-6 272 336 0.0035299 1e-6 277 336 0.11025745 1e-6 282 336 0.030107997 1e-6 283 336 0.0091362 1e-6 284 336 0.0026992999 1e-6 285 336 0.00020759999 1e-6 292 336 0.009551499 1e-6 293 336 0.0012457999 1e-6 294 336 0.00041529979 1e-6 295 336 0.0064368993 1e-6 296 336 0.0062291995 1e-6 297 336 0.0014534998 1e-6 298 336 0.010382097 1e-6 305 336 0.00020759999 1e-6 307 336 0.00062289997 1e-6 312 336 0.011420298 1e-6 313 336 0.00020759999 1e-6 315 336 0.00062289997 1e-6 319 336 0.00020759999 1e-6 320 336 0.0014534998 1e-6 322 336 0.0014534998 1e-6 323 336 0.00041529979 1e-6 324 336 0.0020764 1e-6 328 336 0.0047756992 1e-6 331 336 0.0016611 1e-6 332 336 0.00062289997 1e-6 335 336 0.00041529979 1e-6 336 336 0.0049833991 1e-6 337 336 0.00062289997 1e-6 338 336 0.00020759999 1e-6 339 336 0.0010382 1e-6 340 336 0.0085132979 1e-6 344 336 0.00020759999 1e-6 350 336 0.00041529979 1e-6 351 336 0.013081398 1e-6 354 336 0.056893699 1e-6 357 336 0.00020759999 1e-6 358 336 0.034883697 1e-6 366 336 0.00041529979 1e-6 370 336 0.012043197 1e-6 371 336 0.0168189 1e-6 372 336 0.017649498 1e-6 373 336 0.010797299 1e-6 376 336 0.004360497 1e-6 386 336 0.00020759999 1e-6 387 336 0.00020759999 1e-6 397 336 0.00041529979 1e-6 398 336 0.00020759999 1e-6 399 336 0.00020759999 1e-6 401 336 0.0014534998 1e-6 402 336 0.00083059981 1e-6 417 336 0.00041529979 1e-6 422 336 0.00020759999 1e-6 443 336 0.0022840998 1e-6 444 336 0.0016611 1e-6 445 336 0.016195998 1e-6 446 336 0.00020759999 1e-6 447 336 0.0056062974 1e-6 450 336 0.004360497 1e-6 452 336 0.0049833991 1e-6 453 336 0.0031146 1e-6 454 336 0.00041529979 1e-6 455 336 0.030938499 1e-6 456 336 0.00020759999 1e-6 457 336 0.0029069998 1e-6 458 336 0.0012457999 1e-6 459 336 0.00062289997 1e-6 460 336 0.00083059981 1e-6 463 336 0.011004999 1e-6 464 336 0.00062289997 1e-6 465 336 0.0012457999 1e-6 467 336 0.011835497 1e-6 468 336 0.0014534998 1e-6 469 336 0.0060215965 1e-6 470 336 0.0070597976 1e-6 471 336 0.0078903995 1e-6 473 336 0.00020759999 1e-6 478 336 0.0012457999 1e-6 483 336 0.0010382 1e-6 490 336 0.00083059981 1e-6 491 336 0.0016611 1e-6 60 337 0.0020203998 1e-6 108 337 9.619999e-05 1e-6 114 337 9.619999e-05 1e-6 126 337 9.619999e-05 1e-6 150 337 9.619999e-05 1e-6 160 337 0.0017317999 1e-6 169 337 0.00028859987 1e-6 171 337 9.619999e-05 1e-6 172 337 0.00028859987 1e-6 181 337 0.0014430999 1e-6 189 337 9.619999e-05 1e-6 190 337 9.619999e-05 1e-6 194 337 0.0001924 1e-6 198 337 0.0001924 1e-6 200 337 9.619999e-05 1e-6 203 337 9.619999e-05 1e-6 206 337 0.00048099994 1e-6 214 337 0.0001924 1e-6 233 337 0.0011544998 1e-6 234 337 0.0031748998 1e-6 236 337 0.0001924 1e-6 237 337 0.016163196 1e-6 240 337 9.619999e-05 1e-6 241 337 0.0013468999 1e-6 242 337 0.0050990991 1e-6 270 337 9.619999e-05 1e-6 271 337 0.0018279999 1e-6 272 337 9.619999e-05 1e-6 277 337 0.076197743 1e-6 282 337 0.038772397 1e-6 283 337 0.0074080974 1e-6 284 337 0.0022127999 1e-6 288 337 9.619999e-05 1e-6 292 337 0.0010582998 1e-6 293 337 0.0053876974 1e-6 295 337 0.0010582998 1e-6 296 337 0.0015393 1e-6 297 337 9.619999e-05 1e-6 298 337 9.619999e-05 1e-6 305 337 0.0084663965 1e-6 307 337 9.619999e-05 1e-6 312 337 0.0063497983 1e-6 313 337 0.0011544998 1e-6 315 337 0.0012506999 1e-6 319 337 0.0078891963 1e-6 322 337 0.00076969992 1e-6 323 337 0.00028859987 1e-6 324 337 0.0054838993 1e-6 326 337 0.0010582998 1e-6 328 337 0.024725799 1e-6 329 337 0.0001924 1e-6 331 337 0.0016355999 1e-6 335 337 0.0001924 1e-6 337 337 0.059072498 1e-6 339 337 0.00067349989 1e-6 340 337 0.0053876974 1e-6 341 337 9.619999e-05 1e-6 350 337 0.0085625984 1e-6 351 337 0.011833798 1e-6 353 337 0.0003847999 1e-6 354 337 0.037232999 1e-6 356 337 0.0010582998 1e-6 357 337 0.016836599 1e-6 358 337 0.016547997 1e-6 366 337 9.619999e-05 1e-6 370 337 9.619999e-05 1e-6 371 337 0.010871697 1e-6 372 337 0.011160299 1e-6 373 337 0.0066383965 1e-6 376 337 0.0029824998 1e-6 387 337 9.619999e-05 1e-6 390 337 9.619999e-05 1e-6 394 337 0.0058688 1e-6 397 337 0.00028859987 1e-6 401 337 0.0003847999 1e-6 402 337 0.0011544998 1e-6 408 337 0.00067349989 1e-6 417 337 0.00028859987 1e-6 422 337 9.619999e-05 1e-6 430 337 9.619999e-05 1e-6 441 337 0.0013468999 1e-6 443 337 0.0023089999 1e-6 444 337 0.0003847999 1e-6 445 337 0.0077929981 1e-6 446 337 0.0001924 1e-6 447 337 0.0058688 1e-6 450 337 0.0033672999 1e-6 452 337 0.0036559999 1e-6 453 337 0.0018279999 1e-6 454 337 0.0001924 1e-6 455 337 0.035308797 1e-6 456 337 0.0003847999 1e-6 457 337 0.0027900999 1e-6 458 337 0.0010582998 1e-6 459 337 0.00048099994 1e-6 460 337 0.0010582998 1e-6 463 337 0.010679197 1e-6 464 337 0.0003847999 1e-6 465 337 0.00076969992 1e-6 467 337 0.010294396 1e-6 468 337 0.0049066991 1e-6 469 337 0.0052914992 1e-6 470 337 0.0058688 1e-6 471 337 0.0024051999 1e-6 473 337 9.619999e-05 1e-6 477 337 9.619999e-05 1e-6 478 337 0.0010582998 1e-6 483 337 0.0011544998 1e-6 490 337 0.00048099994 1e-6 491 337 0.0022127999 1e-6 9 338 7.4899988e-05 1e-6 18 338 7.4899988e-05 1e-6 22 338 0.00022469999 1e-6 60 338 0.0049426965 1e-6 82 338 7.4899988e-05 1e-6 83 338 7.4899988e-05 1e-6 84 338 7.4899988e-05 1e-6 108 338 7.4899988e-05 1e-6 113 338 0.00014979999 1e-6 114 338 0.00022469999 1e-6 126 338 0.00014979999 1e-6 127 338 7.4899988e-05 1e-6 150 338 0.00082379999 1e-6 160 338 0.0020219998 1e-6 171 338 0.00029959995 1e-6 172 338 0.00022469999 1e-6 189 338 0.00022469999 1e-6 190 338 0.00014979999 1e-6 192 338 7.4899988e-05 1e-6 194 338 0.00014979999 1e-6 198 338 0.00014979999 1e-6 200 338 7.4899988e-05 1e-6 203 338 7.4899988e-05 1e-6 204 338 7.4899988e-05 1e-6 206 338 0.00037439982 1e-6 207 338 7.4899988e-05 1e-6 214 338 0.00089869997 1e-6 223 338 7.4899988e-05 1e-6 233 338 7.4899988e-05 1e-6 234 338 0.0072642975 1e-6 237 338 0.00014979999 1e-6 241 338 0.00029959995 1e-6 242 338 7.4899988e-05 1e-6 248 338 7.4899988e-05 1e-6 250 338 7.4899988e-05 1e-6 252 338 0.00014979999 1e-6 270 338 0.0050175972 1e-6 272 338 7.4899988e-05 1e-6 277 338 0.046206798 1e-6 282 338 0.038118798 1e-6 283 338 0.0038194 1e-6 284 338 0.0032203 1e-6 285 338 0.00059909979 1e-6 286 338 7.4899988e-05 1e-6 288 338 7.4899988e-05 1e-6 289 338 0.00014979999 1e-6 292 338 0.0014978 1e-6 293 338 0.0014228998 1e-6 294 338 0.00029959995 1e-6 295 338 0.0019470998 1e-6 296 338 0.0034448998 1e-6 297 338 0.0010485 1e-6 298 338 0.007788498 1e-6 299 338 7.4899988e-05 1e-6 300 338 7.4899988e-05 1e-6 307 338 0.010185 1e-6 312 338 0.0070395991 1e-6 315 338 7.4899988e-05 1e-6 317 338 0.0007489 1e-6 318 338 0.0014978 1e-6 319 338 7.4899988e-05 1e-6 320 338 0.0017225 1e-6 321 338 7.4899988e-05 1e-6 322 338 0.0020968998 1e-6 324 338 0.00014979999 1e-6 326 338 0.00029959995 1e-6 328 338 0.00037439982 1e-6 331 338 7.4899988e-05 1e-6 338 338 0.046057098 1e-6 339 338 0.0007489 1e-6 340 338 0.017748799 1e-6 341 338 0.00059909979 1e-6 343 338 0.00014979999 1e-6 344 338 7.4899988e-05 1e-6 347 338 7.4899988e-05 1e-6 349 338 0.00029959995 1e-6 350 338 0.018048398 1e-6 351 338 0.012656298 1e-6 353 338 7.4899988e-05 1e-6 354 338 0.0065153986 1e-6 356 338 0.0024714 1e-6 358 338 0.027559299 1e-6 366 338 7.4899988e-05 1e-6 371 338 0.0034448998 1e-6 372 338 0.016101297 1e-6 373 338 0.031678297 1e-6 384 338 7.4899988e-05 1e-6 387 338 0.00014979999 1e-6 393 338 7.4899988e-05 1e-6 402 338 7.4899988e-05 1e-6 404 338 7.4899988e-05 1e-6 405 338 7.4899988e-05 1e-6 417 338 0.0056915991 1e-6 419 338 7.4899988e-05 1e-6 421 338 7.4899988e-05 1e-6 422 338 0.00014979999 1e-6 423 338 7.4899988e-05 1e-6 425 338 7.4899988e-05 1e-6 430 338 7.4899988e-05 1e-6 431 338 7.4899988e-05 1e-6 433 338 7.4899988e-05 1e-6 434 338 7.4899988e-05 1e-6 443 338 0.0017972998 1e-6 444 338 0.00029959995 1e-6 445 338 0.0032950998 1e-6 446 338 0.00029959995 1e-6 447 338 0.0010485 1e-6 450 338 0.0062906966 1e-6 452 338 0.0077135973 1e-6 453 338 0.0020219998 1e-6 454 338 0.00037439982 1e-6 455 338 0.036246497 1e-6 456 338 0.0010485 1e-6 457 338 0.0035946998 1e-6 458 338 0.00082379999 1e-6 459 338 0.00037439982 1e-6 460 338 0.0011981998 1e-6 463 338 0.0057664998 1e-6 464 338 0.00037439982 1e-6 465 338 0.0013479998 1e-6 467 338 0.012656298 1e-6 468 338 0.0017972998 1e-6 469 338 0.010185 1e-6 470 338 0.011308298 1e-6 471 338 0.0013479998 1e-6 473 338 0.00029959995 1e-6 477 338 7.4899988e-05 1e-6 478 338 0.0016476 1e-6 483 338 0.0028457998 1e-6 489 338 7.4899988e-05 1e-6 490 338 0.0014978 1e-6 491 338 0.0053172 1e-6 19 339 0.00014199999 1e-6 24 339 0.00028409995 1e-6 60 339 0.0041186996 1e-6 82 339 0.00014199999 1e-6 108 339 0.00014199999 1e-6 114 339 0.00014199999 1e-6 126 339 0.00014199999 1e-6 150 339 0.00014199999 1e-6 160 339 0.0015622999 1e-6 169 339 0.00028409995 1e-6 172 339 0.00056809979 1e-6 189 339 0.00014199999 1e-6 190 339 0.00014199999 1e-6 193 339 0.00014199999 1e-6 194 339 0.00014199999 1e-6 203 339 0.00014199999 1e-6 204 339 0.00028409995 1e-6 206 339 0.00042609987 1e-6 214 339 0.00071009994 1e-6 223 339 0.0018463 1e-6 233 339 0.00014199999 1e-6 234 339 0.0069591999 1e-6 237 339 0.00014199999 1e-6 240 339 0.00014199999 1e-6 241 339 0.00014199999 1e-6 254 339 0.00042609987 1e-6 265 339 0.00014199999 1e-6 266 339 0.00014199999 1e-6 270 339 0.0052548982 1e-6 272 339 0.0052548982 1e-6 277 339 0.073284984 1e-6 282 339 0.041187298 1e-6 283 339 0.010651898 1e-6 284 339 0.0032666 1e-6 285 339 0.00028409995 1e-6 286 339 0.00014199999 1e-6 289 339 0.00014199999 1e-6 292 339 0.0017042998 1e-6 293 339 0.0019883998 1e-6 294 339 0.0019883998 1e-6 295 339 0.00099419989 1e-6 296 339 0.0015622999 1e-6 297 339 0.0048288964 1e-6 298 339 0.0088055991 1e-6 307 339 0.0083794966 1e-6 312 339 0.0053969994 1e-6 317 339 0.0028404999 1e-6 320 339 0.00014199999 1e-6 321 339 0.00028409995 1e-6 322 339 0.0026984999 1e-6 324 339 0.00014199999 1e-6 328 339 0.00014199999 1e-6 338 339 0.0042607971 1e-6 339 339 0.032239698 1e-6 340 339 0.012356199 1e-6 341 339 0.00042609987 1e-6 342 339 0.00028409995 1e-6 343 339 0.00028409995 1e-6 349 339 0.00028409995 1e-6 350 339 0.0124982 1e-6 351 339 0.0086634979 1e-6 352 339 0.00014199999 1e-6 353 339 0.00099419989 1e-6 354 339 0.015622798 1e-6 355 339 0.00014199999 1e-6 356 339 0.0015622999 1e-6 358 339 0.035222299 1e-6 370 339 0.00014199999 1e-6 371 339 0.0032666 1e-6 372 339 0.011930097 1e-6 373 339 0.027410898 1e-6 374 339 0.00014199999 1e-6 386 339 0.00014199999 1e-6 387 339 0.00014199999 1e-6 417 339 0.00071009994 1e-6 421 339 0.00014199999 1e-6 422 339 0.00014199999 1e-6 430 339 0.00014199999 1e-6 434 339 0.00014199999 1e-6 443 339 0.0021303999 1e-6 444 339 0.00042609987 1e-6 445 339 0.0036926998 1e-6 446 339 0.00028409995 1e-6 447 339 0.0012782 1e-6 450 339 0.0042607971 1e-6 452 339 0.0066751987 1e-6 453 339 0.0022723998 1e-6 454 339 0.00028409995 1e-6 455 339 0.034086097 1e-6 456 339 0.00071009994 1e-6 457 339 0.0038347 1e-6 458 339 0.0011361998 1e-6 459 339 0.00042609987 1e-6 460 339 0.0011361998 1e-6 463 339 0.0066751987 1e-6 464 339 0.00042609987 1e-6 465 339 0.00085219997 1e-6 467 339 0.011646099 1e-6 468 339 0.0012782 1e-6 469 339 0.0085214972 1e-6 470 339 0.0092315972 1e-6 471 339 0.00085219997 1e-6 473 339 0.00028409995 1e-6 477 339 0.00014199999 1e-6 478 339 0.0012782 1e-6 483 339 0.0018463 1e-6 490 339 0.00085219997 1e-6 491 339 0.0061070994 1e-6 9 340 4.9099996e-05 1e-6 18 340 4.9099996e-05 1e-6 22 340 7.3599993e-05 1e-6 60 340 0.0030415 1e-6 82 340 4.9099996e-05 1e-6 83 340 4.9099996e-05 1e-6 84 340 4.9099996e-05 1e-6 108 340 4.9099996e-05 1e-6 113 340 9.809999e-05 1e-6 114 340 0.00014719999 1e-6 126 340 7.3599993e-05 1e-6 127 340 2.4499997e-05 1e-6 130 340 0.0002942998 1e-6 131 340 4.9099996e-05 1e-6 134 340 4.9099996e-05 1e-6 139 340 2.4499997e-05 1e-6 142 340 2.4499997e-05 1e-6 150 340 0.0008584999 1e-6 156 340 0.00039249985 1e-6 158 340 4.9099996e-05 1e-6 160 340 0.00026979996 1e-6 169 340 0.0001717 1e-6 171 340 0.0002942998 1e-6 172 340 0.0006622998 1e-6 181 340 4.9099996e-05 1e-6 187 340 0.0001717 1e-6 188 340 0.0001962 1e-6 189 340 9.809999e-05 1e-6 190 340 0.00012259999 1e-6 192 340 7.3599993e-05 1e-6 193 340 2.4499997e-05 1e-6 194 340 0.00022079999 1e-6 196 340 2.4499997e-05 1e-6 197 340 4.9099996e-05 1e-6 198 340 0.0011037998 1e-6 200 340 7.3599993e-05 1e-6 201 340 2.4499997e-05 1e-6 203 340 7.3599993e-05 1e-6 204 340 7.3599993e-05 1e-6 206 340 0.00031889998 1e-6 207 340 4.9099996e-05 1e-6 209 340 2.4499997e-05 1e-6 214 340 0.0037528998 1e-6 218 340 2.4499997e-05 1e-6 219 340 9.809999e-05 1e-6 223 340 0.00068679987 1e-6 224 340 0.0033604 1e-6 225 340 0.00012259999 1e-6 227 340 2.4499997e-05 1e-6 229 340 4.9099996e-05 1e-6 233 340 0.0015207999 1e-6 234 340 0.0060830973 1e-6 237 340 0.00039249985 1e-6 240 340 0.00034339982 1e-6 241 340 0.0037037998 1e-6 242 340 2.4499997e-05 1e-6 248 340 2.4499997e-05 1e-6 252 340 0.00053959992 1e-6 253 340 2.4499997e-05 1e-6 270 340 0.0083641969 1e-6 271 340 4.9099996e-05 1e-6 272 340 0.00049059978 1e-6 274 340 4.9099996e-05 1e-6 276 340 4.9099996e-05 1e-6 277 340 0.067526758 1e-6 278 340 4.9099996e-05 1e-6 282 340 0.012460399 1e-6 283 340 0.0021584998 1e-6 284 340 0.0032867999 1e-6 285 340 0.017586898 1e-6 286 340 0.0001962 1e-6 287 340 0.00078489981 1e-6 288 340 0.0009321 1e-6 289 340 0.0019622999 1e-6 290 340 0.0001962 1e-6 292 340 0.0023546999 1e-6 293 340 0.0029678999 1e-6 294 340 0.00053959992 1e-6 295 340 0.0007358999 1e-6 296 340 0.0026490998 1e-6 297 340 0.0009321 1e-6 298 340 0.0024773998 1e-6 299 340 0.0001962 1e-6 301 340 4.9099996e-05 1e-6 307 340 0.00041699992 1e-6 312 340 0.0037773999 1e-6 313 340 0.0022810998 1e-6 315 340 0.00076039997 1e-6 317 340 0.0012754998 1e-6 318 340 2.4499997e-05 1e-6 319 340 0.00076039997 1e-6 320 340 0.0024283 1e-6 321 340 0.0001962 1e-6 322 340 0.00039249985 1e-6 323 340 7.3599993e-05 1e-6 324 340 2.4499997e-05 1e-6 325 340 7.3599993e-05 1e-6 326 340 0.0023792998 1e-6 328 340 0.00026979996 1e-6 330 340 2.4499997e-05 1e-6 331 340 4.9099996e-05 1e-6 332 340 2.4499997e-05 1e-6 338 340 0.0048320964 1e-6 339 340 0.00083399983 1e-6 340 340 0.044813499 1e-6 341 340 0.00022079999 1e-6 343 340 0.00044149999 1e-6 344 340 7.3599993e-05 1e-6 345 340 2.4499997e-05 1e-6 347 340 2.4499997e-05 1e-6 348 340 2.4499997e-05 1e-6 349 340 0.00014719999 1e-6 350 340 0.00095659983 1e-6 351 340 0.0032378 1e-6 353 340 0.0013245 1e-6 354 340 0.0011282999 1e-6 355 340 2.4499997e-05 1e-6 356 340 0.00041699992 1e-6 357 340 0.00012259999 1e-6 358 340 0.020309497 1e-6 366 340 7.3599993e-05 1e-6 369 340 0.00012259999 1e-6 370 340 9.809999e-05 1e-6 371 340 0.00095659983 1e-6 372 340 0.0013245 1e-6 373 340 0.0015452998 1e-6 374 340 0.00058869994 1e-6 375 340 2.4499997e-05 1e-6 376 340 2.4499997e-05 1e-6 384 340 9.809999e-05 1e-6 385 340 9.809999e-05 1e-6 386 340 0.0001717 1e-6 387 340 0.00012259999 1e-6 390 340 4.9099996e-05 1e-6 392 340 9.809999e-05 1e-6 393 340 0.00026979996 1e-6 394 340 7.3599993e-05 1e-6 397 340 0.00026979996 1e-6 398 340 7.3599993e-05 1e-6 399 340 2.4499997e-05 1e-6 401 340 0.00039249985 1e-6 402 340 0.0032867999 1e-6 404 340 7.3599993e-05 1e-6 405 340 0.0001717 1e-6 414 340 9.809999e-05 1e-6 415 340 2.4499997e-05 1e-6 417 340 0.00068679987 1e-6 419 340 2.4499997e-05 1e-6 420 340 2.4499997e-05 1e-6 421 340 7.3599993e-05 1e-6 422 340 0.00012259999 1e-6 423 340 4.9099996e-05 1e-6 424 340 0.00071129994 1e-6 425 340 2.4499997e-05 1e-6 430 340 4.9099996e-05 1e-6 431 340 4.9099996e-05 1e-6 432 340 2.4499997e-05 1e-6 433 340 4.9099996e-05 1e-6 434 340 4.9099996e-05 1e-6 441 340 4.9099996e-05 1e-6 442 340 4.9099996e-05 1e-6 443 340 0.0025754999 1e-6 444 340 0.00061319978 1e-6 445 340 0.0030169999 1e-6 446 340 0.00034339982 1e-6 447 340 0.0025263999 1e-6 448 340 2.4499997e-05 1e-6 450 340 0.0048565976 1e-6 452 340 0.0076773986 1e-6 453 340 0.0018886998 1e-6 454 340 0.00024529989 1e-6 455 340 0.019009497 1e-6 456 340 0.00083399983 1e-6 457 340 0.0035075999 1e-6 458 340 0.0007358999 1e-6 459 340 0.00056419987 1e-6 460 340 0.0012999999 1e-6 463 340 0.0094188973 1e-6 464 340 0.00049059978 1e-6 465 340 0.0012263998 1e-6 467 340 0.012215197 1e-6 468 340 0.0018642 1e-6 469 340 0.0062301978 1e-6 470 340 0.0068924986 1e-6 471 340 0.0014962 1e-6 473 340 0.00014719999 1e-6 477 340 0.00012259999 1e-6 478 340 0.0014471998 1e-6 479 340 2.4499997e-05 1e-6 483 340 0.0014962 1e-6 489 340 4.9099996e-05 1e-6 490 340 0.0038019 1e-6 491 340 0.0014225999 1e-6 19 341 0.0001582 1e-6 22 341 0.0001582 1e-6 60 341 0.0014240998 1e-6 108 341 0.0001582 1e-6 114 341 0.0001582 1e-6 126 341 0.0001582 1e-6 150 341 0.0001582 1e-6 160 341 0.0012657999 1e-6 171 341 0.00031649997 1e-6 172 341 0.00094939978 1e-6 189 341 0.0001582 1e-6 190 341 0.0001582 1e-6 194 341 0.0001582 1e-6 198 341 0.0068037994 1e-6 203 341 0.00031649997 1e-6 206 341 0.00047469977 1e-6 214 341 0.00079109985 1e-6 223 341 0.0017404999 1e-6 234 341 0.0080695972 1e-6 237 341 0.0001582 1e-6 240 341 0.0018986999 1e-6 241 341 0.012025297 1e-6 267 341 0.0001582 1e-6 270 341 0.0022151999 1e-6 276 341 0.0042721964 1e-6 277 341 0.041139197 1e-6 279 341 0.00079109985 1e-6 282 341 0.013291098 1e-6 283 341 0.0026898999 1e-6 284 341 0.0031645999 1e-6 285 341 0.011075899 1e-6 286 341 0.00047469977 1e-6 288 341 0.00031649997 1e-6 289 341 0.0014240998 1e-6 292 341 0.0015822998 1e-6 293 341 0.0020569998 1e-6 294 341 0.015189897 1e-6 295 341 0.013449397 1e-6 296 341 0.032911398 1e-6 297 341 0.0011075998 1e-6 298 341 0.0128165 1e-6 307 341 0.0088607967 1e-6 312 341 0.011075899 1e-6 315 341 0.0026898999 1e-6 317 341 0.00079109985 1e-6 318 341 0.0022151999 1e-6 320 341 0.0031645999 1e-6 321 341 0.0001582 1e-6 322 341 0.0001582 1e-6 326 341 0.0001582 1e-6 328 341 0.0001582 1e-6 331 341 0.0001582 1e-6 332 341 0.0001582 1e-6 338 341 0.0001582 1e-6 339 341 0.0001582 1e-6 340 341 0.036392398 1e-6 341 341 0.0049050972 1e-6 344 341 0.0001582 1e-6 350 341 0.0001582 1e-6 351 341 0.014873397 1e-6 353 341 0.0001582 1e-6 354 341 0.0128165 1e-6 356 341 0.00094939978 1e-6 358 341 0.014398698 1e-6 371 341 0.0063290969 1e-6 372 341 0.0131329 1e-6 373 341 0.0344937 1e-6 386 341 0.0068037994 1e-6 387 341 0.0001582 1e-6 417 341 0.00063289981 1e-6 421 341 0.0001582 1e-6 422 341 0.0001582 1e-6 430 341 0.0001582 1e-6 434 341 0.0001582 1e-6 443 341 0.0017404999 1e-6 444 341 0.00079109985 1e-6 445 341 0.0037974999 1e-6 447 341 0.0075948983 1e-6 450 341 0.0036391998 1e-6 452 341 0.005854398 1e-6 453 341 0.0014240998 1e-6 454 341 0.00063289981 1e-6 455 341 0.031329099 1e-6 456 341 0.00079109985 1e-6 457 341 0.0036391998 1e-6 458 341 0.0011075998 1e-6 459 341 0.00047469977 1e-6 460 341 0.0011075998 1e-6 463 341 0.012183499 1e-6 464 341 0.00079109985 1e-6 465 341 0.00094939978 1e-6 467 341 0.0099683963 1e-6 468 341 0.0028480999 1e-6 469 341 0.0066455975 1e-6 470 341 0.0074366964 1e-6 471 341 0.00094939978 1e-6 472 341 0.0014240998 1e-6 473 341 0.0001582 1e-6 477 341 0.00031649997 1e-6 478 341 0.0012657999 1e-6 483 341 0.0012657999 1e-6 490 341 0.0020569998 1e-6 491 341 0.0026898999 1e-6 22 342 0.00036019995 1e-6 24 342 0.00036019995 1e-6 60 342 0.0072045997 1e-6 108 342 0.00036019995 1e-6 114 342 0.00072049978 1e-6 126 342 0.00036019995 1e-6 160 342 0.0010807 1e-6 172 342 0.00072049978 1e-6 206 342 0.00072049978 1e-6 223 342 0.0021613999 1e-6 234 342 0.0068443976 1e-6 240 342 0.0057636984 1e-6 270 342 0.0018012 1e-6 276 342 0.0010807 1e-6 277 342 0.049351599 1e-6 278 342 0.0014408999 1e-6 282 342 0.015129697 1e-6 283 342 0.032780997 1e-6 284 342 0.0032420999 1e-6 285 342 0.00036019995 1e-6 290 342 0.00036019995 1e-6 292 342 0.0010807 1e-6 294 342 0.012247797 1e-6 295 342 0.0010807 1e-6 296 342 0.00036019995 1e-6 297 342 0.0039624982 1e-6 298 342 0.0043227971 1e-6 307 342 0.0064840987 1e-6 312 342 0.0093659982 1e-6 315 342 0.0025215999 1e-6 317 342 0.00072049978 1e-6 328 342 0.00036019995 1e-6 338 342 0.00036019995 1e-6 339 342 0.0093659982 1e-6 340 342 0.013688799 1e-6 341 342 0.00036019995 1e-6 342 342 0.013328496 1e-6 349 342 0.00036019995 1e-6 350 342 0.0223343 1e-6 351 342 0.011167098 1e-6 353 342 0.0014408999 1e-6 354 342 0.011527397 1e-6 356 342 0.0014408999 1e-6 358 342 0.027017299 1e-6 370 342 0.00036019995 1e-6 371 342 0.0028817998 1e-6 372 342 0.0028817998 1e-6 373 342 0.0162104 1e-6 374 342 0.00036019995 1e-6 375 342 0.00072049978 1e-6 386 342 0.0036022998 1e-6 387 342 0.00036019995 1e-6 417 342 0.00072049978 1e-6 443 342 0.0021613999 1e-6 444 342 0.00072049978 1e-6 445 342 0.0028817998 1e-6 447 342 0.0010807 1e-6 450 342 0.0036022998 1e-6 452 342 0.0079250969 1e-6 453 342 0.0068443976 1e-6 454 342 0.00072049978 1e-6 455 342 0.024495699 1e-6 456 342 0.00036019995 1e-6 457 342 0.0039624982 1e-6 458 342 0.00072049978 1e-6 459 342 0.00036019995 1e-6 460 342 0.0010807 1e-6 463 342 0.0025215999 1e-6 464 342 0.00036019995 1e-6 465 342 0.00072049978 1e-6 467 342 0.011167098 1e-6 468 342 0.0010807 1e-6 469 342 0.0079250969 1e-6 470 342 0.0090057999 1e-6 471 342 0.0010807 1e-6 473 342 0.00036019995 1e-6 478 342 0.0010807 1e-6 483 342 0.0018012 1e-6 490 342 0.0014408999 1e-6 491 342 0.0108069 1e-6 60 343 0.0016154998 1e-6 108 343 0.0002308 1e-6 114 343 0.00046159979 1e-6 126 343 0.0002308 1e-6 142 343 0.0002308 1e-6 160 343 0.0011538998 1e-6 172 343 0.00092309993 1e-6 194 343 0.0002308 1e-6 198 343 0.00069239992 1e-6 206 343 0.00069239992 1e-6 214 343 0.0011538998 1e-6 223 343 0.0023079 1e-6 233 343 0.0002308 1e-6 234 343 0.0060004964 1e-6 236 343 0.0002308 1e-6 237 343 0.0002308 1e-6 240 343 0.0011538998 1e-6 241 343 0.0062311999 1e-6 270 343 0.0018463 1e-6 277 343 0.045465 1e-6 282 343 0.013385598 1e-6 283 343 0.0018463 1e-6 284 343 0.0030001998 1e-6 285 343 0.0057696998 1e-6 286 343 0.0002308 1e-6 289 343 0.0066927969 1e-6 290 343 0.0002308 1e-6 292 343 0.018924497 1e-6 293 343 0.0027693999 1e-6 294 343 0.010616198 1e-6 295 343 0.0025386999 1e-6 296 343 0.0043849982 1e-6 297 343 0.0053080991 1e-6 298 343 0.0034617998 1e-6 307 343 0.010846999 1e-6 312 343 0.012231696 1e-6 315 343 0.0078467987 1e-6 317 343 0.00046159979 1e-6 318 343 0.0002308 1e-6 320 343 0.0023079 1e-6 321 343 0.00046159979 1e-6 322 343 0.0069235973 1e-6 324 343 0.0002308 1e-6 326 343 0.0080774985 1e-6 328 343 0.00069239992 1e-6 338 343 0.00046159979 1e-6 339 343 0.00092309993 1e-6 340 343 0.026540499 1e-6 341 343 0.0002308 1e-6 343 343 0.0270021 1e-6 347 343 0.0002308 1e-6 349 343 0.00046159979 1e-6 350 343 0.0120009 1e-6 351 343 0.0055388995 1e-6 353 343 0.0002308 1e-6 354 343 0.011539299 1e-6 355 343 0.0002308 1e-6 356 343 0.0016154998 1e-6 358 343 0.016616698 1e-6 370 343 0.00046159979 1e-6 371 343 0.0023079 1e-6 372 343 0.0120009 1e-6 373 343 0.014539599 1e-6 374 343 0.00046159979 1e-6 387 343 0.0002308 1e-6 401 343 0.0002308 1e-6 402 343 0.0002308 1e-6 405 343 0.0002308 1e-6 417 343 0.00046159979 1e-6 443 343 0.0013846999 1e-6 444 343 0.0023079 1e-6 445 343 0.0090007 1e-6 447 343 0.011077799 1e-6 450 343 0.0041541979 1e-6 452 343 0.0053080991 1e-6 453 343 0.0016154998 1e-6 454 343 0.0002308 1e-6 455 343 0.025155798 1e-6 456 343 0.00046159979 1e-6 457 343 0.0036925999 1e-6 458 343 0.00069239992 1e-6 459 343 0.00046159979 1e-6 460 343 0.00069239992 1e-6 463 343 0.013847198 1e-6 464 343 0.00069239992 1e-6 465 343 0.00092309993 1e-6 467 343 0.010616198 1e-6 468 343 0.0016154998 1e-6 469 343 0.0083082989 1e-6 470 343 0.0092314966 1e-6 471 343 0.00069239992 1e-6 473 343 0.0002308 1e-6 478 343 0.0013846999 1e-6 483 343 0.00069239992 1e-6 490 343 0.0011538998 1e-6 491 343 0.0032309999 1e-6 9 344 0.00010729999 1e-6 22 344 0.00010729999 1e-6 60 344 0.0025758999 1e-6 82 344 0.00010729999 1e-6 108 344 0.00010729999 1e-6 114 344 0.00021469999 1e-6 126 344 0.00010729999 1e-6 142 344 0.00010729999 1e-6 150 344 0.00010729999 1e-6 160 344 0.0038639 1e-6 169 344 0.00085859979 1e-6 171 344 0.00010729999 1e-6 172 344 0.00042929989 1e-6 187 344 0.00010729999 1e-6 188 344 0.00021469999 1e-6 189 344 0.00010729999 1e-6 190 344 0.00010729999 1e-6 194 344 0.00021469999 1e-6 198 344 0.00053669978 1e-6 200 344 0.00010729999 1e-6 203 344 0.00010729999 1e-6 204 344 0.00010729999 1e-6 206 344 0.00021469999 1e-6 214 344 0.0010732999 1e-6 223 344 0.00021469999 1e-6 224 344 0.00021469999 1e-6 233 344 0.00042929989 1e-6 234 344 0.0064397976 1e-6 236 344 0.00021469999 1e-6 237 344 0.00021469999 1e-6 240 344 0.00021469999 1e-6 241 344 0.0052591972 1e-6 242 344 0.0086937994 1e-6 252 344 0.00021469999 1e-6 270 344 0.00021469999 1e-6 272 344 0.00010729999 1e-6 277 344 0.066759646 1e-6 282 344 0.0226468 1e-6 283 344 0.0031126 1e-6 284 344 0.0018245999 1e-6 285 344 0.0010732999 1e-6 286 344 0.00010729999 1e-6 289 344 0.00021469999 1e-6 292 344 0.0017172999 1e-6 293 344 0.004937198 1e-6 294 344 0.0015025998 1e-6 295 344 0.0095523968 1e-6 296 344 0.0047225989 1e-6 297 344 0.0024685999 1e-6 298 344 0.00010729999 1e-6 299 344 0.00010729999 1e-6 301 344 0.00010729999 1e-6 307 344 0.012665 1e-6 312 344 0.0027905998 1e-6 314 344 0.00042929989 1e-6 315 344 0.0078350976 1e-6 319 344 0.00010729999 1e-6 320 344 0.00021469999 1e-6 321 344 0.0053664967 1e-6 322 344 0.0048298985 1e-6 324 344 0.0059031993 1e-6 326 344 0.0040785968 1e-6 328 344 0.00053669978 1e-6 329 344 0.00021469999 1e-6 331 344 0.00010729999 1e-6 338 344 0.0015025998 1e-6 339 344 0.00075129978 1e-6 340 344 0.0080497973 1e-6 341 344 0.00021469999 1e-6 344 344 0.047654796 1e-6 347 344 0.00064399978 1e-6 349 344 0.00042929989 1e-6 350 344 0.0061177984 1e-6 351 344 0.0084790997 1e-6 352 344 0.0012879998 1e-6 354 344 0.018890198 1e-6 356 344 0.0010732999 1e-6 358 344 0.018031597 1e-6 362 344 0.00096599991 1e-6 366 344 0.0030053 1e-6 371 344 0.0015025998 1e-6 372 344 0.015884899 1e-6 373 344 0.0084790997 1e-6 386 344 0.00010729999 1e-6 387 344 0.00010729999 1e-6 393 344 0.00010729999 1e-6 402 344 0.00021469999 1e-6 417 344 0.00053669978 1e-6 421 344 0.00010729999 1e-6 422 344 0.00021469999 1e-6 430 344 0.00010729999 1e-6 443 344 0.0021465998 1e-6 444 344 0.00042929989 1e-6 445 344 0.0040785968 1e-6 446 344 0.00021469999 1e-6 447 344 0.011913698 1e-6 450 344 0.0044005997 1e-6 452 344 0.0050444975 1e-6 453 344 0.0016099999 1e-6 454 344 0.00032199989 1e-6 455 344 0.0296233 1e-6 456 344 0.00085859979 1e-6 457 344 0.0042931996 1e-6 458 344 0.00064399978 1e-6 459 344 0.00032199989 1e-6 460 344 0.0010732999 1e-6 463 344 0.023290798 1e-6 464 344 0.00053669978 1e-6 465 344 0.0011805999 1e-6 467 344 0.0099817999 1e-6 468 344 0.0015025998 1e-6 469 344 0.0078350976 1e-6 470 344 0.0085864998 1e-6 471 344 0.00096599991 1e-6 473 344 0.00021469999 1e-6 477 344 0.00010729999 1e-6 478 344 0.0012879998 1e-6 483 344 0.0020392998 1e-6 490 344 0.00075129978 1e-6 491 344 0.0042931996 1e-6 60 345 0.0033787999 1e-6 82 345 0.00012999999 1e-6 108 345 0.00012999999 1e-6 114 345 0.00012999999 1e-6 126 345 0.00012999999 1e-6 130 345 0.0005198 1e-6 150 345 0.00012999999 1e-6 160 345 0.005847998 1e-6 161 345 0.0015594999 1e-6 172 345 0.00038989983 1e-6 189 345 0.00012999999 1e-6 190 345 0.00012999999 1e-6 194 345 0.0002599 1e-6 200 345 0.00012999999 1e-6 203 345 0.00012999999 1e-6 204 345 0.00012999999 1e-6 206 345 0.0002599 1e-6 214 345 0.00064979983 1e-6 218 345 0.00012999999 1e-6 222 345 0.00012999999 1e-6 224 345 0.00012999999 1e-6 225 345 0.0005198 1e-6 234 345 0.0090967976 1e-6 236 345 0.00012999999 1e-6 237 345 0.00012999999 1e-6 240 345 0.00012999999 1e-6 241 345 0.017023999 1e-6 242 345 0.0057179965 1e-6 277 345 0.079662085 1e-6 282 345 0.033138398 1e-6 283 345 0.0015594999 1e-6 284 345 0.0022091998 1e-6 290 345 0.0031188999 1e-6 292 345 0.0018193999 1e-6 293 345 0.012085799 1e-6 294 345 0.0031188999 1e-6 296 345 0.011305999 1e-6 305 345 0.00012999999 1e-6 307 345 0.0010396 1e-6 312 345 0.010526299 1e-6 317 345 0.0011695998 1e-6 319 345 0.00012999999 1e-6 324 345 0.0025990999 1e-6 326 345 0.00012999999 1e-6 328 345 0.00012999999 1e-6 331 345 0.00012999999 1e-6 338 345 0.0027289998 1e-6 340 345 0.007017497 1e-6 341 345 0.00038989983 1e-6 344 345 0.00012999999 1e-6 345 345 0.043534797 1e-6 347 345 0.00012999999 1e-6 349 345 0.00012999999 1e-6 350 345 0.0038985999 1e-6 351 345 0.0109162 1e-6 354 345 0.014684897 1e-6 356 345 0.0005198 1e-6 358 345 0.0162443 1e-6 366 345 0.00012999999 1e-6 371 345 0.0014294998 1e-6 372 345 0.011176098 1e-6 373 345 0.0081870966 1e-6 387 345 0.00012999999 1e-6 417 345 0.00064979983 1e-6 421 345 0.00012999999 1e-6 422 345 0.0002599 1e-6 430 345 0.00012999999 1e-6 443 345 0.0024690998 1e-6 444 345 0.0005198 1e-6 445 345 0.0042884983 1e-6 446 345 0.0002599 1e-6 447 345 0.0011695998 1e-6 450 345 0.004938297 1e-6 452 345 0.007017497 1e-6 453 345 0.0012995 1e-6 454 345 0.00038989983 1e-6 455 345 0.026640698 1e-6 456 345 0.0010396 1e-6 457 345 0.0038985999 1e-6 458 345 0.0012995 1e-6 459 345 0.0005198 1e-6 460 345 0.0012995 1e-6 463 345 0.010396399 1e-6 464 345 0.0005198 1e-6 465 345 0.0012995 1e-6 467 345 0.011695899 1e-6 468 345 0.0016893998 1e-6 469 345 0.007407397 1e-6 470 345 0.0084469989 1e-6 471 345 0.0010396 1e-6 473 345 0.0002599 1e-6 477 345 0.00012999999 1e-6 478 345 0.0016893998 1e-6 483 345 0.0022091998 1e-6 490 345 0.017023999 1e-6 491 345 0.0053280964 1e-6 60 346 0.0017275 1e-6 108 346 0.0002159 1e-6 114 346 0.00043189991 1e-6 126 346 0.0002159 1e-6 160 346 0.0023752998 1e-6 194 346 0.0002159 1e-6 198 346 0.0090692975 1e-6 206 346 0.00043189991 1e-6 214 346 0.0002159 1e-6 233 346 0.0047505982 1e-6 234 346 0.0056142993 1e-6 236 346 0.0002159 1e-6 237 346 0.00064779981 1e-6 241 346 0.0095011964 1e-6 242 346 0.0071258992 1e-6 270 346 0.0060461983 1e-6 272 346 0.00064779981 1e-6 277 346 0.041675698 1e-6 282 346 0.029799197 1e-6 283 346 0.010580897 1e-6 284 346 0.0017275 1e-6 285 346 0.0088533983 1e-6 293 346 0.0010797 1e-6 294 346 0.0002159 1e-6 295 346 0.0002159 1e-6 296 346 0.015331499 1e-6 297 346 0.0002159 1e-6 298 346 0.00043189991 1e-6 307 346 0.0097170994 1e-6 311 346 0.0010797 1e-6 312 346 0.00064779981 1e-6 315 346 0.0002159 1e-6 317 346 0.0002159 1e-6 318 346 0.0002159 1e-6 320 346 0.0062620975 1e-6 328 346 0.093284369 1e-6 330 346 0.0010797 1e-6 331 346 0.0002159 1e-6 338 346 0.0017275 1e-6 339 346 0.0002159 1e-6 340 346 0.06780386 1e-6 341 346 0.0002159 1e-6 346 346 0.0051824972 1e-6 347 346 0.0002159 1e-6 350 346 0.00086369994 1e-6 351 346 0.014683697 1e-6 353 346 0.0066939965 1e-6 354 346 0.0015115999 1e-6 356 346 0.0002159 1e-6 358 346 0.021377698 1e-6 371 346 0.0002159 1e-6 372 346 0.0246167 1e-6 373 346 0.0017275 1e-6 387 346 0.0002159 1e-6 395 346 0.0002159 1e-6 417 346 0.00064779981 1e-6 443 346 0.0017275 1e-6 444 346 0.0095011964 1e-6 445 346 0.0041027963 1e-6 447 346 0.011876497 1e-6 450 346 0.0038867998 1e-6 452 346 0.0047505982 1e-6 453 346 0.0019433999 1e-6 454 346 0.00086369994 1e-6 455 346 0.031742599 1e-6 456 346 0.00043189991 1e-6 457 346 0.0043186992 1e-6 458 346 0.00064779981 1e-6 459 346 0.00043189991 1e-6 460 346 0.00064779981 1e-6 463 346 0.025696397 1e-6 464 346 0.00086369994 1e-6 465 346 0.00064779981 1e-6 467 346 0.0090692975 1e-6 468 346 0.0012955999 1e-6 469 346 0.0060461983 1e-6 470 346 0.0064780973 1e-6 471 346 0.00064779981 1e-6 473 346 0.0002159 1e-6 478 346 0.0010797 1e-6 483 346 0.0012955999 1e-6 490 346 0.00064779981 1e-6 491 346 0.003239 1e-6 60 347 0.0046533979 1e-6 108 347 0.00024489989 1e-6 114 347 0.00048979977 1e-6 126 347 0.00024489989 1e-6 142 347 0.00024489989 1e-6 160 347 0.0034288999 1e-6 169 347 0.00073479977 1e-6 172 347 0.00097969989 1e-6 187 347 0.00024489989 1e-6 188 347 0.00048979977 1e-6 189 347 0.00024489989 1e-6 190 347 0.00024489989 1e-6 194 347 0.00024489989 1e-6 206 347 0.00048979977 1e-6 214 347 0.0029389998 1e-6 223 347 0.00024489989 1e-6 234 347 0.0063678995 1e-6 236 347 0.00024489989 1e-6 237 347 0.00024489989 1e-6 240 347 0.0097966976 1e-6 241 347 0.00024489989 1e-6 242 347 0.00024489989 1e-6 252 347 0.00024489989 1e-6 270 347 0.00048979977 1e-6 277 347 0.066372752 1e-6 282 347 0.023022298 1e-6 283 347 0.012735698 1e-6 284 347 0.0019592999 1e-6 285 347 0.00024489989 1e-6 286 347 0.00048979977 1e-6 289 347 0.00048979977 1e-6 290 347 0.00024489989 1e-6 292 347 0.0031838999 1e-6 293 347 0.00024489989 1e-6 294 347 0.00073479977 1e-6 295 347 0.0036737998 1e-6 296 347 0.00024489989 1e-6 305 347 0.00024489989 1e-6 307 347 0.0058779977 1e-6 312 347 0.0034288999 1e-6 320 347 0.00048979977 1e-6 321 347 0.00048979977 1e-6 322 347 0.0024491998 1e-6 324 347 0.0036737998 1e-6 326 347 0.00024489989 1e-6 328 347 0.00048979977 1e-6 332 347 0.00048979977 1e-6 338 347 0.0026940999 1e-6 340 347 0.0061228983 1e-6 341 347 0.00048979977 1e-6 347 347 0.064903259 1e-6 349 347 0.0014694999 1e-6 350 347 0.00048979977 1e-6 351 347 0.015674699 1e-6 354 347 0.027675699 1e-6 356 347 0.00048979977 1e-6 358 347 0.031349499 1e-6 371 347 0.0034288999 1e-6 372 347 0.013715398 1e-6 373 347 0.017634097 1e-6 387 347 0.00024489989 1e-6 390 347 0.00024489989 1e-6 393 347 0.00024489989 1e-6 408 347 0.00024489989 1e-6 417 347 0.00048979977 1e-6 443 347 0.0012245998 1e-6 444 347 0.00048979977 1e-6 445 347 0.013715398 1e-6 447 347 0.0012245998 1e-6 450 347 0.0048983991 1e-6 452 347 0.0058779977 1e-6 453 347 0.0019592999 1e-6 454 347 0.00024489989 1e-6 455 347 0.038696997 1e-6 456 347 0.00048979977 1e-6 457 347 0.0039186999 1e-6 458 347 0.00073479977 1e-6 459 347 0.00048979977 1e-6 460 347 0.0012245998 1e-6 463 347 0.016899299 1e-6 464 347 0.00048979977 1e-6 465 347 0.00097969989 1e-6 467 347 0.012000997 1e-6 468 347 0.0012245998 1e-6 469 347 0.0088169985 1e-6 470 347 0.0097966976 1e-6 471 347 0.0014694999 1e-6 473 347 0.00024489989 1e-6 478 347 0.0017143998 1e-6 483 347 0.0026940999 1e-6 490 347 0.00097969989 1e-6 491 347 0.012000997 1e-6 22 348 0.0001314 1e-6 24 348 0.0001314 1e-6 60 348 0.0031545998 1e-6 108 348 0.0001314 1e-6 114 348 0.0001314 1e-6 120 348 0.0001314 1e-6 126 348 0.0001314 1e-6 130 348 0.00052579981 1e-6 140 348 0.00039429986 1e-6 150 348 0.0001314 1e-6 160 348 0.0067034997 1e-6 172 348 0.00052579981 1e-6 187 348 0.0010515 1e-6 189 348 0.0001314 1e-6 190 348 0.0001314 1e-6 194 348 0.00026289979 1e-6 198 348 0.00039429986 1e-6 204 348 0.00026289979 1e-6 206 348 0.00026289979 1e-6 208 348 0.0001314 1e-6 211 348 0.0001314 1e-6 214 348 0.0010515 1e-6 218 348 0.0001314 1e-6 221 348 0.0001314 1e-6 222 348 0.0001314 1e-6 223 348 0.00026289979 1e-6 224 348 0.00052579981 1e-6 225 348 0.0009200999 1e-6 227 348 0.0001314 1e-6 234 348 0.0064405985 1e-6 236 348 0.0001314 1e-6 237 348 0.0001314 1e-6 240 348 0.00039429986 1e-6 241 348 0.0024973999 1e-6 242 348 0.0092007965 1e-6 243 348 0.0001314 1e-6 270 348 0.0032859999 1e-6 277 348 0.025499497 1e-6 282 348 0.033385899 1e-6 283 348 0.0093322992 1e-6 284 348 0.0017086999 1e-6 290 348 0.0013144 1e-6 292 348 0.0162986 1e-6 293 348 0.0056518987 1e-6 294 348 0.0013144 1e-6 295 348 0.0009200999 1e-6 296 348 0.0047318973 1e-6 301 348 0.0001314 1e-6 307 348 0.0077549964 1e-6 308 348 0.0013144 1e-6 312 348 0.0051261969 1e-6 315 348 0.0001314 1e-6 317 348 0.0014457998 1e-6 320 348 0.0001314 1e-6 322 348 0.0015772998 1e-6 324 348 0.0014457998 1e-6 340 348 0.0086750984 1e-6 341 348 0.00026289979 1e-6 345 348 0.0001314 1e-6 347 348 0.00078859995 1e-6 348 348 0.054942198 1e-6 350 348 0.0068348981 1e-6 351 348 0.011698198 1e-6 353 348 0.0001314 1e-6 354 348 0.027733997 1e-6 356 348 0.00052579981 1e-6 358 348 0.016693 1e-6 359 348 0.0042060986 1e-6 361 348 0.0001314 1e-6 369 348 0.00026289979 1e-6 371 348 0.0015772998 1e-6 372 348 0.013144098 1e-6 373 348 0.0098579973 1e-6 386 348 0.00026289979 1e-6 387 348 0.0001314 1e-6 392 348 0.0009200999 1e-6 393 348 0.0057833977 1e-6 417 348 0.00039429986 1e-6 422 348 0.00039429986 1e-6 430 348 0.00052579981 1e-6 443 348 0.0015772998 1e-6 444 348 0.0052575991 1e-6 445 348 0.0039431974 1e-6 446 348 0.0001314 1e-6 447 348 0.012224 1e-6 450 348 0.0039431974 1e-6 452 348 0.0051261969 1e-6 453 348 0.0009200999 1e-6 454 348 0.0030230999 1e-6 455 348 0.023922198 1e-6 456 348 0.00078859995 1e-6 457 348 0.0078863986 1e-6 458 348 0.00065719988 1e-6 459 348 0.00039429986 1e-6 460 348 0.0011829999 1e-6 463 348 0.033254497 1e-6 464 348 0.0056518987 1e-6 465 348 0.0009200999 1e-6 467 348 0.010778099 1e-6 468 348 0.0019715999 1e-6 469 348 0.007492099 1e-6 470 348 0.0082807988 1e-6 471 348 0.0010515 1e-6 473 348 0.0001314 1e-6 477 348 0.0001314 1e-6 478 348 0.0011829999 1e-6 483 348 0.0015772998 1e-6 490 348 0.0009200999 1e-6 491 348 0.0055204965 1e-6 9 349 3.8899991e-05 1e-6 18 349 0.00011659999 1e-6 21 349 3.8899991e-05 1e-6 22 349 3.8899991e-05 1e-6 60 349 0.0023705999 1e-6 77 349 7.7699995e-05 1e-6 79 349 3.8899991e-05 1e-6 82 349 3.8899991e-05 1e-6 83 349 3.8899991e-05 1e-6 84 349 3.8899991e-05 1e-6 108 349 3.8899991e-05 1e-6 113 349 7.7699995e-05 1e-6 114 349 0.00015539999 1e-6 126 349 7.7699995e-05 1e-6 127 349 3.8899991e-05 1e-6 130 349 0.00015539999 1e-6 131 349 3.8899991e-05 1e-6 135 349 0.00015539999 1e-6 142 349 0.00023319999 1e-6 150 349 0.00062179985 1e-6 158 349 3.8899991e-05 1e-6 160 349 0.0044690967 1e-6 165 349 3.8899991e-05 1e-6 168 349 3.8899991e-05 1e-6 169 349 0.00015539999 1e-6 171 349 0.00054409984 1e-6 172 349 0.00027199998 1e-6 187 349 3.8899991e-05 1e-6 189 349 7.7699995e-05 1e-6 190 349 7.7699995e-05 1e-6 191 349 3.8899991e-05 1e-6 194 349 0.00011659999 1e-6 197 349 3.8899991e-05 1e-6 198 349 0.0012435999 1e-6 200 349 3.8899991e-05 1e-6 201 349 3.8899991e-05 1e-6 203 349 7.7699995e-05 1e-6 204 349 0.00011659999 1e-6 206 349 0.00015539999 1e-6 207 349 3.8899991e-05 1e-6 214 349 0.035714298 1e-6 219 349 3.8899991e-05 1e-6 220 349 3.8899991e-05 1e-6 223 349 0.0001943 1e-6 224 349 0.00077719986 1e-6 225 349 0.00038859993 1e-6 227 349 7.7699995e-05 1e-6 233 349 0.00069949985 1e-6 234 349 0.0054406971 1e-6 236 349 0.00015539999 1e-6 237 349 0.0012824 1e-6 240 349 0.00038859993 1e-6 241 349 0.0033032999 1e-6 242 349 0.0033421 1e-6 243 349 7.7699995e-05 1e-6 248 349 3.8899991e-05 1e-6 250 349 3.8899991e-05 1e-6 251 349 0.00015539999 1e-6 252 349 0.0040416978 1e-6 262 349 7.7699995e-05 1e-6 270 349 0.0023705999 1e-6 271 349 3.8899991e-05 1e-6 272 349 0.00011659999 1e-6 274 349 0.0010103998 1e-6 275 349 3.8899991e-05 1e-6 276 349 3.8899991e-05 1e-6 277 349 0.051647797 1e-6 282 349 0.0242888 1e-6 283 349 0.0043136999 1e-6 284 349 0.0015155999 1e-6 285 349 0.0010880998 1e-6 286 349 0.0061401986 1e-6 287 349 0.00011659999 1e-6 288 349 7.7699995e-05 1e-6 289 349 0.0073060989 1e-6 290 349 0.0024482999 1e-6 292 349 0.0052463971 1e-6 293 349 0.0034586999 1e-6 294 349 0.0099486969 1e-6 295 349 0.0010493 1e-6 296 349 0.0025648999 1e-6 297 349 0.0016710998 1e-6 298 349 0.00042749988 1e-6 299 349 0.0001943 1e-6 305 349 7.7699995e-05 1e-6 307 349 0.019081298 1e-6 312 349 0.0050908998 1e-6 315 349 0.00089379982 1e-6 317 349 0.0014767998 1e-6 318 349 3.8899991e-05 1e-6 319 349 3.8899991e-05 1e-6 320 349 0.0026814998 1e-6 321 349 0.0054017976 1e-6 322 349 0.0032255999 1e-6 324 349 0.0083164982 1e-6 326 349 0.0034975999 1e-6 327 349 3.8899991e-05 1e-6 328 349 0.0036141998 1e-6 331 349 0.00015539999 1e-6 332 349 7.7699995e-05 1e-6 333 349 3.8899991e-05 1e-6 334 349 7.7699995e-05 1e-6 335 349 0.0012824 1e-6 338 349 0.0015155999 1e-6 339 349 0.00046629994 1e-6 340 349 0.0054795966 1e-6 341 349 0.0001943 1e-6 344 349 0.00066069979 1e-6 345 349 0.00011659999 1e-6 347 349 0.0018264998 1e-6 349 349 0.017021596 1e-6 350 349 0.0070728995 1e-6 351 349 0.0072283968 1e-6 352 349 0.0016321999 1e-6 353 349 7.7699995e-05 1e-6 354 349 0.027086899 1e-6 355 349 0.00050519989 1e-6 356 349 0.0010103998 1e-6 357 349 3.8899991e-05 1e-6 358 349 0.012630198 1e-6 366 349 7.7699995e-05 1e-6 369 349 0.00011659999 1e-6 370 349 0.00015539999 1e-6 371 349 0.0024094998 1e-6 372 349 0.011503197 1e-6 373 349 0.011697497 1e-6 374 349 0.00089379982 1e-6 375 349 3.8899991e-05 1e-6 384 349 3.8899991e-05 1e-6 385 349 3.8899991e-05 1e-6 386 349 0.00011659999 1e-6 387 349 7.7699995e-05 1e-6 389 349 0.00034979987 1e-6 390 349 0.00027199998 1e-6 392 349 0.00066069979 1e-6 393 349 0.0052463971 1e-6 397 349 7.7699995e-05 1e-6 398 349 0.0012047 1e-6 402 349 0.0012435999 1e-6 404 349 0.0016710998 1e-6 405 349 0.00066069979 1e-6 408 349 3.8899991e-05 1e-6 414 349 0.00015539999 1e-6 415 349 3.8899991e-05 1e-6 417 349 0.00046629994 1e-6 419 349 3.8899991e-05 1e-6 420 349 7.7699995e-05 1e-6 421 349 0.00031089992 1e-6 422 349 0.00015539999 1e-6 423 349 3.8899991e-05 1e-6 425 349 3.8899991e-05 1e-6 430 349 0.00046629994 1e-6 431 349 3.8899991e-05 1e-6 433 349 3.8899991e-05 1e-6 434 349 3.8899991e-05 1e-6 442 349 0.00011659999 1e-6 443 349 0.0034586999 1e-6 444 349 0.0012435999 1e-6 445 349 0.0049743988 1e-6 446 349 0.0011658999 1e-6 447 349 0.0051297992 1e-6 450 349 0.0089382976 1e-6 452 349 0.0053240992 1e-6 453 349 0.0014767998 1e-6 454 349 0.00031089992 1e-6 455 349 0.029301997 1e-6 456 349 0.00093269977 1e-6 457 349 0.0041581988 1e-6 458 349 0.00054409984 1e-6 459 349 0.00050519989 1e-6 460 349 0.001127 1e-6 463 349 0.023433898 1e-6 464 349 0.0005828999 1e-6 465 349 0.00097159995 1e-6 467 349 0.010181896 1e-6 468 349 0.0019041998 1e-6 469 349 0.006917499 1e-6 470 349 0.0077723972 1e-6 471 349 0.0025648999 1e-6 473 349 0.00015539999 1e-6 477 349 0.00015539999 1e-6 478 349 0.0011658999 1e-6 479 349 3.8899991e-05 1e-6 483 349 0.0013989999 1e-6 489 349 3.8899991e-05 1e-6 490 349 0.00085499999 1e-6 491 349 0.0014378999 1e-6 9 350 3.9599996e-05 1e-6 18 350 7.9199992e-05 1e-6 19 350 3.9599996e-05 1e-6 22 350 0.0001583 1e-6 24 350 3.9599996e-05 1e-6 60 350 0.0024146999 1e-6 79 350 3.9599996e-05 1e-6 82 350 7.9199992e-05 1e-6 83 350 3.9599996e-05 1e-6 84 350 3.9599996e-05 1e-6 108 350 7.9199992e-05 1e-6 113 350 7.9199992e-05 1e-6 114 350 0.00019789999 1e-6 126 350 0.00011879999 1e-6 127 350 3.9599996e-05 1e-6 142 350 3.9599996e-05 1e-6 150 350 0.00059379986 1e-6 151 350 3.9599996e-05 1e-6 160 350 0.0025334 1e-6 169 350 0.00019789999 1e-6 171 350 3.9599996e-05 1e-6 172 350 0.00075209979 1e-6 187 350 0.00031669997 1e-6 188 350 0.0003562998 1e-6 189 350 0.00011879999 1e-6 190 350 0.00011879999 1e-6 192 350 0.0002770999 1e-6 194 350 0.0001583 1e-6 197 350 0.00031669997 1e-6 198 350 0.0027313998 1e-6 200 350 7.9199992e-05 1e-6 201 350 3.9599996e-05 1e-6 203 350 7.9199992e-05 1e-6 204 350 3.9599996e-05 1e-6 206 350 0.0001583 1e-6 207 350 3.9599996e-05 1e-6 214 350 0.00047499989 1e-6 224 350 7.9199992e-05 1e-6 233 350 7.9199992e-05 1e-6 234 350 0.0058982 1e-6 237 350 0.0002770999 1e-6 240 350 0.00011879999 1e-6 241 350 0.0055022985 1e-6 242 350 0.0093420967 1e-6 248 350 3.9599996e-05 1e-6 250 350 3.9599996e-05 1e-6 252 350 0.00011879999 1e-6 270 350 0.00011879999 1e-6 271 350 3.9599996e-05 1e-6 272 350 0.0049480982 1e-6 276 350 3.9599996e-05 1e-6 277 350 0.040376898 1e-6 282 350 0.067809343 1e-6 283 350 0.010410897 1e-6 284 350 0.0016229998 1e-6 285 350 3.9599996e-05 1e-6 286 350 0.0013458999 1e-6 289 350 0.00011879999 1e-6 290 350 0.00019789999 1e-6 292 350 0.0043147989 1e-6 293 350 0.0012667 1e-6 294 350 0.0060564987 1e-6 295 350 0.0027313998 1e-6 296 350 0.0068085976 1e-6 297 350 0.0090649985 1e-6 298 350 0.0001583 1e-6 299 350 0.0019792998 1e-6 304 350 0.0001583 1e-6 305 350 0.00011879999 1e-6 307 350 0.0129839 1e-6 308 350 7.9199992e-05 1e-6 312 350 0.013894398 1e-6 313 350 7.9199992e-05 1e-6 315 350 0.0005541998 1e-6 317 350 3.9599996e-05 1e-6 320 350 0.00019789999 1e-6 321 350 0.0012270999 1e-6 322 350 0.00011879999 1e-6 324 350 0.014369398 1e-6 326 350 0.00019789999 1e-6 327 350 0.00039589987 1e-6 328 350 0.0134985 1e-6 329 350 7.9199992e-05 1e-6 331 350 0.0003562998 1e-6 332 350 0.00019789999 1e-6 333 350 0.0003562998 1e-6 338 350 0.0017021999 1e-6 339 350 3.9599996e-05 1e-6 340 350 0.010252599 1e-6 341 350 0.0002770999 1e-6 349 350 0.00011879999 1e-6 350 350 0.028738797 1e-6 351 350 0.010410897 1e-6 352 350 0.0001583 1e-6 353 350 3.9599996e-05 1e-6 354 350 0.014092296 1e-6 355 350 3.9599996e-05 1e-6 356 350 0.0033251999 1e-6 357 350 0.00011879999 1e-6 358 350 0.016665298 1e-6 366 350 0.00011879999 1e-6 367 350 0.0002770999 1e-6 368 350 7.9199992e-05 1e-6 369 350 3.9599996e-05 1e-6 370 350 0.0026521999 1e-6 371 350 0.004987698 1e-6 372 350 0.049164798 1e-6 373 350 0.0027709999 1e-6 375 350 7.9199992e-05 1e-6 376 350 0.0001583 1e-6 384 350 3.9599996e-05 1e-6 386 350 7.9199992e-05 1e-6 387 350 0.00011879999 1e-6 390 350 3.9599996e-05 1e-6 392 350 3.9599996e-05 1e-6 393 350 0.00094999978 1e-6 397 350 0.00047499989 1e-6 398 350 7.9199992e-05 1e-6 401 350 3.9599996e-05 1e-6 402 350 0.00071249995 1e-6 404 350 0.00019789999 1e-6 405 350 0.00019789999 1e-6 408 350 0.00011879999 1e-6 413 350 3.9599996e-05 1e-6 414 350 0.0016229998 1e-6 415 350 0.00011879999 1e-6 417 350 0.00043539982 1e-6 419 350 7.9199992e-05 1e-6 421 350 7.9199992e-05 1e-6 422 350 0.0001583 1e-6 423 350 3.9599996e-05 1e-6 425 350 3.9599996e-05 1e-6 430 350 7.9199992e-05 1e-6 431 350 3.9599996e-05 1e-6 433 350 3.9599996e-05 1e-6 434 350 3.9599996e-05 1e-6 443 350 0.0019397 1e-6 444 350 0.0020979999 1e-6 445 350 0.0053439997 1e-6 446 350 0.00023749999 1e-6 447 350 0.0041959994 1e-6 450 350 0.0051064976 1e-6 452 350 0.0054231994 1e-6 453 350 0.0018208998 1e-6 454 350 0.0005541998 1e-6 455 350 0.033924498 1e-6 456 350 0.00091049983 1e-6 457 350 0.0037606 1e-6 458 350 0.00083129993 1e-6 459 350 0.0013062998 1e-6 460 350 0.00098959985 1e-6 463 350 0.0067690983 1e-6 464 350 0.00067289989 1e-6 465 350 0.0011083998 1e-6 467 350 0.011083797 1e-6 468 350 0.004275199 1e-6 469 350 0.0088274963 1e-6 470 350 0.0099358968 1e-6 471 350 0.0026917998 1e-6 473 350 0.00023749999 1e-6 477 350 0.00011879999 1e-6 478 350 0.0011876 1e-6 483 350 0.0016229998 1e-6 489 350 3.9599996e-05 1e-6 490 350 0.0008709 1e-6 491 350 0.0044334978 1e-6 18 351 0.0001394 1e-6 19 351 0.00027889991 1e-6 22 351 0.00034859986 1e-6 60 351 0.003973797 1e-6 82 351 6.9699992e-05 1e-6 108 351 6.9699992e-05 1e-6 114 351 6.9699992e-05 1e-6 126 351 6.9699992e-05 1e-6 150 351 0.00069719995 1e-6 160 351 0.0016035 1e-6 169 351 0.00034859986 1e-6 172 351 0.00027889991 1e-6 189 351 6.9699992e-05 1e-6 190 351 0.0001394 1e-6 192 351 6.9699992e-05 1e-6 194 351 0.00020909999 1e-6 198 351 0.0052286983 1e-6 200 351 6.9699992e-05 1e-6 203 351 6.9699992e-05 1e-6 204 351 6.9699992e-05 1e-6 206 351 0.00020909999 1e-6 207 351 6.9699992e-05 1e-6 214 351 0.00020909999 1e-6 234 351 0.011851598 1e-6 237 351 0.0001394 1e-6 270 351 0.0073200986 1e-6 277 351 0.15184045 1e-6 278 351 6.9699992e-05 1e-6 282 351 0.0098995976 1e-6 283 351 0.015616298 1e-6 284 351 0.0018125998 1e-6 285 351 0.00034859986 1e-6 286 351 0.0011153999 1e-6 290 351 6.9699992e-05 1e-6 292 351 0.0020217998 1e-6 294 351 0.0001394 1e-6 296 351 0.0010456999 1e-6 297 351 0.0039040998 1e-6 299 351 0.0001394 1e-6 312 351 0.0025795 1e-6 320 351 0.0013245998 1e-6 338 351 0.0009062998 1e-6 340 351 0.025306698 1e-6 341 351 0.0001394 1e-6 351 351 0.075711071 1e-6 354 351 0.00244 1e-6 356 351 0.0001394 1e-6 358 351 0.0092721991 1e-6 372 351 0.00083659985 1e-6 384 351 6.9699992e-05 1e-6 387 351 6.9699992e-05 1e-6 402 351 6.9699992e-05 1e-6 417 351 0.00048799999 1e-6 421 351 6.9699992e-05 1e-6 422 351 6.9699992e-05 1e-6 430 351 6.9699992e-05 1e-6 433 351 6.9699992e-05 1e-6 434 351 6.9699992e-05 1e-6 443 351 0.0036251999 1e-6 444 351 0.00020909999 1e-6 445 351 0.0047406964 1e-6 446 351 0.00069719995 1e-6 447 351 0.00069719995 1e-6 450 351 0.0039040998 1e-6 452 351 0.0092721991 1e-6 453 351 0.0041828975 1e-6 454 351 0.0010456999 1e-6 455 351 0.024888497 1e-6 456 351 0.0007668999 1e-6 457 351 0.0036251999 1e-6 458 351 0.00020909999 1e-6 459 351 0.0011153999 1e-6 460 351 0.0011851999 1e-6 463 351 0.0046011992 1e-6 464 351 0.00027889991 1e-6 465 351 0.0010456999 1e-6 467 351 0.0087841973 1e-6 468 351 0.0020217998 1e-6 469 351 0.003973797 1e-6 470 351 0.0043920986 1e-6 471 351 0.0011851999 1e-6 473 351 0.0001394 1e-6 477 351 6.9699992e-05 1e-6 478 351 0.0012548999 1e-6 483 351 0.001464 1e-6 489 351 6.9699992e-05 1e-6 490 351 0.00041829981 1e-6 491 351 0.0029280998 1e-6 24 352 0.000141 1e-6 25 352 0.000141 1e-6 60 352 0.0018324999 1e-6 82 352 0.000141 1e-6 108 352 0.000141 1e-6 114 352 0.000141 1e-6 126 352 0.000141 1e-6 130 352 0.00070479978 1e-6 131 352 0.00042289984 1e-6 135 352 0.0087397993 1e-6 138 352 0.00028189993 1e-6 139 352 0.000141 1e-6 142 352 0.00042289984 1e-6 150 352 0.000141 1e-6 160 352 0.0029602 1e-6 169 352 0.00042289984 1e-6 172 352 0.00098669995 1e-6 187 352 0.00056389999 1e-6 188 352 0.000141 1e-6 189 352 0.000141 1e-6 190 352 0.000141 1e-6 192 352 0.000141 1e-6 193 352 0.00028189993 1e-6 194 352 0.00042289984 1e-6 198 352 0.0028192999 1e-6 206 352 0.00028189993 1e-6 214 352 0.0014095998 1e-6 219 352 0.00098669995 1e-6 223 352 0.000141 1e-6 224 352 0.00084579992 1e-6 229 352 0.000141 1e-6 233 352 0.00028189993 1e-6 234 352 0.0056385994 1e-6 236 352 0.00042289984 1e-6 237 352 0.000141 1e-6 240 352 0.00028189993 1e-6 241 352 0.0014095998 1e-6 242 352 0.0031011999 1e-6 252 352 0.00056389999 1e-6 270 352 0.00028189993 1e-6 271 352 0.000141 1e-6 272 352 0.00070479978 1e-6 273 352 0.000141 1e-6 277 352 0.07569778 1e-6 279 352 0.000141 1e-6 282 352 0.015083198 1e-6 283 352 0.0022553999 1e-6 284 352 0.0015505999 1e-6 285 352 0.0014095998 1e-6 286 352 0.00028189993 1e-6 289 352 0.00056389999 1e-6 292 352 0.014237396 1e-6 293 352 0.011136197 1e-6 294 352 0.00042289984 1e-6 295 352 0.021003697 1e-6 296 352 0.0057794973 1e-6 297 352 0.00070479978 1e-6 298 352 0.0097264983 1e-6 300 352 0.000141 1e-6 304 352 0.00028189993 1e-6 307 352 0.00070479978 1e-6 312 352 0.0139555 1e-6 315 352 0.0081758983 1e-6 317 352 0.000141 1e-6 320 352 0.0029602 1e-6 321 352 0.0043698996 1e-6 322 352 0.0067662969 1e-6 324 352 0.0098674968 1e-6 325 352 0.000141 1e-6 326 352 0.0094445981 1e-6 327 352 0.000141 1e-6 328 352 0.011277098 1e-6 331 352 0.000141 1e-6 335 352 0.00028189993 1e-6 338 352 0.000141 1e-6 339 352 0.00098669995 1e-6 340 352 0.0046517998 1e-6 349 352 0.00056389999 1e-6 350 352 0.00042289984 1e-6 351 352 0.0094445981 1e-6 352 352 0.037073597 1e-6 353 352 0.0018324999 1e-6 354 352 0.015224099 1e-6 355 352 0.000141 1e-6 356 352 0.00028189993 1e-6 358 352 0.0059204996 1e-6 366 352 0.0011276999 1e-6 370 352 0.0018324999 1e-6 371 352 0.0014095998 1e-6 372 352 0.033549499 1e-6 373 352 0.0023963999 1e-6 380 352 0.000141 1e-6 386 352 0.00028189993 1e-6 387 352 0.000141 1e-6 393 352 0.00028189993 1e-6 402 352 0.000141 1e-6 414 352 0.000141 1e-6 415 352 0.0018324999 1e-6 416 352 0.00028189993 1e-6 417 352 0.00070479978 1e-6 419 352 0.0012687 1e-6 422 352 0.00028189993 1e-6 430 352 0.000141 1e-6 443 352 0.0035240999 1e-6 444 352 0.00056389999 1e-6 445 352 0.0063433982 1e-6 446 352 0.00028189993 1e-6 447 352 0.0067662969 1e-6 450 352 0.0039469972 1e-6 452 352 0.0047927983 1e-6 453 352 0.0025374 1e-6 454 352 0.00042289984 1e-6 455 352 0.043698899 1e-6 456 352 0.00084579992 1e-6 457 352 0.0038059999 1e-6 458 352 0.00070479978 1e-6 459 352 0.0012687 1e-6 460 352 0.00084579992 1e-6 463 352 0.021567497 1e-6 464 352 0.00056389999 1e-6 465 352 0.00098669995 1e-6 467 352 0.0091626979 1e-6 468 352 0.0070481971 1e-6 469 352 0.0057794973 1e-6 470 352 0.0064843968 1e-6 471 352 0.0011276999 1e-6 473 352 0.000141 1e-6 477 352 0.000141 1e-6 478 352 0.0012687 1e-6 483 352 0.0012687 1e-6 490 352 0.00070479978 1e-6 491 352 0.0043698996 1e-6 21 353 0.0020937999 1e-6 24 353 0.0033500998 1e-6 60 353 0.0054438971 1e-6 114 353 0.00041879993 1e-6 160 353 0.023031797 1e-6 165 353 0.0037687998 1e-6 169 353 0.00041879993 1e-6 198 353 0.00083749997 1e-6 206 353 0.00083749997 1e-6 214 353 0.00041879993 1e-6 223 353 0.0012562999 1e-6 234 353 0.0058625974 1e-6 257 353 0.0012562999 1e-6 270 353 0.0012562999 1e-6 272 353 0.00041879993 1e-6 277 353 0.015912898 1e-6 278 353 0.0029312999 1e-6 282 353 0.0196817 1e-6 283 353 0.00041879993 1e-6 284 353 0.0029312999 1e-6 286 353 0.0025125998 1e-6 288 353 0.0020937999 1e-6 289 353 0.011306498 1e-6 290 353 0.00083749997 1e-6 293 353 0.0041875988 1e-6 296 353 0.015075397 1e-6 297 353 0.0016749999 1e-6 326 353 0.00041879993 1e-6 340 353 0.010887798 1e-6 349 353 0.00041879993 1e-6 351 353 0.00041879993 1e-6 353 353 0.0087939985 1e-6 354 353 0.0016749999 1e-6 356 353 0.00041879993 1e-6 358 353 0.0062813982 1e-6 374 353 0.00041879993 1e-6 375 353 0.0016749999 1e-6 417 353 0.00041879993 1e-6 443 353 0.0050251 1e-6 444 353 0.00041879993 1e-6 445 353 0.0046063997 1e-6 447 353 0.0029312999 1e-6 450 353 0.0046063997 1e-6 452 353 0.0096314996 1e-6 453 353 0.0058625974 1e-6 454 353 0.00041879993 1e-6 455 353 0.048576199 1e-6 456 353 0.00041879993 1e-6 457 353 0.0033500998 1e-6 459 353 0.00083749997 1e-6 460 353 0.0016749999 1e-6 463 353 0.010887798 1e-6 464 353 0.00041879993 1e-6 465 353 0.00041879993 1e-6 467 353 0.011306498 1e-6 468 353 0.0020937999 1e-6 469 353 0.0037687998 1e-6 470 353 0.0041875988 1e-6 471 353 0.0020937999 1e-6 478 353 0.0012562999 1e-6 483 353 0.00083749997 1e-6 490 353 0.00041879993 1e-6 491 353 0.0062813982 1e-6 9 354 6.2399995e-05 1e-6 18 354 0.00012479999 1e-6 22 354 0.00018729999 1e-6 60 354 0.002809 1e-6 82 354 6.2399995e-05 1e-6 83 354 6.2399995e-05 1e-6 84 354 6.2399995e-05 1e-6 108 354 6.2399995e-05 1e-6 113 354 0.00012479999 1e-6 114 354 0.00018729999 1e-6 126 354 6.2399995e-05 1e-6 135 354 6.2399995e-05 1e-6 139 354 6.2399995e-05 1e-6 142 354 6.2399995e-05 1e-6 150 354 0.00062419986 1e-6 160 354 0.0013108999 1e-6 169 354 0.00037449994 1e-6 171 354 6.2399995e-05 1e-6 172 354 0.0010611999 1e-6 184 354 6.2399995e-05 1e-6 189 354 6.2399995e-05 1e-6 190 354 0.00012479999 1e-6 192 354 6.2399995e-05 1e-6 194 354 0.00012479999 1e-6 198 354 0.0035581 1e-6 200 354 6.2399995e-05 1e-6 203 354 6.2399995e-05 1e-6 204 354 6.2399995e-05 1e-6 206 354 0.00024969992 1e-6 207 354 6.2399995e-05 1e-6 214 354 0.00037449994 1e-6 224 354 0.00018729999 1e-6 233 354 0.00068659987 1e-6 234 354 0.0079275966 1e-6 237 354 0.00012479999 1e-6 240 354 0.00018729999 1e-6 241 354 0.00037449994 1e-6 242 354 0.0035581 1e-6 252 354 6.2399995e-05 1e-6 270 354 0.0015604999 1e-6 271 354 0.00012479999 1e-6 272 354 0.0025592998 1e-6 276 354 6.2399995e-05 1e-6 277 354 0.070661664 1e-6 278 354 0.00012479999 1e-6 282 354 0.037702899 1e-6 283 354 0.0360175 1e-6 284 354 0.0017477998 1e-6 285 354 0.0019975 1e-6 286 354 0.0043070987 1e-6 289 354 0.00018729999 1e-6 290 354 6.2399995e-05 1e-6 292 354 0.0054306984 1e-6 293 354 0.00043699984 1e-6 294 354 0.0059924982 1e-6 295 354 0.0012484 1e-6 296 354 0.0045567974 1e-6 297 354 0.0068663992 1e-6 298 354 0.0013108999 1e-6 299 354 0.0053682998 1e-6 303 354 6.2399995e-05 1e-6 304 354 6.2399995e-05 1e-6 305 354 6.2399995e-05 1e-6 307 354 0.00024969992 1e-6 308 354 6.2399995e-05 1e-6 312 354 0.0077402964 1e-6 313 354 0.00018729999 1e-6 315 354 0.00068659987 1e-6 317 354 6.2399995e-05 1e-6 318 354 6.2399995e-05 1e-6 319 354 0.00012479999 1e-6 320 354 0.0018726999 1e-6 322 354 6.2399995e-05 1e-6 324 354 0.00056179985 1e-6 326 354 0.00012479999 1e-6 327 354 0.00049939984 1e-6 328 354 0.00043699984 1e-6 333 354 0.00031209993 1e-6 335 354 0.00012479999 1e-6 338 354 0.0022471999 1e-6 340 354 0.011235997 1e-6 341 354 0.00037449994 1e-6 342 354 6.2399995e-05 1e-6 343 354 6.2399995e-05 1e-6 349 354 6.2399995e-05 1e-6 350 354 0.00018729999 1e-6 351 354 0.019350797 1e-6 352 354 0.00031209993 1e-6 353 354 0.00024969992 1e-6 354 354 0.029587999 1e-6 356 354 0.00018729999 1e-6 357 354 0.00024969992 1e-6 358 354 0.026841398 1e-6 366 354 0.0007491 1e-6 371 354 0.00037449994 1e-6 372 354 0.012983799 1e-6 373 354 0.00068659987 1e-6 375 354 0.00012479999 1e-6 376 354 0.00012479999 1e-6 386 354 6.2399995e-05 1e-6 387 354 6.2399995e-05 1e-6 390 354 0.00018729999 1e-6 392 354 6.2399995e-05 1e-6 393 354 0.00018729999 1e-6 397 354 0.00031209993 1e-6 398 354 6.2399995e-05 1e-6 401 354 6.2399995e-05 1e-6 402 354 0.00099879992 1e-6 404 354 0.0068039969 1e-6 405 354 0.0016229998 1e-6 413 354 6.2399995e-05 1e-6 414 354 0.00031209993 1e-6 415 354 6.2399995e-05 1e-6 417 354 0.00043699984 1e-6 419 354 6.2399995e-05 1e-6 421 354 6.2399995e-05 1e-6 422 354 6.2399995e-05 1e-6 423 354 6.2399995e-05 1e-6 430 354 6.2399995e-05 1e-6 431 354 6.2399995e-05 1e-6 433 354 6.2399995e-05 1e-6 434 354 6.2399995e-05 1e-6 443 354 0.0022471999 1e-6 444 354 0.00049939984 1e-6 445 354 0.0036829 1e-6 446 354 0.00018729999 1e-6 447 354 0.0025592998 1e-6 450 354 0.0041822977 1e-6 452 354 0.0069287978 1e-6 453 354 0.0029962999 1e-6 454 354 0.00056179985 1e-6 455 354 0.023969997 1e-6 456 354 0.00087389979 1e-6 457 354 0.0036829 1e-6 458 354 0.00099879992 1e-6 459 354 0.00087389979 1e-6 460 354 0.001186 1e-6 463 354 0.007116098 1e-6 464 354 0.00037449994 1e-6 465 354 0.0013732999 1e-6 467 354 0.010798998 1e-6 468 354 0.0041198991 1e-6 469 354 0.006242197 1e-6 470 354 0.0076154992 1e-6 471 354 0.0028714 1e-6 472 354 0.001186 1e-6 473 354 0.00018729999 1e-6 477 354 6.2399995e-05 1e-6 478 354 0.0013108999 1e-6 483 354 0.0015604999 1e-6 489 354 6.2399995e-05 1e-6 490 354 0.00068659987 1e-6 491 354 0.0050561987 1e-6 60 355 0.0024044998 1e-6 108 355 0.00026719994 1e-6 114 355 0.00053429999 1e-6 126 355 0.00026719994 1e-6 160 355 0.0024044998 1e-6 187 355 0.00080149993 1e-6 188 355 0.00080149993 1e-6 189 355 0.00026719994 1e-6 192 355 0.00053429999 1e-6 194 355 0.00026719994 1e-6 197 355 0.00053429999 1e-6 198 355 0.00026719994 1e-6 206 355 0.00053429999 1e-6 214 355 0.00080149993 1e-6 223 355 0.00080149993 1e-6 233 355 0.00026719994 1e-6 234 355 0.0050760992 1e-6 237 355 0.00026719994 1e-6 240 355 0.0053432994 1e-6 241 355 0.0029387998 1e-6 257 355 0.003206 1e-6 272 355 0.0029387998 1e-6 275 355 0.0042745993 1e-6 277 355 0.10633177 1e-6 282 355 0.009350799 1e-6 284 355 0.0018701998 1e-6 289 355 0.00026719994 1e-6 292 355 0.009350799 1e-6 293 355 0.0048089996 1e-6 294 355 0.0085492991 1e-6 295 355 0.00080149993 1e-6 307 355 0.015495598 1e-6 312 355 0.0085492991 1e-6 324 355 0.012022398 1e-6 328 355 0.00026719994 1e-6 339 355 0.0010686999 1e-6 340 355 0.003206 1e-6 349 355 0.00053429999 1e-6 350 355 0.0050760992 1e-6 351 355 0.00026719994 1e-6 352 355 0.0024044998 1e-6 354 355 0.015762798 1e-6 355 355 0.063585341 1e-6 356 355 0.0010686999 1e-6 358 355 0.0048089996 1e-6 366 355 0.00026719994 1e-6 370 355 0.0082820989 1e-6 371 355 0.014159799 1e-6 372 355 0.0037403 1e-6 373 355 0.0085492991 1e-6 374 355 0.00026719994 1e-6 387 355 0.00026719994 1e-6 393 355 0.018434398 1e-6 405 355 0.00026719994 1e-6 414 355 0.0050760992 1e-6 415 355 0.0040074997 1e-6 417 355 0.00053429999 1e-6 443 355 0.0029387998 1e-6 444 355 0.00026719994 1e-6 445 355 0.0045417994 1e-6 447 355 0.024846397 1e-6 450 355 0.0042745993 1e-6 452 355 0.0050760992 1e-6 453 355 0.0026717 1e-6 455 355 0.049425598 1e-6 456 355 0.00053429999 1e-6 457 355 0.0037403 1e-6 458 355 0.00080149993 1e-6 459 355 0.0010686999 1e-6 460 355 0.00080149993 1e-6 463 355 0.010419399 1e-6 464 355 0.00053429999 1e-6 465 355 0.0010686999 1e-6 467 355 0.010152299 1e-6 468 355 0.0013357999 1e-6 469 355 0.0082820989 1e-6 470 355 0.009350799 1e-6 471 355 0.00080149993 1e-6 473 355 0.00026719994 1e-6 478 355 0.0016029999 1e-6 483 355 0.0026717 1e-6 490 355 0.0010686999 1e-6 491 355 0.0029387998 1e-6 9 356 8.4999992e-05 1e-6 13 356 0.0001699 1e-6 19 356 8.4999992e-05 1e-6 21 356 0.0001699 1e-6 22 356 8.4999992e-05 1e-6 24 356 0.00042479998 1e-6 60 356 0.0028039999 1e-6 82 356 0.00025489996 1e-6 83 356 8.4999992e-05 1e-6 84 356 8.4999992e-05 1e-6 108 356 8.4999992e-05 1e-6 113 356 0.0001699 1e-6 114 356 0.0001699 1e-6 119 356 8.4999992e-05 1e-6 120 356 0.00050979992 1e-6 126 356 8.4999992e-05 1e-6 135 356 0.0056928992 1e-6 142 356 0.019203 1e-6 150 356 8.4999992e-05 1e-6 160 356 0.0011896 1e-6 172 356 0.00059479987 1e-6 187 356 0.0050131977 1e-6 189 356 0.0001699 1e-6 190 356 8.4999992e-05 1e-6 191 356 0.0030588999 1e-6 193 356 0.0001699 1e-6 194 356 0.0001699 1e-6 198 356 0.0046732984 1e-6 200 356 8.4999992e-05 1e-6 203 356 8.4999992e-05 1e-6 204 356 8.4999992e-05 1e-6 206 356 0.00025489996 1e-6 214 356 0.0029738999 1e-6 218 356 0.00025489996 1e-6 221 356 8.4999992e-05 1e-6 223 356 0.00025489996 1e-6 224 356 0.0031438998 1e-6 231 356 8.4999992e-05 1e-6 233 356 8.4999992e-05 1e-6 234 356 0.006542597 1e-6 236 356 0.0001699 1e-6 237 356 0.00033989991 1e-6 240 356 0.0023790998 1e-6 241 356 0.010366198 1e-6 242 356 0.00076469989 1e-6 252 356 0.0001699 1e-6 270 356 0.00025489996 1e-6 272 356 0.0041634999 1e-6 277 356 0.066700697 1e-6 278 356 0.0001699 1e-6 282 356 0.024641 1e-6 283 356 0.0045033991 1e-6 284 356 0.0017843 1e-6 285 356 8.4999992e-05 1e-6 286 356 0.00050979992 1e-6 289 356 0.00025489996 1e-6 290 356 0.00033989991 1e-6 292 356 0.007817097 1e-6 293 356 0.0069674999 1e-6 294 356 0.0024640998 1e-6 295 356 0.0075621977 1e-6 296 356 0.0033987998 1e-6 297 356 0.0057778992 1e-6 298 356 0.00042479998 1e-6 301 356 0.0001699 1e-6 304 356 0.00025489996 1e-6 305 356 8.4999992e-05 1e-6 307 356 0.0076471977 1e-6 312 356 0.0073922984 1e-6 315 356 0.010876 1e-6 317 356 8.4999992e-05 1e-6 320 356 0.0011045998 1e-6 321 356 0.00093469978 1e-6 322 356 0.00025489996 1e-6 324 356 0.0073922984 1e-6 326 356 0.00042479998 1e-6 328 356 0.00076469989 1e-6 329 356 0.00042479998 1e-6 338 356 0.0011896 1e-6 339 356 0.00050979992 1e-6 340 356 0.006457597 1e-6 341 356 0.0001699 1e-6 344 356 0.00025489996 1e-6 347 356 0.00025489996 1e-6 349 356 0.00050979992 1e-6 350 356 0.012150597 1e-6 351 356 0.005438 1e-6 352 356 0.0001699 1e-6 353 356 0.0001699 1e-6 354 356 0.022431798 1e-6 355 356 0.00050979992 1e-6 356 356 0.017333698 1e-6 357 356 8.4999992e-05 1e-6 358 356 0.017078798 1e-6 364 356 8.4999992e-05 1e-6 365 356 8.4999992e-05 1e-6 366 356 0.00033989991 1e-6 367 356 0.00025489996 1e-6 368 356 8.4999992e-05 1e-6 370 356 0.0029738999 1e-6 371 356 0.006542597 1e-6 372 356 0.015294399 1e-6 373 356 0.0070523992 1e-6 375 356 8.4999992e-05 1e-6 386 356 8.4999992e-05 1e-6 387 356 8.4999992e-05 1e-6 393 356 0.0042483993 1e-6 397 356 8.4999992e-05 1e-6 402 356 0.00033989991 1e-6 405 356 8.4999992e-05 1e-6 414 356 0.0035686998 1e-6 415 356 0.00025489996 1e-6 417 356 0.00042479998 1e-6 419 356 8.4999992e-05 1e-6 421 356 8.4999992e-05 1e-6 422 356 0.00025489996 1e-6 423 356 8.4999992e-05 1e-6 430 356 8.4999992e-05 1e-6 442 356 8.4999992e-05 1e-6 443 356 0.0028889 1e-6 444 356 0.0013595 1e-6 445 356 0.010026298 1e-6 446 356 0.0001699 1e-6 447 356 0.0039934963 1e-6 450 356 0.0084118992 1e-6 452 356 0.005438 1e-6 453 356 0.0014444999 1e-6 454 356 0.00025489996 1e-6 455 356 0.057438999 1e-6 456 356 0.00076469989 1e-6 457 356 0.0036537 1e-6 458 356 0.00067979982 1e-6 459 356 0.0013595 1e-6 460 356 0.0011045998 1e-6 463 356 0.021922 1e-6 464 356 0.00042479998 1e-6 465 356 0.0010195998 1e-6 467 356 0.015209399 1e-6 468 356 0.005098097 1e-6 469 356 0.0073072985 1e-6 470 356 0.0076471977 1e-6 471 356 0.0044183992 1e-6 473 356 0.0001699 1e-6 477 356 8.4999992e-05 1e-6 478 356 0.0011896 1e-6 483 356 0.0021241999 1e-6 490 356 0.00059479987 1e-6 491 356 0.0032287999 1e-6 19 357 0.0001127 1e-6 22 357 0.0002254 1e-6 60 357 0.0021412999 1e-6 108 357 0.0001127 1e-6 114 357 0.0002254 1e-6 126 357 0.0001127 1e-6 135 357 0.0003380999 1e-6 143 357 0.0001127 1e-6 150 357 0.0003380999 1e-6 160 357 0.0001127 1e-6 189 357 0.0001127 1e-6 190 357 0.0001127 1e-6 194 357 0.0002254 1e-6 198 357 0.0052969977 1e-6 200 357 0.0001127 1e-6 203 357 0.0001127 1e-6 206 357 0.0003380999 1e-6 214 357 0.00056349998 1e-6 223 357 0.0001127 1e-6 224 357 0.00045079994 1e-6 225 357 0.0002254 1e-6 233 357 0.0001127 1e-6 234 357 0.008452598 1e-6 237 357 0.0001127 1e-6 240 357 0.0013523998 1e-6 241 357 0.0025920998 1e-6 242 357 0.0019158998 1e-6 262 357 0.0001127 1e-6 270 357 0.0048461966 1e-6 271 357 0.0001127 1e-6 272 357 0.0020285998 1e-6 274 357 0.0002254 1e-6 277 357 0.062549293 1e-6 282 357 0.037529599 1e-6 283 357 0.0031555998 1e-6 284 357 0.0015777999 1e-6 286 357 0.00067619979 1e-6 288 357 0.0003380999 1e-6 289 357 0.0029302 1e-6 290 357 0.00067619979 1e-6 292 357 0.0041699968 1e-6 293 357 0.017355997 1e-6 294 357 0.0067620985 1e-6 295 357 0.0061985999 1e-6 296 357 0.010030396 1e-6 297 357 0.0032682999 1e-6 298 357 0.017130598 1e-6 299 357 0.0001127 1e-6 312 357 0.010931998 1e-6 313 357 0.0001127 1e-6 315 357 0.0032682999 1e-6 317 357 0.001127 1e-6 318 357 0.0010142999 1e-6 320 357 0.0123972 1e-6 321 357 0.00045079994 1e-6 322 357 0.0027047999 1e-6 324 357 0.00090159988 1e-6 326 357 0.001127 1e-6 328 357 0.00045079994 1e-6 338 357 0.0020285998 1e-6 340 357 0.015214697 1e-6 341 357 0.0003380999 1e-6 343 357 0.0003380999 1e-6 351 357 0.0013523998 1e-6 353 357 0.0003380999 1e-6 354 357 0.001127 1e-6 355 357 0.0001127 1e-6 356 357 0.0001127 1e-6 357 357 0.0024793998 1e-6 358 357 0.041699499 1e-6 370 357 0.00056349998 1e-6 372 357 0.0002254 1e-6 374 357 0.0001127 1e-6 375 357 0.0002254 1e-6 376 357 0.0003380999 1e-6 386 357 0.0001127 1e-6 387 357 0.0001127 1e-6 392 357 0.00056349998 1e-6 396 357 0.0002254 1e-6 397 357 0.0046207979 1e-6 398 357 0.00056349998 1e-6 402 357 0.00090159988 1e-6 417 357 0.00056349998 1e-6 421 357 0.0001127 1e-6 422 357 0.0001127 1e-6 442 357 0.0014650999 1e-6 443 357 0.0023667 1e-6 444 357 0.00078889984 1e-6 445 357 0.0065366998 1e-6 446 357 0.0002254 1e-6 447 357 0.0048461966 1e-6 450 357 0.0039445981 1e-6 452 357 0.0089033991 1e-6 453 357 0.0025920998 1e-6 454 357 0.00067619979 1e-6 455 357 0.020060897 1e-6 456 357 0.00056349998 1e-6 457 357 0.0032682999 1e-6 458 357 0.00078889984 1e-6 459 357 0.00045079994 1e-6 460 357 0.001127 1e-6 463 357 0.020962499 1e-6 464 357 0.00078889984 1e-6 465 357 0.001127 1e-6 467 357 0.0103685 1e-6 468 357 0.0034936999 1e-6 469 357 0.0039445981 1e-6 470 357 0.0043953992 1e-6 471 357 0.0029302 1e-6 473 357 0.0001127 1e-6 477 357 0.0001127 1e-6 478 357 0.0012396998 1e-6 483 357 0.0012396998 1e-6 490 357 0.0003380999 1e-6 491 357 0.0029302 1e-6 9 358 2.7899994e-05 1e-6 18 358 0.0001393 1e-6 22 358 0.00066889985 1e-6 60 358 0.0020344998 1e-6 79 358 2.7899994e-05 1e-6 82 358 2.7899994e-05 1e-6 83 358 2.7899994e-05 1e-6 84 358 2.7899994e-05 1e-6 108 358 2.7899994e-05 1e-6 113 358 5.5699988e-05 1e-6 114 358 8.3599996e-05 1e-6 126 358 5.5699988e-05 1e-6 127 358 2.7899994e-05 1e-6 135 358 0.001923 1e-6 142 358 2.7899994e-05 1e-6 143 358 0.00075249979 1e-6 150 358 0.0017278998 1e-6 151 358 2.7899994e-05 1e-6 160 358 0.00064099999 1e-6 169 358 0.00019509999 1e-6 172 358 0.00019509999 1e-6 187 358 2.7899994e-05 1e-6 189 358 8.3599996e-05 1e-6 190 358 0.0001393 1e-6 192 358 5.5699988e-05 1e-6 194 358 0.0001393 1e-6 196 358 2.7899994e-05 1e-6 197 358 2.7899994e-05 1e-6 198 358 0.0080264993 1e-6 200 358 8.3599996e-05 1e-6 201 358 5.5699988e-05 1e-6 203 358 8.3599996e-05 1e-6 204 358 0.0001393 1e-6 206 358 0.00019509999 1e-6 207 358 8.3599996e-05 1e-6 209 358 2.7899994e-05 1e-6 214 358 0.0026755 1e-6 218 358 2.7899994e-05 1e-6 219 358 2.7899994e-05 1e-6 223 358 0.00089179981 1e-6 224 358 2.7899994e-05 1e-6 229 358 0.00030659977 1e-6 233 358 0.00072459993 1e-6 234 358 0.0123742 1e-6 237 358 0.00030659977 1e-6 240 358 0.0016442998 1e-6 241 358 0.0037066999 1e-6 242 358 5.5699988e-05 1e-6 248 358 2.7899994e-05 1e-6 250 358 2.7899994e-05 1e-6 252 358 8.3599996e-05 1e-6 270 358 0.003929697 1e-6 271 358 2.7899994e-05 1e-6 272 358 0.000223 1e-6 274 358 0.0020623999 1e-6 277 358 0.061285898 1e-6 278 358 5.5699988e-05 1e-6 282 358 0.024163198 1e-6 283 358 0.0012262999 1e-6 284 358 0.0022852998 1e-6 285 358 5.5699988e-05 1e-6 286 358 0.00078039989 1e-6 288 358 0.00016719999 1e-6 289 358 0.00025079981 1e-6 290 358 0.0024247 1e-6 292 358 0.010562699 1e-6 293 358 0.0085002966 1e-6 294 358 0.0017000998 1e-6 295 358 0.0009476 1e-6 296 358 0.0073576979 1e-6 297 358 0.0024247 1e-6 298 358 0.0043476969 1e-6 299 358 2.7899994e-05 1e-6 307 358 0.00016719999 1e-6 312 358 0.008639697 1e-6 313 358 8.3599996e-05 1e-6 315 358 0.0054067969 1e-6 317 358 0.0022016999 1e-6 318 358 0.00041799992 1e-6 320 358 0.0042919964 1e-6 321 358 0.0009476 1e-6 322 358 0.0054903999 1e-6 324 358 0.0019508998 1e-6 326 358 0.0040410981 1e-6 328 358 0.0022016999 1e-6 333 358 2.7899994e-05 1e-6 335 358 2.7899994e-05 1e-6 338 358 0.0034000999 1e-6 339 358 0.00016719999 1e-6 340 358 0.014353 1e-6 341 358 0.00055739982 1e-6 343 358 0.003205 1e-6 345 358 2.7899994e-05 1e-6 347 358 2.7899994e-05 1e-6 349 358 2.7899994e-05 1e-6 350 358 0.00025079981 1e-6 351 358 0.0048771985 1e-6 352 358 2.7899994e-05 1e-6 353 358 0.00097539998 1e-6 354 358 0.0049329996 1e-6 355 358 0.0010868998 1e-6 356 358 0.00025079981 1e-6 357 358 0.00030659977 1e-6 358 358 0.0624565 1e-6 359 358 0.00025079981 1e-6 366 358 0.0001393 1e-6 370 358 0.0043755993 1e-6 371 358 2.7899994e-05 1e-6 372 358 0.00066889985 1e-6 373 358 0.00030659977 1e-6 374 358 0.00083609996 1e-6 375 358 5.5699988e-05 1e-6 376 358 0.0024803998 1e-6 384 358 2.7899994e-05 1e-6 386 358 5.5699988e-05 1e-6 387 358 5.5699988e-05 1e-6 390 358 8.3599996e-05 1e-6 392 358 0.0001393 1e-6 393 358 0.00011149999 1e-6 394 358 2.7899994e-05 1e-6 397 358 0.00016719999 1e-6 398 358 0.0051001981 1e-6 401 358 5.5699988e-05 1e-6 402 358 0.0027590999 1e-6 404 358 5.5699988e-05 1e-6 405 358 0.000223 1e-6 417 358 0.00064099999 1e-6 419 358 2.7899994e-05 1e-6 421 358 8.3599996e-05 1e-6 422 358 0.00011149999 1e-6 423 358 2.7899994e-05 1e-6 425 358 2.7899994e-05 1e-6 430 358 2.7899994e-05 1e-6 431 358 5.5699988e-05 1e-6 432 358 2.7899994e-05 1e-6 433 358 5.5699988e-05 1e-6 434 358 5.5699988e-05 1e-6 442 358 0.0006130999 1e-6 443 358 0.0028426999 1e-6 444 358 0.0027033999 1e-6 445 358 0.0071346983 1e-6 446 358 0.0006130999 1e-6 447 358 0.0074133985 1e-6 448 358 0.00011149999 1e-6 450 358 0.0051280968 1e-6 452 358 0.008054398 1e-6 453 358 0.0025082999 1e-6 454 358 0.0001393 1e-6 455 358 0.021376196 1e-6 456 358 0.0012540999 1e-6 457 358 0.0051558986 1e-6 458 358 0.00047379988 1e-6 459 358 0.00030659977 1e-6 460 358 0.0011983998 1e-6 463 358 0.018505599 1e-6 464 358 0.0019508998 1e-6 465 358 0.0012262999 1e-6 467 358 0.012151297 1e-6 468 358 0.0026755 1e-6 469 358 0.0046820976 1e-6 470 358 0.0072739981 1e-6 471 358 0.0020344998 1e-6 473 358 0.00011149999 1e-6 477 358 0.00011149999 1e-6 478 358 0.0015886 1e-6 483 358 0.0011704999 1e-6 489 358 8.3599996e-05 1e-6 490 358 0.00039019994 1e-6 491 358 0.0012540999 1e-6 9 359 3.2899989e-05 1e-6 16 359 1.6399994e-05 1e-6 18 359 6.5799992e-05 1e-6 22 359 1.6399994e-05 1e-6 24 359 1.6399994e-05 1e-6 60 359 0.0012828 1e-6 76 359 1.6399994e-05 1e-6 79 359 1.6399994e-05 1e-6 82 359 8.2199986e-05 1e-6 83 359 6.5799992e-05 1e-6 84 359 6.5799992e-05 1e-6 104 359 0.0001316 1e-6 108 359 9.8699995e-05 1e-6 113 359 0.0001316 1e-6 114 359 0.00032889983 1e-6 126 359 0.00014799999 1e-6 127 359 3.2899989e-05 1e-6 130 359 8.2199986e-05 1e-6 142 359 4.9299997e-05 1e-6 143 359 1.6399994e-05 1e-6 150 359 0.0002795998 1e-6 151 359 1.6399994e-05 1e-6 160 359 0.0002138 1e-6 169 359 1.6399994e-05 1e-6 175 359 8.2199986e-05 1e-6 187 359 0.0024174999 1e-6 188 359 0.00026309979 1e-6 189 359 9.8699995e-05 1e-6 190 359 8.2199986e-05 1e-6 192 359 0.00014799999 1e-6 193 359 6.5799992e-05 1e-6 194 359 0.00037829997 1e-6 196 359 1.6399994e-05 1e-6 197 359 3.2899989e-05 1e-6 198 359 0.0017104 1e-6 200 359 0.0001316 1e-6 201 359 6.5799992e-05 1e-6 203 359 0.00075649982 1e-6 204 359 9.8699995e-05 1e-6 206 359 0.0009209998 1e-6 207 359 6.5799992e-05 1e-6 208 359 3.2899989e-05 1e-6 209 359 1.6399994e-05 1e-6 214 359 0.00078939996 1e-6 219 359 0.00026309979 1e-6 221 359 0.0001316 1e-6 223 359 0.0002138 1e-6 224 359 0.00069069979 1e-6 233 359 0.0002138 1e-6 234 359 0.0015787999 1e-6 237 359 0.00011509999 1e-6 240 359 0.00052629993 1e-6 241 359 0.010936398 1e-6 248 359 4.9299997e-05 1e-6 250 359 3.2899989e-05 1e-6 251 359 1.6399994e-05 1e-6 252 359 0.0013485998 1e-6 262 359 0.0001316 1e-6 263 359 1.6399994e-05 1e-6 276 359 0.00059199985 1e-6 277 359 0.0052296966 1e-6 282 359 0.00064139999 1e-6 283 359 3.2899989e-05 1e-6 284 359 8.2199986e-05 1e-6 285 359 0.00011509999 1e-6 289 359 9.8699995e-05 1e-6 290 359 8.2199986e-05 1e-6 292 359 0.00050979992 1e-6 293 359 0.0023846 1e-6 294 359 0.0014142999 1e-6 295 359 0.0109693 1e-6 296 359 0.0025326 1e-6 297 359 6.5799992e-05 1e-6 298 359 0.0013649999 1e-6 299 359 0.00054269983 1e-6 305 359 1.6399994e-05 1e-6 308 359 0.0045883991 1e-6 312 359 0.0045883991 1e-6 315 359 0.010837696 1e-6 317 359 1.6399994e-05 1e-6 319 359 6.5799992e-05 1e-6 320 359 0.0058875978 1e-6 321 359 0.0013813998 1e-6 322 359 0.0020227998 1e-6 325 359 0.00011509999 1e-6 326 359 0.0016445999 1e-6 338 359 0.00014799999 1e-6 340 359 0.0028450999 1e-6 341 359 1.6399994e-05 1e-6 347 359 3.2899989e-05 1e-6 351 359 0.00083869998 1e-6 354 359 0.0011840998 1e-6 356 359 0.0001316 1e-6 358 359 0.0023516999 1e-6 359 359 0.17314076 1e-6 360 359 3.2899989e-05 1e-6 361 359 0.00083869998 1e-6 363 359 1.6399994e-05 1e-6 369 359 0.0001809 1e-6 370 359 9.8699995e-05 1e-6 371 359 0.0025819999 1e-6 372 359 0.0053119995 1e-6 373 359 0.011166699 1e-6 375 359 8.2199986e-05 1e-6 376 359 0.0036181 1e-6 380 359 3.2899989e-05 1e-6 384 359 1.6399994e-05 1e-6 386 359 0.0043580979 1e-6 387 359 0.00014799999 1e-6 389 359 0.0013649999 1e-6 390 359 0.00077299983 1e-6 391 359 0.0004276 1e-6 392 359 0.049254999 1e-6 393 359 0.061112396 1e-6 394 359 1.6399994e-05 1e-6 396 359 3.2899989e-05 1e-6 397 359 1.6399994e-05 1e-6 402 359 6.5799992e-05 1e-6 404 359 4.9299997e-05 1e-6 405 359 9.8699995e-05 1e-6 417 359 0.00019729999 1e-6 419 359 0.0010032 1e-6 421 359 1.6399994e-05 1e-6 422 359 0.00011509999 1e-6 423 359 4.9299997e-05 1e-6 425 359 3.2899989e-05 1e-6 430 359 9.8699995e-05 1e-6 431 359 3.2899989e-05 1e-6 432 359 1.6399994e-05 1e-6 433 359 3.2899989e-05 1e-6 434 359 4.9299997e-05 1e-6 441 359 0.00047689979 1e-6 442 359 0.00062489999 1e-6 443 359 0.00090449979 1e-6 444 359 0.0027957999 1e-6 445 359 0.0027792999 1e-6 446 359 0.0001316 1e-6 447 359 0.010656796 1e-6 448 359 1.6399994e-05 1e-6 449 359 3.2899989e-05 1e-6 450 359 0.0061013997 1e-6 452 359 0.0042100996 1e-6 453 359 0.00074009993 1e-6 454 359 0.0002795998 1e-6 455 359 0.032578997 1e-6 456 359 0.0012828 1e-6 457 359 0.0062165 1e-6 458 359 0.0002795998 1e-6 459 359 0.0022859999 1e-6 460 359 0.0011347998 1e-6 463 359 0.042676698 1e-6 464 359 0.0028615999 1e-6 465 359 0.0019898999 1e-6 467 359 0.008913599 1e-6 468 359 0.0056737997 1e-6 469 359 0.0044567995 1e-6 470 359 0.016478598 1e-6 471 359 0.0026641998 1e-6 472 359 0.00014799999 1e-6 473 359 0.00034539984 1e-6 477 359 0.00023019999 1e-6 478 359 0.0015129999 1e-6 483 359 0.0012663 1e-6 489 359 4.9299997e-05 1e-6 490 359 0.0016116998 1e-6 491 359 0.0001809 1e-6 9 360 0.00013569999 1e-6 22 360 0.00054289983 1e-6 60 360 0.0039358996 1e-6 82 360 0.00013569999 1e-6 83 360 0.00013569999 1e-6 84 360 0.00013569999 1e-6 108 360 0.00013569999 1e-6 113 360 0.00027139997 1e-6 114 360 0.00040719984 1e-6 126 360 0.00013569999 1e-6 175 360 0.00027139997 1e-6 187 360 0.0008142998 1e-6 189 360 0.00013569999 1e-6 190 360 0.00013569999 1e-6 194 360 0.0008142998 1e-6 198 360 0.0013571999 1e-6 200 360 0.00013569999 1e-6 206 360 0.0023073 1e-6 214 360 0.0010857999 1e-6 221 360 0.00013569999 1e-6 223 360 0.00013569999 1e-6 224 360 0.00013569999 1e-6 234 360 0.0016286999 1e-6 237 360 0.00013569999 1e-6 240 360 0.00067859981 1e-6 241 360 0.0089576989 1e-6 252 360 0.00054289983 1e-6 262 360 0.00013569999 1e-6 277 360 0.012486398 1e-6 279 360 0.00027139997 1e-6 282 360 0.0010857999 1e-6 283 360 0.0036644998 1e-6 284 360 0.0009500999 1e-6 290 360 0.00027139997 1e-6 292 360 0.0062431991 1e-6 293 360 0.0008142998 1e-6 294 360 0.0016286999 1e-6 295 360 0.0021715998 1e-6 296 360 0.0021715998 1e-6 298 360 0.0009500999 1e-6 299 360 0.00067859981 1e-6 308 360 0.0044787973 1e-6 312 360 0.0047502965 1e-6 315 360 0.010450598 1e-6 320 360 0.0059717968 1e-6 321 360 0.00027139997 1e-6 322 360 0.00013569999 1e-6 326 360 0.0017643999 1e-6 340 360 0.006107498 1e-6 341 360 0.00013569999 1e-6 351 360 0.0012214999 1e-6 354 360 0.0013571999 1e-6 358 360 0.0096362978 1e-6 359 360 0.046552699 1e-6 360 360 0.010450598 1e-6 361 360 0.0008142998 1e-6 362 360 0.00040719984 1e-6 363 360 0.00013569999 1e-6 364 360 0.00013569999 1e-6 366 360 0.00013569999 1e-6 369 360 0.0019000999 1e-6 370 360 0.00013569999 1e-6 371 360 0.0028501998 1e-6 372 360 0.0065146983 1e-6 373 360 0.011807799 1e-6 376 360 0.0036644998 1e-6 386 360 0.0057002977 1e-6 387 360 0.00027139997 1e-6 390 360 0.00013569999 1e-6 391 360 0.0044787973 1e-6 392 360 0.086862087 1e-6 393 360 0.061753497 1e-6 417 360 0.00040719984 1e-6 419 360 0.00013569999 1e-6 423 360 0.00013569999 1e-6 424 360 0.00013569999 1e-6 430 360 0.00013569999 1e-6 431 360 0.00013569999 1e-6 434 360 0.0009500999 1e-6 441 360 0.0044787973 1e-6 443 360 0.00067859981 1e-6 444 360 0.0016286999 1e-6 445 360 0.0021715998 1e-6 447 360 0.010179199 1e-6 450 360 0.006107498 1e-6 452 360 0.0033930999 1e-6 453 360 0.00054289983 1e-6 454 360 0.00040719984 1e-6 455 360 0.026330099 1e-6 456 360 0.00067859981 1e-6 457 360 0.0055645965 1e-6 458 360 0.0009500999 1e-6 459 360 0.0020357999 1e-6 460 360 0.0012214999 1e-6 463 360 0.031351797 1e-6 464 360 0.0010857999 1e-6 465 360 0.030944597 1e-6 467 360 0.0299946 1e-6 468 360 0.006921798 1e-6 469 360 0.012893599 1e-6 470 360 0.014657997 1e-6 471 360 0.0013571999 1e-6 472 360 0.0027143999 1e-6 473 360 0.00027139997 1e-6 477 360 0.00013569999 1e-6 478 360 0.0016286999 1e-6 483 360 0.0014928998 1e-6 490 360 0.0014928998 1e-6 491 360 0.0059717968 1e-6 9 361 0.0002058 1e-6 60 361 0.0022642999 1e-6 82 361 0.0002058 1e-6 83 361 0.0002058 1e-6 84 361 0.0002058 1e-6 108 361 0.0002058 1e-6 113 361 0.00041169999 1e-6 114 361 0.00082339998 1e-6 126 361 0.00041169999 1e-6 131 361 0.00041169999 1e-6 187 361 0.00061749993 1e-6 189 361 0.0002058 1e-6 190 361 0.0002058 1e-6 194 361 0.00041169999 1e-6 198 361 0.0146151 1e-6 200 361 0.0002058 1e-6 203 361 0.0026759999 1e-6 206 361 0.0028817998 1e-6 224 361 0.0049402975 1e-6 233 361 0.011939097 1e-6 234 361 0.0016468 1e-6 237 361 0.0002058 1e-6 240 361 0.0022642999 1e-6 241 361 0.074310362 1e-6 252 361 0.0002058 1e-6 272 361 0.0018525999 1e-6 277 361 0.022025499 1e-6 279 361 0.00082339998 1e-6 282 361 0.0049402975 1e-6 284 361 0.0010291999 1e-6 293 361 0.0032934998 1e-6 295 361 0.00082339998 1e-6 296 361 0.011527397 1e-6 298 361 0.0069987997 1e-6 312 361 0.0010291999 1e-6 315 361 0.012350798 1e-6 320 361 0.011527397 1e-6 321 361 0.013997499 1e-6 322 361 0.0002058 1e-6 326 361 0.012968298 1e-6 340 361 0.0002058 1e-6 351 361 0.0014408999 1e-6 356 361 0.0002058 1e-6 359 361 0.00082339998 1e-6 361 361 0.0181145 1e-6 372 361 0.0057636984 1e-6 386 361 0.0034993999 1e-6 387 361 0.0002058 1e-6 392 361 0.0024702 1e-6 393 361 0.0002058 1e-6 417 361 0.00041169999 1e-6 419 361 0.0002058 1e-6 422 361 0.00041169999 1e-6 423 361 0.0002058 1e-6 425 361 0.0002058 1e-6 430 361 0.0002058 1e-6 431 361 0.0002058 1e-6 434 361 0.0014408999 1e-6 441 361 0.0032934998 1e-6 443 361 0.0010291999 1e-6 444 361 0.0012351 1e-6 445 361 0.012968298 1e-6 447 361 0.016673498 1e-6 450 361 0.0053519979 1e-6 452 361 0.004528597 1e-6 453 361 0.0024702 1e-6 454 361 0.0002058 1e-6 455 361 0.023672298 1e-6 456 361 0.00082339998 1e-6 457 361 0.0063811988 1e-6 458 361 0.0024702 1e-6 459 361 0.0020585 1e-6 460 361 0.0014408999 1e-6 463 361 0.042198397 1e-6 464 361 0.0010291999 1e-6 465 361 0.0016468 1e-6 467 361 0.0296418 1e-6 468 361 0.0148209 1e-6 469 361 0.0181145 1e-6 470 361 0.020172898 1e-6 471 361 0.00082339998 1e-6 473 361 0.00061749993 1e-6 477 361 0.00041169999 1e-6 478 361 0.0016468 1e-6 483 361 0.0018525999 1e-6 490 361 0.0018525999 1e-6 491 361 0.0018525999 1e-6 60 362 0.0015439999 1e-6 108 362 0.00051469984 1e-6 114 362 0.00051469984 1e-6 126 362 0.00051469984 1e-6 187 362 0.00051469984 1e-6 198 362 0.0087493993 1e-6 206 362 0.0010292998 1e-6 233 362 0.0056612976 1e-6 234 362 0.0020587 1e-6 240 362 0.021616098 1e-6 241 362 0.071538866 1e-6 262 362 0.00051469984 1e-6 272 362 0.0041172989 1e-6 277 362 0.044261497 1e-6 279 362 0.00051469984 1e-6 282 362 0.0036026998 1e-6 283 362 0.00051469984 1e-6 284 362 0.0010292998 1e-6 292 362 0.014410697 1e-6 293 362 0.0041172989 1e-6 295 362 0.0077199973 1e-6 296 362 0.0077199973 1e-6 298 362 0.0046319999 1e-6 312 362 0.00051469984 1e-6 315 362 0.021101397 1e-6 317 362 0.00051469984 1e-6 320 362 0.009778697 1e-6 321 362 0.020586699 1e-6 326 362 0.00051469984 1e-6 333 362 0.00051469984 1e-6 340 362 0.010807998 1e-6 351 362 0.0010292998 1e-6 353 362 0.0036026998 1e-6 358 362 0.0092639998 1e-6 362 362 0.033968098 1e-6 370 362 0.00051469984 1e-6 371 362 0.00051469984 1e-6 372 362 0.0082346983 1e-6 376 362 0.00051469984 1e-6 386 362 0.0066906996 1e-6 387 362 0.00051469984 1e-6 392 362 0.0061759986 1e-6 393 362 0.0015439999 1e-6 414 362 0.00051469984 1e-6 417 362 0.00051469984 1e-6 430 362 0.00051469984 1e-6 443 362 0.0010292998 1e-6 444 362 0.0010292998 1e-6 445 362 0.0046319999 1e-6 447 362 0.003088 1e-6 450 362 0.0066906996 1e-6 452 362 0.0051466972 1e-6 453 362 0.0020587 1e-6 455 362 0.029850699 1e-6 456 362 0.00051469984 1e-6 457 362 0.0056612976 1e-6 458 362 0.0015439999 1e-6 459 362 0.0020587 1e-6 460 362 0.0010292998 1e-6 463 362 0.0416881 1e-6 464 362 0.0025732999 1e-6 465 362 0.0020587 1e-6 467 362 0.032938797 1e-6 468 362 0.0056612976 1e-6 469 362 0.022130698 1e-6 470 362 0.025218699 1e-6 471 362 0.0010292998 1e-6 473 362 0.00051469984 1e-6 478 362 0.0020587 1e-6 483 362 0.0025732999 1e-6 490 362 0.0025732999 1e-6 491 362 0.0015439999 1e-6 9 363 0.0001637 1e-6 22 363 0.0001637 1e-6 60 363 0.0034387 1e-6 82 363 0.0001637 1e-6 83 363 0.0001637 1e-6 84 363 0.0001637 1e-6 104 363 0.0001637 1e-6 108 363 0.0001637 1e-6 113 363 0.00032749982 1e-6 114 363 0.00049119978 1e-6 126 363 0.00032749982 1e-6 127 363 0.0001637 1e-6 130 363 0.0001637 1e-6 131 363 0.00098249991 1e-6 151 363 0.0001637 1e-6 160 363 0.00081869983 1e-6 171 363 0.00081869983 1e-6 187 363 0.022924498 1e-6 188 363 0.00081869983 1e-6 189 363 0.0001637 1e-6 190 363 0.0001637 1e-6 192 363 0.00098249991 1e-6 194 363 0.00049119978 1e-6 198 363 0.015392199 1e-6 200 363 0.0001637 1e-6 203 363 0.00032749982 1e-6 206 363 0.0022924999 1e-6 211 363 0.0001637 1e-6 214 363 0.0037661998 1e-6 219 363 0.0001637 1e-6 221 363 0.0088422969 1e-6 223 363 0.00098249991 1e-6 224 363 0.0034387 1e-6 233 363 0.00081869983 1e-6 234 363 0.0024561998 1e-6 237 363 0.0001637 1e-6 240 363 0.0039298981 1e-6 241 363 0.011789698 1e-6 242 363 0.0001637 1e-6 248 363 0.0001637 1e-6 250 363 0.00032749982 1e-6 252 363 0.00049119978 1e-6 270 363 0.00032749982 1e-6 276 363 0.00049119978 1e-6 277 363 0.0442116 1e-6 279 363 0.0001637 1e-6 282 363 0.0024561998 1e-6 283 363 0.0001637 1e-6 284 363 0.00098249991 1e-6 285 363 0.00049119978 1e-6 286 363 0.0001637 1e-6 288 363 0.0001637 1e-6 290 363 0.0001637 1e-6 292 363 0.0081872977 1e-6 293 363 0.0027836999 1e-6 294 363 0.0057310984 1e-6 295 363 0.0011461999 1e-6 296 363 0.0039298981 1e-6 298 363 0.0026198998 1e-6 307 363 0.0001637 1e-6 308 363 0.006713599 1e-6 312 363 0.013918497 1e-6 315 363 0.0099884979 1e-6 317 363 0.0001637 1e-6 320 363 0.0021286998 1e-6 321 363 0.0055673979 1e-6 322 363 0.0026198998 1e-6 326 363 0.0021286998 1e-6 339 363 0.0001637 1e-6 340 363 0.0070410967 1e-6 348 363 0.00098249991 1e-6 350 363 0.0001637 1e-6 351 363 0.0050760992 1e-6 354 363 0.0021286998 1e-6 356 363 0.0001637 1e-6 358 363 0.0078597963 1e-6 359 363 0.0096609965 1e-6 360 363 0.0001637 1e-6 361 363 0.00081869983 1e-6 363 363 0.0081872977 1e-6 370 363 0.0016374998 1e-6 371 363 0.0029473999 1e-6 372 363 0.016865898 1e-6 373 363 0.0016374998 1e-6 376 363 0.00049119978 1e-6 384 363 0.0001637 1e-6 386 363 0.0055673979 1e-6 387 363 0.00032749982 1e-6 390 363 0.00049119978 1e-6 392 363 0.0099884979 1e-6 393 363 0.0024561998 1e-6 398 363 0.0001637 1e-6 413 363 0.0001637 1e-6 417 363 0.00032749982 1e-6 419 363 0.016538396 1e-6 420 363 0.00049119978 1e-6 422 363 0.0026198998 1e-6 423 363 0.00032749982 1e-6 424 363 0.0001637 1e-6 425 363 0.0001637 1e-6 426 363 0.0001637 1e-6 430 363 0.0001637 1e-6 431 363 0.0001637 1e-6 434 363 0.0001637 1e-6 441 363 0.0054035969 1e-6 442 363 0.00049119978 1e-6 443 363 0.0021286998 1e-6 444 363 0.0024561998 1e-6 445 363 0.0058948994 1e-6 446 363 0.0001637 1e-6 447 363 0.0027836999 1e-6 450 363 0.0050760992 1e-6 452 363 0.0049123988 1e-6 453 363 0.0018012 1e-6 454 363 0.00049119978 1e-6 455 363 0.034386799 1e-6 456 363 0.0011461999 1e-6 457 363 0.0065498985 1e-6 458 363 0.00081869983 1e-6 459 363 0.0031111999 1e-6 460 363 0.00098249991 1e-6 463 363 0.040936597 1e-6 464 363 0.00131 1e-6 465 363 0.0027836999 1e-6 467 363 0.027836896 1e-6 468 363 0.0065498985 1e-6 469 363 0.020468298 1e-6 470 363 0.022760797 1e-6 471 363 0.00081869983 1e-6 473 363 0.00065499987 1e-6 478 363 0.0019649998 1e-6 479 363 0.0001637 1e-6 483 363 0.0019649998 1e-6 490 363 0.0019649998 1e-6 491 363 0.0027836999 1e-6 60 364 0.0018743998 1e-6 104 364 0.00031239982 1e-6 107 364 0.00093719992 1e-6 110 364 0.0012496 1e-6 114 364 0.00031239982 1e-6 116 364 0.00093719992 1e-6 126 364 0.00031239982 1e-6 174 364 0.00031239982 1e-6 175 364 0.00062479987 1e-6 198 364 0.010309298 1e-6 204 364 0.00031239982 1e-6 206 364 0.00062479987 1e-6 233 364 0.0068728998 1e-6 234 364 0.0053107999 1e-6 236 364 0.00031239982 1e-6 240 364 0.0024991999 1e-6 241 364 0.011871297 1e-6 242 364 0.011246499 1e-6 277 364 0.061543297 1e-6 282 364 0.00093719992 1e-6 284 364 0.0018743998 1e-6 292 364 0.0012496 1e-6 293 364 0.005623199 1e-6 294 364 0.0034363999 1e-6 295 364 0.032802198 1e-6 296 364 0.0012496 1e-6 297 364 0.0034363999 1e-6 298 364 0.00093719992 1e-6 312 364 0.037175898 1e-6 315 364 0.023742598 1e-6 319 364 0.0062479973 1e-6 320 364 0.0062479973 1e-6 340 364 0.0059355982 1e-6 358 364 0.0012496 1e-6 364 364 0.028740998 1e-6 366 364 0.036238696 1e-6 370 364 0.0309278 1e-6 371 364 0.0134333 1e-6 372 364 0.020930998 1e-6 373 364 0.0084348992 1e-6 375 364 0.0021867999 1e-6 376 364 0.021868199 1e-6 386 364 0.0090596974 1e-6 387 364 0.00031239982 1e-6 391 364 0.0012496 1e-6 392 364 0.00031239982 1e-6 393 364 0.0018743998 1e-6 415 364 0.0018743998 1e-6 417 364 0.00062479987 1e-6 441 364 0.022492997 1e-6 443 364 0.0012496 1e-6 444 364 0.0031239998 1e-6 445 364 0.0065603964 1e-6 447 364 0.013745699 1e-6 450 364 0.0037487999 1e-6 452 364 0.0037487999 1e-6 453 364 0.0028116 1e-6 454 364 0.00093719992 1e-6 455 364 0.036551099 1e-6 456 364 0.00062479987 1e-6 457 364 0.0012496 1e-6 458 364 0.00062479987 1e-6 459 364 0.010309298 1e-6 460 364 0.00062479987 1e-6 463 364 0.016244899 1e-6 464 364 0.00062479987 1e-6 465 364 0.0012496 1e-6 467 364 0.0090596974 1e-6 468 364 0.0121837 1e-6 469 364 0.0062479973 1e-6 470 364 0.0068728998 1e-6 471 364 0.00093719992 1e-6 473 364 0.00031239982 1e-6 478 364 0.0012496 1e-6 483 364 0.0018743998 1e-6 490 364 0.00093719992 1e-6 491 364 0.0021867999 1e-6 60 365 0.0021243 1e-6 114 365 0.00053109997 1e-6 172 365 0.0010620998 1e-6 198 365 0.012214597 1e-6 206 365 0.00053109997 1e-6 233 365 0.0058416985 1e-6 234 365 0.0047795996 1e-6 236 365 0.00053109997 1e-6 240 365 0.0026552998 1e-6 241 365 0.012214597 1e-6 242 365 0.011152398 1e-6 270 365 0.00053109997 1e-6 277 365 0.082846463 1e-6 279 365 0.00053109997 1e-6 282 365 0.015400998 1e-6 284 365 0.0015931998 1e-6 292 365 0.0047795996 1e-6 293 365 0.0031863998 1e-6 295 365 0.0074348971 1e-6 296 365 0.0026552998 1e-6 297 365 0.0026552998 1e-6 298 365 0.0095591992 1e-6 312 365 0.0132767 1e-6 315 365 0.0074348971 1e-6 319 365 0.00053109997 1e-6 320 365 0.0058416985 1e-6 321 365 0.00053109997 1e-6 322 365 0.0026552998 1e-6 324 365 0.0058416985 1e-6 340 365 0.010090299 1e-6 341 365 0.00053109997 1e-6 351 365 0.0021243 1e-6 352 365 0.00053109997 1e-6 354 365 0.0053106993 1e-6 358 365 0.006903898 1e-6 364 365 0.0265534 1e-6 365 365 0.019649498 1e-6 366 365 0.0053106993 1e-6 370 365 0.00053109997 1e-6 372 365 0.050982498 1e-6 373 365 0.0015931998 1e-6 376 365 0.00053109997 1e-6 377 365 0.0010620998 1e-6 379 365 0.00053109997 1e-6 385 365 0.00053109997 1e-6 386 365 0.00053109997 1e-6 398 365 0.0015931998 1e-6 415 365 0.0175252 1e-6 417 365 0.00053109997 1e-6 419 365 0.016994197 1e-6 441 365 0.0037174998 1e-6 443 365 0.0010620998 1e-6 444 365 0.0010620998 1e-6 445 365 0.029208697 1e-6 447 365 0.0042484999 1e-6 450 365 0.0037174998 1e-6 452 365 0.0047795996 1e-6 453 365 0.0026552998 1e-6 455 365 0.034519397 1e-6 456 365 0.00053109997 1e-6 457 365 0.0015931998 1e-6 458 365 0.00053109997 1e-6 459 365 0.027084399 1e-6 460 365 0.00053109997 1e-6 463 365 0.014338799 1e-6 464 365 0.00053109997 1e-6 465 365 0.00053109997 1e-6 467 365 0.0090280995 1e-6 468 365 0.0090280995 1e-6 469 365 0.0053106993 1e-6 470 365 0.0053106993 1e-6 478 365 0.00053109997 1e-6 483 365 0.0015931998 1e-6 490 365 0.00053109997 1e-6 491 365 0.0037174998 1e-6 9 366 1.5399986e-05 1e-6 16 366 1.5399986e-05 1e-6 18 366 7.7199991e-05 1e-6 22 366 0.0002931999 1e-6 25 366 1.5399986e-05 1e-6 60 366 0.0012653 1e-6 79 366 1.5399986e-05 1e-6 82 366 1.5399986e-05 1e-6 83 366 1.5399986e-05 1e-6 84 366 1.5399986e-05 1e-6 108 366 3.0899988e-05 1e-6 113 366 4.6299989e-05 1e-6 114 366 9.2599992e-05 1e-6 126 366 4.6299989e-05 1e-6 127 366 1.5399986e-05 1e-6 130 366 1.5399986e-05 1e-6 131 366 6.169999e-05 1e-6 135 366 4.6299989e-05 1e-6 139 366 1.5399986e-05 1e-6 150 366 0.0004474998 1e-6 151 366 1.5399986e-05 1e-6 160 366 0.0023145999 1e-6 169 366 0.00021599999 1e-6 171 366 1.5399986e-05 1e-6 172 366 0.0017127998 1e-6 187 366 0.00066349981 1e-6 189 366 4.6299989e-05 1e-6 190 366 7.7199991e-05 1e-6 191 366 0.00050919992 1e-6 192 366 3.0899988e-05 1e-6 194 366 7.7199991e-05 1e-6 196 366 1.5399986e-05 1e-6 197 366 1.5399986e-05 1e-6 198 366 0.006881997 1e-6 200 366 4.6299989e-05 1e-6 201 366 3.0899988e-05 1e-6 203 366 4.6299989e-05 1e-6 204 366 7.7199991e-05 1e-6 206 366 0.00010799999 1e-6 207 366 4.6299989e-05 1e-6 209 366 1.5399986e-05 1e-6 214 366 0.0035026998 1e-6 218 366 1.5399986e-05 1e-6 219 366 0.00021599999 1e-6 223 366 0.00041659991 1e-6 224 366 7.7199991e-05 1e-6 229 366 1.5399986e-05 1e-6 233 366 0.0028237998 1e-6 234 366 0.0038884999 1e-6 236 366 0.00066349981 1e-6 237 366 0.0001389 1e-6 240 366 0.0038729999 1e-6 241 366 0.0081009977 1e-6 242 366 0.0035489998 1e-6 248 366 1.5399986e-05 1e-6 250 366 1.5399986e-05 1e-6 252 366 0.00098749995 1e-6 270 366 0.0018670999 1e-6 271 366 6.169999e-05 1e-6 272 366 0.00026229979 1e-6 274 366 0.0023453999 1e-6 277 366 0.052201197 1e-6 279 366 4.6299989e-05 1e-6 282 366 0.015754499 1e-6 283 366 0.0023916999 1e-6 284 366 0.0011264 1e-6 285 366 0.00067889993 1e-6 286 366 0.00063259993 1e-6 287 366 3.0899988e-05 1e-6 288 366 6.169999e-05 1e-6 289 366 7.7199991e-05 1e-6 290 366 0.0002468999 1e-6 292 366 0.0293178 1e-6 293 366 0.016078498 1e-6 294 366 0.0025614998 1e-6 295 366 0.0031168999 1e-6 296 366 0.0048605986 1e-6 297 366 0.0025922998 1e-6 298 366 0.0025459998 1e-6 299 366 1.5399986e-05 1e-6 304 366 0.0033020999 1e-6 307 366 0.0001852 1e-6 312 366 0.0068510994 1e-6 313 366 0.00010799999 1e-6 315 366 0.014782399 1e-6 317 366 1.5399986e-05 1e-6 318 366 1.5399986e-05 1e-6 319 366 0.0036878998 1e-6 320 366 0.00055549992 1e-6 321 366 0.0011880998 1e-6 322 366 0.0025151998 1e-6 324 366 0.0169889 1e-6 326 366 0.0013269999 1e-6 327 366 1.5399986e-05 1e-6 328 366 0.0037958999 1e-6 329 366 3.0899988e-05 1e-6 331 366 6.169999e-05 1e-6 332 366 1.5399986e-05 1e-6 338 366 0.00032399991 1e-6 339 366 0.00037029991 1e-6 340 366 0.0022836998 1e-6 341 366 4.6299989e-05 1e-6 344 366 4.6299989e-05 1e-6 349 366 6.169999e-05 1e-6 350 366 0.00080239982 1e-6 351 366 0.0042124987 1e-6 352 366 0.0085329972 1e-6 353 366 0.00046289992 1e-6 354 366 0.0018670999 1e-6 355 366 0.0001852 1e-6 356 366 7.7199991e-05 1e-6 357 366 0.00010799999 1e-6 358 366 0.0035952998 1e-6 364 366 3.0899988e-05 1e-6 366 366 0.069853544 1e-6 368 366 0.0004474998 1e-6 370 366 0.0001389 1e-6 371 366 0.0041353963 1e-6 372 366 0.071689785 1e-6 373 366 0.033159997 1e-6 374 366 1.5399986e-05 1e-6 376 366 6.169999e-05 1e-6 377 366 3.0899988e-05 1e-6 380 366 3.0899988e-05 1e-6 384 366 3.0899988e-05 1e-6 385 366 0.00012339999 1e-6 386 366 0.0033175 1e-6 387 366 3.0899988e-05 1e-6 390 366 6.169999e-05 1e-6 392 366 4.6299989e-05 1e-6 393 366 0.00012339999 1e-6 397 366 7.7199991e-05 1e-6 398 366 0.0004782998 1e-6 401 366 1.5399986e-05 1e-6 402 366 0.00057089981 1e-6 404 366 1.5399986e-05 1e-6 405 366 4.6299989e-05 1e-6 414 366 1.5399986e-05 1e-6 415 366 0.0066041984 1e-6 417 366 0.00032399991 1e-6 419 366 0.0045982972 1e-6 421 366 4.6299989e-05 1e-6 422 366 6.169999e-05 1e-6 423 366 1.5399986e-05 1e-6 425 366 1.5399986e-05 1e-6 430 366 1.5399986e-05 1e-6 431 366 3.0899988e-05 1e-6 432 366 1.5399986e-05 1e-6 433 366 3.0899988e-05 1e-6 434 366 3.0899988e-05 1e-6 441 366 0.0018824998 1e-6 442 366 0.00032399991 1e-6 443 366 0.0033175 1e-6 444 366 0.0012498999 1e-6 445 366 0.0063727982 1e-6 446 366 0.00043209991 1e-6 447 366 0.0022219999 1e-6 448 366 1.5399986e-05 1e-6 450 366 0.0042433999 1e-6 452 366 0.004227899 1e-6 453 366 0.0016355999 1e-6 454 366 0.00092579983 1e-6 455 366 0.040119097 1e-6 456 366 0.00063259993 1e-6 457 366 0.0018516998 1e-6 458 366 0.0001543 1e-6 459 366 0.00078699994 1e-6 460 366 0.00095669995 1e-6 463 366 0.0080237985 1e-6 464 366 0.0016355999 1e-6 465 366 0.00087949983 1e-6 467 366 0.0094433986 1e-6 468 366 0.010199498 1e-6 469 366 0.0055394992 1e-6 470 366 0.0039192997 1e-6 471 366 0.0041044988 1e-6 473 366 9.2599992e-05 1e-6 477 366 0.0001389 1e-6 478 366 0.00083319983 1e-6 483 366 0.00083319983 1e-6 489 366 4.6299989e-05 1e-6 490 366 0.00030859979 1e-6 491 366 0.0026385998 1e-6 60 367 0.0020736 1e-6 114 367 0.00051839999 1e-6 126 367 0.00051839999 1e-6 160 367 0.00051839999 1e-6 198 367 0.0088128969 1e-6 206 367 0.0010368 1e-6 214 367 0.0025919999 1e-6 233 367 0.00051839999 1e-6 234 367 0.0051839985 1e-6 241 367 0.012441698 1e-6 242 367 0.034214597 1e-6 270 367 0.00051839999 1e-6 272 367 0.0020736 1e-6 277 367 0.046656299 1e-6 279 367 0.00051839999 1e-6 282 367 0.020736098 1e-6 283 367 0.0057023987 1e-6 284 367 0.0015552 1e-6 285 367 0.00051839999 1e-6 286 367 0.00051839999 1e-6 289 367 0.00051839999 1e-6 292 367 0.0031103999 1e-6 293 367 0.0015552 1e-6 294 367 0.0010368 1e-6 295 367 0.0010368 1e-6 296 367 0.011923298 1e-6 297 367 0.0010368 1e-6 298 367 0.0010368 1e-6 307 367 0.0020736 1e-6 312 367 0.0015552 1e-6 321 367 0.020736098 1e-6 324 367 0.033696197 1e-6 328 367 0.0041471981 1e-6 329 367 0.00051839999 1e-6 333 367 0.00051839999 1e-6 340 367 0.0098496974 1e-6 349 367 0.0010368 1e-6 350 367 0.0010368 1e-6 351 367 0.0031103999 1e-6 354 367 0.0041471981 1e-6 358 367 0.0155521 1e-6 367 367 0.025920197 1e-6 372 367 0.023846596 1e-6 373 367 0.0020736 1e-6 402 367 0.00051839999 1e-6 414 367 0.06428194 1e-6 417 367 0.00051839999 1e-6 419 367 0.00051839999 1e-6 443 367 0.0010368 1e-6 444 367 0.00051839999 1e-6 445 367 0.0031103999 1e-6 447 367 0.013996899 1e-6 450 367 0.0046655983 1e-6 452 367 0.0051839985 1e-6 453 367 0.0025919999 1e-6 454 367 0.0015552 1e-6 455 367 0.033177797 1e-6 456 367 0.00051839999 1e-6 457 367 0.0020736 1e-6 458 367 0.0010368 1e-6 459 367 0.020217698 1e-6 460 367 0.0010368 1e-6 463 367 0.022291299 1e-6 464 367 0.00051839999 1e-6 465 367 0.00051839999 1e-6 467 367 0.0093312971 1e-6 468 367 0.0088128969 1e-6 469 367 0.0057023987 1e-6 470 367 0.0057023987 1e-6 471 367 0.00051839999 1e-6 473 367 0.00051839999 1e-6 478 367 0.0010368 1e-6 483 367 0.0015552 1e-6 490 367 0.0010368 1e-6 491 367 0.0015552 1e-6 13 368 0.00011179999 1e-6 22 368 0.00011179999 1e-6 24 368 0.00011179999 1e-6 25 368 0.0032434999 1e-6 60 368 0.0014539999 1e-6 82 368 0.00011179999 1e-6 108 368 0.00011179999 1e-6 114 368 0.00011179999 1e-6 120 368 0.00022369999 1e-6 126 368 0.00011179999 1e-6 135 368 0.00033549988 1e-6 139 368 0.00011179999 1e-6 142 368 0.00078289979 1e-6 150 368 0.00011179999 1e-6 160 368 0.00022369999 1e-6 165 368 0.00022369999 1e-6 170 368 0.00011179999 1e-6 171 368 0.00011179999 1e-6 187 368 0.00067109987 1e-6 189 368 0.00011179999 1e-6 190 368 0.00011179999 1e-6 191 368 0.00011179999 1e-6 193 368 0.00011179999 1e-6 194 368 0.00022369999 1e-6 198 368 0.010289699 1e-6 206 368 0.00022369999 1e-6 214 368 0.0059276968 1e-6 218 368 0.00011179999 1e-6 223 368 0.00022369999 1e-6 224 368 0.011631798 1e-6 233 368 0.0027961 1e-6 234 368 0.0051447973 1e-6 236 368 0.00033549988 1e-6 237 368 0.00011179999 1e-6 240 368 0.0019013998 1e-6 241 368 0.0161056 1e-6 242 368 0.0095067993 1e-6 252 368 0.00011179999 1e-6 270 368 0.0010066 1e-6 272 368 0.0026842998 1e-6 277 368 0.070461869 1e-6 279 368 0.00055919983 1e-6 282 368 0.0152108 1e-6 283 368 0.00033549988 1e-6 284 368 0.0015657998 1e-6 289 368 0.00011179999 1e-6 292 368 0.0024605999 1e-6 293 368 0.0074935965 1e-6 294 368 0.0049210973 1e-6 295 368 0.00067109987 1e-6 296 368 0.0048092976 1e-6 297 368 0.0035789998 1e-6 298 368 0.0012302999 1e-6 299 368 0.00011179999 1e-6 301 368 0.00011179999 1e-6 307 368 0.018566199 1e-6 312 368 0.0079408996 1e-6 315 368 0.016553 1e-6 317 368 0.00011179999 1e-6 318 368 0.0021249999 1e-6 319 368 0.0036908998 1e-6 320 368 0.0012302999 1e-6 321 368 0.0039145984 1e-6 322 368 0.00022369999 1e-6 324 368 0.017223999 1e-6 326 368 0.00044739991 1e-6 328 368 0.0040263981 1e-6 331 368 0.00011179999 1e-6 332 368 0.00011179999 1e-6 335 368 0.00011179999 1e-6 339 368 0.00044739991 1e-6 340 368 0.0031315999 1e-6 350 368 0.009394899 1e-6 351 368 0.0032434999 1e-6 352 368 0.020131998 1e-6 354 368 0.010513399 1e-6 355 368 0.00011179999 1e-6 356 368 0.0019013998 1e-6 358 368 0.0053684972 1e-6 366 368 0.00033549988 1e-6 368 368 0.013868697 1e-6 369 368 0.00011179999 1e-6 370 368 0.00011179999 1e-6 371 368 0.00033549988 1e-6 372 368 0.034112498 1e-6 373 368 0.00044739991 1e-6 377 368 0.00011179999 1e-6 380 368 0.00022369999 1e-6 386 368 0.014092397 1e-6 387 368 0.00011179999 1e-6 390 368 0.00033549988 1e-6 392 368 0.00033549988 1e-6 393 368 0.00044739991 1e-6 404 368 0.00011179999 1e-6 405 368 0.0014539999 1e-6 414 368 0.0061513968 1e-6 415 368 0.0026842998 1e-6 417 368 0.00044739991 1e-6 419 368 0.009618599 1e-6 421 368 0.00011179999 1e-6 422 368 0.00022369999 1e-6 430 368 0.00011179999 1e-6 438 368 0.0029079998 1e-6 441 368 0.0026842998 1e-6 443 368 0.0034671999 1e-6 444 368 0.0022368999 1e-6 445 368 0.011967298 1e-6 446 368 0.00067109987 1e-6 447 368 0.0055921972 1e-6 450 368 0.0036908998 1e-6 452 368 0.0039145984 1e-6 453 368 0.0017894998 1e-6 454 368 0.00033549988 1e-6 455 368 0.044178497 1e-6 456 368 0.00067109987 1e-6 457 368 0.0021249999 1e-6 458 368 0.00044739991 1e-6 459 368 0.00022369999 1e-6 460 368 0.00089479983 1e-6 463 368 0.013868697 1e-6 464 368 0.0078290999 1e-6 465 368 0.00078289979 1e-6 467 368 0.0090593994 1e-6 468 368 0.012302898 1e-6 469 368 0.006710697 1e-6 470 368 0.0076053999 1e-6 471 368 0.0010066 1e-6 473 368 0.00022369999 1e-6 477 368 0.00011179999 1e-6 478 368 0.0010066 1e-6 483 368 0.0013420999 1e-6 490 368 0.00067109987 1e-6 491 368 0.0019013998 1e-6 9 369 7.0799986e-05 1e-6 18 369 0.00014169999 1e-6 60 369 0.0029044999 1e-6 82 369 7.0799986e-05 1e-6 83 369 7.0799986e-05 1e-6 84 369 7.0799986e-05 1e-6 108 369 7.0799986e-05 1e-6 113 369 0.00014169999 1e-6 114 369 0.00021249999 1e-6 126 369 0.00014169999 1e-6 127 369 7.0799986e-05 1e-6 150 369 0.00070839981 1e-6 165 369 7.0799986e-05 1e-6 189 369 0.00014169999 1e-6 190 369 0.00014169999 1e-6 192 369 7.0799986e-05 1e-6 194 369 0.00021249999 1e-6 198 369 0.0029044999 1e-6 200 369 7.0799986e-05 1e-6 201 369 7.0799986e-05 1e-6 203 369 7.0799986e-05 1e-6 204 369 0.0014167998 1e-6 206 369 0.0003541999 1e-6 207 369 7.0799986e-05 1e-6 214 369 7.0799986e-05 1e-6 223 369 7.0799986e-05 1e-6 224 369 0.0039670989 1e-6 233 369 7.0799986e-05 1e-6 234 369 0.0018418999 1e-6 237 369 7.0799986e-05 1e-6 240 369 7.0799986e-05 1e-6 241 369 0.0043212995 1e-6 248 369 7.0799986e-05 1e-6 250 369 7.0799986e-05 1e-6 252 369 0.003117 1e-6 262 369 0.00014169999 1e-6 277 369 0.010555398 1e-6 282 369 0.0014167998 1e-6 283 369 0.00014169999 1e-6 284 369 0.00049589993 1e-6 285 369 7.0799986e-05 1e-6 286 369 7.0799986e-05 1e-6 290 369 0.0058798976 1e-6 292 369 0.0030461999 1e-6 293 369 0.003117 1e-6 294 369 0.0011334999 1e-6 295 369 0.0167186 1e-6 296 369 0.0045338981 1e-6 297 369 0.00021249999 1e-6 305 369 7.0799986e-05 1e-6 307 369 7.0799986e-05 1e-6 308 369 0.00014169999 1e-6 312 369 0.0053130984 1e-6 313 369 7.0799986e-05 1e-6 315 369 0.011193 1e-6 317 369 7.0799986e-05 1e-6 320 369 0.0019126998 1e-6 321 369 0.00014169999 1e-6 322 369 0.0021251999 1e-6 326 369 0.0015584999 1e-6 340 369 0.0037546 1e-6 351 369 0.00021249999 1e-6 356 369 0.00014169999 1e-6 358 369 0.0057381988 1e-6 359 369 0.010484599 1e-6 369 369 0.0575234 1e-6 370 369 0.0011334999 1e-6 371 369 0.0034711999 1e-6 372 369 0.0037546 1e-6 373 369 0.0016293998 1e-6 376 369 0.00042499998 1e-6 386 369 0.027203199 1e-6 387 369 0.00021249999 1e-6 389 369 0.0023377999 1e-6 390 369 0.0034003998 1e-6 391 369 0.0033296 1e-6 392 369 0.028265797 1e-6 393 369 0.065670192 1e-6 402 369 0.00021249999 1e-6 413 369 0.00014169999 1e-6 414 369 0.0021960998 1e-6 417 369 0.00049589993 1e-6 419 369 0.00092089991 1e-6 420 369 0.00014169999 1e-6 421 369 7.0799986e-05 1e-6 422 369 0.00014169999 1e-6 423 369 7.0799986e-05 1e-6 424 369 0.0026919998 1e-6 425 369 7.0799986e-05 1e-6 430 369 7.0799986e-05 1e-6 431 369 7.0799986e-05 1e-6 433 369 7.0799986e-05 1e-6 434 369 7.0799986e-05 1e-6 443 369 0.00056669977 1e-6 444 369 0.0060923994 1e-6 445 369 0.0022668999 1e-6 446 369 7.0799986e-05 1e-6 447 369 0.0083592981 1e-6 450 369 0.0089259967 1e-6 452 369 0.0043921992 1e-6 453 369 0.0010625999 1e-6 454 369 0.00056669977 1e-6 455 369 0.021039996 1e-6 456 369 0.0007793 1e-6 457 369 0.0049588978 1e-6 458 369 0.00099179987 1e-6 459 369 0.00063759997 1e-6 460 369 0.0012043 1e-6 463 369 0.018418796 1e-6 464 369 0.0092093982 1e-6 465 369 0.010626197 1e-6 467 369 0.016010199 1e-6 468 369 0.0062340982 1e-6 469 369 0.010272 1e-6 470 369 0.011901397 1e-6 471 369 0.0030461999 1e-6 473 369 0.00028339983 1e-6 477 369 0.00021249999 1e-6 478 369 0.0016293998 1e-6 483 369 0.0017001999 1e-6 490 369 0.0087134987 1e-6 491 369 0.0035420998 1e-6 9 370 6.8699999e-05 1e-6 18 370 0.0001375 1e-6 22 370 0.0001375 1e-6 60 370 0.0027494999 1e-6 82 370 6.8699999e-05 1e-6 83 370 6.8699999e-05 1e-6 84 370 6.8699999e-05 1e-6 108 370 6.8699999e-05 1e-6 113 370 0.0001375 1e-6 114 370 0.0002062 1e-6 126 370 6.8699999e-05 1e-6 150 370 0.00061859982 1e-6 160 370 0.0040554963 1e-6 169 370 0.0015121999 1e-6 172 370 0.0026807999 1e-6 187 370 0.010379396 1e-6 189 370 6.8699999e-05 1e-6 190 370 6.8699999e-05 1e-6 192 370 6.8699999e-05 1e-6 194 370 6.8699999e-05 1e-6 198 370 0.0043304972 1e-6 200 370 6.8699999e-05 1e-6 203 370 6.8699999e-05 1e-6 204 370 6.8699999e-05 1e-6 206 370 0.0001375 1e-6 207 370 6.8699999e-05 1e-6 214 370 0.0028869999 1e-6 223 370 6.8699999e-05 1e-6 224 370 0.0001375 1e-6 233 370 0.0068737976 1e-6 234 370 0.013335198 1e-6 237 370 6.8699999e-05 1e-6 241 370 0.0030244999 1e-6 252 370 0.000275 1e-6 262 370 0.015397299 1e-6 272 370 0.0068737976 1e-6 277 370 0.12998348 1e-6 279 370 0.0002062 1e-6 282 370 6.8699999e-05 1e-6 284 370 0.00041239988 1e-6 289 370 0.016359597 1e-6 290 370 6.8699999e-05 1e-6 292 370 0.012097899 1e-6 293 370 0.016772099 1e-6 294 370 0.0001375 1e-6 295 370 0.062620282 1e-6 296 370 0.0001375 1e-6 307 370 0.0052240975 1e-6 308 370 6.8699999e-05 1e-6 312 370 0.0065987967 1e-6 315 370 0.0063238963 1e-6 320 370 0.0001375 1e-6 339 370 0.00048119994 1e-6 340 370 0.0015121999 1e-6 354 370 6.8699999e-05 1e-6 356 370 0.0001375 1e-6 358 370 0.0019246999 1e-6 359 370 0.0001375 1e-6 369 370 0.00068739988 1e-6 370 370 0.00082489988 1e-6 371 370 0.0026119999 1e-6 372 370 6.8699999e-05 1e-6 373 370 0.00048119994 1e-6 375 370 6.8699999e-05 1e-6 376 370 0.044267297 1e-6 384 370 6.8699999e-05 1e-6 385 370 6.8699999e-05 1e-6 386 370 0.019384097 1e-6 387 370 6.8699999e-05 1e-6 391 370 0.0002062 1e-6 392 370 0.00048119994 1e-6 393 370 0.0017183998 1e-6 396 370 6.8699999e-05 1e-6 398 370 6.8699999e-05 1e-6 402 370 6.8699999e-05 1e-6 404 370 0.0002062 1e-6 414 370 0.0056364983 1e-6 417 370 0.00041239988 1e-6 421 370 6.8699999e-05 1e-6 422 370 6.8699999e-05 1e-6 423 370 6.8699999e-05 1e-6 430 370 6.8699999e-05 1e-6 431 370 6.8699999e-05 1e-6 433 370 6.8699999e-05 1e-6 434 370 0.0001375 1e-6 443 370 0.0046053976 1e-6 444 370 0.0002062 1e-6 445 370 0.0077673979 1e-6 446 370 0.00075609982 1e-6 447 370 0.00075609982 1e-6 448 370 0.0002062 1e-6 450 370 0.0043304972 1e-6 452 370 0.0063238963 1e-6 453 370 0.0010998 1e-6 454 370 0.0023371 1e-6 455 370 0.0328568 1e-6 456 370 0.00034369994 1e-6 457 370 0.0030244999 1e-6 458 370 0.00096229999 1e-6 459 370 0.00034369994 1e-6 460 370 0.00096229999 1e-6 463 370 0.0048803985 1e-6 464 370 0.00041239988 1e-6 465 370 0.023302197 1e-6 467 370 0.014297497 1e-6 468 370 0.0011684999 1e-6 469 370 0.0060488991 1e-6 470 370 0.0066675991 1e-6 471 370 0.00054989988 1e-6 473 370 0.0001375 1e-6 477 370 0.0001375 1e-6 478 370 0.0013748 1e-6 483 370 0.0010998 1e-6 490 370 0.0093483999 1e-6 491 370 0.00082489988 1e-6 9 371 4.7399997e-05 1e-6 18 371 9.4799994e-05 1e-6 22 371 4.7399997e-05 1e-6 60 371 0.0020857998 1e-6 82 371 4.7399997e-05 1e-6 83 371 4.7399997e-05 1e-6 84 371 4.7399997e-05 1e-6 108 371 4.7399997e-05 1e-6 113 371 9.4799994e-05 1e-6 114 371 0.00014219999 1e-6 126 371 9.4799994e-05 1e-6 127 371 4.7399997e-05 1e-6 150 371 0.00071109994 1e-6 160 371 0.0011850998 1e-6 169 371 0.0015168998 1e-6 172 371 0.00080589997 1e-6 187 371 0.00023699999 1e-6 189 371 9.4799994e-05 1e-6 190 371 9.4799994e-05 1e-6 194 371 0.00014219999 1e-6 197 371 4.7399997e-05 1e-6 198 371 0.0041715987 1e-6 200 371 9.4799994e-05 1e-6 201 371 9.4799994e-05 1e-6 203 371 9.4799994e-05 1e-6 204 371 0.00014219999 1e-6 206 371 0.00014219999 1e-6 207 371 4.7399997e-05 1e-6 214 371 0.00028439984 1e-6 223 371 0.00018959999 1e-6 224 371 0.008011397 1e-6 233 371 0.0019435999 1e-6 234 371 0.0024175998 1e-6 237 371 9.4799994e-05 1e-6 240 371 0.0018961998 1e-6 241 371 0.017065696 1e-6 248 371 4.7399997e-05 1e-6 250 371 4.7399997e-05 1e-6 252 371 0.00018959999 1e-6 262 371 0.016686399 1e-6 272 371 4.7399997e-05 1e-6 277 371 0.038018499 1e-6 282 371 0.0016117999 1e-6 283 371 0.00018959999 1e-6 284 371 0.00042659999 1e-6 286 371 0.0070632994 1e-6 288 371 0.00014219999 1e-6 289 371 0.0025123998 1e-6 290 371 0.0035078998 1e-6 292 371 0.027067997 1e-6 293 371 0.0102394 1e-6 294 371 0.00085329986 1e-6 295 371 0.011045299 1e-6 296 371 0.0028442999 1e-6 297 371 0.0063047968 1e-6 298 371 0.0035078998 1e-6 299 371 4.7399997e-05 1e-6 305 371 4.7399997e-05 1e-6 307 371 9.4799994e-05 1e-6 308 371 0.0073002987 1e-6 312 371 0.013557699 1e-6 315 371 0.0030812998 1e-6 317 371 9.4799994e-05 1e-6 320 371 0.011282299 1e-6 321 371 0.00042659999 1e-6 322 371 0.0021331999 1e-6 324 371 4.7399997e-05 1e-6 326 371 0.00085329986 1e-6 327 371 0.00018959999 1e-6 328 371 9.4799994e-05 1e-6 338 371 0.00047399988 1e-6 339 371 0.0005214999 1e-6 340 371 0.0037449999 1e-6 341 371 4.7399997e-05 1e-6 351 371 4.7399997e-05 1e-6 354 371 0.0005214999 1e-6 356 371 0.00014219999 1e-6 358 371 0.0044559985 1e-6 359 371 9.4799994e-05 1e-6 369 371 0.0027021 1e-6 370 371 0.0036976 1e-6 371 371 0.010571197 1e-6 372 371 0.0036026998 1e-6 373 371 0.08063519 1e-6 376 371 0.0037923998 1e-6 386 371 0.010191999 1e-6 387 371 9.4799994e-05 1e-6 389 371 0.00014219999 1e-6 390 371 0.00023699999 1e-6 391 371 4.7399997e-05 1e-6 392 371 0.0005214999 1e-6 393 371 0.0085327998 1e-6 398 371 0.00014219999 1e-6 402 371 4.7399997e-05 1e-6 405 371 4.7399997e-05 1e-6 414 371 4.7399997e-05 1e-6 417 371 0.00042659999 1e-6 419 371 0.00037919986 1e-6 421 371 4.7399997e-05 1e-6 422 371 0.00018959999 1e-6 423 371 4.7399997e-05 1e-6 425 371 4.7399997e-05 1e-6 430 371 4.7399997e-05 1e-6 431 371 4.7399997e-05 1e-6 433 371 4.7399997e-05 1e-6 434 371 4.7399997e-05 1e-6 441 371 0.0019909998 1e-6 443 371 0.002228 1e-6 444 371 0.0049300976 1e-6 445 371 0.0066365972 1e-6 446 371 0.00014219999 1e-6 447 371 0.004882697 1e-6 450 371 0.0064469986 1e-6 452 371 0.0054514967 1e-6 453 371 0.00099549978 1e-6 454 371 0.00071109994 1e-6 455 371 0.026830997 1e-6 456 371 0.00056889979 1e-6 457 371 0.004740499 1e-6 458 371 0.00075849984 1e-6 459 371 0.00033179997 1e-6 460 371 0.00094809989 1e-6 463 371 0.024934798 1e-6 464 371 0.0071106963 1e-6 465 371 0.011708897 1e-6 467 371 0.015880499 1e-6 468 371 0.0047878996 1e-6 469 371 0.0079165995 1e-6 470 371 0.0088172965 1e-6 471 371 0.0027494999 1e-6 473 371 0.00018959999 1e-6 477 371 0.00018959999 1e-6 478 371 0.0014694999 1e-6 483 371 0.0012798999 1e-6 489 371 4.7399997e-05 1e-6 490 371 0.00085329986 1e-6 491 371 0.0011850998 1e-6 9 372 3.5699995e-05 1e-6 18 372 0.000143 1e-6 19 372 7.1499991e-05 1e-6 22 372 0.00017869999 1e-6 60 372 0.0025020998 1e-6 79 372 3.5699995e-05 1e-6 82 372 3.5699995e-05 1e-6 83 372 3.5699995e-05 1e-6 84 372 3.5699995e-05 1e-6 108 372 3.5699995e-05 1e-6 113 372 7.1499991e-05 1e-6 114 372 0.000143 1e-6 126 372 7.1499991e-05 1e-6 127 372 3.5699995e-05 1e-6 130 372 7.1499991e-05 1e-6 134 372 7.1499991e-05 1e-6 135 372 0.00071489997 1e-6 139 372 3.5699995e-05 1e-6 150 372 0.00064339978 1e-6 160 372 0.0016084998 1e-6 161 372 3.5699995e-05 1e-6 169 372 0.00085779978 1e-6 172 372 0.00064339978 1e-6 187 372 3.5699995e-05 1e-6 189 372 0.00010719999 1e-6 190 372 0.00010719999 1e-6 191 372 0.00085779978 1e-6 194 372 0.000143 1e-6 197 372 3.5699995e-05 1e-6 198 372 0.0048968978 1e-6 200 372 7.1499991e-05 1e-6 201 372 7.1499991e-05 1e-6 203 372 7.1499991e-05 1e-6 204 372 7.1499991e-05 1e-6 206 372 0.00017869999 1e-6 207 372 3.5699995e-05 1e-6 214 372 0.000143 1e-6 218 372 3.5699995e-05 1e-6 223 372 0.000143 1e-6 224 372 0.0029666999 1e-6 225 372 0.00017869999 1e-6 227 372 3.5699995e-05 1e-6 233 372 0.0028594998 1e-6 234 372 0.0022161 1e-6 237 372 0.000143 1e-6 240 372 0.00053619989 1e-6 241 372 0.0038602999 1e-6 242 372 0.0034671 1e-6 243 372 3.5699995e-05 1e-6 248 372 3.5699995e-05 1e-6 250 372 7.1499991e-05 1e-6 252 372 0.00021449999 1e-6 262 372 0.00010719999 1e-6 270 372 0.00028589997 1e-6 271 372 0.00025019981 1e-6 272 372 0.00028589997 1e-6 276 372 0.0030381999 1e-6 277 372 0.070057452 1e-6 279 372 3.5699995e-05 1e-6 282 372 0.027951498 1e-6 283 372 0.0043964982 1e-6 284 372 0.00053619989 1e-6 285 372 3.5699995e-05 1e-6 286 372 0.0010722999 1e-6 288 372 0.00010719999 1e-6 289 372 0.0033955998 1e-6 290 372 0.0046823993 1e-6 292 372 0.011688199 1e-6 293 372 0.0043606982 1e-6 294 372 0.00096509978 1e-6 295 372 0.052614599 1e-6 296 372 0.0068627968 1e-6 297 372 0.00089359982 1e-6 298 372 0.00035739993 1e-6 299 372 0.00050039985 1e-6 305 372 0.00025019981 1e-6 307 372 0.00050039985 1e-6 308 372 0.00025019981 1e-6 312 372 0.009114597 1e-6 313 372 0.00042889989 1e-6 315 372 0.011008997 1e-6 317 372 0.0021445998 1e-6 319 372 0.00017869999 1e-6 320 372 0.0023232999 1e-6 321 372 0.00021449999 1e-6 322 372 0.00050039985 1e-6 323 372 7.1499991e-05 1e-6 324 372 0.00028589997 1e-6 326 372 0.0028237 1e-6 327 372 0.0011437999 1e-6 328 372 0.012688998 1e-6 330 372 3.5699995e-05 1e-6 331 372 0.00025019981 1e-6 332 372 0.000143 1e-6 338 372 0.00082209986 1e-6 339 372 0.00021449999 1e-6 340 372 0.011259198 1e-6 341 372 0.00010719999 1e-6 350 372 0.00046469993 1e-6 351 372 0.0084354989 1e-6 352 372 0.00010719999 1e-6 354 372 0.0096507967 1e-6 355 372 3.5699995e-05 1e-6 356 372 0.00017869999 1e-6 357 372 0.0010366 1e-6 358 372 0.0090430975 1e-6 366 372 7.1499991e-05 1e-6 369 372 0.000143 1e-6 370 372 0.00010719999 1e-6 371 372 0.0095077977 1e-6 372 372 0.015298299 1e-6 373 372 0.00060759997 1e-6 374 372 3.5699995e-05 1e-6 375 372 0.0033241999 1e-6 376 372 0.0059691966 1e-6 384 372 3.5699995e-05 1e-6 386 372 0.00017869999 1e-6 387 372 7.1499991e-05 1e-6 390 372 0.00028589997 1e-6 391 372 0.0010366 1e-6 392 372 0.0013939999 1e-6 393 372 0.0026807999 1e-6 396 372 0.00010719999 1e-6 397 372 0.002931 1e-6 398 372 0.00017869999 1e-6 402 372 0.0021445998 1e-6 404 372 0.00032169977 1e-6 405 372 0.00028589997 1e-6 408 372 0.0029666999 1e-6 412 372 0.00010719999 1e-6 414 372 7.1499991e-05 1e-6 417 372 0.00042889989 1e-6 419 372 0.0012867998 1e-6 421 372 7.1499991e-05 1e-6 422 372 0.000143 1e-6 423 372 7.1499991e-05 1e-6 424 372 3.5699995e-05 1e-6 425 372 3.5699995e-05 1e-6 426 372 3.5699995e-05 1e-6 430 372 0.000143 1e-6 431 372 3.5699995e-05 1e-6 433 372 3.5699995e-05 1e-6 434 372 3.5699995e-05 1e-6 443 372 0.0030024999 1e-6 444 372 0.0030739999 1e-6 445 372 0.0072201975 1e-6 446 372 0.00039319997 1e-6 447 372 0.0034671 1e-6 450 372 0.0061121993 1e-6 452 372 0.0060406998 1e-6 453 372 0.0021088999 1e-6 454 372 0.00057189981 1e-6 455 372 0.026021399 1e-6 456 372 0.00046469993 1e-6 457 372 0.0028951999 1e-6 458 372 0.00064339978 1e-6 459 372 0.00046469993 1e-6 460 372 0.0010722999 1e-6 463 372 0.0115452 1e-6 464 372 0.0041462965 1e-6 465 372 0.011330698 1e-6 467 372 0.015262499 1e-6 468 372 0.0028237 1e-6 469 372 0.0064695999 1e-6 470 372 0.0073988996 1e-6 471 372 0.0022876 1e-6 473 372 0.000143 1e-6 477 372 0.00025019981 1e-6 478 372 0.0014654999 1e-6 483 372 0.0015727 1e-6 489 372 3.5699995e-05 1e-6 490 372 0.0048968978 1e-6 491 372 0.0024305999 1e-6 9 373 7.6299999e-05 1e-6 18 373 0.0001527 1e-6 60 373 0.0025954 1e-6 82 373 7.6299999e-05 1e-6 83 373 7.6299999e-05 1e-6 84 373 7.6299999e-05 1e-6 108 373 7.6299999e-05 1e-6 113 373 0.0001527 1e-6 114 373 0.000229 1e-6 126 373 0.0001527 1e-6 127 373 7.6299999e-05 1e-6 150 373 0.00061069988 1e-6 160 373 0.0010686999 1e-6 169 373 7.6299999e-05 1e-6 172 373 0.00061069988 1e-6 175 373 7.6299999e-05 1e-6 189 373 7.6299999e-05 1e-6 190 373 0.0001527 1e-6 192 373 7.6299999e-05 1e-6 194 373 0.0001527 1e-6 198 373 0.0060304999 1e-6 200 373 7.6299999e-05 1e-6 201 373 7.6299999e-05 1e-6 203 373 7.6299999e-05 1e-6 204 373 7.6299999e-05 1e-6 206 373 0.000229 1e-6 207 373 7.6299999e-05 1e-6 214 373 7.6299999e-05 1e-6 223 373 0.0001527 1e-6 224 373 0.0070228986 1e-6 233 373 0.0016031 1e-6 234 373 0.0021374 1e-6 237 373 7.6299999e-05 1e-6 240 373 0.0014503999 1e-6 241 373 0.014427498 1e-6 248 373 7.6299999e-05 1e-6 250 373 7.6299999e-05 1e-6 252 373 0.000229 1e-6 262 373 0.0010686999 1e-6 270 373 0.0001527 1e-6 272 373 7.6299999e-05 1e-6 277 373 0.024198499 1e-6 282 373 0.0029771 1e-6 283 373 0.00030529988 1e-6 284 373 0.00053439988 1e-6 286 373 0.0032823998 1e-6 288 373 0.0001527 1e-6 289 373 0.0024426999 1e-6 290 373 0.00068699988 1e-6 292 373 0.0164885 1e-6 293 373 0.0031297999 1e-6 294 373 0.00053439988 1e-6 295 373 0.016793899 1e-6 296 373 0.0024426999 1e-6 297 373 0.0012214 1e-6 298 373 0.00030529988 1e-6 305 373 7.6299999e-05 1e-6 307 373 7.6299999e-05 1e-6 308 373 0.015877899 1e-6 312 373 0.0098472983 1e-6 315 373 0.00091599999 1e-6 317 373 7.6299999e-05 1e-6 319 373 0.0001527 1e-6 320 373 0.0067938976 1e-6 321 373 0.0037405 1e-6 322 373 0.0003817 1e-6 324 373 0.000229 1e-6 326 373 0.0001527 1e-6 327 373 0.0001527 1e-6 328 373 7.6299999e-05 1e-6 340 373 0.006870199 1e-6 351 373 7.6299999e-05 1e-6 352 373 7.6299999e-05 1e-6 354 373 0.0001527 1e-6 356 373 0.0001527 1e-6 358 373 0.0044274963 1e-6 359 373 0.0012977 1e-6 369 373 0.0082442984 1e-6 370 373 0.0022900999 1e-6 371 373 0.0073281974 1e-6 372 373 0.0074045993 1e-6 373 373 0.08763355 1e-6 376 373 0.0042747967 1e-6 386 373 0.011450399 1e-6 387 373 0.000229 1e-6 389 373 0.00091599999 1e-6 390 373 0.00068699988 1e-6 391 373 0.0016031 1e-6 392 373 0.0012977 1e-6 393 373 0.023969498 1e-6 405 373 0.0001527 1e-6 413 373 7.6299999e-05 1e-6 414 373 7.6299999e-05 1e-6 415 373 7.6299999e-05 1e-6 417 373 0.00053439988 1e-6 419 373 0.00061069988 1e-6 421 373 7.6299999e-05 1e-6 422 373 0.0001527 1e-6 423 373 7.6299999e-05 1e-6 424 373 7.6299999e-05 1e-6 425 373 7.6299999e-05 1e-6 430 373 7.6299999e-05 1e-6 431 373 7.6299999e-05 1e-6 433 373 7.6299999e-05 1e-6 434 373 7.6299999e-05 1e-6 441 373 0.0017557 1e-6 442 373 7.6299999e-05 1e-6 443 373 0.001374 1e-6 444 373 0.00083969999 1e-6 445 373 0.0058014989 1e-6 446 373 7.6299999e-05 1e-6 447 373 0.0038168 1e-6 450 373 0.0076335967 1e-6 452 373 0.0067175999 1e-6 453 373 0.0016031 1e-6 454 373 0.00061069988 1e-6 455 373 0.025419798 1e-6 456 373 0.00068699988 1e-6 457 373 0.0031297999 1e-6 458 373 0.00099239987 1e-6 459 373 0.00045799999 1e-6 460 373 0.00099239987 1e-6 463 373 0.011603098 1e-6 464 373 0.0010686999 1e-6 465 373 0.011144999 1e-6 467 373 0.016717598 1e-6 468 373 0.0017557 1e-6 469 373 0.010839697 1e-6 470 373 0.012137398 1e-6 471 373 0.0028243999 1e-6 473 373 0.00030529988 1e-6 477 373 0.0001527 1e-6 478 373 0.0016794 1e-6 483 373 0.0011449999 1e-6 490 373 0.0010686999 1e-6 491 373 0.0012977 1e-6 22 374 0.00016659999 1e-6 60 374 0.0019989999 1e-6 108 374 0.00016659999 1e-6 114 374 0.00016659999 1e-6 126 374 0.00016659999 1e-6 130 374 0.00016659999 1e-6 131 374 0.00016659999 1e-6 160 374 0.0013326998 1e-6 169 374 0.00099949981 1e-6 171 374 0.00016659999 1e-6 172 374 0.00033319998 1e-6 187 374 0.00016659999 1e-6 190 374 0.00016659999 1e-6 198 374 0.0041645989 1e-6 204 374 0.00016659999 1e-6 206 374 0.00049979985 1e-6 214 374 0.0013326998 1e-6 223 374 0.057471298 1e-6 224 374 0.00033319998 1e-6 225 374 0.00016659999 1e-6 233 374 0.0019989999 1e-6 234 374 0.0011660999 1e-6 240 374 0.00099949981 1e-6 241 374 0.0016657999 1e-6 252 374 0.00083289994 1e-6 270 374 0.0028318998 1e-6 272 374 0.00033319998 1e-6 277 374 0.14192897 1e-6 279 374 0.00016659999 1e-6 282 374 0.00049979985 1e-6 283 374 0.00016659999 1e-6 284 374 0.00033319998 1e-6 285 374 0.00016659999 1e-6 287 374 0.0036648 1e-6 290 374 0.008828897 1e-6 292 374 0.012660298 1e-6 293 374 0.0029984999 1e-6 294 374 0.00016659999 1e-6 295 374 0.022155598 1e-6 296 374 0.0043311976 1e-6 297 374 0.0073296987 1e-6 312 374 0.011161096 1e-6 320 374 0.00016659999 1e-6 324 374 0.00016659999 1e-6 328 374 0.010994498 1e-6 338 374 0.00016659999 1e-6 339 374 0.00016659999 1e-6 340 374 0.011993997 1e-6 344 374 0.00016659999 1e-6 356 374 0.00016659999 1e-6 358 374 0.0079959966 1e-6 370 374 0.015991997 1e-6 372 374 0.011827398 1e-6 373 374 0.030651297 1e-6 374 374 0.015325699 1e-6 375 374 0.00049979985 1e-6 387 374 0.00016659999 1e-6 390 374 0.00016659999 1e-6 392 374 0.00033319998 1e-6 393 374 0.0011660999 1e-6 394 374 0.00066629983 1e-6 405 374 0.00016659999 1e-6 408 374 0.00033319998 1e-6 416 374 0.00016659999 1e-6 417 374 0.00049979985 1e-6 430 374 0.00016659999 1e-6 443 374 0.0064967982 1e-6 444 374 0.0036648 1e-6 445 374 0.014159597 1e-6 446 374 0.00033319998 1e-6 447 374 0.0053306967 1e-6 450 374 0.0034983 1e-6 452 374 0.0058303997 1e-6 453 374 0.0028318998 1e-6 454 374 0.00049979985 1e-6 455 374 0.032317199 1e-6 456 374 0.00016659999 1e-6 457 374 0.0031650998 1e-6 458 374 0.00066629983 1e-6 459 374 0.00049979985 1e-6 460 374 0.00083289994 1e-6 463 374 0.010827899 1e-6 464 374 0.00066629983 1e-6 465 374 0.0016657999 1e-6 467 374 0.019157097 1e-6 468 374 0.0084957965 1e-6 469 374 0.0074962974 1e-6 470 374 0.0079959966 1e-6 471 374 0.00049979985 1e-6 473 374 0.00016659999 1e-6 477 374 0.00016659999 1e-6 478 374 0.0011660999 1e-6 483 374 0.00083289994 1e-6 490 374 0.00099949981 1e-6 491 374 0.0019989999 1e-6 22 375 0.0038426998 1e-6 60 375 0.0065030977 1e-6 114 375 0.00029559992 1e-6 126 375 0.00029559992 1e-6 160 375 0.0011823999 1e-6 169 375 0.0011823999 1e-6 172 375 0.0011823999 1e-6 198 375 0.0029559999 1e-6 206 375 0.00059119985 1e-6 214 375 0.029263999 1e-6 223 375 0.00029559992 1e-6 233 375 0.0076854974 1e-6 234 375 0.0331067 1e-6 241 375 0.055867597 1e-6 270 375 0.012710597 1e-6 273 375 0.0091634989 1e-6 277 375 0.0091634989 1e-6 284 375 0.00029559992 1e-6 286 375 0.013892997 1e-6 292 375 0.0026603998 1e-6 295 375 0.0041382983 1e-6 312 375 0.0112326 1e-6 326 375 0.042565797 1e-6 340 375 0.0056162998 1e-6 356 375 0.00029559992 1e-6 358 375 0.015075397 1e-6 372 375 0.008572299 1e-6 373 375 0.00059119985 1e-6 375 375 0.037244998 1e-6 417 375 0.00059119985 1e-6 443 375 0.015962198 1e-6 444 375 0.015075397 1e-6 445 375 0.013597399 1e-6 446 375 0.0011823999 1e-6 447 375 0.013006199 1e-6 450 375 0.0050251 1e-6 452 375 0.034289099 1e-6 453 375 0.015666597 1e-6 454 375 0.0035470999 1e-6 455 375 0.023943197 1e-6 457 375 0.0032515998 1e-6 458 375 0.00088679977 1e-6 459 375 0.00059119985 1e-6 460 375 0.0011823999 1e-6 463 375 0.0032515998 1e-6 464 375 0.00088679977 1e-6 465 375 0.0014779998 1e-6 467 375 0.015962198 1e-6 468 375 0.013301797 1e-6 469 375 0.0065030977 1e-6 470 375 0.0070942976 1e-6 471 375 0.00029559992 1e-6 473 375 0.00029559992 1e-6 477 375 0.00029559992 1e-6 478 375 0.0011823999 1e-6 483 375 0.00088679977 1e-6 490 375 0.00088679977 1e-6 491 375 0.0026603998 1e-6 22 376 0.0012508 1e-6 60 376 0.0022930999 1e-6 108 376 0.00020849999 1e-6 114 376 0.00020849999 1e-6 126 376 0.00020849999 1e-6 150 376 0.00020849999 1e-6 160 376 0.0012508 1e-6 169 376 0.0016676998 1e-6 172 376 0.0012508 1e-6 187 376 0.033562597 1e-6 190 376 0.00020849999 1e-6 194 376 0.00020849999 1e-6 198 376 0.0052115992 1e-6 200 376 0.00020849999 1e-6 206 376 0.0004168998 1e-6 214 376 0.0045861974 1e-6 223 376 0.0010422999 1e-6 224 376 0.00062539987 1e-6 233 376 0.0050030984 1e-6 234 376 0.0027099999 1e-6 237 376 0.00020849999 1e-6 241 376 0.016468599 1e-6 252 376 0.00062539987 1e-6 262 376 0.022305597 1e-6 272 376 0.00020849999 1e-6 276 376 0.00020849999 1e-6 277 376 0.026474897 1e-6 282 376 0.0012508 1e-6 283 376 0.00062539987 1e-6 284 376 0.00062539987 1e-6 285 376 0.00020849999 1e-6 290 376 0.00020849999 1e-6 292 376 0.012507796 1e-6 293 376 0.015426297 1e-6 294 376 0.0035438999 1e-6 295 376 0.052115899 1e-6 296 376 0.0004168998 1e-6 298 376 0.00062539987 1e-6 299 376 0.0022930999 1e-6 307 376 0.00020849999 1e-6 312 376 0.013133198 1e-6 315 376 0.012924697 1e-6 317 376 0.0018761999 1e-6 320 376 0.0012508 1e-6 321 376 0.0062538981 1e-6 326 376 0.014175497 1e-6 328 376 0.0004168998 1e-6 331 376 0.00020849999 1e-6 332 376 0.00020849999 1e-6 335 376 0.00020849999 1e-6 340 376 0.0052115992 1e-6 349 376 0.00020849999 1e-6 351 376 0.00020849999 1e-6 354 376 0.00083389995 1e-6 355 376 0.00020849999 1e-6 356 376 0.00020849999 1e-6 358 376 0.0064623989 1e-6 359 376 0.00020849999 1e-6 369 376 0.0010422999 1e-6 370 376 0.0150094 1e-6 371 376 0.0193871 1e-6 372 376 0.00062539987 1e-6 373 376 0.0014591999 1e-6 374 376 0.00020849999 1e-6 376 376 0.013550099 1e-6 384 376 0.0004168998 1e-6 385 376 0.0004168998 1e-6 386 376 0.0010422999 1e-6 387 376 0.00020849999 1e-6 390 376 0.00020849999 1e-6 392 376 0.0152178 1e-6 393 376 0.024181798 1e-6 397 376 0.0010422999 1e-6 402 376 0.00020849999 1e-6 404 376 0.0025016 1e-6 405 376 0.0012508 1e-6 414 376 0.00020849999 1e-6 417 376 0.00062539987 1e-6 422 376 0.00020849999 1e-6 430 376 0.00020849999 1e-6 443 376 0.0025016 1e-6 444 376 0.0010422999 1e-6 445 376 0.0062538981 1e-6 447 376 0.0075046979 1e-6 450 376 0.0058369972 1e-6 452 376 0.0064623989 1e-6 453 376 0.0018761999 1e-6 454 376 0.00083389995 1e-6 455 376 0.026058 1e-6 456 376 0.0004168998 1e-6 457 376 0.0027099999 1e-6 458 376 0.0014591999 1e-6 459 376 0.0004168998 1e-6 460 376 0.00062539987 1e-6 463 376 0.015843198 1e-6 464 376 0.0018761999 1e-6 465 376 0.011465497 1e-6 467 376 0.0193871 1e-6 468 376 0.0020845998 1e-6 469 376 0.011256997 1e-6 470 376 0.012924697 1e-6 471 376 0.0012508 1e-6 473 376 0.00020849999 1e-6 477 376 0.00020849999 1e-6 478 376 0.0018761999 1e-6 483 376 0.0010422999 1e-6 490 376 0.0014591999 1e-6 491 376 0.0012508 1e-6 22 377 0.00019199999 1e-6 24 377 9.5999989e-05 1e-6 60 377 0.0011520998 1e-6 108 377 9.5999989e-05 1e-6 114 377 0.00019199999 1e-6 126 377 9.5999989e-05 1e-6 130 377 9.5999989e-05 1e-6 131 377 0.0039362982 1e-6 135 377 0.0025921999 1e-6 137 377 9.5999989e-05 1e-6 139 377 0.00019199999 1e-6 150 377 9.5999989e-05 1e-6 160 377 0.00057599996 1e-6 161 377 9.5999989e-05 1e-6 165 377 9.5999989e-05 1e-6 170 377 9.5999989e-05 1e-6 171 377 0.00019199999 1e-6 172 377 0.00067199999 1e-6 187 377 0.00019199999 1e-6 190 377 9.5999989e-05 1e-6 191 377 9.5999989e-05 1e-6 194 377 0.00019199999 1e-6 198 377 0.016609099 1e-6 206 377 0.00067199999 1e-6 214 377 0.00096009998 1e-6 223 377 0.0060484 1e-6 224 377 0.0026882 1e-6 233 377 0.0080644973 1e-6 234 377 0.0014400999 1e-6 236 377 0.00028799986 1e-6 240 377 0.0026882 1e-6 241 377 0.0106567 1e-6 242 377 0.00096009998 1e-6 252 377 0.015648998 1e-6 270 377 0.0003839999 1e-6 272 377 0.0021120999 1e-6 273 377 9.5999989e-05 1e-6 274 377 0.006144397 1e-6 277 377 0.10608679 1e-6 282 377 0.0049922988 1e-6 283 377 0.00019199999 1e-6 284 377 0.00047999993 1e-6 285 377 9.5999989e-05 1e-6 292 377 0.0037441999 1e-6 293 377 0.011616699 1e-6 294 377 0.0012480998 1e-6 295 377 0.014208898 1e-6 296 377 0.0030721999 1e-6 297 377 0.00028799986 1e-6 298 377 0.0040322989 1e-6 304 377 0.00057599996 1e-6 307 377 9.5999989e-05 1e-6 312 377 0.010560699 1e-6 315 377 0.020929299 1e-6 319 377 0.0134409 1e-6 320 377 0.0019200998 1e-6 321 377 0.0049922988 1e-6 322 377 0.012384798 1e-6 324 377 0.0072004981 1e-6 326 377 0.0028801998 1e-6 328 377 0.00028799986 1e-6 339 377 0.00067199999 1e-6 340 377 0.0098885968 1e-6 341 377 0.00019199999 1e-6 350 377 0.00047999993 1e-6 351 377 0.0018240998 1e-6 352 377 0.0010560998 1e-6 354 377 0.0026882 1e-6 355 377 0.00028799986 1e-6 356 377 9.5999989e-05 1e-6 358 377 0.0015360999 1e-6 364 377 0.00028799986 1e-6 366 377 0.0094085969 1e-6 370 377 0.0050882995 1e-6 371 377 0.0076804981 1e-6 372 377 0.020545296 1e-6 373 377 0.0034561998 1e-6 377 377 0.012192797 1e-6 379 377 0.00019199999 1e-6 380 377 0.011808798 1e-6 385 377 0.00019199999 1e-6 386 377 0.016128998 1e-6 387 377 9.5999989e-05 1e-6 393 377 9.5999989e-05 1e-6 398 377 0.0045122989 1e-6 415 377 0.043106798 1e-6 417 377 0.0003839999 1e-6 419 377 0.022465397 1e-6 422 377 0.00019199999 1e-6 441 377 0.0032641999 1e-6 443 377 0.0045122989 1e-6 444 377 0.0018240998 1e-6 445 377 0.0071044974 1e-6 446 377 0.00019199999 1e-6 447 377 0.0038401999 1e-6 450 377 0.0028801998 1e-6 452 377 0.0050882995 1e-6 453 377 0.0034561998 1e-6 454 377 0.00086409994 1e-6 455 377 0.044546898 1e-6 456 377 9.5999989e-05 1e-6 457 377 0.0027841998 1e-6 458 377 0.00096009998 1e-6 459 377 0.00047999993 1e-6 460 377 0.00096009998 1e-6 463 377 0.016513098 1e-6 464 377 0.00057599996 1e-6 465 377 0.0016321 1e-6 467 377 0.0096005984 1e-6 468 377 0.020737298 1e-6 469 377 0.0042242967 1e-6 470 377 0.0045122989 1e-6 471 377 0.00096009998 1e-6 472 377 0.00096009998 1e-6 473 377 9.5999989e-05 1e-6 477 377 9.5999989e-05 1e-6 478 377 0.0010560998 1e-6 483 377 0.0019200998 1e-6 490 377 0.0003839999 1e-6 491 377 0.00086409994 1e-6 22 378 0.00048609986 1e-6 60 378 0.0012500999 1e-6 108 378 6.939999e-05 1e-6 114 378 0.0001389 1e-6 126 378 6.939999e-05 1e-6 131 378 0.0013889999 1e-6 150 378 0.0001389 1e-6 160 378 0.0024307 1e-6 171 378 6.939999e-05 1e-6 172 378 0.0019445999 1e-6 187 378 0.0014583999 1e-6 189 378 6.939999e-05 1e-6 190 378 6.939999e-05 1e-6 191 378 0.0010416999 1e-6 194 378 0.0001389 1e-6 198 378 0.014098197 1e-6 200 378 6.939999e-05 1e-6 203 378 6.939999e-05 1e-6 204 378 6.939999e-05 1e-6 206 378 0.00048609986 1e-6 214 378 0.0069448985 1e-6 219 378 0.0004166998 1e-6 223 378 0.0026391 1e-6 233 378 0.013889898 1e-6 234 378 0.0013194999 1e-6 236 378 0.00062499987 1e-6 237 378 6.939999e-05 1e-6 240 378 0.0092367977 1e-6 241 378 0.053059198 1e-6 242 378 0.0004166998 1e-6 252 378 0.0012500999 1e-6 270 378 0.00034719985 1e-6 272 378 0.0037502998 1e-6 274 378 0.0097922981 1e-6 277 378 0.068685293 1e-6 282 378 0.0038196999 1e-6 283 378 0.00055559981 1e-6 284 378 0.00048609986 1e-6 285 378 0.0001389 1e-6 286 378 6.939999e-05 1e-6 289 378 6.939999e-05 1e-6 292 378 0.012431398 1e-6 293 378 0.012084197 1e-6 294 378 0.00034719985 1e-6 295 378 0.012709197 1e-6 296 378 0.0013889999 1e-6 297 378 0.0004166998 1e-6 298 378 0.00034719985 1e-6 304 378 0.0015278999 1e-6 312 378 0.010278497 1e-6 315 378 0.0117369 1e-6 319 378 0.011875797 1e-6 320 378 0.0001389 1e-6 321 378 0.0068754964 1e-6 322 378 0.014237098 1e-6 324 378 0.0069448985 1e-6 326 378 0.0029862998 1e-6 328 378 0.0004166998 1e-6 338 378 6.939999e-05 1e-6 339 378 0.00055559981 1e-6 340 378 0.0004166998 1e-6 350 378 0.0084033981 1e-6 351 378 0.00083339983 1e-6 352 378 0.0037502998 1e-6 353 378 6.939999e-05 1e-6 354 378 0.0002083 1e-6 356 378 0.0001389 1e-6 358 378 0.0022918 1e-6 366 378 0.049934 1e-6 368 378 6.939999e-05 1e-6 370 378 0.0002083 1e-6 371 378 0.0077782981 1e-6 372 378 0.050628498 1e-6 373 378 0.0087505989 1e-6 376 378 0.0001389 1e-6 386 378 0.010834098 1e-6 387 378 6.939999e-05 1e-6 398 378 0.00055559981 1e-6 415 378 0.015278798 1e-6 417 378 0.00034719985 1e-6 419 378 0.00069449982 1e-6 421 378 6.939999e-05 1e-6 422 378 0.0001389 1e-6 441 378 0.00076389988 1e-6 442 378 6.939999e-05 1e-6 443 378 0.0043058991 1e-6 444 378 0.00034719985 1e-6 445 378 0.0078477971 1e-6 446 378 0.00034719985 1e-6 447 378 0.0026391 1e-6 450 378 0.0025001999 1e-6 452 378 0.0042363964 1e-6 453 378 0.0018751 1e-6 454 378 0.00090279989 1e-6 455 378 0.042364098 1e-6 456 378 0.0002083 1e-6 457 378 0.0027084998 1e-6 458 378 0.00048609986 1e-6 459 378 0.0004166998 1e-6 460 378 0.00090279989 1e-6 463 378 0.0099311993 1e-6 464 378 0.0004166998 1e-6 465 378 0.004166998 1e-6 467 378 0.0075699985 1e-6 468 378 0.015834399 1e-6 469 378 0.0031251998 1e-6 470 378 0.0031947 1e-6 471 378 0.0010416999 1e-6 473 378 6.939999e-05 1e-6 477 378 0.0001389 1e-6 478 378 0.00076389988 1e-6 483 378 0.0018056999 1e-6 490 378 0.00027779979 1e-6 491 378 0.00083339983 1e-6 22 379 0.0001526 1e-6 60 379 0.00091529987 1e-6 108 379 7.6299999e-05 1e-6 114 379 0.0001526 1e-6 126 379 7.6299999e-05 1e-6 150 379 7.6299999e-05 1e-6 160 379 0.00076279999 1e-6 169 379 0.00061019999 1e-6 172 379 0.0045766979 1e-6 187 379 7.6299999e-05 1e-6 190 379 7.6299999e-05 1e-6 194 379 0.0001526 1e-6 198 379 0.015484396 1e-6 206 379 0.00061019999 1e-6 214 379 0.00030509988 1e-6 219 379 0.00030509988 1e-6 223 379 0.00030509988 1e-6 224 379 7.6299999e-05 1e-6 233 379 0.0073988996 1e-6 234 379 0.00099159987 1e-6 236 379 0.0010678999 1e-6 240 379 0.012051899 1e-6 241 379 0.018916897 1e-6 242 379 0.0089244992 1e-6 252 379 7.6299999e-05 1e-6 270 379 0.002746 1e-6 271 379 7.6299999e-05 1e-6 272 379 0.0001526 1e-6 274 379 0.0001526 1e-6 277 379 0.099694848 1e-6 282 379 0.011060297 1e-6 283 379 0.00045769988 1e-6 284 379 0.00038139988 1e-6 285 379 7.6299999e-05 1e-6 292 379 0.002746 1e-6 293 379 0.0049579963 1e-6 294 379 0.0002288 1e-6 295 379 0.0045766979 1e-6 296 379 0.0050342977 1e-6 297 379 0.0002288 1e-6 298 379 0.013424899 1e-6 304 379 0.0002288 1e-6 312 379 0.013882499 1e-6 313 379 0.0001526 1e-6 315 379 0.018230397 1e-6 319 379 0.0021358 1e-6 320 379 0.0022121 1e-6 321 379 0.0028223 1e-6 322 379 0.0035849998 1e-6 324 379 0.0076277964 1e-6 326 379 7.6299999e-05 1e-6 328 379 0.00030509988 1e-6 339 379 0.00030509988 1e-6 340 379 0.0017543999 1e-6 341 379 0.0026697 1e-6 343 379 7.6299999e-05 1e-6 351 379 0.0034324999 1e-6 352 379 0.00061019999 1e-6 354 379 0.0086956993 1e-6 356 379 7.6299999e-05 1e-6 357 379 7.6299999e-05 1e-6 358 379 0.0025171998 1e-6 364 379 0.0042714998 1e-6 365 379 7.6299999e-05 1e-6 366 379 0.011517897 1e-6 371 379 0.00030509988 1e-6 372 379 0.071929753 1e-6 373 379 0.0025934 1e-6 377 379 0.0041189976 1e-6 379 379 0.0019069 1e-6 385 379 0.0019832 1e-6 386 379 0.00091529987 1e-6 387 379 7.6299999e-05 1e-6 397 379 7.6299999e-05 1e-6 398 379 0.0062547997 1e-6 402 379 0.00068649999 1e-6 415 379 0.025858097 1e-6 417 379 0.00030509988 1e-6 419 379 0.028298996 1e-6 421 379 7.6299999e-05 1e-6 422 379 0.0001526 1e-6 438 379 7.6299999e-05 1e-6 441 379 0.0039663985 1e-6 443 379 0.0029747998 1e-6 444 379 0.0028986 1e-6 445 379 0.0063309968 1e-6 446 379 0.00030509988 1e-6 447 379 0.0025171998 1e-6 450 379 0.0017543999 1e-6 452 379 0.004195299 1e-6 453 379 0.0026697 1e-6 454 379 0.00083909999 1e-6 455 379 0.036536999 1e-6 456 379 7.6299999e-05 1e-6 457 379 0.0025171998 1e-6 458 379 0.00030509988 1e-6 459 379 0.00061019999 1e-6 460 379 0.00076279999 1e-6 463 379 0.0092295967 1e-6 464 379 0.00053389999 1e-6 465 379 0.0011441999 1e-6 467 379 0.0064072981 1e-6 468 379 0.023188397 1e-6 469 379 0.0025934 1e-6 470 379 0.002746 1e-6 471 379 0.00099159987 1e-6 473 379 7.6299999e-05 1e-6 477 379 0.0001526 1e-6 478 379 0.00068649999 1e-6 483 379 0.0017543999 1e-6 490 379 0.0002288 1e-6 491 379 0.00083909999 1e-6 9 380 6.7199988e-05 1e-6 60 380 0.0046345964 1e-6 82 380 6.7199988e-05 1e-6 83 380 6.7199988e-05 1e-6 84 380 6.7199988e-05 1e-6 108 380 6.7199988e-05 1e-6 113 380 0.00013429999 1e-6 114 380 0.00013429999 1e-6 126 380 6.7199988e-05 1e-6 130 380 0.011015598 1e-6 131 380 0.0016792 1e-6 133 380 6.7199988e-05 1e-6 137 380 6.7199988e-05 1e-6 139 380 0.0058435984 1e-6 150 380 0.00080599985 1e-6 160 380 6.7199988e-05 1e-6 161 380 0.00013429999 1e-6 165 380 6.7199988e-05 1e-6 170 380 6.7199988e-05 1e-6 171 380 0.0090004988 1e-6 172 380 6.7199988e-05 1e-6 187 380 0.00013429999 1e-6 188 380 0.00013429999 1e-6 189 380 6.7199988e-05 1e-6 190 380 0.00013429999 1e-6 192 380 6.7199988e-05 1e-6 194 380 0.00013429999 1e-6 198 380 0.0190758 1e-6 200 380 6.7199988e-05 1e-6 203 380 6.7199988e-05 1e-6 204 380 0.00073889992 1e-6 206 380 0.00067169988 1e-6 207 380 6.7199988e-05 1e-6 214 380 0.00026869983 1e-6 219 380 6.7199988e-05 1e-6 223 380 0.0024180999 1e-6 224 380 0.019948997 1e-6 233 380 0.0032911999 1e-6 234 380 0.0017463998 1e-6 236 380 0.0003358 1e-6 237 380 6.7199988e-05 1e-6 240 380 0.0023508999 1e-6 241 380 0.036472298 1e-6 252 380 0.0065824986 1e-6 257 380 6.7199988e-05 1e-6 270 380 6.7199988e-05 1e-6 272 380 0.00080599985 1e-6 274 380 0.0021493998 1e-6 275 380 6.7199988e-05 1e-6 277 380 0.052659899 1e-6 279 380 6.7199988e-05 1e-6 282 380 0.0030896999 1e-6 284 380 0.00067169988 1e-6 285 380 0.00053729978 1e-6 286 380 6.7199988e-05 1e-6 292 380 0.0040972978 1e-6 293 380 0.016120397 1e-6 294 380 0.0089333989 1e-6 295 380 0.030359998 1e-6 296 380 0.0074556991 1e-6 298 380 0.0064480975 1e-6 299 380 0.00013429999 1e-6 301 380 6.7199988e-05 1e-6 304 380 6.7199988e-05 1e-6 307 380 0.00020149999 1e-6 312 380 0.011687297 1e-6 315 380 0.011082798 1e-6 319 380 0.005507797 1e-6 320 380 0.00040299981 1e-6 321 380 0.0039628968 1e-6 322 380 0.0028881999 1e-6 324 380 0.00040299981 1e-6 326 380 0.0034926999 1e-6 330 380 0.0010746999 1e-6 339 380 0.0003358 1e-6 340 380 0.0048360974 1e-6 350 380 0.00013429999 1e-6 351 380 0.00013429999 1e-6 352 380 6.7199988e-05 1e-6 353 380 6.7199988e-05 1e-6 354 380 0.00026869983 1e-6 355 380 0.00073889992 1e-6 356 380 0.00013429999 1e-6 358 380 0.0053734966 1e-6 366 380 0.00067169988 1e-6 370 380 0.0038285998 1e-6 371 380 0.0051047988 1e-6 372 380 0.026732899 1e-6 373 380 0.00047019986 1e-6 380 380 0.012627598 1e-6 384 380 6.7199988e-05 1e-6 386 380 0.0168592 1e-6 387 380 6.7199988e-05 1e-6 393 380 0.00020149999 1e-6 395 380 0.00060449983 1e-6 398 380 0.0017463998 1e-6 402 380 0.00020149999 1e-6 414 380 6.7199988e-05 1e-6 415 380 0.0070526972 1e-6 417 380 0.00060449983 1e-6 419 380 0.0029553999 1e-6 421 380 6.7199988e-05 1e-6 422 380 6.7199988e-05 1e-6 423 380 6.7199988e-05 1e-6 430 380 6.7199988e-05 1e-6 433 380 6.7199988e-05 1e-6 434 380 6.7199988e-05 1e-6 441 380 0.0030896999 1e-6 442 380 0.00080599985 1e-6 443 380 0.0031568999 1e-6 444 380 0.0003358 1e-6 445 380 0.0072541982 1e-6 446 380 0.00013429999 1e-6 447 380 0.0023508999 1e-6 450 380 0.0032241 1e-6 452 380 0.0053062998 1e-6 453 380 0.0018806998 1e-6 454 380 0.00060449983 1e-6 455 380 0.040032197 1e-6 456 380 0.00020149999 1e-6 457 380 0.0028210999 1e-6 458 380 0.00060449983 1e-6 459 380 0.00040299981 1e-6 460 380 0.0010746999 1e-6 463 380 0.018941399 1e-6 464 380 0.0003358 1e-6 465 380 0.0016792 1e-6 467 380 0.011149898 1e-6 468 380 0.032442197 1e-6 469 380 0.0051719993 1e-6 470 380 0.005507797 1e-6 471 380 0.0008731999 1e-6 473 380 0.00013429999 1e-6 477 380 0.00013429999 1e-6 478 380 0.0011419 1e-6 479 380 0.0008731999 1e-6 483 380 0.002015 1e-6 490 380 0.00047019986 1e-6 491 380 0.0018806998 1e-6 60 381 0.0037928999 1e-6 114 381 0.0002231 1e-6 126 381 0.0002231 1e-6 130 381 0.00044619991 1e-6 139 381 0.0002231 1e-6 160 381 0.0002231 1e-6 171 381 0.00044619991 1e-6 172 381 0.0002231 1e-6 193 381 0.0017849 1e-6 198 381 0.0182954 1e-6 206 381 0.00089249993 1e-6 214 381 0.0053547993 1e-6 219 381 0.0002231 1e-6 223 381 0.00044619991 1e-6 224 381 0.016287398 1e-6 233 381 0.0071396977 1e-6 234 381 0.00066929986 1e-6 236 381 0.0002231 1e-6 240 381 0.0046853982 1e-6 241 381 0.026550598 1e-6 242 381 0.016733598 1e-6 252 381 0.0002231 1e-6 271 381 0.00044619991 1e-6 272 381 0.0037928999 1e-6 274 381 0.00066929986 1e-6 277 381 0.031905398 1e-6 279 381 0.00089249993 1e-6 282 381 0.010263298 1e-6 283 381 0.0013386998 1e-6 284 381 0.00044619991 1e-6 292 381 0.0037928999 1e-6 293 381 0.0080320984 1e-6 294 381 0.00044619991 1e-6 295 381 0.034359697 1e-6 296 381 0.022757698 1e-6 298 381 0.0002231 1e-6 312 381 0.010040198 1e-6 313 381 0.00066929986 1e-6 315 381 0.025211997 1e-6 319 381 0.0080320984 1e-6 320 381 0.0002231 1e-6 321 381 0.00066929986 1e-6 322 381 0.0078089982 1e-6 324 381 0.0040160976 1e-6 326 381 0.00044619991 1e-6 340 381 0.004462298 1e-6 349 381 0.0031235998 1e-6 350 381 0.00044619991 1e-6 351 381 0.0024542999 1e-6 352 381 0.0002231 1e-6 356 381 0.0037928999 1e-6 357 381 0.00044619991 1e-6 358 381 0.0031235998 1e-6 366 381 0.0026773999 1e-6 370 381 0.004462298 1e-6 371 381 0.0066933967 1e-6 372 381 0.017849199 1e-6 373 381 0.0002231 1e-6 380 381 0.00066929986 1e-6 381 381 0.00044619991 1e-6 386 381 0.010709498 1e-6 390 381 0.00066929986 1e-6 392 381 0.00044619991 1e-6 393 381 0.0011155999 1e-6 397 381 0.0002231 1e-6 398 381 0.0060240999 1e-6 402 381 0.0026773999 1e-6 415 381 0.0011155999 1e-6 417 381 0.00044619991 1e-6 419 381 0.00066929986 1e-6 438 381 0.0095938966 1e-6 441 381 0.0093707964 1e-6 443 381 0.0022310999 1e-6 444 381 0.0020079999 1e-6 445 381 0.007585898 1e-6 447 381 0.010932598 1e-6 450 381 0.0026773999 1e-6 452 381 0.004462298 1e-6 453 381 0.0017849 1e-6 454 381 0.00089249993 1e-6 455 381 0.0305667 1e-6 457 381 0.0026773999 1e-6 459 381 0.00044619991 1e-6 460 381 0.00089249993 1e-6 463 381 0.0122713 1e-6 464 381 0.00044619991 1e-6 465 381 0.0013386998 1e-6 467 381 0.0084783994 1e-6 468 381 0.0276662 1e-6 469 381 0.0051315986 1e-6 470 381 0.0055778995 1e-6 471 381 0.0015617998 1e-6 473 381 0.0002231 1e-6 477 381 0.0002231 1e-6 478 381 0.00066929986 1e-6 479 381 0.0013386998 1e-6 483 381 0.0015617998 1e-6 490 381 0.00066929986 1e-6 491 381 0.0020079999 1e-6 60 382 0.0077120997 1e-6 114 382 0.00064269989 1e-6 172 382 0.0012852999 1e-6 198 382 0.0032133998 1e-6 206 382 0.0012852999 1e-6 234 382 0.0038559998 1e-6 241 382 0.00064269989 1e-6 242 382 0.0102828 1e-6 272 382 0.0044986978 1e-6 277 382 0.023136199 1e-6 282 382 0.014781497 1e-6 284 382 0.00064269989 1e-6 292 382 0.0025706999 1e-6 293 382 0.0032133998 1e-6 295 382 0.034061696 1e-6 296 382 0.00064269989 1e-6 307 382 0.00064269989 1e-6 312 382 0.0044986978 1e-6 315 382 0.0064266995 1e-6 319 382 0.0038559998 1e-6 322 382 0.0032133998 1e-6 340 382 0.0025706999 1e-6 344 382 0.0019279998 1e-6 351 382 0.00064269989 1e-6 354 382 0.00064269989 1e-6 358 382 0.025706898 1e-6 371 382 0.00064269989 1e-6 372 382 0.0025706999 1e-6 373 382 0.00064269989 1e-6 382 382 0.082262158 1e-6 386 382 0.0012852999 1e-6 417 382 0.00064269989 1e-6 441 382 0.0044986978 1e-6 444 382 0.00064269989 1e-6 445 382 0.0012852999 1e-6 447 382 0.012210798 1e-6 450 382 0.0032133998 1e-6 452 382 0.0064266995 1e-6 453 382 0.00064269989 1e-6 454 382 0.0019279998 1e-6 455 382 0.025706898 1e-6 457 382 0.0032133998 1e-6 459 382 0.00064269989 1e-6 460 382 0.00064269989 1e-6 463 382 0.031490996 1e-6 464 382 0.00064269989 1e-6 465 382 0.0019279998 1e-6 467 382 0.014138799 1e-6 468 382 0.084832847 1e-6 469 382 0.0044986978 1e-6 470 382 0.0051413998 1e-6 478 382 0.0012852999 1e-6 483 382 0.0025706999 1e-6 490 382 0.00064269989 1e-6 491 382 0.0070693977 1e-6 22 383 0.00011879999 1e-6 60 383 0.0009500999 1e-6 108 383 0.00011879999 1e-6 114 383 0.00023749999 1e-6 126 383 0.00011879999 1e-6 130 383 0.00011879999 1e-6 131 383 0.00011879999 1e-6 135 383 0.00011879999 1e-6 139 383 0.00011879999 1e-6 160 383 0.00023749999 1e-6 161 383 0.0032066999 1e-6 171 383 0.00011879999 1e-6 172 383 0.0003562998 1e-6 182 383 0.0030878999 1e-6 193 383 0.00011879999 1e-6 194 383 0.00011879999 1e-6 198 383 0.015439399 1e-6 206 383 0.00071259984 1e-6 214 383 0.0040379986 1e-6 223 383 0.0065320991 1e-6 224 383 0.0089073963 1e-6 233 383 0.009263698 1e-6 234 383 0.0009500999 1e-6 236 383 0.0003562998 1e-6 240 383 0.0089073963 1e-6 241 383 0.0108076 1e-6 242 383 0.0045130998 1e-6 252 383 0.0021378 1e-6 270 383 0.0038005 1e-6 272 383 0.0043942966 1e-6 274 383 0.0047505982 1e-6 275 383 0.00011879999 1e-6 277 383 0.10558188 1e-6 282 383 0.0061757974 1e-6 283 383 0.00011879999 1e-6 284 383 0.0003562998 1e-6 292 383 0.0071258992 1e-6 293 383 0.0041567981 1e-6 294 383 0.0016627 1e-6 295 383 0.011045098 1e-6 296 383 0.0046317987 1e-6 297 383 0.00023749999 1e-6 298 383 0.0074821971 1e-6 300 383 0.00011879999 1e-6 304 383 0.00023749999 1e-6 307 383 0.00023749999 1e-6 312 383 0.017695997 1e-6 315 383 0.011757698 1e-6 319 383 0.0097386986 1e-6 320 383 0.0038005 1e-6 321 383 0.0065320991 1e-6 322 383 0.0061757974 1e-6 324 383 0.0081947967 1e-6 326 383 0.0058194995 1e-6 328 383 0.00023749999 1e-6 340 383 0.0059381984 1e-6 341 383 0.00011879999 1e-6 349 383 0.00011879999 1e-6 350 383 0.0003562998 1e-6 351 383 0.0047505982 1e-6 352 383 0.00083139981 1e-6 354 383 0.00071259984 1e-6 355 383 0.0009500999 1e-6 356 383 0.00023749999 1e-6 358 383 0.0019001998 1e-6 364 383 0.00011879999 1e-6 366 383 0.006650798 1e-6 370 383 0.00059379986 1e-6 371 383 0.0072446987 1e-6 372 383 0.040973898 1e-6 373 383 0.0026127999 1e-6 377 383 0.00059379986 1e-6 379 383 0.00011879999 1e-6 380 383 0.0102138 1e-6 383 383 0.00011879999 1e-6 385 383 0.00011879999 1e-6 386 383 0.019477397 1e-6 387 383 0.00011879999 1e-6 393 383 0.00023749999 1e-6 398 383 0.00059379986 1e-6 414 383 0.00011879999 1e-6 415 383 0.032066498 1e-6 417 383 0.00023749999 1e-6 419 383 0.0052256994 1e-6 438 383 0.0032066999 1e-6 441 383 0.0027315998 1e-6 443 383 0.0039191991 1e-6 444 383 0.0046317987 1e-6 445 383 0.0070070997 1e-6 446 383 0.00011879999 1e-6 447 383 0.0053443983 1e-6 450 383 0.0024940998 1e-6 452 383 0.0039191991 1e-6 453 383 0.0028503998 1e-6 454 383 0.0011876 1e-6 455 383 0.040142499 1e-6 457 383 0.0026127999 1e-6 458 383 0.00059379986 1e-6 459 383 0.0003562998 1e-6 460 383 0.00083139981 1e-6 463 383 0.015676998 1e-6 464 383 0.00047509978 1e-6 465 383 0.0010688999 1e-6 467 383 0.0077196993 1e-6 468 383 0.019833699 1e-6 469 383 0.0041567981 1e-6 470 383 0.0043942966 1e-6 471 383 0.00059379986 1e-6 473 383 0.00011879999 1e-6 477 383 0.00011879999 1e-6 478 383 0.00059379986 1e-6 479 383 0.00047509978 1e-6 483 383 0.0021378 1e-6 490 383 0.0003562998 1e-6 491 383 0.0010688999 1e-6 18 384 9.3799987e-05 1e-6 60 384 0.0019689 1e-6 108 384 9.3799987e-05 1e-6 114 384 0.00018749999 1e-6 126 384 9.3799987e-05 1e-6 150 384 9.3799987e-05 1e-6 151 384 9.3799987e-05 1e-6 190 384 9.3799987e-05 1e-6 194 384 0.00018749999 1e-6 198 384 0.0235327 1e-6 200 384 9.3799987e-05 1e-6 203 384 9.3799987e-05 1e-6 204 384 9.3799987e-05 1e-6 206 384 0.00018749999 1e-6 214 384 0.024282798 1e-6 219 384 0.00018749999 1e-6 223 384 9.3799987e-05 1e-6 224 384 0.00018749999 1e-6 233 384 0.00065629999 1e-6 234 384 0.0021563999 1e-6 237 384 9.3799987e-05 1e-6 240 384 9.3799987e-05 1e-6 241 384 0.0012188 1e-6 252 384 0.073504567 1e-6 270 384 9.3799987e-05 1e-6 271 384 0.00018749999 1e-6 277 384 0.0030001998 1e-6 282 384 0.0021563999 1e-6 283 384 0.00084379991 1e-6 284 384 0.00037499983 1e-6 290 384 0.00018749999 1e-6 292 384 0.0050627999 1e-6 293 384 9.3799987e-05 1e-6 294 384 0.019032396 1e-6 295 384 0.00028129993 1e-6 296 384 0.00056249998 1e-6 312 384 0.00046879984 1e-6 313 384 0.00037499983 1e-6 315 384 0.00018749999 1e-6 320 384 0.00018749999 1e-6 340 384 0.0018751 1e-6 351 384 0.00018749999 1e-6 357 384 0.00018749999 1e-6 358 384 0.0013126 1e-6 370 384 0.00037499983 1e-6 384 384 0.00046879984 1e-6 385 384 0.0033751999 1e-6 386 384 0.00028129993 1e-6 387 384 9.3799987e-05 1e-6 389 384 0.00084379991 1e-6 390 384 0.00018749999 1e-6 392 384 0.00037499983 1e-6 393 384 0.0027188999 1e-6 397 384 0.00018749999 1e-6 398 384 0.11110067 1e-6 402 384 0.0016875998 1e-6 417 384 0.00037499983 1e-6 421 384 9.3799987e-05 1e-6 422 384 0.00018749999 1e-6 443 384 0.0015937998 1e-6 444 384 0.0045939982 1e-6 445 384 0.0058128983 1e-6 446 384 0.00084379991 1e-6 447 384 0.0058128983 1e-6 450 384 0.004031498 1e-6 452 384 0.0059065968 1e-6 453 384 0.0029063998 1e-6 454 384 0.00074999989 1e-6 455 384 0.029251799 1e-6 456 384 0.00018749999 1e-6 457 384 0.0029063998 1e-6 458 384 0.00056249998 1e-6 459 384 0.00037499983 1e-6 460 384 0.0010312998 1e-6 463 384 0.0041252971 1e-6 464 384 0.00046879984 1e-6 465 384 0.0015937998 1e-6 467 384 0.011531997 1e-6 468 384 0.010031898 1e-6 469 384 0.0032815 1e-6 470 384 0.0037501999 1e-6 471 384 0.0039376989 1e-6 473 384 9.3799987e-05 1e-6 477 384 0.00018749999 1e-6 478 384 0.0012188 1e-6 483 384 0.00065629999 1e-6 490 384 0.00037499983 1e-6 491 384 0.0012188 1e-6 18 385 0.00012879999 1e-6 21 385 4.2899992e-05 1e-6 22 385 0.00034359982 1e-6 24 385 4.2899992e-05 1e-6 60 385 0.0015031998 1e-6 82 385 4.2899992e-05 1e-6 108 385 0.0001718 1e-6 114 385 0.00034359982 1e-6 126 385 0.0001718 1e-6 130 385 0.0043806992 1e-6 131 385 0.0014173 1e-6 138 385 4.2899992e-05 1e-6 139 385 4.2899992e-05 1e-6 142 385 4.2899992e-05 1e-6 150 385 0.00060129981 1e-6 151 385 4.2899992e-05 1e-6 156 385 0.0013742999 1e-6 160 385 0.0019755999 1e-6 161 385 0.0012883998 1e-6 171 385 0.0026197999 1e-6 187 385 8.5899999e-05 1e-6 188 385 0.00012879999 1e-6 190 385 8.5899999e-05 1e-6 194 385 0.00012879999 1e-6 197 385 4.2899992e-05 1e-6 198 385 0.020314399 1e-6 200 385 8.5899999e-05 1e-6 201 385 4.2899992e-05 1e-6 203 385 8.5899999e-05 1e-6 204 385 0.00012879999 1e-6 206 385 0.0001718 1e-6 207 385 4.2899992e-05 1e-6 214 385 0.0042088963 1e-6 219 385 4.2899992e-05 1e-6 223 385 0.00068719988 1e-6 224 385 0.010693997 1e-6 225 385 4.2899992e-05 1e-6 227 385 4.2899992e-05 1e-6 229 385 4.2899992e-05 1e-6 233 385 0.0054972991 1e-6 234 385 0.0018038 1e-6 237 385 0.00012879999 1e-6 240 385 0.00098779984 1e-6 241 385 0.038008898 1e-6 242 385 4.2899992e-05 1e-6 243 385 4.2899992e-05 1e-6 252 385 0.032597497 1e-6 254 385 0.00012879999 1e-6 262 385 8.5899999e-05 1e-6 263 385 0.00085899979 1e-6 265 385 4.2899992e-05 1e-6 266 385 4.2899992e-05 1e-6 270 385 0.0009019 1e-6 271 385 4.2899992e-05 1e-6 272 385 0.0020615 1e-6 276 385 4.2899992e-05 1e-6 277 385 0.048058797 1e-6 282 385 0.0055402964 1e-6 283 385 0.00012879999 1e-6 284 385 0.00042949989 1e-6 286 385 4.2899992e-05 1e-6 288 385 0.0012454998 1e-6 289 385 0.0014601999 1e-6 290 385 0.00030059996 1e-6 292 385 0.0038653 1e-6 293 385 0.016062498 1e-6 294 385 0.00064419978 1e-6 295 385 0.0085465983 1e-6 296 385 0.01151 1e-6 297 385 0.0011165999 1e-6 298 385 0.0033069998 1e-6 300 385 4.2899992e-05 1e-6 312 385 0.011037599 1e-6 315 385 0.032683399 1e-6 317 385 4.2899992e-05 1e-6 319 385 0.00012879999 1e-6 320 385 0.010865796 1e-6 321 385 0.00025769998 1e-6 322 385 0.0024909999 1e-6 324 385 0.00012879999 1e-6 326 385 0.00060129981 1e-6 328 385 0.00021469999 1e-6 329 385 8.5899999e-05 1e-6 339 385 0.0001718 1e-6 340 385 0.0073440969 1e-6 350 385 4.2899992e-05 1e-6 351 385 0.00012879999 1e-6 352 385 4.2899992e-05 1e-6 354 385 0.00012879999 1e-6 356 385 0.00012879999 1e-6 358 385 0.0018896998 1e-6 366 385 0.00047239987 1e-6 370 385 0.050764497 1e-6 371 385 4.2899992e-05 1e-6 372 385 0.00047239987 1e-6 373 385 0.00034359982 1e-6 375 385 4.2899992e-05 1e-6 376 385 0.0014173 1e-6 384 385 0.017823398 1e-6 385 385 0.015203599 1e-6 386 385 0.023621399 1e-6 387 385 0.0001718 1e-6 392 385 0.0003864998 1e-6 393 385 0.0027486999 1e-6 395 385 0.00012879999 1e-6 397 385 0.00021469999 1e-6 398 385 0.0015890999 1e-6 402 385 0.00012879999 1e-6 415 385 4.2899992e-05 1e-6 416 385 4.2899992e-05 1e-6 417 385 0.00051539997 1e-6 419 385 4.2899992e-05 1e-6 421 385 4.2899992e-05 1e-6 422 385 0.00012879999 1e-6 427 385 4.2899992e-05 1e-6 430 385 0.00021469999 1e-6 433 385 4.2899992e-05 1e-6 434 385 4.2899992e-05 1e-6 442 385 4.2899992e-05 1e-6 443 385 0.0033928999 1e-6 444 385 0.0044235997 1e-6 445 385 0.0068286993 1e-6 446 385 0.00012879999 1e-6 447 385 0.0049389973 1e-6 450 385 0.0042517968 1e-6 452 385 0.0048101991 1e-6 453 385 0.0021902998 1e-6 454 385 0.00064419978 1e-6 455 385 0.043978699 1e-6 456 385 0.00012879999 1e-6 457 385 0.0030922999 1e-6 458 385 0.00081599993 1e-6 459 385 0.0003864998 1e-6 460 385 0.00073009985 1e-6 463 385 0.018038098 1e-6 464 385 0.0056261979 1e-6 465 385 0.0017608998 1e-6 467 385 0.012583699 1e-6 468 385 0.0066998973 1e-6 469 385 0.0054972991 1e-6 470 385 0.0060985982 1e-6 471 385 0.0055831969 1e-6 473 385 0.0001718 1e-6 477 385 0.00030059996 1e-6 478 385 0.0012454998 1e-6 479 385 0.0011596 1e-6 483 385 0.00085899979 1e-6 489 385 4.2899992e-05 1e-6 490 385 0.00060129981 1e-6 491 385 0.00068719988 1e-6 9 386 4.7999987e-05 1e-6 18 386 0.00014389999 1e-6 19 386 0.0003837999 1e-6 21 386 0.00014389999 1e-6 22 386 0.0004317998 1e-6 24 386 0.0003358 1e-6 60 386 0.0022546998 1e-6 82 386 0.00014389999 1e-6 83 386 4.7999987e-05 1e-6 84 386 4.7999987e-05 1e-6 108 386 9.5899988e-05 1e-6 113 386 9.5899988e-05 1e-6 114 386 0.00019189999 1e-6 117 386 4.7999987e-05 1e-6 126 386 9.5899988e-05 1e-6 130 386 0.00023989999 1e-6 131 386 0.00019189999 1e-6 135 386 0.00019189999 1e-6 138 386 0.00014389999 1e-6 139 386 4.7999987e-05 1e-6 142 386 9.5899988e-05 1e-6 150 386 0.00062369998 1e-6 160 386 9.5899988e-05 1e-6 169 386 9.5899988e-05 1e-6 175 386 4.7999987e-05 1e-6 187 386 0.0010074 1e-6 188 386 9.5899988e-05 1e-6 189 386 9.5899988e-05 1e-6 190 386 9.5899988e-05 1e-6 192 386 0.00028779986 1e-6 193 386 9.5899988e-05 1e-6 194 386 0.00023989999 1e-6 197 386 4.7999987e-05 1e-6 198 386 0.0086351968 1e-6 200 386 9.5899988e-05 1e-6 201 386 4.7999987e-05 1e-6 203 386 9.5899988e-05 1e-6 204 386 9.5899988e-05 1e-6 206 386 0.00019189999 1e-6 207 386 4.7999987e-05 1e-6 214 386 0.0031661999 1e-6 219 386 9.5899988e-05 1e-6 223 386 0.0045573972 1e-6 224 386 0.011177696 1e-6 229 386 4.7999987e-05 1e-6 233 386 0.00062369998 1e-6 234 386 0.0025425998 1e-6 237 386 9.5899988e-05 1e-6 240 386 0.0038378998 1e-6 241 386 0.015831098 1e-6 242 386 4.7999987e-05 1e-6 252 386 0.0012472998 1e-6 262 386 0.0047013983 1e-6 270 386 4.7999987e-05 1e-6 271 386 9.5899988e-05 1e-6 273 386 0.00019189999 1e-6 276 386 9.5899988e-05 1e-6 277 386 0.079827249 1e-6 278 386 0.00014389999 1e-6 282 386 0.0047492981 1e-6 283 386 0.0003837999 1e-6 284 386 0.00057569984 1e-6 285 386 0.00019189999 1e-6 286 386 0.0051810965 1e-6 288 386 0.0039817989 1e-6 289 386 0.0030703 1e-6 290 386 0.0010074 1e-6 292 386 0.026720997 1e-6 293 386 0.0096905977 1e-6 294 386 0.017270297 1e-6 295 386 0.014056098 1e-6 296 386 0.0062844977 1e-6 297 386 0.0029742999 1e-6 298 386 0.00028779986 1e-6 300 386 9.5899988e-05 1e-6 308 386 0.00023989999 1e-6 312 386 0.015159499 1e-6 313 386 9.5899988e-05 1e-6 315 386 0.0096425973 1e-6 317 386 0.0023987 1e-6 320 386 0.009018898 1e-6 321 386 0.0060925968 1e-6 322 386 0.0039817989 1e-6 324 386 0.00023989999 1e-6 325 386 4.7999987e-05 1e-6 326 386 0.00057569984 1e-6 328 386 0.00023989999 1e-6 339 386 0.00028779986 1e-6 340 386 0.0066682994 1e-6 343 386 4.7999987e-05 1e-6 349 386 4.7999987e-05 1e-6 350 386 9.5899988e-05 1e-6 351 386 0.00028779986 1e-6 352 386 0.00057569984 1e-6 353 386 4.7999987e-05 1e-6 354 386 0.00062369998 1e-6 355 386 4.7999987e-05 1e-6 356 386 9.5899988e-05 1e-6 357 386 4.7999987e-05 1e-6 358 386 0.004941199 1e-6 359 386 4.7999987e-05 1e-6 369 386 0.0003358 1e-6 370 386 0.0013911999 1e-6 371 386 0.0003837999 1e-6 372 386 0.00086349994 1e-6 373 386 0.0022067998 1e-6 374 386 4.7999987e-05 1e-6 375 386 0.00014389999 1e-6 376 386 0.00023989999 1e-6 384 386 0.00014389999 1e-6 385 386 0.00023989999 1e-6 386 386 0.026049398 1e-6 387 386 9.5899988e-05 1e-6 389 386 0.0016311 1e-6 390 386 0.0004317998 1e-6 391 386 9.5899988e-05 1e-6 392 386 0.0037898999 1e-6 393 386 0.0088749975 1e-6 396 386 4.7999987e-05 1e-6 397 386 9.5899988e-05 1e-6 398 386 0.0013432 1e-6 402 386 0.00052769994 1e-6 414 386 4.7999987e-05 1e-6 416 386 0.00014389999 1e-6 417 386 0.00067159999 1e-6 419 386 9.5899988e-05 1e-6 420 386 0.00019189999 1e-6 421 386 4.7999987e-05 1e-6 422 386 0.00095949997 1e-6 423 386 4.7999987e-05 1e-6 430 386 9.5899988e-05 1e-6 431 386 4.7999987e-05 1e-6 433 386 4.7999987e-05 1e-6 434 386 4.7999987e-05 1e-6 438 386 9.5899988e-05 1e-6 441 386 4.7999987e-05 1e-6 442 386 4.7999987e-05 1e-6 443 386 0.0039337985 1e-6 444 386 0.00067159999 1e-6 445 386 0.0075317994 1e-6 446 386 0.00023989999 1e-6 447 386 0.0032621999 1e-6 450 386 0.0048452988 1e-6 452 386 0.0067161992 1e-6 453 386 0.0017749998 1e-6 454 386 0.00076759979 1e-6 455 386 0.023986597 1e-6 456 386 0.0003358 1e-6 457 386 0.0031182999 1e-6 458 386 0.00081549981 1e-6 459 386 0.00071959989 1e-6 460 386 0.0010553999 1e-6 463 386 0.0118494 1e-6 464 386 0.0010074 1e-6 465 386 0.0024465998 1e-6 467 386 0.014343999 1e-6 468 386 0.0023027 1e-6 469 386 0.0067161992 1e-6 470 386 0.0076276995 1e-6 471 386 0.0019669 1e-6 473 386 0.00014389999 1e-6 477 386 0.00023989999 1e-6 478 386 0.0015350999 1e-6 479 386 9.5899988e-05 1e-6 483 386 0.0012953 1e-6 489 386 4.7999987e-05 1e-6 490 386 0.00071959989 1e-6 491 386 0.0033100999 1e-6 9 387 2.6799986e-05 1e-6 18 387 8.0299986e-05 1e-6 22 387 2.6799986e-05 1e-6 60 387 0.0019816 1e-6 82 387 2.6799986e-05 1e-6 83 387 2.6799986e-05 1e-6 84 387 2.6799986e-05 1e-6 108 387 2.6799986e-05 1e-6 113 387 5.3599986e-05 1e-6 114 387 0.00010709999 1e-6 126 387 5.3599986e-05 1e-6 150 387 0.00037489994 1e-6 151 387 2.6799986e-05 1e-6 160 387 0.0013388998 1e-6 169 387 0.00091049983 1e-6 172 387 0.0014727998 1e-6 174 387 0.016522497 1e-6 175 387 0.061778598 1e-6 177 387 0.0016335 1e-6 187 387 0.0022761999 1e-6 188 387 0.00072299992 1e-6 189 387 5.3599986e-05 1e-6 190 387 8.0299986e-05 1e-6 192 387 0.00010709999 1e-6 194 387 8.0299986e-05 1e-6 197 387 2.6799986e-05 1e-6 198 387 0.0073641986 1e-6 200 387 8.0299986e-05 1e-6 201 387 2.6799986e-05 1e-6 203 387 5.3599986e-05 1e-6 204 387 8.0299986e-05 1e-6 206 387 0.0026510998 1e-6 207 387 5.3599986e-05 1e-6 209 387 2.6799986e-05 1e-6 214 387 5.3599986e-05 1e-6 219 387 5.3599986e-05 1e-6 223 387 2.6799986e-05 1e-6 224 387 0.0023832999 1e-6 234 387 0.00091049983 1e-6 236 387 2.6799986e-05 1e-6 237 387 5.3599986e-05 1e-6 240 387 0.00085689989 1e-6 241 387 0.013309099 1e-6 252 387 0.0077390969 1e-6 262 387 2.6799986e-05 1e-6 276 387 2.6799986e-05 1e-6 277 387 0.0064536966 1e-6 279 387 0.00085689989 1e-6 282 387 5.3599986e-05 1e-6 283 387 2.6799986e-05 1e-6 284 387 0.00013389999 1e-6 285 387 0.00064269989 1e-6 292 387 5.3599986e-05 1e-6 293 387 0.00077659986 1e-6 294 387 8.0299986e-05 1e-6 295 387 0.0080871992 1e-6 296 387 0.00069619995 1e-6 298 387 0.00091049983 1e-6 312 387 0.0068285987 1e-6 315 387 0.020914197 1e-6 318 387 8.0299986e-05 1e-6 319 387 0.0027047 1e-6 320 387 0.0014193 1e-6 321 387 5.3599986e-05 1e-6 326 387 0.0025974999 1e-6 340 387 0.00066949986 1e-6 356 387 0.00013389999 1e-6 358 387 0.00042849989 1e-6 359 387 0.00026779994 1e-6 364 387 0.00061589992 1e-6 369 387 0.00010709999 1e-6 372 387 0.0033741 1e-6 382 387 0.00077659986 1e-6 384 387 2.6799986e-05 1e-6 386 387 0.011113197 1e-6 387 387 0.045898799 1e-6 390 387 0.00024099999 1e-6 391 387 0.14615858 1e-6 392 387 0.020619698 1e-6 393 387 0.13927639 1e-6 396 387 0.00083009992 1e-6 402 387 5.3599986e-05 1e-6 404 387 2.6799986e-05 1e-6 417 387 0.00026779994 1e-6 419 387 0.0017674 1e-6 421 387 2.6799986e-05 1e-6 422 387 0.00013389999 1e-6 423 387 2.6799986e-05 1e-6 425 387 2.6799986e-05 1e-6 430 387 2.6799986e-05 1e-6 431 387 2.6799986e-05 1e-6 432 387 2.6799986e-05 1e-6 433 387 2.6799986e-05 1e-6 434 387 0.00016069999 1e-6 441 387 0.00064269989 1e-6 443 387 0.0016870999 1e-6 444 387 0.0013122 1e-6 445 387 0.0038560999 1e-6 446 387 8.0299986e-05 1e-6 447 387 0.0038293998 1e-6 450 387 0.0050343983 1e-6 452 387 0.0023029998 1e-6 453 387 0.00053559989 1e-6 454 387 0.00080339983 1e-6 455 387 0.0396326 1e-6 456 387 0.00013389999 1e-6 457 387 0.0048736967 1e-6 458 387 0.00056239986 1e-6 459 387 0.0021422999 1e-6 460 387 0.00091049983 1e-6 463 387 0.0103634 1e-6 464 387 0.0026778998 1e-6 465 387 0.028385498 1e-6 467 387 0.0137375 1e-6 468 387 0.027769599 1e-6 469 387 0.0032402 1e-6 470 387 0.0035883998 1e-6 471 387 0.0027313998 1e-6 473 387 8.0299986e-05 1e-6 477 387 0.00058909995 1e-6 478 387 0.0010443998 1e-6 483 387 0.00096399989 1e-6 489 387 2.6799986e-05 1e-6 490 387 0.00032129977 1e-6 491 387 0.0012585998 1e-6 60 388 0.0014654999 1e-6 108 388 0.0001832 1e-6 114 388 0.0003664 1e-6 126 388 0.0001832 1e-6 160 388 0.00073269987 1e-6 187 388 0.012456499 1e-6 190 388 0.0001832 1e-6 194 388 0.0003664 1e-6 198 388 0.0031140998 1e-6 200 388 0.0001832 1e-6 204 388 0.084814072 1e-6 206 388 0.0003664 1e-6 214 388 0.0003664 1e-6 224 388 0.050192297 1e-6 234 388 0.0025646 1e-6 237 388 0.0001832 1e-6 241 388 0.020882897 1e-6 272 388 0.00054959999 1e-6 279 388 0.0001832 1e-6 284 388 0.0001832 1e-6 293 388 0.0047627985 1e-6 317 388 0.0001832 1e-6 356 388 0.0001832 1e-6 387 388 0.0032972998 1e-6 388 388 0.043780897 1e-6 390 388 0.0001832 1e-6 392 388 0.0001832 1e-6 393 388 0.031873997 1e-6 417 388 0.0003664 1e-6 422 388 0.0003664 1e-6 443 388 0.002015 1e-6 444 388 0.0060450993 1e-6 445 388 0.0137388 1e-6 446 388 0.0001832 1e-6 447 388 0.0089759976 1e-6 450 388 0.0065945983 1e-6 452 388 0.0071441978 1e-6 453 388 0.0029308998 1e-6 454 388 0.00054959999 1e-6 455 388 0.040849999 1e-6 457 388 0.0047627985 1e-6 458 388 0.0014654999 1e-6 459 388 0.00054959999 1e-6 460 388 0.00073269987 1e-6 463 388 0.11705434 1e-6 464 388 0.00091589987 1e-6 465 388 0.012456499 1e-6 467 388 0.056970097 1e-6 468 388 0.045429599 1e-6 469 388 0.0056786984 1e-6 470 388 0.0064113997 1e-6 471 388 0.00073269987 1e-6 473 388 0.0038468998 1e-6 477 388 0.0001832 1e-6 478 388 0.0018318 1e-6 483 388 0.00073269987 1e-6 490 388 0.00054959999 1e-6 491 388 0.00091589987 1e-6 9 389 2.3799992e-05 1e-6 16 389 2.3799992e-05 1e-6 18 389 0.00011899999 1e-6 22 389 9.5199997e-05 1e-6 60 389 0.0026900999 1e-6 79 389 2.3799992e-05 1e-6 82 389 2.3799992e-05 1e-6 83 389 2.3799992e-05 1e-6 84 389 2.3799992e-05 1e-6 108 389 4.7599999e-05 1e-6 113 389 7.1399991e-05 1e-6 114 389 0.0001428 1e-6 126 389 7.1399991e-05 1e-6 127 389 2.3799992e-05 1e-6 132 389 2.3799992e-05 1e-6 150 389 0.00049989996 1e-6 160 389 0.00042849989 1e-6 169 389 0.00021429999 1e-6 171 389 4.7599999e-05 1e-6 172 389 0.0015711999 1e-6 189 389 7.1399991e-05 1e-6 190 389 9.5199997e-05 1e-6 192 389 4.7599999e-05 1e-6 194 389 0.0017139998 1e-6 196 389 2.3799992e-05 1e-6 197 389 2.3799992e-05 1e-6 198 389 0.0019520998 1e-6 200 389 9.5199997e-05 1e-6 201 389 4.7599999e-05 1e-6 203 389 7.1399991e-05 1e-6 204 389 0.00011899999 1e-6 206 389 9.5199997e-05 1e-6 207 389 7.1399991e-05 1e-6 209 389 2.3799992e-05 1e-6 214 389 7.1399991e-05 1e-6 219 389 0.0014759998 1e-6 223 389 0.0011188998 1e-6 224 389 0.0049278997 1e-6 225 389 2.3799992e-05 1e-6 233 389 0.0022139999 1e-6 234 389 0.0010950998 1e-6 237 389 9.5199997e-05 1e-6 240 389 0.0010237 1e-6 241 389 0.0034280999 1e-6 248 389 2.3799992e-05 1e-6 250 389 2.3799992e-05 1e-6 252 389 0.0012616999 1e-6 263 389 2.3799992e-05 1e-6 270 389 0.0012379 1e-6 277 389 0.013378996 1e-6 279 389 4.7599999e-05 1e-6 284 389 0.00019039999 1e-6 285 389 0.0020234999 1e-6 286 389 0.00054749986 1e-6 287 389 2.3799992e-05 1e-6 289 389 4.7599999e-05 1e-6 290 389 0.022639599 1e-6 292 389 0.011093698 1e-6 293 389 0.0020234999 1e-6 294 389 0.0103557 1e-6 295 389 0.011450697 1e-6 296 389 0.0024758 1e-6 298 389 0.00052369991 1e-6 312 389 0.0042850971 1e-6 315 389 0.0036185 1e-6 317 389 0.0018092999 1e-6 318 389 2.3799992e-05 1e-6 319 389 0.0015473999 1e-6 320 389 0.0050468966 1e-6 321 389 0.0019997 1e-6 322 389 0.0030947998 1e-6 326 389 0.0036422999 1e-6 338 389 0.00035709981 1e-6 339 389 0.00011899999 1e-6 340 389 0.0029757998 1e-6 341 389 2.3799992e-05 1e-6 343 389 2.3799992e-05 1e-6 351 389 0.00052369991 1e-6 354 389 2.3799992e-05 1e-6 356 389 0.00011899999 1e-6 358 389 0.0041898973 1e-6 359 389 2.3799992e-05 1e-6 369 389 0.00011899999 1e-6 375 389 0.00011899999 1e-6 384 389 4.7599999e-05 1e-6 386 389 0.016640499 1e-6 387 389 7.1399991e-05 1e-6 389 389 0.10936528 1e-6 390 389 0.022092097 1e-6 391 389 0.0041660964 1e-6 392 389 0.049350098 1e-6 393 389 0.059015397 1e-6 396 389 0.0006903999 1e-6 398 389 0.0010237 1e-6 402 389 4.7599999e-05 1e-6 417 389 0.00038089999 1e-6 419 389 2.3799992e-05 1e-6 421 389 4.7599999e-05 1e-6 422 389 9.5199997e-05 1e-6 423 389 2.3799992e-05 1e-6 425 389 2.3799992e-05 1e-6 430 389 4.7599999e-05 1e-6 431 389 4.7599999e-05 1e-6 432 389 2.3799992e-05 1e-6 433 389 4.7599999e-05 1e-6 434 389 4.7599999e-05 1e-6 443 389 0.0014283999 1e-6 444 389 0.0034280999 1e-6 445 389 0.0037613998 1e-6 446 389 7.1399991e-05 1e-6 447 389 0.0054277964 1e-6 449 389 2.3799992e-05 1e-6 450 389 0.0065704994 1e-6 452 389 0.0034995 1e-6 453 389 0.0013807998 1e-6 454 389 0.00047609978 1e-6 455 389 0.017949797 1e-6 456 389 0.00052369991 1e-6 457 389 0.0039041999 1e-6 458 389 0.00083319983 1e-6 459 389 0.0016663999 1e-6 460 389 0.0011188998 1e-6 463 389 0.009760499 1e-6 464 389 0.0086415969 1e-6 465 389 0.0024995999 1e-6 467 389 0.017640296 1e-6 468 389 0.0029281999 1e-6 469 389 0.0063799992 1e-6 470 389 0.0071655996 1e-6 471 389 0.0029519999 1e-6 472 389 0.00047609978 1e-6 473 389 0.00016659999 1e-6 477 389 0.0001428 1e-6 478 389 0.0014521999 1e-6 479 389 0.0010237 1e-6 483 389 0.0010950998 1e-6 489 389 2.3799992e-05 1e-6 490 389 0.00059519988 1e-6 491 389 0.00045229984 1e-6 9 390 6.6099994e-05 1e-6 16 390 3.309999e-05 1e-6 17 390 1.0999999e-05 1e-6 18 390 9.9199999e-05 1e-6 22 390 3.309999e-05 1e-6 60 390 0.0021483998 1e-6 76 390 0.00016529999 1e-6 77 390 0.0004296999 1e-6 79 390 2.1999993e-05 1e-6 81 390 1.0999999e-05 1e-6 82 390 0.0001102 1e-6 83 390 6.6099994e-05 1e-6 84 390 6.6099994e-05 1e-6 108 390 0.00012119999 1e-6 113 390 0.00017629999 1e-6 114 390 0.00044069998 1e-6 126 390 0.00018729999 1e-6 127 390 3.309999e-05 1e-6 130 390 7.709999e-05 1e-6 131 390 3.309999e-05 1e-6 138 390 1.0999999e-05 1e-6 139 390 1.0999999e-05 1e-6 142 390 1.0999999e-05 1e-6 150 390 0.00060599996 1e-6 151 390 1.0999999e-05 1e-6 156 390 1.0999999e-05 1e-6 160 390 0.0005398998 1e-6 161 390 1.0999999e-05 1e-6 165 390 2.1999993e-05 1e-6 169 390 4.4099987e-05 1e-6 171 390 8.8099987e-05 1e-6 172 390 0.00044069998 1e-6 174 390 7.709999e-05 1e-6 175 390 0.00057289982 1e-6 177 390 1.0999999e-05 1e-6 181 390 1.0999999e-05 1e-6 187 390 9.9199999e-05 1e-6 188 390 1.0999999e-05 1e-6 189 390 0.0002424 1e-6 190 390 0.0001102 1e-6 192 390 7.709999e-05 1e-6 193 390 8.8099987e-05 1e-6 194 390 0.0001102 1e-6 196 390 2.1999993e-05 1e-6 197 390 3.309999e-05 1e-6 198 390 0.0016635999 1e-6 200 390 0.00012119999 1e-6 201 390 7.709999e-05 1e-6 203 390 8.8099987e-05 1e-6 204 390 0.00013219999 1e-6 206 390 0.002534 1e-6 207 390 5.5099998e-05 1e-6 209 390 2.1999993e-05 1e-6 214 390 0.00059489999 1e-6 219 390 3.309999e-05 1e-6 220 390 4.4099987e-05 1e-6 223 390 7.709999e-05 1e-6 224 390 0.00091439998 1e-6 225 390 1.0999999e-05 1e-6 229 390 1.0999999e-05 1e-6 233 390 9.9199999e-05 1e-6 234 390 0.0016305998 1e-6 237 390 8.8099987e-05 1e-6 240 390 0.0014322998 1e-6 241 390 0.004561197 1e-6 248 390 7.709999e-05 1e-6 250 390 4.4099987e-05 1e-6 251 390 1.0999999e-05 1e-6 252 390 0.0016415999 1e-6 262 390 5.5099998e-05 1e-6 263 390 1.0999999e-05 1e-6 270 390 0.00064999983 1e-6 272 390 3.309999e-05 1e-6 276 390 0.00012119999 1e-6 277 390 0.0080426969 1e-6 279 390 5.5099998e-05 1e-6 282 390 0.00057289982 1e-6 283 390 0.0001542 1e-6 284 390 0.00022029999 1e-6 285 390 0.00035259989 1e-6 286 390 5.5099998e-05 1e-6 289 390 5.5099998e-05 1e-6 290 390 0.0011788998 1e-6 292 390 0.0013330998 1e-6 293 390 0.0040653981 1e-6 294 390 0.00059489999 1e-6 295 390 0.0043738969 1e-6 296 390 0.0029195999 1e-6 297 390 0.00023139999 1e-6 298 390 0.0007821999 1e-6 299 390 9.9199999e-05 1e-6 300 390 1.0999999e-05 1e-6 305 390 0.00085939979 1e-6 307 390 1.0999999e-05 1e-6 308 390 0.00057289982 1e-6 312 390 0.0066985972 1e-6 313 390 1.0999999e-05 1e-6 315 390 0.008946199 1e-6 317 390 0.00067209988 1e-6 318 390 7.709999e-05 1e-6 319 390 0.00022029999 1e-6 320 390 0.0055307969 1e-6 321 390 0.0014101998 1e-6 322 390 0.0018068999 1e-6 324 390 3.309999e-05 1e-6 325 390 1.0999999e-05 1e-6 326 390 0.0021153998 1e-6 328 390 2.1999993e-05 1e-6 338 390 0.00023139999 1e-6 339 390 6.6099994e-05 1e-6 340 390 0.0052442998 1e-6 341 390 3.309999e-05 1e-6 344 390 1.0999999e-05 1e-6 349 390 0.00052879984 1e-6 350 390 4.4099987e-05 1e-6 351 390 0.00012119999 1e-6 353 390 1.0999999e-05 1e-6 354 390 0.0001432 1e-6 356 390 0.00012119999 1e-6 358 390 0.0034924999 1e-6 359 390 0.001862 1e-6 362 390 1.0999999e-05 1e-6 363 390 1.0999999e-05 1e-6 366 390 1.0999999e-05 1e-6 369 390 0.0072053969 1e-6 370 390 0.0016196 1e-6 371 390 7.709999e-05 1e-6 372 390 0.0024788999 1e-6 373 390 0.0001542 1e-6 375 390 3.309999e-05 1e-6 376 390 2.1999993e-05 1e-6 380 390 5.5099998e-05 1e-6 384 390 0.0002424 1e-6 385 390 0.00064999983 1e-6 386 390 0.0070070997 1e-6 387 390 0.0016525998 1e-6 389 390 0.0012339999 1e-6 390 390 0.060651097 1e-6 391 390 0.0086596981 1e-6 392 390 0.044598699 1e-6 393 390 0.097140968 1e-6 394 390 1.0999999e-05 1e-6 396 390 0.00016529999 1e-6 397 390 0.00017629999 1e-6 398 390 0.00040759984 1e-6 401 390 2.1999993e-05 1e-6 402 390 0.0001102 1e-6 403 390 2.1999993e-05 1e-6 404 390 0.00047379988 1e-6 405 390 0.0017186999 1e-6 413 390 0.00013219999 1e-6 414 390 6.6099994e-05 1e-6 415 390 1.0999999e-05 1e-6 416 390 1.0999999e-05 1e-6 417 390 0.00041869981 1e-6 419 390 0.00090339989 1e-6 420 390 0.00031949999 1e-6 421 390 5.5099998e-05 1e-6 422 390 0.00027539977 1e-6 423 390 4.4099987e-05 1e-6 424 390 1.0999999e-05 1e-6 425 390 3.309999e-05 1e-6 427 390 8.8099987e-05 1e-6 430 390 0.0001102 1e-6 431 390 3.309999e-05 1e-6 432 390 2.1999993e-05 1e-6 433 390 4.4099987e-05 1e-6 434 390 0.0001102 1e-6 438 390 1.0999999e-05 1e-6 441 390 1.0999999e-05 1e-6 442 390 2.1999993e-05 1e-6 443 390 0.00081529981 1e-6 444 390 0.0021153998 1e-6 445 390 0.0025670999 1e-6 446 390 0.00016529999 1e-6 447 390 0.0047044978 1e-6 448 390 1.0999999e-05 1e-6 449 390 3.309999e-05 1e-6 450 390 0.0062027983 1e-6 452 390 0.0053324997 1e-6 453 390 0.00067209988 1e-6 454 390 0.00029749982 1e-6 455 390 0.021197598 1e-6 456 390 0.0015203999 1e-6 457 390 0.0025781 1e-6 458 390 0.00082629989 1e-6 459 390 0.0011127999 1e-6 460 390 0.00095849996 1e-6 463 390 0.013419297 1e-6 464 390 0.0042196997 1e-6 465 390 0.0031399999 1e-6 467 390 0.022078998 1e-6 468 390 0.0022695998 1e-6 469 390 0.012174297 1e-6 470 390 0.020228099 1e-6 471 390 0.0028535 1e-6 472 390 0.0001102 1e-6 473 390 0.00045169983 1e-6 477 390 0.00012119999 1e-6 478 390 0.0020603 1e-6 479 390 3.309999e-05 1e-6 483 390 0.0034043998 1e-6 489 390 3.309999e-05 1e-6 490 390 0.0017296998 1e-6 491 390 0.0001432 1e-6 18 391 0.00016299999 1e-6 22 391 8.1499995e-05 1e-6 60 391 0.0038301998 1e-6 108 391 0.00016299999 1e-6 114 391 0.00032599992 1e-6 126 391 0.00024449988 1e-6 150 391 0.0007334 1e-6 175 391 8.1499995e-05 1e-6 189 391 0.00016299999 1e-6 190 391 0.00016299999 1e-6 192 391 0.00065189996 1e-6 193 391 0.0005704998 1e-6 194 391 0.00016299999 1e-6 198 391 0.0048080981 1e-6 200 391 8.1499995e-05 1e-6 203 391 8.1499995e-05 1e-6 204 391 8.1499995e-05 1e-6 206 391 0.00016299999 1e-6 207 391 8.1499995e-05 1e-6 214 391 0.0082307979 1e-6 223 391 0.00040749996 1e-6 224 391 0.0047265999 1e-6 233 391 8.1499995e-05 1e-6 234 391 0.0022002999 1e-6 237 391 8.1499995e-05 1e-6 240 391 8.1499995e-05 1e-6 241 391 0.013935298 1e-6 252 391 0.12403226 1e-6 262 391 0.00016299999 1e-6 270 391 0.00016299999 1e-6 272 391 0.00065189996 1e-6 276 391 0.0036672 1e-6 277 391 0.013609298 1e-6 282 391 8.1499995e-05 1e-6 284 391 0.000489 1e-6 290 391 0.00032599992 1e-6 292 391 0.0026077998 1e-6 293 391 0.0039931983 1e-6 294 391 0.0047265999 1e-6 295 391 0.0094531998 1e-6 296 391 8.1499995e-05 1e-6 297 391 0.00097789988 1e-6 298 391 8.1499995e-05 1e-6 312 391 0.00016299999 1e-6 315 391 0.00089639984 1e-6 317 391 8.1499995e-05 1e-6 320 391 0.0082307979 1e-6 321 391 0.0024448 1e-6 326 391 0.0052154996 1e-6 339 391 8.1499995e-05 1e-6 340 391 0.0017114 1e-6 351 391 0.000489 1e-6 356 391 8.1499995e-05 1e-6 358 391 0.0086382963 1e-6 369 391 8.1499995e-05 1e-6 372 391 8.1499995e-05 1e-6 375 391 0.00024449988 1e-6 384 391 8.1499995e-05 1e-6 385 391 0.00016299999 1e-6 386 391 0.00016299999 1e-6 387 391 0.00024449988 1e-6 389 391 0.0008148998 1e-6 390 391 0.0008148998 1e-6 391 391 0.0033411998 1e-6 392 391 0.0077417977 1e-6 393 391 0.057778496 1e-6 396 391 0.00089639984 1e-6 417 391 0.000489 1e-6 421 391 8.1499995e-05 1e-6 422 391 8.1499995e-05 1e-6 430 391 8.1499995e-05 1e-6 433 391 8.1499995e-05 1e-6 434 391 8.1499995e-05 1e-6 443 391 0.0022002999 1e-6 444 391 0.0011409 1e-6 445 391 0.0074158981 1e-6 447 391 0.0033411998 1e-6 450 391 0.0048080981 1e-6 452 391 0.0092086978 1e-6 453 391 0.0018743 1e-6 454 391 0.0011409 1e-6 455 391 0.028603997 1e-6 456 391 0.00024449988 1e-6 457 391 0.0053784996 1e-6 458 391 0.0011409 1e-6 459 391 0.0044005997 1e-6 460 391 0.00097789988 1e-6 463 391 0.0125499 1e-6 464 391 0.0066008978 1e-6 465 391 0.0022002999 1e-6 467 391 0.015239198 1e-6 468 391 0.0091271996 1e-6 469 391 0.0084752999 1e-6 470 391 0.0092901997 1e-6 471 391 0.0039931983 1e-6 473 391 0.00024449988 1e-6 477 391 0.00024449988 1e-6 478 391 0.0013853998 1e-6 483 391 0.0016299 1e-6 490 391 0.027055699 1e-6 491 391 0.0015483999 1e-6 9 392 4.2299987e-05 1e-6 16 392 4.2299987e-05 1e-6 18 392 0.00016919999 1e-6 60 392 0.0027917998 1e-6 79 392 4.2299987e-05 1e-6 82 392 4.2299987e-05 1e-6 83 392 4.2299987e-05 1e-6 84 392 4.2299987e-05 1e-6 108 392 8.4599989e-05 1e-6 113 392 0.00016919999 1e-6 114 392 0.00029609981 1e-6 126 392 0.00012689999 1e-6 127 392 4.2299987e-05 1e-6 150 392 0.00080369995 1e-6 175 392 0.00012689999 1e-6 187 392 0.00033839978 1e-6 188 392 8.4599989e-05 1e-6 189 392 8.4599989e-05 1e-6 190 392 0.00012689999 1e-6 192 392 4.2299987e-05 1e-6 193 392 4.2299987e-05 1e-6 194 392 0.00012689999 1e-6 197 392 4.2299987e-05 1e-6 198 392 0.0015650999 1e-6 200 392 8.4599989e-05 1e-6 201 392 8.4599989e-05 1e-6 203 392 8.4599989e-05 1e-6 204 392 0.00012689999 1e-6 206 392 0.0002115 1e-6 207 392 8.4599989e-05 1e-6 209 392 4.2299987e-05 1e-6 214 392 0.022841699 1e-6 219 392 4.2299987e-05 1e-6 223 392 0.0067678988 1e-6 224 392 0.0013112999 1e-6 233 392 0.00012689999 1e-6 234 392 0.0024533998 1e-6 237 392 8.4599989e-05 1e-6 240 392 0.0021572998 1e-6 241 392 0.0057526976 1e-6 242 392 4.2299987e-05 1e-6 248 392 4.2299987e-05 1e-6 250 392 4.2299987e-05 1e-6 252 392 0.0067255981 1e-6 262 392 0.0044413991 1e-6 263 392 4.2299987e-05 1e-6 270 392 0.00029609981 1e-6 276 392 0.0011843999 1e-6 277 392 0.0015650999 1e-6 279 392 4.2299987e-05 1e-6 282 392 0.00029609981 1e-6 284 392 0.00050759991 1e-6 285 392 0.0002115 1e-6 290 392 0.0037222998 1e-6 292 392 0.0015228 1e-6 293 392 0.00059219985 1e-6 294 392 0.025633398 1e-6 295 392 0.0014381998 1e-6 296 392 0.00046529993 1e-6 297 392 0.00033839978 1e-6 298 392 0.00025379984 1e-6 308 392 0.00012689999 1e-6 312 392 0.002961 1e-6 315 392 0.0240261 1e-6 317 392 4.2299987e-05 1e-6 320 392 0.011293899 1e-6 321 392 0.00059219985 1e-6 322 392 0.0006767998 1e-6 325 392 4.2299987e-05 1e-6 326 392 0.00016919999 1e-6 335 392 8.4599989e-05 1e-6 339 392 4.2299987e-05 1e-6 340 392 0.0031724998 1e-6 351 392 8.4599989e-05 1e-6 354 392 8.4599989e-05 1e-6 356 392 0.0002115 1e-6 358 392 0.0012266999 1e-6 359 392 0.0048220977 1e-6 361 392 4.2299987e-05 1e-6 369 392 4.2299987e-05 1e-6 370 392 4.2299987e-05 1e-6 371 392 8.4599989e-05 1e-6 372 392 0.00071909977 1e-6 373 392 0.00033839978 1e-6 375 392 0.0023687999 1e-6 376 392 8.4599989e-05 1e-6 384 392 4.2299987e-05 1e-6 386 392 0.00054989988 1e-6 387 392 0.00016919999 1e-6 389 392 0.00050759991 1e-6 390 392 0.00042299996 1e-6 391 392 0.00054989988 1e-6 392 392 0.018823199 1e-6 393 392 0.11374307 1e-6 396 392 0.0006767998 1e-6 402 392 4.2299987e-05 1e-6 405 392 4.2299987e-05 1e-6 417 392 0.00050759991 1e-6 419 392 0.00012689999 1e-6 421 392 8.4599989e-05 1e-6 422 392 0.00016919999 1e-6 423 392 4.2299987e-05 1e-6 425 392 4.2299987e-05 1e-6 430 392 8.4599989e-05 1e-6 431 392 4.2299987e-05 1e-6 432 392 4.2299987e-05 1e-6 433 392 4.2299987e-05 1e-6 434 392 8.4599989e-05 1e-6 443 392 0.0013112999 1e-6 444 392 0.0032147998 1e-6 445 392 0.0041029975 1e-6 446 392 0.00071909977 1e-6 447 392 0.0063448995 1e-6 449 392 4.2299987e-05 1e-6 450 392 0.0056681 1e-6 452 392 0.0089251995 1e-6 453 392 0.0010574998 1e-6 454 392 0.0010574998 1e-6 455 392 0.022207197 1e-6 456 392 0.0010574998 1e-6 457 392 0.0059218965 1e-6 458 392 0.00093059987 1e-6 459 392 0.0013958998 1e-6 460 392 0.0012266999 1e-6 463 392 0.013831899 1e-6 464 392 0.0071485974 1e-6 465 392 0.0025379998 1e-6 467 392 0.018780898 1e-6 468 392 0.0033417 1e-6 469 392 0.012478299 1e-6 470 392 0.014339499 1e-6 471 392 0.0049912967 1e-6 473 392 0.00029609981 1e-6 477 392 0.00029609981 1e-6 478 392 0.0038068998 1e-6 483 392 0.0013535998 1e-6 489 392 0.00016919999 1e-6 490 392 0.0065140985 1e-6 491 392 0.0038068998 1e-6 9 393 3.9699997e-05 1e-6 18 393 0.00015869999 1e-6 22 393 5.9499987e-05 1e-6 24 393 1.9799991e-05 1e-6 60 393 0.0023800998 1e-6 77 393 3.9699997e-05 1e-6 79 393 1.9799991e-05 1e-6 82 393 3.9699997e-05 1e-6 83 393 3.9699997e-05 1e-6 84 393 3.9699997e-05 1e-6 104 393 7.9299993e-05 1e-6 108 393 9.9199999e-05 1e-6 113 393 7.9299993e-05 1e-6 114 393 0.00023799999 1e-6 126 393 0.00011899999 1e-6 127 393 1.9799991e-05 1e-6 130 393 7.9299993e-05 1e-6 142 393 3.9699997e-05 1e-6 143 393 1.9799991e-05 1e-6 150 393 0.0007536998 1e-6 151 393 5.9499987e-05 1e-6 160 393 0.00015869999 1e-6 169 393 3.9699997e-05 1e-6 171 393 1.9799991e-05 1e-6 172 393 9.9199999e-05 1e-6 174 393 0.00017849999 1e-6 175 393 0.0020428998 1e-6 177 393 1.9799991e-05 1e-6 187 393 0.0029155998 1e-6 188 393 0.0002776999 1e-6 189 393 9.9199999e-05 1e-6 190 393 0.00011899999 1e-6 192 393 0.00011899999 1e-6 193 393 0.0012496 1e-6 194 393 0.00013879999 1e-6 196 393 1.9799991e-05 1e-6 197 393 1.9799991e-05 1e-6 198 393 0.0059105977 1e-6 200 393 9.9199999e-05 1e-6 201 393 3.9699997e-05 1e-6 203 393 0.00013879999 1e-6 204 393 0.00013879999 1e-6 206 393 0.00031729997 1e-6 207 393 5.9499987e-05 1e-6 208 393 1.9799991e-05 1e-6 209 393 1.9799991e-05 1e-6 214 393 0.0016263998 1e-6 219 393 0.0014676999 1e-6 221 393 7.9299993e-05 1e-6 223 393 0.0038279998 1e-6 224 393 0.0069022998 1e-6 225 393 3.9699997e-05 1e-6 233 393 0.0001983 1e-6 234 393 0.0026775999 1e-6 237 393 0.00013879999 1e-6 240 393 0.00089249993 1e-6 241 393 0.030048799 1e-6 242 393 1.9799991e-05 1e-6 248 393 1.9799991e-05 1e-6 250 393 1.9799991e-05 1e-6 252 393 0.0022015998 1e-6 262 393 0.0027965999 1e-6 268 393 1.9799991e-05 1e-6 270 393 0.00011899999 1e-6 271 393 0.00011899999 1e-6 272 393 3.9699997e-05 1e-6 276 393 0.0026180998 1e-6 277 393 0.014260799 1e-6 278 393 1.9799991e-05 1e-6 279 393 7.9299993e-05 1e-6 282 393 0.0024197998 1e-6 283 393 0.00045619998 1e-6 284 393 0.00051569985 1e-6 285 393 0.0022015998 1e-6 286 393 0.00051569985 1e-6 287 393 1.9799991e-05 1e-6 288 393 9.9199999e-05 1e-6 289 393 0.00061489991 1e-6 290 393 0.0021023999 1e-6 291 393 1.9799991e-05 1e-6 292 393 0.0087071992 1e-6 293 393 0.0080327988 1e-6 294 393 0.010274097 1e-6 295 393 0.014022797 1e-6 296 393 0.0019437999 1e-6 297 393 0.00031729997 1e-6 298 393 0.0007536998 1e-6 299 393 5.9499987e-05 1e-6 305 393 3.9699997e-05 1e-6 307 393 3.9699997e-05 1e-6 308 393 0.00051569985 1e-6 312 393 0.0067237988 1e-6 313 393 0.00021819999 1e-6 315 393 0.015371498 1e-6 317 393 0.00021819999 1e-6 319 393 0.00011899999 1e-6 320 393 0.017612796 1e-6 321 393 0.00089249993 1e-6 322 393 0.0017255999 1e-6 325 393 0.0014081998 1e-6 326 393 0.0010908998 1e-6 328 393 3.9699997e-05 1e-6 337 393 9.9199999e-05 1e-6 338 393 3.9699997e-05 1e-6 340 393 0.0047601983 1e-6 341 393 1.9799991e-05 1e-6 347 393 1.9799991e-05 1e-6 349 393 3.9699997e-05 1e-6 350 393 1.9799991e-05 1e-6 351 393 0.00025779987 1e-6 352 393 1.9799991e-05 1e-6 353 393 3.9699997e-05 1e-6 354 393 0.00021819999 1e-6 356 393 0.00017849999 1e-6 357 393 0.00013879999 1e-6 358 393 0.0033320999 1e-6 359 393 0.012297198 1e-6 361 393 5.9499987e-05 1e-6 369 393 0.0010313999 1e-6 370 393 0.0016065999 1e-6 371 393 0.00045619998 1e-6 372 393 0.0011900999 1e-6 373 393 0.0019040999 1e-6 375 393 0.0015470998 1e-6 376 393 0.00057519996 1e-6 384 393 3.9699997e-05 1e-6 385 393 1.9799991e-05 1e-6 386 393 0.0033320999 1e-6 387 393 0.00065449998 1e-6 388 393 1.9799991e-05 1e-6 389 393 0.0016858999 1e-6 390 393 0.0016263998 1e-6 391 393 0.0028164999 1e-6 392 393 0.030941296 1e-6 393 393 0.14048547 1e-6 395 393 1.9799991e-05 1e-6 396 393 0.00081319991 1e-6 397 393 0.00059499987 1e-6 398 393 5.9499987e-05 1e-6 402 393 0.0009519998 1e-6 405 393 1.9799991e-05 1e-6 413 393 1.9799991e-05 1e-6 414 393 5.9499987e-05 1e-6 417 393 0.00051569985 1e-6 419 393 0.0015272 1e-6 420 393 3.9699997e-05 1e-6 421 393 7.9299993e-05 1e-6 422 393 9.9199999e-05 1e-6 423 393 3.9699997e-05 1e-6 424 393 3.9699997e-05 1e-6 425 393 1.9799991e-05 1e-6 427 393 1.9799991e-05 1e-6 430 393 9.9199999e-05 1e-6 431 393 5.9499987e-05 1e-6 432 393 1.9799991e-05 1e-6 433 393 3.9699997e-05 1e-6 434 393 3.9699997e-05 1e-6 441 393 5.9499987e-05 1e-6 442 393 3.9699997e-05 1e-6 443 393 0.0018048999 1e-6 444 393 0.0036692999 1e-6 445 393 0.0047799982 1e-6 446 393 0.00015869999 1e-6 447 393 0.0067039989 1e-6 448 393 1.9799991e-05 1e-6 450 393 0.0058312975 1e-6 452 393 0.0065253973 1e-6 453 393 0.00099169998 1e-6 454 393 0.0010511999 1e-6 455 393 0.026835699 1e-6 456 393 0.00061489991 1e-6 457 393 0.0054345988 1e-6 458 393 0.00079339999 1e-6 459 393 0.0014479 1e-6 460 393 0.00097189983 1e-6 463 393 0.015351698 1e-6 464 393 0.0077947974 1e-6 465 393 0.0031734998 1e-6 467 393 0.016402896 1e-6 468 393 0.0044229999 1e-6 469 393 0.0084889978 1e-6 470 393 0.010353398 1e-6 471 393 0.0024395999 1e-6 472 393 1.9799991e-05 1e-6 473 393 0.00021819999 1e-6 477 393 0.00021819999 1e-6 478 393 0.0018048999 1e-6 479 393 1.9799991e-05 1e-6 483 393 0.0016065999 1e-6 489 393 1.9799991e-05 1e-6 490 393 0.0034510999 1e-6 491 393 0.0022213999 1e-6 21 394 0.00020499999 1e-6 60 394 0.0020501998 1e-6 108 394 0.00010249999 1e-6 114 394 0.00020499999 1e-6 126 394 0.00010249999 1e-6 150 394 0.0035879 1e-6 160 394 0.00040999986 1e-6 171 394 0.0050230995 1e-6 190 394 0.00010249999 1e-6 194 394 0.00020499999 1e-6 198 394 0.009943597 1e-6 200 394 0.00010249999 1e-6 204 394 0.0050230995 1e-6 206 394 0.00020499999 1e-6 214 394 0.06847769 1e-6 224 394 0.0064581968 1e-6 225 394 0.0042029992 1e-6 233 394 0.0010250998 1e-6 234 394 0.0017426999 1e-6 237 394 0.00010249999 1e-6 240 394 0.0512558 1e-6 241 394 0.049205497 1e-6 252 394 0.00010249999 1e-6 272 394 0.00010249999 1e-6 273 394 0.0013325999 1e-6 277 394 0.00040999986 1e-6 284 394 0.0003074999 1e-6 287 394 0.18718606 1e-6 288 394 0.00010249999 1e-6 290 394 0.0048179999 1e-6 294 394 0.0094310977 1e-6 295 394 0.00010249999 1e-6 315 394 0.00010249999 1e-6 326 394 0.00082009984 1e-6 340 394 0.0024603 1e-6 356 394 0.00010249999 1e-6 358 394 0.00092259981 1e-6 370 394 0.00010249999 1e-6 375 394 0.00061509991 1e-6 384 394 0.00010249999 1e-6 386 394 0.00010249999 1e-6 387 394 0.00010249999 1e-6 394 394 0.036904197 1e-6 395 394 0.0003074999 1e-6 397 394 0.00020499999 1e-6 417 394 0.0003074999 1e-6 422 394 0.00020499999 1e-6 443 394 0.0056380965 1e-6 444 394 0.0028702999 1e-6 445 394 0.0093284994 1e-6 446 394 0.00051259995 1e-6 447 394 0.0039978996 1e-6 450 394 0.0032803998 1e-6 452 394 0.0094310977 1e-6 453 394 0.0026652999 1e-6 454 394 0.0012300999 1e-6 455 394 0.022654999 1e-6 456 394 0.00010249999 1e-6 457 394 0.0080983974 1e-6 458 394 0.00082009984 1e-6 459 394 0.00040999986 1e-6 460 394 0.00092259981 1e-6 463 394 0.016094297 1e-6 464 394 0.0017426999 1e-6 465 394 0.0045104995 1e-6 467 394 0.023577698 1e-6 468 394 0.0054330975 1e-6 469 394 0.0034854 1e-6 470 394 0.0039978996 1e-6 471 394 0.0039978996 1e-6 473 394 0.00010249999 1e-6 477 394 0.00071759988 1e-6 478 394 0.0010250998 1e-6 483 394 0.00061509991 1e-6 490 394 0.00040999986 1e-6 491 394 0.0019476998 1e-6 21 395 0.005887799 1e-6 22 395 0.00030989992 1e-6 60 395 0.0024790999 1e-6 114 395 0.00030989992 1e-6 126 395 0.00030989992 1e-6 188 395 0.0021692 1e-6 198 395 0.0034087 1e-6 206 395 0.00061979983 1e-6 214 395 0.044003699 1e-6 234 395 0.0015493999 1e-6 240 395 0.00061979983 1e-6 241 395 0.00061979983 1e-6 272 395 0.013015199 1e-6 279 395 0.00030989992 1e-6 284 395 0.00030989992 1e-6 287 395 0.0024790999 1e-6 288 395 0.0111559 1e-6 290 395 0.057018898 1e-6 294 395 0.029439099 1e-6 326 395 0.10040289 1e-6 340 395 0.0055778995 1e-6 358 395 0.0037185999 1e-6 375 395 0.015494298 1e-6 394 395 0.00061979983 1e-6 395 395 0.034087397 1e-6 405 395 0.00030989992 1e-6 417 395 0.00030989992 1e-6 443 395 0.0061976984 1e-6 445 395 0.0055778995 1e-6 446 395 0.0015493999 1e-6 447 395 0.0086767972 1e-6 450 395 0.0034087 1e-6 452 395 0.0052680969 1e-6 453 395 0.00092969998 1e-6 454 395 0.0012394998 1e-6 455 395 0.0238612 1e-6 457 395 0.026030399 1e-6 458 395 0.00061979983 1e-6 459 395 0.00030989992 1e-6 460 395 0.00061979983 1e-6 463 395 0.035946697 1e-6 464 395 0.0027889998 1e-6 465 395 0.0015493999 1e-6 467 395 0.019832697 1e-6 468 395 0.011465799 1e-6 469 395 0.0040284991 1e-6 470 395 0.0043383986 1e-6 471 395 0.00030989992 1e-6 473 395 0.00030989992 1e-6 477 395 0.00061979983 1e-6 478 395 0.00092969998 1e-6 483 395 0.00092969998 1e-6 490 395 0.00061979983 1e-6 491 395 0.0012394998 1e-6 60 396 0.0016305998 1e-6 108 396 0.0002329 1e-6 114 396 0.00046589994 1e-6 126 396 0.0002329 1e-6 194 396 0.0002329 1e-6 198 396 0.0025622998 1e-6 206 396 0.00046589994 1e-6 214 396 0.00046589994 1e-6 224 396 0.0002329 1e-6 233 396 0.00093169999 1e-6 234 396 0.0011646999 1e-6 241 396 0.0027951999 1e-6 252 396 0.007221099 1e-6 270 396 0.0002329 1e-6 272 396 0.0039598979 1e-6 276 396 0.0002329 1e-6 277 396 0.003727 1e-6 282 396 0.0025622998 1e-6 284 396 0.00046589994 1e-6 290 396 0.004658699 1e-6 292 396 0.0020963999 1e-6 293 396 0.004658699 1e-6 294 396 0.0055904984 1e-6 295 396 0.0041928999 1e-6 312 396 0.0023293998 1e-6 319 396 0.0048916973 1e-6 320 396 0.0002329 1e-6 321 396 0.010948099 1e-6 326 396 0.0002329 1e-6 340 396 0.0051245987 1e-6 350 396 0.00069879997 1e-6 351 396 0.0020963999 1e-6 354 396 0.0358724 1e-6 358 396 0.0044257976 1e-6 369 396 0.0002329 1e-6 372 396 0.0041928999 1e-6 375 396 0.015140899 1e-6 386 396 0.0011646999 1e-6 387 396 0.0002329 1e-6 390 396 0.00046589994 1e-6 391 396 0.042161699 1e-6 392 396 0.00069879997 1e-6 393 396 0.0200326 1e-6 395 396 0.0002329 1e-6 396 396 0.029583 1e-6 398 396 0.0016305998 1e-6 414 396 0.0016305998 1e-6 417 396 0.00046589994 1e-6 422 396 0.0002329 1e-6 441 396 0.00069879997 1e-6 443 396 0.00046589994 1e-6 444 396 0.006988097 1e-6 445 396 0.010715097 1e-6 447 396 0.0090845972 1e-6 450 396 0.0044257976 1e-6 452 396 0.0041928999 1e-6 453 396 0.0016305998 1e-6 454 396 0.0030281998 1e-6 455 396 0.026787799 1e-6 457 396 0.023060799 1e-6 458 396 0.00069879997 1e-6 459 396 0.00069879997 1e-6 460 396 0.00069879997 1e-6 463 396 0.045189798 1e-6 464 396 0.0093174987 1e-6 465 396 0.0090845972 1e-6 467 396 0.023293696 1e-6 468 396 0.0030281998 1e-6 469 396 0.0097833984 1e-6 470 396 0.011180997 1e-6 471 396 0.010249197 1e-6 473 396 0.0002329 1e-6 477 396 0.00069879997 1e-6 478 396 0.0013975999 1e-6 483 396 0.0011646999 1e-6 490 396 0.0018634999 1e-6 491 396 0.0039598979 1e-6 9 397 5.4299991e-05 1e-6 18 397 0.00016289999 1e-6 19 397 0.0011403 1e-6 22 397 0.00038009998 1e-6 60 397 0.0030950999 1e-6 82 397 5.4299991e-05 1e-6 83 397 5.4299991e-05 1e-6 84 397 5.4299991e-05 1e-6 108 397 5.4299991e-05 1e-6 113 397 0.0001086 1e-6 114 397 0.0001086 1e-6 126 397 5.4299991e-05 1e-6 130 397 5.4299991e-05 1e-6 135 397 0.0008144998 1e-6 137 397 5.4299991e-05 1e-6 139 397 5.4299991e-05 1e-6 150 397 0.00059729978 1e-6 160 397 0.00043439982 1e-6 169 397 5.4299991e-05 1e-6 172 397 0.0001086 1e-6 187 397 0.0001086 1e-6 188 397 5.4299991e-05 1e-6 189 397 5.4299991e-05 1e-6 190 397 0.0001086 1e-6 191 397 5.4299991e-05 1e-6 194 397 0.00016289999 1e-6 197 397 5.4299991e-05 1e-6 198 397 0.0054300986 1e-6 200 397 5.4299991e-05 1e-6 203 397 0.0001086 1e-6 204 397 0.0001086 1e-6 206 397 0.0001086 1e-6 207 397 5.4299991e-05 1e-6 214 397 0.0014117998 1e-6 223 397 0.00032579992 1e-6 224 397 0.0073305964 1e-6 225 397 0.0038552999 1e-6 233 397 0.00016289999 1e-6 234 397 0.0023349 1e-6 237 397 0.0001086 1e-6 240 397 0.0073305964 1e-6 241 397 0.0079821981 1e-6 242 397 5.4299991e-05 1e-6 252 397 0.00038009998 1e-6 262 397 0.0018461999 1e-6 270 397 0.0021176999 1e-6 271 397 0.00076019997 1e-6 272 397 0.00021719999 1e-6 277 397 0.051694199 1e-6 282 397 0.0122719 1e-6 283 397 0.0039638989 1e-6 284 397 0.00048869988 1e-6 285 397 5.4299991e-05 1e-6 286 397 5.4299991e-05 1e-6 287 397 0.00027149986 1e-6 288 397 0.0022262998 1e-6 289 397 0.0045069978 1e-6 290 397 5.4299991e-05 1e-6 292 397 0.0098826997 1e-6 293 397 0.0021176999 1e-6 294 397 0.008905299 1e-6 295 397 0.042463098 1e-6 296 397 0.0085251965 1e-6 297 397 0.00038009998 1e-6 298 397 0.0084165968 1e-6 299 397 5.4299991e-05 1e-6 308 397 5.4299991e-05 1e-6 312 397 0.0078735985 1e-6 313 397 0.0013031999 1e-6 315 397 0.0034208999 1e-6 319 397 5.4299991e-05 1e-6 320 397 0.0051585995 1e-6 321 397 0.0037466998 1e-6 322 397 0.0064617991 1e-6 323 397 5.4299991e-05 1e-6 324 397 5.4299991e-05 1e-6 326 397 0.007710699 1e-6 328 397 0.00021719999 1e-6 329 397 5.4299991e-05 1e-6 338 397 5.4299991e-05 1e-6 339 397 0.00027149986 1e-6 340 397 0.0111316 1e-6 351 397 0.008905299 1e-6 352 397 5.4299991e-05 1e-6 354 397 0.0072762966 1e-6 356 397 5.4299991e-05 1e-6 357 397 0.00076019997 1e-6 358 397 0.0023349 1e-6 370 397 0.00038009998 1e-6 371 397 5.4299991e-05 1e-6 372 397 0.0007058999 1e-6 373 397 0.00032579992 1e-6 374 397 5.4299991e-05 1e-6 375 397 0.0037466998 1e-6 376 397 5.4299991e-05 1e-6 384 397 0.00016289999 1e-6 385 397 0.0001086 1e-6 386 397 0.0013031999 1e-6 387 397 5.4299991e-05 1e-6 389 397 5.4299991e-05 1e-6 390 397 5.4299991e-05 1e-6 391 397 5.4299991e-05 1e-6 392 397 0.0079821981 1e-6 393 397 0.0014117998 1e-6 394 397 5.4299991e-05 1e-6 396 397 0.0034751999 1e-6 397 397 0.065920889 1e-6 402 397 0.0060816966 1e-6 404 397 0.0001086 1e-6 412 397 5.4299991e-05 1e-6 414 397 5.4299991e-05 1e-6 417 397 0.00043439982 1e-6 421 397 5.4299991e-05 1e-6 422 397 0.0001086 1e-6 423 397 5.4299991e-05 1e-6 430 397 5.4299991e-05 1e-6 431 397 5.4299991e-05 1e-6 433 397 5.4299991e-05 1e-6 434 397 5.4299991e-05 1e-6 443 397 0.0033665998 1e-6 444 397 0.0015203999 1e-6 445 397 0.0076020993 1e-6 446 397 0.00032579992 1e-6 447 397 0.0019548 1e-6 450 397 0.0038552999 1e-6 452 397 0.0049413964 1e-6 453 397 0.0012488998 1e-6 454 397 0.00086879986 1e-6 455 397 0.029539499 1e-6 456 397 0.00027149986 1e-6 457 397 0.0049413964 1e-6 458 397 0.00048869988 1e-6 459 397 0.00043439982 1e-6 460 397 0.00092309993 1e-6 463 397 0.0078192987 1e-6 464 397 0.0032036998 1e-6 465 397 0.0030950999 1e-6 467 397 0.023240697 1e-6 468 397 0.0029322 1e-6 469 397 0.0041267984 1e-6 470 397 0.0044525973 1e-6 471 397 0.011185899 1e-6 473 397 0.0001086 1e-6 477 397 0.0008144998 1e-6 478 397 0.0010859999 1e-6 483 397 0.0008144998 1e-6 490 397 0.00043439982 1e-6 491 397 0.0033665998 1e-6 22 398 0.00040169992 1e-6 60 398 0.0010042 1e-6 108 398 0.00020079999 1e-6 114 398 0.00040169992 1e-6 126 398 0.00020079999 1e-6 150 398 0.00020079999 1e-6 160 398 0.00080339983 1e-6 171 398 0.0018075998 1e-6 172 398 0.00020079999 1e-6 187 398 0.00020079999 1e-6 188 398 0.00020079999 1e-6 190 398 0.00020079999 1e-6 194 398 0.00020079999 1e-6 198 398 0.010042198 1e-6 200 398 0.00020079999 1e-6 206 398 0.00040169992 1e-6 214 398 0.0056235977 1e-6 223 398 0.00020079999 1e-6 224 398 0.010644697 1e-6 225 398 0.00020079999 1e-6 233 398 0.00040169992 1e-6 234 398 0.0022092999 1e-6 237 398 0.00020079999 1e-6 240 398 0.00020079999 1e-6 241 398 0.0092387982 1e-6 242 398 0.00020079999 1e-6 252 398 0.00040169992 1e-6 262 398 0.00020079999 1e-6 270 398 0.00020079999 1e-6 274 398 0.00040169992 1e-6 277 398 0.024703797 1e-6 278 398 0.00020079999 1e-6 282 398 0.0016066998 1e-6 283 398 0.00020079999 1e-6 284 398 0.00060249981 1e-6 285 398 0.00020079999 1e-6 286 398 0.0040168986 1e-6 287 398 0.00060249981 1e-6 288 398 0.00040169992 1e-6 289 398 0.00020079999 1e-6 290 398 0.0084353983 1e-6 291 398 0.00020079999 1e-6 292 398 0.016067497 1e-6 293 398 0.0098412968 1e-6 294 398 0.031532399 1e-6 295 398 0.089576185 1e-6 296 398 0.00040169992 1e-6 297 398 0.00020079999 1e-6 298 398 0.00020079999 1e-6 299 398 0.00020079999 1e-6 301 398 0.00020079999 1e-6 304 398 0.00020079999 1e-6 307 398 0.00020079999 1e-6 312 398 0.0054227971 1e-6 313 398 0.00020079999 1e-6 315 398 0.013657399 1e-6 319 398 0.00040169992 1e-6 320 398 0.00060249981 1e-6 321 398 0.00020079999 1e-6 322 398 0.00020079999 1e-6 324 398 0.0014058999 1e-6 326 398 0.0012051 1e-6 328 398 0.00020079999 1e-6 340 398 0.0078328997 1e-6 350 398 0.00020079999 1e-6 351 398 0.00060249981 1e-6 352 398 0.00080339983 1e-6 354 398 0.00020079999 1e-6 356 398 0.00020079999 1e-6 358 398 0.0036151998 1e-6 366 398 0.0054227971 1e-6 369 398 0.00040169992 1e-6 370 398 0.00020079999 1e-6 371 398 0.00040169992 1e-6 372 398 0.0068286993 1e-6 373 398 0.0026109999 1e-6 384 398 0.0056235977 1e-6 386 398 0.057642099 1e-6 387 398 0.00020079999 1e-6 389 398 0.00060249981 1e-6 390 398 0.00060249981 1e-6 392 398 0.0048201978 1e-6 393 398 0.0078328997 1e-6 398 398 0.019281 1e-6 402 398 0.00020079999 1e-6 415 398 0.00080339983 1e-6 417 398 0.00040169992 1e-6 419 398 0.00060249981 1e-6 422 398 0.00020079999 1e-6 441 398 0.00020079999 1e-6 442 398 0.00020079999 1e-6 443 398 0.0028118 1e-6 444 398 0.0046193972 1e-6 445 398 0.0098412968 1e-6 447 398 0.0054227971 1e-6 450 398 0.0048201978 1e-6 452 398 0.0052218996 1e-6 453 398 0.0014058999 1e-6 454 398 0.0044185966 1e-6 455 398 0.032134999 1e-6 456 398 0.00020079999 1e-6 457 398 0.0070294999 1e-6 458 398 0.0012051 1e-6 459 398 0.00040169992 1e-6 460 398 0.00080339983 1e-6 463 398 0.025707997 1e-6 464 398 0.0062260963 1e-6 465 398 0.0018075998 1e-6 467 398 0.050813399 1e-6 468 398 0.0028118 1e-6 469 398 0.0070294999 1e-6 470 398 0.0072303973 1e-6 471 398 0.0010042 1e-6 473 398 0.00020079999 1e-6 477 398 0.00060249981 1e-6 478 398 0.0014058999 1e-6 483 398 0.00040169992 1e-6 490 398 0.00060249981 1e-6 491 398 0.0024100998 1e-6 18 399 0.0001181 1e-6 60 399 0.0011808998 1e-6 78 399 0.00047239987 1e-6 113 399 0.0001181 1e-6 114 399 0.0001181 1e-6 130 399 0.0020075999 1e-6 134 399 0.0016532999 1e-6 139 399 0.0044874996 1e-6 149 399 0.0001181 1e-6 150 399 0.00047239987 1e-6 151 399 0.00023619999 1e-6 156 399 0.0022437 1e-6 158 399 0.0001181 1e-6 160 399 0.010510199 1e-6 161 399 0.00070849992 1e-6 163 399 0.00070849992 1e-6 165 399 0.011572998 1e-6 171 399 0.00047239987 1e-6 173 399 0.00035429979 1e-6 176 399 0.00035429979 1e-6 177 399 0.0001181 1e-6 178 399 0.0001181 1e-6 181 399 0.0096834973 1e-6 191 399 0.00023619999 1e-6 194 399 0.0001181 1e-6 198 399 0.00023619999 1e-6 206 399 0.00023619999 1e-6 214 399 0.0001181 1e-6 224 399 0.00094469986 1e-6 233 399 0.0081482977 1e-6 234 399 0.0015351998 1e-6 237 399 0.0057864971 1e-6 240 399 0.005668398 1e-6 241 399 0.0044874996 1e-6 242 399 0.0001181 1e-6 252 399 0.0090930983 1e-6 270 399 0.0001181 1e-6 271 399 0.0001181 1e-6 274 399 0.00082659977 1e-6 277 399 0.079475641 1e-6 282 399 0.0060226992 1e-6 283 399 0.00094469986 1e-6 284 399 0.0010627999 1e-6 289 399 0.00035429979 1e-6 292 399 0.0027160998 1e-6 293 399 0.022909798 1e-6 295 399 0.0018894998 1e-6 296 399 0.00059049996 1e-6 297 399 0.0001181 1e-6 298 399 0.0001181 1e-6 302 399 0.00035429979 1e-6 303 399 0.0033065998 1e-6 304 399 0.0011808998 1e-6 305 399 0.0001181 1e-6 306 399 0.0034246999 1e-6 307 399 0.00023619999 1e-6 308 399 0.0012989999 1e-6 312 399 0.0085025989 1e-6 313 399 0.0093291998 1e-6 315 399 0.0038969999 1e-6 319 399 0.0220831 1e-6 320 399 0.0017714 1e-6 321 399 0.0017714 1e-6 323 399 0.00082659977 1e-6 324 399 0.0018894998 1e-6 326 399 0.0024798999 1e-6 328 399 0.0082663968 1e-6 331 399 0.00082659977 1e-6 332 399 0.0001181 1e-6 337 399 0.0001181 1e-6 338 399 0.0010627999 1e-6 339 399 0.00047239987 1e-6 340 399 0.0016532999 1e-6 350 399 0.0001181 1e-6 351 399 0.00059049996 1e-6 354 399 0.0035426999 1e-6 356 399 0.0001181 1e-6 357 399 0.00023619999 1e-6 358 399 0.0046055987 1e-6 366 399 0.023854498 1e-6 370 399 0.0001181 1e-6 371 399 0.0001181 1e-6 372 399 0.0018894998 1e-6 373 399 0.0001181 1e-6 374 399 0.0001181 1e-6 377 399 0.0022437 1e-6 378 399 0.0030703999 1e-6 383 399 0.0011808998 1e-6 384 399 0.0001181 1e-6 385 399 0.0012989999 1e-6 386 399 0.00023619999 1e-6 387 399 0.0001181 1e-6 394 399 0.00070849992 1e-6 397 399 0.0043693967 1e-6 399 399 0.0090930983 1e-6 400 399 0.0069673993 1e-6 401 399 0.10167688 1e-6 402 399 0.042040598 1e-6 410 399 0.0001181 1e-6 412 399 0.0017714 1e-6 417 399 0.00035429979 1e-6 421 399 0.0001181 1e-6 422 399 0.0001181 1e-6 439 399 0.00023619999 1e-6 441 399 0.0001181 1e-6 443 399 0.0066130981 1e-6 444 399 0.00047239987 1e-6 445 399 0.0067311972 1e-6 446 399 0.00023619999 1e-6 447 399 0.0031884999 1e-6 450 399 0.0020075999 1e-6 452 399 0.0035426999 1e-6 453 399 0.0014171 1e-6 454 399 0.00023619999 1e-6 455 399 0.0422768 1e-6 456 399 0.00023619999 1e-6 457 399 0.0017714 1e-6 458 399 0.00023619999 1e-6 459 399 0.00047239987 1e-6 460 399 0.00082659977 1e-6 463 399 0.011572998 1e-6 464 399 0.0034246999 1e-6 465 399 0.00082659977 1e-6 467 399 0.0085025989 1e-6 468 399 0.016532797 1e-6 469 399 0.0043693967 1e-6 470 399 0.0049597993 1e-6 471 399 0.0016532999 1e-6 473 399 0.0001181 1e-6 477 399 0.0001181 1e-6 478 399 0.00094469986 1e-6 483 399 0.00070849992 1e-6 490 399 0.00035429979 1e-6 491 399 0.00035429979 1e-6 22 400 0.0001643 1e-6 60 400 0.0017255999 1e-6 108 400 8.2199986e-05 1e-6 114 400 0.0001643 1e-6 126 400 8.2199986e-05 1e-6 130 400 0.0017255999 1e-6 139 400 0.00082169985 1e-6 150 400 8.2199986e-05 1e-6 160 400 0.022021398 1e-6 161 400 0.022432197 1e-6 165 400 0.0057517998 1e-6 169 400 0.0001643 1e-6 181 400 0.0001643 1e-6 189 400 8.2199986e-05 1e-6 190 400 8.2199986e-05 1e-6 194 400 8.2199986e-05 1e-6 198 400 8.2199986e-05 1e-6 206 400 0.00032869983 1e-6 214 400 0.0004929998 1e-6 224 400 0.00041079987 1e-6 233 400 0.0046835989 1e-6 234 400 0.00098599982 1e-6 237 400 0.053574398 1e-6 240 400 0.0015611998 1e-6 241 400 0.0016433999 1e-6 242 400 8.2199986e-05 1e-6 252 400 0.0001643 1e-6 270 400 0.0032046 1e-6 271 400 8.2199986e-05 1e-6 274 400 0.0026294 1e-6 277 400 0.077896476 1e-6 282 400 0.010681998 1e-6 283 400 0.0031223998 1e-6 284 400 0.00090389978 1e-6 286 400 8.2199986e-05 1e-6 289 400 8.2199986e-05 1e-6 292 400 0.0015611998 1e-6 293 400 0.067214489 1e-6 294 400 0.0002464999 1e-6 295 400 0.00082169985 1e-6 296 400 0.00041079987 1e-6 303 400 8.2199986e-05 1e-6 307 400 0.00032869983 1e-6 312 400 0.012900598 1e-6 313 400 0.0092029981 1e-6 315 400 0.0077238977 1e-6 319 400 0.0094494969 1e-6 320 400 8.2199986e-05 1e-6 321 400 0.0036153998 1e-6 322 400 8.2199986e-05 1e-6 323 400 0.007477399 1e-6 324 400 0.0073130988 1e-6 326 400 0.0023006999 1e-6 328 400 0.00032869983 1e-6 331 400 0.0001643 1e-6 335 400 8.2199986e-05 1e-6 337 400 0.0055052973 1e-6 338 400 0.0016433999 1e-6 339 400 0.0004929998 1e-6 340 400 0.0017255999 1e-6 349 400 0.0002464999 1e-6 350 400 8.2199986e-05 1e-6 351 400 0.0013968998 1e-6 354 400 0.0029580998 1e-6 356 400 0.0001643 1e-6 357 400 8.2199986e-05 1e-6 358 400 0.0039440989 1e-6 366 400 0.006737899 1e-6 372 400 0.0001643 1e-6 373 400 0.0001643 1e-6 374 400 0.0001643 1e-6 378 400 8.2199986e-05 1e-6 385 400 0.00073949993 1e-6 387 400 8.2199986e-05 1e-6 397 400 0.0001643 1e-6 399 400 0.0001643 1e-6 400 400 0.00082169985 1e-6 401 400 0.0020541998 1e-6 402 400 0.091454387 1e-6 412 400 0.0024650998 1e-6 417 400 0.00032869983 1e-6 421 400 0.0001643 1e-6 422 400 8.2199986e-05 1e-6 443 400 0.0082990974 1e-6 444 400 0.0023828999 1e-6 445 400 0.006819997 1e-6 446 400 0.00032869983 1e-6 447 400 0.0044370964 1e-6 450 400 0.0017255999 1e-6 452 400 0.0028758999 1e-6 453 400 0.0010682 1e-6 454 400 0.0002464999 1e-6 455 400 0.045850497 1e-6 456 400 8.2199986e-05 1e-6 457 400 0.0018076999 1e-6 458 400 0.0004929998 1e-6 459 400 0.00041079987 1e-6 460 400 0.00073949993 1e-6 463 400 0.0061626993 1e-6 464 400 0.0004929998 1e-6 465 400 0.00065739988 1e-6 467 400 0.0077238977 1e-6 468 400 0.0050944984 1e-6 469 400 0.0035332998 1e-6 470 400 0.0038619998 1e-6 471 400 0.0051766969 1e-6 473 400 8.2199986e-05 1e-6 477 400 0.0001643 1e-6 478 400 0.00073949993 1e-6 483 400 0.00090389978 1e-6 490 400 0.00032869983 1e-6 491 400 0.00065739988 1e-6 9 401 7.0999995e-06 1e-6 16 401 2.3999992e-06 1e-6 18 401 2.6099995e-05 1e-6 22 401 0.00035159988 1e-6 60 401 0.0012591998 1e-6 79 401 2.3999992e-06 1e-6 82 401 9.4999996e-06 1e-6 83 401 7.0999995e-06 1e-6 84 401 7.0999995e-06 1e-6 108 401 9.4999996e-06 1e-6 113 401 1.19e-05 1e-6 114 401 2.6099995e-05 1e-6 126 401 1.6599995e-05 1e-6 127 401 2.3999992e-06 1e-6 130 401 0.00014969999 1e-6 134 401 0.0036753998 1e-6 137 401 4.7999993e-06 1e-6 139 401 0.00014259999 1e-6 150 401 0.0001924 1e-6 156 401 0.019572198 1e-6 158 401 0.0052410997 1e-6 160 401 0.00017819999 1e-6 161 401 7.0999995e-06 1e-6 165 401 0.00022099999 1e-6 181 401 0.0041861981 1e-6 189 401 2.6099995e-05 1e-6 190 401 2.8499999e-05 1e-6 192 401 7.0999995e-06 1e-6 194 401 0.00059869979 1e-6 196 401 2.3999992e-06 1e-6 197 401 4.7999993e-06 1e-6 198 401 9.4999996e-06 1e-6 200 401 1.19e-05 1e-6 201 401 4.7999993e-06 1e-6 203 401 1.43e-05 1e-6 204 401 1.6599995e-05 1e-6 206 401 0.00020189999 1e-6 207 401 9.4999996e-06 1e-6 209 401 2.3999992e-06 1e-6 214 401 0.00012119999 1e-6 218 401 7.0999995e-06 1e-6 219 401 0.0013613999 1e-6 223 401 0.00023759999 1e-6 224 401 8.079999e-05 1e-6 233 401 0.0036254998 1e-6 234 401 0.00083869998 1e-6 236 401 0.00052739982 1e-6 237 401 0.019515198 1e-6 240 401 0.0094225965 1e-6 241 401 0.0049725994 1e-6 242 401 0.0021287999 1e-6 248 401 4.7999993e-06 1e-6 250 401 2.3999992e-06 1e-6 251 401 2.3999992e-06 1e-6 252 401 0.0159158 1e-6 263 401 2.3999992e-06 1e-6 270 401 0.00014019999 1e-6 271 401 4.5099994e-05 1e-6 272 401 2.3799992e-05 1e-6 274 401 1.43e-05 1e-6 276 401 8.79e-05 1e-6 277 401 0.0096791983 1e-6 282 401 0.0051579997 1e-6 283 401 0.0011213999 1e-6 284 401 0.00038009998 1e-6 285 401 6.8899986e-05 1e-6 289 401 0.0001164 1e-6 290 401 1.19e-05 1e-6 292 401 0.0002328 1e-6 293 401 0.00096459989 1e-6 295 401 0.0001449 1e-6 296 401 0.0011997998 1e-6 297 401 7.0999995e-06 1e-6 298 401 0.00019009999 1e-6 299 401 0.00020669999 1e-6 303 401 7.129999e-05 1e-6 304 401 1.19e-05 1e-6 306 401 2.6099995e-05 1e-6 307 401 2.3999992e-06 1e-6 312 401 0.0092586987 1e-6 313 401 0.0885216 1e-6 315 401 8.3199993e-05 1e-6 318 401 7.5999997e-05 1e-6 319 401 0.023254797 1e-6 320 401 0.00016159999 1e-6 321 401 0.0012543998 1e-6 322 401 0.0036136999 1e-6 323 401 0.0077238977 1e-6 324 401 3.5599995e-05 1e-6 326 401 0.00048939977 1e-6 328 401 0.011480097 1e-6 331 401 3.0899988e-05 1e-6 338 401 0.00015919999 1e-6 339 401 4.9899987e-05 1e-6 340 401 0.0017295999 1e-6 341 401 1.19e-05 1e-6 350 401 4.7999993e-06 1e-6 351 401 0.0010928998 1e-6 354 401 7.5999997e-05 1e-6 355 401 7.0999995e-06 1e-6 356 401 0.00024469988 1e-6 357 401 0.0060155988 1e-6 358 401 0.00098119979 1e-6 359 401 3.5599995e-05 1e-6 366 401 0.0069041997 1e-6 371 401 2.3999992e-06 1e-6 372 401 0.00058679981 1e-6 374 401 0.00056309998 1e-6 377 401 3.3299992e-05 1e-6 378 401 5.4599994e-05 1e-6 380 401 2.3999992e-06 1e-6 383 401 1.6599995e-05 1e-6 384 401 0.0014848998 1e-6 385 401 0.0053503998 1e-6 386 401 1.19e-05 1e-6 387 401 0.0071084984 1e-6 392 401 0.00088379998 1e-6 393 401 0.00027799979 1e-6 394 401 0.0035993999 1e-6 397 401 0.020527299 1e-6 399 401 0.0018127998 1e-6 400 401 0.00015209999 1e-6 401 401 0.040363196 1e-6 402 401 0.25693089 1e-6 404 401 2.6099995e-05 1e-6 412 401 0.00016159999 1e-6 414 401 0.0013281 1e-6 417 401 0.00013069999 1e-6 419 401 0.00062479987 1e-6 421 401 7.3699994e-05 1e-6 422 401 5.2299991e-05 1e-6 423 401 4.7999993e-06 1e-6 425 401 2.3999992e-06 1e-6 430 401 1.19e-05 1e-6 431 401 4.7999993e-06 1e-6 432 401 2.3999992e-06 1e-6 433 401 4.7999993e-06 1e-6 434 401 2.1399988e-05 1e-6 441 401 0.00031599985 1e-6 443 401 0.0087050982 1e-6 444 401 0.00048229983 1e-6 445 401 0.0074007995 1e-6 446 401 0.00023049999 1e-6 447 401 0.0016963999 1e-6 448 401 1.19e-05 1e-6 449 401 2.3999992e-06 1e-6 450 401 0.00084819994 1e-6 452 401 0.0020051999 1e-6 453 401 0.00076029985 1e-6 454 401 0.00045849988 1e-6 455 401 0.058405399 1e-6 456 401 0.0001354 1e-6 457 401 0.0019220999 1e-6 458 401 0.00010929999 1e-6 459 401 0.00054169982 1e-6 460 401 0.00084579992 1e-6 463 401 0.0010239999 1e-6 464 401 0.0006010998 1e-6 465 401 0.00026609981 1e-6 467 401 0.0040341988 1e-6 468 401 0.013839297 1e-6 469 401 0.0011498998 1e-6 470 401 0.0012852999 1e-6 471 401 0.00020189999 1e-6 472 401 4.5099994e-05 1e-6 473 401 2.8499999e-05 1e-6 477 401 0.00014969999 1e-6 478 401 0.00030169985 1e-6 483 401 0.00050609978 1e-6 489 401 1.6599995e-05 1e-6 490 401 0.00010219999 1e-6 491 401 7.8399986e-05 1e-6 9 402 1.44e-05 1e-6 16 402 4.7999993e-06 1e-6 18 402 5.2699994e-05 1e-6 19 402 9.5999994e-06 1e-6 22 402 0.00061379978 1e-6 24 402 2.3999994e-05 1e-6 60 402 0.0025604998 1e-6 76 402 9.5999994e-06 1e-6 77 402 4.7999993e-06 1e-6 78 402 9.5999994e-06 1e-6 79 402 1.44e-05 1e-6 82 402 2.8799986e-05 1e-6 83 402 9.5999994e-06 1e-6 84 402 9.5999994e-06 1e-6 108 402 1.44e-05 1e-6 113 402 2.8799986e-05 1e-6 114 402 6.2299994e-05 1e-6 117 402 4.7999993e-06 1e-6 126 402 2.3999994e-05 1e-6 127 402 4.7999993e-06 1e-6 130 402 0.00076719979 1e-6 131 402 3.8399987e-05 1e-6 133 402 4.7999993e-06 1e-6 134 402 0.00022059999 1e-6 135 402 1.44e-05 1e-6 137 402 0.00047949981 1e-6 138 402 1.9199986e-05 1e-6 139 402 0.00051789987 1e-6 140 402 7.1899995e-05 1e-6 142 402 0.0001774 1e-6 149 402 4.7999993e-06 1e-6 150 402 0.0004602999 1e-6 156 402 0.0012610999 1e-6 158 402 0.00031169993 1e-6 159 402 4.7999993e-06 1e-6 160 402 0.00012469999 1e-6 161 402 2.8799986e-05 1e-6 165 402 0.0001007 1e-6 169 402 0.00061379978 1e-6 170 402 4.7999993e-06 1e-6 171 402 0.00020139999 1e-6 172 402 0.00088229985 1e-6 174 402 3.8399987e-05 1e-6 175 402 0.00013429999 1e-6 177 402 4.7999993e-06 1e-6 181 402 0.00024929992 1e-6 187 402 0.00055139977 1e-6 188 402 0.00042679999 1e-6 189 402 5.2699994e-05 1e-6 190 402 6.2299994e-05 1e-6 191 402 0.00030209986 1e-6 192 402 9.1099995e-05 1e-6 194 402 8.1499995e-05 1e-6 196 402 4.7999993e-06 1e-6 197 402 9.5999994e-06 1e-6 198 402 0.0043873973 1e-6 200 402 2.3999994e-05 1e-6 201 402 9.5999994e-06 1e-6 203 402 2.8799986e-05 1e-6 204 402 0.00013429999 1e-6 206 402 0.00024929992 1e-6 207 402 2.3999994e-05 1e-6 209 402 4.7999993e-06 1e-6 214 402 0.00031649997 1e-6 218 402 4.7999993e-06 1e-6 219 402 8.6299988e-05 1e-6 220 402 4.7999993e-06 1e-6 221 402 9.5999994e-06 1e-6 222 402 1.9199986e-05 1e-6 223 402 0.0018028999 1e-6 224 402 0.00269 1e-6 225 402 0.0001774 1e-6 229 402 9.5999994e-06 1e-6 230 402 7.6699987e-05 1e-6 233 402 0.0013952998 1e-6 234 402 0.0023015998 1e-6 236 402 4.3199994e-05 1e-6 237 402 0.001707 1e-6 239 402 4.7999993e-06 1e-6 240 402 0.0046942979 1e-6 241 402 0.0042243972 1e-6 242 402 0.00086309994 1e-6 248 402 9.5999994e-06 1e-6 250 402 4.7999993e-06 1e-6 251 402 1.9199986e-05 1e-6 252 402 0.0018700999 1e-6 262 402 1.9199986e-05 1e-6 263 402 9.5999994e-06 1e-6 270 402 0.0016925998 1e-6 271 402 0.0075329989 1e-6 272 402 0.0010932998 1e-6 274 402 3.3599994e-05 1e-6 276 402 0.00019179999 1e-6 277 402 0.084425747 1e-6 278 402 0.0001007 1e-6 279 402 0.00021099999 1e-6 282 402 0.071153164 1e-6 283 402 0.028041199 1e-6 284 402 0.00095419982 1e-6 285 402 0.00064729992 1e-6 286 402 0.00031169993 1e-6 287 402 9.5899988e-05 1e-6 288 402 0.0001199 1e-6 289 402 0.00089669996 1e-6 290 402 0.00011509999 1e-6 292 402 0.010548998 1e-6 293 402 0.0018461 1e-6 294 402 0.00096379989 1e-6 295 402 0.0041092969 1e-6 296 402 0.014207598 1e-6 297 402 0.00028769998 1e-6 298 402 0.0013714 1e-6 299 402 0.00045069982 1e-6 300 402 9.5999994e-06 1e-6 303 402 4.7999993e-06 1e-6 304 402 5.7499987e-05 1e-6 307 402 5.7499987e-05 1e-6 308 402 9.5999994e-06 1e-6 312 402 0.013416398 1e-6 313 402 0.017995697 1e-6 315 402 0.0006616998 1e-6 317 402 1.9199986e-05 1e-6 318 402 0.00024449988 1e-6 319 402 0.0021145998 1e-6 320 402 0.0045408979 1e-6 321 402 0.0014769 1e-6 322 402 0.0016494999 1e-6 323 402 0.00092539983 1e-6 324 402 0.00070009986 1e-6 326 402 0.00094939978 1e-6 327 402 1.44e-05 1e-6 328 402 0.0020234999 1e-6 329 402 3.8399987e-05 1e-6 330 402 0.000187 1e-6 331 402 0.0001966 1e-6 332 402 4.7999993e-06 1e-6 337 402 1.44e-05 1e-6 338 402 0.0007815999 1e-6 339 402 0.00024449988 1e-6 340 402 0.0048668981 1e-6 341 402 0.0001007 1e-6 345 402 1.44e-05 1e-6 349 402 2.8799986e-05 1e-6 350 402 9.5899988e-05 1e-6 351 402 0.0077966973 1e-6 352 402 0.0009015 1e-6 353 402 0.00011509999 1e-6 354 402 0.00052749994 1e-6 355 402 1.44e-05 1e-6 356 402 2.8799986e-05 1e-6 357 402 0.0078445971 1e-6 358 402 0.0079980977 1e-6 359 402 9.5999994e-06 1e-6 361 402 4.7999993e-06 1e-6 363 402 9.5999994e-06 1e-6 366 402 0.0016639 1e-6 367 402 9.5999994e-06 1e-6 368 402 9.5999994e-06 1e-6 369 402 9.5999994e-06 1e-6 370 402 0.00020139999 1e-6 371 402 0.0001103 1e-6 372 402 0.0019850999 1e-6 373 402 0.0006616998 1e-6 374 402 6.2299994e-05 1e-6 375 402 0.00030689989 1e-6 376 402 9.5999994e-06 1e-6 377 402 4.7999993e-06 1e-6 378 402 4.7999993e-06 1e-6 380 402 4.7999993e-06 1e-6 384 402 0.00018219999 1e-6 385 402 0.00041239988 1e-6 386 402 0.00024449988 1e-6 387 402 0.00054659997 1e-6 390 402 3.8399987e-05 1e-6 391 402 0.00032129977 1e-6 392 402 0.00071449997 1e-6 393 402 0.00039319997 1e-6 394 402 0.0002158 1e-6 396 402 3.3599994e-05 1e-6 397 402 0.0064300969 1e-6 398 402 1.9199986e-05 1e-6 399 402 0.00011509999 1e-6 400 402 1.44e-05 1e-6 401 402 0.0024358998 1e-6 402 402 0.070299685 1e-6 404 402 0.00034519983 1e-6 405 402 0.0001582 1e-6 408 402 4.7999993e-06 1e-6 409 402 1.44e-05 1e-6 412 402 0.00061859982 1e-6 413 402 4.7999993e-06 1e-6 414 402 0.0006616998 1e-6 415 402 0.0001007 1e-6 416 402 1.9199986e-05 1e-6 417 402 0.00034999987 1e-6 419 402 0.00023019999 1e-6 421 402 0.00023019999 1e-6 422 402 4.7999987e-05 1e-6 423 402 4.7999993e-06 1e-6 425 402 4.7999993e-06 1e-6 430 402 1.44e-05 1e-6 431 402 9.5999994e-06 1e-6 432 402 4.7999993e-06 1e-6 433 402 1.44e-05 1e-6 434 402 1.9199986e-05 1e-6 438 402 4.7999993e-06 1e-6 441 402 5.7499987e-05 1e-6 442 402 1.44e-05 1e-6 443 402 0.0053224973 1e-6 444 402 0.00089189992 1e-6 445 402 0.0074274987 1e-6 446 402 0.00055619981 1e-6 447 402 0.0015103999 1e-6 448 402 1.44e-05 1e-6 449 402 4.7999993e-06 1e-6 450 402 0.0021386 1e-6 452 402 0.0057875998 1e-6 453 402 0.0017788999 1e-6 454 402 0.00070969993 1e-6 455 402 0.037520997 1e-6 456 402 0.00064729992 1e-6 457 402 0.0019275998 1e-6 458 402 0.0001774 1e-6 459 402 0.00088709989 1e-6 460 402 0.0009782 1e-6 463 402 0.0025988999 1e-6 464 402 0.0015966999 1e-6 465 402 0.0011795999 1e-6 467 402 0.0075760968 1e-6 468 402 0.0033564998 1e-6 469 402 0.0030113 1e-6 470 402 0.0033421 1e-6 471 402 0.023615398 1e-6 472 402 5.7499987e-05 1e-6 473 402 6.2299994e-05 1e-6 477 402 0.00016299999 1e-6 478 402 0.00075759995 1e-6 479 402 9.5999994e-06 1e-6 483 402 0.0018604998 1e-6 489 402 4.3199994e-05 1e-6 490 402 0.00029729982 1e-6 491 402 0.0053703971 1e-6 9 403 7.4699987e-05 1e-6 16 403 2.4899986e-05 1e-6 17 403 1.25e-05 1e-6 18 403 7.4699987e-05 1e-6 22 403 2.4899986e-05 1e-6 60 403 0.0030271998 1e-6 75 403 0.0004608999 1e-6 76 403 0.00022419999 1e-6 79 403 2.4899986e-05 1e-6 81 403 0.00012459999 1e-6 82 403 0.00012459999 1e-6 83 403 9.9699988e-05 1e-6 84 403 9.9699988e-05 1e-6 108 403 0.00014949999 1e-6 113 403 0.0002118 1e-6 114 403 0.00054809987 1e-6 126 403 0.0002367 1e-6 127 403 4.9799986e-05 1e-6 130 403 0.00093429978 1e-6 134 403 0.00057309982 1e-6 150 403 0.00044849981 1e-6 158 403 3.7399994e-05 1e-6 160 403 0.00028649997 1e-6 171 403 1.25e-05 1e-6 172 403 6.2299994e-05 1e-6 181 403 0.0016070998 1e-6 187 403 1.25e-05 1e-6 189 403 0.000137 1e-6 190 403 8.7199995e-05 1e-6 192 403 2.4899986e-05 1e-6 194 403 4.9799986e-05 1e-6 196 403 1.25e-05 1e-6 197 403 3.7399994e-05 1e-6 198 403 2.4899986e-05 1e-6 200 403 8.7199995e-05 1e-6 201 403 7.4699987e-05 1e-6 203 403 3.7399994e-05 1e-6 204 403 0.00089699985 1e-6 206 403 0.0014326 1e-6 207 403 3.7399994e-05 1e-6 209 403 1.25e-05 1e-6 214 403 0.00017439999 1e-6 218 403 1.25e-05 1e-6 219 403 0.0001121 1e-6 224 403 0.0017814999 1e-6 233 403 0.0023047 1e-6 234 403 0.0025787998 1e-6 237 403 0.0004608999 1e-6 240 403 0.00061039999 1e-6 241 403 0.00078479992 1e-6 248 403 6.2299994e-05 1e-6 250 403 4.9799986e-05 1e-6 251 403 2.4899986e-05 1e-6 252 403 9.9699988e-05 1e-6 263 403 1.25e-05 1e-6 270 403 2.4899986e-05 1e-6 272 403 0.0002491998 1e-6 276 403 0.00039859978 1e-6 277 403 0.0020181998 1e-6 282 403 0.00064779981 1e-6 283 403 0.00075989985 1e-6 284 403 0.0011834998 1e-6 292 403 0.00012459999 1e-6 293 403 0.0088823996 1e-6 294 403 0.0020554999 1e-6 295 403 0.0013704 1e-6 296 403 0.0022548998 1e-6 297 403 3.7399994e-05 1e-6 298 403 0.00078479992 1e-6 299 403 0.0042978972 1e-6 308 403 1.25e-05 1e-6 312 403 0.0068641976 1e-6 315 403 0.00097169983 1e-6 317 403 9.9699988e-05 1e-6 318 403 0.0001121 1e-6 319 403 0.004783798 1e-6 320 403 0.0022423998 1e-6 321 403 0.0025787998 1e-6 322 403 0.00064779981 1e-6 324 403 0.0011461 1e-6 326 403 0.0019433999 1e-6 338 403 0.00057309982 1e-6 339 403 0.00017439999 1e-6 340 403 0.0041234978 1e-6 341 403 3.7399994e-05 1e-6 350 403 0.0046467967 1e-6 351 403 0.00062289997 1e-6 354 403 6.2299994e-05 1e-6 356 403 0.00066029979 1e-6 357 403 9.9699988e-05 1e-6 358 403 0.019483998 1e-6 359 403 0.0059547983 1e-6 369 403 0.001769 1e-6 372 403 0.00032389979 1e-6 380 403 2.4899986e-05 1e-6 384 403 4.9799986e-05 1e-6 387 403 0.0002367 1e-6 390 403 0.071071684 1e-6 392 403 0.0098416992 1e-6 393 403 0.020517997 1e-6 394 403 3.7399994e-05 1e-6 396 403 9.9699988e-05 1e-6 397 403 0.0032265999 1e-6 402 403 6.2299994e-05 1e-6 403 403 0.0034133999 1e-6 404 403 0.0446986 1e-6 405 403 0.13625085 1e-6 413 403 0.0062662996 1e-6 414 403 0.0023794 1e-6 417 403 0.00031139981 1e-6 419 403 0.0016943 1e-6 420 403 0.0046467967 1e-6 421 403 9.9699988e-05 1e-6 422 403 0.0018437998 1e-6 423 403 4.9799986e-05 1e-6 425 403 3.7399994e-05 1e-6 430 403 0.000137 1e-6 431 403 4.9799986e-05 1e-6 432 403 1.25e-05 1e-6 433 403 2.4899986e-05 1e-6 434 403 0.0001869 1e-6 442 403 1.25e-05 1e-6 443 403 0.00077239983 1e-6 444 403 0.0036251999 1e-6 445 403 0.0047215 1e-6 446 403 0.00019929999 1e-6 447 403 0.0088326 1e-6 448 403 1.25e-05 1e-6 449 403 4.9799986e-05 1e-6 450 403 0.0047215 1e-6 452 403 0.0039241984 1e-6 453 403 0.00074749999 1e-6 454 403 0.00037369994 1e-6 455 403 0.015958399 1e-6 456 403 0.0020929 1e-6 457 403 0.0026659998 1e-6 458 403 0.00057309982 1e-6 459 403 0.0011461 1e-6 460 403 0.0010090999 1e-6 463 403 0.0061541982 1e-6 464 403 0.0083342977 1e-6 465 403 0.0026659998 1e-6 467 403 0.018686697 1e-6 468 403 0.0021054 1e-6 469 403 0.012121398 1e-6 470 403 0.0270583 1e-6 471 403 0.0022298999 1e-6 473 403 0.00057309982 1e-6 477 403 8.7199995e-05 1e-6 478 403 0.0013952998 1e-6 479 403 0.00072259991 1e-6 483 403 0.0020305999 1e-6 489 403 2.4899986e-05 1e-6 490 403 0.0020554999 1e-6 491 403 6.2299994e-05 1e-6 9 404 7.509999e-05 1e-6 16 404 5.0099989e-05 1e-6 18 404 0.00010009999 1e-6 22 404 0.0002002 1e-6 60 404 0.0038039999 1e-6 76 404 5.0099989e-05 1e-6 77 404 0.00012509999 1e-6 79 404 5.0099989e-05 1e-6 82 404 0.00015019999 1e-6 83 404 0.00012509999 1e-6 84 404 0.00012509999 1e-6 108 404 0.0002002 1e-6 113 404 0.00027529988 1e-6 114 404 0.00067569991 1e-6 126 404 0.00030029984 1e-6 127 404 7.509999e-05 1e-6 130 404 7.509999e-05 1e-6 150 404 0.00057559996 1e-6 169 404 0.00010009999 1e-6 172 404 0.0010760999 1e-6 181 404 5.0099989e-05 1e-6 187 404 2.4999987e-05 1e-6 189 404 0.0002002 1e-6 190 404 0.00010009999 1e-6 192 404 5.0099989e-05 1e-6 194 404 0.00010009999 1e-6 196 404 2.4999987e-05 1e-6 197 404 5.0099989e-05 1e-6 198 404 0.0017267999 1e-6 200 404 0.00010009999 1e-6 201 404 0.00010009999 1e-6 203 404 7.509999e-05 1e-6 204 404 0.00010009999 1e-6 206 404 0.0016017 1e-6 207 404 7.509999e-05 1e-6 209 404 2.4999987e-05 1e-6 214 404 0.0008758998 1e-6 220 404 2.4999987e-05 1e-6 224 404 0.0015766998 1e-6 233 404 0.00027529988 1e-6 234 404 0.0045797974 1e-6 237 404 5.0099989e-05 1e-6 240 404 0.00095099979 1e-6 241 404 0.00015019999 1e-6 248 404 0.00010009999 1e-6 250 404 7.509999e-05 1e-6 251 404 2.4999987e-05 1e-6 252 404 0.0001752 1e-6 263 404 2.4999987e-05 1e-6 271 404 2.4999987e-05 1e-6 272 404 0.00095099979 1e-6 277 404 0.028630096 1e-6 279 404 0.00015019999 1e-6 282 404 0.011612199 1e-6 283 404 0.0192452 1e-6 284 404 0.0013513998 1e-6 285 404 2.4999987e-05 1e-6 286 404 7.509999e-05 1e-6 287 404 2.4999987e-05 1e-6 288 404 2.4999987e-05 1e-6 289 404 2.4999987e-05 1e-6 290 404 0.00080079981 1e-6 291 404 2.4999987e-05 1e-6 292 404 0.0012512999 1e-6 293 404 0.0025527 1e-6 294 404 0.0059812963 1e-6 295 404 0.00037539983 1e-6 296 404 0.008433897 1e-6 297 404 0.00037539983 1e-6 298 404 0.022023097 1e-6 299 404 0.013664298 1e-6 305 404 5.0099989e-05 1e-6 307 404 7.509999e-05 1e-6 308 404 2.4999987e-05 1e-6 312 404 0.0040291995 1e-6 313 404 2.4999987e-05 1e-6 315 404 0.00072579994 1e-6 318 404 0.00067569991 1e-6 319 404 0.0011511999 1e-6 320 404 0.005380597 1e-6 321 404 7.509999e-05 1e-6 322 404 5.0099989e-05 1e-6 324 404 0.0014765998 1e-6 326 404 7.509999e-05 1e-6 327 404 0.0023273998 1e-6 328 404 0.0003252998 1e-6 329 404 2.4999987e-05 1e-6 331 404 2.4999987e-05 1e-6 338 404 0.0014515 1e-6 339 404 0.00012509999 1e-6 340 404 0.013514198 1e-6 341 404 0.00030029984 1e-6 343 404 0.00095099979 1e-6 350 404 0.0012762998 1e-6 351 404 0.0034035998 1e-6 354 404 0.0002002 1e-6 356 404 0.00042539998 1e-6 357 404 0.0021271999 1e-6 358 404 0.021422498 1e-6 359 404 2.4999987e-05 1e-6 366 404 5.0099989e-05 1e-6 369 404 2.4999987e-05 1e-6 371 404 2.4999987e-05 1e-6 372 404 0.00040039979 1e-6 373 404 2.4999987e-05 1e-6 380 404 5.0099989e-05 1e-6 384 404 7.509999e-05 1e-6 386 404 2.4999987e-05 1e-6 387 404 0.00030029984 1e-6 390 404 0.0046798997 1e-6 391 404 5.0099989e-05 1e-6 392 404 0.00095099979 1e-6 393 404 0.0035787998 1e-6 396 404 2.4999987e-05 1e-6 397 404 0.0054306984 1e-6 398 404 2.4999987e-05 1e-6 402 404 0.00015019999 1e-6 403 404 7.509999e-05 1e-6 404 404 0.14269978 1e-6 405 404 0.033885598 1e-6 413 404 0.0011511999 1e-6 414 404 0.0063315965 1e-6 417 404 0.00035039987 1e-6 419 404 7.509999e-05 1e-6 420 404 2.4999987e-05 1e-6 421 404 0.00012509999 1e-6 422 404 0.0001752 1e-6 423 404 0.00010009999 1e-6 425 404 7.509999e-05 1e-6 430 404 0.0002002 1e-6 431 404 7.509999e-05 1e-6 432 404 2.4999987e-05 1e-6 433 404 5.0099989e-05 1e-6 434 404 5.0099989e-05 1e-6 443 404 0.0012013 1e-6 444 404 0.0010511 1e-6 445 404 0.0034285998 1e-6 446 404 0.00025029993 1e-6 447 404 0.0030532 1e-6 448 404 2.4999987e-05 1e-6 449 404 7.509999e-05 1e-6 450 404 0.0052804984 1e-6 452 404 0.0073326975 1e-6 453 404 0.0014515 1e-6 454 404 0.0015766998 1e-6 455 404 0.015816599 1e-6 456 404 0.0022773999 1e-6 457 404 0.0028279999 1e-6 458 404 0.00085089984 1e-6 459 404 0.00067569991 1e-6 460 404 0.00092599983 1e-6 463 404 0.0041793995 1e-6 464 404 0.0014264998 1e-6 465 404 0.0026777999 1e-6 467 404 0.021472499 1e-6 468 404 0.0020271 1e-6 469 404 0.014239997 1e-6 470 404 0.031457998 1e-6 471 404 0.00037539983 1e-6 473 404 0.00067569991 1e-6 477 404 0.00010009999 1e-6 478 404 0.0015515999 1e-6 483 404 0.0027278999 1e-6 489 404 0.00012509999 1e-6 490 404 0.0023774998 1e-6 491 404 0.0024525998 1e-6 9 405 0.00010999999 1e-6 16 405 4.3999986e-05 1e-6 18 405 0.00013199999 1e-6 22 405 0.00015399999 1e-6 24 405 2.1999993e-05 1e-6 60 405 0.0028153998 1e-6 75 405 0.00010999999 1e-6 76 405 0.00048389984 1e-6 77 405 0.00028589997 1e-6 79 405 0.00013199999 1e-6 81 405 2.1999993e-05 1e-6 82 405 0.00017599999 1e-6 83 405 0.00010999999 1e-6 84 405 0.00010999999 1e-6 108 405 0.00015399999 1e-6 113 405 0.0002638998 1e-6 114 405 0.00057189981 1e-6 126 405 0.0002638998 1e-6 127 405 4.3999986e-05 1e-6 130 405 0.0020895 1e-6 131 405 4.3999986e-05 1e-6 132 405 2.1999993e-05 1e-6 134 405 0.00013199999 1e-6 135 405 2.1999993e-05 1e-6 138 405 2.1999993e-05 1e-6 139 405 2.1999993e-05 1e-6 140 405 2.1999993e-05 1e-6 142 405 2.1999993e-05 1e-6 150 405 0.00052789995 1e-6 156 405 2.1999993e-05 1e-6 160 405 8.7999986e-05 1e-6 161 405 2.1999993e-05 1e-6 165 405 2.1999993e-05 1e-6 169 405 0.00015399999 1e-6 171 405 0.00010999999 1e-6 172 405 0.00054989988 1e-6 181 405 0.0018036 1e-6 187 405 0.00068179984 1e-6 189 405 0.00015399999 1e-6 190 405 0.00010999999 1e-6 191 405 6.5999993e-05 1e-6 192 405 6.5999993e-05 1e-6 194 405 0.00013199999 1e-6 196 405 2.1999993e-05 1e-6 197 405 4.3999986e-05 1e-6 198 405 0.0011876998 1e-6 200 405 0.00010999999 1e-6 201 405 8.7999986e-05 1e-6 203 405 6.5999993e-05 1e-6 204 405 0.00028589997 1e-6 206 405 0.0017376 1e-6 207 405 6.5999993e-05 1e-6 209 405 2.1999993e-05 1e-6 214 405 0.0015395998 1e-6 219 405 2.1999993e-05 1e-6 220 405 4.3999986e-05 1e-6 222 405 4.3999986e-05 1e-6 223 405 4.3999986e-05 1e-6 224 405 0.0036511999 1e-6 225 405 0.00032989983 1e-6 233 405 0.0014076999 1e-6 234 405 0.0040470995 1e-6 237 405 0.00017599999 1e-6 240 405 0.0011216998 1e-6 241 405 0.0022214998 1e-6 248 405 8.7999986e-05 1e-6 250 405 4.3999986e-05 1e-6 251 405 2.1999993e-05 1e-6 252 405 0.00021989999 1e-6 262 405 2.1999993e-05 1e-6 263 405 4.3999986e-05 1e-6 272 405 0.00050589978 1e-6 276 405 8.7999986e-05 1e-6 277 405 0.013328899 1e-6 278 405 2.1999993e-05 1e-6 279 405 4.3999986e-05 1e-6 282 405 0.004684899 1e-6 283 405 0.0076981969 1e-6 284 405 0.0013416999 1e-6 285 405 0.00010999999 1e-6 286 405 4.3999986e-05 1e-6 287 405 4.3999986e-05 1e-6 288 405 4.3999986e-05 1e-6 290 405 0.00092379982 1e-6 291 405 2.1999993e-05 1e-6 292 405 0.00070379977 1e-6 293 405 0.015352499 1e-6 294 405 0.0051687993 1e-6 295 405 0.0020234999 1e-6 296 405 0.004970897 1e-6 297 405 0.00013199999 1e-6 298 405 0.0028372998 1e-6 299 405 0.0056086965 1e-6 305 405 6.5999993e-05 1e-6 307 405 8.7999986e-05 1e-6 308 405 6.5999993e-05 1e-6 312 405 0.0089079998 1e-6 313 405 4.3999986e-05 1e-6 315 405 0.0030792998 1e-6 317 405 4.3999986e-05 1e-6 318 405 2.1999993e-05 1e-6 319 405 0.0031893 1e-6 320 405 0.0049268976 1e-6 321 405 0.00096779992 1e-6 322 405 0.0012096998 1e-6 324 405 0.00092379982 1e-6 326 405 0.0020234999 1e-6 327 405 0.00028589997 1e-6 328 405 0.00024189999 1e-6 329 405 4.3999986e-05 1e-6 331 405 2.1999993e-05 1e-6 335 405 2.1999993e-05 1e-6 338 405 0.00087979995 1e-6 339 405 0.0002638998 1e-6 340 405 0.0090838969 1e-6 341 405 0.00019799999 1e-6 343 405 2.1999993e-05 1e-6 350 405 0.0016496 1e-6 351 405 0.0031893 1e-6 352 405 2.1999993e-05 1e-6 354 405 0.0018916 1e-6 356 405 0.00041789981 1e-6 357 405 6.5999993e-05 1e-6 358 405 0.016672198 1e-6 359 405 0.0013636998 1e-6 366 405 6.5999993e-05 1e-6 369 405 0.00052789995 1e-6 371 405 2.1999993e-05 1e-6 372 405 0.0011876998 1e-6 373 405 0.00017599999 1e-6 380 405 2.1999993e-05 1e-6 384 405 6.5999993e-05 1e-6 386 405 8.7999986e-05 1e-6 387 405 0.00024189999 1e-6 390 405 0.0340482 1e-6 391 405 4.3999986e-05 1e-6 392 405 0.019817397 1e-6 393 405 0.017002098 1e-6 396 405 0.00052789995 1e-6 397 405 0.0013196999 1e-6 398 405 4.3999986e-05 1e-6 401 405 2.1999993e-05 1e-6 402 405 0.00021989999 1e-6 403 405 0.0019574999 1e-6 404 405 0.020345297 1e-6 405 405 0.099087179 1e-6 408 405 0.00010999999 1e-6 413 405 0.0025293999 1e-6 414 405 0.00079179998 1e-6 416 405 2.1999993e-05 1e-6 417 405 0.00037389994 1e-6 419 405 0.00043989997 1e-6 420 405 0.0010777998 1e-6 421 405 0.00013199999 1e-6 422 405 0.00063789985 1e-6 423 405 6.5999993e-05 1e-6 425 405 4.3999986e-05 1e-6 430 405 0.00015399999 1e-6 431 405 6.5999993e-05 1e-6 432 405 2.1999993e-05 1e-6 433 405 4.3999986e-05 1e-6 434 405 8.7999986e-05 1e-6 442 405 4.3999986e-05 1e-6 443 405 0.0011437 1e-6 444 405 0.0049928986 1e-6 445 405 0.0036291999 1e-6 446 405 0.00021989999 1e-6 447 405 0.0080940984 1e-6 448 405 2.1999993e-05 1e-6 449 405 4.3999986e-05 1e-6 450 405 0.0053667985 1e-6 452 405 0.0065764971 1e-6 453 405 0.0012316999 1e-6 454 405 0.00039589987 1e-6 455 405 0.017529998 1e-6 456 405 0.0020015 1e-6 457 405 0.0026613998 1e-6 458 405 0.00094579998 1e-6 459 405 0.0015615998 1e-6 460 405 0.00092379982 1e-6 463 405 0.0082700998 1e-6 464 405 0.0095897987 1e-6 465 405 0.0032332998 1e-6 467 405 0.020367298 1e-6 468 405 0.0023094998 1e-6 469 405 0.012405097 1e-6 470 405 0.027471699 1e-6 471 405 0.0023534999 1e-6 473 405 0.00061589992 1e-6 477 405 0.00013199999 1e-6 478 405 0.0015615998 1e-6 479 405 0.00017599999 1e-6 483 405 0.0023094998 1e-6 489 405 2.1999993e-05 1e-6 490 405 0.0021114999 1e-6 491 405 0.00015399999 1e-6 9 406 3.1999996e-05 1e-6 16 406 3.1999996e-05 1e-6 18 406 0.0001602 1e-6 22 406 6.4099993e-05 1e-6 24 406 9.609999e-05 1e-6 60 406 0.0027557998 1e-6 76 406 0.00025639986 1e-6 79 406 3.1999996e-05 1e-6 82 406 3.1999996e-05 1e-6 83 406 3.1999996e-05 1e-6 84 406 3.1999996e-05 1e-6 108 406 6.4099993e-05 1e-6 113 406 9.609999e-05 1e-6 114 406 0.00022429999 1e-6 126 406 9.609999e-05 1e-6 127 406 3.1999996e-05 1e-6 131 406 0.0012496999 1e-6 150 406 0.0010253999 1e-6 154 406 0.00092929997 1e-6 160 406 0.0023071999 1e-6 161 406 0.0014419998 1e-6 163 406 0.00022429999 1e-6 165 406 0.00089719985 1e-6 169 406 9.609999e-05 1e-6 171 406 0.0031402998 1e-6 177 406 0.005543597 1e-6 178 406 0.0015701998 1e-6 180 406 0.0049026981 1e-6 183 406 0.00086519984 1e-6 185 406 0.00064089987 1e-6 189 406 9.609999e-05 1e-6 190 406 0.0001602 1e-6 194 406 0.00012819999 1e-6 200 406 6.4099993e-05 1e-6 201 406 6.4099993e-05 1e-6 203 406 0.00012819999 1e-6 204 406 6.4099993e-05 1e-6 206 406 0.00070499978 1e-6 207 406 6.4099993e-05 1e-6 214 406 0.00035249977 1e-6 218 406 3.1999996e-05 1e-6 219 406 3.1999996e-05 1e-6 223 406 0.00012819999 1e-6 224 406 0.0010894998 1e-6 233 406 0.010926999 1e-6 234 406 0.0058319978 1e-6 237 406 6.4099993e-05 1e-6 240 406 3.1999996e-05 1e-6 241 406 0.0010574998 1e-6 242 406 0.00048069982 1e-6 248 406 3.1999996e-05 1e-6 250 406 3.1999996e-05 1e-6 252 406 0.0011855999 1e-6 254 406 0.00041659991 1e-6 256 406 0.00038449978 1e-6 259 406 0.00019229999 1e-6 263 406 3.1999996e-05 1e-6 270 406 3.1999996e-05 1e-6 271 406 0.00070499978 1e-6 272 406 0.00092929997 1e-6 274 406 0.0015701998 1e-6 276 406 0.00083309994 1e-6 277 406 0.090139985 1e-6 279 406 3.1999996e-05 1e-6 282 406 0.0017623999 1e-6 283 406 0.0014739998 1e-6 284 406 0.00012819999 1e-6 289 406 0.0029801 1e-6 290 406 0.0044220984 1e-6 292 406 0.0045181997 1e-6 293 406 0.0024353999 1e-6 295 406 0.0052231997 1e-6 296 406 6.4099993e-05 1e-6 297 406 3.1999996e-05 1e-6 298 406 3.1999996e-05 1e-6 299 406 3.1999996e-05 1e-6 302 406 0.00048069982 1e-6 303 406 0.00089719985 1e-6 304 406 0.00076909992 1e-6 305 406 0.019130297 1e-6 306 406 0.0049989 1e-6 307 406 0.0083955973 1e-6 308 406 0.0028518999 1e-6 309 406 0.0048065968 1e-6 312 406 0.0049347989 1e-6 315 406 6.4099993e-05 1e-6 319 406 3.1999996e-05 1e-6 321 406 3.1999996e-05 1e-6 322 406 9.609999e-05 1e-6 323 406 0.00028839987 1e-6 324 406 0.010382298 1e-6 326 406 0.0048065968 1e-6 327 406 0.018425398 1e-6 328 406 0.012689497 1e-6 331 406 0.010574598 1e-6 334 406 0.0014419998 1e-6 335 406 0.00044859992 1e-6 336 406 0.0033004999 1e-6 337 406 3.1999996e-05 1e-6 338 406 0.00035249977 1e-6 339 406 0.0014098999 1e-6 340 406 0.0010894998 1e-6 341 406 0.00086519984 1e-6 349 406 0.0022751 1e-6 350 406 0.0056076981 1e-6 351 406 0.0024353999 1e-6 352 406 0.0071778968 1e-6 354 406 0.0092928 1e-6 355 406 6.4099993e-05 1e-6 356 406 0.0027557998 1e-6 358 406 0.0052872971 1e-6 359 406 0.00012819999 1e-6 366 406 0.0046142973 1e-6 368 406 0.0017944998 1e-6 369 406 0.0015381 1e-6 370 406 0.0050308965 1e-6 371 406 0.0010253999 1e-6 372 406 0.0030120998 1e-6 373 406 0.0049026981 1e-6 374 406 0.0094209984 1e-6 384 406 9.609999e-05 1e-6 385 406 0.00038449978 1e-6 386 406 0.00035249977 1e-6 387 406 9.609999e-05 1e-6 389 406 0.0013458999 1e-6 390 406 0.021982197 1e-6 391 406 3.1999996e-05 1e-6 392 406 0.00054469984 1e-6 393 406 0.00054469984 1e-6 394 406 0.00035249977 1e-6 396 406 0.00028839987 1e-6 402 406 9.609999e-05 1e-6 404 406 0.0001602 1e-6 405 406 0.0017623999 1e-6 406 406 0.0042939 1e-6 407 406 9.609999e-05 1e-6 412 406 0.0017623999 1e-6 413 406 0.0037811999 1e-6 414 406 0.0015701998 1e-6 415 406 0.0034607998 1e-6 417 406 0.00070499978 1e-6 419 406 0.0022431 1e-6 421 406 0.00022429999 1e-6 422 406 0.00012819999 1e-6 423 406 3.1999996e-05 1e-6 425 406 3.1999996e-05 1e-6 430 406 6.4099993e-05 1e-6 431 406 3.1999996e-05 1e-6 432 406 3.1999996e-05 1e-6 433 406 6.4099993e-05 1e-6 434 406 9.609999e-05 1e-6 439 406 0.00028839987 1e-6 442 406 0.0012496999 1e-6 443 406 0.0033645998 1e-6 444 406 0.00032039988 1e-6 445 406 0.0059281997 1e-6 446 406 0.00044859992 1e-6 447 406 0.00073699979 1e-6 449 406 3.1999996e-05 1e-6 450 406 0.0044861995 1e-6 452 406 0.0065369979 1e-6 453 406 0.00054469984 1e-6 454 406 0.00076909992 1e-6 455 406 0.032204296 1e-6 456 406 0.0011855999 1e-6 457 406 0.0020828999 1e-6 458 406 0.00048069982 1e-6 459 406 0.0010894998 1e-6 460 406 0.0015381 1e-6 463 406 0.0038772998 1e-6 464 406 0.00038449978 1e-6 465 406 0.0017944998 1e-6 467 406 0.016502697 1e-6 468 406 0.0016982998 1e-6 469 406 0.0095811971 1e-6 470 406 0.010926999 1e-6 471 406 0.00051269983 1e-6 473 406 0.00022429999 1e-6 477 406 0.00019229999 1e-6 478 406 0.0018585999 1e-6 483 406 0.0013138 1e-6 489 406 6.4099993e-05 1e-6 490 406 0.00083309994 1e-6 491 406 0.0010253999 1e-6 9 407 7.9899997e-05 1e-6 18 407 0.00015979999 1e-6 60 407 0.0017579 1e-6 82 407 7.9899997e-05 1e-6 83 407 7.9899997e-05 1e-6 84 407 7.9899997e-05 1e-6 108 407 7.9899997e-05 1e-6 114 407 0.00015979999 1e-6 126 407 7.9899997e-05 1e-6 134 407 0.0022372999 1e-6 137 407 0.0070315972 1e-6 138 407 0.0043946989 1e-6 139 407 0.0073511973 1e-6 141 407 0.0084697977 1e-6 143 407 0.0011985998 1e-6 149 407 7.9899997e-05 1e-6 150 407 0.00071909977 1e-6 151 407 0.00015979999 1e-6 154 407 0.0060726963 1e-6 160 407 0.0095884986 1e-6 161 407 0.00031959987 1e-6 163 407 0.0095884986 1e-6 165 407 0.012624897 1e-6 166 407 0.0061525963 1e-6 171 407 0.010387499 1e-6 173 407 0.00015979999 1e-6 176 407 0.00015979999 1e-6 177 407 0.00015979999 1e-6 178 407 7.9899997e-05 1e-6 180 407 7.9899997e-05 1e-6 182 407 0.0035158 1e-6 189 407 7.9899997e-05 1e-6 190 407 7.9899997e-05 1e-6 191 407 7.9899997e-05 1e-6 194 407 0.00015979999 1e-6 198 407 7.9899997e-05 1e-6 200 407 7.9899997e-05 1e-6 203 407 7.9899997e-05 1e-6 204 407 7.9899997e-05 1e-6 206 407 0.00063919998 1e-6 214 407 0.00023969999 1e-6 219 407 0.00023969999 1e-6 224 407 0.028046299 1e-6 233 407 0.016220499 1e-6 234 407 0.0042348988 1e-6 237 407 7.9899997e-05 1e-6 240 407 0.0023971 1e-6 241 407 0.0065520965 1e-6 242 407 0.0019975998 1e-6 252 407 0.0350779 1e-6 270 407 0.0027965999 1e-6 272 407 0.00063919998 1e-6 274 407 7.9899997e-05 1e-6 277 407 0.0087094977 1e-6 282 407 0.00055929995 1e-6 283 407 0.0021573999 1e-6 284 407 7.9899997e-05 1e-6 289 407 0.0041549988 1e-6 290 407 0.0015980999 1e-6 292 407 0.0003994999 1e-6 293 407 0.018058296 1e-6 295 407 0.00047939993 1e-6 296 407 0.0012784998 1e-6 297 407 0.00055929995 1e-6 302 407 0.00015979999 1e-6 303 407 7.9899997e-05 1e-6 304 407 0.0091889985 1e-6 305 407 0.00023969999 1e-6 306 407 0.0013583999 1e-6 307 407 0.0034359 1e-6 308 407 0.0042348988 1e-6 309 407 7.9899997e-05 1e-6 312 407 0.0075908974 1e-6 315 407 0.0019975998 1e-6 319 407 0.0088693984 1e-6 320 407 0.0029564998 1e-6 321 407 0.0023171999 1e-6 322 407 0.0035158 1e-6 324 407 0.00015979999 1e-6 326 407 0.0119057 1e-6 327 407 0.00023969999 1e-6 328 407 0.1043548 1e-6 331 407 0.00023969999 1e-6 340 407 0.0015181999 1e-6 350 407 0.0076707974 1e-6 351 407 0.0019176998 1e-6 352 407 0.0024769998 1e-6 354 407 0.015741099 1e-6 356 407 0.0023171999 1e-6 357 407 0.0043946989 1e-6 358 407 0.0032760999 1e-6 366 407 0.0036755998 1e-6 370 407 0.00071909977 1e-6 372 407 0.0020774999 1e-6 373 407 7.9899997e-05 1e-6 374 407 7.9899997e-05 1e-6 377 407 0.00031959987 1e-6 378 407 0.0003994999 1e-6 383 407 0.00015979999 1e-6 384 407 7.9899997e-05 1e-6 385 407 7.9899997e-05 1e-6 386 407 7.9899997e-05 1e-6 387 407 7.9899997e-05 1e-6 390 407 0.00023969999 1e-6 394 407 0.00095879985 1e-6 397 407 0.0003994999 1e-6 398 407 0.0034359 1e-6 401 407 7.9899997e-05 1e-6 402 407 0.0012784998 1e-6 406 407 7.9899997e-05 1e-6 407 407 0.0178186 1e-6 410 407 7.9899997e-05 1e-6 412 407 0.0020774999 1e-6 413 407 0.00031959987 1e-6 415 407 7.9899997e-05 1e-6 417 407 0.00047939993 1e-6 419 407 0.0027166998 1e-6 421 407 0.00015979999 1e-6 422 407 0.00015979999 1e-6 423 407 7.9899997e-05 1e-6 430 407 0.00023969999 1e-6 439 407 0.00015979999 1e-6 441 407 7.9899997e-05 1e-6 443 407 0.004794199 1e-6 444 407 0.0043946989 1e-6 445 407 0.0096683986 1e-6 446 407 0.00015979999 1e-6 447 407 0.0033559999 1e-6 450 407 0.0030363998 1e-6 452 407 0.0033559999 1e-6 453 407 0.00087889982 1e-6 454 407 0.00031959987 1e-6 455 407 0.046264499 1e-6 456 407 0.00047939993 1e-6 457 407 0.0015980999 1e-6 458 407 0.00063919998 1e-6 459 407 0.0007989998 1e-6 460 407 0.0015181999 1e-6 463 407 0.012624897 1e-6 464 407 0.00055929995 1e-6 465 407 0.0011985998 1e-6 467 407 0.0097482987 1e-6 468 407 0.0167799 1e-6 469 407 0.0063123964 1e-6 470 407 0.0069516972 1e-6 471 407 0.0039951988 1e-6 473 407 0.00015979999 1e-6 477 407 7.9899997e-05 1e-6 478 407 0.0011985998 1e-6 483 407 0.00071909977 1e-6 490 407 0.00055929995 1e-6 491 407 0.00063919998 1e-6 9 408 4.0399987e-05 1e-6 18 408 0.00012109999 1e-6 22 408 0.00044409977 1e-6 60 408 0.00072669983 1e-6 82 408 4.0399987e-05 1e-6 108 408 4.0399987e-05 1e-6 114 408 8.0699989e-05 1e-6 126 408 4.0399987e-05 1e-6 130 408 4.0399987e-05 1e-6 134 408 0.0025435998 1e-6 137 408 0.00012109999 1e-6 139 408 0.0010093998 1e-6 150 408 0.00048449985 1e-6 160 408 0.0046430975 1e-6 161 408 0.0022205999 1e-6 165 408 0.00044409977 1e-6 169 408 0.00016149999 1e-6 172 408 8.0699989e-05 1e-6 181 408 4.0399987e-05 1e-6 189 408 4.0399987e-05 1e-6 190 408 8.0699989e-05 1e-6 192 408 4.0399987e-05 1e-6 194 408 4.0399987e-05 1e-6 196 408 4.0399987e-05 1e-6 198 408 4.0399987e-05 1e-6 200 408 4.0399987e-05 1e-6 203 408 4.0399987e-05 1e-6 204 408 4.0399987e-05 1e-6 206 408 0.0003229999 1e-6 207 408 4.0399987e-05 1e-6 214 408 0.0019379999 1e-6 224 408 4.0399987e-05 1e-6 233 408 0.0047641993 1e-6 234 408 0.0018975998 1e-6 237 408 4.0399987e-05 1e-6 240 408 0.0056524985 1e-6 241 408 0.00072669983 1e-6 242 408 0.0014534998 1e-6 252 408 0.0039566979 1e-6 270 408 0.00044409977 1e-6 271 408 8.0699989e-05 1e-6 272 408 0.00040369993 1e-6 277 408 0.10352069 1e-6 278 408 4.0399987e-05 1e-6 282 408 0.066779673 1e-6 283 408 0.018895298 1e-6 284 408 0.00028259982 1e-6 286 408 8.0699989e-05 1e-6 289 408 0.0041181967 1e-6 290 408 4.0399987e-05 1e-6 292 408 0.0044815987 1e-6 293 408 0.0016553998 1e-6 294 408 0.00088819978 1e-6 295 408 0.00072669983 1e-6 296 408 0.0020994998 1e-6 298 408 0.0003229999 1e-6 299 408 0.0070655979 1e-6 307 408 0.0002422 1e-6 312 408 0.0058946982 1e-6 313 408 4.0399987e-05 1e-6 315 408 0.00048449985 1e-6 318 408 0.00012109999 1e-6 319 408 0.0061369985 1e-6 320 408 0.00020189999 1e-6 321 408 0.0015341998 1e-6 322 408 0.0028665999 1e-6 323 408 0.0039970987 1e-6 324 408 0.00016149999 1e-6 326 408 0.0073481984 1e-6 327 408 4.0399987e-05 1e-6 328 408 0.022932798 1e-6 331 408 0.00012109999 1e-6 332 408 0.00012109999 1e-6 338 408 0.00048449985 1e-6 339 408 0.0006459998 1e-6 340 408 0.0054101981 1e-6 341 408 8.0699989e-05 1e-6 343 408 4.0399987e-05 1e-6 347 408 4.0399987e-05 1e-6 349 408 0.0002422 1e-6 350 408 0.0035932998 1e-6 351 408 0.015301999 1e-6 352 408 0.0010497 1e-6 353 408 4.0399987e-05 1e-6 354 408 0.011627898 1e-6 355 408 4.0399987e-05 1e-6 356 408 0.00040369993 1e-6 357 408 8.0699989e-05 1e-6 358 408 0.0057331994 1e-6 359 408 4.0399987e-05 1e-6 366 408 0.0034721999 1e-6 371 408 0.014736798 1e-6 372 408 0.0031895998 1e-6 373 408 0.00016149999 1e-6 374 408 0.00016149999 1e-6 375 408 4.0399987e-05 1e-6 386 408 0.00040369993 1e-6 387 408 4.0399987e-05 1e-6 390 408 0.00044409977 1e-6 392 408 0.00028259982 1e-6 393 408 0.00036339997 1e-6 394 408 0.00036339997 1e-6 397 408 8.0699989e-05 1e-6 398 408 4.0399987e-05 1e-6 402 408 0.0002422 1e-6 404 408 0.0020994998 1e-6 405 408 0.0017764999 1e-6 408 408 0.13654715 1e-6 412 408 0.0027858999 1e-6 414 408 8.0699989e-05 1e-6 417 408 0.0003229999 1e-6 421 408 8.0699989e-05 1e-6 422 408 4.0399987e-05 1e-6 430 408 4.0399987e-05 1e-6 433 408 4.0399987e-05 1e-6 434 408 4.0399987e-05 1e-6 443 408 0.0060157999 1e-6 444 408 0.00080749998 1e-6 445 408 0.0055312999 1e-6 446 408 0.00044409977 1e-6 447 408 0.0018571999 1e-6 450 408 0.0020591 1e-6 452 408 0.0039162971 1e-6 453 408 0.0013323999 1e-6 454 408 0.00044409977 1e-6 455 408 0.029231299 1e-6 456 408 0.00020189999 1e-6 457 408 0.0041181967 1e-6 458 408 0.00036339997 1e-6 459 408 0.0026244 1e-6 460 408 0.00084789982 1e-6 463 408 0.005935099 1e-6 464 408 0.00036339997 1e-6 465 408 0.00072669983 1e-6 467 408 0.0075903982 1e-6 468 408 0.0018169 1e-6 469 408 0.0030280999 1e-6 470 408 0.0037145 1e-6 471 408 0.00028259982 1e-6 473 408 8.0699989e-05 1e-6 477 408 8.0699989e-05 1e-6 478 408 0.0007670999 1e-6 483 408 0.0014130999 1e-6 490 408 0.0003229999 1e-6 491 408 0.0015745999 1e-6 60 409 0.0054290965 1e-6 114 409 0.00017509999 1e-6 126 409 0.00017509999 1e-6 139 409 0.0014010998 1e-6 142 409 0.00017509999 1e-6 150 409 0.00017509999 1e-6 160 409 0.00017509999 1e-6 190 409 0.00017509999 1e-6 194 409 0.00017509999 1e-6 198 409 0.0024517998 1e-6 206 409 0.00052539981 1e-6 214 409 0.00017509999 1e-6 224 409 0.00017509999 1e-6 233 409 0.0028020998 1e-6 234 409 0.0019263998 1e-6 237 409 0.035726797 1e-6 240 409 0.0012258999 1e-6 241 409 0.0012258999 1e-6 272 409 0.0010507999 1e-6 277 409 0.062696993 1e-6 279 409 0.00017509999 1e-6 282 409 0.0054290965 1e-6 283 409 0.0099824965 1e-6 284 409 0.00070049986 1e-6 292 409 0.00017509999 1e-6 293 409 0.0017512999 1e-6 296 409 0.0082311966 1e-6 297 409 0.00017509999 1e-6 298 409 0.0010507999 1e-6 308 409 0.00017509999 1e-6 312 409 0.022591896 1e-6 313 409 0.00017509999 1e-6 315 409 0.010507897 1e-6 317 409 0.00017509999 1e-6 320 409 0.026269697 1e-6 321 409 0.0071803965 1e-6 322 409 0.0064798966 1e-6 326 409 0.0052538998 1e-6 328 409 0.0099824965 1e-6 330 409 0.012434296 1e-6 340 409 0.0036777998 1e-6 350 409 0.00017509999 1e-6 351 409 0.0036777998 1e-6 354 409 0.053415097 1e-6 356 409 0.00035029999 1e-6 357 409 0.00070049986 1e-6 358 409 0.0096321963 1e-6 372 409 0.00035029999 1e-6 385 409 0.0010507999 1e-6 386 409 0.00017509999 1e-6 395 409 0.00017509999 1e-6 397 409 0.00052539981 1e-6 398 409 0.0050787963 1e-6 402 409 0.0089316964 1e-6 409 409 0.15621716 1e-6 412 409 0.0085813999 1e-6 417 409 0.00052539981 1e-6 419 409 0.0012258999 1e-6 422 409 0.00017509999 1e-6 430 409 0.00017509999 1e-6 441 409 0.0031523998 1e-6 443 409 0.0024517998 1e-6 444 409 0.0010507999 1e-6 445 409 0.0047284998 1e-6 446 409 0.00017509999 1e-6 447 409 0.0057792999 1e-6 450 409 0.002627 1e-6 452 409 0.0036777998 1e-6 453 409 0.0017512999 1e-6 454 409 0.00052539981 1e-6 455 409 0.057267997 1e-6 456 409 0.00017509999 1e-6 457 409 0.0040279999 1e-6 458 409 0.00052539981 1e-6 459 409 0.00070049986 1e-6 460 409 0.0010507999 1e-6 463 409 0.010682996 1e-6 464 409 0.00035029999 1e-6 465 409 0.00070049986 1e-6 467 409 0.0070052966 1e-6 468 409 0.024693497 1e-6 469 409 0.0028020998 1e-6 470 409 0.0031523998 1e-6 471 409 0.00052539981 1e-6 473 409 0.00017509999 1e-6 477 409 0.00017509999 1e-6 478 409 0.0010507999 1e-6 483 409 0.00052539981 1e-6 490 409 0.00035029999 1e-6 491 409 0.00035029999 1e-6 60 410 0.00053639989 1e-6 114 410 7.6599987e-05 1e-6 130 410 7.6599987e-05 1e-6 134 410 0.0080453977 1e-6 139 410 0.0087349974 1e-6 149 410 0.0028349999 1e-6 150 410 7.6599987e-05 1e-6 151 410 0.0075089969 1e-6 154 410 0.00099609978 1e-6 156 410 0.00015319999 1e-6 160 410 0.045513798 1e-6 161 410 0.00061299978 1e-6 163 410 0.018925797 1e-6 164 410 0.0013025999 1e-6 165 410 0.0311087 1e-6 170 410 0.00061299978 1e-6 171 410 0.012642696 1e-6 173 410 0.0086582974 1e-6 176 410 0.009347897 1e-6 177 410 0.0026051998 1e-6 178 410 0.0033713998 1e-6 181 410 0.00030649989 1e-6 190 410 7.6599987e-05 1e-6 191 410 0.0055933967 1e-6 194 410 0.00015319999 1e-6 198 410 7.6599987e-05 1e-6 206 410 0.00015319999 1e-6 214 410 0.00015319999 1e-6 224 410 0.00045969989 1e-6 233 410 0.0026051998 1e-6 234 410 0.0012259998 1e-6 237 410 0.0064362995 1e-6 240 410 0.0022986999 1e-6 241 410 0.015630998 1e-6 252 410 0.0034479999 1e-6 274 410 0.0051336996 1e-6 277 410 0.029422998 1e-6 282 410 0.0025284998 1e-6 283 410 7.6599987e-05 1e-6 289 410 0.0060531981 1e-6 292 410 0.0016856999 1e-6 293 410 0.027737297 1e-6 295 410 0.0058998987 1e-6 296 410 0.00030649989 1e-6 302 410 0.010880399 1e-6 303 410 0.0036778999 1e-6 304 410 0.017852999 1e-6 305 410 7.6599987e-05 1e-6 306 410 0.061910998 1e-6 307 410 0.0012259998 1e-6 308 410 0.034096997 1e-6 312 410 0.006512899 1e-6 313 410 0.00045969989 1e-6 315 410 0.00030649989 1e-6 319 410 0.0064362995 1e-6 320 410 0.0019155999 1e-6 321 410 0.0033713998 1e-6 322 410 7.6599987e-05 1e-6 324 410 7.6599987e-05 1e-6 326 410 0.0028349999 1e-6 327 410 7.6599987e-05 1e-6 328 410 0.0008427999 1e-6 338 410 7.6599987e-05 1e-6 340 410 7.6599987e-05 1e-6 351 410 7.6599987e-05 1e-6 354 410 7.6599987e-05 1e-6 356 410 7.6599987e-05 1e-6 358 410 0.00015319999 1e-6 366 410 0.0046739988 1e-6 372 410 7.6599987e-05 1e-6 377 410 0.017929699 1e-6 378 410 0.024595797 1e-6 383 410 0.0081219971 1e-6 384 410 0.0036012998 1e-6 385 410 0.0047505982 1e-6 386 410 0.0031414998 1e-6 387 410 0.0009194999 1e-6 390 410 7.6599987e-05 1e-6 397 410 0.00022989999 1e-6 399 410 0.00030649989 1e-6 400 410 0.00022989999 1e-6 401 410 0.0067427978 1e-6 402 410 0.071105659 1e-6 407 410 7.6599987e-05 1e-6 410 410 0.0046739988 1e-6 412 410 0.0023752998 1e-6 417 410 0.00045969989 1e-6 421 410 7.6599987e-05 1e-6 422 410 0.00015319999 1e-6 439 410 0.0078920983 1e-6 441 410 0.0022986999 1e-6 443 410 0.012412798 1e-6 444 410 0.0024518999 1e-6 445 410 0.011110298 1e-6 446 410 0.00038309977 1e-6 447 410 0.0032180999 1e-6 450 410 0.0019155999 1e-6 452 410 0.0024518999 1e-6 453 410 0.0012259998 1e-6 454 410 0.00022989999 1e-6 455 410 0.068883598 1e-6 456 410 0.00015319999 1e-6 457 410 0.0040609986 1e-6 458 410 0.00061299978 1e-6 459 410 0.00061299978 1e-6 460 410 0.00099609978 1e-6 463 410 0.0086582974 1e-6 464 410 0.00076619978 1e-6 465 410 0.0006895999 1e-6 467 410 0.0045972988 1e-6 468 410 0.0037544998 1e-6 469 410 0.0009194999 1e-6 470 410 0.0009194999 1e-6 471 410 0.0013025999 1e-6 477 410 7.6599987e-05 1e-6 478 410 0.0009194999 1e-6 483 410 0.00015319999 1e-6 490 410 0.00015319999 1e-6 491 410 0.00053639989 1e-6 9 411 3.119999e-05 1e-6 18 411 6.2299994e-05 1e-6 60 411 0.00052969996 1e-6 82 411 3.119999e-05 1e-6 83 411 3.119999e-05 1e-6 84 411 3.119999e-05 1e-6 108 411 3.119999e-05 1e-6 113 411 6.2299994e-05 1e-6 114 411 9.3499999e-05 1e-6 126 411 3.119999e-05 1e-6 134 411 0.026487198 1e-6 135 411 0.00037389994 1e-6 139 411 0.008569397 1e-6 149 411 0.0026798998 1e-6 150 411 0.00049859984 1e-6 151 411 0.0019319998 1e-6 159 411 0.00028049992 1e-6 160 411 0.065937459 1e-6 161 411 0.0013398998 1e-6 163 411 0.015829999 1e-6 164 411 0.013087798 1e-6 165 411 0.041787397 1e-6 170 411 0.0044248998 1e-6 171 411 0.0099092983 1e-6 173 411 0.0086004995 1e-6 176 411 0.0064191967 1e-6 177 411 0.0027109999 1e-6 178 411 0.0031784999 1e-6 182 411 0.0029292 1e-6 183 411 0.00012459999 1e-6 184 411 0.0017761998 1e-6 190 411 6.2299994e-05 1e-6 191 411 0.0012775999 1e-6 192 411 0.00040509994 1e-6 194 411 3.119999e-05 1e-6 196 411 3.119999e-05 1e-6 200 411 3.119999e-05 1e-6 203 411 3.119999e-05 1e-6 204 411 3.119999e-05 1e-6 206 411 6.2299994e-05 1e-6 207 411 3.119999e-05 1e-6 214 411 0.00031159981 1e-6 219 411 0.00056089996 1e-6 223 411 0.00024929992 1e-6 229 411 3.119999e-05 1e-6 230 411 0.00071669999 1e-6 233 411 0.0047053993 1e-6 234 411 0.00087249978 1e-6 236 411 0.0025240998 1e-6 237 411 0.0096288994 1e-6 240 411 0.00059209997 1e-6 241 411 0.008507099 1e-6 252 411 0.00049859984 1e-6 259 411 0.0020877998 1e-6 268 411 0.0059517995 1e-6 270 411 9.3499999e-05 1e-6 271 411 0.0023993999 1e-6 272 411 0.00040509994 1e-6 274 411 0.0032718999 1e-6 277 411 0.025832798 1e-6 279 411 0.0020877998 1e-6 282 411 0.0017761998 1e-6 283 411 3.119999e-05 1e-6 285 411 6.2299994e-05 1e-6 287 411 0.00040509994 1e-6 289 411 0.0030226998 1e-6 292 411 0.0025863999 1e-6 293 411 0.034682598 1e-6 294 411 0.00012459999 1e-6 295 411 0.0073229 1e-6 296 411 0.0014334 1e-6 302 411 0.0097534992 1e-6 303 411 0.010220896 1e-6 304 411 9.3499999e-05 1e-6 306 411 0.014116097 1e-6 308 411 0.0037393998 1e-6 312 411 0.0017138999 1e-6 317 411 9.3499999e-05 1e-6 318 411 3.119999e-05 1e-6 319 411 0.0051415972 1e-6 320 411 0.0014646 1e-6 321 411 0.00090369978 1e-6 324 411 0.00084139989 1e-6 326 411 0.0012775999 1e-6 337 411 3.119999e-05 1e-6 339 411 0.00015579999 1e-6 340 411 9.3499999e-05 1e-6 341 411 0.0015892 1e-6 343 411 3.119999e-05 1e-6 346 411 0.00084139989 1e-6 350 411 0.00056089996 1e-6 356 411 9.3499999e-05 1e-6 358 411 0.00015579999 1e-6 366 411 0.085382164 1e-6 369 411 0.0018384999 1e-6 377 411 0.013710998 1e-6 378 411 0.020410698 1e-6 379 411 0.0013398998 1e-6 380 411 0.0017449998 1e-6 383 411 0.0091613978 1e-6 384 411 6.2299994e-05 1e-6 385 411 0.0065438971 1e-6 386 411 0.0032408 1e-6 387 411 3.119999e-05 1e-6 398 411 0.00062319986 1e-6 401 411 9.3499999e-05 1e-6 402 411 0.049079198 1e-6 410 411 3.119999e-05 1e-6 411 411 0.0019942999 1e-6 412 411 0.0017138999 1e-6 415 411 0.00024929992 1e-6 417 411 0.00034279982 1e-6 419 411 0.00084139989 1e-6 421 411 0.00015579999 1e-6 422 411 3.119999e-05 1e-6 423 411 3.119999e-05 1e-6 430 411 3.119999e-05 1e-6 431 411 3.119999e-05 1e-6 433 411 3.119999e-05 1e-6 434 411 3.119999e-05 1e-6 438 411 6.2299994e-05 1e-6 439 411 0.0010282998 1e-6 441 411 0.00099719991 1e-6 443 411 0.014583498 1e-6 444 411 0.0010905999 1e-6 445 411 0.010439098 1e-6 446 411 0.00068559987 1e-6 447 411 0.0015580999 1e-6 450 411 0.0016204 1e-6 452 411 0.0016204 1e-6 453 411 0.00099719991 1e-6 454 411 0.00021809999 1e-6 455 411 0.067994058 1e-6 456 411 0.00024929992 1e-6 457 411 0.0042378977 1e-6 458 411 0.00028049992 1e-6 459 411 0.00059209997 1e-6 460 411 0.00046739983 1e-6 463 411 0.0036146999 1e-6 464 411 0.0019007998 1e-6 465 411 0.00059209997 1e-6 467 411 0.0033030999 1e-6 468 411 0.0029602998 1e-6 469 411 0.0027733999 1e-6 470 411 0.003085 1e-6 471 411 0.00087249978 1e-6 473 411 6.2299994e-05 1e-6 478 411 0.00074789999 1e-6 483 411 0.00021809999 1e-6 489 411 3.119999e-05 1e-6 490 411 0.00024929992 1e-6 491 411 9.3499999e-05 1e-6 60 412 0.0007540998 1e-6 114 412 0.0001257 1e-6 126 412 0.0001257 1e-6 130 412 0.0007540998 1e-6 131 412 0.0001257 1e-6 132 412 0.0001257 1e-6 134 412 0.00037699984 1e-6 137 412 0.0001257 1e-6 138 412 0.0001257 1e-6 139 412 0.0012567998 1e-6 141 412 0.0001257 1e-6 149 412 0.0001257 1e-6 151 412 0.00037699984 1e-6 152 412 0.0027649 1e-6 154 412 0.0001257 1e-6 158 412 0.0001257 1e-6 160 412 0.0080431998 1e-6 161 412 0.0001257 1e-6 163 412 0.0012567998 1e-6 164 412 0.0001257 1e-6 165 412 0.0030161999 1e-6 166 412 0.0001257 1e-6 171 412 0.011562098 1e-6 173 412 0.00050269999 1e-6 176 412 0.00050269999 1e-6 177 412 0.0011310999 1e-6 178 412 0.0018850998 1e-6 182 412 0.0001257 1e-6 188 412 0.0001257 1e-6 190 412 0.0001257 1e-6 191 412 0.0016337999 1e-6 194 412 0.0001257 1e-6 198 412 0.0012567998 1e-6 206 412 0.00037699984 1e-6 214 412 0.0001257 1e-6 224 412 0.0011310999 1e-6 233 412 0.0054039992 1e-6 234 412 0.0018850998 1e-6 237 412 0.033052698 1e-6 240 412 0.0021364999 1e-6 241 412 0.0090485997 1e-6 242 412 0.0007540998 1e-6 252 412 0.00087969983 1e-6 274 412 0.00025139982 1e-6 277 412 0.12379038 1e-6 282 412 0.0026391998 1e-6 283 412 0.0036445998 1e-6 284 412 0.0006283999 1e-6 285 412 0.0001257 1e-6 289 412 0.0012567998 1e-6 292 412 0.0001257 1e-6 293 412 0.035440497 1e-6 295 412 0.00037699984 1e-6 296 412 0.0015081 1e-6 297 412 0.00037699984 1e-6 298 412 0.0023877998 1e-6 299 412 0.0001257 1e-6 302 412 0.0006283999 1e-6 303 412 0.0020107999 1e-6 304 412 0.0036445998 1e-6 306 412 0.0064094998 1e-6 307 412 0.00025139982 1e-6 308 412 0.018599998 1e-6 312 412 0.0086715966 1e-6 313 412 0.0001257 1e-6 315 412 0.013698597 1e-6 317 412 0.00050269999 1e-6 319 412 0.0006283999 1e-6 320 412 0.0042729974 1e-6 321 412 0.0062837973 1e-6 322 412 0.0090485997 1e-6 326 412 0.013949998 1e-6 328 412 0.047756698 1e-6 329 412 0.00087969983 1e-6 330 412 0.0033932 1e-6 337 412 0.00025139982 1e-6 338 412 0.0001257 1e-6 340 412 0.0031418998 1e-6 350 412 0.00087969983 1e-6 351 412 0.0059066974 1e-6 354 412 0.0057810992 1e-6 356 412 0.0001257 1e-6 357 412 0.00037699984 1e-6 358 412 0.0027649 1e-6 366 412 0.00037699984 1e-6 372 412 0.0012567998 1e-6 377 412 0.0035188999 1e-6 378 412 0.0037703 1e-6 383 412 0.00050269999 1e-6 384 412 0.0007540998 1e-6 385 412 0.0011310999 1e-6 386 412 0.0030161999 1e-6 393 412 0.0028904998 1e-6 395 412 0.00025139982 1e-6 397 412 0.00037699984 1e-6 398 412 0.00037699984 1e-6 399 412 0.0001257 1e-6 401 412 0.00050269999 1e-6 402 412 0.068744481 1e-6 407 412 0.00037699984 1e-6 408 412 0.0001257 1e-6 409 412 0.0090485997 1e-6 410 412 0.00025139982 1e-6 412 412 0.030664798 1e-6 417 412 0.00025139982 1e-6 419 412 0.0001257 1e-6 421 412 0.00025139982 1e-6 428 412 0.00037699984 1e-6 430 412 0.00025139982 1e-6 437 412 0.0001257 1e-6 439 412 0.0016337999 1e-6 441 412 0.00037699984 1e-6 442 412 0.0001257 1e-6 443 412 0.0072891973 1e-6 444 412 0.00050269999 1e-6 445 412 0.0082945973 1e-6 446 412 0.0001257 1e-6 447 412 0.0015081 1e-6 450 412 0.0026391998 1e-6 452 412 0.0032676 1e-6 453 412 0.0017594998 1e-6 454 412 0.00025139982 1e-6 455 412 0.06736207 1e-6 457 412 0.004524298 1e-6 458 412 0.0007540998 1e-6 459 412 0.00050269999 1e-6 460 412 0.0007540998 1e-6 463 412 0.0064094998 1e-6 464 412 0.00025139982 1e-6 465 412 0.0006283999 1e-6 467 412 0.0071634986 1e-6 468 412 0.0060323998 1e-6 469 412 0.0031418998 1e-6 470 412 0.0035188999 1e-6 471 412 0.0006283999 1e-6 473 412 0.0001257 1e-6 477 412 0.0001257 1e-6 478 412 0.0007540998 1e-6 483 412 0.00037699984 1e-6 490 412 0.00025139982 1e-6 491 412 0.0016337999 1e-6 9 413 8.6699991e-05 1e-6 18 413 0.0001733 1e-6 60 413 0.0027731999 1e-6 77 413 0.00034669996 1e-6 82 413 8.6699991e-05 1e-6 83 413 8.6699991e-05 1e-6 84 413 8.6699991e-05 1e-6 108 413 8.6699991e-05 1e-6 113 413 0.0001733 1e-6 114 413 0.00025999988 1e-6 126 413 8.6699991e-05 1e-6 130 413 8.6699991e-05 1e-6 150 413 0.0001733 1e-6 156 413 8.6699991e-05 1e-6 160 413 0.0013865998 1e-6 161 413 8.6699991e-05 1e-6 165 413 0.0064996965 1e-6 171 413 0.00069329981 1e-6 172 413 8.6699991e-05 1e-6 181 413 8.6699991e-05 1e-6 189 413 0.0001733 1e-6 190 413 8.6699991e-05 1e-6 192 413 0.0001733 1e-6 194 413 8.6699991e-05 1e-6 196 413 8.6699991e-05 1e-6 198 413 0.0025998999 1e-6 200 413 8.6699991e-05 1e-6 203 413 8.6699991e-05 1e-6 204 413 0.0001733 1e-6 206 413 0.00051999977 1e-6 207 413 8.6699991e-05 1e-6 214 413 0.00077999989 1e-6 223 413 8.6699991e-05 1e-6 224 413 0.0018198998 1e-6 228 413 0.00086659985 1e-6 233 413 0.00077999989 1e-6 234 413 0.0044197999 1e-6 237 413 0.00051999977 1e-6 240 413 0.0042464994 1e-6 241 413 0.012306098 1e-6 252 413 0.0037264999 1e-6 253 413 0.00034669996 1e-6 270 413 8.6699991e-05 1e-6 277 413 0.013952699 1e-6 279 413 8.6699991e-05 1e-6 282 413 0.0050263964 1e-6 283 413 0.00086659985 1e-6 284 413 0.00060659996 1e-6 285 413 8.6699991e-05 1e-6 286 413 0.00025999988 1e-6 290 413 0.00034669996 1e-6 292 413 0.0021666 1e-6 293 413 0.0045930967 1e-6 294 413 0.00069329981 1e-6 295 413 0.0021666 1e-6 296 413 0.0042464994 1e-6 297 413 0.0012132998 1e-6 298 413 0.00060659996 1e-6 299 413 0.00051999977 1e-6 300 413 8.6699991e-05 1e-6 305 413 8.6699991e-05 1e-6 308 413 0.011179499 1e-6 312 413 0.010139499 1e-6 315 413 0.006672997 1e-6 317 413 0.00025999988 1e-6 318 413 0.00060659996 1e-6 319 413 0.00034669996 1e-6 320 413 0.0040730983 1e-6 321 413 0.00025999988 1e-6 322 413 0.0054596998 1e-6 325 413 8.6699991e-05 1e-6 326 413 0.006672997 1e-6 328 413 0.00025999988 1e-6 340 413 0.0099661984 1e-6 341 413 8.6699991e-05 1e-6 349 413 8.6699991e-05 1e-6 350 413 8.6699991e-05 1e-6 351 413 0.0030331998 1e-6 353 413 0.0025998999 1e-6 354 413 0.00025999988 1e-6 358 413 0.011959396 1e-6 359 413 0.00043329992 1e-6 369 413 0.012219399 1e-6 370 413 0.0001733 1e-6 371 413 0.0085795969 1e-6 372 413 0.0061529987 1e-6 385 413 0.00069329981 1e-6 386 413 0.007886298 1e-6 387 413 0.00025999988 1e-6 390 413 0.0077995993 1e-6 391 413 0.0015598999 1e-6 392 413 0.020625699 1e-6 393 413 0.041251399 1e-6 396 413 0.0033797999 1e-6 397 413 0.0001733 1e-6 402 413 0.00025999988 1e-6 403 413 0.0001733 1e-6 404 413 0.0012132998 1e-6 405 413 0.0061529987 1e-6 408 413 0.0011266 1e-6 413 413 0.016119197 1e-6 414 413 0.00025999988 1e-6 417 413 0.00034669996 1e-6 419 413 0.011006199 1e-6 420 413 0.00095329992 1e-6 421 413 8.6699991e-05 1e-6 422 413 0.0032931999 1e-6 423 413 8.6699991e-05 1e-6 424 413 8.6699991e-05 1e-6 430 413 8.6699991e-05 1e-6 431 413 8.6699991e-05 1e-6 433 413 8.6699991e-05 1e-6 434 413 8.6699991e-05 1e-6 435 413 8.6699991e-05 1e-6 438 413 0.0030331998 1e-6 443 413 0.0012998998 1e-6 444 413 0.0019931998 1e-6 445 413 0.0060663968 1e-6 446 413 8.6699991e-05 1e-6 447 413 0.0048530996 1e-6 448 413 8.6699991e-05 1e-6 450 413 0.0065863989 1e-6 452 413 0.0063263997 1e-6 453 413 0.0012998998 1e-6 454 413 0.00043329992 1e-6 455 413 0.025305498 1e-6 456 413 0.0012132998 1e-6 457 413 0.0032064999 1e-6 458 413 0.0011266 1e-6 459 413 0.0036397998 1e-6 460 413 0.0014732999 1e-6 463 413 0.018805798 1e-6 464 413 0.0018198998 1e-6 465 413 0.0025131998 1e-6 467 413 0.017332498 1e-6 468 413 0.0058930963 1e-6 469 413 0.010486197 1e-6 470 413 0.013086099 1e-6 471 413 0.0038131999 1e-6 472 413 0.0016466 1e-6 473 413 0.0001733 1e-6 477 413 8.6699991e-05 1e-6 478 413 0.0017332998 1e-6 483 413 0.0027731999 1e-6 489 413 0.0001733 1e-6 490 413 0.0012998998 1e-6 491 413 0.0025998999 1e-6 9 414 5.6499994e-05 1e-6 18 414 0.00011299999 1e-6 60 414 0.0029368999 1e-6 77 414 0.0003388999 1e-6 82 414 0.00016939999 1e-6 83 414 5.6499994e-05 1e-6 84 414 5.6499994e-05 1e-6 108 414 0.00011299999 1e-6 113 414 0.00011299999 1e-6 114 414 0.00028239982 1e-6 126 414 0.00022589999 1e-6 127 414 5.6499994e-05 1e-6 130 414 0.00011299999 1e-6 131 414 0.00011299999 1e-6 138 414 5.6499994e-05 1e-6 139 414 5.6499994e-05 1e-6 142 414 5.6499994e-05 1e-6 150 414 0.00073419977 1e-6 160 414 0.001186 1e-6 165 414 0.00022589999 1e-6 172 414 5.6499994e-05 1e-6 187 414 0.00011299999 1e-6 189 414 0.00022589999 1e-6 190 414 0.00011299999 1e-6 194 414 0.00022589999 1e-6 197 414 5.6499994e-05 1e-6 198 414 0.0045181997 1e-6 200 414 0.00011299999 1e-6 201 414 5.6499994e-05 1e-6 203 414 0.00011299999 1e-6 204 414 0.0030497999 1e-6 206 414 0.00028239982 1e-6 207 414 5.6499994e-05 1e-6 214 414 0.00045179995 1e-6 220 414 5.6499994e-05 1e-6 223 414 0.00011299999 1e-6 224 414 0.0057607964 1e-6 233 414 0.00011299999 1e-6 234 414 0.0051394999 1e-6 237 414 0.00056479988 1e-6 240 414 0.0028239 1e-6 241 414 0.0076244995 1e-6 242 414 0.00011299999 1e-6 252 414 0.0055347979 1e-6 253 414 5.6499994e-05 1e-6 270 414 0.00011299999 1e-6 271 414 0.00028239982 1e-6 272 414 0.00011299999 1e-6 277 414 0.018637698 1e-6 282 414 0.010787297 1e-6 283 414 0.0012424998 1e-6 284 414 0.0005082998 1e-6 285 414 0.00022589999 1e-6 286 414 0.00056479988 1e-6 289 414 0.00011299999 1e-6 290 414 0.00039529987 1e-6 292 414 0.0085846968 1e-6 293 414 0.0031627999 1e-6 294 414 0.0045181997 1e-6 295 414 0.0027673999 1e-6 296 414 0.012029797 1e-6 297 414 0.011408597 1e-6 298 414 0.0022025998 1e-6 299 414 5.6499994e-05 1e-6 300 414 5.6499994e-05 1e-6 307 414 0.00022589999 1e-6 308 414 0.0016943 1e-6 312 414 0.012820497 1e-6 313 414 0.00039529987 1e-6 315 414 0.0081327967 1e-6 317 414 5.6499994e-05 1e-6 318 414 5.6499994e-05 1e-6 319 414 5.6499994e-05 1e-6 320 414 0.0068337992 1e-6 321 414 0.00016939999 1e-6 322 414 0.0053088963 1e-6 324 414 0.00039529987 1e-6 325 414 0.00011299999 1e-6 326 414 0.0056477971 1e-6 328 414 5.6499994e-05 1e-6 339 414 5.6499994e-05 1e-6 340 414 0.0048570968 1e-6 341 414 5.6499994e-05 1e-6 343 414 0.00016939999 1e-6 344 414 5.6499994e-05 1e-6 348 414 5.6499994e-05 1e-6 349 414 0.00016939999 1e-6 350 414 0.00016939999 1e-6 351 414 0.0011296 1e-6 353 414 0.00011299999 1e-6 354 414 0.00079069985 1e-6 356 414 5.6499994e-05 1e-6 357 414 0.00022589999 1e-6 358 414 0.012538098 1e-6 359 414 0.0019202998 1e-6 369 414 0.025923397 1e-6 370 414 0.002598 1e-6 371 414 0.0059301965 1e-6 372 414 0.0081892982 1e-6 373 414 0.0018072999 1e-6 376 414 0.00067769992 1e-6 384 414 5.6499994e-05 1e-6 386 414 0.0081892982 1e-6 387 414 0.00011299999 1e-6 389 414 0.00011299999 1e-6 390 414 0.0010730999 1e-6 391 414 0.0014119998 1e-6 392 414 0.0075115971 1e-6 393 414 0.030215699 1e-6 394 414 5.6499994e-05 1e-6 395 414 0.00062129996 1e-6 396 414 0.00096009998 1e-6 397 414 0.00022589999 1e-6 402 414 0.0020897 1e-6 404 414 0.00016939999 1e-6 405 414 0.0003388999 1e-6 413 414 0.0027673999 1e-6 414 414 0.0079633966 1e-6 415 414 0.00011299999 1e-6 416 414 5.6499994e-05 1e-6 417 414 0.00056479988 1e-6 419 414 0.0024285999 1e-6 420 414 0.00067769992 1e-6 421 414 5.6499994e-05 1e-6 422 414 0.0022590999 1e-6 423 414 5.6499994e-05 1e-6 424 414 5.6499994e-05 1e-6 425 414 5.6499994e-05 1e-6 430 414 0.00011299999 1e-6 431 414 5.6499994e-05 1e-6 433 414 5.6499994e-05 1e-6 434 414 5.6499994e-05 1e-6 435 414 5.6499994e-05 1e-6 438 414 5.6499994e-05 1e-6 441 414 5.6499994e-05 1e-6 442 414 0.00011299999 1e-6 443 414 0.0012989999 1e-6 444 414 0.00073419977 1e-6 445 414 0.0059301965 1e-6 446 414 0.00011299999 1e-6 447 414 0.0018072999 1e-6 448 414 5.6499994e-05 1e-6 450 414 0.0070032999 1e-6 452 414 0.0058736987 1e-6 453 414 0.0011296 1e-6 454 414 0.0003388999 1e-6 455 414 0.0194849 1e-6 456 414 0.0010165998 1e-6 457 414 0.0032756999 1e-6 458 414 0.0016943 1e-6 459 414 0.0012989999 1e-6 460 414 0.0014683998 1e-6 463 414 0.011126198 1e-6 464 414 0.0009035999 1e-6 465 414 0.0021461998 1e-6 467 414 0.018468298 1e-6 468 414 0.0058736987 1e-6 469 414 0.011747397 1e-6 470 414 0.013215899 1e-6 471 414 0.0049700998 1e-6 472 414 5.6499994e-05 1e-6 473 414 0.0003388999 1e-6 477 414 0.00016939999 1e-6 478 414 0.0018072999 1e-6 483 414 0.0030497999 1e-6 489 414 0.00016939999 1e-6 490 414 0.0012989999 1e-6 491 414 0.0096012987 1e-6 21 415 0.00058899983 1e-6 60 415 0.0026505999 1e-6 108 415 0.00014729999 1e-6 114 415 0.00014729999 1e-6 126 415 0.00014729999 1e-6 150 415 0.00014729999 1e-6 160 415 0.0010307999 1e-6 175 415 0.0002944998 1e-6 189 415 0.0002944998 1e-6 190 415 0.00014729999 1e-6 192 415 0.00014729999 1e-6 193 415 0.0007362999 1e-6 194 415 0.00014729999 1e-6 196 415 0.00014729999 1e-6 198 415 0.0069208965 1e-6 200 415 0.00014729999 1e-6 203 415 0.00014729999 1e-6 204 415 0.0016198 1e-6 206 415 0.00014729999 1e-6 207 415 0.00014729999 1e-6 224 415 0.010013297 1e-6 233 415 0.00014729999 1e-6 234 415 0.0044175982 1e-6 237 415 0.0007362999 1e-6 240 415 0.0044175982 1e-6 241 415 0.019731998 1e-6 252 415 0.0014724999 1e-6 262 415 0.00044179987 1e-6 270 415 0.0002944998 1e-6 271 415 0.00014729999 1e-6 272 415 0.00014729999 1e-6 277 415 0.015608899 1e-6 282 415 0.0054483972 1e-6 283 415 0.0007362999 1e-6 284 415 0.00058899983 1e-6 286 415 0.00058899983 1e-6 290 415 0.00044179987 1e-6 292 415 0.024296898 1e-6 293 415 0.0051538981 1e-6 294 415 0.0016198 1e-6 295 415 0.0076571964 1e-6 296 415 0.0085406974 1e-6 297 415 0.0050065964 1e-6 298 415 0.00044179987 1e-6 308 415 0.0002944998 1e-6 312 415 0.019879296 1e-6 313 415 0.00014729999 1e-6 315 415 0.0098659992 1e-6 317 415 0.00014729999 1e-6 318 415 0.00014729999 1e-6 320 415 0.0067736991 1e-6 322 415 0.012222096 1e-6 324 415 0.0007362999 1e-6 326 415 0.0014724999 1e-6 340 415 0.0070681982 1e-6 351 415 0.0002944998 1e-6 352 415 0.00014729999 1e-6 357 415 0.00014729999 1e-6 358 415 0.0058900975 1e-6 366 415 0.00088349986 1e-6 369 415 0.017375898 1e-6 370 415 0.0016198 1e-6 371 415 0.0044175982 1e-6 372 415 0.0041230991 1e-6 373 415 0.0042703971 1e-6 376 415 0.0007362999 1e-6 386 415 0.016786899 1e-6 387 415 0.0002944998 1e-6 390 415 0.00014729999 1e-6 391 415 0.00088349986 1e-6 392 415 0.0032396 1e-6 393 415 0.010749497 1e-6 402 415 0.0011779999 1e-6 408 415 0.0002944998 1e-6 414 415 0.010896798 1e-6 415 415 0.0060373992 1e-6 417 415 0.00058899983 1e-6 419 415 0.0013253 1e-6 421 415 0.00014729999 1e-6 422 415 0.0033867999 1e-6 430 415 0.00014729999 1e-6 433 415 0.00014729999 1e-6 434 415 0.00014729999 1e-6 441 415 0.0042703971 1e-6 442 415 0.0051538981 1e-6 443 415 0.0016198 1e-6 444 415 0.0025032999 1e-6 445 415 0.010749497 1e-6 446 415 0.0002944998 1e-6 447 415 0.0082461983 1e-6 450 415 0.0073626973 1e-6 452 415 0.0050065964 1e-6 453 415 0.0013253 1e-6 454 415 0.00058899983 1e-6 455 415 0.024885897 1e-6 456 415 0.00088349986 1e-6 457 415 0.0030922999 1e-6 458 415 0.0013253 1e-6 459 415 0.0013253 1e-6 460 415 0.0014724999 1e-6 463 415 0.010749497 1e-6 464 415 0.00088349986 1e-6 465 415 0.0025032999 1e-6 467 415 0.015903398 1e-6 468 415 0.0075098984 1e-6 469 415 0.0070681982 1e-6 470 415 0.0076571964 1e-6 471 415 0.0044175982 1e-6 473 415 0.00014729999 1e-6 478 415 0.0019142998 1e-6 483 415 0.0032396 1e-6 489 415 0.00014729999 1e-6 490 415 0.0007362999 1e-6 491 415 0.0013253 1e-6 6 416 9.8599994e-05 1e-6 9 416 9.8599994e-05 1e-6 60 416 0.0020699999 1e-6 82 416 0.00049289991 1e-6 102 416 0.00019709999 1e-6 104 416 9.8599994e-05 1e-6 107 416 9.8599994e-05 1e-6 108 416 9.8599994e-05 1e-6 114 416 0.00019709999 1e-6 117 416 0.00019709999 1e-6 120 416 9.8599994e-05 1e-6 126 416 9.8599994e-05 1e-6 130 416 0.00098569994 1e-6 131 416 0.00039429986 1e-6 135 416 9.8599994e-05 1e-6 137 416 9.8599994e-05 1e-6 138 416 0.00019709999 1e-6 139 416 0.0013799998 1e-6 142 416 0.00019709999 1e-6 150 416 0.0027599998 1e-6 159 416 0.0020699999 1e-6 160 416 0.0029570998 1e-6 161 416 9.8599994e-05 1e-6 165 416 0.0056184977 1e-6 170 416 0.0030556999 1e-6 171 416 9.8599994e-05 1e-6 178 416 9.8599994e-05 1e-6 184 416 9.8599994e-05 1e-6 187 416 0.00029569981 1e-6 188 416 9.8599994e-05 1e-6 189 416 9.8599994e-05 1e-6 190 416 9.8599994e-05 1e-6 192 416 0.0006899999 1e-6 193 416 0.0030556999 1e-6 194 416 0.00029569981 1e-6 198 416 0.0068013966 1e-6 200 416 9.8599994e-05 1e-6 203 416 9.8599994e-05 1e-6 204 416 0.00019709999 1e-6 206 416 0.00039429986 1e-6 207 416 9.8599994e-05 1e-6 214 416 0.0059141964 1e-6 217 416 0.00019709999 1e-6 223 416 0.00049289991 1e-6 224 416 0.0006899999 1e-6 228 416 0.0048299991 1e-6 229 416 0.00019709999 1e-6 233 416 0.0045342967 1e-6 234 416 0.0041399971 1e-6 237 416 0.00059139985 1e-6 240 416 0.011631299 1e-6 241 416 0.023361299 1e-6 242 416 0.0030556999 1e-6 252 416 0.0067027994 1e-6 253 416 0.0059141964 1e-6 268 416 9.8599994e-05 1e-6 270 416 0.00019709999 1e-6 271 416 9.8599994e-05 1e-6 272 416 0.00078859995 1e-6 277 416 0.019221298 1e-6 279 416 9.8599994e-05 1e-6 282 416 0.0011827999 1e-6 283 416 0.00019709999 1e-6 284 416 9.8599994e-05 1e-6 286 416 0.018629897 1e-6 290 416 0.0189256 1e-6 292 416 0.00019709999 1e-6 293 416 0.0013799998 1e-6 294 416 0.00039429986 1e-6 295 416 0.00019709999 1e-6 296 416 0.00019709999 1e-6 297 416 0.00019709999 1e-6 300 416 0.00049289991 1e-6 307 416 0.00019709999 1e-6 308 416 9.8599994e-05 1e-6 312 416 0.015179899 1e-6 314 416 0.00019709999 1e-6 315 416 0.014588498 1e-6 317 416 0.0029570998 1e-6 319 416 0.0089698993 1e-6 320 416 0.0087727979 1e-6 321 416 0.0094627999 1e-6 322 416 0.00049289991 1e-6 324 416 0.00029569981 1e-6 325 416 0.013405599 1e-6 326 416 0.0045342967 1e-6 328 416 9.8599994e-05 1e-6 340 416 0.006407097 1e-6 345 416 0.00019709999 1e-6 350 416 0.00039429986 1e-6 351 416 0.00019709999 1e-6 352 416 0.00019709999 1e-6 354 416 0.00039429986 1e-6 356 416 9.8599994e-05 1e-6 358 416 0.0028585999 1e-6 368 416 9.8599994e-05 1e-6 369 416 0.00049289991 1e-6 372 416 0.00098569994 1e-6 375 416 9.8599994e-05 1e-6 386 416 0.00039429986 1e-6 387 416 9.8599994e-05 1e-6 391 416 0.00019709999 1e-6 392 416 0.00019709999 1e-6 393 416 0.0010843 1e-6 395 416 9.8599994e-05 1e-6 396 416 0.0027599998 1e-6 397 416 9.8599994e-05 1e-6 398 416 9.8599994e-05 1e-6 402 416 0.00029569981 1e-6 405 416 9.8599994e-05 1e-6 413 416 9.8599994e-05 1e-6 414 416 0.0072941966 1e-6 416 416 0.0042384975 1e-6 417 416 0.0006899999 1e-6 419 416 9.8599994e-05 1e-6 421 416 0.00098569994 1e-6 422 416 0.0027599998 1e-6 430 416 9.8599994e-05 1e-6 433 416 9.8599994e-05 1e-6 434 416 9.8599994e-05 1e-6 441 416 9.8599994e-05 1e-6 442 416 0.00029569981 1e-6 443 416 0.0023657 1e-6 444 416 0.0040413998 1e-6 445 416 0.007589899 1e-6 446 416 0.00019709999 1e-6 447 416 0.0041399971 1e-6 448 416 9.8599994e-05 1e-6 450 416 0.0068013966 1e-6 452 416 0.0052241981 1e-6 453 416 0.0015770998 1e-6 454 416 0.0036470999 1e-6 455 416 0.028191198 1e-6 456 416 0.00088709989 1e-6 457 416 0.0042384975 1e-6 458 416 0.0010843 1e-6 459 416 0.00088709989 1e-6 460 416 0.0014785999 1e-6 463 416 0.015475597 1e-6 464 416 0.0051256977 1e-6 465 416 0.0019713999 1e-6 467 416 0.016362697 1e-6 468 416 0.014391299 1e-6 469 416 0.0088713989 1e-6 470 416 0.0098570995 1e-6 471 416 0.0042384975 1e-6 473 416 0.00019709999 1e-6 477 416 0.00059139985 1e-6 478 416 0.0016756998 1e-6 479 416 0.0012814 1e-6 483 416 0.0010843 1e-6 489 416 0.00019709999 1e-6 490 416 0.0014785999 1e-6 491 416 0.0030556999 1e-6 4 417 0.00068269996 1e-6 9 417 8.5299995e-05 1e-6 60 417 0.0022187999 1e-6 82 417 0.0093872994 1e-6 83 417 8.5299995e-05 1e-6 84 417 8.5299995e-05 1e-6 104 417 0.00034139981 1e-6 108 417 8.5299995e-05 1e-6 113 417 0.00017069999 1e-6 114 417 0.00025599985 1e-6 117 417 0.0026454998 1e-6 120 417 8.5299995e-05 1e-6 126 417 8.5299995e-05 1e-6 130 417 0.023894899 1e-6 131 417 0.0180065 1e-6 132 417 0.00051199994 1e-6 133 417 0.0021334998 1e-6 135 417 0.0028161998 1e-6 137 417 8.5299995e-05 1e-6 138 417 0.011862099 1e-6 139 417 0.0052909963 1e-6 141 417 8.5299995e-05 1e-6 142 417 0.010923397 1e-6 143 417 0.00025599985 1e-6 149 417 0.0021334998 1e-6 150 417 0.00025599985 1e-6 158 417 0.00017069999 1e-6 160 417 0.0016213998 1e-6 169 417 8.5299995e-05 1e-6 187 417 0.021334697 1e-6 188 417 0.0040962994 1e-6 189 417 0.00017069999 1e-6 190 417 8.5299995e-05 1e-6 192 417 0.0034989 1e-6 193 417 8.5299995e-05 1e-6 194 417 0.0039255992 1e-6 197 417 8.5299995e-05 1e-6 198 417 0.012288798 1e-6 200 417 8.5299995e-05 1e-6 203 417 0.00017069999 1e-6 204 417 0.00017069999 1e-6 206 417 0.00017069999 1e-6 207 417 8.5299995e-05 1e-6 208 417 8.5299995e-05 1e-6 214 417 0.0017068 1e-6 219 417 0.00059739989 1e-6 221 417 0.00025599985 1e-6 223 417 0.0029014999 1e-6 224 417 0.016384996 1e-6 226 417 0.00034139981 1e-6 227 417 0.00025599985 1e-6 228 417 0.00025599985 1e-6 229 417 0.0046935976 1e-6 231 417 8.5299995e-05 1e-6 232 417 0.00051199994 1e-6 233 417 8.5299995e-05 1e-6 234 417 0.0040962994 1e-6 237 417 0.00059739989 1e-6 240 417 0.012032799 1e-6 241 417 0.021334697 1e-6 243 417 0.00017069999 1e-6 252 417 0.0084484965 1e-6 253 417 0.00059739989 1e-6 268 417 0.00076799979 1e-6 271 417 0.0052056983 1e-6 277 417 0.016214397 1e-6 282 417 0.0043522976 1e-6 283 417 0.00034139981 1e-6 284 417 0.00017069999 1e-6 286 417 8.5299995e-05 1e-6 287 417 0.00017069999 1e-6 290 417 0.00059739989 1e-6 292 417 0.00017069999 1e-6 293 417 0.0066563971 1e-6 295 417 8.5299995e-05 1e-6 296 417 0.0023894999 1e-6 297 417 0.00042669987 1e-6 300 417 0.0073390976 1e-6 312 417 0.0130568 1e-6 313 417 0.00017069999 1e-6 314 417 8.5299995e-05 1e-6 315 417 0.00017069999 1e-6 320 417 8.5299995e-05 1e-6 325 417 0.00017069999 1e-6 326 417 0.00025599985 1e-6 340 417 8.5299995e-05 1e-6 347 417 8.5299995e-05 1e-6 351 417 8.5299995e-05 1e-6 354 417 8.5299995e-05 1e-6 356 417 8.5299995e-05 1e-6 357 417 8.5299995e-05 1e-6 358 417 0.0023041 1e-6 372 417 0.0019627998 1e-6 387 417 8.5299995e-05 1e-6 391 417 8.5299995e-05 1e-6 393 417 0.0088751987 1e-6 394 417 8.5299995e-05 1e-6 396 417 8.5299995e-05 1e-6 397 417 0.00017069999 1e-6 402 417 0.0010241 1e-6 404 417 8.5299995e-05 1e-6 416 417 0.012374099 1e-6 417 417 0.015787698 1e-6 421 417 0.00076799979 1e-6 422 417 0.00017069999 1e-6 423 417 8.5299995e-05 1e-6 430 417 0.00025599985 1e-6 431 417 8.5299995e-05 1e-6 433 417 8.5299995e-05 1e-6 434 417 8.5299995e-05 1e-6 437 417 8.5299995e-05 1e-6 442 417 0.00025599985 1e-6 443 417 0.0039255992 1e-6 444 417 0.0040108971 1e-6 445 417 0.015275598 1e-6 446 417 0.00025599985 1e-6 447 417 0.0032428999 1e-6 448 417 8.5299995e-05 1e-6 450 417 0.0067417994 1e-6 452 417 0.0048642978 1e-6 453 417 0.0015360999 1e-6 454 417 0.00076799979 1e-6 455 417 0.040109199 1e-6 456 417 0.00093869981 1e-6 457 417 0.0045229979 1e-6 458 417 0.00093869981 1e-6 459 417 0.00068269996 1e-6 460 417 0.0014507999 1e-6 463 417 0.0093872994 1e-6 464 417 0.0042668991 1e-6 465 417 0.0015360999 1e-6 467 417 0.019969299 1e-6 468 417 0.027479097 1e-6 469 417 0.0071684979 1e-6 470 417 0.0076804981 1e-6 471 417 0.0040108971 1e-6 473 417 0.00017069999 1e-6 477 417 0.00051199994 1e-6 478 417 0.0013653999 1e-6 479 417 0.0028161998 1e-6 483 417 0.0017920998 1e-6 489 417 0.00017069999 1e-6 490 417 0.0015360999 1e-6 491 417 0.0018775 1e-6 24 418 0.0016246999 1e-6 60 418 0.0016246999 1e-6 82 418 0.00054159993 1e-6 108 418 0.00027079997 1e-6 114 418 0.00054159993 1e-6 126 418 0.00027079997 1e-6 130 418 0.0010831 1e-6 131 418 0.00081229978 1e-6 138 418 0.00054159993 1e-6 139 418 0.0021662998 1e-6 142 418 0.00054159993 1e-6 160 418 0.00027079997 1e-6 165 418 0.0010831 1e-6 187 418 0.00081229978 1e-6 188 418 0.00027079997 1e-6 192 418 0.00027079997 1e-6 193 418 0.0086649992 1e-6 194 418 0.00054159993 1e-6 198 418 0.0043324977 1e-6 206 418 0.00054159993 1e-6 224 418 0.00054159993 1e-6 229 418 0.00027079997 1e-6 233 418 0.0021662998 1e-6 234 418 0.003791 1e-6 237 418 0.00054159993 1e-6 240 418 0.00054159993 1e-6 241 418 0.0075818971 1e-6 252 418 0.00054159993 1e-6 268 418 0.0059571974 1e-6 270 418 0.010560498 1e-6 271 418 0.00027079997 1e-6 272 418 0.00081229978 1e-6 277 418 0.025995098 1e-6 282 418 0.00027079997 1e-6 290 418 0.13647437 1e-6 293 418 0.0016246999 1e-6 294 418 0.030327599 1e-6 300 418 0.00027079997 1e-6 312 418 0.00054159993 1e-6 320 418 0.00027079997 1e-6 340 418 0.00081229978 1e-6 358 418 0.0024369999 1e-6 387 418 0.00027079997 1e-6 392 418 0.00027079997 1e-6 393 418 0.0016246999 1e-6 395 418 0.010831296 1e-6 396 418 0.0078526996 1e-6 398 418 0.0092065968 1e-6 402 418 0.00027079997 1e-6 416 418 0.00054159993 1e-6 417 418 0.0013538999 1e-6 418 418 0.00027079997 1e-6 422 418 0.00027079997 1e-6 441 418 0.011372898 1e-6 443 418 0.0024369999 1e-6 444 418 0.013809897 1e-6 445 418 0.017600898 1e-6 446 418 0.00027079997 1e-6 447 418 0.012997597 1e-6 450 418 0.0056863986 1e-6 452 418 0.0046032965 1e-6 453 418 0.0010831 1e-6 455 418 0.035472497 1e-6 456 418 0.00027079997 1e-6 457 418 0.0046032965 1e-6 458 418 0.0013538999 1e-6 459 418 0.00081229978 1e-6 460 418 0.0013538999 1e-6 463 418 0.013539098 1e-6 464 418 0.0016246999 1e-6 465 418 0.011102099 1e-6 467 418 0.013809897 1e-6 468 418 0.071757376 1e-6 469 418 0.0070402995 1e-6 470 418 0.0078526996 1e-6 471 418 0.0043324977 1e-6 473 418 0.00027079997 1e-6 477 418 0.00054159993 1e-6 478 418 0.0013538999 1e-6 483 418 0.0013538999 1e-6 489 418 0.00027079997 1e-6 490 418 0.00081229978 1e-6 18 419 0.00021679999 1e-6 22 419 0.00032519992 1e-6 60 419 0.0010841 1e-6 108 419 0.0001084 1e-6 114 419 0.00021679999 1e-6 126 419 0.0001084 1e-6 130 419 0.0001084 1e-6 150 419 0.0001084 1e-6 160 419 0.0014093998 1e-6 171 419 0.0001084 1e-6 187 419 0.0001084 1e-6 189 419 0.0001084 1e-6 190 419 0.0001084 1e-6 194 419 0.00021679999 1e-6 198 419 0.010624498 1e-6 203 419 0.0001084 1e-6 204 419 0.0001084 1e-6 206 419 0.00021679999 1e-6 221 419 0.0001084 1e-6 224 419 0.0092150979 1e-6 234 419 0.0026018999 1e-6 237 419 0.00032519992 1e-6 240 419 0.00043369993 1e-6 241 419 0.018863797 1e-6 250 419 0.0042280965 1e-6 252 419 0.0030355998 1e-6 277 419 0.015828297 1e-6 282 419 0.0001084 1e-6 284 419 0.00065049995 1e-6 290 419 0.00097569986 1e-6 292 419 0.013659999 1e-6 293 419 0.00021679999 1e-6 294 419 0.015828297 1e-6 295 419 0.0017345999 1e-6 296 419 0.0001084 1e-6 297 419 0.0001084 1e-6 298 419 0.0017345999 1e-6 308 419 0.0001084 1e-6 312 419 0.0203816 1e-6 315 419 0.015394598 1e-6 317 419 0.0001084 1e-6 320 419 0.011274897 1e-6 322 419 0.0035775998 1e-6 326 419 0.0039028998 1e-6 340 419 0.0026018999 1e-6 356 419 0.0001084 1e-6 358 419 0.0020597999 1e-6 359 419 0.0001084 1e-6 361 419 0.0001084 1e-6 363 419 0.0001084 1e-6 369 419 0.00021679999 1e-6 370 419 0.00054209982 1e-6 371 419 0.00065049995 1e-6 372 419 0.0076972991 1e-6 373 419 0.0001084 1e-6 380 419 0.0001084 1e-6 385 419 0.00075889984 1e-6 386 419 0.00043369993 1e-6 387 419 0.0001084 1e-6 390 419 0.00032519992 1e-6 392 419 0.00043369993 1e-6 393 419 0.0014093998 1e-6 398 419 0.0033608 1e-6 402 419 0.0001084 1e-6 413 419 0.003144 1e-6 414 419 0.00021679999 1e-6 415 419 0.0001084 1e-6 417 419 0.00054209982 1e-6 419 419 0.22820896 1e-6 421 419 0.0001084 1e-6 422 419 0.00021679999 1e-6 423 419 0.0052037984 1e-6 424 419 0.0070467964 1e-6 426 419 0.0057458989 1e-6 441 419 0.00021679999 1e-6 442 419 0.0028186999 1e-6 443 419 0.0014093998 1e-6 444 419 0.004119698 1e-6 445 419 0.015177798 1e-6 447 419 0.0062878989 1e-6 450 419 0.0058542974 1e-6 452 419 0.0034691999 1e-6 453 419 0.00065049995 1e-6 454 419 0.00032519992 1e-6 455 419 0.048460498 1e-6 456 419 0.00032519992 1e-6 457 419 0.0015177999 1e-6 458 419 0.00097569986 1e-6 459 419 0.00032519992 1e-6 460 419 0.00097569986 1e-6 463 419 0.0091066994 1e-6 464 419 0.0052037984 1e-6 465 419 0.012575898 1e-6 467 419 0.018213399 1e-6 468 419 0.034475297 1e-6 469 419 0.0037943998 1e-6 470 419 0.004119698 1e-6 471 419 0.0021682999 1e-6 473 419 0.0001084 1e-6 477 419 0.00043369993 1e-6 478 419 0.0011924999 1e-6 479 419 0.00043369993 1e-6 483 419 0.0016261998 1e-6 489 419 0.0001084 1e-6 490 419 0.00032519992 1e-6 491 419 0.00065049995 1e-6 60 420 0.0026131 1e-6 82 420 0.00016329999 1e-6 108 420 0.00016329999 1e-6 114 420 0.00016329999 1e-6 126 420 0.00016329999 1e-6 187 420 0.00016329999 1e-6 189 420 0.00016329999 1e-6 190 420 0.00016329999 1e-6 194 420 0.00032659993 1e-6 198 420 0.0019597998 1e-6 203 420 0.00016329999 1e-6 206 420 0.00065329997 1e-6 214 420 0.00048999977 1e-6 224 420 0.0037562998 1e-6 234 420 0.0042462982 1e-6 237 420 0.00048999977 1e-6 240 420 0.00016329999 1e-6 241 420 0.056344897 1e-6 252 420 0.014208697 1e-6 270 420 0.00016329999 1e-6 273 420 0.00048999977 1e-6 276 420 0.00016329999 1e-6 277 420 0.0073492974 1e-6 282 420 0.0037562998 1e-6 283 420 0.00016329999 1e-6 284 420 0.00016329999 1e-6 290 420 0.0011431999 1e-6 292 420 0.00097989989 1e-6 293 420 0.0039195977 1e-6 294 420 0.0055527985 1e-6 295 420 0.00081659993 1e-6 296 420 0.0037562998 1e-6 297 420 0.00016329999 1e-6 298 420 0.017148498 1e-6 299 420 0.00016329999 1e-6 308 420 0.00097989989 1e-6 312 420 0.0029396999 1e-6 315 420 0.011105698 1e-6 320 420 0.00097989989 1e-6 321 420 0.00016329999 1e-6 322 420 0.00032659993 1e-6 324 420 0.00032659993 1e-6 326 420 0.0019597998 1e-6 340 420 0.00065329997 1e-6 351 420 0.00065329997 1e-6 352 420 0.00016329999 1e-6 356 420 0.00016329999 1e-6 358 420 0.0032664 1e-6 359 420 0.00016329999 1e-6 366 420 0.0014698999 1e-6 369 420 0.0019597998 1e-6 370 420 0.00016329999 1e-6 371 420 0.00032659993 1e-6 372 420 0.0024497998 1e-6 373 420 0.00065329997 1e-6 386 420 0.00081659993 1e-6 387 420 0.00032659993 1e-6 390 420 0.0039195977 1e-6 391 420 0.00065329997 1e-6 392 420 0.017148498 1e-6 393 420 0.036746699 1e-6 398 420 0.00016329999 1e-6 402 420 0.00032659993 1e-6 404 420 0.00097989989 1e-6 405 420 0.00048999977 1e-6 413 420 0.00016329999 1e-6 414 420 0.00016329999 1e-6 415 420 0.00016329999 1e-6 417 420 0.00032659993 1e-6 419 420 0.00032659993 1e-6 420 420 0.070880294 1e-6 421 420 0.0017964998 1e-6 422 420 0.00065329997 1e-6 430 420 0.00016329999 1e-6 434 420 0.00016329999 1e-6 435 420 0.005879499 1e-6 442 420 0.00065329997 1e-6 443 420 0.00081659993 1e-6 444 420 0.00081659993 1e-6 445 420 0.010778997 1e-6 447 420 0.0026131 1e-6 450 420 0.0053894967 1e-6 452 420 0.0057161972 1e-6 453 420 0.00048999977 1e-6 454 420 0.00016329999 1e-6 455 420 0.035276797 1e-6 456 420 0.00081659993 1e-6 457 420 0.0037562998 1e-6 458 420 0.0017964998 1e-6 459 420 0.00065329997 1e-6 460 420 0.00097989989 1e-6 463 420 0.0097990967 1e-6 464 420 0.0011431999 1e-6 465 420 0.0011431999 1e-6 467 420 0.017311797 1e-6 468 420 0.0032664 1e-6 469 420 0.010778997 1e-6 470 420 0.0125755 1e-6 471 420 0.0037562998 1e-6 473 420 0.00032659993 1e-6 477 420 0.00032659993 1e-6 478 420 0.0014698999 1e-6 483 420 0.0019597998 1e-6 489 420 0.00016329999 1e-6 490 420 0.0019597998 1e-6 491 420 0.0026131 1e-6 60 421 0.0025086999 1e-6 108 421 0.000193 1e-6 114 421 0.00038599991 1e-6 126 421 0.000193 1e-6 150 421 0.000193 1e-6 187 421 0.00038599991 1e-6 189 421 0.000193 1e-6 190 421 0.000193 1e-6 192 421 0.000193 1e-6 194 421 0.00038599991 1e-6 198 421 0.0019297998 1e-6 200 421 0.000193 1e-6 203 421 0.000193 1e-6 204 421 0.000193 1e-6 206 421 0.00057889987 1e-6 214 421 0.0011578999 1e-6 223 421 0.000193 1e-6 224 421 0.022771098 1e-6 234 421 0.0065611973 1e-6 237 421 0.00077189994 1e-6 240 421 0.000193 1e-6 241 421 0.029718298 1e-6 252 421 0.030490197 1e-6 270 421 0.0034735999 1e-6 277 421 0.00096489978 1e-6 284 421 0.000193 1e-6 290 421 0.041489799 1e-6 294 421 0.00038599991 1e-6 296 421 0.000193 1e-6 312 421 0.000193 1e-6 315 421 0.000193 1e-6 326 421 0.000193 1e-6 356 421 0.000193 1e-6 358 421 0.0032805998 1e-6 387 421 0.000193 1e-6 392 421 0.00057889987 1e-6 393 421 0.00038599991 1e-6 402 421 0.00038599991 1e-6 417 421 0.00057889987 1e-6 420 421 0.00038599991 1e-6 421 421 0.060401399 1e-6 422 421 0.0011578999 1e-6 442 421 0.020262398 1e-6 443 421 0.0021227 1e-6 444 421 0.00057889987 1e-6 445 421 0.0119645 1e-6 446 421 0.00038599991 1e-6 447 421 0.0028945999 1e-6 450 421 0.0071400963 1e-6 452 421 0.0048243999 1e-6 453 421 0.0025086999 1e-6 454 421 0.0011578999 1e-6 455 421 0.07043606 1e-6 456 421 0.00077189994 1e-6 457 421 0.0040524974 1e-6 458 421 0.0017368 1e-6 459 421 0.00057889987 1e-6 460 421 0.0015437999 1e-6 463 421 0.0121575 1e-6 464 421 0.00077189994 1e-6 465 421 0.0017368 1e-6 467 421 0.016595896 1e-6 468 421 0.0144732 1e-6 469 421 0.0073330998 1e-6 470 421 0.0082979985 1e-6 471 421 0.0048243999 1e-6 473 421 0.000193 1e-6 477 421 0.00038599991 1e-6 478 421 0.0023156998 1e-6 483 421 0.0021227 1e-6 489 421 0.000193 1e-6 490 421 0.00077189994 1e-6 491 421 0.00096489978 1e-6 9 422 1.8599996e-05 1e-6 13 422 9.3199997e-05 1e-6 16 422 1.8599996e-05 1e-6 18 422 9.3199997e-05 1e-6 21 422 5.5899989e-05 1e-6 22 422 0.0010809 1e-6 24 422 0.00026089977 1e-6 60 422 0.0057770982 1e-6 79 422 1.8599996e-05 1e-6 82 422 0.00013049999 1e-6 83 422 1.8599996e-05 1e-6 84 422 1.8599996e-05 1e-6 104 422 9.3199997e-05 1e-6 108 422 3.7299993e-05 1e-6 113 422 5.5899989e-05 1e-6 114 422 9.3199997e-05 1e-6 119 422 3.7299993e-05 1e-6 120 422 0.00031679985 1e-6 126 422 5.5899989e-05 1e-6 127 422 1.8599996e-05 1e-6 130 422 7.45e-05 1e-6 131 422 3.7299993e-05 1e-6 132 422 1.8599996e-05 1e-6 135 422 0.00054039992 1e-6 139 422 3.7299993e-05 1e-6 142 422 1.8599996e-05 1e-6 143 422 1.8599996e-05 1e-6 150 422 0.00029819994 1e-6 151 422 1.8599996e-05 1e-6 158 422 1.8599996e-05 1e-6 159 422 0.00014909999 1e-6 160 422 0.00050319987 1e-6 162 422 1.8599996e-05 1e-6 171 422 5.5899989e-05 1e-6 184 422 1.8599996e-05 1e-6 186 422 0.00031679985 1e-6 187 422 0.016548596 1e-6 188 422 0.00013049999 1e-6 189 422 5.5899989e-05 1e-6 190 422 5.5899989e-05 1e-6 192 422 0.0084606968 1e-6 193 422 0.00013049999 1e-6 194 422 9.3199997e-05 1e-6 196 422 1.8599996e-05 1e-6 197 422 1.8599996e-05 1e-6 198 422 0.0081810988 1e-6 200 422 7.45e-05 1e-6 201 422 3.7299993e-05 1e-6 203 422 5.5899989e-05 1e-6 204 422 7.45e-05 1e-6 206 422 0.00011179999 1e-6 207 422 3.7299993e-05 1e-6 208 422 3.7299993e-05 1e-6 209 422 1.8599996e-05 1e-6 214 422 0.043607898 1e-6 218 422 0.00018639999 1e-6 219 422 0.00011179999 1e-6 221 422 9.3199997e-05 1e-6 223 422 0.003950797 1e-6 224 422 0.00040999986 1e-6 225 422 1.8599996e-05 1e-6 230 422 1.8599996e-05 1e-6 231 422 3.7299993e-05 1e-6 233 422 7.45e-05 1e-6 234 422 0.0028512999 1e-6 237 422 0.0002423 1e-6 240 422 0.00089449994 1e-6 241 422 0.012765598 1e-6 248 422 1.8599996e-05 1e-6 250 422 3.7299993e-05 1e-6 252 422 0.0011741 1e-6 254 422 1.8599996e-05 1e-6 270 422 1.8599996e-05 1e-6 277 422 0.0196236 1e-6 279 422 1.8599996e-05 1e-6 284 422 3.7299993e-05 1e-6 290 422 0.0031307999 1e-6 292 422 0.00076409988 1e-6 293 422 0.0010249999 1e-6 294 422 0.014014199 1e-6 295 422 5.5899989e-05 1e-6 296 422 0.0051993988 1e-6 297 422 1.8599996e-05 1e-6 298 422 0.0030375998 1e-6 300 422 1.8599996e-05 1e-6 301 422 0.00013049999 1e-6 308 422 3.7299993e-05 1e-6 312 422 0.0024785998 1e-6 314 422 1.8599996e-05 1e-6 315 422 0.0040066987 1e-6 318 422 7.45e-05 1e-6 320 422 0.00013049999 1e-6 321 422 3.7299993e-05 1e-6 322 422 0.00096909981 1e-6 325 422 0.00050319987 1e-6 326 422 0.0056838989 1e-6 340 422 5.5899989e-05 1e-6 341 422 1.8599996e-05 1e-6 347 422 1.8599996e-05 1e-6 350 422 1.8599996e-05 1e-6 351 422 1.8599996e-05 1e-6 354 422 0.0030003998 1e-6 356 422 0.00022359999 1e-6 358 422 0.0013790999 1e-6 359 422 3.7299993e-05 1e-6 361 422 1.8599996e-05 1e-6 363 422 3.7299993e-05 1e-6 369 422 9.3199997e-05 1e-6 370 422 0.00018639999 1e-6 371 422 1.8599996e-05 1e-6 372 422 0.0031494999 1e-6 384 422 0.0017704 1e-6 386 422 5.5899989e-05 1e-6 387 422 5.5899989e-05 1e-6 390 422 0.00020499999 1e-6 391 422 7.45e-05 1e-6 392 422 0.017554998 1e-6 393 422 0.0056652986 1e-6 394 422 1.8599996e-05 1e-6 396 422 0.00014909999 1e-6 397 422 1.8599996e-05 1e-6 398 422 1.8599996e-05 1e-6 402 422 0.00011179999 1e-6 404 422 5.5899989e-05 1e-6 405 422 1.8599996e-05 1e-6 413 422 3.7299993e-05 1e-6 417 422 0.00018639999 1e-6 419 422 0.0030748998 1e-6 420 422 0.0074542984 1e-6 421 422 1.8599996e-05 1e-6 422 422 0.030245997 1e-6 423 422 5.5899989e-05 1e-6 424 422 3.7299993e-05 1e-6 425 422 1.8599996e-05 1e-6 426 422 3.7299993e-05 1e-6 427 422 1.8599996e-05 1e-6 428 422 1.8599996e-05 1e-6 430 422 5.5899989e-05 1e-6 431 422 1.8599996e-05 1e-6 432 422 1.8599996e-05 1e-6 433 422 3.7299993e-05 1e-6 434 422 5.5899989e-05 1e-6 435 422 0.00050319987 1e-6 438 422 0.00048449985 1e-6 441 422 0.00035409979 1e-6 442 422 0.0022548998 1e-6 443 422 0.0028698999 1e-6 444 422 0.0012299998 1e-6 445 422 0.0047520995 1e-6 446 422 0.00093179988 1e-6 447 422 0.0044166967 1e-6 448 422 1.8599996e-05 1e-6 449 422 1.8599996e-05 1e-6 450 422 0.004304897 1e-6 452 422 0.0029630999 1e-6 453 422 0.00089449994 1e-6 454 422 0.00095039979 1e-6 455 422 0.0232016 1e-6 456 422 0.00061499979 1e-6 457 422 0.0073424987 1e-6 458 422 0.0010809 1e-6 459 422 0.0032984999 1e-6 460 422 0.0012486 1e-6 463 422 0.0079201981 1e-6 464 422 0.0017889999 1e-6 465 422 0.0038949 1e-6 467 422 0.018766299 1e-6 468 422 0.0197354 1e-6 469 422 0.0050502978 1e-6 470 422 0.0056838989 1e-6 471 422 0.0015280999 1e-6 472 422 0.00018639999 1e-6 473 422 0.00011179999 1e-6 477 422 0.00046589994 1e-6 478 422 0.003950797 1e-6 479 422 0.0016027 1e-6 483 422 0.00098769995 1e-6 489 422 9.3199997e-05 1e-6 490 422 0.0004472998 1e-6 491 422 0.00011179999 1e-6 9 423 9.8699995e-05 1e-6 18 423 0.00019729999 1e-6 24 423 9.8699995e-05 1e-6 82 423 9.8699995e-05 1e-6 108 423 9.8699995e-05 1e-6 114 423 0.00019729999 1e-6 126 423 9.8699995e-05 1e-6 150 423 9.8699995e-05 1e-6 171 423 0.00019729999 1e-6 189 423 9.8699995e-05 1e-6 190 423 9.8699995e-05 1e-6 192 423 9.8699995e-05 1e-6 194 423 9.8699995e-05 1e-6 196 423 9.8699995e-05 1e-6 198 423 0.0057226978 1e-6 200 423 9.8699995e-05 1e-6 203 423 9.8699995e-05 1e-6 204 423 9.8699995e-05 1e-6 206 423 9.8699995e-05 1e-6 207 423 9.8699995e-05 1e-6 214 423 9.8699995e-05 1e-6 224 423 9.8699995e-05 1e-6 234 423 0.0022693998 1e-6 237 423 0.00019729999 1e-6 240 423 9.8699995e-05 1e-6 241 423 0.0019733999 1e-6 250 423 0.013418797 1e-6 252 423 0.0010853 1e-6 270 423 0.0031573998 1e-6 276 423 0.0095707998 1e-6 277 423 0.00069069979 1e-6 284 423 9.8699995e-05 1e-6 290 423 0.20404536 1e-6 292 423 0.00049329991 1e-6 294 423 0.057128798 1e-6 298 423 0.0011839999 1e-6 312 423 0.00019729999 1e-6 315 423 0.00019729999 1e-6 317 423 0.00029599993 1e-6 320 423 0.00019729999 1e-6 325 423 0.0070053972 1e-6 326 423 9.8699995e-05 1e-6 356 423 9.8699995e-05 1e-6 358 423 0.0012826999 1e-6 372 423 9.8699995e-05 1e-6 387 423 9.8699995e-05 1e-6 402 423 9.8699995e-05 1e-6 417 423 0.00049329991 1e-6 419 423 0.0054266974 1e-6 421 423 9.8699995e-05 1e-6 422 423 9.8699995e-05 1e-6 423 423 0.0059200972 1e-6 424 423 0.11909229 1e-6 426 423 0.00049329991 1e-6 430 423 9.8699995e-05 1e-6 433 423 9.8699995e-05 1e-6 434 423 9.8699995e-05 1e-6 438 423 0.0019733999 1e-6 441 423 9.8699995e-05 1e-6 442 423 0.0022693998 1e-6 443 423 0.0013813998 1e-6 444 423 0.0039466992 1e-6 445 423 0.0063147992 1e-6 447 423 0.005130697 1e-6 450 423 0.010162797 1e-6 452 423 0.0026639998 1e-6 453 423 0.00019729999 1e-6 454 423 0.0034534 1e-6 455 423 0.051406 1e-6 456 423 0.00039469986 1e-6 457 423 0.0042426996 1e-6 458 423 0.00078929984 1e-6 459 423 0.00039469986 1e-6 460 423 0.00098669995 1e-6 463 423 0.0263444 1e-6 464 423 0.0073013976 1e-6 465 423 0.0012826999 1e-6 467 423 0.014800198 1e-6 468 423 0.026640397 1e-6 469 423 0.0066107996 1e-6 470 423 0.0073013976 1e-6 471 423 0.0018747 1e-6 473 423 0.00019729999 1e-6 477 423 9.8699995e-05 1e-6 478 423 0.0011839999 1e-6 479 423 0.00019729999 1e-6 483 423 0.0021706999 1e-6 489 423 9.8699995e-05 1e-6 490 423 0.0049333982 1e-6 491 423 0.00088799978 1e-6 24 424 0.013278097 1e-6 114 424 0.0001428 1e-6 131 424 0.0001428 1e-6 171 424 0.0001428 1e-6 198 424 0.0041405 1e-6 206 424 0.00028559985 1e-6 214 424 0.011707596 1e-6 234 424 0.0011421998 1e-6 237 424 0.0001428 1e-6 241 424 0.00028559985 1e-6 250 424 0.00085669989 1e-6 270 424 0.0098514967 1e-6 272 424 0.0001428 1e-6 276 424 0.0068531968 1e-6 277 424 0.046402097 1e-6 279 424 0.0001428 1e-6 286 424 0.0001428 1e-6 287 424 0.0001428 1e-6 288 424 0.0001428 1e-6 290 424 0.022130199 1e-6 291 424 0.0001428 1e-6 292 424 0.0068531968 1e-6 294 424 0.0418332 1e-6 295 424 0.0001428 1e-6 298 424 0.00042829989 1e-6 308 424 0.0001428 1e-6 317 424 0.0001428 1e-6 325 424 0.00042829989 1e-6 326 424 0.0001428 1e-6 358 424 0.00042829989 1e-6 373 424 0.00042829989 1e-6 393 424 0.0001428 1e-6 417 424 0.0001428 1e-6 419 424 0.00042829989 1e-6 423 424 0.0025699998 1e-6 424 424 0.022701297 1e-6 426 424 0.0001428 1e-6 438 424 0.0001428 1e-6 441 424 0.0011421998 1e-6 442 424 0.00028559985 1e-6 443 424 0.0044259988 1e-6 444 424 0.00028559985 1e-6 445 424 0.015848096 1e-6 446 424 0.0011421998 1e-6 447 424 0.0052826963 1e-6 450 424 0.0019989 1e-6 452 424 0.0017132999 1e-6 453 424 0.0001428 1e-6 454 424 0.0001428 1e-6 455 424 0.056253597 1e-6 457 424 0.0019989 1e-6 458 424 0.0001428 1e-6 459 424 0.0001428 1e-6 460 424 0.0021415998 1e-6 463 424 0.0042832978 1e-6 464 424 0.00057109981 1e-6 465 424 0.00028559985 1e-6 467 424 0.0032837999 1e-6 468 424 0.0042832978 1e-6 469 424 0.0018560998 1e-6 470 424 0.0019989 1e-6 471 424 0.00071389996 1e-6 478 424 0.00028559985 1e-6 483 424 0.0019989 1e-6 490 424 0.37592798 1e-6 491 424 0.0054254979 1e-6 22 425 0.00091299997 1e-6 60 425 0.0021301999 1e-6 108 425 0.00030429987 1e-6 114 425 0.00060859998 1e-6 126 425 0.00030429987 1e-6 171 425 0.027084596 1e-6 194 425 0.00030429987 1e-6 198 425 0.024649996 1e-6 206 425 0.00060859998 1e-6 214 425 0.028910499 1e-6 234 425 0.0039561987 1e-6 237 425 0.00030429987 1e-6 240 425 0.00030429987 1e-6 241 425 0.0219111 1e-6 250 425 0.00030429987 1e-6 270 425 0.018563598 1e-6 272 425 0.00060859998 1e-6 276 425 0.0097383 1e-6 277 425 0.079123557 1e-6 279 425 0.00060859998 1e-6 284 425 0.00030429987 1e-6 290 425 0.0608643 1e-6 292 425 0.037127197 1e-6 293 425 0.00060859998 1e-6 294 425 0.06299448 1e-6 297 425 0.013390098 1e-6 298 425 0.00060859998 1e-6 312 425 0.00060859998 1e-6 315 425 0.00060859998 1e-6 317 425 0.00030429987 1e-6 319 425 0.00030429987 1e-6 320 425 0.00030429987 1e-6 326 425 0.011259899 1e-6 339 425 0.00030429987 1e-6 340 425 0.00060859998 1e-6 353 425 0.00030429987 1e-6 358 425 0.0015215999 1e-6 387 425 0.00030429987 1e-6 417 425 0.00060859998 1e-6 424 425 0.00091299997 1e-6 425 425 0.0051734969 1e-6 426 425 0.00030429987 1e-6 441 425 0.00030429987 1e-6 443 425 0.0063906983 1e-6 444 425 0.0051734969 1e-6 445 425 0.013998799 1e-6 446 425 0.00060859998 1e-6 447 425 0.0146074 1e-6 450 425 0.0045647994 1e-6 452 425 0.0066950992 1e-6 453 425 0.0015215999 1e-6 454 425 0.00091299997 1e-6 455 425 0.032562397 1e-6 456 425 0.00030429987 1e-6 457 425 0.0045647994 1e-6 458 425 0.00060859998 1e-6 459 425 0.00060859998 1e-6 460 425 0.00091299997 1e-6 463 425 0.0076079965 1e-6 464 425 0.00091299997 1e-6 465 425 0.00060859998 1e-6 467 425 0.0094339997 1e-6 468 425 0.018259298 1e-6 469 425 0.0063906983 1e-6 470 425 0.0073036999 1e-6 471 425 0.0018258998 1e-6 473 425 0.00030429987 1e-6 478 425 0.0012172998 1e-6 483 425 0.0033475 1e-6 490 425 0.00091299997 1e-6 491 425 0.00030429987 1e-6 17 426 0.00044509978 1e-6 60 426 0.001558 1e-6 82 426 0.00022259999 1e-6 108 426 0.00022259999 1e-6 114 426 0.00044509978 1e-6 126 426 0.00022259999 1e-6 131 426 0.00022259999 1e-6 132 426 0.00022259999 1e-6 139 426 0.00022259999 1e-6 150 426 0.00022259999 1e-6 171 426 0.016470097 1e-6 187 426 0.00022259999 1e-6 189 426 0.00022259999 1e-6 190 426 0.00022259999 1e-6 194 426 0.0011127999 1e-6 198 426 0.011796098 1e-6 203 426 0.00022259999 1e-6 206 426 0.00066769985 1e-6 208 426 0.00022259999 1e-6 214 426 0.0022256998 1e-6 223 426 0.00022259999 1e-6 224 426 0.0024482999 1e-6 233 426 0.0024482999 1e-6 234 426 0.0080124997 1e-6 237 426 0.00044509978 1e-6 241 426 0.016024899 1e-6 243 426 0.00044509978 1e-6 250 426 0.020698898 1e-6 252 426 0.0064544976 1e-6 270 426 0.0066770986 1e-6 276 426 0.0060092993 1e-6 277 426 0.00066769985 1e-6 279 426 0.00044509978 1e-6 284 426 0.00022259999 1e-6 290 426 0.064099669 1e-6 292 426 0.015802398 1e-6 293 426 0.00044509978 1e-6 294 426 0.0037836998 1e-6 295 426 0.00022259999 1e-6 298 426 0.079234362 1e-6 312 426 0.00022259999 1e-6 315 426 0.00066769985 1e-6 317 426 0.00022259999 1e-6 320 426 0.0064544976 1e-6 325 426 0.00044509978 1e-6 326 426 0.0057867989 1e-6 340 426 0.00044509978 1e-6 358 426 0.0020030998 1e-6 387 426 0.00022259999 1e-6 392 426 0.00066769985 1e-6 393 426 0.0035611 1e-6 417 426 0.00066769985 1e-6 419 426 0.00066769985 1e-6 422 426 0.00022259999 1e-6 423 426 0.00044509978 1e-6 424 426 0.1112842 1e-6 426 426 0.0244825 1e-6 438 426 0.00022259999 1e-6 441 426 0.0084575973 1e-6 442 426 0.0182506 1e-6 443 426 0.0011127999 1e-6 444 426 0.0084575973 1e-6 445 426 0.012463797 1e-6 446 426 0.00022259999 1e-6 447 426 0.013576698 1e-6 448 426 0.00022259999 1e-6 450 426 0.0064544976 1e-6 452 426 0.0051190965 1e-6 453 426 0.00066769985 1e-6 454 426 0.00089029991 1e-6 455 426 0.0316047 1e-6 456 426 0.00022259999 1e-6 457 426 0.0046738982 1e-6 458 426 0.00044509978 1e-6 459 426 0.00022259999 1e-6 460 426 0.0011127999 1e-6 463 426 0.016470097 1e-6 464 426 0.001558 1e-6 465 426 0.0011127999 1e-6 467 426 0.012018699 1e-6 468 426 0.012241296 1e-6 469 426 0.0075672977 1e-6 470 426 0.0082349963 1e-6 471 426 0.0026707998 1e-6 473 426 0.00022259999 1e-6 478 426 0.0017804999 1e-6 479 426 0.012018699 1e-6 483 426 0.0035611 1e-6 490 426 0.00066769985 1e-6 491 426 0.00044509978 1e-6 22 427 0.00018239999 1e-6 60 427 0.0027357 1e-6 108 427 0.00018239999 1e-6 114 427 0.00036479998 1e-6 126 427 0.00018239999 1e-6 130 427 0.0032829 1e-6 135 427 0.0031005 1e-6 150 427 0.00018239999 1e-6 160 427 0.0492431 1e-6 165 427 0.010395799 1e-6 171 427 0.041035898 1e-6 172 427 0.00091189984 1e-6 188 427 0.0078423992 1e-6 189 427 0.00018239999 1e-6 190 427 0.00018239999 1e-6 194 427 0.00036479998 1e-6 198 427 0.0063833967 1e-6 203 427 0.00018239999 1e-6 206 427 0.00054709986 1e-6 214 427 0.00036479998 1e-6 224 427 0.0142258 1e-6 233 427 0.0041947998 1e-6 234 427 0.0031005 1e-6 237 427 0.00036479998 1e-6 241 427 0.0076599978 1e-6 248 427 0.018602997 1e-6 277 427 0.0116724 1e-6 279 427 0.00036479998 1e-6 282 427 0.0036475998 1e-6 284 427 0.00018239999 1e-6 292 427 0.011854798 1e-6 297 427 0.0069304965 1e-6 298 427 0.0069304965 1e-6 312 427 0.00091189984 1e-6 315 427 0.0010942998 1e-6 321 427 0.00091189984 1e-6 322 427 0.00091189984 1e-6 356 427 0.00018239999 1e-6 358 427 0.0018237999 1e-6 387 427 0.017508697 1e-6 392 427 0.013313897 1e-6 393 427 0.063468874 1e-6 402 427 0.00018239999 1e-6 417 427 0.00072949985 1e-6 421 427 0.00018239999 1e-6 422 427 0.00036479998 1e-6 427 427 0.077329874 1e-6 443 427 0.0067480989 1e-6 444 427 0.00054709986 1e-6 445 427 0.0041947998 1e-6 446 427 0.00036479998 1e-6 447 427 0.0052890964 1e-6 450 427 0.0052890964 1e-6 452 427 0.0049242973 1e-6 453 427 0.0023709999 1e-6 454 427 0.00054709986 1e-6 455 427 0.032463998 1e-6 456 427 0.00018239999 1e-6 457 427 0.0045594983 1e-6 458 427 0.00072949985 1e-6 459 427 0.00054709986 1e-6 460 427 0.0010942998 1e-6 463 427 0.011307698 1e-6 464 427 0.00054709986 1e-6 465 427 0.0012766998 1e-6 467 427 0.010942899 1e-6 468 427 0.0087542981 1e-6 469 427 0.0069304965 1e-6 470 427 0.0076599978 1e-6 471 427 0.0021885999 1e-6 473 427 0.00018239999 1e-6 477 427 0.00018239999 1e-6 478 427 0.0016413999 1e-6 483 427 0.0031005 1e-6 490 427 0.0012766998 1e-6 491 427 0.0018237999 1e-6 9 428 6.5699991e-05 1e-6 18 428 0.0001315 1e-6 22 428 6.5699991e-05 1e-6 60 428 0.0025636 1e-6 82 428 6.5699991e-05 1e-6 83 428 6.5699991e-05 1e-6 84 428 6.5699991e-05 1e-6 108 428 6.5699991e-05 1e-6 113 428 0.0001315 1e-6 114 428 0.00026289979 1e-6 126 428 0.0001315 1e-6 130 428 0.0041411966 1e-6 132 428 0.0026950999 1e-6 135 428 6.5699991e-05 1e-6 137 428 6.5699991e-05 1e-6 138 428 0.00019719999 1e-6 139 428 0.0097942986 1e-6 143 428 6.5699991e-05 1e-6 150 428 0.00085449987 1e-6 154 428 0.0018404999 1e-6 158 428 0.0046012998 1e-6 160 428 0.017222099 1e-6 161 428 0.0021034998 1e-6 165 428 0.0024320998 1e-6 170 428 0.00032869983 1e-6 171 428 0.010517299 1e-6 172 428 0.0037467999 1e-6 175 428 6.5699991e-05 1e-6 187 428 0.0020376998 1e-6 188 428 0.016236097 1e-6 189 428 0.00026289979 1e-6 190 428 0.0001315 1e-6 194 428 0.00039439998 1e-6 197 428 0.0001315 1e-6 198 428 0.044238497 1e-6 200 428 6.5699991e-05 1e-6 202 428 6.5699991e-05 1e-6 203 428 0.0001315 1e-6 204 428 0.00046009989 1e-6 206 428 0.00026289979 1e-6 207 428 6.5699991e-05 1e-6 208 428 0.00046009989 1e-6 214 428 0.00085449987 1e-6 219 428 0.0020376998 1e-6 221 428 0.0007230998 1e-6 224 428 0.042200699 1e-6 225 428 0.00039439998 1e-6 227 428 0.00039439998 1e-6 233 428 0.0043383986 1e-6 234 428 0.0024978998 1e-6 237 428 0.0066390969 1e-6 240 428 0.0010517 1e-6 241 428 0.1003089 1e-6 243 428 0.0015775999 1e-6 252 428 0.00052589993 1e-6 270 428 6.5699991e-05 1e-6 277 428 0.023466799 1e-6 282 428 0.00019719999 1e-6 283 428 0.00019719999 1e-6 284 428 0.00019719999 1e-6 288 428 6.5699991e-05 1e-6 292 428 0.0001315 1e-6 293 428 0.0032867 1e-6 294 428 0.0024320998 1e-6 295 428 0.00019719999 1e-6 296 428 0.0001315 1e-6 299 428 6.5699991e-05 1e-6 300 428 6.5699991e-05 1e-6 312 428 0.010122899 1e-6 315 428 0.0038124998 1e-6 317 428 6.5699991e-05 1e-6 319 428 0.0012488998 1e-6 320 428 0.0006573 1e-6 321 428 0.00059159985 1e-6 322 428 0.0024978998 1e-6 324 428 6.5699991e-05 1e-6 326 428 0.0061131977 1e-6 328 428 0.0006573 1e-6 330 428 0.0001315 1e-6 340 428 0.00032869983 1e-6 349 428 0.0007230998 1e-6 351 428 0.00026289979 1e-6 354 428 0.00052589993 1e-6 356 428 6.5699991e-05 1e-6 358 428 0.0017747998 1e-6 370 428 0.0011831999 1e-6 372 428 0.0046670996 1e-6 377 428 6.5699991e-05 1e-6 380 428 6.5699991e-05 1e-6 384 428 0.0013146999 1e-6 386 428 6.5699991e-05 1e-6 387 428 0.0001315 1e-6 391 428 0.00019719999 1e-6 393 428 0.00019719999 1e-6 398 428 0.0026292999 1e-6 402 428 0.00019719999 1e-6 409 428 0.0040754974 1e-6 412 428 0.0012488998 1e-6 415 428 0.0001315 1e-6 417 428 0.00052589993 1e-6 419 428 0.0001315 1e-6 421 428 6.5699991e-05 1e-6 422 428 0.00026289979 1e-6 423 428 6.5699991e-05 1e-6 425 428 6.5699991e-05 1e-6 428 428 0.036679197 1e-6 429 428 0.00026289979 1e-6 430 428 0.0007230998 1e-6 431 428 6.5699991e-05 1e-6 433 428 6.5699991e-05 1e-6 434 428 6.5699991e-05 1e-6 443 428 0.0069676973 1e-6 444 428 0.00052589993 1e-6 445 428 0.011371899 1e-6 446 428 0.00059159985 1e-6 447 428 0.0039439984 1e-6 450 428 0.0045355968 1e-6 452 428 0.0060474984 1e-6 453 428 0.0015119 1e-6 454 428 0.00039439998 1e-6 455 428 0.050746098 1e-6 456 428 0.00052589993 1e-6 457 428 0.0043383986 1e-6 458 428 0.00078879995 1e-6 459 428 0.0046670996 1e-6 460 428 0.0011831999 1e-6 463 428 0.022875197 1e-6 464 428 0.0042726994 1e-6 465 428 0.004929997 1e-6 467 428 0.016959198 1e-6 468 428 0.06961149 1e-6 469 428 0.0067047998 1e-6 470 428 0.0071648993 1e-6 471 428 0.0020376998 1e-6 473 428 0.00019719999 1e-6 477 428 0.0001315 1e-6 478 428 0.0013803998 1e-6 479 428 0.0059816986 1e-6 483 428 0.0022348999 1e-6 489 428 0.0001315 1e-6 490 428 0.00078879995 1e-6 491 428 0.00078879995 1e-6 60 429 0.0021276998 1e-6 114 429 0.00035459991 1e-6 130 429 0.10496449 1e-6 132 429 0.0039006998 1e-6 137 429 0.0021276998 1e-6 139 429 0.0031915 1e-6 150 429 0.00035459991 1e-6 154 429 0.00070919981 1e-6 158 429 0.0014183999 1e-6 160 429 0.0056737997 1e-6 161 429 0.00070919981 1e-6 162 429 0.00035459991 1e-6 165 429 0.00070919981 1e-6 171 429 0.0035460999 1e-6 172 429 0.0014183999 1e-6 187 429 0.00035459991 1e-6 188 429 0.0049644969 1e-6 194 429 0.00035459991 1e-6 198 429 0.039361697 1e-6 206 429 0.00070919981 1e-6 219 429 0.00070919981 1e-6 224 429 0.027305 1e-6 225 429 0.00035459991 1e-6 233 429 0.0216312 1e-6 234 429 0.0024822999 1e-6 237 429 0.0024822999 1e-6 240 429 0.0092198998 1e-6 241 429 0.11702126 1e-6 243 429 0.00070919981 1e-6 277 429 0.0070921965 1e-6 293 429 0.0010638 1e-6 294 429 0.00070919981 1e-6 312 429 0.0031915 1e-6 315 429 0.0010638 1e-6 317 429 0.00035459991 1e-6 319 429 0.00035459991 1e-6 322 429 0.00070919981 1e-6 326 429 0.001773 1e-6 328 429 0.00035459991 1e-6 349 429 0.00035459991 1e-6 358 429 0.001773 1e-6 370 429 0.00035459991 1e-6 372 429 0.0014183999 1e-6 384 429 0.00035459991 1e-6 398 429 0.00070919981 1e-6 409 429 0.00070919981 1e-6 412 429 0.00035459991 1e-6 417 429 0.00070919981 1e-6 428 429 0.012056697 1e-6 429 429 0.026950397 1e-6 430 429 0.00035459991 1e-6 442 429 0.00070919981 1e-6 443 429 0.0028368998 1e-6 444 429 0.00035459991 1e-6 445 429 0.025886498 1e-6 447 429 0.0046098977 1e-6 450 429 0.0056737997 1e-6 452 429 0.0056737997 1e-6 453 429 0.0014183999 1e-6 455 429 0.039361697 1e-6 456 429 0.00035459991 1e-6 457 429 0.0042552985 1e-6 458 429 0.00070919981 1e-6 459 429 0.022340398 1e-6 460 429 0.0014183999 1e-6 463 429 0.024468098 1e-6 464 429 0.001773 1e-6 465 429 0.0024822999 1e-6 467 429 0.013120599 1e-6 468 429 0.048226997 1e-6 469 429 0.0056737997 1e-6 470 429 0.0060283989 1e-6 471 429 0.0024822999 1e-6 478 429 0.0014183999 1e-6 479 429 0.0163121 1e-6 483 429 0.0042552985 1e-6 490 429 0.0010638 1e-6 491 429 0.00070919981 1e-6 9 430 6.2499996e-05 1e-6 18 430 0.00012489999 1e-6 22 430 6.2499996e-05 1e-6 60 430 0.0034351 1e-6 82 430 0.00012489999 1e-6 83 430 6.2499996e-05 1e-6 84 430 6.2499996e-05 1e-6 108 430 6.2499996e-05 1e-6 113 430 0.00012489999 1e-6 114 430 0.00018739999 1e-6 126 430 6.2499996e-05 1e-6 130 430 0.011991799 1e-6 131 430 0.00024979981 1e-6 132 430 0.00031229993 1e-6 133 430 0.00068699988 1e-6 135 430 0.0033101998 1e-6 138 430 0.00024979981 1e-6 139 430 0.0018736999 1e-6 141 430 0.00081189978 1e-6 142 430 0.00018739999 1e-6 143 430 6.2499996e-05 1e-6 145 430 6.2499996e-05 1e-6 149 430 0.00074949977 1e-6 150 430 0.004371997 1e-6 156 430 0.00012489999 1e-6 158 430 0.0046842992 1e-6 159 430 6.2499996e-05 1e-6 160 430 0.053713098 1e-6 161 430 0.0013740999 1e-6 165 430 0.0039972998 1e-6 169 430 0.0013116 1e-6 170 430 0.0011866998 1e-6 171 430 0.0051838979 1e-6 172 430 6.2499996e-05 1e-6 188 430 0.00018739999 1e-6 189 430 0.00012489999 1e-6 190 430 0.00012489999 1e-6 192 430 6.2499996e-05 1e-6 194 430 0.00018739999 1e-6 197 430 6.2499996e-05 1e-6 198 430 0.015739199 1e-6 200 430 6.2499996e-05 1e-6 203 430 0.00012489999 1e-6 204 430 0.0015613998 1e-6 206 430 0.00024979981 1e-6 207 430 6.2499996e-05 1e-6 214 430 0.00062459987 1e-6 219 430 0.005621098 1e-6 222 430 6.2499996e-05 1e-6 224 430 0.029104996 1e-6 225 430 0.0099306963 1e-6 227 430 0.0092435963 1e-6 230 430 0.00031229993 1e-6 233 430 0.007557299 1e-6 234 430 0.0025606998 1e-6 237 430 0.00037469994 1e-6 240 430 0.011179797 1e-6 241 430 0.020111199 1e-6 242 430 0.0025606998 1e-6 243 430 0.0110549 1e-6 248 430 0.00012489999 1e-6 252 430 0.00087439991 1e-6 269 430 0.0022484998 1e-6 270 430 0.00056209997 1e-6 277 430 0.051464599 1e-6 282 430 0.0081193969 1e-6 283 430 0.0084316991 1e-6 284 430 0.00018739999 1e-6 292 430 0.0021235 1e-6 293 430 0.0074947998 1e-6 294 430 0.0014364999 1e-6 295 430 6.2499996e-05 1e-6 296 430 0.0061207972 1e-6 298 430 0.00062459987 1e-6 312 430 0.011554599 1e-6 315 430 0.00031229993 1e-6 319 430 0.00043719984 1e-6 321 430 0.00049969996 1e-6 322 430 6.2499996e-05 1e-6 324 430 0.0026856998 1e-6 326 430 0.00018739999 1e-6 340 430 6.2499996e-05 1e-6 350 430 6.2499996e-05 1e-6 351 430 0.00018739999 1e-6 354 430 6.2499996e-05 1e-6 355 430 6.2499996e-05 1e-6 356 430 0.0023108998 1e-6 358 430 0.0015613998 1e-6 371 430 0.0016862999 1e-6 372 430 0.0029354999 1e-6 387 430 6.2499996e-05 1e-6 392 430 0.0019361998 1e-6 393 430 0.0021235 1e-6 398 430 6.2499996e-05 1e-6 402 430 0.00012489999 1e-6 409 430 6.2499996e-05 1e-6 417 430 0.00056209997 1e-6 421 430 6.2499996e-05 1e-6 422 430 0.00018739999 1e-6 423 430 6.2499996e-05 1e-6 428 430 0.00049969996 1e-6 430 430 0.052214097 1e-6 431 430 6.2499996e-05 1e-6 433 430 6.2499996e-05 1e-6 434 430 6.2499996e-05 1e-6 437 430 0.00074949977 1e-6 441 430 0.0018736999 1e-6 442 430 0.00012489999 1e-6 443 430 0.0083691999 1e-6 444 430 0.0021235 1e-6 445 430 0.0098681971 1e-6 446 430 0.00099929981 1e-6 447 430 0.0033101998 1e-6 450 430 0.0078695975 1e-6 452 430 0.0053712986 1e-6 453 430 0.0023733999 1e-6 454 430 0.00056209997 1e-6 455 430 0.054462597 1e-6 456 430 0.00049969996 1e-6 457 430 0.0073698983 1e-6 458 430 0.0023733999 1e-6 459 430 0.0038722998 1e-6 460 430 0.0013116 1e-6 463 430 0.017550398 1e-6 464 430 0.0053712986 1e-6 465 430 0.0012490998 1e-6 467 430 0.014802299 1e-6 468 430 0.041408997 1e-6 469 430 0.013053499 1e-6 470 430 0.0066203997 1e-6 471 430 0.0019985999 1e-6 473 430 0.00012489999 1e-6 477 430 0.00018739999 1e-6 478 430 0.0013116 1e-6 479 430 0.0042470992 1e-6 483 430 0.0021235 1e-6 489 430 0.0019361998 1e-6 490 430 0.0023108998 1e-6 491 430 0.0024357999 1e-6 13 431 0.00030889991 1e-6 24 431 0.00092679984 1e-6 60 431 0.0021624998 1e-6 114 431 0.00030889991 1e-6 120 431 0.00030889991 1e-6 126 431 0.00030889991 1e-6 130 431 0.00030889991 1e-6 131 431 0.00061789993 1e-6 135 431 0.021933898 1e-6 160 431 0.00061789993 1e-6 171 431 0.0027804 1e-6 187 431 0.00092679984 1e-6 194 431 0.00061789993 1e-6 198 431 0.030274898 1e-6 206 431 0.00061789993 1e-6 214 431 0.00061789993 1e-6 224 431 0.043558899 1e-6 225 431 0.00030889991 1e-6 233 431 0.00061789993 1e-6 234 431 0.0021624998 1e-6 237 431 0.00030889991 1e-6 240 431 0.00061789993 1e-6 241 431 0.10534447 1e-6 268 431 0.00030889991 1e-6 272 431 0.00061789993 1e-6 273 431 0.00030889991 1e-6 276 431 0.0111214 1e-6 277 431 0.0024714 1e-6 279 431 0.00061789993 1e-6 290 431 0.00030889991 1e-6 292 431 0.063639164 1e-6 293 431 0.00030889991 1e-6 298 431 0.00061789993 1e-6 312 431 0.00030889991 1e-6 315 431 0.00092679984 1e-6 321 431 0.00030889991 1e-6 322 431 0.0027804 1e-6 326 431 0.029039197 1e-6 358 431 0.0012357 1e-6 370 431 0.00030889991 1e-6 372 431 0.00030889991 1e-6 417 431 0.00061789993 1e-6 424 431 0.00061789993 1e-6 431 431 0.050664198 1e-6 432 431 0.00061789993 1e-6 433 431 0.00030889991 1e-6 434 431 0.00061789993 1e-6 442 431 0.0101946 1e-6 443 431 0.0040160976 1e-6 444 431 0.0071052983 1e-6 445 431 0.018226799 1e-6 446 431 0.00030889991 1e-6 447 431 0.0089588985 1e-6 450 431 0.0046338998 1e-6 452 431 0.0058695972 1e-6 453 431 0.00061789993 1e-6 454 431 0.0012357 1e-6 455 431 0.0457213 1e-6 456 431 0.00030889991 1e-6 457 431 0.012665998 1e-6 458 431 0.00061789993 1e-6 459 431 0.00061789993 1e-6 460 431 0.00092679984 1e-6 463 431 0.0176089 1e-6 464 431 0.00092679984 1e-6 465 431 0.011430297 1e-6 467 431 0.0092677996 1e-6 468 431 0.016990997 1e-6 469 431 0.0071052983 1e-6 470 431 0.0071052983 1e-6 471 431 0.0015445999 1e-6 473 431 0.00030889991 1e-6 478 431 0.00092679984 1e-6 479 431 0.0052517988 1e-6 483 431 0.0024714 1e-6 490 431 0.00061789993 1e-6 491 431 0.0024714 1e-6 24 432 0.011454798 1e-6 60 432 0.0028636998 1e-6 114 432 0.00057269982 1e-6 126 432 0.00057269982 1e-6 135 432 0.010309298 1e-6 139 432 0.00057269982 1e-6 156 432 0.00057269982 1e-6 159 432 0.00057269982 1e-6 160 432 0.0148912 1e-6 171 432 0.048682697 1e-6 187 432 0.0017181998 1e-6 188 432 0.00057269982 1e-6 198 432 0.016036697 1e-6 206 432 0.0011455 1e-6 208 432 0.00057269982 1e-6 218 432 0.0011455 1e-6 224 432 0.0028636998 1e-6 225 432 0.010881998 1e-6 233 432 0.012600198 1e-6 234 432 0.0091637969 1e-6 240 432 0.0068728998 1e-6 241 432 0.057273798 1e-6 268 432 0.0040091984 1e-6 272 432 0.00057269982 1e-6 273 432 0.0040091984 1e-6 276 432 0.021191299 1e-6 277 432 0.002291 1e-6 279 432 0.00057269982 1e-6 292 432 0.0028636998 1e-6 294 432 0.0011455 1e-6 312 432 0.0057273991 1e-6 315 432 0.0223368 1e-6 317 432 0.00057269982 1e-6 325 432 0.0017181998 1e-6 326 432 0.018327598 1e-6 358 432 0.0017181998 1e-6 417 432 0.00057269982 1e-6 428 432 0.0011455 1e-6 430 432 0.00057269982 1e-6 431 432 0.002291 1e-6 432 432 0.0011455 1e-6 433 432 0.0051545985 1e-6 434 432 0.010881998 1e-6 442 432 0.044100799 1e-6 443 432 0.0063000992 1e-6 445 432 0.014318399 1e-6 446 432 0.00057269982 1e-6 447 432 0.0011455 1e-6 450 432 0.0045818985 1e-6 452 432 0.0057273991 1e-6 453 432 0.0034363999 1e-6 455 432 0.038946196 1e-6 457 432 0.0045818985 1e-6 458 432 0.00057269982 1e-6 459 432 0.00057269982 1e-6 460 432 0.0011455 1e-6 463 432 0.0154639 1e-6 464 432 0.0017181998 1e-6 465 432 0.0011455 1e-6 467 432 0.010309298 1e-6 468 432 0.053264599 1e-6 469 432 0.0080182999 1e-6 470 432 0.0091637969 1e-6 471 432 0.0017181998 1e-6 473 432 0.00057269982 1e-6 478 432 0.0011455 1e-6 479 432 0.0148912 1e-6 483 432 0.0028636998 1e-6 490 432 0.0011455 1e-6 491 432 0.00057269982 1e-6 24 433 0.00060099992 1e-6 60 433 0.0030047998 1e-6 114 433 0.00060099992 1e-6 126 433 0.00060099992 1e-6 131 433 0.0012019 1e-6 135 433 0.00060099992 1e-6 160 433 0.00060099992 1e-6 171 433 0.058293298 1e-6 187 433 0.0018028999 1e-6 198 433 0.012019198 1e-6 206 433 0.0012019 1e-6 214 433 0.0036058 1e-6 224 433 0.025240399 1e-6 225 433 0.00060099992 1e-6 233 433 0.0012019 1e-6 234 433 0.0036058 1e-6 237 433 0.00060099992 1e-6 240 433 0.025841299 1e-6 241 433 0.050480798 1e-6 272 433 0.00060099992 1e-6 276 433 0.022836499 1e-6 277 433 0.040264398 1e-6 279 433 0.00060099992 1e-6 292 433 0.0012019 1e-6 294 433 0.032451898 1e-6 315 433 0.044471197 1e-6 326 433 0.0096153989 1e-6 358 433 0.0018028999 1e-6 417 433 0.00060099992 1e-6 431 433 0.00060099992 1e-6 433 433 0.0024037999 1e-6 434 433 0.00060099992 1e-6 437 433 0.00060099992 1e-6 442 433 0.0024037999 1e-6 443 433 0.0030047998 1e-6 444 433 0.0012019 1e-6 445 433 0.032451898 1e-6 447 433 0.0042066984 1e-6 450 433 0.0066105984 1e-6 452 433 0.0078125 1e-6 453 433 0.0030047998 1e-6 455 433 0.025240399 1e-6 457 433 0.0048076995 1e-6 458 433 0.00060099992 1e-6 459 433 0.036057699 1e-6 460 433 0.0012019 1e-6 463 433 0.021033697 1e-6 464 433 0.0012019 1e-6 465 433 0.0012019 1e-6 467 433 0.011418298 1e-6 468 433 0.019831698 1e-6 469 433 0.012620199 1e-6 470 433 0.013822097 1e-6 471 433 0.0024037999 1e-6 473 433 0.00060099992 1e-6 478 433 0.0012019 1e-6 479 433 0.0036058 1e-6 483 433 0.0030047998 1e-6 490 433 0.0018028999 1e-6 491 433 0.00060099992 1e-6 60 434 0.015398797 1e-6 114 434 0.00030799978 1e-6 126 434 0.00030799978 1e-6 131 434 0.05328 1e-6 187 434 0.10101628 1e-6 188 434 0.0021557999 1e-6 192 434 0.010163199 1e-6 198 434 0.037265196 1e-6 203 434 0.00030799978 1e-6 206 434 0.0018479 1e-6 211 434 0.0006159998 1e-6 214 434 0.00092389993 1e-6 219 434 0.00030799978 1e-6 221 434 0.0021557999 1e-6 222 434 0.0030797999 1e-6 223 434 0.0043116994 1e-6 224 434 0.0015399 1e-6 233 434 0.0018479 1e-6 234 434 0.0120111 1e-6 240 434 0.00092389993 1e-6 241 434 0.064367056 1e-6 272 434 0.00092389993 1e-6 276 434 0.012626998 1e-6 277 434 0.010779198 1e-6 279 434 0.0006159998 1e-6 282 434 0.00092389993 1e-6 284 434 0.00030799978 1e-6 292 434 0.0015399 1e-6 293 434 0.0018479 1e-6 294 434 0.00092389993 1e-6 295 434 0.00030799978 1e-6 296 434 0.0021557999 1e-6 298 434 0.0012319 1e-6 308 434 0.0015399 1e-6 312 434 0.0027717999 1e-6 315 434 0.0036956999 1e-6 320 434 0.0021557999 1e-6 321 434 0.0033876998 1e-6 322 434 0.0006159998 1e-6 326 434 0.041576799 1e-6 340 434 0.0012319 1e-6 351 434 0.0012319 1e-6 354 434 0.00030799978 1e-6 358 434 0.0021557999 1e-6 359 434 0.0018479 1e-6 361 434 0.0024637999 1e-6 363 434 0.0018479 1e-6 370 434 0.00030799978 1e-6 371 434 0.0006159998 1e-6 372 434 0.0043116994 1e-6 373 434 0.00030799978 1e-6 386 434 0.0018479 1e-6 392 434 0.0018479 1e-6 417 434 0.00030799978 1e-6 419 434 0.0021557999 1e-6 422 434 0.00030799978 1e-6 434 434 0.0024637999 1e-6 441 434 0.0015399 1e-6 443 434 0.005543597 1e-6 444 434 0.0080073997 1e-6 445 434 0.012319099 1e-6 446 434 0.00030799978 1e-6 447 434 0.012319099 1e-6 450 434 0.0040036999 1e-6 452 434 0.0046195984 1e-6 453 434 0.0012319 1e-6 454 434 0.00092389993 1e-6 455 434 0.046196498 1e-6 456 434 0.00030799978 1e-6 457 434 0.0052355975 1e-6 458 434 0.0006159998 1e-6 459 434 0.0012319 1e-6 460 434 0.0018479 1e-6 463 434 0.020942397 1e-6 464 434 0.0024637999 1e-6 465 434 0.00092389993 1e-6 467 434 0.0157068 1e-6 468 434 0.0033876998 1e-6 469 434 0.011087198 1e-6 470 434 0.012626998 1e-6 471 434 0.0012319 1e-6 473 434 0.00030799978 1e-6 478 434 0.011087198 1e-6 483 434 0.0021557999 1e-6 490 434 0.0012319 1e-6 491 434 0.0015399 1e-6 16 435 0.013605397 1e-6 60 435 0.00097179995 1e-6 82 435 0.00097179995 1e-6 84 435 0.038872696 1e-6 114 435 0.00097179995 1e-6 130 435 0.0019435999 1e-6 132 435 0.00097179995 1e-6 149 435 0.00097179995 1e-6 150 435 0.0019435999 1e-6 171 435 0.00097179995 1e-6 187 435 0.0019435999 1e-6 194 435 0.00097179995 1e-6 198 435 0.017492697 1e-6 206 435 0.00097179995 1e-6 214 435 0.00097179995 1e-6 223 435 0.00097179995 1e-6 224 435 0.0019435999 1e-6 233 435 0.00097179995 1e-6 234 435 0.0068026967 1e-6 241 435 0.27016515 1e-6 272 435 0.00097179995 1e-6 277 435 0.00097179995 1e-6 279 435 0.00097179995 1e-6 292 435 0.00097179995 1e-6 293 435 0.00097179995 1e-6 298 435 0.00097179995 1e-6 326 435 0.0019435999 1e-6 358 435 0.0019435999 1e-6 417 435 0.00097179995 1e-6 435 435 0.033041798 1e-6 442 435 0.0029155 1e-6 443 435 0.00097179995 1e-6 444 435 0.00097179995 1e-6 445 435 0.012633599 1e-6 447 435 0.0068026967 1e-6 450 435 0.0058308989 1e-6 452 435 0.0048590973 1e-6 455 435 0.047618996 1e-6 456 435 0.03207 1e-6 457 435 0.0048590973 1e-6 459 435 0.060252696 1e-6 460 435 0.00097179995 1e-6 463 435 0.012633599 1e-6 464 435 0.00097179995 1e-6 465 435 0.00097179995 1e-6 467 435 0.0087463968 1e-6 468 435 0.0029155 1e-6 469 435 0.0048590973 1e-6 470 435 0.0058308989 1e-6 471 435 0.0029155 1e-6 478 435 0.00097179995 1e-6 479 435 0.0019435999 1e-6 483 435 0.0029155 1e-6 490 435 0.00097179995 1e-6 60 436 0.0028652998 1e-6 114 436 0.00095509994 1e-6 131 436 0.0057306997 1e-6 139 436 0.00095509994 1e-6 160 436 0.00095509994 1e-6 188 436 0.0019101999 1e-6 198 436 0.014326598 1e-6 206 436 0.00095509994 1e-6 224 436 0.09551096 1e-6 234 436 0.0047754981 1e-6 241 436 0.0057306997 1e-6 277 436 0.034383997 1e-6 279 436 0.00095509994 1e-6 292 436 0.029608399 1e-6 293 436 0.0085959993 1e-6 295 436 0.00095509994 1e-6 312 436 0.00095509994 1e-6 315 436 0.0038204 1e-6 319 436 0.00095509994 1e-6 320 436 0.00095509994 1e-6 358 436 0.0019101999 1e-6 417 436 0.00095509994 1e-6 428 436 0.00095509994 1e-6 436 436 0.1432665 1e-6 437 436 0.0019101999 1e-6 443 436 0.0028652998 1e-6 444 436 0.0019101999 1e-6 445 436 0.0076408982 1e-6 447 436 0.015281796 1e-6 450 436 0.0047754981 1e-6 452 436 0.0085959993 1e-6 455 436 0.043935098 1e-6 457 436 0.0028652998 1e-6 459 436 0.057306599 1e-6 460 436 0.00095509994 1e-6 463 436 0.0095510967 1e-6 464 436 0.00095509994 1e-6 467 436 0.010506198 1e-6 468 436 0.0047754981 1e-6 469 436 0.0066857971 1e-6 470 436 0.0066857971 1e-6 471 436 0.0019101999 1e-6 478 436 0.00095509994 1e-6 483 436 0.0038204 1e-6 490 436 0.00095509994 1e-6 491 436 0.00095509994 1e-6 4 437 0.0005394998 1e-6 60 437 0.0014385998 1e-6 108 437 0.00017979999 1e-6 114 437 0.00035959994 1e-6 126 437 0.00017979999 1e-6 130 437 0.00017979999 1e-6 131 437 0.078223288 1e-6 132 437 0.00089909998 1e-6 143 437 0.00017979999 1e-6 149 437 0.00017979999 1e-6 150 437 0.00035959994 1e-6 188 437 0.0088113993 1e-6 189 437 0.00017979999 1e-6 190 437 0.00017979999 1e-6 194 437 0.00035959994 1e-6 198 437 0.0115087 1e-6 206 437 0.00035959994 1e-6 214 437 0.00035959994 1e-6 224 437 0.027153399 1e-6 226 437 0.00035959994 1e-6 227 437 0.0028771998 1e-6 233 437 0.0050350986 1e-6 234 437 0.0032368 1e-6 237 437 0.00017979999 1e-6 240 437 0.00017979999 1e-6 241 437 0.013306998 1e-6 277 437 0.043337498 1e-6 282 437 0.00017979999 1e-6 284 437 0.00017979999 1e-6 288 437 0.0046753995 1e-6 290 437 0.0043157972 1e-6 292 437 0.038122598 1e-6 293 437 0.013486799 1e-6 295 437 0.00017979999 1e-6 298 437 0.00017979999 1e-6 312 437 0.0053946972 1e-6 313 437 0.00071929977 1e-6 315 437 0.036504198 1e-6 317 437 0.00017979999 1e-6 319 437 0.0005394998 1e-6 320 437 0.00035959994 1e-6 321 437 0.00017979999 1e-6 322 437 0.0062937997 1e-6 326 437 0.00017979999 1e-6 340 437 0.0005394998 1e-6 356 437 0.00017979999 1e-6 358 437 0.0017982 1e-6 372 437 0.00017979999 1e-6 387 437 0.00017979999 1e-6 417 437 0.0005394998 1e-6 422 437 0.0005394998 1e-6 436 437 0.0016184 1e-6 437 437 0.031109497 1e-6 443 437 0.0035964998 1e-6 444 437 0.0071929991 1e-6 445 437 0.0055744983 1e-6 446 437 0.00017979999 1e-6 447 437 0.009530697 1e-6 450 437 0.0043157972 1e-6 452 437 0.0066534989 1e-6 453 437 0.00071929977 1e-6 454 437 0.00071929977 1e-6 455 437 0.032188497 1e-6 456 437 0.00017979999 1e-6 457 437 0.0041358992 1e-6 458 437 0.00089909998 1e-6 459 437 0.0012587998 1e-6 460 437 0.0010788999 1e-6 463 437 0.0098902993 1e-6 464 437 0.0005394998 1e-6 465 437 0.00089909998 1e-6 467 437 0.0086314976 1e-6 468 437 0.0032368 1e-6 469 437 0.0062937997 1e-6 470 437 0.0064736977 1e-6 471 437 0.0017982 1e-6 473 437 0.00017979999 1e-6 477 437 0.00017979999 1e-6 478 437 0.0014385998 1e-6 479 437 0.0037762998 1e-6 483 437 0.0026973998 1e-6 490 437 0.00071929977 1e-6 13 438 0.041518997 1e-6 60 438 0.0025316 1e-6 108 438 0.00025319983 1e-6 114 438 0.00050629978 1e-6 119 438 0.00025319983 1e-6 120 438 0.00050629978 1e-6 126 438 0.00025319983 1e-6 130 438 0.042278498 1e-6 132 438 0.00025319983 1e-6 135 438 0.00025319983 1e-6 137 438 0.00025319983 1e-6 139 438 0.00025319983 1e-6 142 438 0.00025319983 1e-6 149 438 0.00025319983 1e-6 150 438 0.00025319983 1e-6 152 438 0.00025319983 1e-6 157 438 0.00025319983 1e-6 160 438 0.0098733976 1e-6 161 438 0.0040505975 1e-6 171 438 0.042531598 1e-6 172 438 0.00025319983 1e-6 189 438 0.00025319983 1e-6 190 438 0.00025319983 1e-6 193 438 0.00025319983 1e-6 194 438 0.00050629978 1e-6 198 438 0.0083543994 1e-6 204 438 0.00025319983 1e-6 206 438 0.00050629978 1e-6 214 438 0.0032910998 1e-6 219 438 0.0015189999 1e-6 224 438 0.00075949985 1e-6 227 438 0.0073417984 1e-6 228 438 0.00025319983 1e-6 231 438 0.0010126999 1e-6 232 438 0.00025319983 1e-6 233 438 0.0025316 1e-6 234 438 0.0032910998 1e-6 237 438 0.00025319983 1e-6 240 438 0.0012657999 1e-6 241 438 0.085316479 1e-6 277 438 0.0260759 1e-6 284 438 0.00025319983 1e-6 292 438 0.00075949985 1e-6 293 438 0.0025316 1e-6 295 438 0.0068353973 1e-6 300 438 0.0010126999 1e-6 315 438 0.015949398 1e-6 326 438 0.00025319983 1e-6 358 438 0.0017722 1e-6 387 438 0.00025319983 1e-6 417 438 0.00075949985 1e-6 422 438 0.00050629978 1e-6 431 438 0.00050629978 1e-6 438 438 0.0027847998 1e-6 442 438 0.054177199 1e-6 443 438 0.0065822974 1e-6 444 438 0.00025319983 1e-6 445 438 0.018227797 1e-6 446 438 0.00050629978 1e-6 447 438 0.00075949985 1e-6 450 438 0.0050632991 1e-6 452 438 0.0073417984 1e-6 453 438 0.0015189999 1e-6 454 438 0.00075949985 1e-6 455 438 0.059493698 1e-6 456 438 0.00025319983 1e-6 457 438 0.0043037981 1e-6 458 438 0.00075949985 1e-6 459 438 0.00050629978 1e-6 460 438 0.0027847998 1e-6 463 438 0.0096202977 1e-6 464 438 0.00025319983 1e-6 465 438 0.0012657999 1e-6 467 438 0.010126598 1e-6 468 438 0.06556958 1e-6 469 438 0.0068353973 1e-6 470 438 0.0073417984 1e-6 471 438 0.0020252999 1e-6 473 438 0.00025319983 1e-6 478 438 0.0015189999 1e-6 483 438 0.0035442999 1e-6 490 438 0.00075949985 1e-6 22 439 0.00032639992 1e-6 24 439 0.0022845999 1e-6 60 439 0.013707597 1e-6 114 439 0.00032639992 1e-6 119 439 0.0088119991 1e-6 132 439 0.0026109999 1e-6 134 439 0.00032639992 1e-6 143 439 0.00032639992 1e-6 169 439 0.0065273978 1e-6 171 439 0.0058746971 1e-6 191 439 0.058746699 1e-6 198 439 0.015339397 1e-6 206 439 0.00065269996 1e-6 214 439 0.021866798 1e-6 224 439 0.072780669 1e-6 234 439 0.0048955977 1e-6 240 439 0.00065269996 1e-6 241 439 0.057114899 1e-6 272 439 0.00097909989 1e-6 279 439 0.00032639992 1e-6 317 439 0.0075064972 1e-6 337 439 0.0068537965 1e-6 358 439 0.00065269996 1e-6 417 439 0.00032639992 1e-6 439 439 0.00032639992 1e-6 443 439 0.012728497 1e-6 444 439 0.012402099 1e-6 445 439 0.039164498 1e-6 446 439 0.00065269996 1e-6 447 439 0.0104439 1e-6 450 439 0.0088119991 1e-6 452 439 0.0068537965 1e-6 453 439 0.0022845999 1e-6 454 439 0.013707597 1e-6 455 439 0.038511697 1e-6 457 439 0.030352499 1e-6 458 439 0.013381198 1e-6 459 439 0.014360297 1e-6 460 439 0.00065269996 1e-6 463 439 0.033616196 1e-6 464 439 0.014033899 1e-6 465 439 0.0120757 1e-6 467 439 0.030352499 1e-6 468 439 0.071801543 1e-6 469 439 0.0267624 1e-6 470 439 0.0029372999 1e-6 471 439 0.015665799 1e-6 478 439 0.015013099 1e-6 483 439 0.00097909989 1e-6 490 439 0.00065269996 1e-6 491 439 0.0084855966 1e-6 22 440 0.00025589997 1e-6 60 440 0.0028146999 1e-6 108 440 0.00025589997 1e-6 114 440 0.00051179994 1e-6 126 440 0.00025589997 1e-6 130 440 0.030706197 1e-6 137 440 0.029426798 1e-6 142 440 0.0040941983 1e-6 160 440 0.038126897 1e-6 165 440 0.020726699 1e-6 170 440 0.0079323985 1e-6 172 440 0.0038382998 1e-6 188 440 0.0023029998 1e-6 189 440 0.00025589997 1e-6 194 440 0.00025589997 1e-6 206 440 0.00051179994 1e-6 233 440 0.013817798 1e-6 234 440 0.0023029998 1e-6 237 440 0.00025589997 1e-6 241 440 0.0084441975 1e-6 252 440 0.00025589997 1e-6 272 440 0.0025588998 1e-6 277 440 0.075230241 1e-6 279 440 0.00025589997 1e-6 284 440 0.00025589997 1e-6 289 440 0.00025589997 1e-6 292 440 0.014585499 1e-6 293 440 0.00051179994 1e-6 307 440 0.00025589997 1e-6 319 440 0.057830099 1e-6 324 440 0.00025589997 1e-6 358 440 0.0015352999 1e-6 387 440 0.00025589997 1e-6 417 440 0.00051179994 1e-6 422 440 0.00025589997 1e-6 440 440 0.095701098 1e-6 443 440 0.0071647987 1e-6 444 440 0.00025589997 1e-6 445 440 0.015353099 1e-6 446 440 0.0010235 1e-6 447 440 0.0051176995 1e-6 450 440 0.0043500997 1e-6 452 440 0.0051176995 1e-6 453 440 0.0040941983 1e-6 454 440 0.00051179994 1e-6 455 440 0.061156597 1e-6 456 440 0.00025589997 1e-6 457 440 0.0038382998 1e-6 458 440 0.00076769991 1e-6 459 440 0.00051179994 1e-6 460 440 0.0010235 1e-6 463 440 0.0099794976 1e-6 464 440 0.00051179994 1e-6 465 440 0.0089559965 1e-6 467 440 0.0099794976 1e-6 468 440 0.023285598 1e-6 469 440 0.0066529997 1e-6 470 440 0.0071647987 1e-6 471 440 0.0020470999 1e-6 473 440 0.00025589997 1e-6 478 440 0.0010235 1e-6 483 440 0.0038382998 1e-6 490 440 0.00076769991 1e-6 18 441 0.0001679 1e-6 60 441 0.0018465999 1e-6 113 441 0.0001679 1e-6 114 441 0.0001679 1e-6 130 441 0.0001679 1e-6 150 441 0.00083929999 1e-6 160 441 0.010072198 1e-6 165 441 0.0125902 1e-6 170 441 0.0043645985 1e-6 171 441 0.0090649985 1e-6 172 441 0.0001679 1e-6 187 441 0.00067149987 1e-6 188 441 0.0078898966 1e-6 189 441 0.0001679 1e-6 190 441 0.0001679 1e-6 194 441 0.021487299 1e-6 198 441 0.013933197 1e-6 203 441 0.0001679 1e-6 204 441 0.00067149987 1e-6 206 441 0.0001679 1e-6 214 441 0.00067149987 1e-6 219 441 0.0001679 1e-6 221 441 0.0001679 1e-6 224 441 0.046835698 1e-6 233 441 0.010072198 1e-6 234 441 0.0036930998 1e-6 237 441 0.00033569988 1e-6 240 441 0.0001679 1e-6 241 441 0.026355498 1e-6 252 441 0.00083929999 1e-6 270 441 0.0001679 1e-6 277 441 0.044485498 1e-6 279 441 0.0001679 1e-6 282 441 0.0001679 1e-6 284 441 0.0001679 1e-6 288 441 0.0001679 1e-6 292 441 0.0001679 1e-6 293 441 0.018297799 1e-6 295 441 0.016451199 1e-6 312 441 0.0015107999 1e-6 315 441 0.0001679 1e-6 319 441 0.007554099 1e-6 320 441 0.0001679 1e-6 321 441 0.0047003999 1e-6 326 441 0.0035253 1e-6 340 441 0.0001679 1e-6 358 441 0.0016786999 1e-6 370 441 0.019137099 1e-6 371 441 0.0043645985 1e-6 373 441 0.0025179998 1e-6 376 441 0.0026858998 1e-6 384 441 0.0040288977 1e-6 385 441 0.0001679 1e-6 386 441 0.0063789971 1e-6 398 441 0.0001679 1e-6 402 441 0.00033569988 1e-6 417 441 0.00050359988 1e-6 422 441 0.0001679 1e-6 431 441 0.0001679 1e-6 441 441 0.016115498 1e-6 442 441 0.0028537998 1e-6 443 441 0.0068826973 1e-6 444 441 0.0025179998 1e-6 445 441 0.0095685981 1e-6 446 441 0.00033569988 1e-6 447 441 0.0047003999 1e-6 450 441 0.0048681982 1e-6 452 441 0.0058753975 1e-6 453 441 0.0028537998 1e-6 454 441 0.0001679 1e-6 455 441 0.0256841 1e-6 456 441 0.00067149987 1e-6 457 441 0.0040288977 1e-6 458 441 0.00067149987 1e-6 459 441 0.00033569988 1e-6 460 441 0.001343 1e-6 463 441 0.024508998 1e-6 464 441 0.00050359988 1e-6 465 441 0.001343 1e-6 467 441 0.014772497 1e-6 468 441 0.015276097 1e-6 469 441 0.0083934963 1e-6 470 441 0.0092327967 1e-6 471 441 0.0023502 1e-6 473 441 0.0001679 1e-6 478 441 0.0015107999 1e-6 483 441 0.0025179998 1e-6 490 441 0.00067149987 1e-6 4 442 0.00020639999 1e-6 9 442 6.8799985e-05 1e-6 13 442 0.00013759999 1e-6 17 442 0.0010320998 1e-6 18 442 0.00013759999 1e-6 22 442 0.00020639999 1e-6 60 442 0.0040593967 1e-6 82 442 0.0087380968 1e-6 83 442 6.8799985e-05 1e-6 84 442 6.8799985e-05 1e-6 104 442 6.8799985e-05 1e-6 108 442 6.8799985e-05 1e-6 113 442 0.00013759999 1e-6 114 442 0.00027519977 1e-6 120 442 6.8799985e-05 1e-6 126 442 0.00013759999 1e-6 130 442 0.0037841999 1e-6 131 442 0.0074308999 1e-6 132 442 0.0087380968 1e-6 138 442 0.00013759999 1e-6 139 442 0.0063299984 1e-6 143 442 6.8799985e-05 1e-6 149 442 0.00013759999 1e-6 150 442 0.0011008999 1e-6 151 442 6.8799985e-05 1e-6 158 442 0.0052978992 1e-6 159 442 0.0017888998 1e-6 160 442 0.0048162974 1e-6 161 442 0.00013759999 1e-6 162 442 0.004403498 1e-6 165 442 0.00013759999 1e-6 171 442 0.010664597 1e-6 172 442 6.8799985e-05 1e-6 187 442 0.00061919983 1e-6 188 442 0.005917199 1e-6 189 442 0.00013759999 1e-6 190 442 0.00013759999 1e-6 192 442 0.0053666979 1e-6 193 442 0.0054354966 1e-6 194 442 0.0097701997 1e-6 197 442 6.8799985e-05 1e-6 198 442 0.054492898 1e-6 200 442 6.8799985e-05 1e-6 203 442 0.00013759999 1e-6 204 442 0.00020639999 1e-6 206 442 0.00027519977 1e-6 207 442 6.8799985e-05 1e-6 214 442 0.0088068992 1e-6 218 442 6.8799985e-05 1e-6 219 442 0.00061919983 1e-6 221 442 0.00027519977 1e-6 223 442 0.010733496 1e-6 224 442 0.0013760999 1e-6 225 442 0.0025457998 1e-6 226 442 0.00020639999 1e-6 227 442 0.0012384998 1e-6 228 442 0.00013759999 1e-6 230 442 0.0027521998 1e-6 232 442 6.8799985e-05 1e-6 233 442 0.0083252974 1e-6 234 442 0.023255799 1e-6 237 442 0.00048159994 1e-6 240 442 0.0057106987 1e-6 241 442 0.0191276 1e-6 252 442 0.0013760999 1e-6 253 442 0.00013759999 1e-6 270 442 0.004403498 1e-6 272 442 0.0013760999 1e-6 277 442 0.017889097 1e-6 279 442 0.00048159994 1e-6 282 442 6.8799985e-05 1e-6 283 442 6.8799985e-05 1e-6 284 442 0.00020639999 1e-6 290 442 0.0020640998 1e-6 292 442 0.0087380968 1e-6 293 442 0.0072243996 1e-6 294 442 0.00027519977 1e-6 295 442 0.005917199 1e-6 296 442 0.00013759999 1e-6 297 442 0.0052290969 1e-6 298 442 0.010114197 1e-6 300 442 0.00013759999 1e-6 312 442 0.005917199 1e-6 315 442 0.0065363981 1e-6 317 442 6.8799985e-05 1e-6 319 442 6.8799985e-05 1e-6 320 442 0.0018576998 1e-6 321 442 0.0022704999 1e-6 322 442 0.0031649999 1e-6 326 442 0.028347299 1e-6 339 442 0.00061919983 1e-6 340 442 0.00041279988 1e-6 341 442 0.0030273998 1e-6 351 442 0.0023392998 1e-6 356 442 0.0030961998 1e-6 358 442 0.0048850998 1e-6 364 442 0.0024080998 1e-6 369 442 6.8799985e-05 1e-6 370 442 0.00020639999 1e-6 371 442 6.8799985e-05 1e-6 372 442 0.00027519977 1e-6 380 442 6.8799985e-05 1e-6 384 442 6.8799985e-05 1e-6 385 442 0.0017888998 1e-6 386 442 0.00055039977 1e-6 387 442 6.8799985e-05 1e-6 390 442 0.00020639999 1e-6 392 442 0.00013759999 1e-6 393 442 0.00041279988 1e-6 398 442 0.00013759999 1e-6 402 442 0.00020639999 1e-6 409 442 6.8799985e-05 1e-6 415 442 6.8799985e-05 1e-6 417 442 0.00061919983 1e-6 419 442 0.0018576998 1e-6 421 442 6.8799985e-05 1e-6 422 442 0.00027519977 1e-6 423 442 6.8799985e-05 1e-6 424 442 6.8799985e-05 1e-6 425 442 6.8799985e-05 1e-6 428 442 0.00061919983 1e-6 430 442 6.8799985e-05 1e-6 431 442 0.00013759999 1e-6 433 442 6.8799985e-05 1e-6 434 442 6.8799985e-05 1e-6 437 442 0.00020639999 1e-6 442 442 0.030755498 1e-6 443 442 0.0050226972 1e-6 444 442 0.0028209998 1e-6 445 442 0.013141599 1e-6 446 442 0.0010320998 1e-6 447 442 0.0060547963 1e-6 448 442 6.8799985e-05 1e-6 450 442 0.0053666979 1e-6 452 442 0.0056418963 1e-6 453 442 0.0012384998 1e-6 454 442 0.00055039977 1e-6 455 442 0.0399752 1e-6 456 442 0.00075679994 1e-6 457 442 0.010251798 1e-6 458 442 0.0034401999 1e-6 459 442 0.004403498 1e-6 460 442 0.0012384998 1e-6 463 442 0.023393396 1e-6 464 442 0.0018576998 1e-6 465 442 0.0050914995 1e-6 467 442 0.020916499 1e-6 468 442 0.023118198 1e-6 469 442 0.0074996985 1e-6 470 442 0.0083252974 1e-6 471 442 0.0024769998 1e-6 473 442 0.00020639999 1e-6 477 442 0.00020639999 1e-6 478 442 0.0015824998 1e-6 479 442 6.8799985e-05 1e-6 483 442 0.0022016999 1e-6 489 442 0.0024080998 1e-6 490 442 0.0025457998 1e-6 491 442 6.8799985e-05 1e-6 9 443 1.3299999e-05 1e-6 16 443 0.00017279999 1e-6 60 443 1.9899991e-05 1e-6 64 443 0.12640977 1e-6 79 443 6.5999993e-06 1e-6 82 443 1.9899991e-05 1e-6 83 443 1.3299999e-05 1e-6 84 443 1.3299999e-05 1e-6 108 443 1.9899991e-05 1e-6 113 443 2.6599999e-05 1e-6 114 443 6.6499997e-05 1e-6 123 443 0.00026579993 1e-6 126 443 3.9899998e-05 1e-6 127 443 6.5999993e-06 1e-6 134 443 2.6599999e-05 1e-6 141 443 0.00018609999 1e-6 143 443 1.3299999e-05 1e-6 150 443 0.00045189983 1e-6 154 443 0.00036549987 1e-6 169 443 1.3299999e-05 1e-6 187 443 0.000206 1e-6 189 443 0.0001662 1e-6 190 443 0.00011959999 1e-6 192 443 5.3199998e-05 1e-6 194 443 0.00011299999 1e-6 196 443 1.9899991e-05 1e-6 197 443 2.6599999e-05 1e-6 198 443 0.00023929999 1e-6 200 443 5.979999e-05 1e-6 201 443 2.6599999e-05 1e-6 203 443 9.9699988e-05 1e-6 204 443 0.0011564 1e-6 206 443 0.00072439993 1e-6 207 443 7.9799996e-05 1e-6 209 443 2.6599999e-05 1e-6 214 443 0.0004319998 1e-6 217 443 0.0010633999 1e-6 218 443 2.6599999e-05 1e-6 219 443 6.5999993e-06 1e-6 220 443 1.3299999e-05 1e-6 223 443 0.00043859985 1e-6 229 443 3.9899998e-05 1e-6 230 443 6.5999993e-06 1e-6 233 443 0.00013289999 1e-6 234 443 0.023520697 1e-6 237 443 0.0004319998 1e-6 240 443 0.00036549987 1e-6 241 443 0.0002326 1e-6 242 443 0.00043859985 1e-6 248 443 1.3299999e-05 1e-6 250 443 6.5999993e-06 1e-6 251 443 6.5999993e-06 1e-6 252 443 0.00051839999 1e-6 263 443 6.5999993e-06 1e-6 270 443 7.3099989e-05 1e-6 271 443 0.0001794 1e-6 272 443 6.5999993e-06 1e-6 277 443 0.0019673 1e-6 279 443 6.5999993e-06 1e-6 282 443 0.0062872991 1e-6 283 443 0.0014288998 1e-6 284 443 3.3199991e-05 1e-6 292 443 0.00044529978 1e-6 293 443 0.00026579993 1e-6 294 443 9.9699988e-05 1e-6 295 443 8.6399989e-05 1e-6 296 443 0.00014619999 1e-6 297 443 9.2999995e-05 1e-6 312 443 0.00038549979 1e-6 315 443 6.5999993e-06 1e-6 317 443 0.00053169997 1e-6 318 443 9.2999995e-05 1e-6 319 443 0.00065129995 1e-6 322 443 0.0012494999 1e-6 323 443 1.3299999e-05 1e-6 324 443 0.00010629999 1e-6 326 443 0.0023726998 1e-6 327 443 9.2999995e-05 1e-6 328 443 0.002931 1e-6 340 443 0.00029909983 1e-6 341 443 0.00013289999 1e-6 351 443 0.0057887994 1e-6 356 443 4.649999e-05 1e-6 358 443 0.0002923999 1e-6 363 443 6.5999993e-06 1e-6 370 443 0.00013289999 1e-6 371 443 0.00018609999 1e-6 372 443 0.00087729981 1e-6 374 443 0.00029909983 1e-6 375 443 0.00021269999 1e-6 380 443 6.5999993e-06 1e-6 384 443 0.00035889982 1e-6 385 443 0.00025919988 1e-6 386 443 0.00019939999 1e-6 387 443 3.3199991e-05 1e-6 393 443 5.3199998e-05 1e-6 394 443 3.3199991e-05 1e-6 395 443 2.6599999e-05 1e-6 397 443 3.3199991e-05 1e-6 402 443 0.00041209999 1e-6 408 443 0.020782497 1e-6 412 443 0.00088389986 1e-6 414 443 0.00023929999 1e-6 417 443 6.5999993e-06 1e-6 419 443 6.5999993e-06 1e-6 422 443 0.00011299999 1e-6 423 443 6.5999993e-06 1e-6 425 443 6.5999993e-06 1e-6 430 443 2.6599999e-05 1e-6 431 443 1.9899991e-05 1e-6 432 443 1.9899991e-05 1e-6 433 443 5.979999e-05 1e-6 434 443 0.00015289999 1e-6 439 443 1.3299999e-05 1e-6 442 443 3.3199991e-05 1e-6 443 443 0.054571599 1e-6 444 443 0.00011959999 1e-6 445 443 0.010421198 1e-6 446 443 0.0006446999 1e-6 447 443 0.0021201 1e-6 448 443 0.00050509977 1e-6 449 443 0.013578098 1e-6 450 443 0.0065597966 1e-6 452 443 0.010035697 1e-6 453 443 0.0016681999 1e-6 454 443 0.0025189 1e-6 455 443 0.0096435994 1e-6 456 443 0.0007509999 1e-6 457 443 0.0034693 1e-6 458 443 0.00039209984 1e-6 459 443 0.0013557998 1e-6 460 443 0.0038081999 1e-6 463 443 0.016283099 1e-6 464 443 0.00012629999 1e-6 465 443 0.0014622 1e-6 467 443 0.012335297 1e-6 468 443 0.0014421998 1e-6 469 443 0.0082212985 1e-6 470 443 0.0036553999 1e-6 471 443 0.0026916999 1e-6 472 443 0.00041869981 1e-6 473 443 7.3099989e-05 1e-6 477 443 0.00011299999 1e-6 478 443 0.0015152998 1e-6 483 443 0.00107 1e-6 486 443 6.5999993e-06 1e-6 489 443 0.00049849995 1e-6 490 443 0.0028910998 1e-6 491 443 1.3299999e-05 1e-6 18 444 6.8799985e-05 1e-6 22 444 1.38e-05 1e-6 25 444 1.38e-05 1e-6 60 444 0.0023518999 1e-6 70 444 0.020355999 1e-6 108 444 4.1299994e-05 1e-6 114 444 0.00010999999 1e-6 126 444 4.1299994e-05 1e-6 134 444 0.00045389985 1e-6 135 444 4.1299994e-05 1e-6 150 444 0.0050614998 1e-6 153 444 0.00016499999 1e-6 187 444 0.0001926 1e-6 189 444 0.0001238 1e-6 190 444 0.00016499999 1e-6 192 444 9.6299991e-05 1e-6 194 444 9.6299991e-05 1e-6 196 444 6.8799985e-05 1e-6 197 444 0.00060519995 1e-6 198 444 0.00041259988 1e-6 200 444 1.38e-05 1e-6 201 444 1.38e-05 1e-6 202 444 2.7499991e-05 1e-6 203 444 9.6299991e-05 1e-6 204 444 0.002627 1e-6 206 444 0.00017879999 1e-6 207 444 6.8799985e-05 1e-6 209 444 2.7499991e-05 1e-6 223 444 0.0031633999 1e-6 229 444 0.0011002999 1e-6 230 444 0.00034389994 1e-6 231 444 0.00015129999 1e-6 233 444 6.8799985e-05 1e-6 234 444 0.043380197 1e-6 237 444 0.0079497993 1e-6 240 444 6.8799985e-05 1e-6 241 444 0.0011278 1e-6 242 444 0.0018155 1e-6 252 444 0.0012379 1e-6 272 444 0.00015129999 1e-6 282 444 0.00078399992 1e-6 283 444 0.0014028999 1e-6 307 444 1.38e-05 1e-6 308 444 8.2499988e-05 1e-6 309 444 1.38e-05 1e-6 313 444 0.0038235998 1e-6 317 444 0.00039889989 1e-6 318 444 2.7499991e-05 1e-6 319 444 2.7499991e-05 1e-6 322 444 0.0012516 1e-6 323 444 0.0001238 1e-6 328 444 0.0053640977 1e-6 340 444 0.00048139994 1e-6 341 444 4.1299994e-05 1e-6 350 444 9.6299991e-05 1e-6 351 444 0.0025306998 1e-6 354 444 9.6299991e-05 1e-6 356 444 2.7499991e-05 1e-6 358 444 0.00024759979 1e-6 366 444 6.8799985e-05 1e-6 368 444 2.7499991e-05 1e-6 370 444 0.00017879999 1e-6 371 444 0.0001375 1e-6 372 444 0.0035484999 1e-6 373 444 0.0011965998 1e-6 374 444 0.00038509979 1e-6 375 444 0.00053639989 1e-6 376 444 0.00075649982 1e-6 384 444 0.00042639999 1e-6 385 444 5.4999997e-05 1e-6 387 444 4.1299994e-05 1e-6 390 444 6.8799985e-05 1e-6 391 444 4.1299994e-05 1e-6 392 444 0.00042639999 1e-6 393 444 0.00016499999 1e-6 394 444 0.0037685998 1e-6 395 444 4.1299994e-05 1e-6 397 444 0.0032046998 1e-6 402 444 0.0175776 1e-6 408 444 0.0026544998 1e-6 412 444 0.0017604998 1e-6 422 444 0.0001238 1e-6 431 444 1.38e-05 1e-6 432 444 2.7499991e-05 1e-6 433 444 5.4999997e-05 1e-6 434 444 5.4999997e-05 1e-6 438 444 2.7499991e-05 1e-6 441 444 4.1299994e-05 1e-6 442 444 0.00059139985 1e-6 443 444 0.0017604998 1e-6 444 444 0.0065743998 1e-6 445 444 0.014758099 1e-6 446 444 0.0013478999 1e-6 447 444 0.00023379999 1e-6 448 444 0.00090779993 1e-6 449 444 0.0001926 1e-6 450 444 0.0067119971 1e-6 452 444 0.013753999 1e-6 453 444 0.0022419 1e-6 454 444 0.0040161982 1e-6 455 444 0.027081698 1e-6 456 444 0.0059554987 1e-6 457 444 0.0065606982 1e-6 458 444 0.0019393 1e-6 459 444 0.0001926 1e-6 460 444 0.013987798 1e-6 463 444 0.021538798 1e-6 464 444 5.4999997e-05 1e-6 465 444 0.0011965998 1e-6 467 444 0.016656097 1e-6 468 444 0.0086924993 1e-6 469 444 0.013795298 1e-6 470 444 0.0015816998 1e-6 471 444 0.040161699 1e-6 473 444 4.1299994e-05 1e-6 474 444 4.1299994e-05 1e-6 475 444 4.1299994e-05 1e-6 476 444 2.7499991e-05 1e-6 477 444 0.0007976999 1e-6 478 444 0.0016229998 1e-6 483 444 0.0017879999 1e-6 489 444 0.0070282966 1e-6 490 444 0.00017879999 1e-6 491 444 0.00056389999 1e-6 0 445 1.6499995e-05 1e-6 1 445 3.2999997e-06 1e-6 2 445 8.8899993e-05 1e-6 3 445 1.6499995e-05 1e-6 5 445 4.2799991e-05 1e-6 6 445 5.2699994e-05 1e-6 7 445 9.8999999e-06 1e-6 9 445 9.8999999e-06 1e-6 16 445 3.2999997e-06 1e-6 18 445 5.9299986e-05 1e-6 22 445 3.2999997e-06 1e-6 24 445 1.32e-05 1e-6 25 445 3.2999997e-06 1e-6 60 445 0.0029501999 1e-6 62 445 2.9599993e-05 1e-6 64 445 0.00015149999 1e-6 68 445 9.8799996e-05 1e-6 69 445 4.6099987e-05 1e-6 73 445 9.8999999e-06 1e-6 75 445 6.5999993e-06 1e-6 79 445 3.2999997e-06 1e-6 82 445 1.9799991e-05 1e-6 83 445 1.6499995e-05 1e-6 84 445 1.6499995e-05 1e-6 108 445 2.2999986e-05 1e-6 113 445 3.2899989e-05 1e-6 114 445 8.2299986e-05 1e-6 126 445 3.6199999e-05 1e-6 127 445 9.8999999e-06 1e-6 134 445 3.2999997e-06 1e-6 141 445 9.8999999e-06 1e-6 150 445 0.00020089999 1e-6 154 445 0.00077709998 1e-6 169 445 0.00010209999 1e-6 189 445 1.6499995e-05 1e-6 190 445 0.00011849999 1e-6 192 445 0.00038519991 1e-6 194 445 8.5599997e-05 1e-6 196 445 1.32e-05 1e-6 197 445 0.0001449 1e-6 198 445 0.00070789992 1e-6 200 445 3.6199999e-05 1e-6 201 445 2.2999986e-05 1e-6 203 445 8.2299986e-05 1e-6 204 445 0.0010042998 1e-6 206 445 0.00031279982 1e-6 207 445 5.9299986e-05 1e-6 209 445 1.9799991e-05 1e-6 214 445 0.00037539983 1e-6 215 445 0.000158 1e-6 217 445 4.9399998e-05 1e-6 219 445 3.2999997e-06 1e-6 223 445 0.00022059999 1e-6 229 445 0.00016459999 1e-6 233 445 0.00023049999 1e-6 234 445 0.027138099 1e-6 237 445 0.010543097 1e-6 240 445 3.2999997e-06 1e-6 241 445 3.2999997e-06 1e-6 242 445 0.00017779999 1e-6 248 445 1.32e-05 1e-6 250 445 9.8999999e-06 1e-6 251 445 3.2999997e-06 1e-6 252 445 2.2999986e-05 1e-6 263 445 3.2999997e-06 1e-6 271 445 3.2999997e-06 1e-6 272 445 0.00012839999 1e-6 277 445 3.2999997e-06 1e-6 279 445 3.2999997e-06 1e-6 282 445 6.5999993e-06 1e-6 283 445 9.8999999e-06 1e-6 313 445 1.6499995e-05 1e-6 316 445 0.00010539999 1e-6 317 445 0.0001317 1e-6 322 445 8.8899993e-05 1e-6 323 445 2.9599993e-05 1e-6 326 445 0.00027989992 1e-6 328 445 0.00055319979 1e-6 329 445 2.6299997e-05 1e-6 335 445 4.2799991e-05 1e-6 337 445 4.6099987e-05 1e-6 340 445 0.00014819999 1e-6 343 445 3.9499995e-05 1e-6 351 445 3.6199999e-05 1e-6 356 445 4.2799991e-05 1e-6 358 445 0.00033589988 1e-6 363 445 6.5999993e-06 1e-6 366 445 4.6099987e-05 1e-6 368 445 0.0001449 1e-6 372 445 9.8999999e-06 1e-6 375 445 3.2999997e-06 1e-6 376 445 3.2999997e-06 1e-6 380 445 6.5999993e-06 1e-6 384 445 2.2999986e-05 1e-6 387 445 3.2899989e-05 1e-6 392 445 3.2999997e-06 1e-6 393 445 2.9599993e-05 1e-6 394 445 0.00060909986 1e-6 397 445 0.00038849982 1e-6 401 445 0.0019195999 1e-6 402 445 0.0052385963 1e-6 408 445 2.2999986e-05 1e-6 412 445 0.00010209999 1e-6 419 445 9.8999999e-06 1e-6 422 445 9.55e-05 1e-6 423 445 1.32e-05 1e-6 425 445 9.8999999e-06 1e-6 430 445 2.2999986e-05 1e-6 431 445 1.6499995e-05 1e-6 432 445 1.6499995e-05 1e-6 433 445 4.6099987e-05 1e-6 434 445 5.599999e-05 1e-6 442 445 7.2399998e-05 1e-6 443 445 0.0037141 1e-6 444 445 0.00015479999 1e-6 445 445 0.1266225 1e-6 446 445 0.00071449997 1e-6 447 445 0.00037869997 1e-6 448 445 0.00056959991 1e-6 449 445 0.0031148999 1e-6 450 445 0.016440198 1e-6 452 445 0.00063549983 1e-6 453 445 0.00028649997 1e-6 454 445 0.00025349995 1e-6 455 445 0.025369897 1e-6 456 445 0.010299399 1e-6 457 445 0.0036778999 1e-6 458 445 0.000214 1e-6 459 445 0.00024369999 1e-6 460 445 0.015541296 1e-6 463 445 0.012390297 1e-6 464 445 0.00014159999 1e-6 465 445 0.00090549979 1e-6 467 445 0.023940898 1e-6 468 445 0.0011062999 1e-6 469 445 0.0048961975 1e-6 470 445 0.0040861964 1e-6 471 445 0.0393341 1e-6 473 445 8.5599997e-05 1e-6 476 445 1.6499995e-05 1e-6 477 445 2.9599993e-05 1e-6 478 445 0.0011755 1e-6 483 445 0.001373 1e-6 489 445 0.0014289999 1e-6 490 445 0.00031609996 1e-6 491 445 5.2699994e-05 1e-6 1 446 1.3399999e-05 1e-6 7 446 1.3399999e-05 1e-6 11 446 1.3399999e-05 1e-6 16 446 1.3399999e-05 1e-6 18 446 1.3399999e-05 1e-6 22 446 0.00012069999 1e-6 25 446 1.3399999e-05 1e-6 60 446 0.012515098 1e-6 66 446 8.0499987e-05 1e-6 68 446 0.0080616996 1e-6 69 446 0.0037826998 1e-6 73 446 0.0007511999 1e-6 75 446 0.00052309991 1e-6 82 446 0.00012069999 1e-6 83 446 1.3399999e-05 1e-6 84 446 1.3399999e-05 1e-6 86 446 1.3399999e-05 1e-6 87 446 1.3399999e-05 1e-6 88 446 1.3399999e-05 1e-6 90 446 1.3399999e-05 1e-6 93 446 1.3399999e-05 1e-6 95 446 1.3399999e-05 1e-6 96 446 2.6799986e-05 1e-6 97 446 1.3399999e-05 1e-6 105 446 2.6799986e-05 1e-6 106 446 1.3399999e-05 1e-6 108 446 6.7099987e-05 1e-6 114 446 0.00012069999 1e-6 115 446 1.3399999e-05 1e-6 121 446 1.3399999e-05 1e-6 122 446 1.3399999e-05 1e-6 125 446 1.3399999e-05 1e-6 126 446 4.0199986e-05 1e-6 134 446 0.00037559983 1e-6 141 446 0.0030180998 1e-6 150 446 0.0002950998 1e-6 153 446 1.3399999e-05 1e-6 154 446 0.00037559983 1e-6 187 446 2.6799986e-05 1e-6 189 446 9.3899987e-05 1e-6 190 446 0.00010729999 1e-6 192 446 2.6799986e-05 1e-6 194 446 8.0499987e-05 1e-6 196 446 1.3399999e-05 1e-6 197 446 1.3399999e-05 1e-6 198 446 8.0499987e-05 1e-6 200 446 6.7099987e-05 1e-6 201 446 2.6799986e-05 1e-6 203 446 6.7099987e-05 1e-6 204 446 0.00033529988 1e-6 206 446 0.00017439999 1e-6 207 446 4.0199986e-05 1e-6 209 446 1.3399999e-05 1e-6 214 446 0.0012474998 1e-6 215 446 1.3399999e-05 1e-6 217 446 0.00014759999 1e-6 223 446 9.3899987e-05 1e-6 228 446 1.3399999e-05 1e-6 229 446 6.7099987e-05 1e-6 230 446 2.6799986e-05 1e-6 231 446 4.0199986e-05 1e-6 233 446 0.00071089994 1e-6 234 446 0.036928199 1e-6 237 446 0.00028169993 1e-6 240 446 0.00079139997 1e-6 242 446 1.3399999e-05 1e-6 252 446 1.3399999e-05 1e-6 260 446 1.3399999e-05 1e-6 267 446 2.6799986e-05 1e-6 272 446 1.3399999e-05 1e-6 277 446 1.3399999e-05 1e-6 279 446 2.6799986e-05 1e-6 282 446 0.0015291998 1e-6 283 446 0.005808197 1e-6 295 446 0.001006 1e-6 296 446 0.00025489996 1e-6 316 446 0.0021193998 1e-6 317 446 0.0002950998 1e-6 318 446 2.6799986e-05 1e-6 319 446 0.00028169993 1e-6 322 446 0.0021327999 1e-6 324 446 0.00042919978 1e-6 326 446 0.0006573 1e-6 327 446 6.7099987e-05 1e-6 328 446 0.0019717999 1e-6 330 446 2.6799986e-05 1e-6 331 446 9.3899987e-05 1e-6 340 446 0.00033529988 1e-6 350 446 0.0023741999 1e-6 351 446 0.00081819994 1e-6 356 446 4.0199986e-05 1e-6 358 446 0.0013279999 1e-6 368 446 1.3399999e-05 1e-6 372 446 5.3699987e-05 1e-6 374 446 0.00046949997 1e-6 375 446 2.6799986e-05 1e-6 377 446 1.3399999e-05 1e-6 380 446 1.3399999e-05 1e-6 384 446 8.0499987e-05 1e-6 387 446 4.0199986e-05 1e-6 390 446 0.0011669998 1e-6 394 446 4.0199986e-05 1e-6 397 446 2.6799986e-05 1e-6 400 446 2.6799986e-05 1e-6 402 446 0.00026829983 1e-6 406 446 0.035130799 1e-6 407 446 0.0014754999 1e-6 412 446 0.0017437998 1e-6 413 446 1.3399999e-05 1e-6 414 446 0.0013414 1e-6 419 446 0.0014487 1e-6 422 446 0.00022799999 1e-6 431 446 1.3399999e-05 1e-6 432 446 1.3399999e-05 1e-6 433 446 2.6799986e-05 1e-6 434 446 2.6799986e-05 1e-6 442 446 0.0010998999 1e-6 443 446 0.0007511999 1e-6 444 446 6.7099987e-05 1e-6 445 446 0.0032460999 1e-6 446 446 0.27338696 1e-6 447 446 0.00021459999 1e-6 448 446 0.00013409999 1e-6 449 446 0.0120993 1e-6 450 446 0.0082762986 1e-6 452 446 0.0078067966 1e-6 453 446 0.0022400999 1e-6 454 446 0.0008450998 1e-6 455 446 0.013749197 1e-6 456 446 0.0006438999 1e-6 457 446 0.0035009999 1e-6 458 446 0.016847797 1e-6 459 446 0.0009657999 1e-6 460 446 0.018189099 1e-6 463 446 0.030167699 1e-6 464 446 8.0499987e-05 1e-6 465 446 0.00071089994 1e-6 467 446 0.038323298 1e-6 468 446 0.0040777996 1e-6 469 446 0.0028436999 1e-6 470 446 0.0019987 1e-6 471 446 0.0030314999 1e-6 473 446 5.3699987e-05 1e-6 474 446 1.3399999e-05 1e-6 477 446 4.0199986e-05 1e-6 478 446 0.00093899993 1e-6 483 446 0.00072429981 1e-6 486 446 0.0023339998 1e-6 489 446 0.00021459999 1e-6 490 446 0.042427897 1e-6 1 447 0.00024909992 1e-6 7 447 7.2999992e-06 1e-6 9 447 8.0599988e-05 1e-6 11 447 0.00035169977 1e-6 16 447 1.4699999e-05 1e-6 17 447 0.0001466 1e-6 18 447 7.2999992e-06 1e-6 22 447 7.2999992e-06 1e-6 25 447 7.2999992e-06 1e-6 60 447 0.0017074 1e-6 64 447 0.00087939994 1e-6 66 447 2.929999e-05 1e-6 68 447 0.0028944998 1e-6 69 447 0.0013629999 1e-6 73 447 0.00027109985 1e-6 75 447 0.0014728999 1e-6 79 447 7.2999992e-06 1e-6 82 447 0.0036199999 1e-6 83 447 0.00028579985 1e-6 84 447 0.00043969997 1e-6 86 447 0.00016119999 1e-6 87 447 0.0001832 1e-6 88 447 0.0001905 1e-6 89 447 0.00027109985 1e-6 90 447 0.00041039987 1e-6 91 447 4.3999986e-05 1e-6 92 447 9.5299998e-05 1e-6 93 447 0.00049099978 1e-6 94 447 2.1999993e-05 1e-6 95 447 0.00024909992 1e-6 96 447 0.00079139997 1e-6 97 447 0.00032239989 1e-6 98 447 5.1299998e-05 1e-6 99 447 7.2999992e-06 1e-6 100 447 3.6599988e-05 1e-6 103 447 1.4699999e-05 1e-6 105 447 0.00082069985 1e-6 106 447 3.6599988e-05 1e-6 107 447 7.3299991e-05 1e-6 108 447 0.00081339991 1e-6 109 447 0.00013189999 1e-6 113 447 6.5999993e-05 1e-6 114 447 0.00015389999 1e-6 115 447 0.00026379991 1e-6 116 447 0.00015389999 1e-6 121 447 0.00032239989 1e-6 122 447 0.0002272 1e-6 124 447 2.1999993e-05 1e-6 125 447 0.00016849999 1e-6 126 447 7.3299991e-05 1e-6 127 447 1.4699999e-05 1e-6 130 447 0.00025649997 1e-6 134 447 0.0001466 1e-6 141 447 2.1999993e-05 1e-6 150 447 0.00093799992 1e-6 152 447 5.1299998e-05 1e-6 154 447 0.00034439983 1e-6 169 447 3.6599988e-05 1e-6 187 447 1.4699999e-05 1e-6 189 447 1.4699999e-05 1e-6 190 447 0.00093799992 1e-6 192 447 3.6599988e-05 1e-6 193 447 7.2999992e-06 1e-6 194 447 9.5299998e-05 1e-6 195 447 4.3999986e-05 1e-6 196 447 0.00072549982 1e-6 197 447 2.1999993e-05 1e-6 198 447 0.0002272 1e-6 199 447 1.4699999e-05 1e-6 200 447 0.00011719999 1e-6 201 447 1.4699999e-05 1e-6 203 447 8.0599988e-05 1e-6 204 447 0.0018906 1e-6 206 447 0.00098189991 1e-6 207 447 5.8599995e-05 1e-6 209 447 1.4699999e-05 1e-6 214 447 0.00091599999 1e-6 217 447 3.6599988e-05 1e-6 219 447 8.79e-05 1e-6 223 447 0.00026379991 1e-6 228 447 7.2999992e-06 1e-6 229 447 0.0001466 1e-6 230 447 7.2999992e-06 1e-6 231 447 5.8599995e-05 1e-6 233 447 0.00011719999 1e-6 234 447 0.064676344 1e-6 237 447 0.0013776999 1e-6 240 447 0.00010989999 1e-6 241 447 0.00083539984 1e-6 242 447 0.00035909982 1e-6 248 447 1.4699999e-05 1e-6 250 447 7.2999992e-06 1e-6 251 447 7.2999992e-06 1e-6 252 447 6.5999993e-05 1e-6 263 447 7.2999992e-06 1e-6 267 447 7.2999992e-06 1e-6 272 447 7.2999992e-06 1e-6 277 447 1.4699999e-05 1e-6 282 447 4.3999986e-05 1e-6 283 447 7.2999992e-06 1e-6 284 447 2.1999993e-05 1e-6 317 447 0.0001905 1e-6 318 447 7.2999992e-06 1e-6 319 447 2.929999e-05 1e-6 322 447 0.0001832 1e-6 326 447 1.4699999e-05 1e-6 328 447 2.1999993e-05 1e-6 330 447 7.2999992e-06 1e-6 331 447 3.6599988e-05 1e-6 340 447 0.00015389999 1e-6 341 447 2.1999993e-05 1e-6 351 447 3.6599988e-05 1e-6 356 447 3.6599988e-05 1e-6 358 447 0.00049099978 1e-6 363 447 7.2999992e-06 1e-6 371 447 0.00032239989 1e-6 372 447 7.2999992e-06 1e-6 375 447 0.00024179999 1e-6 380 447 7.2999992e-06 1e-6 384 447 2.929999e-05 1e-6 385 447 0.00030779978 1e-6 387 447 6.5999993e-05 1e-6 388 447 3.6599988e-05 1e-6 390 447 0.00026379991 1e-6 391 447 0.00040299981 1e-6 392 447 0.0008280999 1e-6 393 447 0.0014509 1e-6 394 447 0.00065219984 1e-6 395 447 0.0001832 1e-6 397 447 0.00088669988 1e-6 402 447 0.00012459999 1e-6 403 447 0.0063825995 1e-6 404 447 0.015300699 1e-6 405 447 0.013197597 1e-6 408 447 0.0001466 1e-6 412 447 0.00043969997 1e-6 413 447 7.2999992e-06 1e-6 414 447 0.0001832 1e-6 419 447 1.4699999e-05 1e-6 422 447 0.00010989999 1e-6 423 447 2.1999993e-05 1e-6 425 447 1.4699999e-05 1e-6 430 447 2.929999e-05 1e-6 431 447 2.929999e-05 1e-6 432 447 1.4699999e-05 1e-6 433 447 5.1299998e-05 1e-6 434 447 5.8599995e-05 1e-6 441 447 0.0001905 1e-6 442 447 0.00033709989 1e-6 443 447 0.0014288998 1e-6 444 447 0.00040299981 1e-6 445 447 0.011358298 1e-6 446 447 0.0017146999 1e-6 447 447 0.036822896 1e-6 448 447 0.0013776999 1e-6 449 447 0.023346797 1e-6 450 447 0.011013899 1e-6 452 447 0.0020738 1e-6 453 447 0.0013043999 1e-6 454 447 0.0055984966 1e-6 455 447 0.018781498 1e-6 456 447 0.00065949978 1e-6 457 447 0.0057670996 1e-6 458 447 0.021302298 1e-6 459 447 0.0007693998 1e-6 460 447 0.0047044978 1e-6 463 447 0.012127697 1e-6 464 447 0.00093059987 1e-6 465 447 0.0017952998 1e-6 467 447 0.038434997 1e-6 468 447 0.016165398 1e-6 469 447 0.0032169998 1e-6 470 447 0.020606197 1e-6 471 447 0.0018173 1e-6 472 447 0.0010258998 1e-6 473 447 0.0001466 1e-6 474 447 7.2999992e-06 1e-6 477 447 0.00013189999 1e-6 478 447 0.0011064999 1e-6 483 447 0.00024909992 1e-6 489 447 0.00015389999 1e-6 490 447 0.046129398 1e-6 491 447 7.2999992e-06 1e-6 23 448 0.019549597 1e-6 67 448 0.061680298 1e-6 108 448 6.1899991e-05 1e-6 114 448 0.0001237 1e-6 126 448 6.1899991e-05 1e-6 154 448 0.0069907978 1e-6 187 448 0.00092799985 1e-6 189 448 0.0001237 1e-6 190 448 6.1899991e-05 1e-6 194 448 0.0001237 1e-6 197 448 6.1899991e-05 1e-6 203 448 0.0001237 1e-6 204 448 0.0001237 1e-6 206 448 0.0001237 1e-6 207 448 6.1899991e-05 1e-6 234 448 0.017136797 1e-6 237 448 0.00018559999 1e-6 272 448 0.004083097 1e-6 322 448 0.0045780987 1e-6 328 448 0.0028457998 1e-6 350 448 0.0054441988 1e-6 351 448 0.0051348992 1e-6 356 448 6.1899991e-05 1e-6 358 448 0.00018559999 1e-6 371 448 0.00018559999 1e-6 372 448 0.0016703999 1e-6 373 448 0.00049489993 1e-6 387 448 6.1899991e-05 1e-6 389 448 0.0003711998 1e-6 393 448 0.00061869994 1e-6 402 448 6.1899991e-05 1e-6 414 448 0.0031551998 1e-6 422 448 0.0001237 1e-6 433 448 6.1899991e-05 1e-6 434 448 6.1899991e-05 1e-6 443 448 0.0003711998 1e-6 444 448 6.1899991e-05 1e-6 445 448 0.0065577999 1e-6 446 448 0.00068049994 1e-6 447 448 0.0047636963 1e-6 448 448 0.0013609999 1e-6 450 448 0.0044542998 1e-6 452 448 0.043182399 1e-6 453 448 0.010888398 1e-6 454 448 0.0022272 1e-6 455 448 0.0071145967 1e-6 457 448 0.015590198 1e-6 458 448 0.00068049994 1e-6 459 448 0.00098989997 1e-6 460 448 0.0076713972 1e-6 463 448 0.013486799 1e-6 464 448 0.0001237 1e-6 465 448 0.00068049994 1e-6 467 448 0.013362996 1e-6 468 448 0.00092799985 1e-6 469 448 0.0052585974 1e-6 470 448 0.0025364999 1e-6 471 448 0.0044542998 1e-6 473 448 6.1899991e-05 1e-6 478 448 0.0028457998 1e-6 483 448 0.0001237 1e-6 489 448 6.1899991e-05 1e-6 490 448 0.00024749991 1e-6 9 449 0.00016499999 1e-6 16 449 8.2499988e-05 1e-6 60 449 0.0034641998 1e-6 79 449 8.2499988e-05 1e-6 82 449 0.00016499999 1e-6 83 449 0.00016499999 1e-6 84 449 0.00016499999 1e-6 108 449 0.00024739979 1e-6 113 449 0.00032989983 1e-6 114 449 0.00049489993 1e-6 126 449 0.00024739979 1e-6 127 449 8.2499988e-05 1e-6 169 449 0.0027218999 1e-6 189 449 0.00024739979 1e-6 190 449 0.00024739979 1e-6 192 449 0.00024739979 1e-6 194 449 0.00049489993 1e-6 196 449 0.00016499999 1e-6 197 449 0.00016499999 1e-6 198 449 0.0016496 1e-6 200 449 0.00032989983 1e-6 201 449 0.00016499999 1e-6 203 449 0.00041239988 1e-6 204 449 0.002227 1e-6 206 449 0.00098979985 1e-6 207 449 0.00032989983 1e-6 209 449 0.00016499999 1e-6 223 449 0.00024739979 1e-6 234 449 0.0010722999 1e-6 237 449 0.0032992 1e-6 242 449 0.0026393998 1e-6 248 449 8.2499988e-05 1e-6 250 449 8.2499988e-05 1e-6 252 449 0.00016499999 1e-6 272 449 8.2499988e-05 1e-6 317 449 0.0010722999 1e-6 356 449 8.2499988e-05 1e-6 358 449 0.00032989983 1e-6 363 449 8.2499988e-05 1e-6 384 449 8.2499988e-05 1e-6 387 449 0.00024739979 1e-6 394 449 0.00024739979 1e-6 397 449 0.00032989983 1e-6 402 449 0.0014022 1e-6 412 449 0.0018970999 1e-6 419 449 8.2499988e-05 1e-6 422 449 0.00049489993 1e-6 423 449 0.00016499999 1e-6 425 449 8.2499988e-05 1e-6 430 449 0.00024739979 1e-6 431 449 0.00016499999 1e-6 432 449 0.00016499999 1e-6 433 449 0.00024739979 1e-6 434 449 0.00032989983 1e-6 443 449 0.00024739979 1e-6 444 449 0.0037115999 1e-6 445 449 0.0038765999 1e-6 446 449 8.2499988e-05 1e-6 447 449 0.0037115999 1e-6 449 449 8.2499988e-05 1e-6 450 449 0.024166897 1e-6 452 449 0.0017320998 1e-6 453 449 0.0006597999 1e-6 454 449 0.0032992 1e-6 455 449 0.0044539981 1e-6 456 449 0.0019794998 1e-6 457 449 0.025074199 1e-6 458 449 0.0017320998 1e-6 459 449 0.00041239988 1e-6 460 449 0.029280797 1e-6 463 449 0.055262297 1e-6 464 449 0.0027218999 1e-6 465 449 0.0020619999 1e-6 467 449 0.024744298 1e-6 468 449 0.022352397 1e-6 469 449 0.018888198 1e-6 470 449 0.024661798 1e-6 471 449 0.0013196999 1e-6 473 449 0.00049489993 1e-6 477 449 0.0016496 1e-6 478 449 0.0027218999 1e-6 483 449 0.005773697 1e-6 489 449 0.00098979985 1e-6 490 449 0.0018970999 1e-6 9 450 1.3e-05 1e-6 16 450 6.4999995e-06 1e-6 18 450 0.0027947 1e-6 63 450 0.029890999 1e-6 79 450 3.2999997e-06 1e-6 82 450 2.2799999e-05 1e-6 83 450 1.6299993e-05 1e-6 84 450 1.3e-05 1e-6 108 450 2.929999e-05 1e-6 113 450 3.5899997e-05 1e-6 114 450 8.7999986e-05 1e-6 126 450 4.2399988e-05 1e-6 127 450 6.4999995e-06 1e-6 150 450 0.00044999993 1e-6 187 450 3.2999997e-06 1e-6 189 450 0.00029679993 1e-6 190 450 9.7799988e-05 1e-6 192 450 9.1299997e-05 1e-6 194 450 0.00018589999 1e-6 196 450 3.2599986e-05 1e-6 197 450 5.54e-05 1e-6 200 450 5.54e-05 1e-6 201 450 2.6099995e-05 1e-6 203 450 0.00018259999 1e-6 204 450 0.0015391998 1e-6 206 450 0.0012163999 1e-6 207 450 0.00014349999 1e-6 209 450 0.00016629999 1e-6 219 450 9.7999991e-06 1e-6 223 450 1.6299993e-05 1e-6 234 450 0.00042069983 1e-6 237 450 0.0001141 1e-6 240 450 0.00013039999 1e-6 241 450 6.4999995e-06 1e-6 248 450 1.6299993e-05 1e-6 250 450 9.7999991e-06 1e-6 251 450 3.2999997e-06 1e-6 252 450 1.6299993e-05 1e-6 263 450 3.2999997e-06 1e-6 272 450 3.2999997e-06 1e-6 279 450 6.4999995e-06 1e-6 295 450 0.00059029995 1e-6 322 450 3.2999997e-06 1e-6 359 450 0.0001011 1e-6 363 450 1.3e-05 1e-6 380 450 3.2999997e-06 1e-6 384 450 0.00047609978 1e-6 387 450 3.5899997e-05 1e-6 389 450 0.018637098 1e-6 390 450 0.00059029995 1e-6 392 450 0.0012750998 1e-6 393 450 7.83e-05 1e-6 394 450 9.7999991e-06 1e-6 395 450 0.00010759999 1e-6 397 450 6.4999995e-06 1e-6 402 450 4.5699999e-05 1e-6 412 450 0.00034569995 1e-6 419 450 6.4999995e-06 1e-6 422 450 0.00021849999 1e-6 423 450 1.3e-05 1e-6 425 450 9.7999991e-06 1e-6 430 450 2.6099995e-05 1e-6 431 450 2.6099995e-05 1e-6 432 450 3.9099992e-05 1e-6 433 450 0.00010759999 1e-6 434 450 0.00016629999 1e-6 442 450 7.4999989e-05 1e-6 443 450 5.54e-05 1e-6 444 450 0.00078589981 1e-6 445 450 0.0012945998 1e-6 446 450 2.2799999e-05 1e-6 447 450 0.00086419983 1e-6 448 450 9.7999991e-06 1e-6 449 450 9.7999991e-06 1e-6 450 450 0.0133182 1e-6 452 450 0.0052046999 1e-6 453 450 0.00033919979 1e-6 454 450 0.0010239999 1e-6 455 450 0.0016728998 1e-6 456 450 0.0003847999 1e-6 457 450 0.0035969999 1e-6 458 450 0.00031959987 1e-6 459 450 0.0036231 1e-6 460 450 0.0018000999 1e-6 463 450 0.019996896 1e-6 464 450 0.001187 1e-6 465 450 0.0033490998 1e-6 467 450 0.013367198 1e-6 468 450 0.015812997 1e-6 469 450 0.0013630998 1e-6 470 450 0.0043730997 1e-6 471 450 0.0032414999 1e-6 472 450 0.00020539999 1e-6 473 450 9.1299997e-05 1e-6 477 450 4.8899994e-05 1e-6 478 450 0.0011445999 1e-6 483 450 0.0042947978 1e-6 489 450 0.00049239979 1e-6 490 450 0.012303997 1e-6 450 451 0.023809496 1e-6 463 451 0.071428597 1e-6 467 451 0.023809496 1e-6 468 451 0.023809496 1e-6 469 451 0.023809496 1e-6 472 451 0.14285707 1e-6 473 451 0.071428597 1e-6 9 452 9.4999996e-06 1e-6 16 452 8.849999e-05 1e-6 18 452 0.0029249999 1e-6 22 452 0.082447052 1e-6 25 452 7.5899996e-05 1e-6 65 452 0.043742198 1e-6 72 452 0.0024569998 1e-6 79 452 3.1999998e-06 1e-6 82 452 1.26e-05 1e-6 83 452 9.4999996e-06 1e-6 84 452 9.4999996e-06 1e-6 108 452 1.8999999e-05 1e-6 113 452 2.2099994e-05 1e-6 114 452 6.3199986e-05 1e-6 126 452 3.1599993e-05 1e-6 127 452 3.1999998e-06 1e-6 135 452 2.2099994e-05 1e-6 150 452 0.00039529987 1e-6 187 452 7.5899996e-05 1e-6 188 452 1.5799989e-05 1e-6 189 452 0.00017079999 1e-6 190 452 6.3199986e-05 1e-6 192 452 0.00012649999 1e-6 194 452 0.00027829991 1e-6 195 452 6.2999998e-06 1e-6 196 452 5.0599992e-05 1e-6 197 452 7.5899996e-05 1e-6 200 452 4.4299988e-05 1e-6 201 452 5.6899997e-05 1e-6 203 452 0.00027189986 1e-6 204 452 0.00064819981 1e-6 206 452 0.0010529999 1e-6 207 452 0.00020549999 1e-6 209 452 6.3199986e-05 1e-6 214 452 0.00078419992 1e-6 217 452 6.2999998e-06 1e-6 219 452 1.26e-05 1e-6 223 452 0.0029187 1e-6 228 452 2.8499999e-05 1e-6 229 452 5.6899997e-05 1e-6 230 452 2.8499999e-05 1e-6 231 452 2.8499999e-05 1e-6 234 452 0.044997599 1e-6 237 452 0.00031309994 1e-6 240 452 0.00023719999 1e-6 241 452 6.2999998e-06 1e-6 242 452 0.00077469996 1e-6 248 452 9.4999996e-06 1e-6 250 452 6.2999998e-06 1e-6 251 452 3.1999998e-06 1e-6 252 452 7.5899996e-05 1e-6 254 452 0.0001107 1e-6 263 452 3.1999998e-06 1e-6 272 452 3.1999998e-06 1e-6 277 452 0.0001581 1e-6 279 452 9.4999996e-06 1e-6 295 452 0.00032249978 1e-6 315 452 9.4999996e-06 1e-6 317 452 6.9599992e-05 1e-6 322 452 0.00010439999 1e-6 327 452 0.0027037 1e-6 328 452 0.00056599989 1e-6 351 452 0.00027829991 1e-6 352 452 7.9099991e-05 1e-6 356 452 0.00029409979 1e-6 357 452 9.4999996e-06 1e-6 358 452 3.1599993e-05 1e-6 359 452 0.00016129999 1e-6 363 452 1.5799989e-05 1e-6 369 452 8.849999e-05 1e-6 370 452 0.00058819982 1e-6 371 452 1.5799989e-05 1e-6 375 452 0.0001107 1e-6 380 452 3.1999998e-06 1e-6 384 452 0.0016442998 1e-6 387 452 2.2099994e-05 1e-6 393 452 3.1599993e-05 1e-6 394 452 3.4799988e-05 1e-6 396 452 2.2099994e-05 1e-6 397 452 3.1999998e-06 1e-6 402 452 0.00028459984 1e-6 412 452 7.2699986e-05 1e-6 413 452 9.4999996e-06 1e-6 414 452 4.7399997e-05 1e-6 417 452 2.2099994e-05 1e-6 419 452 3.1999998e-06 1e-6 422 452 0.0003668 1e-6 423 452 6.2999998e-06 1e-6 425 452 3.1999998e-06 1e-6 430 452 1.5799989e-05 1e-6 431 452 3.7899998e-05 1e-6 432 452 5.6899997e-05 1e-6 433 452 0.0001486 1e-6 434 452 0.0001929 1e-6 438 452 6.2999998e-06 1e-6 443 452 0.0075670965 1e-6 444 452 0.00020549999 1e-6 445 452 0.0060207993 1e-6 446 452 0.0020521998 1e-6 447 452 0.00059759989 1e-6 448 452 0.0002024 1e-6 449 452 6.2999998e-06 1e-6 450 452 0.0044997968 1e-6 452 452 0.11142516 1e-6 453 452 0.038730197 1e-6 454 452 0.0012078998 1e-6 455 452 0.012642298 1e-6 456 452 0.00047429977 1e-6 457 452 0.0035700998 1e-6 458 452 0.0002024 1e-6 459 452 0.0063021965 1e-6 460 452 0.0017676998 1e-6 463 452 0.011465997 1e-6 464 452 0.00038259989 1e-6 465 452 0.0057234988 1e-6 467 452 0.012964897 1e-6 468 452 0.0017835 1e-6 469 452 0.0033455999 1e-6 470 452 0.0033233999 1e-6 471 452 0.0028743998 1e-6 472 452 0.00014229999 1e-6 473 452 6.0099992e-05 1e-6 475 452 2.5299989e-05 1e-6 477 452 6.0099992e-05 1e-6 478 452 0.00036359997 1e-6 483 452 0.0032096 1e-6 489 452 0.00018019999 1e-6 490 452 0.00026879995 1e-6 491 452 6.2999998e-06 1e-6 7 453 4.7999993e-06 1e-6 9 453 4.7999993e-06 1e-6 16 453 7.1999995e-05 1e-6 18 453 1.9199986e-05 1e-6 19 453 6.7199988e-05 1e-6 22 453 4.3199994e-05 1e-6 23 453 0.17643529 1e-6 25 453 4.7999993e-06 1e-6 60 453 0.00033609988 1e-6 66 453 0.0191787 1e-6 68 453 0.0037838998 1e-6 69 453 0.0017766999 1e-6 73 453 0.00035049999 1e-6 74 453 0.00052819983 1e-6 75 453 0.00023529999 1e-6 79 453 4.7999993e-06 1e-6 82 453 4.7999993e-06 1e-6 83 453 4.7999993e-06 1e-6 84 453 4.7999993e-06 1e-6 108 453 4.7999993e-06 1e-6 113 453 9.5999994e-06 1e-6 114 453 2.3999994e-05 1e-6 126 453 1.44e-05 1e-6 127 453 4.7999993e-06 1e-6 150 453 0.0001489 1e-6 153 453 4.7999993e-06 1e-6 187 453 9.5999994e-06 1e-6 189 453 8.1599996e-05 1e-6 190 453 3.3599994e-05 1e-6 192 453 1.44e-05 1e-6 194 453 4.7999987e-05 1e-6 196 453 4.7999993e-06 1e-6 197 453 1.44e-05 1e-6 200 453 1.44e-05 1e-6 201 453 9.5999994e-06 1e-6 203 453 3.3599994e-05 1e-6 204 453 8.6399989e-05 1e-6 206 453 0.00032649981 1e-6 207 453 2.8799986e-05 1e-6 209 453 4.7999993e-06 1e-6 214 453 0.00066749984 1e-6 215 453 4.7999993e-06 1e-6 217 453 4.3199994e-05 1e-6 223 453 3.8399987e-05 1e-6 228 453 4.7999993e-06 1e-6 229 453 3.3599994e-05 1e-6 230 453 1.44e-05 1e-6 231 453 1.9199986e-05 1e-6 233 453 4.7999993e-06 1e-6 234 453 0.00079229986 1e-6 237 453 0.00018249999 1e-6 248 453 4.7999993e-06 1e-6 250 453 4.7999993e-06 1e-6 252 453 2.3999994e-05 1e-6 267 453 1.9199986e-05 1e-6 272 453 4.7999993e-06 1e-6 277 453 0.00023529999 1e-6 278 453 2.3999994e-05 1e-6 281 453 4.7999993e-06 1e-6 282 453 1.44e-05 1e-6 288 453 4.7999993e-06 1e-6 290 453 9.5999994e-06 1e-6 307 453 1.44e-05 1e-6 312 453 4.7999993e-06 1e-6 317 453 2.8799986e-05 1e-6 319 453 4.7999993e-06 1e-6 324 453 4.7999987e-05 1e-6 326 453 1.9199986e-05 1e-6 328 453 3.8399987e-05 1e-6 330 453 9.5999994e-06 1e-6 331 453 5.2799995e-05 1e-6 333 453 8.6399989e-05 1e-6 340 453 9.5999994e-06 1e-6 350 453 3.8399987e-05 1e-6 351 453 4.7999993e-06 1e-6 354 453 1.9199986e-05 1e-6 356 453 0.00020169999 1e-6 358 453 5.7599987e-05 1e-6 359 453 5.7599987e-05 1e-6 368 453 4.7999993e-06 1e-6 369 453 4.7999993e-06 1e-6 370 453 4.7999993e-06 1e-6 372 453 7.1999995e-05 1e-6 374 453 1.44e-05 1e-6 375 453 4.7999993e-06 1e-6 384 453 0.00033129985 1e-6 385 453 4.7999993e-06 1e-6 387 453 9.5999994e-06 1e-6 393 453 4.3199994e-05 1e-6 394 453 2.3999994e-05 1e-6 402 453 6.2399995e-05 1e-6 404 453 4.7999993e-06 1e-6 412 453 0.0001008 1e-6 413 453 9.5999994e-06 1e-6 414 453 0.00011519999 1e-6 419 453 4.7999993e-06 1e-6 422 453 5.2799995e-05 1e-6 423 453 4.7999993e-06 1e-6 425 453 4.7999993e-06 1e-6 430 453 4.7999993e-06 1e-6 431 453 9.5999994e-06 1e-6 432 453 4.7999993e-06 1e-6 433 453 1.44e-05 1e-6 434 453 4.3199994e-05 1e-6 438 453 4.7999993e-06 1e-6 442 453 4.7999993e-06 1e-6 443 453 0.00013449999 1e-6 444 453 0.00038409978 1e-6 445 453 0.00035049999 1e-6 446 453 5.2799995e-05 1e-6 447 453 0.0008882999 1e-6 448 453 1.44e-05 1e-6 450 453 0.0022761 1e-6 452 453 0.0028426999 1e-6 453 453 0.35604936 1e-6 454 453 0.00068669999 1e-6 455 453 0.0008882999 1e-6 456 453 0.00034569995 1e-6 457 453 0.0036109998 1e-6 458 453 0.0001585 1e-6 459 453 0.0021559999 1e-6 460 453 0.0012965 1e-6 463 453 0.0092051998 1e-6 464 453 0.00066749984 1e-6 465 453 0.0021849 1e-6 467 453 0.0065641999 1e-6 468 453 0.00093159988 1e-6 469 453 0.0030491999 1e-6 470 453 0.0012772998 1e-6 471 453 0.0010084 1e-6 473 453 2.3999994e-05 1e-6 474 453 4.7999993e-06 1e-6 478 453 0.00052339979 1e-6 483 453 0.0026554 1e-6 489 453 0.00018249999 1e-6 490 453 9.5999989e-05 1e-6 491 453 2.3999994e-05 1e-6 7 454 0.000118 1e-6 9 454 3.3699995e-05 1e-6 16 454 0.00013479999 1e-6 18 454 0.00025279983 1e-6 22 454 0.00067409989 1e-6 25 454 0.000118 1e-6 60 454 0.0063873976 1e-6 65 454 0.00023589999 1e-6 66 454 0.00091009983 1e-6 68 454 0.1192531 1e-6 69 454 0.043632898 1e-6 72 454 1.6899998e-05 1e-6 73 454 0.0083759986 1e-6 75 454 0.0056794994 1e-6 79 454 1.6899998e-05 1e-6 82 454 5.0599992e-05 1e-6 83 454 3.3699995e-05 1e-6 84 454 3.3699995e-05 1e-6 108 454 5.0599992e-05 1e-6 113 454 8.4299987e-05 1e-6 114 454 0.00013479999 1e-6 126 454 6.7399989e-05 1e-6 127 454 1.6899998e-05 1e-6 134 454 5.0599992e-05 1e-6 150 454 0.0010785998 1e-6 152 454 5.0599992e-05 1e-6 153 454 6.7399989e-05 1e-6 187 454 0.00016849999 1e-6 188 454 1.6899998e-05 1e-6 189 454 0.00016849999 1e-6 190 454 0.00026969984 1e-6 192 454 5.0599992e-05 1e-6 194 454 0.00015169999 1e-6 196 454 5.0599992e-05 1e-6 197 454 6.7399989e-05 1e-6 200 454 3.3699995e-05 1e-6 201 454 1.6899998e-05 1e-6 202 454 3.3699995e-05 1e-6 203 454 0.0001011 1e-6 204 454 0.0011292 1e-6 206 454 0.00025279983 1e-6 207 454 8.4299987e-05 1e-6 209 454 3.3699995e-05 1e-6 214 454 0.015386898 1e-6 215 454 0.000118 1e-6 217 454 0.00097749988 1e-6 218 454 5.0599992e-05 1e-6 219 454 1.6899998e-05 1e-6 223 454 0.000118 1e-6 228 454 0.00016849999 1e-6 229 454 0.00074149994 1e-6 230 454 0.00030339998 1e-6 231 454 0.00047189998 1e-6 234 454 0.011207398 1e-6 237 454 0.00094379997 1e-6 240 454 5.0599992e-05 1e-6 248 454 1.6899998e-05 1e-6 250 454 1.6899998e-05 1e-6 252 454 0.00016849999 1e-6 267 454 0.00033709989 1e-6 272 454 6.7399989e-05 1e-6 317 454 0.00074149994 1e-6 327 454 1.6899998e-05 1e-6 329 454 3.3699995e-05 1e-6 330 454 0.00023589999 1e-6 331 454 0.0010617999 1e-6 356 454 0.00030339998 1e-6 358 454 5.0599992e-05 1e-6 359 454 1.6899998e-05 1e-6 363 454 1.6899998e-05 1e-6 368 454 0.000118 1e-6 384 454 0.0041458979 1e-6 387 454 6.7399989e-05 1e-6 393 454 1.6899998e-05 1e-6 394 454 0.00026969984 1e-6 397 454 1.6899998e-05 1e-6 402 454 0.00032019988 1e-6 412 454 0.00018539999 1e-6 413 454 0.0002022 1e-6 414 454 0.00040449994 1e-6 419 454 1.6899998e-05 1e-6 422 454 0.00016849999 1e-6 423 454 3.3699995e-05 1e-6 425 454 1.6899998e-05 1e-6 430 454 5.0599992e-05 1e-6 431 454 5.0599992e-05 1e-6 432 454 1.6899998e-05 1e-6 433 454 6.7399989e-05 1e-6 434 454 8.4299987e-05 1e-6 438 454 6.7399989e-05 1e-6 442 454 1.6899998e-05 1e-6 443 454 0.0020728998 1e-6 444 454 0.00015169999 1e-6 445 454 0.013583697 1e-6 446 454 0.00092689996 1e-6 447 454 0.0012302999 1e-6 448 454 0.00023589999 1e-6 450 454 0.011881497 1e-6 452 454 0.009555798 1e-6 453 454 0.017678998 1e-6 454 454 0.028802097 1e-6 455 454 0.0066401996 1e-6 456 454 0.0029829999 1e-6 457 454 0.0030503999 1e-6 458 454 3.3699995e-05 1e-6 459 454 0.0042469986 1e-6 460 454 0.0039435998 1e-6 463 454 0.017173398 1e-6 464 454 0.0002022 1e-6 465 454 0.0011459999 1e-6 467 454 0.019920498 1e-6 468 454 0.0013987999 1e-6 469 454 0.0089826994 1e-6 470 454 0.0066738985 1e-6 471 454 0.0062524974 1e-6 473 454 0.00013479999 1e-6 474 454 0.000118 1e-6 475 454 3.3699995e-05 1e-6 476 454 1.6899998e-05 1e-6 477 454 3.3699995e-05 1e-6 478 454 0.00021909999 1e-6 483 454 0.0034717999 1e-6 489 454 0.00032019988 1e-6 490 454 0.00050559989 1e-6 491 454 1.6899998e-05 1e-6 9 455 4.7999993e-06 1e-6 16 455 0.0001165 1e-6 17 455 7.6999995e-06 1e-6 18 455 0.00072969985 1e-6 60 455 0.0024815998 1e-6 75 455 0.0002407 1e-6 79 455 1.3499999e-05 1e-6 82 455 3.0799987e-05 1e-6 83 455 3.4699988e-05 1e-6 84 455 0.00014629999 1e-6 97 455 0.0001223 1e-6 101 455 4.6199988e-05 1e-6 105 455 3.9499995e-05 1e-6 108 455 4.1399995e-05 1e-6 113 455 0.0002483998 1e-6 114 455 0.00017809999 1e-6 115 455 4.8099988e-05 1e-6 123 455 3.2699987e-05 1e-6 126 455 9.5299998e-05 1e-6 127 455 2.7899994e-05 1e-6 141 455 4.9099996e-05 1e-6 149 455 3.2699987e-05 1e-6 150 455 0.00020699999 1e-6 153 455 0.00071519986 1e-6 158 455 7.5999997e-05 1e-6 162 455 2.2099994e-05 1e-6 169 455 0.00030129985 1e-6 171 455 1.5399986e-05 1e-6 187 455 0.000978 1e-6 189 455 0.00082399999 1e-6 190 455 0.000128 1e-6 192 455 0.00084039988 1e-6 193 455 0.0015776998 1e-6 194 455 0.00020309999 1e-6 195 455 9.2399991e-05 1e-6 196 455 4.7199996e-05 1e-6 197 455 0.00045049982 1e-6 198 455 0.0022304 1e-6 200 455 4.1399995e-05 1e-6 201 455 4.0399987e-05 1e-6 203 455 0.00023779999 1e-6 204 455 0.0010974 1e-6 206 455 0.0008278999 1e-6 207 455 0.0002387 1e-6 209 455 7.1199989e-05 1e-6 219 455 1.8299994e-05 1e-6 223 455 6.7399989e-05 1e-6 229 455 0.00020309999 1e-6 230 455 0.0002002 1e-6 234 455 0.0086067989 1e-6 237 455 0.0011339998 1e-6 240 455 6.3499989e-05 1e-6 241 455 0.0013341999 1e-6 242 455 4.8099988e-05 1e-6 248 455 3.7499995e-05 1e-6 250 455 8.6999999e-06 1e-6 251 455 1.25e-05 1e-6 252 455 6.8299996e-05 1e-6 253 455 0.00031289994 1e-6 263 455 7.6999995e-06 1e-6 272 455 1.7299986e-05 1e-6 276 455 3.2699987e-05 1e-6 279 455 9.5999994e-06 1e-6 284 455 2.6999987e-05 1e-6 316 455 9.2399991e-05 1e-6 318 455 2.3099987e-05 1e-6 322 455 9.429999e-05 1e-6 323 455 3.8999997e-06 1e-6 326 455 2.4999987e-05 1e-6 330 455 7.2199997e-05 1e-6 335 455 6.6999992e-06 1e-6 337 455 6.1599989e-05 1e-6 340 455 0.00014439999 1e-6 356 455 7.6999995e-06 1e-6 358 455 0.00038219988 1e-6 359 455 6.7399989e-05 1e-6 362 455 1.06e-05 1e-6 363 455 2.0199994e-05 1e-6 366 455 0.00048029982 1e-6 368 455 8.279999e-05 1e-6 380 455 6.2599996e-05 1e-6 384 455 5.5799988e-05 1e-6 387 455 1.5399986e-05 1e-6 393 455 3.1799995e-05 1e-6 394 455 0.00010199999 1e-6 397 455 9.429999e-05 1e-6 402 455 0.00037929998 1e-6 412 455 0.00011359999 1e-6 419 455 3.4699988e-05 1e-6 422 455 0.00030799978 1e-6 423 455 2.7899994e-05 1e-6 425 455 1.25e-05 1e-6 430 455 1.5399986e-05 1e-6 431 455 4.8099988e-05 1e-6 432 455 5.2899995e-05 1e-6 433 455 0.00014539999 1e-6 434 455 0.0001944 1e-6 438 455 8.089999e-05 1e-6 442 455 2.6999987e-05 1e-6 443 455 0.00051309983 1e-6 444 455 0.0022341998 1e-6 445 455 0.015707098 1e-6 446 455 0.00039269985 1e-6 447 455 0.0032046 1e-6 448 455 0.0001848 1e-6 449 455 0.00037639984 1e-6 450 455 0.019686598 1e-6 452 455 0.0056803972 1e-6 453 455 0.0006920998 1e-6 454 455 0.0016643999 1e-6 455 455 0.017598599 1e-6 456 455 0.0033912999 1e-6 457 455 0.0067344978 1e-6 458 455 0.00034939987 1e-6 459 455 0.00043609994 1e-6 460 455 0.0051172972 1e-6 463 455 0.023017198 1e-6 464 455 0.0041546971 1e-6 465 455 0.0031746998 1e-6 467 455 0.018062599 1e-6 468 455 0.029311799 1e-6 469 455 0.0131003 1e-6 470 455 0.0187345 1e-6 471 455 0.020459499 1e-6 473 455 0.00024349999 1e-6 477 455 0.0001107 1e-6 478 455 0.0023930999 1e-6 483 455 0.0033960999 1e-6 489 455 0.00096939993 1e-6 490 455 0.0011935998 1e-6 491 455 3.7499995e-05 1e-6 7 456 8.9999997e-07 1e-6 9 456 1.3999999e-05 1e-6 16 456 6.9999996e-06 1e-6 17 456 8.9999997e-07 1e-6 18 456 0.00025359984 1e-6 22 456 1.6999993e-06 1e-6 25 456 8.9999997e-07 1e-6 59 456 1.1399999e-05 1e-6 60 456 0.0048253983 1e-6 64 456 9.5999994e-06 1e-6 66 456 8.6999999e-06 1e-6 68 456 0.00090249977 1e-6 69 456 0.00042409985 1e-6 73 456 8.3999999e-05 1e-6 75 456 0.00039609987 1e-6 79 456 3.4999994e-06 1e-6 82 456 1.9199986e-05 1e-6 83 456 1.5699989e-05 1e-6 84 456 1.49e-05 1e-6 108 456 2.539999e-05 1e-6 113 456 3.499999e-05 1e-6 114 456 8.659999e-05 1e-6 126 456 4.2e-05 1e-6 127 456 5.1999996e-06 1e-6 134 456 1.6999993e-06 1e-6 135 456 3.3199991e-05 1e-6 141 456 7.8999992e-06 1e-6 142 456 5.9499987e-05 1e-6 150 456 0.00013029999 1e-6 152 456 3.4999994e-06 1e-6 153 456 8.9999997e-07 1e-6 154 456 6.3799991e-05 1e-6 171 456 8.9999997e-07 1e-6 187 456 0.00058769993 1e-6 189 456 0.00022649999 1e-6 190 456 0.00030339998 1e-6 192 456 0.0003209 1e-6 193 456 0.0035722998 1e-6 194 456 4.3999999e-06 1e-6 195 456 0.00021079999 1e-6 196 456 8.9999997e-07 1e-6 197 456 0.0001583 1e-6 198 456 0.0011787999 1e-6 201 456 7.8999992e-06 1e-6 203 456 4.3999999e-06 1e-6 204 456 0.001129 1e-6 206 456 9.36e-05 1e-6 207 456 3.4999994e-06 1e-6 209 456 8.9999997e-07 1e-6 214 456 0.00014339999 1e-6 215 456 1.6999993e-06 1e-6 217 456 9.5999994e-06 1e-6 220 456 8.9999997e-07 1e-6 223 456 4.8099988e-05 1e-6 228 456 1.6999993e-06 1e-6 229 456 7.8699988e-05 1e-6 230 456 0.00055619981 1e-6 231 456 4.3999999e-06 1e-6 233 456 3.4999994e-06 1e-6 234 456 0.0058432966 1e-6 237 456 0.00092429994 1e-6 240 456 5.3299998e-05 1e-6 241 456 0.00083509996 1e-6 242 456 1.49e-05 1e-6 248 456 6.3799991e-05 1e-6 250 456 6.0999992e-06 1e-6 251 456 4.3999999e-06 1e-6 252 456 1.6599995e-05 1e-6 253 456 0.00020899999 1e-6 260 456 8.9999997e-07 1e-6 263 456 2.5999998e-06 1e-6 267 456 3.4999994e-06 1e-6 272 456 1.31e-05 1e-6 275 456 1.6999993e-06 1e-6 282 456 3.4999994e-06 1e-6 283 456 1.31e-05 1e-6 284 456 1.05e-05 1e-6 295 456 2.5999998e-06 1e-6 296 456 6.9999996e-06 1e-6 307 456 8.9999997e-07 1e-6 315 456 3.3199991e-05 1e-6 316 456 7.8999992e-06 1e-6 317 456 7.8999992e-06 1e-6 319 456 2.5999998e-06 1e-6 322 456 0.00032009999 1e-6 323 456 2.5999998e-06 1e-6 324 456 8.9999997e-07 1e-6 326 456 1.6999993e-06 1e-6 328 456 3.4999994e-06 1e-6 330 456 2.5999998e-06 1e-6 331 456 1.2199999e-05 1e-6 335 456 5.1999996e-06 1e-6 340 456 6.9999995e-05 1e-6 346 456 1.05e-05 1e-6 350 456 5.1999996e-06 1e-6 351 456 5.1999996e-06 1e-6 356 456 1.1399999e-05 1e-6 358 456 0.00010059999 1e-6 359 456 2.8899987e-05 1e-6 364 456 0.0001679 1e-6 366 456 6.8199995e-05 1e-6 368 456 3.4999994e-06 1e-6 370 456 8.9999997e-07 1e-6 374 456 8.9999997e-07 1e-6 377 456 6.0999992e-06 1e-6 380 456 1.2199999e-05 1e-6 382 456 1.1399999e-05 1e-6 384 456 0.00015129999 1e-6 387 456 3.5899997e-05 1e-6 389 456 8.9999997e-07 1e-6 390 456 2.5999998e-06 1e-6 393 456 2.4499997e-05 1e-6 394 456 9.0099988e-05 1e-6 397 456 8.0499987e-05 1e-6 402 456 0.00026849983 1e-6 406 456 7.5199991e-05 1e-6 407 456 2.5999998e-06 1e-6 408 456 5.1999996e-06 1e-6 412 456 1.31e-05 1e-6 413 456 1.6999993e-06 1e-6 414 456 2.5999998e-06 1e-6 419 456 7.8999992e-06 1e-6 422 456 0.0001163 1e-6 423 456 8.6999999e-06 1e-6 425 456 1.3999999e-05 1e-6 430 456 2.2699998e-05 1e-6 431 456 4.3999999e-06 1e-6 432 456 8.9999997e-07 1e-6 433 456 3.4999994e-06 1e-6 434 456 1.49e-05 1e-6 435 456 0.0001758 1e-6 438 456 3.4999994e-06 1e-6 442 456 7.5199991e-05 1e-6 443 456 0.0002789998 1e-6 444 456 0.00011889999 1e-6 445 456 0.0026951998 1e-6 446 456 0.00071359985 1e-6 447 456 0.00030779978 1e-6 448 456 0.00012069999 1e-6 449 456 3.1499992e-05 1e-6 450 456 0.0089713968 1e-6 452 456 0.0184194 1e-6 453 456 0.0026033998 1e-6 454 456 0.00090069999 1e-6 455 456 0.0057663992 1e-6 456 456 0.0016273998 1e-6 457 456 0.0090911984 1e-6 458 456 0.00036729989 1e-6 459 456 0.00049059978 1e-6 460 456 0.005153399 1e-6 463 456 0.057630599 1e-6 464 456 0.00014949999 1e-6 465 456 0.0014648 1e-6 467 456 0.012564696 1e-6 468 456 0.034562498 1e-6 469 456 0.0053561963 1e-6 470 456 0.0044021979 1e-6 471 456 0.0065061972 1e-6 472 456 8.9199995e-05 1e-6 473 456 9.1799986e-05 1e-6 474 456 8.9999997e-07 1e-6 477 456 0.00031309994 1e-6 478 456 0.0015679998 1e-6 483 456 0.0057698973 1e-6 486 456 4.3699998e-05 1e-6 489 456 0.00052029989 1e-6 490 456 0.0016230999 1e-6 491 456 2.4499997e-05 1e-6 9 457 2.7499991e-05 1e-6 16 457 1.5699989e-05 1e-6 17 457 3.8999997e-06 1e-6 18 457 2.7499991e-05 1e-6 60 457 0.0075417981 1e-6 68 457 5.4899996e-05 1e-6 69 457 2.7499991e-05 1e-6 73 457 3.8999997e-06 1e-6 75 457 3.8999997e-06 1e-6 79 457 1.18e-05 1e-6 82 457 3.9199993e-05 1e-6 83 457 2.7499991e-05 1e-6 84 457 2.7499991e-05 1e-6 108 457 5.4899996e-05 1e-6 113 457 6.6699999e-05 1e-6 114 457 0.00017269999 1e-6 126 457 7.8499987e-05 1e-6 127 457 1.18e-05 1e-6 150 457 3.8999997e-06 1e-6 153 457 0.0017147998 1e-6 171 457 3.8999997e-06 1e-6 187 457 0.00089469994 1e-6 189 457 0.00087499991 1e-6 190 457 0.0001373 1e-6 192 457 0.00017659999 1e-6 194 457 0.00039629987 1e-6 196 457 7.4599986e-05 1e-6 197 457 0.00011379999 1e-6 199 457 7.4599986e-05 1e-6 200 457 0.0001295 1e-6 201 457 5.4899996e-05 1e-6 203 457 0.00037669996 1e-6 204 457 0.0097470991 1e-6 206 457 0.0035903999 1e-6 207 457 0.0073612966 1e-6 209 457 0.0012987999 1e-6 214 457 7.7999994e-06 1e-6 219 457 1.9599989e-05 1e-6 223 457 1.9599989e-05 1e-6 230 457 0.00014909999 1e-6 234 457 0.0020915 1e-6 237 457 5.4899996e-05 1e-6 240 457 1.9599989e-05 1e-6 241 457 1.18e-05 1e-6 248 457 3.1399992e-05 1e-6 250 457 1.5699989e-05 1e-6 251 457 7.7999994e-06 1e-6 252 457 2.349999e-05 1e-6 263 457 7.7999994e-06 1e-6 279 457 1.18e-05 1e-6 322 457 7.7999994e-06 1e-6 326 457 3.8999997e-06 1e-6 359 457 0.00078089978 1e-6 363 457 2.349999e-05 1e-6 380 457 1.18e-05 1e-6 384 457 0.0001256 1e-6 387 457 7.0599999e-05 1e-6 393 457 0.00029039988 1e-6 394 457 3.8999997e-06 1e-6 397 457 3.8999997e-06 1e-6 402 457 2.349999e-05 1e-6 412 457 7.4599986e-05 1e-6 419 457 1.5699989e-05 1e-6 422 457 0.00043159979 1e-6 423 457 1.5699989e-05 1e-6 425 457 1.5699989e-05 1e-6 430 457 4.7099995e-05 1e-6 431 457 6.2799998e-05 1e-6 432 457 7.8499987e-05 1e-6 433 457 0.000204 1e-6 434 457 0.00040809996 1e-6 442 457 3.8999997e-06 1e-6 443 457 0.0001295 1e-6 444 457 0.0002158 1e-6 445 457 0.0010476999 1e-6 446 457 8.6299988e-05 1e-6 447 457 0.00060819997 1e-6 448 457 3.5299992e-05 1e-6 449 457 1.5699989e-05 1e-6 450 457 0.015079699 1e-6 452 457 0.0082402974 1e-6 453 457 0.00081229978 1e-6 454 457 0.0018324999 1e-6 455 457 0.0029899999 1e-6 456 457 0.00058859983 1e-6 457 457 0.013529699 1e-6 458 457 0.0038257998 1e-6 459 457 0.027820699 1e-6 460 457 0.0026917998 1e-6 463 457 0.022617597 1e-6 464 457 0.00027469988 1e-6 465 457 0.0027780998 1e-6 467 457 0.063218594 1e-6 468 457 0.0166061 1e-6 469 457 0.015166 1e-6 470 457 0.0082794987 1e-6 471 457 0.0012085999 1e-6 472 457 0.0001452 1e-6 473 457 0.00017269999 1e-6 477 457 7.8499987e-05 1e-6 478 457 0.0025622998 1e-6 483 457 0.018540598 1e-6 486 457 0.0086090975 1e-6 489 457 0.00036489987 1e-6 490 457 0.00076119998 1e-6 9 458 7.0599999e-05 1e-6 16 458 3.5299992e-05 1e-6 18 458 7.0599999e-05 1e-6 60 458 0.0077514984 1e-6 79 458 1.7699989e-05 1e-6 82 458 0.0001236 1e-6 83 458 8.8299988e-05 1e-6 84 458 7.0599999e-05 1e-6 108 458 0.00015889999 1e-6 113 458 0.00019419999 1e-6 114 458 0.00047669979 1e-6 126 458 0.00022949999 1e-6 127 458 3.5299992e-05 1e-6 187 458 1.7699989e-05 1e-6 189 458 0.002472 1e-6 190 458 0.00024719979 1e-6 192 458 0.00040609995 1e-6 194 458 0.00091819977 1e-6 196 458 0.00015889999 1e-6 197 458 0.00026489981 1e-6 200 458 0.00031779986 1e-6 201 458 0.0001413 1e-6 203 458 0.00086519984 1e-6 204 458 0.023660697 1e-6 206 458 0.0019952999 1e-6 207 458 0.00065329997 1e-6 209 458 0.00075929984 1e-6 219 458 5.2999996e-05 1e-6 223 458 8.8299988e-05 1e-6 229 458 5.2999996e-05 1e-6 231 458 3.5299992e-05 1e-6 234 458 0.0056149997 1e-6 237 458 0.00086519984 1e-6 240 458 5.2999996e-05 1e-6 241 458 3.5299992e-05 1e-6 242 458 0.00044139987 1e-6 248 458 7.0599999e-05 1e-6 250 458 5.2999996e-05 1e-6 251 458 1.7699989e-05 1e-6 252 458 7.0599999e-05 1e-6 263 458 1.7699989e-05 1e-6 272 458 1.7699989e-05 1e-6 279 458 3.5299992e-05 1e-6 322 458 1.7699989e-05 1e-6 352 458 0.0001236 1e-6 363 458 5.2999996e-05 1e-6 380 458 1.7699989e-05 1e-6 384 458 0.00042379997 1e-6 387 458 0.00019419999 1e-6 394 458 7.0599999e-05 1e-6 397 458 8.8299988e-05 1e-6 402 458 0.0003707998 1e-6 412 458 0.00040609995 1e-6 419 458 3.5299992e-05 1e-6 422 458 0.00097109983 1e-6 423 458 7.0599999e-05 1e-6 425 458 5.2999996e-05 1e-6 430 458 0.0001413 1e-6 431 458 0.0001236 1e-6 432 458 0.00017659999 1e-6 433 458 0.00049439981 1e-6 434 458 0.00061799982 1e-6 442 458 0.0006002998 1e-6 443 458 0.00022949999 1e-6 444 458 0.0022953998 1e-6 445 458 0.0021364999 1e-6 446 458 0.00022949999 1e-6 447 458 0.0034254999 1e-6 448 458 0.0001236 1e-6 449 458 5.2999996e-05 1e-6 450 458 0.037115499 1e-6 452 458 0.020164598 1e-6 453 458 0.0034607998 1e-6 454 458 0.0088462979 1e-6 455 458 0.0061270967 1e-6 456 458 0.0024366998 1e-6 457 458 0.16089267 1e-6 458 458 0.036056098 1e-6 459 458 0.13617259 1e-6 460 458 0.0064271986 1e-6 463 458 0.11118758 1e-6 464 458 0.0035138 1e-6 465 458 0.0018187 1e-6 467 458 0.15382987 1e-6 468 458 0.022512998 1e-6 469 458 0.056891598 1e-6 470 458 0.023837298 1e-6 471 458 0.0099409968 1e-6 473 458 0.00049439981 1e-6 477 458 0.00019419999 1e-6 478 458 0.004537899 1e-6 483 458 0.018416498 1e-6 486 458 0.0380513 1e-6 489 458 0.00061799982 1e-6 490 458 0.0018187 1e-6 9 459 6.11e-05 1e-6 16 459 2.4399997e-05 1e-6 17 459 1.2199999e-05 1e-6 18 459 3.6599988e-05 1e-6 60 459 0.0011967998 1e-6 79 459 1.2199999e-05 1e-6 82 459 9.7699987e-05 1e-6 83 459 7.3299991e-05 1e-6 84 459 6.11e-05 1e-6 108 459 0.00010989999 1e-6 113 459 0.00015879999 1e-6 114 459 0.00039079995 1e-6 126 459 0.00019539999 1e-6 127 459 2.4399997e-05 1e-6 153 459 4.8799993e-05 1e-6 187 459 0.0017708 1e-6 189 459 0.0017463998 1e-6 190 459 7.3299991e-05 1e-6 192 459 0.00013429999 1e-6 194 459 0.00029309979 1e-6 196 459 4.8799993e-05 1e-6 197 459 9.7699987e-05 1e-6 200 459 0.0001465 1e-6 201 459 7.3299991e-05 1e-6 203 459 0.00028089993 1e-6 204 459 0.012065798 1e-6 206 459 0.0015020999 1e-6 207 459 0.0004151999 1e-6 209 459 9.7699987e-05 1e-6 219 459 1.2199999e-05 1e-6 223 459 2.4399997e-05 1e-6 234 459 0.00074499985 1e-6 237 459 0.00015879999 1e-6 240 459 1.2199999e-05 1e-6 241 459 2.4399997e-05 1e-6 248 459 6.11e-05 1e-6 250 459 3.6599988e-05 1e-6 251 459 1.2199999e-05 1e-6 252 459 4.8799993e-05 1e-6 263 459 1.2199999e-05 1e-6 279 459 1.2199999e-05 1e-6 326 459 1.2199999e-05 1e-6 359 459 2.4399997e-05 1e-6 363 459 2.4399997e-05 1e-6 380 459 2.4399997e-05 1e-6 384 459 2.4399997e-05 1e-6 387 459 0.00015879999 1e-6 393 459 1.2199999e-05 1e-6 394 459 1.2199999e-05 1e-6 397 459 1.2199999e-05 1e-6 402 459 3.6599988e-05 1e-6 412 459 0.00040299981 1e-6 419 459 3.6599988e-05 1e-6 422 459 0.00031749997 1e-6 423 459 3.6599988e-05 1e-6 425 459 3.6599988e-05 1e-6 430 459 9.7699987e-05 1e-6 431 459 3.6599988e-05 1e-6 432 459 4.8799993e-05 1e-6 433 459 0.00015879999 1e-6 434 459 0.00019539999 1e-6 442 459 1.2199999e-05 1e-6 443 459 0.00010989999 1e-6 444 459 0.00052509992 1e-6 445 459 0.0011479999 1e-6 446 459 7.3299991e-05 1e-6 447 459 0.0012945 1e-6 448 459 1.2199999e-05 1e-6 449 459 3.6599988e-05 1e-6 450 459 0.032094199 1e-6 452 459 0.0012335 1e-6 453 459 0.00029309979 1e-6 454 459 0.00087929983 1e-6 455 459 0.0025646 1e-6 456 459 0.0015020999 1e-6 457 459 0.018049899 1e-6 458 459 0.00065949978 1e-6 459 459 0.067595541 1e-6 460 459 0.0026011998 1e-6 461 459 0.002992 1e-6 463 459 0.040838297 1e-6 464 459 0.00067169988 1e-6 465 459 0.0015753999 1e-6 467 459 0.042035099 1e-6 468 459 0.0093057975 1e-6 469 459 0.012016997 1e-6 470 459 0.019918397 1e-6 471 459 0.0014898998 1e-6 473 459 0.00040299981 1e-6 474 459 3.6599988e-05 1e-6 477 459 8.5499996e-05 1e-6 478 459 0.0016730998 1e-6 483 459 0.017683599 1e-6 486 459 0.00025649997 1e-6 489 459 9.7699987e-05 1e-6 490 459 0.0015264999 1e-6 9 460 4.3099993e-05 1e-6 16 460 2.5199988e-05 1e-6 17 460 3.5999992e-06 1e-6 18 460 1.44e-05 1e-6 79 460 1.0799999e-05 1e-6 82 460 7.5499993e-05 1e-6 83 460 5.7499987e-05 1e-6 84 460 5.3899988e-05 1e-6 108 460 9.6999996e-05 1e-6 113 460 0.0001294 1e-6 114 460 0.00031979987 1e-6 126 460 0.0001509 1e-6 127 460 2.159999e-05 1e-6 150 460 3.5999992e-06 1e-6 171 460 3.5999992e-06 1e-6 187 460 0.0012612999 1e-6 189 460 0.0010636998 1e-6 190 460 1.44e-05 1e-6 192 460 0.00019759999 1e-6 194 460 0.00043119979 1e-6 196 460 7.9099991e-05 1e-6 197 460 0.0007689998 1e-6 200 460 0.00045639998 1e-6 201 460 0.00054259994 1e-6 203 460 0.00040969998 1e-6 204 460 0.0024614998 1e-6 206 460 0.0019619998 1e-6 207 460 0.00033059996 1e-6 209 460 0.00010419999 1e-6 219 460 2.159999e-05 1e-6 223 460 3.2299999e-05 1e-6 229 460 3.5999992e-06 1e-6 230 460 3.5999992e-06 1e-6 234 460 0.00048149982 1e-6 237 460 0.00024079999 1e-6 240 460 2.159999e-05 1e-6 241 460 2.5199988e-05 1e-6 242 460 0.00017249999 1e-6 248 460 4.6699992e-05 1e-6 250 460 3.2299999e-05 1e-6 251 460 1.0799999e-05 1e-6 252 460 3.9499995e-05 1e-6 263 460 1.0799999e-05 1e-6 272 460 3.5999992e-06 1e-6 279 460 7.1999993e-06 1e-6 315 460 3.5999992e-06 1e-6 322 460 7.1999993e-06 1e-6 326 460 7.1999993e-06 1e-6 359 460 0.0003054 1e-6 363 460 2.8699986e-05 1e-6 380 460 1.7999992e-05 1e-6 384 460 3.9499995e-05 1e-6 387 460 0.0001294 1e-6 393 460 0.00023719999 1e-6 394 460 1.7999992e-05 1e-6 397 460 2.5199988e-05 1e-6 402 460 0.00011499999 1e-6 412 460 6.8299996e-05 1e-6 419 460 2.8699986e-05 1e-6 422 460 0.00048509985 1e-6 423 460 3.5899997e-05 1e-6 425 460 2.8699986e-05 1e-6 430 460 8.2599989e-05 1e-6 431 460 6.4699998e-05 1e-6 432 460 7.9099991e-05 1e-6 433 460 0.00022999999 1e-6 434 460 0.00040609995 1e-6 442 460 7.1999993e-06 1e-6 443 460 0.00013299999 1e-6 444 460 0.00041679991 1e-6 445 460 0.0016385999 1e-6 446 460 6.8299996e-05 1e-6 447 460 0.00086959987 1e-6 448 460 1.0799999e-05 1e-6 449 460 2.8699986e-05 1e-6 450 460 0.011437897 1e-6 452 460 0.0014660999 1e-6 453 460 0.00062529999 1e-6 454 460 0.0012612999 1e-6 455 460 0.0023681 1e-6 456 460 0.0012182 1e-6 457 460 0.017967198 1e-6 458 460 0.0020661999 1e-6 459 460 0.0095082 1e-6 460 460 0.0083259977 1e-6 461 460 0.36792135 1e-6 463 460 0.012663297 1e-6 464 460 0.0005245998 1e-6 465 460 0.00033059996 1e-6 467 460 0.016109399 1e-6 468 460 0.0044594966 1e-6 469 460 0.0043587983 1e-6 470 460 0.015724897 1e-6 471 460 0.0023357 1e-6 472 460 0.00013659999 1e-6 473 460 0.00033419998 1e-6 474 460 0.0051888973 1e-6 477 460 0.00011859999 1e-6 478 460 0.0041036978 1e-6 483 460 0.0041072965 1e-6 486 460 3.5999992e-06 1e-6 489 460 0.00017609999 1e-6 490 460 0.0026375998 1e-6 9 461 0.0001068 1e-6 16 461 3.879999e-05 1e-6 17 461 9.6999993e-06 1e-6 60 461 0.004794199 1e-6 79 461 2.9099989e-05 1e-6 82 461 0.00017469999 1e-6 83 461 0.00013589999 1e-6 84 461 0.00013589999 1e-6 108 461 0.00020379999 1e-6 113 461 0.00029109977 1e-6 114 461 0.00072789984 1e-6 126 461 0.00033969991 1e-6 127 461 4.8499991e-05 1e-6 171 461 9.6999993e-06 1e-6 187 461 0.0043768995 1e-6 189 461 0.0033093998 1e-6 190 461 8.7299995e-05 1e-6 192 461 0.00015529999 1e-6 194 461 0.00033969991 1e-6 196 461 5.8199992e-05 1e-6 197 461 0.00040759984 1e-6 200 461 0.0006114 1e-6 201 461 0.0002135 1e-6 203 461 0.00032999995 1e-6 204 461 0.014780499 1e-6 206 461 0.0042312965 1e-6 207 461 0.00025229994 1e-6 209 461 8.7299995e-05 1e-6 219 461 1.9399988e-05 1e-6 223 461 0.00013589999 1e-6 234 461 0.0050561987 1e-6 237 461 0.0010384 1e-6 240 461 1.9399988e-05 1e-6 241 461 4.8499991e-05 1e-6 242 461 0.00038819993 1e-6 248 461 0.0001068 1e-6 250 461 6.7899993e-05 1e-6 251 461 3.879999e-05 1e-6 252 461 6.7899993e-05 1e-6 263 461 1.9399988e-05 1e-6 272 461 9.6999993e-06 1e-6 279 461 9.6999993e-06 1e-6 322 461 9.6999993e-06 1e-6 326 461 9.6999993e-06 1e-6 363 461 1.9399988e-05 1e-6 380 461 4.8499991e-05 1e-6 384 461 4.8499991e-05 1e-6 387 461 0.00028139981 1e-6 394 461 0.00017469999 1e-6 397 461 0.00020379999 1e-6 402 461 0.00017469999 1e-6 412 461 0.00029109977 1e-6 419 461 5.8199992e-05 1e-6 422 461 0.00042699999 1e-6 423 461 6.7899993e-05 1e-6 425 461 5.8199992e-05 1e-6 430 461 0.00019409999 1e-6 431 461 6.7899993e-05 1e-6 432 461 5.8199992e-05 1e-6 433 461 0.00019409999 1e-6 434 461 0.0002329 1e-6 442 461 1.9399988e-05 1e-6 443 461 0.00035909982 1e-6 444 461 0.0028531998 1e-6 445 461 0.0032607999 1e-6 446 461 0.00030089985 1e-6 447 461 0.0043671988 1e-6 448 461 0.00015529999 1e-6 449 461 0.00080549996 1e-6 450 461 0.059908196 1e-6 452 461 0.0070359968 1e-6 453 461 0.00035909982 1e-6 454 461 0.0015915998 1e-6 455 461 0.0072300993 1e-6 456 461 0.0042215995 1e-6 457 461 0.021515697 1e-6 458 461 0.00066959998 1e-6 459 461 0.0039983988 1e-6 460 461 0.0042506978 1e-6 463 461 0.055492498 1e-6 464 461 0.0048717968 1e-6 465 461 0.0096465982 1e-6 467 461 0.0523481 1e-6 468 461 0.024621297 1e-6 469 461 0.024533898 1e-6 470 461 0.0414689 1e-6 471 461 0.0150523 1e-6 473 461 0.00075699994 1e-6 477 461 9.6999996e-05 1e-6 478 461 0.017332897 1e-6 483 461 0.016721498 1e-6 486 461 0.00046579982 1e-6 489 461 0.0007375998 1e-6 490 461 0.0027561998 1e-6 7 462 0.00021519999 1e-6 18 462 0.0066920966 1e-6 59 462 0.069293857 1e-6 61 462 0.0034294999 1e-6 215 462 0.00046419981 1e-6 217 462 0.0001773 1e-6 241 462 0.0012935998 1e-6 242 462 0.00036509987 1e-6 303 462 0.00011739999 1e-6 330 462 0.00027379999 1e-6 412 462 7.1699993e-05 1e-6 443 462 5.35e-05 1e-6 445 462 0.00042769988 1e-6 446 462 5.1999996e-06 1e-6 447 462 2.5999998e-06 1e-6 455 462 0.000489 1e-6 457 462 0.0045078993 1e-6 458 462 0.0029508998 1e-6 460 462 0.015934698 1e-6 463 462 0.023242299 1e-6 467 462 0.0036289999 1e-6 469 462 0.0064351968 1e-6 486 462 0.0054233 1e-6 7 463 3.5599995e-05 1e-6 9 463 9.1999991e-06 1e-6 11 463 9.9999943e-07 1e-6 13 463 8.8599991e-05 1e-6 16 463 0.00094469986 1e-6 17 463 9.9999943e-07 1e-6 18 463 0.0009680998 1e-6 22 463 1.6299993e-05 1e-6 59 463 0.047734197 1e-6 60 463 0.0039569996 1e-6 61 463 0.00045709987 1e-6 62 463 0.0007685998 1e-6 75 463 0.00017199999 1e-6 79 463 3.1e-06 1e-6 82 463 1.8299994e-05 1e-6 83 463 1.2199999e-05 1e-6 84 463 1.12e-05 1e-6 85 463 1.9999998e-06 1e-6 90 463 1.9999998e-06 1e-6 93 463 9.9999943e-07 1e-6 94 463 9.9999943e-07 1e-6 105 463 9.9999943e-07 1e-6 108 463 1.7299986e-05 1e-6 113 463 2.549999e-05 1e-6 114 463 6.4099993e-05 1e-6 126 463 2.9499992e-05 1e-6 127 463 5.0999997e-06 1e-6 130 463 1.9999998e-06 1e-6 142 463 9.9999943e-07 1e-6 150 463 3.0499999e-05 1e-6 151 463 5.0999997e-06 1e-6 152 463 8.0999998e-06 1e-6 171 463 3.1e-06 1e-6 187 463 4.6799993e-05 1e-6 189 463 4.6799993e-05 1e-6 190 463 3.3599994e-05 1e-6 192 463 4.1699997e-05 1e-6 194 463 9.2599992e-05 1e-6 196 463 2.6499998e-05 1e-6 197 463 2.7499991e-05 1e-6 198 463 9.9999943e-07 1e-6 200 463 5.3999989e-05 1e-6 201 463 2.1399988e-05 1e-6 203 463 9.0599991e-05 1e-6 204 463 0.00012619999 1e-6 206 463 0.00021069999 1e-6 207 463 6.9199989e-05 1e-6 209 463 2.2399996e-05 1e-6 215 463 7.0199996e-05 1e-6 217 463 1.0199999e-05 1e-6 219 463 4.0999994e-06 1e-6 223 463 4.3799999e-05 1e-6 229 463 3.8699989e-05 1e-6 230 463 1.43e-05 1e-6 231 463 1.0199999e-05 1e-6 234 463 0.0045748986 1e-6 237 463 0.00049369992 1e-6 240 463 4.0999994e-06 1e-6 241 463 0.00039799977 1e-6 242 463 0.0001812 1e-6 248 463 1.2199999e-05 1e-6 250 463 6.0999992e-06 1e-6 251 463 3.1e-06 1e-6 252 463 1.12e-05 1e-6 263 463 1.9999998e-06 1e-6 272 463 1.9999998e-06 1e-6 279 463 3.1e-06 1e-6 303 463 4.069999e-05 1e-6 315 463 9.9999943e-07 1e-6 322 463 3.1e-06 1e-6 326 463 9.9999943e-07 1e-6 329 463 2.6499998e-05 1e-6 330 463 4.0999994e-06 1e-6 352 463 2.8499999e-05 1e-6 357 463 3.1e-06 1e-6 358 463 1.0199999e-05 1e-6 363 463 6.0999992e-06 1e-6 380 463 3.1e-06 1e-6 384 463 7.8399986e-05 1e-6 387 463 2.549999e-05 1e-6 394 463 4.6799993e-05 1e-6 397 463 4.8899994e-05 1e-6 402 463 4.069999e-05 1e-6 412 463 9.9999943e-07 1e-6 419 463 4.0999994e-06 1e-6 422 463 0.0001008 1e-6 423 463 6.0999992e-06 1e-6 425 463 4.0999994e-06 1e-6 428 463 9.9999943e-07 1e-6 430 463 1.7299986e-05 1e-6 431 463 1.32e-05 1e-6 432 463 1.8299994e-05 1e-6 433 463 4.8899994e-05 1e-6 434 463 6.0099992e-05 1e-6 435 463 3.1599993e-05 1e-6 438 463 8.0999998e-06 1e-6 441 463 9.9999943e-07 1e-6 442 463 1.43e-05 1e-6 443 463 0.00011299999 1e-6 444 463 8.5499996e-05 1e-6 445 463 0.0014842998 1e-6 446 463 0.0001354 1e-6 447 463 0.00031049992 1e-6 448 463 0.0001008 1e-6 449 463 0.00011299999 1e-6 450 463 0.0030061998 1e-6 452 463 0.0062219985 1e-6 453 463 0.0014648999 1e-6 454 463 0.0016166 1e-6 455 463 0.0029531999 1e-6 456 463 0.0018863999 1e-6 457 463 0.0058534965 1e-6 458 463 0.00089889998 1e-6 459 463 0.00079199998 1e-6 460 463 0.0083455965 1e-6 461 463 0.00041639991 1e-6 463 463 0.10133928 1e-6 464 463 0.0001089 1e-6 465 463 0.0019646999 1e-6 467 463 0.0052253976 1e-6 468 463 0.0086590983 1e-6 469 463 0.0039314963 1e-6 470 463 0.0032127998 1e-6 471 463 0.0034194998 1e-6 473 463 6.7199988e-05 1e-6 474 463 6.0999992e-06 1e-6 476 463 1.7299986e-05 1e-6 477 463 2.9499992e-05 1e-6 478 463 0.00033189985 1e-6 483 463 0.00049069989 1e-6 486 463 0.00063319993 1e-6 489 463 0.00060369982 1e-6 490 463 0.00025039981 1e-6 9 464 2.3999994e-05 1e-6 11 464 0.00065869978 1e-6 16 464 0.0012573998 1e-6 18 464 0.0020597999 1e-6 22 464 0.00052689994 1e-6 60 464 0.023771297 1e-6 64 464 1.2e-05 1e-6 75 464 0.00098199979 1e-6 79 464 2.3999994e-05 1e-6 82 464 0.0011376999 1e-6 83 464 2.3999994e-05 1e-6 84 464 2.3999994e-05 1e-6 85 464 0.0010298998 1e-6 90 464 0.0010658 1e-6 93 464 0.00039519998 1e-6 94 464 0.00038319989 1e-6 105 464 0.00043109991 1e-6 106 464 7.1899995e-05 1e-6 107 464 0.00020359999 1e-6 108 464 2.3999994e-05 1e-6 113 464 4.7899986e-05 1e-6 114 464 9.5799987e-05 1e-6 126 464 4.7899986e-05 1e-6 127 464 2.3999994e-05 1e-6 130 464 0.00082629989 1e-6 142 464 0.00033529988 1e-6 150 464 0.0031015999 1e-6 151 464 0.0021197 1e-6 152 464 0.0037362999 1e-6 171 464 0.0010897999 1e-6 187 464 0.00064669992 1e-6 189 464 0.00034729997 1e-6 190 464 0.0034967999 1e-6 192 464 0.00010779999 1e-6 194 464 0.00022749999 1e-6 196 464 0.00035929983 1e-6 197 464 5.989999e-05 1e-6 198 464 0.00041909982 1e-6 200 464 0.0003711998 1e-6 201 464 7.1899995e-05 1e-6 203 464 0.0012693999 1e-6 204 464 0.0041314997 1e-6 206 464 0.00049099978 1e-6 207 464 0.0001677 1e-6 209 464 0.0002156 1e-6 215 464 0.00056279986 1e-6 217 464 0.00010779999 1e-6 219 464 1.2e-05 1e-6 223 464 0.00014369999 1e-6 229 464 0.0033292 1e-6 230 464 0.0036165998 1e-6 234 464 0.010753997 1e-6 237 464 0.00034729997 1e-6 240 464 1.2e-05 1e-6 241 464 0.0058918968 1e-6 248 464 3.5899997e-05 1e-6 250 464 2.3999994e-05 1e-6 252 464 0.0017603999 1e-6 263 464 0.00046699983 1e-6 279 464 1.2e-05 1e-6 315 464 0.0005987999 1e-6 322 464 0.00035929983 1e-6 356 464 5.989999e-05 1e-6 363 464 1.2e-05 1e-6 384 464 0.00063469983 1e-6 387 464 4.7899986e-05 1e-6 394 464 2.3999994e-05 1e-6 397 464 3.5899997e-05 1e-6 402 464 4.7899986e-05 1e-6 412 464 0.0002156 1e-6 419 464 2.3999994e-05 1e-6 422 464 0.00022749999 1e-6 423 464 2.3999994e-05 1e-6 425 464 2.3999994e-05 1e-6 428 464 0.00043109991 1e-6 430 464 2.3999994e-05 1e-6 431 464 4.7899986e-05 1e-6 432 464 3.5899997e-05 1e-6 433 464 0.0001198 1e-6 434 464 0.00015569999 1e-6 435 464 0.0010058999 1e-6 438 464 8.3799998e-05 1e-6 441 464 0.0004431 1e-6 442 464 0.00094609987 1e-6 443 464 0.00075449981 1e-6 444 464 0.0001317 1e-6 445 464 0.0029099998 1e-6 446 464 0.00051489985 1e-6 447 464 0.00041909982 1e-6 448 464 0.00023949999 1e-6 449 464 0.0014250998 1e-6 450 464 0.0034967999 1e-6 452 464 0.034968399 1e-6 453 464 0.0075804964 1e-6 454 464 0.0075205974 1e-6 455 464 0.0090055987 1e-6 456 464 0.0036165998 1e-6 457 464 0.0091971979 1e-6 458 464 0.0070774965 1e-6 459 464 0.00067059998 1e-6 460 464 0.013388596 1e-6 463 464 0.12847286 1e-6 464 464 0.0001677 1e-6 465 464 0.025807098 1e-6 467 464 0.043039899 1e-6 468 464 0.014238797 1e-6 469 464 0.0053050965 1e-6 470 464 0.0046344995 1e-6 471 464 0.0071612969 1e-6 473 464 9.5799987e-05 1e-6 477 464 0.0001198 1e-6 478 464 0.0016645999 1e-6 483 464 0.0038800999 1e-6 489 464 0.0017962998 1e-6 490 464 0.0003711998 1e-6 9 465 2.2699998e-05 1e-6 16 465 1.13e-05 1e-6 18 465 9.6399992e-05 1e-6 22 465 0.0001872 1e-6 60 465 0.0067609996 1e-6 79 465 5.6999997e-06 1e-6 82 465 3.9699997e-05 1e-6 83 465 2.8399998e-05 1e-6 84 465 2.2699998e-05 1e-6 104 465 0.00016449999 1e-6 108 465 5.0999995e-05 1e-6 113 465 6.2399995e-05 1e-6 114 465 0.00015879999 1e-6 117 465 6.2399995e-05 1e-6 126 465 7.3699994e-05 1e-6 127 465 1.13e-05 1e-6 130 465 0.0043843985 1e-6 133 465 5.6999997e-06 1e-6 137 465 0.00027229986 1e-6 139 465 0.00042539998 1e-6 149 465 3.9699997e-05 1e-6 150 465 0.022103697 1e-6 152 465 0.0065284967 1e-6 153 465 0.00068059983 1e-6 156 465 0.0001928 1e-6 158 465 0.0013612998 1e-6 160 465 0.00076569989 1e-6 161 465 0.0002099 1e-6 169 465 0.0002948998 1e-6 187 465 0.0006295999 1e-6 189 465 8.5099993e-05 1e-6 190 465 0.00014179999 1e-6 192 465 7.3699994e-05 1e-6 193 465 0.0051047988 1e-6 194 465 0.00015309999 1e-6 196 465 2.8399998e-05 1e-6 197 465 0.00093019987 1e-6 198 465 0.0039022998 1e-6 200 465 0.00036299997 1e-6 201 465 4.5399996e-05 1e-6 203 465 0.00036299997 1e-6 204 465 0.00085649989 1e-6 206 465 0.00034599984 1e-6 207 465 0.00011339999 1e-6 209 465 3.3999997e-05 1e-6 214 465 0.0059215985 1e-6 215 465 5.6999997e-06 1e-6 219 465 2.2699998e-05 1e-6 223 465 0.00060119992 1e-6 229 465 0.0049516 1e-6 230 465 0.0013498999 1e-6 231 465 0.00013609999 1e-6 233 465 0.0006465998 1e-6 234 465 0.0118942 1e-6 237 465 0.0026715 1e-6 240 465 0.0050990991 1e-6 241 465 0.0052181967 1e-6 242 465 0.00017019999 1e-6 244 465 0.0072147995 1e-6 248 465 2.8399998e-05 1e-6 250 465 1.6999998e-05 1e-6 251 465 5.6999997e-06 1e-6 252 465 6.2399995e-05 1e-6 263 465 5.6999997e-06 1e-6 265 465 0.0041575991 1e-6 271 465 5.6999997e-06 1e-6 272 465 3.3999997e-05 1e-6 279 465 0.0002948998 1e-6 284 465 2.2699998e-05 1e-6 285 465 2.8399998e-05 1e-6 295 465 0.000397 1e-6 312 465 0.0016675999 1e-6 315 465 0.0010209999 1e-6 316 465 0.00089619984 1e-6 317 465 0.0018887999 1e-6 319 465 0.00030629989 1e-6 322 465 0.0057173967 1e-6 323 465 5.6999997e-06 1e-6 326 465 0.00014179999 1e-6 328 465 0.0026431 1e-6 340 465 9.6399992e-05 1e-6 351 465 0.00036299997 1e-6 356 465 0.00010779999 1e-6 358 465 0.0025354 1e-6 360 465 0.0027111999 1e-6 363 465 0.0029210998 1e-6 364 465 0.00037439982 1e-6 365 465 0.00074299984 1e-6 366 465 0.0023708998 1e-6 368 465 0.0010152999 1e-6 372 465 0.0016845998 1e-6 376 465 0.00095859985 1e-6 377 465 0.00075999997 1e-6 379 465 0.0049686991 1e-6 380 465 0.001038 1e-6 381 465 0.0019340999 1e-6 382 465 3.3999997e-05 1e-6 383 465 5.6699995e-05 1e-6 384 465 0.00014179999 1e-6 387 465 9.0799993e-05 1e-6 391 465 0.0090070963 1e-6 392 465 0.0091148987 1e-6 393 465 0.00031199981 1e-6 394 465 0.0002212 1e-6 397 465 0.00013609999 1e-6 402 465 0.0007487 1e-6 403 465 5.6999997e-06 1e-6 404 465 1.13e-05 1e-6 405 465 1.13e-05 1e-6 409 465 0.0016107999 1e-6 412 465 0.00031199981 1e-6 419 465 0.004089497 1e-6 422 465 0.013164699 1e-6 423 465 2.2699998e-05 1e-6 424 465 0.0029040999 1e-6 425 465 1.6999998e-05 1e-6 430 465 4.5399996e-05 1e-6 431 465 2.2699998e-05 1e-6 432 465 2.8399998e-05 1e-6 433 465 7.9399993e-05 1e-6 434 465 0.00010779999 1e-6 437 465 0.00089049991 1e-6 440 465 0.019591 1e-6 442 465 0.0033634999 1e-6 443 465 0.0016107999 1e-6 444 465 0.00060119992 1e-6 445 465 0.005836498 1e-6 446 465 0.00060689985 1e-6 447 465 0.0013839998 1e-6 448 465 0.0002269 1e-6 449 465 3.3999997e-05 1e-6 450 465 0.021598898 1e-6 452 465 0.0067893974 1e-6 453 465 0.0018717998 1e-6 454 465 0.0011741 1e-6 455 465 0.030180696 1e-6 456 465 0.0026657998 1e-6 457 465 0.0057910979 1e-6 458 465 0.00034599984 1e-6 459 465 0.0012080998 1e-6 460 465 0.0047190972 1e-6 463 465 0.039312597 1e-6 464 465 0.0010265999 1e-6 465 465 0.037849199 1e-6 467 465 0.036969997 1e-6 468 465 0.0083944984 1e-6 469 465 0.0122572 1e-6 470 465 0.0078443997 1e-6 471 465 0.017815698 1e-6 473 465 0.00016449999 1e-6 477 465 5.6699995e-05 1e-6 478 465 0.0020589 1e-6 483 465 0.0019738998 1e-6 489 465 0.0010435998 1e-6 490 465 0.0006295999 1e-6 491 465 1.13e-05 1e-6 9 466 2.3199987e-05 1e-6 60 466 0.0092115998 1e-6 82 466 2.3199987e-05 1e-6 108 466 2.3199987e-05 1e-6 114 466 4.639999e-05 1e-6 126 466 2.3199987e-05 1e-6 149 466 0.0016705999 1e-6 150 466 0.00051049981 1e-6 187 466 2.3199987e-05 1e-6 189 466 9.2799994e-05 1e-6 190 466 0.0004176998 1e-6 192 466 2.3199987e-05 1e-6 194 466 4.639999e-05 1e-6 200 466 4.639999e-05 1e-6 203 466 2.3199987e-05 1e-6 204 466 2.3199987e-05 1e-6 206 466 6.9599992e-05 1e-6 207 466 2.3199987e-05 1e-6 223 466 6.9599992e-05 1e-6 230 466 0.00039439998 1e-6 232 466 0.043366298 1e-6 234 466 0.0054990984 1e-6 237 466 2.3199987e-05 1e-6 240 466 0.00018559999 1e-6 241 466 0.0043156967 1e-6 242 466 0.00034799986 1e-6 316 466 0.0017865999 1e-6 356 466 9.2799994e-05 1e-6 380 466 0.0014385998 1e-6 384 466 0.0001624 1e-6 387 466 2.3199987e-05 1e-6 394 466 0.000116 1e-6 397 466 0.000116 1e-6 402 466 2.3199987e-05 1e-6 422 466 2.3199987e-05 1e-6 430 466 2.3199987e-05 1e-6 433 466 2.3199987e-05 1e-6 434 466 2.3199987e-05 1e-6 435 466 0.00023199999 1e-6 438 466 0.00027839979 1e-6 442 466 0.0090722963 1e-6 443 466 0.0001624 1e-6 444 466 6.9599992e-05 1e-6 445 466 0.0021811 1e-6 446 466 0.0001624 1e-6 447 466 0.0001392 1e-6 448 466 0.000116 1e-6 450 466 0.0073785 1e-6 452 466 0.0069608986 1e-6 453 466 0.00092809997 1e-6 454 466 0.0018097998 1e-6 455 466 0.013666499 1e-6 456 466 0.0009976998 1e-6 457 466 0.0061255991 1e-6 458 466 4.639999e-05 1e-6 459 466 0.0024595 1e-6 460 466 2.3199987e-05 1e-6 463 466 0.078518689 1e-6 464 466 9.2799994e-05 1e-6 465 466 0.016218897 1e-6 467 466 0.0080513991 1e-6 468 466 0.0071000978 1e-6 469 466 0.0052206963 1e-6 470 466 0.0018097998 1e-6 471 466 0.008561898 1e-6 473 466 4.639999e-05 1e-6 478 466 0.0022042999 1e-6 483 466 0.0016241998 1e-6 489 466 0.00076569989 1e-6 490 466 0.0001624 1e-6 6 467 3.2199998e-05 1e-6 9 467 2.9499992e-05 1e-6 16 467 1.3399999e-05 1e-6 17 467 2.6999996e-06 1e-6 18 467 7.509999e-05 1e-6 60 467 0.0067344978 1e-6 75 467 0.0014568998 1e-6 79 467 0.00054199994 1e-6 82 467 4.0199986e-05 1e-6 83 467 2.9499992e-05 1e-6 84 467 2.9499992e-05 1e-6 102 467 4.5599998e-05 1e-6 108 467 5.3699987e-05 1e-6 113 467 6.7099987e-05 1e-6 114 467 0.0001717 1e-6 126 467 8.3199993e-05 1e-6 127 467 1.3399999e-05 1e-6 141 467 0.0002307 1e-6 149 467 0.0001851 1e-6 150 467 0.00056879991 1e-6 152 467 0.00014219999 1e-6 153 467 1.6099992e-05 1e-6 160 467 0.00041319989 1e-6 171 467 0.0002442 1e-6 187 467 0.00028709997 1e-6 189 467 0.0010356999 1e-6 190 467 0.00026559993 1e-6 192 467 0.0017976998 1e-6 194 467 0.0002388 1e-6 196 467 4.0199986e-05 1e-6 197 467 6.7099987e-05 1e-6 198 467 0.0010248998 1e-6 200 467 0.00036489987 1e-6 201 467 0.00043999986 1e-6 202 467 0.00051779998 1e-6 203 467 0.00045609986 1e-6 204 467 0.0014972 1e-6 206 467 0.0036489998 1e-6 207 467 0.00045609986 1e-6 209 467 6.7099987e-05 1e-6 210 467 0.00045879977 1e-6 214 467 0.0027071999 1e-6 217 467 0.0014836998 1e-6 218 467 8.3199993e-05 1e-6 219 467 1.07e-05 1e-6 223 467 0.0010195998 1e-6 228 467 0.00016899999 1e-6 229 467 0.0011670999 1e-6 230 467 0.0018485999 1e-6 231 467 0.00020929999 1e-6 233 467 0.00040779985 1e-6 234 467 0.0080975965 1e-6 237 467 0.0013442 1e-6 238 467 1.3399999e-05 1e-6 240 467 0.00022809999 1e-6 241 467 0.0051058978 1e-6 242 467 0.00054469984 1e-6 247 467 2.9499992e-05 1e-6 248 467 3.4899989e-05 1e-6 250 467 1.6099992e-05 1e-6 251 467 0.0001181 1e-6 252 467 0.00082099997 1e-6 263 467 0.00017439999 1e-6 270 467 0.00034609996 1e-6 271 467 8.0499987e-05 1e-6 272 467 0.00024679978 1e-6 279 467 0.00041319989 1e-6 284 467 3.7599995e-05 1e-6 301 467 0.00023339999 1e-6 312 467 0.00099009997 1e-6 314 467 0.00026559993 1e-6 315 467 0.0019506 1e-6 316 467 0.00016899999 1e-6 317 467 0.00061979983 1e-6 319 467 0.00017439999 1e-6 322 467 0.0012985999 1e-6 323 467 5.3999993e-06 1e-6 324 467 5.3999993e-06 1e-6 326 467 0.0026535999 1e-6 328 467 0.0022779 1e-6 329 467 0.0024952998 1e-6 330 467 0.0019612999 1e-6 340 467 0.00018239999 1e-6 341 467 0.00024149999 1e-6 348 467 0.00025489996 1e-6 351 467 0.0010731998 1e-6 352 467 6.4399996e-05 1e-6 356 467 0.00028439984 1e-6 358 467 0.0032358 1e-6 359 467 0.0016527998 1e-6 361 467 0.00080759986 1e-6 362 467 9.3899987e-05 1e-6 363 467 0.00039439998 1e-6 368 467 0.00066809985 1e-6 370 467 0.00040509994 1e-6 372 467 0.0020472 1e-6 373 467 0.00050979992 1e-6 374 467 0.0011053998 1e-6 375 467 0.0004453999 1e-6 376 467 0.0006438999 1e-6 380 467 8e-06 1e-6 382 467 0.00032729981 1e-6 384 467 4.2899992e-05 1e-6 387 467 6.9799993e-05 1e-6 392 467 0.0044350997 1e-6 393 467 0.00059829978 1e-6 394 467 0.00011539999 1e-6 395 467 8.3199993e-05 1e-6 397 467 6.169999e-05 1e-6 402 467 0.00037289993 1e-6 404 467 2.6999996e-06 1e-6 405 467 2.6999996e-06 1e-6 406 467 5.3999993e-06 1e-6 409 467 0.0018781999 1e-6 412 467 0.0003515 1e-6 413 467 5.6299992e-05 1e-6 414 467 5.8999998e-05 1e-6 419 467 1.6099992e-05 1e-6 422 467 0.010463998 1e-6 423 467 2.1499989e-05 1e-6 425 467 1.6099992e-05 1e-6 427 467 0.00051779998 1e-6 430 467 4.8299989e-05 1e-6 431 467 4.2899992e-05 1e-6 432 467 0.00031929999 1e-6 433 467 0.00012339999 1e-6 434 467 0.00039979978 1e-6 435 467 0.00028169993 1e-6 437 467 8.0499987e-05 1e-6 438 467 0.00032729981 1e-6 441 467 0.0001985 1e-6 442 467 0.0012583998 1e-6 443 467 0.0022296 1e-6 444 467 0.0023261998 1e-6 445 467 0.007056497 1e-6 446 467 0.00055539981 1e-6 447 467 0.0083711967 1e-6 448 467 0.00019319999 1e-6 449 467 1.3399999e-05 1e-6 450 467 0.021086399 1e-6 452 467 0.0052400976 1e-6 453 467 0.0010409998 1e-6 454 467 0.0024630998 1e-6 455 467 0.014257897 1e-6 456 467 0.0014032999 1e-6 457 467 0.0054868981 1e-6 458 467 0.0010007999 1e-6 459 467 0.0021088999 1e-6 460 467 0.0035416998 1e-6 463 467 0.046736699 1e-6 464 467 0.0049797967 1e-6 465 467 0.0034961 1e-6 467 467 0.045102697 1e-6 468 467 0.018735997 1e-6 469 467 0.015781898 1e-6 470 467 0.0093585998 1e-6 471 467 0.013571098 1e-6 473 467 0.00016899999 1e-6 477 467 0.0001449 1e-6 478 467 0.0022242998 1e-6 483 467 0.011212599 1e-6 486 467 7.7799996e-05 1e-6 489 467 0.00046689995 1e-6 490 467 0.00061439979 1e-6 491 467 5.3999993e-06 1e-6 9 468 4.6699992e-05 1e-6 16 468 2.1199987e-05 1e-6 18 468 0.00025459984 1e-6 22 468 8.4999992e-06 1e-6 60 468 0.003756 1e-6 63 468 0.0011415998 1e-6 75 468 8.9099995e-05 1e-6 79 468 5.5199998e-05 1e-6 82 468 6.369999e-05 1e-6 83 468 4.6699992e-05 1e-6 84 468 4.2399988e-05 1e-6 102 468 4.1999992e-06 1e-6 108 468 8.4899992e-05 1e-6 113 468 0.0001103 1e-6 114 468 0.00026309979 1e-6 126 468 0.0001316 1e-6 127 468 2.549999e-05 1e-6 139 468 4.1999992e-06 1e-6 141 468 8.0599988e-05 1e-6 149 468 1.2699999e-05 1e-6 150 468 0.00028429995 1e-6 151 468 6.7899993e-05 1e-6 152 468 8.4999992e-06 1e-6 160 468 0.00028429995 1e-6 165 468 0.00032249978 1e-6 170 468 0.00010609999 1e-6 171 468 0.00025459984 1e-6 172 468 8.4999992e-06 1e-6 187 468 0.080585241 1e-6 188 468 0.0010270998 1e-6 189 468 0.00055169989 1e-6 190 468 0.00015699999 1e-6 192 468 0.0026651998 1e-6 194 468 0.0008403 1e-6 196 468 5.5199998e-05 1e-6 197 468 0.00024189999 1e-6 198 468 0.0011119 1e-6 199 468 8.4999992e-06 1e-6 200 468 0.0010397998 1e-6 201 468 0.00012729999 1e-6 202 468 0.0048805997 1e-6 203 468 0.00060259993 1e-6 204 468 0.022247098 1e-6 205 468 0.0027798 1e-6 206 468 0.0010992 1e-6 207 468 0.00024619978 1e-6 209 468 0.0010354999 1e-6 210 468 0.0023979 1e-6 211 468 0.0043458976 1e-6 212 468 0.0026015998 1e-6 213 468 0.00050499989 1e-6 214 468 0.0020498999 1e-6 217 468 8.9099995e-05 1e-6 218 468 8.4999992e-06 1e-6 219 468 0.00012729999 1e-6 221 468 0.0057972968 1e-6 223 468 9.7599986e-05 1e-6 224 468 0.0011797999 1e-6 228 468 8.4999992e-06 1e-6 229 468 7.2099996e-05 1e-6 230 468 0.0001103 1e-6 231 468 1.2699999e-05 1e-6 233 468 0.0005092998 1e-6 234 468 0.0024487998 1e-6 237 468 0.00047109998 1e-6 240 468 0.00039039995 1e-6 241 468 0.0032382 1e-6 242 468 3.3999997e-05 1e-6 248 468 4.6699992e-05 1e-6 250 468 2.549999e-05 1e-6 251 468 2.549999e-05 1e-6 252 468 0.0001103 1e-6 263 468 2.549999e-05 1e-6 270 468 7.2099996e-05 1e-6 271 468 4.1999992e-06 1e-6 272 468 0.00044989982 1e-6 277 468 0.0011713 1e-6 279 468 7.2099996e-05 1e-6 284 468 8.4999992e-06 1e-6 287 468 0.00016549999 1e-6 292 468 0.0001528 1e-6 293 468 0.00095909997 1e-6 294 468 0.0002249 1e-6 295 468 0.00045409985 1e-6 301 468 1.2699999e-05 1e-6 312 468 0.00010189999 1e-6 314 468 1.6999998e-05 1e-6 315 468 0.00011879999 1e-6 316 468 8.4999992e-06 1e-6 317 468 0.00012309999 1e-6 319 468 0.000208 1e-6 320 468 9.3399998e-05 1e-6 321 468 0.0001146 1e-6 322 468 8.0599988e-05 1e-6 325 468 0.0004584 1e-6 326 468 0.00024619978 1e-6 328 468 0.00013579999 1e-6 329 468 0.0001485 1e-6 330 468 0.00011879999 1e-6 334 468 0.00010609999 1e-6 340 468 0.0001316 1e-6 341 468 1.2699999e-05 1e-6 348 468 0.0017315999 1e-6 351 468 6.369999e-05 1e-6 352 468 4.1999992e-06 1e-6 356 468 7.64e-05 1e-6 358 468 0.00043709995 1e-6 359 468 0.00010609999 1e-6 361 468 5.0899995e-05 1e-6 362 468 4.1999992e-06 1e-6 363 468 4.6699992e-05 1e-6 368 468 3.82e-05 1e-6 370 468 0.00052629993 1e-6 371 468 0.0001103 1e-6 372 468 0.00012309999 1e-6 373 468 9.7599986e-05 1e-6 374 468 6.7899993e-05 1e-6 375 468 2.549999e-05 1e-6 376 468 0.00010609999 1e-6 380 468 1.6999998e-05 1e-6 382 468 2.1199987e-05 1e-6 384 468 0.0001867 1e-6 385 468 4.1999992e-06 1e-6 386 468 0.00016549999 1e-6 387 468 0.0001103 1e-6 388 468 0.0003564998 1e-6 389 468 0.00071299984 1e-6 390 468 8.9099995e-05 1e-6 391 468 0.0015320999 1e-6 392 468 0.00031829998 1e-6 393 468 4.2399988e-05 1e-6 394 468 3.3999997e-05 1e-6 395 468 8.4999992e-06 1e-6 397 468 2.9699993e-05 1e-6 401 468 4.1999992e-06 1e-6 402 468 0.0001316 1e-6 404 468 4.1999992e-06 1e-6 409 468 0.0001146 1e-6 412 468 0.00021639999 1e-6 413 468 4.1999992e-06 1e-6 414 468 4.1999992e-06 1e-6 417 468 1.6999998e-05 1e-6 419 468 2.549999e-05 1e-6 421 468 4.1999992e-06 1e-6 422 468 0.0059840977 1e-6 423 468 3.82e-05 1e-6 425 468 2.549999e-05 1e-6 427 468 2.9699993e-05 1e-6 430 468 7.2099996e-05 1e-6 431 468 0.00011879999 1e-6 432 468 0.00014429999 1e-6 433 468 0.0001485 1e-6 434 468 0.00037349993 1e-6 435 468 1.6999998e-05 1e-6 437 468 4.1999992e-06 1e-6 438 468 2.1199987e-05 1e-6 441 468 0.00043289992 1e-6 442 468 0.0024614998 1e-6 443 468 0.0031235998 1e-6 444 468 0.0051309988 1e-6 445 468 0.0057251975 1e-6 446 468 0.000208 1e-6 447 468 0.0114928 1e-6 448 468 4.6699992e-05 1e-6 449 468 2.549999e-05 1e-6 450 468 0.016933598 1e-6 451 468 0.00017399999 1e-6 452 468 0.0053431988 1e-6 453 468 0.0010439998 1e-6 454 468 0.00089549995 1e-6 455 468 0.017527796 1e-6 456 468 0.0012010999 1e-6 457 468 0.0064466968 1e-6 458 468 0.00062389998 1e-6 459 468 0.0018078999 1e-6 460 468 0.0033951998 1e-6 463 468 0.043382298 1e-6 464 468 0.0079320967 1e-6 465 468 0.0021346998 1e-6 467 468 0.030531399 1e-6 468 468 0.016916599 1e-6 469 468 0.0119766 1e-6 470 468 0.012464698 1e-6 471 468 0.0049017966 1e-6 472 468 0.031647597 1e-6 473 468 0.021988198 1e-6 477 468 0.0001316 1e-6 478 468 0.0036032 1e-6 483 468 0.010113496 1e-6 489 468 0.00038619991 1e-6 490 468 0.0018036999 1e-6 491 468 0.00010609999 1e-6 9 469 3.6599988e-05 1e-6 16 469 1.4599999e-05 1e-6 17 469 3.7e-06 1e-6 18 469 1.4599999e-05 1e-6 60 469 0.00046439981 1e-6 79 469 7.2999992e-06 1e-6 82 469 6.2199993e-05 1e-6 83 469 4.7499998e-05 1e-6 84 469 4.39e-05 1e-6 108 469 7.3099989e-05 1e-6 113 469 0.00010599999 1e-6 114 469 0.00025959988 1e-6 126 469 0.00012069999 1e-6 127 469 2.1899992e-05 1e-6 150 469 9.1399997e-05 1e-6 171 469 3.7e-06 1e-6 187 469 3.7e-06 1e-6 189 469 0.00033279997 1e-6 190 469 0.00011339999 1e-6 192 469 9.5099997e-05 1e-6 194 469 0.0002121 1e-6 196 469 3.2899989e-05 1e-6 197 469 0.00068379985 1e-6 200 469 0.00054849987 1e-6 201 469 0.0051302984 1e-6 203 469 0.00020109999 1e-6 204 469 0.0026437999 1e-6 206 469 0.0011298999 1e-6 207 469 0.00015359999 1e-6 209 469 4.7499998e-05 1e-6 210 469 0.00054849987 1e-6 214 469 3.7e-06 1e-6 219 469 1.0999999e-05 1e-6 223 469 2.5599991e-05 1e-6 230 469 8.4099986e-05 1e-6 233 469 0.00010239999 1e-6 234 469 0.0026217999 1e-6 237 469 0.00033639977 1e-6 240 469 1.8299994e-05 1e-6 241 469 0.00074229995 1e-6 242 469 0.00018649999 1e-6 248 469 5.4899996e-05 1e-6 250 469 2.1899992e-05 1e-6 251 469 1.0999999e-05 1e-6 252 469 0.00036569987 1e-6 263 469 7.6799988e-05 1e-6 279 469 7.2999992e-06 1e-6 322 469 3.7e-06 1e-6 326 469 3.7e-06 1e-6 356 469 3.6599988e-05 1e-6 359 469 0.00011339999 1e-6 363 469 1.0999999e-05 1e-6 380 469 1.0999999e-05 1e-6 384 469 1.0999999e-05 1e-6 387 469 0.00010599999 1e-6 393 469 8.7799999e-05 1e-6 394 469 2.5599991e-05 1e-6 397 469 2.5599991e-05 1e-6 402 469 1.0999999e-05 1e-6 412 469 8.4099986e-05 1e-6 419 469 1.4599999e-05 1e-6 422 469 0.00086299982 1e-6 423 469 2.929999e-05 1e-6 425 469 1.4599999e-05 1e-6 430 469 6.5799992e-05 1e-6 431 469 3.2899989e-05 1e-6 432 469 9.8699995e-05 1e-6 433 469 0.00011339999 1e-6 434 469 0.00019009999 1e-6 438 469 0.00010239999 1e-6 441 469 0.00037659984 1e-6 442 469 0.0011884 1e-6 443 469 0.00018649999 1e-6 444 469 0.0073352978 1e-6 445 469 0.0026071998 1e-6 446 469 0.0001755 1e-6 447 469 0.011339299 1e-6 448 469 7.3099989e-05 1e-6 449 469 2.1899992e-05 1e-6 450 469 0.018243097 1e-6 452 469 0.00046809996 1e-6 453 469 0.000128 1e-6 454 469 0.00086299982 1e-6 455 469 0.0035762 1e-6 456 469 0.0011847999 1e-6 457 469 0.0082237981 1e-6 458 469 0.00072399992 1e-6 459 469 0.00047539989 1e-6 460 469 0.0022012999 1e-6 463 469 0.043547299 1e-6 464 469 0.014926497 1e-6 465 469 0.0007642 1e-6 467 469 0.029885899 1e-6 468 469 0.0067428984 1e-6 469 469 0.040234298 1e-6 470 469 0.015537199 1e-6 471 469 0.011763498 1e-6 473 469 0.00027429988 1e-6 477 469 0.0001755 1e-6 478 469 0.0022817999 1e-6 483 469 0.0051448978 1e-6 489 469 0.00010239999 1e-6 490 469 0.0011664999 1e-6 491 469 3.7e-06 1e-6 1 470 0.0051065981 1e-6 9 470 0.0013710998 1e-6 11 470 0.010274697 1e-6 16 470 2.8699986e-05 1e-6 17 470 0.0064303987 1e-6 59 470 4.0999994e-06 1e-6 60 470 0.0034871998 1e-6 64 470 4.0999994e-06 1e-6 75 470 0.00015189999 1e-6 82 470 0.07518667 1e-6 83 470 0.018761799 1e-6 84 470 0.010701697 1e-6 85 470 0.0014962999 1e-6 86 470 0.0035919 1e-6 87 470 0.0061553977 1e-6 88 470 0.0024013999 1e-6 89 470 0.0083884969 1e-6 90 470 0.013706498 1e-6 91 470 0.001956 1e-6 92 470 0.0013771998 1e-6 93 470 0.0096179992 1e-6 94 470 0.0010817 1e-6 95 470 0.0050757974 1e-6 96 470 0.0096774995 1e-6 97 470 0.0070563965 1e-6 98 470 0.0013730999 1e-6 99 470 0.00027299998 1e-6 100 470 0.0008578999 1e-6 103 470 0.00056649977 1e-6 104 470 3.0799987e-05 1e-6 105 470 0.022238698 1e-6 106 470 0.0015947998 1e-6 107 470 0.0016747999 1e-6 108 470 0.0032676 1e-6 109 470 0.00049879984 1e-6 111 470 0.029477797 1e-6 113 470 0.0066725984 1e-6 114 470 0.0311937 1e-6 115 470 0.0072760992 1e-6 116 470 0.008080598 1e-6 121 470 0.0089980997 1e-6 122 470 0.0052625984 1e-6 123 470 0.00073679979 1e-6 124 470 0.00051309983 1e-6 125 470 0.0093326978 1e-6 152 470 0.00051309983 1e-6 187 470 4.0999994e-06 1e-6 189 470 0.00010059999 1e-6 190 470 0.0012601998 1e-6 192 470 2.8699986e-05 1e-6 193 470 0.0014634 1e-6 194 470 2.0999996e-06 1e-6 195 470 0.00025659986 1e-6 197 470 0.00038789981 1e-6 198 470 0.0062764995 1e-6 203 470 2.0999996e-06 1e-6 204 470 0.00091129984 1e-6 206 470 7.9999998e-05 1e-6 214 470 4.0999992e-05 1e-6 218 470 0.00015189999 1e-6 223 470 0.00017449999 1e-6 229 470 0.0021571999 1e-6 230 470 0.00039819977 1e-6 234 470 0.00023189999 1e-6 237 470 3.689999e-05 1e-6 240 470 2.0999996e-06 1e-6 241 470 0.0031361999 1e-6 252 470 0.0010713998 1e-6 260 470 0.00079839979 1e-6 261 470 1.8499995e-05 1e-6 263 470 2.0999996e-06 1e-6 296 470 0.0002422 1e-6 315 470 0.0010386 1e-6 316 470 7.9999998e-05 1e-6 317 470 1.44e-05 1e-6 322 470 2.0999996e-06 1e-6 344 470 0.0003386999 1e-6 351 470 2.0999996e-06 1e-6 358 470 8.6199987e-05 1e-6 368 470 2.0999996e-06 1e-6 377 470 2.0999996e-06 1e-6 380 470 4.0999994e-06 1e-6 384 470 9.8499993e-05 1e-6 406 470 2.0999996e-06 1e-6 408 470 2.0999996e-06 1e-6 412 470 4.0999994e-06 1e-6 422 470 8.1999997e-06 1e-6 425 470 0.00046799984 1e-6 434 470 2.0999996e-06 1e-6 435 470 0.0002462999 1e-6 442 470 0.00042689987 1e-6 443 470 0.0035281999 1e-6 445 470 0.011432298 1e-6 446 470 0.00046799984 1e-6 447 470 0.00017859999 1e-6 448 470 6.1999999e-06 1e-6 450 470 0.0030828 1e-6 452 470 0.011588298 1e-6 453 470 0.0011041998 1e-6 454 470 0.0032428999 1e-6 455 470 0.061297499 1e-6 456 470 4.5199995e-05 1e-6 457 470 0.0045297965 1e-6 458 470 0.0029719998 1e-6 459 470 0.0002176 1e-6 460 470 0.0030294999 1e-6 463 470 0.041891199 1e-6 465 470 0.011153199 1e-6 467 470 0.011684798 1e-6 468 470 0.010305498 1e-6 469 470 0.0054287985 1e-6 470 470 2.8699986e-05 1e-6 471 470 0.00045149983 1e-6 472 470 3.8999991e-05 1e-6 473 470 0.0086244978 1e-6 477 470 0.00013959999 1e-6 478 470 0.0012848999 1e-6 479 470 0.0019888999 1e-6 483 470 0.0012786998 1e-6 486 470 1.6399994e-05 1e-6 489 470 0.00067939982 1e-6 490 470 0.00066909986 1e-6 9 471 1.2199999e-05 1e-6 16 471 8.0999998e-06 1e-6 18 471 4.0999994e-06 1e-6 22 471 4.0999994e-06 1e-6 60 471 0.0052297972 1e-6 66 471 1.2199999e-05 1e-6 68 471 0.0013929999 1e-6 69 471 0.00065579987 1e-6 73 471 0.00013029999 1e-6 75 471 0.00081869983 1e-6 79 471 4.0999994e-06 1e-6 82 471 1.6299993e-05 1e-6 83 471 1.2199999e-05 1e-6 84 471 1.2199999e-05 1e-6 108 471 1.6299993e-05 1e-6 113 471 2.4399997e-05 1e-6 114 471 5.6999997e-05 1e-6 126 471 2.4399997e-05 1e-6 127 471 4.0999994e-06 1e-6 150 471 0.0022034999 1e-6 187 471 4.0999994e-06 1e-6 189 471 1.6299993e-05 1e-6 190 471 5.6999997e-05 1e-6 192 471 0.0012341 1e-6 194 471 3.6699988e-05 1e-6 196 471 4.0999994e-06 1e-6 197 471 1.2199999e-05 1e-6 200 471 2.0399995e-05 1e-6 201 471 1.2199999e-05 1e-6 203 471 2.4399997e-05 1e-6 204 471 5.2999996e-05 1e-6 206 471 6.5199987e-05 1e-6 207 471 2.0399995e-05 1e-6 209 471 4.0999994e-06 1e-6 214 471 0.00021989999 1e-6 217 471 1.6299993e-05 1e-6 223 471 8.9599998e-05 1e-6 228 471 4.0999994e-06 1e-6 229 471 1.2199999e-05 1e-6 230 471 4.0999994e-06 1e-6 231 471 8.0999998e-06 1e-6 233 471 0.0042481981 1e-6 234 471 0.0074577965 1e-6 237 471 0.010687798 1e-6 240 471 0.0037757999 1e-6 241 471 4.0999994e-06 1e-6 242 471 0.0001222 1e-6 248 471 1.2199999e-05 1e-6 250 471 4.0999994e-06 1e-6 251 471 4.0999994e-06 1e-6 252 471 0.0048550963 1e-6 263 471 4.0999994e-06 1e-6 267 471 4.0999994e-06 1e-6 272 471 0.0069975965 1e-6 312 471 0.00024849991 1e-6 313 471 0.012805797 1e-6 317 471 0.0022320999 1e-6 319 471 0.0045007989 1e-6 323 471 0.0016496 1e-6 328 471 0.0018206998 1e-6 330 471 4.0999994e-06 1e-6 331 471 1.6299993e-05 1e-6 340 471 7.7399993e-05 1e-6 356 471 0.00035839994 1e-6 357 471 0.0062236972 1e-6 358 471 0.00023619999 1e-6 366 471 0.034645699 1e-6 376 471 0.00046429993 1e-6 380 471 4.0999994e-06 1e-6 384 471 9.7799988e-05 1e-6 385 471 0.0040567964 1e-6 387 471 0.0055678971 1e-6 394 471 0.0001222 1e-6 397 471 0.0024601 1e-6 402 471 0.23339194 1e-6 412 471 0.00044799992 1e-6 413 471 4.0999994e-06 1e-6 419 471 4.0999994e-06 1e-6 422 471 4.4799992e-05 1e-6 423 471 8.0999998e-06 1e-6 425 471 4.0999994e-06 1e-6 430 471 1.2199999e-05 1e-6 431 471 8.0999998e-06 1e-6 432 471 4.0999994e-06 1e-6 433 471 1.2199999e-05 1e-6 434 471 1.6299993e-05 1e-6 442 471 9.3699986e-05 1e-6 443 471 0.0064150989 1e-6 444 471 7.3299991e-05 1e-6 445 471 0.0042807981 1e-6 446 471 0.00025659986 1e-6 447 471 0.00086759985 1e-6 448 471 0.00013439999 1e-6 449 471 0.00027699978 1e-6 450 471 0.0062236972 1e-6 452 471 0.0041096993 1e-6 453 471 0.0013685999 1e-6 454 471 0.0010589999 1e-6 455 471 0.047207098 1e-6 456 471 0.012357697 1e-6 457 471 0.0018328999 1e-6 458 471 0.00048059993 1e-6 459 471 0.00031359983 1e-6 460 471 0.0090992972 1e-6 463 471 0.037012096 1e-6 464 471 9.7799988e-05 1e-6 465 471 0.0013440999 1e-6 467 471 0.011502396 1e-6 468 471 0.0053316988 1e-6 469 471 0.0058896989 1e-6 470 471 0.0028837 1e-6 471 471 0.0027655999 1e-6 473 471 5.6999997e-05 1e-6 477 471 1.2199999e-05 1e-6 478 471 0.00060279993 1e-6 483 471 0.00045619998 1e-6 489 471 0.00066389982 1e-6 490 471 0.00021989999 1e-6 491 471 0.0025374999 1e-6 9 472 6.9099988e-05 1e-6 16 472 2.2999986e-05 1e-6 18 472 0.00027639978 1e-6 60 472 0.012623798 1e-6 79 472 2.2999986e-05 1e-6 82 472 9.2099988e-05 1e-6 83 472 6.9099988e-05 1e-6 84 472 6.9099988e-05 1e-6 108 472 9.2099988e-05 1e-6 113 472 0.00013819999 1e-6 114 472 0.00029949984 1e-6 126 472 0.00013819999 1e-6 127 472 2.2999986e-05 1e-6 189 472 0.00011519999 1e-6 190 472 4.6099987e-05 1e-6 197 472 2.2999986e-05 1e-6 200 472 0.00029949984 1e-6 201 472 4.6099987e-05 1e-6 203 472 0.00071409997 1e-6 204 472 2.2999986e-05 1e-6 223 472 2.2999986e-05 1e-6 229 472 4.6099987e-05 1e-6 230 472 2.2999986e-05 1e-6 234 472 0.0014281999 1e-6 237 472 0.00032249978 1e-6 241 472 4.6099987e-05 1e-6 248 472 4.6099987e-05 1e-6 250 472 2.2999986e-05 1e-6 251 472 2.2999986e-05 1e-6 252 472 4.6099987e-05 1e-6 263 472 2.2999986e-05 1e-6 315 472 2.2999986e-05 1e-6 356 472 0.00016129999 1e-6 380 472 2.2999986e-05 1e-6 384 472 0.00016129999 1e-6 387 472 0.00013819999 1e-6 394 472 2.2999986e-05 1e-6 397 472 2.2999986e-05 1e-6 402 472 0.00013819999 1e-6 412 472 0.00069109979 1e-6 419 472 2.2999986e-05 1e-6 422 472 0.0218383 1e-6 423 472 4.6099987e-05 1e-6 425 472 2.2999986e-05 1e-6 430 472 6.9099988e-05 1e-6 431 472 2.2999986e-05 1e-6 443 472 6.9099988e-05 1e-6 444 472 0.00039159996 1e-6 445 472 0.0066343993 1e-6 446 472 9.2099988e-05 1e-6 447 472 0.00089839986 1e-6 448 472 2.2999986e-05 1e-6 449 472 2.2999986e-05 1e-6 450 472 0.0025801 1e-6 452 472 0.0088688992 1e-6 453 472 0.0024648998 1e-6 454 472 0.0016124998 1e-6 455 472 0.0057359971 1e-6 456 472 0.0013130999 1e-6 457 472 0.0077631995 1e-6 458 472 0.00025339983 1e-6 459 472 0.00082929991 1e-6 460 472 0.0027643 1e-6 463 472 0.060124397 1e-6 464 472 0.0005067999 1e-6 465 472 0.00059889979 1e-6 467 472 0.0063809976 1e-6 468 472 0.039506998 1e-6 469 472 0.0066113994 1e-6 470 472 0.015272997 1e-6 471 472 0.0048145987 1e-6 472 472 0.30955994 1e-6 473 472 0.00029949984 1e-6 477 472 4.6099987e-05 1e-6 478 472 0.0017046998 1e-6 483 472 0.0031559998 1e-6 486 472 2.2999986e-05 1e-6 489 472 0.0004606999 1e-6 490 472 0.044137299 1e-6 0 473 2.3899993e-05 1e-6 2 473 0.0013367999 1e-6 3 473 0.0051442981 1e-6 5 473 4.7699999e-05 1e-6 6 473 0.0423957 1e-6 9 473 7.1599992e-05 1e-6 14 473 1.19e-05 1e-6 16 473 7.1599992e-05 1e-6 17 473 1.19e-05 1e-6 18 473 0.0094053969 1e-6 60 473 0.0069226995 1e-6 62 473 2.3899993e-05 1e-6 75 473 0.0089517981 1e-6 79 473 2.3899993e-05 1e-6 82 473 0.00010739999 1e-6 83 473 8.3599996e-05 1e-6 84 473 8.3599996e-05 1e-6 101 473 0.0021125998 1e-6 102 473 0.00039389986 1e-6 105 473 0.000179 1e-6 108 473 0.0001313 1e-6 113 473 0.00021479999 1e-6 114 473 0.00048939977 1e-6 118 473 5.9699989e-05 1e-6 126 473 0.00021479999 1e-6 127 473 3.5799996e-05 1e-6 141 473 0.00096679991 1e-6 150 473 0.0003819 1e-6 154 473 0.0013249 1e-6 171 473 1.19e-05 1e-6 189 473 8.3599996e-05 1e-6 190 473 0.0002387 1e-6 192 473 8.3599996e-05 1e-6 194 473 0.0002268 1e-6 196 473 2.3899993e-05 1e-6 197 473 0.00035809982 1e-6 200 473 0.0002625999 1e-6 201 473 0.00011939999 1e-6 203 473 0.0016828999 1e-6 204 473 0.0030913998 1e-6 206 473 0.00041779992 1e-6 207 473 0.00010739999 1e-6 209 473 2.3899993e-05 1e-6 214 473 3.5799996e-05 1e-6 215 473 0.0016232999 1e-6 217 473 0.00054899999 1e-6 223 473 0.00039389986 1e-6 230 473 0.00040579983 1e-6 234 473 0.0026974999 1e-6 237 473 0.00062069995 1e-6 241 473 4.7699999e-05 1e-6 242 473 0.00033419998 1e-6 244 473 0.0002387 1e-6 245 473 0.0016590999 1e-6 248 473 8.3599996e-05 1e-6 250 473 4.7699999e-05 1e-6 251 473 0.0020528999 1e-6 252 473 7.1599992e-05 1e-6 263 473 1.19e-05 1e-6 283 473 1.19e-05 1e-6 322 473 0.00015519999 1e-6 326 473 1.19e-05 1e-6 329 473 2.3899993e-05 1e-6 356 473 0.00015519999 1e-6 364 473 0.00093099987 1e-6 380 473 3.5799996e-05 1e-6 384 473 0.0002625999 1e-6 387 473 0.00020289999 1e-6 388 473 1.19e-05 1e-6 391 473 5.9699989e-05 1e-6 394 473 4.7699999e-05 1e-6 397 473 4.7699999e-05 1e-6 402 473 5.9699989e-05 1e-6 406 473 5.9699989e-05 1e-6 412 473 0.00065649999 1e-6 419 473 2.3899993e-05 1e-6 422 473 0.00027449988 1e-6 423 473 4.7699999e-05 1e-6 425 473 3.5799996e-05 1e-6 430 473 0.0020291 1e-6 431 473 4.7699999e-05 1e-6 432 473 2.3899993e-05 1e-6 433 473 7.1599992e-05 1e-6 434 473 9.55e-05 1e-6 442 473 0.0014680999 1e-6 443 473 0.0010264998 1e-6 444 473 0.00066839997 1e-6 445 473 0.0024348998 1e-6 446 473 0.00081159989 1e-6 447 473 0.0016709999 1e-6 448 473 5.9699989e-05 1e-6 449 473 7.1599992e-05 1e-6 450 473 0.0087130964 1e-6 451 473 1.19e-05 1e-6 452 473 0.0070181973 1e-6 453 473 0.0019335998 1e-6 454 473 0.001862 1e-6 455 473 0.016483299 1e-6 456 473 0.0022677998 1e-6 457 473 0.0066004992 1e-6 458 473 8.3599996e-05 1e-6 459 473 0.00041779992 1e-6 460 473 0.010467596 1e-6 463 473 0.074001551 1e-6 464 473 0.00085939979 1e-6 465 473 0.0123774 1e-6 467 473 0.037716899 1e-6 468 473 0.016972598 1e-6 469 473 0.0066481978 1e-6 470 473 0.024468299 1e-6 471 473 0.0039745979 1e-6 472 473 0.0010861999 1e-6 473 473 0.069263041 1e-6 476 473 2.3899993e-05 1e-6 477 473 0.00015519999 1e-6 478 473 0.0033180998 1e-6 483 473 0.0013128999 1e-6 489 473 0.00047739991 1e-6 490 473 0.0021841999 1e-6 1 474 4.259999e-05 1e-6 9 474 3.4099998e-05 1e-6 11 474 1.2799999e-05 1e-6 16 474 8.4999992e-06 1e-6 17 474 4.2999991e-06 1e-6 18 474 4.6899993e-05 1e-6 60 474 0.00067789992 1e-6 79 474 8.4999992e-06 1e-6 82 474 0.00014069999 1e-6 83 474 6.8199995e-05 1e-6 84 474 5.9699989e-05 1e-6 86 474 4.2999991e-06 1e-6 87 474 8.4999992e-06 1e-6 88 474 4.2999991e-06 1e-6 89 474 8.4999992e-06 1e-6 90 474 7.6699987e-05 1e-6 91 474 1.7099999e-05 1e-6 92 474 1.2799999e-05 1e-6 93 474 8.0999991e-05 1e-6 94 474 4.2999991e-06 1e-6 95 474 4.2999991e-06 1e-6 96 474 4.2999991e-06 1e-6 97 474 3.8399987e-05 1e-6 98 474 4.2999991e-06 1e-6 99 474 8.4999992e-06 1e-6 100 474 4.2999991e-06 1e-6 101 474 2.1299988e-05 1e-6 105 474 2.5599991e-05 1e-6 106 474 4.2999991e-06 1e-6 107 474 4.2999991e-06 1e-6 108 474 4.6899993e-05 1e-6 113 474 8.0999991e-05 1e-6 114 474 0.0001791 1e-6 115 474 4.2999991e-06 1e-6 121 474 2.9799994e-05 1e-6 122 474 8.4999992e-06 1e-6 125 474 2.5599991e-05 1e-6 126 474 8.0999991e-05 1e-6 127 474 1.2799999e-05 1e-6 150 474 0.00017059999 1e-6 151 474 4.2999991e-06 1e-6 152 474 2.5599991e-05 1e-6 171 474 1.2799999e-05 1e-6 187 474 4.2999991e-06 1e-6 189 474 0.00090819993 1e-6 190 474 0.00069929985 1e-6 192 474 0.00014919999 1e-6 194 474 0.00030269986 1e-6 196 474 5.54e-05 1e-6 197 474 9.3799987e-05 1e-6 198 474 0.0007205999 1e-6 200 474 0.00089969998 1e-6 201 474 0.0024175998 1e-6 203 474 0.00030269986 1e-6 204 474 0.00040929997 1e-6 206 474 0.00072909985 1e-6 207 474 0.00023019999 1e-6 209 474 7.6699987e-05 1e-6 214 474 0.00057129981 1e-6 219 474 1.7099999e-05 1e-6 223 474 0.0001279 1e-6 228 474 0.019135799 1e-6 229 474 1.7099999e-05 1e-6 230 474 0.0001279 1e-6 234 474 0.0019655998 1e-6 237 474 0.00071629998 1e-6 240 474 0.00059689977 1e-6 241 474 0.00057129981 1e-6 242 474 0.00015779999 1e-6 248 474 3.8399987e-05 1e-6 250 474 2.1299988e-05 1e-6 251 474 8.4999992e-06 1e-6 252 474 6.3999993e-05 1e-6 253 474 1.2799999e-05 1e-6 263 474 1.2799999e-05 1e-6 279 474 8.4999992e-06 1e-6 315 474 1.2799999e-05 1e-6 322 474 8.4999992e-06 1e-6 326 474 4.2999991e-06 1e-6 356 474 3.8399987e-05 1e-6 359 474 4.2999991e-06 1e-6 363 474 2.1299988e-05 1e-6 380 474 1.2799999e-05 1e-6 384 474 2.5599991e-05 1e-6 387 474 7.6699987e-05 1e-6 393 474 4.2999991e-06 1e-6 394 474 3.4099998e-05 1e-6 397 474 4.259999e-05 1e-6 412 474 4.2999991e-06 1e-6 416 474 0.0023365 1e-6 417 474 0.0058924966 1e-6 418 474 0.0024089999 1e-6 419 474 8.4999992e-06 1e-6 422 474 0.0017907999 1e-6 423 474 1.7099999e-05 1e-6 424 474 2.1299988e-05 1e-6 425 474 1.2799999e-05 1e-6 430 474 4.259999e-05 1e-6 431 474 4.6899993e-05 1e-6 432 474 5.9699989e-05 1e-6 433 474 0.00017059999 1e-6 434 474 0.00020889999 1e-6 435 474 4.2999991e-06 1e-6 438 474 8.4999992e-06 1e-6 441 474 0.00011509999 1e-6 442 474 0.00011939999 1e-6 443 474 0.0002388 1e-6 444 474 0.00025579985 1e-6 445 474 0.00092519983 1e-6 446 474 9.3799987e-05 1e-6 447 474 0.00055859983 1e-6 448 474 3.8399987e-05 1e-6 449 474 1.7099999e-05 1e-6 450 474 0.0040505975 1e-6 452 474 0.0013857 1e-6 453 474 0.00030269986 1e-6 454 474 0.0018163999 1e-6 455 474 0.010433499 1e-6 456 474 0.0011170998 1e-6 457 474 0.0026733999 1e-6 458 474 0.00019189999 1e-6 459 474 1.7099999e-05 1e-6 460 474 0.015814297 1e-6 463 474 0.042249698 1e-6 464 474 0.00032399991 1e-6 465 474 0.012509897 1e-6 467 474 0.018717997 1e-6 468 474 5.54e-05 1e-6 469 474 0.0092821978 1e-6 470 474 0.0090988986 1e-6 471 474 0.003973797 1e-6 473 474 0.00018759999 1e-6 476 474 0.040394999 1e-6 477 474 0.00014919999 1e-6 478 474 0.0012663 1e-6 483 474 0.0065704994 1e-6 489 474 0.00015349999 1e-6 490 474 0.00069069979 1e-6 1 475 0.0018086999 1e-6 9 475 0.00035729981 1e-6 11 475 0.000795 1e-6 16 475 4.4999997e-06 1e-6 17 475 0.00017419999 1e-6 18 475 0.0008709 1e-6 22 475 0.00030369987 1e-6 60 475 0.025831498 1e-6 79 475 4.4999997e-06 1e-6 82 475 0.0079539977 1e-6 83 475 0.0019649998 1e-6 84 475 0.0015407999 1e-6 86 475 0.0005090998 1e-6 87 475 0.00035729981 1e-6 88 475 9.3799987e-05 1e-6 89 475 0.0013577 1e-6 90 475 0.0040684976 1e-6 91 475 0.0002233 1e-6 92 475 0.00045999978 1e-6 93 475 0.0024964998 1e-6 94 475 0.00026799995 1e-6 95 475 0.00027239998 1e-6 96 475 0.00095129991 1e-6 97 475 0.0010405998 1e-6 98 475 8.9299996e-05 1e-6 99 475 0.00024119999 1e-6 100 475 0.0001027 1e-6 103 475 3.1299991e-05 1e-6 104 475 4.4999997e-06 1e-6 105 475 0.001706 1e-6 106 475 0.0002233 1e-6 107 475 0.00025009993 1e-6 108 475 0.00020099999 1e-6 109 475 4.4699991e-05 1e-6 113 475 2.6799986e-05 1e-6 114 475 6.2499996e-05 1e-6 115 475 0.0005806 1e-6 116 475 0.0001965 1e-6 121 475 0.0021123998 1e-6 122 475 0.00033499999 1e-6 124 475 4.0199986e-05 1e-6 125 475 0.00093339989 1e-6 126 475 2.6799986e-05 1e-6 127 475 4.4999997e-06 1e-6 142 475 8.9299996e-05 1e-6 149 475 0.00037069991 1e-6 150 475 0.0078646988 1e-6 151 475 0.00053149997 1e-6 152 475 0.0072081983 1e-6 153 475 4.4999997e-06 1e-6 189 475 0.00020539999 1e-6 190 475 0.0015719999 1e-6 192 475 8.9299996e-05 1e-6 194 475 0.00020099999 1e-6 196 475 3.5699995e-05 1e-6 197 475 5.8099991e-05 1e-6 198 475 0.00075479993 1e-6 199 475 9.8299992e-05 1e-6 200 475 0.00065649999 1e-6 201 475 0.00010719999 1e-6 203 475 0.00018759999 1e-6 204 475 0.00093339989 1e-6 206 475 0.00077709998 1e-6 207 475 0.00014739999 1e-6 209 475 4.4699991e-05 1e-6 214 475 0.011634 1e-6 215 475 0.00013839999 1e-6 217 475 0.00013839999 1e-6 219 475 1.3399999e-05 1e-6 223 475 1.3399999e-05 1e-6 228 475 0.0246346 1e-6 229 475 0.0016389999 1e-6 230 475 0.0013978998 1e-6 233 475 0.00010719999 1e-6 234 475 0.0067972988 1e-6 237 475 5.8099991e-05 1e-6 240 475 0.0061585978 1e-6 241 475 0.0085345991 1e-6 248 475 1.7899991e-05 1e-6 250 475 4.4999997e-06 1e-6 251 475 4.4999997e-06 1e-6 252 475 0.0015274 1e-6 253 475 0.00044209999 1e-6 261 475 7.1499991e-05 1e-6 263 475 0.00026349979 1e-6 279 475 4.4999997e-06 1e-6 315 475 0.00043319981 1e-6 316 475 0.00024119999 1e-6 322 475 3.1299991e-05 1e-6 356 475 4.0199986e-05 1e-6 363 475 8.8999996e-06 1e-6 366 475 7.1499991e-05 1e-6 380 475 4.4999997e-06 1e-6 384 475 0.000795 1e-6 387 475 2.6799986e-05 1e-6 394 475 4.4999997e-06 1e-6 397 475 4.4999997e-06 1e-6 402 475 2.2299995e-05 1e-6 412 475 0.00060739997 1e-6 414 475 0.00012499999 1e-6 416 475 0.0019695 1e-6 417 475 0.0097269975 1e-6 418 475 6.6999986e-05 1e-6 419 475 4.4999997e-06 1e-6 420 475 8.9299996e-05 1e-6 422 475 0.010798797 1e-6 423 475 8.8999996e-06 1e-6 425 475 0.00035279989 1e-6 430 475 1.3399999e-05 1e-6 431 475 2.6799986e-05 1e-6 432 475 4.0199986e-05 1e-6 433 475 0.00010719999 1e-6 434 475 0.00013399999 1e-6 435 475 0.00012059999 1e-6 438 475 0.0001831 1e-6 442 475 0.0016836999 1e-6 443 475 0.0018846998 1e-6 444 475 0.0020721999 1e-6 445 475 0.0056717992 1e-6 446 475 0.00039299997 1e-6 447 475 0.0076904967 1e-6 448 475 3.5699995e-05 1e-6 449 475 4.4999997e-06 1e-6 450 475 0.008248698 1e-6 452 475 0.010289699 1e-6 453 475 0.0063506998 1e-6 454 475 0.0052564964 1e-6 455 475 0.020950098 1e-6 456 475 0.00026349979 1e-6 457 475 0.0065739974 1e-6 458 475 0.00058949995 1e-6 459 475 1.7899991e-05 1e-6 460 475 0.0047383979 1e-6 463 475 0.042681798 1e-6 464 475 0.0035861998 1e-6 465 475 0.0086684972 1e-6 467 475 0.0309227 1e-6 469 475 0.013197098 1e-6 470 475 0.011781398 1e-6 471 475 0.0024696998 1e-6 472 475 0.00033049984 1e-6 473 475 6.2499996e-05 1e-6 477 475 0.00021879999 1e-6 478 475 0.0015183999 1e-6 483 475 0.0046088994 1e-6 489 475 0.00025899988 1e-6 490 475 0.00033499999 1e-6 1 476 0.0024945999 1e-6 9 476 0.00036999979 1e-6 11 476 0.00081389979 1e-6 16 476 1.06e-05 1e-6 17 476 6.3399988e-05 1e-6 18 476 0.00012679999 1e-6 60 476 0.010115899 1e-6 79 476 1.06e-05 1e-6 82 476 0.0060144998 1e-6 83 476 0.0023995 1e-6 84 476 0.0017123998 1e-6 86 476 0.00034879986 1e-6 87 476 0.00060249981 1e-6 88 476 0.00035939994 1e-6 89 476 0.00060249981 1e-6 90 476 0.0044289976 1e-6 91 476 0.0011204998 1e-6 92 476 0.00086679985 1e-6 93 476 0.0048094988 1e-6 94 476 0.0003382999 1e-6 95 476 0.0002642998 1e-6 96 476 0.00038049999 1e-6 97 476 0.0023148998 1e-6 98 476 0.00020079999 1e-6 99 476 0.00046509993 1e-6 100 476 0.00020079999 1e-6 101 476 0.0012895998 1e-6 103 476 6.3399988e-05 1e-6 104 476 1.06e-05 1e-6 105 476 0.0015009998 1e-6 106 476 0.00028539984 1e-6 107 476 0.00032769982 1e-6 108 476 7.3999996e-05 1e-6 109 476 2.1099986e-05 1e-6 113 476 3.1699994e-05 1e-6 114 476 7.3999996e-05 1e-6 115 476 0.00036999979 1e-6 116 476 2.1099986e-05 1e-6 121 476 0.0016594999 1e-6 122 476 0.00059189997 1e-6 124 476 0.00012679999 1e-6 125 476 0.0014692999 1e-6 126 476 3.1699994e-05 1e-6 127 476 1.06e-05 1e-6 130 476 2.1099986e-05 1e-6 150 476 0.00057079992 1e-6 151 476 1.06e-05 1e-6 152 476 0.0014058999 1e-6 153 476 1.06e-05 1e-6 171 476 0.00048619998 1e-6 187 476 1.06e-05 1e-6 189 476 0.00034879986 1e-6 190 476 0.00022199999 1e-6 192 476 5.2899995e-05 1e-6 194 476 0.00012679999 1e-6 196 476 2.1099986e-05 1e-6 197 476 2.1099986e-05 1e-6 198 476 0.0017123998 1e-6 200 476 0.00099359988 1e-6 201 476 8.4599989e-05 1e-6 203 476 0.00010569999 1e-6 204 476 0.00083509996 1e-6 206 476 0.00048619998 1e-6 207 476 7.3999996e-05 1e-6 209 476 2.1099986e-05 1e-6 214 476 0.0043443963 1e-6 219 476 1.06e-05 1e-6 223 476 0.00060249981 1e-6 228 476 0.022768598 1e-6 229 476 0.00089849997 1e-6 230 476 0.0011415998 1e-6 233 476 3.1699994e-05 1e-6 234 476 0.0012895998 1e-6 237 476 0.00031709997 1e-6 240 476 0.0029491 1e-6 241 476 0.0075471997 1e-6 248 476 3.1699994e-05 1e-6 250 476 0.00017969999 1e-6 252 476 0.0016594999 1e-6 253 476 0.00041219988 1e-6 263 476 0.00052849995 1e-6 315 476 0.00073989993 1e-6 322 476 0.00012679999 1e-6 356 476 4.2299987e-05 1e-6 359 476 0.0001586 1e-6 363 476 1.06e-05 1e-6 384 476 0.00082449988 1e-6 387 476 3.1699994e-05 1e-6 393 476 0.00012679999 1e-6 394 476 3.1699994e-05 1e-6 397 476 2.1099986e-05 1e-6 402 476 4.2299987e-05 1e-6 412 476 0.00019029999 1e-6 416 476 0.00065539987 1e-6 417 476 0.0020083999 1e-6 418 476 0.010781799 1e-6 419 476 1.06e-05 1e-6 422 476 0.0062893964 1e-6 423 476 1.06e-05 1e-6 424 476 0.0013424 1e-6 425 476 1.06e-05 1e-6 430 476 2.1099986e-05 1e-6 431 476 3.1699994e-05 1e-6 432 476 2.1099986e-05 1e-6 433 476 6.3399988e-05 1e-6 434 476 0.0001374 1e-6 435 476 0.00028539984 1e-6 438 476 0.00041219988 1e-6 441 476 0.0002642998 1e-6 442 476 0.001131 1e-6 443 476 0.0011099 1e-6 444 476 0.00091959978 1e-6 445 476 0.0045663975 1e-6 446 476 0.0001586 1e-6 447 476 0.0013740999 1e-6 448 476 3.1699994e-05 1e-6 449 476 1.06e-05 1e-6 450 476 0.0097775981 1e-6 452 476 0.013826098 1e-6 453 476 0.0094710998 1e-6 454 476 0.0048517995 1e-6 455 476 0.016891498 1e-6 456 476 0.00046509993 1e-6 457 476 0.0056551993 1e-6 458 476 0.00012679999 1e-6 459 476 0.00012679999 1e-6 460 476 0.0042175986 1e-6 463 476 0.038169596 1e-6 464 476 0.0013846999 1e-6 465 476 0.014650498 1e-6 467 476 0.020760197 1e-6 468 476 0.0032767998 1e-6 469 476 0.015992999 1e-6 470 476 0.0069129989 1e-6 471 476 0.0032133998 1e-6 473 476 7.3999996e-05 1e-6 476 476 0.0059510991 1e-6 477 476 0.00025369995 1e-6 478 476 0.0015538 1e-6 483 476 0.0065535977 1e-6 489 476 0.00052849995 1e-6 490 476 0.00041219988 1e-6 3 477 0.00081139989 1e-6 9 477 2.4599998e-05 1e-6 16 477 8.1999997e-06 1e-6 18 477 0.0033439 1e-6 22 477 0.0011391998 1e-6 60 477 0.021226898 1e-6 79 477 8.1999997e-06 1e-6 82 477 3.2799988e-05 1e-6 83 477 2.4599998e-05 1e-6 84 477 2.4599998e-05 1e-6 101 477 0.00028679986 1e-6 105 477 0.00024589989 1e-6 108 477 3.2799988e-05 1e-6 113 477 4.9199996e-05 1e-6 114 477 0.00011469999 1e-6 126 477 4.9199996e-05 1e-6 127 477 8.1999997e-06 1e-6 150 477 9.8299992e-05 1e-6 187 477 0.0010326998 1e-6 189 477 0.00022949999 1e-6 190 477 0.00026229979 1e-6 192 477 0.0001065 1e-6 194 477 0.00025409996 1e-6 196 477 4.0999992e-05 1e-6 197 477 0.00076219998 1e-6 198 477 0.00062289997 1e-6 199 477 9.8299992e-05 1e-6 200 477 0.0011391998 1e-6 201 477 0.010260999 1e-6 202 477 0.0012293998 1e-6 203 477 0.00068019982 1e-6 204 477 0.0050321966 1e-6 206 477 0.0012620999 1e-6 207 477 0.00018849999 1e-6 209 477 5.7399986e-05 1e-6 210 477 0.0019506 1e-6 214 477 0.00086869998 1e-6 215 477 0.00027049985 1e-6 217 477 0.00030319998 1e-6 218 477 7.3799994e-05 1e-6 219 477 1.6399994e-05 1e-6 223 477 6.559999e-05 1e-6 228 477 0.0011145999 1e-6 229 477 0.00021309999 1e-6 230 477 0.00024589989 1e-6 234 477 0.010842897 1e-6 237 477 0.00031959987 1e-6 240 477 0.00072939997 1e-6 241 477 8.1999997e-06 1e-6 248 477 2.4599998e-05 1e-6 250 477 8.1999997e-06 1e-6 251 477 8.1999997e-06 1e-6 252 477 0.0019013998 1e-6 253 477 0.000336 1e-6 263 477 8.1999997e-06 1e-6 279 477 8.1999997e-06 1e-6 317 477 1.6399994e-05 1e-6 318 477 4.0999992e-05 1e-6 322 477 8.1999997e-06 1e-6 356 477 4.0999992e-05 1e-6 359 477 0.00059009995 1e-6 363 477 1.6399994e-05 1e-6 366 477 0.00013109999 1e-6 380 477 8.1999997e-06 1e-6 384 477 0.00091789989 1e-6 385 477 0.00036879978 1e-6 387 477 4.9199996e-05 1e-6 388 477 0.00024589989 1e-6 393 477 0.0018685998 1e-6 394 477 4.0999992e-05 1e-6 397 477 1.6399994e-05 1e-6 402 477 4.0999992e-05 1e-6 412 477 0.00018849999 1e-6 417 477 0.00023769999 1e-6 419 477 8.1999997e-06 1e-6 422 477 0.0010326998 1e-6 423 477 1.6399994e-05 1e-6 425 477 8.1999997e-06 1e-6 428 477 0.00030319998 1e-6 430 477 0.000336 1e-6 431 477 4.0999992e-05 1e-6 432 477 4.9199996e-05 1e-6 433 477 0.00013109999 1e-6 434 477 0.0004015998 1e-6 438 477 0.00050809979 1e-6 442 477 0.0017211 1e-6 443 477 0.00082779978 1e-6 444 477 0.0005655 1e-6 445 477 0.0052288994 1e-6 446 477 0.00037699984 1e-6 447 477 0.0045075975 1e-6 448 477 0.0001639 1e-6 449 477 8.1999997e-06 1e-6 450 477 0.010982297 1e-6 452 477 0.013957299 1e-6 453 477 0.0050812997 1e-6 454 477 0.0041305982 1e-6 455 477 0.0067368969 1e-6 456 477 0.0009506999 1e-6 457 477 0.0028766999 1e-6 458 477 0.00074579986 1e-6 459 477 0.0039584972 1e-6 460 477 0.0032782999 1e-6 463 477 0.10760146 1e-6 464 477 0.00018849999 1e-6 465 477 0.0043600984 1e-6 467 477 0.028389998 1e-6 468 477 0.010490499 1e-6 469 477 0.0046305992 1e-6 470 477 0.0067778975 1e-6 471 477 0.0063762963 1e-6 472 477 0.0029177 1e-6 473 477 0.0025406999 1e-6 477 477 0.00036879978 1e-6 478 477 0.0027947 1e-6 483 477 0.004056897 1e-6 489 477 0.00090969983 1e-6 490 477 0.00043439982 1e-6 9 478 0.00012089999 1e-6 16 478 4.6999994e-05 1e-6 18 478 0.00081929984 1e-6 60 478 0.028722197 1e-6 75 478 0.0010072999 1e-6 79 478 4.0299987e-05 1e-6 82 478 0.00020149999 1e-6 83 478 0.000141 1e-6 84 478 0.00013429999 1e-6 101 478 0.00050369999 1e-6 105 478 0.00017459999 1e-6 106 478 3.3599994e-05 1e-6 108 478 0.000235 1e-6 113 478 0.00030889991 1e-6 114 478 0.00075209979 1e-6 126 478 0.00034919987 1e-6 127 478 6.7199988e-05 1e-6 150 478 0.00096699991 1e-6 187 478 6.6999992e-06 1e-6 189 478 0.00049019977 1e-6 190 478 0.00030889991 1e-6 192 478 0.0001545 1e-6 194 478 0.00034249993 1e-6 196 478 6.0399994e-05 1e-6 197 478 0.00012089999 1e-6 200 478 0.0029481 1e-6 201 478 0.0039352998 1e-6 202 478 0.0047679991 1e-6 203 478 0.00032229978 1e-6 204 478 0.012074497 1e-6 206 478 0.00075889984 1e-6 207 478 0.00027529988 1e-6 209 478 8.0599988e-05 1e-6 214 478 6.6999992e-06 1e-6 215 478 0.00013429999 1e-6 217 478 5.3699987e-05 1e-6 219 478 2.0099993e-05 1e-6 223 478 2.0099993e-05 1e-6 229 478 0.00066479994 1e-6 230 478 0.0013094998 1e-6 234 478 0.0050634965 1e-6 237 478 0.00016119999 1e-6 240 478 2.0099993e-05 1e-6 241 478 5.3699987e-05 1e-6 248 478 0.00013429999 1e-6 250 478 7.3899995e-05 1e-6 251 478 4.0299987e-05 1e-6 252 478 0.0001276 1e-6 263 478 4.0299987e-05 1e-6 279 478 1.3399999e-05 1e-6 316 478 0.00026189978 1e-6 322 478 0.0001813 1e-6 356 478 4.0299987e-05 1e-6 363 478 2.0099993e-05 1e-6 366 478 0.00062449998 1e-6 380 478 5.3699987e-05 1e-6 384 478 0.00049019977 1e-6 387 478 0.00031559984 1e-6 394 478 1.3399999e-05 1e-6 397 478 1.3399999e-05 1e-6 402 478 5.3699987e-05 1e-6 412 478 0.00014769999 1e-6 419 478 6.7199988e-05 1e-6 422 478 0.00099389977 1e-6 423 478 0.00010739999 1e-6 425 478 7.3899995e-05 1e-6 428 478 2.6899987e-05 1e-6 430 478 0.0002082 1e-6 431 478 8.7299995e-05 1e-6 432 478 6.7199988e-05 1e-6 433 478 0.00018799999 1e-6 434 478 0.00022829999 1e-6 435 478 0.00082599977 1e-6 441 478 0.00026189978 1e-6 442 478 0.0029346999 1e-6 443 478 0.00032229978 1e-6 444 478 0.0010139998 1e-6 445 478 0.0033106999 1e-6 446 478 0.00024179999 1e-6 447 478 0.0022161 1e-6 448 478 0.00010739999 1e-6 449 478 6.7199988e-05 1e-6 450 478 0.016379099 1e-6 452 478 0.025747299 1e-6 453 478 0.0030622999 1e-6 454 478 0.0048149973 1e-6 455 478 0.0058088973 1e-6 456 478 0.0026055998 1e-6 457 478 0.0005371999 1e-6 459 478 0.00055069989 1e-6 460 478 0.0045732968 1e-6 463 478 0.073460996 1e-6 464 478 0.0012826999 1e-6 465 478 0.0021086999 1e-6 467 478 0.025156297 1e-6 468 478 0.012739297 1e-6 469 478 0.022228297 1e-6 470 478 0.037714299 1e-6 471 478 0.0013833998 1e-6 472 478 0.0019071999 1e-6 473 478 0.0027868999 1e-6 477 478 0.0096098967 1e-6 478 478 0.0049022995 1e-6 483 478 0.0188572 1e-6 489 478 0.0013497998 1e-6 490 478 0.0029010999 1e-6 60 479 0.0089971982 1e-6 114 479 0.00016359999 1e-6 130 479 0.014722697 1e-6 171 479 0.015213497 1e-6 190 479 0.00032719993 1e-6 192 479 0.0107967 1e-6 194 479 0.00049079978 1e-6 196 479 0.00016359999 1e-6 197 479 0.00016359999 1e-6 198 479 0.0042531975 1e-6 200 479 0.00065429998 1e-6 201 479 0.00016359999 1e-6 203 479 0.00049079978 1e-6 204 479 0.00049079978 1e-6 206 479 0.00065429998 1e-6 207 479 0.00032719993 1e-6 209 479 0.00016359999 1e-6 233 479 0.013086896 1e-6 234 479 0.00081789983 1e-6 237 479 0.00016359999 1e-6 241 479 0.016522199 1e-6 279 479 0.013577599 1e-6 312 479 0.014559098 1e-6 315 479 0.014886297 1e-6 316 479 0.015540697 1e-6 317 479 0.0068705976 1e-6 318 479 0.0081792995 1e-6 319 479 0.016849298 1e-6 322 479 0.015213497 1e-6 384 479 0.00016359999 1e-6 422 479 0.00049079978 1e-6 428 479 0.0075248964 1e-6 432 479 0.00016359999 1e-6 433 479 0.00032719993 1e-6 434 479 0.00032719993 1e-6 441 479 0.0063797981 1e-6 442 479 0.0053982995 1e-6 443 479 0.0014722999 1e-6 445 479 0.022247698 1e-6 447 479 0.00016359999 1e-6 452 479 0.056437097 1e-6 453 479 0.010960199 1e-6 454 479 0.0049075969 1e-6 455 479 0.020284597 1e-6 456 479 0.00016359999 1e-6 459 479 0.0055618994 1e-6 460 479 0.00016359999 1e-6 463 479 0.021756899 1e-6 464 479 0.00016359999 1e-6 465 479 0.0016358998 1e-6 467 479 0.014231998 1e-6 468 479 0.0070341974 1e-6 470 479 0.0022902 1e-6 471 479 0.0011451 1e-6 472 479 0.0089971982 1e-6 478 479 0.0026173999 1e-6 483 479 0.017667297 1e-6 489 479 0.0042531975 1e-6 490 479 0.00032719993 1e-6 1 480 0.0012118998 1e-6 9 480 0.00030299998 1e-6 11 480 0.0013633999 1e-6 60 480 0.0089379996 1e-6 82 480 0.011664897 1e-6 83 480 0.0039387979 1e-6 84 480 0.0024238999 1e-6 86 480 0.00060599996 1e-6 87 480 0.00090899994 1e-6 88 480 0.00045449985 1e-6 89 480 0.0022723998 1e-6 90 480 0.007271599 1e-6 91 480 0.00045449985 1e-6 92 480 0.00045449985 1e-6 93 480 0.0031812999 1e-6 94 480 0.00060599996 1e-6 95 480 0.00060599996 1e-6 96 480 0.0015148998 1e-6 97 480 0.0015148998 1e-6 98 480 0.00030299998 1e-6 99 480 0.00045449985 1e-6 100 480 0.00075749983 1e-6 104 480 0.0022723998 1e-6 105 480 0.0031812999 1e-6 106 480 0.00045449985 1e-6 107 480 0.00030299998 1e-6 108 480 0.0019693999 1e-6 114 480 0.00015149999 1e-6 116 480 0.0010603999 1e-6 122 480 0.00075749983 1e-6 149 480 0.00015149999 1e-6 190 480 0.00030299998 1e-6 192 480 0.00030299998 1e-6 194 480 0.00075749983 1e-6 196 480 0.00015149999 1e-6 197 480 0.00015149999 1e-6 200 480 0.00060599996 1e-6 201 480 0.00015149999 1e-6 203 480 0.00045449985 1e-6 204 480 0.00045449985 1e-6 206 480 0.00090899994 1e-6 207 480 0.00030299998 1e-6 209 480 0.00015149999 1e-6 234 480 0.00090899994 1e-6 237 480 0.00015149999 1e-6 356 480 0.00015149999 1e-6 384 480 0.00015149999 1e-6 422 480 0.00045449985 1e-6 428 480 0.00015149999 1e-6 432 480 0.00015149999 1e-6 433 480 0.00030299998 1e-6 434 480 0.00030299998 1e-6 438 480 0.0027268999 1e-6 442 480 0.0054536983 1e-6 443 480 0.00045449985 1e-6 445 480 0.0051506981 1e-6 450 480 0.0019693999 1e-6 452 480 0.0180276 1e-6 453 480 0.0034842999 1e-6 454 480 0.004999198 1e-6 455 480 0.0083320998 1e-6 456 480 0.00015149999 1e-6 457 480 0.00015149999 1e-6 460 480 0.00015149999 1e-6 463 480 0.10013628 1e-6 465 480 0.0016663999 1e-6 467 480 0.012119398 1e-6 470 480 0.0010603999 1e-6 471 480 0.0021209 1e-6 478 480 0.0027268999 1e-6 490 480 0.00015149999 1e-6 1 481 0.008002799 1e-6 9 481 0.0012178 1e-6 11 481 0.0050451979 1e-6 17 481 0.0013917999 1e-6 18 481 0.0029575999 1e-6 60 481 0.015483599 1e-6 82 481 0.041579697 1e-6 83 481 0.017919298 1e-6 84 481 0.0092205964 1e-6 86 481 0.0020876999 1e-6 87 481 0.0026095998 1e-6 88 481 0.0012178 1e-6 89 481 0.0036533999 1e-6 90 481 0.026965898 1e-6 91 481 0.00086989999 1e-6 92 481 0.0033054999 1e-6 93 481 0.012178097 1e-6 94 481 0.0012178 1e-6 95 481 0.0015657998 1e-6 96 481 0.0027835998 1e-6 97 481 0.0033054999 1e-6 98 481 0.0017396999 1e-6 99 481 0.0046972968 1e-6 100 481 0.00034789997 1e-6 103 481 0.00086989999 1e-6 104 481 0.00017399999 1e-6 105 481 0.024530299 1e-6 106 481 0.0052191988 1e-6 107 481 0.0022616999 1e-6 108 481 0.0005218999 1e-6 109 481 0.00017399999 1e-6 114 481 0.00017399999 1e-6 115 481 0.0015657998 1e-6 116 481 0.00034789997 1e-6 121 481 0.0043492988 1e-6 122 481 0.0020876999 1e-6 124 481 0.0005218999 1e-6 125 481 0.006610997 1e-6 152 481 0.016005598 1e-6 190 481 0.00017399999 1e-6 194 481 0.00034789997 1e-6 198 481 0.0064369999 1e-6 200 481 0.00017399999 1e-6 204 481 0.0026095998 1e-6 206 481 0.00034789997 1e-6 223 481 0.00017399999 1e-6 229 481 0.0038273998 1e-6 234 481 0.0109603 1e-6 241 481 0.017571297 1e-6 384 481 0.00034789997 1e-6 422 481 0.00034789997 1e-6 441 481 0.0041753985 1e-6 442 481 0.0064369999 1e-6 443 481 0.0020876999 1e-6 445 481 0.015831597 1e-6 446 481 0.00034789997 1e-6 448 481 0.00017399999 1e-6 450 481 0.013395999 1e-6 452 481 0.032011099 1e-6 453 481 0.006262999 1e-6 454 481 0.008872699 1e-6 455 481 0.030619297 1e-6 457 481 0.0046972968 1e-6 459 481 0.011134297 1e-6 463 481 0.19432849 1e-6 465 481 0.008872699 1e-6 467 481 0.0311413 1e-6 468 481 0.0048712976 1e-6 470 481 0.0012178 1e-6 471 481 0.00017399999 1e-6 478 481 0.00069589983 1e-6 483 481 0.008002799 1e-6 490 481 0.0012178 1e-6 60 482 0.011436399 1e-6 105 482 0.0099115968 1e-6 106 482 0.00091489987 1e-6 114 482 0.0001525 1e-6 190 482 0.00045749987 1e-6 192 482 0.00030499999 1e-6 194 482 0.00060989987 1e-6 196 482 0.0001525 1e-6 197 482 0.0001525 1e-6 200 482 0.00076239998 1e-6 201 482 0.00076239998 1e-6 202 482 0.0056419969 1e-6 203 482 0.00060989987 1e-6 204 482 0.029429697 1e-6 206 482 0.0013724 1e-6 207 482 0.00045749987 1e-6 209 482 0.0001525 1e-6 234 482 0.004879497 1e-6 237 482 0.00030499999 1e-6 384 482 0.0001525 1e-6 422 482 0.00045749987 1e-6 431 482 0.0001525 1e-6 432 482 0.0001525 1e-6 433 482 0.00030499999 1e-6 434 482 0.00030499999 1e-6 441 482 0.0051844977 1e-6 442 482 0.0041170977 1e-6 444 482 0.0073192976 1e-6 445 482 0.011131398 1e-6 446 482 0.0001525 1e-6 447 482 0.0050319992 1e-6 450 482 0.021957897 1e-6 452 482 0.014028698 1e-6 453 482 0.0027446998 1e-6 454 482 0.0094540976 1e-6 455 482 0.0050319992 1e-6 457 482 0.0057943985 1e-6 459 482 0.0096065998 1e-6 460 482 0.00030499999 1e-6 463 482 0.011283897 1e-6 464 482 0.0042695999 1e-6 465 482 0.0019822998 1e-6 467 482 0.037816398 1e-6 468 482 0.019365698 1e-6 469 482 0.012656298 1e-6 470 482 0.0021348 1e-6 471 482 0.0073192976 1e-6 472 482 0.0065568984 1e-6 478 482 0.0035071999 1e-6 483 482 0.020890497 1e-6 490 482 0.00030499999 1e-6 9 483 1.2199999e-05 1e-6 22 483 6.0999999e-05 1e-6 60 483 0.0036364999 1e-6 82 483 1.2199999e-05 1e-6 83 483 1.2199999e-05 1e-6 84 483 1.2199999e-05 1e-6 108 483 2.4399997e-05 1e-6 113 483 2.4399997e-05 1e-6 114 483 4.8799993e-05 1e-6 126 483 2.4399997e-05 1e-6 130 483 0.00029289979 1e-6 139 483 6.0999999e-05 1e-6 141 483 8.5399995e-05 1e-6 150 483 1.2199999e-05 1e-6 153 483 0.0016229998 1e-6 154 483 0.0010738999 1e-6 158 483 7.319999e-05 1e-6 187 483 0.00023189999 1e-6 189 483 0.00014639999 1e-6 190 483 0.0002197 1e-6 192 483 7.319999e-05 1e-6 194 483 4.8799993e-05 1e-6 196 483 1.2199999e-05 1e-6 197 483 3.6599988e-05 1e-6 198 483 0.00034169992 1e-6 200 483 8.5399995e-05 1e-6 201 483 2.4399997e-05 1e-6 202 483 0.00036609988 1e-6 203 483 6.0999999e-05 1e-6 204 483 0.0012690998 1e-6 206 483 4.8799993e-05 1e-6 207 483 3.6599988e-05 1e-6 209 483 0.0033801999 1e-6 223 483 0.0001586 1e-6 228 483 1.2199999e-05 1e-6 229 483 0.00035389978 1e-6 230 483 0.00036609988 1e-6 234 483 0.0045150965 1e-6 237 483 0.00075659994 1e-6 242 483 4.8799993e-05 1e-6 243 483 1.2199999e-05 1e-6 251 483 0.00029289979 1e-6 252 483 1.2199999e-05 1e-6 272 483 1.2199999e-05 1e-6 277 483 2.4399997e-05 1e-6 297 483 1.2199999e-05 1e-6 312 483 3.6599988e-05 1e-6 335 483 3.6599988e-05 1e-6 337 483 4.8799993e-05 1e-6 359 483 6.0999999e-05 1e-6 362 483 3.6599988e-05 1e-6 363 483 0.000183 1e-6 364 483 0.0001586 1e-6 384 483 7.319999e-05 1e-6 387 483 2.4399997e-05 1e-6 390 483 7.319999e-05 1e-6 394 483 4.8799993e-05 1e-6 397 483 0.000183 1e-6 402 483 0.0014155 1e-6 417 483 6.0999999e-05 1e-6 422 483 6.0999999e-05 1e-6 423 483 1.2199999e-05 1e-6 430 483 1.2199999e-05 1e-6 431 483 2.4399997e-05 1e-6 432 483 1.2199999e-05 1e-6 433 483 2.4399997e-05 1e-6 434 483 2.4399997e-05 1e-6 443 483 0.0120808 1e-6 444 483 0.00046369992 1e-6 445 483 0.028920799 1e-6 446 483 0.0022940999 1e-6 447 483 0.036754999 1e-6 448 483 8.5399995e-05 1e-6 450 483 0.0020988998 1e-6 452 483 0.005466897 1e-6 453 483 0.0011958999 1e-6 454 483 0.0011105 1e-6 455 483 0.0020134998 1e-6 456 483 4.8799993e-05 1e-6 457 483 4.8799993e-05 1e-6 460 483 0.00058569992 1e-6 463 483 0.024759598 1e-6 464 483 6.0999999e-05 1e-6 465 483 3.6599988e-05 1e-6 467 483 0.013581797 1e-6 468 483 0.0002441 1e-6 469 483 0.0024527998 1e-6 470 483 0.0016107999 1e-6 471 483 0.0074558966 1e-6 472 483 2.4399997e-05 1e-6 473 483 3.6599988e-05 1e-6 477 483 0.00032949983 1e-6 478 483 0.00013419999 1e-6 489 483 0.00054909987 1e-6 490 483 0.0020134998 1e-6 9 486 0.00014559999 1e-6 59 486 0.0012377 1e-6 64 486 0.0010920998 1e-6 75 486 0.00014559999 1e-6 82 486 7.2799987e-05 1e-6 83 486 7.2799987e-05 1e-6 84 486 7.2799987e-05 1e-6 108 486 0.00014559999 1e-6 113 486 7.2799987e-05 1e-6 114 486 0.00036399998 1e-6 126 486 0.00014559999 1e-6 141 486 0.00021839999 1e-6 152 486 0.00021839999 1e-6 187 486 0.0014560998 1e-6 189 486 0.00043679983 1e-6 190 486 0.00087369978 1e-6 192 486 0.00014559999 1e-6 193 486 7.2799987e-05 1e-6 194 486 0.00043679983 1e-6 195 486 0.00014559999 1e-6 196 486 7.2799987e-05 1e-6 197 486 0.00021839999 1e-6 198 486 0.00021839999 1e-6 200 486 7.2799987e-05 1e-6 201 486 7.2799987e-05 1e-6 202 486 7.2799987e-05 1e-6 203 486 0.00043679983 1e-6 204 486 0.0025481998 1e-6 206 486 0.00072809984 1e-6 207 486 0.00021839999 1e-6 209 486 7.2799987e-05 1e-6 214 486 0.0005824999 1e-6 219 486 7.2799987e-05 1e-6 220 486 0.00014559999 1e-6 223 486 7.2799987e-05 1e-6 229 486 0.0080814995 1e-6 230 486 0.0038587998 1e-6 233 486 0.00014559999 1e-6 234 486 0.0051692985 1e-6 237 486 0.00043679983 1e-6 240 486 0.00065529998 1e-6 241 486 0.0059700981 1e-6 252 486 0.00080089993 1e-6 260 486 7.2799987e-05 1e-6 261 486 7.2799987e-05 1e-6 275 486 0.00014559999 1e-6 282 486 7.2799987e-05 1e-6 283 486 0.00014559999 1e-6 295 486 0.00014559999 1e-6 296 486 0.00072809984 1e-6 307 486 7.2799987e-05 1e-6 308 486 7.2799987e-05 1e-6 315 486 0.0037858998 1e-6 316 486 0.00043679983 1e-6 319 486 0.00014559999 1e-6 322 486 0.00029119989 1e-6 328 486 7.2799987e-05 1e-6 331 486 0.00014559999 1e-6 340 486 7.2799987e-05 1e-6 350 486 7.2799987e-05 1e-6 351 486 0.00043679983 1e-6 368 486 0.00036399998 1e-6 370 486 0.00014559999 1e-6 377 486 0.00072809984 1e-6 380 486 0.00087369978 1e-6 384 486 0.00036399998 1e-6 387 486 0.00014559999 1e-6 389 486 7.2799987e-05 1e-6 390 486 7.2799987e-05 1e-6 393 486 0.00014559999 1e-6 402 486 0.00014559999 1e-6 406 486 0.00065529998 1e-6 408 486 0.0005824999 1e-6 412 486 0.00087369978 1e-6 422 486 0.0023297998 1e-6 423 486 7.2799987e-05 1e-6 425 486 0.00087369978 1e-6 430 486 7.2799987e-05 1e-6 431 486 0.00014559999 1e-6 432 486 7.2799987e-05 1e-6 433 486 0.00021839999 1e-6 434 486 0.00029119989 1e-6 438 486 0.00029119989 1e-6 443 486 0.00094649987 1e-6 444 486 0.00021839999 1e-6 445 486 0.0040043965 1e-6 446 486 0.00029119989 1e-6 447 486 0.0005824999 1e-6 448 486 7.2799987e-05 1e-6 450 486 0.0048779994 1e-6 452 486 0.0144885 1e-6 453 486 0.010411397 1e-6 454 486 0.0034947 1e-6 455 486 0.0061885975 1e-6 456 486 0.00014559999 1e-6 457 486 0.039242797 1e-6 458 486 0.010192897 1e-6 459 486 0.0015288999 1e-6 460 486 0.0018201999 1e-6 463 486 0.018929698 1e-6 464 486 0.00029119989 1e-6 465 486 0.019075397 1e-6 467 486 0.067054987 1e-6 469 486 0.0014560998 1e-6 470 486 0.0082999989 1e-6 471 486 0.00050959992 1e-6 472 486 0.0033490998 1e-6 473 486 0.00021839999 1e-6 477 486 7.2799987e-05 1e-6 483 486 0.0046595968 1e-6 486 486 0.004441198 1e-6 489 486 0.00065529998 1e-6 490 486 0.13673097 1e-6 7 489 0.00021439999 1e-6 9 489 3.5699995e-05 1e-6 16 489 0.00021439999 1e-6 18 489 0.00028589997 1e-6 22 489 0.00039309985 1e-6 25 489 0.00021439999 1e-6 60 489 0.011398599 1e-6 66 489 0.0016078998 1e-6 68 489 0.16208094 1e-6 69 489 0.076145172 1e-6 73 489 0.0150075 1e-6 75 489 0.010147899 1e-6 82 489 3.5699995e-05 1e-6 83 489 3.5699995e-05 1e-6 84 489 3.5699995e-05 1e-6 108 489 7.1499991e-05 1e-6 113 489 7.1499991e-05 1e-6 114 489 0.00017869999 1e-6 126 489 0.00010719999 1e-6 127 489 3.5699995e-05 1e-6 134 489 0.00010719999 1e-6 150 489 0.0019294999 1e-6 152 489 0.00010719999 1e-6 153 489 0.0001429 1e-6 187 489 0.00032159989 1e-6 189 489 0.00010719999 1e-6 190 489 0.00042879977 1e-6 192 489 7.1499991e-05 1e-6 194 489 0.00017869999 1e-6 196 489 7.1499991e-05 1e-6 197 489 0.00010719999 1e-6 201 489 3.5699995e-05 1e-6 202 489 3.5699995e-05 1e-6 203 489 0.0001429 1e-6 204 489 0.0019652999 1e-6 206 489 0.00032159989 1e-6 207 489 0.00010719999 1e-6 209 489 3.5699995e-05 1e-6 214 489 0.024833798 1e-6 215 489 0.00021439999 1e-6 217 489 0.0017508999 1e-6 218 489 7.1499991e-05 1e-6 223 489 0.0001429 1e-6 228 489 0.00028589997 1e-6 229 489 0.0013577999 1e-6 230 489 0.00057169981 1e-6 231 489 0.00085759978 1e-6 234 489 0.0095047988 1e-6 237 489 0.00017869999 1e-6 240 489 7.1499991e-05 1e-6 248 489 3.5699995e-05 1e-6 252 489 0.00021439999 1e-6 267 489 0.00060739997 1e-6 272 489 7.1499991e-05 1e-6 317 489 0.0013220999 1e-6 329 489 3.5699995e-05 1e-6 330 489 0.00039309985 1e-6 331 489 0.0019294999 1e-6 356 489 0.00021439999 1e-6 358 489 7.1499991e-05 1e-6 368 489 0.00017869999 1e-6 384 489 0.00078609982 1e-6 387 489 7.1499991e-05 1e-6 394 489 0.00035729981 1e-6 402 489 0.0001429 1e-6 412 489 0.00032159989 1e-6 413 489 0.00035729981 1e-6 414 489 3.5699995e-05 1e-6 419 489 3.5699995e-05 1e-6 422 489 0.00021439999 1e-6 423 489 3.5699995e-05 1e-6 425 489 3.5699995e-05 1e-6 430 489 3.5699995e-05 1e-6 431 489 7.1499991e-05 1e-6 432 489 3.5699995e-05 1e-6 433 489 7.1499991e-05 1e-6 434 489 0.00010719999 1e-6 438 489 0.00010719999 1e-6 442 489 3.5699995e-05 1e-6 443 489 0.0030014999 1e-6 444 489 0.00017869999 1e-6 445 489 0.0054312982 1e-6 446 489 0.0012863998 1e-6 447 489 0.0017865999 1e-6 448 489 0.00017869999 1e-6 450 489 0.0078967996 1e-6 452 489 0.012899298 1e-6 453 489 0.030658197 1e-6 454 489 0.0060386993 1e-6 455 489 0.0057170987 1e-6 456 489 0.0033230998 1e-6 457 489 0.00085759978 1e-6 459 489 0.0069677979 1e-6 460 489 0.0035017999 1e-6 463 489 0.020760398 1e-6 464 489 0.00025009993 1e-6 465 489 0.0010004998 1e-6 467 489 0.023547497 1e-6 468 489 0.0020366998 1e-6 469 489 0.012113199 1e-6 470 489 0.0085756965 1e-6 471 489 0.0027514 1e-6 473 489 0.0001429 1e-6 474 489 0.00021439999 1e-6 475 489 7.1499991e-05 1e-6 476 489 3.5699995e-05 1e-6 477 489 7.1499991e-05 1e-6 478 489 0.00010719999 1e-6 483 489 0.0012148998 1e-6 489 489 7.1499991e-05 1e-6 490 489 0.00057169981 1e-6 SuiteSparse/CXSparse/Matrix/neumann0000644001170100242450000033151010375437450016302 0ustar davisfac0 0 4 4 1 0 -1 -1 40 0 -1 -1 0 1 -2 -2 1 1 4 4 2 1 -1 -1 41 1 -1 -1 1 2 -1 -1 2 2 4 4 3 2 -1 -1 42 2 -1 -1 2 3 -1 -1 3 3 4 4 4 3 -1 -1 43 3 -1 -1 3 4 -1 -1 4 4 4 4 5 4 -1 -1 44 4 -1 -1 4 5 -1 -1 5 5 4 4 6 5 -1 -1 45 5 -1 -1 5 6 -1 -1 6 6 4 4 7 6 -1 -1 46 6 -1 -1 6 7 -1 -1 7 7 4 4 8 7 -1 -1 47 7 -1 -1 7 8 -1 -1 8 8 4 4 9 8 -1 -1 48 8 -1 -1 8 9 -1 -1 9 9 4 4 10 9 -1 -1 49 9 -1 -1 9 10 -1 -1 10 10 4 4 11 10 -1 -1 50 10 -1 -1 10 11 -1 -1 11 11 4 4 12 11 -1 -1 51 11 -1 -1 11 12 -1 -1 12 12 4 4 13 12 -1 -1 52 12 -1 -1 12 13 -1 -1 13 13 4 4 14 13 -1 -1 53 13 -1 -1 13 14 -1 -1 14 14 4 4 15 14 -1 -1 54 14 -1 -1 14 15 -1 -1 15 15 4 4 16 15 -1 -1 55 15 -1 -1 15 16 -1 -1 16 16 4 4 17 16 -1 -1 56 16 -1 -1 16 17 -1 -1 17 17 4 4 18 17 -1 -1 57 17 -1 -1 17 18 -1 -1 18 18 4 4 19 18 -1 -1 58 18 -1 -1 18 19 -1 -1 19 19 4 4 20 19 -1 -1 59 19 -1 -1 19 20 -1 -1 20 20 4 4 21 20 -1 -1 60 20 -1 -1 20 21 -1 -1 21 21 4 4 22 21 -1 -1 61 21 -1 -1 21 22 -1 -1 22 22 4 4 23 22 -1 -1 62 22 -1 -1 22 23 -1 -1 23 23 4 4 24 23 -1 -1 63 23 -1 -1 23 24 -1 -1 24 24 4 4 25 24 -1 -1 64 24 -1 -1 24 25 -1 -1 25 25 4 4 26 25 -1 -1 65 25 -1 -1 25 26 -1 -1 26 26 4 4 27 26 -1 -1 66 26 -1 -1 26 27 -1 -1 27 27 4 4 28 27 -1 -1 67 27 -1 -1 27 28 -1 -1 28 28 4 4 29 28 -1 -1 68 28 -1 -1 28 29 -1 -1 29 29 4 4 30 29 -1 -1 69 29 -1 -1 29 30 -1 -1 30 30 4 4 31 30 -1 -1 70 30 -1 -1 30 31 -1 -1 31 31 4 4 32 31 -1 -1 71 31 -1 -1 31 32 -1 -1 32 32 4 4 33 32 -1 -1 72 32 -1 -1 32 33 -1 -1 33 33 4 4 34 33 -1 -1 73 33 -1 -1 33 34 -1 -1 34 34 4 4 35 34 -1 -1 74 34 -1 -1 34 35 -1 -1 35 35 4 4 36 35 -1 -1 75 35 -1 -1 35 36 -1 -1 36 36 4 4 37 36 -1 -1 76 36 -1 -1 36 37 -1 -1 37 37 4 4 38 37 -1 -1 77 37 -1 -1 37 38 -1 -1 38 38 4 4 39 38 -2 -2 78 38 -1 -1 38 39 -1 -1 39 39 4 4 79 39 -1 -1 0 40 -2 -2 40 40 4 4 41 40 -1 -1 80 40 -1 -1 1 41 -2 -2 40 41 -2 -2 41 41 4 4 42 41 -1 -1 81 41 -1 -1 2 42 -2 -2 41 42 -1 -1 42 42 4 4 43 42 -1 -1 82 42 -1 -1 3 43 -2 -2 42 43 -1 -1 43 43 4 4 44 43 -1 -1 83 43 -1 -1 4 44 -2 -2 43 44 -1 -1 44 44 4 4 45 44 -1 -1 84 44 -1 -1 5 45 -2 -2 44 45 -1 -1 45 45 4 4 46 45 -1 -1 85 45 -1 -1 6 46 -2 -2 45 46 -1 -1 46 46 4 4 47 46 -1 -1 86 46 -1 -1 7 47 -2 -2 46 47 -1 -1 47 47 4 4 48 47 -1 -1 87 47 -1 -1 8 48 -2 -2 47 48 -1 -1 48 48 4 4 49 48 -1 -1 88 48 -1 -1 9 49 -2 -2 48 49 -1 -1 49 49 4 4 50 49 -1 -1 89 49 -1 -1 10 50 -2 -2 49 50 -1 -1 50 50 4 4 51 50 -1 -1 90 50 -1 -1 11 51 -2 -2 50 51 -1 -1 51 51 4 4 52 51 -1 -1 91 51 -1 -1 12 52 -2 -2 51 52 -1 -1 52 52 4 4 53 52 -1 -1 92 52 -1 -1 13 53 -2 -2 52 53 -1 -1 53 53 4 4 54 53 -1 -1 93 53 -1 -1 14 54 -2 -2 53 54 -1 -1 54 54 4 4 55 54 -1 -1 94 54 -1 -1 15 55 -2 -2 54 55 -1 -1 55 55 4 4 56 55 -1 -1 95 55 -1 -1 16 56 -2 -2 55 56 -1 -1 56 56 4 4 57 56 -1 -1 96 56 -1 -1 17 57 -2 -2 56 57 -1 -1 57 57 4 4 58 57 -1 -1 97 57 -1 -1 18 58 -2 -2 57 58 -1 -1 58 58 4 4 59 58 -1 -1 98 58 -1 -1 19 59 -2 -2 58 59 -1 -1 59 59 4 4 60 59 -1 -1 99 59 -1 -1 20 60 -2 -2 59 60 -1 -1 60 60 4 4 61 60 -1 -1 100 60 -1 -1 21 61 -2 -2 60 61 -1 -1 61 61 4 4 62 61 -1 -1 101 61 -1 -1 22 62 -2 -2 61 62 -1 -1 62 62 4 4 63 62 -1 -1 102 62 -1 -1 23 63 -2 -2 62 63 -1 -1 63 63 4 4 64 63 -1 -1 103 63 -1 -1 24 64 -2 -2 63 64 -1 -1 64 64 4 4 65 64 -1 -1 104 64 -1 -1 25 65 -2 -2 64 65 -1 -1 65 65 4 4 66 65 -1 -1 105 65 -1 -1 26 66 -2 -2 65 66 -1 -1 66 66 4 4 67 66 -1 -1 106 66 -1 -1 27 67 -2 -2 66 67 -1 -1 67 67 4 4 68 67 -1 -1 107 67 -1 -1 28 68 -2 -2 67 68 -1 -1 68 68 4 4 69 68 -1 -1 108 68 -1 -1 29 69 -2 -2 68 69 -1 -1 69 69 4 4 70 69 -1 -1 109 69 -1 -1 30 70 -2 -2 69 70 -1 -1 70 70 4 4 71 70 -1 -1 110 70 -1 -1 31 71 -2 -2 70 71 -1 -1 71 71 4 4 72 71 -1 -1 111 71 -1 -1 32 72 -2 -2 71 72 -1 -1 72 72 4 4 73 72 -1 -1 112 72 -1 -1 33 73 -2 -2 72 73 -1 -1 73 73 4 4 74 73 -1 -1 113 73 -1 -1 34 74 -2 -2 73 74 -1 -1 74 74 4 4 75 74 -1 -1 114 74 -1 -1 35 75 -2 -2 74 75 -1 -1 75 75 4 4 76 75 -1 -1 115 75 -1 -1 36 76 -2 -2 75 76 -1 -1 76 76 4 4 77 76 -1 -1 116 76 -1 -1 37 77 -2 -2 76 77 -1 -1 77 77 4 4 78 77 -1 -1 117 77 -1 -1 38 78 -2 -2 77 78 -1 -1 78 78 4 4 79 78 -2 -2 118 78 -1 -1 39 79 -2 -2 78 79 -1 -1 79 79 4 4 119 79 -1 -1 40 80 -1 -1 80 80 4 4 81 80 -1 -1 120 80 -1 -1 41 81 -1 -1 80 81 -2 -2 81 81 4 4 82 81 -1 -1 121 81 -1 -1 42 82 -1 -1 81 82 -1 -1 82 82 4 4 83 82 -1 -1 122 82 -1 -1 43 83 -1 -1 82 83 -1 -1 83 83 4 4 84 83 -1 -1 123 83 -1 -1 44 84 -1 -1 83 84 -1 -1 84 84 4 4 85 84 -1 -1 124 84 -1 -1 45 85 -1 -1 84 85 -1 -1 85 85 4 4 86 85 -1 -1 125 85 -1 -1 46 86 -1 -1 85 86 -1 -1 86 86 4 4 87 86 -1 -1 126 86 -1 -1 47 87 -1 -1 86 87 -1 -1 87 87 4 4 88 87 -1 -1 127 87 -1 -1 48 88 -1 -1 87 88 -1 -1 88 88 4 4 89 88 -1 -1 128 88 -1 -1 49 89 -1 -1 88 89 -1 -1 89 89 4 4 90 89 -1 -1 129 89 -1 -1 50 90 -1 -1 89 90 -1 -1 90 90 4 4 91 90 -1 -1 130 90 -1 -1 51 91 -1 -1 90 91 -1 -1 91 91 4 4 92 91 -1 -1 131 91 -1 -1 52 92 -1 -1 91 92 -1 -1 92 92 4 4 93 92 -1 -1 132 92 -1 -1 53 93 -1 -1 92 93 -1 -1 93 93 4 4 94 93 -1 -1 133 93 -1 -1 54 94 -1 -1 93 94 -1 -1 94 94 4 4 95 94 -1 -1 134 94 -1 -1 55 95 -1 -1 94 95 -1 -1 95 95 4 4 96 95 -1 -1 135 95 -1 -1 56 96 -1 -1 95 96 -1 -1 96 96 4 4 97 96 -1 -1 136 96 -1 -1 57 97 -1 -1 96 97 -1 -1 97 97 4 4 98 97 -1 -1 137 97 -1 -1 58 98 -1 -1 97 98 -1 -1 98 98 4 4 99 98 -1 -1 138 98 -1 -1 59 99 -1 -1 98 99 -1 -1 99 99 4 4 100 99 -1 -1 139 99 -1 -1 60 100 -1 -1 99 100 -1 -1 100 100 4 4 101 100 -1 -1 140 100 -1 -1 61 101 -1 -1 100 101 -1 -1 101 101 4 4 102 101 -1 -1 141 101 -1 -1 62 102 -1 -1 101 102 -1 -1 102 102 4 4 103 102 -1 -1 142 102 -1 -1 63 103 -1 -1 102 103 -1 -1 103 103 4 4 104 103 -1 -1 143 103 -1 -1 64 104 -1 -1 103 104 -1 -1 104 104 4 4 105 104 -1 -1 144 104 -1 -1 65 105 -1 -1 104 105 -1 -1 105 105 4 4 106 105 -1 -1 145 105 -1 -1 66 106 -1 -1 105 106 -1 -1 106 106 4 4 107 106 -1 -1 146 106 -1 -1 67 107 -1 -1 106 107 -1 -1 107 107 4 4 108 107 -1 -1 147 107 -1 -1 68 108 -1 -1 107 108 -1 -1 108 108 4 4 109 108 -1 -1 148 108 -1 -1 69 109 -1 -1 108 109 -1 -1 109 109 4 4 110 109 -1 -1 149 109 -1 -1 70 110 -1 -1 109 110 -1 -1 110 110 4 4 111 110 -1 -1 150 110 -1 -1 71 111 -1 -1 110 111 -1 -1 111 111 4 4 112 111 -1 -1 151 111 -1 -1 72 112 -1 -1 111 112 -1 -1 112 112 4 4 113 112 -1 -1 152 112 -1 -1 73 113 -1 -1 112 113 -1 -1 113 113 4 4 114 113 -1 -1 153 113 -1 -1 74 114 -1 -1 113 114 -1 -1 114 114 4 4 115 114 -1 -1 154 114 -1 -1 75 115 -1 -1 114 115 -1 -1 115 115 4 4 116 115 -1 -1 155 115 -1 -1 76 116 -1 -1 115 116 -1 -1 116 116 4 4 117 116 -1 -1 156 116 -1 -1 77 117 -1 -1 116 117 -1 -1 117 117 4 4 118 117 -1 -1 157 117 -1 -1 78 118 -1 -1 117 118 -1 -1 118 118 4 4 119 118 -2 -2 158 118 -1 -1 79 119 -1 -1 118 119 -1 -1 119 119 4 4 159 119 -1 -1 80 120 -1 -1 120 120 4 4 121 120 -1 -1 160 120 -1 -1 81 121 -1 -1 120 121 -2 -2 121 121 4 4 122 121 -1 -1 161 121 -1 -1 82 122 -1 -1 121 122 -1 -1 122 122 4 4 123 122 -1 -1 162 122 -1 -1 83 123 -1 -1 122 123 -1 -1 123 123 4 4 124 123 -1 -1 163 123 -1 -1 84 124 -1 -1 123 124 -1 -1 124 124 4 4 125 124 -1 -1 164 124 -1 -1 85 125 -1 -1 124 125 -1 -1 125 125 4 4 126 125 -1 -1 165 125 -1 -1 86 126 -1 -1 125 126 -1 -1 126 126 4 4 127 126 -1 -1 166 126 -1 -1 87 127 -1 -1 126 127 -1 -1 127 127 4 4 128 127 -1 -1 167 127 -1 -1 88 128 -1 -1 127 128 -1 -1 128 128 4 4 129 128 -1 -1 168 128 -1 -1 89 129 -1 -1 128 129 -1 -1 129 129 4 4 130 129 -1 -1 169 129 -1 -1 90 130 -1 -1 129 130 -1 -1 130 130 4 4 131 130 -1 -1 170 130 -1 -1 91 131 -1 -1 130 131 -1 -1 131 131 4 4 132 131 -1 -1 171 131 -1 -1 92 132 -1 -1 131 132 -1 -1 132 132 4 4 133 132 -1 -1 172 132 -1 -1 93 133 -1 -1 132 133 -1 -1 133 133 4 4 134 133 -1 -1 173 133 -1 -1 94 134 -1 -1 133 134 -1 -1 134 134 4 4 135 134 -1 -1 174 134 -1 -1 95 135 -1 -1 134 135 -1 -1 135 135 4 4 136 135 -1 -1 175 135 -1 -1 96 136 -1 -1 135 136 -1 -1 136 136 4 4 137 136 -1 -1 176 136 -1 -1 97 137 -1 -1 136 137 -1 -1 137 137 4 4 138 137 -1 -1 177 137 -1 -1 98 138 -1 -1 137 138 -1 -1 138 138 4 4 139 138 -1 -1 178 138 -1 -1 99 139 -1 -1 138 139 -1 -1 139 139 4 4 140 139 -1 -1 179 139 -1 -1 100 140 -1 -1 139 140 -1 -1 140 140 4 4 141 140 -1 -1 180 140 -1 -1 101 141 -1 -1 140 141 -1 -1 141 141 4 4 142 141 -1 -1 181 141 -1 -1 102 142 -1 -1 141 142 -1 -1 142 142 4 4 143 142 -1 -1 182 142 -1 -1 103 143 -1 -1 142 143 -1 -1 143 143 4 4 144 143 -1 -1 183 143 -1 -1 104 144 -1 -1 143 144 -1 -1 144 144 4 4 145 144 -1 -1 184 144 -1 -1 105 145 -1 -1 144 145 -1 -1 145 145 4 4 146 145 -1 -1 185 145 -1 -1 106 146 -1 -1 145 146 -1 -1 146 146 4 4 147 146 -1 -1 186 146 -1 -1 107 147 -1 -1 146 147 -1 -1 147 147 4 4 148 147 -1 -1 187 147 -1 -1 108 148 -1 -1 147 148 -1 -1 148 148 4 4 149 148 -1 -1 188 148 -1 -1 109 149 -1 -1 148 149 -1 -1 149 149 4 4 150 149 -1 -1 189 149 -1 -1 110 150 -1 -1 149 150 -1 -1 150 150 4 4 151 150 -1 -1 190 150 -1 -1 111 151 -1 -1 150 151 -1 -1 151 151 4 4 152 151 -1 -1 191 151 -1 -1 112 152 -1 -1 151 152 -1 -1 152 152 4 4 153 152 -1 -1 192 152 -1 -1 113 153 -1 -1 152 153 -1 -1 153 153 4 4 154 153 -1 -1 193 153 -1 -1 114 154 -1 -1 153 154 -1 -1 154 154 4 4 155 154 -1 -1 194 154 -1 -1 115 155 -1 -1 154 155 -1 -1 155 155 4 4 156 155 -1 -1 195 155 -1 -1 116 156 -1 -1 155 156 -1 -1 156 156 4 4 157 156 -1 -1 196 156 -1 -1 117 157 -1 -1 156 157 -1 -1 157 157 4 4 158 157 -1 -1 197 157 -1 -1 118 158 -1 -1 157 158 -1 -1 158 158 4 4 159 158 -2 -2 198 158 -1 -1 119 159 -1 -1 158 159 -1 -1 159 159 4 4 199 159 -1 -1 120 160 -1 -1 160 160 4 4 161 160 -1 -1 200 160 -1 -1 121 161 -1 -1 160 161 -2 -2 161 161 4 4 162 161 -1 -1 201 161 -1 -1 122 162 -1 -1 161 162 -1 -1 162 162 4 4 163 162 -1 -1 202 162 -1 -1 123 163 -1 -1 162 163 -1 -1 163 163 4 4 164 163 -1 -1 203 163 -1 -1 124 164 -1 -1 163 164 -1 -1 164 164 4 4 165 164 -1 -1 204 164 -1 -1 125 165 -1 -1 164 165 -1 -1 165 165 4 4 166 165 -1 -1 205 165 -1 -1 126 166 -1 -1 165 166 -1 -1 166 166 4 4 167 166 -1 -1 206 166 -1 -1 127 167 -1 -1 166 167 -1 -1 167 167 4 4 168 167 -1 -1 207 167 -1 -1 128 168 -1 -1 167 168 -1 -1 168 168 4 4 169 168 -1 -1 208 168 -1 -1 129 169 -1 -1 168 169 -1 -1 169 169 4 4 170 169 -1 -1 209 169 -1 -1 130 170 -1 -1 169 170 -1 -1 170 170 4 4 171 170 -1 -1 210 170 -1 -1 131 171 -1 -1 170 171 -1 -1 171 171 4 4 172 171 -1 -1 211 171 -1 -1 132 172 -1 -1 171 172 -1 -1 172 172 4 4 173 172 -1 -1 212 172 -1 -1 133 173 -1 -1 172 173 -1 -1 173 173 4 4 174 173 -1 -1 213 173 -1 -1 134 174 -1 -1 173 174 -1 -1 174 174 4 4 175 174 -1 -1 214 174 -1 -1 135 175 -1 -1 174 175 -1 -1 175 175 4 4 176 175 -1 -1 215 175 -1 -1 136 176 -1 -1 175 176 -1 -1 176 176 4 4 177 176 -1 -1 216 176 -1 -1 137 177 -1 -1 176 177 -1 -1 177 177 4 4 178 177 -1 -1 217 177 -1 -1 138 178 -1 -1 177 178 -1 -1 178 178 4 4 179 178 -1 -1 218 178 -1 -1 139 179 -1 -1 178 179 -1 -1 179 179 4 4 180 179 -1 -1 219 179 -1 -1 140 180 -1 -1 179 180 -1 -1 180 180 4 4 181 180 -1 -1 220 180 -1 -1 141 181 -1 -1 180 181 -1 -1 181 181 4 4 182 181 -1 -1 221 181 -1 -1 142 182 -1 -1 181 182 -1 -1 182 182 4 4 183 182 -1 -1 222 182 -1 -1 143 183 -1 -1 182 183 -1 -1 183 183 4 4 184 183 -1 -1 223 183 -1 -1 144 184 -1 -1 183 184 -1 -1 184 184 4 4 185 184 -1 -1 224 184 -1 -1 145 185 -1 -1 184 185 -1 -1 185 185 4 4 186 185 -1 -1 225 185 -1 -1 146 186 -1 -1 185 186 -1 -1 186 186 4 4 187 186 -1 -1 226 186 -1 -1 147 187 -1 -1 186 187 -1 -1 187 187 4 4 188 187 -1 -1 227 187 -1 -1 148 188 -1 -1 187 188 -1 -1 188 188 4 4 189 188 -1 -1 228 188 -1 -1 149 189 -1 -1 188 189 -1 -1 189 189 4 4 190 189 -1 -1 229 189 -1 -1 150 190 -1 -1 189 190 -1 -1 190 190 4 4 191 190 -1 -1 230 190 -1 -1 151 191 -1 -1 190 191 -1 -1 191 191 4 4 192 191 -1 -1 231 191 -1 -1 152 192 -1 -1 191 192 -1 -1 192 192 4 4 193 192 -1 -1 232 192 -1 -1 153 193 -1 -1 192 193 -1 -1 193 193 4 4 194 193 -1 -1 233 193 -1 -1 154 194 -1 -1 193 194 -1 -1 194 194 4 4 195 194 -1 -1 234 194 -1 -1 155 195 -1 -1 194 195 -1 -1 195 195 4 4 196 195 -1 -1 235 195 -1 -1 156 196 -1 -1 195 196 -1 -1 196 196 4 4 197 196 -1 -1 236 196 -1 -1 157 197 -1 -1 196 197 -1 -1 197 197 4 4 198 197 -1 -1 237 197 -1 -1 158 198 -1 -1 197 198 -1 -1 198 198 4 4 199 198 -2 -2 238 198 -1 -1 159 199 -1 -1 198 199 -1 -1 199 199 4 4 239 199 -1 -1 160 200 -1 -1 200 200 4 4 201 200 -1 -1 240 200 -1 -1 161 201 -1 -1 200 201 -2 -2 201 201 4 4 202 201 -1 -1 241 201 -1 -1 162 202 -1 -1 201 202 -1 -1 202 202 4 4 203 202 -1 -1 242 202 -1 -1 163 203 -1 -1 202 203 -1 -1 203 203 4 4 204 203 -1 -1 243 203 -1 -1 164 204 -1 -1 203 204 -1 -1 204 204 4 4 205 204 -1 -1 244 204 -1 -1 165 205 -1 -1 204 205 -1 -1 205 205 4 4 206 205 -1 -1 245 205 -1 -1 166 206 -1 -1 205 206 -1 -1 206 206 4 4 207 206 -1 -1 246 206 -1 -1 167 207 -1 -1 206 207 -1 -1 207 207 4 4 208 207 -1 -1 247 207 -1 -1 168 208 -1 -1 207 208 -1 -1 208 208 4 4 209 208 -1 -1 248 208 -1 -1 169 209 -1 -1 208 209 -1 -1 209 209 4 4 210 209 -1 -1 249 209 -1 -1 170 210 -1 -1 209 210 -1 -1 210 210 4 4 211 210 -1 -1 250 210 -1 -1 171 211 -1 -1 210 211 -1 -1 211 211 4 4 212 211 -1 -1 251 211 -1 -1 172 212 -1 -1 211 212 -1 -1 212 212 4 4 213 212 -1 -1 252 212 -1 -1 173 213 -1 -1 212 213 -1 -1 213 213 4 4 214 213 -1 -1 253 213 -1 -1 174 214 -1 -1 213 214 -1 -1 214 214 4 4 215 214 -1 -1 254 214 -1 -1 175 215 -1 -1 214 215 -1 -1 215 215 4 4 216 215 -1 -1 255 215 -1 -1 176 216 -1 -1 215 216 -1 -1 216 216 4 4 217 216 -1 -1 256 216 -1 -1 177 217 -1 -1 216 217 -1 -1 217 217 4 4 218 217 -1 -1 257 217 -1 -1 178 218 -1 -1 217 218 -1 -1 218 218 4 4 219 218 -1 -1 258 218 -1 -1 179 219 -1 -1 218 219 -1 -1 219 219 4 4 220 219 -1 -1 259 219 -1 -1 180 220 -1 -1 219 220 -1 -1 220 220 4 4 221 220 -1 -1 260 220 -1 -1 181 221 -1 -1 220 221 -1 -1 221 221 4 4 222 221 -1 -1 261 221 -1 -1 182 222 -1 -1 221 222 -1 -1 222 222 4 4 223 222 -1 -1 262 222 -1 -1 183 223 -1 -1 222 223 -1 -1 223 223 4 4 224 223 -1 -1 263 223 -1 -1 184 224 -1 -1 223 224 -1 -1 224 224 4 4 225 224 -1 -1 264 224 -1 -1 185 225 -1 -1 224 225 -1 -1 225 225 4 4 226 225 -1 -1 265 225 -1 -1 186 226 -1 -1 225 226 -1 -1 226 226 4 4 227 226 -1 -1 266 226 -1 -1 187 227 -1 -1 226 227 -1 -1 227 227 4 4 228 227 -1 -1 267 227 -1 -1 188 228 -1 -1 227 228 -1 -1 228 228 4 4 229 228 -1 -1 268 228 -1 -1 189 229 -1 -1 228 229 -1 -1 229 229 4 4 230 229 -1 -1 269 229 -1 -1 190 230 -1 -1 229 230 -1 -1 230 230 4 4 231 230 -1 -1 270 230 -1 -1 191 231 -1 -1 230 231 -1 -1 231 231 4 4 232 231 -1 -1 271 231 -1 -1 192 232 -1 -1 231 232 -1 -1 232 232 4 4 233 232 -1 -1 272 232 -1 -1 193 233 -1 -1 232 233 -1 -1 233 233 4 4 234 233 -1 -1 273 233 -1 -1 194 234 -1 -1 233 234 -1 -1 234 234 4 4 235 234 -1 -1 274 234 -1 -1 195 235 -1 -1 234 235 -1 -1 235 235 4 4 236 235 -1 -1 275 235 -1 -1 196 236 -1 -1 235 236 -1 -1 236 236 4 4 237 236 -1 -1 276 236 -1 -1 197 237 -1 -1 236 237 -1 -1 237 237 4 4 238 237 -1 -1 277 237 -1 -1 198 238 -1 -1 237 238 -1 -1 238 238 4 4 239 238 -2 -2 278 238 -1 -1 199 239 -1 -1 238 239 -1 -1 239 239 4 4 279 239 -1 -1 200 240 -1 -1 240 240 4 4 241 240 -1 -1 280 240 -1 -1 201 241 -1 -1 240 241 -2 -2 241 241 4 4 242 241 -1 -1 281 241 -1 -1 202 242 -1 -1 241 242 -1 -1 242 242 4 4 243 242 -1 -1 282 242 -1 -1 203 243 -1 -1 242 243 -1 -1 243 243 4 4 244 243 -1 -1 283 243 -1 -1 204 244 -1 -1 243 244 -1 -1 244 244 4 4 245 244 -1 -1 284 244 -1 -1 205 245 -1 -1 244 245 -1 -1 245 245 4 4 246 245 -1 -1 285 245 -1 -1 206 246 -1 -1 245 246 -1 -1 246 246 4 4 247 246 -1 -1 286 246 -1 -1 207 247 -1 -1 246 247 -1 -1 247 247 4 4 248 247 -1 -1 287 247 -1 -1 208 248 -1 -1 247 248 -1 -1 248 248 4 4 249 248 -1 -1 288 248 -1 -1 209 249 -1 -1 248 249 -1 -1 249 249 4 4 250 249 -1 -1 289 249 -1 -1 210 250 -1 -1 249 250 -1 -1 250 250 4 4 251 250 -1 -1 290 250 -1 -1 211 251 -1 -1 250 251 -1 -1 251 251 4 4 252 251 -1 -1 291 251 -1 -1 212 252 -1 -1 251 252 -1 -1 252 252 4 4 253 252 -1 -1 292 252 -1 -1 213 253 -1 -1 252 253 -1 -1 253 253 4 4 254 253 -1 -1 293 253 -1 -1 214 254 -1 -1 253 254 -1 -1 254 254 4 4 255 254 -1 -1 294 254 -1 -1 215 255 -1 -1 254 255 -1 -1 255 255 4 4 256 255 -1 -1 295 255 -1 -1 216 256 -1 -1 255 256 -1 -1 256 256 4 4 257 256 -1 -1 296 256 -1 -1 217 257 -1 -1 256 257 -1 -1 257 257 4 4 258 257 -1 -1 297 257 -1 -1 218 258 -1 -1 257 258 -1 -1 258 258 4 4 259 258 -1 -1 298 258 -1 -1 219 259 -1 -1 258 259 -1 -1 259 259 4 4 260 259 -1 -1 299 259 -1 -1 220 260 -1 -1 259 260 -1 -1 260 260 4 4 261 260 -1 -1 300 260 -1 -1 221 261 -1 -1 260 261 -1 -1 261 261 4 4 262 261 -1 -1 301 261 -1 -1 222 262 -1 -1 261 262 -1 -1 262 262 4 4 263 262 -1 -1 302 262 -1 -1 223 263 -1 -1 262 263 -1 -1 263 263 4 4 264 263 -1 -1 303 263 -1 -1 224 264 -1 -1 263 264 -1 -1 264 264 4 4 265 264 -1 -1 304 264 -1 -1 225 265 -1 -1 264 265 -1 -1 265 265 4 4 266 265 -1 -1 305 265 -1 -1 226 266 -1 -1 265 266 -1 -1 266 266 4 4 267 266 -1 -1 306 266 -1 -1 227 267 -1 -1 266 267 -1 -1 267 267 4 4 268 267 -1 -1 307 267 -1 -1 228 268 -1 -1 267 268 -1 -1 268 268 4 4 269 268 -1 -1 308 268 -1 -1 229 269 -1 -1 268 269 -1 -1 269 269 4 4 270 269 -1 -1 309 269 -1 -1 230 270 -1 -1 269 270 -1 -1 270 270 4 4 271 270 -1 -1 310 270 -1 -1 231 271 -1 -1 270 271 -1 -1 271 271 4 4 272 271 -1 -1 311 271 -1 -1 232 272 -1 -1 271 272 -1 -1 272 272 4 4 273 272 -1 -1 312 272 -1 -1 233 273 -1 -1 272 273 -1 -1 273 273 4 4 274 273 -1 -1 313 273 -1 -1 234 274 -1 -1 273 274 -1 -1 274 274 4 4 275 274 -1 -1 314 274 -1 -1 235 275 -1 -1 274 275 -1 -1 275 275 4 4 276 275 -1 -1 315 275 -1 -1 236 276 -1 -1 275 276 -1 -1 276 276 4 4 277 276 -1 -1 316 276 -1 -1 237 277 -1 -1 276 277 -1 -1 277 277 4 4 278 277 -1 -1 317 277 -1 -1 238 278 -1 -1 277 278 -1 -1 278 278 4 4 279 278 -2 -2 318 278 -1 -1 239 279 -1 -1 278 279 -1 -1 279 279 4 4 319 279 -1 -1 240 280 -1 -1 280 280 4 4 281 280 -1 -1 320 280 -1 -1 241 281 -1 -1 280 281 -2 -2 281 281 4 4 282 281 -1 -1 321 281 -1 -1 242 282 -1 -1 281 282 -1 -1 282 282 4 4 283 282 -1 -1 322 282 -1 -1 243 283 -1 -1 282 283 -1 -1 283 283 4 4 284 283 -1 -1 323 283 -1 -1 244 284 -1 -1 283 284 -1 -1 284 284 4 4 285 284 -1 -1 324 284 -1 -1 245 285 -1 -1 284 285 -1 -1 285 285 4 4 286 285 -1 -1 325 285 -1 -1 246 286 -1 -1 285 286 -1 -1 286 286 4 4 287 286 -1 -1 326 286 -1 -1 247 287 -1 -1 286 287 -1 -1 287 287 4 4 288 287 -1 -1 327 287 -1 -1 248 288 -1 -1 287 288 -1 -1 288 288 4 4 289 288 -1 -1 328 288 -1 -1 249 289 -1 -1 288 289 -1 -1 289 289 4 4 290 289 -1 -1 329 289 -1 -1 250 290 -1 -1 289 290 -1 -1 290 290 4 4 291 290 -1 -1 330 290 -1 -1 251 291 -1 -1 290 291 -1 -1 291 291 4 4 292 291 -1 -1 331 291 -1 -1 252 292 -1 -1 291 292 -1 -1 292 292 4 4 293 292 -1 -1 332 292 -1 -1 253 293 -1 -1 292 293 -1 -1 293 293 4 4 294 293 -1 -1 333 293 -1 -1 254 294 -1 -1 293 294 -1 -1 294 294 4 4 295 294 -1 -1 334 294 -1 -1 255 295 -1 -1 294 295 -1 -1 295 295 4 4 296 295 -1 -1 335 295 -1 -1 256 296 -1 -1 295 296 -1 -1 296 296 4 4 297 296 -1 -1 336 296 -1 -1 257 297 -1 -1 296 297 -1 -1 297 297 4 4 298 297 -1 -1 337 297 -1 -1 258 298 -1 -1 297 298 -1 -1 298 298 4 4 299 298 -1 -1 338 298 -1 -1 259 299 -1 -1 298 299 -1 -1 299 299 4 4 300 299 -1 -1 339 299 -1 -1 260 300 -1 -1 299 300 -1 -1 300 300 4 4 301 300 -1 -1 340 300 -1 -1 261 301 -1 -1 300 301 -1 -1 301 301 4 4 302 301 -1 -1 341 301 -1 -1 262 302 -1 -1 301 302 -1 -1 302 302 4 4 303 302 -1 -1 342 302 -1 -1 263 303 -1 -1 302 303 -1 -1 303 303 4 4 304 303 -1 -1 343 303 -1 -1 264 304 -1 -1 303 304 -1 -1 304 304 4 4 305 304 -1 -1 344 304 -1 -1 265 305 -1 -1 304 305 -1 -1 305 305 4 4 306 305 -1 -1 345 305 -1 -1 266 306 -1 -1 305 306 -1 -1 306 306 4 4 307 306 -1 -1 346 306 -1 -1 267 307 -1 -1 306 307 -1 -1 307 307 4 4 308 307 -1 -1 347 307 -1 -1 268 308 -1 -1 307 308 -1 -1 308 308 4 4 309 308 -1 -1 348 308 -1 -1 269 309 -1 -1 308 309 -1 -1 309 309 4 4 310 309 -1 -1 349 309 -1 -1 270 310 -1 -1 309 310 -1 -1 310 310 4 4 311 310 -1 -1 350 310 -1 -1 271 311 -1 -1 310 311 -1 -1 311 311 4 4 312 311 -1 -1 351 311 -1 -1 272 312 -1 -1 311 312 -1 -1 312 312 4 4 313 312 -1 -1 352 312 -1 -1 273 313 -1 -1 312 313 -1 -1 313 313 4 4 314 313 -1 -1 353 313 -1 -1 274 314 -1 -1 313 314 -1 -1 314 314 4 4 315 314 -1 -1 354 314 -1 -1 275 315 -1 -1 314 315 -1 -1 315 315 4 4 316 315 -1 -1 355 315 -1 -1 276 316 -1 -1 315 316 -1 -1 316 316 4 4 317 316 -1 -1 356 316 -1 -1 277 317 -1 -1 316 317 -1 -1 317 317 4 4 318 317 -1 -1 357 317 -1 -1 278 318 -1 -1 317 318 -1 -1 318 318 4 4 319 318 -2 -2 358 318 -1 -1 279 319 -1 -1 318 319 -1 -1 319 319 4 4 359 319 -1 -1 280 320 -1 -1 320 320 4 4 321 320 -1 -1 360 320 -1 -1 281 321 -1 -1 320 321 -2 -2 321 321 4 4 322 321 -1 -1 361 321 -1 -1 282 322 -1 -1 321 322 -1 -1 322 322 4 4 323 322 -1 -1 362 322 -1 -1 283 323 -1 -1 322 323 -1 -1 323 323 4 4 324 323 -1 -1 363 323 -1 -1 284 324 -1 -1 323 324 -1 -1 324 324 4 4 325 324 -1 -1 364 324 -1 -1 285 325 -1 -1 324 325 -1 -1 325 325 4 4 326 325 -1 -1 365 325 -1 -1 286 326 -1 -1 325 326 -1 -1 326 326 4 4 327 326 -1 -1 366 326 -1 -1 287 327 -1 -1 326 327 -1 -1 327 327 4 4 328 327 -1 -1 367 327 -1 -1 288 328 -1 -1 327 328 -1 -1 328 328 4 4 329 328 -1 -1 368 328 -1 -1 289 329 -1 -1 328 329 -1 -1 329 329 4 4 330 329 -1 -1 369 329 -1 -1 290 330 -1 -1 329 330 -1 -1 330 330 4 4 331 330 -1 -1 370 330 -1 -1 291 331 -1 -1 330 331 -1 -1 331 331 4 4 332 331 -1 -1 371 331 -1 -1 292 332 -1 -1 331 332 -1 -1 332 332 4 4 333 332 -1 -1 372 332 -1 -1 293 333 -1 -1 332 333 -1 -1 333 333 4 4 334 333 -1 -1 373 333 -1 -1 294 334 -1 -1 333 334 -1 -1 334 334 4 4 335 334 -1 -1 374 334 -1 -1 295 335 -1 -1 334 335 -1 -1 335 335 4 4 336 335 -1 -1 375 335 -1 -1 296 336 -1 -1 335 336 -1 -1 336 336 4 4 337 336 -1 -1 376 336 -1 -1 297 337 -1 -1 336 337 -1 -1 337 337 4 4 338 337 -1 -1 377 337 -1 -1 298 338 -1 -1 337 338 -1 -1 338 338 4 4 339 338 -1 -1 378 338 -1 -1 299 339 -1 -1 338 339 -1 -1 339 339 4 4 340 339 -1 -1 379 339 -1 -1 300 340 -1 -1 339 340 -1 -1 340 340 4 4 341 340 -1 -1 380 340 -1 -1 301 341 -1 -1 340 341 -1 -1 341 341 4 4 342 341 -1 -1 381 341 -1 -1 302 342 -1 -1 341 342 -1 -1 342 342 4 4 343 342 -1 -1 382 342 -1 -1 303 343 -1 -1 342 343 -1 -1 343 343 4 4 344 343 -1 -1 383 343 -1 -1 304 344 -1 -1 343 344 -1 -1 344 344 4 4 345 344 -1 -1 384 344 -1 -1 305 345 -1 -1 344 345 -1 -1 345 345 4 4 346 345 -1 -1 385 345 -1 -1 306 346 -1 -1 345 346 -1 -1 346 346 4 4 347 346 -1 -1 386 346 -1 -1 307 347 -1 -1 346 347 -1 -1 347 347 4 4 348 347 -1 -1 387 347 -1 -1 308 348 -1 -1 347 348 -1 -1 348 348 4 4 349 348 -1 -1 388 348 -1 -1 309 349 -1 -1 348 349 -1 -1 349 349 4 4 350 349 -1 -1 389 349 -1 -1 310 350 -1 -1 349 350 -1 -1 350 350 4 4 351 350 -1 -1 390 350 -1 -1 311 351 -1 -1 350 351 -1 -1 351 351 4 4 352 351 -1 -1 391 351 -1 -1 312 352 -1 -1 351 352 -1 -1 352 352 4 4 353 352 -1 -1 392 352 -1 -1 313 353 -1 -1 352 353 -1 -1 353 353 4 4 354 353 -1 -1 393 353 -1 -1 314 354 -1 -1 353 354 -1 -1 354 354 4 4 355 354 -1 -1 394 354 -1 -1 315 355 -1 -1 354 355 -1 -1 355 355 4 4 356 355 -1 -1 395 355 -1 -1 316 356 -1 -1 355 356 -1 -1 356 356 4 4 357 356 -1 -1 396 356 -1 -1 317 357 -1 -1 356 357 -1 -1 357 357 4 4 358 357 -1 -1 397 357 -1 -1 318 358 -1 -1 357 358 -1 -1 358 358 4 4 359 358 -2 -2 398 358 -1 -1 319 359 -1 -1 358 359 -1 -1 359 359 4 4 399 359 -1 -1 320 360 -1 -1 360 360 4 4 361 360 -1 -1 400 360 -1 -1 321 361 -1 -1 360 361 -2 -2 361 361 4 4 362 361 -1 -1 401 361 -1 -1 322 362 -1 -1 361 362 -1 -1 362 362 4 4 363 362 -1 -1 402 362 -1 -1 323 363 -1 -1 362 363 -1 -1 363 363 4 4 364 363 -1 -1 403 363 -1 -1 324 364 -1 -1 363 364 -1 -1 364 364 4 4 365 364 -1 -1 404 364 -1 -1 325 365 -1 -1 364 365 -1 -1 365 365 4 4 366 365 -1 -1 405 365 -1 -1 326 366 -1 -1 365 366 -1 -1 366 366 4 4 367 366 -1 -1 406 366 -1 -1 327 367 -1 -1 366 367 -1 -1 367 367 4 4 368 367 -1 -1 407 367 -1 -1 328 368 -1 -1 367 368 -1 -1 368 368 4 4 369 368 -1 -1 408 368 -1 -1 329 369 -1 -1 368 369 -1 -1 369 369 4 4 370 369 -1 -1 409 369 -1 -1 330 370 -1 -1 369 370 -1 -1 370 370 4 4 371 370 -1 -1 410 370 -1 -1 331 371 -1 -1 370 371 -1 -1 371 371 4 4 372 371 -1 -1 411 371 -1 -1 332 372 -1 -1 371 372 -1 -1 372 372 4 4 373 372 -1 -1 412 372 -1 -1 333 373 -1 -1 372 373 -1 -1 373 373 4 4 374 373 -1 -1 413 373 -1 -1 334 374 -1 -1 373 374 -1 -1 374 374 4 4 375 374 -1 -1 414 374 -1 -1 335 375 -1 -1 374 375 -1 -1 375 375 4 4 376 375 -1 -1 415 375 -1 -1 336 376 -1 -1 375 376 -1 -1 376 376 4 4 377 376 -1 -1 416 376 -1 -1 337 377 -1 -1 376 377 -1 -1 377 377 4 4 378 377 -1 -1 417 377 -1 -1 338 378 -1 -1 377 378 -1 -1 378 378 4 4 379 378 -1 -1 418 378 -1 -1 339 379 -1 -1 378 379 -1 -1 379 379 4 4 380 379 -1 -1 419 379 -1 -1 340 380 -1 -1 379 380 -1 -1 380 380 4 4 381 380 -1 -1 420 380 -1 -1 341 381 -1 -1 380 381 -1 -1 381 381 4 4 382 381 -1 -1 421 381 -1 -1 342 382 -1 -1 381 382 -1 -1 382 382 4 4 383 382 -1 -1 422 382 -1 -1 343 383 -1 -1 382 383 -1 -1 383 383 4 4 384 383 -1 -1 423 383 -1 -1 344 384 -1 -1 383 384 -1 -1 384 384 4 4 385 384 -1 -1 424 384 -1 -1 345 385 -1 -1 384 385 -1 -1 385 385 4 4 386 385 -1 -1 425 385 -1 -1 346 386 -1 -1 385 386 -1 -1 386 386 4 4 387 386 -1 -1 426 386 -1 -1 347 387 -1 -1 386 387 -1 -1 387 387 4 4 388 387 -1 -1 427 387 -1 -1 348 388 -1 -1 387 388 -1 -1 388 388 4 4 389 388 -1 -1 428 388 -1 -1 349 389 -1 -1 388 389 -1 -1 389 389 4 4 390 389 -1 -1 429 389 -1 -1 350 390 -1 -1 389 390 -1 -1 390 390 4 4 391 390 -1 -1 430 390 -1 -1 351 391 -1 -1 390 391 -1 -1 391 391 4 4 392 391 -1 -1 431 391 -1 -1 352 392 -1 -1 391 392 -1 -1 392 392 4 4 393 392 -1 -1 432 392 -1 -1 353 393 -1 -1 392 393 -1 -1 393 393 4 4 394 393 -1 -1 433 393 -1 -1 354 394 -1 -1 393 394 -1 -1 394 394 4 4 395 394 -1 -1 434 394 -1 -1 355 395 -1 -1 394 395 -1 -1 395 395 4 4 396 395 -1 -1 435 395 -1 -1 356 396 -1 -1 395 396 -1 -1 396 396 4 4 397 396 -1 -1 436 396 -1 -1 357 397 -1 -1 396 397 -1 -1 397 397 4 4 398 397 -1 -1 437 397 -1 -1 358 398 -1 -1 397 398 -1 -1 398 398 4 4 399 398 -2 -2 438 398 -1 -1 359 399 -1 -1 398 399 -1 -1 399 399 4 4 439 399 -1 -1 360 400 -1 -1 400 400 4 4 401 400 -1 -1 440 400 -1 -1 361 401 -1 -1 400 401 -2 -2 401 401 4 4 402 401 -1 -1 441 401 -1 -1 362 402 -1 -1 401 402 -1 -1 402 402 4 4 403 402 -1 -1 442 402 -1 -1 363 403 -1 -1 402 403 -1 -1 403 403 4 4 404 403 -1 -1 443 403 -1 -1 364 404 -1 -1 403 404 -1 -1 404 404 4 4 405 404 -1 -1 444 404 -1 -1 365 405 -1 -1 404 405 -1 -1 405 405 4 4 406 405 -1 -1 445 405 -1 -1 366 406 -1 -1 405 406 -1 -1 406 406 4 4 407 406 -1 -1 446 406 -1 -1 367 407 -1 -1 406 407 -1 -1 407 407 4 4 408 407 -1 -1 447 407 -1 -1 368 408 -1 -1 407 408 -1 -1 408 408 4 4 409 408 -1 -1 448 408 -1 -1 369 409 -1 -1 408 409 -1 -1 409 409 4 4 410 409 -1 -1 449 409 -1 -1 370 410 -1 -1 409 410 -1 -1 410 410 4 4 411 410 -1 -1 450 410 -1 -1 371 411 -1 -1 410 411 -1 -1 411 411 4 4 412 411 -1 -1 451 411 -1 -1 372 412 -1 -1 411 412 -1 -1 412 412 4 4 413 412 -1 -1 452 412 -1 -1 373 413 -1 -1 412 413 -1 -1 413 413 4 4 414 413 -1 -1 453 413 -1 -1 374 414 -1 -1 413 414 -1 -1 414 414 4 4 415 414 -1 -1 454 414 -1 -1 375 415 -1 -1 414 415 -1 -1 415 415 4 4 416 415 -1 -1 455 415 -1 -1 376 416 -1 -1 415 416 -1 -1 416 416 4 4 417 416 -1 -1 456 416 -1 -1 377 417 -1 -1 416 417 -1 -1 417 417 4 4 418 417 -1 -1 457 417 -1 -1 378 418 -1 -1 417 418 -1 -1 418 418 4 4 419 418 -1 -1 458 418 -1 -1 379 419 -1 -1 418 419 -1 -1 419 419 4 4 420 419 -1 -1 459 419 -1 -1 380 420 -1 -1 419 420 -1 -1 420 420 4 4 421 420 -1 -1 460 420 -1 -1 381 421 -1 -1 420 421 -1 -1 421 421 4 4 422 421 -1 -1 461 421 -1 -1 382 422 -1 -1 421 422 -1 -1 422 422 4 4 423 422 -1 -1 462 422 -1 -1 383 423 -1 -1 422 423 -1 -1 423 423 4 4 424 423 -1 -1 463 423 -1 -1 384 424 -1 -1 423 424 -1 -1 424 424 4 4 425 424 -1 -1 464 424 -1 -1 385 425 -1 -1 424 425 -1 -1 425 425 4 4 426 425 -1 -1 465 425 -1 -1 386 426 -1 -1 425 426 -1 -1 426 426 4 4 427 426 -1 -1 466 426 -1 -1 387 427 -1 -1 426 427 -1 -1 427 427 4 4 428 427 -1 -1 467 427 -1 -1 388 428 -1 -1 427 428 -1 -1 428 428 4 4 429 428 -1 -1 468 428 -1 -1 389 429 -1 -1 428 429 -1 -1 429 429 4 4 430 429 -1 -1 469 429 -1 -1 390 430 -1 -1 429 430 -1 -1 430 430 4 4 431 430 -1 -1 470 430 -1 -1 391 431 -1 -1 430 431 -1 -1 431 431 4 4 432 431 -1 -1 471 431 -1 -1 392 432 -1 -1 431 432 -1 -1 432 432 4 4 433 432 -1 -1 472 432 -1 -1 393 433 -1 -1 432 433 -1 -1 433 433 4 4 434 433 -1 -1 473 433 -1 -1 394 434 -1 -1 433 434 -1 -1 434 434 4 4 435 434 -1 -1 474 434 -1 -1 395 435 -1 -1 434 435 -1 -1 435 435 4 4 436 435 -1 -1 475 435 -1 -1 396 436 -1 -1 435 436 -1 -1 436 436 4 4 437 436 -1 -1 476 436 -1 -1 397 437 -1 -1 436 437 -1 -1 437 437 4 4 438 437 -1 -1 477 437 -1 -1 398 438 -1 -1 437 438 -1 -1 438 438 4 4 439 438 -2 -2 478 438 -1 -1 399 439 -1 -1 438 439 -1 -1 439 439 4 4 479 439 -1 -1 400 440 -1 -1 440 440 4 4 441 440 -1 -1 480 440 -1 -1 401 441 -1 -1 440 441 -2 -2 441 441 4 4 442 441 -1 -1 481 441 -1 -1 402 442 -1 -1 441 442 -1 -1 442 442 4 4 443 442 -1 -1 482 442 -1 -1 403 443 -1 -1 442 443 -1 -1 443 443 4 4 444 443 -1 -1 483 443 -1 -1 404 444 -1 -1 443 444 -1 -1 444 444 4 4 445 444 -1 -1 484 444 -1 -1 405 445 -1 -1 444 445 -1 -1 445 445 4 4 446 445 -1 -1 485 445 -1 -1 406 446 -1 -1 445 446 -1 -1 446 446 4 4 447 446 -1 -1 486 446 -1 -1 407 447 -1 -1 446 447 -1 -1 447 447 4 4 448 447 -1 -1 487 447 -1 -1 408 448 -1 -1 447 448 -1 -1 448 448 4 4 449 448 -1 -1 488 448 -1 -1 409 449 -1 -1 448 449 -1 -1 449 449 4 4 450 449 -1 -1 489 449 -1 -1 410 450 -1 -1 449 450 -1 -1 450 450 4 4 451 450 -1 -1 490 450 -1 -1 411 451 -1 -1 450 451 -1 -1 451 451 4 4 452 451 -1 -1 491 451 -1 -1 412 452 -1 -1 451 452 -1 -1 452 452 4 4 453 452 -1 -1 492 452 -1 -1 413 453 -1 -1 452 453 -1 -1 453 453 4 4 454 453 -1 -1 493 453 -1 -1 414 454 -1 -1 453 454 -1 -1 454 454 4 4 455 454 -1 -1 494 454 -1 -1 415 455 -1 -1 454 455 -1 -1 455 455 4 4 456 455 -1 -1 495 455 -1 -1 416 456 -1 -1 455 456 -1 -1 456 456 4 4 457 456 -1 -1 496 456 -1 -1 417 457 -1 -1 456 457 -1 -1 457 457 4 4 458 457 -1 -1 497 457 -1 -1 418 458 -1 -1 457 458 -1 -1 458 458 4 4 459 458 -1 -1 498 458 -1 -1 419 459 -1 -1 458 459 -1 -1 459 459 4 4 460 459 -1 -1 499 459 -1 -1 420 460 -1 -1 459 460 -1 -1 460 460 4 4 461 460 -1 -1 500 460 -1 -1 421 461 -1 -1 460 461 -1 -1 461 461 4 4 462 461 -1 -1 501 461 -1 -1 422 462 -1 -1 461 462 -1 -1 462 462 4 4 463 462 -1 -1 502 462 -1 -1 423 463 -1 -1 462 463 -1 -1 463 463 4 4 464 463 -1 -1 503 463 -1 -1 424 464 -1 -1 463 464 -1 -1 464 464 4 4 465 464 -1 -1 504 464 -1 -1 425 465 -1 -1 464 465 -1 -1 465 465 4 4 466 465 -1 -1 505 465 -1 -1 426 466 -1 -1 465 466 -1 -1 466 466 4 4 467 466 -1 -1 506 466 -1 -1 427 467 -1 -1 466 467 -1 -1 467 467 4 4 468 467 -1 -1 507 467 -1 -1 428 468 -1 -1 467 468 -1 -1 468 468 4 4 469 468 -1 -1 508 468 -1 -1 429 469 -1 -1 468 469 -1 -1 469 469 4 4 470 469 -1 -1 509 469 -1 -1 430 470 -1 -1 469 470 -1 -1 470 470 4 4 471 470 -1 -1 510 470 -1 -1 431 471 -1 -1 470 471 -1 -1 471 471 4 4 472 471 -1 -1 511 471 -1 -1 432 472 -1 -1 471 472 -1 -1 472 472 4 4 473 472 -1 -1 512 472 -1 -1 433 473 -1 -1 472 473 -1 -1 473 473 4 4 474 473 -1 -1 513 473 -1 -1 434 474 -1 -1 473 474 -1 -1 474 474 4 4 475 474 -1 -1 514 474 -1 -1 435 475 -1 -1 474 475 -1 -1 475 475 4 4 476 475 -1 -1 515 475 -1 -1 436 476 -1 -1 475 476 -1 -1 476 476 4 4 477 476 -1 -1 516 476 -1 -1 437 477 -1 -1 476 477 -1 -1 477 477 4 4 478 477 -1 -1 517 477 -1 -1 438 478 -1 -1 477 478 -1 -1 478 478 4 4 479 478 -2 -2 518 478 -1 -1 439 479 -1 -1 478 479 -1 -1 479 479 4 4 519 479 -1 -1 440 480 -1 -1 480 480 4 4 481 480 -1 -1 520 480 -1 -1 441 481 -1 -1 480 481 -2 -2 481 481 4 4 482 481 -1 -1 521 481 -1 -1 442 482 -1 -1 481 482 -1 -1 482 482 4 4 483 482 -1 -1 522 482 -1 -1 443 483 -1 -1 482 483 -1 -1 483 483 4 4 484 483 -1 -1 523 483 -1 -1 444 484 -1 -1 483 484 -1 -1 484 484 4 4 485 484 -1 -1 524 484 -1 -1 445 485 -1 -1 484 485 -1 -1 485 485 4 4 486 485 -1 -1 525 485 -1 -1 446 486 -1 -1 485 486 -1 -1 486 486 4 4 487 486 -1 -1 526 486 -1 -1 447 487 -1 -1 486 487 -1 -1 487 487 4 4 488 487 -1 -1 527 487 -1 -1 448 488 -1 -1 487 488 -1 -1 488 488 4 4 489 488 -1 -1 528 488 -1 -1 449 489 -1 -1 488 489 -1 -1 489 489 4 4 490 489 -1 -1 529 489 -1 -1 450 490 -1 -1 489 490 -1 -1 490 490 4 4 491 490 -1 -1 530 490 -1 -1 451 491 -1 -1 490 491 -1 -1 491 491 4 4 492 491 -1 -1 531 491 -1 -1 452 492 -1 -1 491 492 -1 -1 492 492 4 4 493 492 -1 -1 532 492 -1 -1 453 493 -1 -1 492 493 -1 -1 493 493 4 4 494 493 -1 -1 533 493 -1 -1 454 494 -1 -1 493 494 -1 -1 494 494 4 4 495 494 -1 -1 534 494 -1 -1 455 495 -1 -1 494 495 -1 -1 495 495 4 4 496 495 -1 -1 535 495 -1 -1 456 496 -1 -1 495 496 -1 -1 496 496 4 4 497 496 -1 -1 536 496 -1 -1 457 497 -1 -1 496 497 -1 -1 497 497 4 4 498 497 -1 -1 537 497 -1 -1 458 498 -1 -1 497 498 -1 -1 498 498 4 4 499 498 -1 -1 538 498 -1 -1 459 499 -1 -1 498 499 -1 -1 499 499 4 4 500 499 -1 -1 539 499 -1 -1 460 500 -1 -1 499 500 -1 -1 500 500 4 4 501 500 -1 -1 540 500 -1 -1 461 501 -1 -1 500 501 -1 -1 501 501 4 4 502 501 -1 -1 541 501 -1 -1 462 502 -1 -1 501 502 -1 -1 502 502 4 4 503 502 -1 -1 542 502 -1 -1 463 503 -1 -1 502 503 -1 -1 503 503 4 4 504 503 -1 -1 543 503 -1 -1 464 504 -1 -1 503 504 -1 -1 504 504 4 4 505 504 -1 -1 544 504 -1 -1 465 505 -1 -1 504 505 -1 -1 505 505 4 4 506 505 -1 -1 545 505 -1 -1 466 506 -1 -1 505 506 -1 -1 506 506 4 4 507 506 -1 -1 546 506 -1 -1 467 507 -1 -1 506 507 -1 -1 507 507 4 4 508 507 -1 -1 547 507 -1 -1 468 508 -1 -1 507 508 -1 -1 508 508 4 4 509 508 -1 -1 548 508 -1 -1 469 509 -1 -1 508 509 -1 -1 509 509 4 4 510 509 -1 -1 549 509 -1 -1 470 510 -1 -1 509 510 -1 -1 510 510 4 4 511 510 -1 -1 550 510 -1 -1 471 511 -1 -1 510 511 -1 -1 511 511 4 4 512 511 -1 -1 551 511 -1 -1 472 512 -1 -1 511 512 -1 -1 512 512 4 4 513 512 -1 -1 552 512 -1 -1 473 513 -1 -1 512 513 -1 -1 513 513 4 4 514 513 -1 -1 553 513 -1 -1 474 514 -1 -1 513 514 -1 -1 514 514 4 4 515 514 -1 -1 554 514 -1 -1 475 515 -1 -1 514 515 -1 -1 515 515 4 4 516 515 -1 -1 555 515 -1 -1 476 516 -1 -1 515 516 -1 -1 516 516 4 4 517 516 -1 -1 556 516 -1 -1 477 517 -1 -1 516 517 -1 -1 517 517 4 4 518 517 -1 -1 557 517 -1 -1 478 518 -1 -1 517 518 -1 -1 518 518 4 4 519 518 -2 -2 558 518 -1 -1 479 519 -1 -1 518 519 -1 -1 519 519 4 4 559 519 -1 -1 480 520 -1 -1 520 520 4 4 521 520 -1 -1 560 520 -1 -1 481 521 -1 -1 520 521 -2 -2 521 521 4 4 522 521 -1 -1 561 521 -1 -1 482 522 -1 -1 521 522 -1 -1 522 522 4 4 523 522 -1 -1 562 522 -1 -1 483 523 -1 -1 522 523 -1 -1 523 523 4 4 524 523 -1 -1 563 523 -1 -1 484 524 -1 -1 523 524 -1 -1 524 524 4 4 525 524 -1 -1 564 524 -1 -1 485 525 -1 -1 524 525 -1 -1 525 525 4 4 526 525 -1 -1 565 525 -1 -1 486 526 -1 -1 525 526 -1 -1 526 526 4 4 527 526 -1 -1 566 526 -1 -1 487 527 -1 -1 526 527 -1 -1 527 527 4 4 528 527 -1 -1 567 527 -1 -1 488 528 -1 -1 527 528 -1 -1 528 528 4 4 529 528 -1 -1 568 528 -1 -1 489 529 -1 -1 528 529 -1 -1 529 529 4 4 530 529 -1 -1 569 529 -1 -1 490 530 -1 -1 529 530 -1 -1 530 530 4 4 531 530 -1 -1 570 530 -1 -1 491 531 -1 -1 530 531 -1 -1 531 531 4 4 532 531 -1 -1 571 531 -1 -1 492 532 -1 -1 531 532 -1 -1 532 532 4 4 533 532 -1 -1 572 532 -1 -1 493 533 -1 -1 532 533 -1 -1 533 533 4 4 534 533 -1 -1 573 533 -1 -1 494 534 -1 -1 533 534 -1 -1 534 534 4 4 535 534 -1 -1 574 534 -1 -1 495 535 -1 -1 534 535 -1 -1 535 535 4 4 536 535 -1 -1 575 535 -1 -1 496 536 -1 -1 535 536 -1 -1 536 536 4 4 537 536 -1 -1 576 536 -1 -1 497 537 -1 -1 536 537 -1 -1 537 537 4 4 538 537 -1 -1 577 537 -1 -1 498 538 -1 -1 537 538 -1 -1 538 538 4 4 539 538 -1 -1 578 538 -1 -1 499 539 -1 -1 538 539 -1 -1 539 539 4 4 540 539 -1 -1 579 539 -1 -1 500 540 -1 -1 539 540 -1 -1 540 540 4 4 541 540 -1 -1 580 540 -1 -1 501 541 -1 -1 540 541 -1 -1 541 541 4 4 542 541 -1 -1 581 541 -1 -1 502 542 -1 -1 541 542 -1 -1 542 542 4 4 543 542 -1 -1 582 542 -1 -1 503 543 -1 -1 542 543 -1 -1 543 543 4 4 544 543 -1 -1 583 543 -1 -1 504 544 -1 -1 543 544 -1 -1 544 544 4 4 545 544 -1 -1 584 544 -1 -1 505 545 -1 -1 544 545 -1 -1 545 545 4 4 546 545 -1 -1 585 545 -1 -1 506 546 -1 -1 545 546 -1 -1 546 546 4 4 547 546 -1 -1 586 546 -1 -1 507 547 -1 -1 546 547 -1 -1 547 547 4 4 548 547 -1 -1 587 547 -1 -1 508 548 -1 -1 547 548 -1 -1 548 548 4 4 549 548 -1 -1 588 548 -1 -1 509 549 -1 -1 548 549 -1 -1 549 549 4 4 550 549 -1 -1 589 549 -1 -1 510 550 -1 -1 549 550 -1 -1 550 550 4 4 551 550 -1 -1 590 550 -1 -1 511 551 -1 -1 550 551 -1 -1 551 551 4 4 552 551 -1 -1 591 551 -1 -1 512 552 -1 -1 551 552 -1 -1 552 552 4 4 553 552 -1 -1 592 552 -1 -1 513 553 -1 -1 552 553 -1 -1 553 553 4 4 554 553 -1 -1 593 553 -1 -1 514 554 -1 -1 553 554 -1 -1 554 554 4 4 555 554 -1 -1 594 554 -1 -1 515 555 -1 -1 554 555 -1 -1 555 555 4 4 556 555 -1 -1 595 555 -1 -1 516 556 -1 -1 555 556 -1 -1 556 556 4 4 557 556 -1 -1 596 556 -1 -1 517 557 -1 -1 556 557 -1 -1 557 557 4 4 558 557 -1 -1 597 557 -1 -1 518 558 -1 -1 557 558 -1 -1 558 558 4 4 559 558 -2 -2 598 558 -1 -1 519 559 -1 -1 558 559 -1 -1 559 559 4 4 599 559 -1 -1 520 560 -1 -1 560 560 4 4 561 560 -1 -1 600 560 -1 -1 521 561 -1 -1 560 561 -2 -2 561 561 4 4 562 561 -1 -1 601 561 -1 -1 522 562 -1 -1 561 562 -1 -1 562 562 4 4 563 562 -1 -1 602 562 -1 -1 523 563 -1 -1 562 563 -1 -1 563 563 4 4 564 563 -1 -1 603 563 -1 -1 524 564 -1 -1 563 564 -1 -1 564 564 4 4 565 564 -1 -1 604 564 -1 -1 525 565 -1 -1 564 565 -1 -1 565 565 4 4 566 565 -1 -1 605 565 -1 -1 526 566 -1 -1 565 566 -1 -1 566 566 4 4 567 566 -1 -1 606 566 -1 -1 527 567 -1 -1 566 567 -1 -1 567 567 4 4 568 567 -1 -1 607 567 -1 -1 528 568 -1 -1 567 568 -1 -1 568 568 4 4 569 568 -1 -1 608 568 -1 -1 529 569 -1 -1 568 569 -1 -1 569 569 4 4 570 569 -1 -1 609 569 -1 -1 530 570 -1 -1 569 570 -1 -1 570 570 4 4 571 570 -1 -1 610 570 -1 -1 531 571 -1 -1 570 571 -1 -1 571 571 4 4 572 571 -1 -1 611 571 -1 -1 532 572 -1 -1 571 572 -1 -1 572 572 4 4 573 572 -1 -1 612 572 -1 -1 533 573 -1 -1 572 573 -1 -1 573 573 4 4 574 573 -1 -1 613 573 -1 -1 534 574 -1 -1 573 574 -1 -1 574 574 4 4 575 574 -1 -1 614 574 -1 -1 535 575 -1 -1 574 575 -1 -1 575 575 4 4 576 575 -1 -1 615 575 -1 -1 536 576 -1 -1 575 576 -1 -1 576 576 4 4 577 576 -1 -1 616 576 -1 -1 537 577 -1 -1 576 577 -1 -1 577 577 4 4 578 577 -1 -1 617 577 -1 -1 538 578 -1 -1 577 578 -1 -1 578 578 4 4 579 578 -1 -1 618 578 -1 -1 539 579 -1 -1 578 579 -1 -1 579 579 4 4 580 579 -1 -1 619 579 -1 -1 540 580 -1 -1 579 580 -1 -1 580 580 4 4 581 580 -1 -1 620 580 -1 -1 541 581 -1 -1 580 581 -1 -1 581 581 4 4 582 581 -1 -1 621 581 -1 -1 542 582 -1 -1 581 582 -1 -1 582 582 4 4 583 582 -1 -1 622 582 -1 -1 543 583 -1 -1 582 583 -1 -1 583 583 4 4 584 583 -1 -1 623 583 -1 -1 544 584 -1 -1 583 584 -1 -1 584 584 4 4 585 584 -1 -1 624 584 -1 -1 545 585 -1 -1 584 585 -1 -1 585 585 4 4 586 585 -1 -1 625 585 -1 -1 546 586 -1 -1 585 586 -1 -1 586 586 4 4 587 586 -1 -1 626 586 -1 -1 547 587 -1 -1 586 587 -1 -1 587 587 4 4 588 587 -1 -1 627 587 -1 -1 548 588 -1 -1 587 588 -1 -1 588 588 4 4 589 588 -1 -1 628 588 -1 -1 549 589 -1 -1 588 589 -1 -1 589 589 4 4 590 589 -1 -1 629 589 -1 -1 550 590 -1 -1 589 590 -1 -1 590 590 4 4 591 590 -1 -1 630 590 -1 -1 551 591 -1 -1 590 591 -1 -1 591 591 4 4 592 591 -1 -1 631 591 -1 -1 552 592 -1 -1 591 592 -1 -1 592 592 4 4 593 592 -1 -1 632 592 -1 -1 553 593 -1 -1 592 593 -1 -1 593 593 4 4 594 593 -1 -1 633 593 -1 -1 554 594 -1 -1 593 594 -1 -1 594 594 4 4 595 594 -1 -1 634 594 -1 -1 555 595 -1 -1 594 595 -1 -1 595 595 4 4 596 595 -1 -1 635 595 -1 -1 556 596 -1 -1 595 596 -1 -1 596 596 4 4 597 596 -1 -1 636 596 -1 -1 557 597 -1 -1 596 597 -1 -1 597 597 4 4 598 597 -1 -1 637 597 -1 -1 558 598 -1 -1 597 598 -1 -1 598 598 4 4 599 598 -2 -2 638 598 -1 -1 559 599 -1 -1 598 599 -1 -1 599 599 4 4 639 599 -1 -1 560 600 -1 -1 600 600 4 4 601 600 -1 -1 640 600 -1 -1 561 601 -1 -1 600 601 -2 -2 601 601 4 4 602 601 -1 -1 641 601 -1 -1 562 602 -1 -1 601 602 -1 -1 602 602 4 4 603 602 -1 -1 642 602 -1 -1 563 603 -1 -1 602 603 -1 -1 603 603 4 4 604 603 -1 -1 643 603 -1 -1 564 604 -1 -1 603 604 -1 -1 604 604 4 4 605 604 -1 -1 644 604 -1 -1 565 605 -1 -1 604 605 -1 -1 605 605 4 4 606 605 -1 -1 645 605 -1 -1 566 606 -1 -1 605 606 -1 -1 606 606 4 4 607 606 -1 -1 646 606 -1 -1 567 607 -1 -1 606 607 -1 -1 607 607 4 4 608 607 -1 -1 647 607 -1 -1 568 608 -1 -1 607 608 -1 -1 608 608 4 4 609 608 -1 -1 648 608 -1 -1 569 609 -1 -1 608 609 -1 -1 609 609 4 4 610 609 -1 -1 649 609 -1 -1 570 610 -1 -1 609 610 -1 -1 610 610 4 4 611 610 -1 -1 650 610 -1 -1 571 611 -1 -1 610 611 -1 -1 611 611 4 4 612 611 -1 -1 651 611 -1 -1 572 612 -1 -1 611 612 -1 -1 612 612 4 4 613 612 -1 -1 652 612 -1 -1 573 613 -1 -1 612 613 -1 -1 613 613 4 4 614 613 -1 -1 653 613 -1 -1 574 614 -1 -1 613 614 -1 -1 614 614 4 4 615 614 -1 -1 654 614 -1 -1 575 615 -1 -1 614 615 -1 -1 615 615 4 4 616 615 -1 -1 655 615 -1 -1 576 616 -1 -1 615 616 -1 -1 616 616 4 4 617 616 -1 -1 656 616 -1 -1 577 617 -1 -1 616 617 -1 -1 617 617 4 4 618 617 -1 -1 657 617 -1 -1 578 618 -1 -1 617 618 -1 -1 618 618 4 4 619 618 -1 -1 658 618 -1 -1 579 619 -1 -1 618 619 -1 -1 619 619 4 4 620 619 -1 -1 659 619 -1 -1 580 620 -1 -1 619 620 -1 -1 620 620 4 4 621 620 -1 -1 660 620 -1 -1 581 621 -1 -1 620 621 -1 -1 621 621 4 4 622 621 -1 -1 661 621 -1 -1 582 622 -1 -1 621 622 -1 -1 622 622 4 4 623 622 -1 -1 662 622 -1 -1 583 623 -1 -1 622 623 -1 -1 623 623 4 4 624 623 -1 -1 663 623 -1 -1 584 624 -1 -1 623 624 -1 -1 624 624 4 4 625 624 -1 -1 664 624 -1 -1 585 625 -1 -1 624 625 -1 -1 625 625 4 4 626 625 -1 -1 665 625 -1 -1 586 626 -1 -1 625 626 -1 -1 626 626 4 4 627 626 -1 -1 666 626 -1 -1 587 627 -1 -1 626 627 -1 -1 627 627 4 4 628 627 -1 -1 667 627 -1 -1 588 628 -1 -1 627 628 -1 -1 628 628 4 4 629 628 -1 -1 668 628 -1 -1 589 629 -1 -1 628 629 -1 -1 629 629 4 4 630 629 -1 -1 669 629 -1 -1 590 630 -1 -1 629 630 -1 -1 630 630 4 4 631 630 -1 -1 670 630 -1 -1 591 631 -1 -1 630 631 -1 -1 631 631 4 4 632 631 -1 -1 671 631 -1 -1 592 632 -1 -1 631 632 -1 -1 632 632 4 4 633 632 -1 -1 672 632 -1 -1 593 633 -1 -1 632 633 -1 -1 633 633 4 4 634 633 -1 -1 673 633 -1 -1 594 634 -1 -1 633 634 -1 -1 634 634 4 4 635 634 -1 -1 674 634 -1 -1 595 635 -1 -1 634 635 -1 -1 635 635 4 4 636 635 -1 -1 675 635 -1 -1 596 636 -1 -1 635 636 -1 -1 636 636 4 4 637 636 -1 -1 676 636 -1 -1 597 637 -1 -1 636 637 -1 -1 637 637 4 4 638 637 -1 -1 677 637 -1 -1 598 638 -1 -1 637 638 -1 -1 638 638 4 4 639 638 -2 -2 678 638 -1 -1 599 639 -1 -1 638 639 -1 -1 639 639 4 4 679 639 -1 -1 600 640 -1 -1 640 640 4 4 641 640 -1 -1 680 640 -1 -1 601 641 -1 -1 640 641 -2 -2 641 641 4 4 642 641 -1 -1 681 641 -1 -1 602 642 -1 -1 641 642 -1 -1 642 642 4 4 643 642 -1 -1 682 642 -1 -1 603 643 -1 -1 642 643 -1 -1 643 643 4 4 644 643 -1 -1 683 643 -1 -1 604 644 -1 -1 643 644 -1 -1 644 644 4 4 645 644 -1 -1 684 644 -1 -1 605 645 -1 -1 644 645 -1 -1 645 645 4 4 646 645 -1 -1 685 645 -1 -1 606 646 -1 -1 645 646 -1 -1 646 646 4 4 647 646 -1 -1 686 646 -1 -1 607 647 -1 -1 646 647 -1 -1 647 647 4 4 648 647 -1 -1 687 647 -1 -1 608 648 -1 -1 647 648 -1 -1 648 648 4 4 649 648 -1 -1 688 648 -1 -1 609 649 -1 -1 648 649 -1 -1 649 649 4 4 650 649 -1 -1 689 649 -1 -1 610 650 -1 -1 649 650 -1 -1 650 650 4 4 651 650 -1 -1 690 650 -1 -1 611 651 -1 -1 650 651 -1 -1 651 651 4 4 652 651 -1 -1 691 651 -1 -1 612 652 -1 -1 651 652 -1 -1 652 652 4 4 653 652 -1 -1 692 652 -1 -1 613 653 -1 -1 652 653 -1 -1 653 653 4 4 654 653 -1 -1 693 653 -1 -1 614 654 -1 -1 653 654 -1 -1 654 654 4 4 655 654 -1 -1 694 654 -1 -1 615 655 -1 -1 654 655 -1 -1 655 655 4 4 656 655 -1 -1 695 655 -1 -1 616 656 -1 -1 655 656 -1 -1 656 656 4 4 657 656 -1 -1 696 656 -1 -1 617 657 -1 -1 656 657 -1 -1 657 657 4 4 658 657 -1 -1 697 657 -1 -1 618 658 -1 -1 657 658 -1 -1 658 658 4 4 659 658 -1 -1 698 658 -1 -1 619 659 -1 -1 658 659 -1 -1 659 659 4 4 660 659 -1 -1 699 659 -1 -1 620 660 -1 -1 659 660 -1 -1 660 660 4 4 661 660 -1 -1 700 660 -1 -1 621 661 -1 -1 660 661 -1 -1 661 661 4 4 662 661 -1 -1 701 661 -1 -1 622 662 -1 -1 661 662 -1 -1 662 662 4 4 663 662 -1 -1 702 662 -1 -1 623 663 -1 -1 662 663 -1 -1 663 663 4 4 664 663 -1 -1 703 663 -1 -1 624 664 -1 -1 663 664 -1 -1 664 664 4 4 665 664 -1 -1 704 664 -1 -1 625 665 -1 -1 664 665 -1 -1 665 665 4 4 666 665 -1 -1 705 665 -1 -1 626 666 -1 -1 665 666 -1 -1 666 666 4 4 667 666 -1 -1 706 666 -1 -1 627 667 -1 -1 666 667 -1 -1 667 667 4 4 668 667 -1 -1 707 667 -1 -1 628 668 -1 -1 667 668 -1 -1 668 668 4 4 669 668 -1 -1 708 668 -1 -1 629 669 -1 -1 668 669 -1 -1 669 669 4 4 670 669 -1 -1 709 669 -1 -1 630 670 -1 -1 669 670 -1 -1 670 670 4 4 671 670 -1 -1 710 670 -1 -1 631 671 -1 -1 670 671 -1 -1 671 671 4 4 672 671 -1 -1 711 671 -1 -1 632 672 -1 -1 671 672 -1 -1 672 672 4 4 673 672 -1 -1 712 672 -1 -1 633 673 -1 -1 672 673 -1 -1 673 673 4 4 674 673 -1 -1 713 673 -1 -1 634 674 -1 -1 673 674 -1 -1 674 674 4 4 675 674 -1 -1 714 674 -1 -1 635 675 -1 -1 674 675 -1 -1 675 675 4 4 676 675 -1 -1 715 675 -1 -1 636 676 -1 -1 675 676 -1 -1 676 676 4 4 677 676 -1 -1 716 676 -1 -1 637 677 -1 -1 676 677 -1 -1 677 677 4 4 678 677 -1 -1 717 677 -1 -1 638 678 -1 -1 677 678 -1 -1 678 678 4 4 679 678 -2 -2 718 678 -1 -1 639 679 -1 -1 678 679 -1 -1 679 679 4 4 719 679 -1 -1 640 680 -1 -1 680 680 4 4 681 680 -1 -1 720 680 -1 -1 641 681 -1 -1 680 681 -2 -2 681 681 4 4 682 681 -1 -1 721 681 -1 -1 642 682 -1 -1 681 682 -1 -1 682 682 4 4 683 682 -1 -1 722 682 -1 -1 643 683 -1 -1 682 683 -1 -1 683 683 4 4 684 683 -1 -1 723 683 -1 -1 644 684 -1 -1 683 684 -1 -1 684 684 4 4 685 684 -1 -1 724 684 -1 -1 645 685 -1 -1 684 685 -1 -1 685 685 4 4 686 685 -1 -1 725 685 -1 -1 646 686 -1 -1 685 686 -1 -1 686 686 4 4 687 686 -1 -1 726 686 -1 -1 647 687 -1 -1 686 687 -1 -1 687 687 4 4 688 687 -1 -1 727 687 -1 -1 648 688 -1 -1 687 688 -1 -1 688 688 4 4 689 688 -1 -1 728 688 -1 -1 649 689 -1 -1 688 689 -1 -1 689 689 4 4 690 689 -1 -1 729 689 -1 -1 650 690 -1 -1 689 690 -1 -1 690 690 4 4 691 690 -1 -1 730 690 -1 -1 651 691 -1 -1 690 691 -1 -1 691 691 4 4 692 691 -1 -1 731 691 -1 -1 652 692 -1 -1 691 692 -1 -1 692 692 4 4 693 692 -1 -1 732 692 -1 -1 653 693 -1 -1 692 693 -1 -1 693 693 4 4 694 693 -1 -1 733 693 -1 -1 654 694 -1 -1 693 694 -1 -1 694 694 4 4 695 694 -1 -1 734 694 -1 -1 655 695 -1 -1 694 695 -1 -1 695 695 4 4 696 695 -1 -1 735 695 -1 -1 656 696 -1 -1 695 696 -1 -1 696 696 4 4 697 696 -1 -1 736 696 -1 -1 657 697 -1 -1 696 697 -1 -1 697 697 4 4 698 697 -1 -1 737 697 -1 -1 658 698 -1 -1 697 698 -1 -1 698 698 4 4 699 698 -1 -1 738 698 -1 -1 659 699 -1 -1 698 699 -1 -1 699 699 4 4 700 699 -1 -1 739 699 -1 -1 660 700 -1 -1 699 700 -1 -1 700 700 4 4 701 700 -1 -1 740 700 -1 -1 661 701 -1 -1 700 701 -1 -1 701 701 4 4 702 701 -1 -1 741 701 -1 -1 662 702 -1 -1 701 702 -1 -1 702 702 4 4 703 702 -1 -1 742 702 -1 -1 663 703 -1 -1 702 703 -1 -1 703 703 4 4 704 703 -1 -1 743 703 -1 -1 664 704 -1 -1 703 704 -1 -1 704 704 4 4 705 704 -1 -1 744 704 -1 -1 665 705 -1 -1 704 705 -1 -1 705 705 4 4 706 705 -1 -1 745 705 -1 -1 666 706 -1 -1 705 706 -1 -1 706 706 4 4 707 706 -1 -1 746 706 -1 -1 667 707 -1 -1 706 707 -1 -1 707 707 4 4 708 707 -1 -1 747 707 -1 -1 668 708 -1 -1 707 708 -1 -1 708 708 4 4 709 708 -1 -1 748 708 -1 -1 669 709 -1 -1 708 709 -1 -1 709 709 4 4 710 709 -1 -1 749 709 -1 -1 670 710 -1 -1 709 710 -1 -1 710 710 4 4 711 710 -1 -1 750 710 -1 -1 671 711 -1 -1 710 711 -1 -1 711 711 4 4 712 711 -1 -1 751 711 -1 -1 672 712 -1 -1 711 712 -1 -1 712 712 4 4 713 712 -1 -1 752 712 -1 -1 673 713 -1 -1 712 713 -1 -1 713 713 4 4 714 713 -1 -1 753 713 -1 -1 674 714 -1 -1 713 714 -1 -1 714 714 4 4 715 714 -1 -1 754 714 -1 -1 675 715 -1 -1 714 715 -1 -1 715 715 4 4 716 715 -1 -1 755 715 -1 -1 676 716 -1 -1 715 716 -1 -1 716 716 4 4 717 716 -1 -1 756 716 -1 -1 677 717 -1 -1 716 717 -1 -1 717 717 4 4 718 717 -1 -1 757 717 -1 -1 678 718 -1 -1 717 718 -1 -1 718 718 4 4 719 718 -2 -2 758 718 -1 -1 679 719 -1 -1 718 719 -1 -1 719 719 4 4 759 719 -1 -1 680 720 -1 -1 720 720 4 4 721 720 -1 -1 760 720 -1 -1 681 721 -1 -1 720 721 -2 -2 721 721 4 4 722 721 -1 -1 761 721 -1 -1 682 722 -1 -1 721 722 -1 -1 722 722 4 4 723 722 -1 -1 762 722 -1 -1 683 723 -1 -1 722 723 -1 -1 723 723 4 4 724 723 -1 -1 763 723 -1 -1 684 724 -1 -1 723 724 -1 -1 724 724 4 4 725 724 -1 -1 764 724 -1 -1 685 725 -1 -1 724 725 -1 -1 725 725 4 4 726 725 -1 -1 765 725 -1 -1 686 726 -1 -1 725 726 -1 -1 726 726 4 4 727 726 -1 -1 766 726 -1 -1 687 727 -1 -1 726 727 -1 -1 727 727 4 4 728 727 -1 -1 767 727 -1 -1 688 728 -1 -1 727 728 -1 -1 728 728 4 4 729 728 -1 -1 768 728 -1 -1 689 729 -1 -1 728 729 -1 -1 729 729 4 4 730 729 -1 -1 769 729 -1 -1 690 730 -1 -1 729 730 -1 -1 730 730 4 4 731 730 -1 -1 770 730 -1 -1 691 731 -1 -1 730 731 -1 -1 731 731 4 4 732 731 -1 -1 771 731 -1 -1 692 732 -1 -1 731 732 -1 -1 732 732 4 4 733 732 -1 -1 772 732 -1 -1 693 733 -1 -1 732 733 -1 -1 733 733 4 4 734 733 -1 -1 773 733 -1 -1 694 734 -1 -1 733 734 -1 -1 734 734 4 4 735 734 -1 -1 774 734 -1 -1 695 735 -1 -1 734 735 -1 -1 735 735 4 4 736 735 -1 -1 775 735 -1 -1 696 736 -1 -1 735 736 -1 -1 736 736 4 4 737 736 -1 -1 776 736 -1 -1 697 737 -1 -1 736 737 -1 -1 737 737 4 4 738 737 -1 -1 777 737 -1 -1 698 738 -1 -1 737 738 -1 -1 738 738 4 4 739 738 -1 -1 778 738 -1 -1 699 739 -1 -1 738 739 -1 -1 739 739 4 4 740 739 -1 -1 779 739 -1 -1 700 740 -1 -1 739 740 -1 -1 740 740 4 4 741 740 -1 -1 780 740 -1 -1 701 741 -1 -1 740 741 -1 -1 741 741 4 4 742 741 -1 -1 781 741 -1 -1 702 742 -1 -1 741 742 -1 -1 742 742 4 4 743 742 -1 -1 782 742 -1 -1 703 743 -1 -1 742 743 -1 -1 743 743 4 4 744 743 -1 -1 783 743 -1 -1 704 744 -1 -1 743 744 -1 -1 744 744 4 4 745 744 -1 -1 784 744 -1 -1 705 745 -1 -1 744 745 -1 -1 745 745 4 4 746 745 -1 -1 785 745 -1 -1 706 746 -1 -1 745 746 -1 -1 746 746 4 4 747 746 -1 -1 786 746 -1 -1 707 747 -1 -1 746 747 -1 -1 747 747 4 4 748 747 -1 -1 787 747 -1 -1 708 748 -1 -1 747 748 -1 -1 748 748 4 4 749 748 -1 -1 788 748 -1 -1 709 749 -1 -1 748 749 -1 -1 749 749 4 4 750 749 -1 -1 789 749 -1 -1 710 750 -1 -1 749 750 -1 -1 750 750 4 4 751 750 -1 -1 790 750 -1 -1 711 751 -1 -1 750 751 -1 -1 751 751 4 4 752 751 -1 -1 791 751 -1 -1 712 752 -1 -1 751 752 -1 -1 752 752 4 4 753 752 -1 -1 792 752 -1 -1 713 753 -1 -1 752 753 -1 -1 753 753 4 4 754 753 -1 -1 793 753 -1 -1 714 754 -1 -1 753 754 -1 -1 754 754 4 4 755 754 -1 -1 794 754 -1 -1 715 755 -1 -1 754 755 -1 -1 755 755 4 4 756 755 -1 -1 795 755 -1 -1 716 756 -1 -1 755 756 -1 -1 756 756 4 4 757 756 -1 -1 796 756 -1 -1 717 757 -1 -1 756 757 -1 -1 757 757 4 4 758 757 -1 -1 797 757 -1 -1 718 758 -1 -1 757 758 -1 -1 758 758 4 4 759 758 -2 -2 798 758 -1 -1 719 759 -1 -1 758 759 -1 -1 759 759 4 4 799 759 -1 -1 720 760 -1 -1 760 760 4 4 761 760 -1 -1 800 760 -1 -1 721 761 -1 -1 760 761 -2 -2 761 761 4 4 762 761 -1 -1 801 761 -1 -1 722 762 -1 -1 761 762 -1 -1 762 762 4 4 763 762 -1 -1 802 762 -1 -1 723 763 -1 -1 762 763 -1 -1 763 763 4 4 764 763 -1 -1 803 763 -1 -1 724 764 -1 -1 763 764 -1 -1 764 764 4 4 765 764 -1 -1 804 764 -1 -1 725 765 -1 -1 764 765 -1 -1 765 765 4 4 766 765 -1 -1 805 765 -1 -1 726 766 -1 -1 765 766 -1 -1 766 766 4 4 767 766 -1 -1 806 766 -1 -1 727 767 -1 -1 766 767 -1 -1 767 767 4 4 768 767 -1 -1 807 767 -1 -1 728 768 -1 -1 767 768 -1 -1 768 768 4 4 769 768 -1 -1 808 768 -1 -1 729 769 -1 -1 768 769 -1 -1 769 769 4 4 770 769 -1 -1 809 769 -1 -1 730 770 -1 -1 769 770 -1 -1 770 770 4 4 771 770 -1 -1 810 770 -1 -1 731 771 -1 -1 770 771 -1 -1 771 771 4 4 772 771 -1 -1 811 771 -1 -1 732 772 -1 -1 771 772 -1 -1 772 772 4 4 773 772 -1 -1 812 772 -1 -1 733 773 -1 -1 772 773 -1 -1 773 773 4 4 774 773 -1 -1 813 773 -1 -1 734 774 -1 -1 773 774 -1 -1 774 774 4 4 775 774 -1 -1 814 774 -1 -1 735 775 -1 -1 774 775 -1 -1 775 775 4 4 776 775 -1 -1 815 775 -1 -1 736 776 -1 -1 775 776 -1 -1 776 776 4 4 777 776 -1 -1 816 776 -1 -1 737 777 -1 -1 776 777 -1 -1 777 777 4 4 778 777 -1 -1 817 777 -1 -1 738 778 -1 -1 777 778 -1 -1 778 778 4 4 779 778 -1 -1 818 778 -1 -1 739 779 -1 -1 778 779 -1 -1 779 779 4 4 780 779 -1 -1 819 779 -1 -1 740 780 -1 -1 779 780 -1 -1 780 780 4 4 781 780 -1 -1 820 780 -1 -1 741 781 -1 -1 780 781 -1 -1 781 781 4 4 782 781 -1 -1 821 781 -1 -1 742 782 -1 -1 781 782 -1 -1 782 782 4 4 783 782 -1 -1 822 782 -1 -1 743 783 -1 -1 782 783 -1 -1 783 783 4 4 784 783 -1 -1 823 783 -1 -1 744 784 -1 -1 783 784 -1 -1 784 784 4 4 785 784 -1 -1 824 784 -1 -1 745 785 -1 -1 784 785 -1 -1 785 785 4 4 786 785 -1 -1 825 785 -1 -1 746 786 -1 -1 785 786 -1 -1 786 786 4 4 787 786 -1 -1 826 786 -1 -1 747 787 -1 -1 786 787 -1 -1 787 787 4 4 788 787 -1 -1 827 787 -1 -1 748 788 -1 -1 787 788 -1 -1 788 788 4 4 789 788 -1 -1 828 788 -1 -1 749 789 -1 -1 788 789 -1 -1 789 789 4 4 790 789 -1 -1 829 789 -1 -1 750 790 -1 -1 789 790 -1 -1 790 790 4 4 791 790 -1 -1 830 790 -1 -1 751 791 -1 -1 790 791 -1 -1 791 791 4 4 792 791 -1 -1 831 791 -1 -1 752 792 -1 -1 791 792 -1 -1 792 792 4 4 793 792 -1 -1 832 792 -1 -1 753 793 -1 -1 792 793 -1 -1 793 793 4 4 794 793 -1 -1 833 793 -1 -1 754 794 -1 -1 793 794 -1 -1 794 794 4 4 795 794 -1 -1 834 794 -1 -1 755 795 -1 -1 794 795 -1 -1 795 795 4 4 796 795 -1 -1 835 795 -1 -1 756 796 -1 -1 795 796 -1 -1 796 796 4 4 797 796 -1 -1 836 796 -1 -1 757 797 -1 -1 796 797 -1 -1 797 797 4 4 798 797 -1 -1 837 797 -1 -1 758 798 -1 -1 797 798 -1 -1 798 798 4 4 799 798 -2 -2 838 798 -1 -1 759 799 -1 -1 798 799 -1 -1 799 799 4 4 839 799 -1 -1 760 800 -1 -1 800 800 4 4 801 800 -1 -1 840 800 -1 -1 761 801 -1 -1 800 801 -2 -2 801 801 4 4 802 801 -1 -1 841 801 -1 -1 762 802 -1 -1 801 802 -1 -1 802 802 4 4 803 802 -1 -1 842 802 -1 -1 763 803 -1 -1 802 803 -1 -1 803 803 4 4 804 803 -1 -1 843 803 -1 -1 764 804 -1 -1 803 804 -1 -1 804 804 4 4 805 804 -1 -1 844 804 -1 -1 765 805 -1 -1 804 805 -1 -1 805 805 4 4 806 805 -1 -1 845 805 -1 -1 766 806 -1 -1 805 806 -1 -1 806 806 4 4 807 806 -1 -1 846 806 -1 -1 767 807 -1 -1 806 807 -1 -1 807 807 4 4 808 807 -1 -1 847 807 -1 -1 768 808 -1 -1 807 808 -1 -1 808 808 4 4 809 808 -1 -1 848 808 -1 -1 769 809 -1 -1 808 809 -1 -1 809 809 4 4 810 809 -1 -1 849 809 -1 -1 770 810 -1 -1 809 810 -1 -1 810 810 4 4 811 810 -1 -1 850 810 -1 -1 771 811 -1 -1 810 811 -1 -1 811 811 4 4 812 811 -1 -1 851 811 -1 -1 772 812 -1 -1 811 812 -1 -1 812 812 4 4 813 812 -1 -1 852 812 -1 -1 773 813 -1 -1 812 813 -1 -1 813 813 4 4 814 813 -1 -1 853 813 -1 -1 774 814 -1 -1 813 814 -1 -1 814 814 4 4 815 814 -1 -1 854 814 -1 -1 775 815 -1 -1 814 815 -1 -1 815 815 4 4 816 815 -1 -1 855 815 -1 -1 776 816 -1 -1 815 816 -1 -1 816 816 4 4 817 816 -1 -1 856 816 -1 -1 777 817 -1 -1 816 817 -1 -1 817 817 4 4 818 817 -1 -1 857 817 -1 -1 778 818 -1 -1 817 818 -1 -1 818 818 4 4 819 818 -1 -1 858 818 -1 -1 779 819 -1 -1 818 819 -1 -1 819 819 4 4 820 819 -1 -1 859 819 -1 -1 780 820 -1 -1 819 820 -1 -1 820 820 4 4 821 820 -1 -1 860 820 -1 -1 781 821 -1 -1 820 821 -1 -1 821 821 4 4 822 821 -1 -1 861 821 -1 -1 782 822 -1 -1 821 822 -1 -1 822 822 4 4 823 822 -1 -1 862 822 -1 -1 783 823 -1 -1 822 823 -1 -1 823 823 4 4 824 823 -1 -1 863 823 -1 -1 784 824 -1 -1 823 824 -1 -1 824 824 4 4 825 824 -1 -1 864 824 -1 -1 785 825 -1 -1 824 825 -1 -1 825 825 4 4 826 825 -1 -1 865 825 -1 -1 786 826 -1 -1 825 826 -1 -1 826 826 4 4 827 826 -1 -1 866 826 -1 -1 787 827 -1 -1 826 827 -1 -1 827 827 4 4 828 827 -1 -1 867 827 -1 -1 788 828 -1 -1 827 828 -1 -1 828 828 4 4 829 828 -1 -1 868 828 -1 -1 789 829 -1 -1 828 829 -1 -1 829 829 4 4 830 829 -1 -1 869 829 -1 -1 790 830 -1 -1 829 830 -1 -1 830 830 4 4 831 830 -1 -1 870 830 -1 -1 791 831 -1 -1 830 831 -1 -1 831 831 4 4 832 831 -1 -1 871 831 -1 -1 792 832 -1 -1 831 832 -1 -1 832 832 4 4 833 832 -1 -1 872 832 -1 -1 793 833 -1 -1 832 833 -1 -1 833 833 4 4 834 833 -1 -1 873 833 -1 -1 794 834 -1 -1 833 834 -1 -1 834 834 4 4 835 834 -1 -1 874 834 -1 -1 795 835 -1 -1 834 835 -1 -1 835 835 4 4 836 835 -1 -1 875 835 -1 -1 796 836 -1 -1 835 836 -1 -1 836 836 4 4 837 836 -1 -1 876 836 -1 -1 797 837 -1 -1 836 837 -1 -1 837 837 4 4 838 837 -1 -1 877 837 -1 -1 798 838 -1 -1 837 838 -1 -1 838 838 4 4 839 838 -2 -2 878 838 -1 -1 799 839 -1 -1 838 839 -1 -1 839 839 4 4 879 839 -1 -1 800 840 -1 -1 840 840 4 4 841 840 -1 -1 880 840 -1 -1 801 841 -1 -1 840 841 -2 -2 841 841 4 4 842 841 -1 -1 881 841 -1 -1 802 842 -1 -1 841 842 -1 -1 842 842 4 4 843 842 -1 -1 882 842 -1 -1 803 843 -1 -1 842 843 -1 -1 843 843 4 4 844 843 -1 -1 883 843 -1 -1 804 844 -1 -1 843 844 -1 -1 844 844 4 4 845 844 -1 -1 884 844 -1 -1 805 845 -1 -1 844 845 -1 -1 845 845 4 4 846 845 -1 -1 885 845 -1 -1 806 846 -1 -1 845 846 -1 -1 846 846 4 4 847 846 -1 -1 886 846 -1 -1 807 847 -1 -1 846 847 -1 -1 847 847 4 4 848 847 -1 -1 887 847 -1 -1 808 848 -1 -1 847 848 -1 -1 848 848 4 4 849 848 -1 -1 888 848 -1 -1 809 849 -1 -1 848 849 -1 -1 849 849 4 4 850 849 -1 -1 889 849 -1 -1 810 850 -1 -1 849 850 -1 -1 850 850 4 4 851 850 -1 -1 890 850 -1 -1 811 851 -1 -1 850 851 -1 -1 851 851 4 4 852 851 -1 -1 891 851 -1 -1 812 852 -1 -1 851 852 -1 -1 852 852 4 4 853 852 -1 -1 892 852 -1 -1 813 853 -1 -1 852 853 -1 -1 853 853 4 4 854 853 -1 -1 893 853 -1 -1 814 854 -1 -1 853 854 -1 -1 854 854 4 4 855 854 -1 -1 894 854 -1 -1 815 855 -1 -1 854 855 -1 -1 855 855 4 4 856 855 -1 -1 895 855 -1 -1 816 856 -1 -1 855 856 -1 -1 856 856 4 4 857 856 -1 -1 896 856 -1 -1 817 857 -1 -1 856 857 -1 -1 857 857 4 4 858 857 -1 -1 897 857 -1 -1 818 858 -1 -1 857 858 -1 -1 858 858 4 4 859 858 -1 -1 898 858 -1 -1 819 859 -1 -1 858 859 -1 -1 859 859 4 4 860 859 -1 -1 899 859 -1 -1 820 860 -1 -1 859 860 -1 -1 860 860 4 4 861 860 -1 -1 900 860 -1 -1 821 861 -1 -1 860 861 -1 -1 861 861 4 4 862 861 -1 -1 901 861 -1 -1 822 862 -1 -1 861 862 -1 -1 862 862 4 4 863 862 -1 -1 902 862 -1 -1 823 863 -1 -1 862 863 -1 -1 863 863 4 4 864 863 -1 -1 903 863 -1 -1 824 864 -1 -1 863 864 -1 -1 864 864 4 4 865 864 -1 -1 904 864 -1 -1 825 865 -1 -1 864 865 -1 -1 865 865 4 4 866 865 -1 -1 905 865 -1 -1 826 866 -1 -1 865 866 -1 -1 866 866 4 4 867 866 -1 -1 906 866 -1 -1 827 867 -1 -1 866 867 -1 -1 867 867 4 4 868 867 -1 -1 907 867 -1 -1 828 868 -1 -1 867 868 -1 -1 868 868 4 4 869 868 -1 -1 908 868 -1 -1 829 869 -1 -1 868 869 -1 -1 869 869 4 4 870 869 -1 -1 909 869 -1 -1 830 870 -1 -1 869 870 -1 -1 870 870 4 4 871 870 -1 -1 910 870 -1 -1 831 871 -1 -1 870 871 -1 -1 871 871 4 4 872 871 -1 -1 911 871 -1 -1 832 872 -1 -1 871 872 -1 -1 872 872 4 4 873 872 -1 -1 912 872 -1 -1 833 873 -1 -1 872 873 -1 -1 873 873 4 4 874 873 -1 -1 913 873 -1 -1 834 874 -1 -1 873 874 -1 -1 874 874 4 4 875 874 -1 -1 914 874 -1 -1 835 875 -1 -1 874 875 -1 -1 875 875 4 4 876 875 -1 -1 915 875 -1 -1 836 876 -1 -1 875 876 -1 -1 876 876 4 4 877 876 -1 -1 916 876 -1 -1 837 877 -1 -1 876 877 -1 -1 877 877 4 4 878 877 -1 -1 917 877 -1 -1 838 878 -1 -1 877 878 -1 -1 878 878 4 4 879 878 -2 -2 918 878 -1 -1 839 879 -1 -1 878 879 -1 -1 879 879 4 4 919 879 -1 -1 840 880 -1 -1 880 880 4 4 881 880 -1 -1 920 880 -1 -1 841 881 -1 -1 880 881 -2 -2 881 881 4 4 882 881 -1 -1 921 881 -1 -1 842 882 -1 -1 881 882 -1 -1 882 882 4 4 883 882 -1 -1 922 882 -1 -1 843 883 -1 -1 882 883 -1 -1 883 883 4 4 884 883 -1 -1 923 883 -1 -1 844 884 -1 -1 883 884 -1 -1 884 884 4 4 885 884 -1 -1 924 884 -1 -1 845 885 -1 -1 884 885 -1 -1 885 885 4 4 886 885 -1 -1 925 885 -1 -1 846 886 -1 -1 885 886 -1 -1 886 886 4 4 887 886 -1 -1 926 886 -1 -1 847 887 -1 -1 886 887 -1 -1 887 887 4 4 888 887 -1 -1 927 887 -1 -1 848 888 -1 -1 887 888 -1 -1 888 888 4 4 889 888 -1 -1 928 888 -1 -1 849 889 -1 -1 888 889 -1 -1 889 889 4 4 890 889 -1 -1 929 889 -1 -1 850 890 -1 -1 889 890 -1 -1 890 890 4 4 891 890 -1 -1 930 890 -1 -1 851 891 -1 -1 890 891 -1 -1 891 891 4 4 892 891 -1 -1 931 891 -1 -1 852 892 -1 -1 891 892 -1 -1 892 892 4 4 893 892 -1 -1 932 892 -1 -1 853 893 -1 -1 892 893 -1 -1 893 893 4 4 894 893 -1 -1 933 893 -1 -1 854 894 -1 -1 893 894 -1 -1 894 894 4 4 895 894 -1 -1 934 894 -1 -1 855 895 -1 -1 894 895 -1 -1 895 895 4 4 896 895 -1 -1 935 895 -1 -1 856 896 -1 -1 895 896 -1 -1 896 896 4 4 897 896 -1 -1 936 896 -1 -1 857 897 -1 -1 896 897 -1 -1 897 897 4 4 898 897 -1 -1 937 897 -1 -1 858 898 -1 -1 897 898 -1 -1 898 898 4 4 899 898 -1 -1 938 898 -1 -1 859 899 -1 -1 898 899 -1 -1 899 899 4 4 900 899 -1 -1 939 899 -1 -1 860 900 -1 -1 899 900 -1 -1 900 900 4 4 901 900 -1 -1 940 900 -1 -1 861 901 -1 -1 900 901 -1 -1 901 901 4 4 902 901 -1 -1 941 901 -1 -1 862 902 -1 -1 901 902 -1 -1 902 902 4 4 903 902 -1 -1 942 902 -1 -1 863 903 -1 -1 902 903 -1 -1 903 903 4 4 904 903 -1 -1 943 903 -1 -1 864 904 -1 -1 903 904 -1 -1 904 904 4 4 905 904 -1 -1 944 904 -1 -1 865 905 -1 -1 904 905 -1 -1 905 905 4 4 906 905 -1 -1 945 905 -1 -1 866 906 -1 -1 905 906 -1 -1 906 906 4 4 907 906 -1 -1 946 906 -1 -1 867 907 -1 -1 906 907 -1 -1 907 907 4 4 908 907 -1 -1 947 907 -1 -1 868 908 -1 -1 907 908 -1 -1 908 908 4 4 909 908 -1 -1 948 908 -1 -1 869 909 -1 -1 908 909 -1 -1 909 909 4 4 910 909 -1 -1 949 909 -1 -1 870 910 -1 -1 909 910 -1 -1 910 910 4 4 911 910 -1 -1 950 910 -1 -1 871 911 -1 -1 910 911 -1 -1 911 911 4 4 912 911 -1 -1 951 911 -1 -1 872 912 -1 -1 911 912 -1 -1 912 912 4 4 913 912 -1 -1 952 912 -1 -1 873 913 -1 -1 912 913 -1 -1 913 913 4 4 914 913 -1 -1 953 913 -1 -1 874 914 -1 -1 913 914 -1 -1 914 914 4 4 915 914 -1 -1 954 914 -1 -1 875 915 -1 -1 914 915 -1 -1 915 915 4 4 916 915 -1 -1 955 915 -1 -1 876 916 -1 -1 915 916 -1 -1 916 916 4 4 917 916 -1 -1 956 916 -1 -1 877 917 -1 -1 916 917 -1 -1 917 917 4 4 918 917 -1 -1 957 917 -1 -1 878 918 -1 -1 917 918 -1 -1 918 918 4 4 919 918 -2 -2 958 918 -1 -1 879 919 -1 -1 918 919 -1 -1 919 919 4 4 959 919 -1 -1 880 920 -1 -1 920 920 4 4 921 920 -1 -1 960 920 -1 -1 881 921 -1 -1 920 921 -2 -2 921 921 4 4 922 921 -1 -1 961 921 -1 -1 882 922 -1 -1 921 922 -1 -1 922 922 4 4 923 922 -1 -1 962 922 -1 -1 883 923 -1 -1 922 923 -1 -1 923 923 4 4 924 923 -1 -1 963 923 -1 -1 884 924 -1 -1 923 924 -1 -1 924 924 4 4 925 924 -1 -1 964 924 -1 -1 885 925 -1 -1 924 925 -1 -1 925 925 4 4 926 925 -1 -1 965 925 -1 -1 886 926 -1 -1 925 926 -1 -1 926 926 4 4 927 926 -1 -1 966 926 -1 -1 887 927 -1 -1 926 927 -1 -1 927 927 4 4 928 927 -1 -1 967 927 -1 -1 888 928 -1 -1 927 928 -1 -1 928 928 4 4 929 928 -1 -1 968 928 -1 -1 889 929 -1 -1 928 929 -1 -1 929 929 4 4 930 929 -1 -1 969 929 -1 -1 890 930 -1 -1 929 930 -1 -1 930 930 4 4 931 930 -1 -1 970 930 -1 -1 891 931 -1 -1 930 931 -1 -1 931 931 4 4 932 931 -1 -1 971 931 -1 -1 892 932 -1 -1 931 932 -1 -1 932 932 4 4 933 932 -1 -1 972 932 -1 -1 893 933 -1 -1 932 933 -1 -1 933 933 4 4 934 933 -1 -1 973 933 -1 -1 894 934 -1 -1 933 934 -1 -1 934 934 4 4 935 934 -1 -1 974 934 -1 -1 895 935 -1 -1 934 935 -1 -1 935 935 4 4 936 935 -1 -1 975 935 -1 -1 896 936 -1 -1 935 936 -1 -1 936 936 4 4 937 936 -1 -1 976 936 -1 -1 897 937 -1 -1 936 937 -1 -1 937 937 4 4 938 937 -1 -1 977 937 -1 -1 898 938 -1 -1 937 938 -1 -1 938 938 4 4 939 938 -1 -1 978 938 -1 -1 899 939 -1 -1 938 939 -1 -1 939 939 4 4 940 939 -1 -1 979 939 -1 -1 900 940 -1 -1 939 940 -1 -1 940 940 4 4 941 940 -1 -1 980 940 -1 -1 901 941 -1 -1 940 941 -1 -1 941 941 4 4 942 941 -1 -1 981 941 -1 -1 902 942 -1 -1 941 942 -1 -1 942 942 4 4 943 942 -1 -1 982 942 -1 -1 903 943 -1 -1 942 943 -1 -1 943 943 4 4 944 943 -1 -1 983 943 -1 -1 904 944 -1 -1 943 944 -1 -1 944 944 4 4 945 944 -1 -1 984 944 -1 -1 905 945 -1 -1 944 945 -1 -1 945 945 4 4 946 945 -1 -1 985 945 -1 -1 906 946 -1 -1 945 946 -1 -1 946 946 4 4 947 946 -1 -1 986 946 -1 -1 907 947 -1 -1 946 947 -1 -1 947 947 4 4 948 947 -1 -1 987 947 -1 -1 908 948 -1 -1 947 948 -1 -1 948 948 4 4 949 948 -1 -1 988 948 -1 -1 909 949 -1 -1 948 949 -1 -1 949 949 4 4 950 949 -1 -1 989 949 -1 -1 910 950 -1 -1 949 950 -1 -1 950 950 4 4 951 950 -1 -1 990 950 -1 -1 911 951 -1 -1 950 951 -1 -1 951 951 4 4 952 951 -1 -1 991 951 -1 -1 912 952 -1 -1 951 952 -1 -1 952 952 4 4 953 952 -1 -1 992 952 -1 -1 913 953 -1 -1 952 953 -1 -1 953 953 4 4 954 953 -1 -1 993 953 -1 -1 914 954 -1 -1 953 954 -1 -1 954 954 4 4 955 954 -1 -1 994 954 -1 -1 915 955 -1 -1 954 955 -1 -1 955 955 4 4 956 955 -1 -1 995 955 -1 -1 916 956 -1 -1 955 956 -1 -1 956 956 4 4 957 956 -1 -1 996 956 -1 -1 917 957 -1 -1 956 957 -1 -1 957 957 4 4 958 957 -1 -1 997 957 -1 -1 918 958 -1 -1 957 958 -1 -1 958 958 4 4 959 958 -2 -2 998 958 -1 -1 919 959 -1 -1 958 959 -1 -1 959 959 4 4 999 959 -1 -1 920 960 -1 -1 960 960 4 4 961 960 -1 -1 1000 960 -1 -1 921 961 -1 -1 960 961 -2 -2 961 961 4 4 962 961 -1 -1 1001 961 -1 -1 922 962 -1 -1 961 962 -1 -1 962 962 4 4 963 962 -1 -1 1002 962 -1 -1 923 963 -1 -1 962 963 -1 -1 963 963 4 4 964 963 -1 -1 1003 963 -1 -1 924 964 -1 -1 963 964 -1 -1 964 964 4 4 965 964 -1 -1 1004 964 -1 -1 925 965 -1 -1 964 965 -1 -1 965 965 4 4 966 965 -1 -1 1005 965 -1 -1 926 966 -1 -1 965 966 -1 -1 966 966 4 4 967 966 -1 -1 1006 966 -1 -1 927 967 -1 -1 966 967 -1 -1 967 967 4 4 968 967 -1 -1 1007 967 -1 -1 928 968 -1 -1 967 968 -1 -1 968 968 4 4 969 968 -1 -1 1008 968 -1 -1 929 969 -1 -1 968 969 -1 -1 969 969 4 4 970 969 -1 -1 1009 969 -1 -1 930 970 -1 -1 969 970 -1 -1 970 970 4 4 971 970 -1 -1 1010 970 -1 -1 931 971 -1 -1 970 971 -1 -1 971 971 4 4 972 971 -1 -1 1011 971 -1 -1 932 972 -1 -1 971 972 -1 -1 972 972 4 4 973 972 -1 -1 1012 972 -1 -1 933 973 -1 -1 972 973 -1 -1 973 973 4 4 974 973 -1 -1 1013 973 -1 -1 934 974 -1 -1 973 974 -1 -1 974 974 4 4 975 974 -1 -1 1014 974 -1 -1 935 975 -1 -1 974 975 -1 -1 975 975 4 4 976 975 -1 -1 1015 975 -1 -1 936 976 -1 -1 975 976 -1 -1 976 976 4 4 977 976 -1 -1 1016 976 -1 -1 937 977 -1 -1 976 977 -1 -1 977 977 4 4 978 977 -1 -1 1017 977 -1 -1 938 978 -1 -1 977 978 -1 -1 978 978 4 4 979 978 -1 -1 1018 978 -1 -1 939 979 -1 -1 978 979 -1 -1 979 979 4 4 980 979 -1 -1 1019 979 -1 -1 940 980 -1 -1 979 980 -1 -1 980 980 4 4 981 980 -1 -1 1020 980 -1 -1 941 981 -1 -1 980 981 -1 -1 981 981 4 4 982 981 -1 -1 1021 981 -1 -1 942 982 -1 -1 981 982 -1 -1 982 982 4 4 983 982 -1 -1 1022 982 -1 -1 943 983 -1 -1 982 983 -1 -1 983 983 4 4 984 983 -1 -1 1023 983 -1 -1 944 984 -1 -1 983 984 -1 -1 984 984 4 4 985 984 -1 -1 1024 984 -1 -1 945 985 -1 -1 984 985 -1 -1 985 985 4 4 986 985 -1 -1 1025 985 -1 -1 946 986 -1 -1 985 986 -1 -1 986 986 4 4 987 986 -1 -1 1026 986 -1 -1 947 987 -1 -1 986 987 -1 -1 987 987 4 4 988 987 -1 -1 1027 987 -1 -1 948 988 -1 -1 987 988 -1 -1 988 988 4 4 989 988 -1 -1 1028 988 -1 -1 949 989 -1 -1 988 989 -1 -1 989 989 4 4 990 989 -1 -1 1029 989 -1 -1 950 990 -1 -1 989 990 -1 -1 990 990 4 4 991 990 -1 -1 1030 990 -1 -1 951 991 -1 -1 990 991 -1 -1 991 991 4 4 992 991 -1 -1 1031 991 -1 -1 952 992 -1 -1 991 992 -1 -1 992 992 4 4 993 992 -1 -1 1032 992 -1 -1 953 993 -1 -1 992 993 -1 -1 993 993 4 4 994 993 -1 -1 1033 993 -1 -1 954 994 -1 -1 993 994 -1 -1 994 994 4 4 995 994 -1 -1 1034 994 -1 -1 955 995 -1 -1 994 995 -1 -1 995 995 4 4 996 995 -1 -1 1035 995 -1 -1 956 996 -1 -1 995 996 -1 -1 996 996 4 4 997 996 -1 -1 1036 996 -1 -1 957 997 -1 -1 996 997 -1 -1 997 997 4 4 998 997 -1 -1 1037 997 -1 -1 958 998 -1 -1 997 998 -1 -1 998 998 4 4 999 998 -2 -2 1038 998 -1 -1 959 999 -1 -1 998 999 -1 -1 999 999 4 4 1039 999 -1 -1 960 1000 -1 -1 1000 1000 4 4 1001 1000 -1 -1 1040 1000 -1 -1 961 1001 -1 -1 1000 1001 -2 -2 1001 1001 4 4 1002 1001 -1 -1 1041 1001 -1 -1 962 1002 -1 -1 1001 1002 -1 -1 1002 1002 4 4 1003 1002 -1 -1 1042 1002 -1 -1 963 1003 -1 -1 1002 1003 -1 -1 1003 1003 4 4 1004 1003 -1 -1 1043 1003 -1 -1 964 1004 -1 -1 1003 1004 -1 -1 1004 1004 4 4 1005 1004 -1 -1 1044 1004 -1 -1 965 1005 -1 -1 1004 1005 -1 -1 1005 1005 4 4 1006 1005 -1 -1 1045 1005 -1 -1 966 1006 -1 -1 1005 1006 -1 -1 1006 1006 4 4 1007 1006 -1 -1 1046 1006 -1 -1 967 1007 -1 -1 1006 1007 -1 -1 1007 1007 4 4 1008 1007 -1 -1 1047 1007 -1 -1 968 1008 -1 -1 1007 1008 -1 -1 1008 1008 4 4 1009 1008 -1 -1 1048 1008 -1 -1 969 1009 -1 -1 1008 1009 -1 -1 1009 1009 4 4 1010 1009 -1 -1 1049 1009 -1 -1 970 1010 -1 -1 1009 1010 -1 -1 1010 1010 4 4 1011 1010 -1 -1 1050 1010 -1 -1 971 1011 -1 -1 1010 1011 -1 -1 1011 1011 4 4 1012 1011 -1 -1 1051 1011 -1 -1 972 1012 -1 -1 1011 1012 -1 -1 1012 1012 4 4 1013 1012 -1 -1 1052 1012 -1 -1 973 1013 -1 -1 1012 1013 -1 -1 1013 1013 4 4 1014 1013 -1 -1 1053 1013 -1 -1 974 1014 -1 -1 1013 1014 -1 -1 1014 1014 4 4 1015 1014 -1 -1 1054 1014 -1 -1 975 1015 -1 -1 1014 1015 -1 -1 1015 1015 4 4 1016 1015 -1 -1 1055 1015 -1 -1 976 1016 -1 -1 1015 1016 -1 -1 1016 1016 4 4 1017 1016 -1 -1 1056 1016 -1 -1 977 1017 -1 -1 1016 1017 -1 -1 1017 1017 4 4 1018 1017 -1 -1 1057 1017 -1 -1 978 1018 -1 -1 1017 1018 -1 -1 1018 1018 4 4 1019 1018 -1 -1 1058 1018 -1 -1 979 1019 -1 -1 1018 1019 -1 -1 1019 1019 4 4 1020 1019 -1 -1 1059 1019 -1 -1 980 1020 -1 -1 1019 1020 -1 -1 1020 1020 4 4 1021 1020 -1 -1 1060 1020 -1 -1 981 1021 -1 -1 1020 1021 -1 -1 1021 1021 4 4 1022 1021 -1 -1 1061 1021 -1 -1 982 1022 -1 -1 1021 1022 -1 -1 1022 1022 4 4 1023 1022 -1 -1 1062 1022 -1 -1 983 1023 -1 -1 1022 1023 -1 -1 1023 1023 4 4 1024 1023 -1 -1 1063 1023 -1 -1 984 1024 -1 -1 1023 1024 -1 -1 1024 1024 4 4 1025 1024 -1 -1 1064 1024 -1 -1 985 1025 -1 -1 1024 1025 -1 -1 1025 1025 4 4 1026 1025 -1 -1 1065 1025 -1 -1 986 1026 -1 -1 1025 1026 -1 -1 1026 1026 4 4 1027 1026 -1 -1 1066 1026 -1 -1 987 1027 -1 -1 1026 1027 -1 -1 1027 1027 4 4 1028 1027 -1 -1 1067 1027 -1 -1 988 1028 -1 -1 1027 1028 -1 -1 1028 1028 4 4 1029 1028 -1 -1 1068 1028 -1 -1 989 1029 -1 -1 1028 1029 -1 -1 1029 1029 4 4 1030 1029 -1 -1 1069 1029 -1 -1 990 1030 -1 -1 1029 1030 -1 -1 1030 1030 4 4 1031 1030 -1 -1 1070 1030 -1 -1 991 1031 -1 -1 1030 1031 -1 -1 1031 1031 4 4 1032 1031 -1 -1 1071 1031 -1 -1 992 1032 -1 -1 1031 1032 -1 -1 1032 1032 4 4 1033 1032 -1 -1 1072 1032 -1 -1 993 1033 -1 -1 1032 1033 -1 -1 1033 1033 4 4 1034 1033 -1 -1 1073 1033 -1 -1 994 1034 -1 -1 1033 1034 -1 -1 1034 1034 4 4 1035 1034 -1 -1 1074 1034 -1 -1 995 1035 -1 -1 1034 1035 -1 -1 1035 1035 4 4 1036 1035 -1 -1 1075 1035 -1 -1 996 1036 -1 -1 1035 1036 -1 -1 1036 1036 4 4 1037 1036 -1 -1 1076 1036 -1 -1 997 1037 -1 -1 1036 1037 -1 -1 1037 1037 4 4 1038 1037 -1 -1 1077 1037 -1 -1 998 1038 -1 -1 1037 1038 -1 -1 1038 1038 4 4 1039 1038 -2 -2 1078 1038 -1 -1 999 1039 -1 -1 1038 1039 -1 -1 1039 1039 4 4 1079 1039 -1 -1 1000 1040 -1 -1 1040 1040 4 4 1041 1040 -1 -1 1080 1040 -1 -1 1001 1041 -1 -1 1040 1041 -2 -2 1041 1041 4 4 1042 1041 -1 -1 1081 1041 -1 -1 1002 1042 -1 -1 1041 1042 -1 -1 1042 1042 4 4 1043 1042 -1 -1 1082 1042 -1 -1 1003 1043 -1 -1 1042 1043 -1 -1 1043 1043 4 4 1044 1043 -1 -1 1083 1043 -1 -1 1004 1044 -1 -1 1043 1044 -1 -1 1044 1044 4 4 1045 1044 -1 -1 1084 1044 -1 -1 1005 1045 -1 -1 1044 1045 -1 -1 1045 1045 4 4 1046 1045 -1 -1 1085 1045 -1 -1 1006 1046 -1 -1 1045 1046 -1 -1 1046 1046 4 4 1047 1046 -1 -1 1086 1046 -1 -1 1007 1047 -1 -1 1046 1047 -1 -1 1047 1047 4 4 1048 1047 -1 -1 1087 1047 -1 -1 1008 1048 -1 -1 1047 1048 -1 -1 1048 1048 4 4 1049 1048 -1 -1 1088 1048 -1 -1 1009 1049 -1 -1 1048 1049 -1 -1 1049 1049 4 4 1050 1049 -1 -1 1089 1049 -1 -1 1010 1050 -1 -1 1049 1050 -1 -1 1050 1050 4 4 1051 1050 -1 -1 1090 1050 -1 -1 1011 1051 -1 -1 1050 1051 -1 -1 1051 1051 4 4 1052 1051 -1 -1 1091 1051 -1 -1 1012 1052 -1 -1 1051 1052 -1 -1 1052 1052 4 4 1053 1052 -1 -1 1092 1052 -1 -1 1013 1053 -1 -1 1052 1053 -1 -1 1053 1053 4 4 1054 1053 -1 -1 1093 1053 -1 -1 1014 1054 -1 -1 1053 1054 -1 -1 1054 1054 4 4 1055 1054 -1 -1 1094 1054 -1 -1 1015 1055 -1 -1 1054 1055 -1 -1 1055 1055 4 4 1056 1055 -1 -1 1095 1055 -1 -1 1016 1056 -1 -1 1055 1056 -1 -1 1056 1056 4 4 1057 1056 -1 -1 1096 1056 -1 -1 1017 1057 -1 -1 1056 1057 -1 -1 1057 1057 4 4 1058 1057 -1 -1 1097 1057 -1 -1 1018 1058 -1 -1 1057 1058 -1 -1 1058 1058 4 4 1059 1058 -1 -1 1098 1058 -1 -1 1019 1059 -1 -1 1058 1059 -1 -1 1059 1059 4 4 1060 1059 -1 -1 1099 1059 -1 -1 1020 1060 -1 -1 1059 1060 -1 -1 1060 1060 4 4 1061 1060 -1 -1 1100 1060 -1 -1 1021 1061 -1 -1 1060 1061 -1 -1 1061 1061 4 4 1062 1061 -1 -1 1101 1061 -1 -1 1022 1062 -1 -1 1061 1062 -1 -1 1062 1062 4 4 1063 1062 -1 -1 1102 1062 -1 -1 1023 1063 -1 -1 1062 1063 -1 -1 1063 1063 4 4 1064 1063 -1 -1 1103 1063 -1 -1 1024 1064 -1 -1 1063 1064 -1 -1 1064 1064 4 4 1065 1064 -1 -1 1104 1064 -1 -1 1025 1065 -1 -1 1064 1065 -1 -1 1065 1065 4 4 1066 1065 -1 -1 1105 1065 -1 -1 1026 1066 -1 -1 1065 1066 -1 -1 1066 1066 4 4 1067 1066 -1 -1 1106 1066 -1 -1 1027 1067 -1 -1 1066 1067 -1 -1 1067 1067 4 4 1068 1067 -1 -1 1107 1067 -1 -1 1028 1068 -1 -1 1067 1068 -1 -1 1068 1068 4 4 1069 1068 -1 -1 1108 1068 -1 -1 1029 1069 -1 -1 1068 1069 -1 -1 1069 1069 4 4 1070 1069 -1 -1 1109 1069 -1 -1 1030 1070 -1 -1 1069 1070 -1 -1 1070 1070 4 4 1071 1070 -1 -1 1110 1070 -1 -1 1031 1071 -1 -1 1070 1071 -1 -1 1071 1071 4 4 1072 1071 -1 -1 1111 1071 -1 -1 1032 1072 -1 -1 1071 1072 -1 -1 1072 1072 4 4 1073 1072 -1 -1 1112 1072 -1 -1 1033 1073 -1 -1 1072 1073 -1 -1 1073 1073 4 4 1074 1073 -1 -1 1113 1073 -1 -1 1034 1074 -1 -1 1073 1074 -1 -1 1074 1074 4 4 1075 1074 -1 -1 1114 1074 -1 -1 1035 1075 -1 -1 1074 1075 -1 -1 1075 1075 4 4 1076 1075 -1 -1 1115 1075 -1 -1 1036 1076 -1 -1 1075 1076 -1 -1 1076 1076 4 4 1077 1076 -1 -1 1116 1076 -1 -1 1037 1077 -1 -1 1076 1077 -1 -1 1077 1077 4 4 1078 1077 -1 -1 1117 1077 -1 -1 1038 1078 -1 -1 1077 1078 -1 -1 1078 1078 4 4 1079 1078 -2 -2 1118 1078 -1 -1 1039 1079 -1 -1 1078 1079 -1 -1 1079 1079 4 4 1119 1079 -1 -1 1040 1080 -1 -1 1080 1080 4 4 1081 1080 -1 -1 1120 1080 -1 -1 1041 1081 -1 -1 1080 1081 -2 -2 1081 1081 4 4 1082 1081 -1 -1 1121 1081 -1 -1 1042 1082 -1 -1 1081 1082 -1 -1 1082 1082 4 4 1083 1082 -1 -1 1122 1082 -1 -1 1043 1083 -1 -1 1082 1083 -1 -1 1083 1083 4 4 1084 1083 -1 -1 1123 1083 -1 -1 1044 1084 -1 -1 1083 1084 -1 -1 1084 1084 4 4 1085 1084 -1 -1 1124 1084 -1 -1 1045 1085 -1 -1 1084 1085 -1 -1 1085 1085 4 4 1086 1085 -1 -1 1125 1085 -1 -1 1046 1086 -1 -1 1085 1086 -1 -1 1086 1086 4 4 1087 1086 -1 -1 1126 1086 -1 -1 1047 1087 -1 -1 1086 1087 -1 -1 1087 1087 4 4 1088 1087 -1 -1 1127 1087 -1 -1 1048 1088 -1 -1 1087 1088 -1 -1 1088 1088 4 4 1089 1088 -1 -1 1128 1088 -1 -1 1049 1089 -1 -1 1088 1089 -1 -1 1089 1089 4 4 1090 1089 -1 -1 1129 1089 -1 -1 1050 1090 -1 -1 1089 1090 -1 -1 1090 1090 4 4 1091 1090 -1 -1 1130 1090 -1 -1 1051 1091 -1 -1 1090 1091 -1 -1 1091 1091 4 4 1092 1091 -1 -1 1131 1091 -1 -1 1052 1092 -1 -1 1091 1092 -1 -1 1092 1092 4 4 1093 1092 -1 -1 1132 1092 -1 -1 1053 1093 -1 -1 1092 1093 -1 -1 1093 1093 4 4 1094 1093 -1 -1 1133 1093 -1 -1 1054 1094 -1 -1 1093 1094 -1 -1 1094 1094 4 4 1095 1094 -1 -1 1134 1094 -1 -1 1055 1095 -1 -1 1094 1095 -1 -1 1095 1095 4 4 1096 1095 -1 -1 1135 1095 -1 -1 1056 1096 -1 -1 1095 1096 -1 -1 1096 1096 4 4 1097 1096 -1 -1 1136 1096 -1 -1 1057 1097 -1 -1 1096 1097 -1 -1 1097 1097 4 4 1098 1097 -1 -1 1137 1097 -1 -1 1058 1098 -1 -1 1097 1098 -1 -1 1098 1098 4 4 1099 1098 -1 -1 1138 1098 -1 -1 1059 1099 -1 -1 1098 1099 -1 -1 1099 1099 4 4 1100 1099 -1 -1 1139 1099 -1 -1 1060 1100 -1 -1 1099 1100 -1 -1 1100 1100 4 4 1101 1100 -1 -1 1140 1100 -1 -1 1061 1101 -1 -1 1100 1101 -1 -1 1101 1101 4 4 1102 1101 -1 -1 1141 1101 -1 -1 1062 1102 -1 -1 1101 1102 -1 -1 1102 1102 4 4 1103 1102 -1 -1 1142 1102 -1 -1 1063 1103 -1 -1 1102 1103 -1 -1 1103 1103 4 4 1104 1103 -1 -1 1143 1103 -1 -1 1064 1104 -1 -1 1103 1104 -1 -1 1104 1104 4 4 1105 1104 -1 -1 1144 1104 -1 -1 1065 1105 -1 -1 1104 1105 -1 -1 1105 1105 4 4 1106 1105 -1 -1 1145 1105 -1 -1 1066 1106 -1 -1 1105 1106 -1 -1 1106 1106 4 4 1107 1106 -1 -1 1146 1106 -1 -1 1067 1107 -1 -1 1106 1107 -1 -1 1107 1107 4 4 1108 1107 -1 -1 1147 1107 -1 -1 1068 1108 -1 -1 1107 1108 -1 -1 1108 1108 4 4 1109 1108 -1 -1 1148 1108 -1 -1 1069 1109 -1 -1 1108 1109 -1 -1 1109 1109 4 4 1110 1109 -1 -1 1149 1109 -1 -1 1070 1110 -1 -1 1109 1110 -1 -1 1110 1110 4 4 1111 1110 -1 -1 1150 1110 -1 -1 1071 1111 -1 -1 1110 1111 -1 -1 1111 1111 4 4 1112 1111 -1 -1 1151 1111 -1 -1 1072 1112 -1 -1 1111 1112 -1 -1 1112 1112 4 4 1113 1112 -1 -1 1152 1112 -1 -1 1073 1113 -1 -1 1112 1113 -1 -1 1113 1113 4 4 1114 1113 -1 -1 1153 1113 -1 -1 1074 1114 -1 -1 1113 1114 -1 -1 1114 1114 4 4 1115 1114 -1 -1 1154 1114 -1 -1 1075 1115 -1 -1 1114 1115 -1 -1 1115 1115 4 4 1116 1115 -1 -1 1155 1115 -1 -1 1076 1116 -1 -1 1115 1116 -1 -1 1116 1116 4 4 1117 1116 -1 -1 1156 1116 -1 -1 1077 1117 -1 -1 1116 1117 -1 -1 1117 1117 4 4 1118 1117 -1 -1 1157 1117 -1 -1 1078 1118 -1 -1 1117 1118 -1 -1 1118 1118 4 4 1119 1118 -2 -2 1158 1118 -1 -1 1079 1119 -1 -1 1118 1119 -1 -1 1119 1119 4 4 1159 1119 -1 -1 1080 1120 -1 -1 1120 1120 4 4 1121 1120 -1 -1 1160 1120 -1 -1 1081 1121 -1 -1 1120 1121 -2 -2 1121 1121 4 4 1122 1121 -1 -1 1161 1121 -1 -1 1082 1122 -1 -1 1121 1122 -1 -1 1122 1122 4 4 1123 1122 -1 -1 1162 1122 -1 -1 1083 1123 -1 -1 1122 1123 -1 -1 1123 1123 4 4 1124 1123 -1 -1 1163 1123 -1 -1 1084 1124 -1 -1 1123 1124 -1 -1 1124 1124 4 4 1125 1124 -1 -1 1164 1124 -1 -1 1085 1125 -1 -1 1124 1125 -1 -1 1125 1125 4 4 1126 1125 -1 -1 1165 1125 -1 -1 1086 1126 -1 -1 1125 1126 -1 -1 1126 1126 4 4 1127 1126 -1 -1 1166 1126 -1 -1 1087 1127 -1 -1 1126 1127 -1 -1 1127 1127 4 4 1128 1127 -1 -1 1167 1127 -1 -1 1088 1128 -1 -1 1127 1128 -1 -1 1128 1128 4 4 1129 1128 -1 -1 1168 1128 -1 -1 1089 1129 -1 -1 1128 1129 -1 -1 1129 1129 4 4 1130 1129 -1 -1 1169 1129 -1 -1 1090 1130 -1 -1 1129 1130 -1 -1 1130 1130 4 4 1131 1130 -1 -1 1170 1130 -1 -1 1091 1131 -1 -1 1130 1131 -1 -1 1131 1131 4 4 1132 1131 -1 -1 1171 1131 -1 -1 1092 1132 -1 -1 1131 1132 -1 -1 1132 1132 4 4 1133 1132 -1 -1 1172 1132 -1 -1 1093 1133 -1 -1 1132 1133 -1 -1 1133 1133 4 4 1134 1133 -1 -1 1173 1133 -1 -1 1094 1134 -1 -1 1133 1134 -1 -1 1134 1134 4 4 1135 1134 -1 -1 1174 1134 -1 -1 1095 1135 -1 -1 1134 1135 -1 -1 1135 1135 4 4 1136 1135 -1 -1 1175 1135 -1 -1 1096 1136 -1 -1 1135 1136 -1 -1 1136 1136 4 4 1137 1136 -1 -1 1176 1136 -1 -1 1097 1137 -1 -1 1136 1137 -1 -1 1137 1137 4 4 1138 1137 -1 -1 1177 1137 -1 -1 1098 1138 -1 -1 1137 1138 -1 -1 1138 1138 4 4 1139 1138 -1 -1 1178 1138 -1 -1 1099 1139 -1 -1 1138 1139 -1 -1 1139 1139 4 4 1140 1139 -1 -1 1179 1139 -1 -1 1100 1140 -1 -1 1139 1140 -1 -1 1140 1140 4 4 1141 1140 -1 -1 1180 1140 -1 -1 1101 1141 -1 -1 1140 1141 -1 -1 1141 1141 4 4 1142 1141 -1 -1 1181 1141 -1 -1 1102 1142 -1 -1 1141 1142 -1 -1 1142 1142 4 4 1143 1142 -1 -1 1182 1142 -1 -1 1103 1143 -1 -1 1142 1143 -1 -1 1143 1143 4 4 1144 1143 -1 -1 1183 1143 -1 -1 1104 1144 -1 -1 1143 1144 -1 -1 1144 1144 4 4 1145 1144 -1 -1 1184 1144 -1 -1 1105 1145 -1 -1 1144 1145 -1 -1 1145 1145 4 4 1146 1145 -1 -1 1185 1145 -1 -1 1106 1146 -1 -1 1145 1146 -1 -1 1146 1146 4 4 1147 1146 -1 -1 1186 1146 -1 -1 1107 1147 -1 -1 1146 1147 -1 -1 1147 1147 4 4 1148 1147 -1 -1 1187 1147 -1 -1 1108 1148 -1 -1 1147 1148 -1 -1 1148 1148 4 4 1149 1148 -1 -1 1188 1148 -1 -1 1109 1149 -1 -1 1148 1149 -1 -1 1149 1149 4 4 1150 1149 -1 -1 1189 1149 -1 -1 1110 1150 -1 -1 1149 1150 -1 -1 1150 1150 4 4 1151 1150 -1 -1 1190 1150 -1 -1 1111 1151 -1 -1 1150 1151 -1 -1 1151 1151 4 4 1152 1151 -1 -1 1191 1151 -1 -1 1112 1152 -1 -1 1151 1152 -1 -1 1152 1152 4 4 1153 1152 -1 -1 1192 1152 -1 -1 1113 1153 -1 -1 1152 1153 -1 -1 1153 1153 4 4 1154 1153 -1 -1 1193 1153 -1 -1 1114 1154 -1 -1 1153 1154 -1 -1 1154 1154 4 4 1155 1154 -1 -1 1194 1154 -1 -1 1115 1155 -1 -1 1154 1155 -1 -1 1155 1155 4 4 1156 1155 -1 -1 1195 1155 -1 -1 1116 1156 -1 -1 1155 1156 -1 -1 1156 1156 4 4 1157 1156 -1 -1 1196 1156 -1 -1 1117 1157 -1 -1 1156 1157 -1 -1 1157 1157 4 4 1158 1157 -1 -1 1197 1157 -1 -1 1118 1158 -1 -1 1157 1158 -1 -1 1158 1158 4 4 1159 1158 -2 -2 1198 1158 -1 -1 1119 1159 -1 -1 1158 1159 -1 -1 1159 1159 4 4 1199 1159 -1 -1 1120 1160 -1 -1 1160 1160 4 4 1161 1160 -1 -1 1200 1160 -1 -1 1121 1161 -1 -1 1160 1161 -2 -2 1161 1161 4 4 1162 1161 -1 -1 1201 1161 -1 -1 1122 1162 -1 -1 1161 1162 -1 -1 1162 1162 4 4 1163 1162 -1 -1 1202 1162 -1 -1 1123 1163 -1 -1 1162 1163 -1 -1 1163 1163 4 4 1164 1163 -1 -1 1203 1163 -1 -1 1124 1164 -1 -1 1163 1164 -1 -1 1164 1164 4 4 1165 1164 -1 -1 1204 1164 -1 -1 1125 1165 -1 -1 1164 1165 -1 -1 1165 1165 4 4 1166 1165 -1 -1 1205 1165 -1 -1 1126 1166 -1 -1 1165 1166 -1 -1 1166 1166 4 4 1167 1166 -1 -1 1206 1166 -1 -1 1127 1167 -1 -1 1166 1167 -1 -1 1167 1167 4 4 1168 1167 -1 -1 1207 1167 -1 -1 1128 1168 -1 -1 1167 1168 -1 -1 1168 1168 4 4 1169 1168 -1 -1 1208 1168 -1 -1 1129 1169 -1 -1 1168 1169 -1 -1 1169 1169 4 4 1170 1169 -1 -1 1209 1169 -1 -1 1130 1170 -1 -1 1169 1170 -1 -1 1170 1170 4 4 1171 1170 -1 -1 1210 1170 -1 -1 1131 1171 -1 -1 1170 1171 -1 -1 1171 1171 4 4 1172 1171 -1 -1 1211 1171 -1 -1 1132 1172 -1 -1 1171 1172 -1 -1 1172 1172 4 4 1173 1172 -1 -1 1212 1172 -1 -1 1133 1173 -1 -1 1172 1173 -1 -1 1173 1173 4 4 1174 1173 -1 -1 1213 1173 -1 -1 1134 1174 -1 -1 1173 1174 -1 -1 1174 1174 4 4 1175 1174 -1 -1 1214 1174 -1 -1 1135 1175 -1 -1 1174 1175 -1 -1 1175 1175 4 4 1176 1175 -1 -1 1215 1175 -1 -1 1136 1176 -1 -1 1175 1176 -1 -1 1176 1176 4 4 1177 1176 -1 -1 1216 1176 -1 -1 1137 1177 -1 -1 1176 1177 -1 -1 1177 1177 4 4 1178 1177 -1 -1 1217 1177 -1 -1 1138 1178 -1 -1 1177 1178 -1 -1 1178 1178 4 4 1179 1178 -1 -1 1218 1178 -1 -1 1139 1179 -1 -1 1178 1179 -1 -1 1179 1179 4 4 1180 1179 -1 -1 1219 1179 -1 -1 1140 1180 -1 -1 1179 1180 -1 -1 1180 1180 4 4 1181 1180 -1 -1 1220 1180 -1 -1 1141 1181 -1 -1 1180 1181 -1 -1 1181 1181 4 4 1182 1181 -1 -1 1221 1181 -1 -1 1142 1182 -1 -1 1181 1182 -1 -1 1182 1182 4 4 1183 1182 -1 -1 1222 1182 -1 -1 1143 1183 -1 -1 1182 1183 -1 -1 1183 1183 4 4 1184 1183 -1 -1 1223 1183 -1 -1 1144 1184 -1 -1 1183 1184 -1 -1 1184 1184 4 4 1185 1184 -1 -1 1224 1184 -1 -1 1145 1185 -1 -1 1184 1185 -1 -1 1185 1185 4 4 1186 1185 -1 -1 1225 1185 -1 -1 1146 1186 -1 -1 1185 1186 -1 -1 1186 1186 4 4 1187 1186 -1 -1 1226 1186 -1 -1 1147 1187 -1 -1 1186 1187 -1 -1 1187 1187 4 4 1188 1187 -1 -1 1227 1187 -1 -1 1148 1188 -1 -1 1187 1188 -1 -1 1188 1188 4 4 1189 1188 -1 -1 1228 1188 -1 -1 1149 1189 -1 -1 1188 1189 -1 -1 1189 1189 4 4 1190 1189 -1 -1 1229 1189 -1 -1 1150 1190 -1 -1 1189 1190 -1 -1 1190 1190 4 4 1191 1190 -1 -1 1230 1190 -1 -1 1151 1191 -1 -1 1190 1191 -1 -1 1191 1191 4 4 1192 1191 -1 -1 1231 1191 -1 -1 1152 1192 -1 -1 1191 1192 -1 -1 1192 1192 4 4 1193 1192 -1 -1 1232 1192 -1 -1 1153 1193 -1 -1 1192 1193 -1 -1 1193 1193 4 4 1194 1193 -1 -1 1233 1193 -1 -1 1154 1194 -1 -1 1193 1194 -1 -1 1194 1194 4 4 1195 1194 -1 -1 1234 1194 -1 -1 1155 1195 -1 -1 1194 1195 -1 -1 1195 1195 4 4 1196 1195 -1 -1 1235 1195 -1 -1 1156 1196 -1 -1 1195 1196 -1 -1 1196 1196 4 4 1197 1196 -1 -1 1236 1196 -1 -1 1157 1197 -1 -1 1196 1197 -1 -1 1197 1197 4 4 1198 1197 -1 -1 1237 1197 -1 -1 1158 1198 -1 -1 1197 1198 -1 -1 1198 1198 4 4 1199 1198 -2 -2 1238 1198 -1 -1 1159 1199 -1 -1 1198 1199 -1 -1 1199 1199 4 4 1239 1199 -1 -1 1160 1200 -1 -1 1200 1200 4 4 1201 1200 -1 -1 1240 1200 -1 -1 1161 1201 -1 -1 1200 1201 -2 -2 1201 1201 4 4 1202 1201 -1 -1 1241 1201 -1 -1 1162 1202 -1 -1 1201 1202 -1 -1 1202 1202 4 4 1203 1202 -1 -1 1242 1202 -1 -1 1163 1203 -1 -1 1202 1203 -1 -1 1203 1203 4 4 1204 1203 -1 -1 1243 1203 -1 -1 1164 1204 -1 -1 1203 1204 -1 -1 1204 1204 4 4 1205 1204 -1 -1 1244 1204 -1 -1 1165 1205 -1 -1 1204 1205 -1 -1 1205 1205 4 4 1206 1205 -1 -1 1245 1205 -1 -1 1166 1206 -1 -1 1205 1206 -1 -1 1206 1206 4 4 1207 1206 -1 -1 1246 1206 -1 -1 1167 1207 -1 -1 1206 1207 -1 -1 1207 1207 4 4 1208 1207 -1 -1 1247 1207 -1 -1 1168 1208 -1 -1 1207 1208 -1 -1 1208 1208 4 4 1209 1208 -1 -1 1248 1208 -1 -1 1169 1209 -1 -1 1208 1209 -1 -1 1209 1209 4 4 1210 1209 -1 -1 1249 1209 -1 -1 1170 1210 -1 -1 1209 1210 -1 -1 1210 1210 4 4 1211 1210 -1 -1 1250 1210 -1 -1 1171 1211 -1 -1 1210 1211 -1 -1 1211 1211 4 4 1212 1211 -1 -1 1251 1211 -1 -1 1172 1212 -1 -1 1211 1212 -1 -1 1212 1212 4 4 1213 1212 -1 -1 1252 1212 -1 -1 1173 1213 -1 -1 1212 1213 -1 -1 1213 1213 4 4 1214 1213 -1 -1 1253 1213 -1 -1 1174 1214 -1 -1 1213 1214 -1 -1 1214 1214 4 4 1215 1214 -1 -1 1254 1214 -1 -1 1175 1215 -1 -1 1214 1215 -1 -1 1215 1215 4 4 1216 1215 -1 -1 1255 1215 -1 -1 1176 1216 -1 -1 1215 1216 -1 -1 1216 1216 4 4 1217 1216 -1 -1 1256 1216 -1 -1 1177 1217 -1 -1 1216 1217 -1 -1 1217 1217 4 4 1218 1217 -1 -1 1257 1217 -1 -1 1178 1218 -1 -1 1217 1218 -1 -1 1218 1218 4 4 1219 1218 -1 -1 1258 1218 -1 -1 1179 1219 -1 -1 1218 1219 -1 -1 1219 1219 4 4 1220 1219 -1 -1 1259 1219 -1 -1 1180 1220 -1 -1 1219 1220 -1 -1 1220 1220 4 4 1221 1220 -1 -1 1260 1220 -1 -1 1181 1221 -1 -1 1220 1221 -1 -1 1221 1221 4 4 1222 1221 -1 -1 1261 1221 -1 -1 1182 1222 -1 -1 1221 1222 -1 -1 1222 1222 4 4 1223 1222 -1 -1 1262 1222 -1 -1 1183 1223 -1 -1 1222 1223 -1 -1 1223 1223 4 4 1224 1223 -1 -1 1263 1223 -1 -1 1184 1224 -1 -1 1223 1224 -1 -1 1224 1224 4 4 1225 1224 -1 -1 1264 1224 -1 -1 1185 1225 -1 -1 1224 1225 -1 -1 1225 1225 4 4 1226 1225 -1 -1 1265 1225 -1 -1 1186 1226 -1 -1 1225 1226 -1 -1 1226 1226 4 4 1227 1226 -1 -1 1266 1226 -1 -1 1187 1227 -1 -1 1226 1227 -1 -1 1227 1227 4 4 1228 1227 -1 -1 1267 1227 -1 -1 1188 1228 -1 -1 1227 1228 -1 -1 1228 1228 4 4 1229 1228 -1 -1 1268 1228 -1 -1 1189 1229 -1 -1 1228 1229 -1 -1 1229 1229 4 4 1230 1229 -1 -1 1269 1229 -1 -1 1190 1230 -1 -1 1229 1230 -1 -1 1230 1230 4 4 1231 1230 -1 -1 1270 1230 -1 -1 1191 1231 -1 -1 1230 1231 -1 -1 1231 1231 4 4 1232 1231 -1 -1 1271 1231 -1 -1 1192 1232 -1 -1 1231 1232 -1 -1 1232 1232 4 4 1233 1232 -1 -1 1272 1232 -1 -1 1193 1233 -1 -1 1232 1233 -1 -1 1233 1233 4 4 1234 1233 -1 -1 1273 1233 -1 -1 1194 1234 -1 -1 1233 1234 -1 -1 1234 1234 4 4 1235 1234 -1 -1 1274 1234 -1 -1 1195 1235 -1 -1 1234 1235 -1 -1 1235 1235 4 4 1236 1235 -1 -1 1275 1235 -1 -1 1196 1236 -1 -1 1235 1236 -1 -1 1236 1236 4 4 1237 1236 -1 -1 1276 1236 -1 -1 1197 1237 -1 -1 1236 1237 -1 -1 1237 1237 4 4 1238 1237 -1 -1 1277 1237 -1 -1 1198 1238 -1 -1 1237 1238 -1 -1 1238 1238 4 4 1239 1238 -2 -2 1278 1238 -1 -1 1199 1239 -1 -1 1238 1239 -1 -1 1239 1239 4 4 1279 1239 -1 -1 1200 1240 -1 -1 1240 1240 4 4 1241 1240 -1 -1 1280 1240 -1 -1 1201 1241 -1 -1 1240 1241 -2 -2 1241 1241 4 4 1242 1241 -1 -1 1281 1241 -1 -1 1202 1242 -1 -1 1241 1242 -1 -1 1242 1242 4 4 1243 1242 -1 -1 1282 1242 -1 -1 1203 1243 -1 -1 1242 1243 -1 -1 1243 1243 4 4 1244 1243 -1 -1 1283 1243 -1 -1 1204 1244 -1 -1 1243 1244 -1 -1 1244 1244 4 4 1245 1244 -1 -1 1284 1244 -1 -1 1205 1245 -1 -1 1244 1245 -1 -1 1245 1245 4 4 1246 1245 -1 -1 1285 1245 -1 -1 1206 1246 -1 -1 1245 1246 -1 -1 1246 1246 4 4 1247 1246 -1 -1 1286 1246 -1 -1 1207 1247 -1 -1 1246 1247 -1 -1 1247 1247 4 4 1248 1247 -1 -1 1287 1247 -1 -1 1208 1248 -1 -1 1247 1248 -1 -1 1248 1248 4 4 1249 1248 -1 -1 1288 1248 -1 -1 1209 1249 -1 -1 1248 1249 -1 -1 1249 1249 4 4 1250 1249 -1 -1 1289 1249 -1 -1 1210 1250 -1 -1 1249 1250 -1 -1 1250 1250 4 4 1251 1250 -1 -1 1290 1250 -1 -1 1211 1251 -1 -1 1250 1251 -1 -1 1251 1251 4 4 1252 1251 -1 -1 1291 1251 -1 -1 1212 1252 -1 -1 1251 1252 -1 -1 1252 1252 4 4 1253 1252 -1 -1 1292 1252 -1 -1 1213 1253 -1 -1 1252 1253 -1 -1 1253 1253 4 4 1254 1253 -1 -1 1293 1253 -1 -1 1214 1254 -1 -1 1253 1254 -1 -1 1254 1254 4 4 1255 1254 -1 -1 1294 1254 -1 -1 1215 1255 -1 -1 1254 1255 -1 -1 1255 1255 4 4 1256 1255 -1 -1 1295 1255 -1 -1 1216 1256 -1 -1 1255 1256 -1 -1 1256 1256 4 4 1257 1256 -1 -1 1296 1256 -1 -1 1217 1257 -1 -1 1256 1257 -1 -1 1257 1257 4 4 1258 1257 -1 -1 1297 1257 -1 -1 1218 1258 -1 -1 1257 1258 -1 -1 1258 1258 4 4 1259 1258 -1 -1 1298 1258 -1 -1 1219 1259 -1 -1 1258 1259 -1 -1 1259 1259 4 4 1260 1259 -1 -1 1299 1259 -1 -1 1220 1260 -1 -1 1259 1260 -1 -1 1260 1260 4 4 1261 1260 -1 -1 1300 1260 -1 -1 1221 1261 -1 -1 1260 1261 -1 -1 1261 1261 4 4 1262 1261 -1 -1 1301 1261 -1 -1 1222 1262 -1 -1 1261 1262 -1 -1 1262 1262 4 4 1263 1262 -1 -1 1302 1262 -1 -1 1223 1263 -1 -1 1262 1263 -1 -1 1263 1263 4 4 1264 1263 -1 -1 1303 1263 -1 -1 1224 1264 -1 -1 1263 1264 -1 -1 1264 1264 4 4 1265 1264 -1 -1 1304 1264 -1 -1 1225 1265 -1 -1 1264 1265 -1 -1 1265 1265 4 4 1266 1265 -1 -1 1305 1265 -1 -1 1226 1266 -1 -1 1265 1266 -1 -1 1266 1266 4 4 1267 1266 -1 -1 1306 1266 -1 -1 1227 1267 -1 -1 1266 1267 -1 -1 1267 1267 4 4 1268 1267 -1 -1 1307 1267 -1 -1 1228 1268 -1 -1 1267 1268 -1 -1 1268 1268 4 4 1269 1268 -1 -1 1308 1268 -1 -1 1229 1269 -1 -1 1268 1269 -1 -1 1269 1269 4 4 1270 1269 -1 -1 1309 1269 -1 -1 1230 1270 -1 -1 1269 1270 -1 -1 1270 1270 4 4 1271 1270 -1 -1 1310 1270 -1 -1 1231 1271 -1 -1 1270 1271 -1 -1 1271 1271 4 4 1272 1271 -1 -1 1311 1271 -1 -1 1232 1272 -1 -1 1271 1272 -1 -1 1272 1272 4 4 1273 1272 -1 -1 1312 1272 -1 -1 1233 1273 -1 -1 1272 1273 -1 -1 1273 1273 4 4 1274 1273 -1 -1 1313 1273 -1 -1 1234 1274 -1 -1 1273 1274 -1 -1 1274 1274 4 4 1275 1274 -1 -1 1314 1274 -1 -1 1235 1275 -1 -1 1274 1275 -1 -1 1275 1275 4 4 1276 1275 -1 -1 1315 1275 -1 -1 1236 1276 -1 -1 1275 1276 -1 -1 1276 1276 4 4 1277 1276 -1 -1 1316 1276 -1 -1 1237 1277 -1 -1 1276 1277 -1 -1 1277 1277 4 4 1278 1277 -1 -1 1317 1277 -1 -1 1238 1278 -1 -1 1277 1278 -1 -1 1278 1278 4 4 1279 1278 -2 -2 1318 1278 -1 -1 1239 1279 -1 -1 1278 1279 -1 -1 1279 1279 4 4 1319 1279 -1 -1 1240 1280 -1 -1 1280 1280 4 4 1281 1280 -1 -1 1320 1280 -1 -1 1241 1281 -1 -1 1280 1281 -2 -2 1281 1281 4 4 1282 1281 -1 -1 1321 1281 -1 -1 1242 1282 -1 -1 1281 1282 -1 -1 1282 1282 4 4 1283 1282 -1 -1 1322 1282 -1 -1 1243 1283 -1 -1 1282 1283 -1 -1 1283 1283 4 4 1284 1283 -1 -1 1323 1283 -1 -1 1244 1284 -1 -1 1283 1284 -1 -1 1284 1284 4 4 1285 1284 -1 -1 1324 1284 -1 -1 1245 1285 -1 -1 1284 1285 -1 -1 1285 1285 4 4 1286 1285 -1 -1 1325 1285 -1 -1 1246 1286 -1 -1 1285 1286 -1 -1 1286 1286 4 4 1287 1286 -1 -1 1326 1286 -1 -1 1247 1287 -1 -1 1286 1287 -1 -1 1287 1287 4 4 1288 1287 -1 -1 1327 1287 -1 -1 1248 1288 -1 -1 1287 1288 -1 -1 1288 1288 4 4 1289 1288 -1 -1 1328 1288 -1 -1 1249 1289 -1 -1 1288 1289 -1 -1 1289 1289 4 4 1290 1289 -1 -1 1329 1289 -1 -1 1250 1290 -1 -1 1289 1290 -1 -1 1290 1290 4 4 1291 1290 -1 -1 1330 1290 -1 -1 1251 1291 -1 -1 1290 1291 -1 -1 1291 1291 4 4 1292 1291 -1 -1 1331 1291 -1 -1 1252 1292 -1 -1 1291 1292 -1 -1 1292 1292 4 4 1293 1292 -1 -1 1332 1292 -1 -1 1253 1293 -1 -1 1292 1293 -1 -1 1293 1293 4 4 1294 1293 -1 -1 1333 1293 -1 -1 1254 1294 -1 -1 1293 1294 -1 -1 1294 1294 4 4 1295 1294 -1 -1 1334 1294 -1 -1 1255 1295 -1 -1 1294 1295 -1 -1 1295 1295 4 4 1296 1295 -1 -1 1335 1295 -1 -1 1256 1296 -1 -1 1295 1296 -1 -1 1296 1296 4 4 1297 1296 -1 -1 1336 1296 -1 -1 1257 1297 -1 -1 1296 1297 -1 -1 1297 1297 4 4 1298 1297 -1 -1 1337 1297 -1 -1 1258 1298 -1 -1 1297 1298 -1 -1 1298 1298 4 4 1299 1298 -1 -1 1338 1298 -1 -1 1259 1299 -1 -1 1298 1299 -1 -1 1299 1299 4 4 1300 1299 -1 -1 1339 1299 -1 -1 1260 1300 -1 -1 1299 1300 -1 -1 1300 1300 4 4 1301 1300 -1 -1 1340 1300 -1 -1 1261 1301 -1 -1 1300 1301 -1 -1 1301 1301 4 4 1302 1301 -1 -1 1341 1301 -1 -1 1262 1302 -1 -1 1301 1302 -1 -1 1302 1302 4 4 1303 1302 -1 -1 1342 1302 -1 -1 1263 1303 -1 -1 1302 1303 -1 -1 1303 1303 4 4 1304 1303 -1 -1 1343 1303 -1 -1 1264 1304 -1 -1 1303 1304 -1 -1 1304 1304 4 4 1305 1304 -1 -1 1344 1304 -1 -1 1265 1305 -1 -1 1304 1305 -1 -1 1305 1305 4 4 1306 1305 -1 -1 1345 1305 -1 -1 1266 1306 -1 -1 1305 1306 -1 -1 1306 1306 4 4 1307 1306 -1 -1 1346 1306 -1 -1 1267 1307 -1 -1 1306 1307 -1 -1 1307 1307 4 4 1308 1307 -1 -1 1347 1307 -1 -1 1268 1308 -1 -1 1307 1308 -1 -1 1308 1308 4 4 1309 1308 -1 -1 1348 1308 -1 -1 1269 1309 -1 -1 1308 1309 -1 -1 1309 1309 4 4 1310 1309 -1 -1 1349 1309 -1 -1 1270 1310 -1 -1 1309 1310 -1 -1 1310 1310 4 4 1311 1310 -1 -1 1350 1310 -1 -1 1271 1311 -1 -1 1310 1311 -1 -1 1311 1311 4 4 1312 1311 -1 -1 1351 1311 -1 -1 1272 1312 -1 -1 1311 1312 -1 -1 1312 1312 4 4 1313 1312 -1 -1 1352 1312 -1 -1 1273 1313 -1 -1 1312 1313 -1 -1 1313 1313 4 4 1314 1313 -1 -1 1353 1313 -1 -1 1274 1314 -1 -1 1313 1314 -1 -1 1314 1314 4 4 1315 1314 -1 -1 1354 1314 -1 -1 1275 1315 -1 -1 1314 1315 -1 -1 1315 1315 4 4 1316 1315 -1 -1 1355 1315 -1 -1 1276 1316 -1 -1 1315 1316 -1 -1 1316 1316 4 4 1317 1316 -1 -1 1356 1316 -1 -1 1277 1317 -1 -1 1316 1317 -1 -1 1317 1317 4 4 1318 1317 -1 -1 1357 1317 -1 -1 1278 1318 -1 -1 1317 1318 -1 -1 1318 1318 4 4 1319 1318 -2 -2 1358 1318 -1 -1 1279 1319 -1 -1 1318 1319 -1 -1 1319 1319 4 4 1359 1319 -1 -1 1280 1320 -1 -1 1320 1320 4 4 1321 1320 -1 -1 1360 1320 -1 -1 1281 1321 -1 -1 1320 1321 -2 -2 1321 1321 4 4 1322 1321 -1 -1 1361 1321 -1 -1 1282 1322 -1 -1 1321 1322 -1 -1 1322 1322 4 4 1323 1322 -1 -1 1362 1322 -1 -1 1283 1323 -1 -1 1322 1323 -1 -1 1323 1323 4 4 1324 1323 -1 -1 1363 1323 -1 -1 1284 1324 -1 -1 1323 1324 -1 -1 1324 1324 4 4 1325 1324 -1 -1 1364 1324 -1 -1 1285 1325 -1 -1 1324 1325 -1 -1 1325 1325 4 4 1326 1325 -1 -1 1365 1325 -1 -1 1286 1326 -1 -1 1325 1326 -1 -1 1326 1326 4 4 1327 1326 -1 -1 1366 1326 -1 -1 1287 1327 -1 -1 1326 1327 -1 -1 1327 1327 4 4 1328 1327 -1 -1 1367 1327 -1 -1 1288 1328 -1 -1 1327 1328 -1 -1 1328 1328 4 4 1329 1328 -1 -1 1368 1328 -1 -1 1289 1329 -1 -1 1328 1329 -1 -1 1329 1329 4 4 1330 1329 -1 -1 1369 1329 -1 -1 1290 1330 -1 -1 1329 1330 -1 -1 1330 1330 4 4 1331 1330 -1 -1 1370 1330 -1 -1 1291 1331 -1 -1 1330 1331 -1 -1 1331 1331 4 4 1332 1331 -1 -1 1371 1331 -1 -1 1292 1332 -1 -1 1331 1332 -1 -1 1332 1332 4 4 1333 1332 -1 -1 1372 1332 -1 -1 1293 1333 -1 -1 1332 1333 -1 -1 1333 1333 4 4 1334 1333 -1 -1 1373 1333 -1 -1 1294 1334 -1 -1 1333 1334 -1 -1 1334 1334 4 4 1335 1334 -1 -1 1374 1334 -1 -1 1295 1335 -1 -1 1334 1335 -1 -1 1335 1335 4 4 1336 1335 -1 -1 1375 1335 -1 -1 1296 1336 -1 -1 1335 1336 -1 -1 1336 1336 4 4 1337 1336 -1 -1 1376 1336 -1 -1 1297 1337 -1 -1 1336 1337 -1 -1 1337 1337 4 4 1338 1337 -1 -1 1377 1337 -1 -1 1298 1338 -1 -1 1337 1338 -1 -1 1338 1338 4 4 1339 1338 -1 -1 1378 1338 -1 -1 1299 1339 -1 -1 1338 1339 -1 -1 1339 1339 4 4 1340 1339 -1 -1 1379 1339 -1 -1 1300 1340 -1 -1 1339 1340 -1 -1 1340 1340 4 4 1341 1340 -1 -1 1380 1340 -1 -1 1301 1341 -1 -1 1340 1341 -1 -1 1341 1341 4 4 1342 1341 -1 -1 1381 1341 -1 -1 1302 1342 -1 -1 1341 1342 -1 -1 1342 1342 4 4 1343 1342 -1 -1 1382 1342 -1 -1 1303 1343 -1 -1 1342 1343 -1 -1 1343 1343 4 4 1344 1343 -1 -1 1383 1343 -1 -1 1304 1344 -1 -1 1343 1344 -1 -1 1344 1344 4 4 1345 1344 -1 -1 1384 1344 -1 -1 1305 1345 -1 -1 1344 1345 -1 -1 1345 1345 4 4 1346 1345 -1 -1 1385 1345 -1 -1 1306 1346 -1 -1 1345 1346 -1 -1 1346 1346 4 4 1347 1346 -1 -1 1386 1346 -1 -1 1307 1347 -1 -1 1346 1347 -1 -1 1347 1347 4 4 1348 1347 -1 -1 1387 1347 -1 -1 1308 1348 -1 -1 1347 1348 -1 -1 1348 1348 4 4 1349 1348 -1 -1 1388 1348 -1 -1 1309 1349 -1 -1 1348 1349 -1 -1 1349 1349 4 4 1350 1349 -1 -1 1389 1349 -1 -1 1310 1350 -1 -1 1349 1350 -1 -1 1350 1350 4 4 1351 1350 -1 -1 1390 1350 -1 -1 1311 1351 -1 -1 1350 1351 -1 -1 1351 1351 4 4 1352 1351 -1 -1 1391 1351 -1 -1 1312 1352 -1 -1 1351 1352 -1 -1 1352 1352 4 4 1353 1352 -1 -1 1392 1352 -1 -1 1313 1353 -1 -1 1352 1353 -1 -1 1353 1353 4 4 1354 1353 -1 -1 1393 1353 -1 -1 1314 1354 -1 -1 1353 1354 -1 -1 1354 1354 4 4 1355 1354 -1 -1 1394 1354 -1 -1 1315 1355 -1 -1 1354 1355 -1 -1 1355 1355 4 4 1356 1355 -1 -1 1395 1355 -1 -1 1316 1356 -1 -1 1355 1356 -1 -1 1356 1356 4 4 1357 1356 -1 -1 1396 1356 -1 -1 1317 1357 -1 -1 1356 1357 -1 -1 1357 1357 4 4 1358 1357 -1 -1 1397 1357 -1 -1 1318 1358 -1 -1 1357 1358 -1 -1 1358 1358 4 4 1359 1358 -2 -2 1398 1358 -1 -1 1319 1359 -1 -1 1358 1359 -1 -1 1359 1359 4 4 1399 1359 -1 -1 1320 1360 -1 -1 1360 1360 4 4 1361 1360 -1 -1 1400 1360 -1 -1 1321 1361 -1 -1 1360 1361 -2 -2 1361 1361 4 4 1362 1361 -1 -1 1401 1361 -1 -1 1322 1362 -1 -1 1361 1362 -1 -1 1362 1362 4 4 1363 1362 -1 -1 1402 1362 -1 -1 1323 1363 -1 -1 1362 1363 -1 -1 1363 1363 4 4 1364 1363 -1 -1 1403 1363 -1 -1 1324 1364 -1 -1 1363 1364 -1 -1 1364 1364 4 4 1365 1364 -1 -1 1404 1364 -1 -1 1325 1365 -1 -1 1364 1365 -1 -1 1365 1365 4 4 1366 1365 -1 -1 1405 1365 -1 -1 1326 1366 -1 -1 1365 1366 -1 -1 1366 1366 4 4 1367 1366 -1 -1 1406 1366 -1 -1 1327 1367 -1 -1 1366 1367 -1 -1 1367 1367 4 4 1368 1367 -1 -1 1407 1367 -1 -1 1328 1368 -1 -1 1367 1368 -1 -1 1368 1368 4 4 1369 1368 -1 -1 1408 1368 -1 -1 1329 1369 -1 -1 1368 1369 -1 -1 1369 1369 4 4 1370 1369 -1 -1 1409 1369 -1 -1 1330 1370 -1 -1 1369 1370 -1 -1 1370 1370 4 4 1371 1370 -1 -1 1410 1370 -1 -1 1331 1371 -1 -1 1370 1371 -1 -1 1371 1371 4 4 1372 1371 -1 -1 1411 1371 -1 -1 1332 1372 -1 -1 1371 1372 -1 -1 1372 1372 4 4 1373 1372 -1 -1 1412 1372 -1 -1 1333 1373 -1 -1 1372 1373 -1 -1 1373 1373 4 4 1374 1373 -1 -1 1413 1373 -1 -1 1334 1374 -1 -1 1373 1374 -1 -1 1374 1374 4 4 1375 1374 -1 -1 1414 1374 -1 -1 1335 1375 -1 -1 1374 1375 -1 -1 1375 1375 4 4 1376 1375 -1 -1 1415 1375 -1 -1 1336 1376 -1 -1 1375 1376 -1 -1 1376 1376 4 4 1377 1376 -1 -1 1416 1376 -1 -1 1337 1377 -1 -1 1376 1377 -1 -1 1377 1377 4 4 1378 1377 -1 -1 1417 1377 -1 -1 1338 1378 -1 -1 1377 1378 -1 -1 1378 1378 4 4 1379 1378 -1 -1 1418 1378 -1 -1 1339 1379 -1 -1 1378 1379 -1 -1 1379 1379 4 4 1380 1379 -1 -1 1419 1379 -1 -1 1340 1380 -1 -1 1379 1380 -1 -1 1380 1380 4 4 1381 1380 -1 -1 1420 1380 -1 -1 1341 1381 -1 -1 1380 1381 -1 -1 1381 1381 4 4 1382 1381 -1 -1 1421 1381 -1 -1 1342 1382 -1 -1 1381 1382 -1 -1 1382 1382 4 4 1383 1382 -1 -1 1422 1382 -1 -1 1343 1383 -1 -1 1382 1383 -1 -1 1383 1383 4 4 1384 1383 -1 -1 1423 1383 -1 -1 1344 1384 -1 -1 1383 1384 -1 -1 1384 1384 4 4 1385 1384 -1 -1 1424 1384 -1 -1 1345 1385 -1 -1 1384 1385 -1 -1 1385 1385 4 4 1386 1385 -1 -1 1425 1385 -1 -1 1346 1386 -1 -1 1385 1386 -1 -1 1386 1386 4 4 1387 1386 -1 -1 1426 1386 -1 -1 1347 1387 -1 -1 1386 1387 -1 -1 1387 1387 4 4 1388 1387 -1 -1 1427 1387 -1 -1 1348 1388 -1 -1 1387 1388 -1 -1 1388 1388 4 4 1389 1388 -1 -1 1428 1388 -1 -1 1349 1389 -1 -1 1388 1389 -1 -1 1389 1389 4 4 1390 1389 -1 -1 1429 1389 -1 -1 1350 1390 -1 -1 1389 1390 -1 -1 1390 1390 4 4 1391 1390 -1 -1 1430 1390 -1 -1 1351 1391 -1 -1 1390 1391 -1 -1 1391 1391 4 4 1392 1391 -1 -1 1431 1391 -1 -1 1352 1392 -1 -1 1391 1392 -1 -1 1392 1392 4 4 1393 1392 -1 -1 1432 1392 -1 -1 1353 1393 -1 -1 1392 1393 -1 -1 1393 1393 4 4 1394 1393 -1 -1 1433 1393 -1 -1 1354 1394 -1 -1 1393 1394 -1 -1 1394 1394 4 4 1395 1394 -1 -1 1434 1394 -1 -1 1355 1395 -1 -1 1394 1395 -1 -1 1395 1395 4 4 1396 1395 -1 -1 1435 1395 -1 -1 1356 1396 -1 -1 1395 1396 -1 -1 1396 1396 4 4 1397 1396 -1 -1 1436 1396 -1 -1 1357 1397 -1 -1 1396 1397 -1 -1 1397 1397 4 4 1398 1397 -1 -1 1437 1397 -1 -1 1358 1398 -1 -1 1397 1398 -1 -1 1398 1398 4 4 1399 1398 -2 -2 1438 1398 -1 -1 1359 1399 -1 -1 1398 1399 -1 -1 1399 1399 4 4 1439 1399 -1 -1 1360 1400 -1 -1 1400 1400 4 4 1401 1400 -1 -1 1440 1400 -1 -1 1361 1401 -1 -1 1400 1401 -2 -2 1401 1401 4 4 1402 1401 -1 -1 1441 1401 -1 -1 1362 1402 -1 -1 1401 1402 -1 -1 1402 1402 4 4 1403 1402 -1 -1 1442 1402 -1 -1 1363 1403 -1 -1 1402 1403 -1 -1 1403 1403 4 4 1404 1403 -1 -1 1443 1403 -1 -1 1364 1404 -1 -1 1403 1404 -1 -1 1404 1404 4 4 1405 1404 -1 -1 1444 1404 -1 -1 1365 1405 -1 -1 1404 1405 -1 -1 1405 1405 4 4 1406 1405 -1 -1 1445 1405 -1 -1 1366 1406 -1 -1 1405 1406 -1 -1 1406 1406 4 4 1407 1406 -1 -1 1446 1406 -1 -1 1367 1407 -1 -1 1406 1407 -1 -1 1407 1407 4 4 1408 1407 -1 -1 1447 1407 -1 -1 1368 1408 -1 -1 1407 1408 -1 -1 1408 1408 4 4 1409 1408 -1 -1 1448 1408 -1 -1 1369 1409 -1 -1 1408 1409 -1 -1 1409 1409 4 4 1410 1409 -1 -1 1449 1409 -1 -1 1370 1410 -1 -1 1409 1410 -1 -1 1410 1410 4 4 1411 1410 -1 -1 1450 1410 -1 -1 1371 1411 -1 -1 1410 1411 -1 -1 1411 1411 4 4 1412 1411 -1 -1 1451 1411 -1 -1 1372 1412 -1 -1 1411 1412 -1 -1 1412 1412 4 4 1413 1412 -1 -1 1452 1412 -1 -1 1373 1413 -1 -1 1412 1413 -1 -1 1413 1413 4 4 1414 1413 -1 -1 1453 1413 -1 -1 1374 1414 -1 -1 1413 1414 -1 -1 1414 1414 4 4 1415 1414 -1 -1 1454 1414 -1 -1 1375 1415 -1 -1 1414 1415 -1 -1 1415 1415 4 4 1416 1415 -1 -1 1455 1415 -1 -1 1376 1416 -1 -1 1415 1416 -1 -1 1416 1416 4 4 1417 1416 -1 -1 1456 1416 -1 -1 1377 1417 -1 -1 1416 1417 -1 -1 1417 1417 4 4 1418 1417 -1 -1 1457 1417 -1 -1 1378 1418 -1 -1 1417 1418 -1 -1 1418 1418 4 4 1419 1418 -1 -1 1458 1418 -1 -1 1379 1419 -1 -1 1418 1419 -1 -1 1419 1419 4 4 1420 1419 -1 -1 1459 1419 -1 -1 1380 1420 -1 -1 1419 1420 -1 -1 1420 1420 4 4 1421 1420 -1 -1 1460 1420 -1 -1 1381 1421 -1 -1 1420 1421 -1 -1 1421 1421 4 4 1422 1421 -1 -1 1461 1421 -1 -1 1382 1422 -1 -1 1421 1422 -1 -1 1422 1422 4 4 1423 1422 -1 -1 1462 1422 -1 -1 1383 1423 -1 -1 1422 1423 -1 -1 1423 1423 4 4 1424 1423 -1 -1 1463 1423 -1 -1 1384 1424 -1 -1 1423 1424 -1 -1 1424 1424 4 4 1425 1424 -1 -1 1464 1424 -1 -1 1385 1425 -1 -1 1424 1425 -1 -1 1425 1425 4 4 1426 1425 -1 -1 1465 1425 -1 -1 1386 1426 -1 -1 1425 1426 -1 -1 1426 1426 4 4 1427 1426 -1 -1 1466 1426 -1 -1 1387 1427 -1 -1 1426 1427 -1 -1 1427 1427 4 4 1428 1427 -1 -1 1467 1427 -1 -1 1388 1428 -1 -1 1427 1428 -1 -1 1428 1428 4 4 1429 1428 -1 -1 1468 1428 -1 -1 1389 1429 -1 -1 1428 1429 -1 -1 1429 1429 4 4 1430 1429 -1 -1 1469 1429 -1 -1 1390 1430 -1 -1 1429 1430 -1 -1 1430 1430 4 4 1431 1430 -1 -1 1470 1430 -1 -1 1391 1431 -1 -1 1430 1431 -1 -1 1431 1431 4 4 1432 1431 -1 -1 1471 1431 -1 -1 1392 1432 -1 -1 1431 1432 -1 -1 1432 1432 4 4 1433 1432 -1 -1 1472 1432 -1 -1 1393 1433 -1 -1 1432 1433 -1 -1 1433 1433 4 4 1434 1433 -1 -1 1473 1433 -1 -1 1394 1434 -1 -1 1433 1434 -1 -1 1434 1434 4 4 1435 1434 -1 -1 1474 1434 -1 -1 1395 1435 -1 -1 1434 1435 -1 -1 1435 1435 4 4 1436 1435 -1 -1 1475 1435 -1 -1 1396 1436 -1 -1 1435 1436 -1 -1 1436 1436 4 4 1437 1436 -1 -1 1476 1436 -1 -1 1397 1437 -1 -1 1436 1437 -1 -1 1437 1437 4 4 1438 1437 -1 -1 1477 1437 -1 -1 1398 1438 -1 -1 1437 1438 -1 -1 1438 1438 4 4 1439 1438 -2 -2 1478 1438 -1 -1 1399 1439 -1 -1 1438 1439 -1 -1 1439 1439 4 4 1479 1439 -1 -1 1400 1440 -1 -1 1440 1440 4 4 1441 1440 -1 -1 1480 1440 -1 -1 1401 1441 -1 -1 1440 1441 -2 -2 1441 1441 4 4 1442 1441 -1 -1 1481 1441 -1 -1 1402 1442 -1 -1 1441 1442 -1 -1 1442 1442 4 4 1443 1442 -1 -1 1482 1442 -1 -1 1403 1443 -1 -1 1442 1443 -1 -1 1443 1443 4 4 1444 1443 -1 -1 1483 1443 -1 -1 1404 1444 -1 -1 1443 1444 -1 -1 1444 1444 4 4 1445 1444 -1 -1 1484 1444 -1 -1 1405 1445 -1 -1 1444 1445 -1 -1 1445 1445 4 4 1446 1445 -1 -1 1485 1445 -1 -1 1406 1446 -1 -1 1445 1446 -1 -1 1446 1446 4 4 1447 1446 -1 -1 1486 1446 -1 -1 1407 1447 -1 -1 1446 1447 -1 -1 1447 1447 4 4 1448 1447 -1 -1 1487 1447 -1 -1 1408 1448 -1 -1 1447 1448 -1 -1 1448 1448 4 4 1449 1448 -1 -1 1488 1448 -1 -1 1409 1449 -1 -1 1448 1449 -1 -1 1449 1449 4 4 1450 1449 -1 -1 1489 1449 -1 -1 1410 1450 -1 -1 1449 1450 -1 -1 1450 1450 4 4 1451 1450 -1 -1 1490 1450 -1 -1 1411 1451 -1 -1 1450 1451 -1 -1 1451 1451 4 4 1452 1451 -1 -1 1491 1451 -1 -1 1412 1452 -1 -1 1451 1452 -1 -1 1452 1452 4 4 1453 1452 -1 -1 1492 1452 -1 -1 1413 1453 -1 -1 1452 1453 -1 -1 1453 1453 4 4 1454 1453 -1 -1 1493 1453 -1 -1 1414 1454 -1 -1 1453 1454 -1 -1 1454 1454 4 4 1455 1454 -1 -1 1494 1454 -1 -1 1415 1455 -1 -1 1454 1455 -1 -1 1455 1455 4 4 1456 1455 -1 -1 1495 1455 -1 -1 1416 1456 -1 -1 1455 1456 -1 -1 1456 1456 4 4 1457 1456 -1 -1 1496 1456 -1 -1 1417 1457 -1 -1 1456 1457 -1 -1 1457 1457 4 4 1458 1457 -1 -1 1497 1457 -1 -1 1418 1458 -1 -1 1457 1458 -1 -1 1458 1458 4 4 1459 1458 -1 -1 1498 1458 -1 -1 1419 1459 -1 -1 1458 1459 -1 -1 1459 1459 4 4 1460 1459 -1 -1 1499 1459 -1 -1 1420 1460 -1 -1 1459 1460 -1 -1 1460 1460 4 4 1461 1460 -1 -1 1500 1460 -1 -1 1421 1461 -1 -1 1460 1461 -1 -1 1461 1461 4 4 1462 1461 -1 -1 1501 1461 -1 -1 1422 1462 -1 -1 1461 1462 -1 -1 1462 1462 4 4 1463 1462 -1 -1 1502 1462 -1 -1 1423 1463 -1 -1 1462 1463 -1 -1 1463 1463 4 4 1464 1463 -1 -1 1503 1463 -1 -1 1424 1464 -1 -1 1463 1464 -1 -1 1464 1464 4 4 1465 1464 -1 -1 1504 1464 -1 -1 1425 1465 -1 -1 1464 1465 -1 -1 1465 1465 4 4 1466 1465 -1 -1 1505 1465 -1 -1 1426 1466 -1 -1 1465 1466 -1 -1 1466 1466 4 4 1467 1466 -1 -1 1506 1466 -1 -1 1427 1467 -1 -1 1466 1467 -1 -1 1467 1467 4 4 1468 1467 -1 -1 1507 1467 -1 -1 1428 1468 -1 -1 1467 1468 -1 -1 1468 1468 4 4 1469 1468 -1 -1 1508 1468 -1 -1 1429 1469 -1 -1 1468 1469 -1 -1 1469 1469 4 4 1470 1469 -1 -1 1509 1469 -1 -1 1430 1470 -1 -1 1469 1470 -1 -1 1470 1470 4 4 1471 1470 -1 -1 1510 1470 -1 -1 1431 1471 -1 -1 1470 1471 -1 -1 1471 1471 4 4 1472 1471 -1 -1 1511 1471 -1 -1 1432 1472 -1 -1 1471 1472 -1 -1 1472 1472 4 4 1473 1472 -1 -1 1512 1472 -1 -1 1433 1473 -1 -1 1472 1473 -1 -1 1473 1473 4 4 1474 1473 -1 -1 1513 1473 -1 -1 1434 1474 -1 -1 1473 1474 -1 -1 1474 1474 4 4 1475 1474 -1 -1 1514 1474 -1 -1 1435 1475 -1 -1 1474 1475 -1 -1 1475 1475 4 4 1476 1475 -1 -1 1515 1475 -1 -1 1436 1476 -1 -1 1475 1476 -1 -1 1476 1476 4 4 1477 1476 -1 -1 1516 1476 -1 -1 1437 1477 -1 -1 1476 1477 -1 -1 1477 1477 4 4 1478 1477 -1 -1 1517 1477 -1 -1 1438 1478 -1 -1 1477 1478 -1 -1 1478 1478 4 4 1479 1478 -2 -2 1518 1478 -1 -1 1439 1479 -1 -1 1478 1479 -1 -1 1479 1479 4 4 1519 1479 -1 -1 1440 1480 -1 -1 1480 1480 4 4 1481 1480 -1 -1 1520 1480 -1 -1 1441 1481 -1 -1 1480 1481 -2 -2 1481 1481 4 4 1482 1481 -1 -1 1521 1481 -1 -1 1442 1482 -1 -1 1481 1482 -1 -1 1482 1482 4 4 1483 1482 -1 -1 1522 1482 -1 -1 1443 1483 -1 -1 1482 1483 -1 -1 1483 1483 4 4 1484 1483 -1 -1 1523 1483 -1 -1 1444 1484 -1 -1 1483 1484 -1 -1 1484 1484 4 4 1485 1484 -1 -1 1524 1484 -1 -1 1445 1485 -1 -1 1484 1485 -1 -1 1485 1485 4 4 1486 1485 -1 -1 1525 1485 -1 -1 1446 1486 -1 -1 1485 1486 -1 -1 1486 1486 4 4 1487 1486 -1 -1 1526 1486 -1 -1 1447 1487 -1 -1 1486 1487 -1 -1 1487 1487 4 4 1488 1487 -1 -1 1527 1487 -1 -1 1448 1488 -1 -1 1487 1488 -1 -1 1488 1488 4 4 1489 1488 -1 -1 1528 1488 -1 -1 1449 1489 -1 -1 1488 1489 -1 -1 1489 1489 4 4 1490 1489 -1 -1 1529 1489 -1 -1 1450 1490 -1 -1 1489 1490 -1 -1 1490 1490 4 4 1491 1490 -1 -1 1530 1490 -1 -1 1451 1491 -1 -1 1490 1491 -1 -1 1491 1491 4 4 1492 1491 -1 -1 1531 1491 -1 -1 1452 1492 -1 -1 1491 1492 -1 -1 1492 1492 4 4 1493 1492 -1 -1 1532 1492 -1 -1 1453 1493 -1 -1 1492 1493 -1 -1 1493 1493 4 4 1494 1493 -1 -1 1533 1493 -1 -1 1454 1494 -1 -1 1493 1494 -1 -1 1494 1494 4 4 1495 1494 -1 -1 1534 1494 -1 -1 1455 1495 -1 -1 1494 1495 -1 -1 1495 1495 4 4 1496 1495 -1 -1 1535 1495 -1 -1 1456 1496 -1 -1 1495 1496 -1 -1 1496 1496 4 4 1497 1496 -1 -1 1536 1496 -1 -1 1457 1497 -1 -1 1496 1497 -1 -1 1497 1497 4 4 1498 1497 -1 -1 1537 1497 -1 -1 1458 1498 -1 -1 1497 1498 -1 -1 1498 1498 4 4 1499 1498 -1 -1 1538 1498 -1 -1 1459 1499 -1 -1 1498 1499 -1 -1 1499 1499 4 4 1500 1499 -1 -1 1539 1499 -1 -1 1460 1500 -1 -1 1499 1500 -1 -1 1500 1500 4 4 1501 1500 -1 -1 1540 1500 -1 -1 1461 1501 -1 -1 1500 1501 -1 -1 1501 1501 4 4 1502 1501 -1 -1 1541 1501 -1 -1 1462 1502 -1 -1 1501 1502 -1 -1 1502 1502 4 4 1503 1502 -1 -1 1542 1502 -1 -1 1463 1503 -1 -1 1502 1503 -1 -1 1503 1503 4 4 1504 1503 -1 -1 1543 1503 -1 -1 1464 1504 -1 -1 1503 1504 -1 -1 1504 1504 4 4 1505 1504 -1 -1 1544 1504 -1 -1 1465 1505 -1 -1 1504 1505 -1 -1 1505 1505 4 4 1506 1505 -1 -1 1545 1505 -1 -1 1466 1506 -1 -1 1505 1506 -1 -1 1506 1506 4 4 1507 1506 -1 -1 1546 1506 -1 -1 1467 1507 -1 -1 1506 1507 -1 -1 1507 1507 4 4 1508 1507 -1 -1 1547 1507 -1 -1 1468 1508 -1 -1 1507 1508 -1 -1 1508 1508 4 4 1509 1508 -1 -1 1548 1508 -1 -1 1469 1509 -1 -1 1508 1509 -1 -1 1509 1509 4 4 1510 1509 -1 -1 1549 1509 -1 -1 1470 1510 -1 -1 1509 1510 -1 -1 1510 1510 4 4 1511 1510 -1 -1 1550 1510 -1 -1 1471 1511 -1 -1 1510 1511 -1 -1 1511 1511 4 4 1512 1511 -1 -1 1551 1511 -1 -1 1472 1512 -1 -1 1511 1512 -1 -1 1512 1512 4 4 1513 1512 -1 -1 1552 1512 -1 -1 1473 1513 -1 -1 1512 1513 -1 -1 1513 1513 4 4 1514 1513 -1 -1 1553 1513 -1 -1 1474 1514 -1 -1 1513 1514 -1 -1 1514 1514 4 4 1515 1514 -1 -1 1554 1514 -1 -1 1475 1515 -1 -1 1514 1515 -1 -1 1515 1515 4 4 1516 1515 -1 -1 1555 1515 -1 -1 1476 1516 -1 -1 1515 1516 -1 -1 1516 1516 4 4 1517 1516 -1 -1 1556 1516 -1 -1 1477 1517 -1 -1 1516 1517 -1 -1 1517 1517 4 4 1518 1517 -1 -1 1557 1517 -1 -1 1478 1518 -1 -1 1517 1518 -1 -1 1518 1518 4 4 1519 1518 -2 -2 1558 1518 -1 -1 1479 1519 -1 -1 1518 1519 -1 -1 1519 1519 4 4 1559 1519 -1 -1 1480 1520 -1 -1 1520 1520 4 4 1521 1520 -1 -1 1560 1520 -2 -2 1481 1521 -1 -1 1520 1521 -2 -2 1521 1521 4 4 1522 1521 -1 -1 1561 1521 -2 -2 1482 1522 -1 -1 1521 1522 -1 -1 1522 1522 4 4 1523 1522 -1 -1 1562 1522 -2 -2 1483 1523 -1 -1 1522 1523 -1 -1 1523 1523 4 4 1524 1523 -1 -1 1563 1523 -2 -2 1484 1524 -1 -1 1523 1524 -1 -1 1524 1524 4 4 1525 1524 -1 -1 1564 1524 -2 -2 1485 1525 -1 -1 1524 1525 -1 -1 1525 1525 4 4 1526 1525 -1 -1 1565 1525 -2 -2 1486 1526 -1 -1 1525 1526 -1 -1 1526 1526 4 4 1527 1526 -1 -1 1566 1526 -2 -2 1487 1527 -1 -1 1526 1527 -1 -1 1527 1527 4 4 1528 1527 -1 -1 1567 1527 -2 -2 1488 1528 -1 -1 1527 1528 -1 -1 1528 1528 4 4 1529 1528 -1 -1 1568 1528 -2 -2 1489 1529 -1 -1 1528 1529 -1 -1 1529 1529 4 4 1530 1529 -1 -1 1569 1529 -2 -2 1490 1530 -1 -1 1529 1530 -1 -1 1530 1530 4 4 1531 1530 -1 -1 1570 1530 -2 -2 1491 1531 -1 -1 1530 1531 -1 -1 1531 1531 4 4 1532 1531 -1 -1 1571 1531 -2 -2 1492 1532 -1 -1 1531 1532 -1 -1 1532 1532 4 4 1533 1532 -1 -1 1572 1532 -2 -2 1493 1533 -1 -1 1532 1533 -1 -1 1533 1533 4 4 1534 1533 -1 -1 1573 1533 -2 -2 1494 1534 -1 -1 1533 1534 -1 -1 1534 1534 4 4 1535 1534 -1 -1 1574 1534 -2 -2 1495 1535 -1 -1 1534 1535 -1 -1 1535 1535 4 4 1536 1535 -1 -1 1575 1535 -2 -2 1496 1536 -1 -1 1535 1536 -1 -1 1536 1536 4 4 1537 1536 -1 -1 1576 1536 -2 -2 1497 1537 -1 -1 1536 1537 -1 -1 1537 1537 4 4 1538 1537 -1 -1 1577 1537 -2 -2 1498 1538 -1 -1 1537 1538 -1 -1 1538 1538 4 4 1539 1538 -1 -1 1578 1538 -2 -2 1499 1539 -1 -1 1538 1539 -1 -1 1539 1539 4 4 1540 1539 -1 -1 1579 1539 -2 -2 1500 1540 -1 -1 1539 1540 -1 -1 1540 1540 4 4 1541 1540 -1 -1 1580 1540 -2 -2 1501 1541 -1 -1 1540 1541 -1 -1 1541 1541 4 4 1542 1541 -1 -1 1581 1541 -2 -2 1502 1542 -1 -1 1541 1542 -1 -1 1542 1542 4 4 1543 1542 -1 -1 1582 1542 -2 -2 1503 1543 -1 -1 1542 1543 -1 -1 1543 1543 4 4 1544 1543 -1 -1 1583 1543 -2 -2 1504 1544 -1 -1 1543 1544 -1 -1 1544 1544 4 4 1545 1544 -1 -1 1584 1544 -2 -2 1505 1545 -1 -1 1544 1545 -1 -1 1545 1545 4 4 1546 1545 -1 -1 1585 1545 -2 -2 1506 1546 -1 -1 1545 1546 -1 -1 1546 1546 4 4 1547 1546 -1 -1 1586 1546 -2 -2 1507 1547 -1 -1 1546 1547 -1 -1 1547 1547 4 4 1548 1547 -1 -1 1587 1547 -2 -2 1508 1548 -1 -1 1547 1548 -1 -1 1548 1548 4 4 1549 1548 -1 -1 1588 1548 -2 -2 1509 1549 -1 -1 1548 1549 -1 -1 1549 1549 4 4 1550 1549 -1 -1 1589 1549 -2 -2 1510 1550 -1 -1 1549 1550 -1 -1 1550 1550 4 4 1551 1550 -1 -1 1590 1550 -2 -2 1511 1551 -1 -1 1550 1551 -1 -1 1551 1551 4 4 1552 1551 -1 -1 1591 1551 -2 -2 1512 1552 -1 -1 1551 1552 -1 -1 1552 1552 4 4 1553 1552 -1 -1 1592 1552 -2 -2 1513 1553 -1 -1 1552 1553 -1 -1 1553 1553 4 4 1554 1553 -1 -1 1593 1553 -2 -2 1514 1554 -1 -1 1553 1554 -1 -1 1554 1554 4 4 1555 1554 -1 -1 1594 1554 -2 -2 1515 1555 -1 -1 1554 1555 -1 -1 1555 1555 4 4 1556 1555 -1 -1 1595 1555 -2 -2 1516 1556 -1 -1 1555 1556 -1 -1 1556 1556 4 4 1557 1556 -1 -1 1596 1556 -2 -2 1517 1557 -1 -1 1556 1557 -1 -1 1557 1557 4 4 1558 1557 -1 -1 1597 1557 -2 -2 1518 1558 -1 -1 1557 1558 -1 -1 1558 1558 4 4 1559 1558 -2 -2 1598 1558 -2 -2 1519 1559 -1 -1 1558 1559 -1 -1 1559 1559 4 4 1599 1559 -2 -2 1520 1560 -1 -1 1560 1560 4 4 1561 1560 -1 -1 1521 1561 -1 -1 1560 1561 -2 -2 1561 1561 4 4 1562 1561 -1 -1 1522 1562 -1 -1 1561 1562 -1 -1 1562 1562 4 4 1563 1562 -1 -1 1523 1563 -1 -1 1562 1563 -1 -1 1563 1563 4 4 1564 1563 -1 -1 1524 1564 -1 -1 1563 1564 -1 -1 1564 1564 4 4 1565 1564 -1 -1 1525 1565 -1 -1 1564 1565 -1 -1 1565 1565 4 4 1566 1565 -1 -1 1526 1566 -1 -1 1565 1566 -1 -1 1566 1566 4 4 1567 1566 -1 -1 1527 1567 -1 -1 1566 1567 -1 -1 1567 1567 4 4 1568 1567 -1 -1 1528 1568 -1 -1 1567 1568 -1 -1 1568 1568 4 4 1569 1568 -1 -1 1529 1569 -1 -1 1568 1569 -1 -1 1569 1569 4 4 1570 1569 -1 -1 1530 1570 -1 -1 1569 1570 -1 -1 1570 1570 4 4 1571 1570 -1 -1 1531 1571 -1 -1 1570 1571 -1 -1 1571 1571 4 4 1572 1571 -1 -1 1532 1572 -1 -1 1571 1572 -1 -1 1572 1572 4 4 1573 1572 -1 -1 1533 1573 -1 -1 1572 1573 -1 -1 1573 1573 4 4 1574 1573 -1 -1 1534 1574 -1 -1 1573 1574 -1 -1 1574 1574 4 4 1575 1574 -1 -1 1535 1575 -1 -1 1574 1575 -1 -1 1575 1575 4 4 1576 1575 -1 -1 1536 1576 -1 -1 1575 1576 -1 -1 1576 1576 4 4 1577 1576 -1 -1 1537 1577 -1 -1 1576 1577 -1 -1 1577 1577 4 4 1578 1577 -1 -1 1538 1578 -1 -1 1577 1578 -1 -1 1578 1578 4 4 1579 1578 -1 -1 1539 1579 -1 -1 1578 1579 -1 -1 1579 1579 4 4 1580 1579 -1 -1 1540 1580 -1 -1 1579 1580 -1 -1 1580 1580 4 4 1581 1580 -1 -1 1541 1581 -1 -1 1580 1581 -1 -1 1581 1581 4 4 1582 1581 -1 -1 1542 1582 -1 -1 1581 1582 -1 -1 1582 1582 4 4 1583 1582 -1 -1 1543 1583 -1 -1 1582 1583 -1 -1 1583 1583 4 4 1584 1583 -1 -1 1544 1584 -1 -1 1583 1584 -1 -1 1584 1584 4 4 1585 1584 -1 -1 1545 1585 -1 -1 1584 1585 -1 -1 1585 1585 4 4 1586 1585 -1 -1 1546 1586 -1 -1 1585 1586 -1 -1 1586 1586 4 4 1587 1586 -1 -1 1547 1587 -1 -1 1586 1587 -1 -1 1587 1587 4 4 1588 1587 -1 -1 1548 1588 -1 -1 1587 1588 -1 -1 1588 1588 4 4 1589 1588 -1 -1 1549 1589 -1 -1 1588 1589 -1 -1 1589 1589 4 4 1590 1589 -1 -1 1550 1590 -1 -1 1589 1590 -1 -1 1590 1590 4 4 1591 1590 -1 -1 1551 1591 -1 -1 1590 1591 -1 -1 1591 1591 4 4 1592 1591 -1 -1 1552 1592 -1 -1 1591 1592 -1 -1 1592 1592 4 4 1593 1592 -1 -1 1553 1593 -1 -1 1592 1593 -1 -1 1593 1593 4 4 1594 1593 -1 -1 1554 1594 -1 -1 1593 1594 -1 -1 1594 1594 4 4 1595 1594 -1 -1 1555 1595 -1 -1 1594 1595 -1 -1 1595 1595 4 4 1596 1595 -1 -1 1556 1596 -1 -1 1595 1596 -1 -1 1596 1596 4 4 1597 1596 -1 -1 1557 1597 -1 -1 1596 1597 -1 -1 1597 1597 4 4 1598 1597 -1 -1 1558 1598 -1 -1 1597 1598 -1 -1 1598 1598 4 4 1599 1598 -2 -2 1559 1599 -1 -1 1598 1599 -1 -1 1599 1599 4 4 SuiteSparse/CXSparse/Matrix/c_west00670000644001170100242450000001201110376375002016425 0ustar davisfac44 55 -1.863354 0.1 54 61 -1.863354 0.1 29 37 -1.567398 0.1 44 56 -1.490683 0.1 54 62 -1.490683 0.1 9 12 -1.265823 0.1 29 38 -1.253918 0.1 44 57 -1.118012 0.1 54 63 -1.118012 0.1 15 31 -1.05 0.1 16 32 -1.05 0.1 17 33 -1.05 0.1 18 34 -1.05 0.1 19 35 -1.05 0.1 24 31 -1.05 0.1 25 32 -1.05 0.1 26 33 -1.05 0.1 27 34 -1.05 0.1 28 35 -1.05 0.1 9 13 -1.012658 0.1 10 20 -1 0.1 11 21 -1 0.1 12 22 -1 0.1 13 23 -1 0.1 14 24 -1 0.1 30 49 -0.9722222 0.1 31 50 -0.9722222 0.1 32 51 -0.9722222 0.1 33 52 -0.9722222 0.1 34 53 -0.9722222 0.1 39 49 -0.9722222 0.1 40 50 -0.9722222 0.1 41 51 -0.9722222 0.1 42 52 -0.9722222 0.1 43 53 -0.9722222 0.1 35 25 -0.9583187 0.1 36 26 -0.9583187 0.1 37 27 -0.9583187 0.1 38 28 -0.9583187 0.1 49 55 -0.9444444 0.1 50 56 -0.9444444 0.1 51 57 -0.9444444 0.1 52 58 -0.9444444 0.1 53 59 -0.9444444 0.1 29 39 -0.9404389 0.1 20 1 -0.9159533 0.1 21 2 -0.9159533 0.1 22 3 -0.9159533 0.1 23 4 -0.9159533 0.1 0 7 -0.8341818 0.1 1 8 -0.8341818 0.1 2 9 -0.8341818 0.1 3 10 -0.8341818 0.1 45 43 -0.8242248 0.1 46 44 -0.8242248 0.1 47 45 -0.8242248 0.1 48 46 -0.8242248 0.1 4 1 -0.8 0.1 5 2 -0.8 0.1 6 3 -0.8 0.1 7 4 -0.8 0.1 8 5 -0.8 0.1 9 14 -0.7594937 0.1 44 58 -0.7453416 0.1 54 64 -0.7453416 0.1 29 40 -0.6269592 0.1 9 15 -0.5063291 0.1 44 59 -0.3726708 0.1 54 65 -0.3726708 0.1 0 17 -0.3361556 0.1 29 41 -0.3134796 0.1 1 17 -0.2939196 0.1 20 42 -0.2788416 0.1 4 0 -0.2788416 0.1 21 42 -0.2680186 0.1 5 0 -0.2680186 0.1 52 54 -0.2667757 0.1 53 54 -0.2630706 0.1 48 66 -0.2541193 0.1 9 16 -0.2531646 0.1 37 60 -0.2475675 0.1 47 66 -0.2421498 0.1 33 48 -0.2362845 0.1 42 48 -0.2362845 0.1 36 60 -0.2356469 0.1 22 42 -0.2323717 0.1 6 0 -0.2323717 0.1 32 48 -0.2303917 0.1 41 48 -0.2303917 0.1 17 30 -0.2286264 0.1 26 30 -0.2286264 0.1 16 30 -0.2232997 0.1 25 30 -0.2232997 0.1 2 17 -0.2214815 0.1 12 19 -0.2144206 0.1 11 19 -0.2140392 0.1 51 54 -0.2122056 0.1 38 60 -0.2074873 0.1 10 19 -0.2071759 0.1 15 30 -0.2070986 0.1 24 30 -0.2070986 0.1 35 60 -0.2069954 0.1 18 30 -0.2024528 0.1 27 30 -0.2024528 0.1 13 19 -0.1986768 0.1 31 48 -0.1947711 0.1 40 48 -0.1947711 0.1 46 66 -0.1918557 0.1 34 48 -0.18039 0.1 43 48 -0.18039 0.1 14 19 -0.1656874 0.1 30 48 -0.1581626 0.1 39 48 -0.1581626 0.1 23 42 -0.1575082 0.1 7 0 -0.1575082 0.1 50 54 -0.1514908 0.1 45 66 -0.1443354 0.1 19 30 -0.1385226 0.1 28 30 -0.1385226 0.1 3 17 -0.118986 0.1 49 54 -0.1064573 0.1 8 0 -0.06325978 0.1 8 6 0.01178291 0.1 28 0 0.03162989 0.1 7 6 0.04759439 0.1 39 54 0.05322864 0.1 40 54 0.07574542 0.1 27 0 0.07875411 0.1 24 36 0.08147449 0.1 6 6 0.08859262 0.1 30 36 0.09052721 0.1 28 36 0.09241909 0.1 25 36 0.09789015 0.1 19 19 0.09941246 0.1 34 36 0.1026879 0.1 41 54 0.1061028 0.1 31 36 0.1087668 0.1 26 36 0.1131608 0.1 27 36 0.1150555 0.1 26 0 0.1161859 0.1 5 6 0.1175679 0.1 18 19 0.1192061 0.1 15 19 0.1243055 0.1 32 36 0.1257342 0.1 33 36 0.1278394 0.1 16 19 0.1284235 0.1 17 19 0.1286524 0.1 43 54 0.1315353 0.1 42 54 0.1333878 0.1 25 0 0.1340093 0.1 4 6 0.1344622 0.1 24 0 0.1394208 0.1 30 43 0.25 0.1 31 44 0.25 0.1 32 45 0.25 0.1 33 46 0.25 0.1 34 47 0.25 0.1 10 12 0.3333333 0.1 11 13 0.3333333 0.1 12 14 0.3333333 0.1 13 15 0.3333333 0.1 14 16 0.3333333 0.1 24 1 0.4 0.1 25 2 0.4 0.1 26 3 0.4 0.1 27 4 0.4 0.1 28 5 0.4 0.1 4 12 0.4 0.1 4 7 0.4 0.1 5 13 0.4 0.1 5 8 0.4 0.1 6 14 0.4 0.1 6 9 0.4 0.1 7 10 0.4 0.1 7 15 0.4 0.1 8 11 0.4 0.1 8 16 0.4 0.1 49 61 0.4444444 0.1 50 62 0.4444444 0.1 51 63 0.4444444 0.1 52 64 0.4444444 0.1 53 65 0.4444444 0.1 15 25 0.45 0.1 16 26 0.45 0.1 17 27 0.45 0.1 18 28 0.45 0.1 19 29 0.45 0.1 39 55 0.4722222 0.1 40 56 0.4722222 0.1 41 57 0.4722222 0.1 42 58 0.4722222 0.1 43 59 0.4722222 0.1 39 25 0.5 0.1 40 26 0.5 0.1 41 27 0.5 0.1 42 28 0.5 0.1 43 29 0.5 0.1 49 43 0.5 0.1 50 44 0.5 0.1 51 45 0.5 0.1 52 46 0.5 0.1 53 47 0.5 0.1 3 15 0.5063291 0.1 15 20 0.6 0.1 16 21 0.6 0.1 17 22 0.6 0.1 18 23 0.6 0.1 19 24 0.6 0.1 23 40 0.6269592 0.1 24 37 0.65 0.1 25 38 0.65 0.1 26 39 0.65 0.1 27 40 0.65 0.1 28 41 0.65 0.1 14 18 0.6666667 0.1 30 37 0.7222222 0.1 31 38 0.7222222 0.1 32 39 0.7222222 0.1 33 40 0.7222222 0.1 34 41 0.7222222 0.1 38 58 0.7453416 0.1 48 64 0.7453416 0.1 2 14 0.7594937 0.1 22 39 0.9404389 0.1 59 31 0.5 0.1 59 32 0.5 0.1 59 33 0.5 0.1 59 34 0.5 0.1 59 35 0.5 0.1 29 42 1 0.1 44 60 1 0.1 54 66 1 0.1 55 18 1 0.1 56 10 1 0.1 56 11 1 0.1 56 7 1 0.1 56 8 1 0.1 56 9 1 0.1 57 12 1 0.1 57 13 1 0.1 57 14 1 0.1 57 15 1 0.1 57 16 1 0.1 58 20 1 0.1 58 21 1 0.1 58 22 1 0.1 58 23 1 0.1 58 24 1 0.1 59 31 0.5 0.1 59 32 0.5 0.1 59 33 0.5 0.1 59 34 0.5 0.1 59 35 0.5 0.1 60 1 1 0.1 60 2 1 0.1 60 3 1 0.1 60 4 1 0.1 60 5 1 0.1 61 37 1 0.1 61 38 1 0.1 61 39 1 0.1 61 40 1 0.1 61 41 1 0.1 62 49 1 0.1 62 50 1 0.1 62 51 1 0.1 62 52 1 0.1 62 53 1 0.1 63 25 1 0.1 63 26 1 0.1 63 27 1 0.1 63 28 1 0.1 63 29 1 0.1 64 55 1 0.1 64 56 1 0.1 64 57 1 0.1 64 58 1 0.1 64 59 1 0.1 65 43 1 0.1 65 44 1 0.1 65 45 1 0.1 65 46 1 0.1 65 47 1 0.1 66 61 1 0.1 66 62 1 0.1 66 63 1 0.1 66 64 1 0.1 66 65 1 0.1 9 17 1 0.1 1 13 1.012658 0.1 37 57 1.118012 0.1 47 63 1.118012 0.1 21 38 1.253918 0.1 0 12 1.265823 0.1 36 56 1.490683 0.1 46 62 1.490683 0.1 20 37 1.567398 0.1 35 55 1.863354 0.1 45 61 1.863354 0.1 SuiteSparse/CXSparse/Include/0000755001170100242450000000000010711427651015026 5ustar davisfacSuiteSparse/CXSparse/Include/cs.h0000644001170100242450000007406010711425530015605 0ustar davisfac#ifndef _CXS_H #define _CXS_H #include #include #include #include #ifdef MATLAB_MEX_FILE #include "mex.h" #endif #ifdef __cplusplus #ifndef NCOMPLEX #include typedef std::complex cs_complex_t ; #endif extern "C" { #else #ifndef NCOMPLEX #include #define cs_complex_t double _Complex #endif #endif #define CS_VER 2 /* CXSparse Version 2.2.1 */ #define CS_SUBVER 2 #define CS_SUBSUB 1 #define CS_DATE "Nov 1, 2007" /* CXSparse release date */ #define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006-2007" #define CXSPARSE /* define UF_long */ #include "UFconfig.h" /* -------------------------------------------------------------------------- */ /* double/int version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_di_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_di ; cs_di *cs_di_add (const cs_di *A, const cs_di *B, double alpha, double beta) ; int cs_di_cholsol (int order, const cs_di *A, double *b) ; int cs_di_dupl (cs_di *A) ; int cs_di_entry (cs_di *T, int i, int j, double x) ; int cs_di_lusol (int order, const cs_di *A, double *b, double tol) ; int cs_di_gaxpy (const cs_di *A, const double *x, double *y) ; cs_di *cs_di_multiply (const cs_di *A, const cs_di *B) ; int cs_di_qrsol (int order, const cs_di *A, double *b) ; cs_di *cs_di_transpose (const cs_di *A, int values) ; cs_di *cs_di_compress (const cs_di *T) ; double cs_di_norm (const cs_di *A) ; int cs_di_print (const cs_di *A, int brief) ; cs_di *cs_di_load (FILE *f) ; /* utilities */ void *cs_di_calloc (int n, size_t size) ; void *cs_di_free (void *p) ; void *cs_di_realloc (void *p, int n, size_t size, int *ok) ; cs_di *cs_di_spalloc (int m, int n, int nzmax, int values, int t) ; cs_di *cs_di_spfree (cs_di *A) ; int cs_di_sprealloc (cs_di *A, int nzmax) ; void *cs_di_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_di_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_dis ; typedef struct cs_di_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_di *L ; /* L for LU and Cholesky, V for QR */ cs_di *U ; /* U for LU, r for QR, not used for Cholesky */ int *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_din ; typedef struct cs_di_dmperm_results /* cs_di_dmperm or cs_di_scc output */ { int *p ; /* size m, row permutation */ int *q ; /* size n, column permutation */ int *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ int *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } cs_did ; int *cs_di_amd (int order, const cs_di *A) ; cs_din *cs_di_chol (const cs_di *A, const cs_dis *S) ; cs_did *cs_di_dmperm (const cs_di *A, int seed) ; int cs_di_droptol (cs_di *A, double tol) ; int cs_di_dropzeros (cs_di *A) ; int cs_di_happly (const cs_di *V, int i, double beta, double *x) ; int cs_di_ipvec (const int *p, const double *b, double *x, int n) ; int cs_di_lsolve (const cs_di *L, double *x) ; int cs_di_ltsolve (const cs_di *L, double *x) ; cs_din *cs_di_lu (const cs_di *A, const cs_dis *S, double tol) ; cs_di *cs_di_permute (const cs_di *A, const int *pinv, const int *q, int values) ; int *cs_di_pinv (const int *p, int n) ; int cs_di_pvec (const int *p, const double *b, double *x, int n) ; cs_din *cs_di_qr (const cs_di *A, const cs_dis *S) ; cs_dis *cs_di_schol (int order, const cs_di *A) ; cs_dis *cs_di_sqr (int order, const cs_di *A, int qr) ; cs_di *cs_di_symperm (const cs_di *A, const int *pinv, int values) ; int cs_di_usolve (const cs_di *U, double *x) ; int cs_di_utsolve (const cs_di *U, double *x) ; int cs_di_updown (cs_di *L, int sigma, const cs_di *C, const int *parent) ; /* utilities */ cs_dis *cs_di_sfree (cs_dis *S) ; cs_din *cs_di_nfree (cs_din *N) ; cs_did *cs_di_dfree (cs_did *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_di_counts (const cs_di *A, const int *parent, const int *post, int ata) ; double cs_di_cumsum (int *p, int *c, int n) ; int cs_di_dfs (int j, cs_di *G, int top, int *xi, int *pstack, const int *pinv) ; int *cs_di_etree (const cs_di *A, int ata) ; int cs_di_fkeep (cs_di *A, int (*fkeep) (int, int, double, void *), void *other) ; double cs_di_house (double *x, double *beta, int n) ; int *cs_di_maxtrans (const cs_di *A, int seed) ; int *cs_di_post (const int *parent, int n) ; cs_did *cs_di_scc (cs_di *A) ; int cs_di_scatter (const cs_di *A, int j, double beta, int *w, double *x, int mark, cs_di *C, int nz) ; int cs_di_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; int cs_di_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) ; int cs_di_reach (cs_di *G, const cs_di *B, int k, int *xi, const int *pinv) ; int cs_di_spsolve (cs_di *L, const cs_di *B, int k, int *xi, double *x, const int *pinv, int lo) ; int cs_di_ereach (const cs_di *A, int k, const int *parent, int *s, int *w) ; int *cs_di_randperm (int n, int seed) ; /* utilities */ cs_did *cs_di_dalloc (int m, int n) ; cs_di *cs_di_done (cs_di *C, void *w, void *x, int ok) ; int *cs_di_idone (int *p, cs_di *C, void *w, int ok) ; cs_din *cs_di_ndone (cs_din *N, cs_di *C, void *w, void *x, int ok) ; cs_did *cs_di_ddone (cs_did *D, cs_di *C, void *w, int ok) ; /* -------------------------------------------------------------------------- */ /* double/UF_long version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_dl_sparse /* matrix in compressed-column or triplet form */ { UF_long nzmax ; /* maximum number of entries */ UF_long m ; /* number of rows */ UF_long n ; /* number of columns */ UF_long *p ; /* column pointers (size n+1) or col indlces (size nzmax) */ UF_long *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ UF_long nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_dl ; cs_dl *cs_dl_add (const cs_dl *A, const cs_dl *B, double alpha, double beta) ; UF_long cs_dl_cholsol (UF_long order, const cs_dl *A, double *b) ; UF_long cs_dl_dupl (cs_dl *A) ; UF_long cs_dl_entry (cs_dl *T, UF_long i, UF_long j, double x) ; UF_long cs_dl_lusol (UF_long order, const cs_dl *A, double *b, double tol) ; UF_long cs_dl_gaxpy (const cs_dl *A, const double *x, double *y) ; cs_dl *cs_dl_multiply (const cs_dl *A, const cs_dl *B) ; UF_long cs_dl_qrsol (UF_long order, const cs_dl *A, double *b) ; cs_dl *cs_dl_transpose (const cs_dl *A, UF_long values) ; cs_dl *cs_dl_compress (const cs_dl *T) ; double cs_dl_norm (const cs_dl *A) ; UF_long cs_dl_print (const cs_dl *A, UF_long brief) ; cs_dl *cs_dl_load (FILE *f) ; /* utilities */ void *cs_dl_calloc (UF_long n, size_t size) ; void *cs_dl_free (void *p) ; void *cs_dl_realloc (void *p, UF_long n, size_t size, UF_long *ok) ; cs_dl *cs_dl_spalloc (UF_long m, UF_long n, UF_long nzmax, UF_long values, UF_long t) ; cs_dl *cs_dl_spfree (cs_dl *A) ; UF_long cs_dl_sprealloc (cs_dl *A, UF_long nzmax) ; void *cs_dl_malloc (UF_long n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_dl_symbolic /* symbolic Cholesky, LU, or QR analysis */ { UF_long *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ UF_long *q ; /* fill-reducing column permutation for LU and QR */ UF_long *parent ; /* elimination tree for Cholesky and QR */ UF_long *cp ; /* column pointers for Cholesky, row counts for QR */ UF_long *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ UF_long m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_dls ; typedef struct cs_dl_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_dl *L ; /* L for LU and Cholesky, V for QR */ cs_dl *U ; /* U for LU, r for QR, not used for Cholesky */ UF_long *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_dln ; typedef struct cs_dl_dmperm_results /* cs_dl_dmperm or cs_dl_scc output */ { UF_long *p ; /* size m, row permutation */ UF_long *q ; /* size n, column permutation */ UF_long *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ UF_long *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ UF_long nb ; /* # of blocks in fine dmperm decomposition */ UF_long rr [5] ; /* coarse row decomposition */ UF_long cc [5] ; /* coarse column decomposition */ } cs_dld ; UF_long *cs_dl_amd (UF_long order, const cs_dl *A) ; cs_dln *cs_dl_chol (const cs_dl *A, const cs_dls *S) ; cs_dld *cs_dl_dmperm (const cs_dl *A, UF_long seed) ; UF_long cs_dl_droptol (cs_dl *A, double tol) ; UF_long cs_dl_dropzeros (cs_dl *A) ; UF_long cs_dl_happly (const cs_dl *V, UF_long i, double beta, double *x) ; UF_long cs_dl_ipvec (const UF_long *p, const double *b, double *x, UF_long n) ; UF_long cs_dl_lsolve (const cs_dl *L, double *x) ; UF_long cs_dl_ltsolve (const cs_dl *L, double *x) ; cs_dln *cs_dl_lu (const cs_dl *A, const cs_dls *S, double tol) ; cs_dl *cs_dl_permute (const cs_dl *A, const UF_long *pinv, const UF_long *q, UF_long values) ; UF_long *cs_dl_pinv (const UF_long *p, UF_long n) ; UF_long cs_dl_pvec (const UF_long *p, const double *b, double *x, UF_long n) ; cs_dln *cs_dl_qr (const cs_dl *A, const cs_dls *S) ; cs_dls *cs_dl_schol (UF_long order, const cs_dl *A) ; cs_dls *cs_dl_sqr (UF_long order, const cs_dl *A, UF_long qr) ; cs_dl *cs_dl_symperm (const cs_dl *A, const UF_long *pinv, UF_long values) ; UF_long cs_dl_usolve (const cs_dl *U, double *x) ; UF_long cs_dl_utsolve (const cs_dl *U, double *x) ; UF_long cs_dl_updown (cs_dl *L, UF_long sigma, const cs_dl *C, const UF_long *parent) ; /* utilities */ cs_dls *cs_dl_sfree (cs_dls *S) ; cs_dln *cs_dl_nfree (cs_dln *N) ; cs_dld *cs_dl_dfree (cs_dld *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ UF_long *cs_dl_counts (const cs_dl *A, const UF_long *parent, const UF_long *post, UF_long ata) ; double cs_dl_cumsum (UF_long *p, UF_long *c, UF_long n) ; UF_long cs_dl_dfs (UF_long j, cs_dl *G, UF_long top, UF_long *xi, UF_long *pstack, const UF_long *pinv) ; UF_long *cs_dl_etree (const cs_dl *A, UF_long ata) ; UF_long cs_dl_fkeep (cs_dl *A, UF_long (*fkeep) (UF_long, UF_long, double, void *), void *other) ; double cs_dl_house (double *x, double *beta, UF_long n) ; UF_long *cs_dl_maxtrans (const cs_dl *A, UF_long seed) ; UF_long *cs_dl_post (const UF_long *parent, UF_long n) ; cs_dld *cs_dl_scc (cs_dl *A) ; UF_long cs_dl_scatter (const cs_dl *A, UF_long j, double beta, UF_long *w, double *x, UF_long mark,cs_dl *C, UF_long nz) ; UF_long cs_dl_tdfs (UF_long j, UF_long k, UF_long *head, const UF_long *next, UF_long *post, UF_long *stack) ; UF_long cs_dl_leaf (UF_long i, UF_long j, const UF_long *first, UF_long *maxfirst, UF_long *prevleaf, UF_long *ancestor, UF_long *jleaf) ; UF_long cs_dl_reach (cs_dl *G, const cs_dl *B, UF_long k, UF_long *xi, const UF_long *pinv) ; UF_long cs_dl_spsolve (cs_dl *L, const cs_dl *B, UF_long k, UF_long *xi, double *x, const UF_long *pinv, UF_long lo) ; UF_long cs_dl_ereach (const cs_dl *A, UF_long k, const UF_long *parent, UF_long *s, UF_long *w) ; UF_long *cs_dl_randperm (UF_long n, UF_long seed) ; /* utilities */ cs_dld *cs_dl_dalloc (UF_long m, UF_long n) ; cs_dl *cs_dl_done (cs_dl *C, void *w, void *x, UF_long ok) ; UF_long *cs_dl_idone (UF_long *p, cs_dl *C, void *w, UF_long ok) ; cs_dln *cs_dl_ndone (cs_dln *N, cs_dl *C, void *w, void *x, UF_long ok) ; cs_dld *cs_dl_ddone (cs_dld *D, cs_dl *C, void *w, UF_long ok) ; /* -------------------------------------------------------------------------- */ /* complex/int version of CXSparse */ /* -------------------------------------------------------------------------- */ #ifndef NCOMPLEX /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_ci_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ cs_complex_t *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_ci ; cs_ci *cs_ci_add (const cs_ci *A, const cs_ci *B, cs_complex_t alpha, cs_complex_t beta) ; int cs_ci_cholsol (int order, const cs_ci *A, cs_complex_t *b) ; int cs_ci_dupl (cs_ci *A) ; int cs_ci_entry (cs_ci *T, int i, int j, cs_complex_t x) ; int cs_ci_lusol (int order, const cs_ci *A, cs_complex_t *b, double tol) ; int cs_ci_gaxpy (const cs_ci *A, const cs_complex_t *x, cs_complex_t *y) ; cs_ci *cs_ci_multiply (const cs_ci *A, const cs_ci *B) ; int cs_ci_qrsol (int order, const cs_ci *A, cs_complex_t *b) ; cs_ci *cs_ci_transpose (const cs_ci *A, int values) ; cs_ci *cs_ci_compress (const cs_ci *T) ; double cs_ci_norm (const cs_ci *A) ; int cs_ci_print (const cs_ci *A, int brief) ; cs_ci *cs_ci_load (FILE *f) ; /* utilities */ void *cs_ci_calloc (int n, size_t size) ; void *cs_ci_free (void *p) ; void *cs_ci_realloc (void *p, int n, size_t size, int *ok) ; cs_ci *cs_ci_spalloc (int m, int n, int nzmax, int values, int t) ; cs_ci *cs_ci_spfree (cs_ci *A) ; int cs_ci_sprealloc (cs_ci *A, int nzmax) ; void *cs_ci_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_ci_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_cis ; typedef struct cs_ci_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_ci *L ; /* L for LU and Cholesky, V for QR */ cs_ci *U ; /* U for LU, r for QR, not used for Cholesky */ int *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_cin ; typedef struct cs_ci_dmperm_results /* cs_ci_dmperm or cs_ci_scc output */ { int *p ; /* size m, row permutation */ int *q ; /* size n, column permutation */ int *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ int *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } cs_cid ; int *cs_ci_amd (int order, const cs_ci *A) ; cs_cin *cs_ci_chol (const cs_ci *A, const cs_cis *S) ; cs_cid *cs_ci_dmperm (const cs_ci *A, int seed) ; int cs_ci_droptol (cs_ci *A, double tol) ; int cs_ci_dropzeros (cs_ci *A) ; int cs_ci_happly (const cs_ci *V, int i, double beta, cs_complex_t *x) ; int cs_ci_ipvec (const int *p, const cs_complex_t *b, cs_complex_t *x, int n) ; int cs_ci_lsolve (const cs_ci *L, cs_complex_t *x) ; int cs_ci_ltsolve (const cs_ci *L, cs_complex_t *x) ; cs_cin *cs_ci_lu (const cs_ci *A, const cs_cis *S, double tol) ; cs_ci *cs_ci_permute (const cs_ci *A, const int *pinv, const int *q, int values) ; int *cs_ci_pinv (const int *p, int n) ; int cs_ci_pvec (const int *p, const cs_complex_t *b, cs_complex_t *x, int n) ; cs_cin *cs_ci_qr (const cs_ci *A, const cs_cis *S) ; cs_cis *cs_ci_schol (int order, const cs_ci *A) ; cs_cis *cs_ci_sqr (int order, const cs_ci *A, int qr) ; cs_ci *cs_ci_symperm (const cs_ci *A, const int *pinv, int values) ; int cs_ci_usolve (const cs_ci *U, cs_complex_t *x) ; int cs_ci_utsolve (const cs_ci *U, cs_complex_t *x) ; int cs_ci_updown (cs_ci *L, int sigma, const cs_ci *C, const int *parent) ; /* utilities */ cs_cis *cs_ci_sfree (cs_cis *S) ; cs_cin *cs_ci_nfree (cs_cin *N) ; cs_cid *cs_ci_dfree (cs_cid *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_ci_counts (const cs_ci *A, const int *parent, const int *post, int ata) ; double cs_ci_cumsum (int *p, int *c, int n) ; int cs_ci_dfs (int j, cs_ci *G, int top, int *xi, int *pstack, const int *pinv) ; int *cs_ci_etree (const cs_ci *A, int ata) ; int cs_ci_fkeep (cs_ci *A, int (*fkeep) (int, int, cs_complex_t, void *), void *other) ; cs_complex_t cs_ci_house (cs_complex_t *x, double *beta, int n) ; int *cs_ci_maxtrans (const cs_ci *A, int seed) ; int *cs_ci_post (const int *parent, int n) ; cs_cid *cs_ci_scc (cs_ci *A) ; int cs_ci_scatter (const cs_ci *A, int j, cs_complex_t beta, int *w, cs_complex_t *x, int mark,cs_ci *C, int nz) ; int cs_ci_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; int cs_ci_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) ; int cs_ci_reach (cs_ci *G, const cs_ci *B, int k, int *xi, const int *pinv) ; int cs_ci_spsolve (cs_ci *L, const cs_ci *B, int k, int *xi, cs_complex_t *x, const int *pinv, int lo) ; int cs_ci_ereach (const cs_ci *A, int k, const int *parent, int *s, int *w) ; int *cs_ci_randperm (int n, int seed) ; /* utilities */ cs_cid *cs_ci_dalloc (int m, int n) ; cs_ci *cs_ci_done (cs_ci *C, void *w, void *x, int ok) ; int *cs_ci_idone (int *p, cs_ci *C, void *w, int ok) ; cs_cin *cs_ci_ndone (cs_cin *N, cs_ci *C, void *w, void *x, int ok) ; cs_cid *cs_ci_ddone (cs_cid *D, cs_ci *C, void *w, int ok) ; /* -------------------------------------------------------------------------- */ /* complex/UF_long version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_cl_sparse /* matrix in compressed-column or triplet form */ { UF_long nzmax ; /* maximum number of entries */ UF_long m ; /* number of rows */ UF_long n ; /* number of columns */ UF_long *p ; /* column pointers (size n+1) or col indlces (size nzmax) */ UF_long *i ; /* row indices, size nzmax */ cs_complex_t *x ; /* numerical values, size nzmax */ UF_long nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_cl ; cs_cl *cs_cl_add (const cs_cl *A, const cs_cl *B, cs_complex_t alpha, cs_complex_t beta) ; UF_long cs_cl_cholsol (UF_long order, const cs_cl *A, cs_complex_t *b) ; UF_long cs_cl_dupl (cs_cl *A) ; UF_long cs_cl_entry (cs_cl *T, UF_long i, UF_long j, cs_complex_t x) ; UF_long cs_cl_lusol (UF_long order, const cs_cl *A, cs_complex_t *b, double tol) ; UF_long cs_cl_gaxpy (const cs_cl *A, const cs_complex_t *x, cs_complex_t *y) ; cs_cl *cs_cl_multiply (const cs_cl *A, const cs_cl *B) ; UF_long cs_cl_qrsol (UF_long order, const cs_cl *A, cs_complex_t *b) ; cs_cl *cs_cl_transpose (const cs_cl *A, UF_long values) ; cs_cl *cs_cl_compress (const cs_cl *T) ; double cs_cl_norm (const cs_cl *A) ; UF_long cs_cl_print (const cs_cl *A, UF_long brief) ; cs_cl *cs_cl_load (FILE *f) ; /* utilities */ void *cs_cl_calloc (UF_long n, size_t size) ; void *cs_cl_free (void *p) ; void *cs_cl_realloc (void *p, UF_long n, size_t size, UF_long *ok) ; cs_cl *cs_cl_spalloc (UF_long m, UF_long n, UF_long nzmax, UF_long values, UF_long t) ; cs_cl *cs_cl_spfree (cs_cl *A) ; UF_long cs_cl_sprealloc (cs_cl *A, UF_long nzmax) ; void *cs_cl_malloc (UF_long n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_cl_symbolic /* symbolic Cholesky, LU, or QR analysis */ { UF_long *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ UF_long *q ; /* fill-reducing column permutation for LU and QR */ UF_long *parent ; /* elimination tree for Cholesky and QR */ UF_long *cp ; /* column pointers for Cholesky, row counts for QR */ UF_long *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ UF_long m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_cls ; typedef struct cs_cl_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_cl *L ; /* L for LU and Cholesky, V for QR */ cs_cl *U ; /* U for LU, r for QR, not used for Cholesky */ UF_long *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_cln ; typedef struct cs_cl_dmperm_results /* cs_cl_dmperm or cs_cl_scc output */ { UF_long *p ; /* size m, row permutation */ UF_long *q ; /* size n, column permutation */ UF_long *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ UF_long *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ UF_long nb ; /* # of blocks in fine dmperm decomposition */ UF_long rr [5] ; /* coarse row decomposition */ UF_long cc [5] ; /* coarse column decomposition */ } cs_cld ; UF_long *cs_cl_amd (UF_long order, const cs_cl *A) ; cs_cln *cs_cl_chol (const cs_cl *A, const cs_cls *S) ; cs_cld *cs_cl_dmperm (const cs_cl *A, UF_long seed) ; UF_long cs_cl_droptol (cs_cl *A, double tol) ; UF_long cs_cl_dropzeros (cs_cl *A) ; UF_long cs_cl_happly (const cs_cl *V, UF_long i, double beta, cs_complex_t *x) ; UF_long cs_cl_ipvec (const UF_long *p, const cs_complex_t *b, cs_complex_t *x, UF_long n) ; UF_long cs_cl_lsolve (const cs_cl *L, cs_complex_t *x) ; UF_long cs_cl_ltsolve (const cs_cl *L, cs_complex_t *x) ; cs_cln *cs_cl_lu (const cs_cl *A, const cs_cls *S, double tol) ; cs_cl *cs_cl_permute (const cs_cl *A, const UF_long *pinv, const UF_long *q, UF_long values) ; UF_long *cs_cl_pinv (const UF_long *p, UF_long n) ; UF_long cs_cl_pvec (const UF_long *p, const cs_complex_t *b, cs_complex_t *x, UF_long n) ; cs_cln *cs_cl_qr (const cs_cl *A, const cs_cls *S) ; cs_cls *cs_cl_schol (UF_long order, const cs_cl *A) ; cs_cls *cs_cl_sqr (UF_long order, const cs_cl *A, UF_long qr) ; cs_cl *cs_cl_symperm (const cs_cl *A, const UF_long *pinv, UF_long values) ; UF_long cs_cl_usolve (const cs_cl *U, cs_complex_t *x) ; UF_long cs_cl_utsolve (const cs_cl *U, cs_complex_t *x) ; UF_long cs_cl_updown (cs_cl *L, UF_long sigma, const cs_cl *C, const UF_long *parent) ; /* utilities */ cs_cls *cs_cl_sfree (cs_cls *S) ; cs_cln *cs_cl_nfree (cs_cln *N) ; cs_cld *cs_cl_dfree (cs_cld *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ UF_long *cs_cl_counts (const cs_cl *A, const UF_long *parent, const UF_long *post, UF_long ata) ; double cs_cl_cumsum (UF_long *p, UF_long *c, UF_long n) ; UF_long cs_cl_dfs (UF_long j, cs_cl *G, UF_long top, UF_long *xi, UF_long *pstack, const UF_long *pinv) ; UF_long *cs_cl_etree (const cs_cl *A, UF_long ata) ; UF_long cs_cl_fkeep (cs_cl *A, UF_long (*fkeep) (UF_long, UF_long, cs_complex_t, void *), void *other) ; cs_complex_t cs_cl_house (cs_complex_t *x, double *beta, UF_long n) ; UF_long *cs_cl_maxtrans (const cs_cl *A, UF_long seed) ; UF_long *cs_cl_post (const UF_long *parent, UF_long n) ; cs_cld *cs_cl_scc (cs_cl *A) ; UF_long cs_cl_scatter (const cs_cl *A, UF_long j, cs_complex_t beta, UF_long *w, cs_complex_t *x, UF_long mark,cs_cl *C, UF_long nz) ; UF_long cs_cl_tdfs (UF_long j, UF_long k, UF_long *head, const UF_long *next, UF_long *post, UF_long *stack) ; UF_long cs_cl_leaf (UF_long i, UF_long j, const UF_long *first, UF_long *maxfirst, UF_long *prevleaf, UF_long *ancestor, UF_long *jleaf) ; UF_long cs_cl_reach (cs_cl *G, const cs_cl *B, UF_long k, UF_long *xi, const UF_long *pinv) ; UF_long cs_cl_spsolve (cs_cl *L, const cs_cl *B, UF_long k, UF_long *xi, cs_complex_t *x, const UF_long *pinv, UF_long lo) ; UF_long cs_cl_ereach (const cs_cl *A, UF_long k, const UF_long *parent, UF_long *s, UF_long *w) ; UF_long *cs_cl_randperm (UF_long n, UF_long seed) ; /* utilities */ cs_cld *cs_cl_dalloc (UF_long m, UF_long n) ; cs_cl *cs_cl_done (cs_cl *C, void *w, void *x, UF_long ok) ; UF_long *cs_cl_idone (UF_long *p, cs_cl *C, void *w, UF_long ok) ; cs_cln *cs_cl_ndone (cs_cln *N, cs_cl *C, void *w, void *x, UF_long ok) ; cs_cld *cs_cl_ddone (cs_cld *D, cs_cl *C, void *w, UF_long ok) ; #endif /* -------------------------------------------------------------------------- */ /* Macros for constructing each version of CSparse */ /* -------------------------------------------------------------------------- */ #ifdef CS_LONG #define CS_INT UF_long #define CS_INT_MAX UF_long_max #define CS_ID UF_long_id #ifdef CS_COMPLEX #define CS_ENTRY cs_complex_t #define CS_NAME(nm) cs_cl ## nm #define cs cs_cl #else #define CS_ENTRY double #define CS_NAME(nm) cs_dl ## nm #define cs cs_dl #endif #else #define CS_INT int #define CS_INT_MAX INT_MAX #define CS_ID "%d" #ifdef CS_COMPLEX #define CS_ENTRY cs_complex_t #define CS_NAME(nm) cs_ci ## nm #define cs cs_ci #else #define CS_ENTRY double #define CS_NAME(nm) cs_di ## nm #define cs cs_di #endif #endif #ifdef CS_COMPLEX #define CS_REAL(x) creal(x) #define CS_IMAG(x) cimag(x) #define CS_CONJ(x) conj(x) #define CS_ABS(x) cabs(x) #else #define CS_REAL(x) (x) #define CS_IMAG(x) (0.) #define CS_CONJ(x) (x) #define CS_ABS(x) fabs(x) #endif #define CS_MAX(a,b) (((a) > (b)) ? (a) : (b)) #define CS_MIN(a,b) (((a) < (b)) ? (a) : (b)) #define CS_FLIP(i) (-(i)-2) #define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i)) #define CS_MARKED(w,j) (w [j] < 0) #define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; } #define CS_CSC(A) (A && (A->nz == -1)) #define CS_TRIPLET(A) (A && (A->nz >= 0)) /* --- primary CSparse routines and data structures ------------------------- */ #define cs_add CS_NAME (_add) #define cs_cholsol CS_NAME (_cholsol) #define cs_dupl CS_NAME (_dupl) #define cs_entry CS_NAME (_entry) #define cs_lusol CS_NAME (_lusol) #define cs_gaxpy CS_NAME (_gaxpy) #define cs_multiply CS_NAME (_multiply) #define cs_qrsol CS_NAME (_qrsol) #define cs_transpose CS_NAME (_transpose) #define cs_compress CS_NAME (_compress) #define cs_norm CS_NAME (_norm) #define cs_print CS_NAME (_print) #define cs_load CS_NAME (_load) /* utilities */ #define cs_calloc CS_NAME (_calloc) #define cs_free CS_NAME (_free) #define cs_realloc CS_NAME (_realloc) #define cs_spalloc CS_NAME (_spalloc) #define cs_spfree CS_NAME (_spfree) #define cs_sprealloc CS_NAME (_sprealloc) #define cs_malloc CS_NAME (_malloc) /* --- secondary CSparse routines and data structures ----------------------- */ #define css CS_NAME (s) #define csn CS_NAME (n) #define csd CS_NAME (d) #define cs_amd CS_NAME (_amd) #define cs_chol CS_NAME (_chol) #define cs_dmperm CS_NAME (_dmperm) #define cs_droptol CS_NAME (_droptol) #define cs_dropzeros CS_NAME (_dropzeros) #define cs_happly CS_NAME (_happly) #define cs_ipvec CS_NAME (_ipvec) #define cs_lsolve CS_NAME (_lsolve) #define cs_ltsolve CS_NAME (_ltsolve) #define cs_lu CS_NAME (_lu) #define cs_permute CS_NAME (_permute) #define cs_pinv CS_NAME (_pinv) #define cs_pvec CS_NAME (_pvec) #define cs_qr CS_NAME (_qr) #define cs_schol CS_NAME (_schol) #define cs_sqr CS_NAME (_sqr) #define cs_symperm CS_NAME (_symperm) #define cs_usolve CS_NAME (_usolve) #define cs_utsolve CS_NAME (_utsolve) #define cs_updown CS_NAME (_updown) /* utilities */ #define cs_sfree CS_NAME (_sfree) #define cs_nfree CS_NAME (_nfree) #define cs_dfree CS_NAME (_dfree) /* --- tertiary CSparse routines -------------------------------------------- */ #define cs_counts CS_NAME (_counts) #define cs_cumsum CS_NAME (_cumsum) #define cs_dfs CS_NAME (_dfs) #define cs_etree CS_NAME (_etree) #define cs_fkeep CS_NAME (_fkeep) #define cs_house CS_NAME (_house) #define cs_invmatch CS_NAME (_invmatch) #define cs_maxtrans CS_NAME (_maxtrans) #define cs_post CS_NAME (_post) #define cs_scc CS_NAME (_scc) #define cs_scatter CS_NAME (_scatter) #define cs_tdfs CS_NAME (_tdfs) #define cs_reach CS_NAME (_reach) #define cs_spsolve CS_NAME (_spsolve) #define cs_ereach CS_NAME (_ereach) #define cs_randperm CS_NAME (_randperm) #define cs_leaf CS_NAME (_leaf) /* utilities */ #define cs_dalloc CS_NAME (_dalloc) #define cs_done CS_NAME (_done) #define cs_idone CS_NAME (_idone) #define cs_ndone CS_NAME (_ndone) #define cs_ddone CS_NAME (_ddone) /* -------------------------------------------------------------------------- */ /* Conversion routines */ /* -------------------------------------------------------------------------- */ #ifndef NCOMPLEX cs_di *cs_i_real (cs_ci *A, int real) ; cs_ci *cs_i_complex (cs_di *A, int real) ; cs_dl *cs_l_real (cs_cl *A, UF_long real) ; cs_cl *cs_l_complex (cs_dl *A, UF_long real) ; #endif #ifdef __cplusplus } #endif #endif SuiteSparse/CXSparse/Source/0000755001170100242450000000000010711425510014673 5ustar davisfacSuiteSparse/CXSparse/Source/cs_ltsolve.c0000644001170100242450000000076210712165171017226 0ustar davisfac#include "cs.h" /* solve L'x=b where x and b are dense. x=b on input, solution on output. */ CS_INT cs_ltsolve (const cs *L, CS_ENTRY *x) { CS_INT p, j, n, *Lp, *Li ; CS_ENTRY *Lx ; if (!CS_CSC (L) || !x) return (0) ; /* check inputs */ n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (j = n-1 ; j >= 0 ; j--) { for (p = Lp [j]+1 ; p < Lp [j+1] ; p++) { x [j] -= CS_CONJ (Lx [p]) * x [Li [p]] ; } x [j] /= CS_CONJ (Lx [Lp [j]]) ; } return (1) ; } SuiteSparse/CXSparse/Source/cs_cholsol.c0000644001170100242450000000143410712165171017176 0ustar davisfac#include "cs.h" /* x=A\b where A is symmetric positive definite; b overwritten with solution */ CS_INT cs_cholsol (CS_INT order, const cs *A, CS_ENTRY *b) { CS_ENTRY *x ; css *S ; csn *N ; CS_INT n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; S = cs_schol (order, A) ; /* ordering and symbolic analysis */ N = cs_chol (A, S) ; /* numeric Cholesky factorization */ x = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (S->pinv, b, x, n) ; /* x = P*b */ cs_lsolve (N->L, x) ; /* x = L\x */ cs_ltsolve (N->L, x) ; /* x = L'\x */ cs_pvec (S->pinv, x, b, n) ; /* b = P'*x */ } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; return (ok) ; } SuiteSparse/CXSparse/Source/cs_lu.c0000644001170100242450000000663610712165171016164 0ustar davisfac#include "cs.h" /* [L,U,pinv]=lu(A, [q lnz unz]). lnz and unz can be guess */ csn *cs_lu (const cs *A, const css *S, double tol) { cs *L, *U ; csn *N ; CS_ENTRY pivot, *Lx, *Ux, *x ; double a, t ; CS_INT *Lp, *Li, *Up, *Ui, *pinv, *xi, *q, n, ipiv, k, top, p, i, col, lnz,unz; if (!CS_CSC (A) || !S) return (NULL) ; /* check inputs */ n = A->n ; q = S->q ; lnz = S->lnz ; unz = S->unz ; x = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get CS_ENTRY workspace */ xi = cs_malloc (2*n, sizeof (CS_INT)) ; /* get CS_INT workspace */ N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ if (!x || !xi || !N) return (cs_ndone (N, NULL, xi, x, 0)) ; N->L = L = cs_spalloc (n, n, lnz, 1, 0) ; /* allocate result L */ N->U = U = cs_spalloc (n, n, unz, 1, 0) ; /* allocate result U */ N->pinv = pinv = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result pinv */ if (!L || !U || !pinv) return (cs_ndone (N, NULL, xi, x, 0)) ; Lp = L->p ; Up = U->p ; for (i = 0 ; i < n ; i++) x [i] = 0 ; /* clear workspace */ for (i = 0 ; i < n ; i++) pinv [i] = -1 ; /* no rows pivotal yet */ for (k = 0 ; k <= n ; k++) Lp [k] = 0 ; /* no cols of L yet */ lnz = unz = 0 ; for (k = 0 ; k < n ; k++) /* compute L(:,k) and U(:,k) */ { /* --- Triangular solve --------------------------------------------- */ Lp [k] = lnz ; /* L(:,k) starts here */ Up [k] = unz ; /* U(:,k) starts here */ if ((lnz + n > L->nzmax && !cs_sprealloc (L, 2*L->nzmax + n)) || (unz + n > U->nzmax && !cs_sprealloc (U, 2*U->nzmax + n))) { return (cs_ndone (N, NULL, xi, x, 0)) ; } Li = L->i ; Lx = L->x ; Ui = U->i ; Ux = U->x ; col = q ? (q [k]) : k ; top = cs_spsolve (L, A, col, xi, x, pinv, 1) ; /* x = L\A(:,col) */ /* --- Find pivot --------------------------------------------------- */ ipiv = -1 ; a = -1 ; for (p = top ; p < n ; p++) { i = xi [p] ; /* x(i) is nonzero */ if (pinv [i] < 0) /* row i is not yet pivotal */ { if ((t = CS_ABS (x [i])) > a) { a = t ; /* largest pivot candidate so far */ ipiv = i ; } } else /* x(i) is the entry U(pinv[i],k) */ { Ui [unz] = pinv [i] ; Ux [unz++] = x [i] ; } } if (ipiv == -1 || a <= 0) return (cs_ndone (N, NULL, xi, x, 0)) ; if (pinv [col] < 0 && CS_ABS (x [col]) >= a*tol) ipiv = col ; /* --- Divide by pivot ---------------------------------------------- */ pivot = x [ipiv] ; /* the chosen pivot */ Ui [unz] = k ; /* last entry in U(:,k) is U(k,k) */ Ux [unz++] = pivot ; pinv [ipiv] = k ; /* ipiv is the kth pivot row */ Li [lnz] = ipiv ; /* first entry in L(:,k) is L(k,k) = 1 */ Lx [lnz++] = 1 ; for (p = top ; p < n ; p++) /* L(k+1:n,k) = x / pivot */ { i = xi [p] ; if (pinv [i] < 0) /* x(i) is an entry in L(:,k) */ { Li [lnz] = i ; /* save unpermuted row in L */ Lx [lnz++] = x [i] / pivot ; /* scale pivot column */ } x [i] = 0 ; /* x [0..n-1] = 0 for next k */ } } /* --- Finalize L and U ------------------------------------------------- */ Lp [n] = lnz ; Up [n] = unz ; Li = L->i ; /* fix row indices of L for final pinv */ for (p = 0 ; p < lnz ; p++) Li [p] = pinv [Li [p]] ; cs_sprealloc (L, 0) ; /* remove extra space from L and U */ cs_sprealloc (U, 0) ; return (cs_ndone (N, NULL, xi, x, 1)) ; /* success */ } SuiteSparse/CXSparse/Source/cs_qr.c0000644001170100242450000000570110712165171016156 0ustar davisfac#include "cs.h" /* sparse QR factorization [V,beta,pinv,R] = qr (A) */ csn *cs_qr (const cs *A, const css *S) { CS_ENTRY *Rx, *Vx, *Ax, *x ; double *Beta ; CS_INT i, k, p, m, n, vnz, p1, top, m2, len, col, rnz, *s, *leftmost, *Ap, *Ai, *parent, *Rp, *Ri, *Vp, *Vi, *w, *pinv, *q ; cs *R, *V ; csn *N ; if (!CS_CSC (A) || !S) return (NULL) ; m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; q = S->q ; parent = S->parent ; pinv = S->pinv ; m2 = S->m2 ; vnz = S->lnz ; rnz = S->unz ; leftmost = S->leftmost ; w = cs_malloc (m2+n, sizeof (CS_INT)) ; /* get CS_INT workspace */ x = cs_malloc (m2, sizeof (CS_ENTRY)) ; /* get CS_ENTRY workspace */ N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ if (!w || !x || !N) return (cs_ndone (N, NULL, w, x, 0)) ; s = w + m2 ; /* s is size n */ for (k = 0 ; k < m2 ; k++) x [k] = 0 ; /* clear workspace x */ N->L = V = cs_spalloc (m2, n, vnz, 1, 0) ; /* allocate result V */ N->U = R = cs_spalloc (m2, n, rnz, 1, 0) ; /* allocate result R */ N->B = Beta = cs_malloc (n, sizeof (double)) ; /* allocate result Beta */ if (!R || !V || !Beta) return (cs_ndone (N, NULL, w, x, 0)) ; Rp = R->p ; Ri = R->i ; Rx = R->x ; Vp = V->p ; Vi = V->i ; Vx = V->x ; for (i = 0 ; i < m2 ; i++) w [i] = -1 ; /* clear w, to mark nodes */ rnz = 0 ; vnz = 0 ; for (k = 0 ; k < n ; k++) /* compute V and R */ { Rp [k] = rnz ; /* R(:,k) starts here */ Vp [k] = p1 = vnz ; /* V(:,k) starts here */ w [k] = k ; /* add V(k,k) to pattern of V */ Vi [vnz++] = k ; top = n ; col = q ? q [k] : k ; for (p = Ap [col] ; p < Ap [col+1] ; p++) /* find R(:,k) pattern */ { i = leftmost [Ai [p]] ; /* i = min(find(A(i,q))) */ for (len = 0 ; w [i] != k ; i = parent [i]) /* traverse up to k */ { s [len++] = i ; w [i] = k ; } while (len > 0) s [--top] = s [--len] ; /* push path on stack */ i = pinv [Ai [p]] ; /* i = permuted row of A(:,col) */ x [i] = Ax [p] ; /* x (i) = A(:,col) */ if (i > k && w [i] < k) /* pattern of V(:,k) = x (k+1:m) */ { Vi [vnz++] = i ; /* add i to pattern of V(:,k) */ w [i] = k ; } } for (p = top ; p < n ; p++) /* for each i in pattern of R(:,k) */ { i = s [p] ; /* R(i,k) is nonzero */ cs_happly (V, i, Beta [i], x) ; /* apply (V(i),Beta(i)) to x */ Ri [rnz] = i ; /* R(i,k) = x(i) */ Rx [rnz++] = x [i] ; x [i] = 0 ; if (parent [i] == k) vnz = cs_scatter (V, i, 0, w, NULL, k, V, vnz); } for (p = p1 ; p < vnz ; p++) /* gather V(:,k) = x */ { Vx [p] = x [Vi [p]] ; x [Vi [p]] = 0 ; } Ri [rnz] = k ; /* R(k,k) = norm (x) */ Rx [rnz++] = cs_house (Vx+p1, Beta+k, vnz-p1) ; /* [v,beta]=house(x) */ } Rp [n] = rnz ; /* finalize R */ Vp [n] = vnz ; /* finalize V */ return (cs_ndone (N, NULL, w, x, 1)) ; /* success */ } SuiteSparse/CXSparse/Source/cs_house.c0000644001170100242450000000143610630067063016660 0ustar davisfac#include "cs.h" /* create a Householder reflection [v,beta,s]=house(x), overwrite x with v, * where (I-beta*v*v')*x = s*e1 and e1 = [1 0 ... 0]'. * Note that this CXSparse version is different than CSparse. See Higham, * Accuracy & Stability of Num Algorithms, 2nd ed, 2002, page 357. */ CS_ENTRY cs_house (CS_ENTRY *x, double *beta, CS_INT n) { CS_ENTRY s = 0 ; CS_INT i ; if (!x || !beta) return (-1) ; /* check inputs */ /* s = norm(x) */ for (i = 0 ; i < n ; i++) s += x [i] * CS_CONJ (x [i]) ; s = sqrt (s) ; if (s == 0) { (*beta) = 0 ; x [0] = 1 ; } else { /* s = sign(x[0]) * norm (x) ; */ if (x [0] != 0) { s *= x [0] / CS_ABS (x [0]) ; } x [0] += s ; (*beta) = 1. / CS_REAL (CS_CONJ (s) * x [0]) ; } return (-s) ; } SuiteSparse/CXSparse/Source/cs_updown.c0000644001170100242450000000354610571364723017064 0ustar davisfac#include "cs.h" /* sparse Cholesky update/downdate, L*L' + sigma*w*w' (sigma = +1 or -1) */ CS_INT cs_updown (cs *L, CS_INT sigma, const cs *C, const CS_INT *parent) { CS_INT n, p, f, j, *Lp, *Li, *Cp, *Ci ; CS_ENTRY *Lx, *Cx, alpha, gamma, w1, w2, *w ; double beta = 1, beta2 = 1, delta ; #ifdef CS_COMPLEX cs_complex_t phase ; #endif if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ; /* check inputs */ Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ; Cp = C->p ; Ci = C->i ; Cx = C->x ; if ((p = Cp [0]) >= Cp [1]) return (1) ; /* return if C empty */ w = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get workspace */ if (!w) return (0) ; /* out of memory */ f = Ci [p] ; for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ; /* f = min (find (C)) */ for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ; /* clear workspace w */ for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */ for (j = f ; j != -1 ; j = parent [j]) /* walk path f up to root */ { p = Lp [j] ; alpha = w [j] / Lx [p] ; /* alpha = w(j) / L(j,j) */ beta2 = beta*beta + sigma*alpha*CS_CONJ(alpha) ; if (beta2 <= 0) break ; /* not positive definite */ beta2 = sqrt (beta2) ; delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ; gamma = sigma * CS_CONJ(alpha) / (beta2 * beta) ; Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ; beta = beta2 ; #ifdef CS_COMPLEX phase = CS_ABS (Lx [p]) / Lx [p] ; /* phase = abs(L(j,j))/L(j,j)*/ Lx [p] *= phase ; /* L(j,j) = L(j,j) * phase */ #endif for (p++ ; p < Lp [j+1] ; p++) { w1 = w [Li [p]] ; w [Li [p]] = w2 = w1 - alpha * Lx [p] ; Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ; #ifdef CS_COMPLEX Lx [p] *= phase ; /* L(i,j) = L(i,j) * phase */ #endif } } cs_free (w) ; return (beta2 > 0) ; } SuiteSparse/CXSparse/Source/cs_cumsum.c0000644001170100242450000000101410712165171017036 0ustar davisfac#include "cs.h" /* p [0..n] = cumulative sum of c [0..n-1], and then copy p [0..n-1] into c */ double cs_cumsum (CS_INT *p, CS_INT *c, CS_INT n) { CS_INT i, nz = 0 ; double nz2 = 0 ; if (!p || !c) return (-1) ; /* check inputs */ for (i = 0 ; i < n ; i++) { p [i] = nz ; nz += c [i] ; nz2 += c [i] ; /* also in double to avoid CS_INT overflow */ c [i] = p [i] ; /* also copy p[0..n-1] back into c[0..n-1]*/ } p [n] = nz ; return (nz2) ; /* return sum (c [0..n-1]) */ } SuiteSparse/CXSparse/Source/cs_malloc.c0000644001170100242450000000155510712165171017006 0ustar davisfac#include "cs.h" #ifdef MATLAB_MEX_FILE #define malloc mxMalloc #define free mxFree #define realloc mxRealloc #define calloc mxCalloc #endif /* wrapper for malloc */ void *cs_malloc (CS_INT n, size_t size) { return (malloc (CS_MAX (n,1) * size)) ; } /* wrapper for calloc */ void *cs_calloc (CS_INT n, size_t size) { return (calloc (CS_MAX (n,1), size)) ; } /* wrapper for free */ void *cs_free (void *p) { if (p) free (p) ; /* free p if it is not already NULL */ return (NULL) ; /* return NULL to simplify the use of cs_free */ } /* wrapper for realloc */ void *cs_realloc (void *p, CS_INT n, size_t size, CS_INT *ok) { void *pnew ; pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */ *ok = (pnew != NULL) ; /* realloc fails if pnew is NULL */ return ((*ok) ? pnew : p) ; /* return original p if failure */ } SuiteSparse/CXSparse/Source/cs_permute.c0000644001170100242450000000167610712165171017224 0ustar davisfac#include "cs.h" /* C = A(p,q) where p and q are permutations of 0..m-1 and 0..n-1. */ cs *cs_permute (const cs *A, const CS_INT *pinv, const CS_INT *q, CS_INT values) { CS_INT t, j, k, nz = 0, m, n, *Ap, *Ai, *Cp, *Ci ; CS_ENTRY *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (m, n, Ap [n], values && Ax != NULL, 0) ; /* alloc result */ if (!C) return (cs_done (C, NULL, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (k = 0 ; k < n ; k++) { Cp [k] = nz ; /* column k of C is column q[k] of A */ j = q ? (q [k]) : k ; for (t = Ap [j] ; t < Ap [j+1] ; t++) { if (Cx) Cx [nz] = Ax [t] ; /* row i of A is row pinv[i] of C */ Ci [nz++] = pinv ? (pinv [Ai [t]]) : Ai [t] ; } } Cp [n] = nz ; /* finalize the last column of C */ return (cs_done (C, NULL, NULL, 1)) ; } SuiteSparse/CXSparse/Source/cs_symperm.c0000644001170100242450000000305210712165171017225 0ustar davisfac#include "cs.h" /* C = A(p,p) where A and C are symmetric the upper part stored; pinv not p */ cs *cs_symperm (const cs *A, const CS_INT *pinv, CS_INT values) { CS_INT i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w ; CS_ENTRY *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (n, n, Ap [n], values && (Ax != NULL), 0) ; /* alloc result*/ w = cs_calloc (n, sizeof (CS_INT)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (j = 0 ; j < n ; j++) /* count entries in each column of C */ { j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (i > j) continue ; /* skip lower triangular part of A */ i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */ w [CS_MAX (i2, j2)]++ ; /* column count of C */ } } cs_cumsum (Cp, w, n) ; /* compute column pointers of C */ for (j = 0 ; j < n ; j++) { j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (i > j) continue ; /* skip lower triangular part of A*/ i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */ Ci [q = w [CS_MAX (i2, j2)]++] = CS_MIN (i2, j2) ; if (Cx) Cx [q] = (i2 <= j2) ? Ax [p] : CS_CONJ (Ax [p]) ; } } return (cs_done (C, w, NULL, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CXSparse/Source/cs_lsolve.c0000644001170100242450000000073110712165171017036 0ustar davisfac#include "cs.h" /* solve Lx=b where x and b are dense. x=b on input, solution on output. */ CS_INT cs_lsolve (const cs *L, CS_ENTRY *x) { CS_INT p, j, n, *Lp, *Li ; CS_ENTRY *Lx ; if (!CS_CSC (L) || !x) return (0) ; /* check inputs */ n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (j = 0 ; j < n ; j++) { x [j] /= Lx [Lp [j]] ; for (p = Lp [j]+1 ; p < Lp [j+1] ; p++) { x [Li [p]] -= Lx [p] * x [j] ; } } return (1) ; } SuiteSparse/CXSparse/Source/cs_happly.c0000644001170100242450000000107310712165171017027 0ustar davisfac#include "cs.h" /* apply the ith Householder vector to x */ CS_INT cs_happly (const cs *V, CS_INT i, double beta, CS_ENTRY *x) { CS_INT p, *Vp, *Vi ; CS_ENTRY *Vx, tau = 0 ; if (!CS_CSC (V) || !x) return (0) ; /* check inputs */ Vp = V->p ; Vi = V->i ; Vx = V->x ; for (p = Vp [i] ; p < Vp [i+1] ; p++) /* tau = v'*x */ { tau += CS_CONJ (Vx [p]) * x [Vi [p]] ; } tau *= beta ; /* tau = beta*(v'*x) */ for (p = Vp [i] ; p < Vp [i+1] ; p++) /* x = x - v*tau */ { x [Vi [p]] -= Vx [p] * tau ; } return (1) ; } SuiteSparse/CXSparse/Source/cs_utsolve.c0000644001170100242450000000076310712165171017240 0ustar davisfac#include "cs.h" /* solve U'x=b where x and b are dense. x=b on input, solution on output. */ CS_INT cs_utsolve (const cs *U, CS_ENTRY *x) { CS_INT p, j, n, *Up, *Ui ; CS_ENTRY *Ux ; if (!CS_CSC (U) || !x) return (0) ; /* check inputs */ n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ; for (j = 0 ; j < n ; j++) { for (p = Up [j] ; p < Up [j+1]-1 ; p++) { x [j] -= CS_CONJ (Ux [p]) * x [Ui [p]] ; } x [j] /= CS_CONJ (Ux [Up [j+1]-1]) ; } return (1) ; } SuiteSparse/CXSparse/Source/cs_ipvec.c0000644001170100242450000000046610712165171016645 0ustar davisfac#include "cs.h" /* x(p) = b, for dense vectors x and b; p=NULL denotes identity */ CS_INT cs_ipvec (const CS_INT *p, const CS_ENTRY *b, CS_ENTRY *x, CS_INT n) { CS_INT k ; if (!x || !b) return (0) ; /* check inputs */ for (k = 0 ; k < n ; k++) x [p ? p [k] : k] = b [k] ; return (1) ; } SuiteSparse/CXSparse/Source/cs_print.c0000644001170100242450000000266310712165171016674 0ustar davisfac#include "cs.h" /* print a sparse matrix */ CS_INT cs_print (const cs *A, CS_INT brief) { CS_INT p, j, m, n, nzmax, nz, *Ap, *Ai ; CS_ENTRY *Ax ; if (!A) { printf ("(null)\n") ; return (0) ; } m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; nzmax = A->nzmax ; nz = A->nz ; printf ("CXSparse Version %d.%d.%d, %s. %s\n", CS_VER, CS_SUBVER, CS_SUBSUB, CS_DATE, CS_COPYRIGHT) ; if (nz < 0) { printf (""CS_ID"-by-"CS_ID", nzmax: "CS_ID" nnz: "CS_ID", 1-norm: %g\n", m, n, nzmax, Ap [n], cs_norm (A)) ; for (j = 0 ; j < n ; j++) { printf (" col "CS_ID" : locations "CS_ID" to "CS_ID"\n", j, Ap [j], Ap [j+1]-1); for (p = Ap [j] ; p < Ap [j+1] ; p++) { #ifdef CS_COMPLEX printf (" "CS_ID" : (%g, %g)\n", Ai [p], Ax ? CS_REAL (Ax [p]) : 1, Ax ? CS_IMAG (Ax [p]) : 0) ; #else printf (" "CS_ID" : %g\n", Ai [p], Ax ? Ax [p] : 1) ; #endif if (brief && p > 20) { printf (" ...\n") ; return (1) ; } } } } else { printf ("triplet: "CS_ID"-by-"CS_ID", nzmax: "CS_ID" nnz: "CS_ID"\n", m, n, nzmax, nz) ; for (p = 0 ; p < nz ; p++) { #ifdef CS_COMPLEX printf (" "CS_ID" "CS_ID" : (%g, %g)\n", Ai [p], Ap [p], Ax ? CS_REAL (Ax [p]) : 1, Ax ? CS_IMAG (Ax [p]) : 0) ; #else printf (" "CS_ID" "CS_ID" : %g\n", Ai [p], Ap [p], Ax ? Ax [p] : 1) ; #endif if (brief && p > 20) { printf (" ...\n") ; return (1) ; } } } return (1) ; } SuiteSparse/CXSparse/Source/cs_scatter.c0000644001170100242450000000141010712165171017172 0ustar davisfac#include "cs.h" /* x = x + beta * A(:,j), where x is a dense vector and A(:,j) is sparse */ CS_INT cs_scatter (const cs *A, CS_INT j, CS_ENTRY beta, CS_INT *w, CS_ENTRY *x, CS_INT mark, cs *C, CS_INT nz) { CS_INT i, p, *Ap, *Ai, *Ci ; CS_ENTRY *Ax ; if (!CS_CSC (A) || !w || !CS_CSC (C)) return (-1) ; /* check inputs */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Ci = C->i ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* A(i,j) is nonzero */ if (w [i] < mark) { w [i] = mark ; /* i is new entry in column j */ Ci [nz++] = i ; /* add i to pattern of C(:,j) */ if (x) x [i] = beta * Ax [p] ; /* x(i) = beta*A(i,j) */ } else if (x) x [i] += beta * Ax [p] ; /* i exists in C(:,j) already */ } return (nz) ; } SuiteSparse/CXSparse/Source/cs_counts.c0000644001170100242450000000506710712165171017054 0ustar davisfac#include "cs.h" /* column counts of LL'=A or LL'=A'A, given parent & post ordering */ #define HEAD(k,j) (ata ? head [k] : j) #define NEXT(J) (ata ? next [J] : -1) static void init_ata (cs *AT, const CS_INT *post, CS_INT *w, CS_INT **head, CS_INT **next) { CS_INT i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ; *head = w+4*n, *next = w+5*n+1 ; for (k = 0 ; k < n ; k++) w [post [k]] = k ; /* invert post */ for (i = 0 ; i < m ; i++) { for (k = n, p = ATp[i] ; p < ATp[i+1] ; p++) k = CS_MIN (k, w [ATi[p]]); (*next) [i] = (*head) [k] ; /* place row i in linked list k */ (*head) [k] = i ; } } CS_INT *cs_counts (const cs *A, const CS_INT *parent, const CS_INT *post, CS_INT ata) { CS_INT i, j, k, n, m, J, s, p, q, jleaf, *ATp, *ATi, *maxfirst, *prevleaf, *ancestor, *head = NULL, *next = NULL, *colcount, *w, *first, *delta ; cs *AT ; if (!CS_CSC (A) || !parent || !post) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; s = 4*n + (ata ? (n+m+1) : 0) ; delta = colcount = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ w = cs_malloc (s, sizeof (CS_INT)) ; /* get workspace */ AT = cs_transpose (A, 0) ; /* AT = A' */ if (!AT || !colcount || !w) return (cs_idone (colcount, AT, w, 0)) ; ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; for (k = 0 ; k < s ; k++) w [k] = -1 ; /* clear workspace w [0..s-1] */ for (k = 0 ; k < n ; k++) /* find first [j] */ { j = post [k] ; delta [j] = (first [j] == -1) ? 1 : 0 ; /* delta[j]=1 if j is a leaf */ for ( ; j != -1 && first [j] == -1 ; j = parent [j]) first [j] = k ; } ATp = AT->p ; ATi = AT->i ; if (ata) init_ata (AT, post, w, &head, &next) ; for (i = 0 ; i < n ; i++) ancestor [i] = i ; /* each node in its own set */ for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in postordered etree */ if (parent [j] != -1) delta [parent [j]]-- ; /* j is not a root */ for (J = HEAD (k,j) ; J != -1 ; J = NEXT (J)) /* J=j for LL'=A case */ { for (p = ATp [J] ; p < ATp [J+1] ; p++) { i = ATi [p] ; q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf); if (jleaf >= 1) delta [j]++ ; /* A(i,j) is in skeleton */ if (jleaf == 2) delta [q]-- ; /* account for overlap in q */ } } if (parent [j] != -1) ancestor [j] = parent [j] ; } for (j = 0 ; j < n ; j++) /* sum up delta's of each child */ { if (parent [j] != -1) colcount [parent [j]] += colcount [j] ; } return (cs_idone (colcount, AT, w, 1)) ; /* success: free workspace */ } SuiteSparse/CXSparse/Source/cs_reach.c0000644001170100242450000000123110712165171016610 0ustar davisfac#include "cs.h" /* xi [top...n-1] = nodes reachable from graph of G*P' via nodes in B(:,k). * xi [n...2n-1] used as workspace */ CS_INT cs_reach (cs *G, const cs *B, CS_INT k, CS_INT *xi, const CS_INT *pinv) { CS_INT p, n, top, *Bp, *Bi, *Gp ; if (!CS_CSC (G) || !CS_CSC (B) || !xi) return (-1) ; /* check inputs */ n = G->n ; Bp = B->p ; Bi = B->i ; Gp = G->p ; top = n ; for (p = Bp [k] ; p < Bp [k+1] ; p++) { if (!CS_MARKED (Gp, Bi [p])) /* start a dfs at unmarked node i */ { top = cs_dfs (Bi [p], G, top, xi, xi+n, pinv) ; } } for (p = top ; p < n ; p++) CS_MARK (Gp, xi [p]) ; /* restore G */ return (top) ; } SuiteSparse/CXSparse/Source/cs_dropzeros.c0000644001170100242450000000034410712165171017561 0ustar davisfac#include "cs.h" static CS_INT cs_nonzero (CS_INT i, CS_INT j, CS_ENTRY aij, void *other) { return (aij != 0) ; } CS_INT cs_dropzeros (cs *A) { return (cs_fkeep (A, &cs_nonzero, NULL)) ; /* keep all nonzero entries */ } SuiteSparse/CXSparse/Source/cs_qrsol.c0000644001170100242450000000311510712165171016671 0ustar davisfac#include "cs.h" /* x=A\b where A can be rectangular; b overwritten with solution */ CS_INT cs_qrsol (CS_INT order, const cs *A, CS_ENTRY *b) { CS_ENTRY *x ; css *S ; csn *N ; cs *AT = NULL ; CS_INT k, m, n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; m = A->m ; if (m >= n) { S = cs_sqr (order, A, 1) ; /* ordering and symbolic analysis */ N = cs_qr (A, S) ; /* numeric QR factorization */ x = cs_calloc (S ? S->m2 : 1, sizeof (CS_ENTRY)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (S->pinv, b, x, m) ; /* x(0:m-1) = b(p(0:m-1) */ for (k = 0 ; k < n ; k++) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_usolve (N->U, x) ; /* x = R\x */ cs_ipvec (S->q, x, b, n) ; /* b(q(0:n-1)) = x(0:n-1) */ } } else { AT = cs_transpose (A, 1) ; /* Ax=b is underdetermined */ S = cs_sqr (order, AT, 1) ; /* ordering and symbolic analysis */ N = cs_qr (AT, S) ; /* numeric QR factorization of A' */ x = cs_calloc (S ? S->m2 : 1, sizeof (CS_ENTRY)) ; /* get workspace */ ok = (AT && S && N && x) ; if (ok) { cs_pvec (S->q, b, x, m) ; /* x(q(0:m-1)) = b(0:m-1) */ cs_utsolve (N->U, x) ; /* x = R'\x */ for (k = m-1 ; k >= 0 ; k--) /* apply Householder refl. to x */ { cs_happly (N->L, k, N->B [k], x) ; } cs_pvec (S->pinv, x, b, n) ; /* b(0:n-1) = x(p(0:n-1)) */ } } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; cs_spfree (AT) ; return (ok) ; } SuiteSparse/CXSparse/Source/cs_chol.c0000644001170100242450000000473310712165171016465 0ustar davisfac#include "cs.h" /* L = chol (A, [pinv parent cp]), pinv is optional */ csn *cs_chol (const cs *A, const css *S) { CS_ENTRY d, lki, *Lx, *x, *Cx ; CS_INT top, i, p, k, n, *Li, *Lp, *cp, *pinv, *s, *c, *parent, *Cp, *Ci ; cs *L, *C, *E ; csn *N ; if (!CS_CSC (A) || !S || !S->cp || !S->parent) return (NULL) ; n = A->n ; N = cs_calloc (1, sizeof (csn)) ; /* allocate result */ c = cs_malloc (2*n, sizeof (CS_INT)) ; /* get CS_INT workspace */ x = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get CS_ENTRY workspace */ cp = S->cp ; pinv = S->pinv ; parent = S->parent ; C = pinv ? cs_symperm (A, pinv, 1) : ((cs *) A) ; E = pinv ? C : NULL ; /* E is alias for A, or a copy E=A(p,p) */ if (!N || !c || !x || !C) return (cs_ndone (N, E, c, x, 0)) ; s = c + n ; Cp = C->p ; Ci = C->i ; Cx = C->x ; N->L = L = cs_spalloc (n, n, cp [n], 1, 0) ; /* allocate result */ if (!L) return (cs_ndone (N, E, c, x, 0)) ; Lp = L->p ; Li = L->i ; Lx = L->x ; for (k = 0 ; k < n ; k++) Lp [k] = c [k] = cp [k] ; for (k = 0 ; k < n ; k++) /* compute L(:,k) for L*L' = C */ { /* --- Nonzero pattern of L(k,:) ------------------------------------ */ top = cs_ereach (C, k, parent, s, c) ; /* find pattern of L(k,:) */ x [k] = 0 ; /* x (0:k) is now zero */ for (p = Cp [k] ; p < Cp [k+1] ; p++) /* x = full(triu(C(:,k))) */ { if (Ci [p] <= k) x [Ci [p]] = Cx [p] ; } d = x [k] ; /* d = C(k,k) */ x [k] = 0 ; /* clear x for k+1st iteration */ /* --- Triangular solve --------------------------------------------- */ for ( ; top < n ; top++) /* solve L(0:k-1,0:k-1) * x = C(:,k) */ { i = s [top] ; /* s [top..n-1] is pattern of L(k,:) */ lki = x [i] / Lx [Lp [i]] ; /* L(k,i) = x (i) / L(i,i) */ x [i] = 0 ; /* clear x for k+1st iteration */ for (p = Lp [i] + 1 ; p < c [i] ; p++) { x [Li [p]] -= Lx [p] * lki ; } d -= lki * CS_CONJ (lki) ; /* d = d - L(k,i)*L(k,i) */ p = c [i]++ ; Li [p] = k ; /* store L(k,i) in column i */ Lx [p] = CS_CONJ (lki) ; } /* --- Compute L(k,k) ----------------------------------------------- */ if (CS_REAL (d) <= 0 || CS_IMAG (d) != 0) return (cs_ndone (N, E, c, x, 0)) ; /* not pos def */ p = c [k]++ ; Li [p] = k ; /* store L(k,k) = sqrt (d) in column k */ Lx [p] = sqrt (d) ; } Lp [n] = cp [n] ; /* finalize L */ return (cs_ndone (N, E, c, x, 1)) ; /* success: free E,s,x; return N */ } SuiteSparse/CXSparse/Source/cs_dupl.c0000644001170100242450000000201510712165171016473 0ustar davisfac#include "cs.h" /* remove duplicate entries from A */ CS_INT cs_dupl (cs *A) { CS_INT i, j, p, q, nz = 0, n, m, *Ap, *Ai, *w ; CS_ENTRY *Ax ; if (!CS_CSC (A)) return (0) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; w = cs_malloc (m, sizeof (CS_INT)) ; /* get workspace */ if (!w) return (0) ; /* out of memory */ for (i = 0 ; i < m ; i++) w [i] = -1 ; /* row i not yet seen */ for (j = 0 ; j < n ; j++) { q = nz ; /* column j will start at q */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* A(i,j) is nonzero */ if (w [i] >= q) { Ax [w [i]] += Ax [p] ; /* A(i,j) is a duplicate */ } else { w [i] = nz ; /* record where row i occurs */ Ai [nz] = i ; /* keep A(i,j) */ Ax [nz++] = Ax [p] ; } } Ap [j] = q ; /* record start of column j */ } Ap [n] = nz ; /* finalize A */ cs_free (w) ; /* free workspace */ return (cs_sprealloc (A, 0)) ; /* remove extra space from A */ } SuiteSparse/CXSparse/Source/cs_schol.c0000644001170100242450000000213710712165171016644 0ustar davisfac#include "cs.h" /* ordering and symbolic analysis for a Cholesky factorization */ css *cs_schol (CS_INT order, const cs *A) { CS_INT n, *c, *post, *P ; cs *C ; css *S ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; S = cs_calloc (1, sizeof (css)) ; /* allocate result S */ if (!S) return (NULL) ; /* out of memory */ P = cs_amd (order, A) ; /* P = amd(A+A'), or natural */ S->pinv = cs_pinv (P, n) ; /* find inverse permutation */ cs_free (P) ; if (order && !S->pinv) return (cs_sfree (S)) ; C = cs_symperm (A, S->pinv, 0) ; /* C = spones(triu(A(P,P))) */ S->parent = cs_etree (C, 0) ; /* find etree of C */ post = cs_post (S->parent, n) ; /* postorder the etree */ c = cs_counts (C, S->parent, post, 0) ; /* find column counts of chol(C) */ cs_free (post) ; cs_spfree (C) ; S->cp = cs_malloc (n+1, sizeof (CS_INT)) ; /* allocate result S->cp */ S->unz = S->lnz = cs_cumsum (S->cp, c, n) ; /* find column pointers for L */ cs_free (c) ; return ((S->lnz >= 0) ? S : cs_sfree (S)) ; } SuiteSparse/CXSparse/Source/cs_leaf.c0000644001170100242450000000175510712165171016450 0ustar davisfac#include "cs.h" /* consider A(i,j), node j in ith row subtree and return lca(jprev,j) */ CS_INT cs_leaf (CS_INT i, CS_INT j, const CS_INT *first, CS_INT *maxfirst, CS_INT *prevleaf, CS_INT *ancestor, CS_INT *jleaf) { CS_INT q, s, sparent, jprev ; if (!first || !maxfirst || !prevleaf || !ancestor || !jleaf) return (-1) ; *jleaf = 0 ; if (i <= j || first [j] <= maxfirst [i]) return (-1) ; /* j not a leaf */ maxfirst [i] = first [j] ; /* update max first[j] seen so far */ jprev = prevleaf [i] ; /* jprev = previous leaf of ith subtree */ prevleaf [i] = j ; *jleaf = (jprev == -1) ? 1: 2 ; /* j is first or subsequent leaf */ if (*jleaf == 1) return (i) ; /* if 1st leaf, q = root of ith subtree */ for (q = jprev ; q != ancestor [q] ; q = ancestor [q]) ; for (s = jprev ; s != q ; s = sparent) { sparent = ancestor [s] ; /* path compression */ ancestor [s] = q ; } return (q) ; /* q = least common ancester (jprev,j) */ } SuiteSparse/CXSparse/Source/cs_dmperm.c0000644001170100242450000001337310712165171017024 0ustar davisfac#include "cs.h" /* breadth-first search for coarse decomposition (C0,C1,R1 or R0,R3,C3) */ static CS_INT cs_bfs (const cs *A, CS_INT n, CS_INT *wi, CS_INT *wj, CS_INT *queue, const CS_INT *imatch, const CS_INT *jmatch, CS_INT mark) { CS_INT *Ap, *Ai, head = 0, tail = 0, j, i, p, j2 ; cs *C ; for (j = 0 ; j < n ; j++) /* place all unmatched nodes in queue */ { if (imatch [j] >= 0) continue ; /* skip j if matched */ wj [j] = 0 ; /* j in set C0 (R0 if transpose) */ queue [tail++] = j ; /* place unmatched col j in queue */ } if (tail == 0) return (1) ; /* quick return if no unmatched nodes */ C = (mark == 1) ? ((cs *) A) : cs_transpose (A, 0) ; if (!C) return (0) ; /* bfs of C=A' to find R3,C3 from R0 */ Ap = C->p ; Ai = C->i ; while (head < tail) /* while queue is not empty */ { j = queue [head++] ; /* get the head of the queue */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (wi [i] >= 0) continue ; /* skip if i is marked */ wi [i] = mark ; /* i in set R1 (C3 if transpose) */ j2 = jmatch [i] ; /* traverse alternating path to j2 */ if (wj [j2] >= 0) continue ;/* skip j2 if it is marked */ wj [j2] = mark ; /* j2 in set C1 (R3 if transpose) */ queue [tail++] = j2 ; /* add j2 to queue */ } } if (mark != 1) cs_spfree (C) ; /* free A' if it was created */ return (1) ; } /* collect matched rows and columns into p and q */ static void cs_matched (CS_INT n, const CS_INT *wj, const CS_INT *imatch, CS_INT *p, CS_INT *q, CS_INT *cc, CS_INT *rr, CS_INT set, CS_INT mark) { CS_INT kc = cc [set], j ; CS_INT kr = rr [set-1] ; for (j = 0 ; j < n ; j++) { if (wj [j] != mark) continue ; /* skip if j is not in C set */ p [kr++] = imatch [j] ; q [kc++] = j ; } cc [set+1] = kc ; rr [set] = kr ; } /* collect unmatched rows into the permutation vector p */ static void cs_unmatched (CS_INT m, const CS_INT *wi, CS_INT *p, CS_INT *rr, CS_INT set) { CS_INT i, kr = rr [set] ; for (i = 0 ; i < m ; i++) if (wi [i] == 0) p [kr++] = i ; rr [set+1] = kr ; } /* return 1 if row i is in R2 */ static CS_INT cs_rprune (CS_INT i, CS_INT j, CS_ENTRY aij, void *other) { CS_INT *rr = (CS_INT *) other ; return (i >= rr [1] && i < rr [2]) ; } /* Given A, compute coarse and then fine dmperm */ csd *cs_dmperm (const cs *A, CS_INT seed) { CS_INT m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci, *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ; cs *C ; csd *D, *scc ; /* --- Maximum matching ------------------------------------------------- */ if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; D = cs_dalloc (m, n) ; /* allocate result */ if (!D) return (NULL) ; p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ; jmatch = cs_maxtrans (A, seed) ; /* max transversal */ imatch = jmatch + m ; /* imatch = inverse of jmatch */ if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ; /* --- Coarse decomposition --------------------------------------------- */ wi = r ; wj = s ; /* use r and s as workspace */ for (j = 0 ; j < n ; j++) wj [j] = -1 ; /* unmark all cols for bfs */ for (i = 0 ; i < m ; i++) wi [i] = -1 ; /* unmark all rows for bfs */ cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ; /* find C1, R1 from C0*/ ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ; /* find R3, C3 from R0*/ if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ; cs_unmatched (n, wj, q, cc, 0) ; /* unmatched set C0 */ cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ; /* set R1 and C1 */ cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */ cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */ cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set R0 */ cs_free (jmatch) ; /* --- Fine decomposition ----------------------------------------------- */ pinv = cs_pinv (p, m) ; /* pinv=p' */ if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ; C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */ cs_free (pinv) ; if (!C) return (cs_ddone (D, NULL, NULL, 0)) ; Cp = C->p ; nc = cc [3] - cc [2] ; /* delete cols C0, C1, and C3 from C */ if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ; C->n = nc ; if (rr [2] - rr [1] < m) /* delete rows R0, R1, and R3 from C */ { cs_fkeep (C, cs_rprune, rr) ; cnz = Cp [nc] ; Ci = C->i ; if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ; } C->m = nc ; scc = cs_scc (C) ; /* find strongly connected components of C*/ if (!scc) return (cs_ddone (D, C, NULL, 0)) ; /* --- Combine coarse and fine decompositions --------------------------- */ ps = scc->p ; /* C(ps,ps) is the permuted matrix */ rs = scc->r ; /* kth block is rs[k]..rs[k+1]-1 */ nb1 = scc->nb ; /* # of blocks of A(R2,C2) */ for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ; for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ; for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ; for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ; nb2 = 0 ; /* create the fine block partitions */ r [0] = s [0] = 0 ; if (cc [2] > 0) nb2++ ; /* leading coarse block A (R1, [C0 C1]) */ for (k = 0 ; k < nb1 ; k++) /* coarse block A (R2,C2) */ { r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */ s [nb2] = rs [k] + cc [2] ; nb2++ ; } if (rr [2] < m) { r [nb2] = rr [2] ; /* trailing coarse block A ([R3 R0], C3) */ s [nb2] = cc [3] ; nb2++ ; } r [nb2] = m ; s [nb2] = n ; D->nb = nb2 ; cs_dfree (scc) ; return (cs_ddone (D, C, NULL, 1)) ; } SuiteSparse/CXSparse/Source/cs_load.c0000644001170100242450000000116010712165171016446 0ustar davisfac#include "cs.h" /* load a triplet matrix from a file */ cs *cs_load (FILE *f) { CS_INT i, j ; double x ; #ifdef CS_COMPLEX double xi ; #endif cs *T ; if (!f) return (NULL) ; /* check inputs */ T = cs_spalloc (0, 0, 1, 1, 1) ; /* allocate result */ #ifdef CS_COMPLEX while (fscanf (f, ""CS_ID" "CS_ID" %lg %lg\n", &i, &j, &x, &xi) == 4) #else while (fscanf (f, ""CS_ID" "CS_ID" %lg\n", &i, &j, &x) == 3) #endif { #ifdef CS_COMPLEX if (!cs_entry (T, i, j, x + xi*I)) return (cs_spfree (T)) ; #else if (!cs_entry (T, i, j, x)) return (cs_spfree (T)) ; #endif } return (T) ; } SuiteSparse/CXSparse/Source/README.txt0000644001170100242450000000023710375603427016406 0ustar davisfacCXSparse/Source directory: primary ANSI C source code files for CXSparse. To compile the libcxsparse.a C-callable library, just type "make" in this directory. SuiteSparse/CXSparse/Source/cs_norm.c0000644001170100242450000000070610712165171016507 0ustar davisfac#include "cs.h" /* 1-norm of a sparse matrix = max (sum (abs (A))), largest column sum */ double cs_norm (const cs *A) { CS_INT p, j, n, *Ap ; CS_ENTRY *Ax ; double norm = 0, s ; if (!CS_CSC (A) || !A->x) return (-1) ; /* check inputs */ n = A->n ; Ap = A->p ; Ax = A->x ; for (j = 0 ; j < n ; j++) { for (s = 0, p = Ap [j] ; p < Ap [j+1] ; p++) s += CS_ABS (Ax [p]) ; norm = CS_MAX (norm, s) ; } return (norm) ; } SuiteSparse/CXSparse/Source/cs_randperm.c0000644001170100242450000000146110712165171017343 0ustar davisfac#include "cs.h" /* return a random permutation vector, the identity perm, or p = n-1:-1:0. * seed = -1 means p = n-1:-1:0. seed = 0 means p = identity. otherwise * p = random permutation. */ CS_INT *cs_randperm (CS_INT n, CS_INT seed) { CS_INT *p, k, j, t ; if (seed == 0) return (NULL) ; /* return p = NULL (identity) */ p = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ if (!p) return (NULL) ; /* out of memory */ for (k = 0 ; k < n ; k++) p [k] = n-k-1 ; if (seed == -1) return (p) ; /* return reverse permutation */ srand (seed) ; /* get new random number seed */ for (k = 0 ; k < n ; k++) { j = k + (rand ( ) % (n-k)) ; /* j = rand CS_INT in range k to n-1 */ t = p [j] ; /* swap p[k] and p[j] */ p [j] = p [k] ; p [k] = t ; } return (p) ; } SuiteSparse/CXSparse/Source/cs_pinv.c0000644001170100242450000000064110712165171016506 0ustar davisfac#include "cs.h" /* pinv = p', or p = pinv' */ CS_INT *cs_pinv (CS_INT const *p, CS_INT n) { CS_INT k, *pinv ; if (!p) return (NULL) ; /* p = NULL denotes identity */ pinv = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ if (!pinv) return (NULL) ; /* out of memory */ for (k = 0 ; k < n ; k++) pinv [p [k]] = k ;/* invert the permutation */ return (pinv) ; /* return result */ } SuiteSparse/CXSparse/Source/cs_post.c0000644001170100242450000000173610712165171016525 0ustar davisfac#include "cs.h" /* post order a forest */ CS_INT *cs_post (const CS_INT *parent, CS_INT n) { CS_INT j, k = 0, *post, *w, *head, *next, *stack ; if (!parent) return (NULL) ; /* check inputs */ post = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ w = cs_malloc (3*n, sizeof (CS_INT)) ; /* get workspace */ if (!w || !post) return (cs_idone (post, NULL, w, 0)) ; head = w ; next = w + n ; stack = w + 2*n ; for (j = 0 ; j < n ; j++) head [j] = -1 ; /* empty linked lists */ for (j = n-1 ; j >= 0 ; j--) /* traverse nodes in reverse order*/ { if (parent [j] == -1) continue ; /* j is a root */ next [j] = head [parent [j]] ; /* add j to list of its parent */ head [parent [j]] = j ; } for (j = 0 ; j < n ; j++) { if (parent [j] != -1) continue ; /* skip j if it is not a root */ k = cs_tdfs (j, k, head, next, post, stack) ; } return (cs_idone (post, NULL, w, 1)) ; /* success; free w, return post */ } SuiteSparse/CXSparse/Source/cs_pvec.c0000644001170100242450000000046510712165171016473 0ustar davisfac#include "cs.h" /* x = b(p), for dense vectors x and b; p=NULL denotes identity */ CS_INT cs_pvec (const CS_INT *p, const CS_ENTRY *b, CS_ENTRY *x, CS_INT n) { CS_INT k ; if (!x || !b) return (0) ; /* check inputs */ for (k = 0 ; k < n ; k++) x [k] = b [p ? p [k] : k] ; return (1) ; } SuiteSparse/CXSparse/Source/cs_entry.c0000644001170100242450000000071310712165171016673 0ustar davisfac#include "cs.h" /* add an entry to a triplet matrix; return 1 if ok, 0 otherwise */ CS_INT cs_entry (cs *T, CS_INT i, CS_INT j, CS_ENTRY x) { if (!CS_TRIPLET (T) || i < 0 || j < 0) return (0) ; /* check inputs */ if (T->nz >= T->nzmax && !cs_sprealloc (T,2*(T->nzmax))) return (0) ; if (T->x) T->x [T->nz] = x ; T->i [T->nz] = i ; T->p [T->nz++] = j ; T->m = CS_MAX (T->m, i+1) ; T->n = CS_MAX (T->n, j+1) ; return (1) ; } SuiteSparse/CXSparse/Source/cs_tdfs.c0000644001170100242450000000145010712165171016471 0ustar davisfac#include "cs.h" /* depth-first search and postorder of a tree rooted at node j */ CS_INT cs_tdfs (CS_INT j, CS_INT k, CS_INT *head, const CS_INT *next, CS_INT *post, CS_INT *stack) { CS_INT i, p, top = 0 ; if (!head || !next || !post || !stack) return (-1) ; /* check inputs */ stack [0] = j ; /* place j on the stack */ while (top >= 0) /* while (stack is not empty) */ { p = stack [top] ; /* p = top of stack */ i = head [p] ; /* i = youngest child of p */ if (i == -1) { top-- ; /* p has no unordered children left */ post [k++] = p ; /* node p is the kth postordered node */ } else { head [p] = next [i] ; /* remove i from children of p */ stack [++top] = i ; /* start dfs on child node i */ } } return (k) ; } SuiteSparse/CXSparse/Source/cs_usolve.c0000644001170100242450000000074010712165171017047 0ustar davisfac#include "cs.h" /* solve Ux=b where x and b are dense. x=b on input, solution on output. */ CS_INT cs_usolve (const cs *U, CS_ENTRY *x) { CS_INT p, j, n, *Up, *Ui ; CS_ENTRY *Ux ; if (!CS_CSC (U) || !x) return (0) ; /* check inputs */ n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ; for (j = n-1 ; j >= 0 ; j--) { x [j] /= Ux [Up [j+1]-1] ; for (p = Up [j] ; p < Up [j+1]-1 ; p++) { x [Ui [p]] -= Ux [p] * x [j] ; } } return (1) ; } SuiteSparse/CXSparse/Source/cs_util.c0000644001170100242450000000745410712165171016520 0ustar davisfac#include "cs.h" /* allocate a sparse matrix (triplet form or compressed-column form) */ cs *cs_spalloc (CS_INT m, CS_INT n, CS_INT nzmax, CS_INT values, CS_INT triplet) { cs *A = cs_calloc (1, sizeof (cs)) ; /* allocate the cs struct */ if (!A) return (NULL) ; /* out of memory */ A->m = m ; /* define dimensions and nzmax */ A->n = n ; A->nzmax = nzmax = CS_MAX (nzmax, 1) ; A->nz = triplet ? 0 : -1 ; /* allocate triplet or comp.col */ A->p = cs_malloc (triplet ? nzmax : n+1, sizeof (CS_INT)) ; A->i = cs_malloc (nzmax, sizeof (CS_INT)) ; A->x = values ? cs_malloc (nzmax, sizeof (CS_ENTRY)) : NULL ; return ((!A->p || !A->i || (values && !A->x)) ? cs_spfree (A) : A) ; } /* change the max # of entries sparse matrix */ CS_INT cs_sprealloc (cs *A, CS_INT nzmax) { CS_INT ok, oki, okj = 1, okx = 1 ; if (!A) return (0) ; if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ; A->i = cs_realloc (A->i, nzmax, sizeof (CS_INT), &oki) ; if (CS_TRIPLET (A)) A->p = cs_realloc (A->p, nzmax, sizeof (CS_INT), &okj) ; if (A->x) A->x = cs_realloc (A->x, nzmax, sizeof (CS_ENTRY), &okx) ; ok = (oki && okj && okx) ; if (ok) A->nzmax = nzmax ; return (ok) ; } /* free a sparse matrix */ cs *cs_spfree (cs *A) { if (!A) return (NULL) ; /* do nothing if A already NULL */ cs_free (A->p) ; cs_free (A->i) ; cs_free (A->x) ; return (cs_free (A)) ; /* free the cs struct and return NULL */ } /* free a numeric factorization */ csn *cs_nfree (csn *N) { if (!N) return (NULL) ; /* do nothing if N already NULL */ cs_spfree (N->L) ; cs_spfree (N->U) ; cs_free (N->pinv) ; cs_free (N->B) ; return (cs_free (N)) ; /* free the csn struct and return NULL */ } /* free a symbolic factorization */ css *cs_sfree (css *S) { if (!S) return (NULL) ; /* do nothing if S already NULL */ cs_free (S->pinv) ; cs_free (S->q) ; cs_free (S->parent) ; cs_free (S->cp) ; cs_free (S->leftmost) ; return (cs_free (S)) ; /* free the css struct and return NULL */ } /* allocate a cs_dmperm or cs_scc result */ csd *cs_dalloc (CS_INT m, CS_INT n) { csd *D ; D = cs_calloc (1, sizeof (csd)) ; if (!D) return (NULL) ; D->p = cs_malloc (m, sizeof (CS_INT)) ; D->r = cs_malloc (m+6, sizeof (CS_INT)) ; D->q = cs_malloc (n, sizeof (CS_INT)) ; D->s = cs_malloc (n+6, sizeof (CS_INT)) ; return ((!D->p || !D->r || !D->q || !D->s) ? cs_dfree (D) : D) ; } /* free a cs_dmperm or cs_scc result */ csd *cs_dfree (csd *D) { if (!D) return (NULL) ; /* do nothing if D already NULL */ cs_free (D->p) ; cs_free (D->q) ; cs_free (D->r) ; cs_free (D->s) ; return (cs_free (D)) ; } /* free workspace and return a sparse matrix result */ cs *cs_done (cs *C, void *w, void *x, CS_INT ok) { cs_free (w) ; /* free workspace */ cs_free (x) ; return (ok ? C : cs_spfree (C)) ; /* return result if OK, else free it */ } /* free workspace and return CS_INT array result */ CS_INT *cs_idone (CS_INT *p, cs *C, void *w, CS_INT ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ return (ok ? p : cs_free (p)) ; /* return result if OK, else free it */ } /* free workspace and return a numeric factorization (Cholesky, LU, or QR) */ csn *cs_ndone (csn *N, cs *C, void *w, void *x, CS_INT ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ cs_free (x) ; return (ok ? N : cs_nfree (N)) ; /* return result if OK, else free it */ } /* free workspace and return a csd result */ csd *cs_ddone (csd *D, cs *C, void *w, CS_INT ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ return (ok ? D : cs_dfree (D)) ; /* return result if OK, else free it */ } SuiteSparse/CXSparse/Source/cs_maxtrans.c0000644001170100242450000000753410712165171017377 0ustar davisfac#include "cs.h" /* find an augmenting path starting at column k and extend the match if found */ static void cs_augment (CS_INT k, const cs *A, CS_INT *jmatch, CS_INT *cheap, CS_INT *w, CS_INT *js, CS_INT *is, CS_INT *ps) { CS_INT found = 0, p, i = -1, *Ap = A->p, *Ai = A->i, head = 0, j ; js [0] = k ; /* start with just node k in jstack */ while (head >= 0) { /* --- Start (or continue) depth-first-search at node j ------------- */ j = js [head] ; /* get j from top of jstack */ if (w [j] != k) /* 1st time j visited for kth path */ { w [j] = k ; /* mark j as visited for kth path */ for (p = cheap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* try a cheap assignment (i,j) */ found = (jmatch [i] == -1) ; } cheap [j] = p ; /* start here next time j is traversed*/ if (found) { is [head] = i ; /* column j matched with row i */ break ; /* end of augmenting path */ } ps [head] = Ap [j] ; /* no cheap match: start dfs for j */ } /* --- Depth-first-search of neighbors of j ------------------------- */ for (p = ps [head] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* consider row i */ if (w [jmatch [i]] == k) continue ; /* skip jmatch [i] if marked */ ps [head] = p + 1 ; /* pause dfs of node j */ is [head] = i ; /* i will be matched with j if found */ js [++head] = jmatch [i] ; /* start dfs at column jmatch [i] */ break ; } if (p == Ap [j+1]) head-- ; /* node j is done; pop from stack */ } /* augment the match if path found: */ if (found) for (p = head ; p >= 0 ; p--) jmatch [is [p]] = js [p] ; } /* find a maximum transveral */ CS_INT *cs_maxtrans (const cs *A, CS_INT seed) /*[jmatch [0..m-1]; imatch [0..n-1]]*/ { CS_INT i, j, k, n, m, p, n2 = 0, m2 = 0, *Ap, *jimatch, *w, *cheap, *js, *is, *ps, *Ai, *Cp, *jmatch, *imatch, *q ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; m = A->m ; Ap = A->p ; Ai = A->i ; w = jimatch = cs_calloc (m+n, sizeof (CS_INT)) ; /* allocate result */ if (!jimatch) return (NULL) ; for (k = 0, j = 0 ; j < n ; j++) /* count nonempty rows and columns */ { n2 += (Ap [j] < Ap [j+1]) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { w [Ai [p]] = 1 ; k += (j == Ai [p]) ; /* count entries already on diagonal */ } } if (k == CS_MIN (m,n)) /* quick return if diagonal zero-free */ { jmatch = jimatch ; imatch = jimatch + m ; for (i = 0 ; i < k ; i++) jmatch [i] = i ; for ( ; i < m ; i++) jmatch [i] = -1 ; for (j = 0 ; j < k ; j++) imatch [j] = j ; for ( ; j < n ; j++) imatch [j] = -1 ; return (cs_idone (jimatch, NULL, NULL, 1)) ; } for (i = 0 ; i < m ; i++) m2 += w [i] ; C = (m2 < n2) ? cs_transpose (A,0) : ((cs *) A) ; /* transpose if needed */ if (!C) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, NULL, 0)) ; n = C->n ; m = C->m ; Cp = C->p ; jmatch = (m2 < n2) ? jimatch + n : jimatch ; imatch = (m2 < n2) ? jimatch : jimatch + m ; w = cs_malloc (5*n, sizeof (CS_INT)) ; /* get workspace */ if (!w) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 0)) ; cheap = w + n ; js = w + 2*n ; is = w + 3*n ; ps = w + 4*n ; for (j = 0 ; j < n ; j++) cheap [j] = Cp [j] ; /* for cheap assignment */ for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */ for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* nothing matched yet */ q = cs_randperm (n, seed) ; /* q = random permutation */ for (k = 0 ; k < n ; k++) /* augment, starting at column q[k] */ { cs_augment (q ? q [k]: k, C, jmatch, cheap, w, js, is, ps) ; } cs_free (q) ; for (j = 0 ; j < n ; j++) imatch [j] = -1 ; /* find row match */ for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ; return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 1)) ; } SuiteSparse/CXSparse/Source/cs_spsolve.c0000644001170100242450000000230210712165171017221 0ustar davisfac#include "cs.h" /* solve Gx=b(:,k), where G is either upper (lo=0) or lower (lo=1) triangular */ CS_INT cs_spsolve (cs *G, const cs *B, CS_INT k, CS_INT *xi, CS_ENTRY *x, const CS_INT *pinv, CS_INT lo) { CS_INT j, J, p, q, px, top, n, *Gp, *Gi, *Bp, *Bi ; CS_ENTRY *Gx, *Bx ; if (!CS_CSC (G) || !CS_CSC (B) || !xi || !x) return (-1) ; Gp = G->p ; Gi = G->i ; Gx = G->x ; n = G->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; top = cs_reach (G, B, k, xi, pinv) ; /* xi[top..n-1]=Reach(B(:,k)) */ for (p = top ; p < n ; p++) x [xi [p]] = 0 ; /* clear x */ for (p = Bp [k] ; p < Bp [k+1] ; p++) x [Bi [p]] = Bx [p] ; /* scatter B */ for (px = top ; px < n ; px++) { j = xi [px] ; /* x(j) is nonzero */ J = pinv ? (pinv [j]) : j ; /* j maps to col J of G */ if (J < 0) continue ; /* column J is empty */ x [j] /= Gx [lo ? (Gp [J]) : (Gp [J+1]-1)] ;/* x(j) /= G(j,j) */ p = lo ? (Gp [J]+1) : (Gp [J]) ; /* lo: L(j,j) 1st entry */ q = lo ? (Gp [J+1]) : (Gp [J+1]-1) ; /* up: U(j,j) last entry */ for ( ; p < q ; p++) { x [Gi [p]] -= Gx [p] * x [j] ; /* x(i) -= G(i,j) * x(j) */ } } return (top) ; /* return top of stack */ } SuiteSparse/CXSparse/Source/cs_droptol.c0000644001170100242450000000037410712165171017220 0ustar davisfac#include "cs.h" static CS_INT cs_tol (CS_INT i, CS_INT j, CS_ENTRY aij, void *tol) { return (CS_ABS (aij) > *((double *) tol)) ; } CS_INT cs_droptol (cs *A, double tol) { return (cs_fkeep (A, &cs_tol, &tol)) ; /* keep all large entries */ } SuiteSparse/CXSparse/Source/cs_etree.c0000644001170100242450000000226210712165171016637 0ustar davisfac#include "cs.h" /* compute the etree of A (using triu(A), or A'A without forming A'A */ CS_INT *cs_etree (const cs *A, CS_INT ata) { CS_INT i, k, p, m, n, inext, *Ap, *Ai, *w, *parent, *ancestor, *prev ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; parent = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ w = cs_malloc (n + (ata ? m : 0), sizeof (CS_INT)) ; /* get workspace */ if (!w || !parent) return (cs_idone (parent, NULL, w, 0)) ; ancestor = w ; prev = w + n ; if (ata) for (i = 0 ; i < m ; i++) prev [i] = -1 ; for (k = 0 ; k < n ; k++) { parent [k] = -1 ; /* node k has no parent yet */ ancestor [k] = -1 ; /* nor does k have an ancestor */ for (p = Ap [k] ; p < Ap [k+1] ; p++) { i = ata ? (prev [Ai [p]]) : (Ai [p]) ; for ( ; i != -1 && i < k ; i = inext) /* traverse from i to k */ { inext = ancestor [i] ; /* inext = ancestor of i */ ancestor [i] = k ; /* path compression */ if (inext == -1) parent [i] = k ; /* no anc., parent is k */ } if (ata) prev [Ai [p]] = k ; } } return (cs_idone (parent, NULL, w, 1)) ; } SuiteSparse/CXSparse/Source/cs_fkeep.c0000644001170100242450000000145010712165171016623 0ustar davisfac#include "cs.h" /* drop entries for which fkeep(A(i,j)) is false; return nz if OK, else -1 */ CS_INT cs_fkeep (cs *A, CS_INT (*fkeep) (CS_INT, CS_INT, CS_ENTRY, void *), void *other) { CS_INT j, p, nz = 0, n, *Ap, *Ai ; CS_ENTRY *Ax ; if (!CS_CSC (A) || !fkeep) return (-1) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; for (j = 0 ; j < n ; j++) { p = Ap [j] ; /* get current location of col j */ Ap [j] = nz ; /* record new location of col j */ for ( ; p < Ap [j+1] ; p++) { if (fkeep (Ai [p], j, Ax ? Ax [p] : 1, other)) { if (Ax) Ax [nz] = Ax [p] ; /* keep A(i,j) */ Ai [nz++] = Ai [p] ; } } } Ap [n] = nz ; /* finalize A */ cs_sprealloc (A, 0) ; /* remove extra space from A */ return (nz) ; } SuiteSparse/CXSparse/Source/cs_lusol.c0000644001170100242450000000144110712165171016667 0ustar davisfac#include "cs.h" /* x=A\b where A is unsymmetric; b overwritten with solution */ CS_INT cs_lusol (CS_INT order, const cs *A, CS_ENTRY *b, double tol) { CS_ENTRY *x ; css *S ; csn *N ; CS_INT n, ok ; if (!CS_CSC (A) || !b) return (0) ; /* check inputs */ n = A->n ; S = cs_sqr (order, A, 0) ; /* ordering and symbolic analysis */ N = cs_lu (A, S, tol) ; /* numeric LU factorization */ x = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get workspace */ ok = (S && N && x) ; if (ok) { cs_ipvec (N->pinv, b, x, n) ; /* x = b(p) */ cs_lsolve (N->L, x) ; /* x = L\x */ cs_usolve (N->U, x) ; /* x = U\x */ cs_ipvec (S->q, x, b, n) ; /* b(q) = x */ } cs_free (x) ; cs_sfree (S) ; cs_nfree (N) ; return (ok) ; } SuiteSparse/CXSparse/Source/cs_ereach.c0000644001170100242450000000176010712165171016764 0ustar davisfac#include "cs.h" /* find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k)) */ CS_INT cs_ereach (const cs *A, CS_INT k, const CS_INT *parent, CS_INT *s, CS_INT *w) { CS_INT i, p, n, len, top, *Ap, *Ai ; if (!CS_CSC (A) || !parent || !s || !w) return (-1) ; /* check inputs */ top = n = A->n ; Ap = A->p ; Ai = A->i ; CS_MARK (w, k) ; /* mark node k as visited */ for (p = Ap [k] ; p < Ap [k+1] ; p++) { i = Ai [p] ; /* A(i,k) is nonzero */ if (i > k) continue ; /* only use upper triangular part of A */ for (len = 0 ; !CS_MARKED (w,i) ; i = parent [i]) /* traverse up etree*/ { s [len++] = i ; /* L(k,i) is nonzero */ CS_MARK (w, i) ; /* mark i as visited */ } while (len > 0) s [--top] = s [--len] ; /* push path onto stack */ } for (p = top ; p < n ; p++) CS_MARK (w, s [p]) ; /* unmark all nodes */ CS_MARK (w, k) ; /* unmark node k */ return (top) ; /* s [top..n-1] contains pattern of L(k,:)*/ } SuiteSparse/CXSparse/Source/cs_gaxpy.c0000644001170100242450000000063010712165171016660 0ustar davisfac#include "cs.h" /* y = A*x+y */ CS_INT cs_gaxpy (const cs *A, const CS_ENTRY *x, CS_ENTRY *y) { CS_INT p, j, n, *Ap, *Ai ; CS_ENTRY *Ax ; if (!CS_CSC (A) || !x || !y) return (0) ; /* check inputs */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { y [Ai [p]] += Ax [p] * x [j] ; } } return (1) ; } SuiteSparse/CXSparse/Source/cs_multiply.c0000644001170100242450000000257310712165171017417 0ustar davisfac#include "cs.h" /* C = A*B */ cs *cs_multiply (const cs *A, const cs *B) { CS_INT p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values, *Bi ; CS_ENTRY *x, *Bx, *Cx ; cs *C ; if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */ if (A->n != B->m) return (NULL) ; m = A->m ; anz = A->p [A->n] ; n = B->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; bnz = Bp [n] ; w = cs_calloc (m, sizeof (CS_INT)) ; /* get workspace */ values = (A->x != NULL) && (Bx != NULL) ; x = values ? cs_malloc (m, sizeof (CS_ENTRY)) : NULL ; /* get workspace */ C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result */ if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ; Cp = C->p ; for (j = 0 ; j < n ; j++) { if (nz + m > C->nzmax && !cs_sprealloc (C, 2*(C->nzmax)+m)) { return (cs_done (C, w, x, 0)) ; /* out of memory */ } Ci = C->i ; Cx = C->x ; /* C->i and C->x may be reallocated */ Cp [j] = nz ; /* column j of C starts here */ for (p = Bp [j] ; p < Bp [j+1] ; p++) { nz = cs_scatter (A, Bi [p], Bx ? Bx [p] : 1, w, x, j+1, C, nz) ; } if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ; } Cp [n] = nz ; /* finalize the last column of C */ cs_sprealloc (C, 0) ; /* remove extra space from C */ return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CXSparse/Source/cs_add.c0000644001170100242450000000244010712165171016261 0ustar davisfac#include "cs.h" /* C = alpha*A + beta*B */ cs *cs_add (const cs *A, const cs *B, CS_ENTRY alpha, CS_ENTRY beta) { CS_INT p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values ; CS_ENTRY *x, *Bx, *Cx ; cs *C ; if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */ if (A->m != B->m || A->n != B->n) return (NULL) ; m = A->m ; anz = A->p [A->n] ; n = B->n ; Bp = B->p ; Bx = B->x ; bnz = Bp [n] ; w = cs_calloc (m, sizeof (CS_INT)) ; /* get workspace */ values = (A->x != NULL) && (Bx != NULL) ; x = values ? cs_malloc (m, sizeof (CS_ENTRY)) : NULL ; /* get workspace */ C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result*/ if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; for (j = 0 ; j < n ; j++) { Cp [j] = nz ; /* column j of C starts here */ nz = cs_scatter (A, j, alpha, w, x, j+1, C, nz) ; /* alpha*A(:,j)*/ nz = cs_scatter (B, j, beta, w, x, j+1, C, nz) ; /* beta*B(:,j) */ if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ; } Cp [n] = nz ; /* finalize the last column of C */ cs_sprealloc (C, 0) ; /* remove extra space from C */ return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */ } SuiteSparse/CXSparse/Source/cs_amd.c0000644001170100242450000003055210712165171016277 0ustar davisfac#include "cs.h" /* clear w */ static CS_INT cs_wclear (CS_INT mark, CS_INT lemax, CS_INT *w, CS_INT n) { CS_INT k ; if (mark < 2 || (mark + lemax < 0)) { for (k = 0 ; k < n ; k++) if (w [k] != 0) w [k] = 1 ; mark = 2 ; } return (mark) ; /* at this point, w [0..n-1] < mark holds */ } /* keep off-diagonal entries; drop diagonal entries */ static CS_INT cs_diag (CS_INT i, CS_INT j, CS_ENTRY aij, void *other) { return (i != j) ; } /* p = amd(A+A') if symmetric is true, or amd(A'A) otherwise */ CS_INT *cs_amd (CS_INT order, const cs *A) /* order 0:natural, 1:Chol, 2:LU, 3:QR */ { cs *C, *A2, *AT ; CS_INT *Cp, *Ci, *last, *W, *len, *nv, *next, *P, *head, *elen, *degree, *w, *hhead, *ATp, *ATi, d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, ok, cnz, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, n, m, t ; unsigned CS_INT h ; /* --- Construct matrix C ----------------------------------------------- */ if (!CS_CSC (A) || order <= 0 || order > 3) return (NULL) ; /* check */ AT = cs_transpose (A, 0) ; /* compute A' */ if (!AT) return (NULL) ; m = A->m ; n = A->n ; dense = CS_MAX (16, 10 * sqrt ((double) n)) ; /* find dense threshold */ dense = CS_MIN (n-2, dense) ; if (order == 1 && n == m) { C = cs_add (A, AT, 0, 0) ; /* C = A+A' */ } else if (order == 2) { ATp = AT->p ; /* drop dense columns from AT */ ATi = AT->i ; for (p2 = 0, j = 0 ; j < m ; j++) { p = ATp [j] ; /* column j of AT starts here */ ATp [j] = p2 ; /* new column j starts here */ if (ATp [j+1] - p > dense) continue ; /* skip dense col j */ for ( ; p < ATp [j+1] ; p++) ATi [p2++] = ATi [p] ; } ATp [m] = p2 ; /* finalize AT */ A2 = cs_transpose (AT, 0) ; /* A2 = AT' */ C = A2 ? cs_multiply (AT, A2) : NULL ; /* C=A'*A with no dense rows */ cs_spfree (A2) ; } else { C = cs_multiply (AT, A) ; /* C=A'*A */ } cs_spfree (AT) ; if (!C) return (NULL) ; cs_fkeep (C, &cs_diag, NULL) ; /* drop diagonal entries */ Cp = C->p ; cnz = Cp [n] ; P = cs_malloc (n+1, sizeof (CS_INT)) ; /* allocate result */ W = cs_malloc (8*(n+1), sizeof (CS_INT)) ; /* get workspace */ t = cnz + cnz/5 + 2*n ; /* add elbow room to C */ if (!P || !W || !cs_sprealloc (C, t)) return (cs_idone (P, C, W, 0)) ; len = W ; nv = W + (n+1) ; next = W + 2*(n+1) ; head = W + 3*(n+1) ; elen = W + 4*(n+1) ; degree = W + 5*(n+1) ; w = W + 6*(n+1) ; hhead = W + 7*(n+1) ; last = P ; /* use P as workspace for last */ /* --- Initialize quotient graph ---------------------------------------- */ for (k = 0 ; k < n ; k++) len [k] = Cp [k+1] - Cp [k] ; len [n] = 0 ; nzmax = C->nzmax ; Ci = C->i ; for (i = 0 ; i <= n ; i++) { head [i] = -1 ; /* degree list i is empty */ last [i] = -1 ; next [i] = -1 ; hhead [i] = -1 ; /* hash list i is empty */ nv [i] = 1 ; /* node i is just one node */ w [i] = 1 ; /* node i is alive */ elen [i] = 0 ; /* Ek of node i is empty */ degree [i] = len [i] ; /* degree of node i */ } mark = cs_wclear (0, 0, w, n) ; /* clear w */ elen [n] = -2 ; /* n is a dead element */ Cp [n] = -1 ; /* n is a root of assembly tree */ w [n] = 0 ; /* n is a dead element */ /* --- Initialize degree lists ------------------------------------------ */ for (i = 0 ; i < n ; i++) { d = degree [i] ; if (d == 0) /* node i is empty */ { elen [i] = -2 ; /* element i is dead */ nel++ ; Cp [i] = -1 ; /* i is a root of assembly tree */ w [i] = 0 ; } else if (d > dense) /* node i is dense */ { nv [i] = 0 ; /* absorb i into element n */ elen [i] = -1 ; /* node i is dead */ nel++ ; Cp [i] = CS_FLIP (n) ; nv [n]++ ; } else { if (head [d] != -1) last [head [d]] = i ; next [i] = head [d] ; /* put node i in degree list d */ head [d] = i ; } } while (nel < n) /* while (selecting pivots) do */ { /* --- Select node of minimum approximate degree -------------------- */ for (k = -1 ; mindeg < n && (k = head [mindeg]) == -1 ; mindeg++) ; if (next [k] != -1) last [next [k]] = -1 ; head [mindeg] = next [k] ; /* remove k from degree list */ elenk = elen [k] ; /* elenk = |Ek| */ nvk = nv [k] ; /* # of nodes k represents */ nel += nvk ; /* nv[k] nodes of A eliminated */ /* --- Garbage collection ------------------------------------------- */ if (elenk > 0 && cnz + mindeg >= nzmax) { for (j = 0 ; j < n ; j++) { if ((p = Cp [j]) >= 0) /* j is a live node or element */ { Cp [j] = Ci [p] ; /* save first entry of object */ Ci [p] = CS_FLIP (j) ; /* first entry is now CS_FLIP(j) */ } } for (q = 0, p = 0 ; p < cnz ; ) /* scan all of memory */ { if ((j = CS_FLIP (Ci [p++])) >= 0) /* found object j */ { Ci [q] = Cp [j] ; /* restore first entry of object */ Cp [j] = q++ ; /* new pointer to object j */ for (k3 = 0 ; k3 < len [j]-1 ; k3++) Ci [q++] = Ci [p++] ; } } cnz = q ; /* Ci [cnz...nzmax-1] now free */ } /* --- Construct new element ---------------------------------------- */ dk = 0 ; nv [k] = -nvk ; /* flag k as in Lk */ p = Cp [k] ; pk1 = (elenk == 0) ? p : cnz ; /* do in place if elen[k] == 0 */ pk2 = pk1 ; for (k1 = 1 ; k1 <= elenk + 1 ; k1++) { if (k1 > elenk) { e = k ; /* search the nodes in k */ pj = p ; /* list of nodes starts at Ci[pj]*/ ln = len [k] - elenk ; /* length of list of nodes in k */ } else { e = Ci [p++] ; /* search the nodes in e */ pj = Cp [e] ; ln = len [e] ; /* length of list of nodes in e */ } for (k2 = 1 ; k2 <= ln ; k2++) { i = Ci [pj++] ; if ((nvi = nv [i]) <= 0) continue ; /* node i dead, or seen */ dk += nvi ; /* degree[Lk] += size of node i */ nv [i] = -nvi ; /* negate nv[i] to denote i in Lk*/ Ci [pk2++] = i ; /* place i in Lk */ if (next [i] != -1) last [next [i]] = last [i] ; if (last [i] != -1) /* remove i from degree list */ { next [last [i]] = next [i] ; } else { head [degree [i]] = next [i] ; } } if (e != k) { Cp [e] = CS_FLIP (k) ; /* absorb e into k */ w [e] = 0 ; /* e is now a dead element */ } } if (elenk != 0) cnz = pk2 ; /* Ci [cnz...nzmax] is free */ degree [k] = dk ; /* external degree of k - |Lk\i| */ Cp [k] = pk1 ; /* element k is in Ci[pk1..pk2-1] */ len [k] = pk2 - pk1 ; elen [k] = -2 ; /* k is now an element */ /* --- Find set differences ----------------------------------------- */ mark = cs_wclear (mark, lemax, w, n) ; /* clear w if necessary */ for (pk = pk1 ; pk < pk2 ; pk++) /* scan 1: find |Le\Lk| */ { i = Ci [pk] ; if ((eln = elen [i]) <= 0) continue ;/* skip if elen[i] empty */ nvi = -nv [i] ; /* nv [i] was negated */ wnvi = mark - nvi ; for (p = Cp [i] ; p <= Cp [i] + eln - 1 ; p++) /* scan Ei */ { e = Ci [p] ; if (w [e] >= mark) { w [e] -= nvi ; /* decrement |Le\Lk| */ } else if (w [e] != 0) /* ensure e is a live element */ { w [e] = degree [e] + wnvi ; /* 1st time e seen in scan 1 */ } } } /* --- Degree update ------------------------------------------------ */ for (pk = pk1 ; pk < pk2 ; pk++) /* scan2: degree update */ { i = Ci [pk] ; /* consider node i in Lk */ p1 = Cp [i] ; p2 = p1 + elen [i] - 1 ; pn = p1 ; for (h = 0, d = 0, p = p1 ; p <= p2 ; p++) /* scan Ei */ { e = Ci [p] ; if (w [e] != 0) /* e is an unabsorbed element */ { dext = w [e] - mark ; /* dext = |Le\Lk| */ if (dext > 0) { d += dext ; /* sum up the set differences */ Ci [pn++] = e ; /* keep e in Ei */ h += e ; /* compute the hash of node i */ } else { Cp [e] = CS_FLIP (k) ; /* aggressive absorb. e->k */ w [e] = 0 ; /* e is a dead element */ } } } elen [i] = pn - p1 + 1 ; /* elen[i] = |Ei| */ p3 = pn ; p4 = p1 + len [i] ; for (p = p2 + 1 ; p < p4 ; p++) /* prune edges in Ai */ { j = Ci [p] ; if ((nvj = nv [j]) <= 0) continue ; /* node j dead or in Lk */ d += nvj ; /* degree(i) += |j| */ Ci [pn++] = j ; /* place j in node list of i */ h += j ; /* compute hash for node i */ } if (d == 0) /* check for mass elimination */ { Cp [i] = CS_FLIP (k) ; /* absorb i into k */ nvi = -nv [i] ; dk -= nvi ; /* |Lk| -= |i| */ nvk += nvi ; /* |k| += nv[i] */ nel += nvi ; nv [i] = 0 ; elen [i] = -1 ; /* node i is dead */ } else { degree [i] = CS_MIN (degree [i], d) ; /* update degree(i) */ Ci [pn] = Ci [p3] ; /* move first node to end */ Ci [p3] = Ci [p1] ; /* move 1st el. to end of Ei */ Ci [p1] = k ; /* add k as 1st element in of Ei */ len [i] = pn - p1 + 1 ; /* new len of adj. list of node i */ h %= n ; /* finalize hash of i */ next [i] = hhead [h] ; /* place i in hash bucket */ hhead [h] = i ; last [i] = h ; /* save hash of i in last[i] */ } } /* scan2 is done */ degree [k] = dk ; /* finalize |Lk| */ lemax = CS_MAX (lemax, dk) ; mark = cs_wclear (mark+lemax, lemax, w, n) ; /* clear w */ /* --- Supernode detection ------------------------------------------ */ for (pk = pk1 ; pk < pk2 ; pk++) { i = Ci [pk] ; if (nv [i] >= 0) continue ; /* skip if i is dead */ h = last [i] ; /* scan hash bucket of node i */ i = hhead [h] ; hhead [h] = -1 ; /* hash bucket will be empty */ for ( ; i != -1 && next [i] != -1 ; i = next [i], mark++) { ln = len [i] ; eln = elen [i] ; for (p = Cp [i]+1 ; p <= Cp [i] + ln-1 ; p++) w [Ci [p]] = mark; jlast = i ; for (j = next [i] ; j != -1 ; ) /* compare i with all j */ { ok = (len [j] == ln) && (elen [j] == eln) ; for (p = Cp [j] + 1 ; ok && p <= Cp [j] + ln - 1 ; p++) { if (w [Ci [p]] != mark) ok = 0 ; /* compare i and j*/ } if (ok) /* i and j are identical */ { Cp [j] = CS_FLIP (i) ; /* absorb j into i */ nv [i] += nv [j] ; nv [j] = 0 ; elen [j] = -1 ; /* node j is dead */ j = next [j] ; /* delete j from hash bucket */ next [jlast] = j ; } else { jlast = j ; /* j and i are different */ j = next [j] ; } } } } /* --- Finalize new element------------------------------------------ */ for (p = pk1, pk = pk1 ; pk < pk2 ; pk++) /* finalize Lk */ { i = Ci [pk] ; if ((nvi = -nv [i]) <= 0) continue ;/* skip if i is dead */ nv [i] = nvi ; /* restore nv[i] */ d = degree [i] + dk - nvi ; /* compute external degree(i) */ d = CS_MIN (d, n - nel - nvi) ; if (head [d] != -1) last [head [d]] = i ; next [i] = head [d] ; /* put i back in degree list */ last [i] = -1 ; head [d] = i ; mindeg = CS_MIN (mindeg, d) ; /* find new minimum degree */ degree [i] = d ; Ci [p++] = i ; /* place i in Lk */ } nv [k] = nvk ; /* # nodes absorbed into k */ if ((len [k] = p-pk1) == 0) /* length of adj list of element k*/ { Cp [k] = -1 ; /* k is a root of the tree */ w [k] = 0 ; /* k is now a dead element */ } if (elenk != 0) cnz = p ; /* free unused space in Lk */ } /* --- Postordering ----------------------------------------------------- */ for (i = 0 ; i < n ; i++) Cp [i] = CS_FLIP (Cp [i]) ;/* fix assembly tree */ for (j = 0 ; j <= n ; j++) head [j] = -1 ; for (j = n ; j >= 0 ; j--) /* place unordered nodes in lists */ { if (nv [j] > 0) continue ; /* skip if j is an element */ next [j] = head [Cp [j]] ; /* place j in list of its parent */ head [Cp [j]] = j ; } for (e = n ; e >= 0 ; e--) /* place elements in lists */ { if (nv [e] <= 0) continue ; /* skip unless e is an element */ if (Cp [e] != -1) { next [e] = head [Cp [e]] ; /* place e in list of its parent */ head [Cp [e]] = e ; } } for (k = 0, i = 0 ; i <= n ; i++) /* postorder the assembly tree */ { if (Cp [i] == -1) k = cs_tdfs (i, k, head, next, P, w) ; } return (cs_idone (P, C, W, 1)) ; } SuiteSparse/CXSparse/Source/cs_dfs.c0000644001170100242450000000255610712165171016315 0ustar davisfac#include "cs.h" /* depth-first-search of the graph of a matrix, starting at node j */ CS_INT cs_dfs (CS_INT j, cs *G, CS_INT top, CS_INT *xi, CS_INT *pstack, const CS_INT *pinv) { CS_INT i, p, p2, done, jnew, head = 0, *Gp, *Gi ; if (!CS_CSC (G) || !xi || !pstack) return (-1) ; /* check inputs */ Gp = G->p ; Gi = G->i ; xi [0] = j ; /* initialize the recursion stack */ while (head >= 0) { j = xi [head] ; /* get j from the top of the recursion stack */ jnew = pinv ? (pinv [j]) : j ; if (!CS_MARKED (Gp, j)) { CS_MARK (Gp, j) ; /* mark node j as visited */ pstack [head] = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew]) ; } done = 1 ; /* node j done if no unvisited neighbors */ p2 = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew+1]) ; for (p = pstack [head] ; p < p2 ; p++) /* examine all neighbors of j */ { i = Gi [p] ; /* consider neighbor node i */ if (CS_MARKED (Gp, i)) continue ; /* skip visited node i */ pstack [head] = p ; /* pause depth-first search of node j */ xi [++head] = i ; /* start dfs at node i */ done = 0 ; /* node j is not done */ break ; /* break, to start dfs (i) */ } if (done) /* depth-first search at node j is done */ { head-- ; /* remove j from the recursion stack */ xi [--top] = j ; /* and place in the output stack */ } } return (top) ; } SuiteSparse/CXSparse/Source/cs_scc.c0000644001170100242450000000333210712165171016302 0ustar davisfac#include "cs.h" /* find the strongly connected components of a square matrix */ csd *cs_scc (cs *A) /* matrix A temporarily modified, then restored */ { CS_INT n, i, k, b, nb = 0, top, *xi, *pstack, *p, *r, *Ap, *ATp, *rcopy, *Blk ; cs *AT ; csd *D ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; Ap = A->p ; D = cs_dalloc (n, 0) ; /* allocate result */ AT = cs_transpose (A, 0) ; /* AT = A' */ xi = cs_malloc (2*n+1, sizeof (CS_INT)) ; /* get workspace */ if (!D || !AT || !xi) return (cs_ddone (D, AT, xi, 0)) ; Blk = xi ; rcopy = pstack = xi + n ; p = D->p ; r = D->r ; ATp = AT->p ; top = n ; for (i = 0 ; i < n ; i++) /* first dfs(A) to find finish times (xi) */ { if (!CS_MARKED (Ap, i)) top = cs_dfs (i, A, top, xi, pstack, NULL) ; } for (i = 0 ; i < n ; i++) CS_MARK (Ap, i) ; /* restore A; unmark all nodes*/ top = n ; nb = n ; for (k = 0 ; k < n ; k++) /* dfs(A') to find strongly connnected comp */ { i = xi [k] ; /* get i in reverse order of finish times */ if (CS_MARKED (ATp, i)) continue ; /* skip node i if already ordered */ r [nb--] = top ; /* node i is the start of a component in p */ top = cs_dfs (i, AT, top, p, pstack, NULL) ; } r [nb] = 0 ; /* first block starts at zero; shift r up */ for (k = nb ; k <= n ; k++) r [k-nb] = r [k] ; D->nb = nb = n-nb ; /* nb = # of strongly connected components */ for (b = 0 ; b < nb ; b++) /* sort each block in natural order */ { for (k = r [b] ; k < r [b+1] ; k++) Blk [p [k]] = b ; } for (b = 0 ; b <= nb ; b++) rcopy [b] = r [b] ; for (i = 0 ; i < n ; i++) p [rcopy [Blk [i]]++] = i ; return (cs_ddone (D, AT, xi, 1)) ; } SuiteSparse/CXSparse/Source/cs_sqr.c0000644001170100242450000000654310712165171016346 0ustar davisfac#include "cs.h" /* compute nnz(V) = S->lnz, S->pinv, S->leftmost, S->m2 from A and S->parent */ static CS_INT cs_vcount (const cs *A, css *S) { CS_INT i, k, p, pa, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i, *next, *head, *tail, *nque, *pinv, *leftmost, *w, *parent = S->parent ; S->pinv = pinv = cs_malloc (m+n, sizeof (CS_INT)) ; /* allocate pinv, */ S->leftmost = leftmost = cs_malloc (m, sizeof (CS_INT)) ; /* and leftmost */ w = cs_malloc (m+3*n, sizeof (CS_INT)) ; /* get workspace */ if (!pinv || !w || !leftmost) { cs_free (w) ; /* pinv and leftmost freed later */ return (0) ; /* out of memory */ } next = w ; head = w + m ; tail = w + m + n ; nque = w + m + 2*n ; for (k = 0 ; k < n ; k++) head [k] = -1 ; /* queue k is empty */ for (k = 0 ; k < n ; k++) tail [k] = -1 ; for (k = 0 ; k < n ; k++) nque [k] = 0 ; for (i = 0 ; i < m ; i++) leftmost [i] = -1 ; for (k = n-1 ; k >= 0 ; k--) { for (p = Ap [k] ; p < Ap [k+1] ; p++) { leftmost [Ai [p]] = k ; /* leftmost[i] = min(find(A(i,:)))*/ } } for (i = m-1 ; i >= 0 ; i--) /* scan rows in reverse order */ { pinv [i] = -1 ; /* row i is not yet ordered */ k = leftmost [i] ; if (k == -1) continue ; /* row i is empty */ if (nque [k]++ == 0) tail [k] = i ; /* first row in queue k */ next [i] = head [k] ; /* put i at head of queue k */ head [k] = i ; } S->lnz = 0 ; S->m2 = m ; for (k = 0 ; k < n ; k++) /* find row permutation and nnz(V)*/ { i = head [k] ; /* remove row i from queue k */ S->lnz++ ; /* count V(k,k) as nonzero */ if (i < 0) i = S->m2++ ; /* add a fictitious row */ pinv [i] = k ; /* associate row i with V(:,k) */ if (--nque [k] <= 0) continue ; /* skip if V(k+1:m,k) is empty */ S->lnz += nque [k] ; /* nque [k] is nnz (V(k+1:m,k)) */ if ((pa = parent [k]) != -1) /* move all rows to parent of k */ { if (nque [pa] == 0) tail [pa] = tail [k] ; next [tail [k]] = head [pa] ; head [pa] = next [i] ; nque [pa] += nque [k] ; } } for (i = 0 ; i < m ; i++) if (pinv [i] < 0) pinv [i] = k++ ; cs_free (w) ; return (1) ; } /* symbolic ordering and analysis for QR or LU */ css *cs_sqr (CS_INT order, const cs *A, CS_INT qr) { CS_INT n, k, ok = 1, *post ; css *S ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; S = cs_calloc (1, sizeof (css)) ; /* allocate result S */ if (!S) return (NULL) ; /* out of memory */ S->q = cs_amd (order, A) ; /* fill-reducing ordering */ if (order && !S->q) return (cs_sfree (S)) ; if (qr) /* QR symbolic analysis */ { cs *C = order ? cs_permute (A, NULL, S->q, 0) : ((cs *) A) ; S->parent = cs_etree (C, 1) ; /* etree of C'*C, where C=A(:,q) */ post = cs_post (S->parent, n) ; S->cp = cs_counts (C, S->parent, post, 1) ; /* col counts chol(C'*C) */ cs_free (post) ; ok = C && S->parent && S->cp && cs_vcount (C, S) ; if (ok) for (S->unz = 0, k = 0 ; k < n ; k++) S->unz += S->cp [k] ; ok = ok && S->lnz >= 0 && S->unz >= 0 ; /* CS_INT overflow guard */ if (order) cs_spfree (C) ; } else { S->unz = 4*(A->p [n]) + n ; /* for LU factorization only, */ S->lnz = S->unz ; /* guess nnz(L) and nnz(U) */ } return (ok ? S : cs_sfree (S)) ; /* return result S */ } SuiteSparse/CXSparse/Source/cs_compress.c0000644001170100242450000000162210712165171017365 0ustar davisfac#include "cs.h" /* C = compressed-column form of a triplet matrix T */ cs *cs_compress (const cs *T) { CS_INT m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj ; CS_ENTRY *Cx, *Tx ; cs *C ; if (!CS_TRIPLET (T)) return (NULL) ; /* check inputs */ m = T->m ; n = T->n ; Ti = T->i ; Tj = T->p ; Tx = T->x ; nz = T->nz ; C = cs_spalloc (m, n, nz, Tx != NULL, 0) ; /* allocate result */ w = cs_calloc (n, sizeof (CS_INT)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (k = 0 ; k < nz ; k++) w [Tj [k]]++ ; /* column counts */ cs_cumsum (Cp, w, n) ; /* column pointers */ for (k = 0 ; k < nz ; k++) { Ci [p = w [Tj [k]]++] = Ti [k] ; /* A(i,j) is the pth entry in C */ if (Cx) Cx [p] = Tx [k] ; } return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */ } SuiteSparse/CXSparse/Source/cs_transpose.c0000644001170100242450000000170010712165171017545 0ustar davisfac#include "cs.h" /* C = A' */ cs *cs_transpose (const cs *A, CS_INT values) { CS_INT p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ; CS_ENTRY *Cx, *Ax ; cs *C ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ; /* allocate result */ w = cs_calloc (m, sizeof (CS_INT)) ; /* get workspace */ if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */ Cp = C->p ; Ci = C->i ; Cx = C->x ; for (p = 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ; /* row counts */ cs_cumsum (Cp, w, m) ; /* row pointers */ for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ci [q = w [Ai [p]]++] = j ; /* place A(i,j) as entry C(j,i) */ if (Cx) Cx [q] = (values > 0) ? CS_CONJ (Ax [p]) : Ax [p] ; } } return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */ } SuiteSparse/CXSparse/Source/cs_convert.c0000644001170100242450000000662010566670105017222 0ustar davisfac#include "cs.h" /* convert from complex to real (int version) */ /* C = real(A) if real is true, imag(A) otherwise */ cs_di *cs_i_real (cs_ci *A, int real) { cs_di *C ; int n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; cs_complex_t *Ax ; double *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_di_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? creal (Ax [p]) : cimag (Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from real to complex (int version) */ /* C = A if real is true, or C = i*A otherwise */ cs_ci *cs_i_complex (cs_di *A, int real) { cs_ci *C ; int n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; double *Ax ; cs_complex_t *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_ci_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? Ax [p] : (I * Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from complex to real (UF_long version) */ /* C = real(A) if real is true, imag(A) otherwise */ cs_dl *cs_l_real (cs_cl *A, UF_long real) { cs_dl *C ; UF_long n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; cs_complex_t *Ax ; double *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_dl_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? creal (Ax [p]) : cimag (Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from real to complex (UF_long version) */ /* C = A if real is true, or C = i*A otherwise */ cs_cl *cs_l_complex (cs_dl *A, UF_long real) { cs_cl *C ; UF_long n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; double *Ax ; cs_complex_t *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_cl_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? Ax [p] : (I * Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } SuiteSparse/CXSparse/README.txt0000644001170100242450000005751210711425615015151 0ustar davisfacCXSparse: a Concise Sparse Matrix package - Extended. Version 2.2.0, Copyright (c) 2006-2007, Timothy A. Davis. Derived from CSparse. Conversion originally by David Bateman, Motorola, and then modified by Tim Davis. ANSI C99 is required, with support for the _Complex data type. (if you use a C++ compiler, the C++ complex type is used instead). CXSparse is a version of CSparse that operates on both real and complex matrices, using either int or UF_long integers. A UF_long is normally just a long on most platforms, but becomes __int64 on WIN64. It now includes a MATLAB interface, enabling the use of CXSparse functions on both 32-bit and 64-bit platforms. To install for use in MATLAB, simply type "cs_install" in the MATLAB Command Window, while in the CXSparse/MATLAB directory. (NOTE: Windows users cannot use the "lcc" command; run "mex -setup" first, and select a different compiler). If you use the Unix "make" command in that directory instead and are using a 64-bit platform, then you must edit the CXSparse/MATLAB/Makefile first. Refer to the instructions in that file. Refer to "Direct Methods for Sparse Linear Systems," Timothy A. Davis, SIAM, Philadelphia, 2006. No detailed user guide is included in this package; the user guide is the book itself. To compile the C-library (./Source), C demo programs (./Demo) just type "make" in this directory. To run the exhaustive statement coverage tests, type "make" in the Tcov directory; the Tcov tests assume you are using Linux. To remove all files not in the original distribution, type "make distclean". I recommend that you use a different level of optimization than "cc -O", which was chosen so that the Makefile is portable. See Source/Makefile. If your C compiler does not support the ANSI C99 complex type, the #include statement will fail. If this happens, compile the code with the -DNCOMPLEX flag (the MATLAB cs_install will do this for you). This package is backward compatible with CSparse. That is, user code that uses CSparse may switch to using CXSparse without any changes to the user code. Each CXSparse function has a generic version with the same name as the CSparse function, and four type-specific versions. For example: cs_add same as cs_add_di by default, but can be changed to use UF_long integers if user code is compiled with -DCS_LONG, and/or can be changed to operate on complex matrices with -DCS_COMPLEX. cs_di_add double/int version of cs_add cs_dl_add double/UF_long version of cs_add cs_ci_add complex/int version of cs_add cs_cl_add complex/UF_long version of cs_add The sparse matrix data structures are treated in the same way: cs, css, csn, and csd become cs_di, cs_dis, cs_din, and cs_did for the double/int case, cs_cl, cs_cls, cs_cln, and cs_cld for the complex/UF_long case, and so on. See cs_demo.c for a type-generic user program, and cs_cl_demo.c for a type-specific version of the same program (complex/UF_long). Several macros are available in CXSparse (but not in CSparse) to allow user code to be written in a type-generic manner: CS_INT int by default, UF_long if -DCS_LONG compiler flag is used CS_ENTRY double by default, double complex if -DCS_COMPLEX flag is used. CS_ID "%d" or "%ld", for printf and scanf of the CS_INT type. CS_INT_MAX INT_MAX or LONG_MAX, the largest possible value of CS_INT. CS_REAL(x) x or creal(x) CS_IMAG(x) 0 or cimag(x) CS_CONJ(x) x or conj(x) CS_ABS(x) fabs(x) or cabs(x) Even the name of the include file (cs.h) is the same. To use CXSparse instead of CSparse, simply compile with -ICXSparse/Source instead of -ICSparse/Source, and link against libcxsparse.a instead of the CSparse libcsparse.a library. To determine at compile time if CXSparse or CSparse is being used: #ifdef CXSPARSE CXSparse is in use. The generic functions equivalent to CSparse may be used (cs_add, etc). These generic functions can use different types, depending on the -DCS_LONG and -DCS_COMPLEX compile flags, with the default being double/int. The type-specific functions and data types (cs_di_add, cs_di, CS_INT, etc.) can be used. #else CSparse is in use. Only the generic functions "cs_add", etc., are available, and they are of type double/int. #endif See cs.h for the prototypes of each function, and the book "Direct Methods for Sparse Linear Systems" for full documentation of CSparse and CXSparse. Other changes from CSparse: cs_transpose performs the complex conjugate transpose if values>0 (C=A'), the pattern-only transpose if values=0 (C=spones(A') in MATLAB), and the array transpose if values<0 (C=A.' in MATLAB notation). A set of four conversion routines are included in CXSparse, to convert real matrices to/from complex matrices. The Householder reflection constructed by cs_house.c also differs slightly, to accomodate both the real and complex cases properly. CXSparse is generated automatically from CSparse. Refer to http://www.cise.ufl.edu/research/sparse/CSparse for details. -------------------------------------------------------------------------------- Contents: -------------------------------------------------------------------------------- Demo/ demo C programs that use CXSparse Doc/ license and change log Makefile Makefile for the whole package MATLAB/ MATLAB interface, demos, and tests for CXSparse Matrix/ sample matrices (with extra complex matrices for CXSparse) README.txt this file Source/ primary CXSparse source files Tcov/ CXSparse tests -------------------------------------------------------------------------------- ./Doc: license and change log -------------------------------------------------------------------------------- ChangeLog changes in CSparse since first release lesser.txt the GNU LGPL License.txt license (GNU LGPL) -------------------------------------------------------------------------------- ./Source: Primary source code for CXSparse -------------------------------------------------------------------------------- cs_add.c add sparse matrices cs_amd.c approximate minimum degree cs_chol.c sparse Cholesky cs_cholsol.c x=A\b using sparse Cholesky cs_compress.c convert a compress form to compressed-column form cs_counts.c column counts for Cholesky and QR cs_convert.c convert real to complex and complex to real (not in CSparse) cs_cumsum.c cumulative sum cs_dfs.c depth-first-search cs_dmperm.c Dulmage-Mendelsohn permutation cs_droptol.c drop small entries from a sparse matrix cs_dropzeros.c drop zeros from a sparse matrix cs_dupl.c remove (and sum) duplicates cs_entry.c add an entry to a triplet matrix cs_ereach.c nonzero pattern of Cholesky L(k,:) from etree and triu(A(:,k)) cs_etree.c find elimination tree cs_fkeep.c drop entries from a sparse matrix cs_gaxpy.c sparse matrix times dense matrix cs.h include file for CXSparse cs_happly.c apply Householder reflection cs_house.c Householder reflection (*** NOTE: different algo. from CSparse) cs_ipvec.c x(p)=b cs_leaf.c determine if j is a leaf of the skeleton matrix and find lca cs_load.c load a sparse matrix from a file cs_lsolve.c x=L\b cs_ltsolve.c x=L'\b cs_lu.c sparse LU factorization cs_lusol.c x=A\b using sparse LU factorization cs_malloc.c memory manager cs_maxtrans.c maximum transveral (permutation for zero-free diagonal) cs_multiply.c sparse matrix multiply cs_norm.c sparse matrix norm cs_permute.c permute a sparse matrix cs_pinv.c invert a permutation vector cs_post.c postorder an elimination tree cs_print.c print a sparse matrix cs_pvec.c x=b(p) cs_qr.c sparse QR cs_qrsol.c solve a least-squares problem cs_randperm.c random permutation cs_reach.c find nonzero pattern of x=L\b for sparse L and b cs_scatter.c scatter a sparse vector cs_scc.c strongly-connected components cs_schol.c symbolic Cholesky cs_spsolve.c x=Z\b where Z, x, and b are sparse, and Z upper/lower triangular cs_sqr.c symbolic QR (also can be used for LU) cs_symperm.c symmetric permutation of a sparse matrix cs_tdfs.c depth-first-search of a tree cs_transpose.c transpose a sparse matrix cs_updown.c sparse rank-1 Cholesky update/downate cs_usolve.c x=U\b cs_util.c various utilities (allocate/free matrices, workspace, etc) cs_utsolve.c x=U'\b Makefile Makefile for CXSparse README.txt README file for CXSparse -------------------------------------------------------------------------------- ./Demo: C program demos -------------------------------------------------------------------------------- cs_ci_demo1.c complex/int version of cs_demo1.c cs_ci_demo2.c complex/int version of cs_demo2.c cs_ci_demo3.c complex/int version of cs_demo3.c cs_ci_demo.c complex/int version of cs_demo.c cs_ci_demo.h complex/int version of cs_demo.h cs_cl_demo1.c complex/UF_long version of cs_demo1.c cs_cl_demo2.c complex/UF_long version of cs_demo2.c cs_cl_demo3.c complex/UF_long version of cs_demo3.c cs_cl_demo.c complex/UF_long version of cs_demo.c cs_cl_demo.h complex/UF_long version of cs_demo.h cs_demo1.c read a matrix from a file and perform basic matrix operations cs_demo2.c read a matrix from a file and solve a linear system cs_demo3.c read a matrix, solve a linear system, update/downdate cs_demo.c support routines for cs_demo*.c cs_demo.h include file for demo programs cs_demo.out output of "make", which runs the demos on some matrices cs_di_demo1.c double/int version of cs_demo1.c cs_di_demo2.c double/int version of cs_demo2.c cs_di_demo3.c double/int version of cs_demo3.c cs_di_demo.c double/int version of cs_demo.c cs_di_demo.h double/int version of cs_demo.h cs_dl_demo1.c double/UF_long version of cs_demo1.c cs_dl_demo2.c double/UF_long version of cs_demo2.c cs_dl_demo3.c double/UF_long version of cs_demo3.c cs_dl_demo.c double/UF_long version of cs_demo.c cs_dl_demo.h double/UF_long version of cs_demo.h cs_idemo.c convert real matrices to/from complex (int version) cs_ldemo.c convert real matrices to/from complex (UF_long version) Makefile Makefile for Demo programs readhb.f read a Rutherford-Boeing matrix (real matrices only) README.txt Demo README file -------------------------------------------------------------------------------- ./MATLAB: MATLAB interface, demos, and tests -------------------------------------------------------------------------------- cs_install.m MATLAB function for compiling and installing CSparse for MATLAB CSparse/ MATLAB interface for CSparse Demo/ MATLAB demos for CSparse Makefile MATLAB interface Makefile README.txt MATLAB README file Test/ MATLAB test for CSparse, and "textbook" routines UFget/ MATLAB interface to UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./MATLAB/CSparse: MATLAB interface for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB interface to CSparse cs_add.m add two sparse matrices cs_add_mex.c cs_amd.m approximate minimum degree cs_amd_mex.c cs_chol.m sparse Cholesky cs_chol_mex.c cs_cholsol.m x=A\b using a sparse Cholesky cs_cholsol_mex.c cs_counts.m column counts for Cholesky or QR (like "symbfact" in MATLAB) cs_counts_mex.c cs_dmperm.m Dulmage-Mendelsohn permutation cs_dmperm_mex.c cs_dmsol.m x=A\b using dmperm cs_dmspy.m plot a picture of a dmperm-permuted matrix cs_droptol.m drop small entries cs_droptol_mex.c cs_esep.m find edge separator cs_etree.m compute elimination tree cs_etree_mex.c cs_gaxpy.m sparse matrix times dense vector cs_gaxpy_mex.c cs_lsolve.m x=L\b where L is lower triangular cs_lsolve_mex.c cs_ltsolve.m x=L'\b where L is lower triangular cs_ltsolve_mex.c cs_lu.m sparse LU factorization cs_lu_mex.c cs_lusol.m x=A\b using sparse LU factorization cs_lusol_mex.c cs_make.m compiles CSparse for use in MATLAB cs_mex.c support routines for CSparse mexFunctions cs_mex.h cs_multiply.m sparse matrix multiply cs_multiply_mex.c cs_must_compile.m determine if a source file needs to be compiled with mex cs_nd.m nested dissection cs_nsep.m find node separator cs_permute.m permute a sparse matrix cs_permute_mex.c cs_print.m print a sparse matrix cs_print_mex.c cs_qleft.m apply Householder vectors to the left cs_qright.m apply Householder vectors to the right cs_qr.m sparse QR factorization cs_qr_mex.c cs_qrsol.m solve a sparse least squares problem cs_qrsol_mex.c cs_randperm.m randdom permutation cs_randperm_mex.c cs_scc.m strongly-connected components cs_scc_mex.c cs_sep.m convert an edge separator into a node separator cs_sparse.m convert a triplet form matrix to a compress-column form cs_sparse_mex.c cs_symperm.m symmetric permutation of a sparse matrix cs_symperm_mex.c cs_sqr.m symbolic QR ordering and analysis cs_sqr_mex.c cs_thumb_mex.c compute small "thumbnail" of a sparse matrix (for cspy). cs_transpose.m transpose a sparse matrix cs_transpose_mex.c cs_updown.m sparse Cholesky update/downdate cs_updown_mex.c cs_usolve.m x=U\b where U is upper triangular cs_usolve_mex.c cs_utsolve.m x=U'\b where U is upper triangular cs_utsolve_mex.c cspy.m a color "spy" Makefile Makefile for CSparse MATLAB interface README.txt README file for CSparse MATLAB interface -------------------------------------------------------------------------------- ./MATLAB/Demo: MATLAB demos for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB demo for CSparse cs_demo.m run all MATLAB demos for CSparse cs_demo1.m MATLAB version of Demo/cs_demo1.c cs_demo2.m MATLAB version of Demo/cs_demo2.c cs_demo3.m MATLAB version of Demo/cs_demo3.c private/ private functions for MATLAB demos README.txt README file for CSparse MATLAB demo -------------------------------------------------------------------------------- ./MATLAB/Demo/private: private functions for MATLAB demos -------------------------------------------------------------------------------- demo2.m demo 2 demo3.m demo 3 ex_1.m example 1 ex2.m example 2 ex3.m example 3 frand.m generate a random finite-element matrix get_problem.m get a matrix is_sym.m determine if a matrix is symmetric mesh2d1.m construct a 2D mesh (method 1) mesh2d2.m construct a 2D mesh (method 2) mesh3d1.m construct a 3D mesh (method 1) mesh3d2.m construct a 3D mesh (method 2) print_order.m print the ordering method used resid.m compute residual rhs.m create right-hand-side -------------------------------------------------------------------------------- ./MATLAB/Test: Extensive test of CSparse, in MATLAB -------------------------------------------------------------------------------- Makefile Makefile for MATLAB Test directory README.txt README file for MATLAB/Test Contents.m Contents of MATLAB/Test, "textbook" files only chol_downdate.m downdate a Cholesky factorization. chol_left.m left-looking Cholesky factorization. chol_left2.m left-looking Cholesky factorization, more details. chol_right.m right-looking Cholesky factorization. chol_super.m left-looking "supernodal" Cholesky factorization. chol_up.m up-looking Cholesky factorization. chol_update.m update a Cholesky factorization. chol_updown.m update or downdate a Cholesky factorization. cond1est.m 1-norm condition estimate. cs_fiedler.m the Fiedler vector of a connected graph. givens2.m find a Givens rotation. house.m find a Householder reflection. lu_left.m left-looking LU factorization. lu_right.m right-looking LU factorization. lu_rightp.m right-looking LU factorization, with partial pivoting. lu_rightpr.m recursive right-looking LU, with partial pivoting. lu_rightr.m recursive right-looking LU. norm1est.m 1-norm estimate. qr_givens.m Givens-rotation QR factorization. qr_givens_full.m Givens-rotation QR factorization, for full matrices. qr_left.m left-looking Householder QR factorization. qr_right.m right-looking Householder QR factorization. cs_fiedler.m Fiedler vector cs_frand.m generate a random finite-element matrix cs_frand_mex.c cs_ipvec.m x(p)=b cs_ipvec_mex.c cs_maxtransr.m recursive maximum matching algorithm cs_maxtransr_mex.c cs_pvec.m x=b(p) cs_pvec_mex.c interface for cs_pvec cs_reach.m non-recursive reach (interface to CSparse cs_reach) cs_reach_mex.c non-recursive x=spones(L\sparse(b)) cs_reachr.m recursive reach (interface to CSparse cs_reachr) cs_reachr_mex.c cs_rowcnt.m row counts for sparse Cholesky cs_rowcnt_mex.c row counts for sparse Cholesky cs_sparse2.m same as cs_sparse, to test cs_entry function cs_sparse2_mex.c like cs_sparse, but for testing cs_entry cs_test_make.m compiles MATLAB tests check_if_same.m check if two inputs are identical or not choldn.m Cholesky downdate cholup.m Cholesky update, using Given's rotations cholupdown.m Cholesky update/downdate (Bischof, Pan, and Tang method) cs_q1.m construct Q from Householder vectors cs_test_make.m compiles the CSparse, Demo, and Test mexFunctions. dmperm_test.m test cs_dmperm chol_example.m simple Cholesky factorization example etree_sample.m construct a sample etree and symbolic factorization gqr3.m QR factorization, based on Givens rotations happly.m apply Householder reflection to a vector hmake1.m construct a Householder reflection mynormest1.m estimate norm(A,1), using LU factorization (L*U = P*A*Q). myqr.m QR factorization using Householder reflections another_colormap.m try another color map cspy_test.m test cspy and cs_dmspy qr2.m QR factorization based on Householder reflections sample_colormap.m try a colormap for use in cspy signum.m compute and display the sign of a column vector x sqr_example.m test cs_sqr dmspy_test.m test cspy, cs_dmspy, and cs_dmperm test_qr.m test various QR factorization methods test_randperms.m test random permutations testh.m test Householder reflections test_qr1.m test QR factorizations test_qrsol.m test cs_qrsol test_sep.m test cs_sep, and compare with Gilbert's meshpart vtxsep testall.m test all CSparse functions (run tests 1 to 28 below) test1.m test cs_transpose test2.m test cs_sparse test3.m test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol test4.m test cs_multiply test5.m test cs_add test6.m test cs_reach, cs_reachr, cs_lsolve, cs_usolve test7.m test cs_lu test8.m test cs_cholsol, cs_lusol test9.m test cs_qr test10.m test cs_qr test11.m test cs_rowcnt test12.m test cs_qr and compare with svd test13.m test cs_counts, cs_etree test14.m test cs_droptol test15.m test cs_amd test16.m test cs_amd test17.m test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol test18.m test iterative refinement after backslash test19.m test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc test20.m test cholupdown test21.m test cs_updown test22.m test cond1est test23.m test cs_dmspy test24.m test cs_fielder test25.m test cs_nd test26.m test cs_dmsol and cs_dmspy test27.m test cs_qr, cs_utsolve, cs_qrsol test28.m test cs_randperm, cs_dmperm -------------------------------------------------------------------------------- ./MATLAB/UFget: MATLAB interface for the UF Sparse Matrix Collection -------------------------------------------------------------------------------- Contents.m Contents of UFget mat/ default directory where downloaded matrices will be put README.txt README file for UFget UFget_defaults.m default parameter settings UFget_example.m example of use UFget_install.m installs UFget temporarily (for current session) UFget_java.class read a url and load it in into MATLAB (compiled Java code) UFget_java.java read a url and load it in into MATLAB (Java source code) UFget_lookup.m look up a matrix in the index UFget.m UFget itself (primary user interface) UFweb.m open url for a matrix or collection mat/UF_Index.mat index of matrices in UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./Matrix: Sample matrices, most from Rutherford/Boeing collection -------------------------------------------------------------------------------- ash219 overdetermined pattern of Holland survey. Ashkenazi, 1974. bcsstk01 stiffness matrix for small generalized eigenvalue problem bcsstk16 stiffness matrix, Corp of Engineers dam fs_183_1 unsymmetric facsimile convergence matrix lp_afiro NETLIB afiro linear programming problem mbeacxc US economy, 1972. Dan Szyld, while at NYU t1 small example used in Chapter 2 west0067 Cavett problem with 5 components (chemical eng., Westerberg) c_mbeacxc complex version of mbeacxc c_west0067 complex version of west0067 mhd1280b Alfven spectra in magnetohydrodynamics (complex) neumann complex matrix qc324 model of H+ in an electromagnetic field (complex) t2 small complex matrix t3 small complex matrix t4 small complex matrix c4 small complex matrix young1c aeronautical problem (complex matrix) -------------------------------------------------------------------------------- ./Tcov: Exhaustive test coverage of CXSparse -------------------------------------------------------------------------------- covall same as covall.linux covall.linux find coverage (Linux) covall.sol find coverage (Solaris) cov.awk coverage summary cover print uncovered lines covs print uncovered lines cstcov_malloc_test.c malloc test cstcov_malloc_test.h cstcov_test.c main program for Tcov tests gcovs run gcov (Linux) Makefile Makefile for Tcov tests nil an empty matrix zero a 1-by-1 zero matrix czero a 1-by-1 complex zero matrix README.txt README file for Tcov directory -------------------------------------------------------------------------------- Change Log: -------------------------------------------------------------------------------- Refer to CSparse for changes in CSparse, which are immediately propagated into CXSparse (those Change Log entries are not repeated here). Nov 1, 2007. version 2.2.1 CXSparse/MATLAB/Test ported to Windows May 31, 2007. version 2.2.0 * back-port to MATLAB 7.2 and earlier (which does not have mwIndex). * more graceful failure in cs_make when attempting complex matrix support (Windows, in particular) * correction to CXSparse/Demo/Makefile * added sizeof(CS_INT) printout to cs_idemo.c, cs_ldemo.c Mar 14, 2007. Version 2.1.0. * MATLAB interface added for CXSparse. * cs_complex_t type added (a #define for "double _Complex", which is the complex type used in CXSparse 2.0.x). When compiling with a C++ compiler, the std::compex type is used for the complex case. * bug fix in complex sparse Cholesky (cs_chol.c). * bug fix in complex sparse Cholesky update/downdate (cs_updown.c). * bug fix in cs_symperm for the complex case. * "beta" changed from complex to real, in sparse QR (cs_house.c, cs_happly.c, cs_qr.c), (a performance/memory improvement, not a bug fix). Similar change to "nz2" in cs_cumsum.c. May 5, 2006. Version 2.0.1 released. * long changed to UF_long, dependency in ../UFconfig/UFconfig.h added. "UF_long" is a #define'd term in UFconfig.h. It is normally defined as "long", but can be redefined as something else if desired. On Windows-64, it becomes __int64. Mar 6, 2006 "double complex" changed to "double _Complex", to avoid conflicts when CXSparse is compiled with a C++ compiler. Other minor changes to cs.h. SuiteSparse/UMFPACK/0000755001170100242450000000000010711725117013037 5ustar davisfacSuiteSparse/UMFPACK/Doc/0000755001170100242450000000000010711436607013547 5ustar davisfacSuiteSparse/UMFPACK/Doc/Makefile0000644001170100242450000000417210367442014015207 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK Makefile for compiling on Unix systems (for GNU or original make) #------------------------------------------------------------------------------- # UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. # All Rights Reserved. See ../Doc/License for License. default: dist include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- # Note that UserGuide.tex is created from UserGuide.stex, the files in # the ../Include directory, and the ../Demo/umfpack_simple.c file. purge: clean - $(RM) *.aux *.bbl *.blg *.log *.toc - $(RM) UserGuide.tex clean: - $(RM) $(CLEAN) #------------------------------------------------------------------------------- # Create the User Guide and Quick Start Guide #------------------------------------------------------------------------------- UMFPACK = umfpack_col_to_triplet umfpack_defaults umfpack_free_numeric \ umfpack_free_symbolic umfpack_get_numeric umfpack_get_lunz \ umfpack_get_determinant \ umfpack_get_symbolic umfpack_numeric umfpack_qsymbolic \ umfpack_report_control umfpack_report_info umfpack_report_matrix \ umfpack_report_numeric umfpack_report_perm umfpack_report_status \ umfpack_report_symbolic umfpack_report_triplet \ umfpack_report_vector umfpack_solve umfpack_symbolic \ umfpack_transpose umfpack_triplet_to_col umfpack_scale UMFPACKW = umfpack_wsolve USER = $(UMFPACKW) $(UMFPACK) SRC = $(addprefix ../Include/, $(addsuffix .h,$(USER))) ../Demo/umfpack_simple.c UserGuide.pdf: UserGuide.stex UserGuide.sed1 UserGuide.sed2 $(SRC) UserGuide.bib sed -f UserGuide.sed1 < UserGuide.stex | sed -f UserGuide.sed2 \ | expand -8 > UserGuide.tex pdflatex UserGuide bibtex UserGuide pdflatex UserGuide pdflatex UserGuide QuickStart.pdf: QuickStart.tex pdflatex QuickStart pdflatex QuickStart dist: QuickStart.pdf UserGuide.pdf - $(RM) *.aux *.bbl *.blg *.log *.toc - $(RM) UserGuide.tex SuiteSparse/UMFPACK/Doc/UserGuide.bib0000644001170100242450000002046310425403737016126 0ustar davisfac@string{TOMS = "ACM Trans. Math. Softw."} @string{SIMAX = "SIAM J. Matrix Anal. Applic."} @string{SINUM = "SIAM J. Numer. Anal."} @string{SIAMJSC = "SIAM J. Sci. Comput."} @string{SIAMJSSC = "SIAM J. Sci. Statist. Comput."} @string{IJNME = "Internat. J. Numer. Methods Eng."} @string{SIAMJADM = "SIAM J. Alg. Disc. Meth."} @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996} ,volume={17} ,number={4} ,pages={886-905}} @article{AmestoyDavisDuff03, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: {AMD}, an approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={381-388}} @techreport{AmestoyDavisDuff03_user, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={{AMD} Version 1.0 User Guide}, institution={CISE Dept., Univ. of Florida}, year={2003} ,number={TR-03-011} ,address={Gainesville, FL} ,note={www.cise.ufl.edu/tech-reports.} } @article{Davis03, author={Davis, T. A.}, title={A column pre-ordering strategy for the unsymmetric-pattern multifrontal method}, journal=TOMS, year={2004} ,volume={30} ,number={2} ,pages={165-195}} @article{Davis03_algo, author={Davis, T. A.}, title={Algorithm 832: {UMFPACK}, an unsymmetric-pattern multifrontal method}, journal=TOMS, year={2004} ,volume={30} ,number={2} ,pages={196-199}} @techreport{Davis03_umf, author={Davis, T. A.}, title={{UMFPACK} User Guide}, institution={Univ. of Florida, CISE Dept.}, year={2005} ,number={TR-04-003 (revised)} ,address={Gainesville, FL} ,note={(www.cise.ufl.edu/tech-reports)} } @techreport{Davis03_umfquick, author={Davis, T. A.}, title={{UMFPACK} Quick Start Guide}, institution={Univ. of Florida, CISE Dept.}, year={2005} ,number={TR-04-005 (revised)} ,address={Gainesville, FL} ,note={(www.cise.ufl.edu/tech-reports)} } @article{DavisDuff97, author={Davis, T. A. and Duff, I. S.}, title={An unsymmetric-pattern multifrontal method for sparse {LU} factorization}, journal=SIMAX, year={1997} ,volume={18} ,number={1} ,pages={140-158}} @article{DavisDuff99, author={Davis, T. A. and Duff, I. S.}, title={A combined unifrontal/multifrontal method for unsymmetric sparse matrices}, journal=TOMS, volume={25}, number={1}, pages={1-19}, year={1999}} @article{SuperLU99, author={Demmel, J. W. and Eisenstat, S. C. and Gilbert, J. R. and Li, X. S. and Liu, J. W. H.}, title={A supernodal approach to sparse partial pivoting}, journal=SIMAX, year={1999} ,volume={20} ,number={3} ,pages={720-755} ,note={www.netlib.org} } @article{ACM679a, author={Dongarra, J. J. and Du Croz, J. and Duff, I. S. and Hammarling, S.}, title={A set of level-3 basic linear algebra subprograms}, journal=TOMS, year={1990} ,volume={16} ,number={1} ,pages={1--17}} @article{netlib, author={Dongarra, J. J. and Grosse, E.}, title={Distribution of mathematical software via electronic mail}, journal={Comm. ACM}, year={1987} ,volume={30} ,pages={403-407} ,note={www.netlib.org} } @article{Duff78b, author={Duff, I. S. and Reid, J. K.}, year={1978}, title={Algorithm 529: Permutations to Block Triangular Form}, journal=TOMS, volume={4}, annote={f}, number={2}, pages={189-192}, keywords={102 ordering block triangular form}} @article{Duff81b, author={Duff, I. S.}, year={1981}, title={Algorithm 575: Permutations for a Zero-Free Diagonal}, journal=TOMS, annote={f}, volume={7}, pages={387-390}, keywords={ordering, zero-free diagonal}} @techreport{GotoVandeGeijn02, author = {Goto, K. and van de Geijn, R.}, title = {On Reducing {TLB} Misses in Matrix Multiplication, {FLAME} Working Note 9}, institution={The University of Texas at Austin, Department of Computer Sciences}, number={TR-2002-55}, month={Nov.}, year={2002}} @article{GeorgeNg85, author={George, A. and Ng, E. G.}, year={1985}, title={An Implementation of {G}aussian Elimination with Partial Pivoting for Sparse Systems}, journal=SIAMJSSC, volume={6}, number={2}, pages={390-409}} @article{GeorgeNg87, author={George, A. and Ng, E. G.}, year={1987}, title={Symbolic Factorization for Sparse {G}aussian Elimination with Partial Pivoting}, journal={SIAM J. Sci. Statist. Comput.}, volume={8}, number={6}, pages={877-898}} @article{GilbertMolerSchreiber, author={Gilbert, J. R. and Moler, C. and Schreiber, R.}, title={Sparse matrices in {MATLAB}: design and implementation}, journal=SIMAX, year={1992} ,volume={13} ,number={1} ,pages={333-356}} @article{GilbertPeierls88, author={Gilbert, J. R. and Peierls, T.}, year={1988}, title={Sparse Partial Pivoting in Time Proportional to Arithmetic Operations}, journal={SIAM J. Sci. Statist. Comput.}, volume={9}, pages={862-874}} @article{Gustavson78, author={Gustavson, F. G.}, year={1978}, title={Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition}, journal=TOMS, volume={4}, number={3}, pages={250-269}} @techreport{Larimore98, author={Larimore, S. I.}, title={An approximate minimum degree column ordering algorithm}, institution={Univ. of Florida, CISE Dept.}, year={1998} ,number={TR-98-016} ,address={Gainesville, FL} ,note={www.cise.ufl.edu/tech-reports}} @article{DavisGilbertLarimoreNg00, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={A column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={353-376}} @article{DavisGilbertLarimoreNg00_algo, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={Algorithm 836: {COLAMD}, a column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={377-380}} @INCOLLECTION{GilbertNg93, author = {J. R. Gilbert and E. G. Ng}, editor = {A. George and J. R. Gilbert and J. W.H. Liu}, year = 1993, title = {Predicting Structure in Nonsymmetric Sparse Matrix Factorizations}, booktitle = {Graph Theory and Sparse Matrix Computation}, series = {Volume 56 of the {IMA} Volumes in Mathematics and its Applications}, pages = {107-139}, publisher = {Springer-Verlag} } @techreport{ATLAS, author={Whaley, R. C and Petitet, A. and Dongarra, J. J.}, title={Automated Emperical Optimization of Software and the {ATLAS} Project}, institution={Computer Science Department, The University of Tennessee}, year={2000} ,number={LAPACK Working Note 147} ,month={September} ,note={www.netlib.org/atlas} } @article{DaydeDuff99, author = "M. J. Dayd\'{e} and I. S. Duff", title = "The {RISC} {BLAS}: A Blocked Implementation of Level 3 {BLAS} for {RISC} Processors", journal = TOMS, volume = "25", number = "3", month = {Sept.}, year ="1999" } @article{ardd:89, author = {M. Arioli and J. W. Demmel and I. S. Duff}, year = "1989", title = {Solving sparse linear systems with sparse backward error}, journal = SIMAX, volume = {10}, pages = {165-190} } @article{DavisHager99, author={Davis, T. A. and Hager, W. W.}, title={Modifying a sparse {C}holesky factorization}, journal=SIMAX, year={1999} ,volume={20} ,number={3} ,pages={606-627} } @article{dusc:96, author = {I. S. Duff and J. A. Scott}, title = {The design of a new frontal code for solving sparse unsymmetric systems}, journal = TOMS, year = "1996", volume = "22", number = "1", pages = "30-45" } @article{Duff78a, author={Duff, I. S. and Reid, J. K.}, year={1978}, title={An Implementation of {T}arjan's Algorithm for the Block Triangularization of a Matrix}, journal=TOMS, volume={4}, number={2}, pages={137-147} } @book{GeorgeLiu, author={George, A. and Liu, J. W. H.}, year={1981}, title={Computer Solution of Large Sparse Positive Definite Systems}, publisher={Englewood Cliffs, New Jersey: Prentice-Hall} } @article{GilbertNgPeyton94, author={Gilbert, J. R. and Ng, E. G. and Peyton, B. W.}, title={An efficient algorithm to compute row and column counts for sparse {C}holesky factorization}, journal=SIMAX, year={1994} ,volume={15} ,number={4} ,pages={1075-1091} } @techreport{DuffGrimesLewis87b, author={Duff, I. S. and Grimes, R. G. and Lewis, J. G.}, year={1987}, title={Users' Guide for the Harwell-Boeing Sparse Matrix Test Collection}, institution={AERE Harwell Laboratory, United Kingdom Atomic Energy Authority}} SuiteSparse/UMFPACK/Doc/UserGuide.pdf0000644001170100242450000141763610711436316016155 0ustar davisfac%PDF-1.4 3 0 obj << /Length 2966 /Filter /FlateDecode >> stream xڍYKs8WDUY4 9=Nhc;.[(XH IEHJ@~:_;t7{'GhvIFdz52jGY %L]njZ%}vZd5}4gOX=3KnqWUxX[fFb[9:"ନ P[Ss8 " 3<%^Ι!$+j R] cZgE^46Ƚʾ#?* X]E̊lY'GeG-QuT'c4+:08l{X}[]F>Ly-9UɛMJQ4j CAY{<~U? *)e,p9b \UZκS`U6<?`+ }J g`s<ΓcaC<0T$}AslG#w.SP]?\ ,F =lU-D:q4<b%2{hJ0׶Hm3:Z1twQmLhئpF{S炕Dv0LCT9N\ \Mz@0^!0Q|;19M3Y휦jcjspVgGa:T8`.T&>y,K3!T RYHZ//3{!yLٙAa3OF"?p&aą4v9>&څHWJ7zf6*=b;J]@uk L`J.TaElx< H9ʈG&uJ_4f[N 6P܉LVLjl,&-$k'>3ȉ[Ѭ1 Df_$kLzX{V(= x5_C`1>)DGjKwUJݠ"9/i=EP#0d|347nv\0N fQ% 91%W>LqG ()Ҽ:uk->}XͷnЅ:nvCҷo@ThK5ndJ*0<." r P~;Lq[Wsޠ/n>"b累qgvw]A=xnn8،.ЙAF?eeVbG7PB,r X@99o|a _cF-[! FQ%̊)'C]Ap| 肱l-  EB?B6IeJA,5/W4)17Mg(KJ6tnb6NDU-UvK\ϘQLpjGur \2;t(.CR/[ nuJ =r35q-BwEC& HSM(RNB*?^^RmE>B1vD›W^"C/9@0^{gPW'BiMtkNɤ4lVIEߤ< eǫ .E3: %$0{򉌴㶤`Gcw :xAN; )?ejd 7gop˜܈^ֵ2y#;Sz$2dPI<9kk4? CT|[1 *vZ7o8wO%/>4lj؅;tm/Y.'[-هtJK@{+ ^޾?"Aa"̡~dzgJR%*kPV)A/>.ҭl(endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 19 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F26 12 0 R /F8 15 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 22 0 obj << /Length 1393 /Filter /FlateDecode >> stream x[S6ytfj!Kgeʴ/mL0NSe?Isgv֊,l> O9 \( {, ~N~̢iL"D+ 8>cX.^ ic 2]Y'#4qS>}%9'+__=/3%G#7[LoYW!"ˋp 'ʧx7:<񩙇^8Bx~c[O{#I`X@Dt ]Ͻ®SY.cXYXza`:EGvrXATvj=Xف^Vt`kփ.u.u=݀=2, vYƍ"‹FMoȻ8ÚUc4]Ahi0h[u.r$I8yMzS$'9- v՜ќԹfٗ_'K*gۃvnRTN)^S(͟=dcU(kƾP;eҙ1)M|QQkay;$c`TX7C&0C `*BEuPPbq?jep!O,T}I oeGh9;Dkm8i pzjzxLgl{9uZ%j$E:ӕФꀁv`>-+o( b/Ug#^7ʹs3 ٶʙE|/VK8m;Z]1,}*h8 2UTkvRpWBh[wGC% (?V9gj0 Ρ ٭|Cᄋq5ʿz쓹)Gd\cz13Cusb_5bG*_V"8Ǹ& p={6-[4ᔊ!>6`J s,1)D\06`Dl ,{Ֆ^PDjg 6;N,WLYYjpj^=Kװv|u^(୆:yNQ;gQ>}%F؃$0"eɳo'ز-n/ nx9]Uح!¬LH|N<fn *՛?\YۗKfP@[S"א \ 'X8~˓Yi miÚfczE{2ݦ&o@U38 ⪎ՕK1^;m?8umލ) cT_b0yɂ3\* [}}- Lendstream endobj 21 0 obj << /Type /Page /Contents 22 0 R /Resources 20 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 19 0 R >> endobj 20 0 obj << /Font << /F32 25 0 R /F26 12 0 R /F8 15 0 R /F36 28 0 R >> /ProcSet [ /PDF /Text ] >> endobj 31 0 obj << /Length 2421 /Filter /FlateDecode >> stream x[o7+8Z@,Ǥm7@wTAV]Yrq_rF%jb̜|G y{;9QsN7vt\5_j],Yj7oR)"s5.ō--p }X|,yYfb)hڟ7_/nVo%nX*J\q5{' ;Wt7 +yihჶ𡆮}X?>r+&tvɷ__ k+'vu.V6"d/ Bt.˃6]:l>-j,on7n?f.Pfv,?gacPɻ{ng̿:gs0 ,"hp) a%݇߫~ȕ|Y(,W`J baتh|9a%~4Z~0sV x*xj_Э~U7ъЫ|AJKӨCsp"8Ɨ%lU "ƈ5D+E3B'6 q|0=mbiX)aN7(kϬky XE|H35 iIc )^t幼/oAcTfƿ~v֞ qY;r}7;y/ XE|=tknCu8~'4} IOb.!\*ƗsKXsQmWϛm/ҲK6;˝| A7r[VO| wZƊ &1``TːZ%q*|Q\/s1b *Cmg%{:a(wɸE(EC$G,95H"h_K~|6uCn+7ːUE4̗)AC"0brDpR719W '4EH@ت"_KrU͙%1!ƈ5VG ~v ؙx  g3W)¥!Mb&h|Y/iRnKz$"cXct>CƋzH5Ye==ʈv )B~V?0_nAc̚bK6Yį:F> endobj 29 0 obj << /Font << /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 34 0 obj << /Length 341 /Filter /FlateDecode >> stream xRMO1W:tfy%7z"`BdAq٠D JbL3y7o (HmFYHeКB {nRTF3L6zSqb^!W #cA2jԶ+h|qU ,8$&𘳜QV΄Cas;Z0PtF\wC4ǐ#BAڲE=h]RPʷp9|P_ Dp:Kh?\.j/L7f˶_ b]E )y@c %UDKbfNw2F08CgHlî +2endstream endobj 33 0 obj << /Type /Page /Contents 34 0 R /Resources 32 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 19 0 R >> endobj 32 0 obj << /Font << /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 4451 /Filter /FlateDecode >> stream x[[o~Pd /3$nliw^4g+iȎ\H%n ш␇򝋿~J.Δ.H'tb~R\K%u_bCp]ҙ-eKQ'a<?Uݡ鋕pJЎo.W4Kq^w=åeiWՁ鳇nkSd:,K%]U8$oQ0qV-B~0b?)cFZ-:!| L/] K+q '+r/,'˩h-H^THpPúy*aus$N qRb-2x "7fT{W T:)]N RQ~!V O+Ob탿)REj'ߠk\I;yZ߭ɤ܁dS%1&rWu .)n<8| ~ĥw*fu  y]:+J-IJ8G>X5=xL[zsnIhԹu%3= E-%D(*WUy[%kFꙸrw]D}Z% eEFu#F ]8\mΊmqqWw͚wHǮZ?J}SVj^a7]#VztT4b %nkkʷne\ar &@CvQ\O^UXW{*x;\0D u?Ҙ塉#dl/ʌX.}[`X;o;\8 fs] {5)~DmM>X]P`n93W / h8qiQ}$MDNY<9+Y f*m-PAnhۃ*oOqLpd};ppg \\mXIXg1|j$8gl(\"GHPr6< en=?2\&p Y*2 2q~ٱDxo9^_O2GցY0X@7JP? `u^!ـAw}0hbϻk`*(Վ} /ƻhy{G(2$h#)zwEouDCoFA ߼+*p׬@ZL0l<<p'tNxj#WWJKI#qg3]3E#:SDjX8/FQht_ϱCLdxW\ Hc& 7Msf3r3$Ѣ&`'Cb(D6MVݿi"muN .l̽ Wġf¥ ~ئpijDJAu6*i3itQM*)זθnv(I+Qe캣h0.*lhٖsz@_@QdQj1JDl1 %Z7LN#2a7a_ W4;cl&j# R>qDHpjxӻ\*fN:DSB i2'IM5 p8טwv2'&[Rՠk4N#j.Pp,bqxBXS<3pz3pBpSr $tsKc1+J 976+E1S 0Ƣxvjk >켺7>O_b)mOIbyBs-T'$_1NpeF`\dX^P<,:) хu3.tВ{+4C*4Q$,ކT~>pn\Q,:C0`D3݅hҀzZHՓFٵYxQsL@+؜7 !>D@UuHhCK|zD}u ?IGi!ԋ\I~BRXʠ!& $if"`'_ xjT{gA5=S1ٴ)Z;`7OTJRO6m䖣@ ֑JTG t*&,7[i)V0jNloI.uUNari'uH<1Y[=uDa2g!$̈uۆ/ Pzw3c,'K^Sl$wSؐ`ˏwCDv8mĈ30vhR"9J·vwr:UhyBd 6MNjxg{ GְQ"O-*]TjVtކQJ46,ƆI&[܏ꁂ.4(}t#\Mݧ)!#7'CKTA~o,uxw vVRO0 ({Ή9Ky\%kf8Uf!0KFǴ/4IrĮؿX9c؁_{TfDQ|N|6t2#_V\gvJO&WelWKS.ԙ BLsΉ"B[DSvWt kHWˁ>TtD.2^>&?)9X >!YT9W/&PC{hɛw\8||\4}JC[q x5`ŠVocO*mD^= iy vVO2^53MY\ʃʺPcznr]:o%botG T )+u6e%HSIl<15"gRb&$2 GXGI\,)K799 \p8PD˽o !jszyj71cdʄvi- EntQJhO;sWdC! rzm:غY?4dQ^gBD̈1RD,1Y݌M;gZ> (ja_oCH؉-0\*O$`,9u24B)y2?8I I $^,?Xx*R`N:'?%Q>N'D $DbKm@N;2_$j)2n/SddC}] NЀ??/69j[,K}r*ΏG?^+Vվ?[T *ItUi2 Vї0u=BD]waSV`@bKꊹ6jA*]wÅ\fރ{eg8endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 19 0 R >> endobj 35 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F18 40 0 R /F26 12 0 R /F24 43 0 R /F41 46 0 R /F29 18 0 R /F33 49 0 R /F21 52 0 R /F19 55 0 R /F37 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 61 0 obj << /Length 4253 /Filter /FlateDecode >> stream x[KFvWtv3"^x9' LDJh :8}U.,ۛq>{S_iժWn*-Jc2U`'oT?OkiֺM-6`?)kʬ.u*2cmqYa G= w[SZfeaO)2uܓR]!=Ma3eNѣ-n!.]K6iksnz7 =qԱ,EVkYSW[)0-"-MSryLjt,ɴ?Nu]&ZN]PZ;R=/(xZW֔v<^ D77s777c;v;NyN&R'Цm^AsYlgo͞TU ?w!usQ{C 5߆ɹ{Ioк[^ĨUE'bR&[GQS rw8M2Lr–<M~<6s{춛L2' ͳ\9K;KCb#n(GLSu>Yn@+D0u1&4%;}~zeaSS<iZn8X=7=v-qp+k iWZKl@DUFJkqqtK\+]e2gcR޾|empYYЇ fS˯)?V3Ul~  BOMeB2 7Po$k*3y]sG:fl,E6xZA6ʭV;ܺ6*.9Qf*^#wAt^spH9(O־j[ՙ3|yFGHAu A*_fkvP(C¬-wEIL_P:s&Ќ^;Y}(<|G8Nf7S2/E%i]VZ[E ٹ8'dW}A.QFe6Jv05y\6'Fn0܄u2b1&/z%xU̡gp?=>R\e+=ާؐgJY/AI&6#yQVYkfS 2X$T2 )d}w kq/  4:>md~?h SI+^̘W3B@ (t CD2ό.b#S#ho #☎Zܢ3|5=tǮQV4d2ʊM $17]37{Ѹ=R@cS!m XI.g]Ov`@8[+~;z_huoui~(kDC<Yi 0ڷ衺>@BmBOF R{CӱPY| I2-Pߙ@@r8/ +C*1)C*وzOM#vy"&;X([7`vaPQx7y& t]sנ="/ ,`,?EjaBI{ 77wq< c 33s I(u̍(sNܶcPcK68H,ů+1S7H/ a=e;< $HmzrM Nx<^/ 5@`IS<+m(5$tCQUɣBjbo$DZ/Ktbە>ȳd-ȜvƠ84B&~nZ}:e,p>D| |Ngjć_ 2/~USIv"2Z ˩޼&3uslŬ4.71S&AJ>btLQAHKvX/Rv  uqg7a 1%*hʼrc7Xٚי)M\:vڳx0(J BD%7= /kÊCV$ ,XUe2/*n}Õֈ3uIx ̲7Kb|q.8-RU=2R~rΨ-!|'.b$v dSjPMVB:}r÷It2;4:s%_u^@JOʖ_+8VkpXQ=%Hg` :Ho!ϹW0WPp89l=8KzEv |l$]r2dWd*IyGCVq1*UnY E }M`%~&E`/(3Lnd\=+.ϣlj!>āy\Dr Ps|&'I}TqJzó3flʩ#vXJ<ŇZmTLj[. j9|rb6 R',*"{Dl!x eS}+A*xxM[tފ,=e'i[.42ߝ]2ﱙ@΁TXn69pQ'oT Uh@#?Yp//b]R+WmBrR5|yb-2m~RͥbOc XcBX?ؽBqWXYx~Y57<;'Lv9L?Zw+}Niu" ݘa h`}1Sboc}f[ Ğs:]Βrݚ!4:x7tN==72.{~Diߘ=gsmPʔ͊e}IQ6A]P"~?3rG0~ ɕvIf##OCNak[ R*. @G$o*FjHil>G-s[Zl0 :jcsoȮaRmg\Vrž|х<-K$'nz.v#0g|[oX,]cY92\t)5p%pdL]aG_U sR4tu g$t׏^]:h wIJ]8yc&3 <T>2Wym^H[l,2VXUqCKbɰeX ۈӵ^])#x_P)8G]WhGk JI-Ǧ> Rn'BG8V曛fZe]Uz=I}pYwHoH]љѡn)YqRtA ҄oxٜ&.U|+8x/ :?(_3yX2._cUJ_g>&eY:Wx:B-w'armx*v\.ɮ_ڨFog'i\Ϛ{voDL%0gtە/Nҕ˟?ųTْ+.??xG|bĩd]/ʄ ;Dx:ۊAf^z\N(-͚WdYR\aWל L'i:,T: K|W+˵lA+g(B!`g{~Y* 5=z򥁈@@!> endobj 59 0 obj << /Font << /F29 18 0 R /F8 15 0 R /F33 49 0 R /F18 40 0 R /F41 46 0 R /F26 12 0 R /F43 64 0 R /F21 52 0 R /F24 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 67 0 obj << /Length 2803 /Filter /FlateDecode >> stream xڝY[s~ϯ#5"}RKiq҇44EɜRIq~}XR˜Lb,@?~r29=7Rz{2ϸ^l \9E/ʹv;mS/LY%}ַD.ȴ[,}qK Yo'ţrdLTѤ l *8w8J4_ϼQG`], u^.H{bf!Œ•{3+;îcgOdXm(9#O> x#?qJ[-.mzDr*# Ui_{޳{WS7עmd.{1 WB}ؚz{)=}tMKVA>IJi Hae.mM Ql9hˡkbLDiZªm*c:m 4N۬ct{Y:HOifK97rFڢi7ڭ YPx}f ZH á!/UdPDZ*k=I͚.kWO%"F;I$~) S\vy* 6a2*t2PRg+v!E 74BX<8rcnq= " ;$}±! 2Z;0wJnnK=fճWk hț>EsJ"%^C\`a25_ZO7/Tp[X#yc5q<|P@C^r#Ge֖hhtV^QFQ<EFN|8\+"=T4%;}qz1V ompWU+4rCܜvAi421Zp~/?v>:э%\*fs9~ @6l\W&t HaE_)`|2\j.#S ?$f1cT;[>bQOk_lBl@p<:IRb7Zx_sj}n/{[,rAPZ e+DΟzT_y'"UCm~eX#|% G&h}0JzvC퍜 7-4Q0m)o~Dž[ )H8M(7crpP8`7=vb,Yz.c:)Iś_APj{iIͷ-s Q@Q&+u]BS )sA7gʻ-] yr!_>G!Gw'-b("CE!~1%7EO*; v /4*5W@?Oa8FnF(r7ɟMm Ni_ R&᫗?. OIpVl)ύ0G *BPuD^&~pD{8/% ;ors?k;pJƘ~i0 fj͛qȘF*)Y(Wc6axwbm{dՐKCH0| ~{M}1Q?0#c`9'af)SQmeRxj#-ll 4 p?-6^>\ &0~5!q&q+=yq_ dendstream endobj 66 0 obj << /Type /Page /Contents 67 0 R /Resources 65 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 68 0 R >> endobj 65 0 obj << /Font << /F8 15 0 R /F32 25 0 R /F26 12 0 R /F36 28 0 R >> /ProcSet [ /PDF /Text ] >> endobj 71 0 obj << /Length 3390 /Filter /FlateDecode >> stream xڭr6_GiApfM&a&DPCQ>Ů"4}wo޼Sr&D%]mf2M&fW/s-bB&_iwebdвxՏoٙ,F Y<[8J2mm^/y2 D"lUS4V%nQׄ ũHݚpWg LD*"ct"ҩNfٟg_~gxY&Lζg*h]rspc\Q%.OIKHH#ֺ{/ZλTUp,|qw sE3u@)on?k,tEXAz rEe4^2J3i^=xcIi̸{;l ۷ȄB~8gS,؁&iga\(3XB=N+<75:X+ ÎaFqGa tW4ī#1Xg׋%QIͶ\$&FLԷ\ hYuDI̖cB#U$ u HFF$9x[Ydi`&\M_ܔ]f(+9@]yXQONUwWvs(i VccQ6J,r2 !D$H㮩h8)d^&x ,o{_H& KMɞhh<l2,"p Aͼ-M(EeS7vˁFQvtN}̈́*,]ɚܑ!KyDN `,&92,ҹ[W=fseWn}tә= {dK;}TB0p# Z 4{ݟ2ޖuq7ǟ$,ٰyax-it%BlʪO3{ :Z 3`,ܣҴ,1^|!t^ǝah.}vĖR R%=snFEëJ0 tpw# xG5K@2Mowr2K!THq)r^wJ ,S#M#9Çrˡx`I΅ic8V7JpAT&@>~-w{vX 6\&UO'zŠH@i E{o=e܊hqū`gUdEB,A@mD"Hċ\__`EHk \0 7cQgQ'8=) {x \[aixΖ]] E4)gr[ AݓuI#5kSh5JRH[ZZuDI+A9Gщ}Qݒ0cW|yƴ| KO.Ks=p"ؓ&LNtLVqG*D_J ^+_qHǭC$ #)`t"QFEPV3թ#Ynjq/]-k1/Yz}G, :@j}L cuMwnԭ]2 ~ _e~Ğ# 6 _u#P(k4A-*wP*Kʠᰦr>9Dߐ[@aˡB 2 A\˦@7@FVh'Ty踶$TcQ>t0HhhPoP7)utrO|DUxIp)'@V݂+H+- _VJwj)[4*Y=Pr6$b2"㌨e[ p 0 p} (4Q5~,%9rV &Jm&K<]q;\0Q6wFG 6$IQ[/v]$UePRNR'R!$zλL:q/q 1'X}KdC8}/6 O)B2`l)c;q D TD9u;ps̼1RGAi_Bk-X硥t|,mg:$2'QU^5)j #b L/Q@@zb$@ICT<z`_r1ڍ{ =@"R~y?άQKĔk@s}MǾ(Ր-txS.BoMe _=VMƃOw##7zᨃ'=m3얌 CA>qD701L3} bnXE+pJ{C=ow֝.VMY'6}>XDiO֧)ID2j1$БKC<1*HbsS[ Xtwe_Ag{s5> endobj 69 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F36 28 0 R /F26 12 0 R /F43 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 74 0 obj << /Length 4128 /Filter /FlateDecode >> stream xڭZs_7S}drZwZnKd<"$! -} />nv{oξy8\ܟgIdQnafydzwZgwBgmj0ͅm*/j֗mzɅ/뫻'ش0e.~y|>*ʕiDy,q\6:\Ʈ g[a|V I2q[`;QEkh mW<|hiJYieKm8M%|.6`|}UНCpD 5~$=^!?\dfv1;ZjF9 ,]"@{\rM_2k!Y1+㺦+k %.4@&RZ9o/o/W8sT8GMn=&ef1M?TYc=YDsc5 v%YIr9Zװߒ w*rrxFtSgY7g sun4ܜ;Gg~ϗg?@,98R9D8g?ahh_ $.,D值,$V_ʌ')Lpw)|(S}S31g)A=wa,A)MGiPP~O]gYԝ '2_@$}y%.'(_QÌh4*6\nZ Jxp u4U.]$"}i4ϼsFʁ{8TF+6pm!HzT.H=SQs}׷E_>bͮj /),tO= zE4͚GY{ixKˆ“w;GLwI^*\j냗9qb>pD\ݾ};!EFyg7X8VzytM_>GWB9Xԩ2q* ,t6bH[BqK:O)ZV)PCNC~[XmIvܦQԃ i: {`3yJ8%[7G:468<8x/8JOQȢL{d[beIw=Vr&\qynb%V1#f\1ߠJ%*v= ްP}q'.cmĥ,Zbr $~KLϱ.%tW?`@FV!PPpܶ刊@dS|?l;'fv}lq۪ jXH{^pT` 0]Xl֨lAeKzr30K*CȎ] ]1d6a'^=M/"پvdBvҲD%{X<Y k{<yj4 NdK `۽q唱NEulrTGb}Y sSvݱ^<2|62 _d4)`ҹQ160ZdvUQ}q s]p]Qp]-uH|}d^|(:PhA.m]#S'\A ␽˭Oh|HWkЯЯ;V(T'R3ȶBuCd{Z)$ziGc2e VYczʈ.Ҩ|މX 5E8oL!'Pr2.&(1p%>0o)؊#`&:-wKh0xі> EALKO)ó*[bp{=4.{Ȍe`]We2pYU_b4Tr.%P$TZ7k˶auQ56k ҋ^섇ZI$Ҭqe=;6j"]  VG* V6N75 JFNSY.7a``{ +EnF\.WM+eU݉5N۹! !ޕ/Lg$LR(D2XB+0 %<ĩ$LS7 WD7w ta^Y|q{FtC#'̄6 YT|<‰pUGx( |i8R8pƱH~Ӕz)#(KXQҿ}$ho~{^rCb7;,A9!vj9q}L6OB/;!>jJ_g`j!S a%q=NVj":ƪ<˔/fT-`lXC}M{*>S4FŅnxlfח+nFAf~->.e'Uy t#>\vH1̗]rm9 |31+8otD[f:trujTǴSA$3L1΃AIScxܾ!Ȅ+D,2<>7.Lp6pAD ;'UNۮ]{j*"Qz* ҳ5ÊbMA3b8S䄐$~x1r]l^RaaInн y\>/{ 67~K62cL߂)J0%B%y/AG oyޙ<Я3y~pA'h zV9 G"rILRyc^h.㭛.e6 snpq_۾2~:ryl7RYJK^w5S$8D`u8ҩJƏ]0A=@7D>GFYkK ;%.P/"m9zzD~o1"Sbi ,&CB!Np80 -u'5~_DjFV7\ɍ.+uxč??&V0bSw(^MpM,)wKmPE!J2~,\z +$6InFxQ!\#A1F_5_O'Xɇd8}D(F|{Gj.{&S9x$ީ_P89iR f .Q=QKgߡp8 ,4$( ;9\h I7$ ,#" ݏ{P[ZP9iEYJߜ1cendstream endobj 73 0 obj << /Type /Page /Contents 74 0 R /Resources 72 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 68 0 R >> endobj 72 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F26 12 0 R /F32 25 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 1383 /Filter /FlateDecode >> stream xY[oF~W /@VI̓b5 v)|ss.C02g8u6cJ;Ƀ;hzq~wy9wqg&|o{}ywvj/k [U"y4 - ^$ۥy~l>lquH qzxΤ-7cHɼulz]X+0hd J!tg -u8^aY@bRBݘ@PQ-f"1ӥЦ,ܕQ]~9© X#c޾TւIb ٠QTQ뾵JlpJe#8 ~}Ps"Ĥ(ODSr(QA2n1j2NKs а$$PH!S)h@p4# 1%I,ۋi7K,@3m&##_dJ傠V,몕jTGL'Iy/UW0 p a: EymPcذ BYS QtSkֹK.ٴg9$HR2GXiѣڸ|Hpp,p,}ɣOpqpMh+q fmLi>rP]8lD#.4ny̚V B!X>/B+nVVsP~ `qrnxWNUm;lհ7Vwӭsi.k].(yW q4?wd;TLqt4饆ƚ&*D'sH'8)1 #!31*رrJÍqB9 Hcٻ(i&[=H wm2C;^СvŮ>b.c^Vc֜vg6TQ}\Io"C8!Xğ7QHV bR-wj PǫE4OPs:fIRoScش.`CRB~n,R\П[ llxFǟ2gDŽ{OIdr}2Es;fJE2T. MC X#\Ahm*?]6N,CDҰ菥ͣxyn[ǑnrOحb:d}?.bOoKcd=R!qz 6?`לMãyx1/gL_ugL¬*B& ?YU 7هO c0( Pᤛ#xc(5endstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 68 0 R >> endobj 75 0 obj << /Font << /F8 15 0 R /F37 58 0 R /F40 80 0 R /F48 83 0 R /F43 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 86 0 obj << /Length 4107 /Filter /FlateDecode >> stream xrFMD0AIֵ7rV=8>@$$ 4FV~{5$k6ULL_7:;\c?n-(חn9" 8 ϓհoaFMvp0ez>qGZ6r ~EOK462 Er.{aW sh?E;et*3˹L?.;z["R#oú8va~ohōU}=`M[ i"XK=MӪ]+>= ڎUh 4yI KI\GqEI0 bwvAe>eCvCg\ < l3q I]mHTiRLO2-ξ%cބX{n旇rXw- R$ɂҠ;{K=N#2J] iXl]{L-fn 띁p4wo [_!7Dm*}YVITٖg\ i|( #@C'*II =v Y*)_͔E,1Tp rѲl=/z6-;o4-3LCŢoOR0ڌ)P'Β9+;AR78ʘQN=@+&( Io^B< ?˪x47{TvE!;03ř̾7’7x0#/##JH%Gj,C}k0_L!D> L*͒)ҭ@Q -%)Bu`:A_LQn3j 8|/]sEg:,2[g']ΝQy$ڳmѮ;hV-饖no⒞KVͮ®"i~LD฿7˦|ȣUz) | .p$jPW.8+Z=vsU*{]|pQu3 -sq s[,: vz ^"p @s| G̭7 H\}Q^AI1r|SL;V gA@Yl-YV,qQ4N4n-#e_KD_GvUKT~lXH${/uݘc(jAm[>mH1fc'O{i`J!6ɲ\XSW s1D…&ab~R^=!N0Ga%h$#Nopa0C6MTfA7&<pQ,m0ȬaLU4qzG8~XL'`ە ˭!G h?ͣM0Cԛ%t/4-C㬅7&RpB."[P%0D},q|{ O p=(~_aK}%kdSoIE6)2`=׺z4L閟mMpI.ht62&td>r϶c+8eoLr>&mZwT;9딜sAzh6ˊCuqI-jIjM,eTvOl1.7SRYC&QT$:B yHl}YZBgs=^c (}!/ZD,݆AyFśrO>^D/'dJ<_Fz۪<!cjN'kio`re}ϣZ|]̆PVB([ٖM\&T:( /.ņ/_D!N~D0g3W>D(F$GKq鉲X~5R5mx_vө _GM MLtd푙ٛO;YOE+T*89]ڳ5"WEUp!0W{w~`zm wԃo%k% dE=f A}'3@E3| җ˦`䆭?* .GPUyB]Nc8=c6%T"7 O2oZU4MM5Pyw؂N 1쏻vͭq޲|QKXBr-۵?uZJH %>SƁ4C֣v00pʲp-S % >cN!qq}FK {t M bȮ+UΐmHW|ǥ%Uz&"bD Z,O=ak1;ĦAE -X.]%aZ](V`a7Êx +8=g)2 Cu )m:ԗ%@x3K8 Wbw߽A(`\߼6Ā$Ku<7YSۤj))<`71*rB%Pk?_|=| Kzfi[\viE2 3IgG [Gj: uz=^"K(&"$|g| қꁌG }&*c'.l<:G[k矩);G}Hnxl!n$NVlPA@aJYV5)tQmѝmֿMd:Ҡ>`B)qt4> endobj 84 0 obj << /Font << /F48 83 0 R /F8 15 0 R /F36 28 0 R /F29 18 0 R /F33 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 3843 /Filter /FlateDecode >> stream xێ۸}b^x1#Di}HMvPƖgؖW7|}υ$[bsp^^x]DI.oWN?%?nʛlߖKlYFf{̡ŚgEW7 }ơf7seo绛L^"?yش-2n51)븯 jDs]#y{\jaM XNMf%_~;BlI\0|i }0&c wUHz 50gG$?lAm7ALѢ!!n{E,bbjdx.9( +IJ?Xz"Ҷ~tv=(-sl,xGS40^SXϵf[/D%RVUpu^)wC P-59BP\_?/ D|Ê#}Erjڡꪀa*:U0簟v-X+\1E$l07Q;+<V942kAMv(Z4~'.f dMLg6gR'BֆP.[ٟU^BI|Ѯp|g34aݔza0Dd>F2L-X:VKpTAȾHW/C`x"AxQ'pNLQVW65hk=X7,wtlt@@{(3AJ/܁Hp7zdp [dB&$jɓdkLFSy唉F =*.? l^-ֱl@T,yI"T4N!6V@p+LxZMHeBFh,8-A߷j.(oQ@s :%{/9S;ꎫvMM&!L `gTA*KgA'~wMMWݑmiZ.iſ6^r[ÖG+#G(X^/ia#b]"-Xg/!,wd[l{]FsaL@e/ꍟA!^̆?7{[$B 6)p܂I*84^pֲ?YO;lZ%pz~3)ʁ98wA~W0 :5J1iaAu4oWhIk ?QN8ꏫ_OWWyf?G"d\:{}Fq> Y1p[PV rD1@<2(~3 \߂`O>h%)ȂuxGS&2 Q۩;|LfqʑzY8e$9ƲT]Tp 0g}Zp.b/8gP3D%8Fe9%J_49Ҩ\C1i5g;iy'ht H΀ES!OˡAG(~t,rô]$Ӳ﬑^rDz9#|s AJa, @>)Ha i3y9{A:b!tl4B!#%7"4ʀ9f2%<)*yD]Y.M7 ww l1>/`aYlX}pHB=L=sze?+!A֙Hzc͇_UZ~_+6>[aqv,A$R8#&Q! pc!v/}e0C"\>?30MyMA (!5PP~Od^&,SfƊ\<\ףp=f3t>jɬ@/.8sMPI~>gAj>31`L0tLnc2\˜:$kRI ސL5w&2ԅgi~s3jgR$u R_"CSspnq7gsw:5|A(Ɯ f3h\Z"'ke:E>J(p&($zSF4EY8?M݄G̅sueN*̫L=bcJpw4;NRruI5ܔ6˻(H} 7A8f~n_o;k*UFS<;0u~c|1qD9o#C">Tï˧_t7fƵ E31K^qL|qJW2 ApK|$c9QkP[OFh =tuj^33t# ܏aNAP r yOv Upuȧ %Un,OR4.务 ֽMHr>- 9IU{TԖh0뷎3+bFg1v'\/ P< s-n] 8Bne;;|et‰M0/bQL'o18v=4R _D\'Y83[ }=JoT*EV8$_0C@\YuK.˨t8GokGs.)3d0}|.`r u.@`!· 'opT)֖.bxE ^d#'o4)uL"gFP\Rv7sn|ԺV*$Y-D)u_ʑ`bG8@)B} +6(85:튦 6\y*,{ %)heʂ'@ANiwF[CLhk/bxXFt*qjaL{SBg1?H&`.w,s Av3TQP[I ~C1<2)1sF:S)'lj0F9N.qO?̝2g>{=~WQ2r8=!o؏L@AT> sK~ T[l~8Xj5‹cʑ|ڜ2>kPB@S$W̲$z ^n~"qdho a;+ʬ'x3L8`̐EIf7{~ˆ[:)=m('=bUpr;69J7F|%{a|UƯ~b=bHHf?K /{y`_jrť's*›endstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 68 0 R >> endobj 87 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F33 49 0 R /F29 18 0 R /F21 52 0 R /F32 25 0 R >> /ProcSet [ /PDF /Text ] >> endobj 92 0 obj << /Length 4811 /Filter /FlateDecode >> stream xڵ[ߓ6~bꞤ+!~u*{N։'[u#ifH℔lF )A⥬sF$6 o[VtpϋR|ͬ?d|f{yYl/\Qᾡ_-+ -]x <޽c5kVWpl~7oǵ)ѷW}xcśaP\޲[a(a,7ky)oqSYu nʂ9o7BxpCHCozc `lDA !5't0ڎ5w2h"%+5vp)i.4ХboĩJRqo`V^S(qRC ٟ9;W_@"^0Q( aeOHj8"9{s7;<;Z(vQ/*w͞lm_;z+-JQ b@ZG^ܧy*$Vُ%UspQJϪ7ڿ)Fiڗ3pPҘSx١YZTJ]G u=vzZn.R 9loCoP̻Qb[u?@ͺ3vüQ%?[=V4\N9/fIM5-*6Pk}7jP}$qhK~8nj׏=/2_)A٪]$_aYR2 -CMUW+$~ Pk/Ű {ڙ:X7b?PSU6^' 8^c; g wpwæt{7^f\VԇzG!Ңξ}*c͖l s}dR?W7-l~O1%N6H \ySed=⩗PθP-̚T1uAPTn q[o-^\8?[C q$np:H sqXB zvoE=RRpl)@p1^q|a!~܁% pƭQ?ُ~rU .'3BAi]5f7O5K)'[P52:aBRC7V_Pd&3m,7b}bbb84H>qc(yy@8( C{&S刞2Gr5!5U'UF?9 qp{Ăp(/UF!=Cb4Ò6 [<CACPeZ{#ˬ(\Ůrmuq%9&1uJq11--8N c Ɍ!C}˞Ĝx p˅⮧a837Hܤ.VNx(4zM:+48 U8%0nk%NhIpx: XsTa!Σ`\ސz>*+WuDLE phB+t`yz@¶ڷ4+B75ٮo&:FȟxW-jS m U/A"ty'΃tyӡpA0|4.bskK,jC KtN481.%RݾiA1C[?՘ī~][*㚱uB'0 ")`YƏkWRi[Ԋݣ^H~Cj` _b+1>2-YicÐI|i(}H p\, ]x/>U~}LnP1aofWNV `w=4Ȋʒ!?Sy&lsJ$D [OH)#4'~bH3*hN=[uIVy2Jʌ)Kwya <(\iRQ@LAx[_zQC3ek?g$xJGN p)b>#&vQz8#fw\'>sl^B@Х;B!xH?$ۓvV%abW*d1eL=%"RH$(WuQb(2$ȱM'0!C0HPBcv/fS/3se&Npf#}ZsM}.1á;lwQt?UV,U.yi,C>Yt'cLA Kp.5Ĭ$χĜK7`Ӡ*ki0ǫcSâSsTR\(!mZH7\eҭ_sEЇxhEGd}- K],D h:yj: mZoWG]YZGG|'~ PzRiEk?RcA#$FSYhPGc34"%U R8x%e8p?Ҏeس"Bؘ菱+g:׎/J)NġJX͸0w}RW*gnpЫeHq'q~gE92fq9b=.*JF/<&O>3\ȯC ,k!&RzB]`s|L{ E YQb(2] C2&4'5d±tc w@<lJ٣T幭 0t%_!uC1,nJ+ Ъ0 1LPV4$,&j5l+1C^w1e"qyjw!:JZj`Coy79lJKFnʽ9H33JTl?Qkԉp^c*ډ $è9RyKJ!Pʀ֙ԃ6X6Sp88e>u]<?wNB92!^5˂@(p觔'jy,a4k:*pqB8u~ȧDJt$⹤NcPSvϞ!^LtCVa㶮=:/[>ʪML$brS VK)/A{nB끪Ƨ?T{KR?3PUKi{ZgfO0`s$7GZf8RNKt̀x$vQ^N2REmJsQRQ6/~y kP\ Rh1@Ң߁.o"r9&~\n(uf> y  ǝ/)㊆e_3 g\@i^9À;(}R:rQG"x]:D@V__:K&!$֫9;e,ps 7U!c y= 0yȡ8kya.e?/S>oRF ~::2Pyvkx(I#?=_n&Ηt`|xY6qe &:n8Q-G/)]|aMb>!ܰc1|vn^|^aLhɍ:ef kc?sP4@26H[p*|O`Qb(2**˳Da0[%a8hQ 5lR=O%f-P^gg$pL$D,&:C8E.f06ůtb&DԃU s㼊Ճ|.m L` 5BM ]YHurծNѯs ]J^  ӂ!8λJ Zendstream endobj 91 0 obj << /Type /Page /Contents 92 0 R /Resources 90 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 90 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F32 25 0 R /F26 12 0 R /F29 18 0 R /F33 49 0 R /F24 43 0 R /F18 40 0 R /F43 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 3304 /Filter /FlateDecode >> stream xڽZs۸BsPj7x}8xL;|e:DۼHCR|Ȱ6}I`X]7vƲ4r6y 3yil[^ͻS6/O6ߜ&By9_Bse`)O>! |DZ4b[ hΰ΋͒>!uض^WW^h+*˗@l~s3cK<놺_CSݕo/eTɜ(QVE+BW-Mq7<ojU!rx1CBk樶b O^^`s6c3&4SiSf31[Oޟ\f˓lIܪGRJe^|ϞasL,_'05c s1%Jl1S o|$iG2p<(&cS!OzU-H1&)Uj,[ 0S8oK)]ũ)dz-d0ሺI=V̟R@X_&J-udt6(?ŦE\Wrb3:^+r}@x c#Z' Ve03Шw/zz4( p!1jioɮ>T:GQn7t%z \ zC؆0]kntYa?a;K@8Z+ulhfN25}3>Jʕ|=mK7_tQQ.:R޴UK ݪټn[Q4HVr 󌰿@ aqϽ Jx,Q+!5!\2:$hlcScMH6XёH @gr&Oqά)6cګHxuiu֭(p-R4J0M"@PlYR6mȜw|89o3 \ BCbnW?羊 RP/5$7!:dg 8'[*,a}s(%l RQ瘌YF3xBȇQUFG (p-aO}ڝ`8g 1\bmۭ8ʇmT7ZFJ#ZLjx}7͆FȌinH,P촧Dپ"#QU(*:?+SCuAu%ww0]wxʹ?a>wz~t7O $>V/(hH{ߕn9 > zf/)gQl8 n lRPM1YO=nz=O4n &CPhuV z}lq;7.4J錪98G`_<2wkj |!eoʋ4/+1_V% w;B}0vkzRf9>N\Um7=% ֶqA\vȰ|(gѫs>nRf0x$3"Oc2fSf,\S"SHDv'bxPDqUmPvj\;5 Gdb8H[VuzXqJ?@Y3c6gF6A*1}o', O培@oϛ7='b‹kQp-M%|ߞfrn)L8dxuK`2(X2endstream endobj 95 0 obj << /Type /Page /Contents 96 0 R /Resources 94 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 94 0 obj << /Font << /F8 15 0 R /F29 18 0 R /F36 28 0 R /F26 12 0 R /F48 83 0 R /F33 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 99 0 obj << /Length 2766 /Filter /FlateDecode >> stream xڭYmo7_!hOJ-_%|HW!4V^TuwW Kp3Co_tFYv("grvy?ԇծX,7}ϟy?T[eN^R'x->8QfCԎW&(e2IiBYu<ˊ[ +r_ZiLݿM'5姟Voeݯ]vN{a_4ɓMa׿}ܔ[nF4+(}5922j ~]x[(GV|\m"~g{m.^z>ߕ~fmޕlu[7ÜrOcӧ2W vP7SnWM۴w/?Зd1[2HEVZg  +(øi)a9/Id58;cia$ M.tsr73EP̵B eRǛ#k22LCSs|vtFBQ" 9Lj<S9+o7D #nU>W&S)l, #VJYM8$/ƺ`GγYeyRe4U T2g62G3_9wʺru(>A*1qS-pDF / GGbQHJ;$ cD,$k1OIPV F0'H k$b@ȎĢ2r4c}{}`lƓ t:@ټkwґ]_8Uci0l/!pvqh t"˻HE"5zvjJhUdͦhho|wYxtD7l `#鶼 o 'mE0 Aq˽9\'Awnh3=u (솲"jP)ԏDKPW1ny_ E%*,x*Cwy:*\J@j}ݺゕ .J^\ K5V} |TǬo/(ظR 9dd!ZzXXioanM)u%˜rmV}ZXƕDmMѮ+ Àj5R!=`σ]pF-;sM1~Gϰ[$ ,4b|ls&f?Hg}PVgޝ;opk\U~<.AOghS zBQ ႭuL-$Rx|ܔaIbzZ+:A]>zQq9d)349]TR]Ǡ 1^76u[׿|x#]?:\8~(K@(Au o-It S\tOgICj8˽%WBA!Ћ2 ]J% MM)B*ԑF߹D?]xJiΥ)FL7]>py:Ȣ6ȸlKƽk=R>9!w EhOw C` ~2<{_B5Ś*rwũ5r0(@׾X( -xvԵ.|+pT2Y̔#tendstream endobj 98 0 obj << /Type /Page /Contents 99 0 R /Resources 97 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 97 0 obj << /Font << /F48 83 0 R /F8 15 0 R /F36 28 0 R /F26 12 0 R /F1 102 0 R /F29 18 0 R /F33 49 0 R /F43 64 0 R /F32 25 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 4130 /Filter /FlateDecode >> stream xvT""@r'32;yy h>5 ުkWgz.TeqW7,tEu{urSOo[P˼1jBG^sN~A0y%C*ZXk*{6/rGCM[0ŷft"^4[|0;eQtٵ4˲_:YSNZsSqWGԻVx6gG'FD^4uؕno^}{k\wLx-8ʲzwُ?ŋY,L4bwf"k ?{j s$)fQS=lX\=2ʔ{F,'Lu$by]˟!&2)휚6g7 nr$_ϝ?c h$10džחA2p|DaJ}][2նޟv $^:O2b0=z.n5 j6؋{d}˻y>`FTNZʤIE {>“,[@Yi8|'v1?&Ģ\$JgaR3bFfs@G kOҙV&JUʀD R*Tlb4Y 8 H>giAvn;Msb4uɖ*Nk*rq1`!oyW o/yf#B+x 遺{ۦFM44R,h?)~MCe*r o@+>Y,Wc3bYeLֈ9Q+ b|8Q+LQoں{ C2@|Iqˏ7X)haJ_9LG7  F>xʶA -bqlJ]!ZPn=kP*}n&-ZN޽jS"ʛrp3 3Tq5 8<cXsG2Qu>_AZ.*cǡٍ6mDZDZ.H55]5h9["O&_uol*_!MzSr4͏D0elDOlۮGyvBf.*!hwy]F78#-2{ f Nn긻w<Y9-Sq{ǡ۝4{kbA*@"Rfq 8|>0-)Y6酏OS}9Hr`oz*g.!GA#D sGbՁ)?biJD&|?_CȸoQǀ&PPB3?]M ✖Rmץ='Xxy0'H~TzxM|,])7DL28ШC6dt)'a@y" MpVP**=q-N$Ɉ=m0Gm}^^߲H4ZE{ ;,:1ժ.- 㑊ݔux61'*v>NڡFXkn''<02 :AICOÔZpRt@ع̦L= Fwz+xepCQ>"v kgD2@| K bP)qdcGrIQ $<xT)d/@ d 6qfыQc'0N@_0󢊗<4'3Q`\;J]ِ ^σ\{q/(޳paCo6xyߥ|Ff<Wc<"ǣDpQ 1Q:z|0r!>EL|3\BME2GAptq$l4E)$E] p_vC| %HZʘB~]fM@=5#htFpp^U7mS*f]g-ًJS|GK^b.l|-fزa~&YG%aՏ/gR.3] 0ΌB2|xphΡ5qrF(Z`WJ^"oA!~>du̵ixz-`W%{19_15 ͫ.^߳a5gu^\NOQ'L}M=A"؍W~/Lc`e-vmjON"&+WKsE.9aɩqYP"1;9*uN:@c.456pU&Lu]siE&Z'l#cCm;Gƥs><+ !Dr>is=ȫ/GƲ 5. :*I+%fnd 4kGaB$y E+#|o0=Gawn% mp'TeIF[\vɥƥtD9ov]7= ')WSB~\G= Gg" nT4m:!6_X{nI p*|n#љdT2kNw!xqz- WcsY! pR [#xaKzF oLL1pn*ƧjA1`-ŵ], ڔ%fUPrhDA3)8;<ƸWpNgP1٨PfaG3tObhUY`7 DUUˊVmP-/U?avf"y]ȶōLݎ0"҈T!v8qPNL[nƆ;B*M(ay.( xp+ {7@ XNr<@+(IQⱲ mݴ]I> ou[U0{$ʮO<}e: o-9kI% JH'$Fxw9 D):~:<=vtXtӆBdpMA@et_1rWbkW`8'aŐK96z% 8,>I=+dm!^iJd%7TBw(a;z?c*&H-iZ:" _#.(o)` _X-%*4Rر-#gQ b:'B]lpBNzϪ]bќ q2%3fńg-!OJ?+dļOGI cWs Js$2Ԩ1e%AH1ٸO\d&-n'@Bea3a( %\qWٗh6YDvw~t^=i$GfoC$0^QPvtނ?0p`2Bwov9e F4#Bc%نOAPFS@)Qs&bQ۾.FD(̨㾌FhA<2$X=X~cli E X"} SgBһ88av ;ffRb9~\ GP`(nmk^by*{X=WF%JYs$:l)'RQ AQ})X0 ~sN甒?H/F74kt'h%@;f%4a0鿕\ endstream endobj 104 0 obj << /Type /Page /Contents 105 0 R /Resources 103 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 103 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F29 18 0 R /F33 49 0 R /F26 12 0 R /F43 64 0 R /F32 25 0 R /F41 46 0 R /F48 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 108 0 obj << /Length 4142 /Filter /FlateDecode >> stream xڽ[[w6~]%n$О>ٶ)HtT"J (CbhI$ 檯o.>g,LnvufDf%Y^`٥vwBw?EhG{EsDq)7g;\ljOkܼRU1̤a‘Y [R3 8)sNd nFVط &ˌ &# xGW HTW duA$1b/u&sI,kQ]m1 W迭 s3z:w>nr2SdG-ri%3X 0Gܣfl8:Kc+j֓@XgItu2Σ@;KQSQoYÞwڊG2H5"jG ]nzI2^4|"*4٫L'Vjh6>nk'[嗹$evzғ!伵aE 6]3l7 ۈ 7w~R[zX[&>Gxw;KvaEsȒ~pnΒ-gݺtvtں .cuEu^PuY*XAh-d[][Ѧ]wN=Q=hU;Ͽg}6{Cc;2b /=:=I> 8rs0{8#qs" XJ[(_63.F<'vTx-=Y%Np6{ܾnHY2*VrrL& }H9&;ߊũs3-J9q&9#$kZ1NP!v䈄.z(Pjy(PnbĘfwi0wѽdɲ؍C|9{;ޛWm#⮯^=  FArpfK-7ϯv6$ڻ=6 rv+޵T΄3u9vW~pƷO#7ѶZ߲]CĹ (Iޠݮ^GNx3x[7'@8|bצzHξKp},[ ;"w]ݒhs_9_<=L5G۷F1pxpԞ^ Xq+rM* G԰] pLd{qB) k_([AC)WVʟf9j98%YjC4U ΒN^!* BsT1SUwڠ:#ޠT#>EOqR]|1]:dSd䀏!3yRx6ZRŕ0!w̲e:SDavIFp /mrc:$oG  R*4ǧ8'6Ѽ4DuƊ,z,LyA"rvϐQلj*Vʛ#/ʛvݬо>b[20RȸFKΖ%҇ H!߆|گmv n8DEIf.LU)8ʍHT߄=ANpTnaIk4Mn(fv7sW5>Uwd^zO>ʚ"s g~ x{~8,K^Œe!# "m=@%2\Qn* G∣l>+4y+~S9M?#{6xT(fQ-T}mŶFlm R+5|`. mt [˄bO;tטPGx!cb;͊,(rcoW:9MCيz&O;KD'2yf\,;6t!%i0%&cb1x 9d @w?/$ѭeI |;VK:.~Ӄ[L;rȌ, n!'w06vMu!~?}`ZywE&v tPaSc.vrO~"Nk{K5 uK3)uVgЫ)qSՁNkXfƠv}OEV7c >ܭ/`XA>%lW[?! *%rב)iR3 eKK@Lq CtRiyuP1ցn0,>z[IF;_:$rU)!8 1L\D(BL*?* SD=t{ʮSp"Jr)m-OOxd*qZSS9jz>=I |@`!JK.sk<3Pb !u 7V0yh. lWMh7Q`Oܠ*.,k²3ĮR~96Vnq< `8(.b<1*-%O*)8$r1HHVD\MOpK逬g Tt'Ĕ#5cX8:6/<,mɶ1C.mZgUWMG/~]0]C1*kIxQml5@ Z1ʾ8-&0&[GO6%1XRj1>'+N݀W 2b('M@}^ӜEY{[ͭvA$qyg A> J*h_?>P#oPm\(ZkʳOO6\|nDw4Ԇ!pTCMC^Y1'ykEG"#2=)E?/]:r߸ 8PRRl2KJ_@endstream endobj 107 0 obj << /Type /Page /Contents 108 0 R /Resources 106 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 106 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F48 83 0 R /F33 49 0 R /F21 52 0 R /F29 18 0 R /F26 12 0 R /F43 64 0 R >> /ProcSet [ /PDF /Text ] >> endobj 111 0 obj << /Length 3572 /Filter /FlateDecode >> stream x[s~_GSN.^iIrC'mQgICRw )Sa"A`~?zJcn+Ꮷlu1%1.MvoBݗtsW.zRm/>z(~f5RIu{V"y E%>6?|Y,]e5Ris崻/klɤwغhJ|eAbxMR&O6 ʴW.e=!%pƃ0" B:jkE1kDOm%M43 F[Odz3Ѷ1f4p2ӱcu<^:6ÀcL0⾨ve3B>& SP]E|;"¤RKlߍjEka2d8IatC 0{[@N8e*"BN.v( |[to,j|C*> tކUS`ܔ50Qy r5;!s'fS x_!,ڭ#GGx3o`W1ijԽ$2] bn3+kt8R#f*W.Byˋlh(o;17`=%h9F 8-c,lm9Pu4S[U8:114Ss@ g-ļ9 S_$BLBOxP4= F#V-J&SZY ~!g7bMBgXb[Bڬ]#:h!#.-h- bP ʠإ &m,ػ^`5"a61ߐ<53ŬJ^plc 9.[S4Жߝ[lidi"(`Uj vܔR)1̎|zZ]6 Nø9D|9Tfh&v Nrm;N̑*$Yfv3pW oz9uk xpA`ixZթ^l]:ry rq، R6D.ڏdf@5p(ڲ},+@Rg0d/EN%űtR!)0$ tI!)Ll,IH{>ˊ9h3Cn~ug Dޣ6;jWuIhs) nNaů~T%+v_v-#1~GuPy;nҝ.axr94b.a@9 b4lSNUT2HUҀl H9PS7JF)k:\+XQǩwB5$9<^QU@KV[2GfB&8~$}#΁3գ!CRͭ\PA/pV? YP(<\ $*e0C%0Ȝs lfr9̱42/a@9 24=)yNɀC%?y- s{%"G&KFWOdtz3ѵ1f4p,d]3J+Ht7wEɁ#j\,@+u_(@Ocq#Yq4 g5'̥QC ǙՂJJ<\t|nĤt[jw\}z9 nMƯ1\w(+{;BM_ӭx_iV-l`yS˽L_Xw`s BW)F>ȱ}tvuo52e9( %_Xs/>\O >[Z6=~ּ.-Y cH-Iܺ7f?_BVi`Ry3I*%Y_-\gbyq3iZ}>e+C*endstream endobj 110 0 obj << /Type /Page /Contents 111 0 R /Resources 109 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 93 0 R >> endobj 109 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F36 28 0 R /F29 18 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 114 0 obj << /Length 3158 /Filter /FlateDecode >> stream x[ms۸_R'ooM3&n-Ѷzz+EEig<g p7RL8gNk1凩f9ZDž~6|rL9mخg[f፝%N\L;U_wz6Wno{O|y7jj&Gwߨ[;g 5|ruXU?5;j|aM=AJEWb6ׅ|;ַ{*RxX$T́VP\2 = ܄0X(t*+B>b[<'Չmߢ(S;߆䬶c럨K_7pw u2|,tAI k|fI4:'ȲKX! `w۶٭3S |;π=$5#Cəq'2EɌ1:ovuhW4 R3XOSHH(Z/Pz.C:}G/jj-J^Is9Z󾖁KpC^Eڅ:^zכR0mTu&;wşWX]LmI!dՇOdyUL~*tVO`6W)Yxz$p$λ"_ ([S׈/_#tc" jɤ4;0eǃ%tYt&12H$2qB Ϭw 9貑jHx}OSdž5Ir-5(pfMU Ze`8Fb0؟6g(!CyWd·͌pu. LȌ0JDh!B' \ܴh'EYqIА5`(7 `8Еna#dg+twF7i)OD숋byQ P\)a^1 w$bKR. Bgv`H 8nS%6B ˘AG  Cb)6" Fy `ؠ sbx +ѥ|Ks|*O }Qz߃(_QiyCh?0Ѿp<~f}j՗gyAXRasC9,t2O[,v}Sw:@vdC}HoA,Fǩ|jagZGB9ؓўl_cn1"/SjwٞFDia{f!ўz0Hu>oyE!q%?7mL5(?\Q)yC(?0QpV9}tE^}0h=1dC0}`~w[ק֡a+ϕ.! sҌj#0&@̣p3r3NuxӻM/]T`x hcN?Οs ΜM))O^sfb&&j0gS8I3HUGj ],ӻn')-: lA>!<\uЗ'H}ҎKe/"0`l&66.JD`͈bR`8()Op:$Bz+V4M']i+[:Na%se7XEh'E6!V{N-ƕef>g N |5LlY &vBD \f?~gYύխw>īl~jȻĀ{x*`BO. J(u@p1ha6weUON/f"QS0~6CPu «lF#(؝s"(qFGUPFC E*Ư [s!Bv/&|}[0 1.셴w]2K[ ,oH^װhEk=;]( vOOd+xW[7踜N"iu\5?V!" NMhPy uG_S%A,_@VwZ~LJ >7wNrZO[Ϫk lj<{b_2{hc!6?֝#`!ٛkXU!^aKqwc+p{J! ZYTkJX`w&/HVXVY8*_> endobj 112 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F36 28 0 R /F29 18 0 R /F33 49 0 R /F18 40 0 R /F19 55 0 R /F37 58 0 R /F48 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 118 0 obj << /Length 3916 /Filter /FlateDecode >> stream xْ6}b5)E̛㊷>7omUZxXD-Ie<I mzZWyh4~*H QۻsyQ>7ev "WIU霯Dz,6@Lʟ^I[oSvk%KQC#P>lq [',W6((%yt}s:{g6&417A~!Aq22BwRT@CRRDyB&F,_ΛA+^x >VƕM=p.XЬ 3yzghohP; y:=yD#qҷ!UYC_0p|*p.agˡsha]D12#k(;D}?s} F1_S>7+H6M[e*~q8J( f+izA%MsdHt )% V b^IgQˡ^Ighۻ6" 9 ibH5GNPƂSO7F2;C9`Q@gL]&J嗐Eq93=eβPvSO͐Q"L2s} [N _GH$!`ZUj9Qz '*#7b\R:t)ͷp\8]: :'\|{J#gKGEJa؋]8 S eϳ-w&mjeýpMSrl֭^->{S}}=H arNn\ l-`0lRh{P2b DKݖ!x F` oʎ;ZD!t%5:܀KUBkА-/ $6,nq6-svV㔂wwx5BWih7bLT>xrm}xn_ ,GJ@6" W@DfH4?MHFcu;ˎbuj&\ia/dw>r5+0n5QpGd.amY> Xo\kȃ/jƮ#y哼fyX,e>I":Oo/)H HR܍[zt1A` Z2ƚE6W[S}< |g dIEgK5t{*c™mlE(j.(wiՁ끰"k&k2iׇ3bZc>-Rh_)v`kJ H .J0cB/+t GߓEc,(?| cѹu2=܁p@ϧ$PbthM܌{1rY R{D *~O&z?t ܭ;҃<`HrާIA3w5,5ۯd,`DI#ǭFb BZ{֥fRI•܁sVizp6v`aŽhi.9 #' $:aWZhgbR.5LbW.V!5P]MC̋Hq-brÖ#2Hg& 4K+6 ŇObʕtLzƔ'^uds8ߝMUAQ;gYnF0=yz{"6bbcr _1uE|L&Vf>Y)>'ŋ`?#uk#4C\NA[A 1.Atf.{Uo_&5lmc)L{7xwy@W 3SB5ق!ض$o8\Z)Ci-FV|&O! T 0i;?*q!x7az*'۸7.WCAc+_p6^V!BN6na5`mׄ:\٣B.F)]?|O76Ԣ WyɵJpK*CيzPL*>0VΣѩ> endobj 116 0 obj << /Font << /F29 18 0 R /F36 28 0 R /F8 15 0 R /F32 25 0 R >> /ProcSet [ /PDF /Text ] >> endobj 121 0 obj << /Length 4897 /Filter /FlateDecode >> stream xڽ\[w8~Йg"6q%0{Ig8mgh-nJ\~T^$R+<{rNL`PUẁő-1LpCrͻF/ι>7#6̗E>Ɨ>Y:ggl?6H8 "=/~;x09?#a|س|8F2Ͼ/ڨN5NU$Y%N5IaI,#sfzsqn~_fx !\'4̱-q1Ö5;bhgGiu]#٥]dn&K]י|s{}|֖%u/ꖧj#TwdC7y_ݽ1YRu&n/.>Y#% gqq zzcn&K3yߙx9[’̭yyݴҭl#.x' j$`9 ?\~<¢4g aEs2co]eIefG7VOS5] ݜ^wLt<x,&A ;NTRZZa bS3rOٟ>呙Sz']Y &mz{ :kQl7ޝ}x)5"ūFK[n@_ x?!"ιiRvkQb`1śG}.{3ݸ7e=_1}IIv>tsA7Y,_g=7UI$8~L80 Lv$ >}e2g4 /CQ?9ER> Pu] 0\\_W .E6,mVt(;|偛ū*!0@sO9E*dbIv?ts+,Ld{֥uј@FJo/&WI״{ae2-̴f_ZuV)X)Yj"ۏ.횀gV),Iv .ts?6J '\ j_9,N>j9- _}Nk$(gr Oѧ|3zFkAh:_'̲|ML(C ` P7)ѧ,C<&}yc#gRRs (oEʃ)=36Bgv:{Bg7%:|'zd1P=goe-d8 ܏g~ 5dl Q$g:WqX8yhxã$z1P<ģՑX4}jlE%dž*qv,rxO|M;jXf٤%@>"DO D#&)HDFX&^gk/QL\1 r'LCbIp9bY_nD zNۏ܁dVsC{$YM) puz/Q$b f9Ql?ɦƱ@ #mrY[lpiW6PJ?q+&PȘG]R<$nH3aPH!#+Apq(Ri\V;A#-{ ab͖αvscD vه>L`!0~K:3@LTCd& A%SrP籾P YxD 6_&6r.猞.. h2E}T5J9)\J⮪l'j{sE~WZw 95ܤůȝ9ڌtZs5Vm!4HYI,Zf TbG8ў91edl*MH6|xΰTNߤWh\&OxHlb;2/O5}iu_ Bk#o6VfgaYo۠=ɼS;4Wܪ>V W:u<y5a,/fp iXWnbZ7u+şAi[6K:u7#'@*23[OqT'ٖ9gLjh/;b1 R9 r9 zV_|VR $^V^%`%+7Iڵ9'bߜK̹$[+6Gܔr(lĘi2(ZU.[U" e&\R<4as`4"Dq 22NR* &6UFedӢ$ -;7DCB]!!w&5C'=⨤xÄC(YzMC?6KTpllZڪ_Z(ҡvv8Oݺ)sI:\6EZ̾ևr߽"}E;Ϟ`431b% \Ť\c3e cOmwR 2{VEexz!c-Ը~}ɓ/퇀c)Dm`9 Kȍ )+g2&EN;n4cud.b[JXQr ݠzZb2*=tROZa-G(g=RUA +Ny o$5C Ni )Rڂf|V p)=A[P>kzcKV/8;çpZڌ~*$t9V +P6y"ֵH躏?"KCP* 7o+Urk]`3jK.g7望?eu!!dr O(Թ}]xq[jmkA%)k%&lie-?@5g2_En֮b'ZsjtUGu}xj֧I'R=E뒎˨lID aKavIka*/7RRƓ'-&Hpcd<&w ҳ?G5{vѶG[rdз*vɻ~e9<̎qYk}1$#fk#(٣ksw> dFF\CT!&M%qdrm3Oݺ !˒.e}&P> endobj 119 0 obj << /Font << /F8 15 0 R /F37 58 0 R /F48 83 0 R /F33 49 0 R /F21 52 0 R /F36 28 0 R /F26 12 0 R /F29 18 0 R /F43 64 0 R /F32 25 0 R >> /ProcSet [ /PDF /Text ] >> endobj 124 0 obj << /Length 4705 /Filter /FlateDecode >> stream x\K8ׯ(ʅK.0L#dIAOJYRڶe;ARM lI~:yײyV楸v.SV,/m?7?ת9W9BYnrӓ^rzu_*T#(KyRVW .#eNir6z훷>t& ]̈3Plf>ݶU)ViDVitrcݪ֛>֥%/nJ R&GRkp_:hE/=AO/Z<`O lY2f:>Qwe۱.S(+8ݻ;Ci%l\̈2PDiLŒQ3΄0zF$f{q}82+J5#Hq N)Ly1 g!2jF$Bg'8OsT4UJJp;@@OF௪ǻ*)0eFOywɬ( */=hvRY RuӢ'QŦV|wݵ[ @p-&5MQ,$;?[W“ᱺf-E.+ܩ}KӗLAAݶ4*pcs@,lޞ VۇM]7mVڜX^VYi[<+UL`0B]d"&<_xk {ՀPul}'RA*暷p.hjKw'HQE"؎i[}N8&_9%lԅMCP d nWޝ t3 V𰚟b_ـ0F }Km$PL82]h.@|=){pլנ.S:PF0un2L9PRzVG+7x`GUzCwݛG[D8_؋&Od2ں 'RLŭƁrrtP2PD 3ؐӨU\pJ 8U@yG/BB*ljȢu\ΐS8n:3ʘ˙Br9#Sp 13 קvJ lfe'Z;d|v>S<` |ӹ܉0אwg ey)!JC |4*ò|^s>G#ز|o* M'IKA m Nff!um ۭILza~n"RY\2PYQbJq g8Bp⼐dV=#@q-'8/JYp4`"hF¶ :9]qXqEE~J\Y5$?M#PVlD,54R*eO@͞Rĉ lM8fB}j=h30}8pZO؀sD6Yq)n)<7'=XY~xr(TT5H4p"SnR u 0[U% N2Do>!D ~; ]s^\>⏘yah]$x*_ಫ9m4(rg<;:ẠAu9wY5䓚0{& e 'PFM8D;Tk^Έ0PD%rU'q y0J "?pG5,Z*ˌ%޶v=4 `i_ < +BhNNbU5PJ3gr=CfC(GCSp 11j&H1$+Ǵ5;;&>pɨt>CtAmx^/k2aoBfZpE'7x,RdV5!Z,d/Lz.dT,OévJy\$8IN`@ag X-FƱgl_5W~PA~r9wRJ 8'›35x#ߞCɌ>زwb:&=/,luVRF{ݬؠ`mKPon&KGxA?B[&5B\(bPuq{[m^ 4R~'Tn$FxS }Nͅ ɱ`G%.͊iT7TY@:FOEAG<{3DQM*f|'>rL:F flVq7Pb7xB'9R^2̵dU~N \$ Ѥ,)Smʢg$KD}㫣SvNW%oS,<R.Bcr K W'hG໚krҋcbFcA*%,-ΠJ\킗ZrI5Ly|y᫃ٜF{Uj2 fOk-t{r8r 8iÇcطGExoȀ '_C_(X$n.x5p!Z&+!.WyV\7؊uqҖv3tærfbEPG1* žݍx5T6tb:9h#Gr[5YW>8TbrA(ޅ|4+~ c&A]>`=m&%&Tx!Ŕ~_U=&@J=!Kb~ Y|*~ĉ 0c8TtP?y8+~ -jMCD*3v!O-!2HO z[G6)gBGC "ǟ:|> endobj 122 0 obj << /Font << /F29 18 0 R /F36 28 0 R /F8 15 0 R /F18 40 0 R /F26 12 0 R /F19 55 0 R /F37 58 0 R /F48 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 127 0 obj << /Length 4626 /Filter /FlateDecode >> stream xڽ[[wF~ׯ90ԞBpxǓd6q%%lB@ߺu !1g]?@w._U~}kGy,LbT(Nmc᯷L2cpշ9VQb74W_k|zG&đs}\Țꧫ ׁzJ-.? t$.Se*VSsz(zn 0있lûNWO7H{GhƥmH =9{4ʎd]ڮ\ Uãuwo :$8ْoaMpYUrKDG  1 &Ju88%cb𘟞^&GYO ʹLӁ(yک=ww7?MKsx w7:q[V$+YӵSjEN5]ҠNIfPør\zKoPg\VE]mO̩JX[}9>s|jG69s?͂ 'ͩՇeMuy~ LYo~1drDPA>vը+`&ZKyoD}[eHlI"R77PCbD+bKUh _PByAd9%upBU^QptpY|Q|>]s؏IAr3*UNщ"4!E\<Aw$o#Y{dM`E%zH[ ;^Mf#j=KH A.#tb\:rˠ#S.wU]0QfurA&=sLD:͎ z ޷6HE/^4[DJ=ܴ'R깧+qlC~gYa~bQML@D `U`$ GZ87/`1aԆ ^ hKqJ&enhK~}wqi0;@'BnD}XpDP&:J\>2};$@_Y 7/]Yl;Y"Ҁ v"Z'Lシ7dX?RMcP;tKڟZDB1<>"bR`p Ĝ7L /MX&k5 [ 7n '/cE'2Lz/--im8vLHB|y1"Ȍ /[ڲܶ)'V*Ro5Ȧki>P v8aO[WM().瘧$_say|9.c>ǥw3.=湊4!){9Fsj 挲^P$~L=c>.KWoPF(FFyhd!I't$w[2\!L: 87o7sw`BBdv?A|v*,TM"fjhDvN=a)F$PM>xbK{Y{ 59;#A@SvoK |\*MT$ݚy=A +غCcKmr~_HX%LTՏY0v<-xJ+wLv ;p"FŷiyDQ boY;`;xzҧi<:aX܃BW!6i1V/\-VRsMa܄C(>޷4{TU.@b_h۟*4C5>/? ]"-wU> Cm.}zf kZA*2|mʗMV8Hο =16 FǪ P`F$׉?U7_-`2`tOR%g>9MM= H+͖EoEw*hkjYJv8re(7i'y Eš\E1V&'s7(/ Œ`҉P\; ^q{J4`D2{h|hvv:ڤY'tz)%ЙX\U翟b r)0M۲izZ\#bf2qo,RY~6df&H;d6Ze@;IAS~Z\Aa҅o#St?+<݋!1nΉ>(X#(V@Hw#n 2,b.,( _4hQ&^s/|xSULiw8rc].77JH7oE7Nq?b//am4ZnL3Mu%V+a8tևF>~෾4K~(*Jq㾮Ӑ3:;;S:yNļ A&Ah#NόQQӭTXj 'czGVa . .k<Ӕj>/tK[ Q(uat籽6ڂ_S 647:IǩӝY/ȡx -usW\r_͒XYᗼQ HCrzJrg*]q^](8r(Nl>U,||#zpS`3eiR:~o O0Ř,2 e 5-m; !ԓWPc%qͅ},~G>m.,|XB'p:cשJ_-)V 8LjC),_};ˡ'\&tsm(~SG b7sx `kfBo)0%&˲׭NTy 谭_Ki-@I [4 QRs9^‚pxA*3[ S ]0T_cd``eΟ&nY:7U3:F &bmɕ'%cI ]2'JY5D.lV=G:σDK.9|:oɝ8 _7e))'; YP^LÔN݇e&8nO9g RCASt`z_.CVt؜*I ҃%++'E?MU0v7xPaTR ZȵɻgPFzHgӃذt1ڔlZ_yz#2m)`v1m jxh{T{fu$KuI坊1s?t\zHm{bj2``JaEn5ՉORe5 ]w[HBo=\Jx`Ʃoy0ߘ2=iWȪԔ0L bwz/$.}{z)7]9O sfg-Es9PY}=C.oYTd)aMZ.˱J1^pmw19OlɠCkS/YPl:axz s1r*L+0$ǪD%.L!뛬@{答3ą"`-p0+kv9kO劏E XY^J6Z8<# I6ǐ،BT5ᘚ091  cbNi~endstream endobj 126 0 obj << /Type /Page /Contents 127 0 R /Resources 125 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 115 0 R >> endobj 125 0 obj << /Font << /F29 18 0 R /F36 28 0 R /F8 15 0 R /F32 25 0 R >> /ProcSet [ /PDF /Text ] >> endobj 130 0 obj << /Length 3238 /Filter /FlateDecode >> stream x\YoG~ׯ @BzݝEhc8qly#'#I#Z-cC6g(hg/zz|vS3Ӂcay>Y5s.X1|ӑɈGoξ)W)KZpR k}Tq b $7 *1Vj'<;cP$I҅\OsbpyR ;)FEAl0?Re4wf'?Ykc4CR \@-kp42jXn]Q9S`ON^D hi쮤5qs_RF5]ߡQכj~بSnTkLQuW.u&%e#X' ͕9G͈aB7NfD4Dj8t\EA)m@d)z5wRdTCFUR] ^hE 8Ɣ pF \6?& ۜɜE6Gy{Bx7w-m<X !MLͷ `E ^S`viJ%hJm(dβq0a0l5$2G, `7X «9s" ]s(P°-RO7{(_%iÚ>`Q•5Igp.ul 3ay \mc ~3A° ȑL<vӹV׼lICε9{M tM979dfv ,JxzTf*^Ԗe (iǒB')& 8N&s-3@ IG#.I4߈* V Kc1a(7} o[k;eT_RmPd۔9vhs+P-@i_th-_S(ԡ7$ `ɒ׉ӎ0ug NP]B,gvrKH[% "!pZ-z/r _"RhDA=9JHel_eBf*Ku]-dPfȢǹ a؆HV#s&ň۱QL<-Xis /ydX3SNl[I7Dp8S&6Su3U*2<)*z`lA`௏Vrle8As [sJ9u7h09uy$Y^W-`n{4D@]S-`f;b< >OTPP/ S- ۠ VD'V4hNʳ+ ʧa 2ړ (Lؘ R:iNًۖxBR~(_^?ݵF8\ 8ew6drN +lSr65S~Ett;=7ߝ;" j~;)/@c1~ͱK}a"78QBz6O#NecI=jy ـ֣1nrUe|Rqz pkO`9UH`5D6Eܾ_X4\|nHT?&p"EXpxX(=%văSwAe(ہ{![%ҽ Xsܗa}J O5%Wͬ.)wWr G.2,1~ROȰða^ß.Д6]!\ťXfh L`*Wo1~y#h|LIA&NUB` { cP2Kú&*`Y8Xp=|fv́.zdUbfn,~9)N,]_7CU5@!b6]o\P#QWiFPm͚-m A R|BG\W0hmzq2[sAv亞iE30'`)@d ٻ*+h$t[;ה  Erqu+1\ކ",:Qw| oФ6;$k_Ad2Q;mK Gwc6,¶^A\$, Gnj wwCM(rU j5OGf3T n$@GRO(w~f,Df=)7>Ȱ:am7o5XNToz R5WՕK[  6ƛn$ I.pv)IHLwx^g7&&H]GWUxy-vUXQĘz7䋜)*1<` 17$ZB(}`stSM`3V(]a, nNȾI cP26!_t!3al-A/)\2K8*oPt劚yɘk ^BaYp,#`0FTFn`lKpLg%tq1000Wf,r-.-q?ɍ?;}M㽏o?rc^.ogA'fjO^8rً/a?l ~wm[bǏ~/gӋыyPXKgCO?~9} ;FԆU 'Hȭ•+." EkeGσ] Wn %bE_ñK%\*?r3|4݌T2 h2Ձ2'w#h0k P:*+M;+ED3Ѽ.& Q㕴h1(Ɍ=j M%snٹ*ʛZ\Ü4E 21 JfKf&Y(pӇ+!6Vנlb YWgxK†pyCkco27g/N?LP'{-&8 h42@ t.-G:F-Sgr%{զ<:Ā]hV N8ʛ3n=﬩($~]eP0_3eendstream endobj 129 0 obj << /Type /Page /Contents 130 0 R /Resources 128 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 115 0 R >> endobj 128 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F37 58 0 R /F48 83 0 R /F40 80 0 R /F43 64 0 R /F26 12 0 R /F18 40 0 R /F32 25 0 R /F49 133 0 R /F19 55 0 R >> /ProcSet [ /PDF /Text ] >> endobj 136 0 obj << /Length 1311 /Filter /FlateDecode >> stream xڽXYs6~ГFF4Kd;}ӌQ\e4h` ֯$EҒ#)}!X~r95Sc0EHCH7QRX%Y2,6_'q%!t'6:7kzlE)7UOm~lcўN%:8(DXIvc4?Ur$|$S[ў2"Y[Ɇk>ʅ>T>0g=1؁i2\GOȄ? sj"aZ`$3 & t}O&İLm:$\b WuHa%fx[}cj kxƦ(ɋ%t xn2̟_`CM%'ʁ2ΥL{1]|XP0V\n+t:SmbNebJv*Q*?srCq* voYV=CvձC-"'|6Ht ^Ȉ0d^E,mя9⳻.# ډnGyاV?>/k曭^@Ҋ0'~>#G)ZIՏXx:UٺtS덛ur9y˺'ֳU`,]Ͷl@?2 Mendstream endobj 135 0 obj << /Type /Page /Contents 136 0 R /Resources 134 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 137 0 R >> endobj 134 0 obj << /Font << /F48 83 0 R /F32 25 0 R /F49 133 0 R /F8 15 0 R /F36 28 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length 1499 /Filter /FlateDecode >> stream xYYoF~ϯГAz[$N aMQS I94}g/R)ɖ a.og:8}c=ymFC l{zo4-y`KS\lN&U8Iq-|6)nB5(ՠ4 }y{NҤ҈ߙ,xGv{#r=i4\'%$Jr$kk,eA0ɥ'eO=kvN߸=fMtymB6Mn{hF3XcFsa/nY8p콳m*/۬ȶmGjcMmֈ\U>R X]D̐U Լ!R{PWRB{f/orB<` lugU^ղ}f6d7$f#5]5pbl'CTe20-a2 ":ӵst+]Z7JֲtQ0Y.׃T0eD7vuP+` HV~oZRwd3ItYE*6 Q,Z"!LB0T.S Ү|9fXmTmQʨd7 2%WKioHFs'Ӈ U?TJgѸy](zpQ<`a4d֝.߾An9hq8ͲzaWt-K|m$i$ŊHρ_EӼm_1XAl ILKEv:v /G)v ga$4#-LėڜSyӠ2~4Y,'֓ǖ/L c_A G%1gva k4KyḶcF@8f¤Y?1̂y墴tl(KxoҨ/<0rP% rYXvFt3`>4||X;:|LBZЇ 9D|Vix=z?H>Wendstream endobj 139 0 obj << /Type /Page /Contents 140 0 R /Resources 138 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 137 0 R >> endobj 138 0 obj << /Font << /F48 83 0 R /F8 15 0 R /F36 28 0 R /F32 25 0 R /F49 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 143 0 obj << /Length 2380 /Filter /FlateDecode >> stream xڭYmoF_!H@+>pm^XrH(Rԑ].EɔsyfYɏ*aEj4]"dQGqӦZ?)t!uUW.ݟL wϳjU8M42uFga{7Z x*v 7{u.Vn0~QR +}ŗ")ܐCe+r](sUO,ڇP,䆛>&_X֡e8}2.ߝC .7Ą-_mX1L7MFSi-R`@Vl`TUrIsk 3l _'iYpuva'-2GmpR=BvV7dڷ{M:KgJPR9-pT0P f5*6R.u`=n%wIQk aD s:m6ϊ)2:<IOƕkX"J ͋{ŶIӝ~AD оfTҬcU @!<}޸ N< ]yR~RH)(!鐒\3X[Gql2+D\ AлEz~624q;9ʜsza8T&G?ʓ|F62~Qؼ<Ӡ+ Ʈa^ ,*7F:zʍCqL#5$g<X %w}q8Z&i>wBT`PVئV41B-y(0h_&)0y3I%H6B@Q_ܐye!dhu umf4?ΡFИDԸ5o u5[k?f+{~K"mݾ"d7ӵ{ގ{9b#|.k%BhPJCCtd-# 'tS~MdINi!s8[Z3qb ic̜#+zmL3#DLōDSu~YOe }XpMguGv3m\P Ge CvzHgزgrGN,==WU%t2wb:,d/oEsZ*_]+lEb{OXuk{*׹;ys%- '(P]L*o;he} ר)[S1̝XgC g;49 5x lZ1= K g#U覴oS:mUm > L7fu6.$g~%)u๚S/IP۽^xi6iwuܵu{ֹŽ^W:Gʭszw[ucw;H>6׀6!3 7I0O[ A}OцhN-;sZKpL<`يw}  )FNcW9@`e .vkK]G&Ɯ^Q Y@5(6yks84̿ u}\ԭW~b9 P-d˵͙ȩ#ʠⴕ]@ܥx+_b .W"zA_`p f%Ih^1o䞉 0O#VgMչRGE:4 nL#h/x*Dš4}Chb*D'wM\F%hbxL\ : & Ŭ*X խe?ӣ'ԑ yj$8/ [(&~B*dhO?I U ƠrjzJP!R^D=+8c:> endobj 141 0 obj << /Font << /F48 83 0 R /F8 15 0 R /F36 28 0 R /F32 25 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj << /Length 4319 /Filter /FlateDecode >> stream xLt(;&r}):D"7)-E慗׷k2P*9-"dq_NVШfefx†qkg07ͪRzVEmf.gOD7}]j_l+@l·7;++֤r_aQ_8ϷWVq- i:-6W]^^\L{g?Ȥzs3sW7'1oq4*Ta-ZP.32$Y̜U(Wܡ\9%G p(FgQ49$OK<6/UEdΪL"nS⬆hnbd=Ɠid:a+޼ | rb,2/fI {I#ij(j>@qV3$m\<{9$#ijH"JHnmH)S(9=is׬ ˚OrȔ@ R}#Ԏ+ v&;&9K!EQ'dP\sg/dxjHa/cxG$G*odQ\,TtlC^ډB7'u.N XvVK~& Xqq&u>_k+z9Р6wX|{.q j벛9L(,ȿCT!ndɅM* )oHbTpSZȢ0`~xO5‡ɪ.n7RɑޝH9kTD:mfmL2S6pI[W] ԁzm]awY5c E KЄsMY@୛m-A 8 ד ԠҕY?9A L$r2RY+OKx>Fe#'!j(o!\Pgthkm&M2p?v4\&SOVx" + G?!8M^>Q_l ofa kp[Bs"Y锨bBQ v<^5:xT<~C"4@5L\qdNً"Ғ|oü.jۦ%Q襜Ky;)C!0.TՀ [ DŎzԳ5q)$βm6%QKi}}=Q)tBo5}dKRYW'|V>VQw]"cq"G!|\inXPQNk'Od$zJ>5qC0qɴ[4=:`xY"-<1 /q,;xtHȉG)|Ҙʸk6Q(O͢&v }'x&`t,'eXq} oK|/-FUDU߯2\6C6H ,/O$4pɬ0)\:Q\3 ZrwP86#&أpײ~ ba1|mA33(#KQ:~f&OÓ"ffw1^]2eẌ!EG1 hNrG8>ϨD26+Z itH:0C 5bЕc}ዠ!آfdPDh%7a``o;v ˥> Ֆ_<aӡ6閬(`nJ%em m%w]qh~gT0WQSզ̼,KrIia58qx 'nU.˜hE#H-h$7/u͜dOB6mmN:LlTX؉͋N&RX ;V@}R6rOVyAUtE˩jBUD &&rmq4Ye|v]^*d`Т\c;^ۮ.ˆJU.PS[PU;|u`9'B.}x>[I3ۤаCķBcz>Ne :i4`.ڮ n3@rK.Ή 2r5+b[{$ڇƾGmb Br\m=-QѺ,umx6>&c+j}zkCZV}Y;~c.mbg4t‹mÇQjhB!`(ߟw4{ÆH9mضhP='ّ$0Üskd#ٰPIL L~ElP a,r ȂHKڦY \R:*iy錃3~o@(fD0 L؃;-I L4).6~SkWd8|O&DM1^ ~Ƌyjl[6ζ /7~jI t*b&q\E3K޻]"zi)ڦ_phc;Z_j޳jJ]?0HNJFz >5bF5ˋ1W.endstream endobj 145 0 obj << /Type /Page /Contents 146 0 R /Resources 144 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 137 0 R >> endobj 144 0 obj << /Font << /F29 18 0 R /F36 28 0 R /F8 15 0 R /F26 12 0 R /F48 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 149 0 obj << /Length 2172 /Filter /FlateDecode >> stream xڵY[s۶~ׯ#5c!ࣜg&3m94DSBRw PTL':rbbwdNjO$7YxIH (dٟE1)j!ق&** ɯ^xauڹ7n`ߴ,Zveێz,Pw㕄$2&me|g|.zח݀ ڴ;5"/2X„u^̶xek}s=dUL'"FB1HiDgYoJ fƳr)=T>5:k_xPK<Qh{a9L"V<Z3F-Hv8't9ϊD/TA)%Y$l5:%u0$`<LP1hZ[5)q+\qWMVYcɤ c{fBgda_yȔƉ+-t8 :SZhrSp\oΆ"p; 4F 6=L@ώD()EV?3\uclOizCD2CaM:>X% qZ&癨(O>"f,ôB`8#aRҥɔ: 7iߍkaqViSaH~P.!0mU|mFh_ySۍUؘƳ0 krmq+LJqmL)l֓Q RD,:~ Cs~'{%,̇vf=+\X3u^Gfp!>zEKs;^j[Z{N* pü׫p^|(_/` uuU]wXʪLPqp}#Wuz;|c>Ȫ!nxC̠J>8=pWv=5x)Ep"B :SĒ0RN 6p0uP})$2`|e+J pbH3#[b忥yi~=@1S Y8xŶrM_SZBr=Y310MO؃Q."[YAFiZi`U2$-"iD4p+7p f#0_#5!?'9z{X\ĵI@@8bAN 1ʹU=ׇxv  ̨c5 |C#sNUhׄ8GG:ٲw6f ''dvgܶaiƟ>¤m`cl`%eؑ ?Ґbjo-:9!!n(h|RiWɦy+*邆nI'&z3)]5朴rޤ#C aluum'KT!gTbL6B=9mPٞ\iMt ׳r!5>mp1iAM8t:)0%K6#208H"m#8|yGd/<4 Ha⡡x(ˬ)6z 5ֹm[5ʄt.9w{?5w0}B&̥`ZkW0p &Tzq v=-}ָ%@}}n] ݭQLZm"gOPv??:MmsLn/CjU0pMt-\6{\6TՈg9쬽ca;6}K4Jvn8 iL{y Ğ;| 걷 jNbw"-wH~ߨkz ibtKR3U*ڢ%WKsS sI2di u7WO\< >hGѥ'q]4 SB08lDŽaTg@:([Yo`| ``K[ hP|YGvoCHXyOB7vx6ۥB蹳H̭-9J4.P} /PP.x:a̟yf7Oʊ#x-86j T܅Yay̑+(K ݱpBkgxoЧAVܨдHwQlendstream endobj 148 0 obj << /Type /Page /Contents 149 0 R /Resources 147 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 137 0 R >> endobj 147 0 obj << /Font << /F48 83 0 R /F8 15 0 R /F36 28 0 R /F32 25 0 R /F18 40 0 R /F19 55 0 R /F37 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 152 0 obj << /Length 3416 /Filter /FlateDecode >> stream xڭZKs6Wjnpv{2v+Ɂh5Tn42%? `zsy,2$MY$R2nqnri5,.fs16LLΥ|8m|\Ӫ]-3LΌ7E^ZMEZX+_/{}lO,K3N٧ӷʁ@Z3-a]8!ڪ  ޓ3dʅɿ#3f~ͭJ(PОw% >i\(ft&7j|Jj`]^(y]:^ cZpЄҁӋw˫@',Y>"Afϔ!`\C\拯ԅJ6*h$) m*EPA*T&e\9TaUG*xNWW;xlm ɻ}; tmW͘IƻpʬqB倧_п# u⪮n|D%xlqO%w] ,d5ѻ+f[ WN9|yVڙ(P.QUt[՛=y[n "I[WKm W0>޻Ujlv@WhJ$.HTB@BA;@dS%<\`_z‹^T:G .Ng6`74)8C0x5 PM/GѤa|zwQN"쌨&H2fGT,Ifnw f1D><;̚, 8]iFԕz4,\h`F=ؐ7F++|xkC'd~J}+O_6(͸XΙON~O'| g < t9Cx 'O V2Cujum}ܡҤ+P[ӰF>OO0,c[u;>Q(0hMTvhEʧd " DV-PuݎD!̲>=lв#օƬ߸|J̟cfI0L5!:T>/N!+eخNA,fD\",w.KkJbU6~;1X{07J=GGXrjlQ?$*R@G%y?C5]& UK< zOCD;ȎyY4O E,M$0Z! 4! 2-dz @^މ6̴E`(}u-t*!CYb|FS >-X0}h%#@v~ ی;$De.ըU 'ak$0.@W*vd$!T  NZ J̪/gR,M2/Or,))nkdq]momyɌ֕OkRsXνyc=D ,FF1(̆eCv`DpNjX6TUBO몕8·M̨C:wэˌ3-bL a7^Ћ6$~ #vh*T6@ 5k}0<bpV׮B?zkc* ͧT芋^) k ^ D  j_zqO|} B_=s6.-~]?"N2{4~ש]٬|X׸K{ O|$MGsuGѽba 'y۫h'`p7:Ag,J_!2ƅx)2q4+l[a AqneôU #!r"c+'Bx=ZRvn!RB3PvXeN]KAKaAzͻrH|A /sK.iPRa/Iil$P!pϱD2p{a}vz&X`o+oQ00T B0 >]?~< b̤ZhQl OP`onlD ˲,-~xm'-%dC BgA鷟*uZ֛t]MVcKYXȘIb4 Q0H0!ѡ> ~+4gsv#6э}#@'#ܩ÷GN2;GnNK[IW4z9?p->5eudwpFQJh/7 u.ծ-c9?~emrϼ%pt  kn&\:C5c@yʪ:k*q).勜a%Qk,uц(^㜻 {^.~Kma,=(-pş{l _IEXA$i}N(ݶ_V)4t]:i6*&[0eо$T2a,uJr4XaX"c~G'R/RXcLL{\| pΒ䩙ߓ58xTu[z e>[4AFb^b #ΰn]#d(u=Hƒ.Hq³<t"ݏ0jfp<8Mƒaqy/-~1t(2(?@橁δyXom"ƽ!kGusz9G;~[ٻ w?Lأq?m]=Q_.9?[Bwrӊh9}mAK_6! ?-hfA3/D󗏟x6ZeP0mM텿_Bce3JSbrn =/+ZZ-]/ tUnK_.$e~yk?`zGH.0 L2 9lŃRendstream endobj 151 0 obj << /Type /Page /Contents 152 0 R /Resources 150 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 137 0 R >> endobj 150 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 155 0 obj << /Length 4295 /Filter /FlateDecode >> stream xڵ;v8 ٳgs,I|;$;3DHb~x&y.BPw@WPEajyal0: -~ 跫?z1mF5{ㇳ' A 6T@,HA;RAG3 /"@%`K2a&Ʈ=t(U@}(iJ(ۛݺ.d,S6tTQihHO12FPI8>̢(T*)~-:\D>¸AB0Mb˃qgl}8 0HY=|/dG-OHZOx\#_#g3j 7Y*e/11!>>"1)$Zϒagٔ/޼|>WJUeg&ah x78s3G1) u>5|컣<u-73*e;ƞ;%c߬˾&KlQi#-a&K@hL81Nd%"0e*[ Fα?YmaF?9 (OyzA|Zh(O_l/'g^1 @<7@Cöl:4:z]u>_&n)Iͬ}M\O\gYP"LL%}^nF6 AUôB" u#+gc>#̧sSVVڄHۯ~.,Vjoo*CRUJs<To_{B[0t(Yz7FP)YK<~}4YP߰Iᏻ-LR461'GqI͇sՂt%2$o! Bi|d;4*`6yP7(ƪpm mHX!f/!a7픜ejybk2UBqy7]9hkK!s@Ʃ to-t+r>[yq+Moq޶ V͠"eU$#ٺ[10%(hDy&\ ҆EY"uF tGúEHƽ(<*kPڲ;gc !YA>!YLYKF{Q!_\:22Z*BrG*wwy5,:[mJ HDſTSh+"OXJEhZaf;sTh\#O19ljӿɅɣ ot2h D.SEN0TM9EWՀyT0 ߿)4 ^=dcoWսL86`4Ƞqዿ6?&y$dԫE٨M;m/ơZH.WwY"+&\J2·M6"żcqFY\nt^宣CƆ4Ntj{ 4Gw4^u6dfJ.>BLA.b'``'Kġ5 p8 *S;a^1 =t?AZbO.-,; P X}ϕ P$+vE jcxj>N $[?daf2 A.#ZRCvEgDzBp#SWA6 wN12{&8!QT-E>ߧ*! c0qS07 W (bQRp]cPai$yL|f/H,& ӿ>"13aVI%1LH?,V*ژ!& \$ ;ZQ4aP~VjYų"4JX"?TϖF,Njq,,!.8T/ik7CGu'^r +yf$a B[8m@ێm̍mkK]KG,Tҋt' 9N:*x()Z=r];y#{3{$ NBlQ-K/y˅ܮvroc[Tc߳:xWxVXF(/ į)vr<@=qb7q\ y1]zDhJziQLIWuz"Hs0^bHU=|ȷ b(,_lTB lc(),EM J"|Sm9&| \v鍲*FWFTB\ 톓ΕWS& ZH p;.ns !~aO1~11eųhZm)4/n>ⱺ;Ew]jEuTL/$rS{IʎGXF40qP~ @q+%ЄB`}ӈٺ`(^CҏwHVT/>dXYKM\V+i7tiFiP'.=yfKsX).)_=pWz-u+%@$4I0s֐5N w6F=6ߨ__ V秲x12mUZaUe^{ `Ԩ0s˿o @7( /G%_I-Tr7<pqޭy" $?#[_sDuu9T!uv gw8JR7EZr%l,])L9o9F "JeJ0K^ sgc(7b˰%I%1Iѫ푸٭ ½=hXٯ*db|ɂ"yɃ:gZFThq:%2:S n=a]WI'WlNGh*nvV,DN|t*UX :*6\Ȼao> Z궥gVoz7x"X2 J&U $}H?'g]l|HS|WjڛpCsy(,V7t_Y_RO 9 {_-Ȇ=^G7} @۶koH#gW.I4{,ipQMҮ!|3b&* 6L`x %{5h7պyuQ~;8N^=d,7H^HNRhOH ^XAUx܌h`=ap*?_չz7ݴ! NR M.Aj6?$j6+[QF㸺,ZĐ|ܟ1ԣiaKP~fQu:=w8Bep\&Ƨ0[qg.V׏X#gf@b=Ζ$I`;Ҏ?l*]mm: Gqj_`sx<@W[4 .Keb B"|y{WlD֪pq:uoj% b7b0S<Anl{>Ґbػ0 j@$W_}F{pH03gKl.w^mendstream endobj 154 0 obj << /Type /Page /Contents 155 0 R /Resources 153 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 156 0 R >> endobj 153 0 obj << /Font << /F29 18 0 R /F36 28 0 R /F8 15 0 R /F24 43 0 R /F18 40 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 159 0 obj << /Length 4225 /Filter /FlateDecode >> stream xڭ:isHv+Ojv@#Ikfg'QgNNxzέ(3wqz. -)lqTF8[i%Q n^ş7z #|niqPE{@xRvC \[B>{]2_uO9< 1L3k{{|p@</l)znt;5zqeO '+|89cq+. ȑ,uybGnvX%C w֪c#ƨmIlX( І:GE(a94Y r 0RS~2^<yش7f7Q}J 0n6*m8Iߚ?SUOvp_`U+G`.=SOe8EI;#ջ+TZ$J{]H).j{M^0wO ^~{it7xj8)ǭIQC"8[Sc=`~n^O'Ha:}`i#~jVQ RJ} '+Z\ǰM9O`F+nf8-E;q$Ϯ{C`$2 #hpDFJwwOJa7X[V(0e77[|ۛʁևO,6Qzspo)\eKX$ƒ$ 9"B4~ׁdD#:ֻѫd&DϤAeX6h5~%79eQO}8q:[..4Ƃ UmɒU܏"L#'*Kҗpd/xZ:Q&_78jx%сҥvV\N̨ (`xmO)ڿ /HRCf>YgKBP>c`*3ةȔ^r52zQT X};I9vJ 9B'ճ$HB WYGbuF;'LH,{-ˉSp8l6Q׭Z_ēIm6w݁ߏM?6`-͹w,xgtC0#=s*Og) }B[xPhLV$_q%ˇ6&פ^О鲚Щ`'3'c9/(PVh ,Q9H Znn z(K? m -27!kNaTBRѹ4I2b<|yVv9U.;ιo2 9=G%A1Zq7F%mHYRƨE*~Pz3E?Op$ "joYu  vYḐ17(m3p{ܘj__q ,V!b& nCTG׫hD)+?>Mc ,PYTy[$ 2|+؊ǒ!uCEhZf8D5څ$y0oe䖠/2vi.թP!\H)gA),).hpuYX̙ong+$]a6]}{dKɊ%RI‡]A{0]d § 5ff|P4 bρdC_'!eMIT| 9혞,SX=#[Ҥݘی*aE4UhC #҆7) JMJS6[{0<*1.~ ާaK',th1b:g{"U1PTFuܵ@m)e٭J6kP/?EV)7isaq00,q-+50GFq_g p&9'\b6"iYSi"R@KN89[51m_Q51M".n~cv;oCZJ7'(XƊ пe235&x \p*[\;rPF2v%r&x"g& VqVr%皝X-ʔ@'E+_|e}pC{wvYs_: B/4[},ֆ-B\C J N)|Y0]zXK9˾١:6(HD1GYL, )OgEŞ-&!ފ).bBu?'Ĩ7#fԜlKf~MoC7S}H 5B]{zuFO"M{A/.'hB6Bzc ??0NܸO3ȷU׏2<‚x䒎!$yϴKH+bN- IpC*yW$9ƴ`ϗ O0c6C@%?7Ju;"b_Bx~`= VLQ[NCņŞNHU!zq9n#[0F1>'aEVr}LLq_^gHGNEJ&LX/p^n"o@4FPU*9R98pw1d ,YUmE71nBD >ks+_Дnz7ZSG# Ir?)1|0PΟbROP+<ցy_̅Ft[endstream endobj 158 0 obj << /Type /Page /Contents 159 0 R /Resources 157 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 156 0 R >> endobj 157 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F32 25 0 R /F29 18 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 162 0 obj << /Length 3871 /Filter /FlateDecode >> stream xڭZs67Pb_&sn4ko -Q2/#:}$e:L2X.}vGO* 0S׫D?1vogDͪ dp޲h\4u[:RVKx\tvw2WǗoUA]5naRU+Dk~H0m@ҷLtMWaN|Xͽ:ywÓ&j!m ' $u/8xn$8W&lY:oP&cg qGy/1=ǝָ3 q]n'2ouDWbUVJ\\(?î?wc[x>< #ǵ!/P> 8X6 4N['LPNdvpB>W7/:I W;)ܕZ"rF CZ%qoD9qZbe}YNPFY8,kf>:uEK[iEnYV\DpwҎ~CJ:p^0*&0E,8(s'Q geC̶5zrCbZEi`u ;opѳ#t:q8UOcx=w(<( LFw #X[]ͅ|H)1o:NL?<RїO~6 8v $6ثAfSvuSc~zګ1Y$&w`Ďn;R Ɍ6fvԵuފvG!Ghd1 @Š#x xƀ#,2F3:iP?(4CG"M$NBPCE.AF{'c~*mw\hJ"q⥰̡,A @k,QF/⋐#e@O«z[?:XQMN1/Do'~ B9W`˳+nh vNtɣ`ӻR22#Aƣ1#`EOyѼëPH͂s$[)y+T0=~d}:7!ڢ^W;W&_o)0 y|ݢH ^CN5I%I}e g`4SFr6c,OrhN2,3z1$s'M'(Eς50"mQHw# =\I@`$>6 i - `D)?e!}T~C-Ap@2Y9@CJfS+fDA6 xy+cx`/^`"}Gn7!al v!G~]+ӲVSud{8(8;<"c|QA8m޲ MSKqL_xhYKH@2xƾ1y: HE0*׎s_φ3:Q൬%2Cz*%6F,̡z3MBy;rZ9:&/Ŋj]a)XM,2ܒ-xH6SSM)%bժiNc++ksk|˙4eG Z)R.hAEF /tsᩥ FXc@7TMpL `7!!2ko1<[_Rڽ[ܓhW S$ڠßRb4P UȺ8⣶Õ&t;)IMIYa@:;AVVC $՟9!ɩ.A _t輪ׯ %(WMA>gfAj)~jhI/^>iKA'<0@`2U`I\yn,P>p%[aU% 5?o͈^K`UqcXMPϡq? [m &1EbmQMX#``-q-B{.OF x_k>yuDSDfu!7SM::OX 2&MHк.hlb nԍI'T&{wpt6UTxh G#Bb!-\ͅSmd, KB98;)w30@@jӛ)ItPłoTj-rBCѡ*,R*qP鋊ᣘD?\B3u_y)NXd]t,,#k gͿwM˳gn.o e`R.j1䲇,1]$8J?9!)!Ra/w3SnW~3cJ_XYʩA:,C5Σqw nxnpEGpb3sA!+l\n<"z~[N]BorJ⽋^QI+|7EF@AF"Sn&%{M[Qw#gWNe]?\s[oob._8;fWygX5 qX >ɧnS77_M$kfpEtTQ{w) @tO'd-c쥋#TעOW@˃b"s>q//6N%m7O/ݦɊLpS?%GJMaYR]#<ƦlS@'#R~}" f\xRtX@s1elLl}h)@< I{ Th[D)|A,Vy>Ux! T1/|"++\fnP,:_ $Αmw T8T̖gn/j-:*.;8s">O1py0dgڃ]%JfWt%{AvOq>$9q4?vF_p8=yqqC9YxF5 G<ypP$/rQzWM_W_ W|AĐGG!롰kFڏ/DDLS#{q?C߻, sD<R< U%\ك*LcŪbg8˪endstream endobj 161 0 obj << /Type /Page /Contents 162 0 R /Resources 160 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 156 0 R >> endobj 160 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F32 25 0 R /F26 12 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 165 0 obj << /Length 1960 /Filter /FlateDecode >> stream xڭXKs6WH&J<Gǭx̸>dqB*Iq~}P!bX~2ERjBkmR"H[GXiD*\~(z!vUno=qT!ߧxr ԧ}SvV$ў{'Ⅾ w J/W-2@]ĻJE)j<.at:}?\Gl?KC3=O-nΑDCd1U9޸j=@1q} jޠ=F<%+dXM”;`|.} plHD dnG:*ӵ\b] Ic hJejMk֐u/H\`m;&G}xf'"T+t% /FkTfBR{lʦi)ӡt`d5U܄L(U4Y6Dd`ܿigENV8λB',-Vn 6%acc:eV)D%j#TJc90wRkG?PY)G ojAvXm>OŌDQt}Їqso{D9Jq!OKNNL"ڐB/ gڜ8o,dXmT&LMŴ^s HШcn1 kj rž\ jTh"D4k q1Y*%UjxÂ:dNfJB3ohf88FR/ݘۇQg rjh<g2e`TތWp!R*RO/L|^[< F=gw:~m Unm^5$>>Ԛ?S = 3QG+E!̕ ('xGmB&endstream endobj 164 0 obj << /Type /Page /Contents 165 0 R /Resources 163 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 156 0 R >> endobj 163 0 obj << /Font << /F8 15 0 R /F36 28 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 168 0 obj << /Length 866 /Filter /FlateDecode >> stream xWYO@~5^O5P- PrZ86_#!ӂc$̷9hE{MDHQkR?P1]bF1qkԏj|7Aǝ]V(IGI Vql O*{ϜOٟ׭ADQ!Ź [{1eNEBMMg3Ќ~ݠz[)} vpi^qexӋ͌OqxEk!^Pɻ^VAfN5tfV (y(뵑2%1P#[rVS?fXlvJ$Y&2#SؘJ)b ymlNa50_hy"VZ#m$a:MQw.)EE(JXWGH\D`BL!7SK3B3fXTNzr{ rV#O 0 sO8QC8/_Xjϧy9$ɔrN Кg3n_3&,xpW]QڤH+ =] |+Kd`9sgZBVv6׼a %cKf)Nc[ LV# 27TxDd$a(BWn۽ 7UQ윴|TƇ:93p͆vV'nI*jMU9 F+;^{{*yyG4r6s쟴qqvu>a9^6Ϯ@yKt4c ò&-Obmj0{=6<>JM-M>HWi;9B e3Km̖T :%/YKS"A0 "ģLendstream endobj 167 0 obj << /Type /Page /Contents 168 0 R /Resources 166 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 156 0 R >> endobj 166 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F36 28 0 R /F48 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 171 0 obj << /Length 925 /Filter /FlateDecode >> stream xWmo6_!@j9#o/t~ bC%Q3QTIʎGYGLXu$x{ӣ7 nsLSv\3M>$,EOܠ(4G'od6}oy n$dEdMN\ՙYǜ++*^^D^qۻm~5Mƃxa)dq3gu'2VhCTk56VU¾2=1} m^׿ H}N9LLl7., Qm6bW0~Q6ObO!]B 1Tγr (K Cse`U="?Ybl4GJa'<X  3=3SMh1 2IΚd`j~9i!\:F1mIΔPjd KQ}5of÷; (V)™w#T `kƀ[-#!+2?Fm&+vo*q vvu|@UNe.UjqR1}BT%5U}y02Zb%$# RMjqS$ E'Dƅ|ȩo\օI9u(6Bj%hF<ҀMczv4QT'֨@ɒ+iM!4z1/i-03!f%C}?\ gZ]oj3ջRZ`](̷^wR|r3z7GYu}c\vt:|> endobj 169 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 174 0 obj << /Length 1379 /Filter /FlateDecode >> stream xڵXs6~_$}^gқf&׹N0Ė\I&ʿ/i铍-V~?MO\;cruuٙ.;?LQAttϼ`x*$CG- 9{@X D 5#T,w23|ْb8K}Tae"E\r MP秒GkɚFm6 I_j3Ǚ?|o+T@R+K…tAT^5}$*?0gKK>_X uFkBqX*Gt+#YX^po_?*fV͑\gܓL"S4K@~2) 8p8F: x3 }KPћtwPZ"J6ՔQ#ĺh,fdUQuU:"L]8@6!V%¼^6Ҙfm(hSʱPp6nѾJt{; HH LYLQ4?+#i\e[*!#$*Hl6DfY c1p*xr`*8Jll?]8eՐ du\pR˧՝9(uYG=dʲ*FC""KM~y߄Ŀ> pDC5mv WZqj~9F ؊n[K@\m,8EX4!y)(XV|W$j?Yft e6 O%8C0f1@]Vxp䭣 *nr^$ϟMgGEt5:B .E5)Vѕ(\FVMnǫ8 d{ީr_"A̕ʪ lq>נ;+CȨDJJꞾ<}_7=3Ӭu|=-b*6פ3ArN7fbf"T_k-n,Š0CuNF lfHP)etO%Djs5L`pA~lY&m V|>$. &8TU`1KR ;}FUV*Po ? @w(=\^ғ'2endstream endobj 173 0 obj << /Type /Page /Contents 174 0 R /Resources 172 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 175 0 R >> endobj 172 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 178 0 obj << /Length 1460 /Filter /FlateDecode >> stream xڭXms6_oR3$vtIؙt&sxz qB$`vg]Ѥ7qN㣞3M{Ǟ 'nMw7z+npusMXL=Q= ITgy,X˼~񑑰zz_Q.n/.;νGoCd49)=C՟"qΕ?,rq ܉3d uNI]X?cTpW_n/?]Mgf˅~4;=iC|'  e$"`&5~#$S?,a_'Rr,PqZ`̰3L}k۫r""ܢXA @Gt-=Pr@$,S >6dEm+C#$fk,rਬ/ed·K ^3l m \$Q+~raOf}FκPmm . !B xT܊cbNGImSܬF{ST['a†$)QKijF` R|%TъE! ^p$z *z PH`=R0Yan=U!{Cw So@UBh[Mav΁ut^6NplG Z3H1g8-X냵܀;Ak`G#m}I|1\ VY@ &O`[{˹}>6B. Й-/g 28O@<i)XakƊ:5(&D"85PlORaf"Ar)\f?]ԨnzfX8;lP !?0+ʹᲱB>^_K//l~jVfhdMfD *t֔r_أ(0tz$iV,Gi Dtڊ"OUQݵ\FWj؞QrH9P ,06|/ЕR0McV/7Vmh4 5%T_,ӶnUbQljMI9H 3:24sTl Ԟ2C-2vJyBb3-> {ݝ7vE zւg}6m0FWkRa 䢡BW`r[4Fr;߭ela[*Ǖ~ &XﰴzԚAA{Ďvк =6g|%g>GFiļ>2fFhOeꭀ'{wvXUwl> endobj 176 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 181 0 obj << /Length 1529 /Filter /FlateDecode >> stream xڕX[w6~_ٗ&)YH=dɞtIh#llw4ieor^o̢Ϻƹ=7f_GW'Rǭ=t8rqes{~oNK'IuO,Y駵T?%+t;YStDygY)ۡ$?Ã}05k$~ YQ `0ӯƣGI[BT24lxB%'$D?DAJ43L.Ӆ_S0ZOlKDDHL&xv;GiD8S:m߷e{wf:H 5We{ z irJ E;3?9[1-9ZǃK"{.sA_^NõfX"x4xg ߩ2aD4n`ZkPbltmH8?Nzіĩ91JUȄ) 3[+$(s2iC$YSHx=hLf(݀ lba@,OB># a [UI UO[hveq ڥbCe!BHy⎆R$a|`D.)H=sR:,V^RRe7x&<9>Uw Y [2-2?6sU1r&Z b HjMY $V\̒쒅_ ]hӴFNgwҤ4`GUAUs&hXy9ٰ­4rK䣀.Ct-4|}WQ)5.dj*"$*l tmtǼZZm"@I;|On_OH_qzF.,dbcrǃ6~e@^в!ʨp@iyMDڇr[eRȄd9Y^ĦRXuuo ?} ӛ_@"%tm- `x/w%/(qe鹾 EQ7<oǦtib 0' C1A>E;*w2aN-XUs^S@i)Y@r>hdR҆(˃p8]B52Ta+CD}t YF"g+Y$LH`6}=cDžRQ]ز KRFFPPj C > endobj 179 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 184 0 obj << /Length 1173 /Filter /FlateDecode >> stream xڵXr8}WPyJcsg63SN EHMdS.aˠ][buu~-LaؖO>ja~n֠mAizc9ݬ盉6: +Ĝ"+_GK%h:>/uBJ//5plk$ ]PD }F^/ldca 9X %*Rᵶj B?3B|RB:D4XӷAh:SOl:se. FɮMcD I'*tGIkHB=,DU b֭ cߌlyrB@TkRz3PZi~PC'D[ eFX a~#;}!u">)kzͅIӰ足@B}]H*Í3{$+CE1 ED0]Z[Jv0+T©ZB(|>0=0/%  byAK}VvrJ5Ϛlm\m@(`Q]錨vjb;W“>;y"]̩@}kQ؏Cw:r&i,b^:̵IRn.OZƑ/`~v8`}OMvu:|1#7$xy뇩y8 95IZOf8Ͼ_SaVUɥi8yUڇk3ЕeCKL5'uiSs B}>/tH$6aww)-uIBcGA GX}zP*kkzލdR{`%\EJ@*P`m(3>?̿<>/EP\*pfYN*VdTlnHa J/+, FS]Jk"㹍g 0p <-'ES0j, uo(TW]zFi)?'Vx:'+fUTZiNY,ؽPeNiQ\Onԯ2nzMX-Mʫ_:Iendstream endobj 183 0 obj << /Type /Page /Contents 184 0 R /Resources 182 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 175 0 R >> endobj 182 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 187 0 obj << /Length 1461 /Filter /FlateDecode >> stream xXs6~_L.NH 7@СI3k0ؒ+䯯%eBO~+]O> ;N{qqޘ.vۼhwݴӘz [ml<}2|_ߎ?_-nq4},_az .G 8]!>ov۝`z7^Lԃ $@nzQh -C3cevٵ/;v}Yt|%!1/mzxzg]/ňpEE.#>O8QXQ9lJ+?{AVnCOMפd, ʜ`yެW] 0(\'1k}|ED"=AZF3ҫܨ%@4BIJbpNpsL=ACRvjBӃ^^5X, !w?]p:OqoZ&E@s a?_= (g9vkq E)Fhm~甬Р2=#g|Rz"ǴL1rB&U' -D 'J]R!* AVj޻+}0bkAZiR-CnIJFK4VT*Q9yw"rr\̲7եc8t~ r2.켶v HR\uewb[U2F`!'RT2 4UD>c@J7:}c_~U 3:z3LPt XqZ1\3 41 |Uh}V\rhSu32%KOl?όʝoFq\_M1'YKFZ k?'4{SE5}R%%b7;WGBoR%1{0M YD =[HOF R;kvtu)9zi L(8Lj`M+'L~cpD"״ #B=cc"+ab7"*dN #֕%UW5@҄pTJlS}i@ToV2ylpʹѭng>N,Zt#MfaYUFL !u`:b}[9+VQO P 2ŀt]M6G|.쪬LEuO28r 7~NZrS[΅IzT5$(025{E_8k/puٙ1sy'Yx/X~L04e[]{w>k:NӰ\lΟӣ*endstream endobj 186 0 obj << /Type /Page /Contents 187 0 R /Resources 185 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 175 0 R >> endobj 185 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 190 0 obj << /Length 1174 /Filter /FlateDecode >> stream xX[s8~ϯ`رNg$&C[6v<D[rd ,fOѹ|O\yGg fE kevQknUߎp5q0Ywdu] Q-rȟY&?QggqSpX3ji rm?iӇ@JaP_-{} "H 10 }i8c;&GR`0FTť: O83D% ,k֥@thV?y6=.Zl|[88GXS-8yKo6s. q.mWqn9?pEH*n"`(D%M5^]̢l.!apQܻLoIn%CjBCM }K)&Ey[= !y\A$iѯ>VxU-8R,ZBƺ V;YIyB&[L_*NLPw_%W{(ˊ9r4r*%QAKZb ]q|]1;MLe!3":Lr \Y@<ݻհ׽E[z$ cH yZymfs׫6D,³ü7f%s{O\FTPat*7{x x5wxۃZ:h]Yz8q [E\;ZbʺfhG-ݿF{.)fO,íQ,bnBL|T !bd}nüo8q"SJA0Ưj1xÁ+XLEXn^H!$w: "CqQTA~W<ћ.Et.}Aj`)xJG|`k\P 9|]fle .Z1gWOkV_;+RNOrt1*t?c=صjXҲtaO^S?7܅> endobj 188 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 193 0 obj << /Length 1113 /Filter /FlateDecode >> stream xXr8}W0yib;Ciab3mfad-ye9 X2 0ibɺstOYUi틋UZ[hꕦaQ3+I{Tkaoܹ:ph9˻阑^^mP<LX g;ߊ[f۬hFMo7ZUZ!p^Mg a>WݺͲșSvÎc`P2y&O ٬)ye",qY7%I4xLD+:C*eH^0 m4[;py5pb*D-_#aɼcxCM7. ˜A!e^Ta7/8o]+`:n%c )F3ELQ|z8"pB@qQU&Fzrxj ̖\XS@Fo*2QMS@)P+ZSHQ1K"1sq|(7~Fbw ؃; 6M-0IG-'b'hn*Uöyep^2wJ>YLF}LJ+=}f8HF[^uWnyx0' VPi/ȯƇhtw>twRYUI?RMS5֨fvZ㼞L= Tendstream endobj 192 0 obj << /Type /Page /Contents 193 0 R /Resources 191 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 194 0 R >> endobj 191 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 197 0 obj << /Length 256 /Filter /FlateDecode >> stream xmn D IUpV[EĆC8R3OoM "#}Q@T1 y ۼ,M(|.Yϡ7~NџVsZ0F|+/ͦ6c 1lF2NJ=I|ݚ!> endobj 195 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 200 0 obj << /Length 564 /Filter /FlateDecode >> stream xV[o0}ϯ:i1U{H"`C&e d9eIBA1}N}wH=1dF3?0pq;;&z' 狙ۥsߝ8;G 1iA3F@(Q@I+BbTꔗۢNޔ.o)40$TϨd|RAbVp,ixxgw7ܳU麚ahV("~th'SϟFl ._slB4V8Ztq>Lw8 uyƁ>O9FK?en>ڟi8p ?VV_E󸅽É);m&rQD0= [Ylopk}|ؿUYbܷ{sJ}8%_&K*CoQG#7HwV$~vphy:$[eſU2K#dk}~ zrUʴP,|h>ofld1@Y3;1hF7% P (endstream endobj 199 0 obj << /Type /Page /Contents 200 0 R /Resources 198 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 194 0 R >> endobj 198 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 203 0 obj << /Length 1113 /Filter /FlateDecode >> stream xXr6}WhҙZ )ڎXOq؎.OGK - (Y҂"h'M'4vq ~[Cgw[Ө5ragi :폼4p4paV}GZSz#޽Tg1! Mx+@@Dq0aifH0}!YBXof)6S ,Ӣ$$H]Fr"bc[t~*muK,)pM ")M>f hJ%r/nfe\~λ~nҊBE-0]@FCHȒ,`bW%slklVumj({;8cTcdC$1zdV L1Ή޹OfY}QQP)Fn Ł:#kQ@L &u@D9<̉0i-W<^Ahx!I+hbT n x~cM/?΄k wmTcmAn)Q 3L\"(|2>kxg%$̌A*4lA?>u~ CPuT)A6!@VJ0A$MOu@S@Ch:8Ơ2d1-t|iVDO^(Lt617фsjBymS܌W\Hvq1iDJ81e'Tv:jBcA6Fv)M5uUȳ"qViL⊱.av %ġ}h|6iUkT=)c[fjk~+_:olLS/޵"հsUWs9:~' ̽endstream endobj 202 0 obj << /Type /Page /Contents 203 0 R /Resources 201 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 194 0 R >> endobj 201 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 206 0 obj << /Length 1530 /Filter /FlateDecode >> stream xڭX]S8}[ M\m alaKSҝaSFDŶ\I&_֕,[ lOI{xsn2xӣwy2w4~87k|0WyaF"6?QZb|I)`-/{#w0 ߲JGh@B`7?,MǓi10+fmBY%i)ߚ@rA3dFϛY~|[˞8f`1 Ua HDüyz2a'h WoN( ip<Ǵ\ Qͷbu+W.zј$cYb=fМ7@ 6B0E@1$Z-ȏ [Ж^]B|=qU/ҷCv嗋 '@,X7t8]I}Wh.{yp{^x?tm, {nHjJ[<;#̶VtyO~x͖4%O'iBp6kw˝[;Bb2@rb̒Ew`W]m<ޑd>fMU)z|{ ű,FL<.(eERDPr^rW\dH-L4s0ǚ ЧW@ΕQJ^'N<#hcT{2 lZK{eZЎmV։򗗑6xR! (WU6q2HC*E}owS|xivr`|+' =$4MFW.`ْQVe5ݸs_WϳT6{e }ASPa3ZI`OWɌfڤ͐:5WpàH\Iq(5t,\.R5>h'%nFIL]]({ E?(dPa.ž:Z?z\ tj7R=$<+XեW<3Z@vg]4}{qIf17Y9>Ķg)F'K{> endobj 204 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 209 0 obj << /Length 1299 /Filter /FlateDecode >> stream xXmS6ίH&$aI)̤pSr}+[Nl'yWrd`Kg}vOw7CZagtlǵx;5؝t G哯8Pe)/z/|^Q减nO~]>u|?~\^6_]?=.~ :}{`MF8cCVCO) 3._%qm'Eu&p3feGN3.FvbjX  O8rX~U &-aD$bVbkD>,`ݵܛ+T& [hzWf2_hTUn@xkV_r{^k'*-Wk了7o1( q$dzEltε\gRep^?^J7$g|#Q5RkxI@TqxBUChr)m?/ S_3\MTćpIJ4LC|0eH[cNe5FEi-k<6W}p61d2kϖT|R8/ О&UYdQˉ9}eWd5BCn sB(]gP8~4M??B{agN ѰgF NY .3^4X()]qUnM>F1JTOeThXTd/՗K9F~yP#x5?%|ѐ/s0QLb' d@PQ/vh5ƻ܇hp)UDShC@uq%0ޠmnsq l>[IBSᚗEAw8kS'*ZbGm9w7n' Oбǎ5wn[sQ@ғɿK;endstream endobj 208 0 obj << /Type /Page /Contents 209 0 R /Resources 207 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 194 0 R >> endobj 207 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 212 0 obj << /Length 1620 /Filter /FlateDecode >> stream xڵXs8~_PLCfhtF2jK~$п$mY>=Y߮v٨5ZGݳp8j͓oNB\ ,-rMDqW'%[7 l8ےIǴ$L-3[6F?Q.&TBoqM08AT^}\x]ܮ8{IreͲ@;l(۷QƁ1B8$aoa!f,XBUnP}q8|2P96拐ː)MY׻O?&|z=_ޗ"wHK s?ꎣقrYf/ӛookCUy eY<:;vK7V0 h1 Xn\ pH2 .mHlbj{k,Vw&A' ɵ+8DL2 4-dk@Yxs3ƚadb)MiJAzsX/Vz2Z7q`:D{YJ $.B}Jmotʩ5y {&)WZ+Y9qkE6#mՊkE܇d)t@P0!vn9-%T_חbvw\eȖ3/-5wBr>n6Wt8_k2$f<ƨ!eԨPhM'$2y2ރya!}(@ +j?|p7Kġ5ʭ\"`Y?#P[ӹڌT' NݺZ-(* 6'`` iBo50@2 C\"'7l\Aɩ#Sw8E*?1x Z6,@ʺr$vT"Gƒ}wۡO4י&xeO @v! =*k̗^͈ WJr,s%:c0 @2ҳWHfAUMN9 /[&P3/+ې쑱ނc#d2h}/:x3V +u`R5׈ðxy5jzksڊno0:ll>?wIendstream endobj 211 0 obj << /Type /Page /Contents 212 0 R /Resources 210 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 213 0 R >> endobj 210 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 216 0 obj << /Length 1233 /Filter /FlateDecode >> stream xڭXr6}Wv-F-rQmDBOI=%4$\ X@ݳn|u]BFW!K#e9[,nO_ceBUڿ1t aa(yqIgJq$ pw B;wg)ig㏣xh:]ҵIڻh֒)V<@W|Yͽ6iv4סXϨqvv)^쬵"Ran!kxeT+ފ Ok( 5 tn'4f|k6{𗓻~6 .T3hE.d$7qo6ڒbHEbF/0ڬFW$2]t (9JL35bԊ( Ȫ 7 VQ8F2n.9bU9;tB/Ç"5fT5dZJD9LC)ӤY_%g[X`hqv.Qe̶ 3!ƜV8vT[6K ^վ{ NlQXUv|MMpi0׹ۢLE'*Wp iz]8\1YE'B+g+\fjU?̩Ѱ_%jTLd$5Y1ثy[&"[rVҰt GEnѠ`XH,# ROŜKBF#oӊ҂G)2.­,nOO 6".(Q"5051 lQ gYa%%]QA(:ofc2TR"b@G}*L^ov -Pdj #ݳ:/ "CB=c@ȦHL&83NȎD 'dUYwe/;㺞Q7A/_zԼendstream endobj 215 0 obj << /Type /Page /Contents 216 0 R /Resources 214 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 213 0 R >> endobj 214 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 219 0 obj << /Length 1363 /Filter /FlateDecode >> stream xXmo8_ۮJJhi[-[U8mbs$VZi?%$giyv9溵 Zvo]o{n i6~}vF|E!e!<^ٲV;]طsXxu{~ٖ~!] z{Z&m.U> 1I9o^ 7/D5 ֈ A-J00ԏXX^b`QT[oˏ=%7mխu_UݝЀekC/Ͽ+DNaXE<ַ,ȮlBO9n>=Ÿ [ #*E4N؃DZ%6U&, E!ˏo#g>v'Ӝw_eu](,P#_ h!H!8d7p1~" pQJ(jNLa8AnۉIԅ˦>0'- $_ ȔM(`ГcpFl=_X=&m'!  eT1A:1꫄3^=$`2<ɿG4E* ؓJԫΐ(Wf^{@2Y"ɔPBP؉җWtT{o!H 9'&GJAKI*qǔC+93NwT);ʕVoevIVUn)#Pw9DT ·*'hOovCcun;VcW !1qEfn>s-ȯZG&8ew)mEUmV$CGG%+ݼթQ&TEbi2z'2^qOӆ Rf#N0\h'R5cw4-&w2aTD]@mxaru8CLr"r#]LlTBÞa GNsߣ;pq=j Y̿2bp,Pϓqi6L8=|@G|@SUB3K8̽#QuⰐ d(c{%Z*Ϥg LyQkM~+ٮ5ۮ[+ۺ7)Y<-endstream endobj 218 0 obj << /Type /Page /Contents 219 0 R /Resources 217 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 213 0 R >> endobj 217 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 222 0 obj << /Length 1475 /Filter /FlateDecode >> stream xXYs"7~_A%9}p8ql\р4OQ!|lvRQ`oDͣA :/&9\+n5qi˸/DH2b e `QKp71Bj2xj o*ddAڦ`7YlB 9f'7#Bԁ}%cLAy 1G=lZ-0$}=SȾ!{X|I5sLFWgSn%FhNVySsAl6b_zWY5~;Wcbx&Xٞ4KnFĔ6S i[3ƩiղSt([#J?B#Ә$\(fM5 c4CIX̙oJ9͟$20V෯Tv0&%/?b6 lR,Ӱx)zЧ,]7kęH1vt88qnEHLACٿEhpL`lsjSZ"]]{ɐ$^,^ݸ]x*E } 1z ]_\ұWʻؘfBe%NI{obw8=13f01#y堠 Ke Es aG/ңJ۪7ڽJY?n:k5>?z7큉-endstream endobj 221 0 obj << /Type /Page /Contents 222 0 R /Resources 220 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 213 0 R >> endobj 220 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 225 0 obj << /Length 1092 /Filter /FlateDecode >> stream xXo8~_c+½8qD*2PIsvٿ~b;qj7|3ٹ}SٶPz;]tm9/hn򋻘-G=O?z߹t`b 1J5$3 A&'@Z@t  AB1yx._>ۗhCo!`?"G4uTL!Ԡ['1K xcǯ ]%7l]q$,1Եz[2յ~7hJ.sTL{6&jll8 shS2_"5S&F ! A`W|r3F_ɷ-\ K)X$DBxjR=Sd>3*hV"9ECt熰PB9E)-ĩj( `Fo0,legEXOJkL[Nư%8͞,ABF}ze?e+~Cli$5QhH\Ў-7Rߏl餦jXgd@± ;i`Ͷeuqyf0+rgW-; SdP[1C0%YY%)^-2S OH[IW:s+?qև77u"6>(B*^> endobj 223 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 228 0 obj << /Length 252 /Filter /FlateDecode >> stream xm1o w F/`J.]آ(rlHPc0_઩2NdT 1u]!jJ%.4,MY-ʋ~7}xureYN0ũXZm9e{0SƗ(^V1q…sVz=A]r0 YfӊI7jkbA JI7'u k0tgaN( 0-%ɛH~L0zendstream endobj 227 0 obj << /Type /Page /Contents 228 0 R /Resources 226 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 213 0 R >> endobj 226 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 231 0 obj << /Length 507 /Filter /FlateDecode >> stream x]o0+#ڮhH[T) @|ͯ1SCi@X>($i) PRsR&0G̕P'㛫eĹv)x9$\#!ŇFSӊß#5B>S%U޺d{;i"z[J(/fR|2CxN$ Qgg{TH )`V`HSJ-3㔗q=⡑ZX J/c(yl%5~ tZT7/` dTw;j.8*6mvq{~tm']7NyRƟD*;},乾Z|SUmխ勬[v]噐uشQr~sU]> endobj 229 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 235 0 obj << /Length 943 /Filter /FlateDecode >> stream xW]s8}ϯdjv@]`f2da P+KT$kaI؎twn,#ݫs=§At^r¹kxftMN)ܠ_2eo¿ t{ňl $+;Bz7&OL Csjm=:'sn&?坞>D0K+./«]l! D_1rm#hT~i소ֲ4*M쫷ݬ8nz~H`)Yd/ ]hekD",cJ󖯪W(x>"0|!&9x|^]o⸿} q[il[l,iJcz`,bLϦSCzn ha#2fHl ^MI`֐dɆ9Iax6 OI'*FYG*?ijXj -].G1,]^9?C&`YR\uR,Zk( 2 لy?rAZ6Rc- t&%1STK5W>ĆaDZ :.AF h62Z$,0&3۬ H.JAGeV!T-=I Yx$9EALﵱH0-ZFBkIޗWPHFxͩ |wJO#Nwora쳅TCyn/G7tiS2dL'92BUk2~6ak,Fձ7)#5R3L zryTUQE.0u{Q7AM Zdke))V "Ps蘭Aަw7ۻ|A[-=|K:endstream endobj 234 0 obj << /Type /Page /Contents 235 0 R /Resources 233 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 232 0 R >> endobj 233 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 238 0 obj << /Length 1123 /Filter /FlateDecode >> stream xXQoF~ϯ$v1wHii =,!밊K뻶w NI}bq;7̐O뛁gxx8Ȱx#9i Ƕo7_WÑ۝||_bXF߶̱덏4];Y"i yf;4-;L[ jXԥάֶ_lCmP(y o|twڍs*~+>z_1|pkL;gWr+0G<˾+9  Z(״<zE:bu7+LԳgg8>rc'RLd2 F_k}fTp ?./=L5^v..B=R^c__Nyr$j'7`&/+"EjȎ> endobj 236 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 241 0 obj << /Length 1348 /Filter /FlateDecode >> stream xڭX]s6}ϯ-v@:I')Iȴab$H~}e[W`3yֽ~ _'GAk nk7a2 =? Z$<^;Z=^islj <řhW3S;NV'ao0,}Pvڶ\ow}} jaTb4zA7?=<˪EL]Z/hJ@W6;NVPI+{oF vd0%T(D5^ʔzrQ#l-aAvcH1f|HКߎ]k̸ĥ;dNDc4$Sv"ɰ7y"*eH#cMj$t2VAn‰3g*\V΂&yjrjի8P@DL?߫w+s*5JA_9ړ7\HD{$`'*~_)dd:"l>`dwE}'֔(gciFϱ-i%L%:KJ h^3wMn~LS%i)6y"7d.PՂxC!J@#-`GW>06IXќjseНvVnj6H=ɺȅҁǾa2_R)U6y&O+ =»7IH0KIQDwGg1L1 ӜX3u ^ޫzT)wfy >)GRxaEOɮfHk}9E82EqX=r9VWOw>Un]|Gvo\Yr-q&uFYSʩv*> endobj 239 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 244 0 obj << /Length 1196 /Filter /FlateDecode >> stream xXn6}WIak-;uJju^Э!2少H-I/%%tdї>$.9spK|[-|d5pb9fI A:47'KG0T?0#l~hu5MzN϶&ht=u>zj%E1wB%t%+~OLdT>%=Xg;螺 e;?~ǿ]#1t`< \&tU^&͉O8# ̄eF#X5FRCsE0$ 7[pɻ$Ώ*(P]l̆~Y\Ȫi60I p$hKa iPSмi_ɨb,'ē67 D[//RdVGmWˡY>"#D$Hgb#k86 SnV/kɃr-3-Qn ;+Q 4xTZ,%0 i3L?fK> eT{+'F淝-Kk${- cIQ!BA K /?]Ҍ]%D5eپPE:R)5U!&d[nT鬚Νޮ˔r y!O:7:[szIA^̎V:T3xj8Eu"pv}l;73$W ;BED 8Xu*fxM$HV$ F$\4q;#`4/s(\Ec$rT%@q1US\° X#@XAugX /s0Nxee ȯ 5غY 9!"PHhx}> RAGCGǮq{֯33u\|zFDSaL tT:ʕFwGՙ30zaTA6o[́m|xCrӧ|ڐK{q:1eg0; 8 BP q%e 3gn1FFa ?%S^z~Ҭ?=lQՍ.X˔n('곀wd^MF@Ewq+M-{ҵPܠo `>z2uO0endstream endobj 243 0 obj << /Type /Page /Contents 244 0 R /Resources 242 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 232 0 R >> endobj 242 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 247 0 obj << /Length 669 /Filter /FlateDecode >> stream xV]o0}WN ?iViUUuJUa18mgN !2 %s9Wc`!63t֐Pw  Q[ z $CO=smZ[D yuH98m.  ]`;KY.; 2g$#S:lV&2b@cjZ$~y=: K aB`7/" Mv0Hl$k!(Po p3(Xj FM3\* Kȥ3\u< E1 VI}nshf}awQ.9 [mBaRZQK:6>\OH{Ie %go=,:{W*y_Kj1s9*|Δ7 '姳2T\T-GTc<./RQQ&ӈދϕů~=&fU,O*R= k\,ɳNvK YqmG,5৭mZ7w.SmKXpؽ{8k/wWqUlW)*㝚0#x[MЬ ٔe> endobj 245 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 250 0 obj << /Length 659 /Filter /FlateDecode >> stream x͖]o0& 6_fZUZUUJ*"4,g`&~"(Q0}_嵅u8XfHG _]\Va4=7@C:#K]~jOP5hX>qWq}/5@ykmE]vr3z3w]z{"r*bwA岦͓7/m໮]MiƸN~aI<2Ȼg1N'('u)i"(0_'#:Jw"fo/j*,T"KͷAr& x3_g<|Ehg}H(-cw!E򴃏:壬m{,{,#\mx-$7nßeb=! ӔE!ESϥ,L)(?4jp&nox )F0O>rV$S)XK*k_Cy͚cL uzzJ8Y$d8a߃Sƴ1ƏlU*dO[ T=n۵2N %eqˊ5\t' |qGV˥TMݗXݩwj'~pAեY ۟Z)AY"zE=≽%ح\jendstream endobj 249 0 obj << /Type /Page /Contents 250 0 R /Resources 248 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 248 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 254 0 obj << /Length 571 /Filter /FlateDecode >> stream xVn@t+1̴+ǪiMkY呦 ظu\E"Xι#Ľt7cJ!%D]"Gb3ぅ1qa\Uy}'4,sJ3c(k 9C|GlŽJkϯ)j5 f:R,l'Oc6G 02R0Kb) H "jˮeKhm>e7fPuvkQ1$gT1W!gpDҫt`mJDZk(J( ! >kӸ[Ѣjh 1RlC}, ~ġ&eig.f7чh:8o8$֨wc.Myҧ>Lv_Y*J ZE^2:$z-VrnƋ8KW/u|k?Kqp>Aog|.IoNNYq7 ;սօ7r/ 0ee xD0_UI OC*UkQGCk?;} ZַjA^ xQC"(W %jšzgtH 2endstream endobj 253 0 obj << /Type /Page /Contents 254 0 R /Resources 252 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 252 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 257 0 obj << /Length 323 /Filter /FlateDecode >> stream xuQo fOj4UאVl`*mV0n>܉UwlEQGDKN0MdI',鼃b drendstream endobj 256 0 obj << /Type /Page /Contents 257 0 R /Resources 255 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 255 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 260 0 obj << /Length 516 /Filter /FlateDecode >> stream xV]o0}kS ֬ }"G3a[U"==С qef 8GiA~<^_F&MS}G!<> )ŧ.= % % \S4D 0ZApR.{k ] ;.usigsoM0b;'řbP~.,$1VR$̴'sIiJ+-TCOOԡ{'VmN ?ɧ=9gm[[}ž=C[ܿr&vٛt.^zQ:kAfj"=\(E9ŌJnYe$Q}endstream endobj 259 0 obj << /Type /Page /Contents 260 0 R /Resources 258 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 258 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 263 0 obj << /Length 1080 /Filter /FlateDecode >> stream xX[o6~ϯR`HHbj6m ZlRdחΑ%Yqa@lOօn(9ܚָܱk ]=k|9,8ns"b~qnյ^G|5xRNVI=ǽ/&m0./dO &a[h jrd;QMn4>n%Qt"( 9ts fz_gK6a  #p$4%hBzԭ3pvHh'zAL'Ѵ9t1p+m!#"uN >r5 GnB뙝NXyv9i`>J=CIʐOtJMOqzW 6(bjhovB$〆DG0%7)j"Ac=5(g6B+)b͑cy'`)~'ْEڦ-?umAcS +] 9cz2RHvΰ7xc{-=u~^^endstream endobj 262 0 obj << /Type /Page /Contents 263 0 R /Resources 261 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 261 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 266 0 obj << /Length 674 /Filter /FlateDecode >> stream xڭU]o0}mM(|@=,%FCEI;23ئ !Q&E1{kpq}s4p?08ur vmM-õN<޷/*䖤b┈n~ -ןq"KQ^{@i}ǭy( &T/b&Ь$XDA7Đ#yս @$}1#T[ fHUz0rerǨ-[WJh#QJ"o:Hi_+װ7Tl~AkFBg${K!B:I@d $]LI%&PU {|2|~^AKNKSyf?jk34g gس$A{1 . (endstream endobj 265 0 obj << /Type /Page /Contents 266 0 R /Resources 264 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 251 0 R >> endobj 264 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 269 0 obj << /Length 495 /Filter /FlateDecode >> stream xW]o0}#TT" 6U+16SԐ.NYL%m> %s얇.g!X12B@݁ LfaC )N-)ŇnC 5 MNL4Nk7?+o:*uz.U*yN~+P]m)Mc̨!aڞƙإZ^'Aendstream endobj 268 0 obj << /Type /Page /Contents 269 0 R /Resources 267 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 270 0 R >> endobj 267 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 273 0 obj << /Length 786 /Filter /FlateDecode >> stream xW]O0}WDEMHM7P:uA"1TK,;Jϩ?Pi<ʺ{mWs^ gݳmfgicl¦N/n'?ռLML總md0 S$QQ,5-ouKQL^eR2zV}aʍ5`i믒> 셙/hp/ (` R@%J鞌EG2F[|Ƹ<#&$x]Wû=@8#pѸf) &H0Ko<"@%%(b]S+} ((<=J'%"uwygV#_Zث&"ӛ-e椠LI/ D @ pVK`_R5 Fe4ŪY-!Ɇ~.GIXfTr=<NvTi6 A榧ȇ`A<!$j(j،""MV1&2ڵh叠!@0a#ˬ@&UŰϘa< ⻮nih@O(Zc$XfPG,I򐲂M:<@JcM2n@#RyN$U,wClI{,^ ?oS^~XQdXx~6CW auB@"'H)Q$Gc ,v}4ޅfۮG۶aw-gqs׃/A6endstream endobj 272 0 obj << /Type /Page /Contents 273 0 R /Resources 271 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 270 0 R >> endobj 271 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 276 0 obj << /Length 946 /Filter /FlateDecode >> stream xW[o0~ZV$\6mR.TU($X 6J(9`};~ǔLȦfii[Z4&.I>[l%$島t1`(}}2vlnt/OAٓMjfΠff 6 a,7g0\f#؇LJCi-K>*uxcl+q2 YHg*pjkֱpːڲI^"4}\gN>qs WmDȹ/+e~wnt1{fkUlUX{, [/'"Fe_9&z\ na"E !Aݐ5ہw N {jaaVXD5|ȏi(ƆM$ r \J.**ty=޼vy?~Qel\O9]D?( X DR_ ˔?-uKSьiuZC< FcU4ExN1 AhFECc1&[F^ i ɼz@lx,䝊R֘}kPIݖcỎmhRMꞪ8:y7~~њJa=J\;'S5endstream endobj 275 0 obj << /Type /Page /Contents 276 0 R /Resources 274 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 270 0 R >> endobj 274 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 279 0 obj << /Length 609 /Filter /FlateDecode >> stream xW]o0}WX kcwC+&m*{ʢ(#FJ%e5#@Riɤ}HQ{||@Ʒ^2HRȟm# ,ӑ#In,<2l&\& BsoM#`ŹHC],96mzHgX[o} t A+,'P3\oxB"")z@0(Er1aǑuo}hiC*9`X&  %`8;!(C1vItQQ́rrTsN.G㢤OS8M L?hSEV:nQ eVRSzڏy82͒ix%VXN}Gj: f\@xS%5iy`a/&BZPx;KOe>KNųTNWOb䟣Eol{]pEQ>.*)׋nd/e]UfYm#{řbm^/3Ҷ>-8FC:Nyt FFڅAI39}N> endobj 277 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 282 0 obj << /Length 1244 /Filter /FlateDecode >> stream xڭXQs8~ϯB !@t$3\/7)a[ql-l /]5<9fE/\l<?Ѹ&( V7ON#iZfģ #RD~E[^P^|,)ˆ}MF$)j?F=a5Of:bi%bj)C>'*2ڹKIcNH{?\(bJxXSs2+3Z(KPEr\ 32[QlbYtSH:tEvFHA䘼i4Vq/!ORBKn+õz>+%#AGUB =bjsQzTD9C\|`UuXtܩd^vaP/f(ܩ(V#z]retcgNC?!%"\$oP4qK`TotVo6qZNa _@a2IXdW%kz r uh2  YJj =Z*_sCL6QER;ڵb̕r=lF߮MqdxaZ-b9] J ΄& 8!;()ӥ.[4I)g0 &b\V = .s F>z7e z:kڣTD|G[p3{Ac`若ӕf [;5io.jwXHS[Hv\%mAQ+t JCk<[Aɾќp_O[+uyF0@YȬRW6 1>:YVW9%fV(M̬]l`E8B6/.3u(Wn~iZE=0˯2Kk## ˑ1Җr@'-rh_G< E <3Jf*LD-Aria 3DyYr~;U_W̦~ǩIeZ/'7H:bendstream endobj 281 0 obj << /Type /Page /Contents 282 0 R /Resources 280 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 270 0 R >> endobj 280 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 285 0 obj << /Length 508 /Filter /FlateDecode >> stream xo0+|1~ϱc'*Ce'hERu_?;$*"KW!RfD테+4{}z~}7 ='  Pn@AOO8NoghI_ g` %)cܖ^Z^5A p_0RtHX8ak7uy8O鎷tlEJx"fplE_I#_S͌Rz`#G\X(~f(u1O4^n׵P<ioP-=Wsz`Gbhd{VQJfo񅏧Β|[r$1/ 3< ]&W{{w9lT'DA(NV0oSpjCZUj{Q!VK*KtF>֛CY0;6}L7KnW}u0MswtILR#=K,N80 endstream endobj 284 0 obj << /Type /Page /Contents 285 0 R /Resources 283 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 270 0 R >> endobj 283 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 288 0 obj << /Length 1042 /Filter /FlateDecode >> stream xX]o6}ϯҗ$UˎVA`C:8PtAKEG"?~(C+> endobj 286 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 292 0 obj << /Length 1337 /Filter /FlateDecode >> stream xڭX[s8~ϯ`tpv3vڙ^a'x-<~HG4'st.kzv?j`oMq7ƽְ qؚ&}\MwR݉%>pOfOuY YhA-AkCfӏnvh_*b/Iճ+ n2a$O?ynݻftiT{R N&sR`9<0n4*c't\PHh::mJlAhBb1+}.g(v)߽Yw |F r\FO\KBj^z\v_(f 6WlXHTX6cX/[i4{ضjK5Nx{uF—?tx[l_ \׬c6|2rw4pta+MW8~T{c]n CљGlq+[v6_ɠ)!oeDVpJhէ0lu* vQ z-Dendstream endobj 291 0 obj << /Type /Page /Contents 292 0 R /Resources 290 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 289 0 R >> endobj 290 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 295 0 obj << /Length 1391 /Filter /FlateDecode >> stream xYMs6Whr&HAmfdUOCKXtd$@fw!\z KƅOq6hcCD}w.b>EC)pmǵp8&Z8=t$>T"sĈ=Rt &^F?f_*dL(9ۡB;`<ny |?:'G/`6:\- W/l͐|Ǐ$gig/H DXd+ЮU~iBvE*$KRldiױftv<6̅Ȟ/cS=M634{eDÀt;HM; G䨝% SC΃҇cZr+2ޖ̣y^Xjw[r'Ue6,GhkdrÍBG8I 6˟7+xK8) \ܸce*En>H!!Uo*PFMǽFr٘ U{Nu-9\s9|3c|۝1cc\כ"GgQ1J()sejnZ554rNYԹTlu 6q)j Pa&'Bg oR|UՙE6; *F&FaUSvBf_ysu\Өv=vȡ=zhz:M}*. X7 -IX ڵ'/t؃`nM\A[~ ac4 nQE7zꋘ`1-B9-{ahz>. [SV^FUe}yr=~0v|-C`\wwn*8sa9+bo_ Z>w *J$tzxK5 W^uQ9Q筃W]88Pq>+L([Iu2><t YslTb BlG> endobj 293 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 298 0 obj << /Length 837 /Filter /FlateDecode >> stream xڍVr0+8&qLmh;̤Rz " "vh0Q==I'>EwlvD{;dzwdyx:^iAܫMhC1[/fϲ6䅚ݚe4z8C4$+a|l볅OY^dKͪ6T‘v!lRה+h RA{8iv,*Fc:"hQ,Y xF~7~DJ҆ xR49 SmY9a_/fJVT7-J3DA"KB7ȨjCfm8 Ԧ3D!9  Rv~H)%$8颋 HE6S,#7"YHRn'Z@vp aq(Du)" VWyZx^A'VJ41_ŠrGJ ArrI3 4J&x֢AHp1:Jĭ5ֵ@( *ڛ A n0 'x⻡? 1BBxf` .yݡSѨgl@+cڝ;ďF+VJF;:>n]SJTJoS{YhH3Ct`񚯅[./-⤼JHvR`<Fc$_KjfK}(dB?p.ކ9b7[WZa-ʞ Xq#IVJJEۉC%}/>GBendstream endobj 297 0 obj << /Type /Page /Contents 298 0 R /Resources 296 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 289 0 R >> endobj 296 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 301 0 obj << /Length 471 /Filter /FlateDecode >> stream xVMo0W=/ʡ'ڦ'%PцC] @wC[E e.Bh J4Q+ 4:5z5&/-'iPP{w+r}L)_ E:]N#LX#鋻 E:!MEncrK P v%/MLs|g{50R|í?jPRqYmgd>|YnfjfXsaEĜ;N[<^4-rs΁9KtgrIo8$A MP>zV'#F!n߹i |3= ])> Q?R Z8MKA?4O`1 Oy?@P)>Vn[թ7KAV8Ri_ ?ѮN2_@ehɳuD[R7ܢz;u! _endstream endobj 300 0 obj << /Type /Page /Contents 301 0 R /Resources 299 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 289 0 R >> endobj 299 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 304 0 obj << /Length 1049 /Filter /FlateDecode >> stream xXMs6Wh҃?FIjӱf8ȇN@h J~}@ _ήؙ Yܙθ?wF'^gqR>]łK͟ėtzXy3'՚O ~f^s&h\^|N@RE*jMF4_u/$PY-شiٺ qĨD2Ǖو@;+ /5k4=~ %GȘ0Il% zl9L 6ܭkbš??2bIF>ݖE;ym:ZP{D-5tf 8,/k(QbG&4g+lM3 eΉhf `IMQ,B0Orif 檟JYU4O^xmsOP3NiCȹs&܋&;v2at -z׭U9؞9u[D.I"Pbd}sHdk.E11Tһ(ZIK"@\*F dk4xS@:DĜ%̬ A[j[gRcrd>l[mH7DHH7[݇NP.>ǑD4˫f s㜚X? `X H2N&0n&W^ۨ񁍩I35,Fqj3D%gЎH;<@dVe=綤DJHB ӂPy9?B6p nKZuE.OyAw/q$["Sn,{Gѭ7 O}d,sm7GBi%ewA>U Y&8a9zfbDEc d%hӼTw][3Yy+:x%^!Pspq#Aָ d`2 S*H)}}Dn>nTUjSnI;}w⌼፺>y΍V8Fr endstream endobj 303 0 obj << /Type /Page /Contents 304 0 R /Resources 302 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 289 0 R >> endobj 302 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 307 0 obj << /Length 1385 /Filter /FlateDecode >> stream xXmS6ίH?hbfлB.2+ | $2ʖrs'E}vG+>98jk}okym{Y5Ix{=OhE'Q0z4;d.ב\ OX"?ߨJϚ_k7;E(MȋhN~ er7 ܀RyA=|a[CȈYR At>/&pAݕ'nD. u?R-y!3̝ШMDE*=egX DyN]k4on"0MYkώXiJ["9n~lhۉ~hR,Qr,;;sui% ;+Qݙ5OLAyLLe*Ō'*;̦` >q2ڲ,C]Ϣyf|Mي쮗K,!q^CY4ʼn F pn k'^)QU-'C]'(/L4Hm&kd(.Z(Ґ(N }(t@yhq-Cq~B@BZaN6x?f_:(9vTH-JalyV.`OYn[Yȅ 8FMe* R9T. +*p[܆Y,;Qj"8\yԎ&݋!{q)8^/,ዣvM4o77XOTNFԂQI`;znZZ:@\ŭ#F ?Jdw~iJDcVC*:Pbc; )ЂP߆ll箁PH98V_XXLhS$))jϻLf i1!8g3@-_4Gk҈ԯPge,SpԦ^r\ 86v{|8ź?R7.[7^HYB#+'> endobj 305 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 311 0 obj << /Length 809 /Filter /FlateDecode >> stream xVQo0~$HTIԩ ˞:TbĎl~l'5nlw99GNƃAI z0\oNޝIV\B# &W?]}v4vϺz5)`l Q 1G|}6M:#,q[yGD9]*7\ʋl-` /Z>|4':nb,R*Yp NQR->rtFA9yg[pcEIVRͨXYr6HTS2[<]?r@Ȯn-I!;|OG*^~/yQj̅L]i6hMڹR)&sHձbS#Q+U}AIƭ&rXk2W2lA CڌAMCFo0 ANB?!t"%,S&+ zqa(9(nilYؔLjxĚ,.$ieSeY(_'v@} Ə C: ,Q4>+V& 2p;6=M^?F`F+݅R29&q*уh-UfMѠ<׭ Ҏſoyn(3|PS}4]UYSr/},@wq4xcأ.]vj^=#Sљ X"-47ƇtTXrzB-ƨP 0ۼ^\ENe˫g1QǞEC1z|!'_} endstream endobj 310 0 obj << /Type /Page /Contents 311 0 R /Resources 309 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 308 0 R >> endobj 309 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 314 0 obj << /Length 514 /Filter /FlateDecode >> stream xVˎ0+aV#&] M"u$-D@(zCҴ(V{=>>QHRC"^8:I(~ݍ5x$BK#?H'0_` FLI~/(L0y xZ-Յt gH`' vF nU.YNg)2"SHQJ(ݍ-:)-hBhB:M Dj0 ͯy=,C t了HEa>y'QPEYGyi֤~iVY--,pB0Aqa1.['4/S%x+de[|KwݬgQy]5'>^=nϩXn˷uj СH]wU KR͵7jE[;g>_Z`L[-^$,@S=)HbLvendstream endobj 313 0 obj << /Type /Page /Contents 314 0 R /Resources 312 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 308 0 R >> endobj 312 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 317 0 obj << /Length 852 /Filter /FlateDecode >> stream xڵW]o0}chd|$S;ue-CBjQdN~Il85ZmOv{mٺj5Bk[Z4u4,m4< <} w8˳fںm9vncl3u6[Hf=eW,Pu?k? aE\?bqeg;6"­8!E[~2F7y/B8$XCwbLw ̯N23Strl48N8BJ&lʫZ2ԒuؐW5( (ϒMC:T ~bn`ͦh Rh#""w4) rB+* `SVhg#Ź`|5/J炏~p<0<x`׃Exh3Ud' >Z ZK=scLp( ^%;dy'V&?$iBSMP\Wq&2tfr٫t$V)qNJ-DS!rDq"R,٪OLn(w4tѴe_C瞬ZDѻ!*$J`0r&) h[rP9W]83пﰙsWJ$6d.ZDS9-_}k(%tXnEGc5Ƅd(=?(݊Fw_T}\>XN݆ Nh.Lic"o ‘8oowgv׏> endobj 315 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 320 0 obj << /Length 614 /Filter /FlateDecode >> stream xVj@}W )9DY4[K_u!) ‘dG,%4"Y:PӾ=˹{;Qpi O C qrc: 0&_U;+fÀ WwY0?.y1s0o/Y>L&ʞNiD܌/) c `Ht|f|0M{}{X f r.J@e] x\zR%xR̽"v{WU`1XOy qƜB(J[ 2zDmƃ D g83ڦOBlLq؁?^Eyiz!h/^QUn W"o9v:vأm:W/E5/zԻ:iNWE5řV9V֍t(r;{a5:uu ~vb=z.;qn$0e ˴4D+ o'endstream endobj 319 0 obj << /Type /Page /Contents 320 0 R /Resources 318 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 308 0 R >> endobj 318 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 323 0 obj << /Length 886 /Filter /FlateDecode >> stream xW]o0}@ԥUB!YnkB3l7M~ۀ Q4}qι7ci>:x jZ֍]P2r궻O|aAuC6/khG,"7«aqYY~M3-C4A9\7ԶVGkM}`Nje!Do~>1A,PԨ##7<*g9p(E9L9JEIjдo&g^*%עMv-V D@E 7b!Ab O;6 D6nɋuGjBq+VǓS8_$7!U5ftɨyka? F H&,i?IYGPfp.FFpJS&:]%0ПxaXEF=Ig<sɀ$ ߚCiO#U%FAi?3L)#N)K(JMŸ7UҹGl'M|!do?쨿%T΂r`IPNuKBWr^UP{A,NۨV1WtW/QPe>N.ϝmOUh{/ҺO5SLT[}S}:/=Jendstream endobj 322 0 obj << /Type /Page /Contents 323 0 R /Resources 321 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 308 0 R >> endobj 321 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 326 0 obj << /Length 484 /Filter /FlateDecode >> stream xڝK0>n7$v#Urv0[#I__I袪ɞ> endobj 324 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 330 0 obj << /Length 487 /Filter /FlateDecode >> stream xݖ_o0)b|cVߪj-yb(H@Y7۔O?'Z7k_^ŤHi</2 8t@t0G@˯}wߐ1(HÔу~4#?`iF8! %mO8cHȸMs>%0;-РP.E0BW$lFağInuӄ lr͐.7]qT!J|@fu7(wɹO"tnVEcAZK^_4ڇq ?,` =Pl6w?>LRx$^0>w(^("]by#|-lgQgbs m!NɓtN_N":MZ-n}'I'S7S))Ϻx;swN{}M+f1EnXdl;AUU3ocendstream endobj 329 0 obj << /Type /Page /Contents 330 0 R /Resources 328 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 327 0 R >> endobj 328 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 333 0 obj << /Length 756 /Filter /FlateDecode >> stream xW]O0}WDL! MCabr;r_RzIJ+4!|ޏs=mO]5~Gg9qL8=Y>a'sOIMگ()\1?+:-/׵3\TE n4؊?H, $n»AR}DS6 8hX8cEj,Y.@;%X} ȗgx@b`b+ngI#ɡ}iMxwaEA@Ef=)FpIJJ1aʐ>c t+E&pU/G*XЗ~@K+[PH@w+~9)$ȘY̾oJ辨IE7KKqz= 4Ȥ[nJ(H(is)bHZeeDګdFF *ZGcyϔmN{{h~endstream endobj 332 0 obj << /Type /Page /Contents 333 0 R /Resources 331 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 327 0 R >> endobj 331 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 336 0 obj << /Length 1268 /Filter /FlateDecode >> stream xڽXQs6~ϯ`/I &!KfңI/4Lؒ+,LNOKLn.F7LθAj0c3 Oz8&B?qVk?*(Bpy7&3K 'O:N{h\ZBoxC4Nڰ|8Ain"9'x[1,)R8<--$_5h{cjT"!± e_WĊybN _?&n+ClEH yg(| ",p"Ŝykڧώw- ?$ӀTZ_yE=8/8N;7|KpE'C,D\$@"뇇@>`q+`PQ1 3zGKDd{-)Z 8{@d^`[ET.PXԋ&dT伀ʞ4:3aO ]Dw/foƸ3lI"|G.H@"װ{N| u dLӏW-d:CV|1n:˞?$KDyR#IT5^B$Co]Zx ^JhkaHΉUvkZ᲋'͹.֩k72WmI.eL s3]'(1AAI!͹ cpܖĤ퉤|O23:JUrpW$E BҁNnho*1%N֐k>7h+irH0;#P9KSf o\gE%/; v戠(1@ߞ<% M3w9BFaL.tJxXu5P|wW|횏IA7o[]CS̎*,d.2=ǚUtknESΫ)OOv`m+էnm']*Hd q6Sp \'Yd3YvBضP8\`ʱQ`Y'0Kig9j}N4hcʩ/&8ryp׷cBZG3f|0eڧ嬬U:Mwi33i>n˴elsinut[e-i#ԩԪ!i:(YZv4UP.,0B͒`P j-Psj ͨ?|qWl\޹?,FjwzXendstream endobj 335 0 obj << /Type /Page /Contents 336 0 R /Resources 334 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 327 0 R >> endobj 334 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 339 0 obj << /Length 1426 /Filter /FlateDecode >> stream xXn8}WyjYZ(hL)tZhê[! xqJ!N8);Վ)87{uLO>.zv/jemnw^lV֦ӿ[8 iwN5J! Q5]t"r]MCy7(\_ϞZ5wz:yB,w53?k) eR2 yÆqMdHK K :6H"1FB4IR8(Uz=,0&tXE`c,‰|lfPgPq'_ \v{;,Uy#EQZXuxsPP{ x$@+": N !}j9N.Z>K[//ϕN>b4V3:z_Rn鵅5)1~?kv{zM `8aӠi̶Su (iWqPX//E:  P*:e$!Z{ 6СiܐWe/*iTP@N\P0;xnXTH<+N%QaHD@|8Pūu`G709%>DZjyW&ӛ)1I%73&b`Kn~šLI򸽿:UQGtK`KC"]LCN٧)U53OJVe*Pƒ᪡#׃UA G`xE~ SрkXehFKƪu R؄8( <' 8\ GZ|^~.ݚ>s='ӓ&endstream endobj 338 0 obj << /Type /Page /Contents 339 0 R /Resources 337 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 327 0 R >> endobj 337 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 342 0 obj << /Length 415 /Filter /FlateDecode >> stream xڍSQO0~WЕmb" >hb`[n4xo`w}{5u(aQt+Bz匃x8_fAؗUi#Yp>>ӕ=azk2_cl"sR\ڬzw2'a!e@):,+aWje<6k3OlQ[N)+eOa_MBfÜxw&:+KSJ#GxwS5Xs\/ O ౹O?m;|3adbW77 NPY"p\~S"4%tZgu9FحN^Uи F!nqΔ:[> endobj 340 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 345 0 obj << /Length 542 /Filter /FlateDecode >> stream x[o0~j8ܬu}Z)咡rɀk>lR@hR_DA>We`nbdSX*\4T,Z,@}6JD[cL7 A7 ;&z7e 3x{*hS`1lfu_%Sf7L:&MLmܭۨ> Rv9[ќݘճj1k"@^-ː.Ic391HZMj,/LmT{sv_#T"8aI`y{tʽx4p tLc .?ɫ˪op\/ݲk/%¹/ZL|.:+:`EW~Y2[(Fu X$˂=->EܚQWwK|۫W^X_Zz:"ORB:)˹ k8N;y@r~jz]c{]o:HbDbD Ƕ85c8RD_ endstream endobj 344 0 obj << /Type /Page /Contents 345 0 R /Resources 343 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 346 0 R >> endobj 343 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 349 0 obj << /Length 542 /Filter /FlateDecode >> stream xMo0VWBmD\0aOJOm(-84Ck'nDU]~fp:@8 .r<8+χ0+<\O%ϭyr! z61F1>,,je#D)FB}z%4E1X>A%GZJa)>ʦ@#ZeUTGlWôdyTj?<,vץKqREFT<,~X_C:n{MuX\><\@ˊ.h4|8pթ勺?k^I^u}-fa4q琛SMͤPjΪ[?j eH|Wgl3=l!ߐoxL'=wU!bnsymuPhj^&( LΗyQ(\fnzsX>?Y{/)M\Jj>Ep^Ítbvendstream endobj 348 0 obj << /Type /Page /Contents 349 0 R /Resources 347 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 346 0 R >> endobj 347 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 352 0 obj << /Length 1276 /Filter /FlateDecode >> stream xXn6}W@b9qlwч4X[.<m!sW"$DReڛd&g̜l֛y2w>7:eт3*2eBFXd<9\#B!N9{ݽ%jި7G|2W|-KHhwUdžp{s:N,\_ _ */]}-aG>&O ߽*˴rR {f܂1UXz7(ӌ<6f8l]l9ow׷qd$7:_MJI,aQ2:lCCa`g[銿#v߅sfgM3&de*'zŝme&T2]=,Y0@B\Ca +̻;Vw&hxPxJoRQ#cJFA4:aܙ,yC-Bo%U84#$Fr#ς$nk맪U1td08;$a!˪p= зDᝉZQ\hQ<R"I\a& pI(Jǫ.J$r= \P4uh %R UaYx;6 :Rϒ#o D/^߁OJpf8A lKN0J<Ձ0OsբvmcʮdOFweÞ]Q=60ϾfU0VYYoi&#'Cbǃn}ώ#n,_5"U:g$@C"jt*z-~FBRXOڑB1gZ{?SgFA1ډEVekD݉P" J\vTW"/)P]8!)n!T4-)򜢆V pY( #/6 ek5n ǝ$ ]&A]jA\1.ZK0arBYf~Ą +:l7ͻ8YzQߛGl6{*ԟT/Oˣ endstream endobj 351 0 obj << /Type /Page /Contents 352 0 R /Resources 350 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 346 0 R >> endobj 350 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 355 0 obj << /Length 1400 /Filter /FlateDecode >> stream xڵXmo8_.ڦVwRoz/FI'C܂6gc1i{)/3<3ɧ|4,f:-yFWA0hݝPa|\gquuyy."b~ȟ7Ɓ?YWz{im1oX+h~|^7N{`1?EsFJX;n6 fj@St/j()(W pf F })hN%nBrCs>*HQuQ&&:1,.,˘LSahmv 3e?Η &o+G\ PA(TX5\Įx9 uKN@CtXAP)%%;J) #i/U̫rho󎥑B+ t_g0 iF{Q}| g˃Y~'T.p$ͪ<+EqZbģ{%aDz`D{&&G(N1P*u)(lڳT2[PubcX`Tdޜ@Z[2n,i2\'TdEXb6^ r,9~z5u#udKq,2VcPLߛ)]纪;2W7x!-Eвm<Ժpm 9FP}yXJ$>ۇ;Sʇ>-;3Eݟ,oYR}:ˇz`ޢ4r=PZ˪.6TVɨj=o+ T/X`*齱!wDqR"yx`yd]1~YLaJfF{:G߹vG~RgSv]SN^0Ϝ'm߾ mzoY*:g4ODE귲\o+ .1/|V?-zMɹjP֓HG'endstream endobj 354 0 obj << /Type /Page /Contents 355 0 R /Resources 353 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 346 0 R >> endobj 353 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 358 0 obj << /Length 1324 /Filter /FlateDecode >> stream xXn6+=%رSeַ0KJRI__JPE zi=ٖ%7oesv5YvI'Qn>:lK"f8$ӟ)%;637=pF厖%fmu*_3q`%&dzZ7l |O(; &ABΪ}1r}~3m65 ! /0Dny S 6{Emee"c(OiOS_thʷ|Ua63Aev J\ tVyU== H"PSi IlA DmE(-MTXMNHF &@*o-IhI 9[S靖YNߖ=0nU.V> [2UǺpϲ*}lDc҇9wSYʅNHoGj .Pag{+@^#,@Ŝ 1 Yh檡vWib<5w Ŧ[%#WS#nMFl82 U9qHnGa6}8cSD,@p'W{d5ĀܕÉ/su*h{`CvZ] ZT=S8]Fo<'J'.пԎ *5 F- ٫@*pQʣ _mRmI rAα(;]>臰A-tS=JjVkz;{Qj 6 '{QǺC~0SY0X豋Fݳ OͶŪ  X/3edt4E4 *I r]Yl=NL-sGM$A=zaR.H`0n&>T=8DZ] @8Z{|Ҵg4eZ:Q Ib޳8l=ۺf}$NH'4{Ɗ<mﹰ诫þ%CD|d<_A(uv:.ZLf7Qp͗MzlmZendstream endobj 357 0 obj << /Type /Page /Contents 358 0 R /Resources 356 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 346 0 R >> endobj 356 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 361 0 obj << /Length 912 /Filter /FlateDecode >> stream xWr0+XM1馝2.Eإ #l+Br+-L7t_{:;ƽ8ǷY֋I07( (fSq> G}9ڛș*Rs^bd iF"aete>jMy9Jf+8g/ 0[N2>w()_#Lc9e(Q28סFaƅp]'PqA< vYk%pzwxyQ0b63*-D9EGFRSѶL oBHz`]7_t\?|oӍEk4krRu!][a-\ϡ_o (|$Er|g(k5iGBܰr pH:,Sņ-IwـLCT%7% = `3hd>rahIqEU*5Tqg1Rz?GhyI| 9:ҭ-CURszz24yUf ef׋/,;])UnyآB]Ӷyj:ݓ)}ƵF@̷"i*:|Ɖ> endobj 359 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 364 0 obj << /Length 503 /Filter /FlateDecode >> stream xMo@+VޙcU.CSYp8w 5؍u& vg9h,0yH) Pȸɵvb~VUL`7\_@Se'?.#4!^΄_8e\}% :-y `~t0G$lÀ]D@keL9sv`uaKYyfa]I%S\6ɎPL!bK4$&hNJ8j%MR9߹ D}j%F>.o¦YQQ;-܊Y/_'$'٩c̪ytU.O}YU;8NveC'{]o}^4Pi:{-'xӧwݸ쥍}睻%5q3ǘF@z>#*hǯV7endstream endobj 363 0 obj << /Type /Page /Contents 364 0 R /Resources 362 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 362 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 368 0 obj << /Length 459 /Filter /FlateDecode >> stream xڭTQo0~ϯcPVU[=Mr)j6JHև=a}ݝbj $HȊvef?/a4A`l#ɞ )qi}ȧ_jk9+y.RqZ9᜚hĜUe0qj;$E.8;4?r_/9+ e(ў>4mij8VMvls.EHac Sחn3r?RҷGRj:J= }N侽A%g2rwqaYЍi͝b|Nn''39cO12v3S}ZhZ7)HÎ*FaT\֊g/[Et/Є?gDž?U~8/k̈́XcŇ)4C1ėȢfWew`endstream endobj 367 0 obj << /Type /Page /Contents 368 0 R /Resources 366 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 366 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 371 0 obj << /Length 503 /Filter /FlateDecode >> stream x]k0+D# "YrыwՖjj;]o]~}%vb)+6[z{9`Ωp q1&|D}rGE ࣛUp>cf/4eb8F !F/rcgȣLxyO9 Vt%Ow/bOv 8"axPI M0cTzU< ̣REp=#(%}tdtd";o hs;߄ݬ7IE\}&wC=+Uo.dE]c{U08ZeUmξ;ivbnqCvNc4ccendstream endobj 370 0 obj << /Type /Page /Contents 371 0 R /Resources 369 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 369 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 374 0 obj << /Length 679 /Filter /FlateDecode >> stream xڍUr0)|+0`,'=d& JNm#l%F?}e["-[v߮uy1ȏeMCo @zWI s"? 4jfeo` (!m]?$- ԰ <5I7|,@l AP,Ψ#"cXD;, R%hwSiEP˂^1q0e6%&(eETC9[qV7"J&b>?4갃;{#\\1̺ȴiȰiZAAʒC9AA4Qۓ=~|~xA*SHЃ:dV6{DE3cΚ޻`9k_@LYpue'z:߯]տw4"L]N\F?%endstream endobj 373 0 obj << /Type /Page /Contents 374 0 R /Resources 372 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 372 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 377 0 obj << /Length 506 /Filter /FlateDecode >> stream xo0+`]*-ަ@7_?󳁰TZWl?=w5G*x7/L*a4_ڤ X}#wIMh<cl֛bsfч:kVd=硚jQyI8G?'/[_d(V68e#2aZ5.Aۗendstream endobj 376 0 obj << /Type /Page /Contents 377 0 R /Resources 375 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 375 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 380 0 obj << /Length 458 /Filter /FlateDecode >> stream xڵTn +8&QM7{ʮ)VRT,qֆpƀZu4c<<޼y3Vs 0L -" Bai|ߨz'C%"q oNV/˨q‚W¥%K).aʥ;b$+oR$Ɖ%ŞЗlULXd}/BZ,`P-3JW_wSJES~m7fqq ϳ}#^ dMz0QNKLsJ$#[1 Qbfǻ8;aF{Ű[r9PY/Tw? x٧զ%v;\z'ųW$C… 0nꀎCUqc|g+ 0Aۆ0(N08vC|y,kG7eendstream endobj 379 0 obj << /Type /Page /Contents 380 0 R /Resources 378 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 365 0 R >> endobj 378 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 383 0 obj << /Length 502 /Filter /FlateDecode >> stream xn@"8L⹁T"PU"Nձ]HmQ*[9gdLAJ`s7D zD+L>B. 0XJ|7ƀK@07Z`j )1i-O jQWbJ᲏>#T3. ţJ`\[x@[cXhǴCITPO)"QΪt 62=6Ln's;En+)(q ڔI wf<+xVnou*,Le:(6UF9sqg_ؗY^WvSWv/+q]evhm‡w}n֛$6j!Vv 7XeLtwG~jѭO(5TCSAiI?qv. > endobj 381 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 387 0 obj << /Length 687 /Filter /FlateDecode >> stream xڍUr0++0X]d&)JVm#l%FH-dD=:vyOco{Л*{lK9ȏ8F!c0f?l՚8m/JE3ZYSs\)e /vUs2H8ܡ~wUA5o?DqFP@6[ȹ" 7#!gXD{, R%h[jEPR^0al),KL6g-R+TQ,|6dQLE_.e!3LmeUYd+5#qHHF;zz}v,tI 4Etm,eJhbj'TnS pq %@|aw37(mdU[;-ԗj:R(MxmE|n0˘6oe#DhsS ׼tH'ʃۺ1GbVQ/:v'C2PfδQd؍]eueQvڡuӬ]4Rcݳ"x?$*Vpԭu0zsraGf8Ǧ;nzԮ1v Ή:ȫ1okE>đ7?7(endstream endobj 386 0 obj << /Type /Page /Contents 387 0 R /Resources 385 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 384 0 R >> endobj 385 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 390 0 obj << /Length 549 /Filter /FlateDecode >> stream xko0WXCډbP#6 S%Z.MvB~6p(Cn3`%Y701ze:>ŽԽԆ ɡe1G~j_PCRCrfob 最T3 v}hFQoKBcBQ~ChcHIV"1uVüDݳ>Np<2q$:*8^F "d> endobj 388 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 393 0 obj << /Length 1206 /Filter /FlateDecode >> stream xڽX[o8~@jIP&>¹|礟G{''QSwkSMb|UG?sFxz__ܝ}\\>~4嶺 {ڲHfT|dIGBKB=Dq`80qd $,Etr]oP=g,Ic* {x>j l볯wL sKuA謐(*]Rm ߍb]ƟlJt MP*ĩkZf|ul ,s?_L2 N?I c$,F;ĕcݐL-)ȹNj\|F(Tn s:8abKJ  )Z`[`&(K:ak $& UU3V.PW4H2ˌ73]ODNMU,/Xy@Mdie-At{x ;䏼Ci \T^A( ͔o!E\ HO u]%ņ6DƖwu(fKh-iLhAjx2)2]y ~R?w[I8x#AWWEeTϠ' fdr'C;Wgm ~TR[-7+Dh[M# 1p)G=I=O]i>A9x{j_~ٻeXw~eE7Fs-$o2quHX7Bݜ _;FgÓu\xri_(*F v,Wyt݂6fWhMɥlrF9Hk[.-Q~bCd!"b٪u~{L, 0HV<*("!L Dbdxp3C dP02\ma★jM ,gJɂ8K6!ZyP%p9 %{9R*h9mߎ}4U_2=naus,͝`;Ns:TDvlj$h ݼ}K/|xQL g%[Lʂ֎/^{/endstream endobj 392 0 obj << /Type /Page /Contents 393 0 R /Resources 391 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 384 0 R >> endobj 391 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 396 0 obj << /Length 1034 /Filter /FlateDecode >> stream xڵW]s8}ϯ18Oi';3}H= V$__ t!¥O{gWcgNnneLۻ 8ۆw bqHR :o~_Ob8aJ* b|fDK5s7yFeybݒo W9I3JWc-["IpǵEPwx*)2GJ qvp:_ =ׁYg`FJ"=ָ֦ #J +ݪ5Neg@zRII$ak6G2t+|rը s1EDR&,M n_ǯ5B@1qKG`WQ)+yE2CgtcaTܪ JY|:^`Ea!"MФƍ%a3PTIB"bPhX`3nX"Ypa&X߬3ONhivͰ2ݲl ~QEc$9ٷ(Gt#à,(GS\YrGSܫoP'B _L9k߸ b?#5iwWo4pPڜ.q hU ݂gIIEQa0m]UڠM>L-ZC fBe8puZJdYlN jMP1G~쨗#8s?t FZ{#'-endstream endobj 395 0 obj << /Type /Page /Contents 396 0 R /Resources 394 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 384 0 R >> endobj 394 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 399 0 obj << /Length 325 /Filter /FlateDecode >> stream xڭR]O0}߯H6+ӈ=Q KaN}齷l` $(($|v}8RZ`>JsY'3' r{_H(kɬzj稺Ku2Z B/.FS;DnWڇm^TYxphFh9F(=$uez3*+ax ]фv{&V)LꑳI/vؗ($+S˘Dl[R)(G0Z0bxv~סendstream endobj 398 0 obj << /Type /Page /Contents 399 0 R /Resources 397 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 384 0 R >> endobj 397 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 402 0 obj << /Length 561 /Filter /FlateDecode >> stream xVMo@+VWa~ƪG҄\r iQ0ԿmMv͛yc/( 梘 (. :v&׋u8_ޒkS/Xi$LB[R(S.T(9uyd͵2eyÄݟ%S)H#`]US6+·|^cz5x}? OWDb Uώ"6G -Mek~55 >˃=rAc]yu{\2)D2%̳x.qaϳ{Vè0endstream endobj 405 0 obj << /Type /Page /Contents 406 0 R /Resources 404 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 403 0 R >> endobj 404 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 409 0 obj << /Length 686 /Filter /FlateDecode >> stream xW]o0}ϯPvR;l'PFę_?'q PB9s|JW 0$O$lW4[u$^]#%龧=])uHlG|"06oKRendstream endobj 408 0 obj << /Type /Page /Contents 409 0 R /Resources 407 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 403 0 R >> endobj 407 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 412 0 obj << /Length 333 /Filter /FlateDecode >> stream xڅR]O }߯8LZ؛N,Ze!Ʈ4m hM|\r9~\'y]D8("A_:Fg1%t(p4ƈዔ:B޷۽TluAjUyB{Afj)㭃VԡN=*.)iVw&:iM.!1Jv)A( v2}=ˆ1͂2i?lWϏ.LoL~ LAF8ae9sܯFWlHRXVƍՓ2Y0@Ps|EFN(csHh> endobj 410 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 415 0 obj << /Length 579 /Filter /FlateDecode >> stream xV[O0~ϯKSc'V Qᩫ]. \%-=D/.ˑSG92m93dQRLL{0_fg2=\(|aco+? _!\!@?`mbEDŽr)ʷbڔ/MɰEٵLpC"kA\dg tWy`Ig2SKPc4n ئVGfPi44wdV1Iw Z9utv=dyM6 @$y*z2:<|v jerIg YiKsv1M* m'jǥqŷ.;AuB=L$>w m>~;hj(vW-@?kt[h m{HFxOo_b=tYs;䲚*˧ygQ~tϞ[NRAZ&K"=6(0 2N $yv\_8*yIy:j`\Btk1z' endstream endobj 414 0 obj << /Type /Page /Contents 415 0 R /Resources 413 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 403 0 R >> endobj 413 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 418 0 obj << /Length 587 /Filter /FlateDecode >> stream xڭTr0)"{jzƭkgRrJ=) F0y "&9Hj?ՌX |f k]A~0zGxRTo?-mu*uSm!(9}D.v<'-: yЍ `>n6zU$/ЛDBJ"`PYޭ"b1R v -d9Gde'iJ62Iw*ɦo0܍b%9><{9W*}1?=9@r}5@pM uZP}N{^цhODc8Mr r}Ue ) 5eZˎ~ K3K/;!(0ǥ\wR=%Ce]S2!L~> endobj 416 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 421 0 obj << /Length 596 /Filter /FlateDecode >> stream xV]o0}ϯ@uCnM[TƯP@j{Ͻ/=ݳ(1)r(& &4pz4|8jZиo+g"?e -zP/ и5hBS3E]X%SQPᖱV0uIesIS8j`aB>fXx(k LiWvc8v 3fi ,(.Qн?x2q+8ȨBREF9Uf5e|AaH{d՝<ӀcNr2+$aSw?{_?2"sN+`z GU˳點Go-KS.ߥh/~^sW_vWNjVc%E7A4 wWyVa*XٸՙQ0Y.*‹Em:LW4ͦr(!NG Ъ;=f|.Xʫk8J"1Vm)" d GVQIendstream endobj 420 0 obj << /Type /Page /Contents 421 0 R /Resources 419 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 419 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 425 0 obj << /Length 850 /Filter /FlateDecode >> stream xW]S@}W0E `Bcf81f]fY4a ڪe?=sޠj9NGO54\۳mY8Qֻvwk3Oi2n7'oix][l1F7l/ ~|OQFglrc3~#Jp^.'l<NZU}ȁb'%pV]s!Gґ-haŪ-\bq񭐛OEn[g'i c(\<"jǞ1i ӟ%[+uN _/jTiX/ Th_+"OQz$\g\{YR*P&]-<')@)/RR4l1EA2cy$lX ZpӶ9c/UBoҜDOLcrC]ϰBX}(f+Y-ȆS5O& ,4];[4y&⒅y {:U2BMZ1Z"RA #h4G~H D0/g@n򤐸,nnמp.'8h ]]!!roe9Y9 h.+4wj'J~(t~ǘpihwu PjAUACNK ZjRUM՝0*tIn7pi Àh[QUs㩟GULXJ'ئ׏q^<^gQ{P%8**ez٦cx}2-Y,ܺq4 -!endstream endobj 424 0 obj << /Type /Page /Contents 425 0 R /Resources 423 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 423 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 428 0 obj << /Length 1081 /Filter /FlateDecode >> stream xXn8+REŲN;@f02(:@YF![F"J_?K(qt3+u{.?fgo?ǣl5@^莃`fՅ95Jsv,zF';ssYFUQFcXdI}{1=pԝ!8>rC4cZu } 0iի"ަC)ɊXR'ZGɊqm]]$,YZd؝fsbҖW nֆ1Y q\/ KS-a)-2+ [YD9eVhhBSE;J`A4m%̶Dz(P%K"s$p/x1Ʉb k|ޡ=$ fضIsgLAוqzfI0њЈ?BxqD`Sm; TNl_:>c0L3|ӧ_>l◧JMp`_QYOXm,ǟʸ< omoseXٓwq@1B'1Ηd1pp(5ohUil:X2ZDs]qp,o罾s,^`3,m%vEQ[f?XۏӁ n(wFOPwD.=kvYyendstream endobj 427 0 obj << /Type /Page /Contents 428 0 R /Resources 426 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 426 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 431 0 obj << /Length 618 /Filter /FlateDecode >> stream xڕU_s0Sv (ӝwN>'P2 IB~ db{wkһ#+r0[IfynA4&aYIOr<?HrWgm .%NNx1ٛ2y!*:aNDql%sDࡎa0 !l/r"_I}ωI zp3_o~nferZ"rWISU(HZ2/XJ2S 6  bW;F<`ѭ̷guv/|FW_ͅ+)8fvphq^ olm7W tl @ gtg]h@uԞ=/hCT%6H.kA[UgÛ1J^q!#gn;Qi͗&\j,eōSP5W 6 T\u^&#*jjЇFck4Eθ)yUI MLD]<APԌpazYY6=te 6Xdӭ ^r=:ĭ3hN,{NO&MEup{Hrendstream endobj 430 0 obj << /Type /Page /Contents 431 0 R /Resources 429 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 429 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 434 0 obj << /Length 530 /Filter /FlateDecode >> stream xV]o0}K;a׎À XT$DGI8IPm)QǾsUtO<4rTKɱwmnnNҀ`2kH`@yW"ZpꝢWJ9x?F_dp>E H,9Ev $ "iCIfBu@n2%617[.Y˙; !l9)_,,~yZvV*c X&BS9$妏gA84g $ GWQdwpÍ4 j>?MVAZ|8M,l|~}83޴QϷlھtgQ|Q=Pj]9_Hͳvԓ0"m\_) >YXdC?j,rS6]^:{s+ߣOeyl ߮GL0&)f媞Ao͟[!Mendstream endobj 433 0 obj << /Type /Page /Contents 434 0 R /Resources 432 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 432 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 437 0 obj << /Length 1101 /Filter /FlateDecode >> stream xڭWMs6WV9#1>,)iOݸʽ D"jPŠ03iy[ɼ7:FYQzSN˽PohGQo8E4RRFp: O^2^q c?opgJRH/)V}c{OʒG}kaob:_ IrkHrMՠ Bu0UhpױhF 3 댁dr3??JפISG8oh!= B\BQi<p$G3I.=66YT HK-z`@᫊Bp/-lrxF@,ϣАV{Ǹ!t2͈ቅz_ҤS= QjOM'آ` )9xGl-D9>Z:hy?:!(:4 :MhkEpG9!3%8K;M$%z>mNbx:>hP{zpe^~ufݥR@nuO9h&F;j-U-gY쁡Ƈ/C @ |ra܀MwGo/kj9N "m;lVo$;_?T".$ >A;d g*y:,'̋o6)(ry^-q&ނ?]-m& 5WswlJ3EMq>!OwFov]U3tbj޴*set I%LuS,7s7J1G3+cظ֧lhʄĒ (ܨ@k^&?10FԔIzP!W'=a|^۪$L^_{IbE`6hVgg_4Xendstream endobj 436 0 obj << /Type /Page /Contents 437 0 R /Resources 435 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 422 0 R >> endobj 435 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 440 0 obj << /Length 542 /Filter /FlateDecode >> stream xW[o0}WXKjǟ ovOY2[Tn#Dg.a@FSR+|`EgHdȽAS'#TH@n0chds_0gQuS!l7ޏtFQQtQ¥mX3SV&6S 鍶Iv ɲN(;UմAt% z&EF 79~:?Nj!P^m1e3Xv5|xQ|=̞~zM[ Z?'4ۣE~&e߇."U{ɷ]+e*K/zY̋r L?jLA#?4+ڻGhq,8»x~p~ǎf1m$D-0WFz?5endstream endobj 439 0 obj << /Type /Page /Contents 440 0 R /Resources 438 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 441 0 R >> endobj 438 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 444 0 obj << /Length 1008 /Filter /FlateDecode >> stream xڭW]o6}ϯ[V%96 Kk40&*I~(W$ZM>I{=~Ż۫Yo':Ms:||D%,O?z̙s7=gMgōAЈ|Ie $SDQʃNa{h5 &;fIyÙ<.x[_˧_>cW`i̫ qs :")ӿz3h+g8y!1 OqqjG4P~ك^wČyA`w-b DYHraƙNE ci]R颾43&CG9(/(e2hT{s-Y:j{NF;΄yy(1 tK-vf#ՒkǮR <,=ꑥOUD?Nׯ(@?}?KR06YKZ5ZcZjAR)5%&+ught.j`TZ$`xMY@$ oO$LuY$yGg``SͯjeW7hD5;i`K2i¶:=rnct #ajB 1Z yCטYޯW˻c*C1O5fT-輆6!D$U%uE JQŌPjyQ-M|FPE `@ t@L`)vK&q܀{sip\bͪN(3 9褠U5‰x`qAm;j.bqGL R.굫W]J(d,Dj)V a8uQn;-Ҕ;.P,I.Z8.ȬjQ#9S-#[+o.԰[UzT5NIv˯s/7̛̝ȝʙc/>/endstream endobj 443 0 obj << /Type /Page /Contents 444 0 R /Resources 442 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 441 0 R >> endobj 442 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 447 0 obj << /Length 534 /Filter /FlateDecode >> stream xV]o0}_ ޴5G>eQ@@آݤua{9^{꣞'8ʶ9) ;`u teg=ZLuw䟡>lEt`1|ʵw`x,ʄ Ї !*>i:L:=P.l :6ks]L2kr (cgƑP缺O ұauϳ\R%e XvNsGI%6Nx9[li\i<Y\r--xPi*Ӈzϊ~dK#,+W7{QDZjVPDئ?p|i7~zjjyypdu1ըgQ밌;*}_(o ?)Yelꁗ`] D^V k^Ss/?c}[> endobj 445 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 450 0 obj << /Length 1044 /Filter /FlateDecode >> stream xڭWQs8~ϯ휌M ӻ>f.θ:$N]¥3 ow]ٜZ8 7ϯM\ε繞7Mid. O[ ?﹁wwE%-'36"h0,*͏0P&}YgB{#ZÛ:.7-XH$U8ὋB$%Z }"YW\6\Q0}9 l/E4F h$kL,kH@@KYsLҊ9_O IS_@TNSI 4MX7'OX:]>*,&ۇ7ﶫw$۫韲OkePJe KNZ0t@$G(8t58f(,F!e1%:l[N)KRSoHSq0c8)dU{K0\O\t ЕBԉ=]JVg+X*mˆdk wU/`kmOU!my4DH 2b0Xu 8]Բ3YB.k*#!]fvfoRxՖ 2 ?7\ f<{AϿ6ݜ}NSendstream endobj 449 0 obj << /Type /Page /Contents 450 0 R /Resources 448 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 441 0 R >> endobj 448 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 453 0 obj << /Length 583 /Filter /FlateDecode >> stream xWn0}WX ڱoÊC׭ۚ>11]ڐTqBP&\{pnQ%wȦM1;jŽ*Z|4n3h=5\b!~<3~!AK`& %E3„Yr7Ɨ,2Ŷh ۄΖB0eQᆱQ1Ipiz3JqRLaBOsؤxT5'Z?qv,R π&XRJ5SУ7x:KRKi4( Ԩo=8ء*jzqt2q."q ^D4Ǯۋ$cwz}5D3V@zَ"˷}/Vx[ gq5JK3x}m?SߟcP٣藛_a2ZZ_Fq丳_]#B(֓|HFrQˠL_ΠΟu^mKS+2+Ke̝'_ζRlWo[t ^M},n&Swm*/onԿDendstream endobj 452 0 obj << /Type /Page /Contents 453 0 R /Resources 451 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 441 0 R >> endobj 451 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 456 0 obj << /Length 889 /Filter /FlateDecode >> stream xWQo0~@K $$u]H]J^ p`#i¯ЬJiOv;oɨoJb }ɞIKC]WԁIptcЍ얳ss>'r]R%YS08q4.7|-4EC@I$FHʿ_kx8`Nl&٤57 }K2ZYKkxs$D %\OyA4҈aS 7: ~uf!U85^h7To~=}@ r޹!MKcwx(B@0-}7JK/MIc' ph[[,R9 T0 L@aJ_Q76=NNV&9`P40]WarV d TwC]@WJcSx) J1dِ͜3w S9]#=3 r.i]ebr`~׵W۱On}GsJJuǭEˎhUN8l3G5QoIi5Z &' $+tʚ՞Ѡ #+QUڥ`MrS1L{Z!7[nۍ2rQ5ӕ\q\-mf렧{j3)43M|_Uw}#=,=κ]T6h}}z;L3V[zύѪA5d 1(nSghs瀝gNpa䒸&|n9 &X}&/ǮpONFTR/YJS 4}ƚރ endstream endobj 455 0 obj << /Type /Page /Contents 456 0 R /Resources 454 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 441 0 R >> endobj 454 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 459 0 obj << /Length 877 /Filter /FlateDecode >> stream xڕVr0+<4ML-ifҦI&uN)[Yb$9|}e5z{oW\Nz 'JnqAzDv7|*"s2Wj -XaAb}E471<-јDDoĈ%Q﹃n8X#ĪZ ^rQ<[Plxb! gRGz'Q%/7-bNl!riO0լ.bSsGT{}]4c,Xlg7"@u b Zչ.t]% N˫4 hI5JDPa^tiXRpUEKx>&}pByy|wWm&- DS8q!(݁AvT ;'\Ͷ¬g8A̙Bsݠ>~D.c># aӽ^ꫲm?t@Z=1r7/?n?Ýze |9tHL?2Zz_vQ慣D2HJwpSSik!ҽh!RN*D扱kE$O |t56 (7ga*ADEhM#\tA,A] rJe$ <>ݍ. zUpf R^œGңVJIB\ѭVpxyB2j\[1;0)Z KM7Qk)g̳ZBz4K*rtax 1\D7Dc{gu``J=uiU!7Sx7 N;N1w/A>Hxendstream endobj 458 0 obj << /Type /Page /Contents 459 0 R /Resources 457 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 460 0 R >> endobj 457 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 463 0 obj << /Length 561 /Filter /FlateDecode >> stream x՗]o0+T؉oŊ[5*1Xn!a:Ư$P@9y2gs8CD&C-z3B:,sC\{jzS!lW7վi!EFѹF J@JA(7dyjWڇJW.y rD? 0n=; -0̝3+?t:O 8+] ,#|>Kr6H0f^$1MD&3ݍhy2O2)E*[fEI&6S{iVQw[G?^~|~|Ii?yooFwˋa&}@^lǔ`3 K˟_iGY?U~VmsGS-bu#JƫMU&.xɶӚd,-zE[> endobj 461 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 466 0 obj << /Length 1225 /Filter /FlateDecode >> stream xڵX[O8~WT2Li!H ;@ $UqZk uKb׽0;4s|ާNJq5Z'q$( (}ؿ.0qw+J$ŭ8 zI|R!qwT)\?b3pB#!%loo&`NI.<跮G?5ng*.%W*xLԃ N~TC;+a.+-ZZBb~9J( zݤg:^ ǀNb>.cOm߿NԚ1&Xq m6Dm_E -ÿ'zQn;<$pZP6TRsJQi3@ 2Nф#X)4))rh #]Șuuϐ2"ۀRuNq''X\3ê`3B/"Yq s4 Q;bE.c'gpX}ۺ970_ +`-g^4sU#NlWzmӓ0h[4m9vjGm+T)€OYhcTf:>y{G#»?2d`I4lAۏ_EU vw͸SO#ϪnIk5gT=/ysƵ^i%C>f1Cf~|õr耞ZDSGZ 0FI =Mkk11SLYds01>S8'&^KӶ.5 H0p-mǖB쨉Vp-O:= B|bdkDZbFem? fe^{?OV sXeSQF*lGF?YOM^9#B) ۏzH5v`A"N b >]9ZMe$8fJHzI:6gWՠ1=?Afn˼%Bg9ֺS2 T>!dMK'ch M%EEòt]C%l{ɐn&ܳ(,-s K;VXIT#koKi\XtF}_6>'s؋OkQQ:qDe8QDendstream endobj 465 0 obj << /Type /Page /Contents 466 0 R /Resources 464 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 460 0 R >> endobj 464 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 469 0 obj << /Length 320 /Filter /FlateDecode >> stream xڕRn0>!ͭЇPX5򣈿o;J\Z~(F93PT#iRxhg5I2osO24>߁įPp)fN@B08g tk&;xmJ%SP[r(S Ah #Ѱjudv7^R7&vK*ʸ!+rb225tZIc(Oa}]-.f`[*uJ\4edOr( E<"NQG=?|2endstream endobj 468 0 obj << /Type /Page /Contents 469 0 R /Resources 467 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 460 0 R >> endobj 467 0 obj << /Font << /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 472 0 obj << /Length 929 /Filter /FlateDecode >> stream xڍV]:}WK"-.VaڪնIz|f} &!J13s朙wk0~ycO&-?^!Hpڎ8t@k}.zczmAaІa ((kk\Ih?4 M;tG;ĄF>]?B4_1 FQ[9)?yUAm-lB/>sܠv qHqzۇ(` W³ߓyI+2L {3R.jxV;1>!L@ N$Bfr!SՅ]_%g z8Fw] wĻ0 mnX In}Ks ->H[+ECŌ v`-E!uƹ9TG!\3)Pե+PurWYSqjvڋY #TnF3Opz.)xϻ6GA5Ur~*7”5(LJ P)iZ1\ <3/p;OSVnCDEdՇ3Ϧa(c4Bx0e(V8ۊƓ~47t Sb ?#5z!{>Utڍ*{Dj'$2@ݪյ贸ruOf6fuu{-[A%OZM~/+TƪR#cj3mKQqQG4ossDU!Jjw]#?{qFI>-+mύ@*2t|(r@~P}endstream endobj 471 0 obj << /Type /Page /Contents 472 0 R /Resources 470 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 460 0 R >> endobj 470 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 475 0 obj << /Length 1031 /Filter /FlateDecode >> stream xڵWQo6~ϯ ;ޭRv:+M$dMbf;_b'!Bvs̝[h2!|N | q'#œA8mǹ义Q8q70"y82yp~o ɛC8}*#:"'7ߑAc ~g3 v!`\m;F~"Bn+O/4MsA4>l E\e B^$ԃL̓Ļ'Yz($ "DhJh50ʄnqn=^Mv[݈:i72/ŚKv"&S(4[pE?Is֋-x_WJ.=kc&kje$L zr+}#U($ULeg\BaTǼЋ؊fKliA? R&U0f,*G4C zI]g 2*uƔarԨI[dk^:G& 7Tnݙ4 :JSyCdu94@n &lS{w,a]|4}{k4ah/UZfDcewiR?K_!<0|h1[+ ڙuK쵶2K\`~ۤ<엠.mMpI+FEb>F?}ل-n"|fla>? ^x҃|W&E=ߩ R֗+ooL Q`_n (.ڴ1t{? }s6dXYf[(s&Cb EFz5h,2d?Q2t3 (> endobj 473 0 obj << /Font << /F32 25 0 R /F48 83 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 478 0 obj << /Length 2560 /Filter /FlateDecode >> stream xYKSW*(wCHNaRB}Ƕ(Y=/ɲ3,nE~|ퟯ^yg􁲩^\ :|nH.˻\ߔ8n&^}x.,3;puj8iMPN]%MMɡq1xg5DiM(&W-o X2L՞s |p*$k^,ᾦ.`›d2}b,+^-guIp9Kc*eY&d:=;3?w E"vɺX _ܤ#( Pm|1 3YbyZJ{:B|p!&O.2U R[H'LEY8LZdq\59׋sEx׊5ZܣjbZlߋd Ǝ+H!J3[H _MB'h:] S$UwX8{0bo2&gPtY^F{#_ț (dH^|?2-ɲVR^1\5\3\nZ-l}QoJ>n\E-$գ\m@nn%/]7`'p q3i lّYYg1y>@ hXνҋĨD#F|1n9"*-VO+ wssi:M+M|,LxGS,^6 aMHuXRڞ֛-j6TwͨtY52MFr/L)"ׇt yT՚Õ$hnjɛ=MwMf^2k6b xZg7/>H{G xJ̍hU|hsK lAer89T.׊2!iy4ᾕ?V4.ߗ?m q[O?wMSkԂ.EՇuB|dDhg6 m1`(lIL3KoROH k7t͑ ڡSɛ:F^;"KFg2j_b%UiAv=jxwdp~>b8&K]1\^c&0OL^2P1Fc E1`sY..Hllo5A(yRW߄t&iǂ!Vpt{/Ŋ;xǒ_sc#I}@e `Xly[i 3ڎu_)6g$|;9wwZ3 7e@ -8?򿧠vR;/6 2?hmoMu ʏK^l7MM Hs9]|ecmM哓q C$6<5#ønaCz~+~ۧF8mCql%OǤ]^L.8LK~C%#\'5ԐH6VAxSKߺ-aQJnk!"3|1.h3v4 3m 빓:ke5 7ylVTaW/v83N!-B-6yX)wT>&?rk.ƛdNyvސ -%eG`ulK2JCM\72S7zlhɸ.UW)^LA\.הUu 6VJf2rmd9]쉾^6H?>gcSSObM/󣄿rq۪E.`Lw:Vǡ#gkT| ba\g8Pƫ3YƌW=s`pf*=>a#b̟U;p ezاPa4>Ǻ4I^G/No$ohLKvdE*HLKw$w 1Gb0*^ްdΡҍ%5}MxV6D_Ey%ܯAӫWn(|endstream endobj 477 0 obj << /Type /Page /Contents 478 0 R /Resources 476 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 479 0 R >> endobj 476 0 obj << /Font << /F32 25 0 R /F8 15 0 R /F41 46 0 R >> /ProcSet [ /PDF /Text ] >> endobj 482 0 obj << /Length 2282 /Filter /FlateDecode >> stream xXr+L0Ѳؑ|]"/, " -)ۯLT°1}g>޼TīYOI?~~SKS<ESy~(4*;~Y0 a$-G**QEw]/fd_ֺXyMW͸z6d5J#duzYE0X5&CBBOAAIY׬9ki[4'q+Q [QzETB , opS6SgL <˞s:Sy J,xZ1.eۃAѹL4YrwtJ8e]r0ZVTLI%U-`v=Y~L Qf@idפ+ (/8; ~Xxd1Qv]dv a9`!1ƥ;*a4V"ӌ`)$4A_ey21}2ZUIo[R R*$o0QD/,`2> 'x=QItU"WNކ'9SoOlE CMvo_ 8u +.%)GN8|q;k~z@(#)lx Qx1SJeY:-Q.\ OZ 9,Yfƒ_1Ua(( eْ8,W}ǯ`dlVb(lqS,ʎ}>*ɞ1 QOqˑ?B~} Z]!$%Z[&r=: 1g-病 2M_ʧ![:_4IbyZp5KJSe< aae>yf/Gdt%zJ'YpfmG9, #b5x#["吚-R3yQxˡ(G=*ʖ)CуLAxe)M(0Ve$ F/5GBT밲m6ܿBpf)?tyd#DJmM[տsyZ<8ZNPYMsWܠG@TfOvtGiCvwu%~;V17H/v( o nAD7=]ѯpbN RZhWٛ5Eendstream endobj 481 0 obj << /Type /Page /Contents 482 0 R /Resources 480 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 479 0 R >> endobj 480 0 obj << /Font << /F8 15 0 R /F41 46 0 R >> /ProcSet [ /PDF /Text ] >> endobj 132 0 obj << /Length1 767 /Length2 1342 /Length3 532 /Length 1902 /Filter /FlateDecode >> stream xRk8NHFY-3R1fTqvLo8 ]q)RQN( EiJi-(C}h׾y} |Y~ sT*d sА,BQB ؋ ҊdI2ʗvHD`υ aUh02X(1;|0X1XSl9raA0R4 ,Ǒz`oŝD;'?_ .‘@|w xR/a"~u28Ӟ9!bA@(eփ"y(.>|ӋT sy + b gA s#b"!0$h(cb,Jw!ilmӮd f*h*:dz\44v=6\)[P&HdVmnؑ9~<%a!wŎ+)́IձWUQ{_[~M} .X%vtҰKs#z[OvȝF3?,Iz'Stc:Nj_IdQ[Hc~.JZ?HHvd?БǛuSC[R F#C;Q${t·ƸicOi=MwtAɃ7Nϻ#؝C˱|y^sEx{{ߟ@_ 9SMc_eo} Zs8fQu|r೬~mț"Otv8r9(̥ݖݦUfe|ߩo+YH׸=Pԃs 4_p[BkCť]A2r}Qo W_ZcA[u;: 7kn?BS{紭jC؝ Zﲱиg4I+;LQ.C;=Mendstream endobj 133 0 obj << /Type /Font /Subtype /Type1 /Encoding 483 0 R /FirstChar 105 /LastChar 116 /Widths 484 0 R /BaseFont /WXVLDH+CMTT12 /FontDescriptor 131 0 R >> endobj 131 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /WXVLDH+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/i/n/t) /FontFile 132 0 R >> endobj 484 0 obj [515 0 0 0 0 515 0 0 0 0 0 515 ] endobj 483 0 obj << /Type /Encoding /Differences [ 0 /.notdef 105/i 106/.notdef 110/n 111/.notdef 116/t 117/.notdef] >> endobj 101 0 obj << /Length1 887 /Length2 1357 /Length3 532 /Length 1952 /Filter /FlateDecode >> stream xR{JM͒ Rf[Q &3pXSXe `)d 4& S!L&\@ tQX,@Bl޲%{6>iA/P0 4]j44#@6AL&Z_o81y'`'3L쵣's bE } @ !T@0>Ȧ5!HnłAGWw)qq.O?kA>\( /_kfSap]˥P#@40Ct0"PtZ(^R Y?!د V|?դBH[_jgZXa:8C@gKM##U .d#+wV/5lCA*;/f\au^GoU mBmڃW%GDGBOud@JfH𑑬ю. k  *cǙXEp܌B {veuf{:!] De]cC"ŶxŨaC!8\.(. ݣrq.w`=b7V 3PyGsWAGNSh^"w&zw&5t瓴#f(6vudxF4E Ӑ)) M遮 ,lCvԅfώF>FK_| p%dn dE厳3aY{y!i}|uY%=vZM-YK>zNk?mo'I]2i]z\'"1q } aLGnL|+!kBwwzmys[z%x>,nNMݏWZсXѪrVԄMN-8TOTG|A,},D-`tEv>a?FT7ӚcYH7f{!sHTT&H"0G -endstream endobj 102 0 obj << /Type /Font /Subtype /Type1 /Encoding 485 0 R /FirstChar 50 /LastChar 55 /Widths 486 0 R /BaseFont /CBUKSG+CMEX10 /FontDescriptor 100 0 R >> endobj 100 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /CBUKSG+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 101 0 R >> endobj 486 0 obj [667 667 667 667 667 667 ] endobj 485 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 82 0 obj << /Length1 2217 /Length2 13612 /Length3 532 /Length 14807 /Filter /FlateDecode >> stream xUX\Ͷ;ݚ܂ ҸӸ[p= ,[{E/Ϲ:ϡoxG9[5jVQ+1@Lllquu>3+dio'a.vV7?'7?;'@' j t41(,&F65{K ȃ jcP g* 4eFbcZ@sK;$d<6uq!W3X @ Ml<@3$E{`7wq)E#Hװ':N{SNʀl,MDm Y:KYM-A& _av/ۿ XdŴ4dS6{8?b7/;@ ]v&v 0rr2@o 0qv@wlg?/ nrpX6F+ `qtMmނ\;[nn8Lv/u6̿|]69Yv6@l_p~ g`E7qN[ڿrlcldOoۃƹ '_`e3{X 3f3/WpcY\`U;˿Ex_S?`abq.FosߤFo+XOjox#俉"F`7K||#ɼXF.rov#]o(E.ovQ{#]4F`7hӿF`c'#k ?>>18;AgKKK'>$Mfy~o57uM6_ ~!/X N!X/[M leB_r VN?_`+l|g`+lw/w6v;uݽL |rG_ift }_7Jm -,)3oWDZI)s߬~zw{@D2)ur óH*Cc] Z{)xYҧ_C'ʴ :{·\R8rzD|Gocoi;ޣL^F)%uJoZeyL-tlN0auns(Q`dE:q}"@/F=cd>-I۱m WRuI`V6>ѪT+ |ST`)|AG< v>M$Juϙ^a/~qg| JGwV ]1Zx KZC-)ZǞIl)D,.\J})5 E`CBº@abw79eafmh$K VHEkggÌ!*P^5k _{^>;Ş!cyFK?W3B!ԟ9`e>ςLmkP[!|\s 1&:r9ވ`BN6%dgDߢ.E64|}x<-=-lnAZ{=Lb#H|s8qDW% 3b{iٍ-5(TQa!|X|BPn2&y|Dy{UtƗ;B v㊩^2zFa}JjΉ)P ۏ<ڡ[%Z dQ]9 =}\padl[-g r讏sEHed^Y*Q6]dt0"71_5|Xڲ~|C4z?DkǍ<=~/ uk•C1i_h_E2`l0uc܃a-wow웈Ľ_=4>F- GrS!DW4CqHe<¯A獪z)sk@bI)ՃInB-nt5.6eGdVGVLxgUJT ov{}<ǽ`Skc7["QSVPzL"m ݃CÈև/$쉈>8pHP T(䰩ɤ[{.n2q>'AѷLnl4/(YX_lGbpgiC(*U|e@4-yԭ;^RP/ҚA\k}#g[NykͬڟJki~L ][Ӗ VM #353*E96],Y l/{⟊1Թ3l_z ,mb?p%U>Bvvʻ|־eSǮO&ե눃V}j0mnh?Ld'K9Sp a*Ov}Ɲnո# rTIILj'pPwwk5nb*} 71% tE^ y1Od".\L4ıCDuLLKBx+!X=^X<-&wje7$pF,pJ8+JBIq"AWrsvP-2(V94H͠-nZժ#<\圪&6ԇyU^vD%\G^aXQ rnLVե3㏁{ ڶI)PFe(Ca'Mv:5rPkD}T*1)_E^_b)+h19Hϛ,V|<FnV>dzz ϕIin(P7Qj8bB<ȥg6'•pUa[9 c-?a$A+BbGb~H w,{M0[W‰4ВvD:`M#I".K|27ЉA[-J5u9ǢǣCOݎChDVߊ\ykw_Ii{S֣Gv4F$R5&!KsҊ,H-x`.bAh:0 /Ia+1E3U4q u*K"re7sFWe4Ѯb>{_Dci{%ZA 4S]=ctC8?̤;, _nrz˵p2(X1mCN[_Zqm]G`|X,k䧭~qHB0!͗UwkU6]v]3xݪ*ɩD}R2Mc9:.F#;پn->S\¡BXmJHe.` egʷ;J-ͳzy".t>+;F;;ƻrq-8\2IԔDśT |\/tWxxhrGT k}l(%d^_r 894:W޲`#_?$EyA V=L\!ubr ް"C_fØl\g gk p@I<"QCdmo0([z,R46}$ADSe1?]_Sl1G"n3x3/&ZJANBh+hxH̩m["1C}jQf o }h!"7m=Ȧ9H6>̕/ 5R@-"b6܁+8.wb7͍O٥+[˄S0CơLDL:c_@gB1U;G憎o=r !EYm+,KN;&!?条5%? udN(b-@TpkEO߻:@1bHu~*ߍ8BD?(:.^1+[qlbsx=-#[swé{O\BzPT~J8&3.en]Vנ1L[z~5Dw4U3ӖsdJv ?Eiߗ$oܙe0 Aa>slO ǽDr|떯nZ!R'q󐋙u>''G "Na1ցd&꺓ul!藈9B1D r/nqx'̵]V0%_9W\.(ز/,emG$#OW'5X)eE̯ |iذZ|1!eoӃ˲LG.},?qnCPx/`iTr6us_khSj=C^w?݇)&+7`F(nf.ICnQ1;gئK!輦 `։ۃn-}P'd`A6}@538ak>E`7@(兂|jtDRwLnM}Non*uYix)%]|D쉹ߏ}~cokǯSG^Q;N /Sc& 'F4ChdhFRF*zTgp:X# }o&Yn`8| ~FWh@Qogy 4,Q0ڟI}d*?)Z#>9bqr |.eӒdq{ -ߓB&TDKs1t^˕.e6֑Эm^ٲIYm*$@ gd eETqH6!O){RA»?4QD0iDagwUӠ!4E9qt&]ϖ/e7I*Mko`nzƷ֧5?|*zR0ݝL'ߤ婆h~;Bf Ws(vJwbg03Y>Q 4!qʫ{/(~6ǓC9 f5͏?RVGo~E3܂7\?yQktk /na뉦z9ӛEc7l-}A0;dD)*?3-nX4suA 4,GYw#j稽&AUZ^ʉ)#?8o\uyv,3:J{(BȂ8@)/.l̮Fg> Nb$hz޳jtq E}-M_&63w'ky[h~dY 0{F!čCI!. 1aP6Pq:Y(%]9嵹7Zo`!MK)Xè!ܬQ}EN8G=Cߓ,=5mKb˯klI,_9-AO$ߩhIdaەZO᩶H^gx49?yBt3'.LՉ֥i'I9H bI䕂6ЕpZ$ (FMCf:eOl Y"h*$]zdIT!2#JLX=L, \?ZEݧf de}4UXfVK+RWKįRe nA))]$z8Mx&ˇ,:*1!?>4[8NtP :x6:̔q+p`Un0/,,B'3G%]|r[Tv2E/,\|42@U([[vͣq{A%8cV0)vULRs=.5I.YCV_HѨh4Rӣ_-= vj*/T=Oy@w"p˗ޗ%qu!\[HLj pbXK+rۡ5\^uIŲKG'Իla̓ߞzN攍:Z8TnKl[ސ Z;Y"Y;*(۝I[x6Br SڧjgQTvQ9i9 \,0u2?Lm y,ʡ6il CX zu8fLs#jIaYV[/b}b૩ Oժ@&@j-H%=+eP>õrfcJ8kp'}8 ֧o)@C߸8X/Z8Akۀ7P+ߠӹ)c|{!mSkR^-,46C-~yb.MDV!&2aͭ&7#kwEh>lǸ?E!( ܼj^ eZxq>+s3 q ?@JM; Ի")JyD-ΉDd8=ֺrj ]OV2$[H-<zy,voE}uoVFV _dN8{j}!b2OL}{yC*NS38_eĶEWD,a?kۖ?v$EȠer0pz0X58X13M=>G7#ܤu~#Q%#2XF;'tyjq45B^Oi#łxHy YQ.YE[U4y+ԔZ`vK9suɕ4S-*⫧>O0.8|Z\X \NDC2n#hey Ҙ`/sKgl' $lۊ"Q|&E|EJtgdH3Ԩ-e)bzjhseevP =BmYzٜ6u^߱:8kh8k{V/v&W|.<7+Ns= q3"97xB_ƱuN)j-I: a +aɎ<;֤4+m槠iʒS\G 69W 6Z]v@2xt.^'>|(Sf`"Dpi;'@!6|q![\1I[+|e~ MC!)6ޯ! /$_HGtuRiU+3 "'f;Ev#/'jź!*EP~n"LS '$[E>2=$˫-.n*cJtgeN\r{lلa=Dbq ai><c(NM:UH"&D-f8fK%`99i~MCB"g)-,U-47gQQ"L+MSP# TH{1?04kx1?&=O衋!5]X l6AF eV bbkk GخsR1.#A" Q .֧n{nqvP~6k/sGOv5,W 1*RPz]\<( T+Vd2WJҊ9,uL_3O/}U/R1& A>.jO1> ܗWyI?chu|,YC y$ &{`Ğ5j46gxC Z s>(TW4eKB5X2ntz?5jM6jNw6sBFuȤ[&Dawc+mW5B1'iV BQSNГvUEv+j?$$kkV.kj+AJ_ȟ˼V~ A9o6ݬL(J^ fM40пᇁ%W9lW[d}l\DT -:Ͼ$yUaFDkY00qG'?5C(*v>"ȭ{e|E@5>iY1Q;Ղ&`ݟWuaxx{Ue{$zj** K"##cŭEgK0ͪʐ0?1FZcGg0|xMm]~8,Њ-@rbz"4}D#uEُ~Qfy;maG8S: 郎(~Ǧw4 $Y&`TNJqbH^`Fׂpo O]x[7:ց"pT2)V5, |[GpgG5) thu\rqoqtnoSYjmq2p`Np D+gG igUJvH")I,[(=[ pnmYӵV:IXL'y )=|@Έ$a)ӳBZĵ?эEEEGPP8ơ8SN 4`> 4D)Q׼Zy@z>GDh!q<>K YXIڀvk̻MQ<FQMⴂF;YCݯ̶Έٲ)BWʊՔ +6NQx#0ĔI> cXqY;'O9xQ7V|._z8ҸǙuO׌b3"ڠEۯu(0->*[Iڠr1}=6pTaFQx %D60] Qn3lÊصuճŶ#E L_]|8 8[:k9O=h~{GI韺>-aۨIǭtN] x2.+C >Ǘ>m%"8+V+QYljmj(²A#>SmlFv.:Y}>Q-슞xJhk~:*WJπ2O A >Gg sEg% sUگDӦtG6M SnrdafTp$.Qmpar 8ю**ժUH]_ԑr#Fr7s_I8{RDhD%Q}[ЕjgAbyE:A&6Fu(8`M(~Jwrv-( k{TSe7my5( {>]`B^,s`="h!`P|X# ~2BzYTRPPq!ҨK11.# +@Uj! QY)DL j&+U#ga{/:t&n)ZڤÄ́Qk,k^ qy BjJ:,~R]oO2QWmE*ǽOcCE'a Vck\IqRauIk9֛z֛Fꄊ4٭5?j⑃ȥ{p8ToU6^ftXjO8Df7$h cz;Le2ЩɔiĚBg8>'iw=J8qW2]cwl3B)v3Kvrz! *lg^fv,GY Z}^*pRyFrSzpYO#WN'ߕֺcT2ķ_|~p#(q!1DЇrɞv֐q_{-`}Y!]($1JH0Q"BЇͣU~`z"!`T7Ie3D<5;NF*1pت/Խeu!Ib+]";l8Aa~̚]EŠ9yu{5bY[SKx)" )1/d "s_:Mb,},|GBLHe2ǵrD9줁^pŦMg^'*y=FmQ6#ha[#u. ĴJmdPE%# VySr斫ܔ⬁:4'9( v aH-$f=G+I :ye5d"V^icQR׫OF 8N%ixFYl`('+~44WS9V8E5!Ʒ>"=?sp$Eq=JϤ ޴C3+ ̻Lp80.l__޸$_^17iM"QL j1[n!to}fi\YI<ڽ3ojuH?KUP'v/F5aJ!Q%k$ome\Xث>.6?rԷutC_&ƧU雱ĨٰbCsz[" P'_  9DF104bT rtd!XxqcZJI&ī+Tn!-QAو7VBhc7QDg+3N9:1]cT# "q_oQrKLS]( ܋-T,BO> 1_7 & Yc3Id٤7(e/-39a I6[}M=cc >:gvH8 K=Q8^L58̋GtX͏3hb$y~S7JF/>x2!O^g9+cZwXQ FBf%rF^/-!GKnel!Q>l9J^?{/;4fg'pj_m'cwpdϞ\tN@Wljc/agY۝W2cޏ2GX^L3>|g7esnq7AǕk sU湾A{twu$P7a)v G%x{:Y#۠~hřЂD~l_mSZ;)k{@rl* gi%_oz5YwwaVT}1~4T[/]lHeŬr[Ɏ OGPTL8J +~o?qj7X0"OjST7#Q$W!'*HO*nn0džȇ>£ gH #y9#HO09mZcendstream endobj 83 0 obj << /Type /Font /Subtype /Type1 /Encoding 487 0 R /FirstChar 33 /LastChar 125 /Widths 488 0 R /BaseFont /JBWUIK+CMTT9 /FontDescriptor 81 0 R >> endobj 81 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /JBWUIK+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright) /FontFile 82 0 R >> endobj 488 0 obj [525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 487 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 64/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright 126/.notdef] >> endobj 79 0 obj << /Length1 819 /Length2 2070 /Length3 532 /Length 2662 /Filter /FlateDecode >> stream xR{84(Tr+5̘wr!ƨ44̅1RNBQî\V%vTʭܥ=tv9?y74@z(#L&Hg_a   оg QOFEp<2űZlAjaP/m*$>AOhK~^ry㧼tvb뽊I sF[Ü'Ԭ~$Pk}V}z,.LE[Yg:qA驛φĉTi 0>}i#%WRZJ#'b:d/^9B1AMV,/\ྌ$JϘ>BnTl\--Ʈu_jm']SaX!!V8H~gy`8$a*[zvr r3=>3TdC wY@Мtgy?tom0:. ;13';Zt8!!(JVxwSFxrICUiKa7FܓdIHˎ:Ri3CS UFQsQ1d_ p?LR@Ki.@]*Œ>~tALDWulY =) U"=Zn.w~aYmiS)S{E(+8Tpy:an nWt6tHaܲIx+l. 2?鞧k2\VcVeQ_!Zw>t1ÐջKvו1ֆ3 ]=,vxro bZTÍUM>A t8K1?I27U%ac ʶbה~wLPcE-|wVÆ.;5IiCVJBg6ruݞƈkLLԺ?Lo=E{[rƺb֝89sD`b B&1^cznrBE9yCC Ytf=]ɾ03f&yf3Nt|_w9x;5hЅȮx^[$^E[#ds~uؓ(KbCC d,ίn'?'Td1hx/OEcendstream endobj 80 0 obj << /Type /Font /Subtype /Type1 /Encoding 489 0 R /FirstChar 65 /LastChar 120 /Widths 490 0 R /BaseFont /YKXVCG+CMBX9 /FontDescriptor 78 0 R >> endobj 78 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /YKXVCG+CMBX9 /ItalicAngle 0 /StemV 117 /XHeight 444 /FontBBox [-58 -250 1195 750] /Flags 4 /CharSet (/A/L/P/Q/U/b/x) /FontFile 79 0 R >> endobj 490 0 obj [893 0 0 0 0 0 0 0 0 0 0 711 0 0 0 808 889 0 0 0 909 0 0 0 0 0 0 0 0 0 0 0 0 657 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 ] endobj 489 0 obj << /Type /Encoding /Differences [ 0 /.notdef 65/A 66/.notdef 76/L 77/.notdef 80/P/Q 82/.notdef 85/U 86/.notdef 98/b 99/.notdef 120/x 121/.notdef] >> endobj 63 0 obj << /Length1 750 /Length2 1100 /Length3 532 /Length 1651 /Filter /FlateDecode >> stream xRkX  PAAl #3FA:$'aTU BR h( DDUъ(J{/ZтW1`]կ3fk,HbYbbcX~$D)Q .'|rD}!g'1y*\捓G IL R֐*CH0H9G'4 j &)&@ c8;n(@,զjCRC.y(%pH 'Yvg,.֪Tz\~<ߵQ5@Ӵ$A!$> V=D*LU^0Ai$FIR UiD&&,pőQ_D/p*V_qFtHLy+yҬ\BH1^@I3͠@K@m >L )nxi-p %tl`= <H%Z85,t, CP%NB"Z(92;J  MT{/r.7o^xf%õ 0֟cK;0C=L"|[Y.?hJL?TN usmUFܼ3q\k=RakX?z'?ۚB}2/YuCg ^\]mnl|tn͈yfOg_NyC֌~YњZ"Vc{Yp3|V#3f˦Ϻآ<b55srImQ ZAm)֊.:jz> hu }E_ac~pv%V+~}zku M/ ٭x:sT6ef(9tecgq\n^zyb-9m{T)fjHRmwҫm3"ql|dr?&x3RFݏ0ݓ3y;Є57B=EKX?+>5zaءg<<̪~?JJiy9&|";-͖U #D-7/,H|n^3w{o .*XsAkco v٬R1gCUi€Rmw3>.2 tAΘeC:el73^DGש5%bTbds [yWwQ [UTRwt~Z4}3I64]񐷉bUb;g"Ɲ4]CcC:/1KWreZ͝= - 1 Fu&3?/ޫ.vM]`arxeOE+G*M 6+ v8*o\)ShG{WFnnes)V7唢`{;,Na1÷:bn %G yk g^jvS79|:)q=~x_`wYdndWq6y0}lμNjY9OFִʾe[/! QA5J*Dnendstream endobj 64 0 obj << /Type /Font /Subtype /Type1 /Encoding 491 0 R /FirstChar 72 /LastChar 84 /Widths 492 0 R /BaseFont /FPDHQN+CMSS8 /FontDescriptor 62 0 R >> endobj 62 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /FPDHQN+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/H/T) /FontFile 63 0 R >> endobj 492 0 obj [750 0 0 0 0 0 0 0 0 0 0 0 726 ] endobj 491 0 obj << /Type /Encoding /Differences [ 0 /.notdef 72/H 73/.notdef 84/T 85/.notdef] >> endobj 57 0 obj << /Length1 1749 /Length2 11003 /Length3 532 /Length 11994 /Filter /FlateDecode >> stream xU\϶'kNpwҸ;݃KB.AM77ZzWKE$f`vwebcfH(ؘY$6@~@ `CH88z9XYh%:ۘM]v Ջ YP݁̈ll sWY{K-{Ђ%`E {hȢ!ɥ@ %S҃5yq;G7W3@lSqQYWS`'B`i r+O KEJAJL[_O_C*6^N1'@ <_QJ\SggS/Dp_ z`_f{WHΈ`)_l`+lB_r 鼿lB__ Vwa0]sh ׻-m% 4G\[v0Mm/*jIPj]B Y *wn]3KtESBwm:^!'͋7\_t/OUh%56 ݿerHg4#9Ҝ#9#<о$ۚ 񷍀oeظrt]jpnIʡOv(rZVZ68Z+ RwYW &2ĝTt`l!{6.n`l]$ZzXP5p@F`BwyQ[P$!eR"B"$^b~PX*xQqkgwڭ x\eh*"fJf .Ic8w ,}~Tn+ {f9z;idf)ń(\9OcmL^qOʳ Ef (1 Dw(FB,#yHj4O[>J>BHJX6DJVx+e ӳ$ 6W4ڌ 4j}ʼnG2q)}u<-+Xӥi'Fi~"1x϶wOF"!pH:W@QqN|>[zu66#a!r'k= 8gT%3cRj " g@hWg[;+qQ$-: w`eV&[iZ)'tzЛ猉߆W "132jPa"_z.Af' elѶO1+ ; wiAC.bM -tzO(0#|бv9qCݶ-K_Sd`T̻k {Pw(+D2L˱!8j)BkOܐtm[ȒTU>vvfT_;X"꺻KTd}UfGLOL溧_ 1t *^NHfyoK"CI)zl#5&a.F$aaz^働֠ _ Pt4e8ڧ&0mUyS[Ii=(>]}/l?j{o Z_Lfz <{r7c^sN|Pço!>mr7][gQ/Ő~~Nuy+,9f/ Ez%\1<߃qDCMseofỾ,% X89їɻϟϾX:cOԭpqyV`Vy;ΗKVϵ9v\eTi,C(5QuE8$늿6) ZWjGhd>\T}+xIj4m߄vZ%R}{g B[[iOI|wa@}bɜtW|Uh5/ձ2'.erZK@&J9!J`|*S/TNN Ļ@Yi¬AhU,Y]!mȡƞRê[]VSu w8,SaׁPyζFI1xٙg ,г:g˃]dy:-}Xo[gj-]Pݏ<DiJFDIO$4!겾=$8SlqU+)P2D[h%GE\$$y5Υ3>Ȅ_%$:H/A1SŰT -E@Zxo;ҿT־5Yyphi(o~ٚ)&9.AI a$^S*RK?ėx0Yɘqc=pGgIws"tng!FٌX@k@Wmk-T?aG?ɡ,Xb>Os(O9On7ޔ(ĵ6'Dg h8 y` IJ9I|Q*&HI"!g SiE6PLO͹>%Gj"⇌FF蹘WaA Sl{{{d/&j{c qlmX:qmqBCS>rO§޺ lEByvܤ[4>|?cJ¹Z6>yq "_ zGOY!獂FV@p [H'aQcF }a,<}(z L@<ߺvpɗ YV8G',DAeNq7)ӑ BK5nMV&?['眍sކsUq_1q!w{¡_Hm*aZQc#n)H XfY =-wג^>,>7zrH,<6Mrw@f -P;aы?vrk`a 5{MlJ܊ߐ19pT@7ѵE/35g:p+Z|yAj'&XY<P|E. nUH|jEG.)庶\EFn~&}Sr7c5l$#&񽌼G2Q^AHI6 ӄj03}9\V_Ǜ=p%'8\6^G6ўfH؏XG:5aR}i20^ni%K L>|M˥oU%Ym],:{H,һDg=H=fQ>xd25Vc[$↱s7)ny0[gx4U4)i.jgnFYMN6qsU gX #z6(oIN ra7Cm+,paV&W' P/ ߉|PBW -@K4f[gG͚EY3^=ji)M)Ds _tx.*,xJRwM zu-@e=qeq:~ːȢL% K@ 05Bb .`vEq?(H]0PZ<{Y@;e׃l0w*H#IzbI0 =oNB}ɍ^mj.؃FJLj?G_{ <]T.19IX2vqf>賝+y&3G%_z0nG_Ay*4*ֵT{>@ HOsBrs)RA`zM(6˶2y>@LUM<(B5;bP(C>nH b^ Uޙ>Dph/ wF`Y⩛ɆB"/₹Ψ]uQ-cf9SJd2A].#Q.-#+q"-Z~VZhkыҷʺ5!ΗtRpPmxC'-0)٪~#GZg$*iP"8ZPtiG/64-OO,v؁5&yTI8ݼ{}ޏv{bIG4U X^ڽs`^9"ۏ#K(Q.{D1zvƇS~AnwPQjwX>t4"ee2&tz4=})rFќ 9$xRa sw3\o!驁n,k)f*3(,#Ԣ%NOU=N,iw[){ԅ/U #]+>!>fņ?6\ >ٰjO?lVБc _'}` .:ek-[Ѫ\I0ѳ Z{~@|+1a6Uui;XJCι߈A4l%Cex}˭Y!Fk!$ep忰o!9 /v1r¦[\c?~£8-қ( )L?I< c2U|x(V?ePp}#J'mr疅U~uk^`Ż\\䝳Pi T?'P',A| g!~fԇGᏟUHވmWAH!UA+g9R. <;HCf"Lfb=ن&Eu&|b )~>bd;u6.:LDqS}a8Gǖ|hbDn^bLvlcOȮ]>qrPҧ'!_zng4K{~M[ÖND^g ҩH$:Kj ]VQ2UYPb@ҟcqLAAx &U|B~}S޺g[Ҟ.G jg59#%qװE3GDFyγzSLLJH{γ`U<2Yd*PJh1bl٣moZbb -k84e+={;gk>Un(J!@{z9ݩѼFp1 1RɷVH*YcslᓈA`M>G{B*Hk K=eGx?9<-`B]S^7QF-lȇ_8.;3BS$4L:kcී}.#BJcP<.3=梿 ^wFDûЀNB CQwE9@miX\4/]-[][a>&iSϨM/kmgb*cݱ|p{GpĄ Mx9%5rjR{z~˶.XA[(?OZ M䑨grm顾֚a6'Q3"&ək`dGtR̦?}oR*u~KhQݺ\iXGPИbo঍h=y33}NK=ԣĐ1A4mȣ]7'dwWR1:c?WNӞX|+麕FA)"dd>N}{QCƁ5ݩ8ʽ*6'*&|NވJ=R}3:afc7wZ7~WKA+7+l'" ]PJ)d@ݛ3[ ,̓#Q(s AU*JFb,#5ZKUhAM{ykpL2.b[ZB<^i=-13_7X?,>oz.cCMP ]⟱|Jk>cٞi0٩V "8!mϝ}6tܸreM9EBz=(jhhߵrBGct\y7_ZośT2Qv"CۡZsblF!VsTx.Lww}׌"b4URb_|a cץWިC;.K4uRk -(*pB!~ј}WYM<+=6 \_9DSC۾lgj{k

]%Z=0P &Za)%rHgyHBhC+vM"^!> ΰk;vbC{o*rFg>FsJTjҺ7Ns.;ȑFղZZ|QB"Zd@'h'?ȴ {#@h 5\~=ohfL7]/upDkO"@ _3Ot6ASZ?q5gzb^C5QMQ7@9k^˹#a wEMY> ?ȼOv$U!|ZT ZZ4J>I\7X盆);a`5v݌۰@BhfY'uYh6t㬔ӌ5iekm+OCY[dWm2b YÜT{qOk6K2Ⱦʟ;%;0I[2S&2gi9(EDW޹C0l]Lz*Pڎ{ge|YO"o)mF|a''SJxRQ}`9 *RZMn31Ŝr_j)h R!Rַ2{ /84ڬ/o c9#<ɥr7'ĝa pԼ]\N|Է>đIb"MD XW2T@İ=v|`.gJx'k5܀r=tqCB:TO. d=Ϫ)?/5a\^] Ee(bXŠ5lXgW{֓BT}e){s(XS=-1,GkޠҎ žtˑӷwcqYj],o yhsQ~id.d]{ܦ5Q\_(AЫ& 6}>BÝh0np>2</`rHȿ佘䄸1 S#ɳ9]^fL l{ﶗmX InaoVZ39pe 2!ƗC L'!Q볨EVbhx!RweP lyUh[xnՓef;-[6ZI1RrGkt>dfIs䷑wZ܌O ?$/pVPZ=ןzX+:2!UĐu0K,e )]Y#Kx>"Dخ'6PLw3_4M`/,5Veuh:a1u(5}ݔTy{SƧ/?QZߦOX]v&CUH,X\nc~׾=l]QG1ppw[~vk|nN}, $"1J _Boj:5 r Ga[NP.ő6lfzySrpX)j ဏix{2[̑|^-eS'=YdByvhqa _xKXW6.-eH~hq< #3"$Bz> DYψz6mfeŸ1X&7ߤPcQf j 5?^p?e$Vݦ1GB܏`c bJWn]NW+̋Zgy6]^IkDHc"tleKQzZe2ᇁIEn_E qqʽm!rK Ss !ؿc X=7GѶzc\]Noc>jԔwB:plUW iYXtPxgUGb R%fs'g#zd wrϏ`F3UjXJ7q(^d_>6!L"e)>6On$*ڌ>NaCk4w$bohlP5ա}+YxiY,*ˮaB" Vjxqѕe[wYQZNb\3_iuNTMQ`}KRZݳ!^M9 kM7@߂wJ)|mS*<qķBj,ّ'g.%oz&4-zZ2oZ89.C }}\!gBX*P [S.VzDAױjCR[%TCi,ОsQP^kxCKtj'(Cb'SOu(XЭ~aWZPJӨ (dSpb-Tc7t,[PV.9dE6N˵YOxiqɄan5@頶|Ve~=l܆""uӎ*Zt 7D3=0a󭘱" 4I^|DOg笜_#+OaBA_45cî. Ijˉ=;W-B!-txģ*?S.D)W~.l _VA:hֲ lDXśԡTsBH_,7M]( )aיbN@S*>eH]4ƒ`2l#K:.[|`Z$5l{)/ZFBM y,xǽ3Vh}VWPWuGMG[ǹL-L֖ޫO}?n&GQn(;x4W 5‚ΝuM)($  b'}Vo#Z! 0U*ʂ\?o`_]Jd*SdzOLΐ&W@ Rl vH'L Owl~qXn{ϾU8yun6w; b28~>ßK;ZF}H^ `@1﬉zBwe@y9}|iFCiWOc+8| 瀶8_٣mOq94ЊޡMnw0iV*jB7Z1g; [QT(^2RJm*,#cAEM<(*Q~s rі3e~%::SHjʆl}KEs#h_endstream endobj 58 0 obj << /Type /Font /Subtype /Type1 /Encoding 493 0 R /FirstChar 12 /LastChar 122 /Widths 494 0 R /BaseFont /ELEAWC+CMR9 /FontDescriptor 56 0 R >> endobj 56 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ELEAWC+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/fi/quotedblright/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/equal/A/B/C/D/E/F/I/K/L/M/N/O/P/Q/S/T/U/V/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 57 0 R >> endobj 494 0 obj [571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0 0 400 400 0 0 285 343 285 514 514 514 514 514 514 514 514 514 514 514 285 0 0 799 0 0 0 771 728 742 785 699 671 0 0 371 0 799 642 942 771 799 699 799 0 571 742 771 771 0 0 0 0 0 514 0 0 0 0 514 571 457 571 457 314 514 571 285 314 542 285 856 571 514 571 542 402 405 400 571 542 742 542 542 457 ] endobj 493 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 34/quotedblright 35/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F 71/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P/Q 82/.notdef 83/S/T/U/V 87/.notdef 92/quotedblleft 93/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 54 0 obj << /Length1 803 /Length2 1751 /Length3 532 /Length 2332 /Filter /FlateDecode >> stream xR{<eX%)\kkl3vJ*Q %%%E.Yt:ߟu^yy_磩qױSA{ DA"L=n(ԴX:b)@#0(SC\0@в2/2 B,8, p XH @jׅ#` q(9 4q(@Kr @$&z]8# Kw)L$11Ct A*t/#Od:ұ$" $H'Fx #X \A{qm <0v;%Btf?M  #P*;G!: QJ2#$q^=]BĕD*|g= Γ )0B T_^AE b_{DDꈗU@l@ c~Կ q * +&n' ܓvټBV D}zgIkN[_y Z>>L;Ssĵ^p,41S4vh px#rg.[ R4\8ѲGmѽaPi$S'6H -7:_rA~<:mWc0[&3Y;1Աc"u>'tIYVʪYa1Go;ϐ)1zfIƢnk\l[wJnlϳ-YQfZolnxz&#t}FS Apkt*~y~F*m0&C]|2so|è!I6ӅU<&%+K'yo]0 3}.c._fs['vX";b7 p$q&UƇ[w/TXewZԷ ZnX{qL1LN)? Km)[IN1xk,(v 1mOUsrKʕ :J:7 ;ғu+8N[̏f Y!N/ ]7՞)(yԈx!`gK"_P@mf@uɜ2{'Sh%{%-K؛ië}sU2J$+i TN;h }pC 9 vGFOaXDܽ+ ZZ7ٓ}< ŕws4۰|V"B}ז=g&D_yyayg;3ugk2zO_.\h.n9<7AX {R~_S@swZ vDQQVa,\o0f% l#[֫( ).D;5 R2NK#-3m?ecK*^?ZY3r 9ieD?֌̲ ծ{U$UfciAR)jx퍩iuoZ6sD(ÑO- oy}"} Ⱥ5vNdǰ&-&7:ɮLT6LB*֙ٶ>SQJYF!PUty3VRF-?9FSS)~mARh}6JOw'?$XkޱZ/%_rwﴃ+٪9]4ѻE5f͋__&V7"l~94܍a> U}:ؠ=e-uJ8kS +k[8ާCvK*e!RԠJkX\S:c|zfq&(+qϔ`.)Gv,G$ppbk'zALd@1:3gy^E偾Z巔;;_|a]|6a[y's]"ծcwZ^`NԚpk|5rLR37/9NUڇgDA}_RzL=Ta'~aiMTؙ{ " ʌ]z":+qR//onq/x`i6PܳcoC>fro$MK&4D-nz e_GMe[*ÊsCR1պx*V U_~1|4x0$49UWwnBZWjm9 zjcr$d, 9?dhL_9uqU& ' p$KSXj0O#cOendstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 495 0 R /FirstChar 49 /LastChar 53 /Widths 496 0 R /BaseFont /TKPEGV+CMR6 /FontDescriptor 53 0 R >> endobj 53 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /TKPEGV+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/one/two/three/four/five) /FontFile 54 0 R >> endobj 496 0 obj [611 611 611 611 611 ] endobj 495 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two/three/four/five 54/.notdef] >> endobj 51 0 obj << /Length1 820 /Length2 2059 /Length3 532 /Length 2652 /Filter /FlateDecode >> stream xRgXS&C E\@% *jA  B.$Dq@:tEP02"MD@QR>7z߻Y{־{p ZBT6Ri`l݋Z 466l(J@L V+42@0A$PD$HC.__A Hd"TWK6T?0V& it)@mæ:3IHt!4a{q0 őUkPhɔ0H H~OuysI6 LP) Ad&Hr"3B7 ^|>t],ps" |d "o`_"t$;}PQ:}Wnq|l*>Dчw/ʼnY v$?z + 7&%*~9'D|y̋}{p~jUƾK`8˼0afZ+>=1>K> ֏:9M7eiGiw8ְ ;w0Ӕj $3ʵ4M;YÕ]iw 9n Gms_} (BGPŽ%3u]~"lyJx.['K{ZIx"9?níqZV-́ur1:AYi <N>[uO3DuO N|g.qo݇,QNcZvN=[ rQX!i)܄HߎQ1p؛?8JL_jn ٣l|.0,+aqW)"uW[\^X%vIR&?YTqlE2Q$B>pnXmEL>U2D:/ŸYaՌƎċ^ 1vƴ}B紐jj5v%؋vO,#+VE] U,D 痗ghkz n^ݿ؜d3NJT3B8qSc#x5 2%Ӫ\Xi"bLjYT)Lj77>&-a/IR}beo֘M[2_PRE_{T"D^~!XӆU6-B{DN\;Z˵q~(\`śRlb®̻pi_}4pqwVB̻E gz[1\iȰӽAl)+ʁ713 K ]i ٻSF(c;mj|y* YsʕӃJd>o-h!!nO\.N@ e?Z>l_[)`_6ᲝI"*cgm,[7oO0wJm:`{u~ז+J#VmeeB~tƃ[u +}kZ RKg9&7^pr{⩬>|B$|aNlc}Sy6&bvii#`e A֧ Z(1of3*%பx|LI:+=Ii/FBVS.6&fWj \v ;?zNnH&A]rr.] _tU2Ukc|r lGqk1Jnϓd GHb`]G{Rs[/;> 5+ mVbO|oBZVz鞼{GSț*Dn [o-Wf??߿v]g|aN-RyiNL=⺟ݒkC~Owsd|ir[ oԞ<6eMGWUɵnɻGF%f/|*fs}TC"~X-I477kWRkaVu{whߎqKa,(|+Q-m7Q'k܆E?ϜudJu&{_%f.|zϝ5/n[QJ:CڵYQk+WuYē,k4<Ȕ<&'VJigºE^Fcn q<6#i_F7sMdNcEi|8dJpY59rIUj`ܴ@< % 64iVӟʚS\ It̊'c>fι:o2z۰Åe7 s9p4{ƽ݇[KKp"[3LN?/\{Et۶u"jCCD H1`-pgbendstream endobj 52 0 obj << /Type /Font /Subtype /Type1 /Encoding 497 0 R /FirstChar 99 /LastChar 114 /Widths 498 0 R /BaseFont /HUKFPS+CMMI8 /FontDescriptor 50 0 R >> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HUKFPS+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/c/e/i/j/k/r) /FontFile 51 0 R >> endobj 498 0 obj [460 0 493 0 0 0 362 430 553 0 0 0 0 0 0 479 ] endobj 497 0 obj << /Type /Encoding /Differences [ 0 /.notdef 99/c 100/.notdef 101/e 102/.notdef 105/i/j/k 108/.notdef 114/r 115/.notdef] >> endobj 48 0 obj << /Length1 1007 /Length2 3868 /Length3 532 /Length 4558 /Filter /FlateDecode >> stream xWWXSۺ *]X (HIKRB R $PTH (MSzAAsw{wzc1a 񛚋q .)!hI f#% IY@ RXNQFJQFIĹQ.AQ0(0n!0T `(WPG?Nx.$) Q0pAa@?2a8@/Nt{ !8,#L c65Fhc(J>B[ø <`#J3BQD?wP4 uA#qIi _`Jw]BsIڙ=y "9w;k&+I,+@~eg2e-~{l-8E͏–ZSY0 C|墫Mx2~?;q59t"~q.fja,jq"cgYjOq086zjDOVc $ ٤(+ * МS'ۨVVy/0O>٫wZr|^:;, &d*>(6vEYȱ`m$VS׈cg_nyAjLe]zUs? \]pdR<158};txwsPxMnGkD)9͋Ku܅[W!lH ?0}ک!xeS9۪u:bFo,=2T *3 DZ`5WBC7vdk=7|pr5ҴGptS; vj)#ѡyxw~ J? U)o6]87,6!wP({r6U*ihctnYPkmA}"<uaң `2>teĬ>v7( oeXsgɜIl4+Jo`Ļ-;ߛޚ5Ӯ7^JuK͙tP(?Wpy~[GZ_ke^PW36ժu{GSpbk DE?G3p7\y88$M"~rF2Oq~s.:_W&&yDVgjU\1K i6Ǯheezx:ʓFȈ׉>x* *C *tr40Sc{DcI|D-ip|:#?Gi1LǦ^WxtÑuuVGЅ}_fe.ŷsG|o=ӥMNtDZ'de!uƫ)=5exK{XLE&^߾ƼJHPꆱ?Js7Zs7Eln_;wu("r+}xXc>Ew{zMV^9ӑsj*F"0)05bItc4r]z \氽%zFh.MKWqևÛRA}|kM8dP RK*4+6رŒfů{u)Y*Bϓa,\g9ث;1)*snGI BjEt{ŮGď*2,5g)Cj<9OEQϩ*(^T,J Q}ezS{~Xs#9Uا/;RڽRQi&5g{c2y΅MV5h_{Z#1Zh03)mxM7梘җ~Y}chfxtFްFBECZo:bd{_8θi貨ϢK<ˏC%64NȗD*U1nXv8Qj&xǃRnhe'q4Ϳov /U.d}IEpNm`;y;* C6iS)n7+fz2nnL~!jW9jֻ,fl =Aݪo-xFG֞zVl\3ܥvfka(7Te1JG( {C /F#TJy-'YyڪJCdWj}PU6$ԘJ~`NGX<}Vy`xQ 3~e W.ۆtw 5U[6ڮ!g~UGӞ% w^xz'L=R `rpvfal1o 4Wҗ91Z{oF,3a$_fR[L>]%x7#?.w$(e{S¶Z7SoV aaZqj /ϲ8>OQHtƼ#?Jׄ 8<|+|Jsax$vTk2iLXt:]ǟ}C"|(0JxSC58*&E;3X}e$.ӂKrc66>0ےep'ꓟ|.6h]2~F0RSbA+Z|F+A=f1[/߱PAMv2 yb٬rEGWS0wc%z+^8 v{Yiv}M7Gib)9%ЈnKC5$r-{wu%3M>ĐrޤȈ=D׌}*%\ƇOolٿtpl-r t};n<;F^Y\v";%hOK$l&ԧX({ IDj`q@X\lSs=+W9vw42WaM7bY9gl+Uơ3$uD\3E:p{[VkT{@7%~kvߢ떥 e^A˺q7T7{ 3`>+ֱ5вuWg573Pcm#;zRH͟RM1hF{5i Xwp2:e꼖<ƶu{% R))Nwm$7;'ة% ZIy@ 0 p(ލ_Jendstream endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding 499 0 R /FirstChar 11 /LastChar 115 /Widths 500 0 R /BaseFont /HHXHHL+CMMI10 /FontDescriptor 47 0 R >> endobj 47 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HHXHHL+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/alpha/nu/sigma/period/comma/less/greater/O/a/d/e/i/j/k/m/n/s) /FontFile 48 0 R >> endobj 500 0 obj [640 0 0 0 0 0 0 0 0 0 0 0 494 0 0 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 778 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 763 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 0 0 520 466 0 0 0 345 412 521 0 878 600 0 0 0 0 469 ] endobj 499 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/alpha 12/.notdef 23/nu 24/.notdef 27/sigma 28/.notdef 58/period/comma/less 61/.notdef 62/greater 63/.notdef 79/O 80/.notdef 97/a 98/.notdef 100/d/e 102/.notdef 105/i/j/k 108/.notdef 109/m/n 111/.notdef 115/s 116/.notdef] >> endobj 45 0 obj << /Length1 1198 /Length2 7345 /Length3 532 /Length 8111 /Filter /FlateDecode >> stream xe\mIA@Dd( A SA AC}g?ȯuZCO*q0J;;@@ %M9!@@0{I3TJC~< =PYZ9%JA0s=P l{aj8àl@1[[_7P'( a@@h$goW+` M&I+;|б~@!?A>!!?ۺnA|;{x^Y9Fe P{o=?5,: [6*x,$x=>]mwYh4 }~LBh +#HW`Xp7y`')?C|e .;bs;"يk;z6|?݉vv#`ۢ Zޓq(tX( 38#_ ^:.tnmʴZU]O6:>[RC@i=iNG#:XYf481]锽>=Za<죽o ᧨[S[ q[Cxq:i@aa*cK򗁤yWGGg #Gڷ;Ѥ<{'y1C ٴƼx لɴ~J4m~xDJ7ۓycO&ى%/0 ,i3+*]~+hDRx_ND:Lo!q32pg-zՃ떼HT?|Q˙QzeMEE.0*a]ШE[x^s1khFmrn7Z{ NeZ뛑=D>Z>췲yU6SaFF4?Sf})BuM;Rkl4m81,Lɜך?|['c3\w0M_\hbvPN7V/D3]8( D m5-c^YU ./~ۓrikϖw㈐_ƶ  _gK߉3tO8IK`m;:GH|I">e[Tgf@T uTJwS_c⹹1/ Bb"5 3¨"i}nD?YO)Io}_Y1x D/qU$Pvs}kksx`ي:l@ UlV+k!RYk2IPs0ʾq S9= POB]}ow.ob6O(EƬDLL=i tzTeNW4BxpuLz VnQ#A5MEO% M{F[aF3 s!MB&GȈ,^{Yr0ꔃ{ C< MA!ȯ"p k1"W Q?O(qG+ezyJZG95h@lk'ؙ2-NKdb:E-*#FLFj v,Rtlq5z:rvsOCst~K޸=x!:R"mpVVV.XhW}̈!Il*qɤ5w*ħȋ'"'QވUfșç 8)?̓Eu* ~~vU.Xъ=ZyNk;m`z=+/[M88%BJ[.H: G*Ă#J3:Ppa"LޠT@Λq[E[nV{=U//m?ŷ!al̕)5^?h3E+4͓".%7`v Q+}qn"*-n=A)2W\VdoyXG.z9$X:'?Z3k6qPrzei}7MdD_b=+~zF9(:.Qq L@6OfD,ki|M=꾕O H̏W^=N[v_ B^x-("In0 0(ӤcA j/e'+sѫ@#zN5T>%%o6 + L&A?5hw>/L|imN!"E#g o朜IAA!QB2F5\3+ti_C0}h|F`JwBZ63u1bNZd#)]Z*YA E$wbu:J<W8 Aqo%H`.qrԪEXΣВޛbU)&[-2KRl_r8'^Z@%naXQLV\׈e?>*1 D/w4Wδs/캅*.E.2+=5CWtHI?[y'1u VXdS"R}U>qYkH'vV`Set/Klj >c9 c4*/0<Ƀ1! .ER?ťBؔ,zY @_&1ͶYb޳Vjbp>r,Nՠ~ NưFu"K'Z?s\[.}[E^McZ-<fՇqXzX8b3xթNA~!m<_VvE!zw'B; M.gZ}HyѬE }tc%RH 0詛⎍" 'ц(j^þI$f'.:[dVGc<%`8cmm 5uM{>f_Xs#RPpjC=B90\xq k'? OK>ކJ0ƦJ1Fs!oЅˣ;Nt4CUK#7)+QG=WGKi :13(ꥬ8oKV??5˨v|" ̰LľY]S$jޫN"a{%9YwȗDs҄~ubLő̢a& /݌i ҥ;T*?+#rr>ǷS}$qVUeqNv#=5 aog$xi f1|9Šx9VS#K[Kzj&*z6䒝+$aܼ졦䝼:*V) 06QA{'UUOmcY%U7Z}VD}'yǒ oÎH,;%aA}RM'Y '~V2 |&~'idWBam6fwփy2\Ȼ3!^zrI?k5۫+ GM`85n|?]$m\9[/slLҬl4V.x7IdB&hޜ1vn 4sggL.fH=q 8WG&(Y 6rF0+E@1Nq,ﯮŏ Px5{U:CF>VR?w_ϕH=ە[i<'ħn &ԋ7k{Wkoh 伪}2N{m ▖ٲhzοư) Ka4<{K LMĥP@@MZt[/)x Nnzm[$|U%T.TbdnO&g,L/ 4ϲ WGI-rBj?"G>v~7?!0t! Яr`Vm=2 :5A)~3&XezAIc6Y)g"l~Ȟs%|cFIhaB$.9~$ڙh,\A^i\^[O׶-̀vl9' KNX.k&vf-'fB OL ᖰ`ⰛQQw㿸=eBIt6CƌeqSRBa2!;*29t%/wi>^-535Lf4{C\206ċ%>=0D^cy7kcŬ(N/QpUX)=đ}Ց^! b\mɕyA/׫"X6Y-Rt.0!3 iIlp."쬰=$24?z:BH_gQalQx_R ف%伝.L?fBHtV* N~%DΖ= $5-v:g.슙9:aΗ ,Q=t,0:Yl/F #ܹ0P'_P[~Jc>w뫳M\$y]'ӭٗtTv fjt۞'c#Mk7@U/ Z2G(r?h =xfPDff!mԻ6Xl mI4,(Uk&`&g`M`͡(4ˉ,,8htORcQ, tukMx:eFرz=ZHBl-bӴ>L .1vx]PBz(W_Adž0NΨslY|i캓OJodVị\?ۙm uxB&~ZmpWZFŢԍ9,_\RdN(7ρw>1;6o(8 w;}4/ܰæ2zYU,i(о03G~[_q(m;+ObUZOx`2׈C0R_!H~i%ӹyEеGԉ8 y8$%Px_'~yѮ4ڭf݁|D]#_Bac6^(75~`zm r,&d(uwӢ0O Jb'ouY*=ghAPuMfPQl^%hE]~cQV|koC{7zB0ZaȈ*K|oJYM,,,4euF LkA姄jInJ7 &"ίlvU&>ӱ[PE] z!XwiQ}#|QvAT8O{% >!-VG6?x0Ot @؂'+I !Ǜfo &oPYOǰd'ĘfLKfoPISOzkAkB >ih*lnkD':2_-uQ]# Q[<#d:tod%1Oa:< 슘b / 9*T@,Eky^D}V~O2=om`a?$1endstream endobj 46 0 obj << /Type /Font /Subtype /Type1 /Encoding 501 0 R /FirstChar 45 /LastChar 121 /Widths 502 0 R /BaseFont /AIHGWS+CMTI10 /FontDescriptor 44 0 R >> endobj 44 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /AIHGWS+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/hyphen/period/two/A/C/G/I/J/M/S/T/a/b/c/d/e/f/h/i/l/m/n/o/p/r/s/t/u/w/x/y) /FontFile 45 0 R >> endobj 502 0 obj [358 307 0 0 0 511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 743 0 716 0 0 0 774 0 386 525 0 0 897 0 0 0 0 0 562 716 0 0 0 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 0 511 307 0 0 256 818 562 511 511 0 422 409 332 537 0 664 464 486 ] endobj 501 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen/period 47/.notdef 50/two 51/.notdef 65/A 66/.notdef 67/C 68/.notdef 71/G 72/.notdef 73/I/J 75/.notdef 77/M 78/.notdef 83/S/T 85/.notdef 97/a/b/c/d/e/f 103/.notdef 104/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef 119/w/x/y 122/.notdef] >> endobj 42 0 obj << /Length1 769 /Length2 782 /Length3 532 /Length 1334 /Filter /FlateDecode >> stream xRkPWDvibnM* U< Qu<|Oՠ_`u㶔;:*#CW/5#n>k6o0sޔu{BM~SL~s=SBͫrg_kqL:uTQ8OUdwԗׯhު(66tMA!Yw}4P1MÒgr7߰ !&?2]/"Z>ѹ7+n+N ]-hUtԶQXQh'd7SJi,ZߕYsyJ7iu>E{YzEaaؑM2ٷF]l t2jlp_~3{&]JRkH~ki*Uo Z[.s0n^4o>Yh)E~?f)Y7#n+>kdRx13yTva949A/vzyq*I Oendstream endobj 43 0 obj << /Type /Font /Subtype /Type1 /Encoding 503 0 R /FirstChar 0 /LastChar 3 /Widths 504 0 R /BaseFont /EQPTBJ+CMSY8 /FontDescriptor 41 0 R >> endobj 41 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /EQPTBJ+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus/asteriskmath) /FontFile 42 0 R >> endobj 504 0 obj [826 0 0 531 ] endobj 503 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 3/asteriskmath 4/.notdef] >> endobj 39 0 obj << /Length1 803 /Length2 1739 /Length3 532 /Length 2317 /Filter /FlateDecode >> stream xR{<4BȺ`6\&6u0o˶\KSz{Ԕ()8t%Qy$XrF9=yy|LHL8tyBg PܩVER ]0a "Apb 0!MgX0@F3G"P&#2a'`,,? 'o)sgiJBa.?\ w x?K}oA&y"s 7 s 2 x9<}ȋ"4a,F?,ɅoOGm1`&ē?K<@H#K @<&(@<) [y%  g/ӂ6du(y Z︭o Լ:?ѕ?4÷I}QܵG:orDכ1/n`?Kfvs3RFdQ mfaBџ 9q>kv:uqWW70SEW!e/T]8Klt6B41ȚdzF*r7mGQb DEz\rKbؚv{oι\F+ N6Iji%UeQowt$ v?oiygZ8 skSlRH LBF!2 3xT.M9?qlMS`=}P1>VbZս !_,6g3ya=]M,(ŜWm}Ʊ,v e()),%n@(³D})q!İnL[eU$ۍA_ D\<).gtk4$W8 Dڹ~ΦЩldYضygqq@'[=^yV'I*|^t/`xHNEy/j~ul;@WoaaI_F6N|f)QI{<9UhۙHekޓF{ym盘Ew9"E%}ExE-Q*!R(63VúܺPV0?70`p@@sendstream endobj 40 0 obj << /Type /Font /Subtype /Type1 /Encoding 505 0 R /FirstChar 49 /LastChar 53 /Widths 506 0 R /BaseFont /NUKOST+CMR8 /FontDescriptor 38 0 R >> endobj 38 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /NUKOST+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/one/two/three/four/five) /FontFile 39 0 R >> endobj 506 0 obj [531 531 531 531 531 ] endobj 505 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two/three/four/five 54/.notdef] >> endobj 27 0 obj << /Length1 2043 /Length2 13075 /Length3 532 /Length 14200 /Filter /FlateDecode >> stream xUX\ͺkp.-;ڸww-wwwsI>Q=k\MA dlkqb`adȩ0X((DN6N@ 77+@`a PDlM͜"4tY̍ lrNf@kFV[#s;#@ e#ḧ067rMmq1p;6v&#H @/MH` 4A`U\߃;[YX3fj76rvN@1wU[Nhll[ ̍lLGn@cEs'#33_1;f_LZrtjT40qRuϨ3hz̠eu*&fcdklnc `e88#,scfbu]͉7ec0 }0;: Cv?+ojsW/ǟLv@+_)3+!-C{26xO@JfvfwO@G&G+G t}@7ak\ANfzMl#h 7G_jaf٘]["6) >7 ArqM9; 'wE@"q;Jh T]@e T]@ T]?NJN*Zw;\ N 7E@.F@m p<l7dzܠoba 삿=8{)Ǧξ{h\˹ؑ5\+L&jg)R.ukwgrpj[R*ڗ~ YqEMZcLta`*=˂?$kEGa%RVWDa;GLBbJkM;&!8ޠ,5$ l82XS#ded3k5N` .@ Hf"1'yܿ0ʷC_"p)-%1]X0 W ܱ+#mv'b>cY$–BWT !6r~Ӓg#/M`C o ߉V6%ͼ`UHċ:^՝w g6ͭ?^h9ڝ(tFPcH=&ֵ\bd%1T6?huA/1I{?Uq(ƌ5<1%gHU9`*/7&ݎX2|Zri=Y4=[q~~gF'ޡTY.3I>~R*t"1d_Vr ġ7ڮ+T:j0n}jveTIJ1h)sߴӀO/؋.kt?NTuYY:?6Kl{iy;l֯2Dl׼IbP"'oKYN͑rgRt+u0%^K)yM!N$]ܸR5W\ 5󘨾5,Wt6ϵIwq+s.MTPl' `'Q z˓L/r&bk' p;:J-lE,MBdwa~RG5%!XfiɌ؄.Ԯf ݗä3g;oGզ4e{[R ^Օ:ܺ9b MY:Q޳v᮷{6#E/\mYkY9)#*Eٷ&M& /2>j'79BdQ |UT읔,g?ݣ'; JGm`Y'MIvbhDMK|aсJU$#W:!+ NSQWŐ qXDqB]gݨpE)aaݞkvBe}zj!gi"af:16VPԩJ:6Tl_ Q4h? !TV>NI ŴI Q][H+uG^7w+XXO$>\=Of˖"AGY_6Kd<.&vd5g2$*pzz%J4JK,A9pW㽢{7i D5L˼\>~z L(2$t9E{#K퉓M3zQ|2O ՟g{JIާC˅*s'gU{S$A3pQ|a^-.J fcYiQ]U浴we1d@0*ՠUVpr'&/"% RzS)@aJYF~ #h-5Mp9U)EM %fFܰTtr^h!2lh=gXҚ3K^/a|I[%w_%n3ՠ ZW"mOX(JDS/R>?xsSCޡ\.5j8~L~=)U"Zc,в\OFP*}Ss*IoԈ] uYu%/C(\:JgM3߉hUhrpLp"7G/mk$Z tثL$ſdie wq/aLq+YDfU@Mͺ/qMV߀oᷢzW"?œUH|jγQYCHSDQaSV)o5-4n7K҉):{.9I'C9ĠH4r@&1L@ ]FQq7Qp(kP\! )sH r6! b%FÛ1|YJݻد'Q?Ϊ_pJ Z^7G$Ygݫg|4( [M#.2/gADq/c&o"ĻjaHFf{Ôޛ/Ԗ*U4*ӉB.ij_('Vװsӣ7:2iZÙh=~3P[܂_:lP۰r5n=5GLH}j,ayt.Hbnl ]R'䀹`,KY}iđK*4ג !p(Q|3n{v,Ďm\jU4rIQd}>%ѽEx"j>T#kiPyR&ʨXU)(WɋfA-eȈ8s%^n}p5n}_Nnj񀓅3DɄֵ_f3v!2}y;<4TZU]x6Gr{r(|ڹYl+==O^}axGU0* (g/5Х \:rK#V{V6Q9aRbG sPvprl*>ck/|uI\$ ɓ\jW,7ׄa, z 6Gzԗ,`Sn ʫKi,289tugMo^DQ /g@M=(=zX#W)zp6bV [l[zR&~t!p)%WgYLZr =A0k% Fʼf7~BW "ۺBc% RGcU@Ϭw-E/NkpӞpFWW9, AՎVL;plhk͋_;Vޔ4 .ӴUc+QD^Tʇ`>-7=[Ѹl'T:R]Ê6FL! ; 5  $%%V^dwR) '=7VAɅ7< SFIÈ=v+0Q[ێ˫ȋ2|KDFz+כةj z0pM4[:]S-Gnf '&#a% 4%5.\@dO0) 0<1kPP!myFa6jǒ*`~9g.B<͗VԷLTWkk,]4OgGGL&!3+`?wo{ $ ~tpѻ 9#T% oe䫔Iz f&I1&XU2ƿ>[')ت_|B;?:$݀1>}+lZd 4 2mQ< '36lUhHcgRd9l-3ނ{-*,^UDZut nROQATAdV,fr0dah)lV|#5IdH 8GZ;b},kOs "㥫ΕNSDz6,%~i.'eܧ.{7I4fYez̗t3 K78GSW+3P4ٴY;Fk:Q[%-FF';/ûp GV3 r K_N[\*nh#y2ᅱjATޗo(Ogp6.V~1ɱ_{Nr5iS#p#+`(NuU:uGdAv96eTS^v&z00!.rHκ~tb% y2nt~C0"nvN#j]'0.\vp+: x-Tf$+tV$;T\nmX`x1Z-dM|7 ;-G,s8lʶbId1!E d菬úMv44kE =@BY/BPS>M#˟v#`ljS+#,E <ݙT ?{֘]? wRVBp*oІŽxX)MSV'4͘f/> #S@nYK99Er clޜ4R择éiUq# @$A`oz6e@`u}!Չ#d3Cc9b!bF̯omTDёBt;)o/gq~p:,O#.-Tg(D,fj$V0Qh٨D<< J^CX ur3|j$?&fƷtȾY8rN2%;L44f+8曮3?Ajt𠍬ށt$S1kYf/.# pyF %6,WalwRNEa1)M(%ox#KqYpi薆-"?Ui`XU-|?Ng10/ ? Jv=`MaEK% Ll@C֪QʦfCOL^ˋ K4KʨN~_`h@ '1#qH?zNgD1ru&vC,|][ngƪ苌] BJ{ZCA{sE5w$Q1[6T5[$% "z6LIڟ_ɹ7p{nZ1sؘs+=ߊԓHxmh K bȊM@;kאG꺅@ CeG_$MWtPj}ʋx"s[TlƤO?0*XxMXFO³nY6 CG쨑PDLJ |pEENU-Z yo)K6GG``Sn©cRּP$>`N=^'W$*Uq' @~-5iY.(2 긽4"1+U1EӀ0t3~P#}E/% z02#l598NZ$?8W(W\#/K$5EcFKEn*.BPm q;5Vx^Է(dߜm`*oEK*%[Tr}kuy+g[|etƲyXX/p ' S! j};?'sMFٞ1E׾/`bX2m%J갴|ރ 2[8|&dJASZot<{.䙰QG>Y€D6M]:y)PL~a|.Eg~ZƗ'0(X A6w=;!N#~tR!P;5u%Çˉ;PgAb7#pN-C;W"1+ƪ=bSqzV`>!M Bp蒖2J)Ek@Ai$66СHAC].ґwr:VlQ>Y8x`pMMx~_aPNkk0݇*E?1+Ф C#ˮ5ҮχYY_U#"Uz'fI_ sx!P#-Mה1DX@B6e]x:L-`T2 3$T3U+XQ\s)q'=A:'jl\Tף-B6֓x㜙3ұM(U>f= q&FY)Ŧyͭ<eE.?3c9J0߾J+'EAC!y%F鮄O¨VA$,(8>k]d~)xpK]&d 0r ?4&7 N47Cg>5v!xsF\k1 2O ZSR,K*G/وU5,5Ǥ$g}qY?Jub-ŘUuȵ++g>\K"fa[[8%5ۭ01&ܠIegJ]ܪӃzb"N e&I8J-V#4z~fhF0N7#SqET:I줳:l;z~>j{Me38(I>yV Qn֮(04==Rċ ҄jkʼ1*2]D*NH;b/ lOo?W!l4h3}Һ }+G XTg<\ 4޲|hޤc9ML-lWщcۼxFQ#"?e}x<Cm(+TV#lޔʴPH+b8ۧT! ؜tC0gVFJV)7$/2j 9Q4 s$FۦI f;2UFe ei,3Uηu|߹IOz%8zGpom?%)\ݩF?7s<0_!ᎾqX G(AqNV@7C 1Nx1Vٍva[<| ?.<*˛#O: {SCMy'Wʠ^='6Q?5kl`\o-~vL>)p?iau.7ȨVyZgY4@/tz?^q {FQkީ}pe;oc8H3 2~>h"(;59a=x."UU+\@$SQI(eY's{97ؿ6R?Q {S[貰Ɲˍ>t ОZq,͵9H&,fǪ30ـ@UZo[ə17kbigjR\mZj$/`ag l2{=H[KrTE/*XDLʿyw Le#GInZAmmU\ hx\~F~3&PDO#]6Sbll~ CE^hJ<m;^Dzbw=ͮ,7q"3Ŵnq:M1)1bq$2~K(ÞiLZlnF$.ulQ<`&Sl23}fG?DQ<誷-fRnNi.[KkSssz6aEI<_{y\w%80r+k`c9hhZO^^)-I/wN 5$.!m~Ok ̃.3Y6qB7mu4wj)ƷF'3vmLx19a{YzEZ:)$G>Y^YvQڻYb5\As9G4F~OڼXߗ\=ItNR=VRTob=$Fu(x'B/4ڔ(oHRS=1gRen!rgVl y#.RE߲cg cKZ\0~KDmfF[z0?$ksY,:NJr~pM)Q~tXg&b~#2G=.. b~f&D*Ði&=R> R5x_qޒ9efJHF~LYr\: \nVUP٥!Yi.9ص=2PyRWUn;:`|83]b }/[F ~)}RP|v-(,eNp'dc]B]"׮\׊% /I>xo]m~+#>Zl[,=mlmZ& `ޭ:=2i2j'/1Wg;HDݝ;`uLWȑi7O@VObw&2UDPs&H ,e=25P}GpPwAk4'Ӷ)(Pd1/>+5tM@U~_7}PoSÛ`B Ze^iq%Rb*fO*gnMJ*}vk Fg#%Z!Ҫi-Gs y& VMҧ䧮M!7uQys KZ/ם_'M6_#Nk2cƴzO|cžxMe!S^aD +5sQZi$lͶTžگ˻ :wO0^E흹h9tlhR~Y:>$@qfKG^LˮԸ!:^܄>h8{Pr;8 # zt籟L4Q&@Otfo!֩6~DZy'!tPb[/n񅛵7lАЉoV螏 ǰ Cſ&"}5ˌqWk{bKu-12ןP,siIyg-0sml1 c.,iJ[e=>hx.2+ԥ(c ÓnT} ;!(^JfRҫݔ*w =:Yvt95;R ]x/^ "[)8@-̲f<9l<3?ZѫԂ-RkeZ_jZ>+7m־[taz@>^2T1&P}$4({ %`jڨI$0 U~ WI27!sUp5!A04>/I]!FRw}<sJ O- 'o^q+Tqe:vetzqY_hTg#68袃]lb˚ ^GNFl*_n.h:jp9H¥17G̴݀M1}y+Fd딷U\*6Y?1{d^endstream endobj 28 0 obj << /Type /Font /Subtype /Type1 /Encoding 507 0 R /FirstChar 33 /LastChar 124 /Widths 508 0 R /BaseFont /RZMBNX+CMTT10 /FontDescriptor 26 0 R >> endobj 26 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /RZMBNX+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/six/seven/eight/nine/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/bar) /FontFile 27 0 R >> endobj 508 0 obj [525 525 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 ] endobj 507 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four 53/.notdef 54/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 124/bar 125/.notdef] >> endobj 24 0 obj << /Length1 1660 /Length2 9948 /Length3 532 /Length 10895 /Filter /FlateDecode >> stream xUX֠I@.[4=%h!M}9rjw}U޵nJRe5F3= `ebAV`  b`crsqr R=@V`_"v@=@l ajl Ps0="տf8T@+Ќ `fe -27wp+lG@3D @@m=f@sDfEH. ..bkhlw鿞Yz;G0Pp0s_rFllke*boa +d,i4SZ̍mǁfiꚚ*j?T6{8_f  y$7u0N.1d9x̀;Ę `Bk;YF63eV6fS;;N%w `; `v5v0~x v– # .߁*rcDҽ" t)?՟"<l{dYB7A&\)Q( I&H%2 O7A&H>ɠ@2(&HT$o4J7Ai&H>eL~$?IoB*!B (Y'?"eB~#+X9+?bB@_X@r!Vnr3+?boETݓr _1/估xoM]@ =rIͭ W4E\u0Ni#QEcbmT;R|+a9'5eX;0;$nm^*cN3;F; /<nZqR9%Caa2.2)Tk]wFdFhp ;*zӗ077+>֡MKm. φfcF7r'(:7~%. i>U<.d^DeLS_2*;+ u9JeQ"Z I5c|W,tG f,^>M~j"RVdRȲ/KIpޭTiP_mzY R:BiShkE2 זUS"iϕ?[ .ɤĨ I V}ܗpIʭ;UB?W9khsmPZk?:a&X^F`S ҳA.T#i崯~`5zEyŽK~Dca@o>U֙&T! g蒅{iO%ٶRق'C\k>|?kϜ*ӓ](>:0sF.aCm ; Ge58aq{:'tt"/*&؏p|SQp27MV4H:K\Pd6qD]^’{p(^˥'zʬ++&z55Bfy";nfd1#\oU&.s031XȮ NwU+WD.q}wJ{PkܝLxw1rO[iss_ E|`!ʪ Dxhk|qRcjtDd wDPZǮB_I)0/21jYA.HԼݣMzC|cr/P׿rax):Y..y*0]$A˫1P0UJ}Xbx{y"sdg5LH}*$_'͛*#~!!~jcVԬHLn82ii=B2Ƽ~i[fo@KTUx'½zD#|F-&~Z)T2"/:لbk+U ׮KV 7,PoqUÃN44A7ʬ[vR<ه<*l6nM.fv hYb(4lBŜ⍵IA+cez_84Q!D ۯG%8[?hh.4˘KLMʽ0=;&uDc%E~)oJ&nU]t=.Y;ڪedn EwΑgIil,-u=pGB Fr;HXQzwU[`M݉$(~nn@7r1"qfޞIⱲgkjVLͣ*ZdB,[ MP DWWM:8!9 %{O , ݆*,Ϗcv*\)F H7Ű,93p}_M^ZLIxp3d 2 t=֬5C Ė>ak3Y0fdqؓi@$WYZ'ƟZ2p&j۵s,EڧDHϸ4t\:P6QlfEX/d4\BiXr.5wpH-0.|"^\1bd흳]X+p}Ɛaa$%_p$Ƞ͉iGo"_. zldPF)^#G# U2/.|Ah@-]]e[]zya%q^)1si K:P$SQJP(őxLS)Qցt sm_g>'B3^!|l"#FzAVdh)'KWߟ:l+['d4r'fwesGd҅ͻ̻7 __#  Ourg Ī8oQ/ݏtf{("VE˕k[dOX Nx$;<^>4t7-޾1] ӃIT|<X%0qE]u2RL SJ<ǭ0EMK G>v ;n''HxK^%3a!A;s)C}ky&& *񍪃άV26 1 ;!xD޶*TAыYK,)^z{o;Zu 9,o gUWw~.g$u|P8ѤOV%򟒜$szY &4,߃4WY-CfqW a@; pKVT^jZ_6)XgGQ\8zfsD7s__۲4`jEm5 »RTCgv#ٻ>5dFQ^;9(vGB8ǏG492u~fcR޺9ָ#k|%0N{*YE( Uk=xEF*q 4q4=ck`nC=@*ૹKr_?.~ 1c;w<#|uOlP~8"w,r3U|2Jy@=0eɕ2)ޮE`=<^4~20r} (+y7ܭ&guT,ǢϥIw%ͤJ}"49 ii2#O<=O+lo/T-3l B4%[O3rx4c گ@I}}*;N>e C=Ԯ#CTEѾL 8Ǹq px+L}\g E2q1=׽I5jh*K\$FvaOŕ%iR(ۏT9 <΄#>0\DjX;EiA{6•S܆ПThNzc2HP Dَt<5)[kx'nQ~y4Sf@ɻ7͛۴eT^ɢTÉIײhb} dȾ.\]5U.oh|=AluSNT|pOc[j9YAb簑M}RpɇotQ!&T%b?:>K]Vq SVJ}rCJ8gwłm6WpeރmĆtMyDlڟe#|q섫OD?UC>%&^Ř;2$} ̐Mڋ!">ճKſgtH+:wU벁_*Q0[ xtdyvh x){UU] ڲ _;:ʹK(mo9]Mgџ$R顮.d'm}2 ESP6;%q g=]; ZF[@Z7IʽkrY۱&=&-5 XN.|B}n/A6u/Jn|ogN)~zLrl仲z< Jo֋U|JYvר 2(ǽ"L;mWu`ρ|ʇʓeS~x:4qXQ]?sf Udo 9oޤ~t01禱JWC ɴ,~מRTTad/zЖ-ZXGz˞[ሖumNEr%kКa$c&>EHC V̻*A ,"Ƽ "Łh}( H .bx 궏=zGzܚ^lŊ%LIMa*m`s|^JɬxSl-v~tꏶz:G,w%.{nl- UҨ`(ZVew)J(Ic-e[ZՆO5~yNw+‘N[oU~:d|ޏ$DG'F5S})Tb0Zm= u0|SUBby#k_.RYiZ5tOHwqFxԋ\U-b"O؛)_9/"(6HX cA10}x1n]7:zix"zxUDdH)ޚO>q y:v,%YV&%gCO(t :_x\?f[~|CP~v+Zlӫ'k@B *rXi:M00u p+V9 .ų7H6;2>QiKz#m-=OiH?/SBAe,79; z!}KWc5;pBǠ2[[*pCG'wDLoJ};mJy\nCeaCTE.ldQAw 7_S?B}!ViùHRTsrOP-eCxS^*jW]x~&1e>Ԃ ĥR4k56sJhB!֫:(4qrԩY?v}Aot* WĊP^_;.M)lR]!l~~y4|s$YH=9?|\wE9ccϑ5 0Hc`=Hi;&MgQVZ0;9|ysb]^MJ t&ILN{4NKKwhXpis*t.{J_v.x|>/-.:n>~=[=bV 1XK'ʃ]^ -wn{;_XTnVG׀$s;!\Y]LœV!u+/1RuS`7iAk9iV!=fqJdrnY2战<?3+ $(ݪ]uF_-nnvJ(T/|>b9l+LdϝfZ_%&v3S;M"r"\>q.8RSv}50R:jhsOzM Ҳp&ᇙʈkVH,|Dx`rŲmnq"Vx4b.R!-Ju% m T#Ɣ{i yQ\̦lz[[# ӭ3ɶEMM>µO0\ڢRmeؖn &{ J!WTX-[!uiGW6Ҡ EcU^v _צF&檃v`(;&pnfrܗfʍ-M@FkZ(FJW ϐ^ayKHK-\4H*MGy3URJXR}fx; K#}"eܦIt[qL/Y8iܒY5mffVN_[ȺN@-Qo[[鞎:Z*å +'o3DiFyK0Q o1ͯm[\tbE`'T[oOdNj(x~Z IQz~Wu?z|mh:_r#ԑgeO p\6+sȁ'BZn\?ﻚDm=^8=SqsfnӭBV 1VSa IMwJգW~yi$£xKshkҨvp=XM'E ؀HliM^c?++L4G͠|Od|]z$aؑ$qٓ-/P!jy};#ѤIgj?׫@Y?}i^_)}aQ+cx=i?sY"bPF7=W҃۸Fj9Ih6 M;ayhВ}Ys?GN){{_u+?2j@>f9~>'hBjQ0d4k^pzutf,kfZz2bS[1`g A_endstream endobj 25 0 obj << /Type /Font /Subtype /Type1 /Encoding 509 0 R /FirstChar 13 /LastChar 122 /Widths 510 0 R /BaseFont /ETVVQS+CMBX12 /FontDescriptor 23 0 R >> endobj 23 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /ETVVQS+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fl/asterisk/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/A/B/C/D/E/F/G/I/K/L/M/O/P/R/S/T/U/V/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 24 0 R >> endobj 510 0 obj [625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 562 0 312 375 312 562 562 562 562 562 562 562 562 562 562 562 312 0 0 0 0 0 0 850 800 812 862 738 707 884 0 419 0 881 676 1067 0 845 769 0 839 625 782 865 850 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 344 594 312 937 625 562 625 594 459 444 437 625 594 812 594 594 500 ] endobj 509 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/fl 14/.notdef 42/asterisk 43/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 65/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 75/K/L/M 78/.notdef 79/O/P 81/.notdef 82/R/S/T/U/V 87/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 17 0 obj << /Length1 990 /Length2 2018 /Length3 532 /Length 2709 /Filter /FlateDecode >> stream xVy>}sԔuTlbruXcX] JM͒\  y>`81R,Y`Ǘ hXj." @/@8 8  t:@^x# 0'ꢰXJCc2Y L屿aN" @DjD*I7JϞ% Qߓ[t{@8Agqa@bQaq$J1rA: "2}05$h4>Luq!_8̤~/ߢ={Gg>?}]L:4&w_00ߪc1 )DO5bB,*(db (e+2pA-؊4&/`]psilW A4Dkx@ 1F:BBÜfsXHK4/62@Y> "sKrȸ:@| F۷8 ?Tg"b BLⷁ5!+|Bt 8GK#˖Ih.鑬wFQÝg}o i# r )Sg. *q͈>qF&ƶ%T|F:ΫT{T#W[,^v9k"s1tם'yMfۇO:;wgPށZNCĆOkRcJ* j_KCgKMM-sF)YyԯeSWsZ|0K/ 7 쯺MT9} xTMҮs7fSu\w{W|qE yyWei8O0+MCnݦUc Ü>cW,'tV%k܎Z=h_&_sij5tyCcpˈW>d$O$ bH[0(wfR+ٖY#܋gGt|7;Oi Y;ZenՑv4(]J^Ht@o:-2T;)u<6nܰ|W&WT]5k5\#ތ1{ӧ`4GE![h$Kɟj[:?{۽0NYhn8 rU:dT~81Xr~gu'e0o?㒏 F1E8Z?Io`<&L?]A+Z2c닺U\>z!.(h>:[QYJYnZASBFpfOE2ȱg)Ŷv*Nq 6ګv`'cV䈦d.<  R^umFe{P%檽E/%'Y(ɧڎh,h>8)?ryEɌR9pJlhN6lgr^uĸ2 lŢgC;Hp̪tGuP,r.4wiwJNn 6-a[HeJ<ô(!o6^O ? b#qendstream endobj 18 0 obj << /Type /Font /Subtype /Type1 /Encoding 511 0 R /FirstChar 0 /LastChar 112 /Widths 512 0 R /BaseFont /VNPSRT+CMSY10 /FontDescriptor 16 0 R >> endobj 16 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /VNPSRT+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/circlecopyrt/bullet/lessequal/greaterequal/approxequal/arrowright/logicaland/bar/backslash/radical) /FontFile 17 0 R >> endobj 512 0 obj [778 0 778 0 0 0 0 0 0 0 0 0 0 1000 0 500 0 0 0 0 778 778 0 0 0 778 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 278 0 0 0 500 0 833 ] endobj 511 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 2/multiply 3/.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef 20/lessequal/greaterequal 22/.notdef 25/approxequal 26/.notdef 33/arrowright 34/.notdef 94/logicaland 95/.notdef 106/bar 107/.notdef 110/backslash 111/.notdef 112/radical 113/.notdef] >> endobj 14 0 obj << /Length1 2108 /Length2 15901 /Length3 532 /Length 17047 /Filter /FlateDecode >> stream xڬctͶtltlc۶tbVǶmvqv<{y~#kdkּk^5VݤJ4F6QkGZN!EzZzzAhRR!{#@`MJ dcfofbH@!DOPߚ@F`9%э@Ғ@'{g-4#% kclw`)E@/MJOI#kK7#14g5ZwrQ'KKY}Qϰ$X:9 dl7U o7pԷ436;d j 07s44%0ַt+6ͬl3?b?{3W-2|&~7SKڄ@^ | )LGkmgOm=3Wf- ? s~?'lF> a#qO2-E'?W밵tr2\)O_f6FB"t{?EXi˧˟qOoGS{_4O9y ß\?7_`T6[5[?XwS`g_Y?,> ϒ賜/賨lC.RE}O?"btCgu?Y]}VWCUgu?Y]}Vq|^_'Ϗϑi>k./g_Y/l_م.6N_7%O+/ ?~#᧕_i~Z9V.]V᧕_i~Z} 64?v2 ?6x?g_66|CECƠoR0*`AٺX`Q);Z粴`.a v1) zi-i2nDoOYf7J4~^ΑV>X'rI`eSMT %c"TDL+ apALݘ6lved؎ϤKxwZP?\şN`dOp 8*5;KI vu7RV½L߾K._ٔG?A$=rK Dw̉Tզ#k1'FHKFqgP&KpO*t6l.H-g?-ـ'-կnO#F[)?$:+ųyp_BQ w75`[/'*C_%Ȏ^V*zÝXcJY?S-g%$ɅZ)P:gU ߠ=k(kUhА8 !p]NtZP| @v Qj 4 !-i EBaK 1-I0<+]m|IUgxDx|8:b-똸Pc-X Z܁SFHm@v; ^Ąa+J?N Dlq(PLrU(|FNA>8aDZT˪(uр%Iȍ/tNDk~5Dr緡Qz%~{ c{Q^;Lr"6.RT7˃\tuS_r&\yx%' ͥw,*@g!^F~/A;UyN1w)j&QN2s鈈x븝Vu grQr:\]-mZ% ,0MQ^ƹe<ڈ97)~9"}#{`?tsW9Q7ol?ӸZ`s]|]cs¢Y̯Fmf)mW^Sp۞,HF(& 4keűlbAM!<=~I52mNPbٹ G42JpNWMgi@tZݙ㌲7h9eNsjX37o8XzjIjk)|諪D85`ͽ1%69¼;~4wӴIXacY4Y86OU2g!uK3js]@ @ "nwV3 ᕊ3.UgHAtJ;J]?8\jPQςN:\ fEs~jܼZ;xx!Ҵɉ+"SntPisUaQr}n%c1w4DLNkg(:sM% Ās5Hq66;ع3Z#F4}b $! $2$0R:HpQx9OaOVOǜ(}Pj !W$ 烙! <)ucR[_H6ek"~AR}K h)IvF6;~2/&=:;fz3HNl j@"Ck;LL\4artkjU |cxx 3NIX;~;4k·x.vK-3[5ΔHZV,ʷƤ8љ&,#KQ톶}:#q (0.$uh3x&y6.f{)4U'.y3&c n_NBmsF.2ƙ|!M! /IƦaeS}WUj{xk~W`]!YD&pggVv.<@ |3 0Gel"ن*.ėSo+:ͮOH* .Jz^3N)pBPu@( @΋|d1N_l|[Sevӟ+]*ߑ R#N;y32& Ѩv[JA%E, ZyˁRu qeQ)A&3%/oEwAQs5aPc8Wη- _Ol;0=O PZ>((31jRSEoFmtB k;1 ixrPͲeҔMhg @Zz]'-wY{6s=NEQBeue&oyrk>6.i<6^mлX$-Aus!;uu>H1%D4aL_K֤{Q^@V" n/!y 0Gُ";޸@ V(ʴ&#t6a||T;SL-N;+y '0q%]oi.20<(IĊlX+-zK"9{yٞK_MrЅZs1 |r;tc|PaL82nɤR=t<+1+AlMɹq#|"z&]lrc+/(N/dz[GY2Ee@x MՉ25j T'%ޱXl{If"⊣b1ce<)$Uf}H&G3mKM6񨏒$aʍ tszY8u9ZvbZ4+Ü3d*.Қ)ErN3 ["Cw9tҨ5>7cCRG6v6^ nGhC@1z4s++oV¢P5yq&v$u'~)gZ唬b;b zL|c:/dx%ۚ"2qn/[emY}(2}1R w$rO(fi/ +;<^kXةarJ٭lSIs+MaeR']uʑ֕E)hh[3Z,Ӄ N+=E32AKgBūY3APg$%C_,9NsR3pv+;b>0ѥ %0/+ؕĐ$I6UH"SR}Q +ӄV/xHX諾ٰL.n9'4h `"E`1]x40PxqBk!l}^ʷLև"&rM[jh,o̴Xu T:X9"ǡ(n]%e*V * }gOO`,Rx˾-q-(瀣"4}Ra *!E||$\}V+c.pԻ{fUy`uX C?oZ* $0NsT,2$r_%ovdx9*hD5W<%С i֞r!M+&8 nԉ6=uIkn Ջ%:yi2-KG#1Đß|D8˨]ܾbluFeNNp KE0DM~m9#ڵМyꠇp=7Y6Xwm\k7n)7`F]yX8!Md요vhx'.Rk{hCkREW4bedqt 61,wd]oF7 Ovj<7etdd?(wj3@E'580| U/;[p4S?`쑁Bh7 $<8C! @mVt0o#*l | ˜y(FR\P9Fxc>,h'[rpśQ-d38a;n?:Mڽ`K!L}ޙ+U+@,/,=^ˣkϞJnGĄY#CVnzˌ]JueaY!KЇ?y; k},iH*ln(KW:eeUxouBhyJ-% $5Js5W8_mhw; bmb} U^C8I$NOH"vH]r?k>B=nEk nWy1ǝU?[执X c/&w? ~g֎\=~Jwմ !RcYw~KLA:`۔ "?&|8'y5r(GBj-)ݏ5mȚ̞Wt qT=TJYc'1cڔ֎DA2AR.u B ^.ޘ> ? k$ \rvͧ"^!]Ƃ: NRWk\D9髋8ʿ!0·X 9sO,,edYm^3*|^~܉H^&hfy?GaBD8[5&$1bNe46TO:zСh~ȥvI0^C.Q&Og[9EXϯ5 s͒i]15dkD0"{oLHδm}f!LOd̹NF"ZNB-9= " aXO[W }!(26 207m2(f** %uI.'?kr)_EZ.X$4$̭Q+Q}AuNOqa| bJiJr*l6\\D # ]3ŭ;@/|HGL>а4БZ*7*O/ܪzDr#gQJل4̌w0IGmWڤuOX}էyi1q}! ^c{ P"dq4iRZ&2ݠ[:NWdu[w ӂ;)-f?͏&c~,߅!U^ۅA.8;:tEr,nV_cZ'8>X&Dq ` Ze5گo^n_1_IYSLkΧt_G )*)7a=~l0_ [[4LT4X|/ed8xjltAxF_lǴs m Eʡá蠹u3V2Cی+ sԽoa2@% _\vٲbEg/Y>{ ^junD2J_ kA\7NjLEWor ݈)g57W&E{I5*w@b,f29\Q%R(f7qmlzΐg] 9wkC@8znjD$_kۣ_]鞸ltY?mV4hsD|J00; "N_a7\B?4NYq(HnhLUyh-o\3` KTꅶhxmIbS}dM$!/ foSь5E#$H,%d҄S5 W^ lwQ9wc sRlg'U8f%Vf38f&3t-$Ls S_{Λ_F*g/~Le9"b!ʨB!"%//{k%+~e[$1tU"#?zVí@u_ENMΦqb*O.aԙ6W6;Ӭ эD'~|K_  e[K*ث=C+ݒKEx4-ث҅MKTڧ' +vA{>.дgQKoM#4sʑyUV%}0s@kX4ycLLnୱ2'p޸qo`4P~Û6x+riPL>HG. j&H6+NRdE]{pqp3[cӸ2Ws>[_ ?XJ"uEÁԦ 4mVoQcHy" <*`Sg05Gόd!:MOٙEUX 2vS9$n1R#4k io6,6Ы< /j1x3ytsG^dP3GϬ\}"_Xvg,8_|Hċ-ȩ/ .4tTb_MU,sԪ}e_7djِ]2&<|xo‰КC571΂٢Ӛd!›b"qL޳!?|(~\B 0QVHu[{5d@,x*ķc  ɾ t !R|:&?YNbHGC ruSwF`y|')%i4 j8ĵ–/쨸mtsYɐ- d[PH@+_͗o}J 1;gi-05֕sl{M6(N3`<.d/mwG?l 'pWv3 %MhVK&"|0'kncK;)0$I/:qft"D2a}mDsY/U֙Vɰ!"_+O4#- Hdΰ p<=nTEn`T#7 %:\4Z*TzX-XuI># YWVd rYʻ`# 3r /e%Xo/VAP.vׁQ.%U|T(9tB#oo[K%)^R BuKOFdG5!ˠo&1*R50#Y{Rk3 癲k\.4Bg=X u,8:X KnM ij0JJ:f#q ꗦ/~"oӚ+>%bLipP/v qzDB<Q. sm`7ݷ8~TJK^N@#Iי068$Vɮو4߈_Z~%GCL~-%K8p)\\EU43XxE,+MnAfB 2_6rWYZTo9t6[fP ;2 PZxm"Bh[5gr9%dGu?߇eUS ^~l$ tҦpnuy/72Vŝӊ-:V͵0mzO`| T껥?4oQ 8"+FߡHLU9%<|[$6[;s52JJpQ?P|Ț[+ 쾆]0We$"O|њsX:}j\k :C:ER}xSZ%AG4**.Jc!+]O`b//;'R[mP+MM?W!zg›pUJފ%a 1:+|xZ­T< gHIBIņyl08-p#n>٘C$ߗ~fa) `Fly3H-gof zG; :WdZP'X#lѫѹ6t[J|JQ&ʆܬy>2VE4TV?^\IDt.%է>ƆE -w γ%vڻ>|(K :wJXbq S%7+Y݅0Ywn%]ZJ<湠GSCSѽ,>XR/ ݫBO,{\9Z9a`5%mtzSIkJY0I2+v  8 &GIQ2kTNåH}=|݃jH,_<ܭ}?BEpBnӀ3[S3;mi.;|T!R.Mʵ~!mH\s'TNݍ|4e~mlmSgdT'B=Zf^_ YJQ1HjAYBQi~3y4h.ש;Tyxt*hڰԸq)MwS"2.>jID5 p@:_>:jx# p;rqU,}]Wz+6sJvㅍ彾3&JKDc\:_ "ɰS*y0]x~|8;$eFѝ)G3܌T0htT9:N+ 1/.:i`~=:Qyn\Y51:1G15Wz)`VGB/ O]ΞTpC5cS=,Nk |u=9X wW&ʗ dҾX-A*ی6WrEZt+#(K7M&LT>_M_ "8'kbݵzꝦ}]h,3R+-]yu}Ԍ;Ep:nm z mڨ&[¼!^hϐ n9m:6$$OSz)uݛ_^{itkAB ;,̖<*E[rrv,{L -C w0CһK&Kt~oj_ݠ&޻NyiSؑϐaҀ9}I-%NA/) r؊x׬v T*Y+ƶWב~b}KiZ$nnxmERB~1ݷr<⛴XzOP4nμNܷzR$W7(3$1 " %UZ ^XC{&j伞0r/xֲn|@ Xƫr_7"kKW4ZD"#WZwgaI/ | ޡzp&F@,FM ijYN2x0 Jp %V5 (ݼ_,-miE2ϱ,߻M5C K[Mcf&L[y8-IEvS`@z#% GdPWW-iI1r;L5=^W:/.c6hɭi-:]O.*2<[(0h @ۘJ.NX Jb^w{1*bY"ϊ2i,C(04KJ3yfh6?Jήr؜mtҭ)w\SZHd-JǕ, mtQ|+ʣ=%v*y,!O~׍Y9[k;]+YE 9#WDu[t ?w] q CZ/0?1|lc(x3_G: Peer"2$[\J߷kcQta:~j1J?5YjI_-2 3\l9{ݝfDr5F愷xGn+JR_?TB %SHjL*so[l KKܒuV"Z? lӺN!PENŷR8Y{ՊnF_,`ye3r.p(GjΊаP`cBu^ |ˣx6{:`R`^7 M'#"жH)b:# 5-ug#=ʳT;Q ʯ6!s풍YIlK;r j 0ng3X"$4KAX ȸ5բ1Gx+CQu#i.0TBGFpԕt#Xȋ]`9mH#x=xDA]E5Htc@!H ZlS@YBk[H.l~7ԆčMy _֔ޝq1ջQ?GpRSbW5,A)}f1ʸ19xq1&녙Bj!,ݨ@'+ }@tɝ"L;<|Pwtde@}GyWF_70~owY@JVhGayS} Bd0/G:raU\*FR])Am?‹" *?\<~wpeb'FZtU62BNrw>#]7sW-}6V7Ckg=(r!xwesӄ!"Vq-;$daJH)%^$kBZ fjg}vQCs 8)ٙh1z9.1:!vF;:!9{ƾ4$X/AO@#?42 mdBM HpB(XE%rb} O%J=5tJάo#4 ;<Ʈ:Kgv k3c|ԏ$V҉!VQVT"Ix-2>_6KF s&`PlбnF%G"%Їdm.z b?K r4,(bf`bO %5 ̉[KFvC5)Tt#!r OfBA1vZ4Nh<BśmWPӶ>j`0JXS=HtI/WϽۋ)H߼ѩj_) ~3=uʚK݌Ak<!ѩUގh$U-]#M*v\.vh+Xi;̫>JQFVűEbt92gug2#F;*uxPPb $~۠Ǒju? y(QC C+½sM𽁓+Z4B|III/q"ycMଅ7.LG*/D9y,/Rigc4-'k jylNOGO]#|֧1lշhWһ;Elk˟"7}亲2&qζYβI-%lwth~QUQ[@K؍YbޓU-MSPұ62 F&N}^^Ѳ1p_S;)|*;*=Mawm ר€ĢĢl.ֻendstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 513 0 R /FirstChar 11 /LastChar 123 /Widths 514 0 R /BaseFont /LCHPYD+CMR10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /LCHPYD+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/ffi/ffl/acute/quotedblright/percent/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 14 0 R >> endobj 514 0 obj [583 556 556 833 833 0 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 833 0 278 389 389 500 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 778 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 0 736 556 722 750 750 1028 750 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 513 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi/ffl 16/.notdef 19/acute 20/.notdef 34/quotedblright 35/.notdef 37/percent 38/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 64/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 11 0 obj << /Length1 1614 /Length2 11197 /Length3 532 /Length 12121 /Filter /FlateDecode >> stream xUX\ݶ Ppwwww\݃t}{IsWtU];Xcs̵ P֙ "'`gd'#q:[ي:L\\qOp03wPP:Z ́6Ɔ;c =@NehB00v,lq5p;lb_K@G'_Th oߋX[S_6;3:T G)gCk c![3k ! 'q w9 8+/5Qy511}ZT4uVOL4G w#hLDfbv&ff6v< `aktA vΠKL9PV69C{1ٙ qsMP]H7|LQGt"D78z ?1F@+dkP7~ϪᗿHgkMnZMwMz*oT] 3[:Cpiꂞ4Jt]<,PKnڂF4I7 *N5oj<-#KH3,S+ OFp:q^FeP^CIuW_ϩP\\S\1.KXVK(#t 6a勜_4Gh(R\^*q@heS_H٣ɼ|lL+?ا#7vLv[uR ¾:kH8&-.;`?]ekJ|_b@ 5F[6BD\H<gߔ]$*{ESY52M ~Gq8AuyTzi5jHV--x,ܵX8dVmfS* V Q&GG:U{A-A(E&B8_܎Er{u.X.ٕEn=G=Ii_xKd~"C-DuI9BYX& xV֠yC{ө;i^po5X*0kvU6Nri <.:w]_,59 V)ΨE]v-R dy 5|[QT_!dLVU|cG'<-lAkx4AMMY R@c2Z4>tN1X捛u]{Q'KCGǣkk `xc2#K! Xq]%'O'0/P\3%uTA<w\C_HO(kɂV0aEC)R~,+|%EuU '$r:2{ :]rݷqK|Rеn[Q,Q2IQv % 1ݧIp5p$U6:&txS|:/_M0K )>GLK UQOHtQk'a*~-&miZ+gbёG3:[DHUDrf84?'<* K|ӽ 7H*oEYWH3867K3@4r;+4׬<=$aqxq($-I~x)V?$1_z{ʍv er&g J!FNnbi3@Lۊr-|ndEAƟ&qr33Sx8B0MыRԛ"xܤL 쓯h+4~0cQhsb6 ;ao-ϛlY$mcd¶cjnmL`!S̋ 7,EgF S8-x[K7'Bƅ;C.sMf$̙y:++4SpJT Cj[()͠ާKWqID=_#yoUo}5\W'O<:/i !%V'fu9R{T*nT%H * βd\cu-װN;0)|=@9 ŊLɇHqNC9"! KoX 5;W:= KMbuO}x.60&b+< "xļyyH d QS*zZF={ lH7fEdNzI.Oy UX^$7qɎR۹7"<>VtiV7n޶^Vuօa*_Eٛ׺ r(aJ9f^ZE*kV Wp!Q)1¥k0fLe"?o> ~"FpLHڐ3Dc}gܝƎ _NE/>x͐hMܿcU_IG/ޣG$9JEOղ ٻS VN^Aޑ8w$]q'mw{/'wTض/wWX{ |B~π'eU߶4zۡ[Q$ /0]quqoka콹`k^}X5ј$֔@ÖuIm[B1/᳙ϙ^O)8Ir֏I.+gzfWDrG-/G4;>8ܯ#|؅ oU  JcԘåǯ6x!1"U_c(bpWc[BnvbS턟O܍o~m 4Ϙz2l{f0X=uG e7JE+aP?lGȐPiCwN΀WI=>$qWjM/ ffTWPā@)5ԝ]9B[5y_FQD.}¬lJ]p>9|0jnCVȞc;hʦI;7pg֎Ѯ Cb`չ5 ̖k}M!gϷɫy2Hwz}=t;qz=il2<}-O!'G 2oWBk*'J>ڮDM= ;CYtɂWt4{\(RSE1c^v03nY,8rKEf`+g}> ޶Hd}p菳r-\d+XVIi~c\uɬv}' Hδs ( 4J B(mg{Y, 嵐 P<^ӿsڎi%e'Om9 "=۹;e/;fNiYfI0jХ+m @{S[~RpRn+MI7:@GmF_ڋ`_nSDû7P*ȱɭo$tFUĶWȉmF dJ |!SJR6Jw ̞W~cFq,,]aH1ݲJ% r ldwV >4uDxpy׈W&3TK织ABG d ,=Æ{f7TQ+.=ށs1dm2gMDM*5f$6&j#?PiE:)8S?KNv(}2k EY>Y?¢Dܫ=_uG.U͚vOϛGh4ka0uNvTlhtTƛܶID>E5P̮}Ha.!t )/!~Ns)Bqi3m,ysPbm^s:<( =IW.j\N7޼S1-0[Bz!WA+.ob>]HW߳>a]}lb91Ecbꘐw$5vYA;NG`p,o!l"VQJ3!>BYw_ Vֹ@XT>R0Z&*ⴳsSt$EG הo#YcކS]3 V~ސhP*7lŁߨ dԷU "it49٬M :znm5~rPaecKtTvBJ0|n_:gj7ZbC$- 8s0e(,g"D )? (}6iL\)-|9~V6ta±?XGxC@~PEG+ Fc23Q$za6P!"uڀj827L_Me6cڵdpnyBn:u /gZobҿ 0c륓2N>o#1#l#ztno tb *)( qf;(m%z " |xj4?(Kh^D >W7-Sڈ*1#6=)-6#9ADcp; cTDIβn$=J!K&7yT4Cv|{KM]~kRd?P-Թ*!cȹ?ѸN)E+`,W !i˰{^-R ^êumC5jB;}[:iSk3Yi1O~{ ^~Y N:)8Dw}slj7e2-cQ,4RPVK:qzJ@3Z20|ҡIQRY('q:2JK #nsN,g )p* aqWUuS&pj,{&0C8{qd:cH"}DEI!GJG-,%$̇ʉMscT?{ɸaw$PQK<hݧ!^FiW:ʸmDѠKY6z[ceu`KgDMa%sRE_,CPi62tkUtT\LWJZ7x:(#+B6S Gܓ;yn9FHϠPp]̂61"]HYK-L~{rlPa 8Gh;y~dNyP=~ۓAϚvUx:deK$cٙ} M!0Mq/9OU^3>~_>Uɂt8h0l4z4$=#/)(uQb^sM.i48Dݚ̴}S^:5j( Qfe`2 {7,`R(q߉{i]8F-Z7gfCLzM}#z 34ff,?XҶ{'ؽ-$h5ax/Ď+J^ڲ阙(_j9eΝkiUlfO-iqAdM30tKgw6^(1LrQϡPw\Q5y:ϙ\WDvD MpA^S1/WH 2Osԍ2WݔE4@S/ͬ3tI .YFm=|XR΄ʐ )zdžpgl{w==zs8%2 h _+_"+:YcJ7ԑ|k !9yi8>TF 窸;.08JXkt=c'1*PYj",=想UO Q]D~]ٰv,@i՜gGv>!\(pnmd>&V"ɻ헑Tv_MrF}?k<,Cew^Mޢq>˳Epo߬7?YS>CQDez]#lP*b>V'AL:Q~E=i.^Էo>RL L-yՒO%/TTU4j ,)Jx&zڕF9 tx67cT.Iz 0Pͅ\?vQ,S薀"\ՙ >vIkMD(^> ǵ,1_LUq5UP>pv ߇_޵W6D%s-7p 2' o^Y[oع;ۥUjs;YR-FvGF8Pbwʹ!aF}-wY%L)#P_Z@UyLH~K_YA;mGPJ }Ŕ-yH92Jip8h?03* @p{34߹~u+` 6aY:$~iZm3{vY%S-tQcb%X=UzGe)\;(!N PJ&@c񁎞'/2.U)HRiӞb%<4ǯYte⩓*E}{Zj3\d]HbAu 8O忘d>U3h1LvF3@} DV vyE!~@ŀܼv;wNiID^#a!%ՄYϰڿ$u%{:R.cibЌ_wtƄC[wdx>|Ù[h.m?_(ʪщ"G=o~'OwfʭbEx·͸ȋ8yfĽBl\RyOeQuXsQMz]h)NlC˛@Ze,F1 aA`7t]UtLcYǕ/3l'/:jQuYfxKkapV H@ϰR뷼q g"XMUߗM߈1C[|C ͦ GĐo=9ID01 1Θn!R] b1cs1`gslmLqwZ0Wa0[Ek>nagBFh%b$ B#"<;Xc]b>{-m$njm>\NT/,;P]ya+otq䮤~ΐ$T{WmR^wj.VM˜AmKW1~"*[M]π$%֢w8r/0}ƶӟH48o}ԖOi}J# Y,$#/& lh-DSsw~fIH-,_ifO^ Hj0+56lXP$qkZwRQ*rcVPI_mS)2iO?rkSzw&Q/6^M _.p$0Gthf4PX/qrW90 wmi3 Ԕk(OL<4)SZ8Wݯn2v<~aN^~̈6j[QoW)C+&z-se挢O-.wyt?;ʋ;5 }# +:ԧ;mLjV<9ѝ jtɌCTk%./@ޠ\$wFИ~uߒZͫFꂐR}&S;=LMygƣSIGX7yߞ\I>G%˳Kױש( PkR.[`5=kBm_ =FLNI&$s{w.̭e[qu/Pa~igz|Jiap/Nl_)jEk2sR^\n̓2M!e}H6׌{}DPU<NJݾơa٦GN\3~@n#JHpnD]+D|[Qq=y-i* U)p| xbQms$/ކ2sq5bb>3~v~2o)? ]l\~<0E! e-%[D&>vI? ٱ$GWvӗ00 (zXK 7xuv/{WH]50J]ޫ% -$_CDv;>$֎乩PJk1Z,pU !FnDUP7@}L%30, UO2;X=R{|n^{G78,yU$T T"XQ X8ui%h8_'-twύ\[Pey9̎dW@)Px[W1kQ=oqpyD9h/;j9Tct5C/< 窘v= QR8vu5?T^Q朣-?~h]6beۆ*Ќd9l&8bFĤs()s"PQ`@@A0,6NR$ w \{3_\`R?o\ ,rBqԃvO*p}Ԣ˔߭9xn&l9J{(dwgQIY =I/H_l dCHֿ{d(`l 4tt1t_Eendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 515 0 R /FirstChar 45 /LastChar 121 /Widths 516 0 R /BaseFont /UDNUEE+CMBX10 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /UDNUEE+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/A/B/C/D/E/F/G/I/K/L/M/N/O/P/Q/R/S/T/U/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 11 0 R >> endobj 516 0 obj [383 319 0 575 575 575 575 575 575 575 575 575 575 319 319 0 0 0 0 0 869 818 831 882 756 724 904 0 436 0 901 692 1092 900 864 786 864 862 639 800 885 0 0 0 0 0 0 0 0 0 0 0 559 639 511 639 527 351 575 639 319 351 607 319 958 639 575 639 607 474 454 447 639 607 831 607 607 ] endobj 515 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen/period 47/.notdef 48/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 65/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U 86/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 8 0 obj << /Length1 1276 /Length2 6529 /Length3 532 /Length 7319 /Filter /FlateDecode >> stream xe\Tm)ASbhPii!TJJZ a}?si/^:c׵Q][ 7(an~~ @NU_Ç*!p<2.V>PP ' ;x8A5d!NP  BXC ; Axd= Є8C\!`~~jC0޿Y*] qrFp C> #0;bëGzAIOqE;;5_ -vn8T`?[_CM j!U:+B!`u(` s]9#ʪU~7ftC>>>~d#;RYP@@NN @0!;20/ @>@` wk;p{{_UD]'8|^u93"&QoB&?$TVMI7!sMHMH ٩t!= qd"@@ "H_ȏH_uFN_[""cFϷ,݋[P-  _}.NNGo"?)b3;IixSP0'Xڎ6ܠ8T~GΥ[n9Gzk )8ƦNmm{6=;MWt` #li8F}mi,Q'^:6#Jk]gFbNhH &QcYPQbI}Ag^\Ửq[L{`823<{U}A^ 6;UyseГJ^ ;,L;+|wcTcߧƒʔg㓊C eRc<)Իz鴈LՈ'j[]eZ'fz|=y3br`)'#yhyrYy s`sUN@u#xL3Eu2wHq G(nAغWfǒp4" X)otxϕc2öL͡%"ovQbw{$Whv f7T`qB|[ ]h|@,&wwg\-g(K3'T瓤F.L~޲IWTi* lC\l<3z .zu9E|I~F~`y:Q_ {M88W+aK6bfZ,$pvҥ˻劊 ai%>n\Ln|6wcu#׹N3ng!Oz:NRÅNM tk%c5|6>^a:2|fAdt_ҭT1 I&DT*Ke9=oBҔfVJaKݠm5]$..C$;_-q)71 wV)Lr,)KQrf`q3Q`#E"'TXrߖ &?*?+M3=|o?:tW}*I:-5`v#Iu <ڌTk< d G,eeAu=s"s_FG8_e^x{1軖2KDq:-/R>H p8 Zqm]z4EkZaC/v_#ꏌ2̦z1f=ŎSrJ}h.vbrGx Zd 6rf]ihpvjN gI>7mSTB9)ez9ZO.oQB zm|RХC-}jKbʙYe;u Po-MB `'Kko~І׵Jeâɚ{ę紺+7[3zoZ}0FFKg[3ԩ}F 7hKDϼ'(ِQ֖ +@Y?As;n7K_da*b" SuG'Ñ2 al ڪ|a"ܬ50BE&@MA,{'r-ɮ̀1Cf%N۹K;<=;/Yi)S*cyl{F lz;lwcm38YGE|O^񔍊 $Ej@N&;]Ss>"cyHp*{Lo{dG^-][;yo 1^AրՁ3PĖSL7+I-J*eނˮ-3 zHr׉,q:/PzU%cmL9-9Tꮎ̩/֫Mb)S L@/4 Lu?O@0/Z5f=%p:iT /x450DɔN,%/-etic }}e qQ(snYkN{;zz$Pdͽb3p{=A8O)LVb旬jܮqQRQœEV2>)5+A}z2EYlb,[dkQV[UI1zl5~ITWɖċ,qAULJreo螚df^֟6*,z (8 }'%WFFUs&GK vkiItƌRw1QDR-)dhFi*^zl^Cp;xfׯ1TmgecLi8UψB`8KLCk1Uq::k6 MiO-gZ=.D^L4q'%6~M_M*.@*h&  I<ӬGszUHPqs & ,<0>~>ZLIJ:Nc[>ùxYܙ~CCBBv2W6és53uU!$ -*@K΢!3 C+f<4y ͓m7tݩyjP ʆarFɺ؛q>>-:Ug@y}\tumяHܞOët5"߻=WRԕÞO )D4\ѴhMr_ҶQCh'3+ٽ8ݝf52 }{@]'ۃksq$ zCkf3.<4i|jz1٢ъw(k _KJfGF=Y_^Tjۓ.R=>,xARocUYHxx2Id?;N:z+PkJ,՛ *y DKwg1O y#m8 ZR,r:+? ;(o/.sQ@DE 9Fݢ~\G,Mu} γ.Wds|FZ,t|h GJb/ߟsR(^Sl2o1s%ia^§+bZ4+i,V9<FWr6$>4yO,xQ1SEGg.rMqa%wēc2ngW)hCwsppU^[QJ~.{B`oaEGBȷWID=@)kHjHPjW݁O]?Wߠ^tb$?9U#0#;G bsXjL`|[8itWɋ9TH ɽsgMt7-^`THjNJSLU(&@ "BkVUk*>XT{mײ8lL18K?L}C'NXIbXGuyyOݡF?SG6`B>cK$n~^J**)鉪1ɏ4W;/"M>LVr|6is‘C_KA5UC@v aɏ5(Gl>e&#(Dl{. *6=l-9/;KLYhfjCOܙ^WbbA`_])!EySk>aNMg|fvk_: Ձ;az<2n50R'^yt#C9^uї5իBe?ɂW*Ivg"Lޅfapm-=% $!,-e,< `2[88cpT JwB;ΫXlLcX,lߤa:KϮp~Eۿ^.% p3\8Ɉpt~z#J.Yb)RaF@TW&ȭf#*Ү{h0yf**va'˻[vRш{׭IhD+ݝJmFQg CKW\߭܈AK]>3~Q$T[]:irzd{]]GmN~1L.בT<|nmz۲-ty&grT Ot͂Oʦ{gpnSm~*۠b9Hf_"08(߁-v)pou㙭 +‰YtN<&azo(eߢYAwI0m[*,UG+ڦ|_ƈtҏ/oVw~܈+'Hsw6v3lj_XjTmnOWD s 4oB. /TS7nD`biJ[w$nꖱ5#%+F'R4l9p^dBݖtYV1i;U[Fy׫La3P@Z9QRY끄Ѡ͙uLJ֯_NG~Ħ+7M;1\˖-~ov}NqY>쌅~M w7C?Oh Gx ; 9ηZendstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 517 0 R /FirstChar 44 /LastChar 121 /Widths 518 0 R /BaseFont /BKIBPD+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /BKIBPD+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/period/zero/one/two/seven/A/C/D/E/F/G/I/L/N/S/T/U/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/y) /FontFile 8 0 R >> endobj 518 0 obj [272 0 272 0 490 490 490 0 0 0 0 490 0 0 0 0 0 0 0 0 0 734 0 707 748 666 639 768 0 353 0 0 612 0 734 0 0 0 0 544 707 734 0 0 0 0 0 0 0 0 0 0 0 490 0 435 544 435 299 490 544 272 0 0 272 816 544 490 544 0 381 386 381 544 517 0 0 517 ] endobj 517 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two 51/.notdef 55/seven 56/.notdef 65/A 66/.notdef 67/C/D/E/F/G 72/.notdef 73/I 74/.notdef 76/L 77/.notdef 78/N 79/.notdef 83/S/T/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 1036 /Length2 4177 /Length3 532 /Length 4870 /Filter /FlateDecode >> stream xeTmA$$ia.G$`afn$F@@:F%$DZ缏xΧ_nNV}~Ek%L t$!AbNNe4 G!U0i@HJJPt!qiIiaQbN@聆9<7$EnEPg;GYa"z0  V΀%$4A]r1XSMkDx0b { ? :P?P8(GgFYJ`yӆY]Uw"VH[ +Ǩa``E``0?M`HOEQUט}ʁp]oN wLB8Ki#BLPb%0w5 @%v&> Ms_!I C  g?X]ao@X7 ; [u$J߄5m7 b -F!bŨ?P@l-:to%%/ !*tV.h4 U^ {`0w;`_ռJ:5mI" h:.TC?O&__eq;cD4{R pM<_uXM|v􅢩nbS Wwla$8;kϗ0g9Vv`q Z* ,KUjSIhؼՄ#AaD |fyDf9+'2yɜ7kLy.Wq1u<®9c=ۨ)COs%..)q@iCθ/iIO ϒ8au^>^ox<=]Jc(!D~}u黳sVr2# mV'/_OD#'$ ?F"Lq!Ŝ8OUvlчϋ5\C93WJr:J8=,DMr:{Af&{NW%#q9 IypE |X5kstq룲G-µF7\y~6|[,MxwTfw/&.IJ˽3y̐=\]&/;/9\i,x|af=*i-_fPxmԕkzwj6B?rO&QwOFZDZ9)jpיCvkC_Tz2EWԴ֥`6- $EC5OB1^>fT:rYPG[?Io`ZT.775=Uۍڻ=pl*0p4`. =D_}50#p[]h*{7|n {O I6ǻ4xk6u)N<LctP.@0U[Zc7>]܆% oJ];LG0M;@ ŭO.$&0*kkv3dpp !+>V߸1:<߾clU4[|} ,#6L4_yWBp#p\M~|%oxuJx|s[!德Og示f%so~ߺ*?L Bn9.+%,kT-veR)n :Ʋ$I{$DOwddMKCjgV.WåOdWO-:9LoK<#8z:z,_~;s+yU2i"W Z{ńM:b'ާ&co>cϞGxk=Op+M|eC<*70| 3 ~2n=gFfW%m^ο:KWy@4RL4N !;Moۆ޼o\¤§;TE4Rj@ LO7͡&+IHXI넷%/%)S5|~ Xlr3zߢoyrV$˫*3۪r;U37[2-^* LA2`:_RfnǻvLܦhy҈lWY[hyukjI36^ 3 INzy*Pb/1]@*/8Ѣ?+5:Kfj흁9 bɳU/w1΃o7|M? m;^};= b ߎ Q§wc~ Τ=nċ./v}:\O^8RsR))liLXfsร~L< W:"*@~~>`ZG.~a_vzm )ZyOt9 n.1Ch$1#k'~$ϫTfpUIC">~85ڙjLwOf/!_!Mv4b9ip͋w[4D9 GU2\o!k8hڋ"]w^OQ4Ȫ/vβn^+X>QG|ݷmfU|A}9^Y~hQ&#؞)=ilkf\Ķ2~8vzSq\q$ݫSv&>- 9>h8YSՌ~@4uu+{)n)kMjC`ގ gCXu;+VLWFlB.2M5 }%1=O2=#GEKiThZ,VP5:8%mߎ o/;5KTl-K_j95zf`jCvUmgH8='oȚ͟F3_''vYW!q5~Y5Q%AA dLonڑwpfHA@8B 9 )Io|X\R1O,)&?D&P2BFQY/A=!)1 f=r9kĥ9Gi>}sby2l/Ao4~/0>nGD/).CG$鍧ۘl:wydc1I-ӊz!q75# ]WxDKd[ 3E`C0[ae|"QSI;Pؗ.>GW[6_~)X4+'΃g&z/Ld*7UGV^YCS}s麖%J)'cTbr%򠌣dZ IlL\t9 Yn+ָ;iӁ7%r2q-5:.pޯ,,My4n>Vr %endstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 519 0 R /FirstChar 46 /LastChar 117 /Widths 520 0 R /BaseFont /RDAEOY+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /RDAEOY+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/period/zero/two/five/A/C/F/G/K/M/P/U/V/d/e/i/n/o/r/s/u) /FontFile 5 0 R >> endobj 520 0 obj [250 0 459 0 459 0 0 459 0 0 0 0 0 0 0 0 0 0 0 693 0 668 0 0 602 726 0 0 0 719 0 850 0 0 628 0 0 0 0 693 693 0 0 0 0 0 0 0 0 0 0 0 0 0 511 406 0 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 ] endobj 519 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 48/zero 49/.notdef 50/two 51/.notdef 53/five 54/.notdef 65/A 66/.notdef 67/C 68/.notdef 70/F/G 72/.notdef 75/K 76/.notdef 77/M 78/.notdef 80/P 81/.notdef 85/U/V 87/.notdef 100/d/e 102/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u 118/.notdef] >> endobj 19 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [2 0 R 21 0 R 30 0 R 33 0 R 36 0 R 60 0 R] >> endobj 68 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [66 0 R 70 0 R 73 0 R 76 0 R 85 0 R 88 0 R] >> endobj 93 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [91 0 R 95 0 R 98 0 R 104 0 R 107 0 R 110 0 R] >> endobj 115 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [113 0 R 117 0 R 120 0 R 123 0 R 126 0 R 129 0 R] >> endobj 137 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [135 0 R 139 0 R 142 0 R 145 0 R 148 0 R 151 0 R] >> endobj 156 0 obj << /Type /Pages /Count 6 /Parent 521 0 R /Kids [154 0 R 158 0 R 161 0 R 164 0 R 167 0 R 170 0 R] >> endobj 175 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [173 0 R 177 0 R 180 0 R 183 0 R 186 0 R 189 0 R] >> endobj 194 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [192 0 R 196 0 R 199 0 R 202 0 R 205 0 R 208 0 R] >> endobj 213 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [211 0 R 215 0 R 218 0 R 221 0 R 224 0 R 227 0 R] >> endobj 232 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [230 0 R 234 0 R 237 0 R 240 0 R 243 0 R 246 0 R] >> endobj 251 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [249 0 R 253 0 R 256 0 R 259 0 R 262 0 R 265 0 R] >> endobj 270 0 obj << /Type /Pages /Count 6 /Parent 522 0 R /Kids [268 0 R 272 0 R 275 0 R 278 0 R 281 0 R 284 0 R] >> endobj 289 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [287 0 R 291 0 R 294 0 R 297 0 R 300 0 R 303 0 R] >> endobj 308 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [306 0 R 310 0 R 313 0 R 316 0 R 319 0 R 322 0 R] >> endobj 327 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [325 0 R 329 0 R 332 0 R 335 0 R 338 0 R 341 0 R] >> endobj 346 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [344 0 R 348 0 R 351 0 R 354 0 R 357 0 R 360 0 R] >> endobj 365 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [363 0 R 367 0 R 370 0 R 373 0 R 376 0 R 379 0 R] >> endobj 384 0 obj << /Type /Pages /Count 6 /Parent 523 0 R /Kids [382 0 R 386 0 R 389 0 R 392 0 R 395 0 R 398 0 R] >> endobj 403 0 obj << /Type /Pages /Count 6 /Parent 524 0 R /Kids [401 0 R 405 0 R 408 0 R 411 0 R 414 0 R 417 0 R] >> endobj 422 0 obj << /Type /Pages /Count 6 /Parent 524 0 R /Kids [420 0 R 424 0 R 427 0 R 430 0 R 433 0 R 436 0 R] >> endobj 441 0 obj << /Type /Pages /Count 6 /Parent 524 0 R /Kids [439 0 R 443 0 R 446 0 R 449 0 R 452 0 R 455 0 R] >> endobj 460 0 obj << /Type /Pages /Count 6 /Parent 524 0 R /Kids [458 0 R 462 0 R 465 0 R 468 0 R 471 0 R 474 0 R] >> endobj 479 0 obj << /Type /Pages /Count 2 /Parent 524 0 R /Kids [477 0 R 481 0 R] >> endobj 521 0 obj << /Type /Pages /Count 36 /Parent 525 0 R /Kids [19 0 R 68 0 R 93 0 R 115 0 R 137 0 R 156 0 R] >> endobj 522 0 obj << /Type /Pages /Count 36 /Parent 525 0 R /Kids [175 0 R 194 0 R 213 0 R 232 0 R 251 0 R 270 0 R] >> endobj 523 0 obj << /Type /Pages /Count 36 /Parent 525 0 R /Kids [289 0 R 308 0 R 327 0 R 346 0 R 365 0 R 384 0 R] >> endobj 524 0 obj << /Type /Pages /Count 26 /Parent 525 0 R /Kids [403 0 R 422 0 R 441 0 R 460 0 R 479 0 R] >> endobj 525 0 obj << /Type /Pages /Count 134 /Kids [521 0 R 522 0 R 523 0 R 524 0 R] >> endobj 526 0 obj << /Type /Catalog /Pages 525 0 R >> endobj 527 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20071029160430-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 528 0000000000 65535 f 0000003168 00000 n 0000003053 00000 n 0000000009 00000 n 0000386337 00000 n 0000381191 00000 n 0000386180 00000 n 0000380280 00000 n 0000372685 00000 n 0000380123 00000 n 0000371711 00000 n 0000359309 00000 n 0000371551 00000 n 0000357817 00000 n 0000340490 00000 n 0000357658 00000 n 0000339578 00000 n 0000336591 00000 n 0000339419 00000 n 0000387143 00000 n 0000004872 00000 n 0000004754 00000 n 0000003282 00000 n 0000335476 00000 n 0000324301 00000 n 0000335316 00000 n 0000322906 00000 n 0000308425 00000 n 0000322746 00000 n 0000007595 00000 n 0000007477 00000 n 0000004977 00000 n 0000008214 00000 n 0000008096 00000 n 0000007676 00000 n 0000012943 00000 n 0000012825 00000 n 0000008295 00000 n 0000308065 00000 n 0000305472 00000 n 0000307908 00000 n 0000305123 00000 n 0000303515 00000 n 0000304967 00000 n 0000302674 00000 n 0000294283 00000 n 0000302514 00000 n 0000293470 00000 n 0000288632 00000 n 0000293310 00000 n 0000288217 00000 n 0000285287 00000 n 0000288058 00000 n 0000284927 00000 n 0000282319 00000 n 0000284770 00000 n 0000281080 00000 n 0000268807 00000 n 0000280922 00000 n 0000017582 00000 n 0000017464 00000 n 0000013132 00000 n 0000268462 00000 n 0000266534 00000 n 0000268304 00000 n 0000020747 00000 n 0000020629 00000 n 0000017747 00000 n 0000387252 00000 n 0000024439 00000 n 0000024321 00000 n 0000020852 00000 n 0000028881 00000 n 0000028763 00000 n 0000024556 00000 n 0000030578 00000 n 0000030460 00000 n 0000028998 00000 n 0000266014 00000 n 0000263074 00000 n 0000265855 00000 n 0000261590 00000 n 0000246503 00000 n 0000261431 00000 n 0000034999 00000 n 0000034881 00000 n 0000030695 00000 n 0000039156 00000 n 0000039038 00000 n 0000035116 00000 n 0000044293 00000 n 0000044175 00000 n 0000039285 00000 n 0000387362 00000 n 0000047959 00000 n 0000047841 00000 n 0000044458 00000 n 0000051051 00000 n 0000050933 00000 n 0000048088 00000 n 0000246011 00000 n 0000243778 00000 n 0000245850 00000 n 0000055547 00000 n 0000055426 00000 n 0000051216 00000 n 0000060056 00000 n 0000059935 00000 n 0000055713 00000 n 0000063983 00000 n 0000063862 00000 n 0000060210 00000 n 0000067461 00000 n 0000067339 00000 n 0000064101 00000 n 0000387475 00000 n 0000071745 00000 n 0000071623 00000 n 0000067627 00000 n 0000076950 00000 n 0000076828 00000 n 0000071851 00000 n 0000082035 00000 n 0000081913 00000 n 0000077128 00000 n 0000087017 00000 n 0000086895 00000 n 0000082189 00000 n 0000090563 00000 n 0000090441 00000 n 0000087123 00000 n 0000243408 00000 n 0000241223 00000 n 0000243245 00000 n 0000092267 00000 n 0000092145 00000 n 0000090754 00000 n 0000387592 00000 n 0000094087 00000 n 0000093965 00000 n 0000092386 00000 n 0000096788 00000 n 0000096666 00000 n 0000094206 00000 n 0000101427 00000 n 0000101305 00000 n 0000096906 00000 n 0000103919 00000 n 0000103797 00000 n 0000101545 00000 n 0000107679 00000 n 0000107557 00000 n 0000104061 00000 n 0000112270 00000 n 0000112148 00000 n 0000107773 00000 n 0000387709 00000 n 0000116827 00000 n 0000116705 00000 n 0000112400 00000 n 0000121018 00000 n 0000120896 00000 n 0000116945 00000 n 0000123298 00000 n 0000123176 00000 n 0000121136 00000 n 0000124460 00000 n 0000124338 00000 n 0000123392 00000 n 0000125693 00000 n 0000125571 00000 n 0000124566 00000 n 0000127356 00000 n 0000127234 00000 n 0000125775 00000 n 0000387826 00000 n 0000129100 00000 n 0000128978 00000 n 0000127438 00000 n 0000130913 00000 n 0000130791 00000 n 0000129182 00000 n 0000132370 00000 n 0000132248 00000 n 0000130995 00000 n 0000134115 00000 n 0000133993 00000 n 0000132452 00000 n 0000135573 00000 n 0000135451 00000 n 0000134197 00000 n 0000136970 00000 n 0000136848 00000 n 0000135655 00000 n 0000387943 00000 n 0000137510 00000 n 0000137388 00000 n 0000137052 00000 n 0000138358 00000 n 0000138236 00000 n 0000137592 00000 n 0000139767 00000 n 0000139645 00000 n 0000138452 00000 n 0000141581 00000 n 0000141459 00000 n 0000139849 00000 n 0000143164 00000 n 0000143042 00000 n 0000141663 00000 n 0000145068 00000 n 0000144946 00000 n 0000143246 00000 n 0000388060 00000 n 0000146585 00000 n 0000146463 00000 n 0000145150 00000 n 0000148232 00000 n 0000148110 00000 n 0000146667 00000 n 0000149991 00000 n 0000149869 00000 n 0000148314 00000 n 0000151367 00000 n 0000151245 00000 n 0000150073 00000 n 0000151903 00000 n 0000151781 00000 n 0000151449 00000 n 0000152694 00000 n 0000152572 00000 n 0000151985 00000 n 0000388177 00000 n 0000153933 00000 n 0000153811 00000 n 0000152788 00000 n 0000155340 00000 n 0000155218 00000 n 0000154015 00000 n 0000156972 00000 n 0000156850 00000 n 0000155422 00000 n 0000158452 00000 n 0000158330 00000 n 0000157054 00000 n 0000159405 00000 n 0000159283 00000 n 0000158534 00000 n 0000160360 00000 n 0000160238 00000 n 0000159499 00000 n 0000388294 00000 n 0000161227 00000 n 0000161105 00000 n 0000160454 00000 n 0000161846 00000 n 0000161724 00000 n 0000161321 00000 n 0000162646 00000 n 0000162524 00000 n 0000161928 00000 n 0000164022 00000 n 0000163900 00000 n 0000162740 00000 n 0000164980 00000 n 0000164858 00000 n 0000164104 00000 n 0000165759 00000 n 0000165637 00000 n 0000165062 00000 n 0000388411 00000 n 0000166841 00000 n 0000166719 00000 n 0000165853 00000 n 0000168071 00000 n 0000167949 00000 n 0000166923 00000 n 0000168964 00000 n 0000168842 00000 n 0000168153 00000 n 0000170504 00000 n 0000170382 00000 n 0000169058 00000 n 0000171296 00000 n 0000171174 00000 n 0000170586 00000 n 0000172634 00000 n 0000172512 00000 n 0000171390 00000 n 0000388528 00000 n 0000174255 00000 n 0000174133 00000 n 0000172716 00000 n 0000175930 00000 n 0000175808 00000 n 0000174337 00000 n 0000177051 00000 n 0000176929 00000 n 0000176012 00000 n 0000177806 00000 n 0000177684 00000 n 0000177133 00000 n 0000179151 00000 n 0000179029 00000 n 0000177900 00000 n 0000180820 00000 n 0000180698 00000 n 0000179233 00000 n 0000388645 00000 n 0000181913 00000 n 0000181791 00000 n 0000180902 00000 n 0000182711 00000 n 0000182589 00000 n 0000181995 00000 n 0000183859 00000 n 0000183737 00000 n 0000182805 00000 n 0000184757 00000 n 0000184635 00000 n 0000183941 00000 n 0000185939 00000 n 0000185817 00000 n 0000184851 00000 n 0000186707 00000 n 0000186585 00000 n 0000186021 00000 n 0000388762 00000 n 0000187478 00000 n 0000187356 00000 n 0000186789 00000 n 0000188530 00000 n 0000188408 00000 n 0000187572 00000 n 0000190082 00000 n 0000189960 00000 n 0000188612 00000 n 0000191792 00000 n 0000191670 00000 n 0000190164 00000 n 0000192491 00000 n 0000192369 00000 n 0000191874 00000 n 0000193317 00000 n 0000193195 00000 n 0000192573 00000 n 0000388879 00000 n 0000194155 00000 n 0000194033 00000 n 0000193411 00000 n 0000195715 00000 n 0000195593 00000 n 0000194237 00000 n 0000197399 00000 n 0000197277 00000 n 0000195797 00000 n 0000199007 00000 n 0000198885 00000 n 0000197481 00000 n 0000200203 00000 n 0000200081 00000 n 0000199089 00000 n 0000200990 00000 n 0000200868 00000 n 0000200285 00000 n 0000388996 00000 n 0000201745 00000 n 0000201623 00000 n 0000201084 00000 n 0000202532 00000 n 0000202410 00000 n 0000201827 00000 n 0000203507 00000 n 0000203385 00000 n 0000202626 00000 n 0000204297 00000 n 0000204175 00000 n 0000203589 00000 n 0000205051 00000 n 0000204929 00000 n 0000204391 00000 n 0000205837 00000 n 0000205715 00000 n 0000205133 00000 n 0000389113 00000 n 0000206820 00000 n 0000206698 00000 n 0000205931 00000 n 0000207653 00000 n 0000207531 00000 n 0000206902 00000 n 0000209155 00000 n 0000209033 00000 n 0000207747 00000 n 0000210473 00000 n 0000210351 00000 n 0000209237 00000 n 0000211082 00000 n 0000210960 00000 n 0000210555 00000 n 0000211927 00000 n 0000211805 00000 n 0000211164 00000 n 0000389230 00000 n 0000212847 00000 n 0000212725 00000 n 0000212021 00000 n 0000213817 00000 n 0000213695 00000 n 0000212929 00000 n 0000214446 00000 n 0000214324 00000 n 0000213911 00000 n 0000215309 00000 n 0000215187 00000 n 0000214528 00000 n 0000216192 00000 n 0000216070 00000 n 0000215403 00000 n 0000217072 00000 n 0000216950 00000 n 0000216274 00000 n 0000389347 00000 n 0000218218 00000 n 0000218096 00000 n 0000217166 00000 n 0000219583 00000 n 0000219461 00000 n 0000218300 00000 n 0000220485 00000 n 0000220363 00000 n 0000219665 00000 n 0000221299 00000 n 0000221177 00000 n 0000220567 00000 n 0000222696 00000 n 0000222574 00000 n 0000221393 00000 n 0000223522 00000 n 0000223400 00000 n 0000222778 00000 n 0000389464 00000 n 0000224826 00000 n 0000224704 00000 n 0000223616 00000 n 0000225644 00000 n 0000225522 00000 n 0000224908 00000 n 0000226984 00000 n 0000226862 00000 n 0000225738 00000 n 0000227851 00000 n 0000227729 00000 n 0000227066 00000 n 0000229036 00000 n 0000228914 00000 n 0000227945 00000 n 0000230197 00000 n 0000230075 00000 n 0000229118 00000 n 0000389581 00000 n 0000231042 00000 n 0000230920 00000 n 0000230279 00000 n 0000232563 00000 n 0000232441 00000 n 0000231136 00000 n 0000233167 00000 n 0000233045 00000 n 0000232645 00000 n 0000234380 00000 n 0000234258 00000 n 0000233249 00000 n 0000235707 00000 n 0000235585 00000 n 0000234474 00000 n 0000238563 00000 n 0000238441 00000 n 0000235801 00000 n 0000389698 00000 n 0000241141 00000 n 0000241019 00000 n 0000238657 00000 n 0000243658 00000 n 0000243608 00000 n 0000246336 00000 n 0000246292 00000 n 0000262559 00000 n 0000262173 00000 n 0000266368 00000 n 0000266222 00000 n 0000268709 00000 n 0000268659 00000 n 0000281871 00000 n 0000281499 00000 n 0000285183 00000 n 0000285143 00000 n 0000288491 00000 n 0000288427 00000 n 0000293994 00000 n 0000293730 00000 n 0000303184 00000 n 0000302948 00000 n 0000305373 00000 n 0000305341 00000 n 0000308321 00000 n 0000308281 00000 n 0000323785 00000 n 0000323419 00000 n 0000336216 00000 n 0000335853 00000 n 0000340164 00000 n 0000339892 00000 n 0000358765 00000 n 0000358348 00000 n 0000372366 00000 n 0000372075 00000 n 0000380814 00000 n 0000380564 00000 n 0000386788 00000 n 0000386582 00000 n 0000389783 00000 n 0000389898 00000 n 0000390016 00000 n 0000390134 00000 n 0000390244 00000 n 0000390331 00000 n 0000390384 00000 n trailer << /Size 528 /Root 526 0 R /Info 527 0 R /ID [ ] >> startxref 390588 %%EOF SuiteSparse/UMFPACK/Doc/UserGuide.sed10000644001170100242450000000414510171731535016223 0ustar davisfac/INCLUDE umfpack_col_to_triplet.h/r ../Include/umfpack_col_to_triplet.h /INCLUDE umfpack_defaults.h/r ../Include/umfpack_defaults.h /INCLUDE umfpack_free_numeric.h/r ../Include/umfpack_free_numeric.h /INCLUDE umfpack_free_symbolic.h/r ../Include/umfpack_free_symbolic.h /INCLUDE umfpack_get_lunz.h/r ../Include/umfpack_get_lunz.h /INCLUDE umfpack_get_numeric.h/r ../Include/umfpack_get_numeric.h /INCLUDE umfpack_get_symbolic.h/r ../Include/umfpack_get_symbolic.h /INCLUDE umfpack_get_scale.h/r ../Include/umfpack_get_scale.h /INCLUDE umfpack_numeric.h/r ../Include/umfpack_numeric.h /INCLUDE umfpack_qsymbolic.h/r ../Include/umfpack_qsymbolic.h /INCLUDE umfpack_report_control.h/r ../Include/umfpack_report_control.h /INCLUDE umfpack_report_info.h/r ../Include/umfpack_report_info.h /INCLUDE umfpack_report_matrix.h/r ../Include/umfpack_report_matrix.h /INCLUDE umfpack_report_numeric.h/r ../Include/umfpack_report_numeric.h /INCLUDE umfpack_report_perm.h/r ../Include/umfpack_report_perm.h /INCLUDE umfpack_report_status.h/r ../Include/umfpack_report_status.h /INCLUDE umfpack_report_symbolic.h/r ../Include/umfpack_report_symbolic.h /INCLUDE umfpack_report_triplet.h/r ../Include/umfpack_report_triplet.h /INCLUDE umfpack_report_vector.h/r ../Include/umfpack_report_vector.h /INCLUDE umfpack_simple.c/r ../Demo/umfpack_simple.c /INCLUDE umfpack_solve.h/r ../Include/umfpack_solve.h /INCLUDE umfpack_scale.h/r ../Include/umfpack_scale.h /INCLUDE umfpack_symbolic.h/r ../Include/umfpack_symbolic.h /INCLUDE umfpack_timer.h/r ../Include/umfpack_timer.h /INCLUDE umfpack_tictoc.h/r ../Include/umfpack_tictoc.h /INCLUDE umfpack_transpose.h/r ../Include/umfpack_transpose.h /INCLUDE umfpack_triplet_to_col.h/r ../Include/umfpack_triplet_to_col.h /INCLUDE umfpack_wsolve.h/r ../Include/umfpack_wsolve.h /INCLUDE umfpack_load_numeric.h/r ../Include/umfpack_load_numeric.h /INCLUDE umfpack_load_symbolic.h/r ../Include/umfpack_load_symbolic.h /INCLUDE umfpack_save_numeric.h/r ../Include/umfpack_save_numeric.h /INCLUDE umfpack_save_symbolic.h/r ../Include/umfpack_save_symbolic.h /INCLUDE umfpack_get_determinant.h/r ../Include/umfpack_get_determinant.h SuiteSparse/UMFPACK/Doc/UserGuide.sed20000644001170100242450000000004710006260703016210 0ustar davisfac/[/][*]/d /[*][/]/d /INCLUDE umfpack/d SuiteSparse/UMFPACK/Doc/UserGuide.stex0000644001170100242450000033454110711430613016351 0ustar davisfac%------------------------------------------------------------------------------- % The UserGuide.stex file. Processed into UserGuide.tex via sed. %------------------------------------------------------------------------------- \documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \newcommand{\he}{^{\sf H}} % complex conjugate transpose \newcommand{\implies}{\rightarrow} \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in \begin{document} \author{Timothy A. Davis \\ Dept. of Computer and Information Science and Engineering \\ Univ. of Florida, Gainesville, FL} \title{UMFPACK Version 5.2.0 User Guide} \date{Nov 1, 2007} \maketitle %------------------------------------------------------------------------------- \begin{abstract} UMFPACK is a set of routines for solving unsymmetric sparse linear systems, $\m{Ax}=\m{b}$, using the Unsymmetric MultiFrontal method and direct sparse LU factorization. It is written in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic Linear Algebra Subprograms (dense matrix multiply) for its performance. This code works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX, SGI IRIX, and Compaq Alpha). \end{abstract} %------------------------------------------------------------------------------- Technical Report TR-04-003 (revised) UMFPACK Version 5.2.0, Copyright\copyright 1995-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK is available under alternate licences; contact T. Davis for details. {\bf UMFPACK License:} Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. {\bf Availability:} http://www.cise.ufl.edu/research/sparse/umfpack {\bf Acknowledgments:} This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. The upgrade to Version 4.1 and the inclusion of the symmetric and 2-by-2 pivoting strategies were done while the author was on sabbatical at Stanford University and Lawrence Berkeley National Laboratory. %------------------------------------------------------------------------------- \newpage %------------------------------------------------------------------------------- \tableofcontents %------------------------------------------------------------------------------- \newpage \section{Overview} %------------------------------------------------------------------------------- UMFPACK\footnote{Pronounced with two syllables: umph-pack} is a set of routines for solving systems of linear equations, $\m{Ax}=\m{b}$, when $\m{A}$ is sparse and unsymmetric. It is based on the Unsymmetric-pattern MultiFrontal method \cite{DavisDuff97,DavisDuff99}. UMFPACK factorizes $\m{PAQ}$, $\m{PRAQ}$, or $\m{PR}^{-1}\m{AQ}$ into the product $\m{LU}$, where $\m{L}$ and $\m{U}$ are lower and upper triangular, respectively, $\m{P}$ and $\m{Q}$ are permutation matrices, and $\m{R}$ is a diagonal matrix of row scaling factors (or $\m{R}=\m{I}$ if row-scaling is not used). Both $\m{P}$ and $\m{Q}$ are chosen to reduce fill-in (new nonzeros in $\m{L}$ and $\m{U}$ that are not present in $\m{A}$). The permutation $\m{P}$ has the dual role of reducing fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row interchanges). The sparse matrix $\m{A}$ can be square or rectangular, singular or non-singular, and real or complex (or any combination). Only square matrices $\m{A}$ can be used to solve $\m{Ax}=\m{b}$ or related systems. Rectangular matrices can only be factorized. UMFPACK first finds a column pre-ordering that reduces fill-in, without regard to numerical values. It scales and analyzes the matrix, and then automatically selects one of three strategies for pre-ordering the rows and columns: {\em unsymmetric}, {\em 2-by-2}, and {\em symmetric}. These strategies are described below. First, all pivots with zero Markowitz cost are eliminated and placed in the LU factors. The remaining submatrix $\m{S}$ is then analyzed. The following rules are applied, and the first one that matches defines the strategy. \begin{itemize} \item Rule 1: $\m{A}$ rectangular $\implies$ unsymmetric. \item Rule 2: If the zero-Markowitz elimination results in a rectangular $\m{S}$, or an $\m{S}$ whose diagonal has not been preserved, the unsymmetric strategy is used. \item The symmetry $\sigma_1$ of $\m{S}$ is computed. It is defined as the number of {\em matched} off-diagonal entries, divided by the total number of off-diagonal entries. An entry $s_{ij}$ is matched if $s_{ji}$ is also an entry. They need not be numerically equal. An {\em entry} is a value in $\m{A}$ which is present in the input data structure. All nonzeros are entries, but some entries may be numerically zero. Rule 3: $\sigma_1 < 0.1 \implies$ unsymmetric. The matrix is very unsymmetric. \item Let $d$ be the number of nonzero entries on the diagonal of $\m{S}$. Let $\m{S}$ be $\nu$-by-$\nu$. Rule 4: $(\sigma_1 \ge 0.7) \:\wedge\: (d = \nu) \implies$ symmetric. The matrix has a nearly symmetric nonzero pattern, and a zero-free diagonal. \end{itemize} If the strategy has not yet been determined, the 2-by-2 strategy is attempted. A row permutation $\m{P}_2$ is found which attempts to reduce the number of small diagonal entries of $\m{P}_2 \m{S}$. An entry $s_{ij}$ is determined to be small if $|s_{ij}| < 0.01 \max |s_{*j}|$, or large otherwise. If $s_{ii}$ is numerically small, the method attempts to swap two rows $i$ and $j$, such that both $s_{ij}$ and $s_{ji}$ are large. Once these rows are swapped, they remain in place. Let $\sigma_2$ be the symmetry of $\m{P}_2 \m{S}$, and let $d_2$ be the number of nonzero entries (either small or large) on the diagonal of $\m{P}_2 \m{S}$. \begin{itemize} \item Rule 5: ($\sigma_2 > 1.1 \sigma_1) \:\wedge\: (d_2 > 0.9 \nu) \implies$ 2-by-2. The 2-by-2 permutation has made the matrix significantly more symmetric. \item Rule 6: $\sigma_2 < 0.7 \sigma_1 \implies$ unsymmetric. The 2-by-2 strategy has significantly deteriorated the symmetry, \item Rule 7: $\sigma_2 < 0.25 \implies$ unsymmetric. The matrix is still very unsymmetric. \item Rule 8: $\sigma_2 \ge 0.51 \implies$ 2-by-2. The matrix is roughly symmetric. \item Rule 9: $\sigma_2 \ge 0.999 \sigma_1 \implies$ 2-by-2. The 2-by-2 permutation has preserved symmetry, or made it only slightly worse. \item Rule 10: if no rule has yet triggered, use the unsymmetric strategy. \end{itemize} Each strategy is described below: \begin{itemize} \item {\em unsymmetric}: The column pre-ordering of $\m{S}$ is computed by a modified version of COLAMD \cite{DavisGilbertLarimoreNg00_algo,DavisGilbertLarimoreNg00,Larimore98}. The method finds a symmetric permutation $\m{Q}$ of the matrix $\m{S}\tr\m{S}$ (without forming $\m{S}\tr\m{S}$ explicitly). This is a good choice for $\m{Q}$, since the Cholesky factors of $\m{(SQ)\tr(SQ)}$ are an upper bound (in terms of nonzero pattern) of the factor $\m{U}$ for the unsymmetric LU factorization ($\m{PSQ}=\m{LU}$) regardless of the choice of $\m{P}$ \cite{GeorgeNg85,GeorgeNg87,GilbertNg93}. This modified version of COLAMD also computes the column elimination tree and post-orders the tree. It finds the upper bound on the number of nonzeros in L and U. It also has a different threshold for determining dense rows and columns. During factorization, the column pre-ordering can be modified. Columns within a single super-column can be reshuffled, to reduce fill-in. Threshold partial pivoting is used with no preference given to the diagonal entry. Within a given pivot column $j$, an entry $a_{ij}$ can be chosen if $|a_{ij}| \ge 0.1 \max |a_{*j}|$. Among those numerically acceptable entries, the sparsest row $i$ is chosen as the pivot row. \item {\em 2-by-2}: The symmetric strategy (see below) is applied to the matrix $\m{P}_2 \m{S}$, rather than $\m{S}$. \item {\em symmetric}: The column ordering is computed from AMD \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}, applied to the pattern of $\m{S}+\m{S}\tr$ followed by a post-ordering of the supernodal elimination tree of $\m{S}+\m{S}\tr$. No modification of the column pre-ordering is made during numerical factorization. Threshold partial pivoting is used, with a strong preference given to the diagonal entry. The diagonal entry is chosen if $a_{jj} \ge 0.001 \max |a_{*j}|$. Otherwise, a sparse row is selected, using the same method used by the unsymmetric strategy. \end{itemize} The symmetric and 2-by-2 strategies, and their automatic selection, are new to Version 4.1. Version 4.0 only used the unsymmetric strategy. Once the strategy is selected, the factorization of the matrix $\m{A}$ is broken down into the factorization of a sequence of dense rectangular frontal matrices. The frontal matrices are related to each other by a supernodal column elimination tree, in which each node in the tree represents one frontal matrix. This analysis phase also determines upper bounds on the memory usage, the floating-point operation count, and the number of nonzeros in the LU factors. UMFPACK factorizes each {\em chain} of frontal matrices in a single working array, similar to how the unifrontal method \cite{dusc:96} factorizes the whole matrix. A chain of frontal matrices is a sequence of fronts where the parent of front $i$ is $i$+1 in the supernodal column elimination tree. For the nonsingular matrices factorized with the unsymmetric strategy, there are exactly the same number of chains as there are leaves in the supernodal column elimination tree. UMFPACK is an outer-product based, right-looking method. At the $k$-th step of Gaussian elimination, it represents the updated submatrix $\m{A}_k$ as an implicit summation of a set of dense sub-matrices (referred to as {\em elements}, borrowing a phrase from finite-element methods) that arise when the frontal matrices are factorized and their pivot rows and columns eliminated. Each frontal matrix represents the elimination of one or more columns; each column of $\m{A}$ will be eliminated in a specific frontal matrix, and which frontal matrix will be used for which column is determined by the pre-analysis phase. The pre-analysis phase also determines the worst-case size of each frontal matrix so that they can hold any candidate pivot column and any candidate pivot row. From the perspective of the analysis phase, any candidate pivot column in the frontal matrix is identical (in terms of nonzero pattern), and so is any row. However, the numeric factorization phase has more information than the analysis phase. It uses this information to reorder the columns within each frontal matrix to reduce fill-in. Similarly, since the number of nonzeros in each row and column are maintained (more precisely, COLMMD-style approximate degrees \cite{GilbertMolerSchreiber}), a pivot row can be selected based on sparsity-preserving criteria (low degree) as well as numerical considerations (relaxed threshold partial pivoting). When the symmetric or 2-by-2 strategies are used, the column preordering is not refined during numeric factorization. Row pivoting for sparsity and numerical accuracy is performed if the diagonal entry is too small. More details of the method, including experimental results, are described in \cite{Davis03,Davis03_algo}, available at http://www.cise.ufl.edu/tech-reports. %------------------------------------------------------------------------------- \section{Availability} %------------------------------------------------------------------------------- In addition to appearing as a Collected Algorithm of the ACM, UMFPACK is available at http://www.cise.ufl.edu/research/sparse. It is included as a built-in routine in MATLAB. Version 4.0 (in MATLAB 6.5) does not have the symmetric or 2-by-2 strategies and it takes less advantage of the level-3 BLAS \cite{DaydeDuff99,ACM679a,ATLAS,GotoVandeGeijn02}. Versions 5.x through v4.1 tend to be much faster than Version 4.0, particularly on unsymmetric matrices with mostly symmetric nonzero pattern (such as finite element and circuit simulation matrices). Version 3.0 and following make use of a modified version of COLAMD V2.0 by Timothy A.~Davis, Stefan Larimore, John Gilbert, and Esmond Ng. The original COLAMD V2.1 is available in as a built-in routine in MATLAB V6.0 (or later), and at http://www.cise.ufl.edu/research/sparse. These codes are also available in Netlib \cite{netlib} at http://www.netlib.org. UMFPACK Versions 2.2.1 and earlier, co-authored with Iain Duff, are available at http://www.cise.ufl.edu/research/sparse and as MA38 (functionally equivalent to Version 2.2.1) in the Harwell Subroutine Library. {\bf NOTE: you must use the correct version of AMD with UMFPACK; using an old version of AMD with a newer version of UMFPACK can fail.} %------------------------------------------------------------------------------- \section{Primary changes from prior versions} %------------------------------------------------------------------------------- A detailed list of changes is in the {\tt ChangeLog} file. %------------------------------------------------------------------------------- \subsection{Version 5.2.0} %------------------------------------------------------------------------------- Change of license from GNU Lesser GPL to the GNU GPL. %------------------------------------------------------------------------------- \subsection{Version 5.1.0} %------------------------------------------------------------------------------- Port of MATLAB interface to 64-bit MATLAB. %------------------------------------------------------------------------------- \subsection{Version 5.0.3} %------------------------------------------------------------------------------- Renamed the MATLAB function to {\tt umfpack2}, so as not to confict with itself (the MATLAB built-in version of UMFPACK). %------------------------------------------------------------------------------- \subsection{Version 5.0} %------------------------------------------------------------------------------- Changed {\tt long} to {\tt UF\_long}, controlled by the {\tt UFconfig.h} file. A {\tt UF\_long} is normally just {\tt long}, except on the Windows 64 (WIN64) platform. In that case, it becomes {\tt \_\_int64}. %------------------------------------------------------------------------------- \subsection{Version 4.6} %------------------------------------------------------------------------------- Added additional options to {\tt umf\_solve.c}. %------------------------------------------------------------------------------- \subsection{Version 4.5} %------------------------------------------------------------------------------- Added function pointers for malloc, calloc, realloc, free, printf, hypot, and complex divisiion, so that these functions can be redefined at run-time. Added a version number so you can determine the version of UMFPACK at run time or compile time. UMFPACK requires AMD v2.0 or later. %------------------------------------------------------------------------------- \subsection{Version 4.4} %------------------------------------------------------------------------------- Bug fix in strategy selection in {\tt umfpack\_*\_qsymbolic}. Added packed complex case for all complex input/output arguments. Added {\tt umfpack\_get\_determinant}. Added minimal support for Microsoft Visual Studio (the {\tt umf\_multicompile.c} file). %------------------------------------------------------------------------------- \subsection{Version 4.3.1} %------------------------------------------------------------------------------- Minor bug fix in the forward/backsolve. This bug had the effect of turning off iterative refinement when solving $\m{A}\tr\m{x}=\m{b}$ after factorizing $\m{A}$. UMFPACK mexFunction now factorizes $\m{A}\tr$ in its forward-slash operation. %------------------------------------------------------------------------------- \subsection{Version 4.3} %------------------------------------------------------------------------------- No changes are visible to the C or MATLAB user, except the presence of one new control parameter in the {\tt Control} array, and three new statistics in the {\tt Info} array. The primary change is the addition of an (optional) drop tolerance. %------------------------------------------------------------------------------- \subsection{Version 4.1} %------------------------------------------------------------------------------- The following is a summary of the main changes that are visible to the C or MATLAB user: \begin{enumerate} \item New ordering strategies added. No changes are required in user code (either C or MATLAB) to use the new default strategy, which is an automatic selection of the unsymmetric, symmetric, or 2-by-2 strategies. \item Row scaling added. This is only visible to the MATLAB caller when using the form {\tt [L,U,P,Q,R] = umfpack (A)}, to retrieve the LU factors. Likewise, it is only visible to the C caller when the LU factors are retrieved, or when solving systems with just $\m{L}$ or $\m{U}$. New C-callable and MATLAB-callable routines are included to get and to apply the scale factors computed by UMFPACK. Row scaling is enabled by default, but can be disabled. Row scaling usually leads to a better factorization, particularly when the symmetric strategy is used. \item Error code {\tt UMFPACK\_ERROR\_problem\_to\_large} removed. Version 4.0 would generate this error when the upper bound memory usage exceeded 2GB (for the {\tt int} version), even when the actual memory usage was less than this. The new version properly handles this case, and can successfully factorize the matrix if sufficient memory is available. \item New control parameters and statistics provided. \item The AMD symmetric approximate minimum degree ordering routine added \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}. It is used by UMFPACK, and can also be called independently from C or MATLAB. \item The {\tt umfpack} mexFunction now returns permutation matrices, not permutation vectors, when using the form {\tt [L,U,P,Q] = umfpack (A)} or the new form {\tt [L,U,P,Q,R] = umfpack (A)}. \item New arguments added to the user-callable routines {\tt umfpack\_*\_symbolic}, {\tt umfpack\_*\_qsymbolic}, {\tt umfpack\_*\_get\_numeric}, and {\tt umfpack\_*\_get\_symbolic}. The symbolic analysis now makes use of the numerical values of the matrix $\m{A}$, to guide the 2-by-2 strategy. The subsequent matrix passed to the numeric factorization step does not have to have the same numerical values. All of the new arguments are optional. If you do not wish to include them, simply pass {\tt NULL} pointers instead. The 2-by-2 strategy will assume all entries are numerically large, for example. \item New routines added to save and load the {\tt Numeric} and {\tt Symbolic} objects to and from a binary file. \item A Fortran interface added. It provides access to a subset of UMFPACK's features. \item You can compute an incomplete LU factorization, by dropping small entries from $\m{L}$ and $\m{U}$. By default, no nonzero entry is dropped, no matter how small in absolute value. This feature is new to Version 4.3. \end{enumerate} %------------------------------------------------------------------------------- \section{Using UMFPACK in MATLAB} %------------------------------------------------------------------------------- The easiest way to use UMFPACK is within MATLAB. Version 4.3 is a built-in routine in MATLAB 7.0.4, and is used in {\tt x = A}$\backslash${\tt b} when {\tt A} is sparse, square, unsymmetric (or symmetric but not positive definite), and with nonzero entries that are not confined in a narrow band. It is also used for the {\tt [L,U,P,Q] = lu (A)} usage of {\tt lu}. Type {\tt help lu} in MATLAB 6.5 or later for more details. To use the UMFPACK mexFunction, you must download and compile it, since the mexFunction itself is not part of MATLAB. The following discussion assumes that you have MATLAB Version 6.0 or later (which includes the BLAS, and the {\tt colamd} ordering routine). To compile both the UMFPACK and AMD mexFunctions, just type {\tt make} in the Unix system shell, while in the {\tt UMFPACK} directory. You can also type {\tt umfpack\_make} in MATLAB, if you are in the {\tt UMFPACK/MATLAB} directory, or if that directory is in your MATLAB path. This works on any system with MATLAB, including Windows. See Section~\ref{Install} for more details on how to install UMFPACK. Once installed, the UMFPACK mexFunction can analyze, factor, and solve linear systems. Table~\ref{matlab} summarizes some of the more common uses of the UMFPACK mexFunction within MATLAB. An optional input argument can be used to modify the control parameters for UMFPACK, and an optional output argument provides statistics on the factorization. Refer to the AMD User Guide for more details about the AMD mexFunction. \begin{table} \caption{Using UMFPACK's MATLAB interface} \label{matlab} \vspace{0.1in} {\footnotesize \begin{tabular}{l|l|l} \hline Function & Using UMFPACK & MATLAB 6.0 equivalent \\ \hline & & \\ \begin{minipage}[t]{1.5in} Solve $\m{Ax}=\m{b}$. \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} x = umfpack (A,'\',b) ; \end{verbatim} \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} x = A \ b ; \end{verbatim} \end{minipage} \\ & & \\ \hline & & \\ \begin{minipage}[t]{1.5in} Solve $\m{Ax}=\m{b}$ using a different row and column pre-ordering (symmetric ordering). \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} S = spones (A) ; Q = symamd (S+S') ; Control = umfpack ; Control (6) = 3 ; x = umfpack (A,Q,'\',b,Control) ; \end{verbatim} \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} spparms ('autommd',0) ; S = spones (A) ; Q = symamd (S+S') ; x = A (Q,Q) \ b (Q) ; x (Q) = x ; spparms ('autommd',1) ; \end{verbatim} \end{minipage} \\ & & \\ \hline & & \\ \begin{minipage}[t]{1.5in} Solve $\m{A}\tr\m{x}\tr = \m{b}\tr$. \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} x = umfpack (b,'/',A) ; \end{verbatim} Note: $\m{A}$ is factorized. \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} x = b / A ; \end{verbatim} Note: $\m{A}\tr$ is factorized. \end{minipage} \\ & & \\ \hline & & \\ \begin{minipage}[t]{1.5in} Scale and factorize $\m{A}$, then solve $\m{Ax}=\m{b}$. \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} [L,U,P,Q,R] = umfpack (A) ; c = P * (R \ b) ; x = Q * (U \ (L \ c)) ; \end{verbatim} \end{minipage} & \begin{minipage}[t]{2.2in} \begin{verbatim} [m n] = size (A) ; r = full (sum (abs (A), 2)) ; r (find (r == 0)) = 1 ; R = spdiags (r, 0, m, m) ; I = speye (n) ; Q = I (:, colamd (A)) ; [L,U,P] = lu ((R\A)*Q) ; c = P * (R \ b) ; x = Q * (U \ (L \ c)) ; \end{verbatim} \end{minipage} \\ & & \\ \hline \end{tabular} } \end{table} Note: in MATLAB 6.5 or later, use {\tt spparms ('autoamd',0)} in addition to {\tt spparms ('autommd',0)}, in Table~\ref{matlab}, to turn off MATLAB's default reordering. UMFPACK requires {\tt b} to be a dense vector (real or complex) of the appropriate dimension. This is more restrictive than what you can do with MATLAB's backslash or forward slash. See {\tt umfpack\_solve} for an M-file that removes this restriction. This restriction does not apply to the built-in backslash operator in MATLAB 6.5 or later, which uses UMFPACK to factorize the matrix. You can do this yourself in MATLAB: {\footnotesize \begin{verbatim} [L,U,P,Q,R] = umfpack (A) ; x = Q * (U \ (L \ (P * (R \ b)))) ; \end{verbatim} } or, with no row scaling: {\footnotesize \begin{verbatim} [L,U,P,Q] = umfpack (A) ; x = Q * (U \ (L \ (P * b))) ; \end{verbatim} } The above examples do not make use of the iterative refinement that is built into {\tt x = }{\tt umfpack (A,'}$\backslash${\tt ',b)} however. MATLAB's {\tt [L,U,P] = lu(A)} returns a lower triangular {\tt L}, an upper triangular {\tt U}, and a permutation matrix {\tt P} such that {\tt P*A} is equal to {\tt L*U}. UMFPACK behaves differently. By default, it scales the rows of {\tt A} and reorders the columns of {\tt A} prior to factorization, so that {\tt L*U} is equal to {\tt P*(R}$\backslash${\tt A)*Q}, where {\tt R} is a diagonal sparse matrix of scale factors for the rows of {\tt A}. The scale factors {\tt R} are applied to {\tt A} via the MATLAB expression {\tt R}$\backslash${\tt A} to avoid multiplying by the reciprocal, which can be numerically inaccurate. There are more options; you can provide your own column pre-ordering (in which case UMFPACK does not call COLAMD or AMD), you can modify other control settings (similar to the {\tt spparms} in MATLAB), and you can get various statistics on the analysis, factorization, and solution of the linear system. Type {\tt umfpack\_details} and {\tt umfpack\_report} in MATLAB for more information. Two demo M-files are provided. Just type {\tt umfpack\_simple} and {\tt umfpack\_demo} to run them. The output of these two programs should be about the same as the files {\tt umfpack\_simple.m.out} and {\tt umfpack\_demo.m.out} that are provided. Factorizing {\tt A'} (or {\tt A.'}) and using the transposed factors can sometimes be faster than factorizing {\tt A}. It can also be preferable to factorize {\tt A'} if {\tt A} is rectangular. UMFPACK pre-orders the columns to maintain sparsity; the row ordering is not determined until the matrix is factorized. Thus, if {\tt A} is {\tt m} by {\tt n} with structural rank {\tt m} and {\tt m} $<$ {\tt n}, then {\tt umfpack} might not find a factor {\tt U} with a structurally zero-free diagonal. Unless the matrix ill-conditioned or poorly scaled, factorizing {\tt A'} in this case will guarantee that both factors will have zero-free diagonals. Note that there is no guarantee as to the size of the diagonal entries of {\tt U}; UMFPACK does not do a rank-revealing factorization. Here's how you can factorize {\tt A'} and get the factors of {\tt A} instead: \begin{verbatim} [l,u,p,q] = umfpack (A') ; L = u' ; U = l' ; P = q ; Q = p ; clear l u p q \end{verbatim} This is an alternative to {\tt [L,U,P,Q]=umfpack(A)}. A simple M-file ({\tt umfpack\_btf}) is provided that first permutes the matrix to upper block triangular form, using MATLAB's {\tt dmperm} routine, and then solves each block. The LU factors are not returned. Its usage is simple: {\tt x = umfpack\_btf(A,b)}. Type {\tt help umfpack\_btf} for more options. An estimate of the 1-norm of {\tt L*U-P*A*Q} can be computed in MATLAB as {\tt lu\_normest(P*A*Q,L,U)}, using the {\tt lu\_normest.m} M-file by Hager and Davis \cite{DavisHager99} that is included with the UMFPACK distribution. With row scaling enabled, use {\tt lu\_normest(P*(R}$\backslash${\tt A)*Q,L,U)} instead. One issue you may encounter is how UMFPACK allocates its memory when being used in a mexFunction. One part of its working space is of variable size. The symbolic analysis phase determines an upper bound on the size of this memory, but not all of this memory will typically be used in the numerical factorization. UMFPACK tries to allocate a decent amount of working space. This is 70\% of the upper bound, by default, for the unsymmetric strategy. For the symmetric strategy, the fraction of the upper bound is computed automatically (assuming a best-case scenario with no numerical pivoting required during numeric factorization). If this initial allocation fails, it reduces its request and uses less memory. If the space is not large enough during factorization, it is increased via {\tt mxRealloc}. However, {\tt mxMalloc} and {\tt mxRealloc} abort the {\tt umfpack} mexFunction if they fail, so this strategy does not work in MATLAB. To compute the determinant with UMFPACK: \begin{verbatim} d = umfpack (A, 'det') ; [d e] = umfpack (A, 'det') ; \end{verbatim} The first case is identical to MATLAB's {\tt det}. The second case returns the determinant in the form $d \times 10^e$, which avoids overflow if $e$ is large. %------------------------------------------------------------------------------- \section{Using UMFPACK in a C program} \label{C} %------------------------------------------------------------------------------- The C-callable UMFPACK library consists of 32 user-callable routines and one include file. All but three of the routines come in four versions, with different sizes of integers and for real or complex floating-point numbers: \begin{enumerate} \item {\tt umfpack\_di\_*}: real double precision, {\tt int} integers. \item {\tt umfpack\_dl\_*}: real double precision, {\tt UF\_long} integers. \item {\tt umfpack\_zi\_*}: complex double precision, {\tt int} integers. \item {\tt umfpack\_zl\_*}: complex double precision, {\tt UF\_long} integers. \end{enumerate} where {\tt *} denotes the specific name of one of the routines. Routine names beginning with {\tt umf\_} are internal to the package, and should not be called by the user. The include file {\tt umfpack.h} must be included in any C program that uses UMFPACK. The other three routines are the same for all four versions. In addition, the C-callable AMD library distributed with UMFPACK includes 4 user-callable routines (in two versions with {\tt int} and {\tt UF\_long} integers) and one include file. Refer to the AMD documentation for more details. Use only one version for any one problem; do not attempt to use one version to analyze the matrix and another version to factorize the matrix, for example. The notation {\tt umfpack\_di\_*} refers to all user-callable routines for the real double precision and {\tt int} integer case. The notation {\tt umfpack\_*\_numeric}, for example, refers all four versions (real/complex, int/UF\_long) of a single operation (in this case numeric factorization). %------------------------------------------------------------------------------- \subsection{The size of an integer} %------------------------------------------------------------------------------- The {\tt umfpack\_di\_*} and {\tt umfpack\_zi\_*} routines use {\tt int} integer arguments; those starting with {\tt umfpack\_dl\_} or {\tt umfpack\_zl\_} use {\tt UF\_long} integer arguments. If you compile UMFPACK in the standard ILP32 mode (32-bit {\tt int}'s, {\tt long}'s, and pointers) then the versions are essentially identical. You will be able to solve problems using up to 2GB of memory. If you compile UMFPACK in the standard LP64 mode, the size of an {\tt int} remains 32-bits, but the size of a {\tt long} and a pointer both get promoted to 64-bits. In the LP64 mode, the {\tt umfpack\_dl\_*} and {\tt umfpack\_zl\_*} routines can solve huge problems (not limited to 2GB), limited of course by the amount of available memory. The only drawback to the 64-bit mode is that not all BLAS libraries support 64-bit integers. This limits the performance you will obtain. Those that do support 64-bit integers are specific to particular architectures, and are not portable. UMFPACK and AMD should be compiled in the same mode. If you compile UMFPACK and AMD in the LP64 mode, be sure to add {\tt -DLP64} to the compilation command. See the examples in the {\tt UFconfig/UFconfig.mk} file. %------------------------------------------------------------------------------- \subsection{Real and complex floating-point} %------------------------------------------------------------------------------- The {\tt umfpack\_di\_*} and {\tt umfpack\_dl\_*} routines take (real) double precision arguments, and return double precision arguments. In the {\tt umfpack\_zi\_*} and {\tt umfpack\_zl\_*} routines, these same arguments hold the real part of the matrices; and second double precision arrays hold the imaginary part of the input and output matrices. Internally, complex numbers are stored in arrays with their real and imaginary parts interleaved, as required by the BLAS (``packed'' complex form). New to Version 4.4 is the option of providing input/output arguments in packed complex form. %------------------------------------------------------------------------------- \subsection{Primary routines, and a simple example} %------------------------------------------------------------------------------- Five primary UMFPACK routines are required to factorize $\m{A}$ or solve $\m{Ax}=\m{b}$. They are fully described in Section~\ref{Primary}: \begin{itemize} \item {\tt umfpack\_*\_symbolic}: Pre-orders the columns of $\m{A}$ to reduce fill-in. Returns an opaque {\tt Symbolic} object as a {\tt void *} pointer. The object contains the symbolic analysis and is needed for the numeric factorization. This routine requires only $O(|\m{A}|)$ space, where $|\m{A}|$ is the number of nonzero entries in the matrix. It computes upper bounds on the nonzeros in $\m{L}$ and $\m{U}$, the floating-point operations required, and the memory usage of {\tt umfpack\_*\_numeric}. The {\tt Symbolic} object is small; it contains just the column pre-ordering, the supernodal column elimination tree, and information about each frontal matrix. It is no larger than about $13n$ integers if $\m{A}$ is $n$-by-$n$. \item {\tt umfpack\_*\_numeric}: Numerically scales and then factorizes a sparse matrix into $\m{PAQ}$, $\m{PRAQ}$, or $\m{PR}^{-1}\m{AQ}$ into the product $\m{LU}$, where $\m{P}$ and $\m{Q}$ are permutation matrices, $\m{R}$ is a diagonal matrix of scale factors, $\m{L}$ is lower triangular with unit diagonal, and $\m{U}$ is upper triangular. Requires the symbolic ordering and analysis computed by {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic}. Returns an opaque {\tt Numeric} object as a {\tt void *} pointer. The object contains the numerical factorization and is used by {\tt umfpack\_*\_solve}. You can factorize a new matrix with a different values (but identical pattern) as the matrix analyzed by {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic} by re-using the {\tt Symbolic} object (this feature is available when using UMFPACK in a C or Fortran program, but not in MATLAB). The matrix $\m{U}$ will have zeros on the diagonal if $\m{A}$ is singular; this produces a warning, but the factorization is still valid. \item {\tt umfpack\_*\_solve}: Solves a sparse linear system ($\m{Ax}=\m{b}$, $\m{A}\tr\m{x}=\m{b}$, or systems involving just $\m{L}$ or $\m{U}$), using the numeric factorization computed by {\tt umfpack\_*\_numeric}. Iterative refinement with sparse backward error \cite{ardd:89} is used by default. The matrix $\m{A}$ must be square. If it is singular, then a divide-by-zero will occur, and your solution with contain IEEE Inf's or NaN's in the appropriate places. \item {\tt umfpack\_*\_free\_symbolic}: Frees the {\tt Symbolic} object created by {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic}. \item {\tt umfpack\_*\_free\_numeric}: Frees the {\tt Numeric} object created by {\tt umfpack\_*\_numeric}. \end{itemize} Be careful not to free a {\tt Symbolic} object with {\tt umfpack\_*\_free\_numeric}. Nor should you attempt to free a {\tt Numeric} object with {\tt umfpack\_*\_free\_symbolic}. Failure to free these objects will lead to memory leaks. The matrix $\m{A}$ is represented in compressed column form, which is identical to the sparse matrix representation used by MATLAB. It consists of three or four arrays, where the matrix is {\tt m}-by-{\tt n}, with {\tt nz} entries. For the {\tt int} version of UMFPACK: {\footnotesize \begin{verbatim} int Ap [n+1] ; int Ai [nz] ; double Ax [nz] ; \end{verbatim} } For the {\tt UF\_long} version of UMFPACK: {\footnotesize \begin{verbatim} UF_long Ap [n+1] ; UF_long Ai [nz] ; double Ax [nz] ; \end{verbatim} } The complex versions add another array for the imaginary part: {\footnotesize \begin{verbatim} double Az [nz] ; \end{verbatim} } Alternatively, if {\tt Az} is {\tt NULL}, the real part of the $k$th entry is located in {\tt Ax[2*k]} and the imaginary part is located in {\tt Ax[2*k+1]}, and the {\tt Ax} array is of size {\tt 2*nz}. All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in column {\tt j} are stored in {\tt Ai[Ap[j]} \ldots {\tt Ap[j+1]-1]}. The corresponding numerical values are stored in {\tt Ax[Ap[j]} \ldots {\tt Ap[j+1]-1]}. The imaginary part, for the complex versions, is stored in {\tt Az[Ap[j]} \ldots {\tt Ap[j+1]-1]} (see above for the packed complex case). No duplicate row indices may be present, and the row indices in any given column must be sorted in ascending order. The first entry {\tt Ap[0]} must be zero. The total number of entries in the matrix is thus {\tt nz = Ap[n]}. Except for the fact that extra zero entries can be included, there is thus a unique compressed column representation of any given matrix $\m{A}$. For a more flexible method for providing an input matrix to UMFPACK, see Section~\ref{triplet}. Here is a simple main program, {\tt umfpack\_simple.c}, that illustrates the basic usage of UMFPACK. See Section~\ref{Synopsis} for a short description of each calling sequence, including a list of options for the first argument of {\tt umfpack\_di\_solve}. {\footnotesize \begin{verbatim} INCLUDE umfpack_simple.c via sed \end{verbatim} } The {\tt Ap}, {\tt Ai}, and {\tt Ax} arrays represent the matrix \[ \m{A} = \left[ \begin{array}{rrrrr} 2 & 3 & 0 & 0 & 0 \\ 3 & 0 & 4 & 0 & 6 \\ 0 & -1 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 2 & 0 & 1 \\ \end{array} \right]. \] and the solution to $\m{Ax}=\m{b}$ is $\m{x} = [1 \, 2 \, 3 \, 4 \, 5]\tr$. The program uses default control settings and does not return any statistics about the ordering, factorization, or solution ({\tt Control} and {\tt Info} are both {\tt (double *) NULL}). It also ignores the status value returned by most user-callable UMFPACK routines. %------------------------------------------------------------------------------- \subsection{A note about zero-sized arrays} %------------------------------------------------------------------------------- UMFPACK uses many user-provided arrays of size {\tt m} or {\tt n} (the order of the matrix), and of size {\tt nz} (the number of nonzeros in a matrix). UMFPACK does not handle zero-dimensioned arrays; it returns an error code if {\tt m} or {\tt n} are zero. However, {\tt nz} can be zero, since all singular matrices are handled correctly. If you attempt to {\tt malloc} an array of size {\tt nz} = 0, however, {\tt malloc} will return a null pointer which UMFPACK will report as a missing argument. If you {\tt malloc} an array of size {\tt nz} to pass to UMFPACK, make sure that you handle the {\tt nz} = 0 case correctly (use a size equal to the maximum of {\tt nz} and 1, or use a size of {\tt nz+1}). %------------------------------------------------------------------------------- \subsection{Alternative routines} %------------------------------------------------------------------------------- Three alternative routines are provided that modify UMFPACK's default behavior. They are fully described in Section~\ref{Alternative}: \begin{itemize} \item {\tt umfpack\_*\_defaults}: Sets the default control parameters in the {\tt Control} array. These can then be modified as desired before passing the array to the other UMFPACK routines. Control parameters are summarized in Section~\ref{control_param}. Three particular parameters deserve special notice. UMFPACK uses relaxed partial pivoting, where a candidate pivot entry is numerically acceptable if its magnitude is greater than or equal to a tolerance parameter times the magnitude of the largest entry in the same column. The parameter {\tt Control [UMFPACK\_PIVOT\_TOLERANCE]} has a default value of 0.1, and is used for the unsymmetric strategy. For complex matrices, a cheap approximation of the absolute value is used for the threshold pivoting test ($|a| \approx |a_{\mbox{real}}|+|a_{\mbox{imag}}|$). For the symmetric strategy, a second tolerance is used for diagonal entries: \newline {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]}, with a default value of 0.001. The first parameter (with a default of 0.1) is used for any off-diagonal candidate pivot entries. These two parameters may be too small for some matrices, particularly for ill-conditioned or poorly scaled ones. With the default pivot tolerances and default iterative refinement, {\tt x = umfpack (A,'}$\backslash${\tt ',b)} is just as accurate as (or more accurate) than {\tt x = A}$\backslash${\tt b} in MATLAB 6.1 for nearly all matrices. If {\tt Control [UMFPACK\_PIVOT\_TOLERANCE]} is zero, than any nonzero entry is acceptable as a pivot (this is changed from Version 4.0, which treated a value of 0.0 the same as 1.0). If the symmetric strategy is used, and {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]} is zero, then any nonzero entry on the diagonal is accepted as a pivot. Off-diagonal pivoting will still occur if the diagonal entry is exactly zero. The {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]} parameter is new to Version 4.1. It is similar in function to the pivot tolerance for left-looking methods (the MATLAB {\tt THRESH} option in {\tt [L,U,P] = lu (A, THRESH)}, and the pivot tolerance parameter in SuperLU). The parameter {\tt Control [UMFPACK\_STRATEGY]} can be used to bypass UMFPACK's automatic strategy selection. The automatic strategy nearly always selects the best method. When it does not, the different methods nearly always give about the same quality of results. There may be cases where the automatic strategy fails to pick a good strategy. Also, you can save some computing time if you know the right strategy for your set of matrix problems. \item {\tt umfpack\_*\_qsymbolic}: An alternative to {\tt umfpack\_*\_symbolic}. Allows the user to specify his or her own column pre-ordering, rather than using the default COLAMD or AMD pre-orderings. For example, a graph partitioning-based order of $\m{A}\tr\m{A}$ would be suitable for UMFPACK's unsymmetric strategy. A partitioning of $\m{A}+\m{A}\tr$ would be suitable for UMFPACK's symmetric or 2-by-2 strategies. \item {\tt umfpack\_*\_wsolve}: An alternative to {\tt umfpack\_*\_solve} which does not dynamically allocate any memory. Requires the user to pass two additional work arrays. \end{itemize} %------------------------------------------------------------------------------- \subsection{Matrix manipulation routines} \label{triplet} %------------------------------------------------------------------------------- The compressed column data structure is compact, and simplifies the UMFPACK routines that operate on the sparse matrix $\m{A}$. However, it can be inconvenient for the user to generate. Section~\ref{Manipulate} presents the details of routines for manipulating sparse matrices in {\em triplet} form, compressed column form, and compressed row form (the transpose of the compressed column form). The triplet form of a matrix consists of three or four arrays. For the {\tt int} version of UMFPACK: {\footnotesize \begin{verbatim} int Ti [nz] ; int Tj [nz] ; double Tx [nz] ; \end{verbatim} } For the {\tt UF\_long} version: {\footnotesize \begin{verbatim} UF_long Ti [nz] ; UF_long Tj [nz] ; double Tx [nz] ; \end{verbatim} } The complex versions use another array to hold the imaginary part: {\footnotesize \begin{verbatim} double Tz [nz] ; \end{verbatim} } The {\tt k}-th triplet is $(i,j,a_{ij})$, where $i =$ {\tt Ti[k]}, $j =$ {\tt Tj[k]}, and $a_{ij} =$ {\tt Tx[k]}. For the complex versions, {\tt Tx[k]} is the real part of $a_{ij}$ and {\tt Tz[k]} is the imaginary part. The triplets can be in any order in the {\tt Ti}, {\tt Tj}, and {\tt Tx} arrays (and {\tt Tz} for the complex versions), and duplicate entries may exist. If {\tt Tz} is NULL, then the array {\tt Tx} becomes of size {\tt 2*nz}, and the real and imaginary parts of the {\tt k}-th triplet are located in {\tt Tx[2*k]} and {\tt Tx[2*k+1]}, respectively. Any duplicate entries are summed when the triplet form is converted to compressed column form. This is a convenient way to create a matrix arising in finite-element methods, for example. Four routines are provided for manipulating sparse matrices: \begin{itemize} \item {\tt umfpack\_*\_triplet\_to\_col}: Converts a triplet form of a matrix to compressed column form (ready for input to \newline {\tt umfpack\_*\_symbolic}, {\tt umfpack\_*\_qsymbolic}, and {\tt umfpack\_*\_numeric}). Identical to {\tt A = spconvert(i,j,x)} in MATLAB, except that zero entries are not removed, so that the pattern of entries in the compressed column form of $\m{A}$ are fully under user control. This is important if you want to factorize a new matrix with the {\tt Symbolic} object from a prior matrix with the same pattern as the new one. \item {\tt umfpack\_*\_col\_to\_triplet}: The opposite of {\tt umfpack\_*\_triplet\_to\_col}. Identical to {\tt [i,j,x] = find(A)} in MATLAB, except that numerically zero entries may be included. \item {\tt umfpack\_*\_transpose}: Transposes and optionally permutes a column form matrix \cite{Gustavson78}. Identical to {\tt R = A(P,Q)'} (linear algebraic transpose, using the complex conjugate) or {\tt R = A(P,Q).'} (the array transpose) in MATLAB, except for the presence of numerically zero entries. Factorizing $\m{A}\tr$ and then solving $\m{Ax}=\m{b}$ with the transposed factors can sometimes be much faster or much slower than factorizing $\m{A}$. It is highly dependent on your particular matrix. \item {\tt umfpack\_*\_scale}: Applies the row scale factors to a user-provided vector. This is not required to solve the sparse linear system $\m{Ax}=\m{b}$ or $\m{A}\tr\m{x}=\m{b}$, since {\tt umfpack\_*\_solve} applies the scale factors for those systems. \end{itemize} It is quite easy to add matrices in triplet form, subtract them, transpose them, permute them, construct a submatrix, and multiply a triplet-form matrix times a vector. UMFPACK does not provide code for these basic operations, however. Refer to the discussion of {\tt umfpack\_*\_triplet\_to\_col} in Section~\ref{Manipulate} for more details on how to compute these operations in your own code. The only primary matrix operation not provided by UMFPACK is the multiplication of two sparse matrices \cite{Gustavson78}. The CHOLMOD provides many of these matrix operations, which can then be used in conjunction with UMFPACK. See my web page for details. %------------------------------------------------------------------------------- \subsection{Getting the contents of opaque objects} %------------------------------------------------------------------------------- There are cases where you may wish to do more with the LU factorization of a matrix than solve a linear system. The opaque {\tt Symbolic} and {\tt Numeric} objects are just that - opaque. You cannot do anything with them except to pass them back to subsequent calls to UMFPACK. Three routines are provided for copying their contents into user-provided arrays using simpler data structures. Four routines are provided for saving and loading the {\tt Numeric} and {\tt Symbolic} objects to/from binary files. An additional routine is provided that computes the determinant. They are fully described in Section~\ref{Get}: \begin{itemize} \item {\tt umfpack\_*\_get\_lunz}: Returns the number of nonzeros in $\m{L}$ and $\m{U}$. \item {\tt umfpack\_*\_get\_numeric}: Copies $\m{L}$, $\m{U}$, $\m{P}$, $\m{Q}$, and $\m{R}$ from the {\tt Numeric} object into arrays provided by the user. The matrix $\m{L}$ is returned in compressed row form (with the column indices in each row sorted in ascending order). The matrix $\m{U}$ is returned in compressed column form (with sorted columns). There are no explicit zero entries in $\m{L}$ and $\m{U}$, but such entries may exist in the {\tt Numeric} object. The permutations $\m{P}$ and $\m{Q}$ are represented as permutation vectors, where {\tt P[k] = i} means that row {\tt i} of the original matrix is the the {\tt k}-th row of $\m{PAQ}$, and where {\tt Q[k] = j} means that column {\tt j} of the original matrix is the {\tt k}-th column of $\m{PAQ}$. This is identical to how MATLAB uses permutation vectors (type {\tt help colamd} in MATLAB 6.1 or later). \item {\tt umfpack\_*\_get\_symbolic}: Copies the contents of the {\tt Symbolic} object (the initial row and column preordering, supernodal column elimination tree, and information about each frontal matrix) into arrays provided by the user. \item {\tt umfpack\_*\_get\_determinant}: Computes the determinant from the diagonal of $\m{U}$ and the permutations $\m{P}$ and $\m{Q}$. This is mostly of theoretical interest. It is not a good test to determine if your matrix is singular or not. \item {\tt umfpack\_*\_save\_numeric}: Saves a copy of the {\tt Numeric} object to a file, in binary format. \item {\tt umfpack\_*\_load\_numeric}: Creates a {\tt Numeric} object by loading it from a file created by {\tt umfpack\_*\_save\_numeric}. \item {\tt umfpack\_*\_save\_symbolic}: Saves a copy of the {\tt Symbolic} object to a file, in binary format. \item {\tt umfpack\_*\_load\_symbolic}: Creates a {\tt Symbolic} object by loading it from a file created by {\tt umfpack\_*\_save\_symbolic}. \end{itemize} UMFPACK itself does not make use of these routines; they are provided solely for returning the contents of the opaque {\tt Symbolic} and {\tt Numeric} objects to the user, and saving/loading them to/from a binary file. None of them do any computation, except for {\tt umfpack\_*\_get\_determinant}. %------------------------------------------------------------------------------- \subsection{Reporting routines} \label{Reporting} %------------------------------------------------------------------------------- None of the UMFPACK routines discussed so far prints anything, even when an error occurs. UMFPACK provides you with nine routines for printing the input and output arguments (including the {\tt Control} settings and {\tt Info} statistics) of UMFPACK routines discussed above. They are fully described in Section~\ref{Report}: \begin{itemize} \item {\tt umfpack\_*\_report\_status}: Prints the status (return value) of other {\tt umfpack\_*} routines. \item {\tt umfpack\_*\_report\_info}: Prints the statistics returned in the {\tt Info} array by {\tt umfpack\_*\_*symbolic}, {\tt umfpack\_*\_numeric}, and {\tt umfpack\_*\_*solve}. \item {\tt umfpack\_*\_report\_control}: Prints the {\tt Control} settings. \item {\tt umfpack\_*\_report\_matrix}: Verifies and prints a compressed column-form or compressed row-form sparse matrix. \item {\tt umfpack\_*\_report\_triplet}: Verifies and prints a matrix in triplet form. \item {\tt umfpack\_*\_report\_symbolic}: Verifies and prints a {\tt Symbolic} object. \item {\tt umfpack\_*\_report\_numeric}: Verifies and prints a {\tt Numeric} object. \item {\tt umfpack\_*\_report\_perm}: Verifies and prints a permutation vector. \item {\tt umfpack\_*\_report\_vector}: Verifies and prints a real or complex vector. \end{itemize} The {\tt umfpack\_*\_report\_*} routines behave slightly differently when compiled into the C-callable UMFPACK library than when used in the MATLAB mexFunction. MATLAB stores its sparse matrices using the same compressed column data structure discussed above, where row and column indices of an $m$-by-$n$ matrix are in the range 0 to $m-1$ or $n-1$, respectively\footnote{Complex matrices in MATLAB use the split array form, with one {\tt double} array for the real part and another array for the imaginary part. UMFPACK supports that format, as well as the packed complex format (new to Version 4.4).} It prints them as if they are in the range 1 to $m$ or $n$. The UMFPACK mexFunction behaves the same way. You can control how much the {\tt umfpack\_*\_report\_*} routines print by modifying the {\tt Control [UMFPACK\_PRL]} parameter. Its default value is 1. Here is a summary of how the routines use this print level parameter: \begin{itemize} \item {\tt umfpack\_*\_report\_status}: No output if the print level is 0 or less, even when an error occurs. If 1, then error messages are printed, and nothing is printed if the status is {\tt UMFPACK\_OK}. A warning message is printed if the matrix is singular. If 2 or more, then the status is always printed. If 4 or more, then the UMFPACK Copyright is printed. If 6 or more, then the UMFPACK License is printed. See also the first page of this User Guide for the Copyright and License. \item {\tt umfpack\_*\_report\_control}: No output if the print level is 1 or less. If 2 or more, all of {\tt Control} is printed. \item {\tt umfpack\_*\_report\_info}: No output if the print level is 1 or less. If 2 or more, all of {\tt Info} is printed. \item all other {\tt umfpack\_*\_report\_*} routines: If the print level is 2 or less, then these routines return silently without checking their inputs. If 3 or more, the inputs are fully verified and a short status summary is printed. If 4, then the first few entries of the input arguments are printed. If 5, then all of the input arguments are printed. \end{itemize} This print level parameter has an additional effect on the MATLAB mexFunction. If zero, then no warnings of singular or nearly singular matrices are printed (similar to the MATLAB commands {\tt warning off MATLAB:singularMatrix} and {\tt warning off MATLAB:nearlySingularMatrix}). %------------------------------------------------------------------------------- \subsection{Utility routines} %------------------------------------------------------------------------------- UMFPACK v4.0 included a routine that returns the time used by the process, {\tt umfpack\_timer}. The routine uses either {\tt getrusage} (which is preferred), or the ANSI C {\tt clock} routine if that is not available. It is fully described in Section~\ref{Utility}. It is still available in UMFPACK v4.1 and following, but not used internally. Two new timing routines are provided in UMFPACK Version 4.1 and following, {\tt umfpack\_tic} and {\tt umfpack\_toc}. They use POSIX-compliant {\tt sysconf} and {\tt times} routines to find both the CPU time and wallclock time. These three routines are the only user-callable routine that is identical in all four {\tt int}/{\tt UF\_long}, real/complex versions (there is no {\tt umfpack\_di\_timer} routine, for example). %------------------------------------------------------------------------------- \subsection{Control parameters} \label{control_param} %------------------------------------------------------------------------------- UMFPACK uses an optional {\tt double} array (currently of size 20) to modify its control parameters. If you pass {\tt (double *) NULL} instead of a {\tt Control} array, then defaults are used. These defaults provide nearly optimal performance (both speed, memory usage, and numerical accuracy) for a wide range of matrices from real applications. This array will almost certainly grow in size in future releases, so be sure to dimension your {\tt Control} array to be of size {\tt UMFPACK\_CONTROL}. That constant is currently defined to be 20, but may increase in future versions, since all 20 entries are in use. The contents of this array may be modified by the user (see {\tt umfpack\_*\_defaults}). Each user-callable routine includes a complete description of how each control setting modifies its behavior. Table~\ref{control} summarizes the entire contents of the {\tt Control} array. Note that ANSI C uses 0-based indexing, while MATLAB uses 1-based indexing. Thus, {\tt Control(1)} in MATLAB is the same as {\tt Control[0]} or {\tt Control[UMFPACK\_PRL]} in ANSI C. \begin{table} \caption{UMFPACK Control parameters} \label{control} {\footnotesize \begin{tabular}{llll} \hline MATLAB & ANSI C & default & description \\ \hline {\tt Control(1)} & {\tt Control[UMFPACK\_PRL]} & 1 & printing level \\ {\tt Control(2)} & {\tt Control[UMFPACK\_DENSE\_ROW]} & 0.2 & dense row parameter \\ {\tt Control(3)} & {\tt Control[UMFPACK\_DENSE\_COL]} & 0.2 & dense column parameter \\ {\tt Control(4)} & {\tt Control[UMFPACK\_PIVOT\_TOLERANCE]} & 0.1 & partial pivoting tolerance \\ {\tt Control(5)} & {\tt Control[UMFPACK\_BLOCK\_SIZE]} & 32 & BLAS block size \\ {\tt Control(6)} & {\tt Control[UMFPACK\_STRATEGY]} & 0 (auto) & select strategy \\ {\tt Control(7)} & {\tt Control[UMFPACK\_ALLOC\_INIT]} & 0.7 & initial memory allocation \\ {\tt Control(8)} & {\tt Control[UMFPACK\_IRSTEP]} & 2 & max iter. refinement steps \\ {\tt Control(13)} & {\tt Control[UMFPACK\_2BY2\_TOLERANCE]} & 0.01 & defines ``large'' entries \\ {\tt Control(14)} & {\tt Control[UMFPACK\_FIXQ]} & 0 (auto) & fix or modify Q \\ {\tt Control(15)} & {\tt Control[UMFPACK\_AMD\_DENSE]} & 10 & AMD dense row/column parameter \\ {\tt Control(16)} & {\tt Control[UMFPACK\_SYM\_PIVOT\_TOLERANCE]} & 0.001 & for diagonal entries \\ {\tt Control(17)} & {\tt Control[UMFPACK\_SCALE]} & 1 (sum) & row scaling (none, sum, or max) \\ {\tt Control(18)} & {\tt Control[UMFPACK\_FRONT\_ALLOC\_INIT]} & 0.5 & frontal matrix allocation ratio \\ {\tt Control(19)} & {\tt Control[UMFPACK\_DROPTOL]} & 0 & drop tolerance \\ {\tt Control(20)} & {\tt Control[UMFPACK\_AGGRESSIVE]} & 1 (yes) & aggressive absorption \\ & & & in AMD and COLAMD \\ % \hline \multicolumn{4}{l}{Can only be changed at compile time:} \\ {\tt Control(9)} & {\tt Control[UMFPACK\_COMPILED\_WITH\_BLAS]} & - & true if BLAS is used \\ {\tt Control(10)} & {\tt Control[UMFPACK\_COMPILED\_FOR\_MATLAB]} & - & true for mexFunction \\ {\tt Control(11)} & {\tt Control[UMFPACK\_COMPILED\_WITH\_GETRUSAGE]} & - & 1 if {\tt getrusage} used \\ {\tt Control(12)} & {\tt Control[UMFPACK\_COMPILED\_IN\_DEBUG\_MODE]} & - & true if debug mode enabled \\ \hline \end{tabular} } \end{table} Let $\alpha_r = ${\tt Control [UMFPACK\_DENSE\_ROW]}, $\alpha_c = ${\tt Control [UMFPACK\_DENSE\_COL]}, and $\alpha = ${\tt Control [UMFPACK\_AMD\_DENSE]}. Suppose the submatrix $\m{S}$, obtained after eliminating pivots with zero Markowitz cost, is $m$-by-$n$. Then a row is considered ``dense'' if it has more than $\max (16, 16 \alpha_r \sqrt{n})$ entries. A column is considered ``dense'' if it has more than $\max (16, 16 \alpha_c \sqrt{m})$ entries. These rows and columns are treated different in COLAMD and during numerical factorization. In COLAMD, dense columns are placed last in their natural order, and dense rows are ignored. During numerical factorization, dense rows are stored differently. In AMD, a row/column of the square matrix $\m{S}+\m{S}\tr$ is considered ``dense'' if it has more than $\max (16, \alpha \sqrt{n})$ entries. These rows/columns are placed last in AMD's output ordering. For more details on the control parameters, refer to the documentation of {\tt umfpack\_*\_qsymbolic}, {\tt umfpack\_*\_numeric}, {\tt umfpack\_*\_solve}, and the {\tt umfpack\_*\_report\_*} routines, in Sections~\ref{Primary}~through~\ref{Report}, below. %------------------------------------------------------------------------------- \subsection{Error codes} \label{error_codes} %------------------------------------------------------------------------------- Many of the routines return a {\tt status} value. This is also returned as the first entry in the {\tt Info} array, for those routines with that argument. The following list summarizes all of the error codes in UMFPACK. Each error code is given a specific name in the {\tt umfpack.h} include file, so you can use those constants instead of hard-coded values in your program. Future versions may report additional error codes. A value of zero means everything was successful, and the matrix is non-singular. A value greater than zero means the routine was successful, but a warning occurred. A negative value means the routine was not successful. In this case, no {\tt Symbolic} or {\tt Numeric} object was created. \begin{itemize} \item {\tt UMFPACK\_OK}, (0): UMFPACK was successful. \item {\tt UMFPACK\_WARNING\_singular\_matrix}, (1): Matrix is singular. There are exact zeros on the diagonal of $\m{U}$. \item {\tt UMFPACK\_WARNING\_determinant\_underflow}, (2): The determinant is nonzero, but smaller in magnitude than the smallest positive floating-point number. \item {\tt UMFPACK\_WARNING\_determinant\_overflow}, (3): The determinant is larger in magnitude than the largest positive floating-point number (IEEE Inf). \item {\tt UMFPACK\_ERROR\_out\_of\_memory}, (-1): Not enough memory. The ANSI C {\tt malloc} or {\tt realloc} routine failed. \item {\tt UMFPACK\_ERROR\_invalid\_Numeric\_object}, (-3): Routines that take a {\tt Numeric} object as input (or load it from a file) check this object and return this error code if it is invalid. This can be caused by a memory leak or overrun in your program, which can overwrite part of the Numeric object. It can also be caused by passing a Symbolic object by mistake, or some other pointer. If you try to factorize a matrix using one version of UMFPACK and then use the factors in another version, this error code will trigger as well. You cannot factor your matrix using version 4.0 and then solve with version 4.1, for example.\footnote{ Exception: v4.3, v4.3.1, and v4.4 use identical data structures for the {\tt Numeric} and {\tt Symbolic} objects}. You cannot use different precisions of the same version (real and complex, for example). It is possible for the {\tt Numeric} object to be corrupted by your program in subtle ways that are not detectable by this quick check. In this case, you may see an {\tt UMFPACK\_ERROR\_different\_pattern} error code, or even an {\tt UMFPACK\_ERROR\_internal\_error}. \item {\tt UMFPACK\_ERROR\_invalid\_Symbolic\_object}, (-4): Routines that take a {\tt Symbolic} object as input (or load it from a file) check this object and return this error code if it is invalid. The causes of this error are analogous to the {\tt UMFPACK\_ERROR\_invalid\_Numeric\_object} error described above. \item {\tt UMFPACK\_ERROR\_argument\_missing}, (-5): Some arguments of some are optional (you can pass a {\tt NULL} pointer instead of an array). This error code occurs if you pass a {\tt NULL} pointer when that argument is required to be present. \item {\tt UMFPACK\_ERROR\_n\_nonpositive} (-6): The number of rows or columns of the matrix must be greater than zero. \item {\tt UMFPACK\_ERROR\_invalid\_matrix} (-8): The matrix is invalid. For the column-oriented input, this error code will occur if the contents of {\tt Ap} and/or {\tt Ai} are invalid. {\tt Ap} is an integer array of size {\tt n\_col+1}. On input, it holds the ``pointers'' for the column form of the sparse matrix $\m{A}$. Column {\tt j} of the matrix A is held in {\tt Ai [(Ap [j])} \ldots {\tt (Ap [j+1]-1)]}. The first entry, {\tt Ap [0]}, must be zero, and {\tt Ap [j]} $\le$ {\tt Ap [j+1]} must hold for all {\tt j} in the range 0 to {\tt n\_col-1}. The value {\tt nz = Ap [n\_col]} is thus the total number of entries in the pattern of the matrix A. {\tt nz} must be greater than or equal to zero. The nonzero pattern (row indices) for column {\tt j} is stored in {\tt Ai [(Ap [j])} \ldots {\tt (Ap [j+1]-1)]}. The row indices in a given column {\tt j} must be in ascending order, and no duplicate row indices may be present. Row indices must be in the range 0 to {\tt n\_row-1} (the matrix is 0-based). Some routines take a triplet-form input, with arguments {\tt nz}, {\tt Ti}, and {\tt Tj}. This error code is returned if {\tt nz} is less than zero, if any row index in {\tt Ti} is outside the range 0 to {\tt n\_col-1}, or if any column index in {\tt Tj} is outside the range 0 to {\tt n\_row-1}. \item {\tt UMFPACK\_ERROR\_different\_pattern}, (-11): The most common cause of this error is that the pattern of the matrix has changed between the symbolic and numeric factorization. It can also occur if the {\tt Numeric} or {\tt Symbolic} object has been subtly corrupted by your program. \item {\tt UMFPACK\_ERROR\_invalid\_system}, (-13): The {\tt sys} argument provided to one of the solve routines is invalid. \item {\tt UMFPACK\_ERROR\_invalid\_permutation}, (-15): The permutation vector provided as input is invalid. \item {\tt UMFPACK\_ERROR\_file\_IO}, (-17): This error code is returned by the routines that save and load the {\tt Numeric} or {\tt Symbolic} objects to/from a file, if a file I/O error has occurred. The file may not exist or may not be readable, you may be trying to create a file that you don't have permission to create, or you may be out of disk space. The file you are trying to read might be the wrong one, and an earlier end-of-file condition would then result in this error. \item {\tt UMFPACK\_ERROR\_internal\_error}, (-911): An internal error has occurred, of unknown cause. This is either a bug in UMFPACK, or the result of a memory overrun from your program. Try modifying the file {\tt AMD/Include/amd\_internal.h} and adding the statement {\tt \#undef NDEBUG}, to enable the debugging mode. Recompile UMFPACK and rerun your program. A failed assertion might occur which can give you a better indication as to what is going wrong. Be aware that UMFPACK will be extraordinarily slow when running in debug mode. If all else fails, contact the developer (davis@cise.ufl.edu) with as many details as possible. \end{itemize} %------------------------------------------------------------------------------- \subsection{Larger examples} %------------------------------------------------------------------------------- Full examples of all user-callable UMFPACK routines are available in four stand-alone C main programs, {\tt umfpack\_*\_demo.c}. Another example is the UMFPACK mexFunction, {\tt umfpackmex.c}. The mexFunction accesses only the user-callable C interface to UMFPACK. The only features that it does not use are the support for the triplet form (MATLAB's sparse arrays are already in the compressed column form) and the ability to reuse the {\tt Symbolic} object to numerically factorize a matrix whose pattern is the same as a prior matrix analyzed by {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic}. The latter is an important feature, but the mexFunction does not return its opaque {\tt Symbolic} and {\tt Numeric} objects to MATLAB. Instead, it gets the contents of these objects after extracting them via the {\tt umfpack\_*\_get\_*} routines, and returns them as MATLAB sparse matrices. The {\tt umf4.c} program for reading matrices in Harwell/Boeing format \cite{DuffGrimesLewis87b} is provided. It requires three Fortran 77 programs ({\tt readhb.f}, {\tt readhb\_nozeros.f}, and {\tt readhb\_size.f}) for reading in the sample Harwell/Boeing files in the {\tt UMFPACK/Demo/HB} directory. More matrices are available at http://www.cise.ufl.edu/research/sparse/matrices. Type {\tt make hb} in the {\tt UMFPACK/Demo/HB} directory to compile and run this demo. This program was used for the experimental results in \cite{Davis03}. %------------------------------------------------------------------------------- \section{Synopsis of C-callable routines} \label{Synopsis} %------------------------------------------------------------------------------- Each subsection, below, summarizes the input variables, output variables, return values, and calling sequences of the routines in one category. Variables with the same name as those already listed in a prior category have the same size and type. The real, {\tt UF\_long} integer {\tt umfpack\_dl\_*} routines are identical to the real, {\tt int} routines, except that {\tt \_di\_} is replaced with {\tt \_dl\_} in the name, and all {\tt int} arguments become {\tt UF\_long}. Similarly, the complex, {\tt UF\_long} integer {\tt umfpack\_zl\_*} routines are identical to the complex, {\tt int} routines, except that {\tt \_zi\_} is replaced with {\tt \_zl\_} in the name, and all {\tt int} arguments become {\tt UF\_long}. Only the real and complex {\tt int} versions are listed in the synopsis below. The matrix $\m{A}$ is {\tt m}-by-{\tt n} with {\tt nz} entries. The {\tt sys} argument of {\tt umfpack\_*\_solve} is an integer in the range 0 to 14 which defines which linear system is to be solved. \footnote{Integer values for {\tt sys} are used instead of strings (as in LINPACK and LAPACK) to avoid C-to-Fortran portability issues.} Valid values are listed in Table~\ref{sys}. The notation $\m{A}\he$ refers to the matrix transpose, which is the complex conjugate transpose for complex matrices ({\tt A'} in MATLAB). The array transpose is $\m{A}\tr$, which is {\tt A.'} in MATLAB. \begin{table} \begin{center} \caption{UMFPACK {\tt sys} parameter} \label{sys} {\footnotesize \begin{tabular}{ll|l} \hline Value & & system \\ \hline & & \\ {\tt UMFPACK\_A} & (0) & $\m{Ax}=\m{b}$ \\ {\tt UMFPACK\_At} & (1) & $\m{A}\he\m{x}=\m{b}$ \\ {\tt UMFPACK\_Aat} & (2) & $\m{A}\tr\m{x}=\m{b}$ \\ & & \\ \hline & & \\ {\tt UMFPACK\_Pt\_L} & (3) & $\m{P}\tr\m{Lx}=\m{b}$ \\ {\tt UMFPACK\_L} & (4) & $\m{Lx}=\m{b}$ \\ {\tt UMFPACK\_Lt\_P} & (5) & $\m{L}\he\m{Px}=\m{b}$ \\ {\tt UMFPACK\_Lat\_P} & (6) & $\m{L}\tr\m{Px}=\m{b}$ \\ {\tt UMFPACK\_Lt} & (7) & $\m{L}\he\m{x}=\m{b}$ \\ {\tt UMFPACK\_Lat} & (8) & $\m{L}\tr\m{x}=\m{b}$ \\ & & \\ \hline & & \\ {\tt UMFPACK\_U\_Qt} & (9) & $\m{UQ}\tr\m{x}=\m{b}$ \\ {\tt UMFPACK\_U} & (10) & $\m{Ux}=\m{b}$ \\ {\tt UMFPACK\_Q\_Ut} & (11) & $\m{QU}\he\m{x}=\m{b}$ \\ {\tt UMFPACK\_Q\_Uat} & (12) & $\m{QU}\tr\m{x}=\m{b}$ \\ {\tt UMFPACK\_Ut} & (13) & $\m{U}\he\m{x}=\m{b}$ \\ {\tt UMFPACK\_Uat} & (14) & $\m{U}\tr\m{x}=\m{b}$ \\ & & \\ \hline \end{tabular} } \end{center} \end{table} %------------------------------------------------------------------------------- \subsection{Primary routines: real/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} #include "umfpack.h" int status, sys, n, m, nz, Ap [n+1], Ai [nz] ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ; void *Symbolic, *Numeric ; status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ; status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ; umfpack_di_free_symbolic (&Symbolic) ; umfpack_di_free_numeric (&Numeric) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Alternative routines: real/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} int Qinit [n], Wi [n] ; double W [5*n] ; umfpack_di_defaults (Control) ; status = umfpack_di_qsymbolic (m, n, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ; status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Matrix manipulation routines: real/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} int Ti [nz], Tj [nz], P [m], Q [n], Rp [m+1], Ri [nz], Map [nz] ; double Tx [nz], Rx [nz], Y [m], Z [m] ; status = umfpack_di_col_to_triplet (n, Ap, Tj) ; status = umfpack_di_triplet_to_col (m, n, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ; status = umfpack_di_transpose (m, n, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ; status = umfpack_di_scale (Y, Z, Numeric) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Getting the contents of opaque objects: real/{\tt int}} %------------------------------------------------------------------------------- The {\tt filename} string should be large enough to hold the name of a file. {\footnotesize \begin{verbatim} int lnz, unz, Lp [m+1], Lj [lnz], Up [n+1], Ui [unz], do_recip ; double Lx [lnz], Ux [unz], D [min (m,n)], Rs [m], Mx [1], Ex [1] ; int nfr, nchains, P1 [m], Q1 [n], Front_npivcol [n+1], Front_parent [n+1], Front_1strow [n+1], Front_leftmostdesc [n+1], Chain_start [n+1], Chain_maxrows [n+1], Chain_maxcols [n+1] ; char filename [100] ; status = umfpack_di_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ; status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, D, &do_recip, Rs, Numeric) ; status = umfpack_di_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; status = umfpack_di_load_numeric (&Numeric, filename) ; status = umfpack_di_save_numeric (Numeric, filename) ; status = umfpack_di_load_symbolic (&Symbolic, filename) ; status = umfpack_di_save_symbolic (Symbolic, filename) ; status = umfapck_di_get_determinant (Mx, Ex, Numeric, Info) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Reporting routines: real/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} umfpack_di_report_status (Control, status) ; umfpack_di_report_control (Control) ; umfpack_di_report_info (Control, Info) ; status = umfpack_di_report_matrix (m, n, Ap, Ai, Ax, 1, Control) ; status = umfpack_di_report_matrix (m, n, Rp, Ri, Rx, 0, Control) ; status = umfpack_di_report_numeric (Numeric, Control) ; status = umfpack_di_report_perm (m, P, Control) ; status = umfpack_di_report_perm (n, Q, Control) ; status = umfpack_di_report_symbolic (Symbolic, Control) ; status = umfpack_di_report_triplet (m, n, nz, Ti, Tj, Tx, Control) ; status = umfpack_di_report_vector (n, X, Control) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Primary routines: complex/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} double Az [nz], Xx [n], Xz [n], Bx [n], Bz [n] ; status = umfpack_zi_symbolic (m, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ; umfpack_zi_free_symbolic (&Symbolic) ; umfpack_zi_free_numeric (&Numeric) ; \end{verbatim} } The arrays {\tt Ax}, {\tt Bx}, and {\tt Xx} double in size if any imaginary argument ({\tt Az}, {\tt Xz}, or {\tt Bz}) is {\tt NULL}. %------------------------------------------------------------------------------- \subsection{Alternative routines: complex/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} double Wz [10*n] ; umfpack_zi_defaults (Control) ; status = umfpack_zi_qsymbolic (m, n, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ; status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, Wz) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{Matrix manipulation routines: complex/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} double Tz [nz], Rz [nz], Yx [m], Yz [m], Zx [m], Zz [m] ; status = umfpack_zi_col_to_triplet (n, Ap, Tj) ; status = umfpack_zi_triplet_to_col (m, n, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ; status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 1) ; status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 0) ; status = umfpack_zi_scale (Yx, Yz, Zx, Zz, Numeric) ; \end{verbatim} } The arrays {\tt Tx}, {\tt Rx}, {\tt Yx}, and {\tt Zx} double in size if any imaginary argument ({\tt Tz}, {\tt Rz}, {\tt Yz}, or {\tt Zz}) is {\tt NULL}. %------------------------------------------------------------------------------- \subsection{Getting the contents of opaque objects: complex/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} double Lz [lnz], Uz [unz], Dx [min (m,n)], Dz [min (m,n)], Mz [1] ; status = umfpack_zi_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ; status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; status = umfpack_zi_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; status = umfpack_zi_load_numeric (&Numeric, filename) ; status = umfpack_zi_save_numeric (Numeric, filename) ; status = umfpack_zi_load_symbolic (&Symbolic, filename) ; status = umfpack_zi_save_symbolic (Symbolic, filename) ; status = umfapck_zi_get_determinant (Mx, Mz, Ex, Numeric, Info) ; \end{verbatim} } The arrays {\tt Lx}, {\tt Ux}, {\tt Dx}, and {\tt Mx} double in size if any imaginary argument ({\tt Lz}, {\tt Uz}, {\tt Dz}, or {\tt Mz}) is {\tt NULL}. %------------------------------------------------------------------------------- \subsection{Reporting routines: complex/{\tt int}} %------------------------------------------------------------------------------- {\footnotesize \begin{verbatim} umfpack_zi_report_status (Control, status) ; umfpack_zi_report_control (Control) ; umfpack_zi_report_info (Control, Info) ; status = umfpack_zi_report_matrix (m, n, Ap, Ai, Ax, Az, 1, Control) ; status = umfpack_zi_report_matrix (m, n, Rp, Ri, Rx, Rz, 0, Control) ; status = umfpack_zi_report_numeric (Numeric, Control) ; status = umfpack_zi_report_perm (m, P, Control) ; status = umfpack_zi_report_perm (n, Q, Control) ; status = umfpack_zi_report_symbolic (Symbolic, Control) ; status = umfpack_zi_report_triplet (m, n, nz, Ti, Tj, Tx, Tz, Control) ; status = umfpack_zi_report_vector (n, Xx, Xz, Control) ; \end{verbatim} } The arrays {\tt Ax}, {\tt Rx}, {\tt Tx}, and {\tt Xx} double in size if any imaginary argument ({\tt Az}, {\tt Rz}, {\tt Tz}, or {\tt Xz}) is {\tt NULL}. %------------------------------------------------------------------------------- \subsection{Utility routines} %------------------------------------------------------------------------------- These routines are the same in all four versions of UMFPACK. {\footnotesize \begin{verbatim} double t, s [2] ; t = umfpack_timer ( ) ; umfpack_tic (s) ; umfpack_toc (s) ; \end{verbatim} } %------------------------------------------------------------------------------- \subsection{AMD ordering routines} %------------------------------------------------------------------------------- UMFPACK makes use of the AMD ordering package for its symmetric ordering strategy. You may also use these four user-callable routines in your own C programs. You need to include the {\tt amd.h} file only if you make direct calls to the AMD routines themselves. The {\tt int} versions are summarized below; {\tt UF\_long} versions are also available. Refer to the AMD User Guide for more information, or to the file {\tt amd.h} which documents these routines. {\footnotesize \begin{verbatim} #include "amd.h" double amd_control [AMD_CONTROL], amd_info [AMD_INFO] ; amd_defaults (amd_control) ; status = amd_order (n, Ap, Ai, P, amd_control, amd_info) ; amd_control (amd_control) ; amd_info (amd_info) ; \end{verbatim} } %------------------------------------------------------------------------------- \section{Using UMFPACK in a Fortran program} %------------------------------------------------------------------------------- UMFPACK includes a basic Fortran 77 interface to some of the C-callable UMFPACK routines. Since interfacing C and Fortran programs is not portable, this interface might not work with all C and Fortran compilers. Refer to Section~\ref{Install} for more details. The following Fortran routines are provided. The list includes the C-callable routines that the Fortran interface routine calls. Refer to the corresponding C routines in Section~\ref{C} for more details on what the Fortran routine does. \begin{itemize} \item {\tt umf4def}: sets the default control parameters ({\tt umfpack\_di\_defaults}). \item {\tt umf4sym}: pre-ordering and symbolic factorization ({\tt umfpack\_di\_symbolic}). \item {\tt umf4num}: numeric factorization ({\tt umfpack\_di\_numeric}). \item {\tt umf4solr}: solve a linear system with iterative refinement ({\tt umfpack\_di\_solve}). \item {\tt umf4sol}: solve a linear system without iterative refinement ({\tt umfpack\_di\_solve}). Sets {\tt Control [UMFPACK\_IRSTEP]} to zero, and does not require the matrix $\m{A}$. \item {\tt umf4scal}: scales a vector using UMFPACK's scale factors ({\tt umfpack\_di\_scale}). \item {\tt umf4fnum}: free the {\tt Numeric} object ({\tt umfpack\_di\_free\_numeric}). \item {\tt umf4fsym}: free the {\tt Symbolic} object ({\tt umfpack\_di\_free\_symbolic}). \item {\tt umf4pcon}: prints the control parameters ({\tt umfpack\_di\_report\_control}). \item {\tt umf4pinf}: print statistics ({\tt umfpack\_di\_report\_info}). \item {\tt umf4snum}: save the {\tt Numeric} object to a file ({\tt umfpack\_di\_save\_numeric}). \item {\tt umf4ssym}: save the {\tt Symbolic} object to a file ({\tt umfpack\_di\_save\_symbolic}). \item {\tt umf4lnum}: load the {\tt Numeric} object from a file ({\tt umfpack\_di\_load\_numeric}). \item {\tt umf4lsym}: load the {\tt Symbolic} object from a file ({\tt umfpack\_di\_load\_symbolic}). \end{itemize} The matrix $\m{A}$ is passed to UMFPACK in compressed column form, with 0-based indices. In Fortran, for an {\tt m}-by-{\tt n} matrix $\m{A}$ with {\tt nz} entries, the row indices of the first column (column 1) are in {\tt Ai (Ap(1)+1} \ldots {\tt Ap(2))}, with values in {\tt Ax (Ap(1)+1} \ldots {\tt Ap(2))}. The last column (column {\tt n}) is in {\tt Ai (Ap(n)+1} \ldots {\tt Ap(n+1))} and {\tt Ax (Ap(n)+1} \ldots {\tt Ap(n+1))}. The number of entries in the matrix is thus {\tt nz = Ap (n+1)}. The row indices in {\tt Ai} are in the range 0 to {\tt m}-1. They must be sorted, with no duplicate entries allowed. None of the UMFPACK routines modify the input matrix $\m{A}$. The following definitions apply for the Fortran routines: {\footnotesize \begin{verbatim} integer m, n, Ap (n+1), Ai (nz), symbolic, numeric, filenum, status double precision Ax (nz), control (20), info (90), x (n), b (n) \end{verbatim} } UMFPACK's status is returned in either a {\tt status} argument, or in {\tt info (1)}. It is zero if UMFPACK was successful, 1 if the matrix is singular (this is a warning, not an error), and negative if an error occurred. Section~\ref{error_codes} summarizes the possible values of {\tt status} and {\tt info (1)}. See Table~\ref{sys} for a list of the values of the {\tt sys} argument. See Table~\ref{control} for a list of the control parameters (the Fortran usage is the same as the MATLAB usage for this array). For the {\tt Numeric} and {\tt Symbolic} handles, it is probably safe to assume that a Fortran {\tt integer} is sufficient to store a C pointer. If that does not work, try defining {\tt numeric} and {\tt symbolic} in your Fortran program as integer arrays of size 2. You will need to define them as {\tt integer*8} if you compile UMFPACK in the 64-bit mode. To avoid passing strings between C and Fortran in the load/save routines, a file number is passed instead, and the C interface constructs a file name (if {\tt filenum} is 42, the {\tt Numeric} file name is {\tt n42.umf}, and the {\tt Symbolic} file name is {\tt s42.umf}). The following is a summary of the calling sequence of each Fortran interface routine. An example of their use is in the {\tt Demo/umf4hb.f} file. That routine also includes an example of how to convert a 1-based sparse matrix into 0-based form. For more details on the arguments of each routine, refer to the arguments of the same name in the corresponding C-callable routine, in Sections~\ref{Primary}~through~\ref{Utility}. The only exception is the {\tt control} argument of {\tt umf4sol}, which sets {\tt control (8)} to zero to disable iterative refinement. Note that the solve routines do not overwrite {\tt b} with the solution, but return their solution in a different array, {\tt x}. {\footnotesize \begin{verbatim} call umf4def (control) call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info) call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info) call umf4sol (sys, x, b, numeric, control, info) call umf4scal (x, b, numeric, status) call umf4fnum (numeric) call umf4fsym (symbolic) call umf4pcon (control) call umf4pinf (control) call umf4snum (numeric, filenum, status) call umf4ssym (symbolic, filenum, status) call umf4lnum (numeric, filenum, status) call umf4lsym (symbolic, filenum, status) \end{verbatim} } Access to the complex routines in UMFPACK is provided by the interface routines in {\tt umf4\_f77zwrapper.c}. The following is a synopsis of each routine. All the arguments are the same as the real versions, except {\tt Az}, {\tt xz}, and {\tt bz} are the imaginary parts of the matrix, solution, and right-hand side, respectively. The {\tt Ax}, {\tt x}, and {\tt b} are the real parts. {\footnotesize \begin{verbatim} call umf4zdef (control) call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info) call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info) call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info) call umf4zsol (sys, x, xz, b, bz, numeric, control, info) call umf4zscal (x, xz, b, bz, numeric, status) call umf4zfnum (numeric) call umf4zfsym (symbolic) call umf4zpcon (control) call umf4zpinf (control) call umf4zsnum (numeric, filenum, status) call umf4zssym (symbolic, filenum, status) call umf4zlnum (numeric, filenum, status) call umf4zlsym (symbolic, filenum, status) \end{verbatim} } The Fortran interface does not support the packed complex case. %------------------------------------------------------------------------------- \section{Installation} \label{Install} %------------------------------------------------------------------------------- %------------------------------------------------------------------------------- \subsection{Installing the C library} %------------------------------------------------------------------------------- The following discussion assumes you have the {\tt make} program, either in Unix, or in Windows with Cygwin\footnote{www.cygwin.com}. You can skip this section and go to next one if all you want to use is the UMFPACK and AMD mexFunctions in MATLAB. You will need to install both UMFPACK and AMD to use UMFPACK. The {\tt UMFPACK} and {\tt AMD} subdirectories must be placed side-by-side within the same directory. AMD is a stand-alone package that is required by UMFPACK. UMFPACK can be compiled without the BLAS \cite{DaydeDuff99,ACM679a,ATLAS,GotoVandeGeijn02}, but your performance will be much less than what it should be. System-dependent configurations are in the {\tt UFconfig/UFconfig.mk} file. The default settings will work on most systems, except that UMFPACK will be compiled so that it does not use the BLAS. Sample configurations are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. To compile and install both packages, go to the {\tt UMFPACK} directory and type {\tt make}. This will compile the libraries ({\tt AMD/Lib/libamd.a} and {\tt UMFPACK/Lib/libumfpack.a}). A demo of the AMD ordering routine will be compiled and tested in the {\tt AMD/Demo} directory, and five demo programs will then be compiled and tested in the {\tt UMFPACK/Demo} directory. The outputs of these demo programs will then be compared with output files in the distribution. Expect to see a few differences, such as residual norms, compile-time control settings, and perhaps memory usage differences. To use {\tt make} to compile the MATLAB mexFunctions for MATLAB and AMD, you can either type {\tt make mex} in the UMFPACK directory. You may first need to edit the {\tt UFconfig/UFconfig.mk} file to modify the definition of the {\tt MEX}, if you have a version of MATLAB older than Version 7.2. Remove the {\tt -largeArrayDims} definition. If you use the MATLAB command {\tt umfpack\_make} in the MATLAB directory, then this case is handled for you automatically. If you have the GNU version of {\tt make}, the {\tt Lib/GNUmakefile} and {\tt MATLAB/GNUmakefile} files are used. These are much more concise than what the ``old'' version of {\tt make} can handle. If you do not have GNU {\tt make}, the {\tt Lib/Makefile} and {\tt MATLAB/Makefile} files are used instead. Each UMFPACK source file is compiled into four versions ({\tt double} / complex, and {\tt int} / {\tt UF\_long}). A proper old-style {\tt Makefile} is cumbersome in this case, so these two {\tt Makefile}'s have been constructed by brute force. They ignore dependencies, and simply compile everything. I highly recommend using GNU {\tt make} if you wish to modify UMFPACK. If you compile UMFPACK and AMD and then later change the {\tt UFconfig/UFconfig.mk} file then you should type {\tt make purge} and then {\tt make} to recompile. Here are the various parameters that you can control in your {\tt UFconfig/UFconfig.mk} file: \begin{itemize} \item {\tt CC = } your C compiler, such as {\tt cc}. \item {\tt RANLIB = } your system's {\tt ranlib} program, if needed. \item {\tt CFLAGS = } optimization flags, such as {\tt -O}. \item {\tt UMFPACK\_CONFIG = } configuration settings for the BLAS, memory allocation routines, and timing routines. \item {\tt LIB = } your libraries, such as {\tt -lm} or {\tt -lblas}. \item {\tt RM =} the command to delete a file. \item {\tt MV =} the command to rename a file. \item {\tt MEX =} the command to compile a MATLAB mexFunction. If you are using MATLAB 5, you need to add {\tt -DNBLAS} and {\tt -DNUTIL} to this command. \item {\tt F77 =} the command to compile a Fortran program (optional). \item {\tt F77FLAGS =} the Fortran compiler flags (optional). \item {\tt F77LIB =} the Fortran libraries (optional). \end{itemize} The {\tt UMFPACK\_CONFIG} string can include combinations of the following; most deal with how the BLAS are called: \begin{itemize} \item {\tt -DNBLAS} if you do not have any BLAS at all. \item {\tt -DNSUNPERF} if you are on Solaris but do not have the Sun Performance Library (for the BLAS). \item {\tt -DLONGBLAS} if your BLAS takes non-{\tt int} integer arguments. \item {\tt -DBLAS\_INT = } the integer used by the BLAS. \item {\tt -DBLAS\_NO\_UNDERSCORE} for controlling how C calls the Fortran BLAS. This is set automatically for Windows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM RS 6000). \item {\tt -DGETRUSAGE} if you have the {\tt getrusage} function. \item {\tt -DNPOSIX} if you do not have the POSIX-compliant {\tt sysconf} and {\tt times} routines used by {\tt umfpack\_tic} and {\tt umfpack\_toc}. \item {\tt -DNRECIPROCAL} controls a trade-off between speed and accuracy. If defined (or if the pivot value itself is less than $10^{-12}$), then the pivot column is divided by the pivot value during numeric factorization. Otherwise, it is multiplied by the reciprocal of the pivot, which is faster but can be less accurate. The default is to multiply by the reciprocal unless the pivot value is small. This option also modifies how the rows of the matrix $\m{A}$ are scaled. If {\tt -DNRECIPROCAL} is defined (or if any scale factor is less than $10^{-12}$), entries in the rows of $\m{A}$ are divided by the scale factors. Otherwise, they are multiplied by the reciprocal. When compiling the complex routines with the GNU {\tt gcc} compiler, the pivot column is always divided by the pivot entry, because of a numerical accuracy issue encountered with {\tt gcc} version 3.2 with a few complex matrices on a Pentium 4M (running Linux). You can still use {\tt -DNRECIPROCAL} to control how the scale factors for the rows of $\m{A}$ are applied. \item {\tt -DNO\_DIVIDE\_BY\_ZERO} controls how UMFPACK treats zeros on the diagonal of $\m{U}$, for a singular matrix $\m{A}$. If defined, then no division by zero is performed (a zero entry on the diagonal of $\m{U}$ is treated as if it were equal to one). By default, UMFPACK will divide by zero. \item {\tt -DNO\_TIMER} controls whether or not timing routines are to be called. If defined, no timers are used. Timers are included by default. \end{itemize} If a Fortran BLAS package is used you may see compiler warnings. The BLAS routines {\tt dgemm}, {\tt dgemv}, {\tt dger}, {\tt dtrsm}, {\tt dtrsv}, {\tt dscal} and their corresponding complex versions are used. Header files are not provided for the Fortran BLAS. You may safely ignore all of these warnings. I highly recommend the recent BLAS by Goto and van de Geijn \cite{GotoVandeGeijn02}. Using this BLAS increased the performance of UMFPACK by up to 50\% on a Dell Latitude C840 laptop (2GHz Pentium 4M, 512K L2 cache, 1GB main memory). The peak performance of {\tt umfpack\_di\_numeric} with Goto and van de Geijn's BLAS is 1.6 Gflops on this computer. In MATLAB, the peak performance of UMFPACK on a dense matrix (stored in sparse format) is 900 Mflops, as compared to 1 Gflop for {\tt x = A}$\backslash${\tt b} when {\tt A} is stored as a regular full matrix. When you compile your program that uses the C-callable UMFPACK library, you need to link your program with both libraries ({\tt UMFPACK/Lib/libumfpack.a} and {\tt AMD/Lib/libamd.a}) and you need to tell your compiler to look in the directories {\tt UMFPACK/Include} and {\tt AMD/Include} for include files. See {\tt UMFPACK/Demo/Makefile} for an example. You do not need to directly include any AMD include files in your program, unless you directly call AMD routines. You only need the \begin{verbatim} #include "umfpack.h" \end{verbatim} statement, as described in Section~\ref{Synopsis}. If you would like to compile both 32-bit and 64-bit versions of the libraries, you will need to do it in two steps. Modify your {\tt UFconfig/UFconfig.mk} file, and select the 32-bit option. Type {\tt make} in the {\tt UMFPACK} directory, which creates the {\tt UMFPACK/Lib/libumfpack.a} and {\tt AMD/Lib/libamd.a} libraries. Rename those two files. Edit your {\tt UFconfig/UFconfig.mk} file and select the 64-bit option. Type {\tt make purge}, and then {\tt make}, and you will create the 64-bit libraries. You can use the same {\tt umfpack.h} include file for both 32-bit and 64-bit versions. Simply link your program with the appropriate 32-bit or 64-bit compiled version of the UMFPACK and AMD libraries. Type {\tt make hb} in the {\tt UMFPACK/Demo/HB} directory to compile and run a C program that reads in and factorizes Harwell/Boeing matrices. Note that this uses a stand-alone Fortran program to read in the Fortran-formatted Harwell/Boeing matrices and write them to a file which can be read by a C program. The {\tt umf\_multicompile.c} file has been added to assist in the compilation of UMFPACK in Microsoft Visual Studio, for Windows. %------------------------------------------------------------------------------- \subsection{Installing the MATLAB interface} %------------------------------------------------------------------------------- If all you want to do is use the UMFPACK mexFunction in MATLAB, you can skip the use of the {\tt make} command described above. Simply type {\tt umfpack\_make} in MATLAB while in the {\tt UMFPACK/MATLAB} directory. You can also type {\tt amd\_make} in the {\tt AMD/MATLAB} directory to compile the stand-alone AMD mexFunction (this is not required to compile the UMFPACK mexFunction). This works on any computer with MATLAB, including Windows. If you are using Windows and the {\tt lcc} compiler bundled with MATLAB 6.1, then you may need to copy the {\tt UMFPACK}$\backslash${\tt MATLAB}$\backslash${\tt lcc\_lib}$\backslash${\tt libmwlapack.lib} file into the {\tt }$\backslash${\tt extern}$\backslash${\tt lib}$\backslash${\tt win32}$\backslash${\tt lcc}$\backslash$ directory. Next, type {\tt mex -setup} at the MATLAB prompt, and ask MATLAB to select the {\tt lcc} compiler. MATLAB 6.1 has built-in BLAS, but in that version of MATLAB the BLAS cannot be accessed by a mexFunction compiled by {\tt lcc} without first copying this file to the location listed above. If you have MATLAB 6.5 or later, you can probably skip this step. %------------------------------------------------------------------------------- \subsection{Installing the Fortran interface} %------------------------------------------------------------------------------- Once the 32-bit C-callable UMFPACK library is compiled, you can also compile the Fortran interface, by typing {\tt make fortran}. This will create the {\tt umf4hb} program, test it, and compare the output with the file {\tt umf4hb.out} in the distribution. If you compiled UMFPACK in 64-bit mode, you need to use {\tt make fortran64} instead, which compiles the {\tt umf4hb64} program and compares its output with the file {\tt umf4hb64.out}. Refer to the comments in the {\tt Demo/umf4\_f77wrapper.c} file for more details. This interface is {\bf highly} non-portable, since it depends on how C and Fortran are interfaced. Because of this issue, the interface is included in the {\tt Demo} directory, and not as a primary part of the UMFPACK library. The interface routines are not included in the compiled {\tt UMFPACK/Lib/libumfpack.a} library, but left as stand-alone compiled files ({\tt umf4\_f77wrapper.o} and {\tt umf4\_f77wrapper64.o} in the {\tt Demo} directory). You may need to modify the interface routines in the file {\tt umf4\_f77wrapper.c} if you are using compilers for which this interface has not been tested. %------------------------------------------------------------------------------- \subsection{Known Issues} %------------------------------------------------------------------------------- The Microsoft C or C++ compilers on a Pentium badly break the IEEE 754 standard, and do not treat NaN's properly. According to IEEE 754, the expression {\tt (x != x)} is supposed to be true if and only if {\tt x} is NaN. For non-compliant compilers in Windows that expression is always false, and another test must be used: {\tt (x < x)} is true if and only if {\tt x} is NaN. For compliant compilers, {\tt (x < x)} is always false, for any value of {\tt x} (including NaN). To cover both cases, UMFPACK when running under Microsoft Windows defines the following macro, which is true if and only if {\tt x} is NaN, regardless of whether your compiler is compliant or not: \begin{verbatim} #define SCALAR_IS_NAN(x) (((x) != (x)) || ((x) < (x))) \end{verbatim} If your compiler breaks this test, then UMFPACK will fail catastrophically if it encounters a NaN. You will not just see NaN's in your output; UMFPACK will probably crash with a segmentation fault. In that case, you might try to see if the common (but non-ANSI C) routine {\tt isnan} is available, and modify the macro {\tt SCALAR\_IS\_NAN} in {\tt umf\_version.h} accordingly. The simpler (and IEEE 754-compliant) test {\tt (x != x)} is always true with Linux on a PC, and on every Unix compiler I have tested. Some compilers will complain about the Fortran BLAS being defined implicitly. C prototypes for the BLAS are not used, except the C-BLAS. Some compilers will complain about unrecognized {\tt \#pragma}'s. You may safely ignore all of these warnings. %------------------------------------------------------------------------------- \section{Future work} \label{Future} %------------------------------------------------------------------------------- Here are a few features that are not in the current version of UMFPACK, in no particular order. They may appear in a future release of UMFPACK. If you are interested, let me know and I could consider including them: \begin{enumerate} \item Remove the restriction that the column-oriented form be given with sorted columns. This has already been done in AMD Version 2.0. \item Future versions may have different default {\tt Control} parameters. Future versions may return more statistics in the {\tt Info} array, and they may use more entries in the {\tt Control} array. These two arrays will probably become larger, since there are very few unused entries. If they change in size, the constants {\tt UMFPACK\_CONTROL} and {\tt UMFPACK\_INFO} defined in {\tt umfpack.h} will be changed to reflect their new size. Your C program should use these constants when declaring the size of these two arrays. Do not define them as {\tt Control [20]} and {\tt Info [90]}. \item Forward/back solvers for the conventional row or column-form data structure for $\m{L}$ and $\m{U}$ (the output of {\tt umfpack\_*\_di\_get\_numeric}). This would enable a separate solver that could be used to write a MATLAB mexFunction {\tt x = lu\_refine (A, b, L, U, P, Q, R)} that gives MATLAB access to the iterative refinement algorithm with sparse backward error analysis. It would also be easier to handle sparse right-hand sides in this data structure, and end up with good asymptotic run-time in this case (particularly for $\m{Lx}=\m{b}$; see \cite{GilbertPeierls88}). See also CSparse and CXSparse for software for handling sparse right-hand sides. \item Complex absolute value computations could be based on FDLIBM (see \newline http://www.netlib.org/fdlibm), using the {\tt hypot(x,y)} routine. \item When using iterative refinement, the residual $\m{Ax}-\m{b}$ could be returned by {\tt umfpack\_solve}. \item The solve routines could handle multiple right-hand sides, and sparse right-hand sides. See {\tt umfpack\_solve} for the MATLAB version of this feature. See also CSparse and CXSparse for software for handling sparse right-hand sides. \item An option to redirect the error and diagnostic output. \item Permutation to block-triangular-form \cite{Duff78a} for the C-callable interface. There are two routines in the ACM Collected Algorithms (529 and 575) \cite{Duff81b,Duff78b} that could be translated from Fortran to C and included in UMFPACK. This would result in better performance for matrices from circuit simulation and chemical process engineering. See {\tt umfpack\_btf.m} for the MATLAB version of this feature. KLU includes this feature. See also {\tt cs\_dmperm} in CSparse and CXSparse. \item The ability to use user-provided work arrays, so that {\tt malloc}, {\tt free}, and {\tt realloc} realloc are not called. The {\tt umfpack\_*\_wsolve} routine is one example. \item A method that takes time proportional to the number of nonzeros in $\m{A}$ to compute the symbolic factorization \cite{GilbertNgPeyton94}. This would improve the performance of the symmetric and 2-by-2 strategies, and the unsymmetric strategy when dense rows are present. The current method takes time proportional to the number of nonzeros in the upper bound of $\m{U}$. The method used in UMFPACK exploits super-columns, however, so this bound is rarely reached. See {\tt cs\_counts} in CSparse and CXSparse, and {\tt cholmod\_analyze} in CHOLMOD. \item Other basic sparse matrix operations, such as sparse matrix multiplication, could be included. \item A more complete Fortran interface. \item A C++ interface. \item A parallel version using MPI. This would require a large amount of effort. \end{enumerate} %------------------------------------------------------------------------------- \newpage \section{The primary UMFPACK routines} \label{Primary} %------------------------------------------------------------------------------- The include files are the same for all four versions of UMFPACK. The generic integer type is {\tt Int}, which is an {\tt int} or {\tt UF\_long}, depending on which version of UMFPACK you are using. \subsection{umfpack\_*\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_numeric.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_solve} {\footnotesize \begin{verbatim} INCLUDE umfpack_solve.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_free\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_free_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_free\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_free_numeric.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage \section{Alternative routines} \label{Alternative} %------------------------------------------------------------------------------- \subsection{umfpack\_*\_defaults} {\footnotesize \begin{verbatim} INCLUDE umfpack_defaults.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_qsymbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_qsymbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_wsolve} {\footnotesize \begin{verbatim} INCLUDE umfpack_wsolve.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage \section{Matrix manipulation routines} \label{Manipulate} %------------------------------------------------------------------------------- \subsection{umfpack\_*\_col\_to\_triplet} {\footnotesize \begin{verbatim} INCLUDE umfpack_col_to_triplet.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_triplet\_to\_col} {\footnotesize \begin{verbatim} INCLUDE umfpack_triplet_to_col.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_transpose} {\footnotesize \begin{verbatim} INCLUDE umfpack_transpose.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_scale} {\footnotesize \begin{verbatim} INCLUDE umfpack_scale.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage \section{Getting the contents of opaque objects} \label{Get} %------------------------------------------------------------------------------- \subsection{umfpack\_*\_get\_lunz} {\footnotesize \begin{verbatim} INCLUDE umfpack_get_lunz.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_get\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_get_numeric.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_get\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_get_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_save\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_save_numeric.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_load\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_load_numeric.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_save\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_save_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_load\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_load_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_get\_determinant} {\footnotesize \begin{verbatim} INCLUDE umfpack_get_determinant.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage \section{Reporting routines} \label{Report} %------------------------------------------------------------------------------- \subsection{umfpack\_*\_report\_status} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_status.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_control} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_control.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_info} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_info.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_matrix} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_matrix.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_numeric} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_numeric.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_perm} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_perm.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_symbolic} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_symbolic.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_triplet} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_triplet.h via sed \end{verbatim} } \newpage \subsection{umfpack\_*\_report\_vector} {\footnotesize \begin{verbatim} INCLUDE umfpack_report_vector.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage \section{Utility routines} \label{Utility} %------------------------------------------------------------------------------- \subsection{umfpack\_timer} {\footnotesize \begin{verbatim} INCLUDE umfpack_timer.h via sed \end{verbatim} } \newpage \subsection{umfpack\_tic and umfpack\_toc} {\footnotesize \begin{verbatim} INCLUDE umfpack_tictoc.h via sed \end{verbatim} } %------------------------------------------------------------------------------- \newpage % References %------------------------------------------------------------------------------- \bibliographystyle{plain} \bibliography{UserGuide} \end{document} SuiteSparse/UMFPACK/Doc/License0000644001170100242450000000326410677537576015103 0ustar davisfacUMFPACK Version 5.1.1, Copyright 1995-2007 by Timothy A. Davis. All Rights Reserved. UMFPACK is available under alternate licenses, contact T. Davis for details. UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack SuiteSparse/UMFPACK/Doc/gpl.txt0000644001170100242450000004313310677537540015107 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/UMFPACK/Doc/QuickStart.pdf0000644001170100242450000040573510711436607016352 0ustar davisfac%PDF-1.4 3 0 obj << /Length 3232 /Filter /FlateDecode >> stream xڍYYs~_K*\8*6vMyHD$hԱ>}`m^9zfzz*PYw XF_Yc.>|,ˣNgs7fsu}TqC[sC L v('e5?BpNb3qWovt=u,}PtU$sG)zqzEhܬYWW}Bp?]VlgOڑadr-xyfԂ)#F=®{z[Pm]~nuUF(r`_d5/=="eu W M|摣h;H]ҁ?'eCm۔$^YvQND= {{ K{n~/4qw8QJ|z)rOhL2T xCt7#CCtXD 3F4d૊&`usƄpUQv>T(P@ڇ.@# Mf a"{I1 2V܎dⰕDj'ALި eccSpgLw@ߟf+x~нcM1,{ e ʧ= HM+X[GcB` :PPP@$#4*(Oc!8GOcg6iD*4zTI\l1?X21pX-L*\zMVY:` %-{QUFW?M! +8QAr܃2gëma5s[ DKO{Ưݑ3CC,!ˬqaNwYS=qc()= 㞎SBK]̧w_WBҍ)Q6 d Xx@q)! vYKZbN>AvIbC$OlTIˡZdz8 |zF4{Q XУ)z5z(4Xa9A?;iLs?}F̫$CU*FeJ~]Z}Sh=/ZLO'o.rX:sW04rϸ1&i imK(7WmOkNRenrZ}pR[<+XgA2[$yĻ{ Oc{gc19dv!K* EK6:_'V[Ia!]́G+$/p3G2![ȇpKcV.ě 4:h[*=Faz)2@1A, #pqc{JVBLc98h\}1ޔmKZj(XЉߋ}u#=^ @~ Q`i=;-hIb~&)Tp2#AM*6<(;l^Փ8LrRAx\}#\:dXN7̿ѻ9~o. /bLV'L9TBKڠULWa""/T^߲ӓSlPepOl{G'|*}H{ZmKwҽ=e-Pz(^RŷdJ!? %QrPJqi.$xRQzjue&{-E M`.2F_ގ;<\h{x2v"r8tg6q|y j_~NQ'ؠ9!^ҟmR@s$-l@0`RK2Y? I'|5UT* hn6q`[?V\ހ˴RVcoCp]SNxdTBY`O~*xkmT3"P=-}NDendstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F26 12 0 R /F8 15 0 R /F29 18 0 R /F31 21 0 R /F36 24 0 R /F37 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 31 0 obj << /Length 3427 /Filter /FlateDecode >> stream xڽZs_I_VDwiMO  NH3!pX,{ٗ/Cg7DMݗmWl=_Ь9ksxBIv[mzsοkS^M9+s3OWnxUS.3`oPf72+د ]U{Vf}c[w`-(ϥ0}YU7fL#νpVLif\d(UG]B: !DQug[-{Y֓|4,lr—//'U9W-% R8b&X澼}{ydFgTH"gJP)ggoޒ̾?#97ZԀ.g<\p:{usdcߠi'Vf]RS8Q#bjV3V2״(οf>G+ܲheA52*ŽИ֛΍57D"32/EBHp !'-Jl+'C|F@oOooS۵t<1\Yf ~ܔG7Q$/Um7aH'h.fSon(i2}^pz"WJ]0šf)M ʑLfN| Ҍ`j@`Mv +sm%*1(V`MU1 jSsarْA!e[xwUڮ-RWJ\OGC"\/ 'yTB<0XyX;C;"byc7mڅ`ꆈi3&ךi(W ).IjHn mBUx30q>%S,7 IrnLN3e gy/(cIv\IYiaNnrC):1+ G"9.BzD*̗>&3>[DN{gIyTe\Y #;u@ܺ q7! (1 0|pOhٵJWbbxNsƃ||bMdDR(.H kѨ!," u-/ru/{@sB`}ai˄|6'sp=!z% 逦|0w!3rs:\~{W[/unv6) jOr} H*u[; UN @ 潭ʳwUtZH84`pfXyw1w C=w9/@9RB'Hjb28E`tޅ9FS8SMwD|v3#\o5q(PDz\>c9Z;PZBZgBh.`Mh)Q dr݆dEC=m+CI_ZhةwaYX\Oe,aHw˞NĈeDĮY}RpF犫Obp-WubD(Z ybdc x2<"b\Z@_h ye"pҸ慱C.݋MeR ćӥ1C'I=1c"3񦭪'BjHE  X|*goPK q|1"k^(~dp;B w XmU*`s#*kSX 9?Ty1T`/d{"9G%4~F͹/RBYj4PX TX:C:"b Tc 9#B@5)1)'CԁF93LQ(p43A p\Y&GF}q [ 1p<*"G;"~x  qWv˼F8vwՁiVGmp;VK$XPab;ʿqCy^lK-'] ?:e8M~2|Zp4oVy/|:DlWʿ1GG.Vxp'MÄr=(݈ Wa9+O)b{ULZv,G{B0 Gh :&iI::ҝ [NJx7mF'9: %Um`(p7ćd[}I"Ÿ縷/Ɵ~ҭu&[|xśzh;~ ~ۄ,;a0{=NUt,*A9<)$ŽaGbQ$ i5@p3w7%endstream endobj 30 0 obj << /Type /Page /Contents 31 0 R /Resources 29 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 29 0 obj << /Font << /F8 15 0 R /F29 18 0 R /F36 24 0 R /F26 12 0 R /F24 34 0 R /F18 37 0 R /F39 40 0 R /F42 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 2205 /Filter /FlateDecode >> stream xڭX_6M;r'>lr7iMlfzdhΖ|ͦ^ eVm/&M ?xr5B˱eibrfe*FJƓToyYi,oi;~1d*LLUG$&ɖ7cr}4遰7d[{,_mX([ʊfxob:W(,,=qগo^8V'eqe_߭ne1FrbvdsOiGY-Ƴ۪Qza<_I&=a,;\rW-<"ƞ_{)vDXy>`N鿢^S-o-7//~8iƏRVOSPuQ=E/0xض=z=f]C\,LB5cW 3t0W /O^AO?D۷v{̦IX)ǜHUK $Zj zLZ{C\$ L{0*d5vŌ2|ܣcTaѓ7'*TS#P™R戍Q5<4v?6 Kml._OoMYYf Yؘ !.?1u:*.  IaH-%iݿ}r"Cf cޙ((=gGox>GpP?(}W#ŴJt1v,`?/BŗFGžKE8Qsȸ싈Yt{ *%t.-lׁ e5Go7co3u6:[87*"vq&L !ԑeC!*eC< o 3,D*&J D:o a7t1&si*8 E!*Lk,=zyC 1[G|% b\''6+^w{uKZAߊr}̇0xvԦo]7GÄQ}O^S> endobj 44 0 obj << /Font << /F42 43 0 R /F8 15 0 R /F36 24 0 R /F26 12 0 R /F1 49 0 R /F29 18 0 R /F32 52 0 R /F39 40 0 R /F31 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 55 0 obj << /Length 3012 /Filter /FlateDecode >> stream xڽZ[SF~W#o>6^pAh@e] &~ϥ[A3U.j|hNޞŇ" H?!^~|-»9hq-Tڀ.pKjM^ݧ ^:^M#G w|-OHwiW+HG2>Ko~wvSBMe&[ 2w~ap7:.1:S܀]vq3iwoݺ zzȻ_^k>A.m:^?kMW@>b}6k8U7eZ--(f(fIZdXTB[(z`*[XOE')#aMY+#iȨYLͤGQoз&riziYVU)Lc7B1O=[:}~QbBF <9{W :%Yk˫ۖP:uZ-}|UWYw|>+DIofe_VG. LXE4hJ{WSVdLtavPH5>(yoݲ495 ^XQis^:w~r{v Z9׶¹wa}l=(Mا d.טj%w*YG}]S]ƍmݻފBy6j-,6WycL C)-~cL?g3e" b (!n<]c DdEP7&Z_u Ax{߼:i TlL*?>QޔkYBE6JRR"AP(kިVtV X8_uSACz5\Zr,Dh \35^pbd"Ipeu?sҭ :Y]>ՓF#{px, Oz8†-$Bx_7ʪQoBL[WZ**+<)E8Kh=T!t 6"x:MpAT`ni7+~8?٭FjV m˿JƐȌ#@T3=/uV6YV䗾HygUږ? lK4iּDƍm?tdMbB}6l+l%|US\I N ?GVVC|} V(d5-0tNF9;3pgҍuJ%a`ͷ@"9ۡ G2}~iN4< n]cp˹pQϖPL(nt+B9ɧF|[Hao*+>"U)MV ǧo߼bO& s=ٍ6ya!Ai11Y%k&QaKc]~78e&3՚qj4o$JL귻 g楂 {T{SN0&Q 7Y;1H h?J5;F_WG]HH?P('~P#Gq1&90ëGHaʼnKi8wVjHluņ>127C-JCo}yaj;Z=0=;=f܀5?+fEmD0z.}w8#j\O!v[3D@`k> tWJu:{6 wBƺW'nK һ1 ~3͚/=|!3;0e^>~ţ]55X̸)Zr 1쇄s1?ѱw~nJׇG D_Iendstream endobj 54 0 obj << /Type /Page /Contents 55 0 R /Resources 53 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 53 0 obj << /Font << /F8 15 0 R /F36 24 0 R /F29 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 58 0 obj << /Length 1474 /Filter /FlateDecode >> stream xڭWKsHW؋\'I@^kbĒc$DZC♞~ף'CFIB6\qLD(a9!ҏ'ʢۣ32%5\R Dp!tj6$@)B|w+pJ8i_ds'kݟcu|b֙y|i]'gsۅ!_7Moф$I> endobj 56 0 obj << /Font << /F29 18 0 R /F36 24 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 61 0 obj << /Length 1437 /Filter /FlateDecode >> stream xڵXn8}W}H%v7m^gEdRRw(ش`@Z̙ȳ\o;XGF_!g`t'!݈W?oN?EUyYTjfyY,8N -.eurFAmc#lhQѻFܳ=rиBiϳlsһY4kf;6,<4Gs1ف8X!DeQcײɨ mRdrTDb<ӣǵMd#ne۞P'dsXMLn"OOd_c=8MgHg%V$3&jZb?]/:gM7mg2yDS/C$4,(|8QS.sj#@)Wb¶1%٭xSH'(H]$1ڞB(Y}<:=}/=ҵM,ƣwF$x`EjGIwD: )IPq'j;H-KGz `'I~_)&,*'ċ˒b rvBJ&_!L"%Od\|< wyB;/X#B4uSG-Ƀvp&C-w+fQ*sȋ0o# E~E-d7M=uC |'?\@U7\l9ߧ.h>{3̎Fϋn$IYS[5*W|`pMj6.}Nu@rkc,pfV0>5fPj bh^Oj|<&REpp߱ ښ|Ug䙣౱/`KAy0]r}W,6R? e# endstream endobj 60 0 obj << /Type /Page /Contents 61 0 R /Resources 59 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 28 0 R >> endobj 59 0 obj << /Font << /F31 21 0 R /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 64 0 obj << /Length 1546 /Filter /FlateDecode >> stream xڭXmS8_K߈7w3> z@:`azFֶ< ֶ$[Br~+gw}vWNƃw7?:'ӏ|47~;'o2ÌD(mQZbӤ qy!ssxoh2J@B`7:F/N5&$Vڄ&i 7"ArAorI@XPȇvgZ8|WO(]HuD"rc@N /rÕ)nR;.VñBǐKR\V2[8j|I[D.J1U<z/)6[QB*@я әE Ц1-JrkjW{+*,› CRfVzПz?}?K)[{w4%Qhr0y3+EQ %EcކؙCq QT62v*Ō k&m䘽殸IR]ʌBS2̱|^=+XG\Q.eײQ']L.bضLvv偦1\ǻV4Kq)"eZϓ2]$8I?DRŊFQ *(٭cHR+\~ ?]WyZw e4& QV* T=Щ2-+?aX񗶄Ct=`$CJ`T&)BiH!ĝ*O>͏\HFtdeu:^"M6=o~b4e1t$H.#B댺w{Y7LcN,[{a|cIw \ٹnl -)R(s~vZ/w2&|A~(yj%PomZOAYګNs2)jJojOh U(YД+s%5#h#Fj%ԎhR 61㖆hxsy}wqq^= &ypi=%n8PԠwɆI{b)"@mBZ8.%؊YaHblT`Ϝy5W]dH*idQl\&(c^OnLn=![}u@ri]Co3C3#: w_ng}8;? .OV5J9em]5-KO]Uh,s"JԝWFBdmu٪6jp !l+kTۡ׊ݵa\Nc 3fBMF$'Y5p68  h.^~Qs %`X7rfƺEQꔰUJe[- ^&BaS_k'?+K qsBJ"4#aq2:ЅoEn~%C_27;O&`z}5j嫓9endstream endobj 63 0 obj << /Type /Page /Contents 64 0 R /Resources 62 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 65 0 R >> endobj 62 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 68 0 obj << /Length 1410 /Filter /FlateDecode >> stream xڝX]S:}Wdx&qcO} \`h0tx[NTl)lhwkzl#i==t5p:k: :nرc;cDZqGߟf_ss緗4J}ˆov*CD*Dnϝ~gp2ݙe<_QskgO3u:=Ƕxۂ@̽9ߜc8v?")R*4! Ѓ j{HyЉe 2og G#&#+Idix.!&B:UA~jĩb|U3qLp_&$tj@T-j2HC*ѢfI៮SP  ?1]uBOh89&B@ E1<̲Za-2v/ݗN/?$FP$Z@@x)!;ˑۚbZҔ.a>7iRfbZS =ކSG{\P Hd 4AT8P"M.]i+4^: ELbXwFH> endobj 66 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 71 0 obj << /Length 1476 /Filter /FlateDecode >> stream xXmS6~"s3{iÆMg 4ܤ%dd[IԳԒ+zeY>Ϯr:{ ܣÃlw==3wNス٦0C$=Le/w{;[!@^Ay sv{gWGU嚈`"-[ g+r1CQąqz~= ;G^1 R~5_}OG_yp1 I!&B0(#ݚ?D2`)Q Eb&^Qs39WÓpry}ӄRK$SEt%-,(q5c44$ DҜ`3g"Q<▜Q(zu8_Ӛiebq\0YtEP26 I$@/OQ$ &k|8&'v ϗ6 AbHJfܾ)/xvy\ ,-0v Xށ 0-zn ҧ&]+pq\EHya\E_R6=ZQ8@Zr\)輦&)6ʺݥ.ZfGUqDWEf\1RaDe.۽,k#e!gK%0V2mɏRO(R+SeVBX6BNEazAztw$d%֮@"G|r\qWr*F*OM'wˎ^"0 e50~/?BE ᕃΚ kmQ\ [|9-fY_ęd"ށ6qk@$Oz׹FtxPdZ2H<4l (Y }GC̘ ~Z$.ޠ֪:g9؄SIWaלi -H- ڀ@SG\ aBoP^G> 3V$ L5H2[c0mC6mҪ>,s2XN+ץɩnA ʄgՓƒM=(_W1~,W"0IҪ< „+_;E<}|9F$0+~W7U_ߴ8p6#ugkkyy+? X~4|"˄׍\UH֞ Zr!k}-/|wS,L# ~ʙ*yi;, ?J}&Qz\mQʚr1*s /$_pV"Zr0E-Eȏdy7Cʐ:q4EJή;(M|[B>aT'ħy0V-l,@$c ѧ'X7 pxzt&hxpa.S㧈cϏW9endstream endobj 70 0 obj << /Type /Page /Contents 71 0 R /Resources 69 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 65 0 R >> endobj 69 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 74 0 obj << /Length 1273 /Filter /FlateDecode >> stream xX]s8}/؝ÈJۿ}&(X5IPֺ5rF0$<}}8\^]?tl?__J1 "I2Myw+__4# 籽 q!., (ҀS$ Uא$y"9ń'tw6Hv 13i.׻=Ѳ:|NI2H L@_PHf\pDz~szqnnwʧE~HUkvtaFS#0@G+I!RQZy Xn XM⺕ifr)ٚ0B71ÄldC c+aܨefP#G醝`؎qrnS#bHaL`a@^XSaզFH #kjm;Dm Gj*pu@E]Pd/ġ|Hb K(:,Td@*w!ŊJdM:Y\h-g串]ע0W,_W&n!)fe][qW6-5U~|yXr9}b~I XS 6\00Q'QNTiUM]h%Wg\ ( vJFdl` ;[Ri $m}v{J}zH)Vvf/MVG=Y=)bu/Ԥ%`f8FIsߤ)8V5kl3A(5FG7~tb&>?A ;rZlVsj<۶iVv5ŪU 0  aFr&FІj|jr³}◌rߞ6_`"endstream endobj 73 0 obj << /Type /Page /Contents 74 0 R /Resources 72 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 65 0 R >> endobj 72 0 obj << /Font << /F31 21 0 R /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 1521 /Filter /FlateDecode >> stream xڵXn6}Wx}YZĚĉaIѸ(hRFRvݯiR"Mن=ɖDsϽ/g?>Ohrqq>$D2Mb fǓ/s U.q9e^G񚑼RMڟ5#ļF95[/^|6$&d-CjѾY#I6D_O 9[c $z'[7[;c f%% q7Q1q xi`؝mh.P-A'l™f'f2⢡z#1{?j0U,5Ez0GTp&$嬱ܨpF?߿y7wwOݣɭ0f]6@%IA`v]v_}@;!HweĂ*;}hX*/':5=ѭ7{IpTbП!S}JAx{~yv?}է+c$Y%*3O %. iTSn@D{SZ[@fKT-n 2,*h:6enb)-ߪ,eQRIT˞%4jn!i QKyjʌ!%.k%DUa!a,U_ M y\(6fBjԓ9N+UZ{/+t5z * 3ϣ_~m}GIRAʴ0ܥb**O߃gqa![uTA/U12 Ұ㌕VH2T 89;|G H_[qݠU6%H2PI&Aƿ[vTOx9,h鐦9A VFRź`}[*4]OýtMT-ҮK @)D._ ~ĵߙm9[{shue Ud)feWWмR:V|J;B_ۇokK;Pն.3`mhW{ 5Ztن54w2njʣ|=:q;['9|؞W\Jeʚb+B`~SӁzvF`~x=hb$8/$:Kҋd٫ٳpJendstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 65 0 R >> endobj 75 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 1153 /Filter /FlateDecode >> stream xWs6~_咛ć&}ip@'\3aˠ֖8 ʶVNL'd#~ϋOk;~;;x"v(B(R"EWgS&$k[(քnܷ`^N9Þ?̑Plf .GF]B K)JmvrCu,֘086-J #KIʘe8JFa:-)XF* g[٠mB##fƿn]0Mn 8j1G?=Muar\BQ@D.G j]h)XdYQEVL5"lZgi*‚ȉv:ccBa5nܞ蕤P0ZV!A|,>կ7/+]KA ( Q]ΛVBn2O."Ixj!9xeYcIDЊYݐ-(8L(ӲE &T8U-FAěb<|_ ~Ͽ~16ؘLdzO^{6SҞ $j 9QN$$Brd267\bП1zXޱG-ӧ{S̚#!ujc83Gh1fʦ vĜCF#şE9$a/M(,U\4ޠ "A r(yIh'oqai"oi|SVR2$B,j'{Tu9(>ZaJ刂%ˌ0~4D7b]S0B* nHI{~=N'_tS L75qy 더JPwLHb ˊbʰCFs셡G= VJ2H@SZbUe-ġlr 9F6a4|m?[ip!eq&8Hq`*T`#+x%mXPgWuF㴒]n iLUx89.]^G1B@:Za.|R_tc}!dϏx.>׹r~n'wusendstream endobj 79 0 obj << /Type /Page /Contents 80 0 R /Resources 78 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 65 0 R >> endobj 78 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 83 0 obj << /Length 1114 /Filter /FlateDecode >> stream xXo8~_i+@)޸Jܖ.*N2C|MvhٿēÁV{il773MXۛ웁ճom[G7—~1ERbNˇo~gkDk7v(~  7JGq.?ZVXþ3,|Ȓ0E" I,&~5"~,|R]=ϖc_Zvo`^ݵ=p SrWoz?}Z(T, tѥmb8AO -sw2+!BIzHĒ450ܩ 7j:eT`u:e"OбRby:O0X&Mʄ [&Of1FB@aYUg5w t+>׎6v*_9?Ů3) ܷvV*-)YusՔ$K6H,Ac@H_'AYB^0bVΔ{|pNVq3%W^c֩Pp\5i Z1u[M t"6,1`>V:%,TE A +kknǦDx4ϟ7`U*,᷼e d$G׼qS~PK;g*gTOUUU I.D/^K`@VlGϿ[ ; rY z` O^b^RIeendstream endobj 82 0 obj << /Type /Page /Contents 83 0 R /Resources 81 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 84 0 R >> endobj 81 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 87 0 obj << /Length 1074 /Filter /FlateDecode >> stream xڭW]sH}WOٚuTe!;H;McMw#X{"A2<1` M15}J?v]3LF=~﭂/APtGqSl;CDΏJW⎮|幎D/t\bMDՄ+ROo` w(%uXg{&]N"Om4S~&1t~(VF O %?nÈ 9B+\&=?}. ^BIeͿ=bsYa*&{=Q[q;CSr?pe"|FnEr+gwB ` 7# D(v.xyHGf ]bVzrZt'CHh7@&eyRך,1> endobj 85 0 obj << /Font << /F31 21 0 R /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 90 0 obj << /Length 1308 /Filter /FlateDecode >> stream xڭXr6}Wv*)"cN:qG+glyڙԣHBC,ʲ/)X={vW~gܟ Eܙ cwF '^g}9%T?8f {(_:fYcb*OE$&8=,~ :=oПI gԎ>"b*攭@q ޟxqq,.9dc8&kc!qTk .%߯>O/?-gw?/^t~Uq„>%X5L)BĕY-ט\P,9z6F\H8ޘ$$D&\ɬ]JXɐ8>O _YRHNZغõ%E&,*O又a"@Eѡʞ ld]\QrKtV<4*(d&1f^NRXCaȃ|*MT>iE)(%k$X tkn'SXْҵ3vy1%3 Ҽn{D)B}`κͪ+xVU doUmbvbIhi|(\%tɎf!s g]n\h-ŮQuIT]!XœʋYcKΞZ_B ""ma!j IU\Ru[0_Y9y\'oJZ'(kbgFwF-ЄKZ UöY)Z#*)]|p[oa|%;X4慷 $BZY813 q{yZaۆcͼՆc?x%5LWD͘M$_ldJsnq 7uU^wEUW;rE DcV}kꔚGb"NݱT3Јڴ^`ӽhq)ڒ47T%gao K ҟZCTkp=ZHeO/*{]ƽ}ẫ> \S{ƶ5xGD&QƬʹMU?P@G* uɁV lI#0 ҟj?MzSynHn(?i|s&U7;훺Uux鼛ե[M hJTI7Ik/\ b{ pYaޝ8Qg&PJ۴T~Z.nC(7wGn3q((8O >jltiY[ոpohQuG^P_ 5> endobj 88 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 93 0 obj << /Length 776 /Filter /FlateDecode >> stream xڕV]O0}W ڐ_$j%6iS"'q#@_?8 Sy{Ϲھc`:[Qn=r3ky3 \+V'pMN228Lÿ9FҴfu&/RQ9HQqD콣) 5|cv}K8 Έt nx %k@9S,rg^I(PCy!pz (4~ps6\;pg~{ed<*Ĝ+B^Q8D\3X9{+jl6ڏt=G3{:flowx~Ic%, ݚU@KX-Ӣ=Z"MBg?p we& rE:/EiQRt`0µz:nMǣ#(VEA̼'lQoA/9 .~U )Hȥ7\lZ{4DbUN741ur?_eк$x=, 倽V"V(I*>zFSDk~=,r*H;"/Ѝ>-&띢D[AĒRK>tEA1}'O@u:@߫PR7K@XAك7 ^W.uu%qLUtu3o2Ո#}l*P2;[V˩'8xx,,^{4yfendstream endobj 92 0 obj << /Type /Page /Contents 93 0 R /Resources 91 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 84 0 R >> endobj 91 0 obj << /Font << /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 738 /Filter /FlateDecode >> stream x͖]s@\BG zV3ֶv2$K ._eŎ ay8d"c؜.M/Ȝ,*3\r/l{fx75 G0 %Qb27 h~0 3@ʠ*ql\;ASt۾s8іE!7VqТG-.P42*3Q!Gݍ\6V6vXbSupjq!4 lUuj~D38V4YAijW`X}<88ONb ǫeN_Џta^wa}^pQ~Xb;95ni}>:=!e*L|'ԤaǬɺl6aEl+Ey?ACwz=WEۤ0ie!J|%p؞bB٘KV7oZY5dfqZ5df4%d5+Y+2DJfYOinE/*mC*@W҄;R{I.RuH5ŎTC[Rå_ƅkdCTF*߿냴r&Eޝl_rlg*,¬A%s{L=djF. 7YAJ C^"<:&endstream endobj 95 0 obj << /Type /Page /Contents 96 0 R /Resources 94 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 84 0 R >> endobj 94 0 obj << /Font << /F31 21 0 R /F42 43 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 51 0 obj << /Length1 753 /Length2 981 /Length3 532 /Length 1526 /Filter /FlateDecode >> stream xRiTWF A Rb$BB eSA3/02Ä uWh֢ ZuA\pAE"x*n\z<ş{}ãܥ(9HvsPQ:IQcx{hiHB ߉S@ӪV4cJ)Ch8F+ S`oh_%:1=I3-qf!PgBaFC=y֧ $u.2}kr8P|sAڊѩjXMɣL1?C$#bf# 1e͗8fgàZ)3_8o,r&:{OV-{#K{Q_SˎL|~2f̀g^5ٝPHlf|ϦTWV9FYH{4`J* #Ȯ.&끤SaEۯeuq:3M8YI0G41H5ꒃ &ٖo, ƔÝÝmG~1T ֚*ku9mIG3 :vJ7׾{A?Xھ)ܶ> -IHSxq ;B:V⽏d}&-;ʣrЬ9UgJ:9Ԭ#'hݙ*82m7.mmg=j.KbT,v^~&lqp6&n^rt/fX =<.QEYn5u|ukD]MFg\\F_R?32_BDǛ7 xTov)[֢7ǾwRv57{*TQ U;Kvrq8.|tF~hY7wr۽}ytDxvEJ^uXb낆}U ns[4I;oe*H\LvwSC}X dF%ZYdOhY͝gVsطfh?+V>CnªKD59G8ͷUebX ',_ٱ&c+!%ā>[?@CI5B%85`endstream endobj 52 0 obj << /Type /Font /Subtype /Type1 /Encoding 97 0 R /FirstChar 58 /LastChar 58 /Widths 98 0 R /BaseFont /ZOUJLA+CMMI10 /FontDescriptor 50 0 R >> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ZOUJLA+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/period) /FontFile 51 0 R >> endobj 98 0 obj [278 ] endobj 97 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/period 59/.notdef] >> endobj 48 0 obj << /Length1 887 /Length2 1357 /Length3 532 /Length 1953 /Filter /FlateDecode >> stream xR{9!Գޠ-AXs`44qA*k*X33pFkÙ4}? 0@{Ґ `d 5hTpA ,Y,e 7룰X8(%KL>A_`(4h/0 e@B+ WmX,"$p*b>Ol 0rV9t(% TD@S BA: BhLAe}C_mBܲD>t$Q!*4\cpPP/V8(||y:̆CwT.C oaXP :6C90`.jixCK d  ~EW$2^AW>C  z8¿4jq Y|p  PO17 mڋuE|*SnKEwa]nu (󘻚%+=,>2x؁6ב) GRr=W}rco^E? 9I֮#0k<+0b}[iq (ȜI%:7^j[$\\DnwoZ n?ߴX -3V*i?Vܨ6}|Q 5bGx`KޑLW>/['N[]~f/&){;$rEh34l0Q{gc%IbjDWsvCo̜71X>}3;;qՍ1] Mibsvx!C!<\.HVR;0qT8U zrʻoVqr[Blgb/6Gw&󰉞b" ed]وitU5}2?:Mz! !Z7&%֞]-YnYі6u>ޜ6[hp뽙Gh0v9n]??/ y[x_qr6Z$~!hDg1^CrJFdpe&!܃yiC,CwU7o[SI'+ yfla}Z)>hK;>|:H-xjȚg Sg%y}bcaϞE6^'_$1Ju㷟 aH+%.qI Glt_B_I 7BT2~ܓ^{9|wimnrc壥\|Sv]b~hy}k-脢h%#JM2_§*G'dU*ATb>Y {z!^|uyEe:.ڐk-]fΉt% ]RY϶eT5,9.}b󘕡ʸ(=_vADs{qyyws5|!绦;=vّ=һb=Tf'$ԣn#@*oQVԸIJ*+8XGD񭞜{|Q c4D-j0ŋ-zbޙ Goħ5:Oo&ؘ w3SCfT4H"0C7 -endstream endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding 99 0 R /FirstChar 50 /LastChar 55 /Widths 100 0 R /BaseFont /OFNKQD+CMEX10 /FontDescriptor 47 0 R >> endobj 47 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /OFNKQD+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex) /FontFile 48 0 R >> endobj 100 0 obj [667 667 667 667 667 667 ] endobj 99 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/bracketlefttp/bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex 56/.notdef] >> endobj 42 0 obj << /Length1 2130 /Length2 13025 /Length3 532 /Length 14184 /Filter /FlateDecode >> stream xUX̺nKp Npwi4xp4-w;ϵ$sss[$UPf23:3<YnRdlag+j !3+ ʎH p03wЈӉ dr06:lcZ-@L!kk?p(@ &D `ba 0Y"2#$ekj\AN`) XV4L@`7.r6 "_͆639rXV)gCk c![3k" 'q w9dk/fyIuM9)Z:x{:o ^G w6  tW-1[c; [y::z 8_ [;efs^o#?`7[W`vpsYf[v-0ۃAoG 8u2̿S, A ӿR3+xdpz 3vqz v66o X&/q 7Cv\ Lrϕ07 M4_ziwxJsәJJvJ73<:X餦s\P%H|N21_՚c} 5y1b!ؐKw ۧj ^szd4DMN!1a:ϩvYdKuVOp8Oa1oZ"aX7;tɟxMPdmg|t[qt[ګ"h x ~$7{/Hv,tE YwJ$P/x] |ȿ Ki[s^iDNsXĝ拑Dj5A47y.:q,v\t/9.+ю>Ҿ>$,*_쮟l$V4fgns[>Tts[S!ƌpF'{RBX]+]rO`gdU2/yQ"Ie6;? i@: VF\94(8WyrҭDE_'vkn|+Ȫ߆{?dJAևJ0W49_ g{0Oe!h@ vߋ[az:Z3$O<ȯSߩcuU 1Km/nN=}-[>f& 3JU((QZKO {e|ø_R$tzK5 *n@_L7OXډ??kKfՏbHA%qFՖE&GXNKwLusCm]%U'@RfaAbOP4Fo`x:$V- rdY=f0;,f5$ѡDnPp2<ؖ=vz_2o3\dϼI,3Է"s[/t*sŦEUjVpGuGlxO+x]Њ1׭|qe6_Yxt:mV᫗(6(n-9lIҀΜ(%8_;ڕA;+9 mi "NY"D Hn'.u&_9Cj8rf H ƧSc~`o*|Wv >S`@ 1DQꖮs2YPS1 䌥ql&@u<:EgCvRUl ^i ]*Qͮb6[Q"%].SBdFX2@)D|p7TLs @G`7\P^9`c#iբ j1ʚ=<XX4wM(u/촾nI3l8Lqf|\0IIrh۳U0H0!9 ۃZ5ָk6{L>J[(q rwNemme&wm2Szì dwf mc4 PBDUP>r7ȩE,>./g/vSBu5'.ea_vm&?6{J5րAJ#3Pt_!et~5\}u?&YXƏ.Œpq/_:)Ja;=U'6?i]ٚ;51`dM4\Յ?f)l,M]}R\zi n3Gr#<5V+oS,T =+a c>zMq˟QmRYi:(Lݘe*'`z/P ۝"̜DMf{Fw/t11Ei2lTMZv^N##%{x΃ 4ul-6},Ep2GGBj$n;qà8̧Eռ@fhOϊ(1c"z&/9=+0j!m<]HEsy`tNM}xÂ\Rs~ϒ қh) Cfk@j.88߫$1ԚBvrwJ!!PPup,F/IxٽQ7&X6 @IuWpܲk^hb}k3{|_@ݡ=K֗?S|h X&x~KZn&] ovMt6z PԒ]^cSm>frko7'Ki=E|7}jPM_so^;}N٥ʕwW7a[fAS[:#Ǭ*/ Hѫ$ixbQSzxE(h#qsj]|.G`#'_}3,MFWfJOM 1oc(m42 3<}4Hy{ xaYtwj P5 \~WjT^YsuO5Y_9h[m?/LJU$/UDA]r123)HA+gQlTڑq^ E=|_t2:wl(PiBi&Qͩl+~k ~"?w5L݋oY'9 . !S_yfV&(̔R\"4 sYsԉD-vA 9XɾR1ψ[9 k~F4Q igN!Ԍ'^Q,aRi,/\{\{=l@ r9H W"VRX~V12sƀ;HbJr*F G#, gkuFj.0(- >fnfkH%cN$ª0<KE U>nqd(3G^|]}`{}}E5C/Ckm_;IDs6bm QgŸzG:?s±D8MSPMbî|mxSu>&6:y SÉTg-=+L]Ɵ˕h137`GKHdJ:Ȋmn[/w>J>p 4/ȕEpG-F$K Ea)ae80ݶ-?i Eg-q~0EZ8dvljHv;|gi>bbG)8^3d}xA6YiL{!VuZ ~pt~I<x;p?7>MRhX0^nki,* Gxe NfC" lJ#$KvE} 9B>0'{ow^^PEñ;) 3+J\5Ъ?oɿV84&S- ;Ssra<7/H}3a#yAP,P,Id)9-x񀟏?vo'Td%&/Kosb~RiLQBIp :U&ҫ НW;VfbNi0A0e 8k<)e e˩2]06jHRZ\*j> gOP~CiןCoUllj 3䶵$UJ2 8ErL&u#IasN|/z 񝼻0QXطs̸|t=7j>ZN+DHnb"յ4 {e(< W/]9(o~8r5;$Ṕr ā-+Vr]q*MZ?[*\q׾CЇm$ºdq8rCHLN#hvt_<&ma~tx3#m]9C>tU@+fO^iTIwO Gr~! X'|g<ھpkzϳsK)eAn廤H'|Ñ'"VPo0.\g hP$x=k)3-4WrQ{&LH őEYtsЅ&aqR>¸ouF:z2b͔,J28k/ż߀Ņڔ}0߳*wV=zp$k2oe:eK. C]qcG/{j&ှ NbVh,[[Ou̞ol +xr] {V?Lkc}Mϑ&ғF*{ВݭgYD6㶿794a(# NŨe3(BՑFgr=Z< ]*V؄eN@/̻` H:xe$+[RPgV6 ~"C~T"'%hZDL bi:㝞0*j&~84@G̩(8Yၵ9/= q$Uzi]3K ܰ@QRzO!wl衬E`DK-/M|'u!= XDq>"C Wc#&i/eV]Px{]7*{jǑ giXx+7{ݹTB#OI{oGEs BhVjGkAX9幏nx ! |QfoYWZH5ھT6 ]6D5pB B×or;W{VЏ_uݧ2_[:NOkO1Ha?V2 ߈Bvlٌ6lS!V/b6I{bc@/q$c=sه̳,.{(K 4Urq 6IV4%*<EhidXlh<(vƔxg{l|{r$ﴨPhTEn8Ο/P.9a1VJu<1:ˢT+C?{FsZNeܳGn =JGJC+seg,L%]mNMjYF[E.#vAMvFxkC_ж FN~Ng/2-HuLI2R>}!83%( $8><@bh'n ӭRlzGu,iO =D GNYS~,AtC6pV@K0W,RQe#&HXb@0obO9NpvV6JtK'Lu[ 9[ EA~AN[̆#Z"t]@yS ~-WKA4s5g Q:k`=pWVjQ\ܵO WhTg{d'\/Y{=AvW+.W%iHˢjAmh-g&[CYB6;Mkpyl+^=-h .+n &c|T9o!^ԉR)J)xKZS/]t!`#qCgƇ î,UU%-B4)_DMPvMGڇQM<\3M{I a[Ȣқw{9^8gf߃J5ݛG 60Z7|h\LLh7Rv޻Vm1S:O[<"3"B%\|\O}%0OJ86z݃6T[cz#Ueԗv 4@v賦#w=9m/F"\%6/6u]ԁ}ط7bc Ձ2~ w_EExuWs<B]?Ͼ&ա <:ǞJ8XMX&UXYbS%:@/`>WKTˇKr5o9RQQ^],L'i2}͉9[Ӱk[WɔXcSE- {r|71zT_"j4Wæ-d%Yw ]J_9uxn["?;TKM~BlYb8 :S<F36`IyN"&Ra]i*8lŜYД+Aįd&_O W_hDuv(BB*l !L>\XtK99iMk]FྼWkEA^X0Ik&0_yZɟ(2#هlhYӱ^O%B(ߵN-[,2U1Ê>jWs6ֲRw!Yt BC0觟js+(Q( I ^(wJʥ&i{O_:Sgb*FHx&T'}Ս Mל䄧9Ԝޕ7 󐸌NߵE΅YӡSt{C'4-fpb# IamhW\K#T?͇v.V?|adқ0Jl D{ޟEPg7PECk811O, 1*+ j%*:soHX3& $}F tY8Ot9&- ƅ;ב<#aSo'_OSg\ 9xKSGi r#BXN%t#D tE|XhOI|CZkJxӧ}rNI'\N[wz?~iP3j^"153`9+Nu=nkK =_,W\Yt. &eg쓥R)[K5mr8sㄻylb=lױײN;o2=ˤ-/SO ?MWv15r X;L LtŢ=ߗ*zLu#31MTNq[ G{WD>*[i#ʞO1{$<$d8AơɦdF#QJuTCXHDOp}v#ׅO='O/#ޘ[Iw|a9o[r,q؛}OW_7 n ci6ѱz3*Y@԰psK>@!ԋqU pzL *k=?r9E?|NubXr}V7WG1XƠBC 7vJN\`lFwkFxOVKImd|*spQw>aB~?AA|8/p1#;AqɁ*Xu 9,%?U-[6hM BzxT[UgIc&sgbAvX.\ ]o\Yv Zl6 F(qog%(acvҗ!~UlRgo!a!W- {d>4ÌC+@<+2| )vV\h\F^^ ?8^dj9I>M! {hjW%W%hLn^4c{7$0GW\iWXvg]k{=K?& 9gd/?}e0~ob(Ɗ Z:N*xMOFdD-R7 ɭ^/zK`dR~F0yg{cM Жl~\Ey_[@цM)mpw96Oj^ \=m=$M73BoDA:ϽؘrGF~Wp8[ g<,>ϔeCnk^~KWcR.@\$ jvuYc# GWEh؏_B\~:Pn Rq$G>D`ʋ E!C VT2!NDRlt1afw} O1eNEn}^1 GeM>e=SY>T_/׺ux,kʶ‘MUb5oxg\l7xQtCPrP= vݖn'ꃜۮR, F-6à8ؾMc:CMu\&~^l6UYdΛ3$!e+` n͕[S)2n?hĴ" OI,.Fh{L7KU|gjܨhbRz4P30bI&SĚ >'[fvJ AbxXw*m"H }Xxn }*h/+ iRQ"ߝ.Tlz é&GG21H{ZQf$D~zKxGUNQM);B'A`dl=X! o¾rL0 {No8lB?xBp31{j2-GJ*!op"H`П{gSL $kC=uBf1QUo-*`X*_f"H\@DCp]&T5{( vK7eg 3"Є?<:cz ªB6>7 >s d6kDCș86,EQ}\{nS%Qβ?zl&sJ) )4_cW!Y2RAvY$K4ӝ|ʪѯpڏsHMuKg>8lQ-%=mz B^҃^I!lD1d%w@$Njc@5$&'+ ~]Cv7֌O%D{-ɺ8`-K/=a3${.oʠ|*r+"Eo!aEzZFvrtPFj<s-u7h?OMWNqN{L*`#öZě; =XDJ8^R5obF}C~,'Zxl3>~w &6y&qFObfפqQcF1ܪa[fHz}9SHj+[v樻~G.ܼ krzmvmg,ݼnݸZlG& ɿxIݳd5+♜R26(OZc597Yd^T>UϠrnlYs&аuX<J+=b`Tb U3t.-d$\4?܉j?$m+g=w^ !Tp*Y~9t+k #k;8 ( ᶽ{}_ѡm}ToTy]i:`PÇn;{eȗ\j4Jd-$zsN.]~`AcD{Qnq;v|ߏDT!,@eVbk# "Jݐ y9sqwYS9cW3z>Ϭc~ viv ^"I[ܿ8t#UR^iՊuk  '[)E1֭#m3ӊ:CJ( .P5XХ-Um§{B,M/jņ+X88gvN11e*>Q{[z^uI[' Y;B->.N`x@7g-֤XL" fRE5'Grn1EE|4H6ZN(Y~#z! DW>'$>kW"o(%}%e~!FO m!ckPM<-b,7KD+W,7 7ٵ0y<ڕYn469vxhii| -J̆u81W {u׼ NYy?.),|ÀB˄K| 9sĩB4<Ή 6 R/:Rq )ҮZumaH׈q!^NǥO OpRTPGH0zn(F<<{x~]Ʒ?2)l9?R#ؚl+r!~пRAS( n{yㅷ=)U^uyb ɥZ@Me0h46q ?0wpsLFHֈ{/:}{(A%V'A,%{e_qP{h> endobj 41 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /OHWYCN+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/eight/nine/colon/semicolon/less/equal/greater/at/A/B/C/D/E/F/G/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright) /FontFile 42 0 R >> endobj 102 0 obj [525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 ] endobj 101 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six 55/.notdef 56/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 64/at/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 39 0 obj << /Length1 736 /Length2 1025 /Length3 532 /Length 1567 /Filter /FlateDecode >> stream xmTUėE 2 N9]fٝY0b(h@J1A@PD# Cib 6` ?֧N3_yeنseD pp7*@|KB@\]U "7'"`/'1E<ؾ+&E"୆$&EqRPM{HQ'\R5L2.A R *0 =m˴FɐPMC4Uz r/4ɿ5<@RIɐjLC@$A0!$>]>e 2L> P&*O[&AY(FIUiTtnSpa+,p*BxFtHL\>+f^a8}!]JA rpy\%$ 1y /bx||]*pδ'ED.H߄R-IBtj9FJ׮RNeQ[˾0q4Q 9q47XŵI7#*-M_I1hO~9_O &o,z&~qNoCjz0l,r0i:~ [ZtEgvp 7ma7) f~әM5ne=|lN~m<;z/]ܘ_Z[* N֩476e2ɕYeĽV?Iw,Z"g}Rڂ~c7 .HXVop{Pfjė4F6JhPwia/|2P/4rQL7z+.7ctb˓VWnid%3M4ͩMv~&3 ?8.9Hmn7&ٜp.?etŴ ;h[_(6x%E2tIe0ފV-@r[PUy$oc>p֝wMkzU0!~ ٟ4I[f%s_Xt2/*m39}^uEllݝKk"3y ^na$:&fሮ"efٲ+B<,M7XNۿ57E7N03=8T8~.ʔ/5v4n.JA/ ]O>AV[k TSEy󵰚[|Ӯ\> q7ֶ#~M7K6!y,7-Mg]Tgyhdxb+ ZaM}﯊o{oj 7 ])k w[XU{C;:C,@j{ݑ0]ocb]8㝥ߩY5뒡KyXMmML/ges[Y xK;SSTQ"(}D endstream endobj 40 0 obj << /Type /Font /Subtype /Type1 /Encoding 103 0 R /FirstChar 84 /LastChar 84 /Widths 104 0 R /BaseFont /SDIUTR+CMSS8 /FontDescriptor 38 0 R >> endobj 38 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /SDIUTR+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/T) /FontFile 39 0 R >> endobj 104 0 obj [726 ] endobj 103 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef] >> endobj 36 0 obj << /Length1 735 /Length2 1050 /Length3 532 /Length 1589 /Filter /FlateDecode >> stream xR{XLi.5K(}4e 3Sɥ;-i:9g93MW O(%B'+tэɣƒP{}6~{~?SK8FZ,'s,nj# B8抐 Y#Lb;8:R$åQN9C${@ Dp(4Q  2H(Ag jL/m\R@BFs(seQc( "N)'r S}"TKrBI _yB!*Dp01/-T*%@ep1HTln~}̇_sAP\%St;\lT &E.xUn5vlE悪@ *TR~NRGI}1m&rqe XZQL{&c(ZP*7P@׈ 7Gdo=瑩ɧ䆕x][>NռKS|gOuG~!K,) gg=JgSuM8_\NӻAձ*r^^VAӗnfݳ+٘f?6-R7mv[*>"aLy+L>_=`7M447J$s[$νg}/gƦ,%wٗJgn tN)!iSc^^**8= mc[/0VGO-2ښCj{_>k^N1/2%h KծyUoM9fB' [va:Dgmm7M _Nw.r}>CoޒRuMj)qQE}}m<ҬKqk{|Ѳ—氤PIEֹ$kB~"y1H ԙ{{G/r-$^4h8QyƼ'sYE jb9KuDBE{6s? "\ڿRi`e(M*[sxZ=s@{\ʨ{vqMe̜ԙb8:v@z\Gͻ ;Wɍ^V@uk.Y_p8cS>:L?b/0\rQm#|dko|BIOxy˫98l+ |85ν;P-B.7<b(蛞lq^I^ԦYYv1knsvg*.<#_/(sCˆq\?H We#-DGgǚsݮ;|1sew:KZ/zMBHo ̎{T2#dvrppJS)]OW6osXu0XC]֙[kl5%90a^arFZdIO 'b$.Au[2[@endstream endobj 37 0 obj << /Type /Font /Subtype /Type1 /Encoding 105 0 R /FirstChar 49 /LastChar 49 /Widths 106 0 R /BaseFont /XERGPW+CMR8 /FontDescriptor 35 0 R >> endobj 35 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /XERGPW+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/one) /FontFile 36 0 R >> endobj 106 0 obj [531 ] endobj 105 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one 50/.notdef] >> endobj 33 0 obj << /Length1 745 /Length2 580 /Length3 532 /Length 1113 /Filter /FlateDecode >> stream xSU uLOJu+53Rp P03RUu.JM,sI,IR04Tp,MW04U00222*Rp/,L(Qp)2WpM-LNSM,HZRQZZTeh\ǥrg^Z9D8&UZT tБ @'T*qJB7ܭ4'/1d<(0s3s* s JKR|SRЕB曚Y.Y옗khg`l ,vˬHM ,IPHK)N楠;z`F89iCb,WRY`P "0*ʬP6300*B+.׼̼t#S3ĢJ.QF Ն y) @(CV!-  y Q.L_89WT(Z 440U07EQ\ZTWN'2ᗚZuZ~uKmm+\_XŪڗ7D쨛Rl:/P1dɫϾ(l=Uhd_OܗEkv-X1tލ`i_y. 1dz:un~Q?3/S}] $e~s]F1ʻϯVltVtl_]ׂhWVM\|esWgE): ؾ|׻7/)xXmyjVrYXe]gL?=;paG[bgtN]Xg_%kUc>=#It|yfl(zXu)ODݝL̷a!kܚ`5y.z4&waSkiϰ˗L #~ә{:-и:8]ؔmbnT5sc%W YK5LZ23IӂcOzFӍk3,ua&zC :;PF $&&esH*sHendstream endobj 34 0 obj << /Type /Font /Subtype /Type1 /Encoding 107 0 R /FirstChar 0 /LastChar 0 /Widths 108 0 R /BaseFont /QYPBCN+CMSY8 /FontDescriptor 32 0 R >> endobj 32 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /QYPBCN+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus) /FontFile 33 0 R >> endobj 108 0 obj [826 ] endobj 107 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef] >> endobj 26 0 obj << /Length1 1208 /Length2 7313 /Length3 532 /Length 8083 /Filter /FlateDecode >> stream xU\\˶qi܃74X\iBp4X\C .]sYkOw?1UH!i79@ a4XC qrsK&03TAM?a>~a?( pYX:YY %m0ll }1!0'P ' 5@@3h `g +lb!Wӣ) 6Y&v6@39KX L.bcbbW;Mla6ڻ8C`?C`.9lbHY@ ^NnaNr0w*b 47qڙK[WzkkT59kxCܿ37?6~2Q?Af0; ?x̠@c.N;cg|pG_ mmM +r93-~ ׿OD6YK& ?$XA7=*~ӣ >*UӣRzn<X>ֵ 9.;u<=~^ @|GGwTa uBSpHUJChlh*Ujqp[H]c7 ( A?y_#92yw:W A1kn:!d?63lsvݾkj6H |?tz,{3davrTkk)vzO-'3H;'%\n=* FLfu7_ [d |ģpRMQ(.v§nJ$C/ V}+0wA6h {[hxcN- ƙx ]Nh%:8~ZpKEca#CA˘-t3ūiPfMbGg3} fq  az?`&Zh?-z6o1 'TCS– C;?ZjU47ӫ^5F$@jrX 3i%k$L`o1rf&h\kUĝp{C{tZkF񴈨/.>xd3SMf#F~Unqm,C8,+}nD /yJ1wVzl۞0)J1K%Z0Z'BMӹִ;s&-|hcɴ0j|]ّ>ItƹMBs^MnOypU;>QVCnw/)w_0϶$n},#2/ E48 ipbljY4GdZ5_C1 % K&< ~hRT6 ]`C +x$${:ڂӺ){;M7@(2o9a.#F[7۶@]8xsm([ , lkW߽+J_%At+%Y.E{N퇜/i­j:9ڜWi ytY[hX j3S,ř'aᶶrW Ǔg:Ԫi#i>vkr١|C^?H fraeϑ|'6޸"I|;5 ǒP&7K]4oE8(G 4Ihj!mLvU _D2U; PZM6Tf Q-RM(ث_MTTvfhDS&_Œ(\7bvFdk2͓̆+٥C/i)reXpytFNf<9)?ݓ̞+ ׁmT-1вnX3 ɶfZ^5@\9,14{VU\&n]ޯO t)o=5 Z2=H09qUShWhT_:TW}q\3XI+ ?AYi1'fCESߡBIY&肨Uo;e;UD '%K9OS W* z !0Ji6,U6R>gu =o觺"e%}|,@jL/Z#:+JdpO1$:Nͩ72d˂*!A)] a*Z幍gu/p0Þn*T;HmIa"N$(/dM䱔(y{J }4J})Yײm:"{P>NkzAK0ֲn$M- \ 0Xq@BL'j_ lTEk}t۲]ۊpQD!ZЩz˯}Ӎl:U?J.z/?/EP|tFOc0ϻ4+Ů 4w\9$.Nb-uA5[B?ڡRdTR>#դS7S ;m&62I_$; ݳ* \ 3Q%з~_楙W$zٽҝc]mnaHLh6B#6[EdT#7TZ~A^,'đևqTV̰*2[Z>\lb ku,ݙL(,;=v`jDOiq[ź0b鿼]E| 3Q5?f3cpJ,f/K܍,~\e!C$[5iL '"8pÙR)M;?) K{kmuHQ=y_`j]j"t@~*ŢDctvGմSCLĖ ]oADn_eU :(NWA)vE[E:1K"Du\bmv+K22ml\lS*s]:NMRk`$N/ުHe$ ." ywzBY[^&K7~5^m ˂@9S01u \qk:.1wjYZL/c~ֳ*.&?FE~6wyT5QC7'235\2)ppay \o]sN  T+R~ H,Wu.gRg)3rP쎳?{'L5Ւ[IL;[uzR϶hHZ#.HcDwrݖw'qdDꫧRuk7; D; {[:KD)5"|0)J˜&Pt#XTf|K^┱/:(OL2L_u+`H9MWL1qOn츴(ܷm_u֎ ʛ$b+'m1ag`Ct րʵ>H+}ə(aP^j]_=/b=fd-l;LRkd9!ɩ;C7/Kx|ӠĄ=AuuÈU'60vaNʱ3HI˘I/gUN=bMg sqP~uGA/B'imEPT[3[kMD9:T}@*v̫sxjYN3alaØ.qjzCA' @YC004(aȲa"b%f[Uŏy10.Kl1) +su[Tzym97 )TIju]ؕk3&:G:p6HuHqr]Opu')ցhG a{[~\AD%lYsyԤ1GAQ⣒4+4Υ?Ȼ K@NWJazzo4U^d"G " ?Dk x|`%sf a4v3t&@թrLA\ds}<$<HjE*7j Rdj7JLJ0ȫLS );kx&JӍ=I&]yt2d+iB,,tj3G^^NSzYXdZ(br^b>tKlD¥uW*gpi tfţ U%oLt?Hp.pdEHhR"=Sz@,A/p#Qw!4&@n6!#ω!֟M+Nv):|XjO{4]{#(xZyЁQ.AJL+Lg͘*5qgF:4sZ@aMה`f,0EHLJ|d˄kZ(Ǫ#풄un̋ذ/R>1d㣉86@@6z{ڣ>MC2Kσ-F4?@$9SbyIWHf@d(GhbJH_DYj-]LI 9sc> endobj 25 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /WNHHOZ+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/comma/hyphen/two/three/eight/colon/A/C/F/K/M/P/U/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/y) /FontFile 26 0 R >> endobj 110 0 obj [307 358 0 0 0 0 511 511 0 0 0 0 511 0 307 0 0 0 0 0 0 743 0 716 0 0 653 0 0 0 0 769 0 897 0 0 678 0 0 0 0 743 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 307 460 511 307 0 0 256 818 562 511 511 0 422 409 332 537 0 0 0 486 ] endobj 109 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma/hyphen 46/.notdef 50/two/three 52/.notdef 56/eight 57/.notdef 58/colon 59/.notdef 65/A 66/.notdef 67/C 68/.notdef 70/F 71/.notdef 75/K 76/.notdef 77/M 78/.notdef 80/P 81/.notdef 85/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef 121/y 122/.notdef] >> endobj 23 0 obj << /Length1 1664 /Length2 9994 /Length3 532 /Length 10955 /Filter /FlateDecode >> stream xe\۶C%@`;-P)RRH)P\NOw|3cJBC"aʂY8X9R*VvvIT)W;$mpp$]vAnN vvغJH8]ANsw[#@ l {$=]=V+;hrBe˓5f:DrQhbErGyb&ïME 2w@p RL_Z"sJ,L؉DdIܮ^4wX|ɨmwZt=^bałqhPiRMBCHPR *D>DU Sțt8>ϤJ_CȚ^XF7{+dRΥ{T1)S%߼{­3_ec}.=cg%dto}jTޣ8d]eXV.2IK{1S9G3zj~zgK>/1yx!)kx`Fk}yIz_+c>WЇ:+~2QwNG))s,2Ex}-zpfD M6=v9)Wf0 nJX7;>o7?%\ ,0&r'/zvѠ(u#QJ )vMA6 󮬑k2U߅+d*ZYA߇B> /k[ݶ"tAmcoqVnѠz >{'0v_h$)7P׾pew$ɵ K$XõuM/D:m1P3~VF߇?!ylEc]Ƌ,XfBwG<>fbR\r3%ךtm &֕<lkv%`C&o,x f3C'N҇Ta>M~.9X$j駮ptCpìJbՙ V?wyU Im"vrwWE7@ 1[.w9#o֒Su2!٫$7*>y9|]R#_o&e}Rj-/0@l,?IZ8_3V*ߑ;i".8#:ZK&Φf; 8n1tNR4eY~mtBr#F\ ߏ>ؚZʓHȷ8ʁ{ȋU$:1ЯvX;?;^Wr7aU1'sq8R VN5]YVrؿ6o]I5Tf=o:x3RY%_SK\ o< }F;^)>'y&u~Uj 6]d~cU-f^qi"B{'ݞF0x+,ADe@!mX T^5ʮ9Mr֌/CT&lĶQE )oC#Zމ(eK+ 72c> BAcL6sS襟bBaU++^v*^2o8%4.J^.poVN랉uNɟ8n\hGt`.dDAFe#9n~ 7ʻ}.QׅLx̓ѵY9a@Qtu1[HtbX{]M-& n"[g |7J$QDWj ӷ%dUja <[jPa@sM]ZmЃnAٲ{HAIa"*OCܺŞ:r&n0b\wȺ$D[mumEĻ;B'LUE4K 6Q}sӢ>QqȨN|=eM/GݺVx!{p=T4NJpA K~TE 2oZf8ϣjnx ,$ǾǫcM0l<+'6JJ5dD"z8![oۂɅR@'L!AO*qUU8:u[ClѨYR-iY[VN|]8sPXF0LGɁ"EQQ[o&{f!!ژ59\܍ę@+]ga#"EeO8Xo|@,$$cϙx"y"&L˟VJ>MV3~n[ 7:t+R{L2Ln2 阫?" Dg`CШ4\{"AYÌJd@St.iȄ)x: .i.:iU;RO6=d-=x#Ɖ^ D^BVՅo^EX}p^'}!r,B^T2sJ W^5ec6=4Qqe,%I/^^8tuLT2?пމd@{& ^|%c $^,A[|ZD.Ldn1wKiץQ.#/Ua.K @ 61'I0K`2šZڎ4@*bc \|%œӳ'>Bnt$*[#b;Qbo.L\%jqN>L쮄` _:'Œ_Rnm(t!2ΎjkL{QҹWt%AMa eiӍvip;V.G+ Q<𐰛4R_0kYN$OϦ~H'`bH-(PҁX=OFTt-?S MbTO@^c GOo0ߘ&'ɝ!¯zkIBE|,(n<@sދoE ksnUgp ޶QxH? :4ΤioPU :r.{BLTE4# S'y^; ?@"?vU0x1+1Q: N)L|sv6f:ioIy~@0!s~ќ;WӑSVY(ћw"[oƐ p3lZ_w$,c`,)e.aSF#ɗ'MBN6[WDR2g=r&y=ؿ8m`WPdB™Eb.TDQ/XRU,rU>([ <<ߐwn[&#s:</@, φGL(C7HFHG{(VjnjKY'_ "};NIXW[zDSdI5ƣN)!˳'&V.bPS _AzC׳ԍd'N^$C&n%ܳkat_R}hlUܤ{wg:cYg==u:z^wz5i&?ݏ&6ޒ}i Y=P){@Ȁ ʆ;!~+seYY{R*,%_ԵM|+`?x10K^9jtF|$F_u⩮cݥVcJ^T4\y" >+W*`l8٭4} ٜQ/hG`h5;oC^<&)3a2O|lz1s ]]–J C]wdqitG&f߁ vvV\Sk5%<0q#V(U9cMܭuȁs3iy@D.NmpQkM-7<#-hͰůRI jnʢ)Qi1Z` qE)}Szv+qr2'3ll9PCW84gJnȷfQa$9U )~U>ųm۪Np!+*laǓuEɫ3__i]\ Z<>.q#>CRO~9Ly0ŗΝc)XmCw7:MK{dC>;g:LBCi|J2Baqe[fܴ>_8cO[i}VMN}}z(XSZ"[#rid-!#?߫5*1 1'y@|,|bӁT* (>(6C?mfU:P8i2nV-ܜ܅xn -M AE*~v%[*T] "1~HĤ8)Ϟ}tJq+].q1$8ZɞFr]̰x$Ya1>POHsb ?_-4rDVKXjj$B{ЈӮ.Arq,<-8q7d!ZD,樂6/m?#_kj K}{OKp,2ڪ#ɞ^YvpIJ0H2D["qT8w4" C' I,SRVrFmbvCY~6KJ70EWڽnZX#Y|dn)b#^ +J#i)w5$$!aaj]tZ27ESsXNٔQOXD؋.CWgZAw$3 Ѭ9ʗ$ޖp$u:{WSxL* %VtWL, ۠a&T2 xx8:z]۷jgŽ"C _>h;aI% T AI-˂nÄWxGro:)}T{}5:#ZצA lY4bsdk k3,c"<3[|{W[ Z" M\IY!to]|*l|5=jb SY*^1-(#nȀPu #\#rZU[5A/r#4٤ IZ熽5.]șkeĔV.kWԿ *ߖI |KH!ڣtt/r2{2kkj́]T-#X~D{Y Ll*~3|!=IkؒV 7F <)Y'&=Ǡe‡N#7`q,7` +B]E LDL ?E6Up/46<-v+ EK6o/]Q:Ƨ#JL/R}~ԪXvOM ۲Rz%:=$hTޏ4#éZjR(wCŜ8w2!"P.spqj~~G-lxڂ9fqsQ/PdP[cqU]JccdcYytX'n `#\05c rsToyjth?}…T-j|JbVv*X֌G* NL l{ޛ IꬣlPiKHɅ6j<8;bo;uVoH3NqC5?1OVLUV= V Aeʹi}Ti~J~dJp ikM=9-90J>D-"^N&9CX/g"\Q<:2 /UijJ^&N5IzSͬ2/3Ό@JftT$"wTϧ |viRX 4c~㫢A@يzwWеV~jxcEl{)t|NLO\Sl1kHBfM29Veƒgf [59»lw^&U ;E) !~qsNA1X#J/ h)ْC΋G\)LHA]{l>cJztSZ=hELE`'Kᩎ"Tv hSWE.Ly1980h 154reI32l1襧qGN.!0dba,6d*{[?J.W[, Gf2z [o;hlw\6 z4 %Lbm*d5 nѡ-a…+ճ|l~ڗ]u#\)\ Ī+U?.ܶnl=G-#!ZkD?q;~BWZuXC0jݽ߷w@eUv+vIX, YKk^%8D_&14ak1,b*đŽ q8轸 -UmJ>yh*yᇓ lׯDaS!/0͚^aJ%+SMTIkg22vоG>:5D5 R1![w&JeT}xQ&c]Ib^`Q 9H}d߂}&f)|Z8amO:g~<̿nժJ9LI%sP>$tH4yl {oGj0хw? z?ǻUHu 69+SrotB{x$O#.d^zZc}⍶@N O:2JKݥAUQY2L6޼u67vU{BU ~(x]a{JY ]G,Mqsf'M8K+~Ͷs7;-9$YZjxOTFiIl?''uk^c9iT̢V/sL#'p|%(bu-qb 揅-\Z0.#_@ztxÂ$0"mݫ]D&j"[S(B>9=ӣ8Ź(P!K+KK&V~-~ ΖdRO:?K KAO)Y4;؊J5<[Qz ߎ,ĮV7?摈R.;HO,>6Ʒ07&ʿ؞y;Iw$bZ˙n_n7_\=2VVc[F}8N6pLL eAr@ڳ 1bOx@`ͥhDHɖbƹ~ ?Qhv4wG/֚endstream endobj 24 0 obj << /Type /Font /Subtype /Type1 /Encoding 111 0 R /FirstChar 34 /LastChar 122 /Widths 112 0 R /BaseFont /AKOXZH+CMTT10 /FontDescriptor 22 0 R >> endobj 22 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /AKOXZH+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/numbersign/parenleft/parenright/asterisk/plus/hyphen/period/slash/zero/one/seven/equal/A/B/C/D/E/F/G/I/K/L/M/N/O/P/R/S/T/U/V/X/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/x/y/z) /FontFile 23 0 R >> endobj 112 0 obj [525 525 0 0 0 0 525 525 525 525 0 525 525 525 525 525 0 0 0 0 0 525 0 0 0 0 0 525 0 0 0 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 0 525 525 525 525 525 0 525 0 0 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 0 525 525 525 ] endobj 111 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl/numbersign 36/.notdef 40/parenleft/parenright/asterisk/plus 44/.notdef 45/hyphen/period/slash/zero/one 50/.notdef 55/seven 56/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G 72/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V 87/.notdef 88/X 89/.notdef 91/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 120/x/y/z 123/.notdef] >> endobj 20 0 obj << /Length1 1360 /Length2 7029 /Length3 532 /Length 7848 /Filter /FlateDecode >> stream xe\ iRr莡CN鎁r[@BQiI$g7]׺w+ngz<` D %r@Ey8a (.z@ A! a!\<h`+I A8ڂ`MYm!Y( w.yq@`wHf+ t4`G -0/ ӂ# H'7Lgq%O(T W_ Gd]\== & A3/srpɨz0{(`CC`lM g=|rySA8yD!a !,! _\@0p!>1/ @$`GBB>[ ">_WwH\88wHAaa~77쀀!ೃ{"~G?2^ܑoA:M>HTroBMHʳ߄n?|;&.MHȏȾ@"5@Tu?H]ԅH]? r=@ ?iDkD}yG{@AqJom {u)VQ]qLCU=۸C/ȧ',=JVxy,1ǃX?zi?ŖC#|g3WTͅQn` Qmǻ3;bkII<Ռu\2, ' 1^]sUݜ`*_*P+``_,|JHE|c)/uM\h(!o(4*6i~^`i=Ys.h=C?aWMn̏̔:CD{ՀdWwQ)"[#K/_tW7jEmHXuӔxc% /}'asBX<@O#ψr60x/[ҢOk*tTgFnyJ2E»-yt['h%Fѧ&d1>fPȄ+9yػRuqYq5_#ܸTPqB-\)J?jxޘw5K>\M$6+ {) SNjnxG틁@K۽B4d1ne"jVY7(Tr_&,RUHךGO1pe&މu ݈LδSo~zh+RTԷ\If8kU5, 9 +x^N@쉪Z;+Ŋk=(;O8a|ű@BKr"YUt8P2Ezic+Yuۆ%Z7bێˏ[\Mn%e;,\^ 'zObȱ)<31Edu"x)E~vo%*ϓ0@Lp%<ň*hǜV eW ռU~xHB_&Q^,=Ue`t*D1>ֱBn^-`ɬ?oݞDzگ#Pp+¶<ϣe; 9fu##?o"T7<:4=Ԙ\4)mR M _vXKvd?Z{ձ9)5(댚#n6Ag㉰r_O5 /M 79&vpyVײWxm"i-(Cb*G ř&:8eLZ.?)p)>S7xMq-{=>k KzzIV[g?/bSIp^!9?5$8yE&ja|~ZXF4.2X~V4Mn##Log3Y(0L*WHEZa" n즘j[x)qN`7/C^ }S5gҼ6 ]u7]z _1.W<!צ-̈`^"]nnBB!ʴ?|e_uG%*iEyB-*71wk%c^3 `Rp{wou۰[+\,q:*& Sl4(") ..0"tThNJҋ6o;.1hjlChΆ0<}/z4R3@n!ŷ37ųeOG=,0moqq/ Q6ھoh Q>1+-( -&E3cZ2{GT\$+{^]Q2!Ku'D_7Bh3AD4rZDk͡ j6! G.Uņ<\&H)CaIE2_|y䉆09i[NU cմ WAwo+Cv-4пrKbsu#/ku#8;鳗iBQ6wǭ$[b*Eʿg>'㉨ pZh(G2FHT8^klgₙ-|X}]E)JaMBSFr|gj_;+sOE{:@V=Z8A7xr_.:̩"`c(~D|Eë&UyL1Z*nWip(]%p5ʙRVD:sj ku ro߆".iRzqȇdpC.qyUB=YFFdW:<WU,*u;'1eɌx\& -7@-°\#qڞuta7ssK>eF^u$dJ◿v6FfJ"*Ԥ3`Q2n2 :pX%Vx" k^IeILsǎ*v7'-}Kk+DzBI=F,hH畠ٚl0RjɰyOVYri&-fe4*E~5Ci/SK똅L13jWBE} ]\,}@j=V$~kQӼje^X˫\+8Tchy)V'ϺF^C Uنk ?i-AvdCE#9w[1 6̴.;SfomsXr{2?N~=S9>v2bg8Iz\Kۀ"7El;N~l8`h$B۞H`-Otn&k1:=@ٯ?*^{n33ͣ>teQx`{s3Ÿ)kXT\Gkм+Sl㫐^Gt6@ezy9e`/4/+6]Rm=\G (kFְG$6nz,JaG q9,=W]A5??)R83xm%)1Y5t[6E@ XZfiq_lenCo 1/voY1{rnճ$Oi(5$ceSjh[bo%@죸[6O)p,~TW>8* ǚp9ëϒo62| 6ؓ6V/nHFhdR?+|b"mG Ddx=jsv*RydKh&H{uD_N `PfpF (JjT1rG_Ars3w$ԃluRJLɵMNU=ӫ[/П|wK15/kloR,ꄣ)JT& !/XQ&$E~d7kT>j0f+aW2DxTǽ4DGכj (bO_fL+<uӃɸ;׸,;l"<̻dv|UYjDq[= wmκ+ 1*c2_2z+D˿piwW"gP k6nw۠+BXhRoWԄŤoחvtb-~ي`~qĂ HH2IDB2ifXPgJ^ʛ-JTbl<)Ck2L홟vÆKƬ{3&,!iCOgMISּ>z1oQY]T_f=ÒnmnNiáf^}!SAw<'0jzIE5h&5&Oeƹ'0Ā@E[qZ)j -9nSNF*x'*LBGnj򫎊jMH4.^ykcqO T@K ycUƎR7,j".Mw\K9jۋ:/hRw5 "jji29Q`_,r/ |Hi@O TOQlGWnI+J&=t2W3)æJE07Jx4ElԤS|D3ŠbNʅs xvCv ހzyPͱH;n([CP_n ǽ OJ)g+GEV>"HJ<еM`iAbX5\FT0RO K*gFP::`EZ.FC'xg bխ w=ZMɛ`H II1ڰE1A/Cb;hPJ/^'b}HE}k݄Cyvt`p:yYכ@-'3 ݢˋUR" KQrXK^<3uZ)T[4=XrنڛDW儈+쾇_fN',JϿ?ۓi6t~ǸbI"%y̑ 5Y֫/rmZʛ4s7,Ec 50&bG4IUоԝGN3q0; A3F޼FjᎼ Cu\G&Cy?& _NE 2O O6~|b߅4] ZLA=jqe΍h5}eنܾbq:G)cVC~ɖ߸\CފŤ?_| FN ,1ZZI5;Yu% @ρOfI14˒|c3cǬIxAg[C ;Y౰6,&l+|f\n: J"SۉV[]ۼ":3g۩l Sygz?هţosL◟PCN,`L`O+nMY\8t7+‹ 2Kr85c\+5vA힫{LOxn;tϤ\y^&ôiuni' fU$ش_k!S2@,< G>ZF]iz8ِ F}&B4SKW𻅯z8p*sK;)i6v(q?['fov;/]Ǻ(z] e>\[2ATo,3=Բ?1ՊP,sͭID1}rB:N6׮"J8FL WIro9wn#F ?L58Ѯ]+ Z_o]ʞ2sN~q3*J# ukGs`)gtFRg='"cICvE EfG=ӯjrda]ܔ$Sw@a^'_ iX,ROXWވz}Ph3vl%ZQ6Zaq (u (Z,gLv9κotGBȁ9N._6slt{ВZ])qu9 LU'\V7Y Ą, @jmoHq`^K>ˌH-.ϏrTiuL;wOZ <PZ"?RrMNR[ dq{"l:ű_AWͣpc)LZPyy͔֟vOՓb 5g!UY]eEm,jFxi߬4E7bh96ozы7 !]0{㤆UlB8/Gendstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 113 0 R /FirstChar 44 /LastChar 121 /Widths 114 0 R /BaseFont /EZDUFD+CMBX12 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /EZDUFD+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/comma/hyphen/period/one/two/three/four/five/six/A/C/F/I/K/M/O/P/S/T/U/a/b/c/d/e/f/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 20 0 R >> endobj 114 0 obj [312 375 312 0 0 562 562 562 562 562 562 0 0 0 0 0 0 0 0 0 0 850 0 812 0 0 707 0 0 419 0 881 0 1067 0 845 769 0 0 625 782 865 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 0 625 312 0 594 312 937 625 562 625 0 459 444 437 625 594 812 594 594 ] endobj 113 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma/hyphen/period 47/.notdef 49/one/two/three/four/five/six 55/.notdef 65/A 66/.notdef 67/C 68/.notdef 70/F 71/.notdef 73/I 74/.notdef 75/K 76/.notdef 77/M 78/.notdef 79/O/P 81/.notdef 83/S/T/U 86/.notdef 97/a/b/c/d/e/f 103/.notdef 104/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 17 0 obj << /Length1 792 /Length2 778 /Length3 532 /Length 1340 /Filter /FlateDecode >> stream xTkPWkxH{I}$@H #Bx@xQJ & h+D^m!RGHUO,8 h}` q?_;{|w`VJKq0X*F/LF@@%ic(5T Ke<L ~FI2ૃ c4pL T4NB$Z-]QPdHy( gA')dQ0lM^Cɐs\a R1 fq'` HFcYn IፎIݱ$8Z}H$o m\'r"OzL7"n`Hc u!!4BN^髊~u0-`ߕCJ7W<&mI;#gų{s-vqB[}2{^﫳v- m_WMnZYMݎg.7OI+b?j|gYwfMq oGYsZ4q-rMrK0Ϸ{bZxvCSsO2PVk?'Yf3nkpRҔ~[!)tfs[ˆCPitM>Wc~խ%Uhƫ~Kiʰ ]]^~N8hAi]u{݇绬d5 w%/_ *٠4~GJcp,唜ޮ-е?/Nwj;m }}Gz'u\Pϗd +83b۩>|~殀K. {dbx?uQ[n&3]m,΋-2 n^̾{NxGDNjAb_SZfAr cžBDv^Y q!ϳ;Fy5涪2qijᖮl>s![u̦L. љMmsvY1)z˚K_ՙE'j}STCL+ԬicZx ?U>|buw;ޙ\je[j>zoM;ѳJ۬\=nn]c4;&C[27d2 *aL"Oendstream endobj 18 0 obj << /Type /Font /Subtype /Type1 /Encoding 115 0 R /FirstChar 0 /LastChar 15 /Widths 116 0 R /BaseFont /KEHZMG+CMSY10 /FontDescriptor 16 0 R >> endobj 16 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /KEHZMG+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/circlecopyrt/bullet) /FontFile 17 0 R >> endobj 116 0 obj [778 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 500 ] endobj 115 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef] >> endobj 14 0 obj << /Length1 1965 /Length2 14364 /Length3 532 /Length 15434 /Filter /FlateDecode >> stream xctݶ'۶m;gƶTPmf%۶U1kェ~봓\}3dD tƶ1[':&z&nBaY%&FB&zFF!h22aP ` MF(lk`njDH)LO5P `YPNO(heE GB%#`LDhlnDh05fǒ-!gi_6?MXLl?^߰9[YXSF_V`kmp 58Tuy;[QI'+s#AS+! NFf&V6geAT^JN^_c 6N*vOv܍PLDmlmL  ܡ?w'z2nml>~ě\s ?|տ `lh_ 0+#! `W鿣+!Os!ٟ'!OӞ 8ۧ#'3_4OVis͟f.y\"ۧUpVMF?  C2SC}7q|6B}HCS]}Ou?.oTWCS]}+֫O/Ӌ>hO/&OuC#Kl {?X=?5gs}jOM?Nj?OAӿ fg:m ?=YOWb ?]OW+C~r ?]9\OWLOW+} ٺy1EF7ӿ>oapA//} Hn )͟*2m \lU4*mOQ\~@8.vo2~ъq&oGx4ww,?4A`0j4WRDrWۥ7=CC,J54H 1ž45t1!l}2"fڶ9*'Z Q5!YIA("BjtBSe(Q,LlQ+ 0YK 72v===Bƫ|ۊ('(¤Gx_-K/x(oTZDp$ZiSLw؂>v i:E滈BT>0C< YY2J B[ߴf+!ɾȪxu!#قm(W*7 'MHfASz3TAˉc@7PVtՌzz|}/?{VѮEO6,LP"TO7jZ t`*1^c$֋#<0FVz8>X&-(~(^HrRe‘ * ƜxL]Ki߲zvq=<$=d>&)\ UGDp<} @8>nvriyXl F^m<hm\юjM(BbV^Q!$aDFLDۺ (uِ-雑;Q@OVnM5]4ã 8ǚlb|YJ򢶮ԏKC_"SD'ъPsx& -dDLvC,+!7Xg _FNb]0*~yM1eBY7o( :7u׹U- /=&xg\m>\K2Տ P @+jd68@,2SP3dM4qG-0[vHG/9dΖ01jUl_;e>& | Nim\պOa5ͨ w& |ʿDI^'M1tzY?n:^fNs6}eTiFbwԐk mgL\("~XC.W` 史+y*5tYc"l{o%T_ͦY;C,oP6eu?XP^*MCinÉM&*6 \2?Y9Qflɨ9 ❿0~IC< i[I%H~E jm)DU9G$vhÇ??f|6h;bNr83uKG+ƈk bLWC̋5Vi{a;3ؗu#ЁM#y#,IG0 >3>q%Vo.))jsտ<ٳvxa{EWqWr~wR x#ej^3i3 RFL=3z!^^곰jݾ3Fjœ> v!7hEP}45:U/JGTZLZ|Bb?=$uY*aw7τ`%%H4 3 ѹxqV~$3ZrNyBM?87 ZlԼ#՘N)&!b Et<g2)zpșQ,H~ZI1nQ\$ELbu5`<`wTcװNyP=c?+ Gt-(_PhA15z8ydn}&\:6LMAan=c)+M^Y1c8Ksiǻ3B9#tQ znSڌU|F&gǎEEac`GL 6ѷLYtY㝺>ըomgK3l"j "$7;Quщ[]Eji/J=ȖL`t{^dr6 y&CFMu=梦c4o lԧ4:?`xCpi|Q`?ib &\/vj'ǯh ~ G|~! ϟ a`/;A ۋjqF,@!&%ү&P(J[ekT\/wڳŠQ(/~XYˢ z2q: 5f~idHtb<^q;bDotOoΔ[7Rq\݋;c d X)'"7a`9[իxlce!5ZdT~%IK{#2ig*]Yx|qEvGBx Q{֕Axꍓ+VRI5- eݙzS뀻ZU8bwދUYaXW,}g2Fk<`d>vPCr+Ad|vP$NU'Yn9]C ˡW?6`NC>bGu L!azx| D(L5?dJ}+~Mx^תѲ~=+dƯ][n;D͍,D+#ڝm Ň[M_^l4f.DSC!.cmPr ;^Ts0 m˛1kBW"ܜ/4nw3xn؃mw!e%RG,D#ff!f|=+zbMu6q Ű~ }?X zH@lo6 5 bcOH+&{aEtT×U_3Ѵ?[FxGyPEboX2wͻQ]DvK  sOpx3A1N_ {D&:yV@UqTƀ ubz߂f(ZG p > [c! ,s7RuP4FUj*.i灹8Wذ{<]y"𖓺nTUTu( B;v* XMxNe)(c^D@,Rau7 &`xϠ *cߴa;>|v㐢\؀܍AԂ$8tG=o i{ZKQu(iq7;+b4gU֡K"E9cݟ"ocW^;+Tewr)):=SE؆U![suM#X8/HU@kynnj?*(TYjl`ܴjX}mH}+>!=※ Y4ccez ZJ8~&|ߵo[G6\F.Hjllx˒8]֪T}C^'8<}# [i*O.Oe)njV'Y](/,:ׅh&$mo[ɾ ;$$rN6/2H~^:d2&}o:>{Z_#s,˛;9~ ڻ48ulQ{&u%x^PS^QvPdf #pyvJ vɢH=)hXj#g!>y:r;bHizTFSRI[92 ¥LzM6!qpo9 /w;OnuW+^zfM`}PɱPȉϬ,y: 9==Eq %lKi h'~)Nu;y:PLHP A"aWKt(=HeG5e^$0Pw(ˬ̭nh0Id;z>; ]O"2gcfIMTdE TRMaX}( %`=#e,(?7v:2iRT4ۡb< fM{E尝7`bAu˧p'#"{`Lks|CA($\eEx~oLjlzً*:]H۞;W|=d܉k0KkӉB*5۱TR\$Y|/;N`!K0;3}`!V!Q^:'8пvAƬ׹Go%m=R&-֑h=Z~u7{фHDm>x;9QxVFhpcMDJd?(%и@Ǡ`l@duhJ )&5Fs qeh ̇\SF| n~&!AւD1b 73Hԑ.XxF,u $QZt1$5%⎫t%\G Z^8Cn(: y`e)w!@vm*󫓠lrIGR JIx+"*cGjbZJ{0pJ"e h@ce~% )d]uˍmYpy'.p(ʹ]Xދ U8T½ZO<"gye,<D5☕=ЍW~>smX "LHe[*‹拂 {b}Ѩ5(4.j018 otl\.;- C7~TBi4uY"(}2@kwقL5;_GMhr_GV72/hꥌKT2 i];gHgA=f.f8j:TIJC?"IV랷;` K Yn%:p"*9nȳr3=@NXgl꙳P[!GM-܁?qJZ(Su>W6ٌ mg3eWcAw%*TF}_vT`Œ 0l^N!]b6;T`ĩZ{ PMvڴzaFT᡽R-!3>T!xs}53QugnYϣednҸlzT+}t#^Z3`_³X΅(Y-}@5/9N.wD*hEb[N[2-P7n~WnbC7`$' ss6]m\3:)rFg ^"-vI3@w9r>c(6lp5#.;#kF\ڮSM -b j?[FuajG*ʛ\z Q}}eTV[$r^XeG^g^ۺ| ֲ3 *zͷpyQq0{e#wmI84E1?0چ177+L2QL[zK|weL] $Lv#j]"s1.!B3:(#ڡ2KsV`kG(Y5#>M[J1+>7v2M83H.:x?7'Zi9rUc9hҔD=f|' ٻ\یJ_5y'ƈ~D 2D[{ȧ9OϏ9{) =.< 5VXnu!f2h,wXӊ"'U GhE٫n8vS]趘N.9n7e̊bNTTUcLWuUm ۃv_֏Y#Aث!2 wd<)i8yx^c[v_ Ξ|r/]·l)gPB>֪ 3.(X~*z6IGs]ۦ{lېX A.dɰcC0U W BlzykzM ^z~y7vqplEcغhYK)BP'̸&j׹ΛwU`\d19 9%ojpC]_uu|4];/ /rQNj)]"\RK/MUϮ(s>f$0\n̘qh&L{=VeZ~Is/M|>n: 寚><_~^? z"}!]H^~I {s>A>=S.\x%yJC E bnlrAOB:a yf^X퉢[Wd:0Db|osU_ds" GyKQ: \6R]KߪU-i03x|Z2j*,GUo/~]K0-\Tc+Vu"";:!;gRFZJ#*#ӞrP;6C.|J]7SF?*q~̜A M }/Igh2N)zzim% \ @/Ũ|];#;v~H^[BӞ7_`m}$\&=)>VFA@b7'Zkr[}`0,VB絀sY@udW@{ć; 1j7 ݗK[8 d^nxT" t|ի՟t!8w`;?LK\^Y"kEu'71M6 f(Fˑ/OTWP6r+$@&+4DztE)8]5 sVq3SE]܈F&"ݕJҞ ))nX$)9c` Dp,f_;`M#V:*!&8]$ ~ݙ,kZl)=RxfR]hܶW;4.YRd:b8,m#(+D7CMY3-4&MOgW#2(7Q< T'\Ƃ%W٫[)3/35J)VNc(ɉ@g]}AWMխ3pHҠ.[vg %h ԑh+{oE>}Yx姓E5QP3fHq=(/Z^wV2#l="$1 P"P;uW #C(/g +n<1iMF/w=E3vtz~ʼK[y5a.ڬVRϒ 2[eb;[ǻV\R>L`;5NTܡ|M$7]]Ho{eYoNԪlenzuKUBfOH9crwXMq{\.[ '؅ : akѨ~LC e)JQ}im- ezJ]sfJͰQdomcJwJ+8VdOË-= Zu&JϐG.Ttp}anlħ{F_ j+ ji L̝'M;4\rR({F1?X/C0eU'A,= zT#+$QVI~6? %6S(Jeoqne ISe)=7 -`ˇ}HD'Eb!yhD2Z|oOEz"eQQIlmX- rѭ+[ZE!܂+H DyPH;Z~̮,8\/bPFU'(0SY=L//n8;v]a2cjGpރEpkO@@S o2q'cʹ\UuCܫa^b|(~5Ғ`<4$t㐧'$)bnH"[$$RQpC\m6n1ݷ,ttzoRwU~ a>!eT=} ~%Tz+W0oic>Ŝe0DG(cziOMzpyCG%;J ڷ6 66UI1bL;+HwW,hB}݆0/EזmՏ; LTH ]ٝNwx]D9vSNg2DsK`>2G8g[N#LB_3jeSS!0Ų[>.P\;fU.%]QWBA?eЂMrnHRab!¾ 3QM`|9~4!Iv~kΔ-:RĻ =q&( &aZa˚{c_A)WlP%ʷp94x4Ti,2ޤ6YGg"(ګxļK~AT>;Eģ'H*RE5dy|-ؙ齱jEk@"0\g ?Sզcgǭ7M, Pƃ}q[ [J%>be2oYZ6^RrmϢ7IL2X՚Kֹ#D>m\?5G6f.E}0t .);;+*sohe/N Ku䭮n {jR p93}:qAkl3>]H2/s[kA*$mX]_2]߸.-9A:BN`%º.&}%ء76MsԌ[n&8\(J߈&J-+~ZDړ .h)F1`2alXI@ͤb`C.-Ťpۖ]:ߦ%0jTHN/8IHe/ 5VVktUnj ˍVMyo3XKVݝ{5&';b!5>6EYyJ*}w5ECmT^Ǽvϡ,x׀[FT;NR $}7"'ƝiCuo27UcLT4xl'7{I$oIߵrj k3oQs@7K7LÆu+& E=ҸFLC1c zHѭE) 433K+ jڽ{][@5B_0`~Di*mjđBt5IbKÀX.qc_gQ89szE}LXq86*=u1t;c<7&Fw9UǷ.pzh&P $/ݷų5 ^,Ŕ] w7Sqkc<<@C (KF2P|IYib 趒l|[\.6ס -\~\TuRPza܏$qzzZqk>HUێ/P i?ҺK{Hb2zTgWY58vh.Xq-ssBmd'drS U{h ^ qvjXX_6Lڷ~Cq [Uw2UDDJCgsH (3~7Q !\jz2;y0r(1kJ'F׆N-38*)x /0Xj&O&OepDADx=ǛL<ӓ1QfqЏZMK:sRL=%GB+#aEr5\ۈtʹ J>Hj ]i1)|wXf>3$W~|vR /3On4n]A$OI^|e]Sa mR`Vu- ޙ Aӫh`e-rzJdrwyMW쐹1.uDz/P!Z&dcZ I4ǎhsJT9{\b4mkIs%J6VZ~ _Ƅ{ <ǩo:`Lu^Vb4<;e@6Xsu'I awR[Uɩc,\`thTDug$Bim켾sjvN)8Iy(ѐk7emÍ΋crRGd6$z (My%RM1A>LRV0=䄧):s284-Lت*`l7r)0xN{(Utheٜt8 )Pʇx7wD`Шa74xyk0֦a*S+ͽȾ?5,[0Ͽol֎dҠ2ylܵ/BR$+mr@ĒƒNv (#ˀnNY;9YH7εr; ɞ-&ڤwqPhZ}u\-I|;@?Q `dkm` Itendstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 117 0 R /FirstChar 11 /LastChar 122 /Widths 118 0 R /BaseFont /EOJNOI+CMR10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /EOJNOI+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 14 0 R >> endobj 118 0 obj [583 556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 0 0 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 0 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 ] endobj 117 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl 14/.notdef 34/quotedblright 35/.notdef 39/quoteright/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 11 0 obj << /Length1 914 /Length2 3912 /Length3 532 /Length 4550 /Filter /FlateDecode >> stream xi#R"JĨ5]V 51Sc xMVY헦sy~hҫz3.uhq>ݿj#oCp'lYֲ ɞD낎Υ\cQ-T/m}j^fYcͣ".H H,=@;P/>;ϐsȁjy<6t{" ZhPTLk̃>H_˜'C8ɷ35g&J{Zq*,F^HVΤl臬]U_|'L:X|_}-au+I@l3?[[nB&_%OC}\Mp(y>k٠eLw8;)Խ;\^DIRcd~B*{;QoLX#*STSUBgZ&6տ й_jm07hj].LhgbI,m7D` ;~6mJv~Oûu{A-.<1Uڵk;1:|^KN*;V*'ܖ&|$ڛNgZciZ;N4xPżMrT$.ީgѿ":i ݳ5ȏSG5-vp R4nY|[LXy mG=~wm0ޝaG_vR@LLYs: 뗫zkԷP-E 4oZ/ٻYI!2Q*t|tFUBǴݓĚ!A"42 D-q>sǃPYuye; C{u6([^U@5:k":-[sD98 ܰi+ BM/.C3QKi'Č}FnVn dwta=ٙb6=}ԭoxwv23H+>aon|FE9 zId65DQ<ܥ:!.mb釃'0}Uf( hzka0шթSp\6O$f 1GwT6 \9?=mpԦ#%cu}e}e+^|T@Cri7I[.͢2Xrjy˗aA|mȷIˋn92 BHp:-ԷY*Z=#OF\vBvu*=Ô?b>o=EQIĩ`Ke-BHw{I'3deQOʺojZM-xɵb7+8&X3𙠻{uiiZ4Nc 贈bY98s2ѐ|`P`J.s&)XFkq/=GhHҌ?¶761&zNbpћ,O:"?S|`E[>@H78):NgjK=nxc }6t((Nk⛥wxYpH 5ӷ4* vK))HXsNHgƫ&=;&OE5$Kŧ V^cmMR,)YrL-3^(Lq.gmrfF%ji9-lyZ}F67K5tE MEv2H;n"&w{tW `W> f,lߢQĂ9 HYjzhW̡#P}s;9F]. Q&kslZ%  [wjt>_7/e>_ Ϋğ<"^2RqU0`pKUpѮGtf{lS/'tɊ ޷J 1k!!ڗϺivfϩW5NKc#J5 lmL]6.b{p]^4ju&Bj3ѩtBqI'1zpܼz{3CgH>k3f Up c]K)|cgJP>g#y~* &};OԺߢ;,r՞6x˿Zz΃+\ەz&͝V\=4|!N \_C{~ؘ2J w?Qnyƣc:%4ݣv\q14~p!aB^fIb*{6#OBV֪ aƬ /|g:Ulɱ*,F뗊&b] oCxTمvЁ]֢Y Q|O|&bA㖳$}^9CRbvnrurc:>CY9mn]透;*!{9 ,0Mihtnu6̪i=u kAǃ/qECMH \]\3znהHh{U#vRvP&S#/cf0dc‰ k^ ?k' M#w؄NU^T 6!T_ݧo5F%j!佰Ybl]l<=bжt.iz // JF̃T={>DxDܢIMv|j<:JXxE6׵&c A g]oY> endobj 10 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /VWGLMY+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/A/L/P/Q/R/U/a/b/c/r/s/t/x) /FontFile 11 0 R >> endobj 120 0 obj [869 0 0 0 0 0 0 0 0 0 0 692 0 0 0 786 864 862 0 0 885 0 0 0 0 0 0 0 0 0 0 0 559 639 511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 474 454 447 0 0 0 607 ] endobj 119 0 obj << /Type /Encoding /Differences [ 0 /.notdef 65/A 66/.notdef 76/L 77/.notdef 80/P/Q/R 83/.notdef 85/U 86/.notdef 97/a/b/c 100/.notdef 114/r/s/t 117/.notdef 120/x 121/.notdef] >> endobj 8 0 obj << /Length1 1276 /Length2 6529 /Length3 532 /Length 7319 /Filter /FlateDecode >> stream xe\Tm)ASbhP@BAZf!fCS))iA@F;S$=ϭ?ky8u^VF5Mn0 !yY ~?+#ar 8["@A1 0+@nB8d$ 8BA0 aCjlps(h@qtyp`9`px f v  l`*A&?mmUAv5 ں3P!l}W6l/ [ W uՠs+ wgRW׿55rG濙7#u#<BXrt O( q@ܐyy`pr& #_)$5ف*"G$8p"\#y .?dE7xeR^7!!QoM&dW !;5~2?sgGG _#7[@1ǙKY4{cjmxnLmqRtR[ "ZԇbS'\L=鞦o3]4L 4PWؓue/OCNkk3#HDTW!V;4MQ(ա,L(tѕ(1cq$:a# ՙano"Fi);[+HE.!Ȃ茦L^QT|#sd*W]OD@+W,jUN@\K%ϓSEX~?Yz1闯.$,Z~&ׇ.'{fƤ$3/]ָ.=0|KYFѽ6t ~nVً;1^M*ﱽ@cIe3^IEv21yj]Te[DOjDO,/ Lc3OVh1>0J}Ӕ응<449erb$Mռs9(%< ":_@]3rA#D lU+CI8 F^We7R:<J!̰-c@shHn5jBOTTzDjO5. ݖj7YkQo>P>.}Shr~+4Q~Ԣ+mY`܍%D&+5 }iĘ|8_t5[6銊<#1< BP%!r9hKTR}FCC··i=wu8t^FT G<&ds~X~K_ͰmbhYCd3-#`XQ8nRrE0ϒl oWz .& W>k;pȱWrƑ\'fY}m= 't&AK[L:1t P}> ?}^O0=c e2u#܊I{eg*vS$~|SM"Ph*}Ke1=oBҔfZJaKMm5M$.6C$;_-q 71 wf)Lr,)KQrj`q3Q`-E"'XP Srߖ/*?*?+M3=|oo/:tW}*I:-5 v#I5u<ڌT+< }dK,%%A5]s"sϾ_G8_9h%:d1s)e旈Pt\[ ;-|f+ Ua^[ۺh໑X~ÚF_6OFeڙMzcƺ"䶕zѸhi3\2ĄyjwVQ@DX{#2ؐÀN0KE#Ac|KJýxGG{"f ưidClއU:|7U몣h#Z݁Vɾ0#͊:D.RNNiVp'_d-cј 1Y˷ ‘ɐ6zEpgzYNvsJX@.uJdGCh1~xlԗz|[;˛Қ==r _ 6ܓl0݉w‚X\~QNRo~IUWqo`FT}0n#)M N,x5g*d% $W/ٯV|6E`TZ-$^ӌ}c I 궋LiQr /YRڃbw38j?O;V-KgmX,q8X ,zΎ)~*`!F^IH땄k儕pg󠙼 yتЩY)։Fkggt}|5a- W\[,r' ;+2#]üOXg*^LfF^l6" qv3s`Y$[󕂖|UsH <'V;lP7ΨhN(2,.2c|C!}u lSWڧռΒ)}aҦlGu?G;[~SXo&eA褠Ks;ZzӇWxN/2)Jwp[J6O2+ C-Ђ׵Jeâɚzř4+7[}2zoZ}0FFKg39)}F 3hKDϼ'/ِQ֒ +sGY?As;n7I_d0}ن*޺ГH\Oq]6nfqnVb˿!$V ~~'R-ɮCf%ޫN۹K[r +ݮgb}WUKAqoóX!2 2))H8zݟFUw@= :7D,\tM x6@Z\PvmW'7Ĵ,C[1ݬ$t(${ λ2ִ3jQ$Y_'^rK`i;CU1Ag\Rq:.2X6w)0Q:(HZ2>='U LؾxL0j)Ek*{C^x{`'S3RSWXp| &YhBiǣ&dAaorGnu E[>lU%2~TJ'kkrQ]"<'[/ĝ)fV1)ɕb=JK{jrm' EfzZ}=?P"V`ӟ8H\q\G$tPb靈3Rcgb^VmIԳ--'ъ=t&I3RJG&I x鉲z]Íny(_P寷.Z7&T9# t.1 TvhkhGY:\74oQ4> kV:y28 УPX6&*~5*+U/'#L/-~V&5Du}J$ܚ+o #bŜJeI>')ћ\F8qN Gqge ed9 ٥*V+^ټzf57U]*P6Y/.Y.jT2 ͘hد,\'ۮ!&tݩyjP  򆓏a|Fɺ؛q>6-:Ug@y}\tumяH5ܞOë|#߻>WP+ו^L ɃD\ѴhM_ҶQi&3*=59gt3 }{@gm'ۃk&sq$ CkŦ3^.4i|jZ1٢W(k _+J?fGFY_^Tj!.R=>,x~RocUipxx2Id?;N:z+PkJ,՝ *~ DKwc1K M6W~AVn\AϠ xKo}T,e^B{,w)Adf]O[3+9^V]CM` :>Kgol1 Zm7))6j77EAJ݋J_F0/wv SM̛IK4i pLK+9Rt?{t~橂 γq/gY&˰";Ci1׳̔fqȻ\8ʯ[,)%F?=F!y"}-{XǑu;FOl9nBop*UtwES7hq>lŧ9X-C{lO,NQ&+enio PZlT[)F8uaRڝjA_~NIB!o,Y&VDAޔ߀PBr[eSI( bc.<o:SrzgӅx`#S/koua>)Seas2UF_+I/OCR894mnP.%/Х!gq%g8͖n$x~j \BҶi!,ABhvopf095k8!r["qR&WQIAgLOT8K~\{ia O?gc[vo.<-O+91txPSX5 dWw6`-/3a;4]o"A bۣvNTqd&nV~AYb8X@s&/ 5Sb?Qpgz]Q݋a}ryKW]=O=,aT2#azfmGTAgKEqs !w+pU=sTܞ㓮/|E3 DZxxsa#-\(*;kSor{Ы bG>p<YOn2]nK{õΐ#^~|!(#Z鑷(gx MuR][@ךJ3{׷y /nv?ƪJQfE#]&]J[_-tw*ʝFqɽ-]q[}3_p%/v *,{DM rIpG!4OT1vM[b1}ج4oAvpdc򘩋]vl7@mo%)5|n.]'5w~LVQmkEUB#~i0nqk&K3Vβ6#tWV1,Y76(aIu怆%]T-Ͳ XYUv|ݩ]2k^%ժiN$ϬPfJo=5p<'"@϶%6Y %8lLܹyG!zxX`ח[@ˋ!Ѯj+IANXDp7=`/^}Խ| 0p; Kendstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 121 0 R /FirstChar 44 /LastChar 121 /Widths 122 0 R /BaseFont /IXSGMP+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /IXSGMP+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/period/zero/one/two/seven/A/C/D/E/F/G/I/L/N/S/T/U/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/y) /FontFile 8 0 R >> endobj 122 0 obj [272 0 272 0 490 490 490 0 0 0 0 490 0 0 0 0 0 0 0 0 0 734 0 707 748 666 639 768 0 353 0 0 612 0 734 0 0 0 0 544 707 734 0 0 0 0 0 0 0 0 0 0 0 490 0 435 544 435 299 490 544 272 0 0 272 816 544 490 544 0 381 386 381 544 517 0 0 517 ] endobj 121 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two 51/.notdef 55/seven 56/.notdef 65/A 66/.notdef 67/C/D/E/F/G 72/.notdef 73/I 74/.notdef 76/L 77/.notdef 78/N 79/.notdef 83/S/T/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 1105 /Length2 5092 /Length3 532 /Length 5808 /Filter /FlateDecode >> stream xe\T]ii!%$BF[a`fh$iAi Ai3>y=xΧ;{{׵Zd5AXCUp?P(P@!bNNE$!J`T va!P\JDBJXpBQnE_M 3 -0񀀝 ;9)P7(j#@ l`j E@*۠]EaB1!y6jK,$Os6Co`g6 ](("l5+v 휠`n*0O. ؂ܠաp_ uTuap߮boƜ b1￿,21!&#`/bd`H 6POXP@a$̙<"ĿST 肹ͯ_%1! E0wq1o&FA߄i&NotF0 ~7aM &I o a1{@@-89F F 1Z( D+?b_s bA#P83yf[fNPO(xv qH~V짜7[vufXl~ W/oMKҨx\2E6 | t}2sj-=Aת I6E㻉;b:_2su o|bjpiO9aէLq- Ay$!o; MuGɍ9ĴUļd|j2/եpP~\IN8;$[}ĭ{"ڠpOJ4B?d9u/ycB-V?ųm\?$ۖSg]|x$|8Z#32fNCQSI K}ZՎ7%ujhxC u5bAIeD=?)'}:jHuɻqa[3e?%NY ! y7!z p n+Bאeڛ_k?M?du90|&&8;g:}K zbM7,I`]/XpftBy ۵$J2EGC\M7 @Th d]Wb6 ɵ@D0}/'  !")|C\[Q*bN O!FǾz[q#![ t͊Z.lQgJ;^^dU9>QWxo)jU](j5Ŋhs9cb衤bvz#mZ|,c/1W+UJAsq) y ƙZ.ھ1 ϙ4 B(x: y*/v&$}:mɜ4,dX#Uʏ Зૼ-g=YPiwmCrԁ{=KwPXןOFy;h#Sw-=λIG4_/)mt6xRp7jzBҮG"utv#=!@g߬LLQ{X &)̮!E[ 癄k}l=ԵfC?5Kfԏ^!HS2qp|-L1/=j>Hl'P}Oesiuc㐖Qe{,8Rs¨KӺVۜ`"R I=$knfl9[=OKAͱ 手yCrH꼫vyRO)O~NCf2rV吖6x̛v;ݣt̯W~DK֊YAL~46%L뎅OB֗bu5T(|s1yGFQ­]~وtҨj?~JV#E2fk eVBvyF!SUOZ}+(+<^PY?;Qd{kyt//P;I =TnPVuw׎C`N/ߎR[?tozXcP ߚrxB30:#7LRئ@whc]&Araj,ΈtF|9 Yˮ\/Bw>UKWkO.q3;c}ۛqmwJg`LUE<[$(>BzǢ+A4mrd;d3b/)ayl\qNd9C*'*~5i˛eSҴJ;9- >| -KyqDvb3ˆeje)6ٳFWBoon[7 Ϛc^_s\ zT |k{$@u@| _6UCvo') 'kB{_m?dycB"N@g2dOnzJg2K{cΣkRr'[0zG]cpc34Ә_Szzy߿WtT.\F2@r Uϗ,DI _>4ꀃvqfF5<~ͺ$gLm q޲OakW,I,Ci2 !UԺ-`jt[+;/g {U8$l$Dok*vOهm_%KN/ĥ$K-kݎ2 q b1 'ƝvIʬ$̋򮸆:k4<{TO86"Nsޠ2"r’MQ,H|J`08uόMJn5Eԏldyhax`!ŝ"*,|z% ud ?>5fJ(~9ȶ]XLDAXHrFaiP-o}6a2Zչn@rI$-mKК(w\Ձkqi83Mbvcґ:u}A5EU2KwJ-|t%#[=ڔ2X$y[:ߓsʛ}#H$IZ!=a;i4ﰯ(V^a9P=œ!v 2́Gp} K%to&kHk%`(aeD"ֆx zWh 5;v/nn٦ԇ S.⡉`&Av`Yg`7YHU~tjȦTw iL|⦹~-"{ *cևV,8`+%X`s@3Qe QZ[ugH0=xjE\ޤy=/!G2v^'z&t:Y.7K[?s嗠۪ԫ:l F?Cbn6(|;KW5R6K{'Y^*2ʭs$u`4*$edmn+&$}vrNJʖJ=xQ{.~]x{Ux|>gEYr٦fP>}ANǓva1ƣuʥ~^Ytn N͗ 7Icw,&]r#R`}=xc,mAC;_PbB-iKYD`-Z⃛~#x}A \]oL_ O凕M5ؼo۔ZKHE_DڳK/N"ݨâ'#cuO'h?8TmWL>+?ұe O*zg Z9gGR!X)fЮ,bLLuP:h=Gu.-}_@h98&l֎6!;Ix/oիU6lD6bac߾Zy^^_=ϻ`{8==z_y 0wZOsVMИsK2 -Uq6`P*@1 %2z` i{`*!rqkI5hn }.ڟ8+BZM5=tog6ᷡ)- pV WޒIX4IMOhUƯKZb5}G_ܲmh0?Fx}P1C+ yO\ :&O LP~U\؋ X&= sS[7ޢr9G][<-ir07$-B@hcN_2yi)\ϷI;'- mደY)t珓TOp&SYcz(c)|0s2ʶ.Qf+Wٮːw œi= w?< =n[ω ]ie:y 4pԚ kR-O袐?+mX5?aGInoY9  p5/!4I cN;RDgSI=? raIH|V <8W듬l>5` voq/=lڝdۓ@dX4X2ަ$YӵuB7BǾJ:ŗ6WXǕ㊇J]u.q#.T>o#Qg0ґ?guendstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 123 0 R /FirstChar 46 /LastChar 117 /Widths 124 0 R /BaseFont /TTODQG+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /TTODQG+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/period/two/five/A/C/F/G/K/M/P/Q/S/U/V/a/c/d/e/i/k/n/o/r/s/t/u) /FontFile 5 0 R >> endobj 124 0 obj [250 0 0 0 459 0 0 459 0 0 0 0 0 0 0 0 0 0 0 693 0 668 0 0 602 726 0 0 0 719 0 850 0 0 628 720 0 511 0 693 693 0 0 0 0 0 0 0 0 0 0 459 0 406 511 406 0 0 0 250 0 485 0 0 511 459 0 0 354 359 354 511 ] endobj 123 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 50/two 51/.notdef 53/five 54/.notdef 65/A 66/.notdef 67/C 68/.notdef 70/F/G 72/.notdef 75/K 76/.notdef 77/M 78/.notdef 80/P/Q 82/.notdef 83/S 84/.notdef 85/U/V 87/.notdef 97/a 98/.notdef 99/c/d/e 102/.notdef 105/i 106/.notdef 107/k 108/.notdef 110/n/o 112/.notdef 114/r/s/t/u 118/.notdef] >> endobj 28 0 obj << /Type /Pages /Count 6 /Parent 125 0 R /Kids [2 0 R 30 0 R 45 0 R 54 0 R 57 0 R 60 0 R] >> endobj 65 0 obj << /Type /Pages /Count 6 /Parent 125 0 R /Kids [63 0 R 67 0 R 70 0 R 73 0 R 76 0 R 79 0 R] >> endobj 84 0 obj << /Type /Pages /Count 5 /Parent 125 0 R /Kids [82 0 R 86 0 R 89 0 R 92 0 R 95 0 R] >> endobj 125 0 obj << /Type /Pages /Count 17 /Kids [28 0 R 65 0 R 84 0 R] >> endobj 126 0 obj << /Type /Catalog /Pages 125 0 R >> endobj 127 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20071029160735-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 128 0000000000 65535 f 0000003434 00000 n 0000003319 00000 n 0000000009 00000 n 0000129890 00000 n 0000123806 00000 n 0000129733 00000 n 0000122895 00000 n 0000115300 00000 n 0000122738 00000 n 0000114725 00000 n 0000109896 00000 n 0000114565 00000 n 0000108528 00000 n 0000092814 00000 n 0000108369 00000 n 0000092407 00000 n 0000090791 00000 n 0000092249 00000 n 0000089838 00000 n 0000081710 00000 n 0000089678 00000 n 0000080503 00000 n 0000069268 00000 n 0000080343 00000 n 0000068363 00000 n 0000060000 00000 n 0000068203 00000 n 0000130733 00000 n 0000007208 00000 n 0000007090 00000 n 0000003584 00000 n 0000059697 00000 n 0000058310 00000 n 0000059541 00000 n 0000058006 00000 n 0000056141 00000 n 0000057849 00000 n 0000055840 00000 n 0000053996 00000 n 0000055682 00000 n 0000052502 00000 n 0000038038 00000 n 0000052343 00000 n 0000009763 00000 n 0000009645 00000 n 0000007361 00000 n 0000037549 00000 n 0000035319 00000 n 0000037391 00000 n 0000035004 00000 n 0000033203 00000 n 0000034847 00000 n 0000013136 00000 n 0000013018 00000 n 0000009927 00000 n 0000014900 00000 n 0000014782 00000 n 0000013229 00000 n 0000016627 00000 n 0000016509 00000 n 0000014993 00000 n 0000018463 00000 n 0000018345 00000 n 0000016720 00000 n 0000130842 00000 n 0000020151 00000 n 0000020033 00000 n 0000018544 00000 n 0000021905 00000 n 0000021787 00000 n 0000020232 00000 n 0000023456 00000 n 0000023338 00000 n 0000021986 00000 n 0000025267 00000 n 0000025149 00000 n 0000023549 00000 n 0000026698 00000 n 0000026580 00000 n 0000025348 00000 n 0000028090 00000 n 0000027972 00000 n 0000026779 00000 n 0000130952 00000 n 0000029442 00000 n 0000029324 00000 n 0000028171 00000 n 0000031040 00000 n 0000030922 00000 n 0000029535 00000 n 0000032094 00000 n 0000031976 00000 n 0000031121 00000 n 0000033110 00000 n 0000032992 00000 n 0000032175 00000 n 0000035233 00000 n 0000035210 00000 n 0000037872 00000 n 0000037828 00000 n 0000053435 00000 n 0000053059 00000 n 0000056059 00000 n 0000056035 00000 n 0000058226 00000 n 0000058202 00000 n 0000059926 00000 n 0000059902 00000 n 0000068886 00000 n 0000068648 00000 n 0000081220 00000 n 0000080904 00000 n 0000090408 00000 n 0000090147 00000 n 0000092692 00000 n 0000092633 00000 n 0000109412 00000 n 0000109013 00000 n 0000115105 00000 n 0000114947 00000 n 0000123429 00000 n 0000123179 00000 n 0000130358 00000 n 0000130142 00000 n 0000131055 00000 n 0000131130 00000 n 0000131183 00000 n trailer << /Size 128 /Root 126 0 R /Info 127 0 R /ID [ ] >> startxref 131387 %%EOF SuiteSparse/UMFPACK/Doc/QuickStart.tex0000644001170100242450000012531210711436604016364 0ustar davisfac%------------------------------------------------------------------------------- % The QuickStart.tex file. %------------------------------------------------------------------------------- \documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in \begin{document} \author{Timothy A. Davis \\ Dept. of Computer and Information Science and Engineering \\ Univ. of Florida, Gainesville, FL} \title{UMFPACK Version 5.2 Quick Start Guide} \date{Nov 1, 2007} \maketitle %------------------------------------------------------------------------------- \begin{abstract} UMFPACK is a set of routines for solving unsymmetric sparse linear systems, $\m{Ax}=\m{b}$, using the Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization. It is written in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic Linear Algebra Subprograms (dense matrix multiply) for its performance. This code works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX, SGI IRIX, and Compaq Alpha). This is a ``quick start'' guide for Unix users of the C interface. \end{abstract} %------------------------------------------------------------------------------- UMFPACK Version 5.2, Copyright\copyright 1995-2006 by Timothy A. Davis. All Rights Reserved. Refer to the UMFPACK User Guide for the License. See \newline http://www.cise.ufl.edu/research/sparse/umfpack for the code and full documentation. %------------------------------------------------------------------------------- \section{Overview} %------------------------------------------------------------------------------- UMFPACK is a set of routines for solving systems of linear equations, $\m{Ax}=\m{b}$, when $\m{A}$ is sparse and unsymmetric. The sparse matrix $\m{A}$ can be square or rectangular, singular or non-singular, and real or complex (or any combination). Only square matrices $\m{A}$ can be used to solve $\m{Ax}=\m{b}$ or related systems. Rectangular matrices can only be factorized. UMFPACK is a built-in routine in MATLAB used by the forward and backslash operator, and the {\tt lu} routine. The following is a short introduction to Unix users of the C interface of UMFPACK. %------------------------------------------------------------------------------- The C-callable UMFPACK library consists of 32 user-callable routines and one include file. Twenty-eight of the routines come in four versions, with different sizes of integers and for real or complex floating-point numbers. This Quick Start Guide assumes you are working with real matrices (not complex) and with {\tt int}'s as integers (not {\tt long}'s). Refer to the User Guide for information about the complex and long integer versions. The include file {\tt umfpack.h} must be included in any C program that uses UMFPACK. For more details, see: {\em A column pre-ordering strategy for the unsymmetric-pattern multifrontal method}, Davis, T. A., ACM Trans. Math. Software, vol 30. no 2, 2004, pp. 165-195, and {\em Algorithm 832: {UMFPACK}, an unsymmetric-pattern multifrontal method}, same issue, pp. 196-199. %------------------------------------------------------------------------------- \section{Primary routines, and a simple example} %------------------------------------------------------------------------------- Five primary UMFPACK routines are required to factorize $\m{A}$ or solve $\m{Ax}=\m{b}$. An overview of the primary features of the routines is given in Section~\ref{Primary}. Additional routines are available for passing a different column ordering to UMFPACK, changing default parameters, manipulating sparse matrices, getting the LU factors, save and loading the LU factors from a file, computing the determinant, and reporting results. See the User Guide for more information. \begin{itemize} \item {\tt umfpack\_di\_symbolic}: Pre-orders the columns of $\m{A}$ to reduce fill-in and performs a symbolic analysis. Returns an opaque {\tt Symbolic} object as a {\tt void *} pointer. The object contains the symbolic analysis and is needed for the numerical factorization. \item {\tt umfpack\_di\_numeric}: Numerically scales and then factorizes a sparse matrix $\m{PAQ}$, $\m{PRAQ}$, or $\m{PR}^{-1}\m{AQ}$ into the product $\m{LU}$, where $\m{P}$ and $\m{Q}$ are permutation matrices, $\m{R}$ is a diagonal matrix of scale factors, $\m{L}$ is lower triangular with unit diagonal, and $\m{U}$ is upper triangular. Requires the symbolic ordering and analysis computed by {\tt umfpack\_di\_symbolic}. Returns an opaque {\tt Numeric} object as a {\tt void *} pointer. The object contains the numerical factorization and is used by {\tt umfpack\_di\_solve}. \item {\tt umfpack\_di\_solve}: Solves a sparse linear system ($\m{Ax}=\m{b}$, $\m{A}\tr\m{x}=\m{b}$, or systems involving just $\m{L}$ or $\m{U}$), using the numeric factorization computed by {\tt umfpack\_di\_numeric}. \item {\tt umfpack\_di\_free\_symbolic}: Frees the {\tt Symbolic} object created by {\tt umfpack\_di\_symbolic}. \item {\tt umfpack\_di\_free\_numeric}: Frees the {\tt Numeric} object created by {\tt umfpack\_di\_numeric}. \end{itemize} The matrix $\m{A}$ is represented in compressed column form, which is identical to the sparse matrix representation used by MATLAB. It consists of three arrays, where the matrix is {\tt m}-by-{\tt n}, with {\tt nz} entries: {\footnotesize \begin{verbatim} int Ap [n+1] ; int Ai [nz] ; double Ax [nz] ; \end{verbatim} } All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in column {\tt j} are stored in {\tt Ai[Ap[j]} ... {\tt Ap[j+1]-1]}. The corresponding numerical values are stored in {\tt Ax[Ap[j]} ... {\tt Ap[j+1]-1]}. No duplicate row indices may be present, and the row indices in any given column must be sorted in ascending order. The first entry {\tt Ap[0]} must be zero. The total number of entries in the matrix is thus {\tt nz = Ap[n]}. Except for the fact that extra zero entries can be included, there is thus a unique compressed column representation of any given matrix $\m{A}$. Here is a simple main program, {\tt umfpack\_simple.c}, that illustrates the basic usage of UMFPACK. {\footnotesize \begin{verbatim} #include #include "umfpack.h" int n = 5 ; int Ap [ ] = {0, 2, 5, 9, 10, 12} ; int Ai [ ] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ; double Ax [ ] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ; double b [ ] = {8., 45., -3., 3., 19.} ; double x [5] ; int main (void) { double *null = (double *) NULL ; int i ; void *Symbolic, *Numeric ; (void) umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null) ; (void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ; umfpack_di_free_symbolic (&Symbolic) ; (void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null) ; umfpack_di_free_numeric (&Numeric) ; for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ; return (0) ; } \end{verbatim} } The {\tt Ap}, {\tt Ai}, and {\tt Ax} arrays represent the matrix \[ \m{A} = \left[ \begin{array}{rrrrr} 2 & 3 & 0 & 0 & 0 \\ 3 & 0 & 4 & 0 & 6 \\ 0 & -1 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 2 & 0 & 1 \\ \end{array} \right]. \] and the solution is $\m{x} = [1 \, 2 \, 3 \, 4 \, 5]\tr$. The program uses default control settings and does not return any statistics about the ordering, factorization, or solution ({\tt Control} and {\tt Info} are both {\tt (double *) NULL}). For routines to manipulate a simpler ``triplet-form'' data structure for your sparse matrix $\m{A}$, refer to the UMFPACK User Guide. %------------------------------------------------------------------------------- \section{Synopsis of primary C-callable routines} \label{Synopsis} %------------------------------------------------------------------------------- The matrix $\m{A}$ is {\tt m}-by-{\tt n} with {\tt nz} entries. The optional {\tt umfpack\_di\_defaults} routine loads the default control parameters into the {\tt Control} array. The settings can then be modified before passing the array to the other routines. Refer to Section~\ref{Primary} for more details. {\footnotesize \begin{verbatim} #include "umfpack.h" int status, sys, n, m, nz, Ap [n+1], Ai [nz] ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ; void *Symbolic, *Numeric ; status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ; status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ; umfpack_di_free_symbolic (&Symbolic) ; umfpack_di_free_numeric (&Numeric) ; umfpack_di_defaults (Control) ; \end{verbatim} } %------------------------------------------------------------------------------- \section{Installation} \label{Install} %------------------------------------------------------------------------------- You will need to install both UMFPACK v5.2 and AMD v2.2 to use UMFPACK. Note that UMFPACK v5.2 cannot use AMD v1.2 or earlier. The {\tt UMFPACK} and {\tt AMD} subdirectories must be placed side-by-side within the same parent directory. AMD is a stand-alone package that is required by UMFPACK. UMFPACK can be compiled without the BLAS but your performance will be much less than what it should be. System-dependent configurations are in the {\tt UFconfig/UFconfig.mk} file. The default settings will work on most systems, except for the BLAS definition. Sample configurations are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. To compile and install both packages, go to the UMFPACK directory and type {\tt make}. This will compile the libraries ({\tt AMD/Lib/libamd.a} and {\tt UMFPACK/Lib/libumfpack.a}). A demo of the AMD ordering routine will be compiled and tested in the {\tt AMD/Demo} directory, and five demo programs will then be compiled and tested in the {\tt UMFPACK/Demo} directory. The outputs of these demo programs will then be compared with output files in the distribution. Expect to see a few differences, such as residual norms, compile-time control settings, and perhaps memory usage differences. To use {\tt make} to compile the MATLAB mexFunctions for MATLAB and AMD, you can either type {\tt make mex} in the UMFPACK directory. You may first need to edit the {\tt UFconfig/UFconfig.mk} file to modify the definition of the {\tt MEX}, if you have a version of MATLAB older than Version 7.2. Remove the {\tt -largeArrayDims} definition. If you use the MATLAB command {\tt umfpack\_make} in the MATLAB directory, then this case is handled for you automatically. If you compile UMFPACK and AMD and then later change the {\tt UFconfig/UFconfig.mk} file then you should type {\tt make purge} and then {\tt make} to recompile. Here are the various parameters that you can control in your {\tt UFconfig/UFconfig.mk} file: \begin{itemize} \item {\tt CC = } your C compiler, such as {\tt cc}. \item {\tt RANLIB = } your system's {\tt ranlib} program, if needed. \item {\tt CFLAGS = } optimization flags, such as {\tt -O}. \item {\tt UMFPACK\_CONFIG = } configuration settings, for the BLAS, memory allocation routines, and timing routines. \item {\tt LIB = } your libraries, such as {\tt -lm} or {\tt -lblas}. \item {\tt RM =} the command to delete a file. \item {\tt MV =} the command to rename a file. \item {\tt MEX =} the command to compile a MATLAB mexFunction. \item {\tt F77 =} the command to compile a Fortran program (optional). \item {\tt F77FLAGS =} the Fortran compiler flags (optional). \item {\tt F77LIB =} the Fortran libraries (optional). \end{itemize} The {\tt UMFPACK\_CONFIG} string can include combinations of the following; most deal with how the BLAS are called: \begin{itemize} \item {\tt -DNBLAS} if you do not have any BLAS at all. \item {\tt -DNSUNPERF} if you are on Solaris but do not have the Sun Performance Library. \item {\tt -DLONGBLAS} if your BLAS takes non-{\tt int} integer arguments. \item {\tt -DBLAS\_INT = } the integer used by the BLAS. \item {\tt -DBLAS\_NO\_UNDERSCORE} for controlling how C calls the Fortran BLAS. This is set automatically for Windows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM RS 6000). \item {\tt -DGETRUSAGE} if you have the {\tt getrusage} function. \item {\tt -DNPOSIX} if you do not have the POSIX-compliant {\tt sysconf} and {\tt times} routines. \item {\tt -DNRECIPROCAL} controls a trade-off between speed and accuracy. This is off by default (speed preferred over accuracy) except when compiling for MATLAB. \end{itemize} When you compile your program that uses the C-callable UMFPACK library, you need to add the both {\tt UMFPACK/Lib/libumfpack.a} and {\tt AMD/Lib/libamd.a} libraries, and you need to tell your compiler to look in the directories {\tt UMFPACK/Include} and {\tt AMD/Include} for include files. See {\tt UMFPACK/Demo/Makefile} for an example. You do not need to directly include any AMD include files in your program, unless you directly call AMD routines. You only need the \begin{verbatim} #include "umfpack.h" \end{verbatim} statement, as described in Section~\ref{Synopsis}. %------------------------------------------------------------------------------- \newpage \section{The primary UMFPACK routines} \label{Primary} %------------------------------------------------------------------------------- \subsection{umfpack\_di\_symbolic} {\footnotesize \begin{verbatim} int umfpack_di_symbolic ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; Purpose: Given nonzero pattern of a sparse matrix A in column-oriented form, umfpack_di_symbolic performs a column pre-ordering to reduce fill-in (using COLAMD or AMD) and a symbolic factorization. This is required before the matrix can be numerically factorized with umfpack_di_numeric. For the following discussion, let S be the submatrix of A obtained after eliminating all pivots of zero Markowitz cost. S has dimension (n_row-n1-nempty_row) -by- (n_col-n1-nempty_col), where n1 = Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS], nempty_row = Info [UMFPACK_NEMPTY_ROW] and nempty_col = Info [UMFPACK_NEMPTY_COL]. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: int n_row ; Input argument, not modified. int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0. int Ap [n_col+1] ; Input argument, not modified. Ap is an integer array of size n_col+1. On input, it holds the "pointers" for the column form of the sparse matrix A. Column j of the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the total number of entries in the pattern of the matrix A. nz must be greater than or equal to zero. int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col]. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j must be in ascending order, and no duplicate row indices may be present. Row indices must be in the range 0 to n_row-1 (the matrix is 0-based). double Ax [nz] ; Optional input argument, not modified. The numerical values of the sparse matrix A. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. Used only by the 2-by-2 strategy to determine whether entries are "large" or "small". You do not have to pass the same numerical values to umfpack_di_numeric. If Ax is not present (a (double *) NULL pointer), then any entry in A is assumed to be "large". void **Symbolic ; Output argument. **Symbolic is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Symbolic object (if successful), or (void *) NULL if a failure occurred. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Only the primary parameters are listed below: Control [UMFPACK_STRATEGY]: This is the most important control parameter. It determines what kind of ordering and pivoting strategy that UMFPACK should use. It is new to Version 4.1 There are 4 options: UMFPACK_STRATEGY_AUTO: This is the default. The input matrix is analyzed to determine how symmetric the nonzero pattern is, and how many entries there are on the diagonal. It then selects one of the following strategies. Refer to the User Guide for a description of how the strategy is automatically selected. UMFPACK_STRATEGY_UNSYMMETRIC: Use the unsymmetric strategy. COLAMD is used to order the columns of A, followed by a postorder of the column elimination tree. No attempt is made to perform diagonal pivoting. The column ordering is refined during factorization. This strategy was the only one provided with UMFPACK V4.0. In the numerical factorization, the Control [UMFPACK_SYM_PIVOT_TOLERANCE] parameter is ignored. A pivot is selected if its magnitude is >= Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry in its column. UMFPACK_STRATEGY_SYMMETRIC: Use the symmetric strategy (new to Version 4.1). In this method, the approximate minimum degree ordering (AMD) is applied to A+A', followed by a postorder of the elimination tree of A+A'. UMFPACK attempts to perform diagonal pivoting during numerical factorization. No refinement of the column preordering is performed during factorization. In the numerical factorization, a nonzero entry on the diagonal is selected as the pivot if its magnitude is >= Control [UMFPACK_SYM_PIVOT_TOLERANCE] (default 0.001) times the largest entry in its column. If this is not acceptable, then an off-diagonal pivot is selected with magnitude >= Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry in its column. UMFPACK_STRATEGY_2BY2: a row permutation P2 is found that places large entries on the diagonal. The matrix P2*A is then factorized using the symmetric strategy, described above. Refer to the User Guide for more information. Control [UMFPACK_2BY2_TOLERANCE]: a diagonal entry S (k,k) is considered "small" if it is < tol * max (abs (S (:,k))), where S a submatrix of the scaled input matrix, with pivots of zero Markowitz cost removed. Control [UMFPACK_SCALE]: This parameter is new to V4.1. See umfpack_numeric.h for a description. Only affects the 2-by-2 strategy. Default: UMFPACK_SCALE_SUM. double Info [UMFPACK_INFO] ; Output argument, not defined on input. Contains statistics about the symbolic analysis. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The entire Info array is cleared (all entries set to -1) and then the following statistics are computed (only the primary statistics are listed): Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK Each column of the input matrix contained row indices in increasing order, with no duplicates. Only in this case does umfpack_di_symbolic compute a valid symbolic factorization. For the other cases below, no Symbolic object is created (*Symbolic is (void *) NULL). UMFPACK_ERROR_n_nonpositive n is less than or equal to zero. UMFPACK_ERROR_invalid_matrix Number of entries in the matrix is negative, Ap [0] is nonzero, a column has a negative number of entries, a row index is out of bounds, or the columns of input matrix were jumbled (unsorted columns or duplicate entries). UMFPACK_ERROR_out_of_memory Insufficient memory to perform the symbolic analysis. If the analysis requires more than 2GB of memory and you are using the 32-bit ("int") version of UMFPACK, then you are guaranteed to run out of memory. Try using the 64-bit version of UMFPACK. UMFPACK_ERROR_argument_missing One or more required arguments is missing. UMFPACK_ERROR_internal_error Something very serious went wrong. This is a bug. Please contact the author (davis@cise.ufl.edu). Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory usage statistics below. Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units) required for umfpack_di_symbolic to complete. This count includes the size of the Symbolic object itself, which is also reported in Info [UMFPACK_SYMBOLIC_SIZE]. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in Units) of the entire Numeric object (both fixed-size and variable- sized parts), which holds the LU factorization (including the L, U, P and Q matrices). Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of memory (in Units) required by umfpack_di_symbolic and umfpack_di_numeric to perform both the symbolic and numeric factorization. This is the larger of the amount of memory needed in umfpack_di_numeric itself, and the amount of memory needed in umfpack_di_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The count includes the size of both the Symbolic and Numeric objects themselves. It can be a very loose upper bound, particularly when the symmetric or 2-by-2 strategies are used. Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point operations required to factorize the matrix. This is a "true" theoretical estimate of the number of flops that would be performed by a flop-parsimonious sparse LU algorithm. It assumes that no extra flops are performed except for what is strictly required to compute the LU factorization. It ignores, for example, the flops performed by umfpack_di_numeric to add contribution blocks of frontal matrices together. If L and U are the upper bound on the pattern of the factors, then this flop count estimate can be represented in MATLAB (for real matrices, not complex) as: Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L Unz = full (sum (spones (U')))' - 1 ; % nz in each row of U flops = 2*Lnz*Unz + sum (Lnz) ; The actual "true flop" count found by umfpack_di_numeric will be less than this estimate. Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in L, including the diagonal. Since L is unit-diagonal, the diagonal of L is not stored. This estimate is a strict upper bound on the actual nonzeros in L to be computed by umfpack_di_numeric. Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in U, including the diagonal. This estimate is a strict upper bound on the actual nonzeros in U to be computed by umfpack_di_numeric. Info [UMFPACK_SYMBOLIC_TIME]: The CPU time taken, in seconds. Info [UMFPACK_STRATEGY_USED]: The ordering strategy used: UMFPACK_STRATEGY_SYMMETRIC, UMFPACK_STRATEGY_UNSYMMETRIC, or UMFPACK_STRATEGY_2BY2. \end{verbatim} } %------------------------------------------------------------------------------- \newpage \subsection{umfpack\_di\_numeric} {\footnotesize \begin{verbatim} int umfpack_di_numeric ( const int Ap [ ], const int Ai [ ], const double Ax [ ], void *Symbolic, void **Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; Purpose: Given a sparse matrix A in column-oriented form, and a symbolic analysis computed by umfpack_di_symbolic, the umfpack_di_numeric routine performs the numerical factorization, PAQ=LU, PRAQ=LU, or P(R\A)Q=LU, where P and Q are permutation matrices (represented as permutation vectors), R is the row scaling, L is unit-lower triangular, and U is upper triangular. This is required before the system Ax=b (or other related linear systems) can be solved. umfpack_di_numeric can be called multiple times for each call to umfpack_di_symbolic, to factorize a sequence of matrices with identical nonzero pattern. Simply compute the Symbolic object once, with umfpack_di_symbolic, and reuse it for subsequent matrices. umfpack_di_numeric safely detects if the pattern changes, and sets an appropriate error code. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: int Ap [n_col+1] ; Input argument, not modified. This must be identical to the Ap array passed to umfpack_di_symbolic. The value of n_col is what was passed to umfpack_di_symbolic (this is held in the Symbolic object). int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col]. This must be identical to the Ai array passed to umfpack_di_symbolic. double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col]. The numerical values of the sparse matrix A. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. void *Symbolic ; Input argument, not modified. The Symbolic object, which holds the symbolic factorization computed by umfpack_di_symbolic. The Symbolic object is not modified by umfpack_di_numeric. void **Numeric ; Output argument. **Numeric is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Numeric object (if successful), or (void *) NULL if a failure occurred. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Only the primary parameters are listed below: Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for threshold partial pivoting with row interchanges. In any given column, an entry is numerically acceptable if its absolute value is greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times the largest absolute value in the column. A value of 1.0 gives true partial pivoting. If less than or equal to zero, then any nonzero entry is numerically acceptable as a pivot (this is changed from Version 4.0). Default: 0.1. Smaller values tend to lead to sparser LU factors, but the solution to the linear system can become inaccurate. Larger values can lead to a more accurate solution (but not always), and usually an increase in the total work. Control [UMFPACK_SYM_PIVOT_TOLERANCE]: This parameter is new to V4.1. If diagonal pivoting is attempted (the symmetric or symmetric-2by2 strategies are used) then this parameter is used to control when the diagonal entry is selected in a given pivot column. The absolute value of the entry must be >= Control [UMFPACK_SYM_PIVOT_TOLERANCE] times the largest absolute value in the column. A value of zero will ensure that no off-diagonal pivoting is performed, except that zero diagonal entries are not selected if there are any off-diagonal nonzero entries. If an off-diagonal pivot is selected, an attempt is made to restore symmetry later on. Suppose A (i,j) is selected, where i != j. If column i has not yet been selected as a pivot column, then the entry A (j,i) is redefined as a "diagonal" entry, except that the tighter tolerance (Control [UMFPACK_PIVOT_TOLERANCE]) is applied. This strategy has an effect similar to 2-by-2 pivoting for symmetric indefinite matrices. If a 2-by-2 block pivot with nonzero structure i j i: 0 x j: x 0 is selected in a symmetric indefinite factorization method, the 2-by-2 block is inverted and a rank-2 update is applied. In UMFPACK, this 2-by-2 block would be reordered as j i i: x 0 j: 0 x In both cases, the symmetry of the Schur complement is preserved. Control [UMFPACK_SCALE]: This parameter is new to V4.1. Version 4.0 did not scale the matrix. Note that the user's input matrix is never modified, only an internal copy is scaled. There are three valid settings for this parameter. If any other value is provided, the default is used. UMFPACK_SCALE_NONE: no scaling is performed. UMFPACK_SCALE_SUM: each row of the input matrix A is divided by the sum of the absolute values of the entries in that row. The scaled matrix has an infinity norm of 1. UMFPACK_SCALE_MAX: each row of the input matrix A is divided by the maximum the absolute values of the entries in that row. In the scaled matrix the largest entry in each row has a magnitude exactly equal to 1. Scaling is very important for the "symmetric" strategy when diagonal pivoting is attempted. It also improves the performance of the "unsymmetric" strategy. Default: UMFPACK_SCALE_SUM. double Info [UMFPACK_INFO] ; Output argument. Contains statistics about the numeric factorization. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The following statistics are computed in umfpack_di_numeric (only the primary statistics are listed): Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK Numeric factorization was successful. umfpack_di_numeric computed a valid numeric factorization. UMFPACK_WARNING_singular_matrix Numeric factorization was successful, but the matrix is singular. umfpack_di_numeric computed a valid numeric factorization, but you will get a divide by zero in umfpack_di_solve. For the other cases below, no Numeric object is created (*Numeric is (void *) NULL). UMFPACK_ERROR_out_of_memory Insufficient memory to complete the numeric factorization. UMFPACK_ERROR_argument_missing One or more required arguments are missing. UMFPACK_ERROR_invalid_Symbolic_object Symbolic object provided as input is invalid. UMFPACK_ERROR_different_pattern The pattern (Ap and/or Ai) has changed since the call to umfpack_di_symbolic which produced the Symbolic object. Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the entire Numeric object, including the final size of the variable part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE], an estimate, was computed by umfpack_di_symbolic. The estimate is normally an upper bound on the actual final size, but this is not guaranteed. Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of both umfpack_di_symbolic and umfpack_di_numeric. An estimate, Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by umfpack_di_symbolic. The estimate is normally an upper bound on the actual peak usage, but this is not guaranteed. With testing on hundreds of matrix arising in real applications, I have never observed a matrix where this estimate or the Numeric size estimate was less than the actual result, but this is theoretically possible. Please send me one if you find such a matrix. Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE], was computed by umfpack_di_symbolic. The estimate is guaranteed to be an upper bound on this flop count. The flop count excludes "useless" flops on zero values, flops performed during the pivot search (for tentative updates and assembly of candidate columns), and flops performed to add frontal matrices together. Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L, including the diagonal. This excludes any zero entries in L, although some of these are stored in the Numeric object. The Info [UMFPACK_LU_ENTRIES] statistic does account for all explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE], an estimate, was computed by umfpack_di_symbolic. The estimate is guaranteed to be an upper bound on Info [UMFPACK_LNZ]. Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U, including the diagonal. This excludes any zero entries in U, although some of these are stored in the Numeric object. The Info [UMFPACK_LU_ENTRIES] statistic does account for all explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE], an estimate, was computed by umfpack_di_symbolic. The estimate is guaranteed to be an upper bound on Info [UMFPACK_UNZ]. Info [UMFPACK_NUMERIC_TIME]: The CPU time taken, in seconds. \end{verbatim} } %------------------------------------------------------------------------------- \newpage \subsection{umfpack\_di\_solve} {\footnotesize \begin{verbatim} int umfpack_di_solve ( int sys, const int Ap [ ], const int Ai [ ], const double Ax [ ], double X [ ], const double B [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; Purpose: Given LU factors computed by umfpack_di_numeric (PAQ=LU, PRAQ=LU, or P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the solution X. Iterative refinement is optionally performed. Only square systems are handled. Singular matrices result in a divide-by-zero for all systems except those involving just the matrix L. Iterative refinement is not performed for singular matrices. In the discussion below, n is equal to n_row and n_col, because only square systems are handled. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: int sys ; Input argument, not modified. Defines which system to solve. (') is the linear algebraic transpose. sys value system solved UMFPACK_A Ax=b UMFPACK_At A'x=b UMFPACK_Pt_L P'Lx=b UMFPACK_L Lx=b UMFPACK_Lt_P L'Px=b UMFPACK_Lt L'x=b UMFPACK_U_Qt UQ'x=b UMFPACK_U Ux=b UMFPACK_Q_Ut QU'x=b UMFPACK_Ut U'x=b Iterative refinement can be optionally performed when sys is any of the following: UMFPACK_A Ax=b UMFPACK_At A'x=b For the other values of the sys argument, iterative refinement is not performed (Control [UMFPACK_IRSTEP], Ap, Ai, and Ax are ignored). int Ap [n+1] ; Input argument, not modified. int Ai [nz] ; Input argument, not modified. double Ax [nz] ; Input argument, not modified. If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1, Ax=b or A'x=b is being solved, and A is nonsingular), then these arrays must be identical to the same ones passed to umfpack_di_numeric. The umfpack_di_solve routine does not check the contents of these arguments, so the results are undefined if Ap, Ai, Ax, are modified between the calls the umfpack_di_numeric and umfpack_di_solve. These three arrays do not need to be present (NULL pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a system other than Ax=b or A'x=b is being solved, or if A is singular, since in each of these cases A is not accessed. double X [n] ; Output argument. The solution to the linear system, where n = n_row = n_col is the dimension of the matrices A, L, and U. double B [n] ; Input argument, not modified. The right-hand side vector, b, stored as a conventional array of size n (or two arrays of size n for complex versions). This routine does not solve for multiple right-hand-sides, nor does it allow b to be stored in a sparse-column form. void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_di_numeric. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement steps to attempt. A value less than zero is treated as zero. If less than 1, or if Ax=b or A'x=b is not being solved, or if A is singular, then the Ap, Ai, and Ax arguments are not accessed. Default: 2. double Info [UMFPACK_INFO] ; Output argument. Contains statistics about the solution factorization. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The following statistics are computed in umfpack_di_solve (only the primary statistics are listed): Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK The linear system was successfully solved. UMFPACK_WARNING_singular_matrix A divide-by-zero occurred. Your solution will contain Inf's and/or NaN's. Some parts of the solution may be valid. For example, solving Ax=b with A = [2 0] b = [ 1 ] returns x = [ 0.5 ] [0 0] [ 0 ] [ Inf ] UMFPACK_ERROR_out_of_memory Insufficient memory to solve the linear system. UMFPACK_ERROR_argument_missing One or more required arguments are missing. The B and X arguments are always required. Info and Control are not required. Ap, Ai and Ax are required if Ax=b or A'x=b is to be solved, the (default) iterative refinement is requested, and the matrix A is nonsingular. UMFPACK_ERROR_invalid_system The sys argument is not valid, or the matrix A is not square. UMFPACK_ERROR_invalid_Numeric_object The Numeric object is not valid. Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations performed to solve the linear system. This includes the work taken for all iterative refinement steps, including the backtrack (if any). Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds. \end{verbatim} } %------------------------------------------------------------------------------- \newpage \subsection{umfpack\_di\_free\_symbolic} {\footnotesize \begin{verbatim} void umfpack_di_free_symbolic ( void **Symbolic ) ; Purpose: Deallocates the Symbolic object and sets the Symbolic handle to NULL. Arguments: void **Symbolic ; Input argument, deallocated and Symbolic is set to (void *) NULL on output. \end{verbatim} } %------------------------------------------------------------------------------- \subsection{umfpack\_di\_free\_numeric} {\footnotesize \begin{verbatim} void umfpack_di_free_numeric ( void **Numeric ) ; Purpose: Deallocates the Numeric object and sets the Numeric handle to NULL. Arguments: void **Numeric ; Input argument, deallocated and Numeric is set to (void *) NULL on output. \end{verbatim} } %------------------------------------------------------------------------------- \subsection{umfpack\_di\_defaults} {\footnotesize \begin{verbatim} void umfpack_di_defaults ( double Control [UMFPACK_CONTROL] ) ; Purpose: Sets the default control parameter settings. Arguments: double Control [UMFPACK_CONTROL] ; Output argument. Control is set to the default control parameter settings. \end{verbatim} } \end{document} SuiteSparse/UMFPACK/Doc/ChangeLog0000644001170100242450000004366410711430364015330 0ustar davisfacNov 1, 2007, version 5.2.0 * change of license to GNU GPL from GNU LGPL. This is the primary change to this version. * minor lint cleanup * port to MATLAB 7.5 (added -lmwblas to mex command) * added info output to the umfpack_btf command. May 31, 2007, version 5.1.0 * port to 64-bit MATLAB * Makefiles updated to reflect directory changes to AMD (UMFPACK v5.1.0 requires AMD v2.2.0) * Source/Makefile and GNUMakefile moved to Lib/ Dec 12, 2006: version 5.0.3 * minor MATLAB cleanup. Renamed umfpack mexFunction to umfpack2, to avoid filename clash with the built-in version of umfpack. Dec 2, 2006, version 5.0.2 * minor change to umfpack_report_info: does not print timings less than 0.001 seconds. * bug fix for complex case when using a non-gcc compiler (simplified the scaling of the pivot column). Does not affect the use of UMFPACK in MATLAB. Aug 31, 2006, version 5.0.1 * Minor correction to comments in umfpack_get_numeric.h. May 5, 2006, version 5.0 * Tcov subdirectory added. This has existed since the first C version of UMFPACK, but is only now included in the released version. It provides a near 100% test coverage for UMFPACK. The code isn't pretty, but it works. * now uses CHOLMOD's method for interfacing to the BLAS, including the BLAS_INT definition. This way, the UF_long version of UMFPACK can call the int BLAS. * revised to use AMD v2.0 Apr 7, 2006 * Minor correction to UMFPACK/Source/Makefile, for those who do not have GNU make. No change to version number, because no code was modified. Oct 10, 2005, version 4.6 * umf_solve.c modified for the complex case. A, X, and b can be split complex or unsplit. Prior version required the form of A, X, and B to be identical (all split or all unsplit). (Thanks to David Bateman). * added Cygwin to architecture detection. * added UMFPACK_SUBSUB_VERSION Aug. 30, 2005: v4.5 released * License changed to GNU LGPL. * The Make/ directory removed; configurations are now in ../UFconfig. * requires AMD v1.2 or later * added UMFPACK_MAIN_VERSION and UMFPACK_SUB_VERSION, defined as 4 and 5, respectively, for version 4.5. These macros will be updated for all future versions. See Include/umfpack.h for details. * function pointers used for malloc, free, calloc, realloc, printf, hypot, and complex divide. Defined in AMD/Source/amd_global.c, AMD/Source/amd_internal.h, UMFPACK/Source/umfpack_global.c, and UMFPACK/Include/umfpack_global.h. Compile-time dependence on The MathWorks "util.h", ut* routines and ut* macros removed. Jan. 28, 2005: v4.4 released * bug fix: when Qinit is provided to umfpack_*_qsymbolic, only the symmetric and unsymmetric strategies are now permitted. The auto and 2-by-2 strategies are not allowed. In v4.3 and earlier, providing Qinit and requesting the symmetric strategy did not always work (you got the unsymmetric strategy instead). This does not affect umfpack_*_symbolic, which computes its own ordering and can use all 4 strategies (auto, symmetric, unsymmetric, and 2-by-2). * umfpack_get_determinant added. (Thanks to David Bateman). * packed complex case added for all routines (previously only used in umfpack_report_vector). This allows arrays of ANSI C/C++ complex type to be passed directly to UMFPACK. * added umf_multicomple.c to assist in the compilation of UMFPACK in Microsoft Visual Studio, which does not have the required flexibility of the Unix "make" command. * local variable declarations reordered to encourage double-word alignment of double's and Entry's, for better performance. * note that with the exception of the behavior when a user-provided ordering is passed to umfpack_*_qsymbolic, versions 4.1 through 4.4 have comparable performance (ordering quality, memory usage, and run time). v4.1 is much better than v4.0 in performance. Jan. 11, 2005: v4.3.1 released * bug fix in umf_solve. This bug is only the 4th one found in the C versions of UMFPACK to date (Version 3.0 to 4.3.1, from March 2001 to Jan. 2005, excluding workarounds for quirky compilers). No bugs have been reported in the last Fortran version of UMFPACK (MA38, or UMFPACK V2.2.1) since its release in Jan. 1998. In Version 4.3, a bug in umf_solve caused iterative refinement to be disabled when solving A'x=b or A.'x=b after factorizing A. Modified the umfpack mexFunction to factorize A and then solve A'x=b when performing the operation x=b/A (as "umfpack(b,'/',A). Note that this has no effect on the use of UMFPACK in MATLAB itself, since MATLAB does not use the umfpack mexFunction for x=b/A. When computing x=b/A, MATLAB factorizes A' and computes x=(A'\b')' instead. The following source code files changed: UMFPACK/MATLAB/umfpackmex.c (see above) UMFPACK/Source/umf_solve.c (see source code: 2 lines changed) UMFPACK/Include/umfpack.h (version and date changed) UMFPACK/MATLAB/umfpack_test.m (new file) Jan. 16, 2004: v4.3 released. * user interface of v4.3 is upwardly-compatible with v4.2 and v4.1. No bugs found in v4.1 (except for one workaround for an old compiler). These changes add features only. * Note that v4.0 has a bug in umf_scale_column.c. The bug was patched in that version on Jan. 12, 2004. The bug does not appear in v4.1 and later. The bug is thus present in MATLAB 6.5, but it occurs very rarely, fortunately. It can occur when dividing a nonzero entry in the pivot column by the pivot value results in an underflow. * added to umfpackmex.c, for DBL_EPSILON. Some non-standard compilers (Microsoft Visual C++) require this. * #pragma added to umf_analyze.c, as a workaround around a bug in an old Intel compiler. * mexFunction interface to MATLAB modified. Call to mexCallMATLAB removed, which can be slow. In V4.1 it was used only to get MATLAB's spparms ('spumoni') value. * The AMD mexFunction was also modified in the same way (v1.1), with the call to mexCallMATLAB removed. Note that UMFPACK v4.1 through v4.3 can use either AMD v1.0 or AMD v1.1. * -DNO_DIVIDE_BY_ZERO option added. If this non-default option is enabled at compile time, and if the pivot value is zero, then no division occurs (zeros on the diagonal of U are treated as if they were equal to one). By default, the division by zero does occur. * -DNO_TIMER option added. If this non-default option is enabled at compile time, then no timers (times ( ), clock ( ), getrusage ( )) are used. V4.2: A special release for COMSOL, Inc., only (FEMLAB) * drop tolerance added. A few new parameters in the Control array are used, and a few new Info entries. May 6, 2003: V4.1 released. * No bugs were found in the prior version, Version 4.0. New features added only. Major changes throughout the code. User interface nearly unchanged, however. * Version 4.1 is upward-compatible with Version 4.0. The calling sequence of some user-callable routines in Version 4.0 have changed in this version. The routines umfpack_*_symbolic, umfpack_*_qsymbolic, umfpack_*_get_symbolic, and umfpack_*_get_numeric have new arguments added to them. The new arguments are optional. If you want to use a calling sequence similar to v4.0, simply pass NULL pointers in place of the new arguments. There are two new timing routines, umfpack_tic and umfpack_toc. A new user-callable routine, umfpack_*_scale, has been added. * "auto", "unsymmetric", "symmetric", and "2-by-2" strategies added. The symmetric strategy uses AMD on A+A' as the column preordering, followed by a postorder of the assembly tree of A+A'. Column ordering refinement is turned off, and diagonal entries are prefered as pivots. V4.0 only had the unsymmetric strategy. The 2-by-2 strategy does row permutations and attempts to find a zero-free diagonal while at the same time maintaining structural symmetry, and then uses the symmetric strategy on the permuted matrix. * row-scaling added. The default is to divide each row by the sum of the absolute values of each row. Other options are no scaling, and to divide each row by the max abs value in each row. * Matrices with upper bound memory usage greater than the maximum integer (2GB for 32-bit int's) can now be factorized (assuming the actual memory usage is still less than the maximum integer). With this change, the UMFPACK_ERROR_problem_too_large error code is no longer returned. * The current frontal matrix (Work->Fx) is no longer allocated as a static size, via malloc. It can grow and shrink, and is allocated from Numeric->Memory. * The AMD (Version 1.0) package is now required. It is available separately. To compile UMFPACK, it must appear as ../AMD if you are in the main UMFPACK directory. * The UMFPACK mexFunction now uses the internal utMalloc, utRealloc, and utFree routines, by default (except on Windows). * Three control parameters for modifying relaxed amalgamation removed. These values are now fixed at compile-time. * Many new statistics added to Info, and new control parameters added. * The umfpack mexFunction now returns permutation matrices for P and Q, not permutation vectors. It also returns the scale factors as a diagonal matrix. The factorization is now L*U = P*(R\A)*Q. * Option added for controlling the initial allocation of the workspace for the current frontal matrix. * pivot tolerance of zero treated differently. symmetric pivot tolerance added. * Makefile and GNUmakefile changed. umf_* routines with no double or complex values are now compiled just twice (int and long versions) rather than 4 times. * New routines added to save and load the Numeric and Symbolic objects to/from binary files. * Simple Fortran interface added. Apr 11, 2002: * Version 4.0 released. * bug fix: the Microsoft compiler doesn't handle NaN's properly. utIsNaN, and other ut* routines, added for MathWorks version to handle this properly. Apr 1, 2002: * bug fix: if a column was all NaN's, then UMFPACK would fail to find a pivot row. umf_row_search.c and umf_internal.h modified to fix this problem. Mar 9, 2002: V4.0beta released * Map argument added to umfpack_*_triplet_to_col. New files (umf_triplet.[ch]) added. * minor changes made so that UMFPACK can be compiled with g++ * additional error checking added to umfpack_*_numeric, for detecting more changes in pattern (Ap, Ai) since last call to umfpack_*_symbolic Feb 21, 2002: * User Guide explains the Makefile vs. GNUmakefile * umf_config.h modified, so that the complex SCSL C-BLAS uses (void *) arguments instead of (scsl_zomplex *). gcc generates some spurious warnings (cc doesn't complain). Affects the SGI IRIX only. * ported to Compaq Alpha Feb 20, 2002: V4.0 (alpha) released. * V4.0 not yet ported to the Compaq Alpha (V3.2 was ported). Feb 6 to Feb 19, 2002: * Relaxed restrictions on sizes of arrays for umfpack_*_transpose and umfpack_*_triplet_to_col. Size of "max(n,nz)" now just size nz. * workspace for umfpack_*_wsolve increased in size. * two user arrays for umfpack_*_get_symbolic increased in size, by 1 (Chain_maxrows, Chain_maxcols). * lu_normest.m added. Jan 18 to Feb 5, 2002: * The matrix A can be complex, singular, and/or rectangular. The solve step that uses the LU factors can only handle matrices that are complex or real, singuluar or non-singular, and *** square ***, however. * Estimate of the condition number computed: (min (abs (diag (U))) / (max (abs (diag (U))))) * Forward/backsolves can solve with A.' as well as A'. * char * arguments removed from user-callable routines to make it easier for Fortran to call UMFPACK. No Fortran interface is (yet) provided, however. The solve codes for umfpack_*_*solve changed to #define'd integers: UMFPACK_A Ax=b UMFPACK_At A'x=b UMFPACK_Aat A.'x=b UMFPACK_Pt_L P'Lx=b UMFPACK_L Lx=b UMFPACK_Lt_P L'Px=b UMFPACK_Lat_P L.'Px=b UMFPACK_Lt L'x=b UMFPACK_U_Qt UQ'x=b UMFPACK_U Ux=b UMFPACK_Q_Ut QU'x=b UMFPACK_Q_Uat QU.'x=b UMFPACK_Ut U'x=b UMFPACK_Uat U.'x=b All arguments are now either int, long scalars (pass by value), or int, long, double arrays (pass by reference), or void * pointers (pass by value or reference). A void * pointer is of size 32 or 64 bits on most machines. There is no need for the caller (C or Fortran) to dereference the void * pointers, so these can be treated as integer*4 or integer*8 in Fortran. A Fortran interface would have to have all arguments passed by reference. * All user-callable routine names changed. The four sets are now: umfpack_di_* real (double precision), int's as integers umfpack_dl_* real (double precision), longs's as integers umfpack_zi_* real (double precision), int's as integers umfpack_zl_* real (double precision), longs's as integers * Ptree (row preordering) and info on pivotal rows for each front added to Symbolic object (extracted by umfpack_*_get_symbolic). Ptree added as output argument to "umfpack (A, 'symbolic')" mexFunction. * umfpack_*_transpose can do A' or A.' * umfpack_wsolve.c file removed (now generated from umfpack_solve.c). * Can now extract just the diagonal of U with umfpack_*_get_numeric, without having to extract the entire matrix U. * UMFPACK_ERROR_singular_matrix (-2) removed. * UMFPACK_WARNING_singular_matrix (1) added. * Control [UMFPACK_PIVOT_OPTION] removed. No longer any symmetric pivot option (conflicts with the handling of singular and rectangular matrices). * Iterative refinement can do Ax=b, A'x=b, or A.'x=b. * Most floating-point operations done in macros, to support the complex versions. * Info [UMFPACK_N] is now Info [UMFPACK_NROW] * Info [UMFPACK_NCOL], Info [UMFPACK_UDIAG_NZ], Info [UMFPACK_UDIAG_NZ] added. * umfpack_* routines with "n" as input now use two arguments, n_row and n_col. * umfpack mexFunction now explicitly transposes A for b/A. It computes it using the array transpose as (A.'\b.').' January 1, 2002: UMFPACK Version 3.2 released. Submitted to ACM Trans. on Mathematical Software. * The umfpack mexFunction now returns the Info array when the matrix is singular. Returned an empty array prior to this change. * Renamed variable that conflicted with system library routines (system and j1). * Added a #ifdef MATHWORKS definition, so the built-in UMFPACK routine (in a future release of MATLAB) can use the internal ut* memory allocation routines, ut* assertion routine, and utPrintf. * MAX and MIN are not defined if they are already defined. * A bug fix in umf_kernel_init (a variable was not properly initialized). * Removed unused variables. October 8, 2001: UMFPACK Version 3.1 released. August-October, 2001: * added umfpack_btf M-file. * modified the BLAS update in the frontal matrix. If there are only a few pivots in remaining in the current front, then the BLAS3 update is delayed to include pivots in the next front. * Removed the special-case handling of dense columns from the numerical factorization (kept it in the colamd preordering). This improves the performance of UMFPACK on dense matrices by a factor of 5 or so, and simplifies the code. * Added a symmetric-preference pivoting option. The option slightly (but uniformly) improves the ordering when factorizing matrices with symmetric nonzero pattern. That class of matrix is better handled by the symmetric-pattern multifrontal method (MA41 in the Harwell Subroutine Library), however. * Fixed the detection of integer overflow. The 32-bit version cannot make use of more than 2GB of main memory (use the 64-bit version in that case, instead). The 32-bit version did not correctly detect when it was trying to factorize too large of a matrix. May 4, 2001: * SGI port extended. It can now call the SCSL Scientific Library, with 64-bit BLAS. Make.sgi and umf_config.h modified. April 30, 2001: UMFPACK Version 3.0 released. Changes since 3.0Beta release: * long integer version added (umfpack_l_* user-callable routines). * Peak memory usage in the numerical factorization reduced by a total of 12n integers (8n temporary workspace used during numerical factorization, and 4n for the permanent LU factors which was allocated at the beginning of factorization). * Ported to the IBM RS 6000 and Compaq Alpha, with help from Anshul Gupta and Friedrich Grund, respectively. * 64-bit version added. Uses dgemm_64, dgemv_64, and dger_64 in the Sun Performance Library. 64-bit versions with the BLAS might not work on any other platform, because they take int's as their integer input arguments instead of long's. Unfortunately, the proposed ANSI definition of the C-BLAS also uses int's as input integer arguments. It ought to use long's, or include a version that uses long's, just like the Sun Performance Library BLAS. * Additional statistics returned in Info: Info [UMFPACK_SIZE_OF_INT] sizeof (int) Info [UMFPACK_SIZE_OF_LONG] sizeof (long) Info [UMFPACK_SIZE_OF_POINTER] sizeof (void *) Info [UMFPACK_SIZE_OF_ENTRY] (was Info [UMFPACK_WORD]) Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE] est. front matrix size Info [UMFPACK_MAX_FRONT_SIZE] actual max frontal matrix size. Contents of Info rearranged. * UMFPACK_ERROR_bad_configurution error code replaced with UMFPACK_ERROR_problem_too_large error code. The "bad configuration" error occured when sizeof (int) < sizeof (size_t). Now, the int version of UMFPACK can use 32-bit int's and 64-bit pointers, and the long version can use 64-bit long's and 64-bit pointers. Both versions check to see if the array sizes allocated are larger than what can be accessed by an integer index variable (int or long, depending on the version), and returns UMFPACK_ERROR_problem_too_large if they become too large. March 15, 2001: UMFPACK Version 3.0Beta released. SuiteSparse/UMFPACK/Lib/0000755001170100242450000000000010711435725013550 5ustar davisfacSuiteSparse/UMFPACK/Lib/Makefile0000644001170100242450000007656210617157777015245 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK Makefile for compiling on Unix systems (for original make only) #------------------------------------------------------------------------------- # This is a very ugly Makefile, and is only provided for those who do not # have GNU make. Note that it is not used if you have GNU make. It ignores # dependency checking and just compiles everything. default: everything include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(UMFPACK_CONFIG) -I../Include -I../../AMD/Include \ -I../Source everything: $(C) -c ../Source/umfpack_global.c -o umfpack_gn_global.o $(C) -DDINT -c ../Source/umf_analyze.c -o umf_i_analyze.o $(C) -DDINT -c ../Source/umf_apply_order.c -o umf_i_apply_order.o $(C) -DDINT -c ../Source/umf_colamd.c -o umf_i_colamd.o $(C) -DDINT -c ../Source/umf_free.c -o umf_i_free.o $(C) -DDINT -c ../Source/umf_fsize.c -o umf_i_fsize.o $(C) -DDINT -c ../Source/umf_is_permutation.c -o umf_i_is_permutation.o $(C) -DDINT -c ../Source/umf_malloc.c -o umf_i_malloc.o $(C) -DDINT -c ../Source/umf_realloc.c -o umf_i_realloc.o $(C) -DDINT -c ../Source/umf_report_perm.c -o umf_i_report_perm.o $(C) -DDINT -c ../Source/umf_singletons.c -o umf_i_singletons.o $(C) -DDLONG -c ../Source/umf_analyze.c -o umf_l_analyze.o $(C) -DDLONG -c ../Source/umf_apply_order.c -o umf_l_apply_order.o $(C) -DDLONG -c ../Source/umf_colamd.c -o umf_l_colamd.o $(C) -DDLONG -c ../Source/umf_free.c -o umf_l_free.o $(C) -DDLONG -c ../Source/umf_fsize.c -o umf_l_fsize.o $(C) -DDLONG -c ../Source/umf_is_permutation.c -o umf_l_is_permutation.o $(C) -DDLONG -c ../Source/umf_malloc.c -o umf_l_malloc.o $(C) -DDLONG -c ../Source/umf_realloc.c -o umf_l_realloc.o $(C) -DDLONG -c ../Source/umf_report_perm.c -o umf_l_report_perm.o $(C) -DDLONG -c ../Source/umf_singletons.c -o umf_l_singletons.o $(C) -c ../Source/umfpack_timer.c -o umfpack_gn_timer.o $(C) -c ../Source/umfpack_tictoc.c -o umfpack_gn_tictoc.o $(C) -DDINT -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c -o umf_di_lhsolve.o $(C) -DDINT -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c -o umf_di_uhsolve.o $(C) -DDINT -DDO_MAP -c ../Source/umf_triplet.c -o umf_di_triplet_map_nox.o $(C) -DDINT -DDO_VALUES -c ../Source/umf_triplet.c -o umf_di_triplet_nomap_x.o $(C) -DDINT -c ../Source/umf_triplet.c -o umf_di_triplet_nomap_nox.o $(C) -DDINT -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c -o umf_di_triplet_map_x.o $(C) -DDINT -DFIXQ -c ../Source/umf_assemble.c -o umf_di_assemble_fixq.o $(C) -DDINT -DDROP -c ../Source/umf_store_lu.c -o umf_di_store_lu_drop.o $(C) -DDINT -c ../Source/umf_assemble.c -o umf_di_assemble.o $(C) -DDINT -c ../Source/umf_blas3_update.c -o umf_di_blas3_update.o $(C) -DDINT -c ../Source/umf_build_tuples.c -o umf_di_build_tuples.o $(C) -DDINT -c ../Source/umf_create_element.c -o umf_di_create_element.o $(C) -DDINT -c ../Source/umf_dump.c -o umf_di_dump.o $(C) -DDINT -c ../Source/umf_extend_front.c -o umf_di_extend_front.o $(C) -DDINT -c ../Source/umf_garbage_collection.c -o umf_di_garbage_collection.o $(C) -DDINT -c ../Source/umf_get_memory.c -o umf_di_get_memory.o $(C) -DDINT -c ../Source/umf_init_front.c -o umf_di_init_front.o $(C) -DDINT -c ../Source/umf_kernel.c -o umf_di_kernel.o $(C) -DDINT -c ../Source/umf_kernel_init.c -o umf_di_kernel_init.o $(C) -DDINT -c ../Source/umf_kernel_wrapup.c -o umf_di_kernel_wrapup.o $(C) -DDINT -c ../Source/umf_local_search.c -o umf_di_local_search.o $(C) -DDINT -c ../Source/umf_lsolve.c -o umf_di_lsolve.o $(C) -DDINT -c ../Source/umf_ltsolve.c -o umf_di_ltsolve.o $(C) -DDINT -c ../Source/umf_mem_alloc_element.c -o umf_di_mem_alloc_element.o $(C) -DDINT -c ../Source/umf_mem_alloc_head_block.c -o umf_di_mem_alloc_head_block.o $(C) -DDINT -c ../Source/umf_mem_alloc_tail_block.c -o umf_di_mem_alloc_tail_block.o $(C) -DDINT -c ../Source/umf_mem_free_tail_block.c -o umf_di_mem_free_tail_block.o $(C) -DDINT -c ../Source/umf_mem_init_memoryspace.c -o umf_di_mem_init_memoryspace.o $(C) -DDINT -c ../Source/umf_report_vector.c -o umf_di_report_vector.o $(C) -DDINT -c ../Source/umf_row_search.c -o umf_di_row_search.o $(C) -DDINT -c ../Source/umf_scale_column.c -o umf_di_scale_column.o $(C) -DDINT -c ../Source/umf_set_stats.c -o umf_di_set_stats.o $(C) -DDINT -c ../Source/umf_solve.c -o umf_di_solve.o $(C) -DDINT -c ../Source/umf_symbolic_usage.c -o umf_di_symbolic_usage.o $(C) -DDINT -c ../Source/umf_transpose.c -o umf_di_transpose.o $(C) -DDINT -c ../Source/umf_tuple_lengths.c -o umf_di_tuple_lengths.o $(C) -DDINT -c ../Source/umf_usolve.c -o umf_di_usolve.o $(C) -DDINT -c ../Source/umf_utsolve.c -o umf_di_utsolve.o $(C) -DDINT -c ../Source/umf_valid_numeric.c -o umf_di_valid_numeric.o $(C) -DDINT -c ../Source/umf_valid_symbolic.c -o umf_di_valid_symbolic.o $(C) -DDINT -c ../Source/umf_grow_front.c -o umf_di_grow_front.o $(C) -DDINT -c ../Source/umf_start_front.c -o umf_di_start_front.o $(C) -DDINT -c ../Source/umf_2by2.c -o umf_di_2by2.o $(C) -DDINT -c ../Source/umf_store_lu.c -o umf_di_store_lu.o $(C) -DDINT -c ../Source/umf_scale.c -o umf_di_scale.o $(C) -DDINT -DWSOLVE -c ../Source/umfpack_solve.c -o umfpack_di_wsolve.o $(C) -DDINT -c ../Source/umfpack_col_to_triplet.c -o umfpack_di_col_to_triplet.o $(C) -DDINT -c ../Source/umfpack_defaults.c -o umfpack_di_defaults.o $(C) -DDINT -c ../Source/umfpack_free_numeric.c -o umfpack_di_free_numeric.o $(C) -DDINT -c ../Source/umfpack_free_symbolic.c -o umfpack_di_free_symbolic.o $(C) -DDINT -c ../Source/umfpack_get_numeric.c -o umfpack_di_get_numeric.o $(C) -DDINT -c ../Source/umfpack_get_lunz.c -o umfpack_di_get_lunz.o $(C) -DDINT -c ../Source/umfpack_get_symbolic.c -o umfpack_di_get_symbolic.o $(C) -DDINT -c ../Source/umfpack_get_determinant.c -o umfpack_di_get_determinant.o $(C) -DDINT -c ../Source/umfpack_numeric.c -o umfpack_di_numeric.o $(C) -DDINT -c ../Source/umfpack_qsymbolic.c -o umfpack_di_qsymbolic.o $(C) -DDINT -c ../Source/umfpack_report_control.c -o umfpack_di_report_control.o $(C) -DDINT -c ../Source/umfpack_report_info.c -o umfpack_di_report_info.o $(C) -DDINT -c ../Source/umfpack_report_matrix.c -o umfpack_di_report_matrix.o $(C) -DDINT -c ../Source/umfpack_report_numeric.c -o umfpack_di_report_numeric.o $(C) -DDINT -c ../Source/umfpack_report_perm.c -o umfpack_di_report_perm.o $(C) -DDINT -c ../Source/umfpack_report_status.c -o umfpack_di_report_status.o $(C) -DDINT -c ../Source/umfpack_report_symbolic.c -o umfpack_di_report_symbolic.o $(C) -DDINT -c ../Source/umfpack_report_triplet.c -o umfpack_di_report_triplet.o $(C) -DDINT -c ../Source/umfpack_report_vector.c -o umfpack_di_report_vector.o $(C) -DDINT -c ../Source/umfpack_solve.c -o umfpack_di_solve.o $(C) -DDINT -c ../Source/umfpack_symbolic.c -o umfpack_di_symbolic.o $(C) -DDINT -c ../Source/umfpack_transpose.c -o umfpack_di_transpose.o $(C) -DDINT -c ../Source/umfpack_triplet_to_col.c -o umfpack_di_triplet_to_col.o $(C) -DDINT -c ../Source/umfpack_scale.c -o umfpack_di_scale.o $(C) -DDINT -c ../Source/umfpack_load_numeric.c -o umfpack_di_load_numeric.o $(C) -DDINT -c ../Source/umfpack_save_numeric.c -o umfpack_di_save_numeric.o $(C) -DDINT -c ../Source/umfpack_load_symbolic.c -o umfpack_di_load_symbolic.o $(C) -DDINT -c ../Source/umfpack_save_symbolic.c -o umfpack_di_save_symbolic.o $(C) -DDLONG -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c -o umf_dl_lhsolve.o $(C) -DDLONG -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c -o umf_dl_uhsolve.o $(C) -DDLONG -DDO_MAP -c ../Source/umf_triplet.c -o umf_dl_triplet_map_nox.o $(C) -DDLONG -DDO_VALUES -c ../Source/umf_triplet.c -o umf_dl_triplet_nomap_x.o $(C) -DDLONG -c ../Source/umf_triplet.c -o umf_dl_triplet_nomap_nox.o $(C) -DDLONG -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c -o umf_dl_triplet_map_x.o $(C) -DDLONG -DFIXQ -c ../Source/umf_assemble.c -o umf_dl_assemble_fixq.o $(C) -DDLONG -DDROP -c ../Source/umf_store_lu.c -o umf_dl_store_lu_drop.o $(C) -DDLONG -c ../Source/umf_assemble.c -o umf_dl_assemble.o $(C) -DDLONG -c ../Source/umf_blas3_update.c -o umf_dl_blas3_update.o $(C) -DDLONG -c ../Source/umf_build_tuples.c -o umf_dl_build_tuples.o $(C) -DDLONG -c ../Source/umf_create_element.c -o umf_dl_create_element.o $(C) -DDLONG -c ../Source/umf_dump.c -o umf_dl_dump.o $(C) -DDLONG -c ../Source/umf_extend_front.c -o umf_dl_extend_front.o $(C) -DDLONG -c ../Source/umf_garbage_collection.c -o umf_dl_garbage_collection.o $(C) -DDLONG -c ../Source/umf_get_memory.c -o umf_dl_get_memory.o $(C) -DDLONG -c ../Source/umf_init_front.c -o umf_dl_init_front.o $(C) -DDLONG -c ../Source/umf_kernel.c -o umf_dl_kernel.o $(C) -DDLONG -c ../Source/umf_kernel_init.c -o umf_dl_kernel_init.o $(C) -DDLONG -c ../Source/umf_kernel_wrapup.c -o umf_dl_kernel_wrapup.o $(C) -DDLONG -c ../Source/umf_local_search.c -o umf_dl_local_search.o $(C) -DDLONG -c ../Source/umf_lsolve.c -o umf_dl_lsolve.o $(C) -DDLONG -c ../Source/umf_ltsolve.c -o umf_dl_ltsolve.o $(C) -DDLONG -c ../Source/umf_mem_alloc_element.c -o umf_dl_mem_alloc_element.o $(C) -DDLONG -c ../Source/umf_mem_alloc_head_block.c -o umf_dl_mem_alloc_head_block.o $(C) -DDLONG -c ../Source/umf_mem_alloc_tail_block.c -o umf_dl_mem_alloc_tail_block.o $(C) -DDLONG -c ../Source/umf_mem_free_tail_block.c -o umf_dl_mem_free_tail_block.o $(C) -DDLONG -c ../Source/umf_mem_init_memoryspace.c -o umf_dl_mem_init_memoryspace.o $(C) -DDLONG -c ../Source/umf_report_vector.c -o umf_dl_report_vector.o $(C) -DDLONG -c ../Source/umf_row_search.c -o umf_dl_row_search.o $(C) -DDLONG -c ../Source/umf_scale_column.c -o umf_dl_scale_column.o $(C) -DDLONG -c ../Source/umf_set_stats.c -o umf_dl_set_stats.o $(C) -DDLONG -c ../Source/umf_solve.c -o umf_dl_solve.o $(C) -DDLONG -c ../Source/umf_symbolic_usage.c -o umf_dl_symbolic_usage.o $(C) -DDLONG -c ../Source/umf_transpose.c -o umf_dl_transpose.o $(C) -DDLONG -c ../Source/umf_tuple_lengths.c -o umf_dl_tuple_lengths.o $(C) -DDLONG -c ../Source/umf_usolve.c -o umf_dl_usolve.o $(C) -DDLONG -c ../Source/umf_utsolve.c -o umf_dl_utsolve.o $(C) -DDLONG -c ../Source/umf_valid_numeric.c -o umf_dl_valid_numeric.o $(C) -DDLONG -c ../Source/umf_valid_symbolic.c -o umf_dl_valid_symbolic.o $(C) -DDLONG -c ../Source/umf_grow_front.c -o umf_dl_grow_front.o $(C) -DDLONG -c ../Source/umf_start_front.c -o umf_dl_start_front.o $(C) -DDLONG -c ../Source/umf_2by2.c -o umf_dl_2by2.o $(C) -DDLONG -c ../Source/umf_store_lu.c -o umf_dl_store_lu.o $(C) -DDLONG -c ../Source/umf_scale.c -o umf_dl_scale.o $(C) -DDLONG -DWSOLVE -c ../Source/umfpack_solve.c -o umfpack_dl_wsolve.o $(C) -DDLONG -c ../Source/umfpack_col_to_triplet.c -o umfpack_dl_col_to_triplet.o $(C) -DDLONG -c ../Source/umfpack_defaults.c -o umfpack_dl_defaults.o $(C) -DDLONG -c ../Source/umfpack_free_numeric.c -o umfpack_dl_free_numeric.o $(C) -DDLONG -c ../Source/umfpack_free_symbolic.c -o umfpack_dl_free_symbolic.o $(C) -DDLONG -c ../Source/umfpack_get_numeric.c -o umfpack_dl_get_numeric.o $(C) -DDLONG -c ../Source/umfpack_get_lunz.c -o umfpack_dl_get_lunz.o $(C) -DDLONG -c ../Source/umfpack_get_symbolic.c -o umfpack_dl_get_symbolic.o $(C) -DDLONG -c ../Source/umfpack_get_determinant.c -o umfpack_dl_get_determinant.o $(C) -DDLONG -c ../Source/umfpack_numeric.c -o umfpack_dl_numeric.o $(C) -DDLONG -c ../Source/umfpack_qsymbolic.c -o umfpack_dl_qsymbolic.o $(C) -DDLONG -c ../Source/umfpack_report_control.c -o umfpack_dl_report_control.o $(C) -DDLONG -c ../Source/umfpack_report_info.c -o umfpack_dl_report_info.o $(C) -DDLONG -c ../Source/umfpack_report_matrix.c -o umfpack_dl_report_matrix.o $(C) -DDLONG -c ../Source/umfpack_report_numeric.c -o umfpack_dl_report_numeric.o $(C) -DDLONG -c ../Source/umfpack_report_perm.c -o umfpack_dl_report_perm.o $(C) -DDLONG -c ../Source/umfpack_report_status.c -o umfpack_dl_report_status.o $(C) -DDLONG -c ../Source/umfpack_report_symbolic.c -o umfpack_dl_report_symbolic.o $(C) -DDLONG -c ../Source/umfpack_report_triplet.c -o umfpack_dl_report_triplet.o $(C) -DDLONG -c ../Source/umfpack_report_vector.c -o umfpack_dl_report_vector.o $(C) -DDLONG -c ../Source/umfpack_solve.c -o umfpack_dl_solve.o $(C) -DDLONG -c ../Source/umfpack_symbolic.c -o umfpack_dl_symbolic.o $(C) -DDLONG -c ../Source/umfpack_transpose.c -o umfpack_dl_transpose.o $(C) -DDLONG -c ../Source/umfpack_triplet_to_col.c -o umfpack_dl_triplet_to_col.o $(C) -DDLONG -c ../Source/umfpack_scale.c -o umfpack_dl_scale.o $(C) -DDLONG -c ../Source/umfpack_load_numeric.c -o umfpack_dl_load_numeric.o $(C) -DDLONG -c ../Source/umfpack_save_numeric.c -o umfpack_dl_save_numeric.o $(C) -DDLONG -c ../Source/umfpack_load_symbolic.c -o umfpack_dl_load_symbolic.o $(C) -DDLONG -c ../Source/umfpack_save_symbolic.c -o umfpack_dl_save_symbolic.o $(C) -DZINT -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c -o umf_zi_lhsolve.o $(C) -DZINT -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c -o umf_zi_uhsolve.o $(C) -DZINT -DDO_MAP -c ../Source/umf_triplet.c -o umf_zi_triplet_map_nox.o $(C) -DZINT -DDO_VALUES -c ../Source/umf_triplet.c -o umf_zi_triplet_nomap_x.o $(C) -DZINT -c ../Source/umf_triplet.c -o umf_zi_triplet_nomap_nox.o $(C) -DZINT -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c -o umf_zi_triplet_map_x.o $(C) -DZINT -DFIXQ -c ../Source/umf_assemble.c -o umf_zi_assemble_fixq.o $(C) -DZINT -DDROP -c ../Source/umf_store_lu.c -o umf_zi_store_lu_drop.o $(C) -DZINT -c ../Source/umf_assemble.c -o umf_zi_assemble.o $(C) -DZINT -c ../Source/umf_blas3_update.c -o umf_zi_blas3_update.o $(C) -DZINT -c ../Source/umf_build_tuples.c -o umf_zi_build_tuples.o $(C) -DZINT -c ../Source/umf_create_element.c -o umf_zi_create_element.o $(C) -DZINT -c ../Source/umf_dump.c -o umf_zi_dump.o $(C) -DZINT -c ../Source/umf_extend_front.c -o umf_zi_extend_front.o $(C) -DZINT -c ../Source/umf_garbage_collection.c -o umf_zi_garbage_collection.o $(C) -DZINT -c ../Source/umf_get_memory.c -o umf_zi_get_memory.o $(C) -DZINT -c ../Source/umf_init_front.c -o umf_zi_init_front.o $(C) -DZINT -c ../Source/umf_kernel.c -o umf_zi_kernel.o $(C) -DZINT -c ../Source/umf_kernel_init.c -o umf_zi_kernel_init.o $(C) -DZINT -c ../Source/umf_kernel_wrapup.c -o umf_zi_kernel_wrapup.o $(C) -DZINT -c ../Source/umf_local_search.c -o umf_zi_local_search.o $(C) -DZINT -c ../Source/umf_lsolve.c -o umf_zi_lsolve.o $(C) -DZINT -c ../Source/umf_ltsolve.c -o umf_zi_ltsolve.o $(C) -DZINT -c ../Source/umf_mem_alloc_element.c -o umf_zi_mem_alloc_element.o $(C) -DZINT -c ../Source/umf_mem_alloc_head_block.c -o umf_zi_mem_alloc_head_block.o $(C) -DZINT -c ../Source/umf_mem_alloc_tail_block.c -o umf_zi_mem_alloc_tail_block.o $(C) -DZINT -c ../Source/umf_mem_free_tail_block.c -o umf_zi_mem_free_tail_block.o $(C) -DZINT -c ../Source/umf_mem_init_memoryspace.c -o umf_zi_mem_init_memoryspace.o $(C) -DZINT -c ../Source/umf_report_vector.c -o umf_zi_report_vector.o $(C) -DZINT -c ../Source/umf_row_search.c -o umf_zi_row_search.o $(C) -DZINT -c ../Source/umf_scale_column.c -o umf_zi_scale_column.o $(C) -DZINT -c ../Source/umf_set_stats.c -o umf_zi_set_stats.o $(C) -DZINT -c ../Source/umf_solve.c -o umf_zi_solve.o $(C) -DZINT -c ../Source/umf_symbolic_usage.c -o umf_zi_symbolic_usage.o $(C) -DZINT -c ../Source/umf_transpose.c -o umf_zi_transpose.o $(C) -DZINT -c ../Source/umf_tuple_lengths.c -o umf_zi_tuple_lengths.o $(C) -DZINT -c ../Source/umf_usolve.c -o umf_zi_usolve.o $(C) -DZINT -c ../Source/umf_utsolve.c -o umf_zi_utsolve.o $(C) -DZINT -c ../Source/umf_valid_numeric.c -o umf_zi_valid_numeric.o $(C) -DZINT -c ../Source/umf_valid_symbolic.c -o umf_zi_valid_symbolic.o $(C) -DZINT -c ../Source/umf_grow_front.c -o umf_zi_grow_front.o $(C) -DZINT -c ../Source/umf_start_front.c -o umf_zi_start_front.o $(C) -DZINT -c ../Source/umf_2by2.c -o umf_zi_2by2.o $(C) -DZINT -c ../Source/umf_store_lu.c -o umf_zi_store_lu.o $(C) -DZINT -c ../Source/umf_scale.c -o umf_zi_scale.o $(C) -DZINT -DWSOLVE -c ../Source/umfpack_solve.c -o umfpack_zi_wsolve.o $(C) -DZINT -c ../Source/umfpack_col_to_triplet.c -o umfpack_zi_col_to_triplet.o $(C) -DZINT -c ../Source/umfpack_defaults.c -o umfpack_zi_defaults.o $(C) -DZINT -c ../Source/umfpack_free_numeric.c -o umfpack_zi_free_numeric.o $(C) -DZINT -c ../Source/umfpack_free_symbolic.c -o umfpack_zi_free_symbolic.o $(C) -DZINT -c ../Source/umfpack_get_numeric.c -o umfpack_zi_get_numeric.o $(C) -DZINT -c ../Source/umfpack_get_lunz.c -o umfpack_zi_get_lunz.o $(C) -DZINT -c ../Source/umfpack_get_symbolic.c -o umfpack_zi_get_symbolic.o $(C) -DZINT -c ../Source/umfpack_get_determinant.c -o umfpack_zi_get_determinant.o $(C) -DZINT -c ../Source/umfpack_numeric.c -o umfpack_zi_numeric.o $(C) -DZINT -c ../Source/umfpack_qsymbolic.c -o umfpack_zi_qsymbolic.o $(C) -DZINT -c ../Source/umfpack_report_control.c -o umfpack_zi_report_control.o $(C) -DZINT -c ../Source/umfpack_report_info.c -o umfpack_zi_report_info.o $(C) -DZINT -c ../Source/umfpack_report_matrix.c -o umfpack_zi_report_matrix.o $(C) -DZINT -c ../Source/umfpack_report_numeric.c -o umfpack_zi_report_numeric.o $(C) -DZINT -c ../Source/umfpack_report_perm.c -o umfpack_zi_report_perm.o $(C) -DZINT -c ../Source/umfpack_report_status.c -o umfpack_zi_report_status.o $(C) -DZINT -c ../Source/umfpack_report_symbolic.c -o umfpack_zi_report_symbolic.o $(C) -DZINT -c ../Source/umfpack_report_triplet.c -o umfpack_zi_report_triplet.o $(C) -DZINT -c ../Source/umfpack_report_vector.c -o umfpack_zi_report_vector.o $(C) -DZINT -c ../Source/umfpack_solve.c -o umfpack_zi_solve.o $(C) -DZINT -c ../Source/umfpack_symbolic.c -o umfpack_zi_symbolic.o $(C) -DZINT -c ../Source/umfpack_transpose.c -o umfpack_zi_transpose.o $(C) -DZINT -c ../Source/umfpack_triplet_to_col.c -o umfpack_zi_triplet_to_col.o $(C) -DZINT -c ../Source/umfpack_scale.c -o umfpack_zi_scale.o $(C) -DZINT -c ../Source/umfpack_load_numeric.c -o umfpack_zi_load_numeric.o $(C) -DZINT -c ../Source/umfpack_save_numeric.c -o umfpack_zi_save_numeric.o $(C) -DZINT -c ../Source/umfpack_load_symbolic.c -o umfpack_zi_load_symbolic.o $(C) -DZINT -c ../Source/umfpack_save_symbolic.c -o umfpack_zi_save_symbolic.o $(C) -DZLONG -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c -o umf_zl_lhsolve.o $(C) -DZLONG -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c -o umf_zl_uhsolve.o $(C) -DZLONG -DDO_MAP -c ../Source/umf_triplet.c -o umf_zl_triplet_map_nox.o $(C) -DZLONG -DDO_VALUES -c ../Source/umf_triplet.c -o umf_zl_triplet_nomap_x.o $(C) -DZLONG -c ../Source/umf_triplet.c -o umf_zl_triplet_nomap_nox.o $(C) -DZLONG -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c -o umf_zl_triplet_map_x.o $(C) -DZLONG -DFIXQ -c ../Source/umf_assemble.c -o umf_zl_assemble_fixq.o $(C) -DZLONG -DDROP -c ../Source/umf_store_lu.c -o umf_zl_store_lu_drop.o $(C) -DZLONG -c ../Source/umf_assemble.c -o umf_zl_assemble.o $(C) -DZLONG -c ../Source/umf_blas3_update.c -o umf_zl_blas3_update.o $(C) -DZLONG -c ../Source/umf_build_tuples.c -o umf_zl_build_tuples.o $(C) -DZLONG -c ../Source/umf_create_element.c -o umf_zl_create_element.o $(C) -DZLONG -c ../Source/umf_dump.c -o umf_zl_dump.o $(C) -DZLONG -c ../Source/umf_extend_front.c -o umf_zl_extend_front.o $(C) -DZLONG -c ../Source/umf_garbage_collection.c -o umf_zl_garbage_collection.o $(C) -DZLONG -c ../Source/umf_get_memory.c -o umf_zl_get_memory.o $(C) -DZLONG -c ../Source/umf_init_front.c -o umf_zl_init_front.o $(C) -DZLONG -c ../Source/umf_kernel.c -o umf_zl_kernel.o $(C) -DZLONG -c ../Source/umf_kernel_init.c -o umf_zl_kernel_init.o $(C) -DZLONG -c ../Source/umf_kernel_wrapup.c -o umf_zl_kernel_wrapup.o $(C) -DZLONG -c ../Source/umf_local_search.c -o umf_zl_local_search.o $(C) -DZLONG -c ../Source/umf_lsolve.c -o umf_zl_lsolve.o $(C) -DZLONG -c ../Source/umf_ltsolve.c -o umf_zl_ltsolve.o $(C) -DZLONG -c ../Source/umf_mem_alloc_element.c -o umf_zl_mem_alloc_element.o $(C) -DZLONG -c ../Source/umf_mem_alloc_head_block.c -o umf_zl_mem_alloc_head_block.o $(C) -DZLONG -c ../Source/umf_mem_alloc_tail_block.c -o umf_zl_mem_alloc_tail_block.o $(C) -DZLONG -c ../Source/umf_mem_free_tail_block.c -o umf_zl_mem_free_tail_block.o $(C) -DZLONG -c ../Source/umf_mem_init_memoryspace.c -o umf_zl_mem_init_memoryspace.o $(C) -DZLONG -c ../Source/umf_report_vector.c -o umf_zl_report_vector.o $(C) -DZLONG -c ../Source/umf_row_search.c -o umf_zl_row_search.o $(C) -DZLONG -c ../Source/umf_scale_column.c -o umf_zl_scale_column.o $(C) -DZLONG -c ../Source/umf_set_stats.c -o umf_zl_set_stats.o $(C) -DZLONG -c ../Source/umf_solve.c -o umf_zl_solve.o $(C) -DZLONG -c ../Source/umf_symbolic_usage.c -o umf_zl_symbolic_usage.o $(C) -DZLONG -c ../Source/umf_transpose.c -o umf_zl_transpose.o $(C) -DZLONG -c ../Source/umf_tuple_lengths.c -o umf_zl_tuple_lengths.o $(C) -DZLONG -c ../Source/umf_usolve.c -o umf_zl_usolve.o $(C) -DZLONG -c ../Source/umf_utsolve.c -o umf_zl_utsolve.o $(C) -DZLONG -c ../Source/umf_valid_numeric.c -o umf_zl_valid_numeric.o $(C) -DZLONG -c ../Source/umf_valid_symbolic.c -o umf_zl_valid_symbolic.o $(C) -DZLONG -c ../Source/umf_grow_front.c -o umf_zl_grow_front.o $(C) -DZLONG -c ../Source/umf_start_front.c -o umf_zl_start_front.o $(C) -DZLONG -c ../Source/umf_2by2.c -o umf_zl_2by2.o $(C) -DZLONG -c ../Source/umf_store_lu.c -o umf_zl_store_lu.o $(C) -DZLONG -c ../Source/umf_scale.c -o umf_zl_scale.o $(C) -DZLONG -DWSOLVE -c ../Source/umfpack_solve.c -o umfpack_zl_wsolve.o $(C) -DZLONG -c ../Source/umfpack_col_to_triplet.c -o umfpack_zl_col_to_triplet.o $(C) -DZLONG -c ../Source/umfpack_defaults.c -o umfpack_zl_defaults.o $(C) -DZLONG -c ../Source/umfpack_free_numeric.c -o umfpack_zl_free_numeric.o $(C) -DZLONG -c ../Source/umfpack_free_symbolic.c -o umfpack_zl_free_symbolic.o $(C) -DZLONG -c ../Source/umfpack_get_numeric.c -o umfpack_zl_get_numeric.o $(C) -DZLONG -c ../Source/umfpack_get_lunz.c -o umfpack_zl_get_lunz.o $(C) -DZLONG -c ../Source/umfpack_get_symbolic.c -o umfpack_zl_get_symbolic.o $(C) -DZLONG -c ../Source/umfpack_get_determinant.c -o umfpack_zl_get_determinant.o $(C) -DZLONG -c ../Source/umfpack_numeric.c -o umfpack_zl_numeric.o $(C) -DZLONG -c ../Source/umfpack_qsymbolic.c -o umfpack_zl_qsymbolic.o $(C) -DZLONG -c ../Source/umfpack_report_control.c -o umfpack_zl_report_control.o $(C) -DZLONG -c ../Source/umfpack_report_info.c -o umfpack_zl_report_info.o $(C) -DZLONG -c ../Source/umfpack_report_matrix.c -o umfpack_zl_report_matrix.o $(C) -DZLONG -c ../Source/umfpack_report_numeric.c -o umfpack_zl_report_numeric.o $(C) -DZLONG -c ../Source/umfpack_report_perm.c -o umfpack_zl_report_perm.o $(C) -DZLONG -c ../Source/umfpack_report_status.c -o umfpack_zl_report_status.o $(C) -DZLONG -c ../Source/umfpack_report_symbolic.c -o umfpack_zl_report_symbolic.o $(C) -DZLONG -c ../Source/umfpack_report_triplet.c -o umfpack_zl_report_triplet.o $(C) -DZLONG -c ../Source/umfpack_report_vector.c -o umfpack_zl_report_vector.o $(C) -DZLONG -c ../Source/umfpack_solve.c -o umfpack_zl_solve.o $(C) -DZLONG -c ../Source/umfpack_symbolic.c -o umfpack_zl_symbolic.o $(C) -DZLONG -c ../Source/umfpack_transpose.c -o umfpack_zl_transpose.o $(C) -DZLONG -c ../Source/umfpack_triplet_to_col.c -o umfpack_zl_triplet_to_col.o $(C) -DZLONG -c ../Source/umfpack_scale.c -o umfpack_zl_scale.o $(C) -DZLONG -c ../Source/umfpack_load_numeric.c -o umfpack_zl_load_numeric.o $(C) -DZLONG -c ../Source/umfpack_save_numeric.c -o umfpack_zl_save_numeric.o $(C) -DZLONG -c ../Source/umfpack_load_symbolic.c -o umfpack_zl_load_symbolic.o $(C) -DZLONG -c ../Source/umfpack_save_symbolic.c -o umfpack_zl_save_symbolic.o $(AR) ../Lib/libumfpack.a \ umfpack_gn_global.o \ umf_i_analyze.o umf_i_apply_order.o umf_i_colamd.o umf_i_free.o \ umf_i_fsize.o umf_i_is_permutation.o umf_i_malloc.o umf_i_realloc.o \ umf_i_report_perm.o umf_i_singletons.o \ umf_l_analyze.o umf_l_apply_order.o umf_l_colamd.o umf_l_free.o \ umf_l_fsize.o umf_l_is_permutation.o umf_l_malloc.o umf_l_realloc.o \ umf_l_report_perm.o umf_l_singletons.o \ umfpack_gn_timer.o umfpack_gn_tictoc.o \ umf_di_lhsolve.o \ umf_di_uhsolve.o umf_di_triplet_map_nox.o umf_di_triplet_nomap_x.o \ umf_di_triplet_nomap_nox.o umf_di_triplet_map_x.o \ umf_di_assemble_fixq.o umf_di_store_lu_drop.o umf_di_assemble.o \ umf_di_blas3_update.o umf_di_build_tuples.o \ umf_di_create_element.o umf_di_dump.o umf_di_extend_front.o \ umf_di_garbage_collection.o umf_di_get_memory.o \ umf_di_init_front.o umf_di_kernel.o umf_di_kernel_init.o \ umf_di_kernel_wrapup.o umf_di_local_search.o umf_di_lsolve.o \ umf_di_ltsolve.o umf_di_mem_alloc_element.o \ umf_di_mem_alloc_head_block.o umf_di_mem_alloc_tail_block.o \ umf_di_mem_free_tail_block.o umf_di_mem_init_memoryspace.o \ umf_di_report_vector.o umf_di_row_search.o umf_di_scale_column.o \ umf_di_set_stats.o umf_di_solve.o umf_di_symbolic_usage.o \ umf_di_transpose.o umf_di_tuple_lengths.o umf_di_usolve.o \ umf_di_utsolve.o umf_di_valid_numeric.o umf_di_valid_symbolic.o \ umf_di_grow_front.o umf_di_start_front.o umf_di_2by2.o \ umf_di_store_lu.o umf_di_scale.o umfpack_di_wsolve.o \ umfpack_di_col_to_triplet.o umfpack_di_defaults.o \ umfpack_di_free_numeric.o umfpack_di_free_symbolic.o \ umfpack_di_get_numeric.o umfpack_di_get_lunz.o \ umfpack_di_get_symbolic.o umfpack_di_get_determinant.o \ umfpack_di_numeric.o \ umfpack_di_qsymbolic.o umfpack_di_report_control.o \ umfpack_di_report_info.o umfpack_di_report_matrix.o \ umfpack_di_report_numeric.o umfpack_di_report_perm.o \ umfpack_di_report_status.o umfpack_di_report_symbolic.o \ umfpack_di_report_triplet.o umfpack_di_report_vector.o \ umfpack_di_solve.o umfpack_di_symbolic.o umfpack_di_transpose.o \ umfpack_di_triplet_to_col.o umfpack_di_scale.o \ umfpack_di_load_numeric.o umfpack_di_save_numeric.o \ umfpack_di_load_symbolic.o umfpack_di_save_symbolic.o \ umf_dl_lhsolve.o \ umf_dl_uhsolve.o umf_dl_triplet_map_nox.o umf_dl_triplet_nomap_x.o \ umf_dl_triplet_nomap_nox.o umf_dl_triplet_map_x.o \ umf_dl_assemble_fixq.o umf_dl_store_lu_drop.o umf_dl_assemble.o \ umf_dl_blas3_update.o umf_dl_build_tuples.o \ umf_dl_create_element.o umf_dl_dump.o umf_dl_extend_front.o \ umf_dl_garbage_collection.o umf_dl_get_memory.o \ umf_dl_init_front.o umf_dl_kernel.o umf_dl_kernel_init.o \ umf_dl_kernel_wrapup.o umf_dl_local_search.o umf_dl_lsolve.o \ umf_dl_ltsolve.o umf_dl_mem_alloc_element.o \ umf_dl_mem_alloc_head_block.o umf_dl_mem_alloc_tail_block.o \ umf_dl_mem_free_tail_block.o umf_dl_mem_init_memoryspace.o \ umf_dl_report_vector.o umf_dl_row_search.o umf_dl_scale_column.o \ umf_dl_set_stats.o umf_dl_solve.o umf_dl_symbolic_usage.o \ umf_dl_transpose.o umf_dl_tuple_lengths.o umf_dl_usolve.o \ umf_dl_utsolve.o umf_dl_valid_numeric.o umf_dl_valid_symbolic.o \ umf_dl_grow_front.o umf_dl_start_front.o umf_dl_2by2.o \ umf_dl_store_lu.o umf_dl_scale.o umfpack_dl_wsolve.o \ umfpack_dl_col_to_triplet.o umfpack_dl_defaults.o \ umfpack_dl_free_numeric.o umfpack_dl_free_symbolic.o \ umfpack_dl_get_numeric.o umfpack_dl_get_lunz.o \ umfpack_dl_get_symbolic.o umfpack_dl_get_determinant.o \ umfpack_dl_numeric.o \ umfpack_dl_qsymbolic.o umfpack_dl_report_control.o \ umfpack_dl_report_info.o umfpack_dl_report_matrix.o \ umfpack_dl_report_numeric.o umfpack_dl_report_perm.o \ umfpack_dl_report_status.o umfpack_dl_report_symbolic.o \ umfpack_dl_report_triplet.o umfpack_dl_report_vector.o \ umfpack_dl_solve.o umfpack_dl_symbolic.o umfpack_dl_transpose.o \ umfpack_dl_triplet_to_col.o umfpack_dl_scale.o \ umfpack_dl_load_numeric.o umfpack_dl_save_numeric.o \ umfpack_dl_load_symbolic.o umfpack_dl_save_symbolic.o \ umf_zi_lhsolve.o \ umf_zi_uhsolve.o umf_zi_triplet_map_nox.o umf_zi_triplet_nomap_x.o \ umf_zi_triplet_nomap_nox.o umf_zi_triplet_map_x.o \ umf_zi_assemble_fixq.o umf_zi_store_lu_drop.o umf_zi_assemble.o \ umf_zi_blas3_update.o umf_zi_build_tuples.o \ umf_zi_create_element.o umf_zi_dump.o umf_zi_extend_front.o \ umf_zi_garbage_collection.o umf_zi_get_memory.o \ umf_zi_init_front.o umf_zi_kernel.o umf_zi_kernel_init.o \ umf_zi_kernel_wrapup.o umf_zi_local_search.o umf_zi_lsolve.o \ umf_zi_ltsolve.o umf_zi_mem_alloc_element.o \ umf_zi_mem_alloc_head_block.o umf_zi_mem_alloc_tail_block.o \ umf_zi_mem_free_tail_block.o umf_zi_mem_init_memoryspace.o \ umf_zi_report_vector.o umf_zi_row_search.o umf_zi_scale_column.o \ umf_zi_set_stats.o umf_zi_solve.o umf_zi_symbolic_usage.o \ umf_zi_transpose.o umf_zi_tuple_lengths.o umf_zi_usolve.o \ umf_zi_utsolve.o umf_zi_valid_numeric.o umf_zi_valid_symbolic.o \ umf_zi_grow_front.o umf_zi_start_front.o umf_zi_2by2.o \ umf_zi_store_lu.o umf_zi_scale.o umfpack_zi_wsolve.o \ umfpack_zi_col_to_triplet.o umfpack_zi_defaults.o \ umfpack_zi_free_numeric.o umfpack_zi_free_symbolic.o \ umfpack_zi_get_numeric.o umfpack_zi_get_lunz.o \ umfpack_zi_get_symbolic.o umfpack_zi_get_determinant.o \ umfpack_zi_numeric.o \ umfpack_zi_qsymbolic.o umfpack_zi_report_control.o \ umfpack_zi_report_info.o umfpack_zi_report_matrix.o \ umfpack_zi_report_numeric.o umfpack_zi_report_perm.o \ umfpack_zi_report_status.o umfpack_zi_report_symbolic.o \ umfpack_zi_report_triplet.o umfpack_zi_report_vector.o \ umfpack_zi_solve.o umfpack_zi_symbolic.o umfpack_zi_transpose.o \ umfpack_zi_triplet_to_col.o umfpack_zi_scale.o \ umfpack_zi_load_numeric.o umfpack_zi_save_numeric.o \ umfpack_zi_load_symbolic.o umfpack_zi_save_symbolic.o \ umf_zl_lhsolve.o \ umf_zl_uhsolve.o umf_zl_triplet_map_nox.o umf_zl_triplet_nomap_x.o \ umf_zl_triplet_nomap_nox.o umf_zl_triplet_map_x.o \ umf_zl_assemble_fixq.o umf_zl_store_lu_drop.o umf_zl_assemble.o \ umf_zl_blas3_update.o umf_zl_build_tuples.o \ umf_zl_create_element.o umf_zl_dump.o umf_zl_extend_front.o \ umf_zl_garbage_collection.o umf_zl_get_memory.o \ umf_zl_init_front.o umf_zl_kernel.o umf_zl_kernel_init.o \ umf_zl_kernel_wrapup.o umf_zl_local_search.o umf_zl_lsolve.o \ umf_zl_ltsolve.o umf_zl_mem_alloc_element.o \ umf_zl_mem_alloc_head_block.o umf_zl_mem_alloc_tail_block.o \ umf_zl_mem_free_tail_block.o umf_zl_mem_init_memoryspace.o \ umf_zl_report_vector.o umf_zl_row_search.o umf_zl_scale_column.o \ umf_zl_set_stats.o umf_zl_solve.o umf_zl_symbolic_usage.o \ umf_zl_transpose.o umf_zl_tuple_lengths.o umf_zl_usolve.o \ umf_zl_utsolve.o umf_zl_valid_numeric.o umf_zl_valid_symbolic.o \ umf_zl_grow_front.o umf_zl_start_front.o umf_zl_2by2.o \ umf_zl_store_lu.o umf_zl_scale.o umfpack_zl_wsolve.o \ umfpack_zl_col_to_triplet.o umfpack_zl_defaults.o \ umfpack_zl_free_numeric.o umfpack_zl_free_symbolic.o \ umfpack_zl_get_numeric.o umfpack_zl_get_lunz.o \ umfpack_zl_get_symbolic.o umfpack_zl_get_determinant.o \ umfpack_zl_numeric.o \ umfpack_zl_qsymbolic.o umfpack_zl_report_control.o \ umfpack_zl_report_info.o umfpack_zl_report_matrix.o \ umfpack_zl_report_numeric.o umfpack_zl_report_perm.o \ umfpack_zl_report_status.o umfpack_zl_report_symbolic.o \ umfpack_zl_report_triplet.o umfpack_zl_report_vector.o \ umfpack_zl_solve.o umfpack_zl_symbolic.o umfpack_zl_transpose.o \ umfpack_zl_triplet_to_col.o umfpack_zl_scale.o \ umfpack_zl_load_numeric.o umfpack_zl_save_numeric.o \ umfpack_zl_load_symbolic.o umfpack_zl_save_symbolic.o - $(RANLIB) ../Lib/libumfpack.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) ../Lib/libumfpack.a clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/Lib/GNUmakefile0000644001170100242450000002306410617345232015625 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK Makefile for compiling on Unix systems (for GNU Make) #------------------------------------------------------------------------------- default: ../Lib/libumfpack.a include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(UMFPACK_CONFIG) \ -I../Include -I../Source -I../../AMD/Include -I../../UFconfig #------------------------------------------------------------------------------- # source files #------------------------------------------------------------------------------- # non-user-callable umf_*.[ch] files: UMFCH = umf_assemble umf_blas3_update umf_build_tuples umf_create_element \ umf_dump umf_extend_front umf_garbage_collection umf_get_memory \ umf_init_front umf_kernel umf_kernel_init umf_kernel_wrapup \ umf_local_search umf_lsolve umf_ltsolve umf_mem_alloc_element \ umf_mem_alloc_head_block umf_mem_alloc_tail_block \ umf_mem_free_tail_block umf_mem_init_memoryspace \ umf_report_vector umf_row_search umf_scale_column \ umf_set_stats umf_solve umf_symbolic_usage umf_transpose \ umf_tuple_lengths umf_usolve umf_utsolve umf_valid_numeric \ umf_valid_symbolic umf_grow_front umf_start_front umf_2by2 \ umf_store_lu umf_scale # non-user-callable umf_*.[ch] files, int/UF_long versions only (no real/complex): UMFINT = umf_analyze umf_apply_order umf_colamd umf_free umf_fsize \ umf_is_permutation umf_malloc umf_realloc umf_report_perm \ umf_singletons # non-user-callable, created from umf_ltsolve.c, umf_utsolve.c, # umf_triplet.c, and umf_assemble.c , with int/UF_long and real/complex versions: UMF_CREATED = umf_lhsolve umf_uhsolve umf_triplet_map_nox \ umf_triplet_nomap_x umf_triplet_nomap_nox umf_triplet_map_x \ umf_assemble_fixq umf_store_lu_drop # non-user-callable, int/UF_long and real/complex versions: UMF = $(UMF_CREATED) $(UMFCH) # user-callable umfpack_*.[ch] files (int/UF_long and real/complex): UMFPACK = umfpack_col_to_triplet umfpack_defaults umfpack_free_numeric \ umfpack_free_symbolic umfpack_get_numeric umfpack_get_lunz \ umfpack_get_symbolic umfpack_get_determinant umfpack_numeric \ umfpack_qsymbolic umfpack_report_control umfpack_report_info \ umfpack_report_matrix umfpack_report_numeric umfpack_report_perm \ umfpack_report_status umfpack_report_symbolic umfpack_report_triplet \ umfpack_report_vector umfpack_solve umfpack_symbolic \ umfpack_transpose umfpack_triplet_to_col umfpack_scale \ umfpack_load_numeric umfpack_save_numeric \ umfpack_load_symbolic umfpack_save_symbolic # user-callable, created from umfpack_solve.c (umfpack_wsolve.h exists, though): # with int/UF_long and real/complex versions: UMFPACKW = umfpack_wsolve USER = $(UMFPACKW) $(UMFPACK) # user-callable, only one version for int/UF_long, real/complex, *.[ch] files: GENERIC = umfpack_timer umfpack_tictoc umfpack_global #------------------------------------------------------------------------------- # include files: #------------------------------------------------------------------------------- INC = ../Include/umfpack.h ../../UFconfig/UFconfig.h \ ../Source/umf_config.h ../Source/umf_version.h \ ../Source/umf_internal.h ../Source/umf_triplet.h \ $(addprefix ../Source/, $(addsuffix .h,$(UMFCH))) \ $(addprefix ../Source/, $(addsuffix .h,$(UMFINT))) \ $(addprefix ../Include/, $(addsuffix .h,$(USER))) \ $(addprefix ../Include/, $(addsuffix .h,$(GENERIC))) \ ../../AMD/Include/amd_internal.h ../../AMD/Include/amd.h #------------------------------------------------------------------------------- # object files for each version #------------------------------------------------------------------------------- DI = $(addsuffix .o, $(subst umf_,umf_di_,$(UMF)) $(subst umfpack_,umfpack_di_,$(USER))) DL = $(addsuffix .o, $(subst umf_,umf_dl_,$(UMF)) $(subst umfpack_,umfpack_dl_,$(USER))) ZI = $(addsuffix .o, $(subst umf_,umf_zi_,$(UMF)) $(subst umfpack_,umfpack_zi_,$(USER))) ZL = $(addsuffix .o, $(subst umf_,umf_zl_,$(UMF)) $(subst umfpack_,umfpack_zl_,$(USER))) II = $(addsuffix .o, $(subst umf_,umf_i_,$(UMFINT))) LL = $(addsuffix .o, $(subst umf_,umf_l_,$(UMFINT))) GN = $(addsuffix .o, $(subst umfpack_,umfpack_gn_,$(GENERIC))) #------------------------------------------------------------------------------- # compile each int and UF_long routine (with no real/complex version) #------------------------------------------------------------------------------- umf_i_%.o: ../Source/umf_%.c $(INC) $(C) -DDINT -c $< -o $@ umf_l_%.o: ../Source/umf_%.c $(INC) $(C) -DDLONG -c $< -o $@ #------------------------------------------------------------------------------- # compile each routine in the DI version #------------------------------------------------------------------------------- umf_di_%.o: ../Source/umf_%.c $(INC) $(C) -DDINT -c $< -o $@ umf_di_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(C) -DDINT -DCONJUGATE_SOLVE -c $< -o $@ umf_di_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(C) -DDINT -DDO_MAP -DDO_VALUES -c $< -o $@ umf_di_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DDINT -DDO_MAP -c $< -o $@ umf_di_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(C) -DDINT -DDO_VALUES -c $< -o $@ umf_di_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DDINT -c $< -o $@ umf_di_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(C) -DDINT -DFIXQ -c $< -o $@ umf_di_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(C) -DDINT -DDROP -c $< -o $@ umfpack_di_wsolve.o: ../Source/umfpack_solve.c $(INC) $(C) -DDINT -DWSOLVE -c $< -o $@ umfpack_di_%.o: ../Source/umfpack_%.c $(INC) $(C) -DDINT -c $< -o $@ #------------------------------------------------------------------------------- # compile each routine in the DL version #------------------------------------------------------------------------------- umf_dl_%.o: ../Source/umf_%.c $(INC) $(C) -DDLONG -c $< -o $@ umf_dl_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(C) -DDLONG -DCONJUGATE_SOLVE -c $< -o $@ umf_dl_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(C) -DDLONG -DDO_MAP -DDO_VALUES -c $< -o $@ umf_dl_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DDLONG -DDO_MAP -c $< -o $@ umf_dl_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(C) -DDLONG -DDO_VALUES -c $< -o $@ umf_dl_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DDLONG -c $< -o $@ umf_dl_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(C) -DDLONG -DFIXQ -c $< -o $@ umf_dl_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(C) -DDLONG -DDROP -c $< -o $@ umfpack_dl_wsolve.o: ../Source/umfpack_solve.c $(INC) $(C) -DDLONG -DWSOLVE -c $< -o $@ umfpack_dl_%.o: ../Source/umfpack_%.c $(INC) $(C) -DDLONG -c $< -o $@ #------------------------------------------------------------------------------- # compile each routine in the ZI version #------------------------------------------------------------------------------- umf_zi_%.o: ../Source/umf_%.c $(INC) $(C) -DZINT -c $< -o $@ umf_zi_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(C) -DZINT -DCONJUGATE_SOLVE -c $< -o $@ umf_zi_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(C) -DZINT -DDO_MAP -DDO_VALUES -c $< -o $@ umf_zi_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DZINT -DDO_MAP -c $< -o $@ umf_zi_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(C) -DZINT -DDO_VALUES -c $< -o $@ umf_zi_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DZINT -c $< -o $@ umf_zi_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(C) -DZINT -DFIXQ -c $< -o $@ umf_zi_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(C) -DZINT -DDROP -c $< -o $@ umfpack_zi_wsolve.o: ../Source/umfpack_solve.c $(INC) $(C) -DZINT -DWSOLVE -c $< -o $@ umfpack_zi_%.o: ../Source/umfpack_%.c $(INC) $(C) -DZINT -c $< -o $@ #------------------------------------------------------------------------------- # compile each routine in the ZL version #------------------------------------------------------------------------------- umf_zl_%.o: ../Source/umf_%.c $(INC) $(C) -DZLONG -c $< -o $@ umf_zl_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(C) -DZLONG -DCONJUGATE_SOLVE -c $< -o $@ umf_zl_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(C) -DZLONG -DDO_MAP -DDO_VALUES -c $< -o $@ umf_zl_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DZLONG -DDO_MAP -c $< -o $@ umf_zl_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(C) -DZLONG -DDO_VALUES -c $< -o $@ umf_zl_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(C) -DZLONG -c $< -o $@ umf_zl_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(C) -DZLONG -DFIXQ -c $< -o $@ umf_zl_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(C) -DZLONG -DDROP -c $< -o $@ umfpack_zl_wsolve.o: ../Source/umfpack_solve.c $(INC) $(C) -DZLONG -DWSOLVE -c $< -o $@ umfpack_zl_%.o: ../Source/umfpack_%.c $(INC) $(C) -DZLONG -c $< -o $@ #------------------------------------------------------------------------------- # Create the generic routines (GN) using a generic rule #------------------------------------------------------------------------------- umfpack_gn_%.o: ../Source/umfpack_%.c $(INC) $(C) -c $< -o $@ #------------------------------------------------------------------------------- # Create the ../Lib/libumfpack.a library #------------------------------------------------------------------------------- ../Lib/libumfpack.a: $(II) $(LL) $(GN) $(DI) $(DL) $(ZI) $(ZL) $(AR) ../Lib/libumfpack.a $^ - $(RANLIB) ../Lib/libumfpack.a #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) ../Lib/libumfpack.a clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/Lib/libumfpack.def0000644001170100242450000000447510170555533016356 0ustar davisfacLIBRARY libumfpack.dll EXPORTS umfpack_di_col_to_triplet umfpack_di_defaults umfpack_di_free_numeric umfpack_di_free_symbolic umfpack_di_get_numeric umfpack_di_get_lunz umfpack_di_get_symbolic umfpack_di_get_determinant umfpack_di_numeric umfpack_di_qsymbolic umfpack_di_report_control umfpack_di_report_info umfpack_di_report_matrix umfpack_di_report_numeric umfpack_di_report_perm umfpack_di_report_status umfpack_di_report_symbolic umfpack_di_report_triplet umfpack_di_report_vector umfpack_di_solve umfpack_di_wsolve umfpack_di_symbolic umfpack_di_transpose umfpack_di_triplet_to_col umfpack_di_scale umfpack_dl_col_to_triplet umfpack_dl_defaults umfpack_dl_free_numeric umfpack_dl_free_symbolic umfpack_dl_get_numeric umfpack_dl_get_lunz umfpack_dl_get_symbolic umfpack_dl_get_determinant umfpack_dl_numeric umfpack_dl_qsymbolic umfpack_dl_report_control umfpack_dl_report_info umfpack_dl_report_matrix umfpack_dl_report_numeric umfpack_dl_report_perm umfpack_dl_report_status umfpack_dl_report_symbolic umfpack_dl_report_triplet umfpack_dl_report_vector umfpack_dl_solve umfpack_dl_wsolve umfpack_dl_symbolic umfpack_dl_transpose umfpack_dl_triplet_to_col umfpack_dl_scale umfpack_zi_col_to_triplet umfpack_zi_defaults umfpack_zi_free_numeric umfpack_zi_free_symbolic umfpack_zi_get_numeric umfpack_zi_get_lunz umfpack_zi_get_symbolic umfpack_zi_get_determinant umfpack_zi_numeric umfpack_zi_qsymbolic umfpack_zi_report_control umfpack_zi_report_info umfpack_zi_report_matrix umfpack_zi_report_numeric umfpack_zi_report_perm umfpack_zi_report_status umfpack_zi_report_symbolic umfpack_zi_report_triplet umfpack_zi_report_vector umfpack_zi_solve umfpack_zi_wsolve umfpack_zi_symbolic umfpack_zi_transpose umfpack_zi_triplet_to_col umfpack_zi_scale umfpack_zl_col_to_triplet umfpack_zl_defaults umfpack_zl_free_numeric umfpack_zl_free_symbolic umfpack_zl_get_numeric umfpack_zl_get_lunz umfpack_zl_get_symbolic umfpack_zl_get_determinant umfpack_zl_numeric umfpack_zl_qsymbolic umfpack_zl_report_control umfpack_zl_report_info umfpack_zl_report_matrix umfpack_zl_report_numeric umfpack_zl_report_perm umfpack_zl_report_status umfpack_zl_report_symbolic umfpack_zl_report_triplet umfpack_zl_report_vector umfpack_zl_solve umfpack_zl_wsolve umfpack_zl_symbolic umfpack_zl_transpose umfpack_zl_triplet_to_col umfpack_zl_scale umfpack_timer umfpack_tic umfpack_toc SuiteSparse/UMFPACK/Demo/0000755001170100242450000000000010711435725013726 5ustar davisfacSuiteSparse/UMFPACK/Demo/HB/0000755001170100242450000000000010006260706014207 5ustar davisfacSuiteSparse/UMFPACK/Demo/HB/can_24.psa0000644001170100242450000000171410006260706015765 0ustar davisfac1SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. CAN 24 8 2 6 0 0 PSA 24 24 92 0 (16I5) (16I5) 1 10 16 22 28 34 39 45 52 55 60 65 69 71 73 74 77 78 81 83 86 89 91 92 93 1 6 7 13 14 18 19 20 22 2 9 10 14 15 18 3 7 12 21 22 23 4 8 11 16 19 20 5 8 10 15 16 17 6 7 13 14 18 7 12 13 20 22 24 8 10 15 16 17 18 19 9 10 15 10 14 15 18 19 11 19 20 21 22 12 13 22 24 13 24 14 18 15 16 17 19 17 18 19 20 19 20 20 21 22 21 22 23 22 23 23 24 SuiteSparse/UMFPACK/Demo/HB/arc130.rua0000644001170100242450000012003210006260706015707 0ustar davisfac1UNSYMMETRIC MATRIX FROM LASER PROBLEM. A.R.CURTIS, OCT 1974 ARC130 502 9 65 428 0 RUA 130 130 1282 0 (16I5) (20I4) (1P3D24.15) 1 41 102 163 224 285 325 344 363 380 397 413 423 433 443 452 461 471 595 597 721 722 723 724 725 726 732 737 744 750 755 761 766 773 779 785 791 796 801 806 812 818 824 830 836 841 847 852 858 863 868 874 879 884 889 896 903 908 914 919 925 931 936 943 948 953 959 964 971 976 981 986 991 997 1002 1008 1013 1018 1023 1028 1033 1038 1043 1048 1053 1058 1063 1068 1073 1078 1083 1088 1093 1098 1103 1108 1113 1118 1123 1128 1133 1138 1143 1148 1153 1158 1163 1168 1173 1178 1183 1188 1193 1198 1203 1208 1213 1218 1223 1228 1233 1238 1243 1248 1253 1258 1263 1268 1273 1278 1283 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 26 27 31 32 36 37 41 42 46 47 51 52 56 57 61 62 66 67 71 72 76 77 81 82 86 87 91 92 96 97 101 102 106 107 111 112 116 117 121 122 126 127 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 27 28 32 33 37 38 42 43 47 48 52 53 57 58 62 63 67 68 72 73 77 78 82 83 87 88 92 93 97 98 102 103 107 108 112 113 117 118 122 123 127 128 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 28 29 33 34 38 39 43 44 48 49 53 54 58 59 63 64 68 69 73 74 78 79 83 84 88 89 93 94 98 99 103 104 108 109 113 114 118 119 123 124 128 129 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 29 30 34 35 39 40 44 45 49 50 54 55 59 60 64 65 69 70 74 75 79 80 84 85 89 90 94 95 99 100 104 105 109 110 114 115 119 120 124 125 129 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 1 2 3 4 5 6 7 8 9 12 13 14 15 17 18 19 20 1 2 3 4 5 6 7 8 10 11 12 14 15 17 18 19 20 1 2 3 4 5 6 7 8 11 12 14 15 17 18 19 20 7 9 11 12 13 14 15 18 19 20 7 9 11 12 13 14 15 18 19 20 8 10 11 12 14 15 17 18 19 20 1 2 3 4 5 6 15 18 20 1 2 3 4 5 6 16 18 20 1 2 3 4 5 6 11 17 18 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 21 22 23 24 25 1 2 11 20 21 26 2 3 20 22 27 3 4 11 18 20 23 28 4 5 11 20 24 29 5 6 20 25 30 1 2 11 20 21 31 2 3 20 22 32 3 4 11 18 20 23 33 4 5 11 20 24 34 5 6 18 20 25 35 1 2 11 20 21 36 2 3 20 22 37 3 4 20 23 38 4 5 20 24 39 5 6 18 20 25 40 1 2 18 20 21 41 2 3 18 20 22 42 3 4 11 20 23 43 4 5 11 20 24 44 5 6 20 25 45 1 2 18 20 21 46 2 3 20 22 47 3 4 11 20 23 48 4 5 20 24 49 5 6 20 25 50 1 2 11 20 21 51 2 3 20 22 52 3 4 20 23 53 4 5 20 24 54 5 6 11 18 20 25 55 1 2 11 18 20 21 56 2 3 20 22 57 3 4 18 20 23 58 4 5 20 24 59 5 6 18 20 25 60 1 2 11 20 21 61 2 3 20 22 62 3 4 11 18 20 23 63 4 5 20 24 64 5 6 20 25 65 1 2 11 20 21 66 2 3 20 22 67 3 4 11 18 20 23 68 4 5 20 24 69 5 6 20 25 70 1 2 20 21 71 2 3 20 22 72 3 4 11 20 23 73 4 5 20 24 74 5 6 11 20 25 75 1 2 20 21 76 2 3 20 22 77 3 4 20 23 78 4 5 20 24 79 5 6 20 25 80 1 2 20 21 81 2 3 20 22 82 3 4 20 23 83 4 5 20 24 84 5 6 20 25 85 1 2 20 21 86 2 3 20 22 87 3 4 20 23 88 4 5 20 24 89 5 6 20 25 90 1 2 20 21 91 2 3 20 22 92 3 4 20 23 93 4 5 20 24 94 5 6 20 25 95 1 2 20 21 96 2 3 20 22 97 3 4 20 23 98 4 5 20 24 99 5 6 20 25 100 1 2 20 21 101 2 3 20 22 102 3 4 20 23 103 4 5 20 24 104 5 6 20 25 105 1 2 20 21 106 2 3 20 22 107 3 4 20 23 108 4 5 20 24 109 5 6 20 25 110 1 2 20 21 111 2 3 20 22 112 3 4 20 23 113 4 5 20 24 114 5 6 20 25 115 1 2 20 21 116 2 3 20 22 117 3 4 20 23 118 4 5 20 24 119 5 6 20 25 120 1 2 20 21 121 2 3 20 22 122 3 4 20 23 123 4 5 20 24 124 5 6 20 25 125 1 2 20 21 126 2 3 20 22 127 3 4 20 23 128 4 5 20 24 129 5 6 20 25 130 1.000000408955316D+00 -6.310289677458059D-07 2.096665525641583D-07 6.421004172807443D-08 3.956404981408923D-09 6.194351698241007D-10 5.637896549615107D-08 -5.637896549615107D-08 -5.637896549615107D-08 0.0 0.0 1.127578798332252D-06 -5.637896549615107D-08 -5.074106752545049D-07 6.088927761993546D-07 -5.637896549615107D-08 -2.043932134654369D-09 0.0 1.878335326910019D-02 3.624941025245822D-16 6.846256028048394D-16 8.682574753301250D-16 8.829475677343563D-16 7.596007241310538D-16 5.641173783660228D-16 3.637011244744196D-16 2.010050211992837D-16 9.149849743076945D-17 3.147608842710462D-17 7.345189304361637D-18 1.130718674232424D-18 1.234088333455879D-19 1.030108373210172D-20 6.833493328871848D-22 3.659321266573640D-23 1.588981222142243D-24 5.608268555010370D-26 1.610701819995700D-27 3.764561095514044D-29 7.172442880553562D-31 -1.426527305739000D-04 1.000147870872752D+00 -5.613608664134517D-06 4.753307507598947D-07 -5.725276253087941D-09 -1.773762647871990D-08 5.637896549615107D-08 -5.637896549615107D-08 -5.637896549615107D-08 0.0 8.516936613432724D-15 1.127578798332252D-06 -5.637896549615107D-08 -5.074106752545049D-07 6.088927761993546D-07 -5.637896549615107D-08 1.437741730114794D-07 0.0 -1.321256637573242D+00 -1.114484955602561D-14 1.733296665917816D-12 -2.074384704265318D-14 2.677037702625285D-09 -2.624046067782083D-14 6.328248787212942D-07 -2.673591396559240D-14 3.107915290456731D-06 -2.314677109379638D-14 3.159706807309703D-07 -1.742469422872858D-14 2.779751095971505D-09 -1.155559277280817D-14 1.449127970398756D-11 -6.786512676696180D-15 1.984121417511475D-13 -3.535647235462748D-15 1.024009300748183D-14 -1.631147863670078D-15 1.059880891954518D-15 -6.681999398916840D-16 1.302165587382207D-16 -2.461975376577509D-16 1.523580661538971D-17 -8.232749965727973D-17 1.550961994175702D-18 -2.496269623029467D-17 1.321670733700876D-19 -6.841421422065817D-18 9.270355296549564D-21 -1.693073277773537D-18 5.325857707782005D-22 -3.781317617533563D-19 2.498061216103135D-23 -7.624842319058412D-20 9.576834498255501D-25 -1.388670166119169D-20 3.002645577625813D-26 -2.284276225230092D-21 7.695759909088791D-28 -3.396618468231539D-22 1.614779109984465D-29 3.172130163875408D-06 -4.288838244974613D-04 1.050343558192253D+00 -4.991767182946205D-02 -9.393625077791512D-08 -2.995422221374611D-08 5.637896549615107D-08 -5.637896549615107D-08 -5.637896549615107D-08 0.0 -1.143995922298080D-15 1.127578798332252D-06 -5.637896549615107D-08 -5.074106752545049D-07 6.088927761993546D-07 -5.637896549615107D-08 -1.144809175457340D-06 0.0 1.052057933807373D+01 -1.889024527079730D-12 2.473666237123862D-12 -3.191809705427318D-09 4.265404740522172D-08 -8.364604013877397D-07 3.888504579663277D-04 -4.564798473438714D-06 3.816828131675720D-02 -5.168877237338165D-07 1.131986826658249D-02 -5.076469022924357D-09 3.749688039533794D-05 -2.963390643984098D-11 1.865166154857434D-08 -4.676906106317047D-13 1.635970525715180D-11 -3.327468305774385D-14 1.099596759132626D-13 -6.362139005726408D-15 5.006533924413470D-15 -1.834683316389945D-15 4.881095121188686D-16 -5.997685715994827D-16 5.444201036336569D-17 -1.954991746932328D-16 5.645564756136680D-18 -5.996761655988932D-17 5.045512223359075D-19 -1.687755499051556D-17 3.764540326759457D-20 -4.318695916068944D-18 2.317379201706768D-21 -1.000719796344203D-18 1.172540887632911D-22 -2.099449018144940D-19 4.871730427049952D-24 -3.988113352283189D-20 1.662654519802644D-25 -6.857663320188449D-21 4.662922914394380D-27 -1.068200969380841D-21 1.074941789167073D-28 9.677614798420109D-07 -1.245291059603915D-06 -7.536840438842773D-02 1.075373947620392D+00 -5.109401172376238D-06 -1.163272145277006D-07 5.637896549615107D-08 -5.637896549615107D-08 -5.637896549615107D-08 0.0 2.726002957774963D-15 1.127578798332252D-06 -5.637896549615107D-08 -5.074106752545049D-07 6.088927761993546D-07 -5.637896549615107D-08 3.242677848902531D-06 0.0 -2.979957580566406D+01 -2.690164063734457D-12 1.124147229838481D-14 -5.062177166337278D-08 2.393615836679235D-14 -5.103659350425005D-04 3.258340252883067D-14 -5.552677810192108D-02 3.506025222747844D-14 -1.829450204968452D-02 3.150090797476683D-14 -6.747333100065589D-05 2.389203133837219D-14 -3.745336840665914D-08 1.510693087010233D-14 -3.676196846935653D-11 7.677818342037568D-15 -2.876134660295682D-13 2.945648553635133D-15 -1.940820822197292D-14 8.095830795573460D-16 -3.855263683164370D-15 1.612334891334645D-16 -1.105984048240622D-15 2.450439846627089D-17 -3.484403436219757D-16 2.962714454342404D-18 -1.076261635651689D-16 2.911501014282256D-19 -3.103228286741277D-17 2.346465182333734D-20 -8.193536641609284D-18 1.555002212474875D-21 -1.967818836691188D-18 8.483679018543260D-23 -4.290093147860203D-19 3.815631846132649D-24 -8.487715775043102D-20 1.415514258958216D-25 -1.524028579840669D-20 4.334547236644489D-27 -2.483863638318878D-21 1.096037222071676D-28 2.067174023068219D-07 -3.464035103206697D-07 8.871005547916866D-07 -1.004851656034589D-03 1.001007388811558D+00 -3.227999513910618D-06 5.637894062715532D-08 -5.637894062715532D-08 -5.637894062715532D-08 0.0 0.0 1.127578798332252D-06 -5.637894062715532D-08 -5.074106752545049D-07 6.088923782954225D-07 -5.637894062715532D-08 9.148621415988600D-07 0.0 -8.407408714294434D+00 -4.977862197962091D-14 8.301786856698343D-15 -9.878084678352494D-14 1.892736794660739D-14 -1.325998230487790D-13 2.600578511758635D-14 -1.439277841873421D-13 2.763043835613335D-14 -1.330588200385008D-13 2.406133628386938D-14 -1.065598347407826D-13 1.723105233259088D-14 -7.396622377087159D-14 9.875153944354995D-15 -4.402636024844475D-14 4.349897043042991D-15 -2.220723876057012D-14 1.437176048199422D-15 -9.662081112407281D-15 3.596410837999929D-16 -3.830770878461565D-15 7.011335073232172D-17 -1.436664440299280D-15 1.093826418912559D-17 -5.079756111055342D-16 1.388715480107101D-18 -1.665747200801725D-16 1.447536603658476D-19 -5.007023509456983D-17 1.243767186728059D-20 -1.371575222480206D-17 8.829125121689631D-22 -3.416913538430984D-18 5.181441636060790D-23 -7.740067027423400D-19 2.517640901542902D-24 -1.594267587579844D-19 1.013315498583546D-25 -2.986853872288083D-20 3.380210430601726D-27 -5.090734445941291D-21 9.355154149199958D-29 1.471342443437607D-07 -1.266278104594676D-07 4.008210794381739D-07 1.813951712392736D-06 -1.041745999827981D-03 1.001039566937834D+00 5.637089728338651D-08 -5.637089728338651D-08 -5.637896549615107D-08 -8.085981537120368D-12 -4.542686146409396D-14 1.127425093727652D-06 -5.637896549615107D-08 -5.073379156783631D-07 6.087796009524027D-07 -5.637089728338651D-08 9.095310815609992D-07 0.0 -8.358414649963379D+00 -5.387848167289801D-14 -1.065863976940085D-13 -1.420175283796399D-13 -1.525375420592667D-13 -1.390970129876157D-13 -1.094549255918620D-13 -7.446164995358884D-14 -4.389770949628398D-14 -2.282676882258729D-14 -1.078032045684525D-14 -4.709645488269049D-15 -1.906120381095478D-15 -7.101397174837966D-16 -2.421286031373780D-16 -7.530431274023090D-17 -2.133795108141790D-17 -5.505686860192738D-18 -1.294189415607603D-18 -2.771874994834836D-19 -5.410633946266530D-20 -9.630518136308248D-21 -1.259340933756903D-05 -1.634575164644048D-04 -3.157716710120440D-04 -5.238812882453203D-04 -1.138667576014996D-04 -2.637367288116366D-05 1.001156237442046D+00 -1.022412441670895D-03 -1.463538410462206D-07 1.089178491383791D-03 6.691245653200895D-05 2.203556895256042D-02 -1.463538410462206D-07 -9.134795516729355D-03 1.585229113698006D-02 -1.022412441670895D-03 4.045813511766028D-06 6.691245653200895D-05 -3.734263610839844D+01 -4.186565638519824D-05 -1.590017291164258D-07 -1.589597218298877D-07 -1.589597218298877D-07 -1.589597218298877D-07 -1.589597218298877D-07 -4.075298784300685D-05 1.000055276526837D+00 4.170673491898924D-05 -6.308013325906359D-06 7.261772225319874D-06 -8.087516762316227D-04 4.170673491898924D-05 5.047505255788565D-04 -4.733889363706112D-04 5.527652683667839D-05 4.606268078077846D-08 7.261772225319874D-06 -4.409304857254028D-01 -1.230297129950486D-06 -1.238937771819160D-12 -2.037324342022181D-18 0.0 0.0 0.0 -1.230298039445188D-06 1.230298039445188D-06 1.000001230298039D+00 -2.460596442688257D-05 1.230298039445188D-06 1.107268144551199D-05 -1.328722373727942D-05 1.230298039445188D-06 -2.200477799974010D-09 0.0 2.022196725010872D-02 -7.543263791376376D-09 -7.543263791376376D-07 -1.508652530901600D-06 -2.539273737056646D-06 -5.087317163088301D-07 -7.543263791376376D-08 5.393962055677548D-06 -5.393962055677548D-06 1.000005393962056D+00 0.0 1.024852826958522D-04 -4.854565486311913D-05 7.551546150352806D-05 -5.393962055677548D-06 1.420877993041358D-08 0.0 -1.305759549140930D-01 -4.203418058068564D-09 -4.203418058068564D-09 -4.203418058068564D-09 -4.203418058068564D-09 -4.203418058068564D-09 -4.203418058068564D-09 2.522051900655242D-08 2.522051900655242D-08 1.000000025220519D+00 5.044103090767749D-07 2.522051545383874D-07 2.269846390845487D-07 2.522051900655242D-08 2.554505496021875D-10 2.522051900655242D-08 -2.408750355243683D-03 2.477248961518796D-11 -1.238624654231746D-11 1.238624654231746D-11 1.000000000495450D+00 -1.238624654231746D-11 1.238625261384962D-11 2.452476000058823D-10 1.574671382870152D-13 1.238624654231746D-11 -1.477152181905694D-06 2.184934178028897D-11 -1.092467522695317D-11 1.092467522695317D-11 4.369868911169306D-10 9.999999999890753D-01 1.092467522695317D-11 2.163085821571542D-10 1.388860272448500D-13 1.092467522695317D-11 -1.302848431805614D-06 1.345329678770213D-07 -6.726645551680122D-08 6.726645551680122D-08 6.726645551680122D-08 1.000001278062882D+00 -3.363325618011004D-07 1.345329678770213D-07 4.668525566131621D-10 6.726645551680122D-08 -4.453532397747040D-03 -1.054020426494162D-09 -4.277477927416840D-09 -1.088280576766465D-09 4.067786107952998D-09 1.694434592636185D-09 6.575595623559138D-10 1.000000000000000D+00 1.521864578801768D-11 -1.398565364070237D-04 -5.132014604947166D-12 -2.082700678585070D-11 -5.298826481758834D-12 1.980600405904198D-11 8.250184389824167D-12 3.201650750073171D-12 1.000000000000000D+00 7.409947221787005D-14 -6.809601131863019D-07 -6.473783287219703D-08 -4.636610242414463D-07 -5.365741913010424D-07 7.723452881691628D-07 2.271788730467961D-07 6.544928510265891D-08 0.0 1.000000000000000D+00 1.931242499253472D-09 -1.774775609374046D-02 -4.218190908432007D-03 -3.070430830121040D-04 -2.048411639407277D-03 8.487612940371037D-04 -1.524399995105341D-04 -4.570157034322619D-05 -2.428856445476413D-03 4.073116928339005D-03 4.175942391157150D-03 9.249553550034761D-04 8.221305906772614D-04 -4.950208216905594D-02 4.175942391157150D-03 3.748018294572830D-02 -2.475163340568542D-02 4.073116928339005D-03 1.000018495076802D+00 8.221305906772614D-04 -1.014492340087891D+02 -2.471087598205393D-17 -1.873189645930362D-13 4.888664885231708D-14 -3.043990772877252D-16 -1.286887362945006D-16 -2.790847829749812D-17 -3.319902130982655D-10 3.139515314387609D-10 -4.006040206456845D-16 -1.686210855062899D-16 -3.125035414666135D-17 -9.123220934270648D-08 -3.244133949920069D-06 -4.812402866748730D-16 -1.976705171837396D-16 -3.494794412900199D-17 -5.191453169572924D-07 -9.969023521989584D-04 -5.606729188860132D-16 -2.226699269983418D-16 -3.903872945243604D-17 -6.099668325987295D-08 -5.238358862698078D-04 -6.322302622700565D-16 -2.419947719317118D-16 -4.343730537307861D-17 -6.189664336631040D-10 -2.593829776742496D-06 -6.731455535124650D-16 -2.488745852875481D-16 -4.778463580041231D-17 -3.720013880270656D-12 -1.776293334643242D-09 -6.517935469780786D-16 -2.327123496209888D-16 -5.103115426856043D-17 -6.057437537676513D-14 -2.046598134020083D-12 -5.521360973271107D-16 -1.877159742293702D-16 -5.069799238760367D-17 -4.548197620390590D-15 -1.881829720805535D-14 -3.943213655176626D-16 -1.259239545802135D-16 -4.296864469034077D-17 -9.248773926893387D-16 -1.645467590918122D-15 -2.305333573641771D-16 -7.042313979789018D-17 -2.772176047218775D-17 -2.775064164871116D-16 -4.056637719561081D-16 -1.113570922349179D-16 -3.375268799619757D-17 -1.308748704287211D-17 -9.240036252646867D-17 -1.296943629262385D-16 -4.625534428392427D-17 -1.425923056676471D-17 -4.840895863954283D-18 -3.032876906515887D-17 -4.265090145600200D-17 -1.706723743114132D-17 -5.404603734977533D-18 -1.517272582187642D-18 -9.324217265533531D-18 -1.336685488705270D-17 -5.681662918068494D-18 -1.854034353170231D-18 -4.197349140592874D-19 -2.625968399791454D-18 -3.870900037102137D-18 -1.715837288230996D-18 -5.777406282236940D-19 -1.041151557505182D-19 -6.720563303536613D-19 -1.023229862353608D-18 -4.706283903187430D-19 -1.637971158256200D-19 -2.326514296817294D-20 -1.557337075156648D-19 -2.458146584996669D-19 -1.172823201387139D-19 -4.226950445047938D-20 -4.691781359097844D-21 -3.267222217268957D-20 -5.359393661610564D-20 -2.656896049584655D-20 -9.936381092496801D-21 -8.545038260582033D-22 -6.206423377690597D-21 -1.060338916542145D-20 -5.472649550870706D-21 -2.128172137901634D-21 -1.405610283842565D-22 -1.067211220312940D-21 -1.903915315123482D-21 -1.025301274472632D-21 -4.154147080474621D-22 -2.090081288584553D-23 -1.662368100185176D-22 -3.103005701485727D-22 -1.747504367213780D-22 -7.394070257460893D-23 2.863205506020705D-11 1.000000000000000D+00 -4.014349741510159D-09 -9.617298624142734D-11 1.790963349845853D-10 -6.729825585694016D-10 -5.825459559183344D-11 -4.065924680274335D-12 -3.366472656196606D-09 3.135385950869818D-09 4.016598609268840D-09 7.656726364047017D-10 -1.155434775634845D-10 -6.809511887695407D-08 4.016598609268840D-09 2.810291377386420D-08 -3.369975942746350D-08 3.135385950869818D-09 -1.771422635313269D-13 -1.155434775634845D-10 9.999941390788081D-01 9.258888843571604D-24 1.602456287903206D-20 2.057477099391917D-22 3.790063917561350D-23 1.265028470551178D-23 2.967497825759503D-23 2.640151404010411D-17 1.192485938020208D-16 8.872690943367984D-23 2.428638932088789D-23 5.485064732149495D-23 5.627280325742889D-15 2.097305835946361D-12 1.503074364226984D-22 3.654340714362437D-23 7.372330513090450D-23 1.681930622879878D-14 2.737321480594801D-10 1.947877940148048D-22 4.299390383295486D-23 7.854277825614900D-23 -4.953118332693719D-16 8.360855063838102D-11 1.958871505723208D-22 3.781022940498793D-23 6.825535047624489D-23 -3.696815741287290D-17 1.911188763671634D-13 1.445337823900475D-22 1.984496358497428D-23 4.766340503378597D-23 -4.550524242880046D-19 -1.640866931465110D-17 5.772616522788313D-23 -4.807225270830030D-24 2.362661130331001D-23 -1.189888325165020D-20 -1.973999840420913D-19 -2.738506020014500D-23 -2.428158042480967D-23 2.509290808861137D-24 -1.294584510672371D-21 -3.717966827098453D-21 -7.478883533280463D-23 -2.996065950125539D-23 -1.037705815595532D-23 -3.566438890326746D-22 -5.413638615218143D-22 -7.477866218257090D-23 -2.431505337074001D-23 -1.238172726552106D-23 -1.375019772551033D-22 -1.876708297674201D-22 -5.030145687504091D-23 -1.532134485362388D-23 -7.948924568162411D-24 -5.671434067641046D-23 -7.661519347879783D-23 -2.663720744022099D-23 -8.085988361583657D-24 -3.645409862282249D-24 -2.248603203033078D-23 -3.072957800279242D-23 -1.198979750198010D-23 -3.714077048638117D-24 -1.364280504177280D-24 -8.197194872253568D-24 -1.145321036994424D-23 -4.748082791043800D-24 -1.512755170592547D-24 -4.417921329419716D-25 -2.697872741419652D-24 -3.879402572849811D-24 -1.677462227854547D-24 -5.512122187882033D-25 -1.265862414857133D-25 -7.973125637443234D-25 -1.184497526155601D-24 -5.315078538823665D-25 -1.805181470815384D-25 -3.233673662629892D-26 -2.112101611057460D-25 -3.253289983263135D-25 -1.514428048749681D-25 -5.326447996620163D-26 -7.390221523433456D-27 -5.021731366753499D-26 -8.038901845796694D-26 -3.888457796247278D-26 -1.419193740413248D-26 -1.513852580882299D-27 -1.072950979457684D-26 -1.788974446777135D-26 -9.009346205447938D-27 -3.419209741603590D-27 -2.782304323808742D-28 -2.061430478961550D-27 -3.589193859239163D-27 -1.886021979637610D-27 -7.457784301440527D-28 -4.595369958630025D-29 -3.566718256788164D-28 -6.497723631603045D-28 -3.570664487244213D-28 -1.474525909938138D-28 1.000000000000000D+00 1.000000000000000D+00 1.000000000000000D+00 1.000000000000000D+00 1.000000000000000D+00 7.811995148658752D-01 -7.201683521270752D-01 0.0 0.0 -5.653844921875000D+04 1.740456342697144D+00 -8.308809995651245D-02 8.304953575134277D-02 -5.771726608276367D+00 -5.449882812500000D+04 9.420697018504143D-01 2.393694594502449D-02 -2.386506274342537D-02 7.188270683400333D-05 0.0 0.0 -5.246062109375000D+04 1.049086261540651D+00 1.366583108901978D-01 -1.281171441078186D-01 0.0 0.0 -5.045838671875000D+04 1.151831865310669D+00 4.490368068218231D-02 -4.476334899663925D-02 0.0 -4.844616015625000D+04 1.070025980472565D+00 1.036765098571777D+00 -1.198760032653809D+00 -1.727943420410156D-01 0.0 -5.611478125000000D+04 2.215560913085937D+00 -1.629607677459717D-01 1.629607677459717D-01 -2.116955566406250D+01 -5.408718359375000D+04 8.621966838836670D-01 1.399642601609230D-02 -1.399642601609230D-02 0.0 -2.007014927585260D-07 1.844083786010742D+00 -5.207436718750000D+04 1.039153832942247D+00 2.189477086067200D-01 -2.052634358406067D-01 1.824564114212990D-02 0.0 -5.007060937500000D+04 1.231180489063263D+00 7.386076450347900D-02 -7.407057285308838D-02 0.0 0.0 -4.807021875000000D+04 1.099351406097412D+00 1.389152526855469D+00 -1.331271171569824D+00 0.0 0.0 -5.567945703125000D+04 2.367364883422852D+00 -2.162640094757080D-01 2.162640094757080D-01 -4.326069641113281D+01 -5.366410156250000D+04 8.088933825492859D-01 -1.824025437235832D-02 1.824025437235832D-02 -3.646347999572754D+00 -5.166330859375000D+04 1.006917160004377D+00 2.334227561950684D-01 -2.275872230529785D-01 0.0 -4.967141796875000D+04 1.252006113529205D+00 8.269733190536499D-02 -8.349931240081787D-02 0.0 0.0 -4.768283984375000D+04 1.108648717403412D+00 1.188438415527344D+00 -1.216734886169434D+00 0.0 0.0 -5.523291015625000D+04 2.239842414855957D+00 -2.303062677383423D-01 2.303062677383423D-01 6.817922439950053D-06 -6.265542602539062D+01 -5.322976562500000D+04 7.948511838912964D-01 -5.301721021533012D-02 5.301721021533012D-02 0.0 -1.431075477600098D+01 -5.124100000000000D+04 9.721402078866959D-01 2.035216093063354D-01 -2.001296281814575D-01 0.0 0.0 -4.926116406250000D+04 1.225186288356781D+00 7.491928339004517D-02 -7.571291923522949D-02 0.0 -4.728442578125000D+04 1.100826203823090D+00 9.620693325996399D-01 -9.302363991737366D-01 0.0 0.0 -5.477548437500000D+04 1.955817461013794D+00 -2.077405452728271D-01 2.077405452728271D-01 -7.184405517578125D+01 -5.278476953125000D+04 8.174169063568115D-01 -7.419836521148682D-02 7.419836521148682D-02 0.0 -2.535458374023437D+01 -5.080805859375000D+04 9.509590044617653D-01 1.569298505783081D-01 -1.486306786537170D-01 0.0 -4.884024609375000D+04 1.173709630966187D+00 5.782072991132736D-02 -5.818950012326241D-02 0.0 -4.687537109375000D+04 1.083329916000366D+00 6.685049533843994D-01 -6.127962470054626D-01 1.114175319671631D-01 0.0 -5.430739843750000D+04 1.642910003662109D+00 -1.625726222991943D-01 1.625726222991943D-01 -6.851022338867187D+01 -5.232892187500000D+04 8.625847697257996D-01 -7.636785507202148D-02 7.636785507202148D-02 -3.171057128906250D+01 -5.036466406250000D+04 9.487895332276821D-01 8.871358633041382D-02 -9.425818920135498D-02 0.0 -4.840866406250000D+04 1.119902253150940D+00 3.970580548048019D-02 -3.875695168972015D-02 -1.868509128689766D-02 0.0 0.0 -4.645562890625000D+04 1.063922047615051D+00 4.062695503234863D-01 -3.618338108062744D-01 0.0 0.0 0.0 -5.382864453125000D+04 1.385215580463409D+00 -1.119138002395630D-01 1.119064092636108D-01 -5.542092895507812D+01 -5.186281250000000D+04 9.132438302040100D-01 -6.388950347900391D-02 6.388950347900391D-02 3.410244971746579D-06 -3.133937072753906D+01 -4.991057812500000D+04 9.612678736448288D-01 5.389992520213127D-02 -5.187865719199181D-02 0.0 -4.796682031250000D+04 1.077387571334839D+00 2.305793017148972D-02 -2.265761792659760D-02 0.0 0.0 -4.602543750000000D+04 1.047769121825695D+00 1.912040114402771D-01 -1.852288842201233D-01 0.0 0.0 -5.333987500000000D+04 1.210645496845245D+00 -6.831127405166626D-02 6.840813159942627D-02 -2.901747131347656D+01 -5.138643750000000D+04 9.568538181483746D-01 -4.531185328960419D-02 4.531185328960419D-02 0.0 2.789366590150166D-06 -2.550216674804687D+01 -4.944372265625000D+04 9.798460863530636D-01 2.319774404168129D-02 -2.464760094881058D-02 0.0 -4.751471484375000D+04 1.049969587475061D+00 1.143456250429153D-02 -1.153665781021118D-02 0.0 -4.558538281250000D+04 1.036741930991411D+00 9.722059965133667D-02 -8.506804704666138D-02 0.0 0.0 -5.284100000000000D+04 1.110036253929138D+00 -3.708969801664352D-02 3.684729337692261D-02 0.0 -5.090041796875000D+04 9.880154319107533D-01 -2.788387611508369D-02 2.788387611508369D-02 0.0 2.178428985644132D-06 -1.827397155761719D+01 -4.882808593750000D+04 9.973230699542910D-01 0.0 -1.018907129764557D-02 0.0 -4.705296093750000D+04 1.035176958888769D+00 4.984032362699509D-03 -5.139783024787903D-03 0.0 -4.513525781250000D+04 1.030361384153366D+00 1.168304681777954D-01 -2.920761704444885D-02 0.0 -5.233266406250000D+04 1.059764284640551D+00 -1.802648976445198D-02 2.338571846485138D-02 0.0 -5.040475000000000D+04 1.007092889398336D+00 -1.836121454834938D-02 1.836121454834938D-02 0.0 0.0 -4.950804687500000D+04 1.010153356939554D+00 2.381398528814316D-02 -4.465121775865555D-03 0.0 -4.658174609375000D+04 1.028476625680923D+00 0.0 -1.977193402126431D-03 0.0 0.0 -4.467566796875000D+04 1.027193285524845D+00 0.0 -1.157634705305099D-02 0.0 -5.181486718750000D+04 1.037754297256470D+00 -7.477629929780960D-03 0.0 0.0 -4.989975390625000D+04 1.017277095466852D+00 0.0 0.0 0.0 -4.388837500000000D+04 1.017999485135078D+00 0.0 -2.978397300466895D-03 0.0 -4.610101562500000D+04 1.025970183312893D+00 0.0 0.0 0.0 -4.420680468750000D+04 1.025839652866125D+00 0.0 0.0 0.0 -5.128776953125000D+04 1.029255405068398D+00 -4.347227513790131D-03 0.0 0.0 -4.938562109375000D+04 1.022067971527576D+00 0.0 0.0 0.0 -3.449262500000000D+04 1.022117994725704D+00 0.0 0.0 0.0 -4.561122656250000D+04 1.025238625705242D+00 0.0 -1.408393494784832D-03 0.0 -4.372866796875000D+04 1.025346063077450D+00 0.0 0.0 0.0 -5.075201562500000D+04 1.026350062340498D+00 0.0 0.0 0.0 -4.886151953125000D+04 1.024067506194115D+00 0.0 0.0 0.0 -1.051556250000000D+05 1.024003818631172D+00 0.0 1.899568364024162D-02 0.0 -4.511256640625000D+04 1.025104723870754D+00 0.0 3.719797125086188D-03 0.0 -4.324184375000000D+04 1.025196127593517D+00 0.0 0.0 0.0 -5.020757421875000D+04 1.025468096137047D+00 0.0 0.0 0.0 -4.833664062500000D+04 1.024810910224915D+00 0.0 0.0 0.0 0.0 1.024764768779278D+00 0.0 0.0 0.0 -4.460540625000000D+04 1.025115087628365D+00 0.0 0.0 0.0 -4.274633984375000D+04 1.025160629302263D+00 0.0 0.0 0.0 -4.965484765625000D+04 1.025229826569557D+00 0.0 0.0 0.0 -4.778404687500000D+04 1.025058060884476D+00 0.0 0.0 0.0 0.0 1.025037329643965D+00 0.0 0.0 0.0 -4.408996093750000D+04 1.025137882679701D+00 0.0 0.0 0.0 -4.224254687500000D+04 1.025155592709780D+00 0.0 0.0 0.0 -4.909400000000000D+04 1.025172512978315D+00 0.0 0.0 0.0 -4.720000000000000D+04 1.025131687521935D+00 0.0 0.0 0.0 0.0 1.025124348700047D+00 0.0 0.0 0.0 -4.356644531250000D+04 1.025150395929813D+00 0.0 0.0 0.0 -4.173044140625000D+04 1.025156177580357D+00 0.0 0.0 0.0 -4.852547656250000D+04 1.025160226970911D+00 0.0 0.0 0.0 -4.671788281250000D+04 1.025151398032904D+00 0.0 0.0 0.0 0.0 1.025149203836918D+00 0.0 0.0 0.0 -4.303501953125000D+04 1.025155294686556D+00 0.0 0.0 0.0 -4.121045312500000D+04 1.025156926363707D+00 0.0 0.0 0.0 -4.794926171875000D+04 1.025157883763313D+00 0.0 0.0 0.0 -4.640971484375000D+04 1.025156144052744D+00 0.0 0.0 0.0 0.0 1.025155574083328D+00 0.0 0.0 0.0 -4.249608593750000D+04 1.025156859308481D+00 0.0 0.0 0.0 -4.068298437500000D+04 1.025157265365124D+00 0.0 0.0 0.0 -4.736593359375000D+04 1.025157485157251D+00 0.0 0.0 0.0 -4.888311328125000D+04 1.025157172232866D+00 0.0 0.0 0.0 0.0 1.025157041847706D+00 0.0 0.0 0.0 -4.194966796875000D+04 1.025157287716866D+00 0.0 0.0 0.0 -4.014781640625000D+04 1.025157377123833D+00 0.0 0.0 0.0 -4.677552734375000D+04 1.025157421827316D+00 0.0 0.0 0.0 -9.480337500000000D+04 1.025157373398542D+00 0.0 0.0 0.0 0.0 1.025157347321510D+00 0.0 0.0 0.0 -4.139616796875000D+04 1.025157388299704D+00 0.0 0.0 0.0 -3.960572656250000D+04 1.025157406926155D+00 0.0 0.0 0.0 -4.617843750000000D+04 1.025157414376736D+00 0.0 0.0 0.0 0.0 1.025157406926155D+00 0.0 0.0 0.0 0.0 1.025157403200865D+00 0.0 0.0 0.0 -4.083592968750000D+04 1.025157410651445D+00 0.0 0.0 0.0 -3.905636718750000D+04 1.025157410651445D+00 SuiteSparse/UMFPACK/Demo/HB/fs_183_6.rua0000644001170100242450000007107110006260706016156 0ustar davisfac1UNSYMMETRIC FACSIMILE CONVERGENCE MATRIX FS 183 6 357 17 72 268 0 RUA 183 183 1069 0 (11I7) (15I5) (4D20.12) 1 106 142 149 152 155 158 162 166 170 175 181 187 196 199 203 207 210 213 216 224 232 239 248 255 264 270 275 280 287 292 296 300 303 306 309 312 315 318 321 324 327 342 352 356 362 365 371 374 431 435 439 440 441 442 443 449 456 460 466 472 479 486 490 496 503 507 509 515 517 523 529 532 538 545 547 554 558 565 567 574 581 588 590 595 599 601 607 610 612 618 625 632 639 646 648 655 659 661 668 672 674 676 682 685 690 693 697 701 706 709 711 717 720 726 732 736 739 744 747 749 753 759 765 768 773 779 785 790 795 801 807 813 819 828 837 844 948 950 953 965 969 971 973 976 977 978 979 980 981 982 983 984 985 986 987 988 989 991 996 1001 1006 1009 1012 1017 1020 1024 1027 1030 1033 1036 1039 1042 1045 1048 1050 1053 1056 1058 1061 1063 1065 1068 1070 1 2 20 21 22 23 24 26 27 42 43 44 49 50 51 56 57 59 60 61 62 64 65 67 68 70 71 72 73 74 75 76 78 79 80 81 82 83 84 86 87 89 90 91 92 93 94 95 96 98 99 101 102 103 104 105 106 107 109 110 112 113 114 115 116 118 119 122 123 124 125 126 127 128 129 130 131 132 133 136 137 140 144 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 179 182 1 2 42 43 45 46 51 52 53 57 58 62 63 65 66 76 77 84 85 96 97 99 100 108 109 110 111 118 119 120 121 136 137 140 141 147 3 49 137 142 143 144 146 4 137 138 5 137 158 6 56 137 7 64 70 137 8 59 60 137 9 74 78 137 10 80 81 82 137 11 91 92 93 94 137 12 20 42 68 69 137 13 20 21 42 43 69 73 137 158 14 125 137 15 103 137 178 16 115 137 181 17 112 137 18 122 137 19 123 137 4 20 43 45 48 137 138 140 4 21 43 45 57 137 140 158 4 6 22 43 56 62 137 4 7 12 21 23 43 64 65 137 4 7 24 43 70 76 137 4 8 13 21 25 43 60 84 137 4 26 57 71 137 158 27 56 57 61 137 28 56 62 90 137 29 57 64 65 87 137 158 30 57 70 76 158 20 31 43 137 21 32 43 137 33 127 137 34 128 137 35 130 137 36 129 137 37 131 137 38 132 137 39 133 137 40 126 137 41 137 180 1 2 12 13 20 21 42 43 69 136 137 139 140 148 158 1 2 42 43 46 47 49 55 136 137 1 2 44 137 2 45 53 137 140 145 2 43 46 43 45 47 54 137 140 48 137 138 1 2 3 20 31 43 49 55 56 57 59 60 61 62 64 65 67 68 70 71 73 74 76 78 80 81 82 87 90 91 92 93 94 96 99 143 144 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 1 2 50 51 2 51 52 53 52 53 54 55 1 2 49 56 144 159 1 2 49 57 58 144 158 2 57 58 149 1 2 49 59 144 160 1 2 49 60 144 161 1 2 43 49 61 67 144 1 2 49 56 62 63 144 2 62 63 150 1 2 49 64 144 162 1 2 49 64 65 66 144 2 65 66 151 57 67 1 2 49 68 144 163 43 69 1 2 49 70 144 164 1 2 49 71 144 165 4 21 72 1 2 49 73 144 166 1 2 49 74 75 144 167 53 75 1 2 49 70 76 77 144 2 76 77 152 1 2 49 78 79 144 168 53 79 1 2 49 80 83 144 169 1 2 49 81 86 144 170 1 2 49 82 89 144 171 53 83 1 2 60 84 85 2 84 85 153 53 86 1 2 49 87 144 172 57 62 88 53 89 1 2 49 90 144 173 1 2 49 91 95 144 174 1 2 49 92 98 144 175 1 2 49 93 101 144 176 1 2 49 94 102 144 177 53 95 1 2 49 59 96 97 144 2 96 97 154 53 98 1 2 49 74 99 100 144 2 99 100 155 53 101 53 102 1 2 43 72 103 104 104 105 137 1 2 43 105 106 4 20 106 1 2 107 179 2 108 109 156 1 2 108 109 110 2 110 111 53 111 1 2 43 72 112 113 113 114 137 1 2 43 72 106 114 1 2 43 67 104 115 1 2 116 182 117 137 183 1 2 118 119 121 2 119 120 53 120 2 118 121 157 1 2 43 72 113 122 1 2 43 104 123 124 4 22 124 1 2 43 106 125 1 2 20 26 43 126 1 2 20 22 43 127 1 2 21 43 128 1 2 23 43 129 1 2 21 22 43 130 1 2 20 27 43 131 1 2 20 24 43 132 1 2 21 26 43 133 4 8 13 21 43 59 96 134 137 4 9 13 21 43 74 99 135 137 1 2 42 43 136 137 138 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 47 48 56 57 59 60 61 62 64 65 68 70 71 73 74 76 78 80 81 82 84 87 90 91 92 93 94 96 99 103 104 105 112 113 114 115 117 122 123 125 126 127 128 129 130 131 132 133 134 135 136 137 138 140 142 158 178 180 181 183 43 138 136 137 139 1 2 4 20 21 43 45 47 57 136 140 141 2 53 140 141 50 142 52 143 20 43 144 145 146 147 148 149 150 151 152 153 154 155 156 157 49 158 20 21 43 158 159 21 27 43 56 160 20 23 43 64 161 22 43 162 20 43 163 21 26 43 158 164 43 72 165 20 21 43 166 24 43 167 26 158 168 25 43 169 29 43 170 28 43 171 43 88 172 43 88 173 43 134 174 135 175 30 43 176 26 56 177 107 178 41 43 179 109 180 116 181 43 117 182 118 183 1.847033583457D-01 -3.719276202958D-07 -4.461673147532D-09 -8.427241381743D-09 -2.952632177562D-09 -1.230224173345D-09 -5.684978286767D-10 -1.382403178450D-09 -1.856794974832D-09 1.144783933290D-10 1.190860003543D-07 -4.043289140002D-08 6.134758538482D-08 2.882401728331D-09 -2.882401728331D-09 4.701102853922D-09 5.438916710635D-08 2.074214768257D-09 4.409820290234D-10 2.310863880436D-10 9.891607491932D-09 2.684350720208D-09 1.838141765470D-09 -2.566882438264D-09 9.518614355670D-09 1.651578667869D-09 1.400407236018D-10 -1.388193610099D-08 8.256918013496D-09 4.026496986174D-10 -9.548140743659D-11 1.319228178802D-09 9.872533764800D-10 -8.178430337704D-11 2.995364457734D-10 1.165688277582D-09 6.650224788487D-10 -4.160228413520D-11 5.159413302221D-10 -1.619011496642D-10 1.298098286898D-10 -9.236423317343D-11 1.182732136117D-10 4.400353753151D-10 2.727607746019D-10 1.082721999108D-09 1.434879053241D-09 -6.111602434929D-11 7.081639208067D-10 -3.788344091693D-11 7.499472911528D-10 -1.503780554317D-10 -1.992887573946D-10 3.841609782970D-09 -7.828529540224D-09 4.552122268525D-10 -2.273182572124D-09 8.045368924923D-10 2.793167046723D-09 -2.793167046724D-09 6.855383527411D-09 -9.555567765423D-09 4.847585525976D-10 2.335796050220D-09 7.201575068565D-10 1.991127877266D-09 -1.991127877266D-09 2.700184238015D-09 1.651123707030D-09 -1.651123707030D-09 8.779995658213D-10 7.625016818901D-10 1.273878662141D-09 3.064293184879D-09 1.230224173345D-09 1.678753515422D-09 1.856794974828D-09 5.684978286771D-10 6.199014965641D-10 2.448465652502D-52 -1.103713326844D-07 1.040881988802D-12 -6.134758538482D-08 -5.438916710635D-08 -1.459271034585D-08 -2.782378689063D-09 -9.569233592455D-10 -4.522492485678D-09 -9.518614355670D-09 -2.970806846671D-09 -1.400407236018D-10 -8.256918013496D-09 -1.057115582334D-09 -9.054690731029D-10 -2.579341616382D-10 -1.003787127918D-09 -5.726582456752D-10 -1.298098286898D-10 -1.182732136117D-10 -3.789193509658D-10 -2.348773336850D-10 -9.323439436764D-10 -1.235590295847D-09 -8.045368924923D-10 -7.201575068565D-10 -4.250627856579D-16 1.847055555443D-01 2.206024722187D-13 1.904376186660D-08 -3.706348378336D-08 -1.904376186660D-08 3.861889986008D-09 -3.861889986002D-09 -3.861889986015D-09 2.928647459573D-08 -2.928647459573D-08 5.757801375901D-09 -5.757801375901D-09 1.069963117214D-09 -1.069963117214D-09 7.679089398996D-10 -7.679089398996D-10 3.003240578905D-10 -3.003240578905D-10 4.122148195741D-10 -4.122148195741D-10 4.365364829098D-10 -4.365364829098D-10 -3.513984349104D-09 3.513984349104D-09 3.746925132324D-09 -3.746925132324D-09 2.504967329464D-09 2.713294194836D-09 -2.713294194836D-09 -2.504967329464D-09 1.203714182606D-51 3.706348378336D-08 -7.008254286648D-14 -1.500950157540D-13 -2.500000000000D-06 1.847229489334D-01 1.625711012677D-10 3.706348378340D-09 -3.706348378335D-09 -1.625711012698D-10 -1.625711012677D-10 -2.000000000000D-05 1.847029460547D-01 9.902723341668D-10 -9.902723341667D-10 1.847029450890D-01 2.457629270846D-11 -2.457629270846D-11 1.847029460141D-01 -9.496895772062D-10 9.496895772072D-10 1.847029527910D-01 -4.020236988304D-09 -3.706348378335D-09 7.726585366653D-09 1.847029529962D-01 -6.798659578255D-09 -1.133109929709D-09 7.931769507959D-09 1.847029530529D-01 -1.982942376991D-09 -6.005482627459D-09 7.988425004450D-09 1.847029570932D-01 -1.246680818167D-09 -7.075755995003D-09 -3.706348378335D-09 1.202878519150D-08 1.847029556781D-01 -1.246680818167D-09 -6.064933710003D-10 -3.706348378335D-09 -5.054111425002D-09 1.061363399250D-08 1.847029723998D-01 -1.139575996950D-14 1.139576217480D-14 -2.733538205877D-08 -1.139576217480D-14 2.733538205877D-08 1.847030326876D-01 -3.617187029084D-14 -3.617175913233D-14 7.234362556953D-14 -3.617181471159D-14 -3.617181278477D-14 -8.762304482526D-08 8.762304482526D-08 -3.617181254052D-14 1.847029472803D-01 -2.215887192612D-09 2.215887192612D-09 1.847029666287D-01 -1.819480113001D-08 2.156420874667D-08 -3.369407616668D-09 1.847029922362D-01 -3.706348378335D-08 4.717170663335D-08 -1.010822285000D-08 1.847030259302D-01 -8.086578280003D-08 8.086578280003D-08 1.847029956056D-01 -5.054111425002D-08 5.054111425002D-08 1.847029703350D-01 -2.527055712501D-08 2.527055712501D-08 -3.125510468576D-08 1.847029763195D-01 -3.125510469012D-08 -4.383761260308D-17 0.0 3.125510464629D-08 0.0 4.382661005511D-17 0.0 1.847030008084D-01 0.0 -2.259574994278D-17 -5.574398606689D-08 5.574398604462D-08 2.246113765381D-17 0.0 0.0 0.0 1.847030124526D-01 0.0 0.0 -6.738815233337D-08 6.738815233413D-08 0.0 0.0 0.0 0.0 1.847029956056D-01 0.0 0.0 -5.054111425002D-08 5.054111424976D-08 0.0 0.0 1.847029956056D-01 0.0 0.0 -5.054111425002D-08 5.054111425034D-08 0.0 0.0 0.0 0.0 1.847029501186D-01 0.0 0.0 -5.054111425056D-09 5.054111424340D-09 0.0 1.847029467491D-01 0.0 -1.684703808334D-09 1.684703808322D-09 0.0 1.847029565204D-01 0.0 0.0 -1.145598589667D-08 1.145598589640D-08 1.847029642701D-01 0.0 0.0 -1.920562341501D-08 1.920562341711D-08 1.847029642701D-01 0.0 0.0 0.0 -1.920562341501D-08 1.920562341525D-08 0.0 1.847029450644D-01 0.0 0.0 0.0 0.0 -3.706348346422D-09 1.847029487708D-01 -3.706348346422D-09 3.706348346422D-09 -1.111904513493D-08 1.847029561835D-01 -1.111904513493D-08 1.111904513493D-08 1.847030710273D-01 -1.259628398745D-07 1.259628398745D-07 1.847031578433D-01 -2.127788399299D-07 2.127788399299D-07 1.847032483111D-01 -3.032466855001D-07 3.032466855001D-07 1.847030479367D-01 -1.028722755757D-07 1.028722755758D-07 1.847031472617D-01 -2.021972313040D-07 2.021972313040D-07 1.847030531121D-01 -1.080476738911D-07 1.080476738911D-07 1.847029753940D-01 -3.032958469560D-08 3.032958469560D-08 1.847031167522D-01 -1.716877491549D-07 1.716877491550D-07 1.847029888667D-01 4.380229901688D-08 -4.380229901668D-08 2.162322755874D-02 -2.159089062210D-02 7.403155341658D-07 1.269397070520D-06 -1.375006599097D-06 -6.346985352602D-07 2.063755196007D-01 -6.349214311879D-07 -1.375004465968D-06 1.715103318883D-53 2.226157903684D-10 0.0 -3.233695633350D-05 -1.500000000000D-05 -6.346987395270D-07 1.136828992780D+01 -1.025418486412D+01 1.456594534583D-11 1.266709834095D+01 -1.114105063695D+00 -9.632867826155D-08 3.987593050105D-08 -3.987593050105D-08 4.632458716482D-51 -1.136828975598D+01 0.0 -2.223809030011D-08 1.847029673025D-01 2.223809027155D-08 0.0 1.847579453340D-01 -3.000000000000D-05 2.695526101250D-10 -2.695526093335D-10 -2.500000000000D-05 -6.072063216193D-02 -6.072063216165D-02 2.454235772261D-01 -2.651534895039D-09 0.0 1.847329477160D-01 -3.000000000000D-05 2.651534895039D-09 2.244826079078D-17 1.847029450831D-01 1.867160023467D-11 -1.867160023409D-11 2.806985167356D+00 -2.806985167362D+00 5.553294944544D-03 -2.025786930574D-08 -2.025780774980D-08 2.418462261829D-08 2.997241497978D+00 -2.420314707957D-08 8.077212345811D-10 5.438916911567D-10 1.615750248838D-10 6.465663647432D-11 1.863605937612D-11 3.690836612132D-10 2.369817612475D-10 6.858762712566D-11 -1.863570149278D-11 7.676301581984D-10 1.903564507687D-10 1.129363521820D-11 6.658804341147D-10 5.726902954421D-11 4.922613821110D-11 7.302162281710D-11 2.080107466611D-11 8.095061777596D-11 4.618207195721D-11 1.046853516843D-11 9.538217415503D-12 3.055804827568D-11 1.894169175196D-11 7.518905381967D-11 9.964438584132D-11 2.642467459327D-11 2.798361444007D-11 -5.553294889907D-03 -2.812538488194D+00 -5.438910648609D-10 -1.176812053461D-09 -1.879989837104D-10 -6.465663647432D-11 -3.055693883732D-10 -7.676454577113D-10 -2.395814258589D-10 -1.129363521820D-11 -6.658806130563D-10 -8.525210715926D-11 -7.302108599209D-11 -2.080161149113D-11 -8.095034936346D-11 -4.618269825307D-11 -1.046853516843D-11 -9.538217415503D-12 -3.055751145067D-11 -1.894204963531D-11 -7.518842752382D-11 -9.964474372466D-11 1.403492583625D+00 -1.403492583686D+00 1.588195528744D+00 -1.403492583680D+00 1.089185606479D+00 1.273888551548D+00 -1.089185606482D+00 -1.089185606482D+00 1.847029450644D-01 1.847029450644D-01 1.847029450644D-01 1.847029450644D-01 4.350827009395D-01 -4.350827009433D-01 7.668448156647D-10 6.197856467720D-01 -7.668448156647D-10 -4.350827017076D-01 3.649080717567D+00 -2.124220868494D+00 7.975186647603D-10 5.358643512506D+00 -1.524859849077D+00 -7.975186075522D-10 -3.649080718365D+00 -2.849177309245D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 5.192922559506D-01 -5.192922559754D-01 7.668446736793D-10 7.039952017928D-01 -7.668448157585D-10 -5.192922567283D-01 5.192922559568D-01 -5.192922559568D-01 7.668444858664D-10 7.039952017928D-01 -7.668448457748D-10 -5.192922567284D-01 4.350827008612D-01 -4.350827008612D-01 -4.350827017073D-01 7.668467484525D-10 6.197856467720D-01 -4.350827017076D-01 -7.668449040245D-10 9.403400310568D-01 -5.155576445380D-01 7.668448049200D-10 -9.403400318322D-01 1.549825363425D+00 -4.247823865286D-01 -7.668448167006D-10 -2.849177309250D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 5.192922559592D-01 -5.192922559592D-01 7.668449471519D-10 7.039952017928D-01 -7.668448155349D-10 -5.192922567284D-01 9.403400310659D-01 -5.155576445636D-01 7.668452184158D-10 -9.403400318323D-01 1.549825363425D+00 -4.247823865286D-01 -7.668448258865D-10 -2.849177309199D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 0.0 1.847029450644D-01 4.350827009381D-01 -4.350827009381D-01 7.668448205427D-10 6.197856467720D-01 -7.668448149473D-10 -4.350827017076D-01 -4.472000000002D+03 2.236184702945D+03 4.350827009255D-01 -4.350827009448D-01 7.668446561058D-10 6.197856468258D-01 -7.668448218254D-10 -4.350827017613D-01 4.350827007568D-01 -4.350827007568D-01 7.668427698781D-10 6.197856467720D-01 -7.668446900881D-10 -4.350827017076D-01 0.0 0.0 1.847029450644D-01 4.350827009364D-01 -4.350827009364D-01 7.668448049201D-10 6.197856467720D-01 -7.668448177886D-10 -4.350827017076D-01 4.743804932312D-01 -4.350827009500D-01 7.668441251095D-10 6.590834391150D-01 -3.929779234304D-02 -7.668448253707D-10 -4.350827017076D-01 -2.999999999975D-05 1.847329450644D-01 9.403400309955D-01 -5.155576444381D-01 7.668444001463D-10 -9.403400318322D-01 1.549825363425D+00 -4.247823865285D-01 -7.668447696707D-10 -2.849177309241D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 4.743804932838D-01 -4.350827009530D-01 7.668440849248D-10 6.590834391152D-01 -3.929779234303D-02 -7.668448602203D-10 -4.350827017077D-01 -2.999999999999D-05 1.847329450644D-01 5.052573299108D-01 -4.350827009926D-01 7.668427470318D-10 6.899602759560D-01 -7.017462918400D-02 -7.668448254578D-10 -4.350827017076D-01 5.052573301008D-01 -4.350827009046D-01 7.668446147586D-10 6.899602759560D-01 -7.017462918399D-02 -7.668447743280D-10 -4.350827017076D-01 5.052573300679D-01 -4.350827009326D-01 7.668438364657D-10 6.899602759560D-01 -7.017462918399D-02 -7.668448631294D-10 -4.350827017076D-01 -3.000000000044D-05 1.847329450644D-01 9.403400308871D-01 -5.155576445108D-01 -9.403400310654D-01 1.549825362658D+00 -4.247823865286D-01 -2.849177309421D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 -2.999999999987D-05 1.847329450644D-01 4.350827006437D-01 -4.350827010779D-01 7.668440769557D-10 6.197856467720D-01 -7.668449051812D-10 -4.350827017076D-01 0.0 0.0 1.847029450644D-01 -2.999999999970D-05 1.847329450644D-01 4.350827005205D-01 -4.350827005205D-01 7.668488614599D-10 6.197856467720D-01 -7.668447518146D-10 -4.350827017076D-01 5.052573300039D-01 -4.350827010178D-01 7.668460149417D-10 6.899602759560D-01 -7.017462918399D-02 -7.668448844073D-10 -4.350827017075D-01 5.052573301274D-01 -4.350827008233D-01 7.668442740500D-10 6.899602759559D-01 -7.017462918395D-02 -7.668449594799D-10 -4.350827017075D-01 5.052573300968D-01 -4.350827009617D-01 7.668445556523D-10 6.899602759560D-01 -7.017462918398D-02 -7.668447849049D-10 -4.350827017076D-01 5.052573300844D-01 -4.350827009337D-01 7.668448795622D-10 6.899602759560D-01 -7.017462918399D-02 -7.668448363304D-10 -4.350827017076D-01 -2.999999999962D-05 1.847329450644D-01 9.403400309788D-01 -5.155576446611D-01 7.668446717407D-10 -9.403400318323D-01 1.549825363425D+00 -4.247823865285D-01 -7.668448516647D-10 -2.849177308965D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 -3.000000000037D-05 1.847329450644D-01 9.403400310374D-01 -5.155576445930D-01 7.668453760661D-10 -9.403400318323D-01 1.549825363425D+00 -4.247823865285D-01 -7.668448690614D-10 -2.849177309083D-04 -2.849177309245D-04 1.849928627954D-01 -5.000000000000D-06 -2.999999999990D-05 1.847329450644D-01 -3.000000000006D-05 1.847329450644D-01 4.350827009285D-01 -4.350827009431D-01 -4.350827009407D-01 -4.350827009407D-01 6.197856460051D-01 -4.350827009413D-01 1.847030124526D-01 -6.738815233336D-08 6.738815233336D-08 4.350827008982D-01 -4.350827008982D-01 -4.350827009408D-01 6.197856460051D-01 -8.701654018812D-01 0.0 0.0 1.847029450644D-01 4.350827009215D-01 -4.350827009215D-01 6.197856460051D-01 -4.350827009407D-01 -2.849177309244D-04 1.849928627954D-01 -2.849177309245D-04 -5.000000000000D-06 4.350827009261D-01 -1.030031442269D-02 -4.247823865285D-01 1.044568032534D+00 -4.350827009407D-01 4.247823865384D-01 6.094853315930D-01 -4.247823865286D-01 -2.999999999995D-05 1.847329450644D-01 4.350827009375D-01 -4.350827009458D-01 -4.350827009408D-01 -4.350827009408D-01 6.197856460052D-01 -4.350827009406D-01 1.847030124526D-01 -6.738815233337D-08 6.738815233335D-08 4.350827008530D-01 -4.350827009655D-01 -4.350827009404D-01 -4.350827009409D-01 -4.350827009404D-01 6.197856460052D-01 4.350827009246D-01 -4.350827009487D-01 -4.350827009408D-01 -4.350827009407D-01 -4.350827009411D-01 6.197856460052D-01 4.350827009394D-01 -4.350827009394D-01 6.197856460051D-01 -4.350827009407D-01 1.847030124526D-01 6.738815233404D-08 -6.738815233336D-08 4.350827009232D-01 -1.030031443112D-02 1.044568032534D+00 -4.350827009407D-01 -4.247823865285D-01 4.247823865426D-01 6.094853315930D-01 -4.247823865285D-01 -2.999999999994D-05 1.847329450644D-01 -2.852765693834D-04 -2.852765693766D-04 1.849932216338D-01 -5.000000000000D-06 4.350827009321D-01 -4.350827009321D-01 -4.350827009407D-01 -4.350827009406D-01 -4.350827009399D-01 6.197856460052D-01 4.350827009333D-01 -4.350827009672D-01 -4.350827009407D-01 -4.350827009418D-01 6.197856460052D-01 -4.350827009407D-01 0.0 0.0 1.847029450644D-01 4.350827009443D-01 -4.350827009443D-01 -4.350827009405D-01 -4.350827009405D-01 6.197856460052D-01 4.350827009142D-01 -4.350827009867D-01 -4.350827009414D-01 -4.350827009414D-01 -4.350827009405D-01 6.197856460052D-01 4.350827009181D-01 -4.350827009613D-01 -4.350827009424D-01 -4.350827009397D-01 -4.350827009407D-01 6.197856460052D-01 4.350827009249D-01 -4.350827009249D-01 -8.701654018813D-01 -4.350827009407D-01 6.197856460052D-01 4.350827009103D+00 -4.350827009103D+00 -4.350827009408D+00 -8.701654018815D+00 4.535529954472D+00 4.350827009378D-01 -4.350827009378D-01 -4.350827009399D-01 -4.350827009399D-01 -4.350827009408D-01 6.197856460052D-01 4.350827009142D-01 -4.350827009142D-01 -4.350827009402D-01 -4.350827009421D-01 -4.350827009407D-01 6.197856460052D-01 4.350827009067D-01 -4.350827009067D-01 -4.350827009371D-01 -4.350827009405D-01 -4.350827009407D-01 6.197856460051D-01 4.350827008840D-01 -4.350827009730D-01 -4.350827009396D-01 -4.350827009396D-01 -4.350827009407D-01 6.197856460052D-01 0.0 0.0 0.0 0.0 0.0 0.0 -5.054111424998D-08 1.847029956056D-01 5.054111424909D-08 0.0 0.0 0.0 0.0 0.0 0.0 -1.617315655999D-07 1.847031067960D-01 1.617315655999D-07 -7.321241211920D+00 7.305730107658D+00 -8.216644762503D+04 0.0 8.217914180010D+04 0.0 0.0 1.684191100414D+01 1.194789706065D+01 1.152570637560D+00 3.203752497504D+00 5.801590314942D-01 7.877230884797D-01 1.334284295919D+00 9.522628221382D-01 4.836031467433D-01 7.443160981249D-01 1.154866622749D+00 3.916088093325D+00 3.390590023192D+00 3.180521162968D-01 1.839620866156D+00 1.177388037480D+00 2.807229515941D+00 1.076822896977D+00 6.399743827870D-01 1.221654249014D+00 4.544019124820D-01 1.612808099323D-01 3.488652332781D-02 1.823010530775D-02 5.786837962657D-04 1.072060324264D-02 4.862946661956D-02 1.657310781745D-03 6.460785183840D-03 9.641696141492D-05 2.800172909824D-01 4.827856220525D-01 1.228202872892D+00 6.513945810814D-01 4.647322366774D-01 7.254763669924D-01 1.891034737044D-01 2.105061559182D-01 2.698759421753D-01 4.190646638201D-02 5.718157988633D-10 -1.501867945347D+00 -1.680876639348D+01 -1.198067969175D+01 4.520363481073D-06 7.772471985027D-02 -7.877230884717D-01 -7.344192034644D-01 -8.162252761229D-01 -1.360375460205D-01 -4.862946662078D-02 -1.612808099323D-01 -6.942444591950D-01 -3.488652332776D-02 -3.916088093312D+00 -6.400398367040D-01 -1.072060324096D-02 -3.390590023191D+00 -1.200433342982D-01 -1.823010530772D-02 -3.635598124461D-01 -7.714200456749D-02 -4.378329988966D-01 -2.293410946601D-01 -5.786837962657D-04 -6.460785183864D-03 -1.657310781756D-03 -1.356510001334D-01 -6.599237844325D-02 -4.032867571532D-01 -5.499364870271D-01 -3.692655530801D-03 -4.959949739895D-03 -1.552180105819D+00 1.419500447260D-01 -1.419500447255D-01 -2.807229515941D+00 1.542530815584D-01 -1.542530815580D-01 -9.250906008783D-01 1.146811089419D-02 -1.076822896977D+00 -6.399743827853D-01 -3.180521162486D-01 -2.698759421752D-01 -4.827856220511D-01 -1.228202872895D+00 -4.647322366781D-01 -6.513945810810D-01 -7.254763669918D-01 -1.891034737043D-01 -2.105061559178D-01 3.692655530801D-03 4.959949739895D-03 5.544942290657D-51 6.299896663454D+01 -4.503227883208D+00 -3.619795712679D-04 -1.152570637528D+00 -5.801590381620D-01 -2.874407603369D-01 -4.190646638189D-02 -2.522974366032D-01 -1.146811089416D-02 -7.441570462111D+06 7.441570646800D+06 -7.650000000000D+08 -2.162948497570D+08 8.731391781590D+08 2.665790957288D+01 -5.034857288321D+01 -9.125978334718D-05 1.053408827308D-04 1.818065996370D-05 -1.053408827308D-04 -1.236997844589D-04 2.349867010473D-09 -1.818065996370D-05 0.0 2.984376498507D+01 -2.984147403773D+00 -8.054210242782D-02 -6.000094255021D-05 -8.054208350577D-02 2.652589908414D-01 -5.200000000000D+03 5.200184686907D+03 -4.278550085040D+05 4.278551931939D+05 -9.360000000000D+03 -9.360000000000D+03 9.360184686907D+03 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 1.846869073356D-01 -2.652000000000D+06 2.652000184687D+06 -3.300000000007D+01 -1.924000000000D+02 -1.924000000000D+02 -3.299999999994D+01 2.255846869073D+02 -1.200000000002D+03 -1.091999999999D+03 -1.092000000006D+03 -1.200000000000D+03 2.292184686907D+03 -3.200000000005D+03 -1.923999999994D+02 -1.923999999821D+02 -3.200000000001D+03 3.392584686907D+03 -1.924000000000D+02 -1.924000000000D+02 1.925846869073D+02 -4.472000000000D+03 -2.236000000000D+03 2.236184686907D+03 -1.099999999998D+03 -1.924000000000D+02 -1.924000000000D+02 -1.100000000000D+03 1.292584686907D+03 -1.923999999998D+02 -1.924000000005D+02 1.925846869073D+02 -2.236000000000D+03 -2.236000000000D+03 -2.236000000000D+03 2.236184686907D+03 -1.923999999999D+02 -1.923999999999D+02 1.925846869073D+02 -3.329999999981D+01 -3.330000000000D+01 3.348468690734D+01 -1.924000000000D+02 -1.924000000002D+02 1.925846869073D+02 -1.924000000000D+02 -1.924000000000D+02 1.925846869073D+02 -1.924000000000D+02 -1.923999999999D+02 1.925846869073D+02 -1.923999999995D+02 -1.924000000000D+02 1.925846869073D+02 -1.924000000006D+02 -1.924000000000D+02 1.925846869073D+02 -1.924000000001D+02 -1.924000000000D+02 1.925846869073D+02 -1.924000000000D+02 1.925846869073D+02 -1.924000000000D+02 -1.924000000000D+02 1.925846869073D+02 -3.200000000000D+03 -3.200000000000D+03 3.200184686907D+03 -2.236000000000D+03 2.236184686907D+03 -2.235999999999D+03 -2.236000000000D+03 2.236184686907D+03 -2.235999999997D+03 2.236184686907D+03 -2.236000000000D+03 2.236184686907D+03 -2.236000000000D+03 -2.236000000000D+03 2.236184686907D+03 -2.235999999997D+03 2.236184686907D+03 SuiteSparse/UMFPACK/Demo/HB/qc324.cua0000644001170100242450000505000310006260711015534 0ustar davisfacMODEL H2+ IN AN ELECTROMAGNETIC FIELD, S.I. CHU QC324 19512 21 1671 17820 0 CUA 324 324 26730 0 (16I5) (16I5) (3D22.16) (3D22.16) 1 83 165 247 329 411 493 575 657 739 821 903 985 1067 1149 1231 1313 1395 1477 1559 1641 1723 1805 1887 1969 2051 2133 2215 2297 2379 2461 2543 2625 2707 2789 2871 2953 3035 3117 3199 3281 3363 3445 3527 3609 3691 3773 3855 3937 4019 4101 4183 4265 4347 4429 4511 4593 4675 4757 4839 4921 5003 5085 5167 5249 5331 5413 5495 5577 5659 5741 5823 5905 5987 6069 6151 6233 6315 6397 6479 6561 6643 6726 6809 6892 6975 7058 7141 7224 7307 7390 7473 7556 7639 7722 7805 7888 7971 8054 8137 8220 8303 8386 8469 8552 8635 8718 8801 8884 8967 9050 9133 9216 9299 9382 9465 9548 9631 9714 9797 9880 9963100461012910212102951037810461 10544106271071010793108761095911042111251120811291113741145711540116231170611789 11872119551203812121122041228712370124531253612619127021278512868129511303413117 13200132831336613449135321361513698137811386413947140301411314196142791436214445 14528146111469414777148601494315026151091519215275153581544115524156071569015773 15856159391602216105161881627116354164371652016603166861676916852169351701817101 17184172671735017433175161759917682177651784817931180141809718180182631834618429 18512185951867818761188441892719010190931917619259193421942519508195911967419757 19840199232000620089201712025320335204172049920581206632074520827209092099121073 21155212372131921401214832156521647217292181121893219752205722139222212230322385 22467225492263122713227952287722959230412312323205232872336923451235332361523697 23779238612394324025241072418924271243532443524517245992468124763248452492725009 25091251732525525337254192550125583256652574725829259112599326075261572623926321 2640326485265672664926731 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 84 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 85 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 86 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 87 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 91 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 92 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 93 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 96 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 97 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 98 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 103 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 105 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 106 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 107 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 108 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 109 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 110 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 112 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 114 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 115 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 116 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 117 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 118 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 119 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 121 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 122 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 123 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 124 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 126 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 127 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 128 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 129 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 131 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 133 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 134 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 135 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 136 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 137 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 138 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 139 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 141 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 142 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 143 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 144 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 145 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 146 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 147 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 148 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 149 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 151 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 152 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 153 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 154 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 156 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 157 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 158 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 159 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 161 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 162 1 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 2 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 164 3 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 165 4 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 166 5 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 167 6 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 168 7 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 169 8 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 170 9 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 171 10 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 172 11 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 173 12 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 174 13 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 175 14 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 176 15 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 177 16 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 178 17 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 179 18 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 180 19 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 181 20 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 182 21 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 183 22 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 184 23 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 185 24 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 186 25 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 187 26 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 188 27 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 189 28 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 190 29 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 191 30 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 192 31 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 193 32 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 194 33 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 195 34 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 196 35 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 197 36 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 198 37 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 199 38 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 200 39 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 201 40 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 202 41 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 203 42 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 204 43 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 205 44 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 206 45 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 207 46 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 208 47 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 209 48 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 210 49 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 211 50 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 212 51 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 213 52 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 214 53 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 215 54 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 216 55 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 217 56 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 218 57 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 219 58 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 220 59 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 221 60 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 222 61 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 223 62 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 224 63 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 225 64 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 226 65 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 227 66 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 228 67 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 229 68 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 230 69 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 231 70 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 232 71 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 233 72 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 234 73 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 235 74 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 236 75 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 237 76 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 238 77 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 239 78 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 240 79 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 241 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 242 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 243 82 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 83 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 245 84 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 246 85 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 247 86 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 248 87 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 249 88 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 250 89 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 251 90 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 252 91 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 253 92 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 254 93 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 255 94 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 256 95 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 257 96 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 258 97 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 259 98 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 260 99 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 261 100 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 262 101 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 263 102 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 264 103 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 265 104 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 266 105 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 267 106 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 268 107 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 269 108 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 270 109 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 271 110 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 272 111 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 273 112 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 274 113 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 275 114 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 276 115 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 277 116 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 278 117 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 279 118 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 280 119 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 281 120 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 282 121 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 283 122 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 284 123 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 285 124 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 286 125 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 287 126 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 288 127 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 289 128 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 290 129 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 291 130 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 292 131 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 293 132 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 294 133 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 295 134 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 296 135 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 297 136 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 298 137 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 299 138 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 300 139 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 301 140 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 302 141 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 303 142 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 304 143 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 305 144 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 306 145 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 307 146 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 308 147 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 309 148 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 310 149 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 311 150 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 312 151 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 313 152 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 314 153 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 315 154 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 316 155 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 317 156 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 318 157 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 319 158 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 320 159 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 321 160 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 322 161 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 323 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 324 163 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 164 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 165 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 166 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 167 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 168 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 169 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 170 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 171 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 172 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 173 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 174 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 175 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 176 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 177 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 178 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 179 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 180 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 181 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 182 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 183 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 184 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 185 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 186 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 187 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 188 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 189 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 190 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 191 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 192 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 193 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 194 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 195 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 196 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 197 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 198 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 199 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 200 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 201 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 202 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 203 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 204 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 205 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 206 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 207 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 208 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 209 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 210 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 211 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 212 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 213 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 214 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 215 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 216 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 217 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 218 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 219 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 220 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 221 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 222 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 223 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 224 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 225 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 226 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 227 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 228 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 229 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 230 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 231 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 232 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 233 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 234 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 235 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 236 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 237 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 238 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 239 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 240 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 241 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 242 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 0.3907880596378435D+00-.5085988217165716D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-03-.1288661285438230D-020.2079634633143654D-03 0.1760064559812521D-02-.2840382695217011D-03-.2541776982554263D-02 0.4101905987537787D-030.3980741565709959D-02-.6424099272005126D-03 -.7089509216132388D-020.1144101174176753D-020.1597157490519940D-01 -.2577484145293108D-02-.6393452627818492D-010.1031771937313466D-01 0.1315499101020305D-030.3980931060364731D-05-.6393452627818429D-01 0.1031771937313455D-010.2927527143407817D+00-.5061033237937254D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.9826448017572174D-03-.1585786882018380D-03-.1288661285438230D-02 0.2079634633143654D-030.1760064559812521D-02-.2840382695217011D-03 -.2541776982554263D-020.4101905987537787D-030.3980741565709959D-02 -.6424099272005126D-03-.7089509216132388D-020.1144101174176753D-02 0.1597157490519940D-01-.2577484145293108D-020.1444546692054133D-03 0.5038740027685473D-050.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2157239452786765D+00 -.4868036798000584D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1574251928385321D-030.6107296557512106D-05 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1557709757413722D+00-.4569036816326588D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-03-.1288661285438230D-020.2079634633143654D-03 0.1760064559812521D-02-.2840382695217011D-03-.2541776982554263D-02 0.4101905987537787D-030.3980741565709959D-02-.6424099272005126D-03 0.1704618139382066D-030.7186682901146465D-050.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1096566252142961D+00-.4209739735795140D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.9826448017572174D-03-.1585786882018380D-03-.1288661285438230D-02 0.2079634633143654D-030.1760064559812521D-02-.2840382695217011D-03 -.2541776982554263D-020.4101905987537787D-030.1835648671152865D-03 0.8276981869115928D-05-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.7471858919825108D-01 -.3823258786163024D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-030.1967346886630121D-030.9378276834732454D-05 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.4877067593222251D-01-.3433058868290575D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-03-.1288661285438230D-020.2079634633143654D-03 0.2099716165654131D-030.1049065173767338D-04-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.3002068643018266D-01-.3055268727498139D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.9826448017572174D-03-.1585786882018380D-030.2232759905057449D-03 0.1161419108758396D-040.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1700216908900937D-01 -.2700489567358313D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.2366481518749747D-030.1274897996770195D-04 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.8517736161626044D-02-.2375203779188533D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 0.2500884437803040D-030.1389510403850428D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.3592010968872295D-02-.2082866889705388D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.2635972110537330D-03 0.1505264954137583D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1432593898717735D-02 -.1824749233535114D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-040.2771748002606731D-030.1622170330230075D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1397702131734624D-02-.1600580484709967D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.2908215597085934D-030.1740235273557609D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.2969361130056608D-02-.1409039418766617D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-040.3045378394557195D-03 0.1859468584754816D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.5731212358601079D-02 -.1248122626208860D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3183239913197660D-030.1979879124037159D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.9350157447874083D-02-.1115418954076180D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 0.3321803688867207D-030.2101475811579130D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1356118906725279D-01-.1008310886583305D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.3461073275196676D-03 0.2224267627894746D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1815486735526482D-01 -.9241196217609635D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-040.3601052243676528D-030.2348263614220369D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.2296699136715612D-01-.8602070427593237D-02-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.3741744183745985D-030.2473472872899837D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.2787009059662764D-01-.8140449450940520D-02 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-040.3883152702882559D-03 0.2599904567771967D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.3276642467527989D-01 -.7832596231436846D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.4025281426692064D-030.2727567924560386D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.3758223191522410D-01-.7656581262990280D-02-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 0.4168133998999086D-030.2856472231265750D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.4226301116560104D-01-.7592410749930865D-02 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.4311714081937841D-03 0.2986626838560346D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.4676965794798595D-01 -.7622058049335034D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-040.4456025356043519D-030.3118041160185087D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.5107530622773573D-01-.7729427242199239D-02-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.4601071520344119D-030.3250724673348925D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.5516275247888457D-01-.7900270743738223D-02 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-040.4746856292452647D-03 0.3384686919130694D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.5902235975385258D-01 -.8122077438341108D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.4893383408659858D-030.3519937502883382D-04 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.6265035698167873D-01-.8383943600343269D-02-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 0.5040656624027409D-030.3656486094640881D-040.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.6604746327913752D-01-.8676435588169473D-02 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5188679712481502D-03 0.3794342429527186D-04-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.6921777916009794D-01 -.8991450776860036D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-050.5337456466906940D-030.3933516308168090D-04 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.7216789658063694D-01-.9322081262977695D-02-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.5486990699241699D-030.4074017597105377D-04-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.7490618810353455D-01-.9662483409213413D-02 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-050.5637286240571986D-03 0.4215856229213537D-040.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.7744224239182489D-01 -.1000775519245637D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.5788346941227656D-030.4359042204118991D-04 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.7978641898553364D-01-.1035382249831074D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 0.5940176670878278D-030.4503585588621884D-040.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.8194950007742326D-01-.1069733490338830D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.6092779318629489D-03 0.4649496517120420D-04-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.8394242094818047D-01 -.1103557105390731D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-050.6246158793119950D-030.4796785192037780D-04 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.8577606398706922D-01-.1136635344559469D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.6400319022618756D-030.4945461884251627D-04-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.8746110392560591D-01-.1168797220454049D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-050.6555263955123291D-03 0.5095536933526217D-040.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.8900789414501604D-01 -.1199911733718971D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.6710997558457615D-030.5247020748947131D-04 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.9042638576277094D-01-.1229881884115071D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 0.6867523820371290D-030.5399923809358637D-040.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.9172607272565819D-01-.1258639403228736D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.7024846748638742D-03 0.5554256663803711D-040.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.9291595739173754D-01 -.1286140143634197D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.7182970371159094D-030.5710029931966725D-04 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.9400453211699690D-01-.1312360060645681D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 0.7341898736056463D-030.5867254304618804D-040.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.9499977321263603D-01-.1337291725485198D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.7501635911780829D-03 0.6025940544065905D-04-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.9590914433729904D-01 -.1360941312262982D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-050.7662185987209308D-030.6186099484599586D-04 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.9673960696151584D-01-.1383326005253246D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.7823553071748006D-030.6347742032950520D-04-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.9749763601089485D-01-.1404471777278064D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-050.7985741295434327D-03 0.6510879168744751D-040.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.9818923917831297D-01 -.1424411494392620D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.8148754809039821D-030.6675521944962719D-04 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.9881997870846726D-01-.1443183306359489D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 0.8312597784173505D-030.6841681488401041D-040.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.9939499471310484D-01-.1460829286515623D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.8477274413385733D-03 0.7009369000137130D-04-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.9991902928232077D-01 -.1477394288514098D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-050.8642788910272550D-030.7178595755996570D-04 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1003964508250222D+00-.1492924991028709D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.8809145509580565D-030.7349373107023372D-04-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1008312782070416D+00-.1507469104826736D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-050.8976348467312377D-03 0.7521712479953038D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1012272043642645D+00 -.1521074719639924D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.9144402060832480D-030.7695625377688507D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1015876191553175D+00-.1533789771001627D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 0.9313310588973688D-030.7871123379778959D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1019156312878210D+00-.1545661609680803D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.9483078372144148D-03 0.8048218142901548D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1022140892071981D+00 -.1556736658546946D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-040.9653709752434816D-030.8226921401346013D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1024856008802586D+00-.1567060143662068D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.9825209093727470D-030.8407244967502225D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1027325524394487D+00-.1576675888135830D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-040.9997580781803323D-03 0.8589200732350710D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1029571256795995D+00 -.1585626158817118D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1017082922445208D-020.8772800665956083D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1031613144187102D+00-.1593951557249072D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 0.1034495885158160D-020.8958056817963518D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1033469397490001D+00-.1601690947502950D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1051997411532808D-02 0.9144981318098186D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1035156642151411D+00 -.1608881414546571D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-040.1069587949016678D-020.9333586376667711D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1036690049640822D+00-.1615558247711579D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1087267947302331D-020.9523884285067672D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1038083459158393D+00-.1621754944615051D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-040.1105037858338542D-02 0.9715887416290131D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1039349490076170D+00 -.1627503231578771D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.1122898136341541D-020.9909608225435285D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1040499645650695D+00-.1632833097185782D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 0.1140849237806308D-020.1010505925022613D-030.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1041544408547741D+00-.1637772836129954D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.1158891621517917D-02 0.1030225311152631D-03-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1042493328713475D+00 -.1642349100959841D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-040.1177025748562945D-020.1050120251386102D-03 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1043355104113325D+00-.1646586959702118D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.1195252082340932D-020.1070192024594111D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1044137654841926D+00-.1650509957680039D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-030.1213571088575899D-02 0.1090441918119028D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1044848191086251D+00 -.1654140182125686D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.1231983235327929D-020.1110871227827559D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1045493275400524D+00-.1657498328427346D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 0.1250488993004788D-020.1131481258164096D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1046078879726769D+00-.1660603767060543D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.1269088834373626D-02 0.1152273322204408D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1046610437569370D+00 -.1663474610427858D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-030.1287783234572715D-020.1173248741709648D-03 0.1760064559812521D-02-.2840382695217011D-03-.1288661285438230D-02 0.2079634633143654D-030.9826448017572174D-03-.1585786882018380D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1047092891706644D+00-.1666127778982718D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1306572671123266D-020.1194408847180681D-03-.2541776982554263D-02 0.4101905987537787D-030.1760064559812521D-02-.2840382695217011D-03 -.1288661285438230D-020.2079634633143654D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1047530737797218D+00-.1668579066139561D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-030.1325457623941280D-02 0.1215754977912746D-030.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1047928064214595D+00 -.1670843201580279D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.1344438575349479D-020.1237288482050448D-03 -.7089509216132388D-020.1144101174176753D-020.3980741565709959D-02 -.6424099272005126D-03-.2541776982554263D-020.4101905987537787D-03 0.1760064559812521D-02-.2840382695217011D-03-.1288661285438230D-02 0.2079634633143654D-030.9826448017572174D-03-.1585786882018380D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1048288588419666D+00-.1672933912657333D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 0.1363516010089288D-020.1259010716643076D-030.1597157490519940D-01 -.2577484145293108D-02-.7089509216132388D-020.1144101174176753D-02 0.3980741565709959D-02-.6424099272005126D-03-.2541776982554263D-02 0.4101905987537787D-030.1760064559812521D-02-.2840382695217011D-03 -.1288661285438230D-020.2079634633143654D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1048615690158307D+00-.1674863983669926D-01 -.6393452627818429D-010.1031771937313455D-010.1382690415332871D-02 0.1280923047700254D-03-.6393452627818492D-010.1031771937313466D-01 0.1597157490519940D-01-.2577484145293108D-02-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1048912441749794D+00 -.1676645312853028D-010.1401962280695231D-020.1303026850247933D-03 0.1315499101020305D-030.3980931060364731D-050.1495712768796483D+01 -.8758582323213338D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1597157490519940D-01-.2577484145293108D-02 -.6393452627818492D-010.1031771937313466D-010.1315499101020305D-03 0.3980931060364731D-050.1444546692054133D-030.5038740027685473D-05 -.6393452627818429D-010.1031771937313455D-010.1284018775367995D+01 -.9274586432417488D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1597157490519940D-01-.2577484145293108D-02 0.1444546692054133D-030.5038740027685473D-050.1574251928385321D-03 0.6107296557512106D-050.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1103394708518522D+01 -.9497234835585190D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1574251928385321D-030.6107296557512106D-05 0.1704618139382066D-030.7186682901146465D-05-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.9490240426135286D+00 -.9506540400453242D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-030.1704618139382066D-03 0.7186682901146465D-050.1835648671152865D-030.8276981869115928D-05 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.8168613374502116D+00 -.9363985243360058D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.1835648671152865D-030.8276981869115928D-050.1967346886630121D-03 0.9378276834732454D-05-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.7035067815698437D+00 -.9116507089552443D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-030.1967346886630121D-030.9378276834732454D-05 0.2099716165654131D-030.1049065173767338D-040.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.6061012742425287D+00 -.8799665629787737D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.2099716165654131D-03 0.1049065173767338D-040.2232759905057449D-030.1161419108758396D-04 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.5222386826466781D+00 -.8440152302463712D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 0.2232759905057449D-030.1161419108758396D-040.2366481518749747D-03 0.1274897996770195D-040.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.4498924598572777D+00 -.8057775134654636D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.2366481518749747D-030.1274897996770195D-04 0.2500884437803040D-030.1389510403850428D-04-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.3873542691813320D+00 -.7667024547805577D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-030.2500884437803040D-03 0.1389510403850428D-040.2635972110537330D-030.1505264954137583D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.3331826455172370D+00 -.7278305234447378D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.2635972110537330D-030.1505264954137583D-040.2771748002606731D-03 0.1622170330230075D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2861600468480754D+00 -.6898902412495479D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-040.2771748002606731D-030.1622170330230075D-04 0.2908215597085934D-030.1740235273557609D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2452569188515565D+00 -.6533737207443764D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.2908215597085934D-03 0.1740235273557609D-040.3045378394557195D-030.1859468584754816D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2096016214375600D+00 -.6185954984913972D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 0.3045378394557195D-030.1859468584754816D-040.3183239913197660D-03 0.1979879124037159D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1784552549543353D+00 -.5857381656377866D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3183239913197660D-030.1979879124037159D-04 0.3321803688867207D-030.2101475811579130D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1511905818315803D+00 -.5548875902979072D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-040.3321803688867207D-03 0.2101475811579130D-040.3461073275196676D-030.2224267627894746D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1272743715807420D+00 -.5260599576185822D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.3461073275196676D-030.2224267627894746D-040.3601052243676528D-03 0.2348263614220369D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1062526075652616D+00 -.4992223971674474D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-040.3601052243676528D-030.2348263614220369D-04 0.3741744183745985D-030.2473472872899837D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.8773808631923941D-01 -.4743086017203506D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.3741744183745985D-03 0.2473472872899837D-040.3883152702882559D-030.2599904567771967D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.7140001739248367D-01 -.4512305490328010D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 0.3883152702882559D-030.2599904567771967D-040.4025281426692064D-03 0.2727567924560386D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.5695529621298243D-01 -.4298872045172876D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.4025281426692064D-030.2727567924560386D-04 0.4168133998999086D-030.2856472231265750D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.4416117636119962D-01 -.4101708963900788D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-040.4168133998999086D-03 0.2856472231265750D-040.4311714081937841D-030.2986626838560346D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.3280911268293057D-01 -.3919719064856946D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.4311714081937841D-030.2986626838560346D-040.4456025356043519D-03 0.3118041160185087D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2271958428400390D-01 -.3751817020459010D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-040.4456025356043519D-030.3118041160185087D-04 0.4601071520344119D-030.3250724673348925D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.1373773786865687D-01 -.3596951403082874D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.4601071520344119D-03 0.3250724673348925D-040.4746856292452647D-030.3384686919130694D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.5729718122685731D-02 -.3454119037607182D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 0.4746856292452647D-030.3384686919130694D-040.4893383408659858D-03 0.3519937502883382D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1420426245443279D-02 -.3322373655592117D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.4893383408659858D-030.3519937502883382D-04 0.5040656624027409D-030.3656486094640881D-04-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.7813353894945640D-02 -.3200830386663087D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-050.5040656624027409D-03 0.3656486094640881D-040.5188679712481502D-030.3794342429527186D-04 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1353663748560101D-01 -.3088667262160822D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5188679712481502D-030.3794342429527186D-040.5337456466906940D-03 0.3933516308168090D-04-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1866663060706036D-01 -.2985124624149579D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-050.5337456466906940D-030.3933516308168090D-04 0.5486990699241699D-030.4074017597105377D-040.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2327004940642635D-01 -.2889503113144904D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.5486990699241699D-03 0.4074017597105377D-040.5637286240571986D-030.4215856229213537D-04 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2740531442145211D-01 -.2801160737399670D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 0.5637286240571986D-030.4215856229213537D-040.5788346941227656D-03 0.4359042204118991D-040.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3112369069937826D-01 -.2719509394869411D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.5788346941227656D-030.4359042204118991D-04 0.5940176670878278D-030.4503585588621884D-04-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3447025807878468D-01 -.2644011117776505D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-050.5940176670878278D-03 0.4503585588621884D-040.6092779318629489D-030.4649496517120420D-04 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3748473833137467D-01 -.2574174232414716D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.6092779318629489D-030.4649496517120420D-040.6246158793119950D-03 0.4796785192037780D-04-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4020220153327811D-01 -.2509549568248576D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-050.6246158793119950D-030.4796785192037780D-04 0.6400319022618756D-030.4945461884251627D-040.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4265367042011983D-01 -.2449726806321739D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.6400319022618756D-03 0.4945461884251627D-040.6555263955123291D-030.5095536933526217D-04 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4486663845896954D-01 -.2394331024220700D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 0.6555263955123291D-030.5095536933526217D-040.6710997558457615D-03 0.5247020748947131D-040.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4686551484505416D-01 -.2343019470765194D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.6710997558457615D-030.5247020748947131D-04 0.6867523820371290D-030.5399923809358637D-04-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4867200751975501D-01 -.2295478586186883D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-060.6867523820371290D-03 0.5399923809358637D-040.7024846748638742D-030.5554256663803711D-04 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5030545354048027D-01 -.2251421271226276D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.7024846748638742D-030.5554256663803711D-040.7182970371159094D-03 0.5710029931966725D-040.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5178310465540323D-01 -.2210584400084966D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.7182970371159094D-030.5710029931966725D-04 0.7341898736056463D-030.5867254304618804D-04-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5312037469915137D-01 -.2172726566553483D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-050.7341898736056463D-03 0.5867254304618804D-040.7501635911780829D-030.6025940544065905D-04 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5433105438958483D-01 -.2137626049149093D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.7501635911780829D-030.6025940544065905D-040.7662185987209308D-03 0.6186099484599586D-04-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5542749823766951D-01 -.2105078979169252D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-050.7662185987209308D-030.6186099484599586D-04 0.7823553071748006D-030.6347742032950520D-040.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5642078755448146D-01 -.2074897694756246D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.7823553071748006D-03 0.6347742032950520D-040.7985741295434327D-030.6510879168744751D-04 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5732087292851082D-01 -.2046909264043303D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 0.7985741295434327D-030.6510879168744751D-040.8148754809039821D-03 0.6675521944962719D-040.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5813669903342966D-01 -.2020954160960765D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.8148754809039821D-030.6675521944962719D-04 0.8312597784173505D-030.6841681488401041D-04-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5887631419529668D-01 -.1996885078135194D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-050.8312597784173505D-03 0.6841681488401041D-040.8477274413385733D-030.7009369000137130D-04 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.5954696678540483D-01 -.1974565862376031D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.8477274413385733D-030.7009369000137130D-040.8642788910272550D-03 0.7178595755996570D-04-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6015519019946330D-01 -.1953870559413300D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-050.8642788910272550D-030.7178595755996570D-04 0.8809145509580565D-030.7349373107023372D-040.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6070687792621943D-01 -.1934682555754028D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.8809145509580565D-03 0.7349373107023372D-040.8976348467312377D-030.7521712479953038D-04 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6120734999118643D-01 -.1916893806714917D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 0.8976348467312377D-030.7521712479953038D-040.9144402060832480D-03 0.7695625377688507D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6166141187735572D-01 -.1900404140831033D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.9144402060832480D-030.7695625377688507D-04 0.9313310588973688D-030.7871123379778959D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6207340686920948D-01 -.1885120631913809D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-040.9313310588973688D-03 0.7871123379778959D-040.9483078372144148D-030.8048218142901548D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6244726263448086D-01 -.1870957031024471D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.9483078372144148D-030.8048218142901548D-040.9653709752434816D-03 0.8226921401346013D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6278653274614820D-01 -.1857833251535415D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-040.9653709752434816D-030.8226921401346013D-04 0.9825209093727470D-030.8407244967502225D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6309443375193149D-01 -.1845674901271196D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.9825209093727470D-03 0.8407244967502225D-040.9997580781803323D-030.8589200732350710D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6337387831743405D-01 -.1834412856454672D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 0.9997580781803323D-030.8589200732350710D-040.1017082922445208D-02 0.8772800665956083D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6362750489982794D-01 -.1823982872836648D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1017082922445208D-020.8772800665956083D-04 0.1034495885158160D-020.8958056817963518D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6385770434976151D-01 -.1814325229964734D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-040.1034495885158160D-02 0.8958056817963518D-040.1051997411532808D-020.9144981318098186D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6406664378841609D-01 -.1805384405054882D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1051997411532808D-020.9144981318098186D-040.1069587949016678D-02 0.9333586376667711D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6425628806305758D-01 -.1797108773373967D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-040.1069587949016678D-020.9333586376667711D-04 0.1087267947302331D-020.9523884285067672D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6442841904691948D-01 -.1789450332429918D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1087267947302331D-02 0.9523884285067672D-040.1105037858338542D-020.9715887416290131D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6458465301690153D-01 -.1782364447603602D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 0.1105037858338542D-020.9715887416290131D-040.1122898136341541D-02 0.9909608225435285D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6472645631459964D-01 -.1775809617149684D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.1122898136341541D-020.9909608225435285D-04 0.1140849237806308D-020.1010505925022613D-03-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6485515947194923D-01 -.1769747254747372D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-040.1140849237806308D-02 0.1010505925022613D-030.1158891621517917D-020.1030225311152631D-03 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6497196996171620D-01 -.1764141488001286D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.1158891621517917D-020.1030225311152631D-030.1177025748562945D-02 0.1050120251386102D-03-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6507798371474940D-01 -.1758958971482033D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-040.1177025748562945D-020.1050120251386102D-03 0.1195252082340932D-020.1070192024594111D-030.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6517419552992140D-01 -.1754168713059499D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.1195252082340932D-02 0.1070192024594111D-030.1213571088575899D-020.1090441918119028D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6526150848870371D-01 -.1749741912422772D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 0.1213571088575899D-020.1090441918119028D-030.1231983235327929D-02 0.1110871227827559D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6534074247406860D-01 -.1745651810802267D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.1231983235327929D-020.1110871227827559D-03 0.1250488993004788D-020.1131481258164096D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6541264188264254D-01 -.1741873551014634D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-030.1250488993004788D-02 0.1131481258164096D-030.1269088834373626D-020.1152273322204408D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6547788260955756D-01 -.1738384047041783D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.1269088834373626D-020.1152273322204408D-030.1287783234572715D-02 0.1173248741709648D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6553707837708347D-01 -.1735161862434064D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-030.1287783234572715D-020.1173248741709648D-03 0.1306572671123266D-020.1194408847180681D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6559078647072791D-01 -.1732187096895809D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1306572671123266D-02 0.1194408847180681D-030.1325457623941280D-020.1215754977912746D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6563951293994072D-01 -.1729441280470915D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 0.1325457623941280D-020.1215754977912746D-030.1344438575349479D-02 0.1237288482050448D-030.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6568371731474190D-01 -.1726907274797979D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.1344438575349479D-020.1237288482050448D-03 0.1363516010089288D-020.1259010716643076D-03-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6572381688442269D-01 -.1724569180949983D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-020.1363516010089288D-02 0.1259010716643076D-030.1382690415332871D-020.1280923047700254D-03 0.1597157490519940D-01-.2577484145293108D-02-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6576019057985988D-01 -.1722412253413513D-01-.6393452627818429D-010.1031771937313455D-01 0.1382690415332871D-020.1280923047700254D-030.1401962280695231D-02 0.1303026850247933D-03-.6393452627818492D-010.1031771937313466D-01 0.1597157490519940D-01-.2577484145293108D-02-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.6579318249687402D-01 -.1720422819797903D-010.1401962280695231D-020.1303026850247933D-03 0.1315499101020305D-030.3980931060364731D-050.4820685663032476D-01 -.5085988217165716D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1597157490519940D-01-.2577484145293108D-02 -.6393452627818492D-010.1031771937313466D-010.1315499101020305D-03 0.3980931060364731D-050.1444546692054133D-030.5038740027685473D-05 -.6393452627818429D-010.1031771937313455D-01-.4982848866673706D-01 -.5061033237937254D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1597157490519940D-01-.2577484145293108D-02 0.1444546692054133D-030.5038740027685473D-050.1574251928385321D-03 0.6107296557512106D-050.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1268572577288423D+00 -.4868036798000584D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1574251928385321D-030.6107296557512106D-05 0.1704618139382066D-030.7186682901146465D-05-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1868102272661466D+00 -.4569036816326588D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-030.1704618139382066D-03 0.7186682901146465D-050.1835648671152865D-030.8276981869115928D-05 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2329245777932227D+00 -.4209739735795140D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.1835648671152865D-030.8276981869115928D-050.1967346886630121D-03 0.9378276834732454D-05-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2678626138092677D+00 -.3823258786163024D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-030.1967346886630121D-030.9378276834732454D-05 0.2099716165654131D-030.1049065173767338D-040.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2938105270752963D+00 -.3433058868290575D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.2099716165654131D-03 0.1049065173767338D-040.2232759905057449D-030.1161419108758396D-04 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3125605165773361D+00 -.3055268727498139D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 0.2232759905057449D-030.1161419108758396D-040.2366481518749747D-03 0.1274897996770195D-040.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3255790339185094D+00 -.2700489567358313D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.2366481518749747D-030.1274897996770195D-04 0.2500884437803040D-030.1389510403850428D-04-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3340634668458927D+00 -.2375203779188533D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-030.2500884437803040D-03 0.1389510403850428D-040.2635972110537330D-030.1505264954137583D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3389891920386465D+00 -.2082866889705388D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.2635972110537330D-030.1505264954137583D-040.2771748002606731D-03 0.1622170330230075D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3411486091088010D+00 -.1824749233535114D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-040.2771748002606731D-030.1622170330230075D-04 0.2908215597085934D-030.1740235273557609D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3411835008757841D+00 -.1600580484709967D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.2908215597085934D-03 0.1740235273557609D-040.3045378394557195D-030.1859468584754816D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3396118418774621D+00 -.1409039418766617D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 0.3045378394557195D-030.1859468584754816D-040.3183239913197660D-03 0.1979879124037159D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3368499906489177D+00 -.1248122626208860D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3183239913197660D-030.1979879124037159D-04 0.3321803688867207D-030.2101475811579130D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3332310455596447D+00 -.1115418954076180D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-040.3321803688867207D-03 0.2101475811579130D-040.3461073275196676D-030.2224267627894746D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3290200139402660D+00 -.1008310886583305D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.3461073275196676D-030.2224267627894746D-040.3601052243676528D-03 0.2348263614220369D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3244263356522539D+00 -.9241196217609635D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-040.3601052243676528D-030.2348263614220369D-04 0.3741744183745985D-030.2473472872899837D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3196142116403626D+00 -.8602070427593237D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.3741744183745985D-03 0.2473472872899837D-040.3883152702882559D-030.2599904567771967D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3147111124108911D+00 -.8140449450940520D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 0.3883152702882559D-030.2599904567771967D-040.4025281426692064D-03 0.2727567924560386D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3098147783322389D+00 -.7832596231436846D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.4025281426692064D-030.2727567924560386D-04 0.4168133998999086D-030.2856472231265750D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3049989710922947D+00 -.7656581262990280D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-040.4168133998999086D-03 0.2856472231265750D-040.4311714081937841D-030.2986626838560346D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3003181918419177D+00 -.7592410749930865D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.4311714081937841D-030.2986626838560346D-040.4456025356043519D-03 0.3118041160185087D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2958115450595328D+00 -.7622058049335034D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-040.4456025356043519D-030.3118041160185087D-04 0.4601071520344119D-030.3250724673348925D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2915058967797831D+00 -.7729427242199239D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.4601071520344119D-03 0.3250724673348925D-040.4746856292452647D-030.3384686919130694D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2874184505286342D+00 -.7900270743738223D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 0.4746856292452647D-030.3384686919130694D-040.4893383408659858D-03 0.3519937502883382D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2835588432536662D+00 -.8122077438341108D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.4893383408659858D-030.3519937502883382D-04 0.5040656624027409D-030.3656486094640881D-04-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2799308460258400D+00 -.8383943600343269D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-050.5040656624027409D-03 0.3656486094640881D-040.5188679712481502D-030.3794342429527186D-04 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2765337397283812D+00 -.8676435588169473D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5188679712481502D-030.3794342429527186D-040.5337456466906940D-03 0.3933516308168090D-04-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2733634238474208D+00 -.8991450776860036D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-050.5337456466906940D-030.3933516308168090D-04 0.5486990699241699D-030.4074017597105377D-040.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2704133064268818D+00 -.9322081262977695D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.5486990699241699D-03 0.4074017597105377D-040.5637286240571986D-030.4215856229213537D-04 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2676750149039842D+00 -.9662483409213413D-02-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 0.5637286240571986D-030.4215856229213537D-040.5788346941227656D-03 0.4359042204118991D-040.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2651389606156939D+00 -.1000775519245637D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.5788346941227656D-030.4359042204118991D-04 0.5940176670878278D-030.4503585588621884D-04-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2627947840219851D+00 -.1035382249831074D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-050.5940176670878278D-03 0.4503585588621884D-040.6092779318629489D-030.4649496517120420D-04 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2606317029300955D+00 -.1069733490338830D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.6092779318629489D-030.4649496517120420D-040.6246158793119950D-03 0.4796785192037780D-04-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2586387820593383D+00 -.1103557105390731D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-050.6246158793119950D-030.4796785192037780D-04 0.6400319022618756D-030.4945461884251627D-040.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2568051390204495D+00 -.1136635344559469D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.6400319022618756D-03 0.4945461884251627D-040.6555263955123291D-030.5095536933526217D-04 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2551200990819129D+00 -.1168797220454049D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 0.6555263955123291D-030.5095536933526217D-040.6710997558457615D-03 0.5247020748947131D-040.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2535733088625027D+00 -.1199911733718971D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.6710997558457615D-030.5247020748947131D-04 0.6867523820371290D-030.5399923809358637D-04-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2521548172447478D+00 -.1229881884115071D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-060.6867523820371290D-03 0.5399923809358637D-040.7024846748638742D-030.5554256663803711D-04 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2508551302818606D+00 -.1258639403228736D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.7024846748638742D-030.5554256663803711D-040.7182970371159094D-03 0.5710029931966725D-040.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2496652456157812D+00 -.1286140143634197D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.7182970371159094D-030.5710029931966725D-04 0.7341898736056463D-030.5867254304618804D-04-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2485766708905219D+00 -.1312360060645681D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-050.7341898736056463D-03 0.5867254304618804D-040.7501635911780829D-030.6025940544065905D-04 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2475814297948827D+00 -.1337291725485198D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.7501635911780829D-030.6025940544065905D-040.7662185987209308D-03 0.6186099484599586D-04-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2466720586702197D+00 -.1360941312262982D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-050.7662185987209308D-030.6186099484599586D-04 0.7823553071748006D-030.6347742032950520D-040.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2458415960460029D+00 -.1383326005253246D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.7823553071748006D-03 0.6347742032950520D-040.7985741295434327D-030.6510879168744751D-04 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2450835669966239D+00 -.1404471777278064D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 0.7985741295434327D-030.6510879168744751D-040.8148754809039821D-03 0.6675521944962719D-040.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2443919638292058D+00 -.1424411494392620D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.8148754809039821D-030.6675521944962719D-04 0.8312597784173505D-030.6841681488401041D-04-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2437612242990515D+00 -.1443183306359489D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-050.8312597784173505D-03 0.6841681488401041D-040.8477274413385733D-030.7009369000137130D-04 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2431862082944139D+00 -.1460829286515623D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.8477274413385733D-030.7009369000137130D-040.8642788910272550D-03 0.7178595755996570D-04-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2426621737251980D+00 -.1477394288514098D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-050.8642788910272550D-030.7178595755996570D-04 0.8809145509580565D-030.7349373107023372D-040.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2421847521824966D+00 -.1492924991028709D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.8809145509580565D-03 0.7349373107023372D-040.8976348467312377D-030.7521712479953038D-04 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2417499248004771D+00 -.1507469104826736D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 0.8976348467312377D-030.7521712479953038D-040.9144402060832480D-03 0.7695625377688507D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2413539986432542D+00 -.1521074719639924D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.9144402060832480D-030.7695625377688507D-04 0.9313310588973688D-030.7871123379778959D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2409935838522013D+00 -.1533789771001627D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-040.9313310588973688D-03 0.7871123379778959D-040.9483078372144148D-030.8048218142901548D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2406655717196978D+00 -.1545661609680803D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.9483078372144148D-030.8048218142901548D-040.9653709752434816D-03 0.8226921401346013D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2403671138003207D+00 -.1556736658546946D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-040.9653709752434816D-030.8226921401346013D-04 0.9825209093727470D-030.8407244967502225D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2400956021272602D+00 -.1567060143662068D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.9825209093727470D-03 0.8407244967502225D-040.9997580781803323D-030.8589200732350710D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2398486505680700D+00 -.1576675888135830D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 0.9997580781803323D-030.8589200732350710D-040.1017082922445208D-02 0.8772800665956083D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2396240773279193D+00 -.1585626158817118D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1017082922445208D-020.8772800665956083D-04 0.1034495885158160D-020.8958056817963518D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2394198885888085D+00 -.1593951557249072D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-040.1034495885158160D-02 0.8958056817963518D-040.1051997411532808D-020.9144981318098186D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2392342632585187D+00 -.1601690947502950D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1051997411532808D-020.9144981318098186D-040.1069587949016678D-02 0.9333586376667711D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2390655387923777D+00 -.1608881414546571D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-040.1069587949016678D-020.9333586376667711D-04 0.1087267947302331D-020.9523884285067672D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2389121980434366D+00 -.1615558247711579D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1087267947302331D-02 0.9523884285067672D-040.1105037858338542D-020.9715887416290131D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2387728570916794D+00 -.1621754944615051D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 0.1105037858338542D-020.9715887416290131D-040.1122898136341541D-02 0.9909608225435285D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2386462539999018D+00 -.1627503231578771D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.1122898136341541D-020.9909608225435285D-04 0.1140849237806308D-020.1010505925022613D-03-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2385312384424493D+00 -.1632833097185782D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-040.1140849237806308D-02 0.1010505925022613D-030.1158891621517917D-020.1030225311152631D-03 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2384267621527447D+00 -.1637772836129954D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.1158891621517917D-020.1030225311152631D-030.1177025748562945D-02 0.1050120251386102D-03-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2383318701361712D+00 -.1642349100959841D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-040.1177025748562945D-020.1050120251386102D-03 0.1195252082340932D-020.1070192024594111D-030.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2382456925961863D+00 -.1646586959702118D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.1195252082340932D-02 0.1070192024594111D-030.1213571088575899D-020.1090441918119028D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2381674375233261D+00 -.1650509957680039D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 0.1213571088575899D-020.1090441918119028D-030.1231983235327929D-02 0.1110871227827559D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2380963838988937D+00 -.1654140182125686D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.1231983235327929D-020.1110871227827559D-03 0.1250488993004788D-020.1131481258164096D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2380318754674663D+00 -.1657498328427346D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-030.1250488993004788D-02 0.1131481258164096D-030.1269088834373626D-020.1152273322204408D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2379733150348419D+00 -.1660603767060543D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.1269088834373626D-020.1152273322204408D-030.1287783234572715D-02 0.1173248741709648D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2379201592505817D+00 -.1663474610427858D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-030.1287783234572715D-020.1173248741709648D-03 0.1306572671123266D-020.1194408847180681D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2378719138368543D+00 -.1666127778982718D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1306572671123266D-02 0.1194408847180681D-030.1325457623941280D-020.1215754977912746D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2378281292277970D+00 -.1668579066139561D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 0.1325457623941280D-020.1215754977912746D-030.1344438575349479D-02 0.1237288482050448D-030.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2377883965860592D+00 -.1670843201580279D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.1344438575349479D-020.1237288482050448D-03 0.1363516010089288D-020.1259010716643076D-03-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2377523441655522D+00 -.1672933912657333D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-020.1363516010089288D-02 0.1259010716643076D-030.1382690415332871D-020.1280923047700254D-03 0.1597157490519940D-01-.2577484145293108D-02-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2377196339916881D+00 -.1674863983669926D-01-.6393452627818429D-010.1031771937313455D-01 0.1382690415332871D-020.1280923047700254D-030.1401962280695231D-02 0.1303026850247933D-03-.6393452627818492D-010.1031771937313466D-01 0.1597157490519940D-01-.2577484145293108D-02-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2376899588325394D+00 -.1676645312853028D-010.1401962280695231D-020.1303026850247933D-03 0.1315499101020305D-030.3980931060364731D-050.1153131565788964D+01 -.8758582323213338D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-03-.7089509216132388D-02 0.1144101174176753D-020.1597157490519940D-01-.2577484145293108D-02 -.6393452627818492D-010.1031771937313466D-010.1444546692054133D-03 0.5038740027685473D-05-.6393452627818429D-010.1031771937313455D-01 0.9414375723604762D+00-.9274586432417488D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-03-.1288661285438230D-020.2079634633143654D-03 0.1760064559812521D-02-.2840382695217011D-03-.2541776982554263D-02 0.4101905987537787D-030.3980741565709959D-02-.6424099272005126D-03 -.7089509216132388D-020.1144101174176753D-020.1597157490519940D-01 -.2577484145293108D-020.1574251928385321D-030.6107296557512106D-05 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.7608135055110032D+00-.9497234835585190D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.9826448017572174D-03-.1585786882018380D-03-.1288661285438230D-02 0.2079634633143654D-030.1760064559812521D-02-.2840382695217011D-03 -.2541776982554263D-020.4101905987537787D-030.3980741565709959D-02 -.6424099272005126D-03-.7089509216132388D-020.1144101174176753D-02 0.1704618139382066D-030.7186682901146465D-05-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.6064428396060100D+00 -.9506540400453242D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.1760064559812521D-02 -.2840382695217011D-03-.2541776982554263D-020.4101905987537787D-03 0.3980741565709959D-02-.6424099272005126D-030.1835648671152865D-03 0.8276981869115928D-050.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.4742801344426930D+00-.9363985243360058D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-03-.1288661285438230D-020.2079634633143654D-03 0.1760064559812521D-02-.2840382695217011D-03-.2541776982554263D-02 0.4101905987537787D-030.1967346886630121D-030.9378276834732454D-05 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.3609255785623250D+00-.9116507089552443D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.9826448017572174D-03-.1585786882018380D-03-.1288661285438230D-02 0.2079634633143654D-030.1760064559812521D-02-.2840382695217011D-03 0.2099716165654131D-030.1049065173767338D-040.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.2635200712350100D+00 -.8799665629787737D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-03-.7727812230408974D-03 0.1247110170406368D-030.9826448017572174D-03-.1585786882018380D-03 -.1288661285438230D-020.2079634633143654D-030.2232759905057449D-03 0.1161419108758396D-04-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 0.1796574796391594D+00-.8440152302463712D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.6226054234809117D-03-.1004757274921672D-03 -.7727812230408974D-030.1247110170406368D-030.9826448017572174D-03 -.1585786882018380D-030.2366481518749747D-030.1274897996770195D-04 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-010.1073112568497590D+00-.8057775134654636D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 -.5114288231755168D-030.8253410768850847D-040.6226054234809117D-03 -.1004757274921672D-03-.7727812230408974D-030.1247110170406368D-03 0.2500884437803040D-030.1389510403850428D-04-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-010.4477306617381333D-01 -.7667024547805577D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.4268045368520104D-03 -.6887748599651892D-04-.5114288231755168D-030.8253410768850847D-04 0.6226054234809117D-03-.1004757274921672D-030.2635972110537330D-03 0.1505264954137583D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.9398557490281734D-02-.7278305234447378D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-04-.3608796739013979D-030.5823856716450639D-04 0.4268045368520104D-03-.6887748599651892D-04-.5114288231755168D-03 0.8253410768850847D-040.2771748002606731D-030.1622170330230075D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.5642115615944338D-01-.6898902412495479D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3085010747980624D-03-.4978573708714430D-04-.3608796739013979D-03 0.5823856716450639D-040.4268045368520104D-03-.6887748599651892D-04 0.2908215597085934D-030.1740235273557609D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.9732428415596228D-01 -.6533737207443764D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-04-.2661733971656788D-03 0.4295491929665637D-040.3085010747980624D-03-.4978573708714430D-04 -.3608796739013979D-030.5823856716450639D-040.3045378394557195D-03 0.1859468584754816D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.1329795815699588D+00-.6185954984913972D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.2314578281220329D-03-.3735253948527681D-04 -.2661733971656788D-030.4295491929665637D-040.3085010747980624D-03 -.4978573708714430D-040.3183239913197660D-030.1979879124037159D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.1641259480531834D+00-.5857381656377866D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 -.2026106452901076D-030.3269719667613068D-040.2314578281220329D-03 -.3735253948527681D-04-.2661733971656788D-030.4295491929665637D-04 0.3321803688867207D-030.2101475811579130D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.1913906211759385D+00 -.5548875902979072D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.1783582025511267D-03 -.2878335054540236D-04-.2026106452901076D-030.3269719667613068D-04 0.2314578281220329D-03-.3735253948527681D-040.3461073275196676D-03 0.2224267627894746D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.2153068314267767D+00-.5260599576185822D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-04-.1577525118211425D-030.2545801528732096D-04 0.1783582025511267D-03-.2878335054540236D-04-.2026106452901076D-03 0.3269719667613068D-040.3601052243676528D-030.2348263614220369D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.2363285954422571D+00-.4992223971674474D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.1400760388418106D-03-.2260539561021587D-04-.1577525118211425D-03 0.2545801528732096D-040.1783582025511267D-03-.2878335054540236D-04 0.3741744183745985D-030.2473472872899837D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2548431166882794D+00 -.4743086017203506D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-04-.1247774371157844D-03 0.2013651551366699D-040.1400760388418106D-03-.2260539561021587D-04 -.1577525118211425D-030.2545801528732096D-040.3883152702882559D-03 0.2599904567771967D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.2711811856150351D+00-.4512305490328010D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.1114272391272199D-03-.1798206776156415D-04 -.1247774371157844D-030.2013651551366699D-040.1400760388418106D-03 -.2260539561021587D-040.4025281426692064D-030.2727567924560386D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.2856259067945363D+00-.4298872045172876D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 -.9968672138364864D-040.1608738933935444D-040.1114272391272199D-03 -.1798206776156415D-04-.1247774371157844D-030.2013651551366699D-04 0.4168133998999086D-030.2856472231265750D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.2984200266463191D+00 -.4101708963900788D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.8928564729752786D-04 -.1440886961226929D-04-.9968672138364864D-040.1608738933935444D-04 0.1114272391272199D-03-.1798206776156415D-040.4311714081937841D-03 0.2986626838560346D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3097720903245881D+00-.3919719064856946D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-04-.8000610566205314D-040.1291134218726644D-04 0.8928564729752786D-04-.1440886961226929D-04-.9968672138364864D-04 0.1608738933935444D-040.4456025356043519D-030.3118041160185087D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3198616187235148D+00-.3751817020459010D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.7167060586276605D-04-.1156616372469904D-04-.8000610566205314D-04 0.1291134218726644D-040.8928564729752786D-04-.1440886961226929D-04 0.4601071520344119D-030.3250724673348925D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3288434651388619D+00 -.3596951403082874D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-05-.6413319184916952D-04 0.1034977991584680D-040.7167060586276605D-04-.1156616372469904D-04 -.8000610566205314D-040.1291134218726644D-040.4746856292452647D-03 0.3384686919130694D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3368514848848330D+00-.3454119037607182D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5727272713271265D-04-.9242641819512053D-05 -.6413319184916952D-040.1034977991584680D-040.7167060586276605D-04 -.1156616372469904D-040.4893383408659858D-030.3519937502883382D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3440016292529620D+00-.3322373655592117D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 -.5098776122625716D-040.8228377410789080D-050.5727272713271265D-04 -.9242641819512053D-05-.6413319184916952D-040.1034977991584680D-04 0.5040656624027409D-030.3656486094640881D-04-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3503945569024643D+00 -.3200830386663087D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.4519256146756725D-04 -.7293151198878877D-05-.5098776122625716D-040.8228377410789080D-05 0.5727272713271265D-04-.9242641819512053D-050.5188679712481502D-03 0.3794342429527186D-040.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3561178404931197D+00-.3088667262160822D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-05-.3981401266047105D-040.6425163892851680D-05 0.4519256146756725D-04-.7293151198878877D-05-.5098776122625716D-04 0.8228377410789080D-050.5337456466906940D-030.3933516308168090D-04 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3612478336145791D+00-.2985124624149579D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.3478916893609630D-04-.5614257322333374D-05-.3981401266047105D-04 0.6425163892851680D-050.4519256146756725D-04-.7293151198878877D-05 0.5486990699241699D-030.4074017597105377D-040.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3658512524139451D+00 -.2889503113144904D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-05-.3006329973746788D-04 0.4851599099553577D-050.3478916893609630D-04-.5614257322333374D-05 -.3981401266047105D-040.6425163892851680D-050.5637286240571986D-03 0.4215856229213537D-04-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3699865174289708D+00-.2801160737399670D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.2558831255668139D-04-.4129428081521270D-05 -.3006329973746788D-040.4851599099553577D-050.3478916893609630D-04 -.5614257322333374D-050.5788346941227656D-030.4359042204118991D-04 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3737048937068970D+00-.2719509394869411D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 -.2132146425429693D-040.3440846403443515D-050.2558831255668139D-04 -.4129428081521270D-05-.3006329973746788D-040.4851599099553577D-05 0.5940176670878278D-030.4503585588621884D-04-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3770514610863034D+00 -.2644011117776505D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.1722429384947072D-04 -.2779647252972395D-05-.2132146425429693D-040.3440846403443515D-05 0.2558831255668139D-04-.4129428081521270D-050.6092779318629489D-03 0.4649496517120420D-040.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3800659413388934D+00-.2574174232414716D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-05-.1326172498198105D-040.2140170026010777D-05 0.1722429384947072D-04-.2779647252972395D-05-.2132146425429693D-04 0.3440846403443515D-050.6246158793119950D-030.4796785192037780D-04 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3827834045407968D+00-.2509549568248576D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.9401297415863014D-05-.1517176307183306D-05-.1326172498198105D-04 0.2140170026010777D-050.1722429384947072D-04-.2779647252972395D-05 0.6400319022618756D-030.4945461884251627D-040.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3852348734276386D+00 -.2449726806321739D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-06-.5612495043042305D-05 0.9057414234252119D-060.9401297415863014D-05-.1517176307183306D-05 -.1326172498198105D-040.2140170026010777D-050.6555263955123291D-03 0.5095536933526217D-04-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3874478414664883D+00-.2394331024220700D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.1866143715512185D-05-.3011572664637594D-06 -.5612495043042305D-050.9057414234252119D-060.9401297415863014D-05 -.1517176307183306D-050.6710997558457615D-030.5247020748947131D-04 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3894467178525729D+00-.2343019470765194D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.1866143715712640D-05-.3011572664961087D-060.1866143715512185D-05 -.3011572664637594D-06-.5612495043042305D-050.9057414234252119D-06 0.6867523820371290D-030.5399923809358637D-04-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3912532105272737D+00 -.2295478586186883D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-05-.5612495043095234D-05 0.9057414234337534D-060.1866143715712640D-05-.3011572664961087D-06 0.1866143715512185D-05-.3011572664637594D-060.7024846748638742D-03 0.5554256663803711D-040.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3928866565479990D+00-.2251421271226276D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.9401297415583386D-05-.1517176307138179D-05 -.5612495043095234D-050.9057414234337534D-060.1866143715712640D-05 -.3011572664961087D-060.7182970371159094D-030.5710029931966725D-04 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3943643076629220D+00-.2210584400084966D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 -.1326172498190355D-040.2140170025998270D-050.9401297415583386D-05 -.1517176307138179D-05-.5612495043095234D-050.9057414234337534D-06 0.7341898736056463D-030.5867254304618804D-04-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3957015777066701D+00 -.2172726566553483D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.1722429384915639D-04 -.2779647252921669D-05-.1326172498190355D-040.2140170025998270D-05 0.9401297415583386D-05-.1517176307138179D-050.7501635911780829D-03 0.6025940544065905D-040.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3969122573971036D+00-.2137626049149093D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-05-.2132146425430071D-040.3440846403444125D-05 0.1722429384915639D-04-.2779647252921669D-05-.1326172498190355D-04 0.2140170025998270D-050.7662185987209308D-030.6186099484599586D-04 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.3980087012451882D+00-.2105078979169252D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.2558831255660659D-04-.4129428081509198D-05-.2132146425430071D-04 0.3440846403444125D-050.1722429384915639D-04-.2779647252921669D-05 0.7823553071748006D-030.6347742032950520D-040.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.3990019905620002D+00 -.2074897694756246D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-05-.3006329973748652D-04 0.4851599099556584D-050.2558831255660659D-04-.4129428081509198D-05 -.2132146425430071D-040.3440846403444125D-050.7985741295434327D-03 0.6510879168744751D-04-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.3999020759360296D+00-.2046909264043303D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.3478916893617300D-04-.5614257322345751D-05 -.3006329973748652D-040.4851599099556584D-050.2558831255660659D-04 -.4129428081509198D-050.8148754809039821D-030.6675521944962719D-04 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4007179020409484D+00-.2020954160960765D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 -.3981401266032415D-040.6425163892827973D-050.3478916893617300D-04 -.5614257322345751D-05-.3006329973748652D-040.4851599099556584D-05 0.8312597784173505D-030.6841681488401041D-04-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4014575172028155D+00 -.1996885078135194D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.4519256146769957D-04 -.7293151198900231D-05-.3981401266032415D-040.6425163892827973D-05 0.3478916893617300D-04-.5614257322345751D-050.8477274413385733D-03 0.7009369000137130D-040.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4021281697929236D+00-.1974565862376031D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-05-.5098776122600387D-040.8228377410748204D-05 0.4519256146769957D-04-.7293151198900231D-05-.3981401266032415D-04 0.6425163892827973D-050.8642788910272550D-030.7178595755996570D-04 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4027363932069820D+00-.1953870559413300D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.5727272713271211D-04-.9242641819511967D-05-.5098776122600387D-04 0.8228377410748204D-050.4519256146769957D-04-.7293151198900231D-05 0.8809145509580565D-030.7349373107023372D-040.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4032880809337382D+00 -.1934682555754028D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-04-.6413319184882657D-04 0.1034977991579146D-040.5727272713271211D-04-.9242641819511967D-05 -.5098776122600387D-040.8228377410748204D-050.8976348467312377D-03 0.7521712479953038D-04-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4037885529987051D+00-.1916893806714917D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.7167060586256731D-04-.1156616372466696D-04 -.6413319184882657D-040.1034977991579146D-040.5727272713271211D-04 -.9242641819511967D-050.9144402060832480D-030.7695625377688507D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4042426148848744D+00-.1900404140831033D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 -.8000610566205206D-040.1291134218726627D-040.7167060586256731D-04 -.1156616372466696D-04-.6413319184882657D-040.1034977991579146D-04 0.9313310588973688D-030.7871123379778959D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4046546098767282D+00 -.1885120631913809D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.8928564729795884D-04 -.1440886961233884D-04-.8000610566205206D-040.1291134218726627D-04 0.7167060586256731D-04-.1156616372466696D-040.9483078372144148D-03 0.8048218142901548D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4050284656419996D+00-.1870957031024471D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-04-.9968672138332729D-040.1608738933930258D-04 0.8928564729795884D-04-.1440886961233884D-04-.8000610566205206D-04 0.1291134218726627D-040.9653709752434816D-030.8226921401346013D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4053677357536670D+00-.1857833251535415D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1114272391270168D-03-.1798206776153138D-04-.9968672138332729D-04 0.1608738933930258D-040.8928564729795884D-04-.1440886961233884D-04 0.9825209093727470D-030.8407244967502225D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4056756367594502D+00 -.1845674901271196D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-04-.1247774371156127D-03 0.2013651551363927D-040.1114272391270168D-03-.1798206776153138D-04 -.9968672138332729D-040.1608738933930258D-040.9997580781803323D-03 0.8589200732350710D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4059550813249528D+00-.1834412856454672D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1400760388416475D-03-.2260539561018954D-04 -.1247774371156127D-030.2013651551363927D-040.1114272391270168D-03 -.1798206776153138D-040.1017082922445208D-020.8772800665956083D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4062087079073467D+00-.1823982872836648D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 -.1577525118210161D-030.2545801528730057D-040.1400760388416475D-03 -.2260539561018954D-04-.1247774371156127D-030.2013651551363927D-04 0.1034495885158160D-020.8958056817963518D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4064389073572802D+00 -.1814325229964734D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1783582025510641D-03 -.2878335054539225D-04-.1577525118210161D-030.2545801528730057D-04 0.1400760388416475D-03-.2260539561018954D-040.1051997411532808D-02 0.9144981318098186D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4066478467959349D+00-.1805384405054882D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-04-.2026106452901065D-030.3269719667613051D-04 0.1783582025510641D-03-.2878335054539225D-04-.1577525118210161D-03 0.2545801528730057D-040.1069587949016678D-020.9333586376667711D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4068374910705764D+00-.1797108773373967D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.2314578281220545D-03-.3735253948528030D-04-.2026106452901065D-03 0.3269719667613051D-040.1783582025510641D-03-.2878335054539225D-04 0.1087267947302331D-020.9523884285067672D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4070096220544382D+00 -.1789450332429918D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-04-.2661733971656183D-03 0.4295491929664661D-040.2314578281220545D-03-.3735253948528030D-04 -.2026106452901065D-030.3269719667613051D-040.1105037858338542D-02 0.9715887416290131D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4071658560244203D+00-.1782364447603602D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.3085010747974997D-03-.4978573708705348D-04 -.2661733971656183D-030.4295491929664661D-040.2314578281220545D-03 -.3735253948528030D-040.1122898136341541D-020.9909608225435285D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4073076593221184D+00-.1775809617149684D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 -.3608796739011819D-030.5823856716447153D-040.3085010747974997D-03 -.4978573708705348D-04-.2661733971656183D-030.4295491929664661D-04 0.1140849237806308D-020.1010505925022613D-03-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4074363624794680D+00 -.1769747254747372D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.4268045368517673D-03 -.6887748599647970D-04-.3608796739011819D-030.5823856716447153D-04 0.3085010747974997D-03-.4978573708705348D-040.1158891621517917D-02 0.1030225311152631D-030.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4075531729692349D+00-.1764141488001286D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-03-.5114288231753483D-030.8253410768848127D-04 0.4268045368517673D-03-.6887748599647970D-04-.3608796739011819D-03 0.5823856716447153D-040.1177025748562945D-020.1050120251386102D-03 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4076591867222681D+00-.1758958971482033D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.6226054234808307D-03-.1004757274921541D-03-.5114288231753483D-03 0.8253410768848127D-040.4268045368517673D-03-.6887748599647970D-04 0.1195252082340932D-020.1070192024594111D-030.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4077553985374401D+00 -.1754168713059499D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-03-.7727812230406976D-03 0.1247110170406046D-030.6226054234808307D-03-.1004757274921541D-03 -.5114288231753483D-030.8253410768848127D-040.1213571088575899D-02 0.1090441918119028D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4078427114962225D+00-.1749741912422772D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.9826448017570867D-03-.1585786882018169D-03 -.7727812230406976D-030.1247110170406046D-030.6226054234808307D-03 -.1004757274921541D-030.1231983235327929D-020.1110871227827559D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4079219454815874D+00-.1745651810802267D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 -.1288661285438060D-020.2079634633143379D-030.9826448017570867D-03 -.1585786882018169D-03-.7727812230406976D-030.1247110170406046D-03 0.1250488993004788D-020.1131481258164096D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4079938448901613D+00 -.1741873551014634D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1760064559812291D-02 -.2840382695216640D-03-.1288661285438060D-020.2079634633143379D-03 0.9826448017570867D-03-.1585786882018169D-030.1269088834373626D-02 0.1152273322204408D-030.9826448017572174D-03-.1585786882018380D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4080590856170763D+00-.1738384047041783D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-03-.2541776982553532D-020.4101905987536608D-03 0.1760064559812291D-02-.2840382695216640D-03-.1288661285438060D-02 0.2079634633143379D-030.1287783234572715D-020.1173248741709648D-03 -.1288661285438230D-020.2079634633143654D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4081182813846022D+00-.1735161862434064D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.3980741565709701D-02-.6424099272004710D-03-.2541776982553532D-02 0.4101905987536608D-030.1760064559812291D-02-.2840382695216640D-03 0.1306572671123266D-020.1194408847180681D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4081719894782467D+00 -.1732187096895809D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-02-.7089509216132070D-02 0.1144101174176702D-020.3980741565709701D-02-.6424099272004710D-03 -.2541776982553532D-020.4101905987536608D-030.1325457623941280D-02 0.1215754977912746D-03-.2541776982554263D-020.4101905987537787D-03 0.1760064559812521D-02-.2840382695217011D-03-.1288661285438230D-02 0.2079634633143654D-030.9826448017572174D-03-.1585786882018380D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4082207159474594D+00-.1729441280470915D-01-.6393452627818429D-01 0.1031771937313455D-010.1597157490519900D-01-.2577484145293042D-02 -.7089509216132070D-020.1144101174176702D-020.3980741565709701D-02 -.6424099272004710D-030.1344438575349479D-020.1237288482050448D-03 0.3980741565709959D-02-.6424099272005126D-03-.2541776982554263D-02 0.4101905987537787D-030.1760064559812521D-02-.2840382695217011D-03 -.1288661285438230D-020.2079634633143654D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4082649203222606D+00-.1726907274797979D-01 -.6393452627818429D-010.1031771937313455D-010.1597157490519900D-01 -.2577484145293042D-02-.7089509216132070D-020.1144101174176702D-02 0.1363516010089288D-020.1259010716643076D-03-.7089509216132388D-02 0.1144101174176753D-020.3980741565709959D-02-.6424099272005126D-03 -.2541776982554263D-020.4101905987537787D-030.1760064559812521D-02 -.2840382695217011D-03-.1288661285438230D-020.2079634633143654D-03 0.9826448017572174D-03-.1585786882018380D-03-.7727812230408974D-03 0.1247110170406368D-030.6226054234809117D-03-.1004757274921672D-03 -.5114288231755168D-030.8253410768850847D-040.4268045368520104D-03 -.6887748599651892D-04-.3608796739013979D-030.5823856716450639D-04 0.3085010747980624D-03-.4978573708714430D-04-.2661733971656788D-03 0.4295491929665637D-040.2314578281220329D-03-.3735253948527681D-04 -.2026106452901076D-030.3269719667613068D-040.1783582025511267D-03 -.2878335054540236D-04-.1577525118211425D-030.2545801528732096D-04 0.1400760388418106D-03-.2260539561021587D-04-.1247774371157844D-03 0.2013651551366699D-040.1114272391272199D-03-.1798206776156415D-04 -.9968672138364864D-040.1608738933935444D-040.8928564729752786D-04 -.1440886961226929D-04-.8000610566205314D-040.1291134218726644D-04 0.7167060586276605D-04-.1156616372469904D-04-.6413319184916952D-04 0.1034977991584680D-040.5727272713271265D-04-.9242641819512053D-05 -.5098776122625716D-040.8228377410789080D-050.4519256146756725D-04 -.7293151198878877D-05-.3981401266047105D-040.6425163892851680D-05 0.3478916893609630D-04-.5614257322333374D-05-.3006329973746788D-04 0.4851599099553577D-050.2558831255668139D-04-.4129428081521270D-05 -.2132146425429693D-040.3440846403443515D-050.1722429384947072D-04 -.2779647252972395D-05-.1326172498198105D-040.2140170026010777D-05 0.9401297415863014D-05-.1517176307183306D-05-.5612495043042305D-05 0.9057414234252119D-060.1866143715512185D-05-.3011572664637594D-06 0.1866143715712640D-05-.3011572664961087D-06-.5612495043095234D-05 0.9057414234337534D-060.9401297415583386D-05-.1517176307138179D-05 -.1326172498190355D-040.2140170025998270D-050.1722429384915639D-04 -.2779647252921669D-05-.2132146425430071D-040.3440846403444125D-05 0.2558831255660659D-04-.4129428081509198D-05-.3006329973748652D-04 0.4851599099556584D-050.3478916893617300D-04-.5614257322345751D-05 -.3981401266032415D-040.6425163892827973D-050.4519256146769957D-04 -.7293151198900231D-05-.5098776122600387D-040.8228377410748204D-05 0.5727272713271211D-04-.9242641819511967D-05-.6413319184882657D-04 0.1034977991579146D-040.7167060586256731D-04-.1156616372466696D-04 -.8000610566205206D-040.1291134218726627D-040.8928564729795884D-04 -.1440886961233884D-04-.9968672138332729D-040.1608738933930258D-04 0.1114272391270168D-03-.1798206776153138D-04-.1247774371156127D-03 0.2013651551363927D-040.1400760388416475D-03-.2260539561018954D-04 -.1577525118210161D-030.2545801528730057D-040.1783582025510641D-03 -.2878335054539225D-04-.2026106452901065D-030.3269719667613051D-04 0.2314578281220545D-03-.3735253948528030D-04-.2661733971656183D-03 0.4295491929664661D-040.3085010747974997D-03-.4978573708705348D-04 -.3608796739011819D-030.5823856716447153D-040.4268045368517673D-03 -.6887748599647970D-04-.5114288231753483D-030.8253410768848127D-04 0.6226054234808307D-03-.1004757274921541D-03-.7727812230406976D-03 0.1247110170406046D-030.9826448017570867D-03-.1585786882018169D-03 -.1288661285438060D-020.2079634633143379D-030.1760064559812291D-02 -.2840382695216640D-03-.2541776982553532D-020.4101905987536608D-03 0.3980741565709701D-02-.6424099272004710D-03-.7089509216132070D-02 0.1144101174176702D-020.1597157490519900D-01-.2577484145293042D-02 -.6393452627818429D-010.1031771937313455D-01-.4083050198919414D+00 -.1724569180949983D-01-.6393452627818429D-010.1031771937313455D-01 0.1597157490519900D-01-.2577484145293042D-020.1382690415332871D-02 0.1280923047700254D-030.1597157490519940D-01-.2577484145293108D-02 -.7089509216132388D-020.1144101174176753D-020.3980741565709959D-02 -.6424099272005126D-03-.2541776982554263D-020.4101905987537787D-03 0.1760064559812521D-02-.2840382695217011D-03-.1288661285438230D-02 0.2079634633143654D-030.9826448017572174D-03-.1585786882018380D-03 -.7727812230408974D-030.1247110170406368D-030.6226054234809117D-03 -.1004757274921672D-03-.5114288231755168D-030.8253410768850847D-04 0.4268045368520104D-03-.6887748599651892D-04-.3608796739013979D-03 0.5823856716450639D-040.3085010747980624D-03-.4978573708714430D-04 -.2661733971656788D-030.4295491929665637D-040.2314578281220329D-03 -.3735253948527681D-04-.2026106452901076D-030.3269719667613068D-04 0.1783582025511267D-03-.2878335054540236D-04-.1577525118211425D-03 0.2545801528732096D-040.1400760388418106D-03-.2260539561021587D-04 -.1247774371157844D-030.2013651551366699D-040.1114272391272199D-03 -.1798206776156415D-04-.9968672138364864D-040.1608738933935444D-04 0.8928564729752786D-04-.1440886961226929D-04-.8000610566205314D-04 0.1291134218726644D-040.7167060586276605D-04-.1156616372469904D-04 -.6413319184916952D-040.1034977991584680D-040.5727272713271265D-04 -.9242641819512053D-05-.5098776122625716D-040.8228377410789080D-05 0.4519256146756725D-04-.7293151198878877D-05-.3981401266047105D-04 0.6425163892851680D-050.3478916893609630D-04-.5614257322333374D-05 -.3006329973746788D-040.4851599099553577D-050.2558831255668139D-04 -.4129428081521270D-05-.2132146425429693D-040.3440846403443515D-05 0.1722429384947072D-04-.2779647252972395D-05-.1326172498198105D-04 0.2140170026010777D-050.9401297415863014D-05-.1517176307183306D-05 -.5612495043042305D-050.9057414234252119D-060.1866143715512185D-05 -.3011572664637594D-060.1866143715712640D-05-.3011572664961087D-06 -.5612495043095234D-050.9057414234337534D-060.9401297415583386D-05 -.1517176307138179D-05-.1326172498190355D-040.2140170025998270D-05 0.1722429384915639D-04-.2779647252921669D-05-.2132146425430071D-04 0.3440846403444125D-050.2558831255660659D-04-.4129428081509198D-05 -.3006329973748652D-040.4851599099556584D-050.3478916893617300D-04 -.5614257322345751D-05-.3981401266032415D-040.6425163892827973D-05 0.4519256146769957D-04-.7293151198900231D-05-.5098776122600387D-04 0.8228377410748204D-050.5727272713271211D-04-.9242641819511967D-05 -.6413319184882657D-040.1034977991579146D-040.7167060586256731D-04 -.1156616372466696D-04-.8000610566205206D-040.1291134218726627D-04 0.8928564729795884D-04-.1440886961233884D-04-.9968672138332729D-04 0.1608738933930258D-040.1114272391270168D-03-.1798206776153138D-04 -.1247774371156127D-030.2013651551363927D-040.1400760388416475D-03 -.2260539561018954D-04-.1577525118210161D-030.2545801528730057D-04 0.1783582025510641D-03-.2878335054539225D-04-.2026106452901065D-03 0.3269719667613051D-040.2314578281220545D-03-.3735253948528030D-04 -.2661733971656183D-030.4295491929664661D-040.3085010747974997D-03 -.4978573708705348D-04-.3608796739011819D-030.5823856716447153D-04 0.4268045368517673D-03-.6887748599647970D-04-.5114288231753483D-03 0.8253410768848127D-040.6226054234808307D-03-.1004757274921541D-03 -.7727812230406976D-030.1247110170406046D-030.9826448017570867D-03 -.1585786882018169D-03-.1288661285438060D-020.2079634633143379D-03 0.1760064559812291D-02-.2840382695216640D-03-.2541776982553532D-02 0.4101905987536608D-030.3980741565709701D-02-.6424099272004710D-03 -.7089509216132070D-020.1144101174176702D-020.1597157490519900D-01 -.2577484145293042D-02-.6393452627818429D-010.1031771937313455D-01 -.4083413935873786D+00-.1722412253413513D-01-.6393452627818429D-01 0.1031771937313455D-010.1401962280695231D-020.1303026850247933D-03 -.6393452627818492D-010.1031771937313466D-010.1597157490519940D-01 -.2577484145293108D-02-.7089509216132388D-020.1144101174176753D-02 0.3980741565709959D-02-.6424099272005126D-03-.2541776982554263D-02 0.4101905987537787D-030.1760064559812521D-02-.2840382695217011D-03 -.1288661285438230D-020.2079634633143654D-030.9826448017572174D-03 -.1585786882018380D-03-.7727812230408974D-030.1247110170406368D-03 0.6226054234809117D-03-.1004757274921672D-03-.5114288231755168D-03 0.8253410768850847D-040.4268045368520104D-03-.6887748599651892D-04 -.3608796739013979D-030.5823856716450639D-040.3085010747980624D-03 -.4978573708714430D-04-.2661733971656788D-030.4295491929665637D-04 0.2314578281220329D-03-.3735253948527681D-04-.2026106452901076D-03 0.3269719667613068D-040.1783582025511267D-03-.2878335054540236D-04 -.1577525118211425D-030.2545801528732096D-040.1400760388418106D-03 -.2260539561021587D-04-.1247774371157844D-030.2013651551366699D-04 0.1114272391272199D-03-.1798206776156415D-04-.9968672138364864D-04 0.1608738933935444D-040.8928564729752786D-04-.1440886961226929D-04 -.8000610566205314D-040.1291134218726644D-040.7167060586276605D-04 -.1156616372469904D-04-.6413319184916952D-040.1034977991584680D-04 0.5727272713271265D-04-.9242641819512053D-05-.5098776122625716D-04 0.8228377410789080D-050.4519256146756725D-04-.7293151198878877D-05 -.3981401266047105D-040.6425163892851680D-050.3478916893609630D-04 -.5614257322333374D-05-.3006329973746788D-040.4851599099553577D-05 0.2558831255668139D-04-.4129428081521270D-05-.2132146425429693D-04 0.3440846403443515D-050.1722429384947072D-04-.2779647252972395D-05 -.1326172498198105D-040.2140170026010777D-050.9401297415863014D-05 -.1517176307183306D-05-.5612495043042305D-050.9057414234252119D-06 0.1866143715512185D-05-.3011572664637594D-060.1866143715712640D-05 -.3011572664961087D-06-.5612495043095234D-050.9057414234337534D-06 0.9401297415583386D-05-.1517176307138179D-05-.1326172498190355D-04 0.2140170025998270D-050.1722429384915639D-04-.2779647252921669D-05 -.2132146425430071D-040.3440846403444125D-050.2558831255660659D-04 -.4129428081509198D-05-.3006329973748652D-040.4851599099556584D-05 0.3478916893617300D-04-.5614257322345751D-05-.3981401266032415D-04 0.6425163892827973D-050.4519256146769957D-04-.7293151198900231D-05 -.5098776122600387D-040.8228377410748204D-050.5727272713271211D-04 -.9242641819511967D-05-.6413319184882657D-040.1034977991579146D-04 0.7167060586256731D-04-.1156616372466696D-04-.8000610566205206D-04 0.1291134218726627D-040.8928564729795884D-04-.1440886961233884D-04 -.9968672138332729D-040.1608738933930258D-040.1114272391270168D-03 -.1798206776153138D-04-.1247774371156127D-030.2013651551363927D-04 0.1400760388416475D-03-.2260539561018954D-04-.1577525118210161D-03 0.2545801528730057D-040.1783582025510641D-03-.2878335054539225D-04 -.2026106452901065D-030.3269719667613051D-040.2314578281220545D-03 -.3735253948528030D-04-.2661733971656183D-030.4295491929664661D-04 0.3085010747974997D-03-.4978573708705348D-04-.3608796739011819D-03 0.5823856716447153D-040.4268045368517673D-03-.6887748599647970D-04 -.5114288231753483D-030.8253410768848127D-040.6226054234808307D-03 -.1004757274921541D-03-.7727812230406976D-030.1247110170406046D-03 0.9826448017570867D-03-.1585786882018169D-03-.1288661285438060D-02 0.2079634633143379D-030.1760064559812291D-02-.2840382695216640D-03 -.2541776982553532D-020.4101905987536608D-030.3980741565709701D-02 -.6424099272004710D-03-.7089509216132070D-020.1144101174176702D-02 0.1597157490519900D-01-.2577484145293042D-02-.6393452627818429D-01 0.1031771937313455D-01-.4083743855043928D+00-.1720422819797903D-01 SuiteSparse/UMFPACK/Demo/HB/west0067.rua0000644001170100242450000002214310006260706016221 0ustar davisfac1U CAVETT PROBLEM WITH 5 COMPONENTS ( CHEM. ENG. FROM WESTERBERG ) WEST0067 111 7 30 74 0 RUA 67 67 294 0 (10I8) (10I8) (4E20.12) 1 11 15 19 23 27 30 35 38 41 44 47 49 54 59 64 69 73 78 80 90 93 96 99 102 105 109 113 117 121 124 134 137 140 143 146 149 159 164 169 174 179 183 188 192 196 200 204 207 217 220 223 226 229 232 242 247 252 257 262 266 271 275 279 283 287 290 295 5 6 7 8 9 25 26 27 28 29 5 21 25 61 6 22 26 61 7 23 27 61 8 24 28 61 9 29 61 5 6 7 8 9 1 5 57 2 6 57 3 7 57 4 8 57 9 57 1 5 10 11 58 2 6 10 12 58 3 7 10 13 58 4 8 10 14 58 9 10 15 58 1 2 3 4 10 15 56 11 12 13 14 15 16 17 18 19 20 11 16 59 12 17 59 13 18 59 14 19 59 15 20 59 16 36 40 64 17 37 41 64 18 38 42 64 19 39 43 64 20 44 64 16 17 18 19 20 25 26 27 28 29 16 25 60 17 26 60 18 27 60 19 28 60 20 29 60 25 26 27 28 29 31 32 33 34 35 21 25 30 31 62 22 26 30 32 62 23 27 30 33 62 24 28 30 34 62 29 30 35 62 21 22 23 24 30 31 46 50 66 32 47 51 66 33 48 52 66 34 49 53 66 35 54 66 31 32 33 34 35 40 41 42 43 44 31 40 63 32 41 63 33 42 63 34 43 63 35 44 63 40 41 42 43 44 50 51 52 53 54 36 40 45 50 65 37 41 45 51 65 38 42 45 52 65 39 43 45 53 65 44 45 54 65 36 37 38 39 45 46 50 55 67 47 51 55 67 48 52 55 67 49 53 55 67 54 55 67 46 47 48 49 55 -.278841600000E+00 -.268018600000E+00 -.232371700000E+00 -.157508200000E+00 -.632597800000E-01 .139420800000E+00 .134009300000E+00 .116185900000E+00 .787541100000E-01 .316298900000E-01 -.800000000000E+00 -.915953300000E+00 .400000000000E+00 .100000000000E+01 -.800000000000E+00 -.915953300000E+00 .400000000000E+00 .100000000000E+01 -.800000000000E+00 -.915953300000E+00 .400000000000E+00 .100000000000E+01 -.800000000000E+00 -.915953300000E+00 .400000000000E+00 .100000000000E+01 -.800000000000E+00 .400000000000E+00 .100000000000E+01 .134462200000E+00 .117567900000E+00 .885926200000E-01 .475943900000E-01 .117829100000E-01 -.834181800000E+00 .400000000000E+00 .100000000000E+01 -.834181800000E+00 .400000000000E+00 .100000000000E+01 -.834181800000E+00 .400000000000E+00 .100000000000E+01 -.834181800000E+00 .400000000000E+00 .100000000000E+01 .400000000000E+00 .100000000000E+01 .126582300000E+01 .400000000000E+00 -.126582300000E+01 .333333300000E+00 .100000000000E+01 .101265800000E+01 .400000000000E+00 -.101265800000E+01 .333333300000E+00 .100000000000E+01 .759493700000E+00 .400000000000E+00 -.759493700000E+00 .333333300000E+00 .100000000000E+01 .506329100000E+00 .400000000000E+00 -.506329100000E+00 .333333300000E+00 .100000000000E+01 .400000000000E+00 -.253164600000E+00 .333333300000E+00 .100000000000E+01 -.336155600000E+00 -.293919600000E+00 -.221481500000E+00 -.118986000000E+00 .100000000000E+01 .666666700000E+00 .100000000000E+01 -.207175900000E+00 -.214039200000E+00 -.214420600000E+00 -.198676800000E+00 -.165687400000E+00 .124305500000E+00 .128423500000E+00 .128652400000E+00 .119206100000E+00 .994124600000E-01 -.100000000000E+01 .600000000000E+00 .100000000000E+01 -.100000000000E+01 .600000000000E+00 .100000000000E+01 -.100000000000E+01 .600000000000E+00 .100000000000E+01 -.100000000000E+01 .600000000000E+00 .100000000000E+01 -.100000000000E+01 .600000000000E+00 .100000000000E+01 .450000000000E+00 -.958318700000E+00 .500000000000E+00 .100000000000E+01 .450000000000E+00 -.958318700000E+00 .500000000000E+00 .100000000000E+01 .450000000000E+00 -.958318700000E+00 .500000000000E+00 .100000000000E+01 .450000000000E+00 -.958318700000E+00 .500000000000E+00 .100000000000E+01 .450000000000E+00 .500000000000E+00 .100000000000E+01 -.207098600000E+00 -.223299700000E+00 -.228626400000E+00 -.202452800000E+00 -.138522600000E+00 -.207098600000E+00 -.223299700000E+00 -.228626400000E+00 -.202452800000E+00 -.138522600000E+00 -.105000000000E+01 -.105000000000E+01 .100000000000E+01 -.105000000000E+01 -.105000000000E+01 .100000000000E+01 -.105000000000E+01 -.105000000000E+01 .100000000000E+01 -.105000000000E+01 -.105000000000E+01 .100000000000E+01 -.105000000000E+01 -.105000000000E+01 .100000000000E+01 .814744900000E-01 .978901500000E-01 .113160800000E+00 .115055500000E+00 .924190900000E-01 .905272100000E-01 .108766800000E+00 .125734200000E+00 .127839400000E+00 .102687900000E+00 .156739800000E+01 .650000000000E+00 -.156739800000E+01 .722222200000E+00 .100000000000E+01 .125391800000E+01 .650000000000E+00 -.125391800000E+01 .722222200000E+00 .100000000000E+01 .940438900000E+00 .650000000000E+00 -.940438900000E+00 .722222200000E+00 .100000000000E+01 .626959200000E+00 .650000000000E+00 -.626959200000E+00 .722222200000E+00 .100000000000E+01 .650000000000E+00 -.313479600000E+00 .722222200000E+00 .100000000000E+01 -.278841600000E+00 -.268018600000E+00 -.232371700000E+00 -.157508200000E+00 .100000000000E+01 .250000000000E+00 -.824224800000E+00 .500000000000E+00 .100000000000E+01 .250000000000E+00 -.824224800000E+00 .500000000000E+00 .100000000000E+01 .250000000000E+00 -.824224800000E+00 .500000000000E+00 .100000000000E+01 .250000000000E+00 -.824224800000E+00 .500000000000E+00 .100000000000E+01 .250000000000E+00 .500000000000E+00 .100000000000E+01 -.158162600000E+00 -.194771100000E+00 -.230391700000E+00 -.236284500000E+00 -.180390000000E+00 -.158162600000E+00 -.194771100000E+00 -.230391700000E+00 -.236284500000E+00 -.180390000000E+00 -.972222200000E+00 -.972222200000E+00 .100000000000E+01 -.972222200000E+00 -.972222200000E+00 .100000000000E+01 -.972222200000E+00 -.972222200000E+00 .100000000000E+01 -.972222200000E+00 -.972222200000E+00 .100000000000E+01 -.972222200000E+00 -.972222200000E+00 .100000000000E+01 .532286400000E-01 .757454200000E-01 .106102800000E+00 .133387800000E+00 .131535300000E+00 -.106457300000E+00 -.151490800000E+00 -.212205600000E+00 -.266775700000E+00 -.263070600000E+00 .186335400000E+01 .472222200000E+00 -.186335400000E+01 -.944444400000E+00 .100000000000E+01 .149068300000E+01 .472222200000E+00 -.149068300000E+01 -.944444400000E+00 .100000000000E+01 .111801200000E+01 .472222200000E+00 -.111801200000E+01 -.944444400000E+00 .100000000000E+01 .745341600000E+00 .472222200000E+00 -.745341600000E+00 -.944444400000E+00 .100000000000E+01 .472222200000E+00 -.372670800000E+00 -.944444400000E+00 .100000000000E+01 -.206995400000E+00 -.235646900000E+00 -.247567500000E+00 -.207487300000E+00 .100000000000E+01 .186335400000E+01 .444444400000E+00 -.186335400000E+01 .100000000000E+01 .149068300000E+01 .444444400000E+00 -.149068300000E+01 .100000000000E+01 .111801200000E+01 .444444400000E+00 -.111801200000E+01 .100000000000E+01 .745341600000E+00 .444444400000E+00 -.745341600000E+00 .100000000000E+01 .444444400000E+00 -.372670800000E+00 .100000000000E+01 -.144335400000E+00 -.191855700000E+00 -.242149800000E+00 -.254119300000E+00 .100000000000E+01 SuiteSparse/UMFPACK/Demo/tmp/0000755001170100242450000000000010711435725014526 5ustar davisfacSuiteSparse/UMFPACK/Demo/umfpack_zi_demo.c0000644001170100242450000006742310617501641017236 0ustar davisfac/* ========================================================================== */ /* === umfpack_zi_demo ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* A demo of UMFPACK: umfpack_zi_* version. First, factor and solve a 5-by-5 system, Ax=b, using default parameters. Then solve A'x=b using the factors of A. Modify one entry (A (1,4) = 0, where the row and column indices range from 0 to 4. The pattern of A has not changed (it has explicitly zero entry), so a reanalysis with umfpack_zi_symbolic does not need to be done. Refactorize (with umfpack_zi_numeric), and solve Ax=b. Note that the pivot ordering has changed. Next, change all of the entries in A, but not the pattern. Finally, compute C = A', and do the symbolic and numeric factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b twice; the solution is the same as the solution to Ax=b. A note about zero-sized arrays: UMFPACK uses many user-provided arrays of size n (order of the matrix), and of size nz (the number of nonzeros in a matrix). n cannot be zero; UMFPACK does not handle zero-dimensioned arrays. However, nz can be zero. If you attempt to malloc an array of size nz = 0, however, malloc will return a null pointer which UMFPACK will report as a "missing argument." Thus, nz1 in this code is set to MAX (nz,1), and similarly for lnz and unz. Lnz can never be zero, however, since L is always unit diagonal. */ /* -------------------------------------------------------------------------- */ /* definitions */ /* -------------------------------------------------------------------------- */ #include #include #include "umfpack.h" /* use a cheap approximate absolute value for complex numbers: */ #define ABS(x,z) ((x) >= 0 ? (x) : -(x)) + ((z) >= 0 ? (z) : -(z)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ /* triplet form of the matrix. The triplets can be in any order. */ /* -------------------------------------------------------------------------- */ static int n = 5, nz = 12 ; static int Arow [ ] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ; static int Acol [ ] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ; static double Aval [ ] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ; static double Avalz[ ] = {1., .4, .1, .2, -1., -.2, 0., 6., 3., 0., .3, .3} ; static double b [ ] = {8., 45., -3., 3., 19.}, x [5], r [5] ; static double bz[ ] = {1., -5., -2., 0., 2.2}, xz[5], rz[5] ; /* Avalz, bz: imaginary part of A and b */ /* -------------------------------------------------------------------------- */ /* error: print a message and exit */ /* -------------------------------------------------------------------------- */ static void error ( char *message ) { printf ("\n\n====== error: %s =====\n\n", message) ; exit (1) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the residual, r = Ax-b or r = A'x=b and return maxnorm (r) */ /* A' is the complex conjugate transpose, not the array transpose */ /* -------------------------------------------------------------------------- */ static double resid ( int transpose, int Ap [ ], int Ai [ ], double Ax [ ] , double Az [ ] ) { int i, j, p ; double norm ; for (i = 0 ; i < n ; i++) { r [i] = -b [i] ; rz[i] = -bz[i] ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* complex: r(j) += conj (Aij) * x (i) */ r [j] += Ax [p] * x [i] ; r [j] += Az [p] * xz[i] ; rz[j] -= Az [p] * x [i] ; rz[j] += Ax [p] * xz[i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; r [i] -= Az [p] * xz[j] ; rz[i] += Az [p] * x [j] ; rz[i] += Ax [p] * xz[j] ; } } } norm = 0. ; for (i = 0 ; i < n ; i++) { norm = MAX (ABS (r [i], rz [i]), norm) ; } return (norm) ; } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Cx, *Lx, *Ux, *W, t [2], *Dx, rnorm, *Rb, *y, *Rs ; double *Az, *Lz, *Uz, *Dz, *Cz, *Rbz, *yz ; int *Ap, *Ai, *Cp, *Ci, row, col, p, lnz, unz, nr, nc, *Lp, *Li, *Ui, *Up, *P, *Q, *Lj, i, j, k, anz, nfr, nchains, *Qinit, fnpiv, lnz1, unz1, nz1, status, *Front_npivcol, *Front_parent, *Chain_start, *Wi, *Pinit, n1, *Chain_maxrows, *Chain_maxcols, *Front_1strow, *Front_leftmostdesc, nzud, do_recip ; void *Symbolic, *Numeric ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ umfpack_tic (t) ; printf ("\nUMFPACK V%d.%d (%s) demo: _zi_ version\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_DATE) ; /* get the default control parameters */ umfpack_zi_defaults (Control) ; /* change the default print level for this demo */ /* (otherwise, nothing will print) */ Control [UMFPACK_PRL] = 6 ; /* print the license agreement */ umfpack_zi_report_status (Control, UMFPACK_OK) ; Control [UMFPACK_PRL] = 5 ; /* print the control parameters */ umfpack_zi_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* print A and b, and convert A to column-form */ /* ---------------------------------------------------------------------- */ /* print the right-hand-side */ printf ("\nb: ") ; (void) umfpack_zi_report_vector (n, b, bz, Control) ; /* print the triplet form of the matrix */ printf ("\nA: ") ; (void) umfpack_zi_report_triplet (n, n, nz, Arow, Acol, Aval, Avalz, Control) ; /* convert to column form */ nz1 = MAX (nz,1) ; /* ensure arrays are not of size zero. */ Ap = (int *) malloc ((n+1) * sizeof (int)) ; Ai = (int *) malloc (nz1 * sizeof (int)) ; Ax = (double *) malloc (nz1 * sizeof (double)) ; Az = (double *) malloc (nz1 * sizeof (double)) ; if (!Ap || !Ai || !Ax || !Az) { error ("out of memory") ; } status = umfpack_zi_triplet_to_col (n, n, nz, Arow, Acol, Aval, Avalz, Ap, Ai, Ax, Az, (int *) NULL) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_triplet_to_col failed") ; } /* print the column-form of A */ printf ("\nA: ") ; (void) umfpack_zi_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_symbolic (n, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; if (status < 0) { umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_symbolic failed") ; } /* print the symbolic factorization */ printf ("\nSymbolic factorization of A: ") ; (void) umfpack_zi_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_numeric failed") ; } /* print the numeric factorization */ printf ("\nNumeric factorization of A: ") ; (void) umfpack_zi_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; if (status < 0) { error ("umfpack_zi_solve failed") ; } printf ("\nx (solution of Ax=b): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_get_determinant (x, xz, r, Numeric, Info) ; umfpack_zi_report_status (Control, status) ; if (status < 0) { error ("umfpack_zi_get_determinant failed") ; } printf ("determinant: (%g", x [0]) ; printf ("+ (%g)i", xz [0]) ; /* complex */ printf (") * 10^(%g)\n", r [0]) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, broken down into steps */ /* ---------------------------------------------------------------------- */ /* Rb = R*b */ Rb = (double *) malloc (n * sizeof (double)) ; Rbz = (double *) malloc (n * sizeof (double)) ; y = (double *) malloc (n * sizeof (double)) ; yz = (double *) malloc (n * sizeof (double)) ; if (!Rb || !y) error ("out of memory") ; if (!Rbz || !yz) error ("out of memory") ; status = umfpack_zi_scale (Rb, Rbz, b, bz, Numeric) ; if (status < 0) error ("umfpack_zi_scale failed") ; /* solve Ly = P*(Rb) */ status = umfpack_zi_solve (UMFPACK_Pt_L, Ap, Ai, Ax, Az, y, yz, Rb, Rbz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_zi_solve failed") ; /* solve UQ'x=y */ status = umfpack_zi_solve (UMFPACK_U_Qt, Ap, Ai, Ax, Az, x, xz, y, yz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_zi_solve failed") ; printf ("\nx (solution of Ax=b, solve is split into 3 steps): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; free (Rb) ; free (Rbz) ; free (y) ; free (yz) ; /* ---------------------------------------------------------------------- */ /* solve A'x=b */ /* ---------------------------------------------------------------------- */ /* note that this is the complex conjugate transpose, A' */ status = umfpack_zi_solve (UMFPACK_At, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zi_report_info (Control, Info) ; if (status < 0) { error ("umfpack_zi_solve failed") ; } printf ("\nx (solution of A'x=b): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify one numerical value in the column-form of A */ /* ---------------------------------------------------------------------- */ /* change A (1,4), look for row index 1 in column 4. */ row = 1 ; col = 4 ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { if (row == Ai [p]) { printf ("\nchanging A (%d,%d) to zero\n", row, col) ; Ax [p] = 0.0 ; Az [p] = 0.0 ; break ; } } printf ("\nmodified A: ") ; (void) umfpack_zi_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ /* The pattern (Ap and Ai) hasn't changed, so the symbolic factorization */ /* doesn't have to be redone, no matter how much we change Ax. */ /* We don't need the Numeric object any more, so free it. */ umfpack_zi_free_numeric (&Numeric) ; /* Note that a memory leak would have occurred if the old Numeric */ /* had not been free'd with umfpack_zi_free_numeric above. */ status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_numeric failed") ; } printf ("\nNumeric factorization of modified A: ") ; (void) umfpack_zi_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zi_report_info (Control, Info) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_solve failed") ; } printf ("\nx (with modified A): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify all of the numerical values of A, but not the pattern */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < n ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; printf ("changing ") ; /* complex: */ printf ("real part of ") ; printf ("A (%d,%d) from %g", row, col, Ax [p]) ; Ax [p] = Ax [p] + col*10 - row ; printf (" to %g\n", Ax [p]) ; } } printf ("\ncompletely modified A (same pattern): ") ; (void) umfpack_zi_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* save the Symbolic object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "symbolic.umf" */ printf ("\nSaving symbolic object:\n") ; status = umfpack_zi_save_symbolic (Symbolic, (char *) NULL) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_save_symbolic failed") ; } printf ("\nFreeing symbolic object:\n") ; umfpack_zi_free_symbolic (&Symbolic) ; printf ("\nLoading symbolic object:\n") ; status = umfpack_zi_load_symbolic (&Symbolic, (char *) NULL) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_load_symbolic failed") ; } printf ("\nDone loading symbolic object\n") ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_zi_free_numeric (&Numeric) ; status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_numeric failed") ; } printf ("\nNumeric factorization of completely modified A: ") ; (void) umfpack_zi_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zi_report_info (Control, Info) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_solve failed") ; } printf ("\nx (with completely modified A): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free the symbolic and numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_zi_free_symbolic (&Symbolic) ; umfpack_zi_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* C = transpose of A */ /* ---------------------------------------------------------------------- */ Cp = (int *) malloc ((n+1) * sizeof (int)) ; Ci = (int *) malloc (nz1 * sizeof (int)) ; Cx = (double *) malloc (nz1 * sizeof (double)) ; Cz = (double *) malloc (nz1 * sizeof (double)) ; if (!Cp || !Ci || !Cx || !Cz) { error ("out of memory") ; } status = umfpack_zi_transpose (n, n, Ap, Ai, Ax, Az, (int *) NULL, (int *) NULL, Cp, Ci, Cx, Cz, TRUE) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_transpose failed: ") ; } printf ("\nC (transpose of A): ") ; (void) umfpack_zi_report_matrix (n, n, Cp, Ci, Cx, Cz, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_symbolic (n, n, Cp, Ci, Cx, Cz, &Symbolic, Control, Info) ; if (status < 0) { umfpack_zi_report_info (Control, Info) ; umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_symbolic failed") ; } printf ("\nSymbolic factorization of C: ") ; (void) umfpack_zi_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* copy the contents of Symbolic into user arrays print them */ /* ---------------------------------------------------------------------- */ printf ("\nGet the contents of the Symbolic object for C:\n") ; printf ("(compare with umfpack_zi_report_symbolic output, above)\n") ; Pinit = (int *) malloc ((n+1) * sizeof (int)) ; Qinit = (int *) malloc ((n+1) * sizeof (int)) ; Front_npivcol = (int *) malloc ((n+1) * sizeof (int)) ; Front_1strow = (int *) malloc ((n+1) * sizeof (int)) ; Front_leftmostdesc = (int *) malloc ((n+1) * sizeof (int)) ; Front_parent = (int *) malloc ((n+1) * sizeof (int)) ; Chain_start = (int *) malloc ((n+1) * sizeof (int)) ; Chain_maxrows = (int *) malloc ((n+1) * sizeof (int)) ; Chain_maxcols = (int *) malloc ((n+1) * sizeof (int)) ; if (!Pinit || !Qinit || !Front_npivcol || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Front_1strow || !Front_leftmostdesc) { error ("out of memory") ; } status = umfpack_zi_get_symbolic (&nr, &nc, &n1, &anz, &nfr, &nchains, Pinit, Qinit, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status < 0) { error ("symbolic factorization invalid") ; } printf ("From the Symbolic object, C is of dimension %d-by-%d\n", nr, nc); printf (" with nz = %d, number of fronts = %d,\n", nz, nfr) ; printf (" number of frontal matrix chains = %d\n", nchains) ; printf ("\nPivot columns in each front, and parent of each front:\n") ; k = 0 ; for (i = 0 ; i < nfr ; i++) { fnpiv = Front_npivcol [i] ; printf (" Front %d: parent front: %d number of pivot cols: %d\n", i, Front_parent [i], fnpiv) ; for (j = 0 ; j < fnpiv ; j++) { col = Qinit [k] ; printf ( " %d-th pivot column is column %d in original matrix\n", k, col) ; k++ ; } } printf ("\nNote that the column ordering, above, will be refined\n") ; printf ("in the numeric factorization below. The assignment of pivot\n") ; printf ("columns to frontal matrices will always remain unchanged.\n") ; printf ("\nTotal number of pivot columns in frontal matrices: %d\n", k) ; printf ("\nFrontal matrix chains:\n") ; for (j = 0 ; j < nchains ; j++) { printf (" Frontal matrices %d to %d are factorized in a single\n", Chain_start [j], Chain_start [j+1] - 1) ; printf (" working array of size %d-by-%d\n", Chain_maxrows [j], Chain_maxcols [j]) ; } /* ---------------------------------------------------------------------- */ /* numeric factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_numeric (Cp, Ci, Cx, Cz, Symbolic, &Numeric, Control, Info) ; if (status < 0) { error ("umfpack_zi_numeric failed") ; } printf ("\nNumeric factorization of C: ") ; (void) umfpack_zi_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* extract the LU factors of C and print them */ /* ---------------------------------------------------------------------- */ if (umfpack_zi_get_lunz (&lnz, &unz, &nr, &nc, &nzud, Numeric) < 0) { error ("umfpack_zi_get_lunz failed") ; } /* ensure arrays are not of zero size */ lnz1 = MAX (lnz,1) ; unz1 = MAX (unz,1) ; Lp = (int *) malloc ((n+1) * sizeof (int)) ; Lj = (int *) malloc (lnz1 * sizeof (int)) ; Lx = (double *) malloc (lnz1 * sizeof (double)) ; Lz = (double *) malloc (lnz1 * sizeof (double)) ; Up = (int *) malloc ((n+1) * sizeof (int)) ; Ui = (int *) malloc (unz1 * sizeof (int)) ; Ux = (double *) malloc (unz1 * sizeof (double)) ; Uz = (double *) malloc (unz1 * sizeof (double)) ; P = (int *) malloc (n * sizeof (int)) ; Q = (int *) malloc (n * sizeof (int)) ; Dx = (double *) NULL ; /* D vector not requested */ Dz = (double *) NULL ; Rs = (double *) malloc (n * sizeof (double)) ; if (!Lp || !Lj || !Lx || !Lz || !Up || !Ui || !Ux || !Uz || !P || !Q || !Rs) { error ("out of memory") ; } status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; if (status < 0) { error ("umfpack_zi_get_numeric failed") ; } printf ("\nL (lower triangular factor of C): ") ; (void) umfpack_zi_report_matrix (n, n, Lp, Lj, Lx, Lz, 0, Control) ; printf ("\nU (upper triangular factor of C): ") ; (void) umfpack_zi_report_matrix (n, n, Up, Ui, Ux, Uz, 1, Control) ; printf ("\nP: ") ; (void) umfpack_zi_report_perm (n, P, Control) ; printf ("\nQ: ") ; (void) umfpack_zi_report_perm (n, Q, Control) ; printf ("\nScale factors: row i of A is to be ") ; if (do_recip) { printf ("multiplied by the ith scale factor\n") ; } else { printf ("divided by the ith scale factor\n") ; } for (i = 0 ; i < n ; i++) printf ("%d: %g\n", i, Rs [i]) ; /* ---------------------------------------------------------------------- */ /* convert L to triplet form and print it */ /* ---------------------------------------------------------------------- */ /* Note that L is in row-form, so it is the row indices that are created */ /* by umfpack_zi_col_to_triplet. */ printf ("\nConverting L to triplet form, and printing it:\n") ; Li = (int *) malloc (lnz1 * sizeof (int)) ; if (!Li) { error ("out of memory") ; } if (umfpack_zi_col_to_triplet (n, Lp, Li) < 0) { error ("umfpack_zi_col_to_triplet failed") ; } printf ("\nL, in triplet form: ") ; (void) umfpack_zi_report_triplet (n, n, lnz, Li, Lj, Lx, Lz, Control) ; /* ---------------------------------------------------------------------- */ /* save the Numeric object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "numeric.umf" */ printf ("\nSaving numeric object:\n") ; status = umfpack_zi_save_numeric (Numeric, (char *) NULL) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_save_numeric failed") ; } printf ("\nFreeing numeric object:\n") ; umfpack_zi_free_numeric (&Numeric) ; printf ("\nLoading numeric object:\n") ; status = umfpack_zi_load_numeric (&Numeric, (char *) NULL) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_load_numeric failed") ; } printf ("\nDone loading numeric object\n") ; /* ---------------------------------------------------------------------- */ /* solve C'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_zi_solve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zi_report_info (Control, Info) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_solve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* solve C'x=b again, using umfpack_zi_wsolve instead */ /* ---------------------------------------------------------------------- */ printf ("\nSolving C'x=b again, using umfpack_zi_wsolve instead:\n") ; Wi = (int *) malloc (n * sizeof (int)) ; W = (double *) malloc (10*n * sizeof (double)) ; if (!Wi || !W) { error ("out of memory") ; } status = umfpack_zi_wsolve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info, Wi, W) ; umfpack_zi_report_info (Control, Info) ; if (status < 0) { umfpack_zi_report_status (Control, status) ; error ("umfpack_zi_wsolve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_zi_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* This is not strictly required since the process is exiting and the */ /* system will reclaim the memory anyway. It's useful, though, just as */ /* a list of what is currently malloc'ed by this program. Plus, it's */ /* always a good habit to explicitly free whatever you malloc. */ free (Ap) ; free (Ai) ; free (Ax) ; free (Az) ; free (Cp) ; free (Ci) ; free (Cx) ; free (Cz) ; free (Pinit) ; free (Qinit) ; free (Front_npivcol) ; free (Front_1strow) ; free (Front_leftmostdesc) ; free (Front_parent) ; free (Chain_start) ; free (Chain_maxrows) ; free (Chain_maxcols) ; free (Lp) ; free (Lj) ; free (Lx) ; free (Lz) ; free (Up) ; free (Ui) ; free (Ux) ; free (Uz) ; free (P) ; free (Q) ; free (Li) ; free (Wi) ; free (W) ; umfpack_zi_free_symbolic (&Symbolic) ; umfpack_zi_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* print the total time spent in this demo */ /* ---------------------------------------------------------------------- */ umfpack_toc (t) ; printf ("\numfpack_zi_demo complete.\nTotal time: %5.2f seconds" " (CPU time), %5.2f seconds (wallclock time)\n", t [1], t [0]) ; return (0) ; } SuiteSparse/UMFPACK/Demo/umf4zhb.out0000644001170100242450000001614510711433367016045 0ustar davisfac Matrix key: QC324 UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double complex Int (generic integer) defined as: int 0: print level: 2 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 16 (in bytes) symbolic analysis: status: 0. time: 0.00E+00 (sec) estimates (upper bound) for numeric LU: size of LU: 1.17 (MB) memory needed: 2.40 (MB) flop count: 0.26E+08 nnz (L): 24027. nnz (U): 39609. numeric factorization: status: 0. time: 0.10E-01 actual numeric LU statistics: size of LU: 0.72 (MB) memory needed: 1.14 (MB) flop count: 0.14E+08 nnz (L): 23247. nnz (U): 23247. UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 324 number of columns in matrix A: 324 entries in matrix A: 26730 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 0 submatrix S after removing zero-cost pivots: number of "dense" rows: 324 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 324 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 26406 nz on diagonal of matrix S: 324 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.55342e+07 est. nz in L+U (incl. diagonal): 47730 est. largest front (# entries): 14641 est. max nz in any column of L: 121 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 63473 symbolic memory usage (MBytes): 0.5 Symbolic size (Units): 1425 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.01 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 2.55982e-01 maximum sum (abs (rows of A)): 1.82217e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 98341 97691 99% peak size (Units) 307744 142557 46% final size (Units) 150384 92058 61% Numeric final size (Units) 153188 94700 62% Numeric final size (MBytes) 1.2 0.7 62% peak memory usage (Units) 314864 149677 48% peak memory usage (MBytes) 2.4 1.1 48% numeric factorization flops 2.56313e+07 1.43519e+07 56% nz in L (incl diagonal) 24027 23247 97% nz in U (incl diagonal) 39609 23247 59% nz in L+U (incl diagonal) 63312 46170 73% largest front (# entries) 19723 6724 34% largest # rows in front 121 82 68% largest # columns in front 163 82 50% initial allocation ratio used: 1.2 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 0 nz in L (incl diagonal), if none dropped 23247 nz in U (incl diagonal), if none dropped 23247 number of small entries dropped 0 nonzeros on diagonal of U: 324 min abs. value on diagonal of U: 5.47e-03 max abs. value on diagonal of U: 8.25e-01 estimate of reciprocal of condition number: 6.63e-03 indices in compressed pattern: 485 numerical values stored in Numeric object: 46170 numeric factorization defragmentations: 0 numeric factorization reallocations: 0 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.01 numeric factorization wallclock time (sec): 0.01 numeric factorization mflops (CPU time): 1435.19 numeric factorization mflops (wallclock): 1435.19 symbolic + numeric wall clock time (sec): 0.02 symbolic + numeric mflops (wall clock): 717.60 solve flops: 3.70332e+05 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.47223e+07 norm (A*x-b): 0. SuiteSparse/UMFPACK/Demo/Makefile0000644001170100242450000001460310617160607015371 0ustar davisfac#------------------------------------------------------------------------------- # compile the UMFPACK demos (for GNU make and original make) #------------------------------------------------------------------------------- # UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. # All Rights Reserved. See ../Doc/License for License. default: libs run include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(UMFPACK_CONFIG) -I../Include -I../../AMD/Include \ -I../../UFconfig INC = ../Include/umfpack.h ../../AMD/Include/amd.h ../../UFconfig/UFconfig.h LIBS = $(BLAS) $(XERBLA) $(LIB) ../Lib/libumfpack.a: ( cd ../Lib ; $(MAKE) ) ../../AMD/Lib/libamd.a: ( cd ../../AMD ; $(MAKE) library ) UMFPACK = ../Lib/libumfpack.a ../../AMD/Lib/libamd.a libs: ( cd ../Lib ; $(MAKE) ) ( cd ../../AMD ; $(MAKE) library ) #------------------------------------------------------------------------------- # Create the demo programs, run them, and compare the output #------------------------------------------------------------------------------- dist: umfpack_di_demo.c umfpack_dl_demo.c umfpack_zi_demo.c umfpack_zl_demo.c umfpack_simple: umfpack_simple.c $(INC) $(UMFPACK) $(C) -o umfpack_simple umfpack_simple.c $(UMFPACK) $(LIBS) # the GNU rules are simpler: # umfpack_%_demo.c: umfpack_xx_demo.c umfpack_%_demo.sed # - sed -f umfpack_$*_demo.sed < umfpack_xx_demo.c > umfpack_$*_demo.c # # umfpack_%_demo: umfpack_%_demo.c $(INC) $(UMFPACK) # $(C) -o umfpack_$*_demo umfpack_$*_demo.c $(UMFPACK) $(LIBS) # ./umfpack_$*_demo > my_umfpack_$*_demo.out # but do this via brute-force, so we can use just a single Makefile: # double-precision, int verion: umfpack_di_demo.c: umfpack_xx_demo.c umfpack_di_demo.sed - sed -f umfpack_di_demo.sed < umfpack_xx_demo.c > umfpack_di_demo.c umfpack_di_demo: umfpack_di_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_di_demo umfpack_di_demo.c $(UMFPACK) $(LIBS) # double-precision, UF_long verion: umfpack_dl_demo.c: umfpack_xx_demo.c umfpack_dl_demo.sed - sed -f umfpack_dl_demo.sed < umfpack_xx_demo.c > umfpack_dl_demo.c umfpack_dl_demo: umfpack_dl_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_dl_demo umfpack_dl_demo.c $(UMFPACK) $(LIBS) # complex, int verion: umfpack_zi_demo.c: umfpack_xx_demo.c umfpack_zi_demo.sed - sed -f umfpack_zi_demo.sed < umfpack_xx_demo.c > umfpack_zi_demo.c umfpack_zi_demo: umfpack_zi_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_zi_demo umfpack_zi_demo.c $(UMFPACK) $(LIBS) # complex, UF_long verion: umfpack_zl_demo.c: umfpack_xx_demo.c umfpack_zl_demo.sed - sed -f umfpack_zl_demo.sed < umfpack_xx_demo.c > umfpack_zl_demo.c umfpack_zl_demo: umfpack_zl_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_zl_demo umfpack_zl_demo.c $(UMFPACK) $(LIBS) run: umfpack_di_demo umfpack_zi_demo umfpack_dl_demo umfpack_zl_demo umfpack_simple ./umfpack_simple ./umfpack_di_demo > my_umfpack_di_demo.out - diff umfpack_di_demo.out my_umfpack_di_demo.out ./umfpack_dl_demo > my_umfpack_dl_demo.out - diff umfpack_dl_demo.out my_umfpack_dl_demo.out ./umfpack_zi_demo > my_umfpack_zi_demo.out - diff umfpack_zi_demo.out my_umfpack_zi_demo.out ./umfpack_zl_demo > my_umfpack_zl_demo.out - diff umfpack_zl_demo.out my_umfpack_zl_demo.out #------------------------------------------------------------------------------- # create a demo program that reads in Harwell/Boeing matrices, and run it #------------------------------------------------------------------------------- # the output of "make hb" is in the file umf4.out hb: $(UMFPACK) umf4 readhb readhb_nozeros readhb_size - ./readhb_nozeros < HB/can_24.psa > tmp/A - ./readhb_size < HB/can_24.psa > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/west0067.rua > tmp/A - ./readhb_size < HB/west0067.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/fs_183_6.rua > tmp/A - ./readhb_size < HB/fs_183_6.rua > tmp/Asize - ./umf4 - ./readhb < HB/fs_183_6.rua > tmp/A - ./readhb_size < HB/fs_183_6.rua > tmp/Asize - ./umf4 - ./readhb < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 a 1e-6 umf4: umf4.c $(UMFPACK) $(C) -o umf4 umf4.c $(UMFPACK) $(LIBS) readhb: readhb.f $(F77) $(F77FLAGS) -o readhb readhb.f $(F77LIB) readhb_size: readhb_size.f $(F77) $(F77FLAGS) -o readhb_size readhb_size.f $(F77LIB) readhb_nozeros: readhb_nozeros.f $(F77) $(F77FLAGS) -o readhb_nozeros readhb_nozeros.f $(F77LIB) #------------------------------------------------------------------------------- # compile the FORTRAN interface and demo #------------------------------------------------------------------------------- fortran: $(UMFPACK) umf4hb.f umf4_f77wrapper.o umf4zhb.f umf4_f77zwrapper.o $(UMFPACK) $(F77) $(F77FLAGS) -o umf4hb umf4hb.f umf4_f77wrapper.o \ $(UMFPACK) $(LIBS) - ./umf4hb < HB/west0067.rua > my_umf4hb.out - diff my_umf4hb.out umf4hb.out $(F77) $(F77FLAGS) -o umf4zhb umf4zhb.f umf4_f77zwrapper.o \ $(UMFPACK) $(LIBS) - ./umf4zhb < HB/qc324.cua > my_umf4zhb.out - diff my_umf4zhb.out umf4zhb.out fortran64: $(UMFPACK) umf4hb64.f umf4_f77wrapper64.o umf4_f77zwrapper64.o $(UMFPACK) $(F77) $(F77FLAGS) -o umf4hb64 umf4hb64.f umf4_f77wrapper64.o \ $(UMFPACK) $(LIBS) - ./umf4hb64 < HB/west0067.rua > my_umf4hb64.out - diff my_umf4hb64.out umf4hb64.out umf4_f77wrapper.o: umf4_f77wrapper.c $(INC) $(C) -c umf4_f77wrapper.c -o umf4_f77wrapper.o umf4_f77zwrapper.o: umf4_f77zwrapper.c $(INC) $(C) -c umf4_f77zwrapper.c -o umf4_f77zwrapper.o umf4_f77wrapper64.o: umf4_f77wrapper.c $(INC) $(C) -DDLONG -c umf4_f77wrapper.c -o umf4_f77wrapper64.o umf4_f77zwrapper64.o: umf4_f77zwrapper.c $(INC) $(C) -DDLONG -c umf4_f77zwrapper.c -o umf4_f77zwrapper64.o #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) umfpack_simple a.out - $(RM) umfpack_di_demo my_umfpack_di_demo.out - $(RM) umfpack_dl_demo my_umfpack_dl_demo.out - $(RM) umfpack_zi_demo my_umfpack_zi_demo.out - $(RM) umfpack_zl_demo my_umfpack_zl_demo.out - $(RM) umf4hb umf4zhb *.umf my_umf4hb.out - $(RM) umf4hb64 my_umf4hb64.out my_umf4zhb.out - $(RM) umf4 readhb readhb_nozeros readhb_size tmp/* clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/Demo/umfpack_simple.c0000644001170100242450000000225610617161021017064 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include #include "umfpack.h" int n = 5 ; int Ap [ ] = {0, 2, 5, 9, 10, 12} ; int Ai [ ] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ; double Ax [ ] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ; double b [ ] = {8., 45., -3., 3., 19.} ; double x [5] ; int main (void) { double *null = (double *) NULL ; int i ; void *Symbolic, *Numeric ; (void) umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null) ; (void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ; umfpack_di_free_symbolic (&Symbolic) ; (void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null) ; umfpack_di_free_numeric (&Numeric) ; for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ; return (0) ; } SuiteSparse/UMFPACK/Demo/readhb_size.f0000644001170100242450000000330710172176356016362 0ustar davisfacc======================================================================= c== readhb_size ======================================================== c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c readhb_size: c read a sparse matrix in the Harwell/Boeing format and output the c size of the matrix (# rows, # columns, and # of entries) c c usage (for example): c c readhb_size < HB/arc130.rua > tmp/Asize integer nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 character rhstyp*3 integer nzrhs, nel c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) write (6, *) nrow, ncol, nz stop 998 write (0, *) 'Read error' stop end SuiteSparse/UMFPACK/Demo/dospd0000755001170100242450000000270510252110540014752 0ustar davisfac#!/bin/csh # usage: dospd file.rsa.gz # # file.rsa.gz is a compressed Harwell/Boeing file containing # a symmetric positive definite matrix # echo '=================================================================' echo 'Matrix:: ' $1:t:r:r echo '3' > tmp/control.umf4 ; # 1: print level echo '0.2' >> tmp/control.umf4 ; # 2: dense row control echo '0.2' >> tmp/control.umf4 ; # 3: dense col control echo '0' >> tmp/control.umf4 ; # 4: pivot tol (offdiag) NON-DEFAULT echo '32' >> tmp/control.umf4 ; # 5: block size echo '3' >> tmp/control.umf4 ; # 6: symmetric strategy, NON-DEFAULT echo '0.7' >> tmp/control.umf4 ; # 7: initial alloc echo '2' >> tmp/control.umf4 ; # 8: max iter. refinement echo '1' >> tmp/control.umf4 ; # 9: echo '0' >> tmp/control.umf4 ; # 10: echo '0' >> tmp/control.umf4 ; # 11: echo '0' >> tmp/control.umf4 ; # 12: echo '0.01' >> tmp/control.umf4 ; # 13: 2-by-2 tolerance echo '0' >> tmp/control.umf4 ; # 14: Q fixed (auto) echo '10' >> tmp/control.umf4 ; # 15: AMD dense row control echo '0' >> tmp/control.umf4 ; # 16: diag pivot tolerance, NON-DEFAULT echo '0' >> tmp/control.umf4 ; # 17: scaling, NON-DEFAULT echo '0.5' >> tmp/control.umf4 ; # 18: frontal matrix alloc. echo '0' >> tmp/control.umf4 ; # 19: drop tolerance echo '1' >> tmp/control.umf4 ; # 20: AMD/COLAMD aggressive absorption zcat $1 | readhb_nozeros > tmp/A zcat $1 | readhb_size > tmp/Asize umf4 s echo '=================================================================' SuiteSparse/UMFPACK/Demo/umf4_f77zwrapper.c0000644001170100242450000004111310617161012017211 0ustar davisfac/* ========================================================================== */ /* === umf4_f77zwrapper ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* FORTRAN interface for the C-callable UMFPACK library (complex / int version * only and complex / UF_long versions only). This is HIGHLY non-portable. You * will need to modify this depending on how your FORTRAN and C compilers * behave. * * See umf4z_f77wrapper.c for more information. * * The complex values are provided in two separate arrays. Ax contains the * real part and Az contains the imaginary part. The solution vector is in * x (the real part) and xz (the imaginary part. b is the real part of the * right-hand-side and bz is the imaginary part. Does not support the * packed complex type. */ #include "umfpack.h" #include #include #ifdef NULL #undef NULL #endif #define NULL 0 #define LEN 200 /* -------------------------------------------------------------------------- */ /* integer type: int or UF_long */ /* -------------------------------------------------------------------------- */ #if defined (ZLONG) #define Int UF_long #define UMFPACK_defaults umfpack_zl_defaults #define UMFPACK_free_numeric umfpack_zl_free_numeric #define UMFPACK_free_symbolic umfpack_zl_free_symbolic #define UMFPACK_numeric umfpack_zl_numeric #define UMFPACK_report_control umfpack_zl_report_control #define UMFPACK_report_info umfpack_zl_report_info #define UMFPACK_save_numeric umfpack_zl_save_numeric #define UMFPACK_save_symbolic umfpack_zl_save_symbolic #define UMFPACK_load_numeric umfpack_zl_load_numeric #define UMFPACK_load_symbolic umfpack_zl_load_symbolic #define UMFPACK_scale umfpack_zl_scale #define UMFPACK_solve umfpack_zl_solve #define UMFPACK_symbolic umfpack_zl_symbolic #else #define Int int #define UMFPACK_defaults umfpack_zi_defaults #define UMFPACK_free_numeric umfpack_zi_free_numeric #define UMFPACK_free_symbolic umfpack_zi_free_symbolic #define UMFPACK_numeric umfpack_zi_numeric #define UMFPACK_report_control umfpack_zi_report_control #define UMFPACK_report_info umfpack_zi_report_info #define UMFPACK_save_numeric umfpack_zi_save_numeric #define UMFPACK_save_symbolic umfpack_zi_save_symbolic #define UMFPACK_load_numeric umfpack_zi_load_numeric #define UMFPACK_load_symbolic umfpack_zi_load_symbolic #define UMFPACK_scale umfpack_zi_scale #define UMFPACK_solve umfpack_zi_solve #define UMFPACK_symbolic umfpack_zi_symbolic #endif /* -------------------------------------------------------------------------- */ /* construct a file name from a file number (not user-callable) */ /* -------------------------------------------------------------------------- */ static void make_filename (Int filenum, char *prefix, char *filename) { char *psrc, *pdst ; #ifdef ZLONG sprintf (filename, "%s%ld.umf", prefix, filenum) ; #else sprintf (filename, "%s%d.umf", prefix, filenum) ; #endif /* remove any spaces in the filename */ pdst = filename ; for (psrc = filename ; *psrc ; psrc++) { if (!isspace (*psrc)) *pdst++ = *psrc ; } *pdst = '\0' ; } /* ========================================================================== */ /* === with underscore ====================================================== */ /* ========================================================================== */ /* Solaris, Linux, and SGI IRIX. Probably Compaq Alpha as well. */ /* -------------------------------------------------------------------------- */ /* umf4zdef: set default control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4zdef (control) */ void umf4zdef_ (double Control [UMFPACK_CONTROL]) { UMFPACK_defaults (Control) ; } /* -------------------------------------------------------------------------- */ /* umf4zpcon: print control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4zpcon (control) */ void umf4zpcon_ (double Control [UMFPACK_CONTROL]) { fflush (stdout) ; UMFPACK_report_control (Control) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4zsym: pre-ordering and symbolic factorization */ /* -------------------------------------------------------------------------- */ /* call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info) */ void umf4zsym_ (Int *m, Int *n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], void **Symbolic, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4znum: numeric factorization */ /* -------------------------------------------------------------------------- */ /* call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info) */ void umf4znum_ (Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], void **Symbolic, void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info); } /* -------------------------------------------------------------------------- */ /* umf4zsolr: solve a linear system with iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info) */ void umf4zsolr_ (Int *sys, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4zsol: solve a linear system without iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4zsol (sys, x, xz, b, bz, numeric, control, info) */ void umf4zsol_ (Int *sys, double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { Control [UMFPACK_IRSTEP] = 0 ; (void) UMFPACK_solve (*sys, (Int *) NULL, (Int *) NULL, (double *) NULL, (double *) NULL, x, xz, b, bz, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4zscal: scale a vector using UMFPACK's scale factors */ /* -------------------------------------------------------------------------- */ /* call umf4zscal (x, xz, b, bz, numeric, status) */ void umf4zscal_ (double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, Int *status) { *status = UMFPACK_scale (x, xz, b, bz, *Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4zpinf: print info */ /* -------------------------------------------------------------------------- */ /* call umf4zpinf (control) */ void umf4zpinf_ (double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { fflush (stdout) ; UMFPACK_report_info (Control, Info) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4zfnum: free the Numeric object */ /* -------------------------------------------------------------------------- */ /* call umf4zfnum (numeric) */ void umf4zfnum_ (void **Numeric) { UMFPACK_free_numeric (Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4zfsym: free the Symbolic object */ /* -------------------------------------------------------------------------- */ /* call umf4zfsym (symbolic) */ void umf4zfsym_ (void **Symbolic) { UMFPACK_free_symbolic (Symbolic) ; } /* -------------------------------------------------------------------------- */ /* umf4zsnum: save the Numeric object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4zsnum (numeric, filenum, status) */ void umf4zsnum_ (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_save_numeric (*Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zssym: save the Symbolic object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4zssym (symbolic, filenum, status) */ void umf4zssym_ (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_save_symbolic (*Symbolic, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zlnum: load the Numeric object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4zlnum (numeric, filenum, status) */ void umf4zlnum_ (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_load_numeric (Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zlsym: load the Symbolic object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4zlsym (symbolic, filenum, status) */ void umf4zlsym_ (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_load_symbolic (Symbolic, filename) ; } /* ========================================================================== */ /* === with no underscore =================================================== */ /* ========================================================================== */ /* IBM AIX. Probably Microsoft Windows and HP Unix as well. */ /* -------------------------------------------------------------------------- */ /* umf4zdef: set default control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4zdef (control) */ void umf4zdef (double Control [UMFPACK_CONTROL]) { UMFPACK_defaults (Control) ; } /* -------------------------------------------------------------------------- */ /* umf4zpcon: print control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4zpcon (control) */ void umf4zpcon (double Control [UMFPACK_CONTROL]) { fflush (stdout) ; UMFPACK_report_control (Control) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4zsym: pre-ordering and symbolic factorization */ /* -------------------------------------------------------------------------- */ /* call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info) */ void umf4zsym (Int *m, Int *n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], void **Symbolic, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4znum: numeric factorization */ /* -------------------------------------------------------------------------- */ /* call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info) */ void umf4znum (Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], void **Symbolic, void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info); } /* -------------------------------------------------------------------------- */ /* umf4zsolr: solve a linear system with iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info) */ void umf4zsolr (Int *sys, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4zsol: solve a linear system without iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4zsol (sys, x, xz, b, bz, numeric, control, info) */ void umf4zsol (Int *sys, double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { Control [UMFPACK_IRSTEP] = 0 ; (void) UMFPACK_solve (*sys, (Int *) NULL, (Int *) NULL, (double *) NULL, (double *) NULL, x, xz, b, bz, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4zscal: scale a vector using UMFPACK's scale factors */ /* -------------------------------------------------------------------------- */ /* call umf4zscal (x, xz, b, bz, numeric, status) */ void umf4zscal (double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, Int *status) { *status = UMFPACK_scale (x, xz, b, bz, *Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4zpinf: print info */ /* -------------------------------------------------------------------------- */ /* call umf4zpinf (control) */ void umf4zpinf (double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { fflush (stdout) ; UMFPACK_report_info (Control, Info) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4zfnum: free the Numeric object */ /* -------------------------------------------------------------------------- */ /* call umf4zfnum (numeric) */ void umf4zfnum (void **Numeric) { UMFPACK_free_numeric (Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4zfsym: free the Symbolic object */ /* -------------------------------------------------------------------------- */ /* call umf4zfsym (symbolic) */ void umf4zfsym (void **Symbolic) { UMFPACK_free_symbolic (Symbolic) ; } /* -------------------------------------------------------------------------- */ /* umf4zsnum: save the Numeric object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4zsnum (numeric, filenum, status) */ void umf4zsnum (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_save_numeric (*Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zssym: save the Symbolic object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4zssym (symbolic, filenum, status) */ void umf4zssym (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_save_symbolic (*Symbolic, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zlnum: load the Numeric object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4zlnum (numeric, filenum, status) */ void umf4zlnum (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_load_numeric (Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4zlsym: load the Symbolic object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4zlsym (symbolic, filenum, status) */ void umf4zlsym (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_load_symbolic (Symbolic, filename) ; } SuiteSparse/UMFPACK/Demo/umfpack_dl_demo.c0000644001170100242450000006465410617501641017216 0ustar davisfac/* ========================================================================== */ /* === umfpack_dl_demo ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* A demo of UMFPACK: umfpack_dl_* version. First, factor and solve a 5-by-5 system, Ax=b, using default parameters. Then solve A'x=b using the factors of A. Modify one entry (A (1,4) = 0, where the row and column indices range from 0 to 4. The pattern of A has not changed (it has explicitly zero entry), so a reanalysis with umfpack_dl_symbolic does not need to be done. Refactorize (with umfpack_dl_numeric), and solve Ax=b. Note that the pivot ordering has changed. Next, change all of the entries in A, but not the pattern. Finally, compute C = A', and do the symbolic and numeric factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b twice; the solution is the same as the solution to Ax=b. A note about zero-sized arrays: UMFPACK uses many user-provided arrays of size n (order of the matrix), and of size nz (the number of nonzeros in a matrix). n cannot be zero; UMFPACK does not handle zero-dimensioned arrays. However, nz can be zero. If you attempt to malloc an array of size nz = 0, however, malloc will return a null pointer which UMFPACK will report as a "missing argument." Thus, nz1 in this code is set to MAX (nz,1), and similarly for lnz and unz. Lnz can never be zero, however, since L is always unit diagonal. */ /* -------------------------------------------------------------------------- */ /* definitions */ /* -------------------------------------------------------------------------- */ #include #include #include "umfpack.h" #define ABS(x) ((x) >= 0 ? (x) : -(x)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ /* triplet form of the matrix. The triplets can be in any order. */ /* -------------------------------------------------------------------------- */ static UF_long n = 5, nz = 12 ; static UF_long Arow [ ] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ; static UF_long Acol [ ] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ; static double Aval [ ] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ; static double b [ ] = {8., 45., -3., 3., 19.}, x [5], r [5] ; /* -------------------------------------------------------------------------- */ /* error: print a message and exit */ /* -------------------------------------------------------------------------- */ static void error ( char *message ) { printf ("\n\n====== error: %s =====\n\n", message) ; exit (1) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the residual, r = Ax-b or r = A'x=b and return maxnorm (r) */ /* -------------------------------------------------------------------------- */ static double resid ( UF_long transpose, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ] ) { UF_long i, j, p ; double norm ; for (i = 0 ; i < n ; i++) { r [i] = -b [i] ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [j] += Ax [p] * x [i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; } } } norm = 0. ; for (i = 0 ; i < n ; i++) { norm = MAX (ABS (r [i]), norm) ; } return (norm) ; } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Cx, *Lx, *Ux, *W, t [2], *Dx, rnorm, *Rb, *y, *Rs ; UF_long *Ap, *Ai, *Cp, *Ci, row, col, p, lnz, unz, nr, nc, *Lp, *Li, *Ui, *Up, *P, *Q, *Lj, i, j, k, anz, nfr, nchains, *Qinit, fnpiv, lnz1, unz1, nz1, status, *Front_npivcol, *Front_parent, *Chain_start, *Wi, *Pinit, n1, *Chain_maxrows, *Chain_maxcols, *Front_1strow, *Front_leftmostdesc, nzud, do_recip ; void *Symbolic, *Numeric ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ umfpack_tic (t) ; printf ("\nUMFPACK V%d.%d (%s) demo: _dl_ version\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_DATE) ; /* get the default control parameters */ umfpack_dl_defaults (Control) ; /* change the default print level for this demo */ /* (otherwise, nothing will print) */ Control [UMFPACK_PRL] = 6 ; /* print the license agreement */ umfpack_dl_report_status (Control, UMFPACK_OK) ; Control [UMFPACK_PRL] = 5 ; /* print the control parameters */ umfpack_dl_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* print A and b, and convert A to column-form */ /* ---------------------------------------------------------------------- */ /* print the right-hand-side */ printf ("\nb: ") ; (void) umfpack_dl_report_vector (n, b, Control) ; /* print the triplet form of the matrix */ printf ("\nA: ") ; (void) umfpack_dl_report_triplet (n, n, nz, Arow, Acol, Aval, Control) ; /* convert to column form */ nz1 = MAX (nz,1) ; /* ensure arrays are not of size zero. */ Ap = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ai = (UF_long *) malloc (nz1 * sizeof (UF_long)) ; Ax = (double *) malloc (nz1 * sizeof (double)) ; if (!Ap || !Ai || !Ax) { error ("out of memory") ; } status = umfpack_dl_triplet_to_col (n, n, nz, Arow, Acol, Aval, Ap, Ai, Ax, (UF_long *) NULL) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_triplet_to_col failed") ; } /* print the column-form of A */ printf ("\nA: ") ; (void) umfpack_dl_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_symbolic (n, n, Ap, Ai, Ax, &Symbolic, Control, Info) ; if (status < 0) { umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_symbolic failed") ; } /* print the symbolic factorization */ printf ("\nSymbolic factorization of A: ") ; (void) umfpack_dl_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_numeric failed") ; } /* print the numeric factorization */ printf ("\nNumeric factorization of A: ") ; (void) umfpack_dl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; if (status < 0) { error ("umfpack_dl_solve failed") ; } printf ("\nx (solution of Ax=b): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_get_determinant (x, r, Numeric, Info) ; umfpack_dl_report_status (Control, status) ; if (status < 0) { error ("umfpack_dl_get_determinant failed") ; } printf ("determinant: (%g", x [0]) ; printf (") * 10^(%g)\n", r [0]) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, broken down into steps */ /* ---------------------------------------------------------------------- */ /* Rb = R*b */ Rb = (double *) malloc (n * sizeof (double)) ; y = (double *) malloc (n * sizeof (double)) ; if (!Rb || !y) error ("out of memory") ; status = umfpack_dl_scale (Rb, b, Numeric) ; if (status < 0) error ("umfpack_dl_scale failed") ; /* solve Ly = P*(Rb) */ status = umfpack_dl_solve (UMFPACK_Pt_L, Ap, Ai, Ax, y, Rb, Numeric, Control, Info) ; if (status < 0) error ("umfpack_dl_solve failed") ; /* solve UQ'x=y */ status = umfpack_dl_solve (UMFPACK_U_Qt, Ap, Ai, Ax, x, y, Numeric, Control, Info) ; if (status < 0) error ("umfpack_dl_solve failed") ; printf ("\nx (solution of Ax=b, solve is split into 3 steps): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; free (Rb) ; free (y) ; /* ---------------------------------------------------------------------- */ /* solve A'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_solve (UMFPACK_At, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_dl_report_info (Control, Info) ; if (status < 0) { error ("umfpack_dl_solve failed") ; } printf ("\nx (solution of A'x=b): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (TRUE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify one numerical value in the column-form of A */ /* ---------------------------------------------------------------------- */ /* change A (1,4), look for row index 1 in column 4. */ row = 1 ; col = 4 ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { if (row == Ai [p]) { printf ("\nchanging A (%ld,%ld) to zero\n", row, col) ; Ax [p] = 0.0 ; break ; } } printf ("\nmodified A: ") ; (void) umfpack_dl_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ /* The pattern (Ap and Ai) hasn't changed, so the symbolic factorization */ /* doesn't have to be redone, no matter how much we change Ax. */ /* We don't need the Numeric object any more, so free it. */ umfpack_dl_free_numeric (&Numeric) ; /* Note that a memory leak would have occurred if the old Numeric */ /* had not been free'd with umfpack_dl_free_numeric above. */ status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_numeric failed") ; } printf ("\nNumeric factorization of modified A: ") ; (void) umfpack_dl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_dl_report_info (Control, Info) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_solve failed") ; } printf ("\nx (with modified A): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify all of the numerical values of A, but not the pattern */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < n ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; printf ("changing ") ; printf ("A (%ld,%ld) from %g", row, col, Ax [p]) ; Ax [p] = Ax [p] + col*10 - row ; printf (" to %g\n", Ax [p]) ; } } printf ("\ncompletely modified A (same pattern): ") ; (void) umfpack_dl_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* save the Symbolic object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "symbolic.umf" */ printf ("\nSaving symbolic object:\n") ; status = umfpack_dl_save_symbolic (Symbolic, (char *) NULL) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_save_symbolic failed") ; } printf ("\nFreeing symbolic object:\n") ; umfpack_dl_free_symbolic (&Symbolic) ; printf ("\nLoading symbolic object:\n") ; status = umfpack_dl_load_symbolic (&Symbolic, (char *) NULL) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_load_symbolic failed") ; } printf ("\nDone loading symbolic object\n") ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_dl_free_numeric (&Numeric) ; status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_numeric failed") ; } printf ("\nNumeric factorization of completely modified A: ") ; (void) umfpack_dl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_dl_report_info (Control, Info) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_solve failed") ; } printf ("\nx (with completely modified A): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free the symbolic and numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_dl_free_symbolic (&Symbolic) ; umfpack_dl_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* C = transpose of A */ /* ---------------------------------------------------------------------- */ Cp = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ci = (UF_long *) malloc (nz1 * sizeof (UF_long)) ; Cx = (double *) malloc (nz1 * sizeof (double)) ; if (!Cp || !Ci || !Cx) { error ("out of memory") ; } status = umfpack_dl_transpose (n, n, Ap, Ai, Ax, (UF_long *) NULL, (UF_long *) NULL, Cp, Ci, Cx) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_transpose failed: ") ; } printf ("\nC (transpose of A): ") ; (void) umfpack_dl_report_matrix (n, n, Cp, Ci, Cx, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_symbolic (n, n, Cp, Ci, Cx, &Symbolic, Control, Info) ; if (status < 0) { umfpack_dl_report_info (Control, Info) ; umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_symbolic failed") ; } printf ("\nSymbolic factorization of C: ") ; (void) umfpack_dl_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* copy the contents of Symbolic into user arrays print them */ /* ---------------------------------------------------------------------- */ printf ("\nGet the contents of the Symbolic object for C:\n") ; printf ("(compare with umfpack_dl_report_symbolic output, above)\n") ; Pinit = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Qinit = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_npivcol = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_1strow = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_leftmostdesc = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_parent = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_start = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_maxrows = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_maxcols = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; if (!Pinit || !Qinit || !Front_npivcol || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Front_1strow || !Front_leftmostdesc) { error ("out of memory") ; } status = umfpack_dl_get_symbolic (&nr, &nc, &n1, &anz, &nfr, &nchains, Pinit, Qinit, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status < 0) { error ("symbolic factorization invalid") ; } printf ("From the Symbolic object, C is of dimension %ld-by-%ld\n", nr, nc); printf (" with nz = %ld, number of fronts = %ld,\n", nz, nfr) ; printf (" number of frontal matrix chains = %ld\n", nchains) ; printf ("\nPivot columns in each front, and parent of each front:\n") ; k = 0 ; for (i = 0 ; i < nfr ; i++) { fnpiv = Front_npivcol [i] ; printf (" Front %ld: parent front: %ld number of pivot cols: %ld\n", i, Front_parent [i], fnpiv) ; for (j = 0 ; j < fnpiv ; j++) { col = Qinit [k] ; printf ( " %ld-th pivot column is column %ld in original matrix\n", k, col) ; k++ ; } } printf ("\nNote that the column ordering, above, will be refined\n") ; printf ("in the numeric factorization below. The assignment of pivot\n") ; printf ("columns to frontal matrices will always remain unchanged.\n") ; printf ("\nTotal number of pivot columns in frontal matrices: %ld\n", k) ; printf ("\nFrontal matrix chains:\n") ; for (j = 0 ; j < nchains ; j++) { printf (" Frontal matrices %ld to %ld are factorized in a single\n", Chain_start [j], Chain_start [j+1] - 1) ; printf (" working array of size %ld-by-%ld\n", Chain_maxrows [j], Chain_maxcols [j]) ; } /* ---------------------------------------------------------------------- */ /* numeric factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_numeric (Cp, Ci, Cx, Symbolic, &Numeric, Control, Info) ; if (status < 0) { error ("umfpack_dl_numeric failed") ; } printf ("\nNumeric factorization of C: ") ; (void) umfpack_dl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* extract the LU factors of C and print them */ /* ---------------------------------------------------------------------- */ if (umfpack_dl_get_lunz (&lnz, &unz, &nr, &nc, &nzud, Numeric) < 0) { error ("umfpack_dl_get_lunz failed") ; } /* ensure arrays are not of zero size */ lnz1 = MAX (lnz,1) ; unz1 = MAX (unz,1) ; Lp = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Lj = (UF_long *) malloc (lnz1 * sizeof (UF_long)) ; Lx = (double *) malloc (lnz1 * sizeof (double)) ; Up = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ui = (UF_long *) malloc (unz1 * sizeof (UF_long)) ; Ux = (double *) malloc (unz1 * sizeof (double)) ; P = (UF_long *) malloc (n * sizeof (UF_long)) ; Q = (UF_long *) malloc (n * sizeof (UF_long)) ; Dx = (double *) NULL ; /* D vector not requested */ Rs = (double *) malloc (n * sizeof (double)) ; if (!Lp || !Lj || !Lx || !Up || !Ui || !Ux || !P || !Q || !Rs) { error ("out of memory") ; } status = umfpack_dl_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, &do_recip, Rs, Numeric) ; if (status < 0) { error ("umfpack_dl_get_numeric failed") ; } printf ("\nL (lower triangular factor of C): ") ; (void) umfpack_dl_report_matrix (n, n, Lp, Lj, Lx, 0, Control) ; printf ("\nU (upper triangular factor of C): ") ; (void) umfpack_dl_report_matrix (n, n, Up, Ui, Ux, 1, Control) ; printf ("\nP: ") ; (void) umfpack_dl_report_perm (n, P, Control) ; printf ("\nQ: ") ; (void) umfpack_dl_report_perm (n, Q, Control) ; printf ("\nScale factors: row i of A is to be ") ; if (do_recip) { printf ("multiplied by the ith scale factor\n") ; } else { printf ("divided by the ith scale factor\n") ; } for (i = 0 ; i < n ; i++) printf ("%ld: %g\n", i, Rs [i]) ; /* ---------------------------------------------------------------------- */ /* convert L to triplet form and print it */ /* ---------------------------------------------------------------------- */ /* Note that L is in row-form, so it is the row indices that are created */ /* by umfpack_dl_col_to_triplet. */ printf ("\nConverting L to triplet form, and printing it:\n") ; Li = (UF_long *) malloc (lnz1 * sizeof (UF_long)) ; if (!Li) { error ("out of memory") ; } if (umfpack_dl_col_to_triplet (n, Lp, Li) < 0) { error ("umfpack_dl_col_to_triplet failed") ; } printf ("\nL, in triplet form: ") ; (void) umfpack_dl_report_triplet (n, n, lnz, Li, Lj, Lx, Control) ; /* ---------------------------------------------------------------------- */ /* save the Numeric object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "numeric.umf" */ printf ("\nSaving numeric object:\n") ; status = umfpack_dl_save_numeric (Numeric, (char *) NULL) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_save_numeric failed") ; } printf ("\nFreeing numeric object:\n") ; umfpack_dl_free_numeric (&Numeric) ; printf ("\nLoading numeric object:\n") ; status = umfpack_dl_load_numeric (&Numeric, (char *) NULL) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_load_numeric failed") ; } printf ("\nDone loading numeric object\n") ; /* ---------------------------------------------------------------------- */ /* solve C'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_dl_solve (UMFPACK_At, Cp, Ci, Cx, x, b, Numeric, Control, Info) ; umfpack_dl_report_info (Control, Info) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_solve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* solve C'x=b again, using umfpack_dl_wsolve instead */ /* ---------------------------------------------------------------------- */ printf ("\nSolving C'x=b again, using umfpack_dl_wsolve instead:\n") ; Wi = (UF_long *) malloc (n * sizeof (UF_long)) ; W = (double *) malloc (5*n * sizeof (double)) ; if (!Wi || !W) { error ("out of memory") ; } status = umfpack_dl_wsolve (UMFPACK_At, Cp, Ci, Cx, x, b, Numeric, Control, Info, Wi, W) ; umfpack_dl_report_info (Control, Info) ; if (status < 0) { umfpack_dl_report_status (Control, status) ; error ("umfpack_dl_wsolve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_dl_report_vector (n, x, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* This is not strictly required since the process is exiting and the */ /* system will reclaim the memory anyway. It's useful, though, just as */ /* a list of what is currently malloc'ed by this program. Plus, it's */ /* always a good habit to explicitly free whatever you malloc. */ free (Ap) ; free (Ai) ; free (Ax) ; free (Cp) ; free (Ci) ; free (Cx) ; free (Pinit) ; free (Qinit) ; free (Front_npivcol) ; free (Front_1strow) ; free (Front_leftmostdesc) ; free (Front_parent) ; free (Chain_start) ; free (Chain_maxrows) ; free (Chain_maxcols) ; free (Lp) ; free (Lj) ; free (Lx) ; free (Up) ; free (Ui) ; free (Ux) ; free (P) ; free (Q) ; free (Li) ; free (Wi) ; free (W) ; umfpack_dl_free_symbolic (&Symbolic) ; umfpack_dl_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* print the total time spent in this demo */ /* ---------------------------------------------------------------------- */ umfpack_toc (t) ; printf ("\numfpack_dl_demo complete.\nTotal time: %5.2f seconds" " (CPU time), %5.2f seconds (wallclock time)\n", t [1], t [0]) ; return (0) ; } SuiteSparse/UMFPACK/Demo/dodefault0000755001170100242450000000267310252126302015617 0ustar davisfac#!/bin/csh # usage: dodefault file.rsa.gz # # file.rsa.gz is a compressed Harwell/Boeing file containing # a symmetric positive definite matrix # echo '=================================================================' echo 'Matrix:: ' $1:t:r:r echo '3' > tmp/control.umf4 ; # 1: print level echo '0.2' >> tmp/control.umf4 ; # 2: dense row control echo '0.2' >> tmp/control.umf4 ; # 3: dense col control echo '0.1' >> tmp/control.umf4 ; # 4: pivot tol (offdiag) DEFAULT echo '32' >> tmp/control.umf4 ; # 5: block size echo '0' >> tmp/control.umf4 ; # 6: auto strategy, DEFAULT echo '0.7' >> tmp/control.umf4 ; # 7: initial alloc echo '2' >> tmp/control.umf4 ; # 8: max iter. refinement echo '1' >> tmp/control.umf4 ; # 9: echo '0' >> tmp/control.umf4 ; # 10: echo '0' >> tmp/control.umf4 ; # 11: echo '0' >> tmp/control.umf4 ; # 12: echo '0.01' >> tmp/control.umf4 ; # 13: 2-by-2 tolerance echo '0' >> tmp/control.umf4 ; # 14: Q fixed (auto) echo '10' >> tmp/control.umf4 ; # 15: AMD dense row control echo '0.001' >> tmp/control.umf4 ; # 16: diag pivot tolerance DEFAULT echo '0' >> tmp/control.umf4 ; # 17: scaling, NON-DEFAULT echo '0.5' >> tmp/control.umf4 ; # 18: frontal matrix alloc. echo '0' >> tmp/control.umf4 ; # 19: drop tolerance echo '1' >> tmp/control.umf4 ; # 20: AMD/COLAMD aggressive absorption zcat $1 | readhb_nozeros > tmp/A zcat $1 | readhb_size > tmp/Asize umf4 echo '=================================================================' SuiteSparse/UMFPACK/Demo/umf4hb64.out0000644001170100242450000001436410711433440016016 0ustar davisfac Matrix key: WEST0067 UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: UF_long 0: print level: 2 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 8 pointer: 8 double: 8 Entry: 8 (in bytes) symbolic analysis: status: 0. time: 0.00E+00 (sec) estimates (upper bound) for numeric LU: size of LU: 0.02 (MB) memory needed: 0.08 (MB) flop count: 0.14E+05 nnz (L): 542. nnz (U): 902. numeric factorization: status: 0. time: 0.00E+00 actual numeric LU statistics: size of LU: 0.01 (MB) memory needed: 0.06 (MB) flop count: 0.25E+04 nnz (L): 323. nnz (U): 339. UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 67 number of columns in matrix A: 67 entries in matrix A: 294 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 1 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S not square or diagonal not preserved symbolic factorization defragmentations: 1 symbolic memory usage (Units): 1595 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 241 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 6.59006e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 1517 1448 95% peak size (Units) 3917 2423 62% final size (Units) 981 435 44% Numeric final size (Units) 1381 802 58% Numeric final size (MBytes) 0.0 0.0 58% peak memory usage (Units) 5133 3639 71% peak memory usage (MBytes) 0.1 0.1 71% numeric factorization flops 1.41920e+04 2.50100e+03 18% nz in L (incl diagonal) 542 323 60% nz in U (incl diagonal) 902 339 38% nz in L+U (incl diagonal) 1377 595 43% largest front (# entries) 483 80 17% largest # rows in front 21 10 48% largest # columns in front 23 11 48% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 323 nz in U (incl diagonal), if none dropped 339 number of small entries dropped 0 nonzeros on diagonal of U: 67 min abs. value on diagonal of U: 2.74e-02 max abs. value on diagonal of U: 2.28e+00 estimate of reciprocal of condition number: 1.20e-02 indices in compressed pattern: 249 numerical values stored in Numeric object: 605 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+03 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 3.69100e+03 norm (A*x-b): 3.10862447E-15 norm (A*x-b): 2.13162821E-14 norm (A*x-b): 2.13162821E-14 SuiteSparse/UMFPACK/Demo/umfpack_di_demo.c0000644001170100242450000006430410617501641017203 0ustar davisfac/* ========================================================================== */ /* === umfpack_di_demo ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* A demo of UMFPACK: umfpack_di_* version. First, factor and solve a 5-by-5 system, Ax=b, using default parameters. Then solve A'x=b using the factors of A. Modify one entry (A (1,4) = 0, where the row and column indices range from 0 to 4. The pattern of A has not changed (it has explicitly zero entry), so a reanalysis with umfpack_di_symbolic does not need to be done. Refactorize (with umfpack_di_numeric), and solve Ax=b. Note that the pivot ordering has changed. Next, change all of the entries in A, but not the pattern. Finally, compute C = A', and do the symbolic and numeric factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b twice; the solution is the same as the solution to Ax=b. A note about zero-sized arrays: UMFPACK uses many user-provided arrays of size n (order of the matrix), and of size nz (the number of nonzeros in a matrix). n cannot be zero; UMFPACK does not handle zero-dimensioned arrays. However, nz can be zero. If you attempt to malloc an array of size nz = 0, however, malloc will return a null pointer which UMFPACK will report as a "missing argument." Thus, nz1 in this code is set to MAX (nz,1), and similarly for lnz and unz. Lnz can never be zero, however, since L is always unit diagonal. */ /* -------------------------------------------------------------------------- */ /* definitions */ /* -------------------------------------------------------------------------- */ #include #include #include "umfpack.h" #define ABS(x) ((x) >= 0 ? (x) : -(x)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ /* triplet form of the matrix. The triplets can be in any order. */ /* -------------------------------------------------------------------------- */ static int n = 5, nz = 12 ; static int Arow [ ] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ; static int Acol [ ] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ; static double Aval [ ] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ; static double b [ ] = {8., 45., -3., 3., 19.}, x [5], r [5] ; /* -------------------------------------------------------------------------- */ /* error: print a message and exit */ /* -------------------------------------------------------------------------- */ static void error ( char *message ) { printf ("\n\n====== error: %s =====\n\n", message) ; exit (1) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the residual, r = Ax-b or r = A'x=b and return maxnorm (r) */ /* -------------------------------------------------------------------------- */ static double resid ( int transpose, int Ap [ ], int Ai [ ], double Ax [ ] ) { int i, j, p ; double norm ; for (i = 0 ; i < n ; i++) { r [i] = -b [i] ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [j] += Ax [p] * x [i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; } } } norm = 0. ; for (i = 0 ; i < n ; i++) { norm = MAX (ABS (r [i]), norm) ; } return (norm) ; } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Cx, *Lx, *Ux, *W, t [2], *Dx, rnorm, *Rb, *y, *Rs ; int *Ap, *Ai, *Cp, *Ci, row, col, p, lnz, unz, nr, nc, *Lp, *Li, *Ui, *Up, *P, *Q, *Lj, i, j, k, anz, nfr, nchains, *Qinit, fnpiv, lnz1, unz1, nz1, status, *Front_npivcol, *Front_parent, *Chain_start, *Wi, *Pinit, n1, *Chain_maxrows, *Chain_maxcols, *Front_1strow, *Front_leftmostdesc, nzud, do_recip ; void *Symbolic, *Numeric ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ umfpack_tic (t) ; printf ("\nUMFPACK V%d.%d (%s) demo: _di_ version\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_DATE) ; /* get the default control parameters */ umfpack_di_defaults (Control) ; /* change the default print level for this demo */ /* (otherwise, nothing will print) */ Control [UMFPACK_PRL] = 6 ; /* print the license agreement */ umfpack_di_report_status (Control, UMFPACK_OK) ; Control [UMFPACK_PRL] = 5 ; /* print the control parameters */ umfpack_di_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* print A and b, and convert A to column-form */ /* ---------------------------------------------------------------------- */ /* print the right-hand-side */ printf ("\nb: ") ; (void) umfpack_di_report_vector (n, b, Control) ; /* print the triplet form of the matrix */ printf ("\nA: ") ; (void) umfpack_di_report_triplet (n, n, nz, Arow, Acol, Aval, Control) ; /* convert to column form */ nz1 = MAX (nz,1) ; /* ensure arrays are not of size zero. */ Ap = (int *) malloc ((n+1) * sizeof (int)) ; Ai = (int *) malloc (nz1 * sizeof (int)) ; Ax = (double *) malloc (nz1 * sizeof (double)) ; if (!Ap || !Ai || !Ax) { error ("out of memory") ; } status = umfpack_di_triplet_to_col (n, n, nz, Arow, Acol, Aval, Ap, Ai, Ax, (int *) NULL) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_triplet_to_col failed") ; } /* print the column-form of A */ printf ("\nA: ") ; (void) umfpack_di_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, Control, Info) ; if (status < 0) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; error ("umfpack_di_symbolic failed") ; } /* print the symbolic factorization */ printf ("\nSymbolic factorization of A: ") ; (void) umfpack_di_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; error ("umfpack_di_numeric failed") ; } /* print the numeric factorization */ printf ("\nNumeric factorization of A: ") ; (void) umfpack_di_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; if (status < 0) { error ("umfpack_di_solve failed") ; } printf ("\nx (solution of Ax=b): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ status = umfpack_di_get_determinant (x, r, Numeric, Info) ; umfpack_di_report_status (Control, status) ; if (status < 0) { error ("umfpack_di_get_determinant failed") ; } printf ("determinant: (%g", x [0]) ; printf (") * 10^(%g)\n", r [0]) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, broken down into steps */ /* ---------------------------------------------------------------------- */ /* Rb = R*b */ Rb = (double *) malloc (n * sizeof (double)) ; y = (double *) malloc (n * sizeof (double)) ; if (!Rb || !y) error ("out of memory") ; status = umfpack_di_scale (Rb, b, Numeric) ; if (status < 0) error ("umfpack_di_scale failed") ; /* solve Ly = P*(Rb) */ status = umfpack_di_solve (UMFPACK_Pt_L, Ap, Ai, Ax, y, Rb, Numeric, Control, Info) ; if (status < 0) error ("umfpack_di_solve failed") ; /* solve UQ'x=y */ status = umfpack_di_solve (UMFPACK_U_Qt, Ap, Ai, Ax, x, y, Numeric, Control, Info) ; if (status < 0) error ("umfpack_di_solve failed") ; printf ("\nx (solution of Ax=b, solve is split into 3 steps): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; free (Rb) ; free (y) ; /* ---------------------------------------------------------------------- */ /* solve A'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_di_solve (UMFPACK_At, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; if (status < 0) { error ("umfpack_di_solve failed") ; } printf ("\nx (solution of A'x=b): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (TRUE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify one numerical value in the column-form of A */ /* ---------------------------------------------------------------------- */ /* change A (1,4), look for row index 1 in column 4. */ row = 1 ; col = 4 ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { if (row == Ai [p]) { printf ("\nchanging A (%d,%d) to zero\n", row, col) ; Ax [p] = 0.0 ; break ; } } printf ("\nmodified A: ") ; (void) umfpack_di_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ /* The pattern (Ap and Ai) hasn't changed, so the symbolic factorization */ /* doesn't have to be redone, no matter how much we change Ax. */ /* We don't need the Numeric object any more, so free it. */ umfpack_di_free_numeric (&Numeric) ; /* Note that a memory leak would have occurred if the old Numeric */ /* had not been free'd with umfpack_di_free_numeric above. */ status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; error ("umfpack_di_numeric failed") ; } printf ("\nNumeric factorization of modified A: ") ; (void) umfpack_di_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_solve failed") ; } printf ("\nx (with modified A): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify all of the numerical values of A, but not the pattern */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < n ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; printf ("changing ") ; printf ("A (%d,%d) from %g", row, col, Ax [p]) ; Ax [p] = Ax [p] + col*10 - row ; printf (" to %g\n", Ax [p]) ; } } printf ("\ncompletely modified A (same pattern): ") ; (void) umfpack_di_report_matrix (n, n, Ap, Ai, Ax, 1, Control) ; /* ---------------------------------------------------------------------- */ /* save the Symbolic object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "symbolic.umf" */ printf ("\nSaving symbolic object:\n") ; status = umfpack_di_save_symbolic (Symbolic, (char *) NULL) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_save_symbolic failed") ; } printf ("\nFreeing symbolic object:\n") ; umfpack_di_free_symbolic (&Symbolic) ; printf ("\nLoading symbolic object:\n") ; status = umfpack_di_load_symbolic (&Symbolic, (char *) NULL) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_load_symbolic failed") ; } printf ("\nDone loading symbolic object\n") ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_di_free_numeric (&Numeric) ; status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; error ("umfpack_di_numeric failed") ; } printf ("\nNumeric factorization of completely modified A: ") ; (void) umfpack_di_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_solve failed") ; } printf ("\nx (with completely modified A): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free the symbolic and numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_di_free_symbolic (&Symbolic) ; umfpack_di_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* C = transpose of A */ /* ---------------------------------------------------------------------- */ Cp = (int *) malloc ((n+1) * sizeof (int)) ; Ci = (int *) malloc (nz1 * sizeof (int)) ; Cx = (double *) malloc (nz1 * sizeof (double)) ; if (!Cp || !Ci || !Cx) { error ("out of memory") ; } status = umfpack_di_transpose (n, n, Ap, Ai, Ax, (int *) NULL, (int *) NULL, Cp, Ci, Cx) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_transpose failed: ") ; } printf ("\nC (transpose of A): ") ; (void) umfpack_di_report_matrix (n, n, Cp, Ci, Cx, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_di_symbolic (n, n, Cp, Ci, Cx, &Symbolic, Control, Info) ; if (status < 0) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; error ("umfpack_di_symbolic failed") ; } printf ("\nSymbolic factorization of C: ") ; (void) umfpack_di_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* copy the contents of Symbolic into user arrays print them */ /* ---------------------------------------------------------------------- */ printf ("\nGet the contents of the Symbolic object for C:\n") ; printf ("(compare with umfpack_di_report_symbolic output, above)\n") ; Pinit = (int *) malloc ((n+1) * sizeof (int)) ; Qinit = (int *) malloc ((n+1) * sizeof (int)) ; Front_npivcol = (int *) malloc ((n+1) * sizeof (int)) ; Front_1strow = (int *) malloc ((n+1) * sizeof (int)) ; Front_leftmostdesc = (int *) malloc ((n+1) * sizeof (int)) ; Front_parent = (int *) malloc ((n+1) * sizeof (int)) ; Chain_start = (int *) malloc ((n+1) * sizeof (int)) ; Chain_maxrows = (int *) malloc ((n+1) * sizeof (int)) ; Chain_maxcols = (int *) malloc ((n+1) * sizeof (int)) ; if (!Pinit || !Qinit || !Front_npivcol || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Front_1strow || !Front_leftmostdesc) { error ("out of memory") ; } status = umfpack_di_get_symbolic (&nr, &nc, &n1, &anz, &nfr, &nchains, Pinit, Qinit, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status < 0) { error ("symbolic factorization invalid") ; } printf ("From the Symbolic object, C is of dimension %d-by-%d\n", nr, nc); printf (" with nz = %d, number of fronts = %d,\n", nz, nfr) ; printf (" number of frontal matrix chains = %d\n", nchains) ; printf ("\nPivot columns in each front, and parent of each front:\n") ; k = 0 ; for (i = 0 ; i < nfr ; i++) { fnpiv = Front_npivcol [i] ; printf (" Front %d: parent front: %d number of pivot cols: %d\n", i, Front_parent [i], fnpiv) ; for (j = 0 ; j < fnpiv ; j++) { col = Qinit [k] ; printf ( " %d-th pivot column is column %d in original matrix\n", k, col) ; k++ ; } } printf ("\nNote that the column ordering, above, will be refined\n") ; printf ("in the numeric factorization below. The assignment of pivot\n") ; printf ("columns to frontal matrices will always remain unchanged.\n") ; printf ("\nTotal number of pivot columns in frontal matrices: %d\n", k) ; printf ("\nFrontal matrix chains:\n") ; for (j = 0 ; j < nchains ; j++) { printf (" Frontal matrices %d to %d are factorized in a single\n", Chain_start [j], Chain_start [j+1] - 1) ; printf (" working array of size %d-by-%d\n", Chain_maxrows [j], Chain_maxcols [j]) ; } /* ---------------------------------------------------------------------- */ /* numeric factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_di_numeric (Cp, Ci, Cx, Symbolic, &Numeric, Control, Info) ; if (status < 0) { error ("umfpack_di_numeric failed") ; } printf ("\nNumeric factorization of C: ") ; (void) umfpack_di_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* extract the LU factors of C and print them */ /* ---------------------------------------------------------------------- */ if (umfpack_di_get_lunz (&lnz, &unz, &nr, &nc, &nzud, Numeric) < 0) { error ("umfpack_di_get_lunz failed") ; } /* ensure arrays are not of zero size */ lnz1 = MAX (lnz,1) ; unz1 = MAX (unz,1) ; Lp = (int *) malloc ((n+1) * sizeof (int)) ; Lj = (int *) malloc (lnz1 * sizeof (int)) ; Lx = (double *) malloc (lnz1 * sizeof (double)) ; Up = (int *) malloc ((n+1) * sizeof (int)) ; Ui = (int *) malloc (unz1 * sizeof (int)) ; Ux = (double *) malloc (unz1 * sizeof (double)) ; P = (int *) malloc (n * sizeof (int)) ; Q = (int *) malloc (n * sizeof (int)) ; Dx = (double *) NULL ; /* D vector not requested */ Rs = (double *) malloc (n * sizeof (double)) ; if (!Lp || !Lj || !Lx || !Up || !Ui || !Ux || !P || !Q || !Rs) { error ("out of memory") ; } status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, &do_recip, Rs, Numeric) ; if (status < 0) { error ("umfpack_di_get_numeric failed") ; } printf ("\nL (lower triangular factor of C): ") ; (void) umfpack_di_report_matrix (n, n, Lp, Lj, Lx, 0, Control) ; printf ("\nU (upper triangular factor of C): ") ; (void) umfpack_di_report_matrix (n, n, Up, Ui, Ux, 1, Control) ; printf ("\nP: ") ; (void) umfpack_di_report_perm (n, P, Control) ; printf ("\nQ: ") ; (void) umfpack_di_report_perm (n, Q, Control) ; printf ("\nScale factors: row i of A is to be ") ; if (do_recip) { printf ("multiplied by the ith scale factor\n") ; } else { printf ("divided by the ith scale factor\n") ; } for (i = 0 ; i < n ; i++) printf ("%d: %g\n", i, Rs [i]) ; /* ---------------------------------------------------------------------- */ /* convert L to triplet form and print it */ /* ---------------------------------------------------------------------- */ /* Note that L is in row-form, so it is the row indices that are created */ /* by umfpack_di_col_to_triplet. */ printf ("\nConverting L to triplet form, and printing it:\n") ; Li = (int *) malloc (lnz1 * sizeof (int)) ; if (!Li) { error ("out of memory") ; } if (umfpack_di_col_to_triplet (n, Lp, Li) < 0) { error ("umfpack_di_col_to_triplet failed") ; } printf ("\nL, in triplet form: ") ; (void) umfpack_di_report_triplet (n, n, lnz, Li, Lj, Lx, Control) ; /* ---------------------------------------------------------------------- */ /* save the Numeric object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "numeric.umf" */ printf ("\nSaving numeric object:\n") ; status = umfpack_di_save_numeric (Numeric, (char *) NULL) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_save_numeric failed") ; } printf ("\nFreeing numeric object:\n") ; umfpack_di_free_numeric (&Numeric) ; printf ("\nLoading numeric object:\n") ; status = umfpack_di_load_numeric (&Numeric, (char *) NULL) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_load_numeric failed") ; } printf ("\nDone loading numeric object\n") ; /* ---------------------------------------------------------------------- */ /* solve C'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_di_solve (UMFPACK_At, Cp, Ci, Cx, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_solve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* solve C'x=b again, using umfpack_di_wsolve instead */ /* ---------------------------------------------------------------------- */ printf ("\nSolving C'x=b again, using umfpack_di_wsolve instead:\n") ; Wi = (int *) malloc (n * sizeof (int)) ; W = (double *) malloc (5*n * sizeof (double)) ; if (!Wi || !W) { error ("out of memory") ; } status = umfpack_di_wsolve (UMFPACK_At, Cp, Ci, Cx, x, b, Numeric, Control, Info, Wi, W) ; umfpack_di_report_info (Control, Info) ; if (status < 0) { umfpack_di_report_status (Control, status) ; error ("umfpack_di_wsolve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_di_report_vector (n, x, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* This is not strictly required since the process is exiting and the */ /* system will reclaim the memory anyway. It's useful, though, just as */ /* a list of what is currently malloc'ed by this program. Plus, it's */ /* always a good habit to explicitly free whatever you malloc. */ free (Ap) ; free (Ai) ; free (Ax) ; free (Cp) ; free (Ci) ; free (Cx) ; free (Pinit) ; free (Qinit) ; free (Front_npivcol) ; free (Front_1strow) ; free (Front_leftmostdesc) ; free (Front_parent) ; free (Chain_start) ; free (Chain_maxrows) ; free (Chain_maxcols) ; free (Lp) ; free (Lj) ; free (Lx) ; free (Up) ; free (Ui) ; free (Ux) ; free (P) ; free (Q) ; free (Li) ; free (Wi) ; free (W) ; umfpack_di_free_symbolic (&Symbolic) ; umfpack_di_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* print the total time spent in this demo */ /* ---------------------------------------------------------------------- */ umfpack_toc (t) ; printf ("\numfpack_di_demo complete.\nTotal time: %5.2f seconds" " (CPU time), %5.2f seconds (wallclock time)\n", t [1], t [0]) ; return (0) ; } SuiteSparse/UMFPACK/Demo/readhb_nozeros.f0000644001170100242450000000757210172176352017113 0ustar davisfacc======================================================================= c== readhb_nozeros ===================================================== c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c readhb_nozeros: c read a sparse matrix in the Harwell/Boeing format and c output a matrix in triplet format. c Identical to readhb, except that this version removes explicit c zero entries from the matrix. c c usage (for example): c c in a Unix shell: c readhb_nozeros < HB/arc130.rua > tmp/A c c Then, in MATLAB, you can do the following: c >> load tmp/A c >> A = spconvert (A) ; c >> spy (A) integer nzmax, nmax parameter (nzmax = 10000000, nmax = 250000) integer Ptr (nmax), Index (nzmax), n, nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, row, col, p character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 logical sym double precision Value (nzmax), skew character rhstyp*3 integer nzrhs, nel integer ne, nnz c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) skew = 0.0 if (type (2:2) .eq. 'Z' .or. type (2:2) .eq. 'z') skew = -1.0 if (type (2:2) .eq. 'S' .or. type (2:2) .eq. 's') skew = 1.0 sym = skew .ne. 0.0 write (0, 31) key 31 format ('Matrix key: ', a8) n = max (nrow, ncol) if (n .ge. nmax .or. nz .gt. nzmax) then write (0, *) 'Matrix too big!' write (0, *) '(recompile readhb_nozeros.f with larger', $ ' nzmax, nmax)' stop endif read (5, ptrfmt, err = 998) (Ptr (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Index (p), p = 1, nz) do 55 col = ncol+2, n+1 Ptr (col) = Ptr (ncol+1) 55 continue c read the values if (valcrd .gt. 0) then read (5, valfmt, err = 998) (Value (p), p = 1, nz) else do 50 p = 1, nz Value (p) = 1 50 continue endif c create the triplet form of the input matrix ne = 0 nnz = 0 do 100 col = 1, n do 90 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) c remove zeros, to compare fairly with LU in MATLAB c (MATLAB always removes explicit zeros) ne = ne + 1 if (Value (p) .ne. 0) then nnz = nnz + 1 write (6, 200) row, col, Value (p) endif if (sym .and. row .ne. col) then ne = ne + 1 if (Value (p) .ne. 0) then nnz = nnz + 1 write (6, 200) col, row, skew * Value (p) endif endif 90 continue 100 continue 200 format (2i7, e30.18e3) c write (0,*) 'Number of entries: ',ne,' True nonzeros: ', nnz stop 998 write (0,*) 'Read error: Harwell/Boeing matrix' stop end SuiteSparse/UMFPACK/Demo/umf4_f77wrapper.c0000644001170100242450000004566410617161007017042 0ustar davisfac/* ========================================================================== */ /* === umf4_f77wrapper ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* FORTRAN interface for the C-callable UMFPACK library (double / int version * only and double / UF_long versions only). This is HIGHLY non-portable. You * will need to modify this depending on how your FORTRAN and C compilers * behave. This has been tested in Linux, Sun Solaris, SGI IRIX, and IBM AIX, * with various compilers. It has not been exhaustively tested on all possible * combinations of C and FORTRAN compilers. The UF_long version works on * Solaris, SGI IRIX, and IBM AIX when the UMFPACK library is compiled in * 64-bit mode. * * Only a subset of UMFPACK's capabilities are provided. Refer to the UMFPACK * User Guide for details. * * For some C and FORTRAN compilers, the FORTRAN compiler appends a single * underscore ("_") after each routine name. C doesn't do this, so the * translation is made here. Other FORTRAN compilers treat underscores * differently. For example, a FORTRAN call to a_b gets translated to a call * to a_b__ by g77, and to a_b_ by most other FORTRAN compilers. Thus, the * FORTRAN names here do not use underscores. The xlf compiler in IBM AIX * doesn't add an underscore. * * The matrix A is passed to UMFPACK in compressed column form, with 0-based * indices. In FORTRAN, for an m-by-n matrix A with nz entries, the row * indices of the first column (column 1) are in Ai (Ap (1) + 1 ... Ap (2)), * with values in Ax (Ap (1) + 1 ... Ap (2)). The last column (column n) is * in Ai (Ap (n) + 1 ... Ap (n+1)) and Ax (Ap (n) + 1 ... Ap (n+1)). The row * indices in Ai are in the range 0 to m-1. They must be sorted, with no * duplicate entries allowed. Refer to umfpack_di_triplet_to_col for a more * flexible format for the input matrix. The following defintions apply * for each of the routines in this file: * * integer m, n, Ap (n+1), Ai (nz), symbolic, numeric, filenum, status * double precision Ax (nz), control (20), info (90), x (n), b (n) * * UMFPACK's status is returned in either a status argument, or in info (1). * It is zero if everything is OK, 1 if the matrix is singular (this is a * warning, not an error), and negative if an error occurred. See umfpack.h * for more details on the contents of the control and info arrays, and the * value of the sys argument. * * For the Numeric and Symbolic handles, it's probably safe to assume that a * FORTRAN integer is sufficient to store a C pointer. If that doesn't work, * try defining numeric and symbolic as integer arrays of size 2, or as * integer*8, in the FORTRAN routine that calls these wrapper routines. * The latter is required on Solaris, SGI IRIX, and IBM AIX when UMFPACK is * compiled in 64-bit mode. * * If you want to use 64-bit integers, try compiling this file with the -DDLONG * compiler option (via "make fortran64"). First modify your UFconfig.mk * file to compile UMFPACK in LP64 mode (see the User Guide for details). * Your FORTRAN code should use integer*8. See umf4hb64.f for an example. * * Tested with the following compilers: * * Solaris with cc and f77 from Sun WorkShop 6 update 1 * (32-bit and 64-bit modes) * * SGI Irix with MIPSpro cc and f77 compilers version 7.4 * (32-bit and 64-bit modes) * * Linux with GNU gcc and Intel's icc, and GNU g77 and Intel's * ifc FORTRAN compiler. See the comments above about g77 and * underscores. Only supports 32-bit mode. * * IBM AIX xlc and xlf compilers. * (32-bit and 64-bit modes) * * This interface files when using the ABSOFT Fortran compiler on both * Linux and Windows. There is no known fix. */ #include "umfpack.h" #include #include #ifdef NULL #undef NULL #endif #define NULL 0 #define LEN 200 /* -------------------------------------------------------------------------- */ /* integer type: int or UF_long */ /* -------------------------------------------------------------------------- */ #if defined (DLONG) #define Int UF_long #define UMFPACK_defaults umfpack_dl_defaults #define UMFPACK_free_numeric umfpack_dl_free_numeric #define UMFPACK_free_symbolic umfpack_dl_free_symbolic #define UMFPACK_numeric umfpack_dl_numeric #define UMFPACK_report_control umfpack_dl_report_control #define UMFPACK_report_info umfpack_dl_report_info #define UMFPACK_save_numeric umfpack_dl_save_numeric #define UMFPACK_save_symbolic umfpack_dl_save_symbolic #define UMFPACK_load_numeric umfpack_dl_load_numeric #define UMFPACK_load_symbolic umfpack_dl_load_symbolic #define UMFPACK_scale umfpack_dl_scale #define UMFPACK_solve umfpack_dl_solve #define UMFPACK_symbolic umfpack_dl_symbolic #else #define Int int #define UMFPACK_defaults umfpack_di_defaults #define UMFPACK_free_numeric umfpack_di_free_numeric #define UMFPACK_free_symbolic umfpack_di_free_symbolic #define UMFPACK_numeric umfpack_di_numeric #define UMFPACK_report_control umfpack_di_report_control #define UMFPACK_report_info umfpack_di_report_info #define UMFPACK_save_numeric umfpack_di_save_numeric #define UMFPACK_save_symbolic umfpack_di_save_symbolic #define UMFPACK_load_numeric umfpack_di_load_numeric #define UMFPACK_load_symbolic umfpack_di_load_symbolic #define UMFPACK_scale umfpack_di_scale #define UMFPACK_solve umfpack_di_solve #define UMFPACK_symbolic umfpack_di_symbolic #endif /* -------------------------------------------------------------------------- */ /* construct a file name from a file number (not user-callable) */ /* -------------------------------------------------------------------------- */ static void make_filename (Int filenum, char *prefix, char *filename) { char *psrc, *pdst ; #ifdef DLONG sprintf (filename, "%s%ld.umf", prefix, filenum) ; #else sprintf (filename, "%s%d.umf", prefix, filenum) ; #endif /* remove any spaces in the filename */ pdst = filename ; for (psrc = filename ; *psrc ; psrc++) { if (!isspace (*psrc)) *pdst++ = *psrc ; } *pdst = '\0' ; } /* ========================================================================== */ /* === with underscore ====================================================== */ /* ========================================================================== */ /* Solaris, Linux, and SGI IRIX. Probably Compaq Alpha as well. */ /* -------------------------------------------------------------------------- */ /* umf4def: set default control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4def (control) */ void umf4def_ (double Control [UMFPACK_CONTROL]) { UMFPACK_defaults (Control) ; } /* -------------------------------------------------------------------------- */ /* umf4pcon: print control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4pcon (control) */ void umf4pcon_ (double Control [UMFPACK_CONTROL]) { fflush (stdout) ; UMFPACK_report_control (Control) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4sym: pre-ordering and symbolic factorization */ /* -------------------------------------------------------------------------- */ /* call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info) */ void umf4sym_ (Int *m, Int *n, Int Ap [ ], Int Ai [ ], double Ax [ ], void **Symbolic, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_symbolic (*m, *n, Ap, Ai, Ax, Symbolic, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4num: numeric factorization */ /* -------------------------------------------------------------------------- */ /* call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) */ void umf4num_ (Int Ap [ ], Int Ai [ ], double Ax [ ], void **Symbolic, void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_numeric (Ap, Ai, Ax, *Symbolic, Numeric, Control, Info); } /* -------------------------------------------------------------------------- */ /* umf4solr: solve a linear system with iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info) */ void umf4solr_ (Int *sys, Int Ap [ ], Int Ai [ ], double Ax [ ], double x [ ], double b [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_solve (*sys, Ap, Ai, Ax, x, b, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4sol: solve a linear system without iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4sol (sys, x, b, numeric, control, info) */ void umf4sol_ (Int *sys, double x [ ], double b [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { Control [UMFPACK_IRSTEP] = 0 ; (void) UMFPACK_solve (*sys, (Int *) NULL, (Int *) NULL, (double *) NULL, x, b, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4scal: scale a vector using UMFPACK's scale factors */ /* -------------------------------------------------------------------------- */ /* call umf4scal (x, b, numeric, status) */ void umf4scal_ (double x [ ], double b [ ], void **Numeric, Int *status) { *status = UMFPACK_scale (x, b, *Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4pinf: print info */ /* -------------------------------------------------------------------------- */ /* call umf4pinf (control) */ void umf4pinf_ (double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { fflush (stdout) ; UMFPACK_report_info (Control, Info) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4fnum: free the Numeric object */ /* -------------------------------------------------------------------------- */ /* call umf4fnum (numeric) */ void umf4fnum_ (void **Numeric) { UMFPACK_free_numeric (Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4fsym: free the Symbolic object */ /* -------------------------------------------------------------------------- */ /* call umf4fsym (symbolic) */ void umf4fsym_ (void **Symbolic) { UMFPACK_free_symbolic (Symbolic) ; } /* -------------------------------------------------------------------------- */ /* umf4snum: save the Numeric object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4snum (numeric, filenum, status) */ void umf4snum_ (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_save_numeric (*Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4ssym: save the Symbolic object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4ssym (symbolic, filenum, status) */ void umf4ssym_ (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_save_symbolic (*Symbolic, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4lnum: load the Numeric object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4lnum (numeric, filenum, status) */ void umf4lnum_ (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_load_numeric (Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4lsym: load the Symbolic object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4lsym (symbolic, filenum, status) */ void umf4lsym_ (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_load_symbolic (Symbolic, filename) ; } /* ========================================================================== */ /* === with no underscore =================================================== */ /* ========================================================================== */ /* IBM AIX. Probably Microsoft Windows and HP Unix as well. */ /* -------------------------------------------------------------------------- */ /* umf4def: set default control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4def (control) */ void umf4def (double Control [UMFPACK_CONTROL]) { UMFPACK_defaults (Control) ; } /* -------------------------------------------------------------------------- */ /* umf4pcon: print control parameters */ /* -------------------------------------------------------------------------- */ /* call umf4pcon (control) */ void umf4pcon (double Control [UMFPACK_CONTROL]) { fflush (stdout) ; UMFPACK_report_control (Control) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4sym: pre-ordering and symbolic factorization */ /* -------------------------------------------------------------------------- */ /* call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info) */ void umf4sym (Int *m, Int *n, Int Ap [ ], Int Ai [ ], double Ax [ ], void **Symbolic, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_symbolic (*m, *n, Ap, Ai, Ax, Symbolic, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4num: numeric factorization */ /* -------------------------------------------------------------------------- */ /* call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) */ void umf4num (Int Ap [ ], Int Ai [ ], double Ax [ ], void **Symbolic, void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_numeric (Ap, Ai, Ax, *Symbolic, Numeric, Control, Info); } /* -------------------------------------------------------------------------- */ /* umf4solr: solve a linear system with iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info) */ void umf4solr (Int *sys, Int Ap [ ], Int Ai [ ], double Ax [ ], double x [ ], double b [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { (void) UMFPACK_solve (*sys, Ap, Ai, Ax, x, b, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4sol: solve a linear system without iterative refinement */ /* -------------------------------------------------------------------------- */ /* call umf4sol (sys, x, b, numeric, control, info) */ void umf4sol (Int *sys, double x [ ], double b [ ], void **Numeric, double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { Control [UMFPACK_IRSTEP] = 0 ; (void) UMFPACK_solve (*sys, (Int *) NULL, (Int *) NULL, (double *) NULL, x, b, *Numeric, Control, Info) ; } /* -------------------------------------------------------------------------- */ /* umf4scal: scale a vector using UMFPACK's scale factors */ /* -------------------------------------------------------------------------- */ /* call umf4scal (x, b, numeric, status) */ void umf4scal (double x [ ], double b [ ], void **Numeric, Int *status) { *status = UMFPACK_scale (x, b, *Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4pinf: print info */ /* -------------------------------------------------------------------------- */ /* call umf4pinf (control) */ void umf4pinf (double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { fflush (stdout) ; UMFPACK_report_info (Control, Info) ; fflush (stdout) ; } /* -------------------------------------------------------------------------- */ /* umf4fnum: free the Numeric object */ /* -------------------------------------------------------------------------- */ /* call umf4fnum (numeric) */ void umf4fnum (void **Numeric) { UMFPACK_free_numeric (Numeric) ; } /* -------------------------------------------------------------------------- */ /* umf4fsym: free the Symbolic object */ /* -------------------------------------------------------------------------- */ /* call umf4fsym (symbolic) */ void umf4fsym (void **Symbolic) { UMFPACK_free_symbolic (Symbolic) ; } /* -------------------------------------------------------------------------- */ /* umf4snum: save the Numeric object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4snum (numeric, filenum, status) */ void umf4snum (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_save_numeric (*Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4ssym: save the Symbolic object to a file */ /* -------------------------------------------------------------------------- */ /* call umf4ssym (symbolic, filenum, status) */ void umf4ssym (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_save_symbolic (*Symbolic, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4lnum: load the Numeric object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4lnum (numeric, filenum, status) */ void umf4lnum (void **Numeric, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "n", filename) ; *status = UMFPACK_load_numeric (Numeric, filename) ; } /* -------------------------------------------------------------------------- */ /* umf4lsym: load the Symbolic object from a file */ /* -------------------------------------------------------------------------- */ /* call umf4lsym (symbolic, filenum, status) */ void umf4lsym (void **Symbolic, Int *filenum, Int *status) { char filename [LEN] ; make_filename (*filenum, "s", filename) ; *status = UMFPACK_load_symbolic (Symbolic, filename) ; } SuiteSparse/UMFPACK/Demo/umfpack_dl_demo.out0000644001170100242450000015255610711433150017574 0ustar davisfac UMFPACK V5.2 (Nov 1, 2007) demo: _dl_ version UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: UMFPACK is available under alternate licenses, contact T. Davis for details. Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK V5.2.0 (Nov 1, 2007): OK UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: UF_long 0: print level: 5 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 8 pointer: 8 double: 8 Entry: 8 (in bytes) b: dense vector, n = 5. 0 : (8) 1 : (45) 2 : (-3) 3 : (3) 4 : (19) dense vector OK A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 0 : 0 0 (2) 1 : 4 4 (1) 2 : 1 0 (3) 3 : 1 2 (4) 4 : 2 1 (-1) 5 : 2 2 (-3) 6 : 0 1 (3) 7 : 1 4 (6) 8 : 2 3 (2) 9 : 3 2 (1) 10 : 4 1 (4) 11 : 4 2 (2) triplet-form matrix OK A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (3) column 1: start: 2 end: 4 entries: 3 row 0 : (3) row 2 : (-1) row 4 : (4) column 2: start: 5 end: 8 entries: 4 row 1 : (4) row 2 : (-3) row 3 : (1) row 4 : (2) column 3: start: 9 end: 9 entries: 1 row 2 : (2) column 4: start: 10 end: 11 entries: 2 row 1 : (6) row 4 : (1) column-form matrix OK Symbolic factorization of A: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 69 (MBytes): 0.0 estimated peak size (Units): 681 (MBytes): 0.0 estimated final size (Units): 10 (MBytes): 0.0 symbolic factorization memory usage (Units): 138 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Numeric factorization of A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 67 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 675 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.42857e-01 max abs. value on diagonal of U: 2.19231e+00 reciprocal condition number estimate: 6.52e-02 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.2) 1 : (0.0769231) 2 : (0.166667) 3 : (1) 4 : (0.142857) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.307692) row 3 : (0.285714) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.576923) column 3: length 1. row 4 : (3.23077) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.571429) row 2: length 1. col 4 : (0.6) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.5) col 4 : (-0.166667) diagonal of U: dense vector, n = 5. 0 : (0.333333) 1 : (1) 2 : (0.4) 3 : (0.142857) 4 : (-2.19231) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 69 64 93% peak size (Units) 681 675 99% final size (Units) 10 11 110% Numeric final size (Units) 69 68 99% Numeric final size (MBytes) 0.0 0.0 99% peak memory usage (Units) 832 826 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.43e-01 max abs. value on diagonal of U: 2.19e+00 estimate of reciprocal of condition number: 6.52e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 1.18e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.25000e+02 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK x (solution of Ax=b): dense vector, n = 5. 0 : (1) 1 : (2) 2 : (3) 3 : (4) 4 : (5) dense vector OK maxnorm of residual: 1.06581e-14 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK determinant: (1.14) * 10^(2) x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 0 : (1) 1 : (2) 2 : (3) 3 : (4) 4 : (5) dense vector OK maxnorm of residual: 1.06581e-14 UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 69 64 93% peak size (Units) 681 675 99% final size (Units) 10 11 110% Numeric final size (Units) 69 68 99% Numeric final size (MBytes) 0.0 0.0 99% peak memory usage (Units) 832 826 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.43e-01 max abs. value on diagonal of U: 2.19e+00 estimate of reciprocal of condition number: 6.52e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.64e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of A'x=b): dense vector, n = 5. 0 : (1.81579) 1 : (1.45614) 2 : (1.5) 3 : (-24.8509) 4 : (10.2632) dense vector OK maxnorm of residual: 7.10543e-15 changing A (1,4) to zero modified A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (3) column 1: start: 2 end: 4 entries: 3 row 0 : (3) row 2 : (-1) row 4 : (4) column 2: start: 5 end: 8 entries: 4 row 1 : (4) row 2 : (-3) row 3 : (1) row 4 : (2) column 3: start: 9 end: 9 entries: 1 row 2 : (2) column 4: start: 10 end: 11 entries: 2 row 1 : (0) row 4 : (1) column-form matrix OK Numeric factorization of modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 7.00000e+00 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 66 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 675 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 3 number of entries stored in U (excl diag): 1 factorization floating-point operations: 4 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.50000e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.50e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.2) 1 : (0.142857) 2 : (0.166667) 3 : (1) 4 : (0.142857) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 1 3 : 4 4 : 0 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 1 4 : 4 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 2 : (0.571429) row 3 : (0.285714) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.933333) column 3: length 1. row 4 : (1.05) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.142857) row 2: length 0. End of Uchain. row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.5) col 3 : (-0.166667) diagonal of U: dense vector, n = 5. 0 : (0.333333) 1 : (1) 2 : (0.428571) 3 : (0.571429) 4 : (-0.15) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 7.00000e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 69 64 93% peak size (Units) 681 675 99% final size (Units) 10 10 100% Numeric final size (Units) 69 67 97% Numeric final size (MBytes) 0.0 0.0 97% peak memory usage (Units) 832 826 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 4.00000e+00 31% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 8 80% nz in L+U (incl diagonal) 15 12 80% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 8 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.50e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.50e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 8 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.17000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.89e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.21000e+02 x (with modified A): dense vector, n = 5. 0 : (11) 1 : (-4.66667) 2 : (3) 3 : (0.666667) 4 : (31.6667) dense vector OK maxnorm of residual: 7.10543e-15 changing A (0,0) from 2 to 2 changing A (1,0) from 3 to 2 changing A (0,1) from 3 to 13 changing A (2,1) from -1 to 7 changing A (4,1) from 4 to 10 changing A (1,2) from 4 to 23 changing A (2,2) from -3 to 15 changing A (3,2) from 1 to 18 changing A (4,2) from 2 to 18 changing A (2,3) from 2 to 30 changing A (1,4) from 0 to 39 changing A (4,4) from 1 to 37 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (2) column 1: start: 2 end: 4 entries: 3 row 0 : (13) row 2 : (7) row 4 : (10) column 2: start: 5 end: 8 entries: 4 row 1 : (23) row 2 : (15) row 3 : (18) row 4 : (18) column 3: start: 9 end: 9 entries: 1 row 2 : (30) column 4: start: 10 end: 11 entries: 2 row 1 : (39) row 4 : (37) column-form matrix OK Saving symbolic object: Freeing symbolic object: Loading symbolic object: Done loading symbolic object Numeric factorization of completely modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.50000e+01 maximum sum (abs (rows of A)): 6.50000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 67 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 675 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.33333e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.33e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.0666667) 1 : (0.015625) 2 : (0.0192308) 3 : (0.0555556) 4 : (0.0153846) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.359375) row 3 : (0.276923) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.234375) column 3: length 1. row 4 : (1.07052) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.153846) row 2: length 1. col 4 : (0.866667) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (0.288462) col 4 : (0.134615) diagonal of U: dense vector, n = 5. 0 : (0.576923) 1 : (1) 2 : (0.133333) 3 : (0.569231) 4 : (-0.367821) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.50000e+01 maximum sum (abs (rows of A)): 6.50000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 69 64 93% peak size (Units) 681 675 99% final size (Units) 10 11 110% Numeric final size (Units) 69 68 99% Numeric final size (MBytes) 0.0 0.0 99% peak memory usage (Units) 832 826 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.33e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.33e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 1.04e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.25000e+02 x (with completely modified A): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (13) column 1: start: 2 end: 4 entries: 3 row 0 : (2) row 2 : (23) row 4 : (39) column 2: start: 5 end: 7 entries: 3 row 1 : (7) row 2 : (15) row 3 : (30) column 3: start: 8 end: 8 entries: 1 row 2 : (18) column 4: start: 9 end: 11 entries: 3 row 1 : (10) row 2 : (18) row 4 : (37) column-form matrix OK Symbolic factorization of C: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 71 (MBytes): 0.0 estimated peak size (Units): 683 (MBytes): 0.0 estimated final size (Units): 12 (MBytes): 0.0 symbolic factorization memory usage (Units): 138 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Get the contents of the Symbolic object for C: (compare with umfpack_dl_report_symbolic output, above) From the Symbolic object, C is of dimension 5-by-5 with nz = 12, number of fronts = 1, number of frontal matrix chains = 1 Pivot columns in each front, and parent of each front: Front 0: parent front: -1 number of pivot cols: 3 0-th pivot column is column 3 in original matrix 1-th pivot column is column 2 in original matrix 2-th pivot column is column 0 in original matrix Note that the column ordering, above, will be refined in the numeric factorization below. The assignment of pivot columns to frontal matrices will always remain unchanged. Total number of pivot columns in frontal matrices: 3 Frontal matrix chains: Frontal matrices 0 to 0 are factorized in a single working array of size 3-by-3 Numeric factorization of C: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 69 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 677 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 5 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43243e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 2.43e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.25) 1 : (0.0333333) 2 : (0.0135135) 3 : (0.0333333) 4 : (0.0131579) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 1. row 4 : (0.233333) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.866667) column 3: length 1. row 4 : (0.684685) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.513158) row 2: length 1. col 4 : (0.5) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 3. col 1 : (0.202703) col 3 : (0.243243) col 4 : (0.310811) diagonal of U: dense vector, n = 5. 0 : (0.243243) 1 : (1) 2 : (0.5) 3 : (0.486842) 4 : (-0.784685) dense vector OK Numeric object: OK L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. row 0: start: 0 end: 0 entries: 1 column 0 : (1) row 1: start: 1 end: 1 entries: 1 column 1 : (1) row 2: start: 2 end: 2 entries: 1 column 2 : (1) row 3: start: 3 end: 3 entries: 1 column 3 : (1) row 4: start: 4 end: 7 entries: 4 column 1 : (0.233333) column 2 : (0.866667) column 3 : (0.684685) column 4 : (1) row-form matrix OK U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. column 0: start: 0 end: 0 entries: 1 row 0 : (0.243243) column 1: start: 1 end: 2 entries: 2 row 0 : (0.202703) row 1 : (1) column 2: start: 3 end: 3 entries: 1 row 2 : (0.5) column 3: start: 4 end: 5 entries: 2 row 0 : (0.243243) row 3 : (0.486842) column 4: start: 6 end: 9 entries: 4 row 0 : (0.310811) row 2 : (0.5) row 3 : (0.513158) row 4 : (-0.784685) column-form matrix OK P: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Scale factors: row i of A is to be multiplied by the ith scale factor 0: 0.25 1: 0.0333333 2: 0.0135135 3: 0.0333333 4: 0.0131579 Converting L to triplet form, and printing it: L, in triplet form: triplet-form matrix, n_row = 5, n_col = 5 nz = 8. 0 : 0 0 (1) 1 : 1 1 (1) 2 : 2 2 (1) 3 : 3 3 (1) 4 : 4 1 (0.233333) 5 : 4 2 (0.866667) 6 : 4 3 (0.684685) 7 : 4 4 (1) triplet-form matrix OK Saving numeric object: Freeing numeric object: Loading numeric object: Done loading numeric object UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 71 66 93% peak size (Units) 683 677 99% final size (Units) 12 13 108% Numeric final size (Units) 71 70 99% Numeric final size (MBytes) 0.0 0.0 99% peak memory usage (Units) 834 828 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.43e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.07e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 Solving C'x=b again, using umfpack_dl_wsolve instead: UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 71 66 93% peak size (Units) 683 677 99% final size (Units) 12 13 108% Numeric final size (Units) 71 70 99% Numeric final size (MBytes) 0.0 0.0 99% peak memory usage (Units) 834 828 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.43e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.07e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 umfpack_dl_demo complete. Total time: 0.00 seconds (CPU time), 0.00 seconds (wallclock time) SuiteSparse/UMFPACK/Demo/umfpack_dl_demo.sed0000644001170100242450000000122010425652546017533 0ustar davisfac/::/d 1,$s/_xx_/_dl_/g 1,$s/Int/UF_long/g 1,$s/WSIZE/5/ /define ABS/ { s/ABS/ABS(x) ((x) >= 0 ? (x) : -(x))/ } /, rz \[i\]/ { s/, rz \[i\]// } /, Avalz/ { s/, Avalz// } /, rz/ { s/, rz// } /, bz/ { s/, bz// } /, xz/ { s/, xz// } /, Lz/ { s/, Lz// } /, Uz/ { s/, Uz// } /, Dz/ { s/, Dz// } /, Az/ { s/, Az// } /, Cz, TRUE/ { s/, Cz, TRUE// } /, Cz/ { s/, Cz// } /, Rbz/ { s/, Rbz// } /, yz/ { s/, yz// } / || !Lz/ { s/ || !Lz// } / || !Uz/ { s/ || !Uz// } / || !Dz/ { s/ || !Dz// } / || !Az/ { s/ || !Az// } / || !Cz/ { s/ || !Cz// } /rz/d /Rbz/d /yz/d /Avalz/d /Az/d /Cz/d /bz/d /xz/d /Lz/d /Uz/d /Dz/d /complex/d SuiteSparse/UMFPACK/Demo/umf4zhb.f0000644001170100242450000002254010172176370015456 0ustar davisfacc======================================================================= c== umf4zhb ============================================================ c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c umf4zhb: c read a sparse matrix in the Harwell/Boeing format, factorizes c it, and solves Ax=b. Also saves and loads the factors to/from a c file. Saving to a file is not required, it's just here to c demonstrate how to use this feature of UMFPACK. This program c only works on square CUA-type matrices. c c This is HIGHLY non-portable. It may not work with your C and c FORTRAN compilers. See umf4z_f77wrapper.c for more details. c c usage (for example): c c in a Unix shell: c umf4zhb < HB/arc130.cua integer $ nzmax, nmax parameter (nzmax = 5000000, nmax = 160000) integer $ Ap (nmax), Ai (nzmax), n, nz, totcrd, ptrcrd, i, j, p, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, nzrhs, nel, $ numeric, symbolic, status, sys, filenum character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 double precision Ax (nzmax), x (nmax), b (nmax), $ control (20), info (90) complex*16 AA (nzmax), XX (nmax), BB (nmax), r (nmax), aij, xj double precision Az (nmax), xz (nmax), bz (nmax), xi, xr character rhstyp*3 c ---------------------------------------------------------------- c read the Harwell/Boeing matrix c ---------------------------------------------------------------- read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp, nrhs, nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) print *, 'Matrix key: ', key n = nrow if (type .ne. 'CUA' .or. nrow .ne. ncol) then print *, 'Error: can only handle square CUA matrices' stop endif if (n .ge. nmax .or. nz .gt. nzmax) then print *, ' Matrix too big!' stop endif c read the matrix (1-based) read (5, ptrfmt, err = 998) (Ap (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Ai (p), p = 1, nz) read (5, valfmt, err = 998) (AA (p), p = 1, nz) do 15 p = 1, nz Ax (p) = dble (AA (p)) Az (p) = imag (AA (p)) 15 continue c ---------------------------------------------------------------- c create the right-hand-side, assume c x (i) = (1 + i/n), (n + i/100) c ---------------------------------------------------------------- do 30 i = 1,n BB (i) = 0 30 continue c b = A*x do 50 j = 1,n xr = j xi = n xi = xi + xr/100 xr = 1 + xr / n xj = dcmplx (xr, xi) do 40 p = Ap (j), Ap (j+1)-1 i = Ai (p) aij = AA (p) BB (i) = BB (i) + aij * xj 40 continue 50 continue do 32 i = 1,n b (i) = dble (BB (i)) bz (i) = imag (BB (i)) 32 continue c ---------------------------------------------------------------- c convert from 1-based to 0-based c ---------------------------------------------------------------- do 60 j = 1, n+1 Ap (j) = Ap (j) - 1 60 continue do 70 p = 1, nz Ai (p) = Ai (p) - 1 70 continue c ---------------------------------------------------------------- c factor the matrix and save to a file c ---------------------------------------------------------------- c set default parameters call umf4zdef (control) c print control parameters. set control (1) to 1 to print c error messages only control (1) = 2 call umf4zpcon (control) c pre-order and symbolic analysis call umf4zsym (n, n, Ap, Ai, Ax, Az, symbolic, control, info) c print statistics computed so far c call umf4zpinf (control, info) could also be done. print 80, info (1), info (16), $ (info (21) * info (4)) / 2**20, $ (info (22) * info (4)) / 2**20, $ info (23), info (24), info (25) 80 format ('symbolic analysis:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, ' (sec)'/, $ ' estimates (upper bound) for numeric LU:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4zsym error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4zsym: ', info (1) stop endif c numeric factorization call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info) c print statistics for the numeric factorization c call umf4zpinf (control, info) could also be done. print 90, info (1), info (66), $ (info (41) * info (4)) / 2**20, $ (info (42) * info (4)) / 2**20, $ info (43), info (44), info (45) 90 format ('numeric factorization:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, /, $ ' actual numeric LU statistics:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4znum error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4znum: ', info (1) stop endif c save the symbolic analysis to the file s42.umf c note that this is not needed until another matrix is c factorized, below. filenum = 42 call umf4zssym (symbolic, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4zssym: ', status stop endif c save the LU factors to the file n0.umf call umf4zsnum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4zsnum: ', status stop endif c free the symbolic analysis call umf4zfsym (symbolic) c free the numeric factorization call umf4zfnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c ---------------------------------------------------------------- c load the LU factors back in, and solve the system c ---------------------------------------------------------------- c At this point the program could terminate and load the LU C factors (numeric) from the n0.umf file, and solve the c system (see below). Note that the symbolic object is not c required. c load the numeric factorization back in (filename: n0.umf) call umf4zlnum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4zlnum: ', status stop endif c solve Ax=b, without iterative refinement sys = 0 call umf4zsol (sys, x, xz, b, bz, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4zsol: ', info (1) stop endif do 33 i = 1,n XX (i) = dcmplx (x (i), xz (i)) 33 continue c free the numeric factorization call umf4zfnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c print final statistics call umf4zpinf (control, info) c print the residual. x (i) should be 1 + i/n call resid (n, nz, Ap, Ai, AA, XX, BB, r) stop 998 print *, 'Read error: Harwell/Boeing matrix' stop end c======================================================================= c== resid ============================================================== c======================================================================= c Compute the residual, r = Ax-b, its max-norm, and print the max-norm C Note that A is zero-based. subroutine resid (n, nz, Ap, Ai, A, x, b, r) integer $ n, nz, Ap (n+1), Ai (n), j, i, p complex*16 A (nz), x (n), b (n), r (n), aij double precision rmax do 10 i = 1, n r (i) = -b (i) 10 continue do 30 j = 1,n do 20 p = Ap (j) + 1, Ap (j+1) i = Ai (p) + 1 aij = A (p) r (i) = r (i) + aij * x (j) 20 continue 30 continue rmax = 0 do 40 i = 1, n rmax = max (rmax, abs (r (i))) 40 continue print *, 'norm (A*x-b): ', rmax return end SuiteSparse/UMFPACK/Demo/umfpack_zl_demo.out0000644001170100242450000015633210711433210017613 0ustar davisfac UMFPACK V5.2 (Nov 1, 2007) demo: _zl_ version UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: UMFPACK is available under alternate licenses, contact T. Davis for details. Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK V5.2.0 (Nov 1, 2007): OK UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double complex Int (generic integer) defined as: UF_long 0: print level: 5 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 8 pointer: 8 double: 8 Entry: 16 (in bytes) b: dense vector, n = 5. 0 : (8 + 1i) 1 : (45 - 5i) 2 : (-3 - 2i) 3 : (3 + 0i) 4 : (19 + 2.2i) dense vector OK A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 0 : 0 0 (2 + 1i) 1 : 4 4 (1 + 0.4i) 2 : 1 0 (3 + 0.1i) 3 : 1 2 (4 + 0.2i) 4 : 2 1 (-1 - 1i) 5 : 2 2 (-3 - 0.2i) 6 : 0 1 (3 + 0i) 7 : 1 4 (6 + 6i) 8 : 2 3 (2 + 3i) 9 : 3 2 (1 + 0i) 10 : 4 1 (4 + 0.3i) 11 : 4 2 (2 + 0.3i) triplet-form matrix OK A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (3 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (3 + 0i) row 2 : (-1 - 1i) row 4 : (4 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (4 + 0.2i) row 2 : (-3 - 0.2i) row 3 : (1 + 0i) row 4 : (2 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (2 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (6 + 6i) row 4 : (1 + 0.4i) column-form matrix OK Symbolic factorization of A: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 74 (MBytes): 0.0 estimated peak size (Units): 1301 (MBytes): 0.0 estimated final size (Units): 15 (MBytes): 0.0 symbolic factorization memory usage (Units): 138 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Numeric factorization of A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 74 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.34629e-01 max abs. value on diagonal of U: 1.77313e+00 reciprocal condition number estimate: 7.59e-02 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.166667) 1 : (0.0518135) 2 : (0.0980392) 3 : (1) 4 : (0.125) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.207254 + 0.0103627i) row 3 : (0.25 + 0.0375i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.379275 - 0.174093i) column 3: length 1. row 4 : (3.00161 + 1.2864i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.5 + 0.0375i) row 2: length 1. col 4 : (0.5 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.294118 - 0.0196078i) col 4 : (-0.0980392 - 0.0980392i) diagonal of U: dense vector, n = 5. 0 : (0.196078 + 0.294118i) 1 : (1 + 0i) 2 : (0.333333 + 0.166667i) 3 : (0.125 + 0.05i) 4 : (-1.6422 - 0.668715i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 74 69 93% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 79 75 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1463 1454 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.77e+00 estimate of reciprocal of condition number: 7.59e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.02800e+03 iterative refinement steps taken: 1 iterative refinement steps attempted: 1 sparse backward error omega1: 5.28e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.06200e+03 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK x (solution of Ax=b): dense vector, n = 5. 0 : (0.121188 - 0.561001i) 1 : (2.39887 + 0.666938i) 2 : (3 + 0i) 3 : (1.57395 - 1.52801i) 4 : (2.3876 - 3.04245i) dense vector OK maxnorm of residual: 1.77636e-15 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK determinant: (-1.7814+ (2.3784)i) * 10^(2) x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 0 : (0.121188 - 0.561001i) 1 : (2.39887 + 0.666938i) 2 : (3 + 0i) 3 : (1.57395 - 1.52801i) 4 : (2.3876 - 3.04245i) dense vector OK maxnorm of residual: 1.77636e-14 UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 74 69 93% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 79 75 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1463 1454 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.77e+00 estimate of reciprocal of condition number: 7.59e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.82e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of A'x=b): dense vector, n = 5. 0 : (3.39246 + 0.13257i) 1 : (0.31463 + 1.38626i) 2 : (0.461538 + 0.692308i) 3 : (-20.9089 - 1.55801i) 4 : (9.04015 - 0.613724i) dense vector OK maxnorm of residual: 4.52416e-15 changing A (1,4) to zero modified A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (3 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (3 + 0i) row 2 : (-1 - 1i) row 4 : (4 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (4 + 0.2i) row 2 : (-3 - 0.2i) row 3 : (1 + 0i) row 4 : (2 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (2 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (0 + 0i) row 4 : (1 + 0.4i) column-form matrix OK Numeric factorization of modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.02000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 73 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 1 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 17 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.34629e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.35e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.166667) 1 : (0.136986) 2 : (0.0980392) 3 : (1) 4 : (0.125) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.547945 + 0.0273973i) row 3 : (0.25 + 0.0375i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (1.00274 - 0.460274i) column 3: length 0. Start of Lchain. column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.5 + 0.0375i) row 2: length 1. col 4 : (0.5 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.294118 - 0.0196078i) col 4 : (-0.0980392 - 0.0980392i) diagonal of U: dense vector, n = 5. 0 : (0.196078 + 0.294118i) 1 : (1 + 0i) 2 : (0.333333 + 0.166667i) 3 : (0.125 + 0.05i) 4 : (-0.50137 + 0.230137i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.02000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 74 69 93% peak size (Units) 1301 1292 99% final size (Units) 15 12 80% Numeric final size (Units) 79 74 94% Numeric final size (MBytes) 0.0 0.0 94% peak memory usage (Units) 1463 1454 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 1.70000e+01 25% nz in L (incl diagonal) 10 8 80% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 12 80% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.35e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 8 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 5.15000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 6.01e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.32000e+02 x (with modified A): dense vector, n = 5. 0 : (10.9256 - 2.23085i) 1 : (-5.36071 - 1.82131i) 2 : (3 + 0i) 3 : (-1.60191 - 1.88814i) 4 : (32.7361 - 2.90097i) dense vector OK maxnorm of residual: 4.66294e-15 changing real part of A (0,0) from 2 to 2 changing real part of A (1,0) from 3 to 2 changing real part of A (0,1) from 3 to 13 changing real part of A (2,1) from -1 to 7 changing real part of A (4,1) from 4 to 10 changing real part of A (1,2) from 4 to 23 changing real part of A (2,2) from -3 to 15 changing real part of A (3,2) from 1 to 18 changing real part of A (4,2) from 2 to 18 changing real part of A (2,3) from 2 to 30 changing real part of A (1,4) from 0 to 39 changing real part of A (4,4) from 1 to 37 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (2 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (13 + 0i) row 2 : (7 - 1i) row 4 : (10 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (23 + 0.2i) row 2 : (15 - 0.2i) row 3 : (18 + 0i) row 4 : (18 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (30 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (39 + 0i) row 4 : (37 + 0.4i) column-form matrix OK Saving symbolic object: Freeing symbolic object: Loading symbolic object: Done loading symbolic object Numeric factorization of completely modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.60000e+01 maximum sum (abs (rows of A)): 6.60000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 74 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.39754e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.40e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.0625) 1 : (0.0155521) 2 : (0.0177936) 3 : (0.0555556) 4 : (0.0151515) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.357698 + 0.00311042i) row 3 : (0.272727 + 0.00454545i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.204044 - 0.0895801i) column 3: length 1. row 4 : (1.0818 - 0.0116951i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.151515 + 0.00454545i) row 2: length 1. col 4 : (0.8125 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (0.266904 - 0.00355872i) col 4 : (0.124555 - 0.0177936i) diagonal of U: dense vector, n = 5. 0 : (0.533808 + 0.0533808i) 1 : (1 + 0i) 2 : (0.125 + 0.0625i) 3 : (0.560606 + 0.00606061i) 4 : (-0.329747 + 0.0696386i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.60000e+01 maximum sum (abs (rows of A)): 6.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 74 69 93% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 79 75 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1463 1454 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.40e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.40e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 5.23000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.05e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.57000e+02 x (with completely modified A): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 9.10383e-15 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 - 1i) row 1 : (13 + 0i) column 1: start: 2 end: 4 entries: 3 row 0 : (2 - 0.1i) row 2 : (23 - 0.2i) row 4 : (39 + 0i) column 2: start: 5 end: 7 entries: 3 row 1 : (7 + 1i) row 2 : (15 + 0.2i) row 3 : (30 - 3i) column 3: start: 8 end: 8 entries: 1 row 2 : (18 + 0i) column 4: start: 9 end: 11 entries: 3 row 1 : (10 - 0.3i) row 2 : (18 - 0.3i) row 4 : (37 - 0.4i) column-form matrix OK Symbolic factorization of C: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 75 (MBytes): 0.0 estimated peak size (Units): 1302 (MBytes): 0.0 estimated final size (Units): 16 (MBytes): 0.0 symbolic factorization memory usage (Units): 138 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Get the contents of the Symbolic object for C: (compare with umfpack_zl_report_symbolic output, above) From the Symbolic object, C is of dimension 5-by-5 with nz = 12, number of fronts = 1, number of frontal matrix chains = 1 Pivot columns in each front, and parent of each front: Front 0: parent front: -1 number of pivot cols: 3 0-th pivot column is column 3 in original matrix 1-th pivot column is column 2 in original matrix 2-th pivot column is column 0 in original matrix Note that the column ordering, above, will be refined in the numeric factorization below. The assignment of pivot columns to frontal matrices will always remain unchanged. Total number of pivot columns in frontal matrices: 3 Frontal matrix chains: Frontal matrices 0 to 0 are factorized in a single working array of size 3-by-3 Numeric factorization of C: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 75 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1293 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 5 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.40964e-01 max abs. value on diagonal of U: 9.13625e-01 reciprocal condition number estimate: 2.64e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.196078) 1 : (0.0319489) 2 : (0.0133869) 3 : (0.030303) 4 : (0.013089) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 1. row 4 : (0.240091 + 0.0591529i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.847284 + 0.423642i) column 3: length 1. row 4 : (0.659838 - 0.0126577i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.510471 + 0i) row 2: length 1. col 4 : (0.392157 - 0.0196078i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 3. col 1 : (0.200803 + 0.00267738i) col 3 : (0.240964 - 0.00401606i) col 4 : (0.307898 - 0.00267738i) diagonal of U: dense vector, n = 5. 0 : (0.240964 + 0i) 1 : (0.909091 - 0.0909091i) 2 : (0.392157 - 0.196078i) 3 : (0.484293 - 0.0052356i) 4 : (-0.677403 - 0.143059i) dense vector OK Numeric object: OK L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. row 0: start: 0 end: 0 entries: 1 column 0 : (1 + 0i) row 1: start: 1 end: 1 entries: 1 column 1 : (1 + 0i) row 2: start: 2 end: 2 entries: 1 column 2 : (1 + 0i) row 3: start: 3 end: 3 entries: 1 column 3 : (1 + 0i) row 4: start: 4 end: 7 entries: 4 column 1 : (0.240091 + 0.0591529i) column 2 : (0.847284 + 0.423642i) column 3 : (0.659838 - 0.0126577i) column 4 : (1 + 0i) row-form matrix OK U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. column 0: start: 0 end: 0 entries: 1 row 0 : (0.240964 + 0i) column 1: start: 1 end: 2 entries: 2 row 0 : (0.200803 + 0.00267738i) row 1 : (0.909091 - 0.0909091i) column 2: start: 3 end: 3 entries: 1 row 2 : (0.392157 - 0.196078i) column 3: start: 4 end: 5 entries: 2 row 0 : (0.240964 - 0.00401606i) row 3 : (0.484293 - 0.0052356i) column 4: start: 6 end: 9 entries: 4 row 0 : (0.307898 - 0.00267738i) row 2 : (0.392157 - 0.0196078i) row 3 : (0.510471 + 0i) row 4 : (-0.677403 - 0.143059i) column-form matrix OK P: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Scale factors: row i of A is to be multiplied by the ith scale factor 0: 0.196078 1: 0.0319489 2: 0.0133869 3: 0.030303 4: 0.013089 Converting L to triplet form, and printing it: L, in triplet form: triplet-form matrix, n_row = 5, n_col = 5 nz = 8. 0 : 0 0 (1 + 0i) 1 : 1 1 (1 + 0i) 2 : 2 2 (1 + 0i) 3 : 3 3 (1 + 0i) 4 : 4 1 (0.240091 + 0.0591529i) 5 : 4 2 (0.847284 + 0.423642i) 6 : 4 3 (0.659838 - 0.0126577i) 7 : 4 4 (1 + 0i) triplet-form matrix OK Saving numeric object: Freeing numeric object: Loading numeric object: Done loading numeric object UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 75 70 93% peak size (Units) 1302 1293 99% final size (Units) 16 14 88% Numeric final size (Units) 80 76 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1464 1455 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.41e-01 max abs. value on diagonal of U: 9.14e-01 estimate of reciprocal of condition number: 2.64e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 9.42e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 4.88498e-15 Solving C'x=b again, using umfpack_zl_wsolve instead: UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: UF_long BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 16-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 138 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 41 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 75 70 93% peak size (Units) 1302 1293 99% final size (Units) 16 14 88% Numeric final size (Units) 80 76 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1464 1455 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.41e-01 max abs. value on diagonal of U: 9.14e-01 estimate of reciprocal of condition number: 2.64e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 9.42e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 4.88498e-15 umfpack_zl_demo complete. Total time: 0.00 seconds (CPU time), 0.01 seconds (wallclock time) SuiteSparse/UMFPACK/Demo/umfpack_zl_demo.sed0000644001170100242450000000021610425655501017557 0ustar davisfac/::/d 1,$s/_xx_/_zl_/g 1,$s/Int/UF_long/g 1,$s/WSIZE/10/ /define ABS/ { s/ABS/ABS(x,z) ((x) >= 0 ? (x) : -(x)) + ((z) >= 0 ? (z) : -(z))/ } SuiteSparse/UMFPACK/Demo/simple_compile0000755001170100242450000000707410425665454016673 0ustar davisfac#!/bin/csh # This one-line command compiles all of UMFPACK and the double/int demo. # It forms a useful prototype for Microsoft Visual Studio, which does not # have the flexibility of Unix/Linux "make". The latter can be configured # to compile one file multiple times (as required by UMFPACK). Here, # that requirement is solved with a single file, umf_multicompile.c. # # No BLAS is used here. You should modify this to add your BLAS. # Otherwise your performance will be low. cc -DDINT -DNBLAS -I../../UFconfig \ -I../Include -I../Source -I../../AMD/Include -I../../AMD/Source \ umfpack_di_demo.c \ ../Source/umf_multicompile.c \ ../Source/umfpack_global.c \ ../Source/umf_ltsolve.c \ ../Source/umf_utsolve.c \ ../Source/umf_triplet.c \ ../Source/umf_assemble.c \ ../Source/umf_store_lu.c \ ../Source/umfpack_solve.c \ ../../AMD/Source/amd_1.c \ ../../AMD/Source/amd_2.c \ ../../AMD/Source/amd_aat.c \ ../../AMD/Source/amd_control.c \ ../../AMD/Source/amd_defaults.c \ ../../AMD/Source/amd_global.c \ ../../AMD/Source/amd_dump.c \ ../../AMD/Source/amd_info.c \ ../../AMD/Source/amd_order.c \ ../../AMD/Source/amd_post_tree.c \ ../../AMD/Source/amd_postorder.c \ ../../AMD/Source/amd_preprocess.c \ ../../AMD/Source/amd_valid.c \ ../Source/umf_2by2.c \ ../Source/umf_analyze.c \ ../Source/umf_apply_order.c \ ../Source/umf_blas3_update.c \ ../Source/umf_build_tuples.c \ ../Source/umf_colamd.c \ ../Source/umf_create_element.c \ ../Source/umf_dump.c \ ../Source/umf_extend_front.c \ ../Source/umf_free.c \ ../Source/umf_fsize.c \ ../Source/umf_garbage_collection.c \ ../Source/umf_get_memory.c \ ../Source/umf_grow_front.c \ ../Source/umf_init_front.c \ ../Source/umf_is_permutation.c \ ../Source/umf_kernel.c \ ../Source/umf_kernel_init.c \ ../Source/umf_kernel_wrapup.c \ ../Source/umf_local_search.c \ ../Source/umf_lsolve.c \ ../Source/umf_malloc.c \ ../Source/umf_mem_alloc_element.c \ ../Source/umf_mem_alloc_head_block.c \ ../Source/umf_mem_alloc_tail_block.c \ ../Source/umf_mem_free_tail_block.c \ ../Source/umf_mem_init_memoryspace.c \ ../Source/umf_realloc.c \ ../Source/umf_report_perm.c \ ../Source/umf_report_vector.c \ ../Source/umf_row_search.c \ ../Source/umf_scale.c \ ../Source/umf_scale_column.c \ ../Source/umf_set_stats.c \ ../Source/umf_singletons.c \ ../Source/umf_solve.c \ ../Source/umf_start_front.c \ ../Source/umf_symbolic_usage.c \ ../Source/umf_transpose.c \ ../Source/umf_tuple_lengths.c \ ../Source/umf_usolve.c \ ../Source/umf_valid_numeric.c \ ../Source/umf_valid_symbolic.c \ ../Source/umfpack_col_to_triplet.c \ ../Source/umfpack_defaults.c \ ../Source/umfpack_free_numeric.c \ ../Source/umfpack_free_symbolic.c \ ../Source/umfpack_get_determinant.c \ ../Source/umfpack_get_lunz.c \ ../Source/umfpack_get_numeric.c \ ../Source/umfpack_get_symbolic.c \ ../Source/umfpack_load_numeric.c \ ../Source/umfpack_load_symbolic.c \ ../Source/umfpack_numeric.c \ ../Source/umfpack_qsymbolic.c \ ../Source/umfpack_report_control.c \ ../Source/umfpack_report_info.c \ ../Source/umfpack_report_matrix.c \ ../Source/umfpack_report_numeric.c \ ../Source/umfpack_report_perm.c \ ../Source/umfpack_report_status.c \ ../Source/umfpack_report_symbolic.c \ ../Source/umfpack_report_triplet.c \ ../Source/umfpack_report_vector.c \ ../Source/umfpack_save_numeric.c \ ../Source/umfpack_save_symbolic.c \ ../Source/umfpack_scale.c \ ../Source/umfpack_symbolic.c \ ../Source/umfpack_tictoc.c \ ../Source/umfpack_timer.c \ ../Source/umfpack_transpose.c \ ../Source/umfpack_triplet_to_col.c \ -lm # now run the demo ./a.out SuiteSparse/UMFPACK/Demo/umf4.c0000644001170100242450000004162310617161004014742 0ustar davisfac/* ========================================================================== */ /* === umf4 ================================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Demo program for UMFPACK. Reads in a triplet-form matrix in the * directory tmp/A, whose size and # of nonzeros are in the file tmp/Asize. * Then calls UMFPACK to analyze, factor, and solve the system. * * Syntax: * * umf4 default "auto" strategy, 1-norm row scaling * umf4 a default "auto" strategy, 1-norm row scaling * umf4 u unsymmetric strategy, 1-norm row scaling * umf4 s symmetric strategy, 1-norm row scaling * umf4 2 2-by-2 strategy, maxnorm row scaling * umf4 A default "auto" strategy, maxnorm row scaling * umf4 U unsymmetric strategy, maxnorm row scaling * umf4 S symmetric strategy, maxnorm row scaling * umf4 T 2-by-2 strategy , maxnorm row scaling * * To test a matrix in the Harwell/Boeing format, do the following: * * readhb < HB/arc130.rua > tmp/A * readhb_size < HB/arc130.rua > tmp/Asize * umf4 * * The above options do not drop any nonzero entry in L or U. To compute an * incomplete factorization, you can add a second argument to give the drop * tolerance. Entries less than or equal to the drop tolerance are then * removed from L and U during factorization, unless dropping those entries * does not save any memory space. For example: * * umf4 a 1e-6 default "auto" strategy, 1-norm row scaling, * drop tolerance of 1e-6. * * Note that adding a drop tolerance can lead to an apparent (but not real) * increase in peak memory usage. This is illustrated in the arc130.rua * matrix. With a drop tolerance, garbage collection happens to be avoided * for this matrix. During garbage collection, both internal and external * fragmentation in the memory space is removed. Peak memory usage includes * all internal memory fragmentation, even though this can be removed via * garbage collection. * * Control parameters can also be set in the optional tmp/control.umf4 file. * The right-hand-side can be provided in the optional tmp/b file. The solution * is written to tmp/x, and the output statistics are written to tmp/info.umf4. * * After the matrix is factorized, solved, and the LU factors deallocated, * this program then test the AMD ordering routine. This call to AMD is NOT * part of the UMFPACK analysis, factorize, or solve steps. It is just a * separate test of the AMD ordering routine. If the matrix is unsymmetric, * AMD orders the pattern of A+A'. */ #include #include #include #include "umfpack.h" #include "amd.h" #define SMAX 256 #define ABS(x) ((x) >= 0 ? (x) : -(x)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define XTRUE(i,n) (1.0 + ((double) i) / ((double) n)) #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif /* -------------------------------------------------------------------------- */ /* err: compute the relative error, ||x-xtrue||/||xtrue|| */ /* -------------------------------------------------------------------------- */ static double err ( int n, double x [ ] ) { int i ; double enorm, e, abse, absxtrue, xnorm ; enorm = 0 ; xnorm = 0 ; for (i = 0 ; i < n ; i++) { if (isnan (x [i])) { enorm = x [i] ; break ; } e = x [i] - XTRUE (i,n) ; abse = ABS (e) ; enorm = MAX (enorm, abse) ; } for (i = 0 ; i < n ; i++) { /* XTRUE is positive, but do this in case XTRUE is redefined */ absxtrue = ABS (XTRUE (i,n)) ; xnorm = MAX (xnorm, absxtrue) ; } if (xnorm == 0) { xnorm = 1 ; } return (enorm / xnorm) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the relative residual, ||Ax-b||/||b|| or ||A'x-b||/||b|| */ /* -------------------------------------------------------------------------- */ static double resid ( int n, int Ap [ ], int Ai [ ], double Ax [ ], double x [ ], double r [ ], double b [ ], int transpose ) { int i, j, p ; double rnorm, absr, absb, bnorm ; for (i = 0 ; i < n ; i++) { r [i] = 0 ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [j] += Ax [p] * x [i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; } } } for (i = 0 ; i < n ; i++) { r [i] -= b [i] ; } rnorm = 0. ; bnorm = 0. ; for (i = 0 ; i < n ; i++) { if (isnan (r [i])) { rnorm = r [i] ; break ; } absr = ABS (r [i]) ; rnorm = MAX (rnorm, absr) ; } for (i = 0 ; i < n ; i++) { if (isnan (b [i])) { bnorm = b [i] ; break ; } absb = ABS (b [i]) ; bnorm = MAX (bnorm, absb) ; } if (bnorm == 0) { bnorm = 1 ; } return (rnorm / bnorm) ; } /* -------------------------------------------------------------------------- */ /* Atimesx: compute y = A*x or A'*x, where x (i) = 1 + i/n */ /* -------------------------------------------------------------------------- */ static void Atimesx ( int n, int Ap [ ], int Ai [ ], double Ax [ ], double y [ ], int transpose ) { int i, j, p ; for (i = 0 ; i < n ; i++) { y [i] = 0 ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; y [j] += Ax [p] * XTRUE (i,n) ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; y [i] += Ax [p] * XTRUE (j,n) ; } } } } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { int i, j, k, n, nz, *Ap, *Ai, *Ti, *Tj, status, *Pamd, nrow, ncol, rhs ; double *Ax, *b, *x, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], aij, *Tx, *r, amd_Control [AMD_CONTROL], amd_Info [AMD_INFO], tamd [2], stats [2], droptol ; void *Symbolic, *Numeric ; FILE *f, *f2 ; char s [SMAX] ; /* ---------------------------------------------------------------------- */ /* set controls */ /* ---------------------------------------------------------------------- */ printf ("\n===========================================================\n" "=== UMFPACK v%d.%d.%d ========================================\n" "===========================================================\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_SUBSUB_VERSION) ; umfpack_di_defaults (Control) ; Control [UMFPACK_PRL] = 3 ; Control [UMFPACK_BLOCK_SIZE] = 32 ; f = fopen ("tmp/control.umf4", "r") ; if (f != (FILE *) NULL) { printf ("Reading control file tmp/control.umf4\n") ; for (i = 0 ; i < UMFPACK_CONTROL ; i++) { fscanf (f, "%lg\n", & Control [i]) ; } fclose (f) ; } if (argc > 1) { char *s = argv [1] ; /* get the strategy */ if (s [0] == 'u') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC ; } else if (s [0] == 'a') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO ; } else if (s [0] == 's') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC ; } else if (s [0] == '2') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_2BY2 ; } else if (s [0] == 'U') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC ; Control [UMFPACK_SCALE] = UMFPACK_SCALE_MAX ; } else if (s [0] == 'A') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO ; Control [UMFPACK_SCALE] = UMFPACK_SCALE_MAX ; } else if (s [0] == 'S') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC ; Control [UMFPACK_SCALE] = UMFPACK_SCALE_MAX ; } else if (s [0] == 'T') { Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_2BY2 ; Control [UMFPACK_SCALE] = UMFPACK_SCALE_MAX ; } else { printf ("unrecognized strategy: %s\n", argv [1]) ; } if (s [1] == 'n') { /* no aggressive absorption */ Control [UMFPACK_AGGRESSIVE] = FALSE ; } } if (argc > 2) { /* get the drop tolerance */ sscanf (argv [2], "%lg", &droptol) ; printf ("droptol %g\n", droptol) ; Control [UMFPACK_DROPTOL] = droptol ; } umfpack_di_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* open the matrix file (tmp/A) */ /* ---------------------------------------------------------------------- */ printf ("File: tmp/A\n") ; f = fopen ("tmp/A", "r") ; if (!f) { printf ("Unable to open file\n") ; exit (1) ; } /* ---------------------------------------------------------------------- */ /* get n and nz */ /* ---------------------------------------------------------------------- */ printf ("File: tmp/Asize\n") ; f2 = fopen ("tmp/Asize", "r") ; if (f2) { fscanf (f2, "%d %d %d\n", &nrow, &ncol, &nz) ; fclose (f2) ; } else { nrow = 1 ; ncol = 1 ; } nz = 0 ; while (fgets (s, SMAX, f) != (char *) NULL) { sscanf (s, "%d %d %lg", &i, &j, &aij) ; #ifdef ZERO_BASED /* matrix is zero based */ i++ ; j++ ; #endif nrow = MAX (nrow, i) ; ncol = MAX (ncol, j) ; nz++ ; } fclose (f) ; n = MAX (nrow, ncol) ; printf ("n %d nrow %d ncol %d nz %d\n", n, nrow, ncol, nz) ; /* ---------------------------------------------------------------------- */ /* allocate space for the input triplet form */ /* ---------------------------------------------------------------------- */ Ti = (int *) malloc (nz * sizeof (int)) ; Tj = (int *) malloc (nz * sizeof (int)) ; Tx = (double *) malloc (nz * sizeof (double)) ; if (!Ti || !Tj || !Tx) { printf ("out of memory for input matrix\n") ; exit (1) ; } /* ---------------------------------------------------------------------- */ /* read in the triplet form */ /* ---------------------------------------------------------------------- */ f2 = fopen ("tmp/A", "r") ; if (!f2) { printf ("Unable to open file\n") ; exit (1) ; } k = 0 ; while (fgets (s, SMAX, f2) != (char *) NULL) { sscanf (s, "%d %d %lg", &i, &j, &aij) ; #ifndef ZERO_BASED i-- ; /* convert to 0-based */ j-- ; #endif if (k >= nz) { printf ("Error! Matrix size is wrong\n") ; exit (1) ; } Ti [k] = i ; Tj [k] = j ; Tx [k] = aij ; k++ ; } fclose (f2) ; (void) umfpack_di_report_triplet (nrow, ncol, nz, Ti, Tj, Tx, Control) ; /* ---------------------------------------------------------------------- */ /* convert to column form */ /* ---------------------------------------------------------------------- */ /* convert to column form */ Ap = (int *) malloc ((n+1) * sizeof (int)) ; Ai = (int *) malloc (nz * sizeof (int)) ; Ax = (double *) malloc (nz * sizeof (double)) ; b = (double *) malloc (n * sizeof (double)) ; r = (double *) malloc (n * sizeof (double)) ; x = (double *) malloc (n * sizeof (double)) ; if (!Ap || !Ai || !Ax || !b || !r) { printf ("out of memory") ; exit (1) ; } umfpack_tic (stats) ; status = umfpack_di_triplet_to_col (nrow, ncol, nz, Ti, Tj, Tx, Ap, Ai, Ax, (int *) NULL) ; umfpack_toc (stats) ; printf ("triplet-to-col time: wall %g cpu %g\n", stats [0], stats [1]) ; if (status != UMFPACK_OK) { umfpack_di_report_status (Control, status) ; printf ("umfpack_di_triplet_to_col failed") ; exit (1) ; } /* print the column-form of A */ (void) umfpack_di_report_matrix (nrow, ncol, Ap, Ai, Ax, 1, Control) ; /* b = A * xtrue */ rhs = FALSE ; if (nrow == ncol) { f = fopen ("tmp/b", "r") ; if (f != (FILE *) NULL) { printf ("Reading tmp/b\n") ; rhs = TRUE ; for (i = 0 ; i < n ; i++) { fscanf (f, "%lg\n", &b [i]) ; } fclose (f) ; } else { Atimesx (n, Ap, Ai, Ax, b, FALSE) ; } } /* ---------------------------------------------------------------------- */ /* free the triplet form */ /* ---------------------------------------------------------------------- */ free (Ti) ; free (Tj) ; free (Tx) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_di_symbolic (nrow, ncol, Ap, Ai, Ax, &Symbolic, Control, Info) ; umfpack_di_report_info (Control, Info) ; if (status != UMFPACK_OK) { umfpack_di_report_status (Control, status) ; printf ("umfpack_di_symbolic failed") ; exit (1) ; } /* print the symbolic factorization */ (void) umfpack_di_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info); if (status < UMFPACK_OK) { umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; fprintf (stderr, "umfpack_di_numeric failed: %d\n", status) ; printf ("umfpack_di_numeric failed\n") ; exit (1) ; } /* print the numeric factorization */ (void) umfpack_di_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ if (nrow == ncol && status == UMFPACK_OK) { status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, Control, Info) ; umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; if (status < UMFPACK_OK) { printf ("umfpack_di_solve failed\n") ; exit (1) ; } (void) umfpack_di_report_vector (n, x, Control) ; printf ("relative maxnorm of residual, ||Ax-b||/||b||: %g\n", resid (n, Ap, Ai, Ax, x, r, b, FALSE)) ; if (!rhs) { printf ("relative maxnorm of error, ||x-xtrue||/||xtrue||: %g\n\n", err (n, x)) ; } f = fopen ("tmp/x", "w") ; if (f != (FILE *) NULL) { printf ("Writing tmp/x\n") ; for (i = 0 ; i < n ; i++) { fprintf (f, "%30.20e\n", x [i]) ; } fclose (f) ; } else { printf ("Unable to write output x!\n") ; exit (1) ; } f = fopen ("tmp/info.umf4", "w") ; if (f != (FILE *) NULL) { printf ("Writing tmp/info.umf4\n") ; for (i = 0 ; i < UMFPACK_INFO ; i++) { fprintf (f, "%30.20e\n", Info [i]) ; } fclose (f) ; } else { printf ("Unable to write output info!\n") ; exit (1) ; } } else { /* don't solve, just report the results */ umfpack_di_report_info (Control, Info) ; umfpack_di_report_status (Control, status) ; } /* ---------------------------------------------------------------------- */ /* free the Symbolic and Numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_di_free_symbolic (&Symbolic) ; umfpack_di_free_numeric (&Numeric) ; printf ("umf4 done, strategy: %g\n", Control [UMFPACK_STRATEGY]) ; /* ---------------------------------------------------------------------- */ /* test just AMD ordering (not part of UMFPACK, but a separate test) */ /* ---------------------------------------------------------------------- */ /* first make the matrix square */ if (ncol < n) { for (j = ncol+1 ; j <= n ; j++) { Ap [j] = Ap [ncol] ; } } printf ( "\n\n===========================================================\n" "=== AMD ===================================================\n" "===========================================================\n") ; printf ("\n\n------- Now trying the AMD ordering. This not part of\n" "the UMFPACK analysis or factorization, above, but a separate\n" "test of just the AMD ordering routine.\n") ; Pamd = (int *) malloc (n * sizeof (int)) ; if (!Pamd) { printf ("out of memory\n") ; exit (1) ; } amd_defaults (amd_Control) ; amd_control (amd_Control) ; umfpack_tic (tamd) ; status = amd_order (n, Ap, Ai, Pamd, amd_Control, amd_Info) ; umfpack_toc (tamd) ; printf ("AMD ordering time: cpu %10.2f wall %10.2f\n", tamd [1], tamd [0]) ; if (status != AMD_OK) { printf ("amd failed: %d\n", status) ; exit (1) ; } amd_info (amd_Info) ; free (Pamd) ; printf ("AMD test done\n") ; return (0) ; } SuiteSparse/UMFPACK/Demo/umf4hb.out0000644001170100242450000001430710711433323015641 0ustar davisfac Matrix key: WEST0067 UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 2 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) symbolic analysis: status: 0. time: 0.00E+00 (sec) estimates (upper bound) for numeric LU: size of LU: 0.02 (MB) memory needed: 0.06 (MB) flop count: 0.14E+05 nnz (L): 542. nnz (U): 902. numeric factorization: status: 0. time: 0.00E+00 actual numeric LU statistics: size of LU: 0.01 (MB) memory needed: 0.04 (MB) flop count: 0.25E+04 nnz (L): 323. nnz (U): 339. UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 67 number of columns in matrix A: 67 entries in matrix A: 294 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 1 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S not square or diagonal not preserved symbolic factorization defragmentations: 1 symbolic memory usage (Units): 1639 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 252 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 6.59006e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 1711 1577 92% peak size (Units) 6115 3581 59% final size (Units) 1628 682 42% Numeric final size (Units) 2108 1129 54% Numeric final size (MBytes) 0.0 0.0 54% peak memory usage (Units) 7476 4942 66% peak memory usage (MBytes) 0.1 0.0 66% numeric factorization flops 1.41920e+04 2.50100e+03 18% nz in L (incl diagonal) 542 323 60% nz in U (incl diagonal) 902 339 38% nz in L+U (incl diagonal) 1377 595 43% largest front (# entries) 483 80 17% largest # rows in front 21 10 48% largest # columns in front 23 11 48% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 323 nz in U (incl diagonal), if none dropped 339 number of small entries dropped 0 nonzeros on diagonal of U: 67 min abs. value on diagonal of U: 2.74e-02 max abs. value on diagonal of U: 2.28e+00 estimate of reciprocal of condition number: 1.20e-02 indices in compressed pattern: 263 numerical values stored in Numeric object: 599 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+03 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 3.69100e+03 norm (A*x-b): 0. norm (A*x-b): 0. norm (A*x-b): 0. SuiteSparse/UMFPACK/Demo/umf4hb64.f0000644001170100242450000002771110172176362015444 0ustar davisfacc======================================================================= c== umf4hb ============================================================= c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c umf4hb64: c read a sparse matrix in the Harwell/Boeing format, factorizes c it, and solves Ax=b. Also saves and loads the factors to/from a c file. Saving to a file is not required, it's just here to c demonstrate how to use this feature of UMFPACK. This program c only works on square RUA-type matrices. c c This is HIGHLY non-portable. It may not work with your C and c FORTRAN compilers. See umf4_f77wrapper.c for more details. c c usage (for example): c c in a Unix shell: c umf4hb64 < HB/arc130.rua integer*8 $ nzmax, nmax parameter (nzmax = 5000000, nmax = 160000) integer*8 $ Ap (nmax), Ai (nzmax), n, nz, totcrd, ptrcrd, i, j, p, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, nzrhs, nel, $ numeric, symbolic, status, sys, filenum character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 double precision Ax (nzmax), x (nmax), b (nmax), aij, xj, $ r (nmax), control (20), info (90) character rhstyp*3 c ---------------------------------------------------------------- c read the Harwell/Boeing matrix c ---------------------------------------------------------------- read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp, nrhs, nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) print *, 'Matrix key: ', key n = nrow if (type .ne. 'RUA' .or. nrow .ne. ncol) then print *, 'Error: can only handle square RUA matrices' stop endif if (n .ge. nmax .or. nz .gt. nzmax) then print *, ' Matrix too big!' stop endif c read the matrix (1-based) read (5, ptrfmt, err = 998) (Ap (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Ai (p), p = 1, nz) read (5, valfmt, err = 998) (Ax (p), p = 1, nz) c ---------------------------------------------------------------- c create the right-hand-side, assume x (i) = 1 + i/n c ---------------------------------------------------------------- do 30 i = 1,n b (i) = 0 30 continue c b = A*x do 50 j = 1,n xj = j xj = 1 + xj / n do 40 p = Ap (j), Ap (j+1)-1 i = Ai (p) aij = Ax (p) b (i) = b (i) + aij * xj 40 continue 50 continue c ---------------------------------------------------------------- c convert from 1-based to 0-based c ---------------------------------------------------------------- do 60 j = 1, n+1 Ap (j) = Ap (j) - 1 60 continue do 70 p = 1, nz Ai (p) = Ai (p) - 1 70 continue c ---------------------------------------------------------------- c factor the matrix and save to a file c ---------------------------------------------------------------- c set default parameters call umf4def (control) c print control parameters. set control (1) to 1 to print c error messages only control (1) = 2 call umf4pcon (control) c pre-order and symbolic analysis call umf4sym (n, n, Ap, Ai, Ax, symbolic, control, info) c print statistics computed so far c call umf4pinf (control, info) could also be done. print 80, info (1), info (16), $ (info (21) * info (4)) / 2**20, $ (info (22) * info (4)) / 2**20, $ info (23), info (24), info (25) 80 format ('symbolic analysis:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, ' (sec)'/, $ ' estimates (upper bound) for numeric LU:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4sym error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4sym: ', info (1) stop endif c numeric factorization call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) c print statistics for the numeric factorization c call umf4pinf (control, info) could also be done. print 90, info (1), info (66), $ (info (41) * info (4)) / 2**20, $ (info (42) * info (4)) / 2**20, $ info (43), info (44), info (45) 90 format ('numeric factorization:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, /, $ ' actual numeric LU statistics:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4num error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4num: ', info (1) stop endif c save the symbolic analysis to the file s0.umf c note that this is not needed until another matrix is c factorized, below. filenum = 0 call umf4ssym (symbolic, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4ssym: ', status stop endif c save the LU factors to the file n0.umf call umf4snum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4snum: ', status stop endif c free the symbolic analysis call umf4fsym (symbolic) c free the numeric factorization call umf4fnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c ---------------------------------------------------------------- c load the LU factors back in, and solve the system c ---------------------------------------------------------------- c At this point the program could terminate and load the LU C factors (numeric) from the n0.umf file, and solve the c system (see below). Note that the symbolic object is not c required. c load the numeric factorization back in (filename: n0.umf) call umf4lnum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4lnum: ', status stop endif c solve Ax=b, without iterative refinement sys = 0 call umf4sol (sys, x, b, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c free the numeric factorization call umf4fnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c print final statistics call umf4pinf (control, info) c print the residual. x (i) should be 1 + i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) c ---------------------------------------------------------------- c load the symbolic analysis back in, and factorize a new matrix c ---------------------------------------------------------------- c Again, the program could terminate here, recreate the matrix, c and refactorize. Note that umf4sym is not called. c load the symbolic factorization back in (filename: s0.umf) call umf4lsym (symbolic, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4lsym: ', status stop endif c arbitrarily change the values of the matrix but not the pattern do 100 p = 1, nz Ax (p) = Ax (p) + 3.14159 / 100.0 100 continue c numeric factorization of the modified matrix call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4num: ', info (1) stop endif c free the symbolic analysis call umf4fsym (symbolic) c create a new right-hand-side, assume x (i) = 7 - i/n do 110 i = 1,n b (i) = 0 110 continue c b = A*x, with the modified matrix A (note that A is now 0-based) do 130 j = 1,n xj = j xj = 7 - xj / n do 120 p = Ap (j) + 1, Ap (j+1) i = Ai (p) + 1 aij = Ax (p) b (i) = b (i) + aij * xj 120 continue 130 continue c ---------------------------------------------------------------- c solve Ax=b, with iterative refinement c ---------------------------------------------------------------- sys = 0 call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4solr: ', info (1) stop endif c print the residual. x (i) should be 7 - i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) c ---------------------------------------------------------------- c solve Ax=b, without iterative refinement, broken into steps c ---------------------------------------------------------------- c the factorization is PAQ=LU, PRAQ=LU, or P(R\A)Q=LU. c x = R*b (or x=R\b, or x=b, as appropriate) call umf4scal (x, b, numeric, status) if (status .lt. 0) then print *, 'Error occurred in umf4scal: ', status stop endif c solve P'Lr=x for r (using r as workspace) sys = 3 call umf4sol (sys, r, x, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c solve UQ'x=r for x sys = 9 call umf4sol (sys, x, r, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c free the numeric factorization call umf4fnum (numeric) c print the residual. x (i) should be 7 - i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) stop 998 print *, 'Read error: Harwell/Boeing matrix' stop end c======================================================================= c== resid ============================================================== c======================================================================= c Compute the residual, r = Ax-b, its max-norm, and print the max-norm C Note that A is zero-based. subroutine resid (n, nz, Ap, Ai, Ax, x, b, r) integer*8 $ n, nz, Ap (n+1), Ai (n), j, i, p double precision Ax (nz), x (n), b (n), r (n), rmax, aij do 10 i = 1, n r (i) = -b (i) 10 continue do 30 j = 1,n do 20 p = Ap (j) + 1, Ap (j+1) i = Ai (p) + 1 aij = Ax (p) r (i) = r (i) + aij * x (j) 20 continue 30 continue rmax = 0 do 40 i = 1, n rmax = max (rmax, r (i)) 40 continue print *, 'norm (A*x-b): ', rmax return end SuiteSparse/UMFPACK/Demo/umfpack_di_demo.out0000644001170100242450000015252210711433150017562 0ustar davisfac UMFPACK V5.2 (Nov 1, 2007) demo: _di_ version UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: UMFPACK is available under alternate licenses, contact T. Davis for details. Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK V5.2.0 (Nov 1, 2007): OK UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 5 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) b: dense vector, n = 5. 0 : (8) 1 : (45) 2 : (-3) 3 : (3) 4 : (19) dense vector OK A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 0 : 0 0 (2) 1 : 4 4 (1) 2 : 1 0 (3) 3 : 1 2 (4) 4 : 2 1 (-1) 5 : 2 2 (-3) 6 : 0 1 (3) 7 : 1 4 (6) 8 : 2 3 (2) 9 : 3 2 (1) 10 : 4 1 (4) 11 : 4 2 (2) triplet-form matrix OK A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (3) column 1: start: 2 end: 4 entries: 3 row 0 : (3) row 2 : (-1) row 4 : (4) column 2: start: 5 end: 8 entries: 4 row 1 : (4) row 2 : (-3) row 3 : (1) row 4 : (2) column 3: start: 9 end: 9 entries: 1 row 2 : (2) column 4: start: 10 end: 11 entries: 2 row 1 : (6) row 4 : (1) column-form matrix OK Symbolic factorization of A: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 80 (MBytes): 0.0 estimated peak size (Units): 1301 (MBytes): 0.0 estimated final size (Units): 15 (MBytes): 0.0 symbolic factorization memory usage (Units): 151 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Numeric factorization of A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 87 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.42857e-01 max abs. value on diagonal of U: 2.19231e+00 reciprocal condition number estimate: 6.52e-02 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.2) 1 : (0.0769231) 2 : (0.166667) 3 : (1) 4 : (0.142857) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.307692) row 3 : (0.285714) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.576923) column 3: length 1. row 4 : (3.23077) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.571429) row 2: length 1. col 4 : (0.6) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.5) col 4 : (-0.166667) diagonal of U: dense vector, n = 5. 0 : (0.333333) 1 : (1) 2 : (0.4) 3 : (0.142857) 4 : (-2.19231) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 80 70 88% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 92 88 96% Numeric final size (MBytes) 0.0 0.0 96% peak memory usage (Units) 1487 1478 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.43e-01 max abs. value on diagonal of U: 2.19e+00 estimate of reciprocal of condition number: 6.52e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 1.18e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.25000e+02 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK x (solution of Ax=b): dense vector, n = 5. 0 : (1) 1 : (2) 2 : (3) 3 : (4) 4 : (5) dense vector OK maxnorm of residual: 1.06581e-14 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK determinant: (1.14) * 10^(2) x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 0 : (1) 1 : (2) 2 : (3) 3 : (4) 4 : (5) dense vector OK maxnorm of residual: 1.06581e-14 UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.30000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 80 70 88% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 92 88 96% Numeric final size (MBytes) 0.0 0.0 96% peak memory usage (Units) 1487 1478 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.43e-01 max abs. value on diagonal of U: 2.19e+00 estimate of reciprocal of condition number: 6.52e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.64e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of A'x=b): dense vector, n = 5. 0 : (1.81579) 1 : (1.45614) 2 : (1.5) 3 : (-24.8509) 4 : (10.2632) dense vector OK maxnorm of residual: 7.10543e-15 changing A (1,4) to zero modified A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (3) column 1: start: 2 end: 4 entries: 3 row 0 : (3) row 2 : (-1) row 4 : (4) column 2: start: 5 end: 8 entries: 4 row 1 : (4) row 2 : (-3) row 3 : (1) row 4 : (2) column 3: start: 9 end: 9 entries: 1 row 2 : (2) column 4: start: 10 end: 11 entries: 2 row 1 : (0) row 4 : (1) column-form matrix OK Numeric factorization of modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 7.00000e+00 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 86 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 3 number of entries stored in U (excl diag): 1 factorization floating-point operations: 4 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.50000e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.50e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.2) 1 : (0.142857) 2 : (0.166667) 3 : (1) 4 : (0.142857) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 1 3 : 4 4 : 0 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 1 4 : 4 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 2 : (0.571429) row 3 : (0.285714) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.933333) column 3: length 1. row 4 : (1.05) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.142857) row 2: length 0. End of Uchain. row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.5) col 3 : (-0.166667) diagonal of U: dense vector, n = 5. 0 : (0.333333) 1 : (1) 2 : (0.428571) 3 : (0.571429) 4 : (-0.15) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 7.00000e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 80 70 88% peak size (Units) 1301 1292 99% final size (Units) 15 12 80% Numeric final size (Units) 92 87 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 1487 1478 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 4.00000e+00 31% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 8 80% nz in L+U (incl diagonal) 15 12 80% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 8 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.50e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.50e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 8 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.17000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.89e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.21000e+02 x (with modified A): dense vector, n = 5. 0 : (11) 1 : (-4.66667) 2 : (3) 3 : (0.666667) 4 : (31.6667) dense vector OK maxnorm of residual: 7.10543e-15 changing A (0,0) from 2 to 2 changing A (1,0) from 3 to 2 changing A (0,1) from 3 to 13 changing A (2,1) from -1 to 7 changing A (4,1) from 4 to 10 changing A (1,2) from 4 to 23 changing A (2,2) from -3 to 15 changing A (3,2) from 1 to 18 changing A (4,2) from 2 to 18 changing A (2,3) from 2 to 30 changing A (1,4) from 0 to 39 changing A (4,4) from 1 to 37 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (2) column 1: start: 2 end: 4 entries: 3 row 0 : (13) row 2 : (7) row 4 : (10) column 2: start: 5 end: 8 entries: 4 row 1 : (23) row 2 : (15) row 3 : (18) row 4 : (18) column 3: start: 9 end: 9 entries: 1 row 2 : (30) column 4: start: 10 end: 11 entries: 2 row 1 : (39) row 4 : (37) column-form matrix OK Saving symbolic object: Freeing symbolic object: Loading symbolic object: Done loading symbolic object Numeric factorization of completely modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.50000e+01 maximum sum (abs (rows of A)): 6.50000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 87 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1292 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.33333e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.33e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.0666667) 1 : (0.015625) 2 : (0.0192308) 3 : (0.0555556) 4 : (0.0153846) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.359375) row 3 : (0.276923) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.234375) column 3: length 1. row 4 : (1.07052) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.153846) row 2: length 1. col 4 : (0.866667) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (0.288462) col 4 : (0.134615) diagonal of U: dense vector, n = 5. 0 : (0.576923) 1 : (1) 2 : (0.133333) 3 : (0.569231) 4 : (-0.367821) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.50000e+01 maximum sum (abs (rows of A)): 6.50000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 80 70 88% peak size (Units) 1301 1292 99% final size (Units) 15 13 87% Numeric final size (Units) 92 88 96% Numeric final size (MBytes) 0.0 0.0 96% peak memory usage (Units) 1487 1478 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.33e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.33e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.19000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 1.04e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.25000e+02 x (with completely modified A): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2) row 1 : (13) column 1: start: 2 end: 4 entries: 3 row 0 : (2) row 2 : (23) row 4 : (39) column 2: start: 5 end: 7 entries: 3 row 1 : (7) row 2 : (15) row 3 : (30) column 3: start: 8 end: 8 entries: 1 row 2 : (18) column 4: start: 9 end: 11 entries: 3 row 1 : (10) row 2 : (18) row 4 : (37) column-form matrix OK Symbolic factorization of C: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 81 (MBytes): 0.0 estimated peak size (Units): 1302 (MBytes): 0.0 estimated final size (Units): 16 (MBytes): 0.0 symbolic factorization memory usage (Units): 151 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Get the contents of the Symbolic object for C: (compare with umfpack_di_report_symbolic output, above) From the Symbolic object, C is of dimension 5-by-5 with nz = 12, number of fronts = 1, number of frontal matrix chains = 1 Pivot columns in each front, and parent of each front: Front 0: parent front: -1 number of pivot cols: 3 0-th pivot column is column 3 in original matrix 1-th pivot column is column 2 in original matrix 2-th pivot column is column 0 in original matrix Note that the column ordering, above, will be refined in the numeric factorization below. The assignment of pivot columns to frontal matrices will always remain unchanged. Total number of pivot columns in frontal matrices: 3 Frontal matrix chains: Frontal matrices 0 to 0 are factorized in a single working array of size 3-by-3 Numeric factorization of C: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 88 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 1293 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 5 number of entries stored in U (excl diag): 2 factorization floating-point operations: 6 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43243e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 2.43e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.25) 1 : (0.0333333) 2 : (0.0135135) 3 : (0.0333333) 4 : (0.0131579) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 1. row 4 : (0.233333) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.866667) column 3: length 1. row 4 : (0.684685) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.513158) row 2: length 1. col 4 : (0.5) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 3. col 1 : (0.202703) col 3 : (0.243243) col 4 : (0.310811) diagonal of U: dense vector, n = 5. 0 : (0.243243) 1 : (1) 2 : (0.5) 3 : (0.486842) 4 : (-0.784685) dense vector OK Numeric object: OK L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. row 0: start: 0 end: 0 entries: 1 column 0 : (1) row 1: start: 1 end: 1 entries: 1 column 1 : (1) row 2: start: 2 end: 2 entries: 1 column 2 : (1) row 3: start: 3 end: 3 entries: 1 column 3 : (1) row 4: start: 4 end: 7 entries: 4 column 1 : (0.233333) column 2 : (0.866667) column 3 : (0.684685) column 4 : (1) row-form matrix OK U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. column 0: start: 0 end: 0 entries: 1 row 0 : (0.243243) column 1: start: 1 end: 2 entries: 2 row 0 : (0.202703) row 1 : (1) column 2: start: 3 end: 3 entries: 1 row 2 : (0.5) column 3: start: 4 end: 5 entries: 2 row 0 : (0.243243) row 3 : (0.486842) column 4: start: 6 end: 9 entries: 4 row 0 : (0.310811) row 2 : (0.5) row 3 : (0.513158) row 4 : (-0.784685) column-form matrix OK P: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Scale factors: row i of A is to be multiplied by the ith scale factor 0: 0.25 1: 0.0333333 2: 0.0135135 3: 0.0333333 4: 0.0131579 Converting L to triplet form, and printing it: L, in triplet form: triplet-form matrix, n_row = 5, n_col = 5 nz = 8. 0 : 0 0 (1) 1 : 1 1 (1) 2 : 2 2 (1) 3 : 3 3 (1) 4 : 4 1 (0.233333) 5 : 4 2 (0.866667) 6 : 4 3 (0.684685) 7 : 4 4 (1) triplet-form matrix OK Saving numeric object: Freeing numeric object: Loading numeric object: Done loading numeric object UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 81 71 88% peak size (Units) 1302 1293 99% final size (Units) 16 14 88% Numeric final size (Units) 93 89 96% Numeric final size (MBytes) 0.0 0.0 96% peak memory usage (Units) 1488 1479 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.43e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.07e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 Solving C'x=b again, using umfpack_di_wsolve instead: UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 7.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 81 71 88% peak size (Units) 1302 1293 99% final size (Units) 16 14 88% Numeric final size (Units) 93 89 96% Numeric final size (MBytes) 0.0 0.0 96% peak memory usage (Units) 1488 1479 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 1.30000e+01 6.00000e+00 46% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.43e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.43e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.11000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.07e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.17000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (8.50124) 1 : (-0.692499) 2 : (0.166667) 3 : (-0.0217502) 4 : (0.619594) dense vector OK maxnorm of residual: 3.55271e-15 umfpack_di_demo complete. Total time: 0.00 seconds (CPU time), 0.00 seconds (wallclock time) SuiteSparse/UMFPACK/Demo/umfpack_di_demo.sed0000644001170100242450000000123210006260704017515 0ustar davisfac/::/d 1,$s/_xx_/_di_/g 1,$s/Int/int/g 1,$s/WSIZE/5/ 1,$s/%ld/%d/g /define ABS/ { s/ABS/ABS(x) ((x) >= 0 ? (x) : -(x))/ } /, rz \[i\]/ { s/, rz \[i\]// } /, Avalz/ { s/, Avalz// } /, rz/ { s/, rz// } /, bz/ { s/, bz// } /, xz/ { s/, xz// } /, Lz/ { s/, Lz// } /, Uz/ { s/, Uz// } /, Dz/ { s/, Dz// } /, Az/ { s/, Az// } /, Cz, TRUE/ { s/, Cz, TRUE// } /, Cz/ { s/, Cz// } /, Rbz/ { s/, Rbz// } /, yz/ { s/, yz// } / || !Lz/ { s/ || !Lz// } / || !Uz/ { s/ || !Uz// } / || !Dz/ { s/ || !Dz// } / || !Az/ { s/ || !Az// } / || !Cz/ { s/ || !Cz// } /rz/d /Rbz/d /yz/d /Avalz/d /Az/d /Cz/d /bz/d /xz/d /Lz/d /Uz/d /Dz/d /complex/d SuiteSparse/UMFPACK/Demo/umfpack_zl_demo.c0000644001170100242450000006777310617501641017251 0ustar davisfac/* ========================================================================== */ /* === umfpack_zl_demo ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* A demo of UMFPACK: umfpack_zl_* version. First, factor and solve a 5-by-5 system, Ax=b, using default parameters. Then solve A'x=b using the factors of A. Modify one entry (A (1,4) = 0, where the row and column indices range from 0 to 4. The pattern of A has not changed (it has explicitly zero entry), so a reanalysis with umfpack_zl_symbolic does not need to be done. Refactorize (with umfpack_zl_numeric), and solve Ax=b. Note that the pivot ordering has changed. Next, change all of the entries in A, but not the pattern. Finally, compute C = A', and do the symbolic and numeric factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b twice; the solution is the same as the solution to Ax=b. A note about zero-sized arrays: UMFPACK uses many user-provided arrays of size n (order of the matrix), and of size nz (the number of nonzeros in a matrix). n cannot be zero; UMFPACK does not handle zero-dimensioned arrays. However, nz can be zero. If you attempt to malloc an array of size nz = 0, however, malloc will return a null pointer which UMFPACK will report as a "missing argument." Thus, nz1 in this code is set to MAX (nz,1), and similarly for lnz and unz. Lnz can never be zero, however, since L is always unit diagonal. */ /* -------------------------------------------------------------------------- */ /* definitions */ /* -------------------------------------------------------------------------- */ #include #include #include "umfpack.h" /* use a cheap approximate absolute value for complex numbers: */ #define ABS(x,z) ((x) >= 0 ? (x) : -(x)) + ((z) >= 0 ? (z) : -(z)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ /* triplet form of the matrix. The triplets can be in any order. */ /* -------------------------------------------------------------------------- */ static UF_long n = 5, nz = 12 ; static UF_long Arow [ ] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ; static UF_long Acol [ ] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ; static double Aval [ ] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ; static double Avalz[ ] = {1., .4, .1, .2, -1., -.2, 0., 6., 3., 0., .3, .3} ; static double b [ ] = {8., 45., -3., 3., 19.}, x [5], r [5] ; static double bz[ ] = {1., -5., -2., 0., 2.2}, xz[5], rz[5] ; /* Avalz, bz: imaginary part of A and b */ /* -------------------------------------------------------------------------- */ /* error: print a message and exit */ /* -------------------------------------------------------------------------- */ static void error ( char *message ) { printf ("\n\n====== error: %s =====\n\n", message) ; exit (1) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the residual, r = Ax-b or r = A'x=b and return maxnorm (r) */ /* A' is the complex conjugate transpose, not the array transpose */ /* -------------------------------------------------------------------------- */ static double resid ( UF_long transpose, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ] , double Az [ ] ) { UF_long i, j, p ; double norm ; for (i = 0 ; i < n ; i++) { r [i] = -b [i] ; rz[i] = -bz[i] ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* complex: r(j) += conj (Aij) * x (i) */ r [j] += Ax [p] * x [i] ; r [j] += Az [p] * xz[i] ; rz[j] -= Az [p] * x [i] ; rz[j] += Ax [p] * xz[i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; r [i] -= Az [p] * xz[j] ; rz[i] += Az [p] * x [j] ; rz[i] += Ax [p] * xz[j] ; } } } norm = 0. ; for (i = 0 ; i < n ; i++) { norm = MAX (ABS (r [i], rz [i]), norm) ; } return (norm) ; } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Cx, *Lx, *Ux, *W, t [2], *Dx, rnorm, *Rb, *y, *Rs ; double *Az, *Lz, *Uz, *Dz, *Cz, *Rbz, *yz ; UF_long *Ap, *Ai, *Cp, *Ci, row, col, p, lnz, unz, nr, nc, *Lp, *Li, *Ui, *Up, *P, *Q, *Lj, i, j, k, anz, nfr, nchains, *Qinit, fnpiv, lnz1, unz1, nz1, status, *Front_npivcol, *Front_parent, *Chain_start, *Wi, *Pinit, n1, *Chain_maxrows, *Chain_maxcols, *Front_1strow, *Front_leftmostdesc, nzud, do_recip ; void *Symbolic, *Numeric ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ umfpack_tic (t) ; printf ("\nUMFPACK V%d.%d (%s) demo: _zl_ version\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_DATE) ; /* get the default control parameters */ umfpack_zl_defaults (Control) ; /* change the default print level for this demo */ /* (otherwise, nothing will print) */ Control [UMFPACK_PRL] = 6 ; /* print the license agreement */ umfpack_zl_report_status (Control, UMFPACK_OK) ; Control [UMFPACK_PRL] = 5 ; /* print the control parameters */ umfpack_zl_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* print A and b, and convert A to column-form */ /* ---------------------------------------------------------------------- */ /* print the right-hand-side */ printf ("\nb: ") ; (void) umfpack_zl_report_vector (n, b, bz, Control) ; /* print the triplet form of the matrix */ printf ("\nA: ") ; (void) umfpack_zl_report_triplet (n, n, nz, Arow, Acol, Aval, Avalz, Control) ; /* convert to column form */ nz1 = MAX (nz,1) ; /* ensure arrays are not of size zero. */ Ap = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ai = (UF_long *) malloc (nz1 * sizeof (UF_long)) ; Ax = (double *) malloc (nz1 * sizeof (double)) ; Az = (double *) malloc (nz1 * sizeof (double)) ; if (!Ap || !Ai || !Ax || !Az) { error ("out of memory") ; } status = umfpack_zl_triplet_to_col (n, n, nz, Arow, Acol, Aval, Avalz, Ap, Ai, Ax, Az, (UF_long *) NULL) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_triplet_to_col failed") ; } /* print the column-form of A */ printf ("\nA: ") ; (void) umfpack_zl_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_symbolic (n, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; if (status < 0) { umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_symbolic failed") ; } /* print the symbolic factorization */ printf ("\nSymbolic factorization of A: ") ; (void) umfpack_zl_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_numeric failed") ; } /* print the numeric factorization */ printf ("\nNumeric factorization of A: ") ; (void) umfpack_zl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; if (status < 0) { error ("umfpack_zl_solve failed") ; } printf ("\nx (solution of Ax=b): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_get_determinant (x, xz, r, Numeric, Info) ; umfpack_zl_report_status (Control, status) ; if (status < 0) { error ("umfpack_zl_get_determinant failed") ; } printf ("determinant: (%g", x [0]) ; printf ("+ (%g)i", xz [0]) ; /* complex */ printf (") * 10^(%g)\n", r [0]) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, broken down into steps */ /* ---------------------------------------------------------------------- */ /* Rb = R*b */ Rb = (double *) malloc (n * sizeof (double)) ; Rbz = (double *) malloc (n * sizeof (double)) ; y = (double *) malloc (n * sizeof (double)) ; yz = (double *) malloc (n * sizeof (double)) ; if (!Rb || !y) error ("out of memory") ; if (!Rbz || !yz) error ("out of memory") ; status = umfpack_zl_scale (Rb, Rbz, b, bz, Numeric) ; if (status < 0) error ("umfpack_zl_scale failed") ; /* solve Ly = P*(Rb) */ status = umfpack_zl_solve (UMFPACK_Pt_L, Ap, Ai, Ax, Az, y, yz, Rb, Rbz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_zl_solve failed") ; /* solve UQ'x=y */ status = umfpack_zl_solve (UMFPACK_U_Qt, Ap, Ai, Ax, Az, x, xz, y, yz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_zl_solve failed") ; printf ("\nx (solution of Ax=b, solve is split into 3 steps): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; free (Rb) ; free (Rbz) ; free (y) ; free (yz) ; /* ---------------------------------------------------------------------- */ /* solve A'x=b */ /* ---------------------------------------------------------------------- */ /* note that this is the complex conjugate transpose, A' */ status = umfpack_zl_solve (UMFPACK_At, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zl_report_info (Control, Info) ; if (status < 0) { error ("umfpack_zl_solve failed") ; } printf ("\nx (solution of A'x=b): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify one numerical value in the column-form of A */ /* ---------------------------------------------------------------------- */ /* change A (1,4), look for row index 1 in column 4. */ row = 1 ; col = 4 ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { if (row == Ai [p]) { printf ("\nchanging A (%ld,%ld) to zero\n", row, col) ; Ax [p] = 0.0 ; Az [p] = 0.0 ; break ; } } printf ("\nmodified A: ") ; (void) umfpack_zl_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ /* The pattern (Ap and Ai) hasn't changed, so the symbolic factorization */ /* doesn't have to be redone, no matter how much we change Ax. */ /* We don't need the Numeric object any more, so free it. */ umfpack_zl_free_numeric (&Numeric) ; /* Note that a memory leak would have occurred if the old Numeric */ /* had not been free'd with umfpack_zl_free_numeric above. */ status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_numeric failed") ; } printf ("\nNumeric factorization of modified A: ") ; (void) umfpack_zl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zl_report_info (Control, Info) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_solve failed") ; } printf ("\nx (with modified A): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify all of the numerical values of A, but not the pattern */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < n ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; printf ("changing ") ; /* complex: */ printf ("real part of ") ; printf ("A (%ld,%ld) from %g", row, col, Ax [p]) ; Ax [p] = Ax [p] + col*10 - row ; printf (" to %g\n", Ax [p]) ; } } printf ("\ncompletely modified A (same pattern): ") ; (void) umfpack_zl_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* save the Symbolic object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "symbolic.umf" */ printf ("\nSaving symbolic object:\n") ; status = umfpack_zl_save_symbolic (Symbolic, (char *) NULL) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_save_symbolic failed") ; } printf ("\nFreeing symbolic object:\n") ; umfpack_zl_free_symbolic (&Symbolic) ; printf ("\nLoading symbolic object:\n") ; status = umfpack_zl_load_symbolic (&Symbolic, (char *) NULL) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_load_symbolic failed") ; } printf ("\nDone loading symbolic object\n") ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_zl_free_numeric (&Numeric) ; status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_numeric failed") ; } printf ("\nNumeric factorization of completely modified A: ") ; (void) umfpack_zl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zl_report_info (Control, Info) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_solve failed") ; } printf ("\nx (with completely modified A): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free the symbolic and numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_zl_free_symbolic (&Symbolic) ; umfpack_zl_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* C = transpose of A */ /* ---------------------------------------------------------------------- */ Cp = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ci = (UF_long *) malloc (nz1 * sizeof (UF_long)) ; Cx = (double *) malloc (nz1 * sizeof (double)) ; Cz = (double *) malloc (nz1 * sizeof (double)) ; if (!Cp || !Ci || !Cx || !Cz) { error ("out of memory") ; } status = umfpack_zl_transpose (n, n, Ap, Ai, Ax, Az, (UF_long *) NULL, (UF_long *) NULL, Cp, Ci, Cx, Cz, TRUE) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_transpose failed: ") ; } printf ("\nC (transpose of A): ") ; (void) umfpack_zl_report_matrix (n, n, Cp, Ci, Cx, Cz, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_symbolic (n, n, Cp, Ci, Cx, Cz, &Symbolic, Control, Info) ; if (status < 0) { umfpack_zl_report_info (Control, Info) ; umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_symbolic failed") ; } printf ("\nSymbolic factorization of C: ") ; (void) umfpack_zl_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* copy the contents of Symbolic into user arrays print them */ /* ---------------------------------------------------------------------- */ printf ("\nGet the contents of the Symbolic object for C:\n") ; printf ("(compare with umfpack_zl_report_symbolic output, above)\n") ; Pinit = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Qinit = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_npivcol = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_1strow = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_leftmostdesc = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Front_parent = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_start = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_maxrows = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Chain_maxcols = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; if (!Pinit || !Qinit || !Front_npivcol || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Front_1strow || !Front_leftmostdesc) { error ("out of memory") ; } status = umfpack_zl_get_symbolic (&nr, &nc, &n1, &anz, &nfr, &nchains, Pinit, Qinit, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status < 0) { error ("symbolic factorization invalid") ; } printf ("From the Symbolic object, C is of dimension %ld-by-%ld\n", nr, nc); printf (" with nz = %ld, number of fronts = %ld,\n", nz, nfr) ; printf (" number of frontal matrix chains = %ld\n", nchains) ; printf ("\nPivot columns in each front, and parent of each front:\n") ; k = 0 ; for (i = 0 ; i < nfr ; i++) { fnpiv = Front_npivcol [i] ; printf (" Front %ld: parent front: %ld number of pivot cols: %ld\n", i, Front_parent [i], fnpiv) ; for (j = 0 ; j < fnpiv ; j++) { col = Qinit [k] ; printf ( " %ld-th pivot column is column %ld in original matrix\n", k, col) ; k++ ; } } printf ("\nNote that the column ordering, above, will be refined\n") ; printf ("in the numeric factorization below. The assignment of pivot\n") ; printf ("columns to frontal matrices will always remain unchanged.\n") ; printf ("\nTotal number of pivot columns in frontal matrices: %ld\n", k) ; printf ("\nFrontal matrix chains:\n") ; for (j = 0 ; j < nchains ; j++) { printf (" Frontal matrices %ld to %ld are factorized in a single\n", Chain_start [j], Chain_start [j+1] - 1) ; printf (" working array of size %ld-by-%ld\n", Chain_maxrows [j], Chain_maxcols [j]) ; } /* ---------------------------------------------------------------------- */ /* numeric factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_numeric (Cp, Ci, Cx, Cz, Symbolic, &Numeric, Control, Info) ; if (status < 0) { error ("umfpack_zl_numeric failed") ; } printf ("\nNumeric factorization of C: ") ; (void) umfpack_zl_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* extract the LU factors of C and print them */ /* ---------------------------------------------------------------------- */ if (umfpack_zl_get_lunz (&lnz, &unz, &nr, &nc, &nzud, Numeric) < 0) { error ("umfpack_zl_get_lunz failed") ; } /* ensure arrays are not of zero size */ lnz1 = MAX (lnz,1) ; unz1 = MAX (unz,1) ; Lp = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Lj = (UF_long *) malloc (lnz1 * sizeof (UF_long)) ; Lx = (double *) malloc (lnz1 * sizeof (double)) ; Lz = (double *) malloc (lnz1 * sizeof (double)) ; Up = (UF_long *) malloc ((n+1) * sizeof (UF_long)) ; Ui = (UF_long *) malloc (unz1 * sizeof (UF_long)) ; Ux = (double *) malloc (unz1 * sizeof (double)) ; Uz = (double *) malloc (unz1 * sizeof (double)) ; P = (UF_long *) malloc (n * sizeof (UF_long)) ; Q = (UF_long *) malloc (n * sizeof (UF_long)) ; Dx = (double *) NULL ; /* D vector not requested */ Dz = (double *) NULL ; Rs = (double *) malloc (n * sizeof (double)) ; if (!Lp || !Lj || !Lx || !Lz || !Up || !Ui || !Ux || !Uz || !P || !Q || !Rs) { error ("out of memory") ; } status = umfpack_zl_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; if (status < 0) { error ("umfpack_zl_get_numeric failed") ; } printf ("\nL (lower triangular factor of C): ") ; (void) umfpack_zl_report_matrix (n, n, Lp, Lj, Lx, Lz, 0, Control) ; printf ("\nU (upper triangular factor of C): ") ; (void) umfpack_zl_report_matrix (n, n, Up, Ui, Ux, Uz, 1, Control) ; printf ("\nP: ") ; (void) umfpack_zl_report_perm (n, P, Control) ; printf ("\nQ: ") ; (void) umfpack_zl_report_perm (n, Q, Control) ; printf ("\nScale factors: row i of A is to be ") ; if (do_recip) { printf ("multiplied by the ith scale factor\n") ; } else { printf ("divided by the ith scale factor\n") ; } for (i = 0 ; i < n ; i++) printf ("%ld: %g\n", i, Rs [i]) ; /* ---------------------------------------------------------------------- */ /* convert L to triplet form and print it */ /* ---------------------------------------------------------------------- */ /* Note that L is in row-form, so it is the row indices that are created */ /* by umfpack_zl_col_to_triplet. */ printf ("\nConverting L to triplet form, and printing it:\n") ; Li = (UF_long *) malloc (lnz1 * sizeof (UF_long)) ; if (!Li) { error ("out of memory") ; } if (umfpack_zl_col_to_triplet (n, Lp, Li) < 0) { error ("umfpack_zl_col_to_triplet failed") ; } printf ("\nL, in triplet form: ") ; (void) umfpack_zl_report_triplet (n, n, lnz, Li, Lj, Lx, Lz, Control) ; /* ---------------------------------------------------------------------- */ /* save the Numeric object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "numeric.umf" */ printf ("\nSaving numeric object:\n") ; status = umfpack_zl_save_numeric (Numeric, (char *) NULL) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_save_numeric failed") ; } printf ("\nFreeing numeric object:\n") ; umfpack_zl_free_numeric (&Numeric) ; printf ("\nLoading numeric object:\n") ; status = umfpack_zl_load_numeric (&Numeric, (char *) NULL) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_load_numeric failed") ; } printf ("\nDone loading numeric object\n") ; /* ---------------------------------------------------------------------- */ /* solve C'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_zl_solve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info) ; umfpack_zl_report_info (Control, Info) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_solve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* solve C'x=b again, using umfpack_zl_wsolve instead */ /* ---------------------------------------------------------------------- */ printf ("\nSolving C'x=b again, using umfpack_zl_wsolve instead:\n") ; Wi = (UF_long *) malloc (n * sizeof (UF_long)) ; W = (double *) malloc (10*n * sizeof (double)) ; if (!Wi || !W) { error ("out of memory") ; } status = umfpack_zl_wsolve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info, Wi, W) ; umfpack_zl_report_info (Control, Info) ; if (status < 0) { umfpack_zl_report_status (Control, status) ; error ("umfpack_zl_wsolve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_zl_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* This is not strictly required since the process is exiting and the */ /* system will reclaim the memory anyway. It's useful, though, just as */ /* a list of what is currently malloc'ed by this program. Plus, it's */ /* always a good habit to explicitly free whatever you malloc. */ free (Ap) ; free (Ai) ; free (Ax) ; free (Az) ; free (Cp) ; free (Ci) ; free (Cx) ; free (Cz) ; free (Pinit) ; free (Qinit) ; free (Front_npivcol) ; free (Front_1strow) ; free (Front_leftmostdesc) ; free (Front_parent) ; free (Chain_start) ; free (Chain_maxrows) ; free (Chain_maxcols) ; free (Lp) ; free (Lj) ; free (Lx) ; free (Lz) ; free (Up) ; free (Ui) ; free (Ux) ; free (Uz) ; free (P) ; free (Q) ; free (Li) ; free (Wi) ; free (W) ; umfpack_zl_free_symbolic (&Symbolic) ; umfpack_zl_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* print the total time spent in this demo */ /* ---------------------------------------------------------------------- */ umfpack_toc (t) ; printf ("\numfpack_zl_demo complete.\nTotal time: %5.2f seconds" " (CPU time), %5.2f seconds (wallclock time)\n", t [1], t [0]) ; return (0) ; } SuiteSparse/UMFPACK/Demo/umf4.out0000644001170100242450000026164210711433273015341 0ustar davisfaccc -O3 -I../Include -I../../AMD/Include -I../../UFconfig -o umf4 umf4.c ../Lib/libumfpack.a ../../AMD/Lib/libamd.a -lblas -lgfortran -lgfortranbegin -lm f77 -O -o readhb readhb.f f77 -O -o readhb_nozeros readhb_nozeros.f f77 -O -o readhb_size readhb_size.f ./readhb_nozeros < HB/can_24.psa > tmp/A ./readhb_size < HB/can_24.psa > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 24 nrow 24 ncol 24 nz 160 triplet-form matrix, n_row = 24, n_col = 24 nz = 160. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 24 n_col 24, nz = 160. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 24 number of columns in matrix A: 24 entries in matrix A: 160 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 0 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 24 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 136 nz on diagonal of matrix S: 24 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.00300e+03 est. nz in L+U (incl. diagonal): 218 est. largest front (# entries): 64 est. max nz in any column of L: 8 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 725 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 131 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 763 - - peak size (Units) 3244 - - final size (Units) 393 - - Numeric final size (Units) 598 - - Numeric final size (MBytes) 0.0 - - peak memory usage (Units) 3840 - - peak memory usage (MBytes) 0.0 - - numeric factorization flops 2.37900e+03 - - nz in L (incl diagonal) 149 - - nz in U (incl diagonal) 208 - - nz in L+U (incl diagonal) 333 - - largest front (# entries) 182 - - largest # rows in front 13 - - largest # columns in front 14 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 24 number of columns in matrix A: 24 entries in matrix A: 160 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 0 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 24 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 136 nz on diagonal of matrix S: 24 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.00300e+03 est. nz in L+U (incl. diagonal): 218 est. largest front (# entries): 64 est. max nz in any column of L: 8 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 725 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 131 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 4.00000e+00 maximum sum (abs (rows of A)): 9.00000e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 763 711 93% peak size (Units) 3244 2709 84% final size (Units) 393 133 34% Numeric final size (Units) 598 326 55% Numeric final size (MBytes) 0.0 0.0 55% peak memory usage (Units) 3840 3305 86% peak memory usage (MBytes) 0.0 0.0 86% numeric factorization flops 2.37900e+03 1.57000e+02 7% nz in L (incl diagonal) 149 53 36% nz in U (incl diagonal) 208 73 35% nz in L+U (incl diagonal) 333 102 31% largest front (# entries) 182 78 43% largest # rows in front 13 7 54% largest # columns in front 14 13 93% initial allocation ratio used: 1.2 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 10 nz in L (incl diagonal), if none dropped 53 nz in U (incl diagonal), if none dropped 73 number of small entries dropped 0 nonzeros on diagonal of U: 24 min abs. value on diagonal of U: 1.11e-01 max abs. value on diagonal of U: 2.50e-01 estimate of reciprocal of condition number: 4.44e-01 indices in compressed pattern: 76 numerical values stored in Numeric object: 102 numeric factorization defragmentations: 0 numeric factorization reallocations: 0 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.06000e+03 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.86e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.21700e+03 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 24. OK relative maxnorm of residual, ||Ax-b||/||b||: 2.58379e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92754e-15 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 AMD test done ./readhb_nozeros < HB/west0067.rua > tmp/A ./readhb_size < HB/west0067.rua > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 67 nrow 67 ncol 67 nz 294 triplet-form matrix, n_row = 67, n_col = 67 nz = 294. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 67 n_col 67, nz = 294. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 67 number of columns in matrix A: 67 entries in matrix A: 294 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 1 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S not square or diagonal not preserved symbolic factorization defragmentations: 1 symbolic memory usage (Units): 1639 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 252 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 1711 - - peak size (Units) 6115 - - final size (Units) 1628 - - Numeric final size (Units) 2108 - - Numeric final size (MBytes) 0.0 - - peak memory usage (Units) 7476 - - peak memory usage (MBytes) 0.1 - - numeric factorization flops 1.41920e+04 - - nz in L (incl diagonal) 542 - - nz in U (incl diagonal) 902 - - nz in L+U (incl diagonal) 1377 - - largest front (# entries) 483 - - largest # rows in front 21 - - largest # columns in front 23 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 67 number of columns in matrix A: 67 entries in matrix A: 294 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 1 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S not square or diagonal not preserved symbolic factorization defragmentations: 1 symbolic memory usage (Units): 1639 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 252 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.01 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 6.59006e+00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 1711 1577 92% peak size (Units) 6115 3581 59% final size (Units) 1628 682 42% Numeric final size (Units) 2108 1129 54% Numeric final size (MBytes) 0.0 0.0 54% peak memory usage (Units) 7476 4942 66% peak memory usage (MBytes) 0.1 0.0 66% numeric factorization flops 1.41920e+04 2.50100e+03 18% nz in L (incl diagonal) 542 323 60% nz in U (incl diagonal) 902 339 38% nz in L+U (incl diagonal) 1377 595 43% largest front (# entries) 483 80 17% largest # rows in front 21 10 48% largest # columns in front 23 11 48% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 323 nz in U (incl diagonal), if none dropped 339 number of small entries dropped 0 nonzeros on diagonal of U: 67 min abs. value on diagonal of U: 2.74e-02 max abs. value on diagonal of U: 2.28e+00 estimate of reciprocal of condition number: 1.20e-02 indices in compressed pattern: 263 numerical values stored in Numeric object: 599 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 6.16500e+03 iterative refinement steps taken: 1 iterative refinement steps attempted: 1 sparse backward error omega1: 1.32e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 8.66600e+03 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 67. OK relative maxnorm of residual, ||Ax-b||/||b||: 9.15507e-17 relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.349e-15 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 67 nz, number of nonzeros in A: 294 symmetry of A: 0.0342 number of nonzeros on diagonal: 2 nonzeros in pattern of A+A' (excl. diagonal): 574 # dense rows/columns of A+A': 0 memory used, in bytes: 5164 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 930 nonzeros in L (including diagonal): 997 # divide operations for LDL' or LU: 930 # multiply-subtract operations for LDL': 9170 # multiply-subtract operations for LU: 17410 max nz. in any column of L (incl. diagonal): 33 chol flop count for real A, sqrt counted as 1 flop: 19337 LDL' flop count for real A: 19270 LDL' flop count for complex A: 81730 LU flop count for real A (with no pivoting): 35750 LU flop count for complex A (with no pivoting): 147650 AMD test done ./readhb_nozeros < HB/fs_183_6.rua > tmp/A ./readhb_size < HB/fs_183_6.rua > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 183 nrow 183 ncol 183 nz 1000 triplet-form matrix, n_row = 183, n_col = 183 nz = 1000. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 183 n_col 183, nz = 1000. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 183 number of columns in matrix A: 183 entries in matrix A: 1000 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric 2-by-2 ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 36 submatrix S after removing zero-cost pivots: number of "dense" rows: 4 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 147 symmetry of nonzero pattern: 0.490515 nz in S+S' (excl. diagonal): 1114 nz on diagonal of matrix S: 147 fraction of nz on diagonal: 1.000000 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 7 # unmatched: 7 symmetry of P2*S: 0.490515 nz in P2*S+(P2*S)' (excl. diag.): 1114 nz on diagonal of P2*S: 147 fraction of nz on diag of P2*S: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.02930e+04 est. nz in L+U (incl. diagonal): 1625 est. largest front (# entries): 196 est. max nz in any column of L: 14 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4846 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 763 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4458 - - peak size (Units) 26277 - - final size (Units) 15717 - - Numeric final size (Units) 16951 - - Numeric final size (MBytes) 0.1 - - peak memory usage (Units) 29687 - - peak memory usage (MBytes) 0.2 - - numeric factorization flops 2.67903e+05 - - nz in L (incl diagonal) 2122 - - nz in U (incl diagonal) 9931 - - nz in L+U (incl diagonal) 11870 - - largest front (# entries) 2337 - - largest # rows in front 21 - - largest # columns in front 136 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 183 number of columns in matrix A: 183 entries in matrix A: 1000 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric 2-by-2 ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 36 submatrix S after removing zero-cost pivots: number of "dense" rows: 4 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 147 symmetry of nonzero pattern: 0.490515 nz in S+S' (excl. diagonal): 1114 nz on diagonal of matrix S: 147 fraction of nz on diagonal: 1.000000 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 7 # unmatched: 7 symmetry of P2*S: 0.490515 nz in P2*S+(P2*S)' (excl. diag.): 1114 nz on diagonal of P2*S: 147 fraction of nz on diag of P2*S: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.02930e+04 est. nz in L+U (incl. diagonal): 1625 est. largest front (# entries): 196 est. max nz in any column of L: 14 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4846 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 763 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.84689e-01 maximum sum (abs (rows of A)): 8.73139e+08 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4458 4090 92% peak size (Units) 26277 8488 32% final size (Units) 15717 1658 11% Numeric final size (Units) 16951 2801 17% Numeric final size (MBytes) 0.1 0.0 17% peak memory usage (Units) 29687 11898 40% peak memory usage (MBytes) 0.2 0.1 40% numeric factorization flops 2.67903e+05 7.82700e+03 3% nz in L (incl diagonal) 2122 838 39% nz in U (incl diagonal) 9931 804 8% nz in L+U (incl diagonal) 11870 1459 12% largest front (# entries) 2337 420 18% largest # rows in front 21 14 67% largest # columns in front 136 36 26% initial allocation ratio used: 0.265 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 3 nz in L (incl diagonal), if none dropped 838 nz in U (incl diagonal), if none dropped 804 number of small entries dropped 0 nonzeros on diagonal of U: 183 min abs. value on diagonal of U: 2.30e-09 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.30e-09 indices in compressed pattern: 550 numerical values stored in Numeric object: 1396 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 2.73290e+04 iterative refinement steps taken: 1 iterative refinement steps attempted: 2 sparse backward error omega1: 2.78e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 3.51560e+04 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 183. OK relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 9.12839e-07 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 183 nz, number of nonzeros in A: 1000 symmetry of A: 0.4431 number of nonzeros on diagonal: 183 nonzeros in pattern of A+A' (excl. diagonal): 1272 # dense rows/columns of A+A': 0 memory used, in bytes: 12692 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 882 nonzeros in L (including diagonal): 1065 # divide operations for LDL' or LU: 882 # multiply-subtract operations for LDL': 3378 # multiply-subtract operations for LU: 5874 max nz. in any column of L (incl. diagonal): 15 chol flop count for real A, sqrt counted as 1 flop: 7821 LDL' flop count for real A: 7638 LDL' flop count for complex A: 34962 LU flop count for real A (with no pivoting): 12630 LU flop count for complex A (with no pivoting): 54930 AMD test done ./readhb < HB/fs_183_6.rua > tmp/A ./readhb_size < HB/fs_183_6.rua > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 183 nrow 183 ncol 183 nz 1069 triplet-form matrix, n_row = 183, n_col = 183 nz = 1069. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 183 n_col 183, nz = 1069. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 183 number of columns in matrix A: 183 entries in matrix A: 1069 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric 2-by-2 ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 29 submatrix S after removing zero-cost pivots: number of "dense" rows: 4 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 154 symmetry of nonzero pattern: 0.446860 nz in S+S' (excl. diagonal): 1286 nz on diagonal of matrix S: 154 fraction of nz on diagonal: 1.000000 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 7 # unmatched: 7 symmetry of P2*S: 0.446860 nz in P2*S+(P2*S)' (excl. diag.): 1286 nz on diagonal of P2*S: 154 fraction of nz on diag of P2*S: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.78450e+04 est. nz in L+U (incl. diagonal): 2080 est. largest front (# entries): 400 est. max nz in any column of L: 20 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4966 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 773 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4742 - - peak size (Units) 26357 - - final size (Units) 17822 - - Numeric final size (Units) 19056 - - Numeric final size (MBytes) 0.1 - - peak memory usage (Units) 29809 - - peak memory usage (MBytes) 0.2 - - numeric factorization flops 3.51312e+05 - - nz in L (incl diagonal) 2633 - - nz in U (incl diagonal) 10968 - - nz in L+U (incl diagonal) 13418 - - largest front (# entries) 3220 - - largest # rows in front 25 - - largest # columns in front 140 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 183 number of columns in matrix A: 183 entries in matrix A: 1069 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric 2-by-2 ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 29 submatrix S after removing zero-cost pivots: number of "dense" rows: 4 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 154 symmetry of nonzero pattern: 0.446860 nz in S+S' (excl. diagonal): 1286 nz on diagonal of matrix S: 154 fraction of nz on diagonal: 1.000000 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 7 # unmatched: 7 symmetry of P2*S: 0.446860 nz in P2*S+(P2*S)' (excl. diag.): 1286 nz on diagonal of P2*S: 154 fraction of nz on diag of P2*S: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 1.78450e+04 est. nz in L+U (incl. diagonal): 2080 est. largest front (# entries): 400 est. max nz in any column of L: 20 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4966 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 773 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.84689e-01 maximum sum (abs (rows of A)): 8.73139e+08 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4742 4372 92% peak size (Units) 26357 11189 42% final size (Units) 17822 2107 12% Numeric final size (Units) 19056 3250 17% Numeric final size (MBytes) 0.1 0.0 17% peak memory usage (Units) 29809 14641 49% peak memory usage (MBytes) 0.2 0.1 49% numeric factorization flops 3.51312e+05 1.19670e+04 3% nz in L (incl diagonal) 2633 1136 43% nz in U (incl diagonal) 10968 870 8% nz in L+U (incl diagonal) 13418 1823 14% largest front (# entries) 3220 728 23% largest # rows in front 25 20 80% largest # columns in front 140 58 41% initial allocation ratio used: 0.282 # of forced updates due to frontal growth: 1 number of off-diagonal pivots: 3 nz in L (incl diagonal), if none dropped 1136 nz in U (incl diagonal), if none dropped 870 number of small entries dropped 0 nonzeros on diagonal of U: 183 min abs. value on diagonal of U: 2.30e-09 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 2.30e-09 indices in compressed pattern: 741 numerical values stored in Numeric object: 1781 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 1 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 3.04790e+04 iterative refinement steps taken: 1 iterative refinement steps attempted: 2 sparse backward error omega1: 3.97e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 4.24460e+04 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 183. OK relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.0186e-06 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 183 nz, number of nonzeros in A: 1069 symmetry of A: 0.4176 number of nonzeros on diagonal: 183 nonzeros in pattern of A+A' (excl. diagonal): 1402 # dense rows/columns of A+A': 0 memory used, in bytes: 13316 # of memory compactions: 1 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 1072 nonzeros in L (including diagonal): 1255 # divide operations for LDL' or LU: 1072 # multiply-subtract operations for LDL': 5320 # multiply-subtract operations for LU: 9568 max nz. in any column of L (incl. diagonal): 21 chol flop count for real A, sqrt counted as 1 flop: 11895 LDL' flop count for real A: 11712 LDL' flop count for complex A: 52208 LU flop count for real A (with no pivoting): 20208 LU flop count for complex A (with no pivoting): 86192 AMD test done ./readhb < HB/arc130.rua > tmp/A ./readhb_size < HB/arc130.rua > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 130 nrow 130 ncol 130 nz 1282 triplet-form matrix, n_row = 130, n_col = 130 nz = 1282. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 130 n_col 130, nz = 1282. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1282 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 6 submatrix S after removing zero-cost pivots: number of "dense" rows: 7 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 124 symmetry of nonzero pattern: 0.841193 nz in S+S' (excl. diagonal): 1204 nz on diagonal of matrix S: 124 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 8.27000e+03 est. nz in L+U (incl. diagonal): 1336 est. largest front (# entries): 324 est. max nz in any column of L: 18 number of "dense" rows/columns in S+S': 2 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4766 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 644 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4729 - - peak size (Units) 25036 - - final size (Units) 12837 - - Numeric final size (Units) 13731 - - Numeric final size (MBytes) 0.1 - - peak memory usage (Units) 27695 - - peak memory usage (MBytes) 0.2 - - numeric factorization flops 9.41610e+04 - - nz in L (incl diagonal) 1009 - - nz in U (incl diagonal) 7849 - - nz in L+U (incl diagonal) 8728 - - largest front (# entries) 2337 - - largest # rows in front 19 - - largest # columns in front 123 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1282 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 6 submatrix S after removing zero-cost pivots: number of "dense" rows: 7 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 124 symmetry of nonzero pattern: 0.841193 nz in S+S' (excl. diagonal): 1204 nz on diagonal of matrix S: 124 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 8.27000e+03 est. nz in L+U (incl. diagonal): 1336 est. largest front (# entries): 324 est. max nz in any column of L: 18 number of "dense" rows/columns in S+S': 2 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4766 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 644 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 7.94859e-01 maximum sum (abs (rows of A)): 1.08460e+06 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 4729 4451 94% peak size (Units) 25036 6477 26% final size (Units) 12837 1054 8% Numeric final size (Units) 13731 1883 14% Numeric final size (MBytes) 0.1 0.0 14% peak memory usage (Units) 27695 9136 33% peak memory usage (MBytes) 0.2 0.1 33% numeric factorization flops 9.41610e+04 4.20900e+03 4% nz in L (incl diagonal) 1009 417 41% nz in U (incl diagonal) 7849 787 10% nz in L+U (incl diagonal) 8728 1074 12% largest front (# entries) 2337 270 12% largest # rows in front 19 18 95% largest # columns in front 123 15 12% initial allocation ratio used: 0.36 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 0 nz in L (incl diagonal), if none dropped 417 nz in U (incl diagonal), if none dropped 796 number of small entries dropped 9 nonzeros on diagonal of U: 130 min abs. value on diagonal of U: 9.22e-07 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 9.22e-07 indices in compressed pattern: 79 numerical values stored in Numeric object: 977 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.80440e+04 iterative refinement steps taken: 1 iterative refinement steps attempted: 1 sparse backward error omega1: 1.06e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 2.22530e+04 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 130. OK relative maxnorm of residual, ||Ax-b||/||b||: 4.12105e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.15116e-10 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 130 nz, number of nonzeros in A: 1282 symmetry of A: 0.7587 number of nonzeros on diagonal: 130 nonzeros in pattern of A+A' (excl. diagonal): 1430 # dense rows/columns of A+A': 2 memory used, in bytes: 11544 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 756 nonzeros in L (including diagonal): 886 # divide operations for LDL' or LU: 756 # multiply-subtract operations for LDL': 2959 # multiply-subtract operations for LU: 5162 max nz. in any column of L (incl. diagonal): 18 chol flop count for real A, sqrt counted as 1 flop: 6804 LDL' flop count for real A: 6674 LDL' flop count for complex A: 30476 LU flop count for real A (with no pivoting): 11080 LU flop count for complex A (with no pivoting): 48100 AMD test done ./readhb_nozeros < HB/arc130.rua > tmp/A ./readhb_size < HB/arc130.rua > tmp/Asize ./umf4 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 130 nrow 130 ncol 130 nz 1037 triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 130 n_col 130, nz = 1037. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1037 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 54 submatrix S after removing zero-cost pivots: number of "dense" rows: 5 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 76 symmetry of nonzero pattern: 0.733224 nz in S+S' (excl. diagonal): 774 nz on diagonal of matrix S: 76 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 5.81700e+03 est. nz in L+U (incl. diagonal): 858 est. largest front (# entries): 289 est. max nz in any column of L: 17 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4118 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 534 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 3326 - - peak size (Units) 9801 - - final size (Units) 4259 - - Numeric final size (Units) 5153 - - Numeric final size (MBytes) 0.0 - - peak memory usage (Units) 12149 - - peak memory usage (MBytes) 0.1 - - numeric factorization flops 2.47640e+04 - - nz in L (incl diagonal) 606 - - nz in U (incl diagonal) 2537 - - nz in L+U (incl diagonal) 3013 - - largest front (# entries) 459 - - largest # rows in front 17 - - largest # columns in front 48 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1037 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 54 submatrix S after removing zero-cost pivots: number of "dense" rows: 5 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 76 symmetry of nonzero pattern: 0.733224 nz in S+S' (excl. diagonal): 774 nz on diagonal of matrix S: 76 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 5.81700e+03 est. nz in L+U (incl. diagonal): 858 est. largest front (# entries): 289 est. max nz in any column of L: 17 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4118 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 534 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.01 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 7.94859e-01 maximum sum (abs (rows of A)): 1.08460e+06 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 3326 3062 92% peak size (Units) 9801 6376 65% final size (Units) 4259 1141 27% Numeric final size (Units) 5153 1970 38% Numeric final size (MBytes) 0.0 0.0 38% peak memory usage (Units) 12149 8724 72% peak memory usage (MBytes) 0.1 0.1 72% numeric factorization flops 2.47640e+04 4.10700e+03 17% nz in L (incl diagonal) 606 409 67% nz in U (incl diagonal) 2537 792 31% nz in L+U (incl diagonal) 3013 1071 36% largest front (# entries) 459 240 52% largest # rows in front 17 16 94% largest # columns in front 48 15 31% initial allocation ratio used: 0.755 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 0 nz in L (incl diagonal), if none dropped 409 nz in U (incl diagonal), if none dropped 792 number of small entries dropped 0 nonzeros on diagonal of U: 130 min abs. value on diagonal of U: 9.22e-07 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 9.22e-07 indices in compressed pattern: 70 numerical values stored in Numeric object: 782 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.58270e+04 iterative refinement steps taken: 1 iterative refinement steps attempted: 1 sparse backward error omega1: 1.06e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.99340e+04 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 130. OK relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92322e-10 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 130 nz, number of nonzeros in A: 1037 symmetry of A: 0.4939 number of nonzeros on diagonal: 130 nonzeros in pattern of A+A' (excl. diagonal): 1366 # dense rows/columns of A+A': 2 memory used, in bytes: 11236 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 725 nonzeros in L (including diagonal): 855 # divide operations for LDL' or LU: 725 # multiply-subtract operations for LDL': 2742 # multiply-subtract operations for LU: 4759 max nz. in any column of L (incl. diagonal): 18 chol flop count for real A, sqrt counted as 1 flop: 6339 LDL' flop count for real A: 6209 LDL' flop count for complex A: 28461 LU flop count for real A (with no pivoting): 10243 LU flop count for complex A (with no pivoting): 44597 AMD test done ./readhb_nozeros < HB/arc130.rua > tmp/A ./readhb_size < HB/arc130.rua > tmp/Asize ./umf4 a 1e-6 =========================================================== === UMFPACK v5.2.0 ======================================== =========================================================== droptol 1e-06 UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double Int (generic integer) defined as: int 0: print level: 3 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 1e-06 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes) File: tmp/A File: tmp/Asize n 130 nrow 130 ncol 130 nz 1037 triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK triplet-to-col time: wall 0 cpu 0 column-form matrix, n_row 130 n_col 130, nz = 1037. OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1037 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 54 submatrix S after removing zero-cost pivots: number of "dense" rows: 5 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 76 symmetry of nonzero pattern: 0.733224 nz in S+S' (excl. diagonal): 774 nz on diagonal of matrix S: 76 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 5.81700e+03 est. nz in L+U (incl. diagonal): 858 est. largest front (# entries): 289 est. max nz in any column of L: 17 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4118 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 534 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 3326 - - peak size (Units) 9801 - - final size (Units) 4259 - - Numeric final size (Units) 5153 - - Numeric final size (MBytes) 0.0 - - peak memory usage (Units) 12149 - - peak memory usage (MBytes) 0.1 - - numeric factorization flops 2.47640e+04 - - nz in L (incl diagonal) 606 - - nz in U (incl diagonal) 2537 - - nz in L+U (incl diagonal) 3013 - - largest front (# entries) 459 - - largest # rows in front 17 - - largest # columns in front 48 - - Symbolic object: OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 130 number of columns in matrix A: 130 entries in matrix A: 1037 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 8 bytes strategy used: symmetric ordering used: amd on A+A' modify Q during factorization: no prefer diagonal pivoting: yes pivots with zero Markowitz cost: 54 submatrix S after removing zero-cost pivots: number of "dense" rows: 5 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 76 symmetry of nonzero pattern: 0.733224 nz in S+S' (excl. diagonal): 774 nz on diagonal of matrix S: 76 fraction of nz on diagonal: 1.000000 AMD statistics, for strict diagonal pivoting: est. flops for LU factorization: 5.81700e+03 est. nz in L+U (incl. diagonal): 858 est. largest front (# entries): 289 est. max nz in any column of L: 17 number of "dense" rows/columns in S+S': 0 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 4118 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 534 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 7.94859e-01 maximum sum (abs (rows of A)): 1.08460e+06 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 3326 2762 83% peak size (Units) 9801 5323 54% final size (Units) 4259 457 11% Numeric final size (Units) 5153 1286 25% Numeric final size (MBytes) 0.0 0.0 25% peak memory usage (Units) 12149 7671 63% peak memory usage (MBytes) 0.1 0.1 63% numeric factorization flops 2.47640e+04 4.10700e+03 17% nz in L (incl diagonal) 606 318 52% nz in U (incl diagonal) 2537 285 11% nz in L+U (incl diagonal) 3013 473 16% largest front (# entries) 459 240 52% largest # rows in front 17 16 94% largest # columns in front 48 15 31% initial allocation ratio used: 0.755 # of forced updates due to frontal growth: 0 number of off-diagonal pivots: 0 nz in L (incl diagonal), if none dropped 409 nz in U (incl diagonal), if none dropped 792 number of small entries dropped 598 nonzeros on diagonal of U: 130 min abs. value on diagonal of U: 9.22e-07 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 9.22e-07 indices in compressed pattern: 82 numerical values stored in Numeric object: 386 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 2.06060e+04 iterative refinement steps taken: 2 iterative refinement steps attempted: 2 sparse backward error omega1: 1.47e-16 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 2.47130e+04 UMFPACK V5.2.0 (Nov 1, 2007): OK dense vector, n = 130. OK relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16 relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92269e-10 Writing tmp/x Writing tmp/info.umf4 umf4 done, strategy: 0 =========================================================== === AMD =================================================== =========================================================== ------- Now trying the AMD ordering. This not part of the UMFPACK analysis or factorization, above, but a separate test of just the AMD ordering routine. AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 AMD ordering time: cpu 0.00 wall 0.00 AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 130 nz, number of nonzeros in A: 1037 symmetry of A: 0.4939 number of nonzeros on diagonal: 130 nonzeros in pattern of A+A' (excl. diagonal): 1366 # dense rows/columns of A+A': 2 memory used, in bytes: 11236 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 725 nonzeros in L (including diagonal): 855 # divide operations for LDL' or LU: 725 # multiply-subtract operations for LDL': 2742 # multiply-subtract operations for LU: 4759 max nz. in any column of L (incl. diagonal): 18 chol flop count for real A, sqrt counted as 1 flop: 6339 LDL' flop count for real A: 6209 LDL' flop count for complex A: 28461 LU flop count for real A (with no pivoting): 10243 LU flop count for complex A (with no pivoting): 44597 AMD test done SuiteSparse/UMFPACK/Demo/umf4hb.f0000644001170100242450000002767710474367401015306 0ustar davisfacc======================================================================= c== umf4hb ============================================================= c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c umf4hb: c read a sparse matrix in the Harwell/Boeing format, factorizes c it, and solves Ax=b. Also saves and loads the factors to/from a c file. Saving to a file is not required, it's just here to c demonstrate how to use this feature of UMFPACK. This program c only works on square RUA-type matrices. c c This is HIGHLY non-portable. It may not work with your C and c FORTRAN compilers. See umf4_f77wrapper.c for more details. c c usage (for example): c c in a Unix shell: c umf4hb < HB/arc130.rua integer $ nzmax, nmax parameter (nzmax = 5000000, nmax = 160000) integer $ Ap (nmax), Ai (nzmax), n, nz, totcrd, ptrcrd, i, j, p, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, nzrhs, nel, $ numeric, symbolic, status, sys, filenum character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 double precision Ax (nzmax), x (nmax), b (nmax), aij, xj, $ r (nmax), control (20), info (90) character rhstyp*3 c ---------------------------------------------------------------- c read the Harwell/Boeing matrix c ---------------------------------------------------------------- read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp, nrhs, nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) print *, 'Matrix key: ', key n = nrow if (type .ne. 'RUA' .or. nrow .ne. ncol) then print *, 'Error: can only handle square RUA matrices' stop endif if (n .ge. nmax .or. nz .gt. nzmax) then print *, ' Matrix too big!' stop endif c read the matrix (1-based) read (5, ptrfmt, err = 998) (Ap (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Ai (p), p = 1, nz) read (5, valfmt, err = 998) (Ax (p), p = 1, nz) c ---------------------------------------------------------------- c create the right-hand-side, assume x (i) = 1 + i/n c ---------------------------------------------------------------- do 30 i = 1,n b (i) = 0 30 continue c b = A*x do 50 j = 1,n xj = j xj = 1 + xj / n do 40 p = Ap (j), Ap (j+1)-1 i = Ai (p) aij = Ax (p) b (i) = b (i) + aij * xj 40 continue 50 continue c ---------------------------------------------------------------- c convert from 1-based to 0-based c ---------------------------------------------------------------- do 60 j = 1, n+1 Ap (j) = Ap (j) - 1 60 continue do 70 p = 1, nz Ai (p) = Ai (p) - 1 70 continue c ---------------------------------------------------------------- c factor the matrix and save to a file c ---------------------------------------------------------------- c set default parameters call umf4def (control) c print control parameters. set control (1) to 1 to print c error messages only control (1) = 2 call umf4pcon (control) c pre-order and symbolic analysis call umf4sym (n, n, Ap, Ai, Ax, symbolic, control, info) c print statistics computed so far c call umf4pinf (control, info) could also be done. print 80, info (1), info (16), $ (info (21) * info (4)) / 2**20, $ (info (22) * info (4)) / 2**20, $ info (23), info (24), info (25) 80 format ('symbolic analysis:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, ' (sec)'/, $ ' estimates (upper bound) for numeric LU:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4sym error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4sym: ', info (1) stop endif c numeric factorization call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) c print statistics for the numeric factorization c call umf4pinf (control, info) could also be done. print 90, info (1), info (66), $ (info (41) * info (4)) / 2**20, $ (info (42) * info (4)) / 2**20, $ info (43), info (44), info (45) 90 format ('numeric factorization:',/, $ ' status: ', f5.0, /, $ ' time: ', e10.2, /, $ ' actual numeric LU statistics:', /, $ ' size of LU: ', f10.2, ' (MB)', /, $ ' memory needed: ', f10.2, ' (MB)', /, $ ' flop count: ', e10.2, / $ ' nnz (L): ', f10.0, / $ ' nnz (U): ', f10.0) c check umf4num error condition if (info (1) .lt. 0) then print *, 'Error occurred in umf4num: ', info (1) stop endif c save the symbolic analysis to the file s0.umf c note that this is not needed until another matrix is c factorized, below. filenum = 0 call umf4ssym (symbolic, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4ssym: ', status stop endif c save the LU factors to the file n0.umf call umf4snum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4snum: ', status stop endif c free the symbolic analysis call umf4fsym (symbolic) c free the numeric factorization call umf4fnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c ---------------------------------------------------------------- c load the LU factors back in, and solve the system c ---------------------------------------------------------------- c At this point the program could terminate and load the LU C factors (numeric) from the n0.umf file, and solve the c system (see below). Note that the symbolic object is not c required. c load the numeric factorization back in (filename: n0.umf) call umf4lnum (numeric, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4lnum: ', status stop endif c solve Ax=b, without iterative refinement sys = 0 call umf4sol (sys, x, b, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c free the numeric factorization call umf4fnum (numeric) c No LU factors (symbolic or numeric) are in memory at this point. c print final statistics call umf4pinf (control, info) c print the residual. x (i) should be 1 + i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) c ---------------------------------------------------------------- c load the symbolic analysis back in, and factorize a new matrix c ---------------------------------------------------------------- c Again, the program could terminate here, recreate the matrix, c and refactorize. Note that umf4sym is not called. c load the symbolic factorization back in (filename: s0.umf) call umf4lsym (symbolic, filenum, status) if (status .lt. 0) then print *, 'Error occurred in umf4lsym: ', status stop endif c arbitrarily change the values of the matrix but not the pattern do 100 p = 1, nz Ax (p) = Ax (p) + 3.14159 / 100.0 100 continue c numeric factorization of the modified matrix call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4num: ', info (1) stop endif c free the symbolic analysis call umf4fsym (symbolic) c create a new right-hand-side, assume x (i) = 7 - i/n do 110 i = 1,n b (i) = 0 110 continue c b = A*x, with the modified matrix A (note that A is now 0-based) do 130 j = 1,n xj = j xj = 7 - xj / n do 120 p = Ap (j) + 1, Ap (j+1) i = Ai (p) + 1 aij = Ax (p) b (i) = b (i) + aij * xj 120 continue 130 continue c ---------------------------------------------------------------- c solve Ax=b, with iterative refinement c ---------------------------------------------------------------- sys = 0 call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4solr: ', info (1) stop endif c print the residual. x (i) should be 7 - i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) c ---------------------------------------------------------------- c solve Ax=b, without iterative refinement, broken into steps c ---------------------------------------------------------------- c the factorization is PAQ=LU, PRAQ=LU, or P(R\A)Q=LU. c x = R*b (or x=R\b, or x=b, as appropriate) call umf4scal (x, b, numeric, status) if (status .lt. 0) then print *, 'Error occurred in umf4scal: ', status stop endif c solve P'Lr=x for r (using r as workspace) sys = 3 call umf4sol (sys, r, x, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c solve UQ'x=r for x sys = 9 call umf4sol (sys, x, r, numeric, control, info) if (info (1) .lt. 0) then print *, 'Error occurred in umf4sol: ', info (1) stop endif c free the numeric factorization call umf4fnum (numeric) c print the residual. x (i) should be 7 - i/n call resid (n, nz, Ap, Ai, Ax, x, b, r) stop 998 print *, 'Read error: Harwell/Boeing matrix' stop end c======================================================================= c== resid ============================================================== c======================================================================= c Compute the residual, r = Ax-b, its max-norm, and print the max-norm C Note that A is zero-based. subroutine resid (n, nz, Ap, Ai, Ax, x, b, r) integer $ n, nz, Ap (n+1), Ai (n), j, i, p double precision Ax (nz), x (n), b (n), r (n), rmax, aij do 10 i = 1, n r (i) = -b (i) 10 continue do 30 j = 1,n do 20 p = Ap (j) + 1, Ap (j+1) i = Ai (p) + 1 aij = Ax (p) r (i) = r (i) + aij * x (j) 20 continue 30 continue rmax = 0 do 40 i = 1, n rmax = max (rmax, r (i)) 40 continue print *, 'norm (A*x-b): ', rmax return end SuiteSparse/UMFPACK/Demo/umfpack_zi_demo.out0000644001170100242450000015627410711433150017620 0ustar davisfac UMFPACK V5.2 (Nov 1, 2007) demo: _zi_ version UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: UMFPACK is available under alternate licenses, contact T. Davis for details. Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK V5.2.0 (Nov 1, 2007): OK UMFPACK V5.2.0 (Nov 1, 2007), Control: Matrix entry defined as: double complex Int (generic integer) defined as: int 0: print level: 5 1: dense row parameter: 0.2 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 2: dense column parameter: 0.2 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 3: pivot tolerance: 0.1 4: block size for dense matrix kernels: 32 5: strategy: 0 (auto) 6: initial allocation ratio: 0.7 7: max iterative refinement steps: 2 12: 2-by-2 pivot tolerance: 0.01 13: Q fixed during numerical factorization: 0 (auto) 14: AMD dense row/col parameter: 10 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries Only used if the AMD ordering is used. 15: diagonal pivot tolerance: 0.001 Only used if diagonal pivoting is attempted. 16: scaling: 1 (divide each row by sum of abs. values in each row) 17: frontal matrix allocation ratio: 0.5 18: drop tolerance: 0 19: AMD and COLAMD aggressive absorption: 1 (yes) The following options can only be changed at compile-time: 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 9: compiled for ANSI C 10: CPU timer is POSIX times ( ) routine. 11: compiled for normal operation (debugging disabled) computer/operating system: Linux size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 16 (in bytes) b: dense vector, n = 5. 0 : (8 + 1i) 1 : (45 - 5i) 2 : (-3 - 2i) 3 : (3 + 0i) 4 : (19 + 2.2i) dense vector OK A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 0 : 0 0 (2 + 1i) 1 : 4 4 (1 + 0.4i) 2 : 1 0 (3 + 0.1i) 3 : 1 2 (4 + 0.2i) 4 : 2 1 (-1 - 1i) 5 : 2 2 (-3 - 0.2i) 6 : 0 1 (3 + 0i) 7 : 1 4 (6 + 6i) 8 : 2 3 (2 + 3i) 9 : 3 2 (1 + 0i) 10 : 4 1 (4 + 0.3i) 11 : 4 2 (2 + 0.3i) triplet-form matrix OK A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (3 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (3 + 0i) row 2 : (-1 - 1i) row 4 : (4 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (4 + 0.2i) row 2 : (-3 - 0.2i) row 3 : (1 + 0i) row 4 : (2 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (2 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (6 + 6i) row 4 : (1 + 0.4i) column-form matrix OK Symbolic factorization of A: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 90 (MBytes): 0.0 estimated peak size (Units): 2542 (MBytes): 0.0 estimated final size (Units): 25 (MBytes): 0.0 symbolic factorization memory usage (Units): 151 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Numeric factorization of A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 106 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 2527 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.34629e-01 max abs. value on diagonal of U: 1.77313e+00 reciprocal condition number estimate: 7.59e-02 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.166667) 1 : (0.0518135) 2 : (0.0980392) 3 : (1) 4 : (0.125) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.207254 + 0.0103627i) row 3 : (0.25 + 0.0375i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.379275 - 0.174093i) column 3: length 1. row 4 : (3.00161 + 1.2864i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.5 + 0.0375i) row 2: length 1. col 4 : (0.5 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.294118 - 0.0196078i) col 4 : (-0.0980392 - 0.0980392i) diagonal of U: dense vector, n = 5. 0 : (0.196078 + 0.294118i) 1 : (1 + 0i) 2 : (0.333333 + 0.166667i) 3 : (0.125 + 0.05i) 4 : (-1.6422 - 0.668715i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 90 80 89% peak size (Units) 2542 2527 99% final size (Units) 25 21 84% Numeric final size (Units) 113 107 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 2751 2736 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.77e+00 estimate of reciprocal of condition number: 7.59e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 1.02800e+03 iterative refinement steps taken: 1 iterative refinement steps attempted: 1 sparse backward error omega1: 5.28e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 1.06200e+03 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK x (solution of Ax=b): dense vector, n = 5. 0 : (0.121188 - 0.561001i) 1 : (2.39887 + 0.666938i) 2 : (3 + 0i) 3 : (1.57395 - 1.52801i) 4 : (2.3876 - 3.04245i) dense vector OK maxnorm of residual: 1.77636e-15 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK V5.2.0 (Nov 1, 2007): OK determinant: (-1.7814+ (2.3784)i) * 10^(2) x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 0 : (0.121188 - 0.561001i) 1 : (2.39887 + 0.666938i) 2 : (3 + 0i) 3 : (1.57395 - 1.52801i) 4 : (2.3876 - 3.04245i) dense vector OK maxnorm of residual: 1.77636e-14 UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.93000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 90 80 89% peak size (Units) 2542 2527 99% final size (Units) 25 21 84% Numeric final size (Units) 113 107 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 2751 2736 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.77e+00 estimate of reciprocal of condition number: 7.59e-02 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 7.82e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of A'x=b): dense vector, n = 5. 0 : (3.39246 + 0.13257i) 1 : (0.31463 + 1.38626i) 2 : (0.461538 + 0.692308i) 3 : (-20.9089 - 1.55801i) 4 : (9.04015 - 0.613724i) dense vector OK maxnorm of residual: 4.52416e-15 changing A (1,4) to zero modified A: column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (3 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (3 + 0i) row 2 : (-1 - 1i) row 4 : (4 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (4 + 0.2i) row 2 : (-3 - 0.2i) row 3 : (1 + 0i) row 4 : (2 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (2 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (0 + 0i) row 4 : (1 + 0.4i) column-form matrix OK Numeric factorization of modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.02000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 104 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 2527 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 1 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 17 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.34629e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.35e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.166667) 1 : (0.136986) 2 : (0.0980392) 3 : (1) 4 : (0.125) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.547945 + 0.0273973i) row 3 : (0.25 + 0.0375i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (1.00274 - 0.460274i) column 3: length 0. Start of Lchain. column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.5 + 0.0375i) row 2: length 1. col 4 : (0.5 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (-0.294118 - 0.0196078i) col 4 : (-0.0980392 - 0.0980392i) diagonal of U: dense vector, n = 5. 0 : (0.196078 + 0.294118i) 1 : (1 + 0i) 2 : (0.333333 + 0.166667i) 3 : (0.125 + 0.05i) 4 : (-0.50137 + 0.230137i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.00000e+00 maximum sum (abs (rows of A)): 1.02000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 90 80 89% peak size (Units) 2542 2527 99% final size (Units) 25 19 76% Numeric final size (Units) 113 105 93% Numeric final size (MBytes) 0.0 0.0 93% peak memory usage (Units) 2751 2736 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 1.70000e+01 25% nz in L (incl diagonal) 10 8 80% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 12 80% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.35e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.35e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 8 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 5.15000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 6.01e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.32000e+02 x (with modified A): dense vector, n = 5. 0 : (10.9256 - 2.23085i) 1 : (-5.36071 - 1.82131i) 2 : (3 + 0i) 3 : (-1.60191 - 1.88814i) 4 : (32.7361 - 2.90097i) dense vector OK maxnorm of residual: 4.66294e-15 changing real part of A (0,0) from 2 to 2 changing real part of A (1,0) from 3 to 2 changing real part of A (0,1) from 3 to 13 changing real part of A (2,1) from -1 to 7 changing real part of A (4,1) from 4 to 10 changing real part of A (1,2) from 4 to 23 changing real part of A (2,2) from -3 to 15 changing real part of A (3,2) from 1 to 18 changing real part of A (4,2) from 2 to 18 changing real part of A (2,3) from 2 to 30 changing real part of A (1,4) from 0 to 39 changing real part of A (4,4) from 1 to 37 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 + 1i) row 1 : (2 + 0.1i) column 1: start: 2 end: 4 entries: 3 row 0 : (13 + 0i) row 2 : (7 - 1i) row 4 : (10 + 0.3i) column 2: start: 5 end: 8 entries: 4 row 1 : (23 + 0.2i) row 2 : (15 - 0.2i) row 3 : (18 + 0i) row 4 : (18 + 0.3i) column 3: start: 9 end: 9 entries: 1 row 2 : (30 + 3i) column 4: start: 10 end: 11 entries: 2 row 1 : (39 + 0i) row 4 : (37 + 0.4i) column-form matrix OK Saving symbolic object: Freeing symbolic object: Loading symbolic object: Done loading symbolic object Numeric factorization of completely modified A: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 1.60000e+01 maximum sum (abs (rows of A)): 6.60000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 106 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 2527 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 4 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 4 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.39754e-01 max abs. value on diagonal of U: 1.00000e+00 reciprocal condition number estimate: 1.40e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.0625) 1 : (0.0155521) 2 : (0.0177936) 3 : (0.0555556) 4 : (0.0151515) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 2. row 4 : (0.357698 + 0.00311042i) row 3 : (0.272727 + 0.00454545i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.204044 - 0.0895801i) column 3: length 1. row 4 : (1.0818 - 0.0116951i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.151515 + 0.00454545i) row 2: length 1. col 4 : (0.8125 + 0i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 2. col 1 : (0.266904 - 0.00355872i) col 4 : (0.124555 - 0.0177936i) diagonal of U: dense vector, n = 5. 0 : (0.533808 + 0.0533808i) 1 : (1 + 0i) 2 : (0.125 + 0.0625i) 3 : (0.560606 + 0.00606061i) 4 : (-0.329747 + 0.0696386i) dense vector OK Numeric object: OK UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 1.60000e+01 maximum sum (abs (rows of A)): 6.60000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 90 80 89% peak size (Units) 2542 2527 99% final size (Units) 25 21 84% Numeric final size (Units) 113 107 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 2751 2736 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 10 9 90% nz in U (incl diagonal) 10 9 90% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 9 nz in U (incl diagonal), if none dropped 9 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 1.40e-01 max abs. value on diagonal of U: 1.00e+00 estimate of reciprocal of condition number: 1.40e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 5.23000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 8.05e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.57000e+02 x (with completely modified A): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 9.10383e-15 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. column 0: start: 0 end: 1 entries: 2 row 0 : (2 - 1i) row 1 : (13 + 0i) column 1: start: 2 end: 4 entries: 3 row 0 : (2 - 0.1i) row 2 : (23 - 0.2i) row 4 : (39 + 0i) column 2: start: 5 end: 7 entries: 3 row 1 : (7 + 1i) row 2 : (15 + 0.2i) row 3 : (30 - 3i) column 3: start: 8 end: 8 entries: 1 row 2 : (18 + 0i) column 4: start: 9 end: 11 entries: 3 row 1 : (10 - 0.3i) row 2 : (18 - 0.3i) row 4 : (37 - 0.4i) column-form matrix OK Symbolic factorization of C: Symbolic object: matrix to be factorized: n_row: 5 n_col: 5 number of entries: 12 block size used for dense matrix kernels: 32 strategy used: unsymmetric ordering used: colamd on A performn column etree postorder: yes prefer diagonal pivoting (attempt P=Q): no variable-size part of Numeric object: minimum initial size (Units): 91 (MBytes): 0.0 estimated peak size (Units): 2543 (MBytes): 0.0 estimated final size (Units): 26 (MBytes): 0.0 symbolic factorization memory usage (Units): 151 (MBytes): 0.0 frontal matrices / supercolumns: number of frontal chains: 1 number of frontal matrices: 1 largest frontal matrix row dimension: 3 largest frontal matrix column dimension: 3 Frontal chain: 0. Frontal matrices 0 to 0 Largest frontal matrix in Frontal chain: 3-by-3 Front: 0 pivot cols: 3 (pivot columns 0 to 2) pivot row candidates: 2 to 4 leftmost descendant: 0 1st new candidate row : 2 parent: (none) Initial column permutation, Q1: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Initial row permutation, P1: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 1 4 : 4 permutation vector OK Symbolic object: OK Get the contents of the Symbolic object for C: (compare with umfpack_zi_report_symbolic output, above) From the Symbolic object, C is of dimension 5-by-5 with nz = 12, number of fronts = 1, number of frontal matrix chains = 1 Pivot columns in each front, and parent of each front: Front 0: parent front: -1 number of pivot cols: 3 0-th pivot column is column 3 in original matrix 1-th pivot column is column 2 in original matrix 2-th pivot column is column 0 in original matrix Note that the column ordering, above, will be refined in the numeric factorization below. The assignment of pivot columns to frontal matrices will always remain unchanged. Total number of pivot columns in frontal matrices: 3 Frontal matrix chains: Frontal matrices 0 to 0 are factorized in a single working array of size 3-by-3 Numeric factorization of C: Numeric object: n_row: 5 n_col: 5 relative pivot tolerance used: 0.1 relative symmetric pivot tolerance used: 0.001 matrix scaled: yes (divided each row by sum abs value in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 initial allocation parameter used: 0.7 frontal matrix allocation parameter used: 0.5 final total size of Numeric object (Units): 107 final total size of Numeric object (MBytes): 0.0 peak size of variable-size part (Units): 2528 peak size of variable-size part (MBytes): 0.0 largest actual frontal matrix size: 4 memory defragmentations: 1 memory reallocations: 1 costly memory reallocations: 0 entries in compressed pattern (L and U): 2 number of nonzeros in L (excl diag): 3 number of entries stored in L (excl diag): 2 number of nonzeros in U (excl diag): 5 number of entries stored in U (excl diag): 2 factorization floating-point operations: 34 number of nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.40964e-01 max abs. value on diagonal of U: 9.13625e-01 reciprocal condition number estimate: 2.64e-01 Scale factors applied via multiplication Scale factors, Rs: dense vector, n = 5. 0 : (0.196078) 1 : (0.0319489) 2 : (0.0133869) 3 : (0.030303) 4 : (0.013089) dense vector OK P: row permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: column permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK L in Numeric object, in column-oriented compressed-pattern form: Diagonal entries are all equal to 1.0 (not stored) column 0: length 0. column 1: length 1. row 4 : (0.240091 + 0.0591529i) column 2: add 1 entries. length 1. Start of Lchain. row 4 : (0.847284 + 0.423642i) column 3: length 1. row 4 : (0.659838 - 0.0126577i) column 4: length 0. Start of Lchain. U in Numeric object, in row-oriented compressed-pattern form: Diagonal is stored separately. row 4: length 0. End of Uchain. row 3: length 1. End of Uchain. col 4 : (0.510471 + 0i) row 2: length 1. col 4 : (0.392157 - 0.0196078i) row 1: length 0. End of Uchain. row 1: length 0. row 0: length 3. col 1 : (0.200803 + 0.00267738i) col 3 : (0.240964 - 0.00401606i) col 4 : (0.307898 - 0.00267738i) diagonal of U: dense vector, n = 5. 0 : (0.240964 + 0i) 1 : (0.909091 - 0.0909091i) 2 : (0.392157 - 0.196078i) 3 : (0.484293 - 0.0052356i) 4 : (-0.677403 - 0.143059i) dense vector OK Numeric object: OK L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. row 0: start: 0 end: 0 entries: 1 column 0 : (1 + 0i) row 1: start: 1 end: 1 entries: 1 column 1 : (1 + 0i) row 2: start: 2 end: 2 entries: 1 column 2 : (1 + 0i) row 3: start: 3 end: 3 entries: 1 column 3 : (1 + 0i) row 4: start: 4 end: 7 entries: 4 column 1 : (0.240091 + 0.0591529i) column 2 : (0.847284 + 0.423642i) column 3 : (0.659838 - 0.0126577i) column 4 : (1 + 0i) row-form matrix OK U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. column 0: start: 0 end: 0 entries: 1 row 0 : (0.240964 + 0i) column 1: start: 1 end: 2 entries: 2 row 0 : (0.200803 + 0.00267738i) row 1 : (0.909091 - 0.0909091i) column 2: start: 3 end: 3 entries: 1 row 2 : (0.392157 - 0.196078i) column 3: start: 4 end: 5 entries: 2 row 0 : (0.240964 - 0.00401606i) row 3 : (0.484293 - 0.0052356i) column 4: start: 6 end: 9 entries: 4 row 0 : (0.307898 - 0.00267738i) row 2 : (0.392157 - 0.0196078i) row 3 : (0.510471 + 0i) row 4 : (-0.677403 - 0.143059i) column-form matrix OK P: permutation vector, n = 5. 0 : 2 1 : 3 2 : 0 3 : 4 4 : 1 permutation vector OK Q: permutation vector, n = 5. 0 : 3 1 : 2 2 : 0 3 : 4 4 : 1 permutation vector OK Scale factors: row i of A is to be multiplied by the ith scale factor 0: 0.196078 1: 0.0319489 2: 0.0133869 3: 0.030303 4: 0.013089 Converting L to triplet form, and printing it: L, in triplet form: triplet-form matrix, n_row = 5, n_col = 5 nz = 8. 0 : 0 0 (1 + 0i) 1 : 1 1 (1 + 0i) 2 : 2 2 (1 + 0i) 3 : 3 3 (1 + 0i) 4 : 4 1 (0.240091 + 0.0591529i) 5 : 4 2 (0.847284 + 0.423642i) 6 : 4 3 (0.659838 - 0.0126577i) 7 : 4 4 (1 + 0i) triplet-form matrix OK Saving numeric object: Freeing numeric object: Loading numeric object: Done loading numeric object UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 91 81 89% peak size (Units) 2543 2528 99% final size (Units) 26 22 85% Numeric final size (Units) 114 108 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 2752 2737 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.41e-01 max abs. value on diagonal of U: 9.14e-01 estimate of reciprocal of condition number: 2.64e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 9.42e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 4.88498e-15 Solving C'x=b again, using umfpack_zi_wsolve instead: UMFPACK V5.2.0 (Nov 1, 2007), Info: matrix entry defined as: double complex Int (generic integer) defined as: int BLAS library used: Fortran BLAS. size of BLAS integer: 4 MATLAB: no. CPU timer: POSIX times ( ) routine. number of rows in matrix A: 5 number of columns in matrix A: 5 entries in matrix A: 12 memory usage reported in: 8-byte Units size of int: 4 bytes size of UF_long: 8 bytes size of pointer: 8 bytes size of numerical entry: 16 bytes strategy used: unsymmetric ordering used: colamd on A modify Q during factorization: yes prefer diagonal pivoting: no pivots with zero Markowitz cost: 2 submatrix S after removing zero-cost pivots: number of "dense" rows: 0 number of "dense" columns: 0 number of empty rows: 0 number of empty columns 0 submatrix S square and diagonal preserved pattern of square submatrix S: number rows and columns 3 symmetry of nonzero pattern: 1.000000 nz in S+S' (excl. diagonal): 4 nz on diagonal of matrix S: 2 fraction of nz on diagonal: 0.666667 2-by-2 pivoting to place large entries on diagonal: # of small diagonal entries of S: 1 # unmatched: 0 symmetry of P2*S: 0.000000 nz in P2*S+(P2*S)' (excl. diag.): 6 nz on diagonal of P2*S: 3 fraction of nz on diag of P2*S: 1.000000 symbolic factorization defragmentations: 0 symbolic memory usage (Units): 151 symbolic memory usage (MBytes): 0.0 Symbolic size (Units): 52 Symbolic size (MBytes): 0 symbolic factorization CPU time (sec): 0.00 symbolic factorization wallclock time(sec): 0.00 matrix scaled: yes (divided each row by sum of abs values in each row) minimum sum (abs (rows of A)): 5.10000e+00 maximum sum (abs (rows of A)): 7.64000e+01 symbolic/numeric factorization: upper bound actual % variable-sized part of Numeric object: initial size (Units) 91 81 89% peak size (Units) 2543 2528 99% final size (Units) 26 22 85% Numeric final size (Units) 114 108 95% Numeric final size (MBytes) 0.0 0.0 95% peak memory usage (Units) 2752 2737 99% peak memory usage (MBytes) 0.0 0.0 99% numeric factorization flops 6.70000e+01 3.40000e+01 51% nz in L (incl diagonal) 9 8 89% nz in U (incl diagonal) 11 10 91% nz in L+U (incl diagonal) 15 13 87% largest front (# entries) 9 4 44% largest # rows in front 3 2 67% largest # columns in front 3 2 67% initial allocation ratio used: 0.7 # of forced updates due to frontal growth: 0 nz in L (incl diagonal), if none dropped 8 nz in U (incl diagonal), if none dropped 10 number of small entries dropped 0 nonzeros on diagonal of U: 5 min abs. value on diagonal of U: 2.41e-01 max abs. value on diagonal of U: 9.14e-01 estimate of reciprocal of condition number: 2.64e-01 indices in compressed pattern: 2 numerical values stored in Numeric object: 9 numeric factorization defragmentations: 1 numeric factorization reallocations: 1 costly numeric factorization reallocations: 0 numeric factorization CPU time (sec): 0.00 numeric factorization wallclock time (sec): 0.00 solve flops: 4.80000e+02 iterative refinement steps taken: 0 iterative refinement steps attempted: 0 sparse backward error omega1: 9.42e-17 sparse backward error omega2: 0.00e+00 solve CPU time (sec): 0.00 solve wall clock time (sec): 0.00 total symbolic + numeric + solve flops: 5.14000e+02 x (solution of C'x=b): dense vector, n = 5. 0 : (7.56307 - 3.68974i) 1 : (-0.831991 + 0.0627998i) 2 : (0.166667 + 0i) 3 : (-0.00206892 - 0.107735i) 4 : (0.658245 + 0.0407649i) dense vector OK maxnorm of residual: 4.88498e-15 umfpack_zi_demo complete. Total time: 0.00 seconds (CPU time), 0.00 seconds (wallclock time) SuiteSparse/UMFPACK/Demo/umfpack_zi_demo.sed0000644001170100242450000000023010006260704017540 0ustar davisfac/::/d 1,$s/_xx_/_zi_/g 1,$s/Int/int/g 1,$s/WSIZE/10/ 1,$s/%ld/%d/g /define ABS/ { s/ABS/ABS(x,z) ((x) >= 0 ? (x) : -(x)) + ((z) >= 0 ? (z) : -(z))/ } SuiteSparse/UMFPACK/Demo/readhb.f0000644001170100242450000000706710252104243015320 0ustar davisfacc======================================================================= c== readhb ============================================================= c======================================================================= c----------------------------------------------------------------------- c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for c License. web: http://www.cise.ufl.edu/research/sparse/umfpack c----------------------------------------------------------------------- c readhb: c read a sparse matrix in the Harwell/Boeing format and c output a matrix in triplet format. c c usage (for example): c c in a Unix shell: c readhb < HB/arc130.rua > tmp/A c c Then, in MATLAB, you can do the following: c >> load tmp/A c >> A = spconvert (A) ; c >> spy (A) integer nzmax, nmax parameter (nzmax = 20000000, nmax = 250000) integer Ptr (nmax), Index (nzmax), n, nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, row, col, p character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 logical sym double precision Value (nzmax), skew character rhstyp*3 integer nzrhs, nel integer ne, nnz c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) skew = 0.0 if (type (2:2) .eq. 'Z' .or. type (2:2) .eq. 'z') skew = -1.0 if (type (2:2) .eq. 'S' .or. type (2:2) .eq. 's') skew = 1.0 sym = skew .ne. 0.0 write (0, 31) key 31 format ('Matrix key: ', a8) n = max (nrow, ncol) if (n .ge. nmax .or. nz .gt. nzmax) then write (0, *) 'Matrix too big!' write (0, *) '(recompile readhb.f with larger nzmax, nmax)' stop endif read (5, ptrfmt, err = 998) (Ptr (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Index (p), p = 1, nz) do 55 col = ncol+2, n+1 Ptr (col) = Ptr (ncol+1) 55 continue c read the values if (valcrd .gt. 0) then read (5, valfmt, err = 998) (Value (p), p = 1, nz) else do 50 p = 1, nz Value (p) = 1 50 continue endif c create the triplet form of the input matrix ne = 0 nnz = 0 do 100 col = 1, n do 90 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) ne = ne + 1 nnz = nnz + 1 write (6, 200) row, col, Value (p) if (sym .and. row .ne. col) then ne = ne + 1 if (Value (p) .ne. 0) then nnz = nnz + 1 write (6, 200) col, row, skew * Value (p) endif endif 90 continue 100 continue 200 format (2i7, e30.18e3) c write (0,*) 'Number of entries: ',ne,' True nonzeros: ', nnz stop 998 write (0,*) 'Read error: Harwell/Boeing matrix' stop end SuiteSparse/UMFPACK/Demo/umfpack_xx_demo.c0000644001170100242450000007160010617501640017242 0ustar davisfac/* ========================================================================== */ /* === umfpack_xx_demo ====================================================== */ /* ========================================================================== */ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: Do not attempt to compile this file! It is processed via sed scripts into :: four different C demo programs: :: :: umfpack_di_demo.c: double precision, int integers :: umfpack_dl_demo.c: double precision, UF_long integers :: umfpack_zi_demo.c: complex double precision, int integers :: umfpack_zl_demo.c: complex double precision, UF_long integers :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* A demo of UMFPACK: umfpack_xx_* version. First, factor and solve a 5-by-5 system, Ax=b, using default parameters. Then solve A'x=b using the factors of A. Modify one entry (A (1,4) = 0, where the row and column indices range from 0 to 4. The pattern of A has not changed (it has explicitly zero entry), so a reanalysis with umfpack_xx_symbolic does not need to be done. Refactorize (with umfpack_xx_numeric), and solve Ax=b. Note that the pivot ordering has changed. Next, change all of the entries in A, but not the pattern. Finally, compute C = A', and do the symbolic and numeric factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b twice; the solution is the same as the solution to Ax=b. A note about zero-sized arrays: UMFPACK uses many user-provided arrays of size n (order of the matrix), and of size nz (the number of nonzeros in a matrix). n cannot be zero; UMFPACK does not handle zero-dimensioned arrays. However, nz can be zero. If you attempt to malloc an array of size nz = 0, however, malloc will return a null pointer which UMFPACK will report as a "missing argument." Thus, nz1 in this code is set to MAX (nz,1), and similarly for lnz and unz. Lnz can never be zero, however, since L is always unit diagonal. */ /* -------------------------------------------------------------------------- */ /* definitions */ /* -------------------------------------------------------------------------- */ #include #include #include "umfpack.h" /* use a cheap approximate absolute value for complex numbers: */ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ABS is |xreal|+|ximag| for the complex case, and |x| for the real case. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: #define ABS #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ /* triplet form of the matrix. The triplets can be in any order. */ /* -------------------------------------------------------------------------- */ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: Int is either int or UF_long: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: static Int n = 5, nz = 12 ; static Int Arow [ ] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ; static Int Acol [ ] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ; static double Aval [ ] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ; static double Avalz[ ] = {1., .4, .1, .2, -1., -.2, 0., 6., 3., 0., .3, .3} ; static double b [ ] = {8., 45., -3., 3., 19.}, x [5], r [5] ; static double bz[ ] = {1., -5., -2., 0., 2.2}, xz[5], rz[5] ; /* Avalz, bz: imaginary part of A and b */ /* -------------------------------------------------------------------------- */ /* error: print a message and exit */ /* -------------------------------------------------------------------------- */ static void error ( char *message ) { printf ("\n\n====== error: %s =====\n\n", message) ; exit (1) ; } /* -------------------------------------------------------------------------- */ /* resid: compute the residual, r = Ax-b or r = A'x=b and return maxnorm (r) */ /* A' is the complex conjugate transpose, not the array transpose */ /* -------------------------------------------------------------------------- */ static double resid ( Int transpose, Int Ap [ ], Int Ai [ ], double Ax [ ] , double Az [ ] ) { Int i, j, p ; double norm ; for (i = 0 ; i < n ; i++) { r [i] = -b [i] ; rz[i] = -bz[i] ; } if (transpose) { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; /* complex: r(j) += conj (Aij) * x (i) */ r [j] += Ax [p] * x [i] ; r [j] += Az [p] * xz[i] ; rz[j] -= Az [p] * x [i] ; rz[j] += Ax [p] * xz[i] ; } } } else { for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; r [i] += Ax [p] * x [j] ; r [i] -= Az [p] * xz[j] ; rz[i] += Az [p] * x [j] ; rz[i] += Ax [p] * xz[j] ; } } } norm = 0. ; for (i = 0 ; i < n ; i++) { norm = MAX (ABS (r [i], rz [i]), norm) ; } return (norm) ; } /* -------------------------------------------------------------------------- */ /* main program */ /* -------------------------------------------------------------------------- */ int main (int argc, char **argv) { double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Cx, *Lx, *Ux, *W, t [2], *Dx, rnorm, *Rb, *y, *Rs ; double *Az, *Lz, *Uz, *Dz, *Cz, *Rbz, *yz ; Int *Ap, *Ai, *Cp, *Ci, row, col, p, lnz, unz, nr, nc, *Lp, *Li, *Ui, *Up, *P, *Q, *Lj, i, j, k, anz, nfr, nchains, *Qinit, fnpiv, lnz1, unz1, nz1, status, *Front_npivcol, *Front_parent, *Chain_start, *Wi, *Pinit, n1, *Chain_maxrows, *Chain_maxcols, *Front_1strow, *Front_leftmostdesc, nzud, do_recip ; void *Symbolic, *Numeric ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ umfpack_tic (t) ; printf ("\nUMFPACK V%d.%d (%s) demo: _xx_ version\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_DATE) ; /* get the default control parameters */ umfpack_xx_defaults (Control) ; /* change the default print level for this demo */ /* (otherwise, nothing will print) */ Control [UMFPACK_PRL] = 6 ; /* print the license agreement */ umfpack_xx_report_status (Control, UMFPACK_OK) ; Control [UMFPACK_PRL] = 5 ; /* print the control parameters */ umfpack_xx_report_control (Control) ; /* ---------------------------------------------------------------------- */ /* print A and b, and convert A to column-form */ /* ---------------------------------------------------------------------- */ /* print the right-hand-side */ printf ("\nb: ") ; (void) umfpack_xx_report_vector (n, b, bz, Control) ; /* print the triplet form of the matrix */ printf ("\nA: ") ; (void) umfpack_xx_report_triplet (n, n, nz, Arow, Acol, Aval, Avalz, Control) ; /* convert to column form */ nz1 = MAX (nz,1) ; /* ensure arrays are not of size zero. */ Ap = (Int *) malloc ((n+1) * sizeof (Int)) ; Ai = (Int *) malloc (nz1 * sizeof (Int)) ; Ax = (double *) malloc (nz1 * sizeof (double)) ; Az = (double *) malloc (nz1 * sizeof (double)) ; if (!Ap || !Ai || !Ax || !Az) { error ("out of memory") ; } status = umfpack_xx_triplet_to_col (n, n, nz, Arow, Acol, Aval, Avalz, Ap, Ai, Ax, Az, (Int *) NULL) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_triplet_to_col failed") ; } /* print the column-form of A */ printf ("\nA: ") ; (void) umfpack_xx_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_symbolic (n, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; if (status < 0) { umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_symbolic failed") ; } /* print the symbolic factorization */ printf ("\nSymbolic factorization of A: ") ; (void) umfpack_xx_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_numeric failed") ; } /* print the numeric factorization */ printf ("\nNumeric factorization of A: ") ; (void) umfpack_xx_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; if (status < 0) { error ("umfpack_xx_solve failed") ; } printf ("\nx (solution of Ax=b): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_get_determinant (x, xz, r, Numeric, Info) ; umfpack_xx_report_status (Control, status) ; if (status < 0) { error ("umfpack_xx_get_determinant failed") ; } printf ("determinant: (%g", x [0]) ; printf ("+ (%g)i", xz [0]) ; /* complex */ printf (") * 10^(%g)\n", r [0]) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, broken down into steps */ /* ---------------------------------------------------------------------- */ /* Rb = R*b */ Rb = (double *) malloc (n * sizeof (double)) ; Rbz = (double *) malloc (n * sizeof (double)) ; y = (double *) malloc (n * sizeof (double)) ; yz = (double *) malloc (n * sizeof (double)) ; if (!Rb || !y) error ("out of memory") ; if (!Rbz || !yz) error ("out of memory") ; status = umfpack_xx_scale (Rb, Rbz, b, bz, Numeric) ; if (status < 0) error ("umfpack_xx_scale failed") ; /* solve Ly = P*(Rb) */ status = umfpack_xx_solve (UMFPACK_Pt_L, Ap, Ai, Ax, Az, y, yz, Rb, Rbz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_xx_solve failed") ; /* solve UQ'x=y */ status = umfpack_xx_solve (UMFPACK_U_Qt, Ap, Ai, Ax, Az, x, xz, y, yz, Numeric, Control, Info) ; if (status < 0) error ("umfpack_xx_solve failed") ; printf ("\nx (solution of Ax=b, solve is split into 3 steps): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; free (Rb) ; free (Rbz) ; free (y) ; free (yz) ; /* ---------------------------------------------------------------------- */ /* solve A'x=b */ /* ---------------------------------------------------------------------- */ /* note that this is the complex conjugate transpose, A' */ status = umfpack_xx_solve (UMFPACK_At, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_xx_report_info (Control, Info) ; if (status < 0) { error ("umfpack_xx_solve failed") ; } printf ("\nx (solution of A'x=b): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify one numerical value in the column-form of A */ /* ---------------------------------------------------------------------- */ /* change A (1,4), look for row index 1 in column 4. */ row = 1 ; col = 4 ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { if (row == Ai [p]) { printf ("\nchanging A (%ld,%ld) to zero\n", row, col) ; Ax [p] = 0.0 ; Az [p] = 0.0 ; break ; } } printf ("\nmodified A: ") ; (void) umfpack_xx_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ /* The pattern (Ap and Ai) hasn't changed, so the symbolic factorization */ /* doesn't have to be redone, no matter how much we change Ax. */ /* We don't need the Numeric object any more, so free it. */ umfpack_xx_free_numeric (&Numeric) ; /* Note that a memory leak would have occurred if the old Numeric */ /* had not been free'd with umfpack_xx_free_numeric above. */ status = umfpack_xx_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_numeric failed") ; } printf ("\nNumeric factorization of modified A: ") ; (void) umfpack_xx_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_xx_report_info (Control, Info) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_solve failed") ; } printf ("\nx (with modified A): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* modify all of the numerical values of A, but not the pattern */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < n ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; printf ("changing ") ; /* complex: */ printf ("real part of ") ; printf ("A (%ld,%ld) from %g", row, col, Ax [p]) ; Ax [p] = Ax [p] + col*10 - row ; printf (" to %g\n", Ax [p]) ; } } printf ("\ncompletely modified A (same pattern): ") ; (void) umfpack_xx_report_matrix (n, n, Ap, Ai, Ax, Az, 1, Control) ; /* ---------------------------------------------------------------------- */ /* save the Symbolic object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "symbolic.umf" */ printf ("\nSaving symbolic object:\n") ; status = umfpack_xx_save_symbolic (Symbolic, (char *) NULL) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_save_symbolic failed") ; } printf ("\nFreeing symbolic object:\n") ; umfpack_xx_free_symbolic (&Symbolic) ; printf ("\nLoading symbolic object:\n") ; status = umfpack_xx_load_symbolic (&Symbolic, (char *) NULL) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_load_symbolic failed") ; } printf ("\nDone loading symbolic object\n") ; /* ---------------------------------------------------------------------- */ /* redo the numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_xx_free_numeric (&Numeric) ; status = umfpack_xx_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; if (status < 0) { umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_numeric failed") ; } printf ("\nNumeric factorization of completely modified A: ") ; (void) umfpack_xx_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* solve Ax=b, with the modified A */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_solve (UMFPACK_A, Ap, Ai, Ax, Az, x, xz, b, bz, Numeric, Control, Info) ; umfpack_xx_report_info (Control, Info) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_solve failed") ; } printf ("\nx (with completely modified A): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (FALSE, Ap, Ai, Ax, Az) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free the symbolic and numeric factorization */ /* ---------------------------------------------------------------------- */ umfpack_xx_free_symbolic (&Symbolic) ; umfpack_xx_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* C = transpose of A */ /* ---------------------------------------------------------------------- */ Cp = (Int *) malloc ((n+1) * sizeof (Int)) ; Ci = (Int *) malloc (nz1 * sizeof (Int)) ; Cx = (double *) malloc (nz1 * sizeof (double)) ; Cz = (double *) malloc (nz1 * sizeof (double)) ; if (!Cp || !Ci || !Cx || !Cz) { error ("out of memory") ; } status = umfpack_xx_transpose (n, n, Ap, Ai, Ax, Az, (Int *) NULL, (Int *) NULL, Cp, Ci, Cx, Cz, TRUE) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_transpose failed: ") ; } printf ("\nC (transpose of A): ") ; (void) umfpack_xx_report_matrix (n, n, Cp, Ci, Cx, Cz, 1, Control) ; /* ---------------------------------------------------------------------- */ /* symbolic factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_symbolic (n, n, Cp, Ci, Cx, Cz, &Symbolic, Control, Info) ; if (status < 0) { umfpack_xx_report_info (Control, Info) ; umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_symbolic failed") ; } printf ("\nSymbolic factorization of C: ") ; (void) umfpack_xx_report_symbolic (Symbolic, Control) ; /* ---------------------------------------------------------------------- */ /* copy the contents of Symbolic into user arrays print them */ /* ---------------------------------------------------------------------- */ printf ("\nGet the contents of the Symbolic object for C:\n") ; printf ("(compare with umfpack_xx_report_symbolic output, above)\n") ; Pinit = (Int *) malloc ((n+1) * sizeof (Int)) ; Qinit = (Int *) malloc ((n+1) * sizeof (Int)) ; Front_npivcol = (Int *) malloc ((n+1) * sizeof (Int)) ; Front_1strow = (Int *) malloc ((n+1) * sizeof (Int)) ; Front_leftmostdesc = (Int *) malloc ((n+1) * sizeof (Int)) ; Front_parent = (Int *) malloc ((n+1) * sizeof (Int)) ; Chain_start = (Int *) malloc ((n+1) * sizeof (Int)) ; Chain_maxrows = (Int *) malloc ((n+1) * sizeof (Int)) ; Chain_maxcols = (Int *) malloc ((n+1) * sizeof (Int)) ; if (!Pinit || !Qinit || !Front_npivcol || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Front_1strow || !Front_leftmostdesc) { error ("out of memory") ; } status = umfpack_xx_get_symbolic (&nr, &nc, &n1, &anz, &nfr, &nchains, Pinit, Qinit, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status < 0) { error ("symbolic factorization invalid") ; } printf ("From the Symbolic object, C is of dimension %ld-by-%ld\n", nr, nc); printf (" with nz = %ld, number of fronts = %ld,\n", nz, nfr) ; printf (" number of frontal matrix chains = %ld\n", nchains) ; printf ("\nPivot columns in each front, and parent of each front:\n") ; k = 0 ; for (i = 0 ; i < nfr ; i++) { fnpiv = Front_npivcol [i] ; printf (" Front %ld: parent front: %ld number of pivot cols: %ld\n", i, Front_parent [i], fnpiv) ; for (j = 0 ; j < fnpiv ; j++) { col = Qinit [k] ; printf ( " %ld-th pivot column is column %ld in original matrix\n", k, col) ; k++ ; } } printf ("\nNote that the column ordering, above, will be refined\n") ; printf ("in the numeric factorization below. The assignment of pivot\n") ; printf ("columns to frontal matrices will always remain unchanged.\n") ; printf ("\nTotal number of pivot columns in frontal matrices: %ld\n", k) ; printf ("\nFrontal matrix chains:\n") ; for (j = 0 ; j < nchains ; j++) { printf (" Frontal matrices %ld to %ld are factorized in a single\n", Chain_start [j], Chain_start [j+1] - 1) ; printf (" working array of size %ld-by-%ld\n", Chain_maxrows [j], Chain_maxcols [j]) ; } /* ---------------------------------------------------------------------- */ /* numeric factorization of C */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_numeric (Cp, Ci, Cx, Cz, Symbolic, &Numeric, Control, Info) ; if (status < 0) { error ("umfpack_xx_numeric failed") ; } printf ("\nNumeric factorization of C: ") ; (void) umfpack_xx_report_numeric (Numeric, Control) ; /* ---------------------------------------------------------------------- */ /* extract the LU factors of C and print them */ /* ---------------------------------------------------------------------- */ if (umfpack_xx_get_lunz (&lnz, &unz, &nr, &nc, &nzud, Numeric) < 0) { error ("umfpack_xx_get_lunz failed") ; } /* ensure arrays are not of zero size */ lnz1 = MAX (lnz,1) ; unz1 = MAX (unz,1) ; Lp = (Int *) malloc ((n+1) * sizeof (Int)) ; Lj = (Int *) malloc (lnz1 * sizeof (Int)) ; Lx = (double *) malloc (lnz1 * sizeof (double)) ; Lz = (double *) malloc (lnz1 * sizeof (double)) ; Up = (Int *) malloc ((n+1) * sizeof (Int)) ; Ui = (Int *) malloc (unz1 * sizeof (Int)) ; Ux = (double *) malloc (unz1 * sizeof (double)) ; Uz = (double *) malloc (unz1 * sizeof (double)) ; P = (Int *) malloc (n * sizeof (Int)) ; Q = (Int *) malloc (n * sizeof (Int)) ; Dx = (double *) NULL ; /* D vector not requested */ Dz = (double *) NULL ; Rs = (double *) malloc (n * sizeof (double)) ; if (!Lp || !Lj || !Lx || !Lz || !Up || !Ui || !Ux || !Uz || !P || !Q || !Rs) { error ("out of memory") ; } status = umfpack_xx_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; if (status < 0) { error ("umfpack_xx_get_numeric failed") ; } printf ("\nL (lower triangular factor of C): ") ; (void) umfpack_xx_report_matrix (n, n, Lp, Lj, Lx, Lz, 0, Control) ; printf ("\nU (upper triangular factor of C): ") ; (void) umfpack_xx_report_matrix (n, n, Up, Ui, Ux, Uz, 1, Control) ; printf ("\nP: ") ; (void) umfpack_xx_report_perm (n, P, Control) ; printf ("\nQ: ") ; (void) umfpack_xx_report_perm (n, Q, Control) ; printf ("\nScale factors: row i of A is to be ") ; if (do_recip) { printf ("multiplied by the ith scale factor\n") ; } else { printf ("divided by the ith scale factor\n") ; } for (i = 0 ; i < n ; i++) printf ("%ld: %g\n", i, Rs [i]) ; /* ---------------------------------------------------------------------- */ /* convert L to triplet form and print it */ /* ---------------------------------------------------------------------- */ /* Note that L is in row-form, so it is the row indices that are created */ /* by umfpack_xx_col_to_triplet. */ printf ("\nConverting L to triplet form, and printing it:\n") ; Li = (Int *) malloc (lnz1 * sizeof (Int)) ; if (!Li) { error ("out of memory") ; } if (umfpack_xx_col_to_triplet (n, Lp, Li) < 0) { error ("umfpack_xx_col_to_triplet failed") ; } printf ("\nL, in triplet form: ") ; (void) umfpack_xx_report_triplet (n, n, lnz, Li, Lj, Lx, Lz, Control) ; /* ---------------------------------------------------------------------- */ /* save the Numeric object to file, free it, and load it back in */ /* ---------------------------------------------------------------------- */ /* use the default filename, "numeric.umf" */ printf ("\nSaving numeric object:\n") ; status = umfpack_xx_save_numeric (Numeric, (char *) NULL) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_save_numeric failed") ; } printf ("\nFreeing numeric object:\n") ; umfpack_xx_free_numeric (&Numeric) ; printf ("\nLoading numeric object:\n") ; status = umfpack_xx_load_numeric (&Numeric, (char *) NULL) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_load_numeric failed") ; } printf ("\nDone loading numeric object\n") ; /* ---------------------------------------------------------------------- */ /* solve C'x=b */ /* ---------------------------------------------------------------------- */ status = umfpack_xx_solve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info) ; umfpack_xx_report_info (Control, Info) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_solve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* solve C'x=b again, using umfpack_xx_wsolve instead */ /* ---------------------------------------------------------------------- */ printf ("\nSolving C'x=b again, using umfpack_xx_wsolve instead:\n") ; Wi = (Int *) malloc (n * sizeof (Int)) ; :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: WSIZE is 5 for the real case, 10 for complex. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: W = (double *) malloc (WSIZE*n * sizeof (double)) ; if (!Wi || !W) { error ("out of memory") ; } status = umfpack_xx_wsolve (UMFPACK_At, Cp, Ci, Cx, Cz, x, xz, b, bz, Numeric, Control, Info, Wi, W) ; umfpack_xx_report_info (Control, Info) ; if (status < 0) { umfpack_xx_report_status (Control, status) ; error ("umfpack_xx_wsolve failed") ; } printf ("\nx (solution of C'x=b): ") ; (void) umfpack_xx_report_vector (n, x, xz, Control) ; rnorm = resid (TRUE, Cp, Ci, Cx, Cz) ; printf ("maxnorm of residual: %g\n\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* This is not strictly required since the process is exiting and the */ /* system will reclaim the memory anyway. It's useful, though, just as */ /* a list of what is currently malloc'ed by this program. Plus, it's */ /* always a good habit to explicitly free whatever you malloc. */ free (Ap) ; free (Ai) ; free (Ax) ; free (Az) ; free (Cp) ; free (Ci) ; free (Cx) ; free (Cz) ; free (Pinit) ; free (Qinit) ; free (Front_npivcol) ; free (Front_1strow) ; free (Front_leftmostdesc) ; free (Front_parent) ; free (Chain_start) ; free (Chain_maxrows) ; free (Chain_maxcols) ; free (Lp) ; free (Lj) ; free (Lx) ; free (Lz) ; free (Up) ; free (Ui) ; free (Ux) ; free (Uz) ; free (P) ; free (Q) ; free (Li) ; free (Wi) ; free (W) ; umfpack_xx_free_symbolic (&Symbolic) ; umfpack_xx_free_numeric (&Numeric) ; /* ---------------------------------------------------------------------- */ /* print the total time spent in this demo */ /* ---------------------------------------------------------------------- */ umfpack_toc (t) ; printf ("\numfpack_xx_demo complete.\nTotal time: %5.2f seconds" " (CPU time), %5.2f seconds (wallclock time)\n", t [1], t [0]) ; return (0) ; } SuiteSparse/UMFPACK/Tcov/0000755001170100242450000000000010711722400013742 5ustar davisfacSuiteSparse/UMFPACK/Tcov/DO0000755001170100242450000000506110617407350014205 0ustar davisfac#!/bin/csh echo '################################################################################' echo 'Tcov test:' $1 $2 $3 echo '################################################################################' #------------------------------------------------------------------------------- # get a clean directory # /bin/mv Out/$1_$2 `mktemp -d Trash/XXXXXX` # delete the directory /bin/rm -rf Out/$1_$2 mkdir Out/$1_$2 # put in UMFPACK (excluding Tcov and MATLAB directories) and AMD mkdir Out/$1_$2/UMFPACK mkdir Out/$1_$2/UMFPACK/Doc /bin/cp -prL ../Source Out/$1_$2/UMFPACK /bin/cp -prL ../Lib Out/$1_$2/UMFPACK /bin/cp -prL ../Include Out/$1_$2/UMFPACK /bin/cp -prL ../Demo Out/$1_$2/UMFPACK /bin/cp -prL Top_Makefile Out/$1_$2/UMFPACK/Makefile /bin/cp -prL Out/$1_$2/UMFPACK/Lib/GNUmakefile Out/$1_$2/UMFPACK/Source/Makefile /bin/cp -prL Demo_Makefile Out/$1_$2/UMFPACK/Demo/Makefile /bin/cp -prL ../Doc/License Out/$1_$2/UMFPACK/Doc # put in AMD /bin/cp -prL ../../AMD Out/$1_$2 /bin/cp -prL Top_Makefile Out/$1_$2/AMD/Makefile /bin/cp -prL Out/$1_$2/AMD/Lib/GNUmakefile Out/$1_$2/AMD/Source/Makefile /bin/cp -prL AMD_Demo_Makefile Out/$1_$2/AMD/Demo/Makefile /bin/cp debug.* Out/$1_$2 # put in the makefile /bin/cp GNUmakefile.$2 Out/$1_$2/GNUmakefile # put in the UFconfig.mk and UFconfig.h files mkdir Out/$1_$2/UFconfig /bin/cp -f Make.$1 Out/$1_$2/UFconfig/UFconfig.mk /bin/cp -f ../../UFconfig/UFconfig.h Out/$1_$2/UFconfig # put in the main program /bin/cp ut.c Out/$1_$2 # put in the test matrices /bin/cp -f badnum*.umf Out/$1_$2 /bin/cp -f badsym*.umf Out/$1_$2 /bin/cp -pr TestMat Out/$1_$2 # put in the gcov files /bin/cp -f ucov.* Out/$1_$2/UMFPACK/Source /bin/cp -f acov.* Out/$1_$2/AMD/Source # compile and run ( cd Out/$1_$2 ; time make $3 > $1_$2.out ) # delete the directory #### /bin/rm -rf Out/$1_$2 # ( cd $1_$2 ; tail -5 ut.out > ut.tail ; 'rm' -rf ut.out ) # for Solaris # ( cd Out/$1_$2 ; tcov -x ut.profile/UMFPACK/Source/umfp*.c ) # ( cd Out/$1_$2 ; tcov -x ut.profile/UMFPACK/Source/umf_[0-c]*.c ) # ( cd Out/$1_$2 ; tcov -x ut.profile/UMFPACK/Source/umf_[e-z]*.c ) # ( cd Out/$1_$2 ; tcov -x ut.profile/AMD/Source/amd_[0-c]*.c ) # ( cd Out/$1_$2 ; tcov -x ut.profile/AMD/Source/amd_de*.c ) # ( cd Out/$1_$2 ; tcov -x ut.profile/AMD/Source/amd_[e-z]*.c ) # grep -n "#####" Out/$1_$2/*cov > $1_$2.cov # cov Out/$1_$2/UMFPACK/Source/umfp*cov # cov Out/$1_$2/UMFPACK/Source/umf_[0-c]*cov # cov Out/$1_$2/UMFPACK/Source/umf_[e-z]*cov # cov Out/$1_$2/AMD/Source/amd_[0-c]*cov # cov Out/$1_$2/AMD/Source/amd_de*cov # cov Out/$1_$2/AMD/Source/amd_[e-z]*cov SuiteSparse/UMFPACK/Tcov/DO20000755001170100242450000000010710006265115014254 0ustar davisfac# # DO 1g zi run DO 1g zl run DO 2g zl run DO 3g zl run DO 4g zl run SuiteSparse/UMFPACK/Tcov/Out/0000755001170100242450000000000010711176033014516 5ustar davisfacSuiteSparse/UMFPACK/Tcov/cov0000755001170100242450000000060110006265115014456 0ustar davisfac#!/bin/csh foreach file ($argv[1-]) echo "================================================================================" echo $file # cat -n $file | grep -B 5 -A 5 '#####' cat -n $file | grep '#####' end echo "================================================================================" # echo "Total lines not covered:" # cat $argv[1-] | grep "#####" | wc SuiteSparse/UMFPACK/Tcov/DOsol20000755001170100242450000000340510534134476015011 0ustar davisfac#!/bin/csh #------------------------------------------------------------------------------- echo '################################################################################' echo 'Tcov test:' $1 $2 echo '################################################################################' # get a clean directory # /bin/mv Tests/$1_$2 `mktemp -d Trash2/XXXXXX` # mkdir SolOut/$1_$2 # put in UMFPACK (excluding Tcov and MATLAB directories) and AMD mkdir SolOut/$1_$2/UMFPACK mkdir SolOut/$1_$2/UMFPACK/Doc /bin/cp -prL ../Source SolOut/$1_$2/UMFPACK /bin/cp -prL ../Lib SolOut/$1_$2/UMFPACK /bin/cp -prL ../Include SolOut/$1_$2/UMFPACK /bin/cp -prL ../Demo SolOut/$1_$2/UMFPACK /bin/cp -prL ../Makefile SolOut/$1_$2/UMFPACK/Makefile /bin/cp -prL ../Doc/License SolOut/$1_$2/UMFPACK/Doc /bin/cp -prL ../../AMD SolOut/$1_$2 /bin/cp debug.* SolOut/$1_$2 # put in the makefile /bin/cp GNUmakefile.$2 SolOut/$1_$2/GNUmakefile # put in the UFconfig.mk and UFconfig.h files mkdir SolOut/$1_$2/UFconfig /bin/cp -f Make.$1 SolOut/$1_$2/UFconfig/UFconfig.mk /bin/cp -f ../../UFconfig/UFconfig.h SolOut/$1_$2/UFconfig # put in the main program /bin/cp ut.c SolOut/$1_$2 # put in the test matrices /bin/cp -f badnum*.umf SolOut/$1_$2 /bin/cp -f badsym*.umf SolOut/$1_$2 /bin/cp -pr TestMat SolOut/$1_$2 # compile and run ( cd SolOut/$1_$2 ; time make $3 > $1_$2.out ) # for Solaris ( cd SolOut/$1_$2 ; tail -5 ut.out > $1_$2.tail ) ( cd SolOut/$1_$2 ; tcov -x ut.profile */Source/*.c ) ( cd SolOut/$1_$2 ; grep -n "#####" *cov > $1_$2.cov ) # /bin/rm -rf SolOut/$1_$2 # cov $1_$2/UMFPACK/Source/umfp*cov # cov $1_$2/UMFPACK/Source/umf_[0-c]*cov # cov $1_$2/UMFPACK/Source/umf_[e-z]*cov # cov $1_$2/AMD/Source/amd_[0-c]*cov # cov $1_$2/AMD/Source/amd_de*cov # cov $1_$2/AMD/Source/amd_[e-z]*cov SuiteSparse/UMFPACK/Tcov/ut.c0000644001170100242450000074267510617162536014600 0ustar davisfac/* ========================================================================== */ /* === umfpack tcov ========================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* (Nearly) exhaustive statement-coverage testing for UMFPACK. */ /* #define DEBUGGING */ #include #include #include #include #include #include #include "umfpack.h" #include "amd.h" #include "umf_internal.h" #include "umf_is_permutation.h" /* #include "umf_free.h" #include "umf_malloc.h" */ #include "umf_report_perm.h" #include "umf_realloc.h" #include "umf_free.h" #include "umf_malloc.h" /* #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) #include "umf_malloc.h" #endif */ #define TOL 1e-3 #define INULL ((Int *) NULL) #define DNULL ((double *) NULL) #ifdef COMPLEX #define CARG(real,imag) real,imag #define C1ARG(a) ,a #else #define CARG(real,imag) real #define C1ARG(a) #endif int check_tol ; static double divide (double x, double y) { return (x/y) ; } /* ========================================================================== */ /* inv_umfpack_dense: inverse of UMFPACK_DENSE_COUNT */ /* ========================================================================== */ /* the inverse of UMFPACK_DENSE_COUNT: given a col count, find alpha */ static double inv_umfpack_dense (Int d, Int n) { if (d <= 16) { return (0.0) ; } else { return (((double) d) / (16 * sqrt ((double) n))) ; } } /* ========================================================================== */ static void dump_mat (char *name, Int m, Int n, Int Ap [ ], Int Ai [ ], double Ax [ ] #ifdef COMPLEX , double Az [ ] #endif ) { Entry aa ; Int j, p ; printf ("\n%s = sparse ("ID", "ID") ;\n", name, m, n) ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { #ifdef COMPLEX ASSIGN (aa, Ax, Az, p, SPLIT (Az)) ; printf ("%s ("ID","ID") = %30.20g + (1i * %30.20g);\n", name, 1+Ai [p], j+1, REAL_COMPONENT(aa), IMAG_COMPONENT(aa)) ; #else printf ("%s ("ID","ID") = %30.20g ;\n", name, 1+Ai [p], j+1, Ax [p]) ; #endif } } } /* ========================================================================== */ static void dump_vec (char *name, Int n, double X [ ], double Xz[ ]) { Int j ; printf ("\n%s = [\n", name) ; for (j = 0 ; j < n ; j++) { printf ("%30.20g", X [j]) ; if (Xz) printf (" + (1i*%30.20g)", Xz[j]) ; printf ("\n") ; } printf ("] ; \n") ; } /* ========================================================================== */ static void dump_perm (char *name, Int n, Int P [ ]) { Int j ; printf ("\n%s = [\n", name) ; for (j = 0 ; j < n ; j++) { printf (""ID"\n", 1+P [j]) ; } printf ("] ; \n") ; printf ("%s = %s' ;\n", name, name) ; } /* ========================================================================== */ /* error: display message and exit */ /* ========================================================================== */ static void error (char *s, double x) { printf ("TEST FAILURE: %s %g ", s, x) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) printf (" umf_malloc_count "ID"\n", UMF_malloc_count) ; #endif printf ("\n") ; exit (1) ; } /* ========================================================================== */ /* resid: compute the (possibly permuted) residual. return maxnorm of resid */ /* ========================================================================== */ static double resid ( Int n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double x [ ], double xz [ ], double b [ ], double bz [ ], double r [ ], double rz [ ], Int transpose, Int P [ ], Int Q [ ], double Wx [ ] /* size 2*n double workspace */ ) { Int i, j, k, p ; double norm, ra, *wx, *wz ; Entry bb, xx, aa ; wx = Wx ; wz = wx + n ; /* transpose: UMFPACK_A r = P'AQ'x - b Pr = AQ'x - Pb we compute and return Pr, not r. transpose: UMFPACK_At r = QA'Px - b Q'r = A'Px - Q'b we compute and return Q'r, not r. transpose: UMFPACK_Aat r = QA.'Px - b Q'r = A.'Px - Q'b we compute and return Q'r, not r. */ if (transpose == UMFPACK_A) { if (!P) /* r = -b */ { for (i = 0 ; i < n ; i++) { ASSIGN (bb, b, bz, i, SPLIT(bz)) ; r [i] = -REAL_COMPONENT (bb) ; rz[i] = -IMAG_COMPONENT (bb) ; } } else /* r = -Pb */ { for (k = 0 ; k < n ; k++) { ASSIGN (bb, b, bz, P [k], SPLIT(bz)) ; r [k] = -REAL_COMPONENT (bb) ; rz[k] = -IMAG_COMPONENT (bb) ; } } if (!Q) /* w = x */ { for (j = 0 ; j < n ; j++) { ASSIGN (xx, x, xz, j, SPLIT(xz)) ; wx[j] = REAL_COMPONENT (xx) ; wz[j] = IMAG_COMPONENT (xx) ; } } else /* w = Q'x */ { for (k = 0 ; k < n ; k++) { ASSIGN (xx, x, xz, Q [k], SPLIT(xz)) ; wx[k] = REAL_COMPONENT (xx) ; wz[k] = IMAG_COMPONENT (xx) ; } } /* r = r + Aw */ for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; ASSIGN (aa, Ax, Az, p, SPLIT(Az)) ; r [i] += REAL_COMPONENT(aa) * wx[j] ; r [i] -= IMAG_COMPONENT(aa) * wz[j] ; rz[i] += IMAG_COMPONENT(aa) * wx[j] ; rz[i] += REAL_COMPONENT(aa) * wz[j] ; } } /* note that we just computed Pr, not r */ } else if (transpose == UMFPACK_At) { if (!Q) /* r = -b */ { for (i = 0 ; i < n ; i++) { ASSIGN (bb, b, bz, i, SPLIT(bz)) ; r [i] = -REAL_COMPONENT (bb) ; rz[i] = -IMAG_COMPONENT (bb) ; } } else /* r = -Q'b */ { for (k = 0 ; k < n ; k++) { ASSIGN (bb, b, bz, Q [k], SPLIT(bz)) ; r [k] = -REAL_COMPONENT (bb) ; rz[k] = -IMAG_COMPONENT (bb) ; } } if (!P) /* w = x */ { for (j = 0 ; j < n ; j++) { ASSIGN (xx, x, xz, j, SPLIT(xz)) ; wx[j] = REAL_COMPONENT (xx) ; wz[j] = IMAG_COMPONENT (xx) ; } } else /* w = Px */ { for (k = 0 ; k < n ; k++) { ASSIGN (xx, x, xz, P [k], SPLIT(xz)) ; wx[k] = REAL_COMPONENT (xx) ; wz[k] = IMAG_COMPONENT (xx) ; } } /* r = r + A'w */ for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; ASSIGN (aa, Ax, Az, p, SPLIT(Az)) ; /* complex conjugate */ r [j] += REAL_COMPONENT(aa) * wx[i] ; r [j] += IMAG_COMPONENT(aa) * wz[i] ; rz[j] -= IMAG_COMPONENT(aa) * wx[i] ; rz[j] += REAL_COMPONENT(aa) * wz[i] ; } } /* note that we just computed Q'r, not r */ } else if (transpose == UMFPACK_Aat) { if (!Q) /* r = -b */ { for (i = 0 ; i < n ; i++) { ASSIGN (bb, b, bz, i, SPLIT(bz)) ; r [i] = -REAL_COMPONENT (bb) ; rz[i] = -IMAG_COMPONENT (bb) ; } } else /* r = -Q'b */ { for (k = 0 ; k < n ; k++) { ASSIGN (bb, b, bz, Q [k], SPLIT(bz)) ; r [k] = -REAL_COMPONENT (bb) ; rz[k] = -IMAG_COMPONENT (bb) ; } } if (!P) /* w = x */ { for (j = 0 ; j < n ; j++) { ASSIGN (xx, x, xz, j, SPLIT(xz)) ; wx[j] = REAL_COMPONENT (xx) ; wz[j] = IMAG_COMPONENT (xx) ; } } else /* w = Px */ { for (k = 0 ; k < n ; k++) { ASSIGN (xx, x, xz, P [k], SPLIT(xz)) ; wx[k] = REAL_COMPONENT (xx) ; wz[k] = IMAG_COMPONENT (xx) ; } } /* r = r + A.'w */ for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; ASSIGN (aa, Ax, Az, p, SPLIT(Az)) ; /* not complex conjugate */ r [j] += REAL_COMPONENT(aa) * wx[i] ; r [j] -= IMAG_COMPONENT(aa) * wz[i] ; rz[j] += IMAG_COMPONENT(aa) * wx[i] ; rz[j] += REAL_COMPONENT(aa) * wz[i] ; } } /* note that we just computed Q'r, not r */ } norm = 0. ; for (i = 0 ; i < n ; i++) { Entry rr ; /* --- */ /* ASSIGN (rr, r [i], rz [i]) ; */ ASSIGN (rr, r, rz, i, TRUE) ; /* --- */ ABS (ra, rr) ; norm = MAX (norm, ra) ; } return (norm) ; } /* ========================================================================== */ /* irand: return a random Integer in the range 0 to n-1 */ /* ========================================================================== */ static Int irand (Int n) { return (rand ( ) % n) ; } /* ========================================================================== */ /* xrand: return a random double, > 0 and <= 1 */ /* ========================================================================== */ /* rand ( ) returns an Integer in the range 0 to RAND_MAX */ static double xrand ( ) { return ((1.0 + (double) rand ( )) / (1.0 + (double) RAND_MAX)) ; } /* ========================================================================== */ /* randperm: generate a random permutation of 0..n-1 */ /* ========================================================================== */ static void randperm (Int n, Int P [ ]) { Int i, t, k ; for (i = 0 ; i < n ; i++) { P [i] = i ; } for (i = n-1 ; i > 0 ; i--) { k = irand (i) ; /* swap positions i and k */ t = P [k] ; P [k] = P [i] ; P [i] = t ; } } /* ========================================================================== */ /* do_solvers: test Ax=b, etc */ /* ========================================================================== */ static double do_solvers ( Int n_row, Int n_col, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double b [ ], double bz [ ], double Control [ ], double Info [ ], void *Numeric, Int Lp [ ], Int Li [ ], double Lx [ ], double Lz [ ], Int Up [ ], Int Ui [ ], double Ux [ ], double Uz [ ], Int P [ ], Int Q [ ], double x [ ], double xz [ ], double r [ ], double rz [ ], Int W [ ], double Wx [ ], Int split /* TRUE if complex variables split, FALSE if merged */ ) { double maxrnorm = 0.0, rnorm, xnorm, xa, xaz, *Rb, *Rbz, *y, *yz, *Rs, *Cx, *Cz ; double Con [UMFPACK_CONTROL] ; Int *noP = INULL, *noQ = INULL, irstep, orig, i, prl, status, n, s1, s2, do_recip, *Cp, *Ci, nz, scale ; Entry bb, xx, xtrue ; NumericType *Num ; #ifdef COMPLEX if (split) { if (!Az || !bz || !xz || !Lz || !Uz || !xz) error ("bad split\n", 0.) ; } else { if ( Az || bz || xz || Lz || Uz || xz) error ("bad merge\n", 0.) ; } /* rz is never passed to umfpack, and is always split in ut.c */ if (!rz) error ("bad rz\n", 0.) ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ n = MAX (n_row, n_col) ; if (n == 0) error ("n zero", 0.) ; /* n = MAX (n,1) ; */ /* n_inner = MIN (n_row, n_col) ; */ if (Control) { orig = Control [UMFPACK_IRSTEP] ; prl = Control [UMFPACK_PRL] ; } else { prl = UMFPACK_DEFAULT_PRL ; } if (n_row == n_col) { nz = Ap [n_col] ; nz = MAX (nz, Lp [n_col]) ; nz = MAX (nz, Up [n_col]) ; Cp = (Int *) malloc ((n_col+1) * sizeof (Int)) ; Ci = (Int *) malloc ((nz+1) * sizeof (Int)) ; Cx = (double *) calloc (2*(nz+1) , sizeof (double)) ; if (split) { Cz = Cx + nz ; } else { Cz = DNULL ; } if (!Cp || !Ci || !Cx) error ("out of memory (0)", 0.) ; } else { Cp = INULL ; Ci = INULL ; Cx = DNULL ; } Num = (NumericType *) Numeric ; scale = (Num->Rs != DNULL) ; /* ---------------------------------------------------------------------- */ /* error handling */ /* ---------------------------------------------------------------------- */ if (n_row != n_col) { status = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az) , CARG(x,xz), CARG(b,bz), Numeric, DNULL, DNULL) ; if (status != UMFPACK_ERROR_invalid_system) error ("rectangular Ax=b should have failed\n", 0.) ; } else { status = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az) , CARG(DNULL,xz), CARG(b,bz), Numeric, DNULL, DNULL) ; if (status != UMFPACK_ERROR_argument_missing) error ("missing x should have failed\n", 0.) ; status = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(DNULL,Az) , CARG(DNULL,xz), CARG(b,bz), Numeric, DNULL, DNULL) ; if (status != UMFPACK_ERROR_argument_missing) error ("missing Ax should have failed\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* Ax=b */ /* ---------------------------------------------------------------------- */ for (irstep = -1 ; irstep <= 3 ; irstep++) { if (Control) { for (i = 0 ; i < UMFPACK_CONTROL ; i++) Con [i] = Control [i] ; } else { UMFPACK_defaults (Con) ; } Con [UMFPACK_PRL] = prl ; Con [UMFPACK_IRSTEP] = MAX (0, irstep) ; if (prl >= 2) printf ("1: do solve: Ax=b: "ID"\n", irstep) ; if (irstep == -1) { status = UMFPACK_solve (UMFPACK_A, INULL, INULL, CARG(DNULL,DNULL) , CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; } else { status = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az) , CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; } UMFPACK_report_status (Con, status) ; UMFPACK_report_info (Con, Info) ; if (n_row != n_col) { if (status != UMFPACK_ERROR_invalid_system) { dump_mat ("A", n_row, n_col, Ap, Ai, CARG(Ax,Az)) ; error ("rectangular Ax=b should have failed\n", 0.) ; } /* return immediately if the matrix is rectangular */ return (0.) ; } if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("Ax=b singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; error ("Ax=b failed\n", 0.) ; } else { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("1: rnorm Ax=b is %g\n", rnorm) ; maxrnorm = MAX (rnorm, maxrnorm) ; /* compare x with xtrue */ xnorm = 0. ; for (i = 0 ; i < n ; i++) { REAL_COMPONENT(xtrue) = 1.0 + ((double) i) / ((double) n) ; #ifdef COMPLEX IMAG_COMPONENT(xtrue) = 1.3 - ((double) i) / ((double) n) ; #endif /* --- */ /* ASSIGN (xx, x [i] - xtrue, xz[i]-xtruez) ; */ ASSIGN (xx, x, xz, i, SPLIT(xz)) ; DECREMENT (xx, xtrue) ; /* --- */ ABS (xa, xx) ; xnorm = MAX (xnorm, xa) ; } #if 0 { FILE *f ; char s [200] ; sprintf (s, "b_XXXXXX") ; mkstemp (s) ; f = fopen (s, "w") ; for (i = 0 ; i < n ; i++) fprintf (f, "%40.25e %40.25e\n", b [i], bz [i]) ; fclose (f) ; s [0] = 'x' ; f = fopen (s, "w") ; for (i = 0 ; i < n ; i++) fprintf (f, "%40.25e %40.25e\n", x [i], xz [i]) ; fclose (f) ; } #endif if (check_tol && (status == UMFPACK_OK && (rnorm > TOL || xnorm > TOL))) { Con [UMFPACK_PRL] = 5 ; UMFPACK_report_control (Con) ; printf ("Ax=b inaccurate %g %g\n", rnorm, xnorm) ; dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; printf ("\nb: ") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; printf ("\nx: ") ; UMFPACK_report_vector (n, CARG(x,xz), Con) ; error ("Ax=b inaccurate", MAX (rnorm, xnorm)) ; } maxrnorm = MAX (xnorm, maxrnorm) ; } #ifdef DEBUGGING printf ("\n") ; #endif if (prl >= 2) printf ("Ax=b irstep "ID" attempted %g\n", irstep, Info [UMFPACK_IR_ATTEMPTED]) ; if (irstep > Info [UMFPACK_IR_ATTEMPTED]) { break ; } } if (n != n_row && n != n_col && n <= 0) error ("huh?", 0.) ; /* ---------------------------------------------------------------------- */ /* A'x=b */ /* ---------------------------------------------------------------------- */ for (irstep = 0 ; irstep <= 3 ; irstep++) { if (Control) { for (i = 0 ; i < UMFPACK_CONTROL ; i++) Con [i] = Control [i] ; } else { UMFPACK_defaults (Con) ; } Con [UMFPACK_PRL] = prl ; Con [UMFPACK_IRSTEP] = irstep ; if (prl >= 2) printf ("do solve: A'x=b: "ID"\n", irstep) ; status = UMFPACK_solve (UMFPACK_At, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; UMFPACK_report_status (Con, status) ; /* UMFPACK_report_info (Con, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("A'x=b singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; error ("A'x=b failed\n", 0.) ; } else { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_At, noP, noQ, Wx) ; if (prl >= 2) printf ("2: rnorm A'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { Con [UMFPACK_PRL] = 99 ; printf ("A'x=b inaccurate %g\n", rnorm) ; dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; /* printf ("\nA: ") ; UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; printf ("\nb: ") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; printf ("\nx: ") ; UMFPACK_report_vector (n, CARG(x,xz), Con) ; error ("A'x=b inaccurate", MAX (rnorm, xnorm)) ; */ } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(1)) ; if (status != UMFPACK_OK) { error ("transposed A'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("2b: rnorm A'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { Con [UMFPACK_PRL] = 99 ; printf ("transpose A'x=b inaccurate %g\n", rnorm) ; /* printf ("\nA: ") ; UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; printf ("\nb: ") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; printf ("\nx: ") ; UMFPACK_report_vector (n, CARG(x,xz), Con) ; error ("A'x=b inaccurate", MAX (rnorm, xnorm)) ; */ } maxrnorm = MAX (rnorm, maxrnorm) ; } if (prl >= 2) printf ("A'x=b irstep "ID" attempted %g\n", irstep, Info [UMFPACK_IR_ATTEMPTED]) ; if (irstep > Info [UMFPACK_IR_ATTEMPTED]) { break ; } } /* ---------------------------------------------------------------------- */ /* A.'x=b */ /* ---------------------------------------------------------------------- */ for (irstep = 0 ; irstep <= 3 ; irstep++) { if (Control) { for (i = 0 ; i < UMFPACK_CONTROL ; i++) Con [i] = Control [i] ; } else { UMFPACK_defaults (Con) ; } Con [UMFPACK_PRL] = prl ; Con [UMFPACK_IRSTEP] = irstep ; if (prl >= 2) printf ("do solve: A.'x=b: "ID"\n", irstep) ; status = UMFPACK_solve (UMFPACK_Aat, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; UMFPACK_report_status (Con, status) ; /* UMFPACK_report_info (Con, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("A.'x=b singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; error ("A.'x=b failed\n", 0.) ; } else { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_Aat, noP, noQ, Wx) ; if (prl >= 2) printf ("3: rnorm A.'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { Con [UMFPACK_PRL] = 99 ; printf ("A.'x=b inaccurate %g\n", rnorm) ; /* dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; printf ("\nA: ") ; UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; printf ("\nb: ") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; printf ("\nx: ") ; UMFPACK_report_vector (n, CARG(x,xz), Con) ; error ("A.'x=b inaccurate %g\n", MAX (rnorm, xnorm)) ; */ } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(0)) ; if (status != UMFPACK_OK) { error ("transposed A.'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("2b: rnorm A'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { Con [UMFPACK_PRL] = 99 ; printf ("transpose A'x=b inaccurate %g\n", rnorm) ; /* printf ("\nA: ") ; UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; printf ("\nb: ") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; printf ("\nx: ") ; UMFPACK_report_vector (n, CARG(x,xz), Con) ; error ("A'x=b inaccurate", MAX (rnorm, xnorm)) ; */ } maxrnorm = MAX (rnorm, maxrnorm) ; } if (prl >= 2) printf ("A.'x=b irstep "ID" attempted %g\n", irstep, Info [UMFPACK_IR_ATTEMPTED]) ; if (irstep > Info [UMFPACK_IR_ATTEMPTED]) { break ; } } if (Control) { for (i = 0 ; i < UMFPACK_CONTROL ; i++) Con [i] = Control [i] ; } else { UMFPACK_defaults (Con) ; } /* ---------------------------------------------------------------------- */ /* wsolve Ax=b */ /* ---------------------------------------------------------------------- */ /* printf ("do wsolve: Ax=b:\n") ; */ if (Control) Control [UMFPACK_IRSTEP] = 1 ; if (prl >= 2) printf ("2: do solve: Ax=b: "ID" (wsolve) \n", irstep) ; status = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info, W, Wx) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("Ax=b wsolve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; error ("Ax=b wsolve failure\n", 0.) ; } else { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("4: rnorm Ax=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; error ("wsolve inaccurate %g\n", rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } if (Control) Control [UMFPACK_IRSTEP] = orig ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* prl = 999 ; */ Rs = (double *) malloc (n * sizeof (double)) ; /* [ */ Rb = (double *) calloc (2*n , sizeof (double)) ; /* [ */ y = (double *) calloc (2*n , sizeof (double)) ; /* [ */ /* ---------------------------------------------------------------------- */ /* Ax=b with individual calls */ /* ---------------------------------------------------------------------- */ if (split) { yz = y + n ; Rbz = Rb + n ; } else { yz = DNULL ; Rbz = DNULL ; } /* status = UMFPACK_get_scale (Rs, Numeric) ; */ status = UMFPACK_get_numeric ( INULL, INULL, CARG(DNULL,DNULL), INULL, INULL, CARG(DNULL,DNULL), INULL, INULL, CARG (DNULL,DNULL), &do_recip, Rs, Numeric) ; if (status != UMFPACK_OK) error ("get Rs failed", (double) status) ; /* printf ("Rs:\n") ; for (i = 0 ; i < n ; i++) { printf (" Rs [%d] = %g\n", i, Rs [i]) ; } */ if (prl >= 2) printf ("3: do solve: Ax=b in different steps:\n") ; /* Rb = R*b */ /* dump_vec ("b", n, b, bz) ; */ status = UMFPACK_scale (CARG (Rb, Rbz), CARG (b,bz), Numeric) ; if (status != UMFPACK_OK) error ("Rb failed", (double) status) ; /* dump_vec ("R*b", n, Rb, Rbz) ; */ /* UMFPACK_defaults (Con) ; Con [UMFPACK_PRL] = 999 ; printf ("Rb:\n") ; UMFPACK_report_vector (n, CARG(Rb,Rbz), Con) ; printf ("b:\n") ; UMFPACK_report_vector (n, CARG(b,bz), Con) ; error ("finish early\n", rnorm) ; */ /* solve Ly = P*(Rb) */ s1 = UMFPACK_solve (UMFPACK_Pt_L, Ap, Ai, CARG(Ax,Az), CARG(y,yz), CARG(Rb,Rbz), Numeric, Control, Info) ; if (! (s1 == UMFPACK_OK || s1 == UMFPACK_WARNING_singular_matrix)) { error ("P'Ly=Rb failed", (double) status) ; } /* solve UQ'x=y */ s2 = UMFPACK_solve (UMFPACK_U_Qt, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(y,yz), Numeric, Control, Info) ; if (! (s2 == UMFPACK_OK || s2 == UMFPACK_WARNING_singular_matrix)) { error ("UQ'x=y failed", (double) status) ; } if (s1 == UMFPACK_OK && s2 == UMFPACK_OK) { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("5: rnorm Ax=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { /* error ("Ax=b (different steps) inaccurate ", rnorm) ; */ printf ("Ax=b (different steps) inaccurate %g !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!", rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } if (prl >= 2) printf ("4: do solve: Ax=b, different steps, own scale:\n") ; /* Rb = R*b */ if (do_recip) { for (i = 0 ; i < n ; i++) { ASSIGN (bb, b, bz, i, SPLIT(bz)) ; SCALE (bb, Rs [i]) ; if (split) { Rb [i] = REAL_COMPONENT(bb) ; Rbz [i] = IMAG_COMPONENT(bb) ; } else { Rb [2*i] = REAL_COMPONENT(bb) ; Rb [2*i+1] = IMAG_COMPONENT(bb) ; } /* Rb [i] = REAL_COMPONENT(bb) * Rs [i] ; Rbz [i] = IMAG_COMPONENT(bb) * Rs [i] ; */ } } else { for (i = 0 ; i < n ; i++) { ASSIGN (bb, b, bz, i, SPLIT(bz)) ; SCALE_DIV (bb, Rs [i]) ; if (split) { Rb [i] = REAL_COMPONENT(bb) ; Rbz [i] = IMAG_COMPONENT(bb) ; } else { Rb [2*i] = REAL_COMPONENT(bb) ; Rb [2*i+1] = IMAG_COMPONENT(bb) ; } /* Rb [i] = REAL_COMPONENT(bb) / Rs [i] ; Rbz [i] = IMAG_COMPONENT(bb) / Rs [i] ; */ } } /* solve Ly = P*(Rb) */ s1 = UMFPACK_solve (UMFPACK_Pt_L, Ap, Ai, CARG(Ax,Az), CARG(y,yz), CARG(Rb,Rbz), Numeric, Control, Info) ; if (! (s1 == UMFPACK_OK || s1 == UMFPACK_WARNING_singular_matrix)) { error ("P'Ly=Rb failed", (double) status) ; } /* solve UQ'x=y */ s2 = UMFPACK_solve (UMFPACK_U_Qt, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(y,yz), Numeric, Control, Info) ; if (! (s2 == UMFPACK_OK || s2 == UMFPACK_WARNING_singular_matrix)) { error ("UQ'x=y failed", (double) status) ; } if (s1 == UMFPACK_OK && s2 == UMFPACK_OK) { rnorm = resid (n, Ap, Ai, Ax, Az, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("6: rnorm Ax=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { error ("Ax=b (different steps, own scale) inaccurate ", rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* (PAQ)'x=b with individual calls, no scaling */ /* ---------------------------------------------------------------------- */ if (!scale) { int k ; s1 = UMFPACK_solve (UMFPACK_Ut, Ap, Ai, CARG(Ax,Az), CARG(y,yz), CARG(b,bz), Numeric, Control, Info) ; if (! (s1 == UMFPACK_OK || s1 == UMFPACK_WARNING_singular_matrix)) { error ("U'y=b failed", (double) status) ; } s2 = UMFPACK_solve (UMFPACK_Lt, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(y,yz), Numeric, Control, Info) ; if (! (s2 == UMFPACK_OK || s2 == UMFPACK_WARNING_singular_matrix)) { error ("L'x=y failed", (double) status) ; } /* check using UMFPACK_transpose */ if (s1 == UMFPACK_OK && s2 == UMFPACK_OK) { status = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), P, Q, Cp, Ci, CARG(Cx,Cz) C1ARG(1)) ; if (status != UMFPACK_OK) { error ("transposed (PAQ)'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("99b: rnorm (PAQ)'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; dump_mat ("C", n, n, Cp, Ci, CARG(Cx,Cz)) ; dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; printf ("P = [ ") ; for (k = 0 ; k < n ; k++) printf ("%d ", P [k]) ; printf ("]\n") ; printf ("Q = [ ") ; for (k = 0 ; k < n ; k++) printf ("%d ", Q [k]) ; printf ("]\n") ; error ("transposed (PAQ)'x=b inaccurate\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } } /* ---------------------------------------------------------------------- */ /* (PAQ).'x=b with individual calls, no scaling */ /* ---------------------------------------------------------------------- */ if (!scale) { int k ; s1 = UMFPACK_solve (UMFPACK_Uat, Ap, Ai, CARG(Ax,Az), CARG(y,yz), CARG(b,bz), Numeric, Control, Info) ; if (! (s1 == UMFPACK_OK || s1 == UMFPACK_WARNING_singular_matrix)) { error ("U'y=b failed", (double) status) ; } s2 = UMFPACK_solve (UMFPACK_Lat, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(y,yz), Numeric, Control, Info) ; if (! (s2 == UMFPACK_OK || s2 == UMFPACK_WARNING_singular_matrix)) { error ("L'x=y failed", (double) status) ; } /* check using UMFPACK_transpose */ if (s1 == UMFPACK_OK && s2 == UMFPACK_OK) { status = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), P, Q, Cp, Ci, CARG(Cx,Cz) C1ARG(0)) ; if (status != UMFPACK_OK) { error ("transposed (PAQ).'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; /* printf ("98b: rnorm (PAQ)'x=b is %g\n", rnorm) ; */ if (check_tol && rnorm > TOL) { dump_mat ("A", n, n, Ap, Ai, CARG(Ax,Az)) ; dump_mat ("C", n, n, Cp, Ci, CARG(Cx,Cz)) ; dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; printf ("P = [ ") ; for (k = 0 ; k < n ; k++) printf ("%d ", P [k]) ; printf ("]\n") ; printf ("Q = [ ") ; for (k = 0 ; k < n ; k++) printf ("%d ", Q [k]) ; printf ("]\n") ; error ("transposed (PAQ).'x=b inaccurate\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ free (y) ; /* ] */ free (Rb) ; /* ] */ free (Rs) ; /* ] */ /* ---------------------------------------------------------------------- */ /* Lx=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: Lx=b:\n") ; status = UMFPACK_solve (UMFPACK_L, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { error ("Lx=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("Lx=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("7: rnorm Lx=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("Lx=b inaccurate %g", rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* L'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: L'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Lt, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L'x=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L'x=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_At, noP, noQ, Wx) ; if (prl >= 2) printf ("7: rnorm L'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Lp, Li, CARG(Lx,Lz), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(1)) ; if (status != UMFPACK_OK) { error ("transposed L'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("7b: rnorm L'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("transposed L'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* L.'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: L.'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Lat, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L.'x=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L.'x=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_Aat, noP, noQ, Wx) ; if (prl >= 2) printf ("8: rnorm L.'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L.'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Lp, Li, CARG(Lx,Lz), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(0)) ; if (status != UMFPACK_OK) { error ("transposed L'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("8b: rnorm L'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("8b transposed L'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* Ux=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: Ux=b:\n") ; status = UMFPACK_solve (UMFPACK_U, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("Ux=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("Ux=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("9: rnorm Ux=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("Ux=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* U'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: U'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Ut, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("U'x=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("U'x=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_At, noP, noQ, Wx) ; if (prl >= 2) printf ("10: rnorm U'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("U'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Up, Ui, CARG(Ux,Uz), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(1)) ; if (status != UMFPACK_OK) { error ("transposed U'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("10b: rnorm U'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("10b transposed U'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* U.'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: U.'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Uat, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("U.'x=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("U.'x=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_Aat, noP, noQ, Wx) ; if (prl >= 2) printf ("11: rnorm U.'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("U.'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; /* also check using UMFPACK_transpose */ status = UMFPACK_transpose (n, n, Up, Ui, CARG(Ux,Uz), noP, noQ, Cp, Ci, CARG(Cx,Cz) C1ARG(0)) ; if (status != UMFPACK_OK) { error ("11b transposed U.'x=b failed\n", 0.) ; } rnorm = resid (n, Cp, Ci, Cx, Cz, x, xz, b, bz, r, rz, UMFPACK_A, noP, noQ, Wx) ; if (prl >= 2) printf ("11b: rnorm U'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("11b transposed U'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* P'Lx=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: P'Lx=b:\n") ; status = UMFPACK_solve (UMFPACK_Pt_L, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("P'Lx=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("P'Lx=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_A, P, noQ, Wx) ; if (prl >= 2) printf ("12: rnorm P'Lx=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("P'Lx=b inaccurate: %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* L'Px=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: L'Px=b:\n") ; status = UMFPACK_solve (UMFPACK_Lt_P, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { error ("L'Px=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L'Px=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_At, P, noQ, Wx) ; if (prl >= 2) printf ("13: rnorm L'Px=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L'Px=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* L.'Px=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: L.'Px=b:\n") ; status = UMFPACK_solve (UMFPACK_Lat_P, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { error ("L.'Px=b solve singular!", 0.) ; } else if (status != UMFPACK_OK) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L.'Px=b failed\n", 0.) ; } else { rnorm = resid (n, Lp, Li, Lx, Lz, x, xz, b, bz, r, rz, UMFPACK_Aat, P, noQ, Wx) ; if (prl >= 2) printf ("14: rnorm L.'Px=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("L", n, n, Lp, Li, CARG(Lx,Lz)) ; error ("L.'Px=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* UQ'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: UQ'x=b:\n") ; status = UMFPACK_solve (UMFPACK_U_Qt, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("UQ'x=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("UQ'x=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_A, noP, Q, Wx) ; if (prl >= 2) printf ("15: rnorm UQ'x=b is %g\n", rnorm) ; if (check_tol && status == UMFPACK_OK && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("UQ'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* QU'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: QU'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Q_Ut, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("QU'x=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("QU'x=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_At, noP, Q, Wx) ; if (prl >= 2) printf ("16: rnorm QU'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("QU'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* QU.'x=b */ /* ---------------------------------------------------------------------- */ if (prl >= 2) printf ("do solve: QU.'x=b:\n") ; status = UMFPACK_solve (UMFPACK_Q_Uat, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; /* UMFPACK_report_info (Control, Info) ; */ if (status == UMFPACK_WARNING_singular_matrix) { if (prl >= 2) printf ("QU.'x=b solve singular\n") ; } else if (status != UMFPACK_OK) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("QU.'x=b failed\n", 0.) ; } else { rnorm = resid (n, Up, Ui, Ux, Uz, x, xz, b, bz, r, rz, UMFPACK_Aat, noP, Q, Wx) ; if (prl >= 2) printf ("17: rnorm QU.'x=b is %g\n", rnorm) ; if (check_tol && rnorm > TOL) { dump_mat ("U", n, n, Up, Ui, CARG(Ux,Uz)) ; error ("QU.'x=b inaccurate %g\n",rnorm) ; } maxrnorm = MAX (rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* done */ /* ---------------------------------------------------------------------- */ if (n_row == n_col) { free (Cp) ; free (Ci) ; free (Cx) ; } return (maxrnorm) ; } /* ========================================================================== */ /* do_symnum: factor A once, and then test the solves - return if error */ /* ========================================================================== */ static double do_symnum ( Int n_row, Int n_col, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double b [ ], double bz [ ], double Control [ ], Int Qinit [ ], double x [ ], double xz [ ], double r [ ], double rz [ ], double Wx [ ], Int P [ ], Int Q [ ], Int Qtree [ ], Int Ptree [ ], Int W [ ], Int Lp [ ], Int Up [ ], Int save_and_load, Int split, /* TRUE if complex variables split, FALSE if merged */ Int det_check, double det_x, double det_z ) { void *Symbolic, *Numeric ; double *Lx, *Ux, *Lz, *Uz, rnorm, *Rs ; Int *noP = INULL, *noQ = INULL, *Li, *Ui, n, n_inner, n1, do_recip ; Int lnz, unz, nz, nn, nfr, nchains, nsparse_col, status ; Int *Front_npivots, *Front_parent, *Chain_start, *Chain_maxrows ; Int *Chain_maxcols, *Lrowi, *Lrowp, is_singular ; double Info [UMFPACK_INFO], *Lrowx, *Lrowz, *Dx, *Dz ; Int nnrow, nncol, nzud, *Front_1strow, *Front_leftmostdesc, prl, i ; double mind, maxd, rcond ; Entry d ; double da, deterr ; NumericType *Num ; SymbolicType *Sym ; double Mx [2], Mz, Exp ; #ifdef COMPLEX if (split) { if (!Az || !bz || !xz) error ("bad split\n", 0.) ; } else { if ( Az || bz || xz) error ("bad merge\n", 0.) ; } if (!rz) error ("bad rz\n", 0.) ; #endif /* ---------------------------------------------------------------------- */ /* do the symbolic factorization */ /* ---------------------------------------------------------------------- */ prl = Control ? Control [UMFPACK_PRL] : UMFPACK_DEFAULT_PRL ; n = MAX (n_row, n_col) ; n = MAX (n,1) ; n_inner = MIN (n_row, n_col) ; if (prl > 2) { printf ("\nA::\n") ; status = UMFPACK_report_matrix (n_row, n_col, Ap, Ai, CARG(Ax,Az), 1, Control) ; printf ("\nb::\n") ; if (n_row == n_col) UMFPACK_report_vector (n, CARG(b,bz), Control) ; } if (Qinit) { /* dump_perm ("Qinit", n_col, Qinit) ; */ status = UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; /* ( */ } else { status = UMFPACK_symbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), &Symbolic, Control, Info) ; } UMFPACK_report_status (Control, status) ; UMFPACK_report_info (Control, Info) ; if (!Symbolic) { UMFPACK_report_info (Control, Info) ; error ("symbolic invalid\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* test save and load */ /* ---------------------------------------------------------------------- */ status = UMFPACK_save_symbolic (Symbolic, "s.umf") ; if (status != UMFPACK_OK) { error ("save symbolic failed\n", 0.) ; } UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, "s.umf") ; if (status != UMFPACK_OK) { error ("load symbolic failed\n", 0.) ; } if (n < 15) { int umf_fail_save [3], memcnt ; status = UMFPACK_save_symbolic (Symbolic, (char *) NULL) ; if (status != UMFPACK_OK) { error ("save symbolic failed\n", 0.) ; } UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, (char *) NULL) ; if (status != UMFPACK_OK) { error ("load symbolic failed\n", 0.) ; } /* test memory handling */ umf_fail_save [0] = umf_fail ; umf_fail_save [1] = umf_fail_lo ; umf_fail_save [2] = umf_fail_hi ; umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, (char *) NULL) ; if (status != UMFPACK_OK) { error ("load symbolic failed\n", 0.) ; } Sym = (SymbolicType *) Symbolic ; memcnt = 12 ; if (Sym->esize > 0) { memcnt++ ; } if (Sym->prefer_diagonal > 0) { memcnt++ ; } for (i = 1 ; i <= memcnt ; i++) { umf_fail = i ; UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, (char *) NULL) ; if (status != UMFPACK_ERROR_out_of_memory) { error ("load symbolic should have failed\n", 0.) ; } } umf_fail = memcnt + 1 ; UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, (char *) NULL) ; if (status != UMFPACK_OK) { error ("load symbolic failed (edge)\n", 0.) ; } umf_fail = umf_fail_save [0] ; umf_fail_lo = umf_fail_save [1] ; umf_fail_hi = umf_fail_save [2] ; UMFPACK_free_symbolic (&Symbolic) ; status = UMFPACK_load_symbolic (&Symbolic, "s.umf") ; if (status != UMFPACK_OK) { error ("load symbolic failed\n", 0.) ; } } /* ---------------------------------------------------------------------- */ /* get the symbolic factorization */ /* ---------------------------------------------------------------------- */ if (prl > 2) printf ("\nSymbolic: ") ; status = UMFPACK_report_symbolic (Symbolic, Control) ; if (status != UMFPACK_OK) { UMFPACK_free_symbolic (&Symbolic) ; error ("bad symbolic report\n", 0.) ; } Front_npivots = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Front_parent = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Front_1strow = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Front_leftmostdesc = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Chain_start = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Chain_maxrows = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Chain_maxcols = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ if (!Front_npivots || !Front_parent || !Chain_start || !Chain_maxrows || !Front_leftmostdesc || !Front_1strow || !Chain_maxcols || !Qtree || !Ptree) error ("out of memory (1)",0.) ; status = UMFPACK_get_symbolic (&nnrow, &nncol, &n1, &nz, &nfr, &nchains, Ptree, Qtree, Front_npivots, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (status != UMFPACK_OK) { UMFPACK_report_info (Control, Info) ; error ("get symbolic failed\n", 0.) ; } free (Chain_maxcols) ; /* ] */ free (Chain_maxrows) ; /* ] */ free (Chain_start) ; /* ] */ free (Front_leftmostdesc) ; /* ] */ free (Front_1strow) ; /* ] */ free (Front_parent) ; /* ] */ free (Front_npivots) ; /* ] */ if (!UMF_is_permutation (Qtree, W, n_col, n_col)) { error ("Qtree invalid\n", 0.) ; } if (!UMF_is_permutation (Ptree, W, n_row, n_row)) { error ("Ptree invalid\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* do the numerical factorization */ /* ---------------------------------------------------------------------- */ status = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; /* [ */ if (status != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; is_singular = (status == UMFPACK_WARNING_singular_matrix) ; UMFPACK_report_status (Control, status) ; UMFPACK_report_info (Control, Info) ; UMFPACK_free_symbolic (&Symbolic) ; /* ) */ if (!Numeric) { /* printf ("numeric bad: %g\n", Control [UMFPACK_ALLOC_INIT]) ; */ fflush (stdout) ; return (9e10) ; } if (prl > 2) printf ("Numeric: ") ; status = UMFPACK_report_numeric (Numeric, Control) ; if (status != UMFPACK_OK) { UMFPACK_free_numeric (&Numeric) ; error ("bad numeric report\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* get the determinant */ /* ---------------------------------------------------------------------- */ Mx [0] = 0. ; Mx [1] = 0. ; Mz = 0. ; Exp = 0. ; for (i = 0 ; i <= 3 ; i++) { if (i == 0) { status = UMFPACK_get_determinant (CARG (Mx, &Mz), &Exp, Numeric, Info) ; } else if (i == 1) { status = UMFPACK_get_determinant (CARG (Mx, &Mz), &Exp, Numeric, DNULL) ; } else if (i == 2) { status = UMFPACK_get_determinant (CARG (Mx, &Mz), DNULL, Numeric, Info) ; } else if (i == 3) { status = UMFPACK_get_determinant (CARG (Mx, DNULL), DNULL, Numeric, Info) ; } if (n_row == n_col) { if (status != UMFPACK_OK) { error ("bad det\n", 0.) ; } if (det_check && SCALAR_ABS (det_x < 1e100)) { if (i == 0 || i == 1) { deterr = SCALAR_ABS (det_x - (Mx [0] * pow (10.0, Exp))) ; } else if (i == 2 || i == 3) { deterr = SCALAR_ABS (det_x - Mx [0]) ; } if (deterr > 1e-7) { printf ("det: real err %g i: %d\n", deterr, i) ; error ("det: bad real part", det_x) ; } #ifdef COMPLEX if (i == 0 || i == 1) { deterr = SCALAR_ABS (det_z - (Mz * pow (10.0, Exp))) ; } else if (i == 2) { deterr = SCALAR_ABS (det_z - Mz) ; } else if (i == 3) { deterr = SCALAR_ABS (det_z - Mx [1]) ; } if (deterr > 1e-7) { printf ("det: imag err %g\n", deterr) ; error ("det: bad imag part", det_z) ; } #endif } } else { if (status != UMFPACK_ERROR_invalid_system) { error ("bad det (rectangluar)\n", 0.) ; } } } /* ---------------------------------------------------------------------- */ /* test save and load */ /* ---------------------------------------------------------------------- */ status = UMFPACK_save_numeric (Numeric, "n.umf") ; if (status != UMFPACK_OK) { error ("save numeric failed\n", 0.) ; } UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, "n.umf") ; if (status != UMFPACK_OK) { error ("load numeric failed\n", 0.) ; } if (n < 15) { int umf_fail_save [3], memcnt ; status = UMFPACK_save_numeric (Numeric, (char *) NULL) ; if (status != UMFPACK_OK) { error ("save numeric failed\n", 0.) ; } UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, (char *) NULL) ; if (status != UMFPACK_OK) { error ("load numeric failed\n", 0.) ; } /* test memory handling */ umf_fail_save [0] = umf_fail ; umf_fail_save [1] = umf_fail_lo ; umf_fail_save [2] = umf_fail_hi ; umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, (char *) NULL) ; if (status != UMFPACK_OK) { error ("load numeric failed\n", 0.) ; } Num = (NumericType *) Numeric ; memcnt = 11 ; if (Num->scale != UMFPACK_SCALE_NONE) { memcnt++ ; } if (Num->ulen > 0) { memcnt++ ; } for (i = 1 ; i <= memcnt ; i++) { umf_fail = i ; UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, (char *) NULL) ; if (status != UMFPACK_ERROR_out_of_memory) { error ("load numeric should have failed\n", 0.) ; } } umf_fail = memcnt + 1 ; UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, (char *) NULL) ; if (status != UMFPACK_OK) { printf ("memcnt %d\n", memcnt) ; error ("load numeric failed (edge)\n", 0.) ; } umf_fail = umf_fail_save [0] ; umf_fail_lo = umf_fail_save [1] ; umf_fail_hi = umf_fail_save [2] ; UMFPACK_free_numeric (&Numeric) ; status = UMFPACK_load_numeric (&Numeric, "n.umf") ; if (status != UMFPACK_OK) { error ("load numeric failed\n", 0.) ; } } /* ---------------------------------------------------------------------- */ /* get the LU factorization */ /* ---------------------------------------------------------------------- */ status = UMFPACK_get_lunz (&lnz, &unz, &nnrow, &nncol, &nzud, Numeric) ; if (status != UMFPACK_OK) { UMFPACK_report_info (Control, Info) ; error ("get lunz failure\n", 0.) ; UMFPACK_free_numeric (&Numeric) ; } /* guard against malloc of zero-sized arrays */ lnz = MAX (lnz,1) ; unz = MAX (unz,1) ; Rs = (double *) malloc ((n+1) * sizeof (double)) ; /* [ */ Li = (Int *) malloc (lnz * sizeof (Int)) ; /* [ */ Lx = (double *) calloc (2*lnz , sizeof (double)) ; /* [ */ Ui = (Int *) malloc (unz * sizeof (Int)) ; /* [ */ Ux = (double *) calloc (2*unz , sizeof (double)) ; /* [ */ Dx = (double *) calloc (2*n , sizeof (double)) ; /* [ */ Lrowp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Lrowi = (Int *) malloc (lnz * sizeof (Int)) ; /* [ */ Lrowx = (double *) calloc (2*lnz , sizeof (double)) ; /* [ */ if (!Li || !Lx || !Ui || !Ux || !Lrowp || !Lrowi || !Lrowx) error ("out of memory (2)\n",0.) ; if (split) { Dz = Dx + n ; Lrowz = Lrowx + lnz ; Lz = Lx + lnz ; Uz = Ux + unz ; } else { Dz = DNULL ; Lrowz = DNULL ; Lz = DNULL ; Uz = DNULL ; } status = UMFPACK_get_numeric (Lrowp, Lrowi, CARG(Lrowx,Lrowz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(Dx,Dz), &do_recip, Rs, Numeric) ; if (status != UMFPACK_OK) { UMFPACK_report_info (Control, Info) ; error ("get LU failed\n", 0.) ; } if (!UMF_is_permutation (P, W, n_row, n_row)) { error ("P invalid\n", 0.) ; } if (!UMF_is_permutation (Q, W, n_col, n_col)) { error ("Q invalid\n", 0.) ; } if (prl > 2) printf ("\nP: ") ; status = UMFPACK_report_perm (n_row, P, Control) ; if (status != UMFPACK_OK) { error ("bad P 1\n", 0.) ; } if (prl > 2) printf ("\nQ: ") ; status = UMFPACK_report_perm (n_col, Q, Control) ; if (status != UMFPACK_OK) { error ("bad Q 1\n", 0.) ; } if (prl > 2) printf ("\nL row: ") ; status = UMFPACK_report_matrix (n_row, n_inner, Lrowp, Lrowi, CARG(Lrowx,Lrowz), 0, Control) ; if (status != UMFPACK_OK) { error ("bad Lrow\n", 0.) ; } if (prl > 2) printf ("\nD, diag of U: ") ; status = UMFPACK_report_vector (n_inner, CARG(Dx,Dz), Control) ; if (status != UMFPACK_OK) { error ("bad D\n", 0.) ; } /* --- */ /* ASSIGN (d, Dx [0], Dz [0]) ; */ ASSIGN (d, Dx, Dz, 0, SPLIT(Dz)) ; /* --- */ ABS (da, d) ; mind = da ; maxd = da ; for (i = 1 ; i < n_inner ; i++) { /* --- */ /* ASSIGN (d, Dx [i], Dz [i]) ; */ ASSIGN (d, Dx, Dz, i, SPLIT(Dz)) ; /* --- */ ABS (da, d) ; mind = MIN (mind, da) ; maxd = MAX (maxd, da) ; } if (maxd == 0.) { rcond = 0. ; } else { rcond = mind / maxd ; } if (prl > 2) printf ("mind: %g maxd: %g rcond: %g %g\n", mind, maxd, rcond, Info [UMFPACK_RCOND]) ; if (rcond == 0.0 && Info [UMFPACK_RCOND] != 0.0) { printf ("rcond error %30.20e %30.20e\n", rcond, Info [UMFPACK_RCOND]) ; error ("rcond", 0.) ; } if (SCALAR_ABS (rcond - Info [UMFPACK_RCOND]) / rcond > 1e-10) { printf ("rcond error %30.20e %30.20e\n", rcond, Info [UMFPACK_RCOND]) ; error ("rcond", 0.) ; } /* get L = Lrow' */ status = UMFPACK_transpose (n_inner, n_row, Lrowp, Lrowi, CARG(Lrowx,Lrowz), noP, noQ, Lp, Li, CARG(Lx,Lz) C1ARG(0)) ; if (status != UMFPACK_OK) { error ("L=Lrow' failed\n", 0.) ; } if (prl > 2) printf ("\nL col: ") ; status = UMFPACK_report_matrix (n_row, n_inner, Lp, Li, CARG(Lx,Lz), 1, Control) ; if (status != UMFPACK_OK) { error ("bad Lrow\n", 0.) ; } if (prl > 2) printf ("\nU col: ") ; status = UMFPACK_report_matrix (n_inner, n_col, Up, Ui, CARG(Ux,Uz), 1, Control) ; if (status != UMFPACK_OK) { error ("bad Ucol\n", 0.) ; } free (Lrowx) ; /* ] */ free (Lrowi) ; /* ] */ free (Lrowp) ; /* ] */ rnorm = do_solvers (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Info, Numeric, Lp, Li, Lx,Lz, Up, Ui, Ux,Uz, P, Q, x,xz, r,rz, W, Wx, split) ; UMFPACK_report_info (Control, Info) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ free (Dx) ; /* ] */ free (Ux) ; /* ] */ free (Ui) ; /* ] */ free (Lx) ; /* ] */ free (Li) ; /* ] */ free (Rs) ; /* ] */ UMFPACK_free_numeric (&Numeric) ; /* ] */ return (rnorm) ; } /* ========================================================================== */ /* do_once: factor A once, and then test the solves - return if error */ /* ========================================================================== */ /* exit if an error occurs. otherwise, return the largest residual norm seen. */ static double do_once ( Int n_row, Int n_col, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double b [ ], double bz [ ], double Control [ ], Int Qinit [ ], Int MemControl [6], Int save_and_load, Int split, /* TRUE if complex variables split, FALSE if merged */ Int det_check, double det_x, double det_z ) { double *x, rnorm, *r, *Wx, *xz, *rz ; Int *P, *Q, *Lp, *Up, *W, *Qtree, *Ptree, n ; #ifdef COMPLEX if (split) { if (!Az || !bz) error ("bad split\n", 0.) ; } else { if ( Az || bz) error ("bad merge\n", 0.) ; } #endif /* ---------------------------------------------------------------------- */ /* malloc and realloc failure control */ /* ---------------------------------------------------------------------- */ umf_fail = MemControl [0] ; umf_fail_hi = MemControl [1] ; umf_fail_lo = MemControl [2] ; umf_realloc_fail = MemControl [3] ; umf_realloc_hi = MemControl [4] ; umf_realloc_lo = MemControl [5] ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ n = MAX (n_row, n_col) ; n = MAX (n,1) ; r = (double *) calloc (2*n , sizeof (double)) ; /* [ */ x = (double *) calloc (2*n , sizeof (double)) ; /* [ */ rz = r + n ; if (split) { /* real/complex are in r/rz and x/xz */ xz = x + n ; } else { /* r and z are treated as array of size n Entry's */ xz = DNULL ; } Wx = (double *) malloc (10*n * sizeof (double)) ; /* [ */ P = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Q = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Qtree = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Ptree = (Int *) malloc (n * sizeof (Int)) ; /* [ */ W = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Lp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Up = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ if (!x || !Wx || !r || !P || !Q || !Qtree || !Ptree || !W || !Lp || !Up) error ("out of memory (3)",0.) ; /* ---------------------------------------------------------------------- */ /* report controls */ /* ---------------------------------------------------------------------- */ if (Control) { if (Control [UMFPACK_PRL] >= 2) { UMFPACK_report_control (Control) ; } } /* ---------------------------------------------------------------------- */ /* do the symbolic & numeric factorization, and solvers */ /* ---------------------------------------------------------------------- */ rnorm = do_symnum (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, x,xz, r,rz, Wx, P, Q, Qtree, Ptree, W, Lp, Up, save_and_load, split, det_check, det_x, det_z) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ free (Up) ; /* ] */ free (Lp) ; /* ] */ free (W) ; /* ] */ free (Ptree) ; /* ] */ free (Qtree) ; /* ] */ free (Q) ; /* ] */ free (P) ; /* ] */ free (Wx) ; /* ] */ free (x) ; /* ] */ free (r) ; /* ] */ #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory leak!!",0.) ; #endif return (rnorm) ; } /* ========================================================================== */ /* do_many: factor A once, and then test the solves - return if error */ /* ========================================================================== */ /* runs do_once with complex variables split, and again with them merged */ static double do_many ( Int n_row, Int n_col, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double b [ ], double bz [ ], double Control [ ], Int Qinit [ ], Int MemControl [6], Int save_and_load, Int det_check, double det_x, double det_z ) { double rnorm, r ; Entry *A, *B, a ; Int p, i, nz ; rnorm = 0 ; #ifdef COMPLEX if (!Az || !bz) error ("do_many missing imag parts!\n", 0.) ; nz = Ap [n_col] ; A = (Entry *) malloc ((nz+1) * sizeof (Entry)) ; B = (Entry *) malloc ((n_col+1) * sizeof (Entry)) ; if (!A || !B) error ("out of memory (4)",0.) ; for (p = 0 ; p < nz ; p++) { ASSIGN (A [p], Ax, Az, p, TRUE) ; } for (i = 0 ; i < n_col ; i++) { ASSIGN (B [i], b, bz, i, TRUE) ; } /* with complex variables merged */ r = do_once (n_row, n_col, Ap, Ai, (double *)A,DNULL, (double *)B,DNULL, Control, Qinit, MemControl, save_and_load, FALSE, det_check, det_x, det_z) ; free (A) ; free (B) ; rnorm = MAX (r, rnorm) ; #endif /* with complex variables split */ r = do_once (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, save_and_load, TRUE, det_check, det_x, det_z) ; rnorm = MAX (r, rnorm) ; return (rnorm) ; } /* ========================================================================== */ /* bgen: b = A*xtrue, where xtrue (i) = 1 + i/n */ /* ========================================================================== */ static void bgen ( Int n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double b [ ], double bz [ ] ) { Int i, col, p ; double xtrue, xtruez ; for (i = 0 ; i < n ; i++) { b [i] = 0.0 ; bz[i] = 0.0 ; } for (col = 0 ; col < n ; col++) { xtrue = 1.0 + ((double) col) / ((double) n) ; #ifdef COMPLEX xtruez= 1.3 - ((double) col) / ((double) n) ; #else xtruez= 0. ; #endif for (p = Ap [col] ; p < Ap [col+1] ; p++) { i = Ai [p] ; b [i] += Ax [p] * xtrue ; b [i] -= Az [p] * xtruez ; bz[i] += Az [p] * xtrue ; bz[i] += Ax [p] * xtruez ; } } } /* ========================================================================== */ /* do_matrix: process one matrix with lots of options - exit if errors */ /* ========================================================================== */ /* return the largest residual norm seen, or exit if error occured */ static double do_matrix ( Int n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double Controls [UMFPACK_CONTROL][1000], Int Ncontrols [UMFPACK_CONTROL], Int MemControl [6], Int do_dense ) { double Control [UMFPACK_CONTROL], *b, *bz, maxrnorm, rnorm, tol, init ; Int *colhist, *rowhist, *rowdeg, *noQinit, *Qinit, *cknob, *rknob, c, r, cs, rs, row, col, i, coldeg, p, d, nb, ck, rk, *Head, *Next, col1, col2, d1, d2, k, status, n_amd, i_tol, i_nb, i_init, n_tol, n_nb, n_init, n_scale, i_scale, scale, i_pivot, n_pivot, pivopt ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ maxrnorm = 0.0 ; /* get the default control parameters */ UMFPACK_defaults (Control) ; UMFPACK_report_control (Control) ; #ifdef DEBUGGING Control [UMFPACK_PRL] = 5 ; #endif status = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Control) ; if (status != UMFPACK_OK) { error ("bad A do_matrix\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ rowdeg = (Int *) malloc ((n+1) * sizeof (Int)) ; /* ( */ rowhist = (Int *) malloc ((n+1) * sizeof (Int)) ; /* ( */ colhist = (Int *) malloc ((n+1) * sizeof (Int)) ; /* ( */ cknob = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ rknob = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ /* ---------------------------------------------------------------------- */ /* count the dense rows and columns */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { colhist [i] = 0 ; rowhist [i] = 0 ; rowdeg [i] = 0 ; } for (col = 0 ; col < n ; col++) { coldeg = Ap [col+1] - Ap [col] ; colhist [coldeg]++ ; for (p = Ap [col] ; p < Ap [col+1] ; p++) { rowdeg [Ai [p]]++ ; } } for (row = 0 ; row < n ; row++) { rowhist [rowdeg [row]]++ ; } rs = 0 ; if (do_dense) { if (n < 16) { rknob [rs++] = 0 ; /* all dense rows */ } for (d = 16 ; d < n ; d++) { if (rowhist [d] > 0) { rknob [rs++] = d ; } } } rknob [rs++] = n ; /* no dense rows */ cs = 0 ; if (do_dense) { if (n < 16) { cknob [cs++] = 0 ; /* all dense columns */ } for (d = 16 ; d < n ; d++) { if (colhist [d] > 0) { cknob [cs++] = d ; } } } cknob [cs++] = n ; /* no dense cols */ free (colhist) ; /* ) */ free (rowhist) ; /* ) */ /* ---------------------------------------------------------------------- */ /* compute b assuming xtrue (i) = 1 + i/n */ /* ---------------------------------------------------------------------- */ b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ if (!b) error ("out of memory (5)",0.) ; if (!bz) error ("out of memory (6)",0.) ; bgen (n, Ap, Ai, Ax, Az, b, bz) ; /* ---------------------------------------------------------------------- */ /* compute Qinit = sort by colcounts */ /* ---------------------------------------------------------------------- */ noQinit = INULL ; Qinit = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ if (!Qinit) error ("out of memory (7)",0.) ; Head = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Next = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ for (d = 0 ; d <= n ; d++) { Head [d] = EMPTY ; } for (col = n-1 ; col >= 0 ; col--) { d = Ap [col+1] - Ap [col] ; Next [col] = Head [d] ; Head [d] = col ; } k = 0 ; for (d = 0 ; d <= n ; d++) { for (col = Head [d] ; col != EMPTY ; col = Next [col]) { Qinit [k++] = col ; } } free (Next) ; /* ] */ free (Head) ; /* ] */ if (k != n) error ("Qinit error\n",0.) ; /* use rowdeg for workspace */ if (!UMF_is_permutation (Qinit, rowdeg, n, n)) error ("Qinit, colsort, not a permutation vector",0.) ; for (k = 1 ; k < n ; k++) { col1 = Qinit [k-1] ; col2 = Qinit [k] ; d1 = Ap [col1+1] - Ap [col1] ; d2 = Ap [col2+1] - Ap [col2] ; if (d1 > d2) error ("Qinit error = not sorted\n",0.) ; } free (rowdeg) ; /* ) */ /* ---------------------------------------------------------------------- */ /* exhaustive test */ /* ---------------------------------------------------------------------- */ n_tol = Ncontrols [UMFPACK_PIVOT_TOLERANCE] ; n_nb = Ncontrols [UMFPACK_BLOCK_SIZE] ; n_init = Ncontrols [UMFPACK_ALLOC_INIT] ; n_scale = Ncontrols [UMFPACK_SCALE] ; n_amd = Ncontrols [UMFPACK_AMD_DENSE] ; printf (" cs "ID" rs "ID" : "ID" ", cs, rs, 2 + (cs * rs * n_tol * n_nb * n_init )) ; fflush (stdout) ; /* with defaults - null Control array, Qinit */ printf ("with qinit:\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, DNULL, Qinit, MemControl, FALSE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; /* with defaults - null Control array */ printf ("with null control array:\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, DNULL, noQinit, MemControl, FALSE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; /* with defaults */ printf ("with defaults:\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, noQinit, MemControl, FALSE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf ("with defaults and qinit:\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, FALSE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf ("starting lengthy tests\n") ; for (c = 0 ; c <= cs ; c++) { if (c == cs) { rs = n_amd ; } for (r = 0 ; r < rs ; r++) { if (c == cs) { Control [UMFPACK_DENSE_COL] = UMFPACK_DEFAULT_DENSE_COL ; Control [UMFPACK_DENSE_ROW] = UMFPACK_DEFAULT_DENSE_ROW ; Control [UMFPACK_AMD_DENSE] = Controls [UMFPACK_AMD_DENSE][r] ; } else { ck = cknob [c] ; rk = rknob [r] ; /* ignore columns with degree > ck and rows with degree > rk */ Control [UMFPACK_DENSE_COL] = inv_umfpack_dense (ck, n) ; Control [UMFPACK_DENSE_ROW] = inv_umfpack_dense (rk, n) ; Control [UMFPACK_AMD_DENSE] = UMFPACK_DEFAULT_AMD_DENSE ; } for (i_tol = 0 ; i_tol < n_tol ; i_tol++) { tol = Controls [UMFPACK_PIVOT_TOLERANCE][i_tol] ; Control [UMFPACK_PIVOT_TOLERANCE] = tol ; for (i_nb = 0 ; i_nb < n_nb ; i_nb++) { nb = (Int) Controls [UMFPACK_BLOCK_SIZE][i_nb] ; Control [UMFPACK_BLOCK_SIZE] = (double) nb ; for (i_init = 0 ; i_init < n_init ; i_init++) { init = Controls [UMFPACK_ALLOC_INIT][i_init] ; Control [UMFPACK_ALLOC_INIT] = init ; for (i_scale = 0 ; i_scale < n_scale ; i_scale++) { Int strategy, fixQ ; scale = Controls [UMFPACK_SCALE][i_scale] ; Control [UMFPACK_SCALE] = scale ; for (strategy = UMFPACK_STRATEGY_AUTO ; strategy <= UMFPACK_STRATEGY_SYMMETRIC ; strategy ++) { Control [UMFPACK_STRATEGY] = strategy ; { rnorm = do_once (n, n, Ap, Ai, Ax,Az, b,bz, Control, noQinit, MemControl, FALSE, TRUE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; rnorm = do_once (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, FALSE, TRUE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; } } } } } } } } free (Qinit) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (rknob) ; /* ] */ free (cknob) ; /* ] */ return (maxrnorm) ; } /* ========================================================================== */ /* matgen_dense: generate a dense matrix */ /* ========================================================================== */ /* allocates Ap, Ai, Ax, and Az */ static void matgen_dense ( Int n, Int **Ap, Int **Ai, double **Ax, double **Az ) { Int nz, *Bp, *Bi, *Ti, *Tj, k, i, j, *P, status ; double *Bx, *Tx, *Bz, *Tz ; nz = n*n + n ; /* allocate Bp, Bi, and Bx - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc ((nz+1) * sizeof (Int)) ; Bx = (double *) malloc ((nz+1) * sizeof (double)) ; Bz = (double *) calloc ((nz+1) , sizeof (double)) ; Ti = (Int *) malloc ((nz+1) * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc ((nz+1) * sizeof (Int)) ; /* [ */ Tx = (double *) malloc ((nz+1) * sizeof (double)) ; /* [ */ Tz = (double *) calloc ((nz+1) , sizeof (double)) ; /* [ */ P = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ if (!Bp || !Bi || !Bx || !Ti || !Tj || !Tx || !P) error ("out of memory (8)",0.) ; if (!Bz || !Tz) error ("outof memory",0.) ; k = 0 ; for (i = 0 ; i < n ; i++) { for (j = 0 ; j < n ; j++) { Ti [k] = i ; Tj [k] = j ; Tx [k] = 2.0 * (xrand ( ) - 1.0) ; #ifdef COMPLEX Tz [k] = 2.0 * (xrand ( ) - 1.0) ; #else Tz [k] = 0. ; #endif k++ ; } } /* beef up each column and row */ randperm (n, P) ; for (i = 0 ; i < n ; i++) { Ti [k] = i ; Tj [k] = P [i] ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } if (k != nz) error ("matgen_dense error",0.) ; /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; if (status != UMFPACK_OK) error ("matgen_dense triplet_to_col failed 2",0.) ; /* return the allocated column-form */ *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; free (P) ; /* ] */ free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ } /* ========================================================================== */ /* matgen_funky: generate a kind of arrowhead matrix */ /* ========================================================================== */ /* allocates Ap, Ai, Ax, and Az A = speye (n) ; A (n, 2:3) = rand (1,2) ; A (3, 3:n) = rand (1, n-2) ; A (3:n, 1) = rand (n-2, 1) ; */ static void matgen_funky ( Int n, Int **Ap, Int **Ai, double **Ax, double **Az ) { Int nz, *Bp, *Bi, *Ti, *Tj, k, i, j, *P, status ; double *Bx, *Tx, *Bz, *Tz ; nz = 4*n + 5 ; /* allocate Bp, Bi, and Bx - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc (nz * sizeof (Int)) ; Bx = (double *) malloc (nz * sizeof (double)) ; Bz = (double *) calloc (nz , sizeof (double)) ; Ti = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Tz = (double *) calloc (nz , sizeof (double)) ; /* [ */ P = (Int *) malloc (n * sizeof (Int)) ; /* [ */ if (!Bp || !Bi || !Bx || !Ti || !Tj || !Tx || !P) error ("out of memory (9)",0.) ; if (!Bz || !Tz) error ("outof memory",0.) ; k = 0 ; /* A = speye (n) ; */ for (i = 0 ; i < n ; i++) { Ti [k] = i ; Tj [k] = i ; Tx [k] = 1.0 ; #ifdef COMPLEX Tz [k] = 1.0 ; #endif k++ ; } /* A (n, 2:3) = rand (1,2) ; */ for (j = 1 ; j <= 2 ; j++) { Ti [k] = n-1 ; Tj [k] = j ; Tx [k] = 1.0 ; #ifdef COMPLEX Tz [k] = 1.0 ; #endif k++ ; } /* A (3, 3:n) = rand (1, n-2) ; */ for (j = 2 ; j < n ; j++) { Ti [k] = 2 ; Tj [k] = j ; Tx [k] = 1.0 ; #ifdef COMPLEX Tz [k] = 1.0 ; #endif k++ ; } /* A (3:n, 1) = rand (n-2, 1) ; */ for (i = 2 ; i < n ; i++) { Ti [k] = i ; Tj [k] = 0 ; Tx [k] = 1.0 ; #ifdef COMPLEX Tz [k] = 1.0 ; #endif k++ ; } /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; if (status != UMFPACK_OK) error ("matgen_dense triplet_to_col failed 1",0.) ; /* return the allocated column-form */ *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; free (P) ; /* ] */ free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ } /* ========================================================================== */ /* matgen_band: generate a banded matrix */ /* ========================================================================== */ /* allocates Ap, Ai, and Ax */ static void matgen_band ( Int n, Int lo, /* lo = 0: upper triangular only */ Int up, /* up = 0: lower triangular only */ Int ndrow, /* plus ndrow dense rows, each of degree rdeg */ Int rdeg, Int ndcol, /* plus ndcol dense cols, each of degree cdeg */ Int cdeg, Int **Ap, Int **Ai, double **Ax, double **Az ) { Int nz, *Bp, *Bi, *Ti, *Tj, k, i, j, jlo, jup, j1, i1, k1, status ; double *Bx, *Bz, *Tx, *Tz ; /* an upper bound */ nz = n * (lo + 1 + up) + n + ndrow*rdeg + ndcol*cdeg ; /* allocate Bp, Bi, and Bx - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc (nz * sizeof (Int)) ; Bx = (double *) malloc (nz * sizeof (double)) ; Bz = (double *) calloc (nz , sizeof (double)) ; Ti = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Tz = (double *) calloc (nz , sizeof (double)) ; /* [ */ if (!Bp || !Bi || !Bx || !Ti || !Tj || !Tx) error ("out of memory (10)",0.) ; if (!Bz || !Tz) error ("out ofmemory", 0.) ; k = 0 ; for (i = 0 ; i < n ; i++) { jlo = MAX (0, i - lo) ; jup = MIN (n-1, i + up) ; for (j = jlo ; j <= jup ; j++) { Ti [k] = i ; Tj [k] = j ; Tx [k] = 2.0 * (xrand ( ) - 1.0) ; #ifdef COMPLEX Tz [k] = 2.0 * (xrand ( ) - 1.0) ; #else Tz [k] = 0. ; #endif k++ ; } } /* beef up the diagonal */ for (i = 0 ; i < n ; i++) { Ti [k] = i ; Tj [k] = i ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } /* add ndrow rows of degree rdeg */ for (i1 = 0 ; i1 < ndrow ; i1++) { i = irand (n) ; for (k1 = 0 ; k1 < rdeg ; k1++) { Ti [k] = i ; Tj [k] = irand (n) ; Tx [k] = 0.1 * xrand ( ) ; #ifdef COMPLEX Tz [k] = 0.1 * xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } } /* add ndcol rows of degree cdeg */ for (j1 = 0 ; j1 < ndcol ; j1++) { j = irand (n) ; for (k1 = 0 ; k1 < cdeg ; k1++) { Ti [k] = irand (n) ; Tj [k] = j ; Tx [k] = 0.1 * xrand ( ) ; #ifdef COMPLEX Tz [k] = 0.1 * xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } } if (k > nz) error ("matgen_band error\n",0.) ; /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; if (status != UMFPACK_OK) error ("matgen_band triplet_to_col failed\n",0.) ; /* return the allocated column-form */ *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ } /* ========================================================================== */ /* test_col */ /* ========================================================================== */ static void test_col ( Int n, Int Bp [ ], Int Bi [ ], double Bx [ ], double Bz [ ], Int prl ) { Int *Ci, *Cj, *Ep, *Ei, k, s, t, i, j, nz, p, status, *Map, *noMap ; double *Cx, *Cz, *Ex, *Ez, z, Control [UMFPACK_CONTROL] ; noMap = (Int *) NULL ; printf ("\n\n===== test col -> triplet and triplet -> col\n") ; UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = prl ; UMFPACK_report_control (Control) ; nz = Bp [n] ; Ci = (Int *) malloc ((2*nz+1) * sizeof (Int)) ; /* [ */ Cj = (Int *) malloc ((2*nz+1) * sizeof (Int)) ; /* [ */ Cx = (double *) calloc (2*(2*nz+1) , sizeof (double)) ; /* [ */ Cz = Cx + (2*nz+1) ; Ep = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Ei = (Int *) malloc ((2*nz+1) * sizeof (Int)) ; /* [ */ Ex = (double *) calloc (2*(2*nz+1) , sizeof (double)) ; /* [ */ Ez = Ex + (2*nz+1) ; Map = (Int *) malloc ((2*nz+1) * sizeof (Int)) ; /* [ */ if (!Ci || !Cj || !Cx || !Ep || !Ei || !Ex) error ("out of memory (11)",0.) ; /* ---------------------------------------------------------------------- */ /* test with split complex values */ /* ---------------------------------------------------------------------- */ /* convert B (col) to C (triplet) */ status = UMFPACK_col_to_triplet (n, Bp, Cj) ; if (status != UMFPACK_OK) error ("col->triplet",0.) ; for (k = 0 ; k < nz ; k++) { Ci [k] = Bi [k] ; Cx [k] = Bx [k] ; Cz [k] = Bz [k] ; } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), Map) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (1)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) error ("Ez (1)",0.) ; } } /* convert C (triplet) to E (col), no map */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), noMap) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (2)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) error ("Ez",0.) ; } } /* jumble C a little bit */ for (k = 0 ; k < MIN (nz,4) ; k++) { s = irand (nz) ; /* swap positions s and k */ t = Ci [k] ; Ci [k] = Ci [s] ; Ci [s] = t ; t = Cj [k] ; Cj [k] = Cj [s] ; Cj [s] = t ; z = Cx [k] ; Cx [k] = Cx [s] ; Cx [s] = z ; z = Cz [k] ; Cz [k] = Cz [s] ; Cz [s] = z ; } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), Map) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (3)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) error ("Ez",0.) ; } } /* convert C (triplet) to E (col), no map */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), noMap) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (4)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) error ("Ez",0.) ; } } /* jumble C a lot */ for (k = 0 ; k < nz ; k++) { s = irand (nz) ; /* swap positions s and k */ t = Ci [k] ; Ci [k] = Ci [s] ; Ci [s] = t ; t = Cj [k] ; Cj [k] = Cj [s] ; Cj [s] = t ; z = Cx [k] ; Cx [k] = Cx [s] ; Cx [s] = z ; z = Cz [k] ; Cz [k] = Cz [s] ; Cz [s] = z ; } /* add duplicates to C, but preserve pattern and values */ for (k = nz ; k < 2*nz ; k++) { /* add a duplicate */ s = irand (k) ; Ci [k] = Ci [s] ; Cj [k] = Cj [s] ; z = Cx [s] ; Cx [s] = z/2 ; Cx [k] = z/2 ; z = Cz [s] ; Cz [s] = z/2 ; Cz [k] = z/2 ; } if (prl > 2) printf ("\ntest c->t,t->c: ") ; status = UMFPACK_report_triplet (n, n, 2*nz, Ci, Cj, CARG(Cx,Cz), Control) ; if (status != UMFPACK_OK) error ("report col->triplet",0.) ; /* convert C (triplet) to E (col), no Map */ status = UMFPACK_triplet_to_col (n, n, 2*nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), noMap) ; if (status != UMFPACK_OK) error ("t->col failed",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (5)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) { printf ("%30.18e %30.18e %g\n", Bz[p], Ez[p], Bz[p]-Ez[p]) ; error ("Ez (5)",0.) ; } } } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, 2*nz, Ci, Cj, CARG(Cx,Cz), Ep, Ei, CARG(Ex,Ez), Map) ; if (status != UMFPACK_OK) error ("t->col failed",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (6)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [p]) > 1e-15) error ("Ex",0.) ; if (SCALAR_ABS (Bz [p] - Ez [p]) > 1e-15) error ("Ez",0.) ; } } /* convert C (triplet) to E (col), using Map */ for (p = 0 ; p < Ep [n] ; p++) { Ex [p] = 0. ; Ez [p] = 0. ; } for (k = 0 ; k < 2*nz ; k++) { p = Map [k] ; i = Ci [k] ; j = Cj [k] ; if (i != Ei [p]) error ("Map", 0.) ; if (!(Ep [j] <= p && p < Ep [j+1])) error ("Map Ep", 0.) ; Ex [p] += Cx [k] ; Ez [p] += Cz [k] ; } /* compare E and B, they should be identical */ for (j = 0 ; j < n ; j++) { for (p = Bp [j] ; p < Bp [j+1] ; p++) { z = SCALAR_ABS (Bx [p] - Ex [p]) ; if (z > 1e-15) error ("Ex",z) ; z = SCALAR_ABS (Bz [p] - Ez [p]) ; if (z > 1e-15) error ("Ez (7)",z) ; } } #ifdef COMPLEX /* ---------------------------------------------------------------------- */ /* repeat, but with merged complex values */ /* ---------------------------------------------------------------------- */ /* convert B (col) to C (triplet) */ status = UMFPACK_col_to_triplet (n, Bp, Cj) ; if (status != UMFPACK_OK) error ("col->triplet",0.) ; for (k = 0 ; k < nz ; k++) { Ci [k] = Bi [k] ; Cx [2*k ] = Bx [k] ; Cx [2*k+1] = Bz [k] ; } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), Map) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (7)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* convert C (triplet) to E (col) no Map */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), noMap) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (8)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* jumble C a little bit */ for (k = 0 ; k < MIN (nz,4) ; k++) { s = irand (nz) ; /* swap positions s and k */ t = Ci [k] ; Ci [k] = Ci [s] ; Ci [s] = t ; t = Cj [k] ; Cj [k] = Cj [s] ; Cj [s] = t ; z = Cx [2*k ] ; Cx [2*k ] = Cx [2*s ] ; Cx [2*s ] = z ; z = Cx [2*k+1] ; Cx [2*k+1] = Cx [2*s+1] ; Cx [2*s+1] = z ; } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), Map) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (9)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* convert C (triplet) to E (col) no Map */ status = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), noMap) ; if (status != UMFPACK_OK) error ("t->col failed (1)",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (10)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* jumble C */ for (k = 0 ; k < nz ; k++) { s = irand (nz) ; /* swap positions s and k */ t = Ci [k] ; Ci [k] = Ci [s] ; Ci [s] = t ; t = Cj [k] ; Cj [k] = Cj [s] ; Cj [s] = t ; z = Cx [2*k ] ; Cx [2*k ] = Cx [2*s ] ; Cx [2*s ] = z ; z = Cx [2*k+1] ; Cx [2*k+1] = Cx [2*s+1] ; Cx [2*s+1] = z ; } /* add duplicates to C, but preserve pattern and values */ for (k = nz ; k < 2*nz ; k++) { /* add a duplicate */ s = irand (k) ; Ci [k] = Ci [s] ; Cj [k] = Cj [s] ; z = Cx [2*s] ; Cx [2*s] = z/2 ; Cx [2*k] = z/2 ; z = Cx [2*s+1] ; Cx [2*s+1] = z/2 ; Cx [2*k+1] = z/2 ; } if (prl > 2) printf ("\ntest c->t,t->c: ") ; status = UMFPACK_report_triplet (n, n, 2*nz, Ci, Cj, CARG(Cx,DNULL), Control) ; if (status != UMFPACK_OK) error ("report col->triplet",0.) ; /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, 2*nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), noMap) ; if (status != UMFPACK_OK) error ("t->col failed",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (11)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* convert C (triplet) to E (col) */ status = UMFPACK_triplet_to_col (n, n, 2*nz, Ci, Cj, CARG(Cx,DNULL), Ep, Ei, CARG(Ex,DNULL), Map) ; if (status != UMFPACK_OK) error ("t->col failed",0.) ; /* compare E and B, they should be identical */ if (nz != Ep [n]) error ("E nz (12)",0.) ; for (j = 0 ; j < n ; j++) { if (Bp [j] != Ep [j]) error ("Ep j",0.) ; if (Bp [j+1] != Ep [j+1]) error ("Ep j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ei [p]) error ("Ei",0.) ; if (SCALAR_ABS (Bx [p] - Ex [2*p ]) > 1e-15) error ("Ex (merge)",0.) ; if (SCALAR_ABS (Bz [p] - Ex [2*p+1]) > 1e-15) error ("Ez (merge)",0.) ; } } /* convert C (triplet) to E (col), using Map */ for (p = 0 ; p < Ep [n] ; p++) { Ex [2*p ] = 0. ; Ex [2*p+1] = 0. ; } for (k = 0 ; k < 2*nz ; k++) { p = Map [k] ; i = Ci [k] ; j = Cj [k] ; if (i != Ei [p]) error ("Map", 0.) ; if (!(Ep [j] <= p && p < Ep [j+1])) error ("Map Ep", 0.) ; Ex [2*p ] += Cx [2*k ] ; Ex [2*p+1] += Cx [2*k+1] ; } /* compare E and B, they should be identical */ for (j = 0 ; j < n ; j++) { for (p = Bp [j] ; p < Bp [j+1] ; p++) { z = SCALAR_ABS (Bx [p] - Ex [2*p ]) ; if (z > 1e-15) error ("Ex merged",z) ; z = SCALAR_ABS (Bz [p] - Ex [2*p+1]) ; if (z > 1e-15) error ("Ez merged 7",z) ; } } #endif printf ("\n =============== test OK\n\n") ; free (Map) ; /* ] */ free (Ex) ; /* ] */ free (Ei) ; /* ] */ free (Ep) ; /* ] */ free (Cx) ; /* ] */ free (Cj) ; /* ] */ free (Ci) ; /* ] */ } /* ========================================================================== */ /* matgen_compaction: generate a matrix to test umf_symbolic compaction */ /* ========================================================================== */ static void matgen_compaction ( Int n, Int **Ap, Int **Ai, double **Ax, double **Az ) { Int nz, *Bp, *Bi, *Ti, *Tj, k, i, j, prl, status ; double *Bx, *Tx, *Bz, *Tz, Control [UMFPACK_INFO] ; prl = Control ? Control [UMFPACK_PRL] : UMFPACK_DEFAULT_PRL ; UMFPACK_defaults (Control) ; UMFPACK_report_control (Control) ; nz = 5*n ; /* allocate Bp, Bi, and Bx - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc (nz * sizeof (Int)) ; Bx = (double *) malloc (nz * sizeof (double)) ; Bz = (double *) calloc (nz , sizeof (double)) ; Ti = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Tz = (double *) calloc (nz , sizeof (double)) ; /* [ */ if (!Bp || !Bi || !Bx || !Ti || !Tj || !Tx) error ("out of memory (12)",0.) ; if (!Bz || !Tz) error ("out of mery",0.) ; k = 0 ; for (i = 0 ; i < n ; i++) { if (i > 0) { Ti [k] = i ; Tj [k] = i-1 ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } Ti [k] = i ; Tj [k] = i ; Tx [k] = xrand ( ) ; k++ ; if (i < n-1) { Ti [k] = i ; Tj [k] = i+1 ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } } for (j = 0 ; j < n ; j += 2) { Ti [k] = 0 ; Tj [k] = j ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } for (j = 1 ; j < n ; j += 2) { Ti [k] = 1 ; Tj [k] = j ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } if (prl > 2) printf ("\nmatgen_compact: ") ; status = UMFPACK_report_triplet (n, n, k, Ti, Tj, CARG(Tx,Tz), Control) ; if (status != UMFPACK_OK) error ("bad triplet report",0.) ; /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; if (status != UMFPACK_OK) error ("matgen_compact triplet_to_col failed",0.) ; if (prl > 2) printf ("\nmatgen_compact: ") ; status = UMFPACK_report_matrix (n, n, Bp, Bi, CARG(Bx,Bz), 1, Control) ; if (status != UMFPACK_OK) error ("bad A matget sparse",0.) ; /* return the allocated column-form */ *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ } /* ========================================================================== */ /* matgen_sparse: generate a matrix with random pattern */ /* ========================================================================== */ /* allocates Ap, Ai, Ax, and Az */ static void matgen_sparse ( Int n, Int s, /* s random entries, and one more in each row and column */ Int ndrow, /* plus ndrow dense rows, each of degree rdeg */ Int rdeg, Int ndcol, /* plus ndcol dense cols, each of degree cdeg */ Int cdeg, Int **Ap, Int **Ai, double **Ax, double **Az, Int prl, Int has_nans ) { Int nz, *Bp, *Bi, *Ti, *Tj, k, i, j, j1, i1, k1, *P, status, *Map, p, *Cp, *Ci, *noMap ; double *Bx, *Tx, *Bz, *Tz, Control [UMFPACK_CONTROL], xnan, xinf, x, *Txx, *Cx ; noMap = (Int *) NULL ; if (has_nans) { xnan = divide (0., 0.) ; xinf = divide (1., 0.) ; } UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = prl ; UMFPACK_report_control (Control) ; nz = s + n + rdeg*ndrow + cdeg*ndcol ; if (nz == 0) nz++ ; /* allocate Bp, Bi, and Bx - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc ((nz+1) * sizeof (Int)) ; Bx = (double *) malloc ((nz+1) * sizeof (double)) ; Bz = (double *) calloc ((nz+1) , sizeof (double)) ; Ti = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Tx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Tz = (double *) calloc (nz , sizeof (double)) ; /* [ */ P = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Map = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Txx = (double *) calloc (2*(nz+1) , sizeof (double)) ; /* [ */ Cp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Ci = (Int *) malloc ((nz+1) * sizeof (Int)) ; /* [ */ Cx = (double *) calloc (2*(nz+1) , sizeof (double)) ; /* [ */ if (!Bp || !Bi || !Bx || !Ti || !Tj || !Tx || !P) error ("out of memory (13)",0.) ; if (!Bz || !Tz) error ("out of m",0.) ; if (!Txx || !Cx || !Cp || !Ci) error ("out of mem xx",0.) ; for (k = 0 ; k < s ; k++) { Ti [k] = irand (n) ; Tj [k] = irand (n) ; if (has_nans) { x = xrand ( ) ; Tx [k] = (x > 0.8) ? ((x > 0.9) ? xnan : xinf) : (2*x-1) ; #ifdef COMPLEX x = xrand ( ) ; Tz [k] = (x > 0.8) ? ((x > 0.9) ? xnan : xinf) : (2*x-1) ; #else Tz [k] = 0. ; #endif } else { Tx [k] = 2.0 * (xrand ( ) - 1.0) ; #ifdef COMPLEX Tz [k] = 2.0 * (xrand ( ) - 1.0) ; #else Tz [k] = 0. ; #endif } } /* beef up each column and row */ randperm (n, P) ; for (i = 0 ; i < n ; i++) { Ti [k] = i ; Tj [k] = P [i] ; Tx [k] = xrand ( ) ; #ifdef COMPLEX Tz [k] = xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } /* add ndrow rows of degree rdeg */ for (i1 = 0 ; i1 < ndrow ; i1++) { i = irand (n) ; for (k1 = 0 ; k1 < rdeg ; k1++) { Ti [k] = i ; Tj [k] = irand (n) ; Tx [k] = 0.1 * xrand ( ) ; #ifdef COMPLEX Tz [k] = 0.1 * xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } } /* add ndcol rows of degree cdeg */ for (j1 = 0 ; j1 < ndcol ; j1++) { j = irand (n) ; for (k1 = 0 ; k1 < cdeg ; k1++) { Ti [k] = irand (n) ; Tj [k] = j ; Tx [k] = 0.1 * xrand ( ) ; #ifdef COMPLEX Tz [k] = 0.1 * xrand ( ) ; #else Tz [k] = 0. ; #endif k++ ; } } if (k != nz) error ("matgen_sparse error",0.) ; if (prl > 2) printf ("\nmatgen_sparse: ") ; status = UMFPACK_report_triplet (n, n, k, Ti, Tj, CARG(Tx,Tz), Control) ; if (status != UMFPACK_OK) error ("bad triplet report",0.) ; /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), Map) ; if (status != UMFPACK_OK) error ("matgen_sparse triplet_to_col failed",0.) ; /* convert to column form, no values and no map */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(DNULL,DNULL), Cp, Ci, CARG(DNULL,DNULL), noMap) ; if (status != UMFPACK_OK) error ("matgen_sparse triplet_to_col failed",0.) ; /* compare C and B, they should be identical */ for (j = 0 ; j < n ; j++) { if (Bp [j] != Cp [j]) error ("Cp j",0.) ; if (Bp [j+1] != Cp [j+1]) error ("Cp j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ci [p]) error ("Ci",0.) ; } } /* convert to column form, no values and with map */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(DNULL,DNULL), Cp, Ci, CARG(DNULL,DNULL), Map) ; if (status != UMFPACK_OK) error ("matgen_sparse triplet_to_col failed",0.) ; /* compare C and B, they should be identical */ for (j = 0 ; j < n ; j++) { if (Bp [j] != Cp [j]) error ("Cp j",0.) ; if (Bp [j+1] != Cp [j+1]) error ("Cp j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ci [p]) error ("Ci",0.) ; } } #ifdef COMPLEX /* test with merged case too */ for (p = 0 ; p < k ; p++) { Txx [2*p ] = Tx [p] ; Txx [2*p+1] = Tz [p] ; } /* convert to column form, no map */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Txx,DNULL), Cp, Ci, CARG(Cx,DNULL), noMap) ; if (status != UMFPACK_OK) error ("matgen_sparse triplet_to_col failed",0.) ; /* compare C and B, they should be identical */ for (j = 0 ; j < n ; j++) { if (Bp [j] != Cp [j]) error ("Cp j",0.) ; if (Bp [j+1] != Cp [j+1]) error ("Cp j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ci [p]) error ("Ci",0.) ; if (SCALAR_ABS (Bx [p] - Cx [2*p ]) > 1e-15) error ("Cx",0.) ; if (SCALAR_ABS (Bz [p] - Cx [2*p+1]) > 1e-15) error ("Cz (1)",0.) ; } } /* convert to column form */ status = UMFPACK_triplet_to_col (n, n, k, Ti, Tj, CARG(Txx,DNULL), Cp, Ci, CARG(Cx,DNULL), Map) ; if (status != UMFPACK_OK) error ("matgen_sparse triplet_to_col failed",0.) ; /* compare C and B, they should be identical */ for (j = 0 ; j < n ; j++) { if (Bp [j] != Cp [j]) error ("Cp j",0.) ; if (Bp [j+1] != Cp [j+1]) error ("Cp j",0.) ; for (p = Bp [j] ; p < Bp [j+1] ; p++) { if (Bi [p] != Ci [p]) error ("Ci",0.) ; if (SCALAR_ABS (Bx [p] - Cx [2*p ]) > 1e-15) error ("Cx",0.) ; if (SCALAR_ABS (Bz [p] - Cx [2*p+1]) > 1e-15) error ("Cz (1)",0.) ; } } #endif if (prl > 2) printf ("\nmatgen_sparse: ") ; status = UMFPACK_report_matrix (n, n, Bp, Bi, CARG(Bx,Bz), 1, Control) ; if (status != UMFPACK_OK) error ("bad A matgen sparse",0.) ; /* check the Map */ for (k = 0 ; k < nz ; k++) { p = Map [k] ; i = Ti [k] ; j = Tj [k] ; if (i != Bi [p]) error ("Map Bi", 0.) ; if (!(Bp [j] <= p && p < Bp [j+1])) error ("Map Bp", 0.) ; } /* test triplet->col and col->triplet */ test_col (n, Bp, Bi, Bx,Bz, prl) ; /* return the allocated column-form */ *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; free (Cx) ; /* ] */ free (Ci) ; /* ] */ free (Cp) ; /* ] */ free (Txx) ; /* ] */ free (Map) ; /* ] */ free (P) ; /* ] */ free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ } /* ========================================================================== */ /* matgen_transpose: B = A(P,Q)', where P and Q are random */ /* ========================================================================== */ static void matgen_transpose ( Int n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], Int **Bp, Int **Bi, double **Bx, double **Bz ) { Int nz, *P, *Q, *Cp, *Ci, status ; double *Cx, *Cz ; #ifdef DEBUGGING double Control [UMFPACK_CONTROL] ; #endif nz = Ap [n] ; P = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Q = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Cp = (Int *) malloc ((n+1) * sizeof (Int)) ; Ci = (Int *) malloc ((nz+1) * sizeof (Int)) ; Cx = (double *) malloc ((nz+1) * sizeof (double)) ; Cz = (double *) calloc ((nz+1) , sizeof (double)) ; if (!P || !Q || !Bp || !Bi || !Bx) error ("out of memory (14)",0.) ; if (!Cz) error ("out mem", 0.) ; randperm (n, P) ; randperm (n, Q) ; #ifdef DEBUGGING UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = 5 ; printf ("\nA: ") ; status = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Control) ; if (status != UMFPACK_OK) error ("bad A",0.) ; printf ("Random P: ") ; UMFPACK_report_perm (n, P, Control) ; if (status != UMFPACK_OK) error ("bad random P",0.) ; printf ("Random Q: ") ; status = UMFPACK_report_perm (n, Q, Control) ; if (status != UMFPACK_OK) error ("bad random Q",0.) ; #endif /* do complex conjugate transpose */ status = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), P, Q, Cp, Ci, CARG(Cx,Cz) C1ARG(1)) ; if (status != UMFPACK_OK) error ("transpose failed",0.) ; #ifdef DEBUGGING printf ("\nC: ") ; status = UMFPACK_report_matrix (n, n, Cp, Ci, CARG(Cx,Cz), 1, Control) ; if (status != UMFPACK_OK) error ("bad C",0.) ; #endif /* do not free Cp, Ci, and Cx */ *Bp = Cp ; *Bi = Ci ; *Bx = Cx ; *Bz = Cz ; free (P) ; /* ] */ free (Q) ; /* ] */ } /* ========================================================================== */ /* matgen_file: read a (1-based) matrix and a Qinit from a file */ /* ========================================================================== */ /* File syntax: * 1st line: nrows ncols nnz isreal * next nnz lines: i j x ... or ... i j xreal ximag * next ncols lines: Qk * one line determinant (real and imag. part if A is complex) * last line determinant of real part of A only */ static void matgen_file ( char *filename, Int *n_row, Int *n_col, Int **Ap, Int **Ai, double **Ax, double **Az, Int **Qinit, Int prl, double *det_x, double *det_z ) { FILE *f ; Int i, j, k, *Ti, *Tj, nr, nc, nz, *Bp, *Bi, *Q, status, isreal, nz1, n ; double x, *Tx, *Bx, *Tz, *Bz, ximag, Control [UMFPACK_CONTROL], d_x, d_z, d_real ; printf ("\nFile: %s\n", filename) ; f = fopen (filename, "r") ; if (!f) error ("bad file", 0.) ; fscanf (f, ""ID" "ID" "ID" "ID"\n", &nr, &nc, &nz, &isreal) ; n = MAX (nr, nc) ; n = MAX (n,1) ; nz1 = MAX (nz,1) ; Ti = (Int *) malloc (nz1 * sizeof (Int)) ; /* [ */ Tj = (Int *) malloc (nz1 * sizeof (Int)) ; /* [ */ Tx = (double *) malloc (nz1 * sizeof (double)) ; /* [ */ Tz = (double *) calloc (nz1 , sizeof (double)) ; /* [ */ /* allocate Bp, Bi, Bx, and Q - but do not free them */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc (nz1 * sizeof (Int)) ; Bx = (double *) malloc (nz1 * sizeof (double)) ; Q = (Int *) malloc (n * sizeof (Int)) ; Bz = (double *) calloc (nz1 , sizeof (double)) ; for (k = 0 ; k < nz ; k++) { if (isreal) { fscanf (f, ""ID" "ID" %lg\n", &i, &j, &x) ; ximag = 0. ; } else { fscanf (f, ""ID" "ID" %lg %lg\n", &i, &j, &x, &ximag) ; } Ti [k] = i-1 ; /* convert to 0-based */ Tj [k] = j-1 ; Tx [k] = x ; #ifdef COMPLEX Tz [k] = ximag ; #else /* the file may have a complex part, but set it to zero */ Tz [k] = 0. ; #endif } for (k = 0 ; k < nc ; k++) { fscanf (f, ""ID"\n", &i) ; Q [k] = i-1 ; /* convert to 0-based */ } if (isreal) { fscanf (f, "%lg\n", &d_x) ; d_z = 0 ; } else { fscanf (f, "%lg %lg\n", &d_x, &d_z) ; } fscanf (f, "%lg\n", &d_real) ; printf ("%s det: %g + (%g)i, real(A): %g\n", filename, d_x, d_z, d_real) ; #ifdef COMPLEX *det_x = d_x ; *det_z = d_z ; #else /* imaginary part of matrix is ignored */ *det_x = d_real ; *det_z = 0 ; #endif UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = prl ; if (prl > 2) printf ("\nmatgen_file: ") ; status = UMFPACK_report_triplet (nr, nc, nz, Ti, Tj, CARG(Tx,Tz), Control) ; if (status != UMFPACK_OK) error ("bad triplet report",0.) ; /* convert to column form */ status = UMFPACK_triplet_to_col (nr, nc, nz, Ti, Tj, CARG(Tx,Tz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; if (status != UMFPACK_OK) error ("matgen_file triplet_to_col failed",0.) ; if (prl > 2) printf ("\nmatgen_file: ") ; status = UMFPACK_report_matrix (nr, nc, Bp, Bi, CARG(Bx,Bz), 1, Control) ; if (status != UMFPACK_OK) error ("bad A matgen_file",0.) ; /* return the allocated column-form */ *n_row = nr ; *n_col = nc ; *Ap = Bp ; *Ai = Bi ; *Ax = Bx ; *Az = Bz ; *Qinit = Q ; free (Tz) ; /* ] */ free (Tx) ; /* ] */ free (Tj) ; /* ] */ free (Ti) ; /* ] */ fclose (f) ; } /* ========================================================================== */ /* matgen_arrow: create an arrowhead matrix */ /* ========================================================================== */ static Int matgen_arrow ( Int n, Int **Ap, Int **Ai, Int **Q ) { Int nz, *Bp, *Bi, i, j, p, *Qp ; nz = n + 2*(n-1) ; printf ("matgen_arrow: n = "ID" nz = "ID"\n", n, nz) ; Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; Bi = (Int *) malloc (nz * sizeof (Int)) ; Qp = (Int *) malloc (n * sizeof (Int)) ; if (!Bp || !Bi || !Qp) { free (Bp) ; free (Bi) ; free (Qp) ; printf ("arrow failed\n") ; return (FALSE) ; } /* row and column 0, and diagonal, are dense */ /* column 0 */ p = 0 ; Bp [0] = p ; for (i = 0 ; i < n ; i++) { Bi [p] = i ; Qp [p] = i ; p++ ; } /* columns 1 to n-1 */ for (j = 1 ; j < n ; j++) { Bp [j] = p ; Bi [p] = 0 ; /* row 0 */ p++ ; Bi [p] = j ; /* row j (diagonal) */ } Bp [n] = p ; *Ap = Bp ; *Ai = Bi ; *Q = Qp ; printf ("matgen_arrow: n = "ID" nz = "ID" done.\n", n, nz) ; return (TRUE) ; } /* ========================================================================== */ /* do_and_free: do a matrix, its random transpose, and then free it */ /* ========================================================================== */ static double do_and_free ( Int n, Int Ap [ ], Int Ai [ ], double Ax [ ], double Az [ ], double Controls [UMFPACK_CONTROL][1000], Int Ncontrols [UMFPACK_CONTROL], Int MemControl [6], Int do_dense ) { Int *Bp, *Bi ; double *Bx, *Bz, rnorm1, rnorm2 ; /* A */ rnorm1 = do_matrix (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemControl, do_dense) ; /* B = A (P,Q), P and Q random */ matgen_transpose (n, Ap, Ai, Ax, Az, &Bp, &Bi, &Bx, &Bz) ; free (Ap) ; free (Ai) ; free (Ax) ; free (Az) ; rnorm2 = do_matrix (n, Bp, Bi, Bx, Bz, Controls, Ncontrols, MemControl, do_dense) ; free (Bp) ; free (Bi) ; free (Bx) ; free (Bz) ; return (MAX (rnorm1, rnorm2)) ; } /* ========================================================================== */ /* AMD */ /* ========================================================================== */ static int do_amd ( Int n, Int Ap [], Int Ai [], Int P [] ) { #if 0 #ifndef NDEBUG FILE *f ; f = fopen ("apx.m", "w") ; Int j, p, nz ; if (Ap && Ai && P) { nz = Ap [n] ; fprintf (f, "ApX = [ ") ; for (j = 0 ; j <= n ; j++) fprintf (f, ID" ", Ap [j]) ; fprintf (f, "] ; \n nzx = "ID" ;\n Ax = [\n", nz) ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { fprintf (f, ID" "ID" 1\n", 1+j, 1+Ai [p]) ; } } fprintf (f, ID" "ID" 0] ;\n", n, n) ; fclose (f) ; } #endif #endif #if (defined (DINT) || defined (ZINT)) return (amd_order (n, Ap, Ai, P, DNULL, DNULL)) ; #else return (amd_l_order (n, Ap, Ai, P, DNULL, DNULL)) ; #endif } static int do_amd_transpose ( Int n, Int Ap [], Int Ai [], Int Rp [], Int Ri [] ) { Int *W, *Flag ; #if (defined (DINT) || defined (ZINT)) if (amd_valid (n, n, Ap, Ai) < AMD_OK || !Ri || !Rp) { return (AMD_INVALID) ; } #else if (amd_l_valid (n, n, Ap, Ai) < AMD_OK || !Ri || !Rp) { return (AMD_INVALID) ; } #endif W = amd_malloc (MAX (n,1) * sizeof (Int)) ; Flag = amd_malloc (MAX (n,1) * sizeof (Int)) ; if (!W || !Flag) { amd_free (W) ; amd_free (Flag) ; return (AMD_OUT_OF_MEMORY) ; } #if (defined (DINT) || defined (ZINT)) amd_preprocess (n, Ap, Ai, Rp, Ri, W, Flag) ; #else amd_l_preprocess (n, Ap, Ai, Rp, Ri, W, Flag) ; #endif amd_free (W) ; amd_free (Flag) ; return (AMD_OK) ; } /* ========================================================================== */ /* do_file: read a matrix from a matrix and call do_many */ /* ========================================================================== */ static double do_file ( char *filename, Int prl, Int MemControl [6] ) { Int n_row, n_col, *Ap, *Ai, *Qinit, n, *P, s, *W, scale, row, col, p, strategy, fixQ ; double *Ax, *Az, Control [UMFPACK_CONTROL], *b, rnorm, *bz, maxrnorm, bad, det_x, det_z ; UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = prl ; maxrnorm = 0 ; /* get the matrix A and preordering Qinit */ matgen_file (filename, &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, prl, &det_x, &det_z) ; /* [[[[[ */ check_tol = SCALAR_ABS (det_x < 1e100) ; /* test amd, on A and A transpose */ if (n_row == n_col) { Int k, *Rp, *Ri ; P = (Int *) malloc (n_row * sizeof (Int)) ; /* [ */ W = (Int *) malloc (n_row * sizeof (Int)) ; /* [ */ Rp = (Int *) malloc ((n_row+1) * sizeof (Int)) ; /* [ */ Ri = (Int *) malloc ((Ap [n_row]) * sizeof (Int)) ; /* [ */ s = do_amd (n_row, Ap, Ai, P) ; if (s != AMD_OK) error ("amd2", (double) s) ; s = UMF_report_perm (n_row, P, W, 3, 0) ; if (s != UMFPACK_OK) error ("amd3", (double) s) ; s = do_amd_transpose (n_row, Ap, Ai, Rp, Ri) ; if (s != AMD_OK) error ("amd4", (double) s) ; s = do_amd (n_row, Rp, Ri, P) ; if (s != AMD_OK) error ("amd5", (double) s) ; s = UMF_report_perm (n_row, P, W, 3, 0) ; if (s != UMFPACK_OK) error ("amd6", (double) s) ; free (Ri) ; /* ] */ free (Rp) ; /* ] */ free (W) ; /* ] */ free (P) ; /* ] */ } /* do the matrix */ n = MAX (n_row, n_col) ; n = MAX (n,1) ; b = (double *) calloc (n, sizeof (double)) ; /* [ */ bz= (double *) calloc (n, sizeof (double)) ; /* [ */ if (n_row == n_col) { bgen (n, Ap, Ai, Ax,Az, b,bz) ; } if (prl == 5 && MAX (n_row, n_col) > 600) { /* do nothing */ ; } else if (prl >= 3 || MAX (n_row, n_col) > 15) { /* quick test */ printf ("Control strategy auto Q prl "ID"\n", prl) ; printf ("quick test..\n") ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("quick test.. done\n") ; printf ("Control strategy auto Q prl "ID" :: rnorm %g\n", prl, rnorm) ; if (check_tol) { if (rnorm >= TOL) error ("bad do_file", rnorm) ; maxrnorm = rnorm ; } /* quick test - no aggressive absorption */ printf ("Control strategy auto Q prl "ID" no aggressive\n", prl) ; Control [UMFPACK_AGGRESSIVE] = 0 ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy auto Q prl "ID" no aggressive:: rnorm %g\n", prl, rnorm) ; if (check_tol) { if (rnorm >= TOL) error ("bad do_file", rnorm) ; maxrnorm = rnorm ; } /* quick test - symmetric strategy, no aggressive absorption */ printf ("Control strategy auto Q prl "ID" no aggressive, symmetric\n", prl) ; Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC ; UMFPACK_report_control (Control) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy auto Q prl "ID" no aggressive, symmetric:: rnorm %g\n", prl, rnorm) ; if (check_tol) { if (rnorm >= TOL) error ("bad do_file", rnorm) ; maxrnorm = rnorm ; } } else { /* full test */ for (strategy = -1 ; strategy <= UMFPACK_STRATEGY_SYMMETRIC ; strategy ++) { Control [UMFPACK_STRATEGY] = strategy ; if (strategy == UMFPACK_STRATEGY_SYMMETRIC) { if (n < 5) UMFPACK_report_control (Control) ; for (fixQ = -1 ; fixQ <= 1 ; fixQ++) { Control [UMFPACK_FIXQ] = fixQ ; for (scale = -1 ; scale <= UMFPACK_SCALE_MAX ; scale++) { Control [UMFPACK_SCALE] = scale ; printf ("Control strategy "ID" "ID" noQ prl "ID" scale "ID"\n", strategy, fixQ, prl, scale) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy "ID" "ID" noQ prl "ID" scale "ID" :: rnorm %g\n", strategy, fixQ, prl, scale, rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } } printf ("Control strategy "ID" "ID" Q\n", strategy, fixQ) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy "ID" "ID" Q :: rnorm %g\n", strategy, fixQ, rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } } Control [UMFPACK_FIXQ] = UMFPACK_DEFAULT_FIXQ ; } else { printf ("Control strategy "ID" Q prl "ID"\n", strategy, prl) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy "ID" Q prl "ID" :: rnorm %g\n", strategy, prl, rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } printf ("Control strategy "ID" noQ\n", strategy) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy "ID" noQ :: rnorm %g\n", strategy, rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } #ifdef UMFPACK_DROPTOL Control [UMFPACK_DROPTOL] = 1e-25 ; printf ("Control strategy "ID" noQ droptol 1e-25\n", strategy) ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemControl, TRUE, TRUE, det_x, det_z) ; printf ("Control strategy "ID" noQ droptol 1e-25 :: rnorm %g\n", strategy, rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } Control [UMFPACK_DROPTOL] = 0 ; #endif } } } UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = 3 ; /* scale row 0 */ for (col = 0 ; col < n_col ; col++) { for (p = Ap [col] ; p < Ap [col+1] ; p++) { row = Ai [p] ; if (row == 0) { Ax [p] *= 1e-20 ; Az [p] *= 1e-20 ; } } } b [0] *= 1e-20 ; bz [0] *= 1e-20 ; printf ("Control defaults noQ tiny row 0\n") ; rnorm = do_many (n_row, n_col, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemControl, TRUE, TRUE, 1e-20*det_x, 1e-20*det_z) ; printf ("Control defaults noQ tiny row 0:: rnorm %g\n", rnorm) ; if (check_tol) { maxrnorm = MAX (maxrnorm, rnorm) ; if (rnorm >= TOL) error ("bad do_file", rnorm) ; } free (bz) ; /* ] */ free (b) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ free (Qinit) ; /* ] */ check_tol = TRUE ; return (maxrnorm) ; } /* ========================================================================== */ /* main */ /* ========================================================================== */ #if 0 /* compile with -lefence and -DEFENCE */ #ifndef EXTERN #define EXTERN extern #endif EXTERN int EF_PROTECT_FREE ; EXTERN int EF_PROTECT_BELOW ; #endif int main (int argc, char **argv) { double *Lx, *Ux, *x, *Cx, *Bx, *Ax, *b, *Ax2, *Lz, *Uz, *xz, *Cz, *Bz, *Az, *bz,*Az2, rnorm, maxrnorm, *Con, Info [UMFPACK_INFO], *Wx, *Rs, xnan, xinf, ttt, Controls [UMFPACK_CONTROL][1000], Control [UMFPACK_CONTROL], alphas [ ] = {-1.0, 0.0, 0.1, 0.5, 10.}, *info, maxrnorm_shl0, rnorm_omega2, maxrnorm_arc130, det_x, det_z, Mx, Mz, Exp ; Int Ncontrols [UMFPACK_CONTROL], c, i, n, prl, *Qinit, *Qinit2, n1, *Ap, *Ai, *Aj, nz, *Ap2, *Ai2, p, j, d, s, s2, *Pinit, k, n2, *Map, *Lp, *Li, *P, *Q, *Up, *Ui, lnz, unz, nn, *Cp, *Ci, *Cj, *Bi, *Bp, *Bj, *Pa, *Front_npivots, *Front_parent, *Chain_start, *Chain_maxrows, *ip, *Chain_maxcols, nfr, nchains, nsparse_col, *Qtree, *Ptree, nnz, MemOK [6], MemBad [6], nnrow, nncol, nzud, n_row, n_col, n_row2, n_col2, scale, *Front_1strow, *Front_leftmostdesc, strategy, t, aggressive, *Pamd, mem1, mem2, do_recip ; void *Symbolic, *Numeric ; SymbolicType *Sym ; NumericType *Num ; DIR *dir ; struct dirent *direntp ; char filename [200] ; FILE *f ; /* turn off debugging */ { f = fopen ("debug.umf", "w") ; fprintf (f, "-45\n") ; fclose (f) ; } { f = fopen ("debug.amd", "w") ; fprintf (f, "-45\n") ; fclose (f) ; } #if 0 /* compile with -lefence */ EF_PROTECT_FREE = 0 ; /* 1 to test modifications to free'd memory */ EF_PROTECT_BELOW = 0 ; /* 1 to test modifications above an obj. */ #endif c = UMFPACK_PIVOT_TOLERANCE ; Controls [c][0] = UMFPACK_DEFAULT_PIVOT_TOLERANCE ; Ncontrols [c] = 1 ; c = UMFPACK_SCALE ; Controls [c][0] = UMFPACK_SCALE_SUM ; /* also the default */ Ncontrols [c] = 1 ; c = UMFPACK_BLOCK_SIZE ; Controls [c][0] = 32 ; Ncontrols [c] = 1 ; c = UMFPACK_ALLOC_INIT ; Controls [c][0] = 1.0 ; Ncontrols [c] = 1 ; c = UMFPACK_AMD_DENSE ; Controls [c][0] = UMFPACK_DEFAULT_AMD_DENSE ; Ncontrols [c] = 1 ; /* ---------------------------------------------------------------------- */ /* test malloc, realloc, and free */ /* ---------------------------------------------------------------------- */ P = (Int *) UMF_malloc (Int_MAX, 2) ; if (P) error ("should have failed\n", 0.) ; printf ("reallocing...\n") ; P = (Int *) UMF_realloc (P, 1, 4) ; if (!P) error ("should have succeeded\n", 0.) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 1) error ("should be 1", 0.) ; #endif printf ("ok here...\n") ; P = UMF_free (P) ; if (P) error ("should have free'd it\n", 0.) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("should be 0", 0.) ; #endif xnan = divide (0., 0.) ; xinf = divide (1., 0.) ; /* ---------------------------------------------------------------------- */ /* malloc and realloc control */ /* ---------------------------------------------------------------------- */ MemOK [0] = -1 ; MemOK [1] = 0 ; MemOK [2] = 0 ; MemOK [3] = -1 ; MemOK [4] = 0 ; MemOK [5] = 0 ; /* malloc always succeeds */ umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; /* realloc always succeeds */ umf_realloc_fail = -1 ; umf_realloc_lo = 0 ; umf_realloc_hi = 0 ; UMFPACK_defaults (Control) ; maxrnorm_shl0 = 0.0 ; /* for shl0 only */ maxrnorm = 0.0 ; /* for all other matrices */ check_tol = TRUE ; /* ---------------------------------------------------------------------- */ printf ("load/save error handling tests:\n") ; /* load a bad symbolic object */ s = UMFPACK_load_symbolic (&Symbolic, "badsym.umf") ; if (s == UMFPACK_OK) { error ("load symbolic failed\n", 0.) ; } s = UMFPACK_load_symbolic (&Symbolic, "badsym2.umf") ; if (s == UMFPACK_OK) { error ("load symbolic failed (2)\n", 0.) ; } /* load a bad numeric object */ s = UMFPACK_load_numeric (&Numeric, "badnum.umf") ; if (s == UMFPACK_OK) { error ("load numeric failed\n", 0.) ; } s = UMFPACK_load_numeric (&Numeric, "badnum2.umf") ; if (s == UMFPACK_OK) { error ("load numeric failed (2)\n", 0.) ; } /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test a tiny matrix */ /* ---------------------------------------------------------------------- */ n = 2 ; printf ("\n tiny\n") ; check_tol = TRUE ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 0) ; printf ("rnorm tiny %g\n", rnorm) ; if (rnorm > 1e-12) { error ("bad rnorm for tiny matrix", rnorm) ; } /* ---------------------------------------------------------------------- */ /* test a tiny matrix with a NaN in it */ /* ---------------------------------------------------------------------- */ c = UMFPACK_SCALE ; Controls [c][0] = UMFPACK_SCALE_SUM ; /* also the default */ Controls [c][1] = UMFPACK_SCALE_NONE ; Ncontrols [c] = 2 ; n = 2 ; printf ("\n tiny\n") ; check_tol = TRUE ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; Ax [0] = xnan ; Az [0] = 0 ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 0) ; printf ("rnorm tiny %g with NaN\n", rnorm) ; n = 2 ; printf ("\n tiny\n") ; check_tol = TRUE ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; Ax [1] = 1e-20 ; Az [1] = 0 ; Ax [2] = 2e-20 ; Az [2] = 0 ; Ax [3] = 3e-20 ; Az [3] = 0 ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 0) ; printf ("rnorm tiny %g with NaN and small row\n", rnorm) ; n = 2 ; printf ("\n tiny\n") ; check_tol = TRUE ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; Ax [0] = 0 ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 0) ; printf ("rnorm tiny %g with small row\n", rnorm) ; c = UMFPACK_SCALE ; Controls [c][0] = UMFPACK_SCALE_SUM ; /* also the default */ Ncontrols [c] = 1 ; /* ---------------------------------------------------------------------- */ /* test omega2 */ /* ---------------------------------------------------------------------- */ srand (1) ; n = 500 ; printf ("\n omega 2 test\n") ; matgen_sparse (n, 2*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 0, 0) ; f = fopen ("A500", "w") ; fprintf (f, ID" "ID" 0 0\n", n, n) ; for (j = 0 ; j < n ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { fprintf (f, ID" "ID" %40.25e %40.25e\n", Ai [p], j, Ax [p], Az [p]) ; } } fclose (f) ; rnorm_omega2 = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 0) ; printf ("rnorm %g omega-2 test\n", rnorm_omega2) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* this is not solved very accurately (about 1e-7) */ maxrnorm_shl0 = do_file ("TestMat/shl0", 4, MemOK) ; printf ("rnorm shl0 %10.4e\n", maxrnorm_shl0) ; /* this is not solved very accurately (about 1e-5, because of U'x=b) */ maxrnorm_arc130 = do_file ("TestMat/arc130", 4, MemOK) ; printf ("rnorm arc130 %10.4e\n", maxrnorm_arc130) ; /* ---------------------------------------------------------------------- */ /* test random sparse matrices */ /* ---------------------------------------------------------------------- */ n = 30 ; printf ("sparse %7d 4*n nz's", n) ; matgen_sparse (n, 4*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; /* [[[[ */ rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; /* ]]]] */ maxrnorm = MAX (rnorm, maxrnorm) ; printf ("rnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; rnorm = do_file ("TestMat/matrix5", 5, MemOK) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf ("rnorm matrix 5 %10.4e %10.4e\n", rnorm, maxrnorm) ; /* malloc always succeeds */ umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; /* realloc always fails */ umf_realloc_fail = 0 ; umf_realloc_lo = -9999999 ; umf_realloc_hi = 0 ; /* ---------------------------------------------------------------------- */ /* do all test matrices from TestMat directory */ /* ---------------------------------------------------------------------- */ /* quick tests */ prl = 1 ; matgen_file ("TestMat/matrix1", &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, prl, &det_x, &det_z) ; /* [[[[[ */ Control [UMFPACK_ALLOC_INIT] = -211 ; /* with no Qinit, out of memory in extend front */ s = UMFPACK_symbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), &Symbolic, Control, Info) ; /* [ */ if (s != UMFPACK_OK) error ("TestMat matrix1 sym", (double) s) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; /* [ */ if (s != UMFPACK_ERROR_out_of_memory) error ("TestMat matrix1 num", (double) s) ; UMFPACK_free_numeric (&Numeric) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* ] */ free (Ax) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Az) ; /* ] */ free (Qinit) ; /* ] */ matgen_file ("TestMat/matrix10", &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, prl, &det_x, &det_z) ; /* [[[[[ */ Control [UMFPACK_ALLOC_INIT] = -1321 ; /* with Qinit, out of memory in create front (2) */ s = UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; /* [ */ if (s != UMFPACK_OK) error ("TestMat matrix10 qsym1", (double) s) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; /* [ */ if (s != UMFPACK_ERROR_out_of_memory) error ("TestMat matrix10 qnum1", (double) s) ; UMFPACK_free_numeric (&Numeric) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* ] */ Control [UMFPACK_ALLOC_INIT] = -1326 ; /* with Qinit, out of memory in init front */ s = UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; /* [ */ if (s != UMFPACK_OK) error ("TestMat matrix10 qsym", (double) s) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; /* [ */ if (s != UMFPACK_ERROR_out_of_memory) error ("TestMat matrix10 qnum", (double) s) ; UMFPACK_free_numeric (&Numeric) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* ] */ free (Ax) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Az) ; /* ] */ free (Qinit) ; /* ] */ printf ("\ndone with TestMat memory sizes.\n\n") ; UMFPACK_defaults (Control) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test amd */ /* ---------------------------------------------------------------------- */ n = 50 ; P = (Int *) malloc (n * sizeof (Int)) ; /* [ */ for (k = 0 ; k < 10 ; k++) { matgen_sparse (n, 4*n, 3, 2*n, 0, 0, &Ap, &Ai, &Ax, &Az, 0, 0) ; /* [[[[ */ for (aggressive = 0 ; aggressive <= 2 ; aggressive++) { for (i = 0 ; i < 3 ; i++) { #if (defined (DINT) || defined (ZINT)) amd_defaults (Control) ; Control [AMD_AGGRESSIVE] = aggressive ; Control [AMD_DENSE] = alphas [i] ; Con = (aggressive == 2) ? DNULL : Control ; info = (aggressive == 2) ? DNULL : Info ; amd_control (Con) ; s = amd_order (n, Ap, Ai, P, Con, info) ; if (s != AMD_OK) error ("amd", (double) s) ; amd_info (info) ; #else amd_l_defaults (Control) ; Control [AMD_AGGRESSIVE] = aggressive ; Control [AMD_DENSE] = alphas [i] ; Con = (aggressive == 2) ? DNULL : Control ; info = (aggressive == 2) ? DNULL : Info ; amd_l_control (Con) ; s = amd_l_order (n, Ap, Ai, P, Con, info) ; if (s != AMD_OK) error ("amd", (double) s) ; amd_l_info (info) ; #endif UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = 3 ; UMFPACK_report_perm (n, P, Control) ; } } free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ } free (P) ; /* ] */ if (AMD_valid (-1, -1, INULL, INULL) >= AMD_OK) error ("amd error", 0.) ; Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; AMD_info (Info) ; Info [AMD_STATUS] = AMD_INVALID ; AMD_info (Info) ; Info [AMD_STATUS] = -911 ; AMD_info (Info) ; /* ---------------------------------------------------------------------- */ /* malloc and realloc control */ /* ---------------------------------------------------------------------- */ MemOK [0] = -1 ; MemOK [1] = 0 ; MemOK [2] = 0 ; MemOK [3] = -1 ; MemOK [4] = 0 ; MemOK [5] = 0 ; umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; umf_realloc_fail = -1 ; umf_realloc_lo = 0 ; umf_realloc_hi = 0 ; for (i = 0 ; i < UMFPACK_CONTROL ; i++) { Ncontrols [i] = 0 ; } UMFPACK_defaults (Control) ; /* ---------------------------------------------------------------------- */ /* do three funky sizes to test int overflow cases */ /* ---------------------------------------------------------------------- */ { /* Int funky_sizes [ ] = { 14402, 16400, 600000 } ; */ Int funky_sizes [ ] = { 144, 164, 600 } ; UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = 1 ; Control [UMFPACK_STRATEGY] = 3 ; Control [UMFPACK_FRONT_ALLOC_INIT] = 1 ; for (k = 0 ; k < 3 ; k++) { n = funky_sizes [k] ; printf ("funky matrix, n = "ID"\n", n) ; matgen_funky (n, &Ap, &Ai, &Ax, &Az) ; /* [[[[ */ b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ Qinit = (Int *) malloc (n * sizeof (Int)) ; /* [ */ if (!b) error ("out of memory (15)",0.) ; if (!bz) error ("out of memory (16)",0.) ; if (!Qinit) error ("out of memory (17)",0.) ; bgen (n, Ap, Ai, Ax, Az, b, bz) ; for (i = 0 ; i < n ; i++) Qinit [i] = i ; fflush (stdout) ; Control [UMFPACK_FIXQ] = 1 ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; printf ("funky matrix rnorm (fixQ): %g\n", rnorm) ; fflush (stdout) ; maxrnorm = MAX (rnorm, maxrnorm) ; Control [UMFPACK_FIXQ] = 0 ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; printf ("funky matrix rnorm (no fixQ): %g\n", rnorm) ; fflush (stdout) ; maxrnorm = MAX (rnorm, maxrnorm) ; free (Qinit) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ } } /* maxrnorm = 0 ; */ /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* tight controls */ /* ---------------------------------------------------------------------- */ c = UMFPACK_PIVOT_TOLERANCE ; Controls [c][0] = UMFPACK_DEFAULT_PIVOT_TOLERANCE ; Ncontrols [c] = 1 ; c = UMFPACK_SCALE ; Controls [c][1] = UMFPACK_DEFAULT_SCALE ; Ncontrols [c] = 1 ; c = UMFPACK_BLOCK_SIZE ; Controls [c][0] = UMFPACK_DEFAULT_BLOCK_SIZE ; Ncontrols [c] = 1 ; c = UMFPACK_ALLOC_INIT ; Controls [c][0] = UMFPACK_DEFAULT_ALLOC_INIT ; Ncontrols [c] = 1 ; c = UMFPACK_AMD_DENSE ; Controls [c][0] = UMFPACK_DEFAULT_AMD_DENSE ; Ncontrols [c] = 1 ; /* ---------------------------------------------------------------------- */ /* license */ /* ---------------------------------------------------------------------- */ Control [UMFPACK_PRL] = 6 ; UMFPACK_report_status (Control, UMFPACK_OK) ; /* ---------------------------------------------------------------------- */ /* do all test matrices from TestMat directory */ /* ---------------------------------------------------------------------- */ printf ("\nStarting TestMat:\n") ; for (prl = 5 ; prl >= 0 ; prl--) { printf ("=====================TestMat PRL "ID"\n", prl) ; dir = opendir ("TestMat") ; if (!dir) { printf ("opendir TestMat failed\n") ; exit (1) ; } while (TRUE) { errno = 0 ; if ((direntp = readdir (dir)) != NULL) { /* skip this */ if (direntp->d_name [0] == '.') continue ; sprintf (filename, "TestMat/%s", direntp->d_name) ; rnorm = do_file (filename, prl, MemOK) ; if (strcmp (filename, "TestMat/shl0") == 0) { printf ("shl0 rnorm: %g\n", rnorm) ; maxrnorm_shl0 = MAX (maxrnorm_shl0, rnorm) ; } else if (strcmp (filename, "TestMat/arc130") == 0) { printf ("arc130 rnorm: %g\n", rnorm) ; maxrnorm_arc130 = MAX (maxrnorm_arc130, rnorm) ; } else { printf ("other testmat rnorm: %g\n", rnorm) ; maxrnorm = MAX (maxrnorm, rnorm) ; } } else { if (errno != 0) { printf ("read error\n") ; exit (1) ; } closedir (dir) ; break ; } } printf ("\n\n@@@@@@ Largest TestMat do_file rnorm: %g shl0: %g @@@@@@ arc130: %g\n\n", maxrnorm, maxrnorm_shl0, maxrnorm_arc130) ; } printf ("\ndone with TestMat.\n\n") ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test change of pattern */ /* ---------------------------------------------------------------------- */ Control [UMFPACK_PRL] = 5 ; Control [UMFPACK_ALLOC_INIT] = 0. ; matgen_file ("TestMat/matrix1", &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (!Symbolic || Info [UMFPACK_STATUS] != UMFPACK_OK) error ("p1",0.) ; printf ("\nGood symbolic, pattern test: ") ; s = UMFPACK_report_symbolic (Symbolic, Control) ; UMFPACK_report_status (Control, s) ; if (s != UMFPACK_OK) error ("p1c",0.) ; UMFPACK_report_control (Control) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; printf ("p1b status: "ID" Numeric handle bad "ID"\n", s, !Numeric) ; s2 = UMFPACK_report_numeric (Numeric, Control) ; if (!Numeric || s != UMFPACK_OK) error ("p1b",0.) ; printf ("Good numeric, pattern test: ") ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; UMFPACK_report_status (Control, s) ; if (s2 != UMFPACK_OK) error ("p1d",0.) ; UMFPACK_free_numeric (&Numeric) ; /* corrupted Ap (negative degree) */ c = Ap [1] ; Ap [1] = -1 ; printf ("Bad Ap [1] = -1: \n") ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("zzz1",0.) ; Ap [1] = c ; /* corrupted Ai (out of bounds) */ c = Ai [1] ; Ai [1] = -1 ; printf ("Bad Ai [1] = -1: \n") ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("zzz2",0.) ; Ai [1] = c ; /* corrupted Ai (out of bounds) */ c = Ai [1] ; Ai [1] = n_row ; printf ("Bad Ai [1] = "ID": \n", n_row) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("zzz3",0.) ; Ai [1] = c ; free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ free (Qinit) ; /* ] */ /* one more entry */ printf ("one more entry\n") ; matgen_file ("TestMat/matrix2", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p2",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ printf ("one more entry done\n") ; /* one less entry */ matgen_file ("TestMat/matrix3", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p3",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ /* many more entries */ matgen_file ("TestMat/matrix4", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Ax2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p4",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ /* some more entries */ matgen_file ("TestMat/matrix5", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p5",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ /* same entries - but different pattern */ matgen_file ("TestMat/matrix6", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p6",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ /* same entries - but different pattern */ matgen_file ("TestMat/matrix7", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p7",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ /* same entries - but different pattern */ matgen_file ("TestMat/matrix8", &n_row2, &n_col2, &Ap2, &Ai2, &Ax2, &Az2, &Qinit2, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_numeric (Ap2, Ai2, CARG(Ax2,Az2), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric || s != UMFPACK_ERROR_different_pattern) error ("p8",0.) ; free (Ap2) ; /* ] */ free (Ai2) ; /* ] */ free (Ax2) ; /* ] */ free (Az2) ; /* ] */ free (Qinit2) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* start over, use a bigger matrix */ matgen_file ("TestMat/matrix10", &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, 5, &det_x, &det_z) ; /* [[[[[ */ s = UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (prl > 2) printf ("\nGood matrix10 symbolic, pattern test: ") ; s = UMFPACK_report_symbolic (Symbolic, Control) ; if (!Symbolic || Info [UMFPACK_STATUS] != UMFPACK_OK) error ("p10",0.) ; if (s != UMFPACK_OK) error ("p10",0.) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (!Numeric || s != UMFPACK_OK) error ("p10b",0.) ; printf ("Good matrix10matrix10 numeric, pattern test:") ; s = UMFPACK_report_numeric (Numeric, Control) ; if (s != UMFPACK_OK) error ("p10b",0.) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; UMFPACK_free_numeric (&Numeric) ; /* kludge Symbolic to force a huge dmax */ printf ("\nKludge symbolic to force dmax int overflow:\n") ; Control [UMFPACK_PRL] = 3 ; Sym = (SymbolicType *) Symbolic ; Sym->amd_dmax = 16400 ; s = UMFPACK_report_symbolic (Symbolic, Control) ; if (!Symbolic || Info [UMFPACK_STATUS] != UMFPACK_OK) error ("p10e",0.) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (!Numeric || s != UMFPACK_OK) error ("p10c",0.) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; UMFPACK_free_numeric (&Numeric) ; free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ free (Qinit) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* ---------------------------------------------------------------------- */ /* reset controls */ /* ---------------------------------------------------------------------- */ UMFPACK_defaults (Control) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test realloc */ /* ---------------------------------------------------------------------- */ /* malloc always succeeds */ MemBad [0] = -1 ; MemBad [1] = 0 ; MemBad [2] = 0 ; /* realloc always fails */ MemBad [3] = 0 ; MemBad [4] = 0 ; MemBad [5] = -99999 ; c = UMFPACK_ALLOC_INIT ; Ncontrols [c] = 1 ; Controls [c][0] = 0.001 ; #ifdef DINT printf ("\n all realloc fails sparse + dense rows %7d 4*n nz's\n", n) ; matgen_sparse (n, 4*n, 3, 2*n, 0, 0, &Ap, &Ai, &Ax, &Az, 0, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemBad, 0) ; printf ("rnorm %g should be 9e10\n", rnorm) ; if (rnorm != 9e10) error ("MemBad 1 failure", rnorm) ; printf ("\n all realloc fails sparse %7d 30*n nz's\n", n) ; matgen_sparse (n, 30*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 0, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemBad, 0) ; printf ("rnorm %g should be 9e10\n", rnorm) ; if (rnorm != 9e10) error ("MemBad 2 failure", rnorm) ; #endif /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* umf_symbolic compaction test */ /* ---------------------------------------------------------------------- */ n = 100 ; Control [UMFPACK_PRL] = 4 ; Qinit = (Int *) malloc (n * sizeof (Int)) ; /* [ */ b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ for (i = 0 ; i < n ; i++) Qinit [i] = i ; matgen_compaction (n, &Ap, &Ai, &Ax, &Az) ; /* [[[[ */ bgen (n, Ap, Ai, Ax, Az, b, bz) ; printf ("\nA compaction: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Control) ; if (s != UMFPACK_OK) error ("219", 0.) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; printf ("rnorm %g A compaction\n", rnorm) ; Control [UMFPACK_PRL] = 1 ; printf ("do_and_free for compacted matrix:\n") ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 0) ; /* ]]]] */ printf ("rnorm for compacted matrix %g\n", rnorm) ; free (b) ; /* ] */ free (bz) ; /* ] */ free (Qinit) ; /* ] */ /* ---------------------------------------------------------------------- */ /* umf_symbolic compaction test, again (read a file) */ /* ---------------------------------------------------------------------- */ matgen_file ("TestMat/shl0", &n_row, &n_col, &Ap, &Ai, &Ax, &Az, &Qinit, 5, &det_x, &det_z) ; /* [[[[[ */ n = n_row ; b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ bgen (n, Ap, Ai, Ax, Az, b, bz) ; Control [UMFPACK_PRL] = 5 ; Control [UMFPACK_DENSE_ROW] = 0.1 ; Control [UMFPACK_DENSE_COL] = 2.0 ; printf ("\nshl0 b: ") ; UMFPACK_report_vector (n, CARG(b,bz), Control) ; printf ("\nshl0 A: ") ; UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Control) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; printf ("rnorm %g for shl0", rnorm) ; maxrnorm_shl0 = MAX (maxrnorm_shl0, rnorm) ; free (bz) ; /* ] */ free (b) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Az) ; /* ] */ free (Ax) ; /* ] */ free (Qinit) ; /* ] */ /* ---------------------------------------------------------------------- */ /* normal Controls */ /* ---------------------------------------------------------------------- */ c = UMFPACK_PIVOT_TOLERANCE ; Controls [c][0] = UMFPACK_DEFAULT_PIVOT_TOLERANCE ; Controls [c][1] = 0.5 ; Controls [c][2] = 1.0 ; Ncontrols [c] = 3 ; c = UMFPACK_SCALE ; Controls [c][0] = UMFPACK_SCALE_SUM ; /* also the default */ Controls [c][1] = UMFPACK_SCALE_NONE ; Controls [c][2] = UMFPACK_SCALE_MAX ; Ncontrols [c] = 3 ; c = UMFPACK_BLOCK_SIZE ; Controls [c][0] = 1 ; Controls [c][1] = 8 ; Controls [c][2] = 16 ; /* not the default */ Ncontrols [c] = 3 ; c = UMFPACK_ALLOC_INIT ; Controls [c][0] = 0.0 ; Controls [c][1] = 0.5 ; Controls [c][2] = 1.0 ; /* not the default */ Controls [c][3] = -10000 ; Ncontrols [c] = 4 ; c = UMFPACK_AMD_DENSE ; Controls [c][0] = -1 ; Controls [c][1] = 0.5 ; Controls [c][2] = UMFPACK_DEFAULT_AMD_DENSE ; Ncontrols [c] = 3 ; UMFPACK_defaults (Control) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test realloc */ /* ---------------------------------------------------------------------- */ /* malloc always succeeds */ MemBad [0] = -1 ; MemBad [1] = 0 ; MemBad [2] = 0 ; /* realloc always fails */ MemBad [3] = 0 ; MemBad [4] = 0 ; MemBad [5] = -99999 ; n = 10 ; printf ("\n all realloc fails sparse %7d 4*n nz's\n", n) ; matgen_sparse (n, 4*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemBad, 1) ; printf ("rnorm %g for all-realloc-fails\n", rnorm) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* reset malloc and realloc failure */ /* ---------------------------------------------------------------------- */ umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; umf_realloc_fail = -1 ; umf_realloc_lo = 0 ; umf_realloc_hi = 0 ; /* ---------------------------------------------------------------------- */ /* test errors */ /* ---------------------------------------------------------------------- */ n = 32 ; Pamd = (Int *) malloc (2*n * sizeof (Int)) ; /* [ */ Qinit = (Int *) malloc (2*n * sizeof (Int)) ; /* [ */ Pinit = (Int *) malloc (2*n * sizeof (Int)) ; /* [ */ Qinit2 = (Int *) malloc (2*n * sizeof (Int)) ; /* [ */ b = (double *) malloc (2*n * sizeof (double)) ; /* [ */ bz= (double *) calloc (2*n , sizeof (double)) ; /* [ */ x = (double *) malloc (2*n * sizeof (double)) ; /* [ */ xz= (double *) calloc (2*n , sizeof (double)) ; /* [ */ Ap2 = (Int *) malloc ((2*n+1) * sizeof (Int)) ; /* [ */ if (!Qinit || !b || !Ap2 || !Qinit2 || !Pinit) error ("out of memory (18)",0.) ; if (!xz || !bz) error ("memr again",0.) ; UMFPACK_defaults (DNULL) ; UMFPACK_defaults (Control) ; randperm (n, Pinit) ; for (prl = 5 ; prl >= -1 ; prl--) { for (strategy = UMFPACK_STRATEGY_AUTO ; strategy <= UMFPACK_STRATEGY_SYMMETRIC ; strategy++) { Int *Rp, *Ri ; printf ("\n[[[[ PRL = "ID" strategy = "ID"\n", prl, strategy) ; for (k = 0 ; k < n ; k++) Pamd [k] = EMPTY ; Control [UMFPACK_PRL] = prl ; Control [UMFPACK_STRATEGY] = strategy ; UMFPACK_report_control (Control) ; i = UMFPACK_DENSE_DEGREE_THRESHOLD (0.2, n) ; printf ("(default) dense row/col degree threshold: "ID"\n", i) ; /* ------------------------------------------------------------------ */ matgen_sparse (n, 4*n, 10, 2*n, 10, 2*n, &Ap, &Ai, &Ax, &Az, prl, 0) ; /* [[[[ */ bgen (n, Ap, Ai, Ax,Az, b,bz) ; nz = Ap [n] ; Aj = (Int *) malloc ((nz+n+1) * sizeof (Int)) ; /* [ */ Ai2 = (Int *) malloc ((nz+n) * sizeof (Int)) ; /* [ */ Ax2 = (double *) malloc ((nz+n) * sizeof (double)) ; /* [ */ Az2 = (double *) calloc ((nz+n) , sizeof (double)) ; /* [ */ if (!Aj || !Ai2 || !Ax2 || !Az2) error ("out of memory (19)",0.) ; Rp = Aj ; Ri = Ai2 ; /* ------------------------------------------------------------------ */ Con = (prl == -1) ? (DNULL) : Control ; UMFPACK_report_control (Con) ; /* ------------------------------------------------------------------ */ randperm (n, Qinit) ; if (prl > 2) printf ("Qinit OK: ") ; s = UMFPACK_report_perm (n, Qinit, Con) ; if (s != UMFPACK_OK) error ("Qinit OK", 0.) ; randperm (2*n, Qinit2) ; if (prl > 2) printf ("Qinit2 OK: ") ; s = UMFPACK_report_perm (2*n, Qinit2, Con) ; if (s != UMFPACK_OK) error ("Qinit2 OK", 0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nb OK: ") ; s = UMFPACK_report_vector (n, CARG(b,bz), Con) ; if (s != UMFPACK_OK) error ("0",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nn=-1: ") ; s = UMFPACK_report_vector (-1, CARG(b,bz), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_n_nonpositive)) error ("2",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nb null: ") ; s = UMFPACK_report_vector (n, CARG(DNULL,DNULL), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_argument_missing)) error ("2",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nA OK: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != UMFPACK_OK) error ("2a",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nA pattern OK: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(DNULL,DNULL), 1, Con) ; if (s != UMFPACK_OK) error ("2c",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nA OK row: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 0, Con) ; if (s != UMFPACK_OK) error ("2b",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nn=zero: ") ; s = UMFPACK_report_matrix (0, 0, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_n_nonpositive)) error ("2",0.) ; s = UMFPACK_symbolic (0, 0, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_n_nonpositive) error ("2b",0.) ; s = UMFPACK_qsymbolic (0, 0, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_n_nonpositive) error ("2c",0.) ; /* ------------------------------------------------------------------ */ s = do_amd (-1, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 1", (double) s) ; s = do_amd (n, INULL, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 2", (double) s) ; s = do_amd (n, Ap, INULL, Pamd) ; if (s != AMD_INVALID) error ("amd 3", (double) s) ; s = do_amd (n, Ap, Ai, INULL) ; if (s != AMD_INVALID) error ("amd 4", (double) s) ; s = do_amd (0, Ap, Ai, Pamd) ; if (s != AMD_OK) error ("amd 5", (double) s) ; s = do_amd_transpose (-1, Ap, Ai, Rp, Ri) ; if (s != AMD_INVALID) error ("amd 1t", (double) s) ; s = do_amd_transpose (n, INULL, Ai, Rp, Ri) ; if (s != AMD_INVALID) error ("amd 2t", (double) s) ; s = do_amd_transpose (n, Ap, INULL, Rp, Ri) ; if (s != AMD_INVALID) error ("amd 3t", (double) s) ; s = do_amd_transpose (n, Ap, Ai, INULL, Ri) ; if (s != AMD_INVALID) error ("amd 7t", (double) s) ; s = do_amd_transpose (n, Ap, Ai, Rp, INULL) ; if (s != AMD_INVALID) error ("amd 8t", (double) s) ; s = do_amd_transpose (0, Ap, Ai, Rp, Ri) ; if (s != AMD_OK) error ("amd 5t", (double) s) ; #if 0 { f = fopen ("debug.amd", "w") ; fprintf (f, "999\n") ; fclose (f) ; } #endif /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nAp null: ") ; s = UMFPACK_report_matrix (n, n, INULL, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_argument_missing)) error ("3",0.) ; s = UMFPACK_symbolic (n, n, INULL, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_argument_missing) error ("3b",0.) ; s = UMFPACK_qsymbolic (n, n, INULL, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_argument_missing) error ("3c",0.) ; s = UMFPACK_transpose (n, n, INULL, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_argument_missing) error ("52",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_OK) error ("amd 6b", (double) s) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nAi null: ") ; s = UMFPACK_report_matrix (n, n, Ap, INULL, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_argument_missing)) error ("4",0.) ; s = UMFPACK_symbolic (n, n, Ap, INULL, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_argument_missing) error ("4b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, INULL, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_argument_missing) error ("4c",0.) ; /* ------------------------------------------------------------------ */ Ap [0] = 1 ; /* Ap broken [ */ if (prl > 2) printf ("\nAp [0] != 0: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("5",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("5b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("5c",0.) ; if (prl > 2) printf ("\nCalling umfpack_transpose:\n") ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("53",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 6", (double) s) ; Ap [0] = 0 ; /* Ap fixed ] */ /* ------------------------------------------------------------------ */ Ap [n] = -1 ; /* Ap broken [ */ if (prl > 2) printf ("\nnz < 0: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("6",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("6b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("6c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("51h",0.); s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("52j",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 6b", (double) s) ; Ap [n] = nz ; /* Ap fixed ] */ /* ------------------------------------------------------------------ */ #if 0 Ap [n] = Int_MAX ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != UMFPACK_ERROR_problem_too_large) error ("177a",0.); Ap [n] = nz ; #endif /* ------------------------------------------------------------------ */ printf ("Ap [2] negative:\n") ; UMFPACK_report_control (Con) ; c = Ap [2] ; /* Ap broken [ */ Ap [2] = -1 ; if (prl > 2) printf ("\nAp[2]<0: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("8",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("8b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("8c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("55",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 7", (double) s) ; Ap [2] = c ; /* Ap fixed ] */ /* ------------------------------------------------------------------ */ c = Ap [2] ; /* Ap broken [ */ Ap [2] = nz+1 ; if (prl > 2) printf ("\nAp [2] > nz: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("9",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; s = Info [UMFPACK_STATUS] ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("9b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("9c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("51i",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 8", (double) s) ; Ap [2] = c ; /* Ap fixed ] */ /* ------------------------------------------------------------------ */ c = Ap [4] ; /* Ap broken [ */ Ap [4] = Ap [3]-1 ; if (prl > 2) printf ("\nAp [4] < Ap [3]-1: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("10",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("8b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("8c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("51j",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 9", (double) s) ; Ap [4] = c ; /* Ap fixed ] */ /* ------------------------------------------------------------------ */ c = Ai [4] ; /* Ai broken [ */ Ai [4] = -1 ; if (prl > 2) printf ("\nAi [4] = -1: ") ; s = UMFPACK_report_matrix (n , n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("12",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("12b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("12c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("51k",0.); s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_INVALID) error ("amd 10", (double) s) ; Ai [4] = c ; /* Ai fixed ] */ /* ------------------------------------------------------------------ */ if (Ap [4] - Ap [3] < 3) error ("col 3 too short",0.) ; c = Ai [Ap [3] + 1] ; /* Ai broken [ */ Ai [Ap [3] + 1] = 0 ; if (prl > 2) printf ("\ncol 3 jumbled: ") ; s = UMFPACK_report_matrix (n , n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("13",0.) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("13b",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_matrix) error ("13c",0.) ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG(Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("51k",0.); s = do_amd (n, Ap, Ai, Pamd) ; printf ("amd jumbled: %d\n", s) ; if (s != AMD_OK_BUT_JUMBLED) error ("amd 11", (double) s) ; Ai [Ap [3] + 1] = c ; /* Ai fixed ] */ /* ------------------------------------------------------------------ */ #if 0 { f = fopen ("debug.amd", "w") ; fprintf (f, "999\n") ; fclose (f) ; } #endif for (i = 0 ; i < n ; i++) Ap2 [i] = Ap [i] ; for (i = n ; i <= 2*n ; i++) Ap2 [i] = nz ; s = do_amd (2*n, Ap2, Ai, Pamd) ; if (s != AMD_OK) error ("amd 12a", (double) s) ; if (prl > 2) printf ("\nhalf empty: ") ; s = UMFPACK_report_matrix (2*n, 2*n, Ap2, Ai, CARG(Ax,Az), 1, Con) ; if (s != UMFPACK_OK) error ("14",0.) ; s = UMFPACK_symbolic (2*n, 2*n, Ap2, Ai, CARG(DNULL,DNULL), &Symbolic, Con, Info) ; if (!Symbolic || s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("14b",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = UMFPACK_symbolic (2*n, 2*n, Ap2, Ai, CARG(DNULL,DNULL), &Symbolic, Con, DNULL) ; if (s != UMFPACK_OK) error ("13d2", 0.) ; if (!Symbolic) error ("13d",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = UMFPACK_qsymbolic (2*n, 2*n, Ap2, Ai, CARG(DNULL,DNULL), Qinit2, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("14c",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = do_amd (2*n, Ap2, Ai, Pamd) ; if (s != AMD_OK) error ("amd 12", (double) s) ; /* ------------------------------------------------------------------ */ for (i = 0 ; i <= n ; i++) Ap2 [i] = 0 ; if (prl > 2) printf ("\nall empty: ") ; s = UMFPACK_report_matrix (n, n, Ap2, Ai, CARG(Ax,Az), 1, Con) ; if (s != UMFPACK_OK) error ("141",0.) ; s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_OK) error ("151",0.) ; s = UMFPACK_symbolic (n, n, Ap2, Ai, CARG(DNULL,DNULL), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("142",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = UMFPACK_symbolic (n, n, Ap2, Ai, CARG(DNULL,DNULL), &Symbolic, Con, DNULL) ; if (s != UMFPACK_OK) error ("142b", 0.) ; if (!Symbolic) error ("143",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = UMFPACK_qsymbolic (n, n, Ap2, Ai, CARG(DNULL,DNULL), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("144",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = do_amd (n, Ap, Ai, Pamd) ; if (s != AMD_OK) error ("amd 13", (double) s) ; /* ------------------------------------------------------------------ */ for (i = 0 ; i <= n ; i++) Ap2 [i] = Ap [i] ; for (p = 0 ; p < nz ; p++) { Ai2 [p] = Ai [p] ; Ax2 [p] = Ax [p] ; } for (i = n ; i < 2*n ; i++) { Ap2 [i] = p ; /* add a dense row 0 */ Ai2 [p] = 0 ; Ax2 [p] = 1.0 ; p++ ; } Ap2 [2*n] = p ; if (prl > 2) printf ("\nhalf empty rows: ") ; s = UMFPACK_report_matrix (2*n, 2*n, Ap2, Ai2, CARG(Ax2,Az2), 1, Con) ; if (s != UMFPACK_OK) error ("30",0.) ; s = UMFPACK_symbolic (2*n, 2*n, Ap2, Ai2, CARG(Ax2,Az2), &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("30b",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = UMFPACK_qsymbolic (2*n, 2*n, Ap2, Ai2, CARG(Ax2,Az2), Qinit2, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("30c",0.) ; UMFPACK_free_symbolic (&Symbolic) ; s = do_amd (2*n, Ap2, Ai2, Pamd) ; if (s != AMD_OK) error ("amd 14", (double) s) ; /* ------------------------------------------------------------------ */ for (i = 0 ; i <= 2*n ; i++) Ap2 [i] = 0 ; if (prl > 2) printf ("\nall empty: ") ; s = UMFPACK_report_matrix (2*n, 2*n, Ap2, Ai, CARG(Ax,Az), 1, Con) ; if (s != UMFPACK_OK) error ("15",0.) ; s = do_amd (2*n, Ap2, Ai2, Pamd) ; if (s != AMD_OK) error ("amd 14b", (double) s) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nold null form was same as col_form: ") ; s = UMFPACK_report_matrix (n, n, Ap, Ai, CARG(Ax,Az), 1, Con) ; if (s != UMFPACK_OK) error ("16",0.) ; /* ================================================================== */ /* test Numeric [ */ /* ================================================================== */ s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; /* [ */ if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("16a",0.) ; /* ------------------------------------------------------------------ */ for (scale = UMFPACK_SCALE_NONE ; scale <= UMFPACK_SCALE_MAX ; scale++) { if (Con) Con [UMFPACK_SCALE] = scale ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, Info) ; /* [ */ if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; Info [UMFPACK_FLOPS_ESTIMATE] = -1 ; UMFPACK_report_info (Con, Info) ; if (!Numeric || s != UMFPACK_OK) error ("31",0.) ; if (prl > 2) printf ("good Numeric: ") ; s = UMFPACK_report_numeric ( Numeric, Con) ; if (s != UMFPACK_OK) error ("90",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_get_lunz (INULL, &unz, &nnrow, &nncol, &nzud, Numeric) ; if (s != UMFPACK_ERROR_argument_missing) error ("57",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_get_lunz (&lnz, &unz, &nnrow, &nncol, &nzud, Numeric) ; printf ("lnz "ID" unz "ID" nn "ID"\n", lnz, unz, nn) ; if (s != UMFPACK_OK) error ("58",0.) ; /* ------------------------------------------------------------------ */ Lp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Li = (Int *) malloc ((lnz+1) * sizeof (Int)) ; /* [ */ Lx = (double *) malloc ((lnz+1) * sizeof (double)) ; /* [ */ Lz = (double *) calloc (lnz , sizeof (double)) ; /* [ */ Up = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Ui = (Int *) malloc ((unz+1) * sizeof (Int)) ; /* [ */ Ux = (double *) malloc ((unz+1) * sizeof (double)) ; /* [ */ Uz = (double *) calloc ((unz+1) , sizeof (double)) ; /* [ */ P = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Q = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Pa = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Wx = (double *) malloc ((10*n) * sizeof (double)) ; /* [ */ Rs = (double *) malloc ((n+1) * sizeof (double)) ; /* [ */ if (!Lp || !Li || !Lx || !Up || !Ui || !Ux || !P || !Q) error ("out of memory (20)",0.) ; if (!Pa || !Wx || !Rs) error ("out of memory (20)",0.) ; if (!Uz || !Lz) error ("out of memory (21)",0.) ; if (prl > 2) printf ("good Numeric again: ") ; s = UMFPACK_report_numeric ( Numeric, Con) ; if (s != UMFPACK_OK) error ("77",0.) ; s = UMFPACK_get_numeric (Lp, Li, CARG(Lx,Lz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(DNULL,DNULL), &do_recip, Rs, Numeric) ; if (s != UMFPACK_OK) error ("59", 0.) ; s = UMFPACK_get_numeric (Lp, Li, CARG(Lx,Lz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(DNULL,DNULL), &do_recip, DNULL, Numeric) ; if (s != UMFPACK_OK) error ("59b", 0.) ; s = UMFPACK_get_numeric (Lp, Li, CARG(Lx,Lz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(DNULL,DNULL), INULL, DNULL, Numeric) ; if (s != UMFPACK_OK) error ("59r", 0.) ; if (prl > 2) printf ("good Numeric yet again: ") ; s = UMFPACK_report_numeric ( Numeric, Con) ; if (s != UMFPACK_OK) error ("75",0.) ; dump_perm ("goodP1", n, Pamd) ; if (prl > 2) printf ("\nL test: ") ; s = UMFPACK_report_matrix (n, n, Lp, Li, CARG(Lx,Lz), 0, Con) ; if (s != UMFPACK_OK) error ("60",0.) ; if (prl > 2) printf ("\nU test: ") ; s = UMFPACK_report_matrix (n, n, Up, Ui, CARG(Ux,Uz), 1, Con) ; if (s != UMFPACK_OK) error ("61",0.) ; dump_perm ("goodP", n, Pamd) ; if (prl > 2) printf ("P test: ") ; s = UMFPACK_report_perm (n, P, Con) ; if (s != UMFPACK_OK) error ("62",0.) ; if (prl > 2) printf ("Q test: ") ; s = UMFPACK_report_perm (n, Q, Con) ; if (s != UMFPACK_OK) error ("63",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_OK) error ("64",0.) ; s = UMFPACK_scale (CARG(DNULL,xz), CARG(b,bz), Numeric) ; if (s != UMFPACK_ERROR_argument_missing) error ("64z",0.) ; s = UMFPACK_scale (CARG(x,xz), CARG(DNULL,bz), Numeric) ; if (s != UMFPACK_ERROR_argument_missing) error ("64y",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(DNULL,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("64e",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(DNULL,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("64f",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(DNULL,Az), CARG(x,xz), CARG(DNULL,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("64g",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_OK) error ("64a",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, DNULL) ; if (s != UMFPACK_OK) error ("64b",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, DNULL, Pa, Wx) ; if (s != UMFPACK_OK) error ("64c",0.) ; s = UMFPACK_solve (UMFPACK_A, INULL, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_control (Con) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != UMFPACK_ERROR_argument_missing) error ("65a",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(DNULL,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("65a",0.) ; s = UMFPACK_wsolve (UMFPACK_A, INULL, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("65b",0.) ; s = UMFPACK_solve (UMFPACK_At, INULL, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("65c",0.) ; s = UMFPACK_wsolve (UMFPACK_At, INULL, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("66",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info, INULL, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("67",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info, Pa, DNULL) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("68",0.) ; if (prl > 2) printf ("erroroneous sys arg for umfpack_solve:\n") ; s = UMFPACK_solve (-1, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != UMFPACK_ERROR_invalid_system) error ("65d",0.) ; /* check internal error message */ UMFPACK_report_status (Con, UMFPACK_ERROR_internal_error) ; /* check unrecognized error code */ UMFPACK_report_status (Con, 123123999) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("70",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("71",0.) ; s = UMFPACK_get_determinant (CARG (&Mx, &Mz), &Exp, (void *) NULL, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("71det",0.) ; s = UMFPACK_get_determinant (CARG (DNULL, &Mz), &Exp, Numeric, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh??", (double) __LINE__) ; if (s != UMFPACK_ERROR_argument_missing) error ("72det",0.) ; /* corrupt Numeric */ Num = (NumericType *) Numeric ; Num->valid = 4909284 ; s = UMFPACK_get_numeric (Lp, Li, CARG(Lx,Lz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(DNULL,DNULL), &do_recip, Rs, Numeric) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("91",0.) ; s = UMFPACK_save_numeric (Numeric, "nbad.umf") ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("70num",0.) ; s = UMFPACK_get_lunz (&lnz, &unz, &nnrow, &nncol, &nzud, Numeric) ; printf ("s "ID"\n", s) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("70b",0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("70",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("71",0.) ; if (prl > 2) printf ("bad Numeric: ") ; s = UMFPACK_report_numeric ( Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("82",0.) ; /* fix numeric */ Num->valid = NUMERIC_VALID ; if (prl > 2) printf ("fixed Numeric: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("82",0.) ; /* valid Numeric, but no permissions */ s = UMFPACK_save_numeric (Numeric, "/root/nbad.umf") ; if (s != UMFPACK_ERROR_file_IO) error ("72num",0.) ; /* corrupt Numeric again */ Num->n_row = -1 ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("72",0.) ; s = UMFPACK_wsolve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), (void *) NULL, Con, Info, Pa, Wx) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("73",0.) ; s = UMFPACK_scale (CARG(x,xz), CARG(b,bz), (void *) NULL) ; if (s != UMFPACK_ERROR_invalid_Numeric_object) error ("72f",0.) ; /* fix numeric */ if (prl > 2) printf ("bad Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("81",0.) ; Num->n_row = n ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("80",0.) ; /* corrupt Numeric again (bad P), then fix it */ c = Num->Rperm [0] ; Num->Rperm [0] = -1 ; if (prl > 2) printf ("bad Numeric (P): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("200",0.) ; Num->Rperm [0] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("200b",0.) ; /* corrupt Numeric again (bad Q), then fix it */ c = Num->Cperm [0] ; Num->Cperm [0] = -1 ; if (prl > 2) printf ("bad Numeric (Q): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("201",0.) ; Num->Cperm [0] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("201b",0.) ; /* corrupt Numeric again (bad Lpos), then fix it */ for (k = 0 ; k < n ; k++) { if (Num->Lpos [k] != EMPTY) break ; } c = Num->Lpos [k] ; Num->Lpos [k] = c + 1 ; if (prl > 2) printf ("bad Numeric (Lpos [k]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("204",0.) ; Num->Lpos [k] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("204b",0.) ; /* corrupt Numeric again (bad Upos), then fix it */ for (k = 0 ; k < n ; k++) { if (Num->Upos [k] != EMPTY) break ; } c = Num->Upos [k] ; Num->Upos [k] = 9999999 ; if (prl > 2) printf ("bad Numeric (Upos [0]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("204c",0.) ; Num->Upos [k] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("204d",0.) ; /* corrupt Numeric again (bad Lilen), then fix it */ c = Num->Lilen [0] ; Num->Lilen [0] = -1 ; if (prl > 2) printf ("bad Numeric (Lilen [0]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("205",0.) ; Num->Lilen [0] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("205b",0.) ; /* corrupt Numeric again (bad Lip), then fix it */ c = Num->Lip [0] ; Num->Lip [0] = -9999999 ; printf ("Bad numeric (Lip [0])\n") ; fflush (stdout) ; if (prl > 2) printf ("bad Numeric (Lip [0]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; fflush (stdout) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("206",0.) ; Num->Lip [0] = c ; printf ("Fixed numeric (Lip [0])\n") ; fflush (stdout) ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("206b",0.) ; fflush (stdout) ; /* corrupt Numeric again (bad LPattern), then fix it */ c = Num->Memory [1].header.size ; Num->Memory [1].header.size = -1 ; if (prl > 2) printf ("bad Numeric (Pattern): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("208",0.) ; Num->Memory [1].header.size = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("208b",0.) ; /* corrupt Numeric again (bad UPattern), then fix it */ printf ("test 208d:\n") ; for (k = n-1 ; k >= 0 ; k--) { if (Num->Uilen [k] > 0) break ; } ip = (Int *) (Num->Memory + SCALAR_ABS (Num->Uip [k])) ; c = *ip ; printf ("Corrupting Num->Uip [k="ID"] = "ID"\n", k, c) ; *ip = -1 ; if (prl > 2) printf ("bad Numeric (UPattern): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("208c",0.) ; *ip = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("208d",0.) ; /* corrupt Numeric again (bad Uilen), then fix it */ c = Num->Uilen [k] ; printf ("Corrupting Num->Uilen [k="ID"] = "ID"\n", k, c) ; Num->Uilen [k] = -1 ; if (prl > 2) printf ("bad Numeric (Uilen [k]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("205c",0.) ; Num->Uilen [k] = c ; s = UMFPACK_report_numeric (Numeric, Con) ; if (prl > 2) printf ("fixed Numeric again: ") ; if (s != UMFPACK_OK) error ("205d",0.) ; /* corrupt Numeric again (bad Uilen), then fix it */ c = Num->Uilen [k-1] ; Num->Uilen [k-1] = 99999 ; if (prl > 2) printf ("bad Numeric (Uilen [k-1]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("210",0.) ; Num->Uilen [k-1] = c ; if (prl > 2) printf ("fixed Numeric again: ") ; s = UMFPACK_report_numeric (Numeric, Con) ; if (s != UMFPACK_OK) error ("210b",0.) ; /* corrupt Numeric again (bad Uip), then fix it */ c = Num->Uip [k] ; Num->Uip [k] = -999999 ; printf ("Bad numeric Uip [k]\n") ; fflush (stdout) ; if (prl > 2) printf ("bad Numeric (Uip [k]): ") ; s = UMFPACK_report_numeric (Numeric, Con) ; fflush (stdout) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Numeric_object)) error ("206c",0.) ; Num->Uip [k] = c ; printf ("Fixed numeric Uip [k]\n") ; fflush (stdout) ; s = UMFPACK_report_numeric (Numeric, Con) ; if (prl > 2) printf ("fixed Numeric again: ") ; fflush (stdout) ; if (s != UMFPACK_OK) error ("206d",0.) ; free (Rs) ; /* ] */ free (Wx) ; /* ] */ free (Pa) ; /* ] */ free (Q) ; /* ] */ free (P) ; /* ] */ free (Uz) ; /* ] */ free (Ux) ; /* ] */ free (Ui) ; /* ] */ free (Up) ; /* ] */ free (Lz) ; /* ] */ free (Lx) ; /* ] */ free (Li) ; /* ] */ free (Lp) ; /* ] */ UMFPACK_free_numeric (&Numeric) ; /* ] */ if (prl > 2) printf ("Numeric file not found:\n") ; s = UMFPACK_load_numeric (&Numeric, "file_not_found") ; if (s != UMFPACK_ERROR_file_IO) error ("71num",0.) ; } /* ------------------------------------------------------------------ */ s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (!Numeric || s != UMFPACK_OK) error ("31b",0.) ; UMFPACK_free_numeric (&Numeric) ; /* ------------------------------------------------------------------ */ /* change the pattern */ if (Con) { Con [UMFPACK_SCALE] = UMFPACK_SCALE_NONE ; } printf ("change of pattern between symbolic and numeric:\n") ; c = Ap [2] ; Ap [2] = -1 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (s != UMFPACK_ERROR_different_pattern) error ("97a", (double) s) ; Ap [2] = c ; c = Ai [2] ; Ai [2] = -1 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (s != UMFPACK_ERROR_different_pattern) error ("97b", (double) s) ; Ai [2] = c ; c = Ai [2] ; Ai [2] = 9990099 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (s != UMFPACK_ERROR_different_pattern) error ("97c", (double) s) ; Ai [2] = c ; c = Ap [n] ; Ai [Ap [n]++] = n-1 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (s != UMFPACK_ERROR_different_pattern) error ("97d", (double) s) ; Ap [n] = c ; printf ("done testing change of pattern between symbolic and numeric.\n") ; if (Con) { Con [UMFPACK_SCALE] = UMFPACK_DEFAULT_SCALE ; } /* ------------------------------------------------------------------ */ s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, DNULL) ; if (!Numeric || s != UMFPACK_OK) error ("31c",0.) ; UMFPACK_free_numeric (&Numeric) ; /* ------------------------------------------------------------------ */ printf ("free nothing:\n") ; UMFPACK_free_numeric ((void **) NULL) ; UMFPACK_free_symbolic ((void **) NULL) ; printf ("free nothing OK\n") ; /* ------------------------------------------------------------------ */ /* test for singular matrix (IN_IN case) */ for (j = 0 ; j < n ; j++) { for (p = 0 ; p < nz ; p++) Ax2 [p] = Ax [p] ; for (p = 0 ; p < nz ; p++) Az2 [p] = Az [p] ; printf ("lastcol = "ID"\n", j) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ax2 [p] = 0.0 ; Az2 [p] = 0.0 ; } s = UMFPACK_numeric (Ap, Ai, CARG(Ax2,Az2), Symbolic, &Numeric, Con, Info) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; if (!Numeric || s != UMFPACK_WARNING_singular_matrix) error ("120",0.) ; UMFPACK_free_numeric (&Numeric) ; } /* ------------------------------------------------------------------ */ s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), (void *) NULL, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Numeric || s != UMFPACK_ERROR_invalid_Symbolic_object) error ("32",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_numeric (INULL, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Numeric || s != UMFPACK_ERROR_argument_missing) error ("32b",0.) ; /* ------------------------------------------------------------------ */ for (p = 0 ; p < nz ; p++) Ax2 [p] = 0.0 ; for (p = 0 ; p < nz ; p++) Az2 [p] = 0.0 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax2,Az2), Symbolic, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Numeric || s != UMFPACK_WARNING_singular_matrix) error ("33",0.) ; UMFPACK_free_numeric (&Numeric) ; /* ------------------------------------------------------------------ */ for (p = 0 ; p < nz ; p++) Ax2 [p] = Ax [p] ; for (p = 0 ; p < nz ; p++) Az2 [p] = Ax [p] ; i = UMFPACK_DENSE_DEGREE_THRESHOLD (0.2, n) ; for (j = 0 ; j < n ; j++) { d = Ap [j+1] - Ap [j] ; if (d > i) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ax2 [p] = 0.0 ; Az2 [p] = 0.0 ; } } } s = UMFPACK_numeric (Ap, Ai, CARG(Ax2,Az2), Symbolic, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Numeric || s != UMFPACK_WARNING_singular_matrix) error ("33",0.) ; UMFPACK_free_numeric (&Numeric) ; /* ------------------------------------------------------------------ */ /* corrupt the Symbolic object */ Sym = (SymbolicType *) Symbolic ; printf ("32c:\n") ; fflush (stdout) ; Sym->valid = 4040404 ; if (prl > 2) printf ("\nSymbolic busted: ") ; s = UMFPACK_report_symbolic ((void *) Sym, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_Symbolic_object)) error ("79",0.) ; Front_leftmostdesc = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Front_1strow = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Front_npivots = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Front_parent = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Chain_start = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Chain_maxrows = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Chain_maxcols = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Qtree = (Int *) malloc (n * sizeof (Int)) ; /* [ */ Ptree = (Int *) malloc (n * sizeof (Int)) ; /* [ */ if (!Front_npivots || !Front_parent || !Chain_start || !Chain_maxrows || !Chain_maxcols || !Qtree) error ("out of memory (22)",0.) ; s = UMFPACK_get_symbolic (&nnrow, &nncol, &n1, &nnz, &nfr, &nchains, Ptree, Qtree, Front_npivots, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; if (s != UMFPACK_ERROR_invalid_Symbolic_object) error ("93", 0.) ; free (Ptree) ; /* ] */ free (Qtree) ; /* ] */ free (Chain_maxcols) ; /* ] */ free (Chain_maxrows) ; /* ] */ free (Chain_start) ; /* ] */ free (Front_parent) ; /* ] */ free (Front_npivots) ; /* ] */ free (Front_1strow) ; /* ] */ free (Front_leftmostdesc) ; /* ] */ s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; printf ("32c s: "ID"\n", s) ; if (Numeric || s != UMFPACK_ERROR_invalid_Symbolic_object) error ("32c",0.) ; Sym->valid = SYMBOLIC_VALID ; if (prl > 2) printf ("\nSymbolic fixed: ") ; s = UMFPACK_report_symbolic (Symbolic, Con) ; if (s != UMFPACK_OK) error ("78",0.) ; /* valid Symbolic, but no permissions */ s = UMFPACK_save_symbolic (Symbolic, "/root/sbad.umf") ; if (s != UMFPACK_ERROR_file_IO) error ("72sym",0.) ; /* corrupt Symbolic again (bad Qinit) and then fix it */ c = Sym->Cperm_init [0] ; Sym->Cperm_init [0] = -1 ; if (prl > 2) printf ("\nSymbolic busted (bad Qinit): ") ; s = UMFPACK_report_symbolic (Symbolic, Con) ; Sym->Cperm_init [0] = c ; /* ------------------------------------------------------------------ */ /* corrupt the Symbolic object again */ printf ("32d:\n") ; fflush (stdout) ; Sym->Cperm_init = (Int *) UMF_free ((void *) Sym->Cperm_init) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Numeric || s != UMFPACK_ERROR_invalid_Symbolic_object) error ("32d",0.) ; s = UMFPACK_save_symbolic (Symbolic, "sbad.umf") ; if (s != UMFPACK_ERROR_invalid_Symbolic_object) error ("70sym",0.) ; /* ------------------------------------------------------------------ */ UMFPACK_free_symbolic (&Symbolic) ; /* ] */ printf ("Symbolic file not found:\n") ; s = UMFPACK_load_symbolic (&Symbolic, "file_not_found") ; if (s != UMFPACK_ERROR_file_IO) error ("71sym",0.) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory leak!!",0.) ; #endif /* printf (" made it here "ID"\n", umf_fail) ; */ fflush (stdout) ; /* == done ] ======================================================== */ /* ------------------------------------------------------------------ */ s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(DNULL,DNULL), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; /* printf (" made it here 3 "ID"\n", umf_fail) ; */ fflush (stdout) ; s = Info [UMFPACK_STATUS] ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("16b",0.) ; /* printf (" made it here too "ID"\n", umf_fail) ; */ UMFPACK_free_symbolic (&Symbolic) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("Qinit missing: ") ; s = UMFPACK_report_perm (n, INULL, Con) ; if (s != UMFPACK_OK) error ("17",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(DNULL,DNULL), INULL, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("17b",0.) ; UMFPACK_free_symbolic (&Symbolic) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("Qinit n=0: ") ; s = UMFPACK_report_perm (0, Qinit, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_n_nonpositive)) error ("18",0.) ; /* ------------------------------------------------------------------ */ c = Qinit [5] ; Qinit [5]++ ; if (prl > 2) printf ("Qinit bad: ") ; s = UMFPACK_report_perm (n, Qinit, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_permutation)) error ("19",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(DNULL,DNULL), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_permutation) error ("19b",0.) ; Qinit [5] = c ; /* ------------------------------------------------------------------ */ c = Qinit [5] ; Qinit [5] = -1 ; if (prl > 2) printf ("Qinit bad (out of range): ") ; s = UMFPACK_report_perm (n, Qinit, Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_permutation)) error ("19c",0.) ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(DNULL,DNULL), Qinit, &Symbolic, Con, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (Symbolic || s != UMFPACK_ERROR_invalid_permutation) error ("19d",0.) ; Qinit [5] = c ; /* ------------------------------------------------------------------ */ s = UMFPACK_col_to_triplet (n, Ap, INULL) ; if (s != UMFPACK_ERROR_argument_missing) error ("20a",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; if (s != UMFPACK_OK) error ("50",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(DNULL,DNULL), Pinit, Qinit, Ap2, Ai2, CARG (DNULL,DNULL) C1ARG(0)) ; if (s != UMFPACK_OK) error ("50e",0.); /* ------------------------------------------------------------------ */ if (prl > 2) printf ("UMFPACK transpose test R = A(P,:)'\n") ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, INULL, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(1)) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != UMFPACK_OK) error ("50",0.); if (prl > 2) printf ("\nPinit: ") ; s = UMFPACK_report_perm (n, Pinit, Con) ; if (prl > 2) printf ("\nR: ") ; s = UMFPACK_report_matrix (n , n, Ap2, Ai2, CARG (Ax2,Az2), 1, Con) ; if (s != UMFPACK_OK) error ("50e",0.); s = UMFPACK_col_to_triplet (n, Ap2, Aj) ; if (s != UMFPACK_OK) error ("50i",0.); if (prl > 2) printf ("\nR, triplet form: ") ; s = UMFPACK_report_triplet (n, n, nz, Ai2, Aj, CARG(Ax2,Az2), Con) ; if (s != UMFPACK_OK) error ("50y",0.); /* ------------------------------------------------------------------ */ if (prl > 2) printf ("UMFPACK transpose test R = pattern of A(P,:).'\n") ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(DNULL,DNULL), Pinit, INULL, Ap2, Ai2, CARG (DNULL,DNULL) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (s != UMFPACK_OK) error ("50f",0.); if (prl > 2) printf ("\npattern of R: ") ; s = UMFPACK_report_matrix (n , n, Ap2, Ai2, CARG (DNULL,DNULL), 1, Con) ; if (s != UMFPACK_OK) error ("50g",0.); s = UMFPACK_col_to_triplet (n, Ap2, Aj) ; if (s != UMFPACK_OK) error ("50k",0.); if (prl > 2) printf ("\npattern of R, triplet form: ") ; s = UMFPACK_report_triplet (n, n, nz, Ai2, Aj, CARG (DNULL,DNULL), Con) ; if (s != UMFPACK_OK) error ("50z",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), INULL, INULL, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("51a",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, INULL, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("51b",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), INULL, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("51c",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (0, 0, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_n_nonpositive) error ("54",0.); /* ------------------------------------------------------------------ */ c = Pinit [5] ; Pinit [5] = n-1 ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_permutation) error ("51e",0.); Pinit [5] = c ; /* ------------------------------------------------------------------ */ s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("51d",0.); /* ------------------------------------------------------------------ */ c = Pinit [5] ; Pinit [5] = -1 ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), Pinit, Qinit, Ap2, Ai2, CARG (Ax2,Az2) C1ARG(0)) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_permutation) error ("56",0.); Pinit [5] = c ; /* ------------------------------------------------------------------ */ s = UMFPACK_col_to_triplet (n, INULL, Aj) ; if (s != UMFPACK_ERROR_argument_missing) error ("20b",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_col_to_triplet (0, Ap, Aj) ; if (s != UMFPACK_ERROR_n_nonpositive) error ("20c",0.) ; /* ------------------------------------------------------------------ */ Ap [0] = 99 ; s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("20d",0.) ; s = do_amd_transpose (n, Ap, Aj, Ap2, Ai2) ; if (s != AMD_INVALID) error ("20d_amd",0.) ; Ap [0] = 0 ; /* ------------------------------------------------------------------ */ Ap [n] = 0 ; s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("20e",0.) ; Ap [n] = nz ; /* ------------------------------------------------------------------ */ c = Ap [3] ; Ap [3] = nz+1 ; s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("20f",0.) ; s = do_amd_transpose (n, Ap, Aj, Ap2, Ai2) ; if (s != AMD_INVALID) error ("20f_amd",0.) ; Ap [3] = c ; /* ------------------------------------------------------------------ */ c = Aj [0] ; Aj [0] = -1 ; s = do_amd_transpose (n, Ap, Aj, Ap2, Ai2) ; if (s != AMD_INVALID) error ("20z_amd",0.) ; Aj [0] = c ; /* ------------------------------------------------------------------ */ c = Ap [4] ; Ap [4] = Ap [3]-1 ; s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("20i",0.) ; Ap [4] = c ; /* ------------------------------------------------------------------ */ s = UMFPACK_col_to_triplet (n, Ap, Aj) ; if (s != UMFPACK_OK) error ("20",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nTriples OK: ") ; s = UMFPACK_report_triplet (n, n, nz, Ai, Aj, CARG(Ax,Az), Con) ; if (s != UMFPACK_OK) error ("21",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nTriples pattern OK: ") ; s = UMFPACK_report_triplet (n, n, nz, Ai, Aj, CARG(DNULL,DNULL), Con) ; if (s != UMFPACK_OK) error ("21b",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nTriples, Ai null: ") ; s = UMFPACK_report_triplet (n, n, nz, INULL, Aj, CARG(Ax,Az), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_argument_missing)) error ("22",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nTriples, nz=0: ") ; s = UMFPACK_report_triplet (n, n, 0, Ai, Aj, CARG(Ax,Az), Con) ; if (s != UMFPACK_OK) error ("23a",0.) ; if (prl > 2) printf ("\nTriples, nz=-1: ") ; s = UMFPACK_report_triplet (n, n, -1, Ai, Aj, CARG(Ax,Az), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("23",0.) ; /* ------------------------------------------------------------------ */ if (prl > 2) printf ("\nTriples, n=0: ") ; s = UMFPACK_report_triplet (0, 0, nz, Ai, Aj, CARG(Ax,Az), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_n_nonpositive)) error ("24",0.) ; /* ------------------------------------------------------------------ */ Map = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ c = Aj [1] ; Aj [1] = -1 ; if (prl > 2) printf ("\nTriples, Aj bad: ") ; s = UMFPACK_report_triplet (n, n, nz, Ai, Aj, CARG(Ax,Az), Con) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_invalid_matrix)) error ("41",0.) ; s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("41",0.) ; s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("42",0.); s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(DNULL,DNULL), Ap2, Ai2, CARG (DNULL,DNULL), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("42cc",0.); s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(DNULL,DNULL), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("42b",0.); Aj [1] = c ; /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("42c",0.); s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("42c.2",0.); /* check the Map */ for (k = 0 ; k < nz ; k++) { p = Map [k] ; i = Ai [k] ; j = Aj [k] ; if (i != Ai2 [p]) error ("Map Ai2.2", 0.) ; if (!(Ap2 [j] <= p && p < Ap2 [j+1])) error ("Map Ap2.2", 0.) ; } /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(DNULL,DNULL), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("42d",0.); s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(DNULL,DNULL), Ap2, Ai2, CARG (Ax2,Az2), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("42d.1",0.); /* check the Map */ for (k = 0 ; k < nz ; k++) { p = Map [k] ; i = Ai [k] ; j = Aj [k] ; if (i != Ai2 [p]) error ("Map Ai2.1", 0.) ; if (!(Ap2 [j] <= p && p < Ap2 [j+1])) error ("Map Ap2.1", 0.) ; } c = Aj [1] ; Aj [1] = -1 ; s = UMFPACK_triplet_to_col (n, n, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("42c.3",0.); Aj [1] = c ; free (Map) ; /* ] */ /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (0, 0, nz, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_n_nonpositive) error ("44",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (n, n, 0, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_OK) error ("45a",0.); if (prl > 2) printf ("\nall empty A2: ") ; s = UMFPACK_report_matrix (n , n, Ap2, Ai2, CARG (Ax2,Az2), 1, Con) ; if (s != UMFPACK_OK) error ("45c",0.) ; /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (n, n, -1, Ai, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_invalid_matrix) error ("45",0.); /* ------------------------------------------------------------------ */ s = UMFPACK_triplet_to_col (n, n, nz, INULL, Aj, CARG(Ax,Az), Ap2, Ai2, CARG (Ax2,Az2), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_argument_missing) error ("46",0.); /* ------------------------------------------------------------------ */ free (Az2) ; /* ] */ free (Ax2) ; /* ] */ free (Ai2) ; /* ] */ free (Aj) ; /* ] */ free (Az) ; /* ] */ free (Ax) ; /* ] */ free (Ai) ; /* ] */ free (Ap) ; /* ] */ #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory leak!!",0.) ; #endif printf ("\n]]]]\n\n\n") ; } } free (Ap2) ; /* ] */ free (xz) ; /* ] */ free (x) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (Qinit2) ; /* ] */ free (Pinit) ; /* ] */ free (Qinit) ; /* ] */ free (Pamd) ; /* ] */ /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test memory allocation */ /* ---------------------------------------------------------------------- */ n = 200 ; printf ("memory test\n") ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack mem test starts memory leak!!\n",0.) ; #endif matgen_sparse (n, 8*n, 0, 0, 4, 2*n, &Ap, &Ai, &Ax, &Az, 1, 0) ; /* [[[[ */ Qinit = (Int *) malloc (n * sizeof (Int)) ; /* [ */ b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ x = (double *) malloc (n * sizeof (double)) ; /* [ */ xz= (double *) calloc (n , sizeof (double)) ; /* [ */ bgen (n, Ap, Ai, Ax,Az, b,bz) ; nz = Ap [n] ; randperm (n, Qinit) ; UMFPACK_defaults (Control) ; for (prl = 5 ; prl >= -1 ; prl--) { printf ("prl "ID" memtest\n", prl) ; fflush (stdout) ; umf_realloc_fail = -1 ; umf_realloc_hi = 0 ; umf_realloc_lo = 0 ; umf_fail_hi = 0 ; umf_fail_lo = 0 ; Control [UMFPACK_PRL] = (Int) prl ; umf_fail = 1 ; if (prl > 2) printf ("Memfail Qinit: ") ; s = UMFPACK_report_perm (n, Qinit, Control) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_out_of_memory)) error ("101",0.) ; Cp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Cj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Ci = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Cx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Cz = (double *) calloc (nz , sizeof (double)) ; /* [ */ Bp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Bj = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Bi = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ Bx = (double *) malloc (nz * sizeof (double)) ; /* [ */ Bz = (double *) calloc (nz , sizeof (double)) ; /* [ */ Map = (Int *) malloc (nz * sizeof (Int)) ; /* [ */ if (!Cp || !Ci || !Cx || !Cj) error ("out of memory (23)",0.) ; if (!Bp || !Bi || !Bx || !Bj) error ("out of memory (24)",0.) ; if (!Bz || !Cz) error ("out of memory (25)",0.) ; umf_fail = 1 ; s = UMFPACK_transpose (n, n, Ap, Ai, CARG(Ax,Az), INULL, INULL, Cp, Ci, CARG(Cx,Cz) C1ARG(0)) ; if (s != UMFPACK_ERROR_out_of_memory) error ("113", 0.) ; for (k = 0 ; k < nz ; k++) { Ci [k] = irand (n) ; Cj [k] = irand (n) ; Cx [k] = 2.0 * (xrand ( ) - 1.0) ; #ifdef COMPLEX Cx [k] = 2.0 * (xrand ( ) - 1.0) ; #else Cx [k] = 0. ; #endif } for (i = 1 ; i <= 4 ; i++) { umf_fail = i ; s = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(DNULL,DNULL), Bp, Bi, CARG(DNULL,DNULL), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_out_of_memory) error ("114", (double) i) ; } for (i = 1 ; i <= 5 ; i++) { umf_fail = i ; s = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Bp, Bi, CARG(Bx,Bz), (Int *) NULL) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_out_of_memory) error ("115", (double) i) ; } for (i = 1 ; i <= 5 ; i++) { umf_fail = i ; s = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(DNULL,DNULL), Bp, Bi, CARG(DNULL,DNULL), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_out_of_memory) error ("114", (double) i) ; } for (i = 1 ; i <= 6 ; i++) { umf_fail = i ; s = UMFPACK_triplet_to_col (n, n, nz, Ci, Cj, CARG(Cx,Cz), Bp, Bi, CARG(Bx,Bz), Map) ; UMFPACK_report_status (Con, s) ; if (s != UMFPACK_ERROR_out_of_memory) error ("115", (double) i) ; } free (Map) ; /* ] */ free (Bz) ; /* ] */ free (Bx) ; /* ] */ free (Bi) ; /* ] */ free (Bj) ; /* ] */ free (Bp) ; /* ] */ free (Cz) ; /* ] */ free (Cx) ; /* ] */ free (Ci) ; /* ] */ free (Cj) ; /* ] */ free (Cp) ; /* ] */ for (i = 1 ; i <= 24 ; i++) { umf_fail = i ; printf ("umf_fail starts at "ID"\n", umf_fail) ; fflush (stdout) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack mem test starts memory leak!!\n",0.) ; #endif s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Symbolic || Info [UMFPACK_STATUS] != UMFPACK_ERROR_out_of_memory) error ("104", (double) i) ; } umf_fail = 25 ; s = UMFPACK_qsymbolic (n, n, Ap, Ai, CARG(Ax,Az), Qinit, &Symbolic, Control, Info) ; /* [ */ if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (!Symbolic || s != UMFPACK_OK) error ("105", 0.) ; umf_fail = 1 ; if (prl > 2) printf ("\nMemfail Symbolic: ") ; s = UMFPACK_report_symbolic (Symbolic, Control) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_out_of_memory)) error ("102",0.) ; /* alloc reallocs succeed */ umf_realloc_fail = -1 ; umf_realloc_hi = 0 ; umf_realloc_lo = 0 ; /* Initial Numeric->Memory allocation fails when umf_fail is 28, and never succeeds. * All mallocs succeed if umf_fail is 16 + 11 + 1 */ umf_fail_lo = -9999999 ; for (i = 1 ; i <= 29 ; i++) { umf_fail = i ; printf ("\nDoing numeric, umf_fail = "ID"\n", umf_fail) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (i < 29) { if (Numeric || s != UMFPACK_ERROR_out_of_memory) error ("106", (double) i) ; } else { if (!Numeric || s != UMFPACK_OK) error ("106z", (double) umf_fail) ; UMFPACK_free_numeric (&Numeric) ; } } /* everything succeeds, use a small alloc_init */ printf ("106y:\n") ; Control [UMFPACK_ALLOC_INIT] = -30000 ; UMFPACK_report_control (Control) ; umf_fail = 29 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (!Numeric || s != UMFPACK_OK) error ("106y", (double) umf_fail) ; UMFPACK_free_numeric (&Numeric) ; /* all malloc's succeed - no realloc during factorization */ umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; umf_realloc_fail = 1 ; umf_realloc_hi = 0 ; umf_realloc_lo = -9999999 ; /* restore Control */ UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = (Int) prl ; /* alloc init the smallest size */ Control [UMFPACK_ALLOC_INIT] = 0.0 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (Numeric) { UMFPACK_free_numeric (&Numeric) ; printf ("107 succeeded\n") ; } /* initial allocation fails once, retry succeeds */ umf_realloc_fail = 1 ; umf_realloc_hi = 0 ; umf_realloc_lo = -2 ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Control, Info) ; /* ( */ if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (!Numeric || s != UMFPACK_OK) error ("110", (double) umf_fail) ; /* all reallocs succeed */ umf_realloc_fail = -1 ; umf_realloc_hi = 0 ; umf_realloc_lo = 0 ; UMFPACK_free_symbolic (&Symbolic) ; /* ] */ umf_fail = 1 ; if (prl > 2) printf ("Memfail Numeric: ") ; s = UMFPACK_report_numeric (Numeric, Control) ; if (s != ((prl <= 2) ? UMFPACK_OK : UMFPACK_ERROR_out_of_memory)) error ("108",0.) ; for (i = 1 ; i <= 2 ; i++) { umf_fail = i ; printf ("\nTest 109, "ID"\n", umf_fail) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (s != UMFPACK_ERROR_out_of_memory) error ("109", (double) i) ; } for (i = 1 ; i <= 2 ; i++) { umf_fail = i ; s = UMFPACK_solve (UMFPACK_L, Ap, Ai, CARG(Ax,Az), CARG(x,xz), CARG(b,bz), Numeric, Control, Info) ; if (s != Info [UMFPACK_STATUS]) error ("huh", (double) __LINE__) ; UMFPACK_report_status (Control, s) ; UMFPACK_report_info (Control, Info) ; if (s != UMFPACK_ERROR_out_of_memory) error ("109b", (double) i) ; } s = UMFPACK_get_lunz (&lnz, &unz, &nnrow, &nncol, &nzud, Numeric) ; if (s != UMFPACK_OK) error ("111", 0.) ; Rs = (double *) malloc ((n+1) * sizeof (double)) ; /* [ */ Lp = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Li = (Int *) malloc ((lnz+1) * sizeof (Int)) ; /* [ */ Lx = (double *) malloc ((lnz+1) * sizeof (double)) ; /* [ */ Lz = (double *) calloc ((lnz+1) , sizeof (double)) ; /* [ */ Up = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Ui = (Int *) malloc ((unz+1) * sizeof (Int)) ; /* [ */ Ux = (double *) malloc ((unz+1) * sizeof (double)) ; /* [ */ Uz = (double *) calloc ((unz+1) , sizeof (double)) ; /* [ */ P = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ Q = (Int *) malloc ((n+1) * sizeof (Int)) ; /* [ */ if (!Lp || !Li || !Lx || !Up || !Ui || !Ux || !P || !Q) error ("out of memory (26)",0.) ; if (!Lz || !Uz) error ("out of memory (27)",0.) ; for (i = 1 ; i <= 2 ; i++) { umf_fail = i ; s = UMFPACK_get_numeric (Lp, Li, CARG(Lx,Lz), Up, Ui, CARG(Ux,Uz), P, Q, CARG(DNULL,DNULL), &do_recip, Rs, Numeric) ; if (s != UMFPACK_ERROR_out_of_memory) error ("112", (double) i) ; } umf_fail = 1 ; s = UMFPACK_get_determinant (CARG (&Mx, &Mz), &Exp, Numeric, Info) ; if (s != Info [UMFPACK_STATUS]) { printf ("s %d %g\n", s, Info [UMFPACK_STATUS]) ; error ("huh", (double) __LINE__) ; } if (s != UMFPACK_ERROR_out_of_memory) error ("73det",0.) ; UMFPACK_free_numeric (&Numeric) ; /* ) */ free (Q) ; /* ] */ free (P) ; /* ] */ free (Uz) ; /* ] */ free (Ux) ; /* ] */ free (Ui) ; /* ] */ free (Up) ; /* ] */ free (Lz) ; /* ] */ free (Lx) ; /* ] */ free (Li) ; /* ] */ free (Lp) ; /* ] */ free (Rs) ; /* ] */ #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory test leak!!\n",0.) ; #endif } free (xz) ; /* ] */ free (x) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (Qinit) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ /* ---------------------------------------------------------------------- */ /* NaN/Inf */ /* ---------------------------------------------------------------------- */ umf_fail = -1 ; umf_fail_lo = 0 ; umf_fail_hi = 0 ; umf_realloc_fail = -1 ; umf_realloc_lo = 0 ; umf_realloc_hi = 0 ; printf ("matrices with NaN/Infs:\n") ; n = 100 ; for (k = 0 ; k <= 100 ; k++) { printf ("NaN/Inf %7d 4*n nz's, k= "ID"\n", n, k) ; matgen_sparse (n, 4*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 1) ; /* [[[[ */ if (k == 100) { /* make a matrix of all NaN's */ for (i = 0 ; i < Ap [n] ; i++) { Ax [i] = xnan ; #ifdef COMPLEX Az [i] = xnan ; #endif } } b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz = (double *) malloc (n * sizeof (double)) ; /* [ */ bgen (n, Ap, Ai, Ax, Az, b, bz) ; x = (double *) malloc (n * sizeof (double)) ; /* [ */ xz = (double *) malloc (n * sizeof (double)) ; /* [ */ for (prl = 2 ; prl >= -1 ; prl--) { printf ("NaN / Inf matrix: \n") ; UMFPACK_defaults (Control) ; Control [UMFPACK_PRL] = prl ; for (scale = UMFPACK_SCALE_NONE ; scale <= UMFPACK_SCALE_MAX ; scale++) { Control [UMFPACK_SCALE] = scale ; Con = (prl == -1) ? (DNULL) : Control ; UMFPACK_report_control (Con) ; s = UMFPACK_symbolic (n, n, Ap, Ai, CARG(Ax,Az), &Symbolic, Con, Info) ; /* [ */ UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!(s == UMFPACK_OK || s == UMFPACK_WARNING_singular_matrix)) error ("887", 0.) ; s = UMFPACK_numeric (Ap, Ai, CARG(Ax,Az), Symbolic, &Numeric, Con, Info) ; /* [ */ UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!(s == UMFPACK_OK || s == UMFPACK_WARNING_singular_matrix)) error ("888", 0.) ; s = UMFPACK_solve (UMFPACK_A, Ap, Ai, CARG(Ax,Az) , CARG(x,xz), CARG(b,bz), Numeric, Con, Info) ; UMFPACK_report_status (Con, s) ; UMFPACK_report_info (Con, Info) ; if (!(s == UMFPACK_OK || s == UMFPACK_WARNING_singular_matrix)) error ("889", 0.) ; UMFPACK_free_numeric (&Numeric) ; /* ] */ UMFPACK_free_symbolic (&Symbolic) ; /* ] */ } } free (xz) ; /* ] */ free (x) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (Az) ; /* ] */ free (Ax) ; /* ] */ free (Ai) ; /* ] */ free (Ap) ; /* ] */ } #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory leak!!\n",0.) ; #endif /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test report routines */ /* ---------------------------------------------------------------------- */ n = 32 ; printf ("\n so far: rnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; Qinit = (Int *) malloc (n * sizeof (Int)) ; /* [ */ b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ if (!Qinit || !b || !bz) error ("out of memory (28)",0.) ; UMFPACK_defaults (Control) ; for (prl = 5 ; prl >= 0 ; prl--) { printf ("\n[[[[ PRL = "ID"\n", prl) ; Control [UMFPACK_PRL] = prl ; i = UMFPACK_DENSE_DEGREE_THRESHOLD (0.2, n) ; printf ("(default) dense row/col degree threshold: "ID"\n", i) ; matgen_sparse (n, 12*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, prl, 0) ; /* [[[[ */ bgen (n, Ap, Ai, Ax,Az, b,bz) ; /* also test NaN/Inf handling in solvers */ b [16] = xnan ; b [15] = xinf ; /* test col->triplet and triplet->col */ test_col (n, Ap, Ai, Ax,Az, prl) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemOK, FALSE, FALSE, 0., 0.) ; printf ("\nrnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; randperm (n, Qinit) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; printf ("\nrnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ printf ("\n]]]]\n\n\n") ; } /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* test report with more than 10 dense columns */ UMFPACK_defaults (Control) ; printf ("\nrnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; Control [UMFPACK_PRL] = 4 ; printf ("\nreport dense matrix with n = "ID"\n", n) ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; /* [[[[ */ bgen (n, Ap, Ai, Ax,Az, b,bz) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, Qinit, MemOK, FALSE, FALSE, 0., 0.) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf ("\nrnorm %10.4e %10.4e\n", rnorm, maxrnorm) ; free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ free (bz) ; /* ] */ free (b) ; /* ] */ free (Qinit) ; /* ] */ Control [UMFPACK_PRL] = 5 ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test random sparse matrices */ /* ---------------------------------------------------------------------- */ n = 30 ; printf ("sparse %7d 4*n nz's", n) ; matgen_sparse (n, 4*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; /* [[[[ */ rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; /* ]]]] */ maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; n = 200 ; printf ("sparse %7d 4*n nz's", n) ; matgen_sparse (n, 4*n, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; /* [[[[ */ /* rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; */ UMFPACK_defaults (Control) ; Control [UMFPACK_DENSE_COL] = 0.883883 ; Control [UMFPACK_DENSE_ROW] = 0.883883 ; Control [UMFPACK_AMD_DENSE] = 10 ; Control [UMFPACK_PIVOT_TOLERANCE] = 0.5 ; Control [UMFPACK_BLOCK_SIZE] = 1 ; Control [UMFPACK_ALLOC_INIT] = 0 ; Control [UMFPACK_SCALE] = 0 ; Control [UMFPACK_STRATEGY] = 3 ; Control [UMFPACK_FIXQ] = 1 ; b = (double *) malloc (n * sizeof (double)) ; /* [ */ bz= (double *) calloc (n , sizeof (double)) ; /* [ */ if (!b || !bz) error ("out of memory (29)",0.) ; bgen (n, Ap, Ai, Ax, Az, b, bz) ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemOK, FALSE, FALSE, 0., 0.) ; UMFPACK_defaults (Control) ; Control [UMFPACK_FRONT_ALLOC_INIT] = -10 ; Control [UMFPACK_PRL] = 2 ; printf ("negative front alloc init\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemOK, FALSE, FALSE, 0., 0.) ; Control [UMFPACK_FRONT_ALLOC_INIT] = -10 ; Control [UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC ; Control [UMFPACK_AMD_DENSE] = -1 ; printf ("symmetric strategy, no dense rows/cols\n") ; rnorm = do_many (n, n, Ap, Ai, Ax,Az, b,bz, Control, INULL, MemOK, FALSE, FALSE, 0., 0.) ; free (bz) ; /* ] */ free (b) ; /* ] */ free (Ap) ; /* ] */ free (Ai) ; /* ] */ free (Ax) ; /* ] */ free (Az) ; /* ] */ maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; #if 0 n = 200 ; printf ("sparse %7d few nz's", n) ; matgen_sparse (n, 20, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* test random sparse matrices + 4 dense rows */ /* ---------------------------------------------------------------------- */ n = 100 ; printf ("sparse+dense rows %7d ", n) ; matgen_sparse (n, 4*n, 4, 2*n, 0, 0, &Ap, &Ai, &Ax, &Az, 1, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* reset rand ( ) */ /* ---------------------------------------------------------------------- */ srand (1) ; /* ---------------------------------------------------------------------- */ /* test random sparse matrices + 4 dense rows & cols */ /* ---------------------------------------------------------------------- */ n = 100 ; /* reduce the number of controls - otherwise this takes too much time */ c = UMFPACK_BLOCK_SIZE ; Controls [c][0] = UMFPACK_DEFAULT_BLOCK_SIZE ; Ncontrols [c] = 1 ; c = UMFPACK_ALLOC_INIT ; Controls [c][0] = 1.0 ; Ncontrols [c] = 1 ; printf ("sparse+dense rows and cols %7d ", n) ; matgen_sparse (n, 4*n, 4, 2*n, 4, 2*n, &Ap, &Ai, &Ax, &Az, 1, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; c = UMFPACK_BLOCK_SIZE ; Controls [c][0] = 1 ; Controls [c][1] = 8 ; Controls [c][2] = UMFPACK_DEFAULT_BLOCK_SIZE ; Ncontrols [c] = 3 ; c = UMFPACK_ALLOC_INIT ; Controls [c][0] = 0.0 ; Controls [c][1] = 0.5 ; Controls [c][2] = 1.0 ; /* not the default */ Ncontrols [c] = 3 ; n = 100 ; printf ("very sparse+dense cols %7d ", n) ; matgen_sparse (n, 2, 0, 0, 4, 2*n, &Ap, &Ai, &Ax, &Az, 1, 0) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* test all diagonal matrices */ /* ---------------------------------------------------------------------- */ for (n = 1 ; n < 16 ; n++) { printf ("diagonal %7d ", n) ; matgen_band (n, 0, 0, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax, Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } for (n = 100 ; n <= 500 ; n += 100) { printf ("diagonal %7d ", n) ; matgen_band (n, 0, 0, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* test all tri-diagonal matrices */ /* ---------------------------------------------------------------------- */ for (n = 1 ; n < 16 ; n++) { printf ("tri-diagonal %7d ", n) ; matgen_band (n, 1, 1, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } for (n = 100 ; n <= 500 ; n += 100) { printf ("tri-diagonal %7d ", n) ; matgen_band (n, 1, 1, 0, 0, 0, 0, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } /* ---------------------------------------------------------------------- */ /* test all tri-diagonal matrices + one "dense" row */ /* ---------------------------------------------------------------------- */ n = 100 ; printf ("tri-diagonal+dense row %7d ", n) ; matgen_band (n, 1, 1, 1, n, 0, 0, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* test all tri-diagonal matrices + one "dense" row and col */ /* ---------------------------------------------------------------------- */ n = 100 ; printf ("tri-diagonal+dense row and col %7d ", n) ; matgen_band (n, 1, 1, 1, n, 1, n, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; /* ---------------------------------------------------------------------- */ /* test all small dense matrices */ /* ---------------------------------------------------------------------- */ for (n = 1 ; n < 16 ; n++) { printf ("dense %7d ", n) ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } for (n = 20 ; n <= 80 ; n += 20 ) { printf ("dense %7d ", n) ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; } n = 130 ; printf ("dense %7d ", n) ; matgen_dense (n, &Ap, &Ai, &Ax, &Az) ; rnorm = do_and_free (n, Ap, Ai, Ax,Az, Controls, Ncontrols, MemOK, 1) ; maxrnorm = MAX (rnorm, maxrnorm) ; printf (" %10.4e %10.4e\n", rnorm, maxrnorm) ; #endif /* ---------------------------------------------------------------------- */ /* done with accurate matrices */ /* ---------------------------------------------------------------------- */ ttt = umfpack_timer ( ) ; fprintf (stderr, "ALL TESTS PASSED: rnorm %8.2e (%8.2e shl0, %8.2e arc130 %8.2e omega2) cputime %g\n", maxrnorm, maxrnorm_shl0, maxrnorm_arc130, rnorm_omega2, ttt) ; printf ( "ALL TESTS PASSED: rnorm %8.2e (%8.2e shl0, %8.2e arc130 %8.2e omega2) cputime %g\n", maxrnorm, maxrnorm_shl0, maxrnorm_arc130, rnorm_omega2, ttt) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (UMF_malloc_count != 0) error ("umfpack memory leak!!\n",0.) ; #endif return (0) ; } SuiteSparse/UMFPACK/Tcov/Makefile0000644001170100242450000000031510534022164015404 0ustar davisfac include ../../UFconfig/UFconfig.mk linux: distclean ./DO.linux sol: distclean ./DO.solaris distclean: - ( cd .. ; make purge ) - ( cd ../../AMD ; make purge ) - $(RM) -rf Out/* purge: distclean SuiteSparse/UMFPACK/Tcov/DO6780000755001170100242450000000014710006265125014444 0ustar davisfac# # DO 6 di DO 6 dl DO 6 zi DO 6 zl DO 7 di DO 7 dl DO 7 zi DO 7 zl DO 8 di DO 8 dl DO 8 zi DO 8 zl SuiteSparse/UMFPACK/Tcov/DOsol0000755001170100242450000000023010172736061014714 0ustar davisfac#!/bin/csh #------------------------------------------------------------------------------- mkdir SolOut/$1_$2 DOsol2 $1 $2 $3 >& SolOut/$1_$2.stderr SuiteSparse/UMFPACK/Tcov/Make.10000644001170100242450000000106310425273454014715 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.20000644001170100242450000000106510711722241014707 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DTESTING LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.30000644001170100242450000000117110425373631014715 0ustar davisfac#=============================================================================== # ILP32 mode, C interface /ATLAS BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DCBLAS -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lcblas -latlas -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.40000644001170100242450000000123710425373652014724 0ustar davisfac#=============================================================================== # ILP32 mode, Fortran interface to ATLAS BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DTESTING CONFIG = -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lf77blas -latlas -lfrtbegin -lg2c -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.50000644001170100242450000000112010425373670014714 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow, no reciprocal #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING -DNRECIPROCAL LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.60000644001170100242450000000111310711722350014706 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. No timers #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DTESTING -DNO_TIMER LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.70000644001170100242450000000113310425373701014715 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow. No divide by zero #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING -DNO_DIVIDE_BY_ZERO LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.80000644001170100242450000000113410711722306014714 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. No divide by zero. #=============================================================================== CC = gcc CFLAGS = -O0 -ftest-coverage -fprofile-arcs -O0 UMFPACK_CONFIG = -DTESTING -DNO_DIVIDE_BY_ZERO LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/cover.out_May50000644001170100242450000010062410426670101016512 0ustar davisfac================================================================================ umf_2by2.c ================================================================================ ================================================================================ umf_analyze.c ================================================================================ 24 219 #####: 216: return (FALSE) ; /* internal error! */ ================================================================================ umf_apply_order.c ================================================================================ ================================================================================ umf_assemble.c ================================================================================ ================================================================================ umf_assemble_fixq.c ================================================================================ ================================================================================ umf_blas3_update.c ================================================================================ ================================================================================ umf_build_tuples.c ================================================================================ 24 80 #####: 77: return (FALSE) ; /* out of memory for row tuples */ 24 98 #####: 95: return (FALSE) ; /* out of memory for col tuples */ ================================================================================ umf_colamd.c ================================================================================ 24 2706 #####: 2703: KILL_ROW (r) ; ================================================================================ umf_create_element.c ================================================================================ 24 250 #####: 247: return (FALSE) ; /* out of memory */ 24 261 #####: 258: return (FALSE) ; /* out of memory */ 24 437 #####: 434: return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); 24 540 #####: 537: return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); ================================================================================ umf_extend_front.c ================================================================================ ================================================================================ umf_free.c ================================================================================ ================================================================================ umf_fsize.c ================================================================================ 24 55 #####: 52: frsize = Int_MAX ; ================================================================================ umf_garbage_collection.c ================================================================================ ================================================================================ umf_get_memory.c ================================================================================ 24 111 #####: 108: newsize = (Int) bsize ; /* we cannot increase the size beyond bsize */ ================================================================================ umf_grow_front.c ================================================================================ 24 90 #####: 87: return (FALSE) ; 24 118 #####: 115: double a = 0.9 * sqrt ((Int_MAX / sizeof (Entry)) / s) ; 24 119 #####: 116: fnr2 = MAX (fnr_min, a * fnr2) ; 24 120 #####: 117: fnc2 = MAX (fnc_min, a * fnc2) ; 24 122 #####: 119: newsize = fnr2 * fnc2 ; 24 124 #####: 121: if (fnr2 % 2 == 0) fnr2++ ; 24 125 #####: 122: fnc2 = newsize / fnr2 ; 24 183 #####: 180: return (FALSE) ; /* out of memory */ ================================================================================ umf_init_front.c ================================================================================ 24 77 #####: 74: return (FALSE) ; ================================================================================ umf_is_permutation.c ================================================================================ ================================================================================ umf_kernel.c ================================================================================ ================================================================================ umf_kernel_init.c ================================================================================ 24 514 #####: 511: return (FALSE) ; /* pattern changed */ 24 542 #####: 539: return (FALSE) ; /* pattern changed */ 24 606 #####: 603: return (FALSE) ; /* pattern has changed */ 24 642 #####: 639: return (FALSE) ; /* pattern has changed */ 24 710 #####: 707: return (FALSE) ; /* pattern changed */ 24 723 #####: 720: return (FALSE) ; /* pattern changed */ 24 735 #####: 732: return (FALSE) ; /* pattern changed */ 24 827 #####: 824: return (FALSE) ; /* pattern changed */ 24 863 #####: 860: return (FALSE) ; /* pattern changed */ 24 905 #####: 902: return (FALSE) ; /* pattern changed */ 24 919 #####: 916: return (FALSE) ; /* pattern changed */ 24 1031 #####: 1028: return (FALSE) ; /* pattern changed */ ================================================================================ umf_kernel_wrapup.c ================================================================================ ================================================================================ umf_lhsolve.c ================================================================================ ================================================================================ umf_local_search.c ================================================================================ 24 654 #####: 651: return (UMFPACK_ERROR_different_pattern) ; 24 743 #####: 740: return (UMFPACK_ERROR_different_pattern) ; ================================================================================ umf_lsolve.c ================================================================================ ================================================================================ umf_ltsolve.c ================================================================================ ================================================================================ umf_malloc.c ================================================================================ ================================================================================ umf_mem_alloc_element.c ================================================================================ 24 46 #####: 43: return (0) ; /* problem is too large */ ================================================================================ umf_mem_alloc_head_block.c ================================================================================ ================================================================================ umf_mem_alloc_tail_block.c ================================================================================ ================================================================================ umf_mem_free_tail_block.c ================================================================================ ================================================================================ umf_mem_init_memoryspace.c ================================================================================ ================================================================================ umf_realloc.c ================================================================================ 24 55 #####: 52: return ((void *) NULL) ; ================================================================================ umf_report_perm.c ================================================================================ ================================================================================ umf_report_vector.c ================================================================================ ================================================================================ umf_row_search.c ================================================================================ 24 616 #####: 613: return (UMFPACK_ERROR_different_pattern) ; 24 662 #####: 659: return (UMFPACK_ERROR_different_pattern) ; 24 749 #####: 746: return (UMFPACK_ERROR_different_pattern) ; ================================================================================ umf_scale.c ================================================================================ ================================================================================ umf_scale_column.c ================================================================================ ================================================================================ umf_set_stats.c ================================================================================ ================================================================================ umf_singletons.c ================================================================================ ================================================================================ umf_solve.c ================================================================================ 24 1313 #####: 1310: omega [1] = tau ; 24 1314 #####: 1311: omega [2] = tau ; 24 1315 #####: 1312: break ; ================================================================================ umf_start_front.c ================================================================================ 24 153 #####: 150: maxfrsize = Int_MAX / sizeof (Entry) ; 24 172 #####: 169: fsize = Int_MAX / sizeof (Entry) ; 24 190 #####: 187: fsize2 = Int_MAX / sizeof (Entry) ; ================================================================================ umf_store_lu.c ================================================================================ 24 346 #####: 343: return (FALSE) ; /* out of memory */ 24 352 #####: 349: return (FALSE) ; /* out of memory */ 24 771 #####: 768: return (FALSE) ; /* out of memory */ 24 778 #####: 775: return (FALSE) ; /* out of memory */ ================================================================================ umf_store_lu_drop.c ================================================================================ 24 326 #####: 323: Int r2, c2 ; 24 329 #####: 326: if (Work->do_grow) 24 333 #####: 330: r2 = fnrows ; 24 334 #####: 331: c2 = fncols ; 24 339 #####: 336: r2 = MAX (fnrows, Work->fnrows_new + 1) ; 24 340 #####: 337: c2 = MAX (fncols, Work->fncols_new + 1) ; 24 343 #####: 340: if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) 24 346 #####: 343: return (FALSE) ; /* out of memory */ 24 348 #####: 345: p = UMF_mem_alloc_head_block (Numeric, size) ; 24 349 #####: 346: if (!p) 24 352 #####: 349: return (FALSE) ; /* out of memory */ 24 355 #####: 352: fnc_curr = Work->fnc_curr ; 24 356 #####: 353: fnr_curr = Work->fnr_curr ; 24 357 #####: 354: Flublock = Work->Flublock ; 24 358 #####: 355: Flblock = Work->Flblock ; 24 359 #####: 356: Fublock = Work->Fublock ; 24 360 #####: 357: Fl1 = Flublock + kk * nb ; 24 361 #####: 358: Fl2 = Flblock + kk * fnr_curr ; 24 494 #####: 491: pos = llen++ ; 24 495 #####: 492: Lpattern [pos] = row2 ; 24 496 #####: 493: Lpos [row2] = pos ; 24 497 #####: 494: *Li++ = row2 ; 24 750 #####: 747: Int r2, c2 ; 24 753 #####: 750: if (Work->do_grow) 24 757 #####: 754: r2 = fnrows ; 24 758 #####: 755: c2 = fncols ; 24 763 #####: 760: r2 = MAX (fnrows, Work->fnrows_new + 1) ; 24 764 #####: 761: c2 = MAX (fncols, Work->fncols_new + 1) ; 24 767 #####: 764: if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) 24 771 #####: 768: return (FALSE) ; /* out of memory */ 24 773 #####: 770: p = UMF_mem_alloc_head_block (Numeric, size) ; 24 774 #####: 771: if (!p) 24 778 #####: 775: return (FALSE) ; /* out of memory */ 24 781 #####: 778: fnc_curr = Work->fnc_curr ; 24 782 #####: 779: fnr_curr = Work->fnr_curr ; 24 783 #####: 780: Flublock = Work->Flublock ; 24 784 #####: 781: Flblock = Work->Flblock ; 24 785 #####: 782: Fublock = Work->Fublock ; 24 786 #####: 783: Fu1 = Flublock + kk ; 24 787 #####: 784: Fu2 = Fublock + kk * fnc_curr ; ================================================================================ umf_symbolic_usage.c ================================================================================ ================================================================================ umf_transpose.c ================================================================================ ================================================================================ umf_triplet_map_nox.c ================================================================================ ================================================================================ umf_triplet_map_x.c ================================================================================ ================================================================================ umf_triplet_nomap_nox.c ================================================================================ ================================================================================ umf_triplet_nomap_x.c ================================================================================ ================================================================================ umf_tuple_lengths.c ================================================================================ ================================================================================ umf_uhsolve.c ================================================================================ ================================================================================ umf_usolve.c ================================================================================ ================================================================================ umf_utsolve.c ================================================================================ ================================================================================ umf_valid_numeric.c ================================================================================ ================================================================================ umf_valid_symbolic.c ================================================================================ ================================================================================ umfpack_col_to_triplet.c ================================================================================ ================================================================================ umfpack_defaults.c ================================================================================ ================================================================================ umfpack_free_numeric.c ================================================================================ ================================================================================ umfpack_free_symbolic.c ================================================================================ ================================================================================ umfpack_get_determinant.c ================================================================================ 24 217 #####: 214: Info [UMFPACK_STATUS] = UMFPACK_WARNING_singular_matrix ; 24 218 #####: 215: break ; ================================================================================ umfpack_get_lunz.c ================================================================================ ================================================================================ umfpack_get_numeric.c ================================================================================ ================================================================================ umfpack_get_symbolic.c ================================================================================ ================================================================================ umfpack_load_numeric.c ================================================================================ 24 99 #####: 96: (void) UMF_free ((void *) Numeric) ; 24 100 #####: 97: fclose (f) ; 24 101 #####: 98: return (UMFPACK_ERROR_file_IO) ; 24 158 #####: 155: UMFPACK_free_numeric ((void **) &Numeric) ; 24 159 #####: 156: return (UMFPACK_ERROR_invalid_Numeric_object) ; ================================================================================ umfpack_load_symbolic.c ================================================================================ 24 99 #####: 96: (void) UMF_free ((void *) Symbolic) ; 24 100 #####: 97: fclose (f) ; 24 101 #####: 98: return (UMFPACK_ERROR_file_IO) ; 24 162 #####: 159: UMFPACK_free_symbolic ((void **) &Symbolic) ; 24 163 #####: 160: return (UMFPACK_ERROR_invalid_Symbolic_object) ; ================================================================================ umfpack_numeric.c ================================================================================ 24 186 #####: 183: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 187 #####: 184: return (UMFPACK_ERROR_out_of_memory) ; ================================================================================ umfpack_qsymbolic.c ================================================================================ 24 516 #####: 513: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 517 #####: 514: return (UMFPACK_ERROR_out_of_memory) ; 24 891 #####: 888: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 892 #####: 889: error (&Symbolic, SW) ; 24 893 #####: 890: return (UMFPACK_ERROR_out_of_memory) ; 24 912 #####: 909: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 913 #####: 910: error (&Symbolic, SW) ; 24 914 #####: 911: return (UMFPACK_ERROR_out_of_memory) ; 24 981 #####: 978: strategy = UMFPACK_STRATEGY_2BY2 ; 24 1461 #####: 1458: Info [UMFPACK_STATUS] = UMFPACK_ERROR_internal_error ; 24 1462 #####: 1459: error (&Symbolic, SW) ; 24 1463 #####: 1460: return (UMFPACK_ERROR_internal_error) ; 24 1815 #####: 1812: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 1816 #####: 1813: error (&Symbolic, SW) ; 24 1817 #####: 1814: return (UMFPACK_ERROR_out_of_memory) ; ================================================================================ umfpack_report_control.c ================================================================================ ================================================================================ umfpack_report_info.c ================================================================================ ================================================================================ umfpack_report_matrix.c ================================================================================ ================================================================================ umfpack_report_numeric.c ================================================================================ 24 324 #####: 321: return (FALSE) ; 24 330 #####: 327: PRINTF (("\t...\n")) ; 24 331 #####: 328: prl-- ; 24 532 #####: 529: return (FALSE) ; 24 639 #####: 636: PRINTF ((" ...\n")) ; 24 640 #####: 637: prl-- ; 24 651 #####: 648: return (FALSE) ; 24 657 #####: 654: PRINTF (("\t...\n")) ; 24 658 #####: 655: prl-- ; ================================================================================ umfpack_report_perm.c ================================================================================ ================================================================================ umfpack_report_status.c ================================================================================ ================================================================================ umfpack_report_symbolic.c ================================================================================ ================================================================================ umfpack_report_triplet.c ================================================================================ ================================================================================ umfpack_report_vector.c ================================================================================ ================================================================================ umfpack_save_numeric.c ================================================================================ ================================================================================ umfpack_save_symbolic.c ================================================================================ ================================================================================ umfpack_scale.c ================================================================================ ================================================================================ umfpack_solve.c ================================================================================ ================================================================================ umfpack_symbolic.c ================================================================================ ================================================================================ umfpack_tictoc.c ================================================================================ ================================================================================ umfpack_timer.c ================================================================================ ================================================================================ umfpack_transpose.c ================================================================================ ================================================================================ umfpack_triplet_to_col.c ================================================================================ ================================================================================ umfpack_wsolve.c ================================================================================ 24 144 #####: 141: Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_system ; 24 145 #####: 142: return (UMFPACK_ERROR_invalid_system) ; 24 158 #####: 155: Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; 24 159 #####: 156: return (UMFPACK_ERROR_argument_missing) ; 24 165 #####: 162: irstep = 0 ; ================================================================================ amd_1.c ================================================================================ ================================================================================ amd_2.c ================================================================================ ================================================================================ amd_aat.c ================================================================================ ================================================================================ amd_control.c ================================================================================ ================================================================================ amd_defaults.c ================================================================================ ================================================================================ amd_info.c ================================================================================ ================================================================================ amd_order.c ================================================================================ 24 82 #####: 79: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 83 #####: 80: return (AMD_OUT_OF_MEMORY) ; /* problem too large */ 24 103 #####: 100: amd_free (Len) ; 24 104 #####: 101: amd_free (Pinv) ; 24 105 #####: 102: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 106 #####: 103: return (AMD_OUT_OF_MEMORY) ; 24 120 #####: 117: amd_free (Rp) ; 24 121 #####: 118: amd_free (Ri) ; 24 122 #####: 119: amd_free (Len) ; 24 123 #####: 120: amd_free (Pinv) ; 24 124 #####: 121: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 125 #####: 122: return (AMD_OUT_OF_MEMORY) ; 24 173 #####: 170: amd_free (Rp) ; 24 174 #####: 171: amd_free (Ri) ; 24 175 #####: 172: amd_free (Len) ; 24 176 #####: 173: amd_free (Pinv) ; 24 177 #####: 174: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 178 #####: 175: return (AMD_OUT_OF_MEMORY) ; ================================================================================ amd_postorder.c ================================================================================ ================================================================================ amd_post_tree.c ================================================================================ ================================================================================ amd_preprocess.c ================================================================================ ================================================================================ amd_valid.c ================================================================================ ================================================================================ Last line of each output file: ================================================================================ Out/1_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 59.09 ================================================================= Out/1_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 51.26 ================================================================= Out/1g_di/ut.out ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 39.95 ================================================================= Out/1g_dl/ut.out ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 34.86 ================================================================= Out/1g_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.84e-05 arc130 3.66e-10 omega2) cputime 75.33 ================================================================= Out/1g_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.84e-05 arc130 3.66e-10 omega2) cputime 75.14 ================================================================= Out/1_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 98.83 ================================================================= Out/1_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 97.77 ================================================================= Out/2_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 52.76 ================================================================= Out/2_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 44.59 ================================================================= Out/2g_di/ut.out ALL TESTS PASSED: rnorm 1.06e-10 (1.19e-07 shl0, 5.65e-05 arc130 1.16e-08 omega2) cputime 33.96 ================================================================= Out/2g_dl/ut.out ALL TESTS PASSED: rnorm 1.06e-10 (1.19e-07 shl0, 5.65e-05 arc130 1.16e-08 omega2) cputime 30.15 ================================================================= Out/2g_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.69e-05 arc130 1.34e-09 omega2) cputime 58.91 ================================================================= Out/2g_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.69e-05 arc130 1.34e-09 omega2) cputime 58.82 ================================================================= Out/2_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 79.13 ================================================================= Out/2_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 79.21 ================================================================= Out/5_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 59.41 ================================================================= Out/5_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 49.39 ================================================================= Out/5_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 98.82 ================================================================= Out/5_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 98.19 ================================================================= Out/6_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 0 ================================================================= Out/6_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 0 ================================================================= Out/6_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 0 ================================================================= Out/6_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 0 ================================================================= Out/7_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 61.16 ================================================================= Out/7_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 49.42 ================================================================= Out/7_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 96.29 ================================================================= Out/7_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 95.47 ================================================================= Out/8_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 51.65 ================================================================= Out/8_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.19e-07 shl0, 6.76e-05 arc130 2.84e-08 omega2) cputime 44.36 ================================================================= Out/8_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 78.02 ================================================================= Out/8_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 6.77e-05 arc130 1.65e-09 omega2) cputime 78.32 ================================================================= SuiteSparse/UMFPACK/Tcov/DO.linux.Jan240000644001170100242450000006325010175232354016220 0ustar davisfac################################################################################ Tcov test: 1 di ################################################################################ /bin/mv: cannot stat `Out/1_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 52.85 62.928u 18.396s 1:40.67 80.7% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 dl ################################################################################ /bin/mv: cannot stat `Out/1_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.44 55.002u 17.076s 1:47.74 66.8% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zi ################################################################################ /bin/mv: cannot stat `Out/1_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.08 94.574u 19.999s 2:12.31 86.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zl ################################################################################ /bin/mv: cannot stat `Out/1_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.85 94.178u 20.267s 2:20.97 81.1% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 di ################################################################################ /bin/mv: cannot stat `Out/2_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 43.74 54.336u 17.934s 1:27.28 82.7% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 dl ################################################################################ /bin/mv: cannot stat `Out/2_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 42.64 54.068u 17.068s 1:26.00 82.6% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 zi ################################################################################ /bin/mv: cannot stat `Out/2_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 66.69 75.192u 19.914s 1:51.89 84.9% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 2 zl ################################################################################ /bin/mv: cannot stat `Out/2_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.1 93.816u 19.893s 2:09.71 87.6% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 di ################################################################################ /bin/mv: cannot stat `Out/3_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 49.18 61.050u 19.339s 1:41.90 78.8% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 3 dl ################################################################################ /bin/mv: cannot stat `Out/3_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 42.82 55.075u 18.830s 1:34.96 77.8% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zi ################################################################################ /bin/mv: cannot stat `Out/3_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 84.1 93.431u 21.713s 2:25.67 79.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zl ################################################################################ /bin/mv: cannot stat `Out/3_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 84.87 94.509u 21.778s 2:24.09 80.6% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 4 di ################################################################################ /bin/mv: cannot stat `Out/4_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 49.36 60.263u 19.414s 1:41.11 78.7% 0+0k 0+0io 52pf+0w ################################################################################ Tcov test: 4 dl ################################################################################ /bin/mv: cannot stat `Out/4_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.08 54.299u 18.897s 1:34.41 77.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 zi ################################################################################ /bin/mv: cannot stat `Out/4_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 84.28 92.899u 21.968s 2:18.25 83.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 zl ################################################################################ /bin/mv: cannot stat `Out/4_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 84.85 93.851u 21.883s 2:25.45 79.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 di ################################################################################ /bin/mv: cannot stat `Out/5_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 51.97 62.156u 17.755s 1:42.14 78.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 dl ################################################################################ /bin/mv: cannot stat `Out/5_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 43.55 54.453u 17.032s 1:32.39 77.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 zi ################################################################################ /bin/mv: cannot stat `Out/5_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 85.39 93.782u 19.825s 2:15.94 83.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 zl ################################################################################ /bin/mv: cannot stat `Out/5_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 85.99 94.275u 19.921s 2:17.38 83.1% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 di ################################################################################ /bin/mv: cannot stat `Out/6_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 0 53.854u 17.179s 1:34.05 75.5% 0+0k 0+0io 14pf+0w ################################################################################ Tcov test: 6 dl ################################################################################ /bin/mv: cannot stat `Out/6_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 0 53.387u 16.482s 1:31.79 76.1% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 zi ################################################################################ /bin/mv: cannot stat `Out/6_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 0 74.485u 19.371s 1:58.33 79.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 zl ################################################################################ /bin/mv: cannot stat `Out/6_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 0 93.386u 19.579s 2:23.34 78.7% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 7 di ################################################################################ /bin/mv: cannot stat `Out/7_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 52.13 62.467u 17.903s 1:42.73 78.2% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 7 dl ################################################################################ /bin/mv: cannot stat `Out/7_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.24 54.250u 17.355s 1:35.45 75.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 7 zi ################################################################################ /bin/mv: cannot stat `Out/7_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.36 93.683u 20.174s 2:19.06 81.8% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 7 zl ################################################################################ /bin/mv: cannot stat `Out/7_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.8 93.905u 20.169s 2:18.58 82.3% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 8 di ################################################################################ /bin/mv: cannot stat `Out/8_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 44.16 54.565u 17.959s 1:46.61 68.0% 0+0k 0+0io 69pf+0w ################################################################################ Tcov test: 8 dl ################################################################################ /bin/mv: cannot stat `Out/8_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 42.92 54.176u 17.162s 1:40.86 70.7% 0+0k 0+0io 50pf+0w ################################################################################ Tcov test: 8 zi ################################################################################ /bin/mv: cannot stat `Out/8_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 66.15 74.497u 20.146s 1:59.21 79.3% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 8 zl ################################################################################ /bin/mv: cannot stat `Out/8_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.29 93.557u 20.215s 2:22.60 79.7% 0+0k 0+0io 51pf+0w ################################################################################ Tcov test: 1g di ################################################################################ /bin/mv: cannot stat `Out/1g_di': No such file or directory make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 36.37 73.776u 18.042s 1:56.90 78.5% 0+0k 0+0io 61pf+0w ################################################################################ Tcov test: 1g dl ################################################################################ /bin/mv: cannot stat `Out/1g_dl': No such file or directory make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 30.98 69.221u 16.983s 1:46.11 81.2% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 1g zi ################################################################################ /bin/mv: cannot stat `Out/1g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.27 104.147u 19.969s 2:30.77 82.3% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 1g zl ################################################################################ /bin/mv: cannot stat `Out/1g_zl': No such file or directory make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.11 103.657u 19.929s 2:25.30 85.0% 0+0k 0+0io 32pf+0w ################################################################################ Tcov test: 2g di ################################################################################ /bin/mv: cannot stat `Out/2g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.06e-10 (1.37e-07 shl0, 5.65e-05 arc130 1.98e-08 omega2) cputime 29.92 68.398u 17.843s 1:45.71 81.5% 0+0k 0+0io 15pf+0w ################################################################################ Tcov test: 2g dl ################################################################################ /bin/mv: cannot stat `Out/2g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 30.88 70.119u 16.902s 1:46.55 81.6% 0+0k 0+0io 5pf+0w ################################################################################ Tcov test: 2g zi ################################################################################ /bin/mv: cannot stat `Out/2g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.29e-09 omega2) cputime 49.79 86.583u 19.904s 2:07.59 83.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2g zl ################################################################################ /bin/mv: cannot stat `Out/2g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 67.68 104.484u 19.575s 2:25.99 84.9% 0+0k 0+0io 9pf+0w ################################################################################ Tcov test: 3g di ################################################################################ /bin/mv: cannot stat `Out/3g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 35.6 74.788u 20.351s 2:20.99 67.4% 0+0k 0+0io 6pf+0w ################################################################################ Tcov test: 3g dl ################################################################################ /bin/mv: cannot stat `Out/3g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.32 70.806u 19.300s 2:01.74 74.0% 0+0k 0+0io 9pf+0w ################################################################################ Tcov test: 3g zi ################################################################################ /bin/mv: cannot stat `Out/3g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 68.26 105.768u 22.114s 2:31.22 84.5% 0+0k 0+0io 6pf+0w ################################################################################ Tcov test: 3g zl ################################################################################ /bin/mv: cannot stat `Out/3g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.65 106.120u 21.851s 2:31.80 84.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4g di ################################################################################ /bin/mv: cannot stat `Out/4g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 36.36 74.674u 20.200s 1:58.26 80.2% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 4g dl ################################################################################ /bin/mv: cannot stat `Out/4g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.27 70.664u 19.197s 1:53.65 79.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4g zi ################################################################################ /bin/mv: cannot stat `Out/4g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 68.53 105.067u 22.053s 2:32.00 83.6% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 4g zl ################################################################################ /bin/mv: cannot stat `Out/4g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 69.12 105.423u 22.370s 2:33.38 83.3% 0+0k 0+0io 0pf+0w SuiteSparse/UMFPACK/Tcov/SolOut/0000755001170100242450000000000010206700651015172 5ustar davisfacSuiteSparse/UMFPACK/Tcov/DO.linux0000755001170100242450000000167610711722340015345 0ustar davisfac# # # ILP32, no BLAS, test for int overflow ./DO 1 di ./DO 1 dl ./DO 1 zi ./DO 1 zl # ILP32, BLAS, do not test for int overflow ./DO 2 di ./DO 2 dl ./DO 2 zi ./DO 2 zl # ILP32, no BLAS, test for int overflow, no reciprocal ./DO 5 di ./DO 5 dl ./DO 5 zi ./DO 5 zl # ILP32, BLAS, do not test for int overflow. No timers ./DO 6 di ./DO 6 dl ./DO 6 zi ./DO 6 zl # ILP32, no BLAS, test for int overflow, no divide-by-zero ./DO 7 di ./DO 7 dl ./DO 7 zi ./DO 7 zl # ILP32, BLAS, do not test for int overflow. No divide-by-zero ./DO 8 di ./DO 8 dl ./DO 8 zi ./DO 8 zl # ILP32, no BLAS, test for int overflow. Optimizations turned on ./DO 1g di run ./DO 1g dl run ./DO 1g zi run ./DO 1g zl run # ILP32, BLAS, do not test for int overflow. Optimizations turned on ./DO 2g di run ./DO 2g dl run ./DO 2g zi run ./DO 2g zl run # coverage summary, include lines not tested by the above 24 coverage tests ./covall | awk -f cover.awk > cover.out cat cover.out SuiteSparse/UMFPACK/Tcov/debug.amd0000644001170100242450000000000310006265124015506 0ustar davisfac-5 SuiteSparse/UMFPACK/Tcov/debug.umf0000644001170100242450000000000310006265124015534 0ustar davisfac-5 SuiteSparse/UMFPACK/Tcov/badnum2.umf0000644001170100242450000000001010171173060015774 0ustar davisfacbadnum2 SuiteSparse/UMFPACK/Tcov/badsym.umf0000644001170100242450000000054410006265123015736 0ustar davisfacT@.@b@?R@.@p@mmppm`mpmPmllm0m JB?SuiteSparse/UMFPACK/Tcov/cover.awk0000644001170100242450000000003710425400630015564 0ustar davisfac/^[a-Z]/ /^=====/ /^ 24/ SuiteSparse/UMFPACK/Tcov/cover.out0000644001170100242450000010167110711173732015627 0ustar davisfac================================================================================ umf_2by2.c ================================================================================ ================================================================================ umf_analyze.c ================================================================================ 24 222 #####: 217: return (FALSE) ; /* internal error! */ ================================================================================ umf_apply_order.c ================================================================================ ================================================================================ umf_assemble.c ================================================================================ ================================================================================ umf_assemble_fixq.c ================================================================================ ================================================================================ umf_blas3_update.c ================================================================================ ================================================================================ umf_build_tuples.c ================================================================================ 24 83 #####: 78: return (FALSE) ; /* out of memory for row tuples */ 24 101 #####: 96: return (FALSE) ; /* out of memory for col tuples */ ================================================================================ umf_colamd.c ================================================================================ 24 2708 #####: 2703: KILL_ROW (r) ; ================================================================================ umf_create_element.c ================================================================================ 24 253 #####: 248: return (FALSE) ; /* out of memory */ 24 264 #####: 259: return (FALSE) ; /* out of memory */ 24 440 #####: 435: return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); 24 543 #####: 538: return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); ================================================================================ umf_extend_front.c ================================================================================ ================================================================================ umf_free.c ================================================================================ ================================================================================ umf_fsize.c ================================================================================ 24 58 #####: 53: frsize = Int_MAX ; ================================================================================ umf_garbage_collection.c ================================================================================ ================================================================================ umf_get_memory.c ================================================================================ 24 114 #####: 109: newsize = (Int) bsize ; /* we cannot increase the size beyond bsize */ ================================================================================ umf_grow_front.c ================================================================================ 24 93 #####: 88: return (FALSE) ; 24 121 #####: 116: double a = 0.9 * sqrt ((Int_MAX / sizeof (Entry)) / s) ; 24 122 #####: 117: fnr2 = MAX (fnr_min, a * fnr2) ; 24 123 #####: 118: fnc2 = MAX (fnc_min, a * fnc2) ; 24 125 #####: 120: newsize = fnr2 * fnc2 ; 24 127 #####: 122: if (fnr2 % 2 == 0) fnr2++ ; 24 128 #####: 123: fnc2 = newsize / fnr2 ; 24 186 #####: 181: return (FALSE) ; /* out of memory */ ================================================================================ umf_init_front.c ================================================================================ 24 80 #####: 75: return (FALSE) ; ================================================================================ umf_is_permutation.c ================================================================================ ================================================================================ umf_kernel.c ================================================================================ ================================================================================ umf_kernel_init.c ================================================================================ 24 517 #####: 512: return (FALSE) ; /* pattern changed */ 24 545 #####: 540: return (FALSE) ; /* pattern changed */ 24 609 #####: 604: return (FALSE) ; /* pattern has changed */ 24 645 #####: 640: return (FALSE) ; /* pattern has changed */ 24 713 #####: 708: return (FALSE) ; /* pattern changed */ 24 726 #####: 721: return (FALSE) ; /* pattern changed */ 24 738 #####: 733: return (FALSE) ; /* pattern changed */ 24 830 #####: 825: return (FALSE) ; /* pattern changed */ 24 866 #####: 861: return (FALSE) ; /* pattern changed */ 24 908 #####: 903: return (FALSE) ; /* pattern changed */ 24 922 #####: 917: return (FALSE) ; /* pattern changed */ 24 1034 #####: 1029: return (FALSE) ; /* pattern changed */ ================================================================================ umf_kernel_wrapup.c ================================================================================ ================================================================================ umf_lhsolve.c ================================================================================ ================================================================================ umf_local_search.c ================================================================================ 24 657 #####: 652: return (UMFPACK_ERROR_different_pattern) ; 24 746 #####: 741: return (UMFPACK_ERROR_different_pattern) ; ================================================================================ umf_lsolve.c ================================================================================ ================================================================================ umf_ltsolve.c ================================================================================ ================================================================================ umf_malloc.c ================================================================================ ================================================================================ umf_mem_alloc_element.c ================================================================================ 24 49 #####: 44: return (0) ; /* problem is too large */ ================================================================================ umf_mem_alloc_head_block.c ================================================================================ ================================================================================ umf_mem_alloc_tail_block.c ================================================================================ ================================================================================ umf_mem_free_tail_block.c ================================================================================ ================================================================================ umf_mem_init_memoryspace.c ================================================================================ ================================================================================ umf_realloc.c ================================================================================ 24 58 #####: 53: return ((void *) NULL) ; ================================================================================ umf_report_perm.c ================================================================================ ================================================================================ umf_report_vector.c ================================================================================ ================================================================================ umf_row_search.c ================================================================================ 24 618 #####: 613: return (UMFPACK_ERROR_different_pattern) ; 24 664 #####: 659: return (UMFPACK_ERROR_different_pattern) ; 24 751 #####: 746: return (UMFPACK_ERROR_different_pattern) ; ================================================================================ umf_scale.c ================================================================================ ================================================================================ umf_scale_column.c ================================================================================ ================================================================================ umf_set_stats.c ================================================================================ ================================================================================ umf_singletons.c ================================================================================ ================================================================================ umf_solve.c ================================================================================ 24 1316 #####: 1311: omega [1] = tau ; 24 1317 #####: 1312: omega [2] = tau ; 24 1318 #####: 1313: break ; ================================================================================ umf_start_front.c ================================================================================ 24 156 #####: 151: maxfrsize = Int_MAX / sizeof (Entry) ; 24 175 #####: 170: fsize = Int_MAX / sizeof (Entry) ; 24 193 #####: 188: fsize2 = Int_MAX / sizeof (Entry) ; ================================================================================ umf_store_lu.c ================================================================================ 24 349 #####: 344: return (FALSE) ; /* out of memory */ 24 355 #####: 350: return (FALSE) ; /* out of memory */ 24 774 #####: 769: return (FALSE) ; /* out of memory */ 24 781 #####: 776: return (FALSE) ; /* out of memory */ ================================================================================ umf_store_lu_drop.c ================================================================================ 24 332 #####: 327: if (Work->do_grow) 24 336 #####: 331: r2 = fnrows ; 24 337 #####: 332: c2 = fncols ; 24 342 #####: 337: r2 = MAX (fnrows, Work->fnrows_new + 1) ; 24 343 #####: 338: c2 = MAX (fncols, Work->fncols_new + 1) ; 24 346 #####: 341: if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) 24 349 #####: 344: return (FALSE) ; /* out of memory */ 24 351 #####: 346: p = UMF_mem_alloc_head_block (Numeric, size) ; 24 352 #####: 347: if (!p) 24 355 #####: 350: return (FALSE) ; /* out of memory */ 24 358 #####: 353: fnc_curr = Work->fnc_curr ; 24 359 #####: 354: fnr_curr = Work->fnr_curr ; 24 360 #####: 355: Flublock = Work->Flublock ; 24 361 #####: 356: Flblock = Work->Flblock ; 24 362 #####: 357: Fublock = Work->Fublock ; 24 363 #####: 358: Fl1 = Flublock + kk * nb ; 24 364 #####: 359: Fl2 = Flblock + kk * fnr_curr ; 24 497 #####: 492: pos = llen++ ; 24 498 #####: 493: Lpattern [pos] = row2 ; 24 499 #####: 494: Lpos [row2] = pos ; 24 500 #####: 495: *Li++ = row2 ; 24 756 #####: 751: if (Work->do_grow) 24 760 #####: 755: r2 = fnrows ; 24 761 #####: 756: c2 = fncols ; 24 766 #####: 761: r2 = MAX (fnrows, Work->fnrows_new + 1) ; 24 767 #####: 762: c2 = MAX (fncols, Work->fncols_new + 1) ; 24 770 #####: 765: if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) 24 774 #####: 769: return (FALSE) ; /* out of memory */ 24 776 #####: 771: p = UMF_mem_alloc_head_block (Numeric, size) ; 24 777 #####: 772: if (!p) 24 781 #####: 776: return (FALSE) ; /* out of memory */ 24 784 #####: 779: fnc_curr = Work->fnc_curr ; 24 785 #####: 780: fnr_curr = Work->fnr_curr ; 24 786 #####: 781: Flublock = Work->Flublock ; 24 787 #####: 782: Flblock = Work->Flblock ; 24 788 #####: 783: Fublock = Work->Fublock ; 24 789 #####: 784: Fu1 = Flublock + kk ; 24 790 #####: 785: Fu2 = Fublock + kk * fnc_curr ; ================================================================================ umf_symbolic_usage.c ================================================================================ ================================================================================ umf_transpose.c ================================================================================ ================================================================================ umf_triplet_map_nox.c ================================================================================ ================================================================================ umf_triplet_map_x.c ================================================================================ ================================================================================ umf_triplet_nomap_nox.c ================================================================================ ================================================================================ umf_triplet_nomap_x.c ================================================================================ ================================================================================ umf_tuple_lengths.c ================================================================================ ================================================================================ umf_uhsolve.c ================================================================================ ================================================================================ umf_usolve.c ================================================================================ ================================================================================ umf_utsolve.c ================================================================================ ================================================================================ umf_valid_numeric.c ================================================================================ ================================================================================ umf_valid_symbolic.c ================================================================================ ================================================================================ umfpack_col_to_triplet.c ================================================================================ ================================================================================ umfpack_defaults.c ================================================================================ ================================================================================ umfpack_free_numeric.c ================================================================================ ================================================================================ umfpack_free_symbolic.c ================================================================================ ================================================================================ umfpack_get_determinant.c ================================================================================ 24 219 #####: 214: Info [UMFPACK_STATUS] = UMFPACK_WARNING_singular_matrix ; 24 220 #####: 215: break ; ================================================================================ umfpack_get_lunz.c ================================================================================ ================================================================================ umfpack_get_numeric.c ================================================================================ ================================================================================ umfpack_get_symbolic.c ================================================================================ ================================================================================ umfpack_load_numeric.c ================================================================================ 24 101 #####: 96: (void) UMF_free ((void *) Numeric) ; 24 102 #####: 97: fclose (f) ; 24 103 #####: 98: return (UMFPACK_ERROR_file_IO) ; 24 160 #####: 155: UMFPACK_free_numeric ((void **) &Numeric) ; 24 161 #####: 156: return (UMFPACK_ERROR_invalid_Numeric_object) ; ================================================================================ umfpack_load_symbolic.c ================================================================================ 24 101 #####: 96: (void) UMF_free ((void *) Symbolic) ; 24 102 #####: 97: fclose (f) ; 24 103 #####: 98: return (UMFPACK_ERROR_file_IO) ; 24 164 #####: 159: UMFPACK_free_symbolic ((void **) &Symbolic) ; 24 165 #####: 160: return (UMFPACK_ERROR_invalid_Symbolic_object) ; ================================================================================ umfpack_numeric.c ================================================================================ 24 188 #####: 183: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 189 #####: 184: return (UMFPACK_ERROR_out_of_memory) ; ================================================================================ umfpack_qsymbolic.c ================================================================================ 24 518 #####: 513: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 519 #####: 514: return (UMFPACK_ERROR_out_of_memory) ; 24 893 #####: 888: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 894 #####: 889: error (&Symbolic, SW) ; 24 895 #####: 890: return (UMFPACK_ERROR_out_of_memory) ; 24 914 #####: 909: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 915 #####: 910: error (&Symbolic, SW) ; 24 916 #####: 911: return (UMFPACK_ERROR_out_of_memory) ; 24 983 #####: 978: strategy = UMFPACK_STRATEGY_2BY2 ; 24 1463 #####: 1458: Info [UMFPACK_STATUS] = UMFPACK_ERROR_internal_error ; 24 1464 #####: 1459: error (&Symbolic, SW) ; 24 1465 #####: 1460: return (UMFPACK_ERROR_internal_error) ; 24 1817 #####: 1812: Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; 24 1818 #####: 1813: error (&Symbolic, SW) ; 24 1819 #####: 1814: return (UMFPACK_ERROR_out_of_memory) ; ================================================================================ umfpack_report_control.c ================================================================================ ================================================================================ umfpack_report_info.c ================================================================================ 24 506 #####: 501: PRINT_INFO ( 24 529 #####: 524: twtot = twsym + twnum ; 24 530 #####: 525: PRINT_INFO (" symbolic + numeric wall clock time (sec): %.2f\n", 24 532 #####: 527: if (ftot > 0 && twtot > TMIN) 24 534 #####: 529: PRINT_INFO ( 24 570 #####: 565: PRINT_INFO ( 24 601 #####: 596: if (twtot >= TMIN && ftot >= 0) 24 603 #####: 598: twtot += tsolve ; 24 604 #####: 599: PRINT_INFO ( 24 607 #####: 602: if (ftot > 0 && twtot > TMIN) 24 609 #####: 604: PRINT_INFO ( ================================================================================ umfpack_report_matrix.c ================================================================================ ================================================================================ umfpack_report_numeric.c ================================================================================ 24 326 #####: 321: return (FALSE) ; 24 332 #####: 327: PRINTF (("\t...\n")) ; 24 333 #####: 328: prl-- ; 24 534 #####: 529: return (FALSE) ; 24 641 #####: 636: PRINTF ((" ...\n")) ; 24 642 #####: 637: prl-- ; 24 653 #####: 648: return (FALSE) ; 24 659 #####: 654: PRINTF (("\t...\n")) ; 24 660 #####: 655: prl-- ; ================================================================================ umfpack_report_perm.c ================================================================================ ================================================================================ umfpack_report_status.c ================================================================================ ================================================================================ umfpack_report_symbolic.c ================================================================================ ================================================================================ umfpack_report_triplet.c ================================================================================ ================================================================================ umfpack_report_vector.c ================================================================================ ================================================================================ umfpack_save_numeric.c ================================================================================ ================================================================================ umfpack_save_symbolic.c ================================================================================ ================================================================================ umfpack_scale.c ================================================================================ ================================================================================ umfpack_solve.c ================================================================================ ================================================================================ umfpack_symbolic.c ================================================================================ ================================================================================ umfpack_tictoc.c ================================================================================ ================================================================================ umfpack_timer.c ================================================================================ ================================================================================ umfpack_transpose.c ================================================================================ ================================================================================ umfpack_triplet_to_col.c ================================================================================ ================================================================================ umfpack_wsolve.c ================================================================================ 24 146 #####: 141: Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_system ; 24 147 #####: 142: return (UMFPACK_ERROR_invalid_system) ; 24 160 #####: 155: Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; 24 161 #####: 156: return (UMFPACK_ERROR_argument_missing) ; 24 167 #####: 162: irstep = 0 ; ================================================================================ amd_1.c ================================================================================ ================================================================================ amd_2.c ================================================================================ ================================================================================ amd_aat.c ================================================================================ ================================================================================ amd_control.c ================================================================================ ================================================================================ amd_defaults.c ================================================================================ ================================================================================ amd_info.c ================================================================================ ================================================================================ amd_order.c ================================================================================ 24 84 #####: 79: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 85 #####: 80: return (AMD_OUT_OF_MEMORY) ; /* problem too large */ 24 105 #####: 100: amd_free (Len) ; 24 106 #####: 101: amd_free (Pinv) ; 24 107 #####: 102: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 108 #####: 103: return (AMD_OUT_OF_MEMORY) ; 24 122 #####: 117: amd_free (Rp) ; 24 123 #####: 118: amd_free (Ri) ; 24 124 #####: 119: amd_free (Len) ; 24 125 #####: 120: amd_free (Pinv) ; 24 126 #####: 121: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 127 #####: 122: return (AMD_OUT_OF_MEMORY) ; 24 175 #####: 170: amd_free (Rp) ; 24 176 #####: 171: amd_free (Ri) ; 24 177 #####: 172: amd_free (Len) ; 24 178 #####: 173: amd_free (Pinv) ; 24 179 #####: 174: if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; 24 180 #####: 175: return (AMD_OUT_OF_MEMORY) ; ================================================================================ amd_postorder.c ================================================================================ ================================================================================ amd_post_tree.c ================================================================================ ================================================================================ amd_preprocess.c ================================================================================ ================================================================================ amd_valid.c ================================================================================ ================================================================================ Last line of each output file: ================================================================================ Out/1_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.54e-08 omega2) cputime 68.89 ================================================================= Out/1_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.54e-08 omega2) cputime 60.89 ================================================================= Out/1g_di/ut.out ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 53.72 ================================================================= Out/1g_dl/ut.out ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 46.99 ================================================================= Out/1g_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.84e-05 arc130 3.66e-10 omega2) cputime 89.22 ================================================================= Out/1g_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 5.84e-05 arc130 3.66e-10 omega2) cputime 87.79 ================================================================= Out/1_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 110.06 ================================================================= Out/1_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 109.89 ================================================================= Out/2_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 60.81 ================================================================= Out/2_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 55.15 ================================================================= Out/2g_di/ut.out ALL TESTS PASSED: rnorm 1.06e-10 (1.37e-07 shl0, 5.65e-05 arc130 8.07e-09 omega2) cputime 46.87 ================================================================= Out/2g_dl/ut.out ALL TESTS PASSED: rnorm 1.06e-10 (1.37e-07 shl0, 5.65e-05 arc130 8.07e-09 omega2) cputime 42.94 ================================================================= Out/2g_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 5.69e-05 arc130 1.14e-09 omega2) cputime 67.54 ================================================================= Out/2g_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 5.69e-05 arc130 1.14e-09 omega2) cputime 68.33 ================================================================= Out/2_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 90.34 ================================================================= Out/2_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 90.37 ================================================================= Out/5_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 68.49 ================================================================= Out/5_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 60.57 ================================================================= Out/5_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 109.19 ================================================================= Out/5_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 110.08 ================================================================= Out/6_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 0 ================================================================= Out/6_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 0 ================================================================= Out/6_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 0 ================================================================= Out/6_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 0 ================================================================= Out/7_di/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.54e-08 omega2) cputime 69.52 ================================================================= Out/7_dl/ut.out ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.54e-08 omega2) cputime 59.27 ================================================================= Out/7_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 109.28 ================================================================= Out/7_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 110.39 ================================================================= Out/8_di/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 61.45 ================================================================= Out/8_dl/ut.out ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 1.73e-08 omega2) cputime 55.82 ================================================================= Out/8_zi/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 90.46 ================================================================= Out/8_zl/ut.out ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.77e-09 omega2) cputime 89.24 ================================================================= SuiteSparse/UMFPACK/Tcov/covall0000755001170100242450000000613110426667763015200 0ustar davisfac#!/bin/csh # only print those lines that are "#####" in all tests. foreach file ( \ umf_2by2.c umf_analyze.c umf_apply_order.c umf_assemble.c \ umf_assemble_fixq.c umf_blas3_update.c umf_build_tuples.c \ umf_colamd.c umf_create_element.c umf_extend_front.c \ umf_free.c umf_fsize.c umf_garbage_collection.c umf_get_memory.c \ umf_grow_front.c umf_init_front.c umf_is_permutation.c umf_kernel.c \ umf_kernel_init.c umf_kernel_wrapup.c umf_lhsolve.c umf_local_search.c \ umf_lsolve.c umf_ltsolve.c umf_malloc.c umf_mem_alloc_element.c \ umf_mem_alloc_head_block.c umf_mem_alloc_tail_block.c \ umf_mem_free_tail_block.c umf_mem_init_memoryspace.c \ umf_realloc.c umf_report_perm.c umf_report_vector.c umf_row_search.c \ umf_scale.c umf_scale_column.c umf_set_stats.c umf_singletons.c \ umf_solve.c umf_start_front.c umf_store_lu.c umf_store_lu_drop.c \ umf_symbolic_usage.c \ umf_transpose.c umf_triplet_map_nox.c umf_triplet_map_x.c \ umf_triplet_nomap_nox.c umf_triplet_nomap_x.c umf_tuple_lengths.c \ umf_uhsolve.c umf_usolve.c umf_utsolve.c umf_valid_numeric.c \ umf_valid_symbolic.c umfpack_col_to_triplet.c umfpack_defaults.c \ umfpack_free_numeric.c umfpack_free_symbolic.c umfpack_get_determinant.c \ umfpack_get_lunz.c umfpack_get_numeric.c umfpack_get_symbolic.c \ umfpack_load_numeric.c umfpack_load_symbolic.c umfpack_numeric.c \ umfpack_qsymbolic.c umfpack_report_control.c umfpack_report_info.c \ umfpack_report_matrix.c umfpack_report_numeric.c umfpack_report_perm.c \ umfpack_report_status.c umfpack_report_symbolic.c umfpack_report_triplet.c \ umfpack_report_vector.c umfpack_save_numeric.c umfpack_save_symbolic.c \ umfpack_scale.c umfpack_solve.c umfpack_symbolic.c \ umfpack_tictoc.c umfpack_timer.c umfpack_transpose.c \ umfpack_triplet_to_col.c umfpack_wsolve.c \ ) echo '================================================================================' echo $file echo '================================================================================' cat /dev/null > Out/tcov_tmp foreach fdirs (Out/?_??) cat -n $fdirs/UMFPACK/Source/$file.gcov | grep '#####' >> Out/tcov_tmp end sort -n Out/tcov_tmp | uniq -c end foreach file ( \ amd_1.c amd_2.c amd_aat.c amd_control.c amd_defaults.c \ amd_info.c amd_order.c amd_postorder.c amd_post_tree.c \ amd_preprocess.c amd_valid.c \ ) echo '================================================================================' echo $file echo '================================================================================' cat /dev/null > Out/tcov_tmp foreach fdirs (Out/?_??) cat -n $fdirs/AMD/Source/$file.gcov | grep '#####' >> Out/tcov_tmp end sort -n Out/tcov_tmp | uniq -c end echo '================================================================================' echo 'Last line of each output file: ' echo '================================================================================' foreach file (Out/*_*/ut.out) echo $file tail -1 $file echo '=================================================================' end SuiteSparse/UMFPACK/Tcov/DO.linux.out20000644001170100242450000005657110174010732016234 0ustar davisfac################################################################################ Tcov test: 1 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 58.08 65.957u 21.743s 4:14.39 34.4% 0+0k 0+0io 56pf+0w ################################################################################ Tcov test: 1 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 47.61 57.147u 19.907s 2:36.09 49.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 87.9 96.431u 21.184s 5:53.60 33.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 87.89 95.638u 21.373s 4:55.24 39.6% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 44.76 55.884u 18.499s 2:30.76 49.3% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 2 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.58 55.066u 17.643s 2:27.94 49.1% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 68.18 76.674u 21.814s 3:18.86 49.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 87.68 95.713u 21.981s 4:56.13 39.7% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 52.99 63.135u 22.242s 4:26.20 32.0% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 3 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 45.62 57.047u 21.076s 5:13.79 24.8% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 85.67 95.359u 23.257s 4:00.29 49.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 87.52 96.462u 23.746s 5:27.63 36.6% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 4 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 50.86 62.001u 21.885s 3:16.46 42.6% 0+0k 0+0io 55pf+0w ################################################################################ Tcov test: 4 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.79 55.750u 20.866s 2:41.32 47.4% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 4 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 85.85 95.295u 24.087s 4:09.94 47.7% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.78 95.469u 22.687s 3:56.27 50.0% 0+0k 0+0io 57pf+0w ################################################################################ Tcov test: 5 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 54.79 64.073u 19.475s 3:18.85 42.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 44.3 54.864u 18.963s 3:20.43 36.8% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 5 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 86.29 94.274u 21.352s 5:45.72 33.4% 0+0k 0+0io 55pf+0w ################################################################################ Tcov test: 5 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 86.48 94.614u 20.459s 4:14.05 45.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 0 54.133u 18.431s 2:38.62 45.7% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 6 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 0 53.685u 17.717s 2:18.76 51.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 0 74.530u 20.591s 3:07.82 50.6% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 6 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 0 93.008u 21.095s 3:47.37 50.1% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 7 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 52 62.595u 18.109s 2:39.53 50.5% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 7 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.48 54.331u 19.149s 2:32.31 48.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 7 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.22 94.291u 22.044s 4:07.57 46.9% 0+0k 0+0io 35pf+0w ################################################################################ Tcov test: 7 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.77 94.190u 21.226s 4:00.99 47.8% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 8 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 45.21 55.138u 19.192s 2:53.18 42.9% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 8 dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.36 54.424u 18.817s 2:51.32 42.7% 0+0k 0+0io 57pf+0w ################################################################################ Tcov test: 8 zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 66.59 74.890u 21.514s 4:01.29 39.9% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 8 zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 85.8 93.133u 21.256s 4:41.13 40.6% 0+0k 0+0io 57pf+0w ################################################################################ Tcov test: 1g di ################################################################################ make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 36.45 74.444u 18.155s 4:12.64 36.6% 0+0k 0+0io 4pf+0w ################################################################################ Tcov test: 1g dl ################################################################################ make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.88 70.117u 18.138s 4:06.43 35.8% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1g zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.88 104.228u 21.576s 4:20.17 48.3% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 1g zl ################################################################################ make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.77 103.874u 21.334s 4:04.77 51.1% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 2g di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.06e-10 (1.37e-07 shl0, 5.65e-05 arc130 1.98e-08 omega2) cputime 30.14 68.834u 18.537s 2:59.16 48.7% 0+0k 0+0io 11pf+0w ################################################################################ Tcov test: 2g dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 32.02 70.467u 18.482s 2:49.67 52.4% 0+0k 0+0io 10pf+0w ################################################################################ Tcov test: 2g zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.29e-09 omega2) cputime 49.84 86.839u 20.261s 3:27.29 51.6% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 2g zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 67.93 104.755u 20.972s 4:03.31 51.6% 0+0k 0+0io 64pf+0w ################################################################################ Tcov test: 3g di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 36.48 75.152u 23.653s 3:10.42 51.8% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 3g dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.52 71.320u 21.093s 3:01.30 50.9% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3g zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 67.75 105.546u 22.796s 4:07.55 51.8% 0+0k 0+0io 40pf+0w ################################################################################ Tcov test: 3g zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.72 106.281u 23.809s 4:12.22 51.5% 0+0k 0+0io 7pf+0w ################################################################################ Tcov test: 4g di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 35.69 74.646u 22.580s 3:44.05 43.3% 0+0k 0+0io 46pf+0w ################################################################################ Tcov test: 4g dl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.21 70.200u 19.713s 3:47.80 39.4% 0+0k 0+0io 9pf+0w ################################################################################ Tcov test: 4g zi ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 68.15 105.008u 22.823s 5:40.93 37.4% 0+0k 0+0io 3pf+0w ################################################################################ Tcov test: 4g zl ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.44 105.124u 22.060s 5:40.31 37.3% 0+0k 0+0io 0pf+0w SuiteSparse/UMFPACK/Tcov/ucov.di0000755001170100242450000001072610171013722015245 0ustar davisfac#!/bin/csh # ucov.di: construct gcov files for umfpack, di version gcov -o umf_i_analyze umf_analyze.c gcov -o umf_i_apply_order umf_apply_order.c gcov -o umf_i_colamd umf_colamd.c gcov -o umf_i_free umf_free.c gcov -o umf_i_fsize umf_fsize.c gcov -o umf_i_is_permutation umf_is_permutation.c gcov -o umf_i_malloc umf_malloc.c gcov -o umf_i_realloc umf_realloc.c gcov -o umf_i_report_perm umf_report_perm.c gcov -o umf_i_singletons umf_singletons.c gcov -o umf_di_2by2 umf_2by2.c gcov -o umf_di_blas3_update umf_blas3_update.c gcov -o umf_di_build_tuples umf_build_tuples.c gcov -o umf_di_create_element umf_create_element.c gcov -o umf_di_extend_front umf_extend_front.c gcov -o umf_di_garbage_collection umf_garbage_collection.c gcov -o umf_di_get_memory umf_get_memory.c gcov -o umf_di_grow_front umf_grow_front.c gcov -o umf_di_init_front umf_init_front.c gcov -o umf_di_kernel umf_kernel.c gcov -o umf_di_kernel_init umf_kernel_init.c gcov -o umf_di_kernel_wrapup umf_kernel_wrapup.c gcov -o umf_di_local_search umf_local_search.c gcov -o umf_di_lsolve umf_lsolve.c gcov -o umf_di_mem_alloc_element umf_mem_alloc_element.c gcov -o umf_di_mem_alloc_head_block umf_mem_alloc_head_block.c gcov -o umf_di_mem_alloc_tail_block umf_mem_alloc_tail_block.c gcov -o umf_di_mem_free_tail_block umf_mem_free_tail_block.c gcov -o umf_di_mem_init_memoryspace umf_mem_init_memoryspace.c gcov -o umf_di_report_vector umf_report_vector.c gcov -o umf_di_row_search umf_row_search.c gcov -o umf_di_scale umf_scale.c gcov -o umf_di_scale_column umf_scale_column.c gcov -o umf_di_set_stats umf_set_stats.c gcov -o umf_di_solve umf_solve.c gcov -o umf_di_start_front umf_start_front.c gcov -o umf_di_symbolic_usage umf_symbolic_usage.c gcov -o umf_di_transpose umf_transpose.c gcov -o umf_di_tuple_lengths umf_tuple_lengths.c gcov -o umf_di_usolve umf_usolve.c gcov -o umf_di_valid_numeric umf_valid_numeric.c gcov -o umf_di_valid_symbolic umf_valid_symbolic.c gcov -o umfpack_di_col_to_triplet umfpack_col_to_triplet.c gcov -o umfpack_di_defaults umfpack_defaults.c gcov -o umfpack_di_free_numeric umfpack_free_numeric.c gcov -o umfpack_di_free_symbolic umfpack_free_symbolic.c gcov -o umfpack_di_get_lunz umfpack_get_lunz.c gcov -o umfpack_di_get_numeric umfpack_get_numeric.c gcov -o umfpack_di_get_determinant umfpack_get_determinant.c gcov -o umfpack_di_get_symbolic umfpack_get_symbolic.c gcov -o umfpack_di_load_numeric umfpack_load_numeric.c gcov -o umfpack_di_load_symbolic umfpack_load_symbolic.c gcov -o umfpack_di_numeric umfpack_numeric.c gcov -o umfpack_di_qsymbolic umfpack_qsymbolic.c gcov -o umfpack_di_report_control umfpack_report_control.c gcov -o umfpack_di_report_info umfpack_report_info.c gcov -o umfpack_di_report_matrix umfpack_report_matrix.c gcov -o umfpack_di_report_numeric umfpack_report_numeric.c gcov -o umfpack_di_report_perm umfpack_report_perm.c gcov -o umfpack_di_report_status umfpack_report_status.c gcov -o umfpack_di_report_symbolic umfpack_report_symbolic.c gcov -o umfpack_di_report_triplet umfpack_report_triplet.c gcov -o umfpack_di_report_vector umfpack_report_vector.c gcov -o umfpack_di_save_numeric umfpack_save_numeric.c gcov -o umfpack_di_save_symbolic umfpack_save_symbolic.c gcov -o umfpack_di_scale umfpack_scale.c gcov -o umfpack_di_symbolic umfpack_symbolic.c gcov -o umfpack_di_transpose umfpack_transpose.c gcov -o umfpack_di_triplet_to_col umfpack_triplet_to_col.c gcov -o umfpack_gn_tictoc umfpack_tictoc.c gcov -o umfpack_gn_timer umfpack_timer.c # multiple versions gcov -o umf_di_uhsolve umf_utsolve.c ; mv -f umf_utsolve.c.gcov umf_uhsolve.c.gcov gcov -o umf_di_utsolve umf_utsolve.c gcov -o umf_di_lhsolve umf_ltsolve.c ; mv -f umf_ltsolve.c.gcov umf_lhsolve.c.gcov gcov -o umf_di_ltsolve umf_ltsolve.c gcov -o umfpack_di_wsolve umfpack_solve.c ; mv -f umfpack_solve.c.gcov umfpack_wsolve.c.gcov gcov -o umfpack_di_solve umfpack_solve.c gcov -o umf_di_store_lu_drop umf_store_lu.c ; mv -f umf_store_lu.c.gcov umf_store_lu_drop.c.gcov gcov -o umf_di_store_lu umf_store_lu.c gcov -o umf_di_assemble_fixq umf_assemble.c ; mv -f umf_assemble.c.gcov umf_assemble_fixq.c.gcov gcov -o umf_di_assemble umf_assemble.c gcov -o umf_di_triplet_map_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_x.c.gcov gcov -o umf_di_triplet_nomap_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_x.c.gcov gcov -o umf_di_triplet_map_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_nox.c.gcov gcov -o umf_di_triplet_nomap_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_nox.c.gcov SuiteSparse/UMFPACK/Tcov/ucov.dl0000755001170100242450000001072610171013727015255 0ustar davisfac#!/bin/csh # ucov.dl: construct gcov files for umfpack, dl version gcov -o umf_l_analyze umf_analyze.c gcov -o umf_l_apply_order umf_apply_order.c gcov -o umf_l_colamd umf_colamd.c gcov -o umf_l_free umf_free.c gcov -o umf_l_fsize umf_fsize.c gcov -o umf_l_is_permutation umf_is_permutation.c gcov -o umf_l_malloc umf_malloc.c gcov -o umf_l_realloc umf_realloc.c gcov -o umf_l_report_perm umf_report_perm.c gcov -o umf_l_singletons umf_singletons.c gcov -o umf_dl_2by2 umf_2by2.c gcov -o umf_dl_blas3_update umf_blas3_update.c gcov -o umf_dl_build_tuples umf_build_tuples.c gcov -o umf_dl_create_element umf_create_element.c gcov -o umf_dl_extend_front umf_extend_front.c gcov -o umf_dl_garbage_collection umf_garbage_collection.c gcov -o umf_dl_get_memory umf_get_memory.c gcov -o umf_dl_grow_front umf_grow_front.c gcov -o umf_dl_init_front umf_init_front.c gcov -o umf_dl_kernel umf_kernel.c gcov -o umf_dl_kernel_init umf_kernel_init.c gcov -o umf_dl_kernel_wrapup umf_kernel_wrapup.c gcov -o umf_dl_local_search umf_local_search.c gcov -o umf_dl_lsolve umf_lsolve.c gcov -o umf_dl_mem_alloc_element umf_mem_alloc_element.c gcov -o umf_dl_mem_alloc_head_block umf_mem_alloc_head_block.c gcov -o umf_dl_mem_alloc_tail_block umf_mem_alloc_tail_block.c gcov -o umf_dl_mem_free_tail_block umf_mem_free_tail_block.c gcov -o umf_dl_mem_init_memoryspace umf_mem_init_memoryspace.c gcov -o umf_dl_report_vector umf_report_vector.c gcov -o umf_dl_row_search umf_row_search.c gcov -o umf_dl_scale umf_scale.c gcov -o umf_dl_scale_column umf_scale_column.c gcov -o umf_dl_set_stats umf_set_stats.c gcov -o umf_dl_solve umf_solve.c gcov -o umf_dl_start_front umf_start_front.c gcov -o umf_dl_symbolic_usage umf_symbolic_usage.c gcov -o umf_dl_transpose umf_transpose.c gcov -o umf_dl_tuple_lengths umf_tuple_lengths.c gcov -o umf_dl_usolve umf_usolve.c gcov -o umf_dl_valid_numeric umf_valid_numeric.c gcov -o umf_dl_valid_symbolic umf_valid_symbolic.c gcov -o umfpack_dl_col_to_triplet umfpack_col_to_triplet.c gcov -o umfpack_dl_defaults umfpack_defaults.c gcov -o umfpack_dl_free_numeric umfpack_free_numeric.c gcov -o umfpack_dl_free_symbolic umfpack_free_symbolic.c gcov -o umfpack_dl_get_lunz umfpack_get_lunz.c gcov -o umfpack_dl_get_numeric umfpack_get_numeric.c gcov -o umfpack_dl_get_determinant umfpack_get_determinant.c gcov -o umfpack_dl_get_symbolic umfpack_get_symbolic.c gcov -o umfpack_dl_load_numeric umfpack_load_numeric.c gcov -o umfpack_dl_load_symbolic umfpack_load_symbolic.c gcov -o umfpack_dl_numeric umfpack_numeric.c gcov -o umfpack_dl_qsymbolic umfpack_qsymbolic.c gcov -o umfpack_dl_report_control umfpack_report_control.c gcov -o umfpack_dl_report_info umfpack_report_info.c gcov -o umfpack_dl_report_matrix umfpack_report_matrix.c gcov -o umfpack_dl_report_numeric umfpack_report_numeric.c gcov -o umfpack_dl_report_perm umfpack_report_perm.c gcov -o umfpack_dl_report_status umfpack_report_status.c gcov -o umfpack_dl_report_symbolic umfpack_report_symbolic.c gcov -o umfpack_dl_report_triplet umfpack_report_triplet.c gcov -o umfpack_dl_report_vector umfpack_report_vector.c gcov -o umfpack_dl_save_numeric umfpack_save_numeric.c gcov -o umfpack_dl_save_symbolic umfpack_save_symbolic.c gcov -o umfpack_dl_scale umfpack_scale.c gcov -o umfpack_dl_symbolic umfpack_symbolic.c gcov -o umfpack_dl_transpose umfpack_transpose.c gcov -o umfpack_dl_triplet_to_col umfpack_triplet_to_col.c gcov -o umfpack_gn_tictoc umfpack_tictoc.c gcov -o umfpack_gn_timer umfpack_timer.c # multiple versions gcov -o umf_dl_uhsolve umf_utsolve.c ; mv -f umf_utsolve.c.gcov umf_uhsolve.c.gcov gcov -o umf_dl_utsolve umf_utsolve.c gcov -o umf_dl_lhsolve umf_ltsolve.c ; mv -f umf_ltsolve.c.gcov umf_lhsolve.c.gcov gcov -o umf_dl_ltsolve umf_ltsolve.c gcov -o umfpack_dl_wsolve umfpack_solve.c ; mv -f umfpack_solve.c.gcov umfpack_wsolve.c.gcov gcov -o umfpack_dl_solve umfpack_solve.c gcov -o umf_dl_store_lu_drop umf_store_lu.c ; mv -f umf_store_lu.c.gcov umf_store_lu_drop.c.gcov gcov -o umf_dl_store_lu umf_store_lu.c gcov -o umf_dl_assemble_fixq umf_assemble.c ; mv -f umf_assemble.c.gcov umf_assemble_fixq.c.gcov gcov -o umf_dl_assemble umf_assemble.c gcov -o umf_dl_triplet_map_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_x.c.gcov gcov -o umf_dl_triplet_nomap_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_x.c.gcov gcov -o umf_dl_triplet_map_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_nox.c.gcov gcov -o umf_dl_triplet_nomap_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_nox.c.gcov SuiteSparse/UMFPACK/Tcov/ucov.zi0000755001170100242450000001072610171013735015277 0ustar davisfac#!/bin/csh # ucov.zi: construct gcov files for umfpack, zi version gcov -o umf_i_analyze umf_analyze.c gcov -o umf_i_apply_order umf_apply_order.c gcov -o umf_i_colamd umf_colamd.c gcov -o umf_i_free umf_free.c gcov -o umf_i_fsize umf_fsize.c gcov -o umf_i_is_permutation umf_is_permutation.c gcov -o umf_i_malloc umf_malloc.c gcov -o umf_i_realloc umf_realloc.c gcov -o umf_i_report_perm umf_report_perm.c gcov -o umf_i_singletons umf_singletons.c gcov -o umf_zi_2by2 umf_2by2.c gcov -o umf_zi_blas3_update umf_blas3_update.c gcov -o umf_zi_build_tuples umf_build_tuples.c gcov -o umf_zi_create_element umf_create_element.c gcov -o umf_zi_extend_front umf_extend_front.c gcov -o umf_zi_garbage_collection umf_garbage_collection.c gcov -o umf_zi_get_memory umf_get_memory.c gcov -o umf_zi_grow_front umf_grow_front.c gcov -o umf_zi_init_front umf_init_front.c gcov -o umf_zi_kernel umf_kernel.c gcov -o umf_zi_kernel_init umf_kernel_init.c gcov -o umf_zi_kernel_wrapup umf_kernel_wrapup.c gcov -o umf_zi_local_search umf_local_search.c gcov -o umf_zi_lsolve umf_lsolve.c gcov -o umf_zi_mem_alloc_element umf_mem_alloc_element.c gcov -o umf_zi_mem_alloc_head_block umf_mem_alloc_head_block.c gcov -o umf_zi_mem_alloc_tail_block umf_mem_alloc_tail_block.c gcov -o umf_zi_mem_free_tail_block umf_mem_free_tail_block.c gcov -o umf_zi_mem_init_memoryspace umf_mem_init_memoryspace.c gcov -o umf_zi_report_vector umf_report_vector.c gcov -o umf_zi_row_search umf_row_search.c gcov -o umf_zi_scale umf_scale.c gcov -o umf_zi_scale_column umf_scale_column.c gcov -o umf_zi_set_stats umf_set_stats.c gcov -o umf_zi_solve umf_solve.c gcov -o umf_zi_start_front umf_start_front.c gcov -o umf_zi_symbolic_usage umf_symbolic_usage.c gcov -o umf_zi_transpose umf_transpose.c gcov -o umf_zi_tuple_lengths umf_tuple_lengths.c gcov -o umf_zi_usolve umf_usolve.c gcov -o umf_zi_valid_numeric umf_valid_numeric.c gcov -o umf_zi_valid_symbolic umf_valid_symbolic.c gcov -o umfpack_zi_col_to_triplet umfpack_col_to_triplet.c gcov -o umfpack_zi_defaults umfpack_defaults.c gcov -o umfpack_zi_free_numeric umfpack_free_numeric.c gcov -o umfpack_zi_free_symbolic umfpack_free_symbolic.c gcov -o umfpack_zi_get_lunz umfpack_get_lunz.c gcov -o umfpack_zi_get_numeric umfpack_get_numeric.c gcov -o umfpack_zi_get_determinant umfpack_get_determinant.c gcov -o umfpack_zi_get_symbolic umfpack_get_symbolic.c gcov -o umfpack_zi_load_numeric umfpack_load_numeric.c gcov -o umfpack_zi_load_symbolic umfpack_load_symbolic.c gcov -o umfpack_zi_numeric umfpack_numeric.c gcov -o umfpack_zi_qsymbolic umfpack_qsymbolic.c gcov -o umfpack_zi_report_control umfpack_report_control.c gcov -o umfpack_zi_report_info umfpack_report_info.c gcov -o umfpack_zi_report_matrix umfpack_report_matrix.c gcov -o umfpack_zi_report_numeric umfpack_report_numeric.c gcov -o umfpack_zi_report_perm umfpack_report_perm.c gcov -o umfpack_zi_report_status umfpack_report_status.c gcov -o umfpack_zi_report_symbolic umfpack_report_symbolic.c gcov -o umfpack_zi_report_triplet umfpack_report_triplet.c gcov -o umfpack_zi_report_vector umfpack_report_vector.c gcov -o umfpack_zi_save_numeric umfpack_save_numeric.c gcov -o umfpack_zi_save_symbolic umfpack_save_symbolic.c gcov -o umfpack_zi_scale umfpack_scale.c gcov -o umfpack_zi_symbolic umfpack_symbolic.c gcov -o umfpack_zi_transpose umfpack_transpose.c gcov -o umfpack_zi_triplet_to_col umfpack_triplet_to_col.c gcov -o umfpack_gn_tictoc umfpack_tictoc.c gcov -o umfpack_gn_timer umfpack_timer.c # multiple versions gcov -o umf_zi_uhsolve umf_utsolve.c ; mv -f umf_utsolve.c.gcov umf_uhsolve.c.gcov gcov -o umf_zi_utsolve umf_utsolve.c gcov -o umf_zi_lhsolve umf_ltsolve.c ; mv -f umf_ltsolve.c.gcov umf_lhsolve.c.gcov gcov -o umf_zi_ltsolve umf_ltsolve.c gcov -o umfpack_zi_wsolve umfpack_solve.c ; mv -f umfpack_solve.c.gcov umfpack_wsolve.c.gcov gcov -o umfpack_zi_solve umfpack_solve.c gcov -o umf_zi_store_lu_drop umf_store_lu.c ; mv -f umf_store_lu.c.gcov umf_store_lu_drop.c.gcov gcov -o umf_zi_store_lu umf_store_lu.c gcov -o umf_zi_assemble_fixq umf_assemble.c ; mv -f umf_assemble.c.gcov umf_assemble_fixq.c.gcov gcov -o umf_zi_assemble umf_assemble.c gcov -o umf_zi_triplet_map_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_x.c.gcov gcov -o umf_zi_triplet_nomap_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_x.c.gcov gcov -o umf_zi_triplet_map_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_nox.c.gcov gcov -o umf_zi_triplet_nomap_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_nox.c.gcov SuiteSparse/UMFPACK/Tcov/ucov.zl0000755001170100242450000001072610171013741015277 0ustar davisfac#!/bin/csh # ucov.zl: construct gcov files for umfpack, zl version gcov -o umf_l_analyze umf_analyze.c gcov -o umf_l_apply_order umf_apply_order.c gcov -o umf_l_colamd umf_colamd.c gcov -o umf_l_free umf_free.c gcov -o umf_l_fsize umf_fsize.c gcov -o umf_l_is_permutation umf_is_permutation.c gcov -o umf_l_malloc umf_malloc.c gcov -o umf_l_realloc umf_realloc.c gcov -o umf_l_report_perm umf_report_perm.c gcov -o umf_l_singletons umf_singletons.c gcov -o umf_zl_2by2 umf_2by2.c gcov -o umf_zl_blas3_update umf_blas3_update.c gcov -o umf_zl_build_tuples umf_build_tuples.c gcov -o umf_zl_create_element umf_create_element.c gcov -o umf_zl_extend_front umf_extend_front.c gcov -o umf_zl_garbage_collection umf_garbage_collection.c gcov -o umf_zl_get_memory umf_get_memory.c gcov -o umf_zl_grow_front umf_grow_front.c gcov -o umf_zl_init_front umf_init_front.c gcov -o umf_zl_kernel umf_kernel.c gcov -o umf_zl_kernel_init umf_kernel_init.c gcov -o umf_zl_kernel_wrapup umf_kernel_wrapup.c gcov -o umf_zl_local_search umf_local_search.c gcov -o umf_zl_lsolve umf_lsolve.c gcov -o umf_zl_mem_alloc_element umf_mem_alloc_element.c gcov -o umf_zl_mem_alloc_head_block umf_mem_alloc_head_block.c gcov -o umf_zl_mem_alloc_tail_block umf_mem_alloc_tail_block.c gcov -o umf_zl_mem_free_tail_block umf_mem_free_tail_block.c gcov -o umf_zl_mem_init_memoryspace umf_mem_init_memoryspace.c gcov -o umf_zl_report_vector umf_report_vector.c gcov -o umf_zl_row_search umf_row_search.c gcov -o umf_zl_scale umf_scale.c gcov -o umf_zl_scale_column umf_scale_column.c gcov -o umf_zl_set_stats umf_set_stats.c gcov -o umf_zl_solve umf_solve.c gcov -o umf_zl_start_front umf_start_front.c gcov -o umf_zl_symbolic_usage umf_symbolic_usage.c gcov -o umf_zl_transpose umf_transpose.c gcov -o umf_zl_tuple_lengths umf_tuple_lengths.c gcov -o umf_zl_usolve umf_usolve.c gcov -o umf_zl_valid_numeric umf_valid_numeric.c gcov -o umf_zl_valid_symbolic umf_valid_symbolic.c gcov -o umfpack_zl_col_to_triplet umfpack_col_to_triplet.c gcov -o umfpack_zl_defaults umfpack_defaults.c gcov -o umfpack_zl_free_numeric umfpack_free_numeric.c gcov -o umfpack_zl_free_symbolic umfpack_free_symbolic.c gcov -o umfpack_zl_get_lunz umfpack_get_lunz.c gcov -o umfpack_zl_get_numeric umfpack_get_numeric.c gcov -o umfpack_zl_get_determinant umfpack_get_determinant.c gcov -o umfpack_zl_get_symbolic umfpack_get_symbolic.c gcov -o umfpack_zl_load_numeric umfpack_load_numeric.c gcov -o umfpack_zl_load_symbolic umfpack_load_symbolic.c gcov -o umfpack_zl_numeric umfpack_numeric.c gcov -o umfpack_zl_qsymbolic umfpack_qsymbolic.c gcov -o umfpack_zl_report_control umfpack_report_control.c gcov -o umfpack_zl_report_info umfpack_report_info.c gcov -o umfpack_zl_report_matrix umfpack_report_matrix.c gcov -o umfpack_zl_report_numeric umfpack_report_numeric.c gcov -o umfpack_zl_report_perm umfpack_report_perm.c gcov -o umfpack_zl_report_status umfpack_report_status.c gcov -o umfpack_zl_report_symbolic umfpack_report_symbolic.c gcov -o umfpack_zl_report_triplet umfpack_report_triplet.c gcov -o umfpack_zl_report_vector umfpack_report_vector.c gcov -o umfpack_zl_save_numeric umfpack_save_numeric.c gcov -o umfpack_zl_save_symbolic umfpack_save_symbolic.c gcov -o umfpack_zl_scale umfpack_scale.c gcov -o umfpack_zl_symbolic umfpack_symbolic.c gcov -o umfpack_zl_transpose umfpack_transpose.c gcov -o umfpack_zl_triplet_to_col umfpack_triplet_to_col.c gcov -o umfpack_gn_tictoc umfpack_tictoc.c gcov -o umfpack_gn_timer umfpack_timer.c # multiple versions gcov -o umf_zl_uhsolve umf_utsolve.c ; mv -f umf_utsolve.c.gcov umf_uhsolve.c.gcov gcov -o umf_zl_utsolve umf_utsolve.c gcov -o umf_zl_lhsolve umf_ltsolve.c ; mv -f umf_ltsolve.c.gcov umf_lhsolve.c.gcov gcov -o umf_zl_ltsolve umf_ltsolve.c gcov -o umfpack_zl_wsolve umfpack_solve.c ; mv -f umfpack_solve.c.gcov umfpack_wsolve.c.gcov gcov -o umfpack_zl_solve umfpack_solve.c gcov -o umf_zl_store_lu_drop umf_store_lu.c ; mv -f umf_store_lu.c.gcov umf_store_lu_drop.c.gcov gcov -o umf_zl_store_lu umf_store_lu.c gcov -o umf_zl_assemble_fixq umf_assemble.c ; mv -f umf_assemble.c.gcov umf_assemble_fixq.c.gcov gcov -o umf_zl_assemble umf_assemble.c gcov -o umf_zl_triplet_map_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_x.c.gcov gcov -o umf_zl_triplet_nomap_x umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_x.c.gcov gcov -o umf_zl_triplet_map_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_map_nox.c.gcov gcov -o umf_zl_triplet_nomap_nox umf_triplet.c ; mv -f umf_triplet.c.gcov umf_triplet_nomap_nox.c.gcov SuiteSparse/UMFPACK/Tcov/DO.solaris0000755001170100242450000000133610322350057015653 0ustar davisfac# # # # ./DOsol s1 di run ./DOsol s1 dl run ./DOsol s1 zi run ./DOsol s1 zl run ./DOsol s2 di run ./DOsol s2 dl run ./DOsol s2 zi run ./DOsol s2 zl run ./DOsol s3 di run ./DOsol s3 dl run ./DOsol s3 zi run ./DOsol s3 zl run ./DOsol s4 di run ./DOsol s4 dl run ./DOsol s4 zi run ./DOsol s4 zl run ./DOsol s5 di run ./DOsol s5 dl run ./DOsol s5 zi run ./DOsol s5 zl run ./DOsol n1 di run ./DOsol n1 dl run ./DOsol n1 zi run ./DOsol n1 zl run ./DOsol n2 di run ./DOsol n2 dl run ./DOsol n2 zi run ./DOsol n2 zl run ./DOsol n3 di run ./DOsol n3 dl run ./DOsol n3 zi run ./DOsol n3 zl run ./DOsol n4 di run ./DOsol n4 dl run ./DOsol n4 zi run ./DOsol n4 zl run SuiteSparse/UMFPACK/Tcov/DO.solaris.out.Jan240000644001170100242450000000000010175217033017320 0ustar davisfacSuiteSparse/UMFPACK/Tcov/GNUmakefile.di0000644001170100242450000000106610425661751016427 0ustar davisfacall: go include UFconfig/UFconfig.mk go: run - ( cd UMFPACK/Source ; ./ucov.di ) - ( cd AMD/Source ; ./acov.di ) run: prog - ./ut > ut.out - tail ut.out #- $(RM) ut.out prog: ( cd UMFPACK ; make library ) ( cd AMD ; make library ) $(CC) -DDINT $(CFLAGS) $(UMFPACK_CONFIG) -IUMFPACK/Source -IUMFPACK/Include -IAMD/Source -IAMD/Include -IUFconfig -o ut ut.c UMFPACK/Lib/libumfpack.a AMD/Lib/libamd.a $(LIB) utcov: - ( cd UMFPACK/Source ; ./ucov.di ) - ( cd AMD/Source ; ./acov.di ) purge: ( cd UMFPACK ; make purge ) ( cd AMD ; make purge ) SuiteSparse/UMFPACK/Tcov/GNUmakefile.dl0000644001170100242450000000106610425661754016435 0ustar davisfacall: go include UFconfig/UFconfig.mk go: run - ( cd UMFPACK/Source ; ./ucov.dl ) - ( cd AMD/Source ; ./acov.dl ) run: prog - ./ut > ut.out - tail ut.out #- $(RM) ut.out prog: ( cd UMFPACK ; make library ) ( cd AMD ; make library ) $(CC) -DDLONG $(CFLAGS) $(UMFPACK_CONFIG) -IUMFPACK/Source -IUMFPACK/Include -IAMD/Source -IAMD/Include -IUFconfig -o ut ut.c UMFPACK/Lib/libumfpack.a AMD/Lib/libamd.a $(LIB) utcov: - ( cd UMFPACK/Source ; ./ucov.dl ) - ( cd AMD/Source ; ./acov.dl ) purge: ( cd UMFPACK ; make purge ) ( cd AMD ; make purge ) SuiteSparse/UMFPACK/Tcov/GNUmakefile.zi0000644001170100242450000000106510425661756016461 0ustar davisfacall: go include UFconfig/UFconfig.mk go: run - ( cd UMFPACK/Source ; ./ucov.zi ) - ( cd AMD/Source ; ./acov.zi ) run: prog - ./ut > ut.out - tail ut.out #- $(RM) ut.out prog: ( cd UMFPACK ; make library ) ( cd AMD ; make library ) $(CC) -DZINT $(CFLAGS) $(UMFPACK_CONFIG) -IUMFPACK/Source -IUMFPACK/Include -IAMD/Source -IAMD/Include -IUFconfig -o ut ut.c UMFPACK/Lib/libumfpack.a AMD/Lib/libamd.a $(LIB) utcov: - ( cd UMFPACK/Source ; ./ucov.zi ) - ( cd AMD/Source ; ./acov.zi ) purge: ( cd UMFPACK ; make purge ) ( cd AMD ; make purge ) SuiteSparse/UMFPACK/Tcov/GNUmakefile.zl0000644001170100242450000000106610425661760016460 0ustar davisfacall: go include UFconfig/UFconfig.mk go: run - ( cd UMFPACK/Source ; ./ucov.zl ) - ( cd AMD/Source ; ./acov.zl ) run: prog - ./ut > ut.out - tail ut.out #- $(RM) ut.out prog: ( cd UMFPACK ; make library ) ( cd AMD ; make library ) $(CC) -DZLONG $(CFLAGS) $(UMFPACK_CONFIG) -IUMFPACK/Source -IUMFPACK/Include -IAMD/Source -IAMD/Include -IUFconfig -o ut ut.c UMFPACK/Lib/libumfpack.a AMD/Lib/libamd.a $(LIB) utcov: - ( cd UMFPACK/Source ; ./ucov.zl ) - ( cd AMD/Source ; ./acov.zl ) purge: ( cd UMFPACK ; make purge ) ( cd AMD ; make purge ) SuiteSparse/UMFPACK/Tcov/badnum.umf0000644001170100242450000000120410006265116015721 0ustar davisfac@?MbP?ffffff??@S@*Y7"??*Y7"?qXt(sHsshssstsr(tF *Y7"???k(?‘L#  ??к??(?#u)?*Y7"?F>S????^?k?SuiteSparse/UMFPACK/Tcov/acov.di0000755001170100242450000000065710167575302015237 0ustar davisfac#!/bin/csh # acov.di: construct gcov files for AMD, di version gcov -o amd_i_1 amd_1.c gcov -o amd_i_2 amd_2.c gcov -o amd_i_aat amd_aat.c gcov -o amd_i_control amd_control.c gcov -o amd_i_defaults amd_defaults.c gcov -o amd_i_info amd_info.c gcov -o amd_i_order amd_order.c gcov -o amd_i_post_tree amd_post_tree.c gcov -o amd_i_postorder amd_postorder.c gcov -o amd_i_preprocess amd_preprocess.c gcov -o amd_i_valid amd_valid.c SuiteSparse/UMFPACK/Tcov/acov.dl0000755001170100242450000000065710167575360015246 0ustar davisfac#!/bin/csh # acov.dl: construct gcov files for AMD, dl version gcov -o amd_l_1 amd_1.c gcov -o amd_l_2 amd_2.c gcov -o amd_l_aat amd_aat.c gcov -o amd_l_control amd_control.c gcov -o amd_l_defaults amd_defaults.c gcov -o amd_l_info amd_info.c gcov -o amd_l_order amd_order.c gcov -o amd_l_post_tree amd_post_tree.c gcov -o amd_l_postorder amd_postorder.c gcov -o amd_l_preprocess amd_preprocess.c gcov -o amd_l_valid amd_valid.c SuiteSparse/UMFPACK/Tcov/acov.zi0000755001170100242450000000065710167575460015272 0ustar davisfac#!/bin/csh # acov.zi: construct gcov files for AMD, zi version gcov -o amd_i_1 amd_1.c gcov -o amd_i_2 amd_2.c gcov -o amd_i_aat amd_aat.c gcov -o amd_i_control amd_control.c gcov -o amd_i_defaults amd_defaults.c gcov -o amd_i_info amd_info.c gcov -o amd_i_order amd_order.c gcov -o amd_i_post_tree amd_post_tree.c gcov -o amd_i_postorder amd_postorder.c gcov -o amd_i_preprocess amd_preprocess.c gcov -o amd_i_valid amd_valid.c SuiteSparse/UMFPACK/Tcov/acov.zl0000755001170100242450000000065710167575474015302 0ustar davisfac#!/bin/csh # acov.zl: construct gcov files for AMD, zl version gcov -o amd_l_1 amd_1.c gcov -o amd_l_2 amd_2.c gcov -o amd_l_aat amd_aat.c gcov -o amd_l_control amd_control.c gcov -o amd_l_defaults amd_defaults.c gcov -o amd_l_info amd_info.c gcov -o amd_l_order amd_order.c gcov -o amd_l_post_tree amd_post_tree.c gcov -o amd_l_postorder amd_postorder.c gcov -o amd_l_preprocess amd_preprocess.c gcov -o amd_l_valid amd_valid.c SuiteSparse/UMFPACK/Tcov/README.txt0000644001170100242450000000515210711722365015455 0ustar davisfacThis is the UMFPACK Tcov directory. It runs a large number of tests on UMFPACK and checks the statement coverage (using gcc and gcov on Linux, or tcov on Solaris). You must first do "make purge" in AMD and UMFPACK. You must also make sure the "Out" symbolic link is a valid link. It should point to a large scratch space, for temporary files. Finally, type DO.linux or DO.solaris. Alternatively, just type "make" in this directory, for Linux, or "make sol" for Solaris. The last line of each */ut.out file should read ALL TESTS PASSED largest maxrnorm 1e-07 These lines are summarized at the end of the "DO.linux" test. If you see "TEST FAILURE" then something went wrong. "ERROR" messages in the output files tmp/*.out are OK. Those are supposed to be there; the test exercises the error-reporting features of UMFPACK. DO.all does all tests DO 1 di runs one test (Make.1 and GNUmakefile.di, in this case) Out/* subdirectories for each test, contents can be destroyed when done. Make.1 gcc, no optimize Linux no BLAS, test int overflow Make.2 gcc, no optimize Linux BLAS Make.3 gcc, no optimize Linux ATLAS C-Blas Make.4 gcc, no optimize Linux ATLAS Fortran BLAS Make.5 gcc, no optimize Linux no BLAS, test int overflow no reciprocal Make.1i icc, optimize, Linux no BLAS, test int overflow Make.2i icc, optimize, Linux BLAS Make.3i icc, optimize, Linux ATLAS C-Blas Make.4i icc, optimize, Linux ATLAS Fortran BLAS Make.1n icc, no optimize, Linux no BLAS, test int overflow Make.2n icc, no optimize, Linux BLAS Make.3n icc, no optimize, Linux ATLAS C-Blas Make.4n icc, no optimize, Linux ATLAS Fortran BLAS Make.1g gcc, optimize, Linux no BLAS, test int overflow Make.2g gcc, optimize, Linux BLAS Make.3g gcc, optimize, Linux ATLAS C-Blas Make.4g gcc, optimize, Linux ATLAS Fortran BLAS Make.s1 tcov, Solaris 32 bit, no BLAS Make.s2 tcov, Solaris 32 bit, Sunperf BLAS Make.s3 tcov, Solaris 64 bit, no BLAS Make.s4 tcov, Solaris 64 bit, Sunperf BLAS Make.s5 tcov, Solaris 32 bit, no BLAS, test int overflow, no recip. Make.n1 optimize, Solaris 32 bit, no BLAS Make.n2 optimize, Solaris 32 bit, Sunperf BLAS Make.n3 optimize, Solaris 64 bit, no BLAS Make.n4 optimize, Solaris 64 bit, Sunperf BLAS Makefile.di Makefile for *di (double, int) Makefile.dl Makefile for *dl (double, UF_long) Makefile.zi Makefile for *zi (complex, int) Makefile.zl Makefile for *zl (complex, UF_long) TestMat test matrices for ut.c ../../UMFPACK UMFPACK original distribution ../../AMD AMD original distribution ../../UFconfig configuration directory for all of UFsparse covall for summarizing tcov output ut.c the test program SuiteSparse/UMFPACK/Tcov/Make.1g0000644001170100242450000000102610425373574015067 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O3 -fPIC UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.1i0000644001170100242450000000115510425373577015077 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi -O3 -ip -tpp7 -xW -vec_report0 UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING # LIB = -lm -lunwind -lcprts LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.1n0000644001170100242450000000111610425373603015067 0ustar davisfac#=============================================================================== # ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING # LIB = -lm -lunwind -lcprts LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.2g0000644001170100242450000000103010711722250015046 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O3 -fPIC UMFPACK_CONFIG = -DTESTING LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.2i0000644001170100242450000000112210711722323015053 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi -O3 -ip -tpp7 -xW -vec_report0 UMFPACK_CONFIG = -DTESTING LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.2n0000644001170100242450000000106310711722274015071 0ustar davisfac#=============================================================================== # ILP32 mode, BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi UMFPACK_CONFIG = -DTESTING LIB = -lblas -lgfortran -lgfortranbegin -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.3g0000644001170100242450000000113410425373634015066 0ustar davisfac#=============================================================================== # ILP32 mode, C interface /ATLAS BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O3 -fPIC UMFPACK_CONFIG = -DCBLAS -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lcblas -latlas -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.3i0000644001170100242450000000122710425373642015072 0ustar davisfac#=============================================================================== # ILP32 mode, C interface /ATLAS BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi -O3 -ip -tpp7 -xW -vec_report0 UMFPACK_CONFIG = -DCBLAS -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lcblas -latlas -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.3n0000644001170100242450000000116710425373646015106 0ustar davisfac#=============================================================================== # ILP32 mode, C interface /ATLAS BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi UMFPACK_CONFIG = -DCBLAS -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lcblas -latlas -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.4g0000644001170100242450000000116010425373656015072 0ustar davisfac#=============================================================================== # ILP32 mode, Fortran interface to ATLAS BLAS, do not test for integer overflow. #=============================================================================== CC = gcc CFLAGS = -O3 -fPIC UMFPACK_CONFIG = -DTESTING -I/cise/research/sparse/Install/ATLAS/Linux_P4SSE2/include LIB = -lf77blas -latlas -lfrtbegin -lg2c -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.4i0000644001170100242450000000115610425373661015075 0ustar davisfac#=============================================================================== # ILP32 mode, Fortran interface to ATLAS BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi -O3 -ip -tpp7 -xW -vec_report0 UMFPACK_CONFIG = -DTESTING LIB = -lf77blas -latlas -lfrtbegin -lg2c -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.4n0000644001170100242450000000111710425373665015103 0ustar davisfac#=============================================================================== # ILP32 mode, Fortran interface to ATLAS BLAS, do not test for integer overflow. #=============================================================================== # Using Intel's icc compiler: CC = icc CFLAGS = -ansi UMFPACK_CONFIG = -DTESTING LIB = -lf77blas -latlas -lfrtbegin -lg2c -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.n10000644001170100242450000000106610425373711015073 0ustar davisfac#=============================================================================== # Solaris ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== CC = cc CFLAGS = -xO5 -xlibmil -Xc -xdepend -dalign UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.n20000644001170100242450000000105410425373715015075 0ustar davisfac#=============================================================================== # Solaris ILP32 mode, Sunperf BLAS, no test for integer overflow. #=============================================================================== CC = cc CFLAGS = -xO5 -xlibmil -Xc -xdepend -dalign UMFPACK_CONFIG = -DTESTING LIB = -xlic_lib=sunperf -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.n30000644001170100242450000000106110425373721015071 0ustar davisfac#=============================================================================== # Solaris LP64 mode, no BLAS, do not test for integer overflow. #=============================================================================== CC = cc CFLAGS = -xO5 -xlibmil -Xc -xdepend -dalign UMFPACK_CONFIG = -DNBLAS -DLP64 -xarch=v9 -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.n40000644001170100242450000000111010425373726015072 0ustar davisfac#=============================================================================== # Solaris LP64 mode, Sun Performance BLAS, do not test for integer overflow. #=============================================================================== CC = cc CFLAGS = -xO5 -xlibmil -Xc -xdepend -dalign UMFPACK_CONFIG = -DLP64 -xarch=v9 -DTESTING LIB = -xlic_lib=sunperf -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.s10000644001170100242450000000106110425373731015075 0ustar davisfac#=============================================================================== # Solaris ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== CC = cc CFLAGS = -Xc -g -xprofile=tcov -dalign UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.s20000644001170100242450000000104710425373736015107 0ustar davisfac#=============================================================================== # Solaris ILP32 mode, Sunperf BLAS, no test for integer overflow. #=============================================================================== CC = cc CFLAGS = -Xc -g -xprofile=tcov -dalign UMFPACK_CONFIG = -DTESTING LIB = -xlic_lib=sunperf -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.s30000644001170100242450000000105410425373742015103 0ustar davisfac#=============================================================================== # Solaris LP64 mode, no BLAS, do not test for integer overflow. #=============================================================================== CC = cc CFLAGS = -Xc -g -xprofile=tcov -dalign UMFPACK_CONFIG = -DNBLAS -DLP64 -xarch=v9 -DTESTING LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.s40000644001170100242450000000110310425373747015104 0ustar davisfac#=============================================================================== # Solaris LP64 mode, Sun Performance BLAS, do not test for integer overflow. #=============================================================================== CC = cc CFLAGS = -Xc -g -xprofile=tcov -dalign UMFPACK_CONFIG = -DLP64 -xarch=v9 -DTESTING LIB = -xlic_lib=sunperf -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/Make.s50000644001170100242450000000107710425373753015114 0ustar davisfac#=============================================================================== # Solaris ILP32 mode, no BLAS, test for integer overflow. #=============================================================================== CC = cc CFLAGS = -Xc -g -xprofile=tcov -dalign UMFPACK_CONFIG = -DNBLAS -DTEST_FOR_INTEGER_OVERFLOW -DTESTING -DNRECIPROCAL LIB = -lm RANLIB = ranlib MV = mv -f RM = rm -f MEX = mex -inline -g AR = ar cr #=============================================================================== CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.c.tcov *.c.gcov gmon.out SuiteSparse/UMFPACK/Tcov/ss.awk0000644001170100242450000000002710171304315015073 0ustar davisfac/TestMat/ /final det/ SuiteSparse/UMFPACK/Tcov/Make_file0000644001170100242450000000105310534021373015544 0ustar davisfacall: go include UFconfig/UFconfig.mk go: prog - ut > ut.out - tail ut.out #- $(RM) ut.out - ( cd UMFPACK/Source ; gcovs umf*.c ) - ( cd AMD/Source ; gcovs amd*.c ) prog: ( cd UMFPACK ; make library ) ( cd AMD ; make library ) $(CC) -DDINT $(CFLAGS) $(UMFPACK_CONFIG) -IUMFPACK/Source -IUMFPACK/Include -IAMD/Source -IAMD/Include -o ut ut.c UMFPACK/Lib/libumfpack.a AMD/Lib/libamd.a $(LIB) utcov: - ( cd UMFPACK/Source ; gcovs umf*.c ) - ( cd AMD/Source ; gcovs amd*.c ) purge: ( cd UMFPACK ; make purge ) ( cd AMD ; make purge ) SuiteSparse/UMFPACK/Tcov/AMD_Demo_Makefile0000644001170100242450000000552710617407331017050 0ustar davisfac#----------------------------------------------------------------------------- # compile the AMD demo (for both GNU make or original make) #----------------------------------------------------------------------------- default: amd_simple amd_demo amd_demo2 amd_l_demo include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) -I../Include -I../../UFconfig INC = ../Include/amd.h ../../UFconfig/UFconfig.h library: ( cd ../Source ; $(MAKE) ) f77lib: ( cd ../Lib ; $(MAKE) fortran ) #------------------------------------------------------------------------------ # Create the demo program, run it, and compare the output #------------------------------------------------------------------------------ dist: amd_demo: amd_demo.c library $(INC) $(C) -o amd_demo amd_demo.c ../Lib/libamd.a $(LIB) ./amd_demo > my_amd_demo.out - diff amd_demo.out my_amd_demo.out amd_l_demo: amd_l_demo.c library $(INC) $(C) -o amd_l_demo amd_l_demo.c ../Lib/libamd.a $(LIB) ./amd_l_demo > my_amd_l_demo.out - diff amd_l_demo.out my_amd_l_demo.out amd_demo2: amd_demo2.c library $(INC) $(C) -o amd_demo2 amd_demo2.c ../Lib/libamd.a $(LIB) ./amd_demo2 > my_amd_demo2.out - diff amd_demo2.out my_amd_demo2.out amd_simple: amd_simple.c library $(INC) $(C) -o amd_simple amd_simple.c ../Lib/libamd.a $(LIB) ./amd_simple > my_amd_simple.out - diff amd_simple.out my_amd_simple.out #------------------------------------------------------------------------------ # compile the Fortran demo #------------------------------------------------------------------------------ fortran: amd_f77demo amd_f77simple cross: amd_f77cross amd_f77demo: amd_f77demo.f f77lib $(F77) $(F77FLAGS) -o amd_f77demo amd_f77demo.f ../Lib/libamdf77.a \ $(F77LIB) ./amd_f77demo > my_amd_f77demo.out - diff amd_f77demo.out my_amd_f77demo.out amd_f77simple: amd_f77simple.f f77lib $(F77) $(F77FLAGS) -o amd_f77simple amd_f77simple.f \ ../Lib/libamdf77.a $(F77LIB) ./amd_f77simple > my_amd_f77simple.out - diff amd_f77simple.out my_amd_f77simple.out amd_f77wrapper.o: amd_f77wrapper.c $(C) -DDINT -c amd_f77wrapper.c amd_f77cross: amd_f77cross.f amd_f77wrapper.o ../Lib/libamd.a $(F77) $(F77FLAGS) -o amd_f77cross amd_f77cross.f amd_f77wrapper.o \ ../Lib/libamd.a $(F77LIB) ./amd_f77cross > my_amd_f77cross.out - diff amd_f77cross.out my_amd_f77cross.out #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) amd_demo my_amd_demo.out - $(RM) amd_l_demo my_amd_l_demo.out - $(RM) amd_demo2 my_amd_demo2.out - $(RM) amd_simple my_amd_simple.out - $(RM) amd_f77demo my_amd_f77demo.out - $(RM) amd_f77simple my_amd_f77simple.out - $(RM) amd_f77cross my_amd_f77cross.out SuiteSparse/UMFPACK/Tcov/Top_Makefile0000644001170100242450000000050710617345143016240 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK and AMD top-level makefile (for Tcov tests) #------------------------------------------------------------------------------- default: library include ../UFconfig/UFconfig.mk library: ( cd Source ; $(MAKE) ) ( cd Demo ; $(MAKE) ) SuiteSparse/UMFPACK/Tcov/TestMat/0000755001170100242450000000000010617501241015326 5ustar davisfacSuiteSparse/UMFPACK/Tcov/TestMat/shl00000644001170100242450000020301310171311674016122 0ustar davisfac663 663 1687 1 1 1 1 2 2 1 3 3 1 538 4 1 539 5 1 540 6 1 541 7 1 542 8 1 543 9 1 544 10 1 545 11 1 546 12 1 547 13 1 548 14 1 549 15 1 550 16 1 551 17 1 552 18 1 553 19 1 554 20 1 555 21 1 556 22 1 557 23 1 558 24 1 559 25 1 560 26 1 561 27 1 562 28 1 563 29 1 564 30 1 565 31 1 566 32 1 567 33 1 568 34 1 569 35 1 570 36 1 571 37 1 572 38 1 573 39 1 574 40 1 575 41 1 576 42 1 577 43 1 578 44 1 579 45 1 580 46 1 581 47 1 582 48 1 583 49 1 584 50 -1 585 51 -1 586 52 1 587 53 -1 588 54 1 589 55 1 590 56 1 591 57 1 592 58 1 593 59 1 594 60 1 595 61 1 596 62 1 597 63 1 598 64 1 599 65 1 600 66 1 601 67 1 602 68 1 603 69 1 604 70 1 605 71 1 606 72 1 607 73 1 608 74 1 609 75 1 610 76 1 611 77 -1 612 78 -1 613 79 1 614 80 -1 615 81 1 616 82 1 617 83 1 618 84 1 619 85 1 620 86 1 621 87 1 622 88 1 623 89 1 624 90 1 625 91 1 626 92 1 627 93 1 628 94 1 629 95 1 630 96 1 631 97 1 632 98 1 633 99 1 634 100 1 635 101 1 636 102 1 637 103 -1 638 104 -1 639 105 1 640 106 -1 641 107 1 642 108 1 643 109 1 644 110 1 645 111 1 646 112 1 647 113 1 648 114 1 649 115 1 650 116 1 651 117 1 652 118 1 653 119 1 654 120 1 655 121 1 656 122 1 657 123 1 658 124 1 659 125 1 660 126 1 661 127 1 662 128 1 663 129 1 4 130 -1 9 130 1 538 130 1 9 131 1 1 132 3966 9 132 -1 15 132 1 539 132 1 1 133 3914 9 133 -1 12 133 1 1 134 4055 9 134 -1 11 134 1 540 134 1 1 135 3818 9 135 -1 13 135 1 541 135 1 1 136 3619 9 136 -1 26 136 1 1 137 31 10 137 -1 22 137 1 22 138 1 10 139 -1 71 139 1 1 140 201 11 140 -1 69 140 1 11 141 -1 19 141 1 1 142 343 12 142 -1 74 142 1 1 143 375 12 143 -1 75 143 1 1 144 409 12 144 -1 76 144 1 1 145 473 12 145 -1 72 145 1 1 146 572 12 146 -1 73 146 1 1 147 594 12 147 -1 82 147 1 1 148 146 13 148 -1 17 148 1 1 149 273 13 149 -1 70 149 1 1 150 273 13 150 -1 68 150 1 1 151 146 13 151 -1 24 151 1 1 152 273 13 152 -1 20 152 1 1 153 165 13 153 -1 28 153 1 1 154 165 13 154 -1 30 154 1 1 155 158 13 155 -1 31 155 1 1 156 158 13 156 -1 33 156 1 1 157 158 13 157 -1 35 157 1 1 158 158 13 158 -1 34 158 1 1 159 154 13 159 -1 37 159 1 1 160 154 13 160 -1 38 160 1 1 161 150 13 161 -1 42 161 1 1 162 150 13 162 -1 27 162 1 1 163 154 13 163 -1 14 163 1 1 164 130 13 164 -1 44 164 1 1 165 134 13 165 -1 46 165 1 1 166 131 13 166 -1 51 166 1 1 167 275 13 167 -1 54 167 1 1 168 276 13 168 -1 56 168 1 1 169 287 13 169 -1 58 169 1 1 170 248 13 170 -1 64 170 1 1 171 240 13 171 -1 66 171 1 1 172 240 13 172 -1 62 172 1 1 173 293 13 173 -1 60 173 1 1 174 242 13 174 -1 49 174 1 1 175 154 13 175 -1 40 175 1 1 176 154 13 176 -1 41 176 1 1 177 112 14 177 -1 16 177 1 542 177 1 1 178 95 17 178 -1 18 178 1 1 179 31 19 179 -1 21 179 1 1 180 115 23 180 -1 58 180 1 1 181 17 23 181 -1 78 181 1 551 181 1 1 182 53 24 182 -1 25 182 1 1 183 267 26 183 -1 43 183 1 1 184 249 26 184 -1 47 184 1 1 185 258 26 185 -1 52 185 1 1 186 115 28 186 -1 29 186 1 553 186 1 1 187 32 29 187 -1 81 187 1 554 187 1 1 188 127 31 188 -1 32 188 1 556 188 1 1 189 17 32 189 -1 80 189 1 557 189 1 1 190 67 34 190 -1 36 190 1 559 190 1 1 191 127 37 191 -1 39 191 1 562 191 1 1 192 17 39 192 -1 79 192 1 565 192 1 1 193 127 43 193 -1 45 193 1 567 193 1 1 194 17 45 194 -1 84 194 1 569 194 1 1 195 68 46 195 -1 48 195 1 570 195 1 1 196 17 48 196 -1 85 196 1 572 196 1 1 197 39 49 197 -1 50 197 1 573 197 1 1 198 32 50 198 -1 83 198 1 574 198 1 1 199 68 51 199 -1 53 199 1 575 199 1 1 200 17 53 200 -1 77 200 1 576 200 1 1 201 39 54 201 -1 55 201 1 577 201 1 56 202 -1 57 202 1 58 203 -1 59 203 1 1 204 39 60 204 -1 61 204 1 578 204 1 1 205 39 62 205 -1 63 205 1 579 205 1 1 206 39 64 206 -1 65 206 1 581 206 1 1 207 39 66 207 -1 67 207 1 582 207 1 7 208 1 68 208 -1 5 209 1 69 209 -1 6 210 1 70 210 -1 8 211 1 71 211 -1 72 212 -1 86 212 1 73 213 -1 87 213 1 74 214 -1 88 214 1 75 215 -1 89 215 1 76 216 -1 90 216 1 77 217 -1 91 217 1 78 218 -1 92 218 1 79 219 -1 93 219 1 80 220 -1 94 220 1 81 221 -1 95 221 1 82 222 -1 96 222 1 83 223 -1 97 223 1 84 224 -1 98 224 1 85 225 -1 99 225 1 5 226 -1 100 226 1 584 226 1 6 227 -1 101 227 1 585 227 1 8 228 -1 102 228 1 587 228 1 86 229 -1 126 229 1 87 230 -1 132 230 1 88 231 -1 134 231 1 89 232 -1 140 232 1 90 233 -1 141 233 1 91 234 -1 195 234 1 92 235 -1 196 235 1 93 236 -1 199 236 1 94 237 -1 201 237 1 1 238 69 95 238 -1 202 238 1 588 238 1 96 239 -1 203 239 1 97 240 -1 205 240 1 98 241 -1 207 241 1 99 242 -1 209 242 1 1 243 33 100 243 -1 161 243 1 1 244 125 100 244 -1 145 244 1 1 245 151 100 245 -1 155 245 1 1 246 137 100 246 -1 146 246 1 1 247 95 100 247 -1 163 247 1 1 248 152 100 248 -1 246 248 1 1 249 161 100 249 -1 241 249 1 1 250 228 100 250 -1 230 250 1 1 251 240 100 251 -1 249 251 1 1 252 244 100 252 -1 219 252 1 1 253 321 100 253 -1 259 253 1 1 254 267 100 254 -1 183 254 1 1 255 324 100 255 -1 193 255 1 1 256 333 100 256 -1 194 256 1 1 257 327 100 257 -1 213 257 1 1 258 329 100 258 -1 191 258 1 1 259 330 100 259 -1 190 259 1 1 260 431 100 260 -1 238 260 1 1 261 353 100 261 -1 245 261 1 1 262 361 100 262 -1 250 262 1 1 263 324 100 263 -1 243 263 1 1 264 192 100 264 -1 235 264 1 1 265 240 100 265 -1 240 265 1 1 266 208 100 266 -1 228 266 1 1 267 238 100 267 -1 236 267 1 1 268 285 100 268 -1 158 268 1 1 269 386 100 269 -1 212 269 1 1 270 276 100 270 -1 239 270 1 1 271 293 100 271 -1 252 271 1 1 272 357 100 272 -1 237 272 1 1 273 380 100 273 -1 215 273 1 1 274 538 100 274 -1 130 274 1 1 275 363 100 275 -1 142 275 1 1 276 461 100 276 -1 144 276 1 1 277 304 100 277 -1 180 277 1 1 278 292 100 278 -1 198 278 1 1 279 15 101 279 -1 162 279 1 589 279 1 101 280 -1 160 280 1 590 280 1 102 281 -1 261 281 1 1 282 80 102 282 -1 103 282 1 1 283 21 2 283 1 102 283 -1 107 283 1 1 284 13 3 284 1 102 284 -1 119 284 1 1 285 41 103 285 -1 104 285 1 1 286 6 104 286 -1 114 286 1 104 287 -1 105 287 1 1 288 16 105 288 -1 106 288 1 592 288 1 1 289 9 106 289 -1 110 289 1 1 290 10 107 290 -1 108 290 1 1 291 17 108 291 -1 109 291 1 1 292 7 110 292 -1 111 292 1 1 293 28 111 293 -1 112 293 1 1 294 42 112 294 -1 113 294 1 1 295 54 113 295 -1 224 295 1 1 296 10 114 296 -1 115 296 1 1 297 226 115 297 -1 137 297 1 1 298 281 115 298 -1 222 298 1 1 299 520 115 299 -1 255 299 1 1 300 323 115 300 -1 216 300 1 1 301 366 115 301 -1 211 301 1 1 302 61 115 302 -1 116 302 1 1 303 33 116 303 -1 227 303 1 1 304 39 116 304 -1 117 304 1 1 305 22 117 305 -1 118 305 1 118 306 -1 221 306 1 118 307 -1 125 307 1 1 308 9 119 308 -1 120 308 1 1 309 10 120 309 -1 121 309 1 1 310 8 121 310 -1 122 310 1 1 311 138 121 311 -1 159 311 1 1 312 11 122 312 -1 123 312 1 1 313 39 123 313 -1 204 313 1 1 314 29 123 314 -1 254 314 1 1 315 39 123 315 -1 124 315 1 1 316 82 123 316 -1 129 316 1 1 317 35 124 317 -1 131 317 1 1 318 56 125 318 -1 128 318 1 1 319 110 126 319 -1 127 319 1 596 319 1 1 320 393 130 320 -1 133 320 1 131 321 -1 217 321 1 1 322 126 131 322 -1 143 322 1 1 323 112 133 323 -1 185 323 1 134 324 -1 135 324 1 1 325 70 134 325 -1 136 325 1 598 325 1 1 326 300 135 326 -1 152 326 1 1 327 46 137 327 -1 138 327 1 1 328 34 138 328 -1 139 328 1 142 329 -1 232 329 1 142 330 -1 223 330 1 1 331 30 145 331 -1 229 331 1 1 332 26 146 332 -1 147 332 1 1 333 300 147 333 -1 148 333 1 1 334 260 147 334 -1 251 334 1 1 335 140 148 335 -1 150 335 1 1 336 110 148 336 -1 149 336 1 1 337 140 148 337 -1 153 337 1 1 338 60 149 338 -1 247 338 1 1 339 100 150 339 -1 151 339 1 1 340 160 152 340 -1 226 340 1 1 341 100 153 341 -1 154 341 1 1 342 80 153 342 -1 218 342 1 1 343 120 153 343 -1 260 343 1 1 344 70 154 344 -1 234 344 1 1 345 10 155 345 -1 156 345 1 1 346 60 156 346 -1 157 346 1 1 347 109 162 347 -1 164 347 1 1 348 174 163 348 -1 178 348 1 1 349 19 164 349 -1 165 349 1 1 350 40 165 350 -1 166 350 1 1 351 17 166 351 -1 233 351 1 166 352 -1 167 352 1 1 353 64 167 353 -1 220 353 1 1 354 52 167 354 -1 168 354 1 1 355 40 167 355 -1 169 355 1 1 356 10 168 356 -1 231 356 1 1 357 19 169 357 -1 170 357 1 1 358 3 170 358 -1 171 358 1 1 359 4 171 359 -1 172 359 1 1 360 7 172 360 -1 173 360 1 1 361 34 173 361 -1 253 361 1 1 362 13 173 362 -1 248 362 1 1 363 8 173 363 -1 175 363 1 1 364 132 173 364 1 174 364 -1 1 365 14 175 365 -1 177 365 1 175 366 -1 176 366 1 1 367 6 178 367 -1 179 367 1 1 368 7 179 368 -1 181 368 1 181 369 -1 242 369 1 181 370 -1 182 370 1 1 371 100 183 371 -1 188 371 1 1 372 10 183 372 -1 184 372 1 1 373 411 184 373 -1 214 373 1 1 374 411 184 374 -1 244 374 1 1 375 23 185 375 -1 186 375 1 1 376 22 186 376 -1 256 376 1 1 377 36 186 377 -1 225 377 1 187 378 -1 191 378 1 1 379 10 187 379 -1 257 379 1 1 380 7 188 380 -1 189 380 1 1 381 21 191 381 -1 192 381 1 192 382 -1 258 382 1 1 383 69 196 383 -1 197 383 1 601 383 1 1 384 182 199 384 -1 200 384 1 603 384 1 1 385 52 205 385 -1 206 385 1 1 386 69 207 386 -1 208 386 1 609 386 1 209 387 -1 210 387 1 5 388 -1 262 388 1 611 388 1 6 389 -1 263 389 1 612 389 1 8 390 -1 264 390 1 614 390 1 86 391 -1 287 391 1 87 392 -1 292 392 1 88 393 -1 294 393 1 89 394 -1 300 394 1 90 395 -1 301 395 1 91 396 -1 345 396 1 92 397 -1 346 397 1 93 398 -1 349 398 1 94 399 -1 351 399 1 1 400 29 95 400 -1 352 400 1 615 400 1 96 401 -1 353 401 1 97 402 -1 355 402 1 98 403 -1 357 403 1 99 404 -1 359 404 1 1 405 33 262 405 -1 314 405 1 1 406 125 262 406 -1 302 406 1 1 407 171 262 407 -1 308 407 1 1 408 137 262 408 -1 303 408 1 1 409 95 262 409 -1 316 409 1 1 410 169 262 410 -1 373 410 1 1 411 179 262 411 -1 371 411 1 1 412 255 262 412 -1 366 412 1 1 413 298 262 413 -1 336 413 1 1 414 372 262 414 -1 374 414 1 1 415 367 262 415 -1 343 415 1 1 416 398 262 416 -1 370 416 1 1 417 265 262 417 -1 368 417 1 1 418 600 262 418 -1 290 418 1 1 419 521 262 419 -1 295 419 1 1 420 339 262 420 -1 333 420 1 1 421 326 262 421 -1 348 421 1 1 422 15 263 422 -1 315 422 1 616 422 1 263 423 -1 313 423 1 617 423 1 264 424 -1 379 424 1 1 425 80 264 425 -1 265 425 1 1 426 30 2 426 1 264 426 -1 269 426 1 1 427 13 3 427 1 264 427 -1 280 427 1 1 428 41 265 428 -1 266 428 1 1 429 6 266 429 -1 275 429 1 266 430 -1 267 430 1 1 431 16 267 431 -1 268 431 1 618 431 1 1 432 12 268 432 -1 272 432 1 1 433 14 269 433 -1 270 433 1 1 434 24 270 434 -1 271 434 1 1 435 9 272 435 -1 273 435 1 1 436 28 273 436 -1 274 436 1 1 437 42 274 437 -1 369 437 1 1 438 10 275 438 -1 276 438 1 1 439 61 276 439 -1 277 439 1 1 440 39 277 440 -1 278 440 1 1 441 22 278 441 -1 279 441 1 279 442 -1 364 442 1 279 443 -1 286 443 1 1 444 10 280 444 -1 281 444 1 1 445 10 281 445 -1 282 445 1 1 446 8 282 446 -1 283 446 1 1 447 152 282 447 -1 312 447 1 1 448 11 283 448 -1 284 448 1 1 449 29 284 449 -1 376 449 1 1 450 39 284 450 -1 285 450 1 1 451 82 284 451 -1 289 451 1 1 452 35 285 452 -1 291 452 1 1 453 56 286 453 -1 362 453 1 1 454 110 287 454 -1 288 454 1 622 454 1 1 455 393 290 455 -1 293 455 1 1 456 112 293 456 -1 338 456 1 1 457 70 294 457 -1 296 457 1 624 457 1 1 458 62 296 458 -1 297 458 1 1 459 46 297 459 -1 298 459 1 1 460 12 298 460 -1 299 460 1 1 461 30 302 461 -1 365 461 1 1 462 26 303 462 -1 304 462 1 1 463 300 304 463 -1 305 463 1 1 464 140 305 464 -1 306 464 1 1 465 100 306 465 -1 307 465 1 1 466 80 306 466 -1 361 466 1 1 467 10 308 467 -1 309 467 1 1 468 60 309 468 -1 310 468 1 1 469 100 310 469 -1 311 469 1 1 470 109 315 470 -1 317 470 1 1 471 174 316 471 -1 331 471 1 1 472 19 317 472 -1 318 472 1 1 473 40 318 473 -1 319 473 1 319 474 -1 320 474 1 1 475 52 320 475 -1 321 475 1 1 476 40 320 476 -1 322 476 1 1 477 10 321 477 -1 367 477 1 1 478 19 322 478 -1 323 478 1 1 479 3 323 479 -1 324 479 1 1 480 4 324 480 -1 325 480 1 1 481 7 325 481 -1 326 481 1 1 482 13 326 482 -1 375 482 1 1 483 8 326 483 -1 328 483 1 1 484 132 326 484 1 327 484 -1 1 485 14 328 485 -1 330 485 1 1 486 89 328 486 1 329 486 -1 1 487 20 330 487 -1 363 487 1 1 488 6 331 488 -1 332 488 1 1 489 7 332 489 -1 334 489 1 334 490 -1 335 490 1 334 491 -1 372 491 1 1 492 100 336 492 -1 340 492 1 1 493 10 336 493 -1 337 493 1 1 494 23 338 494 -1 377 494 1 339 495 -1 343 495 1 1 496 10 339 496 -1 378 496 1 1 497 7 340 497 -1 341 497 1 1 498 3 341 498 -1 342 498 1 1 499 21 343 499 -1 344 499 1 1 500 29 346 500 -1 347 500 1 627 500 1 1 501 182 349 501 -1 350 501 1 629 501 1 1 502 78 353 502 -1 354 502 1 633 502 1 1 503 29 355 503 -1 356 503 1 634 503 1 1 504 29 357 504 -1 358 504 1 635 504 1 359 505 -1 360 505 1 5 506 -1 380 506 1 637 506 1 6 507 -1 381 507 1 638 507 1 8 508 -1 382 508 1 640 508 1 86 509 -1 406 509 1 87 510 -1 412 510 1 88 511 -1 414 511 1 89 512 -1 420 512 1 90 513 -1 421 513 1 91 514 -1 475 514 1 92 515 -1 476 515 1 93 516 -1 479 516 1 94 517 -1 481 517 1 1 518 35 95 518 -1 482 518 1 641 518 1 96 519 -1 483 519 1 97 520 -1 485 520 1 98 521 -1 487 521 1 99 522 -1 489 522 1 1 523 33 380 523 -1 441 523 1 1 524 125 380 524 -1 425 524 1 1 525 171 380 525 -1 435 525 1 1 526 137 380 526 -1 426 526 1 1 527 95 380 527 -1 443 527 1 1 528 176 380 528 -1 522 528 1 1 529 187 380 529 -1 518 529 1 1 530 265 380 530 -1 507 530 1 1 531 278 380 531 -1 525 531 1 1 532 284 380 532 -1 498 532 1 1 533 372 380 533 -1 535 533 1 1 534 376 380 534 -1 473 534 1 1 535 310 380 535 -1 463 535 1 1 536 387 380 536 -1 474 536 1 1 537 380 380 537 -1 493 537 1 1 538 382 380 538 -1 471 538 1 1 539 383 380 539 -1 470 539 1 1 540 501 380 540 -1 515 540 1 1 541 409 380 541 -1 521 541 1 1 542 419 380 542 -1 526 542 1 1 543 376 380 543 -1 519 543 1 1 544 223 380 544 -1 512 544 1 1 545 279 380 545 -1 517 545 1 1 546 241 380 546 -1 506 546 1 1 547 276 380 547 -1 513 547 1 1 548 331 380 548 -1 438 548 1 1 549 448 380 549 -1 492 549 1 1 550 320 380 550 -1 516 550 1 1 551 340 380 551 -1 528 551 1 1 552 414 380 552 -1 514 552 1 1 553 441 380 553 -1 495 553 1 1 554 625 380 554 -1 410 554 1 1 555 404 380 555 -1 422 555 1 1 556 534 380 556 -1 424 556 1 1 557 339 380 557 -1 478 557 1 1 558 352 380 558 -1 460 558 1 1 559 15 381 559 -1 442 559 1 642 559 1 381 560 -1 440 560 1 643 560 1 382 561 -1 537 561 1 1 562 80 382 562 -1 383 562 1 1 563 30 2 563 1 382 563 -1 387 563 1 1 564 13 3 564 1 382 564 -1 399 564 1 1 565 41 383 565 -1 384 565 1 1 566 6 384 566 -1 394 566 1 384 567 -1 385 567 1 1 568 16 385 568 -1 386 568 1 645 568 1 1 569 12 386 569 -1 390 569 1 1 570 14 387 570 -1 388 570 1 1 571 24 388 571 -1 389 571 1 1 572 9 390 572 -1 391 572 1 1 573 28 391 573 -1 392 573 1 1 574 42 392 574 -1 393 574 1 1 575 54 393 575 -1 502 575 1 1 576 10 394 576 -1 395 576 1 1 577 226 395 577 -1 417 577 1 1 578 326 395 578 -1 500 578 1 1 579 570 395 579 -1 531 579 1 1 580 375 395 580 -1 496 580 1 1 581 425 395 581 -1 491 581 1 1 582 61 395 582 -1 396 582 1 1 583 33 396 583 -1 505 583 1 1 584 39 396 584 -1 397 584 1 1 585 22 397 585 -1 398 585 1 398 586 -1 499 586 1 398 587 -1 405 587 1 1 588 10 399 588 -1 400 588 1 1 589 10 400 589 -1 401 589 1 1 590 8 401 590 -1 402 590 1 1 591 152 401 591 -1 439 591 1 1 592 11 402 592 -1 403 592 1 1 593 39 403 593 -1 484 593 1 1 594 29 403 594 -1 530 594 1 1 595 39 403 595 -1 404 595 1 1 596 82 403 596 -1 409 596 1 1 597 35 404 597 -1 411 597 1 1 598 56 405 598 -1 408 598 1 1 599 110 406 599 -1 407 599 1 649 599 1 1 600 393 410 600 -1 413 600 1 1 601 146 411 601 -1 423 601 1 1 602 112 413 602 -1 465 602 1 414 603 -1 415 603 1 1 604 70 414 604 -1 416 604 1 651 604 1 1 605 300 415 605 -1 432 605 1 1 606 46 417 606 -1 418 606 1 1 607 34 418 607 -1 419 607 1 422 608 -1 509 608 1 422 609 -1 501 609 1 1 610 26 426 610 -1 427 610 1 1 611 300 427 611 -1 428 611 1 1 612 260 427 612 -1 527 612 1 1 613 140 428 613 -1 430 613 1 1 614 110 428 614 -1 429 614 1 1 615 140 428 615 -1 433 615 1 1 616 60 429 616 -1 523 616 1 1 617 100 430 617 -1 431 617 1 1 618 160 432 618 -1 504 618 1 1 619 100 433 619 -1 434 619 1 1 620 80 433 620 -1 497 620 1 1 621 120 433 621 -1 536 621 1 1 622 70 434 622 -1 511 622 1 1 623 10 435 623 -1 436 623 1 1 624 60 436 624 -1 437 624 1 1 625 109 442 625 -1 444 625 1 1 626 174 443 626 -1 458 626 1 1 627 19 444 627 -1 445 627 1 1 628 40 445 628 -1 446 628 1 1 629 17 446 629 -1 510 629 1 446 630 -1 447 630 1 1 631 52 447 631 -1 448 631 1 1 632 40 447 632 -1 449 632 1 1 633 10 448 633 -1 508 633 1 1 634 19 449 634 -1 450 634 1 1 635 3 450 635 -1 451 635 1 1 636 4 451 636 -1 452 636 1 1 637 7 452 637 -1 453 637 1 1 638 34 453 638 -1 529 638 1 1 639 8 453 639 -1 455 639 1 1 640 13 453 640 -1 524 640 1 1 641 132 453 641 1 454 641 -1 1 642 14 455 642 -1 457 642 1 455 643 -1 456 643 1 1 644 6 458 644 -1 459 644 1 1 645 7 459 645 -1 461 645 1 461 646 -1 462 646 1 1 647 100 463 647 -1 468 647 1 1 648 10 463 648 -1 464 648 1 1 649 477 464 649 -1 494 649 1 1 650 477 464 650 -1 520 650 1 1 651 23 465 651 -1 466 651 1 1 652 22 466 652 -1 532 652 1 1 653 36 466 653 -1 503 653 1 467 654 -1 471 654 1 1 655 10 467 655 -1 533 655 1 1 656 7 468 656 -1 469 656 1 1 657 21 471 657 -1 472 657 1 472 658 -1 534 658 1 1 659 35 476 659 -1 477 659 1 654 659 1 1 660 182 479 660 -1 480 660 1 656 660 1 1 661 35 485 661 -1 486 661 1 661 661 1 1 662 35 487 662 -1 488 662 1 662 662 1 489 663 -1 490 663 1 43 577 526 542 474 621 536 258 53 228 254 314 405 587 521 515 540 476 231 356 119 653 632 256 376 450 634 449 503 16 550 516 136 481 545 517 480 324 135 325 375 482 52 586 234 344 499 23 180 478 133 323 557 185 479 134 125 307 230 250 15 549 492 131 473 534 657 472 124 470 539 315 658 317 132 126 229 244 374 72 606 269 212 145 246 248 362 128 662 488 332 257 424 379 73 419 607 213 146 418 331 318 20 554 152 373 74 509 608 214 66 600 7 208 602 68 413 410 625 49 364 174 442 63 597 61 595 360 505 359 404 583 241 251 249 47 372 491 581 129 663 335 490 62 409 596 316 334 172 150 184 541 83 223 330 42 161 243 576 313 67 601 423 37 571 389 113 647 311 469 122 312 310 656 533 535 655 120 654 309 467 121 468 159 263 253 259 361 36 570 70 210 149 2 29 563 387 84 224 169 64 358 504 170 357 252 271 79 613 219 34 158 236 431 267 268 430 618 190 617 28 562 532 652 78 342 218 497 620 341 498 350 349 501 46 378 496 580 165 44 578 627 347 27 561 337 493 537 162 500 164 153 245 261 281 345 33 567 385 156 371 32 566 31 565 188 155 237 272 45 525 531 579 242 437 369 4 538 130 75 215 143 623 436 273 274 435 483 543 519 239 270 59 593 22 327 138 484 203 69 603 127 661 232 329 486 140 301 71 605 211 333 10 512 544 420 139 415 328 89 384 609 432 209 30 3 564 77 217 611 300 76 610 144 216 427 18 552 475 514 17 522 528 551 247 348 513 547 421 429 14 438 548 275 163 21 555 368 367 477 495 19 233 351 141 553 179 178 90 57 591 439 56 402 592 590 352 55 589 54 260 238 588 81 221 615 306 95 400 202 631 448 106 508 240 425 524 265 640 80 220 354 502 353 363 365 40 574 393 41 176 412 510 366 175 575 633 167 401 276 399 511 622 107 641 454 235 48 582 65 407 599 377 494 85 619 225 649 38 160 39 391 573 35 157 569 390 572 196 408 112 462 646 117 651 305 520 650 302 116 304 51 101 227 50 226 397 584 585 303 82 222 151 25 182 416 370 255 460 558 299 24 527 626 443 114 648 457 296 297 110 644 111 645 292 459 458 298 456 105 639 455 546 506 628 630 103 282 446 109 291 108 636 451 452 637 441 523 440 560 278 529 104 60 530 594 507 638 381 643 642 286 293 287 288 392 461 464 614 616 289 5 6 11 12 13 58 86 92 94 99 100 118 142 148 154 173 181 186 187 189 194 195 204 205 206 207 262 279 308 320 339 340 343 355 380 386 396 398 403 414 422 426 433 447 466 487 559 598 635 659 147 417 9 93 98 123 171 295 319 322 326 336 411 471 660 556 444 26 87 88 91 168 177 264 277 284 285 290 321 406 453 465 489 518 197 395 183 201 193 8 96 97 102 115 166 191 192 198 199 200 266 283 294 338 346 382 383 388 394 428 434 445 463 485 568 604 612 624 629 137 280 1 -1. -1. SuiteSparse/UMFPACK/Tcov/TestMat/cage30000644001170100242450000000135210171264274016243 0ustar davisfac5 5 19 1 1 1 6.66666666666666962726e-01 2 1 1.00036889486115998515e-01 3 1 1.22185332736106003204e-01 4 1 5.00184447430579992577e-02 5 1 6.10926663680530987466e-02 1 2 3.66555998208319022691e-01 2 2 5.33407112305565034305e-01 4 2 1.00036889486115998515e-01 1 3 3.00110668458347995546e-01 3 3 5.77703998805546015127e-01 5 3 1.22185332736106003204e-01 1 4 3.66555998208319022691e-01 2 4 2.00073778972231997031e-01 4 4 2.83314888590274982505e-01 5 4 1.50055334229173997773e-01 1 5 3.00110668458347995546e-01 3 5 2.44370665472212006408e-01 4 5 1.83277999104159011745e-01 5 5 2.72240666965279987100e-01 1 2 3 4 5 4.15610579898172301239e-03 4.15610579898172301239e-03 SuiteSparse/UMFPACK/Tcov/TestMat/d_dyn0000644001170100242450000002111610171264274016356 0ustar davisfac87 87 230 1 2 1 -1.00000000000000000000e+00 3 1 6.32455500000000036750e-04 6 2 -1.00009299999999989872e+00 9 2 -3.16227800000000013741e-03 15 2 -7.12103699999999950609e-02 7 3 -1.00009299999999989872e+00 8 3 -3.16227800000000013741e-03 5 4 -1.00000000000000000000e+00 6 4 3.03425899999999996118e-21 20 4 3.16227800000000013741e-03 23 5 -1.00002900000000005676e+00 26 5 -3.16227800000000013741e-03 32 5 -5.59785299999999985676e-02 24 6 -1.00002900000000005676e+00 25 6 -3.16227800000000013741e-03 22 7 -1.00000000000000000000e+00 23 7 3.38381199999999981213e-22 24 7 -1.35220399999999989242e-19 37 7 3.16227800000000013741e-03 40 8 -1.00000000000000000000e+00 41 8 3.79473299999999978682e-03 83 9 -3.16227800000000013741e-03 84 9 -1.89755599999999996497e-01 87 10 -3.16227800000000013741e-03 86 11 -3.16227800000000013741e-03 85 12 -3.16227800000000013741e-03 78 13 -3.16227800000000013741e-03 79 13 -4.64023399999999974774e-01 75 14 -3.16227800000000013741e-03 76 14 1.46606399999999997830e-01 76 15 -2.69487399999999988065e-01 77 15 3.16227800000000013741e-03 67 16 -3.16227800000000013741e-03 74 16 -4.05529200000000027149e-03 68 17 -3.16227800000000013741e-03 73 17 -2.38785600000000004280e-15 74 17 -3.16227800000000013741e-03 70 18 -3.16227800000000013741e-03 72 18 3.16227800000000013741e-03 69 19 -3.16227800000000013741e-03 72 19 3.16227800000000013741e-03 73 19 -2.32011699999999987387e-01 67 20 3.16227800000000013741e-03 79 20 2.31984200000000001518e-01 71 21 3.16227800000000013741e-03 82 21 3.16227800000000013741e-03 70 22 -3.16227800000000013741e-03 78 22 3.16227800000000013741e-03 81 22 3.16227800000000013741e-03 69 23 -3.16227800000000013741e-03 78 23 3.16227800000000013741e-03 80 23 3.16227800000000013741e-03 59 24 -3.16227800000000013741e-03 66 24 -5.08630399999999960846e-04 60 25 -3.16227800000000013741e-03 66 25 -3.16227800000000013741e-03 62 26 -3.16227800000000013741e-03 64 26 3.16227800000000013741e-03 61 27 -3.16227800000000013741e-03 64 27 3.16227800000000013741e-03 65 27 -9.48777799999999948977e-02 59 28 3.16227800000000013741e-03 84 28 4.71334299999999983832e-01 63 29 3.16227800000000013741e-03 87 29 3.16227800000000013741e-03 62 30 -3.16227800000000013741e-03 83 30 3.16227800000000013741e-03 86 30 3.16227800000000013741e-03 61 31 -3.16227800000000013741e-03 83 31 3.16227800000000013741e-03 85 31 3.16227800000000013741e-03 51 32 -3.16227800000000013741e-03 58 32 -2.84794600000000007120e-03 52 33 -3.16227800000000013741e-03 58 33 -3.16227800000000013741e-03 54 34 -3.16227800000000013741e-03 56 34 3.16227800000000013741e-03 53 35 -3.16227800000000013741e-03 56 35 3.16227800000000013741e-03 57 35 -3.64920199999999972373e-01 46 36 -3.16227800000000013741e-03 47 36 -7.29840399999999944747e-01 47 37 6.72570299999999954288e-01 51 37 3.16227800000000013741e-03 50 38 3.16227800000000013741e-03 55 38 3.16227800000000013741e-03 46 39 3.16227800000000013741e-03 49 39 3.16227800000000013741e-03 54 39 -3.16227800000000013741e-03 46 40 3.16227800000000013741e-03 48 40 3.16227800000000013741e-03 53 40 -3.16227800000000013741e-03 43 41 -3.16227800000000013741e-03 44 41 -1.10679699999999996748e-04 45 42 -3.16227800000000013741e-03 55 42 -3.16227800000000013741e-03 43 43 3.16227800000000013741e-03 52 43 3.16227800000000013741e-03 54 43 3.16227800000000013741e-03 43 44 3.16227800000000013741e-03 44 44 3.16227800000000013741e-03 52 44 3.16227800000000013741e-03 53 44 3.16227800000000013741e-03 41 45 -3.16227800000000013741e-03 42 45 3.16227800000000013741e-03 39 46 -3.16227800000000013741e-03 40 46 3.16227800000000013741e-03 41 46 6.32455499999999993382e-03 42 47 -3.16227800000000013741e-03 47 47 1.97996800000000000574e-01 28 48 3.45694999999999996732e+00 38 48 -3.16227800000000013741e-03 28 49 3.66824200000000004707e+01 34 49 8.10484199999999925523e-03 27 50 1.24687900000000004286e-02 28 50 -3.66824200000000004707e+01 29 50 1.32278099999999995684e-02 32 50 6.05467999999999978433e-03 24 51 -4.15557300000000013349e-05 29 51 -3.16227800000000013741e-03 26 52 3.16227800000000013741e-03 27 52 -1.19884900000000002573e-01 31 52 9.48777799999999948977e-02 30 53 2.32011699999999987387e-01 36 54 -3.16227800000000013741e-03 33 55 -3.16227800000000013741e-03 79 55 -2.31984200000000001518e-01 24 56 7.03065699999999999805e-05 82 56 -3.16227800000000013741e-03 22 57 3.16227800000000013741e-03 23 57 -1.28999300000000005545e-07 24 57 3.92044699999999983714e-05 30 57 1.74082899999999999837e-04 81 57 -3.16227800000000013741e-03 22 58 3.16227800000000013741e-03 23 58 8.29266600000000014915e-07 24 58 3.92044699999999983714e-05 30 58 -2.98819499999999991374e-03 80 58 -3.16227800000000013741e-03 22 59 -3.16227800000000013741e-03 23 59 1.28999300000000005545e-07 24 59 -1.99884999999999993237e-03 35 59 -2.74267800000000006033e-01 32 60 -3.16227800000000013741e-03 33 60 3.16227800000000013741e-03 35 60 2.22418799999999983186e+00 59 60 -3.16227800000000013741e-03 25 61 3.16227800000000013741e-03 27 61 -3.16227800000000013741e-03 63 61 -3.16227800000000013741e-03 22 62 -3.16227800000000013741e-03 31 62 4.25697800000000002064e-04 36 62 3.16227800000000013741e-03 60 62 3.16227800000000013741e-03 62 62 3.16227800000000013741e-03 22 63 -3.16227800000000013741e-03 31 63 -2.73658000000000017557e-03 36 63 3.16227800000000013741e-03 60 63 3.16227800000000013741e-03 61 63 3.16227800000000013741e-03 11 64 1.86916400000000004766e+00 21 64 -3.16227800000000013741e-03 11 65 7.96894000000000062300e+01 17 65 9.55857300000000076334e-03 10 66 1.29174200000000006378e-02 11 66 -7.96894000000000062300e+01 12 66 1.32278099999999995684e-02 15 66 8.42228000000000073810e-03 7 67 -5.31634100000000006246e-05 12 67 -3.16227800000000013741e-03 9 68 3.16227800000000013741e-03 10 68 -1.72192199999999989712e-01 14 68 2.32011699999999987387e-01 13 69 3.64920199999999972373e-01 19 70 -3.16227800000000013741e-03 20 71 -3.16227800000000013741e-03 39 71 -3.16227800000000013741e-03 18 72 -1.64858999999999999986e+00 34 72 -3.16227800000000013741e-03 5 73 -3.16227800000000013741e-03 6 73 6.96331599999999969701e-08 7 73 -2.63581900000000018264e-03 18 73 -2.65817000000000025484e-01 24 73 1.99395999999999991650e-03 28 73 -6.58006699999999966622e+00 15 74 -3.16227800000000013741e-03 16 74 3.16227800000000013741e-03 18 74 1.64858999999999999986e+00 67 74 -3.16227800000000013741e-03 8 75 3.16227800000000013741e-03 10 75 -3.16227800000000013741e-03 71 75 -3.16227800000000013741e-03 5 76 -3.16227800000000013741e-03 14 76 1.74082899999999999837e-04 19 76 3.16227800000000013741e-03 68 76 3.16227800000000013741e-03 70 76 3.16227800000000013741e-03 5 77 -3.16227800000000013741e-03 14 77 -2.98819499999999991374e-03 19 77 3.16227800000000013741e-03 68 77 3.16227800000000013741e-03 69 77 3.16227800000000013741e-03 17 78 -3.16227800000000013741e-03 76 78 -1.46606399999999997830e-01 7 79 2.63202699999999989097e-03 11 79 -6.58006699999999966622e+00 77 79 -3.16227800000000013741e-03 16 80 -3.16227800000000013741e-03 47 80 -6.72570299999999954288e-01 7 81 1.45968099999999989091e-04 50 81 -3.16227800000000013741e-03 5 82 3.16227800000000013741e-03 6 82 -6.96331599999999969701e-08 7 82 -1.18554399999999994384e-05 13 82 1.10679699999999996748e-04 49 82 -3.16227800000000013741e-03 5 83 3.16227800000000013741e-03 6 83 1.19527800000000004410e-06 7 83 -1.18554399999999994384e-05 13 83 -3.05159799999999998416e-03 48 83 -3.16227800000000013741e-03 3 84 -3.16227800000000013741e-03 4 84 3.16227800000000013741e-03 1 85 -3.16227800000000013741e-03 2 85 3.16227800000000013741e-03 3 85 3.16227800000000013741e-03 4 86 -3.16227800000000013741e-03 79 86 2.32039200000000001012e-01 1 87 -3.16227800000000013741e-03 37 87 -3.16227800000000013741e-03 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 1.54338450175732636790e-165 1.54338450175732636790e-165 SuiteSparse/UMFPACK/Tcov/TestMat/nug070000644001170100242450000012706510171311655016227 0ustar davisfac602 931 4214 1 1 1 -1 2 1 -1 3 1 -1 4 1 -1 5 1 -1 6 1 -1 295 1 -1 296 1 -1 297 1 -1 298 1 -1 299 1 -1 300 1 -1 589 1 1 596 1 1 7 2 -1 8 2 -1 9 2 -1 10 2 -1 11 2 -1 12 2 -1 301 2 -1 302 2 -1 303 2 -1 304 2 -1 305 2 -1 306 2 -1 590 2 1 596 2 1 13 3 -1 14 3 -1 15 3 -1 16 3 -1 17 3 -1 18 3 -1 307 3 -1 308 3 -1 309 3 -1 310 3 -1 311 3 -1 312 3 -1 591 3 1 596 3 1 19 4 -1 20 4 -1 21 4 -1 22 4 -1 23 4 -1 24 4 -1 313 4 -1 314 4 -1 315 4 -1 316 4 -1 317 4 -1 318 4 -1 592 4 1 596 4 1 25 5 -1 26 5 -1 27 5 -1 28 5 -1 29 5 -1 30 5 -1 319 5 -1 320 5 -1 321 5 -1 322 5 -1 323 5 -1 324 5 -1 593 5 1 596 5 1 31 6 -1 32 6 -1 33 6 -1 34 6 -1 35 6 -1 36 6 -1 325 6 -1 326 6 -1 327 6 -1 328 6 -1 329 6 -1 330 6 -1 594 6 1 596 6 1 37 7 -1 38 7 -1 39 7 -1 40 7 -1 41 7 -1 42 7 -1 331 7 -1 332 7 -1 333 7 -1 334 7 -1 335 7 -1 336 7 -1 595 7 1 596 7 1 43 8 -1 44 8 -1 45 8 -1 46 8 -1 47 8 -1 48 8 -1 337 8 -1 338 8 -1 339 8 -1 340 8 -1 341 8 -1 442 8 -1 589 8 1 597 8 1 49 9 -1 50 9 -1 51 9 -1 52 9 -1 53 9 -1 54 9 -1 342 9 -1 343 9 -1 344 9 -1 345 9 -1 346 9 -1 443 9 -1 590 9 1 597 9 1 55 10 -1 56 10 -1 57 10 -1 58 10 -1 59 10 -1 60 10 -1 347 10 -1 348 10 -1 349 10 -1 350 10 -1 351 10 -1 444 10 -1 591 10 1 597 10 1 61 11 -1 62 11 -1 63 11 -1 64 11 -1 65 11 -1 66 11 -1 352 11 -1 353 11 -1 354 11 -1 355 11 -1 356 11 -1 445 11 -1 592 11 1 597 11 1 67 12 -1 68 12 -1 69 12 -1 70 12 -1 71 12 -1 72 12 -1 357 12 -1 358 12 -1 359 12 -1 360 12 -1 361 12 -1 446 12 -1 593 12 1 597 12 1 73 13 -1 74 13 -1 75 13 -1 76 13 -1 77 13 -1 78 13 -1 362 13 -1 363 13 -1 364 13 -1 365 13 -1 366 13 -1 447 13 -1 594 13 1 597 13 1 79 14 -1 80 14 -1 81 14 -1 82 14 -1 83 14 -1 84 14 -1 367 14 -1 368 14 -1 369 14 -1 370 14 -1 371 14 -1 448 14 -1 595 14 1 597 14 1 85 15 -1 86 15 -1 87 15 -1 88 15 -1 89 15 -1 90 15 -1 372 15 -1 373 15 -1 374 15 -1 375 15 -1 449 15 -1 450 15 -1 589 15 1 598 15 1 91 16 -1 92 16 -1 93 16 -1 94 16 -1 95 16 -1 96 16 -1 376 16 -1 377 16 -1 378 16 -1 379 16 -1 451 16 -1 452 16 -1 590 16 1 598 16 1 97 17 -1 98 17 -1 99 17 -1 100 17 -1 101 17 -1 102 17 -1 380 17 -1 381 17 -1 382 17 -1 383 17 -1 453 17 -1 454 17 -1 591 17 1 598 17 1 103 18 -1 104 18 -1 105 18 -1 106 18 -1 107 18 -1 108 18 -1 384 18 -1 385 18 -1 386 18 -1 387 18 -1 455 18 -1 456 18 -1 592 18 1 598 18 1 109 19 -1 110 19 -1 111 19 -1 112 19 -1 113 19 -1 114 19 -1 388 19 -1 389 19 -1 390 19 -1 391 19 -1 457 19 -1 458 19 -1 593 19 1 598 19 1 115 20 -1 116 20 -1 117 20 -1 118 20 -1 119 20 -1 120 20 -1 392 20 -1 393 20 -1 394 20 -1 395 20 -1 459 20 -1 460 20 -1 594 20 1 598 20 1 121 21 -1 122 21 -1 123 21 -1 124 21 -1 125 21 -1 126 21 -1 396 21 -1 397 21 -1 398 21 -1 399 21 -1 461 21 -1 462 21 -1 595 21 1 598 21 1 127 22 -1 128 22 -1 129 22 -1 130 22 -1 131 22 -1 132 22 -1 400 22 -1 401 22 -1 402 22 -1 463 22 -1 464 22 -1 465 22 -1 589 22 1 599 22 1 133 23 -1 134 23 -1 135 23 -1 136 23 -1 137 23 -1 138 23 -1 403 23 -1 404 23 -1 405 23 -1 466 23 -1 467 23 -1 468 23 -1 590 23 1 599 23 1 139 24 -1 140 24 -1 141 24 -1 142 24 -1 143 24 -1 144 24 -1 406 24 -1 407 24 -1 408 24 -1 469 24 -1 470 24 -1 471 24 -1 591 24 1 599 24 1 145 25 -1 146 25 -1 147 25 -1 148 25 -1 149 25 -1 150 25 -1 409 25 -1 410 25 -1 411 25 -1 472 25 -1 473 25 -1 474 25 -1 592 25 1 599 25 1 151 26 -1 152 26 -1 153 26 -1 154 26 -1 155 26 -1 156 26 -1 412 26 -1 413 26 -1 414 26 -1 475 26 -1 476 26 -1 477 26 -1 593 26 1 599 26 1 157 27 -1 158 27 -1 159 27 -1 160 27 -1 161 27 -1 162 27 -1 415 27 -1 416 27 -1 417 27 -1 478 27 -1 479 27 -1 480 27 -1 594 27 1 599 27 1 163 28 -1 164 28 -1 165 28 -1 166 28 -1 167 28 -1 168 28 -1 418 28 -1 419 28 -1 420 28 -1 481 28 -1 482 28 -1 483 28 -1 595 28 1 599 28 1 169 29 -1 170 29 -1 171 29 -1 172 29 -1 173 29 -1 174 29 -1 421 29 -1 422 29 -1 484 29 -1 485 29 -1 486 29 -1 487 29 -1 589 29 1 600 29 1 175 30 -1 176 30 -1 177 30 -1 178 30 -1 179 30 -1 180 30 -1 423 30 -1 424 30 -1 488 30 -1 489 30 -1 490 30 -1 491 30 -1 590 30 1 600 30 1 181 31 -1 182 31 -1 183 31 -1 184 31 -1 185 31 -1 186 31 -1 425 31 -1 426 31 -1 492 31 -1 493 31 -1 494 31 -1 495 31 -1 591 31 1 600 31 1 187 32 -1 188 32 -1 189 32 -1 190 32 -1 191 32 -1 192 32 -1 427 32 -1 428 32 -1 496 32 -1 497 32 -1 498 32 -1 499 32 -1 592 32 1 600 32 1 193 33 -1 194 33 -1 195 33 -1 196 33 -1 197 33 -1 198 33 -1 429 33 -1 430 33 -1 500 33 -1 501 33 -1 502 33 -1 503 33 -1 593 33 1 600 33 1 199 34 -1 200 34 -1 201 34 -1 202 34 -1 203 34 -1 204 34 -1 431 34 -1 432 34 -1 504 34 -1 505 34 -1 506 34 -1 507 34 -1 594 34 1 600 34 1 205 35 -1 206 35 -1 207 35 -1 208 35 -1 209 35 -1 210 35 -1 433 35 -1 434 35 -1 508 35 -1 509 35 -1 510 35 -1 511 35 -1 595 35 1 600 35 1 211 36 -1 212 36 -1 213 36 -1 214 36 -1 215 36 -1 216 36 -1 435 36 -1 512 36 -1 513 36 -1 514 36 -1 515 36 -1 516 36 -1 589 36 1 601 36 1 217 37 -1 218 37 -1 219 37 -1 220 37 -1 221 37 -1 222 37 -1 436 37 -1 517 37 -1 518 37 -1 519 37 -1 520 37 -1 521 37 -1 590 37 1 601 37 1 223 38 -1 224 38 -1 225 38 -1 226 38 -1 227 38 -1 228 38 -1 437 38 -1 522 38 -1 523 38 -1 524 38 -1 525 38 -1 526 38 -1 591 38 1 601 38 1 229 39 -1 230 39 -1 231 39 -1 232 39 -1 233 39 -1 234 39 -1 438 39 -1 527 39 -1 528 39 -1 529 39 -1 530 39 -1 531 39 -1 592 39 1 601 39 1 235 40 -1 236 40 -1 237 40 -1 238 40 -1 239 40 -1 240 40 -1 439 40 -1 532 40 -1 533 40 -1 534 40 -1 535 40 -1 536 40 -1 593 40 1 601 40 1 241 41 -1 242 41 -1 243 41 -1 244 41 -1 245 41 -1 246 41 -1 440 41 -1 537 41 -1 538 41 -1 539 41 -1 540 41 -1 541 41 -1 594 41 1 601 41 1 247 42 -1 248 42 -1 249 42 -1 250 42 -1 251 42 -1 252 42 -1 441 42 -1 542 42 -1 543 42 -1 544 42 -1 545 42 -1 546 42 -1 595 42 1 601 42 1 253 43 -1 254 43 -1 255 43 -1 256 43 -1 257 43 -1 258 43 -1 547 43 -1 548 43 -1 549 43 -1 550 43 -1 551 43 -1 552 43 -1 589 43 1 602 43 1 259 44 -1 260 44 -1 261 44 -1 262 44 -1 263 44 -1 264 44 -1 553 44 -1 554 44 -1 555 44 -1 556 44 -1 557 44 -1 558 44 -1 590 44 1 602 44 1 265 45 -1 266 45 -1 267 45 -1 268 45 -1 269 45 -1 270 45 -1 559 45 -1 560 45 -1 561 45 -1 562 45 -1 563 45 -1 564 45 -1 591 45 1 602 45 1 271 46 -1 272 46 -1 273 46 -1 274 46 -1 275 46 -1 276 46 -1 565 46 -1 566 46 -1 567 46 -1 568 46 -1 569 46 -1 570 46 -1 592 46 1 602 46 1 277 47 -1 278 47 -1 279 47 -1 280 47 -1 281 47 -1 282 47 -1 571 47 -1 572 47 -1 573 47 -1 574 47 -1 575 47 -1 576 47 -1 593 47 1 602 47 1 283 48 -1 284 48 -1 285 48 -1 286 48 -1 287 48 -1 288 48 -1 577 48 -1 578 48 -1 579 48 -1 580 48 -1 581 48 -1 582 48 -1 594 48 1 602 48 1 289 49 -1 290 49 -1 291 49 -1 292 49 -1 293 49 -1 294 49 -1 583 49 -1 584 49 -1 585 49 -1 586 49 -1 587 49 -1 588 49 -1 595 49 1 602 49 1 1 50 1 49 50 1 295 50 1 443 50 1 2 51 1 55 51 1 295 51 1 444 51 1 3 52 1 61 52 1 295 52 1 445 52 1 4 53 1 67 53 1 295 53 1 446 53 1 5 54 1 73 54 1 295 54 1 447 54 1 6 55 1 79 55 1 295 55 1 448 55 1 1 56 1 91 56 1 296 56 1 451 56 1 2 57 1 97 57 1 296 57 1 453 57 1 3 58 1 103 58 1 296 58 1 455 58 1 4 59 1 109 59 1 296 59 1 457 59 1 5 60 1 115 60 1 296 60 1 459 60 1 6 61 1 121 61 1 296 61 1 461 61 1 1 62 1 133 62 1 297 62 1 466 62 1 2 63 1 139 63 1 297 63 1 469 63 1 3 64 1 145 64 1 297 64 1 472 64 1 4 65 1 151 65 1 297 65 1 475 65 1 5 66 1 157 66 1 297 66 1 478 66 1 6 67 1 163 67 1 297 67 1 481 67 1 1 68 1 175 68 1 298 68 1 488 68 1 2 69 1 181 69 1 298 69 1 492 69 1 3 70 1 187 70 1 298 70 1 496 70 1 4 71 1 193 71 1 298 71 1 500 71 1 5 72 1 199 72 1 298 72 1 504 72 1 6 73 1 205 73 1 298 73 1 508 73 1 1 74 1 217 74 1 299 74 1 517 74 1 2 75 1 223 75 1 299 75 1 522 75 1 3 76 1 229 76 1 299 76 1 527 76 1 4 77 1 235 77 1 299 77 1 532 77 1 5 78 1 241 78 1 299 78 1 537 78 1 6 79 1 247 79 1 299 79 1 542 79 1 1 80 1 259 80 1 300 80 1 553 80 1 2 81 1 265 81 1 300 81 1 559 81 1 3 82 1 271 82 1 300 82 1 565 82 1 4 83 1 277 83 1 300 83 1 571 83 1 5 84 1 283 84 1 300 84 1 577 84 1 6 85 1 289 85 1 300 85 1 583 85 1 7 86 1 43 86 1 301 86 1 442 86 1 8 87 1 56 87 1 301 87 1 444 87 1 9 88 1 62 88 1 301 88 1 445 88 1 10 89 1 68 89 1 301 89 1 446 89 1 11 90 1 74 90 1 301 90 1 447 90 1 12 91 1 80 91 1 301 91 1 448 91 1 7 92 1 85 92 1 302 92 1 449 92 1 8 93 1 98 93 1 302 93 1 453 93 1 9 94 1 104 94 1 302 94 1 455 94 1 10 95 1 110 95 1 302 95 1 457 95 1 11 96 1 116 96 1 302 96 1 459 96 1 12 97 1 122 97 1 302 97 1 461 97 1 7 98 1 127 98 1 303 98 1 463 98 1 8 99 1 140 99 1 303 99 1 469 99 1 9 100 1 146 100 1 303 100 1 472 100 1 10 101 1 152 101 1 303 101 1 475 101 1 11 102 1 158 102 1 303 102 1 478 102 1 12 103 1 164 103 1 303 103 1 481 103 1 7 104 1 169 104 1 304 104 1 484 104 1 8 105 1 182 105 1 304 105 1 492 105 1 9 106 1 188 106 1 304 106 1 496 106 1 10 107 1 194 107 1 304 107 1 500 107 1 11 108 1 200 108 1 304 108 1 504 108 1 12 109 1 206 109 1 304 109 1 508 109 1 7 110 1 211 110 1 305 110 1 512 110 1 8 111 1 224 111 1 305 111 1 522 111 1 9 112 1 230 112 1 305 112 1 527 112 1 10 113 1 236 113 1 305 113 1 532 113 1 11 114 1 242 114 1 305 114 1 537 114 1 12 115 1 248 115 1 305 115 1 542 115 1 7 116 1 253 116 1 306 116 1 547 116 1 8 117 1 266 117 1 306 117 1 559 117 1 9 118 1 272 118 1 306 118 1 565 118 1 10 119 1 278 119 1 306 119 1 571 119 1 11 120 1 284 120 1 306 120 1 577 120 1 12 121 1 290 121 1 306 121 1 583 121 1 13 122 1 44 122 1 307 122 1 442 122 1 14 123 1 50 123 1 307 123 1 443 123 1 15 124 1 63 124 1 307 124 1 445 124 1 16 125 1 69 125 1 307 125 1 446 125 1 17 126 1 75 126 1 307 126 1 447 126 1 18 127 1 81 127 1 307 127 1 448 127 1 13 128 1 86 128 1 308 128 1 449 128 1 14 129 1 92 129 1 308 129 1 451 129 1 15 130 1 105 130 1 308 130 1 455 130 1 16 131 1 111 131 1 308 131 1 457 131 1 17 132 1 117 132 1 308 132 1 459 132 1 18 133 1 123 133 1 308 133 1 461 133 1 13 134 1 128 134 1 309 134 1 463 134 1 14 135 1 134 135 1 309 135 1 466 135 1 15 136 1 147 136 1 309 136 1 472 136 1 16 137 1 153 137 1 309 137 1 475 137 1 17 138 1 159 138 1 309 138 1 478 138 1 18 139 1 165 139 1 309 139 1 481 139 1 13 140 1 170 140 1 310 140 1 484 140 1 14 141 1 176 141 1 310 141 1 488 141 1 15 142 1 189 142 1 310 142 1 496 142 1 16 143 1 195 143 1 310 143 1 500 143 1 17 144 1 201 144 1 310 144 1 504 144 1 18 145 1 207 145 1 310 145 1 508 145 1 13 146 1 212 146 1 311 146 1 512 146 1 14 147 1 218 147 1 311 147 1 517 147 1 15 148 1 231 148 1 311 148 1 527 148 1 16 149 1 237 149 1 311 149 1 532 149 1 17 150 1 243 150 1 311 150 1 537 150 1 18 151 1 249 151 1 311 151 1 542 151 1 13 152 1 254 152 1 312 152 1 547 152 1 14 153 1 260 153 1 312 153 1 553 153 1 15 154 1 273 154 1 312 154 1 565 154 1 16 155 1 279 155 1 312 155 1 571 155 1 17 156 1 285 156 1 312 156 1 577 156 1 18 157 1 291 157 1 312 157 1 583 157 1 19 158 1 45 158 1 313 158 1 442 158 1 20 159 1 51 159 1 313 159 1 443 159 1 21 160 1 57 160 1 313 160 1 444 160 1 22 161 1 70 161 1 313 161 1 446 161 1 23 162 1 76 162 1 313 162 1 447 162 1 24 163 1 82 163 1 313 163 1 448 163 1 19 164 1 87 164 1 314 164 1 449 164 1 20 165 1 93 165 1 314 165 1 451 165 1 21 166 1 99 166 1 314 166 1 453 166 1 22 167 1 112 167 1 314 167 1 457 167 1 23 168 1 118 168 1 314 168 1 459 168 1 24 169 1 124 169 1 314 169 1 461 169 1 19 170 1 129 170 1 315 170 1 463 170 1 20 171 1 135 171 1 315 171 1 466 171 1 21 172 1 141 172 1 315 172 1 469 172 1 22 173 1 154 173 1 315 173 1 475 173 1 23 174 1 160 174 1 315 174 1 478 174 1 24 175 1 166 175 1 315 175 1 481 175 1 19 176 1 171 176 1 316 176 1 484 176 1 20 177 1 177 177 1 316 177 1 488 177 1 21 178 1 183 178 1 316 178 1 492 178 1 22 179 1 196 179 1 316 179 1 500 179 1 23 180 1 202 180 1 316 180 1 504 180 1 24 181 1 208 181 1 316 181 1 508 181 1 19 182 1 213 182 1 317 182 1 512 182 1 20 183 1 219 183 1 317 183 1 517 183 1 21 184 1 225 184 1 317 184 1 522 184 1 22 185 1 238 185 1 317 185 1 532 185 1 23 186 1 244 186 1 317 186 1 537 186 1 24 187 1 250 187 1 317 187 1 542 187 1 19 188 1 255 188 1 318 188 1 547 188 1 20 189 1 261 189 1 318 189 1 553 189 1 21 190 1 267 190 1 318 190 1 559 190 1 22 191 1 280 191 1 318 191 1 571 191 1 23 192 1 286 192 1 318 192 1 577 192 1 24 193 1 292 193 1 318 193 1 583 193 1 25 194 1 46 194 1 319 194 1 442 194 1 26 195 1 52 195 1 319 195 1 443 195 1 27 196 1 58 196 1 319 196 1 444 196 1 28 197 1 64 197 1 319 197 1 445 197 1 29 198 1 77 198 1 319 198 1 447 198 1 30 199 1 83 199 1 319 199 1 448 199 1 25 200 1 88 200 1 320 200 1 449 200 1 26 201 1 94 201 1 320 201 1 451 201 1 27 202 1 100 202 1 320 202 1 453 202 1 28 203 1 106 203 1 320 203 1 455 203 1 29 204 1 119 204 1 320 204 1 459 204 1 30 205 1 125 205 1 320 205 1 461 205 1 25 206 1 130 206 1 321 206 1 463 206 1 26 207 1 136 207 1 321 207 1 466 207 1 27 208 1 142 208 1 321 208 1 469 208 1 28 209 1 148 209 1 321 209 1 472 209 1 29 210 1 161 210 1 321 210 1 478 210 1 30 211 1 167 211 1 321 211 1 481 211 1 25 212 1 172 212 1 322 212 1 484 212 1 26 213 1 178 213 1 322 213 1 488 213 1 27 214 1 184 214 1 322 214 1 492 214 1 28 215 1 190 215 1 322 215 1 496 215 1 29 216 1 203 216 1 322 216 1 504 216 1 30 217 1 209 217 1 322 217 1 508 217 1 25 218 1 214 218 1 323 218 1 512 218 1 26 219 1 220 219 1 323 219 1 517 219 1 27 220 1 226 220 1 323 220 1 522 220 1 28 221 1 232 221 1 323 221 1 527 221 1 29 222 1 245 222 1 323 222 1 537 222 1 30 223 1 251 223 1 323 223 1 542 223 1 25 224 1 256 224 1 324 224 1 547 224 1 26 225 1 262 225 1 324 225 1 553 225 1 27 226 1 268 226 1 324 226 1 559 226 1 28 227 1 274 227 1 324 227 1 565 227 1 29 228 1 287 228 1 324 228 1 577 228 1 30 229 1 293 229 1 324 229 1 583 229 1 31 230 1 47 230 1 325 230 1 442 230 1 32 231 1 53 231 1 325 231 1 443 231 1 33 232 1 59 232 1 325 232 1 444 232 1 34 233 1 65 233 1 325 233 1 445 233 1 35 234 1 71 234 1 325 234 1 446 234 1 36 235 1 84 235 1 325 235 1 448 235 1 31 236 1 89 236 1 326 236 1 449 236 1 32 237 1 95 237 1 326 237 1 451 237 1 33 238 1 101 238 1 326 238 1 453 238 1 34 239 1 107 239 1 326 239 1 455 239 1 35 240 1 113 240 1 326 240 1 457 240 1 36 241 1 126 241 1 326 241 1 461 241 1 31 242 1 131 242 1 327 242 1 463 242 1 32 243 1 137 243 1 327 243 1 466 243 1 33 244 1 143 244 1 327 244 1 469 244 1 34 245 1 149 245 1 327 245 1 472 245 1 35 246 1 155 246 1 327 246 1 475 246 1 36 247 1 168 247 1 327 247 1 481 247 1 31 248 1 173 248 1 328 248 1 484 248 1 32 249 1 179 249 1 328 249 1 488 249 1 33 250 1 185 250 1 328 250 1 492 250 1 34 251 1 191 251 1 328 251 1 496 251 1 35 252 1 197 252 1 328 252 1 500 252 1 36 253 1 210 253 1 328 253 1 508 253 1 31 254 1 215 254 1 329 254 1 512 254 1 32 255 1 221 255 1 329 255 1 517 255 1 33 256 1 227 256 1 329 256 1 522 256 1 34 257 1 233 257 1 329 257 1 527 257 1 35 258 1 239 258 1 329 258 1 532 258 1 36 259 1 252 259 1 329 259 1 542 259 1 31 260 1 257 260 1 330 260 1 547 260 1 32 261 1 263 261 1 330 261 1 553 261 1 33 262 1 269 262 1 330 262 1 559 262 1 34 263 1 275 263 1 330 263 1 565 263 1 35 264 1 281 264 1 330 264 1 571 264 1 36 265 1 294 265 1 330 265 1 583 265 1 37 266 1 48 266 1 331 266 1 442 266 1 38 267 1 54 267 1 331 267 1 443 267 1 39 268 1 60 268 1 331 268 1 444 268 1 40 269 1 66 269 1 331 269 1 445 269 1 41 270 1 72 270 1 331 270 1 446 270 1 42 271 1 78 271 1 331 271 1 447 271 1 37 272 1 90 272 1 332 272 1 449 272 1 38 273 1 96 273 1 332 273 1 451 273 1 39 274 1 102 274 1 332 274 1 453 274 1 40 275 1 108 275 1 332 275 1 455 275 1 41 276 1 114 276 1 332 276 1 457 276 1 42 277 1 120 277 1 332 277 1 459 277 1 37 278 1 132 278 1 333 278 1 463 278 1 38 279 1 138 279 1 333 279 1 466 279 1 39 280 1 144 280 1 333 280 1 469 280 1 40 281 1 150 281 1 333 281 1 472 281 1 41 282 1 156 282 1 333 282 1 475 282 1 42 283 1 162 283 1 333 283 1 478 283 1 37 284 1 174 284 1 334 284 1 484 284 1 38 285 1 180 285 1 334 285 1 488 285 1 39 286 1 186 286 1 334 286 1 492 286 1 40 287 1 192 287 1 334 287 1 496 287 1 41 288 1 198 288 1 334 288 1 500 288 1 42 289 1 204 289 1 334 289 1 504 289 1 37 290 1 216 290 1 335 290 1 512 290 1 38 291 1 222 291 1 335 291 1 517 291 1 39 292 1 228 292 1 335 292 1 522 292 1 40 293 1 234 293 1 335 293 1 527 293 1 41 294 1 240 294 1 335 294 1 532 294 1 42 295 1 246 295 1 335 295 1 537 295 1 37 296 1 258 296 1 336 296 1 547 296 1 38 297 1 264 297 1 336 297 1 553 297 1 39 298 1 270 298 1 336 298 1 559 298 1 40 299 1 276 299 1 336 299 1 565 299 1 41 300 1 282 300 1 336 300 1 571 300 1 42 301 1 288 301 1 336 301 1 577 301 1 43 302 1 91 302 1 337 302 1 452 302 1 44 303 1 97 303 1 337 303 1 454 303 1 45 304 1 103 304 1 337 304 1 456 304 1 46 305 1 109 305 1 337 305 1 458 305 1 47 306 1 115 306 1 337 306 1 460 306 1 48 307 1 121 307 1 337 307 1 462 307 1 43 308 1 133 308 1 338 308 1 467 308 1 44 309 1 139 309 1 338 309 1 470 309 1 45 310 1 145 310 1 338 310 1 473 310 1 46 311 1 151 311 1 338 311 1 476 311 1 47 312 1 157 312 1 338 312 1 479 312 1 48 313 1 163 313 1 338 313 1 482 313 1 43 314 1 175 314 1 339 314 1 489 314 1 44 315 1 181 315 1 339 315 1 493 315 1 45 316 1 187 316 1 339 316 1 497 316 1 46 317 1 193 317 1 339 317 1 501 317 1 47 318 1 199 318 1 339 318 1 505 318 1 48 319 1 205 319 1 339 319 1 509 319 1 43 320 1 217 320 1 340 320 1 518 320 1 44 321 1 223 321 1 340 321 1 523 321 1 45 322 1 229 322 1 340 322 1 528 322 1 46 323 1 235 323 1 340 323 1 533 323 1 47 324 1 241 324 1 340 324 1 538 324 1 48 325 1 247 325 1 340 325 1 543 325 1 43 326 1 259 326 1 341 326 1 554 326 1 44 327 1 265 327 1 341 327 1 560 327 1 45 328 1 271 328 1 341 328 1 566 328 1 46 329 1 277 329 1 341 329 1 572 329 1 47 330 1 283 330 1 341 330 1 578 330 1 48 331 1 289 331 1 341 331 1 584 331 1 49 332 1 85 332 1 342 332 1 450 332 1 50 333 1 98 333 1 342 333 1 454 333 1 51 334 1 104 334 1 342 334 1 456 334 1 52 335 1 110 335 1 342 335 1 458 335 1 53 336 1 116 336 1 342 336 1 460 336 1 54 337 1 122 337 1 342 337 1 462 337 1 49 338 1 127 338 1 343 338 1 464 338 1 50 339 1 140 339 1 343 339 1 470 339 1 51 340 1 146 340 1 343 340 1 473 340 1 52 341 1 152 341 1 343 341 1 476 341 1 53 342 1 158 342 1 343 342 1 479 342 1 54 343 1 164 343 1 343 343 1 482 343 1 49 344 1 169 344 1 344 344 1 485 344 1 50 345 1 182 345 1 344 345 1 493 345 1 51 346 1 188 346 1 344 346 1 497 346 1 52 347 1 194 347 1 344 347 1 501 347 1 53 348 1 200 348 1 344 348 1 505 348 1 54 349 1 206 349 1 344 349 1 509 349 1 49 350 1 211 350 1 345 350 1 513 350 1 50 351 1 224 351 1 345 351 1 523 351 1 51 352 1 230 352 1 345 352 1 528 352 1 52 353 1 236 353 1 345 353 1 533 353 1 53 354 1 242 354 1 345 354 1 538 354 1 54 355 1 248 355 1 345 355 1 543 355 1 49 356 1 253 356 1 346 356 1 548 356 1 50 357 1 266 357 1 346 357 1 560 357 1 51 358 1 272 358 1 346 358 1 566 358 1 52 359 1 278 359 1 346 359 1 572 359 1 53 360 1 284 360 1 346 360 1 578 360 1 54 361 1 290 361 1 346 361 1 584 361 1 55 362 1 86 362 1 347 362 1 450 362 1 56 363 1 92 363 1 347 363 1 452 363 1 57 364 1 105 364 1 347 364 1 456 364 1 58 365 1 111 365 1 347 365 1 458 365 1 59 366 1 117 366 1 347 366 1 460 366 1 60 367 1 123 367 1 347 367 1 462 367 1 55 368 1 128 368 1 348 368 1 464 368 1 56 369 1 134 369 1 348 369 1 467 369 1 57 370 1 147 370 1 348 370 1 473 370 1 58 371 1 153 371 1 348 371 1 476 371 1 59 372 1 159 372 1 348 372 1 479 372 1 60 373 1 165 373 1 348 373 1 482 373 1 55 374 1 170 374 1 349 374 1 485 374 1 56 375 1 176 375 1 349 375 1 489 375 1 57 376 1 189 376 1 349 376 1 497 376 1 58 377 1 195 377 1 349 377 1 501 377 1 59 378 1 201 378 1 349 378 1 505 378 1 60 379 1 207 379 1 349 379 1 509 379 1 55 380 1 212 380 1 350 380 1 513 380 1 56 381 1 218 381 1 350 381 1 518 381 1 57 382 1 231 382 1 350 382 1 528 382 1 58 383 1 237 383 1 350 383 1 533 383 1 59 384 1 243 384 1 350 384 1 538 384 1 60 385 1 249 385 1 350 385 1 543 385 1 55 386 1 254 386 1 351 386 1 548 386 1 56 387 1 260 387 1 351 387 1 554 387 1 57 388 1 273 388 1 351 388 1 566 388 1 58 389 1 279 389 1 351 389 1 572 389 1 59 390 1 285 390 1 351 390 1 578 390 1 60 391 1 291 391 1 351 391 1 584 391 1 61 392 1 87 392 1 352 392 1 450 392 1 62 393 1 93 393 1 352 393 1 452 393 1 63 394 1 99 394 1 352 394 1 454 394 1 64 395 1 112 395 1 352 395 1 458 395 1 65 396 1 118 396 1 352 396 1 460 396 1 66 397 1 124 397 1 352 397 1 462 397 1 61 398 1 129 398 1 353 398 1 464 398 1 62 399 1 135 399 1 353 399 1 467 399 1 63 400 1 141 400 1 353 400 1 470 400 1 64 401 1 154 401 1 353 401 1 476 401 1 65 402 1 160 402 1 353 402 1 479 402 1 66 403 1 166 403 1 353 403 1 482 403 1 61 404 1 171 404 1 354 404 1 485 404 1 62 405 1 177 405 1 354 405 1 489 405 1 63 406 1 183 406 1 354 406 1 493 406 1 64 407 1 196 407 1 354 407 1 501 407 1 65 408 1 202 408 1 354 408 1 505 408 1 66 409 1 208 409 1 354 409 1 509 409 1 61 410 1 213 410 1 355 410 1 513 410 1 62 411 1 219 411 1 355 411 1 518 411 1 63 412 1 225 412 1 355 412 1 523 412 1 64 413 1 238 413 1 355 413 1 533 413 1 65 414 1 244 414 1 355 414 1 538 414 1 66 415 1 250 415 1 355 415 1 543 415 1 61 416 1 255 416 1 356 416 1 548 416 1 62 417 1 261 417 1 356 417 1 554 417 1 63 418 1 267 418 1 356 418 1 560 418 1 64 419 1 280 419 1 356 419 1 572 419 1 65 420 1 286 420 1 356 420 1 578 420 1 66 421 1 292 421 1 356 421 1 584 421 1 67 422 1 88 422 1 357 422 1 450 422 1 68 423 1 94 423 1 357 423 1 452 423 1 69 424 1 100 424 1 357 424 1 454 424 1 70 425 1 106 425 1 357 425 1 456 425 1 71 426 1 119 426 1 357 426 1 460 426 1 72 427 1 125 427 1 357 427 1 462 427 1 67 428 1 130 428 1 358 428 1 464 428 1 68 429 1 136 429 1 358 429 1 467 429 1 69 430 1 142 430 1 358 430 1 470 430 1 70 431 1 148 431 1 358 431 1 473 431 1 71 432 1 161 432 1 358 432 1 479 432 1 72 433 1 167 433 1 358 433 1 482 433 1 67 434 1 172 434 1 359 434 1 485 434 1 68 435 1 178 435 1 359 435 1 489 435 1 69 436 1 184 436 1 359 436 1 493 436 1 70 437 1 190 437 1 359 437 1 497 437 1 71 438 1 203 438 1 359 438 1 505 438 1 72 439 1 209 439 1 359 439 1 509 439 1 67 440 1 214 440 1 360 440 1 513 440 1 68 441 1 220 441 1 360 441 1 518 441 1 69 442 1 226 442 1 360 442 1 523 442 1 70 443 1 232 443 1 360 443 1 528 443 1 71 444 1 245 444 1 360 444 1 538 444 1 72 445 1 251 445 1 360 445 1 543 445 1 67 446 1 256 446 1 361 446 1 548 446 1 68 447 1 262 447 1 361 447 1 554 447 1 69 448 1 268 448 1 361 448 1 560 448 1 70 449 1 274 449 1 361 449 1 566 449 1 71 450 1 287 450 1 361 450 1 578 450 1 72 451 1 293 451 1 361 451 1 584 451 1 73 452 1 89 452 1 362 452 1 450 452 1 74 453 1 95 453 1 362 453 1 452 453 1 75 454 1 101 454 1 362 454 1 454 454 1 76 455 1 107 455 1 362 455 1 456 455 1 77 456 1 113 456 1 362 456 1 458 456 1 78 457 1 126 457 1 362 457 1 462 457 1 73 458 1 131 458 1 363 458 1 464 458 1 74 459 1 137 459 1 363 459 1 467 459 1 75 460 1 143 460 1 363 460 1 470 460 1 76 461 1 149 461 1 363 461 1 473 461 1 77 462 1 155 462 1 363 462 1 476 462 1 78 463 1 168 463 1 363 463 1 482 463 1 73 464 1 173 464 1 364 464 1 485 464 1 74 465 1 179 465 1 364 465 1 489 465 1 75 466 1 185 466 1 364 466 1 493 466 1 76 467 1 191 467 1 364 467 1 497 467 1 77 468 1 197 468 1 364 468 1 501 468 1 78 469 1 210 469 1 364 469 1 509 469 1 73 470 1 215 470 1 365 470 1 513 470 1 74 471 1 221 471 1 365 471 1 518 471 1 75 472 1 227 472 1 365 472 1 523 472 1 76 473 1 233 473 1 365 473 1 528 473 1 77 474 1 239 474 1 365 474 1 533 474 1 78 475 1 252 475 1 365 475 1 543 475 1 73 476 1 257 476 1 366 476 1 548 476 1 74 477 1 263 477 1 366 477 1 554 477 1 75 478 1 269 478 1 366 478 1 560 478 1 76 479 1 275 479 1 366 479 1 566 479 1 77 480 1 281 480 1 366 480 1 572 480 1 78 481 1 294 481 1 366 481 1 584 481 1 79 482 1 90 482 1 367 482 1 450 482 1 80 483 1 96 483 1 367 483 1 452 483 1 81 484 1 102 484 1 367 484 1 454 484 1 82 485 1 108 485 1 367 485 1 456 485 1 83 486 1 114 486 1 367 486 1 458 486 1 84 487 1 120 487 1 367 487 1 460 487 1 79 488 1 132 488 1 368 488 1 464 488 1 80 489 1 138 489 1 368 489 1 467 489 1 81 490 1 144 490 1 368 490 1 470 490 1 82 491 1 150 491 1 368 491 1 473 491 1 83 492 1 156 492 1 368 492 1 476 492 1 84 493 1 162 493 1 368 493 1 479 493 1 79 494 1 174 494 1 369 494 1 485 494 1 80 495 1 180 495 1 369 495 1 489 495 1 81 496 1 186 496 1 369 496 1 493 496 1 82 497 1 192 497 1 369 497 1 497 497 1 83 498 1 198 498 1 369 498 1 501 498 1 84 499 1 204 499 1 369 499 1 505 499 1 79 500 1 216 500 1 370 500 1 513 500 1 80 501 1 222 501 1 370 501 1 518 501 1 81 502 1 228 502 1 370 502 1 523 502 1 82 503 1 234 503 1 370 503 1 528 503 1 83 504 1 240 504 1 370 504 1 533 504 1 84 505 1 246 505 1 370 505 1 538 505 1 79 506 1 258 506 1 371 506 1 548 506 1 80 507 1 264 507 1 371 507 1 554 507 1 81 508 1 270 508 1 371 508 1 560 508 1 82 509 1 276 509 1 371 509 1 566 509 1 83 510 1 282 510 1 371 510 1 572 510 1 84 511 1 288 511 1 371 511 1 578 511 1 85 512 1 133 512 1 372 512 1 468 512 1 86 513 1 139 513 1 372 513 1 471 513 1 87 514 1 145 514 1 372 514 1 474 514 1 88 515 1 151 515 1 372 515 1 477 515 1 89 516 1 157 516 1 372 516 1 480 516 1 90 517 1 163 517 1 372 517 1 483 517 1 85 518 1 175 518 1 373 518 1 490 518 1 86 519 1 181 519 1 373 519 1 494 519 1 87 520 1 187 520 1 373 520 1 498 520 1 88 521 1 193 521 1 373 521 1 502 521 1 89 522 1 199 522 1 373 522 1 506 522 1 90 523 1 205 523 1 373 523 1 510 523 1 85 524 1 217 524 1 374 524 1 519 524 1 86 525 1 223 525 1 374 525 1 524 525 1 87 526 1 229 526 1 374 526 1 529 526 1 88 527 1 235 527 1 374 527 1 534 527 1 89 528 1 241 528 1 374 528 1 539 528 1 90 529 1 247 529 1 374 529 1 544 529 1 85 530 1 259 530 1 375 530 1 555 530 1 86 531 1 265 531 1 375 531 1 561 531 1 87 532 1 271 532 1 375 532 1 567 532 1 88 533 1 277 533 1 375 533 1 573 533 1 89 534 1 283 534 1 375 534 1 579 534 1 90 535 1 289 535 1 375 535 1 585 535 1 91 536 1 127 536 1 376 536 1 465 536 1 92 537 1 140 537 1 376 537 1 471 537 1 93 538 1 146 538 1 376 538 1 474 538 1 94 539 1 152 539 1 376 539 1 477 539 1 95 540 1 158 540 1 376 540 1 480 540 1 96 541 1 164 541 1 376 541 1 483 541 1 91 542 1 169 542 1 377 542 1 486 542 1 92 543 1 182 543 1 377 543 1 494 543 1 93 544 1 188 544 1 377 544 1 498 544 1 94 545 1 194 545 1 377 545 1 502 545 1 95 546 1 200 546 1 377 546 1 506 546 1 96 547 1 206 547 1 377 547 1 510 547 1 91 548 1 211 548 1 378 548 1 514 548 1 92 549 1 224 549 1 378 549 1 524 549 1 93 550 1 230 550 1 378 550 1 529 550 1 94 551 1 236 551 1 378 551 1 534 551 1 95 552 1 242 552 1 378 552 1 539 552 1 96 553 1 248 553 1 378 553 1 544 553 1 91 554 1 253 554 1 379 554 1 549 554 1 92 555 1 266 555 1 379 555 1 561 555 1 93 556 1 272 556 1 379 556 1 567 556 1 94 557 1 278 557 1 379 557 1 573 557 1 95 558 1 284 558 1 379 558 1 579 558 1 96 559 1 290 559 1 379 559 1 585 559 1 97 560 1 128 560 1 380 560 1 465 560 1 98 561 1 134 561 1 380 561 1 468 561 1 99 562 1 147 562 1 380 562 1 474 562 1 100 563 1 153 563 1 380 563 1 477 563 1 101 564 1 159 564 1 380 564 1 480 564 1 102 565 1 165 565 1 380 565 1 483 565 1 97 566 1 170 566 1 381 566 1 486 566 1 98 567 1 176 567 1 381 567 1 490 567 1 99 568 1 189 568 1 381 568 1 498 568 1 100 569 1 195 569 1 381 569 1 502 569 1 101 570 1 201 570 1 381 570 1 506 570 1 102 571 1 207 571 1 381 571 1 510 571 1 97 572 1 212 572 1 382 572 1 514 572 1 98 573 1 218 573 1 382 573 1 519 573 1 99 574 1 231 574 1 382 574 1 529 574 1 100 575 1 237 575 1 382 575 1 534 575 1 101 576 1 243 576 1 382 576 1 539 576 1 102 577 1 249 577 1 382 577 1 544 577 1 97 578 1 254 578 1 383 578 1 549 578 1 98 579 1 260 579 1 383 579 1 555 579 1 99 580 1 273 580 1 383 580 1 567 580 1 100 581 1 279 581 1 383 581 1 573 581 1 101 582 1 285 582 1 383 582 1 579 582 1 102 583 1 291 583 1 383 583 1 585 583 1 103 584 1 129 584 1 384 584 1 465 584 1 104 585 1 135 585 1 384 585 1 468 585 1 105 586 1 141 586 1 384 586 1 471 586 1 106 587 1 154 587 1 384 587 1 477 587 1 107 588 1 160 588 1 384 588 1 480 588 1 108 589 1 166 589 1 384 589 1 483 589 1 103 590 1 171 590 1 385 590 1 486 590 1 104 591 1 177 591 1 385 591 1 490 591 1 105 592 1 183 592 1 385 592 1 494 592 1 106 593 1 196 593 1 385 593 1 502 593 1 107 594 1 202 594 1 385 594 1 506 594 1 108 595 1 208 595 1 385 595 1 510 595 1 103 596 1 213 596 1 386 596 1 514 596 1 104 597 1 219 597 1 386 597 1 519 597 1 105 598 1 225 598 1 386 598 1 524 598 1 106 599 1 238 599 1 386 599 1 534 599 1 107 600 1 244 600 1 386 600 1 539 600 1 108 601 1 250 601 1 386 601 1 544 601 1 103 602 1 255 602 1 387 602 1 549 602 1 104 603 1 261 603 1 387 603 1 555 603 1 105 604 1 267 604 1 387 604 1 561 604 1 106 605 1 280 605 1 387 605 1 573 605 1 107 606 1 286 606 1 387 606 1 579 606 1 108 607 1 292 607 1 387 607 1 585 607 1 109 608 1 130 608 1 388 608 1 465 608 1 110 609 1 136 609 1 388 609 1 468 609 1 111 610 1 142 610 1 388 610 1 471 610 1 112 611 1 148 611 1 388 611 1 474 611 1 113 612 1 161 612 1 388 612 1 480 612 1 114 613 1 167 613 1 388 613 1 483 613 1 109 614 1 172 614 1 389 614 1 486 614 1 110 615 1 178 615 1 389 615 1 490 615 1 111 616 1 184 616 1 389 616 1 494 616 1 112 617 1 190 617 1 389 617 1 498 617 1 113 618 1 203 618 1 389 618 1 506 618 1 114 619 1 209 619 1 389 619 1 510 619 1 109 620 1 214 620 1 390 620 1 514 620 1 110 621 1 220 621 1 390 621 1 519 621 1 111 622 1 226 622 1 390 622 1 524 622 1 112 623 1 232 623 1 390 623 1 529 623 1 113 624 1 245 624 1 390 624 1 539 624 1 114 625 1 251 625 1 390 625 1 544 625 1 109 626 1 256 626 1 391 626 1 549 626 1 110 627 1 262 627 1 391 627 1 555 627 1 111 628 1 268 628 1 391 628 1 561 628 1 112 629 1 274 629 1 391 629 1 567 629 1 113 630 1 287 630 1 391 630 1 579 630 1 114 631 1 293 631 1 391 631 1 585 631 1 115 632 1 131 632 1 392 632 1 465 632 1 116 633 1 137 633 1 392 633 1 468 633 1 117 634 1 143 634 1 392 634 1 471 634 1 118 635 1 149 635 1 392 635 1 474 635 1 119 636 1 155 636 1 392 636 1 477 636 1 120 637 1 168 637 1 392 637 1 483 637 1 115 638 1 173 638 1 393 638 1 486 638 1 116 639 1 179 639 1 393 639 1 490 639 1 117 640 1 185 640 1 393 640 1 494 640 1 118 641 1 191 641 1 393 641 1 498 641 1 119 642 1 197 642 1 393 642 1 502 642 1 120 643 1 210 643 1 393 643 1 510 643 1 115 644 1 215 644 1 394 644 1 514 644 1 116 645 1 221 645 1 394 645 1 519 645 1 117 646 1 227 646 1 394 646 1 524 646 1 118 647 1 233 647 1 394 647 1 529 647 1 119 648 1 239 648 1 394 648 1 534 648 1 120 649 1 252 649 1 394 649 1 544 649 1 115 650 1 257 650 1 395 650 1 549 650 1 116 651 1 263 651 1 395 651 1 555 651 1 117 652 1 269 652 1 395 652 1 561 652 1 118 653 1 275 653 1 395 653 1 567 653 1 119 654 1 281 654 1 395 654 1 573 654 1 120 655 1 294 655 1 395 655 1 585 655 1 121 656 1 132 656 1 396 656 1 465 656 1 122 657 1 138 657 1 396 657 1 468 657 1 123 658 1 144 658 1 396 658 1 471 658 1 124 659 1 150 659 1 396 659 1 474 659 1 125 660 1 156 660 1 396 660 1 477 660 1 126 661 1 162 661 1 396 661 1 480 661 1 121 662 1 174 662 1 397 662 1 486 662 1 122 663 1 180 663 1 397 663 1 490 663 1 123 664 1 186 664 1 397 664 1 494 664 1 124 665 1 192 665 1 397 665 1 498 665 1 125 666 1 198 666 1 397 666 1 502 666 1 126 667 1 204 667 1 397 667 1 506 667 1 121 668 1 216 668 1 398 668 1 514 668 1 122 669 1 222 669 1 398 669 1 519 669 1 123 670 1 228 670 1 398 670 1 524 670 1 124 671 1 234 671 1 398 671 1 529 671 1 125 672 1 240 672 1 398 672 1 534 672 1 126 673 1 246 673 1 398 673 1 539 673 1 121 674 1 258 674 1 399 674 1 549 674 1 122 675 1 264 675 1 399 675 1 555 675 1 123 676 1 270 676 1 399 676 1 561 676 1 124 677 1 276 677 1 399 677 1 567 677 1 125 678 1 282 678 1 399 678 1 573 678 1 126 679 1 288 679 1 399 679 1 579 679 1 127 680 1 175 680 1 400 680 1 491 680 1 128 681 1 181 681 1 400 681 1 495 681 1 129 682 1 187 682 1 400 682 1 499 682 1 130 683 1 193 683 1 400 683 1 503 683 1 131 684 1 199 684 1 400 684 1 507 684 1 132 685 1 205 685 1 400 685 1 511 685 1 127 686 1 217 686 1 401 686 1 520 686 1 128 687 1 223 687 1 401 687 1 525 687 1 129 688 1 229 688 1 401 688 1 530 688 1 130 689 1 235 689 1 401 689 1 535 689 1 131 690 1 241 690 1 401 690 1 540 690 1 132 691 1 247 691 1 401 691 1 545 691 1 127 692 1 259 692 1 402 692 1 556 692 1 128 693 1 265 693 1 402 693 1 562 693 1 129 694 1 271 694 1 402 694 1 568 694 1 130 695 1 277 695 1 402 695 1 574 695 1 131 696 1 283 696 1 402 696 1 580 696 1 132 697 1 289 697 1 402 697 1 586 697 1 133 698 1 169 698 1 403 698 1 487 698 1 134 699 1 182 699 1 403 699 1 495 699 1 135 700 1 188 700 1 403 700 1 499 700 1 136 701 1 194 701 1 403 701 1 503 701 1 137 702 1 200 702 1 403 702 1 507 702 1 138 703 1 206 703 1 403 703 1 511 703 1 133 704 1 211 704 1 404 704 1 515 704 1 134 705 1 224 705 1 404 705 1 525 705 1 135 706 1 230 706 1 404 706 1 530 706 1 136 707 1 236 707 1 404 707 1 535 707 1 137 708 1 242 708 1 404 708 1 540 708 1 138 709 1 248 709 1 404 709 1 545 709 1 133 710 1 253 710 1 405 710 1 550 710 1 134 711 1 266 711 1 405 711 1 562 711 1 135 712 1 272 712 1 405 712 1 568 712 1 136 713 1 278 713 1 405 713 1 574 713 1 137 714 1 284 714 1 405 714 1 580 714 1 138 715 1 290 715 1 405 715 1 586 715 1 139 716 1 170 716 1 406 716 1 487 716 1 140 717 1 176 717 1 406 717 1 491 717 1 141 718 1 189 718 1 406 718 1 499 718 1 142 719 1 195 719 1 406 719 1 503 719 1 143 720 1 201 720 1 406 720 1 507 720 1 144 721 1 207 721 1 406 721 1 511 721 1 139 722 1 212 722 1 407 722 1 515 722 1 140 723 1 218 723 1 407 723 1 520 723 1 141 724 1 231 724 1 407 724 1 530 724 1 142 725 1 237 725 1 407 725 1 535 725 1 143 726 1 243 726 1 407 726 1 540 726 1 144 727 1 249 727 1 407 727 1 545 727 1 139 728 1 254 728 1 408 728 1 550 728 1 140 729 1 260 729 1 408 729 1 556 729 1 141 730 1 273 730 1 408 730 1 568 730 1 142 731 1 279 731 1 408 731 1 574 731 1 143 732 1 285 732 1 408 732 1 580 732 1 144 733 1 291 733 1 408 733 1 586 733 1 145 734 1 171 734 1 409 734 1 487 734 1 146 735 1 177 735 1 409 735 1 491 735 1 147 736 1 183 736 1 409 736 1 495 736 1 148 737 1 196 737 1 409 737 1 503 737 1 149 738 1 202 738 1 409 738 1 507 738 1 150 739 1 208 739 1 409 739 1 511 739 1 145 740 1 213 740 1 410 740 1 515 740 1 146 741 1 219 741 1 410 741 1 520 741 1 147 742 1 225 742 1 410 742 1 525 742 1 148 743 1 238 743 1 410 743 1 535 743 1 149 744 1 244 744 1 410 744 1 540 744 1 150 745 1 250 745 1 410 745 1 545 745 1 145 746 1 255 746 1 411 746 1 550 746 1 146 747 1 261 747 1 411 747 1 556 747 1 147 748 1 267 748 1 411 748 1 562 748 1 148 749 1 280 749 1 411 749 1 574 749 1 149 750 1 286 750 1 411 750 1 580 750 1 150 751 1 292 751 1 411 751 1 586 751 1 151 752 1 172 752 1 412 752 1 487 752 1 152 753 1 178 753 1 412 753 1 491 753 1 153 754 1 184 754 1 412 754 1 495 754 1 154 755 1 190 755 1 412 755 1 499 755 1 155 756 1 203 756 1 412 756 1 507 756 1 156 757 1 209 757 1 412 757 1 511 757 1 151 758 1 214 758 1 413 758 1 515 758 1 152 759 1 220 759 1 413 759 1 520 759 1 153 760 1 226 760 1 413 760 1 525 760 1 154 761 1 232 761 1 413 761 1 530 761 1 155 762 1 245 762 1 413 762 1 540 762 1 156 763 1 251 763 1 413 763 1 545 763 1 151 764 1 256 764 1 414 764 1 550 764 1 152 765 1 262 765 1 414 765 1 556 765 1 153 766 1 268 766 1 414 766 1 562 766 1 154 767 1 274 767 1 414 767 1 568 767 1 155 768 1 287 768 1 414 768 1 580 768 1 156 769 1 293 769 1 414 769 1 586 769 1 157 770 1 173 770 1 415 770 1 487 770 1 158 771 1 179 771 1 415 771 1 491 771 1 159 772 1 185 772 1 415 772 1 495 772 1 160 773 1 191 773 1 415 773 1 499 773 1 161 774 1 197 774 1 415 774 1 503 774 1 162 775 1 210 775 1 415 775 1 511 775 1 157 776 1 215 776 1 416 776 1 515 776 1 158 777 1 221 777 1 416 777 1 520 777 1 159 778 1 227 778 1 416 778 1 525 778 1 160 779 1 233 779 1 416 779 1 530 779 1 161 780 1 239 780 1 416 780 1 535 780 1 162 781 1 252 781 1 416 781 1 545 781 1 157 782 1 257 782 1 417 782 1 550 782 1 158 783 1 263 783 1 417 783 1 556 783 1 159 784 1 269 784 1 417 784 1 562 784 1 160 785 1 275 785 1 417 785 1 568 785 1 161 786 1 281 786 1 417 786 1 574 786 1 162 787 1 294 787 1 417 787 1 586 787 1 163 788 1 174 788 1 418 788 1 487 788 1 164 789 1 180 789 1 418 789 1 491 789 1 165 790 1 186 790 1 418 790 1 495 790 1 166 791 1 192 791 1 418 791 1 499 791 1 167 792 1 198 792 1 418 792 1 503 792 1 168 793 1 204 793 1 418 793 1 507 793 1 163 794 1 216 794 1 419 794 1 515 794 1 164 795 1 222 795 1 419 795 1 520 795 1 165 796 1 228 796 1 419 796 1 525 796 1 166 797 1 234 797 1 419 797 1 530 797 1 167 798 1 240 798 1 419 798 1 535 798 1 168 799 1 246 799 1 419 799 1 540 799 1 163 800 1 258 800 1 420 800 1 550 800 1 164 801 1 264 801 1 420 801 1 556 801 1 165 802 1 270 802 1 420 802 1 562 802 1 166 803 1 276 803 1 420 803 1 568 803 1 167 804 1 282 804 1 420 804 1 574 804 1 168 805 1 288 805 1 420 805 1 580 805 1 169 806 1 217 806 1 421 806 1 521 806 1 170 807 1 223 807 1 421 807 1 526 807 1 171 808 1 229 808 1 421 808 1 531 808 1 172 809 1 235 809 1 421 809 1 536 809 1 173 810 1 241 810 1 421 810 1 541 810 1 174 811 1 247 811 1 421 811 1 546 811 1 169 812 1 259 812 1 422 812 1 557 812 1 170 813 1 265 813 1 422 813 1 563 813 1 171 814 1 271 814 1 422 814 1 569 814 1 172 815 1 277 815 1 422 815 1 575 815 1 173 816 1 283 816 1 422 816 1 581 816 1 174 817 1 289 817 1 422 817 1 587 817 1 175 818 1 211 818 1 423 818 1 516 818 1 176 819 1 224 819 1 423 819 1 526 819 1 177 820 1 230 820 1 423 820 1 531 820 1 178 821 1 236 821 1 423 821 1 536 821 1 179 822 1 242 822 1 423 822 1 541 822 1 180 823 1 248 823 1 423 823 1 546 823 1 175 824 1 253 824 1 424 824 1 551 824 1 176 825 1 266 825 1 424 825 1 563 825 1 177 826 1 272 826 1 424 826 1 569 826 1 178 827 1 278 827 1 424 827 1 575 827 1 179 828 1 284 828 1 424 828 1 581 828 1 180 829 1 290 829 1 424 829 1 587 829 1 181 830 1 212 830 1 425 830 1 516 830 1 182 831 1 218 831 1 425 831 1 521 831 1 183 832 1 231 832 1 425 832 1 531 832 1 184 833 1 237 833 1 425 833 1 536 833 1 185 834 1 243 834 1 425 834 1 541 834 1 186 835 1 249 835 1 425 835 1 546 835 1 181 836 1 254 836 1 426 836 1 551 836 1 182 837 1 260 837 1 426 837 1 557 837 1 183 838 1 273 838 1 426 838 1 569 838 1 184 839 1 279 839 1 426 839 1 575 839 1 185 840 1 285 840 1 426 840 1 581 840 1 186 841 1 291 841 1 426 841 1 587 841 1 187 842 1 213 842 1 427 842 1 516 842 1 188 843 1 219 843 1 427 843 1 521 843 1 189 844 1 225 844 1 427 844 1 526 844 1 190 845 1 238 845 1 427 845 1 536 845 1 191 846 1 244 846 1 427 846 1 541 846 1 192 847 1 250 847 1 427 847 1 546 847 1 187 848 1 255 848 1 428 848 1 551 848 1 188 849 1 261 849 1 428 849 1 557 849 1 189 850 1 267 850 1 428 850 1 563 850 1 190 851 1 280 851 1 428 851 1 575 851 1 191 852 1 286 852 1 428 852 1 581 852 1 192 853 1 292 853 1 428 853 1 587 853 1 193 854 1 214 854 1 429 854 1 516 854 1 194 855 1 220 855 1 429 855 1 521 855 1 195 856 1 226 856 1 429 856 1 526 856 1 196 857 1 232 857 1 429 857 1 531 857 1 197 858 1 245 858 1 429 858 1 541 858 1 198 859 1 251 859 1 429 859 1 546 859 1 193 860 1 256 860 1 430 860 1 551 860 1 194 861 1 262 861 1 430 861 1 557 861 1 195 862 1 268 862 1 430 862 1 563 862 1 196 863 1 274 863 1 430 863 1 569 863 1 197 864 1 287 864 1 430 864 1 581 864 1 198 865 1 293 865 1 430 865 1 587 865 1 199 866 1 215 866 1 431 866 1 516 866 1 200 867 1 221 867 1 431 867 1 521 867 1 201 868 1 227 868 1 431 868 1 526 868 1 202 869 1 233 869 1 431 869 1 531 869 1 203 870 1 239 870 1 431 870 1 536 870 1 204 871 1 252 871 1 431 871 1 546 871 1 199 872 1 257 872 1 432 872 1 551 872 1 200 873 1 263 873 1 432 873 1 557 873 1 201 874 1 269 874 1 432 874 1 563 874 1 202 875 1 275 875 1 432 875 1 569 875 1 203 876 1 281 876 1 432 876 1 575 876 1 204 877 1 294 877 1 432 877 1 587 877 1 205 878 1 216 878 1 433 878 1 516 878 1 206 879 1 222 879 1 433 879 1 521 879 1 207 880 1 228 880 1 433 880 1 526 880 1 208 881 1 234 881 1 433 881 1 531 881 1 209 882 1 240 882 1 433 882 1 536 882 1 210 883 1 246 883 1 433 883 1 541 883 1 205 884 1 258 884 1 434 884 1 551 884 1 206 885 1 264 885 1 434 885 1 557 885 1 207 886 1 270 886 1 434 886 1 563 886 1 208 887 1 276 887 1 434 887 1 569 887 1 209 888 1 282 888 1 434 888 1 575 888 1 210 889 1 288 889 1 434 889 1 581 889 1 211 890 1 259 890 1 435 890 1 558 890 1 212 891 1 265 891 1 435 891 1 564 891 1 213 892 1 271 892 1 435 892 1 570 892 1 214 893 1 277 893 1 435 893 1 576 893 1 215 894 1 283 894 1 435 894 1 582 894 1 216 895 1 289 895 1 435 895 1 588 895 1 217 896 1 253 896 1 436 896 1 552 896 1 218 897 1 266 897 1 436 897 1 564 897 1 219 898 1 272 898 1 436 898 1 570 898 1 220 899 1 278 899 1 436 899 1 576 899 1 221 900 1 284 900 1 436 900 1 582 900 1 222 901 1 290 901 1 436 901 1 588 901 1 223 902 1 254 902 1 437 902 1 552 902 1 224 903 1 260 903 1 437 903 1 558 903 1 225 904 1 273 904 1 437 904 1 570 904 1 226 905 1 279 905 1 437 905 1 576 905 1 227 906 1 285 906 1 437 906 1 582 906 1 228 907 1 291 907 1 437 907 1 588 907 1 229 908 1 255 908 1 438 908 1 552 908 1 230 909 1 261 909 1 438 909 1 558 909 1 231 910 1 267 910 1 438 910 1 564 910 1 232 911 1 280 911 1 438 911 1 576 911 1 233 912 1 286 912 1 438 912 1 582 912 1 234 913 1 292 913 1 438 913 1 588 913 1 235 914 1 256 914 1 439 914 1 552 914 1 236 915 1 262 915 1 439 915 1 558 915 1 237 916 1 268 916 1 439 916 1 564 916 1 238 917 1 274 917 1 439 917 1 570 917 1 239 918 1 287 918 1 439 918 1 582 918 1 240 919 1 293 919 1 439 919 1 588 919 1 241 920 1 257 920 1 440 920 1 552 920 1 242 921 1 263 921 1 440 921 1 558 921 1 243 922 1 269 922 1 440 922 1 564 922 1 244 923 1 275 923 1 440 923 1 570 923 1 245 924 1 281 924 1 440 924 1 576 924 1 246 925 1 294 925 1 440 925 1 588 925 1 247 926 1 258 926 1 441 926 1 552 926 1 248 927 1 264 927 1 441 927 1 558 927 1 249 928 1 270 928 1 441 928 1 564 928 1 250 929 1 276 929 1 441 929 1 570 929 1 251 930 1 282 930 1 441 930 1 576 930 1 252 931 1 288 931 1 441 931 1 582 931 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/S_d2q06c0000644001170100242450000027171710171311767016560 0ustar davisfac131 994 2390 1 1 1 9.96999999999999969580e-02 2 1 6.80000000000000048850e-02 1 2 1.33000000000000007105e-01 3 2 3.07999999999999996003e-01 1 3 1.26000000000000000888e-01 3 3 3.07999999999999996003e-01 1 4 1.11000000000000001443e-01 3 4 3.07999999999999996003e-01 4 5 1.00000000000000000000e+00 5 5 1.72409999999999996589e+00 4 6 -1.00000000000000000000e+00 5 6 -1.36240000000000005542e+00 4 7 -1.00000000000000000000e+00 5 7 -1.41640000000000010338e+00 4 8 9.50999999999999956479e-01 5 8 1.47150000000000003020e+00 6 9 3.87000000000000010658e-01 7 9 3.65999999999999992006e-01 6 10 4.73999999999999976907e-01 7 10 1.93000000000000004885e-01 6 11 4.18999999999999983569e-01 7 11 2.91999999999999981792e-01 6 12 4.43000000000000004885e-01 7 12 2.34999999999999986677e-01 6 13 3.92000000000000015099e-01 7 13 3.39000000000000023537e-01 8 14 4.48000000000000009326e-01 9 14 3.46999999999999975131e-01 8 15 4.89999999999999991118e-01 9 15 2.47999999999999998224e-01 8 16 4.42000000000000003997e-01 9 16 3.48999999999999976907e-01 8 17 4.39000000000000001332e-01 9 17 3.65999999999999992006e-01 8 18 4.94999999999999995559e-01 9 18 2.29000000000000009104e-01 8 19 4.52000000000000012879e-01 9 19 3.25000000000000011102e-01 10 20 4.48000000000000009326e-01 11 20 3.46999999999999975131e-01 10 21 4.89999999999999991118e-01 11 21 2.47999999999999998224e-01 10 22 4.42000000000000003997e-01 11 22 3.48999999999999976907e-01 10 23 4.39000000000000001332e-01 11 23 3.65999999999999992006e-01 10 24 4.94999999999999995559e-01 11 24 2.29000000000000009104e-01 10 25 4.52000000000000012879e-01 11 25 3.25000000000000011102e-01 12 26 1.00000000000000000000e+00 13 26 1.72409999999999996589e+00 12 27 -1.00000000000000000000e+00 13 27 -1.25000000000000000000e+00 12 28 -1.00000000000000000000e+00 13 28 -1.35139999999999993463e+00 12 29 7.44500000000000050626e-01 13 29 9.21399999999999996803e-01 12 30 8.06499999999999994671e-01 13 30 1.02059999999999995168e+00 12 31 6.87000000000000055067e-01 13 31 8.57700000000000017941e-01 12 32 7.41999999999999992895e-01 13 32 9.45799999999999974065e-01 12 33 1.00000000000000000000e+00 13 33 1.52210000000000000853e+00 14 34 1.00000000000000005551e-01 15 34 7.33333000000000012619e-01 16 34 1.66667000000000009585e-01 14 35 4.33333000000000023721e-01 15 35 4.00000000000000022204e-01 16 35 1.66667000000000009585e-01 14 36 4.33333000000000023721e-01 15 36 4.00000000000000022204e-01 16 36 1.66667000000000009585e-01 14 37 1.00000000000000005551e-01 15 37 4.00000000000000022204e-01 16 37 5.00000000000000000000e-01 14 38 1.00000000000000005551e-01 15 38 4.00000000000000022204e-01 16 38 5.00000000000000000000e-01 14 39 1.00000000000000005551e-01 15 39 7.33333000000000012619e-01 16 39 1.66667000000000009585e-01 17 40 1.00000000000000000000e+00 18 40 1.72399999999999997691e+00 17 41 -1.00000000000000000000e+00 18 41 -1.28210000000000001741e+00 17 42 -1.00000000000000000000e+00 18 42 -1.38890000000000002345e+00 17 43 8.06499999999999994671e-01 18 43 1.02059999999999995168e+00 17 44 8.28999999999999959144e-01 18 44 1.06570000000000009166e+00 17 45 7.41999999999999992895e-01 18 45 9.45799999999999974065e-01 17 46 8.01899999999999946176e-01 18 46 1.04010000000000002451e+00 17 47 1.00000000000000000000e+00 18 47 1.34410000000000007248e+00 17 48 1.00000000000000000000e+00 18 48 1.52210000000000000853e+00 4 49 9.69999999999999973355e-01 5 49 1.47150000000000003020e+00 19 49 -1.00000000000000000000e+00 19 50 -1.00000000000000000000e+00 20 50 9.69999999999999973355e-01 21 50 1.47150000000000003020e+00 19 51 1.43999999999999989120e-01 20 51 7.01999999999999957367e-01 21 51 8.42700000000000004619e-01 19 52 1.50999999999999995337e-01 20 52 7.35999999999999987566e-01 21 52 9.00900000000000034106e-01 19 53 1.84999999999999997780e-01 20 53 6.17999999999999993783e-01 21 53 7.38399999999999945288e-01 19 54 1.95000000000000006661e-01 20 54 6.53000000000000024869e-01 21 54 7.99300000000000010481e-01 19 55 1.54999999999999998890e-01 20 55 6.21999999999999997335e-01 21 55 7.47600000000000042277e-01 19 56 1.66000000000000008660e-01 20 56 6.62000000000000032863e-01 21 56 8.12300000000000022027e-01 19 57 1.90000000000000002220e-01 20 57 5.39000000000000034639e-01 21 57 6.45499999999999962697e-01 19 58 2.04999999999999987788e-01 20 58 5.83999999999999963585e-01 21 58 7.18300000000000049560e-01 19 59 1.47999999999999992673e-01 20 59 6.73000000000000042633e-01 21 59 8.13799999999999967848e-01 19 60 1.55999999999999999778e-01 20 60 7.11999999999999966249e-01 21 60 8.77900000000000013678e-01 19 61 1.85999999999999998668e-01 20 61 5.90999999999999969802e-01 21 61 7.11999999999999966249e-01 19 62 1.99000000000000010214e-01 20 62 6.30000000000000004441e-01 21 62 7.78699999999999947775e-01 19 63 1.53999999999999998002e-01 20 63 5.78999999999999959144e-01 21 63 7.00999999999999956479e-01 19 64 1.68000000000000010436e-01 20 64 6.31000000000000005329e-01 21 64 7.80000000000000026645e-01 19 65 1.85999999999999998668e-01 20 65 5.02000000000000001776e-01 21 65 6.06999999999999984013e-01 19 66 2.04999999999999987788e-01 20 66 5.55000000000000048850e-01 21 66 6.89400000000000012790e-01 20 67 -1.00000000000000000000e+00 21 67 -1.35319999999999995843e+00 20 68 -1.00000000000000000000e+00 21 68 -1.38700000000000001066e+00 20 69 9.50999999999999956479e-01 21 69 1.47150000000000003020e+00 20 70 1.00000000000000000000e+00 21 70 1.72409999999999996589e+00 9 71 -1.00000000000000000000e+00 22 71 1.00000000000000000000e+00 23 71 1.19049999999999989164e+00 8 72 -1.00000000000000000000e+00 22 72 1.00000000000000000000e+00 23 72 1.34590000000000009628e+00 22 73 -1.00000000000000000000e+00 23 73 -1.28370000000000006324e+00 24 73 -1.28369999999999997442e+01 22 74 -1.00000000000000000000e+00 23 74 -1.32279999999999997584e+00 24 74 -1.32274999999999991473e+01 22 75 9.96999999999999997335e-01 23 75 1.45120000000000004547e+00 24 75 8.99766860000000008313e+01 7 76 -1.00000000000000000000e+00 22 76 1.00000000000000000000e+00 23 76 1.13640000000000007674e+00 6 77 -1.00000000000000000000e+00 22 77 1.00000000000000000000e+00 23 77 1.36240000000000005542e+00 22 78 1.00000000000000000000e+00 23 78 1.49930000000000007709e+00 22 79 1.00000000000000000000e+00 23 79 1.69490000000000007319e+00 22 80 1.00000000000000000000e+00 23 80 1.69490000000000007319e+00 24 80 8.47457899999999995089e+01 25 81 -1.00000000000000000000e+00 26 81 -1.32980000000000009308e+00 27 81 -4.45000000000000017764e+00 25 82 1.00000000000000000000e+00 26 82 1.25000000000000000000e+00 27 82 3.00000000000000000000e+00 25 83 1.00000000000000000000e+00 26 83 1.29370000000000007212e+00 27 83 3.10000000000000008882e+00 25 84 1.00000000000000000000e+00 26 84 1.37739999999999995772e+00 27 84 4.61000000000000031974e+00 25 85 1.00000000000000000000e+00 26 85 1.34590000000000009628e+00 27 85 4.50999999999999978684e+00 25 86 1.00000000000000000000e+00 26 86 1.50180000000000002380e+00 27 86 1.51799999999999997158e+01 25 87 -1.00000000000000000000e+00 26 87 -1.24839999999999995417e+00 27 87 -4.17999999999999971578e+00 28 88 1.00000000000000000000e+00 29 88 1.72399999999999997691e+00 28 89 -1.00000000000000000000e+00 29 89 -1.33870000000000000107e+00 28 90 -1.00000000000000000000e+00 29 90 -1.31929999999999991722e+00 28 91 -1.00000000000000000000e+00 29 91 -1.38500000000000000888e+00 28 92 8.02000000000000046185e-01 29 92 1.02699999999999991296e+00 28 93 8.68999999999999994671e-01 29 93 1.13500000000000000888e+00 28 94 9.11000000000000031974e-01 29 94 1.19399999999999995026e+00 28 95 7.47999999999999998224e-01 29 95 9.69999999999999973355e-01 28 96 8.14999999999999946709e-01 29 96 1.07099999999999995204e+00 28 97 8.63999999999999990230e-01 29 97 1.13999999999999990230e+00 28 98 1.00000000000000000000e+00 29 98 1.54800000000000004263e+00 30 99 -1.00000000000000000000e+00 31 99 -1.39100000000000001421e+00 3 100 -1.00000000000000000000e+00 30 100 1.00000000000000000000e+00 31 100 1.40599999999999991651e+00 30 101 1.00000000000000000000e+00 31 101 1.29000000000000003553e+00 30 102 1.00000000000000000000e+00 31 102 1.29899999999999993250e+00 30 103 1.00000000000000000000e+00 31 103 1.32499999999999995559e+00 30 104 1.00000000000000000000e+00 31 104 1.34200000000000008171e+00 30 105 1.00000000000000000000e+00 31 105 1.37900000000000000355e+00 30 106 1.00000000000000000000e+00 31 106 1.39900000000000002132e+00 30 107 1.00000000000000000000e+00 31 107 1.47300000000000008704e+00 30 108 1.00000000000000000000e+00 31 108 1.53800000000000003375e+00 30 109 -1.00000000000000000000e+00 31 109 -1.53600000000000003197e+00 9 110 -1.00000000000000000000e+00 32 110 1.00000000000000000000e+00 33 110 1.19049999999999989164e+00 8 111 -1.00000000000000000000e+00 32 111 1.00000000000000000000e+00 33 111 1.34590000000000009628e+00 32 112 -1.00000000000000000000e+00 33 112 -1.35319999999999995843e+00 32 113 -1.00000000000000000000e+00 33 113 -1.38700000000000001066e+00 32 114 1.00000000000000000000e+00 33 114 1.35139999999999993463e+00 32 115 1.00000000000000000000e+00 33 115 1.29200000000000003730e+00 32 116 9.96999999999999997335e-01 33 116 1.44910000000000005471e+00 7 117 -1.00000000000000000000e+00 32 117 1.00000000000000000000e+00 33 117 1.13640000000000007674e+00 6 118 -1.00000000000000000000e+00 32 118 1.00000000000000000000e+00 33 118 1.36240000000000005542e+00 32 119 1.00000000000000000000e+00 33 119 1.49930000000000007709e+00 32 120 1.00000000000000000000e+00 33 120 1.69490000000000007319e+00 32 121 1.00000000000000000000e+00 33 121 1.69490000000000007319e+00 34 122 1.00000000000000000000e+00 35 122 1.72409999999999996589e+00 34 123 -1.00000000000000000000e+00 35 123 -1.30210000000000003517e+00 34 124 -1.00000000000000000000e+00 35 124 -1.38500000000000000888e+00 34 125 8.30500000000000015987e-01 35 125 1.05659999999999998366e+00 34 126 8.30500000000000015987e-01 35 126 1.05659999999999998366e+00 34 127 6.67000999999999955037e-01 35 127 8.61800000000000010481e-01 34 128 7.50000000000000000000e-01 35 128 9.79099999999999970335e-01 34 129 8.47001000000000003887e-01 35 129 1.12189999999999989733e+00 34 130 6.38000000000000011546e-01 35 130 8.24300000000000032685e-01 34 131 7.19999999999999973355e-01 35 131 9.42400000000000015454e-01 34 132 8.18999999999999950262e-01 35 132 1.09050000000000002487e+00 34 133 1.00000000000000000000e+00 35 133 1.50380000000000002558e+00 36 134 1.00000000000000000000e+00 37 134 1.70940000000000003055e+00 36 135 -1.00000000000000000000e+00 37 135 -1.40060000000000006715e+00 36 136 -1.00000000000000000000e+00 37 136 -1.29200000000000003730e+00 36 137 8.58999999999999985789e-01 37 137 1.12880000000000002558e+00 36 138 7.90000000000000035527e-01 37 138 1.00130000000000007887e+00 36 139 8.30999999999999960920e-01 37 139 1.07230000000000003091e+00 36 140 7.34999999999999986677e-01 37 140 9.48400000000000020783e-01 36 141 7.70000000000000017764e-01 37 141 1.01180000000000003268e+00 36 142 7.19999999999999973355e-01 37 142 9.29000000000000047962e-01 36 143 7.08999999999999963585e-01 37 143 9.35400000000000009237e-01 36 144 6.54000000000000025757e-01 37 144 8.41700000000000003730e-01 36 145 1.00000000000000000000e+00 37 145 1.56250000000000000000e+00 40 146 1.54600000000000004086e+00 41 146 -9.67399999999999948841e+00 38 147 7.98000000000000042633e-01 39 147 1.05079999999999995630e+00 41 147 -9.98866000000000013870e+01 38 148 7.52000000000000001776e-01 39 148 9.82800000000000006928e-01 41 148 -9.60833850000000069258e+01 38 149 7.62001000000000039414e-01 39 149 1.02540000000000008917e+00 41 149 -9.74258999999999986130e+01 38 150 7.11999999999999966249e-01 39 150 9.48999999999999954703e-01 41 150 -9.27698970000000002756e+01 38 151 7.65000000000000013323e-01 39 151 1.00750000000000006217e+00 41 151 -9.57279999999999944293e+01 38 152 7.15000999999999997669e-01 39 152 9.31501000000000023427e-01 41 152 -9.10623870000000010805e+01 38 153 6.93999999999999950262e-01 39 153 9.24401000000000028223e-01 41 153 -8.77765870000000063555e+01 38 154 6.45001000000000046519e-01 39 154 8.37400000000000033218e-01 41 154 -8.30540900000000021919e+01 38 155 1.00000000000000000000e+00 39 155 1.28530000000000010907e+00 41 155 -1.24388184999999992897e+02 38 156 1.00000000000000000000e+00 39 156 1.34590000000000009628e+00 41 156 -9.51029999999999944293e+01 38 157 1.00000000000000000000e+00 39 157 1.37739999999999995772e+00 41 157 -8.88915999999999968395e+01 38 158 1.00000000000000000000e+00 39 158 1.50150000000000005684e+00 41 158 -1.12547499999999999432e+02 38 159 -1.00000000000000000000e+00 39 159 -1.29200000000000003730e+00 40 159 -8.10300000000000020250e-01 41 159 1.28294600000000002638e+02 38 160 -1.00000000000000000000e+00 39 160 -1.39660000000000006359e+00 40 160 -8.10300000000000020250e-01 41 160 1.38687097999999991771e+02 38 161 -1.00000000000000000000e+00 39 161 -1.29200000000000003730e+00 40 161 -8.10300000000000020250e-01 41 161 1.28294600000000002638e+02 38 162 -1.00000000000000000000e+00 39 162 -1.39660000000000006359e+00 40 162 -8.75900000000000011902e-01 41 162 1.38687097999999991771e+02 38 163 -1.00000000000000000000e+00 39 163 -1.29200000000000003730e+00 40 163 -4.63100000000000011635e-01 41 163 1.20542599999999993088e+02 38 164 -1.00000000000000000000e+00 39 164 -1.39660000000000006359e+00 40 164 -5.00600000000000044942e-01 41 164 1.30307299000000000433e+02 42 165 1.00000000000000000000e+00 43 165 1.72399999999999997691e+00 42 166 -1.00000000000000000000e+00 43 166 -1.38500000000000000888e+00 42 167 -1.00000000000000000000e+00 43 167 -1.32630000000000003446e+00 42 168 -1.00000000000000000000e+00 43 168 -1.41640000000000010338e+00 42 169 -1.00000000000000000000e+00 43 169 -1.38500000000000000888e+00 42 170 -1.00000000000000000000e+00 43 170 -1.32630000000000003446e+00 42 171 -1.00000000000000000000e+00 43 171 -1.41640000000000010338e+00 42 172 8.49999999999999977796e-01 43 172 1.10499999999999998224e+00 42 173 9.11000000000000031974e-01 43 173 1.19399999999999995026e+00 42 174 9.37999999999999944933e-01 43 174 1.23399999999999998579e+00 42 175 7.96000000000000040856e-01 43 175 1.04200000000000003730e+00 42 176 8.63999999999999990230e-01 43 176 1.13999999999999990230e+00 42 177 8.91000000000000014211e-01 43 177 1.17999999999999993783e+00 42 178 1.00000000000000000000e+00 43 178 1.54800000000000004263e+00 44 179 1.00000000000000000000e+00 45 179 1.70940000000000003055e+00 44 180 -1.00000000000000000000e+00 45 180 -1.40060000000000006715e+00 44 181 -1.00000000000000000000e+00 45 181 -1.29200000000000003730e+00 44 182 8.26999999999999957367e-01 45 182 1.07400000000000006573e+00 44 183 8.70999999999999996447e-01 45 183 1.10959999999999991971e+00 44 184 7.90000000000000035527e-01 45 184 1.00130000000000007887e+00 44 185 7.43999999999999994671e-01 45 185 9.21900000000000052758e-01 44 186 7.34999999999999986677e-01 45 186 9.48400000000000020783e-01 44 187 6.68000000000000038192e-01 45 187 8.34999999999999964473e-01 44 188 7.19999999999999973355e-01 45 188 9.29000000000000047962e-01 44 189 6.60000000000000031086e-01 45 189 8.34400000000000030553e-01 44 190 6.54000000000000025757e-01 45 190 8.41700000000000003730e-01 44 191 5.92999999999999971578e-01 45 191 7.40299999999999958078e-01 44 192 1.00000000000000000000e+00 45 192 1.56250000000000000000e+00 46 193 -1.00000000000000000000e+00 47 193 -1.40650000000000008349e+00 46 194 -1.00000000000000000000e+00 47 194 -1.29200000000000003730e+00 46 195 -1.00000000000000000000e+00 47 195 -1.39660000000000006359e+00 46 196 -1.00000000000000000000e+00 47 196 -1.29200000000000003730e+00 46 197 -1.00000000000000000000e+00 47 197 -1.39660000000000006359e+00 46 198 7.98000000000000042633e-01 47 198 1.05079999999999995630e+00 46 199 7.62001000000000039414e-01 47 199 1.02540000000000008917e+00 46 200 7.65000000000000013323e-01 47 200 1.00750000000000006217e+00 46 201 6.93999999999999950262e-01 47 201 9.24401000000000028223e-01 46 202 1.00000000000000000000e+00 47 202 1.28530000000000010907e+00 46 203 1.00000000000000000000e+00 47 203 1.34590000000000009628e+00 46 204 1.00000000000000000000e+00 47 204 1.37739999999999995772e+00 46 205 1.00000000000000000000e+00 47 205 1.50150000000000005684e+00 46 206 -1.00000000000000000000e+00 47 206 -1.29200000000000003730e+00 11 207 -1.00000000000000000000e+00 48 207 1.00000000000000000000e+00 49 207 1.19049999999999989164e+00 10 208 -1.00000000000000000000e+00 48 208 1.00000000000000000000e+00 49 208 1.34590000000000009628e+00 48 209 -1.00000000000000000000e+00 49 209 -1.27550000000000007816e+00 50 209 -1.27550000000000007816e+01 48 210 -1.00000000000000000000e+00 49 210 -1.35870000000000001883e+00 50 210 -1.35869999999999997442e+01 48 211 -1.00000000000000000000e+00 49 211 -1.28370000000000006324e+00 50 211 -1.28369999999999997442e+01 48 212 -1.00000000000000000000e+00 49 212 -1.32279999999999997584e+00 50 212 -1.32274999999999991473e+01 48 213 1.00000000000000000000e+00 49 213 1.29370000000000007212e+00 48 214 1.00000000000000000000e+00 49 214 1.27229999999999998650e+00 48 215 1.00000000000000000000e+00 49 215 1.13640000000000007674e+00 48 216 1.00000000000000000000e+00 49 216 1.36240000000000005542e+00 48 217 9.96999999999999997335e-01 49 217 1.49479999999999990656e+00 48 218 1.00000000000000000000e+00 49 218 1.69490000000000007319e+00 48 219 1.00000000000000000000e+00 49 219 1.69490000000000007319e+00 50 219 8.47457899999999995089e+01 48 220 9.97999999999999998224e-01 49 220 1.30459999999999998188e+00 51 220 -1.00000000000000000000e+00 48 221 9.96999999999999997335e-01 49 221 1.45120000000000004547e+00 50 221 6.96599860000000035143e+01 52 221 -1.00000000000000000000e+00 11 222 -1.00000000000000000000e+00 53 222 1.00000000000000000000e+00 54 222 1.19049999999999989164e+00 10 223 -1.00000000000000000000e+00 53 223 1.00000000000000000000e+00 54 223 1.34590000000000009628e+00 53 224 -1.00000000000000000000e+00 54 224 -1.35319999999999995843e+00 53 225 -1.00000000000000000000e+00 54 225 -1.38700000000000001066e+00 53 226 1.00000000000000000000e+00 54 226 1.29370000000000007212e+00 53 227 1.00000000000000000000e+00 54 227 1.27229999999999998650e+00 53 228 9.96999999999999997335e-01 54 228 1.33469999999999999751e+00 53 229 1.00000000000000000000e+00 54 229 1.35139999999999993463e+00 51 230 -1.00000000000000000000e+00 53 230 1.00000000000000000000e+00 54 230 1.29200000000000003730e+00 51 231 -1.00000000000000000000e+00 53 231 9.97999999999999998224e-01 54 231 1.30459999999999998188e+00 52 232 -1.00000000000000000000e+00 53 232 9.96999999999999997335e-01 54 232 1.45120000000000004547e+00 53 233 1.00000000000000000000e+00 54 233 1.13640000000000007674e+00 53 234 1.00000000000000000000e+00 54 234 1.36240000000000005542e+00 53 235 9.96999999999999997335e-01 54 235 1.49479999999999990656e+00 53 236 1.00000000000000000000e+00 54 236 1.69490000000000007319e+00 53 237 1.00000000000000000000e+00 54 237 1.69490000000000007319e+00 55 238 1.00000000000000000000e+00 56 238 1.72409999999999996589e+00 55 239 -1.00000000000000000000e+00 56 239 -1.31059999999999998721e+00 55 240 -1.00000000000000000000e+00 56 240 -1.42050000000000009592e+00 55 241 8.30500000000000015987e-01 56 241 1.05659999999999998366e+00 55 242 8.90000000000000013323e-01 56 242 1.13880000000000003446e+00 55 243 9.21499999999999985789e-01 56 243 1.18890000000000006786e+00 55 244 8.30500000000000015987e-01 56 244 1.05659999999999998366e+00 55 245 8.90000000000000013323e-01 56 245 1.13880000000000003446e+00 55 246 9.21499999999999985789e-01 56 246 1.18890000000000006786e+00 55 247 7.50000000000000000000e-01 56 247 9.79099999999999970335e-01 55 248 8.47001000000000003887e-01 56 248 1.12189999999999989733e+00 55 249 8.92000000000000015099e-01 56 249 1.19409999999999993925e+00 55 250 7.19999999999999973355e-01 56 250 9.42400000000000015454e-01 55 251 8.18999999999999950262e-01 56 251 1.09050000000000002487e+00 55 252 8.71999999999999997335e-01 56 252 1.17359999999999997655e+00 55 253 1.00000000000000000000e+00 56 253 1.50380000000000002558e+00 2 254 -1.00000000000000000000e+00 57 254 1.00000000000000000000e+00 58 254 1.21649999999999991473e+00 1 255 -1.00000000000000000000e+00 57 255 1.00000000000000000000e+00 58 255 1.13119999999999998330e+00 3 256 -1.00000000000000000000e+00 57 256 1.00000000000000000000e+00 58 256 1.36060000000000003162e+00 57 257 -1.00000000000000000000e+00 58 257 -1.35139999999999993463e+00 57 258 -1.00000000000000000000e+00 58 258 -1.29869999999999996554e+00 57 259 1.00000000000000000000e+00 58 259 1.14290000000000002700e+00 57 260 1.00000000000000000000e+00 58 260 1.27229999999999998650e+00 57 261 1.00000000000000000000e+00 58 261 1.28039999999999998259e+00 57 262 1.00000000000000000000e+00 58 262 1.25000000000000000000e+00 57 263 1.00000000000000000000e+00 58 263 1.16009999999999990905e+00 57 264 1.00000000000000000000e+00 58 264 1.35499999999999998224e+00 57 265 1.00000000000000000000e+00 58 265 1.25000000000000000000e+00 57 266 1.00000000000000000000e+00 58 266 1.28210000000000001741e+00 57 267 1.00000000000000000000e+00 58 267 1.47059999999999990727e+00 57 268 1.00000000000000000000e+00 58 268 1.35499999999999998224e+00 57 269 1.00000000000000000000e+00 58 269 1.52439999999999997726e+00 57 270 1.00000000000000000000e+00 58 270 1.72409999999999996589e+00 59 271 1.00000000000000000000e+00 60 271 1.27229999999999998650e+00 59 272 -1.00000000000000000000e+00 60 272 -1.28370000000000006324e+00 61 272 -1.28369999999999997442e+01 59 273 -1.00000000000000000000e+00 60 273 -1.32279999999999997584e+00 61 273 -1.32274999999999991473e+01 59 274 6.97999999999999953815e-01 60 274 8.72500000000000053291e-01 59 275 1.00000000000000000000e+00 60 275 1.27059999999999995168e+00 59 276 1.00000000000000000000e+00 60 276 1.28370000000000006324e+00 59 277 9.96999999999999997335e-01 60 277 1.50600000000000000533e+00 59 278 1.00000000000000000000e+00 60 278 1.72409999999999996589e+00 59 279 1.00000000000000000000e+00 60 279 1.44930000000000003268e+00 61 279 8.69564909999999997581e+01 52 280 -1.00000000000000000000e+00 59 280 1.00000000000000000000e+00 60 280 1.44930000000000003268e+00 61 280 6.96599860000000035143e+01 59 281 1.00000000000000000000e+00 60 281 1.38309999999999999609e+00 61 281 7.12309889999999938937e+01 59 282 1.00000000000000000000e+00 60 282 1.35139999999999993463e+00 61 282 3.37800000000000011369e+01 59 283 1.00000000000000000000e+00 60 283 1.29370000000000007212e+00 59 284 5.44000000000000039080e-01 60 284 6.55399999999999982592e-01 62 284 2.14999999999999996669e-01 63 284 3.15199999999999980194e-01 59 285 5.15000000000000013323e-01 60 285 6.20500000000000051514e-01 62 285 2.65000000000000013323e-01 63 285 3.80699999999999982858e-01 59 286 5.06000000000000005329e-01 60 286 6.09600000000000030731e-01 62 286 2.01000000000000011990e-01 63 286 2.96499999999999985789e-01 59 287 4.05000000000000026645e-01 60 287 4.87999999999999989342e-01 62 287 3.44999999999999973355e-01 63 287 4.78499999999999980904e-01 62 288 -1.00000000000000000000e+00 63 288 -1.35319999999999995843e+00 62 289 -1.00000000000000000000e+00 63 289 -1.38700000000000001066e+00 62 290 1.00000000000000000000e+00 63 290 1.44930000000000003268e+00 52 291 -1.00000000000000000000e+00 62 291 1.00000000000000000000e+00 63 291 1.44930000000000003268e+00 62 292 1.00000000000000000000e+00 63 292 1.38309999999999999609e+00 62 293 1.00000000000000000000e+00 63 293 1.35139999999999993463e+00 62 294 1.00000000000000000000e+00 63 294 1.29370000000000007212e+00 62 295 1.00000000000000000000e+00 63 295 1.27229999999999998650e+00 62 296 6.97999999999999953815e-01 63 296 8.72500000000000053291e-01 62 297 1.00000000000000000000e+00 63 297 1.27059999999999995168e+00 62 298 1.00000000000000000000e+00 63 298 1.28370000000000006324e+00 62 299 9.96999999999999997335e-01 63 299 1.50600000000000000533e+00 62 300 1.00000000000000000000e+00 63 300 1.72409999999999996589e+00 64 301 1.00000000000000000000e+00 65 301 1.70940000000000003055e+00 64 302 -1.00000000000000000000e+00 65 302 -1.40060000000000006715e+00 64 303 -1.00000000000000000000e+00 65 303 -1.29200000000000003730e+00 64 304 7.90000000000000035527e-01 65 304 1.00130000000000007887e+00 64 305 7.43999999999999994671e-01 65 305 9.21900000000000052758e-01 64 306 7.34999999999999986677e-01 65 306 9.48400000000000020783e-01 64 307 6.68000000000000038192e-01 65 307 8.34999999999999964473e-01 64 308 7.19999999999999973355e-01 65 308 9.29000000000000047962e-01 64 309 6.60000000000000031086e-01 65 309 8.34400000000000030553e-01 64 310 6.54000000000000025757e-01 65 310 8.41700000000000003730e-01 64 311 5.92999999999999971578e-01 65 311 7.40299999999999958078e-01 64 312 1.00000000000000000000e+00 65 312 1.23300000000000009592e+00 64 313 1.00000000000000000000e+00 65 313 1.40450000000000008171e+00 64 314 1.00000000000000000000e+00 65 314 1.56250000000000000000e+00 64 315 4.33999999999999996891e-01 65 315 4.98900000000000010125e-01 66 315 3.55999999999999983125e-01 67 315 4.97900000000000009237e-01 64 316 4.04000000000000025757e-01 65 316 4.75300000000000000266e-01 66 316 3.31000000000000016431e-01 67 316 4.62899999999999978151e-01 64 317 3.96000000000000018652e-01 65 317 4.55199999999999993516e-01 66 317 3.24000000000000010214e-01 67 317 4.56299999999999983391e-01 64 318 3.59999999999999986677e-01 65 318 4.23499999999999987566e-01 66 318 2.93999999999999983569e-01 67 318 4.14100000000000023626e-01 66 319 -1.00000000000000000000e+00 67 319 -1.40060000000000006715e+00 66 320 -1.00000000000000000000e+00 67 320 -1.29200000000000003730e+00 66 321 8.85000000000000008882e-01 67 321 1.15399999999999991473e+00 66 322 8.58999999999999985789e-01 67 322 1.12880000000000002558e+00 66 323 7.90000000000000035527e-01 67 323 1.00130000000000007887e+00 66 324 8.59999999999999986677e-01 67 324 1.13300000000000000711e+00 66 325 8.30999999999999960920e-01 67 325 1.07230000000000003091e+00 66 326 7.34999999999999986677e-01 67 326 9.48400000000000020783e-01 66 327 7.70000000000000017764e-01 67 327 1.01180000000000003268e+00 66 328 7.19999999999999973355e-01 67 328 9.29000000000000047962e-01 66 329 7.08999999999999963585e-01 67 329 9.35400000000000009237e-01 66 330 6.54000000000000025757e-01 67 330 8.41700000000000003730e-01 66 331 1.00000000000000000000e+00 67 331 1.23300000000000009592e+00 66 332 1.00000000000000000000e+00 67 332 1.40450000000000008171e+00 66 333 1.00000000000000000000e+00 67 333 1.56250000000000000000e+00 66 334 1.00000000000000000000e+00 67 334 1.70940000000000003055e+00 2 335 -1.00000000000000000000e+00 68 335 1.00000000000000000000e+00 69 335 1.21649999999999991473e+00 1 336 -1.00000000000000000000e+00 68 336 1.00000000000000000000e+00 69 336 1.13119999999999998330e+00 3 337 -1.00000000000000000000e+00 68 337 1.00000000000000000000e+00 69 337 1.36060000000000003162e+00 68 338 -1.00000000000000000000e+00 69 338 -1.38890000000000002345e+00 68 339 -1.00000000000000000000e+00 69 339 -1.33329999999999992966e+00 68 340 -1.00000000000000000000e+00 69 340 -1.38890000000000002345e+00 68 341 -1.00000000000000000000e+00 69 341 -1.33329999999999992966e+00 68 342 1.00000000000000000000e+00 69 342 1.14290000000000002700e+00 68 343 1.00000000000000000000e+00 69 343 1.27229999999999998650e+00 68 344 1.00000000000000000000e+00 69 344 1.28039999999999998259e+00 68 345 1.00000000000000000000e+00 69 345 1.25000000000000000000e+00 68 346 1.00000000000000000000e+00 69 346 1.16009999999999990905e+00 68 347 1.00000000000000000000e+00 69 347 1.35499999999999998224e+00 68 348 1.00000000000000000000e+00 69 348 1.25000000000000000000e+00 68 349 1.00000000000000000000e+00 69 349 1.28210000000000001741e+00 68 350 1.00000000000000000000e+00 69 350 1.47059999999999990727e+00 68 351 1.00000000000000000000e+00 69 351 1.35499999999999998224e+00 68 352 1.00000000000000000000e+00 69 352 1.52439999999999997726e+00 68 353 1.00000000000000000000e+00 69 353 1.72409999999999996589e+00 70 354 1.00000000000000000000e+00 71 354 1.72409999999999996589e+00 70 355 -7.50000000000000000000e-01 71 355 -9.97340000000000004299e-01 70 356 -7.50000000000000000000e-01 71 356 -9.62910000000000043663e-01 70 357 -7.50000000000000000000e-01 71 357 -1.03239999999999998437e+00 70 358 -6.99999999999999955591e-01 71 358 -9.30849999999999955236e-01 70 359 -6.99999999999999955591e-01 71 359 -8.55700000000000016165e-01 70 360 -6.99999999999999955591e-01 71 360 -9.24699999999999966427e-01 70 361 -1.00000000000000000000e+00 71 361 -1.32980000000000009308e+00 70 362 -1.00000000000000000000e+00 71 362 -1.31749999999999989342e+00 70 363 -1.00000000000000000000e+00 71 363 -1.38700000000000001066e+00 70 364 7.60000000000000008882e-01 71 364 9.60799999999999987388e-01 70 365 8.00000000000000044409e-01 71 365 1.02699999999999991296e+00 70 366 7.19999999999999973355e-01 71 366 9.24300000000000010481e-01 70 367 7.69000000000000016875e-01 71 367 1.00390000000000001457e+00 70 368 7.04999999999999960032e-01 71 368 9.03800000000000047784e-01 70 369 7.56000000000000005329e-01 71 369 9.88199999999999967315e-01 70 370 6.54000000000000025757e-01 71 370 8.44999999999999973355e-01 70 371 7.08999999999999963585e-01 71 371 9.37799999999999966960e-01 70 372 1.00000000000000000000e+00 71 372 1.52669999999999994600e+00 72 373 1.00000000000000000000e+00 73 373 1.72409999999999996589e+00 72 374 -1.00000000000000000000e+00 73 374 -1.28540000000000009805e+00 72 375 -1.00000000000000000000e+00 73 375 -1.38890000000000002345e+00 72 376 -1.00000000000000000000e+00 73 376 -1.30210000000000003517e+00 72 377 -1.00000000000000000000e+00 73 377 -1.38890000000000002345e+00 72 378 8.06799999999999961631e-01 73 378 9.93600000000000038725e-01 72 379 8.51099999999999967670e-01 73 379 1.05729999999999990656e+00 72 380 7.89300000000000001599e-01 73 380 9.84199999999999963762e-01 72 381 8.34400000000000030553e-01 73 381 1.04960000000000008846e+00 72 382 4.56799999999999983835e-01 73 382 5.85600000000000009415e-01 72 383 4.84399999999999997247e-01 73 383 6.29099999999999992539e-01 72 384 4.19200000000000017053e-01 73 384 5.37399999999999988809e-01 72 385 4.49599999999999999645e-01 73 385 5.83899999999999974598e-01 72 386 6.93899999999999961275e-01 73 386 8.93100000000000004974e-01 72 387 7.24600000000000021849e-01 73 387 9.42300000000000026468e-01 72 388 7.73399999999999976374e-01 73 388 1.02029999999999998472e+00 72 389 6.08600000000000029843e-01 73 389 7.83299999999999996270e-01 72 390 6.43199999999999993960e-01 73 390 8.36400000000000032330e-01 72 391 6.98100000000000053824e-01 73 391 9.21000000000000040856e-01 72 392 6.70000000000000039968e-01 73 392 9.46300000000000030020e-01 72 393 6.70000000000000039968e-01 73 393 9.40999999999999947597e-01 72 394 1.00000000000000000000e+00 73 394 1.56010000000000004228e+00 74 395 1.00000000000000000000e+00 75 395 1.55279999999999995808e+00 74 396 -1.00000000000000000000e+00 75 396 -1.36240000000000005542e+00 74 397 -1.00000000000000000000e+00 75 397 -1.41840000000000010516e+00 74 398 -1.00000000000000000000e+00 75 398 -1.36240000000000005542e+00 74 399 -1.00000000000000000000e+00 75 399 -1.41840000000000010516e+00 74 400 9.59999999999999964473e-01 75 400 1.47920000000000007034e+00 74 401 8.24999999999999955591e-01 75 401 1.04430000000000000604e+00 74 402 8.71999999999999997335e-01 75 402 1.12080000000000001847e+00 74 403 9.00000000000000022204e-01 75 403 1.17040000000000010694e+00 74 404 7.81000000000000027534e-01 75 404 1.00130000000000007887e+00 74 405 8.32999999999999962697e-01 75 405 1.08749999999999991118e+00 74 406 8.69999999999999995559e-01 75 406 1.14779999999999993143e+00 74 407 7.36999999999999988454e-01 75 407 9.41300000000000025580e-01 74 408 8.03000000000000047073e-01 75 408 1.04150000000000009237e+00 74 409 8.41999999999999970690e-01 75 409 1.10499999999999998224e+00 74 410 6.91999999999999948486e-01 75 410 8.96399999999999974598e-01 74 411 7.64000000000000012434e-01 75 411 1.00790000000000001812e+00 74 412 8.12000000000000055067e-01 75 412 1.08119999999999993889e+00 74 413 1.00000000000000000000e+00 75 413 1.33870000000000000107e+00 74 414 1.00000000000000000000e+00 75 414 1.36610000000000009202e+00 74 415 1.00000000000000000000e+00 75 415 1.72409999999999996589e+00 74 416 9.67999999999999971578e-01 75 416 1.49150000000000004796e+00 76 416 -1.00000000000000000000e+00 74 417 1.00000000000000000000e+00 75 417 1.52669999999999994600e+00 76 417 -1.00000000000000000000e+00 76 418 -1.00000000000000000000e+00 77 418 9.67999999999999971578e-01 78 418 1.49150000000000004796e+00 76 419 1.48999999999999993561e-01 77 419 6.76000000000000045297e-01 78 419 8.17400000000000015454e-01 76 420 1.57000000000000000666e-01 77 420 7.14999999999999968914e-01 78 420 8.81600000000000050271e-01 76 421 1.86999999999999999556e-01 77 421 5.93999999999999972466e-01 78 421 7.15700000000000002842e-01 76 422 2.00000000000000011102e-01 77 422 6.33000000000000007105e-01 78 422 7.82399999999999984368e-01 76 423 1.54999999999999998890e-01 77 423 5.81999999999999961808e-01 78 423 7.04600000000000004086e-01 76 424 1.69000000000000011324e-01 77 424 6.34000000000000007994e-01 78 424 7.83699999999999952216e-01 76 425 1.86999999999999999556e-01 77 425 5.05000000000000004441e-01 78 425 6.10600000000000031619e-01 76 426 2.05999999999999988676e-01 77 426 5.58000000000000051514e-01 78 426 6.93200000000000038369e-01 76 427 -1.00000000000000000000e+00 77 427 1.00000000000000000000e+00 78 427 1.52669999999999994600e+00 77 428 -1.00000000000000000000e+00 78 428 -1.35319999999999995843e+00 77 429 -1.00000000000000000000e+00 78 429 -1.38700000000000001066e+00 77 430 9.59999999999999964473e-01 78 430 1.47920000000000007034e+00 77 431 8.07000000000000050626e-01 78 431 1.00869999999999993001e+00 77 432 8.24999999999999955591e-01 78 432 1.04430000000000000604e+00 77 433 8.71999999999999997335e-01 78 433 1.12080000000000001847e+00 77 434 7.44999999999999995559e-01 78 434 9.40699999999999980638e-01 77 435 7.81000000000000027534e-01 78 435 1.00130000000000007887e+00 77 436 8.32999999999999962697e-01 78 436 1.08749999999999991118e+00 77 437 7.09999999999999964473e-01 78 437 8.95299999999999984723e-01 77 438 7.36999999999999988454e-01 78 438 9.41300000000000025580e-01 77 439 8.03000000000000047073e-01 78 439 1.04150000000000009237e+00 77 440 6.49000000000000021316e-01 78 440 8.27799999999999980282e-01 77 441 6.91999999999999948486e-01 78 441 8.96399999999999974598e-01 77 442 7.64000000000000012434e-01 78 442 1.00790000000000001812e+00 77 443 1.00000000000000000000e+00 78 443 1.55279999999999995808e+00 77 444 1.00000000000000000000e+00 78 444 1.72409999999999996589e+00 79 445 1.00000000000000000000e+00 80 445 1.72409999999999996589e+00 79 446 -1.00000000000000000000e+00 80 446 -1.29869999999999996554e+00 79 447 -1.00000000000000000000e+00 80 447 -1.40850000000000008527e+00 79 448 -1.00000000000000000000e+00 80 448 -1.30210000000000003517e+00 79 449 -1.00000000000000000000e+00 80 449 -1.38500000000000000888e+00 79 450 8.28000999999999987011e-01 80 450 1.05339999999999989200e+00 79 451 8.28000999999999987011e-01 80 451 1.05339999999999989200e+00 79 452 7.61000000000000009770e-01 80 452 1.00000000000000000000e+00 79 453 8.30500000000000015987e-01 80 453 1.05659999999999998366e+00 79 454 8.30500000000000015987e-01 80 454 1.05659999999999998366e+00 79 455 7.50000000000000000000e-01 80 455 9.79099999999999970335e-01 79 456 8.47001000000000003887e-01 80 456 1.12189999999999989733e+00 79 457 7.44001000000000023427e-01 80 457 9.81500000000000039080e-01 79 458 7.19999999999999973355e-01 80 458 9.42400000000000015454e-01 79 459 8.18999999999999950262e-01 80 459 1.09050000000000002487e+00 79 460 1.00000000000000000000e+00 80 460 1.51520000000000010232e+00 79 461 1.00000000000000000000e+00 80 461 1.49140000000000005898e+00 79 462 1.00000000000000000000e+00 80 462 1.48150000000000003908e+00 79 463 1.00000000000000000000e+00 80 463 1.44930000000000003268e+00 79 464 1.00000000000000000000e+00 80 464 1.60000000000000008882e+00 81 465 1.00000000000000000000e+00 82 465 1.72409999999999996589e+00 81 466 -1.00000000000000000000e+00 82 466 -1.32450000000000001066e+00 81 467 -1.00000000000000000000e+00 82 467 -1.41840000000000010516e+00 81 468 7.63000000000000011546e-01 82 468 9.56999999999999961808e-01 81 469 7.95000000000000039968e-01 82 469 1.01269999999999993356e+00 81 470 8.23999999999999954703e-01 82 470 1.06049999999999999822e+00 81 471 7.60000000000000008882e-01 82 471 9.60799999999999987388e-01 81 472 8.00000000000000044409e-01 82 472 1.02699999999999991296e+00 81 473 8.26999999999999957367e-01 82 473 1.07400000000000006573e+00 81 474 7.19999999999999973355e-01 82 474 9.24300000000000010481e-01 81 475 7.69000000000000016875e-01 82 475 1.00390000000000001457e+00 81 476 8.06000000000000049738e-01 82 476 1.06610000000000004761e+00 81 477 7.82000000000000028422e-01 82 477 9.78700000000000014388e-01 81 478 8.13999999999999945821e-01 82 478 1.03429999999999999716e+00 81 479 8.40999999999999969802e-01 82 479 1.07959999999999989306e+00 81 480 7.04999999999999960032e-01 82 480 9.03800000000000047784e-01 81 481 7.56000000000000005329e-01 82 481 9.88199999999999967315e-01 81 482 7.96000000000000040856e-01 82 482 1.05150000000000010125e+00 81 483 6.54000000000000025757e-01 82 483 8.44999999999999973355e-01 81 484 7.08999999999999963585e-01 82 484 9.37799999999999966960e-01 81 485 7.52000000000000001776e-01 82 485 1.00940000000000007496e+00 81 486 1.00000000000000000000e+00 82 486 1.35139999999999993463e+00 81 487 1.00000000000000000000e+00 82 487 1.38890000000000002345e+00 81 488 1.00000000000000000000e+00 82 488 1.52669999999999994600e+00 79 489 4.49500000000000010658e-01 80 489 5.28499999999999969802e-01 83 489 3.81000000000000005329e-01 84 489 5.27699999999999946887e-01 79 490 4.06999999999999972911e-01 80 490 4.89800000000000013145e-01 83 490 3.43000000000000027089e-01 84 490 4.89300000000000012701e-01 79 491 3.90000000000000013323e-01 80 491 4.70399999999999984812e-01 83 491 3.30000000000000015543e-01 84 491 4.72100000000000019629e-01 83 492 -1.00000000000000000000e+00 84 492 -1.31059999999999998721e+00 83 493 -1.00000000000000000000e+00 84 493 -1.42050000000000009592e+00 83 494 -1.00000000000000000000e+00 84 494 -1.31059999999999998721e+00 83 495 -1.00000000000000000000e+00 84 495 -1.42050000000000009592e+00 83 496 8.30500000000000015987e-01 84 496 1.05659999999999998366e+00 83 497 8.90000000000000013323e-01 84 497 1.13880000000000003446e+00 83 498 9.21499999999999985789e-01 84 498 1.18890000000000006786e+00 83 499 8.30500000000000015987e-01 84 499 1.05659999999999998366e+00 83 500 8.90000000000000013323e-01 84 500 1.13880000000000003446e+00 83 501 9.21499999999999985789e-01 84 501 1.18890000000000006786e+00 83 502 7.50000000000000000000e-01 84 502 9.79099999999999970335e-01 83 503 8.47001000000000003887e-01 84 503 1.12189999999999989733e+00 83 504 8.92000000000000015099e-01 84 504 1.19409999999999993925e+00 83 505 7.19999999999999973355e-01 84 505 9.42400000000000015454e-01 83 506 8.18999999999999950262e-01 84 506 1.09050000000000002487e+00 83 507 8.71999999999999997335e-01 84 507 1.17359999999999997655e+00 83 508 1.00000000000000000000e+00 84 508 1.51520000000000010232e+00 83 509 1.00000000000000000000e+00 84 509 1.49140000000000005898e+00 83 510 1.00000000000000000000e+00 84 510 1.48150000000000003908e+00 83 511 1.00000000000000000000e+00 84 511 1.44930000000000003268e+00 83 512 1.00000000000000000000e+00 84 512 1.60000000000000008882e+00 83 513 1.00000000000000000000e+00 84 513 1.72409999999999996589e+00 83 514 1.00000000000000000000e+00 84 514 1.29030000000000000249e+00 85 514 -1.00000000000000000000e+00 86 514 -1.29030000000000000249e+00 85 515 2.81600000000000016964e-01 86 515 3.60599999999999976108e-01 85 516 2.81600000000000016964e-01 86 516 3.60599999999999976108e-01 85 517 2.81600000000000016964e-01 86 517 3.60599999999999976108e-01 85 518 2.81600000000000016964e-01 86 518 3.60599999999999976108e-01 85 519 2.30199999999999987965e-01 86 519 3.02099999999999979661e-01 85 520 2.30199999999999987965e-01 86 520 3.02099999999999979661e-01 85 521 -2.81600000000000016964e-01 86 521 -3.60599999999999976108e-01 85 522 3.84400000000000019451e-01 86 522 4.69499999999999972911e-01 85 523 3.62599999999999977884e-01 86 523 4.47299999999999975397e-01 85 524 3.19000000000000005773e-01 86 524 4.01399999999999979039e-01 85 525 2.06900000000000000577e-01 86 525 2.74600000000000010747e-01 85 526 2.23200000000000009504e-01 86 526 2.93899999999999994582e-01 85 527 2.30199999999999987965e-01 86 527 3.02099999999999979661e-01 85 528 2.53599999999999992095e-01 86 528 3.29100000000000003642e-01 85 529 -1.00000000000000000000e+00 86 529 -1.24219999999999997087e+00 79 530 1.00000000000000000000e+00 80 530 1.29030000000000000249e+00 85 530 -1.00000000000000000000e+00 86 530 -1.29030000000000000249e+00 85 531 -1.00000000000000000000e+00 86 531 -1.28049999999999997158e+00 85 532 -1.00000000000000000000e+00 86 532 -1.24219999999999997087e+00 87 532 1.00000000000000000000e+00 88 532 1.24219999999999997087e+00 85 533 -1.00000000000000000000e+00 86 533 -1.30719999999999991758e+00 87 533 1.00000000000000000000e+00 88 533 1.30719999999999991758e+00 85 534 2.81600000000000016964e-01 86 534 3.60599999999999976108e-01 87 534 -6.98999999999999954703e-01 88 534 -9.84500000000000041744e-01 85 535 2.81600000000000016964e-01 86 535 3.60599999999999976108e-01 87 535 -6.98999999999999954703e-01 88 535 -9.84500000000000041744e-01 85 536 2.81600000000000016964e-01 86 536 3.60599999999999976108e-01 87 536 -6.98999999999999954703e-01 88 536 -9.84500000000000041744e-01 87 537 -1.00000000000000000000e+00 88 537 -1.25000000000000000000e+00 87 538 -1.00000000000000000000e+00 88 538 -1.40850000000000008527e+00 87 539 -1.00000000000000000000e+00 88 539 -1.29869999999999996554e+00 87 540 -1.00000000000000000000e+00 88 540 -1.40850000000000008527e+00 87 541 -1.00000000000000000000e+00 88 541 -1.30210000000000003517e+00 87 542 -1.00000000000000000000e+00 88 542 -1.38500000000000000888e+00 87 543 8.44999999999999973355e-01 88 543 1.07509999999999994458e+00 87 544 8.79000000000000003553e-01 88 544 1.12260000000000004228e+00 87 545 8.28000999999999987011e-01 88 545 1.05339999999999989200e+00 87 546 8.28000999999999987011e-01 88 546 1.05339999999999989200e+00 87 547 7.61000000000000009770e-01 88 547 1.00000000000000000000e+00 87 548 7.44001000000000023427e-01 88 548 9.81500000000000039080e-01 87 549 8.12999999999999944933e-01 88 549 1.07679999999999997939e+00 87 550 7.88000999999999951484e-01 88 550 1.04929999999999989946e+00 87 551 1.00000000000000000000e+00 88 551 1.51520000000000010232e+00 87 552 1.00000000000000000000e+00 88 552 1.49140000000000005898e+00 87 553 1.00000000000000000000e+00 88 553 1.48150000000000003908e+00 87 554 1.00000000000000000000e+00 88 554 1.44930000000000003268e+00 87 555 1.00000000000000000000e+00 88 555 1.60000000000000008882e+00 87 556 1.00000000000000000000e+00 88 556 1.72409999999999996589e+00 87 557 4.68000000000000027089e-01 88 557 5.52899999999999947065e-01 89 557 3.96500000000000019096e-01 90 557 5.53401000000000031775e-01 87 558 4.48000000000000009326e-01 88 558 5.27100000000000012967e-01 89 558 3.80000000000000004441e-01 90 558 5.27800000000000046896e-01 87 559 4.57000000000000017319e-01 88 559 5.37000000000000032863e-01 89 559 3.88000000000000011546e-01 90 559 5.38100000000000022737e-01 87 560 4.12999999999999978240e-01 88 560 5.00000000000000000000e-01 89 560 3.47999999999999976019e-01 90 560 5.00000000000000000000e-01 87 561 4.04000000000000025757e-01 88 561 4.90900000000000003020e-01 89 561 3.40000000000000024425e-01 90 561 4.90599999999999980549e-01 89 562 -1.00000000000000000000e+00 90 562 -1.31059999999999998721e+00 89 563 -1.00000000000000000000e+00 90 563 -1.42050000000000009592e+00 89 564 -1.00000000000000000000e+00 90 564 -1.31059999999999998721e+00 89 565 -1.00000000000000000000e+00 90 565 -1.42050000000000009592e+00 89 566 8.64500000000000046185e-01 90 566 1.10620000000000007212e+00 89 567 9.01500999999999996781e-01 90 567 1.16250000000000008882e+00 89 568 8.64500000000000046185e-01 90 568 1.10620000000000007212e+00 89 569 9.01500999999999996781e-01 90 569 1.16250000000000008882e+00 89 570 8.44999999999999973355e-01 90 570 1.07509999999999994458e+00 89 571 8.79000000000000003553e-01 90 571 1.12260000000000004228e+00 89 572 9.10000000000000031086e-01 90 572 1.17120000000000001883e+00 89 573 8.28000999999999987011e-01 90 573 1.05339999999999989200e+00 89 574 8.28000999999999987011e-01 90 574 1.05339999999999989200e+00 89 575 7.61000000000000009770e-01 90 575 1.00000000000000000000e+00 89 576 7.44001000000000023427e-01 90 576 9.81500000000000039080e-01 89 577 8.12999999999999944933e-01 90 577 1.07679999999999997939e+00 89 578 8.65001000000000019874e-01 90 578 1.15799999999999991829e+00 89 579 7.88000999999999951484e-01 90 579 1.04929999999999989946e+00 89 580 8.44999999999999973355e-01 90 580 1.13729999999999997762e+00 85 581 -1.00000000000000000000e+00 86 581 -1.24219999999999997087e+00 89 581 1.00000000000000000000e+00 90 581 1.24219999999999997087e+00 85 582 -1.00000000000000000000e+00 86 582 -1.30719999999999991758e+00 89 582 1.00000000000000000000e+00 90 582 1.30719999999999991758e+00 89 583 1.00000000000000000000e+00 90 583 1.51520000000000010232e+00 89 584 1.00000000000000000000e+00 90 584 1.49140000000000005898e+00 89 585 1.00000000000000000000e+00 90 585 1.48150000000000003908e+00 89 586 1.00000000000000000000e+00 90 586 1.44930000000000003268e+00 89 587 1.00000000000000000000e+00 90 587 1.60000000000000008882e+00 89 588 1.00000000000000000000e+00 90 588 1.72409999999999996589e+00 91 589 1.00000000000000000000e+00 92 589 1.35139999999999993463e+00 91 590 -1.00000000000000000000e+00 92 590 -1.25160000000000004583e+00 91 591 -1.00000000000000000000e+00 92 591 -1.37739999999999995772e+00 91 592 -1.00000000000000000000e+00 92 592 -1.25160000000000004583e+00 91 593 -1.00000000000000000000e+00 92 593 -1.37739999999999995772e+00 91 594 -1.00000000000000000000e+00 92 594 -1.25160000000000004583e+00 91 595 -1.00000000000000000000e+00 92 595 -1.37739999999999995772e+00 91 596 -1.00000000000000000000e+00 92 596 -1.25160000000000004583e+00 91 597 -1.00000000000000000000e+00 92 597 -1.37739999999999995772e+00 91 598 1.00000000000000000000e+00 92 598 1.72409999999999996589e+00 91 599 1.00000000000000000000e+00 92 599 1.35689999999999999503e+00 91 600 1.00000000000000000000e+00 92 600 1.38500000000000000888e+00 91 601 7.50000000000000000000e-01 92 601 9.29400000000000003908e-01 91 602 6.70000999999999957701e-01 92 602 8.34400000000000030553e-01 91 603 7.95000999999999957701e-01 92 603 1.03380000000000005222e+00 91 604 7.50000000000000000000e-01 92 604 9.59099999999999952571e-01 91 605 7.00000999999999984347e-01 92 605 8.71700999999999948109e-01 91 606 7.29999999999999982236e-01 92 606 9.56699999999999994849e-01 91 607 6.80000000000000048850e-01 92 607 8.71800000000000019362e-01 91 608 6.19999999999999995559e-01 92 608 7.74000000000000021316e-01 91 609 1.00000000000000000000e+00 92 609 1.29370000000000007212e+00 91 610 1.00000000000000000000e+00 92 610 1.27229999999999998650e+00 91 611 1.00000000000000000000e+00 92 611 1.54560000000000008491e+00 91 612 1.00000000000000000000e+00 92 612 1.72409999999999996589e+00 91 613 1.00000000000000000000e+00 92 613 1.47059999999999990727e+00 91 614 1.00000000000000000000e+00 92 614 1.44720000000000004192e+00 52 615 -1.00000000000000000000e+00 91 615 1.00000000000000000000e+00 92 615 1.45350000000000001421e+00 91 616 1.00000000000000000000e+00 92 616 1.29699999999999993072e+00 93 617 -3.30000000000000015543e-01 94 617 -1.12880000000000002558e+00 93 618 3.67999999999999993783e-01 94 618 1.65599999999999997202e-01 93 619 3.90000000000000013323e-01 94 619 7.87799999999999944755e-01 93 620 4.24999999999999988898e-01 94 620 2.33699999999999991074e-01 93 621 1.95000000000000006661e-01 94 621 3.54899999999999993250e-01 93 622 3.19000000000000005773e-01 94 622 9.24999999999999988898e-02 93 623 3.75000000000000000000e-01 94 623 5.36200000000000009948e-01 93 624 5.94562999999999952649e-01 94 624 2.25895000000000012452e-01 93 625 5.19000000000000016875e-01 94 625 1.26120000000000009877e+00 93 626 -1.00000000000000000000e+00 94 626 -3.20000000000000017764e+00 93 627 -1.00000000000000000000e+00 94 627 -2.50000000000000000000e+00 93 628 -1.00000000000000000000e+00 94 628 -1.85000000000000008882e+00 93 629 -1.00000000000000000000e+00 94 629 -1.35000000000000008882e+00 93 630 -1.00000000000000000000e+00 94 630 -9.00000000000000022204e-01 93 631 -1.00000000000000000000e+00 94 631 -5.99999999999999977796e-01 93 632 -1.00000000000000000000e+00 94 632 -3.41999999999999992895e+00 93 633 1.00000000000000000000e+00 94 633 3.56999999999999984013e+00 93 634 1.00000000000000000000e+00 94 634 1.89999999999999991118e+00 93 635 1.00000000000000000000e+00 94 635 1.59000000000000007994e+00 93 636 1.00000000000000000000e+00 94 636 1.57000000000000006217e+00 93 637 1.00000000000000000000e+00 94 637 2.39999999999999991118e-01 93 638 1.00000000000000000000e+00 94 638 2.20000000000000001110e-01 93 639 1.00000000000000000000e+00 94 639 1.23999999999999999112e+00 93 640 1.00000000000000000000e+00 94 640 6.19999999999999995559e-01 93 641 1.00000000000000000000e+00 94 641 2.20000000000000001110e-01 93 642 1.00000000000000000000e+00 94 642 3.29999999999999982236e+00 93 643 2.25000000000000005551e-01 94 643 7.69499999999999961808e-01 93 644 2.77000000000000023981e-01 94 644 8.39300000000000046008e-01 95 645 1.00000000000000000000e+00 96 645 1.72409999999999996589e+00 95 646 -1.00000000000000000000e+00 96 646 -1.36430000000000006821e+00 95 647 -1.00000000000000000000e+00 96 647 -1.38890000000000002345e+00 95 648 -1.00000000000000000000e+00 96 648 -1.36430000000000006821e+00 95 649 -1.00000000000000000000e+00 96 649 -1.38890000000000002345e+00 95 650 -1.00000000000000000000e+00 96 650 -1.31059999999999998721e+00 95 651 -1.00000000000000000000e+00 96 651 -1.42450000000000009948e+00 95 652 8.06799999999999961631e-01 96 652 9.93600000000000038725e-01 95 653 8.51099999999999967670e-01 96 653 1.05729999999999990656e+00 95 654 8.99499999999999966249e-01 96 654 1.12719999999999997975e+00 95 655 7.89300000000000001599e-01 96 655 9.84199999999999963762e-01 95 656 8.34400000000000030553e-01 96 656 1.04960000000000008846e+00 95 657 8.83600000000000052047e-01 96 657 1.12129999999999996341e+00 95 658 4.56799999999999983835e-01 96 658 5.85600000000000009415e-01 95 659 4.84399999999999997247e-01 96 659 6.29099999999999992539e-01 95 660 5.14800000000000035350e-01 96 660 6.77400000000000002132e-01 95 661 4.19200000000000017053e-01 96 661 5.37399999999999988809e-01 95 662 4.49599999999999999645e-01 96 662 5.83899999999999974598e-01 95 663 4.82700000000000017941e-01 96 663 6.35099999999999997868e-01 95 664 7.24600000000000021849e-01 96 664 9.42300000000000026468e-01 95 665 7.73399999999999976374e-01 96 665 1.02029999999999998472e+00 95 666 8.26400000000000023448e-01 96 666 1.10630000000000006111e+00 95 667 6.43199999999999993960e-01 96 667 8.36400000000000032330e-01 95 668 6.98100000000000053824e-01 96 668 9.21000000000000040856e-01 95 669 7.57299999999999973177e-01 96 669 1.01380000000000003446e+00 95 670 6.70000000000000039968e-01 96 670 9.46300000000000030020e-01 95 671 6.70000000000000039968e-01 96 671 9.40999999999999947597e-01 95 672 1.00000000000000000000e+00 96 672 1.56010000000000004228e+00 97 673 -1.00000000000000000000e+00 98 673 -1.38890000000000002345e+00 97 674 -1.00000000000000000000e+00 98 674 -1.33329999999999992966e+00 97 675 -1.00000000000000000000e+00 98 675 -1.38890000000000002345e+00 97 676 1.00000000000000000000e+00 98 676 1.40440000000000009273e+00 97 677 1.00000000000000000000e+00 98 677 1.34769999999999989804e+00 97 678 1.00000000000000000000e+00 98 678 1.40440000000000009273e+00 97 679 8.29999999999999960032e-01 98 679 1.04469999999999996199e+00 97 680 7.78000000000000024869e-01 98 680 9.87900000000000000355e-01 97 681 7.93000000000000038192e-01 98 681 1.00380000000000002558e+00 97 682 7.16999999999999970690e-01 98 682 9.20399999999999995914e-01 97 683 7.93000000000000038192e-01 98 683 1.00380000000000002558e+00 97 684 7.16999999999999970690e-01 98 684 9.20399999999999995914e-01 97 685 7.50000000000000000000e-01 98 685 9.55400000000000027001e-01 97 686 6.80000000000000048850e-01 98 686 8.74399999999999955058e-01 97 687 1.00000000000000000000e+00 98 687 1.16009999999999990905e+00 97 688 1.00000000000000000000e+00 98 688 1.35499999999999998224e+00 97 689 1.00000000000000000000e+00 98 689 1.28210000000000001741e+00 97 690 1.00000000000000000000e+00 98 690 1.25629999999999997229e+00 97 691 1.00000000000000000000e+00 98 691 1.47059999999999990727e+00 97 692 1.00000000000000000000e+00 98 692 1.35689999999999999503e+00 97 693 1.00000000000000000000e+00 98 693 1.34590000000000009628e+00 97 694 1.00000000000000000000e+00 98 694 1.39660000000000006359e+00 97 695 1.00000000000000000000e+00 98 695 1.53849999999999997868e+00 97 696 1.00000000000000000000e+00 98 696 1.72409999999999996589e+00 97 697 1.00000000000000000000e+00 98 697 1.34769999999999989804e+00 97 698 -1.00000000000000000000e+00 98 698 -1.33329999999999992966e+00 97 699 -1.00000000000000000000e+00 98 699 -1.38890000000000002345e+00 97 700 -1.00000000000000000000e+00 98 700 -1.33329999999999992966e+00 99 701 1.00000000000000000000e+00 100 701 1.28699999999999992184e+00 99 702 -1.00000000000000000000e+00 100 702 -1.35139999999999993463e+00 99 703 -1.00000000000000000000e+00 100 703 -1.29869999999999996554e+00 99 704 -1.00000000000000000000e+00 100 704 -1.35139999999999993463e+00 99 705 -1.00000000000000000000e+00 100 705 -1.29869999999999996554e+00 99 706 8.10000000000000053291e-01 100 706 1.02530000000000010019e+00 99 707 7.65000000000000013323e-01 100 707 9.80800000000000005151e-01 99 708 7.75000000000000022204e-01 100 708 9.88500000000000045297e-01 99 709 7.09999999999999964473e-01 100 709 9.11399999999999987921e-01 99 710 7.78000000000000024869e-01 100 710 9.87900000000000000355e-01 99 711 8.29999999999999960032e-01 100 711 1.04469999999999996199e+00 99 712 7.16999999999999970690e-01 100 712 9.20399999999999995914e-01 99 713 7.93000000000000038192e-01 100 713 1.00380000000000002558e+00 99 714 8.10000000000000053291e-01 100 714 1.02530000000000010019e+00 99 715 7.65000000000000013323e-01 100 715 9.80800000000000005151e-01 99 716 7.75000000000000022204e-01 100 716 9.88500000000000045297e-01 99 717 7.19999999999999973355e-01 100 717 8.94399999999999972822e-01 99 718 7.09999999999999964473e-01 100 718 9.11399999999999987921e-01 99 719 6.50000000000000022204e-01 100 719 8.11499999999999999112e-01 99 720 9.89999999999999991118e-01 100 720 1.47760000000000002451e+00 99 721 9.89999999999999991118e-01 100 721 1.22980000000000000426e+00 99 722 9.89999999999999991118e-01 100 722 1.24530000000000007354e+00 99 723 9.89999999999999991118e-01 100 723 1.46669999999999989271e+00 99 724 9.89999999999999991118e-01 100 724 1.47760000000000002451e+00 99 725 9.89999999999999991118e-01 100 725 1.72170000000000000817e+00 99 726 5.27000000000000023981e-01 100 726 6.28900000000000014566e-01 101 726 2.47999999999999998224e-01 102 726 3.67400000000000004352e-01 99 727 4.82999999999999984901e-01 100 727 5.76400000000000023448e-01 101 727 2.27000000000000007327e-01 102 727 3.36299999999999987832e-01 99 728 5.27000000000000023981e-01 100 728 6.28900000000000014566e-01 101 728 2.47999999999999998224e-01 102 728 3.67400000000000004352e-01 99 729 4.82999999999999984901e-01 100 729 5.76400000000000023448e-01 101 729 2.27000000000000007327e-01 102 729 3.36299999999999987832e-01 101 730 -1.00000000000000000000e+00 102 730 -1.38890000000000002345e+00 101 731 -1.00000000000000000000e+00 102 731 -1.33329999999999992966e+00 101 732 8.49999999999999977796e-01 102 732 1.09250000000000002665e+00 101 733 8.10000000000000053291e-01 102 733 1.05879999999999996341e+00 101 734 8.19999999999999951150e-01 102 734 1.06079999999999996518e+00 101 735 7.75000000000000022204e-01 102 735 9.88500000000000045297e-01 101 736 7.60000000000000008882e-01 102 736 9.97399999999999953282e-01 101 737 7.09999999999999964473e-01 102 737 9.11399999999999987921e-01 101 738 7.78000000000000024869e-01 102 738 9.87900000000000000355e-01 101 739 8.29999999999999960032e-01 102 739 1.04469999999999996199e+00 101 740 7.16999999999999970690e-01 102 740 9.20399999999999995914e-01 101 741 7.93000000000000038192e-01 102 741 1.00380000000000002558e+00 101 742 8.49999999999999977796e-01 102 742 1.09250000000000002665e+00 101 743 8.10000000000000053291e-01 102 743 1.05879999999999996341e+00 101 744 8.19999999999999951150e-01 102 744 1.06079999999999996518e+00 101 745 7.75000000000000022204e-01 102 745 9.88500000000000045297e-01 101 746 7.60000000000000008882e-01 102 746 9.97399999999999953282e-01 101 747 7.09999999999999964473e-01 102 747 9.11399999999999987921e-01 101 748 9.89999999999999991118e-01 102 748 1.47760000000000002451e+00 101 749 9.89999999999999991118e-01 102 749 1.33060000000000000497e+00 101 750 9.90001000000000019874e-01 102 750 1.22980000000000000426e+00 101 751 9.89999999999999991118e-01 102 751 1.24530000000000007354e+00 101 752 9.89999999999999991118e-01 102 752 1.46669999999999989271e+00 101 753 9.89999999999999991118e-01 102 753 1.33060000000000000497e+00 101 754 9.89999999999999991118e-01 102 754 1.35800000000000009592e+00 101 755 9.89999999999999991118e-01 102 755 1.47760000000000002451e+00 101 756 9.89999999999999991118e-01 102 756 1.72170000000000000817e+00 103 757 -1.00000000000000000000e+00 104 757 1.00000000000000000000e+00 103 758 -1.00000000000000000000e+00 105 758 1.00000000000000000000e+00 106 758 1.55000000000000004441e+00 105 759 -1.00000000000000000000e+00 106 759 -1.85000000000000008882e+00 105 760 -1.00000000000000000000e+00 106 760 -1.35000000000000008882e+00 105 761 -1.00000000000000000000e+00 106 761 -9.00000000000000022204e-01 105 762 -1.00000000000000000000e+00 106 762 -5.99999999999999977796e-01 105 763 1.00000000000000000000e+00 106 763 5.00000000000000000000e-01 105 764 1.00000000000000000000e+00 106 764 1.00000000000000005551e-01 105 765 1.00000000000000000000e+00 106 765 1.30000000000000004441e+00 107 765 -1.00000000000000000000e+00 105 766 1.00000000000000000000e+00 106 766 3.49999999999999977796e-01 108 766 -1.00000000000000000000e+00 103 767 -1.00000000000000000000e+00 111 767 1.00000000000000000000e+00 112 767 1.55000000000000004441e+00 105 768 1.86999999999999999556e-01 106 768 1.68300000000000005151e-01 110 768 -1.00000000000000000000e+00 111 768 2.52000000000000001776e-01 112 768 8.82000000000000006217e-02 105 769 2.04999999999999987788e-01 106 769 1.84499999999999997335e-01 110 769 -1.00000000000000000000e+00 111 769 1.73999999999999988010e-01 112 769 6.09000000000000027423e-02 105 770 1.82999999999999996003e-01 106 770 4.24599999999999977440e-01 109 770 -1.00000000000000000000e+00 111 770 2.93999999999999983569e-01 112 770 1.02900000000000005351e-01 105 771 2.03000000000000013767e-01 106 771 4.70999999999999974243e-01 109 771 -1.00000000000000000000e+00 111 771 2.17999999999999999334e-01 112 771 7.63000000000000067057e-02 104 772 -1.00000000000000000000e+00 105 772 1.55999999999999999778e-01 106 772 5.35100000000000020073e-01 111 772 3.29000000000000014655e-01 112 772 1.15099999999999993983e-01 104 773 -1.00000000000000000000e+00 105 773 1.71000000000000013101e-01 106 773 5.86500000000000021316e-01 111 773 2.41999999999999992895e-01 112 773 8.46999999999999975131e-02 103 774 1.03999999999999995226e-01 105 774 4.08999999999999974687e-01 106 774 1.63599999999999995426e-01 111 774 2.13999999999999995781e-01 112 774 3.20999999999999965916e-02 111 775 -1.00000000000000000000e+00 112 775 -5.50000000000000044409e-01 111 776 -1.00000000000000000000e+00 112 776 -2.00000000000000011102e-01 111 777 -1.00000000000000000000e+00 112 777 -3.49999999999999977796e-01 111 778 -1.00000000000000000000e+00 112 778 -2.00000000000000011102e-01 107 779 -1.00000000000000000000e+00 111 779 1.00000000000000000000e+00 112 779 1.30000000000000004441e+00 105 780 1.29000000000000003553e-01 106 780 3.80500000000000004885e-01 107 780 1.21999999999999997335e-01 109 780 2.08999999999999991340e-01 111 780 1.17999999999999993783e-01 112 780 6.37000000000000066169e-02 105 781 3.68999999999999994671e-01 106 781 8.30200000000000049027e-01 107 781 9.09999999999999975575e-02 111 781 1.17999999999999993783e-01 112 781 6.37000000000000066169e-02 103 782 2.80000000000000005829e-02 104 782 1.60000000000000003331e-01 105 782 1.89999999999999995282e-02 106 782 5.41000000000000022538e-02 107 782 7.09999999999999936717e-02 111 782 1.12000000000000002331e-01 112 782 1.17599999999999996203e-01 103 783 2.80000000000000005829e-02 104 783 1.94000000000000005773e-01 105 783 1.77999999999999991562e-01 106 783 9.96800000000000019362e-01 107 783 7.39999999999999963363e-02 111 783 1.70000000000000012212e-01 112 783 1.46199999999999996625e-01 103 784 2.19999999999999987232e-02 104 784 2.12999999999999994893e-01 105 784 2.09999999999999992228e-01 106 784 7.13999999999999968026e-01 107 784 8.89999999999999957812e-02 111 784 1.23999999999999999112e-01 112 784 8.68000000000000021538e-02 105 785 4.00000000000000022204e-01 106 785 1.48399999999999998579e+00 107 785 7.39999999999999963363e-02 111 785 1.70000000000000012212e-01 112 785 1.46199999999999996625e-01 103 786 2.99999999999999988898e-02 105 786 1.27000000000000001776e-01 106 786 5.33000000000000001554e-02 107 786 6.30000000000000004441e-02 110 786 2.28000000000000008216e-01 111 786 1.94000000000000005773e-01 112 786 2.71999999999999984845e-02 105 787 3.85000000000000008882e-01 106 787 1.11600000000000004752e-01 107 787 6.30000000000000004441e-02 111 787 1.94000000000000005773e-01 112 787 2.71999999999999984845e-02 105 788 1.17999999999999993783e-01 106 788 2.72600000000000008971e-01 107 788 1.19999999999999995559e-01 109 788 2.24000000000000004663e-01 111 788 1.29000000000000003553e-01 112 788 5.92999999999999985456e-02 105 789 3.79000000000000003553e-01 106 789 6.44299999999999983835e-01 107 789 8.30000000000000043299e-02 111 789 1.29000000000000003553e-01 112 789 5.92999999999999985456e-02 105 790 2.38999999999999990230e-01 106 790 1.55299999999999993605e-01 107 790 9.80000000000000037748e-02 111 790 1.82999999999999996003e-01 112 790 2.74000000000000007438e-02 105 791 4.45000000000000006661e-01 106 791 1.13470000000000004192e+00 107 791 8.89999999999999957812e-02 111 791 1.23999999999999999112e-01 112 791 8.68000000000000021538e-02 108 792 -1.00000000000000000000e+00 111 792 1.00000000000000000000e+00 112 792 3.49999999999999977796e-01 105 793 2.86999999999999977351e-01 106 793 1.37800000000000005818e-01 108 793 8.40000000000000052180e-02 111 793 1.95000000000000006661e-01 112 793 1.55999999999999992839e-02 105 794 1.63000000000000005995e-01 106 794 2.52699999999999980194e-01 108 794 1.13000000000000003220e-01 110 794 1.71999999999999986233e-01 111 794 1.23999999999999999112e-01 112 794 3.09999999999999997780e-02 105 795 3.51999999999999979572e-01 106 795 2.18200000000000005063e-01 108 795 9.60000000000000019984e-02 111 795 1.23999999999999999112e-01 112 795 3.09999999999999997780e-02 105 796 5.01662999999999970058e-01 106 796 2.00665000000000010028e-01 108 796 3.32490000000000007763e-02 111 796 1.51573999999999986521e-01 112 796 2.12199999999999992795e-02 105 797 2.26872999999999991338e-01 106 797 2.04186000000000006382e-01 107 797 4.00939999999999976965e-02 108 797 3.32490000000000007763e-02 110 797 2.34695999999999987962e-01 111 797 1.51573999999999986521e-01 112 797 2.12199999999999992795e-02 111 798 1.00000000000000000000e+00 112 798 5.00000000000000000000e-01 111 799 1.00000000000000000000e+00 112 799 1.00000000000000005551e-01 111 800 1.00000000000000000000e+00 112 800 1.00000000000000002082e-02 111 801 -1.49999999999999994449e-02 112 801 -6.01500000000000034639e-01 113 802 1.00000000000000000000e+00 114 802 1.72409999999999996589e+00 113 803 -1.00000000000000000000e+00 114 803 -1.33509999999999995346e+00 113 804 -1.00000000000000000000e+00 114 804 -1.40650000000000008349e+00 113 805 -1.00000000000000000000e+00 114 805 -1.33509999999999995346e+00 113 806 -1.00000000000000000000e+00 114 806 -1.40650000000000008349e+00 113 807 -1.00000000000000000000e+00 114 807 -1.33509999999999995346e+00 113 808 -1.00000000000000000000e+00 114 808 -1.40650000000000008349e+00 113 809 -1.00000000000000000000e+00 114 809 -1.33509999999999995346e+00 113 810 -1.00000000000000000000e+00 114 810 -1.40650000000000008349e+00 113 811 1.00000000000000000000e+00 114 811 1.35689999999999999503e+00 113 812 1.00000000000000000000e+00 114 812 1.38500000000000000888e+00 113 813 1.00000000000000000000e+00 114 813 1.47059999999999990727e+00 113 814 1.00000000000000000000e+00 114 814 1.44720000000000004192e+00 52 815 -1.00000000000000000000e+00 113 815 1.00000000000000000000e+00 114 815 1.45350000000000001421e+00 113 816 1.00000000000000000000e+00 114 816 1.29699999999999993072e+00 113 817 1.00000000000000000000e+00 114 817 1.35139999999999993463e+00 113 818 1.00000000000000000000e+00 114 818 1.72409999999999996589e+00 113 819 8.69001000000000023427e-01 114 819 1.12999999999999989342e+00 113 820 8.34999999999999964473e-01 114 820 1.07459999999999999964e+00 113 821 7.95000999999999957701e-01 114 821 1.00760000000000005116e+00 113 822 8.29999999999999960032e-01 114 822 1.10080000000000000071e+00 113 823 7.90000000000000035527e-01 114 823 1.03130000000000010552e+00 113 824 7.34999999999999986677e-01 114 824 9.41100000000000047606e-01 113 825 8.41999999999999970690e-01 114 825 1.10499999999999998224e+00 113 826 7.95000999999999957701e-01 114 826 1.03380000000000005222e+00 113 827 7.50000000000000000000e-01 114 827 9.59099999999999952571e-01 113 828 7.73001000000000049184e-01 114 828 1.02659999999999995701e+00 113 829 7.29999999999999982236e-01 114 829 9.56699999999999994849e-01 113 830 6.80000000000000048850e-01 114 830 8.71800000000000019362e-01 113 831 1.00000000000000000000e+00 114 831 1.54560000000000008491e+00 115 832 1.00000000000000000000e+00 116 832 1.72409999999999996589e+00 115 833 -1.00000000000000000000e+00 116 833 -1.31749999999999989342e+00 115 834 -1.00000000000000000000e+00 116 834 -1.37739999999999995772e+00 115 835 -1.00000000000000000000e+00 116 835 -1.31749999999999989342e+00 115 836 -1.00000000000000000000e+00 116 836 -1.37739999999999995772e+00 115 837 -1.00000000000000000000e+00 116 837 -1.31749999999999989342e+00 115 838 -1.00000000000000000000e+00 116 838 -1.37739999999999995772e+00 115 839 -1.00000000000000000000e+00 116 839 -1.31749999999999989342e+00 115 840 -1.00000000000000000000e+00 116 840 -1.37739999999999995772e+00 115 841 -1.00000000000000000000e+00 116 841 -1.31749999999999989342e+00 115 842 -1.00000000000000000000e+00 116 842 -1.37739999999999995772e+00 115 843 8.45999999999999974243e-01 116 843 1.05489999999999994884e+00 115 844 8.25000999999999984347e-01 116 844 1.02229999999999998650e+00 115 845 7.94000000000000039080e-01 116 845 9.75400000000000044764e-01 115 846 7.71000000000000018652e-01 116 846 9.66200999999999976531e-01 115 847 7.42999999999999993783e-01 116 847 9.24100000000000032507e-01 115 848 7.01999999999999957367e-01 116 848 8.66700000000000025935e-01 115 849 8.12999999999999944933e-01 116 849 1.02909999999999990372e+00 115 850 7.89000000000000034639e-01 116 850 9.92500000000000048850e-01 115 851 7.54000000000000003553e-01 116 851 9.36599999999999988098e-01 115 852 7.09999999999999964473e-01 116 852 9.16101000000000054158e-01 115 853 6.80000000000000048850e-01 116 853 8.55300999999999977952e-01 115 854 6.31000000000000005329e-01 116 854 7.88699999999999956657e-01 115 855 7.73001000000000049184e-01 116 855 9.90999999999999992006e-01 115 856 7.48999999999999999112e-01 116 856 9.54099999999999948130e-01 115 857 7.14000999999999996781e-01 116 857 8.92499999999999960032e-01 115 858 6.70000999999999957701e-01 116 858 8.64500000000000046185e-01 115 859 6.40000000000000013323e-01 116 859 8.15301000000000053447e-01 115 860 5.90999999999999969802e-01 116 860 7.38701000000000052026e-01 115 861 1.00000000000000000000e+00 116 861 1.25790000000000001812e+00 115 862 1.00000000000000000000e+00 116 862 1.44720000000000004192e+00 115 863 9.79999999999999982236e-01 116 863 1.41009999999999990905e+00 115 864 9.79999999999999982236e-01 116 864 1.48479999999999989768e+00 117 865 -1.00000000000000000000e+00 118 865 -1.27200000000000001954e+00 117 866 1.00000000000000000000e+00 118 866 1.34769999999999989804e+00 117 867 1.00000000000000000000e+00 118 867 1.34769999999999989804e+00 117 868 -1.00000000000000000000e+00 118 868 -1.29869999999999996554e+00 117 869 -1.00000000000000000000e+00 118 869 -1.35139999999999993463e+00 117 870 -1.00000000000000000000e+00 118 870 -1.29869999999999996554e+00 117 871 -1.00000000000000000000e+00 118 871 -1.35139999999999993463e+00 117 872 8.03000000000000047073e-01 118 872 9.99399999999999955058e-01 117 873 8.29999999999999960032e-01 118 873 1.04469999999999996199e+00 117 874 7.44999999999999995559e-01 118 874 9.33000000000000051514e-01 117 875 7.78000000000000024869e-01 118 875 9.87900000000000000355e-01 117 876 7.63000000000000011546e-01 118 876 9.53699999999999992184e-01 117 877 7.93000000000000038192e-01 118 877 1.00380000000000002558e+00 117 878 6.87999999999999944933e-01 118 878 8.69800000000000017586e-01 117 879 7.16999999999999970690e-01 118 879 9.20399999999999995914e-01 117 880 7.63000000000000011546e-01 118 880 9.53699999999999992184e-01 117 881 7.93000000000000038192e-01 118 881 1.00380000000000002558e+00 117 882 6.87999999999999944933e-01 118 882 8.69800000000000017586e-01 117 883 7.16999999999999970690e-01 118 883 9.20399999999999995914e-01 117 884 7.17999999999999971578e-01 118 884 9.02599999999999957900e-01 117 885 7.50000000000000000000e-01 118 885 9.55400000000000027001e-01 117 886 6.53000000000000024869e-01 118 886 8.26600000000000001421e-01 117 887 6.80000000000000048850e-01 118 887 8.74399999999999955058e-01 117 888 1.00000000000000000000e+00 118 888 1.16009999999999990905e+00 117 889 1.00000000000000000000e+00 118 889 1.35499999999999998224e+00 117 890 1.00000000000000000000e+00 118 890 1.28210000000000001741e+00 117 891 1.00000000000000000000e+00 118 891 1.25629999999999997229e+00 117 892 1.00000000000000000000e+00 118 892 1.47059999999999990727e+00 117 893 1.00000000000000000000e+00 118 893 1.15339999999999998082e+00 117 894 1.00000000000000000000e+00 118 894 1.39660000000000006359e+00 117 895 1.00000000000000000000e+00 118 895 1.53849999999999997868e+00 117 896 1.00000000000000000000e+00 118 896 1.60000000000000008882e+00 117 897 1.00000000000000000000e+00 118 897 1.72409999999999996589e+00 117 898 -1.00000000000000000000e+00 118 898 -1.29869999999999996554e+00 117 899 -1.00000000000000000000e+00 118 899 -1.35139999999999993463e+00 117 900 1.00000000000000000000e+00 118 900 1.42860000000000009202e+00 119 901 1.00000000000000000000e+00 120 901 1.72409999999999996589e+00 119 902 -1.00000000000000000000e+00 120 902 -1.33509999999999995346e+00 119 903 -1.00000000000000000000e+00 120 903 -1.40650000000000008349e+00 119 904 -1.00000000000000000000e+00 120 904 -1.33509999999999995346e+00 119 905 -1.00000000000000000000e+00 120 905 -1.40650000000000008349e+00 119 906 -1.00000000000000000000e+00 120 906 -1.33509999999999995346e+00 119 907 -1.00000000000000000000e+00 120 907 -1.40650000000000008349e+00 119 908 -1.00000000000000000000e+00 120 908 -1.33509999999999995346e+00 119 909 -1.00000000000000000000e+00 120 909 -1.37739999999999995772e+00 119 910 -1.00000000000000000000e+00 120 910 -1.33509999999999995346e+00 119 911 -1.00000000000000000000e+00 120 911 -1.40650000000000008349e+00 119 912 8.98001000000000049184e-01 120 912 1.13100000000000000533e+00 119 913 8.45999999999999974243e-01 120 913 1.05489999999999994884e+00 119 914 8.25000999999999984347e-01 120 914 1.02229999999999998650e+00 119 915 8.36000999999999994117e-01 120 915 1.05820000000000002949e+00 119 916 7.71000000000000018652e-01 120 916 9.66200999999999976531e-01 119 917 7.42999999999999993783e-01 120 917 9.24100000000000032507e-01 119 918 8.70999999999999996447e-01 120 918 1.12389999999999989910e+00 119 919 8.12999999999999944933e-01 120 919 1.02909999999999990372e+00 119 920 7.89000000000000034639e-01 120 920 9.92500000000000048850e-01 119 921 7.90000000000000035527e-01 120 921 1.02600000000000002309e+00 119 922 7.09999999999999964473e-01 120 922 9.16101000000000054158e-01 119 923 6.80000000000000048850e-01 120 923 8.55300999999999977952e-01 119 924 8.30999999999999960920e-01 120 924 1.08630000000000004334e+00 119 925 7.73001000000000049184e-01 120 925 9.90999999999999992006e-01 119 926 7.48999999999999999112e-01 120 926 9.54099999999999948130e-01 119 927 7.50000000000000000000e-01 120 927 9.86800000000000010481e-01 119 928 6.70000999999999957701e-01 120 928 8.64500000000000046185e-01 119 929 6.40000000000000013323e-01 120 929 8.15301000000000053447e-01 119 930 1.05099999999999993427e+00 120 930 1.39199999999999990408e+00 119 931 1.00000000000000000000e+00 120 931 1.30719999999999991758e+00 119 932 1.00000000000000000000e+00 120 932 1.44720000000000004192e+00 119 933 9.79999999999999982236e-01 120 933 1.33149999999999990585e+00 119 934 9.79999999999999982236e-01 120 934 1.30840000000000000746e+00 119 935 9.79999999999999982236e-01 120 935 1.41009999999999990905e+00 119 936 9.79999999999999982236e-01 120 936 1.48479999999999989768e+00 121 937 -1.00000000000000000000e+00 122 937 -2.89999999999999991118e+00 121 938 -1.00000000000000000000e+00 122 938 -2.89999999999999991118e+00 121 939 -1.00000000000000000000e+00 122 939 -1.39999999999999991118e+00 121 940 -1.00000000000000000000e+00 122 940 -1.64999999999999991118e+00 121 941 -1.00000000000000000000e+00 122 941 -1.35000000000000008882e+00 121 942 -1.00000000000000000000e+00 122 942 -9.00000000000000022204e-01 121 943 -1.00000000000000000000e+00 122 943 -5.99999999999999977796e-01 121 944 -1.00000000000000000000e+00 122 944 -1.14999999999999991118e+00 121 945 -1.00000000000000000000e+00 122 945 -8.00000000000000044409e-01 121 946 5.00000000000000000000e-01 122 946 6.99999999999999955591e-01 123 946 -1.00000000000000000000e+00 124 946 5.00000000000000000000e-01 121 947 -3.49999999999999977796e-01 122 947 -1.20799999999999996270e+00 123 947 -1.52999999999999997113e-01 125 947 -1.46999999999999991784e-01 121 948 1.00000000000000000000e+00 122 948 1.50000000000000000000e+00 123 948 -5.10000000000000008882e-01 125 948 -4.89999999999999991118e-01 121 949 1.00000000000000000000e+00 122 949 8.00000000000000044409e-01 123 949 -7.50000000000000000000e-01 126 949 -2.50000000000000000000e-01 123 950 -5.10000000000000008882e-01 125 950 -4.89999999999999991118e-01 130 950 1.00000000000000000000e+00 131 950 1.50000000000000000000e+00 121 951 4.21999999999999986233e-01 122 951 1.60399999999999987033e-01 123 951 3.69999999999999981681e-02 125 951 7.19999999999999945599e-02 130 951 3.26000000000000011990e-01 131 951 3.59000000000000013545e-02 121 952 1.32000000000000006217e-01 122 952 3.89400000000000023892e-01 123 952 5.60000000000000011657e-02 125 952 1.00000000000000005551e-01 127 952 1.85999999999999998668e-01 130 952 1.23999999999999999112e-01 131 952 6.56999999999999945155e-02 121 953 3.48999999999999976907e-01 122 953 7.50299999999999966960e-01 123 953 5.60000000000000011657e-02 125 953 6.90000000000000057732e-02 130 953 1.23999999999999999112e-01 131 953 6.56999999999999945155e-02 121 954 8.99999999999999931999e-03 122 954 3.20000000000000006661e-02 123 954 5.00000000000000027756e-02 124 954 1.61000000000000004219e-01 125 954 4.10000000000000017208e-02 130 954 1.28000000000000002665e-01 131 954 1.38000000000000011546e-01 121 955 1.00000000000000002082e-02 122 955 2.75000000000000001388e-02 123 955 6.40000000000000013323e-02 124 955 1.54999999999999998890e-01 125 955 4.29999999999999965583e-02 130 955 1.30000000000000004441e-01 131 955 1.28700000000000008837e-01 121 956 1.25000000000000000000e-01 122 956 1.05999999999999997002e-01 123 956 7.09999999999999936717e-02 125 956 4.39999999999999974465e-02 128 956 2.12999999999999994893e-01 130 956 3.42000000000000026201e-01 131 956 3.42000000000000012323e-02 121 957 3.88000000000000011546e-01 122 957 1.12500000000000002776e-01 123 957 3.79999999999999990563e-02 125 957 2.69999999999999996947e-02 130 957 3.42000000000000026201e-01 131 957 3.42000000000000012323e-02 121 958 2.42999999999999993783e-01 122 958 1.22229999999999994209e+00 123 958 5.99999999999999977796e-02 125 958 8.00000000000000016653e-02 129 958 2.07999999999999990452e-01 130 958 1.16000000000000005884e-01 131 958 1.16000000000000005884e-01 121 959 4.85999999999999987566e-01 122 959 1.90510000000000001563e+00 123 959 5.50000000000000002776e-02 125 959 5.00000000000000027756e-02 130 959 1.16000000000000005884e-01 131 959 1.16000000000000005884e-01 121 960 2.13999999999999995781e-01 122 960 1.45499999999999990452e-01 123 960 6.30000000000000004441e-02 125 960 2.69999999999999996947e-02 130 960 3.44999999999999973355e-01 131 960 3.09999999999999997780e-02 121 961 2.27000000000000007327e-01 122 961 7.83000000000000029310e-01 123 961 8.99999999999999931999e-03 124 961 2.40999999999999992006e-01 125 961 7.49999999999999972244e-02 130 961 1.23999999999999999112e-01 131 961 8.68000000000000021538e-02 121 962 4.42000000000000003997e-01 122 962 1.13589999999999990976e+00 123 962 7.49999999999999972244e-02 125 962 3.50000000000000033307e-02 130 962 1.23999999999999999112e-01 131 962 8.68000000000000021538e-02 125 963 -1.00000000000000000000e+00 130 963 1.00000000000000000000e+00 131 963 1.39999999999999991118e+00 130 964 -1.00000000000000000000e+00 131 964 -5.50000000000000044409e-01 130 965 -1.00000000000000000000e+00 131 965 -2.00000000000000011102e-01 130 966 -1.00000000000000000000e+00 131 966 -3.49999999999999977796e-01 130 967 -1.00000000000000000000e+00 131 967 -2.00000000000000011102e-01 130 968 7.00999999999999956479e-01 131 968 -1.05200000000000001843e-01 130 969 6.58000000000000029310e-01 131 969 -4.27700000000000024603e-01 130 970 7.83000000000000029310e-01 131 970 1.56200000000000002037e-02 130 971 8.03000000000000047073e-01 131 971 4.82199999999999989742e-02 130 972 1.00000000000000000000e+00 131 972 1.19999999999999995559e+00 123 973 -7.50000000000000000000e-01 126 973 -2.50000000000000000000e-01 130 973 1.00000000000000000000e+00 131 973 8.00000000000000044409e-01 121 974 2.38999999999999990230e-01 122 974 1.33800000000000002265e-01 123 974 8.99999999999999966693e-02 126 974 5.09999999999999967248e-02 130 974 3.22000000000000008438e-01 131 974 2.58000000000000000167e-02 121 975 8.40000000000000052180e-02 122 975 1.35199999999999986855e-01 123 975 4.70000000000000001110e-02 126 975 5.00000000000000027756e-02 128 975 2.47999999999999998224e-01 130 975 1.61000000000000004219e-01 131 975 4.03000000000000024869e-02 121 976 3.73999999999999999112e-01 122 976 2.61799999999999977174e-01 123 976 4.00000000000000008327e-02 126 976 1.49999999999999994449e-02 130 976 1.61000000000000004219e-01 131 976 4.03000000000000024869e-02 121 977 1.11000000000000001443e-01 122 977 2.56000000000000005329e-01 123 977 9.40000000000000002220e-02 126 977 5.09999999999999967248e-02 127 977 2.09999999999999992228e-01 130 977 1.47999999999999992673e-01 131 977 6.21999999999999983458e-02 121 978 3.50999999999999978684e-01 122 978 5.96700000000000008171e-01 123 978 1.02999999999999994338e-01 126 978 1.20000000000000002498e-02 130 978 1.47999999999999992673e-01 131 978 6.21999999999999983458e-02 121 979 4.79171000000000013586e-01 122 979 2.15627000000000013102e-01 123 979 4.88950000000000009615e-02 126 979 9.77899999999999949840e-03 130 979 1.51573999999999986521e-01 131 979 2.12199999999999992795e-02 126 980 -1.00000000000000000000e+00 130 980 1.00000000000000000000e+00 131 980 5.00000000000000000000e-01 121 981 2.17094000000000009187e-01 122 981 1.95384000000000002117e-01 123 981 5.86739999999999969904e-02 125 981 2.44469999999999999807e-02 126 981 9.77899999999999949840e-03 128 981 2.27850999999999997980e-01 130 981 1.51573999999999986521e-01 131 981 2.12199999999999992795e-02 130 982 1.00000000000000000000e+00 131 982 5.00000000000000027756e-02 130 983 1.00000000000000000000e+00 131 983 2.09999999999999992228e-01 130 984 1.00000000000000000000e+00 131 984 4.00000000000000008327e-02 130 985 -1.49999999999999994449e-02 131 985 -6.01500000000000034639e-01 121 986 1.00000000000000000000e+00 122 986 6.99999999999999955591e-01 130 986 -1.00000000000000000000e+00 131 986 -6.99999999999999955591e-01 51 987 8.50000000000000061062e-02 52 987 2.22000000000000002887e-01 121 987 1.40000000000000013323e-01 122 987 4.80999999999999983125e-01 129 987 -1.00000000000000000000e+00 130 987 3.14000000000000001332e-01 131 987 1.09100000000000002531e-01 51 988 1.42999999999999988232e-01 52 988 2.22000000000000002887e-01 121 988 1.50999999999999995337e-01 122 988 5.18000000000000015987e-01 129 988 -1.00000000000000000000e+00 130 988 2.45999999999999996447e-01 131 988 8.46999999999999975131e-02 51 989 1.23999999999999999112e-01 52 989 2.16999999999999998446e-01 121 989 1.86999999999999999556e-01 122 989 1.68300000000000005151e-01 128 989 -1.00000000000000000000e+00 130 989 2.52000000000000001776e-01 131 989 8.82000000000000006217e-02 51 990 1.85999999999999998668e-01 52 990 2.16999999999999998446e-01 121 990 2.04999999999999987788e-01 122 990 1.84499999999999997335e-01 128 990 -1.00000000000000000000e+00 130 990 1.73999999999999988010e-01 131 990 6.09000000000000027423e-02 51 991 7.49999999999999972244e-02 52 991 2.19000000000000000222e-01 121 991 1.82999999999999996003e-01 122 991 4.24599999999999977440e-01 127 991 -1.00000000000000000000e+00 130 991 2.93999999999999983569e-01 131 991 1.02900000000000005351e-01 51 992 1.32000000000000006217e-01 52 992 2.19000000000000000222e-01 121 992 2.03000000000000013767e-01 122 992 4.70999999999999974243e-01 127 992 -1.00000000000000000000e+00 130 992 2.17999999999999999334e-01 131 992 7.63000000000000067057e-02 51 993 1.25000000000000000000e-01 52 993 1.39000000000000012434e-01 121 993 1.55999999999999999778e-01 122 993 5.35100000000000020073e-01 124 993 -1.00000000000000000000e+00 130 993 3.29000000000000014655e-01 131 993 1.15099999999999993983e-01 51 994 1.99000000000000010214e-01 52 994 1.39000000000000012434e-01 121 994 1.71000000000000013101e-01 122 994 5.86500000000000021316e-01 124 994 -1.00000000000000000000e+00 130 994 2.41999999999999992895e-01 131 994 8.46999999999999975131e-02 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix10000644001170100242450000000241210171264274016644 0ustar davisfac10 10 30 1 3 1 -0.037633 2 2 0.28768 5 2 0.72579 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 3 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 9 9 0.858 10 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 -4.18162330362805808779e-05 -4.18162330362805808779e-05 SuiteSparse/UMFPACK/Tcov/TestMat/matrix20000644001170100242450000000245510171264275016655 0ustar davisfac10 10 31 1 3 1 -0.037633 4 1 999 2 2 0.28768 5 2 0.72579 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 3 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 9 9 0.858 10 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 -8.26997501834853920855e+00 -8.26997501834853920855e+00 SuiteSparse/UMFPACK/Tcov/TestMat/matrix30000644001170100242450000000234210171264275016651 0ustar davisfac10 10 29 1 3 1 -0.037633 2 2 0.28768 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 3 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 9 9 0.858 10 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 1.13111926942419077191e-05 1.13111926942419077191e-05 SuiteSparse/UMFPACK/Tcov/TestMat/matrix40000644001170100242450000000777710171264275016673 0ustar davisfac10 10 100 1 1 1 0.79482 2 1 0.95684 3 1 0.52259 4 1 0.88014 5 1 0.17296 6 1 0.97975 7 1 0.27145 8 1 0.25233 9 1 0.87574 10 1 0.73731 1 2 0.13652 2 2 0.011757 3 2 0.8939 4 2 0.19914 5 2 0.29872 6 2 0.66144 7 2 0.28441 8 2 0.46922 9 2 0.064781 10 2 0.98833 1 3 0.58279 2 3 0.4235 3 3 0.51551 4 3 0.33395 5 3 0.43291 6 3 0.22595 7 3 0.57981 8 3 0.76037 9 3 0.52982 10 3 0.64053 1 4 0.20907 2 4 0.37982 3 4 0.78333 4 4 0.68085 5 4 0.4611 6 4 0.56783 7 4 0.79421 8 4 0.059183 9 4 0.60287 10 4 0.050269 1 5 0.41537 2 5 0.305 3 5 0.87437 4 5 0.015009 5 5 0.76795 6 5 0.97084 7 5 0.99008 8 5 0.78886 9 5 0.43866 10 5 0.49831 1 6 0.21396 2 6 0.64349 3 6 0.32004 4 6 0.9601 5 6 0.72663 6 6 0.41195 7 6 0.74457 8 6 0.26795 9 6 0.43992 10 6 0.93338 1 7 0.68333 2 7 0.21256 3 7 0.83924 4 7 0.62878 5 7 0.13377 6 7 0.20713 7 7 0.6072 8 7 0.62989 9 7 0.37048 10 7 0.57515 1 8 0.45142 2 8 0.043895 3 8 0.027185 4 8 0.31269 5 8 0.012863 6 8 0.38397 7 8 0.68312 8 8 0.092842 9 8 0.035338 10 8 0.6124 1 9 0.60854 2 9 0.01576 3 9 0.016355 4 9 0.19007 5 9 0.58692 6 9 0.057581 7 9 0.36757 8 9 0.63145 9 9 0.71763 10 9 0.69267 1 10 0.084079 2 10 0.45436 3 10 0.44183 4 10 0.35325 5 10 0.15361 6 10 0.67564 7 10 0.69921 8 10 0.72751 9 10 0.47838 10 10 0.55484 1 2 3 4 5 6 7 8 9 10 -4.53496530988824614328e-02 -4.53496530988824614328e-02 SuiteSparse/UMFPACK/Tcov/TestMat/matrix50000644001170100242450000000715610171264275016663 0ustar davisfac10 10 90 1 1 1 0.79482 2 1 0.95684 4 1 0.88014 5 1 0.17296 6 1 0.97975 7 1 0.27145 8 1 0.25233 9 1 0.87574 10 1 0.73731 1 2 0.13652 2 2 0.011757 3 2 0.8939 4 2 0.19914 6 2 0.66144 7 2 0.28441 8 2 0.46922 9 2 0.064781 10 2 0.98833 1 3 0.58279 2 3 0.4235 3 3 0.51551 4 3 0.33395 5 3 0.43291 7 3 0.57981 8 3 0.76037 9 3 0.52982 10 3 0.64053 1 4 0.20907 3 4 0.78333 4 4 0.68085 5 4 0.4611 6 4 0.56783 7 4 0.79421 8 4 0.059183 9 4 0.60287 10 4 0.050269 1 5 0.41537 2 5 0.305 3 5 0.87437 4 5 0.015009 6 5 0.97084 7 5 0.99008 8 5 0.78886 9 5 0.43866 10 5 0.49831 1 6 0.21396 2 6 0.64349 3 6 0.32004 4 6 0.9601 5 6 0.72663 6 6 0.41195 7 6 0.74457 8 6 0.26795 10 6 0.93338 1 7 0.68333 2 7 0.21256 4 7 0.62878 5 7 0.13377 6 7 0.20713 7 7 0.6072 8 7 0.62989 9 7 0.37048 10 7 0.57515 2 8 0.043895 3 8 0.027185 4 8 0.31269 5 8 0.012863 6 8 0.38397 7 8 0.68312 8 8 0.092842 9 8 0.035338 10 8 0.6124 1 9 0.60854 2 9 0.01576 3 9 0.016355 4 9 0.19007 5 9 0.58692 6 9 0.057581 7 9 0.36757 8 9 0.63145 9 9 0.71763 1 10 0.084079 2 10 0.45436 3 10 0.44183 4 10 0.35325 5 10 0.15361 6 10 0.67564 7 10 0.69921 8 10 0.72751 9 10 0.47838 1 2 3 4 5 6 7 8 9 10 -1.16411846604786539672e-01 -1.16411846604786539672e-01 SuiteSparse/UMFPACK/Tcov/TestMat/matrix60000644001170100242450000000232210171311644016643 0ustar davisfac10 10 30 1 3 1 -0.037633 2 1 0.28768 5 1 0.72579 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 3 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 9 9 0.858 10 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix70000644001170100242450000000241210171264275016653 0ustar davisfac10 10 30 1 3 1 -0.037633 2 2 0.28768 1 2 0.72579 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 1 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 1 9 0.858 10 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 -4.19587936207889728867e-05 -4.19587936207889728867e-05 SuiteSparse/UMFPACK/Tcov/TestMat/matrix80000644001170100242450000000241210171264275016654 0ustar davisfac10 10 30 1 3 1 -0.037633 2 2 0.28768 5 2 0.72579 7 2 0.059281 7 3 -0.095648 2 4 -1.1465 3 4 0.32729 5 4 -0.58832 8 4 0.29441 9 4 1.6236 10 4 1.254 1 5 -0.43256 6 5 1.0668 2 6 1.1909 8 6 -1.3362 9 6 -0.69178 10 6 -1.5937 1 7 -1.6656 3 7 0.17464 5 7 2.1832 7 7 -0.83235 8 7 0.71432 1 8 0.12533 5 8 -0.1364 2 9 1.1892 4 9 -0.18671 5 9 0.11393 9 9 0.858 3 9 -1.441 10 10 1 1 2 3 4 5 6 7 8 9 10 -4.18162330362805741016e-05 -4.18162330362805741016e-05 SuiteSparse/UMFPACK/Tcov/TestMat/arc1300000644001170100242450000011310210171264273016246 0ustar davisfac130 130 1037 1 1 1 1.00000040895531605578e+00 2 1 -6.31028967745805857703e-07 3 1 2.09666552564158310721e-07 4 1 6.42100417280744295567e-08 5 1 3.95640498140892304946e-09 6 1 6.19435169824100739788e-10 7 1 5.63789654961510677822e-08 8 1 -5.63789654961510677822e-08 9 1 -5.63789654961510677822e-08 12 1 1.12757879833225203189e-06 13 1 -5.63789654961510677822e-08 14 1 -5.07410675254504894838e-07 15 1 6.08892776199354557320e-07 17 1 -5.63789654961510677822e-08 18 1 -2.04393213465436887896e-09 20 1 1.87833532691001892090e-02 26 1 3.62494102524582188053e-16 31 1 6.84625602804839368531e-16 36 1 8.68257475330124969815e-16 41 1 8.82947567734356300595e-16 46 1 7.59600724131053763044e-16 51 1 5.64117378366022804992e-16 56 1 3.63701124474419615340e-16 61 1 2.01005021199283708826e-16 66 1 9.14984974307694507410e-17 71 1 3.14760884271046226593e-17 76 1 7.34518930436163706402e-18 81 1 1.13071867423242394530e-18 86 1 1.23408833345587898072e-19 91 1 1.03010837321017195929e-20 96 1 6.83349332887184836849e-22 101 1 3.65932126657363989130e-23 106 1 1.58898122214224292865e-24 111 1 5.60826855501036975351e-26 116 1 1.61070181999570005312e-27 121 1 3.76456109551404403096e-29 126 1 7.17244288055356202121e-31 1 2 -1.42652730573899989754e-04 2 2 1.00014787087275203170e+00 3 2 -5.61360866413451731205e-06 4 2 4.75330750759894673858e-07 5 2 -5.72527625308794085868e-09 6 2 -1.77376264787199000803e-08 7 2 5.63789654961510677822e-08 8 2 -5.63789654961510677822e-08 9 2 -5.63789654961510677822e-08 11 2 8.51693661343272401254e-15 12 2 1.12757879833225203189e-06 13 2 -5.63789654961510677822e-08 14 2 -5.07410675254504894838e-07 15 2 6.08892776199354557320e-07 17 2 -5.63789654961510677822e-08 18 2 1.43774173011479407156e-07 20 2 -1.32125663757324196546e+00 26 2 -1.11448495560256096247e-14 27 2 1.73329666591781596863e-12 31 2 -2.07438470426531791999e-14 32 2 2.67703770262528492344e-09 36 2 -2.62404606778208312010e-14 37 2 6.32824878721294226125e-07 41 2 -2.67359139655924009007e-14 42 2 3.10791529045673087239e-06 46 2 -2.31467710937963807114e-14 47 2 3.15970680730970290635e-07 51 2 -1.74246942287285790461e-14 52 2 2.77975109597150507875e-09 56 2 -1.15555927728081696782e-14 57 2 1.44912797039875601070e-11 61 2 -6.78651267669617974665e-15 62 2 1.98412141751147494143e-13 66 2 -3.53564723546274805340e-15 67 2 1.02400930074818295370e-14 71 2 -1.63114786367007801623e-15 72 2 1.05988089195451808122e-15 76 2 -6.68199939891683976356e-16 77 2 1.30216558738220706466e-16 81 2 -2.46197537657750917982e-16 82 2 1.52358066153897084594e-17 86 2 -8.23274996572797299402e-17 87 2 1.55096199417570197692e-18 91 2 -2.49626962302946686361e-17 92 2 1.32167073370087591510e-19 96 2 -6.84142142206581725552e-18 97 2 9.27035529654956370392e-21 101 2 -1.69307327777353704493e-18 102 2 5.32585770778200544771e-22 106 2 -3.78131761753356290206e-19 107 2 2.49806121610313489476e-23 111 2 -7.62484231905841152208e-20 112 2 9.57683449825550099864e-25 116 2 -1.38867016611916900259e-20 117 2 3.00264557762581323632e-26 121 2 -2.28427622523009217295e-21 122 2 7.69575990908879096644e-28 126 2 -3.39661846823153888290e-22 127 2 1.61477910998446507320e-29 1 3 3.17213016387540804711e-06 2 3 -4.28883824497461318970e-04 3 3 1.05034355819225289075e+00 4 3 -4.99176718294620513916e-02 5 3 -9.39362507779151201248e-08 6 3 -2.99542222137461067177e-08 7 3 5.63789654961510677822e-08 8 3 -5.63789654961510677822e-08 9 3 -5.63789654961510677822e-08 11 3 -1.14399592229808000354e-15 12 3 1.12757879833225203189e-06 13 3 -5.63789654961510677822e-08 14 3 -5.07410675254504894838e-07 15 3 6.08892776199354557320e-07 17 3 -5.63789654961510677822e-08 18 3 -1.14480917545733994560e-06 20 3 1.05205793380737304688e+01 27 3 -1.88902452707973012025e-12 28 3 2.47366623712386198153e-12 32 3 -3.19180970542731798082e-09 33 3 4.26540474052217177814e-08 37 3 -8.36460401387739693746e-07 38 3 3.88850457966327721446e-04 42 3 -4.56479847343871369958e-06 43 3 3.81682813167572021484e-02 47 3 -5.16887723733816528693e-07 48 3 1.13198682665824907484e-02 52 3 -5.07646902292435697746e-09 53 3 3.74968803953379392624e-05 57 3 -2.96339064398409781412e-11 58 3 1.86516615485743386671e-08 62 3 -4.67690610631704695166e-13 63 3 1.63597052571517987847e-11 67 3 -3.32746830577438507115e-14 68 3 1.09959675913262598525e-13 72 3 -6.36213900572640822517e-15 73 3 5.00653392441346989372e-15 77 3 -1.83468331638994516688e-15 78 3 4.88109512118868604791e-16 82 3 -5.99768571599482679113e-16 83 3 5.44420103633656881151e-17 87 3 -1.95499174693232797442e-16 88 3 5.64556475613668003991e-18 92 3 -5.99676165598893155285e-17 93 3 5.04551222335907525703e-19 97 3 -1.68775549905155614061e-17 98 3 3.76454032675945720158e-20 102 3 -4.31869591606894408903e-18 103 3 2.31737920170676798080e-21 107 3 -1.00071979634420305413e-18 108 3 1.17254088763291106479e-22 112 3 -2.09944901814493994411e-19 113 3 4.87173042704995199811e-24 117 3 -3.98811335228318910546e-20 118 3 1.66265451980264407644e-25 122 3 -6.85766332018844909218e-21 123 3 4.66292291439438028390e-27 127 3 -1.06820096938084094722e-21 128 3 1.07494178916707297249e-28 1 4 9.67761479842010885477e-07 2 4 -1.24529105960391504201e-06 3 4 -7.53684043884277343750e-02 4 4 1.07537394762039206775e+00 5 4 -5.10940117237623780966e-06 6 4 -1.16327214527700601735e-07 7 4 5.63789654961510677822e-08 8 4 -5.63789654961510677822e-08 9 4 -5.63789654961510677822e-08 11 4 2.72600295777496297203e-15 12 4 1.12757879833225203189e-06 13 4 -5.63789654961510677822e-08 14 4 -5.07410675254504894838e-07 15 4 6.08892776199354557320e-07 17 4 -5.63789654961510677822e-08 18 4 3.24267784890253096819e-06 20 4 -2.97995758056640589473e+01 28 4 -2.69016406373445704503e-12 29 4 1.12414722983848100615e-14 33 4 -5.06217716633727832232e-08 34 4 2.39361583667923486975e-14 38 4 -5.10365935042500495911e-04 39 4 3.25834025288306711188e-14 43 4 -5.55267781019210815430e-02 44 4 3.50602522274784389467e-14 48 4 -1.82945020496845210667e-02 49 4 3.15009079747668313543e-14 53 4 -6.74733310006558895111e-05 54 4 2.38920313383721886671e-14 58 4 -3.74533684066591376904e-08 59 4 1.51069308701023312016e-14 63 4 -3.67619684693565318412e-11 64 4 7.67781834203756785584e-15 68 4 -2.87613466029568216026e-13 69 4 2.94564855363513289355e-15 73 4 -1.94082082219729192361e-14 74 4 8.09583079557345958177e-16 78 4 -3.85526368316436995887e-15 79 4 1.61233489133464494099e-16 83 4 -1.10598404824062199995e-15 84 4 2.45043984662708887589e-17 88 4 -3.48440343621975699706e-16 89 4 2.96271445434240394396e-18 93 4 -1.07626163565168902400e-16 94 4 2.91150101428225606993e-19 98 4 -3.10322828674127718269e-17 99 4 2.34646518233373397554e-20 103 4 -8.19353664160928416406e-18 104 4 1.55500221247487499767e-21 108 4 -1.96781883669118791324e-18 109 4 8.48367901854326027622e-23 113 4 -4.29009314786020313393e-19 114 4 3.81563184613264934945e-24 118 4 -8.48771577504310234112e-20 119 4 1.41551425895821611087e-25 123 4 -1.52402857984066892672e-20 124 4 4.33454723664448932413e-27 128 4 -2.48386363831887809747e-21 129 4 1.09603722207167596041e-28 1 5 2.06717402306821895763e-07 2 5 -3.46403510320669685636e-07 3 5 8.87100554791686590761e-07 4 5 -1.00485165603458903062e-03 5 5 1.00100738881155804094e+00 6 5 -3.22799951391061810287e-06 7 5 5.63789406271553227961e-08 8 5 -5.63789406271553227961e-08 9 5 -5.63789406271553227961e-08 12 5 1.12757879833225203189e-06 13 5 -5.63789406271553227961e-08 14 5 -5.07410675254504894838e-07 15 5 6.08892378295422531664e-07 17 5 -5.63789406271553227961e-08 18 5 9.14862141598860034719e-07 20 5 -8.40740871429443359375e+00 29 5 -4.97786219796209072896e-14 30 5 8.30178685669834270922e-15 34 5 -9.87808467835249448541e-14 35 5 1.89273679466073901922e-14 39 5 -1.32599823048778991425e-13 40 5 2.60057851175863500772e-14 44 5 -1.43927784187342089339e-13 45 5 2.76304383561333490403e-14 49 5 -1.33058820038500805458e-13 50 5 2.40613362838693813743e-14 54 5 -1.06559834740782604208e-13 55 5 1.72310523325908789370e-14 59 5 -7.39662237708715863960e-14 60 5 9.87515394435499460624e-15 64 5 -4.40263602484447513774e-14 65 5 4.34989704304299118487e-15 69 5 -2.22072387605701186027e-14 70 5 1.43717604819942196270e-15 74 5 -9.66208111240728084734e-15 75 5 3.59641083799992890936e-16 79 5 -3.83077087846156461026e-15 80 5 7.01133507323217232930e-17 84 5 -1.43666444029927997087e-15 85 5 1.09382641891255906508e-17 89 5 -5.07975611105534151368e-16 90 5 1.38871548010710091666e-18 94 5 -1.66574720080172501856e-16 95 5 1.44753660365847598867e-19 99 5 -5.00702350945698287932e-17 100 5 1.24376718672805893841e-20 104 5 -1.37157522248020597986e-17 105 5 8.82912512168963124203e-22 109 5 -3.41691353843098395422e-18 110 5 5.18144163606078988284e-23 114 5 -7.74006702742339974027e-19 115 5 2.51764090154290211318e-24 119 5 -1.59426758757984406193e-19 120 5 1.01331549858354595002e-25 124 5 -2.98685387228808326866e-20 125 5 3.38021043060172621422e-27 129 5 -5.09073444594129070284e-21 130 5 9.35515414919995799128e-29 1 6 1.47134244343760709132e-07 2 6 -1.26627810459467608874e-07 3 6 4.00821079438173910603e-07 4 6 1.81395171239273601456e-06 5 6 -1.04174599982798099518e-03 6 6 1.00103956693783402443e+00 7 6 5.63708972833865118446e-08 8 6 -5.63708972833865118446e-08 9 6 -5.63789654961510677822e-08 10 6 -8.08598153712036804563e-12 11 6 -4.54268614640939629549e-14 12 6 1.12742509372765198350e-06 13 6 -5.63789654961510677822e-08 14 6 -5.07337915678363060579e-07 15 6 6.08779600952402688563e-07 17 6 -5.63708972833865118446e-08 18 6 9.09531081560999155045e-07 20 6 -8.35841464996337890625e+00 30 6 -5.38784816728980070488e-14 35 6 -1.06586397694008499066e-13 40 6 -1.42017528379639904321e-13 45 6 -1.52537542059266703357e-13 50 6 -1.39097012987615701027e-13 55 6 -1.09454925591861997179e-13 60 6 -7.44616499535888376471e-14 65 6 -4.38977094962839792247e-14 70 6 -2.28267688225872903886e-14 75 6 -1.07803204568452505085e-14 80 6 -4.70964548826904860768e-15 85 6 -1.90612038109547795445e-15 90 6 -7.10139717483796589770e-16 95 6 -2.42128603137378023424e-16 100 6 -7.53043127402308978303e-17 105 6 -2.13379510814178988195e-17 110 6 -5.50568686019273795403e-18 115 6 -1.29418941560760290874e-18 120 6 -2.77187499483483589950e-19 125 6 -5.41063394626652979356e-20 130 6 -9.63051813630824819524e-21 1 7 -1.25934093375690298332e-05 2 7 -1.63457516464404788896e-04 3 7 -3.15771671012044007152e-04 4 7 -5.23881288245320320129e-04 5 7 -1.13866757601499598153e-04 6 7 -2.63736728811636600997e-05 7 7 1.00115623744204595980e+00 8 7 -1.02241244167089505648e-03 9 7 -1.46353841046220596487e-07 10 7 1.08917849138379096985e-03 11 7 6.69124565320089459419e-05 12 7 2.20355689525604213352e-02 13 7 -1.46353841046220596487e-07 14 7 -9.13479551672935485840e-03 15 7 1.58522911369800602321e-02 17 7 -1.02241244167089505648e-03 18 7 4.04581351176602765918e-06 19 7 6.69124565320089459419e-05 20 7 -3.73426361083984375000e+01 1 8 -4.18656563851982422880e-05 2 8 -1.59001729116425796558e-07 3 8 -1.58959721829887712374e-07 4 8 -1.58959721829887712374e-07 5 8 -1.58959721829887712374e-07 6 8 -1.58959721829887712374e-07 7 8 -4.07529878430068492889e-05 8 8 1.00005527652683690043e+00 9 8 4.17067349189892411232e-05 10 8 -6.30801332590635865927e-06 11 8 7.26177222531987438863e-06 12 8 -8.08751676231622695923e-04 13 8 4.17067349189892411232e-05 14 8 5.04750525578856468201e-04 15 8 -4.73388936370611190796e-04 17 8 5.52765268366783925108e-05 18 8 4.60626807807784577781e-08 19 8 7.26177222531987438863e-06 20 8 -4.40930485725402776520e-01 1 9 -1.23029712995048591180e-06 2 9 -1.23893777181916005392e-12 3 9 -2.03732434202218116967e-18 7 9 -1.23029803944518789649e-06 8 9 1.23029803944518789649e-06 9 9 1.00000123029803900110e+00 12 9 -2.46059644268825684096e-05 13 9 1.23029803944518789649e-06 14 9 1.10726814455119892955e-05 15 9 -1.32872237372794205500e-05 17 9 1.23029803944518789649e-06 18 9 -2.20047779997400994034e-09 20 9 2.02219672501087188721e-02 1 10 -7.54326379137637559325e-09 2 10 -7.54326379137637559325e-07 3 10 -1.50865253090160009893e-06 4 10 -2.53927373705664607254e-06 5 10 -5.08731716308830073103e-07 6 10 -7.54326379137637559325e-08 7 10 5.39396205567754805088e-06 8 10 -5.39396205567754805088e-06 10 10 1.00000539396205589959e+00 12 10 1.02485282695852206506e-04 14 10 -4.85456548631191321425e-05 15 10 7.55154615035280585289e-05 17 10 -5.39396205567754805088e-06 18 10 1.42087799304135792618e-08 20 10 -1.30575954914092989823e-01 1 11 -4.20341805806856427807e-09 2 11 -4.20341805806856427807e-09 3 11 -4.20341805806856427807e-09 4 11 -4.20341805806856427807e-09 5 11 -4.20341805806856427807e-09 6 11 -4.20341805806856427807e-09 7 11 2.52205190065524187612e-08 8 11 2.52205190065524187612e-08 11 11 1.00000002522051900655e+00 12 11 5.04410309076774865389e-07 14 11 2.52205154538387379755e-07 15 11 2.26984639084548689425e-07 17 11 2.52205190065524187612e-08 18 11 2.55450549602187493292e-10 19 11 2.52205190065524187612e-08 20 11 -2.40875035524368286133e-03 7 12 2.47724896151879615420e-11 9 12 -1.23862465423174599790e-11 11 12 1.23862465423174599790e-11 12 12 1.00000000049544990333e+00 13 12 -1.23862465423174599790e-11 14 12 1.23862526138496194355e-11 15 12 2.45247600005882304686e-10 18 12 1.57467138287015195885e-13 19 12 1.23862465423174599790e-11 20 12 -1.47715218190569409414e-06 7 13 2.18493417802889699057e-11 9 13 -1.09246752269531700481e-11 11 13 1.09246752269531700481e-11 12 13 4.36986891116930616448e-10 13 13 9.99999999989075294415e-01 14 13 1.09246752269531700481e-11 15 13 2.16308582157154205561e-10 18 13 1.38886027244849996620e-13 19 13 1.09246752269531700481e-11 20 13 -1.30284843180561395851e-06 8 14 1.34532967877021292225e-07 10 14 -6.72664555168012157083e-08 11 14 6.72664555168012157083e-08 12 14 6.72664555168012157083e-08 14 14 1.00000127806288197085e+00 15 14 -3.36332561801100382581e-07 17 14 1.34532967877021292225e-07 18 14 4.66852556613162050780e-10 19 14 6.72664555168012157083e-08 20 14 -4.45353239774703979492e-03 1 15 -1.05402042649416195911e-09 2 15 -4.27747792741684034763e-09 3 15 -1.08828057676646494656e-09 4 15 4.06778610795299838127e-09 5 15 1.69443459263618499551e-09 6 15 6.57559562355913840292e-10 15 15 1.00000000000000000000e+00 18 15 1.52186457880176785214e-11 20 15 -1.39856536407023695394e-04 1 16 -5.13201460494716599214e-12 2 16 -2.08270067858506990888e-11 3 16 -5.29882648175883375075e-12 4 16 1.98060040590419784597e-11 5 16 8.25018438982416668637e-12 6 16 3.20165075007317097433e-12 16 16 1.00000000000000000000e+00 18 16 7.40994722178700548909e-14 20 16 -6.80960113186301896349e-07 1 17 -6.47378328721970319748e-08 2 17 -4.63661024241446284577e-07 3 17 -5.36574191301042446867e-07 4 17 7.72345288169162813574e-07 5 17 2.27178873046796096882e-07 6 17 6.54492851026589050889e-08 17 17 1.00000000000000000000e+00 18 17 1.93124249925347199200e-09 20 17 -1.77477560937404597874e-02 1 18 -4.21819090843200683594e-03 2 18 -3.07043083012103980214e-04 3 18 -2.04841163940727710724e-03 4 18 8.48761294037103652954e-04 5 18 -1.52439999510534107685e-04 6 18 -4.57015703432261876055e-05 7 18 -2.42885644547641320681e-03 8 18 4.07311692833900538396e-03 9 18 4.17594239115715026855e-03 10 18 9.24955355003476142883e-04 11 18 8.22130590677261352539e-04 12 18 -4.95020821690559387207e-02 13 18 4.17594239115715026855e-03 14 18 3.74801829457283020020e-02 15 18 -2.47516334056854213352e-02 17 18 4.07311692833900538396e-03 18 18 1.00001849507680207196e+00 19 18 8.22130590677261352539e-04 20 18 -1.01449234008789105133e+02 26 18 -2.47108759820539314780e-17 27 18 -1.87318964593036207944e-13 28 18 4.88866488523170827918e-14 29 18 -3.04399077287725216455e-16 30 18 -1.28688736294500587730e-16 31 18 -2.79084782974981217332e-17 32 18 -3.31990213098265485314e-10 33 18 3.13951531438760918575e-10 34 18 -4.00604020645684482483e-16 35 18 -1.68621085506289911885e-16 36 18 -3.12503541466613516189e-17 37 18 -9.12322093427064828575e-08 38 18 -3.24413394992006900278e-06 39 18 -4.81240286674873042616e-16 40 18 -1.97670517183739594664e-16 41 18 -3.49479441290019912647e-17 42 18 -5.19145316957292379811e-07 43 18 -9.96902352198958396912e-04 44 18 -5.60672918886013192663e-16 45 18 -2.22669926998341795310e-16 46 18 -3.90387294524360372976e-17 47 18 -6.09966832598729524761e-08 48 18 -5.23835886269807815552e-04 49 18 -6.32230262270056485308e-16 50 18 -2.41994771931711794667e-16 51 18 -4.34373053730786085532e-17 52 18 -6.18966433663103998697e-10 53 18 -2.59382977674249601993e-06 54 18 -6.73145553512465022461e-16 55 18 -2.48874585287548084900e-16 56 18 -4.77846358004123069642e-17 57 18 -3.72001388027065615915e-12 58 18 -1.77629333464324190572e-09 59 18 -6.51793546978078619514e-16 60 18 -2.32712349620988780130e-16 61 18 -5.10311542685604299825e-17 62 18 -6.05743753767651327280e-14 63 18 -2.04659813402008298877e-12 64 18 -5.52136097327110726696e-16 65 18 -1.87715974229370194200e-16 66 18 -5.06979923876036721320e-17 67 18 -4.54819762039058994585e-15 68 18 -1.88182972080553484462e-14 69 18 -3.94321365517662621901e-16 70 18 -1.25923954580213497877e-16 71 18 -4.29686446903407705082e-17 72 18 -9.24877392689338675980e-16 73 18 -1.64546759091812200976e-15 74 18 -2.30533357364177092508e-16 75 18 -7.04231397978901827936e-17 76 18 -2.77217604721877488207e-17 77 18 -2.77506416487111621415e-16 78 18 -4.05663771956108094863e-16 79 18 -1.11357092234917891599e-16 80 18 -3.37526879961975675472e-17 81 18 -1.30874870428721104415e-17 82 18 -9.24003625264686661786e-17 83 18 -1.29694362926238504263e-16 84 18 -4.62553442839242693989e-17 85 18 -1.42592305667647097252e-17 86 18 -4.84089586395428301321e-18 87 18 -3.03287690651588720016e-17 88 18 -4.26509014560020010935e-17 89 18 -1.70672374311413212883e-17 90 18 -5.40460373497753286611e-18 91 18 -1.51727258218764207319e-18 92 18 -9.32421726553353067009e-18 93 18 -1.33668548870526995396e-17 94 18 -5.68166291806849416764e-18 95 18 -1.85403435317023108537e-18 96 18 -4.19734914059287386242e-19 97 18 -2.62596839979145382449e-18 98 18 -3.87090003710213668081e-18 99 18 -1.71583728823099598135e-18 100 18 -5.77740628223693975454e-19 101 18 -1.04115155750518198830e-19 102 18 -6.72056330353661321149e-19 103 18 -1.02322986235360801847e-18 104 18 -4.70628390318743007064e-19 105 18 -1.63797115825619995201e-19 106 18 -2.32651429681729386078e-20 107 18 -1.55733707515664796862e-19 108 18 -2.45814658499666917376e-19 109 18 -1.17282320138713898598e-19 110 18 -4.22695044504793799630e-20 111 18 -4.69178135909784411293e-21 112 18 -3.26722221726895709969e-20 113 18 -5.35939366161056429289e-20 114 18 -2.65689604958465512760e-20 115 18 -9.93638109249680131908e-21 116 18 -8.54503826058203343415e-22 117 18 -6.20642337769059684670e-21 118 18 -1.06033891654214501685e-20 119 18 -5.47264955087070634612e-21 120 18 -2.12817213790163395459e-21 121 18 -1.40561028384256498607e-22 122 18 -1.06721122031293997343e-21 123 18 -1.90391531512348199414e-21 124 18 -1.02530127447263195443e-21 125 18 -4.15414708047462092322e-22 126 18 -2.09008128858455289328e-23 127 18 -1.66236810018517596679e-22 128 18 -3.10300570148572711275e-22 129 18 -1.74750436721377990290e-22 130 18 -7.39407025746089322288e-23 18 19 2.86320550602070511559e-11 19 19 1.00000000000000000000e+00 1 20 -4.01434974151015921962e-09 2 20 -9.61729862414273384275e-11 3 20 1.79096334984585300006e-10 4 20 -6.72982558569401589921e-10 5 20 -5.82545955918334357193e-11 6 20 -4.06592468027433540101e-12 7 20 -3.36647265619660588095e-09 8 20 3.13538595086981786153e-09 9 20 4.01659860926883993670e-09 10 20 7.65672636404701734136e-10 11 20 -1.15543477563484499761e-10 12 20 -6.80951188769540749490e-08 13 20 4.01659860926883993670e-09 14 20 2.81029137738641987762e-08 15 20 -3.36997594274634982176e-08 17 20 3.13538595086981786153e-09 18 20 -1.77142263531326893400e-13 19 20 -1.15543477563484499761e-10 20 20 9.99994139078808075283e-01 26 20 9.25888884357160351654e-24 27 20 1.60245628790320611927e-20 28 20 2.05747709939191701011e-22 29 20 3.79006391756135009163e-23 30 20 1.26502847055117800049e-23 31 20 2.96749782575950324741e-23 32 20 2.64015140401041093279e-17 33 20 1.19248593802020788344e-16 34 20 8.87269094336798409304e-23 35 20 2.42863893208878885477e-23 36 20 5.48506473214949526235e-23 37 20 5.62728032574288938861e-15 38 20 2.09730583594636103695e-12 39 20 1.50307436422698402343e-22 40 20 3.65434071436243709891e-23 41 20 7.37233051309045049114e-23 42 20 1.68193062287987808358e-14 43 20 2.73732148059480095981e-10 44 20 1.94787794014804811480e-22 45 20 4.29939038329548592177e-23 46 20 7.85427782561489962035e-23 47 20 -4.95311833269371920574e-16 48 20 8.36085506383810184161e-11 49 20 1.95887150572320790022e-22 50 20 3.78102294049879311953e-23 51 20 6.82553504762448913067e-23 52 20 -3.69681574128729001187e-17 53 20 1.91118876367163403884e-13 54 20 1.44533782390047495224e-22 55 20 1.98449635849742790626e-23 56 20 4.76634050337859676359e-23 57 20 -4.55052424288004642253e-19 58 20 -1.64086693146510996932e-17 59 20 5.77261652278831342480e-23 60 20 -4.80722527083002986279e-24 61 20 2.36266113033100101622e-23 62 20 -1.18988832516501999087e-20 63 20 -1.97399984042091297674e-19 64 20 -2.73850602001450017467e-23 65 20 -2.42815804248096700759e-23 66 20 2.50929080886113696854e-24 67 20 -1.29458451067237100943e-21 68 20 -3.71796682709845335636e-21 69 20 -7.47888353328046299772e-23 70 20 -2.99606595012553905734e-23 71 20 -1.03770581559553206662e-23 72 20 -3.56643889032674601865e-22 73 20 -5.41363861521814331088e-22 74 20 -7.47786621825708998089e-23 75 20 -2.43150533707400109876e-23 76 20 -1.23817272655210602864e-23 77 20 -1.37501977255103311300e-22 78 20 -1.87670829767420091340e-22 79 20 -5.03014568750409111577e-23 80 20 -1.53213448536238789768e-23 81 20 -7.94892456816241139575e-24 82 20 -5.67143406764104556659e-23 83 20 -7.66151934787978329729e-23 84 20 -2.66372074402209872640e-23 85 20 -8.08598836158365697593e-24 86 20 -3.64540986228224898006e-24 87 20 -2.24860320303307789173e-23 88 20 -3.07295780027924210778e-23 89 20 -1.19897975019801005830e-23 90 20 -3.71407704863811717367e-24 91 20 -1.36428050417728003499e-24 92 20 -8.19719487225356823115e-24 93 20 -1.14532103699442393091e-23 94 20 -4.74808279104380016571e-24 95 20 -1.51275517059254699992e-24 96 20 -4.41792132941971585792e-25 97 20 -2.69787274141965190138e-24 98 20 -3.87940257284981072279e-24 99 20 -1.67746222785454709211e-24 100 20 -5.51212218788203283467e-25 101 20 -1.26586241485713299923e-25 102 20 -7.97312563744323420642e-25 103 20 -1.18449752615560100251e-24 104 20 -5.31507853882366545338e-25 105 20 -1.80518147081538393249e-25 106 20 -3.23367366262989176020e-26 107 20 -2.11210161105745994309e-25 108 20 -3.25328998326313496175e-25 109 20 -1.51442804874968103257e-25 110 20 -5.32644799662016328603e-26 111 20 -7.39022152343345568943e-27 112 20 -5.02173136675349915481e-26 113 20 -8.03890184579669369702e-26 114 20 -3.88845779624727792060e-26 115 20 -1.41919374041324786043e-26 116 20 -1.51385258088229894441e-27 117 20 -1.07295097945768404813e-26 118 20 -1.78897444677713485792e-26 119 20 -9.00934620544793834173e-27 120 20 -3.41920974160358998535e-27 121 20 -2.78230432380874221130e-28 122 20 -2.06143047896155013874e-27 123 20 -3.58919385923916293153e-27 124 20 -1.88602197963760982532e-27 125 20 -7.45778430144052655550e-28 126 20 -4.59536995863002507527e-29 127 20 -3.56671825678816388912e-28 128 20 -6.49772363160304458063e-28 129 20 -3.57066448724421288697e-28 130 20 -1.47452590993813804255e-28 21 21 1.00000000000000000000e+00 22 22 1.00000000000000000000e+00 23 23 1.00000000000000000000e+00 24 24 1.00000000000000000000e+00 25 25 1.00000000000000000000e+00 1 26 7.81199514865875244141e-01 2 26 -7.20168352127075195312e-01 21 26 -5.65384492187500000000e+04 26 26 1.74045634269714399878e+00 2 27 -8.30880999565124511719e-02 3 27 8.30495357513427734375e-02 20 27 -5.77172660827636718750e+00 22 27 -5.44988281250000000000e+04 27 27 9.42069701850414276123e-01 3 28 2.39369459450244903564e-02 4 28 -2.38650627434253692627e-02 11 28 7.18827068340033292770e-05 23 28 -5.24606210937500000000e+04 28 28 1.04908626154065109937e+00 4 29 1.36658310890197809417e-01 5 29 -1.28117144107818603516e-01 24 29 -5.04583867187500000000e+04 29 29 1.15183186531066894531e+00 5 30 4.49036806821823120117e-02 6 30 -4.47633489966392517090e-02 25 30 -4.84461601562500000000e+04 30 30 1.07002598047256491931e+00 1 31 1.03676509857177689966e+00 2 31 -1.19876003265380903784e+00 11 31 -1.72794342041015597244e-01 21 31 -5.61147812500000000000e+04 31 31 2.21556091308593705591e+00 2 32 -1.62960767745971707443e-01 3 32 1.62960767745971707443e-01 20 32 -2.11695556640625000000e+01 22 32 -5.40871835937500000000e+04 32 32 8.62196683883666992188e-01 3 33 1.39964260160923004150e-02 4 33 -1.39964260160923004150e-02 18 33 -2.00701492758526001126e-07 20 33 1.84408378601074196546e+00 23 33 -5.20743671875000000000e+04 33 33 1.03915383294224694666e+00 4 34 2.18947708606719998459e-01 5 34 -2.05263435840606689453e-01 11 34 1.82456411421299015407e-02 24 34 -5.00706093750000000000e+04 34 34 1.23118048906326293945e+00 5 35 7.38607645034790039062e-02 6 35 -7.40705728530883789062e-02 25 35 -4.80702187500000000000e+04 35 35 1.09935140609741210938e+00 1 36 1.38915252685546897204e+00 2 36 -1.33127117156982399671e+00 21 36 -5.56794570312500000000e+04 36 36 2.36736488342285200659e+00 2 37 -2.16264009475708007812e-01 3 37 2.16264009475708007812e-01 20 37 -4.32606964111328125000e+01 22 37 -5.36641015625000000000e+04 37 37 8.08893382549285888672e-01 3 38 -1.82402543723583186741e-02 4 38 1.82402543723583186741e-02 20 38 -3.64634799957275390625e+00 23 38 -5.16633085937500000000e+04 38 38 1.00691716000437692102e+00 4 39 2.33422756195068387131e-01 5 39 -2.27587223052978487869e-01 24 39 -4.96714179687500000000e+04 39 39 1.25200611352920510022e+00 5 40 8.26973319053649902344e-02 6 40 -8.34993124008178710938e-02 25 40 -4.76828398437500000000e+04 40 40 1.10864871740341208728e+00 1 41 1.18843841552734397204e+00 2 41 -1.21673488616943403784e+00 21 41 -5.52329101562500000000e+04 41 41 2.23984241485595703125e+00 2 42 -2.30306267738342312912e-01 3 42 2.30306267738342312912e-01 18 42 6.81792243995005264878e-06 20 42 -6.26554260253906178946e+01 22 42 -5.32297656250000000000e+04 42 42 7.94851183891296386719e-01 3 43 -5.30172102153301169625e-02 4 43 5.30172102153301169625e-02 20 43 -1.43107547760009801152e+01 23 43 -5.12410000000000000000e+04 43 43 9.72140207886695861816e-01 4 44 2.03521609306335393708e-01 5 44 -2.00129628181457491776e-01 24 44 -4.92611640625000000000e+04 44 44 1.22518628835678100586e+00 5 45 7.49192833900451660156e-02 6 45 -7.57129192352294921875e-02 25 45 -4.72844257812500000000e+04 45 45 1.10082620382309004370e+00 1 46 9.62069332599639892578e-01 2 46 -9.30236399173736572266e-01 21 46 -5.47754843750000000000e+04 46 46 1.95581746101379394531e+00 2 47 -2.07740545272827092926e-01 3 47 2.07740545272827092926e-01 20 47 -7.18440551757812500000e+01 22 47 -5.27847695312500000000e+04 47 47 8.17416906356811523438e-01 3 48 -7.41983652114868164062e-02 4 48 7.41983652114868164062e-02 20 48 -2.53545837402343714473e+01 23 48 -5.08080585937500000000e+04 48 48 9.50959004461765289307e-01 4 49 1.56929850578308105469e-01 5 49 -1.48630678653717013260e-01 24 49 -4.88402460937500000000e+04 49 49 1.17370963096618696753e+00 5 50 5.78207299113273620605e-02 6 50 -5.81895001232624123344e-02 25 50 -4.68753710937500000000e+04 50 50 1.08332991600036598889e+00 1 51 6.68504953384399414062e-01 2 51 -6.12796247005462646484e-01 11 51 1.11417531967163099815e-01 21 51 -5.43073984375000000000e+04 51 51 1.64291000366210893091e+00 2 52 -1.62572622299194308182e-01 3 52 1.62572622299194308182e-01 20 52 -6.85102233886718750000e+01 22 52 -5.23289218750000000000e+04 52 52 8.62584769725799560547e-01 3 53 -7.63678550720214843750e-02 4 53 7.63678550720214843750e-02 20 53 -3.17105712890625000000e+01 23 53 -5.03646640625000000000e+04 53 53 9.48789533227682113647e-01 4 54 8.87135863304138183594e-02 5 54 -9.42581892013549804688e-02 24 54 -4.84086640625000000000e+04 54 54 1.11990225315093994141e+00 5 55 3.97058054804801871529e-02 6 55 -3.87569516897201468697e-02 11 55 -1.86850912868976593018e-02 25 55 -4.64556289062500000000e+04 55 55 1.06392204761505104749e+00 1 56 4.06269550323486272614e-01 2 56 -3.61833810806274414062e-01 21 56 -5.38286445312500000000e+04 56 56 1.38521558046340897974e+00 2 57 -1.11913800239563002159e-01 3 57 1.11906409263610798210e-01 20 57 -5.54209289550781178946e+01 22 57 -5.18628125000000000000e+04 57 57 9.13243830204010009766e-01 3 58 -6.38895034790039062500e-02 4 58 6.38895034790039062500e-02 18 58 3.41024497174657881260e-06 20 58 -3.13393707275390589473e+01 23 58 -4.99105781250000000000e+04 58 58 9.61267873644828796387e-01 4 59 5.38999252021312713623e-02 5 59 -5.18786571919918129692e-02 24 59 -4.79668203125000000000e+04 59 59 1.07738757133483908923e+00 5 60 2.30579301714897190456e-02 6 60 -2.26576179265975986843e-02 25 60 -4.60254375000000000000e+04 60 60 1.04776912182569503784e+00 1 61 1.91204011440277099609e-01 2 61 -1.85228884220123291016e-01 21 61 -5.33398750000000000000e+04 61 61 1.21064549684524491724e+00 2 62 -6.83112740516662597656e-02 3 62 6.84081315994262695312e-02 20 62 -2.90174713134765589473e+01 22 62 -5.13864375000000000000e+04 62 62 9.56853818148374557495e-01 3 63 -4.53118532896041870117e-02 4 63 4.53118532896041870117e-02 18 63 2.78936659015016587940e-06 20 63 -2.55021667480468714473e+01 23 63 -4.94437226562500000000e+04 63 63 9.79846086353063583374e-01 4 64 2.31977440416812896729e-02 5 64 -2.46476009488105808620e-02 24 64 -4.75147148437500000000e+04 64 64 1.04996958747506097254e+00 5 65 1.14345625042915292197e-02 6 65 -1.15366578102111799059e-02 25 65 -4.55853828125000000000e+04 65 65 1.03674193099141098706e+00 1 66 9.72205996513366699219e-02 2 66 -8.50680470466613769531e-02 21 66 -5.28410000000000000000e+04 66 66 1.11003625392913796155e+00 2 67 -3.70896980166435172310e-02 3 67 3.68472933769226074219e-02 22 67 -5.09004179687500000000e+04 67 67 9.88015431910753250122e-01 3 68 -2.78838761150836909886e-02 4 68 2.78838761150836909886e-02 18 68 2.17842898564413189888e-06 20 68 -1.82739715576171910527e+01 23 68 -4.88280859375000000000e+04 68 68 9.97323069954290986061e-01 5 69 -1.01890712976455705824e-02 24 69 -4.70529609375000000000e+04 69 69 1.03517695888876892774e+00 5 70 4.98403236269950866699e-03 6 70 -5.13978302478790283203e-03 25 70 -4.51352578125000000000e+04 70 70 1.03036138415336608887e+00 1 71 1.16830468177795396278e-01 2 71 -2.92076170444488490696e-02 21 71 -5.23326640625000000000e+04 71 71 1.05976428464055105749e+00 2 72 -1.80264897644519805908e-02 3 72 2.33857184648513793945e-02 22 72 -5.04047500000000000000e+04 72 72 1.00709288939833596643e+00 3 73 -1.83612145483493804932e-02 4 73 1.83612145483493804932e-02 23 73 -4.95080468750000000000e+04 73 73 1.01015335693955399243e+00 4 74 2.38139852881431614284e-02 5 74 -4.46512177586555480957e-03 24 74 -4.65817460937500000000e+04 74 74 1.02847662568092301782e+00 6 75 -1.97719340212643103147e-03 25 75 -4.46756679687500000000e+04 75 75 1.02719328552484490125e+00 2 76 -1.15763470530509896689e-02 21 76 -5.18148671875000000000e+04 76 76 1.03775429725646994861e+00 2 77 -7.47762992978096008301e-03 22 77 -4.98997539062500000000e+04 77 77 1.01727709546685196607e+00 23 78 -4.38883750000000000000e+04 78 78 1.01799948513507798609e+00 5 79 -2.97839730046689510345e-03 24 79 -4.61010156250000000000e+04 79 79 1.02597018331289291382e+00 25 80 -4.42068046875000000000e+04 80 80 1.02583965286612510681e+00 21 81 -5.12877695312500000000e+04 81 81 1.02925540506839796606e+00 2 82 -4.34722751379013061523e-03 22 82 -4.93856210937500000000e+04 82 82 1.02206797152757600244e+00 23 83 -3.44926250000000000000e+04 83 83 1.02211799472570397107e+00 24 84 -4.56112265625000000000e+04 84 84 1.02523862570524193494e+00 6 85 -1.40839349478483200073e-03 25 85 -4.37286679687500000000e+04 85 85 1.02534606307745002063e+00 21 86 -5.07520156250000000000e+04 86 86 1.02635006234049797058e+00 22 87 -4.88615195312500000000e+04 87 87 1.02406750619411490710e+00 23 88 -1.05155625000000000000e+05 88 88 1.02400381863117195813e+00 5 89 1.89956836402416194554e-02 24 89 -4.51125664062500000000e+04 89 89 1.02510472387075401990e+00 6 90 3.71979712508618788266e-03 25 90 -4.32418437500000000000e+04 90 90 1.02519612759351708142e+00 21 91 -5.02075742187500000000e+04 91 91 1.02546809613704703601e+00 22 92 -4.83366406250000000000e+04 92 92 1.02481091022491499487e+00 93 93 1.02476476877927802356e+00 24 94 -4.46054062500000000000e+04 94 94 1.02511508762836500708e+00 25 95 -4.27463398437500000000e+04 95 95 1.02516062930226303784e+00 21 96 -4.96548476562500000000e+04 96 96 1.02522982656955696790e+00 22 97 -4.77840468750000000000e+04 97 97 1.02505806088447593005e+00 98 98 1.02503732964396498950e+00 24 99 -4.40899609375000000000e+04 99 99 1.02513788267970107349e+00 25 100 -4.22425468750000000000e+04 100 100 1.02515559270977996142e+00 21 101 -4.90940000000000000000e+04 101 101 1.02517251297831490930e+00 22 102 -4.72000000000000000000e+04 102 102 1.02513168752193495337e+00 103 103 1.02512434870004698340e+00 24 104 -4.35664453125000000000e+04 104 104 1.02515039592981294092e+00 25 105 -4.17304414062500000000e+04 105 105 1.02515617758035704199e+00 21 106 -4.85254765625000000000e+04 106 106 1.02516022697091102600e+00 22 107 -4.67178828125000000000e+04 107 107 1.02515139803290389331e+00 108 108 1.02514920383691809924e+00 24 109 -4.30350195312500000000e+04 109 109 1.02515529468655608447e+00 25 110 -4.12104531250000000000e+04 110 110 1.02515692636370703283e+00 21 111 -4.79492617187500000000e+04 111 111 1.02515788376331307141e+00 22 112 -4.64097148437500000000e+04 112 112 1.02515614405274391174e+00 113 113 1.02515557408332802503e+00 24 114 -4.24960859375000000000e+04 114 114 1.02515685930848099439e+00 25 115 -4.06829843750000000000e+04 115 115 1.02515726536512397082e+00 21 116 -4.73659335937500000000e+04 116 116 1.02515748515725091394e+00 22 117 -4.88831132812500000000e+04 117 117 1.02515717223286606519e+00 118 118 1.02515704184770606311e+00 24 119 -4.19496679687500000000e+04 119 119 1.02515728771686598364e+00 25 120 -4.01478164062500000000e+04 120 120 1.02515737712383292468e+00 21 121 -4.67755273437500000000e+04 121 121 1.02515742182731606214e+00 22 122 -9.48033750000000000000e+04 122 122 1.02515737339854196009e+00 123 123 1.02515734732151009290e+00 24 124 -4.13961679687500000000e+04 124 124 1.02515738829970404211e+00 25 125 -3.96057265625000000000e+04 125 125 1.02515740692615509033e+00 21 126 -4.61784375000000000000e+04 126 126 1.02515741437673590930e+00 127 127 1.02515740692615509033e+00 128 128 1.02515740320086501391e+00 24 129 -4.08359296875000000000e+04 129 129 1.02515741065144494470e+00 25 130 -3.90563671875000000000e+04 130 130 1.02515741065144494470e+00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 1.10261493806879525437e+03 1.10261493806879525437e+03 SuiteSparse/UMFPACK/Tcov/TestMat/galenet0000644001170100242450000000147510171312004016667 0ustar davisfac8 14 22 1 1 1 1.00000000000000000000e+00 2 2 1.00000000000000000000e+00 3 3 1.00000000000000000000e+00 6 4 -1.00000000000000000000e+00 7 5 -1.00000000000000000000e+00 8 6 -1.00000000000000000000e+00 1 7 1.00000000000000000000e+00 4 7 1.00000000000000000000e+00 2 8 1.00000000000000000000e+00 4 8 1.00000000000000000000e+00 2 9 1.00000000000000000000e+00 5 9 1.00000000000000000000e+00 3 10 1.00000000000000000000e+00 5 10 1.00000000000000000000e+00 4 11 -1.00000000000000000000e+00 6 11 1.00000000000000000000e+00 4 12 -1.00000000000000000000e+00 7 12 1.00000000000000000000e+00 5 13 -1.00000000000000000000e+00 7 13 1.00000000000000000000e+00 5 14 -1.00000000000000000000e+00 8 14 1.00000000000000000000e+00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix100000644001170100242450000002721210171264275016732 0ustar davisfac40 40 289 1 2 1 1.2902 5 1 1.6924 10 1 0.94089 11 1 0.087987 19 1 -0.07933 21 1 -0.68166 22 1 -0.46497 24 1 1.8645 26 1 -0.63128 33 1 -0.27467 34 1 -0.011286 35 1 -1.2566 36 1 -1.5175 16 2 -0.64515 17 2 -0.68414 39 2 -0.13904 2 3 0.6686 6 3 -0.048221 7 3 0.42818 11 3 -0.63547 17 3 -1.2919 22 3 0.37096 8 4 -0.25565 17 4 -0.072926 27 4 -2.1204 4 5 0.21932 13 5 -1.0039 14 5 0.055744 19 5 1.5352 20 5 -2.0543 24 5 -0.33981 27 5 -0.64468 38 5 -0.25762 39 5 -1.1634 4 6 -0.9219 8 6 -0.37747 15 6 0.95347 24 6 -1.1398 29 6 0.48014 40 6 1.8482 9 7 -0.35097 11 7 -0.55957 12 7 -1.1878 19 7 -0.60648 34 7 -0.00081703 35 7 -0.34718 40 7 -0.27511 5 8 0.59128 7 8 0.89564 8 8 -0.29589 14 8 -1.2173 23 8 -1.3573 24 8 -0.21112 27 8 -0.7043 29 8 0.66816 33 8 -0.13313 38 8 -1.4095 4 9 -2.1707 19 9 -1.3474 21 9 -1.0246 23 9 -1.0226 33 9 -1.2705 39 9 1.1837 10 10 -0.99209 15 10 0.12864 17 10 -0.3306 23 10 1.0378 33 10 -1.6636 38 10 1.7701 40 10 2.2126 10 11 0.21204 11 11 0.44365 15 11 0.65647 25 11 -1.0998 27 11 -1.0181 37 11 1.2781 7 12 0.73096 12 12 -2.2023 14 12 -0.041227 18 12 0.66302 19 12 0.46938 23 12 -0.3898 27 12 -0.18208 31 12 1.2765 36 12 0.0097342 38 12 0.32555 5 13 -0.6436 11 13 -0.9499 13 13 -0.94715 17 13 -0.84363 19 13 -0.90357 24 13 1.1902 28 13 0.0075245 4 14 -0.059188 9 14 0.62323 19 14 0.03588 21 14 -1.2344 30 14 -1.1071 32 14 0.99011 35 14 -0.94137 36 14 0.071373 5 15 0.38034 25 15 0.085991 26 15 -2.3252 6 16 4.3192e-05 11 16 0.78118 18 16 -0.8542 20 16 0.13256 24 16 -1.1162 37 16 -0.54782 6 17 -0.31786 11 17 0.56896 20 17 1.5929 23 17 -1.3813 26 17 -1.2316 40 17 1.5085 18 18 -1.2013 20 18 1.0184 33 18 -0.70355 34 18 -0.24944 40 18 -1.9451 1 19 0.57115 4 19 -1.0106 8 19 -1.4751 10 19 0.23788 16 19 0.80573 22 19 0.72828 23 19 0.31554 39 19 -0.01543 3 20 -0.15672 13 20 -0.37443 15 20 -1.1678 18 20 -0.11987 21 20 0.28881 23 20 1.5532 34 20 0.39658 1 21 -0.39989 7 21 0.57786 8 21 -0.234 17 21 0.49777 23 21 0.70789 26 21 1.0556 32 21 0.2189 33 21 0.28088 37 21 0.26081 39 21 0.53622 40 21 -1.6805 8 22 0.11844 18 22 -0.065294 30 22 0.4855 33 22 -0.54121 36 22 0.31654 10 23 -1.0078 13 23 -1.1859 16 23 0.23163 19 23 -0.62753 25 23 -2.0046 27 23 1.521 34 23 -0.26401 39 23 -0.71643 5 24 -1.0091 18 24 0.4853 25 24 -0.49309 31 24 1.8634 35 24 -1.1746 3 25 -1.6041 8 25 0.31481 10 25 -0.74204 12 25 0.98634 14 25 -1.1283 19 25 0.5354 20 25 -1.5804 25 25 0.46205 26 25 -0.11322 35 25 -1.0211 39 25 -0.65556 1 26 0.69 6 26 1.095 7 26 0.040314 14 26 -1.3493 24 26 0.63527 27 26 -0.038439 28 26 -0.78289 1 27 0.81562 2 27 1.1908 3 27 0.2573 4 27 0.61446 10 27 1.0823 12 27 -0.51864 21 27 -0.4293 24 27 -0.60141 26 27 0.37922 29 27 -0.078321 30 27 -0.0050051 32 27 0.26166 34 27 -1.664 38 27 -1.119 11 28 -0.82171 13 28 -1.0559 15 28 -0.46061 18 28 -0.59549 29 28 0.88917 38 28 0.62035 39 28 0.31436 9 29 0.79905 20 29 -0.078662 27 29 1.2274 34 29 -1.029 37 29 -0.013177 14 30 -0.2611 29 30 2.3093 31 30 -0.52256 35 30 -0.40167 7 31 0.67709 10 31 -0.1315 12 31 0.32737 13 31 1.4725 15 31 -0.26244 17 31 1.4885 19 31 0.55288 29 31 0.52464 30 31 -0.27622 31 31 0.10342 32 31 1.2134 2 32 -1.2025 16 32 -0.98976 18 32 -0.14967 23 32 1.9574 24 32 0.55118 29 32 -0.011787 31 32 -0.80765 3 33 -1.0565 10 33 0.38988 11 33 -0.26561 16 33 1.3396 25 33 -0.321 29 33 0.91314 33 33 -1.3335 37 33 -0.58026 6 34 -1.874 17 34 -0.54648 33 34 1.0727 35 34 0.17367 15 35 -1.2132 17 35 -0.84676 23 35 0.50454 26 35 0.9442 27 35 -0.6962 28 35 0.58694 31 35 0.68044 38 35 1.2698 3 36 1.4151 4 36 0.50774 16 36 0.2895 28 36 -0.25121 29 36 0.055941 31 36 -2.3646 37 36 2.1363 39 36 0.10681 1 37 0.71191 2 37 -0.01979 5 37 -0.019511 12 37 0.23406 15 37 -1.3194 19 37 -0.20369 21 37 0.055801 35 37 -0.11612 38 37 -0.89604 40 37 -0.57353 3 38 -0.80509 8 38 1.4435 12 38 0.021466 15 38 0.93122 16 38 1.4789 18 38 -0.43475 21 38 -0.36787 34 38 0.24309 35 38 1.0641 16 39 1.138 22 39 2.1122 25 39 1.2366 35 39 -0.24539 3 40 0.52874 7 40 0.5689 15 40 0.011245 17 40 -0.24634 33 40 -0.71209 36 40 0.49983 38 40 0.13518 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1.00608060993977391627e+06 1.00608060993977391627e+06 SuiteSparse/UMFPACK/Tcov/TestMat/matrix110000644001170100242450000002721210171264275016733 0ustar davisfac40 40 289 1 2 1 1.2902 5 1 1.6924 10 1 0.94089 11 1 0.087987 19 1 -0.07933 21 1 -0.68166 22 1 -0.46497 24 1 1.8645 26 1 -0.63128 33 1 -0.27467 34 1 -0.011286 35 1 -1.2566 36 1 -1.5175 16 2 -0.64515 17 2 -0.68414 39 2 -0.13904 2 3 0.6686 6 3 -0.048221 7 3 0.42818 11 3 -0.63547 17 3 -1.2919 22 3 0.37096 8 4 -0.25565 17 4 -0.072926 27 4 -2.1204 4 5 0.21932 13 5 -1.0039 14 5 0.055744 19 5 1.5352 20 5 -2.0543 24 5 -0.33981 27 5 -0.64468 38 5 -0.25762 39 5 -1.1634 4 6 -0.9219 8 6 -0.37747 15 6 0.95347 24 6 -1.1398 29 6 0.48014 40 6 1.8482 9 7 -0.35097 11 7 -0.55957 12 7 -1.1878 19 7 -0.60648 34 7 -0.00081703 35 7 -0.34718 40 7 -0.27511 5 8 0.59128 7 8 0.89564 8 8 -0.29589 14 8 -1.2173 23 8 -1.3573 24 8 -0.21112 27 8 -0.7043 29 8 0.66816 33 8 -0.13313 38 8 -1.4095 4 9 -2.1707 19 9 -1.3474 21 9 -1.0246 23 9 -1.0226 33 9 -1.2705 39 9 1.1837 10 10 -0.99209 15 10 0.12864 17 10 -0.3306 23 10 1.0378 33 10 -1.6636 38 10 1.7701 40 10 2.2126 10 11 0.21204 11 11 0.44365 15 11 0.65647 25 11 -1.0998 27 11 -1.0181 37 11 1.2781 7 12 0.73096 12 12 -2.2023 14 12 -0.041227 18 12 0.66302 19 12 0.46938 23 12 -0.3898 27 12 -0.18208 31 12 1.2765 36 12 0.0097342 38 12 0.32555 5 13 -0.6436 11 13 -0.9499 13 13 -0.94715 17 13 -0.84363 19 13 -0.90357 24 13 1.1902 28 13 0.0075245 4 14 -0.059188 9 14 0.62323 19 14 0.03588 21 14 -1.2344 30 14 -1.1071 32 14 0.99011 35 14 -0.94137 36 14 0.071373 5 15 0.38034 25 15 0.085991 26 15 -2.3252 6 16 4.3192e-05 11 16 0.78118 18 16 -0.8542 20 16 0.13256 24 16 -1.1162 37 16 -0.54782 6 17 -0.31786 11 17 0.56896 20 17 1.5929 23 17 -1.3813 26 17 -1.2316 40 17 1.5085 18 18 -1.2013 20 18 1.0184 33 18 -0.70355 34 18 -0.24944 40 18 -1.9451 1 19 0.57115 4 19 -1.0106 8 19 -1.4751 10 19 0.23788 16 19 0.80573 22 19 0.72828 23 19 0.31554 39 19 -0.01543 3 20 -0.15672 13 20 -0.37443 15 20 -1.1678 18 20 -0.11987 21 20 0.28881 23 20 1.5532 34 20 0.39658 1 21 -0.39989 7 21 0.57786 8 21 -0.234 17 21 0.49777 23 21 0.70789 26 21 1.0556 32 21 0.2189 33 21 0.28088 37 21 0.26081 39 21 0.53622 40 21 -1.6805 8 22 0.11844 18 22 -0.065294 30 22 0.4855 33 22 -0.54121 36 22 0.31654 10 23 -1.0078 13 23 -1.1859 16 23 0.23163 19 23 -0.62753 25 23 -2.0046 27 23 1.521 34 23 -0.26401 39 23 -0.71643 5 24 -1.0091 18 24 0.4853 25 24 -0.49309 31 24 1.8634 35 24 -1.1746 3 25 -1.6041 8 25 0.31481 10 25 -0.74204 12 25 0.98634 14 25 -1.1283 19 25 0.5354 20 25 -1.5804 25 25 0.46205 26 25 -0.11322 35 25 -1.0211 39 25 -0.65556 1 26 0.69 6 26 1.095 7 26 0.040314 14 26 -1.3493 24 26 0.63527 27 26 -0.038439 28 26 -0.78289 1 27 0.81562 2 27 1.1908 3 27 0.2573 4 27 0.61446 10 27 1.0823 12 27 -0.51864 21 27 -0.4293 24 27 -0.60141 26 27 0.37922 29 27 -0.078321 30 27 -0.0050051 32 27 0.26166 34 27 -1.664 38 27 -1.119 11 28 -0.82171 13 28 -1.0559 15 28 -0.46061 18 28 -0.59549 29 28 0.88917 38 28 0.62035 39 28 0.31436 9 29 0.79905 20 29 -0.078662 27 29 1.2274 34 29 -1.029 37 29 -0.013177 14 30 -0.2611 29 30 2.3093 31 30 -0.52256 35 30 -0.40167 7 31 0.67709 10 31 -0.1315 12 31 0.32737 13 31 1.4725 15 31 -0.26244 17 31 1.4885 19 31 0.55288 29 31 0.52464 30 31 -0.27622 31 31 0.10342 32 31 1.2134 2 32 -1.2025 16 32 -0.98976 18 32 -0.14967 23 32 1.9574 24 32 0.55118 29 32 -0.011787 31 32 -0.80765 3 33 -1.0565 10 33 0.38988 11 33 -0.26561 16 33 1.3396 25 33 -0.321 29 33 0.91314 33 33 -1.3335 37 33 -0.58026 6 34 -1.874 17 34 -0.54648 33 34 1.0727 35 34 0.17367 15 35 -1.2132 17 35 -0.84676 23 35 0.50454 26 35 0.9442 27 35 -0.6962 28 35 0.58694 31 35 0.68044 38 35 1.2698 3 36 1.4151 4 36 0.50774 16 36 0.2895 28 36 -0.25121 29 36 0.055941 31 36 -2.3646 37 36 2.1363 39 36 0.10681 1 37 0.71191 2 37 -0.01979 5 37 -0.019511 12 37 0.23406 15 37 -1.3194 19 37 -0.20369 21 37 0.055801 35 37 -0.11612 38 37 -0.89604 40 37 -0.57353 3 38 -0.80509 8 38 1.4435 12 38 0.021466 15 38 0.93122 16 38 1.4789 18 38 -0.43475 21 38 -0.36787 34 38 0.24309 35 38 1.0641 16 39 1.138 22 39 2.1122 25 39 1.2366 35 39 -0.24539 3 40 0.52874 7 40 0.5689 15 40 0.011245 17 40 -0.24634 33 40 -0.71209 36 40 0.49983 38 40 0.13518 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1.00608060993977391627e+06 1.00608060993977391627e+06 SuiteSparse/UMFPACK/Tcov/TestMat/matrix120000644001170100242450000000021310171312015016706 0ustar davisfac2 5 5 0 1 2 -0.620428 -1.66558 2 2 0.561564 0.125332 1 4 -0.384265 1.18916 1 5 -0.165418 0.327292 2 5 0.285977 0.174639 1 2 3 4 5 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix130000644001170100242450000000021210171312025016707 0ustar davisfac5 5 6 0 1 1 0 0.887146 4 1 -0 -0.252864 5 2 0 1.26913 3 3 0.125332 -1.02788 4 3 -1.14647 0.116721 2 4 -1.66558 -1.3498 1 2 3 4 5 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix140000644001170100242450000000003710171311503016715 0ustar davisfac1 1 1 0 1 1 0.0 0.0 1 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix150000644001170100242450000000003710171312041016714 0ustar davisfac1 1 1 0 1 1 0.0 1.0 1 0. 1. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix160000644001170100242450000000003710171311307016721 0ustar davisfac1 1 1 0 1 1 2.0 0.0 1 2. 0. 2. SuiteSparse/UMFPACK/Tcov/TestMat/matrix170000644001170100242450000000003310171311521016714 0ustar davisfac1 1 1 1 1 1 0.0 1 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix180000644001170100242450000000003010171311533016715 0ustar davisfac1 1 1 1 1 1 1.0 1 1. 1. SuiteSparse/UMFPACK/Tcov/TestMat/matrix190000644001170100242450000000032610171311541016725 0ustar davisfac19 7 11 0 13 1 0 0.692462 12 2 0 0.153137 15 2 0 0.635474 19 2 0 1.33406 13 3 -0 -1.24036 11 4 0 0.267342 14 4 -0 -1.22141 13 5 -0 -0.287195 15 5 0 0.105345 15 6 -0 -1.40134 12 7 -0 -1.31017 1 2 3 4 5 6 7 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix200000644001170100242450000000021210171311552016711 0ustar davisfac5 5 6 0 1 1 0 0.887146 4 1 -0 -0.252864 5 2 0 1.26913 3 3 0.125332 -1.02788 4 3 -1.14647 0.116721 2 4 -1.66558 -1.3498 2 4 1 3 5 0. 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix210000644001170100242450000000005410171311563016720 0ustar davisfac2 2 2 1 1 2 -0.146115 2 2 -1.3235 2 1 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix220000644001170100242450000000016710171311600016716 0ustar davisfac13 4 7 1 1 1 0.626436 1 2 0.0918136 1 3 -0.807607 2 3 -1.40597 10 3 -0.461337 2 4 -0.470911 3 4 -0.37453 3 4 1 2 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix230000644001170100242450000000336310171311604016724 0ustar davisfac63 63 106 1 1 1 -1.52981 2 2 -1.04248 3 3 1.53499 4 3 0.545919 3 4 -0.0279288 5 4 -0.787912 6 4 0.743522 7 5 -0.144982 8 5 -0.518992 9 6 -0.303487 10 7 1.33803 10 8 -0.125943 11 8 0.160693 12 9 -0.528026 13 10 -1.46055 14 10 1.04087 14 11 -0.452515 15 11 0.542891 16 12 -0.300107 17 12 0.187012 16 13 -0.426677 18 13 1.35705 19 13 2.8191 20 14 -0.401235 21 15 0.0943531 22 15 -1.17488 23 16 -0.249173 24 16 -0.562621 23 17 -1.53375 25 17 0.151882 22 18 1.45743 23 18 1.05951 25 18 -1.6724 26 18 0.917815 26 19 -0.0645022 27 19 -0.781194 28 19 0.294717 20 20 0.878368 27 20 -1.79532 29 20 0.918843 17 21 1.423 25 21 -0.117834 29 21 0.00158387 12 22 0.503049 15 22 -1.38914 27 22 -0.077716 30 23 0.0431208 30 24 -1.88668 31 24 0.288195 32 25 0.0137659 32 26 0.728932 33 26 -0.15601 33 27 0.116229 34 28 -0.522183 35 29 0.28625 36 29 0.234421 36 30 -0.936546 37 30 -1.87221 38 30 -1.31475 38 31 3.1973 39 31 1.19588 34 32 0.269037 38 32 -1.75299 40 32 1.05521 41 32 -1.08232 42 33 -0.827448 43 33 0.66343 44 33 -0.412257 45 34 0.630226 46 35 0.419215 47 35 2.20997 48 36 -0.743811 47 37 0.4969 48 37 0.983397 49 37 0.623066 49 38 0.712199 50 38 0.540843 45 39 -1.21554 48 39 -0.517425 50 39 -1.70425 48 40 0.278887 51 40 -1.71786 52 41 0.567426 53 41 0.771752 54 42 1.36345 54 43 -1.03266 55 43 0.0381422 52 44 -0.827717 54 44 -0.163351 56 44 -1.49154 44 45 1.63067 49 45 -0.262874 53 45 -0.237397 39 46 0.115947 50 46 0.36568 57 47 -1.41703 58 48 -0.480261 59 49 -0.491017 60 49 0.352526 61 49 0.822323 58 50 0.170138 59 50 -0.516028 62 50 -0.00397242 63 51 -1.0594 63 52 1.58876 58 55 0.383227 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix240000644001170100242450000000225610171311611016723 0ustar davisfac22 51 72 1 2 1 -0.50444 6 1 -0.116383 7 1 0.11456 1 2 -0.363678 14 2 0.0242795 16 3 -0.668072 2 5 0.686186 9 6 1.46476 17 6 1.69654 14 7 -1.34386 21 7 1.1986 20 8 0.478768 8 9 0.120638 11 9 2.22052 2 11 0.786775 8 11 -0.251963 10 11 0.933732 16 11 -0.35089 13 12 -1.20775 18 12 0.489041 1 13 2.35732 2 13 -2.17358 11 15 -1.40864 1 16 0.335583 5 16 -2.3348 16 16 -0.183548 18 16 1.75089 3 17 0.234321 6 18 0.401214 16 18 1.92217 22 18 -0.411028 5 19 0.177335 6 19 -0.879063 7 20 0.245305 10 20 0.608231 3 21 0.296407 18 21 -0.619046 22 21 1.78469 7 22 -0.3371 8 22 0.705532 5 23 0.131243 10 23 0.404352 21 24 0.0665577 22 24 -1.78989 14 26 0.196854 2 27 -1.07967 4 28 -1.21959 14 29 -1.35369 21 29 0.709997 22 29 -0.745009 9 31 0.729116 3 32 1.44793 22 32 0.710225 5 33 -1.39283 10 33 -0.607311 10 34 1.07463 21 35 -0.507268 7 37 -0.865626 1 38 0.0226158 15 38 0.859041 19 39 0.528222 8 40 2.30596 8 42 -0.382436 13 43 0.990637 22 44 1.0955 10 45 -0.0997608 20 46 0.896711 19 47 0.547651 21 48 0.345881 2 49 0.591166 3 49 -0.0843919 22 51 -0.421509 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix250000644001170100242450000000020610171264275016732 0ustar davisfac3 3 7 1 1 1 1.1 2 1 2.1 3 1 1e-30 2 2 2.2 3 2 3.2 2 3 2.3 3 3 3.3 1 2 3 -1.09999999999998876454e-01 -1.09999999999998876454e-01 SuiteSparse/UMFPACK/Tcov/TestMat/matrix260000644001170100242450000000010410171311621016714 0ustar davisfac3 3 6 1 1 1 1.1 1 2 1.2 1 3 1.2 2 1 2.1 2 2 2.2 2 3 2.2 1 2 3 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix270000644001170100242450000000007610171311627016733 0ustar davisfac3 3 6 1 1 1 1.1 1 2 1.2 1 3 1.2 2 1 0 2 2 0 2 3 1 1 2 3 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix280000644001170100242450000000201210171264275016732 0ustar davisfac4 4 14 0 2 1 2.31138513574287829400e-01 9.16904439913407642848e-01 3 1 6.06842583541786551038e-01 4.10270206990945351944e-01 4 1 4.85982468709299730847e-01 8.93649530913533607368e-01 1 2 8.91298966148901583573e-01 5.78913047842685574151e-02 2 2 7.62096833027394726656e-01 3.52868132217000363138e-01 3 2 4.56467665168341363291e-01 8.13166497303757784820e-01 4 2 1.85036432482243995423e-02 9.86130066092356059870e-03 1 3 8.21407164295253289232e-01 1.38890881956949874265e-01 2 3 4.44703364353194185998e-01 2.02765218560273158266e-01 4 3 7.91937037427035361858e-01 6.03792479193819286998e-01 1 4 9.21812970744802506751e-01 2.72187924969960359789e-01 2 4 7.38207245810665324548e-01 1.98814267761062146711e-01 3 4 1.76266144494617998939e-01 1.52739270290362695592e-02 4 4 4.05706213062095477628e-01 7.46785676564429290458e-01 1 2 3 4 1.67514846387938648453e-01 -2.30183751723616242257e-01 -7.05492222379558997503e-02 SuiteSparse/UMFPACK/Tcov/TestMat/matrix290000644001170100242450000000005010171361401016720 0ustar davisfac2 2 2 1 1 1 1e-300 2 2 1e-300 1 2 0. 0. SuiteSparse/UMFPACK/Tcov/TestMat/matrix300000644001170100242450000000005610171556725016735 0ustar davisfac2 2 2 1 1 1 1e+300 2 2 1e+300 1 2 1e600 1e600 SuiteSparse/UMFPACK/Tcov/TestMat/adlittle0000644001170100242450000003761710171311773017075 0ustar davisfac56 138 424 1 1 1 1.00000000000000000000e+00 3 2 1.00000000000000000000e+00 4 3 1.00000000000000000000e+00 5 4 1.00000000000000000000e+00 6 5 1.00000000000000000000e+00 7 6 1.00000000000000000000e+00 8 7 1.00000000000000000000e+00 9 8 1.00000000000000000000e+00 11 9 1.00000000000000000000e+00 12 10 1.00000000000000000000e+00 13 11 1.00000000000000000000e+00 14 12 1.00000000000000000000e+00 15 13 1.00000000000000000000e+00 16 14 1.00000000000000000000e+00 17 15 1.00000000000000000000e+00 18 16 1.00000000000000000000e+00 19 17 1.00000000000000000000e+00 20 18 1.00000000000000000000e+00 21 19 1.00000000000000000000e+00 22 20 1.00000000000000000000e+00 23 21 1.00000000000000000000e+00 24 22 1.00000000000000000000e+00 26 23 1.00000000000000000000e+00 27 24 1.00000000000000000000e+00 29 25 1.00000000000000000000e+00 30 26 1.00000000000000000000e+00 34 27 1.00000000000000000000e+00 35 28 1.00000000000000000000e+00 37 29 1.00000000000000000000e+00 38 30 1.00000000000000000000e+00 39 31 1.00000000000000000000e+00 41 32 1.00000000000000000000e+00 45 33 1.00000000000000000000e+00 46 34 1.00000000000000000000e+00 47 35 1.00000000000000000000e+00 48 36 1.00000000000000000000e+00 51 37 -1.00000000000000000000e+00 52 38 1.00000000000000000000e+00 53 39 1.00000000000000000000e+00 55 40 1.00000000000000000000e+00 56 41 1.00000000000000000000e+00 1 42 5.06000000000000005329e-01 4 42 1.00000000000000000000e+00 5 42 1.81999999999999995115e-01 55 42 3.11999999999999999556e-01 1 43 6.38000000000000011546e-01 4 43 1.00000000000000000000e+00 5 43 5.00000000000000027756e-02 55 43 3.11999999999999999556e-01 1 44 -1.00000000000000000000e+00 5 45 9.20000000000000039968e-01 30 45 1.00000000000000000000e+00 49 45 -9.50000000000000000000e+00 52 45 -4.20000000000000026090e-02 53 45 -6.30000000000000004441e-02 55 45 8.00000000000000016653e-02 34 46 8.24999999999999955591e-01 35 46 1.74999999999999988898e-01 40 46 1.00000000000000000000e+00 51 46 1.60000000000000000000e+01 35 47 1.74999999999999988898e-01 40 47 1.00000000000000000000e+00 46 47 8.24999999999999955591e-01 51 47 2.10000000000000000000e+01 6 48 1.00000000000000000000e+00 30 48 1.00000000000000000000e+00 49 48 3.60000000000000008882e+00 52 48 -4.20000000000000026090e-02 53 48 -6.30000000000000004441e-02 6 49 1.00000000000000000000e+00 38 49 1.00000000000000000000e+00 6 50 1.00000000000000000000e+00 50 50 -8.00000000000000044409e-01 31 51 -1.22999999999999998224e+00 42 51 2.30000000000000009992e-01 32 52 -1.22999999999999998224e+00 43 52 2.30000000000000009992e-01 56 52 1.00000000000000000000e+00 33 53 -1.22999999999999998224e+00 44 53 2.30000000000000009992e-01 56 53 1.00000000000000000000e+00 7 54 1.00000000000000000000e+00 31 54 -1.00000000000000000000e+00 7 55 1.00000000000000000000e+00 32 55 -1.00000000000000000000e+00 7 56 1.00000000000000000000e+00 33 56 -1.00000000000000000000e+00 8 57 1.00000000000000000000e+00 31 57 -9.49999999999999955591e-01 42 57 -5.00000000000000027756e-02 8 58 1.00000000000000000000e+00 32 58 -9.49999999999999955591e-01 43 58 -5.00000000000000027756e-02 8 59 1.00000000000000000000e+00 33 59 -9.49999999999999955591e-01 44 59 -5.00000000000000027756e-02 9 60 1.00000000000000000000e+00 31 60 -7.90000000000000035527e-01 42 60 -2.09999999999999992228e-01 9 61 1.00000000000000000000e+00 32 61 -7.90000000000000035527e-01 43 61 -2.09999999999999992228e-01 9 62 1.00000000000000000000e+00 33 62 -7.90000000000000035527e-01 44 62 -2.09999999999999992228e-01 11 63 1.00000000000000000000e+00 31 63 -4.19999999999999984457e-01 42 63 -5.79999999999999960032e-01 11 64 1.00000000000000000000e+00 32 64 -4.19999999999999984457e-01 43 64 -5.79999999999999960032e-01 11 65 1.00000000000000000000e+00 33 65 -4.19999999999999984457e-01 44 65 -5.79999999999999960032e-01 12 66 1.00000000000000000000e+00 31 66 -5.00000000000000027756e-02 42 66 -9.49999999999999955591e-01 12 67 1.00000000000000000000e+00 32 67 -5.00000000000000027756e-02 43 67 -9.49999999999999955591e-01 12 68 1.00000000000000000000e+00 33 68 -5.00000000000000027756e-02 44 68 -9.49999999999999955591e-01 13 69 1.00000000000000000000e+00 31 69 -2.60000000000000008882e-01 42 69 -7.39999999999999991118e-01 13 70 1.00000000000000000000e+00 32 70 -2.60000000000000008882e-01 43 70 -7.39999999999999991118e-01 13 71 1.00000000000000000000e+00 33 71 -2.60000000000000008882e-01 44 71 -7.39999999999999991118e-01 14 72 1.00000000000000000000e+00 30 72 1.00000000000000000000e+00 49 72 -3.20000000000000017764e+00 52 72 -4.20000000000000026090e-02 53 72 -6.30000000000000004441e-02 14 73 1.00000000000000000000e+00 38 73 1.00000000000000000000e+00 17 74 1.00000000000000000000e+00 31 74 2.60000000000000008882e-01 42 74 -1.26000000000000000888e+00 14 75 1.00000000000000000000e+00 50 75 -8.00000000000000044409e-01 17 76 1.00000000000000000000e+00 32 76 2.60000000000000008882e-01 43 76 -1.26000000000000000888e+00 17 77 1.00000000000000000000e+00 33 77 2.60000000000000008882e-01 44 77 -1.26000000000000000888e+00 15 78 1.00000000000000000000e+00 31 78 1.60000000000000003331e-01 42 78 -1.15999999999999992006e+00 15 79 1.00000000000000000000e+00 32 79 1.60000000000000003331e-01 43 79 -1.15999999999999992006e+00 15 80 1.00000000000000000000e+00 33 80 1.60000000000000003331e-01 44 80 -1.15999999999999992006e+00 16 81 1.00000000000000000000e+00 31 81 -1.60000000000000003331e-01 42 81 -8.39999999999999968914e-01 16 82 1.00000000000000000000e+00 32 82 -1.60000000000000003331e-01 43 82 -8.39999999999999968914e-01 16 83 1.00000000000000000000e+00 33 83 -1.60000000000000003331e-01 44 83 -8.39999999999999968914e-01 10 84 -1.00000000000000000000e+00 2 85 1.00000000000000000000e+00 3 85 7.90000000000000035527e-01 10 85 3.70000000000000000000e+01 28 85 4.93999999999999994671e-01 34 85 5.06000000000000005329e-01 54 85 2.27423999999999981725e+00 2 86 1.00000000000000000000e+00 3 86 5.30000000000000026645e-01 10 86 4.70000000000000000000e+01 28 86 4.91999999999999992895e-01 46 86 5.08000000000000007105e-01 54 86 2.26319999999999987850e+00 18 87 1.00000000000000000000e+00 31 87 6.19999999999999995559e-01 42 87 -1.62000000000000010658e+00 18 88 1.00000000000000000000e+00 32 88 6.19999999999999995559e-01 43 88 -1.62000000000000010658e+00 18 89 1.00000000000000000000e+00 33 89 6.19999999999999995559e-01 44 89 -1.62000000000000010658e+00 1 90 -2.46999999999999997335e-01 6 90 1.72600000000000003419e-01 14 90 -3.12199999999999977529e-01 20 90 1.78299999999999991829e+00 28 90 4.70299999999999995826e-01 50 90 -9.27999999999999936051e-02 54 90 1.40015000000000000568e+00 1 91 -1.57000000000000000666e-01 14 91 -2.39900000000000002132e-01 20 91 1.00000000000000000000e+00 28 91 4.27300000000000013145e-01 50 91 -3.61000000000000001443e-02 54 91 1.20403999999999999915e+00 1 92 -1.57000000000000000666e-01 14 92 -2.78899999999999981259e-01 20 92 1.00000000000000000000e+00 28 92 4.66299999999999992273e-01 50 92 -3.61000000000000001443e-02 54 92 1.43497999999999992227e+00 26 93 1.00000000000000000000e+00 28 93 5.50000000000000044409e-01 50 93 -5.20000000000000017764e-01 54 93 5.99999999999999977796e-01 28 94 1.00000000000000000000e+00 50 94 -1.00000000000000000000e+00 54 94 1.80000000000000004441e+00 3 95 -3.30000000000000015543e-01 21 95 1.00000000000000000000e+00 50 95 1.70000000000000012212e-02 21 96 1.00000000000000000000e+00 37 96 -3.30000000000000015543e-01 1 97 2.00000000000000011102e-01 14 97 7.29999999999999982236e-01 29 97 1.00000000000000000000e+00 55 97 7.00000000000000066613e-02 14 98 7.19999999999999973355e-01 29 98 1.00000000000000000000e+00 47 98 2.00000000000000011102e-01 55 98 8.00000000000000016653e-02 2 99 1.00000000000000000000e+00 3 99 2.50000000000000000000e-01 10 99 4.50000000000000000000e+01 22 99 8.75000000000000000000e-01 28 99 3.67499999999999993339e-01 34 99 6.32499999999999951150e-01 50 99 2.53600000000000005973e-02 54 99 1.61400000000000010125e+00 2 100 1.00000000000000000000e+00 3 100 2.00000000000000011102e-01 10 100 5.50000000000000000000e+01 22 100 8.75000000000000000000e-01 28 100 3.64999999999999991118e-01 46 100 6.35000000000000008882e-01 50 100 2.53799999999999997824e-02 54 100 1.59000000000000007994e+00 19 101 1.00000000000000000000e+00 28 101 -8.27999999999999958256e-01 31 101 1.00000000000000000000e+00 34 101 -9.50000000000000011102e-02 35 101 -2.00000000000000004163e-02 50 101 1.20000000000000002498e-02 54 101 -1.41999999999999992895e+00 55 101 -4.66999999999999984568e-02 1 102 -2.20000000000000013253e-03 6 102 -1.91999999999999983180e-02 19 102 1.00000000000000000000e+00 27 102 6.79000000000000047962e-01 28 102 -8.08000000000000051514e-01 32 102 1.00000000000000000000e+00 34 102 -9.50000000000000011102e-02 35 102 -2.00000000000000004163e-02 50 102 2.05000000000000008604e-02 54 102 -1.84000000000000007994e+00 55 102 -4.66999999999999984568e-02 1 103 -2.20000000000000013253e-03 6 103 -1.91999999999999983180e-02 24 103 1.00000000000000000000e+00 27 103 6.79000000000000047962e-01 28 103 -8.08000000000000051514e-01 33 103 1.00000000000000000000e+00 34 103 -9.50000000000000011102e-02 35 103 -2.00000000000000004163e-02 50 103 2.05000000000000008604e-02 54 103 -1.84000000000000007994e+00 55 103 -4.66999999999999984568e-02 28 104 -1.00000000000000000000e+00 34 104 1.00000000000000000000e+00 54 104 -5.20000000000000017764e+00 28 105 -1.00000000000000000000e+00 35 105 1.00000000000000000000e+00 54 105 -6.70000000000000017764e+00 35 106 1.00000000000000000000e+00 48 106 1.00000000000000000000e+00 35 107 1.00000000000000000000e+00 50 107 -8.00000000000000044409e-01 28 108 4.81999999999999984013e-01 34 108 4.97999999999999998224e-01 35 108 2.00000000000000004163e-02 36 108 1.00000000000000000000e+00 37 108 7.90000000000000035527e-01 54 108 2.21700000000000008171e+00 28 109 4.73999999999999976907e-01 35 109 2.00000000000000004163e-02 36 109 1.00000000000000000000e+00 37 109 5.30000000000000026645e-01 46 109 5.06000000000000005329e-01 54 109 2.18000000000000015987e+00 6 110 7.00000000000000066613e-02 35 110 1.00000000000000005551e-01 39 110 1.00000000000000000000e+00 55 110 8.29999999999999960032e-01 35 111 7.00000000000000066613e-02 39 111 1.00000000000000000000e+00 46 111 3.30000000000000015543e-01 55 111 5.99999999999999977796e-01 34 112 3.30000000000000015543e-01 35 112 7.00000000000000066613e-02 39 112 1.00000000000000000000e+00 55 112 5.99999999999999977796e-01 22 113 6.25000000000000000000e-01 28 113 -1.25000000000000000000e-01 34 113 1.12500000000000000000e+00 41 113 1.00000000000000000000e+00 50 113 1.81200000000000006894e-02 54 113 -6.50000000000000022204e-01 41 114 1.00000000000000000000e+00 46 114 1.00000000000000000000e+00 22 115 1.25000000000000000000e+00 28 115 -2.50000000000000000000e-01 34 115 1.03125000000000000000e+00 35 115 2.18750000000000000000e-01 40 115 1.00000000000000000000e+00 50 115 3.62499999999999975020e-02 51 115 3.00000000000000000000e+01 54 115 -1.36562000000000005606e+00 22 116 1.25000000000000000000e+00 28 116 -2.50000000000000000000e-01 35 116 2.18750000000000000000e-01 40 116 1.00000000000000000000e+00 46 116 1.03125000000000000000e+00 50 116 3.62499999999999975020e-02 51 116 3.50000000000000000000e+01 54 116 -1.38375000000000003553e+00 19 117 1.07200000000000006395e+00 28 117 -7.05999999999999960920e-01 35 117 -2.69999999999999996947e-02 42 117 1.00000000000000000000e+00 46 117 -1.28000000000000002665e-01 50 117 1.29000000000000000083e-02 54 117 -1.61000000000000009770e+00 55 117 -1.20300000000000004152e-01 1 118 -1.19999999999999989488e-03 6 118 -1.59000000000000009381e-02 19 118 1.07200000000000006395e+00 27 118 5.34000000000000030198e-01 28 118 -6.89999999999999946709e-01 35 118 -2.69999999999999996947e-02 43 118 1.00000000000000000000e+00 46 118 -1.28000000000000002665e-01 50 118 1.94999999999999999722e-02 54 118 -1.84000000000000007994e+00 55 118 -1.20300000000000004152e-01 1 119 -1.19999999999999989488e-03 6 119 -1.59000000000000009381e-02 24 119 1.00000000000000000000e+00 27 119 5.34000000000000030198e-01 28 119 -6.89999999999999946709e-01 35 119 -2.69999999999999996947e-02 44 119 1.00000000000000000000e+00 46 119 -1.28000000000000002665e-01 50 119 1.94999999999999999722e-02 54 119 -1.84000000000000007994e+00 55 119 -1.20300000000000004152e-01 5 120 1.80999999999999994227e-01 45 120 1.00000000000000000000e+00 47 120 1.10000000000000000555e-01 55 120 7.08999999999999963585e-01 5 121 5.09999999999999967248e-02 45 121 1.00000000000000000000e+00 47 121 5.50000000000000002776e-02 55 121 8.94000000000000016875e-01 5 122 3.59999999999999972800e-02 45 122 1.00000000000000000000e+00 55 122 9.63999999999999968026e-01 28 123 -1.00000000000000000000e+00 46 123 1.00000000000000000000e+00 54 123 -5.29999999999999982236e+00 30 124 1.00000000000000000000e+00 47 124 9.20000000000000039968e-01 49 124 -1.00999999999999996447e+01 52 124 -4.20000000000000026090e-02 53 124 -6.30000000000000004441e-02 55 124 8.00000000000000016653e-02 2 125 1.00000000000000000000e+00 3 125 4.00000000000000022204e-01 10 125 4.50000000000000000000e+01 28 126 -1.00000000000000000000e+00 54 126 -4.34999999999999964473e+00 28 127 -1.00000000000000000000e+00 54 127 -2.10000000000000008882e+00 36 128 1.00000000000000000000e+00 37 128 8.00000000000000044409e-01 40 129 1.00000000000000000000e+00 51 129 2.40000000000000000000e+01 49 130 -6.42999999999999971578e+01 52 130 1.00000000000000000000e+00 49 131 -2.73999999999999985789e+01 53 131 1.00000000000000000000e+00 30 132 1.00000000000000000000e+00 49 132 9.09999999999999964473e+00 52 132 -4.20000000000000026090e-02 53 132 -6.30000000000000004441e-02 55 132 1.00000000000000000000e+00 5 133 -3.59999999999999986677e-01 23 133 1.00000000000000000000e+00 28 133 -2.59999999999999988065e-02 47 133 -1.34000000000000007994e-01 50 133 -1.81999999999999995115e-01 54 133 -1.74199999999999993738e-01 55 133 8.25999999999999956479e-01 38 134 1.00000000000000000000e+00 55 134 1.00000000000000000000e+00 55 135 1.00000000000000000000e+00 48 136 1.00000000000000000000e+00 55 136 1.00000000000000000000e+00 5 137 -3.96000000000000018652e-01 25 137 1.00000000000000000000e+00 28 137 -2.90000000000000014710e-02 47 137 -1.46999999999999991784e-01 50 137 -1.18999999999999994671e-01 54 137 -1.94000000000000005773e-01 55 137 8.10000000000000053291e-01 50 138 -8.00000000000000044409e-01 55 138 1.00000000000000000000e+00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 0. 0. SuiteSparse/UMFPACK/Tcov/DO.linux.out0000644001170100242450000006414210173742511016151 0ustar davisfac################################################################################ Tcov test: 1 di ################################################################################ make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 53.07 63.358u 18.812s 2:43.04 50.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 dl ################################################################################ /bin/mv: cannot stat `Out/1_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.34 54.784u 17.836s 2:23.80 50.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zi ################################################################################ /bin/mv: cannot stat `Out/1_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.4 95.249u 20.442s 3:50.15 50.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1 zl ################################################################################ /bin/mv: cannot stat `Out/1_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.94 94.957u 21.488s 3:50.65 50.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2 di ################################################################################ /bin/mv: cannot stat `Out/2_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 44.55 54.828u 19.260s 2:24.94 51.1% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 2 dl ################################################################################ /bin/mv: cannot stat `Out/2_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.36 54.572u 18.252s 2:25.22 50.1% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 2 zi ################################################################################ /bin/mv: cannot stat `Out/2_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 67.31 75.985u 20.963s 3:11.22 50.6% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 2 zl ################################################################################ /bin/mv: cannot stat `Out/2_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.25 94.456u 21.096s 3:49.94 50.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 di ################################################################################ /bin/mv: cannot stat `Out/3_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 50.18 62.426u 21.521s 2:42.80 51.5% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 3 dl ################################################################################ /bin/mv: cannot stat `Out/3_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.28 56.212u 20.576s 2:29.84 51.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zi ################################################################################ /bin/mv: cannot stat `Out/3_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 85.12 95.214u 23.764s 3:53.59 50.9% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 3 zl ################################################################################ /bin/mv: cannot stat `Out/3_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.2 96.296u 23.560s 3:59.43 50.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 di ################################################################################ /bin/mv: cannot stat `Out/4_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 6.76e-05 arc130 1.70e-08 omega2) cputime 49.83 61.486u 21.044s 2:42.11 50.9% 0+0k 0+0io 1pf+0w ################################################################################ Tcov test: 4 dl ################################################################################ /bin/mv: cannot stat `Out/4_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.4 55.564u 20.220s 2:29.76 50.6% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 zi ################################################################################ /bin/mv: cannot stat `Out/4_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.97e-09 omega2) cputime 84.96 94.538u 23.473s 3:53.76 50.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4 zl ################################################################################ /bin/mv: cannot stat `Out/4_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.08 95.423u 23.338s 3:57.96 49.9% 0+0k 0+0io 2pf+0w ################################################################################ Tcov test: 5 di ################################################################################ /bin/mv: cannot stat `Out/5_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 53 63.501u 17.943s 2:41.69 50.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 dl ################################################################################ /bin/mv: cannot stat `Out/5_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 8.09e-05 arc130 1.44e-08 omega2) cputime 43.84 55.084u 17.315s 2:30.54 48.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 zi ################################################################################ /bin/mv: cannot stat `Out/5_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 86.48 94.907u 21.155s 3:49.30 50.6% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 5 zl ################################################################################ /bin/mv: cannot stat `Out/5_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 8.10e-05 arc130 1.13e-09 omega2) cputime 86.93 94.868u 21.236s 3:52.25 49.9% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 di ################################################################################ /bin/mv: cannot stat `Out/6_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 0 54.642u 17.587s 2:27.30 49.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 dl ################################################################################ /bin/mv: cannot stat `Out/6_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 0 54.264u 17.736s 2:20.31 51.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 zi ################################################################################ /bin/mv: cannot stat `Out/6_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 0 75.619u 21.189s 3:13.07 50.1% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 6 zl ################################################################################ /bin/mv: cannot stat `Out/6_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 0 94.182u 21.320s 3:49.63 50.2% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 7 di ################################################################################ /bin/mv: cannot stat `Out/7_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 52.86 63.384u 19.469s 2:43.77 50.5% 0+0k 0+0io 55pf+0w ################################################################################ Tcov test: 7 dl ################################################################################ /bin/mv: cannot stat `Out/7_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.86 54.944u 19.117s 2:26.11 50.6% 0+0k 0+0io 58pf+0w ################################################################################ Tcov test: 7 zi ################################################################################ /bin/mv: cannot stat `Out/7_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.22 94.791u 21.833s 3:52.75 50.1% 0+0k 0+0io 60pf+0w ################################################################################ Tcov test: 7 zl ################################################################################ /bin/mv: cannot stat `Out/7_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.55 94.694u 22.253s 3:53.30 50.1% 0+0k 0+0io 60pf+0w ################################################################################ Tcov test: 8 di ################################################################################ /bin/mv: cannot stat `Out/8_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.49e-10 (1.37e-07 shl0, 6.76e-05 arc130 2.67e-08 omega2) cputime 44.71 54.990u 20.140s 2:29.47 50.2% 0+0k 0+0io 60pf+0w ################################################################################ Tcov test: 8 dl ################################################################################ /bin/mv: cannot stat `Out/8_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.35e-10 (1.19e-07 shl0, 7.08e-05 arc130 2.95e-08 omega2) cputime 43.58 54.709u 19.432s 2:26.94 50.4% 0+0k 0+0io 60pf+0w ################################################################################ Tcov test: 8 zi ################################################################################ /bin/mv: cannot stat `Out/8_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 6.77e-05 arc130 1.81e-09 omega2) cputime 67.5 75.658u 21.959s 3:14.44 50.1% 0+0k 0+0io 60pf+0w ################################################################################ Tcov test: 8 zl ################################################################################ /bin/mv: cannot stat `Out/8_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.31e-05 arc130 6.19e-10 omega2) cputime 86.02 94.103u 22.569s 3:53.56 49.9% 0+0k 0+0io 57pf+0w ################################################################################ Tcov test: 1g di ################################################################################ /bin/mv: cannot stat `Out/1g_di': No such file or directory make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 36.56 74.372u 19.090s 2:57.83 52.5% 0+0k 0+0io 61pf+0w ################################################################################ Tcov test: 1g dl ################################################################################ /bin/mv: cannot stat `Out/1g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.58 70.071u 18.354s 2:48.39 52.5% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 1g zi ################################################################################ /bin/mv: cannot stat `Out/1g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.92 104.920u 21.081s 4:06.48 51.1% 0+0k 0+0io 41pf+0w ################################################################################ Tcov test: 1g zl ################################################################################ /bin/mv: cannot stat `Out/1g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.64 104.824u 21.455s 4:06.01 51.3% 0+0k 0+0io 63pf+0w ################################################################################ Tcov test: 2g di ################################################################################ /bin/mv: cannot stat `Out/2g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.06e-10 (1.37e-07 shl0, 5.65e-05 arc130 1.98e-08 omega2) cputime 30.1 68.093u 19.363s 2:46.78 52.4% 0+0k 0+0io 56pf+0w ################################################################################ Tcov test: 2g dl ################################################################################ /bin/mv: cannot stat `Out/2g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.43 70.067u 18.610s 2:47.30 53.0% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 2g zi ################################################################################ /bin/mv: cannot stat `Out/2g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.29e-09 omega2) cputime 50.74 86.726u 20.994s 3:28.71 51.6% 0+0k 0+0io 51pf+0w ################################################################################ Tcov test: 2g zl ################################################################################ /bin/mv: cannot stat `Out/2g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.44 104.450u 21.097s 4:04.16 51.4% 0+0k 0+0io 37pf+0w ################################################################################ Tcov test: 3g di ################################################################################ /bin/mv: cannot stat `Out/3g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 35.71 75.583u 21.676s 3:00.23 53.9% 0+0k 0+0io 56pf+0w ################################################################################ Tcov test: 3g dl ################################################################################ /bin/mv: cannot stat `Out/3g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.56 72.222u 21.825s 2:53.57 54.1% 0+0k 0+0io 47pf+0w ################################################################################ Tcov test: 3g zi ################################################################################ /bin/mv: cannot stat `Out/3g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 68.43 106.248u 24.758s 4:07.88 52.8% 0+0k 0+0io 37pf+0w ################################################################################ Tcov test: 3g zl ################################################################################ /bin/mv: cannot stat `Out/3g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.55 106.854u 24.459s 4:10.50 52.4% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4g di ################################################################################ /bin/mv: cannot stat `Out/4g_di': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 8.27e-09 omega2) cputime 36.01 74.958u 21.536s 3:02.32 52.9% 0+0k 0+0io 32pf+0w ################################################################################ Tcov test: 4g dl ################################################################################ /bin/mv: cannot stat `Out/4g_dl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 1.03e-10 (1.19e-07 shl0, 5.65e-05 arc130 4.58e-09 omega2) cputime 31.32 70.889u 21.137s 2:49.23 54.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4g zi ################################################################################ /bin/mv: cannot stat `Out/4g_zi': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.40e-07 shl0, 7.77e-05 arc130 2.57e-09 omega2) cputime 68.48 105.539u 24.499s 4:08.27 52.3% 0+0k 0+0io 0pf+0w ################################################################################ Tcov test: 4g zl ################################################################################ /bin/mv: cannot stat `Out/4g_zl': No such file or directory make[2]: [umfpack_di_demo] Error 1 (ignored) make[2]: [umfpack_zi_demo] Error 1 (ignored) make[2]: [umfpack_dl_demo] Error 1 (ignored) make[2]: [umfpack_zl_demo] Error 1 (ignored) ALL TESTS PASSED: rnorm 9.88e-05 (1.33e-07 shl0, 7.77e-05 arc130 1.35e-09 omega2) cputime 68.66 106.270u 23.930s 4:06.74 52.7% 0+0k 0+0io 0pf+0w SuiteSparse/UMFPACK/Tcov/Demo_Makefile0000644001170100242450000001461110617340124016355 0ustar davisfac#------------------------------------------------------------------------------- # compile the UMFPACK demos (for GNU make and original make) #------------------------------------------------------------------------------- # UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. # All Rights Reserved. See ../Doc/License for License. default: libs run include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(UMFPACK_CONFIG) -I../Include -I../../AMD/Include \ -I../../UFconfig INC = ../Include/umfpack.h ../../AMD/Include/amd.h ../../UFconfig/UFconfig.h LIBS = $(BLAS) $(XERBLA) $(LIB) ../Lib/libumfpack.a: ( cd ../Source ; $(MAKE) ) ../../AMD/Lib/libamd.a: ( cd ../../AMD ; $(MAKE) library ) UMFPACK = ../Lib/libumfpack.a ../../AMD/Lib/libamd.a libs: ( cd ../Source ; $(MAKE) ) ( cd ../../AMD ; $(MAKE) library ) #------------------------------------------------------------------------------- # Create the demo programs, run them, and compare the output #------------------------------------------------------------------------------- dist: umfpack_di_demo.c umfpack_dl_demo.c umfpack_zi_demo.c umfpack_zl_demo.c umfpack_simple: umfpack_simple.c $(INC) $(UMFPACK) $(C) -o umfpack_simple umfpack_simple.c $(UMFPACK) $(LIBS) # the GNU rules are simpler: # umfpack_%_demo.c: umfpack_xx_demo.c umfpack_%_demo.sed # - sed -f umfpack_$*_demo.sed < umfpack_xx_demo.c > umfpack_$*_demo.c # # umfpack_%_demo: umfpack_%_demo.c $(INC) $(UMFPACK) # $(C) -o umfpack_$*_demo umfpack_$*_demo.c $(UMFPACK) $(LIBS) # ./umfpack_$*_demo > my_umfpack_$*_demo.out # but do this via brute-force, so we can use just a single Makefile: # double-precision, int verion: umfpack_di_demo.c: umfpack_xx_demo.c umfpack_di_demo.sed - sed -f umfpack_di_demo.sed < umfpack_xx_demo.c > umfpack_di_demo.c umfpack_di_demo: umfpack_di_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_di_demo umfpack_di_demo.c $(UMFPACK) $(LIBS) # double-precision, UF_long verion: umfpack_dl_demo.c: umfpack_xx_demo.c umfpack_dl_demo.sed - sed -f umfpack_dl_demo.sed < umfpack_xx_demo.c > umfpack_dl_demo.c umfpack_dl_demo: umfpack_dl_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_dl_demo umfpack_dl_demo.c $(UMFPACK) $(LIBS) # complex, int verion: umfpack_zi_demo.c: umfpack_xx_demo.c umfpack_zi_demo.sed - sed -f umfpack_zi_demo.sed < umfpack_xx_demo.c > umfpack_zi_demo.c umfpack_zi_demo: umfpack_zi_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_zi_demo umfpack_zi_demo.c $(UMFPACK) $(LIBS) # complex, UF_long verion: umfpack_zl_demo.c: umfpack_xx_demo.c umfpack_zl_demo.sed - sed -f umfpack_zl_demo.sed < umfpack_xx_demo.c > umfpack_zl_demo.c umfpack_zl_demo: umfpack_zl_demo.c $(INC) $(UMFPACK) $(C) -o umfpack_zl_demo umfpack_zl_demo.c $(UMFPACK) $(LIBS) run: umfpack_di_demo umfpack_zi_demo umfpack_dl_demo umfpack_zl_demo umfpack_simple ./umfpack_simple ./umfpack_di_demo > my_umfpack_di_demo.out - diff umfpack_di_demo.out my_umfpack_di_demo.out ./umfpack_dl_demo > my_umfpack_dl_demo.out - diff umfpack_dl_demo.out my_umfpack_dl_demo.out ./umfpack_zi_demo > my_umfpack_zi_demo.out - diff umfpack_zi_demo.out my_umfpack_zi_demo.out ./umfpack_zl_demo > my_umfpack_zl_demo.out - diff umfpack_zl_demo.out my_umfpack_zl_demo.out #------------------------------------------------------------------------------- # create a demo program that reads in Harwell/Boeing matrices, and run it #------------------------------------------------------------------------------- # the output of "make hb" is in the file umf4.out hb: $(UMFPACK) umf4 readhb readhb_nozeros readhb_size - ./readhb_nozeros < HB/can_24.psa > tmp/A - ./readhb_size < HB/can_24.psa > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/west0067.rua > tmp/A - ./readhb_size < HB/west0067.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/fs_183_6.rua > tmp/A - ./readhb_size < HB/fs_183_6.rua > tmp/Asize - ./umf4 - ./readhb < HB/fs_183_6.rua > tmp/A - ./readhb_size < HB/fs_183_6.rua > tmp/Asize - ./umf4 - ./readhb < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 - ./readhb_nozeros < HB/arc130.rua > tmp/A - ./readhb_size < HB/arc130.rua > tmp/Asize - ./umf4 a 1e-6 umf4: umf4.c $(UMFPACK) $(C) -o umf4 umf4.c $(UMFPACK) $(LIBS) readhb: readhb.f $(F77) $(F77FLAGS) -o readhb readhb.f $(F77LIB) readhb_size: readhb_size.f $(F77) $(F77FLAGS) -o readhb_size readhb_size.f $(F77LIB) readhb_nozeros: readhb_nozeros.f $(F77) $(F77FLAGS) -o readhb_nozeros readhb_nozeros.f $(F77LIB) #------------------------------------------------------------------------------- # compile the FORTRAN interface and demo #------------------------------------------------------------------------------- fortran: $(UMFPACK) umf4hb.f umf4_f77wrapper.o umf4zhb.f umf4_f77zwrapper.o $(UMFPACK) $(F77) $(F77FLAGS) -o umf4hb umf4hb.f umf4_f77wrapper.o \ $(UMFPACK) $(LIBS) - ./umf4hb < HB/west0067.rua > my_umf4hb.out - diff my_umf4hb.out umf4hb.out $(F77) $(F77FLAGS) -o umf4zhb umf4zhb.f umf4_f77zwrapper.o \ $(UMFPACK) $(LIBS) - ./umf4zhb < HB/qc324.cua > my_umf4zhb.out - diff my_umf4zhb.out umf4zhb.out fortran64: $(UMFPACK) umf4hb64.f umf4_f77wrapper64.o umf4_f77zwrapper64.o $(UMFPACK) $(F77) $(F77FLAGS) -o umf4hb64 umf4hb64.f umf4_f77wrapper64.o \ $(UMFPACK) $(LIBS) - ./umf4hb64 < HB/west0067.rua > my_umf4hb64.out - diff my_umf4hb64.out umf4hb64.out umf4_f77wrapper.o: umf4_f77wrapper.c $(INC) $(C) -c umf4_f77wrapper.c -o umf4_f77wrapper.o umf4_f77zwrapper.o: umf4_f77zwrapper.c $(INC) $(C) -c umf4_f77zwrapper.c -o umf4_f77zwrapper.o umf4_f77wrapper64.o: umf4_f77wrapper.c $(INC) $(C) -DDLONG -c umf4_f77wrapper.c -o umf4_f77wrapper64.o umf4_f77zwrapper64.o: umf4_f77zwrapper.c $(INC) $(C) -DDLONG -c umf4_f77zwrapper.c -o umf4_f77zwrapper64.o #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) umfpack_simple a.out - $(RM) umfpack_di_demo my_umfpack_di_demo.out - $(RM) umfpack_dl_demo my_umfpack_dl_demo.out - $(RM) umfpack_zi_demo my_umfpack_zi_demo.out - $(RM) umfpack_zl_demo my_umfpack_zl_demo.out - $(RM) umf4hb umf4zhb *.umf my_umf4hb.out - $(RM) umf4hb64 my_umf4hb64.out my_umf4zhb.out - $(RM) umf4 readhb readhb_nozeros readhb_size tmp/* clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/Tcov/DO.linux20000755001170100242450000000205610322347757015435 0ustar davisfac# # ./DO 1 di ./DO 1 dl ./DO 1 zi ./DO 1 zl ./DO 2 di ./DO 2 dl ./DO 2 zi ./DO 2 zl ./DO 3 di ./DO 3 dl ./DO 3 zi ./DO 3 zl ./DO 4 di ./DO 4 dl ./DO 4 zi ./DO 4 zl ./DO 5 di ./DO 5 dl ./DO 5 zi ./DO 5 zl ./DO 6 di ./DO 6 dl ./DO 6 zi ./DO 6 zl ./DO 7 di ./DO 7 dl ./DO 7 zi ./DO 7 zl ./DO 8 di ./DO 8 dl ./DO 8 zi ./DO 8 zl ./DO 1g di run ./DO 1g dl run ./DO 1g zi run ./DO 1g zl run ./DO 2g di run ./DO 2g dl run ./DO 2g zi run ./DO 2g zl run ./DO 3g di run ./DO 3g dl run ./DO 3g zi run ./DO 3g zl run ./DO 4g di run ./DO 4g dl run ./DO 4g zi run ./DO 4g zl run ./DO 1i di run ./DO 1i dl run ./DO 1i zi run ./DO 1i zl run ./DO 2i di run ./DO 2i dl run ./DO 2i zi run ./DO 2i zl run ./DO 3i di run ./DO 3i dl run ./DO 3i zi run ./DO 3i zl run ./DO 4i di run ./DO 4i dl run ./DO 4i zi run ./DO 4i zl run ./DO 1n di run ./DO 1n dl run ./DO 1n zi run ./DO 1n zl run ./DO 2n di run ./DO 2n dl run ./DO 2n zi run ./DO 2n zl run ./DO 3n di run ./DO 3n dl run ./DO 3n zi run ./DO 3n zl run ./DO 4n di run ./DO 4n dl run ./DO 4n zi run ./DO 4n zl run SuiteSparse/UMFPACK/Tcov/badsym2.umf0000644001170100242450000000001010171173060016005 0ustar davisfacbadsym2 SuiteSparse/UMFPACK/Makefile0000644001170100242450000000371610711725113014502 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK makefile (for GNU make or original make) #------------------------------------------------------------------------------- # UMFPACK requires the AMD package to be in ../AMD default: library include ../UFconfig/UFconfig.mk # compile all C code (except hb, fortran, and fortran64), including AMD and the # MATLAB mexFunctions all: ( cd ../AMD ; $(MAKE) library ) ( cd ../AMD ; $(MAKE) mex ) ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) - cat Doc/License # compile just the C-callable libraries and demo programs (not mexFunctions) library: ( cd ../AMD ; $(MAKE) library ) ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) - cat Doc/License # compile the FORTRAN interface and demo program fortran: ( cd Demo ; $(MAKE) fortran ) # compile the 64-bit FORTRAN interface and demo program fortran64: ( cd Demo ; $(MAKE) fortran64 ) # compile the Harwell/Boeing demo program hb: ( cd Demo ; $(MAKE) hb ) # remove object files, but keep the compiled programs and library archives clean: ( cd ../AMD ; $(MAKE) clean ) ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) ( cd Doc ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd ../AMD ; $(MAKE) purge ) ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) ( cd Doc ; $(MAKE) purge ) # create PDF documents for the original distribution doc: ( cd ../AMD ; $(MAKE) doc ) ( cd Doc ; $(MAKE) ) # get ready for distribution dist: purge ( cd ../AMD ; $(MAKE) dist ) ( cd Demo ; $(MAKE) dist ) ( cd Doc ; $(MAKE) ) distclean: purge ccode: library # compile the MATLAB mexFunction mex: ( cd ../AMD/MATLAB ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # statement coverage (requires Linux; takes a lot of time and disk space) cov: purge ( cd Tcov ; ./DO.linux ; ./covall ) SuiteSparse/UMFPACK/MATLAB/0000755001170100242450000000000010712370342013774 5ustar davisfacSuiteSparse/UMFPACK/MATLAB/Makefile0000644001170100242450000005336110617155413015450 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK Makefile for the UMFPACK MATLAB mexFunction (old "make" only) #------------------------------------------------------------------------------- # This is a very ugly Makefile, and is only provided for those who do not # have GNU make. Note that it is not used if you have GNU make. It ignores # dependency checking and just compiles everything. default: umfpack luflop include ../../UFconfig/UFconfig.mk MX = $(MEX) -I../Include -I../Source -I../../AMD/Include -I../../UFconfig umfpack: $(MX) -c ../Source/umfpack_global.c $(MV) -f umfpack_global.o umfpack_m_global.o $(MX) -DDLONG -c ../Source/umf_analyze.c $(MV) -f umf_analyze.o umf_m_analyze.o $(MX) -DDLONG -c ../Source/umf_apply_order.c $(MV) -f umf_apply_order.o umf_m_apply_order.o $(MX) -DDLONG -c ../Source/umf_colamd.c $(MV) -f umf_colamd.o umf_m_colamd.o $(MX) -DDLONG -c ../Source/umf_free.c $(MV) -f umf_free.o umf_m_free.o $(MX) -DDLONG -c ../Source/umf_fsize.c $(MV) -f umf_fsize.o umf_m_fsize.o $(MX) -DDLONG -c ../Source/umf_is_permutation.c $(MV) -f umf_is_permutation.o umf_m_is_permutation.o $(MX) -DDLONG -c ../Source/umf_malloc.c $(MV) -f umf_malloc.o umf_m_malloc.o $(MX) -DDLONG -c ../Source/umf_realloc.c $(MV) -f umf_realloc.o umf_m_realloc.o $(MX) -DDLONG -c ../Source/umf_report_perm.c $(MV) -f umf_report_perm.o umf_m_report_perm.o $(MX) -DDLONG -c ../Source/umf_singletons.c $(MV) -f umf_singletons.o umf_m_singletons.o $(MX) -DDLONG -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c $(MV) -f umf_ltsolve.o umf_md_lhsolve.o $(MX) -DDLONG -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c $(MV) -f umf_utsolve.o umf_md_uhsolve.o $(MX) -DDLONG -DDO_MAP -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_md_triplet_map_nox.o $(MX) -DDLONG -DDO_VALUES -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_md_triplet_nomap_x.o $(MX) -DDLONG -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_md_triplet_nomap_nox.o $(MX) -DDLONG -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_md_triplet_map_x.o $(MX) -DDLONG -DFIXQ -c ../Source/umf_assemble.c $(MV) -f umf_assemble.o umf_md_assemble_fixq.o $(MX) -DDLONG -DDROP -c ../Source/umf_store_lu.c $(MV) -f umf_store_lu.o umf_md_store_lu_drop.o $(MX) -DDLONG -c ../Source/umf_assemble.c $(MV) -f umf_assemble.o umf_md_assemble.o $(MX) -DDLONG -c ../Source/umf_blas3_update.c $(MV) -f umf_blas3_update.o umf_md_blas3_update.o $(MX) -DDLONG -c ../Source/umf_build_tuples.c $(MV) -f umf_build_tuples.o umf_md_build_tuples.o $(MX) -DDLONG -c ../Source/umf_create_element.c $(MV) -f umf_create_element.o umf_md_create_element.o $(MX) -DDLONG -c ../Source/umf_dump.c $(MV) -f umf_dump.o umf_md_dump.o $(MX) -DDLONG -c ../Source/umf_extend_front.c $(MV) -f umf_extend_front.o umf_md_extend_front.o $(MX) -DDLONG -c ../Source/umf_garbage_collection.c $(MV) -f umf_garbage_collection.o umf_md_garbage_collection.o $(MX) -DDLONG -c ../Source/umf_get_memory.c $(MV) -f umf_get_memory.o umf_md_get_memory.o $(MX) -DDLONG -c ../Source/umf_init_front.c $(MV) -f umf_init_front.o umf_md_init_front.o $(MX) -DDLONG -c ../Source/umf_kernel.c $(MV) -f umf_kernel.o umf_md_kernel.o $(MX) -DDLONG -c ../Source/umf_kernel_init.c $(MV) -f umf_kernel_init.o umf_md_kernel_init.o $(MX) -DDLONG -c ../Source/umf_kernel_wrapup.c $(MV) -f umf_kernel_wrapup.o umf_md_kernel_wrapup.o $(MX) -DDLONG -c ../Source/umf_local_search.c $(MV) -f umf_local_search.o umf_md_local_search.o $(MX) -DDLONG -c ../Source/umf_lsolve.c $(MV) -f umf_lsolve.o umf_md_lsolve.o $(MX) -DDLONG -c ../Source/umf_ltsolve.c $(MV) -f umf_ltsolve.o umf_md_ltsolve.o $(MX) -DDLONG -c ../Source/umf_mem_alloc_element.c $(MV) -f umf_mem_alloc_element.o umf_md_mem_alloc_element.o $(MX) -DDLONG -c ../Source/umf_mem_alloc_head_block.c $(MV) -f umf_mem_alloc_head_block.o umf_md_mem_alloc_head_block.o $(MX) -DDLONG -c ../Source/umf_mem_alloc_tail_block.c $(MV) -f umf_mem_alloc_tail_block.o umf_md_mem_alloc_tail_block.o $(MX) -DDLONG -c ../Source/umf_mem_free_tail_block.c $(MV) -f umf_mem_free_tail_block.o umf_md_mem_free_tail_block.o $(MX) -DDLONG -c ../Source/umf_mem_init_memoryspace.c $(MV) -f umf_mem_init_memoryspace.o umf_md_mem_init_memoryspace.o $(MX) -DDLONG -c ../Source/umf_report_vector.c $(MV) -f umf_report_vector.o umf_md_report_vector.o $(MX) -DDLONG -c ../Source/umf_row_search.c $(MV) -f umf_row_search.o umf_md_row_search.o $(MX) -DDLONG -c ../Source/umf_scale_column.c $(MV) -f umf_scale_column.o umf_md_scale_column.o $(MX) -DDLONG -c ../Source/umf_set_stats.c $(MV) -f umf_set_stats.o umf_md_set_stats.o $(MX) -DDLONG -c ../Source/umf_solve.c $(MV) -f umf_solve.o umf_md_solve.o $(MX) -DDLONG -c ../Source/umf_symbolic_usage.c $(MV) -f umf_symbolic_usage.o umf_md_symbolic_usage.o $(MX) -DDLONG -c ../Source/umf_transpose.c $(MV) -f umf_transpose.o umf_md_transpose.o $(MX) -DDLONG -c ../Source/umf_tuple_lengths.c $(MV) -f umf_tuple_lengths.o umf_md_tuple_lengths.o $(MX) -DDLONG -c ../Source/umf_usolve.c $(MV) -f umf_usolve.o umf_md_usolve.o $(MX) -DDLONG -c ../Source/umf_utsolve.c $(MV) -f umf_utsolve.o umf_md_utsolve.o $(MX) -DDLONG -c ../Source/umf_valid_numeric.c $(MV) -f umf_valid_numeric.o umf_md_valid_numeric.o $(MX) -DDLONG -c ../Source/umf_valid_symbolic.c $(MV) -f umf_valid_symbolic.o umf_md_valid_symbolic.o $(MX) -DDLONG -c ../Source/umf_grow_front.c $(MV) -f umf_grow_front.o umf_md_grow_front.o $(MX) -DDLONG -c ../Source/umf_start_front.c $(MV) -f umf_start_front.o umf_md_start_front.o $(MX) -DDLONG -c ../Source/umf_2by2.c $(MV) -f umf_2by2.o umf_md_2by2.o $(MX) -DDLONG -c ../Source/umf_store_lu.c $(MV) -f umf_store_lu.o umf_md_store_lu.o $(MX) -DDLONG -c ../Source/umf_scale.c $(MV) -f umf_scale.o umf_md_scale.o $(MX) -DDLONG -DWSOLVE -c ../Source/umfpack_solve.c $(MV) -f umfpack_solve.o umfpack_md_wsolve.o $(MX) -DDLONG -c ../Source/umfpack_col_to_triplet.c $(MV) -f umfpack_col_to_triplet.o umfpack_md_col_to_triplet.o $(MX) -DDLONG -c ../Source/umfpack_defaults.c $(MV) -f umfpack_defaults.o umfpack_md_defaults.o $(MX) -DDLONG -c ../Source/umfpack_free_numeric.c $(MV) -f umfpack_free_numeric.o umfpack_md_free_numeric.o $(MX) -DDLONG -c ../Source/umfpack_free_symbolic.c $(MV) -f umfpack_free_symbolic.o umfpack_md_free_symbolic.o $(MX) -DDLONG -c ../Source/umfpack_get_numeric.c $(MV) -f umfpack_get_numeric.o umfpack_md_get_numeric.o $(MX) -DDLONG -c ../Source/umfpack_get_lunz.c $(MV) -f umfpack_get_lunz.o umfpack_md_get_lunz.o $(MX) -DDLONG -c ../Source/umfpack_get_symbolic.c $(MV) -f umfpack_get_symbolic.o umfpack_md_get_symbolic.o $(MX) -DDLONG -c ../Source/umfpack_get_determinant.c $(MV) -f umfpack_get_determinant.o umfpack_md_get_determinant.o $(MX) -DDLONG -c ../Source/umfpack_numeric.c $(MV) -f umfpack_numeric.o umfpack_md_numeric.o $(MX) -DDLONG -c ../Source/umfpack_qsymbolic.c $(MV) -f umfpack_qsymbolic.o umfpack_md_qsymbolic.o $(MX) -DDLONG -c ../Source/umfpack_report_control.c $(MV) -f umfpack_report_control.o umfpack_md_report_control.o $(MX) -DDLONG -c ../Source/umfpack_report_info.c $(MV) -f umfpack_report_info.o umfpack_md_report_info.o $(MX) -DDLONG -c ../Source/umfpack_report_matrix.c $(MV) -f umfpack_report_matrix.o umfpack_md_report_matrix.o $(MX) -DDLONG -c ../Source/umfpack_report_numeric.c $(MV) -f umfpack_report_numeric.o umfpack_md_report_numeric.o $(MX) -DDLONG -c ../Source/umfpack_report_perm.c $(MV) -f umfpack_report_perm.o umfpack_md_report_perm.o $(MX) -DDLONG -c ../Source/umfpack_report_status.c $(MV) -f umfpack_report_status.o umfpack_md_report_status.o $(MX) -DDLONG -c ../Source/umfpack_report_symbolic.c $(MV) -f umfpack_report_symbolic.o umfpack_md_report_symbolic.o $(MX) -DDLONG -c ../Source/umfpack_report_triplet.c $(MV) -f umfpack_report_triplet.o umfpack_md_report_triplet.o $(MX) -DDLONG -c ../Source/umfpack_report_vector.c $(MV) -f umfpack_report_vector.o umfpack_md_report_vector.o $(MX) -DDLONG -c ../Source/umfpack_solve.c $(MV) -f umfpack_solve.o umfpack_md_solve.o $(MX) -DDLONG -c ../Source/umfpack_symbolic.c $(MV) -f umfpack_symbolic.o umfpack_md_symbolic.o $(MX) -DDLONG -c ../Source/umfpack_transpose.c $(MV) -f umfpack_transpose.o umfpack_md_transpose.o $(MX) -DDLONG -c ../Source/umfpack_triplet_to_col.c $(MV) -f umfpack_triplet_to_col.o umfpack_md_triplet_to_col.o $(MX) -DDLONG -c ../Source/umfpack_scale.c $(MV) -f umfpack_scale.o umfpack_md_scale.o $(MX) -DDLONG -c ../Source/umfpack_load_numeric.c $(MV) -f umfpack_load_numeric.o umfpack_md_load_numeric.o $(MX) -DDLONG -c ../Source/umfpack_save_numeric.c $(MV) -f umfpack_save_numeric.o umfpack_md_save_numeric.o $(MX) -DDLONG -c ../Source/umfpack_load_symbolic.c $(MV) -f umfpack_load_symbolic.o umfpack_md_load_symbolic.o $(MX) -DDLONG -c ../Source/umfpack_save_symbolic.c $(MV) -f umfpack_save_symbolic.o umfpack_md_save_symbolic.o $(MX) -DZLONG -DCONJUGATE_SOLVE -c ../Source/umf_ltsolve.c $(MV) -f umf_ltsolve.o umf_mz_lhsolve.o $(MX) -DZLONG -DCONJUGATE_SOLVE -c ../Source/umf_utsolve.c $(MV) -f umf_utsolve.o umf_mz_uhsolve.o $(MX) -DZLONG -DDO_MAP -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_mz_triplet_map_nox.o $(MX) -DZLONG -DDO_VALUES -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_mz_triplet_nomap_x.o $(MX) -DZLONG -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_mz_triplet_nomap_nox.o $(MX) -DZLONG -DDO_MAP -DDO_VALUES -c ../Source/umf_triplet.c $(MV) -f umf_triplet.o umf_mz_triplet_map_x.o $(MX) -DZLONG -DFIXQ -c ../Source/umf_assemble.c $(MV) -f umf_assemble.o umf_mz_assemble_fixq.o $(MX) -DZLONG -DDROP -c ../Source/umf_store_lu.c $(MV) -f umf_store_lu.o umf_mz_store_lu_drop.o $(MX) -DZLONG -c ../Source/umf_assemble.c $(MV) -f umf_assemble.o umf_mz_assemble.o $(MX) -DZLONG -c ../Source/umf_blas3_update.c $(MV) -f umf_blas3_update.o umf_mz_blas3_update.o $(MX) -DZLONG -c ../Source/umf_build_tuples.c $(MV) -f umf_build_tuples.o umf_mz_build_tuples.o $(MX) -DZLONG -c ../Source/umf_create_element.c $(MV) -f umf_create_element.o umf_mz_create_element.o $(MX) -DZLONG -c ../Source/umf_dump.c $(MV) -f umf_dump.o umf_mz_dump.o $(MX) -DZLONG -c ../Source/umf_extend_front.c $(MV) -f umf_extend_front.o umf_mz_extend_front.o $(MX) -DZLONG -c ../Source/umf_garbage_collection.c $(MV) -f umf_garbage_collection.o umf_mz_garbage_collection.o $(MX) -DZLONG -c ../Source/umf_get_memory.c $(MV) -f umf_get_memory.o umf_mz_get_memory.o $(MX) -DZLONG -c ../Source/umf_init_front.c $(MV) -f umf_init_front.o umf_mz_init_front.o $(MX) -DZLONG -c ../Source/umf_kernel.c $(MV) -f umf_kernel.o umf_mz_kernel.o $(MX) -DZLONG -c ../Source/umf_kernel_init.c $(MV) -f umf_kernel_init.o umf_mz_kernel_init.o $(MX) -DZLONG -c ../Source/umf_kernel_wrapup.c $(MV) -f umf_kernel_wrapup.o umf_mz_kernel_wrapup.o $(MX) -DZLONG -c ../Source/umf_local_search.c $(MV) -f umf_local_search.o umf_mz_local_search.o $(MX) -DZLONG -c ../Source/umf_lsolve.c $(MV) -f umf_lsolve.o umf_mz_lsolve.o $(MX) -DZLONG -c ../Source/umf_ltsolve.c $(MV) -f umf_ltsolve.o umf_mz_ltsolve.o $(MX) -DZLONG -c ../Source/umf_mem_alloc_element.c $(MV) -f umf_mem_alloc_element.o umf_mz_mem_alloc_element.o $(MX) -DZLONG -c ../Source/umf_mem_alloc_head_block.c $(MV) -f umf_mem_alloc_head_block.o umf_mz_mem_alloc_head_block.o $(MX) -DZLONG -c ../Source/umf_mem_alloc_tail_block.c $(MV) -f umf_mem_alloc_tail_block.o umf_mz_mem_alloc_tail_block.o $(MX) -DZLONG -c ../Source/umf_mem_free_tail_block.c $(MV) -f umf_mem_free_tail_block.o umf_mz_mem_free_tail_block.o $(MX) -DZLONG -c ../Source/umf_mem_init_memoryspace.c $(MV) -f umf_mem_init_memoryspace.o umf_mz_mem_init_memoryspace.o $(MX) -DZLONG -c ../Source/umf_report_vector.c $(MV) -f umf_report_vector.o umf_mz_report_vector.o $(MX) -DZLONG -c ../Source/umf_row_search.c $(MV) -f umf_row_search.o umf_mz_row_search.o $(MX) -DZLONG -c ../Source/umf_scale_column.c $(MV) -f umf_scale_column.o umf_mz_scale_column.o $(MX) -DZLONG -c ../Source/umf_set_stats.c $(MV) -f umf_set_stats.o umf_mz_set_stats.o $(MX) -DZLONG -c ../Source/umf_solve.c $(MV) -f umf_solve.o umf_mz_solve.o $(MX) -DZLONG -c ../Source/umf_symbolic_usage.c $(MV) -f umf_symbolic_usage.o umf_mz_symbolic_usage.o $(MX) -DZLONG -c ../Source/umf_transpose.c $(MV) -f umf_transpose.o umf_mz_transpose.o $(MX) -DZLONG -c ../Source/umf_tuple_lengths.c $(MV) -f umf_tuple_lengths.o umf_mz_tuple_lengths.o $(MX) -DZLONG -c ../Source/umf_usolve.c $(MV) -f umf_usolve.o umf_mz_usolve.o $(MX) -DZLONG -c ../Source/umf_utsolve.c $(MV) -f umf_utsolve.o umf_mz_utsolve.o $(MX) -DZLONG -c ../Source/umf_valid_numeric.c $(MV) -f umf_valid_numeric.o umf_mz_valid_numeric.o $(MX) -DZLONG -c ../Source/umf_valid_symbolic.c $(MV) -f umf_valid_symbolic.o umf_mz_valid_symbolic.o $(MX) -DZLONG -c ../Source/umf_grow_front.c $(MV) -f umf_grow_front.o umf_mz_grow_front.o $(MX) -DZLONG -c ../Source/umf_start_front.c $(MV) -f umf_start_front.o umf_mz_start_front.o $(MX) -DZLONG -c ../Source/umf_2by2.c $(MV) -f umf_2by2.o umf_mz_2by2.o $(MX) -DZLONG -c ../Source/umf_store_lu.c $(MV) -f umf_store_lu.o umf_mz_store_lu.o $(MX) -DZLONG -c ../Source/umf_scale.c $(MV) -f umf_scale.o umf_mz_scale.o $(MX) -DZLONG -DWSOLVE -c ../Source/umfpack_solve.c $(MV) -f umfpack_solve.o umfpack_mz_wsolve.o $(MX) -DZLONG -c ../Source/umfpack_col_to_triplet.c $(MV) -f umfpack_col_to_triplet.o umfpack_mz_col_to_triplet.o $(MX) -DZLONG -c ../Source/umfpack_defaults.c $(MV) -f umfpack_defaults.o umfpack_mz_defaults.o $(MX) -DZLONG -c ../Source/umfpack_free_numeric.c $(MV) -f umfpack_free_numeric.o umfpack_mz_free_numeric.o $(MX) -DZLONG -c ../Source/umfpack_free_symbolic.c $(MV) -f umfpack_free_symbolic.o umfpack_mz_free_symbolic.o $(MX) -DZLONG -c ../Source/umfpack_get_numeric.c $(MV) -f umfpack_get_numeric.o umfpack_mz_get_numeric.o $(MX) -DZLONG -c ../Source/umfpack_get_lunz.c $(MV) -f umfpack_get_lunz.o umfpack_mz_get_lunz.o $(MX) -DZLONG -c ../Source/umfpack_get_symbolic.c $(MV) -f umfpack_get_symbolic.o umfpack_mz_get_symbolic.o $(MX) -DZLONG -c ../Source/umfpack_get_determinant.c $(MV) -f umfpack_get_determinant.o umfpack_mz_get_determinant.o $(MX) -DZLONG -c ../Source/umfpack_numeric.c $(MV) -f umfpack_numeric.o umfpack_mz_numeric.o $(MX) -DZLONG -c ../Source/umfpack_qsymbolic.c $(MV) -f umfpack_qsymbolic.o umfpack_mz_qsymbolic.o $(MX) -DZLONG -c ../Source/umfpack_report_control.c $(MV) -f umfpack_report_control.o umfpack_mz_report_control.o $(MX) -DZLONG -c ../Source/umfpack_report_info.c $(MV) -f umfpack_report_info.o umfpack_mz_report_info.o $(MX) -DZLONG -c ../Source/umfpack_report_matrix.c $(MV) -f umfpack_report_matrix.o umfpack_mz_report_matrix.o $(MX) -DZLONG -c ../Source/umfpack_report_numeric.c $(MV) -f umfpack_report_numeric.o umfpack_mz_report_numeric.o $(MX) -DZLONG -c ../Source/umfpack_report_perm.c $(MV) -f umfpack_report_perm.o umfpack_mz_report_perm.o $(MX) -DZLONG -c ../Source/umfpack_report_status.c $(MV) -f umfpack_report_status.o umfpack_mz_report_status.o $(MX) -DZLONG -c ../Source/umfpack_report_symbolic.c $(MV) -f umfpack_report_symbolic.o umfpack_mz_report_symbolic.o $(MX) -DZLONG -c ../Source/umfpack_report_triplet.c $(MV) -f umfpack_report_triplet.o umfpack_mz_report_triplet.o $(MX) -DZLONG -c ../Source/umfpack_report_vector.c $(MV) -f umfpack_report_vector.o umfpack_mz_report_vector.o $(MX) -DZLONG -c ../Source/umfpack_solve.c $(MV) -f umfpack_solve.o umfpack_mz_solve.o $(MX) -DZLONG -c ../Source/umfpack_symbolic.c $(MV) -f umfpack_symbolic.o umfpack_mz_symbolic.o $(MX) -DZLONG -c ../Source/umfpack_transpose.c $(MV) -f umfpack_transpose.o umfpack_mz_transpose.o $(MX) -DZLONG -c ../Source/umfpack_triplet_to_col.c $(MV) -f umfpack_triplet_to_col.o umfpack_mz_triplet_to_col.o $(MX) -DZLONG -c ../Source/umfpack_scale.c $(MV) -f umfpack_scale.o umfpack_mz_scale.o $(MX) -DZLONG -c ../Source/umfpack_load_numeric.c $(MV) -f umfpack_load_numeric.o umfpack_mz_load_numeric.o $(MX) -DZLONG -c ../Source/umfpack_save_numeric.c $(MV) -f umfpack_save_numeric.o umfpack_mz_save_numeric.o $(MX) -DZLONG -c ../Source/umfpack_load_symbolic.c $(MV) -f umfpack_load_symbolic.o umfpack_mz_load_symbolic.o $(MX) -DZLONG -c ../Source/umfpack_save_symbolic.c $(MV) -f umfpack_save_symbolic.o umfpack_mz_save_symbolic.o $(MX) -c ../Source/umfpack_timer.c $(MV) -f umfpack_timer.o umfpack_m_timer.o $(MX) -c ../Source/umfpack_tictoc.c $(MV) -f umfpack_tictoc.o umfpack_m_tictoc.o $(MX) -DDLONG -c ../../AMD/Source/amd_global.c $(MV) -f amd_global.o amd_m_global.o $(MX) -DDLONG -c ../../AMD/Source/amd_aat.c $(MV) -f amd_aat.o amd_m_aat.o $(MX) -DDLONG -c ../../AMD/Source/amd_1.c $(MV) -f amd_1.o amd_m_1.o $(MX) -DDLONG -c ../../AMD/Source/amd_2.c $(MV) -f amd_2.o amd_m_2.o $(MX) -DDLONG -c ../../AMD/Source/amd_dump.c $(MV) -f amd_dump.o amd_m_dump.o $(MX) -DDLONG -c ../../AMD/Source/amd_postorder.c $(MV) -f amd_postorder.o amd_m_postorder.o $(MX) -DDLONG -c ../../AMD/Source/amd_post_tree.c $(MV) -f amd_post_tree.o amd_m_post_tree.o $(MX) -DDLONG -c ../../AMD/Source/amd_defaults.c $(MV) -f amd_defaults.o amd_m_defaults.o $(MX) -DDLONG -c ../../AMD/Source/amd_order.c $(MV) -f amd_order.o amd_m_order.o $(MX) -DDLONG -c ../../AMD/Source/amd_control.c $(MV) -f amd_control.o amd_m_control.o $(MX) -DDLONG -c ../../AMD/Source/amd_info.c $(MV) -f amd_info.o amd_m_info.o $(MX) -DDLONG -c ../../AMD/Source/amd_valid.c $(MV) -f amd_valid.o amd_m_valid.o $(MX) -output umfpack2 umfpackmex.c \ umf_m_analyze.o umf_m_apply_order.o umf_m_colamd.o umf_m_free.o \ umf_m_fsize.o umf_m_is_permutation.o umf_m_malloc.o \ umf_m_realloc.o umf_m_report_perm.o umf_m_singletons.o \ umf_md_lhsolve.o umf_md_uhsolve.o umf_md_triplet_map_nox.o \ umf_md_triplet_nomap_x.o umf_md_triplet_nomap_nox.o \ umf_md_triplet_map_x.o umf_md_assemble_fixq.o \ umf_md_store_lu_drop.o umf_md_assemble.o umf_md_blas3_update.o \ umf_md_build_tuples.o umf_md_create_element.o umf_md_dump.o \ umf_md_extend_front.o umf_md_garbage_collection.o \ umf_md_get_memory.o umf_md_init_front.o umf_md_kernel.o \ umf_md_kernel_init.o umf_md_kernel_wrapup.o umf_md_local_search.o \ umf_md_lsolve.o umf_md_ltsolve.o umf_md_mem_alloc_element.o \ umf_md_mem_alloc_head_block.o umf_md_mem_alloc_tail_block.o \ umf_md_mem_free_tail_block.o umf_md_mem_init_memoryspace.o \ umf_md_report_vector.o umf_md_row_search.o umf_md_scale_column.o \ umf_md_set_stats.o umf_md_solve.o umf_md_symbolic_usage.o \ umf_md_transpose.o umf_md_tuple_lengths.o umf_md_usolve.o \ umf_md_utsolve.o umf_md_valid_numeric.o umf_md_valid_symbolic.o \ umf_md_grow_front.o umf_md_start_front.o umf_md_2by2.o \ umf_md_store_lu.o umf_md_scale.o umfpack_md_wsolve.o \ umfpack_md_col_to_triplet.o umfpack_md_defaults.o \ umfpack_md_free_numeric.o umfpack_md_free_symbolic.o \ umfpack_md_get_numeric.o umfpack_md_get_lunz.o \ umfpack_md_get_symbolic.o umfpack_md_get_determinant.o \ umfpack_md_numeric.o \ umfpack_md_qsymbolic.o umfpack_md_report_control.o \ umfpack_md_report_info.o umfpack_md_report_matrix.o \ umfpack_md_report_numeric.o umfpack_md_report_perm.o \ umfpack_md_report_status.o umfpack_md_report_symbolic.o \ umfpack_md_report_triplet.o umfpack_md_report_vector.o \ umfpack_md_solve.o umfpack_md_symbolic.o umfpack_md_transpose.o \ umfpack_md_triplet_to_col.o umfpack_md_scale.o \ umfpack_md_load_numeric.o umfpack_md_save_numeric.o \ umfpack_md_load_symbolic.o umfpack_md_save_symbolic.o \ umf_mz_lhsolve.o umf_mz_uhsolve.o umf_mz_triplet_map_nox.o \ umf_mz_triplet_nomap_x.o umf_mz_triplet_nomap_nox.o \ umf_mz_triplet_map_x.o umf_mz_assemble_fixq.o \ umf_mz_store_lu_drop.o umf_mz_assemble.o umf_mz_blas3_update.o \ umf_mz_build_tuples.o umf_mz_create_element.o umf_mz_dump.o \ umf_mz_extend_front.o umf_mz_garbage_collection.o \ umf_mz_get_memory.o umf_mz_init_front.o umf_mz_kernel.o \ umf_mz_kernel_init.o umf_mz_kernel_wrapup.o umf_mz_local_search.o \ umf_mz_lsolve.o umf_mz_ltsolve.o umf_mz_mem_alloc_element.o \ umf_mz_mem_alloc_head_block.o umf_mz_mem_alloc_tail_block.o \ umf_mz_mem_free_tail_block.o umf_mz_mem_init_memoryspace.o \ umf_mz_report_vector.o umf_mz_row_search.o umf_mz_scale_column.o \ umf_mz_set_stats.o umf_mz_solve.o umf_mz_symbolic_usage.o \ umf_mz_transpose.o umf_mz_tuple_lengths.o umf_mz_usolve.o \ umf_mz_utsolve.o umf_mz_valid_numeric.o umf_mz_valid_symbolic.o \ umf_mz_grow_front.o umf_mz_start_front.o umf_mz_2by2.o \ umf_mz_store_lu.o umf_mz_scale.o umfpack_mz_wsolve.o \ umfpack_mz_col_to_triplet.o umfpack_mz_defaults.o \ umfpack_mz_free_numeric.o umfpack_mz_free_symbolic.o \ umfpack_mz_get_numeric.o umfpack_mz_get_lunz.o \ umfpack_mz_get_symbolic.o umfpack_mz_get_determinant.o \ umfpack_mz_numeric.o \ umfpack_mz_qsymbolic.o umfpack_mz_report_control.o \ umfpack_mz_report_info.o umfpack_mz_report_matrix.o \ umfpack_mz_report_numeric.o umfpack_mz_report_perm.o \ umfpack_mz_report_status.o umfpack_mz_report_symbolic.o \ umfpack_mz_report_triplet.o umfpack_mz_report_vector.o \ umfpack_mz_solve.o umfpack_mz_symbolic.o umfpack_mz_transpose.o \ umfpack_mz_triplet_to_col.o umfpack_mz_scale.o \ umfpack_mz_load_numeric.o umfpack_mz_save_numeric.o \ umfpack_mz_load_symbolic.o umfpack_mz_save_symbolic.o \ umfpack_m_timer.o umfpack_m_tictoc.o umfpack_m_global.o \ amd_m_global.o \ amd_m_aat.o amd_m_1.o amd_m_2.o amd_m_dump.o \ amd_m_postorder.o amd_m_post_tree.o amd_m_defaults.o amd_m_order.o \ amd_m_control.o amd_m_info.o amd_m_valid.o luflop: luflopmex.c $(MX) -output luflop luflopmex.c #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) *.mex* clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/MATLAB/umfpack_make.m0000644001170100242450000002647410712370340016610 0ustar davisfacfunction umfpack_make (lapack) %UMFPACK_MAKE to compile umfpack2 for use in MATLAB % % Compiles the umfpack2 mexFunction and then runs a simple demo. % % Example: % umfpack_make % use default LAPACK and BLAS % umfpack_make ('lcc_lib/libmwlapack.lib') % for Windows % umfpack_make ('-lmwlapack -lmwblas') % for Linux, Unix, Mac % % the string gives the locations of the LAPACK and BLAS libraries. % % See also: umfpack, umfpack2, umfpack_details, umfpack_report, umfpack_demo, % and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. details = 0 ; d = '' ; if (~isempty (strfind (computer, '64'))) d = ' -largeArrayDims' ; end v = getversion ; try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end fprintf ('Compiling UMFPACK for MATLAB Version %g\n', v) ; if (pc) obj = 'obj' ; else obj = 'o' ; end kk = 0 ; %------------------------------------------------------------------------------- % BLAS option %------------------------------------------------------------------------------- % This is exceedingly ugly. The MATLAB mex command needs to be told where to % fine the LAPACK and BLAS libraries, which is a real portability nightmare. if (nargin < 1) if (pc) if (v < 6.5) % MATLAB 6.1 and earlier: use the version supplied here lapack = 'lcc_lib/libmwlapack.lib' ; fprintf ('Using %s. If this fails with dgemm and others\n',lapack); fprintf ('undefined, then edit umfpack_make.m and modify the') ; fprintf (' statement:\nlapack = ''%s'' ;\n', lapack) ; elseif (v < 7.5) lapack = 'libmwlapack.lib' ; else % MATLAB R2007b (7.5) made the problem worse lapack = 'libmwlapack.lib libmwblas.lib' ; end else % For other systems, mex should find lapack on its own, but this has % been broken in MATLAB R2007a; the following is now required. if (v < 7.5) lapack = '-lmwlapack' ; else % MATLAB R2007b (7.5) made the problem worse lapack = '-lmwlapack -lmwblas' ; end end end %------------------------------------------------------------------------------- % -DNPOSIX option (for sysconf and times timer routines) %------------------------------------------------------------------------------- posix = '' ; % if (~pc) % msg = [ ... % '--------------------------------------------------------------\n', ... % '\nUMFPACK can use the POSIX routines sysconf () and times ()\n', ... % 'to provide CPU time and wallclock time statistics. If you do not\n', ... % 'have a POSIX-compliant operating system, then UMFPACK won''t\n', ... % 'compile. If you don''t know which option to pick, try the\n', ... % 'default. If you get an error saying that sysconf and/or times\n', ... % 'are not defined, then recompile with the non-POSIX option.\n', ... % '\nPlease select one of the following options:\n', ... % ' 1: use POSIX sysconf and times routines (default)\n', ... % ' 2: do not use POSIX routines\n'] ; % fprintf (msg) ; % posix = str2num (input (': ', 's')) ; % if (isempty (posix)) % posix = 1 ; % end % if (posix == 2) % fprintf ('\nNot using POSIX sysconf and times routines.\n') ; % posix = ' -DNPOSIX' ; % else % fprintf ('\nUsing POSIX sysconf and times routines.\n') ; % posix = '' ; % end % end %------------------------------------------------------------------------------- % mex command %------------------------------------------------------------------------------- umfdir = '../Source/' ; amddir = '../../AMD/Source/' ; incdir = ' -I../Include -I../Source -I../../AMD/Include -I../../UFconfig' ; mx = sprintf ('mex -O%s%s%s ', posix, incdir, d) ; % fprintf ('compile options:\n%s\n', mx) ; %------------------------------------------------------------------------------- % source files %------------------------------------------------------------------------------- % non-user-callable umf_*.[ch] files: umfch = { 'assemble', 'blas3_update', ... 'build_tuples', 'create_element', ... 'dump', 'extend_front', 'garbage_collection', ... 'get_memory', 'init_front', 'kernel', ... 'kernel_init', 'kernel_wrapup', ... 'local_search', 'lsolve', 'ltsolve', ... 'mem_alloc_element', 'mem_alloc_head_block', ... 'mem_alloc_tail_block', 'mem_free_tail_block', ... 'mem_init_memoryspace', ... 'report_vector', 'row_search', 'scale_column', ... 'set_stats', 'solve', 'symbolic_usage', 'transpose', ... 'tuple_lengths', 'usolve', 'utsolve', 'valid_numeric', ... 'valid_symbolic', 'grow_front', 'start_front', '2by2', ... 'store_lu', 'scale' } ; % non-user-callable umf_*.[ch] files, int versions only (no real/complex): umfint = { 'analyze', 'apply_order', 'colamd', 'free', 'fsize', ... 'is_permutation', 'malloc', 'realloc', 'report_perm', ... 'singletons' } ; % non-user-callable and user-callable amd_*.[ch] files (int versions only): amdsrc = { 'aat', '1', '2', 'dump', 'postorder', 'post_tree', 'defaults', ... 'order', 'control', 'info', 'valid', 'preprocess', 'global' } ; % user-callable umfpack_*.[ch] files (real/complex): user = { 'col_to_triplet', 'defaults', 'free_numeric', ... 'free_symbolic', 'get_numeric', 'get_lunz', ... 'get_symbolic', 'get_determinant', 'numeric', 'qsymbolic', ... 'report_control', 'report_info', 'report_matrix', ... 'report_numeric', 'report_perm', 'report_status', ... 'report_symbolic', 'report_triplet', ... 'report_vector', 'solve', 'symbolic', ... 'transpose', 'triplet_to_col', 'scale' ... 'load_numeric', 'save_numeric', 'load_symbolic', 'save_symbolic' } ; % user-callable umfpack_*.[ch], only one version generic = { 'timer', 'tictoc', 'global' } ; M = cell (0) ; %------------------------------------------------------------------------------- % Create the umfpack2 and amd2 mexFunctions for MATLAB (int versions only) %------------------------------------------------------------------------------- for k = 1:length(umfint) [M, kk] = make (M, '%s -DDLONG -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', mx, umfint {k}, umfint {k}, 'm', obj, umfdir, ... kk, details) ; end rules = { [mx ' -DDLONG'] , [mx ' -DZLONG'] } ; kinds = { 'md', 'mz' } ; for what = 1:2 rule = rules {what} ; kind = kinds {what} ; [M, kk] = make (M, '%s -DCONJUGATE_SOLVE -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', rule, 'ltsolve', 'lhsolve', kind, obj, umfdir, ... kk, details) ; [M, kk] = make (M, '%s -DCONJUGATE_SOLVE -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', rule, 'utsolve', 'uhsolve', kind, obj, umfdir, ... kk, details) ; [M, kk] = make (M, '%s -DDO_MAP -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_map_nox.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDO_VALUES -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_nomap_x.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_nomap_nox.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDO_MAP -DDO_VALUES -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_map_x.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DFIXQ -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_fixq.%s', rule, 'assemble', 'assemble', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDROP -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_drop.%s', rule, 'store_lu', 'store_lu', kind, obj, ... umfdir, kk, details) ; for k = 1:length(umfch) [M, kk] = make (M, '%s -c %sumf_%s.c', 'umf_%s.%s', 'umf_%s_%s.%s', ... rule, umfch {k}, umfch {k}, kind, obj, umfdir, kk, details) ; end [M, kk] = make (M, '%s -DWSOLVE -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_w%s.%s', rule, 'solve', 'solve', kind, obj, umfdir, ... kk, details) ; for k = 1:length(user) [M, kk] = make (M, '%s -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_%s.%s', rule, user {k}, user {k}, kind, obj, ... umfdir, kk, details) ; end end for k = 1:length(generic) [M, kk] = make (M, '%s -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_%s.%s', mx, generic {k}, generic {k}, 'm', obj, ... umfdir, kk, details) ; end %---------------------------------------- % AMD routines (int only) %---------------------------------------- for k = 1:length(amdsrc) [M, kk] = make (M, '%s -DDLONG -c %samd_%s.c', 'amd_%s.%s', ... 'amd_%s_%s.%s', mx, amdsrc {k}, amdsrc {k}, 'm', obj, amddir, ... kk, details) ; end %---------------------------------------- % compile the umfpack2 mexFunction %---------------------------------------- C = sprintf ('%s -output umfpack2 umfpackmex.c', mx) ; for i = 1:length (M) C = [C ' ' (M {i})] ; %#ok end C = [C ' ' lapack] ; kk = cmd (C, kk, details) ; %---------------------------------------- % delete the object files %---------------------------------------- for i = 1:length (M) rmfile (M {i}) ; end %---------------------------------------- % compile the luflop mexFunction %---------------------------------------- cmd (sprintf ('%s -output luflop luflopmex.c', mx), kk, details) ; fprintf ('\nUMFPACK successfully compiled\n') ; %=============================================================================== % end of umfpack_make %=============================================================================== %------------------------------------------------------------------------------- function rmfile (file) % rmfile: delete a file, but only if it exists if (length (dir (file)) > 0) %#ok delete (file) ; end %------------------------------------------------------------------------------- function cpfile (src, dst) % cpfile: copy the src file to the filename dst, overwriting dst if it exists rmfile (dst) if (length (dir (src)) == 0) %#ok fprintf ('File does not exist: %s\n', src) ; error ('File does not exist') ; end copyfile (src, dst) ; %------------------------------------------------------------------------------- function mvfile (src, dst) % mvfile: move the src file to the filename dst, overwriting dst if it exists cpfile (src, dst) ; rmfile (src) ; %------------------------------------------------------------------------------- function kk = cmd (s, kk, details) %CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s\n', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; %------------------------------------------------------------------------------- function [M, kk] = make (M, s, src, dst, rule, file1, file2, kind, obj, ... srcdir, kk, details) % make: execute a "make" command for a source file kk = cmd (sprintf (s, rule, srcdir, file1), kk, details) ; src = sprintf (src, file1, obj) ; dst = sprintf (dst, kind, file2, obj) ; mvfile (src, dst) ; M {end + 1} = dst ; %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/UMFPACK/MATLAB/umfpack_details.m0000644001170100242450000002050010677545567017331 0ustar davisfacfunction umfpack_details %UMFPACK_DETAILS details on all the options for using umfpack2 in MATLAB % % Factor or solve a sparse linear system, returning either the solution x to % Ax=b or A'x'=b', the factorization LU=PAQ, or LU=P(R\A)Q. A must be sparse. % For the solve, A must be square and b must be a dense n-by-1 vector. For LU % factorization, A can be rectangular. In both cases, A and/or b can be real % or complex. % % UMFPACK analyzes the matrix and selects one of three strategies to factorize % the matrix. It first finds a set of k initial pivot entries of zero Markowitz % cost. This forms the first k rows and columns of L and U. The remaining % submatrix S is then analyzed, based on the symmetry of the nonzero pattern of % the submatrix and the values on the diagaonal. The strategies include: % % (1) unsymmetric: use a COLAMD pre-ordering, a column elimination tree % post-ordering, refine the column ordering during factorization, % and make no effort at selecting pivots on the diagonal. % (2) 2-by-2: like the symmetric strategy (see below), except that local % row permutations are first made to attempt to place large entries % on the diagonal. % (3) symmetric: use an AMD pre-ordering on the matrix S+S', an % elimination tree post-ordering, do not refine the column ordering % during factorization, and attempt to select pivots on the diagonal. % % Each of the following uses of umfpack2 (except for "Control = umfpack2") is % stand-alone. That is, no call to umfpack2 is required for any subsequent % call. In each usage, the Info output argument is optional. % % Example: % % [x, Info] = umfpack2 (A, '\', b) ; % [x, Info] = umfpack2 (A, '\', b, Control) ; % [x, Info] = umfpack2 (A, Qinit, '\', b, Control) ; % [x, Info] = umfpack2 (A, Qinit, '\', b) ; % % Solves Ax=b (similar to x = A\b in MATLAB). % % [x, Info] = umfpack2 (b, '/', A) ; % [x, Info] = umfpack2 (b, '/', A, Control) ; % [x, Info] = umfpack2 (b, '/', A, Qinit) ; % [x, Info] = umfpack2 (b, '/', A, Qinit, Control) ; % % Solves A'x'=b' (similar to x = b/A in MATLAB). % % [L, U, P, Q, R, Info] = umfpack2 (A) ; % [L, U, P, Q, R, Info] = umfpack2 (A, Control) ; % [L, U, P, Q, R, Info] = umfpack2 (A, Qinit) ; % [L, U, P, Q, R, Info] = umfpack2 (A, Qinit, Control) ; % % Returns the LU factorization of A. P and Q are returned as permutation % matrices. R is a diagonal sparse matrix of scale factors for the rows % of A, L is lower triangular, and U is upper triangular. The % factorization is L*U = P*(R\A)*Q. You can turn off scaling by setting % Control (17) to zero (in which case R = speye (m)), or by using the % following syntaxes (in which case Control (17) is ignored): % % [L, U, P, Q] = umfpack2 (A) ; % [L, U, P, Q] = umfpack2 (A, Control) ; % [L, U, P, Q] = umfpack2 (A, Qinit) ; % [L, U, P, Q] = umfpack2 (A, Qinit, Control) ; % % Same as above, except that no row scaling is performed. The Info array % is not returned, either. % % [P1, Q1, Fr, Ch, Info] = umfpack2 (A, 'symbolic') ; % [P1, Q1, Fr, Ch, Info] = umfpack2 (A, 'symbolic', Control) ; % [P1, Q1, Fr, Ch, Info] = umfpack2 (A, Qinit, 'symbolic') ; % [P1, Q1, Fr, Ch, Info] = umfpack2 (A, Qinit, 'symbolic', Control); % % Performs only the fill-reducing column pre-ordering (including the % elimination tree post-ordering) and symbolic factorization. Q1 is the % initial column permutation (either from colamd, amd, or the input % ordering Qinit), possibly followed by a column elimination tree post- % ordering or a symmetric elimination tree post-ordering, depending on % the strategy used. % % For the unsymmetric strategy, P1 is the row ordering induced by Q1 % (row-merge order). For the 2-by-2 strategy, P1 is the row ordering that % places large entries on the diagonal of P1*A*Q1. For the symmetric % strategy, P1 = Q1. % % Fr is a (nfr+1)-by-4 array containing information about each frontal % matrix, where nfr <= n is the number of frontal matrices. Fr (:,1) is % the number of pivot columns in each front, and Fr (:,2) is the parent % of each front in the supercolumn elimination tree. Fr (k,2) is zero if % k is a root. The first Fr (1,1) columns of P1*A*Q1 are the pivot % columns for the first front, the next Fr (2,1) columns of P1*A*Q1 % are the pivot columns for the second front, and so on. % % For the unsymmetric strategy, Fr (:,3) is the row index of the first % row in P1*A*Q1 whose leftmost nonzero entry is in a pivot column for % the kth front. Fr (:,4) is the leftmost descendent of the kth front. % Rows in the range Fr (Fr (k,4),3) to Fr (k+1,3)-1 form the entire set % of candidate pivot rows for the kth front (some of these will typically % have been selected as pivot rows of fronts Fr (k,3) to k-1, before the % factorization reaches the kth front. If front k is a leaf node, then % Fr (k,4) is k. % % Ch is a (nchains+1)-by-3 array containing information about each "chain" % (unifrontal sequence) of frontal matrices, and where nchains <= nfr % is the number of chains. The ith chain consists of frontal matrices. % Chain (i,1) to Chain (i+1,1)-1, and the largest front in chain i is % Chain (i,2)-by-Chain (i,3). % % This use of umfpack2 is not required to factor or solve a linear system % in MATLAB. It analyzes the matrix A and provides information only. % The MATLAB statement "treeplot (Fr (:,2)')" plots the column elimination % tree. % % Control = umfpack2 ; % % Returns a 20-by-1 vector of default parameter settings for umfpack2. % % umfpack_report (Control, Info) ; % % Prints the current Control settings, and Info % % det = umfpack2 (A, 'det') ; % [det dexp] = umfpack2 (A, 'det') ; % % Computes the determinant of A. The 2nd form returns the determinant % in the form det*10^dexp, where det is in the range +/- 1 to 10, % which helps to avoid overflow/underflow when dexp is out of range of % normal floating-point numbers. % % If present, Qinit is a user-supplied 1-by-n permutation vector. It is an % initial fill-reducing column pre-ordering for A; if not present, then colamd % or amd are used instead. If present, Control is a user-supplied 20-by-1 % array. Control and Info are optional; if Control is not present, defaults % are used. If a Control entry is NaN, then the default is used for that entry. % % % Copyright 1995-2007 by Timothy A. Davis, University of Florida. % All Rights Reserved. % UMFPACK is available under alternate licenses, contact T. Davis for details. % % UMFPACK License: % % Your use or distribution of UMFPACK or any modified version of % UMFPACK implies that you agree to this License. % % This library is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public % License as published by the Free Software Foundation; either % version 2 of the License, or (at your option) any later version. % % This library is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public % License along with this library; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 % USA % % Permission is hereby granted to use or copy this program under the % terms of the GNU GPL, provided that the Copyright, this License, % and the Availability of the original version is retained on all copies. % User documentation of any code that uses this code or any modified % version of this code must cite the Copyright, this License, the % Availability note, and "Used by permission." Permission to modify % the code and to distribute modified code is granted, provided the % Copyright, this License, and the Availability note are retained, % and a notice that the code was modified is included. % % Availability: http://www.cise.ufl.edu/research/sparse/umfpack % % See also umfpack, umfpack2, umfpack_make, umfpack_report, % umfpack_demo, and umfpack_simple. more on help umfpack_details more off SuiteSparse/UMFPACK/MATLAB/umfpack_simple.m0000644001170100242450000000235310677545610017170 0ustar davisfac%UMFPACK_SIMPLE a simple demo % % Example: % umfpack_simple % % Copyright 1995-2007 by Timothy A. Davis. % % UMFPACK License: % % Your use or distribution of UMFPACK or any modified version of % UMFPACK implies that you agree to this License. UMFPACK is % is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public % License as published by the Free Software Foundation; either % version 2 of the License, or (at your option) any later version. % Availability: http://www.cise.ufl.edu/research/sparse/umfpack % % See also: umfpack, umfpack2, umfpack_details help umfpack_simple format short A = [ 2 3 0 0 0 3 0 4 0 6 0 -1 -3 2 0 0 0 1 0 0 0 4 2 0 1 ] ; fprintf ('A = \n') ; disp (A) ; A = sparse (A) ; b = [8 45 -3 3 19]' ; fprintf ('b = \n') ; disp (b) ; fprintf ('Solution to Ax=b via UMFPACK:\n') ; fprintf ('x1 = umfpack2 (A, ''\\'', b)\n') ; x1 = umfpack2 (A, '\', b) ; fprintf ('x1 = \n') ; disp (x1) ; fprintf ('Solution to Ax=b via MATLAB:\n') ; fprintf ('x2 = A\\b\n') ; x2 = A\b ; fprintf ('x2 = \n') ; disp (x2) ; fprintf ('norm (x1-x2) should be small: %g\n', norm (x1-x2)) ; fprintf ('Type ''umfpack_demo'' for a full demo of UMFPACK\n') ; SuiteSparse/UMFPACK/MATLAB/west.mat0000644001170100242450000000353510537767601015504 0ustar davisfacMATLAB 5.0 MAT-file, Platform: GLNX86, Created on: Sun Nov 19 20:03:34 2006 IMxyPGRYN# XE!<YDTŋw, +CNs6J?S F4{I3ɞ55J%LMgjS9euY\['P!A+bb1~0~9V16f? SDxؑ2~Dt$xb葼V޲14p5hhkfƸnS=^s}sc]GwԓødžcN@W+źbLb걘cf-PsX0I0n-EE |[`\Y~ 5 D qGk軶pı5cm1ok9<õ%'ΓYL8SNb¹rz k`oǝ Z5vcqbϱsĞ vE\\ bg?"H`0> 9|X d9: `?p(TNg*"P47[] x HK^]w>:~Mg.yyXcYDg{ v-z:"/|(c߯^E|la_F[2"ճ[$[rŲSwWд>PJql5hsǢ椖l[Ej=_s%7۟w!fsu;}%Ogk d^KL^yA!/ҷiSӍϝ% g)$ ?o:mvS㟨mɆ%]ߝ**:.yIUрGRZ̜u' ݗ0/Kw?¼a}ߢgq *x9jP{|qJlo }G9߿ӻr3<8C1tث8UǤ:Zu~^G7<}}fu3$ú7qԩ(:71QGI4).(3Ҙ_pVSuiteSparse/UMFPACK/MATLAB/lcc_lib/0000755001170100242450000000000010006260712015356 5ustar davisfacSuiteSparse/UMFPACK/MATLAB/lcc_lib/lapacksyms.def0000644001170100242450000001145310006260712020211 0ustar davisfacLIBRARY liblapack.dll EXPORTS dasum daxpy dbdsdc dbdsqr dcopy ddisna ddot dgbbrd dgbcon dgbequ dgbmv dgbrfs dgbsv dgbsvx dgbtf2 dgbtrf dgbtrs dgebak dgebal dgebd2 dgebrd dgecon dgeequ dgees dgeesx dgeev dgeevx dgegs dgegv dgehd2 dgehrd dgelq2 dgelqf dgels dgelsd dgelss dgelsx dgelsy dgemm dgemv dgeql2 dgeqlf dgeqp3 dgeqpf dgeqr2 dgeqrf dger dgerfs dgerq2 dgerqf dgesc2 dgesdd dgesv dgesvd dgesvx dgetc2 dgetf2 dgetrf dgetri dgetrs dggbak dggbal dgges dggesx dggev dggevx dggglm dgghrd dgglse dggqrf dggrqf dggsvd dggsvp dgtcon dgtrfs dgtsv dgtsvx dgttrf dgttrs dgtts2 dhgeqz dhsein dhseqr dlabad dlabrd dlacon dlacpy dladiv dlae2 dlaebz dlaed0 dlaed1 dlaed2 dlaed3 dlaed4 dlaed5 dlaed6 dlaed7 dlaed8 dlaed9 dlaeda dlaein dlaev2 dlaexc dlag2 dlags2 dlagtf dlagtm dlagts dlagv2 dlahqr dlahrd dlaic1 dlaln2 dlals0 dlalsa dlalsd dlamch dlamrg dlangb dlange dlangt dlanhs dlansb dlansp dlanst dlansy dlantb dlantp dlantr dlanv2 dlapll dlapmt dlapy2 dlapy3 dlaqgb dlaqge dlaqp2 dlaqps dlaqsb dlaqsp dlaqsy dlaqtr dlar1v dlar2v dlarf dlarfb dlarfg dlarft dlarfx dlargv dlarnv dlarrb dlarre dlarrf dlarrv dlartg dlartv dlaruv dlarz dlarzb dlarzt dlas2 dlascl dlasd0 dlasd1 dlasd2 dlasd3 dlasd4 dlasd5 dlasd6 dlasd7 dlasd8 dlasd9 dlasda dlasdq dlasdt dlaset dlasq1 dlasq2 dlasq3 dlasq4 dlasq5 dlasq6 dlasr dlasrt dlassq dlasv2 dlaswp dlasy2 dlasyf dlatbs dlatdf dlatps dlatrd dlatrs dlatrz dlatzm dlauu2 dlauum dnrm2 dopgtr dopmtr dorg2l dorg2r dorgbr dorghr dorgl2 dorglq dorgql dorgqr dorgr2 dorgrq dorgtr dorm2l dorm2r dormbr dormhr dorml2 dormlq dormql dormqr dormr2 dormr3 dormrq dormrz dormtr dpbcon dpbequ dpbrfs dpbstf dpbsv dpbsvx dpbtf2 dpbtrf dpbtrs dpocon dpoequ dporfs dposv dposvx dpotf2 dpotrf dpotri dpotrs dppcon dppequ dpprfs dppsv dppsvx dpptrf dpptri dpptrs dptcon dpteqr dptrfs dptsv dptsvx dpttrf dpttrs dptts2 drot drotg drscl dsbev dsbevd dsbevx dsbgst dsbgv dsbgvd dsbgvx dsbmv dsbtrd dscal dspcon dspev dspevd dspevx dspgst dspgv dspgvd dspgvx dspmv dspr dspr2 dsprfs dspsv dspsvx dsptrd dsptrf dsptri dsptrs dstebz dstedc dstegr dstein dsteqr dsterf dstev dstevd dstevr dstevx dswap dsycon dsyev dsyevd dsyevr dsyevx dsygs2 dsygst dsygv dsygvd dsygvx dsymm dsymv dsyr dsyr2 dsyr2k dsyrfs dsyrk dsysv dsysvx dsytd2 dsytf2 dsytrd dsytrf dsytri dsytrs dtbcon dtbmv dtbrfs dtbsv dtbtrs dtgevc dtgex2 dtgexc dtgsen dtgsja dtgsna dtgsy2 dtgsyl dtpcon dtpmv dtprfs dtpsv dtptri dtptrs dtrcon dtrevc dtrexc dtrmm dtrmv dtrrfs dtrsen dtrsm dtrsna dtrsv dtrsyl dtrti2 dtrtri dtrtrs dtzrqf dtzrzf dzasum dznrm2 dzsum1 idamax ieeeck ilaenv izamax izmax1 lsame lsamen xerbla zaxpy zbdsqr zcopy zdotc zdotu zdrot zdrscl zdscal zgbbrd zgbcon zgbequ zgbmv zgbrfs zgbsv zgbsvx zgbtf2 zgbtrf zgbtrs zgebak zgebal zgebd2 zgebrd zgecon zgeequ zgees zgeesx zgeev zgeevx zgegs zgegv zgehd2 zgehrd zgelq2 zgelqf zgels zgelsd zgelss zgelsx zgelsy zgemm zgemv zgeql2 zgeqlf zgeqp3 zgeqpf zgeqr2 zgeqrf zgerc zgerfs zgerq2 zgerqf zgeru zgesc2 zgesdd zgesv zgesvd zgesvx zgetc2 zgetf2 zgetrf zgetri zgetrs zggbak zggbal zgges zggesx zggev zggevx zggglm zgghrd zgglse zggqrf zggrqf zggsvd zggsvp zgtcon zgtrfs zgtsv zgtsvx zgttrf zgttrs zgtts2 zhbev zhbevd zhbevx zhbgst zhbgv zhbgvd zhbgvx zhbmv zhbtrd zhecon zheev zheevd zheevr zheevx zhegs2 zhegst zhegv zhegvd zhegvx zhemm zhemv zher zher2 zher2k zherfs zherk zhesv zhesvx zhetd2 zhetf2 zhetrd zhetrf zhetri zhetrs zhgeqz zhpcon zhpev zhpevd zhpevx zhpgst zhpgv zhpgvd zhpgvx zhpmv zhpr zhpr2 zhprfs zhpsv zhpsvx zhptrd zhptrf zhptri zhptrs zhsein zhseqr zlabrd zlacgv zlacon zlacp2 zlacpy zlacrm zlacrt zladiv zlaed0 zlaed7 zlaed8 zlaein zlaesy zlaev2 zlags2 zlagtm zlahef zlahqr zlahrd zlaic1 zlals0 zlalsa zlalsd zlangb zlange zlangt zlanhb zlanhe zlanhp zlanhs zlanht zlansb zlansp zlansy zlantb zlantp zlantr zlapll zlapmt zlaqgb zlaqge zlaqhb zlaqhe zlaqhp zlaqp2 zlaqps zlaqsb zlaqsp zlaqsy zlar1v zlar2v zlarcm zlarf zlarfb zlarfg zlarft zlarfx zlargv zlarnv zlarrv zlartg zlartv zlarz zlarzb zlarzt zlascl zlaset zlasr zlassq zlaswp zlasyf zlatbs zlatdf zlatps zlatrd zlatrs zlatrz zlatzm zlauu2 zlauum zpbcon zpbequ zpbrfs zpbstf zpbsv zpbsvx zpbtf2 zpbtrf zpbtrs zpocon zpoequ zporfs zposv zposvx zpotf2 zpotrf zpotri zpotrs zppcon zppequ zpprfs zppsv zppsvx zpptrf zpptri zpptrs zptcon zpteqr zptrfs zptsv zptsvx zpttrf zpttrs zptts2 zrot zrotg zscal zspcon zspmv zspr zsprfs zspsv zspsvx zsptrf zsptri zsptrs zstedc zstegr zstein zsteqr zswap zsycon zsymm zsymv zsyr zsyr2k zsyrfs zsyrk zsysv zsysvx zsytf2 zsytrf zsytri zsytrs ztbcon ztbmv ztbrfs ztbsv ztbtrs ztgevc ztgex2 ztgexc ztgsen ztgsja ztgsna ztgsy2 ztgsyl ztpcon ztpmv ztprfs ztpsv ztptri ztptrs ztrcon ztrevc ztrexc ztrmm ztrmv ztrrfs ztrsen ztrsm ztrsna ztrsv ztrsyl ztrti2 ztrtri ztrtrs ztzrqf ztzrzf zung2l zung2r zungbr zunghr zungl2 zunglq zungql zungqr zungr2 zungrq zungtr zunm2l zunm2r zunmbr zunmhr zunml2 zunmlq zunmql zunmqr zunmr2 zunmr3 zunmrq zunmrz zunmtr zupgtr zupmtr SuiteSparse/UMFPACK/MATLAB/lcc_lib/libmwlapack.lib0000644001170100242450000161736610006260715020363 0ustar davisfac! / 1013176938 0 0 0 21266 ` SVUXXZZ]V]V__b.b.ddggijijkknBnBppssuuwwzVzV||..rrJJ""^^22rrJJbb22 vvNNǺǺ""̎̎ff>>ئئ~~VV..rrFF^^66   z z  NN&&jj!B!B##&&((**-^-^//2222447 7 9v9v;;>N>N@@C&C&EEGGJjJjLLOBOBQQTTVVXX[Z[Z]]`2`2bbe e gvgviilNlNnnq&q&ssuuxjxjzz}B}B^^66zzRR**nnFFbb66zzRRʾʾ**ϖϖnnFFۮۮZZ22  vvNN&&jjBB    ^^22  vv!!$N$N&&)&)&++--0j0j225B5B77::<<>>AZAZCCF2F2HHK K MvMvOORNRNTTW&W&YY[[^j^j``cBcBeehhjjllo^o^qqt6t6vvyy{z{z}}RR**jjBBZZ22  vvNN""ff>>~~VV..ҖҖff::ަަzzRR&&bb::zzNN    ^^66zz"R"R$$'*'*))++.j.j003B3B5588:~:~<<?V?VAAD.D.FFIIKnKnMMPBPBRRUUWzWzYY\R\R^^a"a"cceehfhfjjm>m>oorrttvvyVyV{{~*~*nnFF^^22  vvNN^^22  vvNNƺƺ&&˒˒jjBB׮׮܂܂ZZ..ff::~~RR&& j j  BB^^ 2 2""%%'n'n)),B,B..1133558Z8Z::=2=2??BBDnDnFFIFIFKKNNPPRRU^U^WWZ6Z6\\_ _ avavccfJfJhhk"k"mmoorfrfttw>w>yy||~~~~RR**nnFF^^66  vvNN""bb66ĢĢzzRRкк&&ՒՒbb22  rrFFbb::zzRR   & &bb66   v v""%N%N''*&*&,,..1j1j336B6B88;;==??B^B^DDG6G6IILLNzNzPPSRSRUUX*X*ZZ]]_n_naadFdFffiikkmmpbpbrru:u:wwzz|~|~~~VV..rrJJ""ff>>VV..rrJJ¶¶NJNJbb66ӢӢzzRR߾߾**nnFF^^66zz R R  &&jjBB!!##%%(Z(Z**-2-2//2 2 4v4v669J9J;;>">"@@BBE^E^GGJ2J2LLOOQnQnSSVBVBXX[[]]__b^b^ddg6g6iil l nrnrppsBsBuuxxzz||VV..rrFF^^66zzNN""ff>>zzNN̺̺""ююff>>ݪݪZZ22  vvNN&&jj B B  ^^66$tlapacksyms$hlapacksyms_dasum__imp__dasum_daxpy__imp__daxpy_dbdsdc__imp__dbdsdc_dbdsqr__imp__dbdsqr_dcopy__imp__dcopy_ddisna__imp__ddisna_ddot__imp__ddot_dgbbrd__imp__dgbbrd_dgbcon__imp__dgbcon_dgbequ__imp__dgbequ_dgbmv__imp__dgbmv_dgbrfs__imp__dgbrfs_dgbsv__imp__dgbsv_dgbsvx__imp__dgbsvx_dgbtf2__imp__dgbtf2_dgbtrf__imp__dgbtrf_dgbtrs__imp__dgbtrs_dgebak__imp__dgebak_dgebal__imp__dgebal_dgebd2__imp__dgebd2_dgebrd__imp__dgebrd_dgecon__imp__dgecon_dgeequ__imp__dgeequ_dgees__imp__dgees_dgeesx__imp__dgeesx_dgeev__imp__dgeev_dgeevx__imp__dgeevx_dgegs__imp__dgegs_dgegv__imp__dgegv_dgehd2__imp__dgehd2_dgehrd__imp__dgehrd_dgelq2__imp__dgelq2_dgelqf__imp__dgelqf_dgels__imp__dgels_dgelsd__imp__dgelsd_dgelss__imp__dgelss_dgelsx__imp__dgelsx_dgelsy__imp__dgelsy_dgemm__imp__dgemm_dgemv__imp__dgemv_dgeql2__imp__dgeql2_dgeqlf__imp__dgeqlf_dgeqp3__imp__dgeqp3_dgeqpf__imp__dgeqpf_dgeqr2__imp__dgeqr2_dgeqrf__imp__dgeqrf_dger__imp__dger_dgerfs__imp__dgerfs_dgerq2__imp__dgerq2_dgerqf__imp__dgerqf_dgesc2__imp__dgesc2_dgesdd__imp__dgesdd_dgesv__imp__dgesv_dgesvd__imp__dgesvd_dgesvx__imp__dgesvx_dgetc2__imp__dgetc2_dgetf2__imp__dgetf2_dgetrf__imp__dgetrf_dgetri__imp__dgetri_dgetrs__imp__dgetrs_dggbak__imp__dggbak_dggbal__imp__dggbal_dgges__imp__dgges_dggesx__imp__dggesx_dggev__imp__dggev_dggevx__imp__dggevx_dggglm__imp__dggglm_dgghrd__imp__dgghrd_dgglse__imp__dgglse_dggqrf__imp__dggqrf_dggrqf__imp__dggrqf_dggsvd__imp__dggsvd_dggsvp__imp__dggsvp_dgtcon__imp__dgtcon_dgtrfs__imp__dgtrfs_dgtsv__imp__dgtsv_dgtsvx__imp__dgtsvx_dgttrf__imp__dgttrf_dgttrs__imp__dgttrs_dgtts2__imp__dgtts2_dhgeqz__imp__dhgeqz_dhsein__imp__dhsein_dhseqr__imp__dhseqr_dlabad__imp__dlabad_dlabrd__imp__dlabrd_dlacon__imp__dlacon_dlacpy__imp__dlacpy_dladiv__imp__dladiv_dlae2__imp__dlae2_dlaebz__imp__dlaebz_dlaed0__imp__dlaed0_dlaed1__imp__dlaed1_dlaed2__imp__dlaed2_dlaed3__imp__dlaed3_dlaed4__imp__dlaed4_dlaed5__imp__dlaed5_dlaed6__imp__dlaed6_dlaed7__imp__dlaed7_dlaed8__imp__dlaed8_dlaed9__imp__dlaed9_dlaeda__imp__dlaeda_dlaein__imp__dlaein_dlaev2__imp__dlaev2_dlaexc__imp__dlaexc_dlag2__imp__dlag2_dlags2__imp__dlags2_dlagtf__imp__dlagtf_dlagtm__imp__dlagtm_dlagts__imp__dlagts_dlagv2__imp__dlagv2_dlahqr__imp__dlahqr_dlahrd__imp__dlahrd_dlaic1__imp__dlaic1_dlaln2__imp__dlaln2_dlals0__imp__dlals0_dlalsa__imp__dlalsa_dlalsd__imp__dlalsd_dlamch__imp__dlamch_dlamrg__imp__dlamrg_dlangb__imp__dlangb_dlange__imp__dlange_dlangt__imp__dlangt_dlanhs__imp__dlanhs_dlansb__imp__dlansb_dlansp__imp__dlansp_dlanst__imp__dlanst_dlansy__imp__dlansy_dlantb__imp__dlantb_dlantp__imp__dlantp_dlantr__imp__dlantr_dlanv2__imp__dlanv2_dlapll__imp__dlapll_dlapmt__imp__dlapmt_dlapy2__imp__dlapy2_dlapy3__imp__dlapy3_dlaqgb__imp__dlaqgb_dlaqge__imp__dlaqge_dlaqp2__imp__dlaqp2_dlaqps__imp__dlaqps_dlaqsb__imp__dlaqsb_dlaqsp__imp__dlaqsp_dlaqsy__imp__dlaqsy_dlaqtr__imp__dlaqtr_dlar1v__imp__dlar1v_dlar2v__imp__dlar2v_dlarf__imp__dlarf_dlarfb__imp__dlarfb_dlarfg__imp__dlarfg_dlarft__imp__dlarft_dlarfx__imp__dlarfx_dlargv__imp__dlargv_dlarnv__imp__dlarnv_dlarrb__imp__dlarrb_dlarre__imp__dlarre_dlarrf__imp__dlarrf_dlarrv__imp__dlarrv_dlartg__imp__dlartg_dlartv__imp__dlartv_dlaruv__imp__dlaruv_dlarz__imp__dlarz_dlarzb__imp__dlarzb_dlarzt__imp__dlarzt_dlas2__imp__dlas2_dlascl__imp__dlascl_dlasd0__imp__dlasd0_dlasd1__imp__dlasd1_dlasd2__imp__dlasd2_dlasd3__imp__dlasd3_dlasd4__imp__dlasd4_dlasd5__imp__dlasd5_dlasd6__imp__dlasd6_dlasd7__imp__dlasd7_dlasd8__imp__dlasd8_dlasd9__imp__dlasd9_dlasda__imp__dlasda_dlasdq__imp__dlasdq_dlasdt__imp__dlasdt_dlaset__imp__dlaset_dlasq1__imp__dlasq1_dlasq2__imp__dlasq2_dlasq3__imp__dlasq3_dlasq4__imp__dlasq4_dlasq5__imp__dlasq5_dlasq6__imp__dlasq6_dlasr__imp__dlasr_dlasrt__imp__dlasrt_dlassq__imp__dlassq_dlasv2__imp__dlasv2_dlaswp__imp__dlaswp_dlasy2__imp__dlasy2_dlasyf__imp__dlasyf_dlatbs__imp__dlatbs_dlatdf__imp__dlatdf_dlatps__imp__dlatps_dlatrd__imp__dlatrd_dlatrs__imp__dlatrs_dlatrz__imp__dlatrz_dlatzm__imp__dlatzm_dlauu2__imp__dlauu2_dlauum__imp__dlauum_dnrm2__imp__dnrm2_dopgtr__imp__dopgtr_dopmtr__imp__dopmtr_dorg2l__imp__dorg2l_dorg2r__imp__dorg2r_dorgbr__imp__dorgbr_dorghr__imp__dorghr_dorgl2__imp__dorgl2_dorglq__imp__dorglq_dorgql__imp__dorgql_dorgqr__imp__dorgqr_dorgr2__imp__dorgr2_dorgrq__imp__dorgrq_dorgtr__imp__dorgtr_dorm2l__imp__dorm2l_dorm2r__imp__dorm2r_dormbr__imp__dormbr_dormhr__imp__dormhr_dorml2__imp__dorml2_dormlq__imp__dormlq_dormql__imp__dormql_dormqr__imp__dormqr_dormr2__imp__dormr2_dormr3__imp__dormr3_dormrq__imp__dormrq_dormrz__imp__dormrz_dormtr__imp__dormtr_dpbcon__imp__dpbcon_dpbequ__imp__dpbequ_dpbrfs__imp__dpbrfs_dpbstf__imp__dpbstf_dpbsv__imp__dpbsv_dpbsvx__imp__dpbsvx_dpbtf2__imp__dpbtf2_dpbtrf__imp__dpbtrf_dpbtrs__imp__dpbtrs_dpocon__imp__dpocon_dpoequ__imp__dpoequ_dporfs__imp__dporfs_dposv__imp__dposv_dposvx__imp__dposvx_dpotf2__imp__dpotf2_dpotrf__imp__dpotrf_dpotri__imp__dpotri_dpotrs__imp__dpotrs_dppcon__imp__dppcon_dppequ__imp__dppequ_dpprfs__imp__dpprfs_dppsv__imp__dppsv_dppsvx__imp__dppsvx_dpptrf__imp__dpptrf_dpptri__imp__dpptri_dpptrs__imp__dpptrs_dptcon__imp__dptcon_dpteqr__imp__dpteqr_dptrfs__imp__dptrfs_dptsv__imp__dptsv_dptsvx__imp__dptsvx_dpttrf__imp__dpttrf_dpttrs__imp__dpttrs_dptts2__imp__dptts2_drot__imp__drot_drotg__imp__drotg_drscl__imp__drscl_dsbev__imp__dsbev_dsbevd__imp__dsbevd_dsbevx__imp__dsbevx_dsbgst__imp__dsbgst_dsbgv__imp__dsbgv_dsbgvd__imp__dsbgvd_dsbgvx__imp__dsbgvx_dsbmv__imp__dsbmv_dsbtrd__imp__dsbtrd_dscal__imp__dscal_dspcon__imp__dspcon_dspev__imp__dspev_dspevd__imp__dspevd_dspevx__imp__dspevx_dspgst__imp__dspgst_dspgv__imp__dspgv_dspgvd__imp__dspgvd_dspgvx__imp__dspgvx_dspmv__imp__dspmv_dspr__imp__dspr_dspr2__imp__dspr2_dsprfs__imp__dsprfs_dspsv__imp__dspsv_dspsvx__imp__dspsvx_dsptrd__imp__dsptrd_dsptrf__imp__dsptrf_dsptri__imp__dsptri_dsptrs__imp__dsptrs_dstebz__imp__dstebz_dstedc__imp__dstedc_dstegr__imp__dstegr_dstein__imp__dstein_dsteqr__imp__dsteqr_dsterf__imp__dsterf_dstev__imp__dstev_dstevd__imp__dstevd_dstevr__imp__dstevr_dstevx__imp__dstevx_dswap__imp__dswap_dsycon__imp__dsycon_dsyev__imp__dsyev_dsyevd__imp__dsyevd_dsyevr__imp__dsyevr_dsyevx__imp__dsyevx_dsygs2__imp__dsygs2_dsygst__imp__dsygst_dsygv__imp__dsygv_dsygvd__imp__dsygvd_dsygvx__imp__dsygvx_dsymm__imp__dsymm_dsymv__imp__dsymv_dsyr__imp__dsyr_dsyr2__imp__dsyr2_dsyr2k__imp__dsyr2k_dsyrfs__imp__dsyrfs_dsyrk__imp__dsyrk_dsysv__imp__dsysv_dsysvx__imp__dsysvx_dsytd2__imp__dsytd2_dsytf2__imp__dsytf2_dsytrd__imp__dsytrd_dsytrf__imp__dsytrf_dsytri__imp__dsytri_dsytrs__imp__dsytrs_dtbcon__imp__dtbcon_dtbmv__imp__dtbmv_dtbrfs__imp__dtbrfs_dtbsv__imp__dtbsv_dtbtrs__imp__dtbtrs_dtgevc__imp__dtgevc_dtgex2__imp__dtgex2_dtgexc__imp__dtgexc_dtgsen__imp__dtgsen_dtgsja__imp__dtgsja_dtgsna__imp__dtgsna_dtgsy2__imp__dtgsy2_dtgsyl__imp__dtgsyl_dtpcon__imp__dtpcon_dtpmv__imp__dtpmv_dtprfs__imp__dtprfs_dtpsv__imp__dtpsv_dtptri__imp__dtptri_dtptrs__imp__dtptrs_dtrcon__imp__dtrcon_dtrevc__imp__dtrevc_dtrexc__imp__dtrexc_dtrmm__imp__dtrmm_dtrmv__imp__dtrmv_dtrrfs__imp__dtrrfs_dtrsen__imp__dtrsen_dtrsm__imp__dtrsm_dtrsna__imp__dtrsna_dtrsv__imp__dtrsv_dtrsyl__imp__dtrsyl_dtrti2__imp__dtrti2_dtrtri__imp__dtrtri_dtrtrs__imp__dtrtrs_dtzrqf__imp__dtzrqf_dtzrzf__imp__dtzrzf_dzasum__imp__dzasum_dznrm2__imp__dznrm2_dzsum1__imp__dzsum1_idamax__imp__idamax_ieeeck__imp__ieeeck_ilaenv__imp__ilaenv_izamax__imp__izamax_izmax1__imp__izmax1_lsame__imp__lsame_lsamen__imp__lsamen_xerbla__imp__xerbla_zaxpy__imp__zaxpy_zbdsqr__imp__zbdsqr_zcopy__imp__zcopy_zdotc__imp__zdotc_zdotu__imp__zdotu_zdrot__imp__zdrot_zdrscl__imp__zdrscl_zdscal__imp__zdscal_zgbbrd__imp__zgbbrd_zgbcon__imp__zgbcon_zgbequ__imp__zgbequ_zgbmv__imp__zgbmv_zgbrfs__imp__zgbrfs_zgbsv__imp__zgbsv_zgbsvx__imp__zgbsvx_zgbtf2__imp__zgbtf2_zgbtrf__imp__zgbtrf_zgbtrs__imp__zgbtrs_zgebak__imp__zgebak_zgebal__imp__zgebal_zgebd2__imp__zgebd2_zgebrd__imp__zgebrd_zgecon__imp__zgecon_zgeequ__imp__zgeequ_zgees__imp__zgees_zgeesx__imp__zgeesx_zgeev__imp__zgeev_zgeevx__imp__zgeevx_zgegs__imp__zgegs_zgegv__imp__zgegv_zgehd2__imp__zgehd2_zgehrd__imp__zgehrd_zgelq2__imp__zgelq2_zgelqf__imp__zgelqf_zgels__imp__zgels_zgelsd__imp__zgelsd_zgelss__imp__zgelss_zgelsx__imp__zgelsx_zgelsy__imp__zgelsy_zgemm__imp__zgemm_zgemv__imp__zgemv_zgeql2__imp__zgeql2_zgeqlf__imp__zgeqlf_zgeqp3__imp__zgeqp3_zgeqpf__imp__zgeqpf_zgeqr2__imp__zgeqr2_zgeqrf__imp__zgeqrf_zgerc__imp__zgerc_zgerfs__imp__zgerfs_zgerq2__imp__zgerq2_zgerqf__imp__zgerqf_zgeru__imp__zgeru_zgesc2__imp__zgesc2_zgesdd__imp__zgesdd_zgesv__imp__zgesv_zgesvd__imp__zgesvd_zgesvx__imp__zgesvx_zgetc2__imp__zgetc2_zgetf2__imp__zgetf2_zgetrf__imp__zgetrf_zgetri__imp__zgetri_zgetrs__imp__zgetrs_zggbak__imp__zggbak_zggbal__imp__zggbal_zgges__imp__zgges_zggesx__imp__zggesx_zggev__imp__zggev_zggevx__imp__zggevx_zggglm__imp__zggglm_zgghrd__imp__zgghrd_zgglse__imp__zgglse_zggqrf__imp__zggqrf_zggrqf__imp__zggrqf_zggsvd__imp__zggsvd_zggsvp__imp__zggsvp_zgtcon__imp__zgtcon_zgtrfs__imp__zgtrfs_zgtsv__imp__zgtsv_zgtsvx__imp__zgtsvx_zgttrf__imp__zgttrf_zgttrs__imp__zgttrs_zgtts2__imp__zgtts2_zhbev__imp__zhbev_zhbevd__imp__zhbevd_zhbevx__imp__zhbevx_zhbgst__imp__zhbgst_zhbgv__imp__zhbgv_zhbgvd__imp__zhbgvd_zhbgvx__imp__zhbgvx_zhbmv__imp__zhbmv_zhbtrd__imp__zhbtrd_zhecon__imp__zhecon_zheev__imp__zheev_zheevd__imp__zheevd_zheevr__imp__zheevr_zheevx__imp__zheevx_zhegs2__imp__zhegs2_zhegst__imp__zhegst_zhegv__imp__zhegv_zhegvd__imp__zhegvd_zhegvx__imp__zhegvx_zhemm__imp__zhemm_zhemv__imp__zhemv_zher__imp__zher_zher2__imp__zher2_zher2k__imp__zher2k_zherfs__imp__zherfs_zherk__imp__zherk_zhesv__imp__zhesv_zhesvx__imp__zhesvx_zhetd2__imp__zhetd2_zhetf2__imp__zhetf2_zhetrd__imp__zhetrd_zhetrf__imp__zhetrf_zhetri__imp__zhetri_zhetrs__imp__zhetrs_zhgeqz__imp__zhgeqz_zhpcon__imp__zhpcon_zhpev__imp__zhpev_zhpevd__imp__zhpevd_zhpevx__imp__zhpevx_zhpgst__imp__zhpgst_zhpgv__imp__zhpgv_zhpgvd__imp__zhpgvd_zhpgvx__imp__zhpgvx_zhpmv__imp__zhpmv_zhpr__imp__zhpr_zhpr2__imp__zhpr2_zhprfs__imp__zhprfs_zhpsv__imp__zhpsv_zhpsvx__imp__zhpsvx_zhptrd__imp__zhptrd_zhptrf__imp__zhptrf_zhptri__imp__zhptri_zhptrs__imp__zhptrs_zhsein__imp__zhsein_zhseqr__imp__zhseqr_zlabrd__imp__zlabrd_zlacgv__imp__zlacgv_zlacon__imp__zlacon_zlacp2__imp__zlacp2_zlacpy__imp__zlacpy_zlacrm__imp__zlacrm_zlacrt__imp__zlacrt_zladiv__imp__zladiv_zlaed0__imp__zlaed0_zlaed7__imp__zlaed7_zlaed8__imp__zlaed8_zlaein__imp__zlaein_zlaesy__imp__zlaesy_zlaev2__imp__zlaev2_zlags2__imp__zlags2_zlagtm__imp__zlagtm_zlahef__imp__zlahef_zlahqr__imp__zlahqr_zlahrd__imp__zlahrd_zlaic1__imp__zlaic1_zlals0__imp__zlals0_zlalsa__imp__zlalsa_zlalsd__imp__zlalsd_zlangb__imp__zlangb_zlange__imp__zlange_zlangt__imp__zlangt_zlanhb__imp__zlanhb_zlanhe__imp__zlanhe_zlanhp__imp__zlanhp_zlanhs__imp__zlanhs_zlanht__imp__zlanht_zlansb__imp__zlansb_zlansp__imp__zlansp_zlansy__imp__zlansy_zlantb__imp__zlantb_zlantp__imp__zlantp_zlantr__imp__zlantr_zlapll__imp__zlapll_zlapmt__imp__zlapmt_zlaqgb__imp__zlaqgb_zlaqge__imp__zlaqge_zlaqhb__imp__zlaqhb_zlaqhe__imp__zlaqhe_zlaqhp__imp__zlaqhp_zlaqp2__imp__zlaqp2_zlaqps__imp__zlaqps_zlaqsb__imp__zlaqsb_zlaqsp__imp__zlaqsp_zlaqsy__imp__zlaqsy_zlar1v__imp__zlar1v_zlar2v__imp__zlar2v_zlarcm__imp__zlarcm_zlarf__imp__zlarf_zlarfb__imp__zlarfb_zlarfg__imp__zlarfg_zlarft__imp__zlarft_zlarfx__imp__zlarfx_zlargv__imp__zlargv_zlarnv__imp__zlarnv_zlarrv__imp__zlarrv_zlartg__imp__zlartg_zlartv__imp__zlartv_zlarz__imp__zlarz_zlarzb__imp__zlarzb_zlarzt__imp__zlarzt_zlascl__imp__zlascl_zlaset__imp__zlaset_zlasr__imp__zlasr_zlassq__imp__zlassq_zlaswp__imp__zlaswp_zlasyf__imp__zlasyf_zlatbs__imp__zlatbs_zlatdf__imp__zlatdf_zlatps__imp__zlatps_zlatrd__imp__zlatrd_zlatrs__imp__zlatrs_zlatrz__imp__zlatrz_zlatzm__imp__zlatzm_zlauu2__imp__zlauu2_zlauum__imp__zlauum_zpbcon__imp__zpbcon_zpbequ__imp__zpbequ_zpbrfs__imp__zpbrfs_zpbstf__imp__zpbstf_zpbsv__imp__zpbsv_zpbsvx__imp__zpbsvx_zpbtf2__imp__zpbtf2_zpbtrf__imp__zpbtrf_zpbtrs__imp__zpbtrs_zpocon__imp__zpocon_zpoequ__imp__zpoequ_zporfs__imp__zporfs_zposv__imp__zposv_zposvx__imp__zposvx_zpotf2__imp__zpotf2_zpotrf__imp__zpotrf_zpotri__imp__zpotri_zpotrs__imp__zpotrs_zppcon__imp__zppcon_zppequ__imp__zppequ_zpprfs__imp__zpprfs_zppsv__imp__zppsv_zppsvx__imp__zppsvx_zpptrf__imp__zpptrf_zpptri__imp__zpptri_zpptrs__imp__zpptrs_zptcon__imp__zptcon_zpteqr__imp__zpteqr_zptrfs__imp__zptrfs_zptsv__imp__zptsv_zptsvx__imp__zptsvx_zpttrf__imp__zpttrf_zpttrs__imp__zpttrs_zptts2__imp__zptts2_zrot__imp__zrot_zrotg__imp__zrotg_zscal__imp__zscal_zspcon__imp__zspcon_zspmv__imp__zspmv_zspr__imp__zspr_zsprfs__imp__zsprfs_zspsv__imp__zspsv_zspsvx__imp__zspsvx_zsptrf__imp__zsptrf_zsptri__imp__zsptri_zsptrs__imp__zsptrs_zstedc__imp__zstedc_zstegr__imp__zstegr_zstein__imp__zstein_zsteqr__imp__zsteqr_zswap__imp__zswap_zsycon__imp__zsycon_zsymm__imp__zsymm_zsymv__imp__zsymv_zsyr__imp__zsyr_zsyr2k__imp__zsyr2k_zsyrfs__imp__zsyrfs_zsyrk__imp__zsyrk_zsysv__imp__zsysv_zsysvx__imp__zsysvx_zsytf2__imp__zsytf2_zsytrf__imp__zsytrf_zsytri__imp__zsytri_zsytrs__imp__zsytrs_ztbcon__imp__ztbcon_ztbmv__imp__ztbmv_ztbrfs__imp__ztbrfs_ztbsv__imp__ztbsv_ztbtrs__imp__ztbtrs_ztgevc__imp__ztgevc_ztgex2__imp__ztgex2_ztgexc__imp__ztgexc_ztgsen__imp__ztgsen_ztgsja__imp__ztgsja_ztgsna__imp__ztgsna_ztgsy2__imp__ztgsy2_ztgsyl__imp__ztgsyl_ztpcon__imp__ztpcon_ztpmv__imp__ztpmv_ztprfs__imp__ztprfs_ztpsv__imp__ztpsv_ztptri__imp__ztptri_ztptrs__imp__ztptrs_ztrcon__imp__ztrcon_ztrevc__imp__ztrevc_ztrexc__imp__ztrexc_ztrmm__imp__ztrmm_ztrmv__imp__ztrmv_ztrrfs__imp__ztrrfs_ztrsen__imp__ztrsen_ztrsm__imp__ztrsm_ztrsna__imp__ztrsna_ztrsv__imp__ztrsv_ztrsyl__imp__ztrsyl_ztrti2__imp__ztrti2_ztrtri__imp__ztrtri_ztrtrs__imp__ztrtrs_ztzrqf__imp__ztzrqf_ztzrzf__imp__ztzrzf_zung2l__imp__zung2l_zung2r__imp__zung2r_zungbr__imp__zungbr_zunghr__imp__zunghr_zungl2__imp__zungl2_zunglq__imp__zunglq_zungql__imp__zungql_zungqr__imp__zungqr_zungr2__imp__zungr2_zungrq__imp__zungrq_zungtr__imp__zungtr_zunm2l__imp__zunm2l_zunm2r__imp__zunm2r_zunmbr__imp__zunmbr_zunmhr__imp__zunmhr_zunml2__imp__zunml2_zunmlq__imp__zunmlq_zunmql__imp__zunmql_zunmqr__imp__zunmqr_zunmr2__imp__zunmr2_zunmr3__imp__zunmr3_zunmrq__imp__zunmrq_zunmrz__imp__zunmrz_zunmtr__imp__zunmtr_zupgtr__imp__zupgtr_zupmtr__imp__zupmtr$tlapacksyms0.obj/ 1013176938 0 0 0 536 ` Lhc< .text `.data@.bss.idata$7 .idata$4.idata$5libmwlapack.dll.text.data.bss.idata$7.idata$4.idata$5$tlapacksyms1.obj/ 1013176938 0 0 0 672 ` Lhc<>.text `.data@.bss.idata$2.idata$56.idata$4:  .fileg1.objhnamefthunk.text.data.bss.idata$2.idata$5.idata$4$hlapacksyms$tlapacksyms2.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dasum.text .idata$7.idata$5.idata$4.idata$6_dasum__imp__dasum$hlapacksyms3.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% daxpy.text .idata$7.idata$5.idata$4.idata$6_daxpy__imp__daxpy$hlapacksyms4.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dbdsdc.text .idata$7.idata$5.idata$4.idata$6 _dbdsdc__imp__dbdsdc$hlapacksyms5.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dbdsqr.text .idata$7.idata$5.idata$4.idata$6 _dbdsqr__imp__dbdsqr$hlapacksyms6.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dcopy.text .idata$7.idata$5.idata$4.idata$6_dcopy__imp__dcopy$hlapacksyms7.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddisna.text .idata$7.idata$5.idata$4.idata$6 _ddisna__imp__ddisna$hlapacksyms8.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ddot.text .idata$7.idata$5.idata$4.idata$6_ddot__imp__ddot$hlapacksyms9.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbbrd.text .idata$7.idata$5.idata$4.idata$6 _dgbbrd__imp__dgbbrd$hlapacksyms10.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbcon.text .idata$7.idata$5.idata$4.idata$6 _dgbcon__imp__dgbcon$hlapacksyms11.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbequ.text .idata$7.idata$5.idata$4.idata$6 _dgbequ__imp__dgbequ$hlapacksyms12.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dgbmv.text .idata$7.idata$5.idata$4.idata$6_dgbmv__imp__dgbmv$hlapacksyms13.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbrfs.text .idata$7.idata$5.idata$4.idata$6 _dgbrfs__imp__dgbrfs$hlapacksyms14.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dgbsv.text .idata$7.idata$5.idata$4.idata$6_dgbsv__imp__dgbsv$hlapacksyms15.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbsvx.text .idata$7.idata$5.idata$4.idata$6 _dgbsvx__imp__dgbsvx$hlapacksyms16.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtf2.text .idata$7.idata$5.idata$4.idata$6 _dgbtf2__imp__dgbtf2$hlapacksyms17.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtrf.text .idata$7.idata$5.idata$4.idata$6 _dgbtrf__imp__dgbtrf$hlapacksyms18.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtrs.text .idata$7.idata$5.idata$4.idata$6 _dgbtrs__imp__dgbtrs$hlapacksyms19.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebak.text .idata$7.idata$5.idata$4.idata$6 _dgebak__imp__dgebak$hlapacksyms20.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebal.text .idata$7.idata$5.idata$4.idata$6 _dgebal__imp__dgebal$hlapacksyms21.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebd2.text .idata$7.idata$5.idata$4.idata$6 _dgebd2__imp__dgebd2$hlapacksyms22.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebrd.text .idata$7.idata$5.idata$4.idata$6 _dgebrd__imp__dgebrd$hlapacksyms23.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgecon.text .idata$7.idata$5.idata$4.idata$6 _dgecon__imp__dgecon$hlapacksyms24.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeequ.text .idata$7.idata$5.idata$4.idata$6 _dgeequ__imp__dgeequ$hlapacksyms25.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgees.text .idata$7.idata$5.idata$4.idata$6_dgees__imp__dgees$hlapacksyms26.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeesx.text .idata$7.idata$5.idata$4.idata$6 _dgeesx__imp__dgeesx$hlapacksyms27.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgeev.text .idata$7.idata$5.idata$4.idata$6_dgeev__imp__dgeev$hlapacksyms28.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeevx.text .idata$7.idata$5.idata$4.idata$6 _dgeevx__imp__dgeevx$hlapacksyms29.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgegs.text .idata$7.idata$5.idata$4.idata$6_dgegs__imp__dgegs$hlapacksyms30.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgegv.text .idata$7.idata$5.idata$4.idata$6_dgegv__imp__dgegv$hlapacksyms31.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgehd2.text .idata$7.idata$5.idata$4.idata$6 _dgehd2__imp__dgehd2$hlapacksyms32.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgehrd.text .idata$7.idata$5.idata$4.idata$6 _dgehrd__imp__dgehrd$hlapacksyms33.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgelq2.text .idata$7.idata$5.idata$4.idata$6 _dgelq2__imp__dgelq2$hlapacksyms34.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % !dgelqf.text .idata$7.idata$5.idata$4.idata$6 _dgelqf__imp__dgelqf$hlapacksyms35.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% "dgels.text .idata$7.idata$5.idata$4.idata$6_dgels__imp__dgels$hlapacksyms36.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % #dgelsd.text .idata$7.idata$5.idata$4.idata$6 _dgelsd__imp__dgelsd$hlapacksyms37.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % $dgelss.text .idata$7.idata$5.idata$4.idata$6 _dgelss__imp__dgelss$hlapacksyms38.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % %dgelsx.text .idata$7.idata$5.idata$4.idata$6 _dgelsx__imp__dgelsx$hlapacksyms39.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % &dgelsy.text .idata$7.idata$5.idata$4.idata$6 _dgelsy__imp__dgelsy$hlapacksyms40.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% 'dgemm.text .idata$7.idata$5.idata$4.idata$6_dgemm__imp__dgemm$hlapacksyms41.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% (dgemv.text .idata$7.idata$5.idata$4.idata$6_dgemv__imp__dgemv$hlapacksyms42.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % )dgeql2.text .idata$7.idata$5.idata$4.idata$6 _dgeql2__imp__dgeql2$hlapacksyms43.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % *dgeqlf.text .idata$7.idata$5.idata$4.idata$6 _dgeqlf__imp__dgeqlf$hlapacksyms44.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % +dgeqp3.text .idata$7.idata$5.idata$4.idata$6 _dgeqp3__imp__dgeqp3$hlapacksyms45.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,dgeqpf.text .idata$7.idata$5.idata$4.idata$6 _dgeqpf__imp__dgeqpf$hlapacksyms46.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % -dgeqr2.text .idata$7.idata$5.idata$4.idata$6 _dgeqr2__imp__dgeqr2$hlapacksyms47.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % .dgeqrf.text .idata$7.idata$5.idata$4.idata$6 _dgeqrf__imp__dgeqrf$hlapacksyms48.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% /dger.text .idata$7.idata$5.idata$4.idata$6_dger__imp__dger$hlapacksyms49.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0dgerfs.text .idata$7.idata$5.idata$4.idata$6 _dgerfs__imp__dgerfs$hlapacksyms50.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 1dgerq2.text .idata$7.idata$5.idata$4.idata$6 _dgerq2__imp__dgerq2$hlapacksyms51.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2dgerqf.text .idata$7.idata$5.idata$4.idata$6 _dgerqf__imp__dgerqf$hlapacksyms52.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3dgesc2.text .idata$7.idata$5.idata$4.idata$6 _dgesc2__imp__dgesc2$hlapacksyms53.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 4dgesdd.text .idata$7.idata$5.idata$4.idata$6 _dgesdd__imp__dgesdd$hlapacksyms54.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% 5dgesv.text .idata$7.idata$5.idata$4.idata$6_dgesv__imp__dgesv$hlapacksyms55.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6dgesvd.text .idata$7.idata$5.idata$4.idata$6 _dgesvd__imp__dgesvd$hlapacksyms56.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 7dgesvx.text .idata$7.idata$5.idata$4.idata$6 _dgesvx__imp__dgesvx$hlapacksyms57.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8dgetc2.text .idata$7.idata$5.idata$4.idata$6 _dgetc2__imp__dgetc2$hlapacksyms58.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9dgetf2.text .idata$7.idata$5.idata$4.idata$6 _dgetf2__imp__dgetf2$hlapacksyms59.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % :dgetrf.text .idata$7.idata$5.idata$4.idata$6 _dgetrf__imp__dgetrf$hlapacksyms60.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ;dgetri.text .idata$7.idata$5.idata$4.idata$6 _dgetri__imp__dgetri$hlapacksyms61.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % <dgetrs.text .idata$7.idata$5.idata$4.idata$6 _dgetrs__imp__dgetrs$hlapacksyms62.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % =dggbak.text .idata$7.idata$5.idata$4.idata$6 _dggbak__imp__dggbak$hlapacksyms63.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % >dggbal.text .idata$7.idata$5.idata$4.idata$6 _dggbal__imp__dggbal$hlapacksyms64.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ?dgges.text .idata$7.idata$5.idata$4.idata$6_dgges__imp__dgges$hlapacksyms65.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % @dggesx.text .idata$7.idata$5.idata$4.idata$6 _dggesx__imp__dggesx$hlapacksyms66.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Adggev.text .idata$7.idata$5.idata$4.idata$6_dggev__imp__dggev$hlapacksyms67.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bdggevx.text .idata$7.idata$5.idata$4.idata$6 _dggevx__imp__dggevx$hlapacksyms68.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Cdggglm.text .idata$7.idata$5.idata$4.idata$6 _dggglm__imp__dggglm$hlapacksyms69.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ddgghrd.text .idata$7.idata$5.idata$4.idata$6 _dgghrd__imp__dgghrd$hlapacksyms70.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Edgglse.text .idata$7.idata$5.idata$4.idata$6 _dgglse__imp__dgglse$hlapacksyms71.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fdggqrf.text .idata$7.idata$5.idata$4.idata$6 _dggqrf__imp__dggqrf$hlapacksyms72.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gdggrqf.text .idata$7.idata$5.idata$4.idata$6 _dggrqf__imp__dggrqf$hlapacksyms73.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hdggsvd.text .idata$7.idata$5.idata$4.idata$6 _dggsvd__imp__dggsvd$hlapacksyms74.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Idggsvp.text .idata$7.idata$5.idata$4.idata$6 _dggsvp__imp__dggsvp$hlapacksyms75.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Jdgtcon.text .idata$7.idata$5.idata$4.idata$6 _dgtcon__imp__dgtcon$hlapacksyms76.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kdgtrfs.text .idata$7.idata$5.idata$4.idata$6 _dgtrfs__imp__dgtrfs$hlapacksyms77.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ldgtsv.text .idata$7.idata$5.idata$4.idata$6_dgtsv__imp__dgtsv$hlapacksyms78.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mdgtsvx.text .idata$7.idata$5.idata$4.idata$6 _dgtsvx__imp__dgtsvx$hlapacksyms79.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ndgttrf.text .idata$7.idata$5.idata$4.idata$6 _dgttrf__imp__dgttrf$hlapacksyms80.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Odgttrs.text .idata$7.idata$5.idata$4.idata$6 _dgttrs__imp__dgttrs$hlapacksyms81.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pdgtts2.text .idata$7.idata$5.idata$4.idata$6 _dgtts2__imp__dgtts2$hlapacksyms82.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qdhgeqz.text .idata$7.idata$5.idata$4.idata$6 _dhgeqz__imp__dhgeqz$hlapacksyms83.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rdhsein.text .idata$7.idata$5.idata$4.idata$6 _dhsein__imp__dhsein$hlapacksyms84.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Sdhseqr.text .idata$7.idata$5.idata$4.idata$6 _dhseqr__imp__dhseqr$hlapacksyms85.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Tdlabad.text .idata$7.idata$5.idata$4.idata$6 _dlabad__imp__dlabad$hlapacksyms86.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Udlabrd.text .idata$7.idata$5.idata$4.idata$6 _dlabrd__imp__dlabrd$hlapacksyms87.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vdlacon.text .idata$7.idata$5.idata$4.idata$6 _dlacon__imp__dlacon$hlapacksyms88.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Wdlacpy.text .idata$7.idata$5.idata$4.idata$6 _dlacpy__imp__dlacpy$hlapacksyms89.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xdladiv.text .idata$7.idata$5.idata$4.idata$6 _dladiv__imp__dladiv$hlapacksyms90.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ydlae2.text .idata$7.idata$5.idata$4.idata$6_dlae2__imp__dlae2$hlapacksyms91.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zdlaebz.text .idata$7.idata$5.idata$4.idata$6 _dlaebz__imp__dlaebz$hlapacksyms92.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % [dlaed0.text .idata$7.idata$5.idata$4.idata$6 _dlaed0__imp__dlaed0$hlapacksyms93.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % \dlaed1.text .idata$7.idata$5.idata$4.idata$6 _dlaed1__imp__dlaed1$hlapacksyms94.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]dlaed2.text .idata$7.idata$5.idata$4.idata$6 _dlaed2__imp__dlaed2$hlapacksyms95.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^dlaed3.text .idata$7.idata$5.idata$4.idata$6 _dlaed3__imp__dlaed3$hlapacksyms96.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % _dlaed4.text .idata$7.idata$5.idata$4.idata$6 _dlaed4__imp__dlaed4$hlapacksyms97.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % `dlaed5.text .idata$7.idata$5.idata$4.idata$6 _dlaed5__imp__dlaed5$hlapacksyms98.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % adlaed6.text .idata$7.idata$5.idata$4.idata$6 _dlaed6__imp__dlaed6$hlapacksyms99.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % bdlaed7.text .idata$7.idata$5.idata$4.idata$6 _dlaed7__imp__dlaed7$hlapacksyms100.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % cdlaed8.text .idata$7.idata$5.idata$4.idata$6 _dlaed8__imp__dlaed8$hlapacksyms101.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddlaed9.text .idata$7.idata$5.idata$4.idata$6 _dlaed9__imp__dlaed9$hlapacksyms102.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % edlaeda.text .idata$7.idata$5.idata$4.idata$6 _dlaeda__imp__dlaeda$hlapacksyms103.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % fdlaein.text .idata$7.idata$5.idata$4.idata$6 _dlaein__imp__dlaein$hlapacksyms104.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % gdlaev2.text .idata$7.idata$5.idata$4.idata$6 _dlaev2__imp__dlaev2$hlapacksyms105.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % hdlaexc.text .idata$7.idata$5.idata$4.idata$6 _dlaexc__imp__dlaexc$hlapacksyms106.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% idlag2.text .idata$7.idata$5.idata$4.idata$6_dlag2__imp__dlag2$hlapacksyms107.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % jdlags2.text .idata$7.idata$5.idata$4.idata$6 _dlags2__imp__dlags2$hlapacksyms108.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % kdlagtf.text .idata$7.idata$5.idata$4.idata$6 _dlagtf__imp__dlagtf$hlapacksyms109.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ldlagtm.text .idata$7.idata$5.idata$4.idata$6 _dlagtm__imp__dlagtm$hlapacksyms110.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % mdlagts.text .idata$7.idata$5.idata$4.idata$6 _dlagts__imp__dlagts$hlapacksyms111.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ndlagv2.text .idata$7.idata$5.idata$4.idata$6 _dlagv2__imp__dlagv2$hlapacksyms112.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % odlahqr.text .idata$7.idata$5.idata$4.idata$6 _dlahqr__imp__dlahqr$hlapacksyms113.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % pdlahrd.text .idata$7.idata$5.idata$4.idata$6 _dlahrd__imp__dlahrd$hlapacksyms114.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % qdlaic1.text .idata$7.idata$5.idata$4.idata$6 _dlaic1__imp__dlaic1$hlapacksyms115.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % rdlaln2.text .idata$7.idata$5.idata$4.idata$6 _dlaln2__imp__dlaln2$hlapacksyms116.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % sdlals0.text .idata$7.idata$5.idata$4.idata$6 _dlals0__imp__dlals0$hlapacksyms117.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % tdlalsa.text .idata$7.idata$5.idata$4.idata$6 _dlalsa__imp__dlalsa$hlapacksyms118.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % udlalsd.text .idata$7.idata$5.idata$4.idata$6 _dlalsd__imp__dlalsd$hlapacksyms119.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % vdlamch.text .idata$7.idata$5.idata$4.idata$6 _dlamch__imp__dlamch$hlapacksyms120.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % wdlamrg.text .idata$7.idata$5.idata$4.idata$6 _dlamrg__imp__dlamrg$hlapacksyms121.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % xdlangb.text .idata$7.idata$5.idata$4.idata$6 _dlangb__imp__dlangb$hlapacksyms122.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ydlange.text .idata$7.idata$5.idata$4.idata$6 _dlange__imp__dlange$hlapacksyms123.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zdlangt.text .idata$7.idata$5.idata$4.idata$6 _dlangt__imp__dlangt$hlapacksyms124.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % {dlanhs.text .idata$7.idata$5.idata$4.idata$6 _dlanhs__imp__dlanhs$hlapacksyms125.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % |dlansb.text .idata$7.idata$5.idata$4.idata$6 _dlansb__imp__dlansb$hlapacksyms126.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % }dlansp.text .idata$7.idata$5.idata$4.idata$6 _dlansp__imp__dlansp$hlapacksyms127.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~dlanst.text .idata$7.idata$5.idata$4.idata$6 _dlanst__imp__dlanst$hlapacksyms128.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlansy.text .idata$7.idata$5.idata$4.idata$6 _dlansy__imp__dlansy$hlapacksyms129.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantb.text .idata$7.idata$5.idata$4.idata$6 _dlantb__imp__dlantb$hlapacksyms130.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantp.text .idata$7.idata$5.idata$4.idata$6 _dlantp__imp__dlantp$hlapacksyms131.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantr.text .idata$7.idata$5.idata$4.idata$6 _dlantr__imp__dlantr$hlapacksyms132.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlanv2.text .idata$7.idata$5.idata$4.idata$6 _dlanv2__imp__dlanv2$hlapacksyms133.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapll.text .idata$7.idata$5.idata$4.idata$6 _dlapll__imp__dlapll$hlapacksyms134.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapmt.text .idata$7.idata$5.idata$4.idata$6 _dlapmt__imp__dlapmt$hlapacksyms135.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapy2.text .idata$7.idata$5.idata$4.idata$6 _dlapy2__imp__dlapy2$hlapacksyms136.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapy3.text .idata$7.idata$5.idata$4.idata$6 _dlapy3__imp__dlapy3$hlapacksyms137.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqgb.text .idata$7.idata$5.idata$4.idata$6 _dlaqgb__imp__dlaqgb$hlapacksyms138.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqge.text .idata$7.idata$5.idata$4.idata$6 _dlaqge__imp__dlaqge$hlapacksyms139.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqp2.text .idata$7.idata$5.idata$4.idata$6 _dlaqp2__imp__dlaqp2$hlapacksyms140.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqps.text .idata$7.idata$5.idata$4.idata$6 _dlaqps__imp__dlaqps$hlapacksyms141.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsb.text .idata$7.idata$5.idata$4.idata$6 _dlaqsb__imp__dlaqsb$hlapacksyms142.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsp.text .idata$7.idata$5.idata$4.idata$6 _dlaqsp__imp__dlaqsp$hlapacksyms143.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsy.text .idata$7.idata$5.idata$4.idata$6 _dlaqsy__imp__dlaqsy$hlapacksyms144.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqtr.text .idata$7.idata$5.idata$4.idata$6 _dlaqtr__imp__dlaqtr$hlapacksyms145.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlar1v.text .idata$7.idata$5.idata$4.idata$6 _dlar1v__imp__dlar1v$hlapacksyms146.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlar2v.text .idata$7.idata$5.idata$4.idata$6 _dlar2v__imp__dlar2v$hlapacksyms147.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlarf.text .idata$7.idata$5.idata$4.idata$6_dlarf__imp__dlarf$hlapacksyms148.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfb.text .idata$7.idata$5.idata$4.idata$6 _dlarfb__imp__dlarfb$hlapacksyms149.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfg.text .idata$7.idata$5.idata$4.idata$6 _dlarfg__imp__dlarfg$hlapacksyms150.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarft.text .idata$7.idata$5.idata$4.idata$6 _dlarft__imp__dlarft$hlapacksyms151.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfx.text .idata$7.idata$5.idata$4.idata$6 _dlarfx__imp__dlarfx$hlapacksyms152.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlargv.text .idata$7.idata$5.idata$4.idata$6 _dlargv__imp__dlargv$hlapacksyms153.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarnv.text .idata$7.idata$5.idata$4.idata$6 _dlarnv__imp__dlarnv$hlapacksyms154.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrb.text .idata$7.idata$5.idata$4.idata$6 _dlarrb__imp__dlarrb$hlapacksyms155.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarre.text .idata$7.idata$5.idata$4.idata$6 _dlarre__imp__dlarre$hlapacksyms156.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrf.text .idata$7.idata$5.idata$4.idata$6 _dlarrf__imp__dlarrf$hlapacksyms157.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrv.text .idata$7.idata$5.idata$4.idata$6 _dlarrv__imp__dlarrv$hlapacksyms158.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlartg.text .idata$7.idata$5.idata$4.idata$6 _dlartg__imp__dlartg$hlapacksyms159.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlartv.text .idata$7.idata$5.idata$4.idata$6 _dlartv__imp__dlartv$hlapacksyms160.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaruv.text .idata$7.idata$5.idata$4.idata$6 _dlaruv__imp__dlaruv$hlapacksyms161.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlarz.text .idata$7.idata$5.idata$4.idata$6_dlarz__imp__dlarz$hlapacksyms162.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarzb.text .idata$7.idata$5.idata$4.idata$6 _dlarzb__imp__dlarzb$hlapacksyms163.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarzt.text .idata$7.idata$5.idata$4.idata$6 _dlarzt__imp__dlarzt$hlapacksyms164.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlas2.text .idata$7.idata$5.idata$4.idata$6_dlas2__imp__dlas2$hlapacksyms165.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlascl.text .idata$7.idata$5.idata$4.idata$6 _dlascl__imp__dlascl$hlapacksyms166.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd0.text .idata$7.idata$5.idata$4.idata$6 _dlasd0__imp__dlasd0$hlapacksyms167.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd1.text .idata$7.idata$5.idata$4.idata$6 _dlasd1__imp__dlasd1$hlapacksyms168.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd2.text .idata$7.idata$5.idata$4.idata$6 _dlasd2__imp__dlasd2$hlapacksyms169.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd3.text .idata$7.idata$5.idata$4.idata$6 _dlasd3__imp__dlasd3$hlapacksyms170.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd4.text .idata$7.idata$5.idata$4.idata$6 _dlasd4__imp__dlasd4$hlapacksyms171.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd5.text .idata$7.idata$5.idata$4.idata$6 _dlasd5__imp__dlasd5$hlapacksyms172.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd6.text .idata$7.idata$5.idata$4.idata$6 _dlasd6__imp__dlasd6$hlapacksyms173.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd7.text .idata$7.idata$5.idata$4.idata$6 _dlasd7__imp__dlasd7$hlapacksyms174.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd8.text .idata$7.idata$5.idata$4.idata$6 _dlasd8__imp__dlasd8$hlapacksyms175.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd9.text .idata$7.idata$5.idata$4.idata$6 _dlasd9__imp__dlasd9$hlapacksyms176.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasda.text .idata$7.idata$5.idata$4.idata$6 _dlasda__imp__dlasda$hlapacksyms177.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasdq.text .idata$7.idata$5.idata$4.idata$6 _dlasdq__imp__dlasdq$hlapacksyms178.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasdt.text .idata$7.idata$5.idata$4.idata$6 _dlasdt__imp__dlasdt$hlapacksyms179.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaset.text .idata$7.idata$5.idata$4.idata$6 _dlaset__imp__dlaset$hlapacksyms180.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq1.text .idata$7.idata$5.idata$4.idata$6 _dlasq1__imp__dlasq1$hlapacksyms181.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq2.text .idata$7.idata$5.idata$4.idata$6 _dlasq2__imp__dlasq2$hlapacksyms182.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq3.text .idata$7.idata$5.idata$4.idata$6 _dlasq3__imp__dlasq3$hlapacksyms183.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq4.text .idata$7.idata$5.idata$4.idata$6 _dlasq4__imp__dlasq4$hlapacksyms184.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq5.text .idata$7.idata$5.idata$4.idata$6 _dlasq5__imp__dlasq5$hlapacksyms185.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq6.text .idata$7.idata$5.idata$4.idata$6 _dlasq6__imp__dlasq6$hlapacksyms186.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlasr.text .idata$7.idata$5.idata$4.idata$6_dlasr__imp__dlasr$hlapacksyms187.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasrt.text .idata$7.idata$5.idata$4.idata$6 _dlasrt__imp__dlasrt$hlapacksyms188.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlassq.text .idata$7.idata$5.idata$4.idata$6 _dlassq__imp__dlassq$hlapacksyms189.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasv2.text .idata$7.idata$5.idata$4.idata$6 _dlasv2__imp__dlasv2$hlapacksyms190.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaswp.text .idata$7.idata$5.idata$4.idata$6 _dlaswp__imp__dlaswp$hlapacksyms191.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasy2.text .idata$7.idata$5.idata$4.idata$6 _dlasy2__imp__dlasy2$hlapacksyms192.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasyf.text .idata$7.idata$5.idata$4.idata$6 _dlasyf__imp__dlasyf$hlapacksyms193.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatbs.text .idata$7.idata$5.idata$4.idata$6 _dlatbs__imp__dlatbs$hlapacksyms194.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatdf.text .idata$7.idata$5.idata$4.idata$6 _dlatdf__imp__dlatdf$hlapacksyms195.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatps.text .idata$7.idata$5.idata$4.idata$6 _dlatps__imp__dlatps$hlapacksyms196.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrd.text .idata$7.idata$5.idata$4.idata$6 _dlatrd__imp__dlatrd$hlapacksyms197.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrs.text .idata$7.idata$5.idata$4.idata$6 _dlatrs__imp__dlatrs$hlapacksyms198.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrz.text .idata$7.idata$5.idata$4.idata$6 _dlatrz__imp__dlatrz$hlapacksyms199.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatzm.text .idata$7.idata$5.idata$4.idata$6 _dlatzm__imp__dlatzm$hlapacksyms200.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlauu2.text .idata$7.idata$5.idata$4.idata$6 _dlauu2__imp__dlauu2$hlapacksyms201.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlauum.text .idata$7.idata$5.idata$4.idata$6 _dlauum__imp__dlauum$hlapacksyms202.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dnrm2.text .idata$7.idata$5.idata$4.idata$6_dnrm2__imp__dnrm2$hlapacksyms203.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dopgtr.text .idata$7.idata$5.idata$4.idata$6 _dopgtr__imp__dopgtr$hlapacksyms204.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dopmtr.text .idata$7.idata$5.idata$4.idata$6 _dopmtr__imp__dopmtr$hlapacksyms205.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorg2l.text .idata$7.idata$5.idata$4.idata$6 _dorg2l__imp__dorg2l$hlapacksyms206.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorg2r.text .idata$7.idata$5.idata$4.idata$6 _dorg2r__imp__dorg2r$hlapacksyms207.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgbr.text .idata$7.idata$5.idata$4.idata$6 _dorgbr__imp__dorgbr$hlapacksyms208.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorghr.text .idata$7.idata$5.idata$4.idata$6 _dorghr__imp__dorghr$hlapacksyms209.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgl2.text .idata$7.idata$5.idata$4.idata$6 _dorgl2__imp__dorgl2$hlapacksyms210.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorglq.text .idata$7.idata$5.idata$4.idata$6 _dorglq__imp__dorglq$hlapacksyms211.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgql.text .idata$7.idata$5.idata$4.idata$6 _dorgql__imp__dorgql$hlapacksyms212.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgqr.text .idata$7.idata$5.idata$4.idata$6 _dorgqr__imp__dorgqr$hlapacksyms213.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgr2.text .idata$7.idata$5.idata$4.idata$6 _dorgr2__imp__dorgr2$hlapacksyms214.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgrq.text .idata$7.idata$5.idata$4.idata$6 _dorgrq__imp__dorgrq$hlapacksyms215.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgtr.text .idata$7.idata$5.idata$4.idata$6 _dorgtr__imp__dorgtr$hlapacksyms216.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorm2l.text .idata$7.idata$5.idata$4.idata$6 _dorm2l__imp__dorm2l$hlapacksyms217.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorm2r.text .idata$7.idata$5.idata$4.idata$6 _dorm2r__imp__dorm2r$hlapacksyms218.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormbr.text .idata$7.idata$5.idata$4.idata$6 _dormbr__imp__dormbr$hlapacksyms219.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormhr.text .idata$7.idata$5.idata$4.idata$6 _dormhr__imp__dormhr$hlapacksyms220.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorml2.text .idata$7.idata$5.idata$4.idata$6 _dorml2__imp__dorml2$hlapacksyms221.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormlq.text .idata$7.idata$5.idata$4.idata$6 _dormlq__imp__dormlq$hlapacksyms222.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormql.text .idata$7.idata$5.idata$4.idata$6 _dormql__imp__dormql$hlapacksyms223.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormqr.text .idata$7.idata$5.idata$4.idata$6 _dormqr__imp__dormqr$hlapacksyms224.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormr2.text .idata$7.idata$5.idata$4.idata$6 _dormr2__imp__dormr2$hlapacksyms225.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormr3.text .idata$7.idata$5.idata$4.idata$6 _dormr3__imp__dormr3$hlapacksyms226.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormrq.text .idata$7.idata$5.idata$4.idata$6 _dormrq__imp__dormrq$hlapacksyms227.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormrz.text .idata$7.idata$5.idata$4.idata$6 _dormrz__imp__dormrz$hlapacksyms228.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormtr.text .idata$7.idata$5.idata$4.idata$6 _dormtr__imp__dormtr$hlapacksyms229.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbcon.text .idata$7.idata$5.idata$4.idata$6 _dpbcon__imp__dpbcon$hlapacksyms230.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbequ.text .idata$7.idata$5.idata$4.idata$6 _dpbequ__imp__dpbequ$hlapacksyms231.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbrfs.text .idata$7.idata$5.idata$4.idata$6 _dpbrfs__imp__dpbrfs$hlapacksyms232.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbstf.text .idata$7.idata$5.idata$4.idata$6 _dpbstf__imp__dpbstf$hlapacksyms233.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dpbsv.text .idata$7.idata$5.idata$4.idata$6_dpbsv__imp__dpbsv$hlapacksyms234.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbsvx.text .idata$7.idata$5.idata$4.idata$6 _dpbsvx__imp__dpbsvx$hlapacksyms235.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtf2.text .idata$7.idata$5.idata$4.idata$6 _dpbtf2__imp__dpbtf2$hlapacksyms236.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtrf.text .idata$7.idata$5.idata$4.idata$6 _dpbtrf__imp__dpbtrf$hlapacksyms237.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtrs.text .idata$7.idata$5.idata$4.idata$6 _dpbtrs__imp__dpbtrs$hlapacksyms238.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpocon.text .idata$7.idata$5.idata$4.idata$6 _dpocon__imp__dpocon$hlapacksyms239.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpoequ.text .idata$7.idata$5.idata$4.idata$6 _dpoequ__imp__dpoequ$hlapacksyms240.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dporfs.text .idata$7.idata$5.idata$4.idata$6 _dporfs__imp__dporfs$hlapacksyms241.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dposv.text .idata$7.idata$5.idata$4.idata$6_dposv__imp__dposv$hlapacksyms242.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dposvx.text .idata$7.idata$5.idata$4.idata$6 _dposvx__imp__dposvx$hlapacksyms243.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotf2.text .idata$7.idata$5.idata$4.idata$6 _dpotf2__imp__dpotf2$hlapacksyms244.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotrf.text .idata$7.idata$5.idata$4.idata$6 _dpotrf__imp__dpotrf$hlapacksyms245.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotri.text .idata$7.idata$5.idata$4.idata$6 _dpotri__imp__dpotri$hlapacksyms246.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotrs.text .idata$7.idata$5.idata$4.idata$6 _dpotrs__imp__dpotrs$hlapacksyms247.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppcon.text .idata$7.idata$5.idata$4.idata$6 _dppcon__imp__dppcon$hlapacksyms248.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppequ.text .idata$7.idata$5.idata$4.idata$6 _dppequ__imp__dppequ$hlapacksyms249.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpprfs.text .idata$7.idata$5.idata$4.idata$6 _dpprfs__imp__dpprfs$hlapacksyms250.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dppsv.text .idata$7.idata$5.idata$4.idata$6_dppsv__imp__dppsv$hlapacksyms251.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppsvx.text .idata$7.idata$5.idata$4.idata$6 _dppsvx__imp__dppsvx$hlapacksyms252.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptrf.text .idata$7.idata$5.idata$4.idata$6 _dpptrf__imp__dpptrf$hlapacksyms253.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptri.text .idata$7.idata$5.idata$4.idata$6 _dpptri__imp__dpptri$hlapacksyms254.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptrs.text .idata$7.idata$5.idata$4.idata$6 _dpptrs__imp__dpptrs$hlapacksyms255.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptcon.text .idata$7.idata$5.idata$4.idata$6 _dptcon__imp__dptcon$hlapacksyms256.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpteqr.text .idata$7.idata$5.idata$4.idata$6 _dpteqr__imp__dpteqr$hlapacksyms257.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptrfs.text .idata$7.idata$5.idata$4.idata$6 _dptrfs__imp__dptrfs$hlapacksyms258.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dptsv.text .idata$7.idata$5.idata$4.idata$6_dptsv__imp__dptsv$hlapacksyms259.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptsvx.text .idata$7.idata$5.idata$4.idata$6 _dptsvx__imp__dptsvx$hlapacksyms260.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpttrf.text .idata$7.idata$5.idata$4.idata$6 _dpttrf__imp__dpttrf$hlapacksyms261.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpttrs.text .idata$7.idata$5.idata$4.idata$6 _dpttrs__imp__dpttrs$hlapacksyms262.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptts2.text .idata$7.idata$5.idata$4.idata$6 _dptts2__imp__dptts2$hlapacksyms263.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drot.text .idata$7.idata$5.idata$4.idata$6_drot__imp__drot$hlapacksyms264.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drotg.text .idata$7.idata$5.idata$4.idata$6_drotg__imp__drotg$hlapacksyms265.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drscl.text .idata$7.idata$5.idata$4.idata$6_drscl__imp__drscl$hlapacksyms266.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dsbev.text .idata$7.idata$5.idata$4.idata$6_dsbev__imp__dsbev$hlapacksyms267.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbevd.text .idata$7.idata$5.idata$4.idata$6 _dsbevd__imp__dsbevd$hlapacksyms268.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbevx.text .idata$7.idata$5.idata$4.idata$6 _dsbevx__imp__dsbevx$hlapacksyms269.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbgst.text .idata$7.idata$5.idata$4.idata$6 _dsbgst__imp__dsbgst$hlapacksyms270.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dsbgv.text .idata$7.idata$5.idata$4.idata$6_dsbgv__imp__dsbgv$hlapacksyms271.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbgvd.text .idata$7.idata$5.idata$4.idata$6 _dsbgvd__imp__dsbgvd$hlapacksyms272.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbgvx.text .idata$7.idata$5.idata$4.idata$6 _dsbgvx__imp__dsbgvx$hlapacksyms273.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dsbmv.text .idata$7.idata$5.idata$4.idata$6_dsbmv__imp__dsbmv$hlapacksyms274.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbtrd.text .idata$7.idata$5.idata$4.idata$6 _dsbtrd__imp__dsbtrd$hlapacksyms275.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dscal.text .idata$7.idata$5.idata$4.idata$6_dscal__imp__dscal$hlapacksyms276.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspcon.text .idata$7.idata$5.idata$4.idata$6 _dspcon__imp__dspcon$hlapacksyms277.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspev.text .idata$7.idata$5.idata$4.idata$6_dspev__imp__dspev$hlapacksyms278.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspevd.text .idata$7.idata$5.idata$4.idata$6 _dspevd__imp__dspevd$hlapacksyms279.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspevx.text .idata$7.idata$5.idata$4.idata$6 _dspevx__imp__dspevx$hlapacksyms280.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgst.text .idata$7.idata$5.idata$4.idata$6 _dspgst__imp__dspgst$hlapacksyms281.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspgv.text .idata$7.idata$5.idata$4.idata$6_dspgv__imp__dspgv$hlapacksyms282.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgvd.text .idata$7.idata$5.idata$4.idata$6 _dspgvd__imp__dspgvd$hlapacksyms283.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgvx.text .idata$7.idata$5.idata$4.idata$6 _dspgvx__imp__dspgvx$hlapacksyms284.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspmv.text .idata$7.idata$5.idata$4.idata$6_dspmv__imp__dspmv$hlapacksyms285.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspr.text .idata$7.idata$5.idata$4.idata$6_dspr__imp__dspr$hlapacksyms286.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspr2.text .idata$7.idata$5.idata$4.idata$6_dspr2__imp__dspr2$hlapacksyms287.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsprfs.text .idata$7.idata$5.idata$4.idata$6 _dsprfs__imp__dsprfs$hlapacksyms288.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspsv.text .idata$7.idata$5.idata$4.idata$6_dspsv__imp__dspsv$hlapacksyms289.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dspsvx.text .idata$7.idata$5.idata$4.idata$6 _dspsvx__imp__dspsvx$hlapacksyms290.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % !dsptrd.text .idata$7.idata$5.idata$4.idata$6 _dsptrd__imp__dsptrd$hlapacksyms291.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % "dsptrf.text .idata$7.idata$5.idata$4.idata$6 _dsptrf__imp__dsptrf$hlapacksyms292.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % #dsptri.text .idata$7.idata$5.idata$4.idata$6 _dsptri__imp__dsptri$hlapacksyms293.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % $dsptrs.text .idata$7.idata$5.idata$4.idata$6 _dsptrs__imp__dsptrs$hlapacksyms294.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % %dstebz.text .idata$7.idata$5.idata$4.idata$6 _dstebz__imp__dstebz$hlapacksyms295.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % &dstedc.text .idata$7.idata$5.idata$4.idata$6 _dstedc__imp__dstedc$hlapacksyms296.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 'dstegr.text .idata$7.idata$5.idata$4.idata$6 _dstegr__imp__dstegr$hlapacksyms297.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % (dstein.text .idata$7.idata$5.idata$4.idata$6 _dstein__imp__dstein$hlapacksyms298.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % )dsteqr.text .idata$7.idata$5.idata$4.idata$6 _dsteqr__imp__dsteqr$hlapacksyms299.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % *dsterf.text .idata$7.idata$5.idata$4.idata$6 _dsterf__imp__dsterf$hlapacksyms300.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% +dstev.text .idata$7.idata$5.idata$4.idata$6_dstev__imp__dstev$hlapacksyms301.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,dstevd.text .idata$7.idata$5.idata$4.idata$6 _dstevd__imp__dstevd$hlapacksyms302.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % -dstevr.text .idata$7.idata$5.idata$4.idata$6 _dstevr__imp__dstevr$hlapacksyms303.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % .dstevx.text .idata$7.idata$5.idata$4.idata$6 _dstevx__imp__dstevx$hlapacksyms304.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% /dswap.text .idata$7.idata$5.idata$4.idata$6_dswap__imp__dswap$hlapacksyms305.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0dsycon.text .idata$7.idata$5.idata$4.idata$6 _dsycon__imp__dsycon$hlapacksyms306.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 1dsyev.text .idata$7.idata$5.idata$4.idata$6_dsyev__imp__dsyev$hlapacksyms307.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2dsyevd.text .idata$7.idata$5.idata$4.idata$6 _dsyevd__imp__dsyevd$hlapacksyms308.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3dsyevr.text .idata$7.idata$5.idata$4.idata$6 _dsyevr__imp__dsyevr$hlapacksyms309.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 4dsyevx.text .idata$7.idata$5.idata$4.idata$6 _dsyevx__imp__dsyevx$hlapacksyms310.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 5dsygs2.text .idata$7.idata$5.idata$4.idata$6 _dsygs2__imp__dsygs2$hlapacksyms311.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6dsygst.text .idata$7.idata$5.idata$4.idata$6 _dsygst__imp__dsygst$hlapacksyms312.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 7dsygv.text .idata$7.idata$5.idata$4.idata$6_dsygv__imp__dsygv$hlapacksyms313.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8dsygvd.text .idata$7.idata$5.idata$4.idata$6 _dsygvd__imp__dsygvd$hlapacksyms314.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9dsygvx.text .idata$7.idata$5.idata$4.idata$6 _dsygvx__imp__dsygvx$hlapacksyms315.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% :dsymm.text .idata$7.idata$5.idata$4.idata$6_dsymm__imp__dsymm$hlapacksyms316.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% ;dsymv.text .idata$7.idata$5.idata$4.idata$6_dsymv__imp__dsymv$hlapacksyms317.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% <dsyr.text .idata$7.idata$5.idata$4.idata$6_dsyr__imp__dsyr$hlapacksyms318.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% =dsyr2.text .idata$7.idata$5.idata$4.idata$6_dsyr2__imp__dsyr2$hlapacksyms319.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % >dsyr2k.text .idata$7.idata$5.idata$4.idata$6 _dsyr2k__imp__dsyr2k$hlapacksyms320.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ?dsyrfs.text .idata$7.idata$5.idata$4.idata$6 _dsyrfs__imp__dsyrfs$hlapacksyms321.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% @dsyrk.text .idata$7.idata$5.idata$4.idata$6_dsyrk__imp__dsyrk$hlapacksyms322.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Adsysv.text .idata$7.idata$5.idata$4.idata$6_dsysv__imp__dsysv$hlapacksyms323.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bdsysvx.text .idata$7.idata$5.idata$4.idata$6 _dsysvx__imp__dsysvx$hlapacksyms324.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Cdsytd2.text .idata$7.idata$5.idata$4.idata$6 _dsytd2__imp__dsytd2$hlapacksyms325.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ddsytf2.text .idata$7.idata$5.idata$4.idata$6 _dsytf2__imp__dsytf2$hlapacksyms326.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Edsytrd.text .idata$7.idata$5.idata$4.idata$6 _dsytrd__imp__dsytrd$hlapacksyms327.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fdsytrf.text .idata$7.idata$5.idata$4.idata$6 _dsytrf__imp__dsytrf$hlapacksyms328.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gdsytri.text .idata$7.idata$5.idata$4.idata$6 _dsytri__imp__dsytri$hlapacksyms329.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hdsytrs.text .idata$7.idata$5.idata$4.idata$6 _dsytrs__imp__dsytrs$hlapacksyms330.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Idtbcon.text .idata$7.idata$5.idata$4.idata$6 _dtbcon__imp__dtbcon$hlapacksyms331.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Jdtbmv.text .idata$7.idata$5.idata$4.idata$6_dtbmv__imp__dtbmv$hlapacksyms332.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kdtbrfs.text .idata$7.idata$5.idata$4.idata$6 _dtbrfs__imp__dtbrfs$hlapacksyms333.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ldtbsv.text .idata$7.idata$5.idata$4.idata$6_dtbsv__imp__dtbsv$hlapacksyms334.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mdtbtrs.text .idata$7.idata$5.idata$4.idata$6 _dtbtrs__imp__dtbtrs$hlapacksyms335.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ndtgevc.text .idata$7.idata$5.idata$4.idata$6 _dtgevc__imp__dtgevc$hlapacksyms336.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Odtgex2.text .idata$7.idata$5.idata$4.idata$6 _dtgex2__imp__dtgex2$hlapacksyms337.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pdtgexc.text .idata$7.idata$5.idata$4.idata$6 _dtgexc__imp__dtgexc$hlapacksyms338.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qdtgsen.text .idata$7.idata$5.idata$4.idata$6 _dtgsen__imp__dtgsen$hlapacksyms339.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rdtgsja.text .idata$7.idata$5.idata$4.idata$6 _dtgsja__imp__dtgsja$hlapacksyms340.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Sdtgsna.text .idata$7.idata$5.idata$4.idata$6 _dtgsna__imp__dtgsna$hlapacksyms341.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Tdtgsy2.text .idata$7.idata$5.idata$4.idata$6 _dtgsy2__imp__dtgsy2$hlapacksyms342.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Udtgsyl.text .idata$7.idata$5.idata$4.idata$6 _dtgsyl__imp__dtgsyl$hlapacksyms343.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vdtpcon.text .idata$7.idata$5.idata$4.idata$6 _dtpcon__imp__dtpcon$hlapacksyms344.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Wdtpmv.text .idata$7.idata$5.idata$4.idata$6_dtpmv__imp__dtpmv$hlapacksyms345.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xdtprfs.text .idata$7.idata$5.idata$4.idata$6 _dtprfs__imp__dtprfs$hlapacksyms346.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ydtpsv.text .idata$7.idata$5.idata$4.idata$6_dtpsv__imp__dtpsv$hlapacksyms347.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zdtptri.text .idata$7.idata$5.idata$4.idata$6 _dtptri__imp__dtptri$hlapacksyms348.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % [dtptrs.text .idata$7.idata$5.idata$4.idata$6 _dtptrs__imp__dtptrs$hlapacksyms349.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % \dtrcon.text .idata$7.idata$5.idata$4.idata$6 _dtrcon__imp__dtrcon$hlapacksyms350.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]dtrevc.text .idata$7.idata$5.idata$4.idata$6 _dtrevc__imp__dtrevc$hlapacksyms351.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^dtrexc.text .idata$7.idata$5.idata$4.idata$6 _dtrexc__imp__dtrexc$hlapacksyms352.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% _dtrmm.text .idata$7.idata$5.idata$4.idata$6_dtrmm__imp__dtrmm$hlapacksyms353.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% `dtrmv.text .idata$7.idata$5.idata$4.idata$6_dtrmv__imp__dtrmv$hlapacksyms354.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % adtrrfs.text .idata$7.idata$5.idata$4.idata$6 _dtrrfs__imp__dtrrfs$hlapacksyms355.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % bdtrsen.text .idata$7.idata$5.idata$4.idata$6 _dtrsen__imp__dtrsen$hlapacksyms356.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% cdtrsm.text .idata$7.idata$5.idata$4.idata$6_dtrsm__imp__dtrsm$hlapacksyms357.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddtrsna.text .idata$7.idata$5.idata$4.idata$6 _dtrsna__imp__dtrsna$hlapacksyms358.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% edtrsv.text .idata$7.idata$5.idata$4.idata$6_dtrsv__imp__dtrsv$hlapacksyms359.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % fdtrsyl.text .idata$7.idata$5.idata$4.idata$6 _dtrsyl__imp__dtrsyl$hlapacksyms360.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % gdtrti2.text .idata$7.idata$5.idata$4.idata$6 _dtrti2__imp__dtrti2$hlapacksyms361.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % hdtrtri.text .idata$7.idata$5.idata$4.idata$6 _dtrtri__imp__dtrtri$hlapacksyms362.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % idtrtrs.text .idata$7.idata$5.idata$4.idata$6 _dtrtrs__imp__dtrtrs$hlapacksyms363.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % jdtzrqf.text .idata$7.idata$5.idata$4.idata$6 _dtzrqf__imp__dtzrqf$hlapacksyms364.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % kdtzrzf.text .idata$7.idata$5.idata$4.idata$6 _dtzrzf__imp__dtzrzf$hlapacksyms365.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ldzasum.text .idata$7.idata$5.idata$4.idata$6 _dzasum__imp__dzasum$hlapacksyms366.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % mdznrm2.text .idata$7.idata$5.idata$4.idata$6 _dznrm2__imp__dznrm2$hlapacksyms367.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ndzsum1.text .idata$7.idata$5.idata$4.idata$6 _dzsum1__imp__dzsum1$hlapacksyms368.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % oidamax.text .idata$7.idata$5.idata$4.idata$6 _idamax__imp__idamax$hlapacksyms369.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % pieeeck.text .idata$7.idata$5.idata$4.idata$6 _ieeeck__imp__ieeeck$hlapacksyms370.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % qilaenv.text .idata$7.idata$5.idata$4.idata$6 _ilaenv__imp__ilaenv$hlapacksyms371.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % rizamax.text .idata$7.idata$5.idata$4.idata$6 _izamax__imp__izamax$hlapacksyms372.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % sizmax1.text .idata$7.idata$5.idata$4.idata$6 _izmax1__imp__izmax1$hlapacksyms373.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% tlsame.text .idata$7.idata$5.idata$4.idata$6_lsame__imp__lsame$hlapacksyms374.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ulsamen.text .idata$7.idata$5.idata$4.idata$6 _lsamen__imp__lsamen$hlapacksyms375.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % vxerbla.text .idata$7.idata$5.idata$4.idata$6 _xerbla__imp__xerbla$hlapacksyms376.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% wzaxpy.text .idata$7.idata$5.idata$4.idata$6_zaxpy__imp__zaxpy$hlapacksyms377.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % xzbdsqr.text .idata$7.idata$5.idata$4.idata$6 _zbdsqr__imp__zbdsqr$hlapacksyms378.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% yzcopy.text .idata$7.idata$5.idata$4.idata$6_zcopy__imp__zcopy$hlapacksyms379.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zzdotc.text .idata$7.idata$5.idata$4.idata$6_zdotc__imp__zdotc$hlapacksyms380.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% {zdotu.text .idata$7.idata$5.idata$4.idata$6_zdotu__imp__zdotu$hlapacksyms381.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% |zdrot.text .idata$7.idata$5.idata$4.idata$6_zdrot__imp__zdrot$hlapacksyms382.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % }zdrscl.text .idata$7.idata$5.idata$4.idata$6 _zdrscl__imp__zdrscl$hlapacksyms383.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~zdscal.text .idata$7.idata$5.idata$4.idata$6 _zdscal__imp__zdscal$hlapacksyms384.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbbrd.text .idata$7.idata$5.idata$4.idata$6 _zgbbrd__imp__zgbbrd$hlapacksyms385.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbcon.text .idata$7.idata$5.idata$4.idata$6 _zgbcon__imp__zgbcon$hlapacksyms386.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbequ.text .idata$7.idata$5.idata$4.idata$6 _zgbequ__imp__zgbequ$hlapacksyms387.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgbmv.text .idata$7.idata$5.idata$4.idata$6_zgbmv__imp__zgbmv$hlapacksyms388.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbrfs.text .idata$7.idata$5.idata$4.idata$6 _zgbrfs__imp__zgbrfs$hlapacksyms389.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgbsv.text .idata$7.idata$5.idata$4.idata$6_zgbsv__imp__zgbsv$hlapacksyms390.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbsvx.text .idata$7.idata$5.idata$4.idata$6 _zgbsvx__imp__zgbsvx$hlapacksyms391.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtf2.text .idata$7.idata$5.idata$4.idata$6 _zgbtf2__imp__zgbtf2$hlapacksyms392.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtrf.text .idata$7.idata$5.idata$4.idata$6 _zgbtrf__imp__zgbtrf$hlapacksyms393.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtrs.text .idata$7.idata$5.idata$4.idata$6 _zgbtrs__imp__zgbtrs$hlapacksyms394.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebak.text .idata$7.idata$5.idata$4.idata$6 _zgebak__imp__zgebak$hlapacksyms395.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebal.text .idata$7.idata$5.idata$4.idata$6 _zgebal__imp__zgebal$hlapacksyms396.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebd2.text .idata$7.idata$5.idata$4.idata$6 _zgebd2__imp__zgebd2$hlapacksyms397.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebrd.text .idata$7.idata$5.idata$4.idata$6 _zgebrd__imp__zgebrd$hlapacksyms398.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgecon.text .idata$7.idata$5.idata$4.idata$6 _zgecon__imp__zgecon$hlapacksyms399.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeequ.text .idata$7.idata$5.idata$4.idata$6 _zgeequ__imp__zgeequ$hlapacksyms400.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgees.text .idata$7.idata$5.idata$4.idata$6_zgees__imp__zgees$hlapacksyms401.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeesx.text .idata$7.idata$5.idata$4.idata$6 _zgeesx__imp__zgeesx$hlapacksyms402.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgeev.text .idata$7.idata$5.idata$4.idata$6_zgeev__imp__zgeev$hlapacksyms403.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeevx.text .idata$7.idata$5.idata$4.idata$6 _zgeevx__imp__zgeevx$hlapacksyms404.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgegs.text .idata$7.idata$5.idata$4.idata$6_zgegs__imp__zgegs$hlapacksyms405.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgegv.text .idata$7.idata$5.idata$4.idata$6_zgegv__imp__zgegv$hlapacksyms406.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgehd2.text .idata$7.idata$5.idata$4.idata$6 _zgehd2__imp__zgehd2$hlapacksyms407.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgehrd.text .idata$7.idata$5.idata$4.idata$6 _zgehrd__imp__zgehrd$hlapacksyms408.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelq2.text .idata$7.idata$5.idata$4.idata$6 _zgelq2__imp__zgelq2$hlapacksyms409.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelqf.text .idata$7.idata$5.idata$4.idata$6 _zgelqf__imp__zgelqf$hlapacksyms410.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgels.text .idata$7.idata$5.idata$4.idata$6_zgels__imp__zgels$hlapacksyms411.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsd.text .idata$7.idata$5.idata$4.idata$6 _zgelsd__imp__zgelsd$hlapacksyms412.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelss.text .idata$7.idata$5.idata$4.idata$6 _zgelss__imp__zgelss$hlapacksyms413.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsx.text .idata$7.idata$5.idata$4.idata$6 _zgelsx__imp__zgelsx$hlapacksyms414.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsy.text .idata$7.idata$5.idata$4.idata$6 _zgelsy__imp__zgelsy$hlapacksyms415.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgemm.text .idata$7.idata$5.idata$4.idata$6_zgemm__imp__zgemm$hlapacksyms416.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgemv.text .idata$7.idata$5.idata$4.idata$6_zgemv__imp__zgemv$hlapacksyms417.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeql2.text .idata$7.idata$5.idata$4.idata$6 _zgeql2__imp__zgeql2$hlapacksyms418.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqlf.text .idata$7.idata$5.idata$4.idata$6 _zgeqlf__imp__zgeqlf$hlapacksyms419.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqp3.text .idata$7.idata$5.idata$4.idata$6 _zgeqp3__imp__zgeqp3$hlapacksyms420.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqpf.text .idata$7.idata$5.idata$4.idata$6 _zgeqpf__imp__zgeqpf$hlapacksyms421.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqr2.text .idata$7.idata$5.idata$4.idata$6 _zgeqr2__imp__zgeqr2$hlapacksyms422.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqrf.text .idata$7.idata$5.idata$4.idata$6 _zgeqrf__imp__zgeqrf$hlapacksyms423.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgerc.text .idata$7.idata$5.idata$4.idata$6_zgerc__imp__zgerc$hlapacksyms424.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerfs.text .idata$7.idata$5.idata$4.idata$6 _zgerfs__imp__zgerfs$hlapacksyms425.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerq2.text .idata$7.idata$5.idata$4.idata$6 _zgerq2__imp__zgerq2$hlapacksyms426.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerqf.text .idata$7.idata$5.idata$4.idata$6 _zgerqf__imp__zgerqf$hlapacksyms427.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgeru.text .idata$7.idata$5.idata$4.idata$6_zgeru__imp__zgeru$hlapacksyms428.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesc2.text .idata$7.idata$5.idata$4.idata$6 _zgesc2__imp__zgesc2$hlapacksyms429.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesdd.text .idata$7.idata$5.idata$4.idata$6 _zgesdd__imp__zgesdd$hlapacksyms430.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgesv.text .idata$7.idata$5.idata$4.idata$6_zgesv__imp__zgesv$hlapacksyms431.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesvd.text .idata$7.idata$5.idata$4.idata$6 _zgesvd__imp__zgesvd$hlapacksyms432.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesvx.text .idata$7.idata$5.idata$4.idata$6 _zgesvx__imp__zgesvx$hlapacksyms433.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetc2.text .idata$7.idata$5.idata$4.idata$6 _zgetc2__imp__zgetc2$hlapacksyms434.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetf2.text .idata$7.idata$5.idata$4.idata$6 _zgetf2__imp__zgetf2$hlapacksyms435.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetrf.text .idata$7.idata$5.idata$4.idata$6 _zgetrf__imp__zgetrf$hlapacksyms436.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetri.text .idata$7.idata$5.idata$4.idata$6 _zgetri__imp__zgetri$hlapacksyms437.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetrs.text .idata$7.idata$5.idata$4.idata$6 _zgetrs__imp__zgetrs$hlapacksyms438.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggbak.text .idata$7.idata$5.idata$4.idata$6 _zggbak__imp__zggbak$hlapacksyms439.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggbal.text .idata$7.idata$5.idata$4.idata$6 _zggbal__imp__zggbal$hlapacksyms440.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgges.text .idata$7.idata$5.idata$4.idata$6_zgges__imp__zgges$hlapacksyms441.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggesx.text .idata$7.idata$5.idata$4.idata$6 _zggesx__imp__zggesx$hlapacksyms442.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zggev.text .idata$7.idata$5.idata$4.idata$6_zggev__imp__zggev$hlapacksyms443.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggevx.text .idata$7.idata$5.idata$4.idata$6 _zggevx__imp__zggevx$hlapacksyms444.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggglm.text .idata$7.idata$5.idata$4.idata$6 _zggglm__imp__zggglm$hlapacksyms445.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgghrd.text .idata$7.idata$5.idata$4.idata$6 _zgghrd__imp__zgghrd$hlapacksyms446.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgglse.text .idata$7.idata$5.idata$4.idata$6 _zgglse__imp__zgglse$hlapacksyms447.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggqrf.text .idata$7.idata$5.idata$4.idata$6 _zggqrf__imp__zggqrf$hlapacksyms448.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggrqf.text .idata$7.idata$5.idata$4.idata$6 _zggrqf__imp__zggrqf$hlapacksyms449.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggsvd.text .idata$7.idata$5.idata$4.idata$6 _zggsvd__imp__zggsvd$hlapacksyms450.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggsvp.text .idata$7.idata$5.idata$4.idata$6 _zggsvp__imp__zggsvp$hlapacksyms451.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtcon.text .idata$7.idata$5.idata$4.idata$6 _zgtcon__imp__zgtcon$hlapacksyms452.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtrfs.text .idata$7.idata$5.idata$4.idata$6 _zgtrfs__imp__zgtrfs$hlapacksyms453.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgtsv.text .idata$7.idata$5.idata$4.idata$6_zgtsv__imp__zgtsv$hlapacksyms454.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtsvx.text .idata$7.idata$5.idata$4.idata$6 _zgtsvx__imp__zgtsvx$hlapacksyms455.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgttrf.text .idata$7.idata$5.idata$4.idata$6 _zgttrf__imp__zgttrf$hlapacksyms456.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgttrs.text .idata$7.idata$5.idata$4.idata$6 _zgttrs__imp__zgttrs$hlapacksyms457.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtts2.text .idata$7.idata$5.idata$4.idata$6 _zgtts2__imp__zgtts2$hlapacksyms458.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbev.text .idata$7.idata$5.idata$4.idata$6_zhbev__imp__zhbev$hlapacksyms459.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbevd.text .idata$7.idata$5.idata$4.idata$6 _zhbevd__imp__zhbevd$hlapacksyms460.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbevx.text .idata$7.idata$5.idata$4.idata$6 _zhbevx__imp__zhbevx$hlapacksyms461.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgst.text .idata$7.idata$5.idata$4.idata$6 _zhbgst__imp__zhbgst$hlapacksyms462.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbgv.text .idata$7.idata$5.idata$4.idata$6_zhbgv__imp__zhbgv$hlapacksyms463.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgvd.text .idata$7.idata$5.idata$4.idata$6 _zhbgvd__imp__zhbgvd$hlapacksyms464.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgvx.text .idata$7.idata$5.idata$4.idata$6 _zhbgvx__imp__zhbgvx$hlapacksyms465.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbmv.text .idata$7.idata$5.idata$4.idata$6_zhbmv__imp__zhbmv$hlapacksyms466.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbtrd.text .idata$7.idata$5.idata$4.idata$6 _zhbtrd__imp__zhbtrd$hlapacksyms467.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhecon.text .idata$7.idata$5.idata$4.idata$6 _zhecon__imp__zhecon$hlapacksyms468.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zheev.text .idata$7.idata$5.idata$4.idata$6_zheev__imp__zheev$hlapacksyms469.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevd.text .idata$7.idata$5.idata$4.idata$6 _zheevd__imp__zheevd$hlapacksyms470.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevr.text .idata$7.idata$5.idata$4.idata$6 _zheevr__imp__zheevr$hlapacksyms471.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevx.text .idata$7.idata$5.idata$4.idata$6 _zheevx__imp__zheevx$hlapacksyms472.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegs2.text .idata$7.idata$5.idata$4.idata$6 _zhegs2__imp__zhegs2$hlapacksyms473.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegst.text .idata$7.idata$5.idata$4.idata$6 _zhegst__imp__zhegst$hlapacksyms474.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhegv.text .idata$7.idata$5.idata$4.idata$6_zhegv__imp__zhegv$hlapacksyms475.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegvd.text .idata$7.idata$5.idata$4.idata$6 _zhegvd__imp__zhegvd$hlapacksyms476.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegvx.text .idata$7.idata$5.idata$4.idata$6 _zhegvx__imp__zhegvx$hlapacksyms477.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhemm.text .idata$7.idata$5.idata$4.idata$6_zhemm__imp__zhemm$hlapacksyms478.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhemv.text .idata$7.idata$5.idata$4.idata$6_zhemv__imp__zhemv$hlapacksyms479.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zher.text .idata$7.idata$5.idata$4.idata$6_zher__imp__zher$hlapacksyms480.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zher2.text .idata$7.idata$5.idata$4.idata$6_zher2__imp__zher2$hlapacksyms481.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zher2k.text .idata$7.idata$5.idata$4.idata$6 _zher2k__imp__zher2k$hlapacksyms482.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zherfs.text .idata$7.idata$5.idata$4.idata$6 _zherfs__imp__zherfs$hlapacksyms483.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zherk.text .idata$7.idata$5.idata$4.idata$6_zherk__imp__zherk$hlapacksyms484.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhesv.text .idata$7.idata$5.idata$4.idata$6_zhesv__imp__zhesv$hlapacksyms485.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhesvx.text .idata$7.idata$5.idata$4.idata$6 _zhesvx__imp__zhesvx$hlapacksyms486.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetd2.text .idata$7.idata$5.idata$4.idata$6 _zhetd2__imp__zhetd2$hlapacksyms487.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetf2.text .idata$7.idata$5.idata$4.idata$6 _zhetf2__imp__zhetf2$hlapacksyms488.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrd.text .idata$7.idata$5.idata$4.idata$6 _zhetrd__imp__zhetrd$hlapacksyms489.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrf.text .idata$7.idata$5.idata$4.idata$6 _zhetrf__imp__zhetrf$hlapacksyms490.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetri.text .idata$7.idata$5.idata$4.idata$6 _zhetri__imp__zhetri$hlapacksyms491.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrs.text .idata$7.idata$5.idata$4.idata$6 _zhetrs__imp__zhetrs$hlapacksyms492.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhgeqz.text .idata$7.idata$5.idata$4.idata$6 _zhgeqz__imp__zhgeqz$hlapacksyms493.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpcon.text .idata$7.idata$5.idata$4.idata$6 _zhpcon__imp__zhpcon$hlapacksyms494.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpev.text .idata$7.idata$5.idata$4.idata$6_zhpev__imp__zhpev$hlapacksyms495.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpevd.text .idata$7.idata$5.idata$4.idata$6 _zhpevd__imp__zhpevd$hlapacksyms496.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpevx.text .idata$7.idata$5.idata$4.idata$6 _zhpevx__imp__zhpevx$hlapacksyms497.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgst.text .idata$7.idata$5.idata$4.idata$6 _zhpgst__imp__zhpgst$hlapacksyms498.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpgv.text .idata$7.idata$5.idata$4.idata$6_zhpgv__imp__zhpgv$hlapacksyms499.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgvd.text .idata$7.idata$5.idata$4.idata$6 _zhpgvd__imp__zhpgvd$hlapacksyms500.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgvx.text .idata$7.idata$5.idata$4.idata$6 _zhpgvx__imp__zhpgvx$hlapacksyms501.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpmv.text .idata$7.idata$5.idata$4.idata$6_zhpmv__imp__zhpmv$hlapacksyms502.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpr.text .idata$7.idata$5.idata$4.idata$6_zhpr__imp__zhpr$hlapacksyms503.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpr2.text .idata$7.idata$5.idata$4.idata$6_zhpr2__imp__zhpr2$hlapacksyms504.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhprfs.text .idata$7.idata$5.idata$4.idata$6 _zhprfs__imp__zhprfs$hlapacksyms505.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpsv.text .idata$7.idata$5.idata$4.idata$6_zhpsv__imp__zhpsv$hlapacksyms506.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpsvx.text .idata$7.idata$5.idata$4.idata$6 _zhpsvx__imp__zhpsvx$hlapacksyms507.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrd.text .idata$7.idata$5.idata$4.idata$6 _zhptrd__imp__zhptrd$hlapacksyms508.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrf.text .idata$7.idata$5.idata$4.idata$6 _zhptrf__imp__zhptrf$hlapacksyms509.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptri.text .idata$7.idata$5.idata$4.idata$6 _zhptri__imp__zhptri$hlapacksyms510.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrs.text .idata$7.idata$5.idata$4.idata$6 _zhptrs__imp__zhptrs$hlapacksyms511.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhsein.text .idata$7.idata$5.idata$4.idata$6 _zhsein__imp__zhsein$hlapacksyms512.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhseqr.text .idata$7.idata$5.idata$4.idata$6 _zhseqr__imp__zhseqr$hlapacksyms513.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlabrd.text .idata$7.idata$5.idata$4.idata$6 _zlabrd__imp__zlabrd$hlapacksyms514.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacgv.text .idata$7.idata$5.idata$4.idata$6 _zlacgv__imp__zlacgv$hlapacksyms515.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacon.text .idata$7.idata$5.idata$4.idata$6 _zlacon__imp__zlacon$hlapacksyms516.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacp2.text .idata$7.idata$5.idata$4.idata$6 _zlacp2__imp__zlacp2$hlapacksyms517.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacpy.text .idata$7.idata$5.idata$4.idata$6 _zlacpy__imp__zlacpy$hlapacksyms518.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacrm.text .idata$7.idata$5.idata$4.idata$6 _zlacrm__imp__zlacrm$hlapacksyms519.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacrt.text .idata$7.idata$5.idata$4.idata$6 _zlacrt__imp__zlacrt$hlapacksyms520.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zladiv.text .idata$7.idata$5.idata$4.idata$6 _zladiv__imp__zladiv$hlapacksyms521.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlaed0.text .idata$7.idata$5.idata$4.idata$6 _zlaed0__imp__zlaed0$hlapacksyms522.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaed7.text .idata$7.idata$5.idata$4.idata$6 _zlaed7__imp__zlaed7$hlapacksyms523.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaed8.text .idata$7.idata$5.idata$4.idata$6 _zlaed8__imp__zlaed8$hlapacksyms524.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaein.text .idata$7.idata$5.idata$4.idata$6 _zlaein__imp__zlaein$hlapacksyms525.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaesy.text .idata$7.idata$5.idata$4.idata$6 _zlaesy__imp__zlaesy$hlapacksyms526.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaev2.text .idata$7.idata$5.idata$4.idata$6 _zlaev2__imp__zlaev2$hlapacksyms527.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlags2.text .idata$7.idata$5.idata$4.idata$6 _zlags2__imp__zlags2$hlapacksyms528.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlagtm.text .idata$7.idata$5.idata$4.idata$6 _zlagtm__imp__zlagtm$hlapacksyms529.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahef.text .idata$7.idata$5.idata$4.idata$6 _zlahef__imp__zlahef$hlapacksyms530.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahqr.text .idata$7.idata$5.idata$4.idata$6 _zlahqr__imp__zlahqr$hlapacksyms531.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahrd.text .idata$7.idata$5.idata$4.idata$6 _zlahrd__imp__zlahrd$hlapacksyms532.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlaic1.text .idata$7.idata$5.idata$4.idata$6 _zlaic1__imp__zlaic1$hlapacksyms533.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlals0.text .idata$7.idata$5.idata$4.idata$6 _zlals0__imp__zlals0$hlapacksyms534.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlalsa.text .idata$7.idata$5.idata$4.idata$6 _zlalsa__imp__zlalsa$hlapacksyms535.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlalsd.text .idata$7.idata$5.idata$4.idata$6 _zlalsd__imp__zlalsd$hlapacksyms536.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlangb.text .idata$7.idata$5.idata$4.idata$6 _zlangb__imp__zlangb$hlapacksyms537.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlange.text .idata$7.idata$5.idata$4.idata$6 _zlange__imp__zlange$hlapacksyms538.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlangt.text .idata$7.idata$5.idata$4.idata$6 _zlangt__imp__zlangt$hlapacksyms539.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhb.text .idata$7.idata$5.idata$4.idata$6 _zlanhb__imp__zlanhb$hlapacksyms540.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhe.text .idata$7.idata$5.idata$4.idata$6 _zlanhe__imp__zlanhe$hlapacksyms541.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhp.text .idata$7.idata$5.idata$4.idata$6 _zlanhp__imp__zlanhp$hlapacksyms542.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhs.text .idata$7.idata$5.idata$4.idata$6 _zlanhs__imp__zlanhs$hlapacksyms543.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanht.text .idata$7.idata$5.idata$4.idata$6 _zlanht__imp__zlanht$hlapacksyms544.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlansb.text .idata$7.idata$5.idata$4.idata$6 _zlansb__imp__zlansb$hlapacksyms545.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlansp.text .idata$7.idata$5.idata$4.idata$6 _zlansp__imp__zlansp$hlapacksyms546.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % !zlansy.text .idata$7.idata$5.idata$4.idata$6 _zlansy__imp__zlansy$hlapacksyms547.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % "zlantb.text .idata$7.idata$5.idata$4.idata$6 _zlantb__imp__zlantb$hlapacksyms548.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % #zlantp.text .idata$7.idata$5.idata$4.idata$6 _zlantp__imp__zlantp$hlapacksyms549.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % $zlantr.text .idata$7.idata$5.idata$4.idata$6 _zlantr__imp__zlantr$hlapacksyms550.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % %zlapll.text .idata$7.idata$5.idata$4.idata$6 _zlapll__imp__zlapll$hlapacksyms551.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % &zlapmt.text .idata$7.idata$5.idata$4.idata$6 _zlapmt__imp__zlapmt$hlapacksyms552.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 'zlaqgb.text .idata$7.idata$5.idata$4.idata$6 _zlaqgb__imp__zlaqgb$hlapacksyms553.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % (zlaqge.text .idata$7.idata$5.idata$4.idata$6 _zlaqge__imp__zlaqge$hlapacksyms554.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % )zlaqhb.text .idata$7.idata$5.idata$4.idata$6 _zlaqhb__imp__zlaqhb$hlapacksyms555.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % *zlaqhe.text .idata$7.idata$5.idata$4.idata$6 _zlaqhe__imp__zlaqhe$hlapacksyms556.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % +zlaqhp.text .idata$7.idata$5.idata$4.idata$6 _zlaqhp__imp__zlaqhp$hlapacksyms557.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,zlaqp2.text .idata$7.idata$5.idata$4.idata$6 _zlaqp2__imp__zlaqp2$hlapacksyms558.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % -zlaqps.text .idata$7.idata$5.idata$4.idata$6 _zlaqps__imp__zlaqps$hlapacksyms559.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % .zlaqsb.text .idata$7.idata$5.idata$4.idata$6 _zlaqsb__imp__zlaqsb$hlapacksyms560.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % /zlaqsp.text .idata$7.idata$5.idata$4.idata$6 _zlaqsp__imp__zlaqsp$hlapacksyms561.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0zlaqsy.text .idata$7.idata$5.idata$4.idata$6 _zlaqsy__imp__zlaqsy$hlapacksyms562.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 1zlar1v.text .idata$7.idata$5.idata$4.idata$6 _zlar1v__imp__zlar1v$hlapacksyms563.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2zlar2v.text .idata$7.idata$5.idata$4.idata$6 _zlar2v__imp__zlar2v$hlapacksyms564.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3zlarcm.text .idata$7.idata$5.idata$4.idata$6 _zlarcm__imp__zlarcm$hlapacksyms565.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 4zlarf.text .idata$7.idata$5.idata$4.idata$6_zlarf__imp__zlarf$hlapacksyms566.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 5zlarfb.text .idata$7.idata$5.idata$4.idata$6 _zlarfb__imp__zlarfb$hlapacksyms567.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6zlarfg.text .idata$7.idata$5.idata$4.idata$6 _zlarfg__imp__zlarfg$hlapacksyms568.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 7zlarft.text .idata$7.idata$5.idata$4.idata$6 _zlarft__imp__zlarft$hlapacksyms569.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8zlarfx.text .idata$7.idata$5.idata$4.idata$6 _zlarfx__imp__zlarfx$hlapacksyms570.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9zlargv.text .idata$7.idata$5.idata$4.idata$6 _zlargv__imp__zlargv$hlapacksyms571.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % :zlarnv.text .idata$7.idata$5.idata$4.idata$6 _zlarnv__imp__zlarnv$hlapacksyms572.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ;zlarrv.text .idata$7.idata$5.idata$4.idata$6 _zlarrv__imp__zlarrv$hlapacksyms573.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % <zlartg.text .idata$7.idata$5.idata$4.idata$6 _zlartg__imp__zlartg$hlapacksyms574.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % =zlartv.text .idata$7.idata$5.idata$4.idata$6 _zlartv__imp__zlartv$hlapacksyms575.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% >zlarz.text .idata$7.idata$5.idata$4.idata$6_zlarz__imp__zlarz$hlapacksyms576.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ?zlarzb.text .idata$7.idata$5.idata$4.idata$6 _zlarzb__imp__zlarzb$hlapacksyms577.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % @zlarzt.text .idata$7.idata$5.idata$4.idata$6 _zlarzt__imp__zlarzt$hlapacksyms578.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Azlascl.text .idata$7.idata$5.idata$4.idata$6 _zlascl__imp__zlascl$hlapacksyms579.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bzlaset.text .idata$7.idata$5.idata$4.idata$6 _zlaset__imp__zlaset$hlapacksyms580.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Czlasr.text .idata$7.idata$5.idata$4.idata$6_zlasr__imp__zlasr$hlapacksyms581.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Dzlassq.text .idata$7.idata$5.idata$4.idata$6 _zlassq__imp__zlassq$hlapacksyms582.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ezlaswp.text .idata$7.idata$5.idata$4.idata$6 _zlaswp__imp__zlaswp$hlapacksyms583.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fzlasyf.text .idata$7.idata$5.idata$4.idata$6 _zlasyf__imp__zlasyf$hlapacksyms584.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gzlatbs.text .idata$7.idata$5.idata$4.idata$6 _zlatbs__imp__zlatbs$hlapacksyms585.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hzlatdf.text .idata$7.idata$5.idata$4.idata$6 _zlatdf__imp__zlatdf$hlapacksyms586.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Izlatps.text .idata$7.idata$5.idata$4.idata$6 _zlatps__imp__zlatps$hlapacksyms587.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Jzlatrd.text .idata$7.idata$5.idata$4.idata$6 _zlatrd__imp__zlatrd$hlapacksyms588.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kzlatrs.text .idata$7.idata$5.idata$4.idata$6 _zlatrs__imp__zlatrs$hlapacksyms589.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Lzlatrz.text .idata$7.idata$5.idata$4.idata$6 _zlatrz__imp__zlatrz$hlapacksyms590.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mzlatzm.text .idata$7.idata$5.idata$4.idata$6 _zlatzm__imp__zlatzm$hlapacksyms591.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Nzlauu2.text .idata$7.idata$5.idata$4.idata$6 _zlauu2__imp__zlauu2$hlapacksyms592.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ozlauum.text .idata$7.idata$5.idata$4.idata$6 _zlauum__imp__zlauum$hlapacksyms593.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pzpbcon.text .idata$7.idata$5.idata$4.idata$6 _zpbcon__imp__zpbcon$hlapacksyms594.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qzpbequ.text .idata$7.idata$5.idata$4.idata$6 _zpbequ__imp__zpbequ$hlapacksyms595.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rzpbrfs.text .idata$7.idata$5.idata$4.idata$6 _zpbrfs__imp__zpbrfs$hlapacksyms596.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Szpbstf.text .idata$7.idata$5.idata$4.idata$6 _zpbstf__imp__zpbstf$hlapacksyms597.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Tzpbsv.text .idata$7.idata$5.idata$4.idata$6_zpbsv__imp__zpbsv$hlapacksyms598.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Uzpbsvx.text .idata$7.idata$5.idata$4.idata$6 _zpbsvx__imp__zpbsvx$hlapacksyms599.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vzpbtf2.text .idata$7.idata$5.idata$4.idata$6 _zpbtf2__imp__zpbtf2$hlapacksyms600.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Wzpbtrf.text .idata$7.idata$5.idata$4.idata$6 _zpbtrf__imp__zpbtrf$hlapacksyms601.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xzpbtrs.text .idata$7.idata$5.idata$4.idata$6 _zpbtrs__imp__zpbtrs$hlapacksyms602.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Yzpocon.text .idata$7.idata$5.idata$4.idata$6 _zpocon__imp__zpocon$hlapacksyms603.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zzpoequ.text .idata$7.idata$5.idata$4.idata$6 _zpoequ__imp__zpoequ$hlapacksyms604.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % [zporfs.text .idata$7.idata$5.idata$4.idata$6 _zporfs__imp__zporfs$hlapacksyms605.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% \zposv.text .idata$7.idata$5.idata$4.idata$6_zposv__imp__zposv$hlapacksyms606.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]zposvx.text .idata$7.idata$5.idata$4.idata$6 _zposvx__imp__zposvx$hlapacksyms607.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^zpotf2.text .idata$7.idata$5.idata$4.idata$6 _zpotf2__imp__zpotf2$hlapacksyms608.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % _zpotrf.text .idata$7.idata$5.idata$4.idata$6 _zpotrf__imp__zpotrf$hlapacksyms609.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % `zpotri.text .idata$7.idata$5.idata$4.idata$6 _zpotri__imp__zpotri$hlapacksyms610.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % azpotrs.text .idata$7.idata$5.idata$4.idata$6 _zpotrs__imp__zpotrs$hlapacksyms611.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % bzppcon.text .idata$7.idata$5.idata$4.idata$6 _zppcon__imp__zppcon$hlapacksyms612.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % czppequ.text .idata$7.idata$5.idata$4.idata$6 _zppequ__imp__zppequ$hlapacksyms613.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dzpprfs.text .idata$7.idata$5.idata$4.idata$6 _zpprfs__imp__zpprfs$hlapacksyms614.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% ezppsv.text .idata$7.idata$5.idata$4.idata$6_zppsv__imp__zppsv$hlapacksyms615.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % fzppsvx.text .idata$7.idata$5.idata$4.idata$6 _zppsvx__imp__zppsvx$hlapacksyms616.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % gzpptrf.text .idata$7.idata$5.idata$4.idata$6 _zpptrf__imp__zpptrf$hlapacksyms617.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % hzpptri.text .idata$7.idata$5.idata$4.idata$6 _zpptri__imp__zpptri$hlapacksyms618.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % izpptrs.text .idata$7.idata$5.idata$4.idata$6 _zpptrs__imp__zpptrs$hlapacksyms619.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % jzptcon.text .idata$7.idata$5.idata$4.idata$6 _zptcon__imp__zptcon$hlapacksyms620.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % kzpteqr.text .idata$7.idata$5.idata$4.idata$6 _zpteqr__imp__zpteqr$hlapacksyms621.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % lzptrfs.text .idata$7.idata$5.idata$4.idata$6 _zptrfs__imp__zptrfs$hlapacksyms622.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% mzptsv.text .idata$7.idata$5.idata$4.idata$6_zptsv__imp__zptsv$hlapacksyms623.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % nzptsvx.text .idata$7.idata$5.idata$4.idata$6 _zptsvx__imp__zptsvx$hlapacksyms624.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ozpttrf.text .idata$7.idata$5.idata$4.idata$6 _zpttrf__imp__zpttrf$hlapacksyms625.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % pzpttrs.text .idata$7.idata$5.idata$4.idata$6 _zpttrs__imp__zpttrs$hlapacksyms626.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % qzptts2.text .idata$7.idata$5.idata$4.idata$6 _zptts2__imp__zptts2$hlapacksyms627.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% rzrot.text .idata$7.idata$5.idata$4.idata$6_zrot__imp__zrot$hlapacksyms628.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% szrotg.text .idata$7.idata$5.idata$4.idata$6_zrotg__imp__zrotg$hlapacksyms629.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% tzscal.text .idata$7.idata$5.idata$4.idata$6_zscal__imp__zscal$hlapacksyms630.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % uzspcon.text .idata$7.idata$5.idata$4.idata$6 _zspcon__imp__zspcon$hlapacksyms631.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% vzspmv.text .idata$7.idata$5.idata$4.idata$6_zspmv__imp__zspmv$hlapacksyms632.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% wzspr.text .idata$7.idata$5.idata$4.idata$6_zspr__imp__zspr$hlapacksyms633.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % xzsprfs.text .idata$7.idata$5.idata$4.idata$6 _zsprfs__imp__zsprfs$hlapacksyms634.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% yzspsv.text .idata$7.idata$5.idata$4.idata$6_zspsv__imp__zspsv$hlapacksyms635.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zzspsvx.text .idata$7.idata$5.idata$4.idata$6 _zspsvx__imp__zspsvx$hlapacksyms636.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % {zsptrf.text .idata$7.idata$5.idata$4.idata$6 _zsptrf__imp__zsptrf$hlapacksyms637.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % |zsptri.text .idata$7.idata$5.idata$4.idata$6 _zsptri__imp__zsptri$hlapacksyms638.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % }zsptrs.text .idata$7.idata$5.idata$4.idata$6 _zsptrs__imp__zsptrs$hlapacksyms639.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~zstedc.text .idata$7.idata$5.idata$4.idata$6 _zstedc__imp__zstedc$hlapacksyms640.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zstegr.text .idata$7.idata$5.idata$4.idata$6 _zstegr__imp__zstegr$hlapacksyms641.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zstein.text .idata$7.idata$5.idata$4.idata$6 _zstein__imp__zstein$hlapacksyms642.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsteqr.text .idata$7.idata$5.idata$4.idata$6 _zsteqr__imp__zsteqr$hlapacksyms643.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zswap.text .idata$7.idata$5.idata$4.idata$6_zswap__imp__zswap$hlapacksyms644.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsycon.text .idata$7.idata$5.idata$4.idata$6 _zsycon__imp__zsycon$hlapacksyms645.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsymm.text .idata$7.idata$5.idata$4.idata$6_zsymm__imp__zsymm$hlapacksyms646.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsymv.text .idata$7.idata$5.idata$4.idata$6_zsymv__imp__zsymv$hlapacksyms647.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsyr.text .idata$7.idata$5.idata$4.idata$6_zsyr__imp__zsyr$hlapacksyms648.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsyr2k.text .idata$7.idata$5.idata$4.idata$6 _zsyr2k__imp__zsyr2k$hlapacksyms649.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsyrfs.text .idata$7.idata$5.idata$4.idata$6 _zsyrfs__imp__zsyrfs$hlapacksyms650.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsyrk.text .idata$7.idata$5.idata$4.idata$6_zsyrk__imp__zsyrk$hlapacksyms651.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsysv.text .idata$7.idata$5.idata$4.idata$6_zsysv__imp__zsysv$hlapacksyms652.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsysvx.text .idata$7.idata$5.idata$4.idata$6 _zsysvx__imp__zsysvx$hlapacksyms653.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytf2.text .idata$7.idata$5.idata$4.idata$6 _zsytf2__imp__zsytf2$hlapacksyms654.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytrf.text .idata$7.idata$5.idata$4.idata$6 _zsytrf__imp__zsytrf$hlapacksyms655.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytri.text .idata$7.idata$5.idata$4.idata$6 _zsytri__imp__zsytri$hlapacksyms656.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytrs.text .idata$7.idata$5.idata$4.idata$6 _zsytrs__imp__zsytrs$hlapacksyms657.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbcon.text .idata$7.idata$5.idata$4.idata$6 _ztbcon__imp__ztbcon$hlapacksyms658.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztbmv.text .idata$7.idata$5.idata$4.idata$6_ztbmv__imp__ztbmv$hlapacksyms659.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbrfs.text .idata$7.idata$5.idata$4.idata$6 _ztbrfs__imp__ztbrfs$hlapacksyms660.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztbsv.text .idata$7.idata$5.idata$4.idata$6_ztbsv__imp__ztbsv$hlapacksyms661.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbtrs.text .idata$7.idata$5.idata$4.idata$6 _ztbtrs__imp__ztbtrs$hlapacksyms662.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgevc.text .idata$7.idata$5.idata$4.idata$6 _ztgevc__imp__ztgevc$hlapacksyms663.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgex2.text .idata$7.idata$5.idata$4.idata$6 _ztgex2__imp__ztgex2$hlapacksyms664.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgexc.text .idata$7.idata$5.idata$4.idata$6 _ztgexc__imp__ztgexc$hlapacksyms665.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsen.text .idata$7.idata$5.idata$4.idata$6 _ztgsen__imp__ztgsen$hlapacksyms666.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsja.text .idata$7.idata$5.idata$4.idata$6 _ztgsja__imp__ztgsja$hlapacksyms667.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsna.text .idata$7.idata$5.idata$4.idata$6 _ztgsna__imp__ztgsna$hlapacksyms668.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsy2.text .idata$7.idata$5.idata$4.idata$6 _ztgsy2__imp__ztgsy2$hlapacksyms669.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsyl.text .idata$7.idata$5.idata$4.idata$6 _ztgsyl__imp__ztgsyl$hlapacksyms670.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztpcon.text .idata$7.idata$5.idata$4.idata$6 _ztpcon__imp__ztpcon$hlapacksyms671.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztpmv.text .idata$7.idata$5.idata$4.idata$6_ztpmv__imp__ztpmv$hlapacksyms672.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztprfs.text .idata$7.idata$5.idata$4.idata$6 _ztprfs__imp__ztprfs$hlapacksyms673.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztpsv.text .idata$7.idata$5.idata$4.idata$6_ztpsv__imp__ztpsv$hlapacksyms674.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztptri.text .idata$7.idata$5.idata$4.idata$6 _ztptri__imp__ztptri$hlapacksyms675.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztptrs.text .idata$7.idata$5.idata$4.idata$6 _ztptrs__imp__ztptrs$hlapacksyms676.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrcon.text .idata$7.idata$5.idata$4.idata$6 _ztrcon__imp__ztrcon$hlapacksyms677.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrevc.text .idata$7.idata$5.idata$4.idata$6 _ztrevc__imp__ztrevc$hlapacksyms678.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrexc.text .idata$7.idata$5.idata$4.idata$6 _ztrexc__imp__ztrexc$hlapacksyms679.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrmm.text .idata$7.idata$5.idata$4.idata$6_ztrmm__imp__ztrmm$hlapacksyms680.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrmv.text .idata$7.idata$5.idata$4.idata$6_ztrmv__imp__ztrmv$hlapacksyms681.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrrfs.text .idata$7.idata$5.idata$4.idata$6 _ztrrfs__imp__ztrrfs$hlapacksyms682.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsen.text .idata$7.idata$5.idata$4.idata$6 _ztrsen__imp__ztrsen$hlapacksyms683.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrsm.text .idata$7.idata$5.idata$4.idata$6_ztrsm__imp__ztrsm$hlapacksyms684.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsna.text .idata$7.idata$5.idata$4.idata$6 _ztrsna__imp__ztrsna$hlapacksyms685.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrsv.text .idata$7.idata$5.idata$4.idata$6_ztrsv__imp__ztrsv$hlapacksyms686.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsyl.text .idata$7.idata$5.idata$4.idata$6 _ztrsyl__imp__ztrsyl$hlapacksyms687.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrti2.text .idata$7.idata$5.idata$4.idata$6 _ztrti2__imp__ztrti2$hlapacksyms688.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrtri.text .idata$7.idata$5.idata$4.idata$6 _ztrtri__imp__ztrtri$hlapacksyms689.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrtrs.text .idata$7.idata$5.idata$4.idata$6 _ztrtrs__imp__ztrtrs$hlapacksyms690.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztzrqf.text .idata$7.idata$5.idata$4.idata$6 _ztzrqf__imp__ztzrqf$hlapacksyms691.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztzrzf.text .idata$7.idata$5.idata$4.idata$6 _ztzrzf__imp__ztzrzf$hlapacksyms692.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zung2l.text .idata$7.idata$5.idata$4.idata$6 _zung2l__imp__zung2l$hlapacksyms693.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zung2r.text .idata$7.idata$5.idata$4.idata$6 _zung2r__imp__zung2r$hlapacksyms694.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungbr.text .idata$7.idata$5.idata$4.idata$6 _zungbr__imp__zungbr$hlapacksyms695.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunghr.text .idata$7.idata$5.idata$4.idata$6 _zunghr__imp__zunghr$hlapacksyms696.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungl2.text .idata$7.idata$5.idata$4.idata$6 _zungl2__imp__zungl2$hlapacksyms697.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunglq.text .idata$7.idata$5.idata$4.idata$6 _zunglq__imp__zunglq$hlapacksyms698.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungql.text .idata$7.idata$5.idata$4.idata$6 _zungql__imp__zungql$hlapacksyms699.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungqr.text .idata$7.idata$5.idata$4.idata$6 _zungqr__imp__zungqr$hlapacksyms700.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungr2.text .idata$7.idata$5.idata$4.idata$6 _zungr2__imp__zungr2$hlapacksyms701.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungrq.text .idata$7.idata$5.idata$4.idata$6 _zungrq__imp__zungrq$hlapacksyms702.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungtr.text .idata$7.idata$5.idata$4.idata$6 _zungtr__imp__zungtr$hlapacksyms703.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunm2l.text .idata$7.idata$5.idata$4.idata$6 _zunm2l__imp__zunm2l$hlapacksyms704.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunm2r.text .idata$7.idata$5.idata$4.idata$6 _zunm2r__imp__zunm2r$hlapacksyms705.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmbr.text .idata$7.idata$5.idata$4.idata$6 _zunmbr__imp__zunmbr$hlapacksyms706.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmhr.text .idata$7.idata$5.idata$4.idata$6 _zunmhr__imp__zunmhr$hlapacksyms707.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunml2.text .idata$7.idata$5.idata$4.idata$6 _zunml2__imp__zunml2$hlapacksyms708.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmlq.text .idata$7.idata$5.idata$4.idata$6 _zunmlq__imp__zunmlq$hlapacksyms709.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmql.text .idata$7.idata$5.idata$4.idata$6 _zunmql__imp__zunmql$hlapacksyms710.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmqr.text .idata$7.idata$5.idata$4.idata$6 _zunmqr__imp__zunmqr$hlapacksyms711.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmr2.text .idata$7.idata$5.idata$4.idata$6 _zunmr2__imp__zunmr2$hlapacksyms712.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmr3.text .idata$7.idata$5.idata$4.idata$6 _zunmr3__imp__zunmr3$hlapacksyms713.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmrq.text .idata$7.idata$5.idata$4.idata$6 _zunmrq__imp__zunmrq$hlapacksyms714.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmrz.text .idata$7.idata$5.idata$4.idata$6 _zunmrz__imp__zunmrz$hlapacksyms715.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmtr.text .idata$7.idata$5.idata$4.idata$6 _zunmtr__imp__zunmtr$hlapacksyms716.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zupgtr.text .idata$7.idata$5.idata$4.idata$6 _zupgtr__imp__zupgtr$hlapacksyms717.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zupmtr.text .idata$7.idata$5.idata$4.idata$6 _zupmtr__imp__zupmtr$hlapacksyms718.obj/ 1013176938 0 0 0 536 ` Ljc< .text `.data@.bss.idata$7 .idata$4.idata$5libmwlapack.dll.text.data.bss.idata$7.idata$4.idata$5$tlapacksymsSuiteSparse/UMFPACK/MATLAB/umfpack_test.m0000644001170100242450000001047210711445727016654 0ustar davisfacfunction umfpack_test (nmat) %UMFPACK_TEST for testing umfpack2 (requires UFget) % % Example: % umfpack_test % umfpack_test (100) % runs the first 100 matrices % See also umfpack2 % Copyright 1995-2007 by Timothy A. Davis. index = UFget ; f = find (index.nrows == index.ncols) ; [ignore, i] = sort (index.nrows (f)) ; f = f (i) ; if (nargin < 1) nmat = length (f) ; else nmat = min (nmat, length (f)) ; end nmat = max (nmat, 1) ; f = f (1:nmat) ; Control = umfpack2 ; Control (1) = 0 ; figure (1) clf h = waitbar (0, 'UMFPACK test') ; for k = 1:nmat i = f (k) ; waitbar (k/nmat, h, 'UMFPACK test') ; try fprintf ('\nmatrix: %s %s %d\n', ... index.Group{i}, index.Name{i}, index.nrows(i)) ; Prob = UFget (i) ; A = Prob.A ; n = size (A,1) ; b = rand (1,n) ; c = b' ; %----------------------------------------------------------------------- % symbolic factorization %----------------------------------------------------------------------- [P1, Q1, Fr, Ch, Info] = umfpack2 (A, 'symbolic') ; subplot (2,2,1) spy (A) title ('A') subplot (2,2,2) treeplot (Fr (1:end-1,2)') ; title ('supercolumn etree') %----------------------------------------------------------------------- % P(R\A)Q = LU %----------------------------------------------------------------------- [L,U,P,Q,R,Info] = umfpack2 (A) ; err = lu_normest (P*(R\A)*Q, L, U) ; fprintf ('norm est PR\\AQ-LU: %g relative: %g\n', ... err, err / norm (A,1)) ; subplot (2,2,3) spy (P*A*Q) title ('PAQ') ; cs = Info (57) ; rs = Info (58) ; subplot (2,2,4) hold off try spy (L+U) catch end hold on if (cs > 0) plot ([0 cs n n 0] + .5, [0 cs cs 0 0]+.5, 'c') ; end if (rs > 0) plot ([0 rs rs 0 0] + cs +.5, [cs cs+rs n n cs]+.5, 'r') ; end title ('LU factors') drawnow %----------------------------------------------------------------------- % PAQ = LU %----------------------------------------------------------------------- [L,U,P,Q] = umfpack2 (A) ; err = lu_normest (P*A*Q, L, U) ; fprintf ('norm est PAQ-LU: %g relative: %g\n', ... err, err / norm (A,1)) ; %----------------------------------------------------------------------- % solve %----------------------------------------------------------------------- x1 = b/A ; y1 = A\c ; m1 = norm (b-x1*A) ; m2 = norm (A*y1-c) ; % factor the transpose Control (8) = 2 ; [x, info] = umfpack2 (A', '\', c, Control) ; lunz0 = info (44) + info (45) - info (67) ; r = norm (A'*x-c) ; fprintf (':: %8.2e matlab: %8.2e %8.2e\n', r, m1, m2) ; % factor the original matrix and solve xA=b for ir = 0:4 Control (8) = ir ; [x, info] = umfpack2 (b, '/', A, Control) ; r = norm (b-x*A) ; if (ir == 0) lunz1 = info (44) + info (45) - info (67) ; end fprintf ('%d: %8.2e %d %d\n', ir, r, info (81), info (82)) ; end % factor the original matrix and solve Ax=b for ir = 0:4 Control (8) = ir ; [x, info] = umfpack2 (A, '\', c, Control) ; r = norm (A*x-c) ; fprintf ('%d: %8.2e %d %d\n', ir, r, info (81), info (82)) ; end fprintf (... 'lunz trans %12d no trans: %12d trans/notrans: %10.4f\n', ... lunz0, lunz1, lunz0 / lunz1) ; %----------------------------------------------------------------------- % get the determinant %----------------------------------------------------------------------- det1 = det (A) ; det2 = umfpack2 (A, 'det') ; [det3 dexp3] = umfpack2 (A, 'det') ; err = abs (det1-det2) ; err3 = abs (det1 - (det3 * 10^dexp3)) ; denom = det1 ; if (denom == 0) denom = 1 ; end err = err / denom ; err3 = err3 / denom ; fprintf ('det: %20.12e + (%20.12e)i MATLAB\n', ... real(det1), imag(det1)) ; fprintf ('det: %20.12e + (%20.12e)i umfpack2\n', ... real(det2), imag(det2)) ; fprintf ('det: (%20.12e + (%20.12e)i) * 10^(%g) umfpack2\n', ... real(det3), imag(det3), dexp3) ; fprintf ('diff %g %g\n', err, err3) ; catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end end close (h) ; % close the waitbar SuiteSparse/UMFPACK/MATLAB/Contents.m0000644001170100242450000000274210620401416015747 0ustar davisfac%Contents of the UMFPACK sparse matrix toolbox: % % umfpack2 - computes x=A\b, x=A/b, or lu (A) for a sparse matrix A % umfpack_make - to compile umfpack2 for use in MATLAB % umfpack_install - to compile and install umfpack2 and amd2 for use in MATLAB % umfpack_details - details on all the options for using umfpack2 in MATLAB % umfpack_report - prints optional control settings and statistics % umfpack_demo - a lenghty demo % umfpack_simple - a simple demo % umfpack_btf - factorize A using a block triangular form % umfpack_solve - x = A\b or x = b/A % lu_normest - estimates norm (L*U-A, 1) without forming L*U-A % luflop - given L and U, computes # of flops required to compute them % umfpack_test - for testing umfpack2 (requires UFget) % % Example: % x = umfpack2 (A, '\', b) ; % same as x = A\b, if A square and unsymmetric % % See also these built-in functions: % umfpack the built-in version of UMFPACK % amd symmetric minimum degree ordering % colamd unsymmetric column approx minimum degree ordering % symamd symmetric approx minimum degree ordering, based on colamd % % NOTE: UMFPACK is a built-in function in MATLAB, used in x=A\b. This is the % source code for the built-in umfpack, but the MATLAB function has been renamed % here to umfpack2, to avoid a filename clash with itself. % % Copyright 1995-2007 by Timothy A. Davis. % All Rights Reserved. Type umfpack_details for License. help Contents SuiteSparse/UMFPACK/MATLAB/umfpack_install.m0000644001170100242450000000161510620713536017335 0ustar davisfacfunction umfpack_install %UMFPACK_INSTALL to compile and install umfpack2 and amd2 for use in MATLAB % Your current directory must be UMFPACK/MATLAB for this function to work. % % Example: % umfpack_install % % See also umfpack2, amd2. % Copyright 1995-2007 by Timothy A. Davis. % compile and install UMFPACK umfpack_path = pwd ; addpath (umfpack_path) ; try umfpack_make catch fprintf ('Trying to install with lcc_lib/libmwlapack.lib instead\n') ; umfpack_make ('lcc_lib/libmwlapack.lib') ; end % compile and install AMD cd ../../AMD/MATLAB amd_path = pwd ; addpath (amd_path) ; amd_make ; cd (umfpack_path) fprintf ('Now trying the umfpack_simple demo.\n'); umfpack_simple fprintf ('Added the following directories to the path. You may wish to add\n'); fprintf ('these permanently with the MATLAB pathtool command:\n') ; fprintf ('%s\n', umfpack_path) ; fprintf ('%s\n', amd_path) ; SuiteSparse/UMFPACK/MATLAB/umfpack2.m0000644001170100242450000000431110620401533015654 0ustar davisfacfunction [out1, out2, out3, out4, out5] = umfpack2(in1, in2, in3, in4, in5) %#ok %UMFPACK2 computes x=A\b, x=A/b, or lu (A) for a sparse matrix A % It is also a built-in function in MATLAB, used in x=A\b. % % Example: % % UMFPACK: | MATLAB approximate equivalent: % --------------------------------------------------------------------- % x = umfpack2 (A, '\', b) ; | x = A \ b % | % x = umfpack2 (b, '/', A) ; | x = b / A % | % [L,U,P,Q] = umfpack2 (A) ; | [m,n] = size (A) ; % | I = speye (n) ; % | Q = I (:, colamd (A)) ; % | [L,U,P] = lu (A*Q) ; % | % [L,U,P,Q,R] = umfpack2 (A) ; | [m,n] = size (A) ; % | I = speye (n) ; % | Q = I (:, colamd (A)) ; % | r = full (sum (abs (A), 2)) ; % | r (find (r == 0)) = 1 ; % | R = spdiags (r, 0, m, m) ; % | [L,U,P] = lu ((R\A)*Q) ; % | % [P,Q,F,C] = umfpack2 (A, 'symbolic')| [m,n] = size (A) ; % | I = speye (n) ; % | Q = I (:, colamd (A)) ; % | [count,h,parent,post] = ... % | symbfact (A*Q, 'col') ; % % A must be sparse. It can be complex, singular, and/or rectangular. A must be % square for '/' or '\'. b must be a full real or complex vector. For % [L,U,P,Q,R] = umfpack2 (A), the factorization is L*U = P*(R\A)*Q. If A has a % mostly symmetric nonzero pattern, then replace "colamd" with "amd" in the % MATLAB-equivalent column in the table above. Type umfpack_details for more % information. % % See also: lu_normest, colamd, amd, umfpack. % To use UMFPACK for an arbitrary b, see umfpack_solve. % Copyright 1995-2007 by Timothy A. Davis. help umfpack2 error ('umfpack2 mexFunction not found') ; SuiteSparse/UMFPACK/MATLAB/lu_normest.m0000644001170100242450000000700610620401717016343 0ustar davisfacfunction rho = lu_normest (A, L, U) %LU_NORMEST estimates norm (L*U-A, 1) without forming L*U-A % % Example: % % rho = lu_normest (A, L, U) % % which estimates the computation of the 1-norm: % % rho = norm (A-L*U, 1) % % Authors: William W. Hager, Math Dept., Univ. of Florida % Timothy A. Davis, CISE Dept., Univ. of Florida % Gainesville, FL, 32611, USA. % based on normest1, contributed on November, 1997 % % This code can be quite easily adapted to estimate the 1-norm of any % matrix E, where E itself is dense or not explicitly represented, but the % computation of E (and E') times a vector is easy. In this case, our matrix % of interest is: % % E = A-L*U % % That is, L*U is the LU factorization of A, where A, L and U % are sparse. This code works for dense matrices A and L too, % but it would not be needed in that case, since E is easy to compute % explicitly. For sparse A, L, and U, computing E explicitly would be quite % expensive, and thus normest (A-L*U) would be prohibitive. % % For a detailed description, see Davis, T. A. and Hager, W. W., % Modifying a sparse Cholesky factorization, SIAM J. Matrix Analysis and % Applications, 1999, vol. 20, no. 3, 606-627. % % See also normest % The three places that the matrix-vector multiply E*x is used are highlighted. % Note that E is never formed explicity. % Copyright 1995-2007 by William W. Hager and Timothy A. Davis [m n] = size (A) ; if (m ~= n) % pad A, L, and U with zeros so that they are all square if (m < n) U = [ U ; (sparse (n-m,n)) ] ; L = [ L , (sparse (m,n-m)) ; (sparse (n-m,n)) ] ; A = [ A ; (sparse (n-m,n)) ] ; else U = [ U , (sparse (n,m-n)) ; (sparse (m-n,m)) ] ; L = [ L , (sparse (m,m-n)) ] ; A = [ A , (sparse (m,m-n)) ] ; end end [m n] = size (A) ; %#ok notvisited = ones (m, 1) ; % nonvisited(j) is zero if j is visited, 1 otherwise rho = 0 ; % the global rho for trial = 1:3 % { x = notvisited ./ sum (notvisited) ; rho1 = 0 ; % the current rho for this trial %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE Ex1 = E*x EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ex1 = (A*x) - L*(U*x) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rho2 = norm (Ex1, 1) ; while rho2 > rho1 % { rho1 = rho2 ; y = 2*(Ex1 >= 0) - 1 ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE z = E'*y EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z = (A'*y) - U'*(L'*y) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [zj, j] = max (abs (z .* notvisited)) ; j = j (1) ; if (abs (z (j)) > z'*x) % { x = zeros (m, 1) ; x (j) = 1 ; notvisited (j) = 0 ; else % } { break ; end % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE Ex1 = E*x EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ex1 = (A*x) - L*(U*x) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rho2 = norm (Ex1, 1) ; end % } rho = max (rho, rho1) ; end % } SuiteSparse/UMFPACK/MATLAB/umfpackmex.c0000644001170100242450000011510310617241511016300 0ustar davisfac/* ========================================================================== */ /* === UMFPACK mexFunction ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* MATLAB interface for umfpack. Factor or solve a sparse linear system, returning either the solution x to Ax=b or A'x'=b', or the factorization LU=P(R\A)Q or LU=PAQ. A must be sparse, with nonzero dimensions, but it may be complex, singular, and/or rectangular. b must be a dense n-by-1 vector (real or complex). L is unit lower triangular, U is upper triangular, and R is diagonal. P and Q are permutation matrices (permutations of an identity matrix). The matrix A is scaled, by default. Each row i is divided by r (i), where r (i) is the sum of the absolute values of the entries in that row. The scaled matrix has an infinity norm of 1. The scale factors r (i) are returned in a diagonal sparse matrix. If the factorization is: [L, U, P, Q, R] = umfpack (A) ; then the factorization is L*U = P * (R \ A) * Q This is safer than returning a matrix R such that L*U = P*R*A*Q, because it avoids the division by small entries. If r(i) is subnormal, multiplying by 1/r(i) would result in an IEEE Infinity, but dividing by r(i) is safe. The factorization [L, U, P, Q] = umfpack (A) ; returns LU factors such that L*U = P*A*Q, with no scaling. See umfpack.m, umfpack_details.m, and umfpack.h for details. Note that this mexFunction accesses only the user-callable UMFPACK routines. Thus, is also provides another example of how user C code can access UMFPACK. If NO_TRANSPOSE_FORWARD_SLASH is not defined at compile time, then the forward slash (/) operator acts almost like x = b/A in MATLAB 6.1. It is solved by factorizing the array transpose, and then x = (A.'\b.').' is solved. This is the default behavior (for historical reasons), since factorizing A can behave perform much differently than factorizing its transpose. If NO_TRANSPOSE_FORWARD_SLASH is defined at compile time, then the forward slash operator does not act like x=b/A in MATLAB 6.1. It is solved by factorizing A, and then solving via the transposed L and U matrices. The solution is still x = (A.'\b.').', except that A is factorized instead of A.'. Modified for v4.3.1, Jan 10, 2005: default has been changed to NO_TRANSPOSE_FORWARD_SLASH, to test iterative refinement for b/A. v4.4: added method for computing the determinant. v5.1: port to 64-bit MATLAB */ #define NO_TRANSPOSE_FORWARD_SLASH /* default has changed for v4.3.1 */ #include "UFconfig.h" #include "umfpack.h" #include "mex.h" #include "matrix.h" #include #include #include #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define STRING_MATCH(s1,s2) (strcmp ((s1), (s2)) == 0) #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* ========================================================================== */ /* === error ================================================================ */ /* ========================================================================== */ /* Return an error message */ static void error ( char *s, UF_long A_is_complex, int nargout, mxArray *pargout [ ], double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO], UF_long status, UF_long do_info ) { UF_long i ; double *Out_Info ; if (A_is_complex) { umfpack_zl_report_status (Control, status) ; umfpack_zl_report_info (Control, Info) ; } else { umfpack_dl_report_status (Control, status) ; umfpack_dl_report_info (Control, Info) ; } if (do_info > 0) { /* return Info */ pargout [do_info] = mxCreateDoubleMatrix (1, UMFPACK_INFO, mxREAL) ; Out_Info = mxGetPr (pargout [do_info]) ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Out_Info [i] = Info [i] ; } } mexErrMsgTxt (s) ; } /* ========================================================================== */ /* === UMFPACK ============================================================== */ /* ========================================================================== */ void mexFunction ( int nargout, /* number of outputs */ mxArray *pargout [ ], /* output arguments */ int nargin, /* number of inputs */ const mxArray *pargin [ ] /* input arguments */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], dx, dz, dexp ; double *Lx, *Lz, *Ux, *Uz, *Ax, *Az, *Bx, *Bz, *Xx, *Xz, *User_Control, *p, *q, *Out_Info, *p1, *p2, *p3, *p4, *Ltx, *Ltz, *Rs, *Px, *Qx ; void *Symbolic, *Numeric ; UF_long *Lp, *Li, *Up, *Ui, *Ap, *Ai, *P, *Q, do_solve, lnz, unz, nn, i, transpose, size, do_info, do_numeric, *Front_npivcol, op, k, *Rp, *Ri, *Front_parent, *Chain_start, *Chain_maxrows, *Chain_maxcols, nz, status, nfronts, nchains, *Ltp, *Ltj, *Qinit, print_level, status2, no_scale, *Front_1strow, *Front_leftmostdesc, n_row, n_col, n_inner, sys, ignore1, ignore2, ignore3, A_is_complex, B_is_complex, X_is_complex, *Pp, *Pi, *Qp, *Qi, do_recip, do_det ; mxArray *Amatrix, *Bmatrix, *User_Control_matrix, *User_Qinit ; char *operator, *operation ; mxComplexity Atype, Xtype ; char warning [200] ; #ifndef NO_TRANSPOSE_FORWARD_SLASH UF_long *Cp, *Ci ; double *Cx, *Cz ; #endif /* ---------------------------------------------------------------------- */ /* define the memory manager and printf functions for UMFPACK and AMD */ /* ---------------------------------------------------------------------- */ /* with these settings, the UMFPACK mexFunction can use ../Lib/libumfpack.a * and ../Lib/libamd.a, instead compiling UMFPACK and AMD specifically for * the MATLAB mexFunction. */ amd_malloc = mxMalloc ; amd_free = mxFree ; amd_calloc = mxCalloc ; amd_realloc = mxRealloc ; amd_printf = mexPrintf ; /* The default values for these function pointers are fine. umfpack_hypot = umf_hypot ; umfpack_divcomplex = umf_divcomplex ; */ /* ---------------------------------------------------------------------- */ /* get inputs A, b, and the operation to perform */ /* ---------------------------------------------------------------------- */ User_Control_matrix = (mxArray *) NULL ; User_Qinit = (mxArray *) NULL ; do_info = 0 ; do_solve = FALSE ; do_numeric = TRUE ; transpose = FALSE ; no_scale = FALSE ; do_det = FALSE ; /* find the operator */ op = 0 ; for (i = 0 ; i < nargin ; i++) { if (mxIsChar (pargin [i])) { op = i ; break ; } } if (op > 0) { operator = mxArrayToString (pargin [op]) ; if (STRING_MATCH (operator, "\\")) { /* -------------------------------------------------------------- */ /* matrix left divide, x = A\b */ /* -------------------------------------------------------------- */ /* [x, Info] = umfpack (A, '\', b) ; [x, Info] = umfpack (A, '\', b, Control) ; [x, Info] = umfpack (A, Qinit, '\', b, Control) ; [x, Info] = umfpack (A, Qinit, '\', b) ; */ operation = "x = A\\b" ; do_solve = TRUE ; Amatrix = (mxArray *) pargin [0] ; Bmatrix = (mxArray *) pargin [op+1] ; if (nargout == 2) { do_info = 1 ; } if (op == 2) { User_Qinit = (mxArray *) pargin [1] ; } if ((op == 1 && nargin == 4) || (op == 2 && nargin == 5)) { User_Control_matrix = (mxArray *) pargin [nargin-1] ; } if (nargin < 3 || nargin > 5 || nargout > 2) { mexErrMsgTxt ("wrong number of arguments") ; } } else if (STRING_MATCH (operator, "/")) { /* -------------------------------------------------------------- */ /* matrix right divide, x = b/A */ /* -------------------------------------------------------------- */ /* [x, Info] = umfpack (b, '/', A) ; [x, Info] = umfpack (b, '/', A, Control) ; [x, Info] = umfpack (b, '/', A, Qinit) ; [x, Info] = umfpack (b, '/', A, Qinit, Control) ; */ operation = "x = b/A" ; do_solve = TRUE ; transpose = TRUE ; Amatrix = (mxArray *) pargin [2] ; Bmatrix = (mxArray *) pargin [0] ; if (nargout == 2) { do_info = 1 ; } if (nargin == 5) { User_Qinit = (mxArray *) pargin [3] ; User_Control_matrix = (mxArray *) pargin [4] ; } else if (nargin == 4) { /* Control is k-by-1 where k > 1, Qinit is 1-by-n */ if (mxGetM (pargin [3]) == 1) { User_Qinit = (mxArray *) pargin [3] ; } else { User_Control_matrix = (mxArray *) pargin [3] ; } } else if (nargin < 3 || nargin > 5 || nargout > 2) { mexErrMsgTxt ("wrong number of arguments") ; } } else if (STRING_MATCH (operator, "symbolic")) { /* -------------------------------------------------------------- */ /* symbolic factorization only */ /* -------------------------------------------------------------- */ /* [P Q Fr Ch Info] = umfpack (A, 'symbolic') ; [P Q Fr Ch Info] = umfpack (A, 'symbolic', Control) ; [P Q Fr Ch Info] = umfpack (A, Qinit, 'symbolic') ; [P Q Fr Ch Info] = umfpack (A, Qinit, 'symbolic', Control) ; */ operation = "symbolic factorization" ; do_numeric = FALSE ; Amatrix = (mxArray *) pargin [0] ; if (nargout == 5) { do_info = 4 ; } if (op == 2) { User_Qinit = (mxArray *) pargin [1] ; } if ((op == 1 && nargin == 3) || (op == 2 && nargin == 4)) { User_Control_matrix = (mxArray *) pargin [nargin-1] ; } if (nargin < 2 || nargin > 4 || nargout > 5 || nargout < 4) { mexErrMsgTxt ("wrong number of arguments") ; } } else if (STRING_MATCH (operator, "det")) { /* -------------------------------------------------------------- */ /* compute the determinant */ /* -------------------------------------------------------------- */ /* * [det] = umfpack (A, 'det') ; * [dmantissa dexp] = umfpack (A, 'det') ; */ operation = "determinant" ; do_det = TRUE ; Amatrix = (mxArray *) pargin [0] ; if (nargin > 2 || nargout > 2) { mexErrMsgTxt ("wrong number of arguments") ; } } else { mexErrMsgTxt ("operator must be '/', '\\', or 'symbolic'") ; } mxFree (operator) ; } else if (nargin > 0) { /* ------------------------------------------------------------------ */ /* LU factorization */ /* ------------------------------------------------------------------ */ /* with scaling: [L, U, P, Q, R, Info] = umfpack (A) ; [L, U, P, Q, R, Info] = umfpack (A, Qinit) ; scaling determined by Control settings: [L, U, P, Q, R, Info] = umfpack (A, Control) ; [L, U, P, Q, R, Info] = umfpack (A, Qinit, Control) ; with no scaling: [L, U, P, Q] = umfpack (A) ; [L, U, P, Q] = umfpack (A, Control) ; [L, U, P, Q] = umfpack (A, Qinit) ; [L, U, P, Q] = umfpack (A, Qinit, Control) ; */ operation = "numeric factorization" ; Amatrix = (mxArray *) pargin [0] ; no_scale = nargout <= 4 ; if (nargout == 6) { do_info = 5 ; } if (nargin == 3) { User_Qinit = (mxArray *) pargin [1] ; User_Control_matrix = (mxArray *) pargin [2] ; } else if (nargin == 2) { /* Control is k-by-1 where k > 1, Qinit is 1-by-n */ if (mxGetM (pargin [1]) == 1) { User_Qinit = (mxArray *) pargin [1] ; } else { User_Control_matrix = (mxArray *) pargin [1] ; } } else if (nargin > 3 || nargout > 6 || nargout < 4) { mexErrMsgTxt ("wrong number of arguments") ; } } else { /* ------------------------------------------------------------------ */ /* return default control settings */ /* ------------------------------------------------------------------ */ /* Control = umfpack ; umfpack ; */ if (nargout > 1) { mexErrMsgTxt ("wrong number of arguments") ; } pargout [0] = mxCreateDoubleMatrix (UMFPACK_CONTROL, 1, mxREAL) ; User_Control = mxGetPr (pargout [0]) ; umfpack_dl_defaults (User_Control) ; return ; } /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (mxGetNumberOfDimensions (Amatrix) != 2) { mexErrMsgTxt ("input matrix A must be 2-dimensional") ; } n_row = mxGetM (Amatrix) ; n_col = mxGetN (Amatrix) ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; if (do_solve && n_row != n_col) { mexErrMsgTxt ("input matrix A must square for '\\' or '/'") ; } if (!mxIsSparse (Amatrix)) { mexErrMsgTxt ("input matrix A must be sparse") ; } if (n_row == 0 || n_col == 0) { mexErrMsgTxt ("input matrix A cannot have zero rows or zero columns") ; } /* The real/complex status of A determines which version to use, */ /* (umfpack_dl_* or umfpack_zl_*). */ A_is_complex = mxIsComplex (Amatrix) ; Atype = A_is_complex ? mxCOMPLEX : mxREAL ; Ap = (UF_long *) mxGetJc (Amatrix) ; Ai = (UF_long *) mxGetIr (Amatrix) ; Ax = mxGetPr (Amatrix) ; Az = mxGetPi (Amatrix) ; if (do_solve) { if (n_row != n_col) { mexErrMsgTxt ("A must be square for \\ or /") ; } if (transpose) { if (mxGetM (Bmatrix) != 1 || mxGetN (Bmatrix) != nn) { mexErrMsgTxt ("b has the wrong dimensions") ; } } else { if (mxGetM (Bmatrix) != nn || mxGetN (Bmatrix) != 1) { mexErrMsgTxt ("b has the wrong dimensions") ; } } if (mxGetNumberOfDimensions (Bmatrix) != 2) { mexErrMsgTxt ("input matrix b must be 2-dimensional") ; } if (mxIsSparse (Bmatrix)) { mexErrMsgTxt ("input matrix b cannot be sparse") ; } if (mxGetClassID (Bmatrix) != mxDOUBLE_CLASS) { mexErrMsgTxt ("input matrix b must double precision matrix") ; } B_is_complex = mxIsComplex (Bmatrix) ; Bx = mxGetPr (Bmatrix) ; Bz = mxGetPi (Bmatrix) ; X_is_complex = A_is_complex || B_is_complex ; Xtype = X_is_complex ? mxCOMPLEX : mxREAL ; } /* ---------------------------------------------------------------------- */ /* set the Control parameters */ /* ---------------------------------------------------------------------- */ if (A_is_complex) { umfpack_zl_defaults (Control) ; } else { umfpack_dl_defaults (Control) ; } if (User_Control_matrix) { if (mxGetClassID (User_Control_matrix) != mxDOUBLE_CLASS || mxIsSparse (User_Control_matrix)) { mexErrMsgTxt ("Control must be a dense real matrix") ; } size = UMFPACK_CONTROL ; size = MIN (size, mxGetNumberOfElements (User_Control_matrix)) ; User_Control = mxGetPr (User_Control_matrix) ; for (i = 0 ; i < size ; i++) { Control [i] = User_Control [i] ; } } if (no_scale) { /* turn off scaling for [L, U, P, Q] = umfpack (A) ; * ignoring the input value of Control (24) for the usage * [L, U, P, Q] = umfpack (A, Control) ; */ Control [UMFPACK_SCALE] = UMFPACK_SCALE_NONE ; } if (mxIsNaN (Control [UMFPACK_PRL])) { print_level = UMFPACK_DEFAULT_PRL ; } else { print_level = (UF_long) Control [UMFPACK_PRL] ; } Control [UMFPACK_PRL] = print_level ; /* ---------------------------------------------------------------------- */ /* get Qinit, if present */ /* ---------------------------------------------------------------------- */ if (User_Qinit) { if (mxGetM (User_Qinit) != 1 || mxGetN (User_Qinit) != n_col) { mexErrMsgTxt ("Qinit must be 1-by-n_col") ; } if (mxGetNumberOfDimensions (User_Qinit) != 2) { mexErrMsgTxt ("input Qinit must be 2-dimensional") ; } if (mxIsComplex (User_Qinit)) { mexErrMsgTxt ("input Qinit must not be complex") ; } if (mxGetClassID (User_Qinit) != mxDOUBLE_CLASS) { mexErrMsgTxt ("input Qinit must be a double matrix") ; } if (mxIsSparse (User_Qinit)) { mexErrMsgTxt ("input Qinit must be dense") ; } Qinit = (UF_long *) mxMalloc (n_col * sizeof (UF_long)) ; p = mxGetPr (User_Qinit) ; for (k = 0 ; k < n_col ; k++) { /* convert from 1-based to 0-based indexing */ Qinit [k] = ((UF_long) (p [k])) - 1 ; } } else { /* umfpack_*_qsymbolic will call colamd to get Qinit. This is the */ /* same as calling umfpack_*_symbolic with Qinit set to NULL*/ Qinit = (UF_long *) NULL ; } /* ---------------------------------------------------------------------- */ /* report the inputs A and Qinit */ /* ---------------------------------------------------------------------- */ if (print_level >= 2) { /* print the operation */ mexPrintf ("\numfpack: %s\n", operation) ; } if (A_is_complex) { umfpack_zl_report_control (Control) ; if (print_level >= 3) mexPrintf ("\nA: ") ; (void) umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1, Control) ; if (Qinit) { if (print_level >= 3) mexPrintf ("\nQinit: ") ; (void) umfpack_zl_report_perm (n_col, Qinit, Control) ; } } else { umfpack_dl_report_control (Control) ; if (print_level >= 3) mexPrintf ("\nA: ") ; (void) umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ; if (Qinit) { if (print_level >= 3) mexPrintf ("\nQinit: ") ; (void) umfpack_dl_report_perm (n_col, Qinit, Control) ; } } #ifndef NO_TRANSPOSE_FORWARD_SLASH /* ---------------------------------------------------------------------- */ /* create the array transpose for x = b/A */ /* ---------------------------------------------------------------------- */ if (transpose) { /* note that in this case A will be square (nn = n_row = n_col) */ /* x = (A.'\b.').' will be computed */ /* make sure Ci and Cx exist, avoid malloc of zero-sized arrays. */ nz = MAX (Ap [nn], 1) ; Cp = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Ci = (UF_long *) mxMalloc (nz * sizeof (UF_long)) ; Cx = (double *) mxMalloc (nz * sizeof (double)) ; if (A_is_complex) { Cz = (double *) mxMalloc (nz * sizeof (double)) ; status = umfpack_zl_transpose (nn, nn, Ap, Ai, Ax, Az, (UF_long *) NULL, (UF_long *) NULL, Cp, Ci, Cx, Cz, FALSE) ; } else { status = umfpack_dl_transpose (nn, nn, Ap, Ai, Ax, (UF_long *) NULL, (UF_long *) NULL, Cp, Ci, Cx) ; } if (status != UMFPACK_OK) { error ("transpose of A failed", A_is_complex, nargout, pargout, Control, Info, status, do_info); return ; } /* modify pointers so that C will be factorized and solved, not A */ Ap = Cp ; Ai = Ci ; Ax = Cx ; if (A_is_complex) { Az = Cz ; } } #endif /* ---------------------------------------------------------------------- */ /* perform the symbolic factorization */ /* ---------------------------------------------------------------------- */ if (A_is_complex) { status = umfpack_zl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ; } else { status = umfpack_dl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ; } if (Qinit) { mxFree (Qinit) ; } if (status < 0) { error ("symbolic factorization failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* ---------------------------------------------------------------------- */ /* report the Symbolic object */ /* ---------------------------------------------------------------------- */ if (A_is_complex) { (void) umfpack_zl_report_symbolic (Symbolic, Control) ; } else { (void) umfpack_dl_report_symbolic (Symbolic, Control) ; } /* ---------------------------------------------------------------------- */ /* perform numeric factorization, or just return symbolic factorization */ /* ---------------------------------------------------------------------- */ if (do_numeric) { /* ------------------------------------------------------------------ */ /* perform the numeric factorization */ /* ------------------------------------------------------------------ */ if (A_is_complex) { status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; } else { status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ; } /* ------------------------------------------------------------------ */ /* free the symbolic factorization */ /* ------------------------------------------------------------------ */ if (A_is_complex) { umfpack_zl_free_symbolic (&Symbolic) ; } else { umfpack_dl_free_symbolic (&Symbolic) ; } /* ------------------------------------------------------------------ */ /* report the Numeric object */ /* ------------------------------------------------------------------ */ if (status < 0) { error ("numeric factorization failed", A_is_complex, nargout, pargout, Control, Info, status, do_info); return ; } if (A_is_complex) { (void) umfpack_zl_report_numeric (Numeric, Control) ; } else { (void) umfpack_dl_report_numeric (Numeric, Control) ; } /* ------------------------------------------------------------------ */ /* return the solution, determinant, or the factorization */ /* ------------------------------------------------------------------ */ if (do_solve) { /* -------------------------------------------------------------- */ /* solve Ax=b or A'x'=b', and return just the solution x */ /* -------------------------------------------------------------- */ #ifndef NO_TRANSPOSE_FORWARD_SLASH if (transpose) { /* A.'x.'=b.' gives the same x=b/A as solving A'x'=b' */ /* since C=A.' was factorized, solve with sys = UMFPACK_A */ /* since x and b are vectors, x.' and b.' are implicit */ pargout [0] = mxCreateDoubleMatrix (1, nn, Xtype) ; } else { pargout [0] = mxCreateDoubleMatrix (nn, 1, Xtype) ; } sys = UMFPACK_A ; #else if (transpose) { /* If A is real, A'x=b is the same as A.'x=b. */ /* x and b are vectors, so x and b are the same as x' and b'. */ /* If A is complex, then A.'x.'=b.' gives the same solution x */ /* as the complex conjugate transpose. If we used the A'x=b */ /* option in umfpack_*_solve, we would have to form b' on */ /* input and x' on output (negating the imaginary part). */ /* We can save this work by just using the A.'x=b option in */ /* umfpack_*_solve. Then, forming x.' and b.' is implicit, */ /* since x and b are just vectors anyway. */ /* In both cases, the system to solve is A.'x=b */ pargout [0] = mxCreateDoubleMatrix (1, nn, Xtype) ; sys = UMFPACK_Aat ; } else { pargout [0] = mxCreateDoubleMatrix (nn, 1, Xtype) ; sys = UMFPACK_A ; } #endif /* -------------------------------------------------------------- */ /* print the right-hand-side, B */ /* -------------------------------------------------------------- */ if (print_level >= 3) mexPrintf ("\nright-hand side, b: ") ; if (B_is_complex) { (void) umfpack_zl_report_vector (nn, Bx, Bz, Control) ; } else { (void) umfpack_dl_report_vector (nn, Bx, Control) ; } /* -------------------------------------------------------------- */ /* solve the system */ /* -------------------------------------------------------------- */ Xx = mxGetPr (pargout [0]) ; Xz = mxGetPi (pargout [0]) ; status2 = UMFPACK_OK ; if (A_is_complex) { if (!B_is_complex) { /* umfpack_zl_solve expects a complex B */ Bz = (double *) mxCalloc (nn, sizeof (double)) ; } status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ; if (!B_is_complex) { mxFree (Bz) ; } } else { if (B_is_complex) { /* Ax=b when b is complex and A is sparse can be split */ /* into two systems, A*xr=br and A*xi=bi, where r denotes */ /* the real part and i the imaginary part of x and b. */ status2 = umfpack_dl_solve (sys, Ap, Ai, Ax, Xz, Bz, Numeric, Control, Info) ; } status = umfpack_dl_solve (sys, Ap, Ai, Ax, Xx, Bx, Numeric, Control, Info) ; } #ifndef NO_TRANSPOSE_FORWARD_SLASH /* -------------------------------------------------------------- */ /* free the transposed matrix C */ /* -------------------------------------------------------------- */ if (transpose) { mxFree (Cp) ; mxFree (Ci) ; mxFree (Cx) ; if (A_is_complex) { mxFree (Cz) ; } } #endif /* -------------------------------------------------------------- */ /* free the Numeric object */ /* -------------------------------------------------------------- */ if (A_is_complex) { umfpack_zl_free_numeric (&Numeric) ; } else { umfpack_dl_free_numeric (&Numeric) ; } /* -------------------------------------------------------------- */ /* check error status */ /* -------------------------------------------------------------- */ if (status < 0 || status2 < 0) { mxDestroyArray (pargout [0]) ; error ("solve failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* -------------------------------------------------------------- */ /* print the solution, X */ /* -------------------------------------------------------------- */ if (print_level >= 3) mexPrintf ("\nsolution, x: ") ; if (X_is_complex) { (void) umfpack_zl_report_vector (nn, Xx, Xz, Control) ; } else { (void) umfpack_dl_report_vector (nn, Xx, Control) ; } /* -------------------------------------------------------------- */ /* warn about singular or near-singular matrices */ /* -------------------------------------------------------------- */ /* no warning is given if Control (1) is zero */ if (Control [UMFPACK_PRL] >= 1) { if (status == UMFPACK_WARNING_singular_matrix) { sprintf (warning, "matrix is singular\n" "Try increasing Control (%d) and Control (%d).\n" "(Suppress this warning with Control (%d) = 0.)\n", 1+UMFPACK_PIVOT_TOLERANCE, 1+UMFPACK_SYM_PIVOT_TOLERANCE, 1+UMFPACK_PRL) ; mexWarnMsgTxt (warning) ; } else if (Info [UMFPACK_RCOND] < DBL_EPSILON) { sprintf (warning, "matrix is nearly singular, rcond = %g\n" "Try increasing Control (%d) and Control (%d).\n" "(Suppress this warning with Control (%d) = 0.)\n", Info [UMFPACK_RCOND], 1+UMFPACK_PIVOT_TOLERANCE, 1+UMFPACK_SYM_PIVOT_TOLERANCE, 1+UMFPACK_PRL) ; mexWarnMsgTxt (warning) ; } } } else if (do_det) { /* -------------------------------------------------------------- */ /* get the determinant */ /* -------------------------------------------------------------- */ if (nargout == 2) { /* [det dexp] = umfpack (A, 'det') ; * return determinant in the form det * 10^dexp */ p = &dexp ; } else { /* [det] = umfpack (A, 'det') ; * return determinant as a single scalar (overflow or * underflow is much more likely) */ p = (double *) NULL ; } if (A_is_complex) { status = umfpack_zl_get_determinant (&dx, &dz, p, Numeric, Info) ; umfpack_zl_free_numeric (&Numeric) ; } else { status = umfpack_dl_get_determinant (&dx, p, Numeric, Info) ; umfpack_dl_free_numeric (&Numeric) ; dz = 0 ; } if (status < 0) { error ("extracting LU factors failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; } if (A_is_complex) { pargout [0] = mxCreateDoubleMatrix (1, 1, mxCOMPLEX) ; p = mxGetPr (pargout [0]) ; *p = dx ; p = mxGetPi (pargout [0]) ; *p = dz ; } else { pargout [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; p = mxGetPr (pargout [0]) ; *p = dx ; } if (nargout == 2) { pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; p = mxGetPr (pargout [1]) ; *p = dexp ; } } else { /* -------------------------------------------------------------- */ /* get L, U, P, Q, and r */ /* -------------------------------------------------------------- */ if (A_is_complex) { status = umfpack_zl_get_lunz (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric) ; } else { status = umfpack_dl_get_lunz (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric) ; } if (status < 0) { if (A_is_complex) { umfpack_zl_free_numeric (&Numeric) ; } else { umfpack_dl_free_numeric (&Numeric) ; } error ("extracting LU factors failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* avoid malloc of zero-sized arrays */ lnz = MAX (lnz, 1) ; unz = MAX (unz, 1) ; /* get temporary space, for the *** ROW *** form of L */ Ltp = (UF_long *) mxMalloc ((n_row+1) * sizeof (UF_long)) ; Ltj = (UF_long *) mxMalloc (lnz * sizeof (UF_long)) ; Ltx = (double *) mxMalloc (lnz * sizeof (double)) ; if (A_is_complex) { Ltz = (double *) mxMalloc (lnz * sizeof (double)) ; } else { Ltz = (double *) NULL ; } /* create permanent copy of the output matrix U */ pargout [1] = mxCreateSparse (n_inner, n_col, unz, Atype) ; Up = (UF_long *) mxGetJc (pargout [1]) ; Ui = (UF_long *) mxGetIr (pargout [1]) ; Ux = mxGetPr (pargout [1]) ; Uz = mxGetPi (pargout [1]) ; /* temporary space for the integer permutation vectors */ P = (UF_long *) mxMalloc (n_row * sizeof (UF_long)) ; Q = (UF_long *) mxMalloc (n_col * sizeof (UF_long)) ; /* get scale factors, if requested */ status2 = UMFPACK_OK ; if (!no_scale) { /* create a diagonal sparse matrix for the scale factors */ pargout [4] = mxCreateSparse (n_row, n_row, n_row, mxREAL) ; Rp = (UF_long *) mxGetJc (pargout [4]) ; Ri = (UF_long *) mxGetIr (pargout [4]) ; for (i = 0 ; i < n_row ; i++) { Rp [i] = i ; Ri [i] = i ; } Rp [n_row] = n_row ; Rs = mxGetPr (pargout [4]) ; } else { Rs = (double *) NULL ; } /* get Lt, U, P, Q, and Rs from the numeric object */ if (A_is_complex) { status = umfpack_zl_get_numeric (Ltp, Ltj, Ltx, Ltz, Up, Ui, Ux, Uz, P, Q, (double *) NULL, (double *) NULL, &do_recip, Rs, Numeric) ; umfpack_zl_free_numeric (&Numeric) ; } else { status = umfpack_dl_get_numeric (Ltp, Ltj, Ltx, Up, Ui, Ux, P, Q, (double *) NULL, &do_recip, Rs, Numeric) ; umfpack_dl_free_numeric (&Numeric) ; } /* for the mexFunction, -DNRECIPROCAL must be set, * so do_recip must be FALSE */ if (status < 0 || status2 < 0 || do_recip) { mxFree (Ltp) ; mxFree (Ltj) ; mxFree (Ltx) ; if (Ltz) mxFree (Ltz) ; mxFree (P) ; mxFree (Q) ; mxDestroyArray (pargout [1]) ; error ("extracting LU factors failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* create sparse permutation matrix for P */ pargout [2] = mxCreateSparse (n_row, n_row, n_row, mxREAL) ; Pp = (UF_long *) mxGetJc (pargout [2]) ; Pi = (UF_long *) mxGetIr (pargout [2]) ; Px = mxGetPr (pargout [2]) ; for (k = 0 ; k < n_row ; k++) { Pp [k] = k ; Px [k] = 1 ; Pi [P [k]] = k ; } Pp [n_row] = n_row ; /* create sparse permutation matrix for Q */ pargout [3] = mxCreateSparse (n_col, n_col, n_col, mxREAL) ; Qp = (UF_long *) mxGetJc (pargout [3]) ; Qi = (UF_long *) mxGetIr (pargout [3]) ; Qx = mxGetPr (pargout [3]) ; for (k = 0 ; k < n_col ; k++) { Qp [k] = k ; Qx [k] = 1 ; Qi [k] = Q [k] ; } Qp [n_col] = n_col ; /* permanent copy of L */ pargout [0] = mxCreateSparse (n_row, n_inner, lnz, Atype) ; Lp = (UF_long *) mxGetJc (pargout [0]) ; Li = (UF_long *) mxGetIr (pargout [0]) ; Lx = mxGetPr (pargout [0]) ; Lz = mxGetPi (pargout [0]) ; /* convert L from row form to column form */ if (A_is_complex) { /* non-conjugate array transpose */ status = umfpack_zl_transpose (n_inner, n_row, Ltp, Ltj, Ltx, Ltz, (UF_long *) NULL, (UF_long *) NULL, Lp, Li, Lx, Lz, FALSE) ; } else { status = umfpack_dl_transpose (n_inner, n_row, Ltp, Ltj, Ltx, (UF_long *) NULL, (UF_long *) NULL, Lp, Li, Lx) ; } mxFree (Ltp) ; mxFree (Ltj) ; mxFree (Ltx) ; if (Ltz) mxFree (Ltz) ; if (status < 0) { mxFree (P) ; mxFree (Q) ; mxDestroyArray (pargout [0]) ; mxDestroyArray (pargout [1]) ; mxDestroyArray (pargout [2]) ; mxDestroyArray (pargout [3]) ; error ("constructing L failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* -------------------------------------------------------------- */ /* print L, U, P, and Q */ /* -------------------------------------------------------------- */ if (A_is_complex) { if (print_level >= 3) mexPrintf ("\nL: ") ; (void) umfpack_zl_report_matrix (n_row, n_inner, Lp, Li, Lx, Lz, 1, Control) ; if (print_level >= 3) mexPrintf ("\nU: ") ; (void) umfpack_zl_report_matrix (n_inner, n_col, Up, Ui, Ux, Uz, 1, Control) ; if (print_level >= 3) mexPrintf ("\nP: ") ; (void) umfpack_zl_report_perm (n_row, P, Control) ; if (print_level >= 3) mexPrintf ("\nQ: ") ; (void) umfpack_zl_report_perm (n_col, Q, Control) ; } else { if (print_level >= 3) mexPrintf ("\nL: ") ; (void) umfpack_dl_report_matrix (n_row, n_inner, Lp, Li, Lx, 1, Control) ; if (print_level >= 3) mexPrintf ("\nU: ") ; (void) umfpack_dl_report_matrix (n_inner, n_col, Up, Ui, Ux, 1, Control) ; if (print_level >= 3) mexPrintf ("\nP: ") ; (void) umfpack_dl_report_perm (n_row, P, Control) ; if (print_level >= 3) mexPrintf ("\nQ: ") ; (void) umfpack_dl_report_perm (n_col, Q, Control) ; } mxFree (P) ; mxFree (Q) ; } } else { /* ------------------------------------------------------------------ */ /* return the symbolic factorization */ /* ------------------------------------------------------------------ */ Q = (UF_long *) mxMalloc (n_col * sizeof (UF_long)) ; P = (UF_long *) mxMalloc (n_row * sizeof (UF_long)) ; Front_npivcol = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Front_parent = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Front_1strow = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Front_leftmostdesc = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Chain_start = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Chain_maxrows = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; Chain_maxcols = (UF_long *) mxMalloc ((nn+1) * sizeof (UF_long)) ; if (A_is_complex) { status = umfpack_zl_get_symbolic (&ignore1, &ignore2, &ignore3, &nz, &nfronts, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; umfpack_zl_free_symbolic (&Symbolic) ; } else { status = umfpack_dl_get_symbolic (&ignore1, &ignore2, &ignore3, &nz, &nfronts, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; umfpack_dl_free_symbolic (&Symbolic) ; } if (status < 0) { mxFree (P) ; mxFree (Q) ; mxFree (Front_npivcol) ; mxFree (Front_parent) ; mxFree (Front_1strow) ; mxFree (Front_leftmostdesc) ; mxFree (Chain_start) ; mxFree (Chain_maxrows) ; mxFree (Chain_maxcols) ; error ("extracting symbolic factors failed", A_is_complex, nargout, pargout, Control, Info, status, do_info) ; return ; } /* create sparse permutation matrix for P */ pargout [0] = mxCreateSparse (n_row, n_row, n_row, mxREAL) ; Pp = (UF_long *) mxGetJc (pargout [0]) ; Pi = (UF_long *) mxGetIr (pargout [0]) ; Px = mxGetPr (pargout [0]) ; for (k = 0 ; k < n_row ; k++) { Pp [k] = k ; Px [k] = 1 ; Pi [P [k]] = k ; } Pp [n_row] = n_row ; /* create sparse permutation matrix for Q */ pargout [1] = mxCreateSparse (n_col, n_col, n_col, mxREAL) ; Qp = (UF_long *) mxGetJc (pargout [1]) ; Qi = (UF_long *) mxGetIr (pargout [1]) ; Qx = mxGetPr (pargout [1]) ; for (k = 0 ; k < n_col ; k++) { Qp [k] = k ; Qx [k] = 1 ; Qi [k] = Q [k] ; } Qp [n_col] = n_col ; /* create Fr */ pargout [2] = mxCreateDoubleMatrix (nfronts+1, 4, mxREAL) ; p1 = mxGetPr (pargout [2]) ; p2 = p1 + nfronts + 1 ; p3 = p2 + nfronts + 1 ; p4 = p3 + nfronts + 1 ; for (i = 0 ; i <= nfronts ; i++) { /* convert parent, 1strow, and leftmostdesc to 1-based */ p1 [i] = (double) (Front_npivcol [i]) ; p2 [i] = (double) (Front_parent [i] + 1) ; p3 [i] = (double) (Front_1strow [i] + 1) ; p4 [i] = (double) (Front_leftmostdesc [i] + 1) ; } /* create Ch */ pargout [3] = mxCreateDoubleMatrix (nchains+1, 3, mxREAL) ; p1 = mxGetPr (pargout [3]) ; p2 = p1 + nchains + 1 ; p3 = p2 + nchains + 1 ; for (i = 0 ; i < nchains ; i++) { p1 [i] = (double) (Chain_start [i] + 1) ; /* convert to 1-based */ p2 [i] = (double) (Chain_maxrows [i]) ; p3 [i] = (double) (Chain_maxcols [i]) ; } p1 [nchains] = Chain_start [nchains] + 1 ; p2 [nchains] = 0 ; p3 [nchains] = 0 ; mxFree (P) ; mxFree (Q) ; mxFree (Front_npivcol) ; mxFree (Front_parent) ; mxFree (Front_1strow) ; mxFree (Front_leftmostdesc) ; mxFree (Chain_start) ; mxFree (Chain_maxrows) ; mxFree (Chain_maxcols) ; } /* ---------------------------------------------------------------------- */ /* report Info */ /* ---------------------------------------------------------------------- */ if (A_is_complex) { umfpack_zl_report_info (Control, Info) ; } else { umfpack_dl_report_info (Control, Info) ; } if (do_info > 0) { /* return Info */ pargout [do_info] = mxCreateDoubleMatrix (1, UMFPACK_INFO, mxREAL) ; Out_Info = mxGetPr (pargout [do_info]) ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Out_Info [i] = Info [i] ; } } } SuiteSparse/UMFPACK/MATLAB/luflop.m0000644001170100242450000000145510620402005015446 0ustar davisfacfunction f = luflop (L, U) %#ok %LUFLOP given L and U, computes # of flops required to compute them % % Example: % f = luflop (L, U) % % Given an LU factorization, compute how many flops took to compute it. This % is the same as (assuming U has a zero-free diagonal): % % Lnz = full (sum (spones (L))) - 1 ; % Unz = full (sum (spones (U')))' - 1 ; % f = 2*Lnz*Unz + sum (Lnz) ; % % except that no extra workspace is allocated for spones (L) and spones (U). % L and U must be sparse. % % Note: the above expression has a subtle undercount when exact numerical % cancelation occurs. Try [L,U,P] = lu (sparse (ones (10))) and then % luflop (L,U). % % See also LU % Copyright 1995-2007 by Timothy A. Davis. help luflop error ('luflop mexFunction not found! Use umfpack_make to compile luflop.') ; SuiteSparse/UMFPACK/MATLAB/umfpack_btf.m0000644001170100242450000001105310711673060016435 0ustar davisfacfunction [x, info] = umfpack_btf (A, b, Control) %UMFPACK_BTF factorize A using a block triangular form % % Example: % x = umfpack_btf (A, b, Control) % % solve Ax=b by first permuting the matrix A to block triangular form via dmperm % and then using UMFPACK to factorize each diagonal block. Adjacent 1-by-1 % blocks are merged into a single upper triangular block, and solved via % MATLAB's \ operator. The Control parameter is optional (Type umfpack_details % and umfpack_report for details on its use). A must be square. % % See also umfpack, umfpack2, umfpack_details, dmperm % Copyright 1995-2007 by Timothy A. Davis. if (nargin < 2) help umfpack_btf error ('Usage: x = umfpack_btf (A, b, Control)') ; end [m n] = size (A) ; if (m ~= n) help umfpack_btf error ('umfpack_btf: A must be square') ; end m1 = size (b,1) ; if (m1 ~= n) help umfpack_btf error ('umfpack_btf: b has the wrong dimensions') ; end if (nargin < 3) Control = umfpack2 ; end %------------------------------------------------------------------------------- % find the block triangular form %------------------------------------------------------------------------------- % dmperm built-in may segfault in MATLAB 7.4 or earlier; fixed in MATLAB 7.5 % since dmperm now uses CSparse [p,q,r] = dmperm (A) ; nblocks = length (r) - 1 ; info = [0 0 0] ; % [nnz(L), nnz(U), nnz(F)], optional 2nd output %------------------------------------------------------------------------------- % solve the system %------------------------------------------------------------------------------- if (nblocks == 1 | sprank (A) < n) %#ok %--------------------------------------------------------------------------- % matrix is irreducible or structurally singular %--------------------------------------------------------------------------- [x info2] = umfpack2 (A, '\', b, Control) ; info = [info2(78) info2(79) 0] ; else %--------------------------------------------------------------------------- % A (p,q) is in block triangular form %--------------------------------------------------------------------------- b = b (p,:) ; A = A (p,q) ; x = zeros (size (b)) ; %--------------------------------------------------------------------------- % merge adjacent singletons into a single upper triangular block %--------------------------------------------------------------------------- [r, nblocks, is_triangular] = merge_singletons (r) ; %--------------------------------------------------------------------------- % solve the system: x (q) = A\b %--------------------------------------------------------------------------- for k = nblocks:-1:1 % get the kth block k1 = r (k) ; k2 = r (k+1) - 1 ; % solve the system [x2 info2] = solver (A (k1:k2, k1:k2), b (k1:k2,:), ... is_triangular (k), Control) ; x (k1:k2,:) = x2 ; % off-diagonal block back substitution F2 = A (1:k1-1, k1:k2) ; b (1:k1-1,:) = b (1:k1-1,:) - F2 * x (k1:k2,:) ; info (1:2) = info (1:2) + info2 (1:2) ; info (3) = info (3) + nnz (F2) ; end x (q,:) = x ; end %------------------------------------------------------------------------------- % merge_singletons %------------------------------------------------------------------------------- function [r, nblocks, is_triangular] = merge_singletons (r) % % Given r from [p,q,r] = dmperm (A), where A is square, return a modified r that % reflects the merger of adjacent singletons into a single upper triangular % block. is_triangular (k) is 1 if the kth block is upper triangular. nblocks % is the number of new blocks. nblocks = length (r) - 1 ; bsize = r (2:nblocks+1) - r (1:nblocks) ; t = [0 (bsize == 1)] ; z = (t (1:nblocks) == 0 & t (2:nblocks+1) == 1) | t (2:nblocks+1) == 0 ; y = [(find (z)) nblocks+1] ; r = r (y) ; nblocks = length (y) - 1 ; is_triangular = y (2:nblocks+1) - y (1:nblocks) > 1 ; %------------------------------------------------------------------------------- % solve Ax=b, but check for small and/or triangular systems %------------------------------------------------------------------------------- function [x, info] = solver (A, b, is_triangular, Control) if (is_triangular) % back substitution only x = A \ b ; info = [nnz(A) 0 0] ; elseif (size (A,1) < 4) % a very small matrix, solve it as a dense linear system x = full (A) \ b ; n = size (A,1) ; info = [(n^2+n)/2 (n^2+n)/2 0] ; else % solve it as a sparse linear system [x info] = umfpack_solve (A, '\', b, Control) ; end SuiteSparse/UMFPACK/MATLAB/umfpack_simple.m.out0000644001170100242450000000203310711435546017764 0ustar davisfacumfpack_simple UMFPACK_SIMPLE a simple demo Example: umfpack_simple Copyright 1995-2007 by Timothy A. Davis. UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. UMFPACK is is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. A = 2 3 0 0 0 3 0 4 0 6 0 -1 -3 2 0 0 0 1 0 0 0 4 2 0 1 b = 8 45 -3 3 19 Solution to Ax=b via UMFPACK: x1 = umfpack2 (A, '\', b) x1 = 1.0000 2.0000 3.0000 4.0000 5.0000 Solution to Ax=b via MATLAB: x2 = A\b x2 = 1.0000 2.0000 3.0000 4.0000 5.0000 norm (x1-x2) should be small: 1.28037e-15 Type 'umfpack_demo' for a full demo of UMFPACK diary off SuiteSparse/UMFPACK/MATLAB/GNUmakefile0000644001170100242450000002003710617241612016051 0ustar davisfac#------------------------------------------------------------------------------- # UMFPACK GNUmakefile for the UMFPACK MATLAB mexFunction (GNU "make" only) #------------------------------------------------------------------------------- default: umfpack2 luflop include ../../UFconfig/UFconfig.mk I = -I../Include -I../Source -I../../AMD/Include -I../../UFconfig MX = $(MEX) $(I) #------------------------------------------------------------------------------- # source files #------------------------------------------------------------------------------- # non-user-callable umf_*.[ch] files: UMFCH = umf_assemble umf_blas3_update \ umf_build_tuples umf_create_element \ umf_dump umf_extend_front umf_garbage_collection \ umf_get_memory umf_init_front umf_kernel \ umf_kernel_init umf_kernel_wrapup \ umf_local_search umf_lsolve umf_ltsolve \ umf_mem_alloc_element umf_mem_alloc_head_block \ umf_mem_alloc_tail_block umf_mem_free_tail_block \ umf_mem_init_memoryspace \ umf_report_vector umf_row_search umf_scale_column \ umf_set_stats umf_solve umf_symbolic_usage umf_transpose \ umf_tuple_lengths umf_usolve umf_utsolve umf_valid_numeric \ umf_valid_symbolic umf_grow_front umf_start_front umf_2by2 \ umf_store_lu umf_scale # non-user-callable umf_*.[ch] files, int/UF_long versions only (no real/complex): UMFINT = umf_analyze umf_apply_order umf_colamd umf_free umf_fsize \ umf_is_permutation umf_malloc umf_realloc umf_report_perm \ umf_singletons # non-user-callable and user-callable amd_*.[ch] files (int/UF_long versions only): AMD = amd_aat amd_1 amd_2 amd_dump amd_postorder amd_post_tree amd_defaults \ amd_order amd_control amd_info amd_valid amd_preprocess amd_global # non-user-callable, created from umf_ltsolve.c, umf_utsolve.c, # umf_triplet.c, and umf_assemble.c , with int/UF_long and real/complex versions: UMF_CREATED = umf_lhsolve umf_uhsolve umf_triplet_map_nox \ umf_triplet_nomap_x umf_triplet_nomap_nox umf_triplet_map_x \ umf_assemble_fixq umf_store_lu_drop # non-user-callable, int/UF_long and real/complex versions: UMF = $(UMF_CREATED) $(UMFCH) # user-callable umfpack_*.[ch] files (int/UF_long and real/complex): UMFPACK = umfpack_col_to_triplet umfpack_defaults umfpack_free_numeric \ umfpack_free_symbolic umfpack_get_numeric umfpack_get_lunz \ umfpack_get_symbolic umfpack_get_determinant umfpack_numeric \ umfpack_qsymbolic umfpack_report_control umfpack_report_info \ umfpack_report_matrix umfpack_report_numeric umfpack_report_perm \ umfpack_report_status umfpack_report_symbolic umfpack_report_triplet \ umfpack_report_vector umfpack_solve umfpack_symbolic \ umfpack_transpose umfpack_triplet_to_col umfpack_scale \ umfpack_load_numeric umfpack_save_numeric \ umfpack_load_symbolic umfpack_save_symbolic # user-callable, created from umfpack_solve.c (umfpack_wsolve.h exists, though): # with int/UF_long and real/complex versions: UMFPACKW = umfpack_wsolve USER = $(UMFPACKW) $(UMFPACK) # user-callable, only one version for int/UF_long, real/complex, *.[ch] files: GENERIC = umfpack_timer umfpack_tictoc umfpack_global #------------------------------------------------------------------------------- # include files: #------------------------------------------------------------------------------- AMDH = ../../AMD/Include/amd_internal.h ../../AMD/Include/amd.h \ ../../UFconfig/UFconfig.h INC1 = umf_config.h umf_version.h umf_internal.h umf_triplet.h INC = ../Include/umfpack.h \ $(addprefix ../Source/, $(INC1)) \ $(addprefix ../Source/, $(addsuffix .h,$(UMFCH))) \ $(addprefix ../Source/, $(addsuffix .h,$(UMFINT))) \ $(addprefix ../Include/, $(addsuffix .h,$(USER))) \ $(addprefix ../Include/, $(addsuffix .h,$(GENERIC))) \ $(AMDH) #------------------------------------------------------------------------------- # Create the umfpack and amd mexFunctions for MATLAB (int versions only) #------------------------------------------------------------------------------- MEXI = $(addsuffix .o, $(subst umf_,umf_m_,$(UMFINT))) MEXDI = $(addsuffix .o, $(subst umf_,umf_md_,$(UMF)) $(subst umfpack_,umfpack_md_,$(USER))) MEXZI = $(addsuffix .o, $(subst umf_,umf_mz_,$(UMF)) $(subst umfpack_,umfpack_mz_,$(USER)) ) MEXAMD = $(addsuffix .o, $(subst amd_,amd_m_,$(AMD))) MEXGN = $(addsuffix .o, $(subst umfpack_,umfpack_m_,$(GENERIC))) MEXUMFPACK = $(MEXI) $(MEXDI) $(MEXZI) $(MEXGN) # Note that mex has no "-o" option, thus the need for $(MV) commands. # If it did, then the rules would be much simpler: # $(MX) -DDLONG -c $< -o $@ #---------------------------------------- # integer-only routines (no real/complex): #---------------------------------------- amd_m_%.o: ../../AMD/Source/amd_%.c $(AMDH) $(MX) -DDLONG -c $< - $(MV) amd_$*.o $@ umf_m_%.o: ../Source/umf_%.c $(INC) $(MX) -DDLONG -c $< - $(MV) umf_$*.o $@ #---------------------------------------- # Double precision, int version, for MATLAB #---------------------------------------- umf_md_%.o: ../Source/umf_%.c $(INC) $(MX) -DDLONG -c $< - $(MV) umf_$*.o $@ umf_md_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(MX) -DDLONG -DCONJUGATE_SOLVE -c $< - $(MV) umf_$*tsolve.o $@ umf_md_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(MX) -DDLONG -DDO_MAP -DDO_VALUES -c $< - $(MV) umf_triplet.o $@ umf_md_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(MX) -DDLONG -DDO_MAP -c $< - $(MV) umf_triplet.o $@ umf_md_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(MX) -DDLONG -DDO_VALUES -c $< - $(MV) umf_triplet.o $@ umf_md_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(MX) -DDLONG -c $< - $(MV) umf_triplet.o $@ umf_md_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(MX) -DDLONG -DFIXQ -c $< - $(MV) umf_assemble.o $@ umf_md_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(MX) -DDLONG -DDROP -c $< - $(MV) umf_store_lu.o $@ umfpack_md_wsolve.o: ../Source/umfpack_solve.c $(INC) $(MX) -DDLONG -DWSOLVE -c $< - $(MV) umfpack_solve.o $@ umfpack_md_%.o: ../Source/umfpack_%.c $(INC) $(MX) -DDLONG -c $< - $(MV) umfpack_$*.o $@ #---------------------------------------- # Complex double precision, int version, for MATLAB #---------------------------------------- umf_mz_%.o: ../Source/umf_%.c $(INC) $(MX) -DZLONG -c $< - $(MV) umf_$*.o $@ umf_mz_%hsolve.o: ../Source/umf_%tsolve.c $(INC) $(MX) -DZLONG -DCONJUGATE_SOLVE -c $< - $(MV) umf_$*tsolve.o $@ umf_mz_triplet_map_x.o: ../Source/umf_triplet.c $(INC) $(MX) -DZLONG -DDO_MAP -DDO_VALUES -c $< - $(MV) umf_triplet.o $@ umf_mz_triplet_map_nox.o: ../Source/umf_triplet.c $(INC) $(MX) -DZLONG -DDO_MAP -c $< - $(MV) umf_triplet.o $@ umf_mz_triplet_nomap_x.o: ../Source/umf_triplet.c $(INC) $(MX) -DZLONG -DDO_VALUES -c $< - $(MV) umf_triplet.o $@ umf_mz_triplet_nomap_nox.o: ../Source/umf_triplet.c $(INC) $(MX) -DZLONG -c $< - $(MV) umf_triplet.o $@ umf_mz_assemble_fixq.o: ../Source/umf_assemble.c $(INC) $(MX) -DZLONG -DFIXQ -c $< - $(MV) umf_assemble.o $@ umf_mz_store_lu_drop.o: ../Source/umf_store_lu.c $(INC) $(MX) -DZLONG -DDROP -c $< - $(MV) umf_store_lu.o $@ umfpack_mz_wsolve.o: ../Source/umfpack_solve.c $(INC) $(MX) -DZLONG -DWSOLVE -c $< - $(MV) umfpack_solve.o $@ umfpack_mz_%.o: ../Source/umfpack_%.c $(INC) $(MX) -DZLONG -c $< - $(MV) umfpack_$*.o $@ #---------------------------------------- # Generic routines for MATLAB #---------------------------------------- umfpack_m_timer.o: ../Source/umfpack_timer.c $(INC) $(MX) -c $< - $(MV) umfpack_timer.o $@ umfpack_m_tictoc.o: ../Source/umfpack_tictoc.c $(INC) $(MX) -c $< - $(MV) umfpack_tictoc.o $@ umfpack_m_global.o: ../Source/umfpack_global.c $(INC) $(MX) -c $< - $(MV) umfpack_global.o $@ #---------------------------------------- # umfpack mexFunction #---------------------------------------- umfpack2: umfpackmex.c $(MEXUMFPACK) $(MEXAMD) $(MX) -output umfpack2 umfpackmex.c $(MEXUMFPACK) $(MEXAMD) luflop: luflopmex.c $(MX) -output luflop luflopmex.c #------------------------------------------------------------------------------- # Remove all but the files in the original distribution #------------------------------------------------------------------------------- purge: clean - $(RM) *.mex* clean: - $(RM) $(CLEAN) SuiteSparse/UMFPACK/MATLAB/west0067_triplet0000644001170100242450000000731010301472773016767 0ustar davisfac 5 1 -0.278842 6 1 -0.268019 7 1 -0.232372 8 1 -0.157508 9 1 -0.0632598 25 1 0.139421 26 1 0.134009 27 1 0.116186 28 1 0.0787541 29 1 0.0316299 5 2 -0.8 21 2 -0.915953 25 2 0.4 61 2 1 6 3 -0.8 22 3 -0.915953 26 3 0.4 61 3 1 7 4 -0.8 23 4 -0.915953 27 4 0.4 61 4 1 8 5 -0.8 24 5 -0.915953 28 5 0.4 61 5 1 9 6 -0.8 29 6 0.4 61 6 1 5 7 0.134462 6 7 0.117568 7 7 0.0885926 8 7 0.0475944 9 7 0.0117829 1 8 -0.834182 5 8 0.4 57 8 1 2 9 -0.834182 6 9 0.4 57 9 1 3 10 -0.834182 7 10 0.4 57 10 1 4 11 -0.834182 8 11 0.4 57 11 1 9 12 0.4 57 12 1 1 13 1.26582 5 13 0.4 10 13 -1.26582 11 13 0.333333 58 13 1 2 14 1.01266 6 14 0.4 10 14 -1.01266 12 14 0.333333 58 14 1 3 15 0.759494 7 15 0.4 10 15 -0.759494 13 15 0.333333 58 15 1 4 16 0.506329 8 16 0.4 10 16 -0.506329 14 16 0.333333 58 16 1 9 17 0.4 10 17 -0.253165 15 17 0.333333 58 17 1 1 18 -0.336156 2 18 -0.29392 3 18 -0.221481 4 18 -0.118986 10 18 1 15 19 0.666667 56 19 1 11 20 -0.207176 12 20 -0.214039 13 20 -0.214421 14 20 -0.198677 15 20 -0.165687 16 20 0.124305 17 20 0.128423 18 20 0.128652 19 20 0.119206 20 20 0.0994125 11 21 -1 16 21 0.6 59 21 1 12 22 -1 17 22 0.6 59 22 1 13 23 -1 18 23 0.6 59 23 1 14 24 -1 19 24 0.6 59 24 1 15 25 -1 20 25 0.6 59 25 1 16 26 0.45 36 26 -0.958319 40 26 0.5 64 26 1 17 27 0.45 37 27 -0.958319 41 27 0.5 64 27 1 18 28 0.45 38 28 -0.958319 42 28 0.5 64 28 1 19 29 0.45 39 29 -0.958319 43 29 0.5 64 29 1 20 30 0.45 44 30 0.5 64 30 1 16 31 -0.207099 17 31 -0.2233 18 31 -0.228626 19 31 -0.202453 20 31 -0.138523 25 31 -0.207099 26 31 -0.2233 27 31 -0.228626 28 31 -0.202453 29 31 -0.138523 16 32 -1.05 25 32 -1.05 60 32 1 17 33 -1.05 26 33 -1.05 60 33 1 18 34 -1.05 27 34 -1.05 60 34 1 19 35 -1.05 28 35 -1.05 60 35 1 20 36 -1.05 29 36 -1.05 60 36 1 25 37 0.0814745 26 37 0.0978901 27 37 0.113161 28 37 0.115056 29 37 0.0924191 31 37 0.0905272 32 37 0.108767 33 37 0.125734 34 37 0.127839 35 37 0.102688 21 38 1.5674 25 38 0.65 30 38 -1.5674 31 38 0.722222 62 38 1 22 39 1.25392 26 39 0.65 30 39 -1.25392 32 39 0.722222 62 39 1 23 40 0.940439 27 40 0.65 30 40 -0.940439 33 40 0.722222 62 40 1 24 41 0.626959 28 41 0.65 30 41 -0.626959 34 41 0.722222 62 41 1 29 42 0.65 30 42 -0.31348 35 42 0.722222 62 42 1 21 43 -0.278842 22 43 -0.268019 23 43 -0.232372 24 43 -0.157508 30 43 1 31 44 0.25 46 44 -0.824225 50 44 0.5 66 44 1 32 45 0.25 47 45 -0.824225 51 45 0.5 66 45 1 33 46 0.25 48 46 -0.824225 52 46 0.5 66 46 1 34 47 0.25 49 47 -0.824225 53 47 0.5 66 47 1 35 48 0.25 54 48 0.5 66 48 1 31 49 -0.158163 32 49 -0.194771 33 49 -0.230392 34 49 -0.236285 35 49 -0.18039 40 49 -0.158163 41 49 -0.194771 42 49 -0.230392 43 49 -0.236285 44 49 -0.18039 31 50 -0.972222 40 50 -0.972222 63 50 1 32 51 -0.972222 41 51 -0.972222 63 51 1 33 52 -0.972222 42 52 -0.972222 63 52 1 34 53 -0.972222 43 53 -0.972222 63 53 1 35 54 -0.972222 44 54 -0.972222 63 54 1 40 55 0.0532286 41 55 0.0757454 42 55 0.106103 43 55 0.133388 44 55 0.131535 50 55 -0.106457 51 55 -0.151491 52 55 -0.212206 53 55 -0.266776 54 55 -0.263071 36 56 1.86335 40 56 0.472222 45 56 -1.86335 50 56 -0.944444 65 56 1 37 57 1.49068 41 57 0.472222 45 57 -1.49068 51 57 -0.944444 65 57 1 38 58 1.11801 42 58 0.472222 45 58 -1.11801 52 58 -0.944444 65 58 1 39 59 0.745342 43 59 0.472222 45 59 -0.745342 53 59 -0.944444 65 59 1 44 60 0.472222 45 60 -0.372671 54 60 -0.944444 65 60 1 36 61 -0.206995 37 61 -0.235647 38 61 -0.247567 39 61 -0.207487 45 61 1 46 62 1.86335 50 62 0.444444 55 62 -1.86335 67 62 1 47 63 1.49068 51 63 0.444444 55 63 -1.49068 67 63 1 48 64 1.11801 52 64 0.444444 55 64 -1.11801 67 64 1 49 65 0.745342 53 65 0.444444 55 65 -0.745342 67 65 1 54 66 0.444444 55 66 -0.372671 67 66 1 46 67 -0.144335 47 67 -0.191856 48 67 -0.24215 49 67 -0.254119 55 67 1 SuiteSparse/UMFPACK/MATLAB/luflopmex.c0000644001170100242450000000704610617161224016163 0ustar davisfac/* ========================================================================== */ /* === luflop mexFunction ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* f = luflop (L, U) ; Given L and U, compute: Lnz = full (sum (spones (L))) - 1 ; Unz = full (sum (spones (U')))' - 1 ; f = 2*Lnz*Unz + sum (Lnz) ; without allocating O (lunz) space. v5.1: port to 64-bit MATLAB */ #include "mex.h" #include "UFconfig.h" #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif void mexFunction ( int nlhs, /* number of left-hand sides */ mxArray *plhs [ ], /* left-hand side matrices */ int nrhs, /* number of right--hand sides */ const mxArray *prhs [ ] /* right-hand side matrices */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double flop_count ; double *pflop ; UF_long *Lp, *Li, *Up, *Ui, *Unz, n, k, row, col, p, Lnz_k, Unz_k ; mxArray *Lmatrix, *Umatrix ; /* ---------------------------------------------------------------------- */ /* get inputs L, U */ /* ---------------------------------------------------------------------- */ if (nrhs != 2) { mexErrMsgTxt ("Usage: f = luflop (L, U)") ; } Lmatrix = (mxArray *) prhs [0] ; Umatrix = (mxArray *) prhs [1] ; n = mxGetM (Lmatrix) ; if (n != mxGetN (Lmatrix) || n != mxGetM (Umatrix) || n != mxGetN (Umatrix)) { mexErrMsgTxt ("Usage: f = luflop (L, U) ; L and U must be square") ; } if (!mxIsSparse (Lmatrix) || !mxIsSparse (Umatrix)) { mexErrMsgTxt ("Usage: f = luflop (L, U) ; L and U must be sparse") ; } Lp = (UF_long *) mxGetJc (Lmatrix) ; Li = (UF_long *) mxGetIr (Lmatrix) ; Up = (UF_long *) mxGetJc (Umatrix) ; Ui = (UF_long *) mxGetIr (Umatrix) ; Unz = (UF_long *) mxMalloc (n * sizeof (UF_long)) ; /* ---------------------------------------------------------------------- */ /* count the nonzeros in each row of U */ /* ---------------------------------------------------------------------- */ for (row = 0 ; row < n ; row++) { Unz [row] = 0 ; } for (col = 0 ; col < n ; col++) { for (p = Up [col] ; p < Up [col+1] ; p++) { row = Ui [p] ; Unz [row]++ ; } } /* ---------------------------------------------------------------------- */ /* count the flops */ /* ---------------------------------------------------------------------- */ flop_count = 0.0 ; for (k = 0 ; k < n ; k++) { /* off-diagonal nonzeros in column k of L: */ Lnz_k = Lp [k+1] - Lp [k] - 1 ; Unz_k = Unz [k] - 1 ; flop_count += (2 * Lnz_k * Unz_k) + Lnz_k ; } /* ---------------------------------------------------------------------- */ /* return the result */ /* ---------------------------------------------------------------------- */ plhs [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; pflop = mxGetPr (plhs [0]) ; pflop [0] = flop_count ; } SuiteSparse/UMFPACK/MATLAB/umfpack_demo.m.out0000644001170100242450000000507410711435546017427 0ustar davisfacumfpack_demo Enter the printing level for UMFPACK's output statistics: 0: none, 1: errors only, 2: statistics, 4: print some outputs 5: print all output [default is 1]: -------------------------------------------------------------- Factor and solve a small system, Ax=b, using default parameters Solving Ax=b via UMFPACK: Solving Ax=b via MATLAB: Difference between UMFPACK and MATLAB solution: 0 -------------------------------------------------------------- Factorizing [L, U, P, Q, R] = umfpack2 (A) P * (R\A) * Q - L*U should be zero: norm (P*(R\A)*Q - L*U, 1) = 2.77556e-16 (exact) 1.21864e-16 (estimated) Solution to Ax=b via UMFPACK factorization: x = Q * (U \ (L \ (P * (R \ b)))) UMFPACK flop count: 2453 Factorizing [L, U, P] = lu (A (:, q)) If you are using a version of MATLAB prior to V6.0, then the following statement (q = colamd (A)) may fail. Either download colamd from http://www.cise.ufl.edu/research/sparse, upgrade to MATLAB V6.0 or later, or replace the statement with q = colmmd (A) ; Solution to Ax=b via MATLAB factorization: x = U \ (L \ (P * b)) ; x (q) = x ; Difference between UMFPACK and MATLAB solution: 5.55112e-15 MATLAB LU flop count: 3160 -------------------------------------------------------------- Solve A'x=b: Solving A'x=b via UMFPACK: Solving A'x=b via MATLAB: Difference between UMFPACK and MATLAB solution: 1.77636e-15 -------------------------------------------------------------- Compute C = A', and compute the LU factorization of C. Factorizing A' can sometimes be better than factorizing A itself (less work and memory usage). Solve C'x=b; the solution is the same as the solution to Ax=b for the original A. P * (R\C) * Q - L*U should be zero: norm (P*(R\C)*Q - L*U, 1) = 1.17961e-16 (exact) 5.60533e-17 (estimated) Solution to Ax=b via UMFPACK, using the factors of C: x = R \ (P' * (L' \ (U' \ (Q' * b)))) ; Solution to Ax=b via MATLAB: Difference between UMFPACK and MATLAB solution: 3.55271e-15 -------------------------------------------------------------- Solve AX=B, where B is n-by-10, and sparse Difference between UMFPACK and MATLAB solution: 6.3926e-14 -------------------------------------------------------------- Solve AX=B, where B is n-by-10, and sparse, using umfpack_btf Difference between UMFPACK and MATLAB solution: 4.41347e-14 -------------------------------------------------------------- Solve A'X=B, where B is n-by-10, and sparse Difference between UMFPACK and MATLAB solution: 8.90054e-14 -------------------------------------------------------------- det(A): -4.07453e-05 UMFPACK determinant: -4.07453e-05 diary off SuiteSparse/UMFPACK/MATLAB/umfpack_demo.m0000644001170100242450000001541410711652036016613 0ustar davisfacfunction umfpack_demo (c) %UMFPACK_DEMO a lenghty demo % % A demo of UMFPACK for MATLAB. % % Example: % umfpack_demo % % See also umfpack, umfpack2, umfpack_make, umfpack_details, umfpack_report, % and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. %------------------------------------------------------------------------------- % get default control parameters %------------------------------------------------------------------------------- control = umfpack2 ; if (nargin < 1) fprintf ('\nEnter the printing level for UMFPACK''s output statistics:\n') ; fprintf ('0: none, 1: errors only, 2: statistics, 4: print some outputs\n'); c = input ('5: print all output [default is 1]: ', 's') ; c = str2double (c) ; end if (isempty (c)) c = 1 ; end control (1) = c ; %------------------------------------------------------------------------------- % solve a simple system %------------------------------------------------------------------------------- fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('Factor and solve a small system, Ax=b, using default parameters\n') ; if (control (1) > 1) fprintf ('(except for verbose printing enabled)\n') ; end load west0067_triplet A = spconvert (west0067_triplet) ; n = size (A, 1) ; b = rand (n, 1) ; fprintf ('Solving Ax=b via UMFPACK:\n') ; xu = umfpack2 (A, '\', b, control) ; fprintf ('Solving Ax=b via MATLAB:\n') ; xm = A\b ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (xu - xm, Inf)) ; %------------------------------------------------------------------------------- % spy the results %------------------------------------------------------------------------------- figure (1) clf subplot (2,3,1) spy (A) title ('The matrix A') ; subplot (2,3,2) [P1, Q1, Fr, Ch, Info] = umfpack2 (A, 'symbolic') ; %#ok treeplot (Fr (1:end-1,2)') ; title ('Supernodal column elimination tree') ; subplot (2,3,3) spy (P1 * A * Q1) title ('A, with initial row and column order') ; subplot (2,3,4) fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('\nFactorizing [L, U, P, Q, R] = umfpack2 (A)\n') ; [L, U, P, Q, R] = umfpack2 (A) ; spy (P*A*Q) title ('A, with final row/column order') ; fprintf ('\nP * (R\\A) * Q - L*U should be zero:\n') ; fprintf ('norm (P*(R\\A)*Q - L*U, 1) = %g (exact) %g (estimated)\n', ... norm (P * (R\A) * Q - L*U, 1), lu_normest (P * (R\A) * Q, L, U)) ; fprintf ('\nSolution to Ax=b via UMFPACK factorization:\n') ; fprintf ('x = Q * (U \\ (L \\ (P * (R \\ b))))\n') ; xu = Q * (U \ (L \ (P * (R \ b)))) ; fprintf ('\nUMFPACK flop count: %d\n', luflop (L, U)) ; subplot (2,3,5) spy (spones (L) + spones (U)) title ('UMFPACK LU factors') ; subplot (2,3,6) fprintf ('\nFactorizing [L, U, P] = lu (A (:, q))\n') ; fprintf ('If you are using a version of MATLAB prior to V6.0, then the\n') ; fprintf ('following statement (q = colamd (A)) may fail. Either download\n'); fprintf ('colamd from http://www.cise.ufl.edu/research/sparse, upgrade to\n') ; fprintf ('MATLAB V6.0 or later, or replace the statement with\n') ; fprintf ('q = colmmd (A) ;\n') ; try q = colamd (A) ; catch fprintf ('\n *** colamd not found, using colmmd instead *** \n') ; q = colmmd (A) ; end [L, U, P] = lu (A (:,q)) ; spy (spones (L) + spones (U)) title ('MATLAB LU factors') ; fprintf ('\nSolution to Ax=b via MATLAB factorization:\n') ; fprintf ('x = U \\ (L \\ (P * b)) ; x (q) = x ;\n') ; xm = U \ (L \ (P * b)) ; xm (q) = xm ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (xu - xm, Inf)) ; fprintf ('\nMATLAB LU flop count: %d\n', luflop (L, U)) ; %------------------------------------------------------------------------------- % solve A'x=b %------------------------------------------------------------------------------- fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('Solve A''x=b:\n') ; fprintf ('Solving A''x=b via UMFPACK:\n') ; xu = umfpack2 (b', '/', A, control) ; xu = xu' ; fprintf ('Solving A''x=b via MATLAB:\n') ; xm = (b'/A)' ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (xu - xm, Inf)) ; %------------------------------------------------------------------------------- % factor A' and then solve Ax=b using the factors of A' %------------------------------------------------------------------------------- fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('Compute C = A'', and compute the LU factorization of C.\n') ; fprintf ('Factorizing A'' can sometimes be better than factorizing A itself\n'); fprintf ('(less work and memory usage). Solve C''x=b; the solution is the\n') ; fprintf ('same as the solution to Ax=b for the original A.\n'); C = A' ; % factorize C (P,Q) = L*U [L, U, P, Q, R, info] = umfpack2 (C, control) ; %#ok fprintf ('\nP * (R\\C) * Q - L*U should be zero:\n') ; fprintf ('norm (P*(R\\C)*Q - L*U, 1) = %g (exact) %g (estimated)\n', ... norm (P * (R\C) * Q - L*U, 1), lu_normest (P * (R\C) * Q, L, U)) ; fprintf ('\nSolution to Ax=b via UMFPACK, using the factors of C:\n') ; fprintf ('x = R \\ (P'' * (L'' \\ (U'' \\ (Q'' * b)))) ;\n') ; xu = R \ (P' * (L' \ (U' \ (Q' * b)))) ; fprintf ('Solution to Ax=b via MATLAB:\n') ; xm = A\b ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (xu - xm, Inf)) ; %------------------------------------------------------------------------------- % solve Ax=B %------------------------------------------------------------------------------- fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('\nSolve AX=B, where B is n-by-10, and sparse\n') ; B = sprandn (n, 10, 0.05) ; XU = umfpack_solve (A, '\', B, control) ; XM = A\B ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (XU - XM, Inf)) ; fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('\nSolve AX=B, where B is n-by-10, and sparse, using umfpack_btf\n') ; XU = umfpack_btf (A, B, control) ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (XU - XM, Inf)) ; fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('\nSolve A''X=B, where B is n-by-10, and sparse\n') ; XU = umfpack_solve (B', '/', A, control) ; XM = B'/A ; fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ... norm (XU - XM, Inf)) ; %------------------------------------------------------------------------------- % compute the determinant %------------------------------------------------------------------------------- fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('det(A): %g UMFPACK determinant: %g\n', det (A), umfpack2 (A, 'det')); SuiteSparse/UMFPACK/MATLAB/umfpack_report.m0000644001170100242450000003721710620664622017212 0ustar davisfacfunction umfpack_report (Control, Info) %UMFPACK_REPORT prints optional control settings and statistics % % Example: % umfpack_report (Control, Info) ; % % Prints the current Control settings for umfpack2, and the statistical % information returned by umfpack2 in the Info array. If Control is % an empty matrix, then the default control settings are printed. % % Control is 20-by-1, and Info is 90-by-1. Not all entries are used. % % Alternative usages: % % umfpack_report ([ ], Info) ; print the default control parameters % and the Info array. % umfpack_report (Control) ; print the control parameters only. % umfpack_report ; print the default control parameters % and an empty Info array. % % See also umfpack, umfpack2, umfpack_make, umfpack_details, % umfpack_demo, and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. %------------------------------------------------------------------------------- % get inputs, use defaults if input arguments not present %------------------------------------------------------------------------------- % The contents of Control and Info are defined in umfpack.h if (nargin < 1) Control = [] ; end if (nargin < 2) Info = [] ; end if (isempty (Control)) Control = umfpack2 ; end if (isempty (Info)) Info = [ 0 (-ones (1, 89)) ] ; end %------------------------------------------------------------------------------- % control settings %------------------------------------------------------------------------------- fprintf ('\nUMFPACK: Control settings:\n\n') ; fprintf (' Control (1): print level: %d\n', Control (1)) ; fprintf (' Control (2): dense row parameter: %g\n', Control (2)) ; fprintf (' "dense" rows have > max (16, (%g)*16*sqrt(n_col)) entries\n', Control (2)) ; fprintf (' Control (3): dense column parameter: %g\n', Control (3)) ; fprintf (' "dense" columns have > max (16, (%g)*16*sqrt(n_row)) entries\n', Control (3)) ; fprintf (' Control (4): pivot tolerance: %g\n', Control (4)) ; fprintf (' Control (5): max block size for dense matrix kernels: %d\n', Control (5)) ; prstrat (' Control (6): strategy: %g ', Control (6)) ; fprintf (' Control (7): initial allocation ratio: %g\n', Control (7)) ; fprintf (' Control (8): max iterative refinement steps: %d\n', Control (8)) ; fprintf (' Control (13): 2-by-2 pivot tolerance: %g\n', Control (13)) ; fprintf (' Control (14): Q fixed during numeric factorization: %g ', Control (14)) ; if (Control (14) > 0) fprintf ('(yes)\n') ; elseif (Control (14) < 0) fprintf ('(no)\n') ; else fprintf ('(auto)\n') ; end fprintf (' Control (15): AMD dense row/column parameter: %g\n', Control (15)) ; fprintf (' "dense" rows/columns in A+A'' have > max (16, (%g)*sqrt(n)) entries.\n', Control (15)) ; fprintf (' Only used if the AMD ordering is used.\n') ; fprintf (' Control (16): diagonal pivot tolerance: %g\n', Control (16)) ; fprintf (' Only used if diagonal pivoting is attempted.\n') ; fprintf (' Control (17): scaling option: %g ', Control (17)) ; if (Control (17) == 0) fprintf ('(none)\n') ; elseif (Control (17) == 2) fprintf ('(scale the matrix by\n') ; fprintf (' dividing each row by max. abs. value in each row)\n') ; else fprintf ('(scale the matrix by\n') ; fprintf (' dividing each row by sum of abs. values in each row)\n') ; end fprintf (' Control (18): frontal matrix allocation ratio: %g\n', Control (18)) ; fprintf (' Control (19): drop tolerance: %g\n', Control (19)) ; fprintf (' Control (20): AMD and COLAMD aggressive absorption: %g ', Control (20)) ; yes_no (Control (20)) ; % compile-time options: fprintf ('\n The following options can only be changed at compile-time:\n') ; if (Control (9) == 1) fprintf (' Control (9): compiled to use the BLAS\n') ; else fprintf (' Control (9): compiled without the BLAS\n') ; fprintf (' (you will not get the best possible performance)\n') ; end if (Control (10) == 1) fprintf (' Control (10): compiled for MATLAB\n') ; elseif (Control (10) == 2) fprintf (' Control (10): compiled for MATLAB\n') ; else fprintf (' Control (10): not compiled for MATLAB\n') ; fprintf (' Printing will be in terms of 0-based matrix indexing,\n') ; fprintf (' not 1-based as is expected in MATLAB. Diary output may\n') ; fprintf (' not be properly recorded.\n') ; end if (Control (11) == 2) fprintf (' Control (11): uses POSIX times ( ) to get CPU time and wallclock time.\n') ; elseif (Control (11) == 1) fprintf (' Control (11): uses getrusage to get CPU time.\n') ; else fprintf (' Control (11): uses ANSI C clock to get CPU time.\n') ; fprintf (' The CPU time may wrap around, type "help cputime".\n') ; end if (Control (12) == 1) fprintf (' Control (12): compiled with debugging enabled\n') ; fprintf (' ###########################################\n') ; fprintf (' ### This will be exceedingly slow! ########\n') ; fprintf (' ###########################################\n') ; else fprintf (' Control (12): compiled for normal operation (no debugging)\n') ; end %------------------------------------------------------------------------------- % Info: %------------------------------------------------------------------------------- if (nargin == 1) return end status = Info (1) ; fprintf ('\nUMFPACK status: Info (1): %d, ', status) ; if (status == 0) fprintf ('OK\n') ; elseif (status == 1) fprintf ('WARNING matrix is singular\n') ; elseif (status == -1) fprintf ('ERROR out of memory\n') ; elseif (status == -3) fprintf ('ERROR numeric LU factorization is invalid\n') ; elseif (status == -4) fprintf ('ERROR symbolic LU factorization is invalid\n') ; elseif (status == -5) fprintf ('ERROR required argument is missing\n') ; elseif (status == -6) fprintf ('ERROR n <= 0\n') ; elseif (status <= -7 & status >= -12 | status == -14) %#ok fprintf ('ERROR matrix A is corrupted\n') ; elseif (status == -13) fprintf ('ERROR invalid system\n') ; elseif (status == -15) fprintf ('ERROR invalid permutation\n') ; elseif (status == -911) fprintf ('ERROR internal error!\n') ; fprintf ('Please report this error to Tim Davis (davis@cise.ufl.edu)\n') ; else fprintf ('ERROR unrecognized error. Info array corrupted\n') ; end fprintf (' (a -1 means the entry has not been computed):\n') ; fprintf ('\n Basic statistics:\n') ; fprintf (' Info (2): %d, # of rows of A\n', Info (2)) ; fprintf (' Info (17): %d, # of columns of A\n', Info (17)) ; fprintf (' Info (3): %d, nnz (A)\n', Info (3)) ; fprintf (' Info (4): %d, Unit size, in bytes, for memory usage reported below\n', Info (4)) ; fprintf (' Info (5): %d, size of int (in bytes)\n', Info (5)) ; fprintf (' Info (6): %d, size of UF_long (in bytes)\n', Info (6)) ; fprintf (' Info (7): %d, size of pointer (in bytes)\n', Info (7)) ; fprintf (' Info (8): %d, size of numerical entry (in bytes)\n', Info (8)) ; fprintf ('\n Pivots with zero Markowitz cost removed to obtain submatrix S:\n') ; fprintf (' Info (57): %d, # of pivots with one entry in pivot column\n', Info (57)) ; fprintf (' Info (58): %d, # of pivots with one entry in pivot row\n', Info (58)) ; fprintf (' Info (59): %d, # of rows/columns in submatrix S (if square)\n', Info (59)) ; fprintf (' Info (60): ') ; if (Info (60) > 0) fprintf ('submatrix S square and diagonal preserved\n') ; elseif (Info (60) == 0) fprintf ('submatrix S not square or diagonal not preserved\n') ; else fprintf ('\n') ; end fprintf (' Info (9): %d, # of "dense" rows in S\n', Info (9)) ; fprintf (' Info (10): %d, # of empty rows in S\n', Info (10)) ; fprintf (' Info (11): %d, # of "dense" columns in S\n', Info (11)) ; fprintf (' Info (12): %d, # of empty columns in S\n', Info (12)) ; fprintf (' Info (34): %g, symmetry of pattern of S\n', Info (34)) ; fprintf (' Info (35): %d, # of off-diagonal nonzeros in S+S''\n', Info (35)) ; fprintf (' Info (36): %d, nnz (diag (S))\n', Info (36)) ; fprintf ('\n 2-by-2 pivoting to place large entries on diagonal:\n') ; fprintf (' Info (52): %d, # of small diagonal entries of S\n', Info (52)) ; fprintf (' Info (53): %d, # of unmatched small diagonal entries\n', Info (53)) ; fprintf (' Info (54): %g, symmetry of P2*S\n', Info (54)) ; fprintf (' Info (55): %d, # of off-diagonal entries in (P2*S)+(P2*S)''\n', Info (55)) ; fprintf (' Info (56): %d, nnz (diag (P2*S))\n', Info (56)) ; fprintf ('\n AMD results, for strict diagonal pivoting:\n') ; fprintf (' Info (37): %d, est. nz in L and U\n', Info (37)) ; fprintf (' Info (38): %g, est. flop count\n', Info (38)) ; fprintf (' Info (39): %g, # of "dense" rows in S+S''\n', Info (39)) ; fprintf (' Info (40): %g, est. max. nz in any column of L\n', Info (40)) ; fprintf ('\n Final strategy selection, based on the analysis above:\n') ; prstrat (' Info (19): %d, strategy used ', Info (19)) ; fprintf (' Info (20): %d, ordering used ', Info (20)) ; if (Info (20) == 0) fprintf ('(COLAMD on A)\n') ; elseif (Info (20) == 1) fprintf ('(AMD on A+A'')\n') ; elseif (Info (20) == 2) fprintf ('(provided by user)\n') ; else fprintf ('(undefined ordering option)\n') ; end fprintf (' Info (32): %d, Q fixed during numeric factorization: ', Info (32)) ; yes_no (Info (32)) ; fprintf (' Info (33): %d, prefer diagonal pivoting: ', Info (33)) ; yes_no (Info (33)) ; fprintf ('\n symbolic analysis time and memory usage:\n') ; fprintf (' Info (13): %d, defragmentations during symbolic analysis\n', Info (13)) ; fprintf (' Info (14): %d, memory used during symbolic analysis (Units)\n', Info (14)) ; fprintf (' Info (15): %d, final size of symbolic factors (Units)\n', Info (15)) ; fprintf (' Info (16): %.2f, symbolic analysis CPU time (seconds)\n', Info (16)) ; fprintf (' Info (18): %.2f, symbolic analysis wall clock time (seconds)\n', Info (18)) ; fprintf ('\n Estimates computed in the symbolic analysis:\n') ; fprintf (' Info (21): %d, est. size of LU factors (Units)\n', Info (21)) ; fprintf (' Info (22): %d, est. total peak memory usage (Units)\n', Info (22)) ; fprintf (' Info (23): %d, est. factorization flop count\n', Info (23)) ; fprintf (' Info (24): %d, est. nnz (L)\n', Info (24)) ; fprintf (' Info (25): %d, est. nnz (U)\n', Info (25)) ; fprintf (' Info (26): %d, est. initial size, variable-part of LU (Units)\n', Info (26)) ; fprintf (' Info (27): %d, est. peak size, of variable-part of LU (Units)\n', Info (27)) ; fprintf (' Info (28): %d, est. final size, of variable-part of LU (Units)\n', Info (28)) ; fprintf (' Info (29): %d, est. max frontal matrix size (# of entries)\n', Info (29)) ; fprintf (' Info (30): %d, est. max # of rows in frontal matrix\n', Info (30)) ; fprintf (' Info (31): %d, est. max # of columns in frontal matrix\n', Info (31)) ; fprintf ('\n Computed in the numeric factorization (estimates shown above):\n') ; fprintf (' Info (41): %d, size of LU factors (Units)\n', Info (41)) ; fprintf (' Info (42): %d, total peak memory usage (Units)\n', Info (42)) ; fprintf (' Info (43): %d, factorization flop count\n', Info (43)) ; fprintf (' Info (44): %d, nnz (L)\n', Info (44)) ; fprintf (' Info (45): %d, nnz (U)\n', Info (45)) ; fprintf (' Info (46): %d, initial size of variable-part of LU (Units)\n', Info (46)) ; fprintf (' Info (47): %d, peak size of variable-part of LU (Units)\n', Info (47)) ; fprintf (' Info (48): %d, final size of variable-part of LU (Units)\n', Info (48)) ; fprintf (' Info (49): %d, max frontal matrix size (# of numerical entries)\n', Info (49)) ; fprintf (' Info (50): %d, max # of rows in frontal matrix\n', Info (50)) ; fprintf (' Info (51): %d, max # of columns in frontal matrix\n', Info (51)) ; fprintf ('\n Computed in the numeric factorization (no estimates computed a priori):\n') ; fprintf (' Info (61): %d, defragmentations during numeric factorization\n', Info (61)) ; fprintf (' Info (62): %d, reallocations during numeric factorization\n', Info (62)) ; fprintf (' Info (63): %d, costly reallocations during numeric factorization\n', Info (63)) ; fprintf (' Info (64): %d, integer indices in compressed pattern of L and U\n', Info (64)) ; fprintf (' Info (65): %d, numerical values stored in L and U\n', Info (65)) ; fprintf (' Info (66): %.2f, numeric factorization CPU time (seconds)\n', Info (66)) ; fprintf (' Info (76): %.2f, numeric factorization wall clock time (seconds)\n', Info (76)) ; if (Info (66) > 0.05 & Info (43) > 0) %#ok fprintf (' mflops in numeric factorization phase: %.2f\n', 1e-6 * Info (43) / Info (66)) ; end fprintf (' Info (67): %d, nnz (diag (U))\n', Info (67)) ; fprintf (' Info (68): %g, reciprocal condition number estimate\n', Info (68)) ; fprintf (' Info (69): %g, matrix was ', Info (69)) ; if (Info (69) == 0) fprintf ('not scaled\n') ; elseif (Info (69) == 2) fprintf ('scaled (row max)\n') ; else fprintf ('scaled (row sum)\n') ; end fprintf (' Info (70): %g, min. scale factor of rows of A\n', Info (70)) ; fprintf (' Info (71): %g, max. scale factor of rows of A\n', Info (71)) ; fprintf (' Info (72): %g, min. abs. on diagonal of U\n', Info (72)) ; fprintf (' Info (73): %g, max. abs. on diagonal of U\n', Info (73)) ; fprintf (' Info (74): %g, initial allocation parameter used\n', Info (74)) ; fprintf (' Info (75): %g, # of forced updates due to frontal growth\n', Info (75)) ; fprintf (' Info (77): %d, # of off-diaogonal pivots\n', Info (77)) ; fprintf (' Info (78): %d, nnz (L), if no small entries dropped\n', Info (78)) ; fprintf (' Info (79): %d, nnz (U), if no small entries dropped\n', Info (79)) ; fprintf (' Info (80): %d, # of small entries dropped\n', Info (80)) ; fprintf ('\n Computed in the solve step:\n') ; fprintf (' Info (81): %d, iterative refinement steps taken\n', Info (81)) ; fprintf (' Info (82): %d, iterative refinement steps attempted\n', Info (82)) ; fprintf (' Info (83): %g, omega(1), sparse-backward error estimate\n', Info (83)) ; fprintf (' Info (84): %g, omega(2), sparse-backward error estimate\n', Info (84)) ; fprintf (' Info (85): %d, solve flop count\n', Info (85)) ; fprintf (' Info (86): %.2f, solve CPU time (seconds)\n', Info (86)) ; fprintf (' Info (87): %.2f, solve wall clock time (seconds)\n', Info (87)) ; fprintf ('\n Info (88:90): unused\n\n') ; %------------------------------------------------------------------------------- function prstrat (fmt, strategy) % prstrat print the ordering strategy fprintf (fmt, strategy) ; if (strategy == 1) fprintf ('(unsymmetric)\n') ; fprintf (' Q = COLAMD (A), Q refined during numerical\n') ; fprintf (' factorization, and no attempt at diagonal pivoting.\n') ; elseif (strategy == 2) fprintf ('(symmetric, with 2-by-2 pivoting)\n') ; fprintf (' P2 = row permutation to place large values on the diagonal\n') ; fprintf (' Q = AMD (P2*A+(P2*A)''), Q not refined during numeric factorization,\n') ; fprintf (' and diagonal pivoting attempted.\n') ; elseif (strategy == 3) fprintf ('(symmetric)\n') ; fprintf (' Q = AMD (A+A''), Q not refined during numeric factorization,\n') ; fprintf (' and diagonal pivoting (P=Q'') attempted.\n') ; else % strategy = 0 ; fprintf ('(auto)\n') ; end %------------------------------------------------------------------------------- function yes_no (s) % yes_no print yes or no if (s == 0) fprintf ('(no)\n') ; else fprintf ('(yes)\n') ; end SuiteSparse/UMFPACK/MATLAB/umfpack_solve.m0000644001170100242450000000505110711660504017012 0ustar davisfacfunction [x, info] = umfpack_solve (arg1, op, arg2, Control) %UMFPACK_SOLVE x = A\b or x = b/A % % Example: % x = umfpack_solve (A, '\', b, Control) % x = umfpack_solve (b, '/', A, Control) % % Computes x = A\b, or b/A, where A is square. Uses UMFPACK if A is sparse. % The Control argument is optional. % % See also umfpack, umfpack2, umfpack_make, umfpack_details, umfpack_report, % and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. %------------------------------------------------------------------------------- % check inputs and get default control parameters %------------------------------------------------------------------------------- if (op == '\') A = arg1 ; b = arg2 ; elseif (op == '/') A = arg2 ; b = arg1 ; else help umfack_solve error ('umfpack_solve: unrecognized operator') ; end [m n] = size (A) ; if (m ~= n) help umfpack_solve error ('umfpack_solve: A must be square') ; end [m1 n1] = size (b) ; if ((op == '\' & n ~= m1) | (op == '/' & n1 ~= m)) %#ok help umfpack_solve error ('umfpack_solve: b has the wrong dimensions') ; end if (nargin < 4) Control = umfpack2 ; end info = [0 0 0] ; % [nnz(L), nnz(U), 0], optional 2nd output %------------------------------------------------------------------------------- % solve the system %------------------------------------------------------------------------------- if (op == '\') if (~issparse (A)) % A is not sparse, so just use MATLAB x = A\b ; elseif (n1 == 1 & ~issparse (b)) %#ok % the UMFPACK '\' requires b to be a dense column vector [x info] = umfpack2 (A, '\', b, Control) ; info = [info(78) info(79) 0] ; else % factorize with UMFPACK and do the forward/back solves in MATLAB [L, U, P, Q, R, info] = umfpack2 (A, Control) ; x = Q * (U \ (L \ (P * (R \ b)))) ; info = [info(78) info(79) 0] ; end else if (~issparse (A)) % A is not sparse, so just use MATLAB x = b/A ; elseif (m1 == 1 & ~issparse (b)) %#ok % the UMFPACK '\' requires b to be a dense column vector [x info] = umfpack2 (b, '/', A, Control) ; info = [info(78) info(79) 0] ; else % factorize with UMFPACK and do the forward/back solves in MATLAB % this mimics the behavior of x = b/A, except for the row scaling [L, U, P, Q, R, info] = umfpack2 (A.', Control) ; x = (Q * (U \ (L \ (P * (R \ (b.')))))).' ; info = [info(78) info(79) 0] ; % an alternative method: % [L, U, P, Q, r] = umfpack2 (A, Control) ; % x = (R \ (P' * (L.' \ (U.' \ (Q' * b.'))))).' ; end end SuiteSparse/UMFPACK/Include/0000755001170100242450000000000010711431031014407 5ustar davisfacSuiteSparse/UMFPACK/Include/umfpack_report_numeric.h0000644001170100242450000000703410617161103021334 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_numeric =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_numeric ( void *Numeric, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_numeric ( void *Numeric, const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_numeric ( void *Numeric, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_numeric ( void *Numeric, const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; double Control [UMFPACK_CONTROL] ; int status ; status = umfpack_di_report_numeric (Numeric, Control) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; double Control [UMFPACK_CONTROL] ; UF_long status ; status = umfpack_dl_report_numeric (Numeric, Control) ; complex int Syntax: #include "umfpack.h" void *Numeric ; double Control [UMFPACK_CONTROL] ; int status ; status = umfpack_zi_report_numeric (Numeric, Control) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; double Control [UMFPACK_CONTROL] ; UF_long status ; status = umfpack_zl_report_numeric (Numeric, Control) ; Purpose: Verifies and prints a Numeric object (the LU factorization, both its pattern numerical values, and permutation vectors P and Q). This routine checks the object more carefully than the computational routines. Normally, this check is not required, since umfpack_*_numeric either returns (void *) NULL, or a valid Numeric object. However, if you suspect that your own code has corrupted the Numeric object (by overruning memory bounds, for example), then this routine might be able to detect a corrupted Numeric object. Since this is a complex object, not all such user-generated errors are guaranteed to be caught by this routine. Returns: UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked). Otherwise: UMFPACK_OK if the Numeric object is valid. UMFPACK_ERROR_invalid_Numeric_object if the Numeric object is invalid. UMFPACK_ERROR_out_of_memory if out of memory. Arguments: void *Numeric ; Input argument, not modified. The Numeric object, which holds the numeric factorization computed by umfpack_*_numeric. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_timer.h0000644001170100242450000000326710617161136017431 0ustar davisfac/* ========================================================================== */ /* === umfpack_timer ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ double umfpack_timer ( void ) ; /* Syntax (for all versions: di, dl, zi, and zl): #include "umfpack.h" double t ; t = umfpack_timer ( ) ; Purpose: Returns the CPU time used by the process. Includes both "user" and "system" time (the latter is time spent by the system on behalf of the process, and is thus charged to the process). It does not return the wall clock time. See umfpack_tic and umfpack_toc (the file umfpack_tictoc.h) for the timer used internally by UMFPACK. This routine uses the Unix getrusage routine, if available. It is less subject to overflow than the ANSI C clock routine. If getrusage is not available, the portable ANSI C clock routine is used instead. Unfortunately, clock ( ) overflows if the CPU time exceeds 2147 seconds (about 36 minutes) when sizeof (clock_t) is 4 bytes. If you have getrusage, be sure to compile UMFPACK with the -DGETRUSAGE flag set; see umf_config.h and the User Guide for details. Even the getrusage routine can overlow. Arguments: None. */ SuiteSparse/UMFPACK/Include/umfpack_transpose.h0000644001170100242450000001740210617161140020316 0ustar davisfac/* ========================================================================== */ /* === umfpack_transpose ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_transpose ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const int P [ ], const int Q [ ], int Rp [ ], int Ri [ ], double Rx [ ] ) ; UF_long umfpack_dl_transpose ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const UF_long P [ ], const UF_long Q [ ], UF_long Rp [ ], UF_long Ri [ ], double Rx [ ] ) ; int umfpack_zi_transpose ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], const int P [ ], const int Q [ ], int Rp [ ], int Ri [ ], double Rx [ ], double Rz [ ], int do_conjugate ) ; UF_long umfpack_zl_transpose ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], const UF_long P [ ], const UF_long Q [ ], UF_long Rp [ ], UF_long Ri [ ], double Rx [ ], double Rz [ ], UF_long do_conjugate ) ; /* double int Syntax: #include "umfpack.h" int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ; double *Ax, *Rx ; status = umfpack_di_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ; double UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ; double *Ax, *Rx ; status = umfpack_dl_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ; complex int Syntax: #include "umfpack.h" int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ; double *Ax, *Az, *Rx, *Rz ; status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, do_conjugate) ; complex UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ; double *Ax, *Az, *Rx, *Rz ; status = umfpack_zl_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, do_conjugate) ; packed complex Syntax: Same as above, except Az are Rz are NULL. Purpose: Transposes and optionally permutes a sparse matrix in row or column-form, R = (PAQ)'. In MATLAB notation, R = (A (P,Q))' or R = (A (P,Q)).' doing either the linear algebraic transpose or the array transpose. Alternatively, this routine can be viewed as converting A (P,Q) from column-form to row-form, or visa versa (for the array transpose). Empty rows and columns may exist. The matrix A may be singular and/or rectangular. umfpack_*_transpose is useful if you want to factorize A' or A.' instead of A. Factorizing A' or A.' instead of A can be much better, particularly if AA' is much sparser than A'A. You can still solve Ax=b if you factorize A' or A.', by solving with the sys argument UMFPACK_At or UMFPACK_Aat, respectively, in umfpack_*_*solve. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_out_of_memory if umfpack_*_transpose fails to allocate a size-max (n_row,n_col) workspace. UMFPACK_ERROR_argument_missing if Ai, Ap, Ri, and/or Rp are missing. UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0 UMFPACK_ERROR_invalid_permutation if P and/or Q are invalid. UMFPACK_ERROR_invalid_matrix if Ap [n_col] < 0, if Ap [0] != 0, if Ap [j] > Ap [j+1] for any j in the range 0 to n_col-1, if any row index i is < 0 or >= n_row, or if the row indices in any column are not in ascending order. Arguments: Int n_row ; Input argument, not modified. Int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0. Int Ap [n_col+1] ; Input argument, not modified. The column pointers of the column-oriented form of the matrix A. See umfpack_*_symbolic for a description. The number of entries in the matrix is nz = Ap [n_col]. Ap [0] must be zero, Ap [n_col] must be => 0, and Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for all j in the range 0 to n_col-1. Empty columns are OK (that is, Ap [j] may equal Ap [j+1] for any j in the range 0 to n_col-1). Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col]. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j must be in ascending order, and no duplicate row indices may be present. Row indices must be in the range 0 to n_row-1 (the matrix is 0-based). double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col]. Size 2*nz if Az or Rz are NULL. double Az [nz] ; Input argument, not modified, for complex versions. If present, these are the numerical values of the sparse matrix A. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding real numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary values are stored in Az [(Ap [j]) ... (Ap [j+1]-1)]. The values are transposed only if Ax and Rx are present. This is not an error conditions; you are able to transpose and permute just the pattern of a matrix. If Az or Rz are NULL, then both real and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. Int P [n_row] ; Input argument, not modified. The permutation vector P is defined as P [k] = i, where the original row i of A is the kth row of PAQ. If you want to use the identity permutation for P, simply pass (Int *) NULL for P. This is not an error condition. P is a complete permutation of all the rows of A; this routine does not support the creation of a transposed submatrix of A (R = A (1:3,:)' where A has more than 3 rows, for example, cannot be done; a future version might support this operation). Int Q [n_col] ; Input argument, not modified. The permutation vector Q is defined as Q [k] = j, where the original column j of A is the kth column of PAQ. If you want to use the identity permutation for Q, simply pass (Int *) NULL for Q. This is not an error condition. Q is a complete permutation of all the columns of A; this routine does not support the creation of a transposed submatrix of A. Int Rp [n_row+1] ; Output argument. The column pointers of the matrix R = (A (P,Q))' or (A (P,Q)).', in the same form as the column pointers Ap for the matrix A. Int Ri [nz] ; Output argument. The row indices of the matrix R = (A (P,Q))' or (A (P,Q)).' , in the same form as the row indices Ai for the matrix A. double Rx [nz] ; Output argument. Size 2*nz if Az or Rz are NULL. double Rz [nz] ; Output argument, imaginary part for complex versions. If present, these are the numerical values of the sparse matrix R, in the same form as the values Ax and Az of the matrix A. If Az or Rz are NULL, then both real and imaginary parts are contained in Rx[0..2*nz-1], with Rx[2*k] and Rx[2*k+1] being the real and imaginary part of the kth entry. Int do_conjugate ; Input argument for complex versions only. If true, and if Ax and Rx are present, then the linear algebraic transpose is computed (complex conjugate). If false, the array transpose is computed instead. */ SuiteSparse/UMFPACK/Include/umfpack_report_status.h0000644001170100242450000000500310617161106021212 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_status ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_report_status ( const double Control [UMFPACK_CONTROL], int status ) ; void umfpack_dl_report_status ( const double Control [UMFPACK_CONTROL], UF_long status ) ; void umfpack_zi_report_status ( const double Control [UMFPACK_CONTROL], int status ) ; void umfpack_zl_report_status ( const double Control [UMFPACK_CONTROL], UF_long status ) ; /* double int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; int status ; umfpack_di_report_status (Control, status) ; double UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; UF_long status ; umfpack_dl_report_status (Control, status) ; complex int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; int status ; umfpack_zi_report_status (Control, status) ; complex UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; UF_long status ; umfpack_zl_report_status (Control, status) ; Purpose: Prints the status (return value) of other umfpack_* routines. Arguments: double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 0 or less: no output, even when an error occurs 1: error messages only 2 or more: print status, whether or not an error occurred 4 or more: also print the UMFPACK Copyright 6 or more: also print the UMFPACK License Default: 1 Int status ; Input argument, not modified. The return value from another umfpack_* routine. */ SuiteSparse/UMFPACK/Include/umfpack_symbolic.h0000644001170100242450000005341310617161131020123 0ustar davisfac/* ========================================================================== */ /* === umfpack_symbolic ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_symbolic ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_dl_symbolic ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; int umfpack_zi_symbolic ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_zl_symbolic ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" void *Symbolic ; int n_row, n_col, *Ap, *Ai, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ; status = umfpack_di_symbolic (n_row, n_col, Ap, Ai, Ax, &Symbolic, Control, Info) ; double UF_long Syntax: #include "umfpack.h" void *Symbolic ; UF_long n_row, n_col, *Ap, *Ai, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ; status = umfpack_dl_symbolic (n_row, n_col, Ap, Ai, Ax, &Symbolic, Control, Info) ; complex int Syntax: #include "umfpack.h" void *Symbolic ; int n_row, n_col, *Ap, *Ai, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ; status = umfpack_zi_symbolic (n_row, n_col, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; complex UF_long Syntax: #include "umfpack.h" void *Symbolic ; UF_long n_row, n_col, *Ap, *Ai, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ; status = umfpack_zl_symbolic (n_row, n_col, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ; packed complex Syntax: Same as above, except Az is NULL. Purpose: Given nonzero pattern of a sparse matrix A in column-oriented form, umfpack_*_symbolic performs a column pre-ordering to reduce fill-in (using COLAMD or AMD) and a symbolic factorization. This is required before the matrix can be numerically factorized with umfpack_*_numeric. If you wish to bypass the COLAMD or AMD pre-ordering and provide your own ordering, use umfpack_*_qsymbolic instead. Since umfpack_*_symbolic and umfpack_*_qsymbolic are very similar, options for both routines are discussed below. For the following discussion, let S be the submatrix of A obtained after eliminating all pivots of zero Markowitz cost. S has dimension (n_row-n1-nempty_row) -by- (n_col-n1-nempty_col), where n1 = Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS], nempty_row = Info [UMFPACK_NEMPTY_ROW] and nempty_col = Info [UMFPACK_NEMPTY_COL]. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: Int n_row ; Input argument, not modified. Int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0. Int Ap [n_col+1] ; Input argument, not modified. Ap is an integer array of size n_col+1. On input, it holds the "pointers" for the column form of the sparse matrix A. Column j of the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the total number of entries in the pattern of the matrix A. nz must be greater than or equal to zero. Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col]. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j must be in ascending order, and no duplicate row indices may be present. Row indices must be in the range 0 to n_row-1 (the matrix is 0-based). See umfpack_*_triplet_to_col for how to sort the columns of a matrix and sum up the duplicate entries. See umfpack_*_report_matrix for how to print the matrix A. double Ax [nz] ; Optional input argument, not modified. Size 2*nz for packed complex case. The numerical values of the sparse matrix A. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. Used only by the 2-by-2 strategy to determine whether entries are "large" or "small". You do not have to pass the same numerical values to umfpack_*_numeric. If Ax is not present (a (double *) NULL pointer), then any entry in A is assumed to be "large". double Az [nz] ; Optional input argument, not modified, for complex versions. For the complex versions, this holds the imaginary part of A. The imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)]. If Az is NULL, then both real and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. Used by the 2-by-2 strategy only. See the description of Ax, above. void **Symbolic ; Output argument. **Symbolic is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Symbolic object (if successful), or (void *) NULL if a failure occurred. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used (the defaults are suitable for all matrices, ranging from those with highly unsymmetric nonzero pattern, to symmetric matrices). Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_STRATEGY]: This is the most important control parameter. It determines what kind of ordering and pivoting strategy that UMFPACK should use. There are 4 options: UMFPACK_STRATEGY_AUTO: This is the default. The input matrix is analyzed to determine how symmetric the nonzero pattern is, and how many entries there are on the diagonal. It then selects one of the following strategies. Refer to the User Guide for a description of how the strategy is automatically selected. UMFPACK_STRATEGY_UNSYMMETRIC: Use the unsymmetric strategy. COLAMD is used to order the columns of A, followed by a postorder of the column elimination tree. No attempt is made to perform diagonal pivoting. The column ordering is refined during factorization. In the numerical factorization, the Control [UMFPACK_SYM_PIVOT_TOLERANCE] parameter is ignored. A pivot is selected if its magnitude is >= Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry in its column. UMFPACK_STRATEGY_SYMMETRIC: Use the symmetric strategy In this method, the approximate minimum degree ordering (AMD) is applied to A+A', followed by a postorder of the elimination tree of A+A'. UMFPACK attempts to perform diagonal pivoting during numerical factorization. No refinement of the column pre-ordering is performed during factorization. In the numerical factorization, a nonzero entry on the diagonal is selected as the pivot if its magnitude is >= Control [UMFPACK_SYM_PIVOT_TOLERANCE] (default 0.001) times the largest entry in its column. If this is not acceptable, then an off-diagonal pivot is selected with magnitude >= Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry in its column. UMFPACK_STRATEGY_2BY2: a row permutation P2 is found that places large entries on the diagonal. The matrix P2*A is then factorized using the symmetric strategy, described above. Refer to the User Guide for more information. Control [UMFPACK_DENSE_COL]: If COLAMD is used, columns with more than max (16, Control [UMFPACK_DENSE_COL] * 16 * sqrt (n_row)) entries are placed placed last in the column pre-ordering. Default: 0.2. Control [UMFPACK_DENSE_ROW]: Rows with more than max (16, Control [UMFPACK_DENSE_ROW] * 16 * sqrt (n_col)) entries are treated differently in the COLAMD pre-ordering, and in the internal data structures during the subsequent numeric factorization. Default: 0.2. Control [UMFPACK_AMD_DENSE]: rows/columns in A+A' with more than max (16, Control [UMFPACK_AMD_DENSE] * sqrt (n)) entries (where n = n_row = n_col) are ignored in the AMD pre-ordering. Default: 10. Control [UMFPACK_BLOCK_SIZE]: the block size to use for Level-3 BLAS in the subsequent numerical factorization (umfpack_*_numeric). A value less than 1 is treated as 1. Default: 32. Modifying this parameter affects when updates are applied to the working frontal matrix, and can indirectly affect fill-in and operation count. Assuming the block size is large enough (8 or so), this parameter has a modest effect on performance. Control [UMFPACK_2BY2_TOLERANCE]: a diagonal entry S (k,k) is considered "small" if it is < tol * max (abs (S (:,k))), where S a submatrix of the scaled input matrix, with pivots of zero Markowitz cost removed. Control [UMFPACK_SCALE]: See umfpack_numeric.h for a description. Only affects the 2-by-2 strategy. Default: UMFPACK_SCALE_SUM. Control [UMFPACK_FIXQ]: If > 0, then the pre-ordering Q is not modified during numeric factorization. If < 0, then Q may be modified. If zero, then this is controlled automatically (the unsymmetric strategy modifies Q, the others do not). Default: 0. Control [UMFPACK_AGGRESSIVE]: If nonzero, aggressive absorption is used in COLAMD and AMD. Default: 1. double Info [UMFPACK_INFO] ; Output argument, not defined on input. Contains statistics about the symbolic analysis. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The entire Info array is cleared (all entries set to -1) and then the following statistics are computed: Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK Each column of the input matrix contained row indices in increasing order, with no duplicates. Only in this case does umfpack_*_symbolic compute a valid symbolic factorization. For the other cases below, no Symbolic object is created (*Symbolic is (void *) NULL). UMFPACK_ERROR_n_nonpositive n is less than or equal to zero. UMFPACK_ERROR_invalid_matrix Number of entries in the matrix is negative, Ap [0] is nonzero, a column has a negative number of entries, a row index is out of bounds, or the columns of input matrix were jumbled (unsorted columns or duplicate entries). UMFPACK_ERROR_out_of_memory Insufficient memory to perform the symbolic analysis. If the analysis requires more than 2GB of memory and you are using the 32-bit ("int") version of UMFPACK, then you are guaranteed to run out of memory. Try using the 64-bit version of UMFPACK. UMFPACK_ERROR_argument_missing One or more required arguments is missing. UMFPACK_ERROR_internal_error Something very serious went wrong. This is a bug. Please contact the author (davis@cise.ufl.edu). Info [UMFPACK_NROW]: the value of the input argument n_row. Info [UMFPACK_NCOL]: the value of the input argument n_col. Info [UMFPACK_NZ]: the number of entries in the input matrix (Ap [n_col]). Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory usage statistics below. Info [UMFPACK_SIZE_OF_INT]: the number of bytes in an int. Info [UMFPACK_SIZE_OF_LONG]: the number of bytes in a UF_long. Info [UMFPACK_SIZE_OF_POINTER]: the number of bytes in a void * pointer. Info [UMFPACK_SIZE_OF_ENTRY]: the number of bytes in a numerical entry. Info [UMFPACK_NDENSE_ROW]: number of "dense" rows in A. These rows are ignored when the column pre-ordering is computed in COLAMD. They are also treated differently during numeric factorization. If > 0, then the matrix had to be re-analyzed by UMF_analyze, which does not ignore these rows. Info [UMFPACK_NEMPTY_ROW]: number of "empty" rows in A, as determined These are rows that either have no entries, or whose entries are all in pivot columns of zero-Markowitz-cost pivots. Info [UMFPACK_NDENSE_COL]: number of "dense" columns in A. COLAMD orders these columns are ordered last in the factorization, but before "empty" columns. Info [UMFPACK_NEMPTY_COL]: number of "empty" columns in A. These are columns that either have no entries, or whose entries are all in pivot rows of zero-Markowitz-cost pivots. These columns are ordered last in the factorization, to the right of "dense" columns. Info [UMFPACK_SYMBOLIC_DEFRAG]: number of garbage collections performed during ordering and symbolic pre-analysis. Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units) required for umfpack_*_symbolic to complete. This count includes the size of the Symbolic object itself, which is also reported in Info [UMFPACK_SYMBOLIC_SIZE]. Info [UMFPACK_SYMBOLIC_SIZE]: the final size of the Symbolic object (in Units). This is fairly small, roughly 2*n to 13*n integers, depending on the matrix. Info [UMFPACK_VARIABLE_INIT_ESTIMATE]: the Numeric object contains two parts. The first is fixed in size (O (n_row+n_col)). The second part holds the sparse LU factors and the contribution blocks from factorized frontal matrices. This part changes in size during factorization. Info [UMFPACK_VARIABLE_INIT_ESTIMATE] is the exact size (in Units) required for this second variable-sized part in order for the numerical factorization to start. Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]: the estimated peak size (in Units) of the variable-sized part of the Numeric object. This is usually an upper bound, but that is not guaranteed. Info [UMFPACK_VARIABLE_FINAL_ESTIMATE]: the estimated final size (in Units) of the variable-sized part of the Numeric object. This is usually an upper bound, but that is not guaranteed. It holds just the sparse LU factors. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in Units) of the entire Numeric object (both fixed-size and variable- sized parts), which holds the LU factorization (including the L, U, P and Q matrices). Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of memory (in Units) required by umfpack_*_symbolic and umfpack_*_numeric to perform both the symbolic and numeric factorization. This is the larger of the amount of memory needed in umfpack_*_numeric itself, and the amount of memory needed in umfpack_*_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The count includes the size of both the Symbolic and Numeric objects themselves. It can be a very loose upper bound, particularly when the symmetric or 2-by-2 strategies are used. Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point operations required to factorize the matrix. This is a "true" theoretical estimate of the number of flops that would be performed by a flop-parsimonious sparse LU algorithm. It assumes that no extra flops are performed except for what is strictly required to compute the LU factorization. It ignores, for example, the flops performed by umfpack_di_numeric to add contribution blocks of frontal matrices together. If L and U are the upper bound on the pattern of the factors, then this flop count estimate can be represented in MATLAB (for real matrices, not complex) as: Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L Unz = full (sum (spones (U')))' - 1 ; % nz in each row of U flops = 2*Lnz*Unz + sum (Lnz) ; The actual "true flop" count found by umfpack_*_numeric will be less than this estimate. For the real version, only (+ - * /) are counted. For the complex version, the following counts are used: operation flops c = 1/b 6 c = a*b 6 c -= a*b 8 Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in L, including the diagonal. Since L is unit-diagonal, the diagonal of L is not stored. This estimate is a strict upper bound on the actual nonzeros in L to be computed by umfpack_*_numeric. Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in U, including the diagonal. This estimate is a strict upper bound on the actual nonzeros in U to be computed by umfpack_*_numeric. Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE]: estimate of the size of the largest frontal matrix (# of entries), for arbitrary partial pivoting during numerical factorization. Info [UMFPACK_SYMBOLIC_TIME]: The CPU time taken, in seconds. Info [UMFPACK_SYMBOLIC_WALLTIME]: The wallclock time taken, in seconds. Info [UMFPACK_STRATEGY_USED]: The ordering strategy used: UMFPACK_STRATEGY_SYMMETRIC, UMFPACK_STRATEGY_UNSYMMETRIC, or UMFPACK_STRATEGY_2BY2. Info [UMFPACK_ORDERING_USED]: The ordering method used: UMFPACK_ORDERING_COLAMD or UMFPACK_ORDERING_AMD. It can be UMFPACK_ORDERING_GIVEN for umfpack_*_qsymbolic. Info [UMFPACK_QFIXED]: 1 if the column pre-ordering will be refined during numerical factorization, 0 if not. Info [UMFPACK_DIAG_PREFERED]: 1 if diagonal pivoting will be attempted, 0 if not. Info [UMFPACK_COL_SINGLETONS]: the matrix A is analyzed by first eliminating all pivots with zero Markowitz cost. This count is the number of these pivots with exactly one nonzero in their pivot column. Info [UMFPACK_ROW_SINGLETONS]: the number of zero-Markowitz-cost pivots with exactly one nonzero in their pivot row. Info [UMFPACK_PATTERN_SYMMETRY]: the symmetry of the pattern of S. Info [UMFPACK_NZ_A_PLUS_AT]: the number of off-diagonal entries in S+S'. Info [UMFPACK_NZDIAG]: the number of entries on the diagonal of S. Info [UMFPACK_N2]: if S is square, and nempty_row = nempty_col, this is equal to n_row - n1 - nempty_row. Info [UMFPACK_S_SYMMETRIC]: 1 if S is square and its diagonal has been preserved, 0 otherwise. Info [UMFPACK_MAX_FRONT_NROWS_ESTIMATE]: estimate of the max number of rows in any frontal matrix, for arbitrary partial pivoting. Info [UMFPACK_MAX_FRONT_NCOLS_ESTIMATE]: estimate of the max number of columns in any frontal matrix, for arbitrary partial pivoting. ------------------------------------------------------------------------ The next four statistics are computed only if AMD is used: ------------------------------------------------------------------------ Info [UMFPACK_SYMMETRIC_LUNZ]: The number of nonzeros in L and U, assuming no pivoting during numerical factorization, and assuming a zero-free diagonal of U. Excludes the entries on the diagonal of L. If the matrix has a purely symmetric nonzero pattern, this is often a lower bound on the nonzeros in the actual L and U computed in the numerical factorization, for matrices that fit the criteria for the "symmetric" strategy. Info [UMFPACK_SYMMETRIC_FLOPS]: The floating-point operation count in the numerical factorization phase, assuming no pivoting. If the pattern of the matrix is symmetric, this is normally a lower bound on the floating-point operation count in the actual numerical factorization, for matrices that fit the criteria for the symmetric or 2-by-2 strategies Info [UMFPACK_SYMMETRIC_NDENSE]: The number of "dense" rows/columns of S+S' that were ignored during the AMD ordering. These are placed last in the output order. If > 0, then the Info [UMFPACK_SYMMETRIC_*] statistics, above are rough upper bounds. Info [UMFPACK_SYMMETRIC_DMAX]: The maximum number of nonzeros in any column of L, if no pivoting is performed during numerical factorization. Excludes the part of the LU factorization for pivots with zero Markowitz cost. ------------------------------------------------------------------------ The following statistics are computed only if the 2-by-2 strategy is used or attempted: ------------------------------------------------------------------------ Info [UMFPACK_2BY2_NWEAK]: the number of small diagonal entries in S. Info [UMFPACK_2BY2_UNMATCHED]: the number of small diagonal entries in P2*S. Info [UMFPACK_2BY2_PATTERN_SYMMETRY]: the symmetry of P2*S. Info [UMFPACK_2BY2_NZ_PA_PLUS_AT]: the number of off-diagonal entries in (P2*S)+(P2*S)'. Info [UMFPACK_2BY2_NZDIAG]: the number of nonzero entries on the diagonal of P2*S. At the start of umfpack_*_symbolic, all of Info is set of -1, and then after that only the above listed Info [...] entries are accessed. Future versions might modify different parts of Info. */ SuiteSparse/UMFPACK/Include/umfpack_col_to_triplet.h0000644001170100242450000000720010617161031021314 0ustar davisfac/* ========================================================================== */ /* === umfpack_col_to_triplet =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_col_to_triplet ( int n_col, const int Ap [ ], int Tj [ ] ) ; UF_long umfpack_dl_col_to_triplet ( UF_long n_col, const UF_long Ap [ ], UF_long Tj [ ] ) ; int umfpack_zi_col_to_triplet ( int n_col, const int Ap [ ], int Tj [ ] ) ; UF_long umfpack_zl_col_to_triplet ( UF_long n_col, const UF_long Ap [ ], UF_long Tj [ ] ) ; /* double int Syntax: #include "umfpack.h" int n_col, *Tj, *Ap, status ; status = umfpack_di_col_to_triplet (n_col, Ap, Tj) ; double UF_long Syntax: #include "umfpack.h" UF_long n_col, *Tj, *Ap, status ; status = umfpack_dl_col_to_triplet (n_col, Ap, Tj) ; complex int Syntax: #include "umfpack.h" int n_col, *Tj, *Ap, status ; status = umfpack_zi_col_to_triplet (n_col, Ap, Tj) ; complex UF_long Syntax: #include "umfpack.h" UF_long n_col, *Tj, *Ap, status ; status = umfpack_zl_col_to_triplet (n_col, Ap, Tj) ; Purpose: Converts a column-oriented matrix to a triplet form. Only the column pointers, Ap, are required, and only the column indices of the triplet form are constructed. This routine is the opposite of umfpack_*_triplet_to_col. The matrix may be singular and/or rectangular. Analogous to [i, Tj, x] = find (A) in MATLAB, except that zero entries present in the column-form of A are present in the output, and i and x are not created (those are just Ai and Ax+Az*1i, respectively, for a column-form matrix A). Returns: UMFPACK_OK if successful UMFPACK_ERROR_argument_missing if Ap or Tj is missing UMFPACK_ERROR_n_nonpositive if n_col <= 0 UMFPACK_ERROR_invalid_matrix if Ap [n_col] < 0, Ap [0] != 0, or Ap [j] > Ap [j+1] for any j in the range 0 to n-1. Unsorted columns and duplicate entries do not cause an error (these would only be evident by examining Ai). Empty rows and columns are OK. Arguments: Int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Restriction: n_col > 0. (n_row is not required) Int Ap [n_col+1] ; Input argument, not modified. The column pointers of the column-oriented form of the matrix. See umfpack_*_*symbolic for a description. The number of entries in the matrix is nz = Ap [n_col]. Restrictions on Ap are the same as those for umfpack_*_transpose. Ap [0] must be zero, nz must be >= 0, and Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for all j in the range 0 to n_col-1. Empty columns are OK (that is, Ap [j] may equal Ap [j+1] for any j in the range 0 to n_col-1). Int Tj [nz] ; Output argument. Tj is an integer array of size nz on input, where nz = Ap [n_col]. Suppose the column-form of the matrix is held in Ap, Ai, Ax, and Az (see umfpack_*_*symbolic for a description). Then on output, the triplet form of the same matrix is held in Ai (row indices), Tj (column indices), and Ax (numerical values). Note, however, that this routine does not require Ai and Ax (or Az for the complex version) in order to do the conversion. */ SuiteSparse/UMFPACK/Include/umfpack_get_numeric.h0000644001170100242450000002147310617161047020612 0ustar davisfac/* ========================================================================== */ /* === umfpack_get_numeric ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_get_numeric ( int Lp [ ], int Lj [ ], double Lx [ ], int Up [ ], int Ui [ ], double Ux [ ], int P [ ], int Q [ ], double Dx [ ], int *do_recip, double Rs [ ], void *Numeric ) ; UF_long umfpack_dl_get_numeric ( UF_long Lp [ ], UF_long Lj [ ], double Lx [ ], UF_long Up [ ], UF_long Ui [ ], double Ux [ ], UF_long P [ ], UF_long Q [ ], double Dx [ ], UF_long *do_recip, double Rs [ ], void *Numeric ) ; int umfpack_zi_get_numeric ( int Lp [ ], int Lj [ ], double Lx [ ], double Lz [ ], int Up [ ], int Ui [ ], double Ux [ ], double Uz [ ], int P [ ], int Q [ ], double Dx [ ], double Dz [ ], int *do_recip, double Rs [ ], void *Numeric ) ; UF_long umfpack_zl_get_numeric ( UF_long Lp [ ], UF_long Lj [ ], double Lx [ ], double Lz [ ], UF_long Up [ ], UF_long Ui [ ], double Ux [ ], double Uz [ ], UF_long P [ ], UF_long Q [ ], double Dx [ ], double Dz [ ], UF_long *do_recip, double Rs [ ], void *Numeric ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; int *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ; double *Lx, *Ux, *Dx, *Rs ; status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, &do_recip, Rs, Numeric) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ; double *Lx, *Ux, *Dx, *Rs ; status = umfpack_dl_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, &do_recip, Rs, Numeric) ; complex int Syntax: #include "umfpack.h" void *Numeric ; int *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ; double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz, *Rs ; status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ; double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz, *Rs ; status = umfpack_zl_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, &do_recip, Rs, Numeric) ; packed complex int/UF_long Syntax: Same as above, except Lz, Uz, and Dz are all NULL. Purpose: This routine copies the LU factors and permutation vectors from the Numeric object into user-accessible arrays. This routine is not needed to solve a linear system. Note that the output arrays Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, and Rs are not allocated by umfpack_*_get_numeric; they must exist on input. All output arguments are optional. If any of them are NULL on input, then that part of the LU factorization is not copied. You can use this routine to extract just the parts of the LU factorization that you want. For example, to retrieve just the column permutation Q, use: #define noD (double *) NULL #define noI (int *) NULL status = umfpack_di_get_numeric (noI, noI, noD, noI, noI, noD, noI, Q, noD, noI, noD, Numeric) ; Returns: Returns UMFPACK_OK if successful. Returns UMFPACK_ERROR_out_of_memory if insufficient memory is available for the 2*max(n_row,n_col) integer workspace that umfpack_*_get_numeric allocates to construct L and/or U. Returns UMFPACK_ERROR_invalid_Numeric_object if the Numeric object provided as input is invalid. Arguments: Int Lp [n_row+1] ; Output argument. Int Lj [lnz] ; Output argument. double Lx [lnz] ; Output argument. Size 2*lnz for packed complex case. double Lz [lnz] ; Output argument for complex versions. The n_row-by-min(n_row,n_col) matrix L is returned in compressed-row form. The column indices of row i and corresponding numerical values are in: Lj [Lp [i] ... Lp [i+1]-1] Lx [Lp [i] ... Lp [i+1]-1] real part Lz [Lp [i] ... Lp [i+1]-1] imaginary part (complex versions) respectively. Each row is stored in sorted order, from low column indices to higher. The last entry in each row is the diagonal, which is numerically equal to one. The sizes of Lp, Lj, Lx, and Lz are returned by umfpack_*_get_lunz. If Lp, Lj, or Lx are not present, then the matrix L is not returned. This is not an error condition. The L matrix can be printed if n_row, Lp, Lj, Lx (and Lz for the split complex case) are passed to umfpack_*_report_matrix (using the "row" form). If Lx is present and Lz is NULL, then both real and imaginary parts are returned in Lx[0..2*lnz-1], with Lx[2*k] and Lx[2*k+1] being the real and imaginary part of the kth entry. Int Up [n_col+1] ; Output argument. Int Ui [unz] ; Output argument. double Ux [unz] ; Output argument. Size 2*unz for packed complex case. double Uz [unz] ; Output argument for complex versions. The min(n_row,n_col)-by-n_col matrix U is returned in compressed-column form. The row indices of column j and corresponding numerical values are in Ui [Up [j] ... Up [j+1]-1] Ux [Up [j] ... Up [j+1]-1] real part Uz [Up [j] ... Up [j+1]-1] imaginary part (complex versions) respectively. Each column is stored in sorted order, from low row indices to higher. The last entry in each column is the diagonal (assuming that it is nonzero). The sizes of Up, Ui, Ux, and Uz are returned by umfpack_*_get_lunz. If Up, Ui, or Ux are not present, then the matrix U is not returned. This is not an error condition. The U matrix can be printed if n_col, Up, Ui, Ux (and Uz for the split complex case) are passed to umfpack_*_report_matrix (using the "column" form). If Ux is present and Uz is NULL, then both real and imaginary parts are returned in Ux[0..2*unz-1], with Ux[2*k] and Ux[2*k+1] being the real and imaginary part of the kth entry. Int P [n_row] ; Output argument. The permutation vector P is defined as P [k] = i, where the original row i of A is the kth pivot row in PAQ. If you do not want the P vector to be returned, simply pass (Int *) NULL for P. This is not an error condition. You can print P and Q with umfpack_*_report_perm. Int Q [n_col] ; Output argument. The permutation vector Q is defined as Q [k] = j, where the original column j of A is the kth pivot column in PAQ. If you not want the Q vector to be returned, simply pass (Int *) NULL for Q. This is not an error condition. Note that Q is not necessarily identical to Qtree, the column pre-ordering held in the Symbolic object. Refer to the description of Qtree and Front_npivcol in umfpack_*_get_symbolic for details. double Dx [min(n_row,n_col)] ; Output argument. Size 2*n for the packed complex case. double Dz [min(n_row,n_col)] ; Output argument for complex versions. The diagonal of U is also returned in Dx and Dz. You can extract the diagonal of U without getting all of U by passing a non-NULL Dx (and Dz for the complex version) and passing Up, Ui, and Ux as NULL. Dx is the real part of the diagonal, and Dz is the imaginary part. If Dx is present and Dz is NULL, then both real and imaginary parts are returned in Dx[0..2*min(n_row,n_col)-1], with Dx[2*k] and Dx[2*k+1] being the real and imaginary part of the kth entry. Int *do_recip ; Output argument. This argument defines how the scale factors Rs are to be interpretted. If do_recip is TRUE (one), then the scale factors Rs [i] are to be used by multiplying row i by Rs [i]. Otherwise, the entries in row i are to be divided by Rs [i]. If UMFPACK has been compiled with gcc, or for MATLAB as either a built-in routine or as a mexFunction, then the NRECIPROCAL flag is set, and do_recip will always be FALSE (zero). double Rs [n_row] ; Output argument. The row scale factors are returned in Rs [0..n_row-1]. Row i of A is scaled by dividing or multiplying its values by Rs [i]. If default scaling is in use, Rs [i] is the sum of the absolute values of row i (or its reciprocal). If max row scaling is in use, then Rs [i] is the maximum absolute value in row i (or its reciprocal). Otherwise, Rs [i] = 1. If row i is all zero, Rs [i] = 1 as well. For the complex version, an approximate absolute value is used (|x_real|+|x_imag|). void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric. */ SuiteSparse/UMFPACK/Include/umfpack_global.h0000644001170100242450000000200510617161053017534 0ustar davisfac/* ========================================================================== */ /* === umfpack_global ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* prototypes for global variables, and basic operators for complex values */ #ifndef EXTERN #define EXTERN extern #endif EXTERN double (*umfpack_hypot) (double, double) ; EXTERN int (*umfpack_divcomplex) (double, double, double, double, double *, double *) ; double umf_hypot (double x, double y) ; int umf_divcomplex (double, double, double, double, double *, double *) ; SuiteSparse/UMFPACK/Include/umfpack.h0000644001170100242450000004601710711430425016224 0ustar davisfac/* ========================================================================== */ /* === umfpack.h ============================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* This is the umfpack.h include file, and should be included in all user code that uses UMFPACK. Do not include any of the umf_* header files in user code. All routines in UMFPACK starting with "umfpack_" are user-callable. All other routines are prefixed "umf_XY_", (where X is d or z, and Y is i or l) and are not user-callable. */ #ifndef UMFPACK_H #define UMFPACK_H /* -------------------------------------------------------------------------- */ /* Make it easy for C++ programs to include UMFPACK */ /* -------------------------------------------------------------------------- */ #ifdef __cplusplus extern "C" { #endif /* define UF_long */ #include "UFconfig.h" /* -------------------------------------------------------------------------- */ /* size of Info and Control arrays */ /* -------------------------------------------------------------------------- */ /* These might be larger in future versions, since there are only 3 unused * entries in Info, and no unused entries in Control. */ #define UMFPACK_INFO 90 #define UMFPACK_CONTROL 20 /* -------------------------------------------------------------------------- */ /* User-callable routines */ /* -------------------------------------------------------------------------- */ /* Primary routines: */ #include "umfpack_symbolic.h" #include "umfpack_numeric.h" #include "umfpack_solve.h" #include "umfpack_free_symbolic.h" #include "umfpack_free_numeric.h" /* Alternative routines: */ #include "umfpack_defaults.h" #include "umfpack_qsymbolic.h" #include "umfpack_wsolve.h" /* Matrix manipulation routines: */ #include "umfpack_triplet_to_col.h" #include "umfpack_col_to_triplet.h" #include "umfpack_transpose.h" #include "umfpack_scale.h" /* Getting the contents of the Symbolic and Numeric opaque objects: */ #include "umfpack_get_lunz.h" #include "umfpack_get_numeric.h" #include "umfpack_get_symbolic.h" #include "umfpack_save_numeric.h" #include "umfpack_load_numeric.h" #include "umfpack_save_symbolic.h" #include "umfpack_load_symbolic.h" #include "umfpack_get_determinant.h" /* Reporting routines (the above 14 routines print nothing): */ #include "umfpack_report_status.h" #include "umfpack_report_info.h" #include "umfpack_report_control.h" #include "umfpack_report_matrix.h" #include "umfpack_report_triplet.h" #include "umfpack_report_vector.h" #include "umfpack_report_symbolic.h" #include "umfpack_report_numeric.h" #include "umfpack_report_perm.h" /* Utility routines: */ #include "umfpack_timer.h" #include "umfpack_tictoc.h" /* AMD */ #include "amd.h" /* global function pointers */ #include "umfpack_global.h" /* -------------------------------------------------------------------------- */ /* Version, copyright, and license */ /* -------------------------------------------------------------------------- */ #define UMFPACK_VERSION "UMFPACK V5.2.0 (Nov 1, 2007)" #define UMFPACK_COPYRIGHT \ "UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.\n" #define UMFPACK_LICENSE_PART1 \ "\nUMFPACK License:\n" \ "\n" \ " UMFPACK is available under alternate licenses,\n" \ " contact T. Davis for details.\n" \ "\n" \ " Your use or distribution of UMFPACK or any modified version of\n" \ " UMFPACK implies that you agree to this License.\n" \ "\n" \ " This library is free software; you can redistribute it and/or\n" \ " modify it under the terms of the GNU General Public\n" \ " License as published by the Free Software Foundation; either\n" \ " version 2 of the License, or (at your option) any later version.\n" \ "\n" \ " This library is distributed in the hope that it will be useful,\n" \ " but WITHOUT ANY WARRANTY; without even the implied warranty of\n" \ " MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n" \ " General Public License for more details.\n" \ "\n" \ " You should have received a copy of the GNU General Public\n" \ " License along with this library; if not, write to the Free Software\n" \ " Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301\n" \ " USA\n" \ #define UMFPACK_LICENSE_PART2 \ "\n" \ " Permission is hereby granted to use or copy this program under the\n" \ " terms of the GNU GPL, provided that the Copyright, this License,\n" \ " and the Availability of the original version is retained on all copies.\n" \ " User documentation of any code that uses this code or any modified\n" \ " version of this code must cite the Copyright, this License, the\n" \ " Availability note, and \"Used by permission.\" Permission to modify\n" \ " the code and to distribute modified code is granted, provided the\n" \ " Copyright, this License, and the Availability note are retained,\n" \ " and a notice that the code was modified is included.\n" #define UMFPACK_LICENSE_PART3 \ "\n" \ "Availability: http://www.cise.ufl.edu/research/sparse/umfpack\n" \ "\n" /* UMFPACK Version 4.5 and later will include the following definitions. * As an example, to test if the version you are using is 4.5 or later: * * #ifdef UMFPACK_VER * if (UMFPACK_VER >= UMFPACK_VER_CODE (4,5)) ... * #endif * * This also works during compile-time: * * #if defined(UMFPACK_VER) && (UMFPACK >= UMFPACK_VER_CODE (4,5)) * printf ("This is version 4.5 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif * * Versions 4.4 and earlier of UMFPACK do not include a #define'd version * number, although they do include the UMFPACK_VERSION string, defined * above. */ #define UMFPACK_DATE "Nov 1, 2007" #define UMFPACK_VER_CODE(main,sub) ((main) * 1000 + (sub)) #define UMFPACK_MAIN_VERSION 5 #define UMFPACK_SUB_VERSION 2 #define UMFPACK_SUBSUB_VERSION 0 #define UMFPACK_VER UMFPACK_VER_CODE(UMFPACK_MAIN_VERSION,UMFPACK_SUB_VERSION) /* -------------------------------------------------------------------------- */ /* contents of Info */ /* -------------------------------------------------------------------------- */ /* Note that umfpack_report.m must coincide with these definitions. S is * the submatrix of A after removing row/col singletons and empty rows/cols. */ /* returned by all routines that use Info: */ #define UMFPACK_STATUS 0 /* UMFPACK_OK, or other result */ #define UMFPACK_NROW 1 /* n_row input value */ #define UMFPACK_NCOL 16 /* n_col input value */ #define UMFPACK_NZ 2 /* # of entries in A */ /* computed in UMFPACK_*symbolic and UMFPACK_numeric: */ #define UMFPACK_SIZE_OF_UNIT 3 /* sizeof (Unit) */ /* computed in UMFPACK_*symbolic: */ #define UMFPACK_SIZE_OF_INT 4 /* sizeof (int) */ #define UMFPACK_SIZE_OF_LONG 5 /* sizeof (UF_long) */ #define UMFPACK_SIZE_OF_POINTER 6 /* sizeof (void *) */ #define UMFPACK_SIZE_OF_ENTRY 7 /* sizeof (Entry), real or complex */ #define UMFPACK_NDENSE_ROW 8 /* number of dense rows */ #define UMFPACK_NEMPTY_ROW 9 /* number of empty rows */ #define UMFPACK_NDENSE_COL 10 /* number of dense rows */ #define UMFPACK_NEMPTY_COL 11 /* number of empty rows */ #define UMFPACK_SYMBOLIC_DEFRAG 12 /* # of memory compactions */ #define UMFPACK_SYMBOLIC_PEAK_MEMORY 13 /* memory used by symbolic analysis */ #define UMFPACK_SYMBOLIC_SIZE 14 /* size of Symbolic object, in Units */ #define UMFPACK_SYMBOLIC_TIME 15 /* time (sec.) for symbolic analysis */ #define UMFPACK_SYMBOLIC_WALLTIME 17 /* wall clock time for sym. analysis */ #define UMFPACK_STRATEGY_USED 18 /* strategy used: sym, unsym, 2by2 */ #define UMFPACK_ORDERING_USED 19 /* ordering used: colamd, amd, given */ #define UMFPACK_QFIXED 31 /* whether Q is fixed or refined */ #define UMFPACK_DIAG_PREFERRED 32 /* whether diagonal pivoting attempted*/ #define UMFPACK_PATTERN_SYMMETRY 33 /* symmetry of pattern of S */ #define UMFPACK_NZ_A_PLUS_AT 34 /* nnz (S+S'), excl. diagonal */ #define UMFPACK_NZDIAG 35 /* nnz (diag (S)) */ /* AMD statistics, computed in UMFPACK_*symbolic: */ #define UMFPACK_SYMMETRIC_LUNZ 36 /* nz in L+U, if AMD ordering used */ #define UMFPACK_SYMMETRIC_FLOPS 37 /* flops for LU, if AMD ordering used */ #define UMFPACK_SYMMETRIC_NDENSE 38 /* # of "dense" rows/cols in S+S' */ #define UMFPACK_SYMMETRIC_DMAX 39 /* max nz in cols of L, for AMD */ /* statistics for 2-by-2 strategy */ #define UMFPACK_2BY2_NWEAK 51 /* number of weak diagonal entries*/ #define UMFPACK_2BY2_UNMATCHED 52 /* # of weak diagonals not matched*/ #define UMFPACK_2BY2_PATTERN_SYMMETRY 53 /* symmetry of pattern of P*S */ #define UMFPACK_2BY2_NZ_PA_PLUS_PAT 54 /* nz in PS+(PS)' */ #define UMFPACK_2BY2_NZDIAG 55 /* nz on diagonal of PS+(PS)' */ /* statistcs for singleton pruning */ #define UMFPACK_COL_SINGLETONS 56 /* # of column singletons */ #define UMFPACK_ROW_SINGLETONS 57 /* # of row singletons */ #define UMFPACK_N2 58 /* size of S */ #define UMFPACK_S_SYMMETRIC 59 /* 1 if S square and symmetricly perm.*/ /* estimates computed in UMFPACK_*symbolic: */ #define UMFPACK_NUMERIC_SIZE_ESTIMATE 20 /* final size of Numeric->Memory */ #define UMFPACK_PEAK_MEMORY_ESTIMATE 21 /* for symbolic & numeric */ #define UMFPACK_FLOPS_ESTIMATE 22 /* flop count */ #define UMFPACK_LNZ_ESTIMATE 23 /* nz in L, incl. diagonal */ #define UMFPACK_UNZ_ESTIMATE 24 /* nz in U, incl. diagonal */ #define UMFPACK_VARIABLE_INIT_ESTIMATE 25 /* initial size of Numeric->Memory*/ #define UMFPACK_VARIABLE_PEAK_ESTIMATE 26 /* peak size of Numeric->Memory */ #define UMFPACK_VARIABLE_FINAL_ESTIMATE 27 /* final size of Numeric->Memory */ #define UMFPACK_MAX_FRONT_SIZE_ESTIMATE 28 /* max frontal matrix size */ #define UMFPACK_MAX_FRONT_NROWS_ESTIMATE 29 /* max # rows in any front */ #define UMFPACK_MAX_FRONT_NCOLS_ESTIMATE 30 /* max # columns in any front */ /* exact values, (estimates shown above) computed in UMFPACK_numeric: */ #define UMFPACK_NUMERIC_SIZE 40 /* final size of Numeric->Memory */ #define UMFPACK_PEAK_MEMORY 41 /* for symbolic & numeric */ #define UMFPACK_FLOPS 42 /* flop count */ #define UMFPACK_LNZ 43 /* nz in L, incl. diagonal */ #define UMFPACK_UNZ 44 /* nz in U, incl. diagonal */ #define UMFPACK_VARIABLE_INIT 45 /* initial size of Numeric->Memory*/ #define UMFPACK_VARIABLE_PEAK 46 /* peak size of Numeric->Memory */ #define UMFPACK_VARIABLE_FINAL 47 /* final size of Numeric->Memory */ #define UMFPACK_MAX_FRONT_SIZE 48 /* max frontal matrix size */ #define UMFPACK_MAX_FRONT_NROWS 49 /* max # rows in any front */ #define UMFPACK_MAX_FRONT_NCOLS 50 /* max # columns in any front */ /* computed in UMFPACK_numeric: */ #define UMFPACK_NUMERIC_DEFRAG 60 /* # of garbage collections */ #define UMFPACK_NUMERIC_REALLOC 61 /* # of memory reallocations */ #define UMFPACK_NUMERIC_COSTLY_REALLOC 62 /* # of costlly memory realloc's */ #define UMFPACK_COMPRESSED_PATTERN 63 /* # of integers in LU pattern */ #define UMFPACK_LU_ENTRIES 64 /* # of reals in LU factors */ #define UMFPACK_NUMERIC_TIME 65 /* numeric factorization time */ #define UMFPACK_UDIAG_NZ 66 /* nz on diagonal of U */ #define UMFPACK_RCOND 67 /* est. reciprocal condition # */ #define UMFPACK_WAS_SCALED 68 /* none, max row, or sum row */ #define UMFPACK_RSMIN 69 /* min (max row) or min (sum row) */ #define UMFPACK_RSMAX 70 /* max (max row) or max (sum row) */ #define UMFPACK_UMIN 71 /* min abs diagonal entry of U */ #define UMFPACK_UMAX 72 /* max abs diagonal entry of U */ #define UMFPACK_ALLOC_INIT_USED 73 /* alloc_init parameter used */ #define UMFPACK_FORCED_UPDATES 74 /* # of forced updates */ #define UMFPACK_NUMERIC_WALLTIME 75 /* numeric wall clock time */ #define UMFPACK_NOFF_DIAG 76 /* number of off-diagonal pivots */ #define UMFPACK_ALL_LNZ 77 /* nz in L, if no dropped entries */ #define UMFPACK_ALL_UNZ 78 /* nz in U, if no dropped entries */ #define UMFPACK_NZDROPPED 79 /* # of dropped small entries */ /* computed in UMFPACK_solve: */ #define UMFPACK_IR_TAKEN 80 /* # of iterative refinement steps taken */ #define UMFPACK_IR_ATTEMPTED 81 /* # of iter. refinement steps attempted */ #define UMFPACK_OMEGA1 82 /* omega1, sparse backward error estimate */ #define UMFPACK_OMEGA2 83 /* omega2, sparse backward error estimate */ #define UMFPACK_SOLVE_FLOPS 84 /* flop count for solve */ #define UMFPACK_SOLVE_TIME 85 /* solve time (seconds) */ #define UMFPACK_SOLVE_WALLTIME 86 /* solve time (wall clock, seconds) */ /* Info [87, 88, 89] unused */ /* Unused parts of Info may be used in future versions of UMFPACK. */ /* -------------------------------------------------------------------------- */ /* Info [UMFPACK_ORDERING_USED] is one of the following: */ #define UMFPACK_ORDERING_COLAMD 0 /* COLAMD(A) */ #define UMFPACK_ORDERING_AMD 1 /* AMD(A+A') */ #define UMFPACK_ORDERING_GIVEN 2 /* Q is provided on input */ /* -------------------------------------------------------------------------- */ /* contents of Control */ /* -------------------------------------------------------------------------- */ /* used in all UMFPACK_report_* routines: */ #define UMFPACK_PRL 0 /* print level */ /* used in UMFPACK_*symbolic only: */ #define UMFPACK_DENSE_ROW 1 /* dense row parameter */ #define UMFPACK_DENSE_COL 2 /* dense col parameter */ #define UMFPACK_BLOCK_SIZE 4 /* BLAS-3 block size */ #define UMFPACK_STRATEGY 5 /* auto, symmetric, unsym., or 2by2 */ #define UMFPACK_2BY2_TOLERANCE 12 /* 2-by-2 pivot tolerance */ #define UMFPACK_FIXQ 13 /* -1: no fixQ, 0: default, 1: fixQ */ #define UMFPACK_AMD_DENSE 14 /* for AMD ordering */ #define UMFPACK_AGGRESSIVE 19 /* whether or not to use aggressive * absorption in AMD and COLAMD */ /* used in UMFPACK_numeric only: */ #define UMFPACK_PIVOT_TOLERANCE 3 /* threshold partial pivoting setting */ #define UMFPACK_ALLOC_INIT 6 /* initial allocation ratio */ #define UMFPACK_SYM_PIVOT_TOLERANCE 15 /* threshold, only for diag. entries */ #define UMFPACK_SCALE 16 /* what row scaling to do */ #define UMFPACK_FRONT_ALLOC_INIT 17 /* frontal matrix allocation ratio */ #define UMFPACK_DROPTOL 18 /* drop tolerance for entries in L,U */ /* used in UMFPACK_*solve only: */ #define UMFPACK_IRSTEP 7 /* max # of iterative refinements */ /* compile-time settings - Control [8..11] cannot be changed at run time: */ #define UMFPACK_COMPILED_WITH_BLAS 8 /* uses the BLAS */ #define UMFPACK_COMPILED_FOR_MATLAB 9 /* 1 if MATLAB mexFunction, etc. */ #define UMFPACK_COMPILED_WITH_GETRUSAGE 10 /* uses getrusage timer, or not */ #define UMFPACK_COMPILED_IN_DEBUG_MODE 11 /* debugging enabled (very slow!) */ /* -------------------------------------------------------------------------- */ /* Control [UMFPACK_STRATEGY] is one of the following: */ #define UMFPACK_STRATEGY_AUTO 0 /* use sym. or unsym. strategy */ #define UMFPACK_STRATEGY_UNSYMMETRIC 1 /* COLAMD(A), coletree postorder, not prefer diag*/ #define UMFPACK_STRATEGY_2BY2 2 /* AMD(PA+PA'), no coletree postorder, prefer diag(PA) where P is pseudo max transversal */ #define UMFPACK_STRATEGY_SYMMETRIC 3 /* AMD(A+A'), no coletree postorder, prefer diagonal */ /* Control [UMFPACK_SCALE] is one of the following: */ #define UMFPACK_SCALE_NONE 0 /* no scaling */ #define UMFPACK_SCALE_SUM 1 /* default: divide each row by sum (abs (row))*/ #define UMFPACK_SCALE_MAX 2 /* divide each row by max (abs (row)) */ /* -------------------------------------------------------------------------- */ /* default values of Control: */ /* -------------------------------------------------------------------------- */ #define UMFPACK_DEFAULT_PRL 1 #define UMFPACK_DEFAULT_DENSE_ROW 0.2 #define UMFPACK_DEFAULT_DENSE_COL 0.2 #define UMFPACK_DEFAULT_PIVOT_TOLERANCE 0.1 #define UMFPACK_DEFAULT_2BY2_TOLERANCE 0.01 #define UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE 0.001 #define UMFPACK_DEFAULT_BLOCK_SIZE 32 #define UMFPACK_DEFAULT_ALLOC_INIT 0.7 #define UMFPACK_DEFAULT_FRONT_ALLOC_INIT 0.5 #define UMFPACK_DEFAULT_IRSTEP 2 #define UMFPACK_DEFAULT_SCALE UMFPACK_SCALE_SUM #define UMFPACK_DEFAULT_STRATEGY UMFPACK_STRATEGY_AUTO #define UMFPACK_DEFAULT_AMD_DENSE AMD_DEFAULT_DENSE #define UMFPACK_DEFAULT_FIXQ 0 #define UMFPACK_DEFAULT_AGGRESSIVE 1 #define UMFPACK_DEFAULT_DROPTOL 0 /* default values of Control may change in future versions of UMFPACK. */ /* -------------------------------------------------------------------------- */ /* status codes */ /* -------------------------------------------------------------------------- */ #define UMFPACK_OK (0) /* status > 0 means a warning, but the method was successful anyway. */ /* A Symbolic or Numeric object was still created. */ #define UMFPACK_WARNING_singular_matrix (1) /* The following warnings were added in umfpack_*_get_determinant */ #define UMFPACK_WARNING_determinant_underflow (2) #define UMFPACK_WARNING_determinant_overflow (3) /* status < 0 means an error, and the method was not successful. */ /* No Symbolic of Numeric object was created. */ #define UMFPACK_ERROR_out_of_memory (-1) #define UMFPACK_ERROR_invalid_Numeric_object (-3) #define UMFPACK_ERROR_invalid_Symbolic_object (-4) #define UMFPACK_ERROR_argument_missing (-5) #define UMFPACK_ERROR_n_nonpositive (-6) #define UMFPACK_ERROR_invalid_matrix (-8) #define UMFPACK_ERROR_different_pattern (-11) #define UMFPACK_ERROR_invalid_system (-13) #define UMFPACK_ERROR_invalid_permutation (-15) #define UMFPACK_ERROR_internal_error (-911) /* yes, call me if you get this! */ #define UMFPACK_ERROR_file_IO (-17) /* -------------------------------------------------------------------------- */ /* solve codes */ /* -------------------------------------------------------------------------- */ /* Solve the system ( )x=b, where ( ) is defined below. "t" refers to the */ /* linear algebraic transpose (complex conjugate if A is complex), or the (') */ /* operator in MATLAB. "at" refers to the array transpose, or the (.') */ /* operator in MATLAB. */ #define UMFPACK_A (0) /* Ax=b */ #define UMFPACK_At (1) /* A'x=b */ #define UMFPACK_Aat (2) /* A.'x=b */ #define UMFPACK_Pt_L (3) /* P'Lx=b */ #define UMFPACK_L (4) /* Lx=b */ #define UMFPACK_Lt_P (5) /* L'Px=b */ #define UMFPACK_Lat_P (6) /* L.'Px=b */ #define UMFPACK_Lt (7) /* L'x=b */ #define UMFPACK_Lat (8) /* L.'x=b */ #define UMFPACK_U_Qt (9) /* UQ'x=b */ #define UMFPACK_U (10) /* Ux=b */ #define UMFPACK_Q_Ut (11) /* QU'x=b */ #define UMFPACK_Q_Uat (12) /* QU.'x=b */ #define UMFPACK_Ut (13) /* U'x=b */ #define UMFPACK_Uat (14) /* U.'x=b */ /* -------------------------------------------------------------------------- */ /* Integer constants are used for status and solve codes instead of enum */ /* to make it easier for a Fortran code to call UMFPACK. */ #ifdef __cplusplus } #endif #endif /* UMFPACK_H */ SuiteSparse/UMFPACK/Include/umfpack_get_symbolic.h0000644001170100242450000003154210617161051020762 0ustar davisfac/* ========================================================================== */ /* === umfpack_get_symbolic ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_get_symbolic ( int *n_row, int *n_col, int *n1, int *nz, int *nfr, int *nchains, int P [ ], int Q [ ], int Front_npivcol [ ], int Front_parent [ ], int Front_1strow [ ], int Front_leftmostdesc [ ], int Chain_start [ ], int Chain_maxrows [ ], int Chain_maxcols [ ], void *Symbolic ) ; UF_long umfpack_dl_get_symbolic ( UF_long *n_row, UF_long *n_col, UF_long *n1, UF_long *nz, UF_long *nfr, UF_long *nchains, UF_long P [ ], UF_long Q [ ], UF_long Front_npivcol [ ], UF_long Front_parent [ ], UF_long Front_1strow [ ], UF_long Front_leftmostdesc [ ], UF_long Chain_start [ ], UF_long Chain_maxrows [ ], UF_long Chain_maxcols [ ], void *Symbolic ) ; int umfpack_zi_get_symbolic ( int *n_row, int *n_col, int *n1, int *nz, int *nfr, int *nchains, int P [ ], int Q [ ], int Front_npivcol [ ], int Front_parent [ ], int Front_1strow [ ], int Front_leftmostdesc [ ], int Chain_start [ ], int Chain_maxrows [ ], int Chain_maxcols [ ], void *Symbolic ) ; UF_long umfpack_zl_get_symbolic ( UF_long *n_row, UF_long *n_col, UF_long *n1, UF_long *nz, UF_long *nfr, UF_long *nchains, UF_long P [ ], UF_long Q [ ], UF_long Front_npivcol [ ], UF_long Front_parent [ ], UF_long Front_1strow [ ], UF_long Front_leftmostdesc [ ], UF_long Chain_start [ ], UF_long Chain_maxrows [ ], UF_long Chain_maxcols [ ], void *Symbolic ) ; /* double int Syntax: #include "umfpack.h" int status, n_row, n_col, nz, nfr, nchains, *P, *Q, *Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc, *Chain_start, *Chain_maxrows, *Chain_maxcols ; void *Symbolic ; status = umfpack_di_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; double UF_long Syntax: #include "umfpack.h" UF_long status, n_row, n_col, nz, nfr, nchains, *P, *Q, *Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc, *Chain_start, *Chain_maxrows, *Chain_maxcols ; void *Symbolic ; status = umfpack_dl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; complex int Syntax: #include "umfpack.h" int status, n_row, n_col, nz, nfr, nchains, *P, *Q, *Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc, *Chain_start, *Chain_maxrows, *Chain_maxcols ; void *Symbolic ; status = umfpack_zi_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; complex UF_long Syntax: #include "umfpack.h" UF_long status, n_row, n_col, nz, nfr, nchains, *P, *Q, *Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc, *Chain_start, *Chain_maxrows, *Chain_maxcols ; void *Symbolic ; status = umfpack_zl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains, P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ; Purpose: Copies the contents of the Symbolic object into simple integer arrays accessible to the user. This routine is not needed to factorize and/or solve a sparse linear system using UMFPACK. Note that the output arrays P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc, Chain_start, Chain_maxrows, and Chain_maxcols are not allocated by umfpack_*_get_symbolic; they must exist on input. All output arguments are optional. If any of them are NULL on input, then that part of the symbolic analysis is not copied. You can use this routine to extract just the parts of the symbolic analysis that you want. For example, to retrieve just the column permutation Q, use: #define noI (int *) NULL status = umfpack_di_get_symbolic (noI, noI, noI, noI, noI, noI, noI, Q, noI, noI, noI, noI, noI, noI, noI, Symbolic) ; The only required argument the last one, the pointer to the Symbolic object. The Symbolic object is small. Its size for an n-by-n square matrix varies from 4*n to 13*n, depending on the matrix. The object holds the initial column permutation, the supernodal column elimination tree, and information about each frontal matrix. You can print it with umfpack_*_report_symbolic. Returns: Returns UMFPACK_OK if successful, UMFPACK_ERROR_invalid_Symbolic_object if Symbolic is an invalid object. Arguments: Int *n_row ; Output argument. Int *n_col ; Output argument. The dimensions of the matrix A analyzed by the call to umfpack_*_symbolic that generated the Symbolic object. Int *n1 ; Output argument. The number of pivots with zero Markowitz cost (they have just one entry in the pivot row, or the pivot column, or both). These appear first in the output permutations P and Q. Int *nz ; Output argument. The number of nonzeros in A. Int *nfr ; Output argument. The number of frontal matrices that will be used by umfpack_*_numeric to factorize the matrix A. It is in the range 0 to n_col. Int *nchains ; Output argument. The frontal matrices are related to one another by the supernodal column elimination tree. Each node in this tree is one frontal matrix. The tree is partitioned into a set of disjoint paths, and a frontal matrix chain is one path in this tree. Each chain is factorized using a unifrontal technique, with a single working array that holds each frontal matrix in the chain, one at a time. nchains is in the range 0 to nfr. Int P [n_row] ; Output argument. The initial row permutation. If P [k] = i, then this means that row i is the kth row in the pre-ordered matrix. In general, this P is not the same as the final row permutation computed by umfpack_*_numeric. For the unsymmetric strategy, P defines the row-merge order. Let j be the column index of the leftmost nonzero entry in row i of A*Q. Then P defines a sort of the rows according to this value. A row can appear earlier in this ordering if it is aggressively absorbed before it can become a pivot row. If P [k] = i, row i typically will not be the kth pivot row. For the symmetric strategy, P = Q. For the 2-by-2 strategy, P is the row permutation that places large entries on the diagonal of P*A*Q. If no pivoting occurs during numerical factorization, P [k] = i also defines the final permutation of umfpack_*_numeric, for either the symmetric or 2-by-2 strategies. Int Q [n_col] ; Output argument. The initial column permutation. If Q [k] = j, then this means that column j is the kth pivot column in the pre-ordered matrix. Q is not necessarily the same as the final column permutation Q, computed by umfpack_*_numeric. The numeric factorization may reorder the pivot columns within each frontal matrix to reduce fill-in. If the matrix is structurally singular, and if the symmetric or 2-by-2 strategies or used (or if Control [UMFPACK_FIXQ] > 0), then this Q will be the same as the final column permutation computed in umfpack_*_numeric. Int Front_npivcol [n_col+1] ; Output argument. This array should be of size at least n_col+1, in order to guarantee that it will be large enough to hold the output. Only the first nfr+1 entries are used, however. The kth frontal matrix holds Front_npivcol [k] pivot columns. Thus, the first frontal matrix, front 0, is used to factorize the first Front_npivcol [0] columns; these correspond to the original columns Q [0] through Q [Front_npivcol [0]-1]. The next frontal matrix is used to factorize the next Front_npivcol [1] columns, which are thus the original columns Q [Front_npivcol [0]] through Q [Front_npivcol [0] + Front_npivcol [1] - 1], and so on. Columns with no entries at all are put in a placeholder "front", Front_npivcol [nfr]. The sum of Front_npivcol [0..nfr] is equal to n_col. Any modifications that umfpack_*_numeric makes to the initial column permutation are constrained to within each frontal matrix. Thus, for the first frontal matrix, Q [0] through Q [Front_npivcol [0]-1] is some permutation of the columns Q [0] through Q [Front_npivcol [0]-1]. For second frontal matrix, Q [Front_npivcol [0]] through Q [Front_npivcol [0] + Front_npivcol[1]-1] is some permutation of the same portion of Q, and so on. All pivot columns are numerically factorized within the frontal matrix originally determined by the symbolic factorization; there is no delayed pivoting across frontal matrices. Int Front_parent [n_col+1] ; Output argument. This array should be of size at least n_col+1, in order to guarantee that it will be large enough to hold the output. Only the first nfr+1 entries are used, however. Front_parent [0..nfr] holds the supernodal column elimination tree (including the placeholder front nfr, which may be empty). Each node in the tree corresponds to a single frontal matrix. The parent of node f is Front_parent [f]. Int Front_1strow [n_col+1] ; Output argument. This array should be of size at least n_col+1, in order to guarantee that it will be large enough to hold the output. Only the first nfr+1 entries are used, however. Front_1strow [k] is the row index of the first row in A (P,Q) whose leftmost entry is in a pivot column for the kth front. This is necessary only to properly factorize singular matrices. Rows in the range Front_1strow [k] to Front_1strow [k+1]-1 first become pivot row candidates at the kth front. Any rows not eliminated in the kth front may be selected as pivot rows in the parent of k (Front_parent [k]) and so on up the tree. Int Front_leftmostdesc [n_col+1] ; Output argument. This array should be of size at least n_col+1, in order to guarantee that it will be large enough to hold the output. Only the first nfr+1 entries are used, however. Front_leftmostdesc [k] is the leftmost descendant of front k, or k if the front has no children in the tree. Since the rows and columns (P and Q) have been post-ordered via a depth-first-search of the tree, rows in the range Front_1strow [Front_leftmostdesc [k]] to Front_1strow [k+1]-1 form the entire set of candidate pivot rows for the kth front (some of these will typically have already been selected by fronts in the range Front_leftmostdesc [k] to front k-1, before the factorization reaches front k). Chain_start [n_col+1] ; Output argument. This array should be of size at least n_col+1, in order to guarantee that it will be large enough to hold the output. Only the first nchains+1 entries are used, however. The kth frontal matrix chain consists of frontal matrices Chain_start[k] through Chain_start [k+1]-1. Thus, Chain_start [0] is always 0, and Chain_start [nchains] is the total number of frontal matrices, nfr. For two adjacent fronts f and f+1 within a single chain, f+1 is always the parent of f (that is, Front_parent [f] = f+1). Int Chain_maxrows [n_col+1] ; Output argument. Int Chain_maxcols [n_col+1] ; Output argument. These arrays should be of size at least n_col+1, in order to guarantee that they will be large enough to hold the output. Only the first nchains entries are used, however. The kth frontal matrix chain requires a single working array of dimension Chain_maxrows [k] by Chain_maxcols [k], for the unifrontal technique that factorizes the frontal matrix chain. Since the symbolic factorization only provides an upper bound on the size of each frontal matrix, not all of the working array is necessarily used during the numerical factorization. Note that the upper bound on the number of rows and columns of each frontal matrix is computed by umfpack_*_symbolic, but all that is required by umfpack_*_numeric is the maximum of these two sets of values for each frontal matrix chain. Thus, the size of each individual frontal matrix is not preserved in the Symbolic object. void *Symbolic ; Input argument, not modified. The Symbolic object, which holds the symbolic factorization computed by umfpack_*_symbolic. The Symbolic object is not modified by umfpack_*_get_symbolic. */ SuiteSparse/UMFPACK/Include/umfpack_load_numeric.h0000644001170100242450000000503110617161061020736 0ustar davisfac/* ========================================================================== */ /* === umfpack_load_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_load_numeric ( void **Numeric, char *filename ) ; UF_long umfpack_dl_load_numeric ( void **Numeric, char *filename ) ; int umfpack_zi_load_numeric ( void **Numeric, char *filename ) ; UF_long umfpack_zl_load_numeric ( void **Numeric, char *filename ) ; /* double int Syntax: #include "umfpack.h" int status ; char *filename ; void *Numeric ; status = umfpack_di_load_numeric (&Numeric, filename) ; double UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Numeric ; status = umfpack_dl_load_numeric (&Numeric, filename) ; complex int Syntax: #include "umfpack.h" int status ; char *filename ; void *Numeric ; status = umfpack_zi_load_numeric (&Numeric, filename) ; complex UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Numeric ; status = umfpack_zl_load_numeric (&Numeric, filename) ; Purpose: Loads a Numeric object from a file created by umfpack_*_save_numeric. The Numeric handle passed to this routine is overwritten with the new object. If that object exists prior to calling this routine, a memory leak will occur. The contents of Numeric are ignored on input. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_out_of_memory if not enough memory is available. UMFPACK_ERROR_file_IO if an I/O error occurred. Arguments: void **Numeric ; Output argument. **Numeric is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Numeric object (if successful), or (void *) NULL if a failure occurred. char *filename ; Input argument, not modified. A string that contains the filename from which to read the Numeric object. */ SuiteSparse/UMFPACK/Include/umfpack_report_triplet.h0000644001170100242450000001143510617161113021356 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_triplet =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_triplet ( int n_row, int n_col, int nz, const int Ti [ ], const int Tj [ ], const double Tx [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_triplet ( UF_long n_row, UF_long n_col, UF_long nz, const UF_long Ti [ ], const UF_long Tj [ ], const double Tx [ ], const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_triplet ( int n_row, int n_col, int nz, const int Ti [ ], const int Tj [ ], const double Tx [ ], const double Tz [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_triplet ( UF_long n_row, UF_long n_col, UF_long nz, const UF_long Ti [ ], const UF_long Tj [ ], const double Tx [ ], const double Tz [ ], const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" int n_row, n_col, nz, *Ti, *Tj, status ; double *Tx, Control [UMFPACK_CONTROL] ; status = umfpack_di_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ; double UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, nz, *Ti, *Tj, status ; double *Tx, Control [UMFPACK_CONTROL] ; status = umfpack_dl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ; complex int Syntax: #include "umfpack.h" int n_row, n_col, nz, *Ti, *Tj, status ; double *Tx, *Tz, Control [UMFPACK_CONTROL] ; status = umfpack_zi_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz, Control) ; complex UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, nz, *Ti, *Tj, status ; double *Tx, *Tz, Control [UMFPACK_CONTROL] ; status = umfpack_zl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz, Control) ; packed complex Syntax: Same as above, except Tz is NULL. Purpose: Verifies and prints a matrix in triplet form. Returns: UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked). Otherwise: UMFPACK_OK if the Triplet matrix is OK. UMFPACK_ERROR_argument_missing if Ti and/or Tj are missing. UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0. UMFPACK_ERROR_invalid_matrix if nz < 0, or if any row or column index in Ti and/or Tj is not in the range 0 to n_row-1 or 0 to n_col-1, respectively. Arguments: Int n_row ; Input argument, not modified. Int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Int nz ; Input argument, not modified. The number of entries in the triplet form of the matrix. Int Ti [nz] ; Input argument, not modified. Int Tj [nz] ; Input argument, not modified. double Tx [nz] ; Input argument, not modified. Size 2*nz for packed complex case. double Tz [nz] ; Input argument, not modified, for complex versions. Ti, Tj, Tx (and Tz for complex versions) hold the "triplet" form of a sparse matrix. The kth nonzero entry is in row i = Ti [k], column j = Tj [k], the real numerical value of a_ij is Tx [k], and the imaginary part of a_ij is Tz [k] (for complex versions). The row and column indices i and j must be in the range 0 to n_row-1 or 0 to n_col-1, respectively. Duplicate entries may be present. The "triplets" may be in any order. Tx and Tz are optional; if Tx is not present ((double *) NULL), then the numerical values are not printed. If Tx is present and Tz is NULL, then both real and imaginary parts are contained in Tx[0..2*nz-1], with Tx[2*k] and Tx[2*k+1] being the real and imaginary part of the kth entry. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_save_numeric.h0000644001170100242450000000430310617161120020752 0ustar davisfac/* ========================================================================== */ /* === umfpack_save_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_save_numeric ( void *Numeric, char *filename ) ; UF_long umfpack_dl_save_numeric ( void *Numeric, char *filename ) ; int umfpack_zi_save_numeric ( void *Numeric, char *filename ) ; UF_long umfpack_zl_save_numeric ( void *Numeric, char *filename ) ; /* double int Syntax: #include "umfpack.h" int status ; char *filename ; void *Numeric ; status = umfpack_di_save_numeric (Numeric, filename) ; double UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Numeric ; status = umfpack_dl_save_numeric (Numeric, filename) ; complex int Syntax: #include "umfpack.h" int status ; char *filename ; void *Numeric ; status = umfpack_zi_save_numeric (Numeric, filename) ; complex UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Numeric ; status = umfpack_zl_save_numeric (Numeric, filename) ; Purpose: Saves a Numeric object to a file, which can later be read by umfpack_*_load_numeric. The Numeric object is not modified. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_invalid_Numeric_object if Numeric is not valid. UMFPACK_ERROR_file_IO if an I/O error occurred. Arguments: void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric or loaded by umfpack_*_load_numeric. char *filename ; Input argument, not modified. A string that contains the filename to which the Numeric object is written. */ SuiteSparse/UMFPACK/Include/umfpack_numeric.h0000644001170100242450000005525710617161065017762 0ustar davisfac/* ========================================================================== */ /* === umfpack_numeric ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_numeric ( const int Ap [ ], const int Ai [ ], const double Ax [ ], void *Symbolic, void **Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_dl_numeric ( const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], void *Symbolic, void **Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; int umfpack_zi_numeric ( const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], void *Symbolic, void **Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_zl_numeric ( const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], void *Symbolic, void **Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" void *Symbolic, *Numeric ; int *Ap, *Ai, status ; double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info); double UF_long Syntax: #include "umfpack.h" void *Symbolic, *Numeric ; UF_long *Ap, *Ai, status ; double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info); complex int Syntax: #include "umfpack.h" void *Symbolic, *Numeric ; int *Ap, *Ai, status ; double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; complex UF_long Syntax: #include "umfpack.h" void *Symbolic, *Numeric ; UF_long *Ap, *Ai, status ; double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ; packed complex Syntax: Same as above, except that Az is NULL. Purpose: Given a sparse matrix A in column-oriented form, and a symbolic analysis computed by umfpack_*_*symbolic, the umfpack_*_numeric routine performs the numerical factorization, PAQ=LU, PRAQ=LU, or P(R\A)Q=LU, where P and Q are permutation matrices (represented as permutation vectors), R is the row scaling, L is unit-lower triangular, and U is upper triangular. This is required before the system Ax=b (or other related linear systems) can be solved. umfpack_*_numeric can be called multiple times for each call to umfpack_*_*symbolic, to factorize a sequence of matrices with identical nonzero pattern. Simply compute the Symbolic object once, with umfpack_*_*symbolic, and reuse it for subsequent matrices. This routine safely detects if the pattern changes, and sets an appropriate error code. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: Int Ap [n_col+1] ; Input argument, not modified. This must be identical to the Ap array passed to umfpack_*_*symbolic. The value of n_col is what was passed to umfpack_*_*symbolic (this is held in the Symbolic object). Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col]. This must be identical to the Ai array passed to umfpack_*_*symbolic. double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col]. Size 2*nz for packed complex case. The numerical values of the sparse matrix A. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. double Az [nz] ; Input argument, not modified, for complex versions. For the complex versions, this holds the imaginary part of A. The imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)]. If Az is NULL, then both real and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. void *Symbolic ; Input argument, not modified. The Symbolic object, which holds the symbolic factorization computed by umfpack_*_*symbolic. The Symbolic object is not modified by umfpack_*_numeric. void **Numeric ; Output argument. **Numeric is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Numeric object (if successful), or (void *) NULL if a failure occurred. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for threshold partial pivoting with row interchanges. In any given column, an entry is numerically acceptable if its absolute value is greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times the largest absolute value in the column. A value of 1.0 gives true partial pivoting. If less than or equal to zero, then any nonzero entry is numerically acceptable as a pivot. Default: 0.1. Smaller values tend to lead to sparser LU factors, but the solution to the linear system can become inaccurate. Larger values can lead to a more accurate solution (but not always), and usually an increase in the total work. For complex matrices, a cheap approximate of the absolute value is used for the threshold partial pivoting test (|a_real| + |a_imag| instead of the more expensive-to-compute exact absolute value sqrt (a_real^2 + a_imag^2)). Control [UMFPACK_SYM_PIVOT_TOLERANCE]: If diagonal pivoting is attempted (the symmetric or symmetric-2by2 strategies are used) then this parameter is used to control when the diagonal entry is selected in a given pivot column. The absolute value of the entry must be >= Control [UMFPACK_SYM_PIVOT_TOLERANCE] times the largest absolute value in the column. A value of zero will ensure that no off-diagonal pivoting is performed, except that zero diagonal entries are not selected if there are any off-diagonal nonzero entries. If an off-diagonal pivot is selected, an attempt is made to restore symmetry later on. Suppose A (i,j) is selected, where i != j. If column i has not yet been selected as a pivot column, then the entry A (j,i) is redefined as a "diagonal" entry, except that the tighter tolerance (Control [UMFPACK_PIVOT_TOLERANCE]) is applied. This strategy has an effect similar to 2-by-2 pivoting for symmetric indefinite matrices. If a 2-by-2 block pivot with nonzero structure i j i: 0 x j: x 0 is selected in a symmetric indefinite factorization method, the 2-by-2 block is inverted and a rank-2 update is applied. In UMFPACK, this 2-by-2 block would be reordered as j i i: x 0 j: 0 x In both cases, the symmetry of the Schur complement is preserved. Control [UMFPACK_SCALE]: Note that the user's input matrix is never modified, only an internal copy is scaled. There are three valid settings for this parameter. If any other value is provided, the default is used. UMFPACK_SCALE_NONE: no scaling is performed. UMFPACK_SCALE_SUM: each row of the input matrix A is divided by the sum of the absolute values of the entries in that row. The scaled matrix has an infinity norm of 1. UMFPACK_SCALE_MAX: each row of the input matrix A is divided by the maximum the absolute values of the entries in that row. In the scaled matrix the largest entry in each row has a magnitude exactly equal to 1. Note that for complex matrices, a cheap approximate absolute value is used, |a_real| + |a_imag|, instead of the exact absolute value sqrt ((a_real)^2 + (a_imag)^2). Scaling is very important for the "symmetric" strategy when diagonal pivoting is attempted. It also improves the performance of the "unsymmetric" strategy. Default: UMFPACK_SCALE_SUM. Control [UMFPACK_ALLOC_INIT]: When umfpack_*_numeric starts, it allocates memory for the Numeric object. Part of this is of fixed size (approximately n double's + 12*n integers). The remainder is of variable size, which grows to hold the LU factors and the frontal matrices created during factorization. A estimate of the upper bound is computed by umfpack_*_*symbolic, and returned by umfpack_*_*symbolic in Info [UMFPACK_VARIABLE_PEAK_ESTIMATE] (in Units). If Control [UMFPACK_ALLOC_INIT] is >= 0, umfpack_*_numeric initially allocates space for the variable-sized part equal to this estimate times Control [UMFPACK_ALLOC_INIT]. Typically, for matrices for which the "unsymmetric" strategy applies, umfpack_*_numeric needs only about half the estimated memory space, so a setting of 0.5 or 0.6 often provides enough memory for umfpack_*_numeric to factorize the matrix with no subsequent increases in the size of this block. If the matrix is ordered via AMD, then this non-negative parameter is ignored. The initial allocation ratio computed automatically, as 1.2 * (nz + Info [UMFPACK_SYMMETRIC_LUNZ]) / (Info [UMFPACK_LNZ_ESTIMATE] + Info [UMFPACK_UNZ_ESTIMATE] - min (n_row, n_col)). If Control [UMFPACK_ALLOC_INIT] is negative, then umfpack_*_numeric allocates a space with initial size (in Units) equal to (-Control [UMFPACK_ALLOC_INIT]). Regardless of the value of this parameter, a space equal to or greater than the the bare minimum amount of memory needed to start the factorization is always initially allocated. The bare initial memory required is returned by umfpack_*_*symbolic in Info [UMFPACK_VARIABLE_INIT_ESTIMATE] (an exact value, not an estimate). If the variable-size part of the Numeric object is found to be too small sometime after numerical factorization has started, the memory is increased in size by a factor of 1.2. If this fails, the request is reduced by a factor of 0.95 until it succeeds, or until it determines that no increase in size is possible. Garbage collection then occurs. The strategy of attempting to "malloc" a working space, and re-trying with a smaller space, may not work when UMFPACK is used as a mexFunction MATLAB, since mxMalloc aborts the mexFunction if it fails. This issue does not affect the use of UMFPACK as a part of the built-in x=A\b in MATLAB 6.5 and later. If you are using the umfpack mexFunction, decrease the magnitude of Control [UMFPACK_ALLOC_INIT] if you run out of memory in MATLAB. Default initial allocation size: 0.7. Thus, with the default control settings and the "unsymmetric" strategy, the upper-bound is reached after two reallocations (0.7 * 1.2 * 1.2 = 1.008). Changing this parameter has little effect on fill-in or operation count. It has a small impact on run-time (the extra time required to do the garbage collection and memory reallocation). Control [UMFPACK_FRONT_ALLOC_INIT]: When UMFPACK starts the factorization of each "chain" of frontal matrices, it allocates a working array to hold the frontal matrices as they are factorized. The symbolic factorization computes the size of the largest possible frontal matrix that could occur during the factorization of each chain. If Control [UMFPACK_FRONT_ALLOC_INIT] is >= 0, the following strategy is used. If the AMD ordering was used, this non-negative parameter is ignored. A front of size (d+2)*(d+2) is allocated, where d = Info [UMFPACK_SYMMETRIC_DMAX]. Otherwise, a front of size Control [UMFPACK_FRONT_ALLOC_INIT] times the largest front possible for this chain is allocated. If Control [UMFPACK_FRONT_ALLOC_INIT] is negative, then a front of size (-Control [UMFPACK_FRONT_ALLOC_INIT]) is allocated (where the size is in terms of the number of numerical entries). This is done regardless of the ordering method or ordering strategy used. Default: 0.5. Control [UMFPACK_DROPTOL]: Entries in L and U with absolute value less than or equal to the drop tolerance are removed from the data structures (unless leaving them there reduces memory usage by reducing the space required for the nonzero pattern of L and U). Default: 0.0. double Info [UMFPACK_INFO] ; Output argument. Contains statistics about the numeric factorization. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The following statistics are computed in umfpack_*_numeric: Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK Numeric factorization was successful. umfpack_*_numeric computed a valid numeric factorization. UMFPACK_WARNING_singular_matrix Numeric factorization was successful, but the matrix is singular. umfpack_*_numeric computed a valid numeric factorization, but you will get a divide by zero in umfpack_*_*solve. For the other cases below, no Numeric object is created (*Numeric is (void *) NULL). UMFPACK_ERROR_out_of_memory Insufficient memory to complete the numeric factorization. UMFPACK_ERROR_argument_missing One or more required arguments are missing. UMFPACK_ERROR_invalid_Symbolic_object Symbolic object provided as input is invalid. UMFPACK_ERROR_different_pattern The pattern (Ap and/or Ai) has changed since the call to umfpack_*_*symbolic which produced the Symbolic object. Info [UMFPACK_NROW]: the value of n_row stored in the Symbolic object. Info [UMFPACK_NCOL]: the value of n_col stored in the Symbolic object. Info [UMFPACK_NZ]: the number of entries in the input matrix. This value is obtained from the Symbolic object. Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory usage statistics below. Info [UMFPACK_VARIABLE_INIT]: the initial size (in Units) of the variable-sized part of the Numeric object. If this differs from Info [UMFPACK_VARIABLE_INIT_ESTIMATE], then the pattern (Ap and/or Ai) has changed since the last call to umfpack_*_*symbolic, which is an error condition. Info [UMFPACK_VARIABLE_PEAK]: the peak size (in Units) of the variable-sized part of the Numeric object. This size is the amount of space actually used inside the block of memory, not the space allocated via UMF_malloc. You can reduce UMFPACK's memory requirements by setting Control [UMFPACK_ALLOC_INIT] to the ratio Info [UMFPACK_VARIABLE_PEAK] / Info[UMFPACK_VARIABLE_PEAK_ESTIMATE]. This will ensure that no memory reallocations occur (you may want to add 0.001 to make sure that integer roundoff does not lead to a memory size that is 1 Unit too small; otherwise, garbage collection and reallocation will occur). Info [UMFPACK_VARIABLE_FINAL]: the final size (in Units) of the variable-sized part of the Numeric object. It holds just the sparse LU factors. Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the entire Numeric object, including the final size of the variable part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE], an estimate, was computed by umfpack_*_*symbolic. The estimate is normally an upper bound on the actual final size, but this is not guaranteed. Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of both umfpack_*_*symbolic and umfpack_*_numeric. An estimate, Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by umfpack_*_*symbolic. The estimate is normally an upper bound on the actual peak usage, but this is not guaranteed. With testing on hundreds of matrix arising in real applications, I have never observed a matrix where this estimate or the Numeric size estimate was less than the actual result, but this is theoretically possible. Please send me one if you find such a matrix. Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE], was computed by umfpack_*_*symbolic. The estimate is guaranteed to be an upper bound on this flop count. The flop count excludes "useless" flops on zero values, flops performed during the pivot search (for tentative updates and assembly of candidate columns), and flops performed to add frontal matrices together. For the real version, only (+ - * /) are counted. For the complex version, the following counts are used: operation flops c = 1/b 6 c = a*b 6 c -= a*b 8 Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L, including the diagonal. This excludes any zero entries in L, although some of these are stored in the Numeric object. The Info [UMFPACK_LU_ENTRIES] statistic does account for all explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE], an estimate, was computed by umfpack_*_*symbolic. The estimate is guaranteed to be an upper bound on Info [UMFPACK_LNZ]. Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U, including the diagonal. This excludes any zero entries in U, although some of these are stored in the Numeric object. The Info [UMFPACK_LU_ENTRIES] statistic does account for all explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE], an estimate, was computed by umfpack_*_*symbolic. The estimate is guaranteed to be an upper bound on Info [UMFPACK_UNZ]. Info [UMFPACK_NUMERIC_DEFRAG]: The number of garbage collections performed during umfpack_*_numeric, to compact the contents of the variable-sized workspace used by umfpack_*_numeric. No estimate was computed by umfpack_*_*symbolic. In the current version of UMFPACK, garbage collection is performed and then the memory is reallocated, so this statistic is the same as Info [UMFPACK_NUMERIC_REALLOC], below. It may differ in future releases. Info [UMFPACK_NUMERIC_REALLOC]: The number of times that the Numeric object was increased in size from its initial size. A rough upper bound on the peak size of the Numeric object was computed by umfpack_*_*symbolic, so reallocations should be rare. However, if umfpack_*_numeric is unable to allocate that much storage, it reduces its request until either the allocation succeeds, or until it gets too small to do anything with. If the memory that it finally got was small, but usable, then the reallocation count could be high. No estimate of this count was computed by umfpack_*_*symbolic. Info [UMFPACK_NUMERIC_COSTLY_REALLOC]: The number of times that the system realloc library routine (or mxRealloc for the mexFunction) had to move the workspace. Realloc can sometimes increase the size of a block of memory without moving it, which is much faster. This statistic will always be <= Info [UMFPACK_NUMERIC_REALLOC]. If your memory space is fragmented, then the number of "costly" realloc's will be equal to Info [UMFPACK_NUMERIC_REALLOC]. Info [UMFPACK_COMPRESSED_PATTERN]: The number of integers used to represent the pattern of L and U. Info [UMFPACK_LU_ENTRIES]: The total number of numerical values that are stored for the LU factors. Some of the values may be explicitly zero in order to save space (allowing for a smaller compressed pattern). Info [UMFPACK_NUMERIC_TIME]: The CPU time taken, in seconds. Info [UMFPACK_RCOND]: A rough estimate of the condition number, equal to min (abs (diag (U))) / max (abs (diag (U))), or zero if the diagonal of U is all zero. Info [UMFPACK_UDIAG_NZ]: The number of numerically nonzero values on the diagonal of U. Info [UMFPACK_UMIN]: the smallest absolute value on the diagonal of U. Info [UMFPACK_UMAX]: the smallest absolute value on the diagonal of U. Info [UMFPACK_MAX_FRONT_SIZE]: the size of the largest frontal matrix (number of entries). Info [UMFPACK_NUMERIC_WALLTIME]: The wallclock time taken, in seconds. Info [UMFPACK_MAX_FRONT_NROWS]: the max number of rows in any frontal matrix. Info [UMFPACK_MAX_FRONT_NCOLS]: the max number of columns in any frontal matrix. Info [UMFPACK_WAS_SCALED]: the scaling used, either UMFPACK_SCALE_NONE, UMFPACK_SCALE_SUM, or UMFPACK_SCALE_MAX. Info [UMFPACK_RSMIN]: if scaling is performed, the smallest scale factor for any row (either the smallest sum of absolute entries, or the smallest maximum of absolute entries). Info [UMFPACK_RSMAX]: if scaling is performed, the largest scale factor for any row (either the largest sum of absolute entries, or the largest maximum of absolute entries). Info [UMFPACK_ALLOC_INIT_USED]: the initial allocation parameter used. Info [UMFPACK_FORCED_UPDATES]: the number of BLAS-3 updates to the frontal matrices that were required because the frontal matrix grew larger than its current working array. Info [UMFPACK_NOFF_DIAG]: number of off-diagonal pivots selected, if the symmetric or 2-by-2 strategies are used. Info [UMFPACK_NZDROPPED]: the number of entries smaller in absolute value than Control [UMFPACK_DROPTOL] that were dropped from L and U. Note that entries on the diagonal of U are never dropped. Info [UMFPACK_ALL_LNZ]: the number of entries in L, including the diagonal, if no small entries are dropped. Info [UMFPACK_ALL_UNZ]: the number of entries in U, including the diagonal, if no small entries are dropped. Only the above listed Info [...] entries are accessed. The remaining entries of Info are not accessed or modified by umfpack_*_numeric. Future versions might modify different parts of Info. */ SuiteSparse/UMFPACK/Include/umfpack_get_lunz.h0000644001170100242450000000762510617161043020137 0ustar davisfac/* ========================================================================== */ /* === umfpack_get_lunz ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_get_lunz ( int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric ) ; UF_long umfpack_dl_get_lunz ( UF_long *lnz, UF_long *unz, UF_long *n_row, UF_long *n_col, UF_long *nz_udiag, void *Numeric ) ; int umfpack_zi_get_lunz ( int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric ) ; UF_long umfpack_zl_get_lunz ( UF_long *lnz, UF_long *unz, UF_long *n_row, UF_long *n_col, UF_long *nz_udiag, void *Numeric ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; int status, lnz, unz, n_row, n_col, nz_udiag ; status = umfpack_di_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, lnz, unz, n_row, n_col, nz_udiag ; status = umfpack_dl_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ; complex int Syntax: #include "umfpack.h" void *Numeric ; int status, lnz, unz, n_row, n_col, nz_udiag ; status = umfpack_zi_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, lnz, unz, n_row, n_col, nz_udiag ; status = umfpack_zl_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ; Purpose: Determines the size and number of nonzeros in the LU factors held by the Numeric object. These are also the sizes of the output arrays required by umfpack_*_get_numeric. The matrix L is n_row -by- min(n_row,n_col), with lnz nonzeros, including the entries on the unit diagonal of L. The matrix U is min(n_row,n_col) -by- n_col, with unz nonzeros, including nonzeros on the diagonal of U. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_invalid_Numeric_object if Numeric is not a valid object. UMFPACK_ERROR_argument_missing if any other argument is (Int *) NULL. Arguments: Int *lnz ; Output argument. The number of nonzeros in L, including the diagonal (which is all one's). This value is the required size of the Lj and Lx arrays as computed by umfpack_*_get_numeric. The value of lnz is identical to Info [UMFPACK_LNZ], if that value was returned by umfpack_*_numeric. Int *unz ; Output argument. The number of nonzeros in U, including the diagonal. This value is the required size of the Ui and Ux arrays as computed by umfpack_*_get_numeric. The value of unz is identical to Info [UMFPACK_UNZ], if that value was returned by umfpack_*_numeric. Int *n_row ; Output argument. Int *n_col ; Output argument. The order of the L and U matrices. L is n_row -by- min(n_row,n_col) and U is min(n_row,n_col) -by- n_col. Int *nz_udiag ; Output argument. The number of numerically nonzero values on the diagonal of U. The matrix is singular if nz_diag < min(n_row,n_col). A divide-by-zero will occur if nz_diag < n_row == n_col when solving a sparse system involving the matrix U in umfpack_*_*solve. The value of nz_udiag is identical to Info [UMFPACK_UDIAG_NZ] if that value was returned by umfpack_*_numeric. void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric. */ SuiteSparse/UMFPACK/Include/umfpack_report_control.h0000644001170100242450000000422510617161075021361 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_control =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_report_control ( const double Control [UMFPACK_CONTROL] ) ; void umfpack_dl_report_control ( const double Control [UMFPACK_CONTROL] ) ; void umfpack_zi_report_control ( const double Control [UMFPACK_CONTROL] ) ; void umfpack_zl_report_control ( const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_di_report_control (Control) ; double UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_dl_report_control (Control) ; complex int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_zi_report_control (Control) ; double UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_zl_report_control (Control) ; Purpose: Prints the current control settings. Note that with the default print level, nothing is printed. Does nothing if Control is (double *) NULL. Arguments: double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 1 or less: no output 2 or more: print all of Control Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_save_symbolic.h0000644001170100242450000000434210617161122021136 0ustar davisfac/* ========================================================================== */ /* === umfpack_save_symbolic================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_save_symbolic ( void *Symbolic, char *filename ) ; UF_long umfpack_dl_save_symbolic ( void *Symbolic, char *filename ) ; int umfpack_zi_save_symbolic ( void *Symbolic, char *filename ) ; UF_long umfpack_zl_save_symbolic ( void *Symbolic, char *filename ) ; /* double int Syntax: #include "umfpack.h" int status ; char *filename ; void *Symbolic ; status = umfpack_di_save_symbolic (Symbolic, filename) ; double UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Symbolic ; status = umfpack_dl_save_symbolic (Symbolic, filename) ; complex int Syntax: #include "umfpack.h" int status ; char *filename ; void *Symbolic ; status = umfpack_zi_save_symbolic (Symbolic, filename) ; complex UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Symbolic ; status = umfpack_zl_save_symbolic (Symbolic, filename) ; Purpose: Saves a Symbolic object to a file, which can later be read by umfpack_*_load_symbolic. The Symbolic object is not modified. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_invalid_Symbolic_object if Symbolic is not valid. UMFPACK_ERROR_file_IO if an I/O error occurred. Arguments: void *Symbolic ; Input argument, not modified. Symbolic must point to a valid Symbolic object, computed by umfpack_*_symbolic or loaded by umfpack_*_load_symbolic. char *filename ; Input argument, not modified. A string that contains the filename to which the Symbolic object is written. */ SuiteSparse/UMFPACK/Include/umfpack_get_determinant.h0000644001170100242450000001417610617161041021456 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_get_determinant ============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* UMFPACK_get_determinant contributed by David Bateman, Motorola, Paris. */ /* -------------------------------------------------------------------------- */ int umfpack_di_get_determinant ( double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO] ) ; UF_long umfpack_dl_get_determinant ( double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO] ) ; int umfpack_zi_get_determinant ( double *Mx, double *Mz, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO] ) ; UF_long umfpack_zl_get_determinant ( double *Mx, double *Mz, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; int status ; double Mx, Ex, Info [UMFPACK_INFO] ; status = umfpack_di_get_determinant (&Mx, &Ex, Numeric, Info) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status ; double Mx, Ex, Info [UMFPACK_INFO] ; status = umfpack_dl_get_determinant (&Mx, &Ex, Numeric, Info) ; complex int Syntax: #include "umfpack.h" void *Numeric ; int status ; double Mx, Mz, Ex, Info [UMFPACK_INFO] ; status = umfpack_zi_get_determinant (&Mx, &Mz, &Ex, Numeric, Info) ; complex int Syntax: #include "umfpack.h" void *Numeric ; UF_long status ; double *Mx, *Mz, *Ex, Info [UMFPACK_INFO] ; status = umfpack_zl_get_determinant (&Mx, &Mz, &Ex, Numeric, Info) ; packed complex int Syntax: Same as above, except Mz is NULL. Author: Contributed by David Bateman, Motorola, Paris Purpose: Using the LU factors and the permutation vectors contained in the Numeric object, calculate the determinant of the matrix A. The value of the determinant can be returned in two forms, depending on whether Ex is NULL or not. If Ex is NULL then the value of the determinant is returned on Mx and Mz for the real and imaginary parts. However, to avoid over- or underflows, the determinant can be split into a mantissa and exponent, and the parts returned separately, in which case Ex is not NULL. The actual determinant is then given by double det ; det = Mx * pow (10.0, Ex) ; for the double case, or double det [2] ; det [0] = Mx * pow (10.0, Ex) ; // real part det [1] = Mz * pow (10.0, Ex) ; // imaginary part for the complex case. Information on if the determinant will or has over or under-flowed is given by Info [UMFPACK_STATUS]. In the "packed complex" syntax, Mx [0] holds the real part and Mx [1] holds the imaginary part. Mz is not used (it is NULL). Returns: Returns UMFPACK_OK if sucessful. Returns UMFPACK_ERROR_out_of_memory if insufficient memory is available for the n_row integer workspace that umfpack_*_get_determinant allocates to construct pivots from the permutation vectors. Returns UMFPACK_ERROR_invalid_Numeric_object if the Numeric object provided as input is invalid. Returns UMFPACK_WARNING_singular_matrix if the determinant is zero. Returns UMFPACK_WARNING_determinant_underflow or UMFPACK_WARNING_determinant_overflow if the determinant has underflowed overflowed (for the case when Ex is NULL), or will overflow if Ex is not NULL and det is computed (see above) in the user program. Arguments: double *Mx ; Output argument (array of size 1, or size 2 if Mz is NULL) double *Mz ; Output argument (optional) double *Ex ; Output argument (optional) The determinant returned in mantissa/exponent form, as discussed above. If Mz is NULL, then both the original and imaginary parts will be returned in Mx. If Ex is NULL then the determinant is returned directly in Mx and Mz (or Mx [0] and Mx [1] if Mz is NULL), rather than in mantissa/exponent form. void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric. double Info [UMFPACK_INFO] ; Output argument. Contains information about the calculation of the determinant. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The following statistics are computed in umfpack_*_determinant: Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK The determinant was successfully found. UMFPACK_ERROR_out_of_memory Insufficient memory to solve the linear system. UMFPACK_ERROR_argument_missing Mx is missing (NULL). UMFPACK_ERROR_invalid_Numeric_object The Numeric object is not valid. UMFPACK_ERROR_invalid_system The matrix is rectangular. Only square systems can be handled. UMFPACK_WARNING_singluar_matrix The determinant is zero or NaN. The matrix is singular. UMFPACK_WARNING_determinant_underflow When passing from mantissa/exponent form to the determinant an underflow has or will occur. If the mantissa/exponent from of obtaining the determinant is used, the underflow will occur in the user program. If the single argument method of obtaining the determinant is used, the underflow has already occurred. UMFPACK_WARNING_determinant_overflow When passing from mantissa/exponent form to the determinant an overflow has or will occur. If the mantissa/exponent from of obtaining the determinant is used, the overflow will occur in the user program. If the single argument method of obtaining the determinant is used, the overflow has already occurred. */ SuiteSparse/UMFPACK/Include/umfpack_tictoc.h0000644001170100242450000000426110617161134017567 0ustar davisfac/* ========================================================================== */ /* === umfpack_tictoc ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_tic (double stats [2]) ; void umfpack_toc (double stats [2]) ; /* Syntax (for all versions: di, dl, zi, and zl): #include "umfpack.h" double stats [2] ; umfpack_tic (stats) ; ... umfpack_toc (stats) ; Purpose: umfpack_tic returns the CPU time and wall clock time used by the process. The CPU time includes both "user" and "system" time (the latter is time spent by the system on behalf of the process, and is thus charged to the process). umfpack_toc returns the CPU time and wall clock time since the last call to umfpack_tic with the same stats array. Typical usage: umfpack_tic (stats) ; ... do some work ... umfpack_toc (stats) ; then stats [1] contains the time in seconds used by the code between umfpack_tic and umfpack_toc, and stats [0] contains the wall clock time elapsed between the umfpack_tic and umfpack_toc. These two routines act just like tic and toc in MATLAB, except that the both process time and wall clock time are returned. This routine normally uses the sysconf and times routines in the POSIX standard. If -DNPOSIX is defined at compile time, then the ANSI C clock routine is used instead, and only the CPU time is returned (stats [0] is set to zero). umfpack_tic and umfpack_toc are the routines used internally in UMFPACK to time the symbolic analysis, numerical factorization, and the forward/ backward solve. Arguments: double stats [2]: stats [0]: wall clock time, in seconds stats [1]: CPU time, in seconds */ SuiteSparse/UMFPACK/Include/umfpack_defaults.h0000644001170100242450000000354410617161033020112 0ustar davisfac/* ========================================================================== */ /* === umfpack_defaults ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_defaults ( double Control [UMFPACK_CONTROL] ) ; void umfpack_dl_defaults ( double Control [UMFPACK_CONTROL] ) ; void umfpack_zi_defaults ( double Control [UMFPACK_CONTROL] ) ; void umfpack_zl_defaults ( double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_di_defaults (Control) ; double UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_dl_defaults (Control) ; complex int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_zi_defaults (Control) ; complex UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL] ; umfpack_zl_defaults (Control) ; Purpose: Sets the default control parameter settings. Arguments: double Control [UMFPACK_CONTROL] ; Output argument. Control is set to the default control parameter settings. You can then modify individual settings by changing specific entries in the Control array. If Control is a (double *) NULL pointer, then umfpack_*_defaults returns silently (no error is generated, since passing a NULL pointer for Control to any UMFPACK routine is valid). */ SuiteSparse/UMFPACK/Include/umfpack_report_vector.h0000644001170100242450000001063310617161116021177 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_vector ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_vector ( int n, const double X [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_vector ( UF_long n, const double X [ ], const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_vector ( int n, const double Xx [ ], const double Xz [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_vector ( UF_long n, const double Xx [ ], const double Xz [ ], const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" int n, status ; double *X, Control [UMFPACK_CONTROL] ; status = umfpack_di_report_vector (n, X, Control) ; double UF_long Syntax: #include "umfpack.h" UF_long n, status ; double *X, Control [UMFPACK_CONTROL] ; status = umfpack_dl_report_vector (n, X, Control) ; complex int Syntax: #include "umfpack.h" int n, status ; double *Xx, *Xz, Control [UMFPACK_CONTROL] ; status = umfpack_zi_report_vector (n, Xx, Xz, Control) ; complex UF_long Syntax: #include "umfpack.h" UF_long n, status ; double *Xx, *Xz, Control [UMFPACK_CONTROL] ; status = umfpack_zl_report_vector (n, Xx, Xz, Control) ; Purpose: Verifies and prints a dense vector. Returns: UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked). Otherwise: UMFPACK_OK if the vector is valid. UMFPACK_ERROR_argument_missing if X or Xx is missing. UMFPACK_ERROR_n_nonpositive if n <= 0. Arguments: Int n ; Input argument, not modified. X is a real or complex vector of size n. Restriction: n > 0. double X [n] ; Input argument, not modified. For real versions. A real vector of size n. X must not be (double *) NULL. double Xx [n or 2*n] ; Input argument, not modified. For complex versions. double Xz [n or 0] ; Input argument, not modified. For complex versions. A complex vector of size n, in one of two storage formats. Xx must not be (double *) NULL. If Xz is not (double *) NULL, then Xx [i] is the real part of X (i) and Xz [i] is the imaginary part of X (i). Both vectors are of length n. This is the "split" form of the complex vector X. If Xz is (double *) NULL, then Xx holds both real and imaginary parts, where Xx [2*i] is the real part of X (i) and Xx [2*i+1] is the imaginary part of X (i). Xx is of length 2*n doubles. If you have an ANSI C99 compiler with the intrinsic double _Complex type, then Xx can be of type double _Complex in the calling routine and typecast to (double *) when passed to umfpack_*_report_vector (this is untested, however). This is the "merged" form of the complex vector X. Note that all complex routines in UMFPACK V4.4 and later use this same strategy for their complex arguments. The split format is useful for MATLAB, which holds its real and imaginary parts in seperate arrays. The packed format is compatible with the intrinsic double _Complex type in ANSI C99, and is also compatible with SuperLU's method of storing complex matrices. In Version 4.3, this routine was the only one that allowed for packed complex arguments. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_free_numeric.h0000644001170100242450000000323210617161035020742 0ustar davisfac/* ========================================================================== */ /* === umfpack_free_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_free_numeric ( void **Numeric ) ; void umfpack_dl_free_numeric ( void **Numeric ) ; void umfpack_zi_free_numeric ( void **Numeric ) ; void umfpack_zl_free_numeric ( void **Numeric ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; umfpack_di_free_numeric (&Numeric) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; umfpack_dl_free_numeric (&Numeric) ; complex int Syntax: #include "umfpack.h" void *Numeric ; umfpack_zi_free_numeric (&Numeric) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; umfpack_zl_free_numeric (&Numeric) ; Purpose: Deallocates the Numeric object and sets the Numeric handle to NULL. This routine is the only valid way of destroying the Numeric object. Arguments: void **Numeric ; Input argument, set to (void *) NULL on output. Numeric points to a valid Numeric object, computed by umfpack_*_numeric. No action is taken if Numeric is a (void *) NULL pointer. */ SuiteSparse/UMFPACK/Include/umfpack_qsymbolic.h0000644001170100242450000001204510617161073020305 0ustar davisfac/* ========================================================================== */ /* === umfpack_qsymbolic ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_qsymbolic ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const int Qinit [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_dl_qsymbolic ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const UF_long Qinit [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; int umfpack_zi_qsymbolic ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], const int Qinit [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_zl_qsymbolic ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], const UF_long Qinit [ ], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" void *Symbolic ; int n_row, n_col, *Ap, *Ai, *Qinit, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ; status = umfpack_di_qsymbolic (n_row, n_col, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ; double UF_long Syntax: #include "umfpack.h" void *Symbolic ; UF_long n_row, n_col, *Ap, *Ai, *Qinit, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ; status = umfpack_dl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ; complex int Syntax: #include "umfpack.h" void *Symbolic ; int n_row, n_col, *Ap, *Ai, *Qinit, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ; status = umfpack_zi_qsymbolic (n_row, n_col, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ; complex UF_long Syntax: #include "umfpack.h" void *Symbolic ; UF_long n_row, n_col, *Ap, *Ai, *Qinit, status ; double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ; status = umfpack_zl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ; packed complex Syntax: Same as above, except Az is NULL. Purpose: Given the nonzero pattern of a sparse matrix A in column-oriented form, and a sparsity preserving column pre-ordering Qinit, umfpack_*_qsymbolic performs the symbolic factorization of A*Qinit (or A (:,Qinit) in MATLAB notation). This is identical to umfpack_*_symbolic, except that neither COLAMD nor AMD are called and the user input column order Qinit is used instead. Note that in general, the Qinit passed to umfpack_*_qsymbolic can differ from the final Q found in umfpack_*_numeric. The unsymmetric strategy will perform a column etree postordering done in umfpack_*_qsymbolic and sparsity-preserving modifications are made within each frontal matrix during umfpack_*_numeric. The symmetric and 2-by-2 strategies will preserve Qinit, unless the matrix is structurally singular. See umfpack_*_symbolic for more information. *** WARNING *** A poor choice of Qinit can easily cause umfpack_*_numeric to use a huge amount of memory and do a lot of work. The "default" symbolic analysis method is umfpack_*_symbolic, not this routine. If you use this routine, the performance of UMFPACK is your responsibility; UMFPACK will not try to second-guess a poor choice of Qinit. Returns: The value of Info [UMFPACK_STATUS]; see umfpack_*_symbolic. Also returns UMFPACK_ERROR_invalid_permuation if Qinit is not a valid permutation vector. Arguments: All arguments are the same as umfpack_*_symbolic, except for the following: Int Qinit [n_col] ; Input argument, not modified. The user's fill-reducing initial column pre-ordering. This must be a permutation of 0..n_col-1. If Qinit [k] = j, then column j is the kth column of the matrix A (:,Qinit) to be factorized. If Qinit is an (Int *) NULL pointer, then COLAMD or AMD are called instead. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If Qinit is not NULL, then only two strategies are recognized: the unsymmetric strategy and the symmetric strategy. If Control [UMFPACK_STRATEGY] is UMFPACK_STRATEGY_SYMMETRIC, then the symmetric strategy is used. Otherwise the unsymmetric strategy is used. */ SuiteSparse/UMFPACK/Include/umfpack_load_symbolic.h0000644001170100242450000000506410617161063021125 0ustar davisfac/* ========================================================================== */ /* === umfpack_load_symbolic ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_load_symbolic ( void **Symbolic, char *filename ) ; UF_long umfpack_dl_load_symbolic ( void **Symbolic, char *filename ) ; int umfpack_zi_load_symbolic ( void **Symbolic, char *filename ) ; UF_long umfpack_zl_load_symbolic ( void **Symbolic, char *filename ) ; /* double int Syntax: #include "umfpack.h" int status ; char *filename ; void *Symbolic ; status = umfpack_di_load_symbolic (&Symbolic, filename) ; double UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Symbolic ; status = umfpack_dl_load_symbolic (&Symbolic, filename) ; complex int Syntax: #include "umfpack.h" int status ; char *filename ; void *Symbolic ; status = umfpack_zi_load_symbolic (&Symbolic, filename) ; complex UF_long Syntax: #include "umfpack.h" UF_long status ; char *filename ; void *Symbolic ; status = umfpack_zl_load_symbolic (&Symbolic, filename) ; Purpose: Loads a Symbolic object from a file created by umfpack_*_save_symbolic. The Symbolic handle passed to this routine is overwritten with the new object. If that object exists prior to calling this routine, a memory leak will occur. The contents of Symbolic are ignored on input. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_out_of_memory if not enough memory is available. UMFPACK_ERROR_file_IO if an I/O error occurred. Arguments: void **Symbolic ; Output argument. **Symbolic is the address of a (void *) pointer variable in the user's calling routine (see Syntax, above). On input, the contents of this variable are not defined. On output, this variable holds a (void *) pointer to the Symbolic object (if successful), or (void *) NULL if a failure occurred. char *filename ; Input argument, not modified. A string that contains the filename from which to read the Symbolic object. */ SuiteSparse/UMFPACK/Include/umfpack_report_symbolic.h0000644001170100242450000000673710617161110021522 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_symbolic ============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_symbolic ( void *Symbolic, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_symbolic ( void *Symbolic, const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_symbolic ( void *Symbolic, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_symbolic ( void *Symbolic, const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" void *Symbolic ; double Control [UMFPACK_CONTROL] ; int status ; status = umfpack_di_report_symbolic (Symbolic, Control) ; double UF_long Syntax: #include "umfpack.h" void *Symbolic ; double Control [UMFPACK_CONTROL] ; UF_long status ; status = umfpack_dl_report_symbolic (Symbolic, Control) ; complex int Syntax: #include "umfpack.h" void *Symbolic ; double Control [UMFPACK_CONTROL] ; int status ; status = umfpack_zi_report_symbolic (Symbolic, Control) ; complex UF_long Syntax: #include "umfpack.h" void *Symbolic ; double Control [UMFPACK_CONTROL] ; UF_long status ; status = umfpack_zl_report_symbolic (Symbolic, Control) ; Purpose: Verifies and prints a Symbolic object. This routine checks the object more carefully than the computational routines. Normally, this check is not required, since umfpack_*_*symbolic either returns (void *) NULL, or a valid Symbolic object. However, if you suspect that your own code has corrupted the Symbolic object (by overruning memory bounds, for example), then this routine might be able to detect a corrupted Symbolic object. Since this is a complex object, not all such user-generated errors are guaranteed to be caught by this routine. Returns: UMFPACK_OK if Control [UMFPACK_PRL] is <= 2 (no inputs are checked). Otherwise: UMFPACK_OK if the Symbolic object is valid. UMFPACK_ERROR_invalid_Symbolic_object if the Symbolic object is invalid. UMFPACK_ERROR_out_of_memory if out of memory. Arguments: void *Symbolic ; Input argument, not modified. The Symbolic object, which holds the symbolic factorization computed by umfpack_*_*symbolic. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_report_info.h0000644001170100242450000000511710617161077020637 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_info ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_report_info ( const double Control [UMFPACK_CONTROL], const double Info [UMFPACK_INFO] ) ; void umfpack_dl_report_info ( const double Control [UMFPACK_CONTROL], const double Info [UMFPACK_INFO] ) ; void umfpack_zi_report_info ( const double Control [UMFPACK_CONTROL], const double Info [UMFPACK_INFO] ) ; void umfpack_zl_report_info ( const double Control [UMFPACK_CONTROL], const double Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; umfpack_di_report_info (Control, Info) ; double UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; umfpack_dl_report_info (Control, Info) ; complex int Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; umfpack_zi_report_info (Control, Info) ; complex UF_long Syntax: #include "umfpack.h" double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ; umfpack_zl_report_info (Control, Info) ; Purpose: Reports statistics from the umfpack_*_*symbolic, umfpack_*_numeric, and umfpack_*_*solve routines. Arguments: double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 0 or less: no output, even when an error occurs 1: error messages only 2 or more: error messages, and print all of Info Default: 1 double Info [UMFPACK_INFO] ; Input argument, not modified. Info is an output argument of several UMFPACK routines. The contents of Info are printed on standard output. */ SuiteSparse/UMFPACK/Include/umfpack_scale.h0000644001170100242450000000613110617161125017367 0ustar davisfac/* ========================================================================== */ /* === umfpack_scale ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_scale ( double X [ ], const double B [ ], void *Numeric ) ; UF_long umfpack_dl_scale ( double X [ ], const double B [ ], void *Numeric ) ; int umfpack_zi_scale ( double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric ) ; UF_long umfpack_zl_scale ( double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; double *B, *X ; status = umfpack_di_scale (X, B, Numeric) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; double *B, *X ; status = umfpack_dl_scale (X, B, Numeric) ; complex int Syntax: #include "umfpack.h" void *Numeric ; double *Bx, *Bz, *Xx, *Xz ; status = umfpack_zi_scale (Xx, Xz, Bx, Bz, Numeric) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; double *Bx, *Bz, *Xx, *Xz ; status = umfpack_zl_scale (Xx, Xz, Bx, Bz, Numeric) ; packed complex Syntax: Same as above, except both Xz and Bz are NULL. Purpose: Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or P(R\A)Q=LU), and a vector B, this routine computes X = B, X = R*B, or X = R\B, as appropriate. X and B must be vectors equal in length to the number of rows of A. Returns: The status code is returned. UMFPACK_OK is returned if successful. UMFPACK_ERROR_invalid_Numeric_object is returned in the Numeric object is invalid. UMFPACK_ERROR_argument_missing is returned if any of the input vectors are missing (X and B for the real version, and Xx and Bx for the complex version). Arguments: double X [n_row] ; Output argument. or: double Xx [n_row] ; Output argument, real part. Size 2*n_row for packed complex case. double Xz [n_row] ; Output argument, imaginary part. The output vector X. If either Xz or Bz are NULL, the vector X is in packed complex form, with the kth entry in Xx [2*k] and Xx [2*k+1], and likewise for B. double B [n_row] ; Input argument, not modified. or: double Bx [n_row] ; Input argument, not modified, real part. Size 2*n_row for packed complex case. double Bz [n_row] ; Input argument, not modified, imaginary part. The input vector B. See above if either Xz or Bz are NULL. void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric. */ SuiteSparse/UMFPACK/Include/umfpack_triplet_to_col.h0000644001170100242450000002431210617161142021322 0ustar davisfac/* ========================================================================== */ /* === umfpack_triplet_to_col =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_triplet_to_col ( int n_row, int n_col, int nz, const int Ti [ ], const int Tj [ ], const double Tx [ ], int Ap [ ], int Ai [ ], double Ax [ ], int Map [ ] ) ; UF_long umfpack_dl_triplet_to_col ( UF_long n_row, UF_long n_col, UF_long nz, const UF_long Ti [ ], const UF_long Tj [ ], const double Tx [ ], UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], UF_long Map [ ] ) ; int umfpack_zi_triplet_to_col ( int n_row, int n_col, int nz, const int Ti [ ], const int Tj [ ], const double Tx [ ], const double Tz [ ], int Ap [ ], int Ai [ ], double Ax [ ], double Az [ ], int Map [ ] ) ; UF_long umfpack_zl_triplet_to_col ( UF_long n_row, UF_long n_col, UF_long nz, const UF_long Ti [ ], const UF_long Tj [ ], const double Tx [ ], const double Tz [ ], UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], double Az [ ], UF_long Map [ ] ) ; /* double int Syntax: #include "umfpack.h" int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ; double *Tx, *Ax ; status = umfpack_di_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ; double UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ; double *Tx, *Ax ; status = umfpack_dl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ; complex int Syntax: #include "umfpack.h" int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ; double *Tx, *Tz, *Ax, *Az ; status = umfpack_zi_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ; UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ; double *Tx, *Tz, *Ax, *Az ; status = umfpack_zl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ; packed complex Syntax: Same as above, except Tz and Az are NULL. Purpose: Converts a sparse matrix from "triplet" form to compressed-column form. Analogous to A = spconvert (Ti, Tj, Tx + Tz*1i) in MATLAB, except that zero entries present in the triplet form are present in A. The triplet form of a matrix is a very simple data structure for basic sparse matrix operations. For example, suppose you wish to factorize a matrix A coming from a finite element method, in which A is a sum of dense submatrices, A = E1 + E2 + E3 + ... . The entries in each element matrix Ei can be concatenated together in the three triplet arrays, and any overlap between the elements will be correctly summed by umfpack_*_triplet_to_col. Transposing a matrix in triplet form is simple; just interchange the use of Ti and Tj. You can construct the complex conjugate transpose by negating Tz, for the complex versions. Permuting a matrix in triplet form is also simple. If you want the matrix PAQ, or A (P,Q) in MATLAB notation, where P [k] = i means that row i of A is the kth row of PAQ and Q [k] = j means that column j of A is the kth column of PAQ, then do the following. First, create inverse permutations Pinv and Qinv such that Pinv [i] = k if P [k] = i and Qinv [j] = k if Q [k] = j. Next, for the mth triplet (Ti [m], Tj [m], Tx [m], Tz [m]), replace Ti [m] with Pinv [Ti [m]] and replace Tj [m] with Qinv [Tj [m]]. If you have a column-form matrix with duplicate entries or unsorted columns, you can sort it and sum up the duplicates by first converting it to triplet form with umfpack_*_col_to_triplet, and then converting it back with umfpack_*_triplet_to_col. Constructing a submatrix is also easy. Just scan the triplets and remove those entries outside the desired subset of 0...n_row-1 and 0...n_col-1, and renumber the indices according to their position in the subset. You can do all these operations on a column-form matrix by first converting it to triplet form with umfpack_*_col_to_triplet, doing the operation on the triplet form, and then converting it back with umfpack_*_triplet_to_col. The only operation not supported easily in the triplet form is the multiplication of two sparse matrices (UMFPACK does not provide this operation). You can print the input triplet form with umfpack_*_report_triplet, and the output matrix with umfpack_*_report_matrix. The matrix may be singular (nz can be zero, and empty rows and/or columns may exist). It may also be rectangular and/or complex. Returns: UMFPACK_OK if successful. UMFPACK_ERROR_argument_missing if Ap, Ai, Ti, and/or Tj are missing. UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0. UMFPACK_ERROR_invalid_matrix if nz < 0, or if for any k, Ti [k] and/or Tj [k] are not in the range 0 to n_row-1 or 0 to n_col-1, respectively. UMFPACK_ERROR_out_of_memory if unable to allocate sufficient workspace. Arguments: Int n_row ; Input argument, not modified. Int n_col ; Input argument, not modified. A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0. All row and column indices in the triplet form must be in the range 0 to n_row-1 and 0 to n_col-1, respectively. Int nz ; Input argument, not modified. The number of entries in the triplet form of the matrix. Restriction: nz >= 0. Int Ti [nz] ; Input argument, not modified. Int Tj [nz] ; Input argument, not modified. double Tx [nz] ; Input argument, not modified. Size 2*nz if Tz or Az are NULL. double Tz [nz] ; Input argument, not modified, for complex versions. Ti, Tj, Tx, and Tz hold the "triplet" form of a sparse matrix. The kth nonzero entry is in row i = Ti [k], column j = Tj [k], and the real part of a_ij is Tx [k]. The imaginary part of a_ij is Tz [k], for complex versions. The row and column indices i and j must be in the range 0 to n_row-1 and 0 to n_col-1, respectively. Duplicate entries may be present; they are summed in the output matrix. This is not an error condition. The "triplets" may be in any order. Tx, Tz, Ax, and Az are optional. Ax is computed only if both Ax and Tx are present (not (double *) NULL). This is not error condition; the routine can create just the pattern of the output matrix from the pattern of the triplets. If Az or Tz are NULL, then both real and imaginary parts are contained in Tx[0..2*nz-1], with Tx[2*k] and Tx[2*k+1] being the real and imaginary part of the kth entry. Int Ap [n_col+1] ; Output argument. Ap is an integer array of size n_col+1 on input. On output, Ap holds the "pointers" for the column form of the sparse matrix A. Column j of the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first entry, Ap [0], is zero, and Ap [j] <= Ap [j+1] holds for all j in the range 0 to n_col-1. The value nz2 = Ap [n_col] is thus the total number of entries in the pattern of the matrix A. Equivalently, the number of duplicate triplets is nz - Ap [n_col]. Int Ai [nz] ; Output argument. Ai is an integer array of size nz on input. Note that only the first Ap [n_col] entries are used. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j are in ascending order, and no duplicate row indices are present. Row indices are in the range 0 to n_col-1 (the matrix is 0-based). double Ax [nz] ; Output argument. Size 2*nz if Tz or Az are NULL. double Az [nz] ; Output argument for complex versions. Ax and Az (for the complex versions) are double arrays of size nz on input. Note that only the first Ap [n_col] entries are used in both arrays. Ax is optional; if Tx and/or Ax are not present (a (double *) NULL pointer), then Ax is not computed. If present, Ax holds the numerical values of the the real part of the sparse matrix A and Az holds the imaginary parts. The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions. If Az or Tz are NULL, then both real and imaginary parts are returned in Ax[0..2*nz2-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. int Map [nz] ; Optional output argument. If Map is present (a non-NULL pointer to an Int array of size nz), then on output it holds the position of the triplets in the column-form matrix. That is, suppose p = Map [k], and the k-th triplet is i=Ti[k], j=Tj[k], and aij=Tx[k]. Then i=Ai[p], and aij will have been summed into Ax[p] (or simply aij=Ax[p] if there were no duplicate entries also in row i and column j). Also, Ap[j] <= p < Ap[j+1]. The Map array is not computed if it is (Int *) NULL. The Map array is useful for converting a subsequent triplet form matrix with the same pattern as the first one, without calling this routine. If Ti and Tj do not change, then Ap, and Ai can be reused from the prior call to umfpack_*_triplet_to_col. You only need to recompute Ax (and Az for the split complex version). This code excerpt properly sums up all duplicate values (for the real version): for (p = 0 ; p < Ap [n_col] ; p++) Ax [p] = 0 ; for (k = 0 ; k < nz ; k++) Ax [Map [k]] += Tx [k] ; This feature is useful (along with the reuse of the Symbolic object) if you need to factorize a sequence of triplet matrices with identical nonzero pattern (the order of the triplets in the Ti,Tj,Tx arrays must also remain unchanged). It is faster than calling this routine for each matrix, and requires no workspace. */ SuiteSparse/UMFPACK/Include/umfpack_report_matrix.h0000644001170100242450000001552510617161100021177 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_matrix ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_matrix ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], int col_form, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_matrix ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], UF_long col_form, const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_matrix ( int n_row, int n_col, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], int col_form, const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_matrix ( UF_long n_row, UF_long n_col, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], UF_long col_form, const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" int n_row, n_col, *Ap, *Ai, status ; double *Ax, Control [UMFPACK_CONTROL] ; status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ; or: status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ; double UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, *Ap, *Ai, status ; double *Ax, Control [UMFPACK_CONTROL] ; status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ; or: status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ; complex int Syntax: #include "umfpack.h" int n_row, n_col, *Ap, *Ai, status ; double *Ax, *Az, Control [UMFPACK_CONTROL] ; status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1, Control) ; or: status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0, Control) ; complex UF_long Syntax: #include "umfpack.h" UF_long n_row, n_col, *Ap, *Ai, status ; double *Ax, Control [UMFPACK_CONTROL] ; status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1, Control) ; or: status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0, Control) ; packed complex Syntax: Same as above, except Az is NULL. Purpose: Verifies and prints a row or column-oriented sparse matrix. Returns: UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked). Otherwise (where n is n_col for the column form and n_row for row and let ni be n_row for the column form and n_col for row): UMFPACK_OK if the matrix is valid. UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0. UMFPACK_ERROR_argument_missing if Ap and/or Ai are missing. UMFPACK_ERROR_invalid_matrix if Ap [n] < 0, if Ap [0] is not zero, if Ap [j+1] < Ap [j] for any j in the range 0 to n-1, if any row index in Ai is not in the range 0 to ni-1, or if the row indices in any column are not in ascending order, or contain duplicates. UMFPACK_ERROR_out_of_memory if out of memory. Arguments: Int n_row ; Input argument, not modified. Int n_col ; Input argument, not modified. A is an n_row-by-n_row matrix. Restriction: n_row > 0 and n_col > 0. Int Ap [n+1] ; Input argument, not modified. n is n_row for a row-form matrix, and n_col for a column-form matrix. Ap is an integer array of size n+1. If col_form is true (nonzero), then on input, it holds the "pointers" for the column form of the sparse matrix A. The row indices of column j of the matrix A are held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Otherwise, Ap holds the row pointers, and the column indices of row j of the matrix are held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all j in the range 0 to n-1. The value nz = Ap [n] is thus the total number of entries in the pattern of the matrix A. Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n]. If col_form is true (nonzero), then the nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Row indices must be in the range 0 to n_row-1 (the matrix is 0-based). Otherwise, the nonzero pattern (column indices) for row j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Column indices must be in the range 0 to n_col-1 (the matrix is 0-based). double Ax [nz] ; Input argument, not modified, of size nz = Ap [n]. Size 2*nz for packed complex case. The numerical values of the sparse matrix A. If col_form is true (nonzero), then the nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding (real) numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions (see below if Az is NULL). Otherwise, the nonzero pattern (column indices) for row j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding (real) numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions (see below if Az is NULL). No numerical values are printed if Ax is NULL. double Az [nz] ; Input argument, not modified, for complex versions. The imaginary values of the sparse matrix A. See the description of Ax, above. If Az is NULL, then both real and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. Int col_form ; Input argument, not modified. The matrix is in row-oriented form if form is col_form is false (0). Otherwise, the matrix is in column-oriented form. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_report_perm.h0000644001170100242450000000670010617161105020636 0ustar davisfac/* ========================================================================== */ /* === umfpack_report_perm ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_report_perm ( int np, const int Perm [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_dl_report_perm ( UF_long np, const UF_long Perm [ ], const double Control [UMFPACK_CONTROL] ) ; int umfpack_zi_report_perm ( int np, const int Perm [ ], const double Control [UMFPACK_CONTROL] ) ; UF_long umfpack_zl_report_perm ( UF_long np, const UF_long Perm [ ], const double Control [UMFPACK_CONTROL] ) ; /* double int Syntax: #include "umfpack.h" int np, *Perm, status ; double Control [UMFPACK_CONTROL] ; status = umfpack_di_report_perm (np, Perm, Control) ; double UF_long Syntax: #include "umfpack.h" UF_long np, *Perm, status ; double Control [UMFPACK_CONTROL] ; status = umfpack_dl_report_perm (np, Perm, Control) ; complex int Syntax: #include "umfpack.h" int np, *Perm, status ; double Control [UMFPACK_CONTROL] ; status = umfpack_zi_report_perm (np, Perm, Control) ; complex UF_long Syntax: #include "umfpack.h" UF_long np, *Perm, status ; double Control [UMFPACK_CONTROL] ; status = umfpack_zl_report_perm (np, Perm, Control) ; Purpose: Verifies and prints a permutation vector. Returns: UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked). Otherwise: UMFPACK_OK if the permutation vector is valid (this includes that case when Perm is (Int *) NULL, which is not an error condition). UMFPACK_ERROR_n_nonpositive if np <= 0. UMFPACK_ERROR_out_of_memory if out of memory. UMFPACK_ERROR_invalid_permutation if Perm is not a valid permutation vector. Arguments: Int np ; Input argument, not modified. Perm is an integer vector of size np. Restriction: np > 0. Int Perm [np] ; Input argument, not modified. A permutation vector of size np. If Perm is not present (an (Int *) NULL pointer), then it is assumed to be the identity permutation. This is consistent with its use as an input argument to umfpack_*_qsymbolic, and is not an error condition. If Perm is present, the entries in Perm must range between 0 and np-1, and no duplicates may exist. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_PRL]: printing level. 2 or less: no output. returns silently without checking anything. 3: fully check input, and print a short summary of its status 4: as 3, but print first few entries of the input 5: as 3, but print all of the input Default: 1 */ SuiteSparse/UMFPACK/Include/umfpack_free_symbolic.h0000644001170100242450000000325410617161037021127 0ustar davisfac/* ========================================================================== */ /* === umfpack_free_symbolic ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ void umfpack_di_free_symbolic ( void **Symbolic ) ; void umfpack_dl_free_symbolic ( void **Symbolic ) ; void umfpack_zi_free_symbolic ( void **Symbolic ) ; void umfpack_zl_free_symbolic ( void **Symbolic ) ; /* double int Syntax: #include "umfpack.h" void *Symbolic ; umfpack_di_free_symbolic (&Symbolic) ; double UF_long Syntax: #include "umfpack.h" void *Symbolic ; umfpack_dl_free_symbolic (&Symbolic) ; complex int Syntax: #include "umfpack.h" void *Symbolic ; umfpack_zi_free_symbolic (&Symbolic) ; complex UF_long Syntax: #include "umfpack.h" void *Symbolic ; umfpack_zl_free_symbolic (&Symbolic) ; Purpose: Deallocates the Symbolic object and sets the Symbolic handle to NULL. This routine is the only valid way of destroying the Symbolic object. Arguments: void **Symbolic ; Input argument, set to (void *) NULL on output. Points to a valid Symbolic object computed by umfpack_*_symbolic. No action is taken if Symbolic is a (void *) NULL pointer. */ SuiteSparse/UMFPACK/Include/umfpack_wsolve.h0000644001170100242450000001264610617161243017630 0ustar davisfac/* ========================================================================== */ /* === umfpack_wsolve ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_wsolve ( int sys, const int Ap [ ], const int Ai [ ], const double Ax [ ], double X [ ], const double B [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO], int Wi [ ], double W [ ] ) ; UF_long umfpack_dl_wsolve ( UF_long sys, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], double X [ ], const double B [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO], UF_long Wi [ ], double W [ ] ) ; int umfpack_zi_wsolve ( int sys, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO], int Wi [ ], double W [ ] ) ; UF_long umfpack_zl_wsolve ( UF_long sys, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO], UF_long Wi [ ], double W [ ] ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; int status, *Ap, *Ai, *Wi, sys ; double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, *Ap, *Ai, *Wi, sys ; double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_dl_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ; complex int Syntax: #include "umfpack.h" void *Numeric ; int status, *Ap, *Ai, *Wi, sys ; double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, W) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, *Ap, *Ai, *Wi, sys ; double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_zl_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, W) ; packed complex Syntax: Same as above, except Az, Xz, and Bz are NULL. Purpose: Given LU factors computed by umfpack_*_numeric (PAQ=LU) and the right-hand-side, B, solve a linear system for the solution X. Iterative refinement is optionally performed. This routine is identical to umfpack_*_solve, except that it does not dynamically allocate any workspace. When you have many linear systems to solve, this routine is faster than umfpack_*_solve, since the workspace (Wi, W) needs to be allocated only once, prior to calling umfpack_*_wsolve. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: Int sys ; Input argument, not modified. Int Ap [n+1] ; Input argument, not modified. Int Ai [nz] ; Input argument, not modified. double Ax [nz] ; Input argument, not modified. Size 2*nz in packed complex case. double X [n] ; Output argument. double B [n] ; Input argument, not modified. void *Numeric ; Input argument, not modified. double Control [UMFPACK_CONTROL] ; Input argument, not modified. double Info [UMFPACK_INFO] ; Output argument. for complex versions: double Az [nz] ; Input argument, not modified, imaginary part double Xx [n] ; Output argument, real part. Size 2*n in packed complex case. double Xz [n] ; Output argument, imaginary part double Bx [n] ; Input argument, not modified, real part. Size 2*n in packed complex case. double Bz [n] ; Input argument, not modified, imaginary part The above arguments are identical to umfpack_*_solve, except that the error code UMFPACK_ERROR_out_of_memory will not be returned in Info [UMFPACK_STATUS], since umfpack_*_wsolve does not allocate any memory. Int Wi [n] ; Workspace. double W [c*n] ; Workspace, where c is defined below. The Wi and W arguments are workspace used by umfpack_*_wsolve. They need not be initialized on input, and their contents are undefined on output. The size of W depends on whether or not iterative refinement is used, and which version (real or complex) is called. Iterative refinement is performed if Ax=b, A'x=b, or A.'x=b is being solved, Control [UMFPACK_IRSTEP] > 0, and A is nonsingular. The size of W is given below: no iter. with iter. refinement refinement umfpack_di_wsolve n 5*n umfpack_dl_wsolve n 5*n umfpack_zi_wsolve 4*n 10*n umfpack_zl_wsolve 4*n 10*n */ SuiteSparse/UMFPACK/Include/umfpack_solve.h0000644001170100242450000002470510617161126017440 0ustar davisfac/* ========================================================================== */ /* === umfpack_solve ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ int umfpack_di_solve ( int sys, const int Ap [ ], const int Ai [ ], const double Ax [ ], double X [ ], const double B [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_dl_solve ( UF_long sys, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], double X [ ], const double B [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; int umfpack_zi_solve ( int sys, const int Ap [ ], const int Ai [ ], const double Ax [ ], const double Az [ ], double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; UF_long umfpack_zl_solve ( UF_long sys, const UF_long Ap [ ], const UF_long Ai [ ], const double Ax [ ], const double Az [ ], double Xx [ ], double Xz [ ], const double Bx [ ], const double Bz [ ], void *Numeric, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) ; /* double int Syntax: #include "umfpack.h" void *Numeric ; int status, *Ap, *Ai, sys ; double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ; double UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, *Ap, *Ai, sys ; double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_dl_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ; complex int Syntax: #include "umfpack.h" void *Numeric ; int status, *Ap, *Ai, sys ; double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ; complex UF_long Syntax: #include "umfpack.h" void *Numeric ; UF_long status, *Ap, *Ai, sys ; double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ; status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ; packed complex Syntax: Same as above, Xz, Bz, and Az are NULL. Purpose: Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the solution X. Iterative refinement is optionally performed. Only square systems are handled. Singular matrices result in a divide-by-zero for all systems except those involving just the matrix L. Iterative refinement is not performed for singular matrices. In the discussion below, n is equal to n_row and n_col, because only square systems are handled. Returns: The status code is returned. See Info [UMFPACK_STATUS], below. Arguments: Int sys ; Input argument, not modified. Defines which system to solve. (') is the linear algebraic transpose (complex conjugate if A is complex), and (.') is the array transpose. sys value system solved UMFPACK_A Ax=b UMFPACK_At A'x=b UMFPACK_Aat A.'x=b UMFPACK_Pt_L P'Lx=b UMFPACK_L Lx=b UMFPACK_Lt_P L'Px=b UMFPACK_Lat_P L.'Px=b UMFPACK_Lt L'x=b UMFPACK_U_Qt UQ'x=b UMFPACK_U Ux=b UMFPACK_Q_Ut QU'x=b UMFPACK_Q_Uat QU.'x=b UMFPACK_Ut U'x=b UMFPACK_Uat U.'x=b Iterative refinement can be optionally performed when sys is any of the following: UMFPACK_A Ax=b UMFPACK_At A'x=b UMFPACK_Aat A.'x=b For the other values of the sys argument, iterative refinement is not performed (Control [UMFPACK_IRSTEP], Ap, Ai, Ax, and Az are ignored). Int Ap [n+1] ; Input argument, not modified. Int Ai [nz] ; Input argument, not modified. double Ax [nz] ; Input argument, not modified. Size 2*nz for packed complex case. double Az [nz] ; Input argument, not modified, for complex versions. If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1, Ax=b, A'x=b, or A.'x=b is being solved, and A is nonsingular), then these arrays must be identical to the same ones passed to umfpack_*_numeric. The umfpack_*_solve routine does not check the contents of these arguments, so the results are undefined if Ap, Ai, Ax, and/or Az are modified between the calls the umfpack_*_numeric and umfpack_*_solve. These three arrays do not need to be present (NULL pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a system other than Ax=b, A'x=b, or A.'x=b is being solved, or if A is singular, since in each of these cases A is not accessed. If Az, Xz, or Bz are NULL, then both real and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k] and Ax[2*k+1] being the real and imaginary part of the kth entry. double X [n] ; Output argument. or: double Xx [n] ; Output argument, real part Size 2*n for packed complex case. double Xz [n] ; Output argument, imaginary part. The solution to the linear system, where n = n_row = n_col is the dimension of the matrices A, L, and U. If Az, Xz, or Bz are NULL, then both real and imaginary parts are returned in Xx[0..2*n-1], with Xx[2*k] and Xx[2*k+1] being the real and imaginary part of the kth entry. double B [n] ; Input argument, not modified. or: double Bx [n] ; Input argument, not modified, real part. Size 2*n for packed complex case. double Bz [n] ; Input argument, not modified, imaginary part. The right-hand side vector, b, stored as a conventional array of size n (or two arrays of size n for complex versions). This routine does not solve for multiple right-hand-sides, nor does it allow b to be stored in a sparse-column form. If Az, Xz, or Bz are NULL, then both real and imaginary parts are contained in Bx[0..2*n-1], with Bx[2*k] and Bx[2*k+1] being the real and imaginary part of the kth entry. void *Numeric ; Input argument, not modified. Numeric must point to a valid Numeric object, computed by umfpack_*_numeric. double Control [UMFPACK_CONTROL] ; Input argument, not modified. If a (double *) NULL pointer is passed, then the default control settings are used. Otherwise, the settings are determined from the Control array. See umfpack_*_defaults on how to fill the Control array with the default settings. If Control contains NaN's, the defaults are used. The following Control parameters are used: Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement steps to attempt. A value less than zero is treated as zero. If less than 1, or if Ax=b, A'x=b, or A.'x=b is not being solved, or if A is singular, then the Ap, Ai, Ax, and Az arguments are not accessed. Default: 2. double Info [UMFPACK_INFO] ; Output argument. Contains statistics about the solution factorization. If a (double *) NULL pointer is passed, then no statistics are returned in Info (this is not an error condition). The following statistics are computed in umfpack_*_solve: Info [UMFPACK_STATUS]: status code. This is also the return value, whether or not Info is present. UMFPACK_OK The linear system was successfully solved. UMFPACK_WARNING_singular_matrix A divide-by-zero occurred. Your solution will contain Inf's and/or NaN's. Some parts of the solution may be valid. For example, solving Ax=b with A = [2 0] b = [ 1 ] returns x = [ 0.5 ] [0 0] [ 0 ] [ Inf ] UMFPACK_ERROR_out_of_memory Insufficient memory to solve the linear system. UMFPACK_ERROR_argument_missing One or more required arguments are missing. The B, X, (or Bx and Xx for the complex versions) arguments are always required. Info and Control are not required. Ap, Ai, Ax are required if Ax=b, A'x=b, A.'x=b is to be solved, the (default) iterative refinement is requested, and the matrix A is nonsingular. UMFPACK_ERROR_invalid_system The sys argument is not valid, or the matrix A is not square. UMFPACK_ERROR_invalid_Numeric_object The Numeric object is not valid. Info [UMFPACK_NROW], Info [UMFPACK_NCOL]: The dimensions of the matrix A (L is n_row-by-n_inner and U is n_inner-by-n_col, with n_inner = min(n_row,n_col)). Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n], if iterative refinement is requested (Ax=b, A'x=b, or A.'x=b is being solved, Control [UMFPACK_IRSTEP] >= 1, and A is nonsingular). Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps effectively taken. The number of steps attempted may be one more than this; the refinement algorithm backtracks if the last refinement step worsens the solution. Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps attempted. The number of times a linear system was solved is one more than this (once for the initial Ax=b, and once for each Ay=r solved for each iterative refinement step attempted). Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if iterative refinement was performed, or -1 if iterative refinement not performed. Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if iterative refinement was performed, or -1 if iterative refinement not performed. Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations performed to solve the linear system. This includes the work taken for all iterative refinement steps, including the backtrack (if any). Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds. Info [UMFPACK_SOLVE_WALLTIME]: The wallclock time taken, in seconds. Only the above listed Info [...] entries are accessed. The remaining entries of Info are not accessed or modified by umfpack_*_solve. Future versions might modify different parts of Info. */ SuiteSparse/UMFPACK/Source/0000755001170100242450000000000010711431063014271 5ustar davisfacSuiteSparse/UMFPACK/Source/umf_free.c0000644001170100242450000000265110677540711016245 0ustar davisfac/* ========================================================================== */ /* === UMF_free ============================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Free a block previously allocated by UMF_malloc and return NULL. Usage is p = UMF_free (p), to ensure that we don't free it twice. Also maintains the UMFPACK malloc count. */ #include "umf_internal.h" #include "umf_free.h" #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) #include "umf_malloc.h" #endif GLOBAL void *UMF_free ( void *p ) { DEBUG0 (("UMF_free: "ID"\n", (Int) p)) ; if (p) { /* see AMD/Source/amd_global.c for the memory allocator selection */ amd_free (p) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) /* One more object has been free'd. Keep track of the count. */ /* (purely for sanity checks). */ UMF_malloc_count-- ; DEBUG0 ((" new malloc count: "ID"\n", UMF_malloc_count)) ; #endif } return ((void *) NULL) ; } SuiteSparse/UMFPACK/Source/umf_free.h0000644001170100242450000000067610617161555016256 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void *UMF_free ( void *p ) ; SuiteSparse/UMFPACK/Source/umf_grow_front.c0000644001170100242450000002363010677541577017525 0ustar davisfac/* ========================================================================== */ /* === UMF_grow_front ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Current frontal matrix is too small. Make it bigger. */ #include "umf_internal.h" #include "umf_grow_front.h" #include "umf_mem_free_tail_block.h" #include "umf_mem_alloc_tail_block.h" #include "umf_get_memory.h" GLOBAL Int UMF_grow_front ( NumericType *Numeric, Int fnr2, /* desired size is fnr2-by-fnc2 */ Int fnc2, WorkType *Work, Int do_what /* -1: UMF_start_front * 0: UMF_init_front, do not recompute Fcpos * 1: UMF_extend_front * 2: UMF_init_front, recompute Fcpos */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double s ; Entry *Fcold, *Fcnew ; Int j, i, col, *Fcpos, *Fcols, fnrows_max, fncols_max, fnr_curr, nb, fnrows_new, fncols_new, fnr_min, fnc_min, minsize, newsize, fnrows, fncols, *E, eloc ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG if (do_what != -1) UMF_debug++ ; DEBUG0 (("\n\n====================GROW FRONT: do_what: "ID"\n", do_what)) ; if (do_what != -1) UMF_debug-- ; ASSERT (Work->do_grow) ; ASSERT (Work->fnpiv == 0) ; #endif Fcols = Work->Fcols ; Fcpos = Work->Fcpos ; E = Work->E ; /* ---------------------------------------------------------------------- */ /* The current front is too small, find the new size */ /* ---------------------------------------------------------------------- */ /* maximum size of frontal matrix for this chain */ nb = Work->nb ; fnrows_max = Work->fnrows_max + nb ; fncols_max = Work->fncols_max + nb ; ASSERT (fnrows_max >= 0 && (fnrows_max % 2) == 1) ; DEBUG0 (("Max size: "ID"-by-"ID" (incl. "ID" pivot block\n", fnrows_max, fncols_max, nb)) ; /* current dimensions of frontal matrix: fnr-by-fnc */ DEBUG0 (("Current : "ID"-by-"ID" (excl "ID" pivot blocks)\n", Work->fnr_curr, Work->fnc_curr, nb)) ; ASSERT (Work->fnr_curr >= 0) ; ASSERT ((Work->fnr_curr % 2 == 1) || Work->fnr_curr == 0) ; /* required dimensions of frontal matrix: fnr_min-by-fnc_min */ fnrows_new = Work->fnrows_new + 1 ; fncols_new = Work->fncols_new + 1 ; ASSERT (fnrows_new >= 0) ; if (fnrows_new % 2 == 0) fnrows_new++ ; fnrows_new += nb ; fncols_new += nb ; fnr_min = MIN (fnrows_new, fnrows_max) ; fnc_min = MIN (fncols_new, fncols_max) ; minsize = fnr_min * fnc_min ; if (INT_OVERFLOW ((double) fnr_min * (double) fnc_min * sizeof (Entry))) { /* :: the minimum front size is bigger than the integer maximum :: */ return (FALSE) ; } ASSERT (fnr_min >= 0) ; ASSERT (fnr_min % 2 == 1) ; DEBUG0 (("Min : "ID"-by-"ID"\n", fnr_min, fnc_min)) ; /* grow the front to fnr2-by-fnc2, but no bigger than the maximum, * and no smaller than the minumum. */ DEBUG0 (("Desired : ("ID"+"ID")-by-("ID"+"ID")\n", fnr2, nb, fnc2, nb)) ; fnr2 += nb ; fnc2 += nb ; ASSERT (fnr2 >= 0) ; if (fnr2 % 2 == 0) fnr2++ ; fnr2 = MAX (fnr2, fnr_min) ; fnc2 = MAX (fnc2, fnc_min) ; fnr2 = MIN (fnr2, fnrows_max) ; fnc2 = MIN (fnc2, fncols_max) ; DEBUG0 (("Try : "ID"-by-"ID"\n", fnr2, fnc2)) ; ASSERT (fnr2 >= 0) ; ASSERT (fnr2 % 2 == 1) ; s = ((double) fnr2) * ((double) fnc2) ; if (INT_OVERFLOW (s * sizeof (Entry))) { /* :: frontal matrix size int overflow :: */ /* the desired front size is bigger than the integer maximum */ /* compute a such that a*a*s < Int_MAX / sizeof (Entry) */ double a = 0.9 * sqrt ((Int_MAX / sizeof (Entry)) / s) ; fnr2 = MAX (fnr_min, a * fnr2) ; fnc2 = MAX (fnc_min, a * fnc2) ; /* the new frontal size is a*r*a*c = a*a*s */ newsize = fnr2 * fnc2 ; ASSERT (fnr2 >= 0) ; if (fnr2 % 2 == 0) fnr2++ ; fnc2 = newsize / fnr2 ; } fnr2 = MAX (fnr2, fnr_min) ; fnc2 = MAX (fnc2, fnc_min) ; newsize = fnr2 * fnc2 ; ASSERT (fnr2 >= 0) ; ASSERT (fnr2 % 2 == 1) ; ASSERT (fnr2 >= fnr_min) ; ASSERT (fnc2 >= fnc_min) ; ASSERT (newsize >= minsize) ; /* ---------------------------------------------------------------------- */ /* free the current front if it is empty of any numerical values */ /* ---------------------------------------------------------------------- */ if (E [0] && do_what != 1) { /* free the current front, if it exists and has nothing in it */ DEBUG0 (("Freeing empty front\n")) ; UMF_mem_free_tail_block (Numeric, E [0]) ; E [0] = 0 ; Work->Flublock = (Entry *) NULL ; Work->Flblock = (Entry *) NULL ; Work->Fublock = (Entry *) NULL ; Work->Fcblock = (Entry *) NULL ; } /* ---------------------------------------------------------------------- */ /* allocate the new front, doing garbage collection if necessary */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) /* a double relop, but ignore NaN case */ { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG1 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage collection (grow)\n")) ; } #endif DEBUG0 (("Attempt size: "ID"-by-"ID"\n", fnr2, fnc2)) ; eloc = UMF_mem_alloc_tail_block (Numeric, UNITS (Entry, newsize)) ; if (!eloc) { /* Do garbage collection, realloc, and try again. Compact the current * contribution block in the front to fnrows-by-fncols. Note that * there are no pivot rows/columns in current front. Do not recompute * Fcpos in UMF_garbage_collection. */ DEBUGm3 (("get_memory from umf_grow_front\n")) ; if (!UMF_get_memory (Numeric, Work, 1 + UNITS (Entry, newsize), Work->fnrows, Work->fncols, FALSE)) { /* :: out of memory in umf_grow_front :: */ return (FALSE) ; /* out of memory */ } DEBUG0 (("Attempt size: "ID"-by-"ID" again\n", fnr2, fnc2)) ; eloc = UMF_mem_alloc_tail_block (Numeric, UNITS (Entry, newsize)) ; } /* try again with something smaller */ while ((fnr2 != fnr_min || fnc2 != fnc_min) && !eloc) { fnr2 = MIN (fnr2 - 2, fnr2 * UMF_REALLOC_REDUCTION) ; fnc2 = MIN (fnc2 - 2, fnc2 * UMF_REALLOC_REDUCTION) ; ASSERT (fnr_min >= 0) ; ASSERT (fnr_min % 2 == 1) ; fnr2 = MAX (fnr_min, fnr2) ; fnc2 = MAX (fnc_min, fnc2) ; ASSERT (fnr2 >= 0) ; if (fnr2 % 2 == 0) fnr2++ ; newsize = fnr2 * fnc2 ; DEBUGm3 (("Attempt smaller size: "ID"-by-"ID" minsize "ID"-by-"ID"\n", fnr2, fnc2, fnr_min, fnc_min)) ; eloc = UMF_mem_alloc_tail_block (Numeric, UNITS (Entry, newsize)) ; } /* try again with the smallest possible size */ if (!eloc) { fnr2 = fnr_min ; fnc2 = fnc_min ; newsize = minsize ; DEBUG0 (("Attempt minsize: "ID"-by-"ID"\n", fnr2, fnc2)) ; eloc = UMF_mem_alloc_tail_block (Numeric, UNITS (Entry, newsize)) ; } if (!eloc) { /* out of memory */ return (FALSE) ; } ASSERT (fnr2 >= 0) ; ASSERT (fnr2 % 2 == 1) ; ASSERT (fnr2 >= fnr_min && fnc2 >= fnc_min) ; /* ---------------------------------------------------------------------- */ /* copy the old frontal matrix into the new one */ /* ---------------------------------------------------------------------- */ /* old contribution block (if any) */ fnr_curr = Work->fnr_curr ; /* garbage collection can change fn*_curr */ ASSERT (fnr_curr >= 0) ; ASSERT ((fnr_curr % 2 == 1) || fnr_curr == 0) ; fnrows = Work->fnrows ; fncols = Work->fncols ; Fcold = Work->Fcblock ; /* remove nb from the sizes */ fnr2 -= nb ; fnc2 -= nb ; /* new frontal matrix */ Work->Flublock = (Entry *) (Numeric->Memory + eloc) ; Work->Flblock = Work->Flublock + nb * nb ; Work->Fublock = Work->Flblock + nb * fnr2 ; Work->Fcblock = Work->Fublock + nb * fnc2 ; Fcnew = Work->Fcblock ; if (E [0]) { /* copy the old contribution block into the new one */ for (j = 0 ; j < fncols ; j++) { col = Fcols [j] ; DEBUG1 (("copy col "ID" \n",col)) ; ASSERT (col >= 0 && col < Work->n_col) ; for (i = 0 ; i < fnrows ; i++) { Fcnew [i] = Fcold [i] ; } Fcnew += fnr2 ; Fcold += fnr_curr ; DEBUG1 (("new offset col "ID" "ID"\n",col, j * fnr2)) ; Fcpos [col] = j * fnr2 ; } } else if (do_what == 2) { /* just find the new column offsets */ for (j = 0 ; j < fncols ; j++) { col = Fcols [j] ; DEBUG1 (("new offset col "ID" "ID"\n",col, j * fnr2)) ; Fcpos [col] = j * fnr2 ; } } /* free the old frontal matrix */ UMF_mem_free_tail_block (Numeric, E [0]) ; /* ---------------------------------------------------------------------- */ /* new frontal matrix size */ /* ---------------------------------------------------------------------- */ E [0] = eloc ; Work->fnr_curr = fnr2 ; /* C block is fnr2-by-fnc2 */ Work->fnc_curr = fnc2 ; Work->fcurr_size = newsize ; /* including LU, L, U, and C blocks */ Work->do_grow = FALSE ; /* the front has just been grown */ ASSERT (Work->fnr_curr >= 0) ; ASSERT (Work->fnr_curr % 2 == 1) ; DEBUG0 (("Newly grown front: "ID"+"ID" by "ID"+"ID"\n", Work->fnr_curr, nb, Work->fnc_curr, nb)) ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_grow_front.h0000644001170100242450000000102010617161610017473 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_grow_front ( NumericType *Numeric, Int fnr2, Int fnc2, WorkType *Work, Int do_what ) ; SuiteSparse/UMFPACK/Source/umf_symbolic_usage.c0000644001170100242450000000276710677542436020347 0ustar davisfac/* ========================================================================== */ /* === UMF_symbolic_usage =================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Returns the final size of the Symbolic object, in Units */ #include "umf_internal.h" #include "umf_symbolic_usage.h" GLOBAL double UMF_symbolic_usage ( Int n_row, Int n_col, Int nchains, Int nfr, Int esize, /* zero if no dense rows. Otherwise, equal to the * number of non-singleton, non-empty columns */ Int prefer_diagonal ) { double units ; units = DUNITS (SymbolicType, 1) /* Symbolic structure */ + 2 * DUNITS (Int, n_col+1) /* Cperm_init, Cdeg */ + 2 * DUNITS (Int, n_row+1) /* Rperm_init, Rdeg */ + 3 * DUNITS (Int, nchains+1) /* Chain_ */ + 4 * DUNITS (Int, nfr+1) ; /* Front_ */ /* if dense rows are present */ units += DUNITS (Int, esize) ; /* Esize */ /* for diagonal pivoting */ if (prefer_diagonal) { units += DUNITS (Int, n_col+1) ; /* Diagonal_map */ } return (units) ; } SuiteSparse/UMFPACK/Source/umf_symbolic_usage.h0000644001170100242450000000104010617162441020317 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL double UMF_symbolic_usage ( Int n_row, Int n_col, Int nchains, Int nfr, Int esize, Int prefer_diagonal ) ; SuiteSparse/UMFPACK/Source/umf_solve.c0000644001170100242450000010174610677542413016462 0ustar davisfac/* ========================================================================== */ /* === UMF_solve ============================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Not user-callable. Solves a linear system using the numerical factorization computed by UMFPACK_numeric. No workspace is dynamically allocated. Counts flops, but excludes floating-point comparisons (thus real abs (...) are zero flops, but complex abs (...) takes 6 flops). Returns UMFPACK_OK if successful, UMFPACK_ERROR_argument_missing if required arguments are missing, UMFPACK_ERROR_invalid_system if the sys string is not valid or if the matrix A is not square. Uses the sparse backward error method of Arioli, Demmel, and Duff (Solving sparse linear systems with sparse backward error, SIAM J. Matrix Analysis and Applic., vol 10, pp. 165-190). Added on option that allows the complex A and X to be split differently than B, Oct 10, 2005. Contributed by David Bateman. */ #include "umf_internal.h" #include "umf_solve.h" #include "umf_lsolve.h" #include "umf_usolve.h" #include "umf_ltsolve.h" #include "umf_utsolve.h" #include "umf_report_vector.h" PRIVATE Int do_step ( double omega [3], Int step, const double B2 [ ], Entry X [ ], const Entry W [ ], const double Y [ ], const double Z2 [ ], Entry S [ ], Int n, double Info [UMFPACK_INFO] ) ; /* ========================================================================== */ /* === UMF_solve ============================================================ */ /* ========================================================================== */ GLOBAL Int UMF_solve ( Int sys, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], double Xx [ ], const double Bx [ ], #ifdef COMPLEX const double Az [ ], double Xz [ ], const double Bz [ ], #endif NumericType *Numeric, Int irstep, double Info [UMFPACK_INFO], Int Pattern [ ], /* size n */ double SolveWork [ ] /* if irstep>0 real: size 5*n. complex:10*n */ /* otherwise real: size n. complex: 4*n */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry axx, wi, xj, zi, xi, aij, bi ; double omega [3], d, z2i, yi, flops ; Entry *W, *Z, *S, *X ; double *Z2, *Y, *B2, *Rs ; Int *Rperm, *Cperm, i, n, p, step, j, nz, status, p2, do_scale ; #ifdef COMPLEX Int AXsplit ; Int Bsplit ; #endif #ifndef NRECIPROCAL Int do_recip = Numeric->do_recip ; #endif /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_dump_lu (Numeric) ; ASSERT (Numeric && Xx && Bx && Pattern && SolveWork && Info) ; #endif nz = 0 ; omega [0] = 0. ; omega [1] = 0. ; omega [2] = 0. ; Rperm = Numeric->Rperm ; Cperm = Numeric->Cperm ; Rs = Numeric->Rs ; /* row scale factors */ do_scale = (Rs != (double *) NULL) ; flops = 0 ; Info [UMFPACK_SOLVE_FLOPS] = 0 ; Info [UMFPACK_IR_TAKEN] = 0 ; Info [UMFPACK_IR_ATTEMPTED] = 0 ; /* UMFPACK_solve does not call this routine if A is rectangular */ ASSERT (Numeric->n_row == Numeric->n_col) ; n = Numeric->n_row ; if (Numeric->nnzpiv < n || SCALAR_IS_ZERO (Numeric->rcond) || SCALAR_IS_NAN (Numeric->rcond)) { /* Note that systems involving just L return UMFPACK_OK, even if */ /* A is singular (L is always has a unit diagonal). */ DEBUGm4 (("Note, matrix is singular in umf_solve\n")) ; status = UMFPACK_WARNING_singular_matrix ; irstep = 0 ; } else { status = UMFPACK_OK ; } irstep = MAX (0, irstep) ; /* make sure irstep is >= 0 */ W = (Entry *) SolveWork ; /* Entry W [0..n-1] */ Z = (Entry *) NULL ; /* unused if no iterative refinement */ S = (Entry *) NULL ; Y = (double *) NULL ; Z2 = (double *) NULL ; B2 = (double *) NULL ; #ifdef COMPLEX if (irstep > 0) { if (!Ap || !Ai || !Ax) { return (UMFPACK_ERROR_argument_missing) ; } /* A, B, and X in split format if Az, Bz, and Xz present */ AXsplit = SPLIT (Az) || SPLIT(Xz); Z = (Entry *) (SolveWork + 4*n) ; /* Entry Z [0..n-1] */ S = (Entry *) (SolveWork + 6*n) ; /* Entry S [0..n-1] */ Y = (double *) (SolveWork + 8*n) ; /* double Y [0..n-1] */ B2 = (double *) (SolveWork + 9*n) ; /* double B2 [0..n-1] */ Z2 = (double *) Z ; /* double Z2 [0..n-1], equiv. to Z */ } else { /* A is ignored, only look at X for split/packed cases */ AXsplit = SPLIT(Xz); } Bsplit = SPLIT (Bz); if (AXsplit) { X = (Entry *) (SolveWork + 2*n) ; /* Entry X [0..n-1] */ } else { X = (Entry *) Xx ; /* Entry X [0..n-1] */ } #else X = (Entry *) Xx ; /* Entry X [0..n-1] */ if (irstep > 0) { if (!Ap || !Ai || !Ax) { return (UMFPACK_ERROR_argument_missing) ; } Z = (Entry *) (SolveWork + n) ; /* Entry Z [0..n-1] */ S = (Entry *) (SolveWork + 2*n) ; /* Entry S [0..n-1] */ Y = (double *) (SolveWork + 3*n) ; /* double Y [0..n-1] */ B2 = (double *) (SolveWork + 4*n) ; /* double B2 [0..n-1] */ Z2 = (double *) Z ; /* double Z2 [0..n-1], equiv. to Z */ } #endif /* ---------------------------------------------------------------------- */ /* determine which system to solve */ /* ---------------------------------------------------------------------- */ if (sys == UMFPACK_A) { /* ------------------------------------------------------------------ */ /* solve A x = b with optional iterative refinement */ /* ------------------------------------------------------------------ */ if (irstep > 0) { /* -------------------------------------------------------------- */ /* using iterative refinement: compute Y and B2 */ /* -------------------------------------------------------------- */ nz = Ap [n] ; Info [UMFPACK_NZ] = nz ; /* A is stored by column */ /* Y (i) = ||R A_i||, 1-norm of row i of R A */ for (i = 0 ; i < n ; i++) { Y [i] = 0. ; } flops += (ABS_FLOPS + 1) * nz ; p2 = Ap [n] ; for (p = 0 ; p < p2 ; p++) { /* Y [Ai [p]] += ABS (Ax [p]) ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; Y [Ai [p]] += d ; } /* B2 = abs (B) */ flops += ABS_FLOPS * n ; for (i = 0 ; i < n ; i++) { /* B2 [i] = ABS (B [i]) ; */ ASSIGN (bi, Bx, Bz, i, Bsplit) ; ABS (B2 [i], bi) ; } /* scale Y and B2. */ if (do_scale) { /* Y = R Y */ /* B2 = R B2 */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { Y [i] *= Rs [i] ; B2 [i] *= Rs [i] ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { Y [i] /= Rs [i] ; B2 [i] /= Rs [i] ; } } flops += 2 * n ; } } for (step = 0 ; step <= irstep ; step++) { /* -------------------------------------------------------------- */ /* Solve A x = b (step 0): */ /* x = Q (U \ (L \ (P R b))) */ /* and then perform iterative refinement (step > 0): */ /* x = x + Q (U \ (L \ (P R (b - A x)))) */ /* -------------------------------------------------------------- */ if (step == 0) { if (do_scale) { /* W = P R b, using X as workspace, since Z is not * allocated if irstep = 0. */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { ASSIGN (X [i], Bx, Bz, i, Bsplit) ; SCALE (X [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { ASSIGN (X [i], Bx, Bz, i, Bsplit) ; SCALE_DIV (X [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; for (i = 0 ; i < n ; i++) { W [i] = X [Rperm [i]] ; } } else { /* W = P b, since the row scaling R = I */ for (i = 0 ; i < n ; i++) { /* W [i] = B [Rperm [i]] ; */ ASSIGN (W [i], Bx, Bz, Rperm [i], Bsplit) ; } } } else { for (i = 0 ; i < n ; i++) { /* Z [i] = B [i] ; */ ASSIGN (Z [i], Bx, Bz, i, Bsplit) ; } flops += MULTSUB_FLOPS * nz ; for (i = 0 ; i < n ; i++) { xi = X [i] ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* Z [Ai [p]] -= Ax [p] * xi ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; MULT_SUB (Z [Ai [p]], aij, xi) ; } } /* scale, Z = R Z */ if (do_scale) { #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (Z [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (Z [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; } for (i = 0 ; i < n ; i++) { W [i] = Z [Rperm [i]] ; } } flops += UMF_lsolve (Numeric, W, Pattern) ; flops += UMF_usolve (Numeric, W, Pattern) ; if (step == 0) { for (i = 0 ; i < n ; i++) { X [Cperm [i]] = W [i] ; } } else { flops += ASSEMBLE_FLOPS * n ; for (i = 0 ; i < n ; i++) { /* X [Cperm [i]] += W [i] ; */ ASSEMBLE (X [Cperm [i]], W [i]) ; } } /* -------------------------------------------------------------- */ /* sparse backward error estimate */ /* -------------------------------------------------------------- */ if (irstep > 0) { /* ---------------------------------------------------------- */ /* A is stored by column */ /* W (i) = R (b - A x)_i, residual */ /* Z2 (i) = R (|A||x|)_i */ /* ---------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { /* W [i] = B [i] ; */ ASSIGN (W [i], Bx, Bz, i, Bsplit) ; Z2 [i] = 0. ; } flops += (MULT_FLOPS + DECREMENT_FLOPS + ABS_FLOPS + 1) * nz ; for (j = 0 ; j < n ; j++) { xj = X [j] ; p2 = Ap [j+1] ; for (p = Ap [j] ; p < p2 ; p++) { i = Ai [p] ; /* axx = Ax [p] * xj ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; MULT (axx, aij, xj) ; /* W [i] -= axx ; */ DECREMENT (W [i], axx) ; /* Z2 [i] += ABS (axx) ; */ ABS (d, axx) ; Z2 [i] += d ; } } /* scale W and Z2 */ if (do_scale) { /* Z2 = R Z2 */ /* W = R W */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (W [i], Rs [i]) ; Z2 [i] *= Rs [i] ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (W [i], Rs [i]) ; Z2 [i] /= Rs [i] ; } } flops += (SCALE_FLOPS + 1) * n ; } flops += (2*ABS_FLOPS + 5) * n ; if (do_step (omega, step, B2, X, W, Y, Z2, S, n, Info)) { /* iterative refinement is done */ break ; } } } } else if (sys == UMFPACK_At) { /* ------------------------------------------------------------------ */ /* solve A' x = b with optional iterative refinement */ /* ------------------------------------------------------------------ */ /* A' is the complex conjugate transpose */ if (irstep > 0) { /* -------------------------------------------------------------- */ /* using iterative refinement: compute Y */ /* -------------------------------------------------------------- */ nz = Ap [n] ; Info [UMFPACK_NZ] = nz ; /* A' is stored by row */ /* Y (i) = ||(A' R)_i||, 1-norm of row i of A' R */ if (do_scale) { flops += (ABS_FLOPS + 2) * nz ; #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) * Rs [Ai [p]] ; */ /* note that abs (aij) is the same as * abs (conj (aij)) */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += (d * Rs [Ai [p]]) ; } Y [i] = yi ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) / Rs [Ai [p]] ; */ /* note that abs (aij) is the same as * abs (conj (aij)) */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += (d / Rs [Ai [p]]) ; } Y [i] = yi ; } } } else { /* no scaling */ flops += (ABS_FLOPS + 1) * nz ; for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) ; */ /* note that abs (aij) is the same as * abs (conj (aij)) */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += d ; } Y [i] = yi ; } } /* B2 = abs (B) */ for (i = 0 ; i < n ; i++) { /* B2 [i] = ABS (B [i]) ; */ ASSIGN (bi, Bx, Bz, i, Bsplit) ; ABS (B2 [i], bi) ; } } for (step = 0 ; step <= irstep ; step++) { /* -------------------------------------------------------------- */ /* Solve A' x = b (step 0): */ /* x = R P' (L' \ (U' \ (Q' b))) */ /* and then perform iterative refinement (step > 0): */ /* x = x + R P' (L' \ (U' \ (Q' (b - A' x)))) */ /* -------------------------------------------------------------- */ if (step == 0) { /* W = Q' b */ for (i = 0 ; i < n ; i++) { /* W [i] = B [Cperm [i]] ; */ ASSIGN (W [i], Bx, Bz, Cperm [i], Bsplit) ; } } else { /* Z = b - A' x */ for (i = 0 ; i < n ; i++) { /* Z [i] = B [i] ; */ ASSIGN (Z [i], Bx, Bz, i, Bsplit) ; } flops += MULTSUB_FLOPS * nz ; for (i = 0 ; i < n ; i++) { zi = Z [i] ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* zi -= conjugate (Ax [p]) * X [Ai [p]] ; */ ASSIGN (aij, Ax, Az, p, Bsplit) ; MULT_SUB_CONJ (zi, X [Ai [p]], aij) ; } Z [i] = zi ; } /* W = Q' Z */ for (i = 0 ; i < n ; i++) { W [i] = Z [Cperm [i]] ; } } flops += UMF_uhsolve (Numeric, W, Pattern) ; flops += UMF_lhsolve (Numeric, W, Pattern) ; if (step == 0) { /* X = R P' W */ /* do not use Z, since it isn't allocated if irstep = 0 */ /* X = P' W */ for (i = 0 ; i < n ; i++) { X [Rperm [i]] = W [i] ; } if (do_scale) { /* X = R X */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (X [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (X [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; } } else { /* Z = P' W */ for (i = 0 ; i < n ; i++) { Z [Rperm [i]] = W [i] ; } if (do_scale) { /* Z = R Z */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (Z [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (Z [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; } flops += ASSEMBLE_FLOPS * n ; /* X += Z */ for (i = 0 ; i < n ; i++) { /* X [i] += Z [i] ; was +=W[i] in v4.3, which is wrong */ ASSEMBLE (X [i], Z [i]) ; /* bug fix, v4.3.1 */ } } /* -------------------------------------------------------------- */ /* sparse backward error estimate */ /* -------------------------------------------------------------- */ if (irstep > 0) { /* ---------------------------------------------------------- */ /* A' is stored by row */ /* W (i) = (b - A' x)_i, residual */ /* Z2 (i) = (|A'||x|)_i */ /* ---------------------------------------------------------- */ flops += (MULT_FLOPS + DECREMENT_FLOPS + ABS_FLOPS + 1) * nz ; for (i = 0 ; i < n ; i++) { /* wi = B [i] ; */ ASSIGN (wi, Bx, Bz, i, Bsplit) ; z2i = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* axx = conjugate (Ax [p]) * X [Ai [p]] ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; MULT_CONJ (axx, X [Ai [p]], aij) ; /* wi -= axx ; */ DECREMENT (wi, axx) ; /* z2i += ABS (axx) ; */ ABS (d, axx) ; z2i += d ; } W [i] = wi ; Z2 [i] = z2i ; } flops += (2*ABS_FLOPS + 5) * n ; if (do_step (omega, step, B2, X, W, Y, Z2, S, n, Info)) { /* iterative refinement is done */ break ; } } } } else if (sys == UMFPACK_Aat) { /* ------------------------------------------------------------------ */ /* solve A.' x = b with optional iterative refinement */ /* ------------------------------------------------------------------ */ /* A' is the array transpose */ if (irstep > 0) { /* -------------------------------------------------------------- */ /* using iterative refinement: compute Y */ /* -------------------------------------------------------------- */ nz = Ap [n] ; Info [UMFPACK_NZ] = nz ; /* A.' is stored by row */ /* Y (i) = ||(A.' R)_i||, 1-norm of row i of A.' R */ if (do_scale) { flops += (ABS_FLOPS + 2) * nz ; #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) * Rs [Ai [p]] ; */ /* note that A.' is the array transpose, * so no conjugate */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += (d * Rs [Ai [p]]) ; } Y [i] = yi ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) / Rs [Ai [p]] ; */ /* note that A.' is the array transpose, * so no conjugate */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += (d / Rs [Ai [p]]) ; } Y [i] = yi ; } } } else { /* no scaling */ flops += (ABS_FLOPS + 1) * nz ; for (i = 0 ; i < n ; i++) { yi = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* yi += ABS (Ax [p]) */ /* note that A.' is the array transpose, * so no conjugate */ ASSIGN (aij, Ax, Az, p, AXsplit) ; ABS (d, aij) ; yi += d ; } Y [i] = yi ; } } /* B2 = abs (B) */ for (i = 0 ; i < n ; i++) { /* B2 [i] = ABS (B [i]) ; */ ASSIGN (bi, Bx, Bz, i, Bsplit) ; ABS (B2 [i], bi) ; } } for (step = 0 ; step <= irstep ; step++) { /* -------------------------------------------------------------- */ /* Solve A.' x = b (step 0): */ /* x = R P' (L.' \ (U.' \ (Q' b))) */ /* and then perform iterative refinement (step > 0): */ /* x = x + R P' (L.' \ (U.' \ (Q' (b - A.' x)))) */ /* -------------------------------------------------------------- */ if (step == 0) { /* W = Q' b */ for (i = 0 ; i < n ; i++) { /* W [i] = B [Cperm [i]] ; */ ASSIGN (W [i], Bx, Bz, Cperm [i], Bsplit) ; } } else { /* Z = b - A.' x */ for (i = 0 ; i < n ; i++) { /* Z [i] = B [i] ; */ ASSIGN (Z [i], Bx, Bz, i, Bsplit) ; } flops += MULTSUB_FLOPS * nz ; for (i = 0 ; i < n ; i++) { zi = Z [i] ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* zi -= Ax [p] * X [Ai [p]] ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; MULT_SUB (zi, aij, X [Ai [p]]) ; } Z [i] = zi ; } /* W = Q' Z */ for (i = 0 ; i < n ; i++) { W [i] = Z [Cperm [i]] ; } } flops += UMF_utsolve (Numeric, W, Pattern) ; flops += UMF_ltsolve (Numeric, W, Pattern) ; if (step == 0) { /* X = R P' W */ /* do not use Z, since it isn't allocated if irstep = 0 */ /* X = P' W */ for (i = 0 ; i < n ; i++) { X [Rperm [i]] = W [i] ; } if (do_scale) { /* X = R X */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (X [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (X [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; } } else { /* Z = P' W */ for (i = 0 ; i < n ; i++) { Z [Rperm [i]] = W [i] ; } if (do_scale) { /* Z = R Z */ #ifndef NRECIPROCAL if (do_recip) { /* multiply by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE (Z [i], Rs [i]) ; } } else #endif { /* divide by the scale factors */ for (i = 0 ; i < n ; i++) { SCALE_DIV (Z [i], Rs [i]) ; } } flops += SCALE_FLOPS * n ; } flops += ASSEMBLE_FLOPS * n ; /* X += Z */ for (i = 0 ; i < n ; i++) { /* X [i] += Z [i] ; was +=W[i] in v4.3, which is wrong */ ASSEMBLE (X [i], Z [i]) ; /* bug fix, v4.3.1 */ } } /* -------------------------------------------------------------- */ /* sparse backward error estimate */ /* -------------------------------------------------------------- */ if (irstep > 0) { /* ---------------------------------------------------------- */ /* A.' is stored by row */ /* W (i) = (b - A.' x)_i, residual */ /* Z (i) = (|A.'||x|)_i */ /* ---------------------------------------------------------- */ flops += (MULT_FLOPS + DECREMENT_FLOPS + ABS_FLOPS + 1) * nz ; for (i = 0 ; i < n ; i++) { /* wi = B [i] ; */ ASSIGN (wi, Bx, Bz, i, Bsplit) ; z2i = 0. ; p2 = Ap [i+1] ; for (p = Ap [i] ; p < p2 ; p++) { /* axx = Ax [p] * X [Ai [p]] ; */ ASSIGN (aij, Ax, Az, p, AXsplit) ; MULT (axx, aij, X [Ai [p]]) ; /* wi -= axx ; */ DECREMENT (wi, axx) ; /* z2i += ABS (axx) ; */ ABS (d, axx) ; z2i += d ; } W [i] = wi ; Z2 [i] = z2i ; } flops += (2*ABS_FLOPS + 5) * n ; if (do_step (omega, step, B2, X, W, Y, Z2, S, n, Info)) { /* iterative refinement is done */ break ; } } } } else if (sys == UMFPACK_Pt_L) { /* ------------------------------------------------------------------ */ /* Solve P'Lx=b: x = L \ Pb */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [Rperm [i]] ; */ ASSIGN (X [i], Bx, Bz, Rperm [i], Bsplit) ; } flops = UMF_lsolve (Numeric, X, Pattern) ; status = UMFPACK_OK ; } else if (sys == UMFPACK_L) { /* ------------------------------------------------------------------ */ /* Solve Lx=b: x = L \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_lsolve (Numeric, X, Pattern) ; status = UMFPACK_OK ; } else if (sys == UMFPACK_Lt_P) { /* ------------------------------------------------------------------ */ /* Solve L'Px=b: x = P' (L' \ b) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* W [i] = B [i] ; */ ASSIGN (W [i], Bx, Bz, i, Bsplit) ; } flops = UMF_lhsolve (Numeric, W, Pattern) ; for (i = 0 ; i < n ; i++) { X [Rperm [i]] = W [i] ; } status = UMFPACK_OK ; } else if (sys == UMFPACK_Lat_P) { /* ------------------------------------------------------------------ */ /* Solve L.'Px=b: x = P' (L.' \ b) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* W [i] = B [i] ; */ ASSIGN (W [i], Bx, Bz, i, Bsplit) ; } flops = UMF_ltsolve (Numeric, W, Pattern) ; for (i = 0 ; i < n ; i++) { X [Rperm [i]] = W [i] ; } status = UMFPACK_OK ; } else if (sys == UMFPACK_Lt) { /* ------------------------------------------------------------------ */ /* Solve L'x=b: x = L' \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_lhsolve (Numeric, X, Pattern) ; status = UMFPACK_OK ; } else if (sys == UMFPACK_Lat) { /* ------------------------------------------------------------------ */ /* Solve L.'x=b: x = L.' \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_ltsolve (Numeric, X, Pattern) ; status = UMFPACK_OK ; } else if (sys == UMFPACK_U_Qt) { /* ------------------------------------------------------------------ */ /* Solve UQ'x=b: x = Q (U \ b) */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* W [i] = B [i] ; */ ASSIGN (W [i], Bx, Bz, i, Bsplit) ; } flops = UMF_usolve (Numeric, W, Pattern) ; for (i = 0 ; i < n ; i++) { X [Cperm [i]] = W [i] ; } } else if (sys == UMFPACK_U) { /* ------------------------------------------------------------------ */ /* Solve Ux=b: x = U \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_usolve (Numeric, X, Pattern) ; } else if (sys == UMFPACK_Q_Ut) { /* ------------------------------------------------------------------ */ /* Solve QU'x=b: x = U' \ Q'b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [Cperm [i]] ; */ ASSIGN (X [i], Bx, Bz, Cperm [i], Bsplit) ; } flops = UMF_uhsolve (Numeric, X, Pattern) ; } else if (sys == UMFPACK_Q_Uat) { /* ------------------------------------------------------------------ */ /* Solve QU.'x=b: x = U.' \ Q'b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [Cperm [i]] ; */ ASSIGN (X [i], Bx, Bz, Cperm [i], Bsplit) ; } flops = UMF_utsolve (Numeric, X, Pattern) ; } else if (sys == UMFPACK_Ut) { /* ------------------------------------------------------------------ */ /* Solve U'x=b: x = U' \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_uhsolve (Numeric, X, Pattern) ; } else if (sys == UMFPACK_Uat) { /* ------------------------------------------------------------------ */ /* Solve U'x=b: x = U' \ b */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < n ; i++) { /* X [i] = B [i] ; */ ASSIGN (X [i], Bx, Bz, i, Bsplit) ; } flops = UMF_utsolve (Numeric, X, Pattern) ; } else { return (UMFPACK_ERROR_invalid_system) ; } #ifdef COMPLEX /* copy the solution back, from Entry X [ ] to double Xx [ ] and Xz [ ] */ if (AXsplit) { for (i = 0 ; i < n ; i++) { Xx [i] = REAL_COMPONENT (X [i]) ; Xz [i] = IMAG_COMPONENT (X [i]) ; } } #endif /* return UMFPACK_OK, or UMFPACK_WARNING_singular_matrix */ /* Note that systems involving just L will return UMFPACK_OK */ Info [UMFPACK_SOLVE_FLOPS] = flops ; return (status) ; } /* ========================================================================== */ /* === do_step ============================================================== */ /* ========================================================================== */ /* Perform one step of iterative refinement, for A x = b or A' x = b */ PRIVATE Int do_step /* return TRUE if iterative refinement done */ ( double omega [3], Int step, /* which step of iterative refinement to do */ const double B2 [ ], /* abs (B) */ Entry X [ ], const Entry W [ ], const double Y [ ], const double Z2 [ ], Entry S [ ], Int n, double Info [UMFPACK_INFO] ) { double last_omega [3], tau, nctau, d1, wd1, d2, wd2, xi, yix, wi, xnorm ; Int i ; /* DBL_EPSILON is a standard ANSI C term defined in */ /* It is the smallest positive x such that 1.0+x != 1.0 */ nctau = 1000 * n * DBL_EPSILON ; DEBUG0 (("do_step start: nctau = %30.20e\n", nctau)) ; ASSERT (UMF_report_vector (n, (double *) X, (double *) NULL, UMF_debug, FALSE, FALSE) == UMFPACK_OK) ; /* for approximate flop count, assume d1 > tau is always true */ /* flops += (2*ABS_FLOPS + 5) * n ; (done in UMF_solve, above) */ /* ---------------------------------------------------------------------- */ /* save the last iteration in case we need to reinstate it */ /* ---------------------------------------------------------------------- */ last_omega [0] = omega [0] ; last_omega [1] = omega [1] ; last_omega [2] = omega [2] ; /* ---------------------------------------------------------------------- */ /* compute sparse backward errors: omega [1] and omega [2] */ /* ---------------------------------------------------------------------- */ /* xnorm = ||x|| maxnorm */ xnorm = 0.0 ; for (i = 0 ; i < n ; i++) { /* xi = ABS (X [i]) ; */ ABS (xi, X [i]) ; if (SCALAR_IS_NAN (xi)) { xnorm = xi ; break ; } /* no NaN's to consider here: */ xnorm = MAX (xnorm, xi) ; } omega [1] = 0. ; omega [2] = 0. ; for (i = 0 ; i < n ; i++) { yix = Y [i] * xnorm ; tau = (yix + B2 [i]) * nctau ; d1 = Z2 [i] + B2 [i] ; /* wi = ABS (W [i]) ; */ ABS (wi, W [i]) ; if (SCALAR_IS_NAN (d1)) { omega [1] = d1 ; omega [2] = d1 ; break ; } if (SCALAR_IS_NAN (tau)) { omega [1] = tau ; omega [2] = tau ; break ; } if (d1 > tau) /* a double relop, but no NaN's here */ { wd1 = wi / d1 ; omega [1] = MAX (omega [1], wd1) ; } else if (tau > 0.0) /* a double relop, but no NaN's here */ { d2 = Z2 [i] + yix ; wd2 = wi / d2 ; omega [2] = MAX (omega [2], wd2) ; } } omega [0] = omega [1] + omega [2] ; Info [UMFPACK_OMEGA1] = omega [1] ; Info [UMFPACK_OMEGA2] = omega [2] ; /* ---------------------------------------------------------------------- */ /* stop the iterations if the backward error is small, or NaN */ /* ---------------------------------------------------------------------- */ Info [UMFPACK_IR_TAKEN] = step ; Info [UMFPACK_IR_ATTEMPTED] = step ; if (SCALAR_IS_NAN (omega [0])) { DEBUG0 (("omega[0] is NaN - done.\n")) ; ASSERT (UMF_report_vector (n, (double *) X, (double *) NULL, UMF_debug, FALSE, FALSE) == UMFPACK_OK) ; return (TRUE) ; } if (omega [0] < DBL_EPSILON) /* double relop, but no NaN case here */ { DEBUG0 (("omega[0] too small - done.\n")) ; ASSERT (UMF_report_vector (n, (double *) X, (double *) NULL, UMF_debug, FALSE, FALSE) == UMFPACK_OK) ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* stop if insufficient decrease in omega */ /* ---------------------------------------------------------------------- */ /* double relop, but no NaN case here: */ if (step > 0 && omega [0] > last_omega [0] / 2) { DEBUG0 (("stop refinement\n")) ; if (omega [0] > last_omega [0]) { /* last iteration better than this one, reinstate it */ DEBUG0 (("last iteration better\n")) ; for (i = 0 ; i < n ; i++) { X [i] = S [i] ; } Info [UMFPACK_OMEGA1] = last_omega [1] ; Info [UMFPACK_OMEGA2] = last_omega [2] ; } Info [UMFPACK_IR_TAKEN] = step - 1 ; ASSERT (UMF_report_vector (n, (double *) X, (double *) NULL, UMF_debug, FALSE, FALSE) == UMFPACK_OK) ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* save current solution in case we need to reinstate */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { S [i] = X [i] ; } /* ---------------------------------------------------------------------- */ /* iterative refinement continues */ /* ---------------------------------------------------------------------- */ ASSERT (UMF_report_vector (n, (double *) X, (double *) NULL, UMF_debug, FALSE, FALSE) == UMFPACK_OK) ; return (FALSE) ; } SuiteSparse/UMFPACK/Source/umf_solve.h0000644001170100242450000000140210617162417016447 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_solve ( Int sys, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], double Xx [ ], const double Bx [ ], #ifdef COMPLEX const double Az [ ], double Xz [ ], const double Bz [ ], #endif NumericType *Numeric, Int irstep, double Info [UMFPACK_INFO], Int Pattern [ ], double SolveWork [ ] ) ; SuiteSparse/UMFPACK/Source/umfpack_report_numeric.c0000644001170100242450000004161710617162121021212 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_numeric =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints the Numeric object. See umfpack_report_numeric.h for details. Dynamic memory usage: Allocates a size n*sizeof(Int) workspace via a single call to UMF_malloc and then frees all of it via UMF_free on return. The workspace is not allocated if an early error return occurs before the workspace is needed. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_report_perm.h" #include "umf_report_vector.h" #include "umf_malloc.h" #include "umf_free.h" PRIVATE Int report_L ( NumericType *Numeric, Int Pattern [ ], Int prl ) ; PRIVATE Int report_U ( NumericType *Numeric, Int Pattern [ ], Int prl ) ; /* ========================================================================== */ /* === UMFPACK_report_numeric =============================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_report_numeric ( void *NumericHandle, const double Control [UMFPACK_CONTROL] ) { Int prl, *W, nn, n_row, n_col, n_inner, num_fixed_size, numeric_size, npiv ; NumericType *Numeric ; prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } PRINTF (("Numeric object: ")) ; Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { PRINTF (("ERROR: LU factors invalid\n\n")) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } n_row = Numeric->n_row ; n_col = Numeric->n_col ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; npiv = Numeric->npiv ; DEBUG1 (("n_row "ID" n_col "ID" nn "ID" n_inner "ID" npiv "ID"\n", n_row, n_col, nn, n_inner, npiv)) ; /* size of Numeric object, except Numeric->Memory and Numeric->Upattern */ /* see also UMF_set_stats */ num_fixed_size = UNITS (NumericType, 1) /* Numeric structure */ + UNITS (Entry, n_inner+1) /* D */ + UNITS (Int, n_row+1) /* Rperm */ + UNITS (Int, n_col+1) /* Cperm */ + 6 * UNITS (Int, npiv+1) /* Lpos, Uilen, Uip, Upos, Lilen, Lip */ + ((Numeric->scale != UMFPACK_SCALE_NONE) ? UNITS (Entry, n_row) : 0) ; /* Rs */ DEBUG1 (("num fixed size: "ID"\n", num_fixed_size)) ; DEBUG1 (("Numeric->size "ID"\n", Numeric->size)) ; DEBUG1 (("ulen units "ID"\n", UNITS (Int, Numeric->ulen))) ; /* size of Numeric->Memory is Numeric->size */ /* size of Numeric->Upattern is Numeric->ulen */ numeric_size = num_fixed_size + Numeric->size + UNITS (Int, Numeric->ulen) ; DEBUG1 (("numeric total size "ID"\n", numeric_size)) ; if (prl >= 4) { PRINTF (("\n n_row: "ID" n_col: "ID"\n", n_row, n_col)) ; PRINTF ((" relative pivot tolerance used: %g\n", Numeric->relpt)) ; PRINTF ((" relative symmetric pivot tolerance used: %g\n", Numeric->relpt2)) ; PRINTF ((" matrix scaled: ")) ; if (Numeric->scale == UMFPACK_SCALE_NONE) { PRINTF (("no")) ; } else if (Numeric->scale == UMFPACK_SCALE_SUM) { PRINTF (("yes (divided each row by sum abs value in each row)\n")) ; PRINTF ((" minimum sum (abs (rows of A)): %.5e\n", Numeric->rsmin)) ; PRINTF ((" maximum sum (abs (rows of A)): %.5e", Numeric->rsmax)) ; } else if (Numeric->scale == UMFPACK_SCALE_MAX) { PRINTF (("yes (divided each row by max abs value in each row)\n")) ; PRINTF ((" minimum max (abs (rows of A)): %.5e\n", Numeric->rsmin)) ; PRINTF ((" maximum max (abs (rows of A)): %.5e", Numeric->rsmax)) ; } PRINTF (("\n")) ; PRINTF ((" initial allocation parameter used: %g\n", Numeric->alloc_init)) ; PRINTF ((" frontal matrix allocation parameter used: %g\n", Numeric->front_alloc_init)) ; PRINTF ((" final total size of Numeric object (Units): "ID"\n", numeric_size)) ; PRINTF ((" final total size of Numeric object (MBytes): %.1f\n", MBYTES (numeric_size))) ; PRINTF ((" peak size of variable-size part (Units): "ID"\n", Numeric->max_usage)) ; PRINTF ((" peak size of variable-size part (MBytes): %.1f\n", MBYTES (Numeric->max_usage))) ; PRINTF ((" largest actual frontal matrix size: "ID"\n", Numeric->maxfrsize)) ; PRINTF ((" memory defragmentations: "ID"\n", Numeric->ngarbage)) ; PRINTF ((" memory reallocations: "ID"\n", Numeric->nrealloc)) ; PRINTF ((" costly memory reallocations: "ID"\n", Numeric->ncostly)) ; PRINTF ((" entries in compressed pattern (L and U): "ID"\n", Numeric->isize)) ; PRINTF ((" number of nonzeros in L (excl diag): "ID"\n", Numeric->lnz)) ; PRINTF ((" number of entries stored in L (excl diag): "ID"\n", Numeric->nLentries)) ; PRINTF ((" number of nonzeros in U (excl diag): "ID"\n", Numeric->unz)) ; PRINTF ((" number of entries stored in U (excl diag): "ID"\n", Numeric->nUentries)) ; PRINTF ((" factorization floating-point operations: %g\n", Numeric->flops)) ; PRINTF ((" number of nonzeros on diagonal of U: "ID"\n", Numeric->nnzpiv)) ; PRINTF ((" min abs. value on diagonal of U: %.5e\n", Numeric->min_udiag)) ; PRINTF ((" max abs. value on diagonal of U: %.5e\n", Numeric->max_udiag)) ; PRINTF ((" reciprocal condition number estimate: %.2e\n", Numeric->rcond)) ; } W = (Int *) UMF_malloc (nn, sizeof (Int)) ; if (!W) { PRINTF ((" ERROR: out of memory to check Numeric object\n\n")) ; return (UMFPACK_ERROR_out_of_memory) ; } if (Numeric->Rs) { #ifndef NRECIPROCAL if (Numeric->do_recip) { PRINTF4 (("\nScale factors applied via multiplication\n")) ; } else #endif { PRINTF4 (("\nScale factors applied via division\n")) ; } PRINTF4 (("Scale factors, Rs: ")) ; (void) UMF_report_vector (n_row, Numeric->Rs, (double *) NULL, prl, FALSE, TRUE) ; } else { PRINTF4 (("Scale factors, Rs: (not present)\n")) ; } PRINTF4 (("\nP: row ")) ; if (UMF_report_perm (n_row, Numeric->Rperm, W, prl, 0) != UMFPACK_OK) { (void) UMF_free ((void *) W) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } PRINTF4 (("\nQ: column ")) ; if (UMF_report_perm (n_col, Numeric->Cperm, W, prl, 0) != UMFPACK_OK) { (void) UMF_free ((void *) W) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } if (!report_L (Numeric, W, prl)) { (void) UMF_free ((void *) W) ; PRINTF ((" ERROR: L factor invalid\n\n")) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } if (!report_U (Numeric, W, prl)) { (void) UMF_free ((void *) W) ; PRINTF ((" ERROR: U factor invalid\n\n")) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } /* The diagonal of U is in "merged" (Entry) form, not "split" form. */ PRINTF4 (("\ndiagonal of U: ")) ; (void) UMF_report_vector (n_inner, (double *) Numeric->D, (double *) NULL, prl, FALSE, FALSE) ; (void) UMF_free ((void *) W) ; PRINTF4 ((" Numeric object: ")) ; PRINTF (("OK\n\n")) ; return (UMFPACK_OK) ; } /* ========================================================================== */ /* === report_L ============================================================= */ /* ========================================================================== */ PRIVATE Int report_L ( NumericType *Numeric, Int Pattern [ ], Int prl ) { Int k, deg, *ip, j, row, n_row, *Lpos, *Lilen, valid, k1, *Lip, newLchain, llen, prl1, pos, lp, p, npiv, n1, *Li ; Entry *xp, *Lval ; /* ---------------------------------------------------------------------- */ ASSERT (prl >= 3) ; n_row = Numeric->n_row ; npiv = Numeric->npiv ; n1 = Numeric->n1 ; Lpos = Numeric->Lpos ; Lilen = Numeric->Lilen ; Lip = Numeric->Lip ; prl1 = prl ; deg = 0 ; PRINTF4 (( "\nL in Numeric object, in column-oriented compressed-pattern form:\n" " Diagonal entries are all equal to 1.0 (not stored)\n")) ; ASSERT (Pattern != (Int *) NULL) ; /* ---------------------------------------------------------------------- */ /* print L */ /* ---------------------------------------------------------------------- */ k1 = 12 ; /* ---------------------------------------------------------------------- */ /* print the singleton columns of L */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { if (k1 > 0) { prl = prl1 ; } lp = Lip [k] ; deg = Lilen [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; if (k1-- > 0) { prl = prl1 ; } else if (prl == 4) { PRINTF ((" ...\n")) ; prl-- ; } PRINTF4 (("\n column "ID":", INDEX (k))) ; PRINTF4 ((" length "ID".\n", deg)) ; for (j = 0 ; j < deg ; j++) { row = Li [j] ; PRINTF4 (("\trow "ID" : ", INDEX (row))) ; if (prl >= 4) PRINT_ENTRY (Lval [j]) ; if (row <= k || row >= n_row) { return (FALSE) ; } PRINTF4 (("\n")) ; /* truncate printout, but continue to check L */ if (prl == 4 && j == 9 && deg > 10) { PRINTF (("\t...\n")) ; prl-- ; } } } /* ---------------------------------------------------------------------- */ /* print the regular columns of L */ /* ---------------------------------------------------------------------- */ for (k = n1 ; k < npiv ; k++) { /* if prl is 4, print the first 10 entries of the first 10 columns */ if (k1 > 0) { prl = prl1 ; } lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; } if (k1-- > 0) { prl = prl1 ; } else if (prl == 4) { PRINTF ((" ...\n")) ; prl-- ; } PRINTF4 (("\n column "ID":", INDEX (k))) ; /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { PRINTF4 ((" remove row "ID" at position "ID".", INDEX (Pattern [pos]), INDEX (pos))) ; valid = (!newLchain) && (deg > 0) && (pos < deg) && (pos >= 0) && (Pattern [pos] == k) ; if (!valid) { return (FALSE) ; } Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ llen = Lilen [k] ; if (llen < 0) { return (FALSE) ; } p = lp + UNITS (Int, llen) ; xp = (Entry *) (Numeric->Memory + p) ; if ((llen > 0 || deg > 0) && (p + (Int) UNITS (Entry, deg) > Numeric->size)) { return (FALSE) ; } if (llen > 0) { PRINTF4 ((" add "ID" entries.", llen)) ; ip = (Int *) (Numeric->Memory + lp) ; for (j = 0 ; j < llen ; j++) { Pattern [deg++] = *ip++ ; } } /* ------------------------------------------------------------------ */ /* print column k of L */ /* ------------------------------------------------------------------ */ PRINTF4 ((" length "ID".", deg)) ; if (newLchain) { PRINTF4 ((" Start of Lchain.")) ; } PRINTF4 (("\n")) ; for (j = 0 ; j < deg ; j++) { row = Pattern [j] ; PRINTF4 (("\trow "ID" : ", INDEX (row))) ; if (prl >= 4) PRINT_ENTRY (*xp) ; if (row <= k || row >= n_row) { return (FALSE) ; } PRINTF4 (("\n")) ; xp++ ; /* truncate printout, but continue to check L */ if (prl == 4 && j == 9 && deg > 10) { PRINTF (("\t...\n")) ; prl-- ; } } } PRINTF4 (("\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === report_U ============================================================= */ /* ========================================================================== */ PRIVATE Int report_U ( NumericType *Numeric, Int Pattern [ ], Int prl ) { /* ---------------------------------------------------------------------- */ Int k, deg, j, *ip, col, *Upos, *Uilen, k1, prl1, pos, *Uip, n_col, ulen, p, newUchain, up, npiv, n1, *Ui ; Entry *xp, *Uval ; /* ---------------------------------------------------------------------- */ ASSERT (prl >= 3) ; n_col = Numeric->n_col ; npiv = Numeric->npiv ; n1 = Numeric->n1 ; Upos = Numeric->Upos ; Uilen = Numeric->Uilen ; Uip = Numeric->Uip ; prl1 = prl ; PRINTF4 (( "\nU in Numeric object, in row-oriented compressed-pattern form:\n" " Diagonal is stored separately.\n")) ; ASSERT (Pattern != (Int *) NULL) ; k1 = 12 ; /* ---------------------------------------------------------------------- */ /* print the sparse part of U */ /* ---------------------------------------------------------------------- */ deg = Numeric->ulen ; if (deg > 0) { /* make last pivot row of U (singular matrices only) */ for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; } } PRINTF4 (("\n row "ID": length "ID". End of Uchain.\n", INDEX (npiv-1), deg)) ; for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* print row k of U */ /* ------------------------------------------------------------------ */ /* if prl is 3, print the first 10 entries of the first 10 columns */ if (k1 > 0) { prl = prl1 ; } up = Uip [k] ; ulen = Uilen [k] ; if (ulen < 0) { return (FALSE) ; } newUchain = (up < 0) ; if (newUchain) { up = -up ; p = up + UNITS (Int, ulen) ; } else { p = up ; } xp = (Entry *) (Numeric->Memory + p) ; if (deg > 0 && (p + (Int) UNITS (Entry, deg) > Numeric->size)) { return (FALSE) ; } for (j = 0 ; j < deg ; j++) { col = Pattern [j] ; PRINTF4 (("\tcol "ID" :", INDEX (col))) ; if (prl >= 4) PRINT_ENTRY (*xp) ; if (col <= k || col >= n_col) { return (FALSE) ; } PRINTF4 (("\n")) ; xp++ ; /* truncate printout, but continue to check U */ if (prl == 4 && j == 9 && deg > 10) { PRINTF (("\t...\n")) ; prl-- ; } } /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (k1-- > 0) { prl = prl1 ; } else if (prl == 4) { PRINTF ((" ...\n")) ; prl-- ; } if (k > 0) { PRINTF4 (("\n row "ID": ", INDEX (k-1))) ; } if (newUchain) { /* next row is a new Uchain */ if (k > 0) { deg = ulen ; PRINTF4 (("length "ID". End of Uchain.\n", deg)) ; if (up + (Int) UNITS (Int, ulen) > Numeric->size) { return (FALSE) ; } ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { Pattern [j] = *ip++ ; } } } else { if (ulen > 0) { PRINTF4 (("remove "ID" entries. ", ulen)) ; } deg -= ulen ; if (deg < 0) { return (FALSE) ; } pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ PRINTF4 (("add column "ID" at position "ID". ", INDEX (k), INDEX (pos))) ; if (pos < 0 || pos > deg) { return (FALSE) ; } Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } PRINTF4 (("length "ID".\n", deg)) ; } } /* ---------------------------------------------------------------------- */ /* print the singleton rows of U */ /* ---------------------------------------------------------------------- */ for (k = n1 - 1 ; k >= 0 ; k--) { if (k1 > 0) { prl = prl1 ; } up = Uip [k] ; deg = Uilen [k] ; Ui = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; if (k1-- > 0) { prl = prl1 ; } else if (prl == 4) { PRINTF ((" ...\n")) ; prl-- ; } PRINTF4 (("\n row "ID":", INDEX (k))) ; PRINTF4 ((" length "ID".\n", deg)) ; for (j = 0 ; j < deg ; j++) { col = Ui [j] ; PRINTF4 (("\tcol "ID" : ", INDEX (col))) ; if (prl >= 4) PRINT_ENTRY (Uval [j]) ; if (col <= k || col >= n_col) { return (FALSE) ; } PRINTF4 (("\n")) ; /* truncate printout, but continue to check U */ if (prl == 4 && j == 9 && deg > 10) { PRINTF (("\t...\n")) ; prl-- ; } } } prl = prl1 ; PRINTF4 (("\n")) ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_valid_numeric.c0000644001170100242450000000313010677542501020135 0ustar davisfac/* ========================================================================== */ /* === UMF_valid_numeric ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Returns TRUE if the Numeric object is valid, FALSE otherwise. */ /* Does not check everything. UMFPACK_report_numeric checks more. */ #include "umf_internal.h" #include "umf_valid_numeric.h" GLOBAL Int UMF_valid_numeric ( NumericType *Numeric ) { /* This routine does not check the contents of the individual arrays, so */ /* it can miss some errors. All it checks for is the presence of the */ /* arrays, and the Numeric "valid" entry. */ if (!Numeric) { return (FALSE) ; } if (Numeric->valid != NUMERIC_VALID) { /* Numeric does not point to a NumericType object */ return (FALSE) ; } if (Numeric->n_row <= 0 || Numeric->n_col <= 0 || !Numeric->D || !Numeric->Rperm || !Numeric->Cperm || !Numeric->Lpos || !Numeric->Upos || !Numeric->Lilen || !Numeric->Uilen || !Numeric->Lip || !Numeric->Uip || !Numeric->Memory || (Numeric->ulen > 0 && !Numeric->Upattern)) { return (FALSE) ; } return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_valid_numeric.h0000644001170100242450000000072210617162515020143 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_valid_numeric ( NumericType *Numeric ) ; SuiteSparse/UMFPACK/Source/umfpack_timer.c0000644001170100242450000000546710677542720017315 0ustar davisfac/* ========================================================================== */ /* === umfpack_timer ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Returns the time in seconds used by the process. BE CAREFUL: if you compare the run time of UMFPACK with other sparse matrix packages, be sure to use the same timer. See umfpack_timer.h for details. See umfpack_tictoc.h, which is the timer used internally by UMFPACK. */ #include "umfpack_timer.h" #ifdef NO_TIMER /* -------------------------------------------------------------------------- */ /* no timer used if -DNO_TIMER is defined at compile time */ /* -------------------------------------------------------------------------- */ double umfpack_timer ( void ) { return (0) ; } #else #ifdef GETRUSAGE /* -------------------------------------------------------------------------- */ /* use getrusage for accurate process times (and no overflow) */ /* -------------------------------------------------------------------------- */ /* This works under Solaris, SGI Irix, Linux, IBM RS 6000 (AIX), and Compaq Alpha. It might work on other Unix systems, too. Includes both the "user time" and the "system time". The system time is the time spent by the operating system on behalf of the process, and thus should be charged to the process. */ #include #include double umfpack_timer ( void ) { struct rusage ru ; double user_time, sys_time ; (void) getrusage (RUSAGE_SELF, &ru) ; user_time = ru.ru_utime.tv_sec /* user time (seconds) */ + 1e-6 * ru.ru_utime.tv_usec ; /* user time (microseconds) */ sys_time = ru.ru_stime.tv_sec /* system time (seconds) */ + 1e-6 * ru.ru_stime.tv_usec ; /* system time (microseconds) */ return (user_time + sys_time) ; } #else /* -------------------------------------------------------------------------- */ /* Generic ANSI C: use the ANSI clock function */ /* -------------------------------------------------------------------------- */ /* This is portable, but may overflow. On Sun Solaris, when compiling in */ /* 32-bit mode, the overflow occurs in only 2147 seconds (about 36 minutes). */ #include double umfpack_timer ( void ) { return (((double) (clock ( ))) / ((double) (CLOCKS_PER_SEC))) ; } #endif #endif SuiteSparse/UMFPACK/Source/umfpack_transpose.c0000644001170100242450000000705410617162204020172 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_transpose ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User callable. Computes a permuted transpose, R = (A (P,Q))' in MATLAB notation. See umfpack_transpose.h for details. A and R can be rectangular. The matrix A may be singular. The complex version can do transpose (') or array transpose (.'). Dynamic memory usage: A single call to UMF_malloc is made, for a workspace of size max (n_row,n_col,1) * sizeof(Int). This is then free'd on return, via UMF_free. */ #include "umf_internal.h" #include "umf_transpose.h" #include "umf_malloc.h" #include "umf_free.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif /* ========================================================================== */ GLOBAL Int UMFPACK_transpose ( Int n_row, Int n_col, const Int Ap [ ], /* size n_col+1 */ const Int Ai [ ], /* size nz = Ap [n_col] */ const double Ax [ ], /* size nz, if present */ #ifdef COMPLEX const double Az [ ], /* size nz, if present */ #endif const Int P [ ], /* P [k] = i means original row i is kth row in A(P,Q)*/ /* P is identity if not present */ /* size n_row, if present */ const Int Q [ ], /* Q [k] = j means original col j is kth col in A(P,Q)*/ /* Q is identity if not present */ /* size n_col, if present */ Int Rp [ ], /* size n_row+1 */ Int Ri [ ], /* size nz */ double Rx [ ] /* size nz, if present */ #ifdef COMPLEX , double Rz [ ] /* size nz, if present */ , Int do_conjugate /* if true, then to conjugate transpose */ /* otherwise, do array transpose */ #endif ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int status, *W, nn ; #ifndef NDEBUG init_count = UMF_malloc_count ; UMF_dump_start ( ) ; #endif /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nn = MAX (n_row, n_col) ; nn = MAX (nn, 1) ; W = (Int *) UMF_malloc (nn, sizeof (Int)) ; if (!W) { DEBUGm4 (("out of memory: transpose work\n")) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 1) ; /* ---------------------------------------------------------------------- */ /* C = (A (P,Q))' or (A (P,Q)).' */ /* ---------------------------------------------------------------------- */ status = UMF_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, n_col, Rp, Ri, Rx, W, TRUE #ifdef COMPLEX , Az, Rz, do_conjugate #endif ) ; /* ---------------------------------------------------------------------- */ /* free the workspace */ /* ---------------------------------------------------------------------- */ (void) UMF_free ((void *) W) ; ASSERT (UMF_malloc_count == init_count) ; return (status) ; } SuiteSparse/UMFPACK/Source/umf_set_stats.c0000644001170100242450000001324110677542401017330 0ustar davisfac/* ========================================================================== */ /* === UMF_set_stats ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Sets statistics in Info array. Calculates everything in double precision, rather than Int or size_t, so that usage estimates can be computed even if the problem is so large that it would cause integer overflow. This routine has many double relop's, but the NaN case is ignored. */ #include "umf_internal.h" #include "umf_set_stats.h" #include "umf_symbolic_usage.h" GLOBAL void UMF_set_stats ( double Info [ ], SymbolicType *Symbolic, double max_usage, /* peak size of Numeric->Memory, in Units */ double num_mem_size, /* final size of Numeric->Memory, in Units */ double flops, /* "true flops" */ double lnz, /* nz in L */ double unz, /* nz in U */ double maxfrsize, /* largest front size */ double ulen, /* size of Numeric->Upattern */ double npiv, /* number of pivots found */ double maxnrows, /* largest #rows in front */ double maxncols, /* largest #cols in front */ Int scale, /* true if scaling the rows of A */ Int prefer_diagonal, /* true if diagonal pivoting (only square A) */ Int what /* ESTIMATE or ACTUAL */ ) { double sym_size, work_usage, nn, n_row, n_col, n_inner, num_On_size1, num_On_size2, num_usage, sym_maxncols, sym_maxnrows, elen, n1 ; n_col = Symbolic->n_col ; n_row = Symbolic->n_row ; n1 = Symbolic->n1 ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; sym_maxncols = MIN (Symbolic->maxncols + Symbolic->nb, n_col) ; sym_maxnrows = MIN (Symbolic->maxnrows + Symbolic->nb, n_row) ; elen = (n_col - n1) + (n_row - n1) + MIN (n_col - n1, n_row - n1) + 1 ; /* final Symbolic object size */ sym_size = UMF_symbolic_usage (Symbolic->n_row, Symbolic->n_col, Symbolic->nchains, Symbolic->nfr, Symbolic->esize, prefer_diagonal) ; /* size of O(n) part of Numeric object during factorization, */ /* except Numeric->Memory and Numeric->Upattern */ num_On_size1 = DUNITS (NumericType, 1) /* Numeric structure */ + DUNITS (Entry, n_inner+1) /* D */ + 4 * DUNITS (Int, n_row+1) /* Rperm, Lpos, Uilen, Uip */ + 4 * DUNITS (Int, n_col+1) /* Cperm, Upos, Lilen, Lip */ + (scale ? DUNITS (Entry, n_row) : 0) ; /* Rs, row scale factors */ /* size of O(n) part of Numeric object after factorization, */ /* except Numeric->Memory and Numeric->Upattern */ num_On_size2 = DUNITS (NumericType, 1) /* Numeric structure */ + DUNITS (Entry, n_inner+1) /* D */ + DUNITS (Int, n_row+1) /* Rperm */ + DUNITS (Int, n_col+1) /* Cperm */ + 6 * DUNITS (Int, npiv+1) /* Lpos, Uilen, Uip, Upos, Lilen, Lip */ + (scale ? DUNITS (Entry, n_row) : 0) ; /* Rs, row scale factors */ DEBUG1 (("num O(n) size2: %g\n", num_On_size2)) ; /* peak size of Numeric->Memory, including LU factors, current frontal * matrix, elements, and tuple lists. */ Info [UMFPACK_VARIABLE_PEAK + what] = max_usage ; /* final size of Numeric->Memory (LU factors only) */ Info [UMFPACK_VARIABLE_FINAL + what] = num_mem_size ; /* final size of Numeric object, including Numeric->Memory and ->Upattern */ Info [UMFPACK_NUMERIC_SIZE + what] = num_On_size2 + num_mem_size /* final Numeric->Memory size */ + DUNITS (Int, ulen+1) ;/* Numeric->Upattern (from Work->Upattern) */ DEBUG1 (("num mem size: %g\n", num_mem_size)) ; DEBUG1 (("ulen units %g\n", DUNITS (Int, ulen))) ; DEBUG1 (("numeric size %g\n", Info [UMFPACK_NUMERIC_SIZE + what])) ; /* largest front size (working array size, or actual size used) */ Info [UMFPACK_MAX_FRONT_SIZE + what] = maxfrsize ; Info [UMFPACK_MAX_FRONT_NROWS + what] = maxnrows ; Info [UMFPACK_MAX_FRONT_NCOLS + what] = maxncols ; DEBUGm4 (("maxnrows %g maxncols %g\n", maxnrows, maxncols)) ; DEBUGm4 (("maxfrsize %g\n", maxfrsize)) ; /* UMF_kernel usage, from work_alloc routine in umf_kernel.c */ work_usage = /* Work-> arrays, except for current frontal matrix which is allocated * inside Numeric->Memory. */ 2 * DUNITS (Entry, sym_maxnrows + 1) /* Wx, Wy */ + 2 * DUNITS (Int, n_row+1) /* Frpos, Lpattern */ + 2 * DUNITS (Int, n_col+1) /* Fcpos, Upattern */ + DUNITS (Int, nn + 1) /* Wp */ + DUNITS (Int, MAX (n_col, sym_maxnrows) + 1) /* Wrp */ + 2 * DUNITS (Int, sym_maxnrows + 1) /* Frows, Wm */ + 3 * DUNITS (Int, sym_maxncols + 1) /* Fcols, Wio, Woi */ + DUNITS (Int, MAX (sym_maxnrows, sym_maxncols) + 1) /* Woo */ + DUNITS (Int, elen) /* E */ + DUNITS (Int, Symbolic->nfr + 1) /* Front_new1strow */ + ((n_row == n_col) ? (2 * DUNITS (Int, nn)) : 0) ; /* Diag map,imap */ /* Peak memory for just UMFPACK_numeric. */ num_usage = sym_size /* size of Symbolic object */ + num_On_size1 /* O(n) part of Numeric object (excl. Upattern) */ + work_usage /* Work-> arrays (including Upattern) */ + max_usage ; /* peak size of Numeric->Memory */ /* peak memory usage for both UMFPACK_*symbolic and UMFPACK_numeric. */ Info [UMFPACK_PEAK_MEMORY + what] = MAX (Symbolic->peak_sym_usage, num_usage) ; Info [UMFPACK_FLOPS + what] = flops ; Info [UMFPACK_LNZ + what] = lnz ; Info [UMFPACK_UNZ + what] = unz ; } SuiteSparse/UMFPACK/Source/umf_set_stats.h0000644001170100242450000000133710617162311017330 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_set_stats ( double Info [ ], SymbolicType *Symbolic, double max_usage, double num_mem_size, double flops, double lnz, double unz, double maxfrsize, double ulen, double npiv, double maxnrows, double maxncols, Int scale, Int prefer_diagonal, Int what ) ; SuiteSparse/UMFPACK/Source/umfpack_report_status.c0000644001170100242450000000737310617162131021075 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_status ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints the return value from other UMFPACK_* routines. See umfpack_report_status.h for details. */ #include "umf_internal.h" GLOBAL void UMFPACK_report_status ( const double Control [UMFPACK_CONTROL], Int status ) { Int prl ; /* ---------------------------------------------------------------------- */ /* get control settings and status to determine what to print */ /* ---------------------------------------------------------------------- */ prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl < 1) { /* no output generated if prl is less than 1 */ return ; } if (status == UMFPACK_OK && prl <= 1) { /* no output generated if prl is 1 or less and no error occurred. */ /* note that the default printing level is 1. */ return ; } /* ---------------------------------------------------------------------- */ /* print umfpack license, copyright, version, and status condition */ /* ---------------------------------------------------------------------- */ PRINTF (("\n")) ; PRINTF4 (("%s\n", UMFPACK_COPYRIGHT)) ; PRINTF6 (("%s", UMFPACK_LICENSE_PART1)) ; PRINTF6 (("%s", UMFPACK_LICENSE_PART2)) ; PRINTF6 (("%s", UMFPACK_LICENSE_PART3)) ; PRINTF (("UMFPACK V%d.%d.%d (%s): ", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_SUBSUB_VERSION, UMFPACK_DATE)) ; switch (status) { case UMFPACK_OK: PRINTF (("OK\n")) ; break ; case UMFPACK_WARNING_singular_matrix: PRINTF (("WARNING: matrix is singular\n")) ; break ; case UMFPACK_ERROR_out_of_memory: PRINTF (("ERROR: out of memory\n")) ; break ; case UMFPACK_ERROR_invalid_Numeric_object: PRINTF (("ERROR: Numeric object is invalid\n")) ; break ; case UMFPACK_ERROR_invalid_Symbolic_object: PRINTF (("ERROR: Symbolic object is invalid\n")) ; break ; case UMFPACK_ERROR_argument_missing: PRINTF (("ERROR: required argument(s) missing\n")) ; break ; case UMFPACK_ERROR_n_nonpositive: PRINTF (("ERROR: dimension (n_row or n_col) must be > 0\n")) ; break ; case UMFPACK_ERROR_invalid_matrix: PRINTF (("ERROR: input matrix is invalid\n")) ; break ; case UMFPACK_ERROR_invalid_system: PRINTF (("ERROR: system argument invalid\n")) ; break ; case UMFPACK_ERROR_invalid_permutation: PRINTF (("ERROR: invalid permutation\n")) ; break ; case UMFPACK_ERROR_different_pattern: PRINTF (("ERROR: pattern of matrix (Ap and/or Ai) has changed\n")) ; break ; case UMFPACK_ERROR_internal_error: PRINTF (("INTERNAL ERROR!\n" "Input arguments might be corrupted or aliased, or an internal\n" "error has occurred. Check your input arguments with the\n" "umfpack_*_report_* routines before calling the umfpack_*\n" "computational routines. Recompile UMFPACK with debugging\n" "enabled, and look for failed assertions. If all else fails\n" "please report this error to Tim Davis (davis@cise.ufl.edu).\n" )) ; break ; default: PRINTF (("ERROR: Unrecognized error code: "ID"\n", status)) ; } PRINTF (("\n")) ; } SuiteSparse/UMFPACK/Source/umf_report_perm.c0000644001170100242450000000402410677541023017653 0ustar davisfac/* ========================================================================== */ /* === UMF_report_perm ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include "umf_internal.h" #include "umf_report_perm.h" #define PRINTF4U(params) { if (user || prl >= 4) PRINTF (params) ; } GLOBAL Int UMF_report_perm ( Int n, const Int P [ ], Int W [ ], /* workspace of size n */ Int prl, Int user ) { Int i, k, valid, prl1 ; ASSERT (prl >= 3) ; PRINTF4U (("permutation vector, n = "ID". ", n)) ; if (n <= 0) { PRINTF (("ERROR: length of permutation is <= 0\n\n")) ; return (UMFPACK_ERROR_n_nonpositive) ; } if (!P) { /* if P is (Int *) NULL, this is the identity permutation */ PRINTF (("(not present)\n\n")) ; return (UMFPACK_OK) ; } if (!W) { PRINTF (("ERROR: out of memory\n\n")) ; return (UMFPACK_ERROR_out_of_memory) ; } PRINTF4 (("\n")) ; for (i = 0 ; i < n ; i++) { W [i] = TRUE ; } prl1 = prl ; for (k = 0 ; k < n ; k++) { i = P [k] ; PRINTF4 ((" "ID" : "ID" ", INDEX (k), INDEX (i))) ; valid = (i >= 0 && i < n) ; if (valid) { valid = W [i] ; W [i] = FALSE ; } if (!valid) { /* out of range or duplicate entry */ PRINTF (("ERROR: invalid\n\n")) ; return (UMFPACK_ERROR_invalid_permutation) ; } PRINTF4 (("\n")) ; if (prl == 4 && k == 9 && n > 10) { PRINTF ((" ...\n")) ; prl-- ; } } prl = prl1 ; PRINTF4 ((" permutation vector ")) ; PRINTF4U (("OK\n\n")) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_report_perm.h0000644001170100242450000000100010617162226017645 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_report_perm ( Int n, const Int P [ ], Int W [ ], Int prl, Int user ) ; SuiteSparse/UMFPACK/Source/umf_kernel.c0000644001170100242450000002275210677541633016614 0ustar davisfac/* ========================================================================== */ /* === UMF_kernel =========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Primary factorization routine. Called by UMFPACK_numeric. Returns: UMFPACK_OK if successful, UMFPACK_ERROR_out_of_memory if out of memory, or UMFPACK_ERROR_different_pattern if pattern of matrix (Ap and/or Ai) has changed since the call to UMFPACK_*symbolic. */ #include "umf_internal.h" #include "umf_kernel.h" #include "umf_kernel_init.h" #include "umf_init_front.h" #include "umf_start_front.h" #include "umf_assemble.h" #include "umf_scale_column.h" #include "umf_local_search.h" #include "umf_create_element.h" #include "umf_extend_front.h" #include "umf_blas3_update.h" #include "umf_store_lu.h" #include "umf_kernel_wrapup.h" /* perform an action, and return if out of memory */ #define DO(action) { if (! (action)) { return (UMFPACK_ERROR_out_of_memory) ; }} GLOBAL Int UMF_kernel ( const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int j, f1, f2, chain, nchains, *Chain_start, status, fixQ, evaporate, *Front_npivcol, jmax, nb, drop ; /* ---------------------------------------------------------------------- */ /* initialize memory space and load the matrix. Optionally scale. */ /* ---------------------------------------------------------------------- */ if (!UMF_kernel_init (Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Numeric, Work, Symbolic)) { /* UMF_kernel_init is guaranteed to succeed, since UMFPACK_numeric */ /* either allocates enough space or if not, UMF_kernel does not get */ /* called. So running out of memory here is a fatal error, and means */ /* that the user changed Ap and/or Ai since the call to */ /* UMFPACK_*symbolic. */ DEBUGm4 (("kernel init failed\n")) ; return (UMFPACK_ERROR_different_pattern) ; } /* ---------------------------------------------------------------------- */ /* get the symbolic factorization */ /* ---------------------------------------------------------------------- */ nchains = Symbolic->nchains ; Chain_start = Symbolic->Chain_start ; Front_npivcol = Symbolic->Front_npivcol ; nb = Symbolic->nb ; fixQ = Symbolic->fixQ ; drop = Numeric->droptol > 0.0 ; #ifndef NDEBUG for (chain = 0 ; chain < nchains ; chain++) { Int i ; f1 = Chain_start [chain] ; f2 = Chain_start [chain+1] - 1 ; DEBUG1 (("\nCHain: "ID" start "ID" end "ID"\n", chain, f1, f2)) ; for (i = f1 ; i <= f2 ; i++) { DEBUG1 (("Front "ID", npivcol "ID"\n", i, Front_npivcol [i])) ; } } #endif /* ---------------------------------------------------------------------- */ /* factorize each chain of frontal matrices */ /* ---------------------------------------------------------------------- */ for (chain = 0 ; chain < nchains ; chain++) { f1 = Chain_start [chain] ; f2 = Chain_start [chain+1] - 1 ; /* ------------------------------------------------------------------ */ /* get the initial frontal matrix size for this chain */ /* ------------------------------------------------------------------ */ DO (UMF_start_front (chain, Numeric, Work, Symbolic)) ; /* ------------------------------------------------------------------ */ /* factorize each front in the chain */ /* ------------------------------------------------------------------ */ for (Work->frontid = f1 ; Work->frontid <= f2 ; Work->frontid++) { /* -------------------------------------------------------------- */ /* Initialize the pivot column candidate set */ /* -------------------------------------------------------------- */ Work->ncand = Front_npivcol [Work->frontid] ; Work->lo = Work->nextcand ; Work->hi = Work->nextcand + Work->ncand - 1 ; jmax = MIN (MAX_CANDIDATES, Work->ncand) ; DEBUGm1 ((">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Starting front " ID", npivcol: "ID"\n", Work->frontid, Work->ncand)) ; if (fixQ) { /* do not modify the column order */ jmax = 1 ; } DEBUGm1 (("Initial candidates: ")) ; for (j = 0 ; j < jmax ; j++) { DEBUGm1 ((" "ID, Work->nextcand)) ; ASSERT (Work->nextcand <= Work->hi) ; Work->Candidates [j] = Work->nextcand++ ; } Work->nCandidates = jmax ; DEBUGm1 (("\n")) ; /* -------------------------------------------------------------- */ /* Assemble and factorize the current frontal matrix */ /* -------------------------------------------------------------- */ while (Work->ncand > 0) { /* ---------------------------------------------------------- */ /* get the pivot row and column */ /* ---------------------------------------------------------- */ status = UMF_local_search (Numeric, Work, Symbolic) ; if (status == UMFPACK_ERROR_different_pattern) { /* :: pattern change detected in umf_local_search :: */ /* input matrix has changed since umfpack_*symbolic */ DEBUGm4 (("local search failed\n")) ; return (UMFPACK_ERROR_different_pattern) ; } if (status == UMFPACK_WARNING_singular_matrix) { /* no pivot found, discard and try again */ continue ; } /* ---------------------------------------------------------- */ /* update if front not extended or too many zeros in L,U */ /* ---------------------------------------------------------- */ if (Work->do_update) { UMF_blas3_update (Work) ; if (drop) { DO (UMF_store_lu_drop (Numeric, Work)) ; } else { DO (UMF_store_lu (Numeric, Work)) ; } } /* ---------------------------------------------------------- */ /* extend the frontal matrix, or start a new one */ /* ---------------------------------------------------------- */ if (Work->do_extend) { /* extend the current front */ DO (UMF_extend_front (Numeric, Work)) ; } else { /* finish the current front (if any) and start a new one */ DO (UMF_create_element (Numeric, Work, Symbolic)) ; DO (UMF_init_front (Numeric, Work)) ; } /* ---------------------------------------------------------- */ /* Numerical & symbolic assembly into current frontal matrix */ /* ---------------------------------------------------------- */ if (fixQ) { UMF_assemble_fixq (Numeric, Work) ; } else { UMF_assemble (Numeric, Work) ; } /* ---------------------------------------------------------- */ /* scale the pivot column */ /* ---------------------------------------------------------- */ UMF_scale_column (Numeric, Work) ; /* ---------------------------------------------------------- */ /* Numerical update if enough pivots accumulated */ /* ---------------------------------------------------------- */ evaporate = Work->fnrows == 0 || Work->fncols == 0 ; if (Work->fnpiv >= nb || evaporate) { UMF_blas3_update (Work) ; if (drop) { DO (UMF_store_lu_drop (Numeric, Work)) ; } else { DO (UMF_store_lu (Numeric, Work)) ; } } Work->pivrow_in_front = FALSE ; Work->pivcol_in_front = FALSE ; /* ---------------------------------------------------------- */ /* If front is empty, evaporate it */ /* ---------------------------------------------------------- */ if (evaporate) { /* This does not create an element, just evaporates it. * It ensures that a front is not 0-by-c or r-by-0. No * memory is allocated, so it is guaranteed to succeed. */ (void) UMF_create_element (Numeric, Work, Symbolic) ; Work->fnrows = 0 ; Work->fncols = 0 ; } } } /* ------------------------------------------------------------------ * Wrapup the current frontal matrix. This is the last in a chain * in the column elimination tree. The next frontal matrix * cannot overlap with the current one, which will be its sibling * in the column etree. * ------------------------------------------------------------------ */ UMF_blas3_update (Work) ; if (drop) { DO (UMF_store_lu_drop (Numeric, Work)) ; } else { DO (UMF_store_lu (Numeric, Work)) ; } Work->fnrows_new = Work->fnrows ; Work->fncols_new = Work->fncols ; DO (UMF_create_element (Numeric, Work, Symbolic)) ; /* ------------------------------------------------------------------ */ /* current front is now empty */ /* ------------------------------------------------------------------ */ Work->fnrows = 0 ; Work->fncols = 0 ; } /* ---------------------------------------------------------------------- */ /* end the last Lchain and Uchain and finalize the LU factors */ /* ---------------------------------------------------------------------- */ UMF_kernel_wrapup (Numeric, Symbolic, Work) ; /* note that the matrix may be singular (this is OK) */ return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_kernel.h0000644001170100242450000000115710617161654016610 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_kernel ( const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umf_triplet.c0000644001170100242450000002306010677541202017000 0ustar davisfac/* ========================================================================== */ /* === UMF_triplet ========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Not user callable. Converts triplet input to column-oriented form. Duplicate entries may exist (they are summed in the output). The columns of the column-oriented form are in sorted order. The input is not modified. Returns 1 if OK, 0 if an error occurred. Compiled into four different routines for each version (di, dl, zi, zl), for a total of 16 different routines. */ #include "umf_internal.h" #include "umf_triplet.h" #ifdef DO_MAP #ifdef DO_VALUES GLOBAL Int UMF_triplet_map_x #else GLOBAL Int UMF_triplet_map_nox #endif #else #ifdef DO_VALUES GLOBAL Int UMF_triplet_nomap_x #else GLOBAL Int UMF_triplet_nomap_nox #endif #endif ( Int n_row, Int n_col, Int nz, const Int Ti [ ], /* size nz */ const Int Tj [ ], /* size nz */ Int Ap [ ], /* size n_col + 1 */ Int Ai [ ], /* size nz */ Int Rp [ ], /* size n_row + 1 */ Int Rj [ ], /* size nz */ Int W [ ], /* size max (n_row, n_col) */ Int RowCount [ ] /* size n_row */ #ifdef DO_VALUES , const double Tx [ ] /* size nz */ , double Ax [ ] /* size nz */ , double Rx [ ] /* size nz */ #ifdef COMPLEX , const double Tz [ ] /* size nz */ , double Az [ ] /* size nz */ , double Rz [ ] /* size nz */ #endif #endif #ifdef DO_MAP , Int Map [ ] /* size nz */ , Int Map2 [ ] /* size nz */ #endif ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int i, j, k, p, cp, p1, p2, pdest, pj ; #ifdef DO_MAP Int duplicates ; #endif #ifdef DO_VALUES #ifdef COMPLEX Int split = SPLIT (Tz) && SPLIT (Az) && SPLIT (Rz) ; #endif #endif /* ---------------------------------------------------------------------- */ /* count the entries in each row (also counting duplicates) */ /* ---------------------------------------------------------------------- */ /* use W as workspace for row counts (including duplicates) */ for (i = 0 ; i < n_row ; i++) { W [i] = 0 ; } for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i < 0 || i >= n_row || j < 0 || j >= n_col) { return (UMFPACK_ERROR_invalid_matrix) ; } W [i]++ ; #ifndef NDEBUG DEBUG1 ((ID " triplet: "ID" "ID" ", k, i, j)) ; #ifdef DO_VALUES { Entry tt ; ASSIGN (tt, Tx, Tz, k, split) ; EDEBUG2 (tt) ; DEBUG1 (("\n")) ; } #endif #endif } /* ---------------------------------------------------------------------- */ /* compute the row pointers */ /* ---------------------------------------------------------------------- */ Rp [0] = 0 ; for (i = 0 ; i < n_row ; i++) { Rp [i+1] = Rp [i] + W [i] ; W [i] = Rp [i] ; } /* W is now equal to the row pointers */ /* ---------------------------------------------------------------------- */ /* construct the row form */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < nz ; k++) { p = W [Ti [k]]++ ; #ifdef DO_MAP Map [k] = p ; #endif Rj [p] = Tj [k] ; #ifdef DO_VALUES #ifdef COMPLEX if (split) { Rx [p] = Tx [k] ; Rz [p] = Tz [k] ; } else { Rx [2*p ] = Tx [2*k ] ; Rx [2*p+1] = Tx [2*k+1] ; } #else Rx [p] = Tx [k] ; #endif #endif } /* Rp stays the same, but W [i] is advanced to the start of row i+1 */ #ifndef NDEBUG for (i = 0 ; i < n_row ; i++) { ASSERT (W [i] == Rp [i+1]) ; } #ifdef DO_MAP for (k = 0 ; k < nz ; k++) { /* make sure that kth triplet is mapped correctly */ p = Map [k] ; DEBUG1 (("First row map: Map ["ID"] = "ID"\n", k, p)) ; i = Ti [k] ; j = Tj [k] ; ASSERT (j == Rj [p]) ; ASSERT (Rp [i] <= p && p < Rp [i+1]) ; } #endif #endif /* ---------------------------------------------------------------------- */ /* sum up duplicates */ /* ---------------------------------------------------------------------- */ /* use W [j] to hold position in Ri/Rx/Rz of a_ij, for row i [ */ for (j = 0 ; j < n_col ; j++) { W [j] = EMPTY ; } #ifdef DO_MAP duplicates = FALSE ; #endif for (i = 0 ; i < n_row ; i++) { p1 = Rp [i] ; p2 = Rp [i+1] ; pdest = p1 ; /* At this point, W [j] < p1 holds true for all columns j, */ /* because Ri/Rx/Rz is stored in row oriented order. */ #ifndef NDEBUG if (UMF_debug >= -2) { for (j = 0 ; j < n_col ; j++) { ASSERT (W [j] < p1) ; } } #endif for (p = p1 ; p < p2 ; p++) { j = Rj [p] ; ASSERT (j >= 0 && j < n_col) ; pj = W [j] ; if (pj >= p1) { /* this column index, j, is already in row i, at position pj */ ASSERT (pj < p) ; ASSERT (Rj [pj] == j) ; #ifdef DO_MAP Map2 [p] = pj ; duplicates = TRUE ; #endif #ifdef DO_VALUES /* sum the entry */ #ifdef COMPLEX if (split) { Rx [pj] += Rx [p] ; Rz [pj] += Rz [p] ; } else { Rx[2*pj ] += Rx[2*p ] ; Rx[2*pj+1] += Rx[2*p+1] ; } #else Rx [pj] += Rx [p] ; #endif #endif } else { /* keep the entry */ /* also keep track in W[j] of position of a_ij for case above */ W [j] = pdest ; #ifdef DO_MAP Map2 [p] = pdest ; #endif /* no need to move the entry if pdest is equal to p */ if (pdest != p) { Rj [pdest] = j ; #ifdef DO_VALUES #ifdef COMPLEX if (split) { Rx [pdest] = Rx [p] ; Rz [pdest] = Rz [p] ; } else { Rx [2*pdest ] = Rx [2*p ] ; Rx [2*pdest+1] = Rx [2*p+1] ; } #else Rx [pdest] = Rx [p] ; #endif #endif } pdest++ ; } } RowCount [i] = pdest - p1 ; } /* done using W for position of a_ij ] */ /* ---------------------------------------------------------------------- */ /* merge Map and Map2 into a single Map */ /* ---------------------------------------------------------------------- */ #ifdef DO_MAP if (duplicates) { for (k = 0 ; k < nz ; k++) { Map [k] = Map2 [Map [k]] ; } } #ifndef NDEBUG else { /* no duplicates, so no need to recompute Map */ for (k = 0 ; k < nz ; k++) { ASSERT (Map2 [k] == k) ; } } for (k = 0 ; k < nz ; k++) { /* make sure that kth triplet is mapped correctly */ p = Map [k] ; DEBUG1 (("Second row map: Map ["ID"] = "ID"\n", k, p)) ; i = Ti [k] ; j = Tj [k] ; ASSERT (j == Rj [p]) ; ASSERT (Rp [i] <= p && p < Rp [i+1]) ; } #endif #endif /* now the kth triplet maps to p = Map [k], and thus to Rj/Rx [p] */ /* ---------------------------------------------------------------------- */ /* count the entries in each column */ /* ---------------------------------------------------------------------- */ /* [ use W as work space for column counts of A */ for (j = 0 ; j < n_col ; j++) { W [j] = 0 ; } for (i = 0 ; i < n_row ; i++) { for (p = Rp [i] ; p < Rp [i] + RowCount [i] ; p++) { j = Rj [p] ; ASSERT (j >= 0 && j < n_col) ; W [j]++ ; } } /* ---------------------------------------------------------------------- */ /* create the column pointers */ /* ---------------------------------------------------------------------- */ Ap [0] = 0 ; for (j = 0 ; j < n_col ; j++) { Ap [j+1] = Ap [j] + W [j] ; } /* done using W as workspace for column counts of A ] */ for (j = 0 ; j < n_col ; j++) { W [j] = Ap [j] ; } /* ---------------------------------------------------------------------- */ /* construct the column form */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < n_row ; i++) { for (p = Rp [i] ; p < Rp [i] + RowCount [i] ; p++) { cp = W [Rj [p]]++ ; #ifdef DO_MAP Map2 [p] = cp ; #endif Ai [cp] = i ; #ifdef DO_VALUES #ifdef COMPLEX if (split) { Ax [cp] = Rx [p] ; Az [cp] = Rz [p] ; } else { Ax [2*cp ] = Rx [2*p ] ; Ax [2*cp+1] = Rx [2*p+1] ; } #else Ax [cp] = Rx [p] ; #endif #endif } } /* ---------------------------------------------------------------------- */ /* merge Map and Map2 into a single Map */ /* ---------------------------------------------------------------------- */ #ifdef DO_MAP for (k = 0 ; k < nz ; k++) { Map [k] = Map2 [Map [k]] ; } #endif /* now the kth triplet maps to p = Map [k], and thus to Ai/Ax [p] */ #ifndef NDEBUG for (j = 0 ; j < n_col ; j++) { ASSERT (W [j] == Ap [j+1]) ; } UMF_dump_col_matrix ( #ifdef DO_VALUES Ax, #ifdef COMPLEX Az, #endif #else (double *) NULL, #ifdef COMPLEX (double *) NULL, #endif #endif Ai, Ap, n_row, n_col, nz) ; #ifdef DO_MAP for (k = 0 ; k < nz ; k++) { /* make sure that kth triplet is mapped correctly */ p = Map [k] ; DEBUG1 (("Col map: Map ["ID"] = "ID"\t", k, p)) ; i = Ti [k] ; j = Tj [k] ; ASSERT (i == Ai [p]) ; DEBUG1 ((" i "ID" j "ID" Ap[j] "ID" p "ID" Ap[j+1] "ID"\n", i, j, Ap [j], p, Ap [j+1])) ; ASSERT (Ap [j] <= p && p < Ap [j+1]) ; } #endif #endif return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_triplet.h0000644001170100242450000000322310617162461017004 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_triplet_map_x ( Int n_row, Int n_col, Int nz, const Int Ti [ ], const Int Tj [ ], Int Ap [ ], Int Ai [ ], Int Rp [ ], Int Rj [ ], Int W [ ], Int RowCount [ ] , const double Tx [ ] , double Ax [ ] , double Rx [ ] #ifdef COMPLEX , const double Tz [ ] , double Az [ ] , double Rz [ ] #endif , Int Map [ ] , Int Map2 [ ] ) ; GLOBAL Int UMF_triplet_map_nox ( Int n_row, Int n_col, Int nz, const Int Ti [ ], const Int Tj [ ], Int Ap [ ], Int Ai [ ], Int Rp [ ], Int Rj [ ], Int W [ ], Int RowCount [ ] , Int Map [ ] , Int Map2 [ ] ) ; GLOBAL Int UMF_triplet_nomap_x ( Int n_row, Int n_col, Int nz, const Int Ti [ ], const Int Tj [ ], Int Ap [ ], Int Ai [ ], Int Rp [ ], Int Rj [ ], Int W [ ], Int RowCount [ ] , const double Tx [ ] , double Ax [ ] , double Rx [ ] #ifdef COMPLEX , const double Tz [ ] , double Az [ ] , double Rz [ ] #endif ) ; GLOBAL Int UMF_triplet_nomap_nox ( Int n_row, Int n_col, Int nz, const Int Ti [ ], const Int Tj [ ], Int Ap [ ], Int Ai [ ], Int Rp [ ], Int Rj [ ], Int W [ ], Int RowCount [ ] ) ; SuiteSparse/UMFPACK/Source/umf_ltsolve.c0000644001170100242450000001442510677541701017016 0ustar davisfac/* ========================================================================== */ /* === UMF_ltsolve ========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Solves L'x = b or L.'x=b, where L is the lower triangular factor of a */ /* matrix. B is overwritten with the solution X. */ /* Returns the floating point operation count */ #include "umf_internal.h" #include "umf_ltsolve.h" GLOBAL double #ifdef CONJUGATE_SOLVE UMF_lhsolve /* solve L'x=b (complex conjugate transpose) */ #else UMF_ltsolve /* solve L.'x=b (array transpose) */ #endif ( NumericType *Numeric, Entry X [ ], /* b on input, solution x on output */ Int Pattern [ ] /* a work array of size n */ ) { Entry xk ; Entry *xp, *Lval ; Int k, deg, *ip, j, row, *Lpos, *Lilen, kstart, kend, *Lip, llen, lp, pos, npiv, n1, *Li ; /* ---------------------------------------------------------------------- */ if (Numeric->n_row != Numeric->n_col) return (0.) ; npiv = Numeric->npiv ; Lpos = Numeric->Lpos ; Lilen = Numeric->Lilen ; Lip = Numeric->Lip ; kstart = npiv ; n1 = Numeric->n1 ; #ifndef NDEBUG DEBUG4 (("Ltsolve start:\n")) ; for (j = 0 ; j < Numeric->n_row ; j++) { DEBUG4 (("Ltsolve start "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } #endif /* ---------------------------------------------------------------------- */ /* non-singletons */ /* ---------------------------------------------------------------------- */ for (kend = npiv-1 ; kend >= n1 ; kend = kstart-1) { /* ------------------------------------------------------------------ */ /* find the start of this Lchain */ /* ------------------------------------------------------------------ */ /* for (kstart = kend ; kstart >= 0 && Lip [kstart] > 0 ; kstart--) ; */ kstart = kend ; while (kstart >= 0 && Lip [kstart] > 0) { kstart-- ; } /* the Lchain goes from kstart to kend */ /* ------------------------------------------------------------------ */ /* scan the whole chain to find the pattern of the last column of L */ /* ------------------------------------------------------------------ */ deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; for (k = kstart ; k <= kend ; k++) { ASSERT (k >= 0 && k < npiv) ; /* -------------------------------------------------------------- */ /* make column k of L in Pattern [0..deg-1] */ /* -------------------------------------------------------------- */ /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (k != kstart) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ lp = Lip [k] ; if (k == kstart) { lp = -lp ; } ASSERT (lp > 0) ; ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k) ; Pattern [deg++] = row ; } } /* Pattern [0..deg-1] is now the pattern of column kend */ /* ------------------------------------------------------------------ */ /* solve using this chain, in reverse order */ /* ------------------------------------------------------------------ */ DEBUG4 (("Unwinding Lchain\n")) ; for (k = kend ; k >= kstart ; k--) { /* -------------------------------------------------------------- */ /* use column k of L */ /* -------------------------------------------------------------- */ ASSERT (k >= 0 && k < npiv) ; lp = Lip [k] ; if (k == kstart) { lp = -lp ; } ASSERT (lp > 0) ; llen = Lilen [k] ; xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; xk = X [k] ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; EDEBUG4 (*xp) ; DEBUG4 (("\n")) ; #ifdef CONJUGATE_SOLVE /* xk -= X [Pattern [j]] * conjugate (*xp) ; */ MULT_SUB_CONJ (xk, X [Pattern [j]], *xp) ; #else /* xk -= X [Pattern [j]] * (*xp) ; */ MULT_SUB (xk, X [Pattern [j]], *xp) ; #endif xp++ ; } X [k] = xk ; /* -------------------------------------------------------------- */ /* construct column k-1 of L */ /* -------------------------------------------------------------- */ /* un-concatenate the pattern */ deg -= llen ; /* add pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" adding row "ID" at position "ID"\n", k, k, pos)) ; ASSERT (k != kstart) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* ---------------------------------------------------------------------- */ /* singletons */ /* ---------------------------------------------------------------------- */ for (k = n1 - 1 ; k >= 0 ; k--) { DEBUG4 (("Singleton k "ID"\n", k)) ; deg = Lilen [k] ; if (deg > 0) { xk = X [k] ; lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Li [j], k)) ; EDEBUG4 (Lval [j]) ; DEBUG4 (("\n")) ; #ifdef CONJUGATE_SOLVE /* xk -= X [Li [j]] * conjugate (Lval [j]) ; */ MULT_SUB_CONJ (xk, X [Li [j]], Lval [j]) ; #else /* xk -= X [Li [j]] * Lval [j] ; */ MULT_SUB (xk, X [Li [j]], Lval [j]) ; #endif } X [k] = xk ; } } #ifndef NDEBUG for (j = 0 ; j < Numeric->n_row ; j++) { DEBUG4 (("Ltsolve done "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } DEBUG4 (("Ltsolve done.\n")) ; #endif return (MULTSUB_FLOPS * ((double) Numeric->lnz)) ; } SuiteSparse/UMFPACK/Source/umf_ltsolve.h0000644001170100242450000000112510617161724017011 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL double UMF_ltsolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; GLOBAL double UMF_lhsolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; SuiteSparse/UMFPACK/Source/umf_create_element.c0000644001170100242450000004151010677541371020300 0ustar davisfac/* ========================================================================== */ /* === UMF_create_element =================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Factorization of a frontal matrix is complete. Create a new element for later assembly into a subsequent frontal matrix. Returns TRUE if successful, FALSE if out of memory. */ #include "umf_internal.h" #include "umf_create_element.h" #include "umf_mem_alloc_element.h" #include "umf_mem_alloc_tail_block.h" #include "umf_mem_free_tail_block.h" #include "umf_get_memory.h" /* ========================================================================== */ /* === copy_column ========================================================== */ /* ========================================================================== */ PRIVATE void copy_column (Int len, Entry *X, Entry *Y) { Int i ; #pragma ivdep for (i = 0 ; i < len ; i++) { Y [i] = X [i] ; } } /* ========================================================================== */ /* === UMF_create_element =================================================== */ /* ========================================================================== */ GLOBAL Int UMF_create_element ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int j, col, row, *Fcols, *Frows, fnrows, fncols, *Cols, len, needunits, t1, t2, size, e, i, *E, *Fcpos, *Frpos, *Rows, eloc, fnr_curr, f, got_memory, *Row_tuples, *Row_degree, *Row_tlen, *Col_tuples, max_mark, *Col_degree, *Col_tlen, nn, n_row, n_col, r2, c2, do_Fcpos ; Entry *C, *Fcol ; Element *ep ; Unit *p, *Memory ; Tuple *tp, *tp1, *tp2, tuple, *tpend ; #ifndef NDEBUG DEBUG2 (("FRONTAL WRAPUP\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ ASSERT (Work->fnpiv == 0) ; ASSERT (Work->fnzeros == 0) ; Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Col_degree = Numeric->Cperm ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; n_row = Work->n_row ; n_col = Work->n_col ; nn = MAX (n_row, n_col) ; Fcols = Work->Fcols ; Frows = Work->Frows ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Memory = Numeric->Memory ; fncols = Work->fncols ; fnrows = Work->fnrows ; tp = (Tuple *) NULL ; tp1 = (Tuple *) NULL ; tp2 = (Tuple *) NULL ; /* ---------------------------------------------------------------------- */ /* add the current frontal matrix to the degrees of each column */ /* ---------------------------------------------------------------------- */ if (!Symbolic->fixQ) { /* but only if the column ordering is not fixed */ #pragma ivdep for (j = 0 ; j < fncols ; j++) { /* add the current frontal matrix to the degree */ ASSERT (Fcols [j] >= 0 && Fcols [j] < n_col) ; Col_degree [Fcols [j]] += fnrows ; } } /* ---------------------------------------------------------------------- */ /* add the current frontal matrix to the degrees of each row */ /* ---------------------------------------------------------------------- */ #pragma ivdep for (i = 0 ; i < fnrows ; i++) { /* add the current frontal matrix to the degree */ ASSERT (Frows [i] >= 0 && Frows [i] < n_row) ; Row_degree [Frows [i]] += fncols ; } /* ---------------------------------------------------------------------- */ /* Reset the external degree counters */ /* ---------------------------------------------------------------------- */ E = Work->E ; max_mark = MAX_MARK (nn) ; if (!Work->pivcol_in_front) { /* clear the external column degrees. no more Usons of current front */ Work->cdeg0 += (nn + 1) ; if (Work->cdeg0 >= max_mark) { /* guard against integer overflow. This is very rare */ DEBUG1 (("Integer overflow, cdeg\n")) ; Work->cdeg0 = 1 ; #pragma ivdep for (e = 1 ; e <= Work->nel ; e++) { if (E [e]) { ep = (Element *) (Memory + E [e]) ; ep->cdeg = 0 ; } } } } if (!Work->pivrow_in_front) { /* clear the external row degrees. no more Lsons of current front */ Work->rdeg0 += (nn + 1) ; if (Work->rdeg0 >= max_mark) { /* guard against integer overflow. This is very rare */ DEBUG1 (("Integer overflow, rdeg\n")) ; Work->rdeg0 = 1 ; #pragma ivdep for (e = 1 ; e <= Work->nel ; e++) { if (E [e]) { ep = (Element *) (Memory + E [e]) ; ep->rdeg = 0 ; } } } } /* ---------------------------------------------------------------------- */ /* clear row/col offsets */ /* ---------------------------------------------------------------------- */ if (!Work->pivrow_in_front) { #pragma ivdep for (j = 0 ; j < fncols ; j++) { Fcpos [Fcols [j]] = EMPTY ; } } if (!Work->pivcol_in_front) { #pragma ivdep for (i = 0 ; i < fnrows ; i++) { Frpos [Frows [i]] = EMPTY ; } } if (fncols <= 0 || fnrows <= 0) { /* no element to create */ DEBUG2 (("Element evaporation\n")) ; Work->prior_element = EMPTY ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* create element for later assembly */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage collection (create)\n")); } #endif needunits = 0 ; got_memory = FALSE ; eloc = UMF_mem_alloc_element (Numeric, fnrows, fncols, &Rows, &Cols, &C, &needunits, &ep) ; /* if UMF_get_memory needs to be called */ if (Work->do_grow) { /* full compaction of current frontal matrix, since UMF_grow_front will * be called next anyway. */ r2 = fnrows ; c2 = fncols ; do_Fcpos = FALSE ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; /* recompute Fcpos if pivot row is in the front */ do_Fcpos = Work->pivrow_in_front ; } if (!eloc) { /* Do garbage collection, realloc, and try again. */ /* Compact the current front if it needs to grow anyway. */ /* Note that there are no pivot rows or columns in the current front */ DEBUGm3 (("get_memory from umf_create_element, 1\n")) ; if (!UMF_get_memory (Numeric, Work, needunits, r2, c2, do_Fcpos)) { /* :: out of memory in umf_create_element (1) :: */ DEBUGm4 (("out of memory: create element (1)\n")) ; return (FALSE) ; /* out of memory */ } got_memory = TRUE ; Memory = Numeric->Memory ; eloc = UMF_mem_alloc_element (Numeric, fnrows, fncols, &Rows, &Cols, &C, &needunits, &ep) ; ASSERT (eloc >= 0) ; if (!eloc) { /* :: out of memory in umf_create_element (2) :: */ DEBUGm4 (("out of memory: create element (2)\n")) ; return (FALSE) ; /* out of memory */ } } e = ++(Work->nel) ; /* get the name of this new frontal matrix */ Work->prior_element = e ; DEBUG8 (("wrapup e "ID" nel "ID"\n", e, Work->nel)) ; ASSERT (e > 0 && e < Work->elen) ; ASSERT (E [e] == 0) ; E [e] = eloc ; if (Work->pivcol_in_front) { /* the new element is a Uson of the next frontal matrix */ ep->cdeg = Work->cdeg0 ; } if (Work->pivrow_in_front) { /* the new element is an Lson of the next frontal matrix */ ep->rdeg = Work->rdeg0 ; } /* ---------------------------------------------------------------------- */ /* copy frontal matrix into the new element */ /* ---------------------------------------------------------------------- */ #pragma ivdep for (i = 0 ; i < fnrows ; i++) { Rows [i] = Frows [i] ; } #pragma ivdep for (i = 0 ; i < fncols ; i++) { Cols [i] = Fcols [i] ; } Fcol = Work->Fcblock ; DEBUG0 (("copy front "ID" by "ID"\n", fnrows, fncols)) ; fnr_curr = Work->fnr_curr ; ASSERT (fnr_curr >= 0 && fnr_curr % 2 == 1) ; for (j = 0 ; j < fncols ; j++) { copy_column (fnrows, Fcol, C) ; Fcol += fnr_curr ; C += fnrows ; } DEBUG8 (("element copied\n")) ; /* ---------------------------------------------------------------------- */ /* add tuples for the new element */ /* ---------------------------------------------------------------------- */ tuple.e = e ; if (got_memory) { /* ------------------------------------------------------------------ */ /* UMF_get_memory ensures enough space exists for each new tuple */ /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each column */ for (tuple.f = 0 ; tuple.f < fncols ; tuple.f++) { col = Fcols [tuple.f] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; ASSERT (Col_tuples [col]) ; tp = ((Tuple *) (Memory + Col_tuples [col])) + Col_tlen [col]++ ; *tp = tuple ; } /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each row */ for (tuple.f = 0 ; tuple.f < fnrows ; tuple.f++) { row = Frows [tuple.f] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (NON_PIVOTAL_ROW (row)) ; ASSERT (Row_tuples [row]) ; tp = ((Tuple *) (Memory + Row_tuples [row])) + Row_tlen [row]++ ; *tp = tuple ; } } else { /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each column */ /* ------------------------------------------------------------------ */ /* might not have enough space for each tuple */ for (tuple.f = 0 ; tuple.f < fncols ; tuple.f++) { col = Fcols [tuple.f] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; t1 = Col_tuples [col] ; DEBUG1 (("Placing on col:"ID" , tuples at "ID"\n", col, Col_tuples [col])) ; size = 0 ; len = 0 ; if (t1) { p = Memory + t1 ; tp = (Tuple *) p ; size = GET_BLOCK_SIZE (p) ; len = Col_tlen [col] ; tp2 = tp + len ; } needunits = UNITS (Tuple, len + 1) ; DEBUG1 (("len: "ID" size: "ID" needunits: "ID"\n", len, size, needunits)); if (needunits > size && t1) { /* prune the tuples */ tp1 = tp ; tp2 = tp ; tpend = tp + len ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ; if (Cols [f] == EMPTY) continue ; /* already assembled */ ASSERT (col == Cols [f]) ; *tp2++ = *tp ; /* leave the tuple in the list */ } len = tp2 - tp1 ; Col_tlen [col] = len ; needunits = UNITS (Tuple, len + 1) ; } if (needunits > size) { /* no room exists - reallocate elsewhere */ DEBUG1 (("REALLOCATE Col: "ID", size "ID" to "ID"\n", col, size, 2*needunits)) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) /* a double relop, but ignore NaN case */ { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG1 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random gar. (col tuple)\n")) ; } #endif needunits = MIN (2*needunits, (Int) UNITS (Tuple, nn)) ; t2 = UMF_mem_alloc_tail_block (Numeric, needunits) ; if (!t2) { /* :: get memory in umf_create_element (1) :: */ /* get memory, reconstruct all tuple lists, and return */ /* Compact the current front if it needs to grow anyway. */ /* Note: no pivot rows or columns in the current front */ DEBUGm4 (("get_memory from umf_create_element, 1\n")) ; return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); } Col_tuples [col] = t2 ; tp2 = (Tuple *) (Memory + t2) ; if (t1) { for (i = 0 ; i < len ; i++) { *tp2++ = *tp1++ ; } UMF_mem_free_tail_block (Numeric, t1) ; } } /* place the new (e,f) tuple in the element list of the column */ Col_tlen [col]++ ; *tp2 = tuple ; } /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each row */ /* ------------------------------------------------------------------ */ for (tuple.f = 0 ; tuple.f < fnrows ; tuple.f++) { row = Frows [tuple.f] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (NON_PIVOTAL_ROW (row)) ; t1 = Row_tuples [row] ; DEBUG1 (("Placing on row:"ID" , tuples at "ID"\n", row, Row_tuples [row])) ; size = 0 ; len = 0 ; if (t1) { p = Memory + t1 ; tp = (Tuple *) p ; size = GET_BLOCK_SIZE (p) ; len = Row_tlen [row] ; tp2 = tp + len ; } needunits = UNITS (Tuple, len + 1) ; DEBUG1 (("len: "ID" size: "ID" needunits: "ID"\n", len, size, needunits)) ; if (needunits > size && t1) { /* prune the tuples */ tp1 = tp ; tp2 = tp ; tpend = tp + len ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; Rows = Cols + (ep->ncols) ; if (Rows [f] == EMPTY) continue ; /* already assembled */ ASSERT (row == Rows [f]) ; *tp2++ = *tp ; /* leave the tuple in the list */ } len = tp2 - tp1 ; Row_tlen [row] = len ; needunits = UNITS (Tuple, len + 1) ; } if (needunits > size) { /* no room exists - reallocate elsewhere */ DEBUG1 (("REALLOCATE Row: "ID", size "ID" to "ID"\n", row, size, 2*needunits)) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) /* a double relop, but ignore NaN case */ { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG1 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random gar. (row tuple)\n")) ; } #endif needunits = MIN (2*needunits, (Int) UNITS (Tuple, nn)) ; t2 = UMF_mem_alloc_tail_block (Numeric, needunits) ; if (!t2) { /* :: get memory in umf_create_element (2) :: */ /* get memory, reconstruct all tuple lists, and return */ /* Compact the current front if it needs to grow anyway. */ /* Note: no pivot rows or columns in the current front */ DEBUGm4 (("get_memory from umf_create_element, 2\n")) ; return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); } Row_tuples [row] = t2 ; tp2 = (Tuple *) (Memory + t2) ; if (t1) { for (i = 0 ; i < len ; i++) { *tp2++ = *tp1++ ; } UMF_mem_free_tail_block (Numeric, t1) ; } } /* place the new (e,f) tuple in the element list of the row */ Row_tlen [row]++ ; *tp2 = tuple ; } } /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG1 (("Done extending\nFINAL: element row pattern: len="ID"\n", fncols)); for (j = 0 ; j < fncols ; j++) DEBUG1 ((""ID"\n", Fcols [j])) ; DEBUG1 (("FINAL: element col pattern: len="ID"\n", fnrows)) ; for (j = 0 ; j < fnrows ; j++) DEBUG1 ((""ID"\n", Frows [j])) ; for (j = 0 ; j < fncols ; j++) { col = Fcols [j] ; ASSERT (col >= 0 && col < n_col) ; UMF_dump_rowcol (1, Numeric, Work, col, !Symbolic->fixQ) ; } for (j = 0 ; j < fnrows ; j++) { row = Frows [j] ; ASSERT (row >= 0 && row < n_row) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; } if (n_row < 1000 && n_col < 1000) { UMF_dump_memory (Numeric) ; } DEBUG1 (("New element, after filling with stuff: "ID"\n", e)) ; UMF_dump_element (Numeric, Work, e, TRUE) ; if (nn < 1000) { DEBUG4 (("Matrix dump, after New element: "ID"\n", e)) ; UMF_dump_matrix (Numeric, Work, TRUE) ; } DEBUG3 (("FRONTAL WRAPUP DONE\n")) ; #endif return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_create_element.h0000644001170100242450000000100310617161531020264 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_create_element ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umf_garbage_collection.c0000644001170100242450000005143510677541430021132 0ustar davisfac/* ========================================================================== */ /* === UMF_garbage_collection =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Compress the elements at the tail of Numeric->Memory, and delete the tuples. Elements are renumbered. The new numbering space is compressed, and in the order of element creation (original elements of A first, followed by the new elements in the order that they were formed). Only called by UMF_get_memory. There are 5 ways in which garbage collection can be performed: Allocate a new working array for the current frontal matrix. In this case, there are never any pivot rows/columns in the current frontal matrix (fnpiv = 0), and the old working array for the current frontal matrix can always be fully compacted, to fnrows-by-fncols. UMF_kernel : UMF_extend : UMF_grow_front : UMF_get_memory UMF_kernel : UMF_init_front : UMF_grow_front : UMF_get_memory UMF_kernel : UMF_start_front : UMF_grow_front : UMF_get_memory Allocate a new element. In this case, UMF_grow_front may or may not be subsequently called, depending on Work->do_grow. There are never any pivot rows/columns in the current frontal matrix (fnpiv=0), but one may be added if UMF_init_front is to be called just after UMF_create_element. If do_grow is true, then the current front can be fully compacted, to fnrows-by-fncols. Otherwise, it can only be partially compacted, to MAX (fnrows, fnrows_new + 1) -by- MAX (fncols, fncols_new + 1). UMF_kernel : UMF_create_element : UMF_get_memory Allocate rows of L and columns of U. In this case, the current frontal matrix is only partially compacted, to (fnrows_new + 1)-by- (fncols_new + 1). There are pivots in the frontal matrix (fnpiv > 0). UMF_kernel : UMF_store_lu : UMF_get_memory */ #include "umf_internal.h" #include "umf_garbage_collection.h" GLOBAL void UMF_garbage_collection ( NumericType *Numeric, WorkType *Work, Int drnew, /* compact current front to drnew-by-dcnew */ Int dcnew, Int do_Fcpos ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int size, e, n_row, n_col, nrows, ncols, nrowsleft, ncolsleft, prevsize, csize, size2, i2, j2, i, j, cdeg, rdeg, *E, row, col, *Rows, *Cols, *Rows2, *Cols2, nel, e2, *Row_tuples, *Col_tuples, *Row_degree, *Col_degree ; Entry *C, *C1, *C3, *C2 ; Unit *psrc, *pdest, *p, *pnext ; Element *epsrc, *epdest ; #ifndef NDEBUG Int nmark ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ Row_tuples = Numeric->Uip ; Col_tuples = Numeric->Lip ; E = Work->E ; n_row = Work->n_row ; n_col = Work->n_col ; /* note that the tuple lengths (Col_tlen and Row_tlen) are updated, but */ /* the tuple lists themselves are stale and are about to be destroyed */ /* and recreated. Do not attempt to scan them until they are recreated. */ #ifndef NDEBUG DEBUGm1 (("::::GARBAGE COLLECTION::::\n")) ; UMF_dump_memory (Numeric) ; #endif Numeric->ngarbage++ ; /* ---------------------------------------------------------------------- */ /* delete the tuple lists by marking the blocks as free */ /* ---------------------------------------------------------------------- */ /* do not modify Row_tlen and Col_tlen */ /* those are needed for UMF_build_tuples */ for (row = 0 ; row < n_row ; row++) { if (NON_PIVOTAL_ROW (row) && Row_tuples [row]) { DEBUG2 (("row "ID" tuples "ID"\n", row, Row_tuples [row])) ; p = Numeric->Memory + Row_tuples [row] - 1 ; DEBUG2 (("Freeing tuple list row "ID", p-S "ID", size "ID"\n", row, (Int) (p-Numeric->Memory), p->header.size)) ; ASSERT (p->header.size > 0) ; ASSERT (p >= Numeric->Memory + Numeric->itail) ; ASSERT (p < Numeric->Memory + Numeric->size) ; p->header.size = -p->header.size ; Row_tuples [row] = 0 ; } } for (col = 0 ; col < n_col ; col++) { if (NON_PIVOTAL_COL (col) && Col_tuples [col]) { DEBUG2 (("col "ID" tuples "ID"\n", col, Col_tuples [col])) ; p = Numeric->Memory + Col_tuples [col] - 1 ; DEBUG2 (("Freeing tuple list col "ID", p-S "ID", size "ID"\n", col, (Int) (p-Numeric->Memory), p->header.size)) ; ASSERT (p->header.size > 0) ; ASSERT (p >= Numeric->Memory + Numeric->itail) ; ASSERT (p < Numeric->Memory + Numeric->size) ; p->header.size = -p->header.size ; Col_tuples [col] = 0 ; } } /* ---------------------------------------------------------------------- */ /* mark the elements, and compress the name space */ /* ---------------------------------------------------------------------- */ nel = Work->nel ; ASSERT (nel < Work->elen) ; #ifndef NDEBUG nmark = 0 ; UMF_dump_current_front (Numeric, Work, FALSE) ; DEBUGm1 (("E [0] "ID" \n", E [0])) ; ASSERT (IMPLIES (E [0], Work->Flublock == (Entry *) (Numeric->Memory + E [0]))) ; ASSERT (IMPLIES (Work->Flublock, Work->Flublock == (Entry *) (Numeric->Memory + E [0]))) ; ASSERT ((E [0] != 0) == (Work->Flublock != (Entry *) NULL)) ; #endif e2 = 0 ; for (e = 0 ; e <= nel ; e++) /* for all elements in order of creation */ { if (E [e]) { psrc = Numeric->Memory + E [e] ; psrc-- ; /* get the header of this block */ if (e > 0) { e2++ ; /* do not renumber element zero */ } ASSERT (psrc->header.size > 0) ; psrc->header.size = e2 ; /* store the new name in the header */ #ifndef NDEBUG nmark++ ; #endif DEBUG7 ((ID":: Mark e "ID" at psrc-S "ID", new e "ID"\n", nmark, e, (Int) (psrc-Numeric->Memory), e2)) ; E [e] = 0 ; if (e == Work->prior_element) { Work->prior_element = e2 ; } } } /* all 1..e2 are now in use (element zero may or may not be in use) */ Work->nel = e2 ; nel = Work->nel ; #ifndef NDEBUG for (e = 0 ; e < Work->elen ; e++) { ASSERT (!E [e]) ; } #endif /* ---------------------------------------------------------------------- */ /* compress the elements */ /* ---------------------------------------------------------------------- */ /* point to tail marker block of size 1 + header */ psrc = Numeric->Memory + Numeric->size - 2 ; pdest = psrc ; prevsize = psrc->header.prevsize ; DEBUG7 (("Starting the compression:\n")) ; while (prevsize > 0) { /* ------------------------------------------------------------------ */ /* move up to the next element above the current header, and */ /* get the element name and size */ /* (if it is an element, the name will be positive) */ /* ------------------------------------------------------------------ */ size = prevsize ; psrc -= (size + 1) ; e = psrc->header.size ; prevsize = psrc->header.prevsize ; /* top block at tail has prevsize of 0 */ /* a free block will have a negative size, so skip it */ /* otherwise, if size >= 0, it holds the element name, not the size */ DEBUG8 (("psrc-S: "ID" prevsize: "ID" size: "ID, (Int) (psrc-Numeric->Memory), prevsize, size)) ; if (e == 0) { /* -------------------------------------------------------------- */ /* this is the current frontal matrix */ /* -------------------------------------------------------------- */ Entry *F1, *F2, *Fsrc, *Fdst ; Int c, r, k, dr, dc, gap, gap1, gap2, nb ; /* shift the frontal matrix down */ F1 = (Entry *) (psrc + 1) ; /* get the size of the current front. r and c could be zero */ k = Work->fnpiv ; dr = Work->fnr_curr ; dc = Work->fnc_curr ; r = Work->fnrows ; c = Work->fncols ; nb = Work->nb ; ASSERT ((dr >= 0 && (dr % 2) == 1) || dr == 0) ; ASSERT (drnew >= 0) ; if (drnew % 2 == 0) { /* make sure leading frontal matrix dimension is always odd */ drnew++ ; } drnew = MIN (dr, drnew) ; ASSERT ((drnew >= 0 && (drnew % 2) == 1) || drnew == 0) ; pnext = pdest ; #ifndef NDEBUG DEBUGm2 (("move front: dr "ID" dc "ID" r "ID" drnew "ID" c "ID " dcnew " ID" k "ID"\n", dr, dc, r, drnew, c, dcnew, k)) ; DEBUG7 (("\n")) ; DEBUG7 ((ID":: Move current frontal matrix from: psrc-S: "ID" \n", nmark, (Int) (psrc-Numeric->Memory))) ; nmark-- ; ASSERT (E [e] == 0) ; ASSERT (Work->Flublock == F1) ; ASSERT (Work->Flblock == Work->Flublock + nb*nb) ; ASSERT (Work->Fublock == Work->Flblock + dr*nb) ; ASSERT (Work->Fcblock == Work->Fublock + nb*dc) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Work->Fcblock, dr, r, c) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Work->Flblock, dr, r, k); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Work->Fublock, dc, c, k) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Work->Flublock, nb, k, k) ; ASSERT (r <= drnew && c <= dcnew && drnew <= dr && dcnew <= dc) ; #endif /* compact frontal matrix to drnew-by-dcnew before moving it */ /* do not compact the LU block (nb-by-nb) */ /* compact the columns of L (from dr-by-nb to drnew-by-nb) */ Fsrc = Work->Flblock ; Fdst = Work->Flblock ; ASSERT (Fdst == F1 + nb*nb) ; gap1 = dr - r ; gap2 = drnew - r ; ASSERT (gap1 >= 0) ; for (j = 0 ; j < k ; j++) { for (i = 0 ; i < r ; i++) { *Fdst++ = *Fsrc++ ; } Fsrc += gap1 ; Fdst += gap2 ; } ASSERT (Fdst == F1 + nb*nb + drnew*k) ; Fdst += drnew * (nb - k) ; /* compact the rows of U (U' from dc-by-nb to dcnew-by-nb) */ Fsrc = Work->Fublock ; ASSERT (Fdst == F1 + nb*nb + drnew*nb) ; gap1 = dc - c ; gap2 = dcnew - c ; for (i = 0 ; i < k ; i++) { for (j = 0 ; j < c ; j++) { *Fdst++ = *Fsrc++ ; } Fsrc += gap1 ; Fdst += gap2 ; } ASSERT (Fdst == F1 + nb*nb + drnew*nb + dcnew*k) ; Fdst += dcnew * (nb - k) ; /* compact the columns of C (from dr-by-dc to drnew-by-dcnew) */ Fsrc = Work->Fcblock ; ASSERT (Fdst == F1 + nb*nb + drnew*nb + nb*dcnew) ; gap1 = dr - r ; gap2 = drnew - r ; for (j = 0 ; j < c ; j++) { for (i = 0 ; i < r ; i++) { *Fdst++ = *Fsrc++ ; } Fsrc += gap1 ; Fdst += gap2 ; } ASSERT (Fdst == F1 + nb*nb + drnew*nb + nb*dcnew + drnew*c) ; /* recompute Fcpos, if necessary */ if (do_Fcpos) { Int *Fcols, *Fcpos ; Fcols = Work->Fcols ; Fcpos = Work->Fcpos ; for (j = 0 ; j < c ; j++) { col = Fcols [j] ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (Fcpos [col] == j * dr) ; Fcpos [col] = j * drnew ; } #ifndef NDEBUG { Int cnt = 0 ; for (j = 0 ; j < Work->n_col ; j++) { if (Fcpos [j] != EMPTY) cnt++ ; } DEBUGm2 (("Recompute Fcpos cnt "ID" c "ID"\n", cnt, c)) ; ASSERT (cnt == c) ; } #endif } #ifndef NDEBUG DEBUGm2 (("Compacted front, drnew "ID" dcnew "ID"\n", drnew, dcnew)) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (F1 + nb*nb + drnew*nb + nb*dcnew, drnew, r, c) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (F1 + nb*nb, drnew, r, k) ; DEBUG7 (("U block: ")) ; UMF_dump_dense (F1 + nb*nb + drnew*nb, nb, k, c) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (F1, nb, k, k) ; #endif /* Compacted dimensions of the new frontal matrix. */ Work->fnr_curr = drnew ; Work->fnc_curr = dcnew ; Work->fcurr_size = (drnew + nb) * (dcnew + nb) ; size = UNITS (Entry, Work->fcurr_size) ; /* make sure the object doesn't evaporate. The front can have * zero size (Work->fcurr_size = 0), but the size of the memory * block containing it cannot have zero size. */ size = MAX (1, size) ; /* get the destination of frontal matrix */ pnext->header.prevsize = size ; pdest -= (size + 1) ; F2 = (Entry *) (pdest + 1) ; ASSERT ((unsigned Int) psrc + 1 + size <= (unsigned Int) pnext) ; ASSERT (psrc <= pdest) ; ASSERT (F1 <= F2) ; /* move the C block first */ Fsrc = F1 + nb*nb + drnew*nb + nb*dcnew + drnew*c ; Fdst = F2 + nb*nb + drnew*nb + nb*dcnew + drnew*c ; gap = drnew - r ; for (j = c-1 ; j >= 0 ; j--) { Fsrc -= gap ; Fdst -= gap ; /* move column j of C */ for (i = r-1 ; i >= 0 ; i--) { *--Fdst = *--Fsrc ; } } ASSERT (Fsrc == F1 + nb*nb + drnew*nb + nb*dcnew) ; ASSERT (Fdst == F2 + nb*nb + drnew*nb + nb*dcnew) ; /* move the U block */ Fsrc -= dcnew * (nb - k) ; Fdst -= dcnew * (nb - k) ; ASSERT (Fsrc == F1 + nb*nb + drnew*nb + dcnew*k) ; ASSERT (Fdst == F2 + nb*nb + drnew*nb + dcnew*k) ; gap = dcnew - c ; for (i = k-1 ; i >= 0 ; i--) { Fsrc -= gap ; Fdst -= gap ; for (j = c-1 ; j >= 0 ; j--) { *--Fdst = *--Fsrc ; } } ASSERT (Fsrc == F1 + nb*nb + drnew*nb) ; ASSERT (Fdst == F2 + nb*nb + drnew*nb) ; /* move the L block */ Fsrc -= drnew * (nb - k) ; Fdst -= drnew * (nb - k) ; ASSERT (Fsrc == F1 + nb*nb + drnew*k) ; ASSERT (Fdst == F2 + nb*nb + drnew*k) ; gap = drnew - r ; for (j = k-1 ; j >= 0 ; j--) { Fsrc -= gap ; Fdst -= gap ; for (i = r-1 ; i >= 0 ; i--) { *--Fdst = *--Fsrc ; } } ASSERT (Fsrc == F1 + nb*nb) ; ASSERT (Fdst == F2 + nb*nb) ; /* move the LU block */ Fsrc -= nb * (nb - k) ; Fdst -= nb * (nb - k) ; ASSERT (Fsrc == F1 + nb*k) ; ASSERT (Fdst == F2 + nb*k) ; gap = nb - k ; for (j = k-1 ; j >= 0 ; j--) { Fsrc -= gap ; Fdst -= gap ; for (i = k-1 ; i >= 0 ; i--) { *--Fdst = *--Fsrc ; } } ASSERT (Fsrc == F1) ; ASSERT (Fdst == F2) ; E [0] = (pdest + 1) - Numeric->Memory ; Work->Flublock = (Entry *) (Numeric->Memory + E [0]) ; ASSERT (Work->Flublock == F2) ; Work->Flblock = Work->Flublock + nb * nb ; Work->Fublock = Work->Flblock + drnew * nb ; Work->Fcblock = Work->Fublock + nb * dcnew ; pdest->header.prevsize = 0 ; pdest->header.size = size ; #ifndef NDEBUG DEBUG7 (("After moving compressed current frontal matrix:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Work->Fcblock, drnew, r, c) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Work->Flblock, drnew, r, k); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Work->Fublock, dcnew, c, k) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Work->Flublock, nb, k, k) ; #endif } else if (e > 0) { /* -------------------------------------------------------------- */ /* this is an element, compress and move from psrc down to pdest */ /* -------------------------------------------------------------- */ #ifndef NDEBUG DEBUG7 (("\n")) ; DEBUG7 ((ID":: Move element "ID": from: "ID" \n", nmark, e, (Int) (psrc-Numeric->Memory))) ; nmark-- ; ASSERT (e <= nel) ; ASSERT (E [e] == 0) ; #endif /* -------------------------------------------------------------- */ /* get the element scalars, and pointers to C, Rows, and Cols: */ /* -------------------------------------------------------------- */ p = psrc + 1 ; GET_ELEMENT (epsrc, p, Cols, Rows, ncols, nrows, C) ; nrowsleft = epsrc->nrowsleft ; ncolsleft = epsrc->ncolsleft ; cdeg = epsrc->cdeg ; rdeg = epsrc->rdeg ; #ifndef NDEBUG DEBUG7 ((" nrows "ID" nrowsleft "ID"\n", nrows, nrowsleft)) ; DEBUG7 ((" ncols "ID" ncolsleft "ID"\n", ncols, ncolsleft)) ; DEBUG8 ((" Rows:")) ; for (i = 0 ; i < nrows ; i++) DEBUG8 ((" "ID, Rows [i])) ; DEBUG8 (("\n Cols:")) ; for (j = 0 ; j < ncols ; j++) DEBUG8 ((" "ID, Cols [j])) ; DEBUG8 (("\n")) ; #endif /* -------------------------------------------------------------- */ /* determine the layout of the new element */ /* -------------------------------------------------------------- */ csize = nrowsleft * ncolsleft ; size2 = UNITS (Element, 1) + UNITS (Int, nrowsleft + ncolsleft) + UNITS (Entry, csize) ; DEBUG7 (("Old size "ID" New size "ID"\n", size, size2)) ; pnext = pdest ; pnext->header.prevsize = size2 ; pdest -= (size2 + 1) ; ASSERT (size2 <= size) ; ASSERT ((unsigned Int) psrc + 1 + size <= (unsigned Int) pnext) ; ASSERT (psrc <= pdest) ; p = pdest + 1 ; epdest = (Element *) p ; p += UNITS (Element, 1) ; Cols2 = (Int *) p ; Rows2 = Cols2 + ncolsleft ; p += UNITS (Int, nrowsleft + ncolsleft) ; C2 = (Entry *) p ; ASSERT (epdest >= epsrc) ; ASSERT (Rows2 >= Rows) ; ASSERT (Cols2 >= Cols) ; ASSERT (C2 >= C) ; ASSERT (p + UNITS (Entry, csize) == pnext) ; /* -------------------------------------------------------------- */ /* move the contribution block */ /* -------------------------------------------------------------- */ /* overlap = psrc + size + 1 > pdest ; */ if (nrowsleft < nrows || ncolsleft < ncols) { /* ---------------------------------------------------------- */ /* compress contribution block in place prior to moving it */ /* ---------------------------------------------------------- */ DEBUG7 (("Compress C in place prior to move:\n")); #ifndef NDEBUG UMF_dump_dense (C, nrows, nrows, ncols) ; #endif C1 = C ; C3 = C ; for (j = 0 ; j < ncols ; j++) { if (Cols [j] >= 0) { for (i = 0 ; i < nrows ; i++) { if (Rows [i] >= 0) { *C3++ = C1 [i] ; } } } C1 += nrows ; } ASSERT (C3-C == csize) ; DEBUG8 (("Newly compressed contrib. block (all in use):\n")) ; #ifndef NDEBUG UMF_dump_dense (C, nrowsleft, nrowsleft, ncolsleft) ; #endif } /* shift the contribution block down */ C += csize ; C2 += csize ; for (i = 0 ; i < csize ; i++) { *--C2 = *--C ; } /* -------------------------------------------------------------- */ /* move the row indices */ /* -------------------------------------------------------------- */ i2 = nrowsleft ; for (i = nrows - 1 ; i >= 0 ; i--) { ASSERT (Rows2+i2 >= Rows+i) ; if (Rows [i] >= 0) { Rows2 [--i2] = Rows [i] ; } } ASSERT (i2 == 0) ; j2 = ncolsleft ; for (j = ncols - 1 ; j >= 0 ; j--) { ASSERT (Cols2+j2 >= Cols+j) ; if (Cols [j] >= 0) { Cols2 [--j2] = Cols [j] ; } } ASSERT (j2 == 0) ; /* -------------------------------------------------------------- */ /* construct the new header */ /* -------------------------------------------------------------- */ /* E [0...e] is now valid */ E [e] = (pdest + 1) - Numeric->Memory ; epdest = (Element *) (pdest + 1) ; epdest->next = EMPTY ; /* destroys the son list */ epdest->ncols = ncolsleft ; epdest->nrows = nrowsleft ; epdest->ncolsleft = ncolsleft ; epdest->nrowsleft = nrowsleft ; epdest->rdeg = rdeg ; epdest->cdeg = cdeg ; ASSERT (size2 <= size) ; pdest->header.prevsize = 0 ; pdest->header.size = size2 ; DEBUG7 (("After moving it:\n")) ; #ifndef NDEBUG UMF_dump_element (Numeric, Work, e, FALSE) ; #endif } #ifndef NDEBUG else { DEBUG8 ((" free\n")) ; } #endif DEBUG7 (("psrc "ID" tail "ID"\n", (Int) (psrc-Numeric->Memory), Numeric->itail)) ; } ASSERT (psrc == Numeric->Memory + Numeric->itail) ; ASSERT (nmark == 0) ; /* ---------------------------------------------------------------------- */ /* final tail pointer */ /* ---------------------------------------------------------------------- */ ASSERT (pdest >= Numeric->Memory + Numeric->itail) ; Numeric->itail = pdest - Numeric->Memory ; pdest->header.prevsize = 0 ; Numeric->ibig = EMPTY ; Numeric->tail_usage = Numeric->size - Numeric->itail ; /* ---------------------------------------------------------------------- */ /* clear the unused E [nel+1 .. Work->elen - 1] */ /* ---------------------------------------------------------------------- */ for (e = nel+1 ; e < Work->elen ; e++) { E [e] = 0 ; } #ifndef NDEBUG UMF_dump_packed_memory (Numeric, Work) ; #endif DEBUG8 (("::::GARBAGE COLLECTION DONE::::\n")) ; } SuiteSparse/UMFPACK/Source/umf_garbage_collection.h0000644001170100242450000000103410617161572021124 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_garbage_collection ( NumericType *Numeric, WorkType *Work, Int drnew, Int dcnew, Int do_Fcpos ) ; SuiteSparse/UMFPACK/Source/umf_fsize.c0000644001170100242450000000432610677540657016456 0ustar davisfac/* ========================================================================== */ /* === UMF_fsize ============================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Determine the largest frontal matrix size for each subtree. Called by * UMF_colamd and UMF_analyze. Only required to sort the children of each * node prior to AMD_postorder. */ #include "umf_internal.h" #include "umf_fsize.h" GLOBAL void UMF_fsize ( Int nn, Int Fsize [ ], Int Fnrows [ ], Int Fncols [ ], Int Parent [ ], Int Npiv [ ] ) { Int j, parent, frsize, r, c ; for (j = 0 ; j < nn ; j++) { Fsize [j] = EMPTY ; } /* ---------------------------------------------------------------------- */ /* find max front size for tree rooted at node j, for each front j */ /* ---------------------------------------------------------------------- */ DEBUG1 (("\n\n========================================FRONTS:\n")) ; for (j = 0 ; j < nn ; j++) { if (Npiv [j] > 0) { /* this is a frontal matrix */ parent = Parent [j] ; r = Fnrows [j] ; c = Fncols [j] ; frsize = r * c ; /* avoid integer overflow */ if (INT_OVERFLOW (((double) r) * ((double) c))) { /* :: frsize int overflow :: */ frsize = Int_MAX ; } DEBUG1 ((""ID" : npiv "ID" size "ID" parent "ID" ", j, Npiv [j], frsize, parent)) ; Fsize [j] = MAX (Fsize [j], frsize) ; DEBUG1 (("Fsize [j = "ID"] = "ID"\n", j, Fsize [j])) ; if (parent != EMPTY) { /* find the maximum frontsize of self and children */ ASSERT (Npiv [parent] > 0) ; ASSERT (parent > j) ; Fsize [parent] = MAX (Fsize [parent], Fsize [j]) ; DEBUG1 (("Fsize [parent = "ID"] = "ID"\n", parent, Fsize [parent])); } } } } SuiteSparse/UMFPACK/Source/umf_fsize.h0000644001170100242450000000104110617161564016440 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_fsize ( Int nn, Int MaxFsize [ ], Int Fnrows [ ], Int Fncols [ ], Int Parent [ ], Int Npiv [ ] ) ; SuiteSparse/UMFPACK/Source/umfpack_symbolic.c0000644001170100242450000000230510617162172017773 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_symbolic ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Performs a symbolic factorization. See umfpack_symbolic.h for details. */ #include "umf_internal.h" GLOBAL Int UMFPACK_symbolic ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif void **SymbolicHandle, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO] ) { Int *Qinit = (Int *) NULL ; return (UMFPACK_qsymbolic (n_row, n_col, Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Qinit, SymbolicHandle, Control, Info)) ; } SuiteSparse/UMFPACK/Source/umf_mem_free_tail_block.c0000644001170100242450000001103610677542155021267 0ustar davisfac/* ========================================================================== */ /* === UMF_mem_free_tail_block ============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The UMF_mem_* routines manage the Numeric->Memory memory space. */ /* free a block from the tail of Numeric->memory */ #include "umf_internal.h" #include "umf_mem_free_tail_block.h" GLOBAL void UMF_mem_free_tail_block ( NumericType *Numeric, Int i ) { Unit *pprev, *pnext, *p, *pbig ; Int sprev ; ASSERT (Numeric != (NumericType *) NULL) ; ASSERT (Numeric->Memory != (Unit *) NULL) ; if (i == EMPTY || i == 0) return ; /* already deallocated */ /* ---------------------------------------------------------------------- */ /* get the block */ /* ---------------------------------------------------------------------- */ p = Numeric->Memory + i ; p-- ; /* get the corresponding header */ DEBUG2 (("free block: p: "ID, (Int) (p-Numeric->Memory))) ; ASSERT (p >= Numeric->Memory + Numeric->itail) ; ASSERT (p < Numeric->Memory + Numeric->size) ; ASSERT (p->header.size > 0) ; /* block not already free */ ASSERT (p->header.prevsize >= 0) ; Numeric->tail_usage -= p->header.size + 1 ; /* ---------------------------------------------------------------------- */ /* merge with next free block, if any */ /* ---------------------------------------------------------------------- */ pnext = p + 1 + p->header.size ; DEBUG2 (("size: "ID" next: "ID" ", p->header.size, (Int) (pnext-Numeric->Memory))) ; ASSERT (pnext < Numeric->Memory + Numeric->size) ; ASSERT (pnext->header.prevsize == p->header.size) ; ASSERT (pnext->header.size != 0) ; if (pnext->header.size < 0) { /* next block is also free - merge with current block */ p->header.size += (-(pnext->header.size)) + 1 ; DEBUG2 ((" NEXT FREE ")) ; } /* ---------------------------------------------------------------------- */ /* merge with previous free block, if any */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG if (p == Numeric->Memory + Numeric->itail) { DEBUG2 ((" at top of tail ")) ; ASSERT (p->header.prevsize == 0) ; } #endif if (p > Numeric->Memory + Numeric->itail) { ASSERT (p->header.prevsize > 0) ; pprev = p - 1 - p->header.prevsize ; DEBUG2 ((" prev: "ID" ", (Int) (pprev-Numeric->Memory))) ; ASSERT (pprev >= Numeric->Memory + Numeric->itail) ; sprev = pprev->header.size ; if (sprev < 0) { /* previous block is also free - merge it with current block */ ASSERT (p->header.prevsize == -sprev) ; pprev->header.size = p->header.size + (-sprev) + 1 ; p = pprev ; DEBUG2 ((" PREV FREE ")) ; /* note that p may now point to Numeric->itail */ } #ifndef NDEBUG else { ASSERT (p->header.prevsize == sprev) ; } #endif } /* ---------------------------------------------------------------------- */ /* free the block, p */ /* ---------------------------------------------------------------------- */ pnext = p + 1 + p->header.size ; ASSERT (pnext < Numeric->Memory + Numeric->size) ; if (p == Numeric->Memory + Numeric->itail) { /* top block in list is freed */ Numeric->itail = pnext - Numeric->Memory ; pnext->header.prevsize = 0 ; DEBUG2 ((" NEW TAIL : "ID" ", Numeric->itail)) ; ASSERT (pnext->header.size > 0) ; if (Numeric->ibig != EMPTY && Numeric->ibig <= Numeric->itail) { /* the big free block is now above the tail */ Numeric->ibig = EMPTY ; } } else { /* keep track of the biggest free block seen */ if (Numeric->ibig == EMPTY) { Numeric->ibig = p - Numeric->Memory ; } else { pbig = Numeric->Memory + Numeric->ibig ; if (-(pbig->header.size) < p->header.size) { Numeric->ibig = p - Numeric->Memory ; } } /* flag the block as free, somewhere in the middle of the tail */ pnext->header.prevsize = p->header.size ; p->header.size = -(p->header.size) ; } DEBUG2 (("new p: "ID" freesize: "ID"\n", (Int) (p-Numeric->Memory), -(p->header.size))) ; } SuiteSparse/UMFPACK/Source/umf_mem_free_tail_block.h0000644001170100242450000000074410617161771021273 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_mem_free_tail_block ( NumericType *Numeric, Int i ) ; SuiteSparse/UMFPACK/Source/umf_usolve.c0000644001170100242450000001421410677542466016650 0ustar davisfac/* ========================================================================== */ /* === UMF_usolve =========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* solves Ux = b, where U is the upper triangular factor of a matrix. */ /* B is overwritten with the solution X. */ /* Returns the floating point operation count */ #include "umf_internal.h" #include "umf_usolve.h" GLOBAL double UMF_usolve ( NumericType *Numeric, Entry X [ ], /* b on input, solution x on output */ Int Pattern [ ] /* a work array of size n */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry xk ; Entry *xp, *D, *Uval ; Int k, deg, j, *ip, col, *Upos, *Uilen, pos, *Uip, n, ulen, up, newUchain, npiv, n1, *Ui ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ if (Numeric->n_row != Numeric->n_col) return (0.) ; n = Numeric->n_row ; npiv = Numeric->npiv ; Upos = Numeric->Upos ; Uilen = Numeric->Uilen ; Uip = Numeric->Uip ; D = Numeric->D ; n1 = Numeric->n1 ; #ifndef NDEBUG DEBUG4 (("Usolve start: npiv = "ID" n = "ID"\n", npiv, n)) ; for (j = 0 ; j < n ; j++) { DEBUG4 (("Usolve start "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } #endif /* ---------------------------------------------------------------------- */ /* singular case */ /* ---------------------------------------------------------------------- */ #ifndef NO_DIVIDE_BY_ZERO /* handle the singular part of D, up to just before the last pivot */ for (k = n-1 ; k >= npiv ; k--) { /* This is an *** intentional *** divide-by-zero, to get Inf or Nan, * as appropriate. It is not a bug. */ ASSERT (IS_ZERO (D [k])) ; xk = X [k] ; /* X [k] = xk / D [k] ; */ DIV (X [k], xk, D [k]) ; } #else /* Do not divide by zero */ #endif deg = Numeric->ulen ; if (deg > 0) { /* :: make last pivot row of U (singular matrices only) :: */ for (j = 0 ; j < deg ; j++) { DEBUG1 (("Last row of U: j="ID"\n", j)) ; DEBUG1 (("Last row of U: Upattern[j]="ID"\n", Numeric->Upattern [j]) ); Pattern [j] = Numeric->Upattern [j] ; } } /* ---------------------------------------------------------------------- */ /* nonsingletons */ /* ---------------------------------------------------------------------- */ for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* use row k of U */ /* ------------------------------------------------------------------ */ up = Uip [k] ; ulen = Uilen [k] ; newUchain = (up < 0) ; if (newUchain) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } xk = X [k] ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value", k, Pattern [j])) ; EDEBUG4 (*xp) ; DEBUG4 (("\n")) ; /* xk -= X [Pattern [j]] * (*xp) ; */ MULT_SUB (xk, X [Pattern [j]], *xp) ; xp++ ; } #ifndef NO_DIVIDE_BY_ZERO /* Go ahead and divide by zero if D [k] is zero */ /* X [k] = xk / D [k] ; */ DIV (X [k], xk, D [k]) ; #else /* Do not divide by zero */ if (IS_NONZERO (D [k])) { /* X [k] = xk / D [k] ; */ DIV (X [k], xk, D [k]) ; } #endif /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (k == n1) break ; if (newUchain) { /* next row is a new Uchain */ deg = ulen ; ASSERT (IMPLIES (k == 0, deg == 0)) ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } else { deg -= ulen ; DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k, deg)) ; ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at pos "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* ---------------------------------------------------------------------- */ /* singletons */ /* ---------------------------------------------------------------------- */ for (k = n1 - 1 ; k >= 0 ; k--) { deg = Uilen [k] ; xk = X [k] ; DEBUG4 (("Singleton k "ID"\n", k)) ; if (deg > 0) { up = Uip [k] ; Ui = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value", k, Ui [j])) ; EDEBUG4 (Uval [j]) ; DEBUG4 (("\n")) ; /* xk -= X [Ui [j]] * Uval [j] ; */ ASSERT (Ui [j] >= 0 && Ui [j] < n) ; MULT_SUB (xk, X [Ui [j]], Uval [j]) ; } } #ifndef NO_DIVIDE_BY_ZERO /* Go ahead and divide by zero if D [k] is zero */ /* X [k] = xk / D [k] ; */ DIV (X [k], xk, D [k]) ; #else /* Do not divide by zero */ if (IS_NONZERO (D [k])) { /* X [k] = xk / D [k] ; */ DIV (X [k], xk, D [k]) ; } #endif } #ifndef NDEBUG for (j = 0 ; j < n ; j++) { DEBUG4 (("Usolve done "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } DEBUG4 (("Usolve done.\n")) ; #endif return (DIV_FLOPS * ((double) n) + MULTSUB_FLOPS * ((double) Numeric->unz)); } SuiteSparse/UMFPACK/Source/umf_usolve.h0000644001170100242450000000076410617162475016652 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL double UMF_usolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; SuiteSparse/UMFPACK/Source/umf_multicompile.c0000644001170100242450000000421710617162026020020 0ustar davisfac/* ========================================================================== */ /* === UMF_multicompile ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* This file is not needed if you have the Unix/Linux "make" command for * compiling UMFPACK. Microsoft Visual Studio cannot be configured to compile * one file multiple times, with different -D flags. In this case, you can * use this file instead. To use this file, see the Demo/simple_compile file. * * This file includes the following source files: * * umf_ltsolve.c * umf_utsolve.c * umf_triplet.c * umf_assemble.c * umf_store_lu.c * umfpack_solve.c * * This file simply compiles the above files with different pre-#define'd flags, * by defining the flags and then #include'ing the source files themselves. * This is a rather unconventional approach, since by convention #include is * supposed to be used with *.h files not *.c. However, it is one way of * working around the limitations of Microsoft Visual Studio. * * You still need to compile all files separately as well, with none of the * pre-#define'd terms listed below. */ /* compile the complex conjugate forward/backsolves */ #define CONJUGATE_SOLVE #include "umf_ltsolve.c" #include "umf_utsolve.c" /* compile umf_triplet with DO_MAP, DO_VALUES and DO_MAP, and just DO_VALUES */ #define DO_MAP #include "umf_triplet.c" #define DO_VALUES #include "umf_triplet.c" #undef DO_MAP #include "umf_triplet.c" /* compile the FIXQ version of umf_assemble */ #define FIXQ #include "umf_assemble.c" /* compile the DROP version of umf_store_lu */ #define DROP #include "umf_store_lu.c" /* compile umfpack_wsolve */ #define WSOLVE #include "umfpack_solve.c" SuiteSparse/UMFPACK/Source/umf_store_lu.c0000644001170100242450000006331410677541301017157 0ustar davisfac/* ========================================================================== */ /* === UMF_store_lu ========================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Store the LU factors. Called by the kernel. Returns TRUE if successful, FALSE if out of memory. */ #include "umf_internal.h" #include "umf_store_lu.h" #include "umf_mem_alloc_head_block.h" #include "umf_get_memory.h" /* ========================================================================== */ #ifdef DROP GLOBAL Int UMF_store_lu_drop #else GLOBAL Int UMF_store_lu #endif ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry pivot_value ; #ifdef DROP double droptol ; #endif Entry *D, *Lval, *Uval, *Fl1, *Fl2, *Fu1, *Fu2, *Flublock, *Flblock, *Fublock ; Int i, k, fnr_curr, fnrows, fncols, row, col, pivrow, pivcol, *Frows, *Fcols, *Lpattern, *Upattern, *Lpos, *Upos, llen, ulen, fnc_curr, fnpiv, uilen, lnz, unz, nb, *Lilen, *Uilen, *Lip, *Uip, *Li, *Ui, pivcol_position, newLchain, newUchain, pivrow_position, p, size, lip, uip, lnzi, lnzx, unzx, lnz2i, lnz2x, unz2i, unz2x, zero_pivot, *Pivrow, *Pivcol, kk, Lnz [MAXNB] ; #ifndef NDEBUG Int *Col_degree, *Row_degree ; #endif #ifdef DROP Int all_lnz, all_unz ; droptol = Numeric->droptol ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ fnrows = Work->fnrows ; fncols = Work->fncols ; fnpiv = Work->fnpiv ; Lpos = Numeric->Lpos ; Upos = Numeric->Upos ; Lilen = Numeric->Lilen ; Uilen = Numeric->Uilen ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; D = Numeric->D ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; Frows = Work->Frows ; Fcols = Work->Fcols ; #ifndef NDEBUG Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ #endif Lpattern = Work->Lpattern ; llen = Work->llen ; Upattern = Work->Upattern ; ulen = Work->ulen ; nb = Work->nb ; #ifndef NDEBUG DEBUG1 (("\nSTORE LU: fnrows "ID " fncols "ID"\n", fnrows, fncols)) ; DEBUG2 (("\nFrontal matrix, including all space:\n" "fnr_curr "ID" fnc_curr "ID" nb "ID"\n" "fnrows "ID" fncols "ID" fnpiv "ID"\n", fnr_curr, fnc_curr, nb, fnrows, fncols, fnpiv)) ; DEBUG2 (("\nJust the active part:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Work->Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Work->Flblock, fnr_curr, fnrows, fnpiv); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Work->Fublock, fnc_curr, fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Work->Flublock, nb, fnpiv, fnpiv) ; DEBUG7 (("Current frontal matrix: (prior to store LU)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif Pivrow = Work->Pivrow ; Pivcol = Work->Pivcol ; /* ---------------------------------------------------------------------- */ /* store the columns of L */ /* ---------------------------------------------------------------------- */ for (kk = 0 ; kk < fnpiv ; kk++) { /* ------------------------------------------------------------------ */ /* one more pivot row and column is being stored into L and U */ /* ------------------------------------------------------------------ */ k = Work->npiv + kk ; /* ------------------------------------------------------------------ */ /* find the kth pivot row and pivot column */ /* ------------------------------------------------------------------ */ pivrow = Pivrow [kk] ; pivcol = Pivcol [kk] ; #ifndef NDEBUG ASSERT (pivrow >= 0 && pivrow < Work->n_row) ; ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; DEBUGm4 (( "\n -------------------------------------------------------------" "Store LU: step " ID"\n", k)) ; ASSERT (k < MIN (Work->n_row, Work->n_col)) ; DEBUG2 (("Store column of L, k = "ID", llen "ID"\n", k, llen)) ; for (i = 0 ; i < llen ; i++) { row = Lpattern [i] ; ASSERT (row >= 0 && row < Work->n_row) ; DEBUG2 ((" Lpattern["ID"] "ID" Lpos "ID, i, row, Lpos [row])) ; if (row == pivrow) DEBUG2 ((" <- pivot row")) ; DEBUG2 (("\n")) ; ASSERT (i == Lpos [row]) ; } #endif /* ------------------------------------------------------------------ */ /* remove pivot row from L */ /* ------------------------------------------------------------------ */ /* remove pivot row index from current column of L */ /* if a new Lchain starts, then all entries are removed later */ DEBUG2 (("Removing pivrow from Lpattern, k = "ID"\n", k)) ; ASSERT (!NON_PIVOTAL_ROW (pivrow)) ; pivrow_position = Lpos [pivrow] ; if (pivrow_position != EMPTY) { /* place the last entry in the column in the */ /* position of the pivot row index */ ASSERT (pivrow == Lpattern [pivrow_position]) ; row = Lpattern [--llen] ; /* ASSERT (NON_PIVOTAL_ROW (row)) ; */ Lpattern [pivrow_position] = row ; Lpos [row] = pivrow_position ; Lpos [pivrow] = EMPTY ; } /* ------------------------------------------------------------------ */ /* store the pivot value, for the diagonal matrix D */ /* ------------------------------------------------------------------ */ /* kk-th column of LU block */ Fl1 = Flublock + kk * nb ; /* kk-th column of L in the L block */ Fl2 = Flblock + kk * fnr_curr ; /* kk-th pivot in frontal matrix located in Flublock [kk, kk] */ pivot_value = Fl1 [kk] ; D [k] = pivot_value ; zero_pivot = IS_ZERO (pivot_value) ; DEBUG4 (("Pivot D["ID"]=", k)) ; EDEBUG4 (pivot_value) ; DEBUG4 (("\n")) ; /* ------------------------------------------------------------------ */ /* count nonzeros in kth column of L */ /* ------------------------------------------------------------------ */ lnz = 0 ; lnz2i = 0 ; lnz2x = llen ; #ifdef DROP all_lnz = 0 ; for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; all_lnz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; lnz++ ; if (Lpos [Pivrow [i]] == EMPTY) lnz2i++ ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; all_lnz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; lnz++ ; if (Lpos [Frows [i]] == EMPTY) lnz2i++ ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { if (IS_ZERO (Fl1 [i])) continue ; lnz++ ; if (Lpos [Pivrow [i]] == EMPTY) lnz2i++ ; } for (i = 0 ; i < fnrows ; i++) { if (IS_ZERO (Fl2 [i])) continue ; lnz++ ; if (Lpos [Frows [i]] == EMPTY) lnz2i++ ; } #endif lnz2x += lnz2i ; /* determine if we start a new Lchain or continue the old one */ if (llen == 0 || zero_pivot) { /* llen == 0 means there is no prior Lchain */ /* D [k] == 0 means the pivot column is empty */ newLchain = TRUE ; } else { newLchain = /* storage for starting a new Lchain */ UNITS (Entry, lnz) + UNITS (Int, lnz) <= /* storage for continuing a prior Lchain */ UNITS (Entry, lnz2x) + UNITS (Int, lnz2i) ; } if (newLchain) { /* start a new chain for column k of L */ DEBUG2 (("Start new Lchain, k = "ID"\n", k)) ; pivrow_position = EMPTY ; /* clear the prior Lpattern */ for (i = 0 ; i < llen ; i++) { row = Lpattern [i] ; Lpos [row] = EMPTY ; } llen = 0 ; lnzi = lnz ; lnzx = lnz ; } else { /* continue the prior Lchain */ DEBUG2 (("Continue Lchain, k = "ID"\n", k)) ; lnzi = lnz2i ; lnzx = lnz2x ; } /* ------------------------------------------------------------------ */ /* allocate space for the column of L */ /* ------------------------------------------------------------------ */ size = UNITS (Int, lnzi) + UNITS (Entry, lnzx) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage coll. (store LU)\n")); } #endif p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { Int r2, c2 ; /* Do garbage collection, realloc, and try again. */ /* Note that there are pivot rows/columns in current front. */ if (Work->do_grow) { /* full compaction of current frontal matrix, since * UMF_grow_front will be called next anyway. */ r2 = fnrows ; c2 = fncols ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; } DEBUGm3 (("get_memory from umf_store_lu:\n")) ; if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) { DEBUGm4 (("out of memory: store LU (1)\n")) ; return (FALSE) ; /* out of memory */ } p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { DEBUGm4 (("out of memory: store LU (2)\n")) ; return (FALSE) ; /* out of memory */ } /* garbage collection may have moved the current front */ fnc_curr = Work->fnc_curr ; fnr_curr = Work->fnr_curr ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fl1 = Flublock + kk * nb ; Fl2 = Flblock + kk * fnr_curr ; } /* ------------------------------------------------------------------ */ /* store the column of L */ /* ------------------------------------------------------------------ */ lip = p ; Li = (Int *) (Numeric->Memory + p) ; p += UNITS (Int, lnzi) ; Lval = (Entry *) (Numeric->Memory + p) ; p += UNITS (Entry, lnzx) ; for (i = 0 ; i < lnzx ; i++) { CLEAR (Lval [i]) ; } /* store the numerical entries */ if (newLchain) { /* flag the first column in the Lchain by negating Lip [k] */ lip = -lip ; ASSERT (llen == 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl1 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Pivrow [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Frows [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int row2, pos ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; row2 = Pivrow [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; Int row2, pos ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; row2 = Frows [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } #endif } else { ASSERT (llen > 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl1 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Pivrow [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Frows [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int row2, pos ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; row2 = Pivrow [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; Int row2, pos ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; row2 = Frows [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } #endif } DEBUG4 (("llen "ID" lnzx "ID"\n", llen, lnzx)) ; ASSERT (llen == lnzx) ; ASSERT (lnz <= llen) ; DEBUG4 (("lnz "ID" \n", lnz)) ; #ifdef DROP DEBUG4 (("all_lnz "ID" \n", all_lnz)) ; ASSERT (lnz <= all_lnz) ; Numeric->lnz += lnz ; Numeric->all_lnz += all_lnz ; Lnz [kk] = all_lnz ; #else Numeric->lnz += lnz ; Numeric->all_lnz += lnz ; Lnz [kk] = lnz ; #endif Numeric->nLentries += lnzx ; Work->llen = llen ; Numeric->isize += lnzi ; /* ------------------------------------------------------------------ */ /* the pivot column is fully assembled and scaled, and is now the */ /* k-th column of L */ /* ------------------------------------------------------------------ */ Lpos [pivrow] = pivrow_position ; /* not aliased */ Lip [pivcol] = lip ; /* aliased with Col_tuples */ Lilen [pivcol] = lnzi ; /* aliased with Col_tlen */ } /* ---------------------------------------------------------------------- */ /* store the rows of U */ /* ---------------------------------------------------------------------- */ for (kk = 0 ; kk < fnpiv ; kk++) { /* ------------------------------------------------------------------ */ /* one more pivot row and column is being stored into L and U */ /* ------------------------------------------------------------------ */ k = Work->npiv + kk ; /* ------------------------------------------------------------------ */ /* find the kth pivot row and pivot column */ /* ------------------------------------------------------------------ */ pivrow = Pivrow [kk] ; pivcol = Pivcol [kk] ; #ifndef NDEBUG ASSERT (pivrow >= 0 && pivrow < Work->n_row) ; ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; DEBUG2 (("Store row of U, k = "ID", ulen "ID"\n", k, ulen)) ; for (i = 0 ; i < ulen ; i++) { col = Upattern [i] ; DEBUG2 ((" Upattern["ID"] "ID, i, col)) ; if (col == pivcol) DEBUG2 ((" <- pivot col")) ; DEBUG2 (("\n")) ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (i == Upos [col]) ; } #endif /* ------------------------------------------------------------------ */ /* get the pivot value, for the diagonal matrix D */ /* ------------------------------------------------------------------ */ zero_pivot = IS_ZERO (D [k]) ; /* ------------------------------------------------------------------ */ /* count the nonzeros in the row of U */ /* ------------------------------------------------------------------ */ /* kk-th row of U in the LU block */ Fu1 = Flublock + kk ; /* kk-th row of U in the U block */ Fu2 = Fublock + kk * fnc_curr ; unz = 0 ; unz2i = 0 ; unz2x = ulen ; DEBUG2 (("unz2x is "ID", lnzx "ID"\n", unz2x, lnzx)) ; /* if row k does not end a Uchain, pivcol not included in ulen */ ASSERT (!NON_PIVOTAL_COL (pivcol)) ; pivcol_position = Upos [pivcol] ; if (pivcol_position != EMPTY) { unz2x-- ; DEBUG2 (("(exclude pivcol) unz2x is now "ID"\n", unz2x)) ; } ASSERT (unz2x >= 0) ; #ifdef DROP all_unz = 0 ; for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; all_unz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; unz++ ; if (Upos [Pivcol [i]] == EMPTY) unz2i++ ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; all_unz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; unz++ ; if (Upos [Fcols [i]] == EMPTY) unz2i++ ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { if (IS_ZERO (Fu1 [i*nb])) continue ; unz++ ; if (Upos [Pivcol [i]] == EMPTY) unz2i++ ; } for (i = 0 ; i < fncols ; i++) { if (IS_ZERO (Fu2 [i])) continue ; unz++ ; if (Upos [Fcols [i]] == EMPTY) unz2i++ ; } #endif unz2x += unz2i ; ASSERT (IMPLIES (k == 0, ulen == 0)) ; /* determine if we start a new Uchain or continue the old one */ if (ulen == 0 || zero_pivot) { /* ulen == 0 means there is no prior Uchain */ /* D [k] == 0 means the matrix is singular (pivot row might */ /* not be empty, however, but start a new Uchain to prune zero */ /* entries for the deg > 0 test in UMF_u*solve) */ newUchain = TRUE ; } else { newUchain = /* approximate storage for starting a new Uchain */ UNITS (Entry, unz) + UNITS (Int, unz) <= /* approximate storage for continuing a prior Uchain */ UNITS (Entry, unz2x) + UNITS (Int, unz2i) ; /* this would be exact, except for the Int to Unit rounding, */ /* because the Upattern is stored only at the end of the Uchain */ } /* ------------------------------------------------------------------ */ /* allocate space for the row of U */ /* ------------------------------------------------------------------ */ size = 0 ; if (newUchain) { /* store the pattern of the last row in the prior Uchain */ size += UNITS (Int, ulen) ; unzx = unz ; } else { unzx = unz2x ; } size += UNITS (Entry, unzx) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage coll. (store LU)\n")); } #endif p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { Int r2, c2 ; /* Do garbage collection, realloc, and try again. */ /* Note that there are pivot rows/columns in current front. */ if (Work->do_grow) { /* full compaction of current frontal matrix, since * UMF_grow_front will be called next anyway. */ r2 = fnrows ; c2 = fncols ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; } DEBUGm3 (("get_memory from umf_store_lu:\n")) ; if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) { /* :: get memory, column of L :: */ DEBUGm4 (("out of memory: store LU (1)\n")) ; return (FALSE) ; /* out of memory */ } p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { /* :: out of memory, column of U :: */ DEBUGm4 (("out of memory: store LU (2)\n")) ; return (FALSE) ; /* out of memory */ } /* garbage collection may have moved the current front */ fnc_curr = Work->fnc_curr ; fnr_curr = Work->fnr_curr ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fu1 = Flublock + kk ; Fu2 = Fublock + kk * fnc_curr ; } /* ------------------------------------------------------------------ */ /* store the row of U */ /* ------------------------------------------------------------------ */ uip = p ; if (newUchain) { /* starting a new Uchain - flag this by negating Uip [k] */ uip = -uip ; DEBUG2 (("Start new Uchain, k = "ID"\n", k)) ; pivcol_position = EMPTY ; /* end the prior Uchain */ /* save the current Upattern, and then */ /* clear it and start a new Upattern */ DEBUG2 (("Ending prior chain, k-1 = "ID"\n", k-1)) ; uilen = ulen ; Ui = (Int *) (Numeric->Memory + p) ; Numeric->isize += ulen ; p += UNITS (Int, ulen) ; for (i = 0 ; i < ulen ; i++) { col = Upattern [i] ; ASSERT (col >= 0 && col < Work->n_col) ; Upos [col] = EMPTY ; Ui [i] = col ; } ulen = 0 ; } else { /* continue the prior Uchain */ DEBUG2 (("Continue Uchain, k = "ID"\n", k)) ; ASSERT (k > 0) ; /* remove pivot col index from current row of U */ /* if a new Uchain starts, then all entries are removed later */ DEBUG2 (("Removing pivcol from Upattern, k = "ID"\n", k)) ; if (pivcol_position != EMPTY) { /* place the last entry in the row in the */ /* position of the pivot col index */ ASSERT (pivcol == Upattern [pivcol_position]) ; col = Upattern [--ulen] ; ASSERT (col >= 0 && col < Work->n_col) ; Upattern [pivcol_position] = col ; Upos [col] = pivcol_position ; Upos [pivcol] = EMPTY ; } /* this row continues the Uchain. Keep track of how much */ /* to trim from the k-th length to get the length of the */ /* (k-1)st row of U */ uilen = unz2i ; } Uval = (Entry *) (Numeric->Memory + p) ; /* p += UNITS (Entry, unzx), no need to increment p */ for (i = 0 ; i < unzx ; i++) { CLEAR (Uval [i]) ; } if (newUchain) { ASSERT (ulen == 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu1 [i*nb] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Pivcol [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Fcols [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int col2, pos ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; col2 = Pivcol [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; Int col2, pos ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; col2 = Fcols [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } #endif } else { ASSERT (ulen > 0) ; /* store the numerical entries and find new nonzeros */ #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu1 [i*nb] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Pivcol [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Fcols [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int col2, pos ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; col2 = Pivcol [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; Int col2, pos ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; col2 = Fcols [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } #endif } ASSERT (ulen == unzx) ; ASSERT (unz <= ulen) ; DEBUG4 (("unz "ID" \n", unz)) ; #ifdef DROP DEBUG4 (("all_unz "ID" \n", all_unz)) ; ASSERT (unz <= all_unz) ; Numeric->unz += unz ; Numeric->all_unz += all_unz ; /* count the "true" flops, based on LU pattern only */ Numeric->flops += DIV_FLOPS * Lnz [kk] /* scale pivot column */ + MULTSUB_FLOPS * (Lnz [kk] * all_unz) ; /* outer product */ #else Numeric->unz += unz ; Numeric->all_unz += unz ; /* count the "true" flops, based on LU pattern only */ Numeric->flops += DIV_FLOPS * Lnz [kk] /* scale pivot column */ + MULTSUB_FLOPS * (Lnz [kk] * unz) ; /* outer product */ #endif Numeric->nUentries += unzx ; Work->ulen = ulen ; DEBUG1 (("Work->ulen = "ID" at end of pivot step, k: "ID"\n", ulen, k)); /* ------------------------------------------------------------------ */ /* the pivot row is the k-th row of U */ /* ------------------------------------------------------------------ */ Upos [pivcol] = pivcol_position ; /* not aliased */ Uip [pivrow] = uip ; /* aliased with Row_tuples */ Uilen [pivrow] = uilen ; /* aliased with Row_tlen */ } /* ---------------------------------------------------------------------- */ /* no more pivots in frontal working array */ /* ---------------------------------------------------------------------- */ Work->npiv += fnpiv ; Work->fnpiv = 0 ; Work->fnzeros = 0 ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_store_lu.h0000644001170100242450000000106210617162433017153 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_store_lu ( NumericType *Numeric, WorkType *Work ) ; GLOBAL Int UMF_store_lu_drop ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_kernel_init.c0000644001170100242450000007161010677541650017633 0ustar davisfac/* ========================================================================== */ /* === UMF_kernel_init ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Initialize the kernel: scale the matrix, load the initial elements, and build the tuple lists. Returns TRUE if successful, FALSE if out of memory or if the pattern has changed since UMFPACK_*symbolic. UMFPACK_numeric allocates at least enough space for UMF_kernel_init to succeed; otherwise it does not call UMF_kernel_init. So an out-of-memory condition means that the pattern must have gotten larger. */ #include "umf_internal.h" #include "umf_kernel_init.h" #include "umf_tuple_lengths.h" #include "umf_build_tuples.h" #include "umf_mem_init_memoryspace.h" #include "umf_mem_alloc_element.h" #include "umf_mem_alloc_head_block.h" #include "umf_mem_alloc_tail_block.h" #include "umf_mem_free_tail_block.h" #include "umf_scale.h" /* ========================================================================== */ /* === packsp =============================================================== */ /* ========================================================================== */ /* remove zero or small entries from a column of L or a row of U */ PRIVATE Int packsp /* returns new value of pnew */ ( Int pnew, /* index into Memory of next free space */ Int *p_p, /* ptr to index of old pattern in Memory on input, new pattern on output */ Int *p_len, /* ptr to length of old pattern on input, new pattern on output */ Int drop, /* TRUE if small nonzero entries are to be dropped */ double droptol, /* the drop tolerance */ Unit *Memory /* contains the sparse vector on input and output */ ) { Entry x ; double s ; Entry *Bx, *Bx2 ; Int p, i, len, len_new, *Bi, *Bi2 ; /* get the pointers to the sparse vector, and its length */ p = *p_p ; len = *p_len ; Bi = (Int *) (Memory + p) ; p += UNITS (Int, len) ; Bx = (Entry *) (Memory + p) ; p += UNITS (Entry, len) ; DEBUGm4 ((" p "ID" len "ID" pnew "ID"\n", p, len, pnew)) ; /* the vector resides in Bi [0..len-1] and Bx [0..len-1] */ /* first, compact the vector in place */ len_new = 0 ; for (p = 0 ; p < len ; p++) { i = Bi [p] ; x = Bx [p] ; DEBUGm4 ((" old vector: i "ID" value: ", i)) ; EDEBUGk (-4, x) ; DEBUGm4 (("\n")) ; ASSERT (i >= 0) ; /* skip if zero or below drop tolerance */ if (IS_ZERO (x)) continue ; if (drop) { APPROX_ABS (s, x) ; if (s <= droptol) continue ; } /* store the value back into the vector */ if (len_new != p) { Bi [len_new] = i ; Bx [len_new] = x ; } len_new++ ; } ASSERT (len_new <= len) ; /* the vector is now in Bi [0..len_new-1] and Bx [0..len_new-1] */ #ifndef NDEBUG for (p = 0 ; p < len_new ; p++) { DEBUGm4 ((" new vector: i "ID" value: ", Bi [p])) ; EDEBUGk (-4, Bx [p]) ; DEBUGm4 (("\n")) ; ASSERT (Bi [p] >= 0) ; } #endif /* allocate new space for the compacted vector */ *p_p = pnew ; *p_len = len_new ; Bi2 = (Int *) (Memory + pnew) ; pnew += UNITS (Int, len_new) ; Bx2 = (Entry *) (Memory + pnew) ; pnew += UNITS (Entry, len_new) ; DEBUGm4 ((" pnew "ID" len_new "ID"\n", pnew, len_new)) ; /* shift the vector upwards, into its new space */ for (p = 0 ; p < len_new ; p++) { Bi2 [p] = Bi [p] ; } for (p = 0 ; p < len_new ; p++) { Bx2 [p] = Bx [p] ; } #ifndef NDEBUG for (p = 0 ; p < len_new ; p++) { DEBUGm4 ((" packed vec: i "ID" value: ", Bi2 [p])) ; EDEBUGk (-4, Bx2 [p]) ; DEBUGm4 (("\n")) ; ASSERT (Bi2 [p] >= 0) ; } #endif /* return the pointer to the space just after the new vector */ return (pnew) ; } /* ========================================================================== */ /* === UMF_kernel_init ====================================================== */ /* ========================================================================== */ GLOBAL Int UMF_kernel_init ( const Int Ap [ ], /* user's input matrix (not modified) */ const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry x, pivot_value ; double unused = 0, rsmin, rsmax, rs, droptol ; Entry *D, *C, *Lval, **Rpx ; double *Rs ; Int row, k, oldcol, size, e, p1, p2, p, nz, *Rows, *Cols, *E, i, *Upos, *Lpos, n_row, n_col, *Wp, *Cperm_init, *Frpos, *Fcpos, *Row_degree, nn, *Row_tlen, *Col_degree, *Col_tlen, oldrow, newrow, ilast, *Wrp, *Rperm_init, col, n_inner, prefer_diagonal, *Diagonal_map, nempty, *Diagonal_imap, fixQ, rdeg, cdeg, nempty_col, *Esize, esize, pnew, *Lip, *Uip, *Lilen, *Uilen, llen, pa, *Cdeg, *Rdeg, n1, clen, do_scale, lnz, unz, lip, uip, k1, *Rperm, *Cperm, pivcol, *Li, lilen, drop, **Rpi, nempty_row, dense_row_threshold, empty_elements, rpi, rpx ; Element *ep ; Unit *Memory ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif #ifndef NRECIPROCAL Int do_recip = FALSE ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ DEBUG0 (("KERNEL INIT\n")) ; n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; nempty_col = Symbolic->nempty_col ; nempty_row = Symbolic->nempty_row ; nempty = MIN (nempty_row, nempty_col) ; ASSERT (n_row > 0 && n_col > 0) ; Cperm_init = Symbolic->Cperm_init ; Rperm_init = Symbolic->Rperm_init ; Cdeg = Symbolic->Cdeg ; Rdeg = Symbolic->Rdeg ; n1 = Symbolic->n1 ; dense_row_threshold = Symbolic->dense_row_threshold ; DEBUG0 (("Singletons: "ID"\n", n1)) ; Work->nforced = 0 ; Work->ndiscard = 0 ; Work->noff_diagonal = 0 ; nz = Ap [n_col] ; if (nz < 0 || Ap [0] != 0 || nz != Symbolic->nz) { DEBUGm4 (("nz or Ap [0] bad\n")) ; return (FALSE) ; /* pattern changed */ } prefer_diagonal = Symbolic->prefer_diagonal ; Diagonal_map = Work->Diagonal_map ; Diagonal_imap = Work->Diagonal_imap ; /* ---------------------------------------------------------------------- */ /* initialize the Numeric->Memory space for LU, elements, and tuples */ /* ---------------------------------------------------------------------- */ UMF_mem_init_memoryspace (Numeric) ; DEBUG1 (("Kernel init head usage, before allocs: "ID"\n", Numeric->ihead)) ; /* ---------------------------------------------------------------------- */ /* initialize the Work and Numeric objects */ /* ---------------------------------------------------------------------- */ /* current front is empty */ Work->fnpiv = 0 ; Work->fncols = 0 ; Work->fnrows = 0 ; Work->fncols_max = 0 ; Work->fnrows_max = 0 ; Work->fnzeros = 0 ; Work->fcurr_size = 0 ; Work->fnr_curr = 0 ; Work->fnc_curr = 0 ; Work->nz = nz ; Work->prior_element = EMPTY ; Work->ulen = 0 ; Work->llen = 0 ; Work->npiv = n1 ; Work->frontid = 0 ; Work->nextcand = n1 ; Memory = Numeric->Memory ; Rperm = Numeric->Rperm ; Cperm = Numeric->Cperm ; Row_degree = Numeric->Rperm ; Col_degree = Numeric->Cperm ; /* Row_tuples = Numeric->Uip ; not needed */ Row_tlen = Numeric->Uilen ; /* Col_tuples = Numeric->Lip ; not needed */ Col_tlen = Numeric->Lilen ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; Lilen = Numeric->Lilen ; Uilen = Numeric->Uilen ; Frpos = Work->Frpos ; Fcpos = Work->Fcpos ; Wp = Work->Wp ; Wrp = Work->Wrp ; D = Numeric->D ; Upos = Numeric->Upos ; Lpos = Numeric->Lpos ; for (k = 0 ; k < n_inner ; k++) { CLEAR (D [k]) ; } Rs = Numeric->Rs ; for (row = 0 ; row <= n_row ; row++) { Lpos [row] = EMPTY ; /* Row_tuples [row] = 0 ; set in UMF_build_tuples */ /* Row_degree [row] = 0 ; initialized below */ Row_tlen [row] = 0 ; /* Frpos [row] = EMPTY ; do this later */ } for (col = 0 ; col <= n_col ; col++) { Upos [col] = EMPTY ; /* Col_tuples [col] = 0 ; set in UMF_build_tuples */ /* Col_degree [col] = 0 ; initialized below */ Col_tlen [col] = 0 ; Fcpos [col] = EMPTY ; Wrp [col] = 0 ; } Work->Wrpflag = 1 ; /* When cleared, Wp [0..nn] is < 0 */ for (i = 0 ; i <= nn ; i++) { Wp [i] = EMPTY ; } /* In col search, Wp [row] is set to a position, which is >= 0. */ /* When cleared, Wrp [0..n_col] is < Wrpflag */ /* In row search, Wrp [col] is set to Wrpflag. */ /* no need to initialize Wm, Wio, Woi, and Woo */ /* clear the external degree counters */ Work->cdeg0 = 1 ; Work->rdeg0 = 1 ; fixQ = Symbolic->fixQ ; E = Work->E ; Numeric->n_row = n_row ; Numeric->n_col = n_col ; Numeric->npiv = 0 ; Numeric->nnzpiv = 0 ; Numeric->min_udiag = 0.0 ; Numeric->max_udiag = 0.0 ; Numeric->rcond = 0.0 ; Numeric->isize = 0 ; Numeric->nLentries = 0 ; Numeric->nUentries = 0 ; Numeric->lnz = 0 ; Numeric->unz = 0 ; Numeric->all_lnz = 0 ; Numeric->all_unz = 0 ; Numeric->maxfrsize = 0 ; Numeric->maxnrows = 0 ; Numeric->maxncols = 0 ; Numeric->flops = 0. ; Numeric->n1 = n1 ; droptol = Numeric->droptol ; drop = (droptol > 0) ; /* ---------------------------------------------------------------------- */ /* compute the scale factors, if requested, and check the input matrix */ /* ---------------------------------------------------------------------- */ /* UMFPACK_SCALE_SUM: Rs [i] = sum of the absolute values in row i. * UMFPACK_SCALE_MAX: Rs [i] = max of the absolute values in row i. * * If A is complex, an approximate abs is used (|xreal| + |ximag|). * * If min (Rs [0..n_row]) >= RECIPROCAL_TOLERANCE, then the scale * factors are inverted, and the rows of A are multiplied by the scale * factors. Otherwise, the rows are divided by the scale factors. If * NRECIPROCAL is defined, then the rows are always divided by the scale * factors. * * For MATLAB (either built-in routine or mexFunction), or for gcc, * the rows are always divided by the scale factors. */ do_scale = (Numeric->scale != UMFPACK_SCALE_NONE) ; if (do_scale) { int do_max = Numeric->scale == UMFPACK_SCALE_MAX ; for (row = 0 ; row < n_row ; row++) { Rs [row] = 0.0 ; } for (col = 0 ; col < n_col ; col++) { ilast = EMPTY ; p1 = Ap [col] ; p2 = Ap [col+1] ; if (p1 > p2) { /* invalid matrix */ DEBUGm4 (("invalid matrix (Ap)\n")) ; return (FALSE) ; } for (p = p1 ; p < p2 ; p++) { Entry aij ; double value ; row = Ai [p] ; if (row <= ilast || row >= n_row) { /* invalid matrix, columns must be sorted, no duplicates */ DEBUGm4 (("invalid matrix (Ai)\n")) ; return (FALSE) ; } ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; rs = Rs [row] ; if (!SCALAR_IS_NAN (rs)) { if (SCALAR_IS_NAN (value)) { /* if any entry in the row is NaN, then the scale factor * is NaN too (for now) and then set to 1.0 below */ Rs [row] = value ; } else if (do_max) { Rs [row] = MAX (rs, value) ; } else { Rs [row] += value ; } } DEBUG4 (("i "ID" j "ID" value %g, Rs[i]: %g\n", row, col, value, Rs[row])) ; ilast = row ; } } DEBUG2 (("Rs[0] = %30.20e\n", Rs [0])) ; for (row = 0 ; row < n_row ; row++) { rs = Rs [row] ; if (SCALAR_IS_ZERO (rs) || SCALAR_IS_NAN (rs)) { /* don't scale a completely zero row, or one with NaN's */ Rs [row] = 1.0 ; } } rsmin = Rs [0] ; rsmax = Rs [0] ; for (row = 0 ; row < n_row ; row++) { DEBUG2 (("sum %30.20e ", Rs [row])) ; rsmin = MIN (rsmin, Rs [row]) ; rsmax = MAX (rsmax, Rs [row]) ; DEBUG2 (("Rs["ID"] = %30.20e\n", row, Rs [row])) ; } #ifndef NRECIPROCAL /* multiply by the reciprocal if Rs is not too small */ do_recip = (rsmin >= RECIPROCAL_TOLERANCE) ; if (do_recip) { /* invert the scale factors */ for (row = 0 ; row < n_row ; row++) { Rs [row] = 1.0 / Rs [row] ; } } #endif } else { /* no scaling, rsmin and rsmax not computed */ rsmin = -1 ; rsmax = -1 ; #ifndef NRECIPROCAL do_recip = FALSE ; #endif /* check the input matrix */ if (AMD_valid (n_row, n_col, Ap, Ai) != AMD_OK) { /* matrix is invalid */ return (FALSE) ; } } Numeric->rsmin = rsmin ; Numeric->rsmax = rsmax ; #ifndef NRECIPROCAL Numeric->do_recip = do_recip ; #else Numeric->do_recip = FALSE ; #endif /* ---------------------------------------------------------------------- */ /* construct the inverse row Rperm_init permutation (use Frpos as temp) */ /* ---------------------------------------------------------------------- */ DEBUG3 (("\n\n===================LOAD_MATRIX:\n")) ; for (newrow = 0 ; newrow < n_row ; newrow++) { oldrow = Rperm_init [newrow] ; ASSERT (oldrow >= 0 && oldrow < n_row) ; Frpos [oldrow] = newrow ; } /* ---------------------------------------------------------------------- */ /* construct the diagonal imap if doing symmetric pivoting */ /* ---------------------------------------------------------------------- */ if (prefer_diagonal) { ASSERT (n_row == n_col) ; ASSERT (nempty_col == Symbolic->nempty_row) ; ASSERT (nempty_col == nempty) ; for (i = 0 ; i < nn ; i++) { Diagonal_map [i] = EMPTY ; Diagonal_imap [i] = EMPTY ; } for (k = n1 ; k < nn - nempty ; k++) { newrow = Symbolic->Diagonal_map [k] ; Diagonal_map [k] = newrow ; Diagonal_imap [newrow] = k ; } } /* ---------------------------------------------------------------------- */ /* allocate O (n_row) workspace at the tail end of Memory */ /* ---------------------------------------------------------------------- */ rpi = UMF_mem_alloc_tail_block (Numeric, UNITS (Int *, n_row+1)) ; rpx = UMF_mem_alloc_tail_block (Numeric, UNITS (Entry *, n_row+1)) ; if (!rpi || !rpx) { /* :: pattern change (out of memory for Rpx, Rpx) :: */ /* out of memory, which can only mean that the pattern has changed */ return (FALSE) ; /* pattern changed */ } Rpi = (Int **) (Memory + rpx) ; Rpx = (Entry **) (Memory + rpi) ; /* ---------------------------------------------------------------------- */ /* allocate the LU factors for the columns of the singletons */ /* ---------------------------------------------------------------------- */ DEBUG1 (("Allocating singletons:\n")) ; for (k = 0 ; k < n1 ; k++) { lnz = Cdeg [k] - 1 ; unz = Rdeg [k] - 1 ; DEBUG1 (("Singleton k "ID" pivrow "ID" pivcol "ID" cdeg "ID" rdeg " ID"\n", k, Rperm_init [k], Cperm_init [k], Cdeg [k], Rdeg [k])) ; ASSERT (unz >= 0 && lnz >= 0 && (lnz == 0 || unz == 0)) ; DEBUG1 ((" lnz "ID" unz "ID"\n", lnz, unz)) ; size = UNITS (Int, lnz) + UNITS (Entry, lnz) + UNITS (Int, unz) + UNITS (Entry, unz) ; p = UMF_mem_alloc_head_block (Numeric, size) ; DEBUG1 (("Kernel init head usage: "ID"\n", Numeric->ihead)) ; if (!p) { /* :: pattern change (out of memory for singletons) :: */ DEBUG0 (("Pattern has gotten larger - kernel init failed\n")) ; return (FALSE) ; /* pattern changed */ } Numeric->all_lnz += lnz ; Numeric->all_unz += unz ; /* allocate the column of L */ lip = p ; p += UNITS (Int, lnz) ; p += UNITS (Entry, lnz) ; /* allocate the row of U */ uip = p ; Rpi [k] = (Int *) (Memory + p) ; p += UNITS (Int, unz) ; Rpx [k] = (Entry *) (Memory + p) ; /* p += UNITS (Entry, unz) ; (not needed) */ /* a single column of L (no Lchains) */ Lip [k] = lip ; Lilen [k] = lnz ; /* a single row of L (no Uchains) */ Uip [k] = uip ; Uilen [k] = unz ; Wp [k] = unz ; /* save row and column inverse permutation */ k1 = ONES_COMPLEMENT (k) ; Rperm [k] = k1 ; /* aliased with Row_degree */ Cperm [k] = k1 ; /* aliased with Col_degree */ } /* ---------------------------------------------------------------------- */ /* current frontal matrix is empty */ /* ---------------------------------------------------------------------- */ e = 0 ; E [e] = 0 ; Work->Flublock = (Entry *) NULL ; Work->Flblock = (Entry *) NULL ; Work->Fublock = (Entry *) NULL ; Work->Fcblock = (Entry *) NULL ; /* ---------------------------------------------------------------------- */ /* allocate the column elements */ /* ---------------------------------------------------------------------- */ Esize = Symbolic->Esize ; empty_elements = FALSE ; for (k = n1 ; k < n_col - nempty_col ; k++) { e = k - n1 + 1 ; ASSERT (e < Work->elen) ; esize = Esize ? Esize [k-n1] : Cdeg [k] ; if (esize > 0) { /* allocate an element for this column */ E [e] = UMF_mem_alloc_element (Numeric, esize, 1, &Rows, &Cols, &C, &size, &ep) ; if (E [e] <= 0) { /* :: pattern change (out of memory for column elements) :: */ return (FALSE) ; /* pattern has changed */ } Cols [0] = k ; DEBUG0 (("Got column element e "ID" esize "ID"\n", e, esize)) ; } else { /* all rows in this column are dense, or empty */ E [e] = 0 ; empty_elements = TRUE ; DEBUG0 (("column element e is empty "ID"\n", e)) ; } } DEBUG0 (("e "ID" n_col "ID" nempty_col "ID" n1 "ID"\n", e, n_col, nempty_col, n1)) ; ASSERT (e == n_col - nempty_col - n1) ; /* ---------------------------------------------------------------------- */ /* allocate the row elements for dense rows of A (if any) */ /* ---------------------------------------------------------------------- */ if (Esize) { for (k = n1 ; k < n_row - nempty_row ; k++) { rdeg = Rdeg [k] ; if (rdeg > dense_row_threshold) { /* allocate an element for this dense row */ e++ ; ASSERT (e < Work->elen) ; E [e] = UMF_mem_alloc_element (Numeric, 1, rdeg, &Rows, &Cols, &C, &size, &ep) ; if (E [e] <= 0) { /* :: pattern change (out of memory for row elements) :: */ return (FALSE) ; /* pattern has changed */ } Rows [0] = k ; Rpi [k] = Cols ; Rpx [k] = C ; Wp [k] = rdeg ; DEBUG0 (("Got row element e "ID" rdeg "ID"\n", e, rdeg)) ; } } } /* elements are currently in the range 0 to e */ Work->nel = e ; /* ---------------------------------------------------------------------- */ /* create the first n1 columns of L and U */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { pivcol = Cperm_init [k] ; p2 = Ap [pivcol+1] ; /* get the kth column of L */ p = Lip [k] ; Li = (Int *) (Memory + p) ; lilen = Lilen [k] ; p += UNITS (Int, lilen) ; Lval = (Entry *) (Memory + p) ; llen = 0 ; for (pa = Ap [pivcol] ; pa < p2 ; pa++) { oldrow = Ai [pa] ; newrow = Frpos [oldrow] ; ASSIGN (x, Ax, Az, pa, split) ; /* scale the value using the scale factors, Rs */ if (do_scale) { #ifndef NRECIPROCAL if (do_recip) { SCALE (x, Rs [oldrow]) ; } else #endif { SCALE_DIV (x, Rs [oldrow]) ; } } if (newrow == k) { /* this is the pivot entry itself */ ASSERT (oldrow == Rperm_init [k]) ; D [k] = x ; } else if (newrow < k) { /* this entry goes in a row of U */ DEBUG1 (("Singleton row of U: k "ID" newrow "ID"\n", k, newrow)) ; if (--(Wp [newrow]) < 0) { /* :: pattern change (singleton row too lengthy) :: */ DEBUGm4 (("bad U singleton row (too lengthy)\n")) ; return (FALSE) ; /* pattern changed */ } *(Rpi [newrow]++) = k ; *(Rpx [newrow]++) = x ; } else { /* this entry goes in a column of L */ DEBUG1 (("Singleton col of L: k "ID" newrow "ID"\n", k, newrow)) ; if (llen >= lilen) { DEBUGm4 (("bad L singleton col (too lengthy)\n")) ; return (FALSE) ; /* pattern changed */ } Li [llen] = newrow ; Lval [llen] = x ; llen++ ; } } if (llen != lilen) { /* :: pattern change (singleton column too lengthy) :: */ DEBUGm4 (("bad L singleton col (too short)\n")) ; return (FALSE) ; /* pattern changed */ } /* scale the column of L */ if (llen > 0) { pivot_value = D [k] ; UMF_scale (llen, pivot_value, Lval) ; } } /* ---------------------------------------------------------------------- */ /* allocate the elements and copy the columns of A */ /* ---------------------------------------------------------------------- */ /* also apply the row and column pre-ordering. */ for (k = n1 ; k < n_col ; k++) { /* The newcol is k, which is what the name of the column is in the * UMFPACK kernel. The user's name for the column is oldcol. */ oldcol = Cperm_init [k] ; ASSERT (oldcol >= 0 && oldcol < n_col) ; p2 = Ap [oldcol+1] ; cdeg = Cdeg [k] ; ASSERT (cdeg >= 0) ; ASSERT (IMPLIES ( (Symbolic->ordering != UMFPACK_ORDERING_GIVEN) && n1 > 0, cdeg > 1 || cdeg == 0)) ; /* if fixQ: set Col_degree to 0 for the NON_PIVOTAL_COL macro */ Col_degree [k] = fixQ ? 0 : cdeg ; /* get the element for this column (if any) */ e = k - n1 + 1 ; if (k < n_col - nempty_col) { esize = Esize ? Esize [k-n1] : cdeg ; if (E [e]) { Int ncols, nrows ; Unit *pp ; pp = Memory + E [e] ; GET_ELEMENT (ep, pp, Cols, Rows, ncols, nrows, C) ; ASSERT (ncols == 1) ; ASSERT (nrows == esize) ; ASSERT (Cols [0] == k) ; } } else { ASSERT (cdeg == 0) ; esize = 0 ; } clen = 0 ; for (pa = Ap [oldcol] ; pa < p2 ; pa++) { oldrow = Ai [pa] ; newrow = Frpos [oldrow] ; ASSIGN (x, Ax, Az, pa, split) ; /* scale the value using the scale factors, Rs */ if (do_scale) { #ifndef NRECIPROCAL if (do_recip) { /* multiply by the reciprocal */ SCALE (x, Rs [oldrow]) ; } else #endif { /* divide instead */ SCALE_DIV (x, Rs [oldrow]) ; } } rdeg = Rdeg [newrow] ; if (newrow < n1 || rdeg > dense_row_threshold) { /* this entry goes in a row of U or into a dense row */ DEBUG1 (("Singleton/dense row of U: k "ID" newrow "ID"\n", k, newrow)) ; if (--(Wp [newrow]) < 0) { DEBUGm4 (("bad row of U or A (too lengthy)\n")) ; return (FALSE) ; /* pattern changed */ } *(Rpi [newrow]++) = k ; *(Rpx [newrow]++) = x ; } else { /* this entry goes in an initial element */ DEBUG1 (("In element k "ID" e "ID" newrow "ID"\n", k, e, newrow)) ; if (clen >= esize) { DEBUGm4 (("bad A column (too lengthy)\n")) ; return (FALSE) ; /* pattern changed */ } ASSERT (E [e]) ; ASSERT (k < n_col - nempty_col) ; Rows [clen] = newrow ; C [clen] = x ; clen++ ; #ifndef NDEBUG if (Diagonal_map && (newrow == Diagonal_map [k])) { DEBUG0 (("Diagonal: old: row "ID" col "ID" : " "new: row "ID" col "ID" : ", oldrow, oldcol, newrow, k)) ; EDEBUGk (0, x) ; } #endif } } if (clen != esize) { /* :: pattern change (singleton column too short) :: */ DEBUGm4 (("bad A column (too short)\n")) ; return (FALSE) ; /* pattern changed */ } } /* ---------------------------------------------------------------------- */ /* free the Rpi and Rpx workspace at the tail end of memory */ /* ---------------------------------------------------------------------- */ UMF_mem_free_tail_block (Numeric, rpi) ; UMF_mem_free_tail_block (Numeric, rpx) ; /* ---------------------------------------------------------------------- */ /* prune zeros and small entries from the singleton rows and columns */ /* ---------------------------------------------------------------------- */ if (n1 > 0) { pnew = Lip [0] ; ASSERT (pnew == 1) ; for (k = 0 ; k < n1 ; k++) { DEBUGm4 (("\nPrune singleton L col "ID"\n", k)) ; pnew = packsp (pnew, &Lip [k], &Lilen [k], drop, droptol, Memory) ; Numeric->lnz += Lilen [k] ; DEBUGm4 (("\nPrune singleton U row "ID"\n", k)) ; pnew = packsp (pnew, &Uip [k], &Uilen [k], drop, droptol, Memory) ; Numeric->unz += Uilen [k] ; } /* free the unused space at the head of memory */ Numeric->ihead = pnew ; } /* ---------------------------------------------------------------------- */ /* initialize row degrees */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { if (Wp [k] != 0) { /* :: pattern change (singleton row too short) :: */ DEBUGm4 (("bad U singleton row (too short)\n")) ; return (FALSE) ; /* pattern changed */ } } for (k = n1 ; k < n_row ; k++) { DEBUG1 (("Initial row degree k "ID" oldrow "ID" Rdeg "ID"\n", k, Rperm_init [k], Rdeg [k])) ; rdeg = Rdeg [k] ; Row_degree [k] = rdeg ; if (rdeg > dense_row_threshold && Wp [k] != 0) { /* :: pattern change (dense row too short) :: */ DEBUGm4 (("bad dense row (too short)\n")) ; return (FALSE) ; /* pattern changed */ } } #ifndef NDEBUG if (prefer_diagonal) { Entry aij ; Int *InvCperm, newcol ; UMF_dump_diagonal_map (Diagonal_map, Diagonal_imap, n1, nn, nempty) ; InvCperm = (Int *) malloc (n_col * sizeof (Int)) ; ASSERT (InvCperm != (Int *) NULL) ; for (newcol = 0 ; newcol < n_col ; newcol++) { oldcol = Cperm_init [newcol] ; InvCperm [oldcol] = newcol ; } DEBUGm3 (("Diagonal of P2*A:\n")) ; for (oldcol = 0 ; oldcol < n_col ; oldcol++) { newcol = InvCperm [oldcol] ; for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { oldrow = Ai [p] ; newrow = Frpos [oldrow] ; ASSIGN (aij, Ax, Az, p, split) ; if (newrow == Diagonal_map [newcol]) { DEBUG0 (("old row "ID" col "ID" new row "ID" col "ID, oldrow, oldcol, newrow, newcol)) ; EDEBUGk (0, aij) ; DEBUG0 ((" scaled ")) ; if (do_scale) { #ifndef NRECIPROCAL if (do_recip) { SCALE (aij, Rs [oldrow]) ; } else #endif { SCALE_DIV (aij, Rs [oldrow]) ; } } EDEBUGk (0, aij) ; DEBUG0 (("\n")) ; } } } free (InvCperm) ; } #endif Col_degree [n_col] = 0 ; /* ---------------------------------------------------------------------- */ /* pack the element name space */ /* ---------------------------------------------------------------------- */ if (empty_elements) { Int e2 = 0 ; DEBUG0 (("\n\n============= Packing element space\n")) ; for (e = 1 ; e <= Work->nel ; e++) { if (E [e]) { e2++ ; E [e2] = E [e] ; } } Work->nel = e2 ; } #ifndef NDEBUG DEBUG0 (("Number of initial elements: "ID"\n", Work->nel)) ; for (e = 0 ; e <= Work->nel ; e++) UMF_dump_element (Numeric, Work,e,TRUE) ; #endif for (e = Work->nel + 1 ; e < Work->elen ; e++) { E [e] = 0 ; } /* Frpos no longer needed */ for (row = 0 ; row <= n_row ; row++) { Frpos [row] = EMPTY ; } /* clear Wp */ for (i = 0 ; i <= nn ; i++) { Wp [i] = EMPTY ; } DEBUG1 (("Kernel init head usage: "ID"\n", Numeric->ihead)) ; /* ---------------------------------------------------------------------- */ /* build the tuple lists */ /* ---------------------------------------------------------------------- */ /* if the memory usage changes, then the pattern has changed */ (void) UMF_tuple_lengths (Numeric, Work, &unused) ; if (!UMF_build_tuples (Numeric, Work)) { /* :: pattern change (out of memory in umf_build_tuples) :: */ /* We ran out of memory, which can only mean that */ /* the pattern (Ap and or Ai) has changed (gotten larger). */ DEBUG0 (("Pattern has gotten larger - build tuples failed\n")) ; return (FALSE) ; /* pattern changed */ } Numeric->init_usage = Numeric->max_usage ; /* ---------------------------------------------------------------------- */ /* construct the row merge sets */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i <= Symbolic->nfr ; i++) { Work->Front_new1strow [i] = Symbolic->Front_1strow [i] ; } #ifndef NDEBUG UMF_dump_rowmerge (Numeric, Symbolic, Work) ; DEBUG6 (("Column form of original matrix:\n")) ; UMF_dump_col_matrix (Ax, #ifdef COMPLEX Az, #endif Ai, Ap, n_row, n_col, nz) ; UMF_dump_memory (Numeric) ; UMF_dump_matrix (Numeric, Work, FALSE) ; DEBUG0 (("kernel init done...\n")) ; #endif return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_kernel_init.h0000644001170100242450000000116410617161663017631 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_kernel_init ( const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umf_init_front.c0000644001170100242450000002003610677541615017500 0ustar davisfac/* ========================================================================== */ /* === UMF_init_front ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include "umf_internal.h" #include "umf_init_front.h" #include "umf_grow_front.h" /* ========================================================================== */ /* === zero_init_front ====================================================== */ /* ========================================================================== */ /* Set the initial frontal matrix to zero. */ PRIVATE void zero_init_front (Int m, Int n, Entry *Fcblock, Int d) { Int i, j ; Entry *F, *Fj = Fcblock ; for (j = 0 ; j < m ; j++) { F = Fj ; Fj += d ; for (i = 0 ; i < n ; i++) { /* CLEAR (Fcblock [i + j*d]) ; */ CLEAR (*F) ; F++ ; } } } /* ========================================================================== */ /* === UMF_init_front ======================================================= */ /* ========================================================================== */ GLOBAL Int UMF_init_front ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int i, j, fnr_curr, row, col, *Frows, *Fcols, *Fcpos, *Frpos, fncols, fnrows, *Wrow, fnr2, fnc2, rrdeg, ccdeg, *Wm, fnrows_extended ; Entry *Fcblock, *Fl, *Wy, *Wx ; /* ---------------------------------------------------------------------- */ /* get current frontal matrix and check for frontal growth */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG0 (("INIT FRONT\n")) ; DEBUG1 (("CURR before init:\n")) ; UMF_dump_current_front (Numeric, Work, FALSE) ; #endif if (Work->do_grow) { fnr2 = UMF_FRONTAL_GROWTH * Work->fnrows_new + 2 ; fnc2 = UMF_FRONTAL_GROWTH * Work->fncols_new + 2 ; if (!UMF_grow_front (Numeric, fnr2, fnc2, Work, Work->pivrow_in_front ? 2 : 0)) { /* :: out of memory in umf_init_front :: */ DEBUGm4 (("out of memory: init front\n")) ; return (FALSE) ; } } #ifndef NDEBUG DEBUG1 (("CURR after grow:\n")) ; UMF_dump_current_front (Numeric, Work, FALSE) ; DEBUG1 (("fnrows new "ID" fncols new "ID"\n", Work->fnrows_new, Work->fncols_new)) ; #endif ASSERT (Work->fnpiv == 0) ; fnr_curr = Work->fnr_curr ; ASSERT (Work->fnrows_new + 1 <= fnr_curr) ; ASSERT (Work->fncols_new + 1 <= Work->fnc_curr) ; ASSERT (fnr_curr >= 0) ; ASSERT (fnr_curr % 2 == 1) ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ /* current front is defined by pivot row and column */ Frows = Work->Frows ; Fcols = Work->Fcols ; Frpos = Work->Frpos ; Fcpos = Work->Fcpos ; Work->fnzeros = 0 ; ccdeg = Work->ccdeg ; rrdeg = Work->rrdeg ; fnrows = Work->fnrows ; fncols = Work->fncols ; /* if both pivrow and pivcol are in front, then we extend the old one */ /* in UMF_extend_front, rather than starting a new one here. */ ASSERT (! (Work->pivrow_in_front && Work->pivcol_in_front)) ; /* ---------------------------------------------------------------------- */ /* place pivot column pattern in frontal matrix */ /* ---------------------------------------------------------------------- */ Fl = Work->Flblock ; if (Work->pivcol_in_front) { /* Append the pivot column extension. * Note that all we need to do is increment the size, since the * candidate pivot column pattern is already in place in * Frows [0 ... fnrows-1] (the old pattern), and * Frows [fnrows ... fnrows + Work->ccdeg - 1] (the new * pattern). Frpos is also properly defined. */ /* make a list of the new rows to scan */ Work->fscan_row = fnrows ; /* only scan the new rows */ Work->NewRows = Work->Wrp ; Wy = Work->Wy ; for (i = 0 ; i < fnrows ; i++) { Fl [i] = Wy [i] ; } fnrows_extended = fnrows + ccdeg ; for (i = fnrows ; i < fnrows_extended ; i++) { Fl [i] = Wy [i] ; /* flip the row index, since Wrp must be < 0 */ row = Frows [i] ; Work->NewRows [i] = FLIP (row) ; } fnrows = fnrows_extended ; } else { /* this is a completely new column */ Work->fscan_row = 0 ; /* scan all the rows */ Work->NewRows = Frows ; Wm = Work->Wm ; Wx = Work->Wx ; for (i = 0 ; i < ccdeg ; i++) { Fl [i] = Wx [i] ; row = Wm [i] ; Frows [i] = row ; Frpos [row] = i ; } fnrows = ccdeg ; } Work->fnrows = fnrows ; #ifndef NDEBUG DEBUG3 (("New Pivot col "ID" now in front, length "ID"\n", Work->pivcol, fnrows)) ; for (i = 0 ; i < fnrows ; i++) { DEBUG4 ((" "ID": row "ID"\n", i, Frows [i])) ; ASSERT (Frpos [Frows [i]] == i) ; } #endif /* ---------------------------------------------------------------------- */ /* place pivot row pattern in frontal matrix */ /* ---------------------------------------------------------------------- */ Wrow = Work->Wrow ; if (Work->pivrow_in_front) { /* append the pivot row extension */ Work->fscan_col = fncols ; /* only scan the new columns */ Work->NewCols = Work->Wp ; #ifndef NDEBUG for (j = 0 ; j < fncols ; j++) { col = Fcols [j] ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (Fcpos [col] == j * fnr_curr) ; } #endif /* Wrow == Fcol for the IN_IN case, and for the OUT_IN case when * the pivrow [IN][IN] happens to be the same as pivrow [OUT][IN]. * See UMF_local_search for more details. */ ASSERT (IMPLIES (Work->pivcol_in_front, Wrow == Fcols)) ; if (Wrow == Fcols) { for (j = fncols ; j < rrdeg ; j++) { col = Wrow [j] ; /* Fcols [j] = col ; not needed */ /* flip the col index, since Wp must be < 0 */ Work->NewCols [j] = FLIP (col) ; Fcpos [col] = j * fnr_curr ; } } else { for (j = fncols ; j < rrdeg ; j++) { col = Wrow [j] ; Fcols [j] = col ; /* flip the col index, since Wp must be < 0 */ Work->NewCols [j] = FLIP (col) ; Fcpos [col] = j * fnr_curr ; } } } else { /* this is a completely new row */ Work->fscan_col = 0 ; /* scan all the columns */ Work->NewCols = Fcols ; for (j = 0 ; j < rrdeg ; j++) { col = Wrow [j] ; Fcols [j] = col ; Fcpos [col] = j * fnr_curr ; } } DEBUGm1 (("rrdeg "ID" fncols "ID"\n", rrdeg, fncols)) ; fncols = rrdeg ; Work->fncols = fncols ; /* ---------------------------------------------------------------------- */ /* clear the frontal matrix */ /* ---------------------------------------------------------------------- */ ASSERT (fnrows == Work->fnrows_new + 1) ; ASSERT (fncols == Work->fncols_new + 1) ; Fcblock = Work->Fcblock ; ASSERT (Fcblock != (Entry *) NULL) ; zero_init_front (fncols, fnrows, Fcblock, fnr_curr) ; #ifndef NDEBUG DEBUG3 (("New Pivot row "ID" now in front, length "ID" fnr_curr "ID"\n", Work->pivrow, fncols, fnr_curr)) ; for (j = 0 ; j < fncols ; j++) { DEBUG4 (("col "ID" position "ID"\n", j, Fcols [j])) ; ASSERT (Fcpos [Fcols [j]] == j * fnr_curr) ; } #endif /* ---------------------------------------------------------------------- */ /* current workspace usage: */ /* ---------------------------------------------------------------------- */ /* Fcblock [0..fnr_curr-1, 0..fnc_curr-1]: space for the new frontal * matrix. Fcblock (i,j) is located at Fcblock [i+j*fnr_curr] */ return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_init_front.h0000644001170100242450000000074310617161634017501 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_init_front ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_transpose.c0000644001170100242450000002145510677542446017354 0ustar davisfac/* ========================================================================== */ /* === UMF_transpose ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Not user-callable. Computes a permuted transpose, R = (A (P,Q(1:nq)))' in MATLAB notation, where R is in column-form. A is n_row-by-n_col, the row-form matrix R is n_row-by-nq, where nq <= n_col. A may be singular. The complex version can do transpose (') or array transpose (.'). Uses Gustavson's method (Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition, ACM Trans. on Math. Softw., vol 4, no 3, pp. 250-269). */ #include "umf_internal.h" #include "umf_transpose.h" #include "umf_is_permutation.h" GLOBAL Int UMF_transpose ( Int n_row, /* A is n_row-by-n_col */ Int n_col, const Int Ap [ ], /* size n_col+1 */ const Int Ai [ ], /* size nz = Ap [n_col] */ const double Ax [ ], /* size nz if present */ const Int P [ ], /* P [k] = i means original row i is kth row in A(P,Q)*/ /* P is identity if not present */ /* size n_row, if present */ const Int Q [ ], /* Q [k] = j means original col j is kth col in A(P,Q)*/ /* Q is identity if not present */ /* size nq, if present */ Int nq, /* size of Q, ignored if Q is (Int *) NULL */ /* output matrix: Rp, Ri, Rx, and Rz: */ Int Rp [ ], /* size n_row+1 */ Int Ri [ ], /* size nz */ double Rx [ ], /* size nz, if present */ Int W [ ], /* size max (n_row,n_col) workspace */ Int check /* if true, then check inputs */ #ifdef COMPLEX , const double Az [ ] /* size nz */ , double Rz [ ] /* size nz */ , Int do_conjugate /* if true, then do conjugate transpose */ /* otherwise, do array transpose */ #endif ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int i, j, k, p, bp, newj, do_values ; #ifdef COMPLEX Int split ; #endif /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG Int nz ; ASSERT (n_col >= 0) ; nz = (Ap != (Int *) NULL) ? Ap [n_col] : 0 ; DEBUG2 (("UMF_transpose: "ID"-by-"ID" nz "ID"\n", n_row, n_col, nz)) ; #endif if (check) { /* UMFPACK_symbolic skips this check */ /* UMFPACK_transpose always does this check */ if (!Ai || !Ap || !Ri || !Rp || !W) { return (UMFPACK_ERROR_argument_missing) ; } if (n_row <= 0 || n_col <= 0) /* n_row,n_col must be > 0 */ { return (UMFPACK_ERROR_n_nonpositive) ; } if (!UMF_is_permutation (P, W, n_row, n_row) || !UMF_is_permutation (Q, W, nq, nq)) { return (UMFPACK_ERROR_invalid_permutation) ; } if (AMD_valid (n_row, n_col, Ap, Ai) != AMD_OK) { return (UMFPACK_ERROR_invalid_matrix) ; } } #ifndef NDEBUG DEBUG2 (("UMF_transpose, input matrix:\n")) ; UMF_dump_col_matrix (Ax, #ifdef COMPLEX Az, #endif Ai, Ap, n_row, n_col, nz) ; #endif /* ---------------------------------------------------------------------- */ /* count the entries in each row of A */ /* ---------------------------------------------------------------------- */ /* use W as workspace for RowCount */ for (i = 0 ; i < n_row ; i++) { W [i] = 0 ; Rp [i] = 0 ; } if (Q != (Int *) NULL) { for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; ASSERT (i >= 0 && i < n_row) ; W [i]++ ; } } } else { for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; ASSERT (i >= 0 && i < n_row) ; W [i]++ ; } } } /* ---------------------------------------------------------------------- */ /* compute the row pointers for R = A (P,Q) */ /* ---------------------------------------------------------------------- */ if (P != (Int *) NULL) { Rp [0] = 0 ; for (k = 0 ; k < n_row ; k++) { i = P [k] ; ASSERT (i >= 0 && i < n_row) ; Rp [k+1] = Rp [k] + W [i] ; } for (k = 0 ; k < n_row ; k++) { i = P [k] ; ASSERT (i >= 0 && i < n_row) ; W [i] = Rp [k] ; } } else { Rp [0] = 0 ; for (i = 0 ; i < n_row ; i++) { Rp [i+1] = Rp [i] + W [i] ; } for (i = 0 ; i < n_row ; i++) { W [i] = Rp [i] ; } } ASSERT (Rp [n_row] <= Ap [n_col]) ; /* at this point, W holds the permuted row pointers */ /* ---------------------------------------------------------------------- */ /* construct the row form of B */ /* ---------------------------------------------------------------------- */ do_values = Ax && Rx ; #ifdef COMPLEX split = SPLIT (Az) && SPLIT (Rz) ; if (do_conjugate && do_values) { if (Q != (Int *) NULL) { if (split) { /* R = A (P,Q)' */ for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = newj ; Rx [bp] = Ax [p] ; Rz [bp] = -Az [p] ; } } } else { /* R = A (P,Q)' (merged complex values) */ for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = newj ; Rx [2*bp] = Ax [2*p] ; Rx [2*bp+1] = -Ax [2*p+1] ; } } } } else { if (split) { /* R = A (P,:)' */ for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = j ; Rx [bp] = Ax [p] ; Rz [bp] = -Az [p] ; } } } else { /* R = A (P,:)' (merged complex values) */ for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = j ; Rx [2*bp] = Ax [2*p] ; Rx [2*bp+1] = -Ax [2*p+1] ; } } } } } else #endif { if (Q != (Int *) NULL) { if (do_values) { #ifdef COMPLEX if (split) #endif { /* R = A (P,Q).' */ for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = newj ; Rx [bp] = Ax [p] ; #ifdef COMPLEX Rz [bp] = Az [p] ; #endif } } } #ifdef COMPLEX else { /* R = A (P,Q).' (merged complex values) */ for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = newj ; Rx [2*bp] = Ax [2*p] ; Rx [2*bp+1] = Ax [2*p+1] ; } } } #endif } else { /* R = pattern of A (P,Q).' */ for (newj = 0 ; newj < nq ; newj++) { j = Q [newj] ; ASSERT (j >= 0 && j < n_col) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ri [W [Ai [p]]++] = newj ; } } } } else { if (do_values) { #ifdef COMPLEX if (split) #endif { /* R = A (P,:).' */ for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = j ; Rx [bp] = Ax [p] ; #ifdef COMPLEX Rz [bp] = Az [p] ; #endif } } } #ifdef COMPLEX else { /* R = A (P,:).' (merged complex values) */ for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { bp = W [Ai [p]]++ ; Ri [bp] = j ; Rx [2*bp] = Ax [2*p] ; Rx [2*bp+1] = Ax [2*p+1] ; } } } #endif } else { /* R = pattern of A (P,:).' */ for (j = 0 ; j < n_col ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { Ri [W [Ai [p]]++] = j ; } } } } } #ifndef NDEBUG for (k = 0 ; k < n_row ; k++) { if (P != (Int *) NULL) { i = P [k] ; } else { i = k ; } DEBUG3 ((ID": W[i] "ID" Rp[k+1] "ID"\n", i, W [i], Rp [k+1])) ; ASSERT (W [i] == Rp [k+1]) ; } DEBUG2 (("UMF_transpose, output matrix:\n")) ; UMF_dump_col_matrix (Rx, #ifdef COMPLEX Rz, #endif Ri, Rp, n_col, n_row, Rp [n_row]) ; ASSERT (AMD_valid (n_col, n_row, Rp, Ri) == AMD_OK) ; #endif return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_transpose.h0000644001170100242450000000137110617162452017341 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_transpose ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], const Int P [ ], const Int Q [ ], Int nq, Int Rp [ ], Int Ri [ ], double Rx [ ], Int W [ ], Int check #ifdef COMPLEX , const double Az [ ] , double Rz [ ] , Int do_conjugate #endif ) ; SuiteSparse/UMFPACK/Source/umfpack_col_to_triplet.c0000644001170100242450000000372010677542010021175 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_col_to_triplet =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User callable. Converts a column-oriented input matrix to triplet form by constructing the column indices Tj from the column pointers Ap. The matrix may be singular. See umfpack_col_to_triplet.h for details. */ #include "umf_internal.h" GLOBAL Int UMFPACK_col_to_triplet ( Int n_col, const Int Ap [ ], Int Tj [ ] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int nz, j, p, p1, p2, length ; /* ---------------------------------------------------------------------- */ /* construct the column indices */ /* ---------------------------------------------------------------------- */ if (!Ap || !Tj) { return (UMFPACK_ERROR_argument_missing) ; } if (n_col <= 0) { return (UMFPACK_ERROR_n_nonpositive) ; } if (Ap [0] != 0) { return (UMFPACK_ERROR_invalid_matrix) ; } nz = Ap [n_col] ; if (nz < 0) { return (UMFPACK_ERROR_invalid_matrix) ; } for (j = 0 ; j < n_col ; j++) { p1 = Ap [j] ; p2 = Ap [j+1] ; length = p2 - p1 ; if (length < 0 || p2 > nz) { return (UMFPACK_ERROR_invalid_matrix) ; } for (p = p1 ; p < p2 ; p++) { Tj [p] = j ; } } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_get_numeric.c0000644001170100242450000006532010617162056020462 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_get_numeric ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Gets the LU factors and the permutation vectors held in the Numeric object. L is returned in sparse row form with sorted rows, U is returned in sparse column form with sorted columns, and P and Q are returned as permutation vectors. See umfpack_get_numeric.h for a more detailed description. Returns TRUE if successful, FALSE if the Numeric object is invalid or if out of memory. Dynamic memory usage: calls UMF_malloc twice, for a total space of 2*n integers, and then frees all of it via UMF_free when done. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_malloc.h" #include "umf_free.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif PRIVATE void get_L ( Int Lp [ ], Int Lj [ ], double Lx [ ], #ifdef COMPLEX double Lz [ ], #endif NumericType *Numeric, Int Pattern [ ], Int Wi [ ] ) ; PRIVATE void get_U ( Int Up [ ], Int Ui [ ], double Ux [ ], #ifdef COMPLEX double Uz [ ], #endif NumericType *Numeric, Int Pattern [ ], Int Wi [ ] ) ; /* ========================================================================== */ /* === UMFPACK_get_numeric ================================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_get_numeric ( Int Lp [ ], Int Lj [ ], double Lx [ ], #ifdef COMPLEX double Lz [ ], #endif Int Up [ ], Int Ui [ ], double Ux [ ], #ifdef COMPLEX double Uz [ ], #endif Int P [ ], Int Q [ ], double Dx [ ], #ifdef COMPLEX double Dz [ ], #endif Int *p_do_recip, double Rs [ ], void *NumericHandle ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ NumericType *Numeric ; Int getL, getU, *Rperm, *Cperm, k, nn, n_row, n_col, *Wi, *Pattern, n_inner ; double *Rs1 ; Entry *D ; #ifndef NDEBUG init_count = UMF_malloc_count ; #endif Wi = (Int *) NULL ; Pattern = (Int *) NULL ; /* ---------------------------------------------------------------------- */ /* check input parameters */ /* ---------------------------------------------------------------------- */ Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { return (UMFPACK_ERROR_invalid_Numeric_object) ; } n_row = Numeric->n_row ; n_col = Numeric->n_col ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ getL = Lp && Lj && Lx ; getU = Up && Ui && Ux ; if (getL || getU) { Wi = (Int *) UMF_malloc (nn, sizeof (Int)) ; Pattern = (Int *) UMF_malloc (nn, sizeof (Int)) ; if (!Wi || !Pattern) { (void) UMF_free ((void *) Wi) ; (void) UMF_free ((void *) Pattern) ; ASSERT (UMF_malloc_count == init_count) ; DEBUGm4 (("out of memory: get numeric\n")) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 2) ; } /* ---------------------------------------------------------------------- */ /* get contents of Numeric */ /* ---------------------------------------------------------------------- */ if (P != (Int *) NULL) { Rperm = Numeric->Rperm ; for (k = 0 ; k < n_row ; k++) { P [k] = Rperm [k] ; } } if (Q != (Int *) NULL) { Cperm = Numeric->Cperm ; for (k = 0 ; k < n_col ; k++) { Q [k] = Cperm [k] ; } } if (getL) { get_L (Lp, Lj, Lx, #ifdef COMPLEX Lz, #endif Numeric, Pattern, Wi) ; } if (getU) { get_U (Up, Ui, Ux, #ifdef COMPLEX Uz, #endif Numeric, Pattern, Wi) ; } if (Dx != (double *) NULL) { D = Numeric->D ; #ifdef COMPLEX if (SPLIT (Dz)) { for (k = 0 ; k < n_inner ; k++) { Dx [k] = REAL_COMPONENT (D [k]) ; Dz [k] = IMAG_COMPONENT (D [k]) ; } } else { for (k = 0 ; k < n_inner ; k++) { Dx [2*k ] = REAL_COMPONENT (D [k]) ; Dx [2*k+1] = IMAG_COMPONENT (D [k]) ; } } #else { D = Numeric->D ; for (k = 0 ; k < n_inner ; k++) { Dx [k] = D [k] ; } } #endif } /* return the flag stating whether the scale factors are to be multiplied, * or divided. If do_recip is TRUE, multiply. Otherwise, divided. * If NRECIPROCAL is defined at compile time, the scale factors are always * to be used by dividing. */ if (p_do_recip != (Int *) NULL) { #ifndef NRECIPROCAL *p_do_recip = Numeric->do_recip ; #else *p_do_recip = FALSE ; #endif } if (Rs != (double *) NULL) { Rs1 = Numeric->Rs ; if (Rs1 == (double *) NULL) { /* R is the identity matrix. */ for (k = 0 ; k < n_row ; k++) { Rs [k] = 1.0 ; } } else { for (k = 0 ; k < n_row ; k++) { Rs [k] = Rs1 [k] ; } } } /* ---------------------------------------------------------------------- */ /* free the workspace */ /* ---------------------------------------------------------------------- */ (void) UMF_free ((void *) Wi) ; (void) UMF_free ((void *) Pattern) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_OK) ; } /* ========================================================================== */ /* === get_L ================================================================ */ /* ========================================================================== */ /* The matrix L is stored in the following arrays in the Numeric object: Int Lpos [0..npiv] Int Lip [0..npiv], index into Numeric->Memory Int Lilen [0..npiv] Unit *(Numeric->Memory), pointer to memory space holding row indices and numerical values where npiv is the number of pivot entries found. If A is n_row-by-n_col, then npiv <= MIN (n_row,n_col). Let L_k denote the pattern of entries in column k of L (excluding the diagonal). An Lchain is a sequence of columns of L whose nonzero patterns are related. The start of an Lchain is denoted by a negative value of Lip [k]. To obtain L_k: (1) If column k starts an Lchain, then L_k is stored in its entirety. |Lip [k]| is an index into Numeric->Memory for the integer row indices in L_k. The number of entries in the column is |L_k| = Lilen [k]. This defines the pattern of the "leading" column of this chain. Lpos [k] is not used for the first column in the chain. Column zero is always a leading column. (2) If column k does not start an Lchain, then L_k is represented as a superset of L_k-1. Define Lnew_k such that (L_k-1 - {k} union Lnew_k) = L_k, where Lnew_k and (L_k-1)-{k} are disjoint. Lnew_k are the entries in L_k that are not in L_k-1. Lpos [k] holds the position of pivot row index k in the prior pattern L_k-1 (if it is present), so that the set subtraction (L_k-1)-{k} can be computed quickly, when computing the pattern of L_k from L_k-1. The number of new entries in L_k is stored in Lilen [k] = |Lnew_k|. Note that this means we must have the pattern L_k-1 to compute L_k. In both cases (1) and (2), we obtain the pattern L_k. The numerical values are stored in Numeric->Memory, starting at the index |Lip [k]| + Lilen [k]. It is stored in the same order as the entries in L_k, after L_k is obtained from cases (1) or (2), above. The advantage of using this "packed" data structure is that it can dramatically reduce the amount of storage needed for the pattern of L. The disadvantage is that it can be difficult for the user to access, and it does not match the sparse matrix data structure used in MATLAB. Thus, this routine is provided to create a conventional sparse matrix data structure for L, in sparse-row form. A row-form of L appears to MATLAB to be a column-oriented from of the transpose of L. If you would like a column-form of L, then use UMFPACK_transpose (an example of this is in umfpackmex.c). */ /* ========================================================================== */ PRIVATE void get_L ( Int Lp [ ], /* of size n_row+1 */ Int Lj [ ], /* of size lnz, where lnz = Lp [n_row] */ double Lx [ ], /* of size lnz */ #ifdef COMPLEX double Lz [ ], /* of size lnz */ #endif NumericType *Numeric, Int Pattern [ ], /* workspace of size n_row */ Int Wi [ ] /* workspace of size n_row */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry value ; Entry *xp, *Lval ; Int deg, *ip, j, row, n_row, n_col, n_inner, *Lpos, *Lilen, *Lip, p, llen, lnz2, lp, newLchain, k, pos, npiv, *Li, n1 ; #ifdef COMPLEX Int split = SPLIT (Lz) ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ DEBUG4 (("get_L start:\n")) ; n_row = Numeric->n_row ; n_col = Numeric->n_col ; n_inner = MIN (n_row, n_col) ; npiv = Numeric->npiv ; n1 = Numeric->n1 ; Lpos = Numeric->Lpos ; Lilen = Numeric->Lilen ; Lip = Numeric->Lip ; deg = 0 ; /* ---------------------------------------------------------------------- */ /* count the nonzeros in each row of L */ /* ---------------------------------------------------------------------- */ #pragma ivdep for (row = 0 ; row < n_inner ; row++) { /* include the diagonal entry in the row counts */ Wi [row] = 1 ; } #pragma ivdep for (row = n_inner ; row < n_row ; row++) { Wi [row] = 0 ; } /* singletons */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; deg = Lilen [k] ; if (deg > 0) { lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { row = Li [j] ; value = Lval [j] ; DEBUG4 ((" row "ID" k "ID" value", row, k)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [row]++ ; } } } } /* non-singletons */ for (k = n1 ; k < npiv ; k++) { /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; } /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (!newLchain) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k && row < n_row) ; Pattern [deg++] = row ; } xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; row = Pattern [j] ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [row]++ ; } } } /* ---------------------------------------------------------------------- */ /* construct the final row form of L */ /* ---------------------------------------------------------------------- */ /* create the row pointers */ lnz2 = 0 ; for (row = 0 ; row < n_row ; row++) { Lp [row] = lnz2 ; lnz2 += Wi [row] ; Wi [row] = Lp [row] ; } Lp [n_row] = lnz2 ; ASSERT (Numeric->lnz + n_inner == lnz2) ; /* add entries from the rows of L (singletons) */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; deg = Lilen [k] ; if (deg > 0) { lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { row = Li [j] ; value = Lval [j] ; DEBUG4 ((" row "ID" k "ID" value", row, k)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = Wi [row]++ ; Lj [p] = k ; #ifdef COMPLEX if (split) { Lx [p] = REAL_COMPONENT (value) ; Lz [p] = IMAG_COMPONENT (value) ; } else { Lx [2*p ] = REAL_COMPONENT (value) ; Lx [2*p+1] = IMAG_COMPONENT (value) ; } #else Lx [p] = value ; #endif } } } } /* add entries from the rows of L (non-singletons) */ for (k = n1 ; k < npiv ; k++) { /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; } /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (!newLchain) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k) ; Pattern [deg++] = row ; } xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; row = Pattern [j] ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = Wi [row]++ ; Lj [p] = k ; #ifdef COMPLEX if (split) { Lx [p] = REAL_COMPONENT (value) ; Lz [p] = IMAG_COMPONENT (value) ; } else { Lx [2*p ] = REAL_COMPONENT (value) ; Lx [2*p+1] = IMAG_COMPONENT (value) ; } #else Lx [p] = value ; #endif } } } /* add all of the diagonal entries (L is unit diagonal) */ for (row = 0 ; row < n_inner ; row++) { p = Wi [row]++ ; Lj [p] = row ; #ifdef COMPLEX if (split) { Lx [p] = 1. ; Lz [p] = 0. ; } else { Lx [2*p ] = 1. ; Lx [2*p+1] = 0. ; } #else Lx [p] = 1. ; #endif ASSERT (Wi [row] == Lp [row+1]) ; } #ifndef NDEBUG DEBUG6 (("L matrix (stored by rows):")) ; UMF_dump_col_matrix (Lx, #ifdef COMPLEX Lz, #endif Lj, Lp, n_inner, n_row, Numeric->lnz+n_inner) ; #endif DEBUG4 (("get_L done:\n")) ; } /* ========================================================================== */ /* === get_U ================================================================ */ /* ========================================================================== */ /* The matrix U is stored in the following arrays in the Numeric object: Int Upos [0..npiv] Int Uip [0..npiv], index into Numeric->Memory Int Uilen [0..npiv] Unit *(Numeric->Memory), pointer to memory space holding column indices and numerical values where npiv is the number of pivot entries found. If A is n_row-by-n_col, then npiv <= MIN (n_row,n_col). Let U_k denote the pattern of entries in row k of U (excluding the diagonal). A Uchain is a sequence of columns of U whose nonzero patterns are related. The start of a Uchain is denoted by a negative value of Uip [k]. To obtain U_k-1: (1) If row k is the start of a Uchain then Uip [k] is negative and |Uip [k]| is an index into Numeric->Memory for the integer column indices in U_k-1. The number of entries in the row is |U_k-1| = Uilen [k]. This defines the pattern of the "trailing" row of this chain that ends at row k-1. (2) If row k is not the start of a Uchain, then U_k-1 is a subset of U_k. The indices in U_k are arranged so that last Uilen [k] entries of U_k are those indices not in U_k-1. Next, the pivot column index k is added if it appears in row U_k-1 (it never appears in U_k). Upos [k] holds the position of pivot column index k in the pattern U_k-1 (if it is present), so that the set union (U_k-1)+{k} can be computed quickly, when computing the pattern of U_k-1 from U_k. Note that this means we must have the pattern U_k to compute L_k-1. In both cases (1) and (2), we obtain the pattern U_k. The numerical values are stored in Numeric->Memory. If k is the start of a Uchain, then the offset is |Uip [k]| plus the size of the space needed to store the pattern U_k-1. Otherwise, Uip [k] is the offset itself of the numerical values, since in this case no pattern is stored. The numerical values are stored in the same order as the entries in U_k, after U_k is obtained from cases (1) or (2), above. The advantage of using this "packed" data structure is that it can dramatically reduce the amount of storage needed for the pattern of U. The disadvantage is that it can be difficult for the user to access, and it does not match the sparse matrix data structure used in MATLAB. Thus, this routine is provided to create a conventional sparse matrix data structure for U, in sparse-column form. */ /* ========================================================================== */ PRIVATE void get_U ( Int Up [ ], /* of size n_col+1 */ Int Ui [ ], /* of size unz, where unz = Up [n_col] */ double Ux [ ], /* of size unz */ #ifdef COMPLEX double Uz [ ], /* of size unz */ #endif NumericType *Numeric, Int Pattern [ ], /* workspace of size n_col */ Int Wi [ ] /* workspace of size n_col */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry value ; Entry *xp, *D, *Uval ; Int deg, j, *ip, col, *Upos, *Uilen, *Uip, n_col, ulen, *Usi, unz2, p, k, up, newUchain, pos, npiv, n1 ; #ifdef COMPLEX Int split = SPLIT (Uz) ; #endif #ifndef NDEBUG Int nnzpiv = 0 ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ DEBUG4 (("get_U start:\n")) ; n_col = Numeric->n_col ; n1 = Numeric->n1 ; npiv = Numeric->npiv ; Upos = Numeric->Upos ; Uilen = Numeric->Uilen ; Uip = Numeric->Uip ; D = Numeric->D ; /* ---------------------------------------------------------------------- */ /* count the nonzeros in each column of U */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < npiv ; col++) { /* include the diagonal entry in the column counts */ DEBUG4 (("D ["ID"] = ", col)) ; EDEBUG4 (D [col]) ; Wi [col] = IS_NONZERO (D [col]) ; DEBUG4 ((" is nonzero: "ID"\n", Wi [col])) ; #ifndef NDEBUG nnzpiv += IS_NONZERO (D [col]) ; #endif } DEBUG4 (("nnzpiv "ID" "ID"\n", nnzpiv, Numeric->nnzpiv)) ; ASSERT (nnzpiv == Numeric->nnzpiv) ; for (col = npiv ; col < n_col ; col++) { /* diagonal entries are zero for structurally singular part */ Wi [col] = 0 ; } deg = Numeric->ulen ; if (deg > 0) { /* make last pivot row of U (singular matrices only) */ DEBUG0 (("Last pivot row of U: ulen "ID"\n", deg)) ; for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; DEBUG0 ((" column "ID"\n", Pattern [j])) ; } } /* non-singletons */ for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* use row k of U */ /* ------------------------------------------------------------------ */ up = Uip [k] ; ulen = Uilen [k] ; newUchain = (up < 0) ; if (newUchain) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value\n", k, Pattern [j])) ; col = Pattern [j] ; ASSERT (col >= 0 && col < n_col) ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [col]++ ; } } /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (k == n1) break ; if (newUchain) { /* next row is a new Uchain */ deg = ulen ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } else { deg -= ulen ; DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg)); ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* singletons */ for (k = n1 - 1 ; k >= 0 ; k--) { deg = Uilen [k] ; DEBUG4 (("Singleton k "ID"\n", k)) ; if (deg > 0) { up = Uip [k] ; Usi = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = Usi [j] ; value = Uval [j] ; DEBUG4 ((" k "ID" col "ID" value", k, col)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [col]++ ; } } } } /* ---------------------------------------------------------------------- */ /* construct the final column form of U */ /* ---------------------------------------------------------------------- */ /* create the column pointers */ unz2 = 0 ; for (col = 0 ; col < n_col ; col++) { Up [col] = unz2 ; unz2 += Wi [col] ; } Up [n_col] = unz2 ; DEBUG1 (("Numeric->unz "ID" npiv "ID" nnzpiv "ID" unz2 "ID"\n", Numeric->unz, npiv, Numeric->nnzpiv, unz2)) ; ASSERT (Numeric->unz + Numeric->nnzpiv == unz2) ; for (col = 0 ; col < n_col ; col++) { Wi [col] = Up [col+1] ; } /* add all of the diagonal entries */ for (col = 0 ; col < npiv ; col++) { if (IS_NONZERO (D [col])) { p = --(Wi [col]) ; Ui [p] = col ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (D [col]) ; Uz [p] = IMAG_COMPONENT (D [col]) ; } else { Ux [2*p ] = REAL_COMPONENT (D [col]) ; Ux [2*p+1] = IMAG_COMPONENT (D [col]) ; } #else Ux [p] = D [col] ; #endif } } /* add all the entries from the rows of U */ deg = Numeric->ulen ; if (deg > 0) { /* make last pivot row of U (singular matrices only) */ for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; } } /* non-singletons */ for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* use row k of U */ /* ------------------------------------------------------------------ */ up = Uip [k] ; ulen = Uilen [k] ; newUchain = (up < 0) ; if (newUchain) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } xp += deg ; for (j = deg-1 ; j >= 0 ; j--) { DEBUG4 ((" k "ID" col "ID" value", k, Pattern [j])) ; col = Pattern [j] ; ASSERT (col >= 0 && col < n_col) ; value = *(--xp) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = --(Wi [col]) ; Ui [p] = k ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (value) ; Uz [p] = IMAG_COMPONENT (value) ; } else { Ux [2*p ] = REAL_COMPONENT (value) ; Ux [2*p+1] = IMAG_COMPONENT (value) ; } #else Ux [p] = value ; #endif } } /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (newUchain) { /* next row is a new Uchain */ deg = ulen ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } else { deg -= ulen ; DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg)); ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* singletons */ for (k = n1 - 1 ; k >= 0 ; k--) { deg = Uilen [k] ; DEBUG4 (("Singleton k "ID"\n", k)) ; if (deg > 0) { up = Uip [k] ; Usi = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = Usi [j] ; value = Uval [j] ; DEBUG4 ((" k "ID" col "ID" value", k, col)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = --(Wi [col]) ; Ui [p] = k ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (value) ; Uz [p] = IMAG_COMPONENT (value) ; } else { Ux [2*p ] = REAL_COMPONENT (value) ; Ux [2*p+1] = IMAG_COMPONENT (value) ; } #else Ux [p] = value ; #endif } } } } #ifndef NDEBUG DEBUG6 (("U matrix:")) ; UMF_dump_col_matrix (Ux, #ifdef COMPLEX Uz, #endif Ui, Up, Numeric->n_row, n_col, Numeric->unz + Numeric->nnzpiv) ; #endif } SuiteSparse/UMFPACK/Source/umfpack_global.c0000644001170100242450000000742510617162064017422 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_global ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Global variables. UMFPACK uses these function pointers for several user-redefinable functions. The amd_* functions are defined in AMD/Source/amd_global.c. Function pointer default for mexFunction (see MATLAB/umfpackmex.c) ---------------- ------- --------------- amd_malloc malloc mxMalloc amd_free free mxFree amd_realloc realloc mxRealloc amd_calloc calloc mxCalloc amd_printf printf mexPrintf umfpack_hypot umf_hypot umf_hypot umfpack_divcomplex umf_divcomplex umf_divcomplex This routine is compiled just once for all four versions of UMFPACK (int/UF_long, double/complex). */ #include "umf_internal.h" double (*umfpack_hypot) (double, double) = umf_hypot ; int (*umfpack_divcomplex) (double, double, double, double, double *, double *) = umf_divcomplex ; /* ========================================================================== */ /* === umf_hypot ============================================================ */ /* ========================================================================== */ /* There is an equivalent routine called hypot in , which conforms * to ANSI C99. However, UMFPACK does not assume that ANSI C99 is available. * You can use the ANSI C99 hypot routine with: * * #include * umfpack_hypot = hypot ; * * prior to calling any UMFPACK routine. * * s = hypot (x,y) computes s = sqrt (x*x + y*y) but does so more accurately. * * The NaN case for the double relops x >= y and x+y == x is safely ignored. */ double umf_hypot (double x, double y) { double s, r ; x = SCALAR_ABS (x) ; y = SCALAR_ABS (y) ; if (x >= y) { if (x + y == x) { s = x ; } else { r = y / x ; s = x * sqrt (1.0 + r*r) ; } } else { if (y + x == y) { s = y ; } else { r = x / y ; s = y * sqrt (1.0 + r*r) ; } } return (s) ; } /* ========================================================================== */ /* === umf_divcomplex ======================================================= */ /* ========================================================================== */ /* c = a/b where c, a, and b are complex. The real and imaginary parts are * passed as separate arguments to this routine. The NaN case is ignored * for the double relop br >= bi. Returns TRUE (1) if the denominator is * zero, FALSE (0) otherwise. * * This uses ACM Algo 116, by R. L. Smith, 1962, which tries to avoid * underflow and overflow. * * c can be the same variable as a or b. */ int umf_divcomplex ( double ar, double ai, /* real and imaginary parts of a */ double br, double bi, /* real and imaginary parts of b */ double *cr, double *ci /* real and imaginary parts of c */ ) { double tr, ti, r, den ; if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) { r = bi / br ; den = br + r * bi ; tr = (ar + ai * r) / den ; ti = (ai - ar * r) / den ; } else { r = br / bi ; den = r * br + bi ; tr = (ar * r + ai) / den ; ti = (ai * r - ar) / den ; } *cr = tr ; *ci = ti ; return (SCALAR_IS_ZERO (den)) ; } SuiteSparse/UMFPACK/Source/umf_get_memory.c0000644001170100242450000001615210677541454017501 0ustar davisfac/* ========================================================================== */ /* === UMF_get_memory ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Reallocate the workspace (Numeric->Memory) and shift elements downwards. needunits: increase in size so that the free space is at least this many Units (to which the tuple lengths is added). Return TRUE if successful, FALSE if out of memory. */ #include "umf_internal.h" #include "umf_get_memory.h" #include "umf_garbage_collection.h" #include "umf_tuple_lengths.h" #include "umf_build_tuples.h" #include "umf_mem_free_tail_block.h" #include "umf_realloc.h" GLOBAL Int UMF_get_memory ( NumericType *Numeric, WorkType *Work, Int needunits, Int r2, /* compact current front to r2-by-c2 */ Int c2, Int do_Fcpos ) { double nsize, bsize, tsize ; Int i, minsize, newsize, newmem, costly, row, col, *Row_tlen, *Col_tlen, n_row, n_col, *Row_degree, *Col_degree ; Unit *mnew, *p ; /* ---------------------------------------------------------------------- */ /* get and check parameters */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG1 (("::::GET MEMORY::::\n")) ; UMF_dump_memory (Numeric) ; #endif n_row = Work->n_row ; n_col = Work->n_col ; Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_tlen = Numeric->Uilen ; Col_tlen = Numeric->Lilen ; /* ---------------------------------------------------------------------- */ /* initialize the tuple list lengths */ /* ---------------------------------------------------------------------- */ for (row = 0 ; row < n_row ; row++) { if (NON_PIVOTAL_ROW (row)) { Row_tlen [row] = 0 ; } } for (col = 0 ; col < n_col ; col++) { if (NON_PIVOTAL_COL (col)) { Col_tlen [col] = 0 ; } } /* ---------------------------------------------------------------------- */ /* determine how much memory is needed for the tuples */ /* ---------------------------------------------------------------------- */ nsize = (double) needunits + 2 ; needunits += UMF_tuple_lengths (Numeric, Work, &tsize) ; nsize += tsize ; needunits += 2 ; /* add 2, so that newmem >= 2 is true if realloc'd */ /* note: Col_tlen and Row_tlen are updated, but the tuple lists */ /* themselves are not. Do not attempt to scan the tuple lists. */ /* They are now stale, and are about to be destroyed and recreated. */ /* ---------------------------------------------------------------------- */ /* determine the desired new size of memory */ /* ---------------------------------------------------------------------- */ DEBUG0 (("UMF_get_memory: needunits: "ID"\n", needunits)) ; minsize = Numeric->size + needunits ; nsize += (double) Numeric->size ; bsize = ((double) Int_MAX) / sizeof (Unit) - 1 ; newsize = (Int) (UMF_REALLOC_INCREASE * ((double) minsize)) ; nsize *= UMF_REALLOC_INCREASE ; nsize += 1 ; if (newsize < 0 || nsize > bsize) { /* :: realloc Numeric->Memory int overflow :: */ DEBUGm3 (("Realloc hit integer limit\n")) ; newsize = (Int) bsize ; /* we cannot increase the size beyond bsize */ } else { ASSERT (newsize <= nsize) ; newsize = MAX (newsize, minsize) ; } newsize = MAX (newsize, Numeric->size) ; DEBUG0 (( "REALLOC MEMORY: needunits "ID" old size: "ID" new size: "ID" Units \n", needunits, Numeric->size, newsize)) ; /* Forget where the biggest free block is (we no longer need it) */ /* since garbage collection will occur shortly. */ Numeric->ibig = EMPTY ; DEBUG0 (("Before realloc E [0] "ID"\n", Work->E [0])) ; /* ---------------------------------------------------------------------- */ /* reallocate the memory, if possible, and make it bigger */ /* ---------------------------------------------------------------------- */ mnew = (Unit *) NULL ; while (!mnew) { mnew = (Unit *) UMF_realloc (Numeric->Memory, newsize, sizeof (Unit)) ; if (!mnew) { if (newsize == minsize) /* last realloc attempt failed */ { /* We failed to get the minimum. Just stick with the */ /* current allocation and hope that garbage collection */ /* can recover enough space. */ mnew = Numeric->Memory ; /* no new memory available */ newsize = Numeric->size ; } else { /* otherwise, reduce the request and keep trying */ newsize = (Int) (UMF_REALLOC_REDUCTION * ((double) newsize)) ; newsize = MAX (minsize, newsize) ; } } } ASSERT (mnew != (Unit *) NULL) ; /* see if realloc had to copy, rather than just extend memory */ costly = (mnew != Numeric->Memory) ; /* ---------------------------------------------------------------------- */ /* extend the tail portion of memory downwards */ /* ---------------------------------------------------------------------- */ Numeric->Memory = mnew ; if (Work->E [0]) { Int nb, dr, dc ; nb = Work->nb ; dr = Work->fnr_curr ; dc = Work->fnc_curr ; Work->Flublock = (Entry *) (Numeric->Memory + Work->E [0]) ; Work->Flblock = Work->Flublock + nb * nb ; Work->Fublock = Work->Flblock + dr * nb ; Work->Fcblock = Work->Fublock + nb * dc ; DEBUG0 (("after realloc E [0] "ID"\n", Work->E [0])) ; } ASSERT (IMPLIES (!(Work->E [0]), Work->Flublock == (Entry *) NULL)) ; newmem = newsize - Numeric->size ; ASSERT (newmem == 0 || newmem >= 2) ; if (newmem >= 2) { /* reallocation succeeded */ /* point to the old tail marker block of size 1 + header */ p = Numeric->Memory + Numeric->size - 2 ; /* create a new block out of the newly extended memory */ p->header.size = newmem - 1 ; i = Numeric->size - 1 ; p += newmem ; /* create a new tail marker block */ p->header.prevsize = newmem - 1 ; p->header.size = 1 ; Numeric->size = newsize ; /* free the new block */ UMF_mem_free_tail_block (Numeric, i) ; Numeric->nrealloc++ ; if (costly) { Numeric->ncostly++ ; } } DEBUG1 (("Done with realloc memory\n")) ; /* ---------------------------------------------------------------------- */ /* garbage collection on the tail of Numeric->memory (destroys tuples) */ /* ---------------------------------------------------------------------- */ UMF_garbage_collection (Numeric, Work, r2, c2, do_Fcpos) ; /* ---------------------------------------------------------------------- */ /* rebuild the tuples */ /* ---------------------------------------------------------------------- */ return (UMF_build_tuples (Numeric, Work)) ; } SuiteSparse/UMFPACK/Source/umf_get_memory.h0000644001170100242450000000104010617161601017456 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_get_memory ( NumericType *Numeric, WorkType *Work, Int needunits, Int r2, Int c2, Int do_Fcpos ) ; SuiteSparse/UMFPACK/Source/umf_2by2.c0000644001170100242450000005620410677541510016103 0ustar davisfac/* ========================================================================== */ /* === UMF_2by2 ============================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Not user-callable. Computes a row permutation P so that A (P,:) has a * mostly zero-free diagonal, with large entries on the diagonal. It does this * by swapping pairs of rows. Once a row is swapped it is not swapped again. * This is a "cheap" assignment, not a complete max. transversal or * bi-partite matching. It is only a partial matching. For most matrices * for which this algorithm is used, however, the matching is complete (in * UMFPACK this algorithm is used for matrices with roughly symmetric pattern, * and these matrices typically have a mostly-zero-free diagonal to begin with. * This algorithm is not meant to be used on arbitrary unsymmetric matrices * (for those matrices, UMFPACK uses its unsymmetric strategy and does not * use this algorithm). * * Even if incomplete, the matching is usually good enough for UMFPACK's * symmetric strategy, which can easily pivot off the diagonal during numerical * factorization if it finds a weak diagonal entry. * * The algorithms works as follows. First, row scaling factors are computed, * and weak diagonal entries are found. A weak entry is a value A(k,k) whose * absolute value is < tol * max (abs (A (:,k))). For each weak diagonal k in * increasing order of degree in A+A', the algorithm finds an index j such * that A (k,j) and A (j,k) are "large" (greater than or equal to tol times * the largest magnitude in their columns). Row j must also not have already * been swapped. Rows j and k are then swapped. If we come to a diagonal k * that has already been swapped, then it is not modified. This case occurs * for "oxo" pivots: * * k j * k o x * j x o * * which are swapped once to obtain * * k j * j x o * k o x * * These two rows are then not modified any further (A (j,j) was weak, but * after one swap the permuted the jth diagonal entry is strong. * * This algorithm only works on square matrices (real, complex, or pattern- * only). The numerical values are optional. If not present, each entry is * treated as numerically acceptable (tol is ignored), and the algorithm * operates by just using the pattern, not the values. Each column of the * input matrix A must be sorted, with no duplicate entries. The matrix A * can be optionally scaled prior to the numerical test. The matrix A (:,P) * has the same diagonal entries as A (:,P), except in different order. So * the output permutation P can also be used to swap the columns of A. */ #include "umf_internal.h" #include "umf_2by2.h" #ifndef NDEBUG #include "umf_is_permutation.h" #endif /* x is "weak" if it is less than ctol. If x or ctol are NaN, then define * x as not "weak". This is a rather arbitrary choice, made to simplify the * computation. On all but a PC with Microsoft C/C++, this test becomes * ((x) - ctol < 0). */ #define WEAK(x,ctol) (SCALAR_IS_LTZERO ((x)-(ctol))) /* For flag value in Next [col] */ #define IS_WEAK -2 /* ========================================================================== */ /* === two_by_two =========================================================== */ /* ========================================================================== */ PRIVATE Int two_by_two /* returns # unmatched weak diagonals */ ( /* input, not modified */ Int n2, /* C is n2-by-n2 */ Int Cp [ ], /* size n2+1, column pointers for C */ Int Ci [ ], /* size snz = Cp [n2], row indices for C */ Int Degree [ ], /* Degree [i] = degree of row i of C+C' */ /* input, not defined on output */ Int Next [ ], /* Next [k] == IS_WEAK if k is a weak diagonal */ Int Ri [ ], /* Ri [i] is the length of row i in C */ /* output, not defined on input */ Int P [ ], /* workspace, not defined on input or output */ Int Rp [ ], Int Head [ ] ) { Int deg, newcol, row, col, p, p2, unmatched, k, j, j2, j_best, best, jdiff, jdiff_best, jdeg, jdeg_best, cp, cp1, cp2, rp, rp1, rp2, maxdeg, mindeg ; /* ---------------------------------------------------------------------- */ /* place weak diagonals in the degree lists */ /* ---------------------------------------------------------------------- */ for (deg = 0 ; deg < n2 ; deg++) { Head [deg] = EMPTY ; } maxdeg = 0 ; mindeg = Int_MAX ; for (newcol = n2-1 ; newcol >= 0 ; newcol--) { if (Next [newcol] == IS_WEAK) { /* add this column to the list of weak nodes */ DEBUGm1 ((" newcol "ID" has a weak diagonal deg "ID"\n", newcol, deg)) ; deg = Degree [newcol] ; ASSERT (deg >= 0 && deg < n2) ; Next [newcol] = Head [deg] ; Head [deg] = newcol ; maxdeg = MAX (maxdeg, deg) ; mindeg = MIN (mindeg, deg) ; } } /* ---------------------------------------------------------------------- */ /* construct R = C' (C = strong entries in pruned submatrix) */ /* ---------------------------------------------------------------------- */ /* Ri [0..n2-1] is the length of each row of R */ /* use P as temporary pointer into the row form of R [ */ Rp [0] = 0 ; for (row = 0 ; row < n2 ; row++) { Rp [row+1] = Rp [row] + Ri [row] ; P [row] = Rp [row] ; } /* Ri no longer needed for row counts */ /* all entries in C are strong */ for (col = 0 ; col < n2 ; col++) { p2 = Cp [col+1] ; for (p = Cp [col] ; p < p2 ; p++) { /* place the column index in row = Ci [p] */ Ri [P [Ci [p]]++] = col ; } } /* contents of P no longer needed ] */ #ifndef NDEBUG DEBUG0 (("==================R: row form of strong entries in A:\n")) ; UMF_dump_col_matrix ((double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Ri, Rp, n2, n2, Rp [n2]) ; #endif ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; /* ---------------------------------------------------------------------- */ /* for each weak diagonal, find a pair of strong off-diagonal entries */ /* ---------------------------------------------------------------------- */ for (row = 0 ; row < n2 ; row++) { P [row] = EMPTY ; } unmatched = 0 ; best = EMPTY ; jdiff = EMPTY ; jdeg = EMPTY ; for (deg = mindeg ; deg <= maxdeg ; deg++) { /* find the next weak diagonal of lowest degree */ DEBUGm2 (("---------------------------------- Deg: "ID"\n", deg)) ; for (k = Head [deg] ; k != EMPTY ; k = Next [k]) { DEBUGm2 (("k: "ID"\n", k)) ; if (P [k] == EMPTY) { /* C (k,k) is a weak diagonal entry. Find an index j != k such * that C (j,k) and C (k,j) are both strong, and also such * that Degree [j] is minimized. In case of a tie, pick * the smallest index j. C and R contain the pattern of * strong entries only. * * Note that row k of R and column k of C are both sorted. */ DEBUGm4 (("===== Weak diagonal k = "ID"\n", k)) ; DEBUG1 (("Column k of C:\n")) ; for (p = Cp [k] ; p < Cp [k+1] ; p++) { DEBUG1 ((" "ID": deg "ID"\n", Ci [p], Degree [Ci [p]])); } DEBUG1 (("Row k of R (strong entries only):\n")) ; for (p = Rp [k] ; p < Rp [k+1] ; p++) { DEBUG1 ((" "ID": deg "ID"\n", Ri [p], Degree [Ri [p]])); } /* no (C (k,j), C (j,k)) pair exists yet */ j_best = EMPTY ; jdiff_best = Int_MAX ; jdeg_best = Int_MAX ; /* pointers into column k (including values) */ cp1 = Cp [k] ; cp2 = Cp [k+1] ; cp = cp1 ; /* pointers into row k (strong entries only, no values) */ rp1 = Rp [k] ; rp2 = Rp [k+1] ; rp = rp1 ; /* while entries searched in column k and row k */ while (TRUE) { if (cp >= cp2) { /* no more entries in this column */ break ; } /* get C (j,k), which is strong */ j = Ci [cp] ; if (rp >= rp2) { /* no more entries in this column */ break ; } /* get R (k,j2), which is strong */ j2 = Ri [rp] ; if (j < j2) { /* C (j,k) is strong, but R (k,j) is not strong */ cp++ ; continue ; } if (j2 < j) { /* C (k,j2) is strong, but R (j2,k) is not strong */ rp++ ; continue ; } /* j == j2: C (j,k) is strong and R (k,j) is strong */ best = FALSE ; if (P [j] == EMPTY) { /* j has not yet been matched */ jdeg = Degree [j] ; jdiff = SCALAR_ABS (k-j) ; DEBUG1 (("Try candidate j "ID" deg "ID" diff "ID "\n", j, jdeg, jdiff)) ; if (j_best == EMPTY) { /* this is the first candidate seen */ DEBUG1 ((" first\n")) ; best = TRUE ; } else { if (jdeg < jdeg_best) { /* the degree of j is best seen so far. */ DEBUG1 ((" least degree\n")) ; best = TRUE ; } else if (jdeg == jdeg_best) { /* degree of j and j_best are the same */ /* tie break by nearest node number */ if (jdiff < jdiff_best) { DEBUG1 ((" tie degree, closer\n")) ; best = TRUE ; } else if (jdiff == jdiff_best) { /* |j-k| = |j_best-k|. For any given k * and j_best there is only one other j * than can be just as close as j_best. * Tie break by picking the smaller of * j and j_best */ DEBUG1 ((" tie degree, as close\n")); best = j < j_best ; } } else { /* j has higher degree than best so far */ best = FALSE ; } } } if (best) { /* j is best match for k */ /* found a strong pair, A (j,k) and A (k,j) */ DEBUG1 ((" --- Found pair k: "ID" j: " ID " jdeg: "ID" jdiff: "ID"\n", k, j, jdeg, jdiff)) ; ASSERT (jdiff != EMPTY) ; ASSERT (jdeg != EMPTY) ; j_best = j ; jdeg_best = jdeg ; jdiff_best = jdiff ; } /* get the next entries in column k and row k */ cp++ ; rp++ ; } /* save the pair (j,k), if we found one */ if (j_best != EMPTY) { j = j_best ; DEBUGm4 ((" --- best pair j: "ID" for k: "ID"\n", j, k)) ; P [k] = j ; P [j] = k ; } else { /* no match was found for k */ unmatched++ ; } } } } /* ---------------------------------------------------------------------- */ /* finalize the row permutation, P */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n2 ; k++) { if (P [k] == EMPTY) { P [k] = k ; } } ASSERT (UMF_is_permutation (P, Rp, n2, n2)) ; return (unmatched) ; } /* ========================================================================== */ /* === UMF_2by2 ============================================================= */ /* ========================================================================== */ GLOBAL void UMF_2by2 ( /* input, not modified: */ Int n, /* A is n-by-n */ const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ const double Ax [ ], /* size nz if present */ #ifdef COMPLEX const double Az [ ], /* size nz if present */ #endif double tol, /* tolerance for determining whether or not an * entry is numerically acceptable. If tol <= 0 * then all numerical values ignored. */ Int scale, /* scaling to perform (none, sum, or max) */ Int Cperm1 [ ], /* singleton permutations */ #ifndef NDEBUG Int Rperm1 [ ], /* not needed, since Rperm1 = Cperm1 for submatrix S */ #endif Int InvRperm1 [ ], /* inverse of Rperm1 */ Int n1, /* number of singletons */ Int nempty, /* number of empty rows/cols */ /* input, contents undefined on output: */ Int Degree [ ], /* Degree [j] is the number of off-diagonal * entries in row/column j of S+S', where * where S = A (Cperm1 [n1..], Rperm1 [n1..]). * Note that S is not used, nor formed. */ /* output: */ Int P [ ], /* P [k] = i means original row i is kth row in S(P,:) * where S = A (Cperm1 [n1..], Rperm1 [n1..]) */ Int *p_nweak, Int *p_unmatched, /* workspace (not defined on input or output): */ Int Ri [ ], /* of size >= max (nz, n) */ Int Rp [ ], /* of size n+1 */ double Rs [ ], /* of size n if present. Rs = sum (abs (A),2) or * max (abs (A),2), the sum or max of each row. Unused * if scale is equal to UMFPACK_SCALE_NONE. */ Int Head [ ], /* of size n. Head pointers for bucket sort */ Int Next [ ], /* of size n. Next pointers for bucket sort */ Int Ci [ ], /* size nz */ Int Cp [ ] /* size n+1 */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry aij ; double cmax, value, rs, ctol, dvalue ; Int k, p, row, col, do_values, do_sum, do_max, do_scale, nweak, weak, p1, p2, dfound, unmatched, n2, oldrow, newrow, oldcol, newcol, pp ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif #ifndef NRECIPROCAL Int do_recip = FALSE ; #endif #ifndef NDEBUG /* UMF_debug += 99 ; */ DEBUGm3 (("\n ==================================UMF_2by2: tol %g\n", tol)) ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; for (k = n1 ; k < n - nempty ; k++) { ASSERT (Cperm1 [k] == Rperm1 [k]) ; } #endif /* ---------------------------------------------------------------------- */ /* determine scaling options */ /* ---------------------------------------------------------------------- */ /* use the values, but only if they are present */ /* ignore the values if tol <= 0 */ do_values = (tol > 0) && (Ax != (double *) NULL) ; if (do_values && (Rs != (double *) NULL)) { do_sum = (scale == UMFPACK_SCALE_SUM) ; do_max = (scale == UMFPACK_SCALE_MAX) ; } else { /* no scaling */ do_sum = FALSE ; do_max = FALSE ; } do_scale = do_max || do_sum ; DEBUGm3 (("do_values "ID" do_sum "ID" do_max "ID" do_scale "ID"\n", do_values, do_sum, do_max, do_scale)) ; /* ---------------------------------------------------------------------- */ /* compute the row scaling, if requested */ /* ---------------------------------------------------------------------- */ /* see also umf_kernel_init */ if (do_scale) { #ifndef NRECIPROCAL double rsmin ; #endif for (row = 0 ; row < n ; row++) { Rs [row] = 0.0 ; } for (col = 0 ; col < n ; col++) { p2 = Ap [col+1] ; for (p = Ap [col] ; p < p2 ; p++) { row = Ai [p] ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; rs = Rs [row] ; if (!SCALAR_IS_NAN (rs)) { if (SCALAR_IS_NAN (value)) { /* if any entry in a row is NaN, then the scale factor * for the row is NaN. It will be set to 1 later. */ Rs [row] = value ; } else if (do_max) { Rs [row] = MAX (rs, value) ; } else { Rs [row] += value ; } } } } #ifndef NRECIPROCAL rsmin = Rs [0] ; if (SCALAR_IS_ZERO (rsmin) || SCALAR_IS_NAN (rsmin)) { rsmin = 1.0 ; } #endif for (row = 0 ; row < n ; row++) { /* do not scale an empty row, or a row with a NaN */ rs = Rs [row] ; if (SCALAR_IS_ZERO (rs) || SCALAR_IS_NAN (rs)) { Rs [row] = 1.0 ; } #ifndef NRECIPROCAL rsmin = MIN (rsmin, Rs [row]) ; #endif } #ifndef NRECIPROCAL /* multiply by the reciprocal if Rs is not too small */ do_recip = (rsmin >= RECIPROCAL_TOLERANCE) ; if (do_recip) { /* invert the scale factors */ for (row = 0 ; row < n ; row++) { Rs [row] = 1.0 / Rs [row] ; } } #endif } /* ---------------------------------------------------------------------- */ /* compute the max in each column and find diagonal */ /* ---------------------------------------------------------------------- */ nweak = 0 ; #ifndef NDEBUG for (k = 0 ; k < n ; k++) { ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n) ; ASSERT (InvRperm1 [Rperm1 [k]] == k) ; } #endif n2 = n - n1 - nempty ; /* use Ri to count the number of strong entries in each row */ for (row = 0 ; row < n2 ; row++) { Ri [row] = 0 ; } pp = 0 ; ctol = 0 ; dvalue = 1 ; /* construct C = pruned submatrix, strong values only, column form */ for (k = n1 ; k < n - nempty ; k++) { oldcol = Cperm1 [k] ; newcol = k - n1 ; Next [newcol] = EMPTY ; DEBUGm1 (("Column "ID" newcol "ID" oldcol "ID"\n", k, newcol, oldcol)) ; Cp [newcol] = pp ; dfound = FALSE ; p1 = Ap [oldcol] ; p2 = Ap [oldcol+1] ; if (do_values) { cmax = 0 ; dvalue = 0 ; if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } ctol = tol * cmax ; DEBUGm1 ((" cmax col "ID" %g ctol %g\n", oldcol, cmax, ctol)) ; } else { for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; Ci [pp++] = newrow ; if (oldrow == oldcol) { /* we found the diagonal entry in this column */ ASSERT (newrow == newcol) ; dfound = TRUE ; } /* count the entries in each column */ Ri [newrow]++ ; } } /* ------------------------------------------------------------------ */ /* flag the weak diagonals */ /* ------------------------------------------------------------------ */ if (!dfound) { /* no diagonal entry present */ weak = TRUE ; } else { /* diagonal entry is present, check its value */ weak = (do_values) ? WEAK (dvalue, ctol) : FALSE ; } if (weak) { /* flag this column as weak */ DEBUG0 (("Weak!\n")) ; Next [newcol] = IS_WEAK ; nweak++ ; } /* ------------------------------------------------------------------ */ /* count entries in each row that are not numerically weak */ /* ------------------------------------------------------------------ */ if (do_values) { if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } } } Cp [n2] = pp ; ASSERT (AMD_valid (n2, n2, Cp, Ci) == AMD_OK) ; if (nweak == 0) { /* nothing to do, quick return */ DEBUGm2 (("\n =============================UMF_2by2: quick return\n")) ; for (k = 0 ; k < n ; k++) { P [k] = k ; } *p_nweak = 0 ; *p_unmatched = 0 ; return ; } #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { P [k] = EMPTY ; } for (k = 0 ; k < n2 ; k++) { ASSERT (Degree [k] >= 0 && Degree [k] < n2) ; } #endif /* ---------------------------------------------------------------------- */ /* find the 2-by-2 permutation */ /* ---------------------------------------------------------------------- */ /* The matrix S is now mapped to the index range 0 to n2-1. We have * S = A (Rperm [n1 .. n-nempty-1], Cperm [n1 .. n-nempty-1]), and then * C = pattern of strong entries in S. A weak diagonal k in S is marked * with Next [k] = IS_WEAK. */ unmatched = two_by_two (n2, Cp, Ci, Degree, Next, Ri, P, Rp, Head) ; /* ---------------------------------------------------------------------- */ *p_nweak = nweak ; *p_unmatched = unmatched ; #ifndef NDEBUG DEBUGm4 (("UMF_2by2: weak "ID" unmatched "ID"\n", nweak, unmatched)) ; for (row = 0 ; row < n ; row++) { DEBUGm2 (("P ["ID"] = "ID"\n", row, P [row])) ; } DEBUGm2 (("\n =============================UMF_2by2: done\n\n")) ; #endif } SuiteSparse/UMFPACK/Source/umf_2by2.h0000644001170100242450000000157710617161320016102 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_2by2 ( Int n, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif double tol, Int scale, Int Cperm1 [ ], #ifndef NDEBUG Int Rperm1 [ ], #endif Int InvRperm [ ], Int n1, Int nempty, Int Degree [ ], Int P [ ], Int *p_nweak, Int *p_nmatched, Int Ri [ ], Int Rp [ ], double Rs [ ], Int Head [ ], Int Next [ ], Int Si [ ], Int Sp [ ] ) ; SuiteSparse/UMFPACK/Source/umfpack_get_symbolic.c0000644001170100242450000001002310617162061020623 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_get_symbolic ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Gets the symbolic information held in the Symbolic object. See umfpack_get_symbolic.h for a more detailed description. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" GLOBAL Int UMFPACK_get_symbolic ( Int *p_n_row, Int *p_n_col, Int *p_n1, /* number of singletons */ Int *p_nz, Int *p_nfr, Int *p_nchains, Int P [ ], Int Q [ ], Int Front_npivcol [ ], Int Front_parent [ ], Int Front_1strow [ ], Int Front_leftmostdesc [ ], Int Chain_start [ ], Int Chain_maxrows [ ], Int Chain_maxcols [ ], void *SymbolicHandle ) { SymbolicType *Symbolic ; Int k, n_row, n_col, n1, nfr, nchains, *p ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ Symbolic = (SymbolicType *) SymbolicHandle ; if (!UMF_valid_symbolic (Symbolic)) { return (UMFPACK_ERROR_invalid_Symbolic_object) ; } /* ---------------------------------------------------------------------- */ /* get contents of Symbolic */ /* ---------------------------------------------------------------------- */ n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n1 = Symbolic->n1 ; nfr = Symbolic->nfr ; nchains = Symbolic->nchains ; if (p_n_row) { *p_n_row = n_row ; } if (p_n_col) { *p_n_col = n_col ; } if (p_n1) { *p_n1 = n1 ; } if (p_nz) { *p_nz = Symbolic->nz ; } if (p_nfr) { *p_nfr = nfr ; } if (p_nchains) { *p_nchains = nchains ; } if (P != (Int *) NULL) { Int *Rperm_init, *Diagonal_map ; Rperm_init = Symbolic->Rperm_init ; Diagonal_map = Symbolic->Diagonal_map ; if (Diagonal_map != (Int *) NULL) { ASSERT (n_row == n_col) ; /* next pivot rows are found in the diagonal map */ for (k = 0 ; k < n_row ; k++) { P [k] = Rperm_init [Diagonal_map [k]] ; } } else { /* there is no diagonal map. */ for (k = 0 ; k < n_row ; k++) { P [k] = Rperm_init [k] ; } } } if (Q != (Int *) NULL) { p = Symbolic->Cperm_init ; for (k = 0 ; k < n_col ; k++) { Q [k] = p [k] ; } } if (Front_npivcol != (Int *) NULL) { p = Symbolic->Front_npivcol ; for (k = 0 ; k <= nfr ; k++) { Front_npivcol [k] = p [k] ; } } if (Front_parent != (Int *) NULL) { p = Symbolic->Front_parent ; for (k = 0 ; k <= nfr ; k++) { Front_parent [k] = p [k] ; } } if (Front_1strow != (Int *) NULL) { p = Symbolic->Front_1strow ; for (k = 0 ; k <= nfr ; k++) { Front_1strow [k] = p [k] ; } } if (Front_leftmostdesc != (Int *) NULL) { p = Symbolic->Front_leftmostdesc ; for (k = 0 ; k <= nfr ; k++) { Front_leftmostdesc [k] = p [k] ; } } if (Chain_start != (Int *) NULL) { p = Symbolic->Chain_start ; for (k = 0 ; k <= nchains ; k++) { Chain_start [k] = p [k] ; } } if (Chain_maxrows != (Int *) NULL) { p = Symbolic->Chain_maxrows ; for (k = 0 ; k < nchains ; k++) { Chain_maxrows [k] = p [k] ; } Chain_maxrows [nchains] = 0 ; } if (Chain_maxcols != (Int *) NULL) { p = Symbolic->Chain_maxcols ; for (k = 0 ; k < nchains ; k++) { Chain_maxcols [k] = p [k] ; } Chain_maxcols [nchains] = 0 ; } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_report_vector.c0000644001170100242450000000533110677542325020222 0ustar davisfac/* ========================================================================== */ /* === UMF_report_vector ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include "umf_internal.h" #include "umf_report_vector.h" /* ========================================================================== */ /* === print_value ========================================================== */ /* ========================================================================== */ PRIVATE void print_value ( Int i, const double Xx [ ], const double Xz [ ], /* used for complex case only */ Int scalar /* if true, then print real part only */ ) { Entry xi ; /* if Xz is null, then X is in "merged" format (compatible with Entry, */ /* and ANSI C99 double _Complex type). */ PRINTF ((" "ID" :", INDEX (i))) ; if (scalar) { PRINT_SCALAR (Xx [i]) ; } else { ASSIGN (xi, Xx, Xz, i, SPLIT (Xz)) ; PRINT_ENTRY (xi) ; } PRINTF (("\n")) ; } /* ========================================================================== */ /* === UMF_report_vector ==================================================== */ /* ========================================================================== */ GLOBAL Int UMF_report_vector ( Int n, const double Xx [ ], const double Xz [ ], Int prl, Int user, Int scalar ) { Int n2, i ; if (user || prl >= 4) { PRINTF (("dense vector, n = "ID". ", n)) ; } if (user) { if (!Xx) { PRINTF (("ERROR: vector not present\n\n")) ; return (UMFPACK_ERROR_argument_missing) ; } if (n < 0) { PRINTF (("ERROR: length of vector is < 0\n\n")) ; return (UMFPACK_ERROR_n_nonpositive) ; } } if (user || prl >= 4) { PRINTF4 (("\n")) ; } if (prl == 4) { /* print level of 4 */ n2 = MIN (10, n) ; for (i = 0 ; i < n2 ; i++) { print_value (i, Xx, Xz, scalar) ; } if (n2 < n) { PRINTF ((" ...\n")) ; print_value (n-1, Xx, Xz, scalar) ; } } else if (prl > 4) { /* print level 4 or more */ for (i = 0 ; i < n ; i++) { print_value (i, Xx, Xz, scalar) ; } } PRINTF4 ((" dense vector ")) ; if (user || prl >= 4) { PRINTF (("OK\n\n")) ; } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_report_vector.h0000644001170100242450000000104010617162235020210 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_report_vector ( Int n, const double Xx [ ], const double Xz [ ], Int prl, Int user, Int scalar ) ; SuiteSparse/UMFPACK/Source/umf_utsolve.c0000644001170100242450000002213610677541167017033 0ustar davisfac/* ========================================================================== */ /* === UMF_utsolve ========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* solves U'x = b or U.'x=b, where U is the upper triangular factor of a */ /* matrix. B is overwritten with the solution X. */ /* Returns the floating point operation count */ #include "umf_internal.h" #include "umf_utsolve.h" GLOBAL double #ifdef CONJUGATE_SOLVE UMF_uhsolve /* solve U'x=b (complex conjugate transpose) */ #else UMF_utsolve /* solve U.'x=b (array transpose) */ #endif ( NumericType *Numeric, Entry X [ ], /* b on input, solution x on output */ Int Pattern [ ] /* a work array of size n */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry xk ; Entry *xp, *D, *Uval ; Int k, deg, j, *ip, col, *Upos, *Uilen, kstart, kend, up, *Uip, n, uhead, ulen, pos, npiv, n1, *Ui ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ if (Numeric->n_row != Numeric->n_col) return (0.) ; n = Numeric->n_row ; npiv = Numeric->npiv ; Upos = Numeric->Upos ; Uilen = Numeric->Uilen ; Uip = Numeric->Uip ; D = Numeric->D ; kend = 0 ; n1 = Numeric->n1 ; #ifndef NDEBUG DEBUG4 (("Utsolve start: npiv "ID" n "ID"\n", npiv, n)) ; for (j = 0 ; j < n ; j++) { DEBUG4 (("Utsolve start "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } #endif /* ---------------------------------------------------------------------- */ /* singletons */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; #ifndef NO_DIVIDE_BY_ZERO /* Go ahead and divide by zero if D [k] is zero. */ #ifdef CONJUGATE_SOLVE /* xk = X [k] / conjugate (D [k]) ; */ DIV_CONJ (xk, X [k], D [k]) ; #else /* xk = X [k] / D [k] ; */ DIV (xk, X [k], D [k]) ; #endif #else /* Do not divide by zero */ if (IS_NONZERO (D [k])) { #ifdef CONJUGATE_SOLVE /* xk = X [k] / conjugate (D [k]) ; */ DIV_CONJ (xk, X [k], D [k]) ; #else /* xk = X [k] / D [k] ; */ DIV (xk, X [k], D [k]) ; #endif } #endif X [k] = xk ; deg = Uilen [k] ; if (deg > 0 && IS_NONZERO (xk)) { up = Uip [k] ; Ui = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value", k, Ui [j])) ; EDEBUG4 (Uval [j]) ; DEBUG4 (("\n")) ; #ifdef CONJUGATE_SOLVE /* X [Ui [j]] -= xk * conjugate (Uval [j]) ; */ MULT_SUB_CONJ (X [Ui [j]], xk, Uval [j]) ; #else /* X [Ui [j]] -= xk * Uval [j] ; */ MULT_SUB (X [Ui [j]], xk, Uval [j]) ; #endif } } } /* ---------------------------------------------------------------------- */ /* nonsingletons */ /* ---------------------------------------------------------------------- */ for (kstart = n1 ; kstart < npiv ; kstart = kend + 1) { /* ------------------------------------------------------------------ */ /* find the end of this Uchain */ /* ------------------------------------------------------------------ */ DEBUG4 (("kstart "ID" kend "ID"\n", kstart, kend)) ; /* for (kend = kstart ; kend < npiv && Uip [kend+1] > 0 ; kend++) ; */ kend = kstart ; while (kend < npiv && Uip [kend+1] > 0) { kend++ ; } /* ------------------------------------------------------------------ */ /* scan the whole Uchain to find the pattern of the first row of U */ /* ------------------------------------------------------------------ */ k = kend+1 ; DEBUG4 (("\nKend "ID" K "ID"\n", kend, k)) ; /* ------------------------------------------------------------------ */ /* start with last row in Uchain of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (k == npiv) { deg = Numeric->ulen ; if (deg > 0) { /* :: make last pivot row of U (singular matrices only) :: */ for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; } } } else { ASSERT (k >= 0 && k < npiv) ; up = -Uip [k] ; ASSERT (up > 0) ; deg = Uilen [k] ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } /* empty the stack at the bottom of Pattern */ uhead = n ; for (k = kend ; k > kstart ; k--) { /* Pattern [0..deg-1] is the pattern of row k of U */ /* -------------------------------------------------------------- */ /* make row k-1 of U in Pattern [0..deg-1] */ /* -------------------------------------------------------------- */ ASSERT (k >= 0 && k < npiv) ; ulen = Uilen [k] ; /* delete, and push on the stack */ for (j = 0 ; j < ulen ; j++) { ASSERT (uhead >= deg) ; Pattern [--uhead] = Pattern [--deg] ; } DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k, deg)) ; ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } /* Pattern [0..deg-1] is now the pattern of the first row in Uchain */ /* ------------------------------------------------------------------ */ /* solve using this Uchain, in reverse order */ /* ------------------------------------------------------------------ */ DEBUG4 (("Unwinding Uchain\n")) ; for (k = kstart ; k <= kend ; k++) { /* -------------------------------------------------------------- */ /* construct row k */ /* -------------------------------------------------------------- */ ASSERT (k >= 0 && k < npiv) ; pos = Upos [k] ; if (pos != EMPTY) { /* remove the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (k > kstart) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } up = Uip [k] ; ulen = Uilen [k] ; if (k > kstart) { /* concatenate the deleted pattern; pop from the stack */ for (j = 0 ; j < ulen ; j++) { ASSERT (deg <= uhead && uhead < n) ; Pattern [deg++] = Pattern [uhead++] ; } DEBUG4 (("middle of chain, row of U "ID" deg "ID"\n", k, deg)) ; ASSERT (deg >= 0) ; } /* -------------------------------------------------------------- */ /* use row k of U */ /* -------------------------------------------------------------- */ #ifndef NO_DIVIDE_BY_ZERO /* Go ahead and divide by zero if D [k] is zero. */ #ifdef CONJUGATE_SOLVE /* xk = X [k] / conjugate (D [k]) ; */ DIV_CONJ (xk, X [k], D [k]) ; #else /* xk = X [k] / D [k] ; */ DIV (xk, X [k], D [k]) ; #endif #else /* Do not divide by zero */ if (IS_NONZERO (D [k])) { #ifdef CONJUGATE_SOLVE /* xk = X [k] / conjugate (D [k]) ; */ DIV_CONJ (xk, X [k], D [k]) ; #else /* xk = X [k] / D [k] ; */ DIV (xk, X [k], D [k]) ; #endif } #endif X [k] = xk ; if (IS_NONZERO (xk)) { if (k == kstart) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value", k, Pattern [j])) ; EDEBUG4 (*xp) ; DEBUG4 (("\n")) ; #ifdef CONJUGATE_SOLVE /* X [Pattern [j]] -= xk * conjugate (*xp) ; */ MULT_SUB_CONJ (X [Pattern [j]], xk, *xp) ; #else /* X [Pattern [j]] -= xk * (*xp) ; */ MULT_SUB (X [Pattern [j]], xk, *xp) ; #endif xp++ ; } } } ASSERT (uhead == n) ; } #ifndef NO_DIVIDE_BY_ZERO for (k = npiv ; k < n ; k++) { /* This is an *** intentional *** divide-by-zero, to get Inf or Nan, * as appropriate. It is not a bug. */ ASSERT (IS_ZERO (D [k])) ; /* For conjugate solve, D [k] == conjugate (D [k]), in this case */ /* xk = X [k] / D [k] ; */ DIV (xk, X [k], D [k]) ; X [k] = xk ; } #endif #ifndef NDEBUG for (j = 0 ; j < n ; j++) { DEBUG4 (("Utsolve done "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } DEBUG4 (("Utsolve done.\n")) ; #endif return (DIV_FLOPS * ((double) n) + MULTSUB_FLOPS * ((double) Numeric->unz)); } SuiteSparse/UMFPACK/Source/umfpack_load_numeric.c0000644001170100242450000001175510677543207020634 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_load_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Loads a Numeric object from a file created by umfpack_*_save_numeric. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_malloc.h" #include "umf_free.h" #define READ(object,type,n) \ { \ object = (type *) UMF_malloc (n, sizeof (type)) ; \ if (object == (type *) NULL) \ { \ UMFPACK_free_numeric ((void **) &Numeric) ; \ fclose (f) ; \ return (UMFPACK_ERROR_out_of_memory) ; \ } \ if (fread (object, sizeof (type), n, f) != (size_t) n) \ { \ UMFPACK_free_numeric ((void **) &Numeric) ; \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ if (ferror (f)) \ { \ UMFPACK_free_numeric ((void **) &Numeric) ; \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ } /* ========================================================================== */ /* === UMFPACK_load_numeric ================================================= */ /* ========================================================================== */ GLOBAL Int UMFPACK_load_numeric ( void **NumericHandle, char *user_filename ) { NumericType *Numeric ; char *filename ; FILE *f ; *NumericHandle = (void *) NULL ; /* ---------------------------------------------------------------------- */ /* get the filename, or use the default name if filename is NULL */ /* ---------------------------------------------------------------------- */ if (user_filename == (char *) NULL) { filename = "numeric.umf" ; } else { filename = user_filename ; } f = fopen (filename, "rb") ; if (!f) { return (UMFPACK_ERROR_file_IO) ; } /* ---------------------------------------------------------------------- */ /* read the Numeric header from the file, in binary */ /* ---------------------------------------------------------------------- */ Numeric = (NumericType *) UMF_malloc (1, sizeof (NumericType)) ; if (Numeric == (NumericType *) NULL) { fclose (f) ; return (UMFPACK_ERROR_out_of_memory) ; } if (fread (Numeric, sizeof (NumericType), 1, f) != 1) { (void) UMF_free ((void *) Numeric) ; fclose (f) ; return (UMFPACK_ERROR_file_IO) ; } if (ferror (f)) { (void) UMF_free ((void *) Numeric) ; fclose (f) ; return (UMFPACK_ERROR_file_IO) ; } if (Numeric->valid != NUMERIC_VALID || Numeric->n_row <= 0 || Numeric->n_col <= 0 || Numeric->npiv < 0 || Numeric->ulen < 0 || Numeric->size <= 0) { /* Numeric does not point to a NumericType object */ (void) UMF_free ((void *) Numeric) ; fclose (f) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } Numeric->D = (Entry *) NULL ; Numeric->Rperm = (Int *) NULL ; Numeric->Cperm = (Int *) NULL ; Numeric->Lpos = (Int *) NULL ; Numeric->Lilen = (Int *) NULL ; Numeric->Lip = (Int *) NULL ; Numeric->Upos = (Int *) NULL ; Numeric->Uilen = (Int *) NULL ; Numeric->Uip = (Int *) NULL ; Numeric->Rs = (double *) NULL ; Numeric->Memory = (Unit *) NULL ; Numeric->Upattern = (Int *) NULL ; /* umfpack_free_numeric can now be safely called if an error occurs */ /* ---------------------------------------------------------------------- */ /* read the rest of the Numeric object */ /* ---------------------------------------------------------------------- */ READ (Numeric->D, Entry, MIN (Numeric->n_row, Numeric->n_col)+1) ; READ (Numeric->Rperm, Int, Numeric->n_row+1) ; READ (Numeric->Cperm, Int, Numeric->n_col+1) ; READ (Numeric->Lpos, Int, Numeric->npiv+1) ; READ (Numeric->Lilen, Int, Numeric->npiv+1) ; READ (Numeric->Lip, Int, Numeric->npiv+1) ; READ (Numeric->Upos, Int, Numeric->npiv+1) ; READ (Numeric->Uilen, Int, Numeric->npiv+1) ; READ (Numeric->Uip, Int, Numeric->npiv+1) ; if (Numeric->scale != UMFPACK_SCALE_NONE) { READ (Numeric->Rs, double, Numeric->n_row) ; } if (Numeric->ulen > 0) { READ (Numeric->Upattern, Int, Numeric->ulen+1) ; } READ (Numeric->Memory, Unit, Numeric->size) ; /* close the file */ fclose (f) ; /* make sure the Numeric object is valid */ if (!UMF_valid_numeric (Numeric)) { UMFPACK_free_numeric ((void **) &Numeric) ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } *NumericHandle = (void *) Numeric ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_report_triplet.c0000644001170100242450000000457110617162137021240 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_triplet =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints a matrix in triplet form. See umfpack_report_triplet.h for details. */ #include "umf_internal.h" GLOBAL Int UMFPACK_report_triplet ( Int n_row, Int n_col, Int nz, const Int Ti [ ], const Int Tj [ ], const double Tx [ ], #ifdef COMPLEX const double Tz [ ], #endif const double Control [UMFPACK_CONTROL] ) { Entry t ; Int prl, prl1, k, i, j, do_values ; #ifdef COMPLEX Int split = SPLIT (Tz) ; #endif prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } PRINTF (("triplet-form matrix, n_row = "ID", n_col = "ID" nz = "ID". ", n_row, n_col, nz)) ; if (!Ti || !Tj) { PRINTF (("ERROR: indices not present\n\n")) ; return (UMFPACK_ERROR_argument_missing) ; } if (n_row <= 0 || n_col <= 0) { PRINTF (("ERROR: n_row or n_col is <= 0\n\n")) ; return (UMFPACK_ERROR_n_nonpositive) ; } if (nz < 0) { PRINTF (("ERROR: nz is < 0\n\n")) ; return (UMFPACK_ERROR_invalid_matrix) ; } PRINTF4 (("\n")) ; do_values = Tx != (double *) NULL ; prl1 = prl ; for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; PRINTF4 ((" "ID" : "ID" "ID" ", INDEX (k), INDEX (i), INDEX (j))) ; if (do_values && prl >= 4) { ASSIGN (t, Tx, Tz, k, split) ; PRINT_ENTRY (t) ; } PRINTF4 (("\n")) ; if (i < 0 || i >= n_row || j < 0 || j >= n_col) { /* invalid triplet */ PRINTF (("ERROR: invalid triplet\n\n")) ; return (UMFPACK_ERROR_invalid_matrix) ; } if (prl == 4 && k == 9 && nz > 10) { PRINTF ((" ...\n")) ; prl-- ; } } prl = prl1 ; PRINTF4 ((" triplet-form matrix ")) ; PRINTF (("OK\n\n")) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_utsolve.h0000644001170100242450000000112610617162505017021 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL double UMF_utsolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; GLOBAL double UMF_uhsolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; SuiteSparse/UMFPACK/Source/umf_mem_alloc_element.c0000644001170100242450000000507010677541716020771 0ustar davisfac/* ========================================================================== */ /* === UMF_mem_alloc_element ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The UMF_mem_* routines manage the Numeric->Memory memory space. */ /* Allocate a nrows-by-ncols element, and initialize it. */ /* Returns the index into Numeric->Memory if successful, or 0 on failure. */ #include "umf_internal.h" #include "umf_mem_alloc_element.h" #include "umf_mem_alloc_tail_block.h" GLOBAL Int UMF_mem_alloc_element ( NumericType *Numeric, Int nrows, Int ncols, Int **Rows, Int **Cols, Entry **C, Int *size, Element **epout ) { Element *ep ; Unit *p ; Int i ; ASSERT (Numeric != (NumericType *) NULL) ; ASSERT (Numeric->Memory != (Unit *) NULL) ; *size = GET_ELEMENT_SIZE (nrows, ncols) ; if (INT_OVERFLOW (DGET_ELEMENT_SIZE (nrows, ncols) + 1)) { /* :: allocate element, int overflow :: */ return (0) ; /* problem is too large */ } i = UMF_mem_alloc_tail_block (Numeric, *size) ; (*size)++ ; if (!i) { DEBUG0 (("alloc element failed - out of memory\n")) ; return (0) ; /* out of memory */ } p = Numeric->Memory + i ; ep = (Element *) p ; DEBUG2 (("alloc_element done ("ID" x "ID"): p: "ID" i "ID"\n", nrows, ncols, (Int) (p-Numeric->Memory), i)) ; /* Element data structure, in order: */ p += UNITS (Element, 1) ; /* (1) Element header */ *Cols = (Int *) p ; /* (2) col [0..ncols-1] indices */ *Rows = *Cols + ncols ; /* (3) row [0..nrows-1] indices */ p += UNITS (Int, ncols + nrows) ; *C = (Entry *) p ; /* (4) C [0..nrows-1, 0..ncols-1] */ ep->nrows = nrows ; /* initialize the header information */ ep->ncols = ncols ; ep->nrowsleft = nrows ; ep->ncolsleft = ncols ; ep->cdeg = 0 ; ep->rdeg = 0 ; ep->next = EMPTY ; DEBUG2 (("new block size: "ID" ", GET_BLOCK_SIZE (Numeric->Memory + i))) ; DEBUG2 (("Element size needed "ID"\n", GET_ELEMENT_SIZE (nrows, ncols))) ; *epout = ep ; /* return the offset into Numeric->Memory */ return (i) ; } SuiteSparse/UMFPACK/Source/umf_mem_alloc_element.h0000644001170100242450000000110710617161743020763 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_mem_alloc_element ( NumericType *Numeric, Int nrows, Int ncols, Int **Rows, Int **Cols, Entry **C, Int *size, Element **epout ) ; SuiteSparse/UMFPACK/Source/cholmod_blas.h0000644001170100242450000003223710677545073017121 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_blas.h =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_blas.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_blas.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* This does not need to be included in the user's program. */ #ifndef CHOLMOD_BLAS_H #define CHOLMOD_BLAS_H /* ========================================================================== */ /* === Architecture ========================================================= */ /* ========================================================================== */ #if defined (__sun) || defined (MSOL2) || defined (ARCH_SOL2) #define CHOLMOD_SOL2 #define CHOLMOD_ARCHITECTURE "Sun Solaris" #elif defined (__sgi) || defined (MSGI) || defined (ARCH_SGI) #define CHOLMOD_SGI #define CHOLMOD_ARCHITECTURE "SGI Irix" #elif defined (__linux) || defined (MGLNX86) || defined (ARCH_GLNX86) #define CHOLMOD_LINUX #define CHOLMOD_ARCHITECTURE "Linux" #elif defined (_AIX) || defined (MIBM_RS) || defined (ARCH_IBM_RS) #define CHOLMOD_AIX #define CHOLMOD_ARCHITECTURE "IBM AIX" #define BLAS_NO_UNDERSCORE #elif defined (__alpha) || defined (MALPHA) || defined (ARCH_ALPHA) #define CHOLMOD_ALPHA #define CHOLMOD_ARCHITECTURE "Compaq Alpha" #elif defined (_WIN32) || defined (WIN32) || defined (_WIN64) || defined (WIN64) #if defined (__MINGW32__) || defined (__MINGW32__) #define CHOLMOD_MINGW #elif defined (__CYGWIN32__) || defined (__CYGWIN32__) #define CHOLMOD_CYGWIN #else #define CHOLMOD_WINDOWS #define BLAS_NO_UNDERSCORE #endif #define CHOLMOD_ARCHITECTURE "Microsoft Windows" #elif defined (__hppa) || defined (__hpux) || defined (MHPUX) || defined (ARCH_HPUX) #define CHOLMOD_HP #define CHOLMOD_ARCHITECTURE "HP Unix" #define BLAS_NO_UNDERSCORE #elif defined (__hp700) || defined (MHP700) || defined (ARCH_HP700) #define CHOLMOD_HP #define CHOLMOD_ARCHITECTURE "HP 700 Unix" #define BLAS_NO_UNDERSCORE #else /* If the architecture is unknown, and you call the BLAS, you may need to */ /* define BLAS_BY_VALUE, BLAS_NO_UNDERSCORE, and/or BLAS_CHAR_ARG yourself. */ #define CHOLMOD_ARCHITECTURE "unknown" #endif /* ========================================================================== */ /* === BLAS and LAPACK names ================================================ */ /* ========================================================================== */ /* Prototypes for the various versions of the BLAS. */ /* Determine if the 64-bit Sun Performance BLAS is to be used */ #if defined(CHOLMOD_SOL2) && !defined(NSUNPERF) && defined(LONG) && defined(LONGBLAS) #define SUN64 #endif #ifdef SUN64 #define BLAS_DTRSV dtrsv_64_ #define BLAS_DGEMV dgemv_64_ #define BLAS_DTRSM dtrsm_64_ #define BLAS_DGEMM dgemm_64_ #define BLAS_DSYRK dsyrk_64_ #define BLAS_DGER dger_64_ #define BLAS_DSCAL dscal_64_ #define LAPACK_DPOTRF dpotrf_64_ #define BLAS_ZTRSV ztrsv_64_ #define BLAS_ZGEMV zgemv_64_ #define BLAS_ZTRSM ztrsm_64_ #define BLAS_ZGEMM zgemm_64_ #define BLAS_ZHERK zherk_64_ #define BLAS_ZGER zgeru_64_ #define BLAS_ZSCAL zscal_64_ #define LAPACK_ZPOTRF zpotrf_64_ #elif defined (BLAS_NO_UNDERSCORE) #define BLAS_DTRSV dtrsv #define BLAS_DGEMV dgemv #define BLAS_DTRSM dtrsm #define BLAS_DGEMM dgemm #define BLAS_DSYRK dsyrk #define BLAS_DGER dger #define BLAS_DSCAL dscal #define LAPACK_DPOTRF dpotrf #define BLAS_ZTRSV ztrsv #define BLAS_ZGEMV zgemv #define BLAS_ZTRSM ztrsm #define BLAS_ZGEMM zgemm #define BLAS_ZHERK zherk #define BLAS_ZGER zgeru #define BLAS_ZSCAL zscal #define LAPACK_ZPOTRF zpotrf #else #define BLAS_DTRSV dtrsv_ #define BLAS_DGEMV dgemv_ #define BLAS_DTRSM dtrsm_ #define BLAS_DGEMM dgemm_ #define BLAS_DSYRK dsyrk_ #define BLAS_DGER dger_ #define BLAS_DSCAL dscal_ #define LAPACK_DPOTRF dpotrf_ #define BLAS_ZTRSV ztrsv_ #define BLAS_ZGEMV zgemv_ #define BLAS_ZTRSM ztrsm_ #define BLAS_ZGEMM zgemm_ #define BLAS_ZHERK zherk_ #define BLAS_ZGER zgeru_ #define BLAS_ZSCAL zscal_ #define LAPACK_ZPOTRF zpotrf_ #endif /* ========================================================================== */ /* === BLAS and LAPACK integer arguments ==================================== */ /* ========================================================================== */ /* CHOLMOD can be compiled with -D'LONGBLAS=long' for the Sun Performance * Library, or -D'LONGBLAS=long long' for SGI's SCSL BLAS. This defines the * integer used in the BLAS for the cholmod_l_* routines. * * The "int" version of CHOLMOD always uses the "int" version of the BLAS. */ #if defined (LONGBLAS) && defined (LONG) #define BLAS_INT LONGBLAS #else #define BLAS_INT int #endif /* If the BLAS integer is smaller than the basic CHOLMOD integer, then we need * to check for integer overflow when converting from one to the other. If * any integer overflows, the externally-defined blas_ok variable is set to * FALSE. blas_ok should be set to TRUE before calling any BLAS_* macro. */ #define CHECK_BLAS_INT (sizeof (BLAS_INT) < sizeof (Int)) #define EQ(K,k) (((BLAS_INT) K) == ((Int) k)) /* ========================================================================== */ /* === BLAS and LAPACK prototypes and macros ================================ */ /* ========================================================================== */ void BLAS_DGEMV (char *trans, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx, double *beta, double *Y, BLAS_INT *incy) ; #define BLAS_dgemv(trans,m,n,alpha,A,lda,X,incx,beta,Y,incy) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DGEMV (trans, &M, &N, alpha, A, &LDA, X, &INCX, beta, Y, &INCY) ; \ } \ } void BLAS_ZGEMV (char *trans, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx, double *beta, double *Y, BLAS_INT *incy) ; #define BLAS_zgemv(trans,m,n,alpha,A,lda,X,incx,beta,Y,incy) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZGEMV (trans, &M, &N, alpha, A, &LDA, X, &INCX, beta, Y, &INCY) ; \ } \ } void BLAS_DTRSV (char *uplo, char *trans, char *diag, BLAS_INT *n, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx) ; #define BLAS_dtrsv(uplo,trans,diag,n,A,lda,X,incx) \ { \ BLAS_INT N = n, LDA = lda, INCX = incx ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) ; \ } \ if (blas_ok) \ { \ BLAS_DTRSV (uplo, trans, diag, &N, A, &LDA, X, &INCX) ; \ } \ } void BLAS_ZTRSV (char *uplo, char *trans, char *diag, BLAS_INT *n, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx) ; #define BLAS_ztrsv(uplo,trans,diag,n,A,lda,X,incx) \ { \ BLAS_INT N = n, LDA = lda, INCX = incx ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) ; \ } \ if (blas_ok) \ { \ BLAS_ZTRSV (uplo, trans, diag, &N, A, &LDA, X, &INCX) ; \ } \ } void BLAS_DTRSM (char *side, char *uplo, char *transa, char *diag, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb) ; #define BLAS_dtrsm(side,uplo,transa,diag,m,n,alpha,A,lda,B,ldb) \ { \ BLAS_INT M = m, N = n, LDA = lda, LDB = ldb ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (LDB,ldb) ; \ } \ if (blas_ok) \ { \ BLAS_DTRSM (side, uplo, transa, diag, &M, &N, alpha, A, &LDA, B, &LDB);\ } \ } void BLAS_ZTRSM (char *side, char *uplo, char *transa, char *diag, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb) ; #define BLAS_ztrsm(side,uplo,transa,diag,m,n,alpha,A,lda,B,ldb) \ { \ BLAS_INT M = m, N = n, LDA = lda, LDB = ldb ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (LDB,ldb) ; \ } \ if (blas_ok) \ { \ BLAS_ZTRSM (side, uplo, transa, diag, &M, &N, alpha, A, &LDA, B, &LDB);\ } \ } void BLAS_DGEMM (char *transa, char *transb, BLAS_INT *m, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_dgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc) \ { \ BLAS_INT M = m, N = n, K = k, LDA = lda, LDB = ldb, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (K,k) && EQ (LDA,lda) \ && EQ (LDB,ldb) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_DGEMM (transa, transb, &M, &N, &K, alpha, A, &LDA, B, &LDB, beta, \ C, &LDC) ; \ } \ } void BLAS_ZGEMM (char *transa, char *transb, BLAS_INT *m, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_zgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc) \ { \ BLAS_INT M = m, N = n, K = k, LDA = lda, LDB = ldb, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (K,k) && EQ (LDA,lda) \ && EQ (LDB,ldb) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_ZGEMM (transa, transb, &M, &N, &K, alpha, A, &LDA, B, &LDB, beta, \ C, &LDC) ; \ } \ } void BLAS_DSYRK (char *uplo, char *trans, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_dsyrk(uplo,trans,n,k,alpha,A,lda,beta,C,ldc) \ { \ BLAS_INT N = n, K = k, LDA = lda, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (K,k) && EQ (LDA,lda) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_DSYRK (uplo, trans, &N, &K, alpha, A, &LDA, beta, C, &LDC) ; \ } \ } \ void BLAS_ZHERK (char *uplo, char *trans, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_zherk(uplo,trans,n,k,alpha,A,lda,beta,C,ldc) \ { \ BLAS_INT N = n, K = k, LDA = lda, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (K,k) && EQ (LDA,lda) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_ZHERK (uplo, trans, &N, &K, alpha, A, &LDA, beta, C, &LDC) ; \ } \ } \ void LAPACK_DPOTRF (char *uplo, BLAS_INT *n, double *A, BLAS_INT *lda, BLAS_INT *info) ; #define LAPACK_dpotrf(uplo,n,A,lda,info) \ { \ BLAS_INT N = n, LDA = lda, INFO = 1 ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) ; \ } \ if (blas_ok) \ { \ LAPACK_DPOTRF (uplo, &N, A, &LDA, &INFO) ; \ } \ info = INFO ; \ } void LAPACK_ZPOTRF (char *uplo, BLAS_INT *n, double *A, BLAS_INT *lda, BLAS_INT *info) ; #define LAPACK_zpotrf(uplo,n,A,lda,info) \ { \ BLAS_INT N = n, LDA = lda, INFO = 1 ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) ; \ } \ if (blas_ok) \ { \ LAPACK_ZPOTRF (uplo, &N, A, &LDA, &INFO) ; \ } \ info = INFO ; \ } /* ========================================================================== */ void BLAS_DSCAL (BLAS_INT *n, double *alpha, double *Y, BLAS_INT *incy) ; #define BLAS_dscal(n,alpha,Y,incy) \ { \ BLAS_INT N = n, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DSCAL (&N, alpha, Y, &INCY) ; \ } \ } void BLAS_ZSCAL (BLAS_INT *n, double *alpha, double *Y, BLAS_INT *incy) ; #define BLAS_zscal(n,alpha,Y,incy) \ { \ BLAS_INT N = n, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZSCAL (&N, alpha, Y, &INCY) ; \ } \ } void BLAS_DGER (BLAS_INT *m, BLAS_INT *n, double *alpha, double *X, BLAS_INT *incx, double *Y, BLAS_INT *incy, double *A, BLAS_INT *lda) ; #define BLAS_dger(m,n,alpha,X,incx,Y,incy,A,lda) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DGER (&M, &N, alpha, X, &INCX, Y, &INCY, A, &LDA) ; \ } \ } void BLAS_ZGER (BLAS_INT *m, BLAS_INT *n, double *alpha, double *X, BLAS_INT *incx, double *Y, BLAS_INT *incy, double *A, BLAS_INT *lda) ; #define BLAS_zgeru(m,n,alpha,X,incx,Y,incy,A,lda) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZGER (&M, &N, alpha, X, &INCX, Y, &INCY, A, &LDA) ; \ } \ } #endif SuiteSparse/UMFPACK/Source/umfpack_save_numeric.c0000644001170100242450000000551010677543227020645 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_save_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Saves a Numeric object to a file. It can later be read back in via a call to umfpack_*_load_numeric. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #define WRITE(object,type,n) \ { \ ASSERT (object != (type *) NULL) ; \ if (fwrite (object, sizeof (type), n, f) != (size_t) n) \ { \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ } /* ========================================================================== */ /* === UMFPACK_save_numeric ================================================= */ /* ========================================================================== */ GLOBAL Int UMFPACK_save_numeric ( void *NumericHandle, char *user_filename ) { NumericType *Numeric ; char *filename ; FILE *f ; /* get the Numeric object */ Numeric = (NumericType *) NumericHandle ; /* make sure the Numeric object is valid */ if (!UMF_valid_numeric (Numeric)) { return (UMFPACK_ERROR_invalid_Numeric_object) ; } /* get the filename, or use the default name if filename is NULL */ if (user_filename == (char *) NULL) { filename = "numeric.umf" ; } else { filename = user_filename ; } f = fopen (filename, "wb") ; if (!f) { return (UMFPACK_ERROR_file_IO) ; } /* write the Numeric object to the file, in binary */ WRITE (Numeric, NumericType, 1) ; WRITE (Numeric->D, Entry, MIN (Numeric->n_row, Numeric->n_col)+1) ; WRITE (Numeric->Rperm, Int, Numeric->n_row+1) ; WRITE (Numeric->Cperm, Int, Numeric->n_col+1) ; WRITE (Numeric->Lpos, Int, Numeric->npiv+1) ; WRITE (Numeric->Lilen, Int, Numeric->npiv+1) ; WRITE (Numeric->Lip, Int, Numeric->npiv+1) ; WRITE (Numeric->Upos, Int, Numeric->npiv+1) ; WRITE (Numeric->Uilen, Int, Numeric->npiv+1) ; WRITE (Numeric->Uip, Int, Numeric->npiv+1) ; if (Numeric->scale != UMFPACK_SCALE_NONE) { WRITE (Numeric->Rs, double, Numeric->n_row) ; } if (Numeric->ulen > 0) { WRITE (Numeric->Upattern, Int, Numeric->ulen+1) ; } WRITE (Numeric->Memory, Unit, Numeric->size) ; /* close the file */ fclose (f) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_numeric.c0000644001170100242450000006751610617162075017635 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_numeric ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Factorizes A into its LU factors, given a symbolic pre-analysis computed by UMFPACK_symbolic. See umfpack_numeric.h for a description. Dynamic memory allocation: substantial. See comments (1) through (7), below. If an error occurs, all allocated space is free'd by UMF_free. If successful, the Numeric object contains 11 to 13 objects allocated by UMF_malloc that hold the LU factors of the input matrix. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" #include "umf_set_stats.h" #include "umf_kernel.h" #include "umf_malloc.h" #include "umf_free.h" #include "umf_realloc.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif PRIVATE Int work_alloc ( WorkType *Work, SymbolicType *Symbolic ) ; PRIVATE void free_work ( WorkType *Work ) ; PRIVATE Int numeric_alloc ( NumericType **NumericHandle, SymbolicType *Symbolic, double alloc_init, Int scale ) ; PRIVATE void error ( NumericType **Numeric, WorkType *Work ) ; /* ========================================================================== */ /* === UMFPACK_numeric ====================================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_numeric ( const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif void *SymbolicHandle, void **NumericHandle, const double Control [UMFPACK_CONTROL], double User_Info [UMFPACK_INFO] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double Info2 [UMFPACK_INFO], alloc_init, relpt, relpt2, droptol, front_alloc_init, stats [2] ; double *Info ; WorkType WorkSpace, *Work ; NumericType *Numeric ; SymbolicType *Symbolic ; Int n_row, n_col, n_inner, newsize, i, status, *inew, npiv, ulen, scale ; Unit *mnew ; /* ---------------------------------------------------------------------- */ /* get the amount of time used by the process so far */ /* ---------------------------------------------------------------------- */ umfpack_tic (stats) ; /* ---------------------------------------------------------------------- */ /* initialize and check inputs */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_dump_start ( ) ; init_count = UMF_malloc_count ; DEBUGm4 (("\nUMFPACK numeric: U transpose version\n")) ; #endif /* If front_alloc_init negative then allocate that size of front in * UMF_start_front. If alloc_init negative, then allocate that initial * size of Numeric->Memory. */ relpt = GET_CONTROL (UMFPACK_PIVOT_TOLERANCE, UMFPACK_DEFAULT_PIVOT_TOLERANCE) ; relpt2 = GET_CONTROL (UMFPACK_SYM_PIVOT_TOLERANCE, UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE) ; alloc_init = GET_CONTROL (UMFPACK_ALLOC_INIT, UMFPACK_DEFAULT_ALLOC_INIT) ; front_alloc_init = GET_CONTROL (UMFPACK_FRONT_ALLOC_INIT, UMFPACK_DEFAULT_FRONT_ALLOC_INIT) ; scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ; droptol = GET_CONTROL (UMFPACK_DROPTOL, UMFPACK_DEFAULT_DROPTOL) ; relpt = MAX (0.0, MIN (relpt, 1.0)) ; relpt2 = MAX (0.0, MIN (relpt2, 1.0)) ; droptol = MAX (0.0, droptol) ; front_alloc_init = MIN (1.0, front_alloc_init) ; if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX) { scale = UMFPACK_DEFAULT_SCALE ; } if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; /* clear the parts of Info that are set by UMFPACK_numeric */ for (i = UMFPACK_NUMERIC_SIZE ; i <= UMFPACK_MAX_FRONT_NCOLS ; i++) { Info [i] = EMPTY ; } for (i = UMFPACK_NUMERIC_DEFRAG ; i < UMFPACK_IR_TAKEN ; i++) { Info [i] = EMPTY ; } } else { /* no Info array passed - use local one instead */ Info = Info2 ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } } Symbolic = (SymbolicType *) SymbolicHandle ; Numeric = (NumericType *) NULL ; if (!UMF_valid_symbolic (Symbolic)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_Symbolic_object ; return (UMFPACK_ERROR_invalid_Symbolic_object) ; } /* compute alloc_init automatically for AMD ordering */ if (Symbolic->ordering == UMFPACK_ORDERING_AMD && alloc_init >= 0) { alloc_init = (Symbolic->nz + Symbolic->amd_lunz) / Symbolic->lunz_bound; alloc_init = MIN (1.0, alloc_init) ; alloc_init *= UMF_REALLOC_INCREASE ; } n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n_inner = MIN (n_row, n_col) ; /* check for integer overflow in Numeric->Memory minimum size */ if (INT_OVERFLOW (Symbolic->dnum_mem_init_usage * sizeof (Unit))) { /* :: int overflow, initial Numeric->Memory size :: */ /* There's no hope to allocate a Numeric object big enough simply to * hold the initial matrix, so return an out-of-memory condition */ DEBUGm4 (("out of memory: numeric int overflow\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; return (UMFPACK_ERROR_out_of_memory) ; } Info [UMFPACK_STATUS] = UMFPACK_OK ; Info [UMFPACK_NROW] = n_row ; Info [UMFPACK_NCOL] = n_col ; Info [UMFPACK_SIZE_OF_UNIT] = (double) (sizeof (Unit)) ; if (!Ap || !Ai || !Ax || !NumericHandle) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } Info [UMFPACK_NZ] = Ap [n_col] ; *NumericHandle = (void *) NULL ; /* ---------------------------------------------------------------------- */ /* allocate the Work object */ /* ---------------------------------------------------------------------- */ /* (1) calls UMF_malloc 15 or 17 times, to obtain temporary workspace of * size c+1 Entry's and 2*(n_row+1) + 3*(n_col+1) + (n_col+n_inner+1) + * (nn+1) + * 3*(c+1) + 2*(r+1) + max(r,c) + (nfr+1) integers plus 2*nn * more integers if diagonal pivoting is to be done. r is the maximum * number of rows in any frontal matrix, c is the maximum number of columns * in any frontal matrix, n_inner is min (n_row,n_col), nn is * max (n_row,n_col), and nfr is the number of frontal matrices. For a * square matrix, this is c+1 Entry's and about 8n + 3c + 2r + max(r,c) + * nfr integers, plus 2n more for diagonal pivoting. */ Work = &WorkSpace ; Work->n_row = n_row ; Work->n_col = n_col ; Work->nfr = Symbolic->nfr ; Work->nb = Symbolic->nb ; Work->n1 = Symbolic->n1 ; if (!work_alloc (Work, Symbolic)) { DEBUGm4 (("out of memory: numeric work\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Numeric, Work) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 16 + 2*Symbolic->prefer_diagonal) ; /* ---------------------------------------------------------------------- */ /* allocate Numeric object */ /* ---------------------------------------------------------------------- */ /* (2) calls UMF_malloc 10 or 11 times, for a total space of * sizeof (NumericType) bytes, 4*(n_row+1) + 4*(n_row+1) integers, and * (n_inner+1) Entry's, plus n_row Entry's if row scaling is to be done. * sizeof (NumericType) is a small constant. Next, it calls UMF_malloc * once, for the variable-sized part of the Numeric object * (Numeric->Memory). The size of this object is the larger of * (Control [UMFPACK_ALLOC_INIT]) * (the approximate upper bound computed * by UMFPACK_symbolic), and the minimum required to start the numerical * factorization. * This request is reduced if it fails. */ if (!numeric_alloc (&Numeric, Symbolic, alloc_init, scale)) { DEBUGm4 (("out of memory: initial numeric\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Numeric, Work) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; ASSERT (UMF_malloc_count == init_count + (16 + 2*Symbolic->prefer_diagonal) + (11 + (scale != UMFPACK_SCALE_NONE))) ; /* set control parameters */ Numeric->relpt = relpt ; Numeric->relpt2 = relpt2 ; Numeric->droptol = droptol ; Numeric->alloc_init = alloc_init ; Numeric->front_alloc_init = front_alloc_init ; Numeric->scale = scale ; DEBUG0 (("umf relpt %g %g init %g %g inc %g red %g\n", relpt, relpt2, alloc_init, front_alloc_init, UMF_REALLOC_INCREASE, UMF_REALLOC_REDUCTION)) ; /* ---------------------------------------------------------------------- */ /* scale and factorize */ /* ---------------------------------------------------------------------- */ /* (3) During numerical factorization (inside UMF_kernel), the variable-size * block of memory is increased in size via a call to UMF_realloc if it is * found to be too small. During factorization, this block holds the * pattern and values of L and U at the top end, and the elements * (contibution blocks) and the current frontal matrix (Work->F*) at the * bottom end. The peak size of the variable-sized object is estimated in * UMFPACK_*symbolic (Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]), although this * upper bound can be very loose. The size of the Symbolic object * (which is currently allocated) is in Info [UMFPACK_SYMBOLIC_SIZE], and * is between 2*n and 13*n integers. */ DEBUG0 (("Calling umf_kernel\n")) ; status = UMF_kernel (Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Numeric, Work, Symbolic) ; Info [UMFPACK_STATUS] = status ; if (status < UMFPACK_OK) { /* out of memory, or pattern has changed */ error (&Numeric, Work) ; return (status) ; } Info [UMFPACK_FORCED_UPDATES] = Work->nforced ; Info [UMFPACK_VARIABLE_INIT] = Numeric->init_usage ; if (Symbolic->prefer_diagonal) { Info [UMFPACK_NOFF_DIAG] = Work->noff_diagonal ; } DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; npiv = Numeric->npiv ; /* = n_inner for nonsingular matrices */ ulen = Numeric->ulen ; /* = 0 for square nonsingular matrices */ /* ---------------------------------------------------------------------- */ /* free Work object */ /* ---------------------------------------------------------------------- */ /* (4) After numerical factorization all of the objects allocated in step * (1) are freed via UMF_free, except that one object of size n_col+1 is * kept if there are off-diagonal nonzeros in the last pivot row (can only * occur for singular or rectangular matrices). This is Work->Upattern, * which is transfered to Numeric->Upattern if ulen > 0. */ DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; free_work (Work) ; DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; DEBUG0 (("Numeric->ulen: "ID" scale: "ID"\n", ulen, scale)) ; ASSERT (UMF_malloc_count == init_count + (ulen > 0) + (11 + (scale != UMFPACK_SCALE_NONE))) ; /* ---------------------------------------------------------------------- */ /* reduce Lpos, Lilen, Lip, Upos, Uilen and Uip to size npiv+1 */ /* ---------------------------------------------------------------------- */ /* (5) Six components of the Numeric object are reduced in size if the * matrix is singular or rectangular. The original size is 3*(n_row+1) + * 3*(n_col+1) integers. The new size is 6*(npiv+1) integers. For * square non-singular matrices, these two sizes are the same. */ if (npiv < n_row) { /* reduce Lpos, Uilen, and Uip from size n_row+1 to size npiv */ inew = (Int *) UMF_realloc (Numeric->Lpos, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lpos = inew ; } inew = (Int *) UMF_realloc (Numeric->Uilen, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Uilen = inew ; } inew = (Int *) UMF_realloc (Numeric->Uip, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Uip = inew ; } } if (npiv < n_col) { /* reduce Upos, Lilen, and Lip from size n_col+1 to size npiv */ inew = (Int *) UMF_realloc (Numeric->Upos, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Upos = inew ; } inew = (Int *) UMF_realloc (Numeric->Lilen, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lilen = inew ; } inew = (Int *) UMF_realloc (Numeric->Lip, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lip = inew ; } } /* ---------------------------------------------------------------------- */ /* reduce Numeric->Upattern from size n_col+1 to size ulen+1 */ /* ---------------------------------------------------------------------- */ /* (6) The size of Numeric->Upattern (formerly Work->Upattern) is reduced * from size n_col+1 to size ulen + 1. If ulen is zero, the object does * not exist. */ DEBUG4 (("ulen: "ID" Upattern "ID"\n", ulen, (Int) Numeric->Upattern)) ; ASSERT (IMPLIES (ulen == 0, Numeric->Upattern == (Int *) NULL)) ; if (ulen > 0 && ulen < n_col) { inew = (Int *) UMF_realloc (Numeric->Upattern, ulen+1, sizeof (Int)) ; if (inew) { Numeric->Upattern = inew ; } } /* ---------------------------------------------------------------------- */ /* reduce Numeric->Memory to hold just the LU factors at the head */ /* ---------------------------------------------------------------------- */ /* (7) The variable-sized block (Numeric->Memory) is reduced to hold just L * and U, via a call to UMF_realloc, since the frontal matrices are no * longer needed. */ newsize = Numeric->ihead ; if (newsize < Numeric->size) { mnew = (Unit *) UMF_realloc (Numeric->Memory, newsize, sizeof (Unit)) ; if (mnew) { /* realloc succeeded (how can it fail since the size is reduced?) */ Numeric->Memory = mnew ; Numeric->size = newsize ; } } Numeric->ihead = Numeric->size ; Numeric->itail = Numeric->ihead ; Numeric->tail_usage = 0 ; Numeric->ibig = EMPTY ; /* UMF_mem_alloc_tail_block can no longer be called (no tail marker) */ /* ---------------------------------------------------------------------- */ /* report the results and return the Numeric object */ /* ---------------------------------------------------------------------- */ UMF_set_stats ( Info, Symbolic, (double) Numeric->max_usage, /* actual peak Numeric->Memory */ (double) Numeric->size, /* actual final Numeric->Memory */ Numeric->flops, /* actual "true flops" */ (double) Numeric->lnz + n_inner, /* actual nz in L */ (double) Numeric->unz + Numeric->nnzpiv, /* actual nz in U */ (double) Numeric->maxfrsize, /* actual largest front size */ (double) ulen, /* actual Numeric->Upattern size */ (double) npiv, /* actual # pivots found */ (double) Numeric->maxnrows, /* actual largest #rows in front */ (double) Numeric->maxncols, /* actual largest #cols in front */ scale != UMFPACK_SCALE_NONE, Symbolic->prefer_diagonal, ACTUAL) ; Info [UMFPACK_ALLOC_INIT_USED] = Numeric->alloc_init ; Info [UMFPACK_NUMERIC_DEFRAG] = Numeric->ngarbage ; Info [UMFPACK_NUMERIC_REALLOC] = Numeric->nrealloc ; Info [UMFPACK_NUMERIC_COSTLY_REALLOC] = Numeric->ncostly ; Info [UMFPACK_COMPRESSED_PATTERN] = Numeric->isize ; Info [UMFPACK_LU_ENTRIES] = Numeric->nLentries + Numeric->nUentries + Numeric->npiv ; Info [UMFPACK_UDIAG_NZ] = Numeric->nnzpiv ; Info [UMFPACK_RSMIN] = Numeric->rsmin ; Info [UMFPACK_RSMAX] = Numeric->rsmax ; Info [UMFPACK_WAS_SCALED] = Numeric->scale ; /* nz in L and U with no dropping of small entries */ Info [UMFPACK_ALL_LNZ] = Numeric->all_lnz + n_inner ; Info [UMFPACK_ALL_UNZ] = Numeric->all_unz + Numeric->nnzpiv ; Info [UMFPACK_NZDROPPED] = (Numeric->all_lnz - Numeric->lnz) + (Numeric->all_unz - Numeric->unz) ; /* estimate of the reciprocal of the condition number. */ if (SCALAR_IS_ZERO (Numeric->min_udiag) || SCALAR_IS_ZERO (Numeric->max_udiag) || SCALAR_IS_NAN (Numeric->min_udiag) || SCALAR_IS_NAN (Numeric->max_udiag)) { /* rcond is zero if there is any zero or NaN on the diagonal */ Numeric->rcond = 0.0 ; } else { /* estimate of the recipricol of the condition number. */ /* This is NaN if diagonal is zero-free, but has one or more NaN's. */ Numeric->rcond = Numeric->min_udiag / Numeric->max_udiag ; } Info [UMFPACK_UMIN] = Numeric->min_udiag ; Info [UMFPACK_UMAX] = Numeric->max_udiag ; Info [UMFPACK_RCOND] = Numeric->rcond ; if (Numeric->nnzpiv < n_inner || SCALAR_IS_ZERO (Numeric->rcond) || SCALAR_IS_NAN (Numeric->rcond)) { /* there are zeros and/or NaN's on the diagonal of U */ DEBUG0 (("Warning, matrix is singular in umfpack_numeric\n")) ; DEBUG0 (("nnzpiv "ID" n_inner "ID" rcond %g\n", Numeric->nnzpiv, n_inner, Numeric->rcond)) ; status = UMFPACK_WARNING_singular_matrix ; Info [UMFPACK_STATUS] = status ; } Numeric->valid = NUMERIC_VALID ; *NumericHandle = (void *) Numeric ; /* Numeric has 11 to 13 objects */ ASSERT (UMF_malloc_count == init_count + 11 + + (ulen > 0) /* Numeric->Upattern */ + (scale != UMFPACK_SCALE_NONE)) ; /* Numeric->Rs */ /* ---------------------------------------------------------------------- */ /* get the time used by UMFPACK_numeric */ /* ---------------------------------------------------------------------- */ umfpack_toc (stats) ; Info [UMFPACK_NUMERIC_WALLTIME] = stats [0] ; Info [UMFPACK_NUMERIC_TIME] = stats [1] ; /* return UMFPACK_OK or UMFPACK_WARNING_singular_matrix */ return (status) ; } /* ========================================================================== */ /* === numeric_alloc ======================================================== */ /* ========================================================================== */ /* Allocate the Numeric object */ PRIVATE Int numeric_alloc ( NumericType **NumericHandle, SymbolicType *Symbolic, double alloc_init, Int scale ) { double nsize, bsize ; Int n_row, n_col, n_inner, min_usage, trying ; NumericType *Numeric ; DEBUG0 (("numeric alloc:\n")) ; n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n_inner = MIN (n_row, n_col) ; *NumericHandle = (NumericType *) NULL ; /* 1 allocation: accounted for in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ Numeric = (NumericType *) UMF_malloc (1, sizeof (NumericType)) ; if (!Numeric) { return (FALSE) ; /* out of memory */ } Numeric->valid = 0 ; *NumericHandle = Numeric ; /* 9 allocations: accounted for in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ Numeric->D = (Entry *) UMF_malloc (n_inner+1, sizeof (Entry)) ; Numeric->Rperm = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Cperm = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Lpos = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Lilen = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Lip = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Upos = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Uilen = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Uip = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; /* 1 allocation if scaling: in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ if (scale != UMFPACK_SCALE_NONE) { DEBUG0 (("Allocating scale factors\n")) ; Numeric->Rs = (double *) UMF_malloc (n_row, sizeof (double)) ; } else { DEBUG0 (("No scale factors allocated (R = I)\n")) ; Numeric->Rs = (double *) NULL ; } Numeric->Memory = (Unit *) NULL ; /* Upattern has already been allocated as part of the Work object. If * the matrix is singular or rectangular, and there are off-diagonal * nonzeros in the last pivot row, then Work->Upattern is not free'd. * Instead it is transfered to Numeric->Upattern. If it exists, * Numeric->Upattern is free'd in umfpack_free_numeric. */ Numeric->Upattern = (Int *) NULL ; /* used for singular matrices only */ if (!Numeric->D || !Numeric->Rperm || !Numeric->Cperm || !Numeric->Upos || !Numeric->Lpos || !Numeric->Lilen || !Numeric->Uilen || !Numeric->Lip || !Numeric->Uip || (scale != UMFPACK_SCALE_NONE && !Numeric->Rs)) { return (FALSE) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* allocate initial Numeric->Memory for LU factors and elements */ /* ---------------------------------------------------------------------- */ if (alloc_init < 0) { /* -alloc_init is the exact size to initially allocate */ nsize = -alloc_init ; } else { /* alloc_init is a ratio of the upper bound memory usage */ nsize = (alloc_init * Symbolic->num_mem_usage_est) + 1 ; } min_usage = Symbolic->num_mem_init_usage ; /* Numeric->Memory must be large enough for UMF_kernel_init */ nsize = MAX (min_usage, nsize) ; /* Numeric->Memory cannot be larger in size than Int_MAX / sizeof(Unit) */ /* For ILP32 mode: 2GB (nsize cannot be bigger than 256 Mwords) */ bsize = ((double) Int_MAX) / sizeof (Unit) - 1 ; DEBUG0 (("bsize %g\n", bsize)) ; nsize = MIN (nsize, bsize) ; Numeric->size = (Int) nsize ; DEBUG0 (("Num init %g usage_est %g numsize "ID" minusage "ID"\n", alloc_init, Symbolic->num_mem_usage_est, Numeric->size, min_usage)) ; /* allocates 1 object: */ /* keep trying until successful, or memory request is too small */ trying = TRUE ; while (trying) { Numeric->Memory = (Unit *) UMF_malloc (Numeric->size, sizeof (Unit)) ; if (Numeric->Memory) { DEBUG0 (("Successful Numeric->size: "ID"\n", Numeric->size)) ; return (TRUE) ; } /* too much, reduce the request (but not below the minimum) */ /* and try again */ trying = Numeric->size > min_usage ; Numeric->size = (Int) (UMF_REALLOC_REDUCTION * ((double) Numeric->size)) ; Numeric->size = MAX (min_usage, Numeric->size) ; } return (FALSE) ; /* we failed to allocate Numeric->Memory */ } /* ========================================================================== */ /* === work_alloc =========================================================== */ /* ========================================================================== */ /* Allocate the Work object. Return TRUE if successful. */ PRIVATE Int work_alloc ( WorkType *Work, SymbolicType *Symbolic ) { Int n_row, n_col, nn, maxnrows, maxncols, nfr, ok, maxnrc, n1 ; n_row = Work->n_row ; n_col = Work->n_col ; nn = MAX (n_row, n_col) ; nfr = Work->nfr ; n1 = Symbolic->n1 ; ASSERT (n1 <= n_row && n1 <= n_col) ; maxnrows = Symbolic->maxnrows + Symbolic->nb ; maxnrows = MIN (n_row, maxnrows) ; maxncols = Symbolic->maxncols + Symbolic->nb ; maxncols = MIN (n_col, maxncols) ; maxnrc = MAX (maxnrows, maxncols) ; DEBUG0 (("work alloc: maxnrows+nb "ID" maxncols+nb "ID"\n", maxnrows, maxncols)) ; /* 15 allocations, freed in free_work: */ /* accounted for in UMF_set_stats (work_usage) */ Work->Wx = (Entry *) UMF_malloc (maxnrows + 1, sizeof (Entry)) ; Work->Wy = (Entry *) UMF_malloc (maxnrows + 1, sizeof (Entry)) ; Work->Frpos = (Int *) UMF_malloc (n_row + 1, sizeof (Int)) ; Work->Lpattern = (Int *) UMF_malloc (n_row + 1, sizeof (Int)) ; Work->Fcpos = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; Work->Wp = (Int *) UMF_malloc (nn + 1, sizeof (Int)) ; Work->Wrp = (Int *) UMF_malloc (MAX (n_col,maxnrows) + 1, sizeof (Int)) ; Work->Frows = (Int *) UMF_malloc (maxnrows + 1, sizeof (Int)) ; Work->Wm = (Int *) UMF_malloc (maxnrows + 1, sizeof (Int)) ; Work->Fcols = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Wio = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Woi = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Woo = (Int *) UMF_malloc (maxnrc + 1, sizeof (Int)); Work->elen = (n_col - n1) + (n_row - n1) + MIN (n_col-n1, n_row-n1) + 1 ; Work->E = (Int *) UMF_malloc (Work->elen, sizeof (Int)) ; Work->Front_new1strow = (Int *) UMF_malloc (nfr + 1, sizeof (Int)) ; ok = (Work->Frpos && Work->Fcpos && Work->Lpattern && Work->Wp && Work->Wrp && Work->Frows && Work->Fcols && Work->Wio && Work->Woi && Work->Woo && Work->Wm && Work->E && Work->Front_new1strow && Work->Wx && Work->Wy) ; /* 2 allocations: accounted for in UMF_set_stats (work_usage) */ if (Symbolic->prefer_diagonal) { Work->Diagonal_map = (Int *) UMF_malloc (nn, sizeof (Int)) ; Work->Diagonal_imap = (Int *) UMF_malloc (nn, sizeof (Int)) ; ok = ok && Work->Diagonal_map && Work->Diagonal_imap ; } else { /* no diagonal map needed for rectangular matrices */ Work->Diagonal_map = (Int *) NULL ; Work->Diagonal_imap = (Int *) NULL ; } /* 1 allocation, may become part of Numeric (if singular or rectangular): */ Work->Upattern = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; ok = ok && Work->Upattern ; /* current frontal matrix does not yet exist */ Work->Flublock = (Entry *) NULL ; Work->Flblock = (Entry *) NULL ; Work->Fublock = (Entry *) NULL ; Work->Fcblock = (Entry *) NULL ; DEBUG0 (("work alloc done.\n")) ; return (ok) ; } /* ========================================================================== */ /* === free_work ============================================================ */ /* ========================================================================== */ PRIVATE void free_work ( WorkType *Work ) { DEBUG0 (("work free:\n")) ; if (Work) { /* these 16 objects do exist */ Work->Wx = (Entry *) UMF_free ((void *) Work->Wx) ; Work->Wy = (Entry *) UMF_free ((void *) Work->Wy) ; Work->Frpos = (Int *) UMF_free ((void *) Work->Frpos) ; Work->Fcpos = (Int *) UMF_free ((void *) Work->Fcpos) ; Work->Lpattern = (Int *) UMF_free ((void *) Work->Lpattern) ; Work->Upattern = (Int *) UMF_free ((void *) Work->Upattern) ; Work->Wp = (Int *) UMF_free ((void *) Work->Wp) ; Work->Wrp = (Int *) UMF_free ((void *) Work->Wrp) ; Work->Frows = (Int *) UMF_free ((void *) Work->Frows) ; Work->Fcols = (Int *) UMF_free ((void *) Work->Fcols) ; Work->Wio = (Int *) UMF_free ((void *) Work->Wio) ; Work->Woi = (Int *) UMF_free ((void *) Work->Woi) ; Work->Woo = (Int *) UMF_free ((void *) Work->Woo) ; Work->Wm = (Int *) UMF_free ((void *) Work->Wm) ; Work->E = (Int *) UMF_free ((void *) Work->E) ; Work->Front_new1strow = (Int *) UMF_free ((void *) Work->Front_new1strow) ; /* these objects might not exist */ Work->Diagonal_map = (Int *) UMF_free ((void *) Work->Diagonal_map) ; Work->Diagonal_imap = (Int *) UMF_free ((void *) Work->Diagonal_imap) ; } DEBUG0 (("work free done.\n")) ; } /* ========================================================================== */ /* === error ================================================================ */ /* ========================================================================== */ /* Error return from UMFPACK_numeric. Free all allocated memory. */ PRIVATE void error ( NumericType **Numeric, WorkType *Work ) { free_work (Work) ; UMFPACK_free_numeric ((void **) Numeric) ; ASSERT (UMF_malloc_count == init_count) ; } SuiteSparse/UMFPACK/Source/umfpack_get_lunz.c0000644001170100242450000000317010617162053020000 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_get_lunz ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Determines the number of nonzeros in L and U, and the size of L and U. */ #include "umf_internal.h" #include "umf_valid_numeric.h" GLOBAL Int UMFPACK_get_lunz ( Int *lnz, Int *unz, Int *n_row, Int *n_col, Int *nz_udiag, void *NumericHandle ) { NumericType *Numeric ; Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { return (UMFPACK_ERROR_invalid_Numeric_object) ; } if (!lnz || !unz || !n_row || !n_col || !nz_udiag) { return (UMFPACK_ERROR_argument_missing) ; } *n_row = Numeric->n_row ; *n_col = Numeric->n_col ; /* number of nz's in L below diagonal, plus the unit diagonal of L */ *lnz = Numeric->lnz + MIN (Numeric->n_row, Numeric->n_col) ; /* number of nz's in U above diagonal, plus nz's on diagaonal of U */ *unz = Numeric->unz + Numeric->nnzpiv ; /* number of nz's on the diagonal */ *nz_udiag = Numeric->nnzpiv ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_report_control.c0000644001170100242450000003125210617162106021225 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_control =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints the control settings. See umfpack_report_control.h for details. */ #include "umf_internal.h" GLOBAL void UMFPACK_report_control ( const double Control [UMFPACK_CONTROL] ) { double drow, dcol, relpt, relpt2, alloc_init, front_alloc_init, amd_alpha, tol, force_fixQ, droptol, aggr ; Int prl, nb, irstep, strategy, scale, s ; prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl < 2) { /* default is to print nothing */ return ; } PRINTF (("UMFPACK V%d.%d.%d (%s), Control:\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_SUBSUB_VERSION, UMFPACK_DATE)) ; /* ---------------------------------------------------------------------- */ /* run-time options */ /* ---------------------------------------------------------------------- */ /* This is a "run-time" option because all four umfpack_* versions */ /* compiled into the UMFPACK library. */ #ifdef DINT PRINTF ((" Matrix entry defined as: double\n")) ; PRINTF ((" Int (generic integer) defined as: int\n")) ; #endif #ifdef DLONG PRINTF ((" Matrix entry defined as: double\n")) ; PRINTF ((" Int (generic integer) defined as: UF_long\n")) ; #endif #ifdef ZINT PRINTF ((" Matrix entry defined as: double complex\n")) ; PRINTF ((" Int (generic integer) defined as: int\n")) ; #endif #ifdef ZLONG PRINTF ((" Matrix entry defined as: double complex\n")) ; PRINTF ((" Int (generic integer) defined as: UF_long\n")) ; #endif /* ---------------------------------------------------------------------- */ /* printing level */ /* ---------------------------------------------------------------------- */ PRINTF (("\n "ID": print level: "ID"\n", (Int) INDEX (UMFPACK_PRL), prl)) ; /* ---------------------------------------------------------------------- */ /* dense row/col parameters */ /* ---------------------------------------------------------------------- */ drow = GET_CONTROL (UMFPACK_DENSE_ROW, UMFPACK_DEFAULT_DENSE_ROW) ; dcol = GET_CONTROL (UMFPACK_DENSE_COL, UMFPACK_DEFAULT_DENSE_COL) ; PRINTF ((" "ID": dense row parameter: %g\n", (Int) INDEX (UMFPACK_DENSE_ROW), drow)) ; PRINTF ((" \"dense\" rows have > max (16, (%g)*16*sqrt(n_col)" " entries)\n", drow)) ; PRINTF ((" "ID": dense column parameter: %g\n", (Int) INDEX (UMFPACK_DENSE_COL), dcol)) ; PRINTF ((" \"dense\" columns have > max (16, (%g)*16*sqrt(n_row)" " entries)\n", dcol)) ; /* ---------------------------------------------------------------------- */ /* pivot tolerance */ /* ---------------------------------------------------------------------- */ relpt = GET_CONTROL (UMFPACK_PIVOT_TOLERANCE, UMFPACK_DEFAULT_PIVOT_TOLERANCE) ; relpt = MAX (0.0, MIN (relpt, 1.0)) ; PRINTF ((" "ID": pivot tolerance: %g\n", (Int) INDEX (UMFPACK_PIVOT_TOLERANCE), relpt)) ; /* ---------------------------------------------------------------------- */ /* block size */ /* ---------------------------------------------------------------------- */ nb = GET_CONTROL (UMFPACK_BLOCK_SIZE, UMFPACK_DEFAULT_BLOCK_SIZE) ; nb = MAX (1, nb) ; PRINTF ((" "ID": block size for dense matrix kernels: "ID"\n", (Int) INDEX (UMFPACK_BLOCK_SIZE), nb)) ; /* ---------------------------------------------------------------------- */ /* strategy */ /* ---------------------------------------------------------------------- */ strategy = GET_CONTROL (UMFPACK_STRATEGY, UMFPACK_DEFAULT_STRATEGY) ; if (strategy < UMFPACK_STRATEGY_AUTO || strategy > UMFPACK_STRATEGY_SYMMETRIC) { strategy = UMFPACK_STRATEGY_AUTO ; } PRINTF ((" "ID": strategy: "ID, (Int) INDEX (UMFPACK_STRATEGY), strategy)) ; if (strategy == UMFPACK_STRATEGY_SYMMETRIC) { PRINTF ((" (symmetric)\n" " Q = AMD (A+A'), Q not refined during numerical\n" " factorization, and diagonal pivoting (P=Q') attempted.\n")) ; } else if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC) { PRINTF ((" (unsymmetric)\n" " Q = COLAMD (A), Q refined during numerical\n" " factorization, and no attempt at diagonal pivoting.\n")) ; } else if (strategy == UMFPACK_STRATEGY_2BY2) { PRINTF ((" (symmetric, with 2-by-2 block pivoting)\n" " P2 = row permutation that tries to place large entries on\n" " the diagonal. Q = AMD (P2*A+(P2*A)'), Q not refined during\n" " numerical factorization, attempt to select pivots from the\n" " diagonal of P2*A.\n")) ; } else /* auto strategy */ { strategy = UMFPACK_STRATEGY_AUTO ; PRINTF ((" (auto)\n")) ; } /* ---------------------------------------------------------------------- */ /* initial allocation parameter */ /* ---------------------------------------------------------------------- */ alloc_init = GET_CONTROL (UMFPACK_ALLOC_INIT, UMFPACK_DEFAULT_ALLOC_INIT) ; if (alloc_init >= 0) { PRINTF ((" "ID": initial allocation ratio: %g\n", (Int) INDEX (UMFPACK_ALLOC_INIT), alloc_init)) ; } else { s = -alloc_init ; s = MAX (1, s) ; PRINTF ((" "ID": initial allocation (in Units): "ID"\n", (Int) INDEX (UMFPACK_ALLOC_INIT), s)) ; } /* ---------------------------------------------------------------------- */ /* maximum iterative refinement steps */ /* ---------------------------------------------------------------------- */ irstep = GET_CONTROL (UMFPACK_IRSTEP, UMFPACK_DEFAULT_IRSTEP) ; irstep = MAX (0, irstep) ; PRINTF ((" "ID": max iterative refinement steps: "ID"\n", (Int) INDEX (UMFPACK_IRSTEP), irstep)) ; /* ---------------------------------------------------------------------- */ /* 2-by-2 pivot tolerance */ /* ---------------------------------------------------------------------- */ tol = GET_CONTROL (UMFPACK_2BY2_TOLERANCE, UMFPACK_DEFAULT_2BY2_TOLERANCE) ; tol = MAX (0.0, MIN (tol, 1.0)) ; PRINTF ((" "ID": 2-by-2 pivot tolerance: %g\n", (Int) INDEX (UMFPACK_2BY2_TOLERANCE), tol)) ; /* ---------------------------------------------------------------------- */ /* force fixQ */ /* ---------------------------------------------------------------------- */ force_fixQ = GET_CONTROL (UMFPACK_FIXQ, UMFPACK_DEFAULT_FIXQ) ; PRINTF ((" "ID": Q fixed during numerical factorization: %g ", (Int) INDEX (UMFPACK_FIXQ), force_fixQ)) ; if (force_fixQ > 0) { PRINTF (("(yes)\n")) ; } else if (force_fixQ < 0) { PRINTF (("(no)\n")) ; } else { PRINTF (("(auto)\n")) ; } /* ---------------------------------------------------------------------- */ /* AMD parameters */ /* ---------------------------------------------------------------------- */ amd_alpha = GET_CONTROL (UMFPACK_AMD_DENSE, UMFPACK_DEFAULT_AMD_DENSE) ; PRINTF ((" "ID": AMD dense row/col parameter: %g\n", (Int) INDEX (UMFPACK_AMD_DENSE), amd_alpha)) ; if (amd_alpha < 0) { PRINTF ((" no \"dense\" rows/columns\n")) ; } else { PRINTF ((" \"dense\" rows/columns have > max (16, (%g)*sqrt(n))" " entries\n", amd_alpha)) ; } PRINTF ((" Only used if the AMD ordering is used.\n")) ; /* ---------------------------------------------------------------------- */ /* pivot tolerance for symmetric pivoting */ /* ---------------------------------------------------------------------- */ relpt2 = GET_CONTROL (UMFPACK_SYM_PIVOT_TOLERANCE, UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE) ; relpt2 = MAX (0.0, MIN (relpt2, 1.0)) ; PRINTF ((" "ID": diagonal pivot tolerance: %g\n" " Only used if diagonal pivoting is attempted.\n", (Int) INDEX (UMFPACK_SYM_PIVOT_TOLERANCE), relpt2)) ; /* ---------------------------------------------------------------------- */ /* scaling */ /* ---------------------------------------------------------------------- */ scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ; if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX) { scale = UMFPACK_DEFAULT_SCALE ; } PRINTF ((" "ID": scaling: "ID, (Int) INDEX (UMFPACK_SCALE), scale)) ; if (scale == UMFPACK_SCALE_NONE) { PRINTF ((" (no)")) ; } else if (scale == UMFPACK_SCALE_SUM) { PRINTF ((" (divide each row by sum of abs. values in each row)")) ; } else if (scale == UMFPACK_SCALE_MAX) { PRINTF ((" (divide each row by max. abs. value in each row)")) ; } PRINTF (("\n")) ; /* ---------------------------------------------------------------------- */ /* frontal matrix allocation parameter */ /* ---------------------------------------------------------------------- */ front_alloc_init = GET_CONTROL (UMFPACK_FRONT_ALLOC_INIT, UMFPACK_DEFAULT_FRONT_ALLOC_INIT) ; front_alloc_init = MIN (1.0, front_alloc_init) ; if (front_alloc_init >= 0) { PRINTF ((" "ID": frontal matrix allocation ratio: %g\n", (Int) INDEX (UMFPACK_FRONT_ALLOC_INIT), front_alloc_init)) ; } else { s = -front_alloc_init ; s = MAX (1, s) ; PRINTF ((" "ID": initial frontal matrix size (# of Entry's): "ID"\n", (Int) INDEX (UMFPACK_FRONT_ALLOC_INIT), s)) ; } /* ---------------------------------------------------------------------- */ /* drop tolerance */ /* ---------------------------------------------------------------------- */ droptol = GET_CONTROL (UMFPACK_DROPTOL, UMFPACK_DEFAULT_DROPTOL) ; PRINTF ((" "ID": drop tolerance: %g\n", (Int) INDEX (UMFPACK_DROPTOL), droptol)) ; /* ---------------------------------------------------------------------- */ /* aggressive absorption */ /* ---------------------------------------------------------------------- */ aggr = GET_CONTROL (UMFPACK_AGGRESSIVE, UMFPACK_DEFAULT_AGGRESSIVE) ; PRINTF ((" "ID": AMD and COLAMD aggressive absorption: %g", (Int) INDEX (UMFPACK_AGGRESSIVE), aggr)) ; if (aggr != 0.0) { PRINTF ((" (yes)\n")) ; } else { PRINTF ((" (no)\n")) ; } /* ---------------------------------------------------------------------- */ /* compile-time options */ /* ---------------------------------------------------------------------- */ PRINTF (( "\n The following options can only be changed at compile-time:\n")) ; PRINTF ((" "ID": BLAS library used: ", (Int) INDEX (UMFPACK_COMPILED_WITH_BLAS))) ; #ifdef NBLAS PRINTF (("none. UMFPACK will be slow.\n")) ; #else PRINTF (("Fortran BLAS. size of BLAS integer: "ID"\n", (Int) (sizeof (BLAS_INT)))) ; #endif #ifdef MATLAB_MEX_FILE PRINTF ((" "ID": compiled for MATLAB\n", (Int) INDEX (UMFPACK_COMPILED_FOR_MATLAB))) ; #else #ifdef MATHWORKS PRINTF ((" "ID": compiled for MATLAB\n", (Int) INDEX (UMFPACK_COMPILED_FOR_MATLAB))) ; #else PRINTF ((" "ID": compiled for ANSI C\n", (Int) INDEX (UMFPACK_COMPILED_FOR_MATLAB))) ; #endif #endif #ifdef NO_TIMER PRINTF ((" "ID": no CPU timer \n", (Int) INDEX (UMFPACK_COMPILED_WITH_GETRUSAGE))) ; #else #ifndef NPOSIX PRINTF ((" "ID": CPU timer is POSIX times ( ) routine.\n", (Int) INDEX (UMFPACK_COMPILED_WITH_GETRUSAGE))) ; #else #ifdef GETRUSAGE PRINTF ((" "ID": CPU timer is getrusage.\n", (Int) INDEX (UMFPACK_COMPILED_WITH_GETRUSAGE))) ; #else PRINTF ((" "ID": CPU timer is ANSI C clock (may wrap around).\n", (Int) INDEX (UMFPACK_COMPILED_WITH_GETRUSAGE))) ; #endif #endif #endif #ifndef NDEBUG PRINTF (( "**** Debugging enabled (UMFPACK will be exceedingly slow!) *****************\n" " "ID": compiled with debugging enabled. ", (Int) INDEX (UMFPACK_COMPILED_IN_DEBUG_MODE))) ; #else PRINTF ((" "ID": compiled for normal operation (debugging disabled)\n", (Int) INDEX (UMFPACK_COMPILED_IN_DEBUG_MODE))) ; #endif PRINTF ((" computer/operating system: %s\n", UMFPACK_ARCHITECTURE)) ; PRINTF ((" size of int: %g UF_long: %g Int: %g pointer: %g" " double: %g Entry: %g (in bytes)\n\n", (double) sizeof (int), (double) sizeof (UF_long), (double) sizeof (Int), (double) sizeof (void *), (double) sizeof (double), (double) sizeof (Entry))) ; } SuiteSparse/UMFPACK/Source/umfpack_save_symbolic.c0000644001170100242450000000616510677543752021036 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_save_symbolic ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Saves a Symbolic object to a file. It can later be read back in via a call to umfpack_*_load_symbolic. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" #define WRITE(object,type,n) \ { \ ASSERT (object != (type *) NULL) ; \ if (fwrite (object, sizeof (type), n, f) != (size_t) n) \ { \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ } /* ========================================================================== */ /* === UMFPACK_save_symbolic ================================================ */ /* ========================================================================== */ GLOBAL Int UMFPACK_save_symbolic ( void *SymbolicHandle, char *user_filename ) { SymbolicType *Symbolic ; char *filename ; FILE *f ; /* get the Symbolic object */ Symbolic = (SymbolicType *) SymbolicHandle ; /* make sure the Symbolic object is valid */ if (!UMF_valid_symbolic (Symbolic)) { return (UMFPACK_ERROR_invalid_Symbolic_object) ; } /* get the filename, or use the default name if filename is NULL */ if (user_filename == (char *) NULL) { filename = "symbolic.umf" ; } else { filename = user_filename ; } f = fopen (filename, "wb") ; if (!f) { return (UMFPACK_ERROR_file_IO) ; } /* write the Symbolic object to the file, in binary */ WRITE (Symbolic, SymbolicType, 1) ; WRITE (Symbolic->Cperm_init, Int, Symbolic->n_col+1) ; WRITE (Symbolic->Rperm_init, Int, Symbolic->n_row+1) ; WRITE (Symbolic->Front_npivcol, Int, Symbolic->nfr+1) ; WRITE (Symbolic->Front_parent, Int, Symbolic->nfr+1) ; WRITE (Symbolic->Front_1strow, Int, Symbolic->nfr+1) ; WRITE (Symbolic->Front_leftmostdesc, Int, Symbolic->nfr+1) ; WRITE (Symbolic->Chain_start, Int, Symbolic->nchains+1) ; WRITE (Symbolic->Chain_maxrows, Int, Symbolic->nchains+1) ; WRITE (Symbolic->Chain_maxcols, Int, Symbolic->nchains+1) ; WRITE (Symbolic->Cdeg, Int, Symbolic->n_col+1) ; WRITE (Symbolic->Rdeg, Int, Symbolic->n_row+1) ; if (Symbolic->esize > 0) { /* only when dense rows are present */ WRITE (Symbolic->Esize, Int, Symbolic->esize) ; } if (Symbolic->prefer_diagonal) { /* only when diagonal pivoting is prefered */ WRITE (Symbolic->Diagonal_map, Int, Symbolic->n_col+1) ; } /* close the file */ fclose (f) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_apply_order.c0000644001170100242450000000266010677540545017651 0ustar davisfac/* ========================================================================== */ /* === UMF_apply_order ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Apply post-ordering of supernodal elimination tree. */ #include "umf_internal.h" #include "umf_apply_order.h" GLOBAL void UMF_apply_order ( Int Front [ ], /* of size nn on input, size nfr on output */ const Int Order [ ], /* Order [i] = k, i in the range 0..nn-1, * and k in the range 0..nfr-1, means that node * i is the kth node in the postordered tree. */ Int Temp [ ], /* workspace of size nfr */ Int nn, /* nodes are numbered in the range 0..nn-1 */ Int nfr /* the number of nodes actually in use */ ) { Int i, k ; for (i = 0 ; i < nn ; i++) { k = Order [i] ; ASSERT (k >= EMPTY && k < nfr) ; if (k != EMPTY) { Temp [k] = Front [i] ; } } for (k = 0 ; k < nfr ; k++) { Front [k] = Temp [k] ; } } SuiteSparse/UMFPACK/Source/umf_apply_order.h0000644001170100242450000000102110617161401017624 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_apply_order ( Int Front [ ], const Int Order [ ], Int Temp [ ], Int n_col, Int nfr ) ; SuiteSparse/UMFPACK/Source/umfpack_get_determinant.c0000644001170100242450000001776510623346332021342 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_get_determinant ============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* UMFPACK_get_determinant contributed by David Bateman, Motorola, Paris. */ /* -------------------------------------------------------------------------- */ /* User-callable. From the LU factors, scale factor, and permutation vectors held in the Numeric object, calculates the determinant of the matrix A. See umfpack_get_determinant.h for a more detailed description. Dynamic memory usage: calls UMF_malloc once, for a total space of n integers, and then frees all of it via UMF_free when done. Contributed by David Bateman, Motorola, Nov. 2004. Modified for V4.4, Jan. 2005. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_malloc.h" #include "umf_free.h" /* ========================================================================== */ /* === rescale_determinant ================================================== */ /* ========================================================================== */ /* If the mantissa is too big or too small, rescale it and change exponent */ PRIVATE Int rescale_determinant ( Entry *d_mantissa, double *d_exponent ) { double d_abs ; ABS (d_abs, *d_mantissa) ; if (SCALAR_IS_ZERO (d_abs)) { /* the determinant is zero */ *d_exponent = 0 ; return (FALSE) ; } if (SCALAR_IS_NAN (d_abs)) { /* the determinant is NaN */ return (FALSE) ; } while (d_abs < 1.) { SCALE (*d_mantissa, 10.0) ; *d_exponent = *d_exponent - 1.0 ; ABS (d_abs, *d_mantissa) ; } while (d_abs >= 10.) { SCALE (*d_mantissa, 0.1) ; *d_exponent = *d_exponent + 1.0 ; ABS (d_abs, *d_mantissa) ; } return (TRUE) ; } /* ========================================================================== */ /* === UMFPACK_get_determinant ============================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_get_determinant ( double *Mx, #ifdef COMPLEX double *Mz, #endif double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry d_mantissa, d_tmp ; double d_exponent, Info2 [UMFPACK_INFO], one [2] = {1.0, 0.0}, d_sign ; Entry *D ; double *Info, *Rs ; NumericType *Numeric ; Int i, n, itmp, npiv, *Wi, *Rperm, *Cperm, do_scale ; #ifndef NRECIPROCAL Int do_recip ; #endif /* ---------------------------------------------------------------------- */ /* check input parameters */ /* ---------------------------------------------------------------------- */ if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; } else { /* no Info array passed - use local one instead */ Info = Info2 ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } } Info [UMFPACK_STATUS] = UMFPACK_OK ; Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_Numeric_object ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } if (Numeric->n_row != Numeric->n_col) { /* only square systems can be handled */ Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_system ; return (UMFPACK_ERROR_invalid_system) ; } if (Mx == (double *) NULL) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } n = Numeric->n_row ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ Wi = (Int *) UMF_malloc (n, sizeof (Int)) ; if (!Wi) { DEBUGm4 (("out of memory: get determinant\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; return (UMFPACK_ERROR_out_of_memory) ; } /* ---------------------------------------------------------------------- */ /* compute the determinant */ /* ---------------------------------------------------------------------- */ Rs = Numeric->Rs ; /* row scale factors */ do_scale = (Rs != (double *) NULL) ; #ifndef NRECIPROCAL do_recip = Numeric->do_recip ; #endif d_mantissa = ((Entry *) one) [0] ; d_exponent = 0.0 ; D = Numeric->D ; /* compute product of diagonal entries of U */ for (i = 0 ; i < n ; i++) { MULT (d_tmp, d_mantissa, D [i]) ; d_mantissa = d_tmp ; if (!rescale_determinant (&d_mantissa, &d_exponent)) { /* the determinant is zero or NaN */ Info [UMFPACK_STATUS] = UMFPACK_WARNING_singular_matrix ; /* no need to compute the determinant of R */ do_scale = FALSE ; break ; } } /* compute product of diagonal entries of R (or its inverse) */ if (do_scale) { for (i = 0 ; i < n ; i++) { #ifndef NRECIPROCAL if (do_recip) { /* compute determinant of R inverse */ SCALE_DIV (d_mantissa, Rs [i]) ; } else #endif { /* compute determinant of R */ SCALE (d_mantissa, Rs [i]) ; } if (!rescale_determinant (&d_mantissa, &d_exponent)) { /* the determinant is zero or NaN. This is very unlikey to * occur here, since the scale factors for a tiny or zero row * are set to 1. */ Info [UMFPACK_STATUS] = UMFPACK_WARNING_singular_matrix ; break ; } } } /* ---------------------------------------------------------------------- */ /* determine if P and Q are odd or even permutations */ /* ---------------------------------------------------------------------- */ npiv = 0 ; Rperm = Numeric->Rperm ; for (i = 0 ; i < n ; i++) { Wi [i] = Rperm [i] ; } for (i = 0 ; i < n ; i++) { while (Wi [i] != i) { itmp = Wi [Wi [i]] ; Wi [Wi [i]] = Wi [i] ; Wi [i] = itmp ; npiv++ ; } } Cperm = Numeric->Cperm ; for (i = 0 ; i < n ; i++) { Wi [i] = Cperm [i] ; } for (i = 0 ; i < n ; i++) { while (Wi [i] != i) { itmp = Wi [Wi [i]] ; Wi [Wi [i]] = Wi [i] ; Wi [i] = itmp ; npiv++ ; } } /* if npiv is odd, the sign is -1. if it is even, the sign is +1 */ d_sign = (npiv % 2) ? -1. : 1. ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ (void) UMF_free ((void *) Wi) ; /* ---------------------------------------------------------------------- */ /* compute the magnitude and exponent of the determinant */ /* ---------------------------------------------------------------------- */ if (Ex == (double *) NULL) { /* Ex is not provided, so return the entire determinant in d_mantissa */ SCALE (d_mantissa, pow (10.0, d_exponent)) ; } else { Ex [0] = d_exponent ; } Mx [0] = d_sign * REAL_COMPONENT (d_mantissa) ; #ifdef COMPLEX if (SPLIT (Mz)) { Mz [0] = d_sign * IMAG_COMPONENT (d_mantissa) ; } else { Mx [1] = d_sign * IMAG_COMPONENT (d_mantissa) ; } #endif /* determine if the determinant has (or will) overflow or underflow */ if (d_exponent + 1.0 > log10 (DBL_MAX)) { Info [UMFPACK_STATUS] = UMFPACK_WARNING_determinant_overflow ; } else if (d_exponent - 1.0 < log10 (DBL_MIN)) { Info [UMFPACK_STATUS] = UMFPACK_WARNING_determinant_underflow ; } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_internal.h0000644001170100242450000006330410617161637017147 0ustar davisfac/* ========================================================================== */ /* === umf_internal.h ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* This file is for internal use in UMFPACK itself, and should not be included in user code. Use umfpack.h instead. User-accessible file names and routine names all start with the letters "umfpack_". Non-user-accessible file names and routine names all start with "umf_". */ #ifndef _UMF_INTERNAL #define _UMF_INTERNAL /* -------------------------------------------------------------------------- */ /* ANSI standard include files */ /* -------------------------------------------------------------------------- */ /* from float.h: DBL_EPSILON */ #include /* from string.h: strcmp */ #include /* when debugging, assert.h and the assert macro are used (see umf_dump.h) */ /* -------------------------------------------------------------------------- */ /* Architecture */ /* -------------------------------------------------------------------------- */ #if defined (__sun) || defined (MSOL2) || defined (ARCH_SOL2) #define UMF_SOL2 #define UMFPACK_ARCHITECTURE "Sun Solaris" #elif defined (__sgi) || defined (MSGI) || defined (ARCH_SGI) #define UMF_SGI #define UMFPACK_ARCHITECTURE "SGI Irix" #elif defined (__linux) || defined (MGLNX86) || defined (ARCH_GLNX86) #define UMF_LINUX #define UMFPACK_ARCHITECTURE "Linux" #elif defined (_AIX) || defined (MIBM_RS) || defined (ARCH_IBM_RS) #define UMF_AIX #define UMFPACK_ARCHITECTURE "IBM AIX" #elif defined (__alpha) || defined (MALPHA) || defined (ARCH_ALPHA) #define UMF_ALPHA #define UMFPACK_ARCHITECTURE "Compaq Alpha" #elif defined (_WIN32) || defined (WIN32) #if defined (__MINGW32__) #define UMF_MINGW #elif defined (__CYGWIN32__) #define UMF_CYGWIN #else #define UMF_WINDOWS #endif #define UMFPACK_ARCHITECTURE "Microsoft Windows" #elif defined (__hppa) || defined (__hpux) || defined (MHPUX) || defined (ARCH_HPUX) #define UMF_HP #define UMFPACK_ARCHITECTURE "HP Unix" #elif defined (__hp700) || defined (MHP700) || defined (ARCH_HP700) #define UMF_HP #define UMFPACK_ARCHITECTURE "HP 700 Unix" #else /* If the architecture is unknown, and you call the BLAS, you may need to */ /* define BLAS_BY_VALUE, BLAS_NO_UNDERSCORE, and/or BLAS_CHAR_ARG yourself. */ #define UMFPACK_ARCHITECTURE "unknown" #endif /* -------------------------------------------------------------------------- */ /* basic definitions (see also amd_internal.h) */ /* -------------------------------------------------------------------------- */ #define ONES_COMPLEMENT(r) (-(r)-1) /* -------------------------------------------------------------------------- */ /* AMD include file */ /* -------------------------------------------------------------------------- */ /* stdio.h, stdlib.h, limits.h, and math.h, NDEBUG definition, assert.h */ #include "amd_internal.h" /* -------------------------------------------------------------------------- */ /* MATLAB include files */ /* -------------------------------------------------------------------------- */ /* only used when compiling the UMFPACK mexFunction */ #ifdef MATLAB_MEX_FILE #include "matrix.h" #include "mex.h" #endif /* -------------------------------------------------------------------------- */ /* Real/complex and int/UF_long definitions, double relops */ /* -------------------------------------------------------------------------- */ #include "umf_version.h" /* -------------------------------------------------------------------------- */ /* Compile-time configurations */ /* -------------------------------------------------------------------------- */ #include "umf_config.h" /* -------------------------------------------------------------------------- */ /* umfpack include file */ /* -------------------------------------------------------------------------- */ #include "umfpack.h" /* -------------------------------------------------------------------------- */ /* for contents of Info. This must correlate with umfpack.h */ /* -------------------------------------------------------------------------- */ #define ESTIMATE (UMFPACK_NUMERIC_SIZE_ESTIMATE - UMFPACK_NUMERIC_SIZE) #define ACTUAL 0 /* -------------------------------------------------------------------------- */ /* get a parameter from the Control array */ /* -------------------------------------------------------------------------- */ #define GET_CONTROL(i,default) \ ((Control != (double *) NULL) ? \ (SCALAR_IS_NAN (Control [i]) ? default : Control [i]) \ : default) /* -------------------------------------------------------------------------- */ /* for clearing the external degree counters */ /* -------------------------------------------------------------------------- */ #define MAX_MARK(n) Int_MAX - (2*(n)+1) /* -------------------------------------------------------------------------- */ /* convert number of Units to MBytes */ /* -------------------------------------------------------------------------- */ #define MBYTES(units) (((units) * sizeof (Unit)) / 1048576.0) /* -------------------------------------------------------------------------- */ /* dense row/column macro */ /* -------------------------------------------------------------------------- */ /* In order for a row or column to be treated as "dense", it must have more */ /* entries than the value returned by this macro. n is the dimension of the */ /* matrix, and alpha is the dense row/column control parameter. */ /* Note: this is not defined if alpha is NaN or Inf: */ #define UMFPACK_DENSE_DEGREE_THRESHOLD(alpha,n) \ ((Int) MAX (16.0, (alpha) * 16.0 * sqrt ((double) (n)))) /* -------------------------------------------------------------------------- */ /* PRINTF */ /* -------------------------------------------------------------------------- */ #define PRINTFk(k,params) { if (prl >= (k)) { PRINTF (params) ; } } #define PRINTF1(params) PRINTFk (1, params) #define PRINTF2(params) PRINTFk (2, params) #define PRINTF3(params) PRINTFk (3, params) #define PRINTF4(params) PRINTFk (4, params) #define PRINTF5(params) PRINTFk (5, params) #define PRINTF6(params) PRINTFk (6, params) /* -------------------------------------------------------------------------- */ /* Fixed control parameters */ /* -------------------------------------------------------------------------- */ /* maximum number of columns to consider at one time, in a single front */ #define MAX_CANDIDATES 128 /* reduce Numeric->Memory request by this ratio, if allocation fails */ #define UMF_REALLOC_REDUCTION (0.95) /* increase Numeric->Memory request by this ratio, if we need more */ #define UMF_REALLOC_INCREASE (1.2) /* increase the dimensions of the current frontal matrix by this factor * when it needs to grow. */ #define UMF_FRONTAL_GROWTH (1.2) /* largest BLAS block size permitted */ #define MAXNB 64 /* if abs (y) < RECIPROCAL_TOLERANCE, then compute x/y. Otherwise x*(1/y). * Ignored if NRECIPROCAL is defined */ #define RECIPROCAL_TOLERANCE 1e-12 /* -------------------------------------------------------------------------- */ /* Memory allocator */ /* -------------------------------------------------------------------------- */ /* See AMD/Source/amd_global.c and AMD/Source/amd.h for the * definition of the memory allocator used by UMFPACK. Versions 4.4 and * earlier had their memory allocator definitions here. Other global * function pointers for UMFPACK are located in umf_global.c. * * The MATLAB mexFunction uses MATLAB's memory manager and mexPrintf, while the * C-callable AMD library uses the ANSI C malloc, free, realloc, and printf * routines. */ /* -------------------------------------------------------------------------- */ /* Memory space definitions */ /* -------------------------------------------------------------------------- */ /* for memory alignment - assume double has worst case alignment */ typedef double Align ; /* get number of bytes required to hold n items of a type: */ /* note that this will not overflow, because sizeof (type) is always */ /* greater than or equal to sizeof (Int) >= 2 */ #define BYTES(type,n) (sizeof (type) * (n)) /* ceiling of (b/u). Assumes b >= 0 and u > 0 */ #define CEILING(b,u) (((b) + (u) - 1) / (u)) /* get number of Units required to hold n items of a type: */ #define UNITS(type,n) (CEILING (BYTES (type, n), sizeof (Unit))) /* same as DUNITS, but use double instead of int to avoid overflow */ #define DUNITS(type,n) (ceil (BYTES (type, (double) n) / sizeof (Unit))) union Unit_union { /* memory is allocated in multiples of Unit */ struct { Int size, /* size, in Units, of the block, excl. header block */ /* size >= 0: block is in use */ /* size < 0: block is free, of |size| Units */ prevsize ; /* size, in Units, of preceding block in S->Memory */ /* during garbage_collection, prevsize is set to -e-1 */ /* for element e, or positive (and thus a free block) */ /* otherwise */ } header ; /* block header */ Align xxxxxx ; /* force alignment of blocks (xxxxxx is never used) */ } ; typedef union Unit_union Unit ; /* get the size of an allocated block */ #define GET_BLOCK_SIZE(p) (((p)-1)->header.size) /* -------------------------------------------------------------------------- */ /* Numeric */ /* -------------------------------------------------------------------------- */ /* NUMERIC_VALID and SYMBOLIC_VALID: The different values of SYBOLIC_VALID and NUMERIC_VALID are chosen as a first defense against corrupted *Symbolic or *Numeric pointers passed to an UMFPACK routine. They also ensure that the objects are used only by the same version that created them (umfpack_di_*, umfpack_dl_*, umfpack_zi_*, or umfpack_zl_*). The values have also been changed since prior releases of the code to ensure that all routines that operate on the objects are of the same release. The values themselves are purely arbitrary. The are less than the ANSI C required minimums of INT_MAX and LONG_MAX, respectively. */ #ifdef DINT #define NUMERIC_VALID 15977 #define SYMBOLIC_VALID 41937 #endif #ifdef DLONG #define NUMERIC_VALID 399789720 #define SYMBOLIC_VALID 399192713 #endif #ifdef ZINT #define NUMERIC_VALID 17957 #define SYMBOLIC_VALID 40927 #endif #ifdef ZLONG #define NUMERIC_VALID 129987754 #define SYMBOLIC_VALID 110291734 #endif typedef struct /* NumericType */ { double flops, /* "true" flop count */ relpt, /* relative pivot tolerance used */ relpt2, /* relative pivot tolerance used for sym. */ droptol, alloc_init, /* initial allocation of Numeric->memory */ front_alloc_init, /* frontal matrix allocation parameter */ rsmin, /* smallest row sum */ rsmax, /* largest row sum */ min_udiag, /* smallest abs value on diagonal of D */ max_udiag, /* smallest abs value on diagonal of D */ rcond ; /* min (D) / max (D) */ Int scale ; Int valid ; /* set to NUMERIC_VALID, for validity check */ /* Memory space for A and LU factors */ Unit *Memory ; /* working memory for A and LU factors */ Int ihead, /* pointer to tail of LU factors, in Numeric->Memory */ itail, /* pointer to top of elements & tuples, */ /* in Numeric->Memory */ ibig, /* pointer to largest free block seen in tail */ size ; /* size of Memory, in Units */ Int *Rperm, /* pointer to row perm array, size: n+1 */ /* after UMF_kernel: Rperm [new] = old */ /* during UMF_kernel: Rperm [old] = new */ *Cperm, /* pointer to col perm array, size: n+1 */ /* after UMF_kernel: Cperm [new] = old */ /* during UMF_kernel: Cperm [old] = new */ *Upos, /* see UMFPACK_get_numeric for a description */ *Lpos, *Lip, *Lilen, *Uip, *Uilen, *Upattern ; /* pattern of last row of U (if singular) */ Int ulen, /* length of Upattern */ npiv, /* number of structural pivots found (sprank approx) */ nnzpiv ; /* number of numerical (nonzero) pivots found */ Entry *D ; /* D [i] is the diagonal entry of U */ Int do_recip ; double *Rs ; /* scale factors for the rows of A and b */ /* do_recip FALSE: Divide row i by Rs [i] */ /* do_recip TRUE: Multiply row i by Rs [i] */ Int n_row, n_col, /* A is n_row-by-n_row */ n1 ; /* number of singletons */ /* for information only: */ Int tail_usage, /* amount of memory allocated in tail */ /* head_usage is Numeric->ihead */ init_usage, /* memory usage just after UMF_kernel_init */ max_usage, /* peak memory usage (excludes internal and external */ /* fragmentation in the tail) */ ngarbage, /* number of garbage collections performed */ nrealloc, /* number of reallocations performed */ ncostly, /* number of costly reallocations performed */ isize, /* size of integer pattern of L and U */ nLentries, /* number of entries in L, excluding diagonal */ nUentries, /* number of entries in U, including diagonal */ /* Some entries may be numerically zero. */ lnz, /* number of nonzero entries in L, excl. diagonal */ all_lnz, /* lnz plus entries dropped from L */ unz, /* number of nonzero entries in U, excl. diagonal */ all_unz, /* unz plus entries dropped form U */ maxfrsize ; /* largest actual front size */ Int maxnrows, maxncols ; /* not the same as Symbolic->maxnrows/cols* */ } NumericType ; /* -------------------------------------------------------------------------- */ /* Element tuples for connecting elements together in a matrix */ /* -------------------------------------------------------------------------- */ typedef struct /* Tuple */ { /* The (e,f) tuples for the element lists */ Int e, /* element */ f ; /* contribution to the row/col appears at this offset */ } Tuple ; #define TUPLES(t) MAX (4, (t) + 1) /* Col_degree is aliased with Cperm, and Row_degree with Rperm */ #define NON_PIVOTAL_COL(col) (Col_degree [col] >= 0) #define NON_PIVOTAL_ROW(row) (Row_degree [row] >= 0) /* -------------------------------------------------------------------------- */ /* An element */ /* -------------------------------------------------------------------------- */ typedef struct /* Element */ { Int cdeg, /* external column degree + cdeg0 offset */ rdeg, /* external row degree + rdeg0 offset */ nrowsleft, /* number of rows remaining */ ncolsleft, /* number of columns remaining */ nrows, /* number of rows */ ncols, /* number of columns */ next ; /* for list link of sons, used during assembly only */ /* followed in memory by: Int col [0..ncols-1], column indices of this element row [0..nrows-1] ; row indices of this element Entry (suitably aligned, see macro below) C [0...nrows-1, 0...ncols-1] ; size of C is nrows*ncols Entry's */ } Element ; /* macros for computing pointers to row/col indices, and contribution block: */ #define GET_ELEMENT_SIZE(nr,nc) \ (UNITS (Element, 1) + UNITS (Int, (nc) + (nr)) + UNITS (Entry, (nc) * (nr))) #define DGET_ELEMENT_SIZE(nr,nc) \ (DUNITS (Element, 1) + DUNITS (Int, (nc) + (nr)) + DUNITS (Entry, (nc) * (nr))) #define GET_ELEMENT_COLS(ep,p,Cols) { \ ASSERT (p != (Unit *) NULL) ; \ ASSERT (p >= Numeric->Memory + Numeric->itail) ; \ ASSERT (p <= Numeric->Memory + Numeric->size) ; \ ep = (Element *) p ; \ p += UNITS (Element, 1) ; \ Cols = (Int *) p ; \ } #define GET_ELEMENT_PATTERN(ep,p,Cols,Rows,ncm) { \ GET_ELEMENT_COLS (ep, p, Cols) ; \ ncm = ep->ncols ; \ Rows = Cols + ncm ; \ } #define GET_ELEMENT(ep,p,Cols,Rows,ncm,nrm,C) { \ GET_ELEMENT_PATTERN (ep, p, Cols, Rows, ncm) ; \ nrm = ep->nrows ; \ p += UNITS (Int, ncm + nrm) ; \ C = (Entry *) p ; \ } /* -------------------------------------------------------------------------- */ /* Work data structure */ /* -------------------------------------------------------------------------- */ /* This data structure holds items needed only during factorization. All of this is freed when UMFPACK_numeric completes. Note that some of it is stored in the tail end of Numeric->S (namely, the Tuples and the Elements). */ typedef struct /* WorkType */ { /* ---------------------------------------------------------------------- */ /* information about each row and col of A */ /* ---------------------------------------------------------------------- */ /* Row_tuples: pointer to tuple list (alias with Numeric->Uip) Row_tlen: number of tuples (alias with Numeric->Uilen) Col_tuples: pointer to tuple list (alias with Numeric->Lip) Col_tlen: number of tuples (alias with Numeric->Lilen) Row_degree: degree of the row or column (alias Numeric->Rperm) Col_degree: degree of the row or column (alias Numeric->Cperm) The Row_degree and Col_degree are MATLAB-style colmmd approximations, are equal to the sum of the sizes of the elements (contribution blocks) in each row and column. They are maintained when elements are created and assembled. They are used only during the pivot row and column search. They are not needed to represent the pattern of the remaining matrix. */ /* ---------------------------------------------------------------------- */ /* information about each element */ /* ---------------------------------------------------------------------- */ Int *E ; /* E [0 .. Work->elen-1] element "pointers" */ /* (offsets in Numeric->Memory) */ /* ---------------------------------------------------------------------- */ /* generic workspace */ /* ---------------------------------------------------------------------- */ Entry *Wx, *Wy ; /* each of size maxnrows+1 */ Int /* Sizes: nn = MAX (n_row, n_col) */ *Wp, /* nn+1 */ *Wrp, /* n_col+1 */ *Wm, /* maxnrows+1 */ *Wio, /* maxncols+1 */ *Woi, /* maxncols+1 */ *Woo, /* MAX (maxnrows,maxncols)+1 */ *Wrow, /* pointer to Fcols, Wio, or Woi */ *NewRows, /* list of rows to scan */ *NewCols ; /* list of cols to scan */ /* ---------------------------------------------------------------------- */ Int *Lpattern, /* pattern of column of L, for one Lchain */ *Upattern, /* pattern of row of U, for one Uchain */ ulen, llen ; /* length of Upattern and Lpattern */ Int *Diagonal_map, /* used for symmetric pivoting, of size nn+1 */ *Diagonal_imap ;/* used for symmetric pivoting, of size nn+1 */ /* ---------------------------------------------------------------------- */ Int n_row, n_col, /* matrix is n_row-by-n_col */ nz, /* nonzeros in the elements for this matrix */ n1, /* number of row and col singletons */ elen, /* max possible number of elements */ npiv, /* number of pivot rows and columns so far */ ndiscard, /* number of discarded pivot columns */ Wrpflag, nel, /* elements in use are in the range 1..nel */ noff_diagonal, prior_element, rdeg0, cdeg0, rrdeg, ccdeg, Candidates [MAX_CANDIDATES], /* current candidate pivot columns */ nCandidates, /* number of candidates in Candidate set */ ksuper, firstsuper, jsuper, ncand, /* number of candidates (some not in Candidates[ ]) */ nextcand, /* next candidate to place in Candidate search set */ lo, hi, pivrow, /* current pivot row */ pivcol, /* current pivot column */ do_extend, /* true if the next pivot extends the current front */ do_update, /* true if update should be applied */ nforced, /* number of forced updates because of frontal growth */ any_skip, do_scan2row, do_scan2col, do_grow, pivot_case, frontid, /* id of current frontal matrix */ nfr ; /* number of frontal matrices */ /* ---------------------------------------------------------------------- */ /* For row-merge tree */ /* ---------------------------------------------------------------------- */ Int *Front_new1strow ; /* ---------------------------------------------------------------------- */ /* current frontal matrix, F */ /* ---------------------------------------------------------------------- */ Int Pivrow [MAXNB], Pivcol [MAXNB] ; Entry *Flublock, /* LU block, nb-by-nb */ *Flblock, /* L block, fnr_curr-by-nb */ *Fublock, /* U block, nb-by-fnc_curr, or U' fnc_curr-by-nb */ *Fcblock ; /* C block, fnr_curr-by-fnc_curr */ Int *Frows, /* Frows [0.. ]: row indices of F */ *Fcols, /* Fcols [0.. ]: column indices of F */ *Frpos, /* position of row indices in F, or -1 if not present */ /* if Frows[i] == row, then Frpos[row] == i */ *Fcpos, /* position of col indices in F, or -1 if not present */ /* if Fcols[j] == col, then */ /* Fcpos[col] == j*Work->fnr_curr */ fnrows, /* number of rows in contribution block in F */ fncols, /* number of columns in contribution block in F */ fnr_curr, /* maximum # of rows in F (leading dimension) */ fnc_curr, /* maximum # of columns in F */ fcurr_size, /* current size of F */ fnrows_max, /* max possible column-dimension (max # of rows) of F */ fncols_max, /* max possible row-dimension (max # of columns) of F */ nb, fnpiv, /* number of pivots in F */ fnzeros, /* number of explicit zero entries in LU block */ fscan_row, /* where to start scanning rows of F in UMF_assemble */ fscan_col, /* where to start scanning cols of F in UMF_assemble */ fnrows_new, /* number of new row indices in F after pivot added */ fncols_new, /* number of new col indices in F after pivot added */ pivrow_in_front, /* true if current pivot row in Frows */ pivcol_in_front ; /* true if current pivot column in Fcols */ /* ---------------------------------------------------------------------- * Current frontal matrix * ---------------------------------------------------------------------- * The current frontal matrix is held as a single block of memory allocated * from the "tail" end of Numeric->Memory. It is subdivided into four * parts: an LU block, an L block, a U block, and a C block. * * Let k = fnpiv, r = fnrows, and c = fncols for the following discussion. * Let dr = fnr_curr and dc = fnc_curr. Note that r <= dr and c <= dc. * * The LU block is of dimension nb-by-nb. The first k-by-k part holds the * "diagonal" part of the LU factors for these k pivot rows and columns. * The k pivot row and column indices in this part are Pivrow [0..k-1] and * Pivcol [0..k-1], respectively. * * The L block is of dimension dr-by-nb. It holds the k pivot columns, * except for the leading k-by-k part in the LU block. Only the leading * r-by-k part is in use. * * The U block is of dimension dc-by-nb. It holds the k pivot rows, * except for the leading k-by-k part in the LU block. It is stored in * row-oriented form. Only the leading c-by-k part is in use. * * The C block is of dimension dr-by-dc. It holds the current contribution * block. Only the leading r-by-c part is in use. The column indices in * the C block are Fcols [0..c-1], and the row indices are Frows [0..r-1]. * * dr is always odd, to avoid bad cache behavior. */ } WorkType ; /* -------------------------------------------------------------------------- */ /* Symbolic */ /* -------------------------------------------------------------------------- */ /* This is is constructed by UMFPACK_symbolic, and is needed by UMFPACK_numeric to factor the matrix. */ typedef struct /* SymbolicType */ { double num_mem_usage_est, /* estimated max Numeric->Memory size */ num_mem_size_est, /* estimated final Numeric->Memory size */ peak_sym_usage, /* peak Symbolic and SymbolicWork usage */ sym, /* symmetry of pattern */ dnum_mem_init_usage, /* min Numeric->Memory for UMF_kernel_init */ amd_lunz, /* nz in LU for AMD, with symmetric pivoting */ lunz_bound ; /* max nx in LU, for arbitrary row pivoting */ Int valid, /* set to SYMBOLIC_VALID, for validity check */ max_nchains, nchains, *Chain_start, *Chain_maxrows, *Chain_maxcols, maxnrows, /* largest number of rows in any front */ maxncols, /* largest number of columns in any front */ *Front_npivcol, /* Front_npivcol [j] = size of jth supercolumn*/ *Front_1strow, /* first row index in front j */ *Front_leftmostdesc, /* leftmost desc of front j */ *Front_parent, /* super-column elimination tree */ *Cperm_init, /* initial column ordering */ *Rperm_init, /* initial row ordering */ *Cdeg, *Rdeg, *Esize, dense_row_threshold, n1, /* number of singletons */ nempty, /* MIN (nempty_row, nempty_col) */ *Diagonal_map, /* initial "diagonal" (after 2by2) */ esize, /* size of Esize array */ nfr, n_row, n_col, /* matrix A is n_row-by-n_col */ nz, /* nz of original matrix */ nb, /* block size for BLAS 3 */ num_mem_init_usage, /* min Numeric->Memory for UMF_kernel_init */ nempty_row, nempty_col, strategy, ordering, fixQ, prefer_diagonal, nzaat, nzdiag, amd_dmax ; } SymbolicType ; /* -------------------------------------------------------------------------- */ /* for debugging only: */ /* -------------------------------------------------------------------------- */ #include "umf_dump.h" /* -------------------------------------------------------------------------- */ /* for statement coverage testing only: */ /* -------------------------------------------------------------------------- */ #ifdef TESTING /* for testing integer overflow: */ #ifdef TEST_FOR_INTEGER_OVERFLOW #undef MAX_MARK #define MAX_MARK(n) (3*(n)) #endif /* for testing out-of-memory conditions: */ #define UMF_TCOV_TEST #ifndef EXTERN #define EXTERN extern #endif GLOBAL EXTERN int umf_fail, umf_fail_lo, umf_fail_hi ; GLOBAL EXTERN int umf_realloc_fail, umf_realloc_lo, umf_realloc_hi ; /* for testing malloc count: */ #define UMF_MALLOC_COUNT #endif #endif SuiteSparse/UMFPACK/Source/umf_mem_alloc_head_block.c0000644001170100242450000000342610677541726021417 0ustar davisfac/* ========================================================================== */ /* === UMF_mem_alloc_head_block ============================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The UMF_mem_* routines manage the Numeric->Memory memory space. */ /* allocate nunits from head of Numeric->Memory. No header allocated. */ /* Returns the index into Numeric->Memory if successful, or 0 on failure. */ #include "umf_internal.h" #include "umf_mem_alloc_head_block.h" GLOBAL Int UMF_mem_alloc_head_block ( NumericType *Numeric, Int nunits ) { Int p, usage ; DEBUG2 (("GET BLOCK: from head, size "ID" ", nunits)) ; ASSERT (Numeric != (NumericType *) NULL) ; ASSERT (Numeric->Memory != (Unit *) NULL) ; #ifndef NDEBUG if (UMF_allocfail) { /* pretend to fail, to test garbage_collection */ DEBUGm2 (("UMF_mem_alloc_head_block: pretend to fail\n")) ; UMF_allocfail = FALSE ; /* don't fail the next time */ return (0) ; } #endif if (nunits > (Numeric->itail - Numeric->ihead)) { DEBUG2 ((" failed\n")) ; return (0) ; } /* return p as an offset from Numeric->Memory */ p = Numeric->ihead ; Numeric->ihead += nunits ; DEBUG2 (("p: "ID"\n", p)) ; usage = Numeric->ihead + Numeric->tail_usage ; Numeric->max_usage = MAX (Numeric->max_usage, usage) ; return (p) ; } SuiteSparse/UMFPACK/Source/umf_analyze.c0000644001170100242450000005056310677541517017001 0ustar davisfac/* ========================================================================== */ /* === UMF_analyze ========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Symbolic LL' factorization of A'*A, to get upper bounds on the size of L and U for LU = PAQ, and to determine the frontal matrices and (supernodal) column elimination tree. No fill-reducing column pre-ordering is used. Returns TRUE if successful, FALSE if out of memory. UMF_analyze can only run out of memory if anzmax (which is Ap [n_row]) is too small. Uses workspace of size O(nonzeros in A). On input, the matrix A is stored in row-form at the tail end of Ai. It is destroyed on output. The rows of A must be sorted by increasing first column index. The matrix is assumed to be valid. Empty rows and columns have already been removed. */ #include "umf_internal.h" #include "umf_analyze.h" #include "umf_apply_order.h" #include "umf_fsize.h" /* ========================================================================== */ GLOBAL Int UMF_analyze ( Int n_row, /* A is n_row-by-n_col */ Int n_col, Int Ai [ ], /* Ai [Ap [0]..Ap[n_row]-1]: column indices */ /* destroyed on output. Note that this is NOT the */ /* user's Ai that was passed to UMFPACK_*symbolic */ /* size of Ai, Ap [n_row] = anzmax >= anz + n_col */ /* Ap [0] must be => n_col. The space to the */ /* front of Ai is used as workspace. */ Int Ap [ ], /* of size MAX (n_row, n_col) + 1 */ /* Ap [0..n_row]: row pointers */ /* Row i is in Ai [Ap [i] ... Ap [i+1]-1] */ /* rows must have smallest col index first, or be */ /* in sorted form. Used as workspace of size n_col */ /* and destroyed. */ /* Note that this is NOT the */ /* user's Ap that was passed to UMFPACK_*symbolic */ Int Up [ ], /* workspace of size n_col, and output column perm. * for column etree postorder. */ Int fixQ, /* temporary workspaces: */ Int W [ ], /* W [0..n_col-1] */ Int Link [ ], /* Link [0..n_col-1] */ /* output: information about each frontal matrix: */ Int Front_ncols [ ], /* size n_col */ Int Front_nrows [ ], /* of size n_col */ Int Front_npivcol [ ], /* of size n_col */ Int Front_parent [ ], /* of size n_col */ Int *nfr_out, Int *p_ncompactions /* number of compactions in UMF_analyze */ ) { /* ====================================================================== */ /* ==== local variables ================================================= */ /* ====================================================================== */ Int j, j3, col, k, row, parent, j2, pdest, p, p2, thickness, npivots, nfr, i, *Winv, kk, npiv, jnext, krow, knext, pfirst, jlast, ncompactions, *Front_stack, *Front_order, *Front_child, *Front_sibling, Wflag, npivcol, fallrows, fallcols, fpiv, frows, fcols, *Front_size ; nfr = 0 ; DEBUG0 (("UMF_analyze: anzmax "ID" anrow "ID" ancol "ID"\n", Ap [n_row], n_row, n_col)) ; /* ====================================================================== */ /* ==== initializations ================================================= */ /* ====================================================================== */ #pragma ivdep for (j = 0 ; j < n_col ; j++) { Link [j] = EMPTY ; W [j] = EMPTY ; Up [j] = EMPTY ; /* Frontal matrix data structure: */ Front_npivcol [j] = 0 ; /* number of pivot columns */ Front_nrows [j] = 0 ; /* number of rows, incl. pivot rows */ Front_ncols [j] = 0 ; /* number of cols, incl. pivot cols */ Front_parent [j] = EMPTY ; /* parent front */ /* Note that only non-pivotal columns are stored in a front (a "row" */ /* of U) during elimination. */ } /* the rows must be sorted by increasing min col */ krow = 0 ; pfirst = Ap [0] ; jlast = EMPTY ; jnext = EMPTY ; Wflag = 0 ; /* this test requires the size of Ai to be >= n_col + nz */ ASSERT (pfirst >= n_col) ; /* Ai must be large enough */ /* pdest points to the first free space in Ai */ pdest = 0 ; ncompactions = 0 ; /* ====================================================================== */ /* === compute symbolic LL' factorization (unsorted) ==================== */ /* ====================================================================== */ for (j = 0 ; j < n_col ; j = jnext) { DEBUG1 (("\n\n============Front "ID" starting. nfr = "ID"\n", j, nfr)) ; /* ================================================================== */ /* === garbage collection =========================================== */ /* ================================================================== */ if (pdest + (n_col-j) > pfirst) { /* we might run out ... compact the rows of U */ #ifndef NDEBUG DEBUG0 (("UMF_analyze COMPACTION, j="ID" pfirst="ID"\n", j, pfirst)) ; for (row = 0 ; row < j ; row++) { if (Up [row] != EMPTY) { /* this is a live row of U */ DEBUG1 (("Live row: "ID" cols: ", row)) ; p = Up [row] ; ASSERT (Front_ncols [row] > Front_npivcol [row]) ; p2 = p + (Front_ncols [row] - Front_npivcol [row]) ; for ( ; p < p2 ; p++) { DEBUG1 ((ID, Ai [p])) ; ASSERT (p < pfirst) ; ASSERT (Ai [p] > row && Ai [p] < n_col) ; } DEBUG1 (("\n")) ; } } DEBUG1 (("\nStarting to compact:\n")) ; #endif pdest = 0 ; ncompactions++ ; for (row = 0 ; row < j ; row++) { if (Up [row] != EMPTY) { /* this is a live row of U */ DEBUG1 (("Live row: "ID" cols: ", row)) ; ASSERT (row < n_col) ; p = Up [row] ; ASSERT (Front_ncols [row] > Front_npivcol [row]) ; p2 = p + (Front_ncols [row] - Front_npivcol [row]) ; Up [row] = pdest ; for ( ; p < p2 ; p++) { DEBUG1 ((ID, Ai [p])) ; ASSERT (p < pfirst) ; ASSERT (Ai [p] > row && Ai [p] < n_col) ; Ai [pdest++] = Ai [p] ; ASSERT (pdest <= pfirst) ; } DEBUG1 (("\n")) ; } } #ifndef NDEBUG DEBUG1 (("\nAFTER COMPACTION, j="ID" pfirst="ID"\n", j, pfirst)) ; for (row = 0 ; row < j ; row++) { if (Up [row] != EMPTY) { /* this is a live row of U */ DEBUG1 (("Live row: "ID" cols: ", row)) ; p = Up [row] ; ASSERT (Front_ncols [row] > Front_npivcol [row]) ; p2 = p + (Front_ncols [row] - Front_npivcol [row]) ; for ( ; p < p2 ; p++) { DEBUG1 ((ID, Ai [p])) ; ASSERT (p < pfirst) ; ASSERT (Ai [p] > row && Ai [p] < n_col) ; } DEBUG1 (("\n")) ; } } #endif } if (pdest + (n_col-j) > pfirst) { /* :: out of memory in umf_analyze :: */ /* it can't happen, if pfirst >= n_col */ return (FALSE) ; /* internal error! */ } /* ------------------------------------------------------------------ */ /* is the last front a child of this one? */ /* ------------------------------------------------------------------ */ if (jlast != EMPTY && Link [j] == jlast) { /* yes - create row j by appending to jlast */ DEBUG1 (("GOT:last front is child of this one: j "ID" jlast "ID"\n", j, jlast)) ; ASSERT (jlast >= 0 && jlast < j) ; Up [j] = Up [jlast] ; Up [jlast] = EMPTY ; /* find the parent, delete column j, and update W */ parent = n_col ; for (p = Up [j] ; p < pdest ; ) { j3 = Ai [p] ; DEBUG1 (("Initial row of U: col "ID" ", j3)) ; ASSERT (j3 >= 0 && j3 < n_col) ; DEBUG1 (("W: "ID" \n", W [j3])) ; ASSERT (W [j3] == Wflag) ; if (j == j3) { DEBUG1 (("Found column j at p = "ID"\n", p)) ; Ai [p] = Ai [--pdest] ; } else { if (j3 < parent) { parent = j3 ; } p++ ; } } /* delete jlast from the link list of j */ Link [j] = Link [jlast] ; ASSERT (Front_nrows [jlast] > Front_npivcol [jlast]) ; thickness = (Front_nrows [jlast] - Front_npivcol [jlast]) ; DEBUG1 (("initial thickness: "ID"\n", thickness)) ; } else { Up [j] = pdest ; parent = n_col ; /* thickness: number of (nonpivotal) rows in frontal matrix j */ thickness = 0 ; Wflag = j ; } /* ================================================================== */ /* === compute row j of A*A' ======================================== */ /* ================================================================== */ /* ------------------------------------------------------------------ */ /* flag the diagonal entry in row U, but do not add to pattern */ /* ------------------------------------------------------------------ */ ASSERT (pdest <= pfirst) ; W [j] = Wflag ; DEBUG1 (("\nComputing row "ID" of A'*A\n", j)) ; DEBUG2 ((" col: "ID" (diagonal)\n", j)) ; /* ------------------------------------------------------------------ */ /* find the rows the contribute to this column j */ /* ------------------------------------------------------------------ */ jnext = n_col ; for (knext = krow ; knext < n_row ; knext++) { ASSERT (Ap [knext] < Ap [knext+1]) ; ASSERT (Ap [knext] >= pfirst && Ap [knext] <= Ap [n_row]) ; jnext = Ai [Ap [knext]] ; ASSERT (jnext >= j) ; if (jnext != j) { break ; } } /* rows krow ... knext-1 all have first column index of j */ /* (or are empty) */ /* row knext has first column index of jnext */ /* if knext = n_row, then jnext is n_col */ if (knext == n_row) { jnext = n_col ; } ASSERT (jnext > j) ; ASSERT (jnext <= n_col) ; /* ------------------------------------------------------------------ */ /* for each nonzero A (k,j) in column j of A do: */ /* ------------------------------------------------------------------ */ for (k = krow ; k < knext ; k++) { p = Ap [k] ; p2 = Ap [k+1] ; ASSERT (p < p2) ; /* merge row k of A into W */ DEBUG2 ((" ---- A row "ID" ", k)) ; ASSERT (k >= 0 && k < n_row) ; ASSERT (Ai [p] == j) ; DEBUG2 ((" p "ID" p2 "ID"\n cols:", p, p2)) ; ASSERT (p >= pfirst && p < Ap [n_row]) ; ASSERT (p2 > pfirst && p2 <= Ap [n_row]) ; for ( ; p < p2 ; p++) { /* add to pattern if seen for the first time */ col = Ai [p] ; ASSERT (col >= j && col < n_col) ; DEBUG3 ((" "ID, col)) ; if (W [col] != Wflag) { Ai [pdest++] = col ; ASSERT (pdest <= pfirst) ; /* flag this column has having been seen for row j */ W [col] = Wflag ; if (col < parent) { parent = col ; } } } DEBUG2 (("\n")) ; thickness++ ; } #ifndef NDEBUG DEBUG3 (("\nRow "ID" of A'A:\n", j)) ; for (p = Up [j] ; p < pdest ; p++) { DEBUG3 ((" "ID, Ai [p])) ; } DEBUG3 (("\n")) ; #endif /* ------------------------------------------------------------------ */ /* delete rows up to but not including knext */ /* ------------------------------------------------------------------ */ krow = knext ; pfirst = Ap [knext] ; /* we can now use Ai [0..pfirst-1] as workspace for rows of U */ /* ================================================================== */ /* === compute jth row of U ========================================= */ /* ================================================================== */ /* for each nonzero U (k,j) in column j of U (1:j-1,:) do */ for (k = Link [j] ; k != EMPTY ; k = Link [k]) { /* merge row k of U into W */ DEBUG2 ((" ---- U row "ID, k)) ; ASSERT (k >= 0 && k < n_col) ; ASSERT (Up [k] != EMPTY) ; p = Up [k] ; ASSERT (Front_ncols [k] > Front_npivcol [k]) ; p2 = p + (Front_ncols [k] - Front_npivcol [k]) ; DEBUG2 ((" p "ID" p2 "ID"\n cols:", p, p2)) ; ASSERT (p <= pfirst) ; ASSERT (p2 <= pfirst) ; for ( ; p < p2 ; p++) { /* add to pattern if seen for the first time */ col = Ai [p] ; ASSERT (col >= j && col < n_col) ; DEBUG3 ((" "ID, col)) ; if (W [col] != Wflag) { Ai [pdest++] = col ; ASSERT (pdest <= pfirst) ; /* flag this col has having been seen for row j */ W [col] = Wflag ; if (col < parent) { parent = col ; } } } DEBUG2 (("\n")) ; /* mark the row k as deleted */ Up [k] = EMPTY ; ASSERT (Front_nrows [k] > Front_npivcol [k]) ; thickness += (Front_nrows [k] - Front_npivcol [k]) ; ASSERT (Front_parent [k] == j) ; } #ifndef NDEBUG DEBUG3 (("\nRow "ID" of U prior to supercolumn detection:\n", j)); for (p = Up [j] ; p < pdest ; p++) { DEBUG3 ((" "ID, Ai [p])) ; } DEBUG3 (("\n")) ; DEBUG1 (("thickness, prior to supercol detect: "ID"\n", thickness)) ; #endif /* ================================================================== */ /* === quicky mass elimination ====================================== */ /* ================================================================== */ /* this code detects some supernodes, but it might miss */ /* some because the elimination tree (created on the fly) */ /* is not yet post-ordered, and because the pattern of A'*A */ /* is also computed on the fly. */ /* j2 is incremented because the pivot columns are not stored */ for (j2 = j+1 ; j2 < jnext ; j2++) { ASSERT (j2 >= 0 && j2 < n_col) ; if (W [j2] != Wflag || Link [j2] != EMPTY) { break ; } } /* the loop above terminated with j2 at the first non-supernode */ DEBUG1 (("jnext = "ID"\n", jnext)) ; ASSERT (j2 <= jnext) ; jnext = j2 ; j2-- ; DEBUG1 (("j2 = "ID"\n", j2)) ; ASSERT (j2 < n_col) ; npivots = j2-j+1 ; DEBUG1 (("Number of pivot columns: "ID"\n", npivots)) ; /* rows j:j2 have the same nonzero pattern, except for columns j:j2-1 */ if (j2 > j) { /* supernode detected, prune the pattern of new row j */ ASSERT (parent == j+1) ; ASSERT (j2 < n_col) ; DEBUG1 (("Supernode detected, j "ID" to j2 "ID"\n", j, j2)) ; parent = n_col ; p2 = pdest ; pdest = Up [j] ; for (p = Up [j] ; p < p2 ; p++) { col = Ai [p] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (W [col] == Wflag) ; if (col > j2) { /* keep this col in the pattern of the new row j */ Ai [pdest++] = col ; if (col < parent) { parent = col ; } } } } DEBUG1 (("Parent ["ID"] = "ID"\n", j, parent)) ; ASSERT (parent > j2) ; if (parent == n_col) { /* this front has no parent - it is the root of a subtree */ parent = EMPTY ; } #ifndef NDEBUG DEBUG3 (("\nFinal row "ID" of U after supercolumn detection:\n", j)) ; for (p = Up [j] ; p < pdest ; p++) { ASSERT (Ai [p] >= 0 && Ai [p] < n_col) ; DEBUG3 ((" "ID" ("ID")", Ai [p], W [Ai [p]])) ; ASSERT (W [Ai [p]] == Wflag) ; } DEBUG3 (("\n")) ; #endif /* ================================================================== */ /* === frontal matrix =============================================== */ /* ================================================================== */ /* front has Front_npivcol [j] pivot columns */ /* entire front is Front_nrows [j] -by- Front_ncols [j] */ /* j is first column in the front */ npivcol = npivots ; fallrows = thickness ; fallcols = npivots + pdest - Up [j] ; /* number of pivots in the front (rows and columns) */ fpiv = MIN (npivcol, fallrows) ; /* size of contribution block */ frows = fallrows - fpiv ; fcols = fallcols - fpiv ; if (frows == 0 || fcols == 0) { /* front has no contribution block and thus needs no parent */ DEBUG1 (("Frontal matrix evaporation\n")) ; Up [j] = EMPTY ; parent = EMPTY ; } Front_npivcol [j] = npivots ; Front_nrows [j] = fallrows ; Front_ncols [j] = fallcols ; Front_parent [j] = parent ; ASSERT (npivots > 0) ; /* Front_parent [j] is the first column of the parent frontal matrix */ DEBUG1 (("\n\n==== Front "ID", nfr "ID" pivot columns "ID":"ID " all front: "ID"-by-"ID" Parent: "ID"\n", j, nfr, j,j+npivots-1, Front_nrows [j], Front_ncols [j], Front_parent [j])) ; nfr++ ; /* ================================================================== */ /* === prepare this row for its parent ============================== */ /* ================================================================== */ if (parent != EMPTY) { Link [j] = Link [parent] ; Link [parent] = j ; } ASSERT (jnext > j) ; jlast = j ; } /* ====================================================================== */ /* === postorder the fronts ============================================= */ /* ====================================================================== */ *nfr_out = nfr ; Front_order = W ; /* use W for Front_order [ */ if (fixQ) { /* do not postorder the fronts if Q is fixed */ DEBUG1 (("\nNo postorder (Q is fixed)\n")) ; k = 0 ; /* Pragma added May 14, 2003. The Intel compiler icl 6.0 (an old * version) incorrectly vectorizes this loop. */ #pragma novector for (j = 0 ; j < n_col ; j++) { if (Front_npivcol [j] > 0) { Front_order [j] = k++ ; DEBUG1 (("Front order of j: "ID" is:"ID"\n", j, Front_order [j])) ; } else { Front_order [j] = EMPTY ; } } } else { /* use Ap for Front_child and use Link for Front_sibling [ */ Front_child = Ap ; Front_sibling = Link ; /* use Ai for Front_stack, size of Ai is >= 2*n_col */ Front_stack = Ai ; Front_size = Front_stack + n_col ; UMF_fsize (n_col, Front_size, Front_nrows, Front_ncols, Front_parent, Front_npivcol) ; AMD_postorder (n_col, Front_parent, Front_npivcol, Front_size, Front_order, Front_child, Front_sibling, Front_stack) ; /* done with Front_child, Front_sibling, Front_size, and Front_stack ]*/ /* ------------------------------------------------------------------ */ /* construct the column permutation (return in Up) */ /* ------------------------------------------------------------------ */ /* Front_order [i] = k means that front i is kth front in the new order. * i is in the range 0 to n_col-1, and k is in the range 0 to nfr-1 */ /* Use Ai as workspace for Winv [ */ Winv = Ai ; for (k = 0 ; k < nfr ; k++) { Winv [k] = EMPTY ; } /* compute the inverse of Front_order, so that Winv [k] = i */ /* if Front_order [i] = k */ DEBUG1 (("\n\nComputing output column permutation:\n")) ; for (i = 0 ; i < n_col ; i++) { k = Front_order [i] ; if (k != EMPTY) { DEBUG1 (("Front "ID" new order: "ID"\n", i, k)) ; ASSERT (k >= 0 && k < nfr) ; ASSERT (Winv [k] == EMPTY) ; Winv [k] = i ; } } /* Use Up as output permutation */ kk = 0 ; for (k = 0 ; k < nfr ; k++) { i = Winv [k] ; DEBUG1 (("Old Front "ID" New Front "ID" npivots "ID" nrows "ID " ncols "ID"\n", i, k, Front_npivcol [i], Front_nrows [i], Front_ncols [i])) ; ASSERT (i >= 0 && i < n_col) ; ASSERT (Front_npivcol [i] > 0) ; for (npiv = 0 ; npiv < Front_npivcol [i] ; npiv++) { Up [kk] = i + npiv ; DEBUG1 ((" Cperm ["ID"] = "ID"\n", kk, Up [kk])) ; kk++ ; } } ASSERT (kk == n_col) ; /* Winv no longer needed ] */ } /* ---------------------------------------------------------------------- */ /* apply the postorder traversal to renumber the frontal matrices */ /* (or pack them in same order, if fixQ) */ /* ---------------------------------------------------------------------- */ /* use Ai as workspace */ UMF_apply_order (Front_npivcol, Front_order, Ai, n_col, nfr) ; UMF_apply_order (Front_nrows, Front_order, Ai, n_col, nfr) ; UMF_apply_order (Front_ncols, Front_order, Ai, n_col, nfr) ; UMF_apply_order (Front_parent, Front_order, Ai, n_col, nfr) ; /* fix the parent to refer to the new numbering */ for (i = 0 ; i < nfr ; i++) { parent = Front_parent [i] ; if (parent != EMPTY) { ASSERT (parent >= 0 && parent < n_col) ; ASSERT (Front_order [parent] >= 0 && Front_order [parent] < nfr) ; Front_parent [i] = Front_order [parent] ; } } /* Front_order longer needed ] */ #ifndef NDEBUG DEBUG1 (("\nFinal frontal matrices:\n")) ; for (i = 0 ; i < nfr ; i++) { DEBUG1 (("Final front "ID": npiv "ID" nrows "ID" ncols "ID" parent " ID"\n", i, Front_npivcol [i], Front_nrows [i], Front_ncols [i], Front_parent [i])) ; } #endif *p_ncompactions = ncompactions ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_mem_alloc_head_block.h0000644001170100242450000000075110617161751021410 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_mem_alloc_head_block ( NumericType *Numeric, Int nunits ) ; SuiteSparse/UMFPACK/Source/umf_analyze.h0000644001170100242450000000130110617161366016762 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_analyze ( Int n_row, Int n_col, Int Ai [ ], Int Ap [ ], Int Up [ ], Int fixQ, Int Front_ncols [ ], Int W [ ], Int Link [ ], Int Front_nrows [ ], Int Front_npivcol [ ], Int Front_parent [ ], Int *nfr_out, Int *p_ncompactions ) ; SuiteSparse/UMFPACK/Source/umf_build_tuples.c0000644001170100242450000001251710677541344020024 0ustar davisfac/* ========================================================================== */ /* === UMF_build_tuples ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Construct the tuple lists from a set of packed elements (no holes in elements, no internal or external fragmentation, and a packed (0..Work->nel) element name space). Assume no tuple lists are currently allocated, but that the tuple lengths have been initialized by UMF_tuple_lengths. Returns TRUE if successful, FALSE if not enough memory. */ #include "umf_internal.h" #include "umf_build_tuples.h" #include "umf_mem_alloc_tail_block.h" GLOBAL Int UMF_build_tuples ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int e, nrows, ncols, nel, *Rows, *Cols, row, col, n_row, n_col, *E, *Row_tuples, *Row_degree, *Row_tlen, *Col_tuples, *Col_degree, *Col_tlen, n1 ; Element *ep ; Unit *p ; Tuple tuple, *tp ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ E = Work->E ; Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; n_row = Work->n_row ; n_col = Work->n_col ; nel = Work->nel ; n1 = Work->n1 ; DEBUG3 (("BUILD_TUPLES: n_row "ID" n_col "ID" nel "ID"\n", n_row, n_col, nel)) ; /* ---------------------------------------------------------------------- */ /* allocate space for the tuple lists */ /* ---------------------------------------------------------------------- */ /* Garbage collection and memory reallocation have already attempted to */ /* ensure that there is enough memory for all the tuple lists. If */ /* memory allocation fails here, then there is nothing more to be done. */ for (row = n1 ; row < n_row ; row++) { if (NON_PIVOTAL_ROW (row)) { Row_tuples [row] = UMF_mem_alloc_tail_block (Numeric, UNITS (Tuple, TUPLES (Row_tlen [row]))) ; if (!Row_tuples [row]) { /* :: out of memory for row tuples :: */ DEBUGm4 (("out of memory: build row tuples\n")) ; return (FALSE) ; /* out of memory for row tuples */ } Row_tlen [row] = 0 ; } } /* push on stack in reverse order, so column tuples are in the order */ /* that they will be deleted. */ for (col = n_col-1 ; col >= n1 ; col--) { if (NON_PIVOTAL_COL (col)) { Col_tuples [col] = UMF_mem_alloc_tail_block (Numeric, UNITS (Tuple, TUPLES (Col_tlen [col]))) ; if (!Col_tuples [col]) { /* :: out of memory for col tuples :: */ DEBUGm4 (("out of memory: build col tuples\n")) ; return (FALSE) ; /* out of memory for col tuples */ } Col_tlen [col] = 0 ; } } #ifndef NDEBUG UMF_dump_memory (Numeric) ; #endif /* ---------------------------------------------------------------------- */ /* create the tuple lists (exclude element 0) */ /* ---------------------------------------------------------------------- */ /* for all elements, in order of creation */ for (e = 1 ; e <= nel ; e++) { DEBUG9 (("Adding tuples for element: "ID" at "ID"\n", e, E [e])) ; ASSERT (E [e]) ; /* no external fragmentation */ p = Numeric->Memory + E [e] ; GET_ELEMENT_PATTERN (ep, p, Cols, Rows, ncols) ; nrows = ep->nrows ; ASSERT (e != 0) ; ASSERT (e == 0 || nrows == ep->nrowsleft) ; ASSERT (e == 0 || ncols == ep->ncolsleft) ; tuple.e = e ; for (tuple.f = 0 ; tuple.f < ncols ; tuple.f++) { col = Cols [tuple.f] ; ASSERT (col >= n1 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; ASSERT (Col_tuples [col]) ; tp = ((Tuple *) (Numeric->Memory + Col_tuples [col])) + Col_tlen [col]++ ; *tp = tuple ; #ifndef NDEBUG UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; #endif } for (tuple.f = 0 ; tuple.f < nrows ; tuple.f++) { row = Rows [tuple.f] ; ASSERT (row >= n1 && row < n_row) ; ASSERT (NON_PIVOTAL_COL (col)) ; ASSERT (Row_tuples [row]) ; tp = ((Tuple *) (Numeric->Memory + Row_tuples [row])) + Row_tlen [row]++ ; *tp = tuple ; #ifndef NDEBUG UMF_dump_rowcol (0, Numeric, Work, row, FALSE) ; #endif } } /* ---------------------------------------------------------------------- */ /* the tuple lists are now valid, and can be scanned */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_dump_memory (Numeric) ; UMF_dump_matrix (Numeric, Work, FALSE) ; #endif DEBUG3 (("BUILD_TUPLES: done\n")) ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_build_tuples.h0000644001170100242450000000074510617161431020016 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_build_tuples ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umfpack_tictoc.c0000644001170100242450000000605210617162176017446 0ustar davisfac/* ========================================================================== */ /* === umfpack_tictoc ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Returns the time in seconds used by the process, and the current wall clock time. BE CAREFUL: if you compare the run time of UMFPACK with other sparse matrix packages, be sure to use the same timer. See umfpack_tictoc.h for details. These routines conform to the POSIX standard. See umf_config.h for more details. */ #include "umf_internal.h" #ifdef NO_TIMER /* -------------------------------------------------------------------------- */ /* no timer used if -DNO_TIMER is defined at compile time */ /* -------------------------------------------------------------------------- */ void umfpack_tic (double stats [2]) { stats [0] = 0 ; stats [1] = 0 ; } void umfpack_toc (double stats [2]) { stats [0] = 0 ; stats [1] = 0 ; } #else /* -------------------------------------------------------------------------- */ /* timer routines, using either times() or clock() */ /* -------------------------------------------------------------------------- */ #define TINY_TIME 1e-4 #ifndef NPOSIX #include #include void umfpack_tic (double stats [2]) { /* Return the current time */ /* stats [0]: current wallclock time, in seconds */ /* stats [1]: user + system time for the process, in seconds */ double ticks ; struct tms t ; ticks = (double) sysconf (_SC_CLK_TCK) ; stats [0] = (double) times (&t) / ticks ; stats [1] = (double) (t.tms_utime + t.tms_stime) / ticks ; /* if time is tiny, just return zero */ if (stats [0] < TINY_TIME) stats [0] = 0 ; if (stats [1] < TINY_TIME) stats [1] = 0 ; } #else /* Generic ANSI C: use the ANSI clock function. No wallclock time. */ #include void umfpack_tic (double stats [2]) { stats [0] = 0 ; stats [1] = ((double) (clock ( ))) / ((double) (CLOCKS_PER_SEC)) ; if (stats [1] < TINY_TIME) stats [1] = 0 ; } #endif /* -------------------------------------------------------------------------- */ void umfpack_toc (double stats [2]) { /* Return the current time since the last call to umfpack_tic. */ /* On input, stats holds the values returned by umfpack_tic. */ /* On ouput, stats holds the time since the last umfpack_tic. */ double done [2] ; umfpack_tic (done) ; stats [0] = done [0] - stats [0] ; stats [1] = done [1] - stats [1] ; if (stats [0] < 0) stats [0] = 0 ; if (stats [1] < 0) stats [1] = 0 ; } #endif SuiteSparse/UMFPACK/Source/umf_extend_front.c0000644001170100242450000002670210677541411020024 0ustar davisfac/* ========================================================================== */ /* === UMF_extend_front ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Called by kernel. */ #include "umf_internal.h" #include "umf_extend_front.h" #include "umf_grow_front.h" /* ========================================================================== */ /* === zero_front =========================================================== */ /* ========================================================================== */ PRIVATE void zero_front ( Entry *Flblock, Entry *Fublock, Entry *Fcblock, Int fnrows, Int fncols, Int fnr_curr, Int fnc_curr, Int fnpiv, Int fnrows_extended, Int fncols_extended) { Int j, i ; Entry *F, *Fj, *Fi ; Fj = Fcblock + fnrows ; for (j = 0 ; j < fncols ; j++) { /* zero the new rows in the contribution block: */ F = Fj ; Fj += fnr_curr ; #pragma ivdep for (i = fnrows ; i < fnrows_extended ; i++) { /* CLEAR (Fcblock [i + j*fnr_curr]) ; */ CLEAR_AND_INCREMENT (F) ; } } Fj -= fnrows ; for (j = fncols ; j < fncols_extended ; j++) { /* zero the new columns in the contribution block: */ F = Fj ; Fj += fnr_curr ; #pragma ivdep for (i = 0 ; i < fnrows_extended ; i++) { /* CLEAR (Fcblock [i + j*fnr_curr]) ; */ CLEAR_AND_INCREMENT (F) ; } } Fj = Flblock + fnrows ; for (j = 0 ; j < fnpiv ; j++) { /* zero the new rows in L block: */ F = Fj ; Fj += fnr_curr ; #pragma ivdep for (i = fnrows ; i < fnrows_extended ; i++) { /* CLEAR (Flblock [i + j*fnr_curr]) ; */ CLEAR_AND_INCREMENT (F) ; } } Fi = Fublock + fncols ; for (i = 0 ; i < fnpiv ; i++) { /* zero the new columns in U block: */ F = Fi ; Fi += fnc_curr ; #pragma ivdep for (j = fncols ; j < fncols_extended ; j++) { /* CLEAR (Fublock [i*fnc_curr + j]) ; */ CLEAR_AND_INCREMENT (F) ; } } } /* ========================================================================== */ /* === UMF_extend_front ===================================================== */ /* ========================================================================== */ GLOBAL Int UMF_extend_front ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int j, i, *Frows, row, col, *Wrow, fnr2, fnc2, *Frpos, *Fcpos, *Fcols, fnrows_extended, rrdeg, ccdeg, fncols_extended, fnr_curr, fnc_curr, fnrows, fncols, pos, fnpiv, *Wm ; Entry *Wx, *Wy, *Fu, *Fl ; /* ---------------------------------------------------------------------- */ /* get current frontal matrix and check for frontal growth */ /* ---------------------------------------------------------------------- */ fnpiv = Work->fnpiv ; #ifndef NDEBUG DEBUG2 (("EXTEND FRONT\n")) ; DEBUG2 (("Work->fnpiv "ID"\n", fnpiv)) ; ASSERT (Work->Flblock == Work->Flublock + Work->nb*Work->nb) ; ASSERT (Work->Fublock == Work->Flblock + Work->fnr_curr*Work->nb) ; ASSERT (Work->Fcblock == Work->Fublock + Work->nb*Work->fnc_curr) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Work->Fcblock, Work->fnr_curr, Work->fnrows, Work->fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Work->Flblock, Work->fnr_curr, Work->fnrows, fnpiv); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Work->Fublock, Work->fnc_curr, Work->fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Work->Flublock, Work->nb, fnpiv, fnpiv) ; #endif if (Work->do_grow) { fnr2 = UMF_FRONTAL_GROWTH * Work->fnrows_new + 2 ; fnc2 = UMF_FRONTAL_GROWTH * Work->fncols_new + 2 ; if (!UMF_grow_front (Numeric, fnr2, fnc2, Work, 1)) { DEBUGm4 (("out of memory: extend front\n")) ; return (FALSE) ; } } fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; ASSERT (Work->fnrows_new + 1 <= fnr_curr) ; ASSERT (Work->fncols_new + 1 <= fnc_curr) ; ASSERT (fnr_curr >= 0 && fnr_curr % 2 == 1) ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ Frows = Work->Frows ; Frpos = Work->Frpos ; Fcols = Work->Fcols ; Fcpos = Work->Fcpos ; fnrows = Work->fnrows ; fncols = Work->fncols ; rrdeg = Work->rrdeg ; ccdeg = Work->ccdeg ; /* scan starts at the first new column in Fcols */ /* also scan the pivot column if it was not in the front */ Work->fscan_col = fncols ; Work->NewCols = Fcols ; /* scan1 starts at the first new row in Frows */ /* also scan the pivot row if it was not in the front */ Work->fscan_row = fnrows ; Work->NewRows = Frows ; /* ---------------------------------------------------------------------- */ /* extend row pattern of the front with the new pivot column */ /* ---------------------------------------------------------------------- */ fnrows_extended = fnrows ; fncols_extended = fncols ; #ifndef NDEBUG DEBUG2 (("Pivot col, before extension: "ID"\n", fnrows)) ; for (i = 0 ; i < fnrows ; i++) { DEBUG2 ((" "ID": row "ID"\n", i, Frows [i])) ; ASSERT (Frpos [Frows [i]] == i) ; } DEBUG2 (("Extending pivot column: pivcol_in_front: "ID"\n", Work->pivcol_in_front)) ; #endif Fl = Work->Flblock + fnpiv * fnr_curr ; if (Work->pivcol_in_front) { /* extended pattern and position already in Frows, Frpos. Values above * the diagonal are already in LU block. Values on and below the * diagonal are in Wy [0 .. fnrows_extended-1]. Copy into the L * block. */ fnrows_extended += ccdeg ; Wy = Work->Wy ; for (i = 0 ; i < fnrows_extended ; i++) { Fl [i] = Wy [i] ; #ifndef NDEBUG row = Frows [i] ; DEBUG2 ((" "ID": row "ID" ", i, row)) ; EDEBUG2 (Fl [i]) ; if (row == Work->pivrow) DEBUG2 ((" <- pivrow")) ; DEBUG2 (("\n")) ; if (i == fnrows - 1) DEBUG2 ((" :::::::\n")) ; ASSERT (row >= 0 && row < Work->n_row) ; ASSERT (Frpos [row] == i) ; #endif } } else { /* extended pattern,values is in (Wm,Wx), not yet in the front */ Entry *F ; Fu = Work->Flublock + fnpiv * Work->nb ; Wm = Work->Wm ; Wx = Work->Wx ; F = Fu ; for (i = 0 ; i < fnpiv ; i++) { CLEAR_AND_INCREMENT (F) ; } F = Fl ; for (i = 0 ; i < fnrows ; i++) { CLEAR_AND_INCREMENT (F) ; } for (i = 0 ; i < ccdeg ; i++) { row = Wm [i] ; #ifndef NDEBUG DEBUG2 ((" "ID": row "ID" (ext) ", fnrows_extended, row)) ; EDEBUG2 (Wx [i]) ; if (row == Work->pivrow) DEBUG2 ((" <- pivrow")) ; DEBUG2 (("\n")) ; ASSERT (row >= 0 && row < Work->n_row) ; #endif pos = Frpos [row] ; if (pos < 0) { pos = fnrows_extended++ ; Frows [pos] = row ; Frpos [row] = pos ; } Fl [pos] = Wx [i] ; } } ASSERT (fnrows_extended <= fnr_curr) ; /* ---------------------------------------------------------------------- */ /* extend the column pattern of the front with the new pivot row */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG6 (("Pivot row, before extension: "ID"\n", fncols)) ; for (j = 0 ; j < fncols ; j++) { DEBUG7 ((" "ID": col "ID"\n", j, Fcols [j])) ; ASSERT (Fcpos [Fcols [j]] == j * fnr_curr) ; } DEBUG6 (("Extending pivot row:\n")) ; #endif if (Work->pivrow_in_front) { if (Work->pivcol_in_front) { ASSERT (Fcols == Work->Wrow) ; for (j = fncols ; j < rrdeg ; j++) { #ifndef NDEBUG col = Fcols [j] ; DEBUG2 ((" "ID": col "ID" (ext)\n", j, col)) ; ASSERT (col != Work->pivcol) ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (Fcpos [col] < 0) ; #endif Fcpos [Fcols [j]] = j * fnr_curr ; } } else { /* OUT-IN option: pivcol not in front, but pivrow is in front */ Wrow = Work->Wrow ; ASSERT (IMPLIES (Work->pivcol_in_front, Wrow == Fcols)) ; if (Wrow == Fcols) { /* Wrow and Fcols are equivalenced */ for (j = fncols ; j < rrdeg ; j++) { col = Wrow [j] ; DEBUG2 ((" "ID": col "ID" (ext)\n", j, col)) ; ASSERT (Fcpos [col] < 0) ; /* Fcols [j] = col ; not needed */ Fcpos [col] = j * fnr_curr ; } } else { for (j = fncols ; j < rrdeg ; j++) { col = Wrow [j] ; DEBUG2 ((" "ID": col "ID" (ext)\n", j, col)) ; ASSERT (Fcpos [col] < 0) ; Fcols [j] = col ; Fcpos [col] = j * fnr_curr ; } } } fncols_extended = rrdeg ; } else { ASSERT (Fcols != Work->Wrow) ; Wrow = Work->Wrow ; for (j = 0 ; j < rrdeg ; j++) { col = Wrow [j] ; ASSERT (col >= 0 && col < Work->n_col) ; if (Fcpos [col] < 0) { DEBUG2 ((" col:: "ID" (ext)\n", col)) ; Fcols [fncols_extended] = col ; Fcpos [col] = fncols_extended * fnr_curr ; fncols_extended++ ; } } } /* ---------------------------------------------------------------------- */ /* pivot row and column have been extended */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG ASSERT (fncols_extended <= fnc_curr) ; ASSERT (fnrows_extended <= fnr_curr) ; DEBUG6 (("Pivot col, after ext: "ID" "ID"\n", fnrows,fnrows_extended)) ; for (i = 0 ; i < fnrows_extended ; i++) { row = Frows [i] ; DEBUG7 ((" "ID": row "ID" pos "ID" old: %d", i, row, Frpos [row], i < fnrows)) ; if (row == Work->pivrow ) DEBUG7 ((" <-- pivrow")) ; DEBUG7 (("\n")) ; ASSERT (Frpos [Frows [i]] == i) ; } DEBUG6 (("Pivot row position: "ID"\n", Frpos [Work->pivrow])) ; ASSERT (Frpos [Work->pivrow] >= 0) ; ASSERT (Frpos [Work->pivrow] < fnrows_extended) ; DEBUG6 (("Pivot row, after ext: "ID" "ID"\n", fncols,fncols_extended)) ; for (j = 0 ; j < fncols_extended ; j++) { col = Fcols [j] ; DEBUG7 ((" "ID": col "ID" pos "ID" old: %d", j, col, Fcpos [col], j < fncols)) ; if (col == Work->pivcol ) DEBUG7 ((" <-- pivcol")) ; DEBUG7 (("\n")) ; ASSERT (Fcpos [Fcols [j]] == j * fnr_curr) ; } DEBUG6 (("Pivot col position: "ID"\n", Fcpos [Work->pivcol])) ; ASSERT (Fcpos [Work->pivcol] >= 0) ; ASSERT (Fcpos [Work->pivcol] < fncols_extended * fnr_curr) ; #endif /* ---------------------------------------------------------------------- */ /* Zero the newly extended frontal matrix */ /* ---------------------------------------------------------------------- */ zero_front (Work->Flblock, Work->Fublock, Work->Fcblock, fnrows, fncols, fnr_curr, fnc_curr, fnpiv, fnrows_extended, fncols_extended) ; /* ---------------------------------------------------------------------- */ /* finalize extended row and column pattern of the frontal matrix */ /* ---------------------------------------------------------------------- */ Work->fnrows = fnrows_extended ; Work->fncols = fncols_extended ; ASSERT (fnrows_extended == Work->fnrows_new + 1) ; ASSERT (fncols_extended == Work->fncols_new + 1) ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_extend_front.h0000644001170100242450000000074510617161547020032 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_extend_front ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_singletons.c0000644001170100242450000006250610677541050017513 0ustar davisfac/* ========================================================================== */ /* === UMF_singletons ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Find and order the row and column singletons of a matrix A. If there are * row and column singletons, the output is a row and column permutation such * that the matrix is in the following form: * * x x x x x x x x x * . x x x x x x x x * . . x x x x x x x * . . . x . . . . . * . . . x x . . . . * . . . x x s s s s * . . . x x s s s s * . . . x x s s s s * . . . x x s s s s * * The above example has 3 column singletons (the first three columns and * their corresponding pivot rows) and 2 row singletons. The singletons are * ordered first, because they have zero Markowitz cost. The LU factorization * for these first five rows and columns is free - there is no work to do * (except to scale the pivot columns for the 2 row singletons), and no * fill-in occurs. The remaining submatrix (4-by-4 in the above example) * has no rows or columns with degree one. It may have empty rows or columns. * * This algorithm does not perform a full permutation to block triangular * form. If there are one or more singletons, then the matrix can be * permuted to block triangular form, but UMFPACK does not perform the full * BTF permutation (see also "dmperm" in MATLAB, CSparse cs_dmperm, * and SuiteSparse/BTF). */ #include "umf_internal.h" #include "umf_singletons.h" #ifndef NDEBUG /* ========================================================================== */ /* === debug routines ======================================================= */ /* ========================================================================== */ /* Dump the singleton queue */ PRIVATE void dump_singletons ( Int head, /* head of the queue */ Int tail, /* tail of the queue */ Int Next [ ], /* Next [i] is the next object after i */ char *name, /* "row" or "col" */ Int Deg [ ], /* Deg [i] is the degree of object i */ Int n /* objects are in the range 0 to n-1 */ ) { Int i, next, cnt ; DEBUG6 (("%s Singleton list: head "ID" tail "ID"\n", name, head, tail)) ; i = head ; ASSERT (head >= EMPTY && head < n) ; ASSERT (tail >= EMPTY && tail < n) ; cnt = 0 ; while (i != EMPTY) { DEBUG7 ((" "ID": "ID" deg: "ID"\n", cnt, i, Deg [i])) ; ASSERT (i >= 0 && i < n) ; next = Next [i] ; if (i == tail) ASSERT (next == EMPTY) ; i = next ; cnt++ ; ASSERT (cnt <= n) ; } } PRIVATE void dump_mat ( char *xname, char *yname, Int nx, Int ny, const Int Xp [ ], const Int Xi [ ], Int Xdeg [ ], Int Ydeg [ ] ) { Int x, y, p, p1, p2, xdeg, do_xdeg, ydeg ; DEBUG6 (("\n ==== Dump %s mat:\n", xname)) ; for (x = 0 ; x < nx ; x++) { p1 = Xp [x] ; p2 = Xp [x+1] ; xdeg = Xdeg [x] ; DEBUG6 (("Dump %s "ID" p1 "ID" p2 "ID" deg "ID"\n", xname, x, p1, p2, xdeg)) ; do_xdeg = (xdeg >= 0) ; for (p = p1 ; p < p2 ; p++) { y = Xi [p] ; DEBUG7 ((" %s "ID" deg: ", yname, y)) ; ASSERT (y >= 0 && y < ny) ; ydeg = Ydeg [y] ; DEBUG7 ((ID"\n", ydeg)) ; if (do_xdeg && ydeg >= 0) { xdeg-- ; } } ASSERT (IMPLIES (do_xdeg, xdeg == 0)) ; } } #endif /* ========================================================================== */ /* === create_row_form ====================================================== */ /* ========================================================================== */ /* Create the row-form R of the column-form input matrix A. This could be done * by UMF_transpose, except that Rdeg has already been computed. */ PRIVATE void create_row_form ( /* input, not modified: */ Int n_row, /* A is n_row-by-n_col, nz = Ap [n_col] */ Int n_col, const Int Ap [ ], /* Ap [0..n_col]: column pointers for A */ const Int Ai [ ], /* Ai [0..nz-1]: row indices for A */ Int Rdeg [ ], /* Rdeg [0..n_row-1]: row degrees */ /* output, not defined on input: */ Int Rp [ ], /* Rp [0..n_row]: row pointers for R */ Int Ri [ ], /* Ri [0..nz-1]: column indices for R */ /* workspace, not defined on input or output */ Int W [ ] /* size n_row */ ) { Int row, col, p, p2 ; /* create the row pointers */ Rp [0] = 0 ; W [0] = 0 ; for (row = 0 ; row < n_row ; row++) { Rp [row+1] = Rp [row] + Rdeg [row] ; W [row] = Rp [row] ; } /* create the indices for the row-form */ for (col = 0 ; col < n_col ; col++) { p2 = Ap [col+1] ; for (p = Ap [col] ; p < p2 ; p++) { Ri [W [Ai [p]]++] = col ; } } } /* ========================================================================== */ /* === order_singletons ===================================================== */ /* ========================================================================== */ PRIVATE int order_singletons /* return new number of singletons */ ( Int k, /* the number of singletons so far */ Int head, Int tail, Int Next [ ], Int Xdeg [ ], Int Xperm [ ], const Int Xp [ ], const Int Xi [ ], Int Ydeg [ ], Int Yperm [ ], const Int Yp [ ], const Int Yi [ ] #ifndef NDEBUG , char *xname, char *yname, Int nx, Int ny #endif ) { Int xpivot, x, y, ypivot, p, p2, deg ; #ifndef NDEBUG Int i, k1 = k ; dump_singletons (head, tail, Next, xname, Xdeg, nx) ; dump_mat (xname, yname, nx, ny, Xp, Xi, Xdeg, Ydeg) ; dump_mat (yname, xname, ny, nx, Yp, Yi, Ydeg, Xdeg) ; #endif while (head != EMPTY) { /* remove the singleton at the head of the queue */ xpivot = head ; DEBUG1 (("------ Order %s singleton: "ID"\n", xname, xpivot)) ; head = Next [xpivot] ; if (head == EMPTY) tail = EMPTY ; #ifndef NDEBUG if (k % 100 == 0) dump_singletons (head, tail, Next, xname, Xdeg, nx) ; #endif ASSERT (Xdeg [xpivot] >= 0) ; if (Xdeg [xpivot] != 1) { /* This row/column x is empty. The matrix is singular. * x will be ordered last in Xperm. */ DEBUG1 (("empty %s, after singletons removed\n", xname)) ; continue ; } /* find the ypivot to match with this xpivot */ #ifndef NDEBUG /* there can only be one ypivot, since the degree of x is 1 */ deg = 0 ; p2 = Xp [xpivot+1] ; for (p = Xp [xpivot] ; p < p2 ; p++) { y = Xi [p] ; DEBUG1 (("%s: "ID"\n", yname, y)) ; if (Ydeg [y] >= 0) { /* this is a live index in this xpivot vector */ deg++ ; } } ASSERT (deg == 1) ; #endif ypivot = EMPTY ; p2 = Xp [xpivot+1] ; for (p = Xp [xpivot] ; p < p2 ; p++) { y = Xi [p] ; DEBUG1 (("%s: "ID"\n", yname, y)) ; if (Ydeg [y] >= 0) { /* this is a live index in this xpivot vector */ ypivot = y ; break ; } } DEBUG1 (("Pivot %s: "ID"\n", yname, ypivot)) ; ASSERT (ypivot != EMPTY) ; DEBUG1 (("deg "ID"\n", Ydeg [ypivot])) ; ASSERT (Ydeg [ypivot] >= 0) ; /* decrement the degrees after removing this singleton */ DEBUG1 (("p1 "ID"\n", Yp [ypivot])) ; DEBUG1 (("p2 "ID"\n", Yp [ypivot+1])) ; p2 = Yp [ypivot+1] ; for (p = Yp [ypivot] ; p < p2 ; p++) { x = Yi [p] ; DEBUG1 ((" %s: "ID" deg: "ID"\n", xname, x, Xdeg [x])) ; if (Xdeg [x] < 0) continue ; ASSERT (Xdeg [x] > 0) ; if (x == xpivot) continue ; deg = --(Xdeg [x]) ; ASSERT (Xdeg [x] >= 0) ; if (deg == 1) { /* this is a new singleton, put at the end of the queue */ Next [x] = EMPTY ; if (head == EMPTY) { head = x ; } else { ASSERT (tail != EMPTY) ; Next [tail] = x ; } tail = x ; DEBUG1 ((" New %s singleton: "ID"\n", xname, x)) ; #ifndef NDEBUG if (k % 100 == 0) { dump_singletons (head, tail, Next, xname, Xdeg, nx) ; } #endif } } /* flag the xpivot and ypivot by FLIP'ing the degrees */ Xdeg [xpivot] = FLIP (1) ; Ydeg [ypivot] = FLIP (Ydeg [ypivot]) ; /* keep track of the pivot row and column */ Xperm [k] = xpivot ; Yperm [k] = ypivot ; k++ ; #ifndef NDEBUG if (k % 1000 == 0) { dump_mat (xname, yname, nx, ny, Xp, Xi, Xdeg, Ydeg) ; dump_mat (yname, xname, ny, nx, Yp, Yi, Ydeg, Xdeg) ; } #endif } #ifndef NDEBUG DEBUGm4 (("%s singletons: k = "ID"\n", xname, k)) ; for (i = k1 ; i < k ; i++) { DEBUG1 ((" %s: "ID" %s: "ID"\n", xname, Xperm [i], yname, Yperm [i])) ; } ASSERT (k > 0) ; #endif return (k) ; } /* ========================================================================== */ /* === find_any_singletons ================================================== */ /* ========================================================================== */ PRIVATE Int find_any_singletons /* returns # of singletons found */ ( /* input, not modified: */ Int n_row, Int n_col, const Int Ap [ ], /* size n_col+1 */ const Int Ai [ ], /* size nz = Ap [n_col] */ /* input, modified on output: */ Int Cdeg [ ], /* size n_col */ Int Rdeg [ ], /* size n_row */ /* output, not defined on input: */ Int Cperm [ ], /* size n_col */ Int Rperm [ ], /* size n_row */ Int *p_n1r, /* # of row singletons */ Int *p_n1c, /* # of col singletons */ /* workspace, not defined on input or output */ Int Rp [ ], /* size n_row+1 */ Int Ri [ ], /* size nz */ Int W [ ], /* size n_row */ Int Next [ ] /* size MAX (n_row, n_col) */ ) { Int n1, col, row, row_form, head, tail, n1r, n1c ; /* ---------------------------------------------------------------------- */ /* eliminate column singletons */ /* ---------------------------------------------------------------------- */ n1 = 0 ; n1r = 0 ; n1c = 0 ; row_form = FALSE ; head = EMPTY ; tail = EMPTY ; for (col = n_col-1 ; col >= 0 ; col--) { if (Cdeg [col] == 1) { /* put the column singleton in the queue */ if (head == EMPTY) tail = col ; Next [col] = head ; head = col ; DEBUG1 (("Column singleton: "ID"\n", col)) ; } } if (head != EMPTY) { /* ------------------------------------------------------------------ */ /* create the row-form of A */ /* ------------------------------------------------------------------ */ create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ; row_form = TRUE ; /* ------------------------------------------------------------------ */ /* find and order the column singletons */ /* ------------------------------------------------------------------ */ n1 = order_singletons (0, head, tail, Next, Cdeg, Cperm, Ap, Ai, Rdeg, Rperm, Rp, Ri #ifndef NDEBUG , "col", "row", n_col, n_row #endif ) ; n1c = n1 ; } /* ---------------------------------------------------------------------- */ /* eliminate row singletons */ /* ---------------------------------------------------------------------- */ head = EMPTY ; tail = EMPTY ; for (row = n_row-1 ; row >= 0 ; row--) { if (Rdeg [row] == 1) { /* put the row singleton in the queue */ if (head == EMPTY) tail = row ; Next [row] = head ; head = row ; DEBUG1 (("Row singleton: "ID"\n", row)) ; } } if (head != EMPTY) { /* ------------------------------------------------------------------ */ /* create the row-form of A, if not already created */ /* ------------------------------------------------------------------ */ if (!row_form) { create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ; } /* ------------------------------------------------------------------ */ /* find and order the row singletons */ /* ------------------------------------------------------------------ */ n1 = order_singletons (n1, head, tail, Next, Rdeg, Rperm, Rp, Ri, Cdeg, Cperm, Ap, Ai #ifndef NDEBUG , "row", "col", n_row, n_col #endif ) ; n1r = n1 - n1c ; } DEBUG0 (("n1 "ID"\n", n1)) ; *p_n1r = n1r ; *p_n1c = n1c ; return (n1) ; } /* ========================================================================== */ /* === find_user_singletons ================================================= */ /* ========================================================================== */ PRIVATE Int find_user_singletons /* returns # singletons found */ ( /* input, not modified: */ Int n_row, Int n_col, const Int Ap [ ], /* size n_col+1 */ const Int Ai [ ], /* size nz = Ap [n_col] */ const Int Quser [ ], /* size n_col if present */ /* input, modified on output: */ Int Cdeg [ ], /* size n_col */ Int Rdeg [ ], /* size n_row */ /* output, not defined on input */ Int Cperm [ ], /* size n_col */ Int Rperm [ ], /* size n_row */ Int *p_n1r, /* # of row singletons */ Int *p_n1c, /* # of col singletons */ /* workspace, not defined on input or output */ Int Rp [ ], /* size n_row+1 */ Int Ri [ ], /* size nz */ Int W [ ] /* size n_row */ ) { Int n1, col, row, p, p2, pivcol, pivrow, found, k, n1r, n1c ; n1 = 0 ; n1r = 0 ; n1c = 0 ; *p_n1r = 0 ; *p_n1c = 0 ; /* find singletons in the user column permutation, Quser */ pivcol = Quser [0] ; found = (Cdeg [pivcol] == 1) ; DEBUG0 (("Is first col: "ID" a col singleton?: "ID"\n", pivcol, found)) ; if (!found) { /* the first column is not a column singleton, check for a row * singleton in the first column. */ for (p = Ap [pivcol] ; p < Ap [pivcol+1] ; p++) { if (Rdeg [Ai [p]] == 1) { DEBUG0 (("Row singleton in first col: "ID" row: "ID"\n", pivcol, Ai [p])) ; found = TRUE ; break ; } } } if (!found) { /* no singletons in the leading part of A (:,Quser) */ return (0) ; } /* there is at least one row or column singleton. Look for more. */ create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ; n1 = 0 ; for (k = 0 ; k < n_col ; k++) { pivcol = Quser [k] ; pivrow = EMPTY ; /* ------------------------------------------------------------------ */ /* check if col is a column singleton, or contains a row singleton */ /* ------------------------------------------------------------------ */ found = (Cdeg [pivcol] == 1) ; if (found) { /* -------------------------------------------------------------- */ /* pivcol is a column singleton */ /* -------------------------------------------------------------- */ DEBUG0 (("Found a col singleton: k "ID" pivcol "ID"\n", k, pivcol)); /* find the pivrow to match with this pivcol */ #ifndef NDEBUG /* there can only be one pivrow, since the degree of pivcol is 1 */ { Int deg = 0 ; p2 = Ap [pivcol+1] ; for (p = Ap [pivcol] ; p < p2 ; p++) { row = Ai [p] ; DEBUG1 (("row: "ID"\n", row)) ; if (Rdeg [row] >= 0) { /* this is a live index in this column vector */ deg++ ; } } ASSERT (deg == 1) ; } #endif p2 = Ap [pivcol+1] ; for (p = Ap [pivcol] ; p < p2 ; p++) { row = Ai [p] ; DEBUG1 (("row: "ID"\n", row)) ; if (Rdeg [row] >= 0) { /* this is a live index in this pivcol vector */ pivrow = row ; break ; } } DEBUG1 (("Pivot row: "ID"\n", pivrow)) ; ASSERT (pivrow != EMPTY) ; DEBUG1 (("deg "ID"\n", Rdeg [pivrow])) ; ASSERT (Rdeg [pivrow] >= 0) ; /* decrement the degrees after removing this col singleton */ DEBUG1 (("p1 "ID"\n", Rp [pivrow])) ; DEBUG1 (("p2 "ID"\n", Rp [pivrow+1])) ; p2 = Rp [pivrow+1] ; for (p = Rp [pivrow] ; p < p2 ; p++) { col = Ri [p] ; DEBUG1 ((" col: "ID" deg: "ID"\n", col, Cdeg [col])) ; if (Cdeg [col] < 0) continue ; ASSERT (Cdeg [col] > 0) ; Cdeg [col]-- ; ASSERT (Cdeg [col] >= 0) ; } /* flag the pivcol and pivrow by FLIP'ing the degrees */ Cdeg [pivcol] = FLIP (1) ; Rdeg [pivrow] = FLIP (Rdeg [pivrow]) ; n1c++ ; } else { /* -------------------------------------------------------------- */ /* pivcol may contain a row singleton */ /* -------------------------------------------------------------- */ p2 = Ap [pivcol+1] ; for (p = Ap [pivcol] ; p < p2 ; p++) { pivrow = Ai [p] ; if (Rdeg [pivrow] == 1) { DEBUG0 (("Row singleton in pivcol: "ID" row: "ID"\n", pivcol, pivrow)) ; found = TRUE ; break ; } } if (!found) { DEBUG0 (("End of user singletons\n")) ; break ; } #ifndef NDEBUG /* there can only be one pivrow, since the degree of pivcol is 1 */ { Int deg = 0 ; p2 = Rp [pivrow+1] ; for (p = Rp [pivrow] ; p < p2 ; p++) { col = Ri [p] ; DEBUG1 (("col: "ID" cdeg::: "ID"\n", col, Cdeg [col])) ; if (Cdeg [col] >= 0) { /* this is a live index in this column vector */ ASSERT (col == pivcol) ; deg++ ; } } ASSERT (deg == 1) ; } #endif DEBUG1 (("Pivot row: "ID"\n", pivrow)) ; DEBUG1 (("pivcol deg "ID"\n", Cdeg [pivcol])) ; ASSERT (Cdeg [pivcol] > 1) ; /* decrement the degrees after removing this row singleton */ DEBUG1 (("p1 "ID"\n", Ap [pivcol])) ; DEBUG1 (("p2 "ID"\n", Ap [pivcol+1])) ; p2 = Ap [pivcol+1] ; for (p = Ap [pivcol] ; p < p2 ; p++) { row = Ai [p] ; DEBUG1 ((" row: "ID" deg: "ID"\n", row, Rdeg [row])) ; if (Rdeg [row] < 0) continue ; ASSERT (Rdeg [row] > 0) ; Rdeg [row]-- ; ASSERT (Rdeg [row] >= 0) ; } /* flag the pivcol and pivrow by FLIP'ing the degrees */ Cdeg [pivcol] = FLIP (Cdeg [pivcol]) ; Rdeg [pivrow] = FLIP (1) ; n1r++ ; } /* keep track of the pivot row and column */ Cperm [k] = pivcol ; Rperm [k] = pivrow ; n1++ ; #ifndef NDEBUG dump_mat ("col", "row", n_col, n_row, Ap, Ai, Cdeg, Rdeg) ; dump_mat ("row", "col", n_row, n_col, Rp, Ri, Rdeg, Cdeg) ; #endif } DEBUGm4 (("User singletons found: "ID"\n", n1)) ; ASSERT (n1 > 0) ; *p_n1r = n1r ; *p_n1c = n1c ; return (n1) ; } /* ========================================================================== */ /* === finish_permutation =================================================== */ /* ========================================================================== */ /* Complete the permutation for the pruned submatrix. The singletons are * already ordered, but remove their flags. Place rows/columns that are empty * in the pruned submatrix at the end of the output permutation. This can only * occur if the matrix is singular. */ PRIVATE Int finish_permutation ( Int n1, Int nx, Int Xdeg [ ], const Int Xuser [ ], Int Xperm [ ], Int *p_max_deg ) { Int nempty, x, deg, s, max_deg, k ; nempty = 0 ; s = n1 ; max_deg = 0 ; DEBUG0 (("n1 "ID" nempty "ID"\n", n1, nempty)) ; for (k = 0 ; k < nx ; k++) { x = (Xuser != (Int *) NULL) ? Xuser [k] : k ; DEBUG0 (("finish perm k "ID" x "ID" nx "ID"\n", k, x, nx)) ; deg = Xdeg [x] ; if (deg == 0) { /* this row/col is empty in the pruned submatrix */ ASSERT (s < nx - nempty) ; DEBUG0 (("empty k "ID"\n", k)) ; nempty++ ; Xperm [nx - nempty] = x ; } else if (deg > 0) { /* this row/col is nonempty in the pruned submatrix */ ASSERT (s < nx - nempty) ; Xperm [s++] = x ; max_deg = MAX (max_deg, deg) ; } else { /* This is a singleton row/column - it is already ordered. * Just clear the flag. */ Xdeg [x] = FLIP (deg) ; } } ASSERT (s == nx - nempty) ; *p_max_deg = max_deg ; return (nempty) ; } /* ========================================================================== */ /* === UMF_singletons ======================================================= */ /* ========================================================================== */ GLOBAL Int UMF_singletons ( /* input, not modified: */ Int n_row, Int n_col, const Int Ap [ ], /* size n_col+1 */ const Int Ai [ ], /* size nz = Ap [n_col] */ const Int Quser [ ], /* size n_col if present */ Int strategy, /* strategy requested by user */ /* output, not defined on input: */ Int Cdeg [ ], /* size n_col */ Int Cperm [ ], /* size n_col */ Int Rdeg [ ], /* size n_row */ Int Rperm [ ], /* size n_row */ Int InvRperm [ ], /* size n_row, the inverse of Rperm */ Int *p_n1, /* # of col and row singletons */ Int *p_n1c, /* # of col singletons */ Int *p_n1r, /* # of row singletons */ Int *p_nempty_col, /* # of empty columns in pruned submatrix */ Int *p_nempty_row, /* # of empty columns in pruned submatrix */ Int *p_is_sym, /* TRUE if pruned submatrix is square and has been * symmetrically permuted by Cperm and Rperm */ Int *p_max_rdeg, /* maximum Rdeg in pruned submatrix */ /* workspace, not defined on input or output */ Int Rp [ ], /* size n_row+1 */ Int Ri [ ], /* size nz */ Int W [ ], /* size n_row */ Int Next [ ] /* size MAX (n_row, n_col) */ ) { Int n1, s, col, row, p, p1, p2, cdeg, last_row, is_sym, k, nempty_row, nempty_col, max_cdeg, max_rdeg, n1c, n1r ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_dump_start ( ) ; DEBUGm4 (("Starting umf_singletons\n")) ; #endif /* ---------------------------------------------------------------------- */ /* scan the columns, check for errors and count row degrees */ /* ---------------------------------------------------------------------- */ if (Ap [0] != 0 || Ap [n_col] < 0) { return (UMFPACK_ERROR_invalid_matrix) ; } for (row = 0 ; row < n_row ; row++) { Rdeg [row] = 0 ; } for (col = 0 ; col < n_col ; col++) { p1 = Ap [col] ; p2 = Ap [col+1] ; cdeg = p2 - p1 ; if (cdeg < 0) { return (UMFPACK_ERROR_invalid_matrix) ; } last_row = EMPTY ; for (p = p1 ; p < p2 ; p++) { row = Ai [p] ; if (row <= last_row || row >= n_row) { return (UMFPACK_ERROR_invalid_matrix) ; } Rdeg [row]++ ; last_row = row ; } Cdeg [col] = cdeg ; } /* ---------------------------------------------------------------------- */ /* find singletons */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL) { /* user has provided an input column ordering */ if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC) { /* look for singletons, but respect the user's input permutation */ n1 = find_user_singletons (n_row, n_col, Ap, Ai, Quser, Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W) ; } else { /* do not look for singletons if Quser given and strategy is * not unsymmetric */ n1 = 0 ; n1r = 0 ; n1c = 0 ; } } else { /* look for singletons anywhere */ n1 = find_any_singletons (n_row, n_col, Ap, Ai, Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W, Next) ; } /* ---------------------------------------------------------------------- */ /* eliminate empty columns and complete the column permutation */ /* ---------------------------------------------------------------------- */ nempty_col = finish_permutation (n1, n_col, Cdeg, Quser, Cperm, &max_cdeg) ; /* ---------------------------------------------------------------------- */ /* eliminate empty rows and complete the row permutation */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL && strategy == UMFPACK_STRATEGY_SYMMETRIC) { /* rows should be symmetrically permuted according to Quser */ ASSERT (n_row == n_col) ; nempty_row = finish_permutation (n1, n_row, Rdeg, Quser, Rperm, &max_rdeg) ; } else { /* rows should not be symmetrically permuted according to Quser */ nempty_row = finish_permutation (n1, n_row, Rdeg, (Int *) NULL, Rperm, &max_rdeg) ; } /* ---------------------------------------------------------------------- */ /* compute the inverse of Rperm */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n_row ; k++) { ASSERT (Rperm [k] >= 0 && Rperm [k] < n_row) ; InvRperm [Rperm [k]] = k ; } /* ---------------------------------------------------------------------- */ /* see if pruned submatrix is square and has been symmetrically permuted */ /* ---------------------------------------------------------------------- */ if (n_row == n_col && nempty_row == nempty_col) { /* is_sym is true if the submatrix is square, and * Rperm [n1..n_row-nempty_row-1] = Cperm [n1..n_col-nempty_col-1] */ is_sym = TRUE ; for (s = n1 ; s < n_col - nempty_col ; s++) { if (Cperm [s] != Rperm [s]) { is_sym = FALSE ; break ; } } } else { is_sym = FALSE ; } DEBUGm4 (("Submatrix square and symmetrically permuted? "ID"\n", is_sym)) ; DEBUGm4 (("singletons "ID" row "ID" col "ID"\n", n1, n1r, n1c)) ; DEBUGm4 (("Empty cols "ID" rows "ID"\n", nempty_col, nempty_row)) ; *p_n1 = n1 ; *p_n1r = n1r ; *p_n1c = n1c ; *p_is_sym = is_sym ; *p_nempty_col = nempty_col ; *p_nempty_row = nempty_row ; *p_max_rdeg = max_rdeg ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_singletons.h0000644001170100242450000000150210617162411017477 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_singletons ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const Int Quser [ ], Int strategy, Int Cdeg [ ], Int Cperm [ ], Int Rdeg [ ], Int Rperm [ ], Int InvRperm [ ], Int *n1, Int *n1c, Int *n1r, Int *nempty_col, Int *nempty_row, Int *is_sym, Int *max_rdeg, Int Rp [ ], Int Ri [ ], Int W [ ], Int Next [ ] ) ; SuiteSparse/UMFPACK/Source/umf_mem_init_memoryspace.c0000644001170100242450000000425410677541760021537 0ustar davisfac/* ========================================================================== */ /* === UMF_mem_init_memoryspace ============================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The UMF_mem_* routines manage the Numeric->Memory memory space. */ #include "umf_internal.h" #include "umf_mem_init_memoryspace.h" /* initialize the LU and element workspace (Numeric->Memory) */ GLOBAL void UMF_mem_init_memoryspace ( NumericType *Numeric ) { Unit *p ; ASSERT (Numeric != (NumericType *) NULL) ; ASSERT (Numeric->Memory != (Unit *) NULL) ; ASSERT (Numeric->size >= 3) ; DEBUG0 (("Init memory space, size "ID"\n", Numeric->size)) ; Numeric->ngarbage = 0 ; Numeric->nrealloc = 0 ; Numeric->ncostly = 0 ; Numeric->ibig = EMPTY ; Numeric->ihead = 0 ; Numeric->itail = Numeric->size ; #ifndef NDEBUG UMF_allocfail = FALSE ; #endif /* allocate the 2-unit tail marker block and initialize it */ Numeric->itail -= 2 ; p = Numeric->Memory + Numeric->itail ; DEBUG2 (("p "ID" tail "ID"\n", (Int) (p-Numeric->Memory), Numeric->itail)) ; Numeric->tail_usage = 2 ; p->header.prevsize = 0 ; p->header.size = 1 ; /* allocate a 1-unit head marker block at the head of memory */ /* this is done so that an offset of zero is treated as a NULL pointer */ Numeric->ihead++ ; /* initial usage in Numeric->Memory */ Numeric->max_usage = 3 ; Numeric->init_usage = Numeric->max_usage ; /* Note that UMFPACK_*symbolic ensures that Numeric->Memory is of size */ /* at least 3, so this initialization will always succeed. */ #ifndef NDEBUG DEBUG2 (("init_memoryspace, all free (except one unit at head\n")) ; UMF_dump_memory (Numeric) ; #endif } SuiteSparse/UMFPACK/Source/umf_mem_init_memoryspace.h0000644001170100242450000000073210617161777021541 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_mem_init_memoryspace ( NumericType *Numeric ) ; SuiteSparse/UMFPACK/Source/umf_row_search.c0000644001170100242450000005520410617162244017455 0ustar davisfac/* ========================================================================== */ /* === UMF_row_search ======================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Find two candidate pivot rows in a column: the best one in the front, and the best one not in the front. Return the two pivot row patterns and their exact degrees. Called by UMF_local_search. Returns UMFPACK_OK if successful, or UMFPACK_WARNING_singular_matrix or UMFPACK_ERROR_different_pattern if not. */ #include "umf_internal.h" #include "umf_row_search.h" GLOBAL Int UMF_row_search ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic, Int cdeg0, /* length of column in Front */ Int cdeg1, /* length of column outside Front */ const Int Pattern [ ], /* pattern of column, Pattern [0..cdeg1 -1] */ const Int Pos [ ], /* Pos [Pattern [0..cdeg1 -1]] = 0..cdeg1 -1 */ Int pivrow [2], /* pivrow [IN] and pivrow [OUT] */ Int rdeg [2], /* rdeg [IN] and rdeg [OUT] */ Int W_i [ ], /* pattern of pivrow [IN], */ /* either Fcols or Woi */ Int W_o [ ], /* pattern of pivrow [OUT], */ /* either Wio or Woo */ Int prior_pivrow [2], /* the two other rows just scanned, if any */ const Entry Wxy [ ], /* numerical values Wxy [0..cdeg1-1], either Wx or Wy */ Int pivcol, /* the candidate column being searched */ Int freebie [ ] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double maxval, toler, toler2, value, pivot [2] ; Int i, row, deg, col, *Frpos, fnrows, *E, j, ncols, *Cols, *Rows, e, f, Wrpflag, *Fcpos, fncols, tpi, max_rdeg, nans_in_col, was_offdiag, diag_row, prefer_diagonal, *Wrp, found, *Diagonal_map ; Tuple *tp, *tpend, *tp1, *tp2 ; Unit *Memory, *p ; Element *ep ; Int *Row_tuples, *Row_degree, *Row_tlen ; #ifndef NDEBUG Int *Col_degree ; DEBUG2 (("Row_search:\n")) ; for (i = 0 ; i < cdeg1 ; i++) { row = Pattern [i] ; DEBUG4 ((" row: "ID"\n", row)) ; ASSERT (row >= 0 && row < Numeric->n_row) ; ASSERT (i == Pos [row]) ; } /* If row is not in Pattern [0..cdeg1-1], then Pos [row] == EMPTY */ if (UMF_debug > 0 || Numeric->n_row < 1000) { Int cnt = cdeg1 ; DEBUG4 (("Scan all rows:\n")) ; for (row = 0 ; row < Numeric->n_row ; row++) { if (Pos [row] < 0) { cnt++ ; } else { DEBUG4 ((" row: "ID" pos "ID"\n", row, Pos [row])) ; } } ASSERT (cnt == Numeric->n_row) ; } Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro only */ ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; ASSERT (NON_PIVOTAL_COL (pivcol)) ; #endif pivot [IN] = 0. ; pivot [OUT] = 0. ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Wrp = Work->Wrp ; Frpos = Work->Frpos ; E = Work->E ; Memory = Numeric->Memory ; fnrows = Work->fnrows ; prefer_diagonal = Symbolic->prefer_diagonal ; Diagonal_map = Work->Diagonal_map ; if (Diagonal_map) { diag_row = Diagonal_map [pivcol] ; was_offdiag = diag_row < 0 ; if (was_offdiag) { /* the "diagonal" entry in this column was permuted here by an * earlier pivot choice. The tighter off-diagonal tolerance will * be used instead of the symmetric tolerance. */ diag_row = FLIP (diag_row) ; } ASSERT (diag_row >= 0 && diag_row < Numeric->n_row) ; } else { diag_row = EMPTY ; /* unused */ was_offdiag = EMPTY ; /* unused */ } /* pivot row degree cannot exceed max_rdeg */ max_rdeg = Work->fncols_max ; /* ---------------------------------------------------------------------- */ /* scan pivot column for candidate rows */ /* ---------------------------------------------------------------------- */ maxval = 0.0 ; nans_in_col = FALSE ; for (i = 0 ; i < cdeg1 ; i++) { APPROX_ABS (value, Wxy [i]) ; if (SCALAR_IS_NAN (value)) { nans_in_col = TRUE ; maxval = value ; break ; } /* This test can now ignore the NaN case: */ maxval = MAX (maxval, value) ; } /* if maxval is zero, the matrix is numerically singular */ toler = Numeric->relpt * maxval ; toler2 = Numeric->relpt2 * maxval ; toler2 = was_offdiag ? toler : toler2 ; DEBUG5 (("Row_search begins [ maxval %g toler %g %g\n", maxval, toler, toler2)) ; if (SCALAR_IS_NAN (toler) || SCALAR_IS_NAN (toler2)) { nans_in_col = TRUE ; } if (!nans_in_col) { /* look for the diagonal entry, if it exists */ found = FALSE ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (prefer_diagonal) { ASSERT (diag_row != EMPTY) ; i = Pos [diag_row] ; if (i >= 0) { double a ; ASSERT (i < cdeg1) ; ASSERT (diag_row == Pattern [i]) ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler2)) ; if (SCALAR_IS_NONZERO (a) && a >= toler2) { /* found it! */ DEBUG3 (("Symmetric pivot: "ID" "ID"\n", pivcol, diag_row)); found = TRUE ; if (Frpos [diag_row] >= 0 && Frpos [diag_row] < fnrows) { pivrow [IN] = diag_row ; pivrow [OUT] = EMPTY ; } else { pivrow [IN] = EMPTY ; pivrow [OUT] = diag_row ; } } } } /* either no diagonal found, or we didn't look for it */ if (!found) { if (cdeg0 > 0) { /* this is a column in the front */ for (i = 0 ; i < cdeg0 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif ASSERT (Frpos [row] >= 0 && Frpos [row] < fnrows) ; ASSERT (Frpos [row] == i) ; /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] /* break ties by picking the largest entry: */ || (deg == rdeg [IN] && a > pivot [IN]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [IN] && row == diag_row) */ ) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; pivot [IN] = a ; } } } for ( ; i < cdeg1 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif ASSERT (Frpos [row] == i) ; /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] /* break ties by picking the largest entry: */ || (deg == rdeg [OUT] && a > pivot [OUT]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [OUT] && row == diag_row) */ ) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; pivot [OUT] = a ; } } } } else { /* this column is not in the front */ for (i = 0 ; i < cdeg1 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] /* break ties by picking the largest entry: */ || (deg == rdeg [IN] && a > pivot [IN]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [IN] && row == diag_row) */ ) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; pivot [IN] = a ; } } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] /* break ties by picking the largest entry: */ || (deg == rdeg[OUT] && a > pivot [OUT]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg[OUT] && row == diag_row) */ ) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; pivot [OUT] = a ; } } } } } } } /* ---------------------------------------------------------------------- */ /* NaN handling */ /* ---------------------------------------------------------------------- */ /* if cdeg1 > 0 then we must have found a pivot row ... unless NaN's */ /* exist. Try with no numerical tests if no pivot found. */ if (cdeg1 > 0 && pivrow [IN] == EMPTY && pivrow [OUT] == EMPTY) { /* cleanup for the NaN case */ DEBUG0 (("Found a NaN in pivot column!\n")) ; /* grab the first entry in the pivot column, ignoring degree, */ /* numerical stability, and symmetric preference */ row = Pattern [0] ; deg = Row_degree [row] ; if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; pivrow [IN] = row ; rdeg [IN] = deg ; } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; pivrow [OUT] = row ; rdeg [OUT] = deg ; } /* We are now guaranteed to have a pivot, no matter how broken */ /* (non-IEEE compliant) the underlying numerical operators are. */ /* This is particularly a problem for Microsoft compilers (they do */ /* not handle NaN's properly). Now try to find a sparser pivot, if */ /* possible. */ for (i = 1 ; i < cdeg1 ; i++) { row = Pattern [i] ; deg = Row_degree [row] ; if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] || (deg == rdeg [IN] && row == diag_row)) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; } } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] || (deg == rdeg [OUT] && row == diag_row)) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; } } } } /* We found a pivot if there are entries (even zero ones) in pivot col */ ASSERT (IMPLIES (cdeg1 > 0, pivrow[IN] != EMPTY || pivrow[OUT] != EMPTY)) ; /* If there are no entries in the pivot column, then no pivot is found */ ASSERT (IMPLIES (cdeg1 == 0, pivrow[IN] == EMPTY && pivrow[OUT] == EMPTY)) ; /* ---------------------------------------------------------------------- */ /* check for singular matrix */ /* ---------------------------------------------------------------------- */ if (cdeg1 == 0) { if (fnrows > 0) { /* Get the pivrow [OUT][IN] from the current front. The frontal matrix looks like this: pivcol[OUT] | v x x x x 0 <- so grab this row as the pivrow [OUT][IN]. x x x x 0 x x x x 0 0 0 0 0 0 The current frontal matrix has some rows in it. The degree of the pivcol[OUT] is zero. The column is empty, and the current front does not contribute to it. */ pivrow [IN] = Work->Frows [0] ; DEBUGm4 (("Got zero pivrow[OUT][IN] "ID" from current front\n", pivrow [IN])) ; } else { /* Get a pivot row from the row-merge tree, use as pivrow [OUT][OUT]. pivrow [IN] remains EMPTY. This can only happen if the current front is 0-by-0. */ Int *Front_leftmostdesc, *Front_1strow, *Front_new1strow, row1, row2, fleftmost, nfr, n_row, frontid ; ASSERT (Work->fncols == 0) ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Front_1strow = Symbolic->Front_1strow ; Front_new1strow = Work->Front_new1strow ; nfr = Symbolic->nfr ; n_row = Numeric->n_row ; frontid = Work->frontid ; DEBUGm4 (("Note: pivcol: "ID" is empty front "ID"\n", pivcol, frontid)) ; #ifndef NDEBUG DEBUG1 (("Calling dump rowmerge\n")) ; UMF_dump_rowmerge (Numeric, Symbolic, Work) ; #endif /* Row-merge set is the non-pivotal rows in the range */ /* Front_new1strow [Front_leftmostdesc [frontid]] to */ /* Front_1strow [frontid+1] - 1. */ /* If this is empty, then use the empty rows, in the range */ /* Front_new1strow [nfr] to n_row-1. */ /* If this too is empty, then pivrow [OUT] will be empty. */ /* In both cases, update Front_new1strow [...]. */ fleftmost = Front_leftmostdesc [frontid] ; row1 = Front_new1strow [fleftmost] ; row2 = Front_1strow [frontid+1] - 1 ; DEBUG1 (("Leftmost: "ID" Rows ["ID" to "ID"] srch ["ID" to "ID"]\n", fleftmost, Front_1strow [frontid], row2, row1, row2)) ; /* look in the range row1 ... row2 */ for (row = row1 ; row <= row2 ; row++) { DEBUG3 ((" Row: "ID"\n", row)) ; if (NON_PIVOTAL_ROW (row)) { /* found it */ DEBUG3 ((" Row: "ID" found\n", row)) ; ASSERT (Frpos [row] == EMPTY) ; pivrow [OUT] = row ; DEBUGm4 (("got row merge pivrow %d\n", pivrow [OUT])) ; break ; } } Front_new1strow [fleftmost] = row ; if (pivrow [OUT] == EMPTY) { /* not found, look in empty row set in "dummy" front */ row1 = Front_new1strow [nfr] ; row2 = n_row-1 ; DEBUG3 (("Empty: "ID" Rows ["ID" to "ID"] srch["ID" to "ID"]\n", nfr, Front_1strow [nfr], row2, row1, row2)) ; /* look in the range row1 ... row2 */ for (row = row1 ; row <= row2 ; row++) { DEBUG3 ((" Empty Row: "ID"\n", row)) ; if (NON_PIVOTAL_ROW (row)) { /* found it */ DEBUG3 ((" Empty Row: "ID" found\n", row)) ; ASSERT (Frpos [row] == EMPTY) ; pivrow [OUT] = row ; DEBUGm4 (("got dummy row pivrow %d\n", pivrow [OUT])) ; break ; } } Front_new1strow [nfr] = row ; } if (pivrow [OUT] == EMPTY) { /* Row-merge set is empty. We can just discard */ /* the candidate pivot column. */ DEBUG0 (("Note: row-merge set empty\n")) ; DEBUGm4 (("got no pivrow \n")) ; return (UMFPACK_WARNING_singular_matrix) ; } } } /* ---------------------------------------------------------------------- */ /* construct the candidate row in the front, if any */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG /* check Wrp */ ASSERT (Work->Wrpflag > 0) ; if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif #ifndef NDEBUG DEBUG4 (("pivrow [IN]: "ID"\n", pivrow [IN])) ; UMF_dump_rowcol (0, Numeric, Work, pivrow [IN], TRUE) ; #endif if (pivrow [IN] != EMPTY) { /* the row merge candidate row is not pivrow [IN] */ freebie [IN] = (pivrow [IN] == prior_pivrow [IN]) && (cdeg1 > 0) ; ASSERT (cdeg1 >= 0) ; if (!freebie [IN]) { /* include current front in the degree of this row */ Fcpos = Work->Fcpos ; fncols = Work->fncols ; Wrpflag = Work->Wrpflag ; /* -------------------------------------------------------------- */ /* construct the pattern of the IN row */ /* -------------------------------------------------------------- */ #ifndef NDEBUG /* check Fcols */ DEBUG5 (("ROW ASSEMBLE: rdeg "ID"\nREDUCE ROW "ID"\n", fncols, pivrow [IN])) ; for (j = 0 ; j < fncols ; j++) { col = Work->Fcols [j] ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (Fcpos [col] >= 0) ; } if (UMF_debug > 0 || Work->n_col < 1000) { Int cnt = fncols ; for (col = 0 ; col < Work->n_col ; col++) { if (Fcpos [col] < 0) cnt++ ; } ASSERT (cnt == Work->n_col) ; } #endif rdeg [IN] = fncols ; ASSERT (pivrow [IN] >= 0 && pivrow [IN] < Work->n_row) ; ASSERT (NON_PIVOTAL_ROW (pivrow [IN])) ; /* add the pivot column itself */ ASSERT (Wrp [pivcol] != Wrpflag) ; if (Fcpos [pivcol] < 0) { DEBUG3 (("Adding pivot col to pivrow [IN] pattern\n")) ; if (rdeg [IN] >= max_rdeg) { /* :: pattern change (in) :: */ return (UMFPACK_ERROR_different_pattern) ; } Wrp [pivcol] = Wrpflag ; W_i [rdeg [IN]++] = pivcol ; } tpi = Row_tuples [pivrow [IN]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [pivrow [IN]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ncols = ep->ncols ; Rows = Cols + ncols ; if (Rows [f] == EMPTY) { continue ; /* row already assembled */ } ASSERT (pivrow [IN] == Rows [f]) ; for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= EMPTY && col < Work->n_col) ; if ((col >= 0) && (Wrp [col] != Wrpflag) && Fcpos [col] <0) { ASSERT (NON_PIVOTAL_COL (col)) ; if (rdeg [IN] >= max_rdeg) { /* :: pattern change (rdeg in failure) :: */ DEBUGm4 (("rdeg [IN] >= max_rdeg failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Wrp [col] = Wrpflag ; W_i [rdeg [IN]++] = col ; } } *tp2++ = *tp ; /* leave the tuple in the list */ } Row_tlen [pivrow [IN]] = tp2 - tp1 ; } #ifndef NDEBUG DEBUG4 (("Reduced IN row:\n")) ; for (j = 0 ; j < fncols ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, Work->Fcols [j], Fcpos [Work->Fcols [j]])) ; ASSERT (Fcpos [Work->Fcols [j]] >= 0) ; } for (j = fncols ; j < rdeg [IN] ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, W_i [j], Wrp [W_i [j]])); ASSERT (W_i [j] >= 0 && W_i [j] < Work->n_col) ; ASSERT (Wrp [W_i [j]] == Wrpflag) ; } /* mark the end of the pattern in case we scan it by mistake */ /* Note that this means W_i must be of size >= fncols_max + 1 */ W_i [rdeg [IN]] = EMPTY ; #endif /* rdeg [IN] is now the exact degree of the IN row */ /* clear Work->Wrp. */ Work->Wrpflag++ ; /* All Wrp [0..n_col] is now < Wrpflag */ } } #ifndef NDEBUG /* check Wrp */ if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif /* ---------------------------------------------------------------------- */ /* construct the candidate row not in the front, if any */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG4 (("pivrow [OUT]: "ID"\n", pivrow [OUT])) ; UMF_dump_rowcol (0, Numeric, Work, pivrow [OUT], TRUE) ; #endif /* If this is a candidate row from the row merge set, force it to be */ /* scanned (ignore prior_pivrow [OUT]). */ if (pivrow [OUT] != EMPTY) { freebie [OUT] = (pivrow [OUT] == prior_pivrow [OUT]) && cdeg1 > 0 ; ASSERT (cdeg1 >= 0) ; if (!freebie [OUT]) { Wrpflag = Work->Wrpflag ; /* -------------------------------------------------------------- */ /* construct the pattern of the row */ /* -------------------------------------------------------------- */ rdeg [OUT] = 0 ; ASSERT (pivrow [OUT] >= 0 && pivrow [OUT] < Work->n_row) ; ASSERT (NON_PIVOTAL_ROW (pivrow [OUT])) ; /* add the pivot column itself */ ASSERT (Wrp [pivcol] != Wrpflag) ; DEBUG3 (("Adding pivot col to pivrow [OUT] pattern\n")) ; if (rdeg [OUT] >= max_rdeg) { /* :: pattern change (out) :: */ return (UMFPACK_ERROR_different_pattern) ; } Wrp [pivcol] = Wrpflag ; W_o [rdeg [OUT]++] = pivcol ; tpi = Row_tuples [pivrow [OUT]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [pivrow [OUT]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ncols = ep->ncols ; Rows = Cols + ncols ; if (Rows [f] == EMPTY) { continue ; /* row already assembled */ } ASSERT (pivrow [OUT] == Rows [f]) ; for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= EMPTY && col < Work->n_col) ; if ((col >= 0) && (Wrp [col] != Wrpflag)) { ASSERT (NON_PIVOTAL_COL (col)) ; if (rdeg [OUT] >= max_rdeg) { /* :: pattern change (rdeg out failure) :: */ DEBUGm4 (("rdeg [OUT] failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Wrp [col] = Wrpflag ; W_o [rdeg [OUT]++] = col ; } } *tp2++ = *tp ; /* leave the tuple in the list */ } Row_tlen [pivrow [OUT]] = tp2 - tp1 ; } #ifndef NDEBUG DEBUG4 (("Reduced row OUT:\n")) ; for (j = 0 ; j < rdeg [OUT] ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, W_o [j], Wrp [W_o [j]])) ; ASSERT (W_o [j] >= 0 && W_o [j] < Work->n_col) ; ASSERT (Wrp [W_o [j]] == Wrpflag) ; } /* mark the end of the pattern in case we scan it by mistake */ /* Note that this means W_o must be of size >= fncols_max + 1 */ W_o [rdeg [OUT]] = EMPTY ; #endif /* rdeg [OUT] is now the exact degree of the row */ /* clear Work->Wrp. */ Work->Wrpflag++ ; /* All Wrp [0..n] is now < Wrpflag */ } } DEBUG5 (("Row_search end ] \n")) ; #ifndef NDEBUG /* check Wrp */ if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_row_search.h0000644001170100242450000000152010617162251017450 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_row_search ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic, Int cdeg0, Int cdeg1, const Int Pattern [ ], const Int Pos [ ], Int pivrow [2], Int rdeg [2], Int W_i [ ], Int W_o [ ], Int prior_pivrow [2], const Entry Wxy [ ], Int pivcol, Int freebie [2] ) ; #define IN 0 #define OUT 1 #define IN_IN 0 #define IN_OUT 1 #define OUT_IN 2 #define OUT_OUT 3 SuiteSparse/UMFPACK/Source/umf_malloc.c0000644001170100242450000000546710677540752016610 0ustar davisfac/* ========================================================================== */ /* === UMF_malloc =========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Allocate a block of n objects, each of a given size. This routine does not handle the case when the size is 1 (allocating char's) because of potential integer overflow. UMFPACK never does that. Also maintains the UMFPACK malloc count. */ #include "umf_internal.h" #include "umf_malloc.h" #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) /* UMF_malloc_count is a count of the objects malloc'd by UMFPACK. If you suspect a memory leak in your program (caused by not properly destroying the Symbolic and Numeric objects) then compile with -DUMF_MALLOC_COUNT and check value of UMF_malloc_count. By default, UMF_MALLOC_COUNT is not defined, and thus UMFPACK has no global variables. */ GLOBAL Int UMF_malloc_count = 0 ; #endif #ifdef UMF_TCOV_TEST /* For exhaustive statement coverage testing only! */ GLOBAL int umf_fail, umf_fail_lo, umf_fail_hi ; GLOBAL int umf_realloc_fail, umf_realloc_lo, umf_realloc_hi ; #endif GLOBAL void *UMF_malloc ( Int n_objects, size_t size_of_object ) { size_t size ; void *p ; #ifdef UMF_TCOV_TEST /* For exhaustive statement coverage testing only! */ /* Pretend to fail, to test out-of-memory conditions. */ umf_fail-- ; if (umf_fail <= umf_fail_hi && umf_fail >= umf_fail_lo) { DEBUG0 (("umf_malloc: Pretend to fail %d %d %d\n", umf_fail, umf_fail_hi, umf_fail_lo)) ; return ((void *) NULL) ; } #endif DEBUG0 (("UMF_malloc: ")) ; /* make sure that we allocate something */ n_objects = MAX (1, n_objects) ; size = (size_t) n_objects ; ASSERT (size_of_object > 1) ; if (size > Int_MAX / size_of_object) { /* object is too big for integer pointer arithmetic */ return ((void *) NULL) ; } size *= size_of_object ; /* see AMD/Source/amd_global.c for the memory allocator selection */ p = amd_malloc (size) ; DEBUG0 ((ID"\n", (Int) p)) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) if (p) { /* One more object has been malloc'ed. Keep track of the count. */ /* (purely for sanity checks). */ UMF_malloc_count++ ; DEBUG0 ((" successful, new malloc count: "ID"\n", UMF_malloc_count)) ; } #endif return (p) ; } SuiteSparse/UMFPACK/Source/umf_malloc.h0000644001170100242450000000124110617161735016571 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #ifndef _UMF_MALLOC #define _UMF_MALLOC #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) #ifndef EXTERN #define EXTERN extern #endif GLOBAL EXTERN Int UMF_malloc_count ; #endif GLOBAL void *UMF_malloc ( Int n_objects, size_t size_of_object ) ; #endif SuiteSparse/UMFPACK/Source/umf_is_permutation.c0000644001170100242450000000274110677540733020372 0ustar davisfac/* ========================================================================== */ /* === UMF_is_permutation =================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Return TRUE if P is a r-permutation vector, FALSE otherwise */ /* P [0..r-1] must be an r-permutation of 0..n-1 */ #include "umf_internal.h" #include "umf_is_permutation.h" GLOBAL Int UMF_is_permutation ( const Int P [ ], /* permutation of size r */ Int W [ ], /* workspace of size n */ Int n, Int r ) { Int i, k ; if (!P) { /* if P is (Int *) NULL, this is the identity permutation */ return (TRUE) ; } ASSERT (W != (Int *) NULL) ; for (i = 0 ; i < n ; i++) { W [i] = FALSE ; } for (k = 0 ; k < r ; k++) { i = P [k] ; DEBUG5 (("k "ID" i "ID"\n", k, i)) ; if (i < 0 || i >= n) { DEBUG0 (("i out of range "ID" "ID"\n", i, n)) ; return (FALSE) ; } if (W [i]) { DEBUG0 (("i duplicate "ID"\n", i)) ; return (FALSE) ; } W [i] = TRUE ; } return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_is_permutation.h0000644001170100242450000000076310617161646020375 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_is_permutation ( const Int P [ ], Int W [ ], Int n, Int r ) ; SuiteSparse/UMFPACK/Source/umfpack_defaults.c0000644001170100242450000000772410617162034017770 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_defaults ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Sets default control parameters. See umfpack_defaults.h for details. */ #include "umf_internal.h" GLOBAL void UMFPACK_defaults ( double Control [UMFPACK_CONTROL] ) { Int i ; if (!Control) { /* silently return if no Control array */ return ; } for (i = 0 ; i < UMFPACK_CONTROL ; i++) { Control [i] = 0 ; } /* ---------------------------------------------------------------------- */ /* default control settings: can be modified at run-time */ /* ---------------------------------------------------------------------- */ /* used in UMFPACK_report_* routines: */ Control [UMFPACK_PRL] = UMFPACK_DEFAULT_PRL ; /* used in UMFPACK_*symbolic: */ Control [UMFPACK_DENSE_ROW] = UMFPACK_DEFAULT_DENSE_ROW ; Control [UMFPACK_DENSE_COL] = UMFPACK_DEFAULT_DENSE_COL ; Control [UMFPACK_AMD_DENSE] = UMFPACK_DEFAULT_AMD_DENSE ; Control [UMFPACK_STRATEGY] = UMFPACK_DEFAULT_STRATEGY ; Control [UMFPACK_2BY2_TOLERANCE] = UMFPACK_DEFAULT_2BY2_TOLERANCE ; Control [UMFPACK_AGGRESSIVE] = UMFPACK_DEFAULT_AGGRESSIVE ; /* used in UMFPACK_numeric: */ Control [UMFPACK_PIVOT_TOLERANCE] = UMFPACK_DEFAULT_PIVOT_TOLERANCE ; Control [UMFPACK_SYM_PIVOT_TOLERANCE] = UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE; Control [UMFPACK_BLOCK_SIZE] = UMFPACK_DEFAULT_BLOCK_SIZE ; Control [UMFPACK_ALLOC_INIT] = UMFPACK_DEFAULT_ALLOC_INIT ; Control [UMFPACK_FRONT_ALLOC_INIT] = UMFPACK_DEFAULT_FRONT_ALLOC_INIT ; Control [UMFPACK_SCALE] = UMFPACK_DEFAULT_SCALE ; /* used in UMFPACK_*solve: */ Control [UMFPACK_IRSTEP] = UMFPACK_DEFAULT_IRSTEP ; /* ---------------------------------------------------------------------- */ /* compile-time settings: cannot be modified at run-time */ /* ---------------------------------------------------------------------- */ #ifdef NBLAS /* do not use the BLAS - use in-line C code instead */ Control [UMFPACK_COMPILED_WITH_BLAS] = 0 ; #else /* use externally-provided BLAS (dgemm, dger, dgemv, zgemm, zgeru, zgemv) */ Control [UMFPACK_COMPILED_WITH_BLAS] = 1 ; #endif #ifdef MATLAB_MEX_FILE /* compiled as a MATLAB mexFunction */ Control [UMFPACK_COMPILED_FOR_MATLAB] = 1 ; #else #ifdef MATHWORKS /* compiled for internal use in MATLAB */ Control [UMFPACK_COMPILED_FOR_MATLAB] = 2 ; #else /* use ANSI C malloc, free, realloc, and printf */ Control [UMFPACK_COMPILED_FOR_MATLAB] = 0 ; #endif #endif #ifdef NO_TIMER /* no timer used */ Control [UMFPACK_COMPILED_WITH_GETRUSAGE] = 3 ; #ifndef NPOSIX /* uses the POSIX sysconf ( ) and times ( ) routines in UMFPACK_tic, toc */ Control [UMFPACK_COMPILED_WITH_GETRUSAGE] = 2 ; #else #ifdef GETRUSAGE /* uses the non-standard getrusage to get CPU time (Solaris) */ Control [UMFPACK_COMPILED_WITH_GETRUSAGE] = 1 ; #else /* uses the ANSI standard clock routine to get CPU time */ /* this may wrap around */ Control [UMFPACK_COMPILED_WITH_GETRUSAGE] = 0 ; #endif #endif #endif #ifndef NDEBUG /* UMFPACK is compiled in debug mode. */ /* This is exceedingly slow. */ DEBUG0 (("UMFPACK is running in debug mode. This is very slow!\n")) ; Control [UMFPACK_COMPILED_IN_DEBUG_MODE] = 1 ; #else /* UMFPACK is compiled in normal (non-debug) mode */ Control [UMFPACK_COMPILED_IN_DEBUG_MODE] = 0 ; #endif } SuiteSparse/UMFPACK/Source/umf_local_search.c0000644001170100242450000016305010677541666017756 0ustar davisfac/* ========================================================================== */ /* === UMF_local_search ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Perform pivot search to find pivot row and pivot column. The pivot column is selected from the candidate set. The candidate set corresponds to a supercolumn from colamd or UMF_analyze. The pivot column is then removed from that set. Constructs the pivot column pattern and values. Called by umf_kernel. Returns UMFPACK_OK if successful, or UMFPACK_WARNING_singular_matrix or UMFPACK_ERROR_different_pattern if not. */ #include "umf_internal.h" #include "umf_local_search.h" #include "umf_row_search.h" #include "umf_mem_free_tail_block.h" /* relaxed amalgamation control parameters are fixed at compile time */ #define RELAX1 0.25 #define SYM_RELAX1 0.0 #define RELAX2 0.1 #define RELAX3 0.125 /* ========================================================================== */ /* === remove_candidate ===================================================== */ /* ========================================================================== */ /* Remove a column from the set of candidate pivot columns. */ PRIVATE void remove_candidate (Int jj, WorkType *Work, SymbolicType *Symbolic) { #ifndef NDEBUG Int j ; DEBUGm2 (("pivot column Candidates before remove: nCand "ID" ncand "ID " lo "ID" hi "ID" jj "ID"\n", Work->nCandidates, Work->ncand, Work->lo, Work->hi, jj)) ; for (j = 0 ; j < Work->nCandidates ; j++) { Int col = Work->Candidates [j] ; DEBUGm2 ((ID" ", col)); ASSERT (col >= 0 && col < Work->n_col) ; /* ASSERT (NON_PIVOTAL_COL (col)) ; */ ASSERT (col >= Work->lo && col <= Work->hi) ; } DEBUGm2 (("\n")) ; #endif if (Symbolic->fixQ) { DEBUGm2 (("FixQ\n")) ; /* do not modify the column ordering */ ASSERT (Work->nCandidates == 1) ; ASSERT (jj == 0) ; if (Work->ncand > 1) { Work->Candidates [0] = Work->nextcand++ ; } else { Work->nCandidates = 0 ; } } else { /* place the next candidate in the set */ if (Work->ncand > MAX_CANDIDATES) { Work->Candidates [jj] = Work->nextcand++ ; } else { ASSERT (Work->nCandidates == Work->ncand) ; Work->Candidates [jj] = Work->Candidates [Work->ncand - 1] ; Work->Candidates [Work->ncand - 1] = EMPTY ; Work->nCandidates-- ; } } Work->ncand-- ; #ifndef NDEBUG DEBUGm2 (("pivot column Candidates after remove: nCand "ID" ncand "ID " lo "ID" hi "ID" jj "ID"\n", Work->nCandidates, Work->ncand, Work->lo, Work->hi, jj)) ; for (j = 0 ; j < Work->nCandidates ; j++) { Int col = Work->Candidates [j] ; DEBUGm2 ((ID" ", col)); ASSERT (col >= 0 && col < Work->n_col) ; /* ASSERT (NON_PIVOTAL_COL (col)) ; */ ASSERT (col >= Work->lo && col <= Work->hi) ; } DEBUGm2 (("\n")) ; ASSERT (Work->ncand >= 0) ; ASSERT (Work->nCandidates <= Work->ncand) ; #endif } /* ========================================================================== */ /* === UMF_local_search ===================================================== */ /* ========================================================================== */ GLOBAL Int UMF_local_search ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double relax1 ; Entry *Flblock, *Fublock, *Fs, *Fcblock, *C, *Wx, *Wy, *Fu, *Flublock, *Flu ; Int pos, nrows, *Cols, *Rows, e, f, status, max_cdeg, fnzeros, nb, j, col, i, row, cdeg_in, rdeg [2][2], fnpiv, nothing [2], new_LUsize, pivrow [2][2], pivcol [2], *Wp, *Fcpos, *Frpos, new_fnzeros, cdeg_out, *Wm, *Wio, *Woi, *Woo, *Frows, *Fcols, fnrows, fncols, *E, deg, nr_in, nc, thiscost, bestcost, nr_out, do_update, extra_cols, extra_rows, extra_zeros, relaxed_front, do_extend, fnr_curr, fnc_curr, tpi, *Col_tuples, *Col_degree, *Col_tlen, jj, jcand [2], freebie [2], did_rowmerge, fnrows_new [2][2], fncols_new [2][2], search_pivcol_out, *Diagonal_map, *Diagonal_imap, row2, col2 ; Unit *Memory, *p ; Tuple *tp, *tpend, *tp1, *tp2 ; Element *ep ; #ifndef NBLAS Int blas_ok = TRUE ; #else #define blas_ok FALSE #endif #ifndef NDEBUG Int debug_ok, n_row, n_col, *Row_degree ; Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro only */ #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ Memory = Numeric->Memory ; E = Work->E ; Col_degree = Numeric->Cperm ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; Wx = Work->Wx ; Wy = Work->Wy ; Wp = Work->Wp ; Wm = Work->Wm ; Woi = Work->Woi ; Wio = Work->Wio ; Woo = Work->Woo ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Frows = Work->Frows ; Fcols = Work->Fcols ; fnrows = Work->fnrows ; fncols = Work->fncols ; nb = Work->nb ; fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; fnpiv = Work->fnpiv ; nothing [0] = EMPTY ; nothing [1] = EMPTY ; relax1 = (Symbolic->prefer_diagonal) ? SYM_RELAX1 : RELAX1 ; fnzeros = Work->fnzeros ; new_fnzeros = fnzeros ; jj = EMPTY ; Fcblock = Work->Fcblock ; /* current contribution block */ Flblock = Work->Flblock ; /* current L block */ Fublock = Work->Fublock ; /* current U block */ Flublock = Work->Flublock ; /* current LU block */ /* The pivot column degree cannot exceed max_cdeg */ max_cdeg = Work->fnrows_max ; ASSERT (Work->fnrows_max <= Symbolic->maxnrows) ; ASSERT (Work->fncols_max <= Symbolic->maxncols) ; if (fnrows == 0 && fncols == 0) { /* frontal matrix is empty */ Work->firstsuper = Work->ksuper ; } #ifndef NDEBUG n_row = Work->n_row ; n_col = Work->n_col ; DEBUG2 (("\n========LOCAL SEARCH: current frontal matrix: ========= \n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; if (UMF_debug > 0 || MAX (n_row, n_col) < 1000) { for (i = 0 ; i < MAX (n_row, n_col) ; i++) { ASSERT (Wp [i] < 0) ; } } DEBUGm2 ((ID" pivot column Candidates: lo "ID" hi "ID"\n", Work->nCandidates, Work->lo, Work->hi)) ; for (j = 0 ; j < Work->nCandidates ; j++) { col = Work->Candidates [j] ; DEBUGm2 ((ID" ", col)); ASSERT (col >= 0 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; ASSERT (col >= Work->lo && col <= Work->hi) ; } DEBUGm2 (("\n")) ; /* there are no 0-by-c or r-by-0 fronts, where c and r are > 0 */ /* a front is either 0-by-0, or r-by-c */ DEBUG2 (("\n\n::: "ID" : Npiv: "ID" + fnpiv "ID" = "ID". " "size "ID"-by-"ID"\n", Work->frontid, Work->npiv, Work->fnpiv, Work->npiv + Work->fnpiv, fnrows, fncols)) ; ASSERT ((fnrows == 0 && fncols == 0) ||(fnrows != 0 && fncols != 0)) ; #endif /* ====================================================================== */ /* === PIVOT SEARCH ===================================================== */ /* ====================================================================== */ /* initialize */ pivcol [IN] = EMPTY ; pivcol [OUT] = EMPTY ; cdeg_in = Int_MAX ; cdeg_out = Int_MAX ; pivrow [IN][IN] = EMPTY ; pivrow [IN][OUT] = EMPTY ; pivrow [OUT][IN] = EMPTY ; pivrow [OUT][OUT] = EMPTY ; rdeg [IN][IN] = Int_MAX ; rdeg [IN][OUT] = Int_MAX ; rdeg [OUT][IN] = Int_MAX ; rdeg [OUT][OUT] = Int_MAX ; freebie [IN] = FALSE ; freebie [OUT] = FALSE ; Work->pivot_case = EMPTY ; bestcost = EMPTY ; nr_out = EMPTY ; nr_in = EMPTY ; jcand [IN] = EMPTY ; jcand [OUT] = EMPTY ; fnrows_new [IN][IN] = EMPTY ; fnrows_new [IN][OUT] = EMPTY ; fnrows_new [OUT][IN] = EMPTY ; fnrows_new [OUT][OUT] = EMPTY ; fncols_new [IN][IN] = EMPTY ; fncols_new [IN][OUT] = EMPTY ; fncols_new [OUT][IN] = EMPTY ; fncols_new [OUT][OUT] = EMPTY ; #ifndef NDEBUG /* check Frpos */ DEBUG4 (("Check Frpos : fnrows "ID" col "ID" maxcdeg "ID"\n", fnrows, pivcol [IN], max_cdeg)) ; for (i = 0 ; i < fnrows ; i++) { row = Frows [i] ; DEBUG4 ((" row: "ID"\n", row)) ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == i) ; } DEBUG4 (("All:\n")) ; if (UMF_debug > 0 || n_row < 1000) { Int cnt = fnrows ; for (row = 0 ; row < n_row ; row++) { if (Frpos [row] == EMPTY) { cnt++ ; } else { DEBUG4 ((" row: "ID" pos "ID"\n", row, Frpos [row])) ; } } ASSERT (cnt == n_row) ; } #endif /* ---------------------------------------------------------------------- */ /* find shortest column in the front, and shortest column not in the */ /* front, from the candidate pivot column set */ /* ---------------------------------------------------------------------- */ /* If there are too many candidates, then only look at the first */ /* MAX_CANDIDATES of them. Otherwise, if there are O(n) candidates, */ /* this code could take O(n^2) time. */ /* ------------------------------------------------------------------ */ /* look in the candidate set for the best column */ /* ------------------------------------------------------------------ */ DEBUG2 (("Max candidates %d, Work->ncand "ID" jmax "ID"\n", MAX_CANDIDATES, Work->ncand, Work->nCandidates)) ; col = Work->Candidates [0] ; ASSERT (Work->nCandidates > 0) ; DEBUG3 (("Pivot column candidate: "ID" j = "ID"\n", col, j)) ; ASSERT (col >= 0 && col < n_col) ; /* there is no Col_degree if fixQ is true */ deg = Symbolic->fixQ ? EMPTY : Col_degree [col] ; #ifndef NDEBUG DEBUG3 (("Pivot column candidate: "ID" cost: "ID" Fcpos[col] "ID"\n", col, deg, Fcpos [col])) ; UMF_dump_rowcol (1, Numeric, Work, col, !Symbolic->fixQ) ; if (Symbolic->fixQ) { DEBUG1 (("FIXQ: Candidates "ID" pivcol "ID" npiv "ID" fnpiv "ID " ndiscard "ID "\n", Work->nCandidates, col, Work->npiv, Work->fnpiv, Work->ndiscard)) ; ASSERT (Work->nCandidates == 1) ; ASSERT (col == Work->npiv + Work->fnpiv + Work->ndiscard) ; } #endif if (Fcpos [col] >= 0) { /* best column in front, so far */ pivcol [IN] = col ; cdeg_in = deg ; /* ignored, if fixQ is true */ jcand [IN] = 0 ; } else { /* best column not in front, so far */ pivcol [OUT] = col ; cdeg_out = deg ; /* ignored, if fixQ is true */ jcand [OUT] = 0 ; } /* look at the rest of the candidates */ for (j = 1 ; j < Work->nCandidates ; j++) { col = Work->Candidates [j] ; DEBUG3 (("Pivot col candidate: "ID" j = "ID"\n", col, j)) ; ASSERT (col >= 0 && col < n_col) ; ASSERT (!Symbolic->fixQ) ; deg = Col_degree [col] ; #ifndef NDEBUG DEBUG3 (("Pivot col candidate: "ID" cost: "ID" Fcpos[col] "ID"\n", col, deg, Fcpos [col])) ; UMF_dump_rowcol (1, Numeric, Work, col, !Symbolic->fixQ) ; #endif if (Fcpos [col] >= 0) { #ifndef NDEBUG Int fs ; fs = Fcpos [col] / fnr_curr ; ASSERT (fs >= 0 && fs < fncols) ; #endif if (deg < cdeg_in || (deg == cdeg_in && col < pivcol [IN])) { /* best column in front, so far */ pivcol [IN] = col ; cdeg_in = deg ; jcand [IN] = j ; } } else { if (deg < cdeg_out || (deg == cdeg_out && col < pivcol [OUT])) { /* best column not in front, so far */ pivcol [OUT] = col ; cdeg_out = deg ; jcand [OUT] = j ; } } } DEBUG2 (("Pivcol in "ID" out "ID"\n", pivcol [IN], pivcol [OUT])) ; ASSERT ((pivcol [IN] >= 0 && pivcol [IN] < n_col) || (pivcol [OUT] >= 0 && pivcol [OUT] < n_col)) ; cdeg_in = EMPTY ; cdeg_out = EMPTY ; /* ---------------------------------------------------------------------- */ /* construct candidate column in front, and search for pivot rows */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG /* check Frpos */ DEBUG4 (("Prior to col update: fnrows "ID" col "ID" maxcdeg "ID"\n", fnrows, pivcol [IN], max_cdeg)) ; for (i = 0 ; i < fnrows ; i++) { row = Frows [i] ; DEBUG4 ((" row: "ID"\n", row)) ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == i) ; } DEBUG4 (("All:\n")) ; if (UMF_debug > 0 || n_row < 1000) { Int cnt = fnrows ; for (row = 0 ; row < n_row ; row++) { if (Frpos [row] == EMPTY) { cnt++ ; } else { DEBUG4 ((" row: "ID" pos "ID"\n", row, Frpos [row])) ; } } ASSERT (cnt == n_row) ; } #endif if (pivcol [IN] != EMPTY) { #ifndef NDEBUG DEBUG2 (("col[IN] column "ID" in front at position = "ID"\n", pivcol [IN], Fcpos [pivcol [IN]])) ; UMF_dump_rowcol (1, Numeric, Work, pivcol [IN], !Symbolic->fixQ) ; #endif /* the only way we can have a pivcol[IN] is if the front is not empty */ ASSERT (fnrows > 0 && fncols > 0) ; DEBUG4 (("Update pivot column:\n")) ; Fs = Fcblock + Fcpos [pivcol [IN]] ; Fu = Fublock + (Fcpos [pivcol [IN]] / fnr_curr) ; Flu = Flublock + fnpiv * nb ; /* ------------------------------------------------------------------ */ /* copy the pivot column from the U block into the LU block */ /* ------------------------------------------------------------------ */ /* This copy is permanent if the pivcol [IN] is chosen. */ for (i = 0 ; i < fnpiv ; i++) { Flu [i] = Fu [i*fnc_curr] ; } /* ------------------------------------------------------------------ */ /* update the pivot column in the LU block using a triangular solve */ /* ------------------------------------------------------------------ */ /* This work will be discarded if the pivcol [OUT] is chosen instead. * It is permanent if the pivcol [IN] is chosen. */ if (fnpiv > 1) { /* solve Lx=b, where b = U (:,k), stored in the LU block */ #ifndef NBLAS BLAS_TRSV (fnpiv, Flublock, Flu, nb) ; #endif if (!blas_ok) { /* use plain C code if no BLAS, or on integer overflow */ Entry *Flub = Flublock ; for (j = 0 ; j < fnpiv ; j++) { Entry Fuj = Flu [j] ; #pragma ivdep for (i = j+1 ; i < fnpiv ; i++) { /* Flu [i] -= Flublock [i + j*nb] * Flu [j] ; */ MULT_SUB (Flu [i], Flub [i], Fuj) ; } Flub += nb ; } } } /* ------------------------------------------------------------------ */ /* copy the pivot column from the C block into Wy */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < fnrows ; i++) { Wy [i] = Fs [i] ; } /* ------------------------------------------------------------------ */ /* update the pivot column of L using a matrix-vector multiply */ /* ------------------------------------------------------------------ */ /* this work will be discarded if the pivcol [OUT] is chosen instead */ #ifdef NBLAS /* no BLAS available - use plain C code instead */ for (j = 0 ; j < fnpiv ; j++) { Entry Fuj, *Flub = Flblock + j * fnr_curr ; Fuj = Flu [j] ; if (IS_NONZERO (Fuj)) { #pragma ivdep for (i = 0 ; i < fnrows ; i++) { /* Wy [i] -= Flblock [i+j*fnr_curr] * Fuj ; */ MULT_SUB (Wy [i], Flub [i], Fuj) ; } } /* Flblock += fnr_curr ; */ } #else /* Using 1-based notation: * Wy (1:fnrows) -= Flblock (1:fnrows,1:fnpiv) * Flu (1:fnpiv) */ BLAS_GEMV (fnrows, fnpiv, Flblock, Flu, Wy, fnr_curr) ; #endif /* ------------------------------------------------------------------ */ #ifndef NDEBUG DEBUG2 (("Wy after update: fnrows="ID"\n", fnrows)) ; DEBUG4 ((" fnpiv="ID" \n", fnpiv)) ; for (i = 0 ; i < fnrows ; i++) { DEBUG4 ((ID" "ID" "ID, i, Frows [i], Frpos [Frows [i]])) ; EDEBUG4 (Wy [i]) ; DEBUG4 (("\n")) ; } #endif /* ------------------------------------------------------------------ */ /* construct the candidate column */ /* ------------------------------------------------------------------ */ cdeg_in = fnrows ; #ifndef NDEBUG /* check Frpos */ DEBUG4 (("After col update: fnrows "ID" col "ID" maxcdeg "ID"\n", fnrows, pivcol [IN], max_cdeg)) ; for (i = 0 ; i < fnrows ; i++) { row = Frows [i] ; DEBUG4 ((" row: "ID"\n", row)) ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == i) ; } DEBUG4 (("All:\n")) ; if (UMF_debug > 0 || n_row < 1000) { Int cnt = fnrows ; for (row = 0 ; row < n_row ; row++) { if (Frpos [row] == EMPTY) { cnt++ ; } else { DEBUG4 ((" row: "ID" pos "ID"\n", row, Frpos [row])) ; } } ASSERT (cnt == n_row) ; } #endif #ifndef NDEBUG /* check Frpos */ DEBUG4 (("COL ASSEMBLE: cdeg "ID"\nREDUCE COL in "ID" max_cdeg "ID"\n", cdeg_in, pivcol [IN], max_cdeg)) ; for (i = 0 ; i < cdeg_in ; i++) { row = Frows [i] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == i) ; } if (UMF_debug > 0 || n_row < 1000) { Int cnt = cdeg_in ; for (row = 0 ; row < n_row ; row++) { if (Frpos [row] == EMPTY) cnt++ ; } ASSERT (cnt == n_row) ; } #endif /* assemble column into Wy */ ASSERT (pivcol [IN] >= 0 && pivcol [IN] < n_col) ; ASSERT (NON_PIVOTAL_COL (pivcol [IN])) ; tpi = Col_tuples [pivcol [IN]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Col_tlen [pivcol [IN]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; if (Cols [f] == EMPTY) continue ; /* column already assembled */ ASSERT (pivcol [IN] == Cols [f]) ; Rows = Cols + ep->ncols ; nrows = ep->nrows ; p += UNITS (Int, ep->ncols + nrows) ; C = ((Entry *) p) + f * nrows ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if (row >= 0) /* skip this if already gone from element */ { ASSERT (row < n_row) ; pos = Frpos [row] ; if (pos < 0) { /* new entry in the pattern - save Frpos */ ASSERT (cdeg_in < n_row) ; if (cdeg_in >= max_cdeg) { /* :: pattern change (cdeg in failure) :: */ DEBUGm4 (("cdeg_in failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Frpos [row] = cdeg_in ; Frows [cdeg_in] = row ; Wy [cdeg_in++] = C [i] ; } else { /* entry already in pattern - sum values in Wy */ /* Wy [pos] += C [i] ; */ ASSERT (pos < max_cdeg) ; ASSEMBLE (Wy [pos], C [i]) ; } } } *tp2++ = *tp ; /* leave the tuple in the list */ } Col_tlen [pivcol [IN]] = tp2 - tp1 ; } /* ------------------------------------------------------------------ */ #ifndef NDEBUG /* check Frpos again */ DEBUG4 (("COL DONE: cdeg "ID"\nREDUCE COL in "ID" max_cdeg "ID"\n", cdeg_in, pivcol [IN], max_cdeg)) ; for (i = 0 ; i < cdeg_in ; i++) { row = Frows [i] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == i) ; } if (UMF_debug > 0 || n_row < 1000) { Int cnt = cdeg_in ; for (row = 0 ; row < n_row ; row++) { if (Frpos [row] == EMPTY) cnt++ ; } ASSERT (cnt == n_row) ; } #endif #ifndef NDEBUG DEBUG4 (("Reduced column: cdeg in "ID" fnrows_max "ID"\n", cdeg_in, Work->fnrows_max)) ; for (i = 0 ; i < cdeg_in ; i++) { DEBUG4 ((" "ID" "ID" "ID, i, Frows [i], Frpos [Frows [i]])) ; EDEBUG4 (Wy [i]) ; DEBUG4 (("\n")) ; ASSERT (i == Frpos [Frows [i]]) ; } ASSERT (cdeg_in <= Work->fnrows_max) ; #endif /* ------------------------------------------------------------------ */ /* cdeg_in is now the exact degree of this column */ /* ------------------------------------------------------------------ */ nr_in = cdeg_in - fnrows ; /* since there are no 0-by-x fronts, if there is a pivcol [IN] the */ /* front must have at least one row. */ ASSERT (cdeg_in > 0) ; /* new degree of pivcol [IN], excluding current front is nr_in */ /* column expands by nr_in rows */ /* ------------------------------------------------------------------ */ /* search for two candidate pivot rows */ /* ------------------------------------------------------------------ */ /* for the IN_IN pivot row (if any), */ /* extend the pattern in place, using Fcols */ status = UMF_row_search (Numeric, Work, Symbolic, fnrows, cdeg_in, Frows, Frpos, /* pattern of column to search */ pivrow [IN], rdeg [IN], Fcols, Wio, nothing, Wy, pivcol [IN], freebie) ; ASSERT (!freebie [IN] && !freebie [OUT]) ; /* ------------------------------------------------------------------ */ /* fatal error if matrix pattern has changed since symbolic analysis */ /* ------------------------------------------------------------------ */ if (status == UMFPACK_ERROR_different_pattern) { /* :: pattern change (row search IN failure) :: */ DEBUGm4 (("row search IN failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } /* ------------------------------------------------------------------ */ /* we now must have a structural pivot */ /* ------------------------------------------------------------------ */ /* Since the pivcol[IN] exists, there must be at least one row in the */ /* current frontal matrix, and so we must have found a structural */ /* pivot. The numerical value might be zero, of course. */ ASSERT (status != UMFPACK_WARNING_singular_matrix) ; /* ------------------------------------------------------------------ */ /* evaluate IN_IN option */ /* ------------------------------------------------------------------ */ if (pivrow [IN][IN] != EMPTY) { /* The current front would become an (implicit) LUson. * Both candidate pivot row and column are in the current front. * Cost is how much the current front would expand */ /* pivrow[IN][IN] candidates are not found via row merge search */ ASSERT (fnrows >= 0 && fncols >= 0) ; ASSERT (cdeg_in > 0) ; nc = rdeg [IN][IN] - fncols ; thiscost = /* each column in front (except pivot column) grows by nr_in: */ (nr_in * (fncols - 1)) + /* new columns not in old front: */ (nc * (cdeg_in - 1)) ; /* no extra cost to relaxed amalgamation */ ASSERT (fnrows + nr_in == cdeg_in) ; ASSERT (fncols + nc == rdeg [IN][IN]) ; /* size of relaxed front (after pivot row column removed): */ fnrows_new [IN][IN] = (fnrows-1) + nr_in ; fncols_new [IN][IN] = (fncols-1) + nc ; /* relaxed_front = fnrows_new [IN][IN] * fncols_new [IN][IN] ; */ do_extend = TRUE ; DEBUG2 (("Evaluating option IN-IN:\n")) ; DEBUG2 (("Work->fnzeros "ID" fnpiv "ID" nr_in "ID" nc "ID"\n", Work->fnzeros, fnpiv, nr_in, nc)) ; DEBUG2 (("fncols "ID" fnrows "ID"\n", fncols, fnrows)) ; /* determine if BLAS-3 update should be applied before extending. */ /* update if too many zero entries accumulate in the LU block */ fnzeros = Work->fnzeros + fnpiv * (nr_in + nc) ; DEBUG2 (("fnzeros "ID"\n", fnzeros)) ; new_LUsize = (fnpiv+1) * (fnrows + nr_in + fncols + nc) ; DEBUG2 (("new_LUsize "ID"\n", new_LUsize)) ; /* There are fnpiv pivots currently in the front. This one * will be the (fnpiv+1)st pivot, if it is extended. */ /* RELAX2 parameter uses a double relop, but ignore NaN case: */ do_update = fnpiv > 0 && (((double) fnzeros) / ((double) new_LUsize)) > RELAX2 ; DEBUG2 (("do_update "ID"\n", do_update)) DEBUG2 (("option IN IN : nr "ID" nc "ID" cost "ID"(0) relax "ID "\n", nr_in, nc, thiscost, do_extend)) ; /* this is the best option seen so far */ Work->pivot_case = IN_IN ; bestcost = thiscost ; /* do the amalgamation and extend the front */ Work->do_extend = do_extend ; Work->do_update = do_update ; new_fnzeros = fnzeros ; } /* ------------------------------------------------------------------ */ /* evaluate IN_OUT option */ /* ------------------------------------------------------------------ */ if (pivrow [IN][OUT] != EMPTY) { /* The current front would become a Uson of the new front. * Candidate pivot column is in the current front, but the * candidate pivot row is not. */ ASSERT (fnrows >= 0 && fncols > 0) ; ASSERT (cdeg_in > 0) ; /* must be at least one row outside the front */ /* (the pivrow [IN][OUT] itself) */ ASSERT (nr_in >= 1) ; /* count columns not in current front */ nc = 0 ; #ifndef NDEBUG debug_ok = FALSE ; #endif for (i = 0 ; i < rdeg [IN][OUT] ; i++) { col = Wio [i] ; DEBUG4 (("counting col "ID" Fcpos[] = "ID"\n", col, Fcpos [col])) ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; if (Fcpos [col] < 0) nc++ ; #ifndef NDEBUG /* we must see the pivot column somewhere */ if (col == pivcol [IN]) { ASSERT (Fcpos [col] >= 0) ; debug_ok = TRUE ; } #endif } ASSERT (debug_ok) ; thiscost = /* each row in front grows by nc: */ (nc * fnrows) + /* new rows not affected by front: */ ((nr_in-1) * (rdeg [IN][OUT]-1)) ; /* check the cost of relaxed IN_OUT amalgamation */ extra_cols = ((fncols-1) + nc ) - (rdeg [IN][OUT] - 1) ; ASSERT (extra_cols >= 0) ; ASSERT (fncols + nc == extra_cols + rdeg [IN][OUT]) ; extra_zeros = (nr_in-1) * extra_cols ; /* symbolic fill-in */ ASSERT (fnrows + nr_in == cdeg_in) ; ASSERT (fncols + nc == rdeg [IN][OUT] + extra_cols) ; /* size of relaxed front (after pivot column removed): */ fnrows_new [IN][OUT] = fnrows + (nr_in-1) ; fncols_new [IN][OUT] = (fncols-1) + nc ; relaxed_front = fnrows_new [IN][OUT] * fncols_new [IN][OUT] ; /* do relaxed amalgamation if the extra zeros are no more */ /* than a fraction (default 0.25) of the relaxed front */ /* if relax = 0: no extra zeros allowed */ /* if relax = +inf: always amalgamate */ /* relax parameter uses a double relop, but ignore NaN case: */ if (extra_zeros == 0) { do_extend = TRUE ; } else { do_extend = ((double) extra_zeros) < (relax1 * (double) relaxed_front) ; } if (do_extend) { /* count the cost of relaxed amalgamation */ thiscost += extra_zeros ; DEBUG2 (("Evaluating option IN-OUT:\n")) ; DEBUG2 (("Work->fnzeros "ID" fnpiv "ID" nr_in "ID" nc "ID"\n", Work->fnzeros, fnpiv, nr_in, nc)) ; DEBUG2 (("fncols "ID" fnrows "ID"\n", fncols, fnrows)) ; /* determine if BLAS-3 update to be applied before extending. */ /* update if too many zero entries accumulate in the LU block */ fnzeros = Work->fnzeros + fnpiv * (nr_in + nc) ; DEBUG2 (("fnzeros "ID"\n", fnzeros)) ; new_LUsize = (fnpiv+1) * (fnrows + nr_in + fncols + nc) ; DEBUG2 (("new_LUsize "ID"\n", new_LUsize)) ; /* RELAX3 parameter uses a double relop, ignore NaN case: */ do_update = fnpiv > 0 && (((double) fnzeros) / ((double) new_LUsize)) > RELAX3 ; DEBUG2 (("do_update "ID"\n", do_update)) } else { /* the current front would not be extended */ do_update = fnpiv > 0 ; fnzeros = 0 ; DEBUG2 (("IN-OUT do_update forced true: "ID"\n", do_update)) ; /* The new front would be just big enough to hold the new * pivot row and column. */ fnrows_new [IN][OUT] = cdeg_in - 1 ; fncols_new [IN][OUT] = rdeg [IN][OUT] - 1 ; } DEBUG2 (("option IN OUT: nr "ID" nc "ID" cost "ID"("ID") relax "ID "\n", nr_in, nc, thiscost, extra_zeros, do_extend)) ; if (bestcost == EMPTY || thiscost < bestcost) { /* this is the best option seen so far */ Work->pivot_case = IN_OUT ; bestcost = thiscost ; Work->do_extend = do_extend ; Work->do_update = do_update ; new_fnzeros = fnzeros ; } } } /* ---------------------------------------------------------------------- */ /* construct candidate column not in front, and search for pivot rows */ /* ---------------------------------------------------------------------- */ search_pivcol_out = (bestcost != 0 && pivcol [OUT] != EMPTY) ; if (Symbolic->prefer_diagonal) { search_pivcol_out = search_pivcol_out && (pivrow [IN][IN] == EMPTY) ; } if (search_pivcol_out) { #ifndef NDEBUG DEBUG2 (("out_col column "ID" NOT in front at position = "ID"\n", pivcol [OUT], Fcpos [pivcol [OUT]])) ; UMF_dump_rowcol (1, Numeric, Work, pivcol [OUT], !Symbolic->fixQ) ; DEBUG2 (("fncols "ID" fncols_max "ID"\n", fncols, Work->fncols_max)) ; ASSERT (fncols < Work->fncols_max) ; #endif /* Use Wx as temporary workspace to construct the pivcol [OUT] */ /* ------------------------------------------------------------------ */ /* construct the candidate column (currently not in the front) */ /* ------------------------------------------------------------------ */ /* Construct the column in Wx, Wm, using Wp for the positions: */ /* Wm [0..cdeg_out-1] list of row indices in the column */ /* Wx [0..cdeg_out-1] list of corresponding numerical values */ /* Wp [0..n-1] starts as all negative, and ends that way too. */ cdeg_out = 0 ; #ifndef NDEBUG /* check Wp */ DEBUG4 (("COL ASSEMBLE: cdeg 0\nREDUCE COL out "ID"\n", pivcol [OUT])) ; if (UMF_debug > 0 || MAX (n_row, n_col) < 1000) { for (i = 0 ; i < MAX (n_row, n_col) ; i++) { ASSERT (Wp [i] < 0) ; } } DEBUG4 (("max_cdeg: "ID"\n", max_cdeg)) ; #endif ASSERT (pivcol [OUT] >= 0 && pivcol [OUT] < n_col) ; ASSERT (NON_PIVOTAL_COL (pivcol [OUT])) ; tpi = Col_tuples [pivcol [OUT]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Col_tlen [pivcol [OUT]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; if (Cols [f] == EMPTY) continue ; /* column already assembled */ ASSERT (pivcol [OUT] == Cols [f]) ; Rows = Cols + ep->ncols ; nrows = ep->nrows ; p += UNITS (Int, ep->ncols + nrows) ; C = ((Entry *) p) + f * nrows ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if (row >= 0) /* skip this if already gone from element */ { ASSERT (row < n_row) ; pos = Wp [row] ; if (pos < 0) { /* new entry in the pattern - save Wp */ ASSERT (cdeg_out < n_row) ; if (cdeg_out >= max_cdeg) { /* :: pattern change (cdeg out failure) :: */ DEBUGm4 (("cdeg out failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Wp [row] = cdeg_out ; Wm [cdeg_out] = row ; Wx [cdeg_out++] = C [i] ; } else { /* entry already in pattern - sum the values */ /* Wx [pos] += C [i] ; */ ASSEMBLE (Wx [pos], C [i]) ; } } } *tp2++ = *tp ; /* leave the tuple in the list */ } Col_tlen [pivcol [OUT]] = tp2 - tp1 ; } /* ------------------------------------------------------------------ */ #ifndef NDEBUG DEBUG4 (("Reduced column: cdeg out "ID"\n", cdeg_out)) ; for (i = 0 ; i < cdeg_out ; i++) { DEBUG4 ((" "ID" "ID" "ID, i, Wm [i], Wp [Wm [i]])) ; EDEBUG4 (Wx [i]) ; DEBUG4 (("\n")) ; ASSERT (i == Wp [Wm [i]]) ; } #endif /* ------------------------------------------------------------------ */ /* new degree of pivcol [OUT] is cdeg_out */ /* ------------------------------------------------------------------ */ /* search for two candidate pivot rows */ status = UMF_row_search (Numeric, Work, Symbolic, 0, cdeg_out, Wm, Wp, /* pattern of column to search */ pivrow [OUT], rdeg [OUT], Woi, Woo, pivrow [IN], Wx, pivcol [OUT], freebie) ; /* ------------------------------------------------------------------ */ /* fatal error if matrix pattern has changed since symbolic analysis */ /* ------------------------------------------------------------------ */ if (status == UMFPACK_ERROR_different_pattern) { /* :: pattern change detected in umf_local_search :: */ return (UMFPACK_ERROR_different_pattern) ; } /* ------------------------------------------------------------------ */ /* Clear Wp */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < cdeg_out ; i++) { Wp [Wm [i]] = EMPTY ; /* clear Wp */ } /* ------------------------------------------------------------------ */ /* check for rectangular, singular matrix */ /* ------------------------------------------------------------------ */ if (status == UMFPACK_WARNING_singular_matrix) { /* Pivot column is empty, and row-merge set is empty too. The * matrix is structurally singular. The current frontal matrix must * be empty, too. It it weren't, and pivcol [OUT] exists, then * there would be at least one row that could be selected. Since * the current front is empty, pivcol [IN] must also be EMPTY. */ DEBUGm4 (("Note: pivcol [OUT]: "ID" discard\n", pivcol [OUT])) ; ASSERT ((Work->fnrows == 0 && Work->fncols == 0)) ; ASSERT (pivcol [IN] == EMPTY) ; /* remove the failed pivcol [OUT] from candidate set */ ASSERT (pivcol [OUT] == Work->Candidates [jcand [OUT]]) ; remove_candidate (jcand [OUT], Work, Symbolic) ; Work->ndiscard++ ; /* delete all of the tuples, and all contributions to this column */ DEBUG1 (("Prune tuples of dead outcol: "ID"\n", pivcol [OUT])) ; Col_tlen [pivcol [OUT]] = 0 ; UMF_mem_free_tail_block (Numeric, Col_tuples [pivcol [OUT]]) ; Col_tuples [pivcol [OUT]] = 0 ; /* no pivot found at all */ return (UMFPACK_WARNING_singular_matrix) ; } /* ------------------------------------------------------------------ */ if (freebie [IN]) { /* the "in" row is the same as the "in" row for the "in" column */ Woi = Fcols ; rdeg [OUT][IN] = rdeg [IN][IN] ; DEBUG4 (("Freebie in, row "ID"\n", pivrow [IN][IN])) ; } if (freebie [OUT]) { /* the "out" row is the same as the "out" row for the "in" column */ Woo = Wio ; rdeg [OUT][OUT] = rdeg [IN][OUT] ; DEBUG4 (("Freebie out, row "ID"\n", pivrow [IN][OUT])) ; } /* ------------------------------------------------------------------ */ /* evaluate OUT_IN option */ /* ------------------------------------------------------------------ */ if (pivrow [OUT][IN] != EMPTY) { /* The current front would become an Lson of the new front. * The candidate pivot row is in the current front, but the * candidate pivot column is not. */ ASSERT (fnrows > 0 && fncols >= 0) ; did_rowmerge = (cdeg_out == 0) ; if (did_rowmerge) { /* pivrow [OUT][IN] was found via row merge search */ /* it is not (yet) in the pivot column pattern (add it now) */ DEBUGm4 (("did row merge OUT col, IN row\n")) ; Wm [0] = pivrow [OUT][IN] ; CLEAR (Wx [0]) ; cdeg_out = 1 ; ASSERT (nr_out == EMPTY) ; } nc = rdeg [OUT][IN] - fncols ; ASSERT (nc >= 1) ; /* count rows not in current front */ nr_out = 0 ; #ifndef NDEBUG debug_ok = FALSE ; #endif for (i = 0 ; i < cdeg_out ; i++) { row = Wm [i] ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; if (Frpos [row] < 0 || Frpos [row] >= fnrows) nr_out++ ; #ifndef NDEBUG /* we must see the pivot row somewhere */ if (row == pivrow [OUT][IN]) { ASSERT (Frpos [row] >= 0) ; debug_ok = TRUE ; } #endif } ASSERT (debug_ok) ; thiscost = /* each column in front grows by nr_out: */ (nr_out * fncols) + /* new cols not affected by front: */ ((nc-1) * (cdeg_out-1)) ; /* check the cost of relaxed OUT_IN amalgamation */ extra_rows = ((fnrows-1) + nr_out) - (cdeg_out - 1) ; ASSERT (extra_rows >= 0) ; ASSERT (fnrows + nr_out == extra_rows + cdeg_out) ; extra_zeros = (nc-1) * extra_rows ; /* symbolic fill-in */ ASSERT (fnrows + nr_out == cdeg_out + extra_rows) ; ASSERT (fncols + nc == rdeg [OUT][IN]) ; /* size of relaxed front (after pivot row removed): */ fnrows_new [OUT][IN] = (fnrows-1) + nr_out ; fncols_new [OUT][IN] = fncols + (nc-1) ; relaxed_front = fnrows_new [OUT][IN] * fncols_new [OUT][IN] ; /* do relaxed amalgamation if the extra zeros are no more */ /* than a fraction (default 0.25) of the relaxed front */ /* if relax = 0: no extra zeros allowed */ /* if relax = +inf: always amalgamate */ if (did_rowmerge) { do_extend = FALSE ; } else { /* relax parameter uses a double relop, but ignore NaN case: */ if (extra_zeros == 0) { do_extend = TRUE ; } else { do_extend = ((double) extra_zeros) < (relax1 * (double) relaxed_front) ; } } if (do_extend) { /* count the cost of relaxed amalgamation */ thiscost += extra_zeros ; DEBUG2 (("Evaluating option OUT-IN:\n")) ; DEBUG2 ((" Work->fnzeros "ID" fnpiv "ID" nr_out "ID" nc "ID"\n", Work->fnzeros, fnpiv, nr_out, nc)) ; DEBUG2 (("fncols "ID" fnrows "ID"\n", fncols, fnrows)) ; /* determine if BLAS-3 update to be applied before extending. */ /* update if too many zero entries accumulate in the LU block */ fnzeros = Work->fnzeros + fnpiv * (nr_out + nc) ; DEBUG2 (("fnzeros "ID"\n", fnzeros)) ; new_LUsize = (fnpiv+1) * (fnrows + nr_out + fncols + nc) ; DEBUG2 (("new_LUsize "ID"\n", new_LUsize)) ; /* RELAX3 parameter uses a double relop, ignore NaN case: */ do_update = fnpiv > 0 && (((double) fnzeros) / ((double) new_LUsize)) > RELAX3 ; DEBUG2 (("do_update "ID"\n", do_update)) } else { /* the current front would not be extended */ do_update = fnpiv > 0 ; fnzeros = 0 ; DEBUG2 (("OUT-IN do_update forced true: "ID"\n", do_update)) ; /* The new front would be just big enough to hold the new * pivot row and column. */ fnrows_new [OUT][IN] = cdeg_out - 1 ; fncols_new [OUT][IN] = rdeg [OUT][IN] - 1 ; } DEBUG2 (("option OUT IN : nr "ID" nc "ID" cost "ID"("ID") relax "ID "\n", nr_out, nc, thiscost, extra_zeros, do_extend)) ; if (bestcost == EMPTY || thiscost < bestcost) { /* this is the best option seen so far */ Work->pivot_case = OUT_IN ; bestcost = thiscost ; Work->do_extend = do_extend ; Work->do_update = do_update ; new_fnzeros = fnzeros ; } } /* ------------------------------------------------------------------ */ /* evaluate OUT_OUT option */ /* ------------------------------------------------------------------ */ if (pivrow [OUT][OUT] != EMPTY) { /* Neither the candidate pivot row nor the candidate pivot column * are in the current front. */ ASSERT (fnrows >= 0 && fncols >= 0) ; did_rowmerge = (cdeg_out == 0) ; if (did_rowmerge) { /* pivrow [OUT][OUT] was found via row merge search */ /* it is not (yet) in the pivot column pattern (add it now) */ DEBUGm4 (("did row merge OUT col, OUT row\n")) ; Wm [0] = pivrow [OUT][OUT] ; CLEAR (Wx [0]) ; cdeg_out = 1 ; ASSERT (nr_out == EMPTY) ; nr_out = 1 ; } if (fnrows == 0 && fncols == 0) { /* the current front is completely empty */ ASSERT (fnpiv == 0) ; nc = rdeg [OUT][OUT] ; extra_cols = 0 ; nr_out = cdeg_out ; extra_rows = 0 ; extra_zeros = 0 ; thiscost = (nc-1) * (cdeg_out-1) ; /* new columns only */ /* size of new front: */ fnrows_new [OUT][OUT] = nr_out-1 ; fncols_new [OUT][OUT] = nc-1 ; relaxed_front = fnrows_new [OUT][OUT] * fncols_new [OUT][OUT] ; } else { /* count rows not in current front */ if (nr_out == EMPTY) { nr_out = 0 ; #ifndef NDEBUG debug_ok = FALSE ; #endif for (i = 0 ; i < cdeg_out ; i++) { row = Wm [i] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (NON_PIVOTAL_ROW (row)) ; if (Frpos [row] < 0 || Frpos [row] >= fnrows) nr_out++ ; #ifndef NDEBUG /* we must see the pivot row somewhere */ if (row == pivrow [OUT][OUT]) { ASSERT (Frpos [row] < 0 || Frpos [row] >= fnrows) ; debug_ok = TRUE ; } #endif } ASSERT (debug_ok) ; } /* count columns not in current front */ nc = 0 ; #ifndef NDEBUG debug_ok = FALSE ; #endif for (i = 0 ; i < rdeg [OUT][OUT] ; i++) { col = Woo [i] ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; if (Fcpos [col] < 0) nc++ ; #ifndef NDEBUG /* we must see the pivot column somewhere */ if (col == pivcol [OUT]) { ASSERT (Fcpos [col] < 0) ; debug_ok = TRUE ; } #endif } ASSERT (debug_ok) ; extra_cols = (fncols + (nc-1)) - (rdeg [OUT][OUT] - 1) ; extra_rows = (fnrows + (nr_out-1)) - (cdeg_out - 1) ; ASSERT (extra_rows >= 0) ; ASSERT (extra_cols >= 0) ; extra_zeros = ((nc-1) * extra_rows) + ((nr_out-1) * extra_cols); ASSERT (fnrows + nr_out == cdeg_out + extra_rows) ; ASSERT (fncols + nc == rdeg [OUT][OUT] + extra_cols) ; thiscost = /* new columns: */ ((nc-1) * (cdeg_out-1)) + /* old columns in front grow by nr_out-1: */ ((nr_out-1) * (fncols - extra_cols)) ; /* size of relaxed front: */ fnrows_new [OUT][OUT] = fnrows + (nr_out-1) ; fncols_new [OUT][OUT] = fncols + (nc-1) ; relaxed_front = fnrows_new [OUT][OUT] * fncols_new [OUT][OUT] ; } /* do relaxed amalgamation if the extra zeros are no more */ /* than a fraction (default 0.25) of the relaxed front */ /* if relax = 0: no extra zeros allowed */ /* if relax = +inf: always amalgamate */ if (did_rowmerge) { do_extend = FALSE ; } else { /* relax parameter uses a double relop, but ignore NaN case: */ if (extra_zeros == 0) { do_extend = TRUE ; } else { do_extend = ((double) extra_zeros) < (relax1 * (double) relaxed_front) ; } } if (do_extend) { /* count the cost of relaxed amalgamation */ thiscost += extra_zeros ; DEBUG2 (("Evaluating option OUT-OUT:\n")) ; DEBUG2 (("Work->fnzeros "ID" fnpiv "ID" nr_out "ID" nc "ID"\n", Work->fnzeros, fnpiv, nr_out, nc)) ; DEBUG2 (("fncols "ID" fnrows "ID"\n", fncols, fnrows)) ; /* determine if BLAS-3 update to be applied before extending. */ /* update if too many zero entries accumulate in the LU block */ fnzeros = Work->fnzeros + fnpiv * (nr_out + nc) ; DEBUG2 (("fnzeros "ID"\n", fnzeros)) ; new_LUsize = (fnpiv+1) * (fnrows + nr_out + fncols + nc) ; DEBUG2 (("new_LUsize "ID"\n", new_LUsize)) ; /* RELAX3 parameter uses a double relop, ignore NaN case: */ do_update = fnpiv > 0 && (((double) fnzeros) / ((double) new_LUsize)) > RELAX3 ; DEBUG2 (("do_update "ID"\n", do_update)) } else { /* the current front would not be extended */ do_update = fnpiv > 0 ; fnzeros = 0 ; DEBUG2 (("OUT-OUT do_update forced true: "ID"\n", do_update)) ; /* The new front would be just big enough to hold the new * pivot row and column. */ fnrows_new [OUT][OUT] = cdeg_out - 1 ; fncols_new [OUT][OUT] = rdeg [OUT][OUT] - 1 ; } DEBUG2 (("option OUT OUT: nr "ID" nc "ID" cost "ID"\n", rdeg [OUT][OUT], cdeg_out, thiscost)) ; if (bestcost == EMPTY || thiscost < bestcost) { /* this is the best option seen so far */ Work->pivot_case = OUT_OUT ; bestcost = thiscost ; Work->do_extend = do_extend ; Work->do_update = do_update ; new_fnzeros = fnzeros ; } } } /* At this point, a structural pivot has been found. */ /* It may be numerically zero, however. */ ASSERT (Work->pivot_case != EMPTY) ; DEBUG2 (("local search, best option "ID", best cost "ID"\n", Work->pivot_case, bestcost)) ; /* ====================================================================== */ /* Pivot row and column, and extension, now determined */ /* ====================================================================== */ Work->fnzeros = new_fnzeros ; /* ---------------------------------------------------------------------- */ /* finalize the pivot row and column */ /* ---------------------------------------------------------------------- */ switch (Work->pivot_case) { case IN_IN: DEBUG2 (("IN-IN option selected\n")) ; ASSERT (fnrows > 0 && fncols > 0) ; Work->pivcol_in_front = TRUE ; Work->pivrow_in_front = TRUE ; Work->pivcol = pivcol [IN] ; Work->pivrow = pivrow [IN][IN] ; Work->ccdeg = nr_in ; Work->Wrow = Fcols ; Work->rrdeg = rdeg [IN][IN] ; jj = jcand [IN] ; Work->fnrows_new = fnrows_new [IN][IN] ; Work->fncols_new = fncols_new [IN][IN] ; break ; case IN_OUT: DEBUG2 (("IN-OUT option selected\n")) ; ASSERT (fnrows >= 0 && fncols > 0) ; Work->pivcol_in_front = TRUE ; Work->pivrow_in_front = FALSE ; Work->pivcol = pivcol [IN] ; Work->pivrow = pivrow [IN][OUT] ; Work->ccdeg = nr_in ; Work->Wrow = Wio ; Work->rrdeg = rdeg [IN][OUT] ; jj = jcand [IN] ; Work->fnrows_new = fnrows_new [IN][OUT] ; Work->fncols_new = fncols_new [IN][OUT] ; break ; case OUT_IN: DEBUG2 (("OUT-IN option selected\n")) ; ASSERT (fnrows > 0 && fncols >= 0) ; Work->pivcol_in_front = FALSE ; Work->pivrow_in_front = TRUE ; Work->pivcol = pivcol [OUT] ; Work->pivrow = pivrow [OUT][IN] ; Work->ccdeg = cdeg_out ; /* Wrow might be equivalenced to Fcols (Freebie in): */ Work->Wrow = Woi ; Work->rrdeg = rdeg [OUT][IN] ; /* Work->Wrow[0..fncols-1] is not there. See Fcols instead */ jj = jcand [OUT] ; Work->fnrows_new = fnrows_new [OUT][IN] ; Work->fncols_new = fncols_new [OUT][IN] ; break ; case OUT_OUT: DEBUG2 (("OUT-OUT option selected\n")) ; ASSERT (fnrows >= 0 && fncols >= 0) ; Work->pivcol_in_front = FALSE ; Work->pivrow_in_front = FALSE ; Work->pivcol = pivcol [OUT] ; Work->pivrow = pivrow [OUT][OUT] ; Work->ccdeg = cdeg_out ; /* Wrow might be equivalenced to Wio (Freebie out): */ Work->Wrow = Woo ; Work->rrdeg = rdeg [OUT][OUT] ; jj = jcand [OUT] ; Work->fnrows_new = fnrows_new [OUT][OUT] ; Work->fncols_new = fncols_new [OUT][OUT] ; break ; } ASSERT (IMPLIES (fnrows == 0 && fncols == 0, Work->pivot_case == OUT_OUT)) ; if (!Work->pivcol_in_front && pivcol [IN] != EMPTY) { /* clear Frpos if pivcol [IN] was searched, but not selected */ for (i = fnrows ; i < cdeg_in ; i++) { Frpos [Frows [i]] = EMPTY; } } /* ---------------------------------------------------------------------- */ /* Pivot row and column have been found */ /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ /* remove pivot column from candidate pivot column set */ /* ---------------------------------------------------------------------- */ ASSERT (jj >= 0 && jj < Work->nCandidates) ; ASSERT (Work->pivcol == Work->Candidates [jj]) ; remove_candidate (jj, Work, Symbolic) ; /* ---------------------------------------------------------------------- */ /* check for frontal matrix growth */ /* ---------------------------------------------------------------------- */ DEBUG1 (("Check frontal growth:\n")) ; DEBUG1 (("fnrows_new "ID" + 1 = "ID", fnr_curr "ID"\n", Work->fnrows_new, Work->fnrows_new + 1, fnr_curr)) ; DEBUG1 (("fncols_new "ID" + 1 = "ID", fnc_curr "ID"\n", Work->fncols_new, Work->fncols_new + 1, fnc_curr)) ; Work->do_grow = (Work->fnrows_new + 1 > fnr_curr || Work->fncols_new + 1 > fnc_curr) ; if (Work->do_grow) { DEBUG0 (("\nNeed to grow frontal matrix, force do_update true\n")) ; /* If the front must grow, then apply the pending updates and remove * the current pivot rows/columns from the front prior to growing the * front. This frees up as much space as possible for the new front. */ if (!Work->do_update && fnpiv > 0) { /* This update would not have to be done if the current front * was big enough. */ Work->nforced++ ; Work->do_update = TRUE ; } } /* ---------------------------------------------------------------------- */ /* current pivot column */ /* ---------------------------------------------------------------------- */ /* c1) If pivot column index is in the current front: The pivot column pattern is in Frows [0 .. fnrows-1] and the extension is in Frows [fnrows ... fnrows+ccdeg-1]. Frpos [Frows [0 .. fnrows+ccdeg-1]] is equal to 0 .. fnrows+ccdeg-1. Wm is not needed. The values are in Wy [0 .. fnrows+ccdeg-1]. c2) Otherwise, if the pivot column index is not in the current front: c2a) If the front is being extended, old row indices in the the pivot column pattern are in Frows [0 .. fnrows-1]. All entries are in Wm [0 ... ccdeg-1], with values in Wx [0 .. ccdeg-1]. These may include entries already in Frows [0 .. fnrows-1]. Frpos [Frows [0 .. fnrows-1]] is equal to 0 .. fnrows-1. Frpos [Wm [0 .. ccdeg-1]] for new entries is < 0. c2b) If the front is not being extended, then the entire pivot column pattern is in Wm [0 .. ccdeg-1]. It includes the pivot row index. It is does not contain the pattern Frows [0..fnrows-1]. The intersection of these two sets may or may not be empty. The values are in Wx [0..ccdeg-1] In both cases c1 and c2, Frpos [Frows [0 .. fnrows-1]] is equal to 0 .. fnrows-1, which is the pattern of the current front. Any entry of Frpos that is not specified above is < 0. */ #ifndef NDEBUG DEBUG2 (("\n\nSEARCH DONE: Pivot col "ID" in: ("ID") pivot row "ID" in: ("ID ") extend: "ID"\n\n", Work->pivcol, Work->pivcol_in_front, Work->pivrow, Work->pivrow_in_front, Work->do_extend)) ; UMF_dump_rowcol (1, Numeric, Work, Work->pivcol, !Symbolic->fixQ) ; DEBUG2 (("Pivot col "ID": fnrows "ID" ccdeg "ID"\n", Work->pivcol, fnrows, Work->ccdeg)) ; if (Work->pivcol_in_front) /* case c1 */ { Int found = FALSE ; DEBUG3 (("Pivcol in front\n")) ; for (i = 0 ; i < fnrows ; i++) { row = Frows [i] ; DEBUG3 ((ID": row:: "ID" in front ", i, row)) ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; ASSERT (Frpos [row] == i) ; EDEBUG3 (Wy [i]) ; if (row == Work->pivrow) { DEBUG3 ((" <- pivrow")) ; found = TRUE ; } DEBUG3 (("\n")) ; } ASSERT (found == Work->pivrow_in_front) ; found = FALSE ; for (i = fnrows ; i < fnrows + Work->ccdeg ; i++) { row = Frows [i] ; DEBUG3 ((ID": row:: "ID" (new)", i, row)) ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; ASSERT (Frpos [row] == i) ; EDEBUG3 (Wy [i]) ; if (row == Work->pivrow) { DEBUG3 ((" <- pivrow")) ; found = TRUE ; } DEBUG3 (("\n")) ; } ASSERT (found == !Work->pivrow_in_front) ; } else { if (Work->do_extend) { Int found = FALSE ; DEBUG3 (("Pivcol not in front (extend)\n")) ; for (i = 0 ; i < fnrows ; i++) { row = Frows [i] ; DEBUG3 ((ID": row:: "ID" in front ", i, row)) ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; ASSERT (Frpos [row] == i) ; if (row == Work->pivrow) { DEBUG3 ((" <- pivrow")) ; found = TRUE ; } DEBUG3 (("\n")) ; } ASSERT (found == Work->pivrow_in_front) ; found = FALSE ; DEBUG3 (("----\n")) ; for (i = 0 ; i < Work->ccdeg ; i++) { row = Wm [i] ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; DEBUG3 ((ID": row:: "ID" ", i, row)) ; EDEBUG3 (Wx [i]) ; if (Frpos [row] < 0) { DEBUG3 ((" (new) ")) ; } if (row == Work->pivrow) { DEBUG3 ((" <- pivrow")) ; found = TRUE ; /* ... */ if (Work->pivrow_in_front) ASSERT (Frpos [row] >= 0) ; else ASSERT (Frpos [row] < 0) ; } DEBUG3 (("\n")) ; } ASSERT (found) ; } else { Int found = FALSE ; DEBUG3 (("Pivcol not in front (no extend)\n")) ; for (i = 0 ; i < Work->ccdeg ; i++) { row = Wm [i] ; ASSERT (row >= 0 && row < n_row && NON_PIVOTAL_ROW (row)) ; DEBUG3 ((ID": row:: "ID" ", i, row)) ; EDEBUG3 (Wx [i]) ; DEBUG3 ((" (new) ")) ; if (row == Work->pivrow) { DEBUG3 ((" <- pivrow")) ; found = TRUE ; } DEBUG3 (("\n")) ; } ASSERT (found) ; } } #endif /* ---------------------------------------------------------------------- */ /* current pivot row */ /* ---------------------------------------------------------------------- */ /* r1) If the pivot row index is in the current front: The pivot row pattern is in Fcols [0..fncols-1] and the extenson is in Wrow [fncols .. rrdeg-1]. If the pivot column is in the current front, then Fcols and Wrow are equivalenced. r2) If the pivot row index is not in the current front: r2a) If the front is being extended, the pivot row pattern is in Fcols [0 .. fncols-1]. New entries are in Wrow [0 .. rrdeg-1], but these may include entries already in Fcols [0 .. fncols-1]. r2b) Otherwise, the pivot row pattern is Wrow [0 .. rrdeg-1]. Fcpos [Fcols [0..fncols-1]] is (0..fncols-1) * fnr_curr. All other entries in Fcpos are < 0. These conditions are asserted below. ------------------------------------------------------------------------ Other items in Work structure that are relevant: pivcol: the pivot column index pivrow: the pivot column index rrdeg: ccdeg: fnrows: the number of rows in the currnt contribution block fncols: the number of columns in the current contribution block fnrows_new: the number of rows in the new contribution block fncols_new: the number of rows in the new contribution block ------------------------------------------------------------------------ */ #ifndef NDEBUG UMF_dump_rowcol (0, Numeric, Work, Work->pivrow, TRUE) ; DEBUG2 (("Pivot row "ID":\n", Work->pivrow)) ; if (Work->pivrow_in_front) { Int found = FALSE ; for (i = 0 ; i < fncols ; i++) { col = Fcols [i] ; DEBUG3 ((" col:: "ID" in front\n", col)) ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; ASSERT (Fcpos [col] == i * fnr_curr) ; if (col == Work->pivcol) found = TRUE ; } ASSERT (found == Work->pivcol_in_front) ; found = FALSE ; ASSERT (IMPLIES (Work->pivcol_in_front, Fcols == Work->Wrow)) ; for (i = fncols ; i < Work->rrdeg ; i++) { col = Work->Wrow [i] ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; ASSERT (Fcpos [col] < 0) ; if (col == Work->pivcol) found = TRUE ; else DEBUG3 ((" col:: "ID" (new)\n", col)) ; } ASSERT (found == !Work->pivcol_in_front) ; } else { if (Work->do_extend) { Int found = FALSE ; for (i = 0 ; i < fncols ; i++) { col = Fcols [i] ; DEBUG3 ((" col:: "ID" in front\n", col)) ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; ASSERT (Fcpos [col] == i * fnr_curr) ; if (col == Work->pivcol) found = TRUE ; } ASSERT (found == Work->pivcol_in_front) ; found = FALSE ; for (i = 0 ; i < Work->rrdeg ; i++) { col = Work->Wrow [i] ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; if (Fcpos [col] >= 0) continue ; if (col == Work->pivcol) found = TRUE ; else DEBUG3 ((" col:: "ID" (new, extend)\n", col)) ; } ASSERT (found == !Work->pivcol_in_front) ; } else { Int found = FALSE ; for (i = 0 ; i < Work->rrdeg ; i++) { col = Work->Wrow [i] ; ASSERT (col >= 0 && col < n_col && NON_PIVOTAL_COL (col)) ; if (col == Work->pivcol) found = TRUE ; else DEBUG3 ((" col:: "ID" (all new)\n", col)) ; } ASSERT (found) ; } } #endif /* ---------------------------------------------------------------------- */ /* determine whether to do scan2-row and scan2-col */ /* ---------------------------------------------------------------------- */ if (Work->do_extend) { Work->do_scan2row = (fncols > 0) ; Work->do_scan2col = (fnrows > 0) ; } else { Work->do_scan2row = (fncols > 0) && Work->pivrow_in_front ; Work->do_scan2col = (fnrows > 0) && Work->pivcol_in_front ; } /* ---------------------------------------------------------------------- */ DEBUG2 (("LOCAL SEARCH DONE: pivot column "ID" pivot row: "ID"\n", Work->pivcol, Work->pivrow)) ; DEBUG2 (("do_extend: "ID"\n", Work->do_extend)) ; DEBUG2 (("do_update: "ID"\n", Work->do_update)) ; DEBUG2 (("do_grow: "ID"\n", Work->do_grow)) ; /* ---------------------------------------------------------------------- */ /* keep track of the diagonal */ /* ---------------------------------------------------------------------- */ if (Symbolic->prefer_diagonal && Work->pivcol < Work->n_col - Symbolic->nempty_col) { Diagonal_map = Work->Diagonal_map ; Diagonal_imap = Work->Diagonal_imap ; ASSERT (Diagonal_map != (Int *) NULL) ; ASSERT (Diagonal_imap != (Int *) NULL) ; row2 = Diagonal_map [Work->pivcol] ; col2 = Diagonal_imap [Work->pivrow] ; if (row2 < 0) { /* this was an off-diagonal pivot row */ Work->noff_diagonal++ ; row2 = UNFLIP (row2) ; } ASSERT (Diagonal_imap [row2] == Work->pivcol) ; ASSERT (UNFLIP (Diagonal_map [col2]) == Work->pivrow) ; if (row2 != Work->pivrow) { /* swap the diagonal map to attempt to maintain symmetry later on. * Also mark the map for col2 (via FLIP) to denote that the entry * now on the diagonal is not the original entry on the diagonal. */ DEBUG0 (("Unsymmetric pivot\n")) ; Diagonal_map [Work->pivcol] = FLIP (Work->pivrow) ; Diagonal_imap [Work->pivrow] = Work->pivcol ; Diagonal_map [col2] = FLIP (row2) ; Diagonal_imap [row2] = col2 ; } ASSERT (n_row == n_col) ; #ifndef NDEBUG UMF_dump_diagonal_map (Diagonal_map, Diagonal_imap, Symbolic->n1, Symbolic->n_col, Symbolic->nempty_col) ; #endif } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_local_search.h0000644001170100242450000000100110617161702017725 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_local_search ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umf_colamd.c0000644001170100242450000026715410617161437016574 0ustar davisfac/* ========================================================================== */ /* === UMF_colamd =========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* UMF_colamd: an approximate minimum degree column ordering algorithm, used as a preordering for UMFPACK. NOTE: if this routine is used outside of UMFPACK, for a sparse Cholesky factorization of (AQ)'*(AQ) or a QR factorization of A, then one line should be removed (the "&& pivot_row_thickness > 0" expression). See the comment regarding the Cholesky factorization, below. Purpose: Colamd computes a permutation Q such that the Cholesky factorization of (AQ)'(AQ) has less fill-in and requires fewer floating point operations than A'A. This also provides a good ordering for sparse partial pivoting methods, P(AQ) = LU, where Q is computed prior to numerical factorization, and P is computed during numerical factorization via conventional partial pivoting with row interchanges. Colamd is the column ordering method used in SuperLU, part of the ScaLAPACK library. It is also available as built-in function in MATLAB Version 6, available from MathWorks, Inc. (http://www.mathworks.com). This routine can be used in place of colmmd in MATLAB. By default, the \ and / operators in MATLAB perform a column ordering (using colmmd or colamd) prior to LU factorization using sparse partial pivoting, in the built-in MATLAB lu(A) routine. This code is derived from Colamd Version 2.0. Authors: The authors of the COLAMD code itself are Stefan I. Larimore and Timothy A. Davis, University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. The AMD metric on which this is based is by Patrick Amestoy, T. Davis, and Iain Duff. Date: UMFPACK Version: see above. COLAMD Version 2.0 was released on January 31, 2000. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. UMFPACK: Copyright (c) 2003 by Timothy A. Davis. All Rights Reserved. See the UMFPACK README file for the License for your use of this code. Availability: Both UMFPACK and the original unmodified colamd/symamd library are available at http://www.cise.ufl.edu/research/sparse. Changes for inclusion in UMFPACK: * symamd, symamd_report, and colamd_report removed * additional terms added to RowInfo, ColInfo, and stats * Frontal matrix information computed for UMFPACK * routines renamed * column elimination tree post-ordering incorporated. In the original version 2.0, this was performed in colamd.m. For more information, see: Amestoy, P. R. and Davis, T. A. and Duff, I. S., An approximate minimum degree ordering algorithm, SIAM J. Matrix Analysis and Applic, vol 17, no 4., pp 886-905, 1996. Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G., A column approximate minimum degree ordering algorithm, Univ. of Florida, CISE Dept., TR-00-005, Gainesville, FL Oct. 2000. Submitted to ACM Trans. Math. Softw. */ /* ========================================================================== */ /* === Description of user-callable routines ================================ */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- colamd_recommended: removed for UMFPACK ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- colamd_set_defaults: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" colamd_set_defaults (double knobs [COLAMD_KNOBS]) ; Purpose: Sets the default parameters. The use of this routine is optional. Arguments: double knobs [COLAMD_KNOBS] ; Output only. Let c = knobs [COLAMD_DENSE_COL], r = knobs [COLAMD_DENSE_ROW]. Colamd: rows with more than max (16, r*16*sqrt(n_col)) entries are removed prior to ordering. Columns with more than max (16, c*16*sqrt(n_row)) entries are removed prior to ordering, and placed last in the output column ordering. Symamd: removed for UMFPACK. COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, respectively, in colamd.h. Default values of these two knobs are both 0.5. Currently, only knobs [0] and knobs [1] are used, but future versions may use more knobs. If so, they will be properly set to their defaults by the future version of colamd_set_defaults, so that the code that calls colamd will not need to change, assuming that you either use colamd_set_defaults, or pass a (double *) NULL pointer as the knobs array to colamd or symamd. knobs [COLAMD_AGGRESSIVE]: if nonzero, then perform aggressive absorption. Otherwise, do not. This version does aggressive absorption by default. COLAMD v2.1 (in MATLAB) always does aggressive absorption (it doesn't have an option to turn it off). ---------------------------------------------------------------------------- colamd: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" Int UMF_colamd (Int n_row, Int n_col, Int Alen, Int *A, Int *p, double knobs [COLAMD_KNOBS], Int stats [COLAMD_STATS]) ; Purpose: Computes a column ordering (Q) of A such that P(AQ)=LU or (AQ)'AQ=LL' have less fill-in and require fewer floating point operations than factorizing the unpermuted matrix A or A'A, respectively. Returns: TRUE (1) if successful, FALSE (0) otherwise. Arguments: Int n_row ; Input argument. Number of rows in the matrix A. Restriction: n_row >= 0. Colamd returns FALSE if n_row is negative. Int n_col ; Input argument. Number of columns in the matrix A. Restriction: n_col >= 0. Colamd returns FALSE if n_col is negative. Int Alen ; Input argument. Restriction (see note): Alen >= 2*nnz + 8*(n_col+1) + 6*(n_row+1) + n_col Colamd returns FALSE if these conditions are not met. Note: this restriction makes an modest assumption regarding the size of the two typedef's structures in colamd.h. We do, however, guarantee that Alen >= UMF_COLAMD_RECOMMENDED (nnz, n_row, n_col) will be sufficient. Int A [Alen] ; Input and output argument. A is an integer array of size Alen. Alen must be at least as large as the bare minimum value given above, but this is very low, and can result in excessive run time. For best performance, we recommend that Alen be greater than or equal to UMF_COLAMD_RECOMMENDED (nnz, n_row, n_col), which adds nnz/5 to the bare minimum value given above. On input, the row indices of the entries in column c of the matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a given column c need not be in ascending order, and duplicate row indices may be be present. However, colamd will work a little faster if both of these conditions are met (Colamd puts the matrix into this format, if it finds that the the conditions are not met). The matrix is 0-based. That is, rows are in the range 0 to n_row-1, and columns are in the range 0 to n_col-1. Colamd returns FALSE if any row index is out of range. A holds the inverse permutation on output. Int p [n_col+1] ; Both input and output argument. p is an integer array of size n_col+1. On input, it holds the "pointers" for the column form of the matrix A. Column c of the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first entry, p [0], must be zero, and p [c] <= p [c+1] must hold for all c in the range 0 to n_col-1. The value p [n_col] is thus the total number of entries in the pattern of the matrix A. Colamd returns FALSE if these conditions are not met. On output, if colamd returns TRUE, the array p holds the column permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is the first column index in the new ordering, and p [n_col-1] is the last. That is, p [k] = j means that column j of A is the kth pivot column, in AQ, where k is in the range 0 to n_col-1 (p [0] = j means that column j of A is the first column in AQ). If colamd returns FALSE, then no permutation is returned, and p is undefined on output. double knobs [COLAMD_KNOBS] ; Input argument. See colamd_set_defaults for a description. The behavior is undefined if knobs contains NaN's. (UMFPACK does not call umf_colamd with NaN-valued knobs). Int stats [COLAMD_STATS] ; Output argument. Statistics on the ordering, and error status. See colamd.h for related definitions. Colamd returns FALSE if stats is not present. stats [0]: number of dense or empty rows ignored. stats [1]: number of dense or empty columns ignored (and ordered last in the output permutation p) Note that a row can become "empty" if it contains only "dense" and/or "empty" columns, and similarly a column can become "empty" if it only contains "dense" and/or "empty" rows. stats [2]: number of garbage collections performed. This can be excessively high if Alen is close to the minimum required value. stats [3]: status code. < 0 is an error code. > 1 is a warning or notice. 0 OK. Each column of the input matrix contained row indices in increasing order, with no duplicates. -11 Columns of input matrix jumbled (unsorted columns or duplicate entries). stats [4]: the bad column index stats [5]: the bad row index -1 A is a null pointer -2 p is a null pointer -3 n_row is negative stats [4]: n_row -4 n_col is negative stats [4]: n_col -5 number of nonzeros in matrix is negative stats [4]: number of nonzeros, p [n_col] -6 p [0] is nonzero stats [4]: p [0] -7 A is too small stats [4]: required size stats [5]: actual size (Alen) -8 a column has a zero or negative number of entries (changed for UMFPACK) stats [4]: column with <= 0 entries stats [5]: number of entries in col -9 a row index is out of bounds stats [4]: column with bad row index stats [5]: bad row index stats [6]: n_row, # of rows of matrx -10 unused -999 (unused; see symamd.c) Future versions may return more statistics in the stats array. Example: See http://www.cise.ufl.edu/~davis/colamd/example.c for a complete example. To order the columns of a 5-by-4 matrix with 11 nonzero entries in the following nonzero pattern x 0 x 0 x 0 x x 0 x x 0 0 0 x x x x 0 0 with default knobs and no output statistics, do the following: #include "colamd.h" #define ALEN UMF_COLAMD_RECOMMENDED (11, 5, 4) Int A [ALEN] = {1, 2, 5, 3, 5, 1, 2, 3, 4, 2, 4} ; Int p [ ] = {0, 3, 5, 9, 11} ; Int stats [COLAMD_STATS] ; UMF_colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ; The permutation is returned in the array p, and A is destroyed. ---------------------------------------------------------------------------- symamd: does not appear in this version for UMFPACK ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- colamd_report: does not appear in this version for UMFPACK ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- symamd_report: does not appear in this version for UMFPACK ---------------------------------------------------------------------------- */ /* ========================================================================== */ /* === Scaffolding code definitions ======================================== */ /* ========================================================================== */ /* UMFPACK debugging control moved to amd_internal.h */ /* Our "scaffolding code" philosophy: In our opinion, well-written library code should keep its "debugging" code, and just normally have it turned off by the compiler so as not to interfere with performance. This serves several purposes: (1) assertions act as comments to the reader, telling you what the code expects at that point. All assertions will always be true (unless there really is a bug, of course). (2) leaving in the scaffolding code assists anyone who would like to modify the code, or understand the algorithm (by reading the debugging output, one can get a glimpse into what the code is doing). (3) (gasp!) for actually finding bugs. This code has been heavily tested and "should" be fully functional and bug-free ... but you never know... To enable debugging, comment out the "#define NDEBUG" above. For a MATLAB mexFunction, you will also need to modify mexopts.sh to remove the -DNDEBUG definition. The code will become outrageously slow when debugging is enabled. To control the level of debugging output, set an environment variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging, you should see the following message on the standard output: colamd: debug version, D = 1 (THIS WILL BE SLOW!) or a similar message for symamd. If you don't, then debugging has not been enabled. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ /* ------------------ */ /* modified for UMFPACK: */ #include "umf_internal.h" #include "umf_colamd.h" #include "umf_apply_order.h" #include "umf_fsize.h" /* ------------------ */ /* ========================================================================== */ /* === Definitions ========================================================== */ /* ========================================================================== */ /* ------------------ */ /* UMFPACK: duplicate definitions moved to umf_internal.h */ /* ------------------ */ /* Row and column status */ #define ALIVE (0) #define DEAD (-1) /* Column status */ #define DEAD_PRINCIPAL (-1) #define DEAD_NON_PRINCIPAL (-2) /* Macros for row and column status update and checking. */ #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) #define COL_IS_DEAD(c) (Col [c].start < ALIVE) #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } /* ------------------ */ /* UMFPACK: Colamd reporting mechanism moved to umf_internal.h */ /* ------------------ */ /* ========================================================================== */ /* === Prototypes of PRIVATE routines ======================================= */ /* ========================================================================== */ PRIVATE Int init_rows_cols ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int p [] /* Int stats [COLAMD_STATS] */ ) ; PRIVATE void init_scoring ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int head [], double knobs [COLAMD_KNOBS], Int *p_n_row2, Int *p_n_col2, Int *p_max_deg /* ------------------ */ /* added for UMFPACK */ , Int *p_ndense_row /* number of dense rows */ , Int *p_nempty_row /* number of original empty rows */ , Int *p_nnewlyempty_row /* number of newly empty rows */ , Int *p_ndense_col /* number of dense cols (excl "empty" cols) */ , Int *p_nempty_col /* number of original empty cols */ , Int *p_nnewlyempty_col /* number of newly empty cols */ ) ; PRIVATE Int find_ordering ( Int n_row, Int n_col, Int Alen, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int head [], Int n_col2, Int max_deg, Int pfree /* ------------------ */ /* added for UMFPACK: */ , Int Front_npivcol [ ] , Int Front_nrows [ ] , Int Front_ncols [ ] , Int Front_parent [ ] , Int Front_cols [ ] , Int *p_nfr , Int aggressive , Int InFront [ ] /* ------------------ */ ) ; /* ------------------ */ /* order_children deleted for UMFPACK: */ /* ------------------ */ PRIVATE void detect_super_cols ( #ifndef NDEBUG Int n_col, Colamd_Row Row [], #endif /* NDEBUG */ Colamd_Col Col [], Int A [], Int head [], Int row_start, Int row_length ) ; PRIVATE Int garbage_collection ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int *pfree ) ; PRIVATE Int clear_mark ( Int n_row, Colamd_Row Row [] ) ; /* ------------------ */ /* print_report deleted for UMFPACK */ /* ------------------ */ /* ========================================================================== */ /* === Debugging prototypes and definitions ================================= */ /* ========================================================================== */ #ifndef NDEBUG /* ------------------ */ /* debugging macros moved for UMFPACK */ /* ------------------ */ PRIVATE void debug_deg_lists ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int head [], Int min_score, Int should, Int max_deg ) ; PRIVATE void debug_mark ( Int n_row, Colamd_Row Row [], Int tag_mark, Int max_mark ) ; PRIVATE void debug_matrix ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [] ) ; PRIVATE void debug_structures ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int n_col2 ) ; /* ------------------ */ /* dump_super added for UMFPACK: */ PRIVATE void dump_super ( Int super_c, Colamd_Col Col [], Int n_col ) ; /* ------------------ */ #endif /* NDEBUG */ /* ========================================================================== */ /* ========================================================================== */ /* === USER-CALLABLE ROUTINES: ============================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === colamd_set_defaults ================================================== */ /* ========================================================================== */ /* The colamd_set_defaults routine sets the default values of the user- controllable parameters for colamd: knobs [0] rows with knobs[0]*n_col entries or more are removed prior to ordering in colamd. Rows and columns with knobs[0]*n_col entries or more are removed prior to ordering in symamd and placed last in the output ordering. knobs [1] columns with knobs[1]*n_row entries or more are removed prior to ordering in colamd, and placed last in the column permutation. Symamd ignores this knob. knobs [2] if nonzero, then perform aggressive absorption. knobs [3..19] unused, but future versions might use this */ GLOBAL void UMF_colamd_set_defaults ( /* === Parameters ======================================================= */ double knobs [COLAMD_KNOBS] /* knob array */ ) { /* === Local variables ================================================== */ Int i ; #if 0 if (!knobs) { return ; /* UMFPACK always passes knobs array */ } #endif for (i = 0 ; i < COLAMD_KNOBS ; i++) { knobs [i] = 0 ; } knobs [COLAMD_DENSE_ROW] = 0.2 ; /* default changed for UMFPACK */ knobs [COLAMD_DENSE_COL] = 0.2 ; /* default changed for UMFPACK */ knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default is to do aggressive * absorption */ } /* ========================================================================== */ /* === symamd removed for UMFPACK =========================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === colamd =============================================================== */ /* ========================================================================== */ /* The colamd routine computes a column ordering Q of a sparse matrix A such that the LU factorization P(AQ) = LU remains sparse, where P is selected via partial pivoting. The routine can also be viewed as providing a permutation Q such that the Cholesky factorization (AQ)'(AQ) = LL' remains sparse. */ /* For UMFPACK: colamd always returns TRUE */ GLOBAL Int UMF_colamd /* returns TRUE if successful, FALSE otherwise*/ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows in A */ Int n_col, /* number of columns in A */ Int Alen, /* length of A */ Int A [], /* row indices of A */ Int p [], /* pointers to columns in A */ double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */ Int stats [COLAMD_STATS] /* output statistics and error codes */ /* ------------------ */ /* added for UMFPACK: each Front_ array is of size n_col+1 */ , Int Front_npivcol [ ] /* # pivot cols in each front */ , Int Front_nrows [ ] /* # of rows in each front (incl. pivot rows) */ , Int Front_ncols [ ] /* # of cols in each front (incl. pivot cols) */ , Int Front_parent [ ] /* parent of each front */ , Int Front_cols [ ] /* link list of pivot columns for each front */ , Int *p_nfr /* total number of frontal matrices */ , Int InFront [ ] /* InFront [row] = f if the original row was * absorbed into front f. EMPTY if the row was * empty, dense, or not absorbed. This array * has size n_row+1 */ /* ------------------ */ ) { /* === Local variables ================================================== */ Int row ; /* row index */ Int i ; /* loop index */ Int nnz ; /* nonzeros in A */ Int Row_size ; /* size of Row [], in integers */ Int Col_size ; /* size of Col [], in integers */ #if 0 Int need ; /* minimum required length of A */ #endif Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */ Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */ Int n_col2 ; /* number of non-dense, non-empty columns */ Int n_row2 ; /* number of non-dense, non-empty rows */ Int ngarbage ; /* number of garbage collections performed */ Int max_deg ; /* maximum row degree */ Int aggressive ; /* TRUE if doing aggressive absorption */ #if 0 double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ #endif /* ------------------ */ /* debugging initializations moved for UMFPACK */ /* ------------------ */ /* ------------------ */ /* added for UMFPACK: */ Int ndense_row, nempty_row, parent, ndense_col, nempty_col, k, col, nfr, *Front_child, *Front_sibling, *Front_stack, *Front_order, *Front_size ; Int nnewlyempty_col, nnewlyempty_row ; /* ------------------ */ /* === Check the input arguments ======================================== */ #if 0 if (!stats) { DEBUG0 (("colamd: stats not present\n")) ; return (FALSE) ; /* UMFPACK: always passes stats [ ] */ } #endif ASSERT (stats != (Int *) NULL) ; for (i = 0 ; i < COLAMD_STATS ; i++) { stats [i] = 0 ; } stats [COLAMD_STATUS] = COLAMD_OK ; stats [COLAMD_INFO1] = -1 ; stats [COLAMD_INFO2] = -1 ; #if 0 if (!A) /* A is not present */ { /* UMFPACK: always passes A [ ] */ DEBUG0 (("colamd: A not present\n")) ; stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; return (FALSE) ; } if (!p) /* p is not present */ { /* UMFPACK: always passes p [ ] */ DEBUG0 (("colamd: p not present\n")) ; stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; return (FALSE) ; } if (n_row < 0) /* n_row must be >= 0 */ { /* UMFPACK: does not call UMF_colamd if n <= 0 */ DEBUG0 (("colamd: nrow negative "ID"\n", n_row)) ; stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; stats [COLAMD_INFO1] = n_row ; return (FALSE) ; } if (n_col < 0) /* n_col must be >= 0 */ { /* UMFPACK: does not call UMF_colamd if n <= 0 */ DEBUG0 (("colamd: ncol negative "ID"\n", n_col)) ; stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; stats [COLAMD_INFO1] = n_col ; return (FALSE) ; } #endif ASSERT (A != (Int *) NULL) ; ASSERT (p != (Int *) NULL) ; ASSERT (n_row >= 0) ; ASSERT (n_col >= 0) ; nnz = p [n_col] ; #if 0 if (nnz < 0) /* nnz must be >= 0 */ { /* UMFPACK: does not call UMF_colamd if nnz < 0 */ DEBUG0 (("colamd: number of entries negative "ID"\n", nnz)) ; stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; stats [COLAMD_INFO1] = nnz ; return (FALSE) ; } if (p [0] != 0) /* p [0] must be exactly zero */ { DEBUG0 (("colamd: p[0] not zero "ID"\n", p [0])) ; stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; stats [COLAMD_INFO1] = p [0] ; return (FALSE) ; } #endif ASSERT (nnz >= 0) ; ASSERT (p [0] == 0) ; /* === If no knobs, set default knobs =================================== */ #if 0 if (!knobs) { /* UMFPACK: always passes the knobs */ UMF_colamd_set_defaults (default_knobs) ; knobs = default_knobs ; } #endif ASSERT (knobs != (double *) NULL) ; /* --------------------- */ /* added for UMFPACK v4.1: */ aggressive = (knobs [COLAMD_AGGRESSIVE] != 0) ; /* --------------------- */ /* === Allocate the Row and Col arrays from array A ===================== */ Col_size = UMF_COLAMD_C (n_col) ; Row_size = UMF_COLAMD_R (n_row) ; #if 0 need = MAX (2*nnz, 4*n_col) + n_col + Col_size + Row_size ; if (need > Alen) { /* UMFPACK: always passes enough space */ /* not enough space in array A to perform the ordering */ DEBUG0 (("colamd: Need Alen >= "ID", given only Alen = "ID"\n", need, Alen)) ; stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; stats [COLAMD_INFO1] = need ; stats [COLAMD_INFO2] = Alen ; return (FALSE) ; } #endif Alen -= Col_size + Row_size ; Col = (Colamd_Col *) &A [Alen] ; Row = (Colamd_Row *) &A [Alen + Col_size] ; /* Size of A is now Alen >= MAX (2*nnz, 4*n_col) + n_col. The ordering * requires Alen >= 2*nnz + n_col, and the postorder requires * Alen >= 5*n_col. */ /* === Construct the row and column data structures ===================== */ i = init_rows_cols (n_row, n_col, Row, Col, A, p) ; #if 0 if (!i) { /* input matrix is invalid */ DEBUG0 (("colamd: Matrix invalid\n")) ; return (FALSE) ; } #endif ASSERT (i) ; /* === UMFPACK: Initialize front info =================================== */ for (col = 0 ; col < n_col ; col++) { Front_npivcol [col] = 0 ; Front_nrows [col] = 0 ; Front_ncols [col] = 0 ; Front_parent [col] = EMPTY ; Front_cols [col] = EMPTY ; } /* === Initialize scores, kill dense rows/columns ======================= */ init_scoring (n_row, n_col, Row, Col, A, p, knobs, &n_row2, &n_col2, &max_deg /* ------------------ */ /* added for UMFPACK: */ , &ndense_row, &nempty_row, &nnewlyempty_row , &ndense_col, &nempty_col, &nnewlyempty_col /* ------------------ */ ) ; ASSERT (n_row2 == n_row - nempty_row - nnewlyempty_row - ndense_row) ; ASSERT (n_col2 == n_col - nempty_col - nnewlyempty_col - ndense_col) ; /* === Order the supercolumns =========================================== */ ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p, n_col2, max_deg, 2*nnz /* ------------------ */ /* added for UMFPACK: */ , Front_npivcol, Front_nrows, Front_ncols, Front_parent, Front_cols , &nfr, aggressive, InFront /* ------------------ */ ) ; /* ------------------ */ /* changed for UMFPACK: */ /* A is no longer needed, so use A [0..5*nfr-1] as workspace [ [ */ /* This step requires Alen >= 5*n_col */ Front_child = A ; Front_sibling = Front_child + nfr ; Front_stack = Front_sibling + nfr ; Front_order = Front_stack + nfr ; Front_size = Front_order + nfr ; UMF_fsize (nfr, Front_size, Front_nrows, Front_ncols, Front_parent, Front_npivcol) ; AMD_postorder (nfr, Front_parent, Front_npivcol, Front_size, Front_order, Front_child, Front_sibling, Front_stack) ; /* Front_size, Front_stack, Front_child, Front_sibling no longer needed ] */ /* use A [0..nfr-1] as workspace */ UMF_apply_order (Front_npivcol, Front_order, A, nfr, nfr) ; UMF_apply_order (Front_nrows, Front_order, A, nfr, nfr) ; UMF_apply_order (Front_ncols, Front_order, A, nfr, nfr) ; UMF_apply_order (Front_parent, Front_order, A, nfr, nfr) ; UMF_apply_order (Front_cols, Front_order, A, nfr, nfr) ; /* fix the parent to refer to the new numbering */ for (i = 0 ; i < nfr ; i++) { parent = Front_parent [i] ; if (parent != EMPTY) { Front_parent [i] = Front_order [parent] ; } } /* fix InFront to refer to the new numbering */ for (row = 0 ; row < n_row ; row++) { i = InFront [row] ; ASSERT (i >= EMPTY && i < nfr) ; if (i != EMPTY) { InFront [row] = Front_order [i] ; } } /* Front_order longer needed ] */ /* === Order the columns in the fronts ================================== */ /* use A [0..n_col-1] as inverse permutation */ for (i = 0 ; i < n_col ; i++) { A [i] = EMPTY ; } k = 0 ; for (i = 0 ; i < nfr ; i++) { ASSERT (Front_npivcol [i] > 0) ; for (col = Front_cols [i] ; col != EMPTY ; col = Col [col].nextcol) { ASSERT (col >= 0 && col < n_col) ; DEBUG1 (("Colamd output ordering: k "ID" col "ID"\n", k, col)) ; p [k] = col ; ASSERT (A [col] == EMPTY) ; A [col] = k ; k++ ; } } /* === Order the "dense" and null columns =============================== */ ASSERT (k == n_col2) ; if (n_col2 < n_col) { for (col = 0 ; col < n_col ; col++) { if (A [col] == EMPTY) { k = Col [col].shared2.order ; ASSERT (k >= n_col2 && k < n_col) ; DEBUG1 (("Colamd output ordering: k "ID" col "ID " (dense or null col)\n", k, col)) ; p [k] = col ; A [col] = k ; } } } /* ------------------ */ /* === Return statistics in stats ======================================= */ /* ------------------ */ /* modified for UMFPACK */ stats [COLAMD_DENSE_ROW] = ndense_row ; stats [COLAMD_EMPTY_ROW] = nempty_row ; stats [COLAMD_NEWLY_EMPTY_ROW] = nnewlyempty_row ; stats [COLAMD_DENSE_COL] = ndense_col ; stats [COLAMD_EMPTY_COL] = nempty_col ; stats [COLAMD_NEWLY_EMPTY_COL] = nnewlyempty_col ; ASSERT (ndense_col + nempty_col + nnewlyempty_col == n_col - n_col2) ; /* ------------------ */ stats [COLAMD_DEFRAG_COUNT] = ngarbage ; *p_nfr = nfr ; DEBUG1 (("colamd: done.\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === colamd_report removed for UMFPACK ==================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === symamd_report removed for UMFPACK ==================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === NON-USER-CALLABLE ROUTINES: ========================================== */ /* ========================================================================== */ /* There are no user-callable routines beyond this point in the file */ /* ========================================================================== */ /* === init_rows_cols ======================================================= */ /* ========================================================================== */ /* Takes the column form of the matrix in A and creates the row form of the matrix. Also, row and column attributes are stored in the Col and Row structs. If the columns are un-sorted or contain duplicate row indices, this routine will also sort and remove duplicate row indices from the column form of the matrix. Returns FALSE if the matrix is invalid, TRUE otherwise. Not user-callable. */ /* For UMFPACK, this always returns TRUE */ PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* row indices of A, of size Alen */ Int p [] /* pointers to columns in A, of size n_col+1 */ /* Int stats [COLAMD_STATS] colamd statistics, removed for UMFPACK */ ) { /* === Local variables ================================================== */ Int col ; /* a column index */ Int row ; /* a row index */ Int *cp ; /* a column pointer */ Int *cp_end ; /* a pointer to the end of a column */ /* === Initialize columns, and check column pointers ==================== */ for (col = 0 ; col < n_col ; col++) { Col [col].start = p [col] ; Col [col].length = p [col+1] - p [col] ; #if 0 if (Col [col].length < 0) { /* column pointers must be non-decreasing */ stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = Col [col].length ; DEBUG0 (("colamd: col "ID" length "ID" <= 0\n", col, Col [col].length)); return (FALSE) ; } #endif ASSERT (Col [col].length >= 0) ; /* added for UMFPACK v4.1 */ ASSERT (Col [col].length > 0) ; Col [col].shared1.thickness = 1 ; Col [col].shared2.score = 0 ; Col [col].shared3.prev = EMPTY ; Col [col].shared4.degree_next = EMPTY ; /* ------------------ */ /* added for UMFPACK: */ Col [col].nextcol = EMPTY ; Col [col].lastcol = col ; /* ------------------ */ } /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ /* === Scan columns, compute row degrees, and check row indices ========= */ /* ------------------ */ /* stats [COLAMD_INFO3] = 0 ; */ /* number of duplicate or unsorted row indices - not computed in UMFPACK */ /* ------------------ */ for (row = 0 ; row < n_row ; row++) { Row [row].length = 0 ; /* ------------------ */ /* removed for UMFPACK */ /* Row [row].shared2.mark = -1 ; */ /* ------------------ */ /* ------------------ */ /* added for UMFPACK: */ Row [row].thickness = 1 ; Row [row].front = EMPTY ; /* ------------------ */ } for (col = 0 ; col < n_col ; col++) { #ifndef NDEBUG Int last_row = -1 ; #endif cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { row = *cp++ ; #if 0 /* make sure row indices within range */ if (row < 0 || row >= n_row) { stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = row ; /* ------------------ */ /* not needed in UMFPACK: */ /* stats [COLAMD_INFO3] = n_row ; */ /* ------------------ */ DEBUG0 (("colamd: row "ID" col "ID" out of bounds\n", row,col)); return (FALSE) ; } #endif ASSERT (row >= 0 && row < n_row) ; #if 0 /* ------------------ */ /* changed for UMFPACK */ if (row <= last_row) { /* row index are unsorted or repeated (or both), thus col */ /* is jumbled. This is an error condition for UMFPACK */ stats [COLAMD_STATUS] = COLAMD_ERROR_jumbled_matrix ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = row ; DEBUG1 (("colamd: row "ID" col "ID" unsorted/duplicate\n", row, col)) ; return (FALSE) ; } /* ------------------ */ #endif ASSERT (row > last_row) ; /* ------------------ */ /* changed for UMFPACK - jumbled columns not tolerated */ Row [row].length++ ; /* ------------------ */ #ifndef NDEBUG last_row = row ; #endif } } /* === Compute row pointers ============================================= */ /* row form of the matrix starts directly after the column */ /* form of matrix in A */ Row [0].start = p [n_col] ; Row [0].shared1.p = Row [0].start ; /* ------------------ */ /* removed for UMFPACK */ /* Row [0].shared2.mark = -1 ; */ /* ------------------ */ for (row = 1 ; row < n_row ; row++) { Row [row].start = Row [row-1].start + Row [row-1].length ; Row [row].shared1.p = Row [row].start ; /* ------------------ */ /* removed for UMFPACK */ /* Row [row].shared2.mark = -1 ; */ /* ------------------ */ } /* === Create row form ================================================== */ /* ------------------ */ /* jumbled matrix case removed for UMFPACK */ /* ------------------ */ for (col = 0 ; col < n_col ; col++) { cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { A [(Row [*cp++].shared1.p)++] = col ; } } /* === Clear the row marks and set row degrees ========================== */ for (row = 0 ; row < n_row ; row++) { Row [row].shared2.mark = 0 ; Row [row].shared1.degree = Row [row].length ; } /* ------------------ */ /* recreate columns for jumbled matrix case removed for UMFPACK */ /* ------------------ */ return (TRUE) ; } /* ========================================================================== */ /* === init_scoring ========================================================= */ /* ========================================================================== */ /* Kills dense or empty columns and rows, calculates an initial score for each column, and places all columns in the degree lists. Not user-callable. */ PRIVATE void init_scoring ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* column form and row form of A */ Int head [], /* of size n_col+1 */ double knobs [COLAMD_KNOBS],/* parameters */ Int *p_n_row2, /* number of non-dense, non-empty rows */ Int *p_n_col2, /* number of non-dense, non-empty columns */ Int *p_max_deg /* maximum row degree */ /* ------------------ */ /* added for UMFPACK */ , Int *p_ndense_row /* number of dense rows */ , Int *p_nempty_row /* number of original empty rows */ , Int *p_nnewlyempty_row /* number of newly empty rows */ , Int *p_ndense_col /* number of dense cols (excl "empty" cols) */ , Int *p_nempty_col /* number of original empty cols */ , Int *p_nnewlyempty_col /* number of newly empty cols */ /* ------------------ */ ) { /* === Local variables ================================================== */ Int c ; /* a column index */ Int r, row ; /* a row index */ Int *cp ; /* a column pointer */ Int deg ; /* degree of a row or column */ Int *cp_end ; /* a pointer to the end of a column */ Int *new_cp ; /* new column pointer */ Int col_length ; /* length of pruned column */ Int score ; /* current column score */ Int n_col2 ; /* number of non-dense, non-empty columns */ Int n_row2 ; /* number of non-dense, non-empty rows */ Int dense_row_count ; /* remove rows with more entries than this */ Int dense_col_count ; /* remove cols with more entries than this */ Int min_score ; /* smallest column score */ Int max_deg ; /* maximum row degree */ Int next_col ; /* Used to add to degree list.*/ /* ------------------ */ /* added for UMFPACK */ Int ndense_row ; /* number of dense rows */ Int nempty_row ; /* number of empty rows */ Int nnewlyempty_row ; /* number of newly empty rows */ Int ndense_col ; /* number of dense cols (excl "empty" cols) */ Int nempty_col ; /* number of original empty cols */ Int nnewlyempty_col ; /* number of newly empty cols */ Int ne ; /* ------------------ */ #ifndef NDEBUG Int debug_count ; /* debug only. */ #endif /* NDEBUG */ /* === Extract knobs ==================================================== */ /* --------------------- */ /* old dense row/column knobs: dense_row_count = MAX (0, MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ; dense_col_count = MAX (0, MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ; */ /* new, for UMFPACK: */ /* Note: if knobs contains a NaN, this is undefined: */ dense_row_count = UMFPACK_DENSE_DEGREE_THRESHOLD (knobs [COLAMD_DENSE_ROW], n_col) ; dense_col_count = UMFPACK_DENSE_DEGREE_THRESHOLD (knobs [COLAMD_DENSE_COL], n_row) ; /* Make sure dense_*_count is between 0 and n: */ dense_row_count = MAX (0, MIN (dense_row_count, n_col)) ; dense_col_count = MAX (0, MIN (dense_col_count, n_row)) ; /* --------------------- */ DEBUG1 (("colamd: densecount: "ID" "ID"\n", dense_row_count, dense_col_count)) ; max_deg = 0 ; n_col2 = n_col ; n_row2 = n_row ; /* --------------------- */ /* added for UMFPACK */ ndense_col = 0 ; nempty_col = 0 ; nnewlyempty_col = 0 ; ndense_row = 0 ; nempty_row = 0 ; nnewlyempty_row = 0 ; /* --------------------- */ /* === Kill empty columns =============================================== */ /* removed for UMFPACK v4.1. prune_singletons has already removed empty * columns and empty rows */ #if 0 /* Put the empty columns at the end in their natural order, so that LU */ /* factorization can proceed as far as possible. */ for (c = n_col-1 ; c >= 0 ; c--) { deg = Col [c].length ; if (deg == 0) { /* this is a empty column, kill and order it last */ Col [c].shared2.order = --n_col2 ; KILL_PRINCIPAL_COL (c) ; /* --------------------- */ /* added for UMFPACK */ nempty_col++ ; /* --------------------- */ } } DEBUG1 (("colamd: null columns killed: "ID"\n", n_col - n_col2)) ; #endif #ifndef NDEBUG for (c = 0 ; c < n_col ; c++) { ASSERT (Col [c].length > 0) ; } #endif /* === Count null rows ================================================== */ #if 0 for (r = 0 ; r < n_row ; r++) { deg = Row [r].shared1.degree ; if (deg == 0) { /* this is an original empty row */ nempty_row++ ; } } #endif #ifndef NDEBUG for (r = 0 ; r < n_row ; r++) { ASSERT (Row [r].shared1.degree > 0) ; ASSERT (Row [r].length > 0) ; } #endif /* === Kill dense columns =============================================== */ /* Put the dense columns at the end, in their natural order */ for (c = n_col-1 ; c >= 0 ; c--) { /* ----------------------------------------------------------------- */ #if 0 /* removed for UMFPACK v4.1: no empty columns */ /* skip any dead columns */ if (COL_IS_DEAD (c)) { continue ; } #endif ASSERT (COL_IS_ALIVE (c)) ; ASSERT (Col [c].length > 0) ; /* ----------------------------------------------------------------- */ deg = Col [c].length ; if (deg > dense_col_count) { /* this is a dense column, kill and order it last */ Col [c].shared2.order = --n_col2 ; /* --------------------- */ /* added for UMFPACK */ ndense_col++ ; /* --------------------- */ /* decrement the row degrees */ cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { Row [*cp++].shared1.degree-- ; } KILL_PRINCIPAL_COL (c) ; } } DEBUG1 (("colamd: Dense and null columns killed: "ID"\n", n_col - n_col2)) ; /* === Kill dense and empty rows ======================================== */ /* Note that there can now be empty rows, since dense columns have * been deleted. These are "newly" empty rows. */ ne = 0 ; for (r = 0 ; r < n_row ; r++) { deg = Row [r].shared1.degree ; ASSERT (deg >= 0 && deg <= n_col) ; /* --------------------- */ /* added for UMFPACK */ if (deg > dense_row_count) { /* There is at least one dense row. Continue ordering, but */ /* symbolic factorization will be redone after UMF_colamd is done.*/ ndense_row++ ; } if (deg == 0) { /* this is a newly empty row, or original empty row */ ne++ ; } /* --------------------- */ if (deg > dense_row_count || deg == 0) { /* kill a dense or empty row */ KILL_ROW (r) ; /* --------------------- */ /* added for UMFPACK */ Row [r].thickness = 0 ; /* --------------------- */ --n_row2 ; } else { /* keep track of max degree of remaining rows */ max_deg = MAX (max_deg, deg) ; } } nnewlyempty_row = ne - nempty_row ; DEBUG1 (("colamd: Dense rows killed: "ID"\n", ndense_row)) ; DEBUG1 (("colamd: Dense and null rows killed: "ID"\n", n_row - n_row2)) ; /* === Compute initial column scores ==================================== */ /* At this point the row degrees are accurate. They reflect the number */ /* of "live" (non-dense) columns in each row. No empty rows exist. */ /* Some "live" columns may contain only dead rows, however. These are */ /* pruned in the code below. */ /* now find the initial matlab score for each column */ for (c = n_col-1 ; c >= 0 ; c--) { /* skip dead column */ if (COL_IS_DEAD (c)) { continue ; } score = 0 ; cp = &A [Col [c].start] ; new_cp = cp ; cp_end = cp + Col [c].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; /* skip if dead */ if (ROW_IS_DEAD (row)) { continue ; } /* compact the column */ *new_cp++ = row ; /* add row's external degree */ score += Row [row].shared1.degree - 1 ; /* guard against integer overflow */ score = MIN (score, n_col) ; } /* determine pruned column length */ col_length = (Int) (new_cp - &A [Col [c].start]) ; if (col_length == 0) { /* a newly-made null column (all rows in this col are "dense" */ /* and have already been killed) */ DEBUG2 (("Newly null killed: "ID"\n", c)) ; Col [c].shared2.order = --n_col2 ; KILL_PRINCIPAL_COL (c) ; /* --------------------- */ /* added for UMFPACK */ nnewlyempty_col++ ; /* --------------------- */ } else { /* set column length and set score */ ASSERT (score >= 0) ; ASSERT (score <= n_col) ; Col [c].length = col_length ; Col [c].shared2.score = score ; } } DEBUG1 (("colamd: Dense, null, and newly-null columns killed: "ID"\n", n_col-n_col2)) ; /* At this point, all empty rows and columns are dead. All live columns */ /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ /* yet). Rows may contain dead columns, but all live rows contain at */ /* least one live column. */ #ifndef NDEBUG debug_structures (n_row, n_col, Row, Col, A, n_col2) ; #endif /* NDEBUG */ /* === Initialize degree lists ========================================== */ #ifndef NDEBUG debug_count = 0 ; #endif /* NDEBUG */ /* clear the hash buckets */ for (c = 0 ; c <= n_col ; c++) { head [c] = EMPTY ; } min_score = n_col ; /* place in reverse order, so low column indices are at the front */ /* of the lists. This is to encourage natural tie-breaking */ for (c = n_col-1 ; c >= 0 ; c--) { /* only add principal columns to degree lists */ if (COL_IS_ALIVE (c)) { DEBUG4 (("place "ID" score "ID" minscore "ID" ncol "ID"\n", c, Col [c].shared2.score, min_score, n_col)) ; /* === Add columns score to DList =============================== */ score = Col [c].shared2.score ; ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (score >= 0) ; ASSERT (score <= n_col) ; ASSERT (head [score] >= EMPTY) ; /* now add this column to dList at proper score location */ next_col = head [score] ; Col [c].shared3.prev = EMPTY ; Col [c].shared4.degree_next = next_col ; /* if there already was a column with the same score, set its */ /* previous pointer to this new column */ if (next_col != EMPTY) { Col [next_col].shared3.prev = c ; } head [score] = c ; /* see if this score is less than current min */ min_score = MIN (min_score, score) ; #ifndef NDEBUG debug_count++ ; #endif /* NDEBUG */ } } #ifndef NDEBUG DEBUG1 (("colamd: Live cols "ID" out of "ID", non-princ: "ID"\n", debug_count, n_col, n_col-debug_count)) ; ASSERT (debug_count == n_col2) ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ; #endif /* NDEBUG */ /* === Return number of remaining columns, and max row degree =========== */ *p_n_col2 = n_col2 ; *p_n_row2 = n_row2 ; *p_max_deg = max_deg ; /* --------------------- */ /* added for UMFPACK */ *p_ndense_row = ndense_row ; *p_nempty_row = nempty_row ; /* original empty rows */ *p_nnewlyempty_row = nnewlyempty_row ; *p_ndense_col = ndense_col ; *p_nempty_col = nempty_col ; /* original empty cols */ *p_nnewlyempty_col = nnewlyempty_col ; /* --------------------- */ } /* ========================================================================== */ /* === find_ordering ======================================================== */ /* ========================================================================== */ /* Order the principal columns of the supercolumn form of the matrix (no supercolumns on input). Uses a minimum approximate column minimum degree ordering method. Not user-callable. */ PRIVATE Int find_ordering /* return the number of garbage collections */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Int Alen, /* size of A, 2*nnz + n_col or larger */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* column form and row form of A */ Int head [], /* of size n_col+1 */ Int n_col2, /* Remaining columns to order */ Int max_deg, /* Maximum row degree */ Int pfree /* index of first free slot (2*nnz on entry) */ /* ------------------ */ /* added for UMFPACK: */ , Int Front_npivcol [ ] , Int Front_nrows [ ] , Int Front_ncols [ ] , Int Front_parent [ ] , Int Front_cols [ ] , Int *p_nfr /* number of fronts */ , Int aggressive , Int InFront [ ] /* ------------------ */ ) { /* === Local variables ================================================== */ Int k ; /* current pivot ordering step */ Int pivot_col ; /* current pivot column */ Int *cp ; /* a column pointer */ Int *rp ; /* a row pointer */ Int pivot_row ; /* current pivot row */ Int *new_cp ; /* modified column pointer */ Int *new_rp ; /* modified row pointer */ Int pivot_row_start ; /* pointer to start of pivot row */ Int pivot_row_degree ; /* number of columns in pivot row */ Int pivot_row_length ; /* number of supercolumns in pivot row */ Int pivot_col_score ; /* score of pivot column */ Int needed_memory ; /* free space needed for pivot row */ Int *cp_end ; /* pointer to the end of a column */ Int *rp_end ; /* pointer to the end of a row */ Int row ; /* a row index */ Int col ; /* a column index */ Int max_score ; /* maximum possible score */ Int cur_score ; /* score of current column */ unsigned Int hash ; /* hash value for supernode detection */ Int head_column ; /* head of hash bucket */ Int first_col ; /* first column in hash bucket */ Int tag_mark ; /* marker value for mark array */ Int row_mark ; /* Row [row].shared2.mark */ Int set_difference ; /* set difference size of row with pivot row */ Int min_score ; /* smallest column score */ Int col_thickness ; /* "thickness" (no. of columns in a supercol) */ Int max_mark ; /* maximum value of tag_mark */ Int pivot_col_thickness ; /* number of columns represented by pivot col */ Int prev_col ; /* Used by Dlist operations. */ Int next_col ; /* Used by Dlist operations. */ Int ngarbage ; /* number of garbage collections performed */ #ifndef NDEBUG Int debug_d ; /* debug loop counter */ Int debug_step = 0 ; /* debug loop counter */ #endif /* NDEBUG */ /* ------------------ */ /* added for UMFPACK: */ Int pivot_row_thickness ; /* number of rows represented by pivot row */ Int nfr = 0 ; /* number of fronts */ Int child ; /* ------------------ */ /* === Initialization and clear mark ==================================== */ max_mark = MAX_MARK (n_col) ; /* defined in umfpack.h */ tag_mark = clear_mark (n_row, Row) ; min_score = 0 ; ngarbage = 0 ; DEBUG1 (("colamd: Ordering, n_col2="ID"\n", n_col2)) ; for (row = 0 ; row < n_row ; row++) { InFront [row] = EMPTY ; } /* === Order the columns ================================================ */ for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) { #ifndef NDEBUG if (debug_step % 100 == 0) { DEBUG2 (("\n... Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ; } else { DEBUG3 (("\n-----Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ; } debug_step++ ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k, max_deg) ; debug_matrix (n_row, n_col, Row, Col, A) ; #endif /* NDEBUG */ /* === Select pivot column, and order it ============================ */ /* make sure degree list isn't empty */ ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (head [min_score] >= EMPTY) ; #ifndef NDEBUG for (debug_d = 0 ; debug_d < min_score ; debug_d++) { ASSERT (head [debug_d] == EMPTY) ; } #endif /* NDEBUG */ /* get pivot column from head of minimum degree list */ while (head [min_score] == EMPTY && min_score < n_col) { min_score++ ; } pivot_col = head [min_score] ; ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; next_col = Col [pivot_col].shared4.degree_next ; head [min_score] = next_col ; if (next_col != EMPTY) { Col [next_col].shared3.prev = EMPTY ; } ASSERT (COL_IS_ALIVE (pivot_col)) ; DEBUG3 (("Pivot col: "ID"\n", pivot_col)) ; /* remember score for defrag check */ pivot_col_score = Col [pivot_col].shared2.score ; /* the pivot column is the kth column in the pivot order */ Col [pivot_col].shared2.order = k ; /* increment order count by column thickness */ pivot_col_thickness = Col [pivot_col].shared1.thickness ; /* ------------------ */ /* changed for UMFPACK: */ k += pivot_col_thickness ; /* ------------------ */ ASSERT (pivot_col_thickness > 0) ; /* === Garbage_collection, if necessary ============================= */ needed_memory = MIN (pivot_col_score, n_col - k) ; if (pfree + needed_memory >= Alen) { pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; ngarbage++ ; /* after garbage collection we will have enough */ ASSERT (pfree + needed_memory < Alen) ; /* garbage collection has wiped out the Row[].shared2.mark array */ tag_mark = clear_mark (n_row, Row) ; #ifndef NDEBUG debug_matrix (n_row, n_col, Row, Col, A) ; #endif /* NDEBUG */ } /* === Compute pivot row pattern ==================================== */ /* get starting location for this new merged row */ pivot_row_start = pfree ; /* initialize new row counts to zero */ pivot_row_degree = 0 ; /* ------------------ */ /* added for UMFPACK: */ pivot_row_thickness = 0 ; /* ------------------ */ /* [ tag pivot column as having been visited so it isn't included */ /* in merged pivot row */ Col [pivot_col].shared1.thickness = -pivot_col_thickness ; /* pivot row is the union of all rows in the pivot column pattern */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; DEBUG4 (("Pivot col pattern %d "ID"\n", ROW_IS_ALIVE(row), row)) ; /* skip if row is dead */ if (ROW_IS_DEAD (row)) { continue ; } /* ------------------ */ /* added for UMFPACK: */ /* sum the thicknesses of all the rows */ /* ASSERT (Row [row].thickness > 0) ; */ pivot_row_thickness += Row [row].thickness ; /* ------------------ */ rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; /* add the column, if alive and untagged */ col_thickness = Col [col].shared1.thickness ; if (col_thickness > 0 && COL_IS_ALIVE (col)) { /* tag column in pivot row */ Col [col].shared1.thickness = -col_thickness ; ASSERT (pfree < Alen) ; /* place column in pivot row */ A [pfree++] = col ; pivot_row_degree += col_thickness ; /* ------------------ */ /* added for UMFPACK: */ DEBUG4 (("\t\t\tNew live column in pivot row: "ID"\n",col)); /* ------------------ */ } /* ------------------ */ /* added for UMFPACK */ #ifndef NDEBUG if (col_thickness < 0 && COL_IS_ALIVE (col)) { DEBUG4 (("\t\t\tOld live column in pivot row: "ID"\n",col)); } #endif /* ------------------ */ } } /* ------------------ */ /* added for UMFPACK: */ /* pivot_row_thickness is the number of rows in frontal matrix */ /* both pivotal rows and nonpivotal rows */ /* ------------------ */ /* clear tag on pivot column */ Col [pivot_col].shared1.thickness = pivot_col_thickness ; /* ] */ max_deg = MAX (max_deg, pivot_row_degree) ; #ifndef NDEBUG DEBUG3 (("check2\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* NDEBUG */ /* === Kill all rows used to construct pivot row ==================== */ /* also kill pivot row, temporarily */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* may be killing an already dead row */ row = *cp++ ; DEBUG2 (("Kill row in pivot col: "ID" alive? %d, front "ID"\n", row, ROW_IS_ALIVE (row), Row [row].front)) ; /* added for UMFPACK: */ if (ROW_IS_ALIVE (row)) { if (Row [row].front != EMPTY) { /* This row represents a frontal matrix. */ /* Row [row].front is a child of current front */ child = Row [row].front ; Front_parent [child] = nfr ; DEBUG1 (("Front "ID" => front "ID", normal\n", child, nfr)); } else { /* This is an original row. Keep track of which front * is its parent in the row-merge tree. */ InFront [row] = nfr ; DEBUG1 (("Row "ID" => front "ID", normal\n", row, nfr)) ; } } KILL_ROW (row) ; /* ------------------ */ /* added for UMFPACK: */ Row [row].thickness = 0 ; /* ------------------ */ } /* === Select a row index to use as the new pivot row =============== */ pivot_row_length = pfree - pivot_row_start ; if (pivot_row_length > 0) { /* pick the "pivot" row arbitrarily (first row in col) */ pivot_row = A [Col [pivot_col].start] ; DEBUG3 (("Pivotal row is "ID"\n", pivot_row)) ; } else { /* there is no pivot row, since it is of zero length */ pivot_row = EMPTY ; ASSERT (pivot_row_length == 0) ; } ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; /* === Approximate degree computation =============================== */ /* Here begins the computation of the approximate degree. The column */ /* score is the sum of the pivot row "length", plus the size of the */ /* set differences of each row in the column minus the pattern of the */ /* pivot row itself. The column ("thickness") itself is also */ /* excluded from the column score (we thus use an approximate */ /* external degree). */ /* The time taken by the following code (compute set differences, and */ /* add them up) is proportional to the size of the data structure */ /* being scanned - that is, the sum of the sizes of each column in */ /* the pivot row. Thus, the amortized time to compute a column score */ /* is proportional to the size of that column (where size, in this */ /* context, is the column "length", or the number of row indices */ /* in that column). The number of row indices in a column is */ /* monotonically non-decreasing, from the length of the original */ /* column on input to colamd. */ /* === Compute set differences ====================================== */ DEBUG3 (("** Computing set differences phase. **\n")) ; /* pivot row is currently dead - it will be revived later. */ DEBUG3 (("Pivot row: \n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; DEBUG3 ((" Col: "ID"\n", col)) ; /* clear tags used to construct pivot row pattern */ col_thickness = -Col [col].shared1.thickness ; ASSERT (col_thickness > 0) ; Col [col].shared1.thickness = col_thickness ; /* === Remove column from degree list =========================== */ cur_score = Col [col].shared2.score ; prev_col = Col [col].shared3.prev ; next_col = Col [col].shared4.degree_next ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (cur_score >= EMPTY) ; if (prev_col == EMPTY) { head [cur_score] = next_col ; } else { Col [prev_col].shared4.degree_next = next_col ; } if (next_col != EMPTY) { Col [next_col].shared3.prev = prev_col ; } /* === Scan the column ========================================== */ cp = &A [Col [col].start] ; cp_end = cp + Col [col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { continue ; } ASSERT (row != pivot_row) ; set_difference = row_mark - tag_mark ; /* check if the row has been seen yet */ if (set_difference < 0) { ASSERT (Row [row].shared1.degree <= max_deg) ; set_difference = Row [row].shared1.degree ; } /* subtract column thickness from this row's set difference */ set_difference -= col_thickness ; ASSERT (set_difference >= 0) ; ASSERT (ROW_IS_ALIVE (row)) ; /* absorb this row if the set difference becomes zero */ if (set_difference == 0 && aggressive) { /* v4.1: do aggressive absorption */ DEBUG3 (("aggressive absorption. Row: "ID"\n", row)) ; if (Row [row].front != EMPTY) { /* Row [row].front is a child of current front. */ child = Row [row].front ; Front_parent [child] = nfr ; DEBUG1 (("Front "ID" => front "ID", aggressive\n", child, nfr)) ; } else { /* this is an original row. Keep track of which front * assembles it, for the row-merge tree */ InFront [row] = nfr ; DEBUG1 (("Row "ID" => front "ID", aggressive\n", row, nfr)) ; } KILL_ROW (row) ; /* sum the thicknesses of all the rows */ /* ASSERT (Row [row].thickness > 0) ; */ pivot_row_thickness += Row [row].thickness ; Row [row].thickness = 0 ; } else { /* save the new mark */ Row [row].shared2.mark = set_difference + tag_mark ; } } } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k-pivot_row_degree, max_deg) ; #endif /* NDEBUG */ /* === Add up set differences for each column ======================= */ DEBUG3 (("** Adding set differences phase. **\n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; hash = 0 ; cur_score = 0 ; cp = &A [Col [col].start] ; /* compact the column */ new_cp = cp ; cp_end = cp + Col [col].length ; DEBUG4 (("Adding set diffs for Col: "ID".\n", col)) ; while (cp < cp_end) { /* get a row */ row = *cp++ ; ASSERT(row >= 0 && row < n_row) ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { /* ------------------ */ /* changed for UMFPACK: */ DEBUG4 ((" Row "ID", dead\n", row)) ; /* ------------------ */ continue ; } /* ------------------ */ /* changed for UMFPACK: */ /* ASSERT (row_mark > tag_mark) ; */ DEBUG4 ((" Row "ID", set diff "ID"\n", row, row_mark-tag_mark)); ASSERT (row_mark >= tag_mark) ; /* ------------------ */ /* compact the column */ *new_cp++ = row ; /* compute hash function */ hash += row ; /* add set difference */ cur_score += row_mark - tag_mark ; /* integer overflow... */ cur_score = MIN (cur_score, n_col) ; } /* recompute the column's length */ Col [col].length = (Int) (new_cp - &A [Col [col].start]) ; /* === Further mass elimination ================================= */ if (Col [col].length == 0) { DEBUG4 (("further mass elimination. Col: "ID"\n", col)) ; /* nothing left but the pivot row in this column */ KILL_PRINCIPAL_COL (col) ; pivot_row_degree -= Col [col].shared1.thickness ; ASSERT (pivot_row_degree >= 0) ; /* order it */ Col [col].shared2.order = k ; /* increment order count by column thickness */ k += Col [col].shared1.thickness ; /* ------------------ */ /* added for UMFPACK: */ pivot_col_thickness += Col [col].shared1.thickness ; /* add to column list of front ... */ #ifndef NDEBUG DEBUG1 (("Mass")) ; dump_super (col, Col, n_col) ; #endif Col [Col [col].lastcol].nextcol = Front_cols [nfr] ; Front_cols [nfr] = col ; /* ------------------ */ } else { /* === Prepare for supercolumn detection ==================== */ DEBUG4 (("Preparing supercol detection for Col: "ID".\n", col)); /* save score so far */ Col [col].shared2.score = cur_score ; /* add column to hash table, for supercolumn detection */ /* NOTE: hash is an unsigned Int to avoid a problem in ANSI C. * The sign of the expression a % b is not defined when a and/or * b are negative. Since hash is unsigned and n_col >= 0, * this problem is avoided. */ hash %= n_col + 1 ; DEBUG4 ((" Hash = "ID", n_col = "ID".\n", (Int) hash, n_col)) ; ASSERT (((Int) hash) <= n_col) ; head_column = head [hash] ; if (head_column > EMPTY) { /* degree list "hash" is non-empty, use prev (shared3) of */ /* first column in degree list as head of hash bucket */ first_col = Col [head_column].shared3.headhash ; Col [head_column].shared3.headhash = col ; } else { /* degree list "hash" is empty, use head as hash bucket */ first_col = - (head_column + 2) ; head [hash] = - (col + 2) ; } Col [col].shared4.hash_next = first_col ; /* save hash function in Col [col].shared3.hash */ Col [col].shared3.hash = (Int) hash ; ASSERT (COL_IS_ALIVE (col)) ; } } /* The approximate external column degree is now computed. */ /* === Supercolumn detection ======================================== */ DEBUG3 (("** Supercolumn detection phase. **\n")) ; detect_super_cols ( #ifndef NDEBUG n_col, Row, #endif /* NDEBUG */ Col, A, head, pivot_row_start, pivot_row_length) ; /* === Kill the pivotal column ====================================== */ KILL_PRINCIPAL_COL (pivot_col) ; /* ------------------ */ /* added for UMFPACK: */ /* add columns to column list of front */ #ifndef NDEBUG DEBUG1 (("Pivot")) ; dump_super (pivot_col, Col, n_col) ; #endif Col [Col [pivot_col].lastcol].nextcol = Front_cols [nfr] ; Front_cols [nfr] = pivot_col ; /* ------------------ */ /* === Clear mark =================================================== */ tag_mark += (max_deg + 1) ; if (tag_mark >= max_mark) { DEBUG2 (("clearing tag_mark\n")) ; tag_mark = clear_mark (n_row, Row) ; } #ifndef NDEBUG DEBUG3 (("check3\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* NDEBUG */ /* === Finalize the new pivot row, and column scores ================ */ DEBUG3 (("** Finalize scores phase. **\n")) ; DEBUG3 (("pivot_row_degree "ID"\n", pivot_row_degree)) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; /* compact the pivot row */ new_rp = rp ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; DEBUG3 (("Col "ID" \n", col)) ; /* skip dead columns */ if (COL_IS_DEAD (col)) { DEBUG3 (("dead\n")) ; continue ; } *new_rp++ = col ; /* add new pivot row to column */ A [Col [col].start + (Col [col].length++)] = pivot_row ; /* retrieve score so far and add on pivot row's degree. */ /* (we wait until here for this in case the pivot */ /* row's degree was reduced due to mass elimination). */ cur_score = Col [col].shared2.score + pivot_row_degree ; DEBUG3 ((" cur_score "ID" ", cur_score)) ; /* calculate the max possible score as the number of */ /* external columns minus the 'k' value minus the */ /* columns thickness */ max_score = n_col - k - Col [col].shared1.thickness ; DEBUG3 ((" max_score "ID" ", max_score)) ; /* make the score the external degree of the union-of-rows */ cur_score -= Col [col].shared1.thickness ; DEBUG3 ((" cur_score "ID" ", cur_score)) ; /* make sure score is less or equal than the max score */ cur_score = MIN (cur_score, max_score) ; ASSERT (cur_score >= 0) ; /* store updated score */ Col [col].shared2.score = cur_score ; DEBUG3 ((" "ID"\n", cur_score)) ; /* === Place column back in degree list ========================= */ ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (head [cur_score] >= EMPTY) ; next_col = head [cur_score] ; Col [col].shared4.degree_next = next_col ; Col [col].shared3.prev = EMPTY ; if (next_col != EMPTY) { Col [next_col].shared3.prev = col ; } head [cur_score] = col ; /* see if this score is less than current min */ min_score = MIN (min_score, cur_score) ; } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k, max_deg) ; #endif /* NDEBUG */ /* ------------------ */ /* added for UMFPACK: */ /* frontal matrix can have more pivot cols than pivot rows for */ /* singular matrices. */ /* number of candidate pivot columns */ Front_npivcol [nfr] = pivot_col_thickness ; /* all rows (not just size of contrib. block) */ Front_nrows [nfr] = pivot_row_thickness ; /* all cols */ Front_ncols [nfr] = pivot_col_thickness + pivot_row_degree ; Front_parent [nfr] = EMPTY ; pivot_row_thickness -= pivot_col_thickness ; DEBUG1 (("Front "ID" Pivot_row_thickness after pivot cols elim: "ID"\n", nfr, pivot_row_thickness)) ; pivot_row_thickness = MAX (0, pivot_row_thickness) ; /* ------------------ */ /* === Resurrect the new pivot row ================================== */ if (pivot_row_degree > 0 /* ------------------ */ /* added for UMFPACK. Note that this part of the expression should be * removed if this routine is used outside of UMFPACK, for a Cholesky * factorization of (AQ)'(AQ) */ && pivot_row_thickness > 0 /* ------------------ */ ) { /* update pivot row length to reflect any cols that were killed */ /* during super-col detection and mass elimination */ Row [pivot_row].start = pivot_row_start ; Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ; ASSERT (Row [pivot_row].length > 0) ; Row [pivot_row].shared1.degree = pivot_row_degree ; Row [pivot_row].shared2.mark = 0 ; /* ------------------ */ /* added for UMFPACK: */ Row [pivot_row].thickness = pivot_row_thickness ; Row [pivot_row].front = nfr ; /* ------------------ */ /* pivot row is no longer dead */ } /* ------------------ */ /* added for UMFPACK: */ #ifndef NDEBUG DEBUG1 (("Front "ID" : "ID" "ID" "ID" ", nfr, Front_npivcol [nfr], Front_nrows [nfr], Front_ncols [nfr])) ; DEBUG1 ((" cols:[ ")) ; debug_d = 0 ; for (col = Front_cols [nfr] ; col != EMPTY ; col = Col [col].nextcol) { DEBUG1 ((" "ID, col)) ; ASSERT (col >= 0 && col < n_col) ; ASSERT (COL_IS_DEAD (col)) ; debug_d++ ; ASSERT (debug_d <= pivot_col_thickness) ; } ASSERT (debug_d == pivot_col_thickness) ; DEBUG1 ((" ]\n ")) ; #endif nfr++ ; /* one more front */ /* ------------------ */ } /* === All principal columns have now been ordered ====================== */ /* ------------------ */ /* added for UMFPACK: */ *p_nfr = nfr ; /* ------------------ */ return (ngarbage) ; } /* ========================================================================== */ /* === order_children deleted for UMFPACK =================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === detect_super_cols ==================================================== */ /* ========================================================================== */ /* Detects supercolumns by finding matches between columns in the hash buckets. Check amongst columns in the set A [row_start ... row_start + row_length-1]. The columns under consideration are currently *not* in the degree lists, and have already been placed in the hash buckets. The hash bucket for columns whose hash function is equal to h is stored as follows: if head [h] is >= 0, then head [h] contains a degree list, so: head [h] is the first column in degree bucket h. Col [head [h]].headhash gives the first column in hash bucket h. otherwise, the degree list is empty, and: -(head [h] + 2) is the first column in hash bucket h. For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous column" pointer. Col [c].shared3.hash is used instead as the hash number for that column. The value of Col [c].shared4.hash_next is the next column in the same hash bucket. Assuming no, or "few" hash collisions, the time taken by this routine is linear in the sum of the sizes (lengths) of each column whose score has just been computed in the approximate degree computation. Not user-callable. */ PRIVATE void detect_super_cols ( /* === Parameters ======================================================= */ #ifndef NDEBUG /* these two parameters are only needed when debugging is enabled: */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ #endif /* NDEBUG */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* row indices of A */ Int head [], /* head of degree lists and hash buckets */ Int row_start, /* pointer to set of columns to check */ Int row_length /* number of columns to check */ ) { /* === Local variables ================================================== */ Int hash ; /* hash value for a column */ Int *rp ; /* pointer to a row */ Int c ; /* a column index */ Int super_c ; /* column index of the column to absorb into */ Int *cp1 ; /* column pointer for column super_c */ Int *cp2 ; /* column pointer for column c */ Int length ; /* length of column super_c */ Int prev_c ; /* column preceding c in hash bucket */ Int i ; /* loop counter */ Int *rp_end ; /* pointer to the end of the row */ Int col ; /* a column index in the row to check */ Int head_column ; /* first column in hash bucket or degree list */ Int first_col ; /* first column in hash bucket */ /* === Consider each column in the row ================================== */ rp = &A [row_start] ; rp_end = rp + row_length ; while (rp < rp_end) { col = *rp++ ; if (COL_IS_DEAD (col)) { continue ; } /* get hash number for this column */ hash = Col [col].shared3.hash ; ASSERT (hash <= n_col) ; /* === Get the first column in this hash bucket ===================== */ head_column = head [hash] ; if (head_column > EMPTY) { first_col = Col [head_column].shared3.headhash ; } else { first_col = - (head_column + 2) ; } /* === Consider each column in the hash bucket ====================== */ for (super_c = first_col ; super_c != EMPTY ; super_c = Col [super_c].shared4.hash_next) { ASSERT (COL_IS_ALIVE (super_c)) ; ASSERT (Col [super_c].shared3.hash == hash) ; length = Col [super_c].length ; /* prev_c is the column preceding column c in the hash bucket */ prev_c = super_c ; /* === Compare super_c with all columns after it ================ */ for (c = Col [super_c].shared4.hash_next ; c != EMPTY ; c = Col [c].shared4.hash_next) { ASSERT (c != super_c) ; ASSERT (COL_IS_ALIVE (c)) ; ASSERT (Col [c].shared3.hash == hash) ; /* not identical if lengths or scores are different */ if (Col [c].length != length || Col [c].shared2.score != Col [super_c].shared2.score) { prev_c = c ; continue ; } /* compare the two columns */ cp1 = &A [Col [super_c].start] ; cp2 = &A [Col [c].start] ; for (i = 0 ; i < length ; i++) { /* the columns are "clean" (no dead rows) */ ASSERT (ROW_IS_ALIVE (*cp1)) ; ASSERT (ROW_IS_ALIVE (*cp2)) ; /* row indices will same order for both supercols, */ /* no gather scatter nessasary */ if (*cp1++ != *cp2++) { break ; } } /* the two columns are different if the for-loop "broke" */ if (i != length) { prev_c = c ; continue ; } /* === Got it! two columns are identical =================== */ ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; Col [super_c].shared1.thickness += Col [c].shared1.thickness ; Col [c].shared1.parent = super_c ; KILL_NON_PRINCIPAL_COL (c) ; Col [c].shared2.order = EMPTY ; /* remove c from hash bucket */ Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; /* ------------------ */ /* added for UMFPACK: */ /* add c to end of list of super_c */ ASSERT (Col [super_c].lastcol >= 0) ; ASSERT (Col [super_c].lastcol < n_col) ; Col [Col [super_c].lastcol].nextcol = c ; Col [super_c].lastcol = Col [c].lastcol ; #ifndef NDEBUG /* dump the supercolumn */ DEBUG1 (("Super")) ; dump_super (super_c, Col, n_col) ; #endif /* ------------------ */ } } /* === Empty this hash bucket ======================================= */ if (head_column > EMPTY) { /* corresponding degree list "hash" is not empty */ Col [head_column].shared3.headhash = EMPTY ; } else { /* corresponding degree list "hash" is empty */ head [hash] = EMPTY ; } } } /* ========================================================================== */ /* === garbage_collection =================================================== */ /* ========================================================================== */ /* Defragments and compacts columns and rows in the workspace A. Used when all avaliable memory has been used while performing row merging. Returns the index of the first free position in A, after garbage collection. The time taken by this routine is linear is the size of the array A, which is itself linear in the number of nonzeros in the input matrix. Not user-callable. */ PRIVATE Int garbage_collection /* returns the new value of pfree */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows */ Int n_col, /* number of columns */ Colamd_Row Row [], /* row info */ Colamd_Col Col [], /* column info */ Int A [], /* A [0 ... Alen-1] holds the matrix */ Int *pfree /* &A [0] ... pfree is in use */ ) { /* === Local variables ================================================== */ Int *psrc ; /* source pointer */ Int *pdest ; /* destination pointer */ Int j ; /* counter */ Int r ; /* a row index */ Int c ; /* a column index */ Int length ; /* length of a row or column */ #ifndef NDEBUG Int debug_rows ; DEBUG2 (("Defrag..\n")) ; for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ; debug_rows = 0 ; #endif /* NDEBUG */ /* === Defragment the columns =========================================== */ pdest = &A[0] ; for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { psrc = &A [Col [c].start] ; /* move and compact the column */ ASSERT (pdest <= psrc) ; Col [c].start = (Int) (pdest - &A [0]) ; length = Col [c].length ; for (j = 0 ; j < length ; j++) { r = *psrc++ ; if (ROW_IS_ALIVE (r)) { *pdest++ = r ; } } Col [c].length = (Int) (pdest - &A [Col [c].start]) ; } } /* === Prepare to defragment the rows =================================== */ for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { if (Row [r].length == 0) { /* :: defrag row kill :: */ /* This row is of zero length. cannot compact it, so kill it. * NOTE: in the current version, there are no zero-length live * rows when garbage_collection is called. So this code will * never trigger. However, if the code is modified, or if * garbage_collection is called at a different place, then rows * can be of zero length. So this test is kept, just in case. */ DEBUGm4 (("Defrag row kill\n")) ; KILL_ROW (r) ; } else { /* save first column index in Row [r].shared2.first_column */ psrc = &A [Row [r].start] ; Row [r].shared2.first_column = *psrc ; ASSERT (ROW_IS_ALIVE (r)) ; /* flag the start of the row with the one's complement of row */ *psrc = ONES_COMPLEMENT (r) ; #ifndef NDEBUG debug_rows++ ; #endif /* NDEBUG */ } } } /* === Defragment the rows ============================================== */ psrc = pdest ; while (psrc < pfree) { /* find a negative number ... the start of a row */ if (*psrc++ < 0) { psrc-- ; /* get the row index */ r = ONES_COMPLEMENT (*psrc) ; ASSERT (r >= 0 && r < n_row) ; /* restore first column index */ *psrc = Row [r].shared2.first_column ; ASSERT (ROW_IS_ALIVE (r)) ; /* move and compact the row */ ASSERT (pdest <= psrc) ; Row [r].start = (Int) (pdest - &A [0]) ; length = Row [r].length ; for (j = 0 ; j < length ; j++) { c = *psrc++ ; if (COL_IS_ALIVE (c)) { *pdest++ = c ; } } Row [r].length = (Int) (pdest - &A [Row [r].start]) ; #ifndef NDEBUG debug_rows-- ; #endif /* NDEBUG */ } } /* ensure we found all the rows */ ASSERT (debug_rows == 0) ; /* === Return the new value of pfree ==================================== */ return ((Int) (pdest - &A [0])) ; } /* ========================================================================== */ /* === clear_mark =========================================================== */ /* ========================================================================== */ /* Clears the Row [].shared2.mark array, and returns the new tag_mark. Return value is the new tag_mark. Not user-callable. */ PRIVATE Int clear_mark /* return the new value for tag_mark */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows in A */ Colamd_Row Row [] /* Row [0 ... n-1].shared2.mark is set to zero */ ) { /* === Local variables ================================================== */ Int r ; for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { Row [r].shared2.mark = 0 ; } } /* ------------------ */ return (1) ; /* ------------------ */ } /* ========================================================================== */ /* === print_report removed for UMFPACK ===================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === colamd debugging routines ============================================ */ /* ========================================================================== */ /* When debugging is disabled, the remainder of this file is ignored. */ #ifndef NDEBUG /* ========================================================================== */ /* === debug_structures ===================================================== */ /* ========================================================================== */ /* At this point, all empty rows and columns are dead. All live columns are "clean" (containing no dead rows) and simplicial (no supercolumns yet). Rows may contain dead columns, but all live rows contain at least one live column. */ PRIVATE void debug_structures ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int n_col2 ) { /* === Local variables ================================================== */ Int i ; Int c ; Int *cp ; Int *cp_end ; Int len ; Int score ; Int r ; Int *rp ; Int *rp_end ; Int deg ; /* === Check A, Row, and Col ============================================ */ for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { len = Col [c].length ; score = Col [c].shared2.score ; DEBUG4 (("initial live col "ID" "ID" "ID"\n", c, len, score)) ; ASSERT (len > 0) ; ASSERT (score >= 0) ; ASSERT (Col [c].shared1.thickness == 1) ; cp = &A [Col [c].start] ; cp_end = cp + len ; while (cp < cp_end) { r = *cp++ ; ASSERT (ROW_IS_ALIVE (r)) ; } } else { i = Col [c].shared2.order ; ASSERT (i >= n_col2 && i < n_col) ; } } for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { i = 0 ; len = Row [r].length ; deg = Row [r].shared1.degree ; ASSERT (len > 0) ; ASSERT (deg > 0) ; rp = &A [Row [r].start] ; rp_end = rp + len ; while (rp < rp_end) { c = *rp++ ; if (COL_IS_ALIVE (c)) { i++ ; } } ASSERT (i > 0) ; } } } /* ========================================================================== */ /* === debug_deg_lists ====================================================== */ /* ========================================================================== */ /* Prints the contents of the degree lists. Counts the number of columns in the degree list and compares it to the total it should have. Also checks the row degrees. */ PRIVATE void debug_deg_lists ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int head [], Int min_score, Int should, Int max_deg ) { /* === Local variables ================================================== */ Int deg ; Int col ; Int have ; Int row ; /* === Check the degree lists =========================================== */ if (n_col > 10000 && UMF_debug <= 0) { return ; } have = 0 ; DEBUG4 (("Degree lists: "ID"\n", min_score)) ; for (deg = 0 ; deg <= n_col ; deg++) { col = head [deg] ; if (col == EMPTY) { continue ; } DEBUG4 ((ID":", deg)) ; while (col != EMPTY) { DEBUG4 ((" "ID, col)) ; have += Col [col].shared1.thickness ; ASSERT (COL_IS_ALIVE (col)) ; col = Col [col].shared4.degree_next ; } DEBUG4 (("\n")) ; } DEBUG4 (("should "ID" have "ID"\n", should, have)) ; ASSERT (should == have) ; /* === Check the row degrees ============================================ */ if (n_row > 10000 && UMF_debug <= 0) { return ; } for (row = 0 ; row < n_row ; row++) { if (ROW_IS_ALIVE (row)) { ASSERT (Row [row].shared1.degree <= max_deg) ; } } } /* ========================================================================== */ /* === debug_mark =========================================================== */ /* ========================================================================== */ /* Ensures that the tag_mark is less that the maximum and also ensures that each entry in the mark array is less than the tag mark. */ PRIVATE void debug_mark ( /* === Parameters ======================================================= */ Int n_row, Colamd_Row Row [], Int tag_mark, Int max_mark ) { /* === Local variables ================================================== */ Int r ; /* === Check the Row marks ============================================== */ ASSERT (tag_mark > 0 && tag_mark <= max_mark) ; if (n_row > 10000 && UMF_debug <= 0) { return ; } for (r = 0 ; r < n_row ; r++) { ASSERT (Row [r].shared2.mark < tag_mark) ; } } /* ========================================================================== */ /* === debug_matrix ========================================================= */ /* ========================================================================== */ /* Prints out the contents of the columns and the rows. */ PRIVATE void debug_matrix ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [] ) { /* === Local variables ================================================== */ Int r ; Int c ; Int *rp ; Int *rp_end ; Int *cp ; Int *cp_end ; /* === Dump the rows and columns of the matrix ========================== */ if (UMF_debug < 3) { return ; } DEBUG3 (("DUMP MATRIX:\n")) ; for (r = 0 ; r < n_row ; r++) { DEBUG3 (("Row "ID" alive? %d\n", r, ROW_IS_ALIVE (r))) ; if (ROW_IS_DEAD (r)) { continue ; } /* ------------------ */ /* changed for UMFPACK: */ DEBUG3 (("start "ID" length "ID" degree "ID" thickness "ID"\n", Row [r].start, Row [r].length, Row [r].shared1.degree, Row [r].thickness)) ; /* ------------------ */ rp = &A [Row [r].start] ; rp_end = rp + Row [r].length ; while (rp < rp_end) { c = *rp++ ; DEBUG4 ((" %d col "ID"\n", COL_IS_ALIVE (c), c)) ; } } for (c = 0 ; c < n_col ; c++) { DEBUG3 (("Col "ID" alive? %d\n", c, COL_IS_ALIVE (c))) ; if (COL_IS_DEAD (c)) { continue ; } /* ------------------ */ /* changed for UMFPACK: */ DEBUG3 (("start "ID" length "ID" shared1[thickness,parent] "ID " shared2 [order,score] "ID"\n", Col [c].start, Col [c].length, Col [c].shared1.thickness, Col [c].shared2.score)); /* ------------------ */ cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { r = *cp++ ; DEBUG4 ((" %d row "ID"\n", ROW_IS_ALIVE (r), r)) ; } /* ------------------ */ /* added for UMFPACK: */ DEBUG1 (("Col")) ; dump_super (c, Col, n_col) ; /* ------------------ */ } } /* ------------------ */ /* dump_super added for UMFPACK: */ PRIVATE void dump_super ( Int super_c, Colamd_Col Col [], Int n_col ) { Int col, ncols ; DEBUG1 ((" =[ ")) ; ncols = 0 ; for (col = super_c ; col != EMPTY ; col = Col [col].nextcol) { DEBUG1 ((" "ID, col)) ; ASSERT (col >= 0 && col < n_col) ; if (col != super_c) { ASSERT (COL_IS_DEAD (col)) ; } if (Col [col].nextcol == EMPTY) { ASSERT (col == Col [super_c].lastcol) ; } ncols++ ; ASSERT (ncols <= Col [super_c].shared1.thickness) ; } ASSERT (ncols == Col [super_c].shared1.thickness) ; DEBUG1 (("]\n")) ; } /* ------------------ */ #endif /* NDEBUG */ SuiteSparse/UMFPACK/Source/umf_colamd.h0000644001170100242450000002175710617161444016574 0ustar davisfac/* ========================================================================== */ /* === umf_colamd.h ========================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Authors: The authors of the COLAMD code itself are Stefan I. Larimore and Timothy A. Davis, University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Date: UMFPACK Version: see above. COLAMD Version 2.0 was released on January 31, 2000. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. UMFPACK: Copyright (c) 2003 by Timothy A. Davis. All Rights Reserved. See the UMFPACK README file for the License for your use of this code. Availability: Both UMFPACK and the original unmodified colamd/symamd library are available at http://www.cise.ufl.edu/research/sparse. */ #ifndef COLAMD_H #define COLAMD_H /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include /* ========================================================================== */ /* === Knob and statistics definitions ====================================== */ /* ========================================================================== */ /* size of the knobs [ ] array. Only knobs [0..2] are currently used. */ #define COLAMD_KNOBS 20 /* number of output statistics. Only stats [0..8] are currently used. */ #define COLAMD_STATS 20 /* knobs [0] and stats [0]: dense row knob and output statistic. */ #define COLAMD_DENSE_ROW 0 /* knobs [1] and stats [1]: dense column knob and output statistic. */ #define COLAMD_DENSE_COL 1 /* knobs [2]: aggressive absorption option */ #define COLAMD_AGGRESSIVE 2 /* stats [2]: memory defragmentation count output statistic */ #define COLAMD_DEFRAG_COUNT 2 /* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */ #define COLAMD_STATUS 3 /* stats [4..6]: error info, or info on jumbled columns */ #define COLAMD_INFO1 4 #define COLAMD_INFO2 5 #define COLAMD_INFO3 6 /* ------------------ */ /* added for UMFPACK: */ /* stats [7]: number of originally empty rows */ #define COLAMD_EMPTY_ROW 7 /* stats [8]: number of originally empty cols */ #define COLAMD_EMPTY_COL 8 /* stats [9]: number of rows with entries only in dense cols */ #define COLAMD_NEWLY_EMPTY_ROW 9 /* stats [10]: number of cols with entries only in dense rows */ #define COLAMD_NEWLY_EMPTY_COL 10 /* ------------------ */ /* error codes returned in stats [3]: */ #define COLAMD_OK (0) #define COLAMD_ERROR_jumbled_matrix (-11) #define COLAMD_ERROR_A_not_present (-1) #define COLAMD_ERROR_p_not_present (-2) #define COLAMD_ERROR_nrow_negative (-3) #define COLAMD_ERROR_ncol_negative (-4) #define COLAMD_ERROR_nnz_negative (-5) #define COLAMD_ERROR_p0_nonzero (-6) #define COLAMD_ERROR_A_too_small (-7) #define COLAMD_ERROR_col_length_negative (-8) #define COLAMD_ERROR_row_index_out_of_bounds (-9) #define COLAMD_ERROR_out_of_memory (-10) #define COLAMD_ERROR_internal_error (-999) /* ========================================================================== */ /* === Row and Column structures ============================================ */ /* ========================================================================== */ /* User code that makes use of the colamd/symamd routines need not directly */ /* reference these structures. They are used only for the COLAMD_RECOMMENDED */ /* macro. */ typedef struct Colamd_Col_struct { Int start ; /* index for A of first row in this column, or DEAD */ /* if column is dead */ Int length ; /* number of rows in this column */ union { Int thickness ; /* number of original columns represented by this */ /* col, if the column is alive */ Int parent ; /* parent in parent tree super-column structure, if */ /* the column is dead */ } shared1 ; union { Int score ; /* the score used to maintain heap, if col is alive */ Int order ; /* pivot ordering of this column, if col is dead */ } shared2 ; union { Int headhash ; /* head of a hash bucket, if col is at the head of */ /* a degree list */ Int hash ; /* hash value, if col is not in a degree list */ Int prev ; /* previous column in degree list, if col is in a */ /* degree list (but not at the head of a degree list) */ } shared3 ; union { Int degree_next ; /* next column, if col is in a degree list */ Int hash_next ; /* next column, if col is in a hash list */ } shared4 ; /* ------------------ */ /* added for UMFPACK: */ Int nextcol ; /* next column in this supercolumn */ Int lastcol ; /* last column in this supercolumn */ /* ------------------ */ } Colamd_Col ; typedef struct Colamd_Row_struct { Int start ; /* index for A of first col in this row */ Int length ; /* number of principal columns in this row */ union { Int degree ; /* number of principal & non-principal columns in row */ Int p ; /* used as a row pointer in init_rows_cols () */ } shared1 ; union { Int mark ; /* for computing set differences and marking dead rows*/ Int first_column ;/* first column in row (used in garbage collection) */ } shared2 ; /* ------------------ */ /* added for UMFPACK: */ Int thickness ; /* number of original rows represented by this row */ /* that are not yet pivotal */ Int front ; /* -1 if an original row */ /* k if this row represents the kth frontal matrix */ /* where k goes from 0 to at most n_col-1 */ /* ------------------ */ } Colamd_Row ; /* ========================================================================== */ /* === Colamd recommended memory size ======================================= */ /* ========================================================================== */ /* The recommended length Alen of the array A passed to colamd is given by the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any argument is negative. 2*nnz space is required for the row and column indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is required for the Col and Row arrays, respectively, which are internal to colamd. An additional n_col space is the minimal amount of "elbow room", and nnz/5 more space is recommended for run time efficiency. This macro is not needed when using symamd. */ /* about 8*(n_col+1) integers: */ #define UMF_COLAMD_C(n_col) ((n_col + 1) * sizeof (Colamd_Col) / sizeof (Int)) /* about 6*(n_row+1) integers: */ #define UMF_COLAMD_R(n_row) ((n_row + 1) * sizeof (Colamd_Row) / sizeof (Int)) /* UMFPACK: make sure Alen is >= 5*n_col + size of Col and Row structures. * Alen is typically about 2.2*nz + 9*n_col + 6*n_row, or 2.2nz+15n for * square matrices. */ #define UMF_COLAMD_RECOMMENDED(nnz, n_row, n_col) \ ( \ ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) \ ? \ (-1) \ : \ (MAX (2 * (nnz), 4 * (n_col)) + \ (Int) UMF_COLAMD_C (n_col) + \ (Int) UMF_COLAMD_R (n_row) + (n_col) + ((nnz) / 5)) \ ) /* ========================================================================== */ /* === Prototypes of user-callable routines ================================= */ /* ========================================================================== */ /* colamd_recommended removed for UMFPACK */ void UMF_colamd_set_defaults /* sets default parameters */ ( /* knobs argument is modified on output */ double knobs [COLAMD_KNOBS] /* parameter settings for colamd */ ) ; Int UMF_colamd /* returns (1) if successful, (0) otherwise*/ ( /* A and p arguments are modified on output */ Int n_row, /* number of rows in A */ Int n_col, /* number of columns in A */ Int Alen, /* size of the array A */ Int A [], /* row indices of A, of size Alen */ Int p [], /* column pointers of A, of size n_col+1 */ double knobs [COLAMD_KNOBS],/* parameter settings for colamd */ Int stats [COLAMD_STATS] /* colamd output statistics and error codes */ /* ------------------ */ /* added for UMFPACK: */ , Int Front_npivcol [ ] , Int Front_nrows [ ] , Int Front_ncols [ ] , Int Front_parent [ ] , Int Front_cols [ ] , Int *p_nfr , Int InFront [ ] /* ------------------ */ ) ; /* symamd deleted for UMFPACK */ /* colamd_report deleted for UMFPACK */ /* symamd_report deleted for UMFPACK */ #endif /* COLAMD_H */ SuiteSparse/UMFPACK/Source/umfpack_report_vector.c0000644001170100242450000000231710617162142021047 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_vector ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints a real or complex vector. See umfpack_report_vector.h for details. */ #include "umf_internal.h" #include "umf_report_vector.h" GLOBAL Int UMFPACK_report_vector ( Int n, const double Xx [ ], #ifdef COMPLEX const double Xz [ ], #endif const double Control [UMFPACK_CONTROL] ) { Int prl ; #ifndef COMPLEX double *Xz = (double *) NULL ; #endif prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } return (UMF_report_vector (n, Xx, Xz, prl, TRUE, FALSE)) ; } SuiteSparse/UMFPACK/Source/umfpack_free_numeric.c0000644001170100242450000000360610617162040020614 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_free_numeric ================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Free the entire Numeric object (consists of 11 to 13 * malloc'd objects. See UMFPACK_free_numeric.h for details. */ #include "umf_internal.h" #include "umf_free.h" GLOBAL void UMFPACK_free_numeric ( void **NumericHandle ) { NumericType *Numeric ; if (!NumericHandle) { return ; } Numeric = *((NumericType **) NumericHandle) ; if (!Numeric) { return ; } /* these 9 objects always exist */ (void) UMF_free ((void *) Numeric->D) ; (void) UMF_free ((void *) Numeric->Rperm) ; (void) UMF_free ((void *) Numeric->Cperm) ; (void) UMF_free ((void *) Numeric->Lpos) ; (void) UMF_free ((void *) Numeric->Lilen) ; (void) UMF_free ((void *) Numeric->Lip) ; (void) UMF_free ((void *) Numeric->Upos) ; (void) UMF_free ((void *) Numeric->Uilen) ; (void) UMF_free ((void *) Numeric->Uip) ; /* Rs does not exist if scaling was not performed */ (void) UMF_free ((void *) Numeric->Rs) ; /* Upattern can only exist for singular or rectangular matrices */ (void) UMF_free ((void *) Numeric->Upattern) ; /* these 2 objects always exist */ (void) UMF_free ((void *) Numeric->Memory) ; (void) UMF_free ((void *) Numeric) ; *NumericHandle = (void *) NULL ; } SuiteSparse/UMFPACK/Source/umf_lsolve.c0000644001170100242450000001022410677541674016634 0ustar davisfac/* ========================================================================== */ /* === UMF_lsolve =========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* solves Lx = b, where L is the lower triangular factor of a matrix */ /* B is overwritten with the solution X. */ /* Returns the floating point operation count */ #include "umf_internal.h" #include "umf_lsolve.h" GLOBAL double UMF_lsolve ( NumericType *Numeric, Entry X [ ], /* b on input, solution x on output */ Int Pattern [ ] /* a work array of size n */ ) { Entry xk ; Entry *xp, *Lval ; Int k, deg, *ip, j, row, *Lpos, *Lilen, *Lip, llen, lp, newLchain, pos, npiv, n1, *Li ; /* ---------------------------------------------------------------------- */ if (Numeric->n_row != Numeric->n_col) return (0.) ; npiv = Numeric->npiv ; Lpos = Numeric->Lpos ; Lilen = Numeric->Lilen ; Lip = Numeric->Lip ; n1 = Numeric->n1 ; #ifndef NDEBUG DEBUG4 (("Lsolve start:\n")) ; for (j = 0 ; j < Numeric->n_row ; j++) { DEBUG4 (("Lsolve start "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } #endif /* ---------------------------------------------------------------------- */ /* singletons */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; xk = X [k] ; deg = Lilen [k] ; if (deg > 0 && IS_NONZERO (xk)) { lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Li [j], k)) ; EDEBUG4 (Lval [j]) ; DEBUG4 (("\n")) ; /* X [Li [j]] -= xk * Lval [j] ; */ MULT_SUB (X [Li [j]], xk, Lval [j]) ; } } } /* ---------------------------------------------------------------------- */ /* rest of L */ /* ---------------------------------------------------------------------- */ deg = 0 ; for (k = n1 ; k < npiv ; k++) { /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; } /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (!newLchain) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k) ; Pattern [deg++] = row ; } /* ------------------------------------------------------------------ */ /* use column k of L */ /* ------------------------------------------------------------------ */ xk = X [k] ; if (IS_NONZERO (xk)) { xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; EDEBUG4 (*xp) ; DEBUG4 (("\n")) ; /* X [Pattern [j]] -= xk * (*xp) ; */ MULT_SUB (X [Pattern [j]], xk, *xp) ; xp++ ; } } } #ifndef NDEBUG for (j = 0 ; j < Numeric->n_row ; j++) { DEBUG4 (("Lsolve done "ID": ", j)) ; EDEBUG4 (X [j]) ; DEBUG4 (("\n")) ; } DEBUG4 (("Lsolve done.\n")) ; #endif return (MULTSUB_FLOPS * ((double) Numeric->lnz)) ; } SuiteSparse/UMFPACK/Source/umf_lsolve.h0000644001170100242450000000076410617161712016632 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL double UMF_lsolve ( NumericType *Numeric, Entry X [ ], Int Pattern [ ] ) ; SuiteSparse/UMFPACK/Source/umf_tuple_lengths.c0000644001170100242450000001054010677542460020200 0ustar davisfac/* ========================================================================== */ /* === UMF_tuple_lengths ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Determine the tuple list lengths, and the amount of memory required for */ /* them. Return the amount of memory needed to store all the tuples. */ /* This routine assumes that the tuple lists themselves are either already */ /* deallocated, or will be shortly (so Row[ ].tlen and Col[ ].tlen are */ /* overwritten) */ #include "umf_internal.h" #include "umf_tuple_lengths.h" GLOBAL Int UMF_tuple_lengths /* return memory usage */ ( NumericType *Numeric, WorkType *Work, double *p_dusage /* output argument */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double dusage ; Int e, nrows, ncols, nel, i, *Rows, *Cols, row, col, n_row, n_col, *E, *Row_degree, *Row_tlen, *Col_degree, *Col_tlen, usage, n1 ; Element *ep ; Unit *p ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ E = Work->E ; Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro only */ Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro only */ Row_tlen = Numeric->Uilen ; Col_tlen = Numeric->Lilen ; n_row = Work->n_row ; n_col = Work->n_col ; n1 = Work->n1 ; nel = Work->nel ; DEBUG3 (("TUPLE_LENGTHS: n_row "ID" n_col "ID" nel "ID"\n", n_row, n_col, nel)) ; ASSERT (nel < Work->elen) ; /* tuple list lengths already initialized to zero */ /* ---------------------------------------------------------------------- */ /* scan each element: count tuple list lengths (include element 0) */ /* ---------------------------------------------------------------------- */ for (e = 1 ; e <= nel ; e++) /* for all elements, in any order */ { if (E [e]) { #ifndef NDEBUG UMF_dump_element (Numeric, Work, e, FALSE) ; #endif p = Numeric->Memory + E [e] ; GET_ELEMENT_PATTERN (ep, p, Cols, Rows, ncols) ; nrows = ep->nrows ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; ASSERT (row == EMPTY || (row >= n1 && row < n_row)) ; if (row >= n1) { ASSERT (NON_PIVOTAL_ROW (row)) ; Row_tlen [row] ++ ; } } for (i = 0 ; i < ncols ; i++) { col = Cols [i] ; ASSERT (col == EMPTY || (col >= n1 && col < n_col)) ; if (col >= n1) { ASSERT (NON_PIVOTAL_COL (col)) ; Col_tlen [col] ++ ; } } } } /* note: tuple lengths are now modified, but the tuple lists are not */ /* updated to reflect that fact. */ /* ---------------------------------------------------------------------- */ /* determine the required memory to hold all the tuple lists */ /* ---------------------------------------------------------------------- */ DEBUG0 (("UMF_build_tuples_usage\n")) ; usage = 0 ; dusage = 0 ; ASSERT (Col_tlen && Col_degree) ; for (col = n1 ; col < n_col ; col++) { if (NON_PIVOTAL_COL (col)) { usage += 1 + UNITS (Tuple, TUPLES (Col_tlen [col])) ; dusage += 1 + DUNITS (Tuple, TUPLES (Col_tlen [col])) ; DEBUG0 ((" col: "ID" tlen "ID" usage so far: "ID"\n", col, Col_tlen [col], usage)) ; } } ASSERT (Row_tlen && Row_degree) ; for (row = n1 ; row < n_row ; row++) { if (NON_PIVOTAL_ROW (row)) { usage += 1 + UNITS (Tuple, TUPLES (Row_tlen [row])) ; dusage += 1 + DUNITS (Tuple, TUPLES (Row_tlen [row])) ; DEBUG0 ((" row: "ID" tlen "ID" usage so far: "ID"\n", row, Row_tlen [row], usage)) ; } } DEBUG0 (("UMF_build_tuples_usage "ID" %g\n", usage, dusage)) ; *p_dusage = dusage ; return (usage) ; } SuiteSparse/UMFPACK/Source/umf_tuple_lengths.h0000644001170100242450000000077210617162467020212 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_tuple_lengths ( NumericType *Numeric, WorkType *Work, double *dusage ) ; SuiteSparse/UMFPACK/Source/umf_config.h0000644001170100242450000002762710617161450016601 0ustar davisfac/* ========================================================================== */ /* === umf_config.h ========================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* This file controls the compile-time configuration of UMFPACK. Modify the UFconfig/UFconfig.mk file and this file if necessary, to control these options. The following flags may be given as options to your C compiler (as in "cc -DNSUNPERF", for example). These flags are normally placed in your UMFPACK_CONFIG string, defined in the UFconfig/UFconfig.mk file. All of these options, except for the timer, are for accessing the BLAS. -DNSUNPERF Applies only to Sun Solaris. If -DNSUNPERF is set, then the Sun Performance Library BLAS will not be used. The Sun Performance Library BLAS is used by default when compiling the C-callable libumfpack.a library on Sun Solaris. -DLONGBLAS -DNPOSIX If -DNPOSIX is set, then your Unix operating system is not POSIX- compliant, and the POSIX routines sysconf ( ) and times ( ) routines are not used. These routines provide CPU time and wallclock time information. If -DNPOSIX is set, then the ANSI C clock ( ) routine is used. If -DNPOSIX is not set, then sysconf ( ) and times ( ) are used in umfpack_tic and umfpack_toc. See umfpack_tictoc.c for more information. The default is to use the POSIX routines, except for Windows, which is not POSIX-compliant. -DGETRUSAGE If -DGETRUSAGE is set, then your system's getrusage ( ) routine will be used for getting the process CPU time. Otherwise the ANSI C clock ( ) routine will be used. The default is to use getrusage ( ) on Unix systems, and to use clock on all other architectures. -DNO_TIMER If -DNO_TIMER is set, then no timing routines are used at all. -DNRECIPROCAL This option controls a tradeoff between speed and accuracy. Using -DNRECIPROCAL can lead to more accurate results, but with perhaps some cost in performance, particularly if floating-point division is much more costly than floating-point multiplication. This option determines the method used to scale the pivot column. If set, or if the absolute value of the pivot is < 1e-12 (or is a NaN), then the pivot column is divided by the pivot value. Otherwise, the reciprocal of the pivot value is computed, and the pivot column is multiplied by (1/pivot). Multiplying by the reciprocal can be slightly less accurate than dividing by the pivot, but it is often faster. See umf_scale.c. This has a small effect on the performance of UMFPACK, at least on a Pentium 4M. It may have a larger effect on other architectures where floating-point division is much more costly than floating- point multiplication. The RS 6000 is one such example. By default, the method chosen is to multiply by the reciprocal (sacrificing accuracy for speed), except when compiling UMFPACK as a built-in routine in MATLAB, or when gcc is being used. When MATHWORKS is defined, -DNRECIPROCAL is forced on, and the pivot column is divided by the pivot value. The only way of using the other method in this case is to edit this file. If -DNRECIPROCAL is enabled, then the row scaling factors are always applied by dividing each row by the scale factor, rather than multiplying by the reciprocal. If -DNRECIPROCAL is not enabled (the default case), then the scale factors are normally applied by multiplying by the reciprocal. If, however, the smallest scale factor is tiny, then the scale factors are applied via division. -DNO_DIVIDE_BY_ZERO If the pivot is zero, and this flag is set, then no divide-by-zero occurs. The following options are controlled by amd_internal.h: -DMATLAB_MEX_FILE This flag is turned on when compiling the umfpack mexFunction for use in MATLAB. The -DNRECIPROCAL flag is forced on (more accurate, slightly slower). The umfpack mexFunction always returns L*U = P*(R\A)*Q. -DMATHWORKS This flag is turned on when compiling umfpack as a built-in routine in MATLAB. The -DNRECIPROCAL flag is forced on. -DNDEBUG Debugging mode (if NDEBUG is not defined). The default, of course, is no debugging. Turning on debugging takes some work (see below). If you do not edit this file, then debugging is turned off anyway, regardless of whether or not -DNDEBUG is specified in your compiler options. */ /* ========================================================================== */ /* === AMD configuration ==================================================== */ /* ========================================================================== */ /* NDEBUG, PRINTF defined in amd_internal.h */ /* ========================================================================== */ /* === reciprocal option ==================================================== */ /* ========================================================================== */ /* Force the definition NRECIPROCAL when MATHWORKS or MATLAB_MEX_FILE * are defined. Do not multiply by the reciprocal in those cases. */ #ifndef NRECIPROCAL #if defined (MATHWORKS) || defined (MATLAB_MEX_FILE) #define NRECIPROCAL #endif #endif /* ========================================================================== */ /* === Microsoft Windows configuration ====================================== */ /* ========================================================================== */ #if defined (UMF_WINDOWS) || defined (UMF_MINGW) /* Windows isn't Unix. Profound. */ #define NPOSIX #endif /* ========================================================================== */ /* === 0-based or 1-based printing ========================================== */ /* ========================================================================== */ #if defined (MATLAB_MEX_FILE) && defined (NDEBUG) /* In MATLAB, matrices are 1-based to the user, but 0-based internally. */ /* One is added to all row and column indices when printing matrices */ /* for the MATLAB user. The +1 shift is turned off when debugging. */ #define INDEX(i) ((i)+1) #else /* In ANSI C, matrices are 0-based and indices are reported as such. */ /* This mode is also used for debug mode, and if MATHWORKS is defined rather */ /* than MATLAB_MEX_FILE. */ #define INDEX(i) (i) #endif /* ========================================================================== */ /* === Timer ================================================================ */ /* ========================================================================== */ /* If you have the getrusage routine (all Unix systems I've test do), then use that. Otherwise, use the ANSI C clock function. Note that on many systems, the ANSI clock function wraps around after only 2147 seconds, or about 36 minutes. BE CAREFUL: if you compare the run time of UMFPACK with other sparse matrix packages, be sure to use the same timer. See umfpack_tictoc.c for the timer used internally by UMFPACK. See also umfpack_timer.c for the timer used in an earlier version of UMFPACK. That timer is still available as a user-callable routine, but it is no longer used internally by UMFPACK. */ /* Sun Solaris, SGI Irix, Linux, Compaq Alpha, and IBM RS 6000 all have */ /* getrusage. It's in BSD unix, so perhaps all unix systems have it. */ #if defined (UMF_SOL2) || defined (UMF_SGI) || defined (UMF_LINUX) \ || defined (UMF_ALPHA) || defined (UMF_AIX) || defined (UMF_CYGWIN) #define GETRUSAGE #endif /* ========================================================================== */ /* === BLAS ================================================================= */ /* ========================================================================== */ #include "cholmod_blas.h" /* -------------------------------------------------------------------------- */ /* DGEMM */ /* -------------------------------------------------------------------------- */ /* C = C - A*B', where: * A is m-by-k with leading dimension ldac * B is k-by-n with leading dimension ldb * C is m-by-n with leading dimension ldac */ #ifdef COMPLEX #define BLAS_GEMM(m,n,k,A,B,ldb,C,ldac) \ { \ double alpha [2] = {-1,0}, beta [2] = {1,0} ; \ BLAS_zgemm ("N", "T", m, n, k, alpha, (double *) A, ldac, \ (double *) B, ldb, beta, (double *) C, ldac) ; \ } #else #define BLAS_GEMM(m,n,k,A,B,ldb,C,ldac) \ { \ double alpha = -1, beta = 1 ; \ BLAS_dgemm ("N", "T", m, n, k, &alpha, A, ldac, B, ldb, &beta, C, ldac) ; \ } #endif /* -------------------------------------------------------------------------- */ /* GER */ /* -------------------------------------------------------------------------- */ /* A = A - x*y', where: * A is m-by-n with leading dimension d x is a column vector with stride 1 y is a column vector with stride 1 */ #ifdef COMPLEX #define BLAS_GER(m,n,x,y,A,d) \ { \ double alpha [2] = {-1,0} ; \ BLAS_zgeru (m, n, alpha, (double *) x, 1, (double *) y, 1, \ (double *) A, d) ; \ } #else #define BLAS_GER(m,n,x,y,A,d) \ { \ double alpha = -1 ; \ BLAS_dger (m, n, &alpha, x, 1, y, 1, A, d) ; \ } #endif /* -------------------------------------------------------------------------- */ /* GEMV */ /* -------------------------------------------------------------------------- */ /* y = y - A*x, where A is m-by-n with leading dimension d, x is a column vector with stride 1 y is a column vector with stride 1 */ #ifdef COMPLEX #define BLAS_GEMV(m,n,A,x,y,d) \ { \ double alpha [2] = {-1,0}, beta [2] = {1,0} ; \ BLAS_zgemv ("N", m, n, alpha, (double *) A, d, (double *) x, 1, beta, \ (double *) y, 1) ; \ } #else #define BLAS_GEMV(m,n,A,x,y,d) \ { \ double alpha = -1, beta = 1 ; \ BLAS_dgemv ("N", m, n, &alpha, A, d, x, 1, &beta, y, 1) ; \ } #endif /* -------------------------------------------------------------------------- */ /* TRSV */ /* -------------------------------------------------------------------------- */ /* solve Lx=b, where: * B is a column vector (m-by-1) with leading dimension d * A is m-by-m with leading dimension d */ #ifdef COMPLEX #define BLAS_TRSV(m,A,b,d) \ { \ BLAS_ztrsv ("L", "N", "U", m, (double *) A, d, (double *) b, 1) ; \ } #else #define BLAS_TRSV(m,A,b,d) \ { \ BLAS_dtrsv ("L", "N", "U", m, A, d, b, 1) ; \ } #endif /* -------------------------------------------------------------------------- */ /* TRSM */ /* -------------------------------------------------------------------------- */ /* solve XL'=B where: * B is m-by-n with leading dimension ldb * A is n-by-n with leading dimension lda */ #ifdef COMPLEX #define BLAS_TRSM_RIGHT(m,n,A,lda,B,ldb) \ { \ double alpha [2] = {1,0} ; \ BLAS_ztrsm ("R", "L", "T", "U", m, n, alpha, (double *) A, lda, \ (double *) B, ldb) ; \ } #else #define BLAS_TRSM_RIGHT(m,n,A,lda,B,ldb) \ { \ double alpha = 1 ; \ BLAS_dtrsm ("R", "L", "T", "U", m, n, &alpha, A, lda, B, ldb) ; \ } #endif /* -------------------------------------------------------------------------- */ /* SCAL */ /* -------------------------------------------------------------------------- */ /* x = s*x, where x is a stride-1 vector of length n */ #ifdef COMPLEX #define BLAS_SCAL(n,s,x) \ { \ double alpha [2] ; \ alpha [0] = REAL_COMPONENT (s) ; \ alpha [1] = IMAG_COMPONENT (s) ; \ BLAS_zscal (n, alpha, (double *) x, 1) ; \ } #else #define BLAS_SCAL(n,s,x) \ { \ double alpha = REAL_COMPONENT (s) ; \ BLAS_dscal (n, &alpha, (double *) x, 1) ; \ } #endif SuiteSparse/UMFPACK/Source/umfpack_qsymbolic.c0000644001170100242450000023226010617162101020151 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_qsymbolic ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Performs a symbolic factorization. See umfpack_qsymbolic.h and umfpack_symbolic.h for details. Dynamic memory usage: about (3.4nz + 8n + n) integers and n double's as workspace (via UMF_malloc, for a square matrix). All of it is free'd via UMF_free if an error occurs. If successful, the Symbolic object contains 12 to 14 objects allocated by UMF_malloc, with a total size of no more than about 13*n integers. */ #include "umf_internal.h" #include "umf_symbolic_usage.h" #include "umf_colamd.h" #include "umf_set_stats.h" #include "umf_analyze.h" #include "umf_transpose.h" #include "umf_is_permutation.h" #include "umf_malloc.h" #include "umf_free.h" #include "umf_2by2.h" #include "umf_singletons.h" typedef struct /* SWType */ { Int *Front_npivcol ; /* size n_col + 1 */ Int *Front_nrows ; /* size n_col */ Int *Front_ncols ; /* size n_col */ Int *Front_parent ; /* size n_col */ Int *Front_cols ; /* size n_col */ Int *InFront ; /* size n_row */ Int *Ci ; /* size Clen */ Int *Cperm1 ; /* size n_col */ Int *Rperm1 ; /* size n_row */ Int *InvRperm1 ; /* size n_row */ Int *Si ; /* size nz */ Int *Sp ; /* size n_col + 1 */ double *Rs ; /* size n_row */ Int *Rperm_2by2 ; /* size n_row */ } SWType ; PRIVATE void free_work ( SWType *SW ) ; PRIVATE void error ( SymbolicType **Symbolic, SWType *SW ) ; /* worst-case usage for SW object */ #define SYM_WORK_USAGE(n_col,n_row,Clen) \ (DUNITS (Int, Clen) + \ DUNITS (Int, nz) + \ 4 * DUNITS (Int, n_row) + \ 4 * DUNITS (Int, n_col) + \ 2 * DUNITS (Int, n_col + 1) + \ DUNITS (double, n_row)) /* required size of Ci for code that calls UMF_transpose and UMF_analyze below*/ #define UMF_ANALYZE_CLEN(nz,n_row,n_col,nn) \ ((n_col) + MAX ((nz),(n_col)) + 3*(nn)+1 + (n_col)) /* size of an element (in Units), including tuples */ #define ELEMENT_SIZE(r,c) \ (DGET_ELEMENT_SIZE (r, c) + 1 + (r + c) * UNITS (Tuple, 1)) #ifndef NDEBUG PRIVATE Int init_count ; #endif /* ========================================================================== */ /* === do_amd =============================================================== */ /* ========================================================================== */ PRIVATE void do_amd ( Int n, const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ Int Q [ ], /* output permutation, j = Q [k] */ Int Qinv [ ], /* output inverse permutation, Qinv [j] = k */ Int Sdeg [ ], /* degree of A+A', from AMD_aat */ Int Clen, /* size of Ci */ Int Ci [ ], /* size Ci workspace */ double amd_Control [ ], /* AMD control parameters */ double amd_Info [ ], /* AMD info */ SymbolicType *Symbolic, /* Symbolic object */ double Info [ ] /* UMFPACK info */ ) { if (n == 0) { Symbolic->amd_dmax = 0 ; Symbolic->amd_lunz = 0 ; Info [UMFPACK_SYMMETRIC_LUNZ] = 0 ; Info [UMFPACK_SYMMETRIC_FLOPS] = 0 ; Info [UMFPACK_SYMMETRIC_DMAX] = 0 ; Info [UMFPACK_SYMMETRIC_NDENSE] = 0 ; } else { AMD_1 (n, Ap, Ai, Q, Qinv, Sdeg, Clen, Ci, amd_Control, amd_Info) ; /* return estimates computed from AMD on PA+PA' */ Symbolic->amd_dmax = amd_Info [AMD_DMAX] ; Symbolic->amd_lunz = 2 * amd_Info [AMD_LNZ] + n ; Info [UMFPACK_SYMMETRIC_LUNZ] = Symbolic->amd_lunz ; Info [UMFPACK_SYMMETRIC_FLOPS] = DIV_FLOPS * amd_Info [AMD_NDIV] + MULTSUB_FLOPS * amd_Info [AMD_NMULTSUBS_LU] ; Info [UMFPACK_SYMMETRIC_DMAX] = Symbolic->amd_dmax ; Info [UMFPACK_SYMMETRIC_NDENSE] = amd_Info [AMD_NDENSE] ; Info [UMFPACK_SYMBOLIC_DEFRAG] += amd_Info [AMD_NCMPA] ; } } /* ========================================================================== */ /* === prune_singletons ===================================================== */ /* ========================================================================== */ /* Create the submatrix after removing the n1 singletons. The matrix has * row and column indices in the range 0 to n_row-n1 and 0 to n_col-n1, * respectively. */ PRIVATE Int prune_singletons ( Int n1, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif Int Cperm1 [ ], Int InvRperm1 [ ], Int Si [ ], Int Sp [ ] #ifndef NDEBUG , Int Rperm1 [ ] , Int n_row #endif ) { Int row, k, pp, p, oldcol, newcol, newrow, nzdiag, do_nzdiag ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif nzdiag = 0 ; do_nzdiag = (Ax != (double *) NULL) ; #ifndef NDEBUG DEBUGm4 (("Prune : S = A (Cperm1 (n1+1:end), Rperm1 (n1+1:end))\n")) ; for (k = 0 ; k < n_row ; k++) { ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n_row) ; ASSERT (InvRperm1 [Rperm1 [k]] == k) ; } #endif /* create the submatrix after removing singletons */ pp = 0 ; for (k = n1 ; k < n_col ; k++) { oldcol = Cperm1 [k] ; newcol = k - n1 ; DEBUG5 (("Prune singletons k "ID" oldcol "ID" newcol "ID": "ID"\n", k, oldcol, newcol, pp)) ; Sp [newcol] = pp ; /* load column pointers */ for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { row = Ai [p] ; DEBUG5 ((" "ID": row "ID, pp, row)) ; ASSERT (row >= 0 && row < n_row) ; newrow = InvRperm1 [row] - n1 ; ASSERT (newrow < n_row - n1) ; if (newrow >= 0) { DEBUG5 ((" newrow "ID, newrow)) ; Si [pp++] = newrow ; if (do_nzdiag) { /* count the number of truly nonzero entries on the * diagonal of S, excluding entries that are present, * but numerically zero */ if (newrow == newcol) { /* this is the diagonal entry */ #ifdef COMPLEX if (split) { if (SCALAR_IS_NONZERO (Ax [p]) || SCALAR_IS_NONZERO (Az [p])) { nzdiag++ ; } } else { if (SCALAR_IS_NONZERO (Ax [2*p ]) || SCALAR_IS_NONZERO (Ax [2*p+1])) { nzdiag++ ; } } #else if (SCALAR_IS_NONZERO (Ax [p])) { nzdiag++ ; } #endif } } } DEBUG5 (("\n")) ; } } Sp [n_col - n1] = pp ; return (nzdiag) ; } /* ========================================================================== */ /* === combine_ordering ===================================================== */ /* ========================================================================== */ PRIVATE void combine_ordering ( Int n1, Int nempty_col, Int n_col, Int Cperm_init [ ], /* output permutation */ Int Cperm1 [ ], /* singleton and empty column ordering */ Int Qinv [ ] /* Qinv from AMD or COLAMD */ ) { Int k, oldcol, newcol, knew ; /* combine the singleton ordering with Qinv */ #ifndef NDEBUG for (k = 0 ; k < n_col ; k++) { Cperm_init [k] = EMPTY ; } #endif for (k = 0 ; k < n1 ; k++) { DEBUG1 ((ID" Initial singleton: "ID"\n", k, Cperm1 [k])) ; Cperm_init [k] = Cperm1 [k] ; } for (k = n1 ; k < n_col - nempty_col ; k++) { /* this is a non-singleton column */ oldcol = Cperm1 [k] ; /* user's name for this column */ newcol = k - n1 ; /* Qinv's name for this column */ knew = Qinv [newcol] ; /* Qinv's ordering for this column */ knew += n1 ; /* shift order, after singletons */ DEBUG1 ((" k "ID" oldcol "ID" newcol "ID" knew "ID"\n", k, oldcol, newcol, knew)) ; ASSERT (knew >= 0 && knew < n_col - nempty_col) ; ASSERT (Cperm_init [knew] == EMPTY) ; Cperm_init [knew] = oldcol ; } for (k = n_col - nempty_col ; k < n_col ; k++) { Cperm_init [k] = Cperm1 [k] ; } #ifndef NDEBUG { Int *W = (Int *) malloc ((n_col + 1) * sizeof (Int)) ; ASSERT (UMF_is_permutation (Cperm_init, W, n_col, n_col)) ; free (W) ; } #endif } /* ========================================================================== */ /* === UMFPACK_qsymbolic ==================================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_qsymbolic ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif const Int Quser [ ], void **SymbolicHandle, const double Control [UMFPACK_CONTROL], double User_Info [UMFPACK_INFO] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double knobs [COLAMD_KNOBS], flops, f, r, c, force_fixQ, Info2 [UMFPACK_INFO], drow, dcol, dtail_usage, dlf, duf, dmax_usage, dhead_usage, dlnz, dunz, dmaxfrsize, dClen, dClen_analyze, sym, amd_Info [AMD_INFO], dClen_amd, dr, dc, cr, cc, cp, amd_Control [AMD_CONTROL], stats [2], tol ; double *Info ; Int i, nz, j, newj, status, f1, f2, maxnrows, maxncols, nfr, col, nchains, maxrows, maxcols, p, nb, nn, *Chain_start, *Chain_maxrows, *Chain_maxcols, *Front_npivcol, *Ci, Clen, colamd_stats [COLAMD_STATS], fpiv, n_inner, child, parent, *Link, row, *Front_parent, analyze_compactions, k, chain, is_sym, *Si, *Sp, n2, do_UMF_analyze, fpivcol, fallrows, fallcols, *InFront, *F1, snz, *Front_1strow, f1rows, kk, *Cperm_init, *Rperm_init, newrow, *InvRperm1, *Front_leftmostdesc, Clen_analyze, strategy, Clen_amd, fixQ, prefer_diagonal, nzdiag, nzaat, *Wq, *Sdeg, *Fr_npivcol, nempty, *Fr_nrows, *Fr_ncols, *Fr_parent, *Fr_cols, nempty_row, nempty_col, user_auto_strategy, fail, max_rdeg, head_usage, tail_usage, lnz, unz, esize, *Esize, rdeg, *Cdeg, *Rdeg, *Cperm1, *Rperm1, n1, oldcol, newcol, n1c, n1r, *Rperm_2by2, oldrow, dense_row_threshold, tlen, aggressive, scale, *Rp, *Ri ; SymbolicType *Symbolic ; SWType SWspace, *SW ; #ifndef NDEBUG UMF_dump_start ( ) ; init_count = UMF_malloc_count ; PRINTF (( "**** Debugging enabled (UMFPACK will be exceedingly slow!) *****************\n" )) ; #endif /* ---------------------------------------------------------------------- */ /* get the amount of time used by the process so far */ /* ---------------------------------------------------------------------- */ umfpack_tic (stats) ; /* ---------------------------------------------------------------------- */ /* get control settings and check input parameters */ /* ---------------------------------------------------------------------- */ drow = GET_CONTROL (UMFPACK_DENSE_ROW, UMFPACK_DEFAULT_DENSE_ROW) ; dcol = GET_CONTROL (UMFPACK_DENSE_COL, UMFPACK_DEFAULT_DENSE_COL) ; nb = GET_CONTROL (UMFPACK_BLOCK_SIZE, UMFPACK_DEFAULT_BLOCK_SIZE) ; strategy = GET_CONTROL (UMFPACK_STRATEGY, UMFPACK_DEFAULT_STRATEGY) ; tol = GET_CONTROL (UMFPACK_2BY2_TOLERANCE, UMFPACK_DEFAULT_2BY2_TOLERANCE) ; scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ; force_fixQ = GET_CONTROL (UMFPACK_FIXQ, UMFPACK_DEFAULT_FIXQ) ; AMD_defaults (amd_Control) ; amd_Control [AMD_DENSE] = GET_CONTROL (UMFPACK_AMD_DENSE, UMFPACK_DEFAULT_AMD_DENSE) ; aggressive = (GET_CONTROL (UMFPACK_AGGRESSIVE, UMFPACK_DEFAULT_AGGRESSIVE) != 0) ; amd_Control [AMD_AGGRESSIVE] = aggressive ; nb = MAX (2, nb) ; nb = MIN (nb, MAXNB) ; ASSERT (nb >= 0) ; if (nb % 2 == 1) nb++ ; /* make sure nb is even */ DEBUG0 (("UMFPACK_qsymbolic: nb = "ID" aggressive = "ID"\n", nb, aggressive)) ; tol = MAX (0.0, MIN (tol, 1.0)) ; if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX) { scale = UMFPACK_DEFAULT_SCALE ; } if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; } else { /* no Info array passed - use local one instead */ Info = Info2 ; } /* clear all of Info */ for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; Info [UMFPACK_STATUS] = UMFPACK_OK ; Info [UMFPACK_NROW] = n_row ; Info [UMFPACK_NCOL] = n_col ; Info [UMFPACK_SIZE_OF_UNIT] = (double) (sizeof (Unit)) ; Info [UMFPACK_SIZE_OF_INT] = (double) (sizeof (int)) ; Info [UMFPACK_SIZE_OF_LONG] = (double) (sizeof (UF_long)) ; Info [UMFPACK_SIZE_OF_POINTER] = (double) (sizeof (void *)) ; Info [UMFPACK_SIZE_OF_ENTRY] = (double) (sizeof (Entry)) ; Info [UMFPACK_SYMBOLIC_DEFRAG] = 0 ; if (!Ai || !Ap || !SymbolicHandle) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } *SymbolicHandle = (void *) NULL ; if (n_row <= 0 || n_col <= 0) /* n_row, n_col must be > 0 */ { Info [UMFPACK_STATUS] = UMFPACK_ERROR_n_nonpositive ; return (UMFPACK_ERROR_n_nonpositive) ; } nz = Ap [n_col] ; DEBUG0 (("n_row "ID" n_col "ID" nz "ID"\n", n_row, n_col, nz)) ; Info [UMFPACK_NZ] = nz ; if (nz < 0) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_matrix ; return (UMFPACK_ERROR_invalid_matrix) ; } /* ---------------------------------------------------------------------- */ /* get the requested strategy */ /* ---------------------------------------------------------------------- */ if (n_row != n_col) { /* if the matrix is rectangular, the only available strategy is * unsymmetric */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm3 (("Rectangular: forcing unsymmetric strategy\n")) ; } if (strategy < UMFPACK_STRATEGY_AUTO || strategy > UMFPACK_STRATEGY_SYMMETRIC) { /* unrecognized strategy */ strategy = UMFPACK_STRATEGY_AUTO ; } if (Quser != (Int *) NULL) { /* when the user provides Q, only symmetric and unsymmetric strategies * are available */ if (strategy == UMFPACK_STRATEGY_2BY2) { strategy = UMFPACK_STRATEGY_SYMMETRIC ; } if (strategy != UMFPACK_STRATEGY_SYMMETRIC) { strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } } user_auto_strategy = (strategy == UMFPACK_STRATEGY_AUTO) ; /* ---------------------------------------------------------------------- */ /* determine amount of memory required for UMFPACK_symbolic */ /* ---------------------------------------------------------------------- */ /* The size of Clen required for UMF_colamd is always larger than */ /* UMF_analyze, but the max is included here in case that changes in */ /* future versions. */ /* This is about 2.2*nz + 9*n_col + 6*n_row, or nz/5 + 13*n_col + 6*n_row, * whichever is bigger. For square matrices, it works out to * 2.2nz + 15n, or nz/5 + 19n, whichever is bigger (typically 2.2nz+15n). */ dClen = UMF_COLAMD_RECOMMENDED ((double) nz, (double) n_row, (double) n_col) ; /* This is defined above, as max (nz,n_col) + 3*nn+1 + 2*n_col, where * nn = max (n_row,n_col). It is always smaller than the space required * for colamd or amd. */ dClen_analyze = UMF_ANALYZE_CLEN ((double) nz, (double) n_row, (double) n_col, (double) nn) ; dClen = MAX (dClen, dClen_analyze) ; /* The space for AMD can be larger than what's required for colamd: */ dClen_amd = 2.4 * (double) nz + 8 * (double) n_inner ; /* additional space for the 2-by-2 strategy */ dClen_amd += (double) MAX (nn, nz) ; dClen = MAX (dClen, dClen_amd) ; /* worst case total memory usage for UMFPACK_symbolic (revised below) */ Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] = SYM_WORK_USAGE (n_col, n_row, dClen) + UMF_symbolic_usage (n_row, n_col, n_col, n_col, n_col, TRUE) ; if (INT_OVERFLOW (dClen * sizeof (Int))) { /* :: int overflow, Clen too large :: */ /* Problem is too large for array indexing (Ci [i]) with an Int i. */ /* Cannot even analyze the problem to determine upper bounds on */ /* memory usage. Need to use the UF_long version, umfpack_*l_*. */ DEBUGm4 (("out of memory: symbolic int overflow\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; return (UMFPACK_ERROR_out_of_memory) ; } /* repeat the size calculations, in integers */ Clen = UMF_COLAMD_RECOMMENDED (nz, n_row, n_col) ; Clen_analyze = UMF_ANALYZE_CLEN (nz, n_row, n_col, nn) ; Clen = MAX (Clen, Clen_analyze) ; Clen_amd = 2.4 * nz + 8 * n_inner ; Clen_amd += MAX (nn, nz) ; /* for Ri, in UMF_2by2 */ Clen = MAX (Clen, Clen_amd) ; /* ---------------------------------------------------------------------- */ /* allocate the first part of the Symbolic object (header and Cperm_init) */ /* ---------------------------------------------------------------------- */ /* (1) Five calls to UMF_malloc are made, for a total space of * 2 * (n_row + n_col) + 4 integers + sizeof (SymbolicType). * sizeof (SymbolicType) is a small constant. This space is part of the * Symbolic object and is not freed unless an error occurs. If A is square * then this is about 4*n integers. */ Symbolic = (SymbolicType *) UMF_malloc (1, sizeof (SymbolicType)) ; if (!Symbolic) { /* If we fail here, Symbolic is NULL and thus it won't be */ /* dereferenced by UMFPACK_free_symbolic, as called by error ( ). */ DEBUGm4 (("out of memory: symbolic object\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_out_of_memory) ; } /* We now know that Symbolic has been allocated */ Symbolic->valid = 0 ; Symbolic->Chain_start = (Int *) NULL ; Symbolic->Chain_maxrows = (Int *) NULL ; Symbolic->Chain_maxcols = (Int *) NULL ; Symbolic->Front_npivcol = (Int *) NULL ; Symbolic->Front_parent = (Int *) NULL ; Symbolic->Front_1strow = (Int *) NULL ; Symbolic->Front_leftmostdesc = (Int *) NULL ; Symbolic->Esize = (Int *) NULL ; Symbolic->esize = 0 ; Symbolic->Cperm_init = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Symbolic->Rperm_init = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Symbolic->Cdeg = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Symbolic->Rdeg = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Symbolic->Diagonal_map = (Int *) NULL ; Cperm_init = Symbolic->Cperm_init ; Rperm_init = Symbolic->Rperm_init ; Cdeg = Symbolic->Cdeg ; Rdeg = Symbolic->Rdeg ; if (!Cperm_init || !Rperm_init || !Cdeg || !Rdeg) { DEBUGm4 (("out of memory: symbolic perm\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_out_of_memory) ; } Symbolic->n_row = n_row ; Symbolic->n_col = n_col ; Symbolic->nz = nz ; Symbolic->nb = nb ; /* ---------------------------------------------------------------------- */ /* check user's input permutation */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL) { /* use Cperm_init as workspace to check input permutation */ if (!UMF_is_permutation (Quser, Cperm_init, n_col, n_col)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_permutation ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_invalid_permutation) ; } } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* (2) Eleven calls to UMF_malloc are made, for workspace of size * Clen + nz + 7*n_col + 2*n_row + 2 integers. Clen is the larger of * MAX (2*nz, 4*n_col) + 8*n_col + 6*n_row + n_col + nz/5 and * 2.4*nz + 8 * MIN (n_row, n_col) + MAX (n_row, n_col, nz) * If A is square and non-singular, then Clen is * MAX (MAX (2*nz, 4*n) + 7*n + nz/5, 3.4*nz) + 8*n * If A has at least 4*n nonzeros then Clen is * MAX (2.2*nz + 7*n, 3.4*nz) + 8*n * If A has at least (7/1.2)*n nonzeros, (about 5.8*n), then Clen is * 3.4*nz + 8*n * This space will be free'd when this routine finishes. * * Total space thus far is about 3.4nz + 12n integers. * For the double precision, 32-bit integer version, the user's matrix * requires an equivalent space of 3*nz + n integers. So this space is just * slightly larger than the user's input matrix (including the numerical * values themselves). */ SW = &SWspace ; /* used for UMFPACK_symbolic only */ /* Note that SW->Front_* does not include the dummy placeholder front. */ /* This space is accounted for by the SYM_WORK_USAGE macro. */ /* this is free'd early */ SW->Si = (Int *) UMF_malloc (nz, sizeof (Int)) ; SW->Sp = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; SW->InvRperm1 = (Int *) UMF_malloc (n_row, sizeof (Int)) ; SW->Cperm1 = (Int *) UMF_malloc (n_col, sizeof (Int)) ; /* this is free'd late */ SW->Ci = (Int *) UMF_malloc (Clen, sizeof (Int)) ; SW->Front_npivcol = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; SW->Front_nrows = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_ncols = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_parent = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_cols = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Rperm1 = (Int *) UMF_malloc (n_row, sizeof (Int)) ; SW->InFront = (Int *) UMF_malloc (n_row, sizeof (Int)) ; /* this is allocated later, and free'd after Cperm1 but before Ci */ SW->Rperm_2by2 = (Int *) NULL ; /* will be nn Int's */ /* this is allocated last, and free'd first */ SW->Rs = (double *) NULL ; /* will be n_row double's */ Ci = SW->Ci ; Fr_npivcol = SW->Front_npivcol ; Fr_nrows = SW->Front_nrows ; Fr_ncols = SW->Front_ncols ; Fr_parent = SW->Front_parent ; Fr_cols = SW->Front_cols ; Cperm1 = SW->Cperm1 ; Rperm1 = SW->Rperm1 ; Si = SW->Si ; Sp = SW->Sp ; InvRperm1 = SW->InvRperm1 ; Rperm_2by2 = (Int *) NULL ; InFront = SW->InFront ; if (!Ci || !Fr_npivcol || !Fr_nrows || !Fr_ncols || !Fr_parent || !Fr_cols || !Cperm1 || !Rperm1 || !Si || !Sp || !InvRperm1 || !InFront) { DEBUGm4 (("out of memory: symbolic work\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("Symbolic UMF_malloc_count - init_count = "ID"\n", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 17) ; /* ---------------------------------------------------------------------- */ /* find the row and column singletons */ /* ---------------------------------------------------------------------- */ /* [ use first nz + n_row + MAX (n_row, n_col) entries in Ci as workspace, * and use Rperm_init as workspace */ ASSERT (Clen >= nz + n_row + MAX (n_row, n_col)) ; status = UMF_singletons (n_row, n_col, Ap, Ai, Quser, strategy, Cdeg, Cperm1, Rdeg, Rperm1, InvRperm1, &n1, &n1c, &n1r, &nempty_col, &nempty_row, &is_sym, &max_rdeg, /* workspace: */ Rperm_init, Ci, Ci + nz, Ci + nz + n_row) ; /* ] done using Rperm_init and Ci as workspace */ /* InvRperm1 is now the inverse of Rperm1 */ if (status != UMFPACK_OK) { DEBUGm4 (("matrix invalid: UMF_singletons\n")) ; Info [UMFPACK_STATUS] = status ; error (&Symbolic, SW) ; return (status) ; } Info [UMFPACK_NEMPTY_COL] = nempty_col ; Info [UMFPACK_NEMPTY_ROW] = nempty_row ; Info [UMFPACK_NDENSE_COL] = 0 ; /* # dense rows/cols recomputed below */ Info [UMFPACK_NDENSE_ROW] = 0 ; Info [UMFPACK_COL_SINGLETONS] = n1c ; Info [UMFPACK_ROW_SINGLETONS] = n1r ; Info [UMFPACK_S_SYMMETRIC] = is_sym ; nempty = MIN (nempty_col, nempty_row) ; Symbolic->nempty_row = nempty_row ; Symbolic->nempty_col = nempty_col ; /* UMF_singletons has verified that the user's input matrix is valid */ ASSERT (AMD_valid (n_row, n_col, Ap, Ai) == AMD_OK) ; Symbolic->n1 = n1 ; Symbolic->nempty = nempty ; ASSERT (n1 <= n_inner) ; n2 = nn - n1 - nempty ; dense_row_threshold = UMFPACK_DENSE_DEGREE_THRESHOLD (drow, n_col - n1 - nempty_col) ; Symbolic->dense_row_threshold = dense_row_threshold ; if (!is_sym) { /* either the pruned submatrix rectangular, or it is square and * Rperm [n1 .. n-nempty-1] is not the same as Cperm [n1 .. n-nempty-1]. * Switch to the unsymmetric strategy, ignoring user-requested * strategy. */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm4 (("Strategy: Unsymmetric singletons\n")) ; } /* ---------------------------------------------------------------------- */ /* determine symmetry, nzdiag, and degrees of S+S' */ /* ---------------------------------------------------------------------- */ /* S is the matrix obtained after removing singletons * = A (Cperm1 [n1..n_col-nempty_col-1], Rperm1 [n1..n_row-nempty_row-1]) */ Wq = Rperm_init ; /* use Rperm_init as workspace for Wq [ */ Sdeg = Cperm_init ; /* use Cperm_init as workspace for Sdeg [ */ sym = EMPTY ; nzaat = EMPTY ; nzdiag = EMPTY ; for (i = 0 ; i < AMD_INFO ; i++) { amd_Info [i] = EMPTY ; } if (strategy != UMFPACK_STRATEGY_UNSYMMETRIC) { /* This also determines the degree of each node in S+S' (Sdeg), which * is needed by the 2-by-2 strategy, the symmetry of S, and the number * of nonzeros on the diagonal of S. */ ASSERT (n_row == n_col) ; ASSERT (nempty_row == nempty_col) ; /* get the count of nonzeros on the diagonal of S, excluding explicitly * zero entries. nzdiag = amd_Info [AMD_NZDIAG] counts the zero entries * in S. */ nzdiag = prune_singletons (n1, nn, Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Cperm1, InvRperm1, Si, Sp #ifndef NDEBUG , Rperm1, nn #endif ) ; /* use Ci as workspace to sort S into R, if needed [ */ if (Quser != (Int *) NULL) { /* need to sort the columns of S first */ Rp = Ci ; Ri = Ci + (n_row) + 1 ; (void) UMF_transpose (n2, n2, Sp, Si, (double *) NULL, (Int *) NULL, (Int *) NULL, 0, Rp, Ri, (double *) NULL, Wq, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; } else { /* S already has sorted columns */ Rp = Sp ; Ri = Si ; } ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; nzaat = AMD_aat (n2, Rp, Ri, Sdeg, Wq, amd_Info) ; sym = amd_Info [AMD_SYMMETRY] ; Info [UMFPACK_N2] = n2 ; /* nzdiag = amd_Info [AMD_NZDIAG] counts the zero entries of S too */ /* done using Ci as workspace to sort S into R ] */ #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { ASSERT (Sdeg [k] >= 0 && Sdeg [k] < n2) ; } ASSERT (Sp [n2] - n2 <= nzaat && nzaat <= 2 * Sp [n2]) ; DEBUG0 (("Explicit zeros: "ID" %g\n", nzdiag, amd_Info [AMD_NZDIAG])) ; #endif } /* get statistics from amd_aat, if computed */ Symbolic->sym = sym ; Symbolic->nzaat = nzaat ; Symbolic->nzdiag = nzdiag ; Symbolic->amd_dmax = EMPTY ; Info [UMFPACK_PATTERN_SYMMETRY] = sym ; Info [UMFPACK_NZ_A_PLUS_AT] = nzaat ; Info [UMFPACK_NZDIAG] = nzdiag ; /* ---------------------------------------------------------------------- */ /* determine the initial strategy based on symmetry and nnz (diag (S)) */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_AUTO) { if (sym < 0.10) { /* highly unsymmetric: use the unsymmetric strategy */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm4 (("Strategy: select unsymmetric\n")) ; } else if (sym >= 0.7 && nzdiag == n2) { /* mostly symmetric, zero-free diagonal: use symmetric strategy */ strategy = UMFPACK_STRATEGY_SYMMETRIC ; DEBUGm4 (("Strategy: select symmetric\n")) ; } else { /* Evaluate the symmetric 2-by-2 strategy, and select it, or * the unsymmetric strategy if the 2-by-2 strategy doesn't look * promising. */ strategy = UMFPACK_STRATEGY_2BY2 ; DEBUGm4 (("Strategy: try 2-by-2\n")) ; } } /* ---------------------------------------------------------------------- */ /* try the 2-by-2 strategy */ /* ---------------------------------------------------------------------- */ /* (3) If the 2-by-2 strategy is attempted, additional workspace of size * nn integers and nn double's is allocated, where nn = n_row = n_col. * The real workspace is immediately free'd. The integer workspace of * size nn remains until the end of umfpack_qsymbolic. */ /* If the resulting matrix S (Rperm_2by2, :) is too unsymmetric, then the * unsymmetric strategy will be used instead. */ if (strategy == UMFPACK_STRATEGY_2BY2) { double sym2 ; Int *Blen, *W, nz_papat, nzd2, nweak, unmatched, Clen3 ; /* ------------------------------------------------------------------ */ /* get workspace for UMF_2by2 */ /* ------------------------------------------------------------------ */ ASSERT (n_row == n_col && nn == n_row) ; #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { ASSERT (Sdeg [k] >= 0 && Sdeg [k] < n2) ; } #endif /* allocate Rperm_2by2 */ SW->Rperm_2by2 = (Int *) UMF_malloc (nn, sizeof (Int)) ; Rperm_2by2 = SW->Rperm_2by2 ; if (Rperm_2by2 == (Int *) NULL) { DEBUGm4 (("out of memory: Rperm_2by2\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } /* allocate Ri from the tail end of Ci [ */ Clen3 = Clen - (MAX (nn, nz) + 1) ; Ri = Ci + Clen3 ; ASSERT (Clen3 >= nz) ; /* space required for UMF_2by2 */ /* use Fr_* as workspace for Rp, Blen, and W [ */ Rp = Fr_npivcol ; Blen = Fr_ncols ; W = Fr_cols ; if (scale != UMFPACK_SCALE_NONE) { SW->Rs = (double *) UMF_malloc (nn, sizeof (double)) ; if (SW->Rs == (double *) NULL) { DEBUGm4 (("out of memory: scale factors for 2-by-2\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } } /* ------------------------------------------------------------------ */ /* find the 2-by-2 row permutation */ /* ------------------------------------------------------------------ */ /* find a row permutation Rperm_2by2 such that S (Rperm_2by2, :) * has a healthy diagonal */ UMF_2by2 (nn, Ap, Ai, Ax, #ifdef COMPLEX Az, #endif tol, scale, Cperm1, #ifndef NDEBUG Rperm1, #endif InvRperm1, n1, nempty, Sdeg, Rperm_2by2, &nweak, &unmatched, Ri, Rp, SW->Rs, Blen, W, Ci, Wq) ; DEBUGm3 (("2by2: nweak "ID" unmatched "ID"\n", nweak, unmatched)) ; Info [UMFPACK_2BY2_NWEAK] = nweak ; Info [UMFPACK_2BY2_UNMATCHED] = unmatched ; SW->Rs = (double *) UMF_free ((void *) SW->Rs) ; /* R = S (Rperm_2by2,:)' */ (void) UMF_transpose (n2, n2, Sp, Si, (double *) NULL, Rperm_2by2, (Int *) NULL, 0, Rp, Ri, (double *) NULL, W, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; /* contents of Si and Sp no longer needed, but the space is * still needed */ /* ------------------------------------------------------------------ */ /* find symmetry of S (Rperm_2by2, :)', and prepare to order with AMD */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < AMD_INFO ; i++) { amd_Info [i] = EMPTY ; } nz_papat = AMD_aat (n2, Rp, Ri, Sdeg, Wq, amd_Info) ; sym2 = amd_Info [AMD_SYMMETRY] ; nzd2 = amd_Info [AMD_NZDIAG] ; Info [UMFPACK_2BY2_PATTERN_SYMMETRY] = sym2 ; Info [UMFPACK_2BY2_NZ_PA_PLUS_PAT] = nz_papat ; Info [UMFPACK_2BY2_NZDIAG] = nzd2 ; DEBUG0 (("2by2: sym2 %g nzd2 "ID" n2 "ID"\n", sym2, nzd2, n2)) ; /* ------------------------------------------------------------------ */ /* evaluate the 2-by-2 results */ /* ------------------------------------------------------------------ */ if (user_auto_strategy) { if ((sym2 > 1.1 * sym) && (nzd2 > 0.9 * n2)) { /* 2-by-2 made it much more symmetric */ DEBUGm4 (("eval Strategy 2by2: much more symmetric: 2by2\n")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else if (sym2 < 0.7 * sym) { /* 2-by-2 made it much more unsymmetric */ DEBUGm4 (("eval Strategy 2by2: much more UNsymmetric:unsym\n")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } else if (sym2 < 0.25) { DEBUGm4 (("eval Strategy 2by2: is UNsymmetric: unsym\n")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } else if (sym2 >= 0.51) { DEBUGm4 (("eval Strategy 2by2: sym2 >= 0.51: 2by2\n")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else if (sym2 >= 0.999 * sym) { /* 2-by-2 improved symmetry, or made it only slightly worse */ DEBUGm4 (("eval Strategy 2by2: sym2 >= 0.999 sym: 2by2\n")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else { /* can't decide what to do, so pick the unsymmetric strategy */ DEBUGm4 (("eval Strategy 2by2: punt: unsym\n")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } } /* ------------------------------------------------------------------ */ /* if the 2-by-2 strategy is selected: */ /* ------------------------------------------------------------------ */ if (strategy == UMFPACK_STRATEGY_2BY2) { if (Quser == (Int *) NULL) { /* 2-by-2 strategy is successful */ /* compute amd (S) */ Int *Qinv = Fr_npivcol ; ASSERT (Clen3 >= (nz_papat + nz_papat/5 + nn) + 7*nn) ; do_amd (n2, Rp, Ri, Wq, Qinv, Sdeg, Clen3, Ci, amd_Control, amd_Info, Symbolic, Info) ; /* combine the singleton ordering and the AMD ordering */ combine_ordering (n1, nempty, nn, Cperm_init, Cperm1, Qinv) ; } /* fix Rperm_2by2 to reflect A, not S */ for (k = 0 ; k < n1 ; k++) { oldcol = Cperm1 [k] ; i = k ; oldrow = Rperm1 [k] ; W [oldcol] = oldrow ; } for (k = n1 ; k < nn - nempty ; k++) { oldcol = Cperm1 [k] ; i = Rperm_2by2 [k - n1] + n1 ; oldrow = Rperm1 [i] ; W [oldcol] = oldrow ; } for (k = nn - nempty ; k < nn ; k++) { oldcol = Cperm1 [k] ; i = k ; oldrow = Rperm1 [k] ; W [oldcol] = oldrow ; } for (k = 0 ; k < nn ; k++) { Rperm_2by2 [k] = W [k] ; } /* Now, the "diagonal" entry in oldcol (where oldcol is the user's * name for a column, is the entry in row oldrow (where oldrow is * the user's name for a row, and oldrow = Rperm_2by2 [oldcol] */ } /* Fr_* no longer needed for Rp, Blen, W ] */ } /* ---------------------------------------------------------------------- */ /* finalize the strategy, including fixQ and prefer_diagonal */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_SYMMETRIC) { /* use given Quser or AMD (A+A'), fix Q during factorization, * prefer diagonal */ DEBUG0 (("\nStrategy: symmetric\n")) ; ASSERT (n_row == n_col) ; Symbolic->ordering = UMFPACK_ORDERING_AMD ; fixQ = TRUE ; prefer_diagonal = TRUE ; } else if (strategy == UMFPACK_STRATEGY_2BY2) { /* use Q = given Quser or Q = AMD (PA+PA'), fix Q during factorization, * prefer diagonal, and factorize PAQ, where P is found by UMF_2by2. */ DEBUG0 (("\nStrategy: symmetric 2-by-2\n")) ; ASSERT (n_row == n_col) ; Symbolic->ordering = UMFPACK_ORDERING_AMD ; fixQ = TRUE ; prefer_diagonal = TRUE ; } else { /* use given Quser or COLAMD (A), refine Q during factorization, * no diagonal preference */ ASSERT (strategy == UMFPACK_STRATEGY_UNSYMMETRIC) ; DEBUG0 (("\nStrategy: unsymmetric\n")) ; Symbolic->ordering = UMFPACK_ORDERING_COLAMD ; fixQ = FALSE ; prefer_diagonal = FALSE ; } if (Quser != (Int *) NULL) { Symbolic->ordering = UMFPACK_ORDERING_GIVEN ; } if (force_fixQ > 0) { fixQ = TRUE ; DEBUG0 (("Force fixQ true\n")) ; } else if (force_fixQ < 0) { fixQ = FALSE ; DEBUG0 (("Force fixQ false\n")) ; } DEBUG0 (("Strategy: ordering: "ID"\n", Symbolic->ordering)) ; DEBUG0 (("Strategy: fixQ: "ID"\n", fixQ)) ; DEBUG0 (("Strategy: prefer diag "ID"\n", prefer_diagonal)) ; /* get statistics from amd_aat, if computed */ Symbolic->strategy = strategy ; Symbolic->fixQ = fixQ ; Symbolic->prefer_diagonal = prefer_diagonal ; Info [UMFPACK_STRATEGY_USED] = strategy ; Info [UMFPACK_ORDERING_USED] = Symbolic->ordering ; Info [UMFPACK_QFIXED] = fixQ ; Info [UMFPACK_DIAG_PREFERRED] = prefer_diagonal ; /* ---------------------------------------------------------------------- */ /* get the AMD ordering for the symmetric strategy */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_SYMMETRIC && Quser == (Int *) NULL) { /* symmetric strategy for a matrix with mostly symmetric pattern */ Int *Qinv = Fr_npivcol ; ASSERT (n_row == n_col && nn == n_row) ; ASSERT (Clen >= (nzaat + nzaat/5 + nn) + 7*nn) ; do_amd (n2, Sp, Si, Wq, Qinv, Sdeg, Clen, Ci, amd_Control, amd_Info, Symbolic, Info) ; /* combine the singleton ordering and the AMD ordering */ combine_ordering (n1, nempty, nn, Cperm_init, Cperm1, Qinv) ; } /* Sdeg no longer needed ] */ /* done using Rperm_init as workspace for Wq ] */ /* Contents of Si and Sp no longer needed, but the space is still needed */ /* ---------------------------------------------------------------------- */ /* use the user's input column ordering (already in Cperm1) */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL) { for (k = 0 ; k < n_col ; k++) { Cperm_init [k] = Cperm1 [k] ; } } /* ---------------------------------------------------------------------- */ /* use COLAMD to order the matrix */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC && Quser == (Int *) NULL) { /* ------------------------------------------------------------------ */ /* copy the matrix into colamd workspace (colamd destroys its input) */ /* ------------------------------------------------------------------ */ /* C = A (Cperm1 (n1+1:end), Rperm1 (n1+1:end)), where Ci is used as * the row indices and Cperm_init (on input) is used as the column * pointers. */ (void) prune_singletons (n1, n_col, Ap, Ai, (double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Cperm1, InvRperm1, Ci, Cperm_init #ifndef NDEBUG , Rperm1, n_row #endif ) ; /* ------------------------------------------------------------------ */ /* set UMF_colamd defaults */ /* ------------------------------------------------------------------ */ UMF_colamd_set_defaults (knobs) ; knobs [COLAMD_DENSE_ROW] = drow ; knobs [COLAMD_DENSE_COL] = dcol ; knobs [COLAMD_AGGRESSIVE] = aggressive ; /* ------------------------------------------------------------------ */ /* check input matrix and find the initial column pre-ordering */ /* ------------------------------------------------------------------ */ /* NOTE: umf_colamd is not given any original empty rows or columns. * Those have already been removed via prune_singletons, above. The * umf_colamd routine has been modified to assume that all rows and * columns have at least one entry in them. It will break if it is * given empty rows or columns (an assertion is triggered when running * in debug mode. */ (void) UMF_colamd ( n_row - n1 - nempty_row, n_col - n1 - nempty_col, Clen, Ci, Cperm_init, knobs, colamd_stats, Fr_npivcol, Fr_nrows, Fr_ncols, Fr_parent, Fr_cols, &nfr, InFront) ; ASSERT (colamd_stats [COLAMD_EMPTY_ROW] == 0) ; ASSERT (colamd_stats [COLAMD_EMPTY_COL] == 0) ; /* # of dense rows will be recomputed below */ Info [UMFPACK_NDENSE_ROW] = colamd_stats [COLAMD_DENSE_ROW] ; Info [UMFPACK_NDENSE_COL] = colamd_stats [COLAMD_DENSE_COL] ; Info [UMFPACK_SYMBOLIC_DEFRAG] = colamd_stats [COLAMD_DEFRAG_COUNT] ; /* re-analyze if any "dense" rows or cols ignored by UMF_colamd */ do_UMF_analyze = colamd_stats [COLAMD_DENSE_ROW] > 0 || colamd_stats [COLAMD_DENSE_COL] > 0 ; /* Combine the singleton and colamd ordering into Cperm_init */ /* Note that colamd returns its inverse permutation in Ci */ combine_ordering (n1, nempty_col, n_col, Cperm_init, Cperm1, Ci) ; /* contents of Ci no longer needed */ #ifndef NDEBUG for (col = 0 ; col < n_col ; col++) { DEBUG1 (("Cperm_init ["ID"] = "ID"\n", col, Cperm_init[col])); } /* make sure colamd returned a valid permutation */ ASSERT (Cperm_init != (Int *) NULL) ; ASSERT (UMF_is_permutation (Cperm_init, Ci, n_col, n_col)) ; #endif } else { /* ------------------------------------------------------------------ */ /* do not call colamd - use input Quser or AMD instead */ /* ------------------------------------------------------------------ */ /* The ordering (Quser or Qamd) is already in Cperm_init */ do_UMF_analyze = TRUE ; } Cperm_init [n_col] = EMPTY ; /* unused in Cperm_init */ /* ---------------------------------------------------------------------- */ /* AMD ordering, if it exists, has been copied into Cperm_init */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG3 (("Cperm_init column permutation:\n")) ; ASSERT (UMF_is_permutation (Cperm_init, Ci, n_col, n_col)) ; for (k = 0 ; k < n_col ; k++) { DEBUG3 ((ID"\n", Cperm_init [k])) ; } /* ensure that empty columns have been placed last in A (:,Cperm_init) */ for (newj = 0 ; newj < n_col ; newj++) { /* empty columns will be last in A (:, Cperm_init (1:n_col)) */ j = Cperm_init [newj] ; ASSERT (IMPLIES (newj >= n_col-nempty_col, Cdeg [j] == 0)) ; ASSERT (IMPLIES (newj < n_col-nempty_col, Cdeg [j] > 0)) ; } #endif /* ---------------------------------------------------------------------- */ /* symbolic factorization (unless colamd has already done it) */ /* ---------------------------------------------------------------------- */ if (do_UMF_analyze) { Int *W, *Bp, *Bi, *Cperm2, ok, *P, Clen2, bsize, Clen0 ; /* ------------------------------------------------------------------ */ /* construct column pre-ordered, pruned submatrix */ /* ------------------------------------------------------------------ */ /* S = column form submatrix after removing singletons and applying * initial column ordering (includes singleton ordering) */ (void) prune_singletons (n1, n_col, Ap, Ai, (double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Cperm_init, InvRperm1, Si, Sp #ifndef NDEBUG , Rperm1, n_row #endif ) ; /* ------------------------------------------------------------------ */ /* Ci [0 .. Clen-1] holds the following work arrays: first Clen0 entries empty space, where Clen0 = Clen - (nn+1 + 2*nn + n_col) and Clen0 >= nz + n_col next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] We have Clen >= n_col + MAX (nz,n_col) + 3*nn+1 + n_col, So Clen0 >= 2*n_col as required for AMD_postorder and Clen0 >= n_col + nz as required */ Clen0 = Clen - (nn+1 + 2*nn + n_col) ; Bp = Ci + Clen0 ; Link = Bp + (nn+1) ; W = Link + nn ; Cperm2 = W + nn ; ASSERT (Cperm2 + n_col == Ci + Clen) ; ASSERT (Clen0 >= nz + n_col) ; ASSERT (Clen0 >= 2*n_col) ; /* ------------------------------------------------------------------ */ /* P = order that rows will be used in UMF_analyze */ /* ------------------------------------------------------------------ */ /* use W to mark rows, and use Link for row permutation P [ [ */ for (row = 0 ; row < n_row - n1 ; row++) { W [row] = FALSE ; } P = Link ; k = 0 ; for (col = 0 ; col < n_col - n1 ; col++) { /* empty columns are last in S */ for (p = Sp [col] ; p < Sp [col+1] ; p++) { row = Si [p] ; if (!W [row]) { /* this row has just been seen for the first time */ W [row] = TRUE ; P [k++] = row ; } } } /* If the matrix has truly empty rows, then P will not be */ /* complete, and visa versa. The matrix is structurally singular. */ nempty_row = n_row - n1 - k ; if (k < n_row - n1) { /* complete P by putting empty rows last in their natural order, */ /* rather than declaring an error (the matrix is singular) */ for (row = 0 ; row < n_row - n1 ; row++) { if (!W [row]) { /* W [row] = TRUE ; (not required) */ P [k++] = row ; } } } /* contents of W no longer needed ] */ #ifndef NDEBUG DEBUG3 (("Induced row permutation:\n")) ; ASSERT (k == n_row - n1) ; ASSERT (UMF_is_permutation (P, W, n_row - n1, n_row - n1)) ; for (k = 0 ; k < n_row - n1 ; k++) { DEBUG3 ((ID"\n", P [k])) ; } #endif /* ------------------------------------------------------------------ */ /* B = row-form of the pattern of S (excluding empty columns) */ /* ------------------------------------------------------------------ */ /* Ci [0 .. Clen-1] holds the following work arrays: first Clen2 entries empty space, must be at least >= n_col next max (nz,1) Bi [0..max (nz,1)-1] next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] This memory usage is accounted for by the UMF_ANALYZE_CLEN macro. */ Clen2 = Clen0 ; snz = Sp [n_col - n1] ; bsize = MAX (snz, 1) ; Clen2 -= bsize ; Bi = Ci + Clen2 ; ASSERT (Clen2 >= n_col) ; (void) UMF_transpose (n_row - n1, n_col - n1 - nempty_col, Sp, Si, (double *) NULL, P, (Int *) NULL, 0, Bp, Bi, (double *) NULL, W, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; /* contents of Si and Sp no longer needed */ /* contents of P (same as Link) and W not needed */ /* still need Link and W as work arrays, though ] */ ASSERT (Bp [0] == 0) ; ASSERT (Bp [n_row - n1] == snz) ; /* increment Bp to point into Ci, not Bi */ for (i = 0 ; i <= n_row - n1 ; i++) { Bp [i] += Clen2 ; } ASSERT (Bp [0] == Clen0 - bsize) ; ASSERT (Bp [n_row - n1] <= Clen0) ; /* Ci [0 .. Clen-1] holds the following work arrays: first Clen0 entries Ci [0 .. Clen0-1], where the col indices of B are at the tail end of this part, and Bp [0] = Clen2 >= n_col. Note that Clen0 = Clen2 + max (snz,1). next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] */ /* ------------------------------------------------------------------ */ /* analyze */ /* ------------------------------------------------------------------ */ /* only analyze the non-empty, non-singleton part of the matrix */ ok = UMF_analyze ( n_row - n1 - nempty_row, n_col - n1 - nempty_col, Ci, Bp, Cperm2, fixQ, W, Link, Fr_ncols, Fr_nrows, Fr_npivcol, Fr_parent, &nfr, &analyze_compactions) ; if (!ok) { /* :: internal error in umf_analyze :: */ Info [UMFPACK_STATUS] = UMFPACK_ERROR_internal_error ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_internal_error) ; } Info [UMFPACK_SYMBOLIC_DEFRAG] += analyze_compactions ; /* ------------------------------------------------------------------ */ /* combine the input permutation and UMF_analyze's permutation */ /* ------------------------------------------------------------------ */ if (!fixQ) { /* Cperm2 is the column etree post-ordering */ ASSERT (UMF_is_permutation (Cperm2, W, n_col-n1-nempty_col, n_col-n1-nempty_col)) ; /* Note that the empty columns remain at the end of Cperm_init */ for (k = 0 ; k < n_col - n1 - nempty_col ; k++) { W [k] = Cperm_init [n1 + Cperm2 [k]] ; } for (k = 0 ; k < n_col - n1 - nempty_col ; k++) { Cperm_init [n1 + k] = W [k] ; } } ASSERT (UMF_is_permutation (Cperm_init, W, n_col, n_col)) ; } /* ---------------------------------------------------------------------- */ /* free some of the workspace */ /* ---------------------------------------------------------------------- */ /* (4) The real workspace, Rs, of size n_row doubles has already been * free'd. An additional workspace of size nz + n_col+1 + n_col integers * is now free'd as well. */ SW->Si = (Int *) UMF_free ((void *) SW->Si) ; SW->Sp = (Int *) UMF_free ((void *) SW->Sp) ; SW->Cperm1 = (Int *) UMF_free ((void *) SW->Cperm1) ; ASSERT (SW->Rs == (double *) NULL) ; /* ---------------------------------------------------------------------- */ /* determine the size of the Symbolic object */ /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ /* determine the size of the Symbolic object */ /* ---------------------------------------------------------------------- */ nchains = 0 ; for (i = 0 ; i < nfr ; i++) { if (Fr_parent [i] != i+1) { nchains++ ; } } Symbolic->nchains = nchains ; Symbolic->nfr = nfr ; Symbolic->esize = (max_rdeg > dense_row_threshold) ? (n_col - n1 - nempty_col) : 0 ; /* true size of Symbolic object */ Info [UMFPACK_SYMBOLIC_SIZE] = UMF_symbolic_usage (n_row, n_col, nchains, nfr, Symbolic->esize, prefer_diagonal) ; /* actual peak memory usage for UMFPACK_symbolic (actual nfr, nchains) */ Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] = SYM_WORK_USAGE (n_col, n_row, Clen) + Info [UMFPACK_SYMBOLIC_SIZE] ; Symbolic->peak_sym_usage = Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] ; DEBUG0 (("Number of fronts: "ID"\n", nfr)) ; /* ---------------------------------------------------------------------- */ /* allocate the second part of the Symbolic object (Front_*, Chain_*) */ /* ---------------------------------------------------------------------- */ /* (5) UMF_malloc is called 7 or 8 times, for a total space of * (4*(nfr+1) + 3*(nchains+1) + esize) integers, where nfr is the total * number of frontal matrices and nchains is the total number of frontal * matrix chains, and where nchains <= nfr <= n_col. esize is zero if there * are no dense rows, or n_col-n1-nempty_col otherwise (n1 is the number of * singletons and nempty_col is the number of empty columns). This space is * part of the Symbolic object and is not free'd unless an error occurs. * This is between 7 and about 8n integers when A is square. */ /* Note that Symbolic->Front_* does include the dummy placeholder front */ Symbolic->Front_npivcol = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_parent = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_1strow = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_leftmostdesc = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Chain_start = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; Symbolic->Chain_maxrows = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; Symbolic->Chain_maxcols = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; fail = (!Symbolic->Front_npivcol || !Symbolic->Front_parent || !Symbolic->Front_1strow || !Symbolic->Front_leftmostdesc || !Symbolic->Chain_start || !Symbolic->Chain_maxrows || !Symbolic->Chain_maxcols) ; if (Symbolic->esize > 0) { Symbolic->Esize = (Int *) UMF_malloc (Symbolic->esize, sizeof (Int)) ; fail = fail || !Symbolic->Esize ; } if (fail) { DEBUGm4 (("out of memory: rest of symbolic object\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("Symbolic UMF_malloc_count - init_count = "ID"\n", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 21 + (SW->Rperm_2by2 != (Int *) NULL) + (Symbolic->Esize != (Int *) NULL)) ; Front_npivcol = Symbolic->Front_npivcol ; Front_parent = Symbolic->Front_parent ; Front_1strow = Symbolic->Front_1strow ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Chain_start = Symbolic->Chain_start ; Chain_maxrows = Symbolic->Chain_maxrows ; Chain_maxcols = Symbolic->Chain_maxcols ; Esize = Symbolic->Esize ; /* ---------------------------------------------------------------------- */ /* assign rows to fronts */ /* ---------------------------------------------------------------------- */ /* find InFront, unless colamd has already computed it */ if (do_UMF_analyze) { DEBUGm4 ((">>>>>>>>>Computing Front_1strow from scratch\n")) ; /* empty rows go to dummy front nfr */ for (row = 0 ; row < n_row ; row++) { InFront [row] = nfr ; } /* assign the singleton pivot rows to the "empty" front */ for (k = 0 ; k < n1 ; k++) { row = Rperm1 [k] ; InFront [row] = EMPTY ; } DEBUG1 (("Front (EMPTY), singleton nrows "ID" ncols "ID"\n", k, k)) ; newj = n1 ; for (i = 0 ; i < nfr ; i++) { fpivcol = Fr_npivcol [i] ; f1rows = 0 ; /* for all pivot columns in front i */ for (kk = 0 ; kk < fpivcol ; kk++, newj++) { j = Cperm_init [newj] ; ASSERT (IMPLIES (newj >= n_col-nempty_col, Ap [j+1] - Ap [j] == 0)); for (p = Ap [j] ; p < Ap [j+1] ; p++) { row = Ai [p] ; if (InFront [row] == nfr) { /* this row belongs to front i */ DEBUG1 ((" Row "ID" in Front "ID"\n", row, i)) ; InFront [row] = i ; f1rows++ ; } } } Front_1strow [i] = f1rows ; DEBUG1 ((" Front "ID" has 1strows: "ID" pivcols "ID"\n", i, f1rows, fpivcol)) ; } } else { /* COLAMD has already computed InFront, but it is not yet * InFront [row] = front i, where row is an original row. It is * InFront [k-n1] = i for k in the range n1 to n_row-nempty_row, * and where row = Rperm1 [k]. Need to permute InFront. Also compute * # of original rows assembled into each front. * [ use Ci as workspace */ DEBUGm4 ((">>>>>>>>>Computing Front_1strow from colamd's InFront\n")) ; for (i = 0 ; i <= nfr ; i++) { Front_1strow [i] = 0 ; } /* assign the singleton pivot rows to "empty" front */ for (k = 0 ; k < n1 ; k++) { row = Rperm1 [k] ; Ci [row] = EMPTY ; } /* assign the non-empty rows to the front that assembled them */ for ( ; k < n_row - nempty_row ; k++) { row = Rperm1 [k] ; i = InFront [k - n1] ; ASSERT (i >= EMPTY && i < nfr) ; if (i != EMPTY) { Front_1strow [i]++ ; } /* use Ci as permuted version of InFront */ Ci [row] = i ; } /* empty rows go to the "dummy" front */ for ( ; k < n_row ; k++) { row = Rperm1 [k] ; Ci [row] = nfr ; } /* permute InFront so that InFront [row] = i if the original row is * in front i */ for (row = 0 ; row < n_row ; row++) { InFront [row] = Ci [row] ; } /* ] no longer need Ci as workspace */ } #ifndef NDEBUG for (row = 0 ; row < n_row ; row++) { if (InFront [row] == nfr) { DEBUG1 ((" Row "ID" in Dummy Front "ID"\n", row, nfr)) ; } else if (InFront [row] == EMPTY) { DEBUG1 ((" singleton Row "ID"\n", row)) ; } else { DEBUG1 ((" Row "ID" in Front "ID"\n", row, nfr)) ; } } #endif /* ---------------------------------------------------------------------- */ /* copy front information into Symbolic object */ /* ---------------------------------------------------------------------- */ k = n1 ; for (i = 0 ; i < nfr ; i++) { fpivcol = Fr_npivcol [i] ; DEBUG1 (("Front "ID" k "ID" npivcol "ID" nrows "ID" ncols "ID"\n", i, k, fpivcol, Fr_nrows [i], Fr_ncols [i])) ; k += fpivcol ; /* copy Front info into Symbolic object from SW */ Front_npivcol [i] = fpivcol ; Front_parent [i] = Fr_parent [i] ; } /* assign empty columns to dummy placehold front nfr */ DEBUG1 (("Dummy Cols in Front "ID" : "ID"\n", nfr, n_col-k)) ; Front_npivcol [nfr] = n_col - k ; Front_parent [nfr] = EMPTY ; /* ---------------------------------------------------------------------- */ /* find initial row permutation */ /* ---------------------------------------------------------------------- */ /* order the singleton pivot rows */ for (k = 0 ; k < n1 ; k++) { Rperm_init [k] = Rperm1 [k] ; } /* determine the first row in each front (in the new row ordering) */ for (i = 0 ; i < nfr ; i++) { f1rows = Front_1strow [i] ; DEBUG1 (("Front "ID" : npivcol "ID" parent "ID, i, Front_npivcol [i], Front_parent [i])) ; DEBUG1 ((" 1st rows in Front "ID" : "ID"\n", i, f1rows)) ; Front_1strow [i] = k ; k += f1rows ; } /* assign empty rows to dummy placehold front nfr */ DEBUG1 (("Rows in Front "ID" (dummy): "ID"\n", nfr, n_row-k)) ; Front_1strow [nfr] = k ; DEBUG1 (("nfr "ID" 1strow[nfr] "ID" nrow "ID"\n", nfr, k, n_row)) ; /* Use Ci as temporary workspace for F1 */ F1 = Ci ; /* [ of size nfr+1 */ ASSERT (Clen >= 2*n_row + nfr+1) ; for (i = 0 ; i <= nfr ; i++) { F1 [i] = Front_1strow [i] ; } for (row = 0 ; row < n_row ; row++) { i = InFront [row] ; if (i != EMPTY) { newrow = F1 [i]++ ; ASSERT (newrow >= n1) ; Rperm_init [newrow] = row ; } } Rperm_init [n_row] = EMPTY ; /* unused */ #ifndef NDEBUG for (k = 0 ; k < n_row ; k++) { DEBUG2 (("Rperm_init ["ID"] = "ID"\n", k, Rperm_init [k])) ; } #endif /* ] done using F1 */ /* ---------------------------------------------------------------------- */ /* find the diagonal map */ /* ---------------------------------------------------------------------- */ /* Rperm_init [newrow] = row gives the row permutation that is implied * by the column permutation, where "row" is a row index of the original * matrix A. It is not dependent on the Rperm_2by2 permutation, which * only redefines the "diagonal". Both are used to construct the * Diagonal_map. Diagonal_map only needs to be defined for * k = n1 to nn - nempty, but go ahead and define it for all of * k = 0 to nn */ if (prefer_diagonal) { Int *Diagonal_map ; ASSERT (n_row == n_col && nn == n_row) ; ASSERT (nempty_row == nempty_col && nempty == nempty_row) ; /* allocate the Diagonal_map */ Symbolic->Diagonal_map = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Diagonal_map = Symbolic->Diagonal_map ; if (Diagonal_map == (Int *) NULL) { /* :: out of memory (diagonal map) :: */ DEBUGm4 (("out of memory: Diagonal map\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } /* use Ci as workspace to compute the inverse of Rperm_init [ */ for (newrow = 0 ; newrow < nn ; newrow++) { oldrow = Rperm_init [newrow] ; ASSERT (oldrow >= 0 && oldrow < nn) ; Ci [oldrow] = newrow ; } if (strategy == UMFPACK_STRATEGY_2BY2) { ASSERT (Rperm_2by2 != (Int *) NULL) ; for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; /* 2-by-2 pivoting done in S */ oldrow = Rperm_2by2 [oldcol] ; newrow = Ci [oldrow] ; Diagonal_map [newcol] = newrow ; } } else { for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; /* no 2-by-2 pivoting in S */ oldrow = oldcol ; newrow = Ci [oldrow] ; Diagonal_map [newcol] = newrow ; } } #ifndef NDEBUG DEBUG1 (("\nDiagonal map:\n")) ; for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; DEBUG3 (("oldcol "ID" newcol "ID":\n", oldcol, newcol)) ; for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { Entry aij ; CLEAR (aij) ; oldrow = Ai [p] ; newrow = Ci [oldrow] ; if (Ax != (double *) NULL) { ASSIGN (aij, Ax, Az, p, SPLIT (Az)) ; } if (oldrow == oldcol) { DEBUG2 ((" old diagonal : oldcol "ID" oldrow "ID" ", oldcol, oldrow)) ; EDEBUG2 (aij) ; DEBUG2 (("\n")) ; } if (newrow == Diagonal_map [newcol]) { DEBUG2 ((" MAP diagonal : newcol "ID" MAProw "ID" ", newcol, Diagonal_map [newrow])) ; EDEBUG2 (aij) ; DEBUG2 (("\n")) ; } } } #endif /* done using Ci as workspace ] */ } /* ---------------------------------------------------------------------- */ /* find the leftmost descendant of each front */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i <= nfr ; i++) { Front_leftmostdesc [i] = EMPTY ; } for (i = 0 ; i < nfr ; i++) { /* start at i and walk up the tree */ DEBUG2 (("Walk up front tree from "ID"\n", i)) ; j = i ; while (j != EMPTY && Front_leftmostdesc [j] == EMPTY) { DEBUG3 ((" Leftmost desc of "ID" is "ID"\n", j, i)) ; Front_leftmostdesc [j] = i ; j = Front_parent [j] ; DEBUG3 ((" go to j = "ID"\n", j)) ; } } /* ---------------------------------------------------------------------- */ /* find the frontal matrix chains and max frontal matrix sizes */ /* ---------------------------------------------------------------------- */ maxnrows = 1 ; /* max # rows in any front */ maxncols = 1 ; /* max # cols in any front */ dmaxfrsize = 1 ; /* max frontal matrix size */ /* start the first chain */ nchains = 0 ; /* number of chains */ Chain_start [0] = 0 ; /* front 0 starts a new chain */ maxrows = 1 ; /* max # rows for any front in current chain */ maxcols = 1 ; /* max # cols for any front in current chain */ DEBUG1 (("Constructing chains:\n")) ; for (i = 0 ; i < nfr ; i++) { /* get frontal matrix info */ fpivcol = Front_npivcol [i] ; /* # candidate pivot columns */ fallrows = Fr_nrows [i] ; /* all rows (not just Schur comp) */ fallcols = Fr_ncols [i] ; /* all cols (not just Schur comp) */ parent = Front_parent [i] ; /* parent in column etree */ fpiv = MIN (fpivcol, fallrows) ; /* # pivot rows and cols */ maxrows = MAX (maxrows, fallrows) ; maxcols = MAX (maxcols, fallcols) ; DEBUG1 (("Front: "ID", pivcol "ID", "ID"-by-"ID" parent "ID ", npiv "ID" Chain: maxrows "ID" maxcols "ID"\n", i, fpivcol, fallrows, fallcols, parent, fpiv, maxrows, maxcols)) ; if (parent != i+1) { /* this is the end of a chain */ double s ; DEBUG1 (("\nEnd of chain "ID"\n", nchains)) ; /* make sure maxrows is an odd number */ ASSERT (maxrows >= 0) ; if (maxrows % 2 == 0) maxrows++ ; DEBUG1 (("Chain maxrows "ID" maxcols "ID"\n", maxrows, maxcols)) ; Chain_maxrows [nchains] = maxrows ; Chain_maxcols [nchains] = maxcols ; /* keep track of the maximum front size for all chains */ /* for Info only: */ s = (double) maxrows * (double) maxcols ; dmaxfrsize = MAX (dmaxfrsize, s) ; /* for the subsequent numerical factorization */ maxnrows = MAX (maxnrows, maxrows) ; maxncols = MAX (maxncols, maxcols) ; DEBUG1 (("Chain dmaxfrsize %g\n\n", dmaxfrsize)) ; /* start the next chain */ nchains++ ; Chain_start [nchains] = i+1 ; maxrows = 1 ; maxcols = 1 ; } } /* for Info only: */ dmaxfrsize = ceil (dmaxfrsize) ; DEBUGm1 (("dmaxfrsize %30.20g Int_MAX "ID"\n", dmaxfrsize, Int_MAX)) ; ASSERT (Symbolic->nchains == nchains) ; /* For allocating objects in umfpack_numeric (does not include all possible * pivots, particularly pivots from prior fronts in the chain. Need to add * nb to these to get the # of columns in the L block, for example. This * is the largest row dimension and largest column dimension of any frontal * matrix. maxnrows is always odd. */ Symbolic->maxnrows = maxnrows ; Symbolic->maxncols = maxncols ; DEBUGm3 (("maxnrows "ID" maxncols "ID"\n", maxnrows, maxncols)) ; /* ---------------------------------------------------------------------- */ /* find the initial element sizes */ /* ---------------------------------------------------------------------- */ if (max_rdeg > dense_row_threshold) { /* there are one or more dense rows in the input matrix */ /* count the number of dense rows in each column */ /* use Ci as workspace for inverse of Rperm_init [ */ ASSERT (Esize != (Int *) NULL) ; for (newrow = 0 ; newrow < n_row ; newrow++) { oldrow = Rperm_init [newrow] ; ASSERT (oldrow >= 0 && oldrow < nn) ; Ci [oldrow] = newrow ; } for (col = n1 ; col < n_col - nempty_col ; col++) { oldcol = Cperm_init [col] ; esize = Cdeg [oldcol] ; ASSERT (esize > 0) ; for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { oldrow = Ai [p] ; newrow = Ci [oldrow] ; if (newrow >= n1 && Rdeg [oldrow] > dense_row_threshold) { esize-- ; } } ASSERT (esize >= 0) ; Esize [col - n1] = esize ; } /* done using Ci as workspace ] */ } /* If there are no dense rows, then Esize [col-n1] is identical to * Cdeg [col], once Cdeg is permuted below */ /* ---------------------------------------------------------------------- */ /* permute Cdeg and Rdeg according to initial column and row permutation */ /* ---------------------------------------------------------------------- */ /* use Ci as workspace [ */ for (k = 0 ; k < n_col ; k++) { Ci [k] = Cdeg [Cperm_init [k]] ; } for (k = 0 ; k < n_col ; k++) { Cdeg [k] = Ci [k] ; } for (k = 0 ; k < n_row ; k++) { Ci [k] = Rdeg [Rperm_init [k]] ; } for (k = 0 ; k < n_row ; k++) { Rdeg [k] = Ci [k] ; } /* done using Ci as workspace ] */ /* ---------------------------------------------------------------------- */ /* simulate UMF_kernel_init */ /* ---------------------------------------------------------------------- */ /* count elements and tuples at tail, LU factors of singletons, and * head and tail markers */ dlnz = n_inner ; /* upper limit of nz in L (incl diag) */ dunz = dlnz ; /* upper limit of nz in U (incl diag) */ /* head marker */ head_usage = 1 ; dhead_usage = 1 ; /* tail markers: */ tail_usage = 2 ; dtail_usage = 2 ; /* allocate the Rpi and Rpx workspace for UMF_kernel_init (incl. headers) */ tail_usage += UNITS (Int *, n_row+1) + UNITS (Entry *, n_row+1) + 2 ; dtail_usage += DUNITS (Int *, n_row+1) + DUNITS (Entry *, n_row+1) + 2 ; DEBUG1 (("Symbolic usage after Rpi/Rpx allocation: head "ID" tail "ID"\n", head_usage, tail_usage)) ; /* LU factors for singletons, at the head of memory */ for (k = 0 ; k < n1 ; k++) { lnz = Cdeg [k] - 1 ; unz = Rdeg [k] - 1 ; dlnz += lnz ; dunz += unz ; DEBUG1 (("singleton k "ID" pivrow "ID" pivcol "ID" lnz "ID" unz "ID"\n", k, Rperm_init [k], Cperm_init [k], lnz, unz)) ; head_usage += UNITS (Int, lnz) + UNITS (Entry, lnz) + UNITS (Int, unz) + UNITS (Entry, unz) ; dhead_usage += DUNITS (Int, lnz) + DUNITS (Entry, lnz) + DUNITS (Int, unz) + DUNITS (Entry, unz) ; } DEBUG1 (("Symbolic init head usage: "ID" for LU singletons\n",head_usage)) ; /* column elements: */ for (k = n1 ; k < n_col - nempty_col; k++) { esize = Esize ? Esize [k-n1] : Cdeg [k] ; DEBUG2 ((" esize: "ID"\n", esize)) ; ASSERT (esize >= 0) ; if (esize > 0) { tail_usage += GET_ELEMENT_SIZE (esize, 1) + 1 ; dtail_usage += DGET_ELEMENT_SIZE (esize, 1) + 1 ; } } /* dense row elements */ if (Esize) { Int nrow_elements = 0 ; for (k = n1 ; k < n_row - nempty_row ; k++) { rdeg = Rdeg [k] ; if (rdeg > dense_row_threshold) { tail_usage += GET_ELEMENT_SIZE (1, rdeg) + 1 ; dtail_usage += GET_ELEMENT_SIZE (1, rdeg) + 1 ; nrow_elements++ ; } } Info [UMFPACK_NDENSE_ROW] = nrow_elements ; } DEBUG1 (("Symbolic usage: "ID" = head "ID" + tail "ID" after els\n", head_usage + tail_usage, head_usage, tail_usage)) ; /* compute the tuple lengths */ if (Esize) { /* row tuples */ for (row = n1 ; row < n_row ; row++) { rdeg = Rdeg [row] ; tlen = (rdeg > dense_row_threshold) ? 1 : rdeg ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } /* column tuples */ for (col = n1 ; col < n_col - nempty_col ; col++) { /* tlen is 1 plus the number of dense rows in this column */ esize = Esize [col - n1] ; tlen = (esize > 0) + (Cdeg [col] - esize) ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } for ( ; col < n_col ; col++) { tail_usage += 1 + UNITS (Tuple, TUPLES (0)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (0)) ; } } else { /* row tuples */ for (row = n1 ; row < n_row ; row++) { tlen = Rdeg [row] ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } /* column tuples */ for (col = n1 ; col < n_col ; col++) { tail_usage += 1 + UNITS (Tuple, TUPLES (1)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (1)) ; } } Symbolic->num_mem_init_usage = head_usage + tail_usage ; DEBUG1 (("Symbolic usage: "ID" = head "ID" + tail "ID" final\n", Symbolic->num_mem_init_usage, head_usage, tail_usage)) ; ASSERT (UMF_is_permutation (Rperm_init, Ci, n_row, n_row)) ; /* initial head and tail usage in Numeric->Memory */ dmax_usage = dhead_usage + dtail_usage ; dmax_usage = MAX (Symbolic->num_mem_init_usage, ceil (dmax_usage)) ; Info [UMFPACK_VARIABLE_INIT_ESTIMATE] = dmax_usage ; /* In case Symbolic->num_mem_init_usage overflows, keep as a double, too */ Symbolic->dnum_mem_init_usage = dmax_usage ; /* free the Rpi and Rpx workspace */ tail_usage -= UNITS (Int *, n_row+1) + UNITS (Entry *, n_row+1) ; dtail_usage -= DUNITS (Int *, n_row+1) + DUNITS (Entry *, n_row+1) ; /* ---------------------------------------------------------------------- */ /* simulate UMF_kernel, assuming unsymmetric pivoting */ /* ---------------------------------------------------------------------- */ /* Use Ci as temporary workspace for link lists [ */ Link = Ci ; for (i = 0 ; i < nfr ; i++) { Link [i] = EMPTY ; } flops = 0 ; /* flop count upper bound */ for (chain = 0 ; chain < nchains ; chain++) { double fsize ; f1 = Chain_start [chain] ; f2 = Chain_start [chain+1] - 1 ; /* allocate frontal matrix working array (C, L, and U) */ dr = Chain_maxrows [chain] ; dc = Chain_maxcols [chain] ; fsize = nb*nb /* LU is nb-by-nb */ + dr*nb /* L is dr-by-nb */ + nb*dc /* U is nb-by-dc, stored by rows */ + dr*dc ; /* C is dr by dc */ dtail_usage += DUNITS (Entry, fsize) ; dmax_usage = MAX (dmax_usage, dhead_usage + dtail_usage) ; for (i = f1 ; i <= f2 ; i++) { /* get frontal matrix info */ fpivcol = Front_npivcol [i] ; /* # candidate pivot columns */ fallrows = Fr_nrows [i] ; /* all rows (not just Schur comp*/ fallcols = Fr_ncols [i] ; /* all cols (not just Schur comp*/ parent = Front_parent [i] ; /* parent in column etree */ fpiv = MIN (fpivcol, fallrows) ; /* # pivot rows and cols */ f = (double) fpiv ; r = fallrows - fpiv ; /* # rows in Schur comp. */ c = fallcols - fpiv ; /* # cols in Schur comp. */ /* assemble all children of front i in column etree */ for (child = Link [i] ; child != EMPTY ; child = Link [child]) { ASSERT (child >= 0 && child < i) ; ASSERT (Front_parent [child] == i) ; /* free the child element and remove it from tuple lists */ cp = MIN (Front_npivcol [child], Fr_nrows [child]) ; cr = Fr_nrows [child] - cp ; cc = Fr_ncols [child] - cp ; ASSERT (cp >= 0 && cr >= 0 && cc >= 0) ; dtail_usage -= ELEMENT_SIZE (cr, cc) ; } /* The flop count computed here is "canonical". */ /* factorize the frontal matrix */ flops += DIV_FLOPS * (f*r + (f-1)*f/2) /* scale pivot columns */ /* f outer products: */ + MULTSUB_FLOPS * (f*r*c + (r+c)*(f-1)*f/2 + (f-1)*f*(2*f-1)/6); /* count nonzeros and memory usage in double precision */ dlf = (f*f-f)/2 + f*r ; /* nz in L below diagonal */ duf = (f*f-f)/2 + f*c ; /* nz in U above diagonal */ dlnz += dlf ; dunz += duf ; /* store f columns of L and f rows of U */ dhead_usage += DUNITS (Entry, dlf + duf) /* numerical values (excl diag) */ + DUNITS (Int, r + c + f) ; /* indices (compressed) */ if (parent != EMPTY) { /* create new element and place in tuple lists */ dtail_usage += ELEMENT_SIZE (r, c) ; /* place in link list of parent */ Link [i] = Link [parent] ; Link [parent] = i ; } /* keep track of peak Numeric->Memory usage */ dmax_usage = MAX (dmax_usage, dhead_usage + dtail_usage) ; } /* free the current frontal matrix */ dtail_usage -= DUNITS (Entry, fsize) ; } dhead_usage = ceil (dhead_usage) ; dmax_usage = ceil (dmax_usage) ; Symbolic->num_mem_size_est = dhead_usage ; Symbolic->num_mem_usage_est = dmax_usage ; Symbolic->lunz_bound = dlnz + dunz - n_inner ; /* ] done using Ci as workspace for Link array */ /* ---------------------------------------------------------------------- */ /* estimate total memory usage in UMFPACK_numeric */ /* ---------------------------------------------------------------------- */ UMF_set_stats ( Info, Symbolic, dmax_usage, /* estimated peak size of Numeric->Memory */ dhead_usage, /* estimated final size of Numeric->Memory */ flops, /* estimated "true flops" */ dlnz, /* estimated nz in L */ dunz, /* estimated nz in U */ dmaxfrsize, /* estimated largest front size */ (double) n_col, /* worst case Numeric->Upattern size */ (double) n_inner, /* max possible pivots to be found */ (double) maxnrows, /* estimated largest #rows in front */ (double) maxncols, /* estimated largest #cols in front */ TRUE, /* assume scaling is to be performed */ prefer_diagonal, ESTIMATE) ; /* ---------------------------------------------------------------------- */ #ifndef NDEBUG for (i = 0 ; i < nchains ; i++) { DEBUG2 (("Chain "ID" start "ID" end "ID" maxrows "ID" maxcols "ID"\n", i, Chain_start [i], Chain_start [i+1] - 1, Chain_maxrows [i], Chain_maxcols [i])) ; UMF_dump_chain (Chain_start [i], Fr_parent, Fr_npivcol, Fr_nrows, Fr_ncols, nfr) ; } fpivcol = 0 ; for (i = 0 ; i < nfr ; i++) { fpivcol = MAX (fpivcol, Front_npivcol [i]) ; } DEBUG0 (("Max pivot cols in any front: "ID"\n", fpivcol)) ; DEBUG1 (("Largest front: maxnrows "ID" maxncols "ID" dmaxfrsize %g\n", maxnrows, maxncols, dmaxfrsize)) ; #endif /* ---------------------------------------------------------------------- */ /* UMFPACK_symbolic was successful, return the object handle */ /* ---------------------------------------------------------------------- */ Symbolic->valid = SYMBOLIC_VALID ; *SymbolicHandle = (void *) Symbolic ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ /* (6) The last of the workspace is free'd. The final Symbolic object * consists of 12 to 14 allocated objects. Its final total size is lies * roughly between 4*n and 13*n for a square matrix, which is all that is * left of the memory allocated by this routine. If an error occurs, the * entire Symbolic object is free'd when this routine returns (the error * return routine, below). */ free_work (SW) ; DEBUG0 (("(3)Symbolic UMF_malloc_count - init_count = "ID"\n", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 12 + (Symbolic->Esize != (Int *) NULL) + (Symbolic->Diagonal_map != (Int *) NULL)) ; /* ---------------------------------------------------------------------- */ /* get the time used by UMFPACK_*symbolic */ /* ---------------------------------------------------------------------- */ umfpack_toc (stats) ; Info [UMFPACK_SYMBOLIC_WALLTIME] = stats [0] ; Info [UMFPACK_SYMBOLIC_TIME] = stats [1] ; return (UMFPACK_OK) ; } /* ========================================================================== */ /* === free_work ============================================================ */ /* ========================================================================== */ PRIVATE void free_work ( SWType *SW ) { if (SW) { SW->Rperm_2by2 = (Int *) UMF_free ((void *) SW->Rperm_2by2) ; SW->InvRperm1 = (Int *) UMF_free ((void *) SW->InvRperm1) ; SW->Rs = (double *) UMF_free ((void *) SW->Rs) ; SW->Si = (Int *) UMF_free ((void *) SW->Si) ; SW->Sp = (Int *) UMF_free ((void *) SW->Sp) ; SW->Ci = (Int *) UMF_free ((void *) SW->Ci) ; SW->Front_npivcol = (Int *) UMF_free ((void *) SW->Front_npivcol); SW->Front_nrows = (Int *) UMF_free ((void *) SW->Front_nrows) ; SW->Front_ncols = (Int *) UMF_free ((void *) SW->Front_ncols) ; SW->Front_parent = (Int *) UMF_free ((void *) SW->Front_parent) ; SW->Front_cols = (Int *) UMF_free ((void *) SW->Front_cols) ; SW->Cperm1 = (Int *) UMF_free ((void *) SW->Cperm1) ; SW->Rperm1 = (Int *) UMF_free ((void *) SW->Rperm1) ; SW->InFront = (Int *) UMF_free ((void *) SW->InFront) ; } } /* ========================================================================== */ /* === error ================================================================ */ /* ========================================================================== */ /* Error return from UMFPACK_symbolic. Free all allocated memory. */ PRIVATE void error ( SymbolicType **Symbolic, SWType *SW ) { free_work (SW) ; UMFPACK_free_symbolic ((void **) Symbolic) ; ASSERT (UMF_malloc_count == init_count) ; } SuiteSparse/UMFPACK/Source/umfpack_load_symbolic.c0000644001170100242450000001272510677543733021015 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_load_symbolic ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Loads a Symbolic object from a file created by umfpack_*_save_symbolic. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" #include "umf_malloc.h" #include "umf_free.h" #define READ(object,type,n) \ { \ object = (type *) UMF_malloc (n, sizeof (type)) ; \ if (object == (type *) NULL) \ { \ UMFPACK_free_symbolic ((void **) &Symbolic) ; \ fclose (f) ; \ return (UMFPACK_ERROR_out_of_memory) ; \ } \ if (fread (object, sizeof (type), n, f) != (size_t) n) \ { \ UMFPACK_free_symbolic ((void **) &Symbolic) ; \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ if (ferror (f)) \ { \ UMFPACK_free_symbolic ((void **) &Symbolic) ; \ fclose (f) ; \ return (UMFPACK_ERROR_file_IO) ; \ } \ } /* ========================================================================== */ /* === UMFPACK_load_symbolic ================================================ */ /* ========================================================================== */ GLOBAL Int UMFPACK_load_symbolic ( void **SymbolicHandle, char *user_filename ) { SymbolicType *Symbolic ; char *filename ; FILE *f ; *SymbolicHandle = (void *) NULL ; /* ---------------------------------------------------------------------- */ /* get the filename, or use the default name if filename is NULL */ /* ---------------------------------------------------------------------- */ if (user_filename == (char *) NULL) { filename = "symbolic.umf" ; } else { filename = user_filename ; } f = fopen (filename, "rb") ; if (!f) { return (UMFPACK_ERROR_file_IO) ; } /* ---------------------------------------------------------------------- */ /* read the Symbolic header from the file, in binary */ /* ---------------------------------------------------------------------- */ Symbolic = (SymbolicType *) UMF_malloc (1, sizeof (SymbolicType)) ; if (Symbolic == (SymbolicType *) NULL) { fclose (f) ; return (UMFPACK_ERROR_out_of_memory) ; } if (fread (Symbolic, sizeof (SymbolicType), 1, f) != 1) { (void) UMF_free ((void *) Symbolic) ; fclose (f) ; return (UMFPACK_ERROR_file_IO) ; } if (ferror (f)) { (void) UMF_free ((void *) Symbolic) ; fclose (f) ; return (UMFPACK_ERROR_file_IO) ; } if (Symbolic->valid != SYMBOLIC_VALID || Symbolic->n_row <= 0 || Symbolic->n_col <= 0 || Symbolic->nfr < 0 || Symbolic->nchains < 0 || Symbolic->esize < 0) { /* Symbolic does not point to a Symbolic object */ (void) UMF_free ((void *) Symbolic) ; fclose (f) ; return (UMFPACK_ERROR_invalid_Symbolic_object) ; } Symbolic->Cperm_init = (Int *) NULL ; Symbolic->Rperm_init = (Int *) NULL ; Symbolic->Front_npivcol = (Int *) NULL ; Symbolic->Front_parent = (Int *) NULL ; Symbolic->Front_1strow = (Int *) NULL ; Symbolic->Front_leftmostdesc = (Int *) NULL ; Symbolic->Chain_start = (Int *) NULL ; Symbolic->Chain_maxrows = (Int *) NULL ; Symbolic->Chain_maxcols = (Int *) NULL ; Symbolic->Cdeg = (Int *) NULL ; Symbolic->Rdeg = (Int *) NULL ; Symbolic->Esize = (Int *) NULL ; Symbolic->Diagonal_map = (Int *) NULL ; /* umfpack_free_symbolic can now be safely called if an error occurs */ /* ---------------------------------------------------------------------- */ /* read the rest of the Symbolic object */ /* ---------------------------------------------------------------------- */ READ (Symbolic->Cperm_init, Int, Symbolic->n_col+1) ; READ (Symbolic->Rperm_init, Int, Symbolic->n_row+1) ; READ (Symbolic->Front_npivcol, Int, Symbolic->nfr+1) ; READ (Symbolic->Front_parent, Int, Symbolic->nfr+1) ; READ (Symbolic->Front_1strow, Int, Symbolic->nfr+1) ; READ (Symbolic->Front_leftmostdesc, Int, Symbolic->nfr+1) ; READ (Symbolic->Chain_start, Int, Symbolic->nchains+1) ; READ (Symbolic->Chain_maxrows, Int, Symbolic->nchains+1) ; READ (Symbolic->Chain_maxcols, Int, Symbolic->nchains+1) ; READ (Symbolic->Cdeg, Int, Symbolic->n_col+1) ; READ (Symbolic->Rdeg, Int, Symbolic->n_row+1) ; if (Symbolic->esize > 0) { /* only when dense rows are present */ READ (Symbolic->Esize, Int, Symbolic->esize) ; } if (Symbolic->prefer_diagonal) { /* only when diagonal pivoting is prefered */ READ (Symbolic->Diagonal_map, Int, Symbolic->n_col+1) ; } /* close the file */ fclose (f) ; /* make sure the Symbolic object is valid */ if (!UMF_valid_symbolic (Symbolic)) { UMFPACK_free_symbolic ((void **) &Symbolic) ; return (UMFPACK_ERROR_invalid_Symbolic_object) ; } *SymbolicHandle = (void *) Symbolic ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_report_symbolic.c0000644001170100242450000001566210617162134021376 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_symbolic ============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints the Symbolic object. See umfpack_report_symbolic.h for details. Does not print new Cdeg, Rdeg, Esize, and the Diagonal_map. Dynamic memory usage: Allocates a size MAX (n_row,n_col)*sizeof(Int) workspace via a single call to UMF_malloc and then frees all of it via UMF_free on return. The workspace is not allocated if an early error return occurs before the workspace is needed. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" #include "umf_report_perm.h" #include "umf_malloc.h" #include "umf_free.h" GLOBAL Int UMFPACK_report_symbolic ( void *SymbolicHandle, const double Control [UMFPACK_CONTROL] ) { Int n_row, n_col, nz, nchains, nfr, maxnrows, maxncols, prl, k, chain, frontid, frontid1, frontid2, kk, *Chain_start, *W, *Chain_maxrows, *Chain_maxcols, *Front_npivcol, *Front_1strow, *Front_leftmostdesc, *Front_parent, done, status1, status2 ; SymbolicType *Symbolic ; prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } PRINTF (("Symbolic object: ")) ; Symbolic = (SymbolicType *) SymbolicHandle ; if (!UMF_valid_symbolic (Symbolic)) { PRINTF (("ERROR: invalid\n")) ; return (UMFPACK_ERROR_invalid_Symbolic_object) ; } n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; nz = Symbolic->nz ; nchains = Symbolic->nchains ; nfr = Symbolic->nfr ; maxnrows = Symbolic->maxnrows ; maxncols = Symbolic->maxncols ; Chain_start = Symbolic->Chain_start ; Chain_maxrows = Symbolic->Chain_maxrows ; Chain_maxcols = Symbolic->Chain_maxcols ; Front_npivcol = Symbolic->Front_npivcol ; Front_1strow = Symbolic->Front_1strow ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Front_parent = Symbolic->Front_parent ; if (prl >= 4) { PRINTF (("\n matrix to be factorized:\n")) ; PRINTF (("\tn_row: "ID" n_col: "ID"\n", n_row, n_col)) ; PRINTF (("\tnumber of entries: "ID"\n", nz)) ; PRINTF ((" block size used for dense matrix kernels: "ID"\n", Symbolic->nb)) ; PRINTF ((" strategy used: ")) ; /* strategy cannot be auto */ if (Symbolic->strategy == UMFPACK_STRATEGY_SYMMETRIC) { PRINTF (("symmetric")) ; } else if (Symbolic->strategy == UMFPACK_STRATEGY_UNSYMMETRIC) { PRINTF (("unsymmetric")) ; } else if (Symbolic->strategy == UMFPACK_STRATEGY_2BY2) { PRINTF (("symmetric 2-by-2")) ; } PRINTF (("\n")) ; PRINTF ((" ordering used: ")) ; if (Symbolic->ordering == UMFPACK_ORDERING_COLAMD) { PRINTF (("colamd on A\n")) ; } else if (Symbolic->ordering == UMFPACK_ORDERING_AMD) { PRINTF (("amd on A+A'\n")) ; } else if (Symbolic->ordering == UMFPACK_ORDERING_GIVEN) { PRINTF (("provided by user")) ; } PRINTF (("\n")) ; PRINTF ((" performn column etree postorder: ")) ; if (Symbolic->fixQ) { PRINTF (("no\n")) ; } else { PRINTF (("yes\n")) ; } PRINTF ((" prefer diagonal pivoting (attempt P=Q): ")) ; if (Symbolic->prefer_diagonal) { PRINTF (("yes\n")) ; } else { PRINTF (("no\n")) ; } PRINTF ((" variable-size part of Numeric object:\n")) ; PRINTF (("\tminimum initial size (Units): %.20g (MBytes): %.1f\n", Symbolic->dnum_mem_init_usage, MBYTES (Symbolic->dnum_mem_init_usage))) ; PRINTF (("\testimated peak size (Units): %.20g (MBytes): %.1f\n", Symbolic->num_mem_usage_est, MBYTES (Symbolic->num_mem_usage_est))) ; PRINTF (("\testimated final size (Units): %.20g (MBytes): %.1f\n", Symbolic->num_mem_size_est, MBYTES (Symbolic->num_mem_size_est))) ; PRINTF ((" symbolic factorization memory usage (Units):" " %.20g (MBytes): %.1f\n", Symbolic->peak_sym_usage, MBYTES (Symbolic->peak_sym_usage))) ; PRINTF ((" frontal matrices / supercolumns:\n")) ; PRINTF (("\tnumber of frontal chains: "ID"\n", nchains)) ; PRINTF (("\tnumber of frontal matrices: "ID"\n", nfr)) ; PRINTF (("\tlargest frontal matrix row dimension: "ID"\n", maxnrows)) ; PRINTF (("\tlargest frontal matrix column dimension: "ID"\n",maxncols)); } k = 0 ; done = FALSE ; for (chain = 0 ; chain < nchains ; chain++) { frontid1 = Chain_start [chain] ; frontid2 = Chain_start [chain+1] - 1 ; PRINTF4 (("\n Frontal chain: "ID". Frontal matrices "ID" to "ID"\n", INDEX (chain), INDEX (frontid1), INDEX (frontid2))) ; PRINTF4 (("\tLargest frontal matrix in Frontal chain: "ID"-by-"ID"\n", Chain_maxrows [chain], Chain_maxcols [chain])) ; for (frontid = frontid1 ; frontid <= frontid2 ; frontid++) { kk = Front_npivcol [frontid] ; PRINTF4 (("\tFront: "ID" pivot cols: "ID" (pivot columns "ID" to " ID")\n", INDEX (frontid), kk, INDEX (k), INDEX (k+kk-1))) ; PRINTF4 (("\t pivot row candidates: "ID" to "ID"\n", INDEX (Front_1strow [Front_leftmostdesc [frontid]]), INDEX (Front_1strow [frontid+1]-1))) ; PRINTF4 (("\t leftmost descendant: "ID"\n", INDEX (Front_leftmostdesc [frontid]))) ; PRINTF4 (("\t 1st new candidate row : "ID"\n", INDEX (Front_1strow [frontid]))) ; PRINTF4 (("\t parent:")) ; if (Front_parent [frontid] == EMPTY) { PRINTF4 ((" (none)\n")) ; } else { PRINTF4 ((" "ID"\n", INDEX (Front_parent [frontid]))) ; } done = (frontid == 20 && frontid < nfr-1 && prl == 4) ; if (done) { PRINTF4 (("\t...\n")) ; break ; } k += kk ; } if (Front_npivcol [nfr] != 0) { PRINTF4 (("\tFront: "ID" placeholder for "ID" empty columns\n", INDEX (nfr), Front_npivcol [nfr])) ; } if (done) { break ; } } W = (Int *) UMF_malloc (MAX (n_row, n_col), sizeof (Int)) ; if (!W) { PRINTF (("ERROR: out of memory to check Symbolic object\n\n")) ; return (UMFPACK_ERROR_out_of_memory) ; } PRINTF4 (("\nInitial column permutation, Q1: ")) ; status1 = UMF_report_perm (n_col, Symbolic->Cperm_init, W, prl, 0) ; PRINTF4 (("\nInitial row permutation, P1: ")) ; status2 = UMF_report_perm (n_row, Symbolic->Rperm_init, W, prl, 0) ; (void) UMF_free ((void *) W) ; if (status1 != UMFPACK_OK || status2 != UMFPACK_OK) { return (UMFPACK_ERROR_invalid_Symbolic_object) ; } PRINTF4 ((" Symbolic object: ")) ; PRINTF (("OK\n\n")) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_version.h0000644001170100242450000010121710617162533017010 0ustar davisfac/* ========================================================================== */ /* === umf_version.h ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Define routine names, depending on version being compiled. DINT: double precision, int's as integers DLONG: double precision, UF_long's as integers ZLONG: complex double precision, UF_long's as integers ZINT: complex double precision, int's as integers */ /* Set DINT as the default, if nothing is defined */ #if !defined (DLONG) && !defined (DINT) && !defined (ZLONG) && !defined (ZINT) #define DINT #endif /* Determine if this is a real or complex version */ #if defined (ZLONG) || defined (ZINT) #define COMPLEX #endif /* -------------------------------------------------------------------------- */ /* integer type (Int is int or UF_long) now defined in amd_internal.h */ /* -------------------------------------------------------------------------- */ #if defined (DLONG) || defined (ZLONG) #define LONG_INTEGER #endif /* -------------------------------------------------------------------------- */ /* Numerical relop macros for correctly handling the NaN case */ /* -------------------------------------------------------------------------- */ /* SCALAR_IS_NAN(x): True if x is NaN. False otherwise. The commonly-existing isnan(x) function could be used, but it's not in Kernighan & Ritchie 2nd edition (ANSI C). It may appear in , but I'm not certain about portability. The expression x != x is true if and only if x is NaN, according to the IEEE 754 floating-point standard. SCALAR_IS_ZERO(x): True if x is zero. False if x is nonzero, NaN, or +/- Inf. This is (x == 0) if the compiler is IEEE 754 compliant. SCALAR_IS_NONZERO(x): True if x is nonzero, NaN, or +/- Inf. False if x zero. This is (x != 0) if the compiler is IEEE 754 compliant. SCALAR_IS_LTZERO(x): True if x is < zero or -Inf. False if x is >= 0, NaN, or +Inf. This is (x < 0) if the compiler is IEEE 754 compliant. */ #if defined (UMF_WINDOWS) && !defined (MATHWORKS) /* Yes, this is exceedingly ugly. Blame Microsoft, which hopelessly */ /* violates the IEEE 754 floating-point standard in a bizarre way. */ /* If you're using an IEEE 754-compliant compiler, then x != x is true */ /* iff x is NaN. For Microsoft, (x < x) is true iff x is NaN. */ /* So either way, this macro safely detects a NaN. */ #define SCALAR_IS_NAN(x) (((x) != (x)) || (((x) < (x)))) #define SCALAR_IS_ZERO(x) (((x) == 0.) && !SCALAR_IS_NAN(x)) #define SCALAR_IS_NONZERO(x) (((x) != 0.) || SCALAR_IS_NAN(x)) #define SCALAR_IS_LTZERO(x) (((x) < 0.) && !SCALAR_IS_NAN(x)) #else /* These all work properly, according to the IEEE 754 standard ... except on */ /* a PC with windows. Works fine in Linux on the same PC... */ #define SCALAR_IS_NAN(x) ((x) != (x)) #define SCALAR_IS_ZERO(x) ((x) == 0.) #define SCALAR_IS_NONZERO(x) ((x) != 0.) #define SCALAR_IS_LTZERO(x) ((x) < 0.) #endif /* scalar absolute value macro. If x is NaN, the result is NaN: */ #define SCALAR_ABS(x) ((SCALAR_IS_LTZERO (x)) ? -(x) : (x)) /* true if an integer (stored in double x) would overflow (or if x is NaN) */ #define INT_OVERFLOW(x) ((!((x) * (1.0+1e-8) <= (double) Int_MAX)) \ || SCALAR_IS_NAN (x)) /* print a scalar (avoid printing "-0" for negative zero). */ #define PRINT_SCALAR(a) \ { \ if (SCALAR_IS_NONZERO (a)) \ { \ PRINTF ((" (%g)", (a))) ; \ } \ else \ { \ PRINTF ((" (0)")) ; \ } \ } /* -------------------------------------------------------------------------- */ /* Real floating-point arithmetic */ /* -------------------------------------------------------------------------- */ #ifndef COMPLEX #define Entry double #define SPLIT(s) (1) #define REAL_COMPONENT(c) (c) #define IMAG_COMPONENT(c) (0.) #define ASSIGN(c,s1,s2,p,split) { (c) = (s1)[p] ; } #define CLEAR(c) { (c) = 0. ; } #define CLEAR_AND_INCREMENT(p) { *p++ = 0. ; } #define IS_NAN(a) SCALAR_IS_NAN (a) #define IS_ZERO(a) SCALAR_IS_ZERO (a) #define IS_NONZERO(a) SCALAR_IS_NONZERO (a) #define SCALE_DIV(c,s) { (c) /= (s) ; } #define SCALE(c,s) { (c) *= (s) ; } #define ASSEMBLE(c,a) { (c) += (a) ; } #define ASSEMBLE_AND_INCREMENT(c,p) { (c) += *p++ ; } #define DECREMENT(c,a) { (c) -= (a) ; } #define MULT(c,a,b) { (c) = (a) * (b) ; } #define MULT_CONJ(c,a,b) { (c) = (a) * (b) ; } #define MULT_SUB(c,a,b) { (c) -= (a) * (b) ; } #define MULT_SUB_CONJ(c,a,b) { (c) -= (a) * (b) ; } #define DIV(c,a,b) { (c) = (a) / (b) ; } #define DIV_CONJ(c,a,b) { (c) = (a) / (b) ; } #define APPROX_ABS(s,a) { (s) = SCALAR_ABS (a) ; } #define ABS(s,a) { (s) = SCALAR_ABS (a) ; } #define PRINT_ENTRY(a) PRINT_SCALAR (a) /* for flop counts */ #define MULTSUB_FLOPS 2. /* c -= a*b */ #define DIV_FLOPS 1. /* c = a/b */ #define ABS_FLOPS 0. /* c = abs (a) */ #define ASSEMBLE_FLOPS 1. /* c += a */ #define DECREMENT_FLOPS 1. /* c -= a */ #define MULT_FLOPS 1. /* c = a*b */ #define SCALE_FLOPS 1. /* c = a/s */ #else /* -------------------------------------------------------------------------- */ /* Complex floating-point arithmetic */ /* -------------------------------------------------------------------------- */ /* Note: An alternative to this DoubleComplex type would be to use a struct { double r ; double i ; }. The problem with that method (used by the Sun Performance Library, for example) is that ANSI C provides no guarantee about the layout of a struct. It is possible that the sizeof the struct above would be greater than 2 * sizeof (double). This would mean that the complex BLAS could not be used. The method used here avoids that possibility. ANSI C *does* guarantee that an array of structs has the same size as n times the size of one struct. The ANSI C99 version of the C language includes a "double _Complex" type. It should be possible in that case to do the following: #define Entry double _Complex and remove the DoubleComplex struct. The macros, below, could then be replaced with instrinsic operators. Note that the #define Real and #define Imag should also be removed (they only appear in this file). For the MULT, MULT_SUB, MULT_SUB_CONJ, and MULT_CONJ macros, the output argument c cannot be the same as any input argument. */ typedef struct { double component [2] ; /* real and imaginary parts */ } DoubleComplex ; #define Entry DoubleComplex #define Real component [0] #define Imag component [1] /* for flop counts */ #define MULTSUB_FLOPS 8. /* c -= a*b */ #define DIV_FLOPS 9. /* c = a/b */ #define ABS_FLOPS 6. /* c = abs (a), count sqrt as one flop */ #define ASSEMBLE_FLOPS 2. /* c += a */ #define DECREMENT_FLOPS 2. /* c -= a */ #define MULT_FLOPS 6. /* c = a*b */ #define SCALE_FLOPS 2. /* c = a/s or c = a*s */ /* -------------------------------------------------------------------------- */ /* real part of c */ #define REAL_COMPONENT(c) ((c).Real) /* -------------------------------------------------------------------------- */ /* imag part of c */ #define IMAG_COMPONENT(c) ((c).Imag) /* -------------------------------------------------------------------------- */ /* Return TRUE if a complex number is in split form, FALSE if in packed form */ #define SPLIT(sz) ((sz) != (double *) NULL) /* -------------------------------------------------------------------------- */ /* c = (s1) + (s2)*i, if s2 is null, then X is in "packed" format (compatible * with Entry and ANSI C99 double _Complex type). */ #define ASSIGN(c,s1,s2,p,split) \ { \ if (split) \ { \ (c).Real = (s1)[p] ; \ (c).Imag = (s2)[p] ; \ } \ else \ { \ (c) = ((Entry *)(s1))[p] ; \ } \ } /* -------------------------------------------------------------------------- */ /* c = 0 */ #define CLEAR(c) \ { \ (c).Real = 0. ; \ (c).Imag = 0. ; \ } /* -------------------------------------------------------------------------- */ /* *p++ = 0 */ #define CLEAR_AND_INCREMENT(p) \ { \ p->Real = 0. ; \ p->Imag = 0. ; \ p++ ; \ } /* -------------------------------------------------------------------------- */ /* True if a == 0 */ #define IS_ZERO(a) \ (SCALAR_IS_ZERO ((a).Real) && SCALAR_IS_ZERO ((a).Imag)) /* -------------------------------------------------------------------------- */ /* True if a is NaN */ #define IS_NAN(a) \ (SCALAR_IS_NAN ((a).Real) || SCALAR_IS_NAN ((a).Imag)) /* -------------------------------------------------------------------------- */ /* True if a != 0 */ #define IS_NONZERO(a) \ (SCALAR_IS_NONZERO ((a).Real) || SCALAR_IS_NONZERO ((a).Imag)) /* -------------------------------------------------------------------------- */ /* c /= s */ #define SCALE_DIV(c,s) \ { \ (c).Real /= (s) ; \ (c).Imag /= (s) ; \ } /* -------------------------------------------------------------------------- */ /* c *= s */ #define SCALE(c,s) \ { \ (c).Real *= (s) ; \ (c).Imag *= (s) ; \ } /* -------------------------------------------------------------------------- */ /* c += a */ #define ASSEMBLE(c,a) \ { \ (c).Real += (a).Real ; \ (c).Imag += (a).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c += *p++ */ #define ASSEMBLE_AND_INCREMENT(c,p) \ { \ (c).Real += p->Real ; \ (c).Imag += p->Imag ; \ p++ ; \ } /* -------------------------------------------------------------------------- */ /* c -= a */ #define DECREMENT(c,a) \ { \ (c).Real -= (a).Real ; \ (c).Imag -= (a).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a*b, assert because c cannot be the same as a or b */ #define MULT(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real = (a).Real * (b).Real - (a).Imag * (b).Imag ; \ (c).Imag = (a).Imag * (b).Real + (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a*conjugate(b), assert because c cannot be the same as a or b */ #define MULT_CONJ(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real = (a).Real * (b).Real + (a).Imag * (b).Imag ; \ (c).Imag = (a).Imag * (b).Real - (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c -= a*b, assert because c cannot be the same as a or b */ #define MULT_SUB(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real -= (a).Real * (b).Real - (a).Imag * (b).Imag ; \ (c).Imag -= (a).Imag * (b).Real + (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c -= a*conjugate(b), assert because c cannot be the same as a or b */ #define MULT_SUB_CONJ(c,a,b) \ { \ ASSERT (&(c) != &(a) && &(c) != &(b)) ; \ (c).Real -= (a).Real * (b).Real + (a).Imag * (b).Imag ; \ (c).Imag -= (a).Imag * (b).Real - (a).Real * (b).Imag ; \ } /* -------------------------------------------------------------------------- */ /* c = a/b, using function pointer */ #define DIV(c,a,b) \ { \ (void) umfpack_divcomplex ((a).Real, (a).Imag, (b).Real, (b).Imag, \ &((c).Real), &((c).Imag)) ; \ } /* -------------------------------------------------------------------------- */ /* c = a/conjugate(b), using function pointer */ #define DIV_CONJ(c,a,b) \ { \ (void) umfpack_divcomplex ((a).Real, (a).Imag, (b).Real, (-(b).Imag), \ &((c).Real), &((c).Imag)) ; \ } /* -------------------------------------------------------------------------- */ /* approximate absolute value, s = |r|+|i| */ #define APPROX_ABS(s,a) \ { \ (s) = SCALAR_ABS ((a).Real) + SCALAR_ABS ((a).Imag) ; \ } /* -------------------------------------------------------------------------- */ /* exact absolute value, s = sqrt (a.real^2 + a.imag^2) */ #define ABS(s,a) \ { \ (s) = umfpack_hypot ((a).Real, (a).Imag) ; \ } /* -------------------------------------------------------------------------- */ /* print an entry (avoid printing "-0" for negative zero). */ #define PRINT_ENTRY(a) \ { \ if (SCALAR_IS_NONZERO ((a).Real)) \ { \ PRINTF ((" (%g", (a).Real)) ; \ } \ else \ { \ PRINTF ((" (0")) ; \ } \ if (SCALAR_IS_LTZERO ((a).Imag)) \ { \ PRINTF ((" - %gi)", -(a).Imag)) ; \ } \ else if (SCALAR_IS_ZERO ((a).Imag)) \ { \ PRINTF ((" + 0i)")) ; \ } \ else \ { \ PRINTF ((" + %gi)", (a).Imag)) ; \ } \ } /* -------------------------------------------------------------------------- */ #endif /* #ifndef COMPLEX */ /* -------------------------------------------------------------------------- */ /* Double precision, with int's as integers */ /* -------------------------------------------------------------------------- */ #ifdef DINT #define UMF_analyze umf_i_analyze #define UMF_apply_order umf_i_apply_order #define UMF_assemble umfdi_assemble #define UMF_assemble_fixq umfdi_assemble_fixq #define UMF_blas3_update umfdi_blas3_update #define UMF_build_tuples umfdi_build_tuples #define UMF_build_tuples_usage umfdi_build_tuples_usage #define UMF_colamd umf_i_colamd #define UMF_colamd_set_defaults umf_i_colamd_set_defaults #define UMF_create_element umfdi_create_element #define UMF_extend_front umfdi_extend_front #define UMF_free umf_i_free #define UMF_fsize umf_i_fsize #define UMF_garbage_collection umfdi_garbage_collection #define UMF_get_memory umfdi_get_memory #define UMF_grow_front umfdi_grow_front #define UMF_init_front umfdi_init_front #define UMF_is_permutation umf_i_is_permutation #define UMF_kernel umfdi_kernel #define UMF_kernel_init umfdi_kernel_init #define UMF_kernel_init_usage umfdi_kernel_init_usage #define UMF_kernel_wrapup umfdi_kernel_wrapup #define UMF_local_search umfdi_local_search #define UMF_lsolve umfdi_lsolve #define UMF_ltsolve umfdi_ltsolve #define UMF_lhsolve umfdi_lhsolve #define UMF_malloc umf_i_malloc #define UMF_mem_alloc_element umfdi_mem_alloc_element #define UMF_mem_alloc_head_block umfdi_mem_alloc_head_block #define UMF_mem_alloc_tail_block umfdi_mem_alloc_tail_block #define UMF_mem_free_tail_block umfdi_mem_free_tail_block #define UMF_mem_init_memoryspace umfdi_mem_init_memoryspace #define UMF_realloc umf_i_realloc #define UMF_report_perm umf_i_report_perm #define UMF_report_vector umfdi_report_vector #define UMF_row_search umfdi_row_search #define UMF_scale umfdi_scale #define UMF_scale_column umfdi_scale_column #define UMF_set_stats umf_i_set_stats #define UMF_singletons umf_i_singletons #define UMF_solve umfdi_solve #define UMF_start_front umfdi_start_front #define UMF_store_lu umfdi_store_lu #define UMF_store_lu_drop umfdi_store_lu_drop #define UMF_symbolic_usage umfdi_symbolic_usage #define UMF_transpose umfdi_transpose #define UMF_tuple_lengths umfdi_tuple_lengths #define UMF_usolve umfdi_usolve #define UMF_utsolve umfdi_utsolve #define UMF_uhsolve umfdi_uhsolve #define UMF_valid_numeric umfdi_valid_numeric #define UMF_valid_symbolic umfdi_valid_symbolic #define UMF_triplet_map_x umfdi_triplet_map_x #define UMF_triplet_map_nox umfdi_triplet_map_nox #define UMF_triplet_nomap_x umfdi_triplet_nomap_x #define UMF_triplet_nomap_nox umfdi_triplet_nomap_nox #define UMF_2by2 umfdi_2by2 #define UMFPACK_col_to_triplet umfpack_di_col_to_triplet #define UMFPACK_defaults umfpack_di_defaults #define UMFPACK_free_numeric umfpack_di_free_numeric #define UMFPACK_free_symbolic umfpack_di_free_symbolic #define UMFPACK_get_lunz umfpack_di_get_lunz #define UMFPACK_get_numeric umfpack_di_get_numeric #define UMFPACK_get_symbolic umfpack_di_get_symbolic #define UMFPACK_get_determinant umfpack_di_get_determinant #define UMFPACK_numeric umfpack_di_numeric #define UMFPACK_qsymbolic umfpack_di_qsymbolic #define UMFPACK_report_control umfpack_di_report_control #define UMFPACK_report_info umfpack_di_report_info #define UMFPACK_report_matrix umfpack_di_report_matrix #define UMFPACK_report_numeric umfpack_di_report_numeric #define UMFPACK_report_perm umfpack_di_report_perm #define UMFPACK_report_status umfpack_di_report_status #define UMFPACK_report_symbolic umfpack_di_report_symbolic #define UMFPACK_report_triplet umfpack_di_report_triplet #define UMFPACK_report_vector umfpack_di_report_vector #define UMFPACK_save_numeric umfpack_di_save_numeric #define UMFPACK_save_symbolic umfpack_di_save_symbolic #define UMFPACK_load_numeric umfpack_di_load_numeric #define UMFPACK_load_symbolic umfpack_di_load_symbolic #define UMFPACK_scale umfpack_di_scale #define UMFPACK_solve umfpack_di_solve #define UMFPACK_symbolic umfpack_di_symbolic #define UMFPACK_transpose umfpack_di_transpose #define UMFPACK_triplet_to_col umfpack_di_triplet_to_col #define UMFPACK_wsolve umfpack_di_wsolve /* for debugging only: */ #define UMF_malloc_count umf_i_malloc_count #define UMF_debug umfdi_debug #define UMF_allocfail umfdi_allocfail #define UMF_gprob umfdi_gprob #define UMF_dump_dense umfdi_dump_dense #define UMF_dump_element umfdi_dump_element #define UMF_dump_rowcol umfdi_dump_rowcol #define UMF_dump_matrix umfdi_dump_matrix #define UMF_dump_current_front umfdi_dump_current_front #define UMF_dump_lu umfdi_dump_lu #define UMF_dump_memory umfdi_dump_memory #define UMF_dump_packed_memory umfdi_dump_packed_memory #define UMF_dump_col_matrix umfdi_dump_col_matrix #define UMF_dump_chain umfdi_dump_chain #define UMF_dump_start umfdi_dump_start #define UMF_dump_rowmerge umfdi_dump_rowmerge #define UMF_dump_diagonal_map umfdi_dump_diagonal_map #endif /* -------------------------------------------------------------------------- */ /* Double precision, with UF_long's as integers */ /* -------------------------------------------------------------------------- */ #ifdef DLONG #define UMF_analyze umf_l_analyze #define UMF_apply_order umf_l_apply_order #define UMF_assemble umfdl_assemble #define UMF_assemble_fixq umfdl_assemble_fixq #define UMF_blas3_update umfdl_blas3_update #define UMF_build_tuples umfdl_build_tuples #define UMF_build_tuples_usage umfdl_build_tuples_usage #define UMF_colamd umf_l_colamd #define UMF_colamd_set_defaults umf_l_colamd_set_defaults #define UMF_create_element umfdl_create_element #define UMF_extend_front umfdl_extend_front #define UMF_free umf_l_free #define UMF_fsize umf_l_fsize #define UMF_garbage_collection umfdl_garbage_collection #define UMF_get_memory umfdl_get_memory #define UMF_grow_front umfdl_grow_front #define UMF_init_front umfdl_init_front #define UMF_is_permutation umf_l_is_permutation #define UMF_kernel umfdl_kernel #define UMF_kernel_init umfdl_kernel_init #define UMF_kernel_init_usage umfdl_kernel_init_usage #define UMF_kernel_wrapup umfdl_kernel_wrapup #define UMF_local_search umfdl_local_search #define UMF_lsolve umfdl_lsolve #define UMF_ltsolve umfdl_ltsolve #define UMF_lhsolve umfdl_lhsolve #define UMF_malloc umf_l_malloc #define UMF_mem_alloc_element umfdl_mem_alloc_element #define UMF_mem_alloc_head_block umfdl_mem_alloc_head_block #define UMF_mem_alloc_tail_block umfdl_mem_alloc_tail_block #define UMF_mem_free_tail_block umfdl_mem_free_tail_block #define UMF_mem_init_memoryspace umfdl_mem_init_memoryspace #define UMF_realloc umf_l_realloc #define UMF_report_perm umf_l_report_perm #define UMF_report_vector umfdl_report_vector #define UMF_row_search umfdl_row_search #define UMF_scale umfdl_scale #define UMF_scale_column umfdl_scale_column #define UMF_set_stats umf_l_set_stats #define UMF_singletons umf_l_singletons #define UMF_solve umfdl_solve #define UMF_start_front umfdl_start_front #define UMF_store_lu umfdl_store_lu #define UMF_store_lu_drop umfdl_store_lu_drop #define UMF_symbolic_usage umfdl_symbolic_usage #define UMF_transpose umfdl_transpose #define UMF_tuple_lengths umfdl_tuple_lengths #define UMF_usolve umfdl_usolve #define UMF_utsolve umfdl_utsolve #define UMF_uhsolve umfdl_uhsolve #define UMF_valid_numeric umfdl_valid_numeric #define UMF_valid_symbolic umfdl_valid_symbolic #define UMF_triplet_map_x umfdl_triplet_map_x #define UMF_triplet_map_nox umfdl_triplet_map_nox #define UMF_triplet_nomap_x umfdl_triplet_nomap_x #define UMF_triplet_nomap_nox umfdl_triplet_nomap_nox #define UMF_2by2 umfdl_2by2 #define UMFPACK_col_to_triplet umfpack_dl_col_to_triplet #define UMFPACK_defaults umfpack_dl_defaults #define UMFPACK_free_numeric umfpack_dl_free_numeric #define UMFPACK_free_symbolic umfpack_dl_free_symbolic #define UMFPACK_get_lunz umfpack_dl_get_lunz #define UMFPACK_get_numeric umfpack_dl_get_numeric #define UMFPACK_get_symbolic umfpack_dl_get_symbolic #define UMFPACK_get_determinant umfpack_dl_get_determinant #define UMFPACK_numeric umfpack_dl_numeric #define UMFPACK_qsymbolic umfpack_dl_qsymbolic #define UMFPACK_report_control umfpack_dl_report_control #define UMFPACK_report_info umfpack_dl_report_info #define UMFPACK_report_matrix umfpack_dl_report_matrix #define UMFPACK_report_numeric umfpack_dl_report_numeric #define UMFPACK_report_perm umfpack_dl_report_perm #define UMFPACK_report_status umfpack_dl_report_status #define UMFPACK_report_symbolic umfpack_dl_report_symbolic #define UMFPACK_report_triplet umfpack_dl_report_triplet #define UMFPACK_report_vector umfpack_dl_report_vector #define UMFPACK_save_numeric umfpack_dl_save_numeric #define UMFPACK_save_symbolic umfpack_dl_save_symbolic #define UMFPACK_load_numeric umfpack_dl_load_numeric #define UMFPACK_load_symbolic umfpack_dl_load_symbolic #define UMFPACK_scale umfpack_dl_scale #define UMFPACK_solve umfpack_dl_solve #define UMFPACK_symbolic umfpack_dl_symbolic #define UMFPACK_transpose umfpack_dl_transpose #define UMFPACK_triplet_to_col umfpack_dl_triplet_to_col #define UMFPACK_wsolve umfpack_dl_wsolve /* for debugging only: */ #define UMF_malloc_count umf_l_malloc_count #define UMF_debug umfdl_debug #define UMF_allocfail umfdl_allocfail #define UMF_gprob umfdl_gprob #define UMF_dump_dense umfdl_dump_dense #define UMF_dump_element umfdl_dump_element #define UMF_dump_rowcol umfdl_dump_rowcol #define UMF_dump_matrix umfdl_dump_matrix #define UMF_dump_current_front umfdl_dump_current_front #define UMF_dump_lu umfdl_dump_lu #define UMF_dump_memory umfdl_dump_memory #define UMF_dump_packed_memory umfdl_dump_packed_memory #define UMF_dump_col_matrix umfdl_dump_col_matrix #define UMF_dump_chain umfdl_dump_chain #define UMF_dump_start umfdl_dump_start #define UMF_dump_rowmerge umfdl_dump_rowmerge #define UMF_dump_diagonal_map umfdl_dump_diagonal_map #endif /* -------------------------------------------------------------------------- */ /* Complex double precision, with int's as integers */ /* -------------------------------------------------------------------------- */ #ifdef ZINT #define UMF_analyze umf_i_analyze #define UMF_apply_order umf_i_apply_order #define UMF_assemble umfzi_assemble #define UMF_assemble_fixq umfzi_assemble_fixq #define UMF_blas3_update umfzi_blas3_update #define UMF_build_tuples umfzi_build_tuples #define UMF_build_tuples_usage umfzi_build_tuples_usage #define UMF_colamd umf_i_colamd #define UMF_colamd_set_defaults umf_i_colamd_set_defaults #define UMF_create_element umfzi_create_element #define UMF_extend_front umfzi_extend_front #define UMF_free umf_i_free #define UMF_fsize umf_i_fsize #define UMF_garbage_collection umfzi_garbage_collection #define UMF_get_memory umfzi_get_memory #define UMF_grow_front umfzi_grow_front #define UMF_init_front umfzi_init_front #define UMF_is_permutation umf_i_is_permutation #define UMF_kernel umfzi_kernel #define UMF_kernel_init umfzi_kernel_init #define UMF_kernel_init_usage umfzi_kernel_init_usage #define UMF_kernel_wrapup umfzi_kernel_wrapup #define UMF_local_search umfzi_local_search #define UMF_lsolve umfzi_lsolve #define UMF_ltsolve umfzi_ltsolve #define UMF_lhsolve umfzi_lhsolve #define UMF_malloc umf_i_malloc #define UMF_mem_alloc_element umfzi_mem_alloc_element #define UMF_mem_alloc_head_block umfzi_mem_alloc_head_block #define UMF_mem_alloc_tail_block umfzi_mem_alloc_tail_block #define UMF_mem_free_tail_block umfzi_mem_free_tail_block #define UMF_mem_init_memoryspace umfzi_mem_init_memoryspace #define UMF_realloc umf_i_realloc #define UMF_report_perm umf_i_report_perm #define UMF_report_vector umfzi_report_vector #define UMF_row_search umfzi_row_search #define UMF_scale umfzi_scale #define UMF_scale_column umfzi_scale_column #define UMF_set_stats umfzi_set_stats #define UMF_singletons umf_i_singletons #define UMF_solve umfzi_solve #define UMF_start_front umfzi_start_front #define UMF_store_lu umfzi_store_lu #define UMF_store_lu_drop umfzi_store_lu_drop #define UMF_symbolic_usage umfzi_symbolic_usage #define UMF_transpose umfzi_transpose #define UMF_tuple_lengths umfzi_tuple_lengths #define UMF_usolve umfzi_usolve #define UMF_utsolve umfzi_utsolve #define UMF_uhsolve umfzi_uhsolve #define UMF_valid_numeric umfzi_valid_numeric #define UMF_valid_symbolic umfzi_valid_symbolic #define UMF_triplet_map_x umfzi_triplet_map_x #define UMF_triplet_map_nox umfzi_triplet_map_nox #define UMF_triplet_nomap_x umfzi_triplet_nomap_x #define UMF_triplet_nomap_nox umfzi_triplet_nomap_nox #define UMF_2by2 umfzi_2by2 #define UMFPACK_col_to_triplet umfpack_zi_col_to_triplet #define UMFPACK_defaults umfpack_zi_defaults #define UMFPACK_free_numeric umfpack_zi_free_numeric #define UMFPACK_free_symbolic umfpack_zi_free_symbolic #define UMFPACK_get_lunz umfpack_zi_get_lunz #define UMFPACK_get_numeric umfpack_zi_get_numeric #define UMFPACK_get_symbolic umfpack_zi_get_symbolic #define UMFPACK_get_determinant umfpack_zi_get_determinant #define UMFPACK_numeric umfpack_zi_numeric #define UMFPACK_qsymbolic umfpack_zi_qsymbolic #define UMFPACK_report_control umfpack_zi_report_control #define UMFPACK_report_info umfpack_zi_report_info #define UMFPACK_report_matrix umfpack_zi_report_matrix #define UMFPACK_report_numeric umfpack_zi_report_numeric #define UMFPACK_report_perm umfpack_zi_report_perm #define UMFPACK_report_status umfpack_zi_report_status #define UMFPACK_report_symbolic umfpack_zi_report_symbolic #define UMFPACK_report_triplet umfpack_zi_report_triplet #define UMFPACK_report_vector umfpack_zi_report_vector #define UMFPACK_save_numeric umfpack_zi_save_numeric #define UMFPACK_save_symbolic umfpack_zi_save_symbolic #define UMFPACK_load_numeric umfpack_zi_load_numeric #define UMFPACK_load_symbolic umfpack_zi_load_symbolic #define UMFPACK_scale umfpack_zi_scale #define UMFPACK_solve umfpack_zi_solve #define UMFPACK_symbolic umfpack_zi_symbolic #define UMFPACK_transpose umfpack_zi_transpose #define UMFPACK_triplet_to_col umfpack_zi_triplet_to_col #define UMFPACK_wsolve umfpack_zi_wsolve /* for debugging only: */ #define UMF_malloc_count umf_i_malloc_count #define UMF_debug umfzi_debug #define UMF_allocfail umfzi_allocfail #define UMF_gprob umfzi_gprob #define UMF_dump_dense umfzi_dump_dense #define UMF_dump_element umfzi_dump_element #define UMF_dump_rowcol umfzi_dump_rowcol #define UMF_dump_matrix umfzi_dump_matrix #define UMF_dump_current_front umfzi_dump_current_front #define UMF_dump_lu umfzi_dump_lu #define UMF_dump_memory umfzi_dump_memory #define UMF_dump_packed_memory umfzi_dump_packed_memory #define UMF_dump_col_matrix umfzi_dump_col_matrix #define UMF_dump_chain umfzi_dump_chain #define UMF_dump_start umfzi_dump_start #define UMF_dump_rowmerge umfzi_dump_rowmerge #define UMF_dump_diagonal_map umfzi_dump_diagonal_map #endif /* -------------------------------------------------------------------------- */ /* Complex double precision, with UF_long's as integers */ /* -------------------------------------------------------------------------- */ #ifdef ZLONG #define UMF_analyze umf_l_analyze #define UMF_apply_order umf_l_apply_order #define UMF_assemble umfzl_assemble #define UMF_assemble_fixq umfzl_assemble_fixq #define UMF_blas3_update umfzl_blas3_update #define UMF_build_tuples umfzl_build_tuples #define UMF_build_tuples_usage umfzl_build_tuples_usage #define UMF_colamd umf_l_colamd #define UMF_colamd_set_defaults umf_l_colamd_set_defaults #define UMF_create_element umfzl_create_element #define UMF_extend_front umfzl_extend_front #define UMF_free umf_l_free #define UMF_fsize umf_l_fsize #define UMF_garbage_collection umfzl_garbage_collection #define UMF_get_memory umfzl_get_memory #define UMF_grow_front umfzl_grow_front #define UMF_init_front umfzl_init_front #define UMF_is_permutation umf_l_is_permutation #define UMF_kernel umfzl_kernel #define UMF_kernel_init umfzl_kernel_init #define UMF_kernel_init_usage umfzl_kernel_init_usage #define UMF_kernel_wrapup umfzl_kernel_wrapup #define UMF_local_search umfzl_local_search #define UMF_lsolve umfzl_lsolve #define UMF_ltsolve umfzl_ltsolve #define UMF_lhsolve umfzl_lhsolve #define UMF_malloc umf_l_malloc #define UMF_mem_alloc_element umfzl_mem_alloc_element #define UMF_mem_alloc_head_block umfzl_mem_alloc_head_block #define UMF_mem_alloc_tail_block umfzl_mem_alloc_tail_block #define UMF_mem_free_tail_block umfzl_mem_free_tail_block #define UMF_mem_init_memoryspace umfzl_mem_init_memoryspace #define UMF_realloc umf_l_realloc #define UMF_report_perm umf_l_report_perm #define UMF_report_vector umfzl_report_vector #define UMF_row_search umfzl_row_search #define UMF_scale umfzl_scale #define UMF_scale_column umfzl_scale_column #define UMF_set_stats umfzl_set_stats #define UMF_singletons umf_l_singletons #define UMF_solve umfzl_solve #define UMF_start_front umfzl_start_front #define UMF_store_lu umfzl_store_lu #define UMF_store_lu_drop umfzl_store_lu_drop #define UMF_symbolic_usage umfzl_symbolic_usage #define UMF_transpose umfzl_transpose #define UMF_tuple_lengths umfzl_tuple_lengths #define UMF_usolve umfzl_usolve #define UMF_utsolve umfzl_utsolve #define UMF_uhsolve umfzl_uhsolve #define UMF_valid_numeric umfzl_valid_numeric #define UMF_valid_symbolic umfzl_valid_symbolic #define UMF_triplet_map_x umfzl_triplet_map_x #define UMF_triplet_map_nox umfzl_triplet_map_nox #define UMF_triplet_nomap_x umfzl_triplet_nomap_x #define UMF_triplet_nomap_nox umfzl_triplet_nomap_nox #define UMF_2by2 umfzl_2by2 #define UMFPACK_col_to_triplet umfpack_zl_col_to_triplet #define UMFPACK_defaults umfpack_zl_defaults #define UMFPACK_free_numeric umfpack_zl_free_numeric #define UMFPACK_free_symbolic umfpack_zl_free_symbolic #define UMFPACK_get_lunz umfpack_zl_get_lunz #define UMFPACK_get_numeric umfpack_zl_get_numeric #define UMFPACK_get_symbolic umfpack_zl_get_symbolic #define UMFPACK_get_determinant umfpack_zl_get_determinant #define UMFPACK_numeric umfpack_zl_numeric #define UMFPACK_qsymbolic umfpack_zl_qsymbolic #define UMFPACK_report_control umfpack_zl_report_control #define UMFPACK_report_info umfpack_zl_report_info #define UMFPACK_report_matrix umfpack_zl_report_matrix #define UMFPACK_report_numeric umfpack_zl_report_numeric #define UMFPACK_report_perm umfpack_zl_report_perm #define UMFPACK_report_status umfpack_zl_report_status #define UMFPACK_report_symbolic umfpack_zl_report_symbolic #define UMFPACK_report_triplet umfpack_zl_report_triplet #define UMFPACK_report_vector umfpack_zl_report_vector #define UMFPACK_save_numeric umfpack_zl_save_numeric #define UMFPACK_save_symbolic umfpack_zl_save_symbolic #define UMFPACK_load_numeric umfpack_zl_load_numeric #define UMFPACK_load_symbolic umfpack_zl_load_symbolic #define UMFPACK_scale umfpack_zl_scale #define UMFPACK_solve umfpack_zl_solve #define UMFPACK_symbolic umfpack_zl_symbolic #define UMFPACK_transpose umfpack_zl_transpose #define UMFPACK_triplet_to_col umfpack_zl_triplet_to_col #define UMFPACK_wsolve umfpack_zl_wsolve /* for debugging only: */ #define UMF_malloc_count umf_l_malloc_count #define UMF_debug umfzl_debug #define UMF_allocfail umfzl_allocfail #define UMF_gprob umfzl_gprob #define UMF_dump_dense umfzl_dump_dense #define UMF_dump_element umfzl_dump_element #define UMF_dump_rowcol umfzl_dump_rowcol #define UMF_dump_matrix umfzl_dump_matrix #define UMF_dump_current_front umfzl_dump_current_front #define UMF_dump_lu umfzl_dump_lu #define UMF_dump_memory umfzl_dump_memory #define UMF_dump_packed_memory umfzl_dump_packed_memory #define UMF_dump_col_matrix umfzl_dump_col_matrix #define UMF_dump_chain umfzl_dump_chain #define UMF_dump_start umfzl_dump_start #define UMF_dump_rowmerge umfzl_dump_rowmerge #define UMF_dump_diagonal_map umfzl_dump_diagonal_map #endif SuiteSparse/UMFPACK/Source/umf_assemble.c0000644001170100242450000010220210677541253017112 0ustar davisfac/* ========================================================================== */ /* === UMF_assemble ========================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Degree update and numerical assembly. This is compiled twice (with and * without FIXQ) for each real/complex int/UF_long version, for a total of 8 * versions.*/ #include "umf_internal.h" #include "umf_assemble.h" #include "umf_mem_free_tail_block.h" /* ========================================================================== */ /* === row_assemble ========================================================= */ /* ========================================================================== */ PRIVATE void row_assemble ( Int row, NumericType *Numeric, WorkType *Work ) { Entry *S, *Fcblock, *Frow ; Int tpi, e, *E, *Fcpos, *Frpos, *Row_degree, *Row_tuples, *Row_tlen, rdeg0, f, nrows, ncols, *Rows, *Cols, col, ncolsleft, j ; Tuple *tp, *tp1, *tp2, *tpend ; Unit *Memory, *p ; Element *ep ; #ifndef FIXQ Int *Col_degree ; Col_degree = Numeric->Cperm ; #endif Row_tuples = Numeric->Uip ; tpi = Row_tuples [row] ; if (!tpi) return ; Memory = Numeric->Memory ; E = Work->E ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Row_degree = Numeric->Rperm ; Row_tlen = Numeric->Uilen ; E = Work->E ; Memory = Numeric->Memory ; rdeg0 = Work->rdeg0 ; Fcblock = Work->Fcblock ; #ifndef NDEBUG DEBUG6 (("SCAN2-row: "ID"\n", row)) ; UMF_dump_rowcol (0, Numeric, Work, row, FALSE) ; #endif ASSERT (NON_PIVOTAL_ROW (row)) ; tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [row] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; Rows = Cols + ep->ncols ; if (Rows [f] == EMPTY) continue ; /* row already assembled */ ASSERT (row == Rows [f] && row >= 0 && row < Work->n_row) ; if (ep->rdeg == rdeg0) { /* ------------------------------------------------------ */ /* this is an old Lson - assemble just one row */ /* ------------------------------------------------------ */ /* flag the row as assembled from the Lson */ Rows [f] = EMPTY ; nrows = ep->nrows ; ncols = ep->ncols ; p += UNITS (Int, ncols + nrows) ; S = ((Entry *) p) + f ; DEBUG6 (("Old LSON: "ID"\n", e)) ; #ifndef NDEBUG UMF_dump_element (Numeric, Work, e, FALSE) ; #endif ncolsleft = ep->ncolsleft ; Frow = Fcblock + Frpos [row] ; DEBUG6 (("LSON found (in scan2-row): "ID"\n", e)) ; Row_degree [row] -= ncolsleft ; if (ncols == ncolsleft) { /* -------------------------------------------------- */ /* no columns assembled out this Lson yet */ /* -------------------------------------------------- */ #pragma ivdep for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= 0 && col < Work->n_col) ; #ifndef FIXQ Col_degree [col] -- ; #endif /* Frow [Fcpos [col]] += *S ; */ ASSEMBLE (Frow [Fcpos [col]], *S) ; S += nrows ; } } else { /* -------------------------------------------------- */ /* some columns have been assembled out of this Lson */ /* -------------------------------------------------- */ #pragma ivdep for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; if (col >= 0) { ASSERT (col < Work->n_col) ; #ifndef FIXQ Col_degree [col] -- ; #endif /* Frow [Fcpos [col]] += *S ; */ ASSEMBLE (Frow [Fcpos [col]], *S) ; } S += nrows ; } } ep->nrowsleft-- ; ASSERT (ep->nrowsleft > 0) ; } else { *tp2++ = *tp ; /* leave the tuple in the list */ } } Row_tlen [row] = tp2 - tp1 ; #ifndef NDEBUG DEBUG7 (("row assembled in scan2-row: "ID"\n", row)) ; UMF_dump_rowcol (0, Numeric, Work, row, FALSE) ; DEBUG7 (("Current frontal matrix: (scan 1b)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif } /* ========================================================================== */ /* === col_assemble ========================================================= */ /* ========================================================================== */ PRIVATE void col_assemble ( Int col, NumericType *Numeric, WorkType *Work ) { Entry *S, *Fcblock, *Fcol ; Int tpi, e, *E, *Fcpos, *Frpos, *Row_degree, *Col_tuples, *Col_tlen, cdeg0, f, nrows, ncols, *Rows, *Cols, row, nrowsleft, i ; Tuple *tp, *tp1, *tp2, *tpend ; Unit *Memory, *p ; Element *ep ; #if !defined (FIXQ) || !defined (NDEBUG) Int *Col_degree ; Col_degree = Numeric->Cperm ; #endif Col_tuples = Numeric->Lip ; tpi = Col_tuples [col] ; if (!tpi) return ; Memory = Numeric->Memory ; E = Work->E ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Row_degree = Numeric->Rperm ; Col_tlen = Numeric->Lilen ; E = Work->E ; Memory = Numeric->Memory ; cdeg0 = Work->cdeg0 ; Fcblock = Work->Fcblock ; DEBUG6 (("SCAN2-col: "ID"\n", col)) ; #ifndef NDEBUG UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; #endif ASSERT (NON_PIVOTAL_COL (col)) ; tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Col_tlen [col] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; if (Cols [f] == EMPTY) continue ; /* col already assembled */ ASSERT (col == Cols [f] && col >= 0 && col < Work->n_col) ; if (ep->cdeg == cdeg0) { /* ------------------------------------------------------ */ /* this is an old Uson - assemble just one col */ /* ------------------------------------------------------ */ /* flag the col as assembled from the Uson */ Cols [f] = EMPTY ; nrows = ep->nrows ; ncols = ep->ncols ; Rows = Cols + ncols ; p += UNITS (Int, ncols + nrows) ; S = ((Entry *) p) + f * nrows ; DEBUG6 (("Old USON: "ID"\n", e)) ; #ifndef NDEBUG UMF_dump_element (Numeric, Work, e, FALSE) ; #endif nrowsleft = ep->nrowsleft ; Fcol = Fcblock + Fcpos [col] ; DEBUG6 (("USON found (in scan2-col): "ID"\n", e)) ; #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif if (nrows == nrowsleft) { /* -------------------------------------------------- */ /* no rows assembled out of this Uson yet */ /* -------------------------------------------------- */ #pragma ivdep for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; ASSERT (row >= 0 && row < Work->n_row) ; Row_degree [row]-- ; /* Fcol [Frpos [row]] += S [i] ; */ ASSEMBLE (Fcol [Frpos [row]], S [i]) ; } } else { /* -------------------------------------------------- */ /* some rows have been assembled out of this Uson */ /* -------------------------------------------------- */ #pragma ivdep for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if (row >= 0) { ASSERT (row < Work->n_row) ; Row_degree [row]-- ; /* Fcol [Frpos [row]] += S [i] ; */ ASSEMBLE (Fcol [Frpos [row]], S [i]) ; } } } ep->ncolsleft-- ; ASSERT (ep->ncolsleft > 0) ; } else { *tp2++ = *tp ; /* leave the tuple in the list */ } } Col_tlen [col] = tp2 - tp1 ; #ifndef NDEBUG DEBUG7 (("Column assembled in scan2-col: "ID"\n", col)) ; UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; DEBUG7 (("Current frontal matrix: after scan2-col\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif } /* ========================================================================== */ /* === UMF_assemble / UMF_assemble_fixq ===================================== */ /* ========================================================================== */ #ifndef FIXQ GLOBAL void UMF_assemble #else GLOBAL void UMF_assemble_fixq #endif ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int e, i, row, col, i2, nrows, ncols, f, tpi, extcdeg, extrdeg, rdeg0, cdeg0, son_list, next, nrows_to_assemble, ncols_to_assemble, ngetrows, j, j2, nrowsleft, /* number of rows remaining in S */ ncolsleft, /* number of columns remaining in S */ prior_Lson, prior_Uson, *E, *Cols, *Rows, *Wm, *Woo, *Row_tuples, *Row_degree, *Row_tlen, *Col_tuples, *Col_tlen ; Unit *Memory, *p ; Element *ep ; Tuple *tp, *tp1, *tp2, *tpend ; Entry *S, /* a pointer into the contribution block of a son */ *Fcblock, /* current contribution block */ *Fcol ; /* a column of FC */ Int *Frpos, *Fcpos, fnrows, /* number of rows in contribution block in F */ fncols ; /* number of columns in contribution block in F */ #if !defined (FIXQ) || !defined (NDEBUG) Int *Col_degree ; #endif #ifndef NDEBUG Int n_row, n_col ; n_row = Work->n_row ; n_col = Work->n_col ; DEBUG3 (("::Assemble SCANS 1-4\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif #if !defined (FIXQ) || !defined (NDEBUG) Col_degree = Numeric->Cperm ; /* not updated if FIXQ is true */ #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ fncols = Work->fncols ; fnrows = Work->fnrows ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; E = Work->E ; Memory = Numeric->Memory ; Wm = Work->Wm ; Woo = Work->Woo ; rdeg0 = Work->rdeg0 ; cdeg0 = Work->cdeg0 ; #ifndef NDEBUG DEBUG6 (("============================================\n")) ; DEBUG6 (("Degree update, assembly.\n")) ; DEBUG6 (("pivot row pattern: fncols="ID"\n", fncols)) ; for (j = 0 ; j < fncols ; j++) { col = Work->Fcols [j] ; DEBUG6 ((ID" ", col)) ; ASSERT (Fcpos [col] == j * Work->fnr_curr) ; ASSERT (NON_PIVOTAL_COL (col)) ; } ASSERT (Fcpos [Work->pivcol] >= 0) ; DEBUG6 (("pivcol: "ID" pos "ID" fnr_curr "ID" fncols "ID"\n", Work->pivcol, Fcpos [Work->pivcol], Work->fnr_curr, fncols)) ; ASSERT (Fcpos [Work->pivcol] < fncols * Work->fnr_curr) ; DEBUG6 (("\npivot col pattern: fnrows="ID"\n", fnrows)) ; for (i = 0 ; i < fnrows ; i++) { row = Work->Frows [i] ; DEBUG6 ((ID" ", row)) ; ASSERT (Frpos [row] == i) ; ASSERT (NON_PIVOTAL_ROW (row)) ; } DEBUG6 (("\n")) ; ASSERT (Frpos [Work->pivrow] >= 0) ; ASSERT (Frpos [Work->pivrow] < fnrows) ; ASSERT (Work->Flublock == (Entry *) (Numeric->Memory + E [0])) ; ASSERT (Work->Fcblock == Work->Flublock + Work->nb * (Work->nb + Work->fnr_curr + Work->fnc_curr)) ; #endif Fcblock = Work->Fcblock ; /* ---------------------------------------------------------------------- */ /* determine the largest actual frontal matrix size (for Info only) */ /* ---------------------------------------------------------------------- */ ASSERT (fnrows == Work->fnrows_new + 1) ; ASSERT (fncols == Work->fncols_new + 1) ; Numeric->maxnrows = MAX (Numeric->maxnrows, fnrows) ; Numeric->maxncols = MAX (Numeric->maxncols, fncols) ; /* this is safe from integer overflow, since the current frontal matrix * is already allocated. */ Numeric->maxfrsize = MAX (Numeric->maxfrsize, fnrows * fncols) ; /* ---------------------------------------------------------------------- */ /* assemble from prior elements into the current frontal matrix */ /* ---------------------------------------------------------------------- */ DEBUG2 (("New assemble start [prior_element:"ID"\n", Work->prior_element)) ; /* Currently no rows or columns are marked. No elements are scanned, */ /* that is, (ep->next == EMPTY) is true for all elements */ son_list = 0 ; /* start creating son_list [ */ /* ---------------------------------------------------------------------- */ /* determine if most recent element is Lson or Uson of current front */ /* ---------------------------------------------------------------------- */ if (!Work->do_extend) { prior_Uson = ( Work->pivcol_in_front && !Work->pivrow_in_front) ; prior_Lson = (!Work->pivcol_in_front && Work->pivrow_in_front) ; if (prior_Uson || prior_Lson) { e = Work->prior_element ; if (e != EMPTY) { ASSERT (E [e]) ; p = Memory + E [e] ; ep = (Element *) p ; ep->next = son_list ; son_list = e ; #ifndef NDEBUG DEBUG2 (("e "ID" is Prior son "ID" "ID"\n", e, prior_Uson, prior_Lson)) ; UMF_dump_element (Numeric, Work, e, FALSE) ; #endif ASSERT (E [e]) ; } } } Work->prior_element = EMPTY ; /* ---------------------------------------------------------------------- */ /* SCAN1-row: scan the element lists of each new row in the pivot col */ /* and compute the external column degree for each frontal */ /* ---------------------------------------------------------------------- */ for (i2 = Work->fscan_row ; i2 < fnrows ; i2++) { /* Get a row */ row = Work->NewRows [i2] ; if (row < 0) row = FLIP (row) ; ASSERT (row >= 0 && row < n_row) ; DEBUG6 (("SCAN1-row: "ID"\n", row)) ; #ifndef NDEBUG UMF_dump_rowcol (0, Numeric, Work, row, FALSE) ; #endif ASSERT (NON_PIVOTAL_ROW (row)) ; tpi = Row_tuples [row] ; if (!tpi) continue ; tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [row] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Rows = ((Int *) p) + ep->ncols ; if (Rows [f] == EMPTY) continue ; /* row already assembled */ ASSERT (row == Rows [f]) ; if (ep->cdeg < cdeg0) { /* first time seen in scan1-row */ ep->cdeg = ep->nrowsleft + cdeg0 ; DEBUG6 (("e "ID" First seen: cdeg: "ID" ", e, ep->cdeg-cdeg0)) ; ASSERT (ep->ncolsleft > 0 && ep->nrowsleft > 0) ; } ep->cdeg-- ; /* decrement external column degree */ DEBUG6 (("e "ID" New ext col deg: "ID"\n", e, ep->cdeg - cdeg0)) ; /* this element is not yet in the new son list */ if (ep->cdeg == cdeg0 && ep->next == EMPTY) { /* A new LUson or Uson has been found */ ep->next = son_list ; son_list = e ; } ASSERT (ep->cdeg >= cdeg0) ; *tp2++ = *tp ; /* leave the tuple in the list */ } Row_tlen [row] = tp2 - tp1 ; } /* ---------------------------------------------------------------------- */ /* SCAN1-col: scan the element lists of each new col in the pivot row */ /* and compute the external row degree for each frontal */ /* ---------------------------------------------------------------------- */ for (j2 = Work->fscan_col ; j2 < fncols ; j2++) { /* Get a column */ col = Work->NewCols [j2] ; if (col < 0) col = FLIP (col) ; ASSERT (col >= 0 && col < n_col) ; DEBUG6 (("SCAN 1-col: "ID"\n", col)) ; #ifndef NDEBUG UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; #endif ASSERT (NON_PIVOTAL_COL (col)) ; tpi = Col_tuples [col] ; if (!tpi) continue ; tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Col_tlen [col] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; if (Cols [f] == EMPTY) continue ; /* column already assembled */ ASSERT (col == Cols [f]) ; if (ep->rdeg < rdeg0) { /* first time seen in scan1-col */ ep->rdeg = ep->ncolsleft + rdeg0 ; DEBUG6 (("e "ID" First seen: rdeg: "ID" ", e, ep->rdeg-rdeg0)) ; ASSERT (ep->ncolsleft > 0 && ep->nrowsleft > 0) ; } ep->rdeg-- ; /* decrement external row degree */ DEBUG6 (("e "ID" New ext row degree: "ID"\n", e, ep->rdeg-rdeg0)) ; if (ep->rdeg == rdeg0 && ep->next == EMPTY) { /* A new LUson or Lson has been found */ ep->next = son_list ; son_list = e ; } ASSERT (ep->rdeg >= rdeg0) ; *tp2++ = *tp ; /* leave the tuple in the list */ } Col_tlen [col] = tp2 - tp1 ; } /* ---------------------------------------------------------------------- */ /* assemble new sons via full scans */ /* ---------------------------------------------------------------------- */ next = EMPTY ; for (e = son_list ; e > 0 ; e = next) { ASSERT (e > 0 && e <= Work->nel && E [e]) ; p = Memory + E [e] ; DEBUG2 (("New son: "ID"\n", e)) ; #ifndef NDEBUG UMF_dump_element (Numeric, Work, e, FALSE) ; #endif GET_ELEMENT (ep, p, Cols, Rows, ncols, nrows, S) ; nrowsleft = ep->nrowsleft ; ncolsleft = ep->ncolsleft ; next = ep->next ; ep->next = EMPTY ; extrdeg = (ep->rdeg < rdeg0) ? ncolsleft : (ep->rdeg - rdeg0) ; extcdeg = (ep->cdeg < cdeg0) ? nrowsleft : (ep->cdeg - cdeg0) ; ncols_to_assemble = ncolsleft - extrdeg ; nrows_to_assemble = nrowsleft - extcdeg ; DEBUG2 (("extrdeg "ID" extcdeg "ID"\n", extrdeg, extcdeg)) ; if (extrdeg == 0 && extcdeg == 0) { /* -------------------------------------------------------------- */ /* this is an LUson - assemble an entire contribution block */ /* -------------------------------------------------------------- */ DEBUG6 (("LUson found: "ID"\n", e)) ; if (nrows == nrowsleft) { /* ---------------------------------------------------------- */ /* no rows assembled out of this LUson yet */ /* ---------------------------------------------------------- */ /* compute the compressed column offset vector*/ /* [ use Wm [0..nrows-1] for offsets */ #pragma ivdep for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; Row_degree [row] -= ncolsleft ; Wm [i] = Frpos [row] ; } if (ncols == ncolsleft) { /* ------------------------------------------------------ */ /* no rows or cols assembled out of LUson yet */ /* ------------------------------------------------------ */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrows ; i++) { /* Fcol [Wm [i]] += S [i] ; */ ASSEMBLE (Fcol [Wm [i]], S [i]) ; } S += nrows ; } } else { /* ------------------------------------------------------ */ /* only cols have been assembled out of LUson */ /* ------------------------------------------------------ */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; if (col >= 0) { #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrows ; i++) { /* Fcol [Wm [i]] += S [i] ; */ ASSEMBLE (Fcol [Wm [i]], S [i]) ; } } S += nrows ; } } /* ] done using Wm [0..nrows-1] for offsets */ } else { /* ---------------------------------------------------------- */ /* some rows have been assembled out of this LUson */ /* ---------------------------------------------------------- */ /* compute the compressed column offset vector*/ /* [ use Woo,Wm [0..nrowsleft-1] for offsets */ ngetrows = 0 ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if (row >= 0) { Row_degree [row] -= ncolsleft ; Woo [ngetrows] = i ; Wm [ngetrows++] = Frpos [row] ; } } ASSERT (ngetrows == nrowsleft) ; if (ncols == ncolsleft) { /* ------------------------------------------------------ */ /* only rows have been assembled out of this LUson */ /* ------------------------------------------------------ */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrowsleft ; i++) { /* Fcol [Wm [i]] += S [Woo [i]] ; */ ASSEMBLE (Fcol [Wm [i]], S [Woo [i]]) ; } S += nrows ; } } else { /* ------------------------------------------------------ */ /* both rows and columns have been assembled out of LUson */ /* ------------------------------------------------------ */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; if (col >= 0) { #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrowsleft ; i++) { /* Fcol [Wm [i]] += S [Woo [i]] ; */ ASSEMBLE (Fcol [Wm [i]], S [Woo [i]]) ; } } S += nrows ; } } /* ] done using Woo,Wm [0..nrowsleft-1] */ } /* deallocate the element: remove from ordered list */ UMF_mem_free_tail_block (Numeric, E [e]) ; E [e] = 0 ; } else if (extcdeg == 0) { /* -------------------------------------------------------------- */ /* this is a Uson - assemble all possible columns */ /* -------------------------------------------------------------- */ DEBUG6 (("New USON: "ID"\n", e)) ; ASSERT (extrdeg > 0) ; DEBUG6 (("New uson "ID" cols to do "ID"\n", e, ncols_to_assemble)) ; if (ncols_to_assemble > 0) { Int skip = FALSE ; if (ncols_to_assemble * 16 < ncols && nrows == 1) { /* this is a tall and thin frontal matrix consisting of * only one column (most likely an original column). Do * not assemble it. It cannot be the pivot column, since * the pivot column element would be an LU son, not an Lson, * of the current frontal matrix. */ ASSERT (nrowsleft == 1) ; ASSERT (Rows [0] >= 0 && Rows [0] < Work->n_row) ; skip = TRUE ; Work->any_skip = TRUE ; } if (!skip) { if (nrows == nrowsleft) { /* -------------------------------------------------- */ /* no rows have been assembled out of this Uson yet */ /* -------------------------------------------------- */ /* compute the compressed column offset vector */ /* [ use Wm [0..nrows-1] for offsets */ #pragma ivdep for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; ASSERT (row >= 0 && row < n_row) ; Row_degree [row] -= ncols_to_assemble ; Wm [i] = Frpos [row] ; } for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; if ((col >= 0) && (Fcpos [col] >= 0)) { #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrows ; i++) { /* Fcol [Wm [i]] += S [i] ; */ ASSEMBLE (Fcol [Wm [i]], S [i]) ; } /* flag the column as assembled from Uson */ Cols [j] = EMPTY ; } S += nrows ; } /* ] done using Wm [0..nrows-1] for offsets */ } else { /* -------------------------------------------------- */ /* some rows have been assembled out of this Uson */ /* -------------------------------------------------- */ /* compute the compressed column offset vector*/ /* [ use Woo,Wm [0..nrows-1] for offsets */ ngetrows = 0 ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if (row >= 0) { Row_degree [row] -= ncols_to_assemble ; ASSERT (row < n_row && Frpos [row] >= 0) ; Woo [ngetrows] = i ; Wm [ngetrows++] = Frpos [row] ; } } ASSERT (ngetrows == nrowsleft) ; for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; if ((col >= 0) && (Fcpos [col] >= 0)) { #ifndef FIXQ Col_degree [col] -= nrowsleft ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrowsleft ; i++) { /* Fcol [Wm [i]] += S [Woo [i]] ; */ ASSEMBLE (Fcol [Wm [i]], S [Woo [i]]) ; } /* flag the column as assembled from Uson */ Cols [j] = EMPTY ; } S += nrows ; } /* ] done using Woo,Wm */ } ep->ncolsleft = extrdeg ; } } } else { /* -------------------------------------------------------------- */ /* this is an Lson - assemble all possible rows */ /* -------------------------------------------------------------- */ DEBUG6 (("New LSON: "ID"\n", e)) ; ASSERT (extrdeg == 0 && extcdeg > 0) ; DEBUG6 (("New lson "ID" rows to do "ID"\n", e, nrows_to_assemble)) ; if (nrows_to_assemble > 0) { Int skip = FALSE ; if (nrows_to_assemble * 16 < nrows && ncols == 1) { /* this is a tall and thin frontal matrix consisting of * only one column (most likely an original column). Do * not assemble it. It cannot be the pivot column, since * the pivot column element would be an LU son, not an Lson, * of the current frontal matrix. */ ASSERT (ncolsleft == 1) ; ASSERT (Cols [0] >= 0 && Cols [0] < Work->n_col) ; Work->any_skip = TRUE ; skip = TRUE ; } if (!skip) { /* compute the compressed column offset vector */ /* [ use Woo,Wm [0..nrows-1] for offsets */ ngetrows = 0 ; for (i = 0 ; i < nrows ; i++) { row = Rows [i] ; if ((row >= 0) && (Frpos [row] >= 0)) { ASSERT (row < n_row) ; Row_degree [row] -= ncolsleft ; Woo [ngetrows] = i ; Wm [ngetrows++] = Frpos [row] ; /* flag the row as assembled from the Lson */ Rows [i] = EMPTY ; } } ASSERT (nrowsleft - ngetrows == extcdeg) ; ASSERT (ngetrows == nrows_to_assemble) ; if (ncols == ncolsleft) { /* -------------------------------------------------- */ /* no columns assembled out this Lson yet */ /* -------------------------------------------------- */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= 0 && col < n_col) ; #ifndef FIXQ Col_degree [col] -= nrows_to_assemble ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrows_to_assemble ; i++) { /* Fcol [Wm [i]] += S [Woo [i]] ; */ ASSEMBLE (Fcol [Wm [i]], S [Woo [i]]) ; } S += nrows ; } } else { /* -------------------------------------------------- */ /* some columns have been assembled out of this Lson */ /* -------------------------------------------------- */ for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col < n_col) ; if (col >= 0) { #ifndef FIXQ Col_degree [col] -= nrows_to_assemble ; #endif Fcol = Fcblock + Fcpos [col] ; #pragma ivdep for (i = 0 ; i < nrows_to_assemble ; i++) { /* Fcol [Wm [i]] += S [Woo [i]] ; */ ASSEMBLE (Fcol [Wm [i]], S [Woo [i]]) ; } } S += nrows ; } } /* ] done using Woo,Wm */ ep->nrowsleft = extcdeg ; } } } } /* Note that garbage collection, and build tuples */ /* both destroy the son list. */ /* ] son_list now empty */ /* ---------------------------------------------------------------------- */ /* If frontal matrix extended, assemble old L/Usons from new rows/cols */ /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ /* SCAN2-row: assemble rows of old Lsons from the new rows */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG7 (("Current frontal matrix: (prior to scan2-row)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif /* rescan the pivot row */ if (Work->any_skip) { row_assemble (Work->pivrow, Numeric, Work) ; } if (Work->do_scan2row) { for (i2 = Work->fscan_row ; i2 < fnrows ; i2++) { /* Get a row */ row = Work->NewRows [i2] ; if (row < 0) row = FLIP (row) ; ASSERT (row >= 0 && row < n_row) ; if (!(row == Work->pivrow && Work->any_skip)) { /* assemble it */ row_assemble (row, Numeric, Work) ; } } } /* ---------------------------------------------------------------------- */ /* SCAN2-col: assemble columns of old Usons from the new columns */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG7 (("Current frontal matrix: (prior to scan2-col)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif /* rescan the pivot col */ if (Work->any_skip) { col_assemble (Work->pivcol, Numeric, Work) ; } if (Work->do_scan2col) { for (j2 = Work->fscan_col ; j2 < fncols ; j2++) { /* Get a column */ col = Work->NewCols [j2] ; if (col < 0) col = FLIP (col) ; ASSERT (col >= 0 && col < n_col) ; if (!(col == Work->pivcol && Work->any_skip)) { /* assemble it */ col_assemble (col, Numeric, Work) ; } } } /* ---------------------------------------------------------------------- */ /* done. the remainder of this routine is used only when in debug mode */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG /* ---------------------------------------------------------------------- */ /* when debugging: make sure the assembly did everything that it could */ /* ---------------------------------------------------------------------- */ DEBUG3 (("::Assemble done\n")) ; for (i2 = 0 ; i2 < fnrows ; i2++) { /* Get a row */ row = Work->Frows [i2] ; ASSERT (row >= 0 && row < n_row) ; DEBUG6 (("DEBUG SCAN 1: "ID"\n", row)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; ASSERT (NON_PIVOTAL_ROW (row)) ; tpi = Row_tuples [row] ; if (!tpi) continue ; tp = (Tuple *) (Memory + tpi) ; tpend = tp + Row_tlen [row] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; Rows = ((Int *) p) + ep->ncols ; if (Rows [f] == EMPTY) continue ; /* row already assembled */ ASSERT (row == Rows [f]) ; extrdeg = (ep->rdeg < rdeg0) ? ep->ncolsleft : (ep->rdeg - rdeg0) ; extcdeg = (ep->cdeg < cdeg0) ? ep->nrowsleft : (ep->cdeg - cdeg0) ; DEBUG6 (( "e "ID" After assembly ext row deg: "ID" ext col degree "ID"\n", e, extrdeg, extcdeg)) ; if (Work->any_skip) { /* no Lsons in any row, except for very tall and thin ones */ ASSERT (extrdeg >= 0) ; if (extrdeg == 0) { /* this is an unassemble Lson */ ASSERT (ep->ncols == 1) ; ASSERT (ep->ncolsleft == 1) ; col = Cols [0] ; ASSERT (col != Work->pivcol) ; } } else { /* no Lsons in any row */ ASSERT (extrdeg > 0) ; /* Uson external row degree is = number of cols left */ ASSERT (IMPLIES (extcdeg == 0, extrdeg == ep->ncolsleft)) ; } } } /* ---------------------------------------------------------------------- */ for (j2 = 0 ; j2 < fncols ; j2++) { /* Get a column */ col = Work->Fcols [j2] ; ASSERT (col >= 0 && col < n_col) ; DEBUG6 (("DEBUG SCAN 2: "ID"\n", col)) ; #ifndef FIXQ UMF_dump_rowcol (1, Numeric, Work, col, TRUE) ; #else UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; #endif ASSERT (NON_PIVOTAL_COL (col)) ; tpi = Col_tuples [col] ; if (!tpi) continue ; tp = (Tuple *) (Memory + tpi) ; tpend = tp + Col_tlen [col] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; Rows = ((Int *) p) + ep->ncols ; if (Cols [f] == EMPTY) continue ; /* column already assembled */ ASSERT (col == Cols [f]) ; extrdeg = (ep->rdeg < rdeg0) ? ep->ncolsleft : (ep->rdeg - rdeg0) ; extcdeg = (ep->cdeg < cdeg0) ? ep->nrowsleft : (ep->cdeg - cdeg0) ; DEBUG6 (("e "ID" After assembly ext col deg: "ID"\n", e, extcdeg)) ; if (Work->any_skip) { /* no Usons in any column, except for very tall and thin ones */ ASSERT (extcdeg >= 0) ; if (extcdeg == 0) { /* this is an unassemble Uson */ ASSERT (ep->nrows == 1) ; ASSERT (ep->nrowsleft == 1) ; row = Rows [0] ; ASSERT (row != Work->pivrow) ; } } else { /* no Usons in any column */ ASSERT (extcdeg > 0) ; /* Lson external column degree is = number of rows left */ ASSERT (IMPLIES (extrdeg == 0, extcdeg == ep->nrowsleft)) ; } } } #endif /* NDEBUG */ } SuiteSparse/UMFPACK/Source/umf_assemble.h0000644001170100242450000000106410617161410017106 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_assemble ( NumericType *Numeric, WorkType *Work ) ; GLOBAL void UMF_assemble_fixq ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_scale.c0000644001170100242450000000451210677542243016413 0ustar davisfac/* ========================================================================== */ /* === UMF_scale ============================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Divide a vector of stride 1 by the pivot value. */ #include "umf_internal.h" #include "umf_scale.h" GLOBAL void UMF_scale ( Int n, Entry pivot, Entry X [ ] ) { Entry x ; double s ; Int i ; /* ---------------------------------------------------------------------- */ /* compute the approximate absolute value of the pivot, and select method */ /* ---------------------------------------------------------------------- */ APPROX_ABS (s, pivot) ; if (s < RECIPROCAL_TOLERANCE || IS_NAN (pivot)) { /* ------------------------------------------------------------------ */ /* tiny, or zero, pivot case */ /* ------------------------------------------------------------------ */ /* The pivot is tiny, or NaN. Do not divide zero by the pivot value, * and do not multiply by 1/pivot, either. */ for (i = 0 ; i < n ; i++) { /* X [i] /= pivot ; */ x = X [i] ; #ifndef NO_DIVIDE_BY_ZERO if (IS_NONZERO (x)) { DIV (X [i], x, pivot) ; } #else /* Do not divide by zero */ if (IS_NONZERO (x) && IS_NONZERO (pivot)) { DIV (X [i], x, pivot) ; } #endif } } else { /* ------------------------------------------------------------------ */ /* normal case */ /* ------------------------------------------------------------------ */ /* The pivot is not tiny, and is not NaN. Don't bother to check for * zeros in the pivot column, X. This is slightly more accurate than * multiplying by 1/pivot (but slightly slower), particularly if the * pivot column consists of only IEEE subnormals. */ for (i = 0 ; i < n ; i++) { /* X [i] /= pivot ; */ x = X [i] ; DIV (X [i], x, pivot) ; } } } SuiteSparse/UMFPACK/Source/umf_scale_column.c0000644001170100242450000003335110677542354017776 0ustar davisfac/* ========================================================================== */ /* === UMF_scale_column ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Scale the current pivot column, move the pivot row and column into place, and log the permutation. */ #include "umf_internal.h" #include "umf_scale_column.h" #include "umf_mem_free_tail_block.h" #include "umf_scale.h" /* ========================================================================== */ /* === shift_pivot_row ====================================================== */ /* ========================================================================== */ /* Except for the BLAS, most of the time is typically spent in the following * shift_pivot_row routine. It copies the pivot row into the U block, and * then fills in the whole in the C block by shifting the last row of C into * the row vacated by the pivot row. */ PRIVATE void shift_pivot_row (Entry *Fd, Entry *Fs, Entry *Fe, Int len, Int d) { Int j ; #pragma ivdep for (j = 0 ; j < len ; j++) { Fd [j] = Fs [j*d] ; Fs [j*d] = Fe [j*d] ; } } /* ========================================================================== */ /* === UMF_scale_column ===================================================== */ /* ========================================================================== */ GLOBAL void UMF_scale_column ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry pivot_value ; Entry *Fcol, *Flublock, *Flblock, *Fublock, *Fcblock ; Int k, k1, fnr_curr, fnrows, fncols, *Frpos, *Fcpos, pivrow, pivcol, *Frows, *Fcols, fnc_curr, fnpiv, *Row_tuples, nb, *Col_tuples, *Rperm, *Cperm, fspos, col2, row2 ; #ifndef NDEBUG Int *Col_degree, *Row_degree ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ fnrows = Work->fnrows ; fncols = Work->fncols ; fnpiv = Work->fnpiv ; /* ---------------------------------------------------------------------- */ Rperm = Numeric->Rperm ; Cperm = Numeric->Cperm ; /* ---------------------------------------------------------------------- */ Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fcblock = Work->Fcblock ; fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; Frpos = Work->Frpos ; Fcpos = Work->Fcpos ; Frows = Work->Frows ; Fcols = Work->Fcols ; pivrow = Work->pivrow ; pivcol = Work->pivcol ; ASSERT (pivrow >= 0 && pivrow < Work->n_row) ; ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; #ifndef NDEBUG Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ #endif Row_tuples = Numeric->Uip ; Col_tuples = Numeric->Lip ; nb = Work->nb ; #ifndef NDEBUG ASSERT (fnrows == Work->fnrows_new + 1) ; ASSERT (fncols == Work->fncols_new + 1) ; DEBUG1 (("SCALE COL: fnrows "ID" fncols "ID"\n", fnrows, fncols)) ; DEBUG2 (("\nFrontal matrix, including all space:\n" "fnr_curr "ID" fnc_curr "ID" nb "ID"\n" "fnrows "ID" fncols "ID" fnpiv "ID"\n", fnr_curr, fnc_curr, nb, fnrows, fncols, fnpiv)) ; DEBUG2 (("\nJust the active part:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Flblock, fnr_curr, fnrows, fnpiv); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Fublock, fnc_curr, fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Flublock, nb, fnpiv, fnpiv) ; #endif /* ====================================================================== */ /* === Shift pivot row and column ======================================= */ /* ====================================================================== */ /* ---------------------------------------------------------------------- */ /* move pivot column into place */ /* ---------------------------------------------------------------------- */ /* Note that the pivot column is already in place. Just shift the last * column into the position vacated by the pivot column. */ fspos = Fcpos [pivcol] ; /* one less column in the contribution block */ fncols = --(Work->fncols) ; if (fspos != fncols * fnr_curr) { Int fs = fspos / fnr_curr ; DEBUG6 (("Shift pivot column in front\n")) ; DEBUG6 (("fspos: "ID" flpos: "ID"\n", fspos, fncols * fnr_curr)) ; /* ------------------------------------------------------------------ */ /* move Fe => Fs */ /* ------------------------------------------------------------------ */ /* column of the contribution block: */ { /* Fs: current position of pivot column in contribution block */ /* Fe: position of last column in contribution block */ Int i ; Entry *Fs, *Fe ; Fs = Fcblock + fspos ; Fe = Fcblock + fncols * fnr_curr ; #pragma ivdep for (i = 0 ; i < fnrows ; i++) { Fs [i] = Fe [i] ; } } /* column of the U2 block */ { /* Fs: current position of pivot column in U block */ /* Fe: last column in U block */ Int i ; Entry *Fs, *Fe ; Fs = Fublock + fs ; Fe = Fublock + fncols ; #pragma ivdep for (i = 0 ; i < fnpiv ; i++) { Fs [i * fnc_curr] = Fe [i * fnc_curr] ; } } /* move column Fe to Fs in the Fcols pattern */ col2 = Fcols [fncols] ; Fcols [fs] = col2 ; Fcpos [col2] = fspos ; } /* pivot column is no longer in the frontal matrix */ Fcpos [pivcol] = EMPTY ; #ifndef NDEBUG DEBUG2 (("\nFrontal matrix after col swap, including all space:\n" "fnr_curr "ID" fnc_curr "ID" nb "ID"\n" "fnrows "ID" fncols "ID" fnpiv "ID"\n", fnr_curr, fnc_curr, nb, fnrows, fncols, fnpiv)) ; DEBUG2 (("\nJust the active part:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Flblock, fnr_curr, fnrows, fnpiv+1); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Fublock, fnc_curr, fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Flublock, nb, fnpiv, fnpiv+1) ; #endif /* ---------------------------------------------------------------------- */ /* move pivot row into place */ /* ---------------------------------------------------------------------- */ fspos = Frpos [pivrow] ; /* one less row in the contribution block */ fnrows = --(Work->fnrows) ; DEBUG6 (("Swap/shift pivot row in front:\n")) ; DEBUG6 (("fspos: "ID" flpos: "ID"\n", fspos, fnrows)) ; if (fspos == fnrows) { /* ------------------------------------------------------------------ */ /* move Fs => Fd */ /* ------------------------------------------------------------------ */ DEBUG6 (("row case 1\n")) ; /* row of the contribution block: */ { Int j ; Entry *Fd, *Fs ; Fd = Fublock + fnpiv * fnc_curr ; Fs = Fcblock + fspos ; #pragma ivdep for (j = 0 ; j < fncols ; j++) { Fd [j] = Fs [j * fnr_curr] ; } } /* row of the L2 block: */ if (Work->pivrow_in_front) { Int j ; Entry *Fd, *Fs ; Fd = Flublock + fnpiv ; Fs = Flblock + fspos ; #pragma ivdep for (j = 0 ; j <= fnpiv ; j++) { Fd [j * nb] = Fs [j * fnr_curr] ; } } else { Int j ; Entry *Fd, *Fs ; Fd = Flublock + fnpiv ; Fs = Flblock + fspos ; #pragma ivdep for (j = 0 ; j < fnpiv ; j++) { ASSERT (IS_ZERO (Fs [j * fnr_curr])) ; CLEAR (Fd [j * nb]) ; } Fd [fnpiv * nb] = Fs [fnpiv * fnr_curr] ; } } else { /* ------------------------------------------------------------------ */ /* move Fs => Fd */ /* move Fe => Fs */ /* ------------------------------------------------------------------ */ DEBUG6 (("row case 2\n")) ; /* this is the most common case, by far */ /* row of the contribution block: */ { /* Fd: destination of pivot row on U block */ /* Fs: current position of pivot row in contribution block */ /* Fe: position of last row in contribution block */ Entry *Fd, *Fs, *Fe ; Fd = Fublock + fnpiv * fnc_curr ; Fs = Fcblock + fspos ; Fe = Fcblock + fnrows ; shift_pivot_row (Fd, Fs, Fe, fncols, fnr_curr) ; } /* row of the L2 block: */ if (Work->pivrow_in_front) { /* Fd: destination of pivot row in LU block */ /* Fs: current position of pivot row in L block */ /* Fe: last row in L block */ Int j ; Entry *Fd, *Fs, *Fe ; Fd = Flublock + fnpiv ; Fs = Flblock + fspos ; Fe = Flblock + fnrows ; #pragma ivdep for (j = 0 ; j <= fnpiv ; j++) { Fd [j * nb] = Fs [j * fnr_curr] ; Fs [j * fnr_curr] = Fe [j * fnr_curr] ; } } else { Int j ; Entry *Fd, *Fs, *Fe ; Fd = Flublock + fnpiv ; Fs = Flblock + fspos ; Fe = Flblock + fnrows ; #pragma ivdep for (j = 0 ; j < fnpiv ; j++) { ASSERT (IS_ZERO (Fs [j * fnr_curr])) ; CLEAR (Fd [j * nb]) ; Fs [j * fnr_curr] = Fe [j * fnr_curr] ; } Fd [fnpiv * nb] = Fs [fnpiv * fnr_curr] ; Fs [fnpiv * fnr_curr] = Fe [fnpiv * fnr_curr] ; } /* move row Fe to Fs in the Frows pattern */ row2 = Frows [fnrows] ; Frows [fspos] = row2 ; Frpos [row2] = fspos ; } /* pivot row is no longer in the frontal matrix */ Frpos [pivrow] = EMPTY ; #ifndef NDEBUG DEBUG2 (("\nFrontal matrix after row swap, including all space:\n" "fnr_curr "ID" fnc_curr "ID" nb "ID"\n" "fnrows "ID" fncols "ID" fnpiv "ID"\n", Work->fnr_curr, Work->fnc_curr, Work->nb, Work->fnrows, Work->fncols, Work->fnpiv)) ; DEBUG2 (("\nJust the active part:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Flblock, fnr_curr, fnrows, fnpiv+1); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Fublock, fnc_curr, fncols, fnpiv+1) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Flublock, nb, fnpiv+1, fnpiv+1) ; #endif /* ---------------------------------------------------------------------- */ /* Frpos [row] >= 0 for each row in pivot column pattern. */ /* offset into pattern is given by: */ /* Frpos [row] == offset - 1 */ /* Frpos [pivrow] is EMPTY */ /* Fcpos [col] >= 0 for each col in pivot row pattern. */ /* Fcpos [col] == (offset - 1) * fnr_curr */ /* Fcpos [pivcol] is EMPTY */ /* Fcols [0..fncols-1] is the pivot row pattern (excl pivot cols) */ /* Frows [0..fnrows-1] is the pivot col pattern (excl pivot rows) */ /* ====================================================================== */ /* === scale pivot column =============================================== */ /* ====================================================================== */ /* pivot column (except for pivot entry itself) */ Fcol = Flblock + fnpiv * fnr_curr ; /* fnpiv-th pivot in frontal matrix located in Flublock (fnpiv, fnpiv) */ pivot_value = Flublock [fnpiv + fnpiv * nb] ; /* this is the kth global pivot */ k = Work->npiv + fnpiv ; DEBUG4 (("Pivot value: ")) ; EDEBUG4 (pivot_value) ; DEBUG4 (("\n")) ; UMF_scale (fnrows, pivot_value, Fcol) ; /* ---------------------------------------------------------------------- */ /* deallocate the pivot row and pivot column tuples */ /* ---------------------------------------------------------------------- */ UMF_mem_free_tail_block (Numeric, Row_tuples [pivrow]) ; UMF_mem_free_tail_block (Numeric, Col_tuples [pivcol]) ; Row_tuples [pivrow] = 0 ; Col_tuples [pivcol] = 0 ; DEBUG5 (("number of pivots prior to this one: "ID"\n", k)) ; ASSERT (NON_PIVOTAL_ROW (pivrow)) ; ASSERT (NON_PIVOTAL_COL (pivcol)) ; /* save row and column inverse permutation */ k1 = ONES_COMPLEMENT (k) ; Rperm [pivrow] = k1 ; /* aliased with Row_degree */ Cperm [pivcol] = k1 ; /* aliased with Col_degree */ ASSERT (!NON_PIVOTAL_ROW (pivrow)) ; ASSERT (!NON_PIVOTAL_COL (pivcol)) ; /* ---------------------------------------------------------------------- */ /* Keep track of the pivot order. This is the kth pivot row and column. */ /* ---------------------------------------------------------------------- */ /* keep track of pivot rows and columns in the LU, L, and U blocks */ ASSERT (fnpiv < MAXNB) ; Work->Pivrow [fnpiv] = pivrow ; Work->Pivcol [fnpiv] = pivcol ; /* ====================================================================== */ /* === one step in the factorization is done ============================ */ /* ====================================================================== */ /* One more step is done, except for pending updates to the U and C blocks * of this frontal matrix. Those are saved up, and applied by * UMF_blas3_update when enough pivots have accumulated. Also, the * LU factors for these pending pivots have not yet been stored. */ Work->fnpiv++ ; #ifndef NDEBUG DEBUG7 (("Current frontal matrix: (after pivcol scale)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif } SuiteSparse/UMFPACK/Source/umf_scale_column.h0000644001170100242450000000074610617162277020001 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_scale_column ( NumericType *Numeric, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_kernel_wrapup.c0000644001170100242450000003035210677541660020205 0ustar davisfac/* ========================================================================== */ /* === UMF_kernel_wrapup ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The matrix is factorized. Finish the LU data structure. */ #include "umf_internal.h" #include "umf_kernel_wrapup.h" GLOBAL void UMF_kernel_wrapup ( NumericType *Numeric, SymbolicType *Symbolic, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry pivot_value ; double d ; Entry *D ; Int i, k, col, row, llen, ulen, *ip, *Rperm, *Cperm, *Lilen, npiv, lp, *Uilen, *Lip, *Uip, *Cperm_init, up, pivrow, pivcol, *Lpos, *Upos, *Wr, *Wc, *Wp, *Frpos, *Fcpos, *Row_degree, *Col_degree, *Rperm_init, n_row, n_col, n_inner, zero_pivot, nan_pivot, n1 ; #ifndef NDEBUG UMF_dump_matrix (Numeric, Work, FALSE) ; #endif DEBUG0 (("Kernel complete, Starting Kernel wrapup\n")) ; n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n_inner = MIN (n_row, n_col) ; Rperm = Numeric->Rperm ; Cperm = Numeric->Cperm ; Lilen = Numeric->Lilen ; Uilen = Numeric->Uilen ; Upos = Numeric->Upos ; Lpos = Numeric->Lpos ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; D = Numeric->D ; npiv = Work->npiv ; Numeric->npiv = npiv ; Numeric->ulen = Work->ulen ; ASSERT (n_row == Numeric->n_row) ; ASSERT (n_col == Symbolic->n_col) ; DEBUG0 (("Wrap-up: npiv "ID" ulen "ID"\n", npiv, Numeric->ulen)) ; ASSERT (npiv <= n_inner) ; /* this will be nonzero only if matrix is singular or rectangular */ ASSERT (IMPLIES (npiv == n_col, Work->ulen == 0)) ; /* ---------------------------------------------------------------------- */ /* find the smallest and largest entries in D */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < npiv ; k++) { pivot_value = D [k] ; ABS (d, pivot_value) ; zero_pivot = SCALAR_IS_ZERO (d) ; nan_pivot = SCALAR_IS_NAN (d) ; if (!zero_pivot) { /* the pivot is nonzero, but might be Inf or NaN */ Numeric->nnzpiv++ ; } if (k == 0) { Numeric->min_udiag = d ; Numeric->max_udiag = d ; } else { /* min (abs (diag (U))) behaves as follows: If any entry is zero, then the result is zero (regardless of the presence of NaN's). Otherwise, if any entry is NaN, then the result is NaN. Otherwise, the result is the smallest absolute value on the diagonal of U. */ if (SCALAR_IS_NONZERO (Numeric->min_udiag)) { if (zero_pivot || nan_pivot) { Numeric->min_udiag = d ; } else if (!SCALAR_IS_NAN (Numeric->min_udiag)) { /* d and min_udiag are both non-NaN */ Numeric->min_udiag = MIN (Numeric->min_udiag, d) ; } } /* max (abs (diag (U))) behaves as follows: If any entry is NaN then the result is NaN. Otherise, the result is the largest absolute value on the diagonal of U. */ if (nan_pivot) { Numeric->max_udiag = d ; } else if (!SCALAR_IS_NAN (Numeric->max_udiag)) { /* d and max_udiag are both non-NaN */ Numeric->max_udiag = MAX (Numeric->max_udiag, d) ; } } } /* ---------------------------------------------------------------------- */ /* check if matrix is singular or rectangular */ /* ---------------------------------------------------------------------- */ Col_degree = Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Rperm ; /* for NON_PIVOTAL_ROW macro */ if (npiv < n_row) { /* finalize the row permutation */ k = npiv ; DEBUGm3 (("Singular pivot rows "ID" to "ID"\n", k, n_row-1)) ; for (row = 0 ; row < n_row ; row++) { if (NON_PIVOTAL_ROW (row)) { Rperm [row] = ONES_COMPLEMENT (k) ; DEBUGm3 (("Singular row "ID" is k: "ID" pivot row\n", row, k)) ; ASSERT (!NON_PIVOTAL_ROW (row)) ; Lpos [row] = EMPTY ; Uip [row] = EMPTY ; Uilen [row] = 0 ; k++ ; } } ASSERT (k == n_row) ; } if (npiv < n_col) { /* finalize the col permutation */ k = npiv ; DEBUGm3 (("Singular pivot cols "ID" to "ID"\n", k, n_col-1)) ; for (col = 0 ; col < n_col ; col++) { if (NON_PIVOTAL_COL (col)) { Cperm [col] = ONES_COMPLEMENT (k) ; DEBUGm3 (("Singular col "ID" is k: "ID" pivot row\n", col, k)) ; ASSERT (!NON_PIVOTAL_COL (col)) ; Upos [col] = EMPTY ; Lip [col] = EMPTY ; Lilen [col] = 0 ; k++ ; } } ASSERT (k == n_col) ; } if (npiv < n_inner) { /* finalize the diagonal of U */ DEBUGm3 (("Diag of U is zero, "ID" to "ID"\n", npiv, n_inner-1)) ; for (k = npiv ; k < n_inner ; k++) { CLEAR (D [k]) ; } } /* save the pattern of the last row of U */ if (Numeric->ulen > 0) { DEBUGm3 (("Last row of U is not empty\n")) ; Numeric->Upattern = Work->Upattern ; Work->Upattern = (Int *) NULL ; } DEBUG2 (("Nnzpiv: "ID" npiv "ID"\n", Numeric->nnzpiv, npiv)) ; ASSERT (Numeric->nnzpiv <= npiv) ; if (Numeric->nnzpiv < n_inner && !SCALAR_IS_NAN (Numeric->min_udiag)) { /* the rest of the diagonal is zero, so min_udiag becomes 0, * unless it is already NaN. */ Numeric->min_udiag = 0.0 ; } /* ---------------------------------------------------------------------- */ /* size n_row, n_col workspaces that can be used here: */ /* ---------------------------------------------------------------------- */ Frpos = Work->Frpos ; /* of size n_row+1 */ Fcpos = Work->Fcpos ; /* of size n_col+1 */ Wp = Work->Wp ; /* of size MAX(n_row,n_col)+1 */ /* Work->Upattern ; cannot be used (in Numeric) */ Wr = Work->Lpattern ; /* of size n_row+1 */ Wc = Work->Wrp ; /* of size n_col+1 or bigger */ /* ---------------------------------------------------------------------- */ /* construct Rperm from inverse permutations */ /* ---------------------------------------------------------------------- */ /* use Frpos for temporary copy of inverse row permutation [ */ for (pivrow = 0 ; pivrow < n_row ; pivrow++) { k = Rperm [pivrow] ; ASSERT (k < 0) ; k = ONES_COMPLEMENT (k) ; ASSERT (k >= 0 && k < n_row) ; Wp [k] = pivrow ; Frpos [pivrow] = k ; } for (k = 0 ; k < n_row ; k++) { Rperm [k] = Wp [k] ; } /* ---------------------------------------------------------------------- */ /* construct Cperm from inverse permutation */ /* ---------------------------------------------------------------------- */ /* use Fcpos for temporary copy of inverse column permutation [ */ for (pivcol = 0 ; pivcol < n_col ; pivcol++) { k = Cperm [pivcol] ; ASSERT (k < 0) ; k = ONES_COMPLEMENT (k) ; ASSERT (k >= 0 && k < n_col) ; Wp [k] = pivcol ; /* save a copy of the inverse column permutation in Fcpos */ Fcpos [pivcol] = k ; } for (k = 0 ; k < n_col ; k++) { Cperm [k] = Wp [k] ; } #ifndef NDEBUG for (k = 0 ; k < n_col ; k++) { col = Cperm [k] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (Fcpos [col] == k) ; /* col is the kth pivot */ } for (k = 0 ; k < n_row ; k++) { row = Rperm [k] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (Frpos [row] == k) ; /* row is the kth pivot */ } #endif #ifndef NDEBUG UMF_dump_lu (Numeric) ; #endif /* ---------------------------------------------------------------------- */ /* permute Lpos, Upos, Lilen, Lip, Uilen, and Uip */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < npiv ; k++) { pivrow = Rperm [k] ; Wr [k] = Uilen [pivrow] ; Wp [k] = Uip [pivrow] ; } for (k = 0 ; k < npiv ; k++) { Uilen [k] = Wr [k] ; Uip [k] = Wp [k] ; } for (k = 0 ; k < npiv ; k++) { pivrow = Rperm [k] ; Wp [k] = Lpos [pivrow] ; } for (k = 0 ; k < npiv ; k++) { Lpos [k] = Wp [k] ; } for (k = 0 ; k < npiv ; k++) { pivcol = Cperm [k] ; Wc [k] = Lilen [pivcol] ; Wp [k] = Lip [pivcol] ; } for (k = 0 ; k < npiv ; k++) { Lilen [k] = Wc [k] ; Lip [k] = Wp [k] ; } for (k = 0 ; k < npiv ; k++) { pivcol = Cperm [k] ; Wp [k] = Upos [pivcol] ; } for (k = 0 ; k < npiv ; k++) { Upos [k] = Wp [k] ; } /* ---------------------------------------------------------------------- */ /* terminate the last Uchain and last Lchain */ /* ---------------------------------------------------------------------- */ Upos [npiv] = EMPTY ; Lpos [npiv] = EMPTY ; Uip [npiv] = EMPTY ; Lip [npiv] = EMPTY ; Uilen [npiv] = 0 ; Lilen [npiv] = 0 ; /* ---------------------------------------------------------------------- */ /* convert U to the new pivot order */ /* ---------------------------------------------------------------------- */ n1 = Symbolic->n1 ; for (k = 0 ; k < n1 ; k++) { /* this is a singleton row of U */ ulen = Uilen [k] ; DEBUG4 (("K "ID" New U. ulen "ID" Singleton 1\n", k, ulen)) ; if (ulen > 0) { up = Uip [k] ; ip = (Int *) (Numeric->Memory + up) ; for (i = 0 ; i < ulen ; i++) { col = *ip ; DEBUG4 ((" old col "ID" new col "ID"\n", col, Fcpos [col])); ASSERT (col >= 0 && col < n_col) ; *ip++ = Fcpos [col] ; } } } for (k = n1 ; k < npiv ; k++) { up = Uip [k] ; if (up < 0) { /* this is the start of a new Uchain (with a pattern) */ ulen = Uilen [k] ; DEBUG4 (("K "ID" New U. ulen "ID" End_Uchain 1\n", k, ulen)) ; if (ulen > 0) { up = -up ; ip = (Int *) (Numeric->Memory + up) ; for (i = 0 ; i < ulen ; i++) { col = *ip ; DEBUG4 ((" old col "ID" new col "ID"\n", col, Fcpos [col])); ASSERT (col >= 0 && col < n_col) ; *ip++ = Fcpos [col] ; } } } } ulen = Numeric->ulen ; if (ulen > 0) { /* convert last pivot row of U to the new pivot order */ DEBUG4 (("K "ID" (last)\n", k)) ; for (i = 0 ; i < ulen ; i++) { col = Numeric->Upattern [i] ; DEBUG4 ((" old col "ID" new col "ID"\n", col, Fcpos [col])) ; Numeric->Upattern [i] = Fcpos [col] ; } } /* Fcpos no longer needed ] */ /* ---------------------------------------------------------------------- */ /* convert L to the new pivot order */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n1 ; k++) { llen = Lilen [k] ; DEBUG4 (("K "ID" New L. llen "ID" Singleton col\n", k, llen)) ; if (llen > 0) { lp = Lip [k] ; ip = (Int *) (Numeric->Memory + lp) ; for (i = 0 ; i < llen ; i++) { row = *ip ; DEBUG4 ((" old row "ID" new row "ID"\n", row, Frpos [row])) ; ASSERT (row >= 0 && row < n_row) ; *ip++ = Frpos [row] ; } } } for (k = n1 ; k < npiv ; k++) { llen = Lilen [k] ; DEBUG4 (("K "ID" New L. llen "ID" \n", k, llen)) ; if (llen > 0) { lp = Lip [k] ; if (lp < 0) { /* this starts a new Lchain */ lp = -lp ; } ip = (Int *) (Numeric->Memory + lp) ; for (i = 0 ; i < llen ; i++) { row = *ip ; DEBUG4 ((" old row "ID" new row "ID"\n", row, Frpos [row])) ; ASSERT (row >= 0 && row < n_row) ; *ip++ = Frpos [row] ; } } } /* Frpos no longer needed ] */ /* ---------------------------------------------------------------------- */ /* combine symbolic and numeric permutations */ /* ---------------------------------------------------------------------- */ Cperm_init = Symbolic->Cperm_init ; Rperm_init = Symbolic->Rperm_init ; for (k = 0 ; k < n_row ; k++) { Rperm [k] = Rperm_init [Rperm [k]] ; } for (k = 0 ; k < n_col ; k++) { Cperm [k] = Cperm_init [Cperm [k]] ; } /* Work object will be freed immediately upon return (to UMF_kernel */ /* and then to UMFPACK_numeric). */ } SuiteSparse/UMFPACK/Source/umf_kernel_wrapup.h0000644001170100242450000000100310617161671020173 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_kernel_wrapup ( NumericType *Numeric, SymbolicType *Symbolic, WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umfpack_report_info.c0000644001170100242450000005256410617162112020506 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_info ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints the Info array. See umfpack_report_info.h for details. */ #include "umf_internal.h" #define PRINT_INFO(format,x) \ { \ if (SCALAR_IS_NAN (x) || (!SCALAR_IS_LTZERO (x))) \ { \ PRINTF ((format, x)) ; \ } \ } /* RATIO macro uses a double relop, but ignore NaN case: */ #define RATIO(a,b,c) (((b) == 0) ? (c) : (((double) a)/((double) b))) /* ========================================================================== */ /* === print_ratio ========================================================== */ /* ========================================================================== */ PRIVATE void print_ratio ( char *what, char *format, double estimate, double actual ) { if (estimate < 0 && actual < 0) /* double relop, but ignore Nan case */ { return ; } PRINTF ((" %-27s", what)) ; if (estimate >= 0) /* double relop, but ignore Nan case */ { PRINTF ((format, estimate)) ; } else { PRINTF ((" -")) ; } if (actual >= 0) /* double relop, but ignore Nan case */ { PRINTF ((format, actual)) ; } else { PRINTF ((" -")) ; } if (estimate >= 0 && actual >= 0) /* double relop, but ignore Nan case */ { PRINTF ((" %5.0f%%\n", 100 * RATIO (actual, estimate, 1))) ; } else { PRINTF ((" -\n")) ; } } /* ========================================================================== */ /* === UMFPACK_report_info ================================================== */ /* ========================================================================== */ GLOBAL void UMFPACK_report_info ( const double Control [UMFPACK_CONTROL], const double Info [UMFPACK_INFO] ) { double lnz_est, unz_est, lunz_est, lnz, unz, lunz, tsym, tnum, fnum, tsolve, fsolve, ttot, ftot, twsym, twnum, twsolve, twtot, n2 ; Int n_row, n_col, n_inner, prl, is_sym ; /* ---------------------------------------------------------------------- */ /* get control settings and status to determine what to print */ /* ---------------------------------------------------------------------- */ prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (!Info || prl < 2) { /* no output generated if Info is (double *) NULL */ /* or if prl is less than 2 */ return ; } /* ---------------------------------------------------------------------- */ /* print umfpack version */ /* ---------------------------------------------------------------------- */ PRINTF (("UMFPACK V%d.%d.%d (%s), Info:\n", UMFPACK_MAIN_VERSION, UMFPACK_SUB_VERSION, UMFPACK_SUBSUB_VERSION, UMFPACK_DATE)) ; #ifndef NDEBUG PRINTF (( "**** Debugging enabled (UMFPACK will be exceedingly slow!) *****************\n" )) ; #endif /* ---------------------------------------------------------------------- */ /* print run-time options */ /* ---------------------------------------------------------------------- */ #ifdef DINT PRINTF ((" matrix entry defined as: double\n")) ; PRINTF ((" Int (generic integer) defined as: int\n")) ; #endif #ifdef DLONG PRINTF ((" matrix entry defined as: double\n")) ; PRINTF ((" Int (generic integer) defined as: UF_long\n")) ; #endif #ifdef ZINT PRINTF ((" matrix entry defined as: double complex\n")) ; PRINTF ((" Int (generic integer) defined as: int\n")) ; #endif #ifdef ZLONG PRINTF ((" matrix entry defined as: double complex\n")) ; PRINTF ((" Int (generic integer) defined as: UF_long\n")) ; #endif /* ---------------------------------------------------------------------- */ /* print compile-time options */ /* ---------------------------------------------------------------------- */ PRINTF ((" BLAS library used: ")) ; #ifdef NBLAS PRINTF (("none. UMFPACK will be slow.\n")) ; #else PRINTF (("Fortran BLAS. size of BLAS integer: "ID"\n", (Int) (sizeof (BLAS_INT)))) ; #endif PRINTF ((" MATLAB: ")) ; #ifdef MATLAB_MEX_FILE PRINTF (("yes.\n")) ; #else #ifdef MATHWORKS PRINTF (("yes.\n")) ; #else PRINTF (("no.\n")) ; #endif #endif PRINTF ((" CPU timer: ")) ; #ifdef NO_TIMER PRINTF (("none.\n")) ; #else #ifndef NPOSIX PRINTF (("POSIX times ( ) routine.\n")) ; #else #ifdef GETRUSAGE PRINTF (("getrusage ( ) routine.\n")) ; #else PRINTF (("ANSI clock ( ) routine.\n")) ; #endif #endif #endif /* ---------------------------------------------------------------------- */ /* print n and nz */ /* ---------------------------------------------------------------------- */ n_row = (Int) Info [UMFPACK_NROW] ; n_col = (Int) Info [UMFPACK_NCOL] ; n_inner = MIN (n_row, n_col) ; PRINT_INFO (" number of rows in matrix A: "ID"\n", n_row) ; PRINT_INFO (" number of columns in matrix A: "ID"\n", n_col) ; PRINT_INFO (" entries in matrix A: "ID"\n", (Int) Info [UMFPACK_NZ]) ; PRINT_INFO (" memory usage reported in: "ID"-byte Units\n", (Int) Info [UMFPACK_SIZE_OF_UNIT]) ; PRINT_INFO (" size of int: "ID" bytes\n", (Int) Info [UMFPACK_SIZE_OF_INT]) ; PRINT_INFO (" size of UF_long: "ID" bytes\n", (Int) Info [UMFPACK_SIZE_OF_LONG]) ; PRINT_INFO (" size of pointer: "ID" bytes\n", (Int) Info [UMFPACK_SIZE_OF_POINTER]) ; PRINT_INFO (" size of numerical entry: "ID" bytes\n", (Int) Info [UMFPACK_SIZE_OF_ENTRY]) ; /* ---------------------------------------------------------------------- */ /* symbolic parameters */ /* ---------------------------------------------------------------------- */ if (Info [UMFPACK_STRATEGY_USED] == UMFPACK_STRATEGY_SYMMETRIC) { PRINTF (("\n strategy used: symmetric\n")) ; } else if (Info [UMFPACK_STRATEGY_USED] == UMFPACK_STRATEGY_UNSYMMETRIC) { PRINTF (("\n strategy used: unsymmetric\n")) ; } else if (Info [UMFPACK_STRATEGY_USED] == UMFPACK_STRATEGY_2BY2) { PRINTF (("\n strategy used: symmetric 2-by-2\n")); } if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_AMD) { PRINTF ((" ordering used: amd on A+A'\n")) ; } else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_COLAMD) { PRINTF ((" ordering used: colamd on A\n")) ; } else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_GIVEN) { PRINTF ((" ordering used: provided by user\n")) ; } if (Info [UMFPACK_QFIXED] == 1) { PRINTF ((" modify Q during factorization: no\n")) ; } else if (Info [UMFPACK_QFIXED] == 0) { PRINTF ((" modify Q during factorization: yes\n")) ; } if (Info [UMFPACK_DIAG_PREFERRED] == 0) { PRINTF ((" prefer diagonal pivoting: no\n")) ; } else if (Info [UMFPACK_DIAG_PREFERRED] == 1) { PRINTF ((" prefer diagonal pivoting: yes\n")) ; } /* ---------------------------------------------------------------------- */ /* singleton statistics */ /* ---------------------------------------------------------------------- */ PRINT_INFO (" pivots with zero Markowitz cost: %0.f\n", Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS]) ; PRINT_INFO (" submatrix S after removing zero-cost pivots:\n" " number of \"dense\" rows: %.0f\n", Info [UMFPACK_NDENSE_ROW]) ; PRINT_INFO (" number of \"dense\" columns: %.0f\n", Info [UMFPACK_NDENSE_COL]) ; PRINT_INFO (" number of empty rows: %.0f\n", Info [UMFPACK_NEMPTY_ROW]) ; PRINT_INFO (" number of empty columns %.0f\n", Info [UMFPACK_NEMPTY_COL]) ; is_sym = Info [UMFPACK_S_SYMMETRIC] ; if (is_sym > 0) { PRINTF ((" submatrix S square and diagonal preserved\n")) ; } else if (is_sym == 0) { PRINTF ((" submatrix S not square or diagonal not preserved\n")); } /* ---------------------------------------------------------------------- */ /* statistics from amd_aat */ /* ---------------------------------------------------------------------- */ n2 = Info [UMFPACK_N2] ; if (n2 >= 0) { PRINTF ((" pattern of square submatrix S:\n")) ; } PRINT_INFO (" number rows and columns %.0f\n", n2) ; PRINT_INFO (" symmetry of nonzero pattern: %.6f\n", Info [UMFPACK_PATTERN_SYMMETRY]) ; PRINT_INFO (" nz in S+S' (excl. diagonal): %.0f\n", Info [UMFPACK_NZ_A_PLUS_AT]) ; PRINT_INFO (" nz on diagonal of matrix S: %.0f\n", Info [UMFPACK_NZDIAG]) ; if (Info [UMFPACK_NZDIAG] >= 0 && n2 > 0) { PRINTF ((" fraction of nz on diagonal: %.6f\n", Info [UMFPACK_NZDIAG] / n2)) ; } /* ---------------------------------------------------------------------- */ /* statistics from 2-by-2 permutation */ /* ---------------------------------------------------------------------- */ PRINT_INFO (" 2-by-2 pivoting to place large entries on diagonal:\n" " # of small diagonal entries of S: %.0f\n", Info [UMFPACK_2BY2_NWEAK]) ; PRINT_INFO (" # unmatched: %.0f\n", Info [UMFPACK_2BY2_UNMATCHED]) ; PRINT_INFO (" symmetry of P2*S: %.6f\n", Info [UMFPACK_2BY2_PATTERN_SYMMETRY]) ; PRINT_INFO (" nz in P2*S+(P2*S)' (excl. diag.): %.0f\n", Info [UMFPACK_2BY2_NZ_PA_PLUS_PAT]) ; PRINT_INFO (" nz on diagonal of P2*S: %.0f\n", Info [UMFPACK_2BY2_NZDIAG]) ; if (Info [UMFPACK_2BY2_NZDIAG] >= 0 && n2 > 0) { PRINTF ((" fraction of nz on diag of P2*S: %.6f\n", Info [UMFPACK_2BY2_NZDIAG] / n2)) ; } /* ---------------------------------------------------------------------- */ /* statistics from AMD */ /* ---------------------------------------------------------------------- */ if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_AMD) { double dmax = Info [UMFPACK_SYMMETRIC_DMAX] ; PRINTF ((" AMD statistics, for strict diagonal pivoting:\n")) ; PRINT_INFO (" est. flops for LU factorization: %.5e\n", Info [UMFPACK_SYMMETRIC_FLOPS]) ; PRINT_INFO (" est. nz in L+U (incl. diagonal): %.0f\n", Info [UMFPACK_SYMMETRIC_LUNZ]) ; PRINT_INFO (" est. largest front (# entries): %.0f\n", dmax*dmax) ; PRINT_INFO (" est. max nz in any column of L: %.0f\n", dmax) ; PRINT_INFO ( " number of \"dense\" rows/columns in S+S': %.0f\n", Info [UMFPACK_SYMMETRIC_NDENSE]) ; } /* ---------------------------------------------------------------------- */ /* symbolic factorization */ /* ---------------------------------------------------------------------- */ tsym = Info [UMFPACK_SYMBOLIC_TIME] ; twsym = Info [UMFPACK_SYMBOLIC_WALLTIME] ; PRINT_INFO (" symbolic factorization defragmentations: %.0f\n", Info [UMFPACK_SYMBOLIC_DEFRAG]) ; PRINT_INFO (" symbolic memory usage (Units): %.0f\n", Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]) ; PRINT_INFO (" symbolic memory usage (MBytes): %.1f\n", MBYTES (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY])) ; PRINT_INFO (" Symbolic size (Units): %.0f\n", Info [UMFPACK_SYMBOLIC_SIZE]) ; PRINT_INFO (" Symbolic size (MBytes): %.0f\n", MBYTES (Info [UMFPACK_SYMBOLIC_SIZE])) ; PRINT_INFO (" symbolic factorization CPU time (sec): %.2f\n", tsym) ; PRINT_INFO (" symbolic factorization wallclock time(sec): %.2f\n", twsym) ; /* ---------------------------------------------------------------------- */ /* scaling, from numerical factorization */ /* ---------------------------------------------------------------------- */ if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_NONE) { PRINTF (("\n matrix scaled: no\n")) ; } else if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_SUM) { PRINTF (("\n matrix scaled: yes ")) ; PRINTF (("(divided each row by sum of abs values in each row)\n")) ; PRINTF ((" minimum sum (abs (rows of A)): %.5e\n", Info [UMFPACK_RSMIN])) ; PRINTF ((" maximum sum (abs (rows of A)): %.5e\n", Info [UMFPACK_RSMAX])) ; } else if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_MAX) { PRINTF (("\n matrix scaled: yes ")) ; PRINTF (("(divided each row by max abs value in each row)\n")) ; PRINTF ((" minimum max (abs (rows of A)): %.5e\n", Info [UMFPACK_RSMIN])) ; PRINTF ((" maximum max (abs (rows of A)): %.5e\n", Info [UMFPACK_RSMAX])) ; } /* ---------------------------------------------------------------------- */ /* estimate/actual in symbolic/numeric factorization */ /* ---------------------------------------------------------------------- */ /* double relop, but ignore NaN case: */ if (Info [UMFPACK_SYMBOLIC_DEFRAG] >= 0 /* UMFPACK_*symbolic called */ || Info [UMFPACK_NUMERIC_DEFRAG] >= 0) /* UMFPACK_numeric called */ { PRINTF (("\n symbolic/numeric factorization: upper bound")) ; PRINTF ((" actual %%\n")) ; PRINTF ((" variable-sized part of Numeric object:\n")) ; } print_ratio (" initial size (Units)", " %20.0f", Info [UMFPACK_VARIABLE_INIT_ESTIMATE], Info [UMFPACK_VARIABLE_INIT]) ; print_ratio (" peak size (Units)", " %20.0f", Info [UMFPACK_VARIABLE_PEAK_ESTIMATE], Info [UMFPACK_VARIABLE_PEAK]) ; print_ratio (" final size (Units)", " %20.0f", Info [UMFPACK_VARIABLE_FINAL_ESTIMATE], Info [UMFPACK_VARIABLE_FINAL]) ; print_ratio ("Numeric final size (Units)", " %20.0f", Info [UMFPACK_NUMERIC_SIZE_ESTIMATE], Info [UMFPACK_NUMERIC_SIZE]) ; print_ratio ("Numeric final size (MBytes)", " %20.1f", MBYTES (Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]), MBYTES (Info [UMFPACK_NUMERIC_SIZE])) ; print_ratio ("peak memory usage (Units)", " %20.0f", Info [UMFPACK_PEAK_MEMORY_ESTIMATE], Info [UMFPACK_PEAK_MEMORY]) ; print_ratio ("peak memory usage (MBytes)", " %20.1f", MBYTES (Info [UMFPACK_PEAK_MEMORY_ESTIMATE]), MBYTES (Info [UMFPACK_PEAK_MEMORY])) ; print_ratio ("numeric factorization flops", " %20.5e", Info [UMFPACK_FLOPS_ESTIMATE], Info [UMFPACK_FLOPS]) ; lnz_est = Info [UMFPACK_LNZ_ESTIMATE] ; unz_est = Info [UMFPACK_UNZ_ESTIMATE] ; if (lnz_est >= 0 && unz_est >= 0) /* double relop, but ignore NaN case */ { lunz_est = lnz_est + unz_est - n_inner ; } else { lunz_est = EMPTY ; } lnz = Info [UMFPACK_LNZ] ; unz = Info [UMFPACK_UNZ] ; if (lnz >= 0 && unz >= 0) /* double relop, but ignore NaN case */ { lunz = lnz + unz - n_inner ; } else { lunz = EMPTY ; } print_ratio ("nz in L (incl diagonal)", " %20.0f", lnz_est, lnz) ; print_ratio ("nz in U (incl diagonal)", " %20.0f", unz_est, unz) ; print_ratio ("nz in L+U (incl diagonal)", " %20.0f", lunz_est, lunz) ; print_ratio ("largest front (# entries)", " %20.0f", Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE], Info [UMFPACK_MAX_FRONT_SIZE]) ; print_ratio ("largest # rows in front", " %20.0f", Info [UMFPACK_MAX_FRONT_NROWS_ESTIMATE], Info [UMFPACK_MAX_FRONT_NROWS]) ; print_ratio ("largest # columns in front", " %20.0f", Info [UMFPACK_MAX_FRONT_NCOLS_ESTIMATE], Info [UMFPACK_MAX_FRONT_NCOLS]) ; /* ---------------------------------------------------------------------- */ /* numeric factorization */ /* ---------------------------------------------------------------------- */ tnum = Info [UMFPACK_NUMERIC_TIME] ; twnum = Info [UMFPACK_NUMERIC_WALLTIME] ; fnum = Info [UMFPACK_FLOPS] ; PRINT_INFO ("\n initial allocation ratio used: %0.3g\n", Info [UMFPACK_ALLOC_INIT_USED]) ; PRINT_INFO (" # of forced updates due to frontal growth: %.0f\n", Info [UMFPACK_FORCED_UPDATES]) ; PRINT_INFO (" number of off-diagonal pivots: %.0f\n", Info [UMFPACK_NOFF_DIAG]) ; PRINT_INFO (" nz in L (incl diagonal), if none dropped %.0f\n", Info [UMFPACK_ALL_LNZ]) ; PRINT_INFO (" nz in U (incl diagonal), if none dropped %.0f\n", Info [UMFPACK_ALL_UNZ]) ; PRINT_INFO (" number of small entries dropped %.0f\n", Info [UMFPACK_NZDROPPED]) ; PRINT_INFO (" nonzeros on diagonal of U: %.0f\n", Info [UMFPACK_UDIAG_NZ]) ; PRINT_INFO (" min abs. value on diagonal of U: %.2e\n", Info [UMFPACK_UMIN]) ; PRINT_INFO (" max abs. value on diagonal of U: %.2e\n", Info [UMFPACK_UMAX]) ; PRINT_INFO (" estimate of reciprocal of condition number: %.2e\n", Info [UMFPACK_RCOND]) ; PRINT_INFO (" indices in compressed pattern: %.0f\n", Info [UMFPACK_COMPRESSED_PATTERN]) ; PRINT_INFO (" numerical values stored in Numeric object: %.0f\n", Info [UMFPACK_LU_ENTRIES]) ; PRINT_INFO (" numeric factorization defragmentations: %.0f\n", Info [UMFPACK_NUMERIC_DEFRAG]) ; PRINT_INFO (" numeric factorization reallocations: %.0f\n", Info [UMFPACK_NUMERIC_REALLOC]) ; PRINT_INFO (" costly numeric factorization reallocations: %.0f\n", Info [UMFPACK_NUMERIC_COSTLY_REALLOC]) ; PRINT_INFO (" numeric factorization CPU time (sec): %.2f\n", tnum) ; PRINT_INFO (" numeric factorization wallclock time (sec): %.2f\n", twnum) ; #define TMIN 0.001 if (tnum > TMIN && fnum > 0) { PRINT_INFO ( " numeric factorization mflops (CPU time): %.2f\n", 1e-6 * fnum / tnum) ; } if (twnum > TMIN && fnum > 0) { PRINT_INFO ( " numeric factorization mflops (wallclock): %.2f\n", 1e-6 * fnum / twnum) ; } ttot = EMPTY ; ftot = fnum ; if (tsym >= TMIN && tnum >= 0) { ttot = tsym + tnum ; PRINT_INFO (" symbolic + numeric CPU time (sec): %.2f\n", ttot) ; if (ftot > 0 && ttot > TMIN) { PRINT_INFO ( " symbolic + numeric mflops (CPU time): %.2f\n", 1e-6 * ftot / ttot) ; } } twtot = EMPTY ; if (twsym >= TMIN && twnum >= TMIN) { twtot = twsym + twnum ; PRINT_INFO (" symbolic + numeric wall clock time (sec): %.2f\n", twtot) ; if (ftot > 0 && twtot > TMIN) { PRINT_INFO ( " symbolic + numeric mflops (wall clock): %.2f\n", 1e-6 * ftot / twtot) ; } } /* ---------------------------------------------------------------------- */ /* solve */ /* ---------------------------------------------------------------------- */ tsolve = Info [UMFPACK_SOLVE_TIME] ; twsolve = Info [UMFPACK_SOLVE_WALLTIME] ; fsolve = Info [UMFPACK_SOLVE_FLOPS] ; PRINT_INFO ("\n solve flops: %.5e\n", fsolve) ; PRINT_INFO (" iterative refinement steps taken: %.0f\n", Info [UMFPACK_IR_TAKEN]) ; PRINT_INFO (" iterative refinement steps attempted: %.0f\n", Info [UMFPACK_IR_ATTEMPTED]) ; PRINT_INFO (" sparse backward error omega1: %.2e\n", Info [UMFPACK_OMEGA1]) ; PRINT_INFO (" sparse backward error omega2: %.2e\n", Info [UMFPACK_OMEGA2]) ; PRINT_INFO (" solve CPU time (sec): %.2f\n", tsolve) ; PRINT_INFO (" solve wall clock time (sec): %.2f\n", twsolve) ; if (fsolve > 0 && tsolve > TMIN) { PRINT_INFO ( " solve mflops (CPU time): %.2f\n", 1e-6 * fsolve / tsolve) ; } if (fsolve > 0 && twsolve > TMIN) { PRINT_INFO ( " solve mflops (wall clock time): %.2f\n", 1e-6 * fsolve / twsolve) ; } if (ftot >= 0 && fsolve >= 0) { ftot += fsolve ; PRINT_INFO ( "\n total symbolic + numeric + solve flops: %.5e\n", ftot) ; } if (tsolve >= TMIN) { if (ttot >= TMIN && ftot >= 0) { ttot += tsolve ; PRINT_INFO ( " total symbolic + numeric + solve CPU time: %.2f\n", ttot) ; if (ftot > 0 && ttot > TMIN) { PRINT_INFO ( " total symbolic + numeric + solve mflops (CPU): %.2f\n", 1e-6 * ftot / ttot) ; } } } if (twsolve >= TMIN) { if (twtot >= TMIN && ftot >= 0) { twtot += tsolve ; PRINT_INFO ( " total symbolic+numeric+solve wall clock time: %.2f\n", twtot) ; if (ftot > 0 && twtot > TMIN) { PRINT_INFO ( " total symbolic+numeric+solve mflops(wallclock) %.2f\n", 1e-6 * ftot / twtot) ; } } } PRINTF (("\n")) ; } SuiteSparse/UMFPACK/Source/umf_valid_symbolic.c0000644001170100242450000000317310677542513020326 0ustar davisfac/* ========================================================================== */ /* === UMF_valid_symbolic =================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include "umf_internal.h" #include "umf_valid_symbolic.h" /* Returns TRUE if the Symbolic object is valid, FALSE otherwise. */ /* The UMFPACK_report_symbolic routine does a more thorough check. */ GLOBAL Int UMF_valid_symbolic ( SymbolicType *Symbolic ) { /* This routine does not check the contents of the individual arrays, so */ /* it can miss some errors. All it checks for is the presence of the */ /* arrays, and the Symbolic "valid" entry. */ if (!Symbolic) { return (FALSE) ; } if (Symbolic->valid != SYMBOLIC_VALID) { /* Symbolic does not point to a SymbolicType object */ return (FALSE) ; } if (!Symbolic->Cperm_init || !Symbolic->Rperm_init || !Symbolic->Front_npivcol || !Symbolic->Front_1strow || !Symbolic->Front_leftmostdesc || !Symbolic->Front_parent || !Symbolic->Chain_start || !Symbolic->Chain_maxrows || !Symbolic->Chain_maxcols || Symbolic->n_row <= 0 || Symbolic->n_col <= 0) { return (FALSE) ; } return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_valid_symbolic.h0000644001170100242450000000072510617162523020324 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_valid_symbolic ( SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umfpack_scale.c0000644001170100242450000000672510617162156017255 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_scale ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Applies the scale factors computed during numerical factorization to a vector. See umfpack_scale.h for more details. The LU factorization is L*U = P*R*A*Q, where P and Q are permutation matrices, and R is diagonal. This routine computes X = R * B using the matrix R stored in the Numeric object. Returns FALSE if any argument is invalid, TRUE otherwise. If R not present in the Numeric object, then R = I and no floating-point work is done. B is simply copied into X. */ #include "umf_internal.h" #include "umf_valid_numeric.h" GLOBAL Int UMFPACK_scale ( double Xx [ ], #ifdef COMPLEX double Xz [ ], #endif const double Bx [ ], #ifdef COMPLEX const double Bz [ ], #endif void *NumericHandle ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ NumericType *Numeric ; Int n, i ; double *Rs ; #ifdef COMPLEX Int split = SPLIT (Xz) && SPLIT (Bz) ; #endif Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { return (UMFPACK_ERROR_invalid_Numeric_object) ; } n = Numeric->n_row ; Rs = Numeric->Rs ; if (!Xx || !Bx) { return (UMFPACK_ERROR_argument_missing) ; } /* ---------------------------------------------------------------------- */ /* X = R*B or R\B */ /* ---------------------------------------------------------------------- */ if (Rs != (double *) NULL) { #ifndef NRECIPROCAL if (Numeric->do_recip) { /* multiply by the scale factors */ #ifdef COMPLEX if (split) { for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] * Rs [i] ; Xz [i] = Bz [i] * Rs [i] ; } } else { for (i = 0 ; i < n ; i++) { Xx [2*i ] = Bx [2*i ] * Rs [i] ; Xx [2*i+1] = Bx [2*i+1] * Rs [i] ; } } #else for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] * Rs [i] ; } #endif } else #endif { /* divide by the scale factors */ #ifdef COMPLEX if (split) { for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] / Rs [i] ; Xz [i] = Bz [i] / Rs [i] ; } } else { for (i = 0 ; i < n ; i++) { Xx [2*i ] = Bx [2*i ] / Rs [i] ; Xx [2*i+1] = Bx [2*i+1] / Rs [i] ; } } #else for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] / Rs [i] ; } #endif } } else { /* no scale factors, just copy B into X */ #ifdef COMPLEX if (split) { for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] ; Xz [i] = Bz [i] ; } } else { for (i = 0 ; i < n ; i++) { Xx [2*i ] = Bx [2*i ] ; Xx [2*i+1] = Bx [2*i+1] ; } } #else for (i = 0 ; i < n ; i++) { Xx [i] = Bx [i] ; } #endif } return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umf_blas3_update.c0000644001170100242450000001031610677542076017675 0ustar davisfac/* ========================================================================== */ /* === UMF_blas3_update ===================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ #include "umf_internal.h" #include "umf_blas3_update.h" GLOBAL void UMF_blas3_update ( WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry *L, *U, *C, *LU ; Int i, j, s, k, m, n, d, nb, dc ; #ifndef NBLAS Int blas_ok = TRUE ; #else #define blas_ok FALSE #endif DEBUG5 (("In UMF_blas3_update "ID" "ID" "ID"\n", Work->fnpiv, Work->fnrows, Work->fncols)) ; k = Work->fnpiv ; if (k == 0) { /* no work to do */ return ; } m = Work->fnrows ; n = Work->fncols ; d = Work->fnr_curr ; dc = Work->fnc_curr ; nb = Work->nb ; ASSERT (d >= 0 && (d % 2) == 1) ; C = Work->Fcblock ; /* ldc is fnr_curr */ L = Work->Flblock ; /* ldl is fnr_curr */ U = Work->Fublock ; /* ldu is fnc_curr, stored by rows */ LU = Work->Flublock ; /* nb-by-nb */ #ifndef NDEBUG DEBUG5 (("DO RANK-NB UPDATE of frontal:\n")) ; DEBUG5 (("DGEMM : "ID" "ID" "ID"\n", k, m, n)) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (C, d, m, n) ; DEBUG7 (("A block: ")) ; UMF_dump_dense (L, d, m, k) ; DEBUG7 (("B' block: ")) ; UMF_dump_dense (U, dc, n, k) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (LU, nb, k, k) ; #endif if (k == 1) { #ifndef NBLAS BLAS_GER (m, n, L, U, C, d) ; #endif if (!blas_ok) { /* rank-1 outer product to update the C block */ for (j = 0 ; j < n ; j++) { Entry u_j = U [j] ; if (IS_NONZERO (u_j)) { Entry *c_ij, *l_is ; c_ij = & C [j*d] ; l_is = & L [0] ; #pragma ivdep for (i = 0 ; i < m ; i++) { /* C [i+j*d]-= L [i] * U [j] */ MULT_SUB (*c_ij, *l_is, u_j) ; c_ij++ ; l_is++ ; } } } } } else { /* triangular solve to update the U block */ #ifndef NBLAS BLAS_TRSM_RIGHT (n, k, LU, nb, U, dc) ; #endif if (!blas_ok) { /* use plain C code if no BLAS at compile time, or if integer * overflow has occurred */ for (s = 0 ; s < k ; s++) { for (i = s+1 ; i < k ; i++) { Entry l_is = LU [i+s*nb] ; if (IS_NONZERO (l_is)) { Entry *u_ij, *u_sj ; u_ij = & U [i*dc] ; u_sj = & U [s*dc] ; #pragma ivdep for (j = 0 ; j < n ; j++) { /* U [i*dc+j] -= LU [i+s*nb] * U [s*dc+j] ; */ MULT_SUB (*u_ij, l_is, *u_sj) ; u_ij++ ; u_sj++ ; } } } } } /* rank-k outer product to update the C block */ /* C = C - L*U' (U is stored by rows, not columns) */ #ifndef NBLAS BLAS_GEMM (m, n, k, L, U, dc, C, d) ; #endif if (!blas_ok) { /* use plain C code if no BLAS at compile time, or if integer * overflow has occurred */ for (s = 0 ; s < k ; s++) { for (j = 0 ; j < n ; j++) { Entry u_sj = U [j+s*dc] ; if (IS_NONZERO (u_sj)) { Entry *c_ij, *l_is ; c_ij = & C [j*d] ; l_is = & L [s*d] ; #pragma ivdep for (i = 0 ; i < m ; i++) { /* C [i+j*d]-= L [i+s*d] * U [s*dc+j] */ MULT_SUB (*c_ij, *l_is, u_sj) ; c_ij++ ; l_is++ ; } } } } } } #ifndef NDEBUG DEBUG5 (("RANK-NB UPDATE of frontal done:\n")) ; DEBUG5 (("DGEMM : "ID" "ID" "ID"\n", k, m, n)) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (C, d, m, n) ; DEBUG7 (("A block: ")) ; UMF_dump_dense (L, d, m, k) ; DEBUG7 (("B' block: ")) ; UMF_dump_dense (U, dc, n, k) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (LU, nb, k, k) ; #endif DEBUG2 (("blas3 "ID" "ID" "ID"\n", k, Work->fnrows, Work->fncols)) ; } SuiteSparse/UMFPACK/Source/umf_blas3_update.h0000644001170100242450000000071410617161416017670 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_blas3_update ( WorkType *Work ) ; SuiteSparse/UMFPACK/Source/umf_start_front.c0000644001170100242450000002113310677542422017666 0ustar davisfac/* ========================================================================== */ /* === UMF_start_front ====================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Allocate the initial frontal matrix working array for a single chain. The * front does not have to be big enough, since if it's too small it will get * reallocated. The size computed here is just an estimate. */ #include "umf_internal.h" #include "umf_start_front.h" #include "umf_grow_front.h" GLOBAL Int UMF_start_front /* returns TRUE if successful, FALSE otherwise */ ( Int chain, NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { double maxbytes ; Int fnrows_max, fncols_max, fnr2, fnc2, fsize, fcurr_size, maxfrsize, overflow, nb, f, cdeg ; nb = Symbolic->nb ; fnrows_max = Symbolic->Chain_maxrows [chain] ; fncols_max = Symbolic->Chain_maxcols [chain] ; DEBUGm2 (("Start Front for chain "ID". fnrows_max "ID" fncols_max "ID"\n", chain, fnrows_max, fncols_max)) ; Work->fnrows_max = fnrows_max ; Work->fncols_max = fncols_max ; Work->any_skip = FALSE ; maxbytes = sizeof (Entry) * (double) (fnrows_max + nb) * (double) (fncols_max + nb) ; fcurr_size = Work->fcurr_size ; if (Symbolic->prefer_diagonal) { /* Get a rough upper bound on the degree of the first pivot column in * this front. Note that Col_degree is not maintained if diagonal * pivoting is preferred. For most matrices, the first pivot column * of the first frontal matrix of a new chain has only one tuple in * it anyway, so this bound is exact in that case. */ Int col, tpi, e, *E, *Col_tuples, *Col_tlen, *Cols ; Tuple *tp, *tpend ; Unit *Memory, *p ; Element *ep ; E = Work->E ; Memory = Numeric->Memory ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; col = Work->nextcand ; tpi = Col_tuples [col] ; tp = (Tuple *) Memory + tpi ; tpend = tp + Col_tlen [col] ; cdeg = 0 ; DEBUGm3 (("\n=============== start front: col "ID" tlen "ID"\n", col, Col_tlen [col])) ; for ( ; tp < tpend ; tp++) { DEBUG1 (("Tuple ("ID","ID")\n", tp->e, tp->f)) ; e = tp->e ; if (!E [e]) continue ; f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; if (Cols [f] == EMPTY) continue ; DEBUG1 ((" nrowsleft "ID"\n", ep->nrowsleft)) ; cdeg += ep->nrowsleft ; } #ifndef NDEBUG DEBUGm3 (("start front cdeg: "ID" col "ID"\n", cdeg, col)) ; UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; #endif /* cdeg is now the rough upper bound on the degree of the next pivot * column. */ /* If AMD was called, we know the maximum number of nonzeros in any * column of L. Use this as an upper bound for cdeg, but add 2 to * account for a small amount of off-diagonal pivoting. */ if (Symbolic->amd_dmax > 0) { cdeg = MIN (cdeg, Symbolic->amd_dmax) ; } /* Increase it to account for larger columns later on. * Also ensure that it's larger than zero. */ cdeg += 2 ; /* cdeg cannot be larger than fnrows_max */ cdeg = MIN (cdeg, fnrows_max) ; } else { /* don't do the above cdeg computation */ cdeg = 0 ; } DEBUGm2 (("fnrows max "ID" fncols_max "ID"\n", fnrows_max, fncols_max)) ; /* the current frontal matrix is empty */ ASSERT (Work->fnrows == 0 && Work->fncols == 0 && Work->fnpiv == 0) ; /* maximum row dimension is always odd, to avoid bad cache effects */ ASSERT (fnrows_max >= 0) ; ASSERT (fnrows_max % 2 == 1) ; /* ---------------------------------------------------------------------- * allocate working array for current frontal matrix: * minimum size: 1-by-1 * maximum size: fnrows_max-by-fncols_max * desired size: * * if Numeric->front_alloc_init >= 0: * * for unsymmetric matrices: * Numeric->front_alloc_init * (fnrows_max-by-fncols_max) * * for symmetric matrices (diagonal pivoting preference, actually): * Numeric->front_alloc_init * (fnrows_max-by-fncols_max), or * cdeg*cdeg, whichever is smaller. * * if Numeric->front_alloc_init < 0: * allocate a front of size -Numeric->front_alloc_init. * * Allocate the whole thing if it's small (less than 2*nb^2). Make sure the * leading dimension of the frontal matrix is odd. * * Also allocate the nb-by-nb LU block, the dr-by-nb L block, and the * nb-by-dc U block. * ---------------------------------------------------------------------- */ /* get the maximum front size, avoiding integer overflow */ overflow = INT_OVERFLOW (maxbytes) ; if (overflow) { /* :: int overflow, max front size :: */ maxfrsize = Int_MAX / sizeof (Entry) ; } else { maxfrsize = (fnrows_max + nb) * (fncols_max + nb) ; } ASSERT (!INT_OVERFLOW ((double) maxfrsize * sizeof (Entry))) ; if (Numeric->front_alloc_init < 0) { /* allocate a front of -Numeric->front_alloc_init entries */ fsize = -Numeric->front_alloc_init ; fsize = MAX (1, fsize) ; } else { if (INT_OVERFLOW (Numeric->front_alloc_init * maxbytes)) { /* :: int overflow, requested front size :: */ fsize = Int_MAX / sizeof (Entry) ; } else { fsize = Numeric->front_alloc_init * maxfrsize ; } if (cdeg > 0) { /* diagonal pivoting is in use. cdeg was computed above */ Int fsize2 ; /* add the L and U blocks */ cdeg += nb ; if (INT_OVERFLOW (((double) cdeg * (double) cdeg) * sizeof (Entry))) { /* :: int overflow, symmetric front size :: */ fsize2 = Int_MAX / sizeof (Entry) ; } else { fsize2 = MAX (cdeg * cdeg, fcurr_size) ; } fsize = MIN (fsize, fsize2) ; } } fsize = MAX (fsize, 2*nb*nb) ; /* fsize and maxfrsize are now safe from integer overflow. They both * include the size of the pivot blocks. */ ASSERT (!INT_OVERFLOW ((double) fsize * sizeof (Entry))) ; Work->fnrows_new = 0 ; Work->fncols_new = 0 ; /* desired size is fnr2-by-fnc2 (includes L and U blocks): */ DEBUGm2 ((" fsize "ID" fcurr_size "ID"\n", fsize, fcurr_size)) ; DEBUGm2 ((" maxfrsize "ID" fnr_curr "ID" fnc_curr "ID"\n", maxfrsize, Work->fnr_curr, Work->fnc_curr)) ; if (fsize >= maxfrsize && !overflow) { /* max working array is small, allocate all of it */ fnr2 = fnrows_max + nb ; fnc2 = fncols_max + nb ; fsize = maxfrsize ; DEBUGm1 ((" sufficient for ("ID"+"ID")-by-("ID"+"ID")\n", fnrows_max, nb, fncols_max, nb)) ; } else { /* allocate a smaller working array */ if (fnrows_max <= fncols_max) { fnr2 = (Int) sqrt ((double) fsize) ; /* make sure fnr2 is odd */ fnr2 = MAX (fnr2, 1) ; if (fnr2 % 2 == 0) fnr2++ ; fnr2 = MIN (fnr2, fnrows_max + nb) ; fnc2 = fsize / fnr2 ; } else { fnc2 = (Int) sqrt ((double) fsize) ; fnc2 = MIN (fnc2, fncols_max + nb) ; fnr2 = fsize / fnc2 ; /* make sure fnr2 is odd */ fnr2 = MAX (fnr2, 1) ; if (fnr2 % 2 == 0) { fnr2++ ; fnc2 = fsize / fnr2 ; } } DEBUGm1 ((" smaller "ID"-by-"ID"\n", fnr2, fnc2)) ; } fnr2 = MIN (fnr2, fnrows_max + nb) ; fnc2 = MIN (fnc2, fncols_max + nb) ; ASSERT (fnr2 % 2 == 1) ; ASSERT (fnr2 * fnc2 <= fsize) ; fnr2 -= nb ; fnc2 -= nb ; ASSERT (fnr2 >= 0) ; ASSERT (fnc2 >= 0) ; if (fsize > fcurr_size) { DEBUGm1 ((" Grow front \n")) ; Work->do_grow = TRUE ; if (!UMF_grow_front (Numeric, fnr2, fnc2, Work, -1)) { /* since the minimum front size is 1-by-1, it would be nearly * impossible to run out of memory here. */ DEBUGm4 (("out of memory: start front\n")) ; return (FALSE) ; } } else { /* use the existing front */ DEBUGm1 ((" existing front ok\n")) ; Work->fnr_curr = fnr2 ; Work->fnc_curr = fnc2 ; Work->Flblock = Work->Flublock + nb * nb ; Work->Fublock = Work->Flblock + nb * fnr2 ; Work->Fcblock = Work->Fublock + nb * fnc2 ; } ASSERT (Work->Flblock == Work->Flublock + Work->nb*Work->nb) ; ASSERT (Work->Fublock == Work->Flblock + Work->fnr_curr*Work->nb) ; ASSERT (Work->Fcblock == Work->Fublock + Work->nb*Work->fnc_curr) ; return (TRUE) ; } SuiteSparse/UMFPACK/Source/umf_start_front.h0000644001170100242450000000101710617162425017665 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_start_front ( Int chain, NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) ; SuiteSparse/UMFPACK/Source/umf_scale.h0000644001170100242450000000073610617162302016410 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void UMF_scale ( Int n, Entry alpha, Entry X [ ] ) ; SuiteSparse/UMFPACK/Source/umfpack_triplet_to_col.c0000644001170100242450000001465010617162207021201 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_triplet_to_col =============================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User callable. Converts triplet input to column-oriented form. Duplicate entries may exist (they are summed in the output). The columns of the column-oriented form are in sorted order. The input is not modified. Returns 1 if OK, 0 if an error occurred. See umfpack_triplet_to_col.h for details. If Map is present (a non-NULL pointer to an Int array of size nz), then on output it holds the position of the triplets in the column-form matrix. That is, suppose p = Map [k], and the k-th triplet is i=Ti[k], j=Tj[k], and aij=Tx[k]. Then i=Ai[p], and aij will have been summed into Ax[p]. Also, Ap[j] <= p < Ap[j+1]. The Map array is not computed if it is (Int *) NULL. Dynamic memory usage: If numerical values are present, then one (two for complex version) workspace of size (nz+1)*sizeof(double) is allocated via UMF_malloc. Next, 4 calls to UMF_malloc are made to obtain workspace of size ((nz+1) + (n_row+1) + n_row + MAX (n_row,n_col)) * sizeof(Int). All of this workspace (4 to 6 objects) are free'd via UMF_free on return. For the complex version, additional space is allocated. An extra array of size nz*sizeof(Int) is allocated if Map is present. */ #include "umf_internal.h" #include "umf_malloc.h" #include "umf_free.h" #include "umf_triplet.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif /* ========================================================================== */ GLOBAL Int UMFPACK_triplet_to_col ( Int n_row, Int n_col, Int nz, const Int Ti [ ], /* size nz */ const Int Tj [ ], /* size nz */ const double Tx [ ], /* size nz */ #ifdef COMPLEX const double Tz [ ], /* size nz */ #endif Int Ap [ ], /* size n_col + 1 */ Int Ai [ ], /* size nz */ double Ax [ ] /* size nz */ #ifdef COMPLEX , double Az [ ] /* size nz */ #endif , Int Map [ ] /* size nz */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int *RowCount, *Rp, *Rj, *W, nn, do_values, do_map, *Map2, status ; double *Rx ; #ifdef COMPLEX double *Rz ; Int split ; #endif #ifndef NDEBUG UMF_dump_start ( ) ; init_count = UMF_malloc_count ; #endif /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (!Ai || !Ap || !Ti || !Tj) { return (UMFPACK_ERROR_argument_missing) ; } if (n_row <= 0 || n_col <= 0) /* must be > 0 */ { return (UMFPACK_ERROR_n_nonpositive) ; } if (nz < 0) /* nz must be >= 0 (singular matrices are OK) */ { return (UMFPACK_ERROR_invalid_matrix) ; } nn = MAX (n_row, n_col) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ Rx = (double *) NULL ; do_values = Ax && Tx ; if (do_values) { #ifdef COMPLEX Rx = (double *) UMF_malloc (2*nz+2, sizeof (double)) ; split = SPLIT (Tz) && SPLIT (Az) ; if (split) { Rz = Rx + nz ; } else { Rz = (double *) NULL ; } #else Rx = (double *) UMF_malloc (nz+1, sizeof (double)) ; #endif if (!Rx) { DEBUGm4 (("out of memory: triplet work \n")) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_ERROR_out_of_memory) ; } } do_map = (Map != (Int *) NULL) ; Map2 = (Int *) NULL ; if (do_map) { DEBUG0 (("Do map:\n")) ; Map2 = (Int *) UMF_malloc (nz+1, sizeof (Int)) ; if (!Map2) { DEBUGm4 (("out of memory: triplet map\n")) ; (void) UMF_free ((void *) Rx) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_ERROR_out_of_memory) ; } } Rj = (Int *) UMF_malloc (nz+1, sizeof (Int)) ; Rp = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; RowCount = (Int *) UMF_malloc (n_row, sizeof (Int)) ; W = (Int *) UMF_malloc (nn, sizeof (Int)) ; if (!Rj || !Rp || !RowCount || !W) { DEBUGm4 (("out of memory: triplet work (int)\n")) ; (void) UMF_free ((void *) Rx) ; (void) UMF_free ((void *) Map2) ; (void) UMF_free ((void *) Rp) ; (void) UMF_free ((void *) Rj) ; (void) UMF_free ((void *) RowCount) ; (void) UMF_free ((void *) W) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 4 + (Rx != (double *) NULL) + do_map) ; /* ---------------------------------------------------------------------- */ /* convert from triplet to column form */ /* ---------------------------------------------------------------------- */ if (do_map) { if (do_values) { status = UMF_triplet_map_x (n_row, n_col, nz, Ti, Tj, Ap, Ai, Rp, Rj, W, RowCount, Tx, Ax, Rx #ifdef COMPLEX , Tz, Az, Rz #endif , Map, Map2) ; } else { status = UMF_triplet_map_nox (n_row, n_col, nz, Ti, Tj, Ap, Ai, Rp, Rj, W, RowCount, Map, Map2) ; } } else { if (do_values) { status = UMF_triplet_nomap_x (n_row, n_col, nz, Ti, Tj, Ap, Ai, Rp, Rj, W, RowCount , Tx, Ax, Rx #ifdef COMPLEX , Tz, Az, Rz #endif ) ; } else { status = UMF_triplet_nomap_nox (n_row, n_col, nz, Ti, Tj, Ap, Ai, Rp, Rj, W, RowCount) ; } } /* ---------------------------------------------------------------------- */ /* free the workspace */ /* ---------------------------------------------------------------------- */ (void) UMF_free ((void *) Rx) ; (void) UMF_free ((void *) Map2) ; (void) UMF_free ((void *) Rp) ; (void) UMF_free ((void *) Rj) ; (void) UMF_free ((void *) RowCount) ; (void) UMF_free ((void *) W) ; ASSERT (UMF_malloc_count == init_count) ; return (status) ; } SuiteSparse/UMFPACK/Source/umfpack_report_matrix.c0000644001170100242450000001225510617162115021053 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_matrix ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints a column or row-oriented matrix. See umfpack_report_matrix.h for details. */ #include "umf_internal.h" GLOBAL Int UMFPACK_report_matrix ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif Int col_form, /* 1: column form, 0: row form */ const double Control [UMFPACK_CONTROL] ) { Entry a ; Int prl, i, k, length, ilast, p, nz, prl1, p1, p2, n, n_i, do_values ; char *vector, *index ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif /* ---------------------------------------------------------------------- */ /* determine the form, and check if inputs exist */ /* ---------------------------------------------------------------------- */ prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } if (col_form) { vector = "column" ; /* column vectors */ index = "row" ; /* with row indices */ n = n_col ; n_i = n_row ; } else { vector = "row" ; /* row vectors */ index = "column" ; /* with column indices */ n = n_row ; n_i = n_col ; } PRINTF (("%s-form matrix, n_row "ID" n_col "ID", ", vector, n_row, n_col)) ; if (n_row <= 0 || n_col <= 0) { PRINTF (("ERROR: n_row <= 0 or n_col <= 0\n\n")) ; return (UMFPACK_ERROR_n_nonpositive) ; } if (!Ap) { PRINTF (("ERROR: Ap missing\n\n")) ; return (UMFPACK_ERROR_argument_missing) ; } nz = Ap [n] ; PRINTF (("nz = "ID". ", nz)) ; if (nz < 0) { PRINTF (("ERROR: number of entries < 0\n\n")) ; return (UMFPACK_ERROR_invalid_matrix) ; } if (Ap [0] != 0) { PRINTF (("ERROR: Ap ["ID"] = "ID" must be "ID"\n\n", (Int) INDEX (0), INDEX (Ap [0]), (Int) INDEX (0))) ; return (UMFPACK_ERROR_invalid_matrix) ; } if (!Ai) { PRINTF (("ERROR: Ai missing\n\n")) ; return (UMFPACK_ERROR_argument_missing) ; } do_values = Ax != (double *) NULL ; PRINTF4 (("\n")) ; /* ---------------------------------------------------------------------- */ /* check the row/column pointers, Ap */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n ; k++) { if (Ap [k] < 0) { PRINTF (("ERROR: Ap ["ID"] < 0\n\n", INDEX (k))) ; return (UMFPACK_ERROR_invalid_matrix) ; } if (Ap [k] > nz) { PRINTF (("ERROR: Ap ["ID"] > size of Ai\n\n", INDEX (k))) ; return (UMFPACK_ERROR_invalid_matrix) ; } } for (k = 0 ; k < n ; k++) { length = Ap [k+1] - Ap [k] ; if (length < 0) { PRINTF (("ERROR: # entries in %s "ID" is < 0\n\n", vector, INDEX (k))) ; return (UMFPACK_ERROR_invalid_matrix) ; } } /* ---------------------------------------------------------------------- */ /* print each vector */ /* ---------------------------------------------------------------------- */ prl1 = prl ; for (k = 0 ; k < n ; k++) { /* if prl is 4, print the first 10 entries of the first 10 vectors */ if (k < 10) { prl = prl1 ; } /* get the vector pointers */ p1 = Ap [k] ; p2 = Ap [k+1] ; length = p2 - p1 ; PRINTF4 (("\n %s "ID": start: "ID" end: "ID" entries: "ID"\n", vector, INDEX (k), p1, p2-1, length)) ; ilast = EMPTY ; for (p = p1 ; p < p2 ; p++) { i = Ai [p] ; PRINTF4 (("\t%s "ID" ", index, INDEX (i))) ; if (do_values && prl >= 4) { PRINTF ((":")) ; ASSIGN (a, Ax, Az, p, split) ; PRINT_ENTRY (a) ; } if (i < 0 || i >= n_i) { PRINTF ((" ERROR: %s index "ID" out of range in %s "ID"\n\n", index, INDEX (i), vector, INDEX (k))) ; return (UMFPACK_ERROR_invalid_matrix) ; } if (i <= ilast) { PRINTF ((" ERROR: %s index "ID" out of order (or duplicate) in " "%s "ID"\n\n", index, INDEX (i), vector, INDEX (k))) ; return (UMFPACK_ERROR_invalid_matrix) ; } PRINTF4 (("\n")) ; /* truncate printout, but continue to check matrix */ if (prl == 4 && (p - p1) == 9 && length > 10) { PRINTF4 (("\t...\n")) ; prl-- ; } ilast = i ; } /* truncate printout, but continue to check matrix */ if (prl == 4 && k == 9 && n > 10) { PRINTF4 (("\n ...\n")) ; prl-- ; } } prl = prl1 ; /* ---------------------------------------------------------------------- */ /* return the status of the matrix */ /* ---------------------------------------------------------------------- */ PRINTF4 ((" %s-form matrix ", vector)) ; PRINTF (("OK\n\n")) ; return (UMFPACK_OK) ; } SuiteSparse/UMFPACK/Source/umfpack_report_perm.c0000644001170100242450000000263710617162125020516 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_report_perm ================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Prints a permutation vector. See umfpack_report_perm.h for details. Dynamic memory usage: Allocates a size max(np,1)*sizeof(Int) workspace via a single call to UMF_malloc and then frees all of it via UMF_free on return. */ #include "umf_internal.h" #include "umf_report_perm.h" #include "umf_malloc.h" #include "umf_free.h" GLOBAL Int UMFPACK_report_perm ( Int np, const Int Perm [ ], const double Control [UMFPACK_CONTROL] ) { Int prl, *W, status ; prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ; if (prl <= 2) { return (UMFPACK_OK) ; } W = (Int *) UMF_malloc (MAX (np,1), sizeof (Int)) ; status = UMF_report_perm (np, Perm, W, prl, 1) ; (void) UMF_free ((void *) W) ; return (status) ; } SuiteSparse/UMFPACK/Source/umf_realloc.c0000644001170100242450000000440510677541004016740 0ustar davisfac/* ========================================================================== */ /* === UMF_realloc ========================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Realloc a block previously allocated by UMF_malloc. Return NULL on failure (in which case the block is still allocated, and will be kept at is present size). This routine is only used for Numeric->Memory. */ #include "umf_internal.h" #include "umf_realloc.h" #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) #include "umf_malloc.h" #endif GLOBAL void *UMF_realloc ( void *p, Int n_objects, size_t size_of_object ) { size_t size ; void *p2 ; #ifdef UMF_TCOV_TEST /* For exhaustive statement coverage testing only! */ /* Pretend to fail, to test out-of-memory conditions. */ umf_realloc_fail-- ; if (umf_realloc_fail <= umf_realloc_hi && umf_realloc_fail >= umf_realloc_lo) { return ((void *) NULL) ; } #endif /* make sure that we allocate something */ n_objects = MAX (1, n_objects) ; size = (size_t) n_objects ; ASSERT (size_of_object > 1) ; if (size > Int_MAX / size_of_object) { /* :: int overflow in umf_realloc :: */ return ((void *) NULL) ; } size *= size_of_object ; DEBUG0 (("UMF_realloc: "ID" n_objects "ID" size_of_object "ID"\n", (Int) p, n_objects, (Int) size_of_object)) ; /* see AMD/Source/amd_global.c for the memory allocator selection */ p2 = amd_realloc (p, size) ; #if defined (UMF_MALLOC_COUNT) || !defined (NDEBUG) /* If p didn't exist on input, and p2 exists, then a new object has been * allocated. */ if (p == (void *) NULL && p2 != (void *) NULL) { UMF_malloc_count++ ; } #endif DEBUG0 (("UMF_realloc: "ID" new malloc count "ID"\n", (Int) p2, UMF_malloc_count)) ; return (p2) ; } SuiteSparse/UMFPACK/Source/umf_realloc.h0000644001170100242450000000075710617162216016751 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL void *UMF_realloc ( void *p, Int n_objects, size_t size_of_object ) ; SuiteSparse/UMFPACK/Source/umfpack_free_symbolic.c0000644001170100242450000000365710617162044021005 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_free_symbolic ================================================ */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. See umfpack_free_symbolic.h for details. All 10 objects comprising the Symbolic object are free'd via UMF_free. */ #include "umf_internal.h" #include "umf_free.h" GLOBAL void UMFPACK_free_symbolic ( void **SymbolicHandle ) { SymbolicType *Symbolic ; if (!SymbolicHandle) { return ; } Symbolic = *((SymbolicType **) SymbolicHandle) ; if (!Symbolic) { return ; } (void) UMF_free ((void *) Symbolic->Cperm_init) ; (void) UMF_free ((void *) Symbolic->Rperm_init) ; (void) UMF_free ((void *) Symbolic->Front_npivcol) ; (void) UMF_free ((void *) Symbolic->Front_parent) ; (void) UMF_free ((void *) Symbolic->Front_1strow) ; (void) UMF_free ((void *) Symbolic->Front_leftmostdesc) ; (void) UMF_free ((void *) Symbolic->Chain_start) ; (void) UMF_free ((void *) Symbolic->Chain_maxrows) ; (void) UMF_free ((void *) Symbolic->Chain_maxcols) ; (void) UMF_free ((void *) Symbolic->Cdeg) ; (void) UMF_free ((void *) Symbolic->Rdeg) ; /* only when dense rows are present */ (void) UMF_free ((void *) Symbolic->Esize) ; /* only when diagonal pivoting is prefered */ (void) UMF_free ((void *) Symbolic->Diagonal_map) ; (void) UMF_free ((void *) Symbolic) ; *SymbolicHandle = (void *) NULL ; } SuiteSparse/UMFPACK/Source/umf_mem_alloc_tail_block.c0000644001170100242450000001004410677541740021435 0ustar davisfac/* ========================================================================== */ /* === UMF_mem_alloc_tail_block ============================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* The UMF_mem_* routines manage the Numeric->Memory memory space. */ #include "umf_internal.h" #include "umf_mem_alloc_tail_block.h" /* allocate nunits from tail of Numeric->Memory */ /* (requires nunits+1, for header). */ /* Returns the index into Numeric->Memory if successful, or 0 on failure. */ GLOBAL Int UMF_mem_alloc_tail_block ( NumericType *Numeric, Int nunits ) { Int bigsize, usage ; Unit *p, *pnext, *pbig ; ASSERT (Numeric != (NumericType *) NULL) ; ASSERT (Numeric->Memory != (Unit *) NULL) ; #ifndef NDEBUG if (UMF_allocfail) { /* pretend to fail, to test garbage_collection */ DEBUGm2 (("UMF_mem_alloc_tail_block: pretend to fail\n")) ; UMF_allocfail = FALSE ; /* don't fail the next time */ return (0) ; } DEBUG2 (("UMF_mem_alloc_tail_block, size: "ID" + 1 = "ID": ", nunits, nunits+1)) ; #endif bigsize = 0 ; pbig = (Unit *) NULL ; ASSERT (nunits > 0) ; /* size must be positive */ if (Numeric->ibig != EMPTY) { ASSERT (Numeric->ibig > Numeric->itail) ; ASSERT (Numeric->ibig < Numeric->size) ; pbig = Numeric->Memory + Numeric->ibig ; bigsize = -pbig->header.size ; ASSERT (bigsize > 0) ; /* Numeric->ibig is free */ ASSERT (pbig->header.prevsize >= 0) ; /* prev. is not free */ } if (pbig && bigsize >= nunits) { /* use the biggest block, somewhere in middle of memory */ p = pbig ; pnext = p + 1 + bigsize ; /* next is in range */ ASSERT (pnext < Numeric->Memory + Numeric->size) ; /* prevsize of next = this size */ ASSERT (pnext->header.prevsize == bigsize) ; /* next is not free */ ASSERT (pnext->header.size > 0) ; bigsize -= nunits + 1 ; if (bigsize < 4) { /* internal fragmentation would be too small */ /* allocate the entire free block */ p->header.size = -p->header.size ; DEBUG2 (("GET BLOCK: p: "ID" size: "ID", all of big: "ID" size: " ID"\n", (Int) (p-Numeric->Memory), nunits, Numeric->ibig, p->header.size)) ; /* no more biggest block */ Numeric->ibig = EMPTY ; } else { /* allocate just the first nunits Units of the free block */ p->header.size = nunits ; /* make a new free block */ Numeric->ibig += nunits + 1 ; pbig = Numeric->Memory + Numeric->ibig ; pbig->header.size = -bigsize ; pbig->header.prevsize = nunits ; pnext->header.prevsize = bigsize ; DEBUG2 (("GET BLOCK: p: "ID" size: "ID", some of big: "ID" left: " ID"\n", (Int) (p-Numeric->Memory), nunits, Numeric->ibig, bigsize)) ; } } else { /* allocate from the top of tail */ pnext = Numeric->Memory + Numeric->itail ; DEBUG2 (("GET BLOCK: from tail ")) ; if ((nunits + 1) > (Numeric->itail - Numeric->ihead)) { DEBUG2 (("\n")) ; return (0) ; } Numeric->itail -= (nunits + 1) ; p = Numeric->Memory + Numeric->itail ; p->header.size = nunits ; p->header.prevsize = 0 ; pnext->header.prevsize = nunits ; DEBUG2 (("p: "ID" size: "ID", new tail "ID"\n", (Int) (p-Numeric->Memory), nunits, Numeric->itail)) ; } Numeric->tail_usage += p->header.size + 1 ; usage = Numeric->ihead + Numeric->tail_usage ; Numeric->max_usage = MAX (Numeric->max_usage, usage) ; #ifndef NDEBUG UMF_debug -= 10 ; UMF_dump_memory (Numeric) ; UMF_debug += 10 ; #endif /* p points to the header. Add one to point to the usable block itself. */ /* return the offset into Numeric->Memory */ return ((p - Numeric->Memory) + 1) ; } SuiteSparse/UMFPACK/Source/umf_mem_alloc_tail_block.h0000644001170100242450000000075110617161761021441 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ GLOBAL Int UMF_mem_alloc_tail_block ( NumericType *Numeric, Int nunits ) ; SuiteSparse/UMFPACK/Source/umf_dump.c0000644001170100242450000007743110617161534016275 0ustar davisfac/* ========================================================================== */ /* === UMF_dump ============================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* These routines, and external variables, are used only when debugging. */ /* If debugging is disabled (for normal operation) then this entire file */ /* becomes empty */ #include "umf_internal.h" #ifndef NDEBUG /* These global debugging variables and arrays do not exist if debugging */ /* is disabled at compile time (which is the default). */ GLOBAL Int UMF_debug = -999 ; GLOBAL Int UMF_allocfail = FALSE ; GLOBAL double UMF_gprob = -1.0 ; /* static debugging arrays used only in UMF_dump_rowcol */ PRIVATE Int UMF_DBflag = 0 ; PRIVATE Int UMF_DBpacked [UMF_DBMAX+1] ; PRIVATE Int UMF_DBscatter [UMF_DBMAX+1] ; /* ========================================================================== */ /* === UMF_DBinit =========================================================== */ /* ========================================================================== */ /* clear the debugging arrays */ PRIVATE void UMF_DBinit ( void ) { Int i ; /* Int_MAX is defined in umfpack.h */ if (UMF_DBflag < 1 || UMF_DBflag == Int_MAX) { /* clear the debugging arrays */ UMF_DBflag = 0 ; for (i = 0 ; i <= UMF_DBMAX ; i++) { UMF_DBscatter [i] = 0 ; UMF_DBpacked [i] = 0 ; } } UMF_DBflag++ ; /* UMF_DBflag > UMF_DBscatter [0...UMF_DBmax] is now true */ } /* ========================================================================== */ /* === UMF_dump_dense ======================================================= */ /* ========================================================================== */ GLOBAL void UMF_dump_dense ( Entry *C, Int dim, Int m, Int n ) { /* dump C [1..m,1..n], with column dimenstion dim */ Int i, j; if (UMF_debug < 7) return ; if (C == (Entry *) NULL) { DEBUG7 (("No dense matrix allocated\n")) ; return ; } DEBUG8 ((" dimension= "ID" rows= "ID" cols= "ID"\n", dim, m, n)) ; for (i = 0 ; i < m ; i++) { DEBUG9 ((ID": ", i)) ; for (j = 0 ; j < n ; j++) { EDEBUG9 (C [i+j*dim]) ; if (j % 6 == 5) DEBUG9 (("\n ")) ; } DEBUG9 (("\n")) ; } for (i = 0 ; i < m ; i++) { for (j = 0 ; j < n ; j++) { if (IS_ZERO (C [i+j*dim])) { DEBUG8 ((".")) ; } else { DEBUG8 (("X")) ; } } DEBUG8 (("\n")) ; } } /* ========================================================================== */ /* === UMF_dump_element ===================================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_element ( NumericType *Numeric, WorkType *Work, Int e, Int clean ) { Int i, j, k, *Rows, *Cols, nrows, ncols, *E, row, col, *Row_degree, *Col_degree ; Entry *C ; Element *ep ; Unit *p ; if (UMF_debug < 7) return ; if (e == 0) { UMF_dump_current_front (Numeric, Work, FALSE) ; return ; } DEBUG7 (("\n====================ELEMENT: "ID" ", e)) ; if (!Numeric || !Work || !Numeric->Memory) { DEBUG7 ((" No Numeric, Work\n")) ; return ; } DEBUG7 ((" nel: "ID" of "ID, e, Work->nel)) ; E = Work->E ; if (!E) { DEBUG7 ((" No elements\n")) ; return ; } if (e < 0 || e > Work->nel) { DEBUG7 (("e out of range!\n")) ; return ; } if (!E [e]) { DEBUG7 ((" deallocated\n")) ; return ; } DEBUG7 (("\n")) ; Col_degree = Numeric->Cperm ; Row_degree = Numeric->Rperm ; p = Numeric->Memory + E [e] ; DEBUG7 (("ep "ID"\n", (Int) (p-Numeric->Memory))) ; GET_ELEMENT (ep, p, Cols, Rows, ncols, nrows, C) ; DEBUG7 (("nrows "ID" nrowsleft "ID"\n", nrows, ep->nrowsleft)) ; DEBUG7 (("ncols "ID" ncolsleft "ID"\n", ncols, ep->ncolsleft)) ; DEBUG7 (("cdeg-cdeg0 "ID" rdeg-rdeg0 "ID" next "ID"\n", ep->cdeg - Work->cdeg0, ep->rdeg - Work->rdeg0, ep->next)) ; DEBUG8 (("rows: ")) ; k = 0 ; for (i = 0 ; i < ep->nrows ; i++) { row = Rows [i] ; if (row >= 0) { DEBUG8 ((" "ID, row)) ; ASSERT (row < Work->n_row) ; if ((k++ % 10) == 9) DEBUG8 (("\n")) ; ASSERT (IMPLIES (clean, NON_PIVOTAL_ROW (row))) ; } } DEBUG8 (("\ncols: ")) ; k = 0 ; for (j = 0 ; j < ep->ncols ; j++) { col = Cols [j] ; if (col >= 0) { DEBUG8 ((" "ID, col)) ; ASSERT (col < Work->n_col) ; if ((k++ % 10) == 9) DEBUG8 (("\n")) ; ASSERT (IMPLIES (clean, NON_PIVOTAL_COL (col))) ; } } DEBUG8 (("\nvalues:\n")) ; if (UMF_debug >= 9) { for (i = 0 ; i < ep->nrows ; i++) { row = Rows [i] ; if (row >= 0) { DEBUG9 ((ID": ", row)) ; k = 0 ; for (j = 0 ; j < ep->ncols ; j++) { col = Cols [j] ; if (col >= 0) { EDEBUG9 (C [i+j*ep->nrows]) ; if (k++ % 6 == 5) DEBUG9 (("\n ")) ; } } DEBUG9 (("\n")) ; } } } DEBUG7 (("====================\n")) ; } /* ========================================================================== */ /* === UMF_dump_rowcol ====================================================== */ /* ========================================================================== */ /* dump a row or a column, from one or more memory spaces */ /* return exact degree */ GLOBAL void UMF_dump_rowcol ( Int dumpwhich, /* 0 for row, 1 for column */ NumericType *Numeric, WorkType *Work, Int dumpindex, /* row or column index to dump */ Int check_degree /* true if degree is to be checked */ ) { Entry value ; Entry *C ; Int f, nrows, j, jj, len, e, deg, index, n_row, n_col, *Cols, *Rows, nn, dumpdeg, ncols, preve, *E, tpi, *Pattern, approx_deg, not_in_use ; Tuple *tp, *tend ; Element *ep ; Int *Row_tuples, *Row_degree, *Row_tlen ; Int *Col_tuples, *Col_degree, *Col_tlen ; Unit *p ; Int is_there ; /* clear the debugging arrays */ UMF_DBinit () ; if (dumpwhich == 0) { DEBUG7 (("\n====================ROW: "ID, dumpindex)) ; } else { DEBUG7 (("\n====================COL: "ID, dumpindex)) ; } if (dumpindex == EMPTY) { DEBUG7 ((" (EMPTY)\n")) ; return ; } deg = 0 ; approx_deg = 0 ; if (!Numeric || !Work) { DEBUG7 ((" No Numeric, Work\n")) ; return ; } n_row = Work->n_row ; n_col = Work->n_col ; nn = MAX (n_row, n_col) ; E = Work->E ; Col_degree = Numeric->Cperm ; Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; if (!E || !Row_tuples || !Row_degree || !Row_tlen || !Col_tuples || !Col_degree || !Col_tlen) { DEBUG7 ((" No E, Rows, Cols\n")) ; return ; } if (dumpwhich == 0) { /* dump a row */ ASSERT (dumpindex >= 0 && dumpindex < n_row) ; if (!NON_PIVOTAL_ROW (dumpindex)) { DEBUG7 ((" Pivotal\n")) ; return ; } len = Row_tlen [dumpindex] ; dumpdeg = Row_degree [dumpindex] ; tpi = Row_tuples [dumpindex] ; } else { /* dump a column */ ASSERT (dumpindex >= 0 && dumpindex < n_col) ; if (!NON_PIVOTAL_COL (dumpindex)) { DEBUG7 ((" Pivotal\n")) ; return ; } len = Col_tlen [dumpindex] ; dumpdeg = Col_degree [dumpindex] ; tpi = Col_tuples [dumpindex] ; } p = Numeric->Memory + tpi ; tp = (Tuple *) p ; if (!tpi) { DEBUG7 ((" Nonpivotal, No tuple list tuples "ID" tlen "ID"\n", tpi, len)) ; return ; } ASSERT (p >= Numeric->Memory + Numeric->itail) ; ASSERT (p < Numeric->Memory + Numeric->size) ; DEBUG7 ((" degree: "ID" len: "ID"\n", dumpdeg, len)) ; not_in_use = (p-1)->header.size - UNITS (Tuple, len) ; DEBUG7 ((" Tuple list: p+1: "ID" size: "ID" units, "ID" not in use\n", (Int) (p-Numeric->Memory), (p-1)->header.size, not_in_use)) ; ASSERT (not_in_use >= 0) ; tend = tp + len ; preve = 0 ; for ( ; tp < tend ; tp++) { /* row/col of element e, offset is f: */ /* DEBUG8 ((" (tp="ID")\n", tp)) ; */ e = tp->e ; f = tp->f ; DEBUG8 ((" (e="ID", f="ID")\n", e, f)) ; ASSERT (e > 0 && e <= Work->nel) ; /* dump the pattern and values */ if (E [e]) { p = Numeric->Memory + E [e] ; GET_ELEMENT (ep, p, Cols, Rows, ncols, nrows, C) ; if (dumpwhich == 0) { Pattern = Cols ; jj = ep->ncols ; is_there = Rows [f] >= 0 ; if (is_there) approx_deg += ep->ncolsleft ; } else { Pattern = Rows ; jj = ep->nrows ; is_there = Cols [f] >= 0 ; if (is_there) approx_deg += ep->nrowsleft ; } if (!is_there) { DEBUG8 (("\t\tnot present\n")) ; } else { for (j = 0 ; j < jj ; j++) { index = Pattern [j] ; value = C [ (dumpwhich == 0) ? (f+nrows*j) : (j+nrows*f) ] ; if (index >= 0) { DEBUG8 (("\t\t"ID":", index)) ; EDEBUG8 (value) ; DEBUG8 (("\n")) ; if (dumpwhich == 0) { /* col must be in the range 0..n_col-1 */ ASSERT (index < n_col) ; } else { /* row must be in the range 0..n_row-1 */ ASSERT (index < n_row) ; } if (nn <= UMF_DBMAX) { if (UMF_DBscatter [index] != UMF_DBflag) { UMF_DBpacked [deg++] = index ; UMF_DBscatter [index] = UMF_DBflag ; } } } } } /* the (e,f) tuples should be in order of their creation */ /* this means that garbage collection will not jumble them */ ASSERT (preve < e) ; preve = e ; } else { DEBUG8 (("\t\tdeallocated\n")) ; } } if (nn <= UMF_DBMAX) { if (deg > 0) { DEBUG7 ((" Assembled, actual deg: "ID" : ", deg)) ; for (j = 0 ; j < deg ; j++) { index = UMF_DBpacked [j] ; DEBUG8 ((ID" ", index)) ; if (j % 20 == 19) DEBUG8 (("\n ")) ; ASSERT (UMF_DBscatter [index] == UMF_DBflag) ; } DEBUG7 (("\n")) ; } } /* Col_degree is not maintained when fixQ is true */ if (check_degree) { DEBUG8 ((" approx_deg "ID" dumpdeg "ID"\n", approx_deg, dumpdeg)) ; ASSERT (approx_deg == dumpdeg) ; } DEBUG7 (("====================\n")) ; /* deg is now the exact degree */ /* if nn <= UMF_DBMAX, then UMF_DBscatter [i] == UMF_DBflag for every i */ /* in the row or col, and != UMF_DBflag if not */ return ; } /* ========================================================================== */ /* === UMF_dump_matrix ====================================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_matrix ( NumericType *Numeric, WorkType *Work, Int check_degree ) { Int e, row, col, intfrag, frag, n_row, n_col, *E, fullsize, actualsize ; Element *ep ; Unit *p ; DEBUG6 (("=================================================== MATRIX:\n")) ; if (!Numeric || !Work) { DEBUG6 (("No Numeric or Work allocated\n")) ; return ; } if (!Numeric->Memory) { DEBUG6 (("No Numeric->Memory\n")) ; return ; } n_row = Work->n_row ; n_col = Work->n_col ; DEBUG6 (("n_row "ID" n_col "ID" nz "ID"\n", n_row, n_col, Work->nz)) ; DEBUG6 (("============================ ELEMENTS: "ID" \n", Work->nel)) ; intfrag = 0 ; E = Work->E ; if (!E) { DEBUG6 (("No elements allocated\n")) ; } else { for (e = 0 ; e <= Work->nel ; e++) { UMF_dump_element (Numeric, Work, e, FALSE) ; if (e > 0 && E [e]) { p = Numeric->Memory + E [e] ; ep = (Element *) p ; ASSERT (ep->nrowsleft > 0 || ep->ncolsleft > 0) ; fullsize = GET_BLOCK_SIZE (p) ; actualsize = GET_ELEMENT_SIZE (ep->nrowsleft,ep->ncolsleft); frag = fullsize - actualsize ; intfrag += frag ; DEBUG7 (("dump el: "ID", full "ID" actual "ID" frag: "ID " intfrag: "ID"\n", e, fullsize, actualsize, frag, intfrag)) ; } } } DEBUG6 (("CURRENT INTERNAL FRAG in elements: "ID" \n", intfrag)) ; DEBUG6 (("======================================== ROWS: "ID"\n", n_row)) ; UMF_debug -= 2 ; for (row = 0 ; row < n_row ; row++) { UMF_dump_rowcol (0, Numeric, Work, row, check_degree) ; } UMF_debug += 2 ; DEBUG6 (("======================================== COLS: "ID"\n", n_col)) ; UMF_debug -= 2 ; for (col = 0 ; col < n_col ; col++) { UMF_dump_rowcol (1, Numeric, Work, col, FALSE) ; } UMF_debug += 2 ; DEBUG6 (("============================================= END OF MATRIX:\n")); } /* ========================================================================== */ /* === UMF_dump_current_front =============================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_current_front ( NumericType *Numeric, WorkType *Work, Int check ) { Entry *Flublock, *Flblock, *Fublock, *Fcblock ; Int fnrows_max, fncols_max, fnrows, fncols, fnpiv, *Frows, *Fcols, i, j, *Fcpos, *Frpos, fnr_curr, fnc_curr, *E ; if (!Work) return ; DEBUG7 (("\n\n========CURRENT FRONTAL MATRIX:\n")) ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fcblock = Work->Fcblock ; Frows = Work->Frows ; Fcols = Work->Fcols ; Frpos = Work->Frpos ; Fcpos = Work->Fcpos ; fnrows_max = Work->fnrows_max ; fncols_max = Work->fncols_max ; fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; fnrows = Work->fnrows ; fncols = Work->fncols ; fnpiv = Work->fnpiv ; E = Work->E ; DEBUG6 (("=== fnpiv= "ID"\n", fnpiv)) ; DEBUG6 (("fnrows_max fncols_max "ID" "ID"\n",fnrows_max, fncols_max)) ; DEBUG6 (("fnr_curr fnc_curr "ID" "ID"\n",fnr_curr, fnc_curr)) ; DEBUG6 (("fnrows fncols "ID" "ID"\n",fnrows, fncols)) ; ASSERT ((fnr_curr % 2 == 1) || fnr_curr == 0) ; DEBUG6 (("Pivot row pattern:\n")) ; for (j = 0 ; j < fncols ; j++) { DEBUG7 ((ID" "ID" "ID" %d\n", j, Fcols [j], Fcpos [Fcols [j]], j < fncols)) ; if (check) { ASSERT (Fcols [j] >= 0 && Fcols [j] < Work->n_col) ; ASSERT (Fcpos [Fcols [j]] == j * fnr_curr) ; } } DEBUG6 (("Pivot col pattern:\n")) ; for (i = 0 ; i < fnrows ; i++) { DEBUG7 ((ID" "ID" "ID" %d\n", i, Frows [i], Frpos [Frows [i]], i < fnrows)) ; if (check) { ASSERT (Frows [i] >= 0 && Frows [i] < Work->n_row) ; ASSERT (Frpos [Frows [i]] == i) ; } } if (UMF_debug < 7) return ; if (!E [0]) { DEBUG6 (("current front not allocated\n")) ; ASSERT (!Work->Flublock) ; return ; } ASSERT (Work->Flublock == (Entry *) (Numeric->Memory + E [0])) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Flblock, fnr_curr, fnrows, fnpiv) ; DEBUG7 (("U' block: ")) ; UMF_dump_dense (Fublock, fnc_curr, fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Flublock, Work->nb, fnpiv, fnpiv) ; if (fnpiv > 0) { DEBUG7 (("Pivot entry: ")) ; EDEBUG7 (Flublock [(fnpiv-1)+(fnpiv-1)*Work->nb]) ; DEBUG7 (("\n")) ; } } /* ========================================================================== */ /* === UMF_dump_lu ========================================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_lu ( NumericType *Numeric ) { Int i, n_row, n_col, *Cperm, *Rperm ; DEBUG6 (("=============================================== LU factors:\n")) ; if (!Numeric) { DEBUG6 (("No LU factors allocated\n")) ; return ; } n_row = Numeric->n_row ; n_col = Numeric->n_col ; DEBUG6 (("n_row: "ID" n_col: "ID"\n", n_row, n_col)) ; DEBUG6 (("nLentries: "ID" nUentries: "ID"\n", Numeric->nLentries, Numeric->nUentries)) ; if (Numeric->Cperm) { Cperm = Numeric->Cperm ; DEBUG7 (("Column permutations: (new: old)\n")) ; for (i = 0 ; i < n_col ; i++) { if (Cperm [i] != EMPTY) { DEBUG7 ((ID": "ID"\n", i, Cperm [i])) ; } } } else { DEBUG7 (("No Numeric->Cperm allocatated\n")) ; } if (Numeric->Rperm) { Rperm = Numeric->Rperm ; DEBUG7 (("row permutations: (new: old)\n")) ; for (i = 0 ; i < n_row ; i++) { if (Rperm [i] != EMPTY) { DEBUG7 ((ID": "ID"\n", i, Rperm [i])) ; } } } else { DEBUG7 (("No Numeric->Rperm allocatated\n")) ; } DEBUG6 (("========================================= END OF LU factors:\n")); } /* ========================================================================== */ /* === UMF_dump_memory ====================================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_memory ( NumericType *Numeric ) { Unit *p ; Int prevsize, s ; Int found ; if (!Numeric) { DEBUG6 (("No memory space S allocated\n")) ; return ; } DEBUG6 (("\n ============================================== MEMORY:\n")) ; if (!Numeric || !Numeric->Memory) { DEBUG6 (("No memory space Numeric allocated\n")) ; return ; } DEBUG6 (("S: "ID"\n", (Int) Numeric)) ; DEBUG6 (("S->ihead : "ID"\n", Numeric->ihead)) ; DEBUG6 (("S->itail : "ID"\n", Numeric->itail)) ; DEBUG6 (("S->size : "ID"\n", Numeric->size)) ; DEBUG6 (("S->ngarbage : "ID"\n", Numeric->ngarbage)) ; DEBUG6 (("S->nrealloc : "ID"\n", Numeric->nrealloc)) ; DEBUG6 ((" in use at head : "ID"\n", Numeric->ihead)) ; DEBUG6 ((" free space : "ID"\n", Numeric->itail - Numeric->ihead)) ; DEBUG6 ((" blocks in use at tail : "ID"\n", Numeric->size - Numeric->itail)) ; DEBUG6 ((" total in use : "ID"\n", Numeric->size - (Numeric->itail - Numeric->ihead))) ; prevsize = 0 ; found = FALSE ; ASSERT (0 <= Numeric->ihead) ; ASSERT (Numeric->ihead <= Numeric->itail) ; ASSERT (Numeric->itail <= Numeric->size) ; p = Numeric->Memory + Numeric->itail ; while (p < Numeric->Memory + Numeric->size) { DEBUG8 (("p: "ID" p+1: "ID" prevsize: "ID" size: "ID, (Int) (p-Numeric->Memory), (Int) (p+1-Numeric->Memory), p->header.prevsize, p->header.size)) ; if (p->header.size < 0) { DEBUG8 ((" free")) ; } if (p == Numeric->Memory + Numeric->itail) { ASSERT (p->header.prevsize == 0) ; } else { ASSERT (p->header.prevsize > 0) ; } ASSERT (p->header.size != 0) ; s = prevsize >= 0 ? prevsize : -prevsize ; ASSERT (p->header.prevsize == s) ; /* no adjacent free blocks */ ASSERT (p->header.size > 0 || prevsize > 0) ; if (Numeric->ibig != EMPTY) { if (p == Numeric->Memory + Numeric->ibig) { ASSERT (p->header.size < 0) ; DEBUG8 ((" <===== Numeric->ibig")) ; found = TRUE ; } } s = p->header.size ; prevsize = s ; s = s >= 0 ? s : -s ; p = p + 1 + s ; DEBUG8 (("\n")) ; } ASSERT (p == Numeric->Memory + Numeric->size) ; ASSERT (IMPLIES (Numeric->ibig != EMPTY, found)) ; DEBUG6 (("============================================= END OF MEMORY:\n")); } /* ========================================================================== */ /* === UMF_dump_packed_memory =============================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_packed_memory ( NumericType *Numeric, WorkType *Work ) { Unit *p, *p3 ; Int prevsize, col, row, *Rows, *Cols, ncols, nrows, k, esize, *Row_tuples, *Row_degree, *Col_tuples, *Col_degree ; Entry *C ; Element *ep ; Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ Row_tuples = Numeric->Uip ; Col_tuples = Numeric->Lip ; DEBUG6 (("============================================ PACKED MEMORY:\n")) ; if (!Numeric || !Numeric->Memory) { DEBUG6 (("No memory space S allocated\n")) ; return ; } DEBUG6 (("S: "ID"\n", (Int) Numeric)) ; DEBUG6 (("S->ihead : "ID"\n", Numeric->ihead)) ; DEBUG6 (("S->itail : "ID"\n", Numeric->itail)) ; DEBUG6 (("S->size : "ID"\n", Numeric->size)) ; DEBUG6 (("S->ngarbage : "ID"\n", Numeric->ngarbage)) ; DEBUG6 (("S->nrealloc : "ID"\n", Numeric->nrealloc)) ; DEBUG6 ((" in use at head : "ID"\n", Numeric->ihead)) ; DEBUG6 ((" free space : "ID"\n", Numeric->itail - Numeric->ihead)) ; DEBUG6 ((" blocks in use at tail : "ID"\n", Numeric->size - Numeric->itail)) ; DEBUG6 ((" total in use : "ID"\n", Numeric->size - (Numeric->itail - Numeric->ihead))) ; ASSERT (0 <= Numeric->ihead) ; ASSERT (Numeric->ihead <= Numeric->itail) ; ASSERT (Numeric->itail <= Numeric->size) ; for (row = 0 ; row < Work->n_row ; row++) { ASSERT (IMPLIES (NON_PIVOTAL_ROW (row), !Row_tuples [row])) ; } for (col = 0 ; col < Work->n_col ; col++) { ASSERT (IMPLIES (NON_PIVOTAL_COL (col), !Col_tuples [col])) ; } prevsize = 0 ; p = Numeric->Memory + Numeric->itail ; while (p < Numeric->Memory + Numeric->size) { DEBUG9 (("====================\n")) ; DEBUG7 (("p: "ID" p+1: "ID" prevsize: "ID" size: "ID"\n", (Int) (p-Numeric->Memory), (Int) (p+1-Numeric->Memory), p->header.prevsize, p->header.size)) ; ASSERT (p->header.size > 0) ; if (p == Numeric->Memory + Numeric->itail) { ASSERT (p->header.prevsize == 0) ; } else { ASSERT (p->header.prevsize > 0) ; } ASSERT (p->header.prevsize == prevsize) ; prevsize = p->header.size ; if (p != Numeric->Memory + Numeric->size - 2) { p3 = p + 1 ; if (p3 == Numeric->Memory + Work->E [0]) { /* this is the current frontal matrix */ UMF_dump_current_front (Numeric, Work, FALSE) ; } else { /* this is a packed element */ GET_ELEMENT (ep, p3, Cols, Rows, ncols, nrows, C) ; DEBUG9 (("ep "ID"\n nrows "ID" ncols "ID"\n", (Int) ((p+1)-Numeric->Memory), ep->nrows, ep->ncols)) ; DEBUG9 (("rows:")) ; for (k = 0 ; k < ep->nrows; k++) { row = Rows [k] ; DEBUG9 ((" "ID, row)) ; ASSERT (row >= 0 && row <= Work->n_row) ; if ((k % 10) == 9) DEBUG9 (("\n")) ; } DEBUG9 (("\ncols:")) ; for (k = 0 ; k < ep->ncols; k++) { col = Cols [k] ; DEBUG9 ((" "ID, col)) ; ASSERT (col >= 0 && col <= Work->n_col) ; if ((k % 10) == 9) DEBUG9 (("\n")) ; } DEBUG9 (("\nvalues: ")) ; if (UMF_debug >= 9) { UMF_dump_dense (C, ep->nrows, ep->nrows, ep->ncols) ; } esize = GET_ELEMENT_SIZE (ep->nrows, ep->ncols) ; DEBUG9 (("esize: "ID"\n", esize)) ; ASSERT (esize <= p->header.size) ; } } else { /* this is the final marker block */ ASSERT (p->header.size == 1) ; } p = p + 1 + p->header.size ; } ASSERT (Numeric->ibig == EMPTY) ; ASSERT (p == Numeric->Memory + Numeric->size) ; DEBUG6 (("======================================END OF PACKED MEMORY:\n")) ; } /* ========================================================================== */ /* === UMF_dump_col_matrix ================================================== */ /* ========================================================================== */ /* This code is the same for real or complex matrices. */ GLOBAL void UMF_dump_col_matrix ( const double Ax [ ], /* Ax [0..nz-1]: real values, in column order */ #ifdef COMPLEX const double Az [ ], /* Az [0..nz-1]: imag values, in column order */ #endif const Int Ai [ ], /* Ai [0..nz-1]: row indices, in column order */ const Int Ap [ ], /* Ap [0..n_col]: column pointers */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Int nz /* number of entries */ ) { Int col, p, p1, p2, row ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif if (!Ai || !Ap) return ; DEBUG6 (("============================================ COLUMN FORM:\n")) ; ASSERT (n_col >= 0) ; nz = Ap [n_col] ; DEBUG2 (("UMF_dump_col: nz "ID"\n", nz)) ; DEBUG2 (("n_row "ID" \n", n_row)) ; DEBUG2 (("n_col "ID" \n", n_col)) ; DEBUG6 ((" n_row = "ID", n_col ="ID" nz = "ID" Ap [0] "ID", Ap [n] "ID"\n", n_row, n_col, nz, Ap [0], Ap [n_col])) ; ASSERT (Ap [0] == 0) ; ASSERT (Ap [n_col] == nz) ; for (col = 0 ; col < n_col ; col++) { p1 = Ap [col] ; p2 = Ap [col+1] ; DEBUG6 (("col: "ID", length "ID"\n", col, p2 - p1)) ; ASSERT (p2 >= p1) ; for (p = p1 ; p < p2 ; p++) { row = Ai [p] ; ASSERT (row >= 0 && row < n_row) ; DEBUG6 (("\t"ID" ", row)) ; if (Ax != (double *) NULL) { #ifdef COMPLEX if (split) { DEBUG6 ((" (%e+%ei) ", Ax [p], Az [p])) ; } else { DEBUG6 ((" (%e+%ei) ", Ax [2*p], Ax [2*p+1])) ; } #else DEBUG6 ((" %e", Ax [p])) ; #endif } DEBUG6 (("\n")) ; } } DEBUG6 (("========================================== COLUMN FORM done\n")) ; } /* ========================================================================== */ /* === UMF_dump_chain ======================================================= */ /* ========================================================================== */ GLOBAL void UMF_dump_chain ( Int frontid, Int Front_parent [ ], Int Front_npivcol [ ], Int Front_nrows [ ], Int Front_ncols [ ], Int nfr ) { Int i, len = 0 ; /* print a list of contiguous parents */ i = frontid ; ASSERT (Front_parent [i] == EMPTY || (Front_parent [i] > i && Front_parent [i] < nfr)) ; len++ ; DEBUG3 (("Chain:\n "ID" ["ID","ID"]("ID"-by-"ID")\n", i, Front_npivcol [i], MIN (Front_npivcol [i], Front_nrows [i]), Front_nrows [i], Front_ncols [i])) ; for (i = frontid ; i < nfr ; i++) { ASSERT (Front_parent [i] == EMPTY || (Front_parent [i] > i && Front_parent [i] < nfr)) ; if (Front_parent [i] == i+1) { len++ ; DEBUG3 (("\t"ID" ["ID","ID"]("ID"-by-"ID")\n", i+1, Front_npivcol [i+1], MIN (Front_npivcol [i+1], Front_nrows [i+1]), Front_nrows [i+1], Front_ncols [i+1])) ; } else { DEBUG2 (("Length of chain: "ID"\n", len)) ; return ; } } } /* ========================================================================== */ /* === UMF_dump_start ======================================================= */ /* ========================================================================== */ GLOBAL void UMF_dump_start ( void ) { FILE *ff ; AMD_debug_init ("from umfpack") ; /* get the debug print level from the "debug.umf" file, if it exists */ UMF_debug = -999 ; ff = fopen ("debug.umf", "r") ; if (ff) { (void) fscanf (ff, ID, &UMF_debug) ; (void) fclose (ff) ; } DEBUG0 (("umfpack: debug version (SLOW!) ")) ; DEBUG0 ((" MATLAB: ")) ; #ifdef MATLAB_MEX_FILE DEBUG0 (("mexFunction.\n")) ; #else #ifdef MATHWORKS DEBUG0 (("yes.\n")) ; #else DEBUG0 (("no.\n")) ; #endif #endif UMF_gprob = -1.0 ; ff = fopen ("gprob.umf", "r") ; if (ff) { (void) fscanf (ff, "%lg", &UMF_gprob) ; (void) fclose (ff) ; srand (1) ; /* restart the random number generator */ } if (UMF_gprob > 1.0) UMF_gprob = 1.0 ; DEBUG1 (("factor: UMF_gprob: %e UMF_debug "ID"\n", UMF_gprob, UMF_debug)) ; DEBUG2 (("sizeof: (bytes / int / Units) \n")) ; DEBUG2 (("sizeof (Int) %u %u %u\n", sizeof (Int), sizeof (Int) / sizeof (int), UNITS (Int, 1) )) ; DEBUG2 (("sizeof (int) %u %u %u\n", sizeof (int), sizeof (int) / sizeof (int), UNITS (int, 1) )) ; DEBUG2 (("sizeof (size_t) %u %u %u\n", sizeof (size_t), sizeof (size_t) / sizeof (size_t), UNITS (size_t, 1) )) ; DEBUG2 (("sizeof (UF_long) %u %u %u\n", sizeof (UF_long), sizeof (UF_long) / sizeof (UF_long), UNITS (UF_long, 1))); DEBUG2 (("sizeof (double) %u %u %u\n", sizeof (double), sizeof (double) / sizeof (int), UNITS (double, 1) )) ; DEBUG2 (("sizeof (Unit) %u %u %u\n", sizeof (Unit), sizeof (Unit) / sizeof (int), UNITS (Unit, 1) )) ; DEBUG2 (("sizeof (Entry) %u %u %u\n", sizeof (Entry), sizeof (Entry) / sizeof (int), UNITS (Entry, 1) )) ; DEBUG2 (("sizeof (Tuple) %u %u %u\n", sizeof (Tuple), sizeof (Tuple) / sizeof (int), UNITS (Tuple, 1) )) ; DEBUG2 (("sizeof (Tuple *) %u %u %u\n", sizeof (Tuple *), sizeof (Tuple *) / sizeof (int), UNITS (Tuple *, 1) )) ; DEBUG2 (("sizeof (Element) %u %u %u\n", sizeof (Element), sizeof (Element) / sizeof (int), UNITS (Element, 1) )) ; DEBUG2 (("sizeof (Element *) %u %u %u\n", sizeof (Element *), sizeof (Element *) / sizeof (int), UNITS (Element *, 1) )) ; DEBUG2 (("sizeof (WorkType) %u %u %u\n", sizeof (WorkType), sizeof (WorkType) / sizeof (int), UNITS (WorkType, 1) )) ; DEBUG2 (("sizeof (NumericType) %u %u %u\n", sizeof (NumericType), sizeof (NumericType) / sizeof (int), UNITS (NumericType, 1) )) ; DEBUG2 (("sizeof (SymbolicType) %u %u %u\n", sizeof (SymbolicType), sizeof (SymbolicType) / sizeof (int), UNITS (SymbolicType, 1) )) ; } /* ========================================================================== */ /* === UMF_dump_rowmerge ==================================================== */ /* ========================================================================== */ GLOBAL void UMF_dump_rowmerge ( NumericType *Numeric, SymbolicType *Symbolic, WorkType *Work ) { Int *Front_leftmostdesc, *Front_1strow, *Front_new1strow, row1, row2, fleftmost, nfr, n_row, *Row_degree, i, frontid, row ; nfr = Symbolic->nfr ; DEBUG3 (("\n================== Row merge sets: nfr "ID"\n", nfr)) ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Front_1strow = Symbolic->Front_1strow ; Front_new1strow = Work->Front_new1strow ; n_row = Symbolic->n_row ; Row_degree = Numeric->Rperm ; frontid = Work->frontid ; for (i = frontid ; i <= nfr ; i++) { DEBUG3 (("----------------------\n")) ; if (i == nfr) DEBUG3 (("Dummy: ")) ; DEBUG3 (("Front "ID" 1strow "ID" new1strow "ID" leftmostdesc "ID, i, Front_1strow [i], Front_new1strow [i], Front_leftmostdesc [i])) ; DEBUG3 ((" parent "ID" pivcol "ID"\n", Symbolic->Front_parent [i], Symbolic->Front_npivcol [i])) ; if (i == nfr) { fleftmost = -1 ; row1 = Front_new1strow [i] ; row2 = n_row-1 ; } else { fleftmost = Front_leftmostdesc [i] ; row1 = Front_new1strow [fleftmost] ; row2 = Front_1strow [i+1] - 1 ; } DEBUG3 (("Leftmost: "ID" Rows ["ID" to "ID"], search ["ID" to "ID"]\n", fleftmost, Front_1strow [i], row2, row1, row2)) ; for (row = row1 ; row <= row2 ; row++) { ASSERT (row >= 0 && row < n_row) ; DEBUG3 ((" Row "ID" live: %d\n", row, NON_PIVOTAL_ROW (row))) ; } } } /* ========================================================================== */ /* === UMF_dump_diagonal_map ================================================ */ /* ========================================================================== */ GLOBAL void UMF_dump_diagonal_map ( Int Diagonal_map [ ], Int Diagonal_imap [ ], Int n1, Int nn, Int nempty ) { Int row, col ; if (Diagonal_map != (Int *) NULL) { DEBUG2 (("\nDump the Diagonal_map: n1 "ID" nn "ID" nempty "ID"\n", n1, nn, nempty)) ; for (col = n1 ; col < nn - nempty ; col++) { row = Diagonal_map [col] ; DEBUG2 ((" Diagonal_map [col = "ID"] gives "ID": ", col, row)) ; row = UNFLIP (row) ; DEBUG2 ((" row "ID"\n", row)) ; ASSERT (Diagonal_imap [row] == col) ; } } } #endif /* NDEBUG */ SuiteSparse/UMFPACK/Source/umf_dump.h0000644001170100242450000000765310617161540016276 0ustar davisfac/* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* umf_dump.h: debugging definitions. */ #ifndef NDEBUG GLOBAL void UMF_dump_dense ( Entry *C, Int dim, Int m, Int n ) ; GLOBAL void UMF_dump_element ( NumericType *Numeric, WorkType *Work, Int e, Int clean ) ; GLOBAL void UMF_dump_rowcol ( Int dump_which, NumericType *Numeric, WorkType *Work, Int dump_index, Int check_degree ) ; GLOBAL void UMF_dump_matrix ( NumericType *Numeric, WorkType *Work, Int check_degree ) ; GLOBAL void UMF_dump_current_front ( NumericType *Numeric, WorkType *Work, Int check ) ; GLOBAL void UMF_dump_lu ( NumericType *Numeric ) ; GLOBAL void UMF_dump_memory ( NumericType *Numeric ) ; GLOBAL void UMF_dump_packed_memory ( NumericType *Numeric, WorkType *Work ) ; GLOBAL void UMF_dump_col_matrix ( const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif const Int Ai [ ], const Int Ap [ ], Int n_row, Int n_col, Int nz ) ; GLOBAL void UMF_dump_chain ( Int frontid, Int Front_parent [ ], Int Front_npivcol [ ], Int Front_nrows [ ], Int Front_ncols [ ], Int nfr ) ; GLOBAL void UMF_dump_rowmerge ( NumericType *Numeric, SymbolicType *Symbolic, WorkType *Work ) ; GLOBAL void UMF_dump_start ( void ) ; GLOBAL void UMF_dump_diagonal_map ( Int Diagonal_map [ ], Int Diagonal_imap [ ], Int n1, Int nn, Int nempty ) ; #define UMF_DBMAX 50000 #ifndef EXTERN #define EXTERN extern #endif GLOBAL EXTERN Int UMF_debug ; GLOBAL EXTERN Int UMF_allocfail ; GLOBAL EXTERN double UMF_gprob ; #define DEBUGk(k,params) { if (UMF_debug >= (k)) { PRINTF (params) ; } } #define DEBUGm4(params) DEBUGk (-4, params) #define DEBUGm3(params) DEBUGk (-3, params) #define DEBUGm2(params) DEBUGk (-2, params) #define DEBUGm1(params) DEBUGk (-1, params) #define DEBUG0(params) DEBUGk (0, params) #define DEBUG1(params) DEBUGk (1, params) #define DEBUG2(params) DEBUGk (2, params) #define DEBUG3(params) DEBUGk (3, params) #define DEBUG4(params) DEBUGk (4, params) #define DEBUG5(params) DEBUGk (5, params) #define DEBUG6(params) DEBUGk (6, params) #define DEBUG7(params) DEBUGk (7, params) #define DEBUG8(params) DEBUGk (8, params) #define DEBUG9(params) DEBUGk (9, params) #define EDEBUGk(k,a) { if (UMF_debug >= (k)) { PRINT_ENTRY (a) ; } } #define EDEBUG0(a) EDEBUGk (0, a) #define EDEBUG1(a) EDEBUGk (1, a) #define EDEBUG2(a) EDEBUGk (2, a) #define EDEBUG3(a) EDEBUGk (3, a) #define EDEBUG4(a) EDEBUGk (4, a) #define EDEBUG5(a) EDEBUGk (5, a) #define EDEBUG6(a) EDEBUGk (6, a) #define EDEBUG7(a) EDEBUGk (7, a) #define EDEBUG8(a) EDEBUGk (8, a) #define EDEBUG9(a) EDEBUGk (9, a) /* ASSERT defined in amd_dump.h */ #else /* ========================================================================== */ /* === No debugging ========================================================= */ /* ========================================================================== */ /* turn off all debugging macros */ #define DEBUGk(k,params) #define DEBUGm4(params) #define DEBUGm3(params) #define DEBUGm2(params) #define DEBUGm1(params) #define DEBUG0(params) #define DEBUG1(params) #define DEBUG2(params) #define DEBUG3(params) #define DEBUG4(params) #define DEBUG5(params) #define DEBUG6(params) #define DEBUG7(params) #define DEBUG8(params) #define DEBUG9(params) #define EDEBUGk(k,a) #define EDEBUG0(a) #define EDEBUG1(a) #define EDEBUG2(a) #define EDEBUG3(a) #define EDEBUG4(a) #define EDEBUG5(a) #define EDEBUG6(a) #define EDEBUG7(a) #define EDEBUG8(a) #define EDEBUG9(a) #endif /* NDEBUG */ SuiteSparse/UMFPACK/Source/umfpack_solve.c0000644001170100242450000001515410617162166017313 0ustar davisfac/* ========================================================================== */ /* === UMFPACK_solve ======================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Solves a linear system using the numerical factorization computed by UMFPACK_numeric. See umfpack_solve.h for more details. For umfpack_*_solve: Dynamic memory usage: UMFPACK_solve calls UMF_malloc twice, for workspace of size c*n*sizeof(double) + n*sizeof(Int), where c is defined below. On return, all of this workspace is free'd via UMF_free. For umfpack_*_wsolve: No dynamic memory usage. Input arrays are used for workspace instead. Pattern is a workspace of size n Integers. The double array W must be at least of size c*n, where c is defined below. If iterative refinement is requested, and Ax=b, A'x=b or A.'x=b is being solved, and the matrix A is not singular, then c is 5 for the real version and 10 for the complex version. Otherwise, c is 1 for the real version and 4 for the complex version. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_solve.h" #ifndef WSOLVE #include "umf_malloc.h" #include "umf_free.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif #endif GLOBAL Int #ifdef WSOLVE UMFPACK_wsolve #else UMFPACK_solve #endif ( Int sys, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif double Xx [ ], #ifdef COMPLEX double Xz [ ], #endif const double Bx [ ], #ifdef COMPLEX const double Bz [ ], #endif void *NumericHandle, const double Control [UMFPACK_CONTROL], double User_Info [UMFPACK_INFO] #ifdef WSOLVE , Int Pattern [ ], double W [ ] #endif ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double Info2 [UMFPACK_INFO], stats [2] ; double *Info ; NumericType *Numeric ; Int n, i, irstep, status ; #ifndef WSOLVE Int *Pattern, wsize ; double *W ; #endif /* ---------------------------------------------------------------------- */ /* get the amount of time used by the process so far */ /* ---------------------------------------------------------------------- */ umfpack_tic (stats) ; #ifndef WSOLVE #ifndef NDEBUG init_count = UMF_malloc_count ; #endif #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ irstep = GET_CONTROL (UMFPACK_IRSTEP, UMFPACK_DEFAULT_IRSTEP) ; if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; /* clear the parts of Info that are set by UMFPACK_solve */ for (i = UMFPACK_IR_TAKEN ; i <= UMFPACK_SOLVE_TIME ; i++) { Info [i] = EMPTY ; } } else { /* no Info array passed - use local one instead */ Info = Info2 ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } } Info [UMFPACK_STATUS] = UMFPACK_OK ; Info [UMFPACK_SOLVE_FLOPS] = 0 ; Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_Numeric_object ; return (UMFPACK_ERROR_invalid_Numeric_object) ; } Info [UMFPACK_NROW] = Numeric->n_row ; Info [UMFPACK_NCOL] = Numeric->n_col ; if (Numeric->n_row != Numeric->n_col) { /* only square systems can be handled */ Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_system ; return (UMFPACK_ERROR_invalid_system) ; } n = Numeric->n_row ; if (Numeric->nnzpiv < n || SCALAR_IS_ZERO (Numeric->rcond) || SCALAR_IS_NAN (Numeric->rcond)) { /* turn off iterative refinement if A is singular */ /* or if U has NaN's on the diagonal. */ irstep = 0 ; } if (!Xx || !Bx) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } if (sys >= UMFPACK_Pt_L) { /* no iterative refinement except for nonsingular Ax=b, A'x=b, A.'x=b */ irstep = 0 ; } /* ---------------------------------------------------------------------- */ /* allocate or check the workspace */ /* ---------------------------------------------------------------------- */ #ifdef WSOLVE if (!W || !Pattern) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } #else #ifdef COMPLEX if (irstep > 0) { wsize = 10*n ; /* W, X, Z, S, Y, B2 */ } else { wsize = 4*n ; /* W, X */ } #else if (irstep > 0) { wsize = 5*n ; /* W, Z, S, Y, B2 */ } else { wsize = n ; /* W */ } #endif Pattern = (Int *) UMF_malloc (n, sizeof (Int)) ; W = (double *) UMF_malloc (wsize, sizeof (double)) ; if (!W || !Pattern) { DEBUGm4 (("out of memory: solve work\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; (void) UMF_free ((void *) W) ; (void) UMF_free ((void *) Pattern) ; return (UMFPACK_ERROR_out_of_memory) ; } #endif /* WSOLVE */ /* ---------------------------------------------------------------------- */ /* solve the system */ /* ---------------------------------------------------------------------- */ status = UMF_solve (sys, Ap, Ai, Ax, Xx, Bx, #ifdef COMPLEX Az, Xz, Bz, #endif Numeric, irstep, Info, Pattern, W) ; /* ---------------------------------------------------------------------- */ /* free the workspace (if allocated) */ /* ---------------------------------------------------------------------- */ #ifndef WSOLVE (void) UMF_free ((void *) W) ; (void) UMF_free ((void *) Pattern) ; ASSERT (UMF_malloc_count == init_count) ; #endif /* ---------------------------------------------------------------------- */ /* get the time used by UMFPACK_*solve */ /* ---------------------------------------------------------------------- */ Info [UMFPACK_STATUS] = status ; if (status >= 0) { umfpack_toc (stats) ; Info [UMFPACK_SOLVE_WALLTIME] = stats [0] ; Info [UMFPACK_SOLVE_TIME] = stats [1] ; } return (status) ; } SuiteSparse/UMFPACK/README.txt0000644001170100242450000004403710677545524014562 0ustar davisfacUMFPACK : a set of routines solving sparse linear systems via LU factorization. Requires three other packages: the BLAS (dense matrix operations), AMD (sparse matrix minimum degree ordering), and UFconfig. Includes a C-callable and MATLAB interface, and a basic FORTRAN 77 interface to a subset of the C-callable routines. Requires AMD Version 2.0 or later. The AMD, UFconfig, and UMFPACK directories must all reside in the same parent directory. Quick start (Unix, or Windows with Cygwin): To compile, test, and install both UMFPACK and AMD, the UMFPACK and AMD directories must be in the same parent directory. To configure, edit the UFconfig/UFconfig.mk file (otherwise, you may get warnings that the BLAS (dgemm, etc) are not found). You may use UMFPACK_CONFIG = -DNBLAS in the UFconfig/UFconfig.mk file, to avoid using the BLAS, but UMFPACK will be slow. Next, cd to this directory (UMFPACK) and type "make". To compile and run a FORTRAN demo program for Harwell/Boeing matrices, type "make hb". To compile a FORTRAN main program that calls the 32-bit C-callable UMFPACK library, type "make fortran". When done, type "make clean" to remove unused *.o files (keeps the compiled libraries and demo programs). See the User Guide (Doc/UserGuide.pdf), or ../UFconfig/UFconfig.mk for more details (including options for compiling in 64-bit mode). Quick start (for MATLAB users): To compile, test, and install the UMFPACK mexFunction, cd to the UMFPACK/MATLAB directory and type umfpack_make at the MATLAB prompt. NOTE: DO NOT ATTEMPT TO USE THIS CODE IN 64-BIT MATLAB (v7.3). It is not yet ported to that version of MATLAB. -------------------------------------------------------------------------------- UMFPACK, Copyright (c) 1995-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK is available under alternate licences; contact T. Davis for details. UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU GPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK (including versions 2.2.1 and earlier, in FORTRAN) is available at http://www.cise.ufl.edu/research/sparse. MA38 is available in the Harwell Subroutine Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0, originally released on Jan. 31, 2000, also available at http://www.cise.ufl.edu/research/sparse. COLAMD V2.0 is also incorporated as a built-in function in MATLAB version 6.1, by The MathWorks, Inc. (http://www.mathworks.com). COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3 is a built-in routine in MATLAB 7.1. -------------------------------------------------------------------------------- Refer to ../AMD/README for the License for AMD, which is a separate package for ordering sparse matrices that is required by UMFPACK. UMFPACK v4.5 cannot use AMD v1.1 or earlier. UMFPACK 5.x requires AMD v2.0 or later. -------------------------------------------------------------------------------- This is the UMFPACK README.txt file. It is a terse overview of UMFPACK. Refer to the User Guide (Doc/UserGuide.pdf) for how to install and use UMFPACK, or to the Quick Start Guide, QuickStart.pdf. Description: UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax=b, using the Unsymmetric MultiFrontal method. Written in ANSI/ISO C, with a MATLAB (Version 6.0 or later) interface. For best performance, UMFPACK requires an optimized BLAS library. It can also be compiled without any BLAS at all. UMFPACK requires AMD Version 2.0. Authors: Timothy A. Davis (davis@cise.ufl.edu), University of Florida. Includes a modified version of COLAMD V2.0, by Stefan I. Larimore and Timothy A. Davis, University of Florida. The COLAMD algorithm was developed in collaboration with John Gilbert, Xerox Palo Alto Research Center, and Esmond Ng, Lawrence Berkeley National Laboratory. Includes AMD, by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. UMFPACK Version 2.2.1 (MA38 in the Harwell Subroutine Library) is co-authored with Iain S. Duff, Rutherford Appleton Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974, DMS-9803599, and CCR-0203270. Portions of this work were done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from the SciDAC program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon for making this sabbatical possible. I would also like to thank the many researchers who provided sparse matrices from a wide range of domains and used earlier versions of UMFPACK/ MA38 in their applications, and thus assisted in the practical development of the algorithm (see http://www.cise.ufl.edu/research/sparse, future contributions of matrices are always welcome). The MathWorks, Inc., provided a pre-release of MATLAB V6 which allowed me to release the first umfpack mexFunction (v3.0) about 6 months earlier than I had originally planned. They also supported the extension of UMFPACK to complex, singular, and rectangular matrices (UMFPACK v4.0). Penny Anderson (The MathWorks, Inc.), Anshul Gupta (IBM), and Friedrich Grund (WAIS) assisted in porting UMFPACK to different platforms. Penny Anderson also incorporated UMFPACK v4.0 into MATLAB, for lu, backslash (\), and forward slash (/). David Bateman (Motorola) wrote the initial version of the packed complex input option, and umfpack_get_determinant. -------------------------------------------------------------------------------- Files and directories in the UMFPACK distribution: -------------------------------------------------------------------------------- ---------------------------------------------------------------------------- Subdirectories of the UMFPACK directory: ---------------------------------------------------------------------------- Doc documentation Source primary source code Include include files for use in your code that calls UMFPACK Demo demo programs. also serves as test of the UMFPACK installation. MATLAB UMFPACK mexFunction for MATLAB, and supporting m-files Lib where the compiled C-callable UMFPACK library is placed. ---------------------------------------------------------------------------- Files in the UMFPACK directory: ---------------------------------------------------------------------------- Makefile top-level Makefile for GNU make or original make. Windows users would require Cygwin to use "make" README.txt this file ---------------------------------------------------------------------------- Doc directory: documentation ---------------------------------------------------------------------------- ChangeLog change log License the UMFPACK License Makefile for creating the documentation QuickStart.tex Quick Start guide (source) QuickStart.pdf Quick Start guide (PDF) UserGuide.bib User Guide (references) UserGuide.sed1 sed script for processing UserGuide.stex UserGuide.sed2 sed script for processing UserGuide.stex UserGuide.stex User Guide (LaTeX) UserGuide.pdf User Guide (PDF) ---------------------------------------------------------------------------- Source directory: ---------------------------------------------------------------------------- cholmod_blas.h an exact copy of CHOLMOD/Include/cholmod_blas.h umfpack_col_to_triplet.c convert col form to triplet umfpack_defaults.c set Control defaults umfpack_free_numeric.c free Numeric object umfpack_free_symbolic.c free Symbolic object umfpack_get_determinant.c compute determinant from Numeric object umfpack_get_lunz.c get nz's in L and U umfpack_get_numeric.c get Numeric object umfpack_get_symbolic.c get Symbolic object umfpack_load_numeric.c load Numeric object from file umfpack_load_symbolic.c load Symbolic object from file umfpack_numeric.c numeric factorization umfpack_qsymbolic.c symbolic factorization, user Q umfpack_report_control.c print Control settings umfpack_report_info.c print Info statistics umfpack_report_matrix.c print col or row-form sparse matrix umfpack_report_numeric.c print Numeric object umfpack_report_perm.c print permutation umfpack_report_status.c print return status umfpack_report_symbolic.c print Symbolic object umfpack_report_triplet.c print triplet matrix umfpack_report_vector.c print dense vector umfpack_save_numeric.c save Numeric object to file umfpack_save_symbolic.c save Symbolic object to file umfpack_scale.c scale a vector umfpack_solve.c solve a linear system umfpack_symbolic.c symbolic factorization umfpack_tictoc.c timer umfpack_timer.c timer umfpack_transpose.c transpose a matrix umfpack_triplet_to_col.c convert triplet to col form umf_config.h configuration file (BLAS, memory, timer) umf_internal.h definitions internal to UMFPACK umf_version.h version definitions (int/UF_long, real/complex) umf_2by2.[ch] umf_analyze.[ch] symbolic factorization of A'*A umf_apply_order.[ch] apply column etree postorder umf_assemble.[ch] assemble elements into current front umf_blas3_update.[ch] rank-k update. Uses level-3 BLAS umf_build_tuples.[ch] construct tuples for elements umf_colamd.[ch] COLAMD pre-ordering, modified for UMFPACK umf_create_element.[ch] create a new element umf_dump.[ch] debugging routines, not normally active umf_extend_front.[ch] extend the current frontal matrix umf_free.[ch] free memory umf_fsize.[ch] determine largest front in each subtree umf_garbage_collection.[ch] compact Numeric->Memory umf_get_memory.[ch] make Numeric->Memory bigger umf_grow_front.[ch] make current frontal matrix bigger umf_init_front.[ch] initialize a new frontal matrix umf_is_permutation.[ch] checks the validity of a permutation vector umf_kernel.[ch] the main numeric factorization kernel umf_kernel_init.[ch] initializations for umf_kernel umf_kernel_wrapup.[ch] wrapup for umf_kernel umf_local_search.[ch] local row and column pivot search umf_lsolve.[ch] solve Lx=b umf_ltsolve.[ch] solve L'x=b and L.'x=b umf_malloc.[ch] malloc some memory umf_mem_alloc_element.[ch] allocate element in Numeric->Memory umf_mem_alloc_head_block.[ch] alloc. block at head of Numeric->Memory umf_mem_alloc_tail_block.[ch] alloc. block at tail of Numeric->Memory umf_mem_free_tail_block.[ch] free block at tail of Numeric->Memory umf_mem_init_memoryspace.[ch] initialize Numeric->Memory umf_realloc.[ch] realloc memory umf_report_perm.[ch] print a permutation vector umf_report_vector.[ch] print a double vector umf_row_search.[ch] look for a pivot row umf_scale.[ch] scale the pivot column umf_scale_column.[ch] move pivot row & column into place, log P and Q umf_set_stats.[ch] set statistics (final or estimates) umf_singletons.[ch] find all zero-cost pivots umf_solve.[ch] solve a linear system umf_start_front.[ch] start a new frontal matrix for one frontal chain umf_store_lu.[ch] store LU factors of current front umf_symbolic_usage.[ch] determine memory usage for Symbolic object umf_transpose.[ch] transpose a matrix in row or col form umf_triplet.[ch] convert triplet to column form umf_tuple_lengths.[ch] determine the tuple list lengths umf_usolve.[ch] solve Ux=b umf_utsolve.[ch] solve U'x=b and U.'x=b umf_valid_numeric.[ch] checks the validity of a Numeric object umf_valid_symbolic.[ch] check the validity of a Symbolic object ---------------------------------------------------------------------------- Include directory: ---------------------------------------------------------------------------- umfpack.h include file for user programs. Includes all of the following files. This serves are source- code level documenation. These files are also used to construct the User Guide. umfpack_col_to_triplet.h umfpack_defaults.h umfpack_free_numeric.h umfpack_free_symbolic.h umfpack_get_determinant.h umfpack_get_lunz.h umfpack_get_numeric.h umfpack_get_symbolic.h umfpack_load_numeric.h umfpack_load_symbolic.h umfpack_numeric.h umfpack_qsymbolic.h umfpack_report_control.h umfpack_report_info.h umfpack_report_matrix.h umfpack_report_numeric.h umfpack_report_perm.h umfpack_report_status.h umfpack_report_symbolic.h umfpack_report_triplet.h umfpack_report_vector.h umfpack_save_numeric.h umfpack_save_symbolic.h umfpack_scale.h umfpack_solve.h umfpack_symbolic.h umfpack_tictoc.h umfpack_timer.h umfpack_transpose.h umfpack_triplet_to_col.h umfpack_wsolve.h note that there is no umfpack_wsolve.c. The umfpack_*_wsolve routines are created from the umfpack_solve.c file. ---------------------------------------------------------------------------- Demo directory: ---------------------------------------------------------------------------- Makefile for GNU make or original make umfpack_simple.c a simple demo umpack_xx_demo.c template to create the demo codes below umfpack_di_demo.sed for creating umfpack_di_demo.c umfpack_dl_demo.sed for creating umfpack_dl_demo.c umfpack_zi_demo.sed for creating umfpack_zi_demo.c umfpack_zl_demo.sed for creating umfpack_zl_demo.c umfpack_di_demo.c a full demo (real/int version) umfpack_dl_demo.c a full demo (real/UF_long version) umfpack_zi_demo.c a full demo (complex/int version) umfpack_zl_demo.c a full demo (complex/UF_long version) umfpack_di_demo.out umfpack_di_demo output umfpack_dl_demo.out umfpack_dl_demo output umfpack_zi_demo.out umfpack_zi_demo output umfpack_zl_demo.out umfpack_zl_demo output umf4.c a demo (real/int) for Harwell/Boeing matrices umf4.out output of "make hb" HB directory of sample Harwell/Boeing matrices readhb.f reads HB matrices, keeps zero entries readhb_nozeros.f reads HB matrices, removes zero entries readhb_size.f reads HB matrix dimension, nnz tmp empty directory for umf4.c demo umf4_f77wrapper.c a simple FORTRAN interface for UMFPACK. compile with "make fortran" umf4hb.f a demo of the FORTRAN interface umf4hb.out output of "make fortran" umf4_f77zwrapper.c a simple FORTRAN interface for the complex UMFPACK routines. compile with "make fortran" umf4zhb.f a demo of the FORTRAN interface (complex) umf4zhb.out output of umf4zhb with HB/qc324.cua umf4hb64.f 64-bit version of umf4hb.f simple_compile a single command that compiles the double/int version of UMFPACK (useful prototype for Microsoft Visual Studio project) ---------------------------------------------------------------------------- MATLAB directory: ---------------------------------------------------------------------------- Contents.m for "help umfpack" listing of toolbox contents GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) lu_normest.m 1-norm estimate of A-L*U (by Hager & Davis). luflop.m for "help luflop" luflopmex.c luflop mexFunction, for computing LU flop count umfpack.m for "help umfpack" umfpack_btf.m solve Ax=b using umfpack and dmperm umfpack_demo.m a full umfpack demo umfpack_details.m the details of how to use umfpack umfpack_make.m compile the umfpack mexFunction within MATLAB umfpack_report.m report statistics umfpack_simple.m a simple umfpack demo umfpack_solve.m x=A\b or b/A for arbitrary b umfpack_test.m extensive test, requires UF sparse matrices umfpackmex.c the umfpack mexFunction west0067.mat sparse matrix for umfpack_demo.m umfpack_demo.m.out output of umfpack_demo.m umfpack_simple.m.out output of umfpack_simple lcc_lib/lapacksyms.def LAPACK definitions for lcc compiler (Windows) lcc_lib/libmwlapack.lib LAPACK definitions for lcc compiler (Windows) ---------------------------------------------------------------------------- Lib directory: libumfpack.a library placed here ---------------------------------------------------------------------------- GNUmakefile a nice Makefile, for GNU make Makefile an ugly Unix Makefile (for older make's) libumfpack.def UMPFACK definitions for Windows SuiteSparse/README.txt0000644001170100242450000001134110711427447013454 0ustar davisfacSuiteSparse: A Suite of Sparse matrix packages ------------------ SuiteSparse/README ------------------ ================================================================================ QUICK START FOR MATLAB USERS: unzip the SuiteSparse.zip file, then in the MATLAB Command Window, cd to the SuiteSparse directory and type SuiteSparse_install. All packages will be compiled, and several demos will be run. ================================================================================ Nov 1, 2007. SuiteSparse version 3.1 AMD approximate minimum degree ordering CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering BTF permutation to block triangular form KLU sparse LU factorization, primarily for circuit simulation. Requires AMD, COLAMD, and BTF. Optionally uses CHOLMOD, CAMD, CCOLAMD, and METIS. UMFPACK sparse LU factorization. Requires AMD and the BLAS. CHOLMOD sparse Cholesky factorization. Requires AMD, COLAMD, CCOLAMD, the BLAS, and LAPACK. Optionally uses METIS. UFconfig configuration file for all the above packages. The UFconfig/UFconfig.mk is included in the Makefile's of all packages. CSparse and RBio do not use UFconfig. CSparse a concise sparse matrix package, developed for my upcoming book, "Direct Methods for Sparse Linear Systems", to be published by SIAM. CXSparse CSparse Extended. Includes support for complex matrices and both int or long integers. RBio read/write sparse matrices in Rutherford/Boeing format UFcollection toolbox for managing the UF Sparse Matrix Collection LPDASA LP dual active set algorithm (to appear) MESHND 2D and 3D mesh generation and nested dissection ordering SSMULT sparse matrix multiply for MATLAB LINFACTOR simple m-file demonstrating how to use LU and CHOL in MATLAB to solve Ax=b MATLAB_Tools various simple m-files for use in MATLAB CHOLMOD optionally uses METIS 4.0.1 (http://www-users.cs.umn.edu/~karypis/metis). To use METIS, place a copy of the metis-4.0 directory in the same directory (CHOLMOD_ACM_TOMS) containing this README file. The use of METIS will improve the ordering quality in CHOLMOD. Refer to each package for license, copyright, and author information. All codes are authored or co-authored by Timothy A. Davis, CISE Dept., Univ. of Florida. email: my last name @ cise dot ufl dot edu. ================================================================================ If you use SuiteSparse_install in MATLAB, stop reading here. ================================================================================ ---------------------------- To use "make" in Unix/Linux: ---------------------------- (1) Use the right BLAS and LAPACK libraries See http://www.netlib.org/blas for the Fortran reference BLAS (slow, but they work). See http://www.tacc.utexas.edu/~kgoto/ or http://www.cs.utexas.edu/users/flame/goto/ for an optimized BLAS. See http://www.netlib.org/lapack for LAPACK. The UFconfig/UFconfig.mk file assumes the vanilla BLAS (-lblas). You should use an optimized BLAS; otherwise UMFPACK and CHOLMOD will be slow. Change -lblas to -l(your BLAS library here) in the UFconfig/UFconfig.mk file. (2) Configure METIS (or don't use METIS) cd to metis-4.0 and edit the Makefile.in file. I recommend making these changes to metis-4.0/Makefile.in: CC = gcc OPTFLAGS = -O3 COPTIONS = -fexceptions -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE Next, cd to metis-4.0 and type "make". If you do not wish to use METIS, then edit the UFconfig/UFconfig.mk file, and change the line CHOLMOD_CONFIG = to CHOLMOD_CONFIG = -DNPARTITION Also change the line METIS = ../../metis-4.0/libmetis.a to METIS = (3) Make other changes to UFconfig/UFconfig.mk as needed Edit the UFconfig/UFconfig.mk file as needed. Directions are in that file. If you have compiled SuiteSparse already (partially or completely), then whenever you edit the UFconfig/UFconfig.mk file, you should then type "make purge" (or "make realclean") in this directory. (4) Type "make" in this directory. All packages will be be compiled. METIS will be compiled if you have it. Several demos will be run. The libraries will appear in */Lib/*.a. Include files, as needed by user programs that use CHOLMOD, AMD, CAMD, COLAMD, CCOLAMD, BTF, KLU, UMFPACK, LDL, etc. are in */Include/*.h. The METIS library is in metis-4.0/libmetis.a. METIS Include files (not needed by the end user of SuiteSparse) are in located in metis-4.0/Lib/*.h. SuiteSparse/CXSparse_newfiles/0000755001170100242450000000000010711425626015337 5ustar davisfacSuiteSparse/CXSparse_newfiles/Doc/0000755001170100242450000000000010620606360016037 5ustar davisfacSuiteSparse/CXSparse_newfiles/Doc/License.txt0000644001170100242450000000162210375601211020160 0ustar davisfacCXSparse: a Concise Sparse matrix package - Extended. Copyright (c) 2006, Timothy A. Davis. http://www.cise.ufl.edu/research/sparse/CSparse -------------------------------------------------------------------------------- CXSparse is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. CXSparse is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CXSparse_newfiles/Lib/0000755001170100242450000000000010617166727016056 5ustar davisfacSuiteSparse/CXSparse_newfiles/Lib/Makefile0000644001170100242450000001062010617170455017506 0ustar davisfac# Modify the "-O" optimization option for best performance (-O3 on Linux): CC = cc CFLAGS = -O I = -I../../UFconfig -I../Include AR = ar cr RANLIB = ranlib all: libcxsparse.a CS_SOURCE = cs_add.c cs_amd.c cs_chol.c cs_cholsol.c cs_counts.c cs_cumsum.c \ cs_droptol.c cs_dropzeros.c cs_dupl.c cs_entry.c \ cs_etree.c cs_fkeep.c cs_gaxpy.c cs_happly.c cs_house.c cs_ipvec.c \ cs_lsolve.c cs_ltsolve.c cs_lu.c cs_lusol.c cs_util.c cs_multiply.c \ cs_permute.c cs_pinv.c cs_post.c cs_pvec.c cs_qr.c cs_qrsol.c \ cs_scatter.c cs_schol.c cs_sqr.c cs_symperm.c cs_tdfs.c cs_malloc.c \ cs_transpose.c cs_compress.c cs_usolve.c cs_utsolve.c cs_scc.c \ cs_maxtrans.c cs_dmperm.c cs_updown.c cs_print.c cs_norm.c cs_load.c \ cs_dfs.c cs_reach.c cs_spsolve.c cs_leaf.c cs_ereach.c cs_randperm.c CS_DI_OBJ = cs_add_di.o cs_amd_di.o cs_chol_di.o cs_cholsol_di.o cs_counts_di.o \ cs_cumsum_di.o cs_droptol_di.o cs_dropzeros_di.o cs_dupl_di.o \ cs_entry_di.o cs_etree_di.o cs_fkeep_di.o cs_gaxpy_di.o cs_happly_di.o \ cs_house_di.o cs_ipvec_di.o cs_lsolve_di.o cs_ltsolve_di.o cs_lu_di.o \ cs_lusol_di.o cs_util_di.o cs_multiply_di.o cs_permute_di.o cs_pinv_di.o \ cs_post_di.o cs_pvec_di.o cs_qr_di.o cs_qrsol_di.o cs_scatter_di.o \ cs_schol_di.o cs_sqr_di.o cs_symperm_di.o cs_tdfs_di.o cs_malloc_di.o \ cs_transpose_di.o cs_compress_di.o cs_usolve_di.o cs_utsolve_di.o \ cs_scc_di.o cs_maxtrans_di.o cs_dmperm_di.o cs_updown_di.o cs_print_di.o \ cs_norm_di.o cs_load_di.o cs_dfs_di.o cs_reach_di.o cs_spsolve_di.o \ cs_leaf_di.o cs_ereach_di.o cs_randperm_di.o CS_DL_OBJ = cs_add_dl.o cs_amd_dl.o cs_chol_dl.o cs_cholsol_dl.o cs_counts_dl.o \ cs_cumsum_dl.o cs_droptol_dl.o cs_dropzeros_dl.o cs_dupl_dl.o \ cs_entry_dl.o cs_etree_dl.o cs_fkeep_dl.o cs_gaxpy_dl.o cs_happly_dl.o \ cs_house_dl.o cs_ipvec_dl.o cs_lsolve_dl.o cs_ltsolve_dl.o cs_lu_dl.o \ cs_lusol_dl.o cs_util_dl.o cs_multiply_dl.o cs_permute_dl.o cs_pinv_dl.o \ cs_post_dl.o cs_pvec_dl.o cs_qr_dl.o cs_qrsol_dl.o cs_scatter_dl.o \ cs_schol_dl.o cs_sqr_dl.o cs_symperm_dl.o cs_tdfs_dl.o cs_malloc_dl.o \ cs_transpose_dl.o cs_compress_dl.o cs_usolve_dl.o cs_utsolve_dl.o \ cs_scc_dl.o cs_maxtrans_dl.o cs_dmperm_dl.o cs_updown_dl.o cs_print_dl.o \ cs_norm_dl.o cs_load_dl.o cs_dfs_dl.o cs_reach_dl.o cs_spsolve_dl.o \ cs_leaf_dl.o cs_ereach_dl.o cs_randperm_dl.o CS_CI_OBJ = cs_add_ci.o cs_amd_ci.o cs_chol_ci.o cs_cholsol_ci.o cs_counts_ci.o \ cs_cumsum_ci.o cs_droptol_ci.o cs_dropzeros_ci.o cs_dupl_ci.o \ cs_entry_ci.o cs_etree_ci.o cs_fkeep_ci.o cs_gaxpy_ci.o cs_happly_ci.o \ cs_house_ci.o cs_ipvec_ci.o cs_lsolve_ci.o cs_ltsolve_ci.o cs_lu_ci.o \ cs_lusol_ci.o cs_util_ci.o cs_multiply_ci.o cs_permute_ci.o cs_pinv_ci.o \ cs_post_ci.o cs_pvec_ci.o cs_qr_ci.o cs_qrsol_ci.o cs_scatter_ci.o \ cs_schol_ci.o cs_sqr_ci.o cs_symperm_ci.o cs_tdfs_ci.o cs_malloc_ci.o \ cs_transpose_ci.o cs_compress_ci.o cs_usolve_ci.o cs_utsolve_ci.o \ cs_scc_ci.o cs_maxtrans_ci.o cs_dmperm_ci.o cs_updown_ci.o cs_print_ci.o \ cs_norm_ci.o cs_load_ci.o cs_dfs_ci.o cs_reach_ci.o cs_spsolve_ci.o \ cs_leaf_ci.o cs_ereach_ci.o cs_randperm_ci.o CS_CL_OBJ = cs_add_cl.o cs_amd_cl.o cs_chol_cl.o cs_cholsol_cl.o cs_counts_cl.o \ cs_cumsum_cl.o cs_droptol_cl.o cs_dropzeros_cl.o cs_dupl_cl.o \ cs_entry_cl.o cs_etree_cl.o cs_fkeep_cl.o cs_gaxpy_cl.o cs_happly_cl.o \ cs_house_cl.o cs_ipvec_cl.o cs_lsolve_cl.o cs_ltsolve_cl.o cs_lu_cl.o \ cs_lusol_cl.o cs_util_cl.o cs_multiply_cl.o cs_permute_cl.o cs_pinv_cl.o \ cs_post_cl.o cs_pvec_cl.o cs_qr_cl.o cs_qrsol_cl.o cs_scatter_cl.o \ cs_schol_cl.o cs_sqr_cl.o cs_symperm_cl.o cs_tdfs_cl.o cs_malloc_cl.o \ cs_transpose_cl.o cs_compress_cl.o cs_usolve_cl.o cs_utsolve_cl.o \ cs_scc_cl.o cs_maxtrans_cl.o cs_dmperm_cl.o cs_updown_cl.o cs_print_cl.o \ cs_norm_cl.o cs_load_cl.o cs_dfs_cl.o cs_reach_cl.o cs_spsolve_cl.o \ cs_leaf_cl.o cs_ereach_cl.o cs_randperm_cl.o CS = cs_convert.o $(CS_DI_OBJ) $(CS_DL_OBJ) $(CS_CI_OBJ) $(CS_CL_OBJ) $(CS): ../Include/cs.h Makefile cs_convert.o: ../Source/cs_convert.c $(CC) $(CFLAGS) $(I) -c $< -o $@ %_di.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -c $< -o $@ %_dl.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_LONG -c $< -o $@ %_ci.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_COMPLEX -c $< -o $@ %_cl.o : ../Source/%.c $(CC) $(CFLAGS) $(I) -DCS_LONG -DCS_COMPLEX -c $< -o $@ libcxsparse.a: $(CS) $(AR) libcxsparse.a $(CS) $(RANLIB) libcxsparse.a clean: rm -f *.o purge: distclean distclean: clean rm -f *.a SuiteSparse/CXSparse_newfiles/Demo/0000755001170100242450000000000010620626405016220 5ustar davisfacSuiteSparse/CXSparse_newfiles/Demo/Makefile0000644001170100242450000001176510620626640017673 0ustar davisfacCC = cc CFLAGS = -O I = -I../Include -I../../UFconfig CS = ../Lib/libcxsparse.a all: $(CS) cs_demo1 cs_demo2 cs_demo3 \ cs_di_demo1 cs_di_demo2 cs_di_demo3 \ cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 \ cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 \ cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 \ tests cs_idemo tests: test_convert test test_di test_dl test_ci test_cl test: cs_demo1 cs_demo2 cs_demo3 - ./cs_demo1 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/t1 - ./cs_demo2 < ../Matrix/fs_183_1 - ./cs_demo2 < ../Matrix/west0067 - ./cs_demo2 < ../Matrix/lp_afiro - ./cs_demo2 < ../Matrix/ash219 - ./cs_demo2 < ../Matrix/mbeacxc - ./cs_demo2 < ../Matrix/bcsstk01 - ./cs_demo3 < ../Matrix/bcsstk01 - ./cs_demo2 < ../Matrix/bcsstk16 - ./cs_demo3 < ../Matrix/bcsstk16 test_di: cs_di_demo1 cs_di_demo2 cs_di_demo3 - ./cs_di_demo1 < ../Matrix/t1 - ./cs_di_demo2 < ../Matrix/t1 - ./cs_di_demo2 < ../Matrix/fs_183_1 - ./cs_di_demo2 < ../Matrix/west0067 - ./cs_di_demo2 < ../Matrix/lp_afiro - ./cs_di_demo2 < ../Matrix/ash219 - ./cs_di_demo2 < ../Matrix/mbeacxc - ./cs_di_demo2 < ../Matrix/bcsstk01 - ./cs_di_demo3 < ../Matrix/bcsstk01 - ./cs_di_demo2 < ../Matrix/bcsstk16 - ./cs_di_demo3 < ../Matrix/bcsstk16 test_dl: cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 - ./cs_dl_demo1 < ../Matrix/t1 - ./cs_dl_demo2 < ../Matrix/t1 - ./cs_dl_demo2 < ../Matrix/fs_183_1 - ./cs_dl_demo2 < ../Matrix/west0067 - ./cs_dl_demo2 < ../Matrix/lp_afiro - ./cs_dl_demo2 < ../Matrix/ash219 - ./cs_dl_demo2 < ../Matrix/mbeacxc - ./cs_dl_demo2 < ../Matrix/bcsstk01 - ./cs_dl_demo3 < ../Matrix/bcsstk01 - ./cs_dl_demo2 < ../Matrix/bcsstk16 - ./cs_dl_demo3 < ../Matrix/bcsstk16 test_ci: cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 - ./cs_ci_demo1 < ../Matrix/t2 - ./cs_ci_demo2 < ../Matrix/t2 - ./cs_ci_demo2 < ../Matrix/t3 - ./cs_ci_demo2 < ../Matrix/t4 - ./cs_ci_demo2 < ../Matrix/c_west0067 - ./cs_ci_demo2 < ../Matrix/c_mbeacxc - ./cs_ci_demo2 < ../Matrix/young1c - ./cs_ci_demo2 < ../Matrix/qc324 - ./cs_ci_demo2 < ../Matrix/neumann - ./cs_ci_demo2 < ../Matrix/c4 - ./cs_ci_demo3 < ../Matrix/c4 - ./cs_ci_demo2 < ../Matrix/mhd1280b - ./cs_ci_demo3 < ../Matrix/mhd1280b test_cl: cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 - ./cs_cl_demo1 < ../Matrix/t2 - ./cs_cl_demo2 < ../Matrix/t2 - ./cs_cl_demo2 < ../Matrix/t3 - ./cs_cl_demo2 < ../Matrix/t4 - ./cs_cl_demo2 < ../Matrix/c_west0067 - ./cs_cl_demo2 < ../Matrix/c_mbeacxc - ./cs_cl_demo2 < ../Matrix/young1c - ./cs_cl_demo2 < ../Matrix/qc324 - ./cs_cl_demo2 < ../Matrix/neumann - ./cs_cl_demo2 < ../Matrix/c4 - ./cs_cl_demo3 < ../Matrix/c4 - ./cs_cl_demo2 < ../Matrix/mhd1280b - ./cs_cl_demo3 < ../Matrix/mhd1280b test_convert: cs_idemo cs_ldemo - ./cs_idemo < ../Matrix/t2 - ./cs_ldemo < ../Matrix/t2 $(CS): ( cd ../Lib ; $(MAKE) ) cs_demo1: $(CS) cs_demo1.c Makefile $(CS) $(CC) $(I) -o cs_demo1 cs_demo1.c $(CS) -lm cs_demo2: $(CS) cs_demo2.c cs_demo.c cs_demo.h Makefile $(CS) $(CC) $(I) -o cs_demo2 cs_demo2.c cs_demo.c $(CS) -lm cs_demo3: $(CS) cs_demo3.c cs_demo.c cs_demo.h Makefile $(CS) $(CC) $(I) -o cs_demo3 cs_demo3.c cs_demo.c $(CS) -lm cs_di_demo1: $(CS) cs_di_demo1.c Makefile $(CS) $(CC) $(I) -o cs_di_demo1 cs_di_demo1.c $(CS) -lm cs_di_demo2: $(CS) cs_di_demo2.c cs_di_demo.c cs_di_demo.h Makefile $(CS) $(CC) $(I) -o cs_di_demo2 cs_di_demo2.c cs_di_demo.c $(CS) -lm cs_di_demo3: $(CS) cs_di_demo3.c cs_di_demo.c cs_di_demo.h Makefile $(CS) $(CC) $(I) -o cs_di_demo3 cs_di_demo3.c cs_di_demo.c $(CS) -lm cs_ci_demo1: $(CS) cs_ci_demo1.c Makefile $(CS) $(CC) $(I) -o cs_ci_demo1 cs_ci_demo1.c $(CS) -lm cs_ci_demo2: $(CS) cs_ci_demo2.c cs_ci_demo.c cs_ci_demo.h Makefile $(CS) $(CC) $(I) -o cs_ci_demo2 cs_ci_demo2.c cs_ci_demo.c $(CS) -lm cs_ci_demo3: $(CS) cs_ci_demo3.c cs_ci_demo.c cs_ci_demo.h Makefile $(CS) $(CC) $(I) -o cs_ci_demo3 cs_ci_demo3.c cs_ci_demo.c $(CS) -lm cs_dl_demo1: $(CS) cs_dl_demo1.c Makefile $(CS) $(CC) $(I) -o cs_dl_demo1 cs_dl_demo1.c $(CS) -lm cs_dl_demo2: $(CS) cs_dl_demo2.c cs_dl_demo.c cs_dl_demo.h Makefile $(CS) $(CC) $(I) -o cs_dl_demo2 cs_dl_demo2.c cs_dl_demo.c $(CS) -lm cs_dl_demo3: $(CS) cs_dl_demo3.c cs_dl_demo.c cs_dl_demo.h Makefile $(CS) $(CC) $(I) -o cs_dl_demo3 cs_dl_demo3.c cs_dl_demo.c $(CS) -lm cs_cl_demo1: $(CS) cs_cl_demo1.c Makefile $(CS) $(CC) $(I) -o cs_cl_demo1 cs_cl_demo1.c $(CS) -lm cs_cl_demo2: $(CS) cs_cl_demo2.c cs_cl_demo.c cs_cl_demo.h Makefile $(CS) $(CC) $(I) -o cs_cl_demo2 cs_cl_demo2.c cs_cl_demo.c $(CS) -lm cs_cl_demo3: $(CS) cs_cl_demo3.c cs_cl_demo.c cs_cl_demo.h Makefile $(CS) $(CC) $(I) -o cs_cl_demo3 cs_cl_demo3.c cs_cl_demo.c $(CS) -lm cs_idemo: $(CS) cs_idemo.c Makefile $(CS) $(CC) $(I) -o cs_idemo cs_idemo.c $(CS) -lm cs_ldemo: $(CS) cs_ldemo.c Makefile $(CS) $(CC) $(I) -DCS_LONG -o cs_ldemo cs_ldemo.c $(CS) -lm clean: rm -f *.o purge: distclean distclean: clean rm -f cs_demo1 cs_demo2 cs_demo3 *.a rm -f cs_di_demo1 cs_di_demo2 cs_di_demo3 rm -f cs_dl_demo1 cs_dl_demo2 cs_dl_demo3 rm -f cs_ci_demo1 cs_ci_demo2 cs_ci_demo3 rm -f cs_cl_demo1 cs_cl_demo2 cs_cl_demo3 rm -f cs_idemo cs_ldemo SuiteSparse/CXSparse_newfiles/Demo/cs_idemo.c0000644001170100242450000000300610623313303020136 0ustar davisfac#include "cs.h" /* test real/complex conversion routines (int version) */ int main (void) { cs_ci *T, *A, *A1, *A2, *B ; cs_di *C1, *C2, *Treal, *Timag ; printf ("\n--- cs_idemo, size of CS_INT: %d\n", (int) sizeof (CS_INT)) ; T = cs_ci_load (stdin) ; /* load a complex triplet matrix, T */ printf ("\nT:\n") ; cs_ci_print (T, 0) ; Treal = cs_i_real (T, 1) ; /* Treal = real part of T */ printf ("\nTreal:\n") ; cs_di_print (Treal, 0) ; Timag = cs_i_real (T, 0) ; /* Treal = imaginary part of T */ printf ("\nTimag:\n") ; cs_di_print (Timag, 0) ; A = cs_ci_compress (T) ; /* A = compressed-column form of T */ printf ("\nA:\n") ; cs_ci_print (A, 0) ; C1 = cs_i_real (A, 1) ; /* C1 = real (A) */ printf ("\nC1 = real(A):\n") ; cs_di_print (C1, 0) ; C2 = cs_i_real (A, 0) ; /* C2 = imag (A) */ printf ("\nC2 = imag(A):\n") ; cs_di_print (C2, 0) ; A1 = cs_i_complex (C1, 1) ; /* A1 = complex version of C1 */ printf ("\nA1:\n") ; cs_ci_print (A1, 0) ; A2 = cs_i_complex (C2, 0) ; /* A2 = complex version of C2 (imag.) */ printf ("\nA2:\n") ; cs_ci_print (A2, 0) ; B = cs_ci_add (A1, A2, 1., -1.) ; /* B = A1 - A2 */ printf ("\nB = conj(A):\n") ; cs_ci_print (B, 0) ; cs_ci_spfree (T) ; cs_ci_spfree (A) ; cs_ci_spfree (A1) ; cs_ci_spfree (A2) ; cs_ci_spfree (B) ; cs_di_spfree (C1) ; cs_di_spfree (C2) ; cs_di_spfree (Treal) ; cs_di_spfree (Timag) ; return (0) ; } SuiteSparse/CXSparse_newfiles/Demo/cs_ldemo.c0000644001170100242450000000300610623313341020143 0ustar davisfac#include "cs.h" /* test real/complex conversion routines (int version) */ int main (void) { cs_cl *T, *A, *A1, *A2, *B ; cs_dl *C1, *C2, *Treal, *Timag ; printf ("\n--- cs_ldemo, size of CS_INT: %d\n", (int) sizeof (CS_INT)) ; T = cs_cl_load (stdin) ; /* load a complex triplet matrix, T */ printf ("\nT:\n") ; cs_cl_print (T, 0) ; Treal = cs_l_real (T, 1) ; /* Treal = real part of T */ printf ("\nTreal:\n") ; cs_dl_print (Treal, 0) ; Timag = cs_l_real (T, 0) ; /* Treal = imaginary part of T */ printf ("\nTimag:\n") ; cs_dl_print (Timag, 0) ; A = cs_cl_compress (T) ; /* A = compressed-column form of T */ printf ("\nA:\n") ; cs_cl_print (A, 0) ; C1 = cs_l_real (A, 1) ; /* C1 = real (A) */ printf ("\nC1 = real(A):\n") ; cs_dl_print (C1, 0) ; C2 = cs_l_real (A, 0) ; /* C2 = imag (A) */ printf ("\nC2 = imag(A):\n") ; cs_dl_print (C2, 0) ; A1 = cs_l_complex (C1, 1) ; /* A1 = complex version of C1 */ printf ("\nA1:\n") ; cs_cl_print (A1, 0) ; A2 = cs_l_complex (C2, 0) ; /* A2 = complex version of C2 (imag.) */ printf ("\nA2:\n") ; cs_cl_print (A2, 0) ; B = cs_cl_add (A1, A2, 1., -1.) ; /* B = A1 - A2 */ printf ("\nB = conj(A):\n") ; cs_cl_print (B, 0) ; cs_cl_spfree (T) ; cs_cl_spfree (A) ; cs_cl_spfree (A1) ; cs_cl_spfree (A2) ; cs_cl_spfree (B) ; cs_dl_spfree (C1) ; cs_dl_spfree (C2) ; cs_dl_spfree (Treal) ; cs_dl_spfree (Timag) ; return (0) ; } SuiteSparse/CXSparse_newfiles/Demo/README.txt0000644001170100242450000000045410375603510017720 0ustar davisfacCXSparse/Demo: to compile a run the demos, just type "make" in this directory. The printed residuals should all be small, except for the mbeacxc matrix (which is numerically and structurally singular), and ash219 (which is a least-squares problem). See cs_demo.out for the proper output of "make". SuiteSparse/CXSparse_newfiles/Tcov/0000755001170100242450000000000010617167237016260 5ustar davisfacSuiteSparse/CXSparse_newfiles/Tcov/Makefile0000644001170100242450000002751610617167237017733 0ustar davisfac # To run with valgrind: V = # V = valgrind -q # Linux test coverage CC = gcc CFLAGS = -O -g -fprofile-arcs -ftest-coverage \ -Wall -W -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization -ansi \ -Wno-unused-parameter -Werror -I../Include -I../Demo -I../../UFconfig run: all run_convert run_di run_dl run_ci run_cl ./covall all: cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di \ cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl \ cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci \ cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl \ cs_idemo cs_ldemo CS_DI = cs_add_di.o cs_amd_di.o cs_chol_di.o cs_cholsol_di.o cs_counts_di.o \ cs_cumsum_di.o cs_droptol_di.o cs_dropzeros_di.o cs_dupl_di.o \ cs_entry_di.o cs_etree_di.o cs_fkeep_di.o cs_gaxpy_di.o cs_happly_di.o \ cs_house_di.o cs_ipvec_di.o cs_lsolve_di.o cs_ltsolve_di.o cs_lu_di.o \ cs_lusol_di.o cs_util_di.o cs_multiply_di.o cs_permute_di.o \ cs_pinv_di.o cs_post_di.o cs_pvec_di.o cs_qr_di.o cs_qrsol_di.o \ cs_scatter_di.o cs_schol_di.o cs_sqr_di.o cs_symperm_di.o cs_tdfs_di.o \ cs_transpose_di.o cs_compress_di.o cs_usolve_di.o cs_scc_di.o \ cs_maxtrans_di.o cs_dmperm_di.o cs_updown_di.o cs_print_di.o \ cs_norm_di.o cs_load_di.o cs_dfs_di.o cstcov_malloc_test_di.o \ cs_utsolve_di.o cs_reach_di.o cs_spsolve_di.o \ cs_leaf_di.o cs_ereach_di.o cs_randperm_di.o CS_DL = cs_add_dl.o cs_amd_dl.o cs_chol_dl.o cs_cholsol_dl.o cs_counts_dl.o \ cs_cumsum_dl.o cs_droptol_dl.o cs_dropzeros_dl.o cs_dupl_dl.o \ cs_entry_dl.o cs_etree_dl.o cs_fkeep_dl.o cs_gaxpy_dl.o cs_happly_dl.o \ cs_house_dl.o cs_ipvec_dl.o cs_lsolve_dl.o cs_ltsolve_dl.o cs_lu_dl.o \ cs_lusol_dl.o cs_util_dl.o cs_multiply_dl.o cs_permute_dl.o \ cs_pinv_dl.o cs_post_dl.o cs_pvec_dl.o cs_qr_dl.o cs_qrsol_dl.o \ cs_scatter_dl.o cs_schol_dl.o cs_sqr_dl.o cs_symperm_dl.o cs_tdfs_dl.o \ cs_transpose_dl.o cs_compress_dl.o cs_usolve_dl.o cs_scc_dl.o \ cs_maxtrans_dl.o cs_dmperm_dl.o cs_updown_dl.o cs_print_dl.o \ cs_norm_dl.o cs_load_dl.o cs_dfs_dl.o cstcov_malloc_test_dl.o \ cs_utsolve_dl.o cs_reach_dl.o cs_spsolve_dl.o \ cs_leaf_dl.o cs_ereach_dl.o cs_randperm_dl.o CS_CI = cs_add_ci.o cs_amd_ci.o cs_chol_ci.o cs_cholsol_ci.o cs_counts_ci.o \ cs_cumsum_ci.o cs_droptol_ci.o cs_dropzeros_ci.o cs_dupl_ci.o \ cs_entry_ci.o cs_etree_ci.o cs_fkeep_ci.o cs_gaxpy_ci.o cs_happly_ci.o \ cs_house_ci.o cs_ipvec_ci.o cs_lsolve_ci.o cs_ltsolve_ci.o cs_lu_ci.o \ cs_lusol_ci.o cs_util_ci.o cs_multiply_ci.o cs_permute_ci.o \ cs_pinv_ci.o cs_post_ci.o cs_pvec_ci.o cs_qr_ci.o cs_qrsol_ci.o \ cs_scatter_ci.o cs_schol_ci.o cs_sqr_ci.o cs_symperm_ci.o cs_tdfs_ci.o \ cs_transpose_ci.o cs_compress_ci.o cs_usolve_ci.o cs_scc_ci.o \ cs_maxtrans_ci.o cs_dmperm_ci.o cs_updown_ci.o cs_print_ci.o \ cs_norm_ci.o cs_load_ci.o cs_dfs_ci.o cstcov_malloc_test_ci.o \ cs_utsolve_ci.o cs_reach_ci.o cs_spsolve_ci.o \ cs_leaf_ci.o cs_ereach_ci.o cs_randperm_ci.o CS_CL = cs_add_cl.o cs_amd_cl.o cs_chol_cl.o cs_cholsol_cl.o cs_counts_cl.o \ cs_cumsum_cl.o cs_droptol_cl.o cs_dropzeros_cl.o cs_dupl_cl.o \ cs_entry_cl.o cs_etree_cl.o cs_fkeep_cl.o cs_gaxpy_cl.o cs_happly_cl.o \ cs_house_cl.o cs_ipvec_cl.o cs_lsolve_cl.o cs_ltsolve_cl.o cs_lu_cl.o \ cs_lusol_cl.o cs_util_cl.o cs_multiply_cl.o cs_permute_cl.o \ cs_pinv_cl.o cs_post_cl.o cs_pvec_cl.o cs_qr_cl.o cs_qrsol_cl.o \ cs_scatter_cl.o cs_schol_cl.o cs_sqr_cl.o cs_symperm_cl.o cs_tdfs_cl.o \ cs_transpose_cl.o cs_compress_cl.o cs_usolve_cl.o cs_scc_cl.o \ cs_maxtrans_cl.o cs_dmperm_cl.o cs_updown_cl.o cs_print_cl.o \ cs_norm_cl.o cs_load_cl.o cs_dfs_cl.o cstcov_malloc_test_cl.o \ cs_utsolve_cl.o cs_reach_cl.o cs_spsolve_cl.o \ cs_leaf_cl.o cs_ereach_cl.o cs_randperm_cl.o OBJ = $(CS_DI) $(CS_DL) $(CS_CI) $(CS_CL) cs_convert.o $(OBJ): ../Include/cs.h cstcov_malloc_test.h Makefile .PRECIOUS: %demo.c %demo1.c %demo2.c %demo3.c cs_%.c cs_%_ci.c cs_%_cl.c cs_%_di.c cs_%_dl.c cstcov_%.c %demo.c: - ln -s ../Demo/$*demo.c %demo1.c: - ln -s ../Demo/$*demo1.c %demo2.c: - ln -s ../Demo/$*demo2.c %demo3.c: - ln -s ../Demo/$*demo3.c cstcov_%.c: - ln -s cstcov_malloc_test.c cstcov_$*.c cs_convert.c: - ln -s ../Source/cs_convert.c cs_%_ci.c: - ln -s ../Source/cs_$*.c cs_$*_ci.c cs_%_di.c: - ln -s ../Source/cs_$*.c cs_$*_di.c cs_%_dl.c: - ln -s ../Source/cs_$*.c cs_$*_dl.c cs_%_cl.c: - ln -s ../Source/cs_$*.c cs_$*_cl.c %_di.o: %_di.c $(CC) $(CFLAGS) -c $< %_dl.o: %_dl.c $(CC) $(CFLAGS) -DCS_LONG -c $< %_ci.o: %_ci.c $(CC) $(CFLAGS) -DCS_COMPLEX -c $< %_cl.o: %_cl.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -c $< cs_idemo: $(OBJ) cs_idemo.c $(CC) $(CFLAGS) -o cs_idemo cs_idemo.c $(OBJ) -lm cs_ldemo: $(OBJ) cs_ldemo.c $(CC) $(CFLAGS) -o cs_ldemo cs_ldemo.c $(OBJ) -lm cs_demo1_di: $(CS_DI) cs_di_demo1.c $(CC) $(CFLAGS) -o cs_demo1_di cs_di_demo1.c $(CS_DI) -lm cs_demo2_di: $(CS_DI) cs_di_demo2.c cs_di_demo.c $(CC) $(CFLAGS) -o cs_demo2_di cs_di_demo2.c cs_di_demo.c $(CS_DI) -lm cs_demo3_di: $(CS_DI) cs_di_demo3.c cs_di_demo.c $(CC) $(CFLAGS) -o cs_demo3_di cs_di_demo3.c cs_di_demo.c $(CS_DI) -lm cstcov_test_di: $(CS_DI) cstcov_test.c cs_di_demo.c $(CC) $(CFLAGS) -o cstcov_test_di cstcov_test.c cs_di_demo.c $(CS_DI) -lm cs_demo1_dl: $(CS_DL) cs_dl_demo1.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo1_dl cs_dl_demo1.c $(CS_DL) -lm cs_demo2_dl: $(CS_DL) cs_dl_demo2.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo2_dl cs_dl_demo2.c cs_dl_demo.c $(CS_DL) -lm cs_demo3_dl: $(CS_DL) cs_dl_demo3.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cs_demo3_dl cs_dl_demo3.c cs_dl_demo.c $(CS_DL) -lm cstcov_test_dl: $(CS_DL) cstcov_test.c cs_dl_demo.c $(CC) $(CFLAGS) -DCS_LONG -o cstcov_test_dl cstcov_test.c cs_dl_demo.c $(CS_DL) -lm cs_demo1_ci: $(CS_CI) cs_ci_demo1.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo1_ci cs_ci_demo1.c $(CS_CI) -lm cs_demo2_ci: $(CS_CI) cs_ci_demo2.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo2_ci cs_ci_demo2.c cs_ci_demo.c $(CS_CI) -lm cs_demo3_ci: $(CS_CI) cs_ci_demo3.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cs_demo3_ci cs_ci_demo3.c cs_ci_demo.c $(CS_CI) -lm cstcov_test_ci: $(CS_CI) cstcov_test.c cs_ci_demo.c $(CC) $(CFLAGS) -DCS_COMPLEX -o cstcov_test_ci cstcov_test.c cs_ci_demo.c $(CS_CI) -lm cs_demo1_cl: $(CS_CL) cs_cl_demo1.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo1_cl cs_cl_demo1.c $(CS_CL) -lm cs_demo2_cl: $(CS_CL) cs_cl_demo2.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo2_cl cs_cl_demo2.c cs_cl_demo.c $(CS_CL) -lm cs_demo3_cl: $(CS_CL) cs_cl_demo3.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cs_demo3_cl cs_cl_demo3.c cs_cl_demo.c $(CS_CL) -lm cstcov_test_cl: $(CS_CL) cstcov_test.c cs_cl_demo.c $(CC) $(CFLAGS) -DCS_LONG -DCS_COMPLEX -o cstcov_test_cl cstcov_test.c cs_cl_demo.c $(CS_CL) -lm run_convert: cs_idemo cs_ldemo - $(V) ./cs_idemo < ../Matrix/t2 - $(V) ./cs_ldemo < ../Matrix/t2 run_di: cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di - $(V) ./cs_demo1_di < ../Matrix/t1 - $(V) ./cs_demo1_di < nil - $(V) ./cs_demo1_di < zero - $(V) ./cs_demo2_di < nil - $(V) ./cs_demo2_di < zero - $(V) ./cs_demo2_di < ../Matrix/t1 - $(V) ./cs_demo2_di < ../Matrix/bcsstk01 - $(V) ./cs_demo2_di < ../Matrix/fs_183_1 - $(V) ./cs_demo2_di < ../Matrix/west0067 - $(V) ./cs_demo2_di < ../Matrix/lp_afiro - $(V) ./cs_demo2_di < ../Matrix/ash219 - $(V) ./cs_demo2_di < ../Matrix/mbeacxc - $(V) ./cs_demo2_di < ../Matrix/bcsstk16 - $(V) ./cs_demo2_di < ../Matrix/ibm32a - $(V) ./cs_demo2_di < ../Matrix/ibm32b - $(V) ./cs_demo3_di < nil - $(V) ./cs_demo3_di < ../Matrix/bcsstk01 - $(V) ./cs_demo3_di < ../Matrix/bcsstk16 - $(V) ./cstcov_test_di nil > test_di_nil.out - $(V) ./cstcov_test_di zero > test_di_zero.out - $(V) ./cstcov_test_di ../Matrix/t1 > test_di_t1.out - $(V) ./cstcov_test_di ../Matrix/bcsstk01 > test_di_k1.out - $(V) ./cstcov_test_di ../Matrix/fs_183_1 > test_di_fs.out - $(V) ./cstcov_test_di ../Matrix/west0067 > test_di_we.out - $(V) ./cstcov_test_di ../Matrix/ash219 > test_di_ash.out - $(V) ./cstcov_test_di ../Matrix/lp_afiro > test_di_afiro.out run_dl: cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl - $(V) ./cs_demo1_dl < ../Matrix/t1 - $(V) ./cs_demo1_dl < nil - $(V) ./cs_demo1_dl < zero - $(V) ./cs_demo2_dl < nil - $(V) ./cs_demo2_dl < zero - $(V) ./cs_demo2_dl < ../Matrix/t1 - $(V) ./cs_demo2_dl < ../Matrix/bcsstk01 - $(V) ./cs_demo2_dl < ../Matrix/fs_183_1 - $(V) ./cs_demo2_dl < ../Matrix/west0067 - $(V) ./cs_demo2_dl < ../Matrix/lp_afiro - $(V) ./cs_demo2_dl < ../Matrix/ash219 - $(V) ./cs_demo2_dl < ../Matrix/mbeacxc - $(V) ./cs_demo2_dl < ../Matrix/bcsstk16 - $(V) ./cs_demo2_dl < ../Matrix/ibm32a - $(V) ./cs_demo2_dl < ../Matrix/ibm32b - $(V) ./cs_demo3_dl < nil - $(V) ./cs_demo3_dl < ../Matrix/bcsstk01 - $(V) ./cs_demo3_dl < ../Matrix/bcsstk16 - $(V) ./cstcov_test_dl nil > test_dl_nil.out - $(V) ./cstcov_test_dl zero > test_dl_zero.out - $(V) ./cstcov_test_dl ../Matrix/t1 > test_dl_t1.out - $(V) ./cstcov_test_dl ../Matrix/bcsstk01 > test_dl_k1.out - $(V) ./cstcov_test_dl ../Matrix/fs_183_1 > test_dl_fs.out - $(V) ./cstcov_test_dl ../Matrix/west0067 > test_dl_we.out - $(V) ./cstcov_test_dl ../Matrix/ash219 > test_dl_ash.out - $(V) ./cstcov_test_dl ../Matrix/lp_afiro > test_dl_afiro.out run_ci: cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci - $(V) ./cs_demo1_ci < ../Matrix/t2 - $(V) ./cs_demo2_ci < ../Matrix/t2 - $(V) ./cs_demo1_ci < czero - $(V) ./cs_demo2_ci < czero - $(V) ./cs_demo1_ci < ../Matrix/t3 - $(V) ./cs_demo2_ci < ../Matrix/t3 - $(V) ./cs_demo1_ci < ../Matrix/t4 - $(V) ./cs_demo2_ci < ../Matrix/t4 - $(V) ./cs_demo2_ci < ../Matrix/c_west0067 - $(V) ./cs_demo2_ci < ../Matrix/c_mbeacxc - $(V) ./cs_demo2_ci < ../Matrix/c_ibm32a - $(V) ./cs_demo2_ci < ../Matrix/c_ibm32b - $(V) ./cs_demo2_ci < ../Matrix/young1c - $(V) ./cs_demo2_ci < ../Matrix/qc324 - $(V) ./cs_demo2_ci < ../Matrix/neumann - $(V) ./cs_demo2_ci < ../Matrix/c4 - $(V) ./cs_demo3_ci < ../Matrix/c4 - $(V) ./cs_demo2_ci < ../Matrix/mhd1280b - $(V) ./cs_demo3_ci < ../Matrix/mhd1280b - $(V) ./cstcov_test_ci ../Matrix/t2 > test_ci_t2.out - $(V) ./cstcov_test_ci ../Matrix/young1c > test_ci_young1c.out - $(V) ./cstcov_test_ci ../Matrix/qc324 > test_ci_qc324.out - $(V) ./cstcov_test_ci ../Matrix/neumann > test_ci_neumann.out - $(V) ./cstcov_test_ci ../Matrix/mhd1280b > test_ci_mhd1280b.out run_cl: cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl - $(V) ./cs_demo1_cl < ../Matrix/t2 - $(V) ./cs_demo2_cl < ../Matrix/t2 - $(V) ./cs_demo1_cl < czero - $(V) ./cs_demo2_cl < czero - $(V) ./cs_demo1_cl < ../Matrix/t3 - $(V) ./cs_demo2_cl < ../Matrix/t3 - $(V) ./cs_demo1_cl < ../Matrix/t4 - $(V) ./cs_demo2_cl < ../Matrix/t4 - $(V) ./cs_demo2_cl < ../Matrix/c_west0067 - $(V) ./cs_demo2_cl < ../Matrix/c_mbeacxc - $(V) ./cs_demo2_cl < ../Matrix/c_ibm32a - $(V) ./cs_demo2_cl < ../Matrix/c_ibm32b - $(V) ./cs_demo2_cl < ../Matrix/young1c - $(V) ./cs_demo2_cl < ../Matrix/qc324 - $(V) ./cs_demo2_cl < ../Matrix/neumann - $(V) ./cs_demo2_cl < ../Matrix/c4 - $(V) ./cs_demo3_cl < ../Matrix/c4 - $(V) ./cs_demo2_cl < ../Matrix/mhd1280b - $(V) ./cs_demo3_cl < ../Matrix/mhd1280b - $(V) ./cstcov_test_cl ../Matrix/t2 > test_cl_t2.out - $(V) ./cstcov_test_cl ../Matrix/young1c > test_cl_young1c.out - $(V) ./cstcov_test_cl ../Matrix/qc324 > test_cl_qc324.out - $(V) ./cstcov_test_cl ../Matrix/neumann > test_cl_neumann.out - $(V) ./cstcov_test_cl ../Matrix/mhd1280b > test_cl_mhd1280b.out readhb: readhb.f f77 -o readhb readhb.f readhb.f: - ln -s ../Demo/readhb.f clean: rm -f *.o *.bbg *.da *.gcov *.gcda *.gcno purge: distclean distclean: clean rm -f readhb *.out *.a cov.sort rm -f cs_demo1_di cs_demo2_di cs_demo3_di cstcov_test_di rm -f cs_demo1_dl cs_demo2_dl cs_demo3_dl cstcov_test_dl rm -f cs_demo1_ci cs_demo2_ci cs_demo3_ci cstcov_test_ci rm -f cs_demo1_cl cs_demo2_cl cs_demo3_cl cstcov_test_cl rm -f cs_idemo cs_ldemo rm -f cs_*.c rm -f cs*_di.c cs*_dl.c cs*_ci.c cs*_cl.c SuiteSparse/CXSparse_newfiles/Tcov/czero0000644001170100242450000000001010376373611017311 0ustar davisfac0 0 0 0 SuiteSparse/CXSparse_newfiles/Tcov/README.txt0000644001170100242450000000131210376376004017747 0ustar davisfacCXSparse/Tcov: comprehensive test coverage for CXSparse. Requires Linux. Type "make" to compile, and then "make run" to run the tests. The test coverage is in cover.out. The test output is printed on stdout, except for cs_test (which prints its output in various *.out files). If the test is successful, the last line printed should be "statements not yet tested: 0", and all printed residuals should be small. Note that you will get warnings about unused parameters for some functions. These warnings can be safely ignored. They are parameters for functions that are passed to cs_fkeep, and all functions used in this manner must have the same calling sequence, even if some of the parameters are not used. SuiteSparse/CXSparse_newfiles/Tcov/cstcov_malloc_test.c0000644001170100242450000000171110473440334022303 0ustar davisfac#include "cstcov_malloc_test.h" int malloc_count = INT_MAX ; /* wrapper for malloc */ void *cs_malloc (CS_INT n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (malloc (CS_MAX (n,1) * size)) ; } /* wrapper for calloc */ void *cs_calloc (CS_INT n, size_t size) { if (--malloc_count < 0) return (NULL) ; /* pretend to fail */ return (calloc (CS_MAX (n,1), size)) ; } /* wrapper for free */ void *cs_free (void *p) { if (p) free (p) ; /* free p if it is not already NULL */ return (NULL) ; /* return NULL to simplify the use of cs_free */ } /* wrapper for realloc */ void *cs_realloc (void *p, CS_INT n, size_t size, CS_INT *ok) { void *pnew ; *ok = 0 ; if (--malloc_count < 0) return (p) ; /* pretend to fail */ pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */ *ok = (pnew != NULL) ; return ((*ok) ? pnew : p) ; /* return original p if failure */ } SuiteSparse/CXSparse_newfiles/Tcov/cstcov_malloc_test.h0000644001170100242450000000020410473440334022304 0ustar davisfac#include "cs.h" #define malloc_count CS_NAME (_malloc_count) #ifndef EXTERN #define EXTERN extern #endif EXTERN int malloc_count ; SuiteSparse/CXSparse_newfiles/MATLAB/0000755001170100242450000000000010712370325016273 5ustar davisfacSuiteSparse/CXSparse_newfiles/MATLAB/Demo/0000755001170100242450000000000010620375072017161 5ustar davisfacSuiteSparse/CXSparse_newfiles/MATLAB/Demo/Contents.m0000644001170100242450000000053410620375072021136 0ustar davisfac% CXSparse MATLAB demos. % % cs_demo - run all CXSparse demos. % cs_demo1 - MATLAB version of the CSparse/Demo/cs_demo1.c program. % cs_demo2 - MATLAB version of the CSparse/Demo/cs_demo2.c program. % cs_demo3 - MATLAB version of the CSparse/Demo/cs_demo3.c program. % Example: % help cs_demo % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CXSparse_newfiles/MATLAB/Demo/cs_demo.m0000644001170100242450000000206410620723666020760 0ustar davisfacfunction cs_demo (do_pause, matrixpath) %CS_DEMO run all CXSparse demos. % cs_demo(0) will run all demos without pausing. % % Example: % cs_demo % See also: cs_demo1, cs_demo2, cs_demo3 % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse help cs_demo if (nargin < 1) do_pause = 1 ; end if (nargin < 2) matrixpath = [] ; end figure (1) clf fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo1 ; cs_demo1 (matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo2 cs_demo2 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help cs_demo3 cs_demo3 (do_pause, matrixpath) ; fprintf ('\n\n-------------------------------------------------------\n') ; help ex_1 ex_1 fprintf ('\n\n-------------------------------------------------------\n') ; help ex2 ex2 fprintf ('\n\n-------------------------------------------------------\n') ; help ex3 ex3 fprintf ('\nAll CXSparse demos finished.\n') ; SuiteSparse/CXSparse_newfiles/MATLAB/Demo/README.txt0000644001170100242450000000010510571365661020663 0ustar davisfacDemo for MATLAB interface for CXSparse. See Contents.m for details. SuiteSparse/CXSparse_newfiles/MATLAB/Test/0000755001170100242450000000000010710651265017215 5ustar davisfacSuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_sparse2_mex.c0000644001170100242450000000276610710251214022277 0ustar davisfac#include "cs_mex.h" /* A = cs_sparse2 (i,j,x), removing duplicates and numerically zero entries, * and returning A sorted (test cs_entry) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT k, m, n, nz, *Ti, *Tj ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse2(i,j,x)") ; } nz = mxGetM (pargin [0]) ; Ti = cs_dl_mex_get_int (nz, pargin [0], &m, 1) ; Tj = cs_dl_mex_get_int (nz, pargin [1], &n, 1) ; cs_mex_check (1, nz, 1, 0, 0, 1, pargin [2]) ; if (mxIsComplex (pargin [2])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *Tx ; cs_cl *A, *C, *T ; Tx = cs_cl_mex_get_double (nz, pargin [2]) ; T = cs_cl_spalloc (n, m, 1, 1, 1) ; for (k = 0 ; k < nz ; k++) { cs_cl_entry (T, Tj [k], Ti [k], Tx [k]) ; } C = cs_cl_compress (T) ; cs_cl_spfree (T) ; cs_cl_dupl (C) ; cs_cl_dropzeros (C) ; A = cs_cl_transpose (C, -1) ; cs_cl_spfree (C) ; pargout [0] = cs_cl_mex_put_sparse (&A) ; cs_free (Tx) ; #endif } else { double *Tx ; cs_dl *A, *C, *T ; Tx = mxGetPr (pargin [2]) ; T = cs_dl_spalloc (n, m, 1, 1, 1) ; for (k = 0 ; k < nz ; k++) { cs_dl_entry (T, Tj [k], Ti [k], Tx [k]) ; } C = cs_dl_compress (T) ; cs_dl_spfree (T) ; cs_dl_dupl (C) ; cs_dl_dropzeros (C) ; A = cs_dl_transpose (C, 1) ; cs_dl_spfree (C) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; } cs_free (Ti) ; cs_free (Tj) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_rowcnt_mex.c0000644001170100242450000000521710571353755022250 0ustar davisfac/* Compute the row counts of the Cholesky factor L of the matrix A. Uses * the lower triangular part of A. */ #include "cs_mex.h" static void firstdesc (CS_INT n, CS_INT *parent, CS_INT *post, CS_INT *first, CS_INT *level) { CS_INT len, i, k, r, s ; for (i = 0 ; i < n ; i++) first [i] = -1 ; for (k = 0 ; k < n ; k++) { i = post [k] ; /* node i of etree is kth postordered node */ len = 0 ; /* traverse from i towards the root */ for (r = i ; r != -1 && first [r] == -1 ; r = parent [r], len++) first [r] = k ; len += (r == -1) ? (-1) : level [r] ; /* root node or end of path */ for (s = i ; s != r ; s = parent [s]) level [s] = len-- ; } } /* return rowcount [0..n-1] */ static CS_INT *rowcnt (cs_dl *A, CS_INT *parent, CS_INT *post) { CS_INT i, j, k, len, s, p, jprev, q, n, sparent, jleaf, *Ap, *Ai, *maxfirst, *ancestor, *prevleaf, *w, *first, *level, *rowcount ; n = A->n ; Ap = A->p ; Ai = A->i ; /* get A */ w = cs_dl_malloc (5*n, sizeof (CS_INT)) ; /* get workspace */ ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; level = w+4*n ; rowcount = cs_dl_malloc (n, sizeof (CS_INT)) ; /* allocate result */ firstdesc (n, parent, post, first, level) ; /* find first and level */ for (i = 0 ; i < n ; i++) { rowcount [i] = 1 ; /* count the diagonal of L */ prevleaf [i] = -1 ; /* no previous leaf of the ith row subtree */ maxfirst [i] = -1 ; /* max first[j] for node j in ith subtree */ ancestor [i] = i ; /* every node is in its own set, by itself */ } for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in the postordered etree */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; q = cs_dl_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf) ; if (jleaf) rowcount [i] += (level [j] - level [q]) ; } if (parent [j] != -1) ancestor [j] = parent [j] ; } cs_dl_free (w) ; return (rowcount) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl *A, Amatrix ; double *x ; CS_INT i, m, n, *parent, *post, *rowcount ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: r = cs_rowcnt(A,parent,post)") ; } /* get inputs */ A = cs_dl_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; n = A->n ; parent = cs_dl_mex_get_int (n, pargin [1], &i, 0) ; post = cs_dl_mex_get_int (n, pargin [2], &i, 1) ; rowcount = rowcnt (A, parent, post) ; pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = rowcount [i] ; cs_dl_free (rowcount) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/Makefile0000644001170100242450000000235610617732311020661 0ustar davisfacinclude ../../../UFconfig/UFconfig.mk MX = $(MEX) -DCS_LONG AR = ar cr RANLIB = ranlib I = -I../../Include -I../../../UFconfig -I../CSparse all: cs_sparse2.mexglx \ cs_ipvec.mexglx \ cs_pvec.mexglx \ cs_reach.mexglx \ cs_maxtransr.mexglx \ cs_reachr.mexglx \ cs_rowcnt.mexglx \ cs_frand.mexglx mexcsparse: ( cd ../CSparse ; make mexcsparse.a ) cs_ipvec.mexglx: cs_ipvec_mex.c mexcsparse $(MX) -output cs_ipvec $< $(I) ../CSparse/mexcsparse.a cs_pvec.mexglx: cs_pvec_mex.c mexcsparse $(MX) -output cs_pvec $< $(I) ../CSparse/mexcsparse.a cs_reach.mexglx: cs_reach_mex.c mexcsparse $(MX) -output cs_reach $< $(I) ../CSparse/mexcsparse.a cs_sparse2.mexglx: cs_sparse2_mex.c mexcsparse $(MX) -output cs_sparse2 $< $(I) ../CSparse/mexcsparse.a cs_maxtransr.mexglx: cs_maxtransr_mex.c mexcsparse $(MX) -output cs_maxtransr $< $(I) ../CSparse/mexcsparse.a cs_reachr.mexglx: cs_reachr_mex.c mexcsparse $(MX) -output cs_reachr $< $(I) ../CSparse/mexcsparse.a cs_rowcnt.mexglx: cs_rowcnt_mex.c mexcsparse $(MX) -output cs_rowcnt $< $(I) ../CSparse/mexcsparse.a cs_frand.mexglx: cs_frand_mex.c mexcsparse $(MX) -output cs_frand $< $(I) ../CSparse/mexcsparse.a clean: rm -f *.o distclean: clean rm -f *.mex* *.a cs_cl_*.c purge: distclean SuiteSparse/CXSparse_newfiles/MATLAB/Test/cholupdown.m0000644001170100242450000000236210620701365021555 0ustar davisfacfunction L = cholupdown (Lold, sigma, w) %CHOLUPDOWN Cholesky update/downdate (Bischof, Pan, and Tang method) % This version only works for the real case. See chol_updown2 for % a code that handles both the real and complex cases. % Example: % L = cholupdown (Lold, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (Lold,1) ; L = Lold ; % x = weros (n,1) ; % worig = w ; for k = 1:n alpha = w(k) / L(k,k) ; beta_new = sqrt (beta^2 + sigma*alpha^2) ; gamma = alpha / (beta_new * beta) ; if (sigma < 0) % downdate bratio = beta_new / beta ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k,k) = bratio * L (k,k) ; L (k+1:n,k) = bratio * L (k+1:n,k) - gamma*w(k+1:n) ; else % update bratio = beta / beta_new ; % wold = w (k+1:n) ; % w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; % L (k ,k) = bratio * L (k ,k) + gamma*w(k) ; % L (k+1:n,k) = bratio * L (k+1:n,k) + gamma*wold ; L (k,k) = bratio * L (k,k) + gamma*w(k) ; for i = k+1:n wold = w (i) ; w (i) = w (i) - alpha * L (i,k) ; L (i,k) = bratio * L (i,k) + gamma*wold ; end end w (k) = alpha ; beta = beta_new ; end % norm (w-(Lold\worig)) SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_reachr_mex.c0000644001170100242450000000332010571353322022157 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse and lower * triangular. b must be a sparse vector. */ static void dfsr (CS_INT j, const cs *L, CS_INT *top, CS_INT *xi, CS_INT *w) { CS_INT p ; w [j] = 1 ; /* mark node j */ for (p = L->p [j] ; p < L->p [j+1] ; p++) /* for each i in L(:,j) */ { if (w [L->i [p]] != 1) /* if i is unmarked */ { dfsr (L->i [p], L, top, xi, w) ; /* start a dfs at i */ } } xi [--(*top)] = j ; /* push j onto the stack */ } /* w [0..n-1] == 0 on input, <= 1 on output. size n */ static CS_INT reachr (const cs *L, const cs *B, CS_INT *xi, CS_INT *w) { CS_INT p, n = L->n ; CS_INT top = n ; /* stack is empty */ for (p = B->p [0] ; p < B->p [1] ; p++) /* for each i in pattern of b */ { if (w [B->i [p]] != 1) /* if i is unmarked */ { dfsr (B->i [p], L, &top, xi, w) ; /* start a dfs at i */ } } return (top) ; /* return top of stack */ } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Lmatrix, Bmatrix, *L, *B ; double *x ; CS_INT i, j, top, *xi ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reachr(L,b)") ; } /* get inputs */ L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_calloc (2*L->n, sizeof (CS_INT)) ; top = reachr (L, B, xi, xi + L->n) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/Contents.m0000644001170100242450000001213510620375605021173 0ustar davisfac% CXSparse testing and "textbook" MATLAB M-files and mexFunctions, related to % CXSparse but not a part of CXSparse itself. % % M-files: % % chol_downdate - downdate a Cholesky factorization. % chol_left - left-looking Cholesky factorization. % chol_left2 - left-looking Cholesky factorization, more details. % chol_right - right-looking Cholesky factorization. % chol_super - left-looking "supernodal" Cholesky factorization. % chol_up - up-looking Cholesky factorization. % chol_update - update a Cholesky factorization. % chol_updown - update or downdate a Cholesky factorization. % chol_updown2 - Cholesky update/downdate (real and complex) % cond1est - 1-norm condition estimate. % cs_fiedler - the Fiedler vector of a connected graph. % givens2 - find a Givens rotation. % house - find a Householder reflection. % lu_left - left-looking LU factorization. % lu_right - right-looking LU factorization. % lu_rightp - right-looking LU factorization, with partial pivoting. % lu_rightpr - recursive right-looking LU, with partial pivoting. % lu_rightr - recursive right-looking LU. % norm1est - 1-norm estimate. % qr_givens - Givens-rotation QR factorization. % qr_givens_full - Givens-rotation QR factorization, for full matrices. % qr_left - left-looking Householder QR factorization. % qr_right - right-looking Householder QR factorization. % % mexFunctions: % % cs_frand - generate a random finite-element matrix % cs_ipvec - x(p)=b % cs_maxtransr - recursive maximum matching algorithm % cs_pvec - x=b(p) % cs_reach - non-recursive reach (interface to CSparse cs_reach) % cs_reachr - recursive reach (interface to CSparse cs_reachr) % cs_rowcnt - row counts for sparse Cholesky % cs_sparse2 - same as cs_sparse, to test cs_entry function % % Extensive test functions, not for normal usage: % % check_if_same - check if two inputs are identical or not % choldn - Cholesky downdate % cholup - Cholesky update, using Given's rotations % cholupdown - Cholesky update/downdate (Bischof, Pan, and Tang method) % cs_q1 - construct Q from Householder vectors % cs_test_make - compiles the CSparse, Demo, and Test mexFunctions. % dmperm_test - test cs_dmperm % chol_example - simple Cholesky factorization example % etree_sample - construct a sample etree and symbolic factorization % gqr3 - QR factorization, based on Givens rotations % happly - apply Householder reflection to a vector % hmake1 - construct a Householder reflection % mynormest1 - estimate norm(A,1), using LU factorization (L*U = P*A*Q). % myqr - QR factorization using Householder reflections % another_colormap - try another color map % cspy_test - test cspy and cs_dmspy % qr2 - QR factorization based on Householder reflections % sample_colormap - try a colormap for use in cspy % signum - compute and display the sign of a column vector x % sqr_example - test cs_sqr % dmspy_test - test cspy, cs_dmspy, and cs_dmperm % test_qr - test various QR factorization methods % test_randperms - test random permutations % testh - test Householder reflections % test_qr1 - test QR factorizations % test_qrsol - test cs_qrsol % test_sep - test cs_sep, and compare with Gilbert's meshpart vtxsep % testall - test all CSparse functions (run tests 1 to 28 below) % test1 - test cs_transpose, cs_gaxpy, cs_sparse, cs_sparse2 % test2 - test cs_sparse, cs_permute, cs_pvec, cs_ipvec, cs_symperm % test3 - test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % test4 - test cs_multiply % test5 - test cs_add % test6 - test cs_reach, cs_reachr, cs_lsolve, cs_usolve % test7 - test cs_lu % test8 - test cs_cholsol, cs_lusol % test9 - test cs_qr % test10 - test cs_qr % test11 - test cs_rowcnt % test12 - test cs_qr and compare with svd % test13 - test cs_counts, cs_etree % test14 - test cs_droptol % test15 - test cs_amd % test16 - test cs_amd % test17 - test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % test18 - test iterative refinement after backslash % test19 - test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc, cspy % test20 - test chol_updown2 % test21 - test cs_updown, chol_updown2 % test22 - test cond1est % test23 - test cs_dmspy % test24 - test cs_fielder % test25 - test cs_nd % test26 - test cs_dmsol and cs_dmspy % test27 - test cs_qr, cs_utsolve, cs_qrsol % test28 - test cs_randperm, cs_dmperm % Example: % help chol_update % Copyright 2006-2007, Timothy A. Davis SuiteSparse/CXSparse_newfiles/MATLAB/Test/test10.m0000644001170100242450000000371610710254556020524 0ustar davisfacfunction test10 %TEST10 test cs_qr % % Example: % test10 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; % f = 185 ; % f = 449 ; clf for trials = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; A = sprandn (m, n, d) ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sp < n) % continue ; % end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) * norm (A,1) / 10 ; end Aorig = A ; % A = A (:, colamd (A)) ; if (cmplex) tic ; R = chol (A'*A + speye (n)) ; t1 = toc ; else tic ; R = qr (A) ; t1 = toc ; end % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; %#ok rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; [H1,R1] = myqr (C) ; err1 = norm (R1-R2,1) / norm (R1) ; disp ('err1 = ') ; disp (err1) ; % [svd(A) svd(R1) svd(full(R2))] s1 = svd (full (A)) ; s2 = svd (full (R2)) ; if (n > 0) err2 = norm (s1 - s2) / s1 (1) ; disp ('err2 = ') ; disp (err2) ; else err2 = 0 ; end fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d vs %d\n', t1, t2, t1/t2, sp, n) ; % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr H') ; drawnow if (err2 > 1e-9) error ('!') ; end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test11.m0000644001170100242450000000162510710651265020520 0ustar davisfacfunction test11 %TEST11 test cs_rowcnt % % Example: % test11 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; for i = f Prob = UFget (i, index) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end A = spones (A) ; A = A+A' + speye(n) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end try p = amd (A) ; catch p = symamd (A) ; end A = A (p,p) ; [cc h pa po R] = symbfact (A) ; rc1 = full (sum (R)) ; rc2 = cs_rowcnt (A, pa, po) ; if (any (rc1 ~= rc2)) error ('!') ; end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test12.m0000644001170100242450000000154210710254563020517 0ustar davisfacfunction test12 %TEST12 test cs_qr and compare with svd % % Example: % test12 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('test 12\n') ; rand ('state',0) ; % A = rand (3,4) for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (m,n,d) ; if (m < n) continue ; end if (m == 0 | n == 0) %#ok continue ; end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) ; end fprintf ('m %d n %d nnz %d\n', m, n, nnz(A)) ; [V,Beta,p,R] = cs_qr (A) ; s1 = svd (full (A)) ; s2 = svd (full (R)) ; s2 = s2 (1:length(s1)) ; err = norm (s1-s2) ; if (length (s1) > 1) err = err / s1 (1) ; end fprintf ('err %g\n', err) ; if (err > 1e-12) error ('!') ; end end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test13.m0000644001170100242450000000334610710252076020521 0ustar davisfacfunction test13 %TEST13 test cs_counts, cs_etree % % Example: % test13 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state',0) ; rand ('state',0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = .1 * rand (1) ; A = sprandn (n,n,d) ; C = sprandn (m,n,d) ; A = A+A' ; fprintf ('m %4d n %4d nnz(A) %6d nnz(C) %6d\n', m, n, nnz(A), nnz(C)) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end [p1,po1] = etree (A) ; [p2,po2] = cs_etree (A) ; [p3,po3] = cs_etree (A, 'sym') ; % po2 = cs_post (p2) ; check_if_same (p1,p2) ; check_if_same (po1,po2) ; check_if_same (p1,p3) ; check_if_same (po1,po3) ; c1 = symbfact (A) ; c2 = cs_counts (A) ; % A-A' check_if_same (c1,c2) ; c2 = cs_counts (triu (A)) ; check_if_same (c1,c2) ; % pause p0 = etree (A, 'col') ; % p1 = etree2 (A, 'col') ; % CHOLMOD p2 = cs_etree (A, 'col') ; if (~isempty (A)) check_if_same (p0,p2) ; end p0 = etree (C, 'col') ; % p1 = etree2 (C, 'col') ; % CHOLMOD p2 = cs_etree (C, 'col') ; if (~isempty (C)) check_if_same (p0,p2) ; end % find etree of A'A, and postorder it [m n] = size (A) ; %#ok % full (A) [cp0 cpo0] = etree (A, 'col') ; % [cp1 cpo1] = etree2 (A, 'col') ; % CHOLMOD [cp2 cpo2] = cs_etree (A, 'col') ; % cpo2 = cs_post (cp2) ; check_if_same (cp0, cp2) ; check_if_same (cpo0, cpo2) ; c0 = symbfact (A, 'col') ; % c1 = symbfact2 (A, 'col') ; % CHOLMOD c2 = cs_counts (A, 'col') ; check_if_same (c0, c2) ; end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test14.m0000644001170100242450000000153010710254565020520 0ustar davisfacfunction test14 %TEST14 test cs_droptol % % Example: % test14 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = 0.1*rand (1) ; A = sprandn (m,n,d) ; [i j x] = find (A) ; A = sparse (i,j,2*x-1) ; fprintf ('test14 m %3d n %3d nz %d\n', m, n, nnz (A)) ; for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sparse (i,j,2*rand(size(x))-1) ; end % using CSparse tol = 0.5 ; B = cs_droptol (A, tol) ; % using MATLAB C = A .* (abs (A) > tol) ; % [m n] = size (A) ; % s = abs (A) > tol ; % [i j] = find (s) ; % x = A (find (s)) ; % A = sparse (i, j, x, m, n) ; if (norm (C-B,1) > 0) error ('!') ; end end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test15.m0000644001170100242450000000177410710252146020524 0ustar davisfacfunction test15 %TEST15 test cs_amd % % Example: % test15 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:100 n = fix (200 * rand (1)) ; d = 0.05 * rand (1) ; A = sprandn (n, n, d) ; % add a randomly placed dense column k = fix (n * rand (1)) ; k = max (1, k) ; k = min (n, k) ; if (n > 0) A (:,k) = 1 ; end if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end try p0 = amd (A) ; catch p0 = symamd (A) ; end p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (1,3,1) ; spy (C) subplot (1,3,2) ; spy (C (p0,p0)) subplot (1,3,3) ; spy (C (p1,p1)) fprintf ('n %4d nz %6d lnz %6d %6d\n', n, nnz(A), lnz0, lnz1) ; drawnow end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test16.m0000644001170100242450000000357110710252163020521 0ustar davisfacfunction test16 %TEST16 test cs_amd % % Example: % test16 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; randn ('state', 0) ; clf index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; skip = 811 ; % f = 719 for i = f if (any (i == skip)) continue end Prob = UFget (i) ; A = spones (Prob.A) ; Aorig = A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; if (m ~= n) A = A'*A ; end if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end fprintf ('n %4d nz %d\n', n, nnz (A)) ; try p0 = amd (A) ; catch p0 = symamd (A) ; end fprintf ('symmetric case:\n') ; p1 = cs_amd (A) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end C = A+A' + speye (n) ; lnz0 = sum (symbfact (C (p0,p0))) ; lnz1 = sum (symbfact (C (p1,p1))) ; subplot (2,3,1) ; spy (C) subplot (2,3,2) ; spy (C (p0,p0)) ; title ('amd') ; subplot (2,3,3) ; spy (C (p1,p1)) ; title ('csamd') ; drawnow if (lnz0 ~= lnz1) fprintf ('----------------- lnz %d %d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; end if (1) p0 = colamd (Aorig) ; [m n] = size (Aorig) ; fprintf ('m %d n %d\n', m, n) ; fprintf ('A''A case, no dense rows (for QR):\n') ; p1 = cs_amd (Aorig, 3) ; if (any (sort (p1) ~= 1:n)) error ('not perm!') ; end subplot (2,3,4) ; spy (Aorig) subplot (2,3,5) ; spy (Aorig (:,p0)) ; title ('colamd') ; subplot (2,3,6) ; spy (Aorig (:,p1)) ; title ('cs amd(A''A)') ; lnz0 = sum (symbfact (Aorig (:,p0), 'col')) ; lnz1 = sum (symbfact (Aorig (:,p1), 'col')) ; fprintf (' A''A: %7d %7d %9.4f\n', ... lnz0, lnz1, 100*(lnz0-lnz1)/max([1 lnz0])) ; drawnow % pause end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test17.m0000644001170100242450000000430310710252200020504 0ustar davisfacfunction test17 %TEST17 test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol % % Example: % test17 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions clf rand ('state', 0) ; randn ('state', 0) ; for trials = 1:100 m = 1 + fix (10 * rand (1)) ; n = 1 + fix (10 * rand (1)) ; d = rand (1) ; % n = m ; A = sprandn (m, n, d) ; if (m < n) A = A' ; end [m n] = size (A) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end subplot (3,4,1) ; spy (A) ; [V1, Beta1, p1, R1, q1] = cs_qr (A) ; Q1 = cs_qright (V1, Beta1, p1, speye (size (V1,1))) ; Q1b = cs_q1 (V1, Beta1, p1) ; err = norm (Q1-Q1b,1) ; disp ('err = ') ; disp (err) ; if (err > 1e-12) error ('!') ; end m2 = size (Q1,1) ; A1 = [A ; sparse(m2-m,n)] ; subplot (3,4,5) ; spy (A1 (p1,q1)) ; subplot (3,4,6) ; spy (V1) ; subplot (3,4,7) ; spy (R1) ; subplot (3,4,8) ; spy (Q1) ; [V3, Beta3, R3] = qr2 (A) ; % Q3 = cs_qmake (V3, Beta3) ; Q3 = cs_q1 (V3, Beta3) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (V3) ; subplot (3,4,11) ; spy (R3) ; subplot (3,4,12) ; spy (Q3) ; err1 = norm (Q1*R1 - A1(:,q1), 1) ; % err2 = norm (Q2*R2 - A (:,q2), 1) ; err3 = norm (Q3*R3 - A, 1) ; fprintf ('m %3d m2 %3d n %3d ::: %3d %6.2e %6.2e\n', ... m, m2, n, m2-m, err1, err3) ; if (err1 > 1e-12) error ('2!') ; end % if (err2 > 1e-12) % error ('!') ; % end if (err3 > 1e-12) error ('3!') ; end try % this fails if A is complex b = rand (m,1) ; [Q,R] = qr (A (:,q1)) ; x = R\(Q'*b) ; x (q1) = x ; r1 = norm (A*x-b) ; x2 = cs_qrsol (A,b) ; r2 = norm (A*x2(1:n)-b) ; qt = cs_qleft (V1, Beta1, p1, speye(size(V1,1))) ; fprintf ('Q''*A-R: %6.2e\n', norm (qt*A1(:,q1)-R1,1)) ; qtb = cs_qleft (V1, Beta1, p1, b) ; % [V1, Beta1, p1, R1, q1] = cs_qr (A) ; x3 = R1 \ qtb ; r3 = norm (A(:,q1)*x3(1:n)-b) ; fprintf ('least sq: %6.2e %6.2e %6.2e diff %6.2e %6.2e\n', ... r1, r2, r3, r1-r2, r1-r3) ; catch end drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test18.m0000644001170100242450000000112110620667511020517 0ustar davisfacfunction test18 %TEST18 test iterative refinement after backslash % % Example: % test18 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end b = rand (n,1) ; x = A\b ; r = b - A*x ; x = x + A\r ; fprintf ('\n%6.2e to %6.2e\n', norm (r), norm (b-A*x)) ; end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test19.m0000644001170100242450000000704610710252222020521 0ustar davisfacfunction test19 %TEST19 test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc, cspy % % Example: % test19 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:100 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end if (rand ( ) > .5) S = S + 1i * sprand (S) ; end end subplot (2,3,1) ; cspy (A) ; pp = dmperm (A) ; sprnk = sum (pp > 0) ; pp2 = cs_dmperm (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end pp2 = cs_maxtransr (A) ; spr2 = sum (pp2 > 0) ; if (spr2 ~= sprnk) error ('!') end [p,q,r,s] = dmperm (A) ; C = A (p,q) ; % r % s nk = length (r) - 1 ; fprintf ('sprnk: %d m %d n %d nb: %d\n', sprnk, m, n, nk) ; subplot (2,3,2) ; hold off spy (C) hold on for k = 1:nk r1 = r(k) ; r2 = r(k+1) ; c1 = s(k) ; c2 = s(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end [p2,q2,rr2,ss2,cp,rp] = cs_dmperm (A) ; if (min (m,n) > 0) if (length (rr2) ~= length (r)) error ('# fine blocks!') ; end end if (rp (4) - 1 ~= sprnk) rp %#ok sprnk %#ok error ('!') ; end if (any (sort (p2) ~= 1:m)) error ('p2!') ; end if (any (sort (q2) ~= 1:n)) error ('q2!') ; end if (cp (5) ~= n+1) error ('cp!') ; end if (rp (5) ~= m+1) error ('rp!') ; end C = A (p2,q2) ; subplot (2,3,3) ; cs_dmspy (A,0) ; % hold off % spy (C) ; % hold on % r1 = rp(1) ; % r2 = rp(2) ; % c1 = cp(1) ; % c2 = cp(2) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; r1 = rp(1) ; r2 = rp(2) ; c1 = cp(2) ; c2 = cp(3) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C1 diag!') ; end r1 = rp(2) ; r2 = rp(3) ; c1 = cp(3) ; c2 = cp(4) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'r') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C2 diag!') ; end r1 = rp(3) ; r2 = rp(4) ; c1 = cp(4) ; c2 = cp(5) ; % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; B = C (r1:r2-1, c1:c2-1) ; if (nnz (diag (B)) ~= size (B,1)) error ('C3 diag!') ; end r1 = rp(4) ; %#ok r2 = rp(5) ; %#ok c1 = cp(4) ; %#ok c2 = cp(5) ; %#ok % plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; if (~isempty (S)) [p1,q1,r0,s0] = dmperm (S) ; [p3,r3] = cs_scc (S) ; if (length (r3) ~= length (r0)) error ('scc size!') ; end if (any (sort (p3) ~= 1:m)) error ('scc perm!') ; end nk = length (r0)-1 ; subplot (2,3,4) ; hold off spy (S (p1,q1)) ; hold on for k = 1:nk r1 = r0(k) ; r2 = r0(k+1) ; c1 = s0(k) ; c2 = s0(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end subplot (2,3,5) ; hold off spy (S (p3,p3)) ; hold on for k = 1:nk r1 = r3(k) ; r2 = r3(k+1) ; c1 = r3(k) ; c2 = r3(k+1) ; plot ([c1 c2 c2 c1 c1]-.5, [r1 r1 r2 r2 r1]-.5, 'g') ; end end subplot (2,3,6) ; cs_dmspy (A) ; drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test20.m0000644001170100242450000000175610710252311020512 0ustar davisfacfunction test20 %TEST20 test chol_updown2 % % Example: % test20 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; maxerr = [0 0 0 0] ; for trials = 1:100 n = fix (100 * rand (1)) ; A = rand (n) ; if (~ispc) if (mod (trials, 2) == 0) A = A + 1i*rand(n) ; end end A1 = A*A' + n*eye (n) ; try L1 = chol (A1)' ; catch continue ; end err1 = norm (L1*L1'-A1) ; w = rand (n,1) ; A2 = A1 + w*w' ; L2 = chol (A2)' ; err2 = norm (L2*L2'-A2) ; % try an update L2b = chol_updown2 (L1, +1, w) ; err2b = norm (L2b*L2b'-A2) ; % try a downdate L1b = chol_updown2 (L2, -1, w) ; %#ok err1b = norm (L1b*L1b'-A1) ; fprintf ('%3d: %6.2e %6.2e : %6.2e %6.2e\n', n, err1, err2, err2b, err1b) ; % pause maxerr = max (maxerr, [err1 err2 err2b err1b]) ; end fprintf ('maxerr: %g\n', maxerr) ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/test21.m0000644001170100242450000000360410710252335020513 0ustar davisfacfunction test21 %TEST21 test cs_updown, chol_updown2 % % Example: % test21 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; randn ('state', 0) ; clf for trials = 1:100 if (trials <= 1) n = trials ; else n = 1+fix (100 * rand (1)) ; end fprintf ('n: %d\n', n) ; d = 0.1 * rand (1) ; A = sprandn (n,n,d) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end A = A+A' + 100 * speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end A = sparse (A (p,p)) ; try L = chol (A)' ; catch continue ; end parent = etree (A) ; subplot (1,3,1) ; spy (A) ; if (n > 0) subplot (1,3,2) ; treeplot (parent) ; end subplot (1,3,3) ; spy (L) ; drawnow for trials2 = 1:10 k = 1+fix (n * rand (1)) ; if (k <= 0 | k > n) %#ok k = 1 ; end w = sprandn (L (:,k)) ; Anew = A + w*w' ; Lnew = cs_updown (L, w, parent) ; err6 = norm (Lnew*Lnew' - Anew, 1) ; Lnew = cs_updown (L, w, parent, '+') ; err7 = norm (Lnew*Lnew' - Anew, 1) ; [Lnew, wnew] = chol_updown2 (L, 1, w) ; err2 = norm (Lnew*Lnew' - Anew, 1) ; err10 = norm (wnew - (L\w)) ; L3 = chol_updown2 (L, +1, w) ; err9 = norm (L3*L3' - Anew, 1) ; [L2, wnew] = chol_updown2 (Lnew, -1, w) ; err3 = norm (L2*L2' - A, 1) ; err11 = norm (wnew - (Lnew\w)) ; L2 = cs_updown (Lnew, w, parent, '-') ; err5 = norm (L2*L2' - A, 1) ; L2 = chol_updown2 (Lnew, -1, w) ; err8 = norm (L2*L2' - A, 1) ; err = max ([err2 err3 err5 err6 err7 err9 err8 err10 err11]) ; fprintf (' k %3d %6.2e\n', k, err) ; if (err > 1e-11) err2 %#ok err3 %#ok err5 %#ok err6 %#ok err7 %#ok err8 %#ok err9 %#ok err10 %#ok err11 %#ok pause end end % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test22.m0000644001170100242450000000174610620667553020535 0ustar davisfacfunction test22 %TEST22 test cond1est % % Example: % test22 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) nprob = length (f) ; C1 = zeros (nprob,1) ; C2 = zeros (nprob,1) ; C3 = zeros (nprob,1) ; for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (~isreal (A) | m ~= n) %#ok continue end c1 = condest (A) ; c2 = cond1est (A) ; if (c1 == c2) err = 0 ; else err = (c1-c2)/max(1,c1) ; end c3 = cond (full (A), 1) ; fprintf ('%10.4e %10.4e (%10.4e) : %10.4e\n', c1, c2, c3, err) ; C1 (k) = c1 ; C2 (k) = c2 ; C3 (k) = c3 ; subplot (1,2,1) ; loglog (C1, C2, 'x', [1 1e20], [1 1e20], 'r') ; subplot (1,2,2) ; loglog (C3, C2, 'x', [1 1e20], [1 1e20], 'r') ; drawnow end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test23.m0000644001170100242450000000116010710252361020507 0ustar davisfacfunction test23 %TEST23 test cs_dmspy % % Example: % test23 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf for trials = 1:1000 % m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; m = n ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end cs_dmspy (A) ; drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test24.m0000644001170100242450000000171410710252400020507 0ustar davisfacfunction test24 %TEST24 test cs_fielder % % Example: % test24 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:200) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end S = A ; if (~ispc) if (mod (k,2) == 0) S = S + 1i * sprand (A) ; end end tic p1 = symrcm (A) ; t1 = toc ; tic p2 = cs_fiedler (S) ; t2 = toc ; rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f fiedler %8.3f rel %8.2f\n', t1, t2, rel) ; A = A|A' ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test25.m0000644001170100242450000000212310710252417020513 0ustar davisfacfunction test25 %TEST25 test cs_nd % % Example: % test25 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:400) ; clf % f = f(1) for k = 1:length (f) i = f (k) ; Prob = UFget (i) ; disp (Prob) ; A = real (Prob.A) ; [m n] = size (A) ; if (m ~= n) continue end A = A|A' ; S = A ; if (~ispc) if (mod (k,2) == 0) S = S + 1i * sprand (A) ; end end tic ; p1 = symrcm (A) ; t1 = toc ; tic ; p2 = cs_nd (sparse (1)) ; toc ; if (p2 ~= 1) error ('!') ; end tic ; p2 = cs_nd (S) ; t2 = toc ; if (any (sort (p2) ~= 1:n)) error ('!') ; end rel = t2 / max (t1,1e-6) ; fprintf ('time: symrcm %8.3f nd %8.3f rel %8.2f\n', t1, t2, rel) ; subplot (1,3,1) ; spy (A) ; subplot (1,3,2) ; spy (A (p1,p1)) ; subplot (1,3,3) ; spy (A (p2,p2)) ; % evaluate the profile ... drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test26.m0000644001170100242450000000335310710252502020515 0ustar davisfacfunction test26 %TEST26 test cs_dmsol and cs_dmspy % % Example: % test26 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions randn ('state', 0) ; rand ('state', 0) ; clf ntrials = 1000 ; e1 = zeros (ntrials,1) ; e2 = zeros (ntrials,1) ; for trials = 1:ntrials m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; % d = 0.1 * rand (1) ; d = rand (1) * 4 * max (m,n) / max (m*n,1) ; A = sprandn (m,n,d) ; % S = sprandn (m,m,d) + speye (m) ; if (~ispc) if (rand ( ) > .5) A = A + 1i * sprand (A) ; end end subplot (1,3,2) ; spy (A) ; subplot (1,3,3) ; cs_dmspy (A) ; b = rand (m,1) ; if (~ispc) if (rand ( ) > .5) b = b + 1i * rand (size (b)) ; end end % MATLAB cannot do A\b when A is sparse and rectangular and either % A or b are complex if (m ~= n & isreal (A) & ~isreal (b)) %#ok x1 = (A\real(b)) + 1i * (A\imag(b)) ; err1 = norm (A*x1-b) ; elseif ((m ~= n) & ~isreal (A)) %#ok err1 = 1 ; else x1 = A\b ; err1 = norm (A*x1-b) ; end x2 = cs_dmsol (A,b) ; err2 = norm (A*x2-b) ; lerr1 = log10 (max (err1, eps)) ; lerr2 = log10 (max (err2, eps)) ; fprintf ('rank: %3d %3d err %6.2e %6.2e : %6.1f\n', ... sprank(A), rank(full(A)), err1, err2, lerr1 - lerr2) ; if (isnan (err1)) lerr1 = 10 ; end if (isnan (err2)) lerr2 = 10 ; end if (lerr2 > lerr1 + 5) % pause end e1 (trials) = lerr1 ; e2 (trials) = lerr2 ; subplot (1,3,1) ; plot (e1, e2, 'o', [-16 10], [-16 10], 'r') ; xlabel ('MATLAB error') ; ylabel ('dmsol error') ; drawnow % pause end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test27.m0000644001170100242450000000116710620372664020533 0ustar davisfacfunction test27 %TEST27 test cs_qr, cs_utsolve, cs_qrsol % % Example: % test27 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; Prob = UFget ('HB/ibm32') ; A = Prob.A ; A = A (1:10,:) ; [m n] = size (A) ; [V,Beta,p,R,q] = cs_qr (A') ; b = rand (m,1) ; Rm = R (1:m,1:m) ; bq = b (q) ; rtbq = Rm' \ bq ; rt2 = cs_utsolve (Rm, bq) ; norm (rtbq - rt2) x = [rt2 ; zeros(n-m,1)] ; for k = m:-1:1 x = x - V(:,k) * (Beta (k) * (V (:,k)' * x)) ; end x (p) = x ; norm (A*x-b) x2 = cs_qrsol (A,b) ; norm (A*x2-b) norm (x-x2) SuiteSparse/CXSparse_newfiles/MATLAB/Test/test28.m0000644001170100242450000000436310710252523020524 0ustar davisfacfunction test28 %TEST28 test cs_randperm, cs_dmperm % % Example: % test28 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear functions rand ('state', 0) ; for n = 1:100 for trials = 1:1000 p = cs_randperm (n, rand) ; if (any (sort (p) ~= 1:n)) n %#ok p %#ok error ('!') end end end index = UFget ; [ignore f] = sort (index.nnz) ; fprintf ('p=dmperm (std, rand, rev) [p,q,r,s]=dmperm (std, rand, rev)\n') ; nmat = length (f) ; nmat = min (100, nmat) ; T1 = zeros (nmat,1) ; T2 = zeros (nmat,1) ; T3 = zeros (nmat,1) ; D1 = zeros (nmat,1) ; D2 = zeros (nmat,1) ; D3 = zeros (nmat,1) ; for k = 1:nmat i = f (k) ; Prob = UFget (i,index) ; A = Prob.A ; [m n] = size (A) ; fprintf ('%35s: ', Prob.name) ; if (~ispc) if (rand () > .5) A = A + 1i * sprand (A) ; end end tic p = cs_dmperm (A) ; t1 = toc ; sprank1 = sum (p > 0) ; fprintf (' %8.2f', t1) ; T1 (k) = t1 ; tic p = cs_dmperm (A,1) ; t2 = toc ; sprank2 = sum (p > 0) ; fprintf (' %8.2f', t2) ; T2 (k) = t2 ; tic p = cs_dmperm (A,-1) ; t3 = toc ; sprank3 = sum (p > 0) ; fprintf (' %8.2f', t3) ; T3 (k) = t3 ; if (sprank1 ~= sprank2 | sprank1 ~= sprank3) %#ok error ('!') ; end tic [p1,q1,r1,s1,cc1,rr1] = cs_dmperm (A) ; %#ok d1 = toc ; fprintf (' %8.2f', d1) ; D1 (k) = d1 ; tic [p2,q2,r2,s2,cc2,rr2] = cs_dmperm (A,1) ; %#ok d2 = toc ; fprintf (' %8.2f', d2) ; D2 (k) = d2 ; tic [p3,q3,r3,s3,cc3,rr3] = cs_dmperm (A,-1) ; %#ok d3 = toc ; fprintf (' %8.2f\n', d3) ; D3 (k) = d3 ; if (sprank1 == max (m,n)) nz1 = nnz (diag (A (p1,q1))) ; nz2 = nnz (diag (A (p2,q2))) ; nz3 = nnz (diag (A (p3,q3))) ; if (nz1 ~= sprank1 | nz2 ~= sprank2 | nz3 ~= sprank3) %#ok error ('!') end end subplot (1,2,1) loglog (T1 (1:k), T2 (1:k), 'x', ... T1 (1:k), T3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal subplot (1,2,2) loglog (D1 (1:k), D2 (1:k), 'x', ... D1 (1:k), D3 (1:k), 'go', ... [1e-5 1e3], [1e-5 1e3], 'r-') ; axis equal drawnow end SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_frand_mex.c0000644001170100242450000000276210571350365022022 0ustar davisfac#include "cs_mex.h" /* A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel * finite elements, each of which are of size s-by-s with random symmetric * nonzero pattern, plus the identity matrix. * See also MATLAB/Demo/private/frand.m */ cs_dl *cs_dl_frand (CS_INT n, CS_INT nel, CS_INT s) { CS_INT ss = s*s, nz = nel*ss, e, i, j, *P ; cs *A, *T = cs_dl_spalloc (n, n, nz, 1, 1) ; if (!T) return (NULL) ; P = cs_dl_malloc (s, sizeof (CS_INT)) ; if (!P) return (cs_dl_spfree (T)) ; for (e = 0 ; e < nel ; e++) { for (i = 0 ; i < s ; i++) P [i] = rand () % n ; for (j = 0 ; j < s ; j++) { for (i = 0 ; i < s ; i++) { cs_dl_entry (T, P [i], P [j], rand () / (double) RAND_MAX) ; } } } for (i = 0 ; i < n ; i++) cs_dl_entry (T, i, i, 1) ; A = cs_dl_compress (T) ; cs_dl_spfree (T) ; return (cs_dl_dupl (A) ? A : cs_dl_spfree (A)) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, nel, s ; cs *A, *AT ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_frand(n,nel,s)") ; } n = mxGetScalar (pargin [0]) ; nel = mxGetScalar (pargin [1]) ; s = mxGetScalar (pargin [2]) ; n = CS_MAX (1,n) ; nel = CS_MAX (1,nel) ; s = CS_MAX (1,s) ; AT = cs_dl_frand (n, nel, s) ; A = cs_dl_transpose (AT, 1) ; cs_dl_spfree (AT) ; cs_dl_dropzeros (A) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/test1.m0000644001170100242450000000274110710254571020436 0ustar davisfacfunction test1 %TEST1 test cs_transpose, cs_gaxpy, cs_sparse, cs_sparse2 % % Example: % test1 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; for ii = f Prob = UFget (ii) ; disp (Prob) ; for cmplex = 0:double(~ispc) A = Prob.A ; if (cmplex) A = A + 1i*sprand(A) ; end B = A' ; C = cs_transpose (A) ; if (nnz (B-C) ~= 0) error ('!') end C = cs_transpose (A,0) ; if (nnz (A.'-C) ~= 0) error ('!') end C = cs_transpose (A,1) ; if (nnz (A'-C) ~= 0) error ('!') end [m n] = size (A) ; % if (m == n) x = rand (n,1) ; y = rand (m,1) ; z = y+A*x ; q = cs_gaxpy (A,x,y) ; err = norm (z-q,1) / norm (z,1) ; disp (err) ; if (err > 1e-14) error ('!') end % end if (~ispc) x = x + 1i*rand (n,1) ; y = y + 1i*rand (m,1) ; z = y+A*x ; q = cs_gaxpy (A,x,y) ; err = norm (z-q,1) / norm (z,1) ; disp (err) ; if (err > 1e-14) error ('!') end end [i j x] = find (A) ; p = randperm (length (i)) ; i = i (p) ; j = j (p) ; x = x (p) ; D = sparse (i,j,x) ; E = cs_sparse (i,j,x) ; % [i j x] F = cs_sparse2 (i,j,x) ; if (nnz (D-E) ~= 0) error ('!') end if (nnz (F-E) ~= 0) error ('!') end clear A B C D E F % pause end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test2.m0000644001170100242450000000371310710252554020436 0ustar davisfacfunction test2 %TEST2 test cs_sparse, cs_permute, cs_pvec, cs_ipvec, cs_symperm % % Example: % test2 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) % clf for trial = 1:100 m = fix (10 * rand (1)) ; n = fix (10 * rand (1)) ; nz = fix (100 * rand (1)) ; i = 1 + fix (m * rand (nz,1)) ; j = 1 + fix (n * rand (nz,1)) ; x = rand (nz,1) ; if (~ispc) if (mod (trial, 2) == 1) x = x + 1i * (2*rand(nz,1)-1) ; end end A = sparse (i,j,x) ; B = cs_sparse (i,j,x) ; D = cs_sparse2 (i,j,x) ; fprintf ('%3d %3d %6d : %6d %6d : %d\n', ... m, n, nz, nnz (A), nnz(B), nz-nnz(A)) ; err = norm (A-B,1) / max (1, norm (A,1)) ; if (err > 0) disp ('err = ') ; disp (err) ; end if (err > 1e-14) error ('!') ; end if (nnz (B-D) > 0) error ('!') ; end if (nnz (A) ~= nnz (B)) error ('nz!') ; end if (max (1,nnz (B)) ~= max (1,nzmax (B))) nnz (B) nzmax (B) error ('nzmax!') ; end % pack [m n] = size (A) ; p = randperm (m) ; q = randperm (n) ; C1 = A (p,q) ; C2 = cs_permute (A,p,q) ; err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end % subplot (1,2,1) ; spy (A) % subplot (1,2,2) ; spy (C2) % drawnow x = rand (m,1) ; if (~ispc) if (mod (trial, 2) == 1) x = x + 1i * (2*rand(m,1)-1) ; end end x1 = x (p) ; x2 = cs_pvec (x, p) ; err = norm (x1-x2,1) ; if (err > 0) error ('!') ; end x1 = zeros (m,1) ; x1 (p) = x ; %#ok x2 = cs_ipvec (x, p) ; %#ok n = min (m,n) ; B = A (1:n, 1:n) ; p = randperm (n) ; B = B+B' ; C1 = triu (B (p,p)) ; C2 = cs_symperm (B,p) ; try pp = amd (C2) ; %#ok catch pp = symamd (C2) ; %#ok end err = norm (C1-C2,1) ; if (err > 0) error ('!') ; end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test3.m0000644001170100242450000000326610710254574020446 0ustar davisfacfunction test3 %TEST3 test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol % % Example: % test3 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse clear index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; for cmplex = 0:double(~ispc) A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end if (cmplex) A = A + 1i*sprand(A) ; end A = A*A' + 2*n*speye (n) ; try p = amd (A) ; catch p = symamd (A) ; end try L0 = chol (A)' ; catch continue end b = rand (n,1) ; if (~ispc) if (mod (i,2) == 1) b = b + 1i*rand(n,1) ; end end C = A(p,p) ; c = condest (C) ; fprintf ('condest: %g\n', c) ; x1 = L0\b ; x2 = cs_lsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-12 * c) error ('!') ; end x1 = L0'\b ; x2 = cs_ltsolve (L0,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end U = L0' ; x1 = U\b ; x2 = cs_usolve (U,b) ; err = norm (x1-x2,1) ; if (err > 1e-10 * c) error ('!') ; end L2 = cs_chol (A) ; subplot (2,3,1) ; spy (L0) ; subplot (2,3,4) ; spy (L2) ; err = norm (L0-L2,1) ; if (err > 1e-8 * c) error ('!') ; end L1 = chol (C)' ; L2 = cs_chol (C) ; subplot (2,3,2) ; spy (L1) ; subplot (2,3,5) ; spy (L2) ; err = norm (L1-L2,1) ; if (err > 1e-8 * c) error ('!') ; end [L3,p] = cs_chol (A) ; C = A(p,p) ; L4 = chol (C)' ; subplot (2,3,3) ; spy (L4) ; subplot (2,3,6) ; spy (L3) ; err = norm (L4-L3,1) ; if (err > 1e-8 * c) error ('!') ; end drawnow end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test4.m0000644001170100242450000000156510710252626020443 0ustar davisfacfunction test4 %TEST4 test cs_multiply % % Example: % test4 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:100 m = fix (10 * rand (1)) ; n = fix (10 * rand (1)) ; k = fix (10 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (n,k,d) ; if (~ispc) if (mod (trial, 4) == 0) A = A + 1i * sprandn (A) ; end if (mod (trial, 2) == 0) B = B + 1i * sprandn (B) ; end end C = A*B ; D = cs_multiply (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d k %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, k, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test5.m0000644001170100242450000000323410710252655020441 0ustar davisfacfunction test5 %TEST5 test cs_add % % Example: % test5 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; for trial = 1:200 m = fix (100 * rand (1)) ; n = fix (100 * rand (1)) ; d = rand (1) ; A = sprandn (m,n,d) ; B = sprandn (m,n,d) ; if (~ispc) if (mod (trial, 4) == 0) A = A + 1i*sprand(A) ; end if (mod (trial, 2) == 0) B = B + 1i*sprand(B) ; end end C = A+B ; D = cs_add (A,B) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end alpha = pi ; beta = 3 ; if (~ispc) if (rand () > .5) alpha = alpha + rand ( ) * 1i ; end if (rand () > .5) beta = beta + rand ( ) * 1i ; end end C = alpha*A+B ; D = cs_add (A,B,alpha) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end C = alpha*A + beta*B ; D = cs_add (A,B,alpha,beta) ; err = nnz (spones (C) - spones (D)) ; if (err > 0) error ('nz!') ; end err = norm (C-D,1) ; fprintf ('m %3d n %3d nnz(A) %6d nnz(B) %6d nnz(C) %6d err %g\n', ... m, n, nnz(A), nnz(B), nnz(C), err) ; if (err > 1e-12) error ('!') ; end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test6.m0000644001170100242450000000342710710252671020444 0ustar davisfacfunction test6 %TEST6 test cs_reach, cs_reachr, cs_lsolve, cs_usolve % % Example: % test6 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) maxerr = 0 ; clf for trial = 1:201 n = fix (100 * rand (1)) ; d = 0.1 * rand (1) ; L = tril (sprandn (n,n,d),-1) + sprand (speye (n)) ; b = sprandn (n,1,d) ; if (~ispc) if (rand ( ) > .5) L = L + 1i*sprand(L) ; end if (rand ( ) > .5) b = b + 1i*sprand(b) ; end end for uplo = 0:1 if (uplo == 1) % solve Ux=b instead ; L = L' ; end x = L\b ; sr = 1 + cs_reachr (L,b) ; sz = 1 + cs_reachr (L,b) ; check_if_same (sr,sz) ; s2 = 1 + cs_reach (L,b) ; try if (uplo == 0) x3 = cs_lsolve (L,b) ; else x3 = cs_usolve (L,b) ; end catch if (isreal (L) & isreal (b)) %#ok lasterr error ('!') ; end % punt: sparse(L)\sparse(b) not handled by cs_lsolve or cs_usolve x3 = L\b ; end spy ([L b x x3]) drawnow s = sort (sr) ; [i j xx] = find (x) ; %#ok [i3 j3 xx3] = find (x3) ; %#ok if (isempty (i)) if (~isempty (s)) i %#ok s %#ok error ('!') ; end elseif (any (s ~= i)) i %#ok s %#ok error ('!') ; end if (isempty (i3)) if (~isempty (s)) i3 %#ok s %#ok error ('!') ; end elseif (any (s ~= sort (i3))) s %#ok i3 %#ok error ('!') ; end if (any (s2 ~= sr)) s2 %#ok sr %#ok error ('!') ; end err = norm (x-x3,1) ; if (err > 1e-12) x %#ok x3 %#ok uplo %#ok err %#ok error ('!') end maxerr = max (maxerr, err) ; end drawnow end fprintf ('maxerr = %g\n', maxerr) ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/test7.m0000644001170100242450000000505610620667776020465 0ustar davisfacfunction test7 %TEST7 test cs_lu % % Example: % test7 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf maxerr1 = 0 ; maxerr2 = 0 ; for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end for cmplex = 0:1 if (cmplex) A = A + norm(A,1) * sprand (A) / 3 ; end [L,U,P] = lu (A) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g\n', umin) ; if (umin > 1e-14) [L2,U2,p] = cs_lu (A) ; subplot (3,4,1) ; spy (A) ; subplot (3,4,2) ; spy (A(p,:)) ; subplot (3,4,3) ; spy (L2) ; subplot (3,4,4) ; spy (U2) ; err1 = norm (L*U-P*A,1) / norm (A,1) ; err2 = norm (L2*U2-A(p,:),1) / norm (A,1) ; fprintf ('err %g %g\n', err1, err2) ; if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end q = colamd (A) ; [L,U,P] = lu (A (:,q)) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A) ; subplot (3,4,5) ; spy (A) ; subplot (3,4,6) ; spy (A(p,q2)) ; subplot (3,4,7) ; spy (L2) ; subplot (3,4,8) ; spy (U2) ; err1 = norm (L*U-P*A(:,q),1) / norm (A,1) ; err2 = norm (L2*U2-A(p,q2),1) / norm (A,1) ; fprintf ('err %g %g\n', err1, err2) ; if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end try q = amd (A) ; catch q = symamd (A) ; end tol = 0.01 ; [L,U,P] = lu (A (q,q), tol) ; udiag = full (diag (U)) ; umin = min (abs (udiag)) ; fprintf ('umin %g with amd q\n', umin) ; if (umin > 1e-14) [L2,U2,p,q2] = cs_lu (A,tol) ; subplot (3,4,9) ; spy (A) ; subplot (3,4,10) ; spy (A(p,q2)) ; subplot (3,4,11) ; spy (L2) ; subplot (3,4,12) ; spy (U2) ; err1 = norm (L*U-P*A(q,q),1) / norm (A,1) ; err2 = norm (L2*U2-A(p,q2),1) / norm (A,1) ; lbig = full (max (max (abs (L2)))) ; fprintf ('err %g %g lbig %g\n', err1, err2, lbig) ; if (lbig > 1/tol) error ('L!') ; end if (err1 > 1e-10 | err2 > 1e-10) %#ok error ('!') ; end maxerr1 = max (maxerr1, err1) ; maxerr2 = max (maxerr2, err2) ; end drawnow % pause end end fprintf ('maxerr %g %g\n', maxerr1, maxerr2) ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/test8.m0000644001170100242450000000277110710254600020441 0ustar davisfacfunction test8 %TEST8 test cs_cholsol, cs_lusol % % Example: % test8 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; % f = f(1) for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue end for cmplex = 0:double(~ispc) if (cmplex) A = A + 0.1i * (sprand (tril (A,-1) + triu (A,1))) ; end spd = 0 ; if (m == n) if (nnz (A-A') == 0) try p = amd (A) ; catch p = symamd (A) ; end [R,p] = chol (A (p,p)) ; spd = (p == 0) ; end end if (spd) C = A ; else C = A*A' + n*speye (n) ; try p = amd (C) ; catch p = symamd (C) ; end try R = chol (C (p,p)) ; %#ok catch continue end end b = rand (n,1) ; x1 = C\b ; x2 = cs_cholsol (C,b) ; r1 = norm (C*x1-b,1) / norm (C,1) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g\n', err) ; if (err > 1e-10) error ('!') ; end x2 = cs_lusol (C,b, 1, 0.001) ; r2 = norm (C*x2-b,1) / norm (C,1) ; err = abs (r1-r2) ; fprintf ('err %g (lu with amd(A+A'')\n', err) ; if (err > 1e-10) error ('!') ; end if (m ~= n) continue ; end x1 = A\b ; r1 = norm (A*x1-b,1) / norm (A,1) ; if (r1 < 1e-6) x2 = cs_lusol (A,b) ; r2 = norm (A*x2-b,1) / norm (A,1) ; fprintf ('lu resid %g %g\n', r1, r2) ; end end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/test9.m0000644001170100242450000000504110710254603020436 0ustar davisfacfunction test9 %TEST9 test cs_qr % % Example: % test9 % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse rand ('state', 0) ; index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; f = f (1:100) ; clf % f = 185 ; % f = 449 ; % f = 186 for i = f Prob = UFget (i) ; disp (Prob) ; A = Prob.A ; [m n] = size (A) ; if (m < n) A = A' ; end [m n] = size (A) ; sp = sprank (A) ; % if (sprank (A) < min (m,n)) % continue % end for cmplex = 0:double(~ispc) if (cmplex) A = A + 1i * sprand (A) ; end Aorig = A ; A = A (:, colamd (A)) ; s1 = svd (full (A)) ; if (cmplex) try tic ; R = chol (A'*A) ; t1 = toc ; %#ok catch fprintf ('chol (A''*A) failed\n') ; R = [ ] ; end else tic ; R = qr (A) ; t1 = toc ; %#ok end % tic ; % [Q,R] = qr (A) ; % t1 = toc ; [c,h,parent] = symbfact (A, 'col') ; rnz = sum (c) ; %#ok tic ; [V2,Beta2,p,R2] = cs_qr (sparse(A)) ; t2 = toc ; %#ok v2 = full (V2) ; if (any (spones (v2) ~= spones (V2))) error ('got zeros!') ; end C = A ; m2 = size (V2,1) ; if (m2 > m) C = [A ; sparse(m2-m, n)] ; end C = C (p,:) ; % [H1,R1] = myqr (C) ; % err1 = norm (R1-R2,1) / norm (R1) % % [svd(A) svd(R1) svd(full(R2))] % s2 = svd (full (R2)) ; % err2 = norm (s1 - s2) / s1 (1) % fprintf ('%10.6f %10.6f cs speedup %8.3f sprank %d n %d\n', ... % t1, t2, t1/t2, sp, n) ; % err2 % left-looking: [V,Beta3,R3] = qr_left (C) ; %#ok s3 = svd (full (R2)) ; err3 = norm (s1 - s3) / s1 (1) ; disp ('err3 = ') ; disp (err3) ; if (err3 > 1e-12) error ('!') ; end % right-looking: [V,Beta4,R4] = qr_right (C) ; %#ok s4 = svd (full (R2)) ; err4 = norm (s1 - s4) / s1 (1) ; disp ('err4 = ') ; disp (err4) ; if (err4 > 1e-12) error ('!') ; end % H2 = full (H2) % R2 = full (R2) subplot (2,4,1) ; spy (A) ; title ('A colamd') ; subplot (2,4,2) ; spy (C) ; title ('A rperm') ; subplot (2,4,3) ; treeplot (parent) ; subplot (2,4,4) ; spy (Aorig) ; title ('Aorig') ; subplot (2,4,5) ; spy (abs(R2)>0) ; title ('spqr R, no zeros') ; subplot (2,4,6) ; spy (R) ; title ('matlab R') ; subplot (2,4,7) ; spy (R2) ; title ('spqr R') ; subplot (2,4,8) ; spy (V2) ; title ('spqr V') ; drawnow % if (err2 > 1e-9) % error ('!') ; % end if (m2 > m) fprintf ('added %d rows, sprank %d n %d\n', m2-m, sp, n) ; end % pause end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/testh.m0000644001170100242450000000315510620372711020522 0ustar davisfacfunction testh %TESTH test Householder reflections % % Example: % testh % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse format long e fprintf ('-------------------------------------------------\n') ; x = [-3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [3 4 5]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 eps]' ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = -pi ; disp (x) ; [v, beta, s] = house (x) ; disp ('v = ') ; disp (v) ; disp ('beta = ') ; disp (beta) ; disp ('s = ') ; disp (s) ; x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; x = [1 0 0]' ; disp (x) ; [v, beta, s] = house (x) ; %#ok x = x - v*(beta*(v'*x)) ; disp (x) ; fprintf ('-------------------------------------------------\n') ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_pvec_mex.c0000644001170100242450000000215210710251202021637 0ustar davisfac#include "cs_mex.h" /* x = b(p) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, k, *p ; double *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_pvec(b,p)") ; } n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } xx = mxGetPr (pargin [1]) ; p = cs_dl_malloc (n, sizeof (CS_INT)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; if (mxIsComplex (pargin [0])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *x, *b ; b = cs_cl_mex_get_double (n, pargin [0]) ; x = cs_dl_malloc (n, sizeof (cs_complex_t)) ; cs_cl_pvec (p, b, x, n) ; pargout [0] = cs_cl_mex_put_double (n, x) ; cs_free (b) ; /* free copy of complex values */ #endif } else { double *x, *b ; b = cs_dl_mex_get_double (n, pargin [0]) ; pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; cs_dl_pvec (p, b, x, n) ; } cs_free (p) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_maxtransr_mex.c0000644001170100242450000000556710571351706022755 0ustar davisfac#include "cs_mex.h" /* find an augmenting path starting at column j and extend the match if found */ static CS_INT augment (CS_INT k, cs_dl *A, CS_INT *jmatch, CS_INT *cheap, CS_INT *w, CS_INT j) { CS_INT found = 0, p, i = -1, *Ap = A->p, *Ai = A->i ; /* --- Start depth-first-search at node j ------------------------------- */ w [j] = k ; /* mark j as visited for kth path */ for (p = cheap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* try a cheap assignment (i,j) */ found = (jmatch [i] == -1) ; } cheap [j] = p ; /* start here next time for j */ /* --- Depth-first-search of neighbors of j ----------------------------- */ for (p = Ap [j] ; p < Ap [j+1] && !found ; p++) { i = Ai [p] ; /* consider row i */ if (w [jmatch [i]] == k) continue ; /* skip col jmatch [i] if marked */ found = augment (k, A, jmatch, cheap, w, jmatch [i]) ; } if (found) jmatch [i] = j ; /* augment jmatch if path found */ return (found) ; } /* find a maximum transveral */ static CS_INT *maxtrans (cs_dl *A) /* returns jmatch [0..m-1] */ { CS_INT i, j, k, n, m, *Ap, *jmatch, *w, *cheap ; if (!A) return (NULL) ; /* check inputs */ n = A->n ; m = A->m ; Ap = A->p ; jmatch = cs_dl_malloc (m, sizeof (CS_INT)) ; /* allocate result */ w = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* allocate workspace */ if (!w || !jmatch) return (cs_dl_idone (jmatch, NULL, w, 0)) ; cheap = w + n ; for (j = 0 ; j < n ; j++) cheap [j] = Ap [j] ; /* for cheap assignment */ for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */ for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* no rows matched yet */ for (k = 0 ; k < n ; k++) augment (k, A, jmatch, cheap, w, k) ; return (cs_dl_idone (jmatch, NULL, w, 1)) ; } /* invert a maximum matching */ static CS_INT *invmatch (CS_INT *jmatch, CS_INT m, CS_INT n) { CS_INT i, j, *imatch ; if (!jmatch) return (NULL) ; imatch = cs_dl_malloc (n, sizeof (CS_INT)) ; if (!imatch) return (NULL) ; for (j = 0 ; j < n ; j++) imatch [j] = -1 ; for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ; return (imatch) ; } void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl *A, Amatrix ; double *x ; CS_INT i, m, n, *imatch, *jmatch ; if (nargout > 1 || nargin != 1) { mexErrMsgTxt ("Usage: p = cr_maxtransr(A)") ; } /* get inputs */ A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; m = A->m ; n = A->n ; jmatch = maxtrans (A) ; imatch = invmatch (jmatch, m, n) ; /* imatch = inverse of jmatch */ pargout [0] = mxCreateDoubleMatrix (1, n, mxREAL) ; x = mxGetPr (pargout [0]) ; for (i = 0 ; i < n ; i++) x [i] = imatch [i] + 1 ; cs_free (jmatch) ; cs_free (imatch) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/chol_updown2.m0000644001170100242450000000221410620375657022005 0ustar davisfacfunction [L, w] = chol_updown2 (L, sigma, w) %CHOL_UPDOWN2 Cholesky update/downdate (real and complex) % (real or complex) % Example: % [L, w] = chol_updown2 (L, sigma, w) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis, William W. Hager % http://www.cise.ufl.edu/research/sparse beta = 1 ; n = size (L,1) ; if (n == 1) wnew = L\w ; L = sqrt (L*L'+sigma*w*w') ; w = wnew ; return ; end for k = 1:n alpha = w(k) / L(k,k) ; beta2 = sqrt (beta*beta + sigma*alpha*conj(alpha)) ; gamma = sigma * conj(alpha) / (beta2 * beta) ; if (sigma > 0) % update delta = beta / beta2 ; L (k,k) = delta * L (k,k) + gamma * w (k) ; phase = abs (L (k, k))/L (k, k) ; L (k, k) = phase*L (k, k) ; w1 = w (k+1:n) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = phase * (delta * L (k+1:n,k) + gamma * w1) ; else % downdate delta = beta2 / beta ; L (k,k) = delta * L (k,k) ; phase = abs (L (k, k))/L (k, k) ; L (k, k) = phase*L (k, k) ; w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ; L (k+1:n,k) = phase * (delta * L (k+1:n,k) + gamma * w (k+1:n)) ; end w (k) = alpha ; beta = beta2 ; end SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_ipvec_mex.c0000644001170100242450000000215510710251173022022 0ustar davisfac#include "cs_mex.h" /* x(p) = b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, k, *p ; double *xx ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ipvec(b,p)") ; } n = mxGetNumberOfElements (pargin [0]) ; if (n != mxGetNumberOfElements (pargin [1])) { mexErrMsgTxt ("b or p wrong size") ; } xx = mxGetPr (pargin [1]) ; p = cs_dl_malloc (n, sizeof (CS_INT)) ; for (k = 0 ; k < n ; k++) p [k] = xx [k] - 1 ; if (mxIsComplex (pargin [0])) { #ifdef NCOMPLEX mexErrMsgTxt ("complex case not supported") ; #else cs_complex_t *x, *b ; b = cs_cl_mex_get_double (n, pargin [0]) ; x = cs_dl_malloc (n, sizeof (cs_complex_t)) ; cs_cl_ipvec (p, b, x, n) ; pargout [0] = cs_cl_mex_put_double (n, x) ; cs_free (b) ; /* free copy of complex values */ #endif } else { double *x, *b ; b = cs_dl_mex_get_double (n, pargin [0]) ; pargout [0] = mxCreateDoubleMatrix (n, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; cs_dl_ipvec (p, b, x, n) ; } cs_free (p) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/README.txt0000644001170100242450000000035110571641104020706 0ustar davisfacTest for MATLAB interface for CXSparse. Type "testall" to run all the tests. Also includes "textbook" codes for the book "Direct Methods for Sparse Linear Systems", which are not part of CXSparse proper, but are used in the tests. SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_test_make.m0000644001170100242450000000221610710251526022031 0ustar davisfacfunction cs_test_make (force) %CS_TEST_MAKE compiles the CSparse, Demo, and Test mexFunctions. % The current directory must be CSparse/MATLAB/Test to use this function. % % Example: % cs_test_make % See also: testall % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse mexcmd = 'mex -DCS_LONG -I../../../UFconfig' ; if (~isempty (strfind (computer, '64'))) mexcmd = [mexcmd ' -largeArrayDims'] ; end if (nargin < 1) force = 0 ; end cd ('../CSparse') ; [object_files timestamp] = cs_make ; cd ('../Test') ; mexfunc = { 'cs_ipvec', 'cs_pvec', 'cs_sparse2', ... 'cs_reach', 'cs_maxtransr', 'cs_reachr', 'cs_rowcnt', 'cs_frand' } ; if (ispc) % Windows does not support ANSI C99 mexcmd = [mexcmd ' -DNCOMPLEX'] ; end for i = 1:length(mexfunc) [s t tobj] = cs_must_compile ('', mexfunc{i}, '_mex', ... ['.' mexext], 'cs_test_make.m', force) ; if (s | tobj < timestamp) %#ok cmd = [mexcmd ' -O -output ' mexfunc{i} ' ' mexfunc{i} '_mex.c -I..' ... filesep '..' filesep 'Include -I..' ... filesep 'CSparse ' object_files] ; fprintf ('%s\n', cmd) ; eval (cmd) ; end end SuiteSparse/CXSparse_newfiles/MATLAB/Test/house.m0000644001170100242450000000067410620372614020523 0ustar davisfacfunction [v,beta,s] = house (x) %HOUSE find a Householder reflection. % real or complex case. % Example: % [v,beta,s] = house (x) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse v = x ; s = norm (x) ; if (s == 0) beta = 0 ; v (1) = 1 ; else if (x (1) ~= 0) s = sign (x (1)) * s ; end v (1) = v (1) + s ; beta = 1 / real (conj (s) * v (1)) ; end s = - s ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_reach_mex.c0000644001170100242450000000200110571352431021770 0ustar davisfac#include "cs_mex.h" /* find nonzero pattern of x=L\sparse(b). L must be sparse and lower * triangular. b must be a sparse vector. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs Lmatrix, Bmatrix, *L, *B ; double *x ; CS_INT k, i, j, top, *xi, *perm ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_reach(L,b)") ; } /* get inputs */ L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; cs_mex_check (0, L->n, 1, 0, 1, 1, pargin [1]) ; perm = cs_dl_malloc (L->n, sizeof (CS_INT)) ; for (k = 0 ; k < L->n ; k++) perm [k] = k ; xi = cs_dl_calloc (3*L->n, sizeof (CS_INT)) ; top = cs_dl_reach (L, B, 0, xi, perm) ; pargout [0] = mxCreateDoubleMatrix (L->n - top, 1, mxREAL) ; x = mxGetPr (pargout [0]) ; for (j = 0, i = top ; i < L->n ; i++, j++) x [j] = xi [i] ; cs_free (xi) ; cs_free (perm) ; } SuiteSparse/CXSparse_newfiles/MATLAB/Test/cs_fiedler.m0000644001170100242450000000164410620372610021471 0ustar davisfacfunction [p,v,d] = cs_fiedler (A) %CS_FIEDLER the Fiedler vector of a connected graph. % [p,v,d] = cs_fiedler(A) computes the Fiedler vector v (the eigenvector % corresponding to the 2nd smallest eigenvalue d of the Laplacian of the graph % of A+A'). p is the permutation obtained when v is sorted. A should be a % connected graph. % % Example: % [p,v,d] = cs_fiedler (A) ; % % See also CS_SCC, EIGS, SYMRCM, UNMESH. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (A,1) ; if (n < 2) p = 1 ; v = 1 ; d = 0 ; return ; end opt.disp = 0 ; % turn off printing in eigs opt.tol = sqrt (eps) ; if (~isreal (A)) A = spones (A) ; end S = A | A' | speye (n) ; % compute the Laplacian of A S = diag (sum (S)) - S ; [v,d] = eigs (S, 2, 'SA', opt) ; % find the Fiedler vector v v = v (:,2) ; d = d (2,2) ; [ignore p] = sort (v) ; % sort it to get p SuiteSparse/CXSparse_newfiles/MATLAB/Test/testall.m0000644001170100242450000000302110710513106021026 0ustar davisfacfunction testall %TESTALL test all CSparse functions (run tests 1 to 28 below) % % Example: % testall % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse h = waitbar (0, 'CXSparse') ; cs_test_make % compile all CSparse, Demo, Text, and Test mexFunctions ntests = 29 ; testwait (1, ntests, h) ; test1 ; testwait (2, ntests, h) ; test2 ; testwait (3, ntests, h) ; test3 ; testwait (4, ntests, h) ; test4 ; testwait (5, ntests, h) ; test5 ; testwait (6, ntests, h) ; test6 ; testwait (7, ntests, h) ; test7 ; testwait (8, ntests, h) ; test8 ; testwait (9, ntests, h) ; test9 ; testwait (10, ntests, h) ; test10 ; testwait (11, ntests, h) ; test11 ; testwait (12, ntests, h) ; test12 ; testwait (13, ntests, h) ; test13 ; testwait (14, ntests, h) ; test14 ; testwait (15, ntests, h) ; test15 ; testwait (16, ntests, h) ; test16 ; testwait (17, ntests, h) ; test17 ; testwait (18, ntests, h) ; test18 ; testwait (19, ntests, h) ; test19 ; testwait (20, ntests, h) ; test20 ; testwait (21, ntests, h) ; test21 ; testwait (22, ntests, h) ; test22 ; testwait (23, ntests, h) ; test23 ; testwait (24, ntests, h) ; test24 ; testwait (25, ntests, h) ; test25 ; testwait (26, ntests, h) ; test26 ; testwait (27, ntests, h) ; test27 ; testwait (28, ntests, h) ; test28 ; testwait (29, ntests, h) ; test_qr ; close (h) function testwait (n,ntests,h) fprintf ('\n------------------------ test%d\n', n) ; waitbar (n/(ntests+1), h, sprintf ('CXSparse test %d of %d\n', n, ntests)) ; SuiteSparse/CXSparse_newfiles/MATLAB/Test/norm1est.m0000644001170100242450000000131410620667470021147 0ustar davisfacfunction est = norm1est (L,U,P,Q) %NORM1EST 1-norm estimate. % L and U must be real. % Example: % est = norm1est (L,U,P,Q) % See also: cs_demo % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse n = size (L,1) ; for k = 1:5 if (k == 1) est = 0 ; x = ones (n,1) / n ; jold = -1 ; else j = min (find (abs (x) == norm (x,inf))) ; %#ok if (j == jold) break end ; x = zeros (n,1) ; x (j) = 1 ; jold = j ; end x = Q * (U \ (L \ (P*x))) ; est_old = est ; est = norm (x,1) ; if (k > 1 & est <= est_old) %#ok break end ; s = ones (n,1) ; s (find (x < 0)) = -1 ; %#ok x = P' * (L' \ (U' \ (Q'*s))) ; end SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/0000755001170100242450000000000010634327246017642 5ustar davisfacSuiteSparse/CXSparse_newfiles/MATLAB/CSparse/Makefile0000644001170100242450000000735410617167014021307 0ustar davisfacinclude ../../../UFconfig/UFconfig.mk MX = $(MEX) -DCS_LONG AR = ar cr RANLIB = ranlib I = -I../../Include -I../../../UFconfig all: mexcsparse.a cs_mex.h $(MX) cs_thumb_mex.c $(I) mexcsparse.a -output cs_thumb $(MX) cs_print_mex.c $(I) mexcsparse.a -output cs_print $(MX) cs_updown_mex.c $(I) mexcsparse.a -output cs_updown $(MX) cs_gaxpy_mex.c $(I) mexcsparse.a -output cs_gaxpy $(MX) cs_transpose_mex.c $(I) mexcsparse.a -output cs_transpose $(MX) cs_sparse_mex.c $(I) mexcsparse.a -output cs_sparse $(MX) cs_multiply_mex.c $(I) mexcsparse.a -output cs_multiply $(MX) cs_add_mex.c $(I) mexcsparse.a -output cs_add $(MX) cs_permute_mex.c $(I) mexcsparse.a -output cs_permute $(MX) cs_symperm_mex.c $(I) mexcsparse.a -output cs_symperm $(MX) cs_lsolve_mex.c $(I) mexcsparse.a -output cs_lsolve $(MX) cs_ltsolve_mex.c $(I) mexcsparse.a -output cs_ltsolve $(MX) cs_usolve_mex.c $(I) mexcsparse.a -output cs_usolve $(MX) cs_utsolve_mex.c $(I) mexcsparse.a -output cs_utsolve $(MX) cs_chol_mex.c $(I) mexcsparse.a -output cs_chol $(MX) cs_etree_mex.c $(I) mexcsparse.a -output cs_etree $(MX) cs_counts_mex.c $(I) mexcsparse.a -output cs_counts $(MX) cs_qr_mex.c $(I) mexcsparse.a -output cs_qr $(MX) cs_amd_mex.c $(I) mexcsparse.a -output cs_amd $(MX) cs_lu_mex.c $(I) mexcsparse.a -output cs_lu $(MX) cs_cholsol_mex.c $(I) mexcsparse.a -output cs_cholsol $(MX) cs_lusol_mex.c $(I) mexcsparse.a -output cs_lusol $(MX) cs_droptol_mex.c $(I) mexcsparse.a -output cs_droptol $(MX) cs_qrsol_mex.c $(I) mexcsparse.a -output cs_qrsol $(MX) cs_dmperm_mex.c $(I) mexcsparse.a -output cs_dmperm $(MX) cs_scc_mex.c $(I) mexcsparse.a -output cs_scc $(MX) cs_sqr_mex.c $(I) mexcsparse.a -output cs_sqr $(MX) cs_randperm_mex.c $(I) mexcsparse.a -output cs_randperm CSD = cs_mex.o \ cs_amd.o \ cs_chol.o \ cs_counts.o \ cs_cumsum.o \ cs_fkeep.o \ cs_dfs.o \ cs_dmperm.o \ cs_droptol.o \ cs_dropzeros.o \ cs_dupl.o \ cs_entry.o \ cs_etree.o \ cs_gaxpy.o \ cs_ipvec.o \ cs_lsolve.o \ cs_ltsolve.o \ cs_lu.o \ cs_maxtrans.o \ cs_util.o \ cs_malloc.o \ cs_multiply.o \ cs_add.o \ cs_scatter.o \ cs_permute.o \ cs_pinv.o \ cs_post.o \ cs_tdfs.o \ cs_pvec.o \ cs_qr.o \ cs_happly.o \ cs_house.o \ cs_schol.o \ cs_scc.o \ cs_sqr.o \ cs_symperm.o \ cs_transpose.o \ cs_compress.o \ cs_usolve.o \ cs_utsolve.o \ cs_cholsol.o \ cs_lusol.o \ cs_qrsol.o \ cs_updown.o \ cs_norm.o \ cs_print.o \ cs_load.o \ cs_spsolve.o \ cs_reach.o \ cs_ereach.o \ cs_leaf.o \ cs_randperm.o CSC = \ cs_cl_amd.o \ cs_cl_chol.o \ cs_cl_counts.o \ cs_cl_cumsum.o \ cs_cl_fkeep.o \ cs_cl_dfs.o \ cs_cl_dmperm.o \ cs_cl_droptol.o \ cs_cl_dropzeros.o \ cs_cl_dupl.o \ cs_cl_entry.o \ cs_cl_etree.o \ cs_cl_gaxpy.o \ cs_cl_ipvec.o \ cs_cl_lsolve.o \ cs_cl_ltsolve.o \ cs_cl_lu.o \ cs_cl_maxtrans.o \ cs_cl_util.o \ cs_cl_malloc.o \ cs_cl_multiply.o \ cs_cl_add.o \ cs_cl_scatter.o \ cs_cl_permute.o \ cs_cl_pinv.o \ cs_cl_post.o \ cs_cl_tdfs.o \ cs_cl_pvec.o \ cs_cl_qr.o \ cs_cl_happly.o \ cs_cl_house.o \ cs_cl_schol.o \ cs_cl_scc.o \ cs_cl_sqr.o \ cs_cl_symperm.o \ cs_cl_transpose.o \ cs_cl_compress.o \ cs_cl_usolve.o \ cs_cl_utsolve.o \ cs_cl_cholsol.o \ cs_cl_lusol.o \ cs_cl_qrsol.o \ cs_cl_updown.o \ cs_cl_norm.o \ cs_cl_print.o \ cs_cl_load.o \ cs_cl_spsolve.o \ cs_cl_reach.o \ cs_cl_ereach.o \ cs_cl_leaf.o \ cs_cl_randperm.o CS = $(CSD) $(CSC) mexcsparse.a: $(CS) $(AR) mexcsparse.a $(CS) $(RANLIB) mexcsparse.a $(CS): ../../Include/cs.h cs_mex.o: cs_mex.c cs_mex.h $(MX) -c $(I) $< cs_cl_%.o: ../../Source/cs_%.c cp -f $< cs_cl_$*.c $(MX) -DCS_COMPLEX -c $(I) cs_cl_$*.c cs_%.o: ../../Source/cs_%.c $(MX) -c $(I) $< clean: - rm -f *.o distclean: clean - rm -f *.mex* *.dll *.a cs_cl_*.c purge: distclean SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_amd_mex.c0000644001170100242450000000126310573562345022112 0ustar davisfac#include "cs_mex.h" /* cs_amd: approximate minimum degree ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT *P, order ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_amd(A,order)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ order = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; /* get ordering */ order = CS_MAX (order, 1) ; order = CS_MIN (order, 3) ; P = cs_dl_amd (order, A) ; /* min. degree ordering */ pargout [0] = cs_dl_mex_put_int (P, A->n, 1, 1) ; /* return P */ } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_counts_mex.c0000644001170100242450000000165710573562346022674 0ustar davisfac#include "cs_mex.h" /* cs_counts: column counts for sparse Cholesky factor L. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT n, ata, *parent, *post, *c ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: c = cs_counts(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_dl_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_dl_etree (A, ata) ; /* compute etree */ post = cs_dl_post (parent, n) ; /* postorder the etree*/ c = cs_dl_counts (A, parent, post, ata) ; /* get column counts */ pargout [0] = cs_dl_mex_put_int (c, n, 0, 1) ; /* return counts */ cs_free (parent) ; cs_free (post) ; } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_transpose_mex.c0000644001170100242450000000204110573562353023361 0ustar davisfac#include "cs_mex.h" /* C = cs_transpose (A), computes C=A', where A must be sparse. C = cs_transpose (A,kind) computes C=A.' if kind <= 0, C=A' if kind > 0 */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT values ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: C = cs_transpose(A,kind)") ; } values = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; values = (values <= 0) ? -1 : 1 ; if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_transpose (A, values) ; /* C = A' */ pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_transpose (A, values) ; /* C = A' */ pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_permute_mex.c0000644001170100242450000000272410573562351023032 0ustar davisfac#include "cs_mex.h" /* cs_permute: permute a sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, *P, *Q, *Pinv, m, n ; if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: C = cs_permute(A,p,q)") ; } m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; P = cs_dl_mex_get_int (m, pargin [1], &ignore, 1) ; /* get P */ Q = cs_dl_mex_get_int (n, pargin [2], &ignore, 1) ; /* get Q */ Pinv = cs_pinv (P, m) ; /* P = Pinv' */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_permute (A, Pinv, Q, 1) ; /* C = A(p,q) */ cs_cl_free (A->x) ; D = cs_cl_transpose (C, 1) ; /* sort C via double transpose */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_permute (A, Pinv, Q, 1) ; /* C = A(p,q) */ D = cs_dl_transpose (C, 1) ; /* sort C via double transpose */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } cs_free (Pinv) ; cs_free (P) ; cs_free (Q) ; } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/Contents.m0000644001170100242450000000537510620374610021617 0ustar davisfac% CXSparse: a Concise Sparse matrix Package. % % Matrices used in CXSparse must in general be either sparse matrices % or dense vectors. Ordering methods can accept any sparse matrix. % CXsparse allows for complex matrices (CSparse does not). % % cs_add - sparse matrix addition. % cs_amd - approximate minimum degree ordering. % cs_chol - sparse Cholesky factorization. % cs_cholsol - solve A*x=b using a sparse Cholesky factorization. % cs_counts - column counts for sparse Cholesky factor L. % cs_dmperm - maximum matching or Dulmage-Mendelsohn permutation. % cs_dmsol - x=A\b using the coarse Dulmage-Mendelsohn decomposition. % cs_dmspy - plot the Dulmage-Mendelsohn decomposition of a matrix. % cs_droptol - remove small entries from a sparse matrix. % cs_esep - find an edge separator of a symmetric matrix A % cs_etree - elimination tree of A or A'*A. % cs_gaxpy - sparse matrix times vector. % cs_lsolve - solve a sparse lower triangular system L*x=b. % cs_ltsolve - solve a sparse upper triangular system L'*x=b. % cs_lu - sparse LU factorization, with fill-reducing ordering. % cs_lusol - solve Ax=b using LU factorization. % cs_make - compiles CXSparse for use in MATLAB. % cs_multiply - sparse matrix multiply. % cs_nd - generalized nested dissection ordering. % cs_nsep - find a node separator of a symmetric matrix A. % cs_permute - permute a sparse matrix. % cs_print - print the contents of a sparse matrix. % cs_qr - sparse QR factorization (Householder-based). % cs_qleft - apply Householder vectors on the left. % cs_qright - apply Householder vectors on the right. % cs_qrsol - solve a sparse least-squares problem. % cs_randperm - random permutation. % cs_sep - convert an edge separator into a node separator. % cs_scc - strongly-connected components of a square sparse matrix. % cs_scc2 - cs_scc, or connected components of a bipartite graph. % cs_sparse - convert a triplet form into a sparse matrix. % cs_sqr - symbolic sparse QR factorization. % cs_symperm - symmetric permutation of a symmetric matrix. % cs_transpose - transpose a sparse matrix. % cs_updown - rank-1 update/downdate of a sparse Cholesky factorization. % cs_usolve - solve a sparse upper triangular system U*x=b. % cs_utsolve - solve a sparse lower triangular system U'*x=b. % cspy - plot a matrix in color. % ccspy - plot the connected components of a matrix. % Example: % help cs_add % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse % helper function: % cs_must_compile - return 1 if source code f must be compiled, 0 otherwise SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_multiply_mex.c0000644001170100242450000000277010634322566023231 0ustar davisfac#include "cs_mex.h" /* cs_multiply: sparse matrix multiply */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_multiply(A,B)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl A1matrix, B1matrix, *A, *B, *C, *D, *A1, *B1 ; A1 = cs_cl_mex_get_sparse (&A1matrix, 0, pargin [0]) ; A = cs_cl_transpose (A1, 1) ; cs_cl_free (A1->x) ; /* complex copy no longer needed */ B1 = cs_cl_mex_get_sparse (&B1matrix, 0, pargin [1]) ; B = cs_cl_transpose (B1, 1) ; cs_cl_free (B1->x) ; /* complex copy no longer needed */ D = cs_cl_multiply (B,A) ; /* D = B'*A' */ cs_cl_spfree (A) ; cs_cl_spfree (B) ; cs_cl_dropzeros (D) ; /* drop zeros from D */ C = cs_cl_transpose (D, 1) ; /* C = D', so C is sorted */ cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_dl_transpose (cs_dl_mex_get_sparse (&Amatrix, 0,1, pargin[0]),1); B = cs_dl_transpose (cs_dl_mex_get_sparse (&Bmatrix, 0,1, pargin[1]),1); D = cs_dl_multiply (B,A) ; /* D = B'*A' */ cs_dl_spfree (A) ; cs_dl_spfree (B) ; cs_dl_dropzeros (D) ; /* drop zeros from D */ C = cs_dl_transpose (D, 1) ; /* C = D', so C is sorted */ cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_gaxpy_mex.c0000644001170100242450000000230310634322365022467 0ustar davisfac#include "cs_mex.h" /* z = cs_gaxpy (A,x,y) computes z = A*x+y */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: z = cs_gaxpy(A,x,y)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]) || mxIsComplex (pargin [2])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; cs_complex_t *x, *z ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ;/* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* get x */ z = cs_cl_mex_get_double (A->m, pargin [2]) ; /* z = y */ cs_cl_gaxpy (A, x, z) ; /* z = z + A*x */ cs_free (x) ; cs_free (A->x) ; pargout [0] = cs_cl_mex_put_double (A->m, z) ; /* return z */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; double *x, *y, *z ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;/* get A */ x = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get x */ y = cs_dl_mex_get_double (A->m, pargin [2]) ; /* get y */ z = cs_dl_mex_put_double (A->m, y, &(pargout [0])) ; /* z = y */ cs_dl_gaxpy (A, x, z) ; /* z = z + A*x */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_scc_mex.c0000644001170100242450000000215310573562352022116 0ustar davisfac#include "cs_mex.h" /* [p,r] = cs_scc (A) finds the strongly connected components of A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; cs_dld *D ; CS_INT n, j, *Ap2 ; if (nargout > 2 || nargin != 1) { mexErrMsgTxt ("Usage: [p,r] = cs_scc(A)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 1, 0, pargin [0]) ; /* get A */ /* cs_scc modifies A->p and then restores it (in cs_dfs). Avoid the issue * of a mexFunction modifying its input (even temporarily) by making a copy * of A->p. This issue does not arise in cs_dmperm, because that function * applies cs_scc to a submatrix C, not to A directly. */ n = A->n ; Ap2 = cs_dl_malloc (n+1, sizeof (CS_INT)) ; for (j = 0 ; j <= n ; j++) Ap2 [j] = A->p [j] ; A->p = Ap2 ; D = cs_dl_scc (A) ; /* find conn. comp. */ pargout [0] = cs_dl_mex_put_int (D->p, n, 1, 0) ; /* return p */ pargout [1] = cs_dl_mex_put_int (D->r, D->nb+1, 1, 0) ; /* return r */ cs_dl_dfree (D) ; cs_free (Ap2) ; /* free the copy of A->p */ } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_lu_mex.c0000644001170100242450000000562610634322545021772 0ustar davisfac#include "cs_mex.h" /* cs_lu: sparse LU factorization, with optional fill-reducing ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, order, *p ; double tol ; if (nargout > 4 || nargin > 3 || nargin < 1) { mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ; } if (nargin == 2) /* determine tol and ordering */ { tol = mxGetScalar (pargin [1]) ; order = (nargout == 4) ? 1 : 0 ; /* amd (A+A'), or natural */ } else { tol = 1 ; order = (nargout == 4) ? 2 : 0 ; /* amd(S'*S) w/dense rows or I */ } if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_cl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_cl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_cl_free (A->x) ; /* complex copy no longer needed */ cs_cl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; p = cs_cl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_cl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_dl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_dl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_dl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; p = cs_dl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_dl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_chol_mex.c0000644001170100242450000000346710573562345022306 0ustar davisfac#include "cs_mex.h" /* cs_chol: sparse Cholesky factorization */ void mexFunction (int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ]) { CS_INT order, n, drop, *p ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [L,p] = cs_chol(A,drop)") ; } drop = (nargin == 1) ? 1 : mxGetScalar (pargin [1]) ; order = (nargout > 1) ? 1 : 0 ; /* determine ordering */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; cs_cls *S ; cs_cln *N ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_cl_schol (order, A) ; /* symbolic Cholesky */ N = cs_cl_chol (A, S) ; /* numeric Cholesky */ if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ; cs_free (A->x) ; if (drop) cs_cl_dropzeros (N->L) ; /* drop zeros if requested*/ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return L */ if (nargout > 1) { p = cs_cl_pinv (S->pinv, n) ; /* p=pinv' */ pargout [1] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; cs_dls *S ; cs_dln *N ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_dl_schol (order, A) ; /* symbolic Cholesky */ N = cs_dl_chol (A, S) ; /* numeric Cholesky */ if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ; if (drop) cs_dl_dropzeros (N->L) ; /* drop zeros if requested*/ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return L */ if (nargout > 1) { p = cs_dl_pinv (S->pinv, n) ; /* p=pinv' */ pargout [1] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_dmperm_mex.c0000644001170100242450000000240110573562346022631 0ustar davisfac#include "cs_mex.h" /* cs_dmperm: maximum matching or Dulmage-Mendelsohn permutation. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; cs_dl *A, Amatrix ; cs_dld *D ; CS_INT m, n, *jmatch, iseed ; if (nargin < 1 || nargin > 2 || nargout > 6) { mexErrMsgTxt ("Usage: [p,q,r,s,cc,rr] = cs_dmperm (A,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 0 ; /* get seed */ iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ n = A->n ; m = A->m ; if (nargout <= 1) { jmatch = cs_dl_maxtrans (A, iseed) ; /* max. matching */ pargout [0] = cs_dl_mex_put_int (jmatch+m, n, 1, 0) ; /* return imatch */ cs_free (jmatch) ; } else { D = cs_dl_dmperm (A, iseed) ; /* Dulmage-Mendelsohn decomposition */ pargout [0] = cs_dl_mex_put_int (D->p, m, 1, 0) ; pargout [1] = cs_dl_mex_put_int (D->q, n, 1, 0) ; pargout [2] = cs_dl_mex_put_int (D->r, D->nb+1, 1, 0) ; pargout [3] = cs_dl_mex_put_int (D->s, D->nb+1, 1, 0) ; pargout [4] = cs_dl_mex_put_int (D->cc, 5, 1, 0) ; pargout [5] = cs_dl_mex_put_int (D->rr, 5, 1, 0) ; cs_dl_dfree (D) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_qrsol_mex.c0000644001170100242450000000304110573562351022502 0ustar davisfac#include "cs_mex.h" /* cs_qrsol: solve least squares or underdetermined problem */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT k, order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_qrsol(A,b,order)") ; } order = (nargin < 3) ? 3 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x, *b ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ b = cs_cl_mex_get_double (A->m, pargin [1]) ; /* get b */ x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (cs_complex_t)) ; for (k = 0 ; k < A->m ; k++) x [k] = b [k] ; /* x = b */ cs_free (b) ; if (!cs_cl_qrsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("QR solve failed") ; } pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->m, pargin [1]) ; /* get b */ x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (double)) ; /* x = b */ for (k = 0 ; k < A->m ; k++) x [k] = b [k] ; if (!cs_dl_qrsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("QR solve failed") ; } cs_dl_mex_put_double (A->n, x, &(pargout [0])) ; /* return x */ cs_free (x) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_droptol_mex.c0000644001170100242450000000255410573562346023041 0ustar davisfac#include "cs_mex.h" /* cs_droptol: remove small entries from A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT j, k ; double tol ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_droptol(A,tol)") ; } tol = mxGetScalar (pargin [1]) ; /* get tol */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *C, *A ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ C = cs_cl_spalloc (A->m, A->n, A->nzmax, 1, 0) ; /* C = A */ for (j = 0 ; j <= A->n ; j++) C->p [j] = A->p [j] ; for (k = 0 ; k < A->nzmax ; k++) C->i [k] = A->i [k] ; for (k = 0 ; k < A->nzmax ; k++) C->x [k] = A->x [k] ; cs_cl_droptol (C, tol) ; /* drop from C */ pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *C, *A ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ C = cs_dl_spalloc (A->m, A->n, A->nzmax, 1, 0) ; /* C = A */ for (j = 0 ; j <= A->n ; j++) C->p [j] = A->p [j] ; for (k = 0 ; k < A->nzmax ; k++) C->i [k] = A->i [k] ; for (k = 0 ; k < A->nzmax ; k++) C->x [k] = A->x [k] ; cs_dl_droptol (C, tol) ; /* drop from C */ pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_lsolve_mex.c0000644001170100242450000000574210634322432022650 0ustar davisfac#include "cs_mex.h" /* cs_lsolve: x=L\b. L must be sparse and lower triangular. b must be a * full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on L and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, L, by modifying L->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of L->p * (see cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. * * Note that b cannot be sparse complex. This function does not support * sparse complex L and b because the sparse x=L\b only accesses part of the * matrix L. Converting L from a MATLAB complex matrix to a CXSparse complex * matrix requires all of L to be accessed, defeating the purpose of this * function. * * L can be sparse complex, but in that case b must be full real or complex, * not sparse. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT top, nz, p, *xi, n ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_lsolve(L,b)") ; } if (mxIsSparse (pargin [1])) { cs_dl Lmatrix, Bmatrix, *L, *B, *X ; double *x ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { mexErrMsgTxt ("sparse complex case not supported") ; } L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ;/* get L */ n = L->n ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b*/ cs_mex_check (0, n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* get workspace */ x = cs_dl_malloc (n, sizeof (double)) ; top = cs_dl_spsolve (L, B, 0, xi, x, NULL, 1) ; /* x = L\b */ X = cs_dl_spalloc (n, 1, n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_dl_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *L ; cs_complex_t *x ; L = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* get L */ n = L->n ; x = cs_cl_mex_get_double (n, pargin [1]) ; /* x = b */ cs_cl_lsolve (L, x) ; /* x = L\x */ cs_free (L->x) ; pargout [0] = cs_cl_mex_put_double (n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *L ; double *x, *b ; L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ n = L->n ; b = cs_dl_mex_get_double (n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (n, b, &(pargout [0])) ; /* x = b */ cs_dl_lsolve (L, x) ; /* x = L\x */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_print_mex.c0000644001170100242450000000147110573562351022503 0ustar davisfac#include "cs_mex.h" /* cs_print: print the contents of a sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT brief ; if (nargout > 0 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: cs_print(A,brief)") ; } brief = (nargin < 2) ? 0 : mxGetScalar (pargin [1]) ; /* get brief */ if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ cs_cl_print (A, brief) ; /* print A */ cs_free (A->x) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;/* get A */ cs_print (A, brief) ; /* print A */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_esep.m0000644001170100242450000000120310620372560021427 0ustar davisfacfunction [a,b] = cs_esep (A) %CS_ESEP find an edge separator of a symmetric matrix A % [a,b] = cs_esep(A) finds a edge separator s that splits the graph of A % into two parts a and b of roughly equal size. The edge separator is the % set of entries in A(a,b). % % Example: % Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; % [a,b] = cs_esep (A) ; % cspy (A (a,b)) ; % % See also CS_NSEP, CS_SEP, CS_ND, SYMRCM. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (~isreal (A)) A = spones (A) ; end p = symrcm (A) ; n2 = fix (size(A,1)/2) ; a = p (1:n2) ; b = p (n2+1:end) ; SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_thumb_mex.c0000644001170100242450000000340610573562353022470 0ustar davisfac#include "cs_mex.h" /* cs_thumb: convert a sparse matrix to a dense 2D thumbnail matrix of size * at most k-by-k. k defaults to 256. A helper mexFunction for cspy. */ #define INDEX(i,j,lda) ((i)+(j)*(lda)) #define ISNAN(x) ((x) != (x)) #ifdef DBL_MAX #define BIG_VALUE DBL_MAX #else #define BIG_VALUE 1.7e308 #endif void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT m, n, mn, m2, n2, k, s, j, ij, sj, si, p, *Ap, *Ai ; double aij, ax, az, *S, *Ax, *Az ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: S = cs_thumb(A,k)") ; } cs_mex_check (0, -1, -1, 0, 1, 1, pargin [0]) ; m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; mn = CS_MAX (m,n) ; k = (nargin == 1) ? 256 : mxGetScalar (pargin [1]) ; /* get k */ /* s = size of each submatrix; A(1:s,1:s) maps to S(1,1) */ s = (mn < k) ? 1 : (CS_INT) ceil ((double) mn / (double) k) ; m2 = (CS_INT) ceil ((double) m / (double) s) ; n2 = (CS_INT) ceil ((double) n / (double) s) ; /* create S */ pargout [0] = mxCreateDoubleMatrix (m2, n2, mxREAL) ; S = mxGetPr (pargout [0]) ; Ap = (CS_INT *) mxGetJc (pargin [0]) ; Ai = (CS_INT *) mxGetIr (pargin [0]) ; Ax = mxGetPr (pargin [0]) ; Az = (mxIsComplex (pargin [0])) ? mxGetPi (pargin [0]) : NULL ; for (j = 0 ; j < n ; j++) { sj = j/s ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { si = Ai [p] / s ; ij = INDEX (si,sj,m2) ; ax = Ax [p] ; az = Az ? Az [p] : 0 ; if (az == 0) { aij = fabs (ax) ; } else { aij = sqrt (ax*ax + az*az) ; } if (ISNAN (aij)) aij = BIG_VALUE ; aij = CS_MIN (BIG_VALUE, aij) ; S [ij] = CS_MAX (S [ij], aij) ; } } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_updown_mex.c0000644001170100242450000000612210634327243022656 0ustar davisfac#include "cs_mex.h" /* cs_updown: sparse Cholesky update/downdate (rank-1 or multiple rank) */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, j, k, n, lnz, *parent, sigma = 1, cp [2], ok ; char sigma_string [20] ; if (nargout > 1 || nargin < 3 || nargin > 4) { mexErrMsgTxt ("Usage: L = cs_updown(L,C,parent,sigma)") ; } if (nargin > 3 && mxIsChar (pargin [3])) { mxGetString (pargin [3], sigma_string, 8) ; sigma = (sigma_string [0] == '-') ? (-1) : 1 ; } n = mxGetN (pargin [0]) ; parent = cs_dl_mex_get_int (n, pargin [2], &ignore, 0) ; /* get parent*/ if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *Lin, Cmatrix, *C, *L, Cvector, *Cvec ; /* get input L, and copy MATLAB complex to C complex type */ Lin = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* make a copy of L (this can take more work than updating L itself) */ lnz = Lin->p [n] ; L = cs_cl_spalloc (n, n, lnz, 0, 0) ; for (j = 0 ; j <= n ; j++) L->p [j] = Lin->p [j] ; for (k = 0 ; k < lnz ; k++) L->i [k] = Lin->i [k] ; /* complex values already copied into Lin->x, use shallow copy for L */ L->x = Lin->x ; cs_mex_check (0, n, -1, 0, 1, 1, pargin [1]) ; /* get C */ C = cs_cl_mex_get_sparse (&Cmatrix, 0, pargin [1]) ; /* do the update one column at a time */ Cvec = &Cvector ; Cvec->m = n ; Cvec->n = 1 ; Cvec->p = cp ; Cvec->nz = -1 ; cp [0] = 0 ; for (k = 0 ; k < C->n ; k++) { /* extract C(:,k) */ cp [1] = C->p [k+1] - C->p [k] ; Cvec->nzmax = cp [1] ; Cvec->i = C->i + C->p [k] ; Cvec->x = C->x + C->p [k] ; /* update/downdate */ ok = cs_cl_updown (L, sigma, Cvec, parent) ; if (!ok) mexErrMsgTxt ("matrix is not positive definite") ; } /* return new L */ pargout [0] = cs_cl_mex_put_sparse (&L) ; cs_free (C->x) ; /* free complex copy of C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *Lin, Cmatrix, *C, *L, Cvector, *Cvec ; /* get input L */ Lin = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* make a copy of L (this can take more work than updating L itself) */ lnz = Lin->p [n] ; L = cs_dl_spalloc (n, n, lnz, 1, 0) ; for (j = 0 ; j <= n ; j++) L->p [j] = Lin->p [j] ; for (k = 0 ; k < lnz ; k++) L->i [k] = Lin->i [k] ; for (k = 0 ; k < lnz ; k++) L->x [k] = Lin->x [k] ; cs_mex_check (0, n, -1, 0, 1, 1, pargin [1]) ; /* get C */ C = cs_dl_mex_get_sparse (&Cmatrix, 0, 1, pargin [1]) ; /* do the update one column at a time */ Cvec = &Cvector ; Cvec->m = n ; Cvec->n = 1 ; Cvec->p = cp ; Cvec->nz = -1 ; cp [0] = 0 ; for (k = 0 ; k < C->n ; k++) { /* extract C(:,k) */ cp [1] = C->p [k+1] - C->p [k] ; Cvec->nzmax = cp [1] ; Cvec->i = C->i + C->p [k] ; Cvec->x = C->x + C->p [k] ; /* update/downdate */ ok = cs_dl_updown (L, sigma, Cvec, parent) ; if (!ok) mexErrMsgTxt ("matrix is not positive definite") ; } /* return new L */ pargout [0] = cs_dl_mex_put_sparse (&L) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_make.m0000644001170100242450000000613110621037031021405 0ustar davisfacfunction [objfiles, timestamp] = cs_make (f, docomplex) %CS_MAKE compiles CXSparse for use in MATLAB. % Usage: % cs_make % [objfiles, timestamp] = cs_make (f, docomplex) % % With no input arguments, or with f=0, only those files needing to be % compiled are compiled (like the Unix/Linux/GNU "make" command, but not % requiring "make"). If f is a nonzero number, all files are compiled. % If f is a string, only that mexFunction is compiled. For example, % cs_make ('cs_add') just compiles the cs_add mexFunction. This option is % useful when developing a single new mexFunction. This function can only be % used if the current directory is CXSparse/MATLAB/CSparse. Returns a list of % the object files in CXSparse, and the latest modification time of any source % codes. % % NOTE: if your compiler does not support the ANSI C99 complex type (most % notably Microsoft Windows), the CXSparse mexFunctions will not support % complex sparse matrices. The complex case is not attempted if docomplex is % zero. % % To add a new function and its MATLAB mexFunction to CXSparse: % % (1) Create a source code file CXSparse/Source/cs_mynewfunc.c. % (2) Create a help file, CXSparse/MATLAB/CSparse/cs_mynewfunc.m. % This is very useful, but not strictly required. % (3) Add the prototype of cs_mynewfunc to CXSparse/Include/cs.h. % (4) Create its MATLAB mexFunction, CXSparse/MATLAB/cs_mynewfunc_mex.c. % (5) Edit cs_make.m, and add 'cs_mynewfunc' to the 'cs' and 'csm' lists. % (6) Type 'cs_make' in the CXSparse/MATLAB/CSparse directory. % If all goes well, your new function is ready for use in MATLAB. % % (7) Optionally add 'cs_mynewfunc' to CXSparse/Source/Makefile % and CXSparse/MATLAB/CSparse/Makefile, if you want to use the % Unix/Linux/GNU make command instead of cs_make.m. See where % 'cs_add' and 'cs_add_mex' appear in those files, and add % 'cs_mynewfunc' accordingly. % (8) Optionally add 'cs_mynewfunc' to Tcov/Makefile, and add additional % test code to cs_test.c, and add MATLAB test code to MATLAB/Test/*. % % Example: % cs_make % compile everything % cs_make ('cs_chol') ; % just compile cs_chol mexFunction % % See also MEX. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse if (nargin < 1) f = 0 ; end if (nargin < 2) docomplex = 1 ; end try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) docomplex = 0 ; end if (docomplex == 0) % do not attempt to compile with complex matrices [objfiles, timestamp] = cs_make_helper (f, 0) ; else try % try with complex support [objfiles, timestamp] = cs_make_helper (f, 1) ; catch % oops - that failed, try without complex support fprintf ('retrying without complex matrix support\n') ; [objfiles, timestamp] = cs_make_helper (f, 0) ; end end if (f > 0) fprintf ('CXSparse successfully installed.\n') ; end SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/README.txt0000644001170100242450000000007410571365512021337 0ustar davisfacMATLAB interface for CXSparse. See Contents.m for details. SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_lusol_mex.c0000644001170100242450000000315710573562350022507 0ustar davisfac#include "cs_mex.h" /* cs_lusol: solve A*x=b using a sparse LU factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double tol ; CS_INT order ; if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: x = cs_lusol(A,b,order,tol)") ; } order = (nargin < 3) ? 2 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (nargin == 2) { tol = 1 ; /* normal partial pivoting */ } else if (nargin == 3) { tol = (order == 1) ? 0.001 : 1 ; /* tol = 0.001 for amd(A+A') */ } else { tol = mxGetScalar (pargin [3]) ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* x = b */ if (!cs_cl_lusol (order, A, x, tol)) /* x = A\x */ { mexErrMsgTxt ("failed (singular or out of memory)") ; } cs_cl_free (A->x) ; /* complex copy no longer needed */ pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ if (!cs_dl_lusol (order, A, x, tol)) /* x = A\x */ { mexErrMsgTxt ("failed (singular or out of memory)") ; } } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_etree_mex.c0000644001170100242450000000164410573562347022462 0ustar davisfac#include "cs_mex.h" /* cs_etree: elimination tree of A or A'*A */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { cs_dl Amatrix, *A ; CS_INT n, *parent, *post ; int ata ; char mode [20] ; if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [parent,post] = cs_etree(A,mode)") ; } ata = 0 ; /* get mode */ if (nargin > 1 && mxIsChar (pargin [1])) { mxGetString (pargin [1], mode, 8) ; ata = (mode [0] == 'c') ; } A = cs_dl_mex_get_sparse (&Amatrix, !ata, 0, pargin [0]) ; /* get A */ n = A->n ; parent = cs_dl_etree (A, ata) ; /* compute etree */ if (nargout > 1) { post = cs_dl_post (parent, n) ; /* postorder the etree*/ pargout [1] = cs_dl_mex_put_int (post, n, 1, 1) ; /* return post */ } pargout [0] = cs_dl_mex_put_int (parent, n, 1, 1) ; /* return parent */ } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_sparse_mex.c0000644001170100242450000000346110573562352022646 0ustar davisfac#include "cs_mex.h" /* cs_sparse: convert triplet form into compress-column form sparse matrix */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 3) { mexErrMsgTxt ("Usage: A = cs_sparse(i,j,x)") ; } if (mxIsComplex (pargin [2])) { #ifndef NCOMPLEX cs_cl *A, *C, *T, Tmatrix ; T = &Tmatrix ; /* get i,j,x and copy to triplet form */ T->nz = mxGetM (pargin [0]) ; T->p = cs_dl_mex_get_int (T->nz, pargin [0], &(T->n), 1) ; T->i = cs_dl_mex_get_int (T->nz, pargin [1], &(T->m), 1) ; cs_mex_check (1, T->nz, 1, 0, 0, 1, pargin [2]) ; T->x = cs_cl_mex_get_double (T->nz, pargin [2]) ; T->nzmax = T->nz ; C = cs_cl_compress (T) ; /* create sparse matrix C */ cs_cl_dupl (C) ; /* remove duplicates from C */ cs_cl_dropzeros (C) ; /* remove zeros from C */ A = cs_cl_transpose (C, -1) ; /* A=C.' */ cs_cl_spfree (C) ; pargout [0] = cs_cl_mex_put_sparse (&A) ; /* return A */ cs_free (T->p) ; cs_free (T->i) ; cs_free (T->x) ; /* free copy of complex values*/ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, *C, *T, Tmatrix ; T = &Tmatrix ; /* get i,j,x and copy to triplet form */ T->nz = mxGetM (pargin [0]) ; T->p = cs_dl_mex_get_int (T->nz, pargin [0], &(T->n), 1) ; T->i = cs_dl_mex_get_int (T->nz, pargin [1], &(T->m), 1) ; cs_mex_check (1, T->nz, 1, 0, 0, 1, pargin [2]) ; T->x = mxGetPr (pargin [2]) ; T->nzmax = T->nz ; C = cs_dl_compress (T) ; /* create sparse matrix C */ cs_dl_dupl (C) ; /* remove duplicates from C */ cs_dl_dropzeros (C) ; /* remove zeros from C */ A = cs_dl_transpose (C, 1) ; /* A=C' */ cs_dl_spfree (C) ; pargout [0] = cs_dl_mex_put_sparse (&A) ; /* return A */ cs_free (T->p) ; cs_free (T->i) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_add_mex.c0000644001170100242450000000403210573562344022075 0ustar davisfac#include "cs_mex.h" /* cs_add: sparse matrix addition */ #ifndef NCOMPLEX static cs_complex_t get_complex (const mxArray *a) { cs_complex_t s = mxGetScalar (a) ; if (mxIsComplex (a)) { double *z = mxGetPi (a) ; s += I * z [0] ; } return (s) ; } #endif void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin < 2 || nargin > 4) { mexErrMsgTxt ("Usage: C = cs_add(A,B,alpha,beta)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]) || (nargin > 2 && mxIsComplex (pargin [2])) || (nargin > 3 && mxIsComplex (pargin [3]))) { #ifndef NCOMPLEX cs_complex_t alpha, beta ; cs_cl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ B = cs_cl_mex_get_sparse (&Bmatrix, 0, pargin [1]) ; /* get B */ alpha = (nargin < 3) ? 1 : get_complex (pargin [2]) ; /* get alpha */ beta = (nargin < 4) ? 1 : get_complex (pargin [3]) ; /* get beta */ C = cs_cl_add (A,B,alpha,beta) ; /* C = alpha*A + beta *B */ cs_cl_dropzeros (C) ; /* drop zeros */ D = cs_cl_transpose (C, 1) ; /* sort result via double transpose */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { double alpha, beta ; cs_dl Amatrix, Bmatrix, *A, *B, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ; /* get B */ alpha = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; /* get alpha */ beta = (nargin < 4) ? 1 : mxGetScalar (pargin [3]) ; /* get beta */ C = cs_dl_add (A,B,alpha,beta) ; /* C = alpha*A + beta *B */ cs_dl_dropzeros (C) ; /* drop zeros */ D = cs_dl_transpose (C, 1) ; /* sort result via double transpose */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_ltsolve_mex.c0000644001170100242450000000200610634327040023022 0ustar davisfac#include "cs_mex.h" /* cs_ltsolve: solve an upper triangular system L'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_ltsolve(L,b)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Lmatrix, *L ; cs_complex_t *x ; L = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* get L */ x = cs_cl_mex_get_double (L->n, pargin [1]) ; /* x = b */ cs_cl_ltsolve (L, x) ; /* x = L'\x */ cs_free (L->x) ; pargout [0] = cs_cl_mex_put_double (L->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Lmatrix, *L ; double *x, *b ; L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */ b = cs_dl_mex_get_double (L->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (L->n, b, &(pargout [0])) ; /* x = b */ cs_dl_ltsolve (L, x) ; /* x = L'\x */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_symperm_mex.c0000644001170100242450000000261010634322614023031 0ustar davisfac#include "cs_mex.h" /* cs_symperm: symmetric permutation of a symmetric sparse matrix. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT ignore, n, *P, *Pinv ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: C = cs_symperm(A,p)") ; } if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cl Amatrix, *A, *C, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; n = A->n ; P = cs_dl_mex_get_int (n, pargin [1], &ignore, 1) ; /* get P */ Pinv = cs_cl_pinv (P, n) ; /* P=Pinv' */ C = cs_cl_symperm (A, Pinv, 1) ; /* C = A(p,p) */ D = cs_cl_transpose (C, 1) ; /* sort C */ cs_cl_spfree (C) ; C = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; pargout [0] = cs_cl_mex_put_sparse (&C) ; /* return C */ cs_free (P) ; cs_free (Pinv) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Amatrix, *A, *C, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; n = A->n ; P = cs_dl_mex_get_int (n, pargin [1], &ignore, 1) ; /* get P */ Pinv = cs_dl_pinv (P, n) ; /* P=Pinv' */ C = cs_dl_symperm (A, Pinv, 1) ; /* C = A(p,p) */ D = cs_dl_transpose (C, 1) ; /* sort C */ cs_dl_spfree (C) ; C = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; pargout [0] = cs_dl_mex_put_sparse (&C) ; /* return C */ cs_free (P) ; cs_free (Pinv) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_mex.c0000644001170100242450000001451210634322255021262 0ustar davisfac#include "cs_mex.h" /* check MATLAB input argument */ void cs_mex_check (CS_INT nel, CS_INT m, CS_INT n, int square, int sparse, int values, const mxArray *A) { CS_INT nnel, mm = mxGetM (A), nn = mxGetN (A) ; #ifdef NCOMPLEX if (values) { if (mxIsComplex (A)) mexErrMsgTxt ("complex matrices not supported") ; } #endif if (sparse && !mxIsSparse (A)) mexErrMsgTxt ("matrix must be sparse") ; if (!sparse) { if (mxIsSparse (A)) mexErrMsgTxt ("matrix must be full") ; if (values && !mxIsDouble (A)) mexErrMsgTxt ("matrix must be double") ; } if (nel) { /* check number of elements */ nnel = mxGetNumberOfElements (A) ; if (m >= 0 && n >= 0 && m*n != nnel) mexErrMsgTxt ("wrong length") ; } else { /* check row and/or column dimensions */ if (m >= 0 && m != mm) mexErrMsgTxt ("wrong dimension") ; if (n >= 0 && n != nn) mexErrMsgTxt ("wrong dimension") ; } if (square && mm != nn) mexErrMsgTxt ("matrix must be square") ; } /* get a real (or pattern) MATLAB sparse matrix and convert to cs_dl */ cs_dl *cs_dl_mex_get_sparse (cs_dl *A, int square, int values, const mxArray *Amatlab) { cs_mex_check (0, -1, -1, square, 1, values, Amatlab) ; A->m = mxGetM (Amatlab) ; A->n = mxGetN (Amatlab) ; A->p = (CS_INT *) mxGetJc (Amatlab) ; A->i = (CS_INT *) mxGetIr (Amatlab) ; A->x = values ? mxGetPr (Amatlab) : NULL ; A->nzmax = mxGetNzmax (Amatlab) ; A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */ return (A) ; } /* return a real sparse matrix to MATLAB */ mxArray *cs_dl_mex_put_sparse (cs_dl **Ahandle) { cs_dl *A ; mxArray *Amatlab ; A = *Ahandle ; if (!A) mexErrMsgTxt ("failed") ; Amatlab = mxCreateSparse (0, 0, 0, mxREAL) ; mxSetM (Amatlab, A->m) ; mxSetN (Amatlab, A->n) ; mxSetNzmax (Amatlab, A->nzmax) ; cs_free (mxGetJc (Amatlab)) ; cs_free (mxGetIr (Amatlab)) ; cs_free (mxGetPr (Amatlab)) ; mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */ mxSetIr (Amatlab, (void *) (A->i)) ; mxSetPr (Amatlab, A->x) ; cs_free (A) ; /* frees A struct only, not A->p, etc */ *Ahandle = NULL ; return (Amatlab) ; } /* get a real MATLAB dense column vector */ double *cs_dl_mex_get_double (CS_INT n, const mxArray *X) { cs_mex_check (0, n, 1, 0, 0, 1, X) ; return (mxGetPr (X)) ; } /* return a double vector to MATLAB */ double *cs_dl_mex_put_double (CS_INT n, const double *b, mxArray **X) { double *x ; CS_INT k ; *X = mxCreateDoubleMatrix (n, 1, mxREAL) ; /* create x */ x = mxGetPr (*X) ; for (k = 0 ; k < n ; k++) x [k] = b [k] ; /* copy x = b */ return (x) ; } /* get a MATLAB flint array and convert to CS_INT */ CS_INT *cs_dl_mex_get_int (CS_INT n, const mxArray *Imatlab, CS_INT *imax, int lo) { double *p ; CS_INT i, k, *C = cs_dl_malloc (n, sizeof (CS_INT)) ; cs_mex_check (1, n, 1, 0, 0, 1, Imatlab) ; if (mxIsComplex (Imatlab)) { mexErrMsgTxt ("integer input cannot be complex") ; } p = mxGetPr (Imatlab) ; *imax = 0 ; for (k = 0 ; k < n ; k++) { i = p [k] ; C [k] = i - 1 ; if (i < lo) mexErrMsgTxt ("index out of bounds") ; *imax = CS_MAX (*imax, i) ; } return (C) ; } /* return an CS_INT array to MATLAB as a flint row vector */ mxArray *cs_dl_mex_put_int (CS_INT *p, CS_INT n, CS_INT offset, int do_free) { mxArray *X = mxCreateDoubleMatrix (1, n, mxREAL) ; double *x = mxGetPr (X) ; CS_INT k ; for (k = 0 ; k < n ; k++) x [k] = (p ? p [k] : k) + offset ; if (do_free) cs_free (p) ; return (X) ; } #ifndef NCOMPLEX /* copy a MATLAB real or complex vector into a cs_cl complex vector */ static cs_complex_t *cs_cl_get_vector (CS_INT n, CS_INT size, const mxArray *Xmatlab) { CS_INT p ; double *X, *Z ; cs_complex_t *Y ; X = mxGetPr (Xmatlab) ; Z = (mxIsComplex (Xmatlab)) ? mxGetPi (Xmatlab) : NULL ; Y = cs_dl_malloc (size, sizeof (cs_complex_t)) ; for (p = 0 ; p < n ; p++) { Y [p] = X [p] + I * (Z ? Z [p] : 0) ; } return (Y) ; } /* get a real or complex MATLAB sparse matrix and convert to cs_cl */ cs_cl *cs_cl_mex_get_sparse (cs_cl *A, int square, const mxArray *Amatlab) { cs_mex_check (0, -1, -1, square, 1, 1, Amatlab) ; A->m = mxGetM (Amatlab) ; A->n = mxGetN (Amatlab) ; A->p = (CS_INT *) mxGetJc (Amatlab) ; A->i = (CS_INT *) mxGetIr (Amatlab) ; A->nzmax = mxGetNzmax (Amatlab) ; A->x = cs_cl_get_vector (A->p [A->n], A->nzmax, Amatlab) ; A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */ return (A) ; } /* return a complex sparse matrix to MATLAB */ mxArray *cs_cl_mex_put_sparse (cs_cl **Ahandle) { cs_cl *A ; double *x, *z ; mxArray *Amatlab ; CS_INT k ; A = *Ahandle ; if (!A) mexErrMsgTxt ("failed") ; Amatlab = mxCreateSparse (0, 0, 0, mxCOMPLEX) ; mxSetM (Amatlab, A->m) ; mxSetN (Amatlab, A->n) ; mxSetNzmax (Amatlab, A->nzmax) ; cs_cl_free (mxGetJc (Amatlab)) ; cs_cl_free (mxGetIr (Amatlab)) ; cs_cl_free (mxGetPr (Amatlab)) ; cs_cl_free (mxGetPi (Amatlab)) ; mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */ mxSetIr (Amatlab, (void *) (A->i)) ; x = cs_dl_malloc (A->nzmax, sizeof (double)) ; z = cs_dl_malloc (A->nzmax, sizeof (double)) ; for (k = 0 ; k < A->nzmax ; k++) { x [k] = creal (A->x [k]) ; /* copy and split numerical values */ z [k] = cimag (A->x [k]) ; } cs_cl_free (A->x) ; /* free copy of complex values */ mxSetPr (Amatlab, x) ; mxSetPi (Amatlab, z) ; cs_cl_free (A) ; /* frees A struct only, not A->p, etc */ *Ahandle = NULL ; return (Amatlab) ; } /* get a real or complex MATLAB dense column vector, and copy to cs_complex_t */ cs_complex_t *cs_cl_mex_get_double (CS_INT n, const mxArray *X) { cs_mex_check (0, n, 1, 0, 0, 1, X) ; return (cs_cl_get_vector (n, n, X)) ; } /* copy a complex vector back to MATLAB and free it */ mxArray *cs_cl_mex_put_double (CS_INT n, cs_complex_t *b) { double *x, *z ; mxArray *X ; CS_INT k ; X = mxCreateDoubleMatrix (n, 1, mxCOMPLEX) ; /* create x */ x = mxGetPr (X) ; z = mxGetPi (X) ; for (k = 0 ; k < n ; k++) { x [k] = creal (b [k]) ; /* copy x = b */ z [k] = cimag (b [k]) ; } cs_cl_free (b) ; return (X) ; } #endif SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_mex.h0000644001170100242450000000153510573562554021302 0ustar davisfac#include "cs.h" #include "mex.h" void cs_mex_check (CS_INT nel, CS_INT m, CS_INT n, int square, int sparse, int values, const mxArray *A) ; CS_INT *cs_dl_mex_get_int (CS_INT n, const mxArray *Imatlab, CS_INT *imax, int lo); mxArray *cs_dl_mex_put_int (CS_INT *p, CS_INT n, CS_INT offset, int do_free) ; double *cs_dl_mex_get_double (CS_INT n, const mxArray *X) ; cs_dl *cs_dl_mex_get_sparse (cs_dl *A, int square, int values, const mxArray *Amatlab) ; double *cs_dl_mex_put_double (CS_INT n, const double *b, mxArray **X) ; mxArray *cs_dl_mex_put_sparse (cs_dl **A) ; #ifndef NCOMPLEX cs_complex_t *cs_cl_mex_get_double (CS_INT n, const mxArray *X) ; cs_cl *cs_cl_mex_get_sparse (cs_cl *A, int square, const mxArray *Amatlab) ; mxArray *cs_cl_mex_put_double (CS_INT n, cs_complex_t *b) ; mxArray *cs_cl_mex_put_sparse (cs_cl **Ahandle) ; #endif SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_utsolve_mex.c0000644001170100242450000000200510634322660023035 0ustar davisfac#include "cs_mex.h" /* cs_utsolve: solve a lower triangular system U'*x=b */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_utsolve(U,b)") ; } if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Umatrix, *U ; cs_complex_t *x ; U = cs_cl_mex_get_sparse (&Umatrix, 1, pargin [0]) ; /* get U */ x = cs_cl_mex_get_double (U->n, pargin [1]) ; /* x = b */ cs_cl_utsolve (U, x) ; /* x = U'\x */ cs_free (U->x) ; pargout [0] = cs_cl_mex_put_double (U->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Umatrix, *U ; double *x, *b ; U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ b = cs_dl_mex_get_double (U->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (U->n, b, &(pargout [0])) ; /* x = b */ cs_dl_utsolve (U, x) ; /* x = U'\x */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_randperm_mex.c0000644001170100242450000000165110573562351023157 0ustar davisfac#include "cs_mex.h" /* cs_randperm: random permutation. p=cs_randperm(n,0) is 1:n, * p=cs_randperm(n,-1) is n:-1:1. p = cs_randperm (n,seed) is a random * permutation using the given seed (where seed is not 0 or -1). * seed defaults to 1. A single seed always gives a repeatable permutation. * Use p = cs_randperm(n,rand) to get a permutation that varies with each use. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; CS_INT iseed, n, *p ; if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = cs_randperm(n,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ; iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; n = mxGetScalar (pargin [0]) ; n = CS_MAX (n, 0) ; p = cs_dl_randperm (n, iseed) ; pargout [0] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_usolve_mex.c0000644001170100242450000000574210634322644022666 0ustar davisfac#include "cs_mex.h" /* cs_usolve: x=U\b. U must be sparse and upper triangular. b must be a * full or sparse vector. x is full or sparse, depending on b. * * Time taken is O(flop count), which may be less than n if b is sparse, * depending on U and b. * * This function works with MATLAB 7.2, but is not perfectly compatible with * the requirements of a MATLAB mexFunction when b is sparse. X is returned * as an unsorted sparse vector. Also, this mexFunction temporarily modifies * its input, U, by modifying U->p (in the cs_dfs function) and then restoring * it. This could be corrected by creating a copy of U->p * (see cs_dmperm_mex.c), but this would take O(n) time, destroying the * O(flop count) time complexity of this function. * * Note that b cannot be sparse complex. This function does not support * sparse complex U and b because the sparse x=U\b only accesses part of the * matrix U. Converting U from a MATLAB complex matrix to a CXSparse complex * matrix requires all of U to be accessed, defeating the purpose of this * function. * * U can be sparse complex, but in that case b must be full real or complex, * not sparse. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT top, nz, p, *xi, n ; if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = cs_usolve(U,b)") ; } if (mxIsSparse (pargin [1])) { cs_dl Umatrix, Bmatrix, *U, *B, *X ; double *x ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { mexErrMsgTxt ("sparse complex case not supported") ; } U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ;/* get U */ n = U->n ; B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b*/ cs_mex_check (0, n, 1, 0, 1, 1, pargin [1]) ; xi = cs_dl_malloc (2*n, sizeof (CS_INT)) ; /* get workspace */ x = cs_dl_malloc (n, sizeof (double)) ; top = cs_dl_spsolve (U, B, 0, xi, x, NULL, 0) ; /* x = U\b */ X = cs_dl_spalloc (n, 1, n-top, 1, 0) ; /* create sparse x*/ X->p [0] = 0 ; nz = 0 ; for (p = top ; p < n ; p++) { X->i [nz] = xi [p] ; X->x [nz++] = x [xi [p]] ; } X->p [1] = nz ; pargout [0] = cs_dl_mex_put_sparse (&X) ; cs_free (x) ; cs_free (xi) ; } else if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl Umatrix, *U ; cs_complex_t *x ; U = cs_cl_mex_get_sparse (&Umatrix, 1, pargin [0]) ; /* get U */ n = U->n ; x = cs_cl_mex_get_double (n, pargin [1]) ; /* x = b */ cs_cl_usolve (U, x) ; /* x = U\x */ cs_free (U->x) ; pargout [0] = cs_cl_mex_put_double (n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl Umatrix, *U ; double *x, *b ; U = cs_dl_mex_get_sparse (&Umatrix, 1, 1, pargin [0]) ; /* get U */ n = U->n ; b = cs_dl_mex_get_double (n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (n, b, &(pargout [0])) ; /* x = b */ cs_dl_usolve (U, x) ; /* x = U\x */ } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_cholsol_mex.c0000644001170100242450000000246510634322337023012 0ustar davisfac#include "cs_mex.h" /* cs_cholsol: solve A*x=b using a sparse Cholesky factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT order ; if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: x = cs_cholsol(A,b,order)") ; } order = (nargin < 3) ? 1 : mxGetScalar (pargin [2]) ; order = CS_MAX (order, 0) ; order = CS_MIN (order, 3) ; if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { #ifndef NCOMPLEX cs_cl *A, Amatrix ; cs_complex_t *x ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ x = cs_cl_mex_get_double (A->n, pargin [1]) ; /* x = b */ if (!cs_cl_cholsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("A not positive definite") ; } cs_free (A->x) ; pargout [0] = cs_cl_mex_put_double (A->n, x) ; /* return x */ #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dl *A, Amatrix ; double *x, *b ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ b = cs_dl_mex_get_double (A->n, pargin [1]) ; /* get b */ x = cs_dl_mex_put_double (A->n, b, &(pargout [0])) ; /* x = b */ if (!cs_dl_cholsol (order, A, x)) /* x = A\x */ { mexErrMsgTxt ("A not positive definite") ; } } } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/private/0000755001170100242450000000000010621054722021304 5ustar davisfacSuiteSparse/CXSparse_newfiles/MATLAB/CSparse/private/cs_make_helper.m0000644001170100242450000001545610621054716024441 0ustar davisfacfunction [objfiles, timestamp_out] = cs_make_helper (f, docomplex) %CS_MAKE_HELPER compiles CXSparse for use in MATLAB. % Usage: % [objfiles, timestamp] = cs_make (f, docomplex) % % With f=0, only those files needing to be % compiled are compiled (like the Unix/Linux/GNU "make" command, but not % requiring "make"). If f is a nonzero number, all files are compiled. % If f is a string, only that mexFunction is compiled. For example, % cs_make ('cs_add') just compiles the cs_add mexFunction. This option is % useful when developing a single new mexFunction. This function can only be % used if the current directory is CXSparse/MATLAB/CSparse. Returns a list of % the object files in CXSparse, and the latest modification time of any source % codes. % % NOTE: if your compiler does not support the ANSI C99 complex type, the % CXSparse mexFunctions will not support complex sparse matrices. % % To add a new function and its MATLAB mexFunction to CXSparse: % % (1) Create a source code file CXSparse/Source/cs_mynewfunc.c. % (2) Create a help file, CXSparse/MATLAB/CSparse/cs_mynewfunc.m. % This is very useful, but not strictly required. % (3) Add the prototype of cs_mynewfunc to CXSparse/Include/cs.h. % (4) Create its MATLAB mexFunction, CXSparse/MATLAB/cs_mynewfunc_mex.c. % (5) Edit cs_make.m, and add 'cs_mynewfunc' to the 'cs' and 'csm' lists. % (6) Type 'cs_make' in the CXSparse/MATLAB/CSparse directory. % If all goes well, your new function is ready for use in MATLAB. % % (7) Optionally add 'cs_mynewfunc' to CXSparse/Source/Makefile % and CXSparse/MATLAB/CSparse/Makefile, if you want to use the % Unix/Linux/GNU make command instead of cs_make.m. See where % 'cs_add' and 'cs_add_mex' appear in those files, and add % 'cs_mynewfunc' accordingly. % (8) Optionally add 'cs_mynewfunc' to Tcov/Makefile, and add additional % test code to cs_test.c, and add MATLAB test code to MATLAB/Test/*. % % Example: % cs_make_helper (1,1) ; % compile everything % cs_make ('cs_chol', 1) ; % just compile cs_chol mexFunction % % See also MEX. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse mexcmd = 'mex -DCS_LONG -I../../../UFconfig' ; if (~isempty (strfind (computer, '64'))) mexcmd = [mexcmd ' -largeArrayDims'] ; end if (nargin < 2) docomplex = 1 ; end if (~docomplex) mexcmd = [mexcmd ' -DNCOMPLEX'] ; end % CSparse source files, in ../../Source, such as ../../Source/cs_add.c. % Note that not all CSparse source files have their own mexFunction. cs = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_cumsum', 'cs_dfs', 'cs_dmperm', 'cs_droptol', 'cs_dropzeros', ... 'cs_dupl', 'cs_entry', 'cs_etree', 'cs_fkeep', 'cs_gaxpy', 'cs_happly', ... 'cs_house', 'cs_ipvec', 'cs_load', 'cs_lsolve', 'cs_ltsolve', 'cs_lu', ... 'cs_lusol', 'cs_malloc', 'cs_maxtrans', 'cs_multiply', 'cs_norm', ... 'cs_permute', 'cs_pinv', 'cs_post', 'cs_print', 'cs_pvec', 'cs_qr', ... 'cs_qrsol', 'cs_scatter', 'cs_scc', 'cs_schol', 'cs_sqr', 'cs_symperm', ... 'cs_tdfs', 'cs_transpose', 'cs_compress', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_util', 'cs_reach', 'cs_spsolve', 'cs_ereach', ... 'cs_leaf', 'cs_randperm' } ; % add cs_mynewfunc to the above list details = 1 ; kk = 0 ; csm = { } ; if (nargin == 0) force = 0 ; elseif (ischar (f)) fprintf ('cs_make: compiling ../../Source files and %s_mex.c\n', f) ; force = 0 ; csm = {f} ; else force = f ; details = details | (force > 1) ; %#ok if (force & details) %#ok fprintf ('cs_make: re-compiling everything\n') ; end end if (isempty (csm)) % mexFunctions, of the form cs_add_mex.c, etc, in this directory csm = { 'cs_add', 'cs_amd', 'cs_chol', 'cs_cholsol', 'cs_counts', ... 'cs_dmperm', 'cs_droptol', 'cs_etree', 'cs_gaxpy', 'cs_lsolve', ... 'cs_ltsolve', 'cs_lu', 'cs_lusol', 'cs_multiply', 'cs_permute', ... 'cs_print', 'cs_qr', 'cs_qrsol', 'cs_scc', 'cs_symperm', 'cs_thumb', ... 'cs_transpose', 'cs_sparse', 'cs_updown', 'cs_usolve', ... 'cs_utsolve', 'cs_randperm', 'cs_sqr' } ; % add cs_mynewfunc to the above list end try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if (pc) obj = '.obj' ; else obj = '.o' ; end srcdir = '../../Source/' ; hfile = '../../Include/cs.h' ; % compile each CSparse source file [anysrc timestamp kk] = compile_source ('', 'cs_mex', obj, hfile, force, ... mexcmd, kk, details) ; CS = ['cs_mex' obj] ; if (nargout > 0) objfiles = ['..' filesep 'CSparse' filesep 'cs_mex' obj] ; end for i = 1:length (cs) [s t kk] = compile_source (srcdir, cs{i}, obj, hfile, force, mexcmd, ... kk, details) ; timestamp = max (timestamp, t) ; anysrc = anysrc | s ; %#ok CS = [CS ' ' cs{i} obj] ; %#ok if (nargout > 0) objfiles = [objfiles ' ..' filesep 'CSparse' filesep cs{i} obj] ; %#ok end % complex version: if (docomplex) csrc = cs {i} ; csrc = [ 'cs_cl_' csrc(4:end) ] ; CS = [CS ' ' csrc obj] ; %#ok if (nargout > 0) objfiles = [objfiles ' ..' filesep 'CSparse' filesep csrc obj] ;%#ok end if (s) copyfile (['../../Source/' cs{i} '.c'], [csrc '.c'], 'f') ; if (details) fprintf ('%s\n', ['cp -f ../../Source/' cs{i} '.c ' csrc '.c']); end cmd = sprintf ('%s -DCS_COMPLEX -O -c -I../../Include %s.c\n', ... mexcmd, csrc) ; kk = do_cmd (cmd, kk, details) ; end end end % compile each CSparse mexFunction obj = ['.' mexext] ; for i = 1:length (csm) [s t] = cs_must_compile ('', csm{i}, '_mex', obj, hfile, force) ; timestamp = max (timestamp, t) ; if (anysrc | s) %#ok cmd = sprintf ('%s -O -I../../Include %s_mex.c %s -output %s\n', ... mexcmd, csm{i}, CS, csm{i}) ; kk = do_cmd (cmd, kk, details) ; end end if (nargout > 1) timestamp_out = timestamp ; end fprintf ('\n') ; %------------------------------------------------------------------------------- function [s,t,kk] = compile_source (srcdir, f, obj, hfile, force, mexcmd, ... kk, details) % compile a source code file in ../../Source, leaving object file in % this directory. [s t] = cs_must_compile (srcdir, f, '', obj, hfile, force) ; if (s) cmd = sprintf ('%s -O -c -I../../Include %s%s.c\n', mexcmd, srcdir, f) ; kk = do_cmd (cmd, kk, details) ; end %------------------------------------------------------------------------------- function kk = do_cmd (s, kk, details) %DO_CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_transpose.m0000644001170100242450000000075410620372563022526 0ustar davisfacfunction C = cs_transpose (A) %#ok %CS_TRANSPOSE transpose a sparse matrix. % C = cs_transpose(A), computes C = A' % C = cs_transpose(A,-1) computes C=A.' % C = cs_transpose(A,1) computes C=A' % % Example: % Prob = UFget ('HB/ibm32') ; A = Prob.A ; % C = cs_transpose (A) ; % C-A' % % See also TRANSPOSE, CTRANSPOSE. % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse error ('cs_transpose mexFunction not found') ; SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_sqr_mex.c0000644001170100242450000000260610620711515022144 0ustar davisfac#include "cs_mex.h" /* cs_sqr: symbolic sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double s ; cs_dls *S ; cs_dl Amatrix, *A ; CS_INT m, n, order, *p ; if (nargout > 7 || nargin != 1) { mexErrMsgTxt ("Usage: [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A)") ; } A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ m = A->m ; n = A->n ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; order = (nargout == 7) ? 3 : 0 ; /* determine ordering */ S = cs_dl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ if (!S) mexErrMsgTxt ("cs_sqr failed") ; s = S->lnz ; cs_dl_mex_put_double (1, &s, &(pargout [0])) ; /* return nnz(V) */ s = S->unz ; cs_dl_mex_put_double (1, &s, &(pargout [1])) ; /* return nnz(R) */ pargout [2] = cs_dl_mex_put_int (S->parent, n, 1, 0) ; /* return parent */ pargout [3] = cs_dl_mex_put_int (S->cp, n, 0, 0) ; /* return c */ pargout [4] = cs_dl_mex_put_int (S->leftmost, m, 1, 0) ;/* return leftmost*/ p = cs_dl_pinv (S->pinv, S->m2) ; /* p = pinv' */ pargout [5] = cs_dl_mex_put_int (p, S->m2, 1, 1) ; /* return p */ if (nargout > 6) { pargout [6] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ } cs_dl_sfree (S) ; } SuiteSparse/CXSparse_newfiles/MATLAB/CSparse/cs_qr_mex.c0000644001170100242450000000543410573562351021774 0ustar davisfac#include "cs_mex.h" /* cs_qr: sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT m, n, order, *p ; if (nargout > 5 || nargin != 1) { mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ; } order = (nargout == 5) ? 3 : 0 ; /* determine ordering */ m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ S = cs_cl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_cl_qr (A, S) ; /* numeric QR factorization */ cs_free (A->x) ; if (!N) mexErrMsgTxt ("qr failed") ; cs_cl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_cl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_cl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ S = cs_dl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_dl_qr (A, S) ; /* numeric QR factorization */ if (!N) mexErrMsgTxt ("qr failed") ; cs_dl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_dl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_dl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_dl_nfree (N) ; cs_dl_sfree (S) ; } } SuiteSparse/CXSparse_newfiles/MATLAB/README.txt0000644001170100242450000000210610573562200017770 0ustar davisfacCXSparse/MATLAB directory, which contains the MATLAB mexFunction interfaces for CXSparse, demos, and tests. It includes various "textbook" files that are printed in the book, but not a proper part of CSparse itself. It also includes "UFget", a MATLAB interface for the UF Sparse Matrix Collection. Type the command "cs_install" while in this directory. It will compile CSparse, and add the directories: CXSparse/MATLAB/CSparse CXSparse/MATLAB/Demo CXSparse/MATLAB/UFget to your MATLAB path (see the "pathtool" command to add these to your path permanently, for future MATLAB sessions). To run the MATLAB demo programs, run cs_demo in the Demo directory. This demo will work whether or not your compiler supports the complex type. To run the MATLAB test programs, run testall in the Test directory. However, you may run the tests in the Test directory only if your compiler supports the ANSI C99 complex type. If it does not support the ANSI C99 complex type, the tests in the Test directory will fail, since the codes there test both the real and complex cases in CXSparse. SuiteSparse/CXSparse_newfiles/MATLAB/cs_install.m0000644001170100242450000000313110712370323020600 0ustar davisfacfunction cs_install (do_pause) %CS_INSTALL: compile and install CXSparse for use in MATLAB. % Your current working directory must be CXSparse/MATLAB in order to use this % function. % % The directories % % CXSparse/MATLAB/CSparse % CXSparse/MATLAB/Demo % CXSparse/MATLAB/UFget % % are added to your MATLAB path (see the "pathtool" command to add these to % your path permanently, for future MATLAB sessions). % % Next, the MATLAB CXSparse demo program, CXSparse/MATLAB/cs_demo is executed. % To run the demo with pauses so you can see the results, use cs_install(1). % To run the full MATLAB test programs for CXSparse, run testall in the % Test directory. % % Example: % cs_install % install and run demo with no pauses % cs_install(1) % install and run demo with pauses % % See also: cs_demo % % Copyright 2006-2007, Timothy A. Davis. % http://www.cise.ufl.edu/research/sparse fprintf ('Compiling and installing CXSparse\n') ; if (nargin < 1) do_pause = 0 ; end if (do_pause) input ('Hit enter to continue: ') ; end addpath ([pwd filesep 'CSparse']) ; addpath ([pwd filesep 'Demo']) ; v = getversion ; if (v >= 7.0) addpath ([pwd filesep 'UFget']) ; else fprintf ('UFget not installed (MATLAB 7.0 or later required)\n') ; end cd ('CSparse') ; cs_make (1) ; cd ('../Demo') ; cs_demo (do_pause) %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/CXSparse_newfiles/Matrix/0000755001170100242450000000000010567667105016614 5ustar davisfacSuiteSparse/CXSparse_newfiles/Matrix/c40000644001170100242450000000026110567667105017044 0ustar davisfac0 0 9.27539 0 1 0 14.7693 -1.04429 2 0 7.96934 2.8854 3 0 13.0094 -2.32583 1 1 23.8338 0 2 1 12.4165 5.57382 3 1 21.3387 -2.14682 2 2 8.10265 0 3 2 10.755 -6.1787 3 3 19.8115 0 SuiteSparse/CXSparse_newfiles/Matrix/t20000644001170100242450000000022010375605276017054 0ustar davisfac2 2 3.0 3.141592653589793238 1 0 3.1 42 3 3 1.0 7 0 2 3.2 0.1 1 1 2.9 1.3 3 0 3.5 0 3 1 0.4 2.718281828459045235 1 3 0.9 99 0 0 4.5 6 2 1 1.7 1 SuiteSparse/CXSparse_newfiles/Matrix/t30000644001170100242450000000041010376373521017052 0ustar davisfac0 0 0.670692 0.112853 1 0 0.496053 0.837454 2 0 0.138338 0.421069 0 1 0.911648 0.990658 1 1 0.219918 0.819335 2 1 0.113621 0.853857 0 2 0.819675 0.868119 1 2 0.233877 0.707132 2 2 0.148821 0.955367 0 3 0.688959 0.201198 1 3 0.262135 0.502488 2 3 0.857967 0.776792 SuiteSparse/CXSparse_newfiles/Matrix/t40000644001170100242450000000003010376374076017057 0ustar davisfac0 0 1 1 0 1 1 1 1 1 1 1 SuiteSparse/CXSparse_newfiles/Matrix/c_ibm32a0000644001170100242450000000215410533356041020103 0ustar davisfac0 0 1 1 1 0 1 1 2 0 1 1 3 0 1 1 6 0 1 1 25 0 1 1 0 1 1 1 1 1 1 1 8 1 1 1 20 1 1 1 27 1 1 1 1 2 1 1 2 2 1 1 5 2 1 1 7 2 1 1 8 2 1 1 28 2 1 1 2 3 1 1 3 3 1 1 4 3 1 1 11 3 1 1 2 4 1 1 4 4 1 1 22 4 1 1 26 4 1 1 0 5 1 1 5 5 1 1 15 5 1 1 2 6 1 1 6 6 1 1 13 6 1 1 20 6 1 1 30 6 1 1 0 7 1 1 7 7 1 1 11 7 1 1 16 7 1 1 26 7 1 1 6 8 1 1 8 8 1 1 9 8 1 1 12 8 1 1 18 8 1 1 22 8 1 1 26 8 1 1 0 9 1 1 9 9 1 1 10 9 1 1 20 9 1 1 22 9 1 1 24 9 1 1 26 9 1 1 1 10 1 1 10 10 1 1 14 10 1 1 17 10 1 1 28 10 1 1 5 11 1 1 11 11 1 1 23 11 1 1 10 12 1 1 12 12 1 1 2 13 1 1 13 13 1 1 1 14 1 1 14 14 1 1 19 14 1 1 3 15 1 1 15 15 1 1 21 15 1 1 3 16 1 1 15 16 1 1 16 16 1 1 5 17 1 1 9 17 1 1 17 17 1 1 19 17 1 1 29 17 1 1 0 18 1 1 18 18 1 1 25 18 1 1 7 19 1 1 15 19 1 1 19 19 1 1 2 20 1 1 20 20 1 1 31 20 1 1 10 21 1 1 21 21 1 1 1 22 1 1 16 22 1 1 20 22 1 1 22 22 1 1 11 23 1 1 23 23 1 1 25 23 1 1 5 24 1 1 14 24 1 1 17 24 1 1 23 24 1 1 24 24 1 1 12 25 1 1 17 25 1 1 21 25 1 1 25 25 1 1 4 26 1 1 23 26 1 1 25 26 1 1 26 26 1 1 8 27 1 1 27 27 1 1 2 28 1 1 4 28 1 1 26 28 1 1 28 28 1 1 31 28 1 1 11 29 1 1 16 29 1 1 22 29 1 1 29 29 1 1 12 30 1 1 13 30 1 1 30 30 1 1 SuiteSparse/CXSparse_newfiles/Matrix/c_ibm32b0000644001170100242450000000215410533356076020114 0ustar davisfac0 0 1 1 1 0 1 1 5 0 1 1 7 0 1 1 9 0 1 1 18 0 1 1 0 1 1 1 1 1 1 1 2 1 1 1 10 1 1 1 14 1 1 1 22 1 1 1 0 2 1 1 2 2 1 1 3 2 1 1 4 2 1 1 6 2 1 1 13 2 1 1 20 2 1 1 28 2 1 1 0 3 1 1 3 3 1 1 15 3 1 1 16 3 1 1 3 4 1 1 4 4 1 1 26 4 1 1 28 4 1 1 2 5 1 1 5 5 1 1 11 5 1 1 17 5 1 1 24 5 1 1 0 6 1 1 6 6 1 1 8 6 1 1 2 7 1 1 7 7 1 1 19 7 1 1 1 8 1 1 2 8 1 1 8 8 1 1 27 8 1 1 8 9 1 1 9 9 1 1 17 9 1 1 9 10 1 1 10 10 1 1 12 10 1 1 21 10 1 1 3 11 1 1 7 11 1 1 11 11 1 1 23 11 1 1 29 11 1 1 8 12 1 1 12 12 1 1 25 12 1 1 30 12 1 1 6 13 1 1 13 13 1 1 30 13 1 1 10 14 1 1 14 14 1 1 24 14 1 1 5 15 1 1 15 15 1 1 16 15 1 1 19 15 1 1 7 16 1 1 16 16 1 1 22 16 1 1 29 16 1 1 10 17 1 1 17 17 1 1 24 17 1 1 25 17 1 1 8 18 1 1 18 18 1 1 14 19 1 1 17 19 1 1 19 19 1 1 1 20 1 1 6 20 1 1 9 20 1 1 20 20 1 1 22 20 1 1 15 21 1 1 21 21 1 1 25 21 1 1 4 22 1 1 8 22 1 1 9 22 1 1 22 22 1 1 29 22 1 1 11 23 1 1 23 23 1 1 24 23 1 1 26 23 1 1 9 24 1 1 24 24 1 1 0 25 1 1 18 25 1 1 23 25 1 1 25 25 1 1 26 25 1 1 4 26 1 1 7 26 1 1 8 26 1 1 9 26 1 1 26 26 1 1 28 26 1 1 1 27 1 1 27 27 1 1 2 28 1 1 10 28 1 1 28 28 1 1 17 29 1 1 29 29 1 1 6 30 1 1 30 30 1 1 20 31 1 1 28 31 1 1 SuiteSparse/CXSparse_newfiles/Matrix/qc3240000644001170100242450000334374710375437451017414 0ustar davisfac0 0 0.3907881 -0.05085988 1 0 -0.06393453 0.01031772 2 0 0.01597157 -0.002577484 3 0 -0.007089509 0.001144101 4 0 0.003980742 -0.0006424099 5 0 -0.002541777 0.0004101906 6 0 0.001760065 -0.0002840383 7 0 -0.001288661 0.0002079635 8 0 0.0009826448 -0.0001585787 9 0 -0.0007727812 0.000124711 10 0 0.0006226054 -0.0001004757 11 0 -0.0005114288 8.253411e-05 12 0 0.0004268045 -6.887749e-05 13 0 -0.0003608797 5.823857e-05 14 0 0.0003085011 -4.978574e-05 15 0 -0.0002661734 4.295492e-05 16 0 0.0002314578 -3.735254e-05 17 0 -0.0002026106 3.26972e-05 18 0 0.0001783582 -2.878335e-05 19 0 -0.0001577525 2.545802e-05 20 0 0.000140076 -2.26054e-05 21 0 -0.0001247774 2.013652e-05 22 0 0.0001114272 -1.798207e-05 23 0 -9.968672e-05 1.608739e-05 24 0 8.928565e-05 -1.440887e-05 25 0 -8.000611e-05 1.291134e-05 26 0 7.167061e-05 -1.156616e-05 27 0 -6.413319e-05 1.034978e-05 28 0 5.727273e-05 -9.242642e-06 29 0 -5.098776e-05 8.228377e-06 30 0 4.519256e-05 -7.293151e-06 31 0 -3.981401e-05 6.425164e-06 32 0 3.478917e-05 -5.614257e-06 33 0 -3.00633e-05 4.851599e-06 34 0 2.558831e-05 -4.129428e-06 35 0 -2.132146e-05 3.440846e-06 36 0 1.722429e-05 -2.779647e-06 37 0 -1.326172e-05 2.14017e-06 38 0 9.401297e-06 -1.517176e-06 39 0 -5.612495e-06 9.057414e-07 40 0 1.866144e-06 -3.011573e-07 41 0 1.866144e-06 -3.011573e-07 42 0 -5.612495e-06 9.057414e-07 43 0 9.401297e-06 -1.517176e-06 44 0 -1.326172e-05 2.14017e-06 45 0 1.722429e-05 -2.779647e-06 46 0 -2.132146e-05 3.440846e-06 47 0 2.558831e-05 -4.129428e-06 48 0 -3.00633e-05 4.851599e-06 49 0 3.478917e-05 -5.614257e-06 50 0 -3.981401e-05 6.425164e-06 51 0 4.519256e-05 -7.293151e-06 52 0 -5.098776e-05 8.228377e-06 53 0 5.727273e-05 -9.242642e-06 54 0 -6.413319e-05 1.034978e-05 55 0 7.167061e-05 -1.156616e-05 56 0 -8.000611e-05 1.291134e-05 57 0 8.928565e-05 -1.440887e-05 58 0 -9.968672e-05 1.608739e-05 59 0 0.0001114272 -1.798207e-05 60 0 -0.0001247774 2.013652e-05 61 0 0.000140076 -2.26054e-05 62 0 -0.0001577525 2.545802e-05 63 0 0.0001783582 -2.878335e-05 64 0 -0.0002026106 3.26972e-05 65 0 0.0002314578 -3.735254e-05 66 0 -0.0002661734 4.295492e-05 67 0 0.0003085011 -4.978574e-05 68 0 -0.0003608797 5.823857e-05 69 0 0.0004268045 -6.887749e-05 70 0 -0.0005114288 8.253411e-05 71 0 0.0006226054 -0.0001004757 72 0 -0.0007727812 0.000124711 73 0 0.0009826448 -0.0001585787 74 0 -0.001288661 0.0002079635 75 0 0.001760065 -0.0002840383 76 0 -0.002541777 0.0004101906 77 0 0.003980742 -0.0006424099 78 0 -0.007089509 0.001144101 79 0 0.01597157 -0.002577484 80 0 -0.06393453 0.01031772 81 0 0.0001315499 3.980931e-06 0 1 -0.06393453 0.01031772 1 1 0.2927527 -0.05061033 2 1 -0.06393453 0.01031772 3 1 0.01597157 -0.002577484 4 1 -0.007089509 0.001144101 5 1 0.003980742 -0.0006424099 6 1 -0.002541777 0.0004101906 7 1 0.001760065 -0.0002840383 8 1 -0.001288661 0.0002079635 9 1 0.0009826448 -0.0001585787 10 1 -0.0007727812 0.000124711 11 1 0.0006226054 -0.0001004757 12 1 -0.0005114288 8.253411e-05 13 1 0.0004268045 -6.887749e-05 14 1 -0.0003608797 5.823857e-05 15 1 0.0003085011 -4.978574e-05 16 1 -0.0002661734 4.295492e-05 17 1 0.0002314578 -3.735254e-05 18 1 -0.0002026106 3.26972e-05 19 1 0.0001783582 -2.878335e-05 20 1 -0.0001577525 2.545802e-05 21 1 0.000140076 -2.26054e-05 22 1 -0.0001247774 2.013652e-05 23 1 0.0001114272 -1.798207e-05 24 1 -9.968672e-05 1.608739e-05 25 1 8.928565e-05 -1.440887e-05 26 1 -8.000611e-05 1.291134e-05 27 1 7.167061e-05 -1.156616e-05 28 1 -6.413319e-05 1.034978e-05 29 1 5.727273e-05 -9.242642e-06 30 1 -5.098776e-05 8.228377e-06 31 1 4.519256e-05 -7.293151e-06 32 1 -3.981401e-05 6.425164e-06 33 1 3.478917e-05 -5.614257e-06 34 1 -3.00633e-05 4.851599e-06 35 1 2.558831e-05 -4.129428e-06 36 1 -2.132146e-05 3.440846e-06 37 1 1.722429e-05 -2.779647e-06 38 1 -1.326172e-05 2.14017e-06 39 1 9.401297e-06 -1.517176e-06 40 1 -5.612495e-06 9.057414e-07 41 1 1.866144e-06 -3.011573e-07 42 1 1.866144e-06 -3.011573e-07 43 1 -5.612495e-06 9.057414e-07 44 1 9.401297e-06 -1.517176e-06 45 1 -1.326172e-05 2.14017e-06 46 1 1.722429e-05 -2.779647e-06 47 1 -2.132146e-05 3.440846e-06 48 1 2.558831e-05 -4.129428e-06 49 1 -3.00633e-05 4.851599e-06 50 1 3.478917e-05 -5.614257e-06 51 1 -3.981401e-05 6.425164e-06 52 1 4.519256e-05 -7.293151e-06 53 1 -5.098776e-05 8.228377e-06 54 1 5.727273e-05 -9.242642e-06 55 1 -6.413319e-05 1.034978e-05 56 1 7.167061e-05 -1.156616e-05 57 1 -8.000611e-05 1.291134e-05 58 1 8.928565e-05 -1.440887e-05 59 1 -9.968672e-05 1.608739e-05 60 1 0.0001114272 -1.798207e-05 61 1 -0.0001247774 2.013652e-05 62 1 0.000140076 -2.26054e-05 63 1 -0.0001577525 2.545802e-05 64 1 0.0001783582 -2.878335e-05 65 1 -0.0002026106 3.26972e-05 66 1 0.0002314578 -3.735254e-05 67 1 -0.0002661734 4.295492e-05 68 1 0.0003085011 -4.978574e-05 69 1 -0.0003608797 5.823857e-05 70 1 0.0004268045 -6.887749e-05 71 1 -0.0005114288 8.253411e-05 72 1 0.0006226054 -0.0001004757 73 1 -0.0007727812 0.000124711 74 1 0.0009826448 -0.0001585787 75 1 -0.001288661 0.0002079635 76 1 0.001760065 -0.0002840383 77 1 -0.002541777 0.0004101906 78 1 0.003980742 -0.0006424099 79 1 -0.007089509 0.001144101 80 1 0.01597157 -0.002577484 82 1 0.0001444547 5.03874e-06 0 2 0.01597157 -0.002577484 1 2 -0.06393453 0.01031772 2 2 0.2157239 -0.04868037 3 2 -0.06393453 0.01031772 4 2 0.01597157 -0.002577484 5 2 -0.007089509 0.001144101 6 2 0.003980742 -0.0006424099 7 2 -0.002541777 0.0004101906 8 2 0.001760065 -0.0002840383 9 2 -0.001288661 0.0002079635 10 2 0.0009826448 -0.0001585787 11 2 -0.0007727812 0.000124711 12 2 0.0006226054 -0.0001004757 13 2 -0.0005114288 8.253411e-05 14 2 0.0004268045 -6.887749e-05 15 2 -0.0003608797 5.823857e-05 16 2 0.0003085011 -4.978574e-05 17 2 -0.0002661734 4.295492e-05 18 2 0.0002314578 -3.735254e-05 19 2 -0.0002026106 3.26972e-05 20 2 0.0001783582 -2.878335e-05 21 2 -0.0001577525 2.545802e-05 22 2 0.000140076 -2.26054e-05 23 2 -0.0001247774 2.013652e-05 24 2 0.0001114272 -1.798207e-05 25 2 -9.968672e-05 1.608739e-05 26 2 8.928565e-05 -1.440887e-05 27 2 -8.000611e-05 1.291134e-05 28 2 7.167061e-05 -1.156616e-05 29 2 -6.413319e-05 1.034978e-05 30 2 5.727273e-05 -9.242642e-06 31 2 -5.098776e-05 8.228377e-06 32 2 4.519256e-05 -7.293151e-06 33 2 -3.981401e-05 6.425164e-06 34 2 3.478917e-05 -5.614257e-06 35 2 -3.00633e-05 4.851599e-06 36 2 2.558831e-05 -4.129428e-06 37 2 -2.132146e-05 3.440846e-06 38 2 1.722429e-05 -2.779647e-06 39 2 -1.326172e-05 2.14017e-06 40 2 9.401297e-06 -1.517176e-06 41 2 -5.612495e-06 9.057414e-07 42 2 1.866144e-06 -3.011573e-07 43 2 1.866144e-06 -3.011573e-07 44 2 -5.612495e-06 9.057414e-07 45 2 9.401297e-06 -1.517176e-06 46 2 -1.326172e-05 2.14017e-06 47 2 1.722429e-05 -2.779647e-06 48 2 -2.132146e-05 3.440846e-06 49 2 2.558831e-05 -4.129428e-06 50 2 -3.00633e-05 4.851599e-06 51 2 3.478917e-05 -5.614257e-06 52 2 -3.981401e-05 6.425164e-06 53 2 4.519256e-05 -7.293151e-06 54 2 -5.098776e-05 8.228377e-06 55 2 5.727273e-05 -9.242642e-06 56 2 -6.413319e-05 1.034978e-05 57 2 7.167061e-05 -1.156616e-05 58 2 -8.000611e-05 1.291134e-05 59 2 8.928565e-05 -1.440887e-05 60 2 -9.968672e-05 1.608739e-05 61 2 0.0001114272 -1.798207e-05 62 2 -0.0001247774 2.013652e-05 63 2 0.000140076 -2.26054e-05 64 2 -0.0001577525 2.545802e-05 65 2 0.0001783582 -2.878335e-05 66 2 -0.0002026106 3.26972e-05 67 2 0.0002314578 -3.735254e-05 68 2 -0.0002661734 4.295492e-05 69 2 0.0003085011 -4.978574e-05 70 2 -0.0003608797 5.823857e-05 71 2 0.0004268045 -6.887749e-05 72 2 -0.0005114288 8.253411e-05 73 2 0.0006226054 -0.0001004757 74 2 -0.0007727812 0.000124711 75 2 0.0009826448 -0.0001585787 76 2 -0.001288661 0.0002079635 77 2 0.001760065 -0.0002840383 78 2 -0.002541777 0.0004101906 79 2 0.003980742 -0.0006424099 80 2 -0.007089509 0.001144101 83 2 0.0001574252 6.107297e-06 0 3 -0.007089509 0.001144101 1 3 0.01597157 -0.002577484 2 3 -0.06393453 0.01031772 3 3 0.155771 -0.04569037 4 3 -0.06393453 0.01031772 5 3 0.01597157 -0.002577484 6 3 -0.007089509 0.001144101 7 3 0.003980742 -0.0006424099 8 3 -0.002541777 0.0004101906 9 3 0.001760065 -0.0002840383 10 3 -0.001288661 0.0002079635 11 3 0.0009826448 -0.0001585787 12 3 -0.0007727812 0.000124711 13 3 0.0006226054 -0.0001004757 14 3 -0.0005114288 8.253411e-05 15 3 0.0004268045 -6.887749e-05 16 3 -0.0003608797 5.823857e-05 17 3 0.0003085011 -4.978574e-05 18 3 -0.0002661734 4.295492e-05 19 3 0.0002314578 -3.735254e-05 20 3 -0.0002026106 3.26972e-05 21 3 0.0001783582 -2.878335e-05 22 3 -0.0001577525 2.545802e-05 23 3 0.000140076 -2.26054e-05 24 3 -0.0001247774 2.013652e-05 25 3 0.0001114272 -1.798207e-05 26 3 -9.968672e-05 1.608739e-05 27 3 8.928565e-05 -1.440887e-05 28 3 -8.000611e-05 1.291134e-05 29 3 7.167061e-05 -1.156616e-05 30 3 -6.413319e-05 1.034978e-05 31 3 5.727273e-05 -9.242642e-06 32 3 -5.098776e-05 8.228377e-06 33 3 4.519256e-05 -7.293151e-06 34 3 -3.981401e-05 6.425164e-06 35 3 3.478917e-05 -5.614257e-06 36 3 -3.00633e-05 4.851599e-06 37 3 2.558831e-05 -4.129428e-06 38 3 -2.132146e-05 3.440846e-06 39 3 1.722429e-05 -2.779647e-06 40 3 -1.326172e-05 2.14017e-06 41 3 9.401297e-06 -1.517176e-06 42 3 -5.612495e-06 9.057414e-07 43 3 1.866144e-06 -3.011573e-07 44 3 1.866144e-06 -3.011573e-07 45 3 -5.612495e-06 9.057414e-07 46 3 9.401297e-06 -1.517176e-06 47 3 -1.326172e-05 2.14017e-06 48 3 1.722429e-05 -2.779647e-06 49 3 -2.132146e-05 3.440846e-06 50 3 2.558831e-05 -4.129428e-06 51 3 -3.00633e-05 4.851599e-06 52 3 3.478917e-05 -5.614257e-06 53 3 -3.981401e-05 6.425164e-06 54 3 4.519256e-05 -7.293151e-06 55 3 -5.098776e-05 8.228377e-06 56 3 5.727273e-05 -9.242642e-06 57 3 -6.413319e-05 1.034978e-05 58 3 7.167061e-05 -1.156616e-05 59 3 -8.000611e-05 1.291134e-05 60 3 8.928565e-05 -1.440887e-05 61 3 -9.968672e-05 1.608739e-05 62 3 0.0001114272 -1.798207e-05 63 3 -0.0001247774 2.013652e-05 64 3 0.000140076 -2.26054e-05 65 3 -0.0001577525 2.545802e-05 66 3 0.0001783582 -2.878335e-05 67 3 -0.0002026106 3.26972e-05 68 3 0.0002314578 -3.735254e-05 69 3 -0.0002661734 4.295492e-05 70 3 0.0003085011 -4.978574e-05 71 3 -0.0003608797 5.823857e-05 72 3 0.0004268045 -6.887749e-05 73 3 -0.0005114288 8.253411e-05 74 3 0.0006226054 -0.0001004757 75 3 -0.0007727812 0.000124711 76 3 0.0009826448 -0.0001585787 77 3 -0.001288661 0.0002079635 78 3 0.001760065 -0.0002840383 79 3 -0.002541777 0.0004101906 80 3 0.003980742 -0.0006424099 84 3 0.0001704618 7.186683e-06 0 4 0.003980742 -0.0006424099 1 4 -0.007089509 0.001144101 2 4 0.01597157 -0.002577484 3 4 -0.06393453 0.01031772 4 4 0.1096566 -0.0420974 5 4 -0.06393453 0.01031772 6 4 0.01597157 -0.002577484 7 4 -0.007089509 0.001144101 8 4 0.003980742 -0.0006424099 9 4 -0.002541777 0.0004101906 10 4 0.001760065 -0.0002840383 11 4 -0.001288661 0.0002079635 12 4 0.0009826448 -0.0001585787 13 4 -0.0007727812 0.000124711 14 4 0.0006226054 -0.0001004757 15 4 -0.0005114288 8.253411e-05 16 4 0.0004268045 -6.887749e-05 17 4 -0.0003608797 5.823857e-05 18 4 0.0003085011 -4.978574e-05 19 4 -0.0002661734 4.295492e-05 20 4 0.0002314578 -3.735254e-05 21 4 -0.0002026106 3.26972e-05 22 4 0.0001783582 -2.878335e-05 23 4 -0.0001577525 2.545802e-05 24 4 0.000140076 -2.26054e-05 25 4 -0.0001247774 2.013652e-05 26 4 0.0001114272 -1.798207e-05 27 4 -9.968672e-05 1.608739e-05 28 4 8.928565e-05 -1.440887e-05 29 4 -8.000611e-05 1.291134e-05 30 4 7.167061e-05 -1.156616e-05 31 4 -6.413319e-05 1.034978e-05 32 4 5.727273e-05 -9.242642e-06 33 4 -5.098776e-05 8.228377e-06 34 4 4.519256e-05 -7.293151e-06 35 4 -3.981401e-05 6.425164e-06 36 4 3.478917e-05 -5.614257e-06 37 4 -3.00633e-05 4.851599e-06 38 4 2.558831e-05 -4.129428e-06 39 4 -2.132146e-05 3.440846e-06 40 4 1.722429e-05 -2.779647e-06 41 4 -1.326172e-05 2.14017e-06 42 4 9.401297e-06 -1.517176e-06 43 4 -5.612495e-06 9.057414e-07 44 4 1.866144e-06 -3.011573e-07 45 4 1.866144e-06 -3.011573e-07 46 4 -5.612495e-06 9.057414e-07 47 4 9.401297e-06 -1.517176e-06 48 4 -1.326172e-05 2.14017e-06 49 4 1.722429e-05 -2.779647e-06 50 4 -2.132146e-05 3.440846e-06 51 4 2.558831e-05 -4.129428e-06 52 4 -3.00633e-05 4.851599e-06 53 4 3.478917e-05 -5.614257e-06 54 4 -3.981401e-05 6.425164e-06 55 4 4.519256e-05 -7.293151e-06 56 4 -5.098776e-05 8.228377e-06 57 4 5.727273e-05 -9.242642e-06 58 4 -6.413319e-05 1.034978e-05 59 4 7.167061e-05 -1.156616e-05 60 4 -8.000611e-05 1.291134e-05 61 4 8.928565e-05 -1.440887e-05 62 4 -9.968672e-05 1.608739e-05 63 4 0.0001114272 -1.798207e-05 64 4 -0.0001247774 2.013652e-05 65 4 0.000140076 -2.26054e-05 66 4 -0.0001577525 2.545802e-05 67 4 0.0001783582 -2.878335e-05 68 4 -0.0002026106 3.26972e-05 69 4 0.0002314578 -3.735254e-05 70 4 -0.0002661734 4.295492e-05 71 4 0.0003085011 -4.978574e-05 72 4 -0.0003608797 5.823857e-05 73 4 0.0004268045 -6.887749e-05 74 4 -0.0005114288 8.253411e-05 75 4 0.0006226054 -0.0001004757 76 4 -0.0007727812 0.000124711 77 4 0.0009826448 -0.0001585787 78 4 -0.001288661 0.0002079635 79 4 0.001760065 -0.0002840383 80 4 -0.002541777 0.0004101906 85 4 0.0001835649 8.276982e-06 0 5 -0.002541777 0.0004101906 1 5 0.003980742 -0.0006424099 2 5 -0.007089509 0.001144101 3 5 0.01597157 -0.002577484 4 5 -0.06393453 0.01031772 5 5 0.07471859 -0.03823259 6 5 -0.06393453 0.01031772 7 5 0.01597157 -0.002577484 8 5 -0.007089509 0.001144101 9 5 0.003980742 -0.0006424099 10 5 -0.002541777 0.0004101906 11 5 0.001760065 -0.0002840383 12 5 -0.001288661 0.0002079635 13 5 0.0009826448 -0.0001585787 14 5 -0.0007727812 0.000124711 15 5 0.0006226054 -0.0001004757 16 5 -0.0005114288 8.253411e-05 17 5 0.0004268045 -6.887749e-05 18 5 -0.0003608797 5.823857e-05 19 5 0.0003085011 -4.978574e-05 20 5 -0.0002661734 4.295492e-05 21 5 0.0002314578 -3.735254e-05 22 5 -0.0002026106 3.26972e-05 23 5 0.0001783582 -2.878335e-05 24 5 -0.0001577525 2.545802e-05 25 5 0.000140076 -2.26054e-05 26 5 -0.0001247774 2.013652e-05 27 5 0.0001114272 -1.798207e-05 28 5 -9.968672e-05 1.608739e-05 29 5 8.928565e-05 -1.440887e-05 30 5 -8.000611e-05 1.291134e-05 31 5 7.167061e-05 -1.156616e-05 32 5 -6.413319e-05 1.034978e-05 33 5 5.727273e-05 -9.242642e-06 34 5 -5.098776e-05 8.228377e-06 35 5 4.519256e-05 -7.293151e-06 36 5 -3.981401e-05 6.425164e-06 37 5 3.478917e-05 -5.614257e-06 38 5 -3.00633e-05 4.851599e-06 39 5 2.558831e-05 -4.129428e-06 40 5 -2.132146e-05 3.440846e-06 41 5 1.722429e-05 -2.779647e-06 42 5 -1.326172e-05 2.14017e-06 43 5 9.401297e-06 -1.517176e-06 44 5 -5.612495e-06 9.057414e-07 45 5 1.866144e-06 -3.011573e-07 46 5 1.866144e-06 -3.011573e-07 47 5 -5.612495e-06 9.057414e-07 48 5 9.401297e-06 -1.517176e-06 49 5 -1.326172e-05 2.14017e-06 50 5 1.722429e-05 -2.779647e-06 51 5 -2.132146e-05 3.440846e-06 52 5 2.558831e-05 -4.129428e-06 53 5 -3.00633e-05 4.851599e-06 54 5 3.478917e-05 -5.614257e-06 55 5 -3.981401e-05 6.425164e-06 56 5 4.519256e-05 -7.293151e-06 57 5 -5.098776e-05 8.228377e-06 58 5 5.727273e-05 -9.242642e-06 59 5 -6.413319e-05 1.034978e-05 60 5 7.167061e-05 -1.156616e-05 61 5 -8.000611e-05 1.291134e-05 62 5 8.928565e-05 -1.440887e-05 63 5 -9.968672e-05 1.608739e-05 64 5 0.0001114272 -1.798207e-05 65 5 -0.0001247774 2.013652e-05 66 5 0.000140076 -2.26054e-05 67 5 -0.0001577525 2.545802e-05 68 5 0.0001783582 -2.878335e-05 69 5 -0.0002026106 3.26972e-05 70 5 0.0002314578 -3.735254e-05 71 5 -0.0002661734 4.295492e-05 72 5 0.0003085011 -4.978574e-05 73 5 -0.0003608797 5.823857e-05 74 5 0.0004268045 -6.887749e-05 75 5 -0.0005114288 8.253411e-05 76 5 0.0006226054 -0.0001004757 77 5 -0.0007727812 0.000124711 78 5 0.0009826448 -0.0001585787 79 5 -0.001288661 0.0002079635 80 5 0.001760065 -0.0002840383 86 5 0.0001967347 9.378277e-06 0 6 0.001760065 -0.0002840383 1 6 -0.002541777 0.0004101906 2 6 0.003980742 -0.0006424099 3 6 -0.007089509 0.001144101 4 6 0.01597157 -0.002577484 5 6 -0.06393453 0.01031772 6 6 0.04877068 -0.03433059 7 6 -0.06393453 0.01031772 8 6 0.01597157 -0.002577484 9 6 -0.007089509 0.001144101 10 6 0.003980742 -0.0006424099 11 6 -0.002541777 0.0004101906 12 6 0.001760065 -0.0002840383 13 6 -0.001288661 0.0002079635 14 6 0.0009826448 -0.0001585787 15 6 -0.0007727812 0.000124711 16 6 0.0006226054 -0.0001004757 17 6 -0.0005114288 8.253411e-05 18 6 0.0004268045 -6.887749e-05 19 6 -0.0003608797 5.823857e-05 20 6 0.0003085011 -4.978574e-05 21 6 -0.0002661734 4.295492e-05 22 6 0.0002314578 -3.735254e-05 23 6 -0.0002026106 3.26972e-05 24 6 0.0001783582 -2.878335e-05 25 6 -0.0001577525 2.545802e-05 26 6 0.000140076 -2.26054e-05 27 6 -0.0001247774 2.013652e-05 28 6 0.0001114272 -1.798207e-05 29 6 -9.968672e-05 1.608739e-05 30 6 8.928565e-05 -1.440887e-05 31 6 -8.000611e-05 1.291134e-05 32 6 7.167061e-05 -1.156616e-05 33 6 -6.413319e-05 1.034978e-05 34 6 5.727273e-05 -9.242642e-06 35 6 -5.098776e-05 8.228377e-06 36 6 4.519256e-05 -7.293151e-06 37 6 -3.981401e-05 6.425164e-06 38 6 3.478917e-05 -5.614257e-06 39 6 -3.00633e-05 4.851599e-06 40 6 2.558831e-05 -4.129428e-06 41 6 -2.132146e-05 3.440846e-06 42 6 1.722429e-05 -2.779647e-06 43 6 -1.326172e-05 2.14017e-06 44 6 9.401297e-06 -1.517176e-06 45 6 -5.612495e-06 9.057414e-07 46 6 1.866144e-06 -3.011573e-07 47 6 1.866144e-06 -3.011573e-07 48 6 -5.612495e-06 9.057414e-07 49 6 9.401297e-06 -1.517176e-06 50 6 -1.326172e-05 2.14017e-06 51 6 1.722429e-05 -2.779647e-06 52 6 -2.132146e-05 3.440846e-06 53 6 2.558831e-05 -4.129428e-06 54 6 -3.00633e-05 4.851599e-06 55 6 3.478917e-05 -5.614257e-06 56 6 -3.981401e-05 6.425164e-06 57 6 4.519256e-05 -7.293151e-06 58 6 -5.098776e-05 8.228377e-06 59 6 5.727273e-05 -9.242642e-06 60 6 -6.413319e-05 1.034978e-05 61 6 7.167061e-05 -1.156616e-05 62 6 -8.000611e-05 1.291134e-05 63 6 8.928565e-05 -1.440887e-05 64 6 -9.968672e-05 1.608739e-05 65 6 0.0001114272 -1.798207e-05 66 6 -0.0001247774 2.013652e-05 67 6 0.000140076 -2.26054e-05 68 6 -0.0001577525 2.545802e-05 69 6 0.0001783582 -2.878335e-05 70 6 -0.0002026106 3.26972e-05 71 6 0.0002314578 -3.735254e-05 72 6 -0.0002661734 4.295492e-05 73 6 0.0003085011 -4.978574e-05 74 6 -0.0003608797 5.823857e-05 75 6 0.0004268045 -6.887749e-05 76 6 -0.0005114288 8.253411e-05 77 6 0.0006226054 -0.0001004757 78 6 -0.0007727812 0.000124711 79 6 0.0009826448 -0.0001585787 80 6 -0.001288661 0.0002079635 87 6 0.0002099716 1.049065e-05 0 7 -0.001288661 0.0002079635 1 7 0.001760065 -0.0002840383 2 7 -0.002541777 0.0004101906 3 7 0.003980742 -0.0006424099 4 7 -0.007089509 0.001144101 5 7 0.01597157 -0.002577484 6 7 -0.06393453 0.01031772 7 7 0.03002069 -0.03055269 8 7 -0.06393453 0.01031772 9 7 0.01597157 -0.002577484 10 7 -0.007089509 0.001144101 11 7 0.003980742 -0.0006424099 12 7 -0.002541777 0.0004101906 13 7 0.001760065 -0.0002840383 14 7 -0.001288661 0.0002079635 15 7 0.0009826448 -0.0001585787 16 7 -0.0007727812 0.000124711 17 7 0.0006226054 -0.0001004757 18 7 -0.0005114288 8.253411e-05 19 7 0.0004268045 -6.887749e-05 20 7 -0.0003608797 5.823857e-05 21 7 0.0003085011 -4.978574e-05 22 7 -0.0002661734 4.295492e-05 23 7 0.0002314578 -3.735254e-05 24 7 -0.0002026106 3.26972e-05 25 7 0.0001783582 -2.878335e-05 26 7 -0.0001577525 2.545802e-05 27 7 0.000140076 -2.26054e-05 28 7 -0.0001247774 2.013652e-05 29 7 0.0001114272 -1.798207e-05 30 7 -9.968672e-05 1.608739e-05 31 7 8.928565e-05 -1.440887e-05 32 7 -8.000611e-05 1.291134e-05 33 7 7.167061e-05 -1.156616e-05 34 7 -6.413319e-05 1.034978e-05 35 7 5.727273e-05 -9.242642e-06 36 7 -5.098776e-05 8.228377e-06 37 7 4.519256e-05 -7.293151e-06 38 7 -3.981401e-05 6.425164e-06 39 7 3.478917e-05 -5.614257e-06 40 7 -3.00633e-05 4.851599e-06 41 7 2.558831e-05 -4.129428e-06 42 7 -2.132146e-05 3.440846e-06 43 7 1.722429e-05 -2.779647e-06 44 7 -1.326172e-05 2.14017e-06 45 7 9.401297e-06 -1.517176e-06 46 7 -5.612495e-06 9.057414e-07 47 7 1.866144e-06 -3.011573e-07 48 7 1.866144e-06 -3.011573e-07 49 7 -5.612495e-06 9.057414e-07 50 7 9.401297e-06 -1.517176e-06 51 7 -1.326172e-05 2.14017e-06 52 7 1.722429e-05 -2.779647e-06 53 7 -2.132146e-05 3.440846e-06 54 7 2.558831e-05 -4.129428e-06 55 7 -3.00633e-05 4.851599e-06 56 7 3.478917e-05 -5.614257e-06 57 7 -3.981401e-05 6.425164e-06 58 7 4.519256e-05 -7.293151e-06 59 7 -5.098776e-05 8.228377e-06 60 7 5.727273e-05 -9.242642e-06 61 7 -6.413319e-05 1.034978e-05 62 7 7.167061e-05 -1.156616e-05 63 7 -8.000611e-05 1.291134e-05 64 7 8.928565e-05 -1.440887e-05 65 7 -9.968672e-05 1.608739e-05 66 7 0.0001114272 -1.798207e-05 67 7 -0.0001247774 2.013652e-05 68 7 0.000140076 -2.26054e-05 69 7 -0.0001577525 2.545802e-05 70 7 0.0001783582 -2.878335e-05 71 7 -0.0002026106 3.26972e-05 72 7 0.0002314578 -3.735254e-05 73 7 -0.0002661734 4.295492e-05 74 7 0.0003085011 -4.978574e-05 75 7 -0.0003608797 5.823857e-05 76 7 0.0004268045 -6.887749e-05 77 7 -0.0005114288 8.253411e-05 78 7 0.0006226054 -0.0001004757 79 7 -0.0007727812 0.000124711 80 7 0.0009826448 -0.0001585787 88 7 0.000223276 1.161419e-05 0 8 0.0009826448 -0.0001585787 1 8 -0.001288661 0.0002079635 2 8 0.001760065 -0.0002840383 3 8 -0.002541777 0.0004101906 4 8 0.003980742 -0.0006424099 5 8 -0.007089509 0.001144101 6 8 0.01597157 -0.002577484 7 8 -0.06393453 0.01031772 8 8 0.01700217 -0.0270049 9 8 -0.06393453 0.01031772 10 8 0.01597157 -0.002577484 11 8 -0.007089509 0.001144101 12 8 0.003980742 -0.0006424099 13 8 -0.002541777 0.0004101906 14 8 0.001760065 -0.0002840383 15 8 -0.001288661 0.0002079635 16 8 0.0009826448 -0.0001585787 17 8 -0.0007727812 0.000124711 18 8 0.0006226054 -0.0001004757 19 8 -0.0005114288 8.253411e-05 20 8 0.0004268045 -6.887749e-05 21 8 -0.0003608797 5.823857e-05 22 8 0.0003085011 -4.978574e-05 23 8 -0.0002661734 4.295492e-05 24 8 0.0002314578 -3.735254e-05 25 8 -0.0002026106 3.26972e-05 26 8 0.0001783582 -2.878335e-05 27 8 -0.0001577525 2.545802e-05 28 8 0.000140076 -2.26054e-05 29 8 -0.0001247774 2.013652e-05 30 8 0.0001114272 -1.798207e-05 31 8 -9.968672e-05 1.608739e-05 32 8 8.928565e-05 -1.440887e-05 33 8 -8.000611e-05 1.291134e-05 34 8 7.167061e-05 -1.156616e-05 35 8 -6.413319e-05 1.034978e-05 36 8 5.727273e-05 -9.242642e-06 37 8 -5.098776e-05 8.228377e-06 38 8 4.519256e-05 -7.293151e-06 39 8 -3.981401e-05 6.425164e-06 40 8 3.478917e-05 -5.614257e-06 41 8 -3.00633e-05 4.851599e-06 42 8 2.558831e-05 -4.129428e-06 43 8 -2.132146e-05 3.440846e-06 44 8 1.722429e-05 -2.779647e-06 45 8 -1.326172e-05 2.14017e-06 46 8 9.401297e-06 -1.517176e-06 47 8 -5.612495e-06 9.057414e-07 48 8 1.866144e-06 -3.011573e-07 49 8 1.866144e-06 -3.011573e-07 50 8 -5.612495e-06 9.057414e-07 51 8 9.401297e-06 -1.517176e-06 52 8 -1.326172e-05 2.14017e-06 53 8 1.722429e-05 -2.779647e-06 54 8 -2.132146e-05 3.440846e-06 55 8 2.558831e-05 -4.129428e-06 56 8 -3.00633e-05 4.851599e-06 57 8 3.478917e-05 -5.614257e-06 58 8 -3.981401e-05 6.425164e-06 59 8 4.519256e-05 -7.293151e-06 60 8 -5.098776e-05 8.228377e-06 61 8 5.727273e-05 -9.242642e-06 62 8 -6.413319e-05 1.034978e-05 63 8 7.167061e-05 -1.156616e-05 64 8 -8.000611e-05 1.291134e-05 65 8 8.928565e-05 -1.440887e-05 66 8 -9.968672e-05 1.608739e-05 67 8 0.0001114272 -1.798207e-05 68 8 -0.0001247774 2.013652e-05 69 8 0.000140076 -2.26054e-05 70 8 -0.0001577525 2.545802e-05 71 8 0.0001783582 -2.878335e-05 72 8 -0.0002026106 3.26972e-05 73 8 0.0002314578 -3.735254e-05 74 8 -0.0002661734 4.295492e-05 75 8 0.0003085011 -4.978574e-05 76 8 -0.0003608797 5.823857e-05 77 8 0.0004268045 -6.887749e-05 78 8 -0.0005114288 8.253411e-05 79 8 0.0006226054 -0.0001004757 80 8 -0.0007727812 0.000124711 89 8 0.0002366482 1.274898e-05 0 9 -0.0007727812 0.000124711 1 9 0.0009826448 -0.0001585787 2 9 -0.001288661 0.0002079635 3 9 0.001760065 -0.0002840383 4 9 -0.002541777 0.0004101906 5 9 0.003980742 -0.0006424099 6 9 -0.007089509 0.001144101 7 9 0.01597157 -0.002577484 8 9 -0.06393453 0.01031772 9 9 0.008517736 -0.02375204 10 9 -0.06393453 0.01031772 11 9 0.01597157 -0.002577484 12 9 -0.007089509 0.001144101 13 9 0.003980742 -0.0006424099 14 9 -0.002541777 0.0004101906 15 9 0.001760065 -0.0002840383 16 9 -0.001288661 0.0002079635 17 9 0.0009826448 -0.0001585787 18 9 -0.0007727812 0.000124711 19 9 0.0006226054 -0.0001004757 20 9 -0.0005114288 8.253411e-05 21 9 0.0004268045 -6.887749e-05 22 9 -0.0003608797 5.823857e-05 23 9 0.0003085011 -4.978574e-05 24 9 -0.0002661734 4.295492e-05 25 9 0.0002314578 -3.735254e-05 26 9 -0.0002026106 3.26972e-05 27 9 0.0001783582 -2.878335e-05 28 9 -0.0001577525 2.545802e-05 29 9 0.000140076 -2.26054e-05 30 9 -0.0001247774 2.013652e-05 31 9 0.0001114272 -1.798207e-05 32 9 -9.968672e-05 1.608739e-05 33 9 8.928565e-05 -1.440887e-05 34 9 -8.000611e-05 1.291134e-05 35 9 7.167061e-05 -1.156616e-05 36 9 -6.413319e-05 1.034978e-05 37 9 5.727273e-05 -9.242642e-06 38 9 -5.098776e-05 8.228377e-06 39 9 4.519256e-05 -7.293151e-06 40 9 -3.981401e-05 6.425164e-06 41 9 3.478917e-05 -5.614257e-06 42 9 -3.00633e-05 4.851599e-06 43 9 2.558831e-05 -4.129428e-06 44 9 -2.132146e-05 3.440846e-06 45 9 1.722429e-05 -2.779647e-06 46 9 -1.326172e-05 2.14017e-06 47 9 9.401297e-06 -1.517176e-06 48 9 -5.612495e-06 9.057414e-07 49 9 1.866144e-06 -3.011573e-07 50 9 1.866144e-06 -3.011573e-07 51 9 -5.612495e-06 9.057414e-07 52 9 9.401297e-06 -1.517176e-06 53 9 -1.326172e-05 2.14017e-06 54 9 1.722429e-05 -2.779647e-06 55 9 -2.132146e-05 3.440846e-06 56 9 2.558831e-05 -4.129428e-06 57 9 -3.00633e-05 4.851599e-06 58 9 3.478917e-05 -5.614257e-06 59 9 -3.981401e-05 6.425164e-06 60 9 4.519256e-05 -7.293151e-06 61 9 -5.098776e-05 8.228377e-06 62 9 5.727273e-05 -9.242642e-06 63 9 -6.413319e-05 1.034978e-05 64 9 7.167061e-05 -1.156616e-05 65 9 -8.000611e-05 1.291134e-05 66 9 8.928565e-05 -1.440887e-05 67 9 -9.968672e-05 1.608739e-05 68 9 0.0001114272 -1.798207e-05 69 9 -0.0001247774 2.013652e-05 70 9 0.000140076 -2.26054e-05 71 9 -0.0001577525 2.545802e-05 72 9 0.0001783582 -2.878335e-05 73 9 -0.0002026106 3.26972e-05 74 9 0.0002314578 -3.735254e-05 75 9 -0.0002661734 4.295492e-05 76 9 0.0003085011 -4.978574e-05 77 9 -0.0003608797 5.823857e-05 78 9 0.0004268045 -6.887749e-05 79 9 -0.0005114288 8.253411e-05 80 9 0.0006226054 -0.0001004757 90 9 0.0002500884 1.38951e-05 0 10 0.0006226054 -0.0001004757 1 10 -0.0007727812 0.000124711 2 10 0.0009826448 -0.0001585787 3 10 -0.001288661 0.0002079635 4 10 0.001760065 -0.0002840383 5 10 -0.002541777 0.0004101906 6 10 0.003980742 -0.0006424099 7 10 -0.007089509 0.001144101 8 10 0.01597157 -0.002577484 9 10 -0.06393453 0.01031772 10 10 0.003592011 -0.02082867 11 10 -0.06393453 0.01031772 12 10 0.01597157 -0.002577484 13 10 -0.007089509 0.001144101 14 10 0.003980742 -0.0006424099 15 10 -0.002541777 0.0004101906 16 10 0.001760065 -0.0002840383 17 10 -0.001288661 0.0002079635 18 10 0.0009826448 -0.0001585787 19 10 -0.0007727812 0.000124711 20 10 0.0006226054 -0.0001004757 21 10 -0.0005114288 8.253411e-05 22 10 0.0004268045 -6.887749e-05 23 10 -0.0003608797 5.823857e-05 24 10 0.0003085011 -4.978574e-05 25 10 -0.0002661734 4.295492e-05 26 10 0.0002314578 -3.735254e-05 27 10 -0.0002026106 3.26972e-05 28 10 0.0001783582 -2.878335e-05 29 10 -0.0001577525 2.545802e-05 30 10 0.000140076 -2.26054e-05 31 10 -0.0001247774 2.013652e-05 32 10 0.0001114272 -1.798207e-05 33 10 -9.968672e-05 1.608739e-05 34 10 8.928565e-05 -1.440887e-05 35 10 -8.000611e-05 1.291134e-05 36 10 7.167061e-05 -1.156616e-05 37 10 -6.413319e-05 1.034978e-05 38 10 5.727273e-05 -9.242642e-06 39 10 -5.098776e-05 8.228377e-06 40 10 4.519256e-05 -7.293151e-06 41 10 -3.981401e-05 6.425164e-06 42 10 3.478917e-05 -5.614257e-06 43 10 -3.00633e-05 4.851599e-06 44 10 2.558831e-05 -4.129428e-06 45 10 -2.132146e-05 3.440846e-06 46 10 1.722429e-05 -2.779647e-06 47 10 -1.326172e-05 2.14017e-06 48 10 9.401297e-06 -1.517176e-06 49 10 -5.612495e-06 9.057414e-07 50 10 1.866144e-06 -3.011573e-07 51 10 1.866144e-06 -3.011573e-07 52 10 -5.612495e-06 9.057414e-07 53 10 9.401297e-06 -1.517176e-06 54 10 -1.326172e-05 2.14017e-06 55 10 1.722429e-05 -2.779647e-06 56 10 -2.132146e-05 3.440846e-06 57 10 2.558831e-05 -4.129428e-06 58 10 -3.00633e-05 4.851599e-06 59 10 3.478917e-05 -5.614257e-06 60 10 -3.981401e-05 6.425164e-06 61 10 4.519256e-05 -7.293151e-06 62 10 -5.098776e-05 8.228377e-06 63 10 5.727273e-05 -9.242642e-06 64 10 -6.413319e-05 1.034978e-05 65 10 7.167061e-05 -1.156616e-05 66 10 -8.000611e-05 1.291134e-05 67 10 8.928565e-05 -1.440887e-05 68 10 -9.968672e-05 1.608739e-05 69 10 0.0001114272 -1.798207e-05 70 10 -0.0001247774 2.013652e-05 71 10 0.000140076 -2.26054e-05 72 10 -0.0001577525 2.545802e-05 73 10 0.0001783582 -2.878335e-05 74 10 -0.0002026106 3.26972e-05 75 10 0.0002314578 -3.735254e-05 76 10 -0.0002661734 4.295492e-05 77 10 0.0003085011 -4.978574e-05 78 10 -0.0003608797 5.823857e-05 79 10 0.0004268045 -6.887749e-05 80 10 -0.0005114288 8.253411e-05 91 10 0.0002635972 1.505265e-05 0 11 -0.0005114288 8.253411e-05 1 11 0.0006226054 -0.0001004757 2 11 -0.0007727812 0.000124711 3 11 0.0009826448 -0.0001585787 4 11 -0.001288661 0.0002079635 5 11 0.001760065 -0.0002840383 6 11 -0.002541777 0.0004101906 7 11 0.003980742 -0.0006424099 8 11 -0.007089509 0.001144101 9 11 0.01597157 -0.002577484 10 11 -0.06393453 0.01031772 11 11 0.001432594 -0.01824749 12 11 -0.06393453 0.01031772 13 11 0.01597157 -0.002577484 14 11 -0.007089509 0.001144101 15 11 0.003980742 -0.0006424099 16 11 -0.002541777 0.0004101906 17 11 0.001760065 -0.0002840383 18 11 -0.001288661 0.0002079635 19 11 0.0009826448 -0.0001585787 20 11 -0.0007727812 0.000124711 21 11 0.0006226054 -0.0001004757 22 11 -0.0005114288 8.253411e-05 23 11 0.0004268045 -6.887749e-05 24 11 -0.0003608797 5.823857e-05 25 11 0.0003085011 -4.978574e-05 26 11 -0.0002661734 4.295492e-05 27 11 0.0002314578 -3.735254e-05 28 11 -0.0002026106 3.26972e-05 29 11 0.0001783582 -2.878335e-05 30 11 -0.0001577525 2.545802e-05 31 11 0.000140076 -2.26054e-05 32 11 -0.0001247774 2.013652e-05 33 11 0.0001114272 -1.798207e-05 34 11 -9.968672e-05 1.608739e-05 35 11 8.928565e-05 -1.440887e-05 36 11 -8.000611e-05 1.291134e-05 37 11 7.167061e-05 -1.156616e-05 38 11 -6.413319e-05 1.034978e-05 39 11 5.727273e-05 -9.242642e-06 40 11 -5.098776e-05 8.228377e-06 41 11 4.519256e-05 -7.293151e-06 42 11 -3.981401e-05 6.425164e-06 43 11 3.478917e-05 -5.614257e-06 44 11 -3.00633e-05 4.851599e-06 45 11 2.558831e-05 -4.129428e-06 46 11 -2.132146e-05 3.440846e-06 47 11 1.722429e-05 -2.779647e-06 48 11 -1.326172e-05 2.14017e-06 49 11 9.401297e-06 -1.517176e-06 50 11 -5.612495e-06 9.057414e-07 51 11 1.866144e-06 -3.011573e-07 52 11 1.866144e-06 -3.011573e-07 53 11 -5.612495e-06 9.057414e-07 54 11 9.401297e-06 -1.517176e-06 55 11 -1.326172e-05 2.14017e-06 56 11 1.722429e-05 -2.779647e-06 57 11 -2.132146e-05 3.440846e-06 58 11 2.558831e-05 -4.129428e-06 59 11 -3.00633e-05 4.851599e-06 60 11 3.478917e-05 -5.614257e-06 61 11 -3.981401e-05 6.425164e-06 62 11 4.519256e-05 -7.293151e-06 63 11 -5.098776e-05 8.228377e-06 64 11 5.727273e-05 -9.242642e-06 65 11 -6.413319e-05 1.034978e-05 66 11 7.167061e-05 -1.156616e-05 67 11 -8.000611e-05 1.291134e-05 68 11 8.928565e-05 -1.440887e-05 69 11 -9.968672e-05 1.608739e-05 70 11 0.0001114272 -1.798207e-05 71 11 -0.0001247774 2.013652e-05 72 11 0.000140076 -2.26054e-05 73 11 -0.0001577525 2.545802e-05 74 11 0.0001783582 -2.878335e-05 75 11 -0.0002026106 3.26972e-05 76 11 0.0002314578 -3.735254e-05 77 11 -0.0002661734 4.295492e-05 78 11 0.0003085011 -4.978574e-05 79 11 -0.0003608797 5.823857e-05 80 11 0.0004268045 -6.887749e-05 92 11 0.0002771748 1.62217e-05 0 12 0.0004268045 -6.887749e-05 1 12 -0.0005114288 8.253411e-05 2 12 0.0006226054 -0.0001004757 3 12 -0.0007727812 0.000124711 4 12 0.0009826448 -0.0001585787 5 12 -0.001288661 0.0002079635 6 12 0.001760065 -0.0002840383 7 12 -0.002541777 0.0004101906 8 12 0.003980742 -0.0006424099 9 12 -0.007089509 0.001144101 10 12 0.01597157 -0.002577484 11 12 -0.06393453 0.01031772 12 12 0.001397702 -0.0160058 13 12 -0.06393453 0.01031772 14 12 0.01597157 -0.002577484 15 12 -0.007089509 0.001144101 16 12 0.003980742 -0.0006424099 17 12 -0.002541777 0.0004101906 18 12 0.001760065 -0.0002840383 19 12 -0.001288661 0.0002079635 20 12 0.0009826448 -0.0001585787 21 12 -0.0007727812 0.000124711 22 12 0.0006226054 -0.0001004757 23 12 -0.0005114288 8.253411e-05 24 12 0.0004268045 -6.887749e-05 25 12 -0.0003608797 5.823857e-05 26 12 0.0003085011 -4.978574e-05 27 12 -0.0002661734 4.295492e-05 28 12 0.0002314578 -3.735254e-05 29 12 -0.0002026106 3.26972e-05 30 12 0.0001783582 -2.878335e-05 31 12 -0.0001577525 2.545802e-05 32 12 0.000140076 -2.26054e-05 33 12 -0.0001247774 2.013652e-05 34 12 0.0001114272 -1.798207e-05 35 12 -9.968672e-05 1.608739e-05 36 12 8.928565e-05 -1.440887e-05 37 12 -8.000611e-05 1.291134e-05 38 12 7.167061e-05 -1.156616e-05 39 12 -6.413319e-05 1.034978e-05 40 12 5.727273e-05 -9.242642e-06 41 12 -5.098776e-05 8.228377e-06 42 12 4.519256e-05 -7.293151e-06 43 12 -3.981401e-05 6.425164e-06 44 12 3.478917e-05 -5.614257e-06 45 12 -3.00633e-05 4.851599e-06 46 12 2.558831e-05 -4.129428e-06 47 12 -2.132146e-05 3.440846e-06 48 12 1.722429e-05 -2.779647e-06 49 12 -1.326172e-05 2.14017e-06 50 12 9.401297e-06 -1.517176e-06 51 12 -5.612495e-06 9.057414e-07 52 12 1.866144e-06 -3.011573e-07 53 12 1.866144e-06 -3.011573e-07 54 12 -5.612495e-06 9.057414e-07 55 12 9.401297e-06 -1.517176e-06 56 12 -1.326172e-05 2.14017e-06 57 12 1.722429e-05 -2.779647e-06 58 12 -2.132146e-05 3.440846e-06 59 12 2.558831e-05 -4.129428e-06 60 12 -3.00633e-05 4.851599e-06 61 12 3.478917e-05 -5.614257e-06 62 12 -3.981401e-05 6.425164e-06 63 12 4.519256e-05 -7.293151e-06 64 12 -5.098776e-05 8.228377e-06 65 12 5.727273e-05 -9.242642e-06 66 12 -6.413319e-05 1.034978e-05 67 12 7.167061e-05 -1.156616e-05 68 12 -8.000611e-05 1.291134e-05 69 12 8.928565e-05 -1.440887e-05 70 12 -9.968672e-05 1.608739e-05 71 12 0.0001114272 -1.798207e-05 72 12 -0.0001247774 2.013652e-05 73 12 0.000140076 -2.26054e-05 74 12 -0.0001577525 2.545802e-05 75 12 0.0001783582 -2.878335e-05 76 12 -0.0002026106 3.26972e-05 77 12 0.0002314578 -3.735254e-05 78 12 -0.0002661734 4.295492e-05 79 12 0.0003085011 -4.978574e-05 80 12 -0.0003608797 5.823857e-05 93 12 0.0002908216 1.740235e-05 0 13 -0.0003608797 5.823857e-05 1 13 0.0004268045 -6.887749e-05 2 13 -0.0005114288 8.253411e-05 3 13 0.0006226054 -0.0001004757 4 13 -0.0007727812 0.000124711 5 13 0.0009826448 -0.0001585787 6 13 -0.001288661 0.0002079635 7 13 0.001760065 -0.0002840383 8 13 -0.002541777 0.0004101906 9 13 0.003980742 -0.0006424099 10 13 -0.007089509 0.001144101 11 13 0.01597157 -0.002577484 12 13 -0.06393453 0.01031772 13 13 0.002969361 -0.01409039 14 13 -0.06393453 0.01031772 15 13 0.01597157 -0.002577484 16 13 -0.007089509 0.001144101 17 13 0.003980742 -0.0006424099 18 13 -0.002541777 0.0004101906 19 13 0.001760065 -0.0002840383 20 13 -0.001288661 0.0002079635 21 13 0.0009826448 -0.0001585787 22 13 -0.0007727812 0.000124711 23 13 0.0006226054 -0.0001004757 24 13 -0.0005114288 8.253411e-05 25 13 0.0004268045 -6.887749e-05 26 13 -0.0003608797 5.823857e-05 27 13 0.0003085011 -4.978574e-05 28 13 -0.0002661734 4.295492e-05 29 13 0.0002314578 -3.735254e-05 30 13 -0.0002026106 3.26972e-05 31 13 0.0001783582 -2.878335e-05 32 13 -0.0001577525 2.545802e-05 33 13 0.000140076 -2.26054e-05 34 13 -0.0001247774 2.013652e-05 35 13 0.0001114272 -1.798207e-05 36 13 -9.968672e-05 1.608739e-05 37 13 8.928565e-05 -1.440887e-05 38 13 -8.000611e-05 1.291134e-05 39 13 7.167061e-05 -1.156616e-05 40 13 -6.413319e-05 1.034978e-05 41 13 5.727273e-05 -9.242642e-06 42 13 -5.098776e-05 8.228377e-06 43 13 4.519256e-05 -7.293151e-06 44 13 -3.981401e-05 6.425164e-06 45 13 3.478917e-05 -5.614257e-06 46 13 -3.00633e-05 4.851599e-06 47 13 2.558831e-05 -4.129428e-06 48 13 -2.132146e-05 3.440846e-06 49 13 1.722429e-05 -2.779647e-06 50 13 -1.326172e-05 2.14017e-06 51 13 9.401297e-06 -1.517176e-06 52 13 -5.612495e-06 9.057414e-07 53 13 1.866144e-06 -3.011573e-07 54 13 1.866144e-06 -3.011573e-07 55 13 -5.612495e-06 9.057414e-07 56 13 9.401297e-06 -1.517176e-06 57 13 -1.326172e-05 2.14017e-06 58 13 1.722429e-05 -2.779647e-06 59 13 -2.132146e-05 3.440846e-06 60 13 2.558831e-05 -4.129428e-06 61 13 -3.00633e-05 4.851599e-06 62 13 3.478917e-05 -5.614257e-06 63 13 -3.981401e-05 6.425164e-06 64 13 4.519256e-05 -7.293151e-06 65 13 -5.098776e-05 8.228377e-06 66 13 5.727273e-05 -9.242642e-06 67 13 -6.413319e-05 1.034978e-05 68 13 7.167061e-05 -1.156616e-05 69 13 -8.000611e-05 1.291134e-05 70 13 8.928565e-05 -1.440887e-05 71 13 -9.968672e-05 1.608739e-05 72 13 0.0001114272 -1.798207e-05 73 13 -0.0001247774 2.013652e-05 74 13 0.000140076 -2.26054e-05 75 13 -0.0001577525 2.545802e-05 76 13 0.0001783582 -2.878335e-05 77 13 -0.0002026106 3.26972e-05 78 13 0.0002314578 -3.735254e-05 79 13 -0.0002661734 4.295492e-05 80 13 0.0003085011 -4.978574e-05 94 13 0.0003045378 1.859469e-05 0 14 0.0003085011 -4.978574e-05 1 14 -0.0003608797 5.823857e-05 2 14 0.0004268045 -6.887749e-05 3 14 -0.0005114288 8.253411e-05 4 14 0.0006226054 -0.0001004757 5 14 -0.0007727812 0.000124711 6 14 0.0009826448 -0.0001585787 7 14 -0.001288661 0.0002079635 8 14 0.001760065 -0.0002840383 9 14 -0.002541777 0.0004101906 10 14 0.003980742 -0.0006424099 11 14 -0.007089509 0.001144101 12 14 0.01597157 -0.002577484 13 14 -0.06393453 0.01031772 14 14 0.005731212 -0.01248123 15 14 -0.06393453 0.01031772 16 14 0.01597157 -0.002577484 17 14 -0.007089509 0.001144101 18 14 0.003980742 -0.0006424099 19 14 -0.002541777 0.0004101906 20 14 0.001760065 -0.0002840383 21 14 -0.001288661 0.0002079635 22 14 0.0009826448 -0.0001585787 23 14 -0.0007727812 0.000124711 24 14 0.0006226054 -0.0001004757 25 14 -0.0005114288 8.253411e-05 26 14 0.0004268045 -6.887749e-05 27 14 -0.0003608797 5.823857e-05 28 14 0.0003085011 -4.978574e-05 29 14 -0.0002661734 4.295492e-05 30 14 0.0002314578 -3.735254e-05 31 14 -0.0002026106 3.26972e-05 32 14 0.0001783582 -2.878335e-05 33 14 -0.0001577525 2.545802e-05 34 14 0.000140076 -2.26054e-05 35 14 -0.0001247774 2.013652e-05 36 14 0.0001114272 -1.798207e-05 37 14 -9.968672e-05 1.608739e-05 38 14 8.928565e-05 -1.440887e-05 39 14 -8.000611e-05 1.291134e-05 40 14 7.167061e-05 -1.156616e-05 41 14 -6.413319e-05 1.034978e-05 42 14 5.727273e-05 -9.242642e-06 43 14 -5.098776e-05 8.228377e-06 44 14 4.519256e-05 -7.293151e-06 45 14 -3.981401e-05 6.425164e-06 46 14 3.478917e-05 -5.614257e-06 47 14 -3.00633e-05 4.851599e-06 48 14 2.558831e-05 -4.129428e-06 49 14 -2.132146e-05 3.440846e-06 50 14 1.722429e-05 -2.779647e-06 51 14 -1.326172e-05 2.14017e-06 52 14 9.401297e-06 -1.517176e-06 53 14 -5.612495e-06 9.057414e-07 54 14 1.866144e-06 -3.011573e-07 55 14 1.866144e-06 -3.011573e-07 56 14 -5.612495e-06 9.057414e-07 57 14 9.401297e-06 -1.517176e-06 58 14 -1.326172e-05 2.14017e-06 59 14 1.722429e-05 -2.779647e-06 60 14 -2.132146e-05 3.440846e-06 61 14 2.558831e-05 -4.129428e-06 62 14 -3.00633e-05 4.851599e-06 63 14 3.478917e-05 -5.614257e-06 64 14 -3.981401e-05 6.425164e-06 65 14 4.519256e-05 -7.293151e-06 66 14 -5.098776e-05 8.228377e-06 67 14 5.727273e-05 -9.242642e-06 68 14 -6.413319e-05 1.034978e-05 69 14 7.167061e-05 -1.156616e-05 70 14 -8.000611e-05 1.291134e-05 71 14 8.928565e-05 -1.440887e-05 72 14 -9.968672e-05 1.608739e-05 73 14 0.0001114272 -1.798207e-05 74 14 -0.0001247774 2.013652e-05 75 14 0.000140076 -2.26054e-05 76 14 -0.0001577525 2.545802e-05 77 14 0.0001783582 -2.878335e-05 78 14 -0.0002026106 3.26972e-05 79 14 0.0002314578 -3.735254e-05 80 14 -0.0002661734 4.295492e-05 95 14 0.000318324 1.979879e-05 0 15 -0.0002661734 4.295492e-05 1 15 0.0003085011 -4.978574e-05 2 15 -0.0003608797 5.823857e-05 3 15 0.0004268045 -6.887749e-05 4 15 -0.0005114288 8.253411e-05 5 15 0.0006226054 -0.0001004757 6 15 -0.0007727812 0.000124711 7 15 0.0009826448 -0.0001585787 8 15 -0.001288661 0.0002079635 9 15 0.001760065 -0.0002840383 10 15 -0.002541777 0.0004101906 11 15 0.003980742 -0.0006424099 12 15 -0.007089509 0.001144101 13 15 0.01597157 -0.002577484 14 15 -0.06393453 0.01031772 15 15 0.009350157 -0.01115419 16 15 -0.06393453 0.01031772 17 15 0.01597157 -0.002577484 18 15 -0.007089509 0.001144101 19 15 0.003980742 -0.0006424099 20 15 -0.002541777 0.0004101906 21 15 0.001760065 -0.0002840383 22 15 -0.001288661 0.0002079635 23 15 0.0009826448 -0.0001585787 24 15 -0.0007727812 0.000124711 25 15 0.0006226054 -0.0001004757 26 15 -0.0005114288 8.253411e-05 27 15 0.0004268045 -6.887749e-05 28 15 -0.0003608797 5.823857e-05 29 15 0.0003085011 -4.978574e-05 30 15 -0.0002661734 4.295492e-05 31 15 0.0002314578 -3.735254e-05 32 15 -0.0002026106 3.26972e-05 33 15 0.0001783582 -2.878335e-05 34 15 -0.0001577525 2.545802e-05 35 15 0.000140076 -2.26054e-05 36 15 -0.0001247774 2.013652e-05 37 15 0.0001114272 -1.798207e-05 38 15 -9.968672e-05 1.608739e-05 39 15 8.928565e-05 -1.440887e-05 40 15 -8.000611e-05 1.291134e-05 41 15 7.167061e-05 -1.156616e-05 42 15 -6.413319e-05 1.034978e-05 43 15 5.727273e-05 -9.242642e-06 44 15 -5.098776e-05 8.228377e-06 45 15 4.519256e-05 -7.293151e-06 46 15 -3.981401e-05 6.425164e-06 47 15 3.478917e-05 -5.614257e-06 48 15 -3.00633e-05 4.851599e-06 49 15 2.558831e-05 -4.129428e-06 50 15 -2.132146e-05 3.440846e-06 51 15 1.722429e-05 -2.779647e-06 52 15 -1.326172e-05 2.14017e-06 53 15 9.401297e-06 -1.517176e-06 54 15 -5.612495e-06 9.057414e-07 55 15 1.866144e-06 -3.011573e-07 56 15 1.866144e-06 -3.011573e-07 57 15 -5.612495e-06 9.057414e-07 58 15 9.401297e-06 -1.517176e-06 59 15 -1.326172e-05 2.14017e-06 60 15 1.722429e-05 -2.779647e-06 61 15 -2.132146e-05 3.440846e-06 62 15 2.558831e-05 -4.129428e-06 63 15 -3.00633e-05 4.851599e-06 64 15 3.478917e-05 -5.614257e-06 65 15 -3.981401e-05 6.425164e-06 66 15 4.519256e-05 -7.293151e-06 67 15 -5.098776e-05 8.228377e-06 68 15 5.727273e-05 -9.242642e-06 69 15 -6.413319e-05 1.034978e-05 70 15 7.167061e-05 -1.156616e-05 71 15 -8.000611e-05 1.291134e-05 72 15 8.928565e-05 -1.440887e-05 73 15 -9.968672e-05 1.608739e-05 74 15 0.0001114272 -1.798207e-05 75 15 -0.0001247774 2.013652e-05 76 15 0.000140076 -2.26054e-05 77 15 -0.0001577525 2.545802e-05 78 15 0.0001783582 -2.878335e-05 79 15 -0.0002026106 3.26972e-05 80 15 0.0002314578 -3.735254e-05 96 15 0.0003321804 2.101476e-05 0 16 0.0002314578 -3.735254e-05 1 16 -0.0002661734 4.295492e-05 2 16 0.0003085011 -4.978574e-05 3 16 -0.0003608797 5.823857e-05 4 16 0.0004268045 -6.887749e-05 5 16 -0.0005114288 8.253411e-05 6 16 0.0006226054 -0.0001004757 7 16 -0.0007727812 0.000124711 8 16 0.0009826448 -0.0001585787 9 16 -0.001288661 0.0002079635 10 16 0.001760065 -0.0002840383 11 16 -0.002541777 0.0004101906 12 16 0.003980742 -0.0006424099 13 16 -0.007089509 0.001144101 14 16 0.01597157 -0.002577484 15 16 -0.06393453 0.01031772 16 16 0.01356119 -0.01008311 17 16 -0.06393453 0.01031772 18 16 0.01597157 -0.002577484 19 16 -0.007089509 0.001144101 20 16 0.003980742 -0.0006424099 21 16 -0.002541777 0.0004101906 22 16 0.001760065 -0.0002840383 23 16 -0.001288661 0.0002079635 24 16 0.0009826448 -0.0001585787 25 16 -0.0007727812 0.000124711 26 16 0.0006226054 -0.0001004757 27 16 -0.0005114288 8.253411e-05 28 16 0.0004268045 -6.887749e-05 29 16 -0.0003608797 5.823857e-05 30 16 0.0003085011 -4.978574e-05 31 16 -0.0002661734 4.295492e-05 32 16 0.0002314578 -3.735254e-05 33 16 -0.0002026106 3.26972e-05 34 16 0.0001783582 -2.878335e-05 35 16 -0.0001577525 2.545802e-05 36 16 0.000140076 -2.26054e-05 37 16 -0.0001247774 2.013652e-05 38 16 0.0001114272 -1.798207e-05 39 16 -9.968672e-05 1.608739e-05 40 16 8.928565e-05 -1.440887e-05 41 16 -8.000611e-05 1.291134e-05 42 16 7.167061e-05 -1.156616e-05 43 16 -6.413319e-05 1.034978e-05 44 16 5.727273e-05 -9.242642e-06 45 16 -5.098776e-05 8.228377e-06 46 16 4.519256e-05 -7.293151e-06 47 16 -3.981401e-05 6.425164e-06 48 16 3.478917e-05 -5.614257e-06 49 16 -3.00633e-05 4.851599e-06 50 16 2.558831e-05 -4.129428e-06 51 16 -2.132146e-05 3.440846e-06 52 16 1.722429e-05 -2.779647e-06 53 16 -1.326172e-05 2.14017e-06 54 16 9.401297e-06 -1.517176e-06 55 16 -5.612495e-06 9.057414e-07 56 16 1.866144e-06 -3.011573e-07 57 16 1.866144e-06 -3.011573e-07 58 16 -5.612495e-06 9.057414e-07 59 16 9.401297e-06 -1.517176e-06 60 16 -1.326172e-05 2.14017e-06 61 16 1.722429e-05 -2.779647e-06 62 16 -2.132146e-05 3.440846e-06 63 16 2.558831e-05 -4.129428e-06 64 16 -3.00633e-05 4.851599e-06 65 16 3.478917e-05 -5.614257e-06 66 16 -3.981401e-05 6.425164e-06 67 16 4.519256e-05 -7.293151e-06 68 16 -5.098776e-05 8.228377e-06 69 16 5.727273e-05 -9.242642e-06 70 16 -6.413319e-05 1.034978e-05 71 16 7.167061e-05 -1.156616e-05 72 16 -8.000611e-05 1.291134e-05 73 16 8.928565e-05 -1.440887e-05 74 16 -9.968672e-05 1.608739e-05 75 16 0.0001114272 -1.798207e-05 76 16 -0.0001247774 2.013652e-05 77 16 0.000140076 -2.26054e-05 78 16 -0.0001577525 2.545802e-05 79 16 0.0001783582 -2.878335e-05 80 16 -0.0002026106 3.26972e-05 97 16 0.0003461073 2.224268e-05 0 17 -0.0002026106 3.26972e-05 1 17 0.0002314578 -3.735254e-05 2 17 -0.0002661734 4.295492e-05 3 17 0.0003085011 -4.978574e-05 4 17 -0.0003608797 5.823857e-05 5 17 0.0004268045 -6.887749e-05 6 17 -0.0005114288 8.253411e-05 7 17 0.0006226054 -0.0001004757 8 17 -0.0007727812 0.000124711 9 17 0.0009826448 -0.0001585787 10 17 -0.001288661 0.0002079635 11 17 0.001760065 -0.0002840383 12 17 -0.002541777 0.0004101906 13 17 0.003980742 -0.0006424099 14 17 -0.007089509 0.001144101 15 17 0.01597157 -0.002577484 16 17 -0.06393453 0.01031772 17 17 0.01815487 -0.009241196 18 17 -0.06393453 0.01031772 19 17 0.01597157 -0.002577484 20 17 -0.007089509 0.001144101 21 17 0.003980742 -0.0006424099 22 17 -0.002541777 0.0004101906 23 17 0.001760065 -0.0002840383 24 17 -0.001288661 0.0002079635 25 17 0.0009826448 -0.0001585787 26 17 -0.0007727812 0.000124711 27 17 0.0006226054 -0.0001004757 28 17 -0.0005114288 8.253411e-05 29 17 0.0004268045 -6.887749e-05 30 17 -0.0003608797 5.823857e-05 31 17 0.0003085011 -4.978574e-05 32 17 -0.0002661734 4.295492e-05 33 17 0.0002314578 -3.735254e-05 34 17 -0.0002026106 3.26972e-05 35 17 0.0001783582 -2.878335e-05 36 17 -0.0001577525 2.545802e-05 37 17 0.000140076 -2.26054e-05 38 17 -0.0001247774 2.013652e-05 39 17 0.0001114272 -1.798207e-05 40 17 -9.968672e-05 1.608739e-05 41 17 8.928565e-05 -1.440887e-05 42 17 -8.000611e-05 1.291134e-05 43 17 7.167061e-05 -1.156616e-05 44 17 -6.413319e-05 1.034978e-05 45 17 5.727273e-05 -9.242642e-06 46 17 -5.098776e-05 8.228377e-06 47 17 4.519256e-05 -7.293151e-06 48 17 -3.981401e-05 6.425164e-06 49 17 3.478917e-05 -5.614257e-06 50 17 -3.00633e-05 4.851599e-06 51 17 2.558831e-05 -4.129428e-06 52 17 -2.132146e-05 3.440846e-06 53 17 1.722429e-05 -2.779647e-06 54 17 -1.326172e-05 2.14017e-06 55 17 9.401297e-06 -1.517176e-06 56 17 -5.612495e-06 9.057414e-07 57 17 1.866144e-06 -3.011573e-07 58 17 1.866144e-06 -3.011573e-07 59 17 -5.612495e-06 9.057414e-07 60 17 9.401297e-06 -1.517176e-06 61 17 -1.326172e-05 2.14017e-06 62 17 1.722429e-05 -2.779647e-06 63 17 -2.132146e-05 3.440846e-06 64 17 2.558831e-05 -4.129428e-06 65 17 -3.00633e-05 4.851599e-06 66 17 3.478917e-05 -5.614257e-06 67 17 -3.981401e-05 6.425164e-06 68 17 4.519256e-05 -7.293151e-06 69 17 -5.098776e-05 8.228377e-06 70 17 5.727273e-05 -9.242642e-06 71 17 -6.413319e-05 1.034978e-05 72 17 7.167061e-05 -1.156616e-05 73 17 -8.000611e-05 1.291134e-05 74 17 8.928565e-05 -1.440887e-05 75 17 -9.968672e-05 1.608739e-05 76 17 0.0001114272 -1.798207e-05 77 17 -0.0001247774 2.013652e-05 78 17 0.000140076 -2.26054e-05 79 17 -0.0001577525 2.545802e-05 80 17 0.0001783582 -2.878335e-05 98 17 0.0003601052 2.348264e-05 0 18 0.0001783582 -2.878335e-05 1 18 -0.0002026106 3.26972e-05 2 18 0.0002314578 -3.735254e-05 3 18 -0.0002661734 4.295492e-05 4 18 0.0003085011 -4.978574e-05 5 18 -0.0003608797 5.823857e-05 6 18 0.0004268045 -6.887749e-05 7 18 -0.0005114288 8.253411e-05 8 18 0.0006226054 -0.0001004757 9 18 -0.0007727812 0.000124711 10 18 0.0009826448 -0.0001585787 11 18 -0.001288661 0.0002079635 12 18 0.001760065 -0.0002840383 13 18 -0.002541777 0.0004101906 14 18 0.003980742 -0.0006424099 15 18 -0.007089509 0.001144101 16 18 0.01597157 -0.002577484 17 18 -0.06393453 0.01031772 18 18 0.02296699 -0.00860207 19 18 -0.06393453 0.01031772 20 18 0.01597157 -0.002577484 21 18 -0.007089509 0.001144101 22 18 0.003980742 -0.0006424099 23 18 -0.002541777 0.0004101906 24 18 0.001760065 -0.0002840383 25 18 -0.001288661 0.0002079635 26 18 0.0009826448 -0.0001585787 27 18 -0.0007727812 0.000124711 28 18 0.0006226054 -0.0001004757 29 18 -0.0005114288 8.253411e-05 30 18 0.0004268045 -6.887749e-05 31 18 -0.0003608797 5.823857e-05 32 18 0.0003085011 -4.978574e-05 33 18 -0.0002661734 4.295492e-05 34 18 0.0002314578 -3.735254e-05 35 18 -0.0002026106 3.26972e-05 36 18 0.0001783582 -2.878335e-05 37 18 -0.0001577525 2.545802e-05 38 18 0.000140076 -2.26054e-05 39 18 -0.0001247774 2.013652e-05 40 18 0.0001114272 -1.798207e-05 41 18 -9.968672e-05 1.608739e-05 42 18 8.928565e-05 -1.440887e-05 43 18 -8.000611e-05 1.291134e-05 44 18 7.167061e-05 -1.156616e-05 45 18 -6.413319e-05 1.034978e-05 46 18 5.727273e-05 -9.242642e-06 47 18 -5.098776e-05 8.228377e-06 48 18 4.519256e-05 -7.293151e-06 49 18 -3.981401e-05 6.425164e-06 50 18 3.478917e-05 -5.614257e-06 51 18 -3.00633e-05 4.851599e-06 52 18 2.558831e-05 -4.129428e-06 53 18 -2.132146e-05 3.440846e-06 54 18 1.722429e-05 -2.779647e-06 55 18 -1.326172e-05 2.14017e-06 56 18 9.401297e-06 -1.517176e-06 57 18 -5.612495e-06 9.057414e-07 58 18 1.866144e-06 -3.011573e-07 59 18 1.866144e-06 -3.011573e-07 60 18 -5.612495e-06 9.057414e-07 61 18 9.401297e-06 -1.517176e-06 62 18 -1.326172e-05 2.14017e-06 63 18 1.722429e-05 -2.779647e-06 64 18 -2.132146e-05 3.440846e-06 65 18 2.558831e-05 -4.129428e-06 66 18 -3.00633e-05 4.851599e-06 67 18 3.478917e-05 -5.614257e-06 68 18 -3.981401e-05 6.425164e-06 69 18 4.519256e-05 -7.293151e-06 70 18 -5.098776e-05 8.228377e-06 71 18 5.727273e-05 -9.242642e-06 72 18 -6.413319e-05 1.034978e-05 73 18 7.167061e-05 -1.156616e-05 74 18 -8.000611e-05 1.291134e-05 75 18 8.928565e-05 -1.440887e-05 76 18 -9.968672e-05 1.608739e-05 77 18 0.0001114272 -1.798207e-05 78 18 -0.0001247774 2.013652e-05 79 18 0.000140076 -2.26054e-05 80 18 -0.0001577525 2.545802e-05 99 18 0.0003741744 2.473473e-05 0 19 -0.0001577525 2.545802e-05 1 19 0.0001783582 -2.878335e-05 2 19 -0.0002026106 3.26972e-05 3 19 0.0002314578 -3.735254e-05 4 19 -0.0002661734 4.295492e-05 5 19 0.0003085011 -4.978574e-05 6 19 -0.0003608797 5.823857e-05 7 19 0.0004268045 -6.887749e-05 8 19 -0.0005114288 8.253411e-05 9 19 0.0006226054 -0.0001004757 10 19 -0.0007727812 0.000124711 11 19 0.0009826448 -0.0001585787 12 19 -0.001288661 0.0002079635 13 19 0.001760065 -0.0002840383 14 19 -0.002541777 0.0004101906 15 19 0.003980742 -0.0006424099 16 19 -0.007089509 0.001144101 17 19 0.01597157 -0.002577484 18 19 -0.06393453 0.01031772 19 19 0.02787009 -0.008140449 20 19 -0.06393453 0.01031772 21 19 0.01597157 -0.002577484 22 19 -0.007089509 0.001144101 23 19 0.003980742 -0.0006424099 24 19 -0.002541777 0.0004101906 25 19 0.001760065 -0.0002840383 26 19 -0.001288661 0.0002079635 27 19 0.0009826448 -0.0001585787 28 19 -0.0007727812 0.000124711 29 19 0.0006226054 -0.0001004757 30 19 -0.0005114288 8.253411e-05 31 19 0.0004268045 -6.887749e-05 32 19 -0.0003608797 5.823857e-05 33 19 0.0003085011 -4.978574e-05 34 19 -0.0002661734 4.295492e-05 35 19 0.0002314578 -3.735254e-05 36 19 -0.0002026106 3.26972e-05 37 19 0.0001783582 -2.878335e-05 38 19 -0.0001577525 2.545802e-05 39 19 0.000140076 -2.26054e-05 40 19 -0.0001247774 2.013652e-05 41 19 0.0001114272 -1.798207e-05 42 19 -9.968672e-05 1.608739e-05 43 19 8.928565e-05 -1.440887e-05 44 19 -8.000611e-05 1.291134e-05 45 19 7.167061e-05 -1.156616e-05 46 19 -6.413319e-05 1.034978e-05 47 19 5.727273e-05 -9.242642e-06 48 19 -5.098776e-05 8.228377e-06 49 19 4.519256e-05 -7.293151e-06 50 19 -3.981401e-05 6.425164e-06 51 19 3.478917e-05 -5.614257e-06 52 19 -3.00633e-05 4.851599e-06 53 19 2.558831e-05 -4.129428e-06 54 19 -2.132146e-05 3.440846e-06 55 19 1.722429e-05 -2.779647e-06 56 19 -1.326172e-05 2.14017e-06 57 19 9.401297e-06 -1.517176e-06 58 19 -5.612495e-06 9.057414e-07 59 19 1.866144e-06 -3.011573e-07 60 19 1.866144e-06 -3.011573e-07 61 19 -5.612495e-06 9.057414e-07 62 19 9.401297e-06 -1.517176e-06 63 19 -1.326172e-05 2.14017e-06 64 19 1.722429e-05 -2.779647e-06 65 19 -2.132146e-05 3.440846e-06 66 19 2.558831e-05 -4.129428e-06 67 19 -3.00633e-05 4.851599e-06 68 19 3.478917e-05 -5.614257e-06 69 19 -3.981401e-05 6.425164e-06 70 19 4.519256e-05 -7.293151e-06 71 19 -5.098776e-05 8.228377e-06 72 19 5.727273e-05 -9.242642e-06 73 19 -6.413319e-05 1.034978e-05 74 19 7.167061e-05 -1.156616e-05 75 19 -8.000611e-05 1.291134e-05 76 19 8.928565e-05 -1.440887e-05 77 19 -9.968672e-05 1.608739e-05 78 19 0.0001114272 -1.798207e-05 79 19 -0.0001247774 2.013652e-05 80 19 0.000140076 -2.26054e-05 100 19 0.0003883153 2.599905e-05 0 20 0.000140076 -2.26054e-05 1 20 -0.0001577525 2.545802e-05 2 20 0.0001783582 -2.878335e-05 3 20 -0.0002026106 3.26972e-05 4 20 0.0002314578 -3.735254e-05 5 20 -0.0002661734 4.295492e-05 6 20 0.0003085011 -4.978574e-05 7 20 -0.0003608797 5.823857e-05 8 20 0.0004268045 -6.887749e-05 9 20 -0.0005114288 8.253411e-05 10 20 0.0006226054 -0.0001004757 11 20 -0.0007727812 0.000124711 12 20 0.0009826448 -0.0001585787 13 20 -0.001288661 0.0002079635 14 20 0.001760065 -0.0002840383 15 20 -0.002541777 0.0004101906 16 20 0.003980742 -0.0006424099 17 20 -0.007089509 0.001144101 18 20 0.01597157 -0.002577484 19 20 -0.06393453 0.01031772 20 20 0.03276642 -0.007832596 21 20 -0.06393453 0.01031772 22 20 0.01597157 -0.002577484 23 20 -0.007089509 0.001144101 24 20 0.003980742 -0.0006424099 25 20 -0.002541777 0.0004101906 26 20 0.001760065 -0.0002840383 27 20 -0.001288661 0.0002079635 28 20 0.0009826448 -0.0001585787 29 20 -0.0007727812 0.000124711 30 20 0.0006226054 -0.0001004757 31 20 -0.0005114288 8.253411e-05 32 20 0.0004268045 -6.887749e-05 33 20 -0.0003608797 5.823857e-05 34 20 0.0003085011 -4.978574e-05 35 20 -0.0002661734 4.295492e-05 36 20 0.0002314578 -3.735254e-05 37 20 -0.0002026106 3.26972e-05 38 20 0.0001783582 -2.878335e-05 39 20 -0.0001577525 2.545802e-05 40 20 0.000140076 -2.26054e-05 41 20 -0.0001247774 2.013652e-05 42 20 0.0001114272 -1.798207e-05 43 20 -9.968672e-05 1.608739e-05 44 20 8.928565e-05 -1.440887e-05 45 20 -8.000611e-05 1.291134e-05 46 20 7.167061e-05 -1.156616e-05 47 20 -6.413319e-05 1.034978e-05 48 20 5.727273e-05 -9.242642e-06 49 20 -5.098776e-05 8.228377e-06 50 20 4.519256e-05 -7.293151e-06 51 20 -3.981401e-05 6.425164e-06 52 20 3.478917e-05 -5.614257e-06 53 20 -3.00633e-05 4.851599e-06 54 20 2.558831e-05 -4.129428e-06 55 20 -2.132146e-05 3.440846e-06 56 20 1.722429e-05 -2.779647e-06 57 20 -1.326172e-05 2.14017e-06 58 20 9.401297e-06 -1.517176e-06 59 20 -5.612495e-06 9.057414e-07 60 20 1.866144e-06 -3.011573e-07 61 20 1.866144e-06 -3.011573e-07 62 20 -5.612495e-06 9.057414e-07 63 20 9.401297e-06 -1.517176e-06 64 20 -1.326172e-05 2.14017e-06 65 20 1.722429e-05 -2.779647e-06 66 20 -2.132146e-05 3.440846e-06 67 20 2.558831e-05 -4.129428e-06 68 20 -3.00633e-05 4.851599e-06 69 20 3.478917e-05 -5.614257e-06 70 20 -3.981401e-05 6.425164e-06 71 20 4.519256e-05 -7.293151e-06 72 20 -5.098776e-05 8.228377e-06 73 20 5.727273e-05 -9.242642e-06 74 20 -6.413319e-05 1.034978e-05 75 20 7.167061e-05 -1.156616e-05 76 20 -8.000611e-05 1.291134e-05 77 20 8.928565e-05 -1.440887e-05 78 20 -9.968672e-05 1.608739e-05 79 20 0.0001114272 -1.798207e-05 80 20 -0.0001247774 2.013652e-05 101 20 0.0004025281 2.727568e-05 0 21 -0.0001247774 2.013652e-05 1 21 0.000140076 -2.26054e-05 2 21 -0.0001577525 2.545802e-05 3 21 0.0001783582 -2.878335e-05 4 21 -0.0002026106 3.26972e-05 5 21 0.0002314578 -3.735254e-05 6 21 -0.0002661734 4.295492e-05 7 21 0.0003085011 -4.978574e-05 8 21 -0.0003608797 5.823857e-05 9 21 0.0004268045 -6.887749e-05 10 21 -0.0005114288 8.253411e-05 11 21 0.0006226054 -0.0001004757 12 21 -0.0007727812 0.000124711 13 21 0.0009826448 -0.0001585787 14 21 -0.001288661 0.0002079635 15 21 0.001760065 -0.0002840383 16 21 -0.002541777 0.0004101906 17 21 0.003980742 -0.0006424099 18 21 -0.007089509 0.001144101 19 21 0.01597157 -0.002577484 20 21 -0.06393453 0.01031772 21 21 0.03758223 -0.007656581 22 21 -0.06393453 0.01031772 23 21 0.01597157 -0.002577484 24 21 -0.007089509 0.001144101 25 21 0.003980742 -0.0006424099 26 21 -0.002541777 0.0004101906 27 21 0.001760065 -0.0002840383 28 21 -0.001288661 0.0002079635 29 21 0.0009826448 -0.0001585787 30 21 -0.0007727812 0.000124711 31 21 0.0006226054 -0.0001004757 32 21 -0.0005114288 8.253411e-05 33 21 0.0004268045 -6.887749e-05 34 21 -0.0003608797 5.823857e-05 35 21 0.0003085011 -4.978574e-05 36 21 -0.0002661734 4.295492e-05 37 21 0.0002314578 -3.735254e-05 38 21 -0.0002026106 3.26972e-05 39 21 0.0001783582 -2.878335e-05 40 21 -0.0001577525 2.545802e-05 41 21 0.000140076 -2.26054e-05 42 21 -0.0001247774 2.013652e-05 43 21 0.0001114272 -1.798207e-05 44 21 -9.968672e-05 1.608739e-05 45 21 8.928565e-05 -1.440887e-05 46 21 -8.000611e-05 1.291134e-05 47 21 7.167061e-05 -1.156616e-05 48 21 -6.413319e-05 1.034978e-05 49 21 5.727273e-05 -9.242642e-06 50 21 -5.098776e-05 8.228377e-06 51 21 4.519256e-05 -7.293151e-06 52 21 -3.981401e-05 6.425164e-06 53 21 3.478917e-05 -5.614257e-06 54 21 -3.00633e-05 4.851599e-06 55 21 2.558831e-05 -4.129428e-06 56 21 -2.132146e-05 3.440846e-06 57 21 1.722429e-05 -2.779647e-06 58 21 -1.326172e-05 2.14017e-06 59 21 9.401297e-06 -1.517176e-06 60 21 -5.612495e-06 9.057414e-07 61 21 1.866144e-06 -3.011573e-07 62 21 1.866144e-06 -3.011573e-07 63 21 -5.612495e-06 9.057414e-07 64 21 9.401297e-06 -1.517176e-06 65 21 -1.326172e-05 2.14017e-06 66 21 1.722429e-05 -2.779647e-06 67 21 -2.132146e-05 3.440846e-06 68 21 2.558831e-05 -4.129428e-06 69 21 -3.00633e-05 4.851599e-06 70 21 3.478917e-05 -5.614257e-06 71 21 -3.981401e-05 6.425164e-06 72 21 4.519256e-05 -7.293151e-06 73 21 -5.098776e-05 8.228377e-06 74 21 5.727273e-05 -9.242642e-06 75 21 -6.413319e-05 1.034978e-05 76 21 7.167061e-05 -1.156616e-05 77 21 -8.000611e-05 1.291134e-05 78 21 8.928565e-05 -1.440887e-05 79 21 -9.968672e-05 1.608739e-05 80 21 0.0001114272 -1.798207e-05 102 21 0.0004168134 2.856472e-05 0 22 0.0001114272 -1.798207e-05 1 22 -0.0001247774 2.013652e-05 2 22 0.000140076 -2.26054e-05 3 22 -0.0001577525 2.545802e-05 4 22 0.0001783582 -2.878335e-05 5 22 -0.0002026106 3.26972e-05 6 22 0.0002314578 -3.735254e-05 7 22 -0.0002661734 4.295492e-05 8 22 0.0003085011 -4.978574e-05 9 22 -0.0003608797 5.823857e-05 10 22 0.0004268045 -6.887749e-05 11 22 -0.0005114288 8.253411e-05 12 22 0.0006226054 -0.0001004757 13 22 -0.0007727812 0.000124711 14 22 0.0009826448 -0.0001585787 15 22 -0.001288661 0.0002079635 16 22 0.001760065 -0.0002840383 17 22 -0.002541777 0.0004101906 18 22 0.003980742 -0.0006424099 19 22 -0.007089509 0.001144101 20 22 0.01597157 -0.002577484 21 22 -0.06393453 0.01031772 22 22 0.04226301 -0.007592411 23 22 -0.06393453 0.01031772 24 22 0.01597157 -0.002577484 25 22 -0.007089509 0.001144101 26 22 0.003980742 -0.0006424099 27 22 -0.002541777 0.0004101906 28 22 0.001760065 -0.0002840383 29 22 -0.001288661 0.0002079635 30 22 0.0009826448 -0.0001585787 31 22 -0.0007727812 0.000124711 32 22 0.0006226054 -0.0001004757 33 22 -0.0005114288 8.253411e-05 34 22 0.0004268045 -6.887749e-05 35 22 -0.0003608797 5.823857e-05 36 22 0.0003085011 -4.978574e-05 37 22 -0.0002661734 4.295492e-05 38 22 0.0002314578 -3.735254e-05 39 22 -0.0002026106 3.26972e-05 40 22 0.0001783582 -2.878335e-05 41 22 -0.0001577525 2.545802e-05 42 22 0.000140076 -2.26054e-05 43 22 -0.0001247774 2.013652e-05 44 22 0.0001114272 -1.798207e-05 45 22 -9.968672e-05 1.608739e-05 46 22 8.928565e-05 -1.440887e-05 47 22 -8.000611e-05 1.291134e-05 48 22 7.167061e-05 -1.156616e-05 49 22 -6.413319e-05 1.034978e-05 50 22 5.727273e-05 -9.242642e-06 51 22 -5.098776e-05 8.228377e-06 52 22 4.519256e-05 -7.293151e-06 53 22 -3.981401e-05 6.425164e-06 54 22 3.478917e-05 -5.614257e-06 55 22 -3.00633e-05 4.851599e-06 56 22 2.558831e-05 -4.129428e-06 57 22 -2.132146e-05 3.440846e-06 58 22 1.722429e-05 -2.779647e-06 59 22 -1.326172e-05 2.14017e-06 60 22 9.401297e-06 -1.517176e-06 61 22 -5.612495e-06 9.057414e-07 62 22 1.866144e-06 -3.011573e-07 63 22 1.866144e-06 -3.011573e-07 64 22 -5.612495e-06 9.057414e-07 65 22 9.401297e-06 -1.517176e-06 66 22 -1.326172e-05 2.14017e-06 67 22 1.722429e-05 -2.779647e-06 68 22 -2.132146e-05 3.440846e-06 69 22 2.558831e-05 -4.129428e-06 70 22 -3.00633e-05 4.851599e-06 71 22 3.478917e-05 -5.614257e-06 72 22 -3.981401e-05 6.425164e-06 73 22 4.519256e-05 -7.293151e-06 74 22 -5.098776e-05 8.228377e-06 75 22 5.727273e-05 -9.242642e-06 76 22 -6.413319e-05 1.034978e-05 77 22 7.167061e-05 -1.156616e-05 78 22 -8.000611e-05 1.291134e-05 79 22 8.928565e-05 -1.440887e-05 80 22 -9.968672e-05 1.608739e-05 103 22 0.0004311714 2.986627e-05 0 23 -9.968672e-05 1.608739e-05 1 23 0.0001114272 -1.798207e-05 2 23 -0.0001247774 2.013652e-05 3 23 0.000140076 -2.26054e-05 4 23 -0.0001577525 2.545802e-05 5 23 0.0001783582 -2.878335e-05 6 23 -0.0002026106 3.26972e-05 7 23 0.0002314578 -3.735254e-05 8 23 -0.0002661734 4.295492e-05 9 23 0.0003085011 -4.978574e-05 10 23 -0.0003608797 5.823857e-05 11 23 0.0004268045 -6.887749e-05 12 23 -0.0005114288 8.253411e-05 13 23 0.0006226054 -0.0001004757 14 23 -0.0007727812 0.000124711 15 23 0.0009826448 -0.0001585787 16 23 -0.001288661 0.0002079635 17 23 0.001760065 -0.0002840383 18 23 -0.002541777 0.0004101906 19 23 0.003980742 -0.0006424099 20 23 -0.007089509 0.001144101 21 23 0.01597157 -0.002577484 22 23 -0.06393453 0.01031772 23 23 0.04676966 -0.007622058 24 23 -0.06393453 0.01031772 25 23 0.01597157 -0.002577484 26 23 -0.007089509 0.001144101 27 23 0.003980742 -0.0006424099 28 23 -0.002541777 0.0004101906 29 23 0.001760065 -0.0002840383 30 23 -0.001288661 0.0002079635 31 23 0.0009826448 -0.0001585787 32 23 -0.0007727812 0.000124711 33 23 0.0006226054 -0.0001004757 34 23 -0.0005114288 8.253411e-05 35 23 0.0004268045 -6.887749e-05 36 23 -0.0003608797 5.823857e-05 37 23 0.0003085011 -4.978574e-05 38 23 -0.0002661734 4.295492e-05 39 23 0.0002314578 -3.735254e-05 40 23 -0.0002026106 3.26972e-05 41 23 0.0001783582 -2.878335e-05 42 23 -0.0001577525 2.545802e-05 43 23 0.000140076 -2.26054e-05 44 23 -0.0001247774 2.013652e-05 45 23 0.0001114272 -1.798207e-05 46 23 -9.968672e-05 1.608739e-05 47 23 8.928565e-05 -1.440887e-05 48 23 -8.000611e-05 1.291134e-05 49 23 7.167061e-05 -1.156616e-05 50 23 -6.413319e-05 1.034978e-05 51 23 5.727273e-05 -9.242642e-06 52 23 -5.098776e-05 8.228377e-06 53 23 4.519256e-05 -7.293151e-06 54 23 -3.981401e-05 6.425164e-06 55 23 3.478917e-05 -5.614257e-06 56 23 -3.00633e-05 4.851599e-06 57 23 2.558831e-05 -4.129428e-06 58 23 -2.132146e-05 3.440846e-06 59 23 1.722429e-05 -2.779647e-06 60 23 -1.326172e-05 2.14017e-06 61 23 9.401297e-06 -1.517176e-06 62 23 -5.612495e-06 9.057414e-07 63 23 1.866144e-06 -3.011573e-07 64 23 1.866144e-06 -3.011573e-07 65 23 -5.612495e-06 9.057414e-07 66 23 9.401297e-06 -1.517176e-06 67 23 -1.326172e-05 2.14017e-06 68 23 1.722429e-05 -2.779647e-06 69 23 -2.132146e-05 3.440846e-06 70 23 2.558831e-05 -4.129428e-06 71 23 -3.00633e-05 4.851599e-06 72 23 3.478917e-05 -5.614257e-06 73 23 -3.981401e-05 6.425164e-06 74 23 4.519256e-05 -7.293151e-06 75 23 -5.098776e-05 8.228377e-06 76 23 5.727273e-05 -9.242642e-06 77 23 -6.413319e-05 1.034978e-05 78 23 7.167061e-05 -1.156616e-05 79 23 -8.000611e-05 1.291134e-05 80 23 8.928565e-05 -1.440887e-05 104 23 0.0004456025 3.118041e-05 0 24 8.928565e-05 -1.440887e-05 1 24 -9.968672e-05 1.608739e-05 2 24 0.0001114272 -1.798207e-05 3 24 -0.0001247774 2.013652e-05 4 24 0.000140076 -2.26054e-05 5 24 -0.0001577525 2.545802e-05 6 24 0.0001783582 -2.878335e-05 7 24 -0.0002026106 3.26972e-05 8 24 0.0002314578 -3.735254e-05 9 24 -0.0002661734 4.295492e-05 10 24 0.0003085011 -4.978574e-05 11 24 -0.0003608797 5.823857e-05 12 24 0.0004268045 -6.887749e-05 13 24 -0.0005114288 8.253411e-05 14 24 0.0006226054 -0.0001004757 15 24 -0.0007727812 0.000124711 16 24 0.0009826448 -0.0001585787 17 24 -0.001288661 0.0002079635 18 24 0.001760065 -0.0002840383 19 24 -0.002541777 0.0004101906 20 24 0.003980742 -0.0006424099 21 24 -0.007089509 0.001144101 22 24 0.01597157 -0.002577484 23 24 -0.06393453 0.01031772 24 24 0.05107531 -0.007729427 25 24 -0.06393453 0.01031772 26 24 0.01597157 -0.002577484 27 24 -0.007089509 0.001144101 28 24 0.003980742 -0.0006424099 29 24 -0.002541777 0.0004101906 30 24 0.001760065 -0.0002840383 31 24 -0.001288661 0.0002079635 32 24 0.0009826448 -0.0001585787 33 24 -0.0007727812 0.000124711 34 24 0.0006226054 -0.0001004757 35 24 -0.0005114288 8.253411e-05 36 24 0.0004268045 -6.887749e-05 37 24 -0.0003608797 5.823857e-05 38 24 0.0003085011 -4.978574e-05 39 24 -0.0002661734 4.295492e-05 40 24 0.0002314578 -3.735254e-05 41 24 -0.0002026106 3.26972e-05 42 24 0.0001783582 -2.878335e-05 43 24 -0.0001577525 2.545802e-05 44 24 0.000140076 -2.26054e-05 45 24 -0.0001247774 2.013652e-05 46 24 0.0001114272 -1.798207e-05 47 24 -9.968672e-05 1.608739e-05 48 24 8.928565e-05 -1.440887e-05 49 24 -8.000611e-05 1.291134e-05 50 24 7.167061e-05 -1.156616e-05 51 24 -6.413319e-05 1.034978e-05 52 24 5.727273e-05 -9.242642e-06 53 24 -5.098776e-05 8.228377e-06 54 24 4.519256e-05 -7.293151e-06 55 24 -3.981401e-05 6.425164e-06 56 24 3.478917e-05 -5.614257e-06 57 24 -3.00633e-05 4.851599e-06 58 24 2.558831e-05 -4.129428e-06 59 24 -2.132146e-05 3.440846e-06 60 24 1.722429e-05 -2.779647e-06 61 24 -1.326172e-05 2.14017e-06 62 24 9.401297e-06 -1.517176e-06 63 24 -5.612495e-06 9.057414e-07 64 24 1.866144e-06 -3.011573e-07 65 24 1.866144e-06 -3.011573e-07 66 24 -5.612495e-06 9.057414e-07 67 24 9.401297e-06 -1.517176e-06 68 24 -1.326172e-05 2.14017e-06 69 24 1.722429e-05 -2.779647e-06 70 24 -2.132146e-05 3.440846e-06 71 24 2.558831e-05 -4.129428e-06 72 24 -3.00633e-05 4.851599e-06 73 24 3.478917e-05 -5.614257e-06 74 24 -3.981401e-05 6.425164e-06 75 24 4.519256e-05 -7.293151e-06 76 24 -5.098776e-05 8.228377e-06 77 24 5.727273e-05 -9.242642e-06 78 24 -6.413319e-05 1.034978e-05 79 24 7.167061e-05 -1.156616e-05 80 24 -8.000611e-05 1.291134e-05 105 24 0.0004601072 3.250725e-05 0 25 -8.000611e-05 1.291134e-05 1 25 8.928565e-05 -1.440887e-05 2 25 -9.968672e-05 1.608739e-05 3 25 0.0001114272 -1.798207e-05 4 25 -0.0001247774 2.013652e-05 5 25 0.000140076 -2.26054e-05 6 25 -0.0001577525 2.545802e-05 7 25 0.0001783582 -2.878335e-05 8 25 -0.0002026106 3.26972e-05 9 25 0.0002314578 -3.735254e-05 10 25 -0.0002661734 4.295492e-05 11 25 0.0003085011 -4.978574e-05 12 25 -0.0003608797 5.823857e-05 13 25 0.0004268045 -6.887749e-05 14 25 -0.0005114288 8.253411e-05 15 25 0.0006226054 -0.0001004757 16 25 -0.0007727812 0.000124711 17 25 0.0009826448 -0.0001585787 18 25 -0.001288661 0.0002079635 19 25 0.001760065 -0.0002840383 20 25 -0.002541777 0.0004101906 21 25 0.003980742 -0.0006424099 22 25 -0.007089509 0.001144101 23 25 0.01597157 -0.002577484 24 25 -0.06393453 0.01031772 25 25 0.05516275 -0.007900271 26 25 -0.06393453 0.01031772 27 25 0.01597157 -0.002577484 28 25 -0.007089509 0.001144101 29 25 0.003980742 -0.0006424099 30 25 -0.002541777 0.0004101906 31 25 0.001760065 -0.0002840383 32 25 -0.001288661 0.0002079635 33 25 0.0009826448 -0.0001585787 34 25 -0.0007727812 0.000124711 35 25 0.0006226054 -0.0001004757 36 25 -0.0005114288 8.253411e-05 37 25 0.0004268045 -6.887749e-05 38 25 -0.0003608797 5.823857e-05 39 25 0.0003085011 -4.978574e-05 40 25 -0.0002661734 4.295492e-05 41 25 0.0002314578 -3.735254e-05 42 25 -0.0002026106 3.26972e-05 43 25 0.0001783582 -2.878335e-05 44 25 -0.0001577525 2.545802e-05 45 25 0.000140076 -2.26054e-05 46 25 -0.0001247774 2.013652e-05 47 25 0.0001114272 -1.798207e-05 48 25 -9.968672e-05 1.608739e-05 49 25 8.928565e-05 -1.440887e-05 50 25 -8.000611e-05 1.291134e-05 51 25 7.167061e-05 -1.156616e-05 52 25 -6.413319e-05 1.034978e-05 53 25 5.727273e-05 -9.242642e-06 54 25 -5.098776e-05 8.228377e-06 55 25 4.519256e-05 -7.293151e-06 56 25 -3.981401e-05 6.425164e-06 57 25 3.478917e-05 -5.614257e-06 58 25 -3.00633e-05 4.851599e-06 59 25 2.558831e-05 -4.129428e-06 60 25 -2.132146e-05 3.440846e-06 61 25 1.722429e-05 -2.779647e-06 62 25 -1.326172e-05 2.14017e-06 63 25 9.401297e-06 -1.517176e-06 64 25 -5.612495e-06 9.057414e-07 65 25 1.866144e-06 -3.011573e-07 66 25 1.866144e-06 -3.011573e-07 67 25 -5.612495e-06 9.057414e-07 68 25 9.401297e-06 -1.517176e-06 69 25 -1.326172e-05 2.14017e-06 70 25 1.722429e-05 -2.779647e-06 71 25 -2.132146e-05 3.440846e-06 72 25 2.558831e-05 -4.129428e-06 73 25 -3.00633e-05 4.851599e-06 74 25 3.478917e-05 -5.614257e-06 75 25 -3.981401e-05 6.425164e-06 76 25 4.519256e-05 -7.293151e-06 77 25 -5.098776e-05 8.228377e-06 78 25 5.727273e-05 -9.242642e-06 79 25 -6.413319e-05 1.034978e-05 80 25 7.167061e-05 -1.156616e-05 106 25 0.0004746856 3.384687e-05 0 26 7.167061e-05 -1.156616e-05 1 26 -8.000611e-05 1.291134e-05 2 26 8.928565e-05 -1.440887e-05 3 26 -9.968672e-05 1.608739e-05 4 26 0.0001114272 -1.798207e-05 5 26 -0.0001247774 2.013652e-05 6 26 0.000140076 -2.26054e-05 7 26 -0.0001577525 2.545802e-05 8 26 0.0001783582 -2.878335e-05 9 26 -0.0002026106 3.26972e-05 10 26 0.0002314578 -3.735254e-05 11 26 -0.0002661734 4.295492e-05 12 26 0.0003085011 -4.978574e-05 13 26 -0.0003608797 5.823857e-05 14 26 0.0004268045 -6.887749e-05 15 26 -0.0005114288 8.253411e-05 16 26 0.0006226054 -0.0001004757 17 26 -0.0007727812 0.000124711 18 26 0.0009826448 -0.0001585787 19 26 -0.001288661 0.0002079635 20 26 0.001760065 -0.0002840383 21 26 -0.002541777 0.0004101906 22 26 0.003980742 -0.0006424099 23 26 -0.007089509 0.001144101 24 26 0.01597157 -0.002577484 25 26 -0.06393453 0.01031772 26 26 0.05902236 -0.008122077 27 26 -0.06393453 0.01031772 28 26 0.01597157 -0.002577484 29 26 -0.007089509 0.001144101 30 26 0.003980742 -0.0006424099 31 26 -0.002541777 0.0004101906 32 26 0.001760065 -0.0002840383 33 26 -0.001288661 0.0002079635 34 26 0.0009826448 -0.0001585787 35 26 -0.0007727812 0.000124711 36 26 0.0006226054 -0.0001004757 37 26 -0.0005114288 8.253411e-05 38 26 0.0004268045 -6.887749e-05 39 26 -0.0003608797 5.823857e-05 40 26 0.0003085011 -4.978574e-05 41 26 -0.0002661734 4.295492e-05 42 26 0.0002314578 -3.735254e-05 43 26 -0.0002026106 3.26972e-05 44 26 0.0001783582 -2.878335e-05 45 26 -0.0001577525 2.545802e-05 46 26 0.000140076 -2.26054e-05 47 26 -0.0001247774 2.013652e-05 48 26 0.0001114272 -1.798207e-05 49 26 -9.968672e-05 1.608739e-05 50 26 8.928565e-05 -1.440887e-05 51 26 -8.000611e-05 1.291134e-05 52 26 7.167061e-05 -1.156616e-05 53 26 -6.413319e-05 1.034978e-05 54 26 5.727273e-05 -9.242642e-06 55 26 -5.098776e-05 8.228377e-06 56 26 4.519256e-05 -7.293151e-06 57 26 -3.981401e-05 6.425164e-06 58 26 3.478917e-05 -5.614257e-06 59 26 -3.00633e-05 4.851599e-06 60 26 2.558831e-05 -4.129428e-06 61 26 -2.132146e-05 3.440846e-06 62 26 1.722429e-05 -2.779647e-06 63 26 -1.326172e-05 2.14017e-06 64 26 9.401297e-06 -1.517176e-06 65 26 -5.612495e-06 9.057414e-07 66 26 1.866144e-06 -3.011573e-07 67 26 1.866144e-06 -3.011573e-07 68 26 -5.612495e-06 9.057414e-07 69 26 9.401297e-06 -1.517176e-06 70 26 -1.326172e-05 2.14017e-06 71 26 1.722429e-05 -2.779647e-06 72 26 -2.132146e-05 3.440846e-06 73 26 2.558831e-05 -4.129428e-06 74 26 -3.00633e-05 4.851599e-06 75 26 3.478917e-05 -5.614257e-06 76 26 -3.981401e-05 6.425164e-06 77 26 4.519256e-05 -7.293151e-06 78 26 -5.098776e-05 8.228377e-06 79 26 5.727273e-05 -9.242642e-06 80 26 -6.413319e-05 1.034978e-05 107 26 0.0004893383 3.519938e-05 0 27 -6.413319e-05 1.034978e-05 1 27 7.167061e-05 -1.156616e-05 2 27 -8.000611e-05 1.291134e-05 3 27 8.928565e-05 -1.440887e-05 4 27 -9.968672e-05 1.608739e-05 5 27 0.0001114272 -1.798207e-05 6 27 -0.0001247774 2.013652e-05 7 27 0.000140076 -2.26054e-05 8 27 -0.0001577525 2.545802e-05 9 27 0.0001783582 -2.878335e-05 10 27 -0.0002026106 3.26972e-05 11 27 0.0002314578 -3.735254e-05 12 27 -0.0002661734 4.295492e-05 13 27 0.0003085011 -4.978574e-05 14 27 -0.0003608797 5.823857e-05 15 27 0.0004268045 -6.887749e-05 16 27 -0.0005114288 8.253411e-05 17 27 0.0006226054 -0.0001004757 18 27 -0.0007727812 0.000124711 19 27 0.0009826448 -0.0001585787 20 27 -0.001288661 0.0002079635 21 27 0.001760065 -0.0002840383 22 27 -0.002541777 0.0004101906 23 27 0.003980742 -0.0006424099 24 27 -0.007089509 0.001144101 25 27 0.01597157 -0.002577484 26 27 -0.06393453 0.01031772 27 27 0.06265036 -0.008383944 28 27 -0.06393453 0.01031772 29 27 0.01597157 -0.002577484 30 27 -0.007089509 0.001144101 31 27 0.003980742 -0.0006424099 32 27 -0.002541777 0.0004101906 33 27 0.001760065 -0.0002840383 34 27 -0.001288661 0.0002079635 35 27 0.0009826448 -0.0001585787 36 27 -0.0007727812 0.000124711 37 27 0.0006226054 -0.0001004757 38 27 -0.0005114288 8.253411e-05 39 27 0.0004268045 -6.887749e-05 40 27 -0.0003608797 5.823857e-05 41 27 0.0003085011 -4.978574e-05 42 27 -0.0002661734 4.295492e-05 43 27 0.0002314578 -3.735254e-05 44 27 -0.0002026106 3.26972e-05 45 27 0.0001783582 -2.878335e-05 46 27 -0.0001577525 2.545802e-05 47 27 0.000140076 -2.26054e-05 48 27 -0.0001247774 2.013652e-05 49 27 0.0001114272 -1.798207e-05 50 27 -9.968672e-05 1.608739e-05 51 27 8.928565e-05 -1.440887e-05 52 27 -8.000611e-05 1.291134e-05 53 27 7.167061e-05 -1.156616e-05 54 27 -6.413319e-05 1.034978e-05 55 27 5.727273e-05 -9.242642e-06 56 27 -5.098776e-05 8.228377e-06 57 27 4.519256e-05 -7.293151e-06 58 27 -3.981401e-05 6.425164e-06 59 27 3.478917e-05 -5.614257e-06 60 27 -3.00633e-05 4.851599e-06 61 27 2.558831e-05 -4.129428e-06 62 27 -2.132146e-05 3.440846e-06 63 27 1.722429e-05 -2.779647e-06 64 27 -1.326172e-05 2.14017e-06 65 27 9.401297e-06 -1.517176e-06 66 27 -5.612495e-06 9.057414e-07 67 27 1.866144e-06 -3.011573e-07 68 27 1.866144e-06 -3.011573e-07 69 27 -5.612495e-06 9.057414e-07 70 27 9.401297e-06 -1.517176e-06 71 27 -1.326172e-05 2.14017e-06 72 27 1.722429e-05 -2.779647e-06 73 27 -2.132146e-05 3.440846e-06 74 27 2.558831e-05 -4.129428e-06 75 27 -3.00633e-05 4.851599e-06 76 27 3.478917e-05 -5.614257e-06 77 27 -3.981401e-05 6.425164e-06 78 27 4.519256e-05 -7.293151e-06 79 27 -5.098776e-05 8.228377e-06 80 27 5.727273e-05 -9.242642e-06 108 27 0.0005040657 3.656486e-05 0 28 5.727273e-05 -9.242642e-06 1 28 -6.413319e-05 1.034978e-05 2 28 7.167061e-05 -1.156616e-05 3 28 -8.000611e-05 1.291134e-05 4 28 8.928565e-05 -1.440887e-05 5 28 -9.968672e-05 1.608739e-05 6 28 0.0001114272 -1.798207e-05 7 28 -0.0001247774 2.013652e-05 8 28 0.000140076 -2.26054e-05 9 28 -0.0001577525 2.545802e-05 10 28 0.0001783582 -2.878335e-05 11 28 -0.0002026106 3.26972e-05 12 28 0.0002314578 -3.735254e-05 13 28 -0.0002661734 4.295492e-05 14 28 0.0003085011 -4.978574e-05 15 28 -0.0003608797 5.823857e-05 16 28 0.0004268045 -6.887749e-05 17 28 -0.0005114288 8.253411e-05 18 28 0.0006226054 -0.0001004757 19 28 -0.0007727812 0.000124711 20 28 0.0009826448 -0.0001585787 21 28 -0.001288661 0.0002079635 22 28 0.001760065 -0.0002840383 23 28 -0.002541777 0.0004101906 24 28 0.003980742 -0.0006424099 25 28 -0.007089509 0.001144101 26 28 0.01597157 -0.002577484 27 28 -0.06393453 0.01031772 28 28 0.06604746 -0.008676436 29 28 -0.06393453 0.01031772 30 28 0.01597157 -0.002577484 31 28 -0.007089509 0.001144101 32 28 0.003980742 -0.0006424099 33 28 -0.002541777 0.0004101906 34 28 0.001760065 -0.0002840383 35 28 -0.001288661 0.0002079635 36 28 0.0009826448 -0.0001585787 37 28 -0.0007727812 0.000124711 38 28 0.0006226054 -0.0001004757 39 28 -0.0005114288 8.253411e-05 40 28 0.0004268045 -6.887749e-05 41 28 -0.0003608797 5.823857e-05 42 28 0.0003085011 -4.978574e-05 43 28 -0.0002661734 4.295492e-05 44 28 0.0002314578 -3.735254e-05 45 28 -0.0002026106 3.26972e-05 46 28 0.0001783582 -2.878335e-05 47 28 -0.0001577525 2.545802e-05 48 28 0.000140076 -2.26054e-05 49 28 -0.0001247774 2.013652e-05 50 28 0.0001114272 -1.798207e-05 51 28 -9.968672e-05 1.608739e-05 52 28 8.928565e-05 -1.440887e-05 53 28 -8.000611e-05 1.291134e-05 54 28 7.167061e-05 -1.156616e-05 55 28 -6.413319e-05 1.034978e-05 56 28 5.727273e-05 -9.242642e-06 57 28 -5.098776e-05 8.228377e-06 58 28 4.519256e-05 -7.293151e-06 59 28 -3.981401e-05 6.425164e-06 60 28 3.478917e-05 -5.614257e-06 61 28 -3.00633e-05 4.851599e-06 62 28 2.558831e-05 -4.129428e-06 63 28 -2.132146e-05 3.440846e-06 64 28 1.722429e-05 -2.779647e-06 65 28 -1.326172e-05 2.14017e-06 66 28 9.401297e-06 -1.517176e-06 67 28 -5.612495e-06 9.057414e-07 68 28 1.866144e-06 -3.011573e-07 69 28 1.866144e-06 -3.011573e-07 70 28 -5.612495e-06 9.057414e-07 71 28 9.401297e-06 -1.517176e-06 72 28 -1.326172e-05 2.14017e-06 73 28 1.722429e-05 -2.779647e-06 74 28 -2.132146e-05 3.440846e-06 75 28 2.558831e-05 -4.129428e-06 76 28 -3.00633e-05 4.851599e-06 77 28 3.478917e-05 -5.614257e-06 78 28 -3.981401e-05 6.425164e-06 79 28 4.519256e-05 -7.293151e-06 80 28 -5.098776e-05 8.228377e-06 109 28 0.000518868 3.794342e-05 0 29 -5.098776e-05 8.228377e-06 1 29 5.727273e-05 -9.242642e-06 2 29 -6.413319e-05 1.034978e-05 3 29 7.167061e-05 -1.156616e-05 4 29 -8.000611e-05 1.291134e-05 5 29 8.928565e-05 -1.440887e-05 6 29 -9.968672e-05 1.608739e-05 7 29 0.0001114272 -1.798207e-05 8 29 -0.0001247774 2.013652e-05 9 29 0.000140076 -2.26054e-05 10 29 -0.0001577525 2.545802e-05 11 29 0.0001783582 -2.878335e-05 12 29 -0.0002026106 3.26972e-05 13 29 0.0002314578 -3.735254e-05 14 29 -0.0002661734 4.295492e-05 15 29 0.0003085011 -4.978574e-05 16 29 -0.0003608797 5.823857e-05 17 29 0.0004268045 -6.887749e-05 18 29 -0.0005114288 8.253411e-05 19 29 0.0006226054 -0.0001004757 20 29 -0.0007727812 0.000124711 21 29 0.0009826448 -0.0001585787 22 29 -0.001288661 0.0002079635 23 29 0.001760065 -0.0002840383 24 29 -0.002541777 0.0004101906 25 29 0.003980742 -0.0006424099 26 29 -0.007089509 0.001144101 27 29 0.01597157 -0.002577484 28 29 -0.06393453 0.01031772 29 29 0.06921778 -0.008991451 30 29 -0.06393453 0.01031772 31 29 0.01597157 -0.002577484 32 29 -0.007089509 0.001144101 33 29 0.003980742 -0.0006424099 34 29 -0.002541777 0.0004101906 35 29 0.001760065 -0.0002840383 36 29 -0.001288661 0.0002079635 37 29 0.0009826448 -0.0001585787 38 29 -0.0007727812 0.000124711 39 29 0.0006226054 -0.0001004757 40 29 -0.0005114288 8.253411e-05 41 29 0.0004268045 -6.887749e-05 42 29 -0.0003608797 5.823857e-05 43 29 0.0003085011 -4.978574e-05 44 29 -0.0002661734 4.295492e-05 45 29 0.0002314578 -3.735254e-05 46 29 -0.0002026106 3.26972e-05 47 29 0.0001783582 -2.878335e-05 48 29 -0.0001577525 2.545802e-05 49 29 0.000140076 -2.26054e-05 50 29 -0.0001247774 2.013652e-05 51 29 0.0001114272 -1.798207e-05 52 29 -9.968672e-05 1.608739e-05 53 29 8.928565e-05 -1.440887e-05 54 29 -8.000611e-05 1.291134e-05 55 29 7.167061e-05 -1.156616e-05 56 29 -6.413319e-05 1.034978e-05 57 29 5.727273e-05 -9.242642e-06 58 29 -5.098776e-05 8.228377e-06 59 29 4.519256e-05 -7.293151e-06 60 29 -3.981401e-05 6.425164e-06 61 29 3.478917e-05 -5.614257e-06 62 29 -3.00633e-05 4.851599e-06 63 29 2.558831e-05 -4.129428e-06 64 29 -2.132146e-05 3.440846e-06 65 29 1.722429e-05 -2.779647e-06 66 29 -1.326172e-05 2.14017e-06 67 29 9.401297e-06 -1.517176e-06 68 29 -5.612495e-06 9.057414e-07 69 29 1.866144e-06 -3.011573e-07 70 29 1.866144e-06 -3.011573e-07 71 29 -5.612495e-06 9.057414e-07 72 29 9.401297e-06 -1.517176e-06 73 29 -1.326172e-05 2.14017e-06 74 29 1.722429e-05 -2.779647e-06 75 29 -2.132146e-05 3.440846e-06 76 29 2.558831e-05 -4.129428e-06 77 29 -3.00633e-05 4.851599e-06 78 29 3.478917e-05 -5.614257e-06 79 29 -3.981401e-05 6.425164e-06 80 29 4.519256e-05 -7.293151e-06 110 29 0.0005337456 3.933516e-05 0 30 4.519256e-05 -7.293151e-06 1 30 -5.098776e-05 8.228377e-06 2 30 5.727273e-05 -9.242642e-06 3 30 -6.413319e-05 1.034978e-05 4 30 7.167061e-05 -1.156616e-05 5 30 -8.000611e-05 1.291134e-05 6 30 8.928565e-05 -1.440887e-05 7 30 -9.968672e-05 1.608739e-05 8 30 0.0001114272 -1.798207e-05 9 30 -0.0001247774 2.013652e-05 10 30 0.000140076 -2.26054e-05 11 30 -0.0001577525 2.545802e-05 12 30 0.0001783582 -2.878335e-05 13 30 -0.0002026106 3.26972e-05 14 30 0.0002314578 -3.735254e-05 15 30 -0.0002661734 4.295492e-05 16 30 0.0003085011 -4.978574e-05 17 30 -0.0003608797 5.823857e-05 18 30 0.0004268045 -6.887749e-05 19 30 -0.0005114288 8.253411e-05 20 30 0.0006226054 -0.0001004757 21 30 -0.0007727812 0.000124711 22 30 0.0009826448 -0.0001585787 23 30 -0.001288661 0.0002079635 24 30 0.001760065 -0.0002840383 25 30 -0.002541777 0.0004101906 26 30 0.003980742 -0.0006424099 27 30 -0.007089509 0.001144101 28 30 0.01597157 -0.002577484 29 30 -0.06393453 0.01031772 30 30 0.0721679 -0.009322081 31 30 -0.06393453 0.01031772 32 30 0.01597157 -0.002577484 33 30 -0.007089509 0.001144101 34 30 0.003980742 -0.0006424099 35 30 -0.002541777 0.0004101906 36 30 0.001760065 -0.0002840383 37 30 -0.001288661 0.0002079635 38 30 0.0009826448 -0.0001585787 39 30 -0.0007727812 0.000124711 40 30 0.0006226054 -0.0001004757 41 30 -0.0005114288 8.253411e-05 42 30 0.0004268045 -6.887749e-05 43 30 -0.0003608797 5.823857e-05 44 30 0.0003085011 -4.978574e-05 45 30 -0.0002661734 4.295492e-05 46 30 0.0002314578 -3.735254e-05 47 30 -0.0002026106 3.26972e-05 48 30 0.0001783582 -2.878335e-05 49 30 -0.0001577525 2.545802e-05 50 30 0.000140076 -2.26054e-05 51 30 -0.0001247774 2.013652e-05 52 30 0.0001114272 -1.798207e-05 53 30 -9.968672e-05 1.608739e-05 54 30 8.928565e-05 -1.440887e-05 55 30 -8.000611e-05 1.291134e-05 56 30 7.167061e-05 -1.156616e-05 57 30 -6.413319e-05 1.034978e-05 58 30 5.727273e-05 -9.242642e-06 59 30 -5.098776e-05 8.228377e-06 60 30 4.519256e-05 -7.293151e-06 61 30 -3.981401e-05 6.425164e-06 62 30 3.478917e-05 -5.614257e-06 63 30 -3.00633e-05 4.851599e-06 64 30 2.558831e-05 -4.129428e-06 65 30 -2.132146e-05 3.440846e-06 66 30 1.722429e-05 -2.779647e-06 67 30 -1.326172e-05 2.14017e-06 68 30 9.401297e-06 -1.517176e-06 69 30 -5.612495e-06 9.057414e-07 70 30 1.866144e-06 -3.011573e-07 71 30 1.866144e-06 -3.011573e-07 72 30 -5.612495e-06 9.057414e-07 73 30 9.401297e-06 -1.517176e-06 74 30 -1.326172e-05 2.14017e-06 75 30 1.722429e-05 -2.779647e-06 76 30 -2.132146e-05 3.440846e-06 77 30 2.558831e-05 -4.129428e-06 78 30 -3.00633e-05 4.851599e-06 79 30 3.478917e-05 -5.614257e-06 80 30 -3.981401e-05 6.425164e-06 111 30 0.0005486991 4.074018e-05 0 31 -3.981401e-05 6.425164e-06 1 31 4.519256e-05 -7.293151e-06 2 31 -5.098776e-05 8.228377e-06 3 31 5.727273e-05 -9.242642e-06 4 31 -6.413319e-05 1.034978e-05 5 31 7.167061e-05 -1.156616e-05 6 31 -8.000611e-05 1.291134e-05 7 31 8.928565e-05 -1.440887e-05 8 31 -9.968672e-05 1.608739e-05 9 31 0.0001114272 -1.798207e-05 10 31 -0.0001247774 2.013652e-05 11 31 0.000140076 -2.26054e-05 12 31 -0.0001577525 2.545802e-05 13 31 0.0001783582 -2.878335e-05 14 31 -0.0002026106 3.26972e-05 15 31 0.0002314578 -3.735254e-05 16 31 -0.0002661734 4.295492e-05 17 31 0.0003085011 -4.978574e-05 18 31 -0.0003608797 5.823857e-05 19 31 0.0004268045 -6.887749e-05 20 31 -0.0005114288 8.253411e-05 21 31 0.0006226054 -0.0001004757 22 31 -0.0007727812 0.000124711 23 31 0.0009826448 -0.0001585787 24 31 -0.001288661 0.0002079635 25 31 0.001760065 -0.0002840383 26 31 -0.002541777 0.0004101906 27 31 0.003980742 -0.0006424099 28 31 -0.007089509 0.001144101 29 31 0.01597157 -0.002577484 30 31 -0.06393453 0.01031772 31 31 0.07490619 -0.009662483 32 31 -0.06393453 0.01031772 33 31 0.01597157 -0.002577484 34 31 -0.007089509 0.001144101 35 31 0.003980742 -0.0006424099 36 31 -0.002541777 0.0004101906 37 31 0.001760065 -0.0002840383 38 31 -0.001288661 0.0002079635 39 31 0.0009826448 -0.0001585787 40 31 -0.0007727812 0.000124711 41 31 0.0006226054 -0.0001004757 42 31 -0.0005114288 8.253411e-05 43 31 0.0004268045 -6.887749e-05 44 31 -0.0003608797 5.823857e-05 45 31 0.0003085011 -4.978574e-05 46 31 -0.0002661734 4.295492e-05 47 31 0.0002314578 -3.735254e-05 48 31 -0.0002026106 3.26972e-05 49 31 0.0001783582 -2.878335e-05 50 31 -0.0001577525 2.545802e-05 51 31 0.000140076 -2.26054e-05 52 31 -0.0001247774 2.013652e-05 53 31 0.0001114272 -1.798207e-05 54 31 -9.968672e-05 1.608739e-05 55 31 8.928565e-05 -1.440887e-05 56 31 -8.000611e-05 1.291134e-05 57 31 7.167061e-05 -1.156616e-05 58 31 -6.413319e-05 1.034978e-05 59 31 5.727273e-05 -9.242642e-06 60 31 -5.098776e-05 8.228377e-06 61 31 4.519256e-05 -7.293151e-06 62 31 -3.981401e-05 6.425164e-06 63 31 3.478917e-05 -5.614257e-06 64 31 -3.00633e-05 4.851599e-06 65 31 2.558831e-05 -4.129428e-06 66 31 -2.132146e-05 3.440846e-06 67 31 1.722429e-05 -2.779647e-06 68 31 -1.326172e-05 2.14017e-06 69 31 9.401297e-06 -1.517176e-06 70 31 -5.612495e-06 9.057414e-07 71 31 1.866144e-06 -3.011573e-07 72 31 1.866144e-06 -3.011573e-07 73 31 -5.612495e-06 9.057414e-07 74 31 9.401297e-06 -1.517176e-06 75 31 -1.326172e-05 2.14017e-06 76 31 1.722429e-05 -2.779647e-06 77 31 -2.132146e-05 3.440846e-06 78 31 2.558831e-05 -4.129428e-06 79 31 -3.00633e-05 4.851599e-06 80 31 3.478917e-05 -5.614257e-06 112 31 0.0005637286 4.215856e-05 0 32 3.478917e-05 -5.614257e-06 1 32 -3.981401e-05 6.425164e-06 2 32 4.519256e-05 -7.293151e-06 3 32 -5.098776e-05 8.228377e-06 4 32 5.727273e-05 -9.242642e-06 5 32 -6.413319e-05 1.034978e-05 6 32 7.167061e-05 -1.156616e-05 7 32 -8.000611e-05 1.291134e-05 8 32 8.928565e-05 -1.440887e-05 9 32 -9.968672e-05 1.608739e-05 10 32 0.0001114272 -1.798207e-05 11 32 -0.0001247774 2.013652e-05 12 32 0.000140076 -2.26054e-05 13 32 -0.0001577525 2.545802e-05 14 32 0.0001783582 -2.878335e-05 15 32 -0.0002026106 3.26972e-05 16 32 0.0002314578 -3.735254e-05 17 32 -0.0002661734 4.295492e-05 18 32 0.0003085011 -4.978574e-05 19 32 -0.0003608797 5.823857e-05 20 32 0.0004268045 -6.887749e-05 21 32 -0.0005114288 8.253411e-05 22 32 0.0006226054 -0.0001004757 23 32 -0.0007727812 0.000124711 24 32 0.0009826448 -0.0001585787 25 32 -0.001288661 0.0002079635 26 32 0.001760065 -0.0002840383 27 32 -0.002541777 0.0004101906 28 32 0.003980742 -0.0006424099 29 32 -0.007089509 0.001144101 30 32 0.01597157 -0.002577484 31 32 -0.06393453 0.01031772 32 32 0.07744224 -0.01000776 33 32 -0.06393453 0.01031772 34 32 0.01597157 -0.002577484 35 32 -0.007089509 0.001144101 36 32 0.003980742 -0.0006424099 37 32 -0.002541777 0.0004101906 38 32 0.001760065 -0.0002840383 39 32 -0.001288661 0.0002079635 40 32 0.0009826448 -0.0001585787 41 32 -0.0007727812 0.000124711 42 32 0.0006226054 -0.0001004757 43 32 -0.0005114288 8.253411e-05 44 32 0.0004268045 -6.887749e-05 45 32 -0.0003608797 5.823857e-05 46 32 0.0003085011 -4.978574e-05 47 32 -0.0002661734 4.295492e-05 48 32 0.0002314578 -3.735254e-05 49 32 -0.0002026106 3.26972e-05 50 32 0.0001783582 -2.878335e-05 51 32 -0.0001577525 2.545802e-05 52 32 0.000140076 -2.26054e-05 53 32 -0.0001247774 2.013652e-05 54 32 0.0001114272 -1.798207e-05 55 32 -9.968672e-05 1.608739e-05 56 32 8.928565e-05 -1.440887e-05 57 32 -8.000611e-05 1.291134e-05 58 32 7.167061e-05 -1.156616e-05 59 32 -6.413319e-05 1.034978e-05 60 32 5.727273e-05 -9.242642e-06 61 32 -5.098776e-05 8.228377e-06 62 32 4.519256e-05 -7.293151e-06 63 32 -3.981401e-05 6.425164e-06 64 32 3.478917e-05 -5.614257e-06 65 32 -3.00633e-05 4.851599e-06 66 32 2.558831e-05 -4.129428e-06 67 32 -2.132146e-05 3.440846e-06 68 32 1.722429e-05 -2.779647e-06 69 32 -1.326172e-05 2.14017e-06 70 32 9.401297e-06 -1.517176e-06 71 32 -5.612495e-06 9.057414e-07 72 32 1.866144e-06 -3.011573e-07 73 32 1.866144e-06 -3.011573e-07 74 32 -5.612495e-06 9.057414e-07 75 32 9.401297e-06 -1.517176e-06 76 32 -1.326172e-05 2.14017e-06 77 32 1.722429e-05 -2.779647e-06 78 32 -2.132146e-05 3.440846e-06 79 32 2.558831e-05 -4.129428e-06 80 32 -3.00633e-05 4.851599e-06 113 32 0.0005788347 4.359042e-05 0 33 -3.00633e-05 4.851599e-06 1 33 3.478917e-05 -5.614257e-06 2 33 -3.981401e-05 6.425164e-06 3 33 4.519256e-05 -7.293151e-06 4 33 -5.098776e-05 8.228377e-06 5 33 5.727273e-05 -9.242642e-06 6 33 -6.413319e-05 1.034978e-05 7 33 7.167061e-05 -1.156616e-05 8 33 -8.000611e-05 1.291134e-05 9 33 8.928565e-05 -1.440887e-05 10 33 -9.968672e-05 1.608739e-05 11 33 0.0001114272 -1.798207e-05 12 33 -0.0001247774 2.013652e-05 13 33 0.000140076 -2.26054e-05 14 33 -0.0001577525 2.545802e-05 15 33 0.0001783582 -2.878335e-05 16 33 -0.0002026106 3.26972e-05 17 33 0.0002314578 -3.735254e-05 18 33 -0.0002661734 4.295492e-05 19 33 0.0003085011 -4.978574e-05 20 33 -0.0003608797 5.823857e-05 21 33 0.0004268045 -6.887749e-05 22 33 -0.0005114288 8.253411e-05 23 33 0.0006226054 -0.0001004757 24 33 -0.0007727812 0.000124711 25 33 0.0009826448 -0.0001585787 26 33 -0.001288661 0.0002079635 27 33 0.001760065 -0.0002840383 28 33 -0.002541777 0.0004101906 29 33 0.003980742 -0.0006424099 30 33 -0.007089509 0.001144101 31 33 0.01597157 -0.002577484 32 33 -0.06393453 0.01031772 33 33 0.07978642 -0.01035382 34 33 -0.06393453 0.01031772 35 33 0.01597157 -0.002577484 36 33 -0.007089509 0.001144101 37 33 0.003980742 -0.0006424099 38 33 -0.002541777 0.0004101906 39 33 0.001760065 -0.0002840383 40 33 -0.001288661 0.0002079635 41 33 0.0009826448 -0.0001585787 42 33 -0.0007727812 0.000124711 43 33 0.0006226054 -0.0001004757 44 33 -0.0005114288 8.253411e-05 45 33 0.0004268045 -6.887749e-05 46 33 -0.0003608797 5.823857e-05 47 33 0.0003085011 -4.978574e-05 48 33 -0.0002661734 4.295492e-05 49 33 0.0002314578 -3.735254e-05 50 33 -0.0002026106 3.26972e-05 51 33 0.0001783582 -2.878335e-05 52 33 -0.0001577525 2.545802e-05 53 33 0.000140076 -2.26054e-05 54 33 -0.0001247774 2.013652e-05 55 33 0.0001114272 -1.798207e-05 56 33 -9.968672e-05 1.608739e-05 57 33 8.928565e-05 -1.440887e-05 58 33 -8.000611e-05 1.291134e-05 59 33 7.167061e-05 -1.156616e-05 60 33 -6.413319e-05 1.034978e-05 61 33 5.727273e-05 -9.242642e-06 62 33 -5.098776e-05 8.228377e-06 63 33 4.519256e-05 -7.293151e-06 64 33 -3.981401e-05 6.425164e-06 65 33 3.478917e-05 -5.614257e-06 66 33 -3.00633e-05 4.851599e-06 67 33 2.558831e-05 -4.129428e-06 68 33 -2.132146e-05 3.440846e-06 69 33 1.722429e-05 -2.779647e-06 70 33 -1.326172e-05 2.14017e-06 71 33 9.401297e-06 -1.517176e-06 72 33 -5.612495e-06 9.057414e-07 73 33 1.866144e-06 -3.011573e-07 74 33 1.866144e-06 -3.011573e-07 75 33 -5.612495e-06 9.057414e-07 76 33 9.401297e-06 -1.517176e-06 77 33 -1.326172e-05 2.14017e-06 78 33 1.722429e-05 -2.779647e-06 79 33 -2.132146e-05 3.440846e-06 80 33 2.558831e-05 -4.129428e-06 114 33 0.0005940177 4.503586e-05 0 34 2.558831e-05 -4.129428e-06 1 34 -3.00633e-05 4.851599e-06 2 34 3.478917e-05 -5.614257e-06 3 34 -3.981401e-05 6.425164e-06 4 34 4.519256e-05 -7.293151e-06 5 34 -5.098776e-05 8.228377e-06 6 34 5.727273e-05 -9.242642e-06 7 34 -6.413319e-05 1.034978e-05 8 34 7.167061e-05 -1.156616e-05 9 34 -8.000611e-05 1.291134e-05 10 34 8.928565e-05 -1.440887e-05 11 34 -9.968672e-05 1.608739e-05 12 34 0.0001114272 -1.798207e-05 13 34 -0.0001247774 2.013652e-05 14 34 0.000140076 -2.26054e-05 15 34 -0.0001577525 2.545802e-05 16 34 0.0001783582 -2.878335e-05 17 34 -0.0002026106 3.26972e-05 18 34 0.0002314578 -3.735254e-05 19 34 -0.0002661734 4.295492e-05 20 34 0.0003085011 -4.978574e-05 21 34 -0.0003608797 5.823857e-05 22 34 0.0004268045 -6.887749e-05 23 34 -0.0005114288 8.253411e-05 24 34 0.0006226054 -0.0001004757 25 34 -0.0007727812 0.000124711 26 34 0.0009826448 -0.0001585787 27 34 -0.001288661 0.0002079635 28 34 0.001760065 -0.0002840383 29 34 -0.002541777 0.0004101906 30 34 0.003980742 -0.0006424099 31 34 -0.007089509 0.001144101 32 34 0.01597157 -0.002577484 33 34 -0.06393453 0.01031772 34 34 0.0819495 -0.01069733 35 34 -0.06393453 0.01031772 36 34 0.01597157 -0.002577484 37 34 -0.007089509 0.001144101 38 34 0.003980742 -0.0006424099 39 34 -0.002541777 0.0004101906 40 34 0.001760065 -0.0002840383 41 34 -0.001288661 0.0002079635 42 34 0.0009826448 -0.0001585787 43 34 -0.0007727812 0.000124711 44 34 0.0006226054 -0.0001004757 45 34 -0.0005114288 8.253411e-05 46 34 0.0004268045 -6.887749e-05 47 34 -0.0003608797 5.823857e-05 48 34 0.0003085011 -4.978574e-05 49 34 -0.0002661734 4.295492e-05 50 34 0.0002314578 -3.735254e-05 51 34 -0.0002026106 3.26972e-05 52 34 0.0001783582 -2.878335e-05 53 34 -0.0001577525 2.545802e-05 54 34 0.000140076 -2.26054e-05 55 34 -0.0001247774 2.013652e-05 56 34 0.0001114272 -1.798207e-05 57 34 -9.968672e-05 1.608739e-05 58 34 8.928565e-05 -1.440887e-05 59 34 -8.000611e-05 1.291134e-05 60 34 7.167061e-05 -1.156616e-05 61 34 -6.413319e-05 1.034978e-05 62 34 5.727273e-05 -9.242642e-06 63 34 -5.098776e-05 8.228377e-06 64 34 4.519256e-05 -7.293151e-06 65 34 -3.981401e-05 6.425164e-06 66 34 3.478917e-05 -5.614257e-06 67 34 -3.00633e-05 4.851599e-06 68 34 2.558831e-05 -4.129428e-06 69 34 -2.132146e-05 3.440846e-06 70 34 1.722429e-05 -2.779647e-06 71 34 -1.326172e-05 2.14017e-06 72 34 9.401297e-06 -1.517176e-06 73 34 -5.612495e-06 9.057414e-07 74 34 1.866144e-06 -3.011573e-07 75 34 1.866144e-06 -3.011573e-07 76 34 -5.612495e-06 9.057414e-07 77 34 9.401297e-06 -1.517176e-06 78 34 -1.326172e-05 2.14017e-06 79 34 1.722429e-05 -2.779647e-06 80 34 -2.132146e-05 3.440846e-06 115 34 0.0006092779 4.649497e-05 0 35 -2.132146e-05 3.440846e-06 1 35 2.558831e-05 -4.129428e-06 2 35 -3.00633e-05 4.851599e-06 3 35 3.478917e-05 -5.614257e-06 4 35 -3.981401e-05 6.425164e-06 5 35 4.519256e-05 -7.293151e-06 6 35 -5.098776e-05 8.228377e-06 7 35 5.727273e-05 -9.242642e-06 8 35 -6.413319e-05 1.034978e-05 9 35 7.167061e-05 -1.156616e-05 10 35 -8.000611e-05 1.291134e-05 11 35 8.928565e-05 -1.440887e-05 12 35 -9.968672e-05 1.608739e-05 13 35 0.0001114272 -1.798207e-05 14 35 -0.0001247774 2.013652e-05 15 35 0.000140076 -2.26054e-05 16 35 -0.0001577525 2.545802e-05 17 35 0.0001783582 -2.878335e-05 18 35 -0.0002026106 3.26972e-05 19 35 0.0002314578 -3.735254e-05 20 35 -0.0002661734 4.295492e-05 21 35 0.0003085011 -4.978574e-05 22 35 -0.0003608797 5.823857e-05 23 35 0.0004268045 -6.887749e-05 24 35 -0.0005114288 8.253411e-05 25 35 0.0006226054 -0.0001004757 26 35 -0.0007727812 0.000124711 27 35 0.0009826448 -0.0001585787 28 35 -0.001288661 0.0002079635 29 35 0.001760065 -0.0002840383 30 35 -0.002541777 0.0004101906 31 35 0.003980742 -0.0006424099 32 35 -0.007089509 0.001144101 33 35 0.01597157 -0.002577484 34 35 -0.06393453 0.01031772 35 35 0.08394242 -0.01103557 36 35 -0.06393453 0.01031772 37 35 0.01597157 -0.002577484 38 35 -0.007089509 0.001144101 39 35 0.003980742 -0.0006424099 40 35 -0.002541777 0.0004101906 41 35 0.001760065 -0.0002840383 42 35 -0.001288661 0.0002079635 43 35 0.0009826448 -0.0001585787 44 35 -0.0007727812 0.000124711 45 35 0.0006226054 -0.0001004757 46 35 -0.0005114288 8.253411e-05 47 35 0.0004268045 -6.887749e-05 48 35 -0.0003608797 5.823857e-05 49 35 0.0003085011 -4.978574e-05 50 35 -0.0002661734 4.295492e-05 51 35 0.0002314578 -3.735254e-05 52 35 -0.0002026106 3.26972e-05 53 35 0.0001783582 -2.878335e-05 54 35 -0.0001577525 2.545802e-05 55 35 0.000140076 -2.26054e-05 56 35 -0.0001247774 2.013652e-05 57 35 0.0001114272 -1.798207e-05 58 35 -9.968672e-05 1.608739e-05 59 35 8.928565e-05 -1.440887e-05 60 35 -8.000611e-05 1.291134e-05 61 35 7.167061e-05 -1.156616e-05 62 35 -6.413319e-05 1.034978e-05 63 35 5.727273e-05 -9.242642e-06 64 35 -5.098776e-05 8.228377e-06 65 35 4.519256e-05 -7.293151e-06 66 35 -3.981401e-05 6.425164e-06 67 35 3.478917e-05 -5.614257e-06 68 35 -3.00633e-05 4.851599e-06 69 35 2.558831e-05 -4.129428e-06 70 35 -2.132146e-05 3.440846e-06 71 35 1.722429e-05 -2.779647e-06 72 35 -1.326172e-05 2.14017e-06 73 35 9.401297e-06 -1.517176e-06 74 35 -5.612495e-06 9.057414e-07 75 35 1.866144e-06 -3.011573e-07 76 35 1.866144e-06 -3.011573e-07 77 35 -5.612495e-06 9.057414e-07 78 35 9.401297e-06 -1.517176e-06 79 35 -1.326172e-05 2.14017e-06 80 35 1.722429e-05 -2.779647e-06 116 35 0.0006246159 4.796785e-05 0 36 1.722429e-05 -2.779647e-06 1 36 -2.132146e-05 3.440846e-06 2 36 2.558831e-05 -4.129428e-06 3 36 -3.00633e-05 4.851599e-06 4 36 3.478917e-05 -5.614257e-06 5 36 -3.981401e-05 6.425164e-06 6 36 4.519256e-05 -7.293151e-06 7 36 -5.098776e-05 8.228377e-06 8 36 5.727273e-05 -9.242642e-06 9 36 -6.413319e-05 1.034978e-05 10 36 7.167061e-05 -1.156616e-05 11 36 -8.000611e-05 1.291134e-05 12 36 8.928565e-05 -1.440887e-05 13 36 -9.968672e-05 1.608739e-05 14 36 0.0001114272 -1.798207e-05 15 36 -0.0001247774 2.013652e-05 16 36 0.000140076 -2.26054e-05 17 36 -0.0001577525 2.545802e-05 18 36 0.0001783582 -2.878335e-05 19 36 -0.0002026106 3.26972e-05 20 36 0.0002314578 -3.735254e-05 21 36 -0.0002661734 4.295492e-05 22 36 0.0003085011 -4.978574e-05 23 36 -0.0003608797 5.823857e-05 24 36 0.0004268045 -6.887749e-05 25 36 -0.0005114288 8.253411e-05 26 36 0.0006226054 -0.0001004757 27 36 -0.0007727812 0.000124711 28 36 0.0009826448 -0.0001585787 29 36 -0.001288661 0.0002079635 30 36 0.001760065 -0.0002840383 31 36 -0.002541777 0.0004101906 32 36 0.003980742 -0.0006424099 33 36 -0.007089509 0.001144101 34 36 0.01597157 -0.002577484 35 36 -0.06393453 0.01031772 36 36 0.08577606 -0.01136635 37 36 -0.06393453 0.01031772 38 36 0.01597157 -0.002577484 39 36 -0.007089509 0.001144101 40 36 0.003980742 -0.0006424099 41 36 -0.002541777 0.0004101906 42 36 0.001760065 -0.0002840383 43 36 -0.001288661 0.0002079635 44 36 0.0009826448 -0.0001585787 45 36 -0.0007727812 0.000124711 46 36 0.0006226054 -0.0001004757 47 36 -0.0005114288 8.253411e-05 48 36 0.0004268045 -6.887749e-05 49 36 -0.0003608797 5.823857e-05 50 36 0.0003085011 -4.978574e-05 51 36 -0.0002661734 4.295492e-05 52 36 0.0002314578 -3.735254e-05 53 36 -0.0002026106 3.26972e-05 54 36 0.0001783582 -2.878335e-05 55 36 -0.0001577525 2.545802e-05 56 36 0.000140076 -2.26054e-05 57 36 -0.0001247774 2.013652e-05 58 36 0.0001114272 -1.798207e-05 59 36 -9.968672e-05 1.608739e-05 60 36 8.928565e-05 -1.440887e-05 61 36 -8.000611e-05 1.291134e-05 62 36 7.167061e-05 -1.156616e-05 63 36 -6.413319e-05 1.034978e-05 64 36 5.727273e-05 -9.242642e-06 65 36 -5.098776e-05 8.228377e-06 66 36 4.519256e-05 -7.293151e-06 67 36 -3.981401e-05 6.425164e-06 68 36 3.478917e-05 -5.614257e-06 69 36 -3.00633e-05 4.851599e-06 70 36 2.558831e-05 -4.129428e-06 71 36 -2.132146e-05 3.440846e-06 72 36 1.722429e-05 -2.779647e-06 73 36 -1.326172e-05 2.14017e-06 74 36 9.401297e-06 -1.517176e-06 75 36 -5.612495e-06 9.057414e-07 76 36 1.866144e-06 -3.011573e-07 77 36 1.866144e-06 -3.011573e-07 78 36 -5.612495e-06 9.057414e-07 79 36 9.401297e-06 -1.517176e-06 80 36 -1.326172e-05 2.14017e-06 117 36 0.0006400319 4.945462e-05 0 37 -1.326172e-05 2.14017e-06 1 37 1.722429e-05 -2.779647e-06 2 37 -2.132146e-05 3.440846e-06 3 37 2.558831e-05 -4.129428e-06 4 37 -3.00633e-05 4.851599e-06 5 37 3.478917e-05 -5.614257e-06 6 37 -3.981401e-05 6.425164e-06 7 37 4.519256e-05 -7.293151e-06 8 37 -5.098776e-05 8.228377e-06 9 37 5.727273e-05 -9.242642e-06 10 37 -6.413319e-05 1.034978e-05 11 37 7.167061e-05 -1.156616e-05 12 37 -8.000611e-05 1.291134e-05 13 37 8.928565e-05 -1.440887e-05 14 37 -9.968672e-05 1.608739e-05 15 37 0.0001114272 -1.798207e-05 16 37 -0.0001247774 2.013652e-05 17 37 0.000140076 -2.26054e-05 18 37 -0.0001577525 2.545802e-05 19 37 0.0001783582 -2.878335e-05 20 37 -0.0002026106 3.26972e-05 21 37 0.0002314578 -3.735254e-05 22 37 -0.0002661734 4.295492e-05 23 37 0.0003085011 -4.978574e-05 24 37 -0.0003608797 5.823857e-05 25 37 0.0004268045 -6.887749e-05 26 37 -0.0005114288 8.253411e-05 27 37 0.0006226054 -0.0001004757 28 37 -0.0007727812 0.000124711 29 37 0.0009826448 -0.0001585787 30 37 -0.001288661 0.0002079635 31 37 0.001760065 -0.0002840383 32 37 -0.002541777 0.0004101906 33 37 0.003980742 -0.0006424099 34 37 -0.007089509 0.001144101 35 37 0.01597157 -0.002577484 36 37 -0.06393453 0.01031772 37 37 0.0874611 -0.01168797 38 37 -0.06393453 0.01031772 39 37 0.01597157 -0.002577484 40 37 -0.007089509 0.001144101 41 37 0.003980742 -0.0006424099 42 37 -0.002541777 0.0004101906 43 37 0.001760065 -0.0002840383 44 37 -0.001288661 0.0002079635 45 37 0.0009826448 -0.0001585787 46 37 -0.0007727812 0.000124711 47 37 0.0006226054 -0.0001004757 48 37 -0.0005114288 8.253411e-05 49 37 0.0004268045 -6.887749e-05 50 37 -0.0003608797 5.823857e-05 51 37 0.0003085011 -4.978574e-05 52 37 -0.0002661734 4.295492e-05 53 37 0.0002314578 -3.735254e-05 54 37 -0.0002026106 3.26972e-05 55 37 0.0001783582 -2.878335e-05 56 37 -0.0001577525 2.545802e-05 57 37 0.000140076 -2.26054e-05 58 37 -0.0001247774 2.013652e-05 59 37 0.0001114272 -1.798207e-05 60 37 -9.968672e-05 1.608739e-05 61 37 8.928565e-05 -1.440887e-05 62 37 -8.000611e-05 1.291134e-05 63 37 7.167061e-05 -1.156616e-05 64 37 -6.413319e-05 1.034978e-05 65 37 5.727273e-05 -9.242642e-06 66 37 -5.098776e-05 8.228377e-06 67 37 4.519256e-05 -7.293151e-06 68 37 -3.981401e-05 6.425164e-06 69 37 3.478917e-05 -5.614257e-06 70 37 -3.00633e-05 4.851599e-06 71 37 2.558831e-05 -4.129428e-06 72 37 -2.132146e-05 3.440846e-06 73 37 1.722429e-05 -2.779647e-06 74 37 -1.326172e-05 2.14017e-06 75 37 9.401297e-06 -1.517176e-06 76 37 -5.612495e-06 9.057414e-07 77 37 1.866144e-06 -3.011573e-07 78 37 1.866144e-06 -3.011573e-07 79 37 -5.612495e-06 9.057414e-07 80 37 9.401297e-06 -1.517176e-06 118 37 0.0006555264 5.095537e-05 0 38 9.401297e-06 -1.517176e-06 1 38 -1.326172e-05 2.14017e-06 2 38 1.722429e-05 -2.779647e-06 3 38 -2.132146e-05 3.440846e-06 4 38 2.558831e-05 -4.129428e-06 5 38 -3.00633e-05 4.851599e-06 6 38 3.478917e-05 -5.614257e-06 7 38 -3.981401e-05 6.425164e-06 8 38 4.519256e-05 -7.293151e-06 9 38 -5.098776e-05 8.228377e-06 10 38 5.727273e-05 -9.242642e-06 11 38 -6.413319e-05 1.034978e-05 12 38 7.167061e-05 -1.156616e-05 13 38 -8.000611e-05 1.291134e-05 14 38 8.928565e-05 -1.440887e-05 15 38 -9.968672e-05 1.608739e-05 16 38 0.0001114272 -1.798207e-05 17 38 -0.0001247774 2.013652e-05 18 38 0.000140076 -2.26054e-05 19 38 -0.0001577525 2.545802e-05 20 38 0.0001783582 -2.878335e-05 21 38 -0.0002026106 3.26972e-05 22 38 0.0002314578 -3.735254e-05 23 38 -0.0002661734 4.295492e-05 24 38 0.0003085011 -4.978574e-05 25 38 -0.0003608797 5.823857e-05 26 38 0.0004268045 -6.887749e-05 27 38 -0.0005114288 8.253411e-05 28 38 0.0006226054 -0.0001004757 29 38 -0.0007727812 0.000124711 30 38 0.0009826448 -0.0001585787 31 38 -0.001288661 0.0002079635 32 38 0.001760065 -0.0002840383 33 38 -0.002541777 0.0004101906 34 38 0.003980742 -0.0006424099 35 38 -0.007089509 0.001144101 36 38 0.01597157 -0.002577484 37 38 -0.06393453 0.01031772 38 38 0.08900789 -0.01199912 39 38 -0.06393453 0.01031772 40 38 0.01597157 -0.002577484 41 38 -0.007089509 0.001144101 42 38 0.003980742 -0.0006424099 43 38 -0.002541777 0.0004101906 44 38 0.001760065 -0.0002840383 45 38 -0.001288661 0.0002079635 46 38 0.0009826448 -0.0001585787 47 38 -0.0007727812 0.000124711 48 38 0.0006226054 -0.0001004757 49 38 -0.0005114288 8.253411e-05 50 38 0.0004268045 -6.887749e-05 51 38 -0.0003608797 5.823857e-05 52 38 0.0003085011 -4.978574e-05 53 38 -0.0002661734 4.295492e-05 54 38 0.0002314578 -3.735254e-05 55 38 -0.0002026106 3.26972e-05 56 38 0.0001783582 -2.878335e-05 57 38 -0.0001577525 2.545802e-05 58 38 0.000140076 -2.26054e-05 59 38 -0.0001247774 2.013652e-05 60 38 0.0001114272 -1.798207e-05 61 38 -9.968672e-05 1.608739e-05 62 38 8.928565e-05 -1.440887e-05 63 38 -8.000611e-05 1.291134e-05 64 38 7.167061e-05 -1.156616e-05 65 38 -6.413319e-05 1.034978e-05 66 38 5.727273e-05 -9.242642e-06 67 38 -5.098776e-05 8.228377e-06 68 38 4.519256e-05 -7.293151e-06 69 38 -3.981401e-05 6.425164e-06 70 38 3.478917e-05 -5.614257e-06 71 38 -3.00633e-05 4.851599e-06 72 38 2.558831e-05 -4.129428e-06 73 38 -2.132146e-05 3.440846e-06 74 38 1.722429e-05 -2.779647e-06 75 38 -1.326172e-05 2.14017e-06 76 38 9.401297e-06 -1.517176e-06 77 38 -5.612495e-06 9.057414e-07 78 38 1.866144e-06 -3.011573e-07 79 38 1.866144e-06 -3.011573e-07 80 38 -5.612495e-06 9.057414e-07 119 38 0.0006710998 5.247021e-05 0 39 -5.612495e-06 9.057414e-07 1 39 9.401297e-06 -1.517176e-06 2 39 -1.326172e-05 2.14017e-06 3 39 1.722429e-05 -2.779647e-06 4 39 -2.132146e-05 3.440846e-06 5 39 2.558831e-05 -4.129428e-06 6 39 -3.00633e-05 4.851599e-06 7 39 3.478917e-05 -5.614257e-06 8 39 -3.981401e-05 6.425164e-06 9 39 4.519256e-05 -7.293151e-06 10 39 -5.098776e-05 8.228377e-06 11 39 5.727273e-05 -9.242642e-06 12 39 -6.413319e-05 1.034978e-05 13 39 7.167061e-05 -1.156616e-05 14 39 -8.000611e-05 1.291134e-05 15 39 8.928565e-05 -1.440887e-05 16 39 -9.968672e-05 1.608739e-05 17 39 0.0001114272 -1.798207e-05 18 39 -0.0001247774 2.013652e-05 19 39 0.000140076 -2.26054e-05 20 39 -0.0001577525 2.545802e-05 21 39 0.0001783582 -2.878335e-05 22 39 -0.0002026106 3.26972e-05 23 39 0.0002314578 -3.735254e-05 24 39 -0.0002661734 4.295492e-05 25 39 0.0003085011 -4.978574e-05 26 39 -0.0003608797 5.823857e-05 27 39 0.0004268045 -6.887749e-05 28 39 -0.0005114288 8.253411e-05 29 39 0.0006226054 -0.0001004757 30 39 -0.0007727812 0.000124711 31 39 0.0009826448 -0.0001585787 32 39 -0.001288661 0.0002079635 33 39 0.001760065 -0.0002840383 34 39 -0.002541777 0.0004101906 35 39 0.003980742 -0.0006424099 36 39 -0.007089509 0.001144101 37 39 0.01597157 -0.002577484 38 39 -0.06393453 0.01031772 39 39 0.09042639 -0.01229882 40 39 -0.06393453 0.01031772 41 39 0.01597157 -0.002577484 42 39 -0.007089509 0.001144101 43 39 0.003980742 -0.0006424099 44 39 -0.002541777 0.0004101906 45 39 0.001760065 -0.0002840383 46 39 -0.001288661 0.0002079635 47 39 0.0009826448 -0.0001585787 48 39 -0.0007727812 0.000124711 49 39 0.0006226054 -0.0001004757 50 39 -0.0005114288 8.253411e-05 51 39 0.0004268045 -6.887749e-05 52 39 -0.0003608797 5.823857e-05 53 39 0.0003085011 -4.978574e-05 54 39 -0.0002661734 4.295492e-05 55 39 0.0002314578 -3.735254e-05 56 39 -0.0002026106 3.26972e-05 57 39 0.0001783582 -2.878335e-05 58 39 -0.0001577525 2.545802e-05 59 39 0.000140076 -2.26054e-05 60 39 -0.0001247774 2.013652e-05 61 39 0.0001114272 -1.798207e-05 62 39 -9.968672e-05 1.608739e-05 63 39 8.928565e-05 -1.440887e-05 64 39 -8.000611e-05 1.291134e-05 65 39 7.167061e-05 -1.156616e-05 66 39 -6.413319e-05 1.034978e-05 67 39 5.727273e-05 -9.242642e-06 68 39 -5.098776e-05 8.228377e-06 69 39 4.519256e-05 -7.293151e-06 70 39 -3.981401e-05 6.425164e-06 71 39 3.478917e-05 -5.614257e-06 72 39 -3.00633e-05 4.851599e-06 73 39 2.558831e-05 -4.129428e-06 74 39 -2.132146e-05 3.440846e-06 75 39 1.722429e-05 -2.779647e-06 76 39 -1.326172e-05 2.14017e-06 77 39 9.401297e-06 -1.517176e-06 78 39 -5.612495e-06 9.057414e-07 79 39 1.866144e-06 -3.011573e-07 80 39 1.866144e-06 -3.011573e-07 120 39 0.0006867524 5.399924e-05 0 40 1.866144e-06 -3.011573e-07 1 40 -5.612495e-06 9.057414e-07 2 40 9.401297e-06 -1.517176e-06 3 40 -1.326172e-05 2.14017e-06 4 40 1.722429e-05 -2.779647e-06 5 40 -2.132146e-05 3.440846e-06 6 40 2.558831e-05 -4.129428e-06 7 40 -3.00633e-05 4.851599e-06 8 40 3.478917e-05 -5.614257e-06 9 40 -3.981401e-05 6.425164e-06 10 40 4.519256e-05 -7.293151e-06 11 40 -5.098776e-05 8.228377e-06 12 40 5.727273e-05 -9.242642e-06 13 40 -6.413319e-05 1.034978e-05 14 40 7.167061e-05 -1.156616e-05 15 40 -8.000611e-05 1.291134e-05 16 40 8.928565e-05 -1.440887e-05 17 40 -9.968672e-05 1.608739e-05 18 40 0.0001114272 -1.798207e-05 19 40 -0.0001247774 2.013652e-05 20 40 0.000140076 -2.26054e-05 21 40 -0.0001577525 2.545802e-05 22 40 0.0001783582 -2.878335e-05 23 40 -0.0002026106 3.26972e-05 24 40 0.0002314578 -3.735254e-05 25 40 -0.0002661734 4.295492e-05 26 40 0.0003085011 -4.978574e-05 27 40 -0.0003608797 5.823857e-05 28 40 0.0004268045 -6.887749e-05 29 40 -0.0005114288 8.253411e-05 30 40 0.0006226054 -0.0001004757 31 40 -0.0007727812 0.000124711 32 40 0.0009826448 -0.0001585787 33 40 -0.001288661 0.0002079635 34 40 0.001760065 -0.0002840383 35 40 -0.002541777 0.0004101906 36 40 0.003980742 -0.0006424099 37 40 -0.007089509 0.001144101 38 40 0.01597157 -0.002577484 39 40 -0.06393453 0.01031772 40 40 0.09172607 -0.01258639 41 40 -0.06393453 0.01031772 42 40 0.01597157 -0.002577484 43 40 -0.007089509 0.001144101 44 40 0.003980742 -0.0006424099 45 40 -0.002541777 0.0004101906 46 40 0.001760065 -0.0002840383 47 40 -0.001288661 0.0002079635 48 40 0.0009826448 -0.0001585787 49 40 -0.0007727812 0.000124711 50 40 0.0006226054 -0.0001004757 51 40 -0.0005114288 8.253411e-05 52 40 0.0004268045 -6.887749e-05 53 40 -0.0003608797 5.823857e-05 54 40 0.0003085011 -4.978574e-05 55 40 -0.0002661734 4.295492e-05 56 40 0.0002314578 -3.735254e-05 57 40 -0.0002026106 3.26972e-05 58 40 0.0001783582 -2.878335e-05 59 40 -0.0001577525 2.545802e-05 60 40 0.000140076 -2.26054e-05 61 40 -0.0001247774 2.013652e-05 62 40 0.0001114272 -1.798207e-05 63 40 -9.968672e-05 1.608739e-05 64 40 8.928565e-05 -1.440887e-05 65 40 -8.000611e-05 1.291134e-05 66 40 7.167061e-05 -1.156616e-05 67 40 -6.413319e-05 1.034978e-05 68 40 5.727273e-05 -9.242642e-06 69 40 -5.098776e-05 8.228377e-06 70 40 4.519256e-05 -7.293151e-06 71 40 -3.981401e-05 6.425164e-06 72 40 3.478917e-05 -5.614257e-06 73 40 -3.00633e-05 4.851599e-06 74 40 2.558831e-05 -4.129428e-06 75 40 -2.132146e-05 3.440846e-06 76 40 1.722429e-05 -2.779647e-06 77 40 -1.326172e-05 2.14017e-06 78 40 9.401297e-06 -1.517176e-06 79 40 -5.612495e-06 9.057414e-07 80 40 1.866144e-06 -3.011573e-07 121 40 0.0007024847 5.554257e-05 0 41 1.866144e-06 -3.011573e-07 1 41 1.866144e-06 -3.011573e-07 2 41 -5.612495e-06 9.057414e-07 3 41 9.401297e-06 -1.517176e-06 4 41 -1.326172e-05 2.14017e-06 5 41 1.722429e-05 -2.779647e-06 6 41 -2.132146e-05 3.440846e-06 7 41 2.558831e-05 -4.129428e-06 8 41 -3.00633e-05 4.851599e-06 9 41 3.478917e-05 -5.614257e-06 10 41 -3.981401e-05 6.425164e-06 11 41 4.519256e-05 -7.293151e-06 12 41 -5.098776e-05 8.228377e-06 13 41 5.727273e-05 -9.242642e-06 14 41 -6.413319e-05 1.034978e-05 15 41 7.167061e-05 -1.156616e-05 16 41 -8.000611e-05 1.291134e-05 17 41 8.928565e-05 -1.440887e-05 18 41 -9.968672e-05 1.608739e-05 19 41 0.0001114272 -1.798207e-05 20 41 -0.0001247774 2.013652e-05 21 41 0.000140076 -2.26054e-05 22 41 -0.0001577525 2.545802e-05 23 41 0.0001783582 -2.878335e-05 24 41 -0.0002026106 3.26972e-05 25 41 0.0002314578 -3.735254e-05 26 41 -0.0002661734 4.295492e-05 27 41 0.0003085011 -4.978574e-05 28 41 -0.0003608797 5.823857e-05 29 41 0.0004268045 -6.887749e-05 30 41 -0.0005114288 8.253411e-05 31 41 0.0006226054 -0.0001004757 32 41 -0.0007727812 0.000124711 33 41 0.0009826448 -0.0001585787 34 41 -0.001288661 0.0002079635 35 41 0.001760065 -0.0002840383 36 41 -0.002541777 0.0004101906 37 41 0.003980742 -0.0006424099 38 41 -0.007089509 0.001144101 39 41 0.01597157 -0.002577484 40 41 -0.06393453 0.01031772 41 41 0.09291596 -0.0128614 42 41 -0.06393453 0.01031772 43 41 0.01597157 -0.002577484 44 41 -0.007089509 0.001144101 45 41 0.003980742 -0.0006424099 46 41 -0.002541777 0.0004101906 47 41 0.001760065 -0.0002840383 48 41 -0.001288661 0.0002079635 49 41 0.0009826448 -0.0001585787 50 41 -0.0007727812 0.000124711 51 41 0.0006226054 -0.0001004757 52 41 -0.0005114288 8.253411e-05 53 41 0.0004268045 -6.887749e-05 54 41 -0.0003608797 5.823857e-05 55 41 0.0003085011 -4.978574e-05 56 41 -0.0002661734 4.295492e-05 57 41 0.0002314578 -3.735254e-05 58 41 -0.0002026106 3.26972e-05 59 41 0.0001783582 -2.878335e-05 60 41 -0.0001577525 2.545802e-05 61 41 0.000140076 -2.26054e-05 62 41 -0.0001247774 2.013652e-05 63 41 0.0001114272 -1.798207e-05 64 41 -9.968672e-05 1.608739e-05 65 41 8.928565e-05 -1.440887e-05 66 41 -8.000611e-05 1.291134e-05 67 41 7.167061e-05 -1.156616e-05 68 41 -6.413319e-05 1.034978e-05 69 41 5.727273e-05 -9.242642e-06 70 41 -5.098776e-05 8.228377e-06 71 41 4.519256e-05 -7.293151e-06 72 41 -3.981401e-05 6.425164e-06 73 41 3.478917e-05 -5.614257e-06 74 41 -3.00633e-05 4.851599e-06 75 41 2.558831e-05 -4.129428e-06 76 41 -2.132146e-05 3.440846e-06 77 41 1.722429e-05 -2.779647e-06 78 41 -1.326172e-05 2.14017e-06 79 41 9.401297e-06 -1.517176e-06 80 41 -5.612495e-06 9.057414e-07 122 41 0.000718297 5.71003e-05 0 42 -5.612495e-06 9.057414e-07 1 42 1.866144e-06 -3.011573e-07 2 42 1.866144e-06 -3.011573e-07 3 42 -5.612495e-06 9.057414e-07 4 42 9.401297e-06 -1.517176e-06 5 42 -1.326172e-05 2.14017e-06 6 42 1.722429e-05 -2.779647e-06 7 42 -2.132146e-05 3.440846e-06 8 42 2.558831e-05 -4.129428e-06 9 42 -3.00633e-05 4.851599e-06 10 42 3.478917e-05 -5.614257e-06 11 42 -3.981401e-05 6.425164e-06 12 42 4.519256e-05 -7.293151e-06 13 42 -5.098776e-05 8.228377e-06 14 42 5.727273e-05 -9.242642e-06 15 42 -6.413319e-05 1.034978e-05 16 42 7.167061e-05 -1.156616e-05 17 42 -8.000611e-05 1.291134e-05 18 42 8.928565e-05 -1.440887e-05 19 42 -9.968672e-05 1.608739e-05 20 42 0.0001114272 -1.798207e-05 21 42 -0.0001247774 2.013652e-05 22 42 0.000140076 -2.26054e-05 23 42 -0.0001577525 2.545802e-05 24 42 0.0001783582 -2.878335e-05 25 42 -0.0002026106 3.26972e-05 26 42 0.0002314578 -3.735254e-05 27 42 -0.0002661734 4.295492e-05 28 42 0.0003085011 -4.978574e-05 29 42 -0.0003608797 5.823857e-05 30 42 0.0004268045 -6.887749e-05 31 42 -0.0005114288 8.253411e-05 32 42 0.0006226054 -0.0001004757 33 42 -0.0007727812 0.000124711 34 42 0.0009826448 -0.0001585787 35 42 -0.001288661 0.0002079635 36 42 0.001760065 -0.0002840383 37 42 -0.002541777 0.0004101906 38 42 0.003980742 -0.0006424099 39 42 -0.007089509 0.001144101 40 42 0.01597157 -0.002577484 41 42 -0.06393453 0.01031772 42 42 0.09400453 -0.0131236 43 42 -0.06393453 0.01031772 44 42 0.01597157 -0.002577484 45 42 -0.007089509 0.001144101 46 42 0.003980742 -0.0006424099 47 42 -0.002541777 0.0004101906 48 42 0.001760065 -0.0002840383 49 42 -0.001288661 0.0002079635 50 42 0.0009826448 -0.0001585787 51 42 -0.0007727812 0.000124711 52 42 0.0006226054 -0.0001004757 53 42 -0.0005114288 8.253411e-05 54 42 0.0004268045 -6.887749e-05 55 42 -0.0003608797 5.823857e-05 56 42 0.0003085011 -4.978574e-05 57 42 -0.0002661734 4.295492e-05 58 42 0.0002314578 -3.735254e-05 59 42 -0.0002026106 3.26972e-05 60 42 0.0001783582 -2.878335e-05 61 42 -0.0001577525 2.545802e-05 62 42 0.000140076 -2.26054e-05 63 42 -0.0001247774 2.013652e-05 64 42 0.0001114272 -1.798207e-05 65 42 -9.968672e-05 1.608739e-05 66 42 8.928565e-05 -1.440887e-05 67 42 -8.000611e-05 1.291134e-05 68 42 7.167061e-05 -1.156616e-05 69 42 -6.413319e-05 1.034978e-05 70 42 5.727273e-05 -9.242642e-06 71 42 -5.098776e-05 8.228377e-06 72 42 4.519256e-05 -7.293151e-06 73 42 -3.981401e-05 6.425164e-06 74 42 3.478917e-05 -5.614257e-06 75 42 -3.00633e-05 4.851599e-06 76 42 2.558831e-05 -4.129428e-06 77 42 -2.132146e-05 3.440846e-06 78 42 1.722429e-05 -2.779647e-06 79 42 -1.326172e-05 2.14017e-06 80 42 9.401297e-06 -1.517176e-06 123 42 0.0007341899 5.867254e-05 0 43 9.401297e-06 -1.517176e-06 1 43 -5.612495e-06 9.057414e-07 2 43 1.866144e-06 -3.011573e-07 3 43 1.866144e-06 -3.011573e-07 4 43 -5.612495e-06 9.057414e-07 5 43 9.401297e-06 -1.517176e-06 6 43 -1.326172e-05 2.14017e-06 7 43 1.722429e-05 -2.779647e-06 8 43 -2.132146e-05 3.440846e-06 9 43 2.558831e-05 -4.129428e-06 10 43 -3.00633e-05 4.851599e-06 11 43 3.478917e-05 -5.614257e-06 12 43 -3.981401e-05 6.425164e-06 13 43 4.519256e-05 -7.293151e-06 14 43 -5.098776e-05 8.228377e-06 15 43 5.727273e-05 -9.242642e-06 16 43 -6.413319e-05 1.034978e-05 17 43 7.167061e-05 -1.156616e-05 18 43 -8.000611e-05 1.291134e-05 19 43 8.928565e-05 -1.440887e-05 20 43 -9.968672e-05 1.608739e-05 21 43 0.0001114272 -1.798207e-05 22 43 -0.0001247774 2.013652e-05 23 43 0.000140076 -2.26054e-05 24 43 -0.0001577525 2.545802e-05 25 43 0.0001783582 -2.878335e-05 26 43 -0.0002026106 3.26972e-05 27 43 0.0002314578 -3.735254e-05 28 43 -0.0002661734 4.295492e-05 29 43 0.0003085011 -4.978574e-05 30 43 -0.0003608797 5.823857e-05 31 43 0.0004268045 -6.887749e-05 32 43 -0.0005114288 8.253411e-05 33 43 0.0006226054 -0.0001004757 34 43 -0.0007727812 0.000124711 35 43 0.0009826448 -0.0001585787 36 43 -0.001288661 0.0002079635 37 43 0.001760065 -0.0002840383 38 43 -0.002541777 0.0004101906 39 43 0.003980742 -0.0006424099 40 43 -0.007089509 0.001144101 41 43 0.01597157 -0.002577484 42 43 -0.06393453 0.01031772 43 43 0.09499977 -0.01337292 44 43 -0.06393453 0.01031772 45 43 0.01597157 -0.002577484 46 43 -0.007089509 0.001144101 47 43 0.003980742 -0.0006424099 48 43 -0.002541777 0.0004101906 49 43 0.001760065 -0.0002840383 50 43 -0.001288661 0.0002079635 51 43 0.0009826448 -0.0001585787 52 43 -0.0007727812 0.000124711 53 43 0.0006226054 -0.0001004757 54 43 -0.0005114288 8.253411e-05 55 43 0.0004268045 -6.887749e-05 56 43 -0.0003608797 5.823857e-05 57 43 0.0003085011 -4.978574e-05 58 43 -0.0002661734 4.295492e-05 59 43 0.0002314578 -3.735254e-05 60 43 -0.0002026106 3.26972e-05 61 43 0.0001783582 -2.878335e-05 62 43 -0.0001577525 2.545802e-05 63 43 0.000140076 -2.26054e-05 64 43 -0.0001247774 2.013652e-05 65 43 0.0001114272 -1.798207e-05 66 43 -9.968672e-05 1.608739e-05 67 43 8.928565e-05 -1.440887e-05 68 43 -8.000611e-05 1.291134e-05 69 43 7.167061e-05 -1.156616e-05 70 43 -6.413319e-05 1.034978e-05 71 43 5.727273e-05 -9.242642e-06 72 43 -5.098776e-05 8.228377e-06 73 43 4.519256e-05 -7.293151e-06 74 43 -3.981401e-05 6.425164e-06 75 43 3.478917e-05 -5.614257e-06 76 43 -3.00633e-05 4.851599e-06 77 43 2.558831e-05 -4.129428e-06 78 43 -2.132146e-05 3.440846e-06 79 43 1.722429e-05 -2.779647e-06 80 43 -1.326172e-05 2.14017e-06 124 43 0.0007501636 6.025941e-05 0 44 -1.326172e-05 2.14017e-06 1 44 9.401297e-06 -1.517176e-06 2 44 -5.612495e-06 9.057414e-07 3 44 1.866144e-06 -3.011573e-07 4 44 1.866144e-06 -3.011573e-07 5 44 -5.612495e-06 9.057414e-07 6 44 9.401297e-06 -1.517176e-06 7 44 -1.326172e-05 2.14017e-06 8 44 1.722429e-05 -2.779647e-06 9 44 -2.132146e-05 3.440846e-06 10 44 2.558831e-05 -4.129428e-06 11 44 -3.00633e-05 4.851599e-06 12 44 3.478917e-05 -5.614257e-06 13 44 -3.981401e-05 6.425164e-06 14 44 4.519256e-05 -7.293151e-06 15 44 -5.098776e-05 8.228377e-06 16 44 5.727273e-05 -9.242642e-06 17 44 -6.413319e-05 1.034978e-05 18 44 7.167061e-05 -1.156616e-05 19 44 -8.000611e-05 1.291134e-05 20 44 8.928565e-05 -1.440887e-05 21 44 -9.968672e-05 1.608739e-05 22 44 0.0001114272 -1.798207e-05 23 44 -0.0001247774 2.013652e-05 24 44 0.000140076 -2.26054e-05 25 44 -0.0001577525 2.545802e-05 26 44 0.0001783582 -2.878335e-05 27 44 -0.0002026106 3.26972e-05 28 44 0.0002314578 -3.735254e-05 29 44 -0.0002661734 4.295492e-05 30 44 0.0003085011 -4.978574e-05 31 44 -0.0003608797 5.823857e-05 32 44 0.0004268045 -6.887749e-05 33 44 -0.0005114288 8.253411e-05 34 44 0.0006226054 -0.0001004757 35 44 -0.0007727812 0.000124711 36 44 0.0009826448 -0.0001585787 37 44 -0.001288661 0.0002079635 38 44 0.001760065 -0.0002840383 39 44 -0.002541777 0.0004101906 40 44 0.003980742 -0.0006424099 41 44 -0.007089509 0.001144101 42 44 0.01597157 -0.002577484 43 44 -0.06393453 0.01031772 44 44 0.09590914 -0.01360941 45 44 -0.06393453 0.01031772 46 44 0.01597157 -0.002577484 47 44 -0.007089509 0.001144101 48 44 0.003980742 -0.0006424099 49 44 -0.002541777 0.0004101906 50 44 0.001760065 -0.0002840383 51 44 -0.001288661 0.0002079635 52 44 0.0009826448 -0.0001585787 53 44 -0.0007727812 0.000124711 54 44 0.0006226054 -0.0001004757 55 44 -0.0005114288 8.253411e-05 56 44 0.0004268045 -6.887749e-05 57 44 -0.0003608797 5.823857e-05 58 44 0.0003085011 -4.978574e-05 59 44 -0.0002661734 4.295492e-05 60 44 0.0002314578 -3.735254e-05 61 44 -0.0002026106 3.26972e-05 62 44 0.0001783582 -2.878335e-05 63 44 -0.0001577525 2.545802e-05 64 44 0.000140076 -2.26054e-05 65 44 -0.0001247774 2.013652e-05 66 44 0.0001114272 -1.798207e-05 67 44 -9.968672e-05 1.608739e-05 68 44 8.928565e-05 -1.440887e-05 69 44 -8.000611e-05 1.291134e-05 70 44 7.167061e-05 -1.156616e-05 71 44 -6.413319e-05 1.034978e-05 72 44 5.727273e-05 -9.242642e-06 73 44 -5.098776e-05 8.228377e-06 74 44 4.519256e-05 -7.293151e-06 75 44 -3.981401e-05 6.425164e-06 76 44 3.478917e-05 -5.614257e-06 77 44 -3.00633e-05 4.851599e-06 78 44 2.558831e-05 -4.129428e-06 79 44 -2.132146e-05 3.440846e-06 80 44 1.722429e-05 -2.779647e-06 125 44 0.0007662186 6.186099e-05 0 45 1.722429e-05 -2.779647e-06 1 45 -1.326172e-05 2.14017e-06 2 45 9.401297e-06 -1.517176e-06 3 45 -5.612495e-06 9.057414e-07 4 45 1.866144e-06 -3.011573e-07 5 45 1.866144e-06 -3.011573e-07 6 45 -5.612495e-06 9.057414e-07 7 45 9.401297e-06 -1.517176e-06 8 45 -1.326172e-05 2.14017e-06 9 45 1.722429e-05 -2.779647e-06 10 45 -2.132146e-05 3.440846e-06 11 45 2.558831e-05 -4.129428e-06 12 45 -3.00633e-05 4.851599e-06 13 45 3.478917e-05 -5.614257e-06 14 45 -3.981401e-05 6.425164e-06 15 45 4.519256e-05 -7.293151e-06 16 45 -5.098776e-05 8.228377e-06 17 45 5.727273e-05 -9.242642e-06 18 45 -6.413319e-05 1.034978e-05 19 45 7.167061e-05 -1.156616e-05 20 45 -8.000611e-05 1.291134e-05 21 45 8.928565e-05 -1.440887e-05 22 45 -9.968672e-05 1.608739e-05 23 45 0.0001114272 -1.798207e-05 24 45 -0.0001247774 2.013652e-05 25 45 0.000140076 -2.26054e-05 26 45 -0.0001577525 2.545802e-05 27 45 0.0001783582 -2.878335e-05 28 45 -0.0002026106 3.26972e-05 29 45 0.0002314578 -3.735254e-05 30 45 -0.0002661734 4.295492e-05 31 45 0.0003085011 -4.978574e-05 32 45 -0.0003608797 5.823857e-05 33 45 0.0004268045 -6.887749e-05 34 45 -0.0005114288 8.253411e-05 35 45 0.0006226054 -0.0001004757 36 45 -0.0007727812 0.000124711 37 45 0.0009826448 -0.0001585787 38 45 -0.001288661 0.0002079635 39 45 0.001760065 -0.0002840383 40 45 -0.002541777 0.0004101906 41 45 0.003980742 -0.0006424099 42 45 -0.007089509 0.001144101 43 45 0.01597157 -0.002577484 44 45 -0.06393453 0.01031772 45 45 0.09673961 -0.01383326 46 45 -0.06393453 0.01031772 47 45 0.01597157 -0.002577484 48 45 -0.007089509 0.001144101 49 45 0.003980742 -0.0006424099 50 45 -0.002541777 0.0004101906 51 45 0.001760065 -0.0002840383 52 45 -0.001288661 0.0002079635 53 45 0.0009826448 -0.0001585787 54 45 -0.0007727812 0.000124711 55 45 0.0006226054 -0.0001004757 56 45 -0.0005114288 8.253411e-05 57 45 0.0004268045 -6.887749e-05 58 45 -0.0003608797 5.823857e-05 59 45 0.0003085011 -4.978574e-05 60 45 -0.0002661734 4.295492e-05 61 45 0.0002314578 -3.735254e-05 62 45 -0.0002026106 3.26972e-05 63 45 0.0001783582 -2.878335e-05 64 45 -0.0001577525 2.545802e-05 65 45 0.000140076 -2.26054e-05 66 45 -0.0001247774 2.013652e-05 67 45 0.0001114272 -1.798207e-05 68 45 -9.968672e-05 1.608739e-05 69 45 8.928565e-05 -1.440887e-05 70 45 -8.000611e-05 1.291134e-05 71 45 7.167061e-05 -1.156616e-05 72 45 -6.413319e-05 1.034978e-05 73 45 5.727273e-05 -9.242642e-06 74 45 -5.098776e-05 8.228377e-06 75 45 4.519256e-05 -7.293151e-06 76 45 -3.981401e-05 6.425164e-06 77 45 3.478917e-05 -5.614257e-06 78 45 -3.00633e-05 4.851599e-06 79 45 2.558831e-05 -4.129428e-06 80 45 -2.132146e-05 3.440846e-06 126 45 0.0007823553 6.347742e-05 0 46 -2.132146e-05 3.440846e-06 1 46 1.722429e-05 -2.779647e-06 2 46 -1.326172e-05 2.14017e-06 3 46 9.401297e-06 -1.517176e-06 4 46 -5.612495e-06 9.057414e-07 5 46 1.866144e-06 -3.011573e-07 6 46 1.866144e-06 -3.011573e-07 7 46 -5.612495e-06 9.057414e-07 8 46 9.401297e-06 -1.517176e-06 9 46 -1.326172e-05 2.14017e-06 10 46 1.722429e-05 -2.779647e-06 11 46 -2.132146e-05 3.440846e-06 12 46 2.558831e-05 -4.129428e-06 13 46 -3.00633e-05 4.851599e-06 14 46 3.478917e-05 -5.614257e-06 15 46 -3.981401e-05 6.425164e-06 16 46 4.519256e-05 -7.293151e-06 17 46 -5.098776e-05 8.228377e-06 18 46 5.727273e-05 -9.242642e-06 19 46 -6.413319e-05 1.034978e-05 20 46 7.167061e-05 -1.156616e-05 21 46 -8.000611e-05 1.291134e-05 22 46 8.928565e-05 -1.440887e-05 23 46 -9.968672e-05 1.608739e-05 24 46 0.0001114272 -1.798207e-05 25 46 -0.0001247774 2.013652e-05 26 46 0.000140076 -2.26054e-05 27 46 -0.0001577525 2.545802e-05 28 46 0.0001783582 -2.878335e-05 29 46 -0.0002026106 3.26972e-05 30 46 0.0002314578 -3.735254e-05 31 46 -0.0002661734 4.295492e-05 32 46 0.0003085011 -4.978574e-05 33 46 -0.0003608797 5.823857e-05 34 46 0.0004268045 -6.887749e-05 35 46 -0.0005114288 8.253411e-05 36 46 0.0006226054 -0.0001004757 37 46 -0.0007727812 0.000124711 38 46 0.0009826448 -0.0001585787 39 46 -0.001288661 0.0002079635 40 46 0.001760065 -0.0002840383 41 46 -0.002541777 0.0004101906 42 46 0.003980742 -0.0006424099 43 46 -0.007089509 0.001144101 44 46 0.01597157 -0.002577484 45 46 -0.06393453 0.01031772 46 46 0.09749764 -0.01404472 47 46 -0.06393453 0.01031772 48 46 0.01597157 -0.002577484 49 46 -0.007089509 0.001144101 50 46 0.003980742 -0.0006424099 51 46 -0.002541777 0.0004101906 52 46 0.001760065 -0.0002840383 53 46 -0.001288661 0.0002079635 54 46 0.0009826448 -0.0001585787 55 46 -0.0007727812 0.000124711 56 46 0.0006226054 -0.0001004757 57 46 -0.0005114288 8.253411e-05 58 46 0.0004268045 -6.887749e-05 59 46 -0.0003608797 5.823857e-05 60 46 0.0003085011 -4.978574e-05 61 46 -0.0002661734 4.295492e-05 62 46 0.0002314578 -3.735254e-05 63 46 -0.0002026106 3.26972e-05 64 46 0.0001783582 -2.878335e-05 65 46 -0.0001577525 2.545802e-05 66 46 0.000140076 -2.26054e-05 67 46 -0.0001247774 2.013652e-05 68 46 0.0001114272 -1.798207e-05 69 46 -9.968672e-05 1.608739e-05 70 46 8.928565e-05 -1.440887e-05 71 46 -8.000611e-05 1.291134e-05 72 46 7.167061e-05 -1.156616e-05 73 46 -6.413319e-05 1.034978e-05 74 46 5.727273e-05 -9.242642e-06 75 46 -5.098776e-05 8.228377e-06 76 46 4.519256e-05 -7.293151e-06 77 46 -3.981401e-05 6.425164e-06 78 46 3.478917e-05 -5.614257e-06 79 46 -3.00633e-05 4.851599e-06 80 46 2.558831e-05 -4.129428e-06 127 46 0.0007985741 6.510879e-05 0 47 2.558831e-05 -4.129428e-06 1 47 -2.132146e-05 3.440846e-06 2 47 1.722429e-05 -2.779647e-06 3 47 -1.326172e-05 2.14017e-06 4 47 9.401297e-06 -1.517176e-06 5 47 -5.612495e-06 9.057414e-07 6 47 1.866144e-06 -3.011573e-07 7 47 1.866144e-06 -3.011573e-07 8 47 -5.612495e-06 9.057414e-07 9 47 9.401297e-06 -1.517176e-06 10 47 -1.326172e-05 2.14017e-06 11 47 1.722429e-05 -2.779647e-06 12 47 -2.132146e-05 3.440846e-06 13 47 2.558831e-05 -4.129428e-06 14 47 -3.00633e-05 4.851599e-06 15 47 3.478917e-05 -5.614257e-06 16 47 -3.981401e-05 6.425164e-06 17 47 4.519256e-05 -7.293151e-06 18 47 -5.098776e-05 8.228377e-06 19 47 5.727273e-05 -9.242642e-06 20 47 -6.413319e-05 1.034978e-05 21 47 7.167061e-05 -1.156616e-05 22 47 -8.000611e-05 1.291134e-05 23 47 8.928565e-05 -1.440887e-05 24 47 -9.968672e-05 1.608739e-05 25 47 0.0001114272 -1.798207e-05 26 47 -0.0001247774 2.013652e-05 27 47 0.000140076 -2.26054e-05 28 47 -0.0001577525 2.545802e-05 29 47 0.0001783582 -2.878335e-05 30 47 -0.0002026106 3.26972e-05 31 47 0.0002314578 -3.735254e-05 32 47 -0.0002661734 4.295492e-05 33 47 0.0003085011 -4.978574e-05 34 47 -0.0003608797 5.823857e-05 35 47 0.0004268045 -6.887749e-05 36 47 -0.0005114288 8.253411e-05 37 47 0.0006226054 -0.0001004757 38 47 -0.0007727812 0.000124711 39 47 0.0009826448 -0.0001585787 40 47 -0.001288661 0.0002079635 41 47 0.001760065 -0.0002840383 42 47 -0.002541777 0.0004101906 43 47 0.003980742 -0.0006424099 44 47 -0.007089509 0.001144101 45 47 0.01597157 -0.002577484 46 47 -0.06393453 0.01031772 47 47 0.09818924 -0.01424411 48 47 -0.06393453 0.01031772 49 47 0.01597157 -0.002577484 50 47 -0.007089509 0.001144101 51 47 0.003980742 -0.0006424099 52 47 -0.002541777 0.0004101906 53 47 0.001760065 -0.0002840383 54 47 -0.001288661 0.0002079635 55 47 0.0009826448 -0.0001585787 56 47 -0.0007727812 0.000124711 57 47 0.0006226054 -0.0001004757 58 47 -0.0005114288 8.253411e-05 59 47 0.0004268045 -6.887749e-05 60 47 -0.0003608797 5.823857e-05 61 47 0.0003085011 -4.978574e-05 62 47 -0.0002661734 4.295492e-05 63 47 0.0002314578 -3.735254e-05 64 47 -0.0002026106 3.26972e-05 65 47 0.0001783582 -2.878335e-05 66 47 -0.0001577525 2.545802e-05 67 47 0.000140076 -2.26054e-05 68 47 -0.0001247774 2.013652e-05 69 47 0.0001114272 -1.798207e-05 70 47 -9.968672e-05 1.608739e-05 71 47 8.928565e-05 -1.440887e-05 72 47 -8.000611e-05 1.291134e-05 73 47 7.167061e-05 -1.156616e-05 74 47 -6.413319e-05 1.034978e-05 75 47 5.727273e-05 -9.242642e-06 76 47 -5.098776e-05 8.228377e-06 77 47 4.519256e-05 -7.293151e-06 78 47 -3.981401e-05 6.425164e-06 79 47 3.478917e-05 -5.614257e-06 80 47 -3.00633e-05 4.851599e-06 128 47 0.0008148755 6.675522e-05 0 48 -3.00633e-05 4.851599e-06 1 48 2.558831e-05 -4.129428e-06 2 48 -2.132146e-05 3.440846e-06 3 48 1.722429e-05 -2.779647e-06 4 48 -1.326172e-05 2.14017e-06 5 48 9.401297e-06 -1.517176e-06 6 48 -5.612495e-06 9.057414e-07 7 48 1.866144e-06 -3.011573e-07 8 48 1.866144e-06 -3.011573e-07 9 48 -5.612495e-06 9.057414e-07 10 48 9.401297e-06 -1.517176e-06 11 48 -1.326172e-05 2.14017e-06 12 48 1.722429e-05 -2.779647e-06 13 48 -2.132146e-05 3.440846e-06 14 48 2.558831e-05 -4.129428e-06 15 48 -3.00633e-05 4.851599e-06 16 48 3.478917e-05 -5.614257e-06 17 48 -3.981401e-05 6.425164e-06 18 48 4.519256e-05 -7.293151e-06 19 48 -5.098776e-05 8.228377e-06 20 48 5.727273e-05 -9.242642e-06 21 48 -6.413319e-05 1.034978e-05 22 48 7.167061e-05 -1.156616e-05 23 48 -8.000611e-05 1.291134e-05 24 48 8.928565e-05 -1.440887e-05 25 48 -9.968672e-05 1.608739e-05 26 48 0.0001114272 -1.798207e-05 27 48 -0.0001247774 2.013652e-05 28 48 0.000140076 -2.26054e-05 29 48 -0.0001577525 2.545802e-05 30 48 0.0001783582 -2.878335e-05 31 48 -0.0002026106 3.26972e-05 32 48 0.0002314578 -3.735254e-05 33 48 -0.0002661734 4.295492e-05 34 48 0.0003085011 -4.978574e-05 35 48 -0.0003608797 5.823857e-05 36 48 0.0004268045 -6.887749e-05 37 48 -0.0005114288 8.253411e-05 38 48 0.0006226054 -0.0001004757 39 48 -0.0007727812 0.000124711 40 48 0.0009826448 -0.0001585787 41 48 -0.001288661 0.0002079635 42 48 0.001760065 -0.0002840383 43 48 -0.002541777 0.0004101906 44 48 0.003980742 -0.0006424099 45 48 -0.007089509 0.001144101 46 48 0.01597157 -0.002577484 47 48 -0.06393453 0.01031772 48 48 0.09881998 -0.01443183 49 48 -0.06393453 0.01031772 50 48 0.01597157 -0.002577484 51 48 -0.007089509 0.001144101 52 48 0.003980742 -0.0006424099 53 48 -0.002541777 0.0004101906 54 48 0.001760065 -0.0002840383 55 48 -0.001288661 0.0002079635 56 48 0.0009826448 -0.0001585787 57 48 -0.0007727812 0.000124711 58 48 0.0006226054 -0.0001004757 59 48 -0.0005114288 8.253411e-05 60 48 0.0004268045 -6.887749e-05 61 48 -0.0003608797 5.823857e-05 62 48 0.0003085011 -4.978574e-05 63 48 -0.0002661734 4.295492e-05 64 48 0.0002314578 -3.735254e-05 65 48 -0.0002026106 3.26972e-05 66 48 0.0001783582 -2.878335e-05 67 48 -0.0001577525 2.545802e-05 68 48 0.000140076 -2.26054e-05 69 48 -0.0001247774 2.013652e-05 70 48 0.0001114272 -1.798207e-05 71 48 -9.968672e-05 1.608739e-05 72 48 8.928565e-05 -1.440887e-05 73 48 -8.000611e-05 1.291134e-05 74 48 7.167061e-05 -1.156616e-05 75 48 -6.413319e-05 1.034978e-05 76 48 5.727273e-05 -9.242642e-06 77 48 -5.098776e-05 8.228377e-06 78 48 4.519256e-05 -7.293151e-06 79 48 -3.981401e-05 6.425164e-06 80 48 3.478917e-05 -5.614257e-06 129 48 0.0008312598 6.841681e-05 0 49 3.478917e-05 -5.614257e-06 1 49 -3.00633e-05 4.851599e-06 2 49 2.558831e-05 -4.129428e-06 3 49 -2.132146e-05 3.440846e-06 4 49 1.722429e-05 -2.779647e-06 5 49 -1.326172e-05 2.14017e-06 6 49 9.401297e-06 -1.517176e-06 7 49 -5.612495e-06 9.057414e-07 8 49 1.866144e-06 -3.011573e-07 9 49 1.866144e-06 -3.011573e-07 10 49 -5.612495e-06 9.057414e-07 11 49 9.401297e-06 -1.517176e-06 12 49 -1.326172e-05 2.14017e-06 13 49 1.722429e-05 -2.779647e-06 14 49 -2.132146e-05 3.440846e-06 15 49 2.558831e-05 -4.129428e-06 16 49 -3.00633e-05 4.851599e-06 17 49 3.478917e-05 -5.614257e-06 18 49 -3.981401e-05 6.425164e-06 19 49 4.519256e-05 -7.293151e-06 20 49 -5.098776e-05 8.228377e-06 21 49 5.727273e-05 -9.242642e-06 22 49 -6.413319e-05 1.034978e-05 23 49 7.167061e-05 -1.156616e-05 24 49 -8.000611e-05 1.291134e-05 25 49 8.928565e-05 -1.440887e-05 26 49 -9.968672e-05 1.608739e-05 27 49 0.0001114272 -1.798207e-05 28 49 -0.0001247774 2.013652e-05 29 49 0.000140076 -2.26054e-05 30 49 -0.0001577525 2.545802e-05 31 49 0.0001783582 -2.878335e-05 32 49 -0.0002026106 3.26972e-05 33 49 0.0002314578 -3.735254e-05 34 49 -0.0002661734 4.295492e-05 35 49 0.0003085011 -4.978574e-05 36 49 -0.0003608797 5.823857e-05 37 49 0.0004268045 -6.887749e-05 38 49 -0.0005114288 8.253411e-05 39 49 0.0006226054 -0.0001004757 40 49 -0.0007727812 0.000124711 41 49 0.0009826448 -0.0001585787 42 49 -0.001288661 0.0002079635 43 49 0.001760065 -0.0002840383 44 49 -0.002541777 0.0004101906 45 49 0.003980742 -0.0006424099 46 49 -0.007089509 0.001144101 47 49 0.01597157 -0.002577484 48 49 -0.06393453 0.01031772 49 49 0.09939499 -0.01460829 50 49 -0.06393453 0.01031772 51 49 0.01597157 -0.002577484 52 49 -0.007089509 0.001144101 53 49 0.003980742 -0.0006424099 54 49 -0.002541777 0.0004101906 55 49 0.001760065 -0.0002840383 56 49 -0.001288661 0.0002079635 57 49 0.0009826448 -0.0001585787 58 49 -0.0007727812 0.000124711 59 49 0.0006226054 -0.0001004757 60 49 -0.0005114288 8.253411e-05 61 49 0.0004268045 -6.887749e-05 62 49 -0.0003608797 5.823857e-05 63 49 0.0003085011 -4.978574e-05 64 49 -0.0002661734 4.295492e-05 65 49 0.0002314578 -3.735254e-05 66 49 -0.0002026106 3.26972e-05 67 49 0.0001783582 -2.878335e-05 68 49 -0.0001577525 2.545802e-05 69 49 0.000140076 -2.26054e-05 70 49 -0.0001247774 2.013652e-05 71 49 0.0001114272 -1.798207e-05 72 49 -9.968672e-05 1.608739e-05 73 49 8.928565e-05 -1.440887e-05 74 49 -8.000611e-05 1.291134e-05 75 49 7.167061e-05 -1.156616e-05 76 49 -6.413319e-05 1.034978e-05 77 49 5.727273e-05 -9.242642e-06 78 49 -5.098776e-05 8.228377e-06 79 49 4.519256e-05 -7.293151e-06 80 49 -3.981401e-05 6.425164e-06 130 49 0.0008477274 7.009369e-05 0 50 -3.981401e-05 6.425164e-06 1 50 3.478917e-05 -5.614257e-06 2 50 -3.00633e-05 4.851599e-06 3 50 2.558831e-05 -4.129428e-06 4 50 -2.132146e-05 3.440846e-06 5 50 1.722429e-05 -2.779647e-06 6 50 -1.326172e-05 2.14017e-06 7 50 9.401297e-06 -1.517176e-06 8 50 -5.612495e-06 9.057414e-07 9 50 1.866144e-06 -3.011573e-07 10 50 1.866144e-06 -3.011573e-07 11 50 -5.612495e-06 9.057414e-07 12 50 9.401297e-06 -1.517176e-06 13 50 -1.326172e-05 2.14017e-06 14 50 1.722429e-05 -2.779647e-06 15 50 -2.132146e-05 3.440846e-06 16 50 2.558831e-05 -4.129428e-06 17 50 -3.00633e-05 4.851599e-06 18 50 3.478917e-05 -5.614257e-06 19 50 -3.981401e-05 6.425164e-06 20 50 4.519256e-05 -7.293151e-06 21 50 -5.098776e-05 8.228377e-06 22 50 5.727273e-05 -9.242642e-06 23 50 -6.413319e-05 1.034978e-05 24 50 7.167061e-05 -1.156616e-05 25 50 -8.000611e-05 1.291134e-05 26 50 8.928565e-05 -1.440887e-05 27 50 -9.968672e-05 1.608739e-05 28 50 0.0001114272 -1.798207e-05 29 50 -0.0001247774 2.013652e-05 30 50 0.000140076 -2.26054e-05 31 50 -0.0001577525 2.545802e-05 32 50 0.0001783582 -2.878335e-05 33 50 -0.0002026106 3.26972e-05 34 50 0.0002314578 -3.735254e-05 35 50 -0.0002661734 4.295492e-05 36 50 0.0003085011 -4.978574e-05 37 50 -0.0003608797 5.823857e-05 38 50 0.0004268045 -6.887749e-05 39 50 -0.0005114288 8.253411e-05 40 50 0.0006226054 -0.0001004757 41 50 -0.0007727812 0.000124711 42 50 0.0009826448 -0.0001585787 43 50 -0.001288661 0.0002079635 44 50 0.001760065 -0.0002840383 45 50 -0.002541777 0.0004101906 46 50 0.003980742 -0.0006424099 47 50 -0.007089509 0.001144101 48 50 0.01597157 -0.002577484 49 50 -0.06393453 0.01031772 50 50 0.09991903 -0.01477394 51 50 -0.06393453 0.01031772 52 50 0.01597157 -0.002577484 53 50 -0.007089509 0.001144101 54 50 0.003980742 -0.0006424099 55 50 -0.002541777 0.0004101906 56 50 0.001760065 -0.0002840383 57 50 -0.001288661 0.0002079635 58 50 0.0009826448 -0.0001585787 59 50 -0.0007727812 0.000124711 60 50 0.0006226054 -0.0001004757 61 50 -0.0005114288 8.253411e-05 62 50 0.0004268045 -6.887749e-05 63 50 -0.0003608797 5.823857e-05 64 50 0.0003085011 -4.978574e-05 65 50 -0.0002661734 4.295492e-05 66 50 0.0002314578 -3.735254e-05 67 50 -0.0002026106 3.26972e-05 68 50 0.0001783582 -2.878335e-05 69 50 -0.0001577525 2.545802e-05 70 50 0.000140076 -2.26054e-05 71 50 -0.0001247774 2.013652e-05 72 50 0.0001114272 -1.798207e-05 73 50 -9.968672e-05 1.608739e-05 74 50 8.928565e-05 -1.440887e-05 75 50 -8.000611e-05 1.291134e-05 76 50 7.167061e-05 -1.156616e-05 77 50 -6.413319e-05 1.034978e-05 78 50 5.727273e-05 -9.242642e-06 79 50 -5.098776e-05 8.228377e-06 80 50 4.519256e-05 -7.293151e-06 131 50 0.0008642789 7.178596e-05 0 51 4.519256e-05 -7.293151e-06 1 51 -3.981401e-05 6.425164e-06 2 51 3.478917e-05 -5.614257e-06 3 51 -3.00633e-05 4.851599e-06 4 51 2.558831e-05 -4.129428e-06 5 51 -2.132146e-05 3.440846e-06 6 51 1.722429e-05 -2.779647e-06 7 51 -1.326172e-05 2.14017e-06 8 51 9.401297e-06 -1.517176e-06 9 51 -5.612495e-06 9.057414e-07 10 51 1.866144e-06 -3.011573e-07 11 51 1.866144e-06 -3.011573e-07 12 51 -5.612495e-06 9.057414e-07 13 51 9.401297e-06 -1.517176e-06 14 51 -1.326172e-05 2.14017e-06 15 51 1.722429e-05 -2.779647e-06 16 51 -2.132146e-05 3.440846e-06 17 51 2.558831e-05 -4.129428e-06 18 51 -3.00633e-05 4.851599e-06 19 51 3.478917e-05 -5.614257e-06 20 51 -3.981401e-05 6.425164e-06 21 51 4.519256e-05 -7.293151e-06 22 51 -5.098776e-05 8.228377e-06 23 51 5.727273e-05 -9.242642e-06 24 51 -6.413319e-05 1.034978e-05 25 51 7.167061e-05 -1.156616e-05 26 51 -8.000611e-05 1.291134e-05 27 51 8.928565e-05 -1.440887e-05 28 51 -9.968672e-05 1.608739e-05 29 51 0.0001114272 -1.798207e-05 30 51 -0.0001247774 2.013652e-05 31 51 0.000140076 -2.26054e-05 32 51 -0.0001577525 2.545802e-05 33 51 0.0001783582 -2.878335e-05 34 51 -0.0002026106 3.26972e-05 35 51 0.0002314578 -3.735254e-05 36 51 -0.0002661734 4.295492e-05 37 51 0.0003085011 -4.978574e-05 38 51 -0.0003608797 5.823857e-05 39 51 0.0004268045 -6.887749e-05 40 51 -0.0005114288 8.253411e-05 41 51 0.0006226054 -0.0001004757 42 51 -0.0007727812 0.000124711 43 51 0.0009826448 -0.0001585787 44 51 -0.001288661 0.0002079635 45 51 0.001760065 -0.0002840383 46 51 -0.002541777 0.0004101906 47 51 0.003980742 -0.0006424099 48 51 -0.007089509 0.001144101 49 51 0.01597157 -0.002577484 50 51 -0.06393453 0.01031772 51 51 0.1003965 -0.01492925 52 51 -0.06393453 0.01031772 53 51 0.01597157 -0.002577484 54 51 -0.007089509 0.001144101 55 51 0.003980742 -0.0006424099 56 51 -0.002541777 0.0004101906 57 51 0.001760065 -0.0002840383 58 51 -0.001288661 0.0002079635 59 51 0.0009826448 -0.0001585787 60 51 -0.0007727812 0.000124711 61 51 0.0006226054 -0.0001004757 62 51 -0.0005114288 8.253411e-05 63 51 0.0004268045 -6.887749e-05 64 51 -0.0003608797 5.823857e-05 65 51 0.0003085011 -4.978574e-05 66 51 -0.0002661734 4.295492e-05 67 51 0.0002314578 -3.735254e-05 68 51 -0.0002026106 3.26972e-05 69 51 0.0001783582 -2.878335e-05 70 51 -0.0001577525 2.545802e-05 71 51 0.000140076 -2.26054e-05 72 51 -0.0001247774 2.013652e-05 73 51 0.0001114272 -1.798207e-05 74 51 -9.968672e-05 1.608739e-05 75 51 8.928565e-05 -1.440887e-05 76 51 -8.000611e-05 1.291134e-05 77 51 7.167061e-05 -1.156616e-05 78 51 -6.413319e-05 1.034978e-05 79 51 5.727273e-05 -9.242642e-06 80 51 -5.098776e-05 8.228377e-06 132 51 0.0008809146 7.349373e-05 0 52 -5.098776e-05 8.228377e-06 1 52 4.519256e-05 -7.293151e-06 2 52 -3.981401e-05 6.425164e-06 3 52 3.478917e-05 -5.614257e-06 4 52 -3.00633e-05 4.851599e-06 5 52 2.558831e-05 -4.129428e-06 6 52 -2.132146e-05 3.440846e-06 7 52 1.722429e-05 -2.779647e-06 8 52 -1.326172e-05 2.14017e-06 9 52 9.401297e-06 -1.517176e-06 10 52 -5.612495e-06 9.057414e-07 11 52 1.866144e-06 -3.011573e-07 12 52 1.866144e-06 -3.011573e-07 13 52 -5.612495e-06 9.057414e-07 14 52 9.401297e-06 -1.517176e-06 15 52 -1.326172e-05 2.14017e-06 16 52 1.722429e-05 -2.779647e-06 17 52 -2.132146e-05 3.440846e-06 18 52 2.558831e-05 -4.129428e-06 19 52 -3.00633e-05 4.851599e-06 20 52 3.478917e-05 -5.614257e-06 21 52 -3.981401e-05 6.425164e-06 22 52 4.519256e-05 -7.293151e-06 23 52 -5.098776e-05 8.228377e-06 24 52 5.727273e-05 -9.242642e-06 25 52 -6.413319e-05 1.034978e-05 26 52 7.167061e-05 -1.156616e-05 27 52 -8.000611e-05 1.291134e-05 28 52 8.928565e-05 -1.440887e-05 29 52 -9.968672e-05 1.608739e-05 30 52 0.0001114272 -1.798207e-05 31 52 -0.0001247774 2.013652e-05 32 52 0.000140076 -2.26054e-05 33 52 -0.0001577525 2.545802e-05 34 52 0.0001783582 -2.878335e-05 35 52 -0.0002026106 3.26972e-05 36 52 0.0002314578 -3.735254e-05 37 52 -0.0002661734 4.295492e-05 38 52 0.0003085011 -4.978574e-05 39 52 -0.0003608797 5.823857e-05 40 52 0.0004268045 -6.887749e-05 41 52 -0.0005114288 8.253411e-05 42 52 0.0006226054 -0.0001004757 43 52 -0.0007727812 0.000124711 44 52 0.0009826448 -0.0001585787 45 52 -0.001288661 0.0002079635 46 52 0.001760065 -0.0002840383 47 52 -0.002541777 0.0004101906 48 52 0.003980742 -0.0006424099 49 52 -0.007089509 0.001144101 50 52 0.01597157 -0.002577484 51 52 -0.06393453 0.01031772 52 52 0.1008313 -0.01507469 53 52 -0.06393453 0.01031772 54 52 0.01597157 -0.002577484 55 52 -0.007089509 0.001144101 56 52 0.003980742 -0.0006424099 57 52 -0.002541777 0.0004101906 58 52 0.001760065 -0.0002840383 59 52 -0.001288661 0.0002079635 60 52 0.0009826448 -0.0001585787 61 52 -0.0007727812 0.000124711 62 52 0.0006226054 -0.0001004757 63 52 -0.0005114288 8.253411e-05 64 52 0.0004268045 -6.887749e-05 65 52 -0.0003608797 5.823857e-05 66 52 0.0003085011 -4.978574e-05 67 52 -0.0002661734 4.295492e-05 68 52 0.0002314578 -3.735254e-05 69 52 -0.0002026106 3.26972e-05 70 52 0.0001783582 -2.878335e-05 71 52 -0.0001577525 2.545802e-05 72 52 0.000140076 -2.26054e-05 73 52 -0.0001247774 2.013652e-05 74 52 0.0001114272 -1.798207e-05 75 52 -9.968672e-05 1.608739e-05 76 52 8.928565e-05 -1.440887e-05 77 52 -8.000611e-05 1.291134e-05 78 52 7.167061e-05 -1.156616e-05 79 52 -6.413319e-05 1.034978e-05 80 52 5.727273e-05 -9.242642e-06 133 52 0.0008976348 7.521712e-05 0 53 5.727273e-05 -9.242642e-06 1 53 -5.098776e-05 8.228377e-06 2 53 4.519256e-05 -7.293151e-06 3 53 -3.981401e-05 6.425164e-06 4 53 3.478917e-05 -5.614257e-06 5 53 -3.00633e-05 4.851599e-06 6 53 2.558831e-05 -4.129428e-06 7 53 -2.132146e-05 3.440846e-06 8 53 1.722429e-05 -2.779647e-06 9 53 -1.326172e-05 2.14017e-06 10 53 9.401297e-06 -1.517176e-06 11 53 -5.612495e-06 9.057414e-07 12 53 1.866144e-06 -3.011573e-07 13 53 1.866144e-06 -3.011573e-07 14 53 -5.612495e-06 9.057414e-07 15 53 9.401297e-06 -1.517176e-06 16 53 -1.326172e-05 2.14017e-06 17 53 1.722429e-05 -2.779647e-06 18 53 -2.132146e-05 3.440846e-06 19 53 2.558831e-05 -4.129428e-06 20 53 -3.00633e-05 4.851599e-06 21 53 3.478917e-05 -5.614257e-06 22 53 -3.981401e-05 6.425164e-06 23 53 4.519256e-05 -7.293151e-06 24 53 -5.098776e-05 8.228377e-06 25 53 5.727273e-05 -9.242642e-06 26 53 -6.413319e-05 1.034978e-05 27 53 7.167061e-05 -1.156616e-05 28 53 -8.000611e-05 1.291134e-05 29 53 8.928565e-05 -1.440887e-05 30 53 -9.968672e-05 1.608739e-05 31 53 0.0001114272 -1.798207e-05 32 53 -0.0001247774 2.013652e-05 33 53 0.000140076 -2.26054e-05 34 53 -0.0001577525 2.545802e-05 35 53 0.0001783582 -2.878335e-05 36 53 -0.0002026106 3.26972e-05 37 53 0.0002314578 -3.735254e-05 38 53 -0.0002661734 4.295492e-05 39 53 0.0003085011 -4.978574e-05 40 53 -0.0003608797 5.823857e-05 41 53 0.0004268045 -6.887749e-05 42 53 -0.0005114288 8.253411e-05 43 53 0.0006226054 -0.0001004757 44 53 -0.0007727812 0.000124711 45 53 0.0009826448 -0.0001585787 46 53 -0.001288661 0.0002079635 47 53 0.001760065 -0.0002840383 48 53 -0.002541777 0.0004101906 49 53 0.003980742 -0.0006424099 50 53 -0.007089509 0.001144101 51 53 0.01597157 -0.002577484 52 53 -0.06393453 0.01031772 53 53 0.1012272 -0.01521075 54 53 -0.06393453 0.01031772 55 53 0.01597157 -0.002577484 56 53 -0.007089509 0.001144101 57 53 0.003980742 -0.0006424099 58 53 -0.002541777 0.0004101906 59 53 0.001760065 -0.0002840383 60 53 -0.001288661 0.0002079635 61 53 0.0009826448 -0.0001585787 62 53 -0.0007727812 0.000124711 63 53 0.0006226054 -0.0001004757 64 53 -0.0005114288 8.253411e-05 65 53 0.0004268045 -6.887749e-05 66 53 -0.0003608797 5.823857e-05 67 53 0.0003085011 -4.978574e-05 68 53 -0.0002661734 4.295492e-05 69 53 0.0002314578 -3.735254e-05 70 53 -0.0002026106 3.26972e-05 71 53 0.0001783582 -2.878335e-05 72 53 -0.0001577525 2.545802e-05 73 53 0.000140076 -2.26054e-05 74 53 -0.0001247774 2.013652e-05 75 53 0.0001114272 -1.798207e-05 76 53 -9.968672e-05 1.608739e-05 77 53 8.928565e-05 -1.440887e-05 78 53 -8.000611e-05 1.291134e-05 79 53 7.167061e-05 -1.156616e-05 80 53 -6.413319e-05 1.034978e-05 134 53 0.0009144402 7.695625e-05 0 54 -6.413319e-05 1.034978e-05 1 54 5.727273e-05 -9.242642e-06 2 54 -5.098776e-05 8.228377e-06 3 54 4.519256e-05 -7.293151e-06 4 54 -3.981401e-05 6.425164e-06 5 54 3.478917e-05 -5.614257e-06 6 54 -3.00633e-05 4.851599e-06 7 54 2.558831e-05 -4.129428e-06 8 54 -2.132146e-05 3.440846e-06 9 54 1.722429e-05 -2.779647e-06 10 54 -1.326172e-05 2.14017e-06 11 54 9.401297e-06 -1.517176e-06 12 54 -5.612495e-06 9.057414e-07 13 54 1.866144e-06 -3.011573e-07 14 54 1.866144e-06 -3.011573e-07 15 54 -5.612495e-06 9.057414e-07 16 54 9.401297e-06 -1.517176e-06 17 54 -1.326172e-05 2.14017e-06 18 54 1.722429e-05 -2.779647e-06 19 54 -2.132146e-05 3.440846e-06 20 54 2.558831e-05 -4.129428e-06 21 54 -3.00633e-05 4.851599e-06 22 54 3.478917e-05 -5.614257e-06 23 54 -3.981401e-05 6.425164e-06 24 54 4.519256e-05 -7.293151e-06 25 54 -5.098776e-05 8.228377e-06 26 54 5.727273e-05 -9.242642e-06 27 54 -6.413319e-05 1.034978e-05 28 54 7.167061e-05 -1.156616e-05 29 54 -8.000611e-05 1.291134e-05 30 54 8.928565e-05 -1.440887e-05 31 54 -9.968672e-05 1.608739e-05 32 54 0.0001114272 -1.798207e-05 33 54 -0.0001247774 2.013652e-05 34 54 0.000140076 -2.26054e-05 35 54 -0.0001577525 2.545802e-05 36 54 0.0001783582 -2.878335e-05 37 54 -0.0002026106 3.26972e-05 38 54 0.0002314578 -3.735254e-05 39 54 -0.0002661734 4.295492e-05 40 54 0.0003085011 -4.978574e-05 41 54 -0.0003608797 5.823857e-05 42 54 0.0004268045 -6.887749e-05 43 54 -0.0005114288 8.253411e-05 44 54 0.0006226054 -0.0001004757 45 54 -0.0007727812 0.000124711 46 54 0.0009826448 -0.0001585787 47 54 -0.001288661 0.0002079635 48 54 0.001760065 -0.0002840383 49 54 -0.002541777 0.0004101906 50 54 0.003980742 -0.0006424099 51 54 -0.007089509 0.001144101 52 54 0.01597157 -0.002577484 53 54 -0.06393453 0.01031772 54 54 0.1015876 -0.0153379 55 54 -0.06393453 0.01031772 56 54 0.01597157 -0.002577484 57 54 -0.007089509 0.001144101 58 54 0.003980742 -0.0006424099 59 54 -0.002541777 0.0004101906 60 54 0.001760065 -0.0002840383 61 54 -0.001288661 0.0002079635 62 54 0.0009826448 -0.0001585787 63 54 -0.0007727812 0.000124711 64 54 0.0006226054 -0.0001004757 65 54 -0.0005114288 8.253411e-05 66 54 0.0004268045 -6.887749e-05 67 54 -0.0003608797 5.823857e-05 68 54 0.0003085011 -4.978574e-05 69 54 -0.0002661734 4.295492e-05 70 54 0.0002314578 -3.735254e-05 71 54 -0.0002026106 3.26972e-05 72 54 0.0001783582 -2.878335e-05 73 54 -0.0001577525 2.545802e-05 74 54 0.000140076 -2.26054e-05 75 54 -0.0001247774 2.013652e-05 76 54 0.0001114272 -1.798207e-05 77 54 -9.968672e-05 1.608739e-05 78 54 8.928565e-05 -1.440887e-05 79 54 -8.000611e-05 1.291134e-05 80 54 7.167061e-05 -1.156616e-05 135 54 0.0009313311 7.871123e-05 0 55 7.167061e-05 -1.156616e-05 1 55 -6.413319e-05 1.034978e-05 2 55 5.727273e-05 -9.242642e-06 3 55 -5.098776e-05 8.228377e-06 4 55 4.519256e-05 -7.293151e-06 5 55 -3.981401e-05 6.425164e-06 6 55 3.478917e-05 -5.614257e-06 7 55 -3.00633e-05 4.851599e-06 8 55 2.558831e-05 -4.129428e-06 9 55 -2.132146e-05 3.440846e-06 10 55 1.722429e-05 -2.779647e-06 11 55 -1.326172e-05 2.14017e-06 12 55 9.401297e-06 -1.517176e-06 13 55 -5.612495e-06 9.057414e-07 14 55 1.866144e-06 -3.011573e-07 15 55 1.866144e-06 -3.011573e-07 16 55 -5.612495e-06 9.057414e-07 17 55 9.401297e-06 -1.517176e-06 18 55 -1.326172e-05 2.14017e-06 19 55 1.722429e-05 -2.779647e-06 20 55 -2.132146e-05 3.440846e-06 21 55 2.558831e-05 -4.129428e-06 22 55 -3.00633e-05 4.851599e-06 23 55 3.478917e-05 -5.614257e-06 24 55 -3.981401e-05 6.425164e-06 25 55 4.519256e-05 -7.293151e-06 26 55 -5.098776e-05 8.228377e-06 27 55 5.727273e-05 -9.242642e-06 28 55 -6.413319e-05 1.034978e-05 29 55 7.167061e-05 -1.156616e-05 30 55 -8.000611e-05 1.291134e-05 31 55 8.928565e-05 -1.440887e-05 32 55 -9.968672e-05 1.608739e-05 33 55 0.0001114272 -1.798207e-05 34 55 -0.0001247774 2.013652e-05 35 55 0.000140076 -2.26054e-05 36 55 -0.0001577525 2.545802e-05 37 55 0.0001783582 -2.878335e-05 38 55 -0.0002026106 3.26972e-05 39 55 0.0002314578 -3.735254e-05 40 55 -0.0002661734 4.295492e-05 41 55 0.0003085011 -4.978574e-05 42 55 -0.0003608797 5.823857e-05 43 55 0.0004268045 -6.887749e-05 44 55 -0.0005114288 8.253411e-05 45 55 0.0006226054 -0.0001004757 46 55 -0.0007727812 0.000124711 47 55 0.0009826448 -0.0001585787 48 55 -0.001288661 0.0002079635 49 55 0.001760065 -0.0002840383 50 55 -0.002541777 0.0004101906 51 55 0.003980742 -0.0006424099 52 55 -0.007089509 0.001144101 53 55 0.01597157 -0.002577484 54 55 -0.06393453 0.01031772 55 55 0.1019156 -0.01545662 56 55 -0.06393453 0.01031772 57 55 0.01597157 -0.002577484 58 55 -0.007089509 0.001144101 59 55 0.003980742 -0.0006424099 60 55 -0.002541777 0.0004101906 61 55 0.001760065 -0.0002840383 62 55 -0.001288661 0.0002079635 63 55 0.0009826448 -0.0001585787 64 55 -0.0007727812 0.000124711 65 55 0.0006226054 -0.0001004757 66 55 -0.0005114288 8.253411e-05 67 55 0.0004268045 -6.887749e-05 68 55 -0.0003608797 5.823857e-05 69 55 0.0003085011 -4.978574e-05 70 55 -0.0002661734 4.295492e-05 71 55 0.0002314578 -3.735254e-05 72 55 -0.0002026106 3.26972e-05 73 55 0.0001783582 -2.878335e-05 74 55 -0.0001577525 2.545802e-05 75 55 0.000140076 -2.26054e-05 76 55 -0.0001247774 2.013652e-05 77 55 0.0001114272 -1.798207e-05 78 55 -9.968672e-05 1.608739e-05 79 55 8.928565e-05 -1.440887e-05 80 55 -8.000611e-05 1.291134e-05 136 55 0.0009483078 8.048218e-05 0 56 -8.000611e-05 1.291134e-05 1 56 7.167061e-05 -1.156616e-05 2 56 -6.413319e-05 1.034978e-05 3 56 5.727273e-05 -9.242642e-06 4 56 -5.098776e-05 8.228377e-06 5 56 4.519256e-05 -7.293151e-06 6 56 -3.981401e-05 6.425164e-06 7 56 3.478917e-05 -5.614257e-06 8 56 -3.00633e-05 4.851599e-06 9 56 2.558831e-05 -4.129428e-06 10 56 -2.132146e-05 3.440846e-06 11 56 1.722429e-05 -2.779647e-06 12 56 -1.326172e-05 2.14017e-06 13 56 9.401297e-06 -1.517176e-06 14 56 -5.612495e-06 9.057414e-07 15 56 1.866144e-06 -3.011573e-07 16 56 1.866144e-06 -3.011573e-07 17 56 -5.612495e-06 9.057414e-07 18 56 9.401297e-06 -1.517176e-06 19 56 -1.326172e-05 2.14017e-06 20 56 1.722429e-05 -2.779647e-06 21 56 -2.132146e-05 3.440846e-06 22 56 2.558831e-05 -4.129428e-06 23 56 -3.00633e-05 4.851599e-06 24 56 3.478917e-05 -5.614257e-06 25 56 -3.981401e-05 6.425164e-06 26 56 4.519256e-05 -7.293151e-06 27 56 -5.098776e-05 8.228377e-06 28 56 5.727273e-05 -9.242642e-06 29 56 -6.413319e-05 1.034978e-05 30 56 7.167061e-05 -1.156616e-05 31 56 -8.000611e-05 1.291134e-05 32 56 8.928565e-05 -1.440887e-05 33 56 -9.968672e-05 1.608739e-05 34 56 0.0001114272 -1.798207e-05 35 56 -0.0001247774 2.013652e-05 36 56 0.000140076 -2.26054e-05 37 56 -0.0001577525 2.545802e-05 38 56 0.0001783582 -2.878335e-05 39 56 -0.0002026106 3.26972e-05 40 56 0.0002314578 -3.735254e-05 41 56 -0.0002661734 4.295492e-05 42 56 0.0003085011 -4.978574e-05 43 56 -0.0003608797 5.823857e-05 44 56 0.0004268045 -6.887749e-05 45 56 -0.0005114288 8.253411e-05 46 56 0.0006226054 -0.0001004757 47 56 -0.0007727812 0.000124711 48 56 0.0009826448 -0.0001585787 49 56 -0.001288661 0.0002079635 50 56 0.001760065 -0.0002840383 51 56 -0.002541777 0.0004101906 52 56 0.003980742 -0.0006424099 53 56 -0.007089509 0.001144101 54 56 0.01597157 -0.002577484 55 56 -0.06393453 0.01031772 56 56 0.1022141 -0.01556737 57 56 -0.06393453 0.01031772 58 56 0.01597157 -0.002577484 59 56 -0.007089509 0.001144101 60 56 0.003980742 -0.0006424099 61 56 -0.002541777 0.0004101906 62 56 0.001760065 -0.0002840383 63 56 -0.001288661 0.0002079635 64 56 0.0009826448 -0.0001585787 65 56 -0.0007727812 0.000124711 66 56 0.0006226054 -0.0001004757 67 56 -0.0005114288 8.253411e-05 68 56 0.0004268045 -6.887749e-05 69 56 -0.0003608797 5.823857e-05 70 56 0.0003085011 -4.978574e-05 71 56 -0.0002661734 4.295492e-05 72 56 0.0002314578 -3.735254e-05 73 56 -0.0002026106 3.26972e-05 74 56 0.0001783582 -2.878335e-05 75 56 -0.0001577525 2.545802e-05 76 56 0.000140076 -2.26054e-05 77 56 -0.0001247774 2.013652e-05 78 56 0.0001114272 -1.798207e-05 79 56 -9.968672e-05 1.608739e-05 80 56 8.928565e-05 -1.440887e-05 137 56 0.000965371 8.226921e-05 0 57 8.928565e-05 -1.440887e-05 1 57 -8.000611e-05 1.291134e-05 2 57 7.167061e-05 -1.156616e-05 3 57 -6.413319e-05 1.034978e-05 4 57 5.727273e-05 -9.242642e-06 5 57 -5.098776e-05 8.228377e-06 6 57 4.519256e-05 -7.293151e-06 7 57 -3.981401e-05 6.425164e-06 8 57 3.478917e-05 -5.614257e-06 9 57 -3.00633e-05 4.851599e-06 10 57 2.558831e-05 -4.129428e-06 11 57 -2.132146e-05 3.440846e-06 12 57 1.722429e-05 -2.779647e-06 13 57 -1.326172e-05 2.14017e-06 14 57 9.401297e-06 -1.517176e-06 15 57 -5.612495e-06 9.057414e-07 16 57 1.866144e-06 -3.011573e-07 17 57 1.866144e-06 -3.011573e-07 18 57 -5.612495e-06 9.057414e-07 19 57 9.401297e-06 -1.517176e-06 20 57 -1.326172e-05 2.14017e-06 21 57 1.722429e-05 -2.779647e-06 22 57 -2.132146e-05 3.440846e-06 23 57 2.558831e-05 -4.129428e-06 24 57 -3.00633e-05 4.851599e-06 25 57 3.478917e-05 -5.614257e-06 26 57 -3.981401e-05 6.425164e-06 27 57 4.519256e-05 -7.293151e-06 28 57 -5.098776e-05 8.228377e-06 29 57 5.727273e-05 -9.242642e-06 30 57 -6.413319e-05 1.034978e-05 31 57 7.167061e-05 -1.156616e-05 32 57 -8.000611e-05 1.291134e-05 33 57 8.928565e-05 -1.440887e-05 34 57 -9.968672e-05 1.608739e-05 35 57 0.0001114272 -1.798207e-05 36 57 -0.0001247774 2.013652e-05 37 57 0.000140076 -2.26054e-05 38 57 -0.0001577525 2.545802e-05 39 57 0.0001783582 -2.878335e-05 40 57 -0.0002026106 3.26972e-05 41 57 0.0002314578 -3.735254e-05 42 57 -0.0002661734 4.295492e-05 43 57 0.0003085011 -4.978574e-05 44 57 -0.0003608797 5.823857e-05 45 57 0.0004268045 -6.887749e-05 46 57 -0.0005114288 8.253411e-05 47 57 0.0006226054 -0.0001004757 48 57 -0.0007727812 0.000124711 49 57 0.0009826448 -0.0001585787 50 57 -0.001288661 0.0002079635 51 57 0.001760065 -0.0002840383 52 57 -0.002541777 0.0004101906 53 57 0.003980742 -0.0006424099 54 57 -0.007089509 0.001144101 55 57 0.01597157 -0.002577484 56 57 -0.06393453 0.01031772 57 57 0.1024856 -0.0156706 58 57 -0.06393453 0.01031772 59 57 0.01597157 -0.002577484 60 57 -0.007089509 0.001144101 61 57 0.003980742 -0.0006424099 62 57 -0.002541777 0.0004101906 63 57 0.001760065 -0.0002840383 64 57 -0.001288661 0.0002079635 65 57 0.0009826448 -0.0001585787 66 57 -0.0007727812 0.000124711 67 57 0.0006226054 -0.0001004757 68 57 -0.0005114288 8.253411e-05 69 57 0.0004268045 -6.887749e-05 70 57 -0.0003608797 5.823857e-05 71 57 0.0003085011 -4.978574e-05 72 57 -0.0002661734 4.295492e-05 73 57 0.0002314578 -3.735254e-05 74 57 -0.0002026106 3.26972e-05 75 57 0.0001783582 -2.878335e-05 76 57 -0.0001577525 2.545802e-05 77 57 0.000140076 -2.26054e-05 78 57 -0.0001247774 2.013652e-05 79 57 0.0001114272 -1.798207e-05 80 57 -9.968672e-05 1.608739e-05 138 57 0.0009825209 8.407245e-05 0 58 -9.968672e-05 1.608739e-05 1 58 8.928565e-05 -1.440887e-05 2 58 -8.000611e-05 1.291134e-05 3 58 7.167061e-05 -1.156616e-05 4 58 -6.413319e-05 1.034978e-05 5 58 5.727273e-05 -9.242642e-06 6 58 -5.098776e-05 8.228377e-06 7 58 4.519256e-05 -7.293151e-06 8 58 -3.981401e-05 6.425164e-06 9 58 3.478917e-05 -5.614257e-06 10 58 -3.00633e-05 4.851599e-06 11 58 2.558831e-05 -4.129428e-06 12 58 -2.132146e-05 3.440846e-06 13 58 1.722429e-05 -2.779647e-06 14 58 -1.326172e-05 2.14017e-06 15 58 9.401297e-06 -1.517176e-06 16 58 -5.612495e-06 9.057414e-07 17 58 1.866144e-06 -3.011573e-07 18 58 1.866144e-06 -3.011573e-07 19 58 -5.612495e-06 9.057414e-07 20 58 9.401297e-06 -1.517176e-06 21 58 -1.326172e-05 2.14017e-06 22 58 1.722429e-05 -2.779647e-06 23 58 -2.132146e-05 3.440846e-06 24 58 2.558831e-05 -4.129428e-06 25 58 -3.00633e-05 4.851599e-06 26 58 3.478917e-05 -5.614257e-06 27 58 -3.981401e-05 6.425164e-06 28 58 4.519256e-05 -7.293151e-06 29 58 -5.098776e-05 8.228377e-06 30 58 5.727273e-05 -9.242642e-06 31 58 -6.413319e-05 1.034978e-05 32 58 7.167061e-05 -1.156616e-05 33 58 -8.000611e-05 1.291134e-05 34 58 8.928565e-05 -1.440887e-05 35 58 -9.968672e-05 1.608739e-05 36 58 0.0001114272 -1.798207e-05 37 58 -0.0001247774 2.013652e-05 38 58 0.000140076 -2.26054e-05 39 58 -0.0001577525 2.545802e-05 40 58 0.0001783582 -2.878335e-05 41 58 -0.0002026106 3.26972e-05 42 58 0.0002314578 -3.735254e-05 43 58 -0.0002661734 4.295492e-05 44 58 0.0003085011 -4.978574e-05 45 58 -0.0003608797 5.823857e-05 46 58 0.0004268045 -6.887749e-05 47 58 -0.0005114288 8.253411e-05 48 58 0.0006226054 -0.0001004757 49 58 -0.0007727812 0.000124711 50 58 0.0009826448 -0.0001585787 51 58 -0.001288661 0.0002079635 52 58 0.001760065 -0.0002840383 53 58 -0.002541777 0.0004101906 54 58 0.003980742 -0.0006424099 55 58 -0.007089509 0.001144101 56 58 0.01597157 -0.002577484 57 58 -0.06393453 0.01031772 58 58 0.1027326 -0.01576676 59 58 -0.06393453 0.01031772 60 58 0.01597157 -0.002577484 61 58 -0.007089509 0.001144101 62 58 0.003980742 -0.0006424099 63 58 -0.002541777 0.0004101906 64 58 0.001760065 -0.0002840383 65 58 -0.001288661 0.0002079635 66 58 0.0009826448 -0.0001585787 67 58 -0.0007727812 0.000124711 68 58 0.0006226054 -0.0001004757 69 58 -0.0005114288 8.253411e-05 70 58 0.0004268045 -6.887749e-05 71 58 -0.0003608797 5.823857e-05 72 58 0.0003085011 -4.978574e-05 73 58 -0.0002661734 4.295492e-05 74 58 0.0002314578 -3.735254e-05 75 58 -0.0002026106 3.26972e-05 76 58 0.0001783582 -2.878335e-05 77 58 -0.0001577525 2.545802e-05 78 58 0.000140076 -2.26054e-05 79 58 -0.0001247774 2.013652e-05 80 58 0.0001114272 -1.798207e-05 139 58 0.0009997581 8.589201e-05 0 59 0.0001114272 -1.798207e-05 1 59 -9.968672e-05 1.608739e-05 2 59 8.928565e-05 -1.440887e-05 3 59 -8.000611e-05 1.291134e-05 4 59 7.167061e-05 -1.156616e-05 5 59 -6.413319e-05 1.034978e-05 6 59 5.727273e-05 -9.242642e-06 7 59 -5.098776e-05 8.228377e-06 8 59 4.519256e-05 -7.293151e-06 9 59 -3.981401e-05 6.425164e-06 10 59 3.478917e-05 -5.614257e-06 11 59 -3.00633e-05 4.851599e-06 12 59 2.558831e-05 -4.129428e-06 13 59 -2.132146e-05 3.440846e-06 14 59 1.722429e-05 -2.779647e-06 15 59 -1.326172e-05 2.14017e-06 16 59 9.401297e-06 -1.517176e-06 17 59 -5.612495e-06 9.057414e-07 18 59 1.866144e-06 -3.011573e-07 19 59 1.866144e-06 -3.011573e-07 20 59 -5.612495e-06 9.057414e-07 21 59 9.401297e-06 -1.517176e-06 22 59 -1.326172e-05 2.14017e-06 23 59 1.722429e-05 -2.779647e-06 24 59 -2.132146e-05 3.440846e-06 25 59 2.558831e-05 -4.129428e-06 26 59 -3.00633e-05 4.851599e-06 27 59 3.478917e-05 -5.614257e-06 28 59 -3.981401e-05 6.425164e-06 29 59 4.519256e-05 -7.293151e-06 30 59 -5.098776e-05 8.228377e-06 31 59 5.727273e-05 -9.242642e-06 32 59 -6.413319e-05 1.034978e-05 33 59 7.167061e-05 -1.156616e-05 34 59 -8.000611e-05 1.291134e-05 35 59 8.928565e-05 -1.440887e-05 36 59 -9.968672e-05 1.608739e-05 37 59 0.0001114272 -1.798207e-05 38 59 -0.0001247774 2.013652e-05 39 59 0.000140076 -2.26054e-05 40 59 -0.0001577525 2.545802e-05 41 59 0.0001783582 -2.878335e-05 42 59 -0.0002026106 3.26972e-05 43 59 0.0002314578 -3.735254e-05 44 59 -0.0002661734 4.295492e-05 45 59 0.0003085011 -4.978574e-05 46 59 -0.0003608797 5.823857e-05 47 59 0.0004268045 -6.887749e-05 48 59 -0.0005114288 8.253411e-05 49 59 0.0006226054 -0.0001004757 50 59 -0.0007727812 0.000124711 51 59 0.0009826448 -0.0001585787 52 59 -0.001288661 0.0002079635 53 59 0.001760065 -0.0002840383 54 59 -0.002541777 0.0004101906 55 59 0.003980742 -0.0006424099 56 59 -0.007089509 0.001144101 57 59 0.01597157 -0.002577484 58 59 -0.06393453 0.01031772 59 59 0.1029571 -0.01585626 60 59 -0.06393453 0.01031772 61 59 0.01597157 -0.002577484 62 59 -0.007089509 0.001144101 63 59 0.003980742 -0.0006424099 64 59 -0.002541777 0.0004101906 65 59 0.001760065 -0.0002840383 66 59 -0.001288661 0.0002079635 67 59 0.0009826448 -0.0001585787 68 59 -0.0007727812 0.000124711 69 59 0.0006226054 -0.0001004757 70 59 -0.0005114288 8.253411e-05 71 59 0.0004268045 -6.887749e-05 72 59 -0.0003608797 5.823857e-05 73 59 0.0003085011 -4.978574e-05 74 59 -0.0002661734 4.295492e-05 75 59 0.0002314578 -3.735254e-05 76 59 -0.0002026106 3.26972e-05 77 59 0.0001783582 -2.878335e-05 78 59 -0.0001577525 2.545802e-05 79 59 0.000140076 -2.26054e-05 80 59 -0.0001247774 2.013652e-05 140 59 0.001017083 8.772801e-05 0 60 -0.0001247774 2.013652e-05 1 60 0.0001114272 -1.798207e-05 2 60 -9.968672e-05 1.608739e-05 3 60 8.928565e-05 -1.440887e-05 4 60 -8.000611e-05 1.291134e-05 5 60 7.167061e-05 -1.156616e-05 6 60 -6.413319e-05 1.034978e-05 7 60 5.727273e-05 -9.242642e-06 8 60 -5.098776e-05 8.228377e-06 9 60 4.519256e-05 -7.293151e-06 10 60 -3.981401e-05 6.425164e-06 11 60 3.478917e-05 -5.614257e-06 12 60 -3.00633e-05 4.851599e-06 13 60 2.558831e-05 -4.129428e-06 14 60 -2.132146e-05 3.440846e-06 15 60 1.722429e-05 -2.779647e-06 16 60 -1.326172e-05 2.14017e-06 17 60 9.401297e-06 -1.517176e-06 18 60 -5.612495e-06 9.057414e-07 19 60 1.866144e-06 -3.011573e-07 20 60 1.866144e-06 -3.011573e-07 21 60 -5.612495e-06 9.057414e-07 22 60 9.401297e-06 -1.517176e-06 23 60 -1.326172e-05 2.14017e-06 24 60 1.722429e-05 -2.779647e-06 25 60 -2.132146e-05 3.440846e-06 26 60 2.558831e-05 -4.129428e-06 27 60 -3.00633e-05 4.851599e-06 28 60 3.478917e-05 -5.614257e-06 29 60 -3.981401e-05 6.425164e-06 30 60 4.519256e-05 -7.293151e-06 31 60 -5.098776e-05 8.228377e-06 32 60 5.727273e-05 -9.242642e-06 33 60 -6.413319e-05 1.034978e-05 34 60 7.167061e-05 -1.156616e-05 35 60 -8.000611e-05 1.291134e-05 36 60 8.928565e-05 -1.440887e-05 37 60 -9.968672e-05 1.608739e-05 38 60 0.0001114272 -1.798207e-05 39 60 -0.0001247774 2.013652e-05 40 60 0.000140076 -2.26054e-05 41 60 -0.0001577525 2.545802e-05 42 60 0.0001783582 -2.878335e-05 43 60 -0.0002026106 3.26972e-05 44 60 0.0002314578 -3.735254e-05 45 60 -0.0002661734 4.295492e-05 46 60 0.0003085011 -4.978574e-05 47 60 -0.0003608797 5.823857e-05 48 60 0.0004268045 -6.887749e-05 49 60 -0.0005114288 8.253411e-05 50 60 0.0006226054 -0.0001004757 51 60 -0.0007727812 0.000124711 52 60 0.0009826448 -0.0001585787 53 60 -0.001288661 0.0002079635 54 60 0.001760065 -0.0002840383 55 60 -0.002541777 0.0004101906 56 60 0.003980742 -0.0006424099 57 60 -0.007089509 0.001144101 58 60 0.01597157 -0.002577484 59 60 -0.06393453 0.01031772 60 60 0.1031613 -0.01593952 61 60 -0.06393453 0.01031772 62 60 0.01597157 -0.002577484 63 60 -0.007089509 0.001144101 64 60 0.003980742 -0.0006424099 65 60 -0.002541777 0.0004101906 66 60 0.001760065 -0.0002840383 67 60 -0.001288661 0.0002079635 68 60 0.0009826448 -0.0001585787 69 60 -0.0007727812 0.000124711 70 60 0.0006226054 -0.0001004757 71 60 -0.0005114288 8.253411e-05 72 60 0.0004268045 -6.887749e-05 73 60 -0.0003608797 5.823857e-05 74 60 0.0003085011 -4.978574e-05 75 60 -0.0002661734 4.295492e-05 76 60 0.0002314578 -3.735254e-05 77 60 -0.0002026106 3.26972e-05 78 60 0.0001783582 -2.878335e-05 79 60 -0.0001577525 2.545802e-05 80 60 0.000140076 -2.26054e-05 141 60 0.001034496 8.958057e-05 0 61 0.000140076 -2.26054e-05 1 61 -0.0001247774 2.013652e-05 2 61 0.0001114272 -1.798207e-05 3 61 -9.968672e-05 1.608739e-05 4 61 8.928565e-05 -1.440887e-05 5 61 -8.000611e-05 1.291134e-05 6 61 7.167061e-05 -1.156616e-05 7 61 -6.413319e-05 1.034978e-05 8 61 5.727273e-05 -9.242642e-06 9 61 -5.098776e-05 8.228377e-06 10 61 4.519256e-05 -7.293151e-06 11 61 -3.981401e-05 6.425164e-06 12 61 3.478917e-05 -5.614257e-06 13 61 -3.00633e-05 4.851599e-06 14 61 2.558831e-05 -4.129428e-06 15 61 -2.132146e-05 3.440846e-06 16 61 1.722429e-05 -2.779647e-06 17 61 -1.326172e-05 2.14017e-06 18 61 9.401297e-06 -1.517176e-06 19 61 -5.612495e-06 9.057414e-07 20 61 1.866144e-06 -3.011573e-07 21 61 1.866144e-06 -3.011573e-07 22 61 -5.612495e-06 9.057414e-07 23 61 9.401297e-06 -1.517176e-06 24 61 -1.326172e-05 2.14017e-06 25 61 1.722429e-05 -2.779647e-06 26 61 -2.132146e-05 3.440846e-06 27 61 2.558831e-05 -4.129428e-06 28 61 -3.00633e-05 4.851599e-06 29 61 3.478917e-05 -5.614257e-06 30 61 -3.981401e-05 6.425164e-06 31 61 4.519256e-05 -7.293151e-06 32 61 -5.098776e-05 8.228377e-06 33 61 5.727273e-05 -9.242642e-06 34 61 -6.413319e-05 1.034978e-05 35 61 7.167061e-05 -1.156616e-05 36 61 -8.000611e-05 1.291134e-05 37 61 8.928565e-05 -1.440887e-05 38 61 -9.968672e-05 1.608739e-05 39 61 0.0001114272 -1.798207e-05 40 61 -0.0001247774 2.013652e-05 41 61 0.000140076 -2.26054e-05 42 61 -0.0001577525 2.545802e-05 43 61 0.0001783582 -2.878335e-05 44 61 -0.0002026106 3.26972e-05 45 61 0.0002314578 -3.735254e-05 46 61 -0.0002661734 4.295492e-05 47 61 0.0003085011 -4.978574e-05 48 61 -0.0003608797 5.823857e-05 49 61 0.0004268045 -6.887749e-05 50 61 -0.0005114288 8.253411e-05 51 61 0.0006226054 -0.0001004757 52 61 -0.0007727812 0.000124711 53 61 0.0009826448 -0.0001585787 54 61 -0.001288661 0.0002079635 55 61 0.001760065 -0.0002840383 56 61 -0.002541777 0.0004101906 57 61 0.003980742 -0.0006424099 58 61 -0.007089509 0.001144101 59 61 0.01597157 -0.002577484 60 61 -0.06393453 0.01031772 61 61 0.1033469 -0.01601691 62 61 -0.06393453 0.01031772 63 61 0.01597157 -0.002577484 64 61 -0.007089509 0.001144101 65 61 0.003980742 -0.0006424099 66 61 -0.002541777 0.0004101906 67 61 0.001760065 -0.0002840383 68 61 -0.001288661 0.0002079635 69 61 0.0009826448 -0.0001585787 70 61 -0.0007727812 0.000124711 71 61 0.0006226054 -0.0001004757 72 61 -0.0005114288 8.253411e-05 73 61 0.0004268045 -6.887749e-05 74 61 -0.0003608797 5.823857e-05 75 61 0.0003085011 -4.978574e-05 76 61 -0.0002661734 4.295492e-05 77 61 0.0002314578 -3.735254e-05 78 61 -0.0002026106 3.26972e-05 79 61 0.0001783582 -2.878335e-05 80 61 -0.0001577525 2.545802e-05 142 61 0.001051997 9.144981e-05 0 62 -0.0001577525 2.545802e-05 1 62 0.000140076 -2.26054e-05 2 62 -0.0001247774 2.013652e-05 3 62 0.0001114272 -1.798207e-05 4 62 -9.968672e-05 1.608739e-05 5 62 8.928565e-05 -1.440887e-05 6 62 -8.000611e-05 1.291134e-05 7 62 7.167061e-05 -1.156616e-05 8 62 -6.413319e-05 1.034978e-05 9 62 5.727273e-05 -9.242642e-06 10 62 -5.098776e-05 8.228377e-06 11 62 4.519256e-05 -7.293151e-06 12 62 -3.981401e-05 6.425164e-06 13 62 3.478917e-05 -5.614257e-06 14 62 -3.00633e-05 4.851599e-06 15 62 2.558831e-05 -4.129428e-06 16 62 -2.132146e-05 3.440846e-06 17 62 1.722429e-05 -2.779647e-06 18 62 -1.326172e-05 2.14017e-06 19 62 9.401297e-06 -1.517176e-06 20 62 -5.612495e-06 9.057414e-07 21 62 1.866144e-06 -3.011573e-07 22 62 1.866144e-06 -3.011573e-07 23 62 -5.612495e-06 9.057414e-07 24 62 9.401297e-06 -1.517176e-06 25 62 -1.326172e-05 2.14017e-06 26 62 1.722429e-05 -2.779647e-06 27 62 -2.132146e-05 3.440846e-06 28 62 2.558831e-05 -4.129428e-06 29 62 -3.00633e-05 4.851599e-06 30 62 3.478917e-05 -5.614257e-06 31 62 -3.981401e-05 6.425164e-06 32 62 4.519256e-05 -7.293151e-06 33 62 -5.098776e-05 8.228377e-06 34 62 5.727273e-05 -9.242642e-06 35 62 -6.413319e-05 1.034978e-05 36 62 7.167061e-05 -1.156616e-05 37 62 -8.000611e-05 1.291134e-05 38 62 8.928565e-05 -1.440887e-05 39 62 -9.968672e-05 1.608739e-05 40 62 0.0001114272 -1.798207e-05 41 62 -0.0001247774 2.013652e-05 42 62 0.000140076 -2.26054e-05 43 62 -0.0001577525 2.545802e-05 44 62 0.0001783582 -2.878335e-05 45 62 -0.0002026106 3.26972e-05 46 62 0.0002314578 -3.735254e-05 47 62 -0.0002661734 4.295492e-05 48 62 0.0003085011 -4.978574e-05 49 62 -0.0003608797 5.823857e-05 50 62 0.0004268045 -6.887749e-05 51 62 -0.0005114288 8.253411e-05 52 62 0.0006226054 -0.0001004757 53 62 -0.0007727812 0.000124711 54 62 0.0009826448 -0.0001585787 55 62 -0.001288661 0.0002079635 56 62 0.001760065 -0.0002840383 57 62 -0.002541777 0.0004101906 58 62 0.003980742 -0.0006424099 59 62 -0.007089509 0.001144101 60 62 0.01597157 -0.002577484 61 62 -0.06393453 0.01031772 62 62 0.1035157 -0.01608881 63 62 -0.06393453 0.01031772 64 62 0.01597157 -0.002577484 65 62 -0.007089509 0.001144101 66 62 0.003980742 -0.0006424099 67 62 -0.002541777 0.0004101906 68 62 0.001760065 -0.0002840383 69 62 -0.001288661 0.0002079635 70 62 0.0009826448 -0.0001585787 71 62 -0.0007727812 0.000124711 72 62 0.0006226054 -0.0001004757 73 62 -0.0005114288 8.253411e-05 74 62 0.0004268045 -6.887749e-05 75 62 -0.0003608797 5.823857e-05 76 62 0.0003085011 -4.978574e-05 77 62 -0.0002661734 4.295492e-05 78 62 0.0002314578 -3.735254e-05 79 62 -0.0002026106 3.26972e-05 80 62 0.0001783582 -2.878335e-05 143 62 0.001069588 9.333586e-05 0 63 0.0001783582 -2.878335e-05 1 63 -0.0001577525 2.545802e-05 2 63 0.000140076 -2.26054e-05 3 63 -0.0001247774 2.013652e-05 4 63 0.0001114272 -1.798207e-05 5 63 -9.968672e-05 1.608739e-05 6 63 8.928565e-05 -1.440887e-05 7 63 -8.000611e-05 1.291134e-05 8 63 7.167061e-05 -1.156616e-05 9 63 -6.413319e-05 1.034978e-05 10 63 5.727273e-05 -9.242642e-06 11 63 -5.098776e-05 8.228377e-06 12 63 4.519256e-05 -7.293151e-06 13 63 -3.981401e-05 6.425164e-06 14 63 3.478917e-05 -5.614257e-06 15 63 -3.00633e-05 4.851599e-06 16 63 2.558831e-05 -4.129428e-06 17 63 -2.132146e-05 3.440846e-06 18 63 1.722429e-05 -2.779647e-06 19 63 -1.326172e-05 2.14017e-06 20 63 9.401297e-06 -1.517176e-06 21 63 -5.612495e-06 9.057414e-07 22 63 1.866144e-06 -3.011573e-07 23 63 1.866144e-06 -3.011573e-07 24 63 -5.612495e-06 9.057414e-07 25 63 9.401297e-06 -1.517176e-06 26 63 -1.326172e-05 2.14017e-06 27 63 1.722429e-05 -2.779647e-06 28 63 -2.132146e-05 3.440846e-06 29 63 2.558831e-05 -4.129428e-06 30 63 -3.00633e-05 4.851599e-06 31 63 3.478917e-05 -5.614257e-06 32 63 -3.981401e-05 6.425164e-06 33 63 4.519256e-05 -7.293151e-06 34 63 -5.098776e-05 8.228377e-06 35 63 5.727273e-05 -9.242642e-06 36 63 -6.413319e-05 1.034978e-05 37 63 7.167061e-05 -1.156616e-05 38 63 -8.000611e-05 1.291134e-05 39 63 8.928565e-05 -1.440887e-05 40 63 -9.968672e-05 1.608739e-05 41 63 0.0001114272 -1.798207e-05 42 63 -0.0001247774 2.013652e-05 43 63 0.000140076 -2.26054e-05 44 63 -0.0001577525 2.545802e-05 45 63 0.0001783582 -2.878335e-05 46 63 -0.0002026106 3.26972e-05 47 63 0.0002314578 -3.735254e-05 48 63 -0.0002661734 4.295492e-05 49 63 0.0003085011 -4.978574e-05 50 63 -0.0003608797 5.823857e-05 51 63 0.0004268045 -6.887749e-05 52 63 -0.0005114288 8.253411e-05 53 63 0.0006226054 -0.0001004757 54 63 -0.0007727812 0.000124711 55 63 0.0009826448 -0.0001585787 56 63 -0.001288661 0.0002079635 57 63 0.001760065 -0.0002840383 58 63 -0.002541777 0.0004101906 59 63 0.003980742 -0.0006424099 60 63 -0.007089509 0.001144101 61 63 0.01597157 -0.002577484 62 63 -0.06393453 0.01031772 63 63 0.103669 -0.01615558 64 63 -0.06393453 0.01031772 65 63 0.01597157 -0.002577484 66 63 -0.007089509 0.001144101 67 63 0.003980742 -0.0006424099 68 63 -0.002541777 0.0004101906 69 63 0.001760065 -0.0002840383 70 63 -0.001288661 0.0002079635 71 63 0.0009826448 -0.0001585787 72 63 -0.0007727812 0.000124711 73 63 0.0006226054 -0.0001004757 74 63 -0.0005114288 8.253411e-05 75 63 0.0004268045 -6.887749e-05 76 63 -0.0003608797 5.823857e-05 77 63 0.0003085011 -4.978574e-05 78 63 -0.0002661734 4.295492e-05 79 63 0.0002314578 -3.735254e-05 80 63 -0.0002026106 3.26972e-05 144 63 0.001087268 9.523884e-05 0 64 -0.0002026106 3.26972e-05 1 64 0.0001783582 -2.878335e-05 2 64 -0.0001577525 2.545802e-05 3 64 0.000140076 -2.26054e-05 4 64 -0.0001247774 2.013652e-05 5 64 0.0001114272 -1.798207e-05 6 64 -9.968672e-05 1.608739e-05 7 64 8.928565e-05 -1.440887e-05 8 64 -8.000611e-05 1.291134e-05 9 64 7.167061e-05 -1.156616e-05 10 64 -6.413319e-05 1.034978e-05 11 64 5.727273e-05 -9.242642e-06 12 64 -5.098776e-05 8.228377e-06 13 64 4.519256e-05 -7.293151e-06 14 64 -3.981401e-05 6.425164e-06 15 64 3.478917e-05 -5.614257e-06 16 64 -3.00633e-05 4.851599e-06 17 64 2.558831e-05 -4.129428e-06 18 64 -2.132146e-05 3.440846e-06 19 64 1.722429e-05 -2.779647e-06 20 64 -1.326172e-05 2.14017e-06 21 64 9.401297e-06 -1.517176e-06 22 64 -5.612495e-06 9.057414e-07 23 64 1.866144e-06 -3.011573e-07 24 64 1.866144e-06 -3.011573e-07 25 64 -5.612495e-06 9.057414e-07 26 64 9.401297e-06 -1.517176e-06 27 64 -1.326172e-05 2.14017e-06 28 64 1.722429e-05 -2.779647e-06 29 64 -2.132146e-05 3.440846e-06 30 64 2.558831e-05 -4.129428e-06 31 64 -3.00633e-05 4.851599e-06 32 64 3.478917e-05 -5.614257e-06 33 64 -3.981401e-05 6.425164e-06 34 64 4.519256e-05 -7.293151e-06 35 64 -5.098776e-05 8.228377e-06 36 64 5.727273e-05 -9.242642e-06 37 64 -6.413319e-05 1.034978e-05 38 64 7.167061e-05 -1.156616e-05 39 64 -8.000611e-05 1.291134e-05 40 64 8.928565e-05 -1.440887e-05 41 64 -9.968672e-05 1.608739e-05 42 64 0.0001114272 -1.798207e-05 43 64 -0.0001247774 2.013652e-05 44 64 0.000140076 -2.26054e-05 45 64 -0.0001577525 2.545802e-05 46 64 0.0001783582 -2.878335e-05 47 64 -0.0002026106 3.26972e-05 48 64 0.0002314578 -3.735254e-05 49 64 -0.0002661734 4.295492e-05 50 64 0.0003085011 -4.978574e-05 51 64 -0.0003608797 5.823857e-05 52 64 0.0004268045 -6.887749e-05 53 64 -0.0005114288 8.253411e-05 54 64 0.0006226054 -0.0001004757 55 64 -0.0007727812 0.000124711 56 64 0.0009826448 -0.0001585787 57 64 -0.001288661 0.0002079635 58 64 0.001760065 -0.0002840383 59 64 -0.002541777 0.0004101906 60 64 0.003980742 -0.0006424099 61 64 -0.007089509 0.001144101 62 64 0.01597157 -0.002577484 63 64 -0.06393453 0.01031772 64 64 0.1038083 -0.01621755 65 64 -0.06393453 0.01031772 66 64 0.01597157 -0.002577484 67 64 -0.007089509 0.001144101 68 64 0.003980742 -0.0006424099 69 64 -0.002541777 0.0004101906 70 64 0.001760065 -0.0002840383 71 64 -0.001288661 0.0002079635 72 64 0.0009826448 -0.0001585787 73 64 -0.0007727812 0.000124711 74 64 0.0006226054 -0.0001004757 75 64 -0.0005114288 8.253411e-05 76 64 0.0004268045 -6.887749e-05 77 64 -0.0003608797 5.823857e-05 78 64 0.0003085011 -4.978574e-05 79 64 -0.0002661734 4.295492e-05 80 64 0.0002314578 -3.735254e-05 145 64 0.001105038 9.715887e-05 0 65 0.0002314578 -3.735254e-05 1 65 -0.0002026106 3.26972e-05 2 65 0.0001783582 -2.878335e-05 3 65 -0.0001577525 2.545802e-05 4 65 0.000140076 -2.26054e-05 5 65 -0.0001247774 2.013652e-05 6 65 0.0001114272 -1.798207e-05 7 65 -9.968672e-05 1.608739e-05 8 65 8.928565e-05 -1.440887e-05 9 65 -8.000611e-05 1.291134e-05 10 65 7.167061e-05 -1.156616e-05 11 65 -6.413319e-05 1.034978e-05 12 65 5.727273e-05 -9.242642e-06 13 65 -5.098776e-05 8.228377e-06 14 65 4.519256e-05 -7.293151e-06 15 65 -3.981401e-05 6.425164e-06 16 65 3.478917e-05 -5.614257e-06 17 65 -3.00633e-05 4.851599e-06 18 65 2.558831e-05 -4.129428e-06 19 65 -2.132146e-05 3.440846e-06 20 65 1.722429e-05 -2.779647e-06 21 65 -1.326172e-05 2.14017e-06 22 65 9.401297e-06 -1.517176e-06 23 65 -5.612495e-06 9.057414e-07 24 65 1.866144e-06 -3.011573e-07 25 65 1.866144e-06 -3.011573e-07 26 65 -5.612495e-06 9.057414e-07 27 65 9.401297e-06 -1.517176e-06 28 65 -1.326172e-05 2.14017e-06 29 65 1.722429e-05 -2.779647e-06 30 65 -2.132146e-05 3.440846e-06 31 65 2.558831e-05 -4.129428e-06 32 65 -3.00633e-05 4.851599e-06 33 65 3.478917e-05 -5.614257e-06 34 65 -3.981401e-05 6.425164e-06 35 65 4.519256e-05 -7.293151e-06 36 65 -5.098776e-05 8.228377e-06 37 65 5.727273e-05 -9.242642e-06 38 65 -6.413319e-05 1.034978e-05 39 65 7.167061e-05 -1.156616e-05 40 65 -8.000611e-05 1.291134e-05 41 65 8.928565e-05 -1.440887e-05 42 65 -9.968672e-05 1.608739e-05 43 65 0.0001114272 -1.798207e-05 44 65 -0.0001247774 2.013652e-05 45 65 0.000140076 -2.26054e-05 46 65 -0.0001577525 2.545802e-05 47 65 0.0001783582 -2.878335e-05 48 65 -0.0002026106 3.26972e-05 49 65 0.0002314578 -3.735254e-05 50 65 -0.0002661734 4.295492e-05 51 65 0.0003085011 -4.978574e-05 52 65 -0.0003608797 5.823857e-05 53 65 0.0004268045 -6.887749e-05 54 65 -0.0005114288 8.253411e-05 55 65 0.0006226054 -0.0001004757 56 65 -0.0007727812 0.000124711 57 65 0.0009826448 -0.0001585787 58 65 -0.001288661 0.0002079635 59 65 0.001760065 -0.0002840383 60 65 -0.002541777 0.0004101906 61 65 0.003980742 -0.0006424099 62 65 -0.007089509 0.001144101 63 65 0.01597157 -0.002577484 64 65 -0.06393453 0.01031772 65 65 0.1039349 -0.01627503 66 65 -0.06393453 0.01031772 67 65 0.01597157 -0.002577484 68 65 -0.007089509 0.001144101 69 65 0.003980742 -0.0006424099 70 65 -0.002541777 0.0004101906 71 65 0.001760065 -0.0002840383 72 65 -0.001288661 0.0002079635 73 65 0.0009826448 -0.0001585787 74 65 -0.0007727812 0.000124711 75 65 0.0006226054 -0.0001004757 76 65 -0.0005114288 8.253411e-05 77 65 0.0004268045 -6.887749e-05 78 65 -0.0003608797 5.823857e-05 79 65 0.0003085011 -4.978574e-05 80 65 -0.0002661734 4.295492e-05 146 65 0.001122898 9.909608e-05 0 66 -0.0002661734 4.295492e-05 1 66 0.0002314578 -3.735254e-05 2 66 -0.0002026106 3.26972e-05 3 66 0.0001783582 -2.878335e-05 4 66 -0.0001577525 2.545802e-05 5 66 0.000140076 -2.26054e-05 6 66 -0.0001247774 2.013652e-05 7 66 0.0001114272 -1.798207e-05 8 66 -9.968672e-05 1.608739e-05 9 66 8.928565e-05 -1.440887e-05 10 66 -8.000611e-05 1.291134e-05 11 66 7.167061e-05 -1.156616e-05 12 66 -6.413319e-05 1.034978e-05 13 66 5.727273e-05 -9.242642e-06 14 66 -5.098776e-05 8.228377e-06 15 66 4.519256e-05 -7.293151e-06 16 66 -3.981401e-05 6.425164e-06 17 66 3.478917e-05 -5.614257e-06 18 66 -3.00633e-05 4.851599e-06 19 66 2.558831e-05 -4.129428e-06 20 66 -2.132146e-05 3.440846e-06 21 66 1.722429e-05 -2.779647e-06 22 66 -1.326172e-05 2.14017e-06 23 66 9.401297e-06 -1.517176e-06 24 66 -5.612495e-06 9.057414e-07 25 66 1.866144e-06 -3.011573e-07 26 66 1.866144e-06 -3.011573e-07 27 66 -5.612495e-06 9.057414e-07 28 66 9.401297e-06 -1.517176e-06 29 66 -1.326172e-05 2.14017e-06 30 66 1.722429e-05 -2.779647e-06 31 66 -2.132146e-05 3.440846e-06 32 66 2.558831e-05 -4.129428e-06 33 66 -3.00633e-05 4.851599e-06 34 66 3.478917e-05 -5.614257e-06 35 66 -3.981401e-05 6.425164e-06 36 66 4.519256e-05 -7.293151e-06 37 66 -5.098776e-05 8.228377e-06 38 66 5.727273e-05 -9.242642e-06 39 66 -6.413319e-05 1.034978e-05 40 66 7.167061e-05 -1.156616e-05 41 66 -8.000611e-05 1.291134e-05 42 66 8.928565e-05 -1.440887e-05 43 66 -9.968672e-05 1.608739e-05 44 66 0.0001114272 -1.798207e-05 45 66 -0.0001247774 2.013652e-05 46 66 0.000140076 -2.26054e-05 47 66 -0.0001577525 2.545802e-05 48 66 0.0001783582 -2.878335e-05 49 66 -0.0002026106 3.26972e-05 50 66 0.0002314578 -3.735254e-05 51 66 -0.0002661734 4.295492e-05 52 66 0.0003085011 -4.978574e-05 53 66 -0.0003608797 5.823857e-05 54 66 0.0004268045 -6.887749e-05 55 66 -0.0005114288 8.253411e-05 56 66 0.0006226054 -0.0001004757 57 66 -0.0007727812 0.000124711 58 66 0.0009826448 -0.0001585787 59 66 -0.001288661 0.0002079635 60 66 0.001760065 -0.0002840383 61 66 -0.002541777 0.0004101906 62 66 0.003980742 -0.0006424099 63 66 -0.007089509 0.001144101 64 66 0.01597157 -0.002577484 65 66 -0.06393453 0.01031772 66 66 0.10405 -0.01632833 67 66 -0.06393453 0.01031772 68 66 0.01597157 -0.002577484 69 66 -0.007089509 0.001144101 70 66 0.003980742 -0.0006424099 71 66 -0.002541777 0.0004101906 72 66 0.001760065 -0.0002840383 73 66 -0.001288661 0.0002079635 74 66 0.0009826448 -0.0001585787 75 66 -0.0007727812 0.000124711 76 66 0.0006226054 -0.0001004757 77 66 -0.0005114288 8.253411e-05 78 66 0.0004268045 -6.887749e-05 79 66 -0.0003608797 5.823857e-05 80 66 0.0003085011 -4.978574e-05 147 66 0.001140849 0.0001010506 0 67 0.0003085011 -4.978574e-05 1 67 -0.0002661734 4.295492e-05 2 67 0.0002314578 -3.735254e-05 3 67 -0.0002026106 3.26972e-05 4 67 0.0001783582 -2.878335e-05 5 67 -0.0001577525 2.545802e-05 6 67 0.000140076 -2.26054e-05 7 67 -0.0001247774 2.013652e-05 8 67 0.0001114272 -1.798207e-05 9 67 -9.968672e-05 1.608739e-05 10 67 8.928565e-05 -1.440887e-05 11 67 -8.000611e-05 1.291134e-05 12 67 7.167061e-05 -1.156616e-05 13 67 -6.413319e-05 1.034978e-05 14 67 5.727273e-05 -9.242642e-06 15 67 -5.098776e-05 8.228377e-06 16 67 4.519256e-05 -7.293151e-06 17 67 -3.981401e-05 6.425164e-06 18 67 3.478917e-05 -5.614257e-06 19 67 -3.00633e-05 4.851599e-06 20 67 2.558831e-05 -4.129428e-06 21 67 -2.132146e-05 3.440846e-06 22 67 1.722429e-05 -2.779647e-06 23 67 -1.326172e-05 2.14017e-06 24 67 9.401297e-06 -1.517176e-06 25 67 -5.612495e-06 9.057414e-07 26 67 1.866144e-06 -3.011573e-07 27 67 1.866144e-06 -3.011573e-07 28 67 -5.612495e-06 9.057414e-07 29 67 9.401297e-06 -1.517176e-06 30 67 -1.326172e-05 2.14017e-06 31 67 1.722429e-05 -2.779647e-06 32 67 -2.132146e-05 3.440846e-06 33 67 2.558831e-05 -4.129428e-06 34 67 -3.00633e-05 4.851599e-06 35 67 3.478917e-05 -5.614257e-06 36 67 -3.981401e-05 6.425164e-06 37 67 4.519256e-05 -7.293151e-06 38 67 -5.098776e-05 8.228377e-06 39 67 5.727273e-05 -9.242642e-06 40 67 -6.413319e-05 1.034978e-05 41 67 7.167061e-05 -1.156616e-05 42 67 -8.000611e-05 1.291134e-05 43 67 8.928565e-05 -1.440887e-05 44 67 -9.968672e-05 1.608739e-05 45 67 0.0001114272 -1.798207e-05 46 67 -0.0001247774 2.013652e-05 47 67 0.000140076 -2.26054e-05 48 67 -0.0001577525 2.545802e-05 49 67 0.0001783582 -2.878335e-05 50 67 -0.0002026106 3.26972e-05 51 67 0.0002314578 -3.735254e-05 52 67 -0.0002661734 4.295492e-05 53 67 0.0003085011 -4.978574e-05 54 67 -0.0003608797 5.823857e-05 55 67 0.0004268045 -6.887749e-05 56 67 -0.0005114288 8.253411e-05 57 67 0.0006226054 -0.0001004757 58 67 -0.0007727812 0.000124711 59 67 0.0009826448 -0.0001585787 60 67 -0.001288661 0.0002079635 61 67 0.001760065 -0.0002840383 62 67 -0.002541777 0.0004101906 63 67 0.003980742 -0.0006424099 64 67 -0.007089509 0.001144101 65 67 0.01597157 -0.002577484 66 67 -0.06393453 0.01031772 67 67 0.1041544 -0.01637773 68 67 -0.06393453 0.01031772 69 67 0.01597157 -0.002577484 70 67 -0.007089509 0.001144101 71 67 0.003980742 -0.0006424099 72 67 -0.002541777 0.0004101906 73 67 0.001760065 -0.0002840383 74 67 -0.001288661 0.0002079635 75 67 0.0009826448 -0.0001585787 76 67 -0.0007727812 0.000124711 77 67 0.0006226054 -0.0001004757 78 67 -0.0005114288 8.253411e-05 79 67 0.0004268045 -6.887749e-05 80 67 -0.0003608797 5.823857e-05 148 67 0.001158892 0.0001030225 0 68 -0.0003608797 5.823857e-05 1 68 0.0003085011 -4.978574e-05 2 68 -0.0002661734 4.295492e-05 3 68 0.0002314578 -3.735254e-05 4 68 -0.0002026106 3.26972e-05 5 68 0.0001783582 -2.878335e-05 6 68 -0.0001577525 2.545802e-05 7 68 0.000140076 -2.26054e-05 8 68 -0.0001247774 2.013652e-05 9 68 0.0001114272 -1.798207e-05 10 68 -9.968672e-05 1.608739e-05 11 68 8.928565e-05 -1.440887e-05 12 68 -8.000611e-05 1.291134e-05 13 68 7.167061e-05 -1.156616e-05 14 68 -6.413319e-05 1.034978e-05 15 68 5.727273e-05 -9.242642e-06 16 68 -5.098776e-05 8.228377e-06 17 68 4.519256e-05 -7.293151e-06 18 68 -3.981401e-05 6.425164e-06 19 68 3.478917e-05 -5.614257e-06 20 68 -3.00633e-05 4.851599e-06 21 68 2.558831e-05 -4.129428e-06 22 68 -2.132146e-05 3.440846e-06 23 68 1.722429e-05 -2.779647e-06 24 68 -1.326172e-05 2.14017e-06 25 68 9.401297e-06 -1.517176e-06 26 68 -5.612495e-06 9.057414e-07 27 68 1.866144e-06 -3.011573e-07 28 68 1.866144e-06 -3.011573e-07 29 68 -5.612495e-06 9.057414e-07 30 68 9.401297e-06 -1.517176e-06 31 68 -1.326172e-05 2.14017e-06 32 68 1.722429e-05 -2.779647e-06 33 68 -2.132146e-05 3.440846e-06 34 68 2.558831e-05 -4.129428e-06 35 68 -3.00633e-05 4.851599e-06 36 68 3.478917e-05 -5.614257e-06 37 68 -3.981401e-05 6.425164e-06 38 68 4.519256e-05 -7.293151e-06 39 68 -5.098776e-05 8.228377e-06 40 68 5.727273e-05 -9.242642e-06 41 68 -6.413319e-05 1.034978e-05 42 68 7.167061e-05 -1.156616e-05 43 68 -8.000611e-05 1.291134e-05 44 68 8.928565e-05 -1.440887e-05 45 68 -9.968672e-05 1.608739e-05 46 68 0.0001114272 -1.798207e-05 47 68 -0.0001247774 2.013652e-05 48 68 0.000140076 -2.26054e-05 49 68 -0.0001577525 2.545802e-05 50 68 0.0001783582 -2.878335e-05 51 68 -0.0002026106 3.26972e-05 52 68 0.0002314578 -3.735254e-05 53 68 -0.0002661734 4.295492e-05 54 68 0.0003085011 -4.978574e-05 55 68 -0.0003608797 5.823857e-05 56 68 0.0004268045 -6.887749e-05 57 68 -0.0005114288 8.253411e-05 58 68 0.0006226054 -0.0001004757 59 68 -0.0007727812 0.000124711 60 68 0.0009826448 -0.0001585787 61 68 -0.001288661 0.0002079635 62 68 0.001760065 -0.0002840383 63 68 -0.002541777 0.0004101906 64 68 0.003980742 -0.0006424099 65 68 -0.007089509 0.001144101 66 68 0.01597157 -0.002577484 67 68 -0.06393453 0.01031772 68 68 0.1042493 -0.01642349 69 68 -0.06393453 0.01031772 70 68 0.01597157 -0.002577484 71 68 -0.007089509 0.001144101 72 68 0.003980742 -0.0006424099 73 68 -0.002541777 0.0004101906 74 68 0.001760065 -0.0002840383 75 68 -0.001288661 0.0002079635 76 68 0.0009826448 -0.0001585787 77 68 -0.0007727812 0.000124711 78 68 0.0006226054 -0.0001004757 79 68 -0.0005114288 8.253411e-05 80 68 0.0004268045 -6.887749e-05 149 68 0.001177026 0.000105012 0 69 0.0004268045 -6.887749e-05 1 69 -0.0003608797 5.823857e-05 2 69 0.0003085011 -4.978574e-05 3 69 -0.0002661734 4.295492e-05 4 69 0.0002314578 -3.735254e-05 5 69 -0.0002026106 3.26972e-05 6 69 0.0001783582 -2.878335e-05 7 69 -0.0001577525 2.545802e-05 8 69 0.000140076 -2.26054e-05 9 69 -0.0001247774 2.013652e-05 10 69 0.0001114272 -1.798207e-05 11 69 -9.968672e-05 1.608739e-05 12 69 8.928565e-05 -1.440887e-05 13 69 -8.000611e-05 1.291134e-05 14 69 7.167061e-05 -1.156616e-05 15 69 -6.413319e-05 1.034978e-05 16 69 5.727273e-05 -9.242642e-06 17 69 -5.098776e-05 8.228377e-06 18 69 4.519256e-05 -7.293151e-06 19 69 -3.981401e-05 6.425164e-06 20 69 3.478917e-05 -5.614257e-06 21 69 -3.00633e-05 4.851599e-06 22 69 2.558831e-05 -4.129428e-06 23 69 -2.132146e-05 3.440846e-06 24 69 1.722429e-05 -2.779647e-06 25 69 -1.326172e-05 2.14017e-06 26 69 9.401297e-06 -1.517176e-06 27 69 -5.612495e-06 9.057414e-07 28 69 1.866144e-06 -3.011573e-07 29 69 1.866144e-06 -3.011573e-07 30 69 -5.612495e-06 9.057414e-07 31 69 9.401297e-06 -1.517176e-06 32 69 -1.326172e-05 2.14017e-06 33 69 1.722429e-05 -2.779647e-06 34 69 -2.132146e-05 3.440846e-06 35 69 2.558831e-05 -4.129428e-06 36 69 -3.00633e-05 4.851599e-06 37 69 3.478917e-05 -5.614257e-06 38 69 -3.981401e-05 6.425164e-06 39 69 4.519256e-05 -7.293151e-06 40 69 -5.098776e-05 8.228377e-06 41 69 5.727273e-05 -9.242642e-06 42 69 -6.413319e-05 1.034978e-05 43 69 7.167061e-05 -1.156616e-05 44 69 -8.000611e-05 1.291134e-05 45 69 8.928565e-05 -1.440887e-05 46 69 -9.968672e-05 1.608739e-05 47 69 0.0001114272 -1.798207e-05 48 69 -0.0001247774 2.013652e-05 49 69 0.000140076 -2.26054e-05 50 69 -0.0001577525 2.545802e-05 51 69 0.0001783582 -2.878335e-05 52 69 -0.0002026106 3.26972e-05 53 69 0.0002314578 -3.735254e-05 54 69 -0.0002661734 4.295492e-05 55 69 0.0003085011 -4.978574e-05 56 69 -0.0003608797 5.823857e-05 57 69 0.0004268045 -6.887749e-05 58 69 -0.0005114288 8.253411e-05 59 69 0.0006226054 -0.0001004757 60 69 -0.0007727812 0.000124711 61 69 0.0009826448 -0.0001585787 62 69 -0.001288661 0.0002079635 63 69 0.001760065 -0.0002840383 64 69 -0.002541777 0.0004101906 65 69 0.003980742 -0.0006424099 66 69 -0.007089509 0.001144101 67 69 0.01597157 -0.002577484 68 69 -0.06393453 0.01031772 69 69 0.1043355 -0.01646587 70 69 -0.06393453 0.01031772 71 69 0.01597157 -0.002577484 72 69 -0.007089509 0.001144101 73 69 0.003980742 -0.0006424099 74 69 -0.002541777 0.0004101906 75 69 0.001760065 -0.0002840383 76 69 -0.001288661 0.0002079635 77 69 0.0009826448 -0.0001585787 78 69 -0.0007727812 0.000124711 79 69 0.0006226054 -0.0001004757 80 69 -0.0005114288 8.253411e-05 150 69 0.001195252 0.0001070192 0 70 -0.0005114288 8.253411e-05 1 70 0.0004268045 -6.887749e-05 2 70 -0.0003608797 5.823857e-05 3 70 0.0003085011 -4.978574e-05 4 70 -0.0002661734 4.295492e-05 5 70 0.0002314578 -3.735254e-05 6 70 -0.0002026106 3.26972e-05 7 70 0.0001783582 -2.878335e-05 8 70 -0.0001577525 2.545802e-05 9 70 0.000140076 -2.26054e-05 10 70 -0.0001247774 2.013652e-05 11 70 0.0001114272 -1.798207e-05 12 70 -9.968672e-05 1.608739e-05 13 70 8.928565e-05 -1.440887e-05 14 70 -8.000611e-05 1.291134e-05 15 70 7.167061e-05 -1.156616e-05 16 70 -6.413319e-05 1.034978e-05 17 70 5.727273e-05 -9.242642e-06 18 70 -5.098776e-05 8.228377e-06 19 70 4.519256e-05 -7.293151e-06 20 70 -3.981401e-05 6.425164e-06 21 70 3.478917e-05 -5.614257e-06 22 70 -3.00633e-05 4.851599e-06 23 70 2.558831e-05 -4.129428e-06 24 70 -2.132146e-05 3.440846e-06 25 70 1.722429e-05 -2.779647e-06 26 70 -1.326172e-05 2.14017e-06 27 70 9.401297e-06 -1.517176e-06 28 70 -5.612495e-06 9.057414e-07 29 70 1.866144e-06 -3.011573e-07 30 70 1.866144e-06 -3.011573e-07 31 70 -5.612495e-06 9.057414e-07 32 70 9.401297e-06 -1.517176e-06 33 70 -1.326172e-05 2.14017e-06 34 70 1.722429e-05 -2.779647e-06 35 70 -2.132146e-05 3.440846e-06 36 70 2.558831e-05 -4.129428e-06 37 70 -3.00633e-05 4.851599e-06 38 70 3.478917e-05 -5.614257e-06 39 70 -3.981401e-05 6.425164e-06 40 70 4.519256e-05 -7.293151e-06 41 70 -5.098776e-05 8.228377e-06 42 70 5.727273e-05 -9.242642e-06 43 70 -6.413319e-05 1.034978e-05 44 70 7.167061e-05 -1.156616e-05 45 70 -8.000611e-05 1.291134e-05 46 70 8.928565e-05 -1.440887e-05 47 70 -9.968672e-05 1.608739e-05 48 70 0.0001114272 -1.798207e-05 49 70 -0.0001247774 2.013652e-05 50 70 0.000140076 -2.26054e-05 51 70 -0.0001577525 2.545802e-05 52 70 0.0001783582 -2.878335e-05 53 70 -0.0002026106 3.26972e-05 54 70 0.0002314578 -3.735254e-05 55 70 -0.0002661734 4.295492e-05 56 70 0.0003085011 -4.978574e-05 57 70 -0.0003608797 5.823857e-05 58 70 0.0004268045 -6.887749e-05 59 70 -0.0005114288 8.253411e-05 60 70 0.0006226054 -0.0001004757 61 70 -0.0007727812 0.000124711 62 70 0.0009826448 -0.0001585787 63 70 -0.001288661 0.0002079635 64 70 0.001760065 -0.0002840383 65 70 -0.002541777 0.0004101906 66 70 0.003980742 -0.0006424099 67 70 -0.007089509 0.001144101 68 70 0.01597157 -0.002577484 69 70 -0.06393453 0.01031772 70 70 0.1044138 -0.0165051 71 70 -0.06393453 0.01031772 72 70 0.01597157 -0.002577484 73 70 -0.007089509 0.001144101 74 70 0.003980742 -0.0006424099 75 70 -0.002541777 0.0004101906 76 70 0.001760065 -0.0002840383 77 70 -0.001288661 0.0002079635 78 70 0.0009826448 -0.0001585787 79 70 -0.0007727812 0.000124711 80 70 0.0006226054 -0.0001004757 151 70 0.001213571 0.0001090442 0 71 0.0006226054 -0.0001004757 1 71 -0.0005114288 8.253411e-05 2 71 0.0004268045 -6.887749e-05 3 71 -0.0003608797 5.823857e-05 4 71 0.0003085011 -4.978574e-05 5 71 -0.0002661734 4.295492e-05 6 71 0.0002314578 -3.735254e-05 7 71 -0.0002026106 3.26972e-05 8 71 0.0001783582 -2.878335e-05 9 71 -0.0001577525 2.545802e-05 10 71 0.000140076 -2.26054e-05 11 71 -0.0001247774 2.013652e-05 12 71 0.0001114272 -1.798207e-05 13 71 -9.968672e-05 1.608739e-05 14 71 8.928565e-05 -1.440887e-05 15 71 -8.000611e-05 1.291134e-05 16 71 7.167061e-05 -1.156616e-05 17 71 -6.413319e-05 1.034978e-05 18 71 5.727273e-05 -9.242642e-06 19 71 -5.098776e-05 8.228377e-06 20 71 4.519256e-05 -7.293151e-06 21 71 -3.981401e-05 6.425164e-06 22 71 3.478917e-05 -5.614257e-06 23 71 -3.00633e-05 4.851599e-06 24 71 2.558831e-05 -4.129428e-06 25 71 -2.132146e-05 3.440846e-06 26 71 1.722429e-05 -2.779647e-06 27 71 -1.326172e-05 2.14017e-06 28 71 9.401297e-06 -1.517176e-06 29 71 -5.612495e-06 9.057414e-07 30 71 1.866144e-06 -3.011573e-07 31 71 1.866144e-06 -3.011573e-07 32 71 -5.612495e-06 9.057414e-07 33 71 9.401297e-06 -1.517176e-06 34 71 -1.326172e-05 2.14017e-06 35 71 1.722429e-05 -2.779647e-06 36 71 -2.132146e-05 3.440846e-06 37 71 2.558831e-05 -4.129428e-06 38 71 -3.00633e-05 4.851599e-06 39 71 3.478917e-05 -5.614257e-06 40 71 -3.981401e-05 6.425164e-06 41 71 4.519256e-05 -7.293151e-06 42 71 -5.098776e-05 8.228377e-06 43 71 5.727273e-05 -9.242642e-06 44 71 -6.413319e-05 1.034978e-05 45 71 7.167061e-05 -1.156616e-05 46 71 -8.000611e-05 1.291134e-05 47 71 8.928565e-05 -1.440887e-05 48 71 -9.968672e-05 1.608739e-05 49 71 0.0001114272 -1.798207e-05 50 71 -0.0001247774 2.013652e-05 51 71 0.000140076 -2.26054e-05 52 71 -0.0001577525 2.545802e-05 53 71 0.0001783582 -2.878335e-05 54 71 -0.0002026106 3.26972e-05 55 71 0.0002314578 -3.735254e-05 56 71 -0.0002661734 4.295492e-05 57 71 0.0003085011 -4.978574e-05 58 71 -0.0003608797 5.823857e-05 59 71 0.0004268045 -6.887749e-05 60 71 -0.0005114288 8.253411e-05 61 71 0.0006226054 -0.0001004757 62 71 -0.0007727812 0.000124711 63 71 0.0009826448 -0.0001585787 64 71 -0.001288661 0.0002079635 65 71 0.001760065 -0.0002840383 66 71 -0.002541777 0.0004101906 67 71 0.003980742 -0.0006424099 68 71 -0.007089509 0.001144101 69 71 0.01597157 -0.002577484 70 71 -0.06393453 0.01031772 71 71 0.1044848 -0.0165414 72 71 -0.06393453 0.01031772 73 71 0.01597157 -0.002577484 74 71 -0.007089509 0.001144101 75 71 0.003980742 -0.0006424099 76 71 -0.002541777 0.0004101906 77 71 0.001760065 -0.0002840383 78 71 -0.001288661 0.0002079635 79 71 0.0009826448 -0.0001585787 80 71 -0.0007727812 0.000124711 152 71 0.001231983 0.0001110871 0 72 -0.0007727812 0.000124711 1 72 0.0006226054 -0.0001004757 2 72 -0.0005114288 8.253411e-05 3 72 0.0004268045 -6.887749e-05 4 72 -0.0003608797 5.823857e-05 5 72 0.0003085011 -4.978574e-05 6 72 -0.0002661734 4.295492e-05 7 72 0.0002314578 -3.735254e-05 8 72 -0.0002026106 3.26972e-05 9 72 0.0001783582 -2.878335e-05 10 72 -0.0001577525 2.545802e-05 11 72 0.000140076 -2.26054e-05 12 72 -0.0001247774 2.013652e-05 13 72 0.0001114272 -1.798207e-05 14 72 -9.968672e-05 1.608739e-05 15 72 8.928565e-05 -1.440887e-05 16 72 -8.000611e-05 1.291134e-05 17 72 7.167061e-05 -1.156616e-05 18 72 -6.413319e-05 1.034978e-05 19 72 5.727273e-05 -9.242642e-06 20 72 -5.098776e-05 8.228377e-06 21 72 4.519256e-05 -7.293151e-06 22 72 -3.981401e-05 6.425164e-06 23 72 3.478917e-05 -5.614257e-06 24 72 -3.00633e-05 4.851599e-06 25 72 2.558831e-05 -4.129428e-06 26 72 -2.132146e-05 3.440846e-06 27 72 1.722429e-05 -2.779647e-06 28 72 -1.326172e-05 2.14017e-06 29 72 9.401297e-06 -1.517176e-06 30 72 -5.612495e-06 9.057414e-07 31 72 1.866144e-06 -3.011573e-07 32 72 1.866144e-06 -3.011573e-07 33 72 -5.612495e-06 9.057414e-07 34 72 9.401297e-06 -1.517176e-06 35 72 -1.326172e-05 2.14017e-06 36 72 1.722429e-05 -2.779647e-06 37 72 -2.132146e-05 3.440846e-06 38 72 2.558831e-05 -4.129428e-06 39 72 -3.00633e-05 4.851599e-06 40 72 3.478917e-05 -5.614257e-06 41 72 -3.981401e-05 6.425164e-06 42 72 4.519256e-05 -7.293151e-06 43 72 -5.098776e-05 8.228377e-06 44 72 5.727273e-05 -9.242642e-06 45 72 -6.413319e-05 1.034978e-05 46 72 7.167061e-05 -1.156616e-05 47 72 -8.000611e-05 1.291134e-05 48 72 8.928565e-05 -1.440887e-05 49 72 -9.968672e-05 1.608739e-05 50 72 0.0001114272 -1.798207e-05 51 72 -0.0001247774 2.013652e-05 52 72 0.000140076 -2.26054e-05 53 72 -0.0001577525 2.545802e-05 54 72 0.0001783582 -2.878335e-05 55 72 -0.0002026106 3.26972e-05 56 72 0.0002314578 -3.735254e-05 57 72 -0.0002661734 4.295492e-05 58 72 0.0003085011 -4.978574e-05 59 72 -0.0003608797 5.823857e-05 60 72 0.0004268045 -6.887749e-05 61 72 -0.0005114288 8.253411e-05 62 72 0.0006226054 -0.0001004757 63 72 -0.0007727812 0.000124711 64 72 0.0009826448 -0.0001585787 65 72 -0.001288661 0.0002079635 66 72 0.001760065 -0.0002840383 67 72 -0.002541777 0.0004101906 68 72 0.003980742 -0.0006424099 69 72 -0.007089509 0.001144101 70 72 0.01597157 -0.002577484 71 72 -0.06393453 0.01031772 72 72 0.1045493 -0.01657498 73 72 -0.06393453 0.01031772 74 72 0.01597157 -0.002577484 75 72 -0.007089509 0.001144101 76 72 0.003980742 -0.0006424099 77 72 -0.002541777 0.0004101906 78 72 0.001760065 -0.0002840383 79 72 -0.001288661 0.0002079635 80 72 0.0009826448 -0.0001585787 153 72 0.001250489 0.0001131481 0 73 0.0009826448 -0.0001585787 1 73 -0.0007727812 0.000124711 2 73 0.0006226054 -0.0001004757 3 73 -0.0005114288 8.253411e-05 4 73 0.0004268045 -6.887749e-05 5 73 -0.0003608797 5.823857e-05 6 73 0.0003085011 -4.978574e-05 7 73 -0.0002661734 4.295492e-05 8 73 0.0002314578 -3.735254e-05 9 73 -0.0002026106 3.26972e-05 10 73 0.0001783582 -2.878335e-05 11 73 -0.0001577525 2.545802e-05 12 73 0.000140076 -2.26054e-05 13 73 -0.0001247774 2.013652e-05 14 73 0.0001114272 -1.798207e-05 15 73 -9.968672e-05 1.608739e-05 16 73 8.928565e-05 -1.440887e-05 17 73 -8.000611e-05 1.291134e-05 18 73 7.167061e-05 -1.156616e-05 19 73 -6.413319e-05 1.034978e-05 20 73 5.727273e-05 -9.242642e-06 21 73 -5.098776e-05 8.228377e-06 22 73 4.519256e-05 -7.293151e-06 23 73 -3.981401e-05 6.425164e-06 24 73 3.478917e-05 -5.614257e-06 25 73 -3.00633e-05 4.851599e-06 26 73 2.558831e-05 -4.129428e-06 27 73 -2.132146e-05 3.440846e-06 28 73 1.722429e-05 -2.779647e-06 29 73 -1.326172e-05 2.14017e-06 30 73 9.401297e-06 -1.517176e-06 31 73 -5.612495e-06 9.057414e-07 32 73 1.866144e-06 -3.011573e-07 33 73 1.866144e-06 -3.011573e-07 34 73 -5.612495e-06 9.057414e-07 35 73 9.401297e-06 -1.517176e-06 36 73 -1.326172e-05 2.14017e-06 37 73 1.722429e-05 -2.779647e-06 38 73 -2.132146e-05 3.440846e-06 39 73 2.558831e-05 -4.129428e-06 40 73 -3.00633e-05 4.851599e-06 41 73 3.478917e-05 -5.614257e-06 42 73 -3.981401e-05 6.425164e-06 43 73 4.519256e-05 -7.293151e-06 44 73 -5.098776e-05 8.228377e-06 45 73 5.727273e-05 -9.242642e-06 46 73 -6.413319e-05 1.034978e-05 47 73 7.167061e-05 -1.156616e-05 48 73 -8.000611e-05 1.291134e-05 49 73 8.928565e-05 -1.440887e-05 50 73 -9.968672e-05 1.608739e-05 51 73 0.0001114272 -1.798207e-05 52 73 -0.0001247774 2.013652e-05 53 73 0.000140076 -2.26054e-05 54 73 -0.0001577525 2.545802e-05 55 73 0.0001783582 -2.878335e-05 56 73 -0.0002026106 3.26972e-05 57 73 0.0002314578 -3.735254e-05 58 73 -0.0002661734 4.295492e-05 59 73 0.0003085011 -4.978574e-05 60 73 -0.0003608797 5.823857e-05 61 73 0.0004268045 -6.887749e-05 62 73 -0.0005114288 8.253411e-05 63 73 0.0006226054 -0.0001004757 64 73 -0.0007727812 0.000124711 65 73 0.0009826448 -0.0001585787 66 73 -0.001288661 0.0002079635 67 73 0.001760065 -0.0002840383 68 73 -0.002541777 0.0004101906 69 73 0.003980742 -0.0006424099 70 73 -0.007089509 0.001144101 71 73 0.01597157 -0.002577484 72 73 -0.06393453 0.01031772 73 73 0.1046079 -0.01660604 74 73 -0.06393453 0.01031772 75 73 0.01597157 -0.002577484 76 73 -0.007089509 0.001144101 77 73 0.003980742 -0.0006424099 78 73 -0.002541777 0.0004101906 79 73 0.001760065 -0.0002840383 80 73 -0.001288661 0.0002079635 154 73 0.001269089 0.0001152273 0 74 -0.001288661 0.0002079635 1 74 0.0009826448 -0.0001585787 2 74 -0.0007727812 0.000124711 3 74 0.0006226054 -0.0001004757 4 74 -0.0005114288 8.253411e-05 5 74 0.0004268045 -6.887749e-05 6 74 -0.0003608797 5.823857e-05 7 74 0.0003085011 -4.978574e-05 8 74 -0.0002661734 4.295492e-05 9 74 0.0002314578 -3.735254e-05 10 74 -0.0002026106 3.26972e-05 11 74 0.0001783582 -2.878335e-05 12 74 -0.0001577525 2.545802e-05 13 74 0.000140076 -2.26054e-05 14 74 -0.0001247774 2.013652e-05 15 74 0.0001114272 -1.798207e-05 16 74 -9.968672e-05 1.608739e-05 17 74 8.928565e-05 -1.440887e-05 18 74 -8.000611e-05 1.291134e-05 19 74 7.167061e-05 -1.156616e-05 20 74 -6.413319e-05 1.034978e-05 21 74 5.727273e-05 -9.242642e-06 22 74 -5.098776e-05 8.228377e-06 23 74 4.519256e-05 -7.293151e-06 24 74 -3.981401e-05 6.425164e-06 25 74 3.478917e-05 -5.614257e-06 26 74 -3.00633e-05 4.851599e-06 27 74 2.558831e-05 -4.129428e-06 28 74 -2.132146e-05 3.440846e-06 29 74 1.722429e-05 -2.779647e-06 30 74 -1.326172e-05 2.14017e-06 31 74 9.401297e-06 -1.517176e-06 32 74 -5.612495e-06 9.057414e-07 33 74 1.866144e-06 -3.011573e-07 34 74 1.866144e-06 -3.011573e-07 35 74 -5.612495e-06 9.057414e-07 36 74 9.401297e-06 -1.517176e-06 37 74 -1.326172e-05 2.14017e-06 38 74 1.722429e-05 -2.779647e-06 39 74 -2.132146e-05 3.440846e-06 40 74 2.558831e-05 -4.129428e-06 41 74 -3.00633e-05 4.851599e-06 42 74 3.478917e-05 -5.614257e-06 43 74 -3.981401e-05 6.425164e-06 44 74 4.519256e-05 -7.293151e-06 45 74 -5.098776e-05 8.228377e-06 46 74 5.727273e-05 -9.242642e-06 47 74 -6.413319e-05 1.034978e-05 48 74 7.167061e-05 -1.156616e-05 49 74 -8.000611e-05 1.291134e-05 50 74 8.928565e-05 -1.440887e-05 51 74 -9.968672e-05 1.608739e-05 52 74 0.0001114272 -1.798207e-05 53 74 -0.0001247774 2.013652e-05 54 74 0.000140076 -2.26054e-05 55 74 -0.0001577525 2.545802e-05 56 74 0.0001783582 -2.878335e-05 57 74 -0.0002026106 3.26972e-05 58 74 0.0002314578 -3.735254e-05 59 74 -0.0002661734 4.295492e-05 60 74 0.0003085011 -4.978574e-05 61 74 -0.0003608797 5.823857e-05 62 74 0.0004268045 -6.887749e-05 63 74 -0.0005114288 8.253411e-05 64 74 0.0006226054 -0.0001004757 65 74 -0.0007727812 0.000124711 66 74 0.0009826448 -0.0001585787 67 74 -0.001288661 0.0002079635 68 74 0.001760065 -0.0002840383 69 74 -0.002541777 0.0004101906 70 74 0.003980742 -0.0006424099 71 74 -0.007089509 0.001144101 72 74 0.01597157 -0.002577484 73 74 -0.06393453 0.01031772 74 74 0.104661 -0.01663475 75 74 -0.06393453 0.01031772 76 74 0.01597157 -0.002577484 77 74 -0.007089509 0.001144101 78 74 0.003980742 -0.0006424099 79 74 -0.002541777 0.0004101906 80 74 0.001760065 -0.0002840383 155 74 0.001287783 0.0001173249 0 75 0.001760065 -0.0002840383 1 75 -0.001288661 0.0002079635 2 75 0.0009826448 -0.0001585787 3 75 -0.0007727812 0.000124711 4 75 0.0006226054 -0.0001004757 5 75 -0.0005114288 8.253411e-05 6 75 0.0004268045 -6.887749e-05 7 75 -0.0003608797 5.823857e-05 8 75 0.0003085011 -4.978574e-05 9 75 -0.0002661734 4.295492e-05 10 75 0.0002314578 -3.735254e-05 11 75 -0.0002026106 3.26972e-05 12 75 0.0001783582 -2.878335e-05 13 75 -0.0001577525 2.545802e-05 14 75 0.000140076 -2.26054e-05 15 75 -0.0001247774 2.013652e-05 16 75 0.0001114272 -1.798207e-05 17 75 -9.968672e-05 1.608739e-05 18 75 8.928565e-05 -1.440887e-05 19 75 -8.000611e-05 1.291134e-05 20 75 7.167061e-05 -1.156616e-05 21 75 -6.413319e-05 1.034978e-05 22 75 5.727273e-05 -9.242642e-06 23 75 -5.098776e-05 8.228377e-06 24 75 4.519256e-05 -7.293151e-06 25 75 -3.981401e-05 6.425164e-06 26 75 3.478917e-05 -5.614257e-06 27 75 -3.00633e-05 4.851599e-06 28 75 2.558831e-05 -4.129428e-06 29 75 -2.132146e-05 3.440846e-06 30 75 1.722429e-05 -2.779647e-06 31 75 -1.326172e-05 2.14017e-06 32 75 9.401297e-06 -1.517176e-06 33 75 -5.612495e-06 9.057414e-07 34 75 1.866144e-06 -3.011573e-07 35 75 1.866144e-06 -3.011573e-07 36 75 -5.612495e-06 9.057414e-07 37 75 9.401297e-06 -1.517176e-06 38 75 -1.326172e-05 2.14017e-06 39 75 1.722429e-05 -2.779647e-06 40 75 -2.132146e-05 3.440846e-06 41 75 2.558831e-05 -4.129428e-06 42 75 -3.00633e-05 4.851599e-06 43 75 3.478917e-05 -5.614257e-06 44 75 -3.981401e-05 6.425164e-06 45 75 4.519256e-05 -7.293151e-06 46 75 -5.098776e-05 8.228377e-06 47 75 5.727273e-05 -9.242642e-06 48 75 -6.413319e-05 1.034978e-05 49 75 7.167061e-05 -1.156616e-05 50 75 -8.000611e-05 1.291134e-05 51 75 8.928565e-05 -1.440887e-05 52 75 -9.968672e-05 1.608739e-05 53 75 0.0001114272 -1.798207e-05 54 75 -0.0001247774 2.013652e-05 55 75 0.000140076 -2.26054e-05 56 75 -0.0001577525 2.545802e-05 57 75 0.0001783582 -2.878335e-05 58 75 -0.0002026106 3.26972e-05 59 75 0.0002314578 -3.735254e-05 60 75 -0.0002661734 4.295492e-05 61 75 0.0003085011 -4.978574e-05 62 75 -0.0003608797 5.823857e-05 63 75 0.0004268045 -6.887749e-05 64 75 -0.0005114288 8.253411e-05 65 75 0.0006226054 -0.0001004757 66 75 -0.0007727812 0.000124711 67 75 0.0009826448 -0.0001585787 68 75 -0.001288661 0.0002079635 69 75 0.001760065 -0.0002840383 70 75 -0.002541777 0.0004101906 71 75 0.003980742 -0.0006424099 72 75 -0.007089509 0.001144101 73 75 0.01597157 -0.002577484 74 75 -0.06393453 0.01031772 75 75 0.1047093 -0.01666128 76 75 -0.06393453 0.01031772 77 75 0.01597157 -0.002577484 78 75 -0.007089509 0.001144101 79 75 0.003980742 -0.0006424099 80 75 -0.002541777 0.0004101906 156 75 0.001306573 0.0001194409 0 76 -0.002541777 0.0004101906 1 76 0.001760065 -0.0002840383 2 76 -0.001288661 0.0002079635 3 76 0.0009826448 -0.0001585787 4 76 -0.0007727812 0.000124711 5 76 0.0006226054 -0.0001004757 6 76 -0.0005114288 8.253411e-05 7 76 0.0004268045 -6.887749e-05 8 76 -0.0003608797 5.823857e-05 9 76 0.0003085011 -4.978574e-05 10 76 -0.0002661734 4.295492e-05 11 76 0.0002314578 -3.735254e-05 12 76 -0.0002026106 3.26972e-05 13 76 0.0001783582 -2.878335e-05 14 76 -0.0001577525 2.545802e-05 15 76 0.000140076 -2.26054e-05 16 76 -0.0001247774 2.013652e-05 17 76 0.0001114272 -1.798207e-05 18 76 -9.968672e-05 1.608739e-05 19 76 8.928565e-05 -1.440887e-05 20 76 -8.000611e-05 1.291134e-05 21 76 7.167061e-05 -1.156616e-05 22 76 -6.413319e-05 1.034978e-05 23 76 5.727273e-05 -9.242642e-06 24 76 -5.098776e-05 8.228377e-06 25 76 4.519256e-05 -7.293151e-06 26 76 -3.981401e-05 6.425164e-06 27 76 3.478917e-05 -5.614257e-06 28 76 -3.00633e-05 4.851599e-06 29 76 2.558831e-05 -4.129428e-06 30 76 -2.132146e-05 3.440846e-06 31 76 1.722429e-05 -2.779647e-06 32 76 -1.326172e-05 2.14017e-06 33 76 9.401297e-06 -1.517176e-06 34 76 -5.612495e-06 9.057414e-07 35 76 1.866144e-06 -3.011573e-07 36 76 1.866144e-06 -3.011573e-07 37 76 -5.612495e-06 9.057414e-07 38 76 9.401297e-06 -1.517176e-06 39 76 -1.326172e-05 2.14017e-06 40 76 1.722429e-05 -2.779647e-06 41 76 -2.132146e-05 3.440846e-06 42 76 2.558831e-05 -4.129428e-06 43 76 -3.00633e-05 4.851599e-06 44 76 3.478917e-05 -5.614257e-06 45 76 -3.981401e-05 6.425164e-06 46 76 4.519256e-05 -7.293151e-06 47 76 -5.098776e-05 8.228377e-06 48 76 5.727273e-05 -9.242642e-06 49 76 -6.413319e-05 1.034978e-05 50 76 7.167061e-05 -1.156616e-05 51 76 -8.000611e-05 1.291134e-05 52 76 8.928565e-05 -1.440887e-05 53 76 -9.968672e-05 1.608739e-05 54 76 0.0001114272 -1.798207e-05 55 76 -0.0001247774 2.013652e-05 56 76 0.000140076 -2.26054e-05 57 76 -0.0001577525 2.545802e-05 58 76 0.0001783582 -2.878335e-05 59 76 -0.0002026106 3.26972e-05 60 76 0.0002314578 -3.735254e-05 61 76 -0.0002661734 4.295492e-05 62 76 0.0003085011 -4.978574e-05 63 76 -0.0003608797 5.823857e-05 64 76 0.0004268045 -6.887749e-05 65 76 -0.0005114288 8.253411e-05 66 76 0.0006226054 -0.0001004757 67 76 -0.0007727812 0.000124711 68 76 0.0009826448 -0.0001585787 69 76 -0.001288661 0.0002079635 70 76 0.001760065 -0.0002840383 71 76 -0.002541777 0.0004101906 72 76 0.003980742 -0.0006424099 73 76 -0.007089509 0.001144101 74 76 0.01597157 -0.002577484 75 76 -0.06393453 0.01031772 76 76 0.1047531 -0.01668579 77 76 -0.06393453 0.01031772 78 76 0.01597157 -0.002577484 79 76 -0.007089509 0.001144101 80 76 0.003980742 -0.0006424099 157 76 0.001325458 0.0001215755 0 77 0.003980742 -0.0006424099 1 77 -0.002541777 0.0004101906 2 77 0.001760065 -0.0002840383 3 77 -0.001288661 0.0002079635 4 77 0.0009826448 -0.0001585787 5 77 -0.0007727812 0.000124711 6 77 0.0006226054 -0.0001004757 7 77 -0.0005114288 8.253411e-05 8 77 0.0004268045 -6.887749e-05 9 77 -0.0003608797 5.823857e-05 10 77 0.0003085011 -4.978574e-05 11 77 -0.0002661734 4.295492e-05 12 77 0.0002314578 -3.735254e-05 13 77 -0.0002026106 3.26972e-05 14 77 0.0001783582 -2.878335e-05 15 77 -0.0001577525 2.545802e-05 16 77 0.000140076 -2.26054e-05 17 77 -0.0001247774 2.013652e-05 18 77 0.0001114272 -1.798207e-05 19 77 -9.968672e-05 1.608739e-05 20 77 8.928565e-05 -1.440887e-05 21 77 -8.000611e-05 1.291134e-05 22 77 7.167061e-05 -1.156616e-05 23 77 -6.413319e-05 1.034978e-05 24 77 5.727273e-05 -9.242642e-06 25 77 -5.098776e-05 8.228377e-06 26 77 4.519256e-05 -7.293151e-06 27 77 -3.981401e-05 6.425164e-06 28 77 3.478917e-05 -5.614257e-06 29 77 -3.00633e-05 4.851599e-06 30 77 2.558831e-05 -4.129428e-06 31 77 -2.132146e-05 3.440846e-06 32 77 1.722429e-05 -2.779647e-06 33 77 -1.326172e-05 2.14017e-06 34 77 9.401297e-06 -1.517176e-06 35 77 -5.612495e-06 9.057414e-07 36 77 1.866144e-06 -3.011573e-07 37 77 1.866144e-06 -3.011573e-07 38 77 -5.612495e-06 9.057414e-07 39 77 9.401297e-06 -1.517176e-06 40 77 -1.326172e-05 2.14017e-06 41 77 1.722429e-05 -2.779647e-06 42 77 -2.132146e-05 3.440846e-06 43 77 2.558831e-05 -4.129428e-06 44 77 -3.00633e-05 4.851599e-06 45 77 3.478917e-05 -5.614257e-06 46 77 -3.981401e-05 6.425164e-06 47 77 4.519256e-05 -7.293151e-06 48 77 -5.098776e-05 8.228377e-06 49 77 5.727273e-05 -9.242642e-06 50 77 -6.413319e-05 1.034978e-05 51 77 7.167061e-05 -1.156616e-05 52 77 -8.000611e-05 1.291134e-05 53 77 8.928565e-05 -1.440887e-05 54 77 -9.968672e-05 1.608739e-05 55 77 0.0001114272 -1.798207e-05 56 77 -0.0001247774 2.013652e-05 57 77 0.000140076 -2.26054e-05 58 77 -0.0001577525 2.545802e-05 59 77 0.0001783582 -2.878335e-05 60 77 -0.0002026106 3.26972e-05 61 77 0.0002314578 -3.735254e-05 62 77 -0.0002661734 4.295492e-05 63 77 0.0003085011 -4.978574e-05 64 77 -0.0003608797 5.823857e-05 65 77 0.0004268045 -6.887749e-05 66 77 -0.0005114288 8.253411e-05 67 77 0.0006226054 -0.0001004757 68 77 -0.0007727812 0.000124711 69 77 0.0009826448 -0.0001585787 70 77 -0.001288661 0.0002079635 71 77 0.001760065 -0.0002840383 72 77 -0.002541777 0.0004101906 73 77 0.003980742 -0.0006424099 74 77 -0.007089509 0.001144101 75 77 0.01597157 -0.002577484 76 77 -0.06393453 0.01031772 77 77 0.1047928 -0.01670843 78 77 -0.06393453 0.01031772 79 77 0.01597157 -0.002577484 80 77 -0.007089509 0.001144101 158 77 0.001344439 0.0001237288 0 78 -0.007089509 0.001144101 1 78 0.003980742 -0.0006424099 2 78 -0.002541777 0.0004101906 3 78 0.001760065 -0.0002840383 4 78 -0.001288661 0.0002079635 5 78 0.0009826448 -0.0001585787 6 78 -0.0007727812 0.000124711 7 78 0.0006226054 -0.0001004757 8 78 -0.0005114288 8.253411e-05 9 78 0.0004268045 -6.887749e-05 10 78 -0.0003608797 5.823857e-05 11 78 0.0003085011 -4.978574e-05 12 78 -0.0002661734 4.295492e-05 13 78 0.0002314578 -3.735254e-05 14 78 -0.0002026106 3.26972e-05 15 78 0.0001783582 -2.878335e-05 16 78 -0.0001577525 2.545802e-05 17 78 0.000140076 -2.26054e-05 18 78 -0.0001247774 2.013652e-05 19 78 0.0001114272 -1.798207e-05 20 78 -9.968672e-05 1.608739e-05 21 78 8.928565e-05 -1.440887e-05 22 78 -8.000611e-05 1.291134e-05 23 78 7.167061e-05 -1.156616e-05 24 78 -6.413319e-05 1.034978e-05 25 78 5.727273e-05 -9.242642e-06 26 78 -5.098776e-05 8.228377e-06 27 78 4.519256e-05 -7.293151e-06 28 78 -3.981401e-05 6.425164e-06 29 78 3.478917e-05 -5.614257e-06 30 78 -3.00633e-05 4.851599e-06 31 78 2.558831e-05 -4.129428e-06 32 78 -2.132146e-05 3.440846e-06 33 78 1.722429e-05 -2.779647e-06 34 78 -1.326172e-05 2.14017e-06 35 78 9.401297e-06 -1.517176e-06 36 78 -5.612495e-06 9.057414e-07 37 78 1.866144e-06 -3.011573e-07 38 78 1.866144e-06 -3.011573e-07 39 78 -5.612495e-06 9.057414e-07 40 78 9.401297e-06 -1.517176e-06 41 78 -1.326172e-05 2.14017e-06 42 78 1.722429e-05 -2.779647e-06 43 78 -2.132146e-05 3.440846e-06 44 78 2.558831e-05 -4.129428e-06 45 78 -3.00633e-05 4.851599e-06 46 78 3.478917e-05 -5.614257e-06 47 78 -3.981401e-05 6.425164e-06 48 78 4.519256e-05 -7.293151e-06 49 78 -5.098776e-05 8.228377e-06 50 78 5.727273e-05 -9.242642e-06 51 78 -6.413319e-05 1.034978e-05 52 78 7.167061e-05 -1.156616e-05 53 78 -8.000611e-05 1.291134e-05 54 78 8.928565e-05 -1.440887e-05 55 78 -9.968672e-05 1.608739e-05 56 78 0.0001114272 -1.798207e-05 57 78 -0.0001247774 2.013652e-05 58 78 0.000140076 -2.26054e-05 59 78 -0.0001577525 2.545802e-05 60 78 0.0001783582 -2.878335e-05 61 78 -0.0002026106 3.26972e-05 62 78 0.0002314578 -3.735254e-05 63 78 -0.0002661734 4.295492e-05 64 78 0.0003085011 -4.978574e-05 65 78 -0.0003608797 5.823857e-05 66 78 0.0004268045 -6.887749e-05 67 78 -0.0005114288 8.253411e-05 68 78 0.0006226054 -0.0001004757 69 78 -0.0007727812 0.000124711 70 78 0.0009826448 -0.0001585787 71 78 -0.001288661 0.0002079635 72 78 0.001760065 -0.0002840383 73 78 -0.002541777 0.0004101906 74 78 0.003980742 -0.0006424099 75 78 -0.007089509 0.001144101 76 78 0.01597157 -0.002577484 77 78 -0.06393453 0.01031772 78 78 0.1048289 -0.01672934 79 78 -0.06393453 0.01031772 80 78 0.01597157 -0.002577484 159 78 0.001363516 0.0001259011 0 79 0.01597157 -0.002577484 1 79 -0.007089509 0.001144101 2 79 0.003980742 -0.0006424099 3 79 -0.002541777 0.0004101906 4 79 0.001760065 -0.0002840383 5 79 -0.001288661 0.0002079635 6 79 0.0009826448 -0.0001585787 7 79 -0.0007727812 0.000124711 8 79 0.0006226054 -0.0001004757 9 79 -0.0005114288 8.253411e-05 10 79 0.0004268045 -6.887749e-05 11 79 -0.0003608797 5.823857e-05 12 79 0.0003085011 -4.978574e-05 13 79 -0.0002661734 4.295492e-05 14 79 0.0002314578 -3.735254e-05 15 79 -0.0002026106 3.26972e-05 16 79 0.0001783582 -2.878335e-05 17 79 -0.0001577525 2.545802e-05 18 79 0.000140076 -2.26054e-05 19 79 -0.0001247774 2.013652e-05 20 79 0.0001114272 -1.798207e-05 21 79 -9.968672e-05 1.608739e-05 22 79 8.928565e-05 -1.440887e-05 23 79 -8.000611e-05 1.291134e-05 24 79 7.167061e-05 -1.156616e-05 25 79 -6.413319e-05 1.034978e-05 26 79 5.727273e-05 -9.242642e-06 27 79 -5.098776e-05 8.228377e-06 28 79 4.519256e-05 -7.293151e-06 29 79 -3.981401e-05 6.425164e-06 30 79 3.478917e-05 -5.614257e-06 31 79 -3.00633e-05 4.851599e-06 32 79 2.558831e-05 -4.129428e-06 33 79 -2.132146e-05 3.440846e-06 34 79 1.722429e-05 -2.779647e-06 35 79 -1.326172e-05 2.14017e-06 36 79 9.401297e-06 -1.517176e-06 37 79 -5.612495e-06 9.057414e-07 38 79 1.866144e-06 -3.011573e-07 39 79 1.866144e-06 -3.011573e-07 40 79 -5.612495e-06 9.057414e-07 41 79 9.401297e-06 -1.517176e-06 42 79 -1.326172e-05 2.14017e-06 43 79 1.722429e-05 -2.779647e-06 44 79 -2.132146e-05 3.440846e-06 45 79 2.558831e-05 -4.129428e-06 46 79 -3.00633e-05 4.851599e-06 47 79 3.478917e-05 -5.614257e-06 48 79 -3.981401e-05 6.425164e-06 49 79 4.519256e-05 -7.293151e-06 50 79 -5.098776e-05 8.228377e-06 51 79 5.727273e-05 -9.242642e-06 52 79 -6.413319e-05 1.034978e-05 53 79 7.167061e-05 -1.156616e-05 54 79 -8.000611e-05 1.291134e-05 55 79 8.928565e-05 -1.440887e-05 56 79 -9.968672e-05 1.608739e-05 57 79 0.0001114272 -1.798207e-05 58 79 -0.0001247774 2.013652e-05 59 79 0.000140076 -2.26054e-05 60 79 -0.0001577525 2.545802e-05 61 79 0.0001783582 -2.878335e-05 62 79 -0.0002026106 3.26972e-05 63 79 0.0002314578 -3.735254e-05 64 79 -0.0002661734 4.295492e-05 65 79 0.0003085011 -4.978574e-05 66 79 -0.0003608797 5.823857e-05 67 79 0.0004268045 -6.887749e-05 68 79 -0.0005114288 8.253411e-05 69 79 0.0006226054 -0.0001004757 70 79 -0.0007727812 0.000124711 71 79 0.0009826448 -0.0001585787 72 79 -0.001288661 0.0002079635 73 79 0.001760065 -0.0002840383 74 79 -0.002541777 0.0004101906 75 79 0.003980742 -0.0006424099 76 79 -0.007089509 0.001144101 77 79 0.01597157 -0.002577484 78 79 -0.06393453 0.01031772 79 79 0.1048616 -0.01674864 80 79 -0.06393453 0.01031772 160 79 0.00138269 0.0001280923 0 80 -0.06393453 0.01031772 1 80 0.01597157 -0.002577484 2 80 -0.007089509 0.001144101 3 80 0.003980742 -0.0006424099 4 80 -0.002541777 0.0004101906 5 80 0.001760065 -0.0002840383 6 80 -0.001288661 0.0002079635 7 80 0.0009826448 -0.0001585787 8 80 -0.0007727812 0.000124711 9 80 0.0006226054 -0.0001004757 10 80 -0.0005114288 8.253411e-05 11 80 0.0004268045 -6.887749e-05 12 80 -0.0003608797 5.823857e-05 13 80 0.0003085011 -4.978574e-05 14 80 -0.0002661734 4.295492e-05 15 80 0.0002314578 -3.735254e-05 16 80 -0.0002026106 3.26972e-05 17 80 0.0001783582 -2.878335e-05 18 80 -0.0001577525 2.545802e-05 19 80 0.000140076 -2.26054e-05 20 80 -0.0001247774 2.013652e-05 21 80 0.0001114272 -1.798207e-05 22 80 -9.968672e-05 1.608739e-05 23 80 8.928565e-05 -1.440887e-05 24 80 -8.000611e-05 1.291134e-05 25 80 7.167061e-05 -1.156616e-05 26 80 -6.413319e-05 1.034978e-05 27 80 5.727273e-05 -9.242642e-06 28 80 -5.098776e-05 8.228377e-06 29 80 4.519256e-05 -7.293151e-06 30 80 -3.981401e-05 6.425164e-06 31 80 3.478917e-05 -5.614257e-06 32 80 -3.00633e-05 4.851599e-06 33 80 2.558831e-05 -4.129428e-06 34 80 -2.132146e-05 3.440846e-06 35 80 1.722429e-05 -2.779647e-06 36 80 -1.326172e-05 2.14017e-06 37 80 9.401297e-06 -1.517176e-06 38 80 -5.612495e-06 9.057414e-07 39 80 1.866144e-06 -3.011573e-07 40 80 1.866144e-06 -3.011573e-07 41 80 -5.612495e-06 9.057414e-07 42 80 9.401297e-06 -1.517176e-06 43 80 -1.326172e-05 2.14017e-06 44 80 1.722429e-05 -2.779647e-06 45 80 -2.132146e-05 3.440846e-06 46 80 2.558831e-05 -4.129428e-06 47 80 -3.00633e-05 4.851599e-06 48 80 3.478917e-05 -5.614257e-06 49 80 -3.981401e-05 6.425164e-06 50 80 4.519256e-05 -7.293151e-06 51 80 -5.098776e-05 8.228377e-06 52 80 5.727273e-05 -9.242642e-06 53 80 -6.413319e-05 1.034978e-05 54 80 7.167061e-05 -1.156616e-05 55 80 -8.000611e-05 1.291134e-05 56 80 8.928565e-05 -1.440887e-05 57 80 -9.968672e-05 1.608739e-05 58 80 0.0001114272 -1.798207e-05 59 80 -0.0001247774 2.013652e-05 60 80 0.000140076 -2.26054e-05 61 80 -0.0001577525 2.545802e-05 62 80 0.0001783582 -2.878335e-05 63 80 -0.0002026106 3.26972e-05 64 80 0.0002314578 -3.735254e-05 65 80 -0.0002661734 4.295492e-05 66 80 0.0003085011 -4.978574e-05 67 80 -0.0003608797 5.823857e-05 68 80 0.0004268045 -6.887749e-05 69 80 -0.0005114288 8.253411e-05 70 80 0.0006226054 -0.0001004757 71 80 -0.0007727812 0.000124711 72 80 0.0009826448 -0.0001585787 73 80 -0.001288661 0.0002079635 74 80 0.001760065 -0.0002840383 75 80 -0.002541777 0.0004101906 76 80 0.003980742 -0.0006424099 77 80 -0.007089509 0.001144101 78 80 0.01597157 -0.002577484 79 80 -0.06393453 0.01031772 80 80 0.1048912 -0.01676645 161 80 0.001401962 0.0001303027 0 81 0.0001315499 3.980931e-06 81 81 1.495713 -0.08758582 82 81 -0.06393453 0.01031772 83 81 0.01597157 -0.002577484 84 81 -0.007089509 0.001144101 85 81 0.003980742 -0.0006424099 86 81 -0.002541777 0.0004101906 87 81 0.001760065 -0.0002840383 88 81 -0.001288661 0.0002079635 89 81 0.0009826448 -0.0001585787 90 81 -0.0007727812 0.000124711 91 81 0.0006226054 -0.0001004757 92 81 -0.0005114288 8.253411e-05 93 81 0.0004268045 -6.887749e-05 94 81 -0.0003608797 5.823857e-05 95 81 0.0003085011 -4.978574e-05 96 81 -0.0002661734 4.295492e-05 97 81 0.0002314578 -3.735254e-05 98 81 -0.0002026106 3.26972e-05 99 81 0.0001783582 -2.878335e-05 100 81 -0.0001577525 2.545802e-05 101 81 0.000140076 -2.26054e-05 102 81 -0.0001247774 2.013652e-05 103 81 0.0001114272 -1.798207e-05 104 81 -9.968672e-05 1.608739e-05 105 81 8.928565e-05 -1.440887e-05 106 81 -8.000611e-05 1.291134e-05 107 81 7.167061e-05 -1.156616e-05 108 81 -6.413319e-05 1.034978e-05 109 81 5.727273e-05 -9.242642e-06 110 81 -5.098776e-05 8.228377e-06 111 81 4.519256e-05 -7.293151e-06 112 81 -3.981401e-05 6.425164e-06 113 81 3.478917e-05 -5.614257e-06 114 81 -3.00633e-05 4.851599e-06 115 81 2.558831e-05 -4.129428e-06 116 81 -2.132146e-05 3.440846e-06 117 81 1.722429e-05 -2.779647e-06 118 81 -1.326172e-05 2.14017e-06 119 81 9.401297e-06 -1.517176e-06 120 81 -5.612495e-06 9.057414e-07 121 81 1.866144e-06 -3.011573e-07 122 81 1.866144e-06 -3.011573e-07 123 81 -5.612495e-06 9.057414e-07 124 81 9.401297e-06 -1.517176e-06 125 81 -1.326172e-05 2.14017e-06 126 81 1.722429e-05 -2.779647e-06 127 81 -2.132146e-05 3.440846e-06 128 81 2.558831e-05 -4.129428e-06 129 81 -3.00633e-05 4.851599e-06 130 81 3.478917e-05 -5.614257e-06 131 81 -3.981401e-05 6.425164e-06 132 81 4.519256e-05 -7.293151e-06 133 81 -5.098776e-05 8.228377e-06 134 81 5.727273e-05 -9.242642e-06 135 81 -6.413319e-05 1.034978e-05 136 81 7.167061e-05 -1.156616e-05 137 81 -8.000611e-05 1.291134e-05 138 81 8.928565e-05 -1.440887e-05 139 81 -9.968672e-05 1.608739e-05 140 81 0.0001114272 -1.798207e-05 141 81 -0.0001247774 2.013652e-05 142 81 0.000140076 -2.26054e-05 143 81 -0.0001577525 2.545802e-05 144 81 0.0001783582 -2.878335e-05 145 81 -0.0002026106 3.26972e-05 146 81 0.0002314578 -3.735254e-05 147 81 -0.0002661734 4.295492e-05 148 81 0.0003085011 -4.978574e-05 149 81 -0.0003608797 5.823857e-05 150 81 0.0004268045 -6.887749e-05 151 81 -0.0005114288 8.253411e-05 152 81 0.0006226054 -0.0001004757 153 81 -0.0007727812 0.000124711 154 81 0.0009826448 -0.0001585787 155 81 -0.001288661 0.0002079635 156 81 0.001760065 -0.0002840383 157 81 -0.002541777 0.0004101906 158 81 0.003980742 -0.0006424099 159 81 -0.007089509 0.001144101 160 81 0.01597157 -0.002577484 161 81 -0.06393453 0.01031772 162 81 0.0001315499 3.980931e-06 1 82 0.0001444547 5.03874e-06 81 82 -0.06393453 0.01031772 82 82 1.284019 -0.09274586 83 82 -0.06393453 0.01031772 84 82 0.01597157 -0.002577484 85 82 -0.007089509 0.001144101 86 82 0.003980742 -0.0006424099 87 82 -0.002541777 0.0004101906 88 82 0.001760065 -0.0002840383 89 82 -0.001288661 0.0002079635 90 82 0.0009826448 -0.0001585787 91 82 -0.0007727812 0.000124711 92 82 0.0006226054 -0.0001004757 93 82 -0.0005114288 8.253411e-05 94 82 0.0004268045 -6.887749e-05 95 82 -0.0003608797 5.823857e-05 96 82 0.0003085011 -4.978574e-05 97 82 -0.0002661734 4.295492e-05 98 82 0.0002314578 -3.735254e-05 99 82 -0.0002026106 3.26972e-05 100 82 0.0001783582 -2.878335e-05 101 82 -0.0001577525 2.545802e-05 102 82 0.000140076 -2.26054e-05 103 82 -0.0001247774 2.013652e-05 104 82 0.0001114272 -1.798207e-05 105 82 -9.968672e-05 1.608739e-05 106 82 8.928565e-05 -1.440887e-05 107 82 -8.000611e-05 1.291134e-05 108 82 7.167061e-05 -1.156616e-05 109 82 -6.413319e-05 1.034978e-05 110 82 5.727273e-05 -9.242642e-06 111 82 -5.098776e-05 8.228377e-06 112 82 4.519256e-05 -7.293151e-06 113 82 -3.981401e-05 6.425164e-06 114 82 3.478917e-05 -5.614257e-06 115 82 -3.00633e-05 4.851599e-06 116 82 2.558831e-05 -4.129428e-06 117 82 -2.132146e-05 3.440846e-06 118 82 1.722429e-05 -2.779647e-06 119 82 -1.326172e-05 2.14017e-06 120 82 9.401297e-06 -1.517176e-06 121 82 -5.612495e-06 9.057414e-07 122 82 1.866144e-06 -3.011573e-07 123 82 1.866144e-06 -3.011573e-07 124 82 -5.612495e-06 9.057414e-07 125 82 9.401297e-06 -1.517176e-06 126 82 -1.326172e-05 2.14017e-06 127 82 1.722429e-05 -2.779647e-06 128 82 -2.132146e-05 3.440846e-06 129 82 2.558831e-05 -4.129428e-06 130 82 -3.00633e-05 4.851599e-06 131 82 3.478917e-05 -5.614257e-06 132 82 -3.981401e-05 6.425164e-06 133 82 4.519256e-05 -7.293151e-06 134 82 -5.098776e-05 8.228377e-06 135 82 5.727273e-05 -9.242642e-06 136 82 -6.413319e-05 1.034978e-05 137 82 7.167061e-05 -1.156616e-05 138 82 -8.000611e-05 1.291134e-05 139 82 8.928565e-05 -1.440887e-05 140 82 -9.968672e-05 1.608739e-05 141 82 0.0001114272 -1.798207e-05 142 82 -0.0001247774 2.013652e-05 143 82 0.000140076 -2.26054e-05 144 82 -0.0001577525 2.545802e-05 145 82 0.0001783582 -2.878335e-05 146 82 -0.0002026106 3.26972e-05 147 82 0.0002314578 -3.735254e-05 148 82 -0.0002661734 4.295492e-05 149 82 0.0003085011 -4.978574e-05 150 82 -0.0003608797 5.823857e-05 151 82 0.0004268045 -6.887749e-05 152 82 -0.0005114288 8.253411e-05 153 82 0.0006226054 -0.0001004757 154 82 -0.0007727812 0.000124711 155 82 0.0009826448 -0.0001585787 156 82 -0.001288661 0.0002079635 157 82 0.001760065 -0.0002840383 158 82 -0.002541777 0.0004101906 159 82 0.003980742 -0.0006424099 160 82 -0.007089509 0.001144101 161 82 0.01597157 -0.002577484 163 82 0.0001444547 5.03874e-06 2 83 0.0001574252 6.107297e-06 81 83 0.01597157 -0.002577484 82 83 -0.06393453 0.01031772 83 83 1.103395 -0.09497235 84 83 -0.06393453 0.01031772 85 83 0.01597157 -0.002577484 86 83 -0.007089509 0.001144101 87 83 0.003980742 -0.0006424099 88 83 -0.002541777 0.0004101906 89 83 0.001760065 -0.0002840383 90 83 -0.001288661 0.0002079635 91 83 0.0009826448 -0.0001585787 92 83 -0.0007727812 0.000124711 93 83 0.0006226054 -0.0001004757 94 83 -0.0005114288 8.253411e-05 95 83 0.0004268045 -6.887749e-05 96 83 -0.0003608797 5.823857e-05 97 83 0.0003085011 -4.978574e-05 98 83 -0.0002661734 4.295492e-05 99 83 0.0002314578 -3.735254e-05 100 83 -0.0002026106 3.26972e-05 101 83 0.0001783582 -2.878335e-05 102 83 -0.0001577525 2.545802e-05 103 83 0.000140076 -2.26054e-05 104 83 -0.0001247774 2.013652e-05 105 83 0.0001114272 -1.798207e-05 106 83 -9.968672e-05 1.608739e-05 107 83 8.928565e-05 -1.440887e-05 108 83 -8.000611e-05 1.291134e-05 109 83 7.167061e-05 -1.156616e-05 110 83 -6.413319e-05 1.034978e-05 111 83 5.727273e-05 -9.242642e-06 112 83 -5.098776e-05 8.228377e-06 113 83 4.519256e-05 -7.293151e-06 114 83 -3.981401e-05 6.425164e-06 115 83 3.478917e-05 -5.614257e-06 116 83 -3.00633e-05 4.851599e-06 117 83 2.558831e-05 -4.129428e-06 118 83 -2.132146e-05 3.440846e-06 119 83 1.722429e-05 -2.779647e-06 120 83 -1.326172e-05 2.14017e-06 121 83 9.401297e-06 -1.517176e-06 122 83 -5.612495e-06 9.057414e-07 123 83 1.866144e-06 -3.011573e-07 124 83 1.866144e-06 -3.011573e-07 125 83 -5.612495e-06 9.057414e-07 126 83 9.401297e-06 -1.517176e-06 127 83 -1.326172e-05 2.14017e-06 128 83 1.722429e-05 -2.779647e-06 129 83 -2.132146e-05 3.440846e-06 130 83 2.558831e-05 -4.129428e-06 131 83 -3.00633e-05 4.851599e-06 132 83 3.478917e-05 -5.614257e-06 133 83 -3.981401e-05 6.425164e-06 134 83 4.519256e-05 -7.293151e-06 135 83 -5.098776e-05 8.228377e-06 136 83 5.727273e-05 -9.242642e-06 137 83 -6.413319e-05 1.034978e-05 138 83 7.167061e-05 -1.156616e-05 139 83 -8.000611e-05 1.291134e-05 140 83 8.928565e-05 -1.440887e-05 141 83 -9.968672e-05 1.608739e-05 142 83 0.0001114272 -1.798207e-05 143 83 -0.0001247774 2.013652e-05 144 83 0.000140076 -2.26054e-05 145 83 -0.0001577525 2.545802e-05 146 83 0.0001783582 -2.878335e-05 147 83 -0.0002026106 3.26972e-05 148 83 0.0002314578 -3.735254e-05 149 83 -0.0002661734 4.295492e-05 150 83 0.0003085011 -4.978574e-05 151 83 -0.0003608797 5.823857e-05 152 83 0.0004268045 -6.887749e-05 153 83 -0.0005114288 8.253411e-05 154 83 0.0006226054 -0.0001004757 155 83 -0.0007727812 0.000124711 156 83 0.0009826448 -0.0001585787 157 83 -0.001288661 0.0002079635 158 83 0.001760065 -0.0002840383 159 83 -0.002541777 0.0004101906 160 83 0.003980742 -0.0006424099 161 83 -0.007089509 0.001144101 164 83 0.0001574252 6.107297e-06 3 84 0.0001704618 7.186683e-06 81 84 -0.007089509 0.001144101 82 84 0.01597157 -0.002577484 83 84 -0.06393453 0.01031772 84 84 0.949024 -0.0950654 85 84 -0.06393453 0.01031772 86 84 0.01597157 -0.002577484 87 84 -0.007089509 0.001144101 88 84 0.003980742 -0.0006424099 89 84 -0.002541777 0.0004101906 90 84 0.001760065 -0.0002840383 91 84 -0.001288661 0.0002079635 92 84 0.0009826448 -0.0001585787 93 84 -0.0007727812 0.000124711 94 84 0.0006226054 -0.0001004757 95 84 -0.0005114288 8.253411e-05 96 84 0.0004268045 -6.887749e-05 97 84 -0.0003608797 5.823857e-05 98 84 0.0003085011 -4.978574e-05 99 84 -0.0002661734 4.295492e-05 100 84 0.0002314578 -3.735254e-05 101 84 -0.0002026106 3.26972e-05 102 84 0.0001783582 -2.878335e-05 103 84 -0.0001577525 2.545802e-05 104 84 0.000140076 -2.26054e-05 105 84 -0.0001247774 2.013652e-05 106 84 0.0001114272 -1.798207e-05 107 84 -9.968672e-05 1.608739e-05 108 84 8.928565e-05 -1.440887e-05 109 84 -8.000611e-05 1.291134e-05 110 84 7.167061e-05 -1.156616e-05 111 84 -6.413319e-05 1.034978e-05 112 84 5.727273e-05 -9.242642e-06 113 84 -5.098776e-05 8.228377e-06 114 84 4.519256e-05 -7.293151e-06 115 84 -3.981401e-05 6.425164e-06 116 84 3.478917e-05 -5.614257e-06 117 84 -3.00633e-05 4.851599e-06 118 84 2.558831e-05 -4.129428e-06 119 84 -2.132146e-05 3.440846e-06 120 84 1.722429e-05 -2.779647e-06 121 84 -1.326172e-05 2.14017e-06 122 84 9.401297e-06 -1.517176e-06 123 84 -5.612495e-06 9.057414e-07 124 84 1.866144e-06 -3.011573e-07 125 84 1.866144e-06 -3.011573e-07 126 84 -5.612495e-06 9.057414e-07 127 84 9.401297e-06 -1.517176e-06 128 84 -1.326172e-05 2.14017e-06 129 84 1.722429e-05 -2.779647e-06 130 84 -2.132146e-05 3.440846e-06 131 84 2.558831e-05 -4.129428e-06 132 84 -3.00633e-05 4.851599e-06 133 84 3.478917e-05 -5.614257e-06 134 84 -3.981401e-05 6.425164e-06 135 84 4.519256e-05 -7.293151e-06 136 84 -5.098776e-05 8.228377e-06 137 84 5.727273e-05 -9.242642e-06 138 84 -6.413319e-05 1.034978e-05 139 84 7.167061e-05 -1.156616e-05 140 84 -8.000611e-05 1.291134e-05 141 84 8.928565e-05 -1.440887e-05 142 84 -9.968672e-05 1.608739e-05 143 84 0.0001114272 -1.798207e-05 144 84 -0.0001247774 2.013652e-05 145 84 0.000140076 -2.26054e-05 146 84 -0.0001577525 2.545802e-05 147 84 0.0001783582 -2.878335e-05 148 84 -0.0002026106 3.26972e-05 149 84 0.0002314578 -3.735254e-05 150 84 -0.0002661734 4.295492e-05 151 84 0.0003085011 -4.978574e-05 152 84 -0.0003608797 5.823857e-05 153 84 0.0004268045 -6.887749e-05 154 84 -0.0005114288 8.253411e-05 155 84 0.0006226054 -0.0001004757 156 84 -0.0007727812 0.000124711 157 84 0.0009826448 -0.0001585787 158 84 -0.001288661 0.0002079635 159 84 0.001760065 -0.0002840383 160 84 -0.002541777 0.0004101906 161 84 0.003980742 -0.0006424099 165 84 0.0001704618 7.186683e-06 4 85 0.0001835649 8.276982e-06 81 85 0.003980742 -0.0006424099 82 85 -0.007089509 0.001144101 83 85 0.01597157 -0.002577484 84 85 -0.06393453 0.01031772 85 85 0.8168613 -0.09363985 86 85 -0.06393453 0.01031772 87 85 0.01597157 -0.002577484 88 85 -0.007089509 0.001144101 89 85 0.003980742 -0.0006424099 90 85 -0.002541777 0.0004101906 91 85 0.001760065 -0.0002840383 92 85 -0.001288661 0.0002079635 93 85 0.0009826448 -0.0001585787 94 85 -0.0007727812 0.000124711 95 85 0.0006226054 -0.0001004757 96 85 -0.0005114288 8.253411e-05 97 85 0.0004268045 -6.887749e-05 98 85 -0.0003608797 5.823857e-05 99 85 0.0003085011 -4.978574e-05 100 85 -0.0002661734 4.295492e-05 101 85 0.0002314578 -3.735254e-05 102 85 -0.0002026106 3.26972e-05 103 85 0.0001783582 -2.878335e-05 104 85 -0.0001577525 2.545802e-05 105 85 0.000140076 -2.26054e-05 106 85 -0.0001247774 2.013652e-05 107 85 0.0001114272 -1.798207e-05 108 85 -9.968672e-05 1.608739e-05 109 85 8.928565e-05 -1.440887e-05 110 85 -8.000611e-05 1.291134e-05 111 85 7.167061e-05 -1.156616e-05 112 85 -6.413319e-05 1.034978e-05 113 85 5.727273e-05 -9.242642e-06 114 85 -5.098776e-05 8.228377e-06 115 85 4.519256e-05 -7.293151e-06 116 85 -3.981401e-05 6.425164e-06 117 85 3.478917e-05 -5.614257e-06 118 85 -3.00633e-05 4.851599e-06 119 85 2.558831e-05 -4.129428e-06 120 85 -2.132146e-05 3.440846e-06 121 85 1.722429e-05 -2.779647e-06 122 85 -1.326172e-05 2.14017e-06 123 85 9.401297e-06 -1.517176e-06 124 85 -5.612495e-06 9.057414e-07 125 85 1.866144e-06 -3.011573e-07 126 85 1.866144e-06 -3.011573e-07 127 85 -5.612495e-06 9.057414e-07 128 85 9.401297e-06 -1.517176e-06 129 85 -1.326172e-05 2.14017e-06 130 85 1.722429e-05 -2.779647e-06 131 85 -2.132146e-05 3.440846e-06 132 85 2.558831e-05 -4.129428e-06 133 85 -3.00633e-05 4.851599e-06 134 85 3.478917e-05 -5.614257e-06 135 85 -3.981401e-05 6.425164e-06 136 85 4.519256e-05 -7.293151e-06 137 85 -5.098776e-05 8.228377e-06 138 85 5.727273e-05 -9.242642e-06 139 85 -6.413319e-05 1.034978e-05 140 85 7.167061e-05 -1.156616e-05 141 85 -8.000611e-05 1.291134e-05 142 85 8.928565e-05 -1.440887e-05 143 85 -9.968672e-05 1.608739e-05 144 85 0.0001114272 -1.798207e-05 145 85 -0.0001247774 2.013652e-05 146 85 0.000140076 -2.26054e-05 147 85 -0.0001577525 2.545802e-05 148 85 0.0001783582 -2.878335e-05 149 85 -0.0002026106 3.26972e-05 150 85 0.0002314578 -3.735254e-05 151 85 -0.0002661734 4.295492e-05 152 85 0.0003085011 -4.978574e-05 153 85 -0.0003608797 5.823857e-05 154 85 0.0004268045 -6.887749e-05 155 85 -0.0005114288 8.253411e-05 156 85 0.0006226054 -0.0001004757 157 85 -0.0007727812 0.000124711 158 85 0.0009826448 -0.0001585787 159 85 -0.001288661 0.0002079635 160 85 0.001760065 -0.0002840383 161 85 -0.002541777 0.0004101906 166 85 0.0001835649 8.276982e-06 5 86 0.0001967347 9.378277e-06 81 86 -0.002541777 0.0004101906 82 86 0.003980742 -0.0006424099 83 86 -0.007089509 0.001144101 84 86 0.01597157 -0.002577484 85 86 -0.06393453 0.01031772 86 86 0.7035068 -0.09116507 87 86 -0.06393453 0.01031772 88 86 0.01597157 -0.002577484 89 86 -0.007089509 0.001144101 90 86 0.003980742 -0.0006424099 91 86 -0.002541777 0.0004101906 92 86 0.001760065 -0.0002840383 93 86 -0.001288661 0.0002079635 94 86 0.0009826448 -0.0001585787 95 86 -0.0007727812 0.000124711 96 86 0.0006226054 -0.0001004757 97 86 -0.0005114288 8.253411e-05 98 86 0.0004268045 -6.887749e-05 99 86 -0.0003608797 5.823857e-05 100 86 0.0003085011 -4.978574e-05 101 86 -0.0002661734 4.295492e-05 102 86 0.0002314578 -3.735254e-05 103 86 -0.0002026106 3.26972e-05 104 86 0.0001783582 -2.878335e-05 105 86 -0.0001577525 2.545802e-05 106 86 0.000140076 -2.26054e-05 107 86 -0.0001247774 2.013652e-05 108 86 0.0001114272 -1.798207e-05 109 86 -9.968672e-05 1.608739e-05 110 86 8.928565e-05 -1.440887e-05 111 86 -8.000611e-05 1.291134e-05 112 86 7.167061e-05 -1.156616e-05 113 86 -6.413319e-05 1.034978e-05 114 86 5.727273e-05 -9.242642e-06 115 86 -5.098776e-05 8.228377e-06 116 86 4.519256e-05 -7.293151e-06 117 86 -3.981401e-05 6.425164e-06 118 86 3.478917e-05 -5.614257e-06 119 86 -3.00633e-05 4.851599e-06 120 86 2.558831e-05 -4.129428e-06 121 86 -2.132146e-05 3.440846e-06 122 86 1.722429e-05 -2.779647e-06 123 86 -1.326172e-05 2.14017e-06 124 86 9.401297e-06 -1.517176e-06 125 86 -5.612495e-06 9.057414e-07 126 86 1.866144e-06 -3.011573e-07 127 86 1.866144e-06 -3.011573e-07 128 86 -5.612495e-06 9.057414e-07 129 86 9.401297e-06 -1.517176e-06 130 86 -1.326172e-05 2.14017e-06 131 86 1.722429e-05 -2.779647e-06 132 86 -2.132146e-05 3.440846e-06 133 86 2.558831e-05 -4.129428e-06 134 86 -3.00633e-05 4.851599e-06 135 86 3.478917e-05 -5.614257e-06 136 86 -3.981401e-05 6.425164e-06 137 86 4.519256e-05 -7.293151e-06 138 86 -5.098776e-05 8.228377e-06 139 86 5.727273e-05 -9.242642e-06 140 86 -6.413319e-05 1.034978e-05 141 86 7.167061e-05 -1.156616e-05 142 86 -8.000611e-05 1.291134e-05 143 86 8.928565e-05 -1.440887e-05 144 86 -9.968672e-05 1.608739e-05 145 86 0.0001114272 -1.798207e-05 146 86 -0.0001247774 2.013652e-05 147 86 0.000140076 -2.26054e-05 148 86 -0.0001577525 2.545802e-05 149 86 0.0001783582 -2.878335e-05 150 86 -0.0002026106 3.26972e-05 151 86 0.0002314578 -3.735254e-05 152 86 -0.0002661734 4.295492e-05 153 86 0.0003085011 -4.978574e-05 154 86 -0.0003608797 5.823857e-05 155 86 0.0004268045 -6.887749e-05 156 86 -0.0005114288 8.253411e-05 157 86 0.0006226054 -0.0001004757 158 86 -0.0007727812 0.000124711 159 86 0.0009826448 -0.0001585787 160 86 -0.001288661 0.0002079635 161 86 0.001760065 -0.0002840383 167 86 0.0001967347 9.378277e-06 6 87 0.0002099716 1.049065e-05 81 87 0.001760065 -0.0002840383 82 87 -0.002541777 0.0004101906 83 87 0.003980742 -0.0006424099 84 87 -0.007089509 0.001144101 85 87 0.01597157 -0.002577484 86 87 -0.06393453 0.01031772 87 87 0.6061013 -0.08799666 88 87 -0.06393453 0.01031772 89 87 0.01597157 -0.002577484 90 87 -0.007089509 0.001144101 91 87 0.003980742 -0.0006424099 92 87 -0.002541777 0.0004101906 93 87 0.001760065 -0.0002840383 94 87 -0.001288661 0.0002079635 95 87 0.0009826448 -0.0001585787 96 87 -0.0007727812 0.000124711 97 87 0.0006226054 -0.0001004757 98 87 -0.0005114288 8.253411e-05 99 87 0.0004268045 -6.887749e-05 100 87 -0.0003608797 5.823857e-05 101 87 0.0003085011 -4.978574e-05 102 87 -0.0002661734 4.295492e-05 103 87 0.0002314578 -3.735254e-05 104 87 -0.0002026106 3.26972e-05 105 87 0.0001783582 -2.878335e-05 106 87 -0.0001577525 2.545802e-05 107 87 0.000140076 -2.26054e-05 108 87 -0.0001247774 2.013652e-05 109 87 0.0001114272 -1.798207e-05 110 87 -9.968672e-05 1.608739e-05 111 87 8.928565e-05 -1.440887e-05 112 87 -8.000611e-05 1.291134e-05 113 87 7.167061e-05 -1.156616e-05 114 87 -6.413319e-05 1.034978e-05 115 87 5.727273e-05 -9.242642e-06 116 87 -5.098776e-05 8.228377e-06 117 87 4.519256e-05 -7.293151e-06 118 87 -3.981401e-05 6.425164e-06 119 87 3.478917e-05 -5.614257e-06 120 87 -3.00633e-05 4.851599e-06 121 87 2.558831e-05 -4.129428e-06 122 87 -2.132146e-05 3.440846e-06 123 87 1.722429e-05 -2.779647e-06 124 87 -1.326172e-05 2.14017e-06 125 87 9.401297e-06 -1.517176e-06 126 87 -5.612495e-06 9.057414e-07 127 87 1.866144e-06 -3.011573e-07 128 87 1.866144e-06 -3.011573e-07 129 87 -5.612495e-06 9.057414e-07 130 87 9.401297e-06 -1.517176e-06 131 87 -1.326172e-05 2.14017e-06 132 87 1.722429e-05 -2.779647e-06 133 87 -2.132146e-05 3.440846e-06 134 87 2.558831e-05 -4.129428e-06 135 87 -3.00633e-05 4.851599e-06 136 87 3.478917e-05 -5.614257e-06 137 87 -3.981401e-05 6.425164e-06 138 87 4.519256e-05 -7.293151e-06 139 87 -5.098776e-05 8.228377e-06 140 87 5.727273e-05 -9.242642e-06 141 87 -6.413319e-05 1.034978e-05 142 87 7.167061e-05 -1.156616e-05 143 87 -8.000611e-05 1.291134e-05 144 87 8.928565e-05 -1.440887e-05 145 87 -9.968672e-05 1.608739e-05 146 87 0.0001114272 -1.798207e-05 147 87 -0.0001247774 2.013652e-05 148 87 0.000140076 -2.26054e-05 149 87 -0.0001577525 2.545802e-05 150 87 0.0001783582 -2.878335e-05 151 87 -0.0002026106 3.26972e-05 152 87 0.0002314578 -3.735254e-05 153 87 -0.0002661734 4.295492e-05 154 87 0.0003085011 -4.978574e-05 155 87 -0.0003608797 5.823857e-05 156 87 0.0004268045 -6.887749e-05 157 87 -0.0005114288 8.253411e-05 158 87 0.0006226054 -0.0001004757 159 87 -0.0007727812 0.000124711 160 87 0.0009826448 -0.0001585787 161 87 -0.001288661 0.0002079635 168 87 0.0002099716 1.049065e-05 7 88 0.000223276 1.161419e-05 81 88 -0.001288661 0.0002079635 82 88 0.001760065 -0.0002840383 83 88 -0.002541777 0.0004101906 84 88 0.003980742 -0.0006424099 85 88 -0.007089509 0.001144101 86 88 0.01597157 -0.002577484 87 88 -0.06393453 0.01031772 88 88 0.5222387 -0.08440152 89 88 -0.06393453 0.01031772 90 88 0.01597157 -0.002577484 91 88 -0.007089509 0.001144101 92 88 0.003980742 -0.0006424099 93 88 -0.002541777 0.0004101906 94 88 0.001760065 -0.0002840383 95 88 -0.001288661 0.0002079635 96 88 0.0009826448 -0.0001585787 97 88 -0.0007727812 0.000124711 98 88 0.0006226054 -0.0001004757 99 88 -0.0005114288 8.253411e-05 100 88 0.0004268045 -6.887749e-05 101 88 -0.0003608797 5.823857e-05 102 88 0.0003085011 -4.978574e-05 103 88 -0.0002661734 4.295492e-05 104 88 0.0002314578 -3.735254e-05 105 88 -0.0002026106 3.26972e-05 106 88 0.0001783582 -2.878335e-05 107 88 -0.0001577525 2.545802e-05 108 88 0.000140076 -2.26054e-05 109 88 -0.0001247774 2.013652e-05 110 88 0.0001114272 -1.798207e-05 111 88 -9.968672e-05 1.608739e-05 112 88 8.928565e-05 -1.440887e-05 113 88 -8.000611e-05 1.291134e-05 114 88 7.167061e-05 -1.156616e-05 115 88 -6.413319e-05 1.034978e-05 116 88 5.727273e-05 -9.242642e-06 117 88 -5.098776e-05 8.228377e-06 118 88 4.519256e-05 -7.293151e-06 119 88 -3.981401e-05 6.425164e-06 120 88 3.478917e-05 -5.614257e-06 121 88 -3.00633e-05 4.851599e-06 122 88 2.558831e-05 -4.129428e-06 123 88 -2.132146e-05 3.440846e-06 124 88 1.722429e-05 -2.779647e-06 125 88 -1.326172e-05 2.14017e-06 126 88 9.401297e-06 -1.517176e-06 127 88 -5.612495e-06 9.057414e-07 128 88 1.866144e-06 -3.011573e-07 129 88 1.866144e-06 -3.011573e-07 130 88 -5.612495e-06 9.057414e-07 131 88 9.401297e-06 -1.517176e-06 132 88 -1.326172e-05 2.14017e-06 133 88 1.722429e-05 -2.779647e-06 134 88 -2.132146e-05 3.440846e-06 135 88 2.558831e-05 -4.129428e-06 136 88 -3.00633e-05 4.851599e-06 137 88 3.478917e-05 -5.614257e-06 138 88 -3.981401e-05 6.425164e-06 139 88 4.519256e-05 -7.293151e-06 140 88 -5.098776e-05 8.228377e-06 141 88 5.727273e-05 -9.242642e-06 142 88 -6.413319e-05 1.034978e-05 143 88 7.167061e-05 -1.156616e-05 144 88 -8.000611e-05 1.291134e-05 145 88 8.928565e-05 -1.440887e-05 146 88 -9.968672e-05 1.608739e-05 147 88 0.0001114272 -1.798207e-05 148 88 -0.0001247774 2.013652e-05 149 88 0.000140076 -2.26054e-05 150 88 -0.0001577525 2.545802e-05 151 88 0.0001783582 -2.878335e-05 152 88 -0.0002026106 3.26972e-05 153 88 0.0002314578 -3.735254e-05 154 88 -0.0002661734 4.295492e-05 155 88 0.0003085011 -4.978574e-05 156 88 -0.0003608797 5.823857e-05 157 88 0.0004268045 -6.887749e-05 158 88 -0.0005114288 8.253411e-05 159 88 0.0006226054 -0.0001004757 160 88 -0.0007727812 0.000124711 161 88 0.0009826448 -0.0001585787 169 88 0.000223276 1.161419e-05 8 89 0.0002366482 1.274898e-05 81 89 0.0009826448 -0.0001585787 82 89 -0.001288661 0.0002079635 83 89 0.001760065 -0.0002840383 84 89 -0.002541777 0.0004101906 85 89 0.003980742 -0.0006424099 86 89 -0.007089509 0.001144101 87 89 0.01597157 -0.002577484 88 89 -0.06393453 0.01031772 89 89 0.4498925 -0.08057775 90 89 -0.06393453 0.01031772 91 89 0.01597157 -0.002577484 92 89 -0.007089509 0.001144101 93 89 0.003980742 -0.0006424099 94 89 -0.002541777 0.0004101906 95 89 0.001760065 -0.0002840383 96 89 -0.001288661 0.0002079635 97 89 0.0009826448 -0.0001585787 98 89 -0.0007727812 0.000124711 99 89 0.0006226054 -0.0001004757 100 89 -0.0005114288 8.253411e-05 101 89 0.0004268045 -6.887749e-05 102 89 -0.0003608797 5.823857e-05 103 89 0.0003085011 -4.978574e-05 104 89 -0.0002661734 4.295492e-05 105 89 0.0002314578 -3.735254e-05 106 89 -0.0002026106 3.26972e-05 107 89 0.0001783582 -2.878335e-05 108 89 -0.0001577525 2.545802e-05 109 89 0.000140076 -2.26054e-05 110 89 -0.0001247774 2.013652e-05 111 89 0.0001114272 -1.798207e-05 112 89 -9.968672e-05 1.608739e-05 113 89 8.928565e-05 -1.440887e-05 114 89 -8.000611e-05 1.291134e-05 115 89 7.167061e-05 -1.156616e-05 116 89 -6.413319e-05 1.034978e-05 117 89 5.727273e-05 -9.242642e-06 118 89 -5.098776e-05 8.228377e-06 119 89 4.519256e-05 -7.293151e-06 120 89 -3.981401e-05 6.425164e-06 121 89 3.478917e-05 -5.614257e-06 122 89 -3.00633e-05 4.851599e-06 123 89 2.558831e-05 -4.129428e-06 124 89 -2.132146e-05 3.440846e-06 125 89 1.722429e-05 -2.779647e-06 126 89 -1.326172e-05 2.14017e-06 127 89 9.401297e-06 -1.517176e-06 128 89 -5.612495e-06 9.057414e-07 129 89 1.866144e-06 -3.011573e-07 130 89 1.866144e-06 -3.011573e-07 131 89 -5.612495e-06 9.057414e-07 132 89 9.401297e-06 -1.517176e-06 133 89 -1.326172e-05 2.14017e-06 134 89 1.722429e-05 -2.779647e-06 135 89 -2.132146e-05 3.440846e-06 136 89 2.558831e-05 -4.129428e-06 137 89 -3.00633e-05 4.851599e-06 138 89 3.478917e-05 -5.614257e-06 139 89 -3.981401e-05 6.425164e-06 140 89 4.519256e-05 -7.293151e-06 141 89 -5.098776e-05 8.228377e-06 142 89 5.727273e-05 -9.242642e-06 143 89 -6.413319e-05 1.034978e-05 144 89 7.167061e-05 -1.156616e-05 145 89 -8.000611e-05 1.291134e-05 146 89 8.928565e-05 -1.440887e-05 147 89 -9.968672e-05 1.608739e-05 148 89 0.0001114272 -1.798207e-05 149 89 -0.0001247774 2.013652e-05 150 89 0.000140076 -2.26054e-05 151 89 -0.0001577525 2.545802e-05 152 89 0.0001783582 -2.878335e-05 153 89 -0.0002026106 3.26972e-05 154 89 0.0002314578 -3.735254e-05 155 89 -0.0002661734 4.295492e-05 156 89 0.0003085011 -4.978574e-05 157 89 -0.0003608797 5.823857e-05 158 89 0.0004268045 -6.887749e-05 159 89 -0.0005114288 8.253411e-05 160 89 0.0006226054 -0.0001004757 161 89 -0.0007727812 0.000124711 170 89 0.0002366482 1.274898e-05 9 90 0.0002500884 1.38951e-05 81 90 -0.0007727812 0.000124711 82 90 0.0009826448 -0.0001585787 83 90 -0.001288661 0.0002079635 84 90 0.001760065 -0.0002840383 85 90 -0.002541777 0.0004101906 86 90 0.003980742 -0.0006424099 87 90 -0.007089509 0.001144101 88 90 0.01597157 -0.002577484 89 90 -0.06393453 0.01031772 90 90 0.3873543 -0.07667025 91 90 -0.06393453 0.01031772 92 90 0.01597157 -0.002577484 93 90 -0.007089509 0.001144101 94 90 0.003980742 -0.0006424099 95 90 -0.002541777 0.0004101906 96 90 0.001760065 -0.0002840383 97 90 -0.001288661 0.0002079635 98 90 0.0009826448 -0.0001585787 99 90 -0.0007727812 0.000124711 100 90 0.0006226054 -0.0001004757 101 90 -0.0005114288 8.253411e-05 102 90 0.0004268045 -6.887749e-05 103 90 -0.0003608797 5.823857e-05 104 90 0.0003085011 -4.978574e-05 105 90 -0.0002661734 4.295492e-05 106 90 0.0002314578 -3.735254e-05 107 90 -0.0002026106 3.26972e-05 108 90 0.0001783582 -2.878335e-05 109 90 -0.0001577525 2.545802e-05 110 90 0.000140076 -2.26054e-05 111 90 -0.0001247774 2.013652e-05 112 90 0.0001114272 -1.798207e-05 113 90 -9.968672e-05 1.608739e-05 114 90 8.928565e-05 -1.440887e-05 115 90 -8.000611e-05 1.291134e-05 116 90 7.167061e-05 -1.156616e-05 117 90 -6.413319e-05 1.034978e-05 118 90 5.727273e-05 -9.242642e-06 119 90 -5.098776e-05 8.228377e-06 120 90 4.519256e-05 -7.293151e-06 121 90 -3.981401e-05 6.425164e-06 122 90 3.478917e-05 -5.614257e-06 123 90 -3.00633e-05 4.851599e-06 124 90 2.558831e-05 -4.129428e-06 125 90 -2.132146e-05 3.440846e-06 126 90 1.722429e-05 -2.779647e-06 127 90 -1.326172e-05 2.14017e-06 128 90 9.401297e-06 -1.517176e-06 129 90 -5.612495e-06 9.057414e-07 130 90 1.866144e-06 -3.011573e-07 131 90 1.866144e-06 -3.011573e-07 132 90 -5.612495e-06 9.057414e-07 133 90 9.401297e-06 -1.517176e-06 134 90 -1.326172e-05 2.14017e-06 135 90 1.722429e-05 -2.779647e-06 136 90 -2.132146e-05 3.440846e-06 137 90 2.558831e-05 -4.129428e-06 138 90 -3.00633e-05 4.851599e-06 139 90 3.478917e-05 -5.614257e-06 140 90 -3.981401e-05 6.425164e-06 141 90 4.519256e-05 -7.293151e-06 142 90 -5.098776e-05 8.228377e-06 143 90 5.727273e-05 -9.242642e-06 144 90 -6.413319e-05 1.034978e-05 145 90 7.167061e-05 -1.156616e-05 146 90 -8.000611e-05 1.291134e-05 147 90 8.928565e-05 -1.440887e-05 148 90 -9.968672e-05 1.608739e-05 149 90 0.0001114272 -1.798207e-05 150 90 -0.0001247774 2.013652e-05 151 90 0.000140076 -2.26054e-05 152 90 -0.0001577525 2.545802e-05 153 90 0.0001783582 -2.878335e-05 154 90 -0.0002026106 3.26972e-05 155 90 0.0002314578 -3.735254e-05 156 90 -0.0002661734 4.295492e-05 157 90 0.0003085011 -4.978574e-05 158 90 -0.0003608797 5.823857e-05 159 90 0.0004268045 -6.887749e-05 160 90 -0.0005114288 8.253411e-05 161 90 0.0006226054 -0.0001004757 171 90 0.0002500884 1.38951e-05 10 91 0.0002635972 1.505265e-05 81 91 0.0006226054 -0.0001004757 82 91 -0.0007727812 0.000124711 83 91 0.0009826448 -0.0001585787 84 91 -0.001288661 0.0002079635 85 91 0.001760065 -0.0002840383 86 91 -0.002541777 0.0004101906 87 91 0.003980742 -0.0006424099 88 91 -0.007089509 0.001144101 89 91 0.01597157 -0.002577484 90 91 -0.06393453 0.01031772 91 91 0.3331826 -0.07278305 92 91 -0.06393453 0.01031772 93 91 0.01597157 -0.002577484 94 91 -0.007089509 0.001144101 95 91 0.003980742 -0.0006424099 96 91 -0.002541777 0.0004101906 97 91 0.001760065 -0.0002840383 98 91 -0.001288661 0.0002079635 99 91 0.0009826448 -0.0001585787 100 91 -0.0007727812 0.000124711 101 91 0.0006226054 -0.0001004757 102 91 -0.0005114288 8.253411e-05 103 91 0.0004268045 -6.887749e-05 104 91 -0.0003608797 5.823857e-05 105 91 0.0003085011 -4.978574e-05 106 91 -0.0002661734 4.295492e-05 107 91 0.0002314578 -3.735254e-05 108 91 -0.0002026106 3.26972e-05 109 91 0.0001783582 -2.878335e-05 110 91 -0.0001577525 2.545802e-05 111 91 0.000140076 -2.26054e-05 112 91 -0.0001247774 2.013652e-05 113 91 0.0001114272 -1.798207e-05 114 91 -9.968672e-05 1.608739e-05 115 91 8.928565e-05 -1.440887e-05 116 91 -8.000611e-05 1.291134e-05 117 91 7.167061e-05 -1.156616e-05 118 91 -6.413319e-05 1.034978e-05 119 91 5.727273e-05 -9.242642e-06 120 91 -5.098776e-05 8.228377e-06 121 91 4.519256e-05 -7.293151e-06 122 91 -3.981401e-05 6.425164e-06 123 91 3.478917e-05 -5.614257e-06 124 91 -3.00633e-05 4.851599e-06 125 91 2.558831e-05 -4.129428e-06 126 91 -2.132146e-05 3.440846e-06 127 91 1.722429e-05 -2.779647e-06 128 91 -1.326172e-05 2.14017e-06 129 91 9.401297e-06 -1.517176e-06 130 91 -5.612495e-06 9.057414e-07 131 91 1.866144e-06 -3.011573e-07 132 91 1.866144e-06 -3.011573e-07 133 91 -5.612495e-06 9.057414e-07 134 91 9.401297e-06 -1.517176e-06 135 91 -1.326172e-05 2.14017e-06 136 91 1.722429e-05 -2.779647e-06 137 91 -2.132146e-05 3.440846e-06 138 91 2.558831e-05 -4.129428e-06 139 91 -3.00633e-05 4.851599e-06 140 91 3.478917e-05 -5.614257e-06 141 91 -3.981401e-05 6.425164e-06 142 91 4.519256e-05 -7.293151e-06 143 91 -5.098776e-05 8.228377e-06 144 91 5.727273e-05 -9.242642e-06 145 91 -6.413319e-05 1.034978e-05 146 91 7.167061e-05 -1.156616e-05 147 91 -8.000611e-05 1.291134e-05 148 91 8.928565e-05 -1.440887e-05 149 91 -9.968672e-05 1.608739e-05 150 91 0.0001114272 -1.798207e-05 151 91 -0.0001247774 2.013652e-05 152 91 0.000140076 -2.26054e-05 153 91 -0.0001577525 2.545802e-05 154 91 0.0001783582 -2.878335e-05 155 91 -0.0002026106 3.26972e-05 156 91 0.0002314578 -3.735254e-05 157 91 -0.0002661734 4.295492e-05 158 91 0.0003085011 -4.978574e-05 159 91 -0.0003608797 5.823857e-05 160 91 0.0004268045 -6.887749e-05 161 91 -0.0005114288 8.253411e-05 172 91 0.0002635972 1.505265e-05 11 92 0.0002771748 1.62217e-05 81 92 -0.0005114288 8.253411e-05 82 92 0.0006226054 -0.0001004757 83 92 -0.0007727812 0.000124711 84 92 0.0009826448 -0.0001585787 85 92 -0.001288661 0.0002079635 86 92 0.001760065 -0.0002840383 87 92 -0.002541777 0.0004101906 88 92 0.003980742 -0.0006424099 89 92 -0.007089509 0.001144101 90 92 0.01597157 -0.002577484 91 92 -0.06393453 0.01031772 92 92 0.28616 -0.06898902 93 92 -0.06393453 0.01031772 94 92 0.01597157 -0.002577484 95 92 -0.007089509 0.001144101 96 92 0.003980742 -0.0006424099 97 92 -0.002541777 0.0004101906 98 92 0.001760065 -0.0002840383 99 92 -0.001288661 0.0002079635 100 92 0.0009826448 -0.0001585787 101 92 -0.0007727812 0.000124711 102 92 0.0006226054 -0.0001004757 103 92 -0.0005114288 8.253411e-05 104 92 0.0004268045 -6.887749e-05 105 92 -0.0003608797 5.823857e-05 106 92 0.0003085011 -4.978574e-05 107 92 -0.0002661734 4.295492e-05 108 92 0.0002314578 -3.735254e-05 109 92 -0.0002026106 3.26972e-05 110 92 0.0001783582 -2.878335e-05 111 92 -0.0001577525 2.545802e-05 112 92 0.000140076 -2.26054e-05 113 92 -0.0001247774 2.013652e-05 114 92 0.0001114272 -1.798207e-05 115 92 -9.968672e-05 1.608739e-05 116 92 8.928565e-05 -1.440887e-05 117 92 -8.000611e-05 1.291134e-05 118 92 7.167061e-05 -1.156616e-05 119 92 -6.413319e-05 1.034978e-05 120 92 5.727273e-05 -9.242642e-06 121 92 -5.098776e-05 8.228377e-06 122 92 4.519256e-05 -7.293151e-06 123 92 -3.981401e-05 6.425164e-06 124 92 3.478917e-05 -5.614257e-06 125 92 -3.00633e-05 4.851599e-06 126 92 2.558831e-05 -4.129428e-06 127 92 -2.132146e-05 3.440846e-06 128 92 1.722429e-05 -2.779647e-06 129 92 -1.326172e-05 2.14017e-06 130 92 9.401297e-06 -1.517176e-06 131 92 -5.612495e-06 9.057414e-07 132 92 1.866144e-06 -3.011573e-07 133 92 1.866144e-06 -3.011573e-07 134 92 -5.612495e-06 9.057414e-07 135 92 9.401297e-06 -1.517176e-06 136 92 -1.326172e-05 2.14017e-06 137 92 1.722429e-05 -2.779647e-06 138 92 -2.132146e-05 3.440846e-06 139 92 2.558831e-05 -4.129428e-06 140 92 -3.00633e-05 4.851599e-06 141 92 3.478917e-05 -5.614257e-06 142 92 -3.981401e-05 6.425164e-06 143 92 4.519256e-05 -7.293151e-06 144 92 -5.098776e-05 8.228377e-06 145 92 5.727273e-05 -9.242642e-06 146 92 -6.413319e-05 1.034978e-05 147 92 7.167061e-05 -1.156616e-05 148 92 -8.000611e-05 1.291134e-05 149 92 8.928565e-05 -1.440887e-05 150 92 -9.968672e-05 1.608739e-05 151 92 0.0001114272 -1.798207e-05 152 92 -0.0001247774 2.013652e-05 153 92 0.000140076 -2.26054e-05 154 92 -0.0001577525 2.545802e-05 155 92 0.0001783582 -2.878335e-05 156 92 -0.0002026106 3.26972e-05 157 92 0.0002314578 -3.735254e-05 158 92 -0.0002661734 4.295492e-05 159 92 0.0003085011 -4.978574e-05 160 92 -0.0003608797 5.823857e-05 161 92 0.0004268045 -6.887749e-05 173 92 0.0002771748 1.62217e-05 12 93 0.0002908216 1.740235e-05 81 93 0.0004268045 -6.887749e-05 82 93 -0.0005114288 8.253411e-05 83 93 0.0006226054 -0.0001004757 84 93 -0.0007727812 0.000124711 85 93 0.0009826448 -0.0001585787 86 93 -0.001288661 0.0002079635 87 93 0.001760065 -0.0002840383 88 93 -0.002541777 0.0004101906 89 93 0.003980742 -0.0006424099 90 93 -0.007089509 0.001144101 91 93 0.01597157 -0.002577484 92 93 -0.06393453 0.01031772 93 93 0.2452569 -0.06533737 94 93 -0.06393453 0.01031772 95 93 0.01597157 -0.002577484 96 93 -0.007089509 0.001144101 97 93 0.003980742 -0.0006424099 98 93 -0.002541777 0.0004101906 99 93 0.001760065 -0.0002840383 100 93 -0.001288661 0.0002079635 101 93 0.0009826448 -0.0001585787 102 93 -0.0007727812 0.000124711 103 93 0.0006226054 -0.0001004757 104 93 -0.0005114288 8.253411e-05 105 93 0.0004268045 -6.887749e-05 106 93 -0.0003608797 5.823857e-05 107 93 0.0003085011 -4.978574e-05 108 93 -0.0002661734 4.295492e-05 109 93 0.0002314578 -3.735254e-05 110 93 -0.0002026106 3.26972e-05 111 93 0.0001783582 -2.878335e-05 112 93 -0.0001577525 2.545802e-05 113 93 0.000140076 -2.26054e-05 114 93 -0.0001247774 2.013652e-05 115 93 0.0001114272 -1.798207e-05 116 93 -9.968672e-05 1.608739e-05 117 93 8.928565e-05 -1.440887e-05 118 93 -8.000611e-05 1.291134e-05 119 93 7.167061e-05 -1.156616e-05 120 93 -6.413319e-05 1.034978e-05 121 93 5.727273e-05 -9.242642e-06 122 93 -5.098776e-05 8.228377e-06 123 93 4.519256e-05 -7.293151e-06 124 93 -3.981401e-05 6.425164e-06 125 93 3.478917e-05 -5.614257e-06 126 93 -3.00633e-05 4.851599e-06 127 93 2.558831e-05 -4.129428e-06 128 93 -2.132146e-05 3.440846e-06 129 93 1.722429e-05 -2.779647e-06 130 93 -1.326172e-05 2.14017e-06 131 93 9.401297e-06 -1.517176e-06 132 93 -5.612495e-06 9.057414e-07 133 93 1.866144e-06 -3.011573e-07 134 93 1.866144e-06 -3.011573e-07 135 93 -5.612495e-06 9.057414e-07 136 93 9.401297e-06 -1.517176e-06 137 93 -1.326172e-05 2.14017e-06 138 93 1.722429e-05 -2.779647e-06 139 93 -2.132146e-05 3.440846e-06 140 93 2.558831e-05 -4.129428e-06 141 93 -3.00633e-05 4.851599e-06 142 93 3.478917e-05 -5.614257e-06 143 93 -3.981401e-05 6.425164e-06 144 93 4.519256e-05 -7.293151e-06 145 93 -5.098776e-05 8.228377e-06 146 93 5.727273e-05 -9.242642e-06 147 93 -6.413319e-05 1.034978e-05 148 93 7.167061e-05 -1.156616e-05 149 93 -8.000611e-05 1.291134e-05 150 93 8.928565e-05 -1.440887e-05 151 93 -9.968672e-05 1.608739e-05 152 93 0.0001114272 -1.798207e-05 153 93 -0.0001247774 2.013652e-05 154 93 0.000140076 -2.26054e-05 155 93 -0.0001577525 2.545802e-05 156 93 0.0001783582 -2.878335e-05 157 93 -0.0002026106 3.26972e-05 158 93 0.0002314578 -3.735254e-05 159 93 -0.0002661734 4.295492e-05 160 93 0.0003085011 -4.978574e-05 161 93 -0.0003608797 5.823857e-05 174 93 0.0002908216 1.740235e-05 13 94 0.0003045378 1.859469e-05 81 94 -0.0003608797 5.823857e-05 82 94 0.0004268045 -6.887749e-05 83 94 -0.0005114288 8.253411e-05 84 94 0.0006226054 -0.0001004757 85 94 -0.0007727812 0.000124711 86 94 0.0009826448 -0.0001585787 87 94 -0.001288661 0.0002079635 88 94 0.001760065 -0.0002840383 89 94 -0.002541777 0.0004101906 90 94 0.003980742 -0.0006424099 91 94 -0.007089509 0.001144101 92 94 0.01597157 -0.002577484 93 94 -0.06393453 0.01031772 94 94 0.2096016 -0.06185955 95 94 -0.06393453 0.01031772 96 94 0.01597157 -0.002577484 97 94 -0.007089509 0.001144101 98 94 0.003980742 -0.0006424099 99 94 -0.002541777 0.0004101906 100 94 0.001760065 -0.0002840383 101 94 -0.001288661 0.0002079635 102 94 0.0009826448 -0.0001585787 103 94 -0.0007727812 0.000124711 104 94 0.0006226054 -0.0001004757 105 94 -0.0005114288 8.253411e-05 106 94 0.0004268045 -6.887749e-05 107 94 -0.0003608797 5.823857e-05 108 94 0.0003085011 -4.978574e-05 109 94 -0.0002661734 4.295492e-05 110 94 0.0002314578 -3.735254e-05 111 94 -0.0002026106 3.26972e-05 112 94 0.0001783582 -2.878335e-05 113 94 -0.0001577525 2.545802e-05 114 94 0.000140076 -2.26054e-05 115 94 -0.0001247774 2.013652e-05 116 94 0.0001114272 -1.798207e-05 117 94 -9.968672e-05 1.608739e-05 118 94 8.928565e-05 -1.440887e-05 119 94 -8.000611e-05 1.291134e-05 120 94 7.167061e-05 -1.156616e-05 121 94 -6.413319e-05 1.034978e-05 122 94 5.727273e-05 -9.242642e-06 123 94 -5.098776e-05 8.228377e-06 124 94 4.519256e-05 -7.293151e-06 125 94 -3.981401e-05 6.425164e-06 126 94 3.478917e-05 -5.614257e-06 127 94 -3.00633e-05 4.851599e-06 128 94 2.558831e-05 -4.129428e-06 129 94 -2.132146e-05 3.440846e-06 130 94 1.722429e-05 -2.779647e-06 131 94 -1.326172e-05 2.14017e-06 132 94 9.401297e-06 -1.517176e-06 133 94 -5.612495e-06 9.057414e-07 134 94 1.866144e-06 -3.011573e-07 135 94 1.866144e-06 -3.011573e-07 136 94 -5.612495e-06 9.057414e-07 137 94 9.401297e-06 -1.517176e-06 138 94 -1.326172e-05 2.14017e-06 139 94 1.722429e-05 -2.779647e-06 140 94 -2.132146e-05 3.440846e-06 141 94 2.558831e-05 -4.129428e-06 142 94 -3.00633e-05 4.851599e-06 143 94 3.478917e-05 -5.614257e-06 144 94 -3.981401e-05 6.425164e-06 145 94 4.519256e-05 -7.293151e-06 146 94 -5.098776e-05 8.228377e-06 147 94 5.727273e-05 -9.242642e-06 148 94 -6.413319e-05 1.034978e-05 149 94 7.167061e-05 -1.156616e-05 150 94 -8.000611e-05 1.291134e-05 151 94 8.928565e-05 -1.440887e-05 152 94 -9.968672e-05 1.608739e-05 153 94 0.0001114272 -1.798207e-05 154 94 -0.0001247774 2.013652e-05 155 94 0.000140076 -2.26054e-05 156 94 -0.0001577525 2.545802e-05 157 94 0.0001783582 -2.878335e-05 158 94 -0.0002026106 3.26972e-05 159 94 0.0002314578 -3.735254e-05 160 94 -0.0002661734 4.295492e-05 161 94 0.0003085011 -4.978574e-05 175 94 0.0003045378 1.859469e-05 14 95 0.000318324 1.979879e-05 81 95 0.0003085011 -4.978574e-05 82 95 -0.0003608797 5.823857e-05 83 95 0.0004268045 -6.887749e-05 84 95 -0.0005114288 8.253411e-05 85 95 0.0006226054 -0.0001004757 86 95 -0.0007727812 0.000124711 87 95 0.0009826448 -0.0001585787 88 95 -0.001288661 0.0002079635 89 95 0.001760065 -0.0002840383 90 95 -0.002541777 0.0004101906 91 95 0.003980742 -0.0006424099 92 95 -0.007089509 0.001144101 93 95 0.01597157 -0.002577484 94 95 -0.06393453 0.01031772 95 95 0.1784553 -0.05857382 96 95 -0.06393453 0.01031772 97 95 0.01597157 -0.002577484 98 95 -0.007089509 0.001144101 99 95 0.003980742 -0.0006424099 100 95 -0.002541777 0.0004101906 101 95 0.001760065 -0.0002840383 102 95 -0.001288661 0.0002079635 103 95 0.0009826448 -0.0001585787 104 95 -0.0007727812 0.000124711 105 95 0.0006226054 -0.0001004757 106 95 -0.0005114288 8.253411e-05 107 95 0.0004268045 -6.887749e-05 108 95 -0.0003608797 5.823857e-05 109 95 0.0003085011 -4.978574e-05 110 95 -0.0002661734 4.295492e-05 111 95 0.0002314578 -3.735254e-05 112 95 -0.0002026106 3.26972e-05 113 95 0.0001783582 -2.878335e-05 114 95 -0.0001577525 2.545802e-05 115 95 0.000140076 -2.26054e-05 116 95 -0.0001247774 2.013652e-05 117 95 0.0001114272 -1.798207e-05 118 95 -9.968672e-05 1.608739e-05 119 95 8.928565e-05 -1.440887e-05 120 95 -8.000611e-05 1.291134e-05 121 95 7.167061e-05 -1.156616e-05 122 95 -6.413319e-05 1.034978e-05 123 95 5.727273e-05 -9.242642e-06 124 95 -5.098776e-05 8.228377e-06 125 95 4.519256e-05 -7.293151e-06 126 95 -3.981401e-05 6.425164e-06 127 95 3.478917e-05 -5.614257e-06 128 95 -3.00633e-05 4.851599e-06 129 95 2.558831e-05 -4.129428e-06 130 95 -2.132146e-05 3.440846e-06 131 95 1.722429e-05 -2.779647e-06 132 95 -1.326172e-05 2.14017e-06 133 95 9.401297e-06 -1.517176e-06 134 95 -5.612495e-06 9.057414e-07 135 95 1.866144e-06 -3.011573e-07 136 95 1.866144e-06 -3.011573e-07 137 95 -5.612495e-06 9.057414e-07 138 95 9.401297e-06 -1.517176e-06 139 95 -1.326172e-05 2.14017e-06 140 95 1.722429e-05 -2.779647e-06 141 95 -2.132146e-05 3.440846e-06 142 95 2.558831e-05 -4.129428e-06 143 95 -3.00633e-05 4.851599e-06 144 95 3.478917e-05 -5.614257e-06 145 95 -3.981401e-05 6.425164e-06 146 95 4.519256e-05 -7.293151e-06 147 95 -5.098776e-05 8.228377e-06 148 95 5.727273e-05 -9.242642e-06 149 95 -6.413319e-05 1.034978e-05 150 95 7.167061e-05 -1.156616e-05 151 95 -8.000611e-05 1.291134e-05 152 95 8.928565e-05 -1.440887e-05 153 95 -9.968672e-05 1.608739e-05 154 95 0.0001114272 -1.798207e-05 155 95 -0.0001247774 2.013652e-05 156 95 0.000140076 -2.26054e-05 157 95 -0.0001577525 2.545802e-05 158 95 0.0001783582 -2.878335e-05 159 95 -0.0002026106 3.26972e-05 160 95 0.0002314578 -3.735254e-05 161 95 -0.0002661734 4.295492e-05 176 95 0.000318324 1.979879e-05 15 96 0.0003321804 2.101476e-05 81 96 -0.0002661734 4.295492e-05 82 96 0.0003085011 -4.978574e-05 83 96 -0.0003608797 5.823857e-05 84 96 0.0004268045 -6.887749e-05 85 96 -0.0005114288 8.253411e-05 86 96 0.0006226054 -0.0001004757 87 96 -0.0007727812 0.000124711 88 96 0.0009826448 -0.0001585787 89 96 -0.001288661 0.0002079635 90 96 0.001760065 -0.0002840383 91 96 -0.002541777 0.0004101906 92 96 0.003980742 -0.0006424099 93 96 -0.007089509 0.001144101 94 96 0.01597157 -0.002577484 95 96 -0.06393453 0.01031772 96 96 0.1511906 -0.05548876 97 96 -0.06393453 0.01031772 98 96 0.01597157 -0.002577484 99 96 -0.007089509 0.001144101 100 96 0.003980742 -0.0006424099 101 96 -0.002541777 0.0004101906 102 96 0.001760065 -0.0002840383 103 96 -0.001288661 0.0002079635 104 96 0.0009826448 -0.0001585787 105 96 -0.0007727812 0.000124711 106 96 0.0006226054 -0.0001004757 107 96 -0.0005114288 8.253411e-05 108 96 0.0004268045 -6.887749e-05 109 96 -0.0003608797 5.823857e-05 110 96 0.0003085011 -4.978574e-05 111 96 -0.0002661734 4.295492e-05 112 96 0.0002314578 -3.735254e-05 113 96 -0.0002026106 3.26972e-05 114 96 0.0001783582 -2.878335e-05 115 96 -0.0001577525 2.545802e-05 116 96 0.000140076 -2.26054e-05 117 96 -0.0001247774 2.013652e-05 118 96 0.0001114272 -1.798207e-05 119 96 -9.968672e-05 1.608739e-05 120 96 8.928565e-05 -1.440887e-05 121 96 -8.000611e-05 1.291134e-05 122 96 7.167061e-05 -1.156616e-05 123 96 -6.413319e-05 1.034978e-05 124 96 5.727273e-05 -9.242642e-06 125 96 -5.098776e-05 8.228377e-06 126 96 4.519256e-05 -7.293151e-06 127 96 -3.981401e-05 6.425164e-06 128 96 3.478917e-05 -5.614257e-06 129 96 -3.00633e-05 4.851599e-06 130 96 2.558831e-05 -4.129428e-06 131 96 -2.132146e-05 3.440846e-06 132 96 1.722429e-05 -2.779647e-06 133 96 -1.326172e-05 2.14017e-06 134 96 9.401297e-06 -1.517176e-06 135 96 -5.612495e-06 9.057414e-07 136 96 1.866144e-06 -3.011573e-07 137 96 1.866144e-06 -3.011573e-07 138 96 -5.612495e-06 9.057414e-07 139 96 9.401297e-06 -1.517176e-06 140 96 -1.326172e-05 2.14017e-06 141 96 1.722429e-05 -2.779647e-06 142 96 -2.132146e-05 3.440846e-06 143 96 2.558831e-05 -4.129428e-06 144 96 -3.00633e-05 4.851599e-06 145 96 3.478917e-05 -5.614257e-06 146 96 -3.981401e-05 6.425164e-06 147 96 4.519256e-05 -7.293151e-06 148 96 -5.098776e-05 8.228377e-06 149 96 5.727273e-05 -9.242642e-06 150 96 -6.413319e-05 1.034978e-05 151 96 7.167061e-05 -1.156616e-05 152 96 -8.000611e-05 1.291134e-05 153 96 8.928565e-05 -1.440887e-05 154 96 -9.968672e-05 1.608739e-05 155 96 0.0001114272 -1.798207e-05 156 96 -0.0001247774 2.013652e-05 157 96 0.000140076 -2.26054e-05 158 96 -0.0001577525 2.545802e-05 159 96 0.0001783582 -2.878335e-05 160 96 -0.0002026106 3.26972e-05 161 96 0.0002314578 -3.735254e-05 177 96 0.0003321804 2.101476e-05 16 97 0.0003461073 2.224268e-05 81 97 0.0002314578 -3.735254e-05 82 97 -0.0002661734 4.295492e-05 83 97 0.0003085011 -4.978574e-05 84 97 -0.0003608797 5.823857e-05 85 97 0.0004268045 -6.887749e-05 86 97 -0.0005114288 8.253411e-05 87 97 0.0006226054 -0.0001004757 88 97 -0.0007727812 0.000124711 89 97 0.0009826448 -0.0001585787 90 97 -0.001288661 0.0002079635 91 97 0.001760065 -0.0002840383 92 97 -0.002541777 0.0004101906 93 97 0.003980742 -0.0006424099 94 97 -0.007089509 0.001144101 95 97 0.01597157 -0.002577484 96 97 -0.06393453 0.01031772 97 97 0.1272744 -0.052606 98 97 -0.06393453 0.01031772 99 97 0.01597157 -0.002577484 100 97 -0.007089509 0.001144101 101 97 0.003980742 -0.0006424099 102 97 -0.002541777 0.0004101906 103 97 0.001760065 -0.0002840383 104 97 -0.001288661 0.0002079635 105 97 0.0009826448 -0.0001585787 106 97 -0.0007727812 0.000124711 107 97 0.0006226054 -0.0001004757 108 97 -0.0005114288 8.253411e-05 109 97 0.0004268045 -6.887749e-05 110 97 -0.0003608797 5.823857e-05 111 97 0.0003085011 -4.978574e-05 112 97 -0.0002661734 4.295492e-05 113 97 0.0002314578 -3.735254e-05 114 97 -0.0002026106 3.26972e-05 115 97 0.0001783582 -2.878335e-05 116 97 -0.0001577525 2.545802e-05 117 97 0.000140076 -2.26054e-05 118 97 -0.0001247774 2.013652e-05 119 97 0.0001114272 -1.798207e-05 120 97 -9.968672e-05 1.608739e-05 121 97 8.928565e-05 -1.440887e-05 122 97 -8.000611e-05 1.291134e-05 123 97 7.167061e-05 -1.156616e-05 124 97 -6.413319e-05 1.034978e-05 125 97 5.727273e-05 -9.242642e-06 126 97 -5.098776e-05 8.228377e-06 127 97 4.519256e-05 -7.293151e-06 128 97 -3.981401e-05 6.425164e-06 129 97 3.478917e-05 -5.614257e-06 130 97 -3.00633e-05 4.851599e-06 131 97 2.558831e-05 -4.129428e-06 132 97 -2.132146e-05 3.440846e-06 133 97 1.722429e-05 -2.779647e-06 134 97 -1.326172e-05 2.14017e-06 135 97 9.401297e-06 -1.517176e-06 136 97 -5.612495e-06 9.057414e-07 137 97 1.866144e-06 -3.011573e-07 138 97 1.866144e-06 -3.011573e-07 139 97 -5.612495e-06 9.057414e-07 140 97 9.401297e-06 -1.517176e-06 141 97 -1.326172e-05 2.14017e-06 142 97 1.722429e-05 -2.779647e-06 143 97 -2.132146e-05 3.440846e-06 144 97 2.558831e-05 -4.129428e-06 145 97 -3.00633e-05 4.851599e-06 146 97 3.478917e-05 -5.614257e-06 147 97 -3.981401e-05 6.425164e-06 148 97 4.519256e-05 -7.293151e-06 149 97 -5.098776e-05 8.228377e-06 150 97 5.727273e-05 -9.242642e-06 151 97 -6.413319e-05 1.034978e-05 152 97 7.167061e-05 -1.156616e-05 153 97 -8.000611e-05 1.291134e-05 154 97 8.928565e-05 -1.440887e-05 155 97 -9.968672e-05 1.608739e-05 156 97 0.0001114272 -1.798207e-05 157 97 -0.0001247774 2.013652e-05 158 97 0.000140076 -2.26054e-05 159 97 -0.0001577525 2.545802e-05 160 97 0.0001783582 -2.878335e-05 161 97 -0.0002026106 3.26972e-05 178 97 0.0003461073 2.224268e-05 17 98 0.0003601052 2.348264e-05 81 98 -0.0002026106 3.26972e-05 82 98 0.0002314578 -3.735254e-05 83 98 -0.0002661734 4.295492e-05 84 98 0.0003085011 -4.978574e-05 85 98 -0.0003608797 5.823857e-05 86 98 0.0004268045 -6.887749e-05 87 98 -0.0005114288 8.253411e-05 88 98 0.0006226054 -0.0001004757 89 98 -0.0007727812 0.000124711 90 98 0.0009826448 -0.0001585787 91 98 -0.001288661 0.0002079635 92 98 0.001760065 -0.0002840383 93 98 -0.002541777 0.0004101906 94 98 0.003980742 -0.0006424099 95 98 -0.007089509 0.001144101 96 98 0.01597157 -0.002577484 97 98 -0.06393453 0.01031772 98 98 0.1062526 -0.04992224 99 98 -0.06393453 0.01031772 100 98 0.01597157 -0.002577484 101 98 -0.007089509 0.001144101 102 98 0.003980742 -0.0006424099 103 98 -0.002541777 0.0004101906 104 98 0.001760065 -0.0002840383 105 98 -0.001288661 0.0002079635 106 98 0.0009826448 -0.0001585787 107 98 -0.0007727812 0.000124711 108 98 0.0006226054 -0.0001004757 109 98 -0.0005114288 8.253411e-05 110 98 0.0004268045 -6.887749e-05 111 98 -0.0003608797 5.823857e-05 112 98 0.0003085011 -4.978574e-05 113 98 -0.0002661734 4.295492e-05 114 98 0.0002314578 -3.735254e-05 115 98 -0.0002026106 3.26972e-05 116 98 0.0001783582 -2.878335e-05 117 98 -0.0001577525 2.545802e-05 118 98 0.000140076 -2.26054e-05 119 98 -0.0001247774 2.013652e-05 120 98 0.0001114272 -1.798207e-05 121 98 -9.968672e-05 1.608739e-05 122 98 8.928565e-05 -1.440887e-05 123 98 -8.000611e-05 1.291134e-05 124 98 7.167061e-05 -1.156616e-05 125 98 -6.413319e-05 1.034978e-05 126 98 5.727273e-05 -9.242642e-06 127 98 -5.098776e-05 8.228377e-06 128 98 4.519256e-05 -7.293151e-06 129 98 -3.981401e-05 6.425164e-06 130 98 3.478917e-05 -5.614257e-06 131 98 -3.00633e-05 4.851599e-06 132 98 2.558831e-05 -4.129428e-06 133 98 -2.132146e-05 3.440846e-06 134 98 1.722429e-05 -2.779647e-06 135 98 -1.326172e-05 2.14017e-06 136 98 9.401297e-06 -1.517176e-06 137 98 -5.612495e-06 9.057414e-07 138 98 1.866144e-06 -3.011573e-07 139 98 1.866144e-06 -3.011573e-07 140 98 -5.612495e-06 9.057414e-07 141 98 9.401297e-06 -1.517176e-06 142 98 -1.326172e-05 2.14017e-06 143 98 1.722429e-05 -2.779647e-06 144 98 -2.132146e-05 3.440846e-06 145 98 2.558831e-05 -4.129428e-06 146 98 -3.00633e-05 4.851599e-06 147 98 3.478917e-05 -5.614257e-06 148 98 -3.981401e-05 6.425164e-06 149 98 4.519256e-05 -7.293151e-06 150 98 -5.098776e-05 8.228377e-06 151 98 5.727273e-05 -9.242642e-06 152 98 -6.413319e-05 1.034978e-05 153 98 7.167061e-05 -1.156616e-05 154 98 -8.000611e-05 1.291134e-05 155 98 8.928565e-05 -1.440887e-05 156 98 -9.968672e-05 1.608739e-05 157 98 0.0001114272 -1.798207e-05 158 98 -0.0001247774 2.013652e-05 159 98 0.000140076 -2.26054e-05 160 98 -0.0001577525 2.545802e-05 161 98 0.0001783582 -2.878335e-05 179 98 0.0003601052 2.348264e-05 18 99 0.0003741744 2.473473e-05 81 99 0.0001783582 -2.878335e-05 82 99 -0.0002026106 3.26972e-05 83 99 0.0002314578 -3.735254e-05 84 99 -0.0002661734 4.295492e-05 85 99 0.0003085011 -4.978574e-05 86 99 -0.0003608797 5.823857e-05 87 99 0.0004268045 -6.887749e-05 88 99 -0.0005114288 8.253411e-05 89 99 0.0006226054 -0.0001004757 90 99 -0.0007727812 0.000124711 91 99 0.0009826448 -0.0001585787 92 99 -0.001288661 0.0002079635 93 99 0.001760065 -0.0002840383 94 99 -0.002541777 0.0004101906 95 99 0.003980742 -0.0006424099 96 99 -0.007089509 0.001144101 97 99 0.01597157 -0.002577484 98 99 -0.06393453 0.01031772 99 99 0.08773809 -0.04743086 100 99 -0.06393453 0.01031772 101 99 0.01597157 -0.002577484 102 99 -0.007089509 0.001144101 103 99 0.003980742 -0.0006424099 104 99 -0.002541777 0.0004101906 105 99 0.001760065 -0.0002840383 106 99 -0.001288661 0.0002079635 107 99 0.0009826448 -0.0001585787 108 99 -0.0007727812 0.000124711 109 99 0.0006226054 -0.0001004757 110 99 -0.0005114288 8.253411e-05 111 99 0.0004268045 -6.887749e-05 112 99 -0.0003608797 5.823857e-05 113 99 0.0003085011 -4.978574e-05 114 99 -0.0002661734 4.295492e-05 115 99 0.0002314578 -3.735254e-05 116 99 -0.0002026106 3.26972e-05 117 99 0.0001783582 -2.878335e-05 118 99 -0.0001577525 2.545802e-05 119 99 0.000140076 -2.26054e-05 120 99 -0.0001247774 2.013652e-05 121 99 0.0001114272 -1.798207e-05 122 99 -9.968672e-05 1.608739e-05 123 99 8.928565e-05 -1.440887e-05 124 99 -8.000611e-05 1.291134e-05 125 99 7.167061e-05 -1.156616e-05 126 99 -6.413319e-05 1.034978e-05 127 99 5.727273e-05 -9.242642e-06 128 99 -5.098776e-05 8.228377e-06 129 99 4.519256e-05 -7.293151e-06 130 99 -3.981401e-05 6.425164e-06 131 99 3.478917e-05 -5.614257e-06 132 99 -3.00633e-05 4.851599e-06 133 99 2.558831e-05 -4.129428e-06 134 99 -2.132146e-05 3.440846e-06 135 99 1.722429e-05 -2.779647e-06 136 99 -1.326172e-05 2.14017e-06 137 99 9.401297e-06 -1.517176e-06 138 99 -5.612495e-06 9.057414e-07 139 99 1.866144e-06 -3.011573e-07 140 99 1.866144e-06 -3.011573e-07 141 99 -5.612495e-06 9.057414e-07 142 99 9.401297e-06 -1.517176e-06 143 99 -1.326172e-05 2.14017e-06 144 99 1.722429e-05 -2.779647e-06 145 99 -2.132146e-05 3.440846e-06 146 99 2.558831e-05 -4.129428e-06 147 99 -3.00633e-05 4.851599e-06 148 99 3.478917e-05 -5.614257e-06 149 99 -3.981401e-05 6.425164e-06 150 99 4.519256e-05 -7.293151e-06 151 99 -5.098776e-05 8.228377e-06 152 99 5.727273e-05 -9.242642e-06 153 99 -6.413319e-05 1.034978e-05 154 99 7.167061e-05 -1.156616e-05 155 99 -8.000611e-05 1.291134e-05 156 99 8.928565e-05 -1.440887e-05 157 99 -9.968672e-05 1.608739e-05 158 99 0.0001114272 -1.798207e-05 159 99 -0.0001247774 2.013652e-05 160 99 0.000140076 -2.26054e-05 161 99 -0.0001577525 2.545802e-05 180 99 0.0003741744 2.473473e-05 19 100 0.0003883153 2.599905e-05 81 100 -0.0001577525 2.545802e-05 82 100 0.0001783582 -2.878335e-05 83 100 -0.0002026106 3.26972e-05 84 100 0.0002314578 -3.735254e-05 85 100 -0.0002661734 4.295492e-05 86 100 0.0003085011 -4.978574e-05 87 100 -0.0003608797 5.823857e-05 88 100 0.0004268045 -6.887749e-05 89 100 -0.0005114288 8.253411e-05 90 100 0.0006226054 -0.0001004757 91 100 -0.0007727812 0.000124711 92 100 0.0009826448 -0.0001585787 93 100 -0.001288661 0.0002079635 94 100 0.001760065 -0.0002840383 95 100 -0.002541777 0.0004101906 96 100 0.003980742 -0.0006424099 97 100 -0.007089509 0.001144101 98 100 0.01597157 -0.002577484 99 100 -0.06393453 0.01031772 100 100 0.07140002 -0.04512305 101 100 -0.06393453 0.01031772 102 100 0.01597157 -0.002577484 103 100 -0.007089509 0.001144101 104 100 0.003980742 -0.0006424099 105 100 -0.002541777 0.0004101906 106 100 0.001760065 -0.0002840383 107 100 -0.001288661 0.0002079635 108 100 0.0009826448 -0.0001585787 109 100 -0.0007727812 0.000124711 110 100 0.0006226054 -0.0001004757 111 100 -0.0005114288 8.253411e-05 112 100 0.0004268045 -6.887749e-05 113 100 -0.0003608797 5.823857e-05 114 100 0.0003085011 -4.978574e-05 115 100 -0.0002661734 4.295492e-05 116 100 0.0002314578 -3.735254e-05 117 100 -0.0002026106 3.26972e-05 118 100 0.0001783582 -2.878335e-05 119 100 -0.0001577525 2.545802e-05 120 100 0.000140076 -2.26054e-05 121 100 -0.0001247774 2.013652e-05 122 100 0.0001114272 -1.798207e-05 123 100 -9.968672e-05 1.608739e-05 124 100 8.928565e-05 -1.440887e-05 125 100 -8.000611e-05 1.291134e-05 126 100 7.167061e-05 -1.156616e-05 127 100 -6.413319e-05 1.034978e-05 128 100 5.727273e-05 -9.242642e-06 129 100 -5.098776e-05 8.228377e-06 130 100 4.519256e-05 -7.293151e-06 131 100 -3.981401e-05 6.425164e-06 132 100 3.478917e-05 -5.614257e-06 133 100 -3.00633e-05 4.851599e-06 134 100 2.558831e-05 -4.129428e-06 135 100 -2.132146e-05 3.440846e-06 136 100 1.722429e-05 -2.779647e-06 137 100 -1.326172e-05 2.14017e-06 138 100 9.401297e-06 -1.517176e-06 139 100 -5.612495e-06 9.057414e-07 140 100 1.866144e-06 -3.011573e-07 141 100 1.866144e-06 -3.011573e-07 142 100 -5.612495e-06 9.057414e-07 143 100 9.401297e-06 -1.517176e-06 144 100 -1.326172e-05 2.14017e-06 145 100 1.722429e-05 -2.779647e-06 146 100 -2.132146e-05 3.440846e-06 147 100 2.558831e-05 -4.129428e-06 148 100 -3.00633e-05 4.851599e-06 149 100 3.478917e-05 -5.614257e-06 150 100 -3.981401e-05 6.425164e-06 151 100 4.519256e-05 -7.293151e-06 152 100 -5.098776e-05 8.228377e-06 153 100 5.727273e-05 -9.242642e-06 154 100 -6.413319e-05 1.034978e-05 155 100 7.167061e-05 -1.156616e-05 156 100 -8.000611e-05 1.291134e-05 157 100 8.928565e-05 -1.440887e-05 158 100 -9.968672e-05 1.608739e-05 159 100 0.0001114272 -1.798207e-05 160 100 -0.0001247774 2.013652e-05 161 100 0.000140076 -2.26054e-05 181 100 0.0003883153 2.599905e-05 20 101 0.0004025281 2.727568e-05 81 101 0.000140076 -2.26054e-05 82 101 -0.0001577525 2.545802e-05 83 101 0.0001783582 -2.878335e-05 84 101 -0.0002026106 3.26972e-05 85 101 0.0002314578 -3.735254e-05 86 101 -0.0002661734 4.295492e-05 87 101 0.0003085011 -4.978574e-05 88 101 -0.0003608797 5.823857e-05 89 101 0.0004268045 -6.887749e-05 90 101 -0.0005114288 8.253411e-05 91 101 0.0006226054 -0.0001004757 92 101 -0.0007727812 0.000124711 93 101 0.0009826448 -0.0001585787 94 101 -0.001288661 0.0002079635 95 101 0.001760065 -0.0002840383 96 101 -0.002541777 0.0004101906 97 101 0.003980742 -0.0006424099 98 101 -0.007089509 0.001144101 99 101 0.01597157 -0.002577484 100 101 -0.06393453 0.01031772 101 101 0.0569553 -0.04298872 102 101 -0.06393453 0.01031772 103 101 0.01597157 -0.002577484 104 101 -0.007089509 0.001144101 105 101 0.003980742 -0.0006424099 106 101 -0.002541777 0.0004101906 107 101 0.001760065 -0.0002840383 108 101 -0.001288661 0.0002079635 109 101 0.0009826448 -0.0001585787 110 101 -0.0007727812 0.000124711 111 101 0.0006226054 -0.0001004757 112 101 -0.0005114288 8.253411e-05 113 101 0.0004268045 -6.887749e-05 114 101 -0.0003608797 5.823857e-05 115 101 0.0003085011 -4.978574e-05 116 101 -0.0002661734 4.295492e-05 117 101 0.0002314578 -3.735254e-05 118 101 -0.0002026106 3.26972e-05 119 101 0.0001783582 -2.878335e-05 120 101 -0.0001577525 2.545802e-05 121 101 0.000140076 -2.26054e-05 122 101 -0.0001247774 2.013652e-05 123 101 0.0001114272 -1.798207e-05 124 101 -9.968672e-05 1.608739e-05 125 101 8.928565e-05 -1.440887e-05 126 101 -8.000611e-05 1.291134e-05 127 101 7.167061e-05 -1.156616e-05 128 101 -6.413319e-05 1.034978e-05 129 101 5.727273e-05 -9.242642e-06 130 101 -5.098776e-05 8.228377e-06 131 101 4.519256e-05 -7.293151e-06 132 101 -3.981401e-05 6.425164e-06 133 101 3.478917e-05 -5.614257e-06 134 101 -3.00633e-05 4.851599e-06 135 101 2.558831e-05 -4.129428e-06 136 101 -2.132146e-05 3.440846e-06 137 101 1.722429e-05 -2.779647e-06 138 101 -1.326172e-05 2.14017e-06 139 101 9.401297e-06 -1.517176e-06 140 101 -5.612495e-06 9.057414e-07 141 101 1.866144e-06 -3.011573e-07 142 101 1.866144e-06 -3.011573e-07 143 101 -5.612495e-06 9.057414e-07 144 101 9.401297e-06 -1.517176e-06 145 101 -1.326172e-05 2.14017e-06 146 101 1.722429e-05 -2.779647e-06 147 101 -2.132146e-05 3.440846e-06 148 101 2.558831e-05 -4.129428e-06 149 101 -3.00633e-05 4.851599e-06 150 101 3.478917e-05 -5.614257e-06 151 101 -3.981401e-05 6.425164e-06 152 101 4.519256e-05 -7.293151e-06 153 101 -5.098776e-05 8.228377e-06 154 101 5.727273e-05 -9.242642e-06 155 101 -6.413319e-05 1.034978e-05 156 101 7.167061e-05 -1.156616e-05 157 101 -8.000611e-05 1.291134e-05 158 101 8.928565e-05 -1.440887e-05 159 101 -9.968672e-05 1.608739e-05 160 101 0.0001114272 -1.798207e-05 161 101 -0.0001247774 2.013652e-05 182 101 0.0004025281 2.727568e-05 21 102 0.0004168134 2.856472e-05 81 102 -0.0001247774 2.013652e-05 82 102 0.000140076 -2.26054e-05 83 102 -0.0001577525 2.545802e-05 84 102 0.0001783582 -2.878335e-05 85 102 -0.0002026106 3.26972e-05 86 102 0.0002314578 -3.735254e-05 87 102 -0.0002661734 4.295492e-05 88 102 0.0003085011 -4.978574e-05 89 102 -0.0003608797 5.823857e-05 90 102 0.0004268045 -6.887749e-05 91 102 -0.0005114288 8.253411e-05 92 102 0.0006226054 -0.0001004757 93 102 -0.0007727812 0.000124711 94 102 0.0009826448 -0.0001585787 95 102 -0.001288661 0.0002079635 96 102 0.001760065 -0.0002840383 97 102 -0.002541777 0.0004101906 98 102 0.003980742 -0.0006424099 99 102 -0.007089509 0.001144101 100 102 0.01597157 -0.002577484 101 102 -0.06393453 0.01031772 102 102 0.04416118 -0.04101709 103 102 -0.06393453 0.01031772 104 102 0.01597157 -0.002577484 105 102 -0.007089509 0.001144101 106 102 0.003980742 -0.0006424099 107 102 -0.002541777 0.0004101906 108 102 0.001760065 -0.0002840383 109 102 -0.001288661 0.0002079635 110 102 0.0009826448 -0.0001585787 111 102 -0.0007727812 0.000124711 112 102 0.0006226054 -0.0001004757 113 102 -0.0005114288 8.253411e-05 114 102 0.0004268045 -6.887749e-05 115 102 -0.0003608797 5.823857e-05 116 102 0.0003085011 -4.978574e-05 117 102 -0.0002661734 4.295492e-05 118 102 0.0002314578 -3.735254e-05 119 102 -0.0002026106 3.26972e-05 120 102 0.0001783582 -2.878335e-05 121 102 -0.0001577525 2.545802e-05 122 102 0.000140076 -2.26054e-05 123 102 -0.0001247774 2.013652e-05 124 102 0.0001114272 -1.798207e-05 125 102 -9.968672e-05 1.608739e-05 126 102 8.928565e-05 -1.440887e-05 127 102 -8.000611e-05 1.291134e-05 128 102 7.167061e-05 -1.156616e-05 129 102 -6.413319e-05 1.034978e-05 130 102 5.727273e-05 -9.242642e-06 131 102 -5.098776e-05 8.228377e-06 132 102 4.519256e-05 -7.293151e-06 133 102 -3.981401e-05 6.425164e-06 134 102 3.478917e-05 -5.614257e-06 135 102 -3.00633e-05 4.851599e-06 136 102 2.558831e-05 -4.129428e-06 137 102 -2.132146e-05 3.440846e-06 138 102 1.722429e-05 -2.779647e-06 139 102 -1.326172e-05 2.14017e-06 140 102 9.401297e-06 -1.517176e-06 141 102 -5.612495e-06 9.057414e-07 142 102 1.866144e-06 -3.011573e-07 143 102 1.866144e-06 -3.011573e-07 144 102 -5.612495e-06 9.057414e-07 145 102 9.401297e-06 -1.517176e-06 146 102 -1.326172e-05 2.14017e-06 147 102 1.722429e-05 -2.779647e-06 148 102 -2.132146e-05 3.440846e-06 149 102 2.558831e-05 -4.129428e-06 150 102 -3.00633e-05 4.851599e-06 151 102 3.478917e-05 -5.614257e-06 152 102 -3.981401e-05 6.425164e-06 153 102 4.519256e-05 -7.293151e-06 154 102 -5.098776e-05 8.228377e-06 155 102 5.727273e-05 -9.242642e-06 156 102 -6.413319e-05 1.034978e-05 157 102 7.167061e-05 -1.156616e-05 158 102 -8.000611e-05 1.291134e-05 159 102 8.928565e-05 -1.440887e-05 160 102 -9.968672e-05 1.608739e-05 161 102 0.0001114272 -1.798207e-05 183 102 0.0004168134 2.856472e-05 22 103 0.0004311714 2.986627e-05 81 103 0.0001114272 -1.798207e-05 82 103 -0.0001247774 2.013652e-05 83 103 0.000140076 -2.26054e-05 84 103 -0.0001577525 2.545802e-05 85 103 0.0001783582 -2.878335e-05 86 103 -0.0002026106 3.26972e-05 87 103 0.0002314578 -3.735254e-05 88 103 -0.0002661734 4.295492e-05 89 103 0.0003085011 -4.978574e-05 90 103 -0.0003608797 5.823857e-05 91 103 0.0004268045 -6.887749e-05 92 103 -0.0005114288 8.253411e-05 93 103 0.0006226054 -0.0001004757 94 103 -0.0007727812 0.000124711 95 103 0.0009826448 -0.0001585787 96 103 -0.001288661 0.0002079635 97 103 0.001760065 -0.0002840383 98 103 -0.002541777 0.0004101906 99 103 0.003980742 -0.0006424099 100 103 -0.007089509 0.001144101 101 103 0.01597157 -0.002577484 102 103 -0.06393453 0.01031772 103 103 0.03280911 -0.03919719 104 103 -0.06393453 0.01031772 105 103 0.01597157 -0.002577484 106 103 -0.007089509 0.001144101 107 103 0.003980742 -0.0006424099 108 103 -0.002541777 0.0004101906 109 103 0.001760065 -0.0002840383 110 103 -0.001288661 0.0002079635 111 103 0.0009826448 -0.0001585787 112 103 -0.0007727812 0.000124711 113 103 0.0006226054 -0.0001004757 114 103 -0.0005114288 8.253411e-05 115 103 0.0004268045 -6.887749e-05 116 103 -0.0003608797 5.823857e-05 117 103 0.0003085011 -4.978574e-05 118 103 -0.0002661734 4.295492e-05 119 103 0.0002314578 -3.735254e-05 120 103 -0.0002026106 3.26972e-05 121 103 0.0001783582 -2.878335e-05 122 103 -0.0001577525 2.545802e-05 123 103 0.000140076 -2.26054e-05 124 103 -0.0001247774 2.013652e-05 125 103 0.0001114272 -1.798207e-05 126 103 -9.968672e-05 1.608739e-05 127 103 8.928565e-05 -1.440887e-05 128 103 -8.000611e-05 1.291134e-05 129 103 7.167061e-05 -1.156616e-05 130 103 -6.413319e-05 1.034978e-05 131 103 5.727273e-05 -9.242642e-06 132 103 -5.098776e-05 8.228377e-06 133 103 4.519256e-05 -7.293151e-06 134 103 -3.981401e-05 6.425164e-06 135 103 3.478917e-05 -5.614257e-06 136 103 -3.00633e-05 4.851599e-06 137 103 2.558831e-05 -4.129428e-06 138 103 -2.132146e-05 3.440846e-06 139 103 1.722429e-05 -2.779647e-06 140 103 -1.326172e-05 2.14017e-06 141 103 9.401297e-06 -1.517176e-06 142 103 -5.612495e-06 9.057414e-07 143 103 1.866144e-06 -3.011573e-07 144 103 1.866144e-06 -3.011573e-07 145 103 -5.612495e-06 9.057414e-07 146 103 9.401297e-06 -1.517176e-06 147 103 -1.326172e-05 2.14017e-06 148 103 1.722429e-05 -2.779647e-06 149 103 -2.132146e-05 3.440846e-06 150 103 2.558831e-05 -4.129428e-06 151 103 -3.00633e-05 4.851599e-06 152 103 3.478917e-05 -5.614257e-06 153 103 -3.981401e-05 6.425164e-06 154 103 4.519256e-05 -7.293151e-06 155 103 -5.098776e-05 8.228377e-06 156 103 5.727273e-05 -9.242642e-06 157 103 -6.413319e-05 1.034978e-05 158 103 7.167061e-05 -1.156616e-05 159 103 -8.000611e-05 1.291134e-05 160 103 8.928565e-05 -1.440887e-05 161 103 -9.968672e-05 1.608739e-05 184 103 0.0004311714 2.986627e-05 23 104 0.0004456025 3.118041e-05 81 104 -9.968672e-05 1.608739e-05 82 104 0.0001114272 -1.798207e-05 83 104 -0.0001247774 2.013652e-05 84 104 0.000140076 -2.26054e-05 85 104 -0.0001577525 2.545802e-05 86 104 0.0001783582 -2.878335e-05 87 104 -0.0002026106 3.26972e-05 88 104 0.0002314578 -3.735254e-05 89 104 -0.0002661734 4.295492e-05 90 104 0.0003085011 -4.978574e-05 91 104 -0.0003608797 5.823857e-05 92 104 0.0004268045 -6.887749e-05 93 104 -0.0005114288 8.253411e-05 94 104 0.0006226054 -0.0001004757 95 104 -0.0007727812 0.000124711 96 104 0.0009826448 -0.0001585787 97 104 -0.001288661 0.0002079635 98 104 0.001760065 -0.0002840383 99 104 -0.002541777 0.0004101906 100 104 0.003980742 -0.0006424099 101 104 -0.007089509 0.001144101 102 104 0.01597157 -0.002577484 103 104 -0.06393453 0.01031772 104 104 0.02271958 -0.03751817 105 104 -0.06393453 0.01031772 106 104 0.01597157 -0.002577484 107 104 -0.007089509 0.001144101 108 104 0.003980742 -0.0006424099 109 104 -0.002541777 0.0004101906 110 104 0.001760065 -0.0002840383 111 104 -0.001288661 0.0002079635 112 104 0.0009826448 -0.0001585787 113 104 -0.0007727812 0.000124711 114 104 0.0006226054 -0.0001004757 115 104 -0.0005114288 8.253411e-05 116 104 0.0004268045 -6.887749e-05 117 104 -0.0003608797 5.823857e-05 118 104 0.0003085011 -4.978574e-05 119 104 -0.0002661734 4.295492e-05 120 104 0.0002314578 -3.735254e-05 121 104 -0.0002026106 3.26972e-05 122 104 0.0001783582 -2.878335e-05 123 104 -0.0001577525 2.545802e-05 124 104 0.000140076 -2.26054e-05 125 104 -0.0001247774 2.013652e-05 126 104 0.0001114272 -1.798207e-05 127 104 -9.968672e-05 1.608739e-05 128 104 8.928565e-05 -1.440887e-05 129 104 -8.000611e-05 1.291134e-05 130 104 7.167061e-05 -1.156616e-05 131 104 -6.413319e-05 1.034978e-05 132 104 5.727273e-05 -9.242642e-06 133 104 -5.098776e-05 8.228377e-06 134 104 4.519256e-05 -7.293151e-06 135 104 -3.981401e-05 6.425164e-06 136 104 3.478917e-05 -5.614257e-06 137 104 -3.00633e-05 4.851599e-06 138 104 2.558831e-05 -4.129428e-06 139 104 -2.132146e-05 3.440846e-06 140 104 1.722429e-05 -2.779647e-06 141 104 -1.326172e-05 2.14017e-06 142 104 9.401297e-06 -1.517176e-06 143 104 -5.612495e-06 9.057414e-07 144 104 1.866144e-06 -3.011573e-07 145 104 1.866144e-06 -3.011573e-07 146 104 -5.612495e-06 9.057414e-07 147 104 9.401297e-06 -1.517176e-06 148 104 -1.326172e-05 2.14017e-06 149 104 1.722429e-05 -2.779647e-06 150 104 -2.132146e-05 3.440846e-06 151 104 2.558831e-05 -4.129428e-06 152 104 -3.00633e-05 4.851599e-06 153 104 3.478917e-05 -5.614257e-06 154 104 -3.981401e-05 6.425164e-06 155 104 4.519256e-05 -7.293151e-06 156 104 -5.098776e-05 8.228377e-06 157 104 5.727273e-05 -9.242642e-06 158 104 -6.413319e-05 1.034978e-05 159 104 7.167061e-05 -1.156616e-05 160 104 -8.000611e-05 1.291134e-05 161 104 8.928565e-05 -1.440887e-05 185 104 0.0004456025 3.118041e-05 24 105 0.0004601072 3.250725e-05 81 105 8.928565e-05 -1.440887e-05 82 105 -9.968672e-05 1.608739e-05 83 105 0.0001114272 -1.798207e-05 84 105 -0.0001247774 2.013652e-05 85 105 0.000140076 -2.26054e-05 86 105 -0.0001577525 2.545802e-05 87 105 0.0001783582 -2.878335e-05 88 105 -0.0002026106 3.26972e-05 89 105 0.0002314578 -3.735254e-05 90 105 -0.0002661734 4.295492e-05 91 105 0.0003085011 -4.978574e-05 92 105 -0.0003608797 5.823857e-05 93 105 0.0004268045 -6.887749e-05 94 105 -0.0005114288 8.253411e-05 95 105 0.0006226054 -0.0001004757 96 105 -0.0007727812 0.000124711 97 105 0.0009826448 -0.0001585787 98 105 -0.001288661 0.0002079635 99 105 0.001760065 -0.0002840383 100 105 -0.002541777 0.0004101906 101 105 0.003980742 -0.0006424099 102 105 -0.007089509 0.001144101 103 105 0.01597157 -0.002577484 104 105 -0.06393453 0.01031772 105 105 0.01373774 -0.03596951 106 105 -0.06393453 0.01031772 107 105 0.01597157 -0.002577484 108 105 -0.007089509 0.001144101 109 105 0.003980742 -0.0006424099 110 105 -0.002541777 0.0004101906 111 105 0.001760065 -0.0002840383 112 105 -0.001288661 0.0002079635 113 105 0.0009826448 -0.0001585787 114 105 -0.0007727812 0.000124711 115 105 0.0006226054 -0.0001004757 116 105 -0.0005114288 8.253411e-05 117 105 0.0004268045 -6.887749e-05 118 105 -0.0003608797 5.823857e-05 119 105 0.0003085011 -4.978574e-05 120 105 -0.0002661734 4.295492e-05 121 105 0.0002314578 -3.735254e-05 122 105 -0.0002026106 3.26972e-05 123 105 0.0001783582 -2.878335e-05 124 105 -0.0001577525 2.545802e-05 125 105 0.000140076 -2.26054e-05 126 105 -0.0001247774 2.013652e-05 127 105 0.0001114272 -1.798207e-05 128 105 -9.968672e-05 1.608739e-05 129 105 8.928565e-05 -1.440887e-05 130 105 -8.000611e-05 1.291134e-05 131 105 7.167061e-05 -1.156616e-05 132 105 -6.413319e-05 1.034978e-05 133 105 5.727273e-05 -9.242642e-06 134 105 -5.098776e-05 8.228377e-06 135 105 4.519256e-05 -7.293151e-06 136 105 -3.981401e-05 6.425164e-06 137 105 3.478917e-05 -5.614257e-06 138 105 -3.00633e-05 4.851599e-06 139 105 2.558831e-05 -4.129428e-06 140 105 -2.132146e-05 3.440846e-06 141 105 1.722429e-05 -2.779647e-06 142 105 -1.326172e-05 2.14017e-06 143 105 9.401297e-06 -1.517176e-06 144 105 -5.612495e-06 9.057414e-07 145 105 1.866144e-06 -3.011573e-07 146 105 1.866144e-06 -3.011573e-07 147 105 -5.612495e-06 9.057414e-07 148 105 9.401297e-06 -1.517176e-06 149 105 -1.326172e-05 2.14017e-06 150 105 1.722429e-05 -2.779647e-06 151 105 -2.132146e-05 3.440846e-06 152 105 2.558831e-05 -4.129428e-06 153 105 -3.00633e-05 4.851599e-06 154 105 3.478917e-05 -5.614257e-06 155 105 -3.981401e-05 6.425164e-06 156 105 4.519256e-05 -7.293151e-06 157 105 -5.098776e-05 8.228377e-06 158 105 5.727273e-05 -9.242642e-06 159 105 -6.413319e-05 1.034978e-05 160 105 7.167061e-05 -1.156616e-05 161 105 -8.000611e-05 1.291134e-05 186 105 0.0004601072 3.250725e-05 25 106 0.0004746856 3.384687e-05 81 106 -8.000611e-05 1.291134e-05 82 106 8.928565e-05 -1.440887e-05 83 106 -9.968672e-05 1.608739e-05 84 106 0.0001114272 -1.798207e-05 85 106 -0.0001247774 2.013652e-05 86 106 0.000140076 -2.26054e-05 87 106 -0.0001577525 2.545802e-05 88 106 0.0001783582 -2.878335e-05 89 106 -0.0002026106 3.26972e-05 90 106 0.0002314578 -3.735254e-05 91 106 -0.0002661734 4.295492e-05 92 106 0.0003085011 -4.978574e-05 93 106 -0.0003608797 5.823857e-05 94 106 0.0004268045 -6.887749e-05 95 106 -0.0005114288 8.253411e-05 96 106 0.0006226054 -0.0001004757 97 106 -0.0007727812 0.000124711 98 106 0.0009826448 -0.0001585787 99 106 -0.001288661 0.0002079635 100 106 0.001760065 -0.0002840383 101 106 -0.002541777 0.0004101906 102 106 0.003980742 -0.0006424099 103 106 -0.007089509 0.001144101 104 106 0.01597157 -0.002577484 105 106 -0.06393453 0.01031772 106 106 0.005729718 -0.03454119 107 106 -0.06393453 0.01031772 108 106 0.01597157 -0.002577484 109 106 -0.007089509 0.001144101 110 106 0.003980742 -0.0006424099 111 106 -0.002541777 0.0004101906 112 106 0.001760065 -0.0002840383 113 106 -0.001288661 0.0002079635 114 106 0.0009826448 -0.0001585787 115 106 -0.0007727812 0.000124711 116 106 0.0006226054 -0.0001004757 117 106 -0.0005114288 8.253411e-05 118 106 0.0004268045 -6.887749e-05 119 106 -0.0003608797 5.823857e-05 120 106 0.0003085011 -4.978574e-05 121 106 -0.0002661734 4.295492e-05 122 106 0.0002314578 -3.735254e-05 123 106 -0.0002026106 3.26972e-05 124 106 0.0001783582 -2.878335e-05 125 106 -0.0001577525 2.545802e-05 126 106 0.000140076 -2.26054e-05 127 106 -0.0001247774 2.013652e-05 128 106 0.0001114272 -1.798207e-05 129 106 -9.968672e-05 1.608739e-05 130 106 8.928565e-05 -1.440887e-05 131 106 -8.000611e-05 1.291134e-05 132 106 7.167061e-05 -1.156616e-05 133 106 -6.413319e-05 1.034978e-05 134 106 5.727273e-05 -9.242642e-06 135 106 -5.098776e-05 8.228377e-06 136 106 4.519256e-05 -7.293151e-06 137 106 -3.981401e-05 6.425164e-06 138 106 3.478917e-05 -5.614257e-06 139 106 -3.00633e-05 4.851599e-06 140 106 2.558831e-05 -4.129428e-06 141 106 -2.132146e-05 3.440846e-06 142 106 1.722429e-05 -2.779647e-06 143 106 -1.326172e-05 2.14017e-06 144 106 9.401297e-06 -1.517176e-06 145 106 -5.612495e-06 9.057414e-07 146 106 1.866144e-06 -3.011573e-07 147 106 1.866144e-06 -3.011573e-07 148 106 -5.612495e-06 9.057414e-07 149 106 9.401297e-06 -1.517176e-06 150 106 -1.326172e-05 2.14017e-06 151 106 1.722429e-05 -2.779647e-06 152 106 -2.132146e-05 3.440846e-06 153 106 2.558831e-05 -4.129428e-06 154 106 -3.00633e-05 4.851599e-06 155 106 3.478917e-05 -5.614257e-06 156 106 -3.981401e-05 6.425164e-06 157 106 4.519256e-05 -7.293151e-06 158 106 -5.098776e-05 8.228377e-06 159 106 5.727273e-05 -9.242642e-06 160 106 -6.413319e-05 1.034978e-05 161 106 7.167061e-05 -1.156616e-05 187 106 0.0004746856 3.384687e-05 26 107 0.0004893383 3.519938e-05 81 107 7.167061e-05 -1.156616e-05 82 107 -8.000611e-05 1.291134e-05 83 107 8.928565e-05 -1.440887e-05 84 107 -9.968672e-05 1.608739e-05 85 107 0.0001114272 -1.798207e-05 86 107 -0.0001247774 2.013652e-05 87 107 0.000140076 -2.26054e-05 88 107 -0.0001577525 2.545802e-05 89 107 0.0001783582 -2.878335e-05 90 107 -0.0002026106 3.26972e-05 91 107 0.0002314578 -3.735254e-05 92 107 -0.0002661734 4.295492e-05 93 107 0.0003085011 -4.978574e-05 94 107 -0.0003608797 5.823857e-05 95 107 0.0004268045 -6.887749e-05 96 107 -0.0005114288 8.253411e-05 97 107 0.0006226054 -0.0001004757 98 107 -0.0007727812 0.000124711 99 107 0.0009826448 -0.0001585787 100 107 -0.001288661 0.0002079635 101 107 0.001760065 -0.0002840383 102 107 -0.002541777 0.0004101906 103 107 0.003980742 -0.0006424099 104 107 -0.007089509 0.001144101 105 107 0.01597157 -0.002577484 106 107 -0.06393453 0.01031772 107 107 -0.001420426 -0.03322374 108 107 -0.06393453 0.01031772 109 107 0.01597157 -0.002577484 110 107 -0.007089509 0.001144101 111 107 0.003980742 -0.0006424099 112 107 -0.002541777 0.0004101906 113 107 0.001760065 -0.0002840383 114 107 -0.001288661 0.0002079635 115 107 0.0009826448 -0.0001585787 116 107 -0.0007727812 0.000124711 117 107 0.0006226054 -0.0001004757 118 107 -0.0005114288 8.253411e-05 119 107 0.0004268045 -6.887749e-05 120 107 -0.0003608797 5.823857e-05 121 107 0.0003085011 -4.978574e-05 122 107 -0.0002661734 4.295492e-05 123 107 0.0002314578 -3.735254e-05 124 107 -0.0002026106 3.26972e-05 125 107 0.0001783582 -2.878335e-05 126 107 -0.0001577525 2.545802e-05 127 107 0.000140076 -2.26054e-05 128 107 -0.0001247774 2.013652e-05 129 107 0.0001114272 -1.798207e-05 130 107 -9.968672e-05 1.608739e-05 131 107 8.928565e-05 -1.440887e-05 132 107 -8.000611e-05 1.291134e-05 133 107 7.167061e-05 -1.156616e-05 134 107 -6.413319e-05 1.034978e-05 135 107 5.727273e-05 -9.242642e-06 136 107 -5.098776e-05 8.228377e-06 137 107 4.519256e-05 -7.293151e-06 138 107 -3.981401e-05 6.425164e-06 139 107 3.478917e-05 -5.614257e-06 140 107 -3.00633e-05 4.851599e-06 141 107 2.558831e-05 -4.129428e-06 142 107 -2.132146e-05 3.440846e-06 143 107 1.722429e-05 -2.779647e-06 144 107 -1.326172e-05 2.14017e-06 145 107 9.401297e-06 -1.517176e-06 146 107 -5.612495e-06 9.057414e-07 147 107 1.866144e-06 -3.011573e-07 148 107 1.866144e-06 -3.011573e-07 149 107 -5.612495e-06 9.057414e-07 150 107 9.401297e-06 -1.517176e-06 151 107 -1.326172e-05 2.14017e-06 152 107 1.722429e-05 -2.779647e-06 153 107 -2.132146e-05 3.440846e-06 154 107 2.558831e-05 -4.129428e-06 155 107 -3.00633e-05 4.851599e-06 156 107 3.478917e-05 -5.614257e-06 157 107 -3.981401e-05 6.425164e-06 158 107 4.519256e-05 -7.293151e-06 159 107 -5.098776e-05 8.228377e-06 160 107 5.727273e-05 -9.242642e-06 161 107 -6.413319e-05 1.034978e-05 188 107 0.0004893383 3.519938e-05 27 108 0.0005040657 3.656486e-05 81 108 -6.413319e-05 1.034978e-05 82 108 7.167061e-05 -1.156616e-05 83 108 -8.000611e-05 1.291134e-05 84 108 8.928565e-05 -1.440887e-05 85 108 -9.968672e-05 1.608739e-05 86 108 0.0001114272 -1.798207e-05 87 108 -0.0001247774 2.013652e-05 88 108 0.000140076 -2.26054e-05 89 108 -0.0001577525 2.545802e-05 90 108 0.0001783582 -2.878335e-05 91 108 -0.0002026106 3.26972e-05 92 108 0.0002314578 -3.735254e-05 93 108 -0.0002661734 4.295492e-05 94 108 0.0003085011 -4.978574e-05 95 108 -0.0003608797 5.823857e-05 96 108 0.0004268045 -6.887749e-05 97 108 -0.0005114288 8.253411e-05 98 108 0.0006226054 -0.0001004757 99 108 -0.0007727812 0.000124711 100 108 0.0009826448 -0.0001585787 101 108 -0.001288661 0.0002079635 102 108 0.001760065 -0.0002840383 103 108 -0.002541777 0.0004101906 104 108 0.003980742 -0.0006424099 105 108 -0.007089509 0.001144101 106 108 0.01597157 -0.002577484 107 108 -0.06393453 0.01031772 108 108 -0.007813354 -0.0320083 109 108 -0.06393453 0.01031772 110 108 0.01597157 -0.002577484 111 108 -0.007089509 0.001144101 112 108 0.003980742 -0.0006424099 113 108 -0.002541777 0.0004101906 114 108 0.001760065 -0.0002840383 115 108 -0.001288661 0.0002079635 116 108 0.0009826448 -0.0001585787 117 108 -0.0007727812 0.000124711 118 108 0.0006226054 -0.0001004757 119 108 -0.0005114288 8.253411e-05 120 108 0.0004268045 -6.887749e-05 121 108 -0.0003608797 5.823857e-05 122 108 0.0003085011 -4.978574e-05 123 108 -0.0002661734 4.295492e-05 124 108 0.0002314578 -3.735254e-05 125 108 -0.0002026106 3.26972e-05 126 108 0.0001783582 -2.878335e-05 127 108 -0.0001577525 2.545802e-05 128 108 0.000140076 -2.26054e-05 129 108 -0.0001247774 2.013652e-05 130 108 0.0001114272 -1.798207e-05 131 108 -9.968672e-05 1.608739e-05 132 108 8.928565e-05 -1.440887e-05 133 108 -8.000611e-05 1.291134e-05 134 108 7.167061e-05 -1.156616e-05 135 108 -6.413319e-05 1.034978e-05 136 108 5.727273e-05 -9.242642e-06 137 108 -5.098776e-05 8.228377e-06 138 108 4.519256e-05 -7.293151e-06 139 108 -3.981401e-05 6.425164e-06 140 108 3.478917e-05 -5.614257e-06 141 108 -3.00633e-05 4.851599e-06 142 108 2.558831e-05 -4.129428e-06 143 108 -2.132146e-05 3.440846e-06 144 108 1.722429e-05 -2.779647e-06 145 108 -1.326172e-05 2.14017e-06 146 108 9.401297e-06 -1.517176e-06 147 108 -5.612495e-06 9.057414e-07 148 108 1.866144e-06 -3.011573e-07 149 108 1.866144e-06 -3.011573e-07 150 108 -5.612495e-06 9.057414e-07 151 108 9.401297e-06 -1.517176e-06 152 108 -1.326172e-05 2.14017e-06 153 108 1.722429e-05 -2.779647e-06 154 108 -2.132146e-05 3.440846e-06 155 108 2.558831e-05 -4.129428e-06 156 108 -3.00633e-05 4.851599e-06 157 108 3.478917e-05 -5.614257e-06 158 108 -3.981401e-05 6.425164e-06 159 108 4.519256e-05 -7.293151e-06 160 108 -5.098776e-05 8.228377e-06 161 108 5.727273e-05 -9.242642e-06 189 108 0.0005040657 3.656486e-05 28 109 0.000518868 3.794342e-05 81 109 5.727273e-05 -9.242642e-06 82 109 -6.413319e-05 1.034978e-05 83 109 7.167061e-05 -1.156616e-05 84 109 -8.000611e-05 1.291134e-05 85 109 8.928565e-05 -1.440887e-05 86 109 -9.968672e-05 1.608739e-05 87 109 0.0001114272 -1.798207e-05 88 109 -0.0001247774 2.013652e-05 89 109 0.000140076 -2.26054e-05 90 109 -0.0001577525 2.545802e-05 91 109 0.0001783582 -2.878335e-05 92 109 -0.0002026106 3.26972e-05 93 109 0.0002314578 -3.735254e-05 94 109 -0.0002661734 4.295492e-05 95 109 0.0003085011 -4.978574e-05 96 109 -0.0003608797 5.823857e-05 97 109 0.0004268045 -6.887749e-05 98 109 -0.0005114288 8.253411e-05 99 109 0.0006226054 -0.0001004757 100 109 -0.0007727812 0.000124711 101 109 0.0009826448 -0.0001585787 102 109 -0.001288661 0.0002079635 103 109 0.001760065 -0.0002840383 104 109 -0.002541777 0.0004101906 105 109 0.003980742 -0.0006424099 106 109 -0.007089509 0.001144101 107 109 0.01597157 -0.002577484 108 109 -0.06393453 0.01031772 109 109 -0.01353664 -0.03088667 110 109 -0.06393453 0.01031772 111 109 0.01597157 -0.002577484 112 109 -0.007089509 0.001144101 113 109 0.003980742 -0.0006424099 114 109 -0.002541777 0.0004101906 115 109 0.001760065 -0.0002840383 116 109 -0.001288661 0.0002079635 117 109 0.0009826448 -0.0001585787 118 109 -0.0007727812 0.000124711 119 109 0.0006226054 -0.0001004757 120 109 -0.0005114288 8.253411e-05 121 109 0.0004268045 -6.887749e-05 122 109 -0.0003608797 5.823857e-05 123 109 0.0003085011 -4.978574e-05 124 109 -0.0002661734 4.295492e-05 125 109 0.0002314578 -3.735254e-05 126 109 -0.0002026106 3.26972e-05 127 109 0.0001783582 -2.878335e-05 128 109 -0.0001577525 2.545802e-05 129 109 0.000140076 -2.26054e-05 130 109 -0.0001247774 2.013652e-05 131 109 0.0001114272 -1.798207e-05 132 109 -9.968672e-05 1.608739e-05 133 109 8.928565e-05 -1.440887e-05 134 109 -8.000611e-05 1.291134e-05 135 109 7.167061e-05 -1.156616e-05 136 109 -6.413319e-05 1.034978e-05 137 109 5.727273e-05 -9.242642e-06 138 109 -5.098776e-05 8.228377e-06 139 109 4.519256e-05 -7.293151e-06 140 109 -3.981401e-05 6.425164e-06 141 109 3.478917e-05 -5.614257e-06 142 109 -3.00633e-05 4.851599e-06 143 109 2.558831e-05 -4.129428e-06 144 109 -2.132146e-05 3.440846e-06 145 109 1.722429e-05 -2.779647e-06 146 109 -1.326172e-05 2.14017e-06 147 109 9.401297e-06 -1.517176e-06 148 109 -5.612495e-06 9.057414e-07 149 109 1.866144e-06 -3.011573e-07 150 109 1.866144e-06 -3.011573e-07 151 109 -5.612495e-06 9.057414e-07 152 109 9.401297e-06 -1.517176e-06 153 109 -1.326172e-05 2.14017e-06 154 109 1.722429e-05 -2.779647e-06 155 109 -2.132146e-05 3.440846e-06 156 109 2.558831e-05 -4.129428e-06 157 109 -3.00633e-05 4.851599e-06 158 109 3.478917e-05 -5.614257e-06 159 109 -3.981401e-05 6.425164e-06 160 109 4.519256e-05 -7.293151e-06 161 109 -5.098776e-05 8.228377e-06 190 109 0.000518868 3.794342e-05 29 110 0.0005337456 3.933516e-05 81 110 -5.098776e-05 8.228377e-06 82 110 5.727273e-05 -9.242642e-06 83 110 -6.413319e-05 1.034978e-05 84 110 7.167061e-05 -1.156616e-05 85 110 -8.000611e-05 1.291134e-05 86 110 8.928565e-05 -1.440887e-05 87 110 -9.968672e-05 1.608739e-05 88 110 0.0001114272 -1.798207e-05 89 110 -0.0001247774 2.013652e-05 90 110 0.000140076 -2.26054e-05 91 110 -0.0001577525 2.545802e-05 92 110 0.0001783582 -2.878335e-05 93 110 -0.0002026106 3.26972e-05 94 110 0.0002314578 -3.735254e-05 95 110 -0.0002661734 4.295492e-05 96 110 0.0003085011 -4.978574e-05 97 110 -0.0003608797 5.823857e-05 98 110 0.0004268045 -6.887749e-05 99 110 -0.0005114288 8.253411e-05 100 110 0.0006226054 -0.0001004757 101 110 -0.0007727812 0.000124711 102 110 0.0009826448 -0.0001585787 103 110 -0.001288661 0.0002079635 104 110 0.001760065 -0.0002840383 105 110 -0.002541777 0.0004101906 106 110 0.003980742 -0.0006424099 107 110 -0.007089509 0.001144101 108 110 0.01597157 -0.002577484 109 110 -0.06393453 0.01031772 110 110 -0.01866663 -0.02985125 111 110 -0.06393453 0.01031772 112 110 0.01597157 -0.002577484 113 110 -0.007089509 0.001144101 114 110 0.003980742 -0.0006424099 115 110 -0.002541777 0.0004101906 116 110 0.001760065 -0.0002840383 117 110 -0.001288661 0.0002079635 118 110 0.0009826448 -0.0001585787 119 110 -0.0007727812 0.000124711 120 110 0.0006226054 -0.0001004757 121 110 -0.0005114288 8.253411e-05 122 110 0.0004268045 -6.887749e-05 123 110 -0.0003608797 5.823857e-05 124 110 0.0003085011 -4.978574e-05 125 110 -0.0002661734 4.295492e-05 126 110 0.0002314578 -3.735254e-05 127 110 -0.0002026106 3.26972e-05 128 110 0.0001783582 -2.878335e-05 129 110 -0.0001577525 2.545802e-05 130 110 0.000140076 -2.26054e-05 131 110 -0.0001247774 2.013652e-05 132 110 0.0001114272 -1.798207e-05 133 110 -9.968672e-05 1.608739e-05 134 110 8.928565e-05 -1.440887e-05 135 110 -8.000611e-05 1.291134e-05 136 110 7.167061e-05 -1.156616e-05 137 110 -6.413319e-05 1.034978e-05 138 110 5.727273e-05 -9.242642e-06 139 110 -5.098776e-05 8.228377e-06 140 110 4.519256e-05 -7.293151e-06 141 110 -3.981401e-05 6.425164e-06 142 110 3.478917e-05 -5.614257e-06 143 110 -3.00633e-05 4.851599e-06 144 110 2.558831e-05 -4.129428e-06 145 110 -2.132146e-05 3.440846e-06 146 110 1.722429e-05 -2.779647e-06 147 110 -1.326172e-05 2.14017e-06 148 110 9.401297e-06 -1.517176e-06 149 110 -5.612495e-06 9.057414e-07 150 110 1.866144e-06 -3.011573e-07 151 110 1.866144e-06 -3.011573e-07 152 110 -5.612495e-06 9.057414e-07 153 110 9.401297e-06 -1.517176e-06 154 110 -1.326172e-05 2.14017e-06 155 110 1.722429e-05 -2.779647e-06 156 110 -2.132146e-05 3.440846e-06 157 110 2.558831e-05 -4.129428e-06 158 110 -3.00633e-05 4.851599e-06 159 110 3.478917e-05 -5.614257e-06 160 110 -3.981401e-05 6.425164e-06 161 110 4.519256e-05 -7.293151e-06 191 110 0.0005337456 3.933516e-05 30 111 0.0005486991 4.074018e-05 81 111 4.519256e-05 -7.293151e-06 82 111 -5.098776e-05 8.228377e-06 83 111 5.727273e-05 -9.242642e-06 84 111 -6.413319e-05 1.034978e-05 85 111 7.167061e-05 -1.156616e-05 86 111 -8.000611e-05 1.291134e-05 87 111 8.928565e-05 -1.440887e-05 88 111 -9.968672e-05 1.608739e-05 89 111 0.0001114272 -1.798207e-05 90 111 -0.0001247774 2.013652e-05 91 111 0.000140076 -2.26054e-05 92 111 -0.0001577525 2.545802e-05 93 111 0.0001783582 -2.878335e-05 94 111 -0.0002026106 3.26972e-05 95 111 0.0002314578 -3.735254e-05 96 111 -0.0002661734 4.295492e-05 97 111 0.0003085011 -4.978574e-05 98 111 -0.0003608797 5.823857e-05 99 111 0.0004268045 -6.887749e-05 100 111 -0.0005114288 8.253411e-05 101 111 0.0006226054 -0.0001004757 102 111 -0.0007727812 0.000124711 103 111 0.0009826448 -0.0001585787 104 111 -0.001288661 0.0002079635 105 111 0.001760065 -0.0002840383 106 111 -0.002541777 0.0004101906 107 111 0.003980742 -0.0006424099 108 111 -0.007089509 0.001144101 109 111 0.01597157 -0.002577484 110 111 -0.06393453 0.01031772 111 111 -0.02327005 -0.02889503 112 111 -0.06393453 0.01031772 113 111 0.01597157 -0.002577484 114 111 -0.007089509 0.001144101 115 111 0.003980742 -0.0006424099 116 111 -0.002541777 0.0004101906 117 111 0.001760065 -0.0002840383 118 111 -0.001288661 0.0002079635 119 111 0.0009826448 -0.0001585787 120 111 -0.0007727812 0.000124711 121 111 0.0006226054 -0.0001004757 122 111 -0.0005114288 8.253411e-05 123 111 0.0004268045 -6.887749e-05 124 111 -0.0003608797 5.823857e-05 125 111 0.0003085011 -4.978574e-05 126 111 -0.0002661734 4.295492e-05 127 111 0.0002314578 -3.735254e-05 128 111 -0.0002026106 3.26972e-05 129 111 0.0001783582 -2.878335e-05 130 111 -0.0001577525 2.545802e-05 131 111 0.000140076 -2.26054e-05 132 111 -0.0001247774 2.013652e-05 133 111 0.0001114272 -1.798207e-05 134 111 -9.968672e-05 1.608739e-05 135 111 8.928565e-05 -1.440887e-05 136 111 -8.000611e-05 1.291134e-05 137 111 7.167061e-05 -1.156616e-05 138 111 -6.413319e-05 1.034978e-05 139 111 5.727273e-05 -9.242642e-06 140 111 -5.098776e-05 8.228377e-06 141 111 4.519256e-05 -7.293151e-06 142 111 -3.981401e-05 6.425164e-06 143 111 3.478917e-05 -5.614257e-06 144 111 -3.00633e-05 4.851599e-06 145 111 2.558831e-05 -4.129428e-06 146 111 -2.132146e-05 3.440846e-06 147 111 1.722429e-05 -2.779647e-06 148 111 -1.326172e-05 2.14017e-06 149 111 9.401297e-06 -1.517176e-06 150 111 -5.612495e-06 9.057414e-07 151 111 1.866144e-06 -3.011573e-07 152 111 1.866144e-06 -3.011573e-07 153 111 -5.612495e-06 9.057414e-07 154 111 9.401297e-06 -1.517176e-06 155 111 -1.326172e-05 2.14017e-06 156 111 1.722429e-05 -2.779647e-06 157 111 -2.132146e-05 3.440846e-06 158 111 2.558831e-05 -4.129428e-06 159 111 -3.00633e-05 4.851599e-06 160 111 3.478917e-05 -5.614257e-06 161 111 -3.981401e-05 6.425164e-06 192 111 0.0005486991 4.074018e-05 31 112 0.0005637286 4.215856e-05 81 112 -3.981401e-05 6.425164e-06 82 112 4.519256e-05 -7.293151e-06 83 112 -5.098776e-05 8.228377e-06 84 112 5.727273e-05 -9.242642e-06 85 112 -6.413319e-05 1.034978e-05 86 112 7.167061e-05 -1.156616e-05 87 112 -8.000611e-05 1.291134e-05 88 112 8.928565e-05 -1.440887e-05 89 112 -9.968672e-05 1.608739e-05 90 112 0.0001114272 -1.798207e-05 91 112 -0.0001247774 2.013652e-05 92 112 0.000140076 -2.26054e-05 93 112 -0.0001577525 2.545802e-05 94 112 0.0001783582 -2.878335e-05 95 112 -0.0002026106 3.26972e-05 96 112 0.0002314578 -3.735254e-05 97 112 -0.0002661734 4.295492e-05 98 112 0.0003085011 -4.978574e-05 99 112 -0.0003608797 5.823857e-05 100 112 0.0004268045 -6.887749e-05 101 112 -0.0005114288 8.253411e-05 102 112 0.0006226054 -0.0001004757 103 112 -0.0007727812 0.000124711 104 112 0.0009826448 -0.0001585787 105 112 -0.001288661 0.0002079635 106 112 0.001760065 -0.0002840383 107 112 -0.002541777 0.0004101906 108 112 0.003980742 -0.0006424099 109 112 -0.007089509 0.001144101 110 112 0.01597157 -0.002577484 111 112 -0.06393453 0.01031772 112 112 -0.02740531 -0.02801161 113 112 -0.06393453 0.01031772 114 112 0.01597157 -0.002577484 115 112 -0.007089509 0.001144101 116 112 0.003980742 -0.0006424099 117 112 -0.002541777 0.0004101906 118 112 0.001760065 -0.0002840383 119 112 -0.001288661 0.0002079635 120 112 0.0009826448 -0.0001585787 121 112 -0.0007727812 0.000124711 122 112 0.0006226054 -0.0001004757 123 112 -0.0005114288 8.253411e-05 124 112 0.0004268045 -6.887749e-05 125 112 -0.0003608797 5.823857e-05 126 112 0.0003085011 -4.978574e-05 127 112 -0.0002661734 4.295492e-05 128 112 0.0002314578 -3.735254e-05 129 112 -0.0002026106 3.26972e-05 130 112 0.0001783582 -2.878335e-05 131 112 -0.0001577525 2.545802e-05 132 112 0.000140076 -2.26054e-05 133 112 -0.0001247774 2.013652e-05 134 112 0.0001114272 -1.798207e-05 135 112 -9.968672e-05 1.608739e-05 136 112 8.928565e-05 -1.440887e-05 137 112 -8.000611e-05 1.291134e-05 138 112 7.167061e-05 -1.156616e-05 139 112 -6.413319e-05 1.034978e-05 140 112 5.727273e-05 -9.242642e-06 141 112 -5.098776e-05 8.228377e-06 142 112 4.519256e-05 -7.293151e-06 143 112 -3.981401e-05 6.425164e-06 144 112 3.478917e-05 -5.614257e-06 145 112 -3.00633e-05 4.851599e-06 146 112 2.558831e-05 -4.129428e-06 147 112 -2.132146e-05 3.440846e-06 148 112 1.722429e-05 -2.779647e-06 149 112 -1.326172e-05 2.14017e-06 150 112 9.401297e-06 -1.517176e-06 151 112 -5.612495e-06 9.057414e-07 152 112 1.866144e-06 -3.011573e-07 153 112 1.866144e-06 -3.011573e-07 154 112 -5.612495e-06 9.057414e-07 155 112 9.401297e-06 -1.517176e-06 156 112 -1.326172e-05 2.14017e-06 157 112 1.722429e-05 -2.779647e-06 158 112 -2.132146e-05 3.440846e-06 159 112 2.558831e-05 -4.129428e-06 160 112 -3.00633e-05 4.851599e-06 161 112 3.478917e-05 -5.614257e-06 193 112 0.0005637286 4.215856e-05 32 113 0.0005788347 4.359042e-05 81 113 3.478917e-05 -5.614257e-06 82 113 -3.981401e-05 6.425164e-06 83 113 4.519256e-05 -7.293151e-06 84 113 -5.098776e-05 8.228377e-06 85 113 5.727273e-05 -9.242642e-06 86 113 -6.413319e-05 1.034978e-05 87 113 7.167061e-05 -1.156616e-05 88 113 -8.000611e-05 1.291134e-05 89 113 8.928565e-05 -1.440887e-05 90 113 -9.968672e-05 1.608739e-05 91 113 0.0001114272 -1.798207e-05 92 113 -0.0001247774 2.013652e-05 93 113 0.000140076 -2.26054e-05 94 113 -0.0001577525 2.545802e-05 95 113 0.0001783582 -2.878335e-05 96 113 -0.0002026106 3.26972e-05 97 113 0.0002314578 -3.735254e-05 98 113 -0.0002661734 4.295492e-05 99 113 0.0003085011 -4.978574e-05 100 113 -0.0003608797 5.823857e-05 101 113 0.0004268045 -6.887749e-05 102 113 -0.0005114288 8.253411e-05 103 113 0.0006226054 -0.0001004757 104 113 -0.0007727812 0.000124711 105 113 0.0009826448 -0.0001585787 106 113 -0.001288661 0.0002079635 107 113 0.001760065 -0.0002840383 108 113 -0.002541777 0.0004101906 109 113 0.003980742 -0.0006424099 110 113 -0.007089509 0.001144101 111 113 0.01597157 -0.002577484 112 113 -0.06393453 0.01031772 113 113 -0.03112369 -0.02719509 114 113 -0.06393453 0.01031772 115 113 0.01597157 -0.002577484 116 113 -0.007089509 0.001144101 117 113 0.003980742 -0.0006424099 118 113 -0.002541777 0.0004101906 119 113 0.001760065 -0.0002840383 120 113 -0.001288661 0.0002079635 121 113 0.0009826448 -0.0001585787 122 113 -0.0007727812 0.000124711 123 113 0.0006226054 -0.0001004757 124 113 -0.0005114288 8.253411e-05 125 113 0.0004268045 -6.887749e-05 126 113 -0.0003608797 5.823857e-05 127 113 0.0003085011 -4.978574e-05 128 113 -0.0002661734 4.295492e-05 129 113 0.0002314578 -3.735254e-05 130 113 -0.0002026106 3.26972e-05 131 113 0.0001783582 -2.878335e-05 132 113 -0.0001577525 2.545802e-05 133 113 0.000140076 -2.26054e-05 134 113 -0.0001247774 2.013652e-05 135 113 0.0001114272 -1.798207e-05 136 113 -9.968672e-05 1.608739e-05 137 113 8.928565e-05 -1.440887e-05 138 113 -8.000611e-05 1.291134e-05 139 113 7.167061e-05 -1.156616e-05 140 113 -6.413319e-05 1.034978e-05 141 113 5.727273e-05 -9.242642e-06 142 113 -5.098776e-05 8.228377e-06 143 113 4.519256e-05 -7.293151e-06 144 113 -3.981401e-05 6.425164e-06 145 113 3.478917e-05 -5.614257e-06 146 113 -3.00633e-05 4.851599e-06 147 113 2.558831e-05 -4.129428e-06 148 113 -2.132146e-05 3.440846e-06 149 113 1.722429e-05 -2.779647e-06 150 113 -1.326172e-05 2.14017e-06 151 113 9.401297e-06 -1.517176e-06 152 113 -5.612495e-06 9.057414e-07 153 113 1.866144e-06 -3.011573e-07 154 113 1.866144e-06 -3.011573e-07 155 113 -5.612495e-06 9.057414e-07 156 113 9.401297e-06 -1.517176e-06 157 113 -1.326172e-05 2.14017e-06 158 113 1.722429e-05 -2.779647e-06 159 113 -2.132146e-05 3.440846e-06 160 113 2.558831e-05 -4.129428e-06 161 113 -3.00633e-05 4.851599e-06 194 113 0.0005788347 4.359042e-05 33 114 0.0005940177 4.503586e-05 81 114 -3.00633e-05 4.851599e-06 82 114 3.478917e-05 -5.614257e-06 83 114 -3.981401e-05 6.425164e-06 84 114 4.519256e-05 -7.293151e-06 85 114 -5.098776e-05 8.228377e-06 86 114 5.727273e-05 -9.242642e-06 87 114 -6.413319e-05 1.034978e-05 88 114 7.167061e-05 -1.156616e-05 89 114 -8.000611e-05 1.291134e-05 90 114 8.928565e-05 -1.440887e-05 91 114 -9.968672e-05 1.608739e-05 92 114 0.0001114272 -1.798207e-05 93 114 -0.0001247774 2.013652e-05 94 114 0.000140076 -2.26054e-05 95 114 -0.0001577525 2.545802e-05 96 114 0.0001783582 -2.878335e-05 97 114 -0.0002026106 3.26972e-05 98 114 0.0002314578 -3.735254e-05 99 114 -0.0002661734 4.295492e-05 100 114 0.0003085011 -4.978574e-05 101 114 -0.0003608797 5.823857e-05 102 114 0.0004268045 -6.887749e-05 103 114 -0.0005114288 8.253411e-05 104 114 0.0006226054 -0.0001004757 105 114 -0.0007727812 0.000124711 106 114 0.0009826448 -0.0001585787 107 114 -0.001288661 0.0002079635 108 114 0.001760065 -0.0002840383 109 114 -0.002541777 0.0004101906 110 114 0.003980742 -0.0006424099 111 114 -0.007089509 0.001144101 112 114 0.01597157 -0.002577484 113 114 -0.06393453 0.01031772 114 114 -0.03447026 -0.02644011 115 114 -0.06393453 0.01031772 116 114 0.01597157 -0.002577484 117 114 -0.007089509 0.001144101 118 114 0.003980742 -0.0006424099 119 114 -0.002541777 0.0004101906 120 114 0.001760065 -0.0002840383 121 114 -0.001288661 0.0002079635 122 114 0.0009826448 -0.0001585787 123 114 -0.0007727812 0.000124711 124 114 0.0006226054 -0.0001004757 125 114 -0.0005114288 8.253411e-05 126 114 0.0004268045 -6.887749e-05 127 114 -0.0003608797 5.823857e-05 128 114 0.0003085011 -4.978574e-05 129 114 -0.0002661734 4.295492e-05 130 114 0.0002314578 -3.735254e-05 131 114 -0.0002026106 3.26972e-05 132 114 0.0001783582 -2.878335e-05 133 114 -0.0001577525 2.545802e-05 134 114 0.000140076 -2.26054e-05 135 114 -0.0001247774 2.013652e-05 136 114 0.0001114272 -1.798207e-05 137 114 -9.968672e-05 1.608739e-05 138 114 8.928565e-05 -1.440887e-05 139 114 -8.000611e-05 1.291134e-05 140 114 7.167061e-05 -1.156616e-05 141 114 -6.413319e-05 1.034978e-05 142 114 5.727273e-05 -9.242642e-06 143 114 -5.098776e-05 8.228377e-06 144 114 4.519256e-05 -7.293151e-06 145 114 -3.981401e-05 6.425164e-06 146 114 3.478917e-05 -5.614257e-06 147 114 -3.00633e-05 4.851599e-06 148 114 2.558831e-05 -4.129428e-06 149 114 -2.132146e-05 3.440846e-06 150 114 1.722429e-05 -2.779647e-06 151 114 -1.326172e-05 2.14017e-06 152 114 9.401297e-06 -1.517176e-06 153 114 -5.612495e-06 9.057414e-07 154 114 1.866144e-06 -3.011573e-07 155 114 1.866144e-06 -3.011573e-07 156 114 -5.612495e-06 9.057414e-07 157 114 9.401297e-06 -1.517176e-06 158 114 -1.326172e-05 2.14017e-06 159 114 1.722429e-05 -2.779647e-06 160 114 -2.132146e-05 3.440846e-06 161 114 2.558831e-05 -4.129428e-06 195 114 0.0005940177 4.503586e-05 34 115 0.0006092779 4.649497e-05 81 115 2.558831e-05 -4.129428e-06 82 115 -3.00633e-05 4.851599e-06 83 115 3.478917e-05 -5.614257e-06 84 115 -3.981401e-05 6.425164e-06 85 115 4.519256e-05 -7.293151e-06 86 115 -5.098776e-05 8.228377e-06 87 115 5.727273e-05 -9.242642e-06 88 115 -6.413319e-05 1.034978e-05 89 115 7.167061e-05 -1.156616e-05 90 115 -8.000611e-05 1.291134e-05 91 115 8.928565e-05 -1.440887e-05 92 115 -9.968672e-05 1.608739e-05 93 115 0.0001114272 -1.798207e-05 94 115 -0.0001247774 2.013652e-05 95 115 0.000140076 -2.26054e-05 96 115 -0.0001577525 2.545802e-05 97 115 0.0001783582 -2.878335e-05 98 115 -0.0002026106 3.26972e-05 99 115 0.0002314578 -3.735254e-05 100 115 -0.0002661734 4.295492e-05 101 115 0.0003085011 -4.978574e-05 102 115 -0.0003608797 5.823857e-05 103 115 0.0004268045 -6.887749e-05 104 115 -0.0005114288 8.253411e-05 105 115 0.0006226054 -0.0001004757 106 115 -0.0007727812 0.000124711 107 115 0.0009826448 -0.0001585787 108 115 -0.001288661 0.0002079635 109 115 0.001760065 -0.0002840383 110 115 -0.002541777 0.0004101906 111 115 0.003980742 -0.0006424099 112 115 -0.007089509 0.001144101 113 115 0.01597157 -0.002577484 114 115 -0.06393453 0.01031772 115 115 -0.03748474 -0.02574174 116 115 -0.06393453 0.01031772 117 115 0.01597157 -0.002577484 118 115 -0.007089509 0.001144101 119 115 0.003980742 -0.0006424099 120 115 -0.002541777 0.0004101906 121 115 0.001760065 -0.0002840383 122 115 -0.001288661 0.0002079635 123 115 0.0009826448 -0.0001585787 124 115 -0.0007727812 0.000124711 125 115 0.0006226054 -0.0001004757 126 115 -0.0005114288 8.253411e-05 127 115 0.0004268045 -6.887749e-05 128 115 -0.0003608797 5.823857e-05 129 115 0.0003085011 -4.978574e-05 130 115 -0.0002661734 4.295492e-05 131 115 0.0002314578 -3.735254e-05 132 115 -0.0002026106 3.26972e-05 133 115 0.0001783582 -2.878335e-05 134 115 -0.0001577525 2.545802e-05 135 115 0.000140076 -2.26054e-05 136 115 -0.0001247774 2.013652e-05 137 115 0.0001114272 -1.798207e-05 138 115 -9.968672e-05 1.608739e-05 139 115 8.928565e-05 -1.440887e-05 140 115 -8.000611e-05 1.291134e-05 141 115 7.167061e-05 -1.156616e-05 142 115 -6.413319e-05 1.034978e-05 143 115 5.727273e-05 -9.242642e-06 144 115 -5.098776e-05 8.228377e-06 145 115 4.519256e-05 -7.293151e-06 146 115 -3.981401e-05 6.425164e-06 147 115 3.478917e-05 -5.614257e-06 148 115 -3.00633e-05 4.851599e-06 149 115 2.558831e-05 -4.129428e-06 150 115 -2.132146e-05 3.440846e-06 151 115 1.722429e-05 -2.779647e-06 152 115 -1.326172e-05 2.14017e-06 153 115 9.401297e-06 -1.517176e-06 154 115 -5.612495e-06 9.057414e-07 155 115 1.866144e-06 -3.011573e-07 156 115 1.866144e-06 -3.011573e-07 157 115 -5.612495e-06 9.057414e-07 158 115 9.401297e-06 -1.517176e-06 159 115 -1.326172e-05 2.14017e-06 160 115 1.722429e-05 -2.779647e-06 161 115 -2.132146e-05 3.440846e-06 196 115 0.0006092779 4.649497e-05 35 116 0.0006246159 4.796785e-05 81 116 -2.132146e-05 3.440846e-06 82 116 2.558831e-05 -4.129428e-06 83 116 -3.00633e-05 4.851599e-06 84 116 3.478917e-05 -5.614257e-06 85 116 -3.981401e-05 6.425164e-06 86 116 4.519256e-05 -7.293151e-06 87 116 -5.098776e-05 8.228377e-06 88 116 5.727273e-05 -9.242642e-06 89 116 -6.413319e-05 1.034978e-05 90 116 7.167061e-05 -1.156616e-05 91 116 -8.000611e-05 1.291134e-05 92 116 8.928565e-05 -1.440887e-05 93 116 -9.968672e-05 1.608739e-05 94 116 0.0001114272 -1.798207e-05 95 116 -0.0001247774 2.013652e-05 96 116 0.000140076 -2.26054e-05 97 116 -0.0001577525 2.545802e-05 98 116 0.0001783582 -2.878335e-05 99 116 -0.0002026106 3.26972e-05 100 116 0.0002314578 -3.735254e-05 101 116 -0.0002661734 4.295492e-05 102 116 0.0003085011 -4.978574e-05 103 116 -0.0003608797 5.823857e-05 104 116 0.0004268045 -6.887749e-05 105 116 -0.0005114288 8.253411e-05 106 116 0.0006226054 -0.0001004757 107 116 -0.0007727812 0.000124711 108 116 0.0009826448 -0.0001585787 109 116 -0.001288661 0.0002079635 110 116 0.001760065 -0.0002840383 111 116 -0.002541777 0.0004101906 112 116 0.003980742 -0.0006424099 113 116 -0.007089509 0.001144101 114 116 0.01597157 -0.002577484 115 116 -0.06393453 0.01031772 116 116 -0.0402022 -0.0250955 117 116 -0.06393453 0.01031772 118 116 0.01597157 -0.002577484 119 116 -0.007089509 0.001144101 120 116 0.003980742 -0.0006424099 121 116 -0.002541777 0.0004101906 122 116 0.001760065 -0.0002840383 123 116 -0.001288661 0.0002079635 124 116 0.0009826448 -0.0001585787 125 116 -0.0007727812 0.000124711 126 116 0.0006226054 -0.0001004757 127 116 -0.0005114288 8.253411e-05 128 116 0.0004268045 -6.887749e-05 129 116 -0.0003608797 5.823857e-05 130 116 0.0003085011 -4.978574e-05 131 116 -0.0002661734 4.295492e-05 132 116 0.0002314578 -3.735254e-05 133 116 -0.0002026106 3.26972e-05 134 116 0.0001783582 -2.878335e-05 135 116 -0.0001577525 2.545802e-05 136 116 0.000140076 -2.26054e-05 137 116 -0.0001247774 2.013652e-05 138 116 0.0001114272 -1.798207e-05 139 116 -9.968672e-05 1.608739e-05 140 116 8.928565e-05 -1.440887e-05 141 116 -8.000611e-05 1.291134e-05 142 116 7.167061e-05 -1.156616e-05 143 116 -6.413319e-05 1.034978e-05 144 116 5.727273e-05 -9.242642e-06 145 116 -5.098776e-05 8.228377e-06 146 116 4.519256e-05 -7.293151e-06 147 116 -3.981401e-05 6.425164e-06 148 116 3.478917e-05 -5.614257e-06 149 116 -3.00633e-05 4.851599e-06 150 116 2.558831e-05 -4.129428e-06 151 116 -2.132146e-05 3.440846e-06 152 116 1.722429e-05 -2.779647e-06 153 116 -1.326172e-05 2.14017e-06 154 116 9.401297e-06 -1.517176e-06 155 116 -5.612495e-06 9.057414e-07 156 116 1.866144e-06 -3.011573e-07 157 116 1.866144e-06 -3.011573e-07 158 116 -5.612495e-06 9.057414e-07 159 116 9.401297e-06 -1.517176e-06 160 116 -1.326172e-05 2.14017e-06 161 116 1.722429e-05 -2.779647e-06 197 116 0.0006246159 4.796785e-05 36 117 0.0006400319 4.945462e-05 81 117 1.722429e-05 -2.779647e-06 82 117 -2.132146e-05 3.440846e-06 83 117 2.558831e-05 -4.129428e-06 84 117 -3.00633e-05 4.851599e-06 85 117 3.478917e-05 -5.614257e-06 86 117 -3.981401e-05 6.425164e-06 87 117 4.519256e-05 -7.293151e-06 88 117 -5.098776e-05 8.228377e-06 89 117 5.727273e-05 -9.242642e-06 90 117 -6.413319e-05 1.034978e-05 91 117 7.167061e-05 -1.156616e-05 92 117 -8.000611e-05 1.291134e-05 93 117 8.928565e-05 -1.440887e-05 94 117 -9.968672e-05 1.608739e-05 95 117 0.0001114272 -1.798207e-05 96 117 -0.0001247774 2.013652e-05 97 117 0.000140076 -2.26054e-05 98 117 -0.0001577525 2.545802e-05 99 117 0.0001783582 -2.878335e-05 100 117 -0.0002026106 3.26972e-05 101 117 0.0002314578 -3.735254e-05 102 117 -0.0002661734 4.295492e-05 103 117 0.0003085011 -4.978574e-05 104 117 -0.0003608797 5.823857e-05 105 117 0.0004268045 -6.887749e-05 106 117 -0.0005114288 8.253411e-05 107 117 0.0006226054 -0.0001004757 108 117 -0.0007727812 0.000124711 109 117 0.0009826448 -0.0001585787 110 117 -0.001288661 0.0002079635 111 117 0.001760065 -0.0002840383 112 117 -0.002541777 0.0004101906 113 117 0.003980742 -0.0006424099 114 117 -0.007089509 0.001144101 115 117 0.01597157 -0.002577484 116 117 -0.06393453 0.01031772 117 117 -0.04265367 -0.02449727 118 117 -0.06393453 0.01031772 119 117 0.01597157 -0.002577484 120 117 -0.007089509 0.001144101 121 117 0.003980742 -0.0006424099 122 117 -0.002541777 0.0004101906 123 117 0.001760065 -0.0002840383 124 117 -0.001288661 0.0002079635 125 117 0.0009826448 -0.0001585787 126 117 -0.0007727812 0.000124711 127 117 0.0006226054 -0.0001004757 128 117 -0.0005114288 8.253411e-05 129 117 0.0004268045 -6.887749e-05 130 117 -0.0003608797 5.823857e-05 131 117 0.0003085011 -4.978574e-05 132 117 -0.0002661734 4.295492e-05 133 117 0.0002314578 -3.735254e-05 134 117 -0.0002026106 3.26972e-05 135 117 0.0001783582 -2.878335e-05 136 117 -0.0001577525 2.545802e-05 137 117 0.000140076 -2.26054e-05 138 117 -0.0001247774 2.013652e-05 139 117 0.0001114272 -1.798207e-05 140 117 -9.968672e-05 1.608739e-05 141 117 8.928565e-05 -1.440887e-05 142 117 -8.000611e-05 1.291134e-05 143 117 7.167061e-05 -1.156616e-05 144 117 -6.413319e-05 1.034978e-05 145 117 5.727273e-05 -9.242642e-06 146 117 -5.098776e-05 8.228377e-06 147 117 4.519256e-05 -7.293151e-06 148 117 -3.981401e-05 6.425164e-06 149 117 3.478917e-05 -5.614257e-06 150 117 -3.00633e-05 4.851599e-06 151 117 2.558831e-05 -4.129428e-06 152 117 -2.132146e-05 3.440846e-06 153 117 1.722429e-05 -2.779647e-06 154 117 -1.326172e-05 2.14017e-06 155 117 9.401297e-06 -1.517176e-06 156 117 -5.612495e-06 9.057414e-07 157 117 1.866144e-06 -3.011573e-07 158 117 1.866144e-06 -3.011573e-07 159 117 -5.612495e-06 9.057414e-07 160 117 9.401297e-06 -1.517176e-06 161 117 -1.326172e-05 2.14017e-06 198 117 0.0006400319 4.945462e-05 37 118 0.0006555264 5.095537e-05 81 118 -1.326172e-05 2.14017e-06 82 118 1.722429e-05 -2.779647e-06 83 118 -2.132146e-05 3.440846e-06 84 118 2.558831e-05 -4.129428e-06 85 118 -3.00633e-05 4.851599e-06 86 118 3.478917e-05 -5.614257e-06 87 118 -3.981401e-05 6.425164e-06 88 118 4.519256e-05 -7.293151e-06 89 118 -5.098776e-05 8.228377e-06 90 118 5.727273e-05 -9.242642e-06 91 118 -6.413319e-05 1.034978e-05 92 118 7.167061e-05 -1.156616e-05 93 118 -8.000611e-05 1.291134e-05 94 118 8.928565e-05 -1.440887e-05 95 118 -9.968672e-05 1.608739e-05 96 118 0.0001114272 -1.798207e-05 97 118 -0.0001247774 2.013652e-05 98 118 0.000140076 -2.26054e-05 99 118 -0.0001577525 2.545802e-05 100 118 0.0001783582 -2.878335e-05 101 118 -0.0002026106 3.26972e-05 102 118 0.0002314578 -3.735254e-05 103 118 -0.0002661734 4.295492e-05 104 118 0.0003085011 -4.978574e-05 105 118 -0.0003608797 5.823857e-05 106 118 0.0004268045 -6.887749e-05 107 118 -0.0005114288 8.253411e-05 108 118 0.0006226054 -0.0001004757 109 118 -0.0007727812 0.000124711 110 118 0.0009826448 -0.0001585787 111 118 -0.001288661 0.0002079635 112 118 0.001760065 -0.0002840383 113 118 -0.002541777 0.0004101906 114 118 0.003980742 -0.0006424099 115 118 -0.007089509 0.001144101 116 118 0.01597157 -0.002577484 117 118 -0.06393453 0.01031772 118 118 -0.04486664 -0.02394331 119 118 -0.06393453 0.01031772 120 118 0.01597157 -0.002577484 121 118 -0.007089509 0.001144101 122 118 0.003980742 -0.0006424099 123 118 -0.002541777 0.0004101906 124 118 0.001760065 -0.0002840383 125 118 -0.001288661 0.0002079635 126 118 0.0009826448 -0.0001585787 127 118 -0.0007727812 0.000124711 128 118 0.0006226054 -0.0001004757 129 118 -0.0005114288 8.253411e-05 130 118 0.0004268045 -6.887749e-05 131 118 -0.0003608797 5.823857e-05 132 118 0.0003085011 -4.978574e-05 133 118 -0.0002661734 4.295492e-05 134 118 0.0002314578 -3.735254e-05 135 118 -0.0002026106 3.26972e-05 136 118 0.0001783582 -2.878335e-05 137 118 -0.0001577525 2.545802e-05 138 118 0.000140076 -2.26054e-05 139 118 -0.0001247774 2.013652e-05 140 118 0.0001114272 -1.798207e-05 141 118 -9.968672e-05 1.608739e-05 142 118 8.928565e-05 -1.440887e-05 143 118 -8.000611e-05 1.291134e-05 144 118 7.167061e-05 -1.156616e-05 145 118 -6.413319e-05 1.034978e-05 146 118 5.727273e-05 -9.242642e-06 147 118 -5.098776e-05 8.228377e-06 148 118 4.519256e-05 -7.293151e-06 149 118 -3.981401e-05 6.425164e-06 150 118 3.478917e-05 -5.614257e-06 151 118 -3.00633e-05 4.851599e-06 152 118 2.558831e-05 -4.129428e-06 153 118 -2.132146e-05 3.440846e-06 154 118 1.722429e-05 -2.779647e-06 155 118 -1.326172e-05 2.14017e-06 156 118 9.401297e-06 -1.517176e-06 157 118 -5.612495e-06 9.057414e-07 158 118 1.866144e-06 -3.011573e-07 159 118 1.866144e-06 -3.011573e-07 160 118 -5.612495e-06 9.057414e-07 161 118 9.401297e-06 -1.517176e-06 199 118 0.0006555264 5.095537e-05 38 119 0.0006710998 5.247021e-05 81 119 9.401297e-06 -1.517176e-06 82 119 -1.326172e-05 2.14017e-06 83 119 1.722429e-05 -2.779647e-06 84 119 -2.132146e-05 3.440846e-06 85 119 2.558831e-05 -4.129428e-06 86 119 -3.00633e-05 4.851599e-06 87 119 3.478917e-05 -5.614257e-06 88 119 -3.981401e-05 6.425164e-06 89 119 4.519256e-05 -7.293151e-06 90 119 -5.098776e-05 8.228377e-06 91 119 5.727273e-05 -9.242642e-06 92 119 -6.413319e-05 1.034978e-05 93 119 7.167061e-05 -1.156616e-05 94 119 -8.000611e-05 1.291134e-05 95 119 8.928565e-05 -1.440887e-05 96 119 -9.968672e-05 1.608739e-05 97 119 0.0001114272 -1.798207e-05 98 119 -0.0001247774 2.013652e-05 99 119 0.000140076 -2.26054e-05 100 119 -0.0001577525 2.545802e-05 101 119 0.0001783582 -2.878335e-05 102 119 -0.0002026106 3.26972e-05 103 119 0.0002314578 -3.735254e-05 104 119 -0.0002661734 4.295492e-05 105 119 0.0003085011 -4.978574e-05 106 119 -0.0003608797 5.823857e-05 107 119 0.0004268045 -6.887749e-05 108 119 -0.0005114288 8.253411e-05 109 119 0.0006226054 -0.0001004757 110 119 -0.0007727812 0.000124711 111 119 0.0009826448 -0.0001585787 112 119 -0.001288661 0.0002079635 113 119 0.001760065 -0.0002840383 114 119 -0.002541777 0.0004101906 115 119 0.003980742 -0.0006424099 116 119 -0.007089509 0.001144101 117 119 0.01597157 -0.002577484 118 119 -0.06393453 0.01031772 119 119 -0.04686551 -0.02343019 120 119 -0.06393453 0.01031772 121 119 0.01597157 -0.002577484 122 119 -0.007089509 0.001144101 123 119 0.003980742 -0.0006424099 124 119 -0.002541777 0.0004101906 125 119 0.001760065 -0.0002840383 126 119 -0.001288661 0.0002079635 127 119 0.0009826448 -0.0001585787 128 119 -0.0007727812 0.000124711 129 119 0.0006226054 -0.0001004757 130 119 -0.0005114288 8.253411e-05 131 119 0.0004268045 -6.887749e-05 132 119 -0.0003608797 5.823857e-05 133 119 0.0003085011 -4.978574e-05 134 119 -0.0002661734 4.295492e-05 135 119 0.0002314578 -3.735254e-05 136 119 -0.0002026106 3.26972e-05 137 119 0.0001783582 -2.878335e-05 138 119 -0.0001577525 2.545802e-05 139 119 0.000140076 -2.26054e-05 140 119 -0.0001247774 2.013652e-05 141 119 0.0001114272 -1.798207e-05 142 119 -9.968672e-05 1.608739e-05 143 119 8.928565e-05 -1.440887e-05 144 119 -8.000611e-05 1.291134e-05 145 119 7.167061e-05 -1.156616e-05 146 119 -6.413319e-05 1.034978e-05 147 119 5.727273e-05 -9.242642e-06 148 119 -5.098776e-05 8.228377e-06 149 119 4.519256e-05 -7.293151e-06 150 119 -3.981401e-05 6.425164e-06 151 119 3.478917e-05 -5.614257e-06 152 119 -3.00633e-05 4.851599e-06 153 119 2.558831e-05 -4.129428e-06 154 119 -2.132146e-05 3.440846e-06 155 119 1.722429e-05 -2.779647e-06 156 119 -1.326172e-05 2.14017e-06 157 119 9.401297e-06 -1.517176e-06 158 119 -5.612495e-06 9.057414e-07 159 119 1.866144e-06 -3.011573e-07 160 119 1.866144e-06 -3.011573e-07 161 119 -5.612495e-06 9.057414e-07 200 119 0.0006710998 5.247021e-05 39 120 0.0006867524 5.399924e-05 81 120 -5.612495e-06 9.057414e-07 82 120 9.401297e-06 -1.517176e-06 83 120 -1.326172e-05 2.14017e-06 84 120 1.722429e-05 -2.779647e-06 85 120 -2.132146e-05 3.440846e-06 86 120 2.558831e-05 -4.129428e-06 87 120 -3.00633e-05 4.851599e-06 88 120 3.478917e-05 -5.614257e-06 89 120 -3.981401e-05 6.425164e-06 90 120 4.519256e-05 -7.293151e-06 91 120 -5.098776e-05 8.228377e-06 92 120 5.727273e-05 -9.242642e-06 93 120 -6.413319e-05 1.034978e-05 94 120 7.167061e-05 -1.156616e-05 95 120 -8.000611e-05 1.291134e-05 96 120 8.928565e-05 -1.440887e-05 97 120 -9.968672e-05 1.608739e-05 98 120 0.0001114272 -1.798207e-05 99 120 -0.0001247774 2.013652e-05 100 120 0.000140076 -2.26054e-05 101 120 -0.0001577525 2.545802e-05 102 120 0.0001783582 -2.878335e-05 103 120 -0.0002026106 3.26972e-05 104 120 0.0002314578 -3.735254e-05 105 120 -0.0002661734 4.295492e-05 106 120 0.0003085011 -4.978574e-05 107 120 -0.0003608797 5.823857e-05 108 120 0.0004268045 -6.887749e-05 109 120 -0.0005114288 8.253411e-05 110 120 0.0006226054 -0.0001004757 111 120 -0.0007727812 0.000124711 112 120 0.0009826448 -0.0001585787 113 120 -0.001288661 0.0002079635 114 120 0.001760065 -0.0002840383 115 120 -0.002541777 0.0004101906 116 120 0.003980742 -0.0006424099 117 120 -0.007089509 0.001144101 118 120 0.01597157 -0.002577484 119 120 -0.06393453 0.01031772 120 120 -0.04867201 -0.02295479 121 120 -0.06393453 0.01031772 122 120 0.01597157 -0.002577484 123 120 -0.007089509 0.001144101 124 120 0.003980742 -0.0006424099 125 120 -0.002541777 0.0004101906 126 120 0.001760065 -0.0002840383 127 120 -0.001288661 0.0002079635 128 120 0.0009826448 -0.0001585787 129 120 -0.0007727812 0.000124711 130 120 0.0006226054 -0.0001004757 131 120 -0.0005114288 8.253411e-05 132 120 0.0004268045 -6.887749e-05 133 120 -0.0003608797 5.823857e-05 134 120 0.0003085011 -4.978574e-05 135 120 -0.0002661734 4.295492e-05 136 120 0.0002314578 -3.735254e-05 137 120 -0.0002026106 3.26972e-05 138 120 0.0001783582 -2.878335e-05 139 120 -0.0001577525 2.545802e-05 140 120 0.000140076 -2.26054e-05 141 120 -0.0001247774 2.013652e-05 142 120 0.0001114272 -1.798207e-05 143 120 -9.968672e-05 1.608739e-05 144 120 8.928565e-05 -1.440887e-05 145 120 -8.000611e-05 1.291134e-05 146 120 7.167061e-05 -1.156616e-05 147 120 -6.413319e-05 1.034978e-05 148 120 5.727273e-05 -9.242642e-06 149 120 -5.098776e-05 8.228377e-06 150 120 4.519256e-05 -7.293151e-06 151 120 -3.981401e-05 6.425164e-06 152 120 3.478917e-05 -5.614257e-06 153 120 -3.00633e-05 4.851599e-06 154 120 2.558831e-05 -4.129428e-06 155 120 -2.132146e-05 3.440846e-06 156 120 1.722429e-05 -2.779647e-06 157 120 -1.326172e-05 2.14017e-06 158 120 9.401297e-06 -1.517176e-06 159 120 -5.612495e-06 9.057414e-07 160 120 1.866144e-06 -3.011573e-07 161 120 1.866144e-06 -3.011573e-07 201 120 0.0006867524 5.399924e-05 40 121 0.0007024847 5.554257e-05 81 121 1.866144e-06 -3.011573e-07 82 121 -5.612495e-06 9.057414e-07 83 121 9.401297e-06 -1.517176e-06 84 121 -1.326172e-05 2.14017e-06 85 121 1.722429e-05 -2.779647e-06 86 121 -2.132146e-05 3.440846e-06 87 121 2.558831e-05 -4.129428e-06 88 121 -3.00633e-05 4.851599e-06 89 121 3.478917e-05 -5.614257e-06 90 121 -3.981401e-05 6.425164e-06 91 121 4.519256e-05 -7.293151e-06 92 121 -5.098776e-05 8.228377e-06 93 121 5.727273e-05 -9.242642e-06 94 121 -6.413319e-05 1.034978e-05 95 121 7.167061e-05 -1.156616e-05 96 121 -8.000611e-05 1.291134e-05 97 121 8.928565e-05 -1.440887e-05 98 121 -9.968672e-05 1.608739e-05 99 121 0.0001114272 -1.798207e-05 100 121 -0.0001247774 2.013652e-05 101 121 0.000140076 -2.26054e-05 102 121 -0.0001577525 2.545802e-05 103 121 0.0001783582 -2.878335e-05 104 121 -0.0002026106 3.26972e-05 105 121 0.0002314578 -3.735254e-05 106 121 -0.0002661734 4.295492e-05 107 121 0.0003085011 -4.978574e-05 108 121 -0.0003608797 5.823857e-05 109 121 0.0004268045 -6.887749e-05 110 121 -0.0005114288 8.253411e-05 111 121 0.0006226054 -0.0001004757 112 121 -0.0007727812 0.000124711 113 121 0.0009826448 -0.0001585787 114 121 -0.001288661 0.0002079635 115 121 0.001760065 -0.0002840383 116 121 -0.002541777 0.0004101906 117 121 0.003980742 -0.0006424099 118 121 -0.007089509 0.001144101 119 121 0.01597157 -0.002577484 120 121 -0.06393453 0.01031772 121 121 -0.05030545 -0.02251421 122 121 -0.06393453 0.01031772 123 121 0.01597157 -0.002577484 124 121 -0.007089509 0.001144101 125 121 0.003980742 -0.0006424099 126 121 -0.002541777 0.0004101906 127 121 0.001760065 -0.0002840383 128 121 -0.001288661 0.0002079635 129 121 0.0009826448 -0.0001585787 130 121 -0.0007727812 0.000124711 131 121 0.0006226054 -0.0001004757 132 121 -0.0005114288 8.253411e-05 133 121 0.0004268045 -6.887749e-05 134 121 -0.0003608797 5.823857e-05 135 121 0.0003085011 -4.978574e-05 136 121 -0.0002661734 4.295492e-05 137 121 0.0002314578 -3.735254e-05 138 121 -0.0002026106 3.26972e-05 139 121 0.0001783582 -2.878335e-05 140 121 -0.0001577525 2.545802e-05 141 121 0.000140076 -2.26054e-05 142 121 -0.0001247774 2.013652e-05 143 121 0.0001114272 -1.798207e-05 144 121 -9.968672e-05 1.608739e-05 145 121 8.928565e-05 -1.440887e-05 146 121 -8.000611e-05 1.291134e-05 147 121 7.167061e-05 -1.156616e-05 148 121 -6.413319e-05 1.034978e-05 149 121 5.727273e-05 -9.242642e-06 150 121 -5.098776e-05 8.228377e-06 151 121 4.519256e-05 -7.293151e-06 152 121 -3.981401e-05 6.425164e-06 153 121 3.478917e-05 -5.614257e-06 154 121 -3.00633e-05 4.851599e-06 155 121 2.558831e-05 -4.129428e-06 156 121 -2.132146e-05 3.440846e-06 157 121 1.722429e-05 -2.779647e-06 158 121 -1.326172e-05 2.14017e-06 159 121 9.401297e-06 -1.517176e-06 160 121 -5.612495e-06 9.057414e-07 161 121 1.866144e-06 -3.011573e-07 202 121 0.0007024847 5.554257e-05 41 122 0.000718297 5.71003e-05 81 122 1.866144e-06 -3.011573e-07 82 122 1.866144e-06 -3.011573e-07 83 122 -5.612495e-06 9.057414e-07 84 122 9.401297e-06 -1.517176e-06 85 122 -1.326172e-05 2.14017e-06 86 122 1.722429e-05 -2.779647e-06 87 122 -2.132146e-05 3.440846e-06 88 122 2.558831e-05 -4.129428e-06 89 122 -3.00633e-05 4.851599e-06 90 122 3.478917e-05 -5.614257e-06 91 122 -3.981401e-05 6.425164e-06 92 122 4.519256e-05 -7.293151e-06 93 122 -5.098776e-05 8.228377e-06 94 122 5.727273e-05 -9.242642e-06 95 122 -6.413319e-05 1.034978e-05 96 122 7.167061e-05 -1.156616e-05 97 122 -8.000611e-05 1.291134e-05 98 122 8.928565e-05 -1.440887e-05 99 122 -9.968672e-05 1.608739e-05 100 122 0.0001114272 -1.798207e-05 101 122 -0.0001247774 2.013652e-05 102 122 0.000140076 -2.26054e-05 103 122 -0.0001577525 2.545802e-05 104 122 0.0001783582 -2.878335e-05 105 122 -0.0002026106 3.26972e-05 106 122 0.0002314578 -3.735254e-05 107 122 -0.0002661734 4.295492e-05 108 122 0.0003085011 -4.978574e-05 109 122 -0.0003608797 5.823857e-05 110 122 0.0004268045 -6.887749e-05 111 122 -0.0005114288 8.253411e-05 112 122 0.0006226054 -0.0001004757 113 122 -0.0007727812 0.000124711 114 122 0.0009826448 -0.0001585787 115 122 -0.001288661 0.0002079635 116 122 0.001760065 -0.0002840383 117 122 -0.002541777 0.0004101906 118 122 0.003980742 -0.0006424099 119 122 -0.007089509 0.001144101 120 122 0.01597157 -0.002577484 121 122 -0.06393453 0.01031772 122 122 -0.0517831 -0.02210584 123 122 -0.06393453 0.01031772 124 122 0.01597157 -0.002577484 125 122 -0.007089509 0.001144101 126 122 0.003980742 -0.0006424099 127 122 -0.002541777 0.0004101906 128 122 0.001760065 -0.0002840383 129 122 -0.001288661 0.0002079635 130 122 0.0009826448 -0.0001585787 131 122 -0.0007727812 0.000124711 132 122 0.0006226054 -0.0001004757 133 122 -0.0005114288 8.253411e-05 134 122 0.0004268045 -6.887749e-05 135 122 -0.0003608797 5.823857e-05 136 122 0.0003085011 -4.978574e-05 137 122 -0.0002661734 4.295492e-05 138 122 0.0002314578 -3.735254e-05 139 122 -0.0002026106 3.26972e-05 140 122 0.0001783582 -2.878335e-05 141 122 -0.0001577525 2.545802e-05 142 122 0.000140076 -2.26054e-05 143 122 -0.0001247774 2.013652e-05 144 122 0.0001114272 -1.798207e-05 145 122 -9.968672e-05 1.608739e-05 146 122 8.928565e-05 -1.440887e-05 147 122 -8.000611e-05 1.291134e-05 148 122 7.167061e-05 -1.156616e-05 149 122 -6.413319e-05 1.034978e-05 150 122 5.727273e-05 -9.242642e-06 151 122 -5.098776e-05 8.228377e-06 152 122 4.519256e-05 -7.293151e-06 153 122 -3.981401e-05 6.425164e-06 154 122 3.478917e-05 -5.614257e-06 155 122 -3.00633e-05 4.851599e-06 156 122 2.558831e-05 -4.129428e-06 157 122 -2.132146e-05 3.440846e-06 158 122 1.722429e-05 -2.779647e-06 159 122 -1.326172e-05 2.14017e-06 160 122 9.401297e-06 -1.517176e-06 161 122 -5.612495e-06 9.057414e-07 203 122 0.000718297 5.71003e-05 42 123 0.0007341899 5.867254e-05 81 123 -5.612495e-06 9.057414e-07 82 123 1.866144e-06 -3.011573e-07 83 123 1.866144e-06 -3.011573e-07 84 123 -5.612495e-06 9.057414e-07 85 123 9.401297e-06 -1.517176e-06 86 123 -1.326172e-05 2.14017e-06 87 123 1.722429e-05 -2.779647e-06 88 123 -2.132146e-05 3.440846e-06 89 123 2.558831e-05 -4.129428e-06 90 123 -3.00633e-05 4.851599e-06 91 123 3.478917e-05 -5.614257e-06 92 123 -3.981401e-05 6.425164e-06 93 123 4.519256e-05 -7.293151e-06 94 123 -5.098776e-05 8.228377e-06 95 123 5.727273e-05 -9.242642e-06 96 123 -6.413319e-05 1.034978e-05 97 123 7.167061e-05 -1.156616e-05 98 123 -8.000611e-05 1.291134e-05 99 123 8.928565e-05 -1.440887e-05 100 123 -9.968672e-05 1.608739e-05 101 123 0.0001114272 -1.798207e-05 102 123 -0.0001247774 2.013652e-05 103 123 0.000140076 -2.26054e-05 104 123 -0.0001577525 2.545802e-05 105 123 0.0001783582 -2.878335e-05 106 123 -0.0002026106 3.26972e-05 107 123 0.0002314578 -3.735254e-05 108 123 -0.0002661734 4.295492e-05 109 123 0.0003085011 -4.978574e-05 110 123 -0.0003608797 5.823857e-05 111 123 0.0004268045 -6.887749e-05 112 123 -0.0005114288 8.253411e-05 113 123 0.0006226054 -0.0001004757 114 123 -0.0007727812 0.000124711 115 123 0.0009826448 -0.0001585787 116 123 -0.001288661 0.0002079635 117 123 0.001760065 -0.0002840383 118 123 -0.002541777 0.0004101906 119 123 0.003980742 -0.0006424099 120 123 -0.007089509 0.001144101 121 123 0.01597157 -0.002577484 122 123 -0.06393453 0.01031772 123 123 -0.05312037 -0.02172727 124 123 -0.06393453 0.01031772 125 123 0.01597157 -0.002577484 126 123 -0.007089509 0.001144101 127 123 0.003980742 -0.0006424099 128 123 -0.002541777 0.0004101906 129 123 0.001760065 -0.0002840383 130 123 -0.001288661 0.0002079635 131 123 0.0009826448 -0.0001585787 132 123 -0.0007727812 0.000124711 133 123 0.0006226054 -0.0001004757 134 123 -0.0005114288 8.253411e-05 135 123 0.0004268045 -6.887749e-05 136 123 -0.0003608797 5.823857e-05 137 123 0.0003085011 -4.978574e-05 138 123 -0.0002661734 4.295492e-05 139 123 0.0002314578 -3.735254e-05 140 123 -0.0002026106 3.26972e-05 141 123 0.0001783582 -2.878335e-05 142 123 -0.0001577525 2.545802e-05 143 123 0.000140076 -2.26054e-05 144 123 -0.0001247774 2.013652e-05 145 123 0.0001114272 -1.798207e-05 146 123 -9.968672e-05 1.608739e-05 147 123 8.928565e-05 -1.440887e-05 148 123 -8.000611e-05 1.291134e-05 149 123 7.167061e-05 -1.156616e-05 150 123 -6.413319e-05 1.034978e-05 151 123 5.727273e-05 -9.242642e-06 152 123 -5.098776e-05 8.228377e-06 153 123 4.519256e-05 -7.293151e-06 154 123 -3.981401e-05 6.425164e-06 155 123 3.478917e-05 -5.614257e-06 156 123 -3.00633e-05 4.851599e-06 157 123 2.558831e-05 -4.129428e-06 158 123 -2.132146e-05 3.440846e-06 159 123 1.722429e-05 -2.779647e-06 160 123 -1.326172e-05 2.14017e-06 161 123 9.401297e-06 -1.517176e-06 204 123 0.0007341899 5.867254e-05 43 124 0.0007501636 6.025941e-05 81 124 9.401297e-06 -1.517176e-06 82 124 -5.612495e-06 9.057414e-07 83 124 1.866144e-06 -3.011573e-07 84 124 1.866144e-06 -3.011573e-07 85 124 -5.612495e-06 9.057414e-07 86 124 9.401297e-06 -1.517176e-06 87 124 -1.326172e-05 2.14017e-06 88 124 1.722429e-05 -2.779647e-06 89 124 -2.132146e-05 3.440846e-06 90 124 2.558831e-05 -4.129428e-06 91 124 -3.00633e-05 4.851599e-06 92 124 3.478917e-05 -5.614257e-06 93 124 -3.981401e-05 6.425164e-06 94 124 4.519256e-05 -7.293151e-06 95 124 -5.098776e-05 8.228377e-06 96 124 5.727273e-05 -9.242642e-06 97 124 -6.413319e-05 1.034978e-05 98 124 7.167061e-05 -1.156616e-05 99 124 -8.000611e-05 1.291134e-05 100 124 8.928565e-05 -1.440887e-05 101 124 -9.968672e-05 1.608739e-05 102 124 0.0001114272 -1.798207e-05 103 124 -0.0001247774 2.013652e-05 104 124 0.000140076 -2.26054e-05 105 124 -0.0001577525 2.545802e-05 106 124 0.0001783582 -2.878335e-05 107 124 -0.0002026106 3.26972e-05 108 124 0.0002314578 -3.735254e-05 109 124 -0.0002661734 4.295492e-05 110 124 0.0003085011 -4.978574e-05 111 124 -0.0003608797 5.823857e-05 112 124 0.0004268045 -6.887749e-05 113 124 -0.0005114288 8.253411e-05 114 124 0.0006226054 -0.0001004757 115 124 -0.0007727812 0.000124711 116 124 0.0009826448 -0.0001585787 117 124 -0.001288661 0.0002079635 118 124 0.001760065 -0.0002840383 119 124 -0.002541777 0.0004101906 120 124 0.003980742 -0.0006424099 121 124 -0.007089509 0.001144101 122 124 0.01597157 -0.002577484 123 124 -0.06393453 0.01031772 124 124 -0.05433105 -0.02137626 125 124 -0.06393453 0.01031772 126 124 0.01597157 -0.002577484 127 124 -0.007089509 0.001144101 128 124 0.003980742 -0.0006424099 129 124 -0.002541777 0.0004101906 130 124 0.001760065 -0.0002840383 131 124 -0.001288661 0.0002079635 132 124 0.0009826448 -0.0001585787 133 124 -0.0007727812 0.000124711 134 124 0.0006226054 -0.0001004757 135 124 -0.0005114288 8.253411e-05 136 124 0.0004268045 -6.887749e-05 137 124 -0.0003608797 5.823857e-05 138 124 0.0003085011 -4.978574e-05 139 124 -0.0002661734 4.295492e-05 140 124 0.0002314578 -3.735254e-05 141 124 -0.0002026106 3.26972e-05 142 124 0.0001783582 -2.878335e-05 143 124 -0.0001577525 2.545802e-05 144 124 0.000140076 -2.26054e-05 145 124 -0.0001247774 2.013652e-05 146 124 0.0001114272 -1.798207e-05 147 124 -9.968672e-05 1.608739e-05 148 124 8.928565e-05 -1.440887e-05 149 124 -8.000611e-05 1.291134e-05 150 124 7.167061e-05 -1.156616e-05 151 124 -6.413319e-05 1.034978e-05 152 124 5.727273e-05 -9.242642e-06 153 124 -5.098776e-05 8.228377e-06 154 124 4.519256e-05 -7.293151e-06 155 124 -3.981401e-05 6.425164e-06 156 124 3.478917e-05 -5.614257e-06 157 124 -3.00633e-05 4.851599e-06 158 124 2.558831e-05 -4.129428e-06 159 124 -2.132146e-05 3.440846e-06 160 124 1.722429e-05 -2.779647e-06 161 124 -1.326172e-05 2.14017e-06 205 124 0.0007501636 6.025941e-05 44 125 0.0007662186 6.186099e-05 81 125 -1.326172e-05 2.14017e-06 82 125 9.401297e-06 -1.517176e-06 83 125 -5.612495e-06 9.057414e-07 84 125 1.866144e-06 -3.011573e-07 85 125 1.866144e-06 -3.011573e-07 86 125 -5.612495e-06 9.057414e-07 87 125 9.401297e-06 -1.517176e-06 88 125 -1.326172e-05 2.14017e-06 89 125 1.722429e-05 -2.779647e-06 90 125 -2.132146e-05 3.440846e-06 91 125 2.558831e-05 -4.129428e-06 92 125 -3.00633e-05 4.851599e-06 93 125 3.478917e-05 -5.614257e-06 94 125 -3.981401e-05 6.425164e-06 95 125 4.519256e-05 -7.293151e-06 96 125 -5.098776e-05 8.228377e-06 97 125 5.727273e-05 -9.242642e-06 98 125 -6.413319e-05 1.034978e-05 99 125 7.167061e-05 -1.156616e-05 100 125 -8.000611e-05 1.291134e-05 101 125 8.928565e-05 -1.440887e-05 102 125 -9.968672e-05 1.608739e-05 103 125 0.0001114272 -1.798207e-05 104 125 -0.0001247774 2.013652e-05 105 125 0.000140076 -2.26054e-05 106 125 -0.0001577525 2.545802e-05 107 125 0.0001783582 -2.878335e-05 108 125 -0.0002026106 3.26972e-05 109 125 0.0002314578 -3.735254e-05 110 125 -0.0002661734 4.295492e-05 111 125 0.0003085011 -4.978574e-05 112 125 -0.0003608797 5.823857e-05 113 125 0.0004268045 -6.887749e-05 114 125 -0.0005114288 8.253411e-05 115 125 0.0006226054 -0.0001004757 116 125 -0.0007727812 0.000124711 117 125 0.0009826448 -0.0001585787 118 125 -0.001288661 0.0002079635 119 125 0.001760065 -0.0002840383 120 125 -0.002541777 0.0004101906 121 125 0.003980742 -0.0006424099 122 125 -0.007089509 0.001144101 123 125 0.01597157 -0.002577484 124 125 -0.06393453 0.01031772 125 125 -0.0554275 -0.02105079 126 125 -0.06393453 0.01031772 127 125 0.01597157 -0.002577484 128 125 -0.007089509 0.001144101 129 125 0.003980742 -0.0006424099 130 125 -0.002541777 0.0004101906 131 125 0.001760065 -0.0002840383 132 125 -0.001288661 0.0002079635 133 125 0.0009826448 -0.0001585787 134 125 -0.0007727812 0.000124711 135 125 0.0006226054 -0.0001004757 136 125 -0.0005114288 8.253411e-05 137 125 0.0004268045 -6.887749e-05 138 125 -0.0003608797 5.823857e-05 139 125 0.0003085011 -4.978574e-05 140 125 -0.0002661734 4.295492e-05 141 125 0.0002314578 -3.735254e-05 142 125 -0.0002026106 3.26972e-05 143 125 0.0001783582 -2.878335e-05 144 125 -0.0001577525 2.545802e-05 145 125 0.000140076 -2.26054e-05 146 125 -0.0001247774 2.013652e-05 147 125 0.0001114272 -1.798207e-05 148 125 -9.968672e-05 1.608739e-05 149 125 8.928565e-05 -1.440887e-05 150 125 -8.000611e-05 1.291134e-05 151 125 7.167061e-05 -1.156616e-05 152 125 -6.413319e-05 1.034978e-05 153 125 5.727273e-05 -9.242642e-06 154 125 -5.098776e-05 8.228377e-06 155 125 4.519256e-05 -7.293151e-06 156 125 -3.981401e-05 6.425164e-06 157 125 3.478917e-05 -5.614257e-06 158 125 -3.00633e-05 4.851599e-06 159 125 2.558831e-05 -4.129428e-06 160 125 -2.132146e-05 3.440846e-06 161 125 1.722429e-05 -2.779647e-06 206 125 0.0007662186 6.186099e-05 45 126 0.0007823553 6.347742e-05 81 126 1.722429e-05 -2.779647e-06 82 126 -1.326172e-05 2.14017e-06 83 126 9.401297e-06 -1.517176e-06 84 126 -5.612495e-06 9.057414e-07 85 126 1.866144e-06 -3.011573e-07 86 126 1.866144e-06 -3.011573e-07 87 126 -5.612495e-06 9.057414e-07 88 126 9.401297e-06 -1.517176e-06 89 126 -1.326172e-05 2.14017e-06 90 126 1.722429e-05 -2.779647e-06 91 126 -2.132146e-05 3.440846e-06 92 126 2.558831e-05 -4.129428e-06 93 126 -3.00633e-05 4.851599e-06 94 126 3.478917e-05 -5.614257e-06 95 126 -3.981401e-05 6.425164e-06 96 126 4.519256e-05 -7.293151e-06 97 126 -5.098776e-05 8.228377e-06 98 126 5.727273e-05 -9.242642e-06 99 126 -6.413319e-05 1.034978e-05 100 126 7.167061e-05 -1.156616e-05 101 126 -8.000611e-05 1.291134e-05 102 126 8.928565e-05 -1.440887e-05 103 126 -9.968672e-05 1.608739e-05 104 126 0.0001114272 -1.798207e-05 105 126 -0.0001247774 2.013652e-05 106 126 0.000140076 -2.26054e-05 107 126 -0.0001577525 2.545802e-05 108 126 0.0001783582 -2.878335e-05 109 126 -0.0002026106 3.26972e-05 110 126 0.0002314578 -3.735254e-05 111 126 -0.0002661734 4.295492e-05 112 126 0.0003085011 -4.978574e-05 113 126 -0.0003608797 5.823857e-05 114 126 0.0004268045 -6.887749e-05 115 126 -0.0005114288 8.253411e-05 116 126 0.0006226054 -0.0001004757 117 126 -0.0007727812 0.000124711 118 126 0.0009826448 -0.0001585787 119 126 -0.001288661 0.0002079635 120 126 0.001760065 -0.0002840383 121 126 -0.002541777 0.0004101906 122 126 0.003980742 -0.0006424099 123 126 -0.007089509 0.001144101 124 126 0.01597157 -0.002577484 125 126 -0.06393453 0.01031772 126 126 -0.05642079 -0.02074898 127 126 -0.06393453 0.01031772 128 126 0.01597157 -0.002577484 129 126 -0.007089509 0.001144101 130 126 0.003980742 -0.0006424099 131 126 -0.002541777 0.0004101906 132 126 0.001760065 -0.0002840383 133 126 -0.001288661 0.0002079635 134 126 0.0009826448 -0.0001585787 135 126 -0.0007727812 0.000124711 136 126 0.0006226054 -0.0001004757 137 126 -0.0005114288 8.253411e-05 138 126 0.0004268045 -6.887749e-05 139 126 -0.0003608797 5.823857e-05 140 126 0.0003085011 -4.978574e-05 141 126 -0.0002661734 4.295492e-05 142 126 0.0002314578 -3.735254e-05 143 126 -0.0002026106 3.26972e-05 144 126 0.0001783582 -2.878335e-05 145 126 -0.0001577525 2.545802e-05 146 126 0.000140076 -2.26054e-05 147 126 -0.0001247774 2.013652e-05 148 126 0.0001114272 -1.798207e-05 149 126 -9.968672e-05 1.608739e-05 150 126 8.928565e-05 -1.440887e-05 151 126 -8.000611e-05 1.291134e-05 152 126 7.167061e-05 -1.156616e-05 153 126 -6.413319e-05 1.034978e-05 154 126 5.727273e-05 -9.242642e-06 155 126 -5.098776e-05 8.228377e-06 156 126 4.519256e-05 -7.293151e-06 157 126 -3.981401e-05 6.425164e-06 158 126 3.478917e-05 -5.614257e-06 159 126 -3.00633e-05 4.851599e-06 160 126 2.558831e-05 -4.129428e-06 161 126 -2.132146e-05 3.440846e-06 207 126 0.0007823553 6.347742e-05 46 127 0.0007985741 6.510879e-05 81 127 -2.132146e-05 3.440846e-06 82 127 1.722429e-05 -2.779647e-06 83 127 -1.326172e-05 2.14017e-06 84 127 9.401297e-06 -1.517176e-06 85 127 -5.612495e-06 9.057414e-07 86 127 1.866144e-06 -3.011573e-07 87 127 1.866144e-06 -3.011573e-07 88 127 -5.612495e-06 9.057414e-07 89 127 9.401297e-06 -1.517176e-06 90 127 -1.326172e-05 2.14017e-06 91 127 1.722429e-05 -2.779647e-06 92 127 -2.132146e-05 3.440846e-06 93 127 2.558831e-05 -4.129428e-06 94 127 -3.00633e-05 4.851599e-06 95 127 3.478917e-05 -5.614257e-06 96 127 -3.981401e-05 6.425164e-06 97 127 4.519256e-05 -7.293151e-06 98 127 -5.098776e-05 8.228377e-06 99 127 5.727273e-05 -9.242642e-06 100 127 -6.413319e-05 1.034978e-05 101 127 7.167061e-05 -1.156616e-05 102 127 -8.000611e-05 1.291134e-05 103 127 8.928565e-05 -1.440887e-05 104 127 -9.968672e-05 1.608739e-05 105 127 0.0001114272 -1.798207e-05 106 127 -0.0001247774 2.013652e-05 107 127 0.000140076 -2.26054e-05 108 127 -0.0001577525 2.545802e-05 109 127 0.0001783582 -2.878335e-05 110 127 -0.0002026106 3.26972e-05 111 127 0.0002314578 -3.735254e-05 112 127 -0.0002661734 4.295492e-05 113 127 0.0003085011 -4.978574e-05 114 127 -0.0003608797 5.823857e-05 115 127 0.0004268045 -6.887749e-05 116 127 -0.0005114288 8.253411e-05 117 127 0.0006226054 -0.0001004757 118 127 -0.0007727812 0.000124711 119 127 0.0009826448 -0.0001585787 120 127 -0.001288661 0.0002079635 121 127 0.001760065 -0.0002840383 122 127 -0.002541777 0.0004101906 123 127 0.003980742 -0.0006424099 124 127 -0.007089509 0.001144101 125 127 0.01597157 -0.002577484 126 127 -0.06393453 0.01031772 127 127 -0.05732087 -0.02046909 128 127 -0.06393453 0.01031772 129 127 0.01597157 -0.002577484 130 127 -0.007089509 0.001144101 131 127 0.003980742 -0.0006424099 132 127 -0.002541777 0.0004101906 133 127 0.001760065 -0.0002840383 134 127 -0.001288661 0.0002079635 135 127 0.0009826448 -0.0001585787 136 127 -0.0007727812 0.000124711 137 127 0.0006226054 -0.0001004757 138 127 -0.0005114288 8.253411e-05 139 127 0.0004268045 -6.887749e-05 140 127 -0.0003608797 5.823857e-05 141 127 0.0003085011 -4.978574e-05 142 127 -0.0002661734 4.295492e-05 143 127 0.0002314578 -3.735254e-05 144 127 -0.0002026106 3.26972e-05 145 127 0.0001783582 -2.878335e-05 146 127 -0.0001577525 2.545802e-05 147 127 0.000140076 -2.26054e-05 148 127 -0.0001247774 2.013652e-05 149 127 0.0001114272 -1.798207e-05 150 127 -9.968672e-05 1.608739e-05 151 127 8.928565e-05 -1.440887e-05 152 127 -8.000611e-05 1.291134e-05 153 127 7.167061e-05 -1.156616e-05 154 127 -6.413319e-05 1.034978e-05 155 127 5.727273e-05 -9.242642e-06 156 127 -5.098776e-05 8.228377e-06 157 127 4.519256e-05 -7.293151e-06 158 127 -3.981401e-05 6.425164e-06 159 127 3.478917e-05 -5.614257e-06 160 127 -3.00633e-05 4.851599e-06 161 127 2.558831e-05 -4.129428e-06 208 127 0.0007985741 6.510879e-05 47 128 0.0008148755 6.675522e-05 81 128 2.558831e-05 -4.129428e-06 82 128 -2.132146e-05 3.440846e-06 83 128 1.722429e-05 -2.779647e-06 84 128 -1.326172e-05 2.14017e-06 85 128 9.401297e-06 -1.517176e-06 86 128 -5.612495e-06 9.057414e-07 87 128 1.866144e-06 -3.011573e-07 88 128 1.866144e-06 -3.011573e-07 89 128 -5.612495e-06 9.057414e-07 90 128 9.401297e-06 -1.517176e-06 91 128 -1.326172e-05 2.14017e-06 92 128 1.722429e-05 -2.779647e-06 93 128 -2.132146e-05 3.440846e-06 94 128 2.558831e-05 -4.129428e-06 95 128 -3.00633e-05 4.851599e-06 96 128 3.478917e-05 -5.614257e-06 97 128 -3.981401e-05 6.425164e-06 98 128 4.519256e-05 -7.293151e-06 99 128 -5.098776e-05 8.228377e-06 100 128 5.727273e-05 -9.242642e-06 101 128 -6.413319e-05 1.034978e-05 102 128 7.167061e-05 -1.156616e-05 103 128 -8.000611e-05 1.291134e-05 104 128 8.928565e-05 -1.440887e-05 105 128 -9.968672e-05 1.608739e-05 106 128 0.0001114272 -1.798207e-05 107 128 -0.0001247774 2.013652e-05 108 128 0.000140076 -2.26054e-05 109 128 -0.0001577525 2.545802e-05 110 128 0.0001783582 -2.878335e-05 111 128 -0.0002026106 3.26972e-05 112 128 0.0002314578 -3.735254e-05 113 128 -0.0002661734 4.295492e-05 114 128 0.0003085011 -4.978574e-05 115 128 -0.0003608797 5.823857e-05 116 128 0.0004268045 -6.887749e-05 117 128 -0.0005114288 8.253411e-05 118 128 0.0006226054 -0.0001004757 119 128 -0.0007727812 0.000124711 120 128 0.0009826448 -0.0001585787 121 128 -0.001288661 0.0002079635 122 128 0.001760065 -0.0002840383 123 128 -0.002541777 0.0004101906 124 128 0.003980742 -0.0006424099 125 128 -0.007089509 0.001144101 126 128 0.01597157 -0.002577484 127 128 -0.06393453 0.01031772 128 128 -0.0581367 -0.02020954 129 128 -0.06393453 0.01031772 130 128 0.01597157 -0.002577484 131 128 -0.007089509 0.001144101 132 128 0.003980742 -0.0006424099 133 128 -0.002541777 0.0004101906 134 128 0.001760065 -0.0002840383 135 128 -0.001288661 0.0002079635 136 128 0.0009826448 -0.0001585787 137 128 -0.0007727812 0.000124711 138 128 0.0006226054 -0.0001004757 139 128 -0.0005114288 8.253411e-05 140 128 0.0004268045 -6.887749e-05 141 128 -0.0003608797 5.823857e-05 142 128 0.0003085011 -4.978574e-05 143 128 -0.0002661734 4.295492e-05 144 128 0.0002314578 -3.735254e-05 145 128 -0.0002026106 3.26972e-05 146 128 0.0001783582 -2.878335e-05 147 128 -0.0001577525 2.545802e-05 148 128 0.000140076 -2.26054e-05 149 128 -0.0001247774 2.013652e-05 150 128 0.0001114272 -1.798207e-05 151 128 -9.968672e-05 1.608739e-05 152 128 8.928565e-05 -1.440887e-05 153 128 -8.000611e-05 1.291134e-05 154 128 7.167061e-05 -1.156616e-05 155 128 -6.413319e-05 1.034978e-05 156 128 5.727273e-05 -9.242642e-06 157 128 -5.098776e-05 8.228377e-06 158 128 4.519256e-05 -7.293151e-06 159 128 -3.981401e-05 6.425164e-06 160 128 3.478917e-05 -5.614257e-06 161 128 -3.00633e-05 4.851599e-06 209 128 0.0008148755 6.675522e-05 48 129 0.0008312598 6.841681e-05 81 129 -3.00633e-05 4.851599e-06 82 129 2.558831e-05 -4.129428e-06 83 129 -2.132146e-05 3.440846e-06 84 129 1.722429e-05 -2.779647e-06 85 129 -1.326172e-05 2.14017e-06 86 129 9.401297e-06 -1.517176e-06 87 129 -5.612495e-06 9.057414e-07 88 129 1.866144e-06 -3.011573e-07 89 129 1.866144e-06 -3.011573e-07 90 129 -5.612495e-06 9.057414e-07 91 129 9.401297e-06 -1.517176e-06 92 129 -1.326172e-05 2.14017e-06 93 129 1.722429e-05 -2.779647e-06 94 129 -2.132146e-05 3.440846e-06 95 129 2.558831e-05 -4.129428e-06 96 129 -3.00633e-05 4.851599e-06 97 129 3.478917e-05 -5.614257e-06 98 129 -3.981401e-05 6.425164e-06 99 129 4.519256e-05 -7.293151e-06 100 129 -5.098776e-05 8.228377e-06 101 129 5.727273e-05 -9.242642e-06 102 129 -6.413319e-05 1.034978e-05 103 129 7.167061e-05 -1.156616e-05 104 129 -8.000611e-05 1.291134e-05 105 129 8.928565e-05 -1.440887e-05 106 129 -9.968672e-05 1.608739e-05 107 129 0.0001114272 -1.798207e-05 108 129 -0.0001247774 2.013652e-05 109 129 0.000140076 -2.26054e-05 110 129 -0.0001577525 2.545802e-05 111 129 0.0001783582 -2.878335e-05 112 129 -0.0002026106 3.26972e-05 113 129 0.0002314578 -3.735254e-05 114 129 -0.0002661734 4.295492e-05 115 129 0.0003085011 -4.978574e-05 116 129 -0.0003608797 5.823857e-05 117 129 0.0004268045 -6.887749e-05 118 129 -0.0005114288 8.253411e-05 119 129 0.0006226054 -0.0001004757 120 129 -0.0007727812 0.000124711 121 129 0.0009826448 -0.0001585787 122 129 -0.001288661 0.0002079635 123 129 0.001760065 -0.0002840383 124 129 -0.002541777 0.0004101906 125 129 0.003980742 -0.0006424099 126 129 -0.007089509 0.001144101 127 129 0.01597157 -0.002577484 128 129 -0.06393453 0.01031772 129 129 -0.05887631 -0.01996885 130 129 -0.06393453 0.01031772 131 129 0.01597157 -0.002577484 132 129 -0.007089509 0.001144101 133 129 0.003980742 -0.0006424099 134 129 -0.002541777 0.0004101906 135 129 0.001760065 -0.0002840383 136 129 -0.001288661 0.0002079635 137 129 0.0009826448 -0.0001585787 138 129 -0.0007727812 0.000124711 139 129 0.0006226054 -0.0001004757 140 129 -0.0005114288 8.253411e-05 141 129 0.0004268045 -6.887749e-05 142 129 -0.0003608797 5.823857e-05 143 129 0.0003085011 -4.978574e-05 144 129 -0.0002661734 4.295492e-05 145 129 0.0002314578 -3.735254e-05 146 129 -0.0002026106 3.26972e-05 147 129 0.0001783582 -2.878335e-05 148 129 -0.0001577525 2.545802e-05 149 129 0.000140076 -2.26054e-05 150 129 -0.0001247774 2.013652e-05 151 129 0.0001114272 -1.798207e-05 152 129 -9.968672e-05 1.608739e-05 153 129 8.928565e-05 -1.440887e-05 154 129 -8.000611e-05 1.291134e-05 155 129 7.167061e-05 -1.156616e-05 156 129 -6.413319e-05 1.034978e-05 157 129 5.727273e-05 -9.242642e-06 158 129 -5.098776e-05 8.228377e-06 159 129 4.519256e-05 -7.293151e-06 160 129 -3.981401e-05 6.425164e-06 161 129 3.478917e-05 -5.614257e-06 210 129 0.0008312598 6.841681e-05 49 130 0.0008477274 7.009369e-05 81 130 3.478917e-05 -5.614257e-06 82 130 -3.00633e-05 4.851599e-06 83 130 2.558831e-05 -4.129428e-06 84 130 -2.132146e-05 3.440846e-06 85 130 1.722429e-05 -2.779647e-06 86 130 -1.326172e-05 2.14017e-06 87 130 9.401297e-06 -1.517176e-06 88 130 -5.612495e-06 9.057414e-07 89 130 1.866144e-06 -3.011573e-07 90 130 1.866144e-06 -3.011573e-07 91 130 -5.612495e-06 9.057414e-07 92 130 9.401297e-06 -1.517176e-06 93 130 -1.326172e-05 2.14017e-06 94 130 1.722429e-05 -2.779647e-06 95 130 -2.132146e-05 3.440846e-06 96 130 2.558831e-05 -4.129428e-06 97 130 -3.00633e-05 4.851599e-06 98 130 3.478917e-05 -5.614257e-06 99 130 -3.981401e-05 6.425164e-06 100 130 4.519256e-05 -7.293151e-06 101 130 -5.098776e-05 8.228377e-06 102 130 5.727273e-05 -9.242642e-06 103 130 -6.413319e-05 1.034978e-05 104 130 7.167061e-05 -1.156616e-05 105 130 -8.000611e-05 1.291134e-05 106 130 8.928565e-05 -1.440887e-05 107 130 -9.968672e-05 1.608739e-05 108 130 0.0001114272 -1.798207e-05 109 130 -0.0001247774 2.013652e-05 110 130 0.000140076 -2.26054e-05 111 130 -0.0001577525 2.545802e-05 112 130 0.0001783582 -2.878335e-05 113 130 -0.0002026106 3.26972e-05 114 130 0.0002314578 -3.735254e-05 115 130 -0.0002661734 4.295492e-05 116 130 0.0003085011 -4.978574e-05 117 130 -0.0003608797 5.823857e-05 118 130 0.0004268045 -6.887749e-05 119 130 -0.0005114288 8.253411e-05 120 130 0.0006226054 -0.0001004757 121 130 -0.0007727812 0.000124711 122 130 0.0009826448 -0.0001585787 123 130 -0.001288661 0.0002079635 124 130 0.001760065 -0.0002840383 125 130 -0.002541777 0.0004101906 126 130 0.003980742 -0.0006424099 127 130 -0.007089509 0.001144101 128 130 0.01597157 -0.002577484 129 130 -0.06393453 0.01031772 130 130 -0.05954697 -0.01974566 131 130 -0.06393453 0.01031772 132 130 0.01597157 -0.002577484 133 130 -0.007089509 0.001144101 134 130 0.003980742 -0.0006424099 135 130 -0.002541777 0.0004101906 136 130 0.001760065 -0.0002840383 137 130 -0.001288661 0.0002079635 138 130 0.0009826448 -0.0001585787 139 130 -0.0007727812 0.000124711 140 130 0.0006226054 -0.0001004757 141 130 -0.0005114288 8.253411e-05 142 130 0.0004268045 -6.887749e-05 143 130 -0.0003608797 5.823857e-05 144 130 0.0003085011 -4.978574e-05 145 130 -0.0002661734 4.295492e-05 146 130 0.0002314578 -3.735254e-05 147 130 -0.0002026106 3.26972e-05 148 130 0.0001783582 -2.878335e-05 149 130 -0.0001577525 2.545802e-05 150 130 0.000140076 -2.26054e-05 151 130 -0.0001247774 2.013652e-05 152 130 0.0001114272 -1.798207e-05 153 130 -9.968672e-05 1.608739e-05 154 130 8.928565e-05 -1.440887e-05 155 130 -8.000611e-05 1.291134e-05 156 130 7.167061e-05 -1.156616e-05 157 130 -6.413319e-05 1.034978e-05 158 130 5.727273e-05 -9.242642e-06 159 130 -5.098776e-05 8.228377e-06 160 130 4.519256e-05 -7.293151e-06 161 130 -3.981401e-05 6.425164e-06 211 130 0.0008477274 7.009369e-05 50 131 0.0008642789 7.178596e-05 81 131 -3.981401e-05 6.425164e-06 82 131 3.478917e-05 -5.614257e-06 83 131 -3.00633e-05 4.851599e-06 84 131 2.558831e-05 -4.129428e-06 85 131 -2.132146e-05 3.440846e-06 86 131 1.722429e-05 -2.779647e-06 87 131 -1.326172e-05 2.14017e-06 88 131 9.401297e-06 -1.517176e-06 89 131 -5.612495e-06 9.057414e-07 90 131 1.866144e-06 -3.011573e-07 91 131 1.866144e-06 -3.011573e-07 92 131 -5.612495e-06 9.057414e-07 93 131 9.401297e-06 -1.517176e-06 94 131 -1.326172e-05 2.14017e-06 95 131 1.722429e-05 -2.779647e-06 96 131 -2.132146e-05 3.440846e-06 97 131 2.558831e-05 -4.129428e-06 98 131 -3.00633e-05 4.851599e-06 99 131 3.478917e-05 -5.614257e-06 100 131 -3.981401e-05 6.425164e-06 101 131 4.519256e-05 -7.293151e-06 102 131 -5.098776e-05 8.228377e-06 103 131 5.727273e-05 -9.242642e-06 104 131 -6.413319e-05 1.034978e-05 105 131 7.167061e-05 -1.156616e-05 106 131 -8.000611e-05 1.291134e-05 107 131 8.928565e-05 -1.440887e-05 108 131 -9.968672e-05 1.608739e-05 109 131 0.0001114272 -1.798207e-05 110 131 -0.0001247774 2.013652e-05 111 131 0.000140076 -2.26054e-05 112 131 -0.0001577525 2.545802e-05 113 131 0.0001783582 -2.878335e-05 114 131 -0.0002026106 3.26972e-05 115 131 0.0002314578 -3.735254e-05 116 131 -0.0002661734 4.295492e-05 117 131 0.0003085011 -4.978574e-05 118 131 -0.0003608797 5.823857e-05 119 131 0.0004268045 -6.887749e-05 120 131 -0.0005114288 8.253411e-05 121 131 0.0006226054 -0.0001004757 122 131 -0.0007727812 0.000124711 123 131 0.0009826448 -0.0001585787 124 131 -0.001288661 0.0002079635 125 131 0.001760065 -0.0002840383 126 131 -0.002541777 0.0004101906 127 131 0.003980742 -0.0006424099 128 131 -0.007089509 0.001144101 129 131 0.01597157 -0.002577484 130 131 -0.06393453 0.01031772 131 131 -0.06015519 -0.01953871 132 131 -0.06393453 0.01031772 133 131 0.01597157 -0.002577484 134 131 -0.007089509 0.001144101 135 131 0.003980742 -0.0006424099 136 131 -0.002541777 0.0004101906 137 131 0.001760065 -0.0002840383 138 131 -0.001288661 0.0002079635 139 131 0.0009826448 -0.0001585787 140 131 -0.0007727812 0.000124711 141 131 0.0006226054 -0.0001004757 142 131 -0.0005114288 8.253411e-05 143 131 0.0004268045 -6.887749e-05 144 131 -0.0003608797 5.823857e-05 145 131 0.0003085011 -4.978574e-05 146 131 -0.0002661734 4.295492e-05 147 131 0.0002314578 -3.735254e-05 148 131 -0.0002026106 3.26972e-05 149 131 0.0001783582 -2.878335e-05 150 131 -0.0001577525 2.545802e-05 151 131 0.000140076 -2.26054e-05 152 131 -0.0001247774 2.013652e-05 153 131 0.0001114272 -1.798207e-05 154 131 -9.968672e-05 1.608739e-05 155 131 8.928565e-05 -1.440887e-05 156 131 -8.000611e-05 1.291134e-05 157 131 7.167061e-05 -1.156616e-05 158 131 -6.413319e-05 1.034978e-05 159 131 5.727273e-05 -9.242642e-06 160 131 -5.098776e-05 8.228377e-06 161 131 4.519256e-05 -7.293151e-06 212 131 0.0008642789 7.178596e-05 51 132 0.0008809146 7.349373e-05 81 132 4.519256e-05 -7.293151e-06 82 132 -3.981401e-05 6.425164e-06 83 132 3.478917e-05 -5.614257e-06 84 132 -3.00633e-05 4.851599e-06 85 132 2.558831e-05 -4.129428e-06 86 132 -2.132146e-05 3.440846e-06 87 132 1.722429e-05 -2.779647e-06 88 132 -1.326172e-05 2.14017e-06 89 132 9.401297e-06 -1.517176e-06 90 132 -5.612495e-06 9.057414e-07 91 132 1.866144e-06 -3.011573e-07 92 132 1.866144e-06 -3.011573e-07 93 132 -5.612495e-06 9.057414e-07 94 132 9.401297e-06 -1.517176e-06 95 132 -1.326172e-05 2.14017e-06 96 132 1.722429e-05 -2.779647e-06 97 132 -2.132146e-05 3.440846e-06 98 132 2.558831e-05 -4.129428e-06 99 132 -3.00633e-05 4.851599e-06 100 132 3.478917e-05 -5.614257e-06 101 132 -3.981401e-05 6.425164e-06 102 132 4.519256e-05 -7.293151e-06 103 132 -5.098776e-05 8.228377e-06 104 132 5.727273e-05 -9.242642e-06 105 132 -6.413319e-05 1.034978e-05 106 132 7.167061e-05 -1.156616e-05 107 132 -8.000611e-05 1.291134e-05 108 132 8.928565e-05 -1.440887e-05 109 132 -9.968672e-05 1.608739e-05 110 132 0.0001114272 -1.798207e-05 111 132 -0.0001247774 2.013652e-05 112 132 0.000140076 -2.26054e-05 113 132 -0.0001577525 2.545802e-05 114 132 0.0001783582 -2.878335e-05 115 132 -0.0002026106 3.26972e-05 116 132 0.0002314578 -3.735254e-05 117 132 -0.0002661734 4.295492e-05 118 132 0.0003085011 -4.978574e-05 119 132 -0.0003608797 5.823857e-05 120 132 0.0004268045 -6.887749e-05 121 132 -0.0005114288 8.253411e-05 122 132 0.0006226054 -0.0001004757 123 132 -0.0007727812 0.000124711 124 132 0.0009826448 -0.0001585787 125 132 -0.001288661 0.0002079635 126 132 0.001760065 -0.0002840383 127 132 -0.002541777 0.0004101906 128 132 0.003980742 -0.0006424099 129 132 -0.007089509 0.001144101 130 132 0.01597157 -0.002577484 131 132 -0.06393453 0.01031772 132 132 -0.06070688 -0.01934683 133 132 -0.06393453 0.01031772 134 132 0.01597157 -0.002577484 135 132 -0.007089509 0.001144101 136 132 0.003980742 -0.0006424099 137 132 -0.002541777 0.0004101906 138 132 0.001760065 -0.0002840383 139 132 -0.001288661 0.0002079635 140 132 0.0009826448 -0.0001585787 141 132 -0.0007727812 0.000124711 142 132 0.0006226054 -0.0001004757 143 132 -0.0005114288 8.253411e-05 144 132 0.0004268045 -6.887749e-05 145 132 -0.0003608797 5.823857e-05 146 132 0.0003085011 -4.978574e-05 147 132 -0.0002661734 4.295492e-05 148 132 0.0002314578 -3.735254e-05 149 132 -0.0002026106 3.26972e-05 150 132 0.0001783582 -2.878335e-05 151 132 -0.0001577525 2.545802e-05 152 132 0.000140076 -2.26054e-05 153 132 -0.0001247774 2.013652e-05 154 132 0.0001114272 -1.798207e-05 155 132 -9.968672e-05 1.608739e-05 156 132 8.928565e-05 -1.440887e-05 157 132 -8.000611e-05 1.291134e-05 158 132 7.167061e-05 -1.156616e-05 159 132 -6.413319e-05 1.034978e-05 160 132 5.727273e-05 -9.242642e-06 161 132 -5.098776e-05 8.228377e-06 213 132 0.0008809146 7.349373e-05 52 133 0.0008976348 7.521712e-05 81 133 -5.098776e-05 8.228377e-06 82 133 4.519256e-05 -7.293151e-06 83 133 -3.981401e-05 6.425164e-06 84 133 3.478917e-05 -5.614257e-06 85 133 -3.00633e-05 4.851599e-06 86 133 2.558831e-05 -4.129428e-06 87 133 -2.132146e-05 3.440846e-06 88 133 1.722429e-05 -2.779647e-06 89 133 -1.326172e-05 2.14017e-06 90 133 9.401297e-06 -1.517176e-06 91 133 -5.612495e-06 9.057414e-07 92 133 1.866144e-06 -3.011573e-07 93 133 1.866144e-06 -3.011573e-07 94 133 -5.612495e-06 9.057414e-07 95 133 9.401297e-06 -1.517176e-06 96 133 -1.326172e-05 2.14017e-06 97 133 1.722429e-05 -2.779647e-06 98 133 -2.132146e-05 3.440846e-06 99 133 2.558831e-05 -4.129428e-06 100 133 -3.00633e-05 4.851599e-06 101 133 3.478917e-05 -5.614257e-06 102 133 -3.981401e-05 6.425164e-06 103 133 4.519256e-05 -7.293151e-06 104 133 -5.098776e-05 8.228377e-06 105 133 5.727273e-05 -9.242642e-06 106 133 -6.413319e-05 1.034978e-05 107 133 7.167061e-05 -1.156616e-05 108 133 -8.000611e-05 1.291134e-05 109 133 8.928565e-05 -1.440887e-05 110 133 -9.968672e-05 1.608739e-05 111 133 0.0001114272 -1.798207e-05 112 133 -0.0001247774 2.013652e-05 113 133 0.000140076 -2.26054e-05 114 133 -0.0001577525 2.545802e-05 115 133 0.0001783582 -2.878335e-05 116 133 -0.0002026106 3.26972e-05 117 133 0.0002314578 -3.735254e-05 118 133 -0.0002661734 4.295492e-05 119 133 0.0003085011 -4.978574e-05 120 133 -0.0003608797 5.823857e-05 121 133 0.0004268045 -6.887749e-05 122 133 -0.0005114288 8.253411e-05 123 133 0.0006226054 -0.0001004757 124 133 -0.0007727812 0.000124711 125 133 0.0009826448 -0.0001585787 126 133 -0.001288661 0.0002079635 127 133 0.001760065 -0.0002840383 128 133 -0.002541777 0.0004101906 129 133 0.003980742 -0.0006424099 130 133 -0.007089509 0.001144101 131 133 0.01597157 -0.002577484 132 133 -0.06393453 0.01031772 133 133 -0.06120735 -0.01916894 134 133 -0.06393453 0.01031772 135 133 0.01597157 -0.002577484 136 133 -0.007089509 0.001144101 137 133 0.003980742 -0.0006424099 138 133 -0.002541777 0.0004101906 139 133 0.001760065 -0.0002840383 140 133 -0.001288661 0.0002079635 141 133 0.0009826448 -0.0001585787 142 133 -0.0007727812 0.000124711 143 133 0.0006226054 -0.0001004757 144 133 -0.0005114288 8.253411e-05 145 133 0.0004268045 -6.887749e-05 146 133 -0.0003608797 5.823857e-05 147 133 0.0003085011 -4.978574e-05 148 133 -0.0002661734 4.295492e-05 149 133 0.0002314578 -3.735254e-05 150 133 -0.0002026106 3.26972e-05 151 133 0.0001783582 -2.878335e-05 152 133 -0.0001577525 2.545802e-05 153 133 0.000140076 -2.26054e-05 154 133 -0.0001247774 2.013652e-05 155 133 0.0001114272 -1.798207e-05 156 133 -9.968672e-05 1.608739e-05 157 133 8.928565e-05 -1.440887e-05 158 133 -8.000611e-05 1.291134e-05 159 133 7.167061e-05 -1.156616e-05 160 133 -6.413319e-05 1.034978e-05 161 133 5.727273e-05 -9.242642e-06 214 133 0.0008976348 7.521712e-05 53 134 0.0009144402 7.695625e-05 81 134 5.727273e-05 -9.242642e-06 82 134 -5.098776e-05 8.228377e-06 83 134 4.519256e-05 -7.293151e-06 84 134 -3.981401e-05 6.425164e-06 85 134 3.478917e-05 -5.614257e-06 86 134 -3.00633e-05 4.851599e-06 87 134 2.558831e-05 -4.129428e-06 88 134 -2.132146e-05 3.440846e-06 89 134 1.722429e-05 -2.779647e-06 90 134 -1.326172e-05 2.14017e-06 91 134 9.401297e-06 -1.517176e-06 92 134 -5.612495e-06 9.057414e-07 93 134 1.866144e-06 -3.011573e-07 94 134 1.866144e-06 -3.011573e-07 95 134 -5.612495e-06 9.057414e-07 96 134 9.401297e-06 -1.517176e-06 97 134 -1.326172e-05 2.14017e-06 98 134 1.722429e-05 -2.779647e-06 99 134 -2.132146e-05 3.440846e-06 100 134 2.558831e-05 -4.129428e-06 101 134 -3.00633e-05 4.851599e-06 102 134 3.478917e-05 -5.614257e-06 103 134 -3.981401e-05 6.425164e-06 104 134 4.519256e-05 -7.293151e-06 105 134 -5.098776e-05 8.228377e-06 106 134 5.727273e-05 -9.242642e-06 107 134 -6.413319e-05 1.034978e-05 108 134 7.167061e-05 -1.156616e-05 109 134 -8.000611e-05 1.291134e-05 110 134 8.928565e-05 -1.440887e-05 111 134 -9.968672e-05 1.608739e-05 112 134 0.0001114272 -1.798207e-05 113 134 -0.0001247774 2.013652e-05 114 134 0.000140076 -2.26054e-05 115 134 -0.0001577525 2.545802e-05 116 134 0.0001783582 -2.878335e-05 117 134 -0.0002026106 3.26972e-05 118 134 0.0002314578 -3.735254e-05 119 134 -0.0002661734 4.295492e-05 120 134 0.0003085011 -4.978574e-05 121 134 -0.0003608797 5.823857e-05 122 134 0.0004268045 -6.887749e-05 123 134 -0.0005114288 8.253411e-05 124 134 0.0006226054 -0.0001004757 125 134 -0.0007727812 0.000124711 126 134 0.0009826448 -0.0001585787 127 134 -0.001288661 0.0002079635 128 134 0.001760065 -0.0002840383 129 134 -0.002541777 0.0004101906 130 134 0.003980742 -0.0006424099 131 134 -0.007089509 0.001144101 132 134 0.01597157 -0.002577484 133 134 -0.06393453 0.01031772 134 134 -0.06166141 -0.01900404 135 134 -0.06393453 0.01031772 136 134 0.01597157 -0.002577484 137 134 -0.007089509 0.001144101 138 134 0.003980742 -0.0006424099 139 134 -0.002541777 0.0004101906 140 134 0.001760065 -0.0002840383 141 134 -0.001288661 0.0002079635 142 134 0.0009826448 -0.0001585787 143 134 -0.0007727812 0.000124711 144 134 0.0006226054 -0.0001004757 145 134 -0.0005114288 8.253411e-05 146 134 0.0004268045 -6.887749e-05 147 134 -0.0003608797 5.823857e-05 148 134 0.0003085011 -4.978574e-05 149 134 -0.0002661734 4.295492e-05 150 134 0.0002314578 -3.735254e-05 151 134 -0.0002026106 3.26972e-05 152 134 0.0001783582 -2.878335e-05 153 134 -0.0001577525 2.545802e-05 154 134 0.000140076 -2.26054e-05 155 134 -0.0001247774 2.013652e-05 156 134 0.0001114272 -1.798207e-05 157 134 -9.968672e-05 1.608739e-05 158 134 8.928565e-05 -1.440887e-05 159 134 -8.000611e-05 1.291134e-05 160 134 7.167061e-05 -1.156616e-05 161 134 -6.413319e-05 1.034978e-05 215 134 0.0009144402 7.695625e-05 54 135 0.0009313311 7.871123e-05 81 135 -6.413319e-05 1.034978e-05 82 135 5.727273e-05 -9.242642e-06 83 135 -5.098776e-05 8.228377e-06 84 135 4.519256e-05 -7.293151e-06 85 135 -3.981401e-05 6.425164e-06 86 135 3.478917e-05 -5.614257e-06 87 135 -3.00633e-05 4.851599e-06 88 135 2.558831e-05 -4.129428e-06 89 135 -2.132146e-05 3.440846e-06 90 135 1.722429e-05 -2.779647e-06 91 135 -1.326172e-05 2.14017e-06 92 135 9.401297e-06 -1.517176e-06 93 135 -5.612495e-06 9.057414e-07 94 135 1.866144e-06 -3.011573e-07 95 135 1.866144e-06 -3.011573e-07 96 135 -5.612495e-06 9.057414e-07 97 135 9.401297e-06 -1.517176e-06 98 135 -1.326172e-05 2.14017e-06 99 135 1.722429e-05 -2.779647e-06 100 135 -2.132146e-05 3.440846e-06 101 135 2.558831e-05 -4.129428e-06 102 135 -3.00633e-05 4.851599e-06 103 135 3.478917e-05 -5.614257e-06 104 135 -3.981401e-05 6.425164e-06 105 135 4.519256e-05 -7.293151e-06 106 135 -5.098776e-05 8.228377e-06 107 135 5.727273e-05 -9.242642e-06 108 135 -6.413319e-05 1.034978e-05 109 135 7.167061e-05 -1.156616e-05 110 135 -8.000611e-05 1.291134e-05 111 135 8.928565e-05 -1.440887e-05 112 135 -9.968672e-05 1.608739e-05 113 135 0.0001114272 -1.798207e-05 114 135 -0.0001247774 2.013652e-05 115 135 0.000140076 -2.26054e-05 116 135 -0.0001577525 2.545802e-05 117 135 0.0001783582 -2.878335e-05 118 135 -0.0002026106 3.26972e-05 119 135 0.0002314578 -3.735254e-05 120 135 -0.0002661734 4.295492e-05 121 135 0.0003085011 -4.978574e-05 122 135 -0.0003608797 5.823857e-05 123 135 0.0004268045 -6.887749e-05 124 135 -0.0005114288 8.253411e-05 125 135 0.0006226054 -0.0001004757 126 135 -0.0007727812 0.000124711 127 135 0.0009826448 -0.0001585787 128 135 -0.001288661 0.0002079635 129 135 0.001760065 -0.0002840383 130 135 -0.002541777 0.0004101906 131 135 0.003980742 -0.0006424099 132 135 -0.007089509 0.001144101 133 135 0.01597157 -0.002577484 134 135 -0.06393453 0.01031772 135 135 -0.06207341 -0.01885121 136 135 -0.06393453 0.01031772 137 135 0.01597157 -0.002577484 138 135 -0.007089509 0.001144101 139 135 0.003980742 -0.0006424099 140 135 -0.002541777 0.0004101906 141 135 0.001760065 -0.0002840383 142 135 -0.001288661 0.0002079635 143 135 0.0009826448 -0.0001585787 144 135 -0.0007727812 0.000124711 145 135 0.0006226054 -0.0001004757 146 135 -0.0005114288 8.253411e-05 147 135 0.0004268045 -6.887749e-05 148 135 -0.0003608797 5.823857e-05 149 135 0.0003085011 -4.978574e-05 150 135 -0.0002661734 4.295492e-05 151 135 0.0002314578 -3.735254e-05 152 135 -0.0002026106 3.26972e-05 153 135 0.0001783582 -2.878335e-05 154 135 -0.0001577525 2.545802e-05 155 135 0.000140076 -2.26054e-05 156 135 -0.0001247774 2.013652e-05 157 135 0.0001114272 -1.798207e-05 158 135 -9.968672e-05 1.608739e-05 159 135 8.928565e-05 -1.440887e-05 160 135 -8.000611e-05 1.291134e-05 161 135 7.167061e-05 -1.156616e-05 216 135 0.0009313311 7.871123e-05 55 136 0.0009483078 8.048218e-05 81 136 7.167061e-05 -1.156616e-05 82 136 -6.413319e-05 1.034978e-05 83 136 5.727273e-05 -9.242642e-06 84 136 -5.098776e-05 8.228377e-06 85 136 4.519256e-05 -7.293151e-06 86 136 -3.981401e-05 6.425164e-06 87 136 3.478917e-05 -5.614257e-06 88 136 -3.00633e-05 4.851599e-06 89 136 2.558831e-05 -4.129428e-06 90 136 -2.132146e-05 3.440846e-06 91 136 1.722429e-05 -2.779647e-06 92 136 -1.326172e-05 2.14017e-06 93 136 9.401297e-06 -1.517176e-06 94 136 -5.612495e-06 9.057414e-07 95 136 1.866144e-06 -3.011573e-07 96 136 1.866144e-06 -3.011573e-07 97 136 -5.612495e-06 9.057414e-07 98 136 9.401297e-06 -1.517176e-06 99 136 -1.326172e-05 2.14017e-06 100 136 1.722429e-05 -2.779647e-06 101 136 -2.132146e-05 3.440846e-06 102 136 2.558831e-05 -4.129428e-06 103 136 -3.00633e-05 4.851599e-06 104 136 3.478917e-05 -5.614257e-06 105 136 -3.981401e-05 6.425164e-06 106 136 4.519256e-05 -7.293151e-06 107 136 -5.098776e-05 8.228377e-06 108 136 5.727273e-05 -9.242642e-06 109 136 -6.413319e-05 1.034978e-05 110 136 7.167061e-05 -1.156616e-05 111 136 -8.000611e-05 1.291134e-05 112 136 8.928565e-05 -1.440887e-05 113 136 -9.968672e-05 1.608739e-05 114 136 0.0001114272 -1.798207e-05 115 136 -0.0001247774 2.013652e-05 116 136 0.000140076 -2.26054e-05 117 136 -0.0001577525 2.545802e-05 118 136 0.0001783582 -2.878335e-05 119 136 -0.0002026106 3.26972e-05 120 136 0.0002314578 -3.735254e-05 121 136 -0.0002661734 4.295492e-05 122 136 0.0003085011 -4.978574e-05 123 136 -0.0003608797 5.823857e-05 124 136 0.0004268045 -6.887749e-05 125 136 -0.0005114288 8.253411e-05 126 136 0.0006226054 -0.0001004757 127 136 -0.0007727812 0.000124711 128 136 0.0009826448 -0.0001585787 129 136 -0.001288661 0.0002079635 130 136 0.001760065 -0.0002840383 131 136 -0.002541777 0.0004101906 132 136 0.003980742 -0.0006424099 133 136 -0.007089509 0.001144101 134 136 0.01597157 -0.002577484 135 136 -0.06393453 0.01031772 136 136 -0.06244726 -0.01870957 137 136 -0.06393453 0.01031772 138 136 0.01597157 -0.002577484 139 136 -0.007089509 0.001144101 140 136 0.003980742 -0.0006424099 141 136 -0.002541777 0.0004101906 142 136 0.001760065 -0.0002840383 143 136 -0.001288661 0.0002079635 144 136 0.0009826448 -0.0001585787 145 136 -0.0007727812 0.000124711 146 136 0.0006226054 -0.0001004757 147 136 -0.0005114288 8.253411e-05 148 136 0.0004268045 -6.887749e-05 149 136 -0.0003608797 5.823857e-05 150 136 0.0003085011 -4.978574e-05 151 136 -0.0002661734 4.295492e-05 152 136 0.0002314578 -3.735254e-05 153 136 -0.0002026106 3.26972e-05 154 136 0.0001783582 -2.878335e-05 155 136 -0.0001577525 2.545802e-05 156 136 0.000140076 -2.26054e-05 157 136 -0.0001247774 2.013652e-05 158 136 0.0001114272 -1.798207e-05 159 136 -9.968672e-05 1.608739e-05 160 136 8.928565e-05 -1.440887e-05 161 136 -8.000611e-05 1.291134e-05 217 136 0.0009483078 8.048218e-05 56 137 0.000965371 8.226921e-05 81 137 -8.000611e-05 1.291134e-05 82 137 7.167061e-05 -1.156616e-05 83 137 -6.413319e-05 1.034978e-05 84 137 5.727273e-05 -9.242642e-06 85 137 -5.098776e-05 8.228377e-06 86 137 4.519256e-05 -7.293151e-06 87 137 -3.981401e-05 6.425164e-06 88 137 3.478917e-05 -5.614257e-06 89 137 -3.00633e-05 4.851599e-06 90 137 2.558831e-05 -4.129428e-06 91 137 -2.132146e-05 3.440846e-06 92 137 1.722429e-05 -2.779647e-06 93 137 -1.326172e-05 2.14017e-06 94 137 9.401297e-06 -1.517176e-06 95 137 -5.612495e-06 9.057414e-07 96 137 1.866144e-06 -3.011573e-07 97 137 1.866144e-06 -3.011573e-07 98 137 -5.612495e-06 9.057414e-07 99 137 9.401297e-06 -1.517176e-06 100 137 -1.326172e-05 2.14017e-06 101 137 1.722429e-05 -2.779647e-06 102 137 -2.132146e-05 3.440846e-06 103 137 2.558831e-05 -4.129428e-06 104 137 -3.00633e-05 4.851599e-06 105 137 3.478917e-05 -5.614257e-06 106 137 -3.981401e-05 6.425164e-06 107 137 4.519256e-05 -7.293151e-06 108 137 -5.098776e-05 8.228377e-06 109 137 5.727273e-05 -9.242642e-06 110 137 -6.413319e-05 1.034978e-05 111 137 7.167061e-05 -1.156616e-05 112 137 -8.000611e-05 1.291134e-05 113 137 8.928565e-05 -1.440887e-05 114 137 -9.968672e-05 1.608739e-05 115 137 0.0001114272 -1.798207e-05 116 137 -0.0001247774 2.013652e-05 117 137 0.000140076 -2.26054e-05 118 137 -0.0001577525 2.545802e-05 119 137 0.0001783582 -2.878335e-05 120 137 -0.0002026106 3.26972e-05 121 137 0.0002314578 -3.735254e-05 122 137 -0.0002661734 4.295492e-05 123 137 0.0003085011 -4.978574e-05 124 137 -0.0003608797 5.823857e-05 125 137 0.0004268045 -6.887749e-05 126 137 -0.0005114288 8.253411e-05 127 137 0.0006226054 -0.0001004757 128 137 -0.0007727812 0.000124711 129 137 0.0009826448 -0.0001585787 130 137 -0.001288661 0.0002079635 131 137 0.001760065 -0.0002840383 132 137 -0.002541777 0.0004101906 133 137 0.003980742 -0.0006424099 134 137 -0.007089509 0.001144101 135 137 0.01597157 -0.002577484 136 137 -0.06393453 0.01031772 137 137 -0.06278653 -0.01857833 138 137 -0.06393453 0.01031772 139 137 0.01597157 -0.002577484 140 137 -0.007089509 0.001144101 141 137 0.003980742 -0.0006424099 142 137 -0.002541777 0.0004101906 143 137 0.001760065 -0.0002840383 144 137 -0.001288661 0.0002079635 145 137 0.0009826448 -0.0001585787 146 137 -0.0007727812 0.000124711 147 137 0.0006226054 -0.0001004757 148 137 -0.0005114288 8.253411e-05 149 137 0.0004268045 -6.887749e-05 150 137 -0.0003608797 5.823857e-05 151 137 0.0003085011 -4.978574e-05 152 137 -0.0002661734 4.295492e-05 153 137 0.0002314578 -3.735254e-05 154 137 -0.0002026106 3.26972e-05 155 137 0.0001783582 -2.878335e-05 156 137 -0.0001577525 2.545802e-05 157 137 0.000140076 -2.26054e-05 158 137 -0.0001247774 2.013652e-05 159 137 0.0001114272 -1.798207e-05 160 137 -9.968672e-05 1.608739e-05 161 137 8.928565e-05 -1.440887e-05 218 137 0.000965371 8.226921e-05 57 138 0.0009825209 8.407245e-05 81 138 8.928565e-05 -1.440887e-05 82 138 -8.000611e-05 1.291134e-05 83 138 7.167061e-05 -1.156616e-05 84 138 -6.413319e-05 1.034978e-05 85 138 5.727273e-05 -9.242642e-06 86 138 -5.098776e-05 8.228377e-06 87 138 4.519256e-05 -7.293151e-06 88 138 -3.981401e-05 6.425164e-06 89 138 3.478917e-05 -5.614257e-06 90 138 -3.00633e-05 4.851599e-06 91 138 2.558831e-05 -4.129428e-06 92 138 -2.132146e-05 3.440846e-06 93 138 1.722429e-05 -2.779647e-06 94 138 -1.326172e-05 2.14017e-06 95 138 9.401297e-06 -1.517176e-06 96 138 -5.612495e-06 9.057414e-07 97 138 1.866144e-06 -3.011573e-07 98 138 1.866144e-06 -3.011573e-07 99 138 -5.612495e-06 9.057414e-07 100 138 9.401297e-06 -1.517176e-06 101 138 -1.326172e-05 2.14017e-06 102 138 1.722429e-05 -2.779647e-06 103 138 -2.132146e-05 3.440846e-06 104 138 2.558831e-05 -4.129428e-06 105 138 -3.00633e-05 4.851599e-06 106 138 3.478917e-05 -5.614257e-06 107 138 -3.981401e-05 6.425164e-06 108 138 4.519256e-05 -7.293151e-06 109 138 -5.098776e-05 8.228377e-06 110 138 5.727273e-05 -9.242642e-06 111 138 -6.413319e-05 1.034978e-05 112 138 7.167061e-05 -1.156616e-05 113 138 -8.000611e-05 1.291134e-05 114 138 8.928565e-05 -1.440887e-05 115 138 -9.968672e-05 1.608739e-05 116 138 0.0001114272 -1.798207e-05 117 138 -0.0001247774 2.013652e-05 118 138 0.000140076 -2.26054e-05 119 138 -0.0001577525 2.545802e-05 120 138 0.0001783582 -2.878335e-05 121 138 -0.0002026106 3.26972e-05 122 138 0.0002314578 -3.735254e-05 123 138 -0.0002661734 4.295492e-05 124 138 0.0003085011 -4.978574e-05 125 138 -0.0003608797 5.823857e-05 126 138 0.0004268045 -6.887749e-05 127 138 -0.0005114288 8.253411e-05 128 138 0.0006226054 -0.0001004757 129 138 -0.0007727812 0.000124711 130 138 0.0009826448 -0.0001585787 131 138 -0.001288661 0.0002079635 132 138 0.001760065 -0.0002840383 133 138 -0.002541777 0.0004101906 134 138 0.003980742 -0.0006424099 135 138 -0.007089509 0.001144101 136 138 0.01597157 -0.002577484 137 138 -0.06393453 0.01031772 138 138 -0.06309443 -0.01845675 139 138 -0.06393453 0.01031772 140 138 0.01597157 -0.002577484 141 138 -0.007089509 0.001144101 142 138 0.003980742 -0.0006424099 143 138 -0.002541777 0.0004101906 144 138 0.001760065 -0.0002840383 145 138 -0.001288661 0.0002079635 146 138 0.0009826448 -0.0001585787 147 138 -0.0007727812 0.000124711 148 138 0.0006226054 -0.0001004757 149 138 -0.0005114288 8.253411e-05 150 138 0.0004268045 -6.887749e-05 151 138 -0.0003608797 5.823857e-05 152 138 0.0003085011 -4.978574e-05 153 138 -0.0002661734 4.295492e-05 154 138 0.0002314578 -3.735254e-05 155 138 -0.0002026106 3.26972e-05 156 138 0.0001783582 -2.878335e-05 157 138 -0.0001577525 2.545802e-05 158 138 0.000140076 -2.26054e-05 159 138 -0.0001247774 2.013652e-05 160 138 0.0001114272 -1.798207e-05 161 138 -9.968672e-05 1.608739e-05 219 138 0.0009825209 8.407245e-05 58 139 0.0009997581 8.589201e-05 81 139 -9.968672e-05 1.608739e-05 82 139 8.928565e-05 -1.440887e-05 83 139 -8.000611e-05 1.291134e-05 84 139 7.167061e-05 -1.156616e-05 85 139 -6.413319e-05 1.034978e-05 86 139 5.727273e-05 -9.242642e-06 87 139 -5.098776e-05 8.228377e-06 88 139 4.519256e-05 -7.293151e-06 89 139 -3.981401e-05 6.425164e-06 90 139 3.478917e-05 -5.614257e-06 91 139 -3.00633e-05 4.851599e-06 92 139 2.558831e-05 -4.129428e-06 93 139 -2.132146e-05 3.440846e-06 94 139 1.722429e-05 -2.779647e-06 95 139 -1.326172e-05 2.14017e-06 96 139 9.401297e-06 -1.517176e-06 97 139 -5.612495e-06 9.057414e-07 98 139 1.866144e-06 -3.011573e-07 99 139 1.866144e-06 -3.011573e-07 100 139 -5.612495e-06 9.057414e-07 101 139 9.401297e-06 -1.517176e-06 102 139 -1.326172e-05 2.14017e-06 103 139 1.722429e-05 -2.779647e-06 104 139 -2.132146e-05 3.440846e-06 105 139 2.558831e-05 -4.129428e-06 106 139 -3.00633e-05 4.851599e-06 107 139 3.478917e-05 -5.614257e-06 108 139 -3.981401e-05 6.425164e-06 109 139 4.519256e-05 -7.293151e-06 110 139 -5.098776e-05 8.228377e-06 111 139 5.727273e-05 -9.242642e-06 112 139 -6.413319e-05 1.034978e-05 113 139 7.167061e-05 -1.156616e-05 114 139 -8.000611e-05 1.291134e-05 115 139 8.928565e-05 -1.440887e-05 116 139 -9.968672e-05 1.608739e-05 117 139 0.0001114272 -1.798207e-05 118 139 -0.0001247774 2.013652e-05 119 139 0.000140076 -2.26054e-05 120 139 -0.0001577525 2.545802e-05 121 139 0.0001783582 -2.878335e-05 122 139 -0.0002026106 3.26972e-05 123 139 0.0002314578 -3.735254e-05 124 139 -0.0002661734 4.295492e-05 125 139 0.0003085011 -4.978574e-05 126 139 -0.0003608797 5.823857e-05 127 139 0.0004268045 -6.887749e-05 128 139 -0.0005114288 8.253411e-05 129 139 0.0006226054 -0.0001004757 130 139 -0.0007727812 0.000124711 131 139 0.0009826448 -0.0001585787 132 139 -0.001288661 0.0002079635 133 139 0.001760065 -0.0002840383 134 139 -0.002541777 0.0004101906 135 139 0.003980742 -0.0006424099 136 139 -0.007089509 0.001144101 137 139 0.01597157 -0.002577484 138 139 -0.06393453 0.01031772 139 139 -0.06337388 -0.01834413 140 139 -0.06393453 0.01031772 141 139 0.01597157 -0.002577484 142 139 -0.007089509 0.001144101 143 139 0.003980742 -0.0006424099 144 139 -0.002541777 0.0004101906 145 139 0.001760065 -0.0002840383 146 139 -0.001288661 0.0002079635 147 139 0.0009826448 -0.0001585787 148 139 -0.0007727812 0.000124711 149 139 0.0006226054 -0.0001004757 150 139 -0.0005114288 8.253411e-05 151 139 0.0004268045 -6.887749e-05 152 139 -0.0003608797 5.823857e-05 153 139 0.0003085011 -4.978574e-05 154 139 -0.0002661734 4.295492e-05 155 139 0.0002314578 -3.735254e-05 156 139 -0.0002026106 3.26972e-05 157 139 0.0001783582 -2.878335e-05 158 139 -0.0001577525 2.545802e-05 159 139 0.000140076 -2.26054e-05 160 139 -0.0001247774 2.013652e-05 161 139 0.0001114272 -1.798207e-05 220 139 0.0009997581 8.589201e-05 59 140 0.001017083 8.772801e-05 81 140 0.0001114272 -1.798207e-05 82 140 -9.968672e-05 1.608739e-05 83 140 8.928565e-05 -1.440887e-05 84 140 -8.000611e-05 1.291134e-05 85 140 7.167061e-05 -1.156616e-05 86 140 -6.413319e-05 1.034978e-05 87 140 5.727273e-05 -9.242642e-06 88 140 -5.098776e-05 8.228377e-06 89 140 4.519256e-05 -7.293151e-06 90 140 -3.981401e-05 6.425164e-06 91 140 3.478917e-05 -5.614257e-06 92 140 -3.00633e-05 4.851599e-06 93 140 2.558831e-05 -4.129428e-06 94 140 -2.132146e-05 3.440846e-06 95 140 1.722429e-05 -2.779647e-06 96 140 -1.326172e-05 2.14017e-06 97 140 9.401297e-06 -1.517176e-06 98 140 -5.612495e-06 9.057414e-07 99 140 1.866144e-06 -3.011573e-07 100 140 1.866144e-06 -3.011573e-07 101 140 -5.612495e-06 9.057414e-07 102 140 9.401297e-06 -1.517176e-06 103 140 -1.326172e-05 2.14017e-06 104 140 1.722429e-05 -2.779647e-06 105 140 -2.132146e-05 3.440846e-06 106 140 2.558831e-05 -4.129428e-06 107 140 -3.00633e-05 4.851599e-06 108 140 3.478917e-05 -5.614257e-06 109 140 -3.981401e-05 6.425164e-06 110 140 4.519256e-05 -7.293151e-06 111 140 -5.098776e-05 8.228377e-06 112 140 5.727273e-05 -9.242642e-06 113 140 -6.413319e-05 1.034978e-05 114 140 7.167061e-05 -1.156616e-05 115 140 -8.000611e-05 1.291134e-05 116 140 8.928565e-05 -1.440887e-05 117 140 -9.968672e-05 1.608739e-05 118 140 0.0001114272 -1.798207e-05 119 140 -0.0001247774 2.013652e-05 120 140 0.000140076 -2.26054e-05 121 140 -0.0001577525 2.545802e-05 122 140 0.0001783582 -2.878335e-05 123 140 -0.0002026106 3.26972e-05 124 140 0.0002314578 -3.735254e-05 125 140 -0.0002661734 4.295492e-05 126 140 0.0003085011 -4.978574e-05 127 140 -0.0003608797 5.823857e-05 128 140 0.0004268045 -6.887749e-05 129 140 -0.0005114288 8.253411e-05 130 140 0.0006226054 -0.0001004757 131 140 -0.0007727812 0.000124711 132 140 0.0009826448 -0.0001585787 133 140 -0.001288661 0.0002079635 134 140 0.001760065 -0.0002840383 135 140 -0.002541777 0.0004101906 136 140 0.003980742 -0.0006424099 137 140 -0.007089509 0.001144101 138 140 0.01597157 -0.002577484 139 140 -0.06393453 0.01031772 140 140 -0.0636275 -0.01823983 141 140 -0.06393453 0.01031772 142 140 0.01597157 -0.002577484 143 140 -0.007089509 0.001144101 144 140 0.003980742 -0.0006424099 145 140 -0.002541777 0.0004101906 146 140 0.001760065 -0.0002840383 147 140 -0.001288661 0.0002079635 148 140 0.0009826448 -0.0001585787 149 140 -0.0007727812 0.000124711 150 140 0.0006226054 -0.0001004757 151 140 -0.0005114288 8.253411e-05 152 140 0.0004268045 -6.887749e-05 153 140 -0.0003608797 5.823857e-05 154 140 0.0003085011 -4.978574e-05 155 140 -0.0002661734 4.295492e-05 156 140 0.0002314578 -3.735254e-05 157 140 -0.0002026106 3.26972e-05 158 140 0.0001783582 -2.878335e-05 159 140 -0.0001577525 2.545802e-05 160 140 0.000140076 -2.26054e-05 161 140 -0.0001247774 2.013652e-05 221 140 0.001017083 8.772801e-05 60 141 0.001034496 8.958057e-05 81 141 -0.0001247774 2.013652e-05 82 141 0.0001114272 -1.798207e-05 83 141 -9.968672e-05 1.608739e-05 84 141 8.928565e-05 -1.440887e-05 85 141 -8.000611e-05 1.291134e-05 86 141 7.167061e-05 -1.156616e-05 87 141 -6.413319e-05 1.034978e-05 88 141 5.727273e-05 -9.242642e-06 89 141 -5.098776e-05 8.228377e-06 90 141 4.519256e-05 -7.293151e-06 91 141 -3.981401e-05 6.425164e-06 92 141 3.478917e-05 -5.614257e-06 93 141 -3.00633e-05 4.851599e-06 94 141 2.558831e-05 -4.129428e-06 95 141 -2.132146e-05 3.440846e-06 96 141 1.722429e-05 -2.779647e-06 97 141 -1.326172e-05 2.14017e-06 98 141 9.401297e-06 -1.517176e-06 99 141 -5.612495e-06 9.057414e-07 100 141 1.866144e-06 -3.011573e-07 101 141 1.866144e-06 -3.011573e-07 102 141 -5.612495e-06 9.057414e-07 103 141 9.401297e-06 -1.517176e-06 104 141 -1.326172e-05 2.14017e-06 105 141 1.722429e-05 -2.779647e-06 106 141 -2.132146e-05 3.440846e-06 107 141 2.558831e-05 -4.129428e-06 108 141 -3.00633e-05 4.851599e-06 109 141 3.478917e-05 -5.614257e-06 110 141 -3.981401e-05 6.425164e-06 111 141 4.519256e-05 -7.293151e-06 112 141 -5.098776e-05 8.228377e-06 113 141 5.727273e-05 -9.242642e-06 114 141 -6.413319e-05 1.034978e-05 115 141 7.167061e-05 -1.156616e-05 116 141 -8.000611e-05 1.291134e-05 117 141 8.928565e-05 -1.440887e-05 118 141 -9.968672e-05 1.608739e-05 119 141 0.0001114272 -1.798207e-05 120 141 -0.0001247774 2.013652e-05 121 141 0.000140076 -2.26054e-05 122 141 -0.0001577525 2.545802e-05 123 141 0.0001783582 -2.878335e-05 124 141 -0.0002026106 3.26972e-05 125 141 0.0002314578 -3.735254e-05 126 141 -0.0002661734 4.295492e-05 127 141 0.0003085011 -4.978574e-05 128 141 -0.0003608797 5.823857e-05 129 141 0.0004268045 -6.887749e-05 130 141 -0.0005114288 8.253411e-05 131 141 0.0006226054 -0.0001004757 132 141 -0.0007727812 0.000124711 133 141 0.0009826448 -0.0001585787 134 141 -0.001288661 0.0002079635 135 141 0.001760065 -0.0002840383 136 141 -0.002541777 0.0004101906 137 141 0.003980742 -0.0006424099 138 141 -0.007089509 0.001144101 139 141 0.01597157 -0.002577484 140 141 -0.06393453 0.01031772 141 141 -0.0638577 -0.01814325 142 141 -0.06393453 0.01031772 143 141 0.01597157 -0.002577484 144 141 -0.007089509 0.001144101 145 141 0.003980742 -0.0006424099 146 141 -0.002541777 0.0004101906 147 141 0.001760065 -0.0002840383 148 141 -0.001288661 0.0002079635 149 141 0.0009826448 -0.0001585787 150 141 -0.0007727812 0.000124711 151 141 0.0006226054 -0.0001004757 152 141 -0.0005114288 8.253411e-05 153 141 0.0004268045 -6.887749e-05 154 141 -0.0003608797 5.823857e-05 155 141 0.0003085011 -4.978574e-05 156 141 -0.0002661734 4.295492e-05 157 141 0.0002314578 -3.735254e-05 158 141 -0.0002026106 3.26972e-05 159 141 0.0001783582 -2.878335e-05 160 141 -0.0001577525 2.545802e-05 161 141 0.000140076 -2.26054e-05 222 141 0.001034496 8.958057e-05 61 142 0.001051997 9.144981e-05 81 142 0.000140076 -2.26054e-05 82 142 -0.0001247774 2.013652e-05 83 142 0.0001114272 -1.798207e-05 84 142 -9.968672e-05 1.608739e-05 85 142 8.928565e-05 -1.440887e-05 86 142 -8.000611e-05 1.291134e-05 87 142 7.167061e-05 -1.156616e-05 88 142 -6.413319e-05 1.034978e-05 89 142 5.727273e-05 -9.242642e-06 90 142 -5.098776e-05 8.228377e-06 91 142 4.519256e-05 -7.293151e-06 92 142 -3.981401e-05 6.425164e-06 93 142 3.478917e-05 -5.614257e-06 94 142 -3.00633e-05 4.851599e-06 95 142 2.558831e-05 -4.129428e-06 96 142 -2.132146e-05 3.440846e-06 97 142 1.722429e-05 -2.779647e-06 98 142 -1.326172e-05 2.14017e-06 99 142 9.401297e-06 -1.517176e-06 100 142 -5.612495e-06 9.057414e-07 101 142 1.866144e-06 -3.011573e-07 102 142 1.866144e-06 -3.011573e-07 103 142 -5.612495e-06 9.057414e-07 104 142 9.401297e-06 -1.517176e-06 105 142 -1.326172e-05 2.14017e-06 106 142 1.722429e-05 -2.779647e-06 107 142 -2.132146e-05 3.440846e-06 108 142 2.558831e-05 -4.129428e-06 109 142 -3.00633e-05 4.851599e-06 110 142 3.478917e-05 -5.614257e-06 111 142 -3.981401e-05 6.425164e-06 112 142 4.519256e-05 -7.293151e-06 113 142 -5.098776e-05 8.228377e-06 114 142 5.727273e-05 -9.242642e-06 115 142 -6.413319e-05 1.034978e-05 116 142 7.167061e-05 -1.156616e-05 117 142 -8.000611e-05 1.291134e-05 118 142 8.928565e-05 -1.440887e-05 119 142 -9.968672e-05 1.608739e-05 120 142 0.0001114272 -1.798207e-05 121 142 -0.0001247774 2.013652e-05 122 142 0.000140076 -2.26054e-05 123 142 -0.0001577525 2.545802e-05 124 142 0.0001783582 -2.878335e-05 125 142 -0.0002026106 3.26972e-05 126 142 0.0002314578 -3.735254e-05 127 142 -0.0002661734 4.295492e-05 128 142 0.0003085011 -4.978574e-05 129 142 -0.0003608797 5.823857e-05 130 142 0.0004268045 -6.887749e-05 131 142 -0.0005114288 8.253411e-05 132 142 0.0006226054 -0.0001004757 133 142 -0.0007727812 0.000124711 134 142 0.0009826448 -0.0001585787 135 142 -0.001288661 0.0002079635 136 142 0.001760065 -0.0002840383 137 142 -0.002541777 0.0004101906 138 142 0.003980742 -0.0006424099 139 142 -0.007089509 0.001144101 140 142 0.01597157 -0.002577484 141 142 -0.06393453 0.01031772 142 142 -0.06406664 -0.01805384 143 142 -0.06393453 0.01031772 144 142 0.01597157 -0.002577484 145 142 -0.007089509 0.001144101 146 142 0.003980742 -0.0006424099 147 142 -0.002541777 0.0004101906 148 142 0.001760065 -0.0002840383 149 142 -0.001288661 0.0002079635 150 142 0.0009826448 -0.0001585787 151 142 -0.0007727812 0.000124711 152 142 0.0006226054 -0.0001004757 153 142 -0.0005114288 8.253411e-05 154 142 0.0004268045 -6.887749e-05 155 142 -0.0003608797 5.823857e-05 156 142 0.0003085011 -4.978574e-05 157 142 -0.0002661734 4.295492e-05 158 142 0.0002314578 -3.735254e-05 159 142 -0.0002026106 3.26972e-05 160 142 0.0001783582 -2.878335e-05 161 142 -0.0001577525 2.545802e-05 223 142 0.001051997 9.144981e-05 62 143 0.001069588 9.333586e-05 81 143 -0.0001577525 2.545802e-05 82 143 0.000140076 -2.26054e-05 83 143 -0.0001247774 2.013652e-05 84 143 0.0001114272 -1.798207e-05 85 143 -9.968672e-05 1.608739e-05 86 143 8.928565e-05 -1.440887e-05 87 143 -8.000611e-05 1.291134e-05 88 143 7.167061e-05 -1.156616e-05 89 143 -6.413319e-05 1.034978e-05 90 143 5.727273e-05 -9.242642e-06 91 143 -5.098776e-05 8.228377e-06 92 143 4.519256e-05 -7.293151e-06 93 143 -3.981401e-05 6.425164e-06 94 143 3.478917e-05 -5.614257e-06 95 143 -3.00633e-05 4.851599e-06 96 143 2.558831e-05 -4.129428e-06 97 143 -2.132146e-05 3.440846e-06 98 143 1.722429e-05 -2.779647e-06 99 143 -1.326172e-05 2.14017e-06 100 143 9.401297e-06 -1.517176e-06 101 143 -5.612495e-06 9.057414e-07 102 143 1.866144e-06 -3.011573e-07 103 143 1.866144e-06 -3.011573e-07 104 143 -5.612495e-06 9.057414e-07 105 143 9.401297e-06 -1.517176e-06 106 143 -1.326172e-05 2.14017e-06 107 143 1.722429e-05 -2.779647e-06 108 143 -2.132146e-05 3.440846e-06 109 143 2.558831e-05 -4.129428e-06 110 143 -3.00633e-05 4.851599e-06 111 143 3.478917e-05 -5.614257e-06 112 143 -3.981401e-05 6.425164e-06 113 143 4.519256e-05 -7.293151e-06 114 143 -5.098776e-05 8.228377e-06 115 143 5.727273e-05 -9.242642e-06 116 143 -6.413319e-05 1.034978e-05 117 143 7.167061e-05 -1.156616e-05 118 143 -8.000611e-05 1.291134e-05 119 143 8.928565e-05 -1.440887e-05 120 143 -9.968672e-05 1.608739e-05 121 143 0.0001114272 -1.798207e-05 122 143 -0.0001247774 2.013652e-05 123 143 0.000140076 -2.26054e-05 124 143 -0.0001577525 2.545802e-05 125 143 0.0001783582 -2.878335e-05 126 143 -0.0002026106 3.26972e-05 127 143 0.0002314578 -3.735254e-05 128 143 -0.0002661734 4.295492e-05 129 143 0.0003085011 -4.978574e-05 130 143 -0.0003608797 5.823857e-05 131 143 0.0004268045 -6.887749e-05 132 143 -0.0005114288 8.253411e-05 133 143 0.0006226054 -0.0001004757 134 143 -0.0007727812 0.000124711 135 143 0.0009826448 -0.0001585787 136 143 -0.001288661 0.0002079635 137 143 0.001760065 -0.0002840383 138 143 -0.002541777 0.0004101906 139 143 0.003980742 -0.0006424099 140 143 -0.007089509 0.001144101 141 143 0.01597157 -0.002577484 142 143 -0.06393453 0.01031772 143 143 -0.06425629 -0.01797109 144 143 -0.06393453 0.01031772 145 143 0.01597157 -0.002577484 146 143 -0.007089509 0.001144101 147 143 0.003980742 -0.0006424099 148 143 -0.002541777 0.0004101906 149 143 0.001760065 -0.0002840383 150 143 -0.001288661 0.0002079635 151 143 0.0009826448 -0.0001585787 152 143 -0.0007727812 0.000124711 153 143 0.0006226054 -0.0001004757 154 143 -0.0005114288 8.253411e-05 155 143 0.0004268045 -6.887749e-05 156 143 -0.0003608797 5.823857e-05 157 143 0.0003085011 -4.978574e-05 158 143 -0.0002661734 4.295492e-05 159 143 0.0002314578 -3.735254e-05 160 143 -0.0002026106 3.26972e-05 161 143 0.0001783582 -2.878335e-05 224 143 0.001069588 9.333586e-05 63 144 0.001087268 9.523884e-05 81 144 0.0001783582 -2.878335e-05 82 144 -0.0001577525 2.545802e-05 83 144 0.000140076 -2.26054e-05 84 144 -0.0001247774 2.013652e-05 85 144 0.0001114272 -1.798207e-05 86 144 -9.968672e-05 1.608739e-05 87 144 8.928565e-05 -1.440887e-05 88 144 -8.000611e-05 1.291134e-05 89 144 7.167061e-05 -1.156616e-05 90 144 -6.413319e-05 1.034978e-05 91 144 5.727273e-05 -9.242642e-06 92 144 -5.098776e-05 8.228377e-06 93 144 4.519256e-05 -7.293151e-06 94 144 -3.981401e-05 6.425164e-06 95 144 3.478917e-05 -5.614257e-06 96 144 -3.00633e-05 4.851599e-06 97 144 2.558831e-05 -4.129428e-06 98 144 -2.132146e-05 3.440846e-06 99 144 1.722429e-05 -2.779647e-06 100 144 -1.326172e-05 2.14017e-06 101 144 9.401297e-06 -1.517176e-06 102 144 -5.612495e-06 9.057414e-07 103 144 1.866144e-06 -3.011573e-07 104 144 1.866144e-06 -3.011573e-07 105 144 -5.612495e-06 9.057414e-07 106 144 9.401297e-06 -1.517176e-06 107 144 -1.326172e-05 2.14017e-06 108 144 1.722429e-05 -2.779647e-06 109 144 -2.132146e-05 3.440846e-06 110 144 2.558831e-05 -4.129428e-06 111 144 -3.00633e-05 4.851599e-06 112 144 3.478917e-05 -5.614257e-06 113 144 -3.981401e-05 6.425164e-06 114 144 4.519256e-05 -7.293151e-06 115 144 -5.098776e-05 8.228377e-06 116 144 5.727273e-05 -9.242642e-06 117 144 -6.413319e-05 1.034978e-05 118 144 7.167061e-05 -1.156616e-05 119 144 -8.000611e-05 1.291134e-05 120 144 8.928565e-05 -1.440887e-05 121 144 -9.968672e-05 1.608739e-05 122 144 0.0001114272 -1.798207e-05 123 144 -0.0001247774 2.013652e-05 124 144 0.000140076 -2.26054e-05 125 144 -0.0001577525 2.545802e-05 126 144 0.0001783582 -2.878335e-05 127 144 -0.0002026106 3.26972e-05 128 144 0.0002314578 -3.735254e-05 129 144 -0.0002661734 4.295492e-05 130 144 0.0003085011 -4.978574e-05 131 144 -0.0003608797 5.823857e-05 132 144 0.0004268045 -6.887749e-05 133 144 -0.0005114288 8.253411e-05 134 144 0.0006226054 -0.0001004757 135 144 -0.0007727812 0.000124711 136 144 0.0009826448 -0.0001585787 137 144 -0.001288661 0.0002079635 138 144 0.001760065 -0.0002840383 139 144 -0.002541777 0.0004101906 140 144 0.003980742 -0.0006424099 141 144 -0.007089509 0.001144101 142 144 0.01597157 -0.002577484 143 144 -0.06393453 0.01031772 144 144 -0.06442842 -0.0178945 145 144 -0.06393453 0.01031772 146 144 0.01597157 -0.002577484 147 144 -0.007089509 0.001144101 148 144 0.003980742 -0.0006424099 149 144 -0.002541777 0.0004101906 150 144 0.001760065 -0.0002840383 151 144 -0.001288661 0.0002079635 152 144 0.0009826448 -0.0001585787 153 144 -0.0007727812 0.000124711 154 144 0.0006226054 -0.0001004757 155 144 -0.0005114288 8.253411e-05 156 144 0.0004268045 -6.887749e-05 157 144 -0.0003608797 5.823857e-05 158 144 0.0003085011 -4.978574e-05 159 144 -0.0002661734 4.295492e-05 160 144 0.0002314578 -3.735254e-05 161 144 -0.0002026106 3.26972e-05 225 144 0.001087268 9.523884e-05 64 145 0.001105038 9.715887e-05 81 145 -0.0002026106 3.26972e-05 82 145 0.0001783582 -2.878335e-05 83 145 -0.0001577525 2.545802e-05 84 145 0.000140076 -2.26054e-05 85 145 -0.0001247774 2.013652e-05 86 145 0.0001114272 -1.798207e-05 87 145 -9.968672e-05 1.608739e-05 88 145 8.928565e-05 -1.440887e-05 89 145 -8.000611e-05 1.291134e-05 90 145 7.167061e-05 -1.156616e-05 91 145 -6.413319e-05 1.034978e-05 92 145 5.727273e-05 -9.242642e-06 93 145 -5.098776e-05 8.228377e-06 94 145 4.519256e-05 -7.293151e-06 95 145 -3.981401e-05 6.425164e-06 96 145 3.478917e-05 -5.614257e-06 97 145 -3.00633e-05 4.851599e-06 98 145 2.558831e-05 -4.129428e-06 99 145 -2.132146e-05 3.440846e-06 100 145 1.722429e-05 -2.779647e-06 101 145 -1.326172e-05 2.14017e-06 102 145 9.401297e-06 -1.517176e-06 103 145 -5.612495e-06 9.057414e-07 104 145 1.866144e-06 -3.011573e-07 105 145 1.866144e-06 -3.011573e-07 106 145 -5.612495e-06 9.057414e-07 107 145 9.401297e-06 -1.517176e-06 108 145 -1.326172e-05 2.14017e-06 109 145 1.722429e-05 -2.779647e-06 110 145 -2.132146e-05 3.440846e-06 111 145 2.558831e-05 -4.129428e-06 112 145 -3.00633e-05 4.851599e-06 113 145 3.478917e-05 -5.614257e-06 114 145 -3.981401e-05 6.425164e-06 115 145 4.519256e-05 -7.293151e-06 116 145 -5.098776e-05 8.228377e-06 117 145 5.727273e-05 -9.242642e-06 118 145 -6.413319e-05 1.034978e-05 119 145 7.167061e-05 -1.156616e-05 120 145 -8.000611e-05 1.291134e-05 121 145 8.928565e-05 -1.440887e-05 122 145 -9.968672e-05 1.608739e-05 123 145 0.0001114272 -1.798207e-05 124 145 -0.0001247774 2.013652e-05 125 145 0.000140076 -2.26054e-05 126 145 -0.0001577525 2.545802e-05 127 145 0.0001783582 -2.878335e-05 128 145 -0.0002026106 3.26972e-05 129 145 0.0002314578 -3.735254e-05 130 145 -0.0002661734 4.295492e-05 131 145 0.0003085011 -4.978574e-05 132 145 -0.0003608797 5.823857e-05 133 145 0.0004268045 -6.887749e-05 134 145 -0.0005114288 8.253411e-05 135 145 0.0006226054 -0.0001004757 136 145 -0.0007727812 0.000124711 137 145 0.0009826448 -0.0001585787 138 145 -0.001288661 0.0002079635 139 145 0.001760065 -0.0002840383 140 145 -0.002541777 0.0004101906 141 145 0.003980742 -0.0006424099 142 145 -0.007089509 0.001144101 143 145 0.01597157 -0.002577484 144 145 -0.06393453 0.01031772 145 145 -0.06458465 -0.01782364 146 145 -0.06393453 0.01031772 147 145 0.01597157 -0.002577484 148 145 -0.007089509 0.001144101 149 145 0.003980742 -0.0006424099 150 145 -0.002541777 0.0004101906 151 145 0.001760065 -0.0002840383 152 145 -0.001288661 0.0002079635 153 145 0.0009826448 -0.0001585787 154 145 -0.0007727812 0.000124711 155 145 0.0006226054 -0.0001004757 156 145 -0.0005114288 8.253411e-05 157 145 0.0004268045 -6.887749e-05 158 145 -0.0003608797 5.823857e-05 159 145 0.0003085011 -4.978574e-05 160 145 -0.0002661734 4.295492e-05 161 145 0.0002314578 -3.735254e-05 226 145 0.001105038 9.715887e-05 65 146 0.001122898 9.909608e-05 81 146 0.0002314578 -3.735254e-05 82 146 -0.0002026106 3.26972e-05 83 146 0.0001783582 -2.878335e-05 84 146 -0.0001577525 2.545802e-05 85 146 0.000140076 -2.26054e-05 86 146 -0.0001247774 2.013652e-05 87 146 0.0001114272 -1.798207e-05 88 146 -9.968672e-05 1.608739e-05 89 146 8.928565e-05 -1.440887e-05 90 146 -8.000611e-05 1.291134e-05 91 146 7.167061e-05 -1.156616e-05 92 146 -6.413319e-05 1.034978e-05 93 146 5.727273e-05 -9.242642e-06 94 146 -5.098776e-05 8.228377e-06 95 146 4.519256e-05 -7.293151e-06 96 146 -3.981401e-05 6.425164e-06 97 146 3.478917e-05 -5.614257e-06 98 146 -3.00633e-05 4.851599e-06 99 146 2.558831e-05 -4.129428e-06 100 146 -2.132146e-05 3.440846e-06 101 146 1.722429e-05 -2.779647e-06 102 146 -1.326172e-05 2.14017e-06 103 146 9.401297e-06 -1.517176e-06 104 146 -5.612495e-06 9.057414e-07 105 146 1.866144e-06 -3.011573e-07 106 146 1.866144e-06 -3.011573e-07 107 146 -5.612495e-06 9.057414e-07 108 146 9.401297e-06 -1.517176e-06 109 146 -1.326172e-05 2.14017e-06 110 146 1.722429e-05 -2.779647e-06 111 146 -2.132146e-05 3.440846e-06 112 146 2.558831e-05 -4.129428e-06 113 146 -3.00633e-05 4.851599e-06 114 146 3.478917e-05 -5.614257e-06 115 146 -3.981401e-05 6.425164e-06 116 146 4.519256e-05 -7.293151e-06 117 146 -5.098776e-05 8.228377e-06 118 146 5.727273e-05 -9.242642e-06 119 146 -6.413319e-05 1.034978e-05 120 146 7.167061e-05 -1.156616e-05 121 146 -8.000611e-05 1.291134e-05 122 146 8.928565e-05 -1.440887e-05 123 146 -9.968672e-05 1.608739e-05 124 146 0.0001114272 -1.798207e-05 125 146 -0.0001247774 2.013652e-05 126 146 0.000140076 -2.26054e-05 127 146 -0.0001577525 2.545802e-05 128 146 0.0001783582 -2.878335e-05 129 146 -0.0002026106 3.26972e-05 130 146 0.0002314578 -3.735254e-05 131 146 -0.0002661734 4.295492e-05 132 146 0.0003085011 -4.978574e-05 133 146 -0.0003608797 5.823857e-05 134 146 0.0004268045 -6.887749e-05 135 146 -0.0005114288 8.253411e-05 136 146 0.0006226054 -0.0001004757 137 146 -0.0007727812 0.000124711 138 146 0.0009826448 -0.0001585787 139 146 -0.001288661 0.0002079635 140 146 0.001760065 -0.0002840383 141 146 -0.002541777 0.0004101906 142 146 0.003980742 -0.0006424099 143 146 -0.007089509 0.001144101 144 146 0.01597157 -0.002577484 145 146 -0.06393453 0.01031772 146 146 -0.06472646 -0.0177581 147 146 -0.06393453 0.01031772 148 146 0.01597157 -0.002577484 149 146 -0.007089509 0.001144101 150 146 0.003980742 -0.0006424099 151 146 -0.002541777 0.0004101906 152 146 0.001760065 -0.0002840383 153 146 -0.001288661 0.0002079635 154 146 0.0009826448 -0.0001585787 155 146 -0.0007727812 0.000124711 156 146 0.0006226054 -0.0001004757 157 146 -0.0005114288 8.253411e-05 158 146 0.0004268045 -6.887749e-05 159 146 -0.0003608797 5.823857e-05 160 146 0.0003085011 -4.978574e-05 161 146 -0.0002661734 4.295492e-05 227 146 0.001122898 9.909608e-05 66 147 0.001140849 0.0001010506 81 147 -0.0002661734 4.295492e-05 82 147 0.0002314578 -3.735254e-05 83 147 -0.0002026106 3.26972e-05 84 147 0.0001783582 -2.878335e-05 85 147 -0.0001577525 2.545802e-05 86 147 0.000140076 -2.26054e-05 87 147 -0.0001247774 2.013652e-05 88 147 0.0001114272 -1.798207e-05 89 147 -9.968672e-05 1.608739e-05 90 147 8.928565e-05 -1.440887e-05 91 147 -8.000611e-05 1.291134e-05 92 147 7.167061e-05 -1.156616e-05 93 147 -6.413319e-05 1.034978e-05 94 147 5.727273e-05 -9.242642e-06 95 147 -5.098776e-05 8.228377e-06 96 147 4.519256e-05 -7.293151e-06 97 147 -3.981401e-05 6.425164e-06 98 147 3.478917e-05 -5.614257e-06 99 147 -3.00633e-05 4.851599e-06 100 147 2.558831e-05 -4.129428e-06 101 147 -2.132146e-05 3.440846e-06 102 147 1.722429e-05 -2.779647e-06 103 147 -1.326172e-05 2.14017e-06 104 147 9.401297e-06 -1.517176e-06 105 147 -5.612495e-06 9.057414e-07 106 147 1.866144e-06 -3.011573e-07 107 147 1.866144e-06 -3.011573e-07 108 147 -5.612495e-06 9.057414e-07 109 147 9.401297e-06 -1.517176e-06 110 147 -1.326172e-05 2.14017e-06 111 147 1.722429e-05 -2.779647e-06 112 147 -2.132146e-05 3.440846e-06 113 147 2.558831e-05 -4.129428e-06 114 147 -3.00633e-05 4.851599e-06 115 147 3.478917e-05 -5.614257e-06 116 147 -3.981401e-05 6.425164e-06 117 147 4.519256e-05 -7.293151e-06 118 147 -5.098776e-05 8.228377e-06 119 147 5.727273e-05 -9.242642e-06 120 147 -6.413319e-05 1.034978e-05 121 147 7.167061e-05 -1.156616e-05 122 147 -8.000611e-05 1.291134e-05 123 147 8.928565e-05 -1.440887e-05 124 147 -9.968672e-05 1.608739e-05 125 147 0.0001114272 -1.798207e-05 126 147 -0.0001247774 2.013652e-05 127 147 0.000140076 -2.26054e-05 128 147 -0.0001577525 2.545802e-05 129 147 0.0001783582 -2.878335e-05 130 147 -0.0002026106 3.26972e-05 131 147 0.0002314578 -3.735254e-05 132 147 -0.0002661734 4.295492e-05 133 147 0.0003085011 -4.978574e-05 134 147 -0.0003608797 5.823857e-05 135 147 0.0004268045 -6.887749e-05 136 147 -0.0005114288 8.253411e-05 137 147 0.0006226054 -0.0001004757 138 147 -0.0007727812 0.000124711 139 147 0.0009826448 -0.0001585787 140 147 -0.001288661 0.0002079635 141 147 0.001760065 -0.0002840383 142 147 -0.002541777 0.0004101906 143 147 0.003980742 -0.0006424099 144 147 -0.007089509 0.001144101 145 147 0.01597157 -0.002577484 146 147 -0.06393453 0.01031772 147 147 -0.06485516 -0.01769747 148 147 -0.06393453 0.01031772 149 147 0.01597157 -0.002577484 150 147 -0.007089509 0.001144101 151 147 0.003980742 -0.0006424099 152 147 -0.002541777 0.0004101906 153 147 0.001760065 -0.0002840383 154 147 -0.001288661 0.0002079635 155 147 0.0009826448 -0.0001585787 156 147 -0.0007727812 0.000124711 157 147 0.0006226054 -0.0001004757 158 147 -0.0005114288 8.253411e-05 159 147 0.0004268045 -6.887749e-05 160 147 -0.0003608797 5.823857e-05 161 147 0.0003085011 -4.978574e-05 228 147 0.001140849 0.0001010506 67 148 0.001158892 0.0001030225 81 148 0.0003085011 -4.978574e-05 82 148 -0.0002661734 4.295492e-05 83 148 0.0002314578 -3.735254e-05 84 148 -0.0002026106 3.26972e-05 85 148 0.0001783582 -2.878335e-05 86 148 -0.0001577525 2.545802e-05 87 148 0.000140076 -2.26054e-05 88 148 -0.0001247774 2.013652e-05 89 148 0.0001114272 -1.798207e-05 90 148 -9.968672e-05 1.608739e-05 91 148 8.928565e-05 -1.440887e-05 92 148 -8.000611e-05 1.291134e-05 93 148 7.167061e-05 -1.156616e-05 94 148 -6.413319e-05 1.034978e-05 95 148 5.727273e-05 -9.242642e-06 96 148 -5.098776e-05 8.228377e-06 97 148 4.519256e-05 -7.293151e-06 98 148 -3.981401e-05 6.425164e-06 99 148 3.478917e-05 -5.614257e-06 100 148 -3.00633e-05 4.851599e-06 101 148 2.558831e-05 -4.129428e-06 102 148 -2.132146e-05 3.440846e-06 103 148 1.722429e-05 -2.779647e-06 104 148 -1.326172e-05 2.14017e-06 105 148 9.401297e-06 -1.517176e-06 106 148 -5.612495e-06 9.057414e-07 107 148 1.866144e-06 -3.011573e-07 108 148 1.866144e-06 -3.011573e-07 109 148 -5.612495e-06 9.057414e-07 110 148 9.401297e-06 -1.517176e-06 111 148 -1.326172e-05 2.14017e-06 112 148 1.722429e-05 -2.779647e-06 113 148 -2.132146e-05 3.440846e-06 114 148 2.558831e-05 -4.129428e-06 115 148 -3.00633e-05 4.851599e-06 116 148 3.478917e-05 -5.614257e-06 117 148 -3.981401e-05 6.425164e-06 118 148 4.519256e-05 -7.293151e-06 119 148 -5.098776e-05 8.228377e-06 120 148 5.727273e-05 -9.242642e-06 121 148 -6.413319e-05 1.034978e-05 122 148 7.167061e-05 -1.156616e-05 123 148 -8.000611e-05 1.291134e-05 124 148 8.928565e-05 -1.440887e-05 125 148 -9.968672e-05 1.608739e-05 126 148 0.0001114272 -1.798207e-05 127 148 -0.0001247774 2.013652e-05 128 148 0.000140076 -2.26054e-05 129 148 -0.0001577525 2.545802e-05 130 148 0.0001783582 -2.878335e-05 131 148 -0.0002026106 3.26972e-05 132 148 0.0002314578 -3.735254e-05 133 148 -0.0002661734 4.295492e-05 134 148 0.0003085011 -4.978574e-05 135 148 -0.0003608797 5.823857e-05 136 148 0.0004268045 -6.887749e-05 137 148 -0.0005114288 8.253411e-05 138 148 0.0006226054 -0.0001004757 139 148 -0.0007727812 0.000124711 140 148 0.0009826448 -0.0001585787 141 148 -0.001288661 0.0002079635 142 148 0.001760065 -0.0002840383 143 148 -0.002541777 0.0004101906 144 148 0.003980742 -0.0006424099 145 148 -0.007089509 0.001144101 146 148 0.01597157 -0.002577484 147 148 -0.06393453 0.01031772 148 148 -0.06497197 -0.01764141 149 148 -0.06393453 0.01031772 150 148 0.01597157 -0.002577484 151 148 -0.007089509 0.001144101 152 148 0.003980742 -0.0006424099 153 148 -0.002541777 0.0004101906 154 148 0.001760065 -0.0002840383 155 148 -0.001288661 0.0002079635 156 148 0.0009826448 -0.0001585787 157 148 -0.0007727812 0.000124711 158 148 0.0006226054 -0.0001004757 159 148 -0.0005114288 8.253411e-05 160 148 0.0004268045 -6.887749e-05 161 148 -0.0003608797 5.823857e-05 229 148 0.001158892 0.0001030225 68 149 0.001177026 0.000105012 81 149 -0.0003608797 5.823857e-05 82 149 0.0003085011 -4.978574e-05 83 149 -0.0002661734 4.295492e-05 84 149 0.0002314578 -3.735254e-05 85 149 -0.0002026106 3.26972e-05 86 149 0.0001783582 -2.878335e-05 87 149 -0.0001577525 2.545802e-05 88 149 0.000140076 -2.26054e-05 89 149 -0.0001247774 2.013652e-05 90 149 0.0001114272 -1.798207e-05 91 149 -9.968672e-05 1.608739e-05 92 149 8.928565e-05 -1.440887e-05 93 149 -8.000611e-05 1.291134e-05 94 149 7.167061e-05 -1.156616e-05 95 149 -6.413319e-05 1.034978e-05 96 149 5.727273e-05 -9.242642e-06 97 149 -5.098776e-05 8.228377e-06 98 149 4.519256e-05 -7.293151e-06 99 149 -3.981401e-05 6.425164e-06 100 149 3.478917e-05 -5.614257e-06 101 149 -3.00633e-05 4.851599e-06 102 149 2.558831e-05 -4.129428e-06 103 149 -2.132146e-05 3.440846e-06 104 149 1.722429e-05 -2.779647e-06 105 149 -1.326172e-05 2.14017e-06 106 149 9.401297e-06 -1.517176e-06 107 149 -5.612495e-06 9.057414e-07 108 149 1.866144e-06 -3.011573e-07 109 149 1.866144e-06 -3.011573e-07 110 149 -5.612495e-06 9.057414e-07 111 149 9.401297e-06 -1.517176e-06 112 149 -1.326172e-05 2.14017e-06 113 149 1.722429e-05 -2.779647e-06 114 149 -2.132146e-05 3.440846e-06 115 149 2.558831e-05 -4.129428e-06 116 149 -3.00633e-05 4.851599e-06 117 149 3.478917e-05 -5.614257e-06 118 149 -3.981401e-05 6.425164e-06 119 149 4.519256e-05 -7.293151e-06 120 149 -5.098776e-05 8.228377e-06 121 149 5.727273e-05 -9.242642e-06 122 149 -6.413319e-05 1.034978e-05 123 149 7.167061e-05 -1.156616e-05 124 149 -8.000611e-05 1.291134e-05 125 149 8.928565e-05 -1.440887e-05 126 149 -9.968672e-05 1.608739e-05 127 149 0.0001114272 -1.798207e-05 128 149 -0.0001247774 2.013652e-05 129 149 0.000140076 -2.26054e-05 130 149 -0.0001577525 2.545802e-05 131 149 0.0001783582 -2.878335e-05 132 149 -0.0002026106 3.26972e-05 133 149 0.0002314578 -3.735254e-05 134 149 -0.0002661734 4.295492e-05 135 149 0.0003085011 -4.978574e-05 136 149 -0.0003608797 5.823857e-05 137 149 0.0004268045 -6.887749e-05 138 149 -0.0005114288 8.253411e-05 139 149 0.0006226054 -0.0001004757 140 149 -0.0007727812 0.000124711 141 149 0.0009826448 -0.0001585787 142 149 -0.001288661 0.0002079635 143 149 0.001760065 -0.0002840383 144 149 -0.002541777 0.0004101906 145 149 0.003980742 -0.0006424099 146 149 -0.007089509 0.001144101 147 149 0.01597157 -0.002577484 148 149 -0.06393453 0.01031772 149 149 -0.06507798 -0.01758959 150 149 -0.06393453 0.01031772 151 149 0.01597157 -0.002577484 152 149 -0.007089509 0.001144101 153 149 0.003980742 -0.0006424099 154 149 -0.002541777 0.0004101906 155 149 0.001760065 -0.0002840383 156 149 -0.001288661 0.0002079635 157 149 0.0009826448 -0.0001585787 158 149 -0.0007727812 0.000124711 159 149 0.0006226054 -0.0001004757 160 149 -0.0005114288 8.253411e-05 161 149 0.0004268045 -6.887749e-05 230 149 0.001177026 0.000105012 69 150 0.001195252 0.0001070192 81 150 0.0004268045 -6.887749e-05 82 150 -0.0003608797 5.823857e-05 83 150 0.0003085011 -4.978574e-05 84 150 -0.0002661734 4.295492e-05 85 150 0.0002314578 -3.735254e-05 86 150 -0.0002026106 3.26972e-05 87 150 0.0001783582 -2.878335e-05 88 150 -0.0001577525 2.545802e-05 89 150 0.000140076 -2.26054e-05 90 150 -0.0001247774 2.013652e-05 91 150 0.0001114272 -1.798207e-05 92 150 -9.968672e-05 1.608739e-05 93 150 8.928565e-05 -1.440887e-05 94 150 -8.000611e-05 1.291134e-05 95 150 7.167061e-05 -1.156616e-05 96 150 -6.413319e-05 1.034978e-05 97 150 5.727273e-05 -9.242642e-06 98 150 -5.098776e-05 8.228377e-06 99 150 4.519256e-05 -7.293151e-06 100 150 -3.981401e-05 6.425164e-06 101 150 3.478917e-05 -5.614257e-06 102 150 -3.00633e-05 4.851599e-06 103 150 2.558831e-05 -4.129428e-06 104 150 -2.132146e-05 3.440846e-06 105 150 1.722429e-05 -2.779647e-06 106 150 -1.326172e-05 2.14017e-06 107 150 9.401297e-06 -1.517176e-06 108 150 -5.612495e-06 9.057414e-07 109 150 1.866144e-06 -3.011573e-07 110 150 1.866144e-06 -3.011573e-07 111 150 -5.612495e-06 9.057414e-07 112 150 9.401297e-06 -1.517176e-06 113 150 -1.326172e-05 2.14017e-06 114 150 1.722429e-05 -2.779647e-06 115 150 -2.132146e-05 3.440846e-06 116 150 2.558831e-05 -4.129428e-06 117 150 -3.00633e-05 4.851599e-06 118 150 3.478917e-05 -5.614257e-06 119 150 -3.981401e-05 6.425164e-06 120 150 4.519256e-05 -7.293151e-06 121 150 -5.098776e-05 8.228377e-06 122 150 5.727273e-05 -9.242642e-06 123 150 -6.413319e-05 1.034978e-05 124 150 7.167061e-05 -1.156616e-05 125 150 -8.000611e-05 1.291134e-05 126 150 8.928565e-05 -1.440887e-05 127 150 -9.968672e-05 1.608739e-05 128 150 0.0001114272 -1.798207e-05 129 150 -0.0001247774 2.013652e-05 130 150 0.000140076 -2.26054e-05 131 150 -0.0001577525 2.545802e-05 132 150 0.0001783582 -2.878335e-05 133 150 -0.0002026106 3.26972e-05 134 150 0.0002314578 -3.735254e-05 135 150 -0.0002661734 4.295492e-05 136 150 0.0003085011 -4.978574e-05 137 150 -0.0003608797 5.823857e-05 138 150 0.0004268045 -6.887749e-05 139 150 -0.0005114288 8.253411e-05 140 150 0.0006226054 -0.0001004757 141 150 -0.0007727812 0.000124711 142 150 0.0009826448 -0.0001585787 143 150 -0.001288661 0.0002079635 144 150 0.001760065 -0.0002840383 145 150 -0.002541777 0.0004101906 146 150 0.003980742 -0.0006424099 147 150 -0.007089509 0.001144101 148 150 0.01597157 -0.002577484 149 150 -0.06393453 0.01031772 150 150 -0.0651742 -0.01754169 151 150 -0.06393453 0.01031772 152 150 0.01597157 -0.002577484 153 150 -0.007089509 0.001144101 154 150 0.003980742 -0.0006424099 155 150 -0.002541777 0.0004101906 156 150 0.001760065 -0.0002840383 157 150 -0.001288661 0.0002079635 158 150 0.0009826448 -0.0001585787 159 150 -0.0007727812 0.000124711 160 150 0.0006226054 -0.0001004757 161 150 -0.0005114288 8.253411e-05 231 150 0.001195252 0.0001070192 70 151 0.001213571 0.0001090442 81 151 -0.0005114288 8.253411e-05 82 151 0.0004268045 -6.887749e-05 83 151 -0.0003608797 5.823857e-05 84 151 0.0003085011 -4.978574e-05 85 151 -0.0002661734 4.295492e-05 86 151 0.0002314578 -3.735254e-05 87 151 -0.0002026106 3.26972e-05 88 151 0.0001783582 -2.878335e-05 89 151 -0.0001577525 2.545802e-05 90 151 0.000140076 -2.26054e-05 91 151 -0.0001247774 2.013652e-05 92 151 0.0001114272 -1.798207e-05 93 151 -9.968672e-05 1.608739e-05 94 151 8.928565e-05 -1.440887e-05 95 151 -8.000611e-05 1.291134e-05 96 151 7.167061e-05 -1.156616e-05 97 151 -6.413319e-05 1.034978e-05 98 151 5.727273e-05 -9.242642e-06 99 151 -5.098776e-05 8.228377e-06 100 151 4.519256e-05 -7.293151e-06 101 151 -3.981401e-05 6.425164e-06 102 151 3.478917e-05 -5.614257e-06 103 151 -3.00633e-05 4.851599e-06 104 151 2.558831e-05 -4.129428e-06 105 151 -2.132146e-05 3.440846e-06 106 151 1.722429e-05 -2.779647e-06 107 151 -1.326172e-05 2.14017e-06 108 151 9.401297e-06 -1.517176e-06 109 151 -5.612495e-06 9.057414e-07 110 151 1.866144e-06 -3.011573e-07 111 151 1.866144e-06 -3.011573e-07 112 151 -5.612495e-06 9.057414e-07 113 151 9.401297e-06 -1.517176e-06 114 151 -1.326172e-05 2.14017e-06 115 151 1.722429e-05 -2.779647e-06 116 151 -2.132146e-05 3.440846e-06 117 151 2.558831e-05 -4.129428e-06 118 151 -3.00633e-05 4.851599e-06 119 151 3.478917e-05 -5.614257e-06 120 151 -3.981401e-05 6.425164e-06 121 151 4.519256e-05 -7.293151e-06 122 151 -5.098776e-05 8.228377e-06 123 151 5.727273e-05 -9.242642e-06 124 151 -6.413319e-05 1.034978e-05 125 151 7.167061e-05 -1.156616e-05 126 151 -8.000611e-05 1.291134e-05 127 151 8.928565e-05 -1.440887e-05 128 151 -9.968672e-05 1.608739e-05 129 151 0.0001114272 -1.798207e-05 130 151 -0.0001247774 2.013652e-05 131 151 0.000140076 -2.26054e-05 132 151 -0.0001577525 2.545802e-05 133 151 0.0001783582 -2.878335e-05 134 151 -0.0002026106 3.26972e-05 135 151 0.0002314578 -3.735254e-05 136 151 -0.0002661734 4.295492e-05 137 151 0.0003085011 -4.978574e-05 138 151 -0.0003608797 5.823857e-05 139 151 0.0004268045 -6.887749e-05 140 151 -0.0005114288 8.253411e-05 141 151 0.0006226054 -0.0001004757 142 151 -0.0007727812 0.000124711 143 151 0.0009826448 -0.0001585787 144 151 -0.001288661 0.0002079635 145 151 0.001760065 -0.0002840383 146 151 -0.002541777 0.0004101906 147 151 0.003980742 -0.0006424099 148 151 -0.007089509 0.001144101 149 151 0.01597157 -0.002577484 150 151 -0.06393453 0.01031772 151 151 -0.06526151 -0.01749742 152 151 -0.06393453 0.01031772 153 151 0.01597157 -0.002577484 154 151 -0.007089509 0.001144101 155 151 0.003980742 -0.0006424099 156 151 -0.002541777 0.0004101906 157 151 0.001760065 -0.0002840383 158 151 -0.001288661 0.0002079635 159 151 0.0009826448 -0.0001585787 160 151 -0.0007727812 0.000124711 161 151 0.0006226054 -0.0001004757 232 151 0.001213571 0.0001090442 71 152 0.001231983 0.0001110871 81 152 0.0006226054 -0.0001004757 82 152 -0.0005114288 8.253411e-05 83 152 0.0004268045 -6.887749e-05 84 152 -0.0003608797 5.823857e-05 85 152 0.0003085011 -4.978574e-05 86 152 -0.0002661734 4.295492e-05 87 152 0.0002314578 -3.735254e-05 88 152 -0.0002026106 3.26972e-05 89 152 0.0001783582 -2.878335e-05 90 152 -0.0001577525 2.545802e-05 91 152 0.000140076 -2.26054e-05 92 152 -0.0001247774 2.013652e-05 93 152 0.0001114272 -1.798207e-05 94 152 -9.968672e-05 1.608739e-05 95 152 8.928565e-05 -1.440887e-05 96 152 -8.000611e-05 1.291134e-05 97 152 7.167061e-05 -1.156616e-05 98 152 -6.413319e-05 1.034978e-05 99 152 5.727273e-05 -9.242642e-06 100 152 -5.098776e-05 8.228377e-06 101 152 4.519256e-05 -7.293151e-06 102 152 -3.981401e-05 6.425164e-06 103 152 3.478917e-05 -5.614257e-06 104 152 -3.00633e-05 4.851599e-06 105 152 2.558831e-05 -4.129428e-06 106 152 -2.132146e-05 3.440846e-06 107 152 1.722429e-05 -2.779647e-06 108 152 -1.326172e-05 2.14017e-06 109 152 9.401297e-06 -1.517176e-06 110 152 -5.612495e-06 9.057414e-07 111 152 1.866144e-06 -3.011573e-07 112 152 1.866144e-06 -3.011573e-07 113 152 -5.612495e-06 9.057414e-07 114 152 9.401297e-06 -1.517176e-06 115 152 -1.326172e-05 2.14017e-06 116 152 1.722429e-05 -2.779647e-06 117 152 -2.132146e-05 3.440846e-06 118 152 2.558831e-05 -4.129428e-06 119 152 -3.00633e-05 4.851599e-06 120 152 3.478917e-05 -5.614257e-06 121 152 -3.981401e-05 6.425164e-06 122 152 4.519256e-05 -7.293151e-06 123 152 -5.098776e-05 8.228377e-06 124 152 5.727273e-05 -9.242642e-06 125 152 -6.413319e-05 1.034978e-05 126 152 7.167061e-05 -1.156616e-05 127 152 -8.000611e-05 1.291134e-05 128 152 8.928565e-05 -1.440887e-05 129 152 -9.968672e-05 1.608739e-05 130 152 0.0001114272 -1.798207e-05 131 152 -0.0001247774 2.013652e-05 132 152 0.000140076 -2.26054e-05 133 152 -0.0001577525 2.545802e-05 134 152 0.0001783582 -2.878335e-05 135 152 -0.0002026106 3.26972e-05 136 152 0.0002314578 -3.735254e-05 137 152 -0.0002661734 4.295492e-05 138 152 0.0003085011 -4.978574e-05 139 152 -0.0003608797 5.823857e-05 140 152 0.0004268045 -6.887749e-05 141 152 -0.0005114288 8.253411e-05 142 152 0.0006226054 -0.0001004757 143 152 -0.0007727812 0.000124711 144 152 0.0009826448 -0.0001585787 145 152 -0.001288661 0.0002079635 146 152 0.001760065 -0.0002840383 147 152 -0.002541777 0.0004101906 148 152 0.003980742 -0.0006424099 149 152 -0.007089509 0.001144101 150 152 0.01597157 -0.002577484 151 152 -0.06393453 0.01031772 152 152 -0.06534074 -0.01745652 153 152 -0.06393453 0.01031772 154 152 0.01597157 -0.002577484 155 152 -0.007089509 0.001144101 156 152 0.003980742 -0.0006424099 157 152 -0.002541777 0.0004101906 158 152 0.001760065 -0.0002840383 159 152 -0.001288661 0.0002079635 160 152 0.0009826448 -0.0001585787 161 152 -0.0007727812 0.000124711 233 152 0.001231983 0.0001110871 72 153 0.001250489 0.0001131481 81 153 -0.0007727812 0.000124711 82 153 0.0006226054 -0.0001004757 83 153 -0.0005114288 8.253411e-05 84 153 0.0004268045 -6.887749e-05 85 153 -0.0003608797 5.823857e-05 86 153 0.0003085011 -4.978574e-05 87 153 -0.0002661734 4.295492e-05 88 153 0.0002314578 -3.735254e-05 89 153 -0.0002026106 3.26972e-05 90 153 0.0001783582 -2.878335e-05 91 153 -0.0001577525 2.545802e-05 92 153 0.000140076 -2.26054e-05 93 153 -0.0001247774 2.013652e-05 94 153 0.0001114272 -1.798207e-05 95 153 -9.968672e-05 1.608739e-05 96 153 8.928565e-05 -1.440887e-05 97 153 -8.000611e-05 1.291134e-05 98 153 7.167061e-05 -1.156616e-05 99 153 -6.413319e-05 1.034978e-05 100 153 5.727273e-05 -9.242642e-06 101 153 -5.098776e-05 8.228377e-06 102 153 4.519256e-05 -7.293151e-06 103 153 -3.981401e-05 6.425164e-06 104 153 3.478917e-05 -5.614257e-06 105 153 -3.00633e-05 4.851599e-06 106 153 2.558831e-05 -4.129428e-06 107 153 -2.132146e-05 3.440846e-06 108 153 1.722429e-05 -2.779647e-06 109 153 -1.326172e-05 2.14017e-06 110 153 9.401297e-06 -1.517176e-06 111 153 -5.612495e-06 9.057414e-07 112 153 1.866144e-06 -3.011573e-07 113 153 1.866144e-06 -3.011573e-07 114 153 -5.612495e-06 9.057414e-07 115 153 9.401297e-06 -1.517176e-06 116 153 -1.326172e-05 2.14017e-06 117 153 1.722429e-05 -2.779647e-06 118 153 -2.132146e-05 3.440846e-06 119 153 2.558831e-05 -4.129428e-06 120 153 -3.00633e-05 4.851599e-06 121 153 3.478917e-05 -5.614257e-06 122 153 -3.981401e-05 6.425164e-06 123 153 4.519256e-05 -7.293151e-06 124 153 -5.098776e-05 8.228377e-06 125 153 5.727273e-05 -9.242642e-06 126 153 -6.413319e-05 1.034978e-05 127 153 7.167061e-05 -1.156616e-05 128 153 -8.000611e-05 1.291134e-05 129 153 8.928565e-05 -1.440887e-05 130 153 -9.968672e-05 1.608739e-05 131 153 0.0001114272 -1.798207e-05 132 153 -0.0001247774 2.013652e-05 133 153 0.000140076 -2.26054e-05 134 153 -0.0001577525 2.545802e-05 135 153 0.0001783582 -2.878335e-05 136 153 -0.0002026106 3.26972e-05 137 153 0.0002314578 -3.735254e-05 138 153 -0.0002661734 4.295492e-05 139 153 0.0003085011 -4.978574e-05 140 153 -0.0003608797 5.823857e-05 141 153 0.0004268045 -6.887749e-05 142 153 -0.0005114288 8.253411e-05 143 153 0.0006226054 -0.0001004757 144 153 -0.0007727812 0.000124711 145 153 0.0009826448 -0.0001585787 146 153 -0.001288661 0.0002079635 147 153 0.001760065 -0.0002840383 148 153 -0.002541777 0.0004101906 149 153 0.003980742 -0.0006424099 150 153 -0.007089509 0.001144101 151 153 0.01597157 -0.002577484 152 153 -0.06393453 0.01031772 153 153 -0.06541264 -0.01741874 154 153 -0.06393453 0.01031772 155 153 0.01597157 -0.002577484 156 153 -0.007089509 0.001144101 157 153 0.003980742 -0.0006424099 158 153 -0.002541777 0.0004101906 159 153 0.001760065 -0.0002840383 160 153 -0.001288661 0.0002079635 161 153 0.0009826448 -0.0001585787 234 153 0.001250489 0.0001131481 73 154 0.001269089 0.0001152273 81 154 0.0009826448 -0.0001585787 82 154 -0.0007727812 0.000124711 83 154 0.0006226054 -0.0001004757 84 154 -0.0005114288 8.253411e-05 85 154 0.0004268045 -6.887749e-05 86 154 -0.0003608797 5.823857e-05 87 154 0.0003085011 -4.978574e-05 88 154 -0.0002661734 4.295492e-05 89 154 0.0002314578 -3.735254e-05 90 154 -0.0002026106 3.26972e-05 91 154 0.0001783582 -2.878335e-05 92 154 -0.0001577525 2.545802e-05 93 154 0.000140076 -2.26054e-05 94 154 -0.0001247774 2.013652e-05 95 154 0.0001114272 -1.798207e-05 96 154 -9.968672e-05 1.608739e-05 97 154 8.928565e-05 -1.440887e-05 98 154 -8.000611e-05 1.291134e-05 99 154 7.167061e-05 -1.156616e-05 100 154 -6.413319e-05 1.034978e-05 101 154 5.727273e-05 -9.242642e-06 102 154 -5.098776e-05 8.228377e-06 103 154 4.519256e-05 -7.293151e-06 104 154 -3.981401e-05 6.425164e-06 105 154 3.478917e-05 -5.614257e-06 106 154 -3.00633e-05 4.851599e-06 107 154 2.558831e-05 -4.129428e-06 108 154 -2.132146e-05 3.440846e-06 109 154 1.722429e-05 -2.779647e-06 110 154 -1.326172e-05 2.14017e-06 111 154 9.401297e-06 -1.517176e-06 112 154 -5.612495e-06 9.057414e-07 113 154 1.866144e-06 -3.011573e-07 114 154 1.866144e-06 -3.011573e-07 115 154 -5.612495e-06 9.057414e-07 116 154 9.401297e-06 -1.517176e-06 117 154 -1.326172e-05 2.14017e-06 118 154 1.722429e-05 -2.779647e-06 119 154 -2.132146e-05 3.440846e-06 120 154 2.558831e-05 -4.129428e-06 121 154 -3.00633e-05 4.851599e-06 122 154 3.478917e-05 -5.614257e-06 123 154 -3.981401e-05 6.425164e-06 124 154 4.519256e-05 -7.293151e-06 125 154 -5.098776e-05 8.228377e-06 126 154 5.727273e-05 -9.242642e-06 127 154 -6.413319e-05 1.034978e-05 128 154 7.167061e-05 -1.156616e-05 129 154 -8.000611e-05 1.291134e-05 130 154 8.928565e-05 -1.440887e-05 131 154 -9.968672e-05 1.608739e-05 132 154 0.0001114272 -1.798207e-05 133 154 -0.0001247774 2.013652e-05 134 154 0.000140076 -2.26054e-05 135 154 -0.0001577525 2.545802e-05 136 154 0.0001783582 -2.878335e-05 137 154 -0.0002026106 3.26972e-05 138 154 0.0002314578 -3.735254e-05 139 154 -0.0002661734 4.295492e-05 140 154 0.0003085011 -4.978574e-05 141 154 -0.0003608797 5.823857e-05 142 154 0.0004268045 -6.887749e-05 143 154 -0.0005114288 8.253411e-05 144 154 0.0006226054 -0.0001004757 145 154 -0.0007727812 0.000124711 146 154 0.0009826448 -0.0001585787 147 154 -0.001288661 0.0002079635 148 154 0.001760065 -0.0002840383 149 154 -0.002541777 0.0004101906 150 154 0.003980742 -0.0006424099 151 154 -0.007089509 0.001144101 152 154 0.01597157 -0.002577484 153 154 -0.06393453 0.01031772 154 154 -0.06547788 -0.01738384 155 154 -0.06393453 0.01031772 156 154 0.01597157 -0.002577484 157 154 -0.007089509 0.001144101 158 154 0.003980742 -0.0006424099 159 154 -0.002541777 0.0004101906 160 154 0.001760065 -0.0002840383 161 154 -0.001288661 0.0002079635 235 154 0.001269089 0.0001152273 74 155 0.001287783 0.0001173249 81 155 -0.001288661 0.0002079635 82 155 0.0009826448 -0.0001585787 83 155 -0.0007727812 0.000124711 84 155 0.0006226054 -0.0001004757 85 155 -0.0005114288 8.253411e-05 86 155 0.0004268045 -6.887749e-05 87 155 -0.0003608797 5.823857e-05 88 155 0.0003085011 -4.978574e-05 89 155 -0.0002661734 4.295492e-05 90 155 0.0002314578 -3.735254e-05 91 155 -0.0002026106 3.26972e-05 92 155 0.0001783582 -2.878335e-05 93 155 -0.0001577525 2.545802e-05 94 155 0.000140076 -2.26054e-05 95 155 -0.0001247774 2.013652e-05 96 155 0.0001114272 -1.798207e-05 97 155 -9.968672e-05 1.608739e-05 98 155 8.928565e-05 -1.440887e-05 99 155 -8.000611e-05 1.291134e-05 100 155 7.167061e-05 -1.156616e-05 101 155 -6.413319e-05 1.034978e-05 102 155 5.727273e-05 -9.242642e-06 103 155 -5.098776e-05 8.228377e-06 104 155 4.519256e-05 -7.293151e-06 105 155 -3.981401e-05 6.425164e-06 106 155 3.478917e-05 -5.614257e-06 107 155 -3.00633e-05 4.851599e-06 108 155 2.558831e-05 -4.129428e-06 109 155 -2.132146e-05 3.440846e-06 110 155 1.722429e-05 -2.779647e-06 111 155 -1.326172e-05 2.14017e-06 112 155 9.401297e-06 -1.517176e-06 113 155 -5.612495e-06 9.057414e-07 114 155 1.866144e-06 -3.011573e-07 115 155 1.866144e-06 -3.011573e-07 116 155 -5.612495e-06 9.057414e-07 117 155 9.401297e-06 -1.517176e-06 118 155 -1.326172e-05 2.14017e-06 119 155 1.722429e-05 -2.779647e-06 120 155 -2.132146e-05 3.440846e-06 121 155 2.558831e-05 -4.129428e-06 122 155 -3.00633e-05 4.851599e-06 123 155 3.478917e-05 -5.614257e-06 124 155 -3.981401e-05 6.425164e-06 125 155 4.519256e-05 -7.293151e-06 126 155 -5.098776e-05 8.228377e-06 127 155 5.727273e-05 -9.242642e-06 128 155 -6.413319e-05 1.034978e-05 129 155 7.167061e-05 -1.156616e-05 130 155 -8.000611e-05 1.291134e-05 131 155 8.928565e-05 -1.440887e-05 132 155 -9.968672e-05 1.608739e-05 133 155 0.0001114272 -1.798207e-05 134 155 -0.0001247774 2.013652e-05 135 155 0.000140076 -2.26054e-05 136 155 -0.0001577525 2.545802e-05 137 155 0.0001783582 -2.878335e-05 138 155 -0.0002026106 3.26972e-05 139 155 0.0002314578 -3.735254e-05 140 155 -0.0002661734 4.295492e-05 141 155 0.0003085011 -4.978574e-05 142 155 -0.0003608797 5.823857e-05 143 155 0.0004268045 -6.887749e-05 144 155 -0.0005114288 8.253411e-05 145 155 0.0006226054 -0.0001004757 146 155 -0.0007727812 0.000124711 147 155 0.0009826448 -0.0001585787 148 155 -0.001288661 0.0002079635 149 155 0.001760065 -0.0002840383 150 155 -0.002541777 0.0004101906 151 155 0.003980742 -0.0006424099 152 155 -0.007089509 0.001144101 153 155 0.01597157 -0.002577484 154 155 -0.06393453 0.01031772 155 155 -0.06553708 -0.01735162 156 155 -0.06393453 0.01031772 157 155 0.01597157 -0.002577484 158 155 -0.007089509 0.001144101 159 155 0.003980742 -0.0006424099 160 155 -0.002541777 0.0004101906 161 155 0.001760065 -0.0002840383 236 155 0.001287783 0.0001173249 75 156 0.001306573 0.0001194409 81 156 0.001760065 -0.0002840383 82 156 -0.001288661 0.0002079635 83 156 0.0009826448 -0.0001585787 84 156 -0.0007727812 0.000124711 85 156 0.0006226054 -0.0001004757 86 156 -0.0005114288 8.253411e-05 87 156 0.0004268045 -6.887749e-05 88 156 -0.0003608797 5.823857e-05 89 156 0.0003085011 -4.978574e-05 90 156 -0.0002661734 4.295492e-05 91 156 0.0002314578 -3.735254e-05 92 156 -0.0002026106 3.26972e-05 93 156 0.0001783582 -2.878335e-05 94 156 -0.0001577525 2.545802e-05 95 156 0.000140076 -2.26054e-05 96 156 -0.0001247774 2.013652e-05 97 156 0.0001114272 -1.798207e-05 98 156 -9.968672e-05 1.608739e-05 99 156 8.928565e-05 -1.440887e-05 100 156 -8.000611e-05 1.291134e-05 101 156 7.167061e-05 -1.156616e-05 102 156 -6.413319e-05 1.034978e-05 103 156 5.727273e-05 -9.242642e-06 104 156 -5.098776e-05 8.228377e-06 105 156 4.519256e-05 -7.293151e-06 106 156 -3.981401e-05 6.425164e-06 107 156 3.478917e-05 -5.614257e-06 108 156 -3.00633e-05 4.851599e-06 109 156 2.558831e-05 -4.129428e-06 110 156 -2.132146e-05 3.440846e-06 111 156 1.722429e-05 -2.779647e-06 112 156 -1.326172e-05 2.14017e-06 113 156 9.401297e-06 -1.517176e-06 114 156 -5.612495e-06 9.057414e-07 115 156 1.866144e-06 -3.011573e-07 116 156 1.866144e-06 -3.011573e-07 117 156 -5.612495e-06 9.057414e-07 118 156 9.401297e-06 -1.517176e-06 119 156 -1.326172e-05 2.14017e-06 120 156 1.722429e-05 -2.779647e-06 121 156 -2.132146e-05 3.440846e-06 122 156 2.558831e-05 -4.129428e-06 123 156 -3.00633e-05 4.851599e-06 124 156 3.478917e-05 -5.614257e-06 125 156 -3.981401e-05 6.425164e-06 126 156 4.519256e-05 -7.293151e-06 127 156 -5.098776e-05 8.228377e-06 128 156 5.727273e-05 -9.242642e-06 129 156 -6.413319e-05 1.034978e-05 130 156 7.167061e-05 -1.156616e-05 131 156 -8.000611e-05 1.291134e-05 132 156 8.928565e-05 -1.440887e-05 133 156 -9.968672e-05 1.608739e-05 134 156 0.0001114272 -1.798207e-05 135 156 -0.0001247774 2.013652e-05 136 156 0.000140076 -2.26054e-05 137 156 -0.0001577525 2.545802e-05 138 156 0.0001783582 -2.878335e-05 139 156 -0.0002026106 3.26972e-05 140 156 0.0002314578 -3.735254e-05 141 156 -0.0002661734 4.295492e-05 142 156 0.0003085011 -4.978574e-05 143 156 -0.0003608797 5.823857e-05 144 156 0.0004268045 -6.887749e-05 145 156 -0.0005114288 8.253411e-05 146 156 0.0006226054 -0.0001004757 147 156 -0.0007727812 0.000124711 148 156 0.0009826448 -0.0001585787 149 156 -0.001288661 0.0002079635 150 156 0.001760065 -0.0002840383 151 156 -0.002541777 0.0004101906 152 156 0.003980742 -0.0006424099 153 156 -0.007089509 0.001144101 154 156 0.01597157 -0.002577484 155 156 -0.06393453 0.01031772 156 156 -0.06559079 -0.01732187 157 156 -0.06393453 0.01031772 158 156 0.01597157 -0.002577484 159 156 -0.007089509 0.001144101 160 156 0.003980742 -0.0006424099 161 156 -0.002541777 0.0004101906 237 156 0.001306573 0.0001194409 76 157 0.001325458 0.0001215755 81 157 -0.002541777 0.0004101906 82 157 0.001760065 -0.0002840383 83 157 -0.001288661 0.0002079635 84 157 0.0009826448 -0.0001585787 85 157 -0.0007727812 0.000124711 86 157 0.0006226054 -0.0001004757 87 157 -0.0005114288 8.253411e-05 88 157 0.0004268045 -6.887749e-05 89 157 -0.0003608797 5.823857e-05 90 157 0.0003085011 -4.978574e-05 91 157 -0.0002661734 4.295492e-05 92 157 0.0002314578 -3.735254e-05 93 157 -0.0002026106 3.26972e-05 94 157 0.0001783582 -2.878335e-05 95 157 -0.0001577525 2.545802e-05 96 157 0.000140076 -2.26054e-05 97 157 -0.0001247774 2.013652e-05 98 157 0.0001114272 -1.798207e-05 99 157 -9.968672e-05 1.608739e-05 100 157 8.928565e-05 -1.440887e-05 101 157 -8.000611e-05 1.291134e-05 102 157 7.167061e-05 -1.156616e-05 103 157 -6.413319e-05 1.034978e-05 104 157 5.727273e-05 -9.242642e-06 105 157 -5.098776e-05 8.228377e-06 106 157 4.519256e-05 -7.293151e-06 107 157 -3.981401e-05 6.425164e-06 108 157 3.478917e-05 -5.614257e-06 109 157 -3.00633e-05 4.851599e-06 110 157 2.558831e-05 -4.129428e-06 111 157 -2.132146e-05 3.440846e-06 112 157 1.722429e-05 -2.779647e-06 113 157 -1.326172e-05 2.14017e-06 114 157 9.401297e-06 -1.517176e-06 115 157 -5.612495e-06 9.057414e-07 116 157 1.866144e-06 -3.011573e-07 117 157 1.866144e-06 -3.011573e-07 118 157 -5.612495e-06 9.057414e-07 119 157 9.401297e-06 -1.517176e-06 120 157 -1.326172e-05 2.14017e-06 121 157 1.722429e-05 -2.779647e-06 122 157 -2.132146e-05 3.440846e-06 123 157 2.558831e-05 -4.129428e-06 124 157 -3.00633e-05 4.851599e-06 125 157 3.478917e-05 -5.614257e-06 126 157 -3.981401e-05 6.425164e-06 127 157 4.519256e-05 -7.293151e-06 128 157 -5.098776e-05 8.228377e-06 129 157 5.727273e-05 -9.242642e-06 130 157 -6.413319e-05 1.034978e-05 131 157 7.167061e-05 -1.156616e-05 132 157 -8.000611e-05 1.291134e-05 133 157 8.928565e-05 -1.440887e-05 134 157 -9.968672e-05 1.608739e-05 135 157 0.0001114272 -1.798207e-05 136 157 -0.0001247774 2.013652e-05 137 157 0.000140076 -2.26054e-05 138 157 -0.0001577525 2.545802e-05 139 157 0.0001783582 -2.878335e-05 140 157 -0.0002026106 3.26972e-05 141 157 0.0002314578 -3.735254e-05 142 157 -0.0002661734 4.295492e-05 143 157 0.0003085011 -4.978574e-05 144 157 -0.0003608797 5.823857e-05 145 157 0.0004268045 -6.887749e-05 146 157 -0.0005114288 8.253411e-05 147 157 0.0006226054 -0.0001004757 148 157 -0.0007727812 0.000124711 149 157 0.0009826448 -0.0001585787 150 157 -0.001288661 0.0002079635 151 157 0.001760065 -0.0002840383 152 157 -0.002541777 0.0004101906 153 157 0.003980742 -0.0006424099 154 157 -0.007089509 0.001144101 155 157 0.01597157 -0.002577484 156 157 -0.06393453 0.01031772 157 157 -0.06563951 -0.01729441 158 157 -0.06393453 0.01031772 159 157 0.01597157 -0.002577484 160 157 -0.007089509 0.001144101 161 157 0.003980742 -0.0006424099 238 157 0.001325458 0.0001215755 77 158 0.001344439 0.0001237288 81 158 0.003980742 -0.0006424099 82 158 -0.002541777 0.0004101906 83 158 0.001760065 -0.0002840383 84 158 -0.001288661 0.0002079635 85 158 0.0009826448 -0.0001585787 86 158 -0.0007727812 0.000124711 87 158 0.0006226054 -0.0001004757 88 158 -0.0005114288 8.253411e-05 89 158 0.0004268045 -6.887749e-05 90 158 -0.0003608797 5.823857e-05 91 158 0.0003085011 -4.978574e-05 92 158 -0.0002661734 4.295492e-05 93 158 0.0002314578 -3.735254e-05 94 158 -0.0002026106 3.26972e-05 95 158 0.0001783582 -2.878335e-05 96 158 -0.0001577525 2.545802e-05 97 158 0.000140076 -2.26054e-05 98 158 -0.0001247774 2.013652e-05 99 158 0.0001114272 -1.798207e-05 100 158 -9.968672e-05 1.608739e-05 101 158 8.928565e-05 -1.440887e-05 102 158 -8.000611e-05 1.291134e-05 103 158 7.167061e-05 -1.156616e-05 104 158 -6.413319e-05 1.034978e-05 105 158 5.727273e-05 -9.242642e-06 106 158 -5.098776e-05 8.228377e-06 107 158 4.519256e-05 -7.293151e-06 108 158 -3.981401e-05 6.425164e-06 109 158 3.478917e-05 -5.614257e-06 110 158 -3.00633e-05 4.851599e-06 111 158 2.558831e-05 -4.129428e-06 112 158 -2.132146e-05 3.440846e-06 113 158 1.722429e-05 -2.779647e-06 114 158 -1.326172e-05 2.14017e-06 115 158 9.401297e-06 -1.517176e-06 116 158 -5.612495e-06 9.057414e-07 117 158 1.866144e-06 -3.011573e-07 118 158 1.866144e-06 -3.011573e-07 119 158 -5.612495e-06 9.057414e-07 120 158 9.401297e-06 -1.517176e-06 121 158 -1.326172e-05 2.14017e-06 122 158 1.722429e-05 -2.779647e-06 123 158 -2.132146e-05 3.440846e-06 124 158 2.558831e-05 -4.129428e-06 125 158 -3.00633e-05 4.851599e-06 126 158 3.478917e-05 -5.614257e-06 127 158 -3.981401e-05 6.425164e-06 128 158 4.519256e-05 -7.293151e-06 129 158 -5.098776e-05 8.228377e-06 130 158 5.727273e-05 -9.242642e-06 131 158 -6.413319e-05 1.034978e-05 132 158 7.167061e-05 -1.156616e-05 133 158 -8.000611e-05 1.291134e-05 134 158 8.928565e-05 -1.440887e-05 135 158 -9.968672e-05 1.608739e-05 136 158 0.0001114272 -1.798207e-05 137 158 -0.0001247774 2.013652e-05 138 158 0.000140076 -2.26054e-05 139 158 -0.0001577525 2.545802e-05 140 158 0.0001783582 -2.878335e-05 141 158 -0.0002026106 3.26972e-05 142 158 0.0002314578 -3.735254e-05 143 158 -0.0002661734 4.295492e-05 144 158 0.0003085011 -4.978574e-05 145 158 -0.0003608797 5.823857e-05 146 158 0.0004268045 -6.887749e-05 147 158 -0.0005114288 8.253411e-05 148 158 0.0006226054 -0.0001004757 149 158 -0.0007727812 0.000124711 150 158 0.0009826448 -0.0001585787 151 158 -0.001288661 0.0002079635 152 158 0.001760065 -0.0002840383 153 158 -0.002541777 0.0004101906 154 158 0.003980742 -0.0006424099 155 158 -0.007089509 0.001144101 156 158 0.01597157 -0.002577484 157 158 -0.06393453 0.01031772 158 158 -0.06568372 -0.01726907 159 158 -0.06393453 0.01031772 160 158 0.01597157 -0.002577484 161 158 -0.007089509 0.001144101 239 158 0.001344439 0.0001237288 78 159 0.001363516 0.0001259011 81 159 -0.007089509 0.001144101 82 159 0.003980742 -0.0006424099 83 159 -0.002541777 0.0004101906 84 159 0.001760065 -0.0002840383 85 159 -0.001288661 0.0002079635 86 159 0.0009826448 -0.0001585787 87 159 -0.0007727812 0.000124711 88 159 0.0006226054 -0.0001004757 89 159 -0.0005114288 8.253411e-05 90 159 0.0004268045 -6.887749e-05 91 159 -0.0003608797 5.823857e-05 92 159 0.0003085011 -4.978574e-05 93 159 -0.0002661734 4.295492e-05 94 159 0.0002314578 -3.735254e-05 95 159 -0.0002026106 3.26972e-05 96 159 0.0001783582 -2.878335e-05 97 159 -0.0001577525 2.545802e-05 98 159 0.000140076 -2.26054e-05 99 159 -0.0001247774 2.013652e-05 100 159 0.0001114272 -1.798207e-05 101 159 -9.968672e-05 1.608739e-05 102 159 8.928565e-05 -1.440887e-05 103 159 -8.000611e-05 1.291134e-05 104 159 7.167061e-05 -1.156616e-05 105 159 -6.413319e-05 1.034978e-05 106 159 5.727273e-05 -9.242642e-06 107 159 -5.098776e-05 8.228377e-06 108 159 4.519256e-05 -7.293151e-06 109 159 -3.981401e-05 6.425164e-06 110 159 3.478917e-05 -5.614257e-06 111 159 -3.00633e-05 4.851599e-06 112 159 2.558831e-05 -4.129428e-06 113 159 -2.132146e-05 3.440846e-06 114 159 1.722429e-05 -2.779647e-06 115 159 -1.326172e-05 2.14017e-06 116 159 9.401297e-06 -1.517176e-06 117 159 -5.612495e-06 9.057414e-07 118 159 1.866144e-06 -3.011573e-07 119 159 1.866144e-06 -3.011573e-07 120 159 -5.612495e-06 9.057414e-07 121 159 9.401297e-06 -1.517176e-06 122 159 -1.326172e-05 2.14017e-06 123 159 1.722429e-05 -2.779647e-06 124 159 -2.132146e-05 3.440846e-06 125 159 2.558831e-05 -4.129428e-06 126 159 -3.00633e-05 4.851599e-06 127 159 3.478917e-05 -5.614257e-06 128 159 -3.981401e-05 6.425164e-06 129 159 4.519256e-05 -7.293151e-06 130 159 -5.098776e-05 8.228377e-06 131 159 5.727273e-05 -9.242642e-06 132 159 -6.413319e-05 1.034978e-05 133 159 7.167061e-05 -1.156616e-05 134 159 -8.000611e-05 1.291134e-05 135 159 8.928565e-05 -1.440887e-05 136 159 -9.968672e-05 1.608739e-05 137 159 0.0001114272 -1.798207e-05 138 159 -0.0001247774 2.013652e-05 139 159 0.000140076 -2.26054e-05 140 159 -0.0001577525 2.545802e-05 141 159 0.0001783582 -2.878335e-05 142 159 -0.0002026106 3.26972e-05 143 159 0.0002314578 -3.735254e-05 144 159 -0.0002661734 4.295492e-05 145 159 0.0003085011 -4.978574e-05 146 159 -0.0003608797 5.823857e-05 147 159 0.0004268045 -6.887749e-05 148 159 -0.0005114288 8.253411e-05 149 159 0.0006226054 -0.0001004757 150 159 -0.0007727812 0.000124711 151 159 0.0009826448 -0.0001585787 152 159 -0.001288661 0.0002079635 153 159 0.001760065 -0.0002840383 154 159 -0.002541777 0.0004101906 155 159 0.003980742 -0.0006424099 156 159 -0.007089509 0.001144101 157 159 0.01597157 -0.002577484 158 159 -0.06393453 0.01031772 159 159 -0.06572382 -0.01724569 160 159 -0.06393453 0.01031772 161 159 0.01597157 -0.002577484 240 159 0.001363516 0.0001259011 79 160 0.00138269 0.0001280923 81 160 0.01597157 -0.002577484 82 160 -0.007089509 0.001144101 83 160 0.003980742 -0.0006424099 84 160 -0.002541777 0.0004101906 85 160 0.001760065 -0.0002840383 86 160 -0.001288661 0.0002079635 87 160 0.0009826448 -0.0001585787 88 160 -0.0007727812 0.000124711 89 160 0.0006226054 -0.0001004757 90 160 -0.0005114288 8.253411e-05 91 160 0.0004268045 -6.887749e-05 92 160 -0.0003608797 5.823857e-05 93 160 0.0003085011 -4.978574e-05 94 160 -0.0002661734 4.295492e-05 95 160 0.0002314578 -3.735254e-05 96 160 -0.0002026106 3.26972e-05 97 160 0.0001783582 -2.878335e-05 98 160 -0.0001577525 2.545802e-05 99 160 0.000140076 -2.26054e-05 100 160 -0.0001247774 2.013652e-05 101 160 0.0001114272 -1.798207e-05 102 160 -9.968672e-05 1.608739e-05 103 160 8.928565e-05 -1.440887e-05 104 160 -8.000611e-05 1.291134e-05 105 160 7.167061e-05 -1.156616e-05 106 160 -6.413319e-05 1.034978e-05 107 160 5.727273e-05 -9.242642e-06 108 160 -5.098776e-05 8.228377e-06 109 160 4.519256e-05 -7.293151e-06 110 160 -3.981401e-05 6.425164e-06 111 160 3.478917e-05 -5.614257e-06 112 160 -3.00633e-05 4.851599e-06 113 160 2.558831e-05 -4.129428e-06 114 160 -2.132146e-05 3.440846e-06 115 160 1.722429e-05 -2.779647e-06 116 160 -1.326172e-05 2.14017e-06 117 160 9.401297e-06 -1.517176e-06 118 160 -5.612495e-06 9.057414e-07 119 160 1.866144e-06 -3.011573e-07 120 160 1.866144e-06 -3.011573e-07 121 160 -5.612495e-06 9.057414e-07 122 160 9.401297e-06 -1.517176e-06 123 160 -1.326172e-05 2.14017e-06 124 160 1.722429e-05 -2.779647e-06 125 160 -2.132146e-05 3.440846e-06 126 160 2.558831e-05 -4.129428e-06 127 160 -3.00633e-05 4.851599e-06 128 160 3.478917e-05 -5.614257e-06 129 160 -3.981401e-05 6.425164e-06 130 160 4.519256e-05 -7.293151e-06 131 160 -5.098776e-05 8.228377e-06 132 160 5.727273e-05 -9.242642e-06 133 160 -6.413319e-05 1.034978e-05 134 160 7.167061e-05 -1.156616e-05 135 160 -8.000611e-05 1.291134e-05 136 160 8.928565e-05 -1.440887e-05 137 160 -9.968672e-05 1.608739e-05 138 160 0.0001114272 -1.798207e-05 139 160 -0.0001247774 2.013652e-05 140 160 0.000140076 -2.26054e-05 141 160 -0.0001577525 2.545802e-05 142 160 0.0001783582 -2.878335e-05 143 160 -0.0002026106 3.26972e-05 144 160 0.0002314578 -3.735254e-05 145 160 -0.0002661734 4.295492e-05 146 160 0.0003085011 -4.978574e-05 147 160 -0.0003608797 5.823857e-05 148 160 0.0004268045 -6.887749e-05 149 160 -0.0005114288 8.253411e-05 150 160 0.0006226054 -0.0001004757 151 160 -0.0007727812 0.000124711 152 160 0.0009826448 -0.0001585787 153 160 -0.001288661 0.0002079635 154 160 0.001760065 -0.0002840383 155 160 -0.002541777 0.0004101906 156 160 0.003980742 -0.0006424099 157 160 -0.007089509 0.001144101 158 160 0.01597157 -0.002577484 159 160 -0.06393453 0.01031772 160 160 -0.06576019 -0.01722412 161 160 -0.06393453 0.01031772 241 160 0.00138269 0.0001280923 80 161 0.001401962 0.0001303027 81 161 -0.06393453 0.01031772 82 161 0.01597157 -0.002577484 83 161 -0.007089509 0.001144101 84 161 0.003980742 -0.0006424099 85 161 -0.002541777 0.0004101906 86 161 0.001760065 -0.0002840383 87 161 -0.001288661 0.0002079635 88 161 0.0009826448 -0.0001585787 89 161 -0.0007727812 0.000124711 90 161 0.0006226054 -0.0001004757 91 161 -0.0005114288 8.253411e-05 92 161 0.0004268045 -6.887749e-05 93 161 -0.0003608797 5.823857e-05 94 161 0.0003085011 -4.978574e-05 95 161 -0.0002661734 4.295492e-05 96 161 0.0002314578 -3.735254e-05 97 161 -0.0002026106 3.26972e-05 98 161 0.0001783582 -2.878335e-05 99 161 -0.0001577525 2.545802e-05 100 161 0.000140076 -2.26054e-05 101 161 -0.0001247774 2.013652e-05 102 161 0.0001114272 -1.798207e-05 103 161 -9.968672e-05 1.608739e-05 104 161 8.928565e-05 -1.440887e-05 105 161 -8.000611e-05 1.291134e-05 106 161 7.167061e-05 -1.156616e-05 107 161 -6.413319e-05 1.034978e-05 108 161 5.727273e-05 -9.242642e-06 109 161 -5.098776e-05 8.228377e-06 110 161 4.519256e-05 -7.293151e-06 111 161 -3.981401e-05 6.425164e-06 112 161 3.478917e-05 -5.614257e-06 113 161 -3.00633e-05 4.851599e-06 114 161 2.558831e-05 -4.129428e-06 115 161 -2.132146e-05 3.440846e-06 116 161 1.722429e-05 -2.779647e-06 117 161 -1.326172e-05 2.14017e-06 118 161 9.401297e-06 -1.517176e-06 119 161 -5.612495e-06 9.057414e-07 120 161 1.866144e-06 -3.011573e-07 121 161 1.866144e-06 -3.011573e-07 122 161 -5.612495e-06 9.057414e-07 123 161 9.401297e-06 -1.517176e-06 124 161 -1.326172e-05 2.14017e-06 125 161 1.722429e-05 -2.779647e-06 126 161 -2.132146e-05 3.440846e-06 127 161 2.558831e-05 -4.129428e-06 128 161 -3.00633e-05 4.851599e-06 129 161 3.478917e-05 -5.614257e-06 130 161 -3.981401e-05 6.425164e-06 131 161 4.519256e-05 -7.293151e-06 132 161 -5.098776e-05 8.228377e-06 133 161 5.727273e-05 -9.242642e-06 134 161 -6.413319e-05 1.034978e-05 135 161 7.167061e-05 -1.156616e-05 136 161 -8.000611e-05 1.291134e-05 137 161 8.928565e-05 -1.440887e-05 138 161 -9.968672e-05 1.608739e-05 139 161 0.0001114272 -1.798207e-05 140 161 -0.0001247774 2.013652e-05 141 161 0.000140076 -2.26054e-05 142 161 -0.0001577525 2.545802e-05 143 161 0.0001783582 -2.878335e-05 144 161 -0.0002026106 3.26972e-05 145 161 0.0002314578 -3.735254e-05 146 161 -0.0002661734 4.295492e-05 147 161 0.0003085011 -4.978574e-05 148 161 -0.0003608797 5.823857e-05 149 161 0.0004268045 -6.887749e-05 150 161 -0.0005114288 8.253411e-05 151 161 0.0006226054 -0.0001004757 152 161 -0.0007727812 0.000124711 153 161 0.0009826448 -0.0001585787 154 161 -0.001288661 0.0002079635 155 161 0.001760065 -0.0002840383 156 161 -0.002541777 0.0004101906 157 161 0.003980742 -0.0006424099 158 161 -0.007089509 0.001144101 159 161 0.01597157 -0.002577484 160 161 -0.06393453 0.01031772 161 161 -0.06579318 -0.01720423 242 161 0.001401962 0.0001303027 81 162 0.0001315499 3.980931e-06 162 162 0.04820686 -0.05085988 163 162 -0.06393453 0.01031772 164 162 0.01597157 -0.002577484 165 162 -0.007089509 0.001144101 166 162 0.003980742 -0.0006424099 167 162 -0.002541777 0.0004101906 168 162 0.001760065 -0.0002840383 169 162 -0.001288661 0.0002079635 170 162 0.0009826448 -0.0001585787 171 162 -0.0007727812 0.000124711 172 162 0.0006226054 -0.0001004757 173 162 -0.0005114288 8.253411e-05 174 162 0.0004268045 -6.887749e-05 175 162 -0.0003608797 5.823857e-05 176 162 0.0003085011 -4.978574e-05 177 162 -0.0002661734 4.295492e-05 178 162 0.0002314578 -3.735254e-05 179 162 -0.0002026106 3.26972e-05 180 162 0.0001783582 -2.878335e-05 181 162 -0.0001577525 2.545802e-05 182 162 0.000140076 -2.26054e-05 183 162 -0.0001247774 2.013652e-05 184 162 0.0001114272 -1.798207e-05 185 162 -9.968672e-05 1.608739e-05 186 162 8.928565e-05 -1.440887e-05 187 162 -8.000611e-05 1.291134e-05 188 162 7.167061e-05 -1.156616e-05 189 162 -6.413319e-05 1.034978e-05 190 162 5.727273e-05 -9.242642e-06 191 162 -5.098776e-05 8.228377e-06 192 162 4.519256e-05 -7.293151e-06 193 162 -3.981401e-05 6.425164e-06 194 162 3.478917e-05 -5.614257e-06 195 162 -3.00633e-05 4.851599e-06 196 162 2.558831e-05 -4.129428e-06 197 162 -2.132146e-05 3.440846e-06 198 162 1.722429e-05 -2.779647e-06 199 162 -1.326172e-05 2.14017e-06 200 162 9.401297e-06 -1.517176e-06 201 162 -5.612495e-06 9.057414e-07 202 162 1.866144e-06 -3.011573e-07 203 162 1.866144e-06 -3.011573e-07 204 162 -5.612495e-06 9.057414e-07 205 162 9.401297e-06 -1.517176e-06 206 162 -1.326172e-05 2.14017e-06 207 162 1.722429e-05 -2.779647e-06 208 162 -2.132146e-05 3.440846e-06 209 162 2.558831e-05 -4.129428e-06 210 162 -3.00633e-05 4.851599e-06 211 162 3.478917e-05 -5.614257e-06 212 162 -3.981401e-05 6.425164e-06 213 162 4.519256e-05 -7.293151e-06 214 162 -5.098776e-05 8.228377e-06 215 162 5.727273e-05 -9.242642e-06 216 162 -6.413319e-05 1.034978e-05 217 162 7.167061e-05 -1.156616e-05 218 162 -8.000611e-05 1.291134e-05 219 162 8.928565e-05 -1.440887e-05 220 162 -9.968672e-05 1.608739e-05 221 162 0.0001114272 -1.798207e-05 222 162 -0.0001247774 2.013652e-05 223 162 0.000140076 -2.26054e-05 224 162 -0.0001577525 2.545802e-05 225 162 0.0001783582 -2.878335e-05 226 162 -0.0002026106 3.26972e-05 227 162 0.0002314578 -3.735254e-05 228 162 -0.0002661734 4.295492e-05 229 162 0.0003085011 -4.978574e-05 230 162 -0.0003608797 5.823857e-05 231 162 0.0004268045 -6.887749e-05 232 162 -0.0005114288 8.253411e-05 233 162 0.0006226054 -0.0001004757 234 162 -0.0007727812 0.000124711 235 162 0.0009826448 -0.0001585787 236 162 -0.001288661 0.0002079635 237 162 0.001760065 -0.0002840383 238 162 -0.002541777 0.0004101906 239 162 0.003980742 -0.0006424099 240 162 -0.007089509 0.001144101 241 162 0.01597157 -0.002577484 242 162 -0.06393453 0.01031772 243 162 0.0001315499 3.980931e-06 82 163 0.0001444547 5.03874e-06 162 163 -0.06393453 0.01031772 163 163 -0.04982849 -0.05061033 164 163 -0.06393453 0.01031772 165 163 0.01597157 -0.002577484 166 163 -0.007089509 0.001144101 167 163 0.003980742 -0.0006424099 168 163 -0.002541777 0.0004101906 169 163 0.001760065 -0.0002840383 170 163 -0.001288661 0.0002079635 171 163 0.0009826448 -0.0001585787 172 163 -0.0007727812 0.000124711 173 163 0.0006226054 -0.0001004757 174 163 -0.0005114288 8.253411e-05 175 163 0.0004268045 -6.887749e-05 176 163 -0.0003608797 5.823857e-05 177 163 0.0003085011 -4.978574e-05 178 163 -0.0002661734 4.295492e-05 179 163 0.0002314578 -3.735254e-05 180 163 -0.0002026106 3.26972e-05 181 163 0.0001783582 -2.878335e-05 182 163 -0.0001577525 2.545802e-05 183 163 0.000140076 -2.26054e-05 184 163 -0.0001247774 2.013652e-05 185 163 0.0001114272 -1.798207e-05 186 163 -9.968672e-05 1.608739e-05 187 163 8.928565e-05 -1.440887e-05 188 163 -8.000611e-05 1.291134e-05 189 163 7.167061e-05 -1.156616e-05 190 163 -6.413319e-05 1.034978e-05 191 163 5.727273e-05 -9.242642e-06 192 163 -5.098776e-05 8.228377e-06 193 163 4.519256e-05 -7.293151e-06 194 163 -3.981401e-05 6.425164e-06 195 163 3.478917e-05 -5.614257e-06 196 163 -3.00633e-05 4.851599e-06 197 163 2.558831e-05 -4.129428e-06 198 163 -2.132146e-05 3.440846e-06 199 163 1.722429e-05 -2.779647e-06 200 163 -1.326172e-05 2.14017e-06 201 163 9.401297e-06 -1.517176e-06 202 163 -5.612495e-06 9.057414e-07 203 163 1.866144e-06 -3.011573e-07 204 163 1.866144e-06 -3.011573e-07 205 163 -5.612495e-06 9.057414e-07 206 163 9.401297e-06 -1.517176e-06 207 163 -1.326172e-05 2.14017e-06 208 163 1.722429e-05 -2.779647e-06 209 163 -2.132146e-05 3.440846e-06 210 163 2.558831e-05 -4.129428e-06 211 163 -3.00633e-05 4.851599e-06 212 163 3.478917e-05 -5.614257e-06 213 163 -3.981401e-05 6.425164e-06 214 163 4.519256e-05 -7.293151e-06 215 163 -5.098776e-05 8.228377e-06 216 163 5.727273e-05 -9.242642e-06 217 163 -6.413319e-05 1.034978e-05 218 163 7.167061e-05 -1.156616e-05 219 163 -8.000611e-05 1.291134e-05 220 163 8.928565e-05 -1.440887e-05 221 163 -9.968672e-05 1.608739e-05 222 163 0.0001114272 -1.798207e-05 223 163 -0.0001247774 2.013652e-05 224 163 0.000140076 -2.26054e-05 225 163 -0.0001577525 2.545802e-05 226 163 0.0001783582 -2.878335e-05 227 163 -0.0002026106 3.26972e-05 228 163 0.0002314578 -3.735254e-05 229 163 -0.0002661734 4.295492e-05 230 163 0.0003085011 -4.978574e-05 231 163 -0.0003608797 5.823857e-05 232 163 0.0004268045 -6.887749e-05 233 163 -0.0005114288 8.253411e-05 234 163 0.0006226054 -0.0001004757 235 163 -0.0007727812 0.000124711 236 163 0.0009826448 -0.0001585787 237 163 -0.001288661 0.0002079635 238 163 0.001760065 -0.0002840383 239 163 -0.002541777 0.0004101906 240 163 0.003980742 -0.0006424099 241 163 -0.007089509 0.001144101 242 163 0.01597157 -0.002577484 244 163 0.0001444547 5.03874e-06 83 164 0.0001574252 6.107297e-06 162 164 0.01597157 -0.002577484 163 164 -0.06393453 0.01031772 164 164 -0.1268573 -0.04868037 165 164 -0.06393453 0.01031772 166 164 0.01597157 -0.002577484 167 164 -0.007089509 0.001144101 168 164 0.003980742 -0.0006424099 169 164 -0.002541777 0.0004101906 170 164 0.001760065 -0.0002840383 171 164 -0.001288661 0.0002079635 172 164 0.0009826448 -0.0001585787 173 164 -0.0007727812 0.000124711 174 164 0.0006226054 -0.0001004757 175 164 -0.0005114288 8.253411e-05 176 164 0.0004268045 -6.887749e-05 177 164 -0.0003608797 5.823857e-05 178 164 0.0003085011 -4.978574e-05 179 164 -0.0002661734 4.295492e-05 180 164 0.0002314578 -3.735254e-05 181 164 -0.0002026106 3.26972e-05 182 164 0.0001783582 -2.878335e-05 183 164 -0.0001577525 2.545802e-05 184 164 0.000140076 -2.26054e-05 185 164 -0.0001247774 2.013652e-05 186 164 0.0001114272 -1.798207e-05 187 164 -9.968672e-05 1.608739e-05 188 164 8.928565e-05 -1.440887e-05 189 164 -8.000611e-05 1.291134e-05 190 164 7.167061e-05 -1.156616e-05 191 164 -6.413319e-05 1.034978e-05 192 164 5.727273e-05 -9.242642e-06 193 164 -5.098776e-05 8.228377e-06 194 164 4.519256e-05 -7.293151e-06 195 164 -3.981401e-05 6.425164e-06 196 164 3.478917e-05 -5.614257e-06 197 164 -3.00633e-05 4.851599e-06 198 164 2.558831e-05 -4.129428e-06 199 164 -2.132146e-05 3.440846e-06 200 164 1.722429e-05 -2.779647e-06 201 164 -1.326172e-05 2.14017e-06 202 164 9.401297e-06 -1.517176e-06 203 164 -5.612495e-06 9.057414e-07 204 164 1.866144e-06 -3.011573e-07 205 164 1.866144e-06 -3.011573e-07 206 164 -5.612495e-06 9.057414e-07 207 164 9.401297e-06 -1.517176e-06 208 164 -1.326172e-05 2.14017e-06 209 164 1.722429e-05 -2.779647e-06 210 164 -2.132146e-05 3.440846e-06 211 164 2.558831e-05 -4.129428e-06 212 164 -3.00633e-05 4.851599e-06 213 164 3.478917e-05 -5.614257e-06 214 164 -3.981401e-05 6.425164e-06 215 164 4.519256e-05 -7.293151e-06 216 164 -5.098776e-05 8.228377e-06 217 164 5.727273e-05 -9.242642e-06 218 164 -6.413319e-05 1.034978e-05 219 164 7.167061e-05 -1.156616e-05 220 164 -8.000611e-05 1.291134e-05 221 164 8.928565e-05 -1.440887e-05 222 164 -9.968672e-05 1.608739e-05 223 164 0.0001114272 -1.798207e-05 224 164 -0.0001247774 2.013652e-05 225 164 0.000140076 -2.26054e-05 226 164 -0.0001577525 2.545802e-05 227 164 0.0001783582 -2.878335e-05 228 164 -0.0002026106 3.26972e-05 229 164 0.0002314578 -3.735254e-05 230 164 -0.0002661734 4.295492e-05 231 164 0.0003085011 -4.978574e-05 232 164 -0.0003608797 5.823857e-05 233 164 0.0004268045 -6.887749e-05 234 164 -0.0005114288 8.253411e-05 235 164 0.0006226054 -0.0001004757 236 164 -0.0007727812 0.000124711 237 164 0.0009826448 -0.0001585787 238 164 -0.001288661 0.0002079635 239 164 0.001760065 -0.0002840383 240 164 -0.002541777 0.0004101906 241 164 0.003980742 -0.0006424099 242 164 -0.007089509 0.001144101 245 164 0.0001574252 6.107297e-06 84 165 0.0001704618 7.186683e-06 162 165 -0.007089509 0.001144101 163 165 0.01597157 -0.002577484 164 165 -0.06393453 0.01031772 165 165 -0.1868102 -0.04569037 166 165 -0.06393453 0.01031772 167 165 0.01597157 -0.002577484 168 165 -0.007089509 0.001144101 169 165 0.003980742 -0.0006424099 170 165 -0.002541777 0.0004101906 171 165 0.001760065 -0.0002840383 172 165 -0.001288661 0.0002079635 173 165 0.0009826448 -0.0001585787 174 165 -0.0007727812 0.000124711 175 165 0.0006226054 -0.0001004757 176 165 -0.0005114288 8.253411e-05 177 165 0.0004268045 -6.887749e-05 178 165 -0.0003608797 5.823857e-05 179 165 0.0003085011 -4.978574e-05 180 165 -0.0002661734 4.295492e-05 181 165 0.0002314578 -3.735254e-05 182 165 -0.0002026106 3.26972e-05 183 165 0.0001783582 -2.878335e-05 184 165 -0.0001577525 2.545802e-05 185 165 0.000140076 -2.26054e-05 186 165 -0.0001247774 2.013652e-05 187 165 0.0001114272 -1.798207e-05 188 165 -9.968672e-05 1.608739e-05 189 165 8.928565e-05 -1.440887e-05 190 165 -8.000611e-05 1.291134e-05 191 165 7.167061e-05 -1.156616e-05 192 165 -6.413319e-05 1.034978e-05 193 165 5.727273e-05 -9.242642e-06 194 165 -5.098776e-05 8.228377e-06 195 165 4.519256e-05 -7.293151e-06 196 165 -3.981401e-05 6.425164e-06 197 165 3.478917e-05 -5.614257e-06 198 165 -3.00633e-05 4.851599e-06 199 165 2.558831e-05 -4.129428e-06 200 165 -2.132146e-05 3.440846e-06 201 165 1.722429e-05 -2.779647e-06 202 165 -1.326172e-05 2.14017e-06 203 165 9.401297e-06 -1.517176e-06 204 165 -5.612495e-06 9.057414e-07 205 165 1.866144e-06 -3.011573e-07 206 165 1.866144e-06 -3.011573e-07 207 165 -5.612495e-06 9.057414e-07 208 165 9.401297e-06 -1.517176e-06 209 165 -1.326172e-05 2.14017e-06 210 165 1.722429e-05 -2.779647e-06 211 165 -2.132146e-05 3.440846e-06 212 165 2.558831e-05 -4.129428e-06 213 165 -3.00633e-05 4.851599e-06 214 165 3.478917e-05 -5.614257e-06 215 165 -3.981401e-05 6.425164e-06 216 165 4.519256e-05 -7.293151e-06 217 165 -5.098776e-05 8.228377e-06 218 165 5.727273e-05 -9.242642e-06 219 165 -6.413319e-05 1.034978e-05 220 165 7.167061e-05 -1.156616e-05 221 165 -8.000611e-05 1.291134e-05 222 165 8.928565e-05 -1.440887e-05 223 165 -9.968672e-05 1.608739e-05 224 165 0.0001114272 -1.798207e-05 225 165 -0.0001247774 2.013652e-05 226 165 0.000140076 -2.26054e-05 227 165 -0.0001577525 2.545802e-05 228 165 0.0001783582 -2.878335e-05 229 165 -0.0002026106 3.26972e-05 230 165 0.0002314578 -3.735254e-05 231 165 -0.0002661734 4.295492e-05 232 165 0.0003085011 -4.978574e-05 233 165 -0.0003608797 5.823857e-05 234 165 0.0004268045 -6.887749e-05 235 165 -0.0005114288 8.253411e-05 236 165 0.0006226054 -0.0001004757 237 165 -0.0007727812 0.000124711 238 165 0.0009826448 -0.0001585787 239 165 -0.001288661 0.0002079635 240 165 0.001760065 -0.0002840383 241 165 -0.002541777 0.0004101906 242 165 0.003980742 -0.0006424099 246 165 0.0001704618 7.186683e-06 85 166 0.0001835649 8.276982e-06 162 166 0.003980742 -0.0006424099 163 166 -0.007089509 0.001144101 164 166 0.01597157 -0.002577484 165 166 -0.06393453 0.01031772 166 166 -0.2329246 -0.0420974 167 166 -0.06393453 0.01031772 168 166 0.01597157 -0.002577484 169 166 -0.007089509 0.001144101 170 166 0.003980742 -0.0006424099 171 166 -0.002541777 0.0004101906 172 166 0.001760065 -0.0002840383 173 166 -0.001288661 0.0002079635 174 166 0.0009826448 -0.0001585787 175 166 -0.0007727812 0.000124711 176 166 0.0006226054 -0.0001004757 177 166 -0.0005114288 8.253411e-05 178 166 0.0004268045 -6.887749e-05 179 166 -0.0003608797 5.823857e-05 180 166 0.0003085011 -4.978574e-05 181 166 -0.0002661734 4.295492e-05 182 166 0.0002314578 -3.735254e-05 183 166 -0.0002026106 3.26972e-05 184 166 0.0001783582 -2.878335e-05 185 166 -0.0001577525 2.545802e-05 186 166 0.000140076 -2.26054e-05 187 166 -0.0001247774 2.013652e-05 188 166 0.0001114272 -1.798207e-05 189 166 -9.968672e-05 1.608739e-05 190 166 8.928565e-05 -1.440887e-05 191 166 -8.000611e-05 1.291134e-05 192 166 7.167061e-05 -1.156616e-05 193 166 -6.413319e-05 1.034978e-05 194 166 5.727273e-05 -9.242642e-06 195 166 -5.098776e-05 8.228377e-06 196 166 4.519256e-05 -7.293151e-06 197 166 -3.981401e-05 6.425164e-06 198 166 3.478917e-05 -5.614257e-06 199 166 -3.00633e-05 4.851599e-06 200 166 2.558831e-05 -4.129428e-06 201 166 -2.132146e-05 3.440846e-06 202 166 1.722429e-05 -2.779647e-06 203 166 -1.326172e-05 2.14017e-06 204 166 9.401297e-06 -1.517176e-06 205 166 -5.612495e-06 9.057414e-07 206 166 1.866144e-06 -3.011573e-07 207 166 1.866144e-06 -3.011573e-07 208 166 -5.612495e-06 9.057414e-07 209 166 9.401297e-06 -1.517176e-06 210 166 -1.326172e-05 2.14017e-06 211 166 1.722429e-05 -2.779647e-06 212 166 -2.132146e-05 3.440846e-06 213 166 2.558831e-05 -4.129428e-06 214 166 -3.00633e-05 4.851599e-06 215 166 3.478917e-05 -5.614257e-06 216 166 -3.981401e-05 6.425164e-06 217 166 4.519256e-05 -7.293151e-06 218 166 -5.098776e-05 8.228377e-06 219 166 5.727273e-05 -9.242642e-06 220 166 -6.413319e-05 1.034978e-05 221 166 7.167061e-05 -1.156616e-05 222 166 -8.000611e-05 1.291134e-05 223 166 8.928565e-05 -1.440887e-05 224 166 -9.968672e-05 1.608739e-05 225 166 0.0001114272 -1.798207e-05 226 166 -0.0001247774 2.013652e-05 227 166 0.000140076 -2.26054e-05 228 166 -0.0001577525 2.545802e-05 229 166 0.0001783582 -2.878335e-05 230 166 -0.0002026106 3.26972e-05 231 166 0.0002314578 -3.735254e-05 232 166 -0.0002661734 4.295492e-05 233 166 0.0003085011 -4.978574e-05 234 166 -0.0003608797 5.823857e-05 235 166 0.0004268045 -6.887749e-05 236 166 -0.0005114288 8.253411e-05 237 166 0.0006226054 -0.0001004757 238 166 -0.0007727812 0.000124711 239 166 0.0009826448 -0.0001585787 240 166 -0.001288661 0.0002079635 241 166 0.001760065 -0.0002840383 242 166 -0.002541777 0.0004101906 247 166 0.0001835649 8.276982e-06 86 167 0.0001967347 9.378277e-06 162 167 -0.002541777 0.0004101906 163 167 0.003980742 -0.0006424099 164 167 -0.007089509 0.001144101 165 167 0.01597157 -0.002577484 166 167 -0.06393453 0.01031772 167 167 -0.2678626 -0.03823259 168 167 -0.06393453 0.01031772 169 167 0.01597157 -0.002577484 170 167 -0.007089509 0.001144101 171 167 0.003980742 -0.0006424099 172 167 -0.002541777 0.0004101906 173 167 0.001760065 -0.0002840383 174 167 -0.001288661 0.0002079635 175 167 0.0009826448 -0.0001585787 176 167 -0.0007727812 0.000124711 177 167 0.0006226054 -0.0001004757 178 167 -0.0005114288 8.253411e-05 179 167 0.0004268045 -6.887749e-05 180 167 -0.0003608797 5.823857e-05 181 167 0.0003085011 -4.978574e-05 182 167 -0.0002661734 4.295492e-05 183 167 0.0002314578 -3.735254e-05 184 167 -0.0002026106 3.26972e-05 185 167 0.0001783582 -2.878335e-05 186 167 -0.0001577525 2.545802e-05 187 167 0.000140076 -2.26054e-05 188 167 -0.0001247774 2.013652e-05 189 167 0.0001114272 -1.798207e-05 190 167 -9.968672e-05 1.608739e-05 191 167 8.928565e-05 -1.440887e-05 192 167 -8.000611e-05 1.291134e-05 193 167 7.167061e-05 -1.156616e-05 194 167 -6.413319e-05 1.034978e-05 195 167 5.727273e-05 -9.242642e-06 196 167 -5.098776e-05 8.228377e-06 197 167 4.519256e-05 -7.293151e-06 198 167 -3.981401e-05 6.425164e-06 199 167 3.478917e-05 -5.614257e-06 200 167 -3.00633e-05 4.851599e-06 201 167 2.558831e-05 -4.129428e-06 202 167 -2.132146e-05 3.440846e-06 203 167 1.722429e-05 -2.779647e-06 204 167 -1.326172e-05 2.14017e-06 205 167 9.401297e-06 -1.517176e-06 206 167 -5.612495e-06 9.057414e-07 207 167 1.866144e-06 -3.011573e-07 208 167 1.866144e-06 -3.011573e-07 209 167 -5.612495e-06 9.057414e-07 210 167 9.401297e-06 -1.517176e-06 211 167 -1.326172e-05 2.14017e-06 212 167 1.722429e-05 -2.779647e-06 213 167 -2.132146e-05 3.440846e-06 214 167 2.558831e-05 -4.129428e-06 215 167 -3.00633e-05 4.851599e-06 216 167 3.478917e-05 -5.614257e-06 217 167 -3.981401e-05 6.425164e-06 218 167 4.519256e-05 -7.293151e-06 219 167 -5.098776e-05 8.228377e-06 220 167 5.727273e-05 -9.242642e-06 221 167 -6.413319e-05 1.034978e-05 222 167 7.167061e-05 -1.156616e-05 223 167 -8.000611e-05 1.291134e-05 224 167 8.928565e-05 -1.440887e-05 225 167 -9.968672e-05 1.608739e-05 226 167 0.0001114272 -1.798207e-05 227 167 -0.0001247774 2.013652e-05 228 167 0.000140076 -2.26054e-05 229 167 -0.0001577525 2.545802e-05 230 167 0.0001783582 -2.878335e-05 231 167 -0.0002026106 3.26972e-05 232 167 0.0002314578 -3.735254e-05 233 167 -0.0002661734 4.295492e-05 234 167 0.0003085011 -4.978574e-05 235 167 -0.0003608797 5.823857e-05 236 167 0.0004268045 -6.887749e-05 237 167 -0.0005114288 8.253411e-05 238 167 0.0006226054 -0.0001004757 239 167 -0.0007727812 0.000124711 240 167 0.0009826448 -0.0001585787 241 167 -0.001288661 0.0002079635 242 167 0.001760065 -0.0002840383 248 167 0.0001967347 9.378277e-06 87 168 0.0002099716 1.049065e-05 162 168 0.001760065 -0.0002840383 163 168 -0.002541777 0.0004101906 164 168 0.003980742 -0.0006424099 165 168 -0.007089509 0.001144101 166 168 0.01597157 -0.002577484 167 168 -0.06393453 0.01031772 168 168 -0.2938105 -0.03433059 169 168 -0.06393453 0.01031772 170 168 0.01597157 -0.002577484 171 168 -0.007089509 0.001144101 172 168 0.003980742 -0.0006424099 173 168 -0.002541777 0.0004101906 174 168 0.001760065 -0.0002840383 175 168 -0.001288661 0.0002079635 176 168 0.0009826448 -0.0001585787 177 168 -0.0007727812 0.000124711 178 168 0.0006226054 -0.0001004757 179 168 -0.0005114288 8.253411e-05 180 168 0.0004268045 -6.887749e-05 181 168 -0.0003608797 5.823857e-05 182 168 0.0003085011 -4.978574e-05 183 168 -0.0002661734 4.295492e-05 184 168 0.0002314578 -3.735254e-05 185 168 -0.0002026106 3.26972e-05 186 168 0.0001783582 -2.878335e-05 187 168 -0.0001577525 2.545802e-05 188 168 0.000140076 -2.26054e-05 189 168 -0.0001247774 2.013652e-05 190 168 0.0001114272 -1.798207e-05 191 168 -9.968672e-05 1.608739e-05 192 168 8.928565e-05 -1.440887e-05 193 168 -8.000611e-05 1.291134e-05 194 168 7.167061e-05 -1.156616e-05 195 168 -6.413319e-05 1.034978e-05 196 168 5.727273e-05 -9.242642e-06 197 168 -5.098776e-05 8.228377e-06 198 168 4.519256e-05 -7.293151e-06 199 168 -3.981401e-05 6.425164e-06 200 168 3.478917e-05 -5.614257e-06 201 168 -3.00633e-05 4.851599e-06 202 168 2.558831e-05 -4.129428e-06 203 168 -2.132146e-05 3.440846e-06 204 168 1.722429e-05 -2.779647e-06 205 168 -1.326172e-05 2.14017e-06 206 168 9.401297e-06 -1.517176e-06 207 168 -5.612495e-06 9.057414e-07 208 168 1.866144e-06 -3.011573e-07 209 168 1.866144e-06 -3.011573e-07 210 168 -5.612495e-06 9.057414e-07 211 168 9.401297e-06 -1.517176e-06 212 168 -1.326172e-05 2.14017e-06 213 168 1.722429e-05 -2.779647e-06 214 168 -2.132146e-05 3.440846e-06 215 168 2.558831e-05 -4.129428e-06 216 168 -3.00633e-05 4.851599e-06 217 168 3.478917e-05 -5.614257e-06 218 168 -3.981401e-05 6.425164e-06 219 168 4.519256e-05 -7.293151e-06 220 168 -5.098776e-05 8.228377e-06 221 168 5.727273e-05 -9.242642e-06 222 168 -6.413319e-05 1.034978e-05 223 168 7.167061e-05 -1.156616e-05 224 168 -8.000611e-05 1.291134e-05 225 168 8.928565e-05 -1.440887e-05 226 168 -9.968672e-05 1.608739e-05 227 168 0.0001114272 -1.798207e-05 228 168 -0.0001247774 2.013652e-05 229 168 0.000140076 -2.26054e-05 230 168 -0.0001577525 2.545802e-05 231 168 0.0001783582 -2.878335e-05 232 168 -0.0002026106 3.26972e-05 233 168 0.0002314578 -3.735254e-05 234 168 -0.0002661734 4.295492e-05 235 168 0.0003085011 -4.978574e-05 236 168 -0.0003608797 5.823857e-05 237 168 0.0004268045 -6.887749e-05 238 168 -0.0005114288 8.253411e-05 239 168 0.0006226054 -0.0001004757 240 168 -0.0007727812 0.000124711 241 168 0.0009826448 -0.0001585787 242 168 -0.001288661 0.0002079635 249 168 0.0002099716 1.049065e-05 88 169 0.000223276 1.161419e-05 162 169 -0.001288661 0.0002079635 163 169 0.001760065 -0.0002840383 164 169 -0.002541777 0.0004101906 165 169 0.003980742 -0.0006424099 166 169 -0.007089509 0.001144101 167 169 0.01597157 -0.002577484 168 169 -0.06393453 0.01031772 169 169 -0.3125605 -0.03055269 170 169 -0.06393453 0.01031772 171 169 0.01597157 -0.002577484 172 169 -0.007089509 0.001144101 173 169 0.003980742 -0.0006424099 174 169 -0.002541777 0.0004101906 175 169 0.001760065 -0.0002840383 176 169 -0.001288661 0.0002079635 177 169 0.0009826448 -0.0001585787 178 169 -0.0007727812 0.000124711 179 169 0.0006226054 -0.0001004757 180 169 -0.0005114288 8.253411e-05 181 169 0.0004268045 -6.887749e-05 182 169 -0.0003608797 5.823857e-05 183 169 0.0003085011 -4.978574e-05 184 169 -0.0002661734 4.295492e-05 185 169 0.0002314578 -3.735254e-05 186 169 -0.0002026106 3.26972e-05 187 169 0.0001783582 -2.878335e-05 188 169 -0.0001577525 2.545802e-05 189 169 0.000140076 -2.26054e-05 190 169 -0.0001247774 2.013652e-05 191 169 0.0001114272 -1.798207e-05 192 169 -9.968672e-05 1.608739e-05 193 169 8.928565e-05 -1.440887e-05 194 169 -8.000611e-05 1.291134e-05 195 169 7.167061e-05 -1.156616e-05 196 169 -6.413319e-05 1.034978e-05 197 169 5.727273e-05 -9.242642e-06 198 169 -5.098776e-05 8.228377e-06 199 169 4.519256e-05 -7.293151e-06 200 169 -3.981401e-05 6.425164e-06 201 169 3.478917e-05 -5.614257e-06 202 169 -3.00633e-05 4.851599e-06 203 169 2.558831e-05 -4.129428e-06 204 169 -2.132146e-05 3.440846e-06 205 169 1.722429e-05 -2.779647e-06 206 169 -1.326172e-05 2.14017e-06 207 169 9.401297e-06 -1.517176e-06 208 169 -5.612495e-06 9.057414e-07 209 169 1.866144e-06 -3.011573e-07 210 169 1.866144e-06 -3.011573e-07 211 169 -5.612495e-06 9.057414e-07 212 169 9.401297e-06 -1.517176e-06 213 169 -1.326172e-05 2.14017e-06 214 169 1.722429e-05 -2.779647e-06 215 169 -2.132146e-05 3.440846e-06 216 169 2.558831e-05 -4.129428e-06 217 169 -3.00633e-05 4.851599e-06 218 169 3.478917e-05 -5.614257e-06 219 169 -3.981401e-05 6.425164e-06 220 169 4.519256e-05 -7.293151e-06 221 169 -5.098776e-05 8.228377e-06 222 169 5.727273e-05 -9.242642e-06 223 169 -6.413319e-05 1.034978e-05 224 169 7.167061e-05 -1.156616e-05 225 169 -8.000611e-05 1.291134e-05 226 169 8.928565e-05 -1.440887e-05 227 169 -9.968672e-05 1.608739e-05 228 169 0.0001114272 -1.798207e-05 229 169 -0.0001247774 2.013652e-05 230 169 0.000140076 -2.26054e-05 231 169 -0.0001577525 2.545802e-05 232 169 0.0001783582 -2.878335e-05 233 169 -0.0002026106 3.26972e-05 234 169 0.0002314578 -3.735254e-05 235 169 -0.0002661734 4.295492e-05 236 169 0.0003085011 -4.978574e-05 237 169 -0.0003608797 5.823857e-05 238 169 0.0004268045 -6.887749e-05 239 169 -0.0005114288 8.253411e-05 240 169 0.0006226054 -0.0001004757 241 169 -0.0007727812 0.000124711 242 169 0.0009826448 -0.0001585787 250 169 0.000223276 1.161419e-05 89 170 0.0002366482 1.274898e-05 162 170 0.0009826448 -0.0001585787 163 170 -0.001288661 0.0002079635 164 170 0.001760065 -0.0002840383 165 170 -0.002541777 0.0004101906 166 170 0.003980742 -0.0006424099 167 170 -0.007089509 0.001144101 168 170 0.01597157 -0.002577484 169 170 -0.06393453 0.01031772 170 170 -0.325579 -0.0270049 171 170 -0.06393453 0.01031772 172 170 0.01597157 -0.002577484 173 170 -0.007089509 0.001144101 174 170 0.003980742 -0.0006424099 175 170 -0.002541777 0.0004101906 176 170 0.001760065 -0.0002840383 177 170 -0.001288661 0.0002079635 178 170 0.0009826448 -0.0001585787 179 170 -0.0007727812 0.000124711 180 170 0.0006226054 -0.0001004757 181 170 -0.0005114288 8.253411e-05 182 170 0.0004268045 -6.887749e-05 183 170 -0.0003608797 5.823857e-05 184 170 0.0003085011 -4.978574e-05 185 170 -0.0002661734 4.295492e-05 186 170 0.0002314578 -3.735254e-05 187 170 -0.0002026106 3.26972e-05 188 170 0.0001783582 -2.878335e-05 189 170 -0.0001577525 2.545802e-05 190 170 0.000140076 -2.26054e-05 191 170 -0.0001247774 2.013652e-05 192 170 0.0001114272 -1.798207e-05 193 170 -9.968672e-05 1.608739e-05 194 170 8.928565e-05 -1.440887e-05 195 170 -8.000611e-05 1.291134e-05 196 170 7.167061e-05 -1.156616e-05 197 170 -6.413319e-05 1.034978e-05 198 170 5.727273e-05 -9.242642e-06 199 170 -5.098776e-05 8.228377e-06 200 170 4.519256e-05 -7.293151e-06 201 170 -3.981401e-05 6.425164e-06 202 170 3.478917e-05 -5.614257e-06 203 170 -3.00633e-05 4.851599e-06 204 170 2.558831e-05 -4.129428e-06 205 170 -2.132146e-05 3.440846e-06 206 170 1.722429e-05 -2.779647e-06 207 170 -1.326172e-05 2.14017e-06 208 170 9.401297e-06 -1.517176e-06 209 170 -5.612495e-06 9.057414e-07 210 170 1.866144e-06 -3.011573e-07 211 170 1.866144e-06 -3.011573e-07 212 170 -5.612495e-06 9.057414e-07 213 170 9.401297e-06 -1.517176e-06 214 170 -1.326172e-05 2.14017e-06 215 170 1.722429e-05 -2.779647e-06 216 170 -2.132146e-05 3.440846e-06 217 170 2.558831e-05 -4.129428e-06 218 170 -3.00633e-05 4.851599e-06 219 170 3.478917e-05 -5.614257e-06 220 170 -3.981401e-05 6.425164e-06 221 170 4.519256e-05 -7.293151e-06 222 170 -5.098776e-05 8.228377e-06 223 170 5.727273e-05 -9.242642e-06 224 170 -6.413319e-05 1.034978e-05 225 170 7.167061e-05 -1.156616e-05 226 170 -8.000611e-05 1.291134e-05 227 170 8.928565e-05 -1.440887e-05 228 170 -9.968672e-05 1.608739e-05 229 170 0.0001114272 -1.798207e-05 230 170 -0.0001247774 2.013652e-05 231 170 0.000140076 -2.26054e-05 232 170 -0.0001577525 2.545802e-05 233 170 0.0001783582 -2.878335e-05 234 170 -0.0002026106 3.26972e-05 235 170 0.0002314578 -3.735254e-05 236 170 -0.0002661734 4.295492e-05 237 170 0.0003085011 -4.978574e-05 238 170 -0.0003608797 5.823857e-05 239 170 0.0004268045 -6.887749e-05 240 170 -0.0005114288 8.253411e-05 241 170 0.0006226054 -0.0001004757 242 170 -0.0007727812 0.000124711 251 170 0.0002366482 1.274898e-05 90 171 0.0002500884 1.38951e-05 162 171 -0.0007727812 0.000124711 163 171 0.0009826448 -0.0001585787 164 171 -0.001288661 0.0002079635 165 171 0.001760065 -0.0002840383 166 171 -0.002541777 0.0004101906 167 171 0.003980742 -0.0006424099 168 171 -0.007089509 0.001144101 169 171 0.01597157 -0.002577484 170 171 -0.06393453 0.01031772 171 171 -0.3340635 -0.02375204 172 171 -0.06393453 0.01031772 173 171 0.01597157 -0.002577484 174 171 -0.007089509 0.001144101 175 171 0.003980742 -0.0006424099 176 171 -0.002541777 0.0004101906 177 171 0.001760065 -0.0002840383 178 171 -0.001288661 0.0002079635 179 171 0.0009826448 -0.0001585787 180 171 -0.0007727812 0.000124711 181 171 0.0006226054 -0.0001004757 182 171 -0.0005114288 8.253411e-05 183 171 0.0004268045 -6.887749e-05 184 171 -0.0003608797 5.823857e-05 185 171 0.0003085011 -4.978574e-05 186 171 -0.0002661734 4.295492e-05 187 171 0.0002314578 -3.735254e-05 188 171 -0.0002026106 3.26972e-05 189 171 0.0001783582 -2.878335e-05 190 171 -0.0001577525 2.545802e-05 191 171 0.000140076 -2.26054e-05 192 171 -0.0001247774 2.013652e-05 193 171 0.0001114272 -1.798207e-05 194 171 -9.968672e-05 1.608739e-05 195 171 8.928565e-05 -1.440887e-05 196 171 -8.000611e-05 1.291134e-05 197 171 7.167061e-05 -1.156616e-05 198 171 -6.413319e-05 1.034978e-05 199 171 5.727273e-05 -9.242642e-06 200 171 -5.098776e-05 8.228377e-06 201 171 4.519256e-05 -7.293151e-06 202 171 -3.981401e-05 6.425164e-06 203 171 3.478917e-05 -5.614257e-06 204 171 -3.00633e-05 4.851599e-06 205 171 2.558831e-05 -4.129428e-06 206 171 -2.132146e-05 3.440846e-06 207 171 1.722429e-05 -2.779647e-06 208 171 -1.326172e-05 2.14017e-06 209 171 9.401297e-06 -1.517176e-06 210 171 -5.612495e-06 9.057414e-07 211 171 1.866144e-06 -3.011573e-07 212 171 1.866144e-06 -3.011573e-07 213 171 -5.612495e-06 9.057414e-07 214 171 9.401297e-06 -1.517176e-06 215 171 -1.326172e-05 2.14017e-06 216 171 1.722429e-05 -2.779647e-06 217 171 -2.132146e-05 3.440846e-06 218 171 2.558831e-05 -4.129428e-06 219 171 -3.00633e-05 4.851599e-06 220 171 3.478917e-05 -5.614257e-06 221 171 -3.981401e-05 6.425164e-06 222 171 4.519256e-05 -7.293151e-06 223 171 -5.098776e-05 8.228377e-06 224 171 5.727273e-05 -9.242642e-06 225 171 -6.413319e-05 1.034978e-05 226 171 7.167061e-05 -1.156616e-05 227 171 -8.000611e-05 1.291134e-05 228 171 8.928565e-05 -1.440887e-05 229 171 -9.968672e-05 1.608739e-05 230 171 0.0001114272 -1.798207e-05 231 171 -0.0001247774 2.013652e-05 232 171 0.000140076 -2.26054e-05 233 171 -0.0001577525 2.545802e-05 234 171 0.0001783582 -2.878335e-05 235 171 -0.0002026106 3.26972e-05 236 171 0.0002314578 -3.735254e-05 237 171 -0.0002661734 4.295492e-05 238 171 0.0003085011 -4.978574e-05 239 171 -0.0003608797 5.823857e-05 240 171 0.0004268045 -6.887749e-05 241 171 -0.0005114288 8.253411e-05 242 171 0.0006226054 -0.0001004757 252 171 0.0002500884 1.38951e-05 91 172 0.0002635972 1.505265e-05 162 172 0.0006226054 -0.0001004757 163 172 -0.0007727812 0.000124711 164 172 0.0009826448 -0.0001585787 165 172 -0.001288661 0.0002079635 166 172 0.001760065 -0.0002840383 167 172 -0.002541777 0.0004101906 168 172 0.003980742 -0.0006424099 169 172 -0.007089509 0.001144101 170 172 0.01597157 -0.002577484 171 172 -0.06393453 0.01031772 172 172 -0.3389892 -0.02082867 173 172 -0.06393453 0.01031772 174 172 0.01597157 -0.002577484 175 172 -0.007089509 0.001144101 176 172 0.003980742 -0.0006424099 177 172 -0.002541777 0.0004101906 178 172 0.001760065 -0.0002840383 179 172 -0.001288661 0.0002079635 180 172 0.0009826448 -0.0001585787 181 172 -0.0007727812 0.000124711 182 172 0.0006226054 -0.0001004757 183 172 -0.0005114288 8.253411e-05 184 172 0.0004268045 -6.887749e-05 185 172 -0.0003608797 5.823857e-05 186 172 0.0003085011 -4.978574e-05 187 172 -0.0002661734 4.295492e-05 188 172 0.0002314578 -3.735254e-05 189 172 -0.0002026106 3.26972e-05 190 172 0.0001783582 -2.878335e-05 191 172 -0.0001577525 2.545802e-05 192 172 0.000140076 -2.26054e-05 193 172 -0.0001247774 2.013652e-05 194 172 0.0001114272 -1.798207e-05 195 172 -9.968672e-05 1.608739e-05 196 172 8.928565e-05 -1.440887e-05 197 172 -8.000611e-05 1.291134e-05 198 172 7.167061e-05 -1.156616e-05 199 172 -6.413319e-05 1.034978e-05 200 172 5.727273e-05 -9.242642e-06 201 172 -5.098776e-05 8.228377e-06 202 172 4.519256e-05 -7.293151e-06 203 172 -3.981401e-05 6.425164e-06 204 172 3.478917e-05 -5.614257e-06 205 172 -3.00633e-05 4.851599e-06 206 172 2.558831e-05 -4.129428e-06 207 172 -2.132146e-05 3.440846e-06 208 172 1.722429e-05 -2.779647e-06 209 172 -1.326172e-05 2.14017e-06 210 172 9.401297e-06 -1.517176e-06 211 172 -5.612495e-06 9.057414e-07 212 172 1.866144e-06 -3.011573e-07 213 172 1.866144e-06 -3.011573e-07 214 172 -5.612495e-06 9.057414e-07 215 172 9.401297e-06 -1.517176e-06 216 172 -1.326172e-05 2.14017e-06 217 172 1.722429e-05 -2.779647e-06 218 172 -2.132146e-05 3.440846e-06 219 172 2.558831e-05 -4.129428e-06 220 172 -3.00633e-05 4.851599e-06 221 172 3.478917e-05 -5.614257e-06 222 172 -3.981401e-05 6.425164e-06 223 172 4.519256e-05 -7.293151e-06 224 172 -5.098776e-05 8.228377e-06 225 172 5.727273e-05 -9.242642e-06 226 172 -6.413319e-05 1.034978e-05 227 172 7.167061e-05 -1.156616e-05 228 172 -8.000611e-05 1.291134e-05 229 172 8.928565e-05 -1.440887e-05 230 172 -9.968672e-05 1.608739e-05 231 172 0.0001114272 -1.798207e-05 232 172 -0.0001247774 2.013652e-05 233 172 0.000140076 -2.26054e-05 234 172 -0.0001577525 2.545802e-05 235 172 0.0001783582 -2.878335e-05 236 172 -0.0002026106 3.26972e-05 237 172 0.0002314578 -3.735254e-05 238 172 -0.0002661734 4.295492e-05 239 172 0.0003085011 -4.978574e-05 240 172 -0.0003608797 5.823857e-05 241 172 0.0004268045 -6.887749e-05 242 172 -0.0005114288 8.253411e-05 253 172 0.0002635972 1.505265e-05 92 173 0.0002771748 1.62217e-05 162 173 -0.0005114288 8.253411e-05 163 173 0.0006226054 -0.0001004757 164 173 -0.0007727812 0.000124711 165 173 0.0009826448 -0.0001585787 166 173 -0.001288661 0.0002079635 167 173 0.001760065 -0.0002840383 168 173 -0.002541777 0.0004101906 169 173 0.003980742 -0.0006424099 170 173 -0.007089509 0.001144101 171 173 0.01597157 -0.002577484 172 173 -0.06393453 0.01031772 173 173 -0.3411486 -0.01824749 174 173 -0.06393453 0.01031772 175 173 0.01597157 -0.002577484 176 173 -0.007089509 0.001144101 177 173 0.003980742 -0.0006424099 178 173 -0.002541777 0.0004101906 179 173 0.001760065 -0.0002840383 180 173 -0.001288661 0.0002079635 181 173 0.0009826448 -0.0001585787 182 173 -0.0007727812 0.000124711 183 173 0.0006226054 -0.0001004757 184 173 -0.0005114288 8.253411e-05 185 173 0.0004268045 -6.887749e-05 186 173 -0.0003608797 5.823857e-05 187 173 0.0003085011 -4.978574e-05 188 173 -0.0002661734 4.295492e-05 189 173 0.0002314578 -3.735254e-05 190 173 -0.0002026106 3.26972e-05 191 173 0.0001783582 -2.878335e-05 192 173 -0.0001577525 2.545802e-05 193 173 0.000140076 -2.26054e-05 194 173 -0.0001247774 2.013652e-05 195 173 0.0001114272 -1.798207e-05 196 173 -9.968672e-05 1.608739e-05 197 173 8.928565e-05 -1.440887e-05 198 173 -8.000611e-05 1.291134e-05 199 173 7.167061e-05 -1.156616e-05 200 173 -6.413319e-05 1.034978e-05 201 173 5.727273e-05 -9.242642e-06 202 173 -5.098776e-05 8.228377e-06 203 173 4.519256e-05 -7.293151e-06 204 173 -3.981401e-05 6.425164e-06 205 173 3.478917e-05 -5.614257e-06 206 173 -3.00633e-05 4.851599e-06 207 173 2.558831e-05 -4.129428e-06 208 173 -2.132146e-05 3.440846e-06 209 173 1.722429e-05 -2.779647e-06 210 173 -1.326172e-05 2.14017e-06 211 173 9.401297e-06 -1.517176e-06 212 173 -5.612495e-06 9.057414e-07 213 173 1.866144e-06 -3.011573e-07 214 173 1.866144e-06 -3.011573e-07 215 173 -5.612495e-06 9.057414e-07 216 173 9.401297e-06 -1.517176e-06 217 173 -1.326172e-05 2.14017e-06 218 173 1.722429e-05 -2.779647e-06 219 173 -2.132146e-05 3.440846e-06 220 173 2.558831e-05 -4.129428e-06 221 173 -3.00633e-05 4.851599e-06 222 173 3.478917e-05 -5.614257e-06 223 173 -3.981401e-05 6.425164e-06 224 173 4.519256e-05 -7.293151e-06 225 173 -5.098776e-05 8.228377e-06 226 173 5.727273e-05 -9.242642e-06 227 173 -6.413319e-05 1.034978e-05 228 173 7.167061e-05 -1.156616e-05 229 173 -8.000611e-05 1.291134e-05 230 173 8.928565e-05 -1.440887e-05 231 173 -9.968672e-05 1.608739e-05 232 173 0.0001114272 -1.798207e-05 233 173 -0.0001247774 2.013652e-05 234 173 0.000140076 -2.26054e-05 235 173 -0.0001577525 2.545802e-05 236 173 0.0001783582 -2.878335e-05 237 173 -0.0002026106 3.26972e-05 238 173 0.0002314578 -3.735254e-05 239 173 -0.0002661734 4.295492e-05 240 173 0.0003085011 -4.978574e-05 241 173 -0.0003608797 5.823857e-05 242 173 0.0004268045 -6.887749e-05 254 173 0.0002771748 1.62217e-05 93 174 0.0002908216 1.740235e-05 162 174 0.0004268045 -6.887749e-05 163 174 -0.0005114288 8.253411e-05 164 174 0.0006226054 -0.0001004757 165 174 -0.0007727812 0.000124711 166 174 0.0009826448 -0.0001585787 167 174 -0.001288661 0.0002079635 168 174 0.001760065 -0.0002840383 169 174 -0.002541777 0.0004101906 170 174 0.003980742 -0.0006424099 171 174 -0.007089509 0.001144101 172 174 0.01597157 -0.002577484 173 174 -0.06393453 0.01031772 174 174 -0.3411835 -0.0160058 175 174 -0.06393453 0.01031772 176 174 0.01597157 -0.002577484 177 174 -0.007089509 0.001144101 178 174 0.003980742 -0.0006424099 179 174 -0.002541777 0.0004101906 180 174 0.001760065 -0.0002840383 181 174 -0.001288661 0.0002079635 182 174 0.0009826448 -0.0001585787 183 174 -0.0007727812 0.000124711 184 174 0.0006226054 -0.0001004757 185 174 -0.0005114288 8.253411e-05 186 174 0.0004268045 -6.887749e-05 187 174 -0.0003608797 5.823857e-05 188 174 0.0003085011 -4.978574e-05 189 174 -0.0002661734 4.295492e-05 190 174 0.0002314578 -3.735254e-05 191 174 -0.0002026106 3.26972e-05 192 174 0.0001783582 -2.878335e-05 193 174 -0.0001577525 2.545802e-05 194 174 0.000140076 -2.26054e-05 195 174 -0.0001247774 2.013652e-05 196 174 0.0001114272 -1.798207e-05 197 174 -9.968672e-05 1.608739e-05 198 174 8.928565e-05 -1.440887e-05 199 174 -8.000611e-05 1.291134e-05 200 174 7.167061e-05 -1.156616e-05 201 174 -6.413319e-05 1.034978e-05 202 174 5.727273e-05 -9.242642e-06 203 174 -5.098776e-05 8.228377e-06 204 174 4.519256e-05 -7.293151e-06 205 174 -3.981401e-05 6.425164e-06 206 174 3.478917e-05 -5.614257e-06 207 174 -3.00633e-05 4.851599e-06 208 174 2.558831e-05 -4.129428e-06 209 174 -2.132146e-05 3.440846e-06 210 174 1.722429e-05 -2.779647e-06 211 174 -1.326172e-05 2.14017e-06 212 174 9.401297e-06 -1.517176e-06 213 174 -5.612495e-06 9.057414e-07 214 174 1.866144e-06 -3.011573e-07 215 174 1.866144e-06 -3.011573e-07 216 174 -5.612495e-06 9.057414e-07 217 174 9.401297e-06 -1.517176e-06 218 174 -1.326172e-05 2.14017e-06 219 174 1.722429e-05 -2.779647e-06 220 174 -2.132146e-05 3.440846e-06 221 174 2.558831e-05 -4.129428e-06 222 174 -3.00633e-05 4.851599e-06 223 174 3.478917e-05 -5.614257e-06 224 174 -3.981401e-05 6.425164e-06 225 174 4.519256e-05 -7.293151e-06 226 174 -5.098776e-05 8.228377e-06 227 174 5.727273e-05 -9.242642e-06 228 174 -6.413319e-05 1.034978e-05 229 174 7.167061e-05 -1.156616e-05 230 174 -8.000611e-05 1.291134e-05 231 174 8.928565e-05 -1.440887e-05 232 174 -9.968672e-05 1.608739e-05 233 174 0.0001114272 -1.798207e-05 234 174 -0.0001247774 2.013652e-05 235 174 0.000140076 -2.26054e-05 236 174 -0.0001577525 2.545802e-05 237 174 0.0001783582 -2.878335e-05 238 174 -0.0002026106 3.26972e-05 239 174 0.0002314578 -3.735254e-05 240 174 -0.0002661734 4.295492e-05 241 174 0.0003085011 -4.978574e-05 242 174 -0.0003608797 5.823857e-05 255 174 0.0002908216 1.740235e-05 94 175 0.0003045378 1.859469e-05 162 175 -0.0003608797 5.823857e-05 163 175 0.0004268045 -6.887749e-05 164 175 -0.0005114288 8.253411e-05 165 175 0.0006226054 -0.0001004757 166 175 -0.0007727812 0.000124711 167 175 0.0009826448 -0.0001585787 168 175 -0.001288661 0.0002079635 169 175 0.001760065 -0.0002840383 170 175 -0.002541777 0.0004101906 171 175 0.003980742 -0.0006424099 172 175 -0.007089509 0.001144101 173 175 0.01597157 -0.002577484 174 175 -0.06393453 0.01031772 175 175 -0.3396118 -0.01409039 176 175 -0.06393453 0.01031772 177 175 0.01597157 -0.002577484 178 175 -0.007089509 0.001144101 179 175 0.003980742 -0.0006424099 180 175 -0.002541777 0.0004101906 181 175 0.001760065 -0.0002840383 182 175 -0.001288661 0.0002079635 183 175 0.0009826448 -0.0001585787 184 175 -0.0007727812 0.000124711 185 175 0.0006226054 -0.0001004757 186 175 -0.0005114288 8.253411e-05 187 175 0.0004268045 -6.887749e-05 188 175 -0.0003608797 5.823857e-05 189 175 0.0003085011 -4.978574e-05 190 175 -0.0002661734 4.295492e-05 191 175 0.0002314578 -3.735254e-05 192 175 -0.0002026106 3.26972e-05 193 175 0.0001783582 -2.878335e-05 194 175 -0.0001577525 2.545802e-05 195 175 0.000140076 -2.26054e-05 196 175 -0.0001247774 2.013652e-05 197 175 0.0001114272 -1.798207e-05 198 175 -9.968672e-05 1.608739e-05 199 175 8.928565e-05 -1.440887e-05 200 175 -8.000611e-05 1.291134e-05 201 175 7.167061e-05 -1.156616e-05 202 175 -6.413319e-05 1.034978e-05 203 175 5.727273e-05 -9.242642e-06 204 175 -5.098776e-05 8.228377e-06 205 175 4.519256e-05 -7.293151e-06 206 175 -3.981401e-05 6.425164e-06 207 175 3.478917e-05 -5.614257e-06 208 175 -3.00633e-05 4.851599e-06 209 175 2.558831e-05 -4.129428e-06 210 175 -2.132146e-05 3.440846e-06 211 175 1.722429e-05 -2.779647e-06 212 175 -1.326172e-05 2.14017e-06 213 175 9.401297e-06 -1.517176e-06 214 175 -5.612495e-06 9.057414e-07 215 175 1.866144e-06 -3.011573e-07 216 175 1.866144e-06 -3.011573e-07 217 175 -5.612495e-06 9.057414e-07 218 175 9.401297e-06 -1.517176e-06 219 175 -1.326172e-05 2.14017e-06 220 175 1.722429e-05 -2.779647e-06 221 175 -2.132146e-05 3.440846e-06 222 175 2.558831e-05 -4.129428e-06 223 175 -3.00633e-05 4.851599e-06 224 175 3.478917e-05 -5.614257e-06 225 175 -3.981401e-05 6.425164e-06 226 175 4.519256e-05 -7.293151e-06 227 175 -5.098776e-05 8.228377e-06 228 175 5.727273e-05 -9.242642e-06 229 175 -6.413319e-05 1.034978e-05 230 175 7.167061e-05 -1.156616e-05 231 175 -8.000611e-05 1.291134e-05 232 175 8.928565e-05 -1.440887e-05 233 175 -9.968672e-05 1.608739e-05 234 175 0.0001114272 -1.798207e-05 235 175 -0.0001247774 2.013652e-05 236 175 0.000140076 -2.26054e-05 237 175 -0.0001577525 2.545802e-05 238 175 0.0001783582 -2.878335e-05 239 175 -0.0002026106 3.26972e-05 240 175 0.0002314578 -3.735254e-05 241 175 -0.0002661734 4.295492e-05 242 175 0.0003085011 -4.978574e-05 256 175 0.0003045378 1.859469e-05 95 176 0.000318324 1.979879e-05 162 176 0.0003085011 -4.978574e-05 163 176 -0.0003608797 5.823857e-05 164 176 0.0004268045 -6.887749e-05 165 176 -0.0005114288 8.253411e-05 166 176 0.0006226054 -0.0001004757 167 176 -0.0007727812 0.000124711 168 176 0.0009826448 -0.0001585787 169 176 -0.001288661 0.0002079635 170 176 0.001760065 -0.0002840383 171 176 -0.002541777 0.0004101906 172 176 0.003980742 -0.0006424099 173 176 -0.007089509 0.001144101 174 176 0.01597157 -0.002577484 175 176 -0.06393453 0.01031772 176 176 -0.33685 -0.01248123 177 176 -0.06393453 0.01031772 178 176 0.01597157 -0.002577484 179 176 -0.007089509 0.001144101 180 176 0.003980742 -0.0006424099 181 176 -0.002541777 0.0004101906 182 176 0.001760065 -0.0002840383 183 176 -0.001288661 0.0002079635 184 176 0.0009826448 -0.0001585787 185 176 -0.0007727812 0.000124711 186 176 0.0006226054 -0.0001004757 187 176 -0.0005114288 8.253411e-05 188 176 0.0004268045 -6.887749e-05 189 176 -0.0003608797 5.823857e-05 190 176 0.0003085011 -4.978574e-05 191 176 -0.0002661734 4.295492e-05 192 176 0.0002314578 -3.735254e-05 193 176 -0.0002026106 3.26972e-05 194 176 0.0001783582 -2.878335e-05 195 176 -0.0001577525 2.545802e-05 196 176 0.000140076 -2.26054e-05 197 176 -0.0001247774 2.013652e-05 198 176 0.0001114272 -1.798207e-05 199 176 -9.968672e-05 1.608739e-05 200 176 8.928565e-05 -1.440887e-05 201 176 -8.000611e-05 1.291134e-05 202 176 7.167061e-05 -1.156616e-05 203 176 -6.413319e-05 1.034978e-05 204 176 5.727273e-05 -9.242642e-06 205 176 -5.098776e-05 8.228377e-06 206 176 4.519256e-05 -7.293151e-06 207 176 -3.981401e-05 6.425164e-06 208 176 3.478917e-05 -5.614257e-06 209 176 -3.00633e-05 4.851599e-06 210 176 2.558831e-05 -4.129428e-06 211 176 -2.132146e-05 3.440846e-06 212 176 1.722429e-05 -2.779647e-06 213 176 -1.326172e-05 2.14017e-06 214 176 9.401297e-06 -1.517176e-06 215 176 -5.612495e-06 9.057414e-07 216 176 1.866144e-06 -3.011573e-07 217 176 1.866144e-06 -3.011573e-07 218 176 -5.612495e-06 9.057414e-07 219 176 9.401297e-06 -1.517176e-06 220 176 -1.326172e-05 2.14017e-06 221 176 1.722429e-05 -2.779647e-06 222 176 -2.132146e-05 3.440846e-06 223 176 2.558831e-05 -4.129428e-06 224 176 -3.00633e-05 4.851599e-06 225 176 3.478917e-05 -5.614257e-06 226 176 -3.981401e-05 6.425164e-06 227 176 4.519256e-05 -7.293151e-06 228 176 -5.098776e-05 8.228377e-06 229 176 5.727273e-05 -9.242642e-06 230 176 -6.413319e-05 1.034978e-05 231 176 7.167061e-05 -1.156616e-05 232 176 -8.000611e-05 1.291134e-05 233 176 8.928565e-05 -1.440887e-05 234 176 -9.968672e-05 1.608739e-05 235 176 0.0001114272 -1.798207e-05 236 176 -0.0001247774 2.013652e-05 237 176 0.000140076 -2.26054e-05 238 176 -0.0001577525 2.545802e-05 239 176 0.0001783582 -2.878335e-05 240 176 -0.0002026106 3.26972e-05 241 176 0.0002314578 -3.735254e-05 242 176 -0.0002661734 4.295492e-05 257 176 0.000318324 1.979879e-05 96 177 0.0003321804 2.101476e-05 162 177 -0.0002661734 4.295492e-05 163 177 0.0003085011 -4.978574e-05 164 177 -0.0003608797 5.823857e-05 165 177 0.0004268045 -6.887749e-05 166 177 -0.0005114288 8.253411e-05 167 177 0.0006226054 -0.0001004757 168 177 -0.0007727812 0.000124711 169 177 0.0009826448 -0.0001585787 170 177 -0.001288661 0.0002079635 171 177 0.001760065 -0.0002840383 172 177 -0.002541777 0.0004101906 173 177 0.003980742 -0.0006424099 174 177 -0.007089509 0.001144101 175 177 0.01597157 -0.002577484 176 177 -0.06393453 0.01031772 177 177 -0.333231 -0.01115419 178 177 -0.06393453 0.01031772 179 177 0.01597157 -0.002577484 180 177 -0.007089509 0.001144101 181 177 0.003980742 -0.0006424099 182 177 -0.002541777 0.0004101906 183 177 0.001760065 -0.0002840383 184 177 -0.001288661 0.0002079635 185 177 0.0009826448 -0.0001585787 186 177 -0.0007727812 0.000124711 187 177 0.0006226054 -0.0001004757 188 177 -0.0005114288 8.253411e-05 189 177 0.0004268045 -6.887749e-05 190 177 -0.0003608797 5.823857e-05 191 177 0.0003085011 -4.978574e-05 192 177 -0.0002661734 4.295492e-05 193 177 0.0002314578 -3.735254e-05 194 177 -0.0002026106 3.26972e-05 195 177 0.0001783582 -2.878335e-05 196 177 -0.0001577525 2.545802e-05 197 177 0.000140076 -2.26054e-05 198 177 -0.0001247774 2.013652e-05 199 177 0.0001114272 -1.798207e-05 200 177 -9.968672e-05 1.608739e-05 201 177 8.928565e-05 -1.440887e-05 202 177 -8.000611e-05 1.291134e-05 203 177 7.167061e-05 -1.156616e-05 204 177 -6.413319e-05 1.034978e-05 205 177 5.727273e-05 -9.242642e-06 206 177 -5.098776e-05 8.228377e-06 207 177 4.519256e-05 -7.293151e-06 208 177 -3.981401e-05 6.425164e-06 209 177 3.478917e-05 -5.614257e-06 210 177 -3.00633e-05 4.851599e-06 211 177 2.558831e-05 -4.129428e-06 212 177 -2.132146e-05 3.440846e-06 213 177 1.722429e-05 -2.779647e-06 214 177 -1.326172e-05 2.14017e-06 215 177 9.401297e-06 -1.517176e-06 216 177 -5.612495e-06 9.057414e-07 217 177 1.866144e-06 -3.011573e-07 218 177 1.866144e-06 -3.011573e-07 219 177 -5.612495e-06 9.057414e-07 220 177 9.401297e-06 -1.517176e-06 221 177 -1.326172e-05 2.14017e-06 222 177 1.722429e-05 -2.779647e-06 223 177 -2.132146e-05 3.440846e-06 224 177 2.558831e-05 -4.129428e-06 225 177 -3.00633e-05 4.851599e-06 226 177 3.478917e-05 -5.614257e-06 227 177 -3.981401e-05 6.425164e-06 228 177 4.519256e-05 -7.293151e-06 229 177 -5.098776e-05 8.228377e-06 230 177 5.727273e-05 -9.242642e-06 231 177 -6.413319e-05 1.034978e-05 232 177 7.167061e-05 -1.156616e-05 233 177 -8.000611e-05 1.291134e-05 234 177 8.928565e-05 -1.440887e-05 235 177 -9.968672e-05 1.608739e-05 236 177 0.0001114272 -1.798207e-05 237 177 -0.0001247774 2.013652e-05 238 177 0.000140076 -2.26054e-05 239 177 -0.0001577525 2.545802e-05 240 177 0.0001783582 -2.878335e-05 241 177 -0.0002026106 3.26972e-05 242 177 0.0002314578 -3.735254e-05 258 177 0.0003321804 2.101476e-05 97 178 0.0003461073 2.224268e-05 162 178 0.0002314578 -3.735254e-05 163 178 -0.0002661734 4.295492e-05 164 178 0.0003085011 -4.978574e-05 165 178 -0.0003608797 5.823857e-05 166 178 0.0004268045 -6.887749e-05 167 178 -0.0005114288 8.253411e-05 168 178 0.0006226054 -0.0001004757 169 178 -0.0007727812 0.000124711 170 178 0.0009826448 -0.0001585787 171 178 -0.001288661 0.0002079635 172 178 0.001760065 -0.0002840383 173 178 -0.002541777 0.0004101906 174 178 0.003980742 -0.0006424099 175 178 -0.007089509 0.001144101 176 178 0.01597157 -0.002577484 177 178 -0.06393453 0.01031772 178 178 -0.32902 -0.01008311 179 178 -0.06393453 0.01031772 180 178 0.01597157 -0.002577484 181 178 -0.007089509 0.001144101 182 178 0.003980742 -0.0006424099 183 178 -0.002541777 0.0004101906 184 178 0.001760065 -0.0002840383 185 178 -0.001288661 0.0002079635 186 178 0.0009826448 -0.0001585787 187 178 -0.0007727812 0.000124711 188 178 0.0006226054 -0.0001004757 189 178 -0.0005114288 8.253411e-05 190 178 0.0004268045 -6.887749e-05 191 178 -0.0003608797 5.823857e-05 192 178 0.0003085011 -4.978574e-05 193 178 -0.0002661734 4.295492e-05 194 178 0.0002314578 -3.735254e-05 195 178 -0.0002026106 3.26972e-05 196 178 0.0001783582 -2.878335e-05 197 178 -0.0001577525 2.545802e-05 198 178 0.000140076 -2.26054e-05 199 178 -0.0001247774 2.013652e-05 200 178 0.0001114272 -1.798207e-05 201 178 -9.968672e-05 1.608739e-05 202 178 8.928565e-05 -1.440887e-05 203 178 -8.000611e-05 1.291134e-05 204 178 7.167061e-05 -1.156616e-05 205 178 -6.413319e-05 1.034978e-05 206 178 5.727273e-05 -9.242642e-06 207 178 -5.098776e-05 8.228377e-06 208 178 4.519256e-05 -7.293151e-06 209 178 -3.981401e-05 6.425164e-06 210 178 3.478917e-05 -5.614257e-06 211 178 -3.00633e-05 4.851599e-06 212 178 2.558831e-05 -4.129428e-06 213 178 -2.132146e-05 3.440846e-06 214 178 1.722429e-05 -2.779647e-06 215 178 -1.326172e-05 2.14017e-06 216 178 9.401297e-06 -1.517176e-06 217 178 -5.612495e-06 9.057414e-07 218 178 1.866144e-06 -3.011573e-07 219 178 1.866144e-06 -3.011573e-07 220 178 -5.612495e-06 9.057414e-07 221 178 9.401297e-06 -1.517176e-06 222 178 -1.326172e-05 2.14017e-06 223 178 1.722429e-05 -2.779647e-06 224 178 -2.132146e-05 3.440846e-06 225 178 2.558831e-05 -4.129428e-06 226 178 -3.00633e-05 4.851599e-06 227 178 3.478917e-05 -5.614257e-06 228 178 -3.981401e-05 6.425164e-06 229 178 4.519256e-05 -7.293151e-06 230 178 -5.098776e-05 8.228377e-06 231 178 5.727273e-05 -9.242642e-06 232 178 -6.413319e-05 1.034978e-05 233 178 7.167061e-05 -1.156616e-05 234 178 -8.000611e-05 1.291134e-05 235 178 8.928565e-05 -1.440887e-05 236 178 -9.968672e-05 1.608739e-05 237 178 0.0001114272 -1.798207e-05 238 178 -0.0001247774 2.013652e-05 239 178 0.000140076 -2.26054e-05 240 178 -0.0001577525 2.545802e-05 241 178 0.0001783582 -2.878335e-05 242 178 -0.0002026106 3.26972e-05 259 178 0.0003461073 2.224268e-05 98 179 0.0003601052 2.348264e-05 162 179 -0.0002026106 3.26972e-05 163 179 0.0002314578 -3.735254e-05 164 179 -0.0002661734 4.295492e-05 165 179 0.0003085011 -4.978574e-05 166 179 -0.0003608797 5.823857e-05 167 179 0.0004268045 -6.887749e-05 168 179 -0.0005114288 8.253411e-05 169 179 0.0006226054 -0.0001004757 170 179 -0.0007727812 0.000124711 171 179 0.0009826448 -0.0001585787 172 179 -0.001288661 0.0002079635 173 179 0.001760065 -0.0002840383 174 179 -0.002541777 0.0004101906 175 179 0.003980742 -0.0006424099 176 179 -0.007089509 0.001144101 177 179 0.01597157 -0.002577484 178 179 -0.06393453 0.01031772 179 179 -0.3244263 -0.009241196 180 179 -0.06393453 0.01031772 181 179 0.01597157 -0.002577484 182 179 -0.007089509 0.001144101 183 179 0.003980742 -0.0006424099 184 179 -0.002541777 0.0004101906 185 179 0.001760065 -0.0002840383 186 179 -0.001288661 0.0002079635 187 179 0.0009826448 -0.0001585787 188 179 -0.0007727812 0.000124711 189 179 0.0006226054 -0.0001004757 190 179 -0.0005114288 8.253411e-05 191 179 0.0004268045 -6.887749e-05 192 179 -0.0003608797 5.823857e-05 193 179 0.0003085011 -4.978574e-05 194 179 -0.0002661734 4.295492e-05 195 179 0.0002314578 -3.735254e-05 196 179 -0.0002026106 3.26972e-05 197 179 0.0001783582 -2.878335e-05 198 179 -0.0001577525 2.545802e-05 199 179 0.000140076 -2.26054e-05 200 179 -0.0001247774 2.013652e-05 201 179 0.0001114272 -1.798207e-05 202 179 -9.968672e-05 1.608739e-05 203 179 8.928565e-05 -1.440887e-05 204 179 -8.000611e-05 1.291134e-05 205 179 7.167061e-05 -1.156616e-05 206 179 -6.413319e-05 1.034978e-05 207 179 5.727273e-05 -9.242642e-06 208 179 -5.098776e-05 8.228377e-06 209 179 4.519256e-05 -7.293151e-06 210 179 -3.981401e-05 6.425164e-06 211 179 3.478917e-05 -5.614257e-06 212 179 -3.00633e-05 4.851599e-06 213 179 2.558831e-05 -4.129428e-06 214 179 -2.132146e-05 3.440846e-06 215 179 1.722429e-05 -2.779647e-06 216 179 -1.326172e-05 2.14017e-06 217 179 9.401297e-06 -1.517176e-06 218 179 -5.612495e-06 9.057414e-07 219 179 1.866144e-06 -3.011573e-07 220 179 1.866144e-06 -3.011573e-07 221 179 -5.612495e-06 9.057414e-07 222 179 9.401297e-06 -1.517176e-06 223 179 -1.326172e-05 2.14017e-06 224 179 1.722429e-05 -2.779647e-06 225 179 -2.132146e-05 3.440846e-06 226 179 2.558831e-05 -4.129428e-06 227 179 -3.00633e-05 4.851599e-06 228 179 3.478917e-05 -5.614257e-06 229 179 -3.981401e-05 6.425164e-06 230 179 4.519256e-05 -7.293151e-06 231 179 -5.098776e-05 8.228377e-06 232 179 5.727273e-05 -9.242642e-06 233 179 -6.413319e-05 1.034978e-05 234 179 7.167061e-05 -1.156616e-05 235 179 -8.000611e-05 1.291134e-05 236 179 8.928565e-05 -1.440887e-05 237 179 -9.968672e-05 1.608739e-05 238 179 0.0001114272 -1.798207e-05 239 179 -0.0001247774 2.013652e-05 240 179 0.000140076 -2.26054e-05 241 179 -0.0001577525 2.545802e-05 242 179 0.0001783582 -2.878335e-05 260 179 0.0003601052 2.348264e-05 99 180 0.0003741744 2.473473e-05 162 180 0.0001783582 -2.878335e-05 163 180 -0.0002026106 3.26972e-05 164 180 0.0002314578 -3.735254e-05 165 180 -0.0002661734 4.295492e-05 166 180 0.0003085011 -4.978574e-05 167 180 -0.0003608797 5.823857e-05 168 180 0.0004268045 -6.887749e-05 169 180 -0.0005114288 8.253411e-05 170 180 0.0006226054 -0.0001004757 171 180 -0.0007727812 0.000124711 172 180 0.0009826448 -0.0001585787 173 180 -0.001288661 0.0002079635 174 180 0.001760065 -0.0002840383 175 180 -0.002541777 0.0004101906 176 180 0.003980742 -0.0006424099 177 180 -0.007089509 0.001144101 178 180 0.01597157 -0.002577484 179 180 -0.06393453 0.01031772 180 180 -0.3196142 -0.00860207 181 180 -0.06393453 0.01031772 182 180 0.01597157 -0.002577484 183 180 -0.007089509 0.001144101 184 180 0.003980742 -0.0006424099 185 180 -0.002541777 0.0004101906 186 180 0.001760065 -0.0002840383 187 180 -0.001288661 0.0002079635 188 180 0.0009826448 -0.0001585787 189 180 -0.0007727812 0.000124711 190 180 0.0006226054 -0.0001004757 191 180 -0.0005114288 8.253411e-05 192 180 0.0004268045 -6.887749e-05 193 180 -0.0003608797 5.823857e-05 194 180 0.0003085011 -4.978574e-05 195 180 -0.0002661734 4.295492e-05 196 180 0.0002314578 -3.735254e-05 197 180 -0.0002026106 3.26972e-05 198 180 0.0001783582 -2.878335e-05 199 180 -0.0001577525 2.545802e-05 200 180 0.000140076 -2.26054e-05 201 180 -0.0001247774 2.013652e-05 202 180 0.0001114272 -1.798207e-05 203 180 -9.968672e-05 1.608739e-05 204 180 8.928565e-05 -1.440887e-05 205 180 -8.000611e-05 1.291134e-05 206 180 7.167061e-05 -1.156616e-05 207 180 -6.413319e-05 1.034978e-05 208 180 5.727273e-05 -9.242642e-06 209 180 -5.098776e-05 8.228377e-06 210 180 4.519256e-05 -7.293151e-06 211 180 -3.981401e-05 6.425164e-06 212 180 3.478917e-05 -5.614257e-06 213 180 -3.00633e-05 4.851599e-06 214 180 2.558831e-05 -4.129428e-06 215 180 -2.132146e-05 3.440846e-06 216 180 1.722429e-05 -2.779647e-06 217 180 -1.326172e-05 2.14017e-06 218 180 9.401297e-06 -1.517176e-06 219 180 -5.612495e-06 9.057414e-07 220 180 1.866144e-06 -3.011573e-07 221 180 1.866144e-06 -3.011573e-07 222 180 -5.612495e-06 9.057414e-07 223 180 9.401297e-06 -1.517176e-06 224 180 -1.326172e-05 2.14017e-06 225 180 1.722429e-05 -2.779647e-06 226 180 -2.132146e-05 3.440846e-06 227 180 2.558831e-05 -4.129428e-06 228 180 -3.00633e-05 4.851599e-06 229 180 3.478917e-05 -5.614257e-06 230 180 -3.981401e-05 6.425164e-06 231 180 4.519256e-05 -7.293151e-06 232 180 -5.098776e-05 8.228377e-06 233 180 5.727273e-05 -9.242642e-06 234 180 -6.413319e-05 1.034978e-05 235 180 7.167061e-05 -1.156616e-05 236 180 -8.000611e-05 1.291134e-05 237 180 8.928565e-05 -1.440887e-05 238 180 -9.968672e-05 1.608739e-05 239 180 0.0001114272 -1.798207e-05 240 180 -0.0001247774 2.013652e-05 241 180 0.000140076 -2.26054e-05 242 180 -0.0001577525 2.545802e-05 261 180 0.0003741744 2.473473e-05 100 181 0.0003883153 2.599905e-05 162 181 -0.0001577525 2.545802e-05 163 181 0.0001783582 -2.878335e-05 164 181 -0.0002026106 3.26972e-05 165 181 0.0002314578 -3.735254e-05 166 181 -0.0002661734 4.295492e-05 167 181 0.0003085011 -4.978574e-05 168 181 -0.0003608797 5.823857e-05 169 181 0.0004268045 -6.887749e-05 170 181 -0.0005114288 8.253411e-05 171 181 0.0006226054 -0.0001004757 172 181 -0.0007727812 0.000124711 173 181 0.0009826448 -0.0001585787 174 181 -0.001288661 0.0002079635 175 181 0.001760065 -0.0002840383 176 181 -0.002541777 0.0004101906 177 181 0.003980742 -0.0006424099 178 181 -0.007089509 0.001144101 179 181 0.01597157 -0.002577484 180 181 -0.06393453 0.01031772 181 181 -0.3147111 -0.008140449 182 181 -0.06393453 0.01031772 183 181 0.01597157 -0.002577484 184 181 -0.007089509 0.001144101 185 181 0.003980742 -0.0006424099 186 181 -0.002541777 0.0004101906 187 181 0.001760065 -0.0002840383 188 181 -0.001288661 0.0002079635 189 181 0.0009826448 -0.0001585787 190 181 -0.0007727812 0.000124711 191 181 0.0006226054 -0.0001004757 192 181 -0.0005114288 8.253411e-05 193 181 0.0004268045 -6.887749e-05 194 181 -0.0003608797 5.823857e-05 195 181 0.0003085011 -4.978574e-05 196 181 -0.0002661734 4.295492e-05 197 181 0.0002314578 -3.735254e-05 198 181 -0.0002026106 3.26972e-05 199 181 0.0001783582 -2.878335e-05 200 181 -0.0001577525 2.545802e-05 201 181 0.000140076 -2.26054e-05 202 181 -0.0001247774 2.013652e-05 203 181 0.0001114272 -1.798207e-05 204 181 -9.968672e-05 1.608739e-05 205 181 8.928565e-05 -1.440887e-05 206 181 -8.000611e-05 1.291134e-05 207 181 7.167061e-05 -1.156616e-05 208 181 -6.413319e-05 1.034978e-05 209 181 5.727273e-05 -9.242642e-06 210 181 -5.098776e-05 8.228377e-06 211 181 4.519256e-05 -7.293151e-06 212 181 -3.981401e-05 6.425164e-06 213 181 3.478917e-05 -5.614257e-06 214 181 -3.00633e-05 4.851599e-06 215 181 2.558831e-05 -4.129428e-06 216 181 -2.132146e-05 3.440846e-06 217 181 1.722429e-05 -2.779647e-06 218 181 -1.326172e-05 2.14017e-06 219 181 9.401297e-06 -1.517176e-06 220 181 -5.612495e-06 9.057414e-07 221 181 1.866144e-06 -3.011573e-07 222 181 1.866144e-06 -3.011573e-07 223 181 -5.612495e-06 9.057414e-07 224 181 9.401297e-06 -1.517176e-06 225 181 -1.326172e-05 2.14017e-06 226 181 1.722429e-05 -2.779647e-06 227 181 -2.132146e-05 3.440846e-06 228 181 2.558831e-05 -4.129428e-06 229 181 -3.00633e-05 4.851599e-06 230 181 3.478917e-05 -5.614257e-06 231 181 -3.981401e-05 6.425164e-06 232 181 4.519256e-05 -7.293151e-06 233 181 -5.098776e-05 8.228377e-06 234 181 5.727273e-05 -9.242642e-06 235 181 -6.413319e-05 1.034978e-05 236 181 7.167061e-05 -1.156616e-05 237 181 -8.000611e-05 1.291134e-05 238 181 8.928565e-05 -1.440887e-05 239 181 -9.968672e-05 1.608739e-05 240 181 0.0001114272 -1.798207e-05 241 181 -0.0001247774 2.013652e-05 242 181 0.000140076 -2.26054e-05 262 181 0.0003883153 2.599905e-05 101 182 0.0004025281 2.727568e-05 162 182 0.000140076 -2.26054e-05 163 182 -0.0001577525 2.545802e-05 164 182 0.0001783582 -2.878335e-05 165 182 -0.0002026106 3.26972e-05 166 182 0.0002314578 -3.735254e-05 167 182 -0.0002661734 4.295492e-05 168 182 0.0003085011 -4.978574e-05 169 182 -0.0003608797 5.823857e-05 170 182 0.0004268045 -6.887749e-05 171 182 -0.0005114288 8.253411e-05 172 182 0.0006226054 -0.0001004757 173 182 -0.0007727812 0.000124711 174 182 0.0009826448 -0.0001585787 175 182 -0.001288661 0.0002079635 176 182 0.001760065 -0.0002840383 177 182 -0.002541777 0.0004101906 178 182 0.003980742 -0.0006424099 179 182 -0.007089509 0.001144101 180 182 0.01597157 -0.002577484 181 182 -0.06393453 0.01031772 182 182 -0.3098148 -0.007832596 183 182 -0.06393453 0.01031772 184 182 0.01597157 -0.002577484 185 182 -0.007089509 0.001144101 186 182 0.003980742 -0.0006424099 187 182 -0.002541777 0.0004101906 188 182 0.001760065 -0.0002840383 189 182 -0.001288661 0.0002079635 190 182 0.0009826448 -0.0001585787 191 182 -0.0007727812 0.000124711 192 182 0.0006226054 -0.0001004757 193 182 -0.0005114288 8.253411e-05 194 182 0.0004268045 -6.887749e-05 195 182 -0.0003608797 5.823857e-05 196 182 0.0003085011 -4.978574e-05 197 182 -0.0002661734 4.295492e-05 198 182 0.0002314578 -3.735254e-05 199 182 -0.0002026106 3.26972e-05 200 182 0.0001783582 -2.878335e-05 201 182 -0.0001577525 2.545802e-05 202 182 0.000140076 -2.26054e-05 203 182 -0.0001247774 2.013652e-05 204 182 0.0001114272 -1.798207e-05 205 182 -9.968672e-05 1.608739e-05 206 182 8.928565e-05 -1.440887e-05 207 182 -8.000611e-05 1.291134e-05 208 182 7.167061e-05 -1.156616e-05 209 182 -6.413319e-05 1.034978e-05 210 182 5.727273e-05 -9.242642e-06 211 182 -5.098776e-05 8.228377e-06 212 182 4.519256e-05 -7.293151e-06 213 182 -3.981401e-05 6.425164e-06 214 182 3.478917e-05 -5.614257e-06 215 182 -3.00633e-05 4.851599e-06 216 182 2.558831e-05 -4.129428e-06 217 182 -2.132146e-05 3.440846e-06 218 182 1.722429e-05 -2.779647e-06 219 182 -1.326172e-05 2.14017e-06 220 182 9.401297e-06 -1.517176e-06 221 182 -5.612495e-06 9.057414e-07 222 182 1.866144e-06 -3.011573e-07 223 182 1.866144e-06 -3.011573e-07 224 182 -5.612495e-06 9.057414e-07 225 182 9.401297e-06 -1.517176e-06 226 182 -1.326172e-05 2.14017e-06 227 182 1.722429e-05 -2.779647e-06 228 182 -2.132146e-05 3.440846e-06 229 182 2.558831e-05 -4.129428e-06 230 182 -3.00633e-05 4.851599e-06 231 182 3.478917e-05 -5.614257e-06 232 182 -3.981401e-05 6.425164e-06 233 182 4.519256e-05 -7.293151e-06 234 182 -5.098776e-05 8.228377e-06 235 182 5.727273e-05 -9.242642e-06 236 182 -6.413319e-05 1.034978e-05 237 182 7.167061e-05 -1.156616e-05 238 182 -8.000611e-05 1.291134e-05 239 182 8.928565e-05 -1.440887e-05 240 182 -9.968672e-05 1.608739e-05 241 182 0.0001114272 -1.798207e-05 242 182 -0.0001247774 2.013652e-05 263 182 0.0004025281 2.727568e-05 102 183 0.0004168134 2.856472e-05 162 183 -0.0001247774 2.013652e-05 163 183 0.000140076 -2.26054e-05 164 183 -0.0001577525 2.545802e-05 165 183 0.0001783582 -2.878335e-05 166 183 -0.0002026106 3.26972e-05 167 183 0.0002314578 -3.735254e-05 168 183 -0.0002661734 4.295492e-05 169 183 0.0003085011 -4.978574e-05 170 183 -0.0003608797 5.823857e-05 171 183 0.0004268045 -6.887749e-05 172 183 -0.0005114288 8.253411e-05 173 183 0.0006226054 -0.0001004757 174 183 -0.0007727812 0.000124711 175 183 0.0009826448 -0.0001585787 176 183 -0.001288661 0.0002079635 177 183 0.001760065 -0.0002840383 178 183 -0.002541777 0.0004101906 179 183 0.003980742 -0.0006424099 180 183 -0.007089509 0.001144101 181 183 0.01597157 -0.002577484 182 183 -0.06393453 0.01031772 183 183 -0.304999 -0.007656581 184 183 -0.06393453 0.01031772 185 183 0.01597157 -0.002577484 186 183 -0.007089509 0.001144101 187 183 0.003980742 -0.0006424099 188 183 -0.002541777 0.0004101906 189 183 0.001760065 -0.0002840383 190 183 -0.001288661 0.0002079635 191 183 0.0009826448 -0.0001585787 192 183 -0.0007727812 0.000124711 193 183 0.0006226054 -0.0001004757 194 183 -0.0005114288 8.253411e-05 195 183 0.0004268045 -6.887749e-05 196 183 -0.0003608797 5.823857e-05 197 183 0.0003085011 -4.978574e-05 198 183 -0.0002661734 4.295492e-05 199 183 0.0002314578 -3.735254e-05 200 183 -0.0002026106 3.26972e-05 201 183 0.0001783582 -2.878335e-05 202 183 -0.0001577525 2.545802e-05 203 183 0.000140076 -2.26054e-05 204 183 -0.0001247774 2.013652e-05 205 183 0.0001114272 -1.798207e-05 206 183 -9.968672e-05 1.608739e-05 207 183 8.928565e-05 -1.440887e-05 208 183 -8.000611e-05 1.291134e-05 209 183 7.167061e-05 -1.156616e-05 210 183 -6.413319e-05 1.034978e-05 211 183 5.727273e-05 -9.242642e-06 212 183 -5.098776e-05 8.228377e-06 213 183 4.519256e-05 -7.293151e-06 214 183 -3.981401e-05 6.425164e-06 215 183 3.478917e-05 -5.614257e-06 216 183 -3.00633e-05 4.851599e-06 217 183 2.558831e-05 -4.129428e-06 218 183 -2.132146e-05 3.440846e-06 219 183 1.722429e-05 -2.779647e-06 220 183 -1.326172e-05 2.14017e-06 221 183 9.401297e-06 -1.517176e-06 222 183 -5.612495e-06 9.057414e-07 223 183 1.866144e-06 -3.011573e-07 224 183 1.866144e-06 -3.011573e-07 225 183 -5.612495e-06 9.057414e-07 226 183 9.401297e-06 -1.517176e-06 227 183 -1.326172e-05 2.14017e-06 228 183 1.722429e-05 -2.779647e-06 229 183 -2.132146e-05 3.440846e-06 230 183 2.558831e-05 -4.129428e-06 231 183 -3.00633e-05 4.851599e-06 232 183 3.478917e-05 -5.614257e-06 233 183 -3.981401e-05 6.425164e-06 234 183 4.519256e-05 -7.293151e-06 235 183 -5.098776e-05 8.228377e-06 236 183 5.727273e-05 -9.242642e-06 237 183 -6.413319e-05 1.034978e-05 238 183 7.167061e-05 -1.156616e-05 239 183 -8.000611e-05 1.291134e-05 240 183 8.928565e-05 -1.440887e-05 241 183 -9.968672e-05 1.608739e-05 242 183 0.0001114272 -1.798207e-05 264 183 0.0004168134 2.856472e-05 103 184 0.0004311714 2.986627e-05 162 184 0.0001114272 -1.798207e-05 163 184 -0.0001247774 2.013652e-05 164 184 0.000140076 -2.26054e-05 165 184 -0.0001577525 2.545802e-05 166 184 0.0001783582 -2.878335e-05 167 184 -0.0002026106 3.26972e-05 168 184 0.0002314578 -3.735254e-05 169 184 -0.0002661734 4.295492e-05 170 184 0.0003085011 -4.978574e-05 171 184 -0.0003608797 5.823857e-05 172 184 0.0004268045 -6.887749e-05 173 184 -0.0005114288 8.253411e-05 174 184 0.0006226054 -0.0001004757 175 184 -0.0007727812 0.000124711 176 184 0.0009826448 -0.0001585787 177 184 -0.001288661 0.0002079635 178 184 0.001760065 -0.0002840383 179 184 -0.002541777 0.0004101906 180 184 0.003980742 -0.0006424099 181 184 -0.007089509 0.001144101 182 184 0.01597157 -0.002577484 183 184 -0.06393453 0.01031772 184 184 -0.3003182 -0.007592411 185 184 -0.06393453 0.01031772 186 184 0.01597157 -0.002577484 187 184 -0.007089509 0.001144101 188 184 0.003980742 -0.0006424099 189 184 -0.002541777 0.0004101906 190 184 0.001760065 -0.0002840383 191 184 -0.001288661 0.0002079635 192 184 0.0009826448 -0.0001585787 193 184 -0.0007727812 0.000124711 194 184 0.0006226054 -0.0001004757 195 184 -0.0005114288 8.253411e-05 196 184 0.0004268045 -6.887749e-05 197 184 -0.0003608797 5.823857e-05 198 184 0.0003085011 -4.978574e-05 199 184 -0.0002661734 4.295492e-05 200 184 0.0002314578 -3.735254e-05 201 184 -0.0002026106 3.26972e-05 202 184 0.0001783582 -2.878335e-05 203 184 -0.0001577525 2.545802e-05 204 184 0.000140076 -2.26054e-05 205 184 -0.0001247774 2.013652e-05 206 184 0.0001114272 -1.798207e-05 207 184 -9.968672e-05 1.608739e-05 208 184 8.928565e-05 -1.440887e-05 209 184 -8.000611e-05 1.291134e-05 210 184 7.167061e-05 -1.156616e-05 211 184 -6.413319e-05 1.034978e-05 212 184 5.727273e-05 -9.242642e-06 213 184 -5.098776e-05 8.228377e-06 214 184 4.519256e-05 -7.293151e-06 215 184 -3.981401e-05 6.425164e-06 216 184 3.478917e-05 -5.614257e-06 217 184 -3.00633e-05 4.851599e-06 218 184 2.558831e-05 -4.129428e-06 219 184 -2.132146e-05 3.440846e-06 220 184 1.722429e-05 -2.779647e-06 221 184 -1.326172e-05 2.14017e-06 222 184 9.401297e-06 -1.517176e-06 223 184 -5.612495e-06 9.057414e-07 224 184 1.866144e-06 -3.011573e-07 225 184 1.866144e-06 -3.011573e-07 226 184 -5.612495e-06 9.057414e-07 227 184 9.401297e-06 -1.517176e-06 228 184 -1.326172e-05 2.14017e-06 229 184 1.722429e-05 -2.779647e-06 230 184 -2.132146e-05 3.440846e-06 231 184 2.558831e-05 -4.129428e-06 232 184 -3.00633e-05 4.851599e-06 233 184 3.478917e-05 -5.614257e-06 234 184 -3.981401e-05 6.425164e-06 235 184 4.519256e-05 -7.293151e-06 236 184 -5.098776e-05 8.228377e-06 237 184 5.727273e-05 -9.242642e-06 238 184 -6.413319e-05 1.034978e-05 239 184 7.167061e-05 -1.156616e-05 240 184 -8.000611e-05 1.291134e-05 241 184 8.928565e-05 -1.440887e-05 242 184 -9.968672e-05 1.608739e-05 265 184 0.0004311714 2.986627e-05 104 185 0.0004456025 3.118041e-05 162 185 -9.968672e-05 1.608739e-05 163 185 0.0001114272 -1.798207e-05 164 185 -0.0001247774 2.013652e-05 165 185 0.000140076 -2.26054e-05 166 185 -0.0001577525 2.545802e-05 167 185 0.0001783582 -2.878335e-05 168 185 -0.0002026106 3.26972e-05 169 185 0.0002314578 -3.735254e-05 170 185 -0.0002661734 4.295492e-05 171 185 0.0003085011 -4.978574e-05 172 185 -0.0003608797 5.823857e-05 173 185 0.0004268045 -6.887749e-05 174 185 -0.0005114288 8.253411e-05 175 185 0.0006226054 -0.0001004757 176 185 -0.0007727812 0.000124711 177 185 0.0009826448 -0.0001585787 178 185 -0.001288661 0.0002079635 179 185 0.001760065 -0.0002840383 180 185 -0.002541777 0.0004101906 181 185 0.003980742 -0.0006424099 182 185 -0.007089509 0.001144101 183 185 0.01597157 -0.002577484 184 185 -0.06393453 0.01031772 185 185 -0.2958115 -0.007622058 186 185 -0.06393453 0.01031772 187 185 0.01597157 -0.002577484 188 185 -0.007089509 0.001144101 189 185 0.003980742 -0.0006424099 190 185 -0.002541777 0.0004101906 191 185 0.001760065 -0.0002840383 192 185 -0.001288661 0.0002079635 193 185 0.0009826448 -0.0001585787 194 185 -0.0007727812 0.000124711 195 185 0.0006226054 -0.0001004757 196 185 -0.0005114288 8.253411e-05 197 185 0.0004268045 -6.887749e-05 198 185 -0.0003608797 5.823857e-05 199 185 0.0003085011 -4.978574e-05 200 185 -0.0002661734 4.295492e-05 201 185 0.0002314578 -3.735254e-05 202 185 -0.0002026106 3.26972e-05 203 185 0.0001783582 -2.878335e-05 204 185 -0.0001577525 2.545802e-05 205 185 0.000140076 -2.26054e-05 206 185 -0.0001247774 2.013652e-05 207 185 0.0001114272 -1.798207e-05 208 185 -9.968672e-05 1.608739e-05 209 185 8.928565e-05 -1.440887e-05 210 185 -8.000611e-05 1.291134e-05 211 185 7.167061e-05 -1.156616e-05 212 185 -6.413319e-05 1.034978e-05 213 185 5.727273e-05 -9.242642e-06 214 185 -5.098776e-05 8.228377e-06 215 185 4.519256e-05 -7.293151e-06 216 185 -3.981401e-05 6.425164e-06 217 185 3.478917e-05 -5.614257e-06 218 185 -3.00633e-05 4.851599e-06 219 185 2.558831e-05 -4.129428e-06 220 185 -2.132146e-05 3.440846e-06 221 185 1.722429e-05 -2.779647e-06 222 185 -1.326172e-05 2.14017e-06 223 185 9.401297e-06 -1.517176e-06 224 185 -5.612495e-06 9.057414e-07 225 185 1.866144e-06 -3.011573e-07 226 185 1.866144e-06 -3.011573e-07 227 185 -5.612495e-06 9.057414e-07 228 185 9.401297e-06 -1.517176e-06 229 185 -1.326172e-05 2.14017e-06 230 185 1.722429e-05 -2.779647e-06 231 185 -2.132146e-05 3.440846e-06 232 185 2.558831e-05 -4.129428e-06 233 185 -3.00633e-05 4.851599e-06 234 185 3.478917e-05 -5.614257e-06 235 185 -3.981401e-05 6.425164e-06 236 185 4.519256e-05 -7.293151e-06 237 185 -5.098776e-05 8.228377e-06 238 185 5.727273e-05 -9.242642e-06 239 185 -6.413319e-05 1.034978e-05 240 185 7.167061e-05 -1.156616e-05 241 185 -8.000611e-05 1.291134e-05 242 185 8.928565e-05 -1.440887e-05 266 185 0.0004456025 3.118041e-05 105 186 0.0004601072 3.250725e-05 162 186 8.928565e-05 -1.440887e-05 163 186 -9.968672e-05 1.608739e-05 164 186 0.0001114272 -1.798207e-05 165 186 -0.0001247774 2.013652e-05 166 186 0.000140076 -2.26054e-05 167 186 -0.0001577525 2.545802e-05 168 186 0.0001783582 -2.878335e-05 169 186 -0.0002026106 3.26972e-05 170 186 0.0002314578 -3.735254e-05 171 186 -0.0002661734 4.295492e-05 172 186 0.0003085011 -4.978574e-05 173 186 -0.0003608797 5.823857e-05 174 186 0.0004268045 -6.887749e-05 175 186 -0.0005114288 8.253411e-05 176 186 0.0006226054 -0.0001004757 177 186 -0.0007727812 0.000124711 178 186 0.0009826448 -0.0001585787 179 186 -0.001288661 0.0002079635 180 186 0.001760065 -0.0002840383 181 186 -0.002541777 0.0004101906 182 186 0.003980742 -0.0006424099 183 186 -0.007089509 0.001144101 184 186 0.01597157 -0.002577484 185 186 -0.06393453 0.01031772 186 186 -0.2915059 -0.007729427 187 186 -0.06393453 0.01031772 188 186 0.01597157 -0.002577484 189 186 -0.007089509 0.001144101 190 186 0.003980742 -0.0006424099 191 186 -0.002541777 0.0004101906 192 186 0.001760065 -0.0002840383 193 186 -0.001288661 0.0002079635 194 186 0.0009826448 -0.0001585787 195 186 -0.0007727812 0.000124711 196 186 0.0006226054 -0.0001004757 197 186 -0.0005114288 8.253411e-05 198 186 0.0004268045 -6.887749e-05 199 186 -0.0003608797 5.823857e-05 200 186 0.0003085011 -4.978574e-05 201 186 -0.0002661734 4.295492e-05 202 186 0.0002314578 -3.735254e-05 203 186 -0.0002026106 3.26972e-05 204 186 0.0001783582 -2.878335e-05 205 186 -0.0001577525 2.545802e-05 206 186 0.000140076 -2.26054e-05 207 186 -0.0001247774 2.013652e-05 208 186 0.0001114272 -1.798207e-05 209 186 -9.968672e-05 1.608739e-05 210 186 8.928565e-05 -1.440887e-05 211 186 -8.000611e-05 1.291134e-05 212 186 7.167061e-05 -1.156616e-05 213 186 -6.413319e-05 1.034978e-05 214 186 5.727273e-05 -9.242642e-06 215 186 -5.098776e-05 8.228377e-06 216 186 4.519256e-05 -7.293151e-06 217 186 -3.981401e-05 6.425164e-06 218 186 3.478917e-05 -5.614257e-06 219 186 -3.00633e-05 4.851599e-06 220 186 2.558831e-05 -4.129428e-06 221 186 -2.132146e-05 3.440846e-06 222 186 1.722429e-05 -2.779647e-06 223 186 -1.326172e-05 2.14017e-06 224 186 9.401297e-06 -1.517176e-06 225 186 -5.612495e-06 9.057414e-07 226 186 1.866144e-06 -3.011573e-07 227 186 1.866144e-06 -3.011573e-07 228 186 -5.612495e-06 9.057414e-07 229 186 9.401297e-06 -1.517176e-06 230 186 -1.326172e-05 2.14017e-06 231 186 1.722429e-05 -2.779647e-06 232 186 -2.132146e-05 3.440846e-06 233 186 2.558831e-05 -4.129428e-06 234 186 -3.00633e-05 4.851599e-06 235 186 3.478917e-05 -5.614257e-06 236 186 -3.981401e-05 6.425164e-06 237 186 4.519256e-05 -7.293151e-06 238 186 -5.098776e-05 8.228377e-06 239 186 5.727273e-05 -9.242642e-06 240 186 -6.413319e-05 1.034978e-05 241 186 7.167061e-05 -1.156616e-05 242 186 -8.000611e-05 1.291134e-05 267 186 0.0004601072 3.250725e-05 106 187 0.0004746856 3.384687e-05 162 187 -8.000611e-05 1.291134e-05 163 187 8.928565e-05 -1.440887e-05 164 187 -9.968672e-05 1.608739e-05 165 187 0.0001114272 -1.798207e-05 166 187 -0.0001247774 2.013652e-05 167 187 0.000140076 -2.26054e-05 168 187 -0.0001577525 2.545802e-05 169 187 0.0001783582 -2.878335e-05 170 187 -0.0002026106 3.26972e-05 171 187 0.0002314578 -3.735254e-05 172 187 -0.0002661734 4.295492e-05 173 187 0.0003085011 -4.978574e-05 174 187 -0.0003608797 5.823857e-05 175 187 0.0004268045 -6.887749e-05 176 187 -0.0005114288 8.253411e-05 177 187 0.0006226054 -0.0001004757 178 187 -0.0007727812 0.000124711 179 187 0.0009826448 -0.0001585787 180 187 -0.001288661 0.0002079635 181 187 0.001760065 -0.0002840383 182 187 -0.002541777 0.0004101906 183 187 0.003980742 -0.0006424099 184 187 -0.007089509 0.001144101 185 187 0.01597157 -0.002577484 186 187 -0.06393453 0.01031772 187 187 -0.2874185 -0.007900271 188 187 -0.06393453 0.01031772 189 187 0.01597157 -0.002577484 190 187 -0.007089509 0.001144101 191 187 0.003980742 -0.0006424099 192 187 -0.002541777 0.0004101906 193 187 0.001760065 -0.0002840383 194 187 -0.001288661 0.0002079635 195 187 0.0009826448 -0.0001585787 196 187 -0.0007727812 0.000124711 197 187 0.0006226054 -0.0001004757 198 187 -0.0005114288 8.253411e-05 199 187 0.0004268045 -6.887749e-05 200 187 -0.0003608797 5.823857e-05 201 187 0.0003085011 -4.978574e-05 202 187 -0.0002661734 4.295492e-05 203 187 0.0002314578 -3.735254e-05 204 187 -0.0002026106 3.26972e-05 205 187 0.0001783582 -2.878335e-05 206 187 -0.0001577525 2.545802e-05 207 187 0.000140076 -2.26054e-05 208 187 -0.0001247774 2.013652e-05 209 187 0.0001114272 -1.798207e-05 210 187 -9.968672e-05 1.608739e-05 211 187 8.928565e-05 -1.440887e-05 212 187 -8.000611e-05 1.291134e-05 213 187 7.167061e-05 -1.156616e-05 214 187 -6.413319e-05 1.034978e-05 215 187 5.727273e-05 -9.242642e-06 216 187 -5.098776e-05 8.228377e-06 217 187 4.519256e-05 -7.293151e-06 218 187 -3.981401e-05 6.425164e-06 219 187 3.478917e-05 -5.614257e-06 220 187 -3.00633e-05 4.851599e-06 221 187 2.558831e-05 -4.129428e-06 222 187 -2.132146e-05 3.440846e-06 223 187 1.722429e-05 -2.779647e-06 224 187 -1.326172e-05 2.14017e-06 225 187 9.401297e-06 -1.517176e-06 226 187 -5.612495e-06 9.057414e-07 227 187 1.866144e-06 -3.011573e-07 228 187 1.866144e-06 -3.011573e-07 229 187 -5.612495e-06 9.057414e-07 230 187 9.401297e-06 -1.517176e-06 231 187 -1.326172e-05 2.14017e-06 232 187 1.722429e-05 -2.779647e-06 233 187 -2.132146e-05 3.440846e-06 234 187 2.558831e-05 -4.129428e-06 235 187 -3.00633e-05 4.851599e-06 236 187 3.478917e-05 -5.614257e-06 237 187 -3.981401e-05 6.425164e-06 238 187 4.519256e-05 -7.293151e-06 239 187 -5.098776e-05 8.228377e-06 240 187 5.727273e-05 -9.242642e-06 241 187 -6.413319e-05 1.034978e-05 242 187 7.167061e-05 -1.156616e-05 268 187 0.0004746856 3.384687e-05 107 188 0.0004893383 3.519938e-05 162 188 7.167061e-05 -1.156616e-05 163 188 -8.000611e-05 1.291134e-05 164 188 8.928565e-05 -1.440887e-05 165 188 -9.968672e-05 1.608739e-05 166 188 0.0001114272 -1.798207e-05 167 188 -0.0001247774 2.013652e-05 168 188 0.000140076 -2.26054e-05 169 188 -0.0001577525 2.545802e-05 170 188 0.0001783582 -2.878335e-05 171 188 -0.0002026106 3.26972e-05 172 188 0.0002314578 -3.735254e-05 173 188 -0.0002661734 4.295492e-05 174 188 0.0003085011 -4.978574e-05 175 188 -0.0003608797 5.823857e-05 176 188 0.0004268045 -6.887749e-05 177 188 -0.0005114288 8.253411e-05 178 188 0.0006226054 -0.0001004757 179 188 -0.0007727812 0.000124711 180 188 0.0009826448 -0.0001585787 181 188 -0.001288661 0.0002079635 182 188 0.001760065 -0.0002840383 183 188 -0.002541777 0.0004101906 184 188 0.003980742 -0.0006424099 185 188 -0.007089509 0.001144101 186 188 0.01597157 -0.002577484 187 188 -0.06393453 0.01031772 188 188 -0.2835588 -0.008122077 189 188 -0.06393453 0.01031772 190 188 0.01597157 -0.002577484 191 188 -0.007089509 0.001144101 192 188 0.003980742 -0.0006424099 193 188 -0.002541777 0.0004101906 194 188 0.001760065 -0.0002840383 195 188 -0.001288661 0.0002079635 196 188 0.0009826448 -0.0001585787 197 188 -0.0007727812 0.000124711 198 188 0.0006226054 -0.0001004757 199 188 -0.0005114288 8.253411e-05 200 188 0.0004268045 -6.887749e-05 201 188 -0.0003608797 5.823857e-05 202 188 0.0003085011 -4.978574e-05 203 188 -0.0002661734 4.295492e-05 204 188 0.0002314578 -3.735254e-05 205 188 -0.0002026106 3.26972e-05 206 188 0.0001783582 -2.878335e-05 207 188 -0.0001577525 2.545802e-05 208 188 0.000140076 -2.26054e-05 209 188 -0.0001247774 2.013652e-05 210 188 0.0001114272 -1.798207e-05 211 188 -9.968672e-05 1.608739e-05 212 188 8.928565e-05 -1.440887e-05 213 188 -8.000611e-05 1.291134e-05 214 188 7.167061e-05 -1.156616e-05 215 188 -6.413319e-05 1.034978e-05 216 188 5.727273e-05 -9.242642e-06 217 188 -5.098776e-05 8.228377e-06 218 188 4.519256e-05 -7.293151e-06 219 188 -3.981401e-05 6.425164e-06 220 188 3.478917e-05 -5.614257e-06 221 188 -3.00633e-05 4.851599e-06 222 188 2.558831e-05 -4.129428e-06 223 188 -2.132146e-05 3.440846e-06 224 188 1.722429e-05 -2.779647e-06 225 188 -1.326172e-05 2.14017e-06 226 188 9.401297e-06 -1.517176e-06 227 188 -5.612495e-06 9.057414e-07 228 188 1.866144e-06 -3.011573e-07 229 188 1.866144e-06 -3.011573e-07 230 188 -5.612495e-06 9.057414e-07 231 188 9.401297e-06 -1.517176e-06 232 188 -1.326172e-05 2.14017e-06 233 188 1.722429e-05 -2.779647e-06 234 188 -2.132146e-05 3.440846e-06 235 188 2.558831e-05 -4.129428e-06 236 188 -3.00633e-05 4.851599e-06 237 188 3.478917e-05 -5.614257e-06 238 188 -3.981401e-05 6.425164e-06 239 188 4.519256e-05 -7.293151e-06 240 188 -5.098776e-05 8.228377e-06 241 188 5.727273e-05 -9.242642e-06 242 188 -6.413319e-05 1.034978e-05 269 188 0.0004893383 3.519938e-05 108 189 0.0005040657 3.656486e-05 162 189 -6.413319e-05 1.034978e-05 163 189 7.167061e-05 -1.156616e-05 164 189 -8.000611e-05 1.291134e-05 165 189 8.928565e-05 -1.440887e-05 166 189 -9.968672e-05 1.608739e-05 167 189 0.0001114272 -1.798207e-05 168 189 -0.0001247774 2.013652e-05 169 189 0.000140076 -2.26054e-05 170 189 -0.0001577525 2.545802e-05 171 189 0.0001783582 -2.878335e-05 172 189 -0.0002026106 3.26972e-05 173 189 0.0002314578 -3.735254e-05 174 189 -0.0002661734 4.295492e-05 175 189 0.0003085011 -4.978574e-05 176 189 -0.0003608797 5.823857e-05 177 189 0.0004268045 -6.887749e-05 178 189 -0.0005114288 8.253411e-05 179 189 0.0006226054 -0.0001004757 180 189 -0.0007727812 0.000124711 181 189 0.0009826448 -0.0001585787 182 189 -0.001288661 0.0002079635 183 189 0.001760065 -0.0002840383 184 189 -0.002541777 0.0004101906 185 189 0.003980742 -0.0006424099 186 189 -0.007089509 0.001144101 187 189 0.01597157 -0.002577484 188 189 -0.06393453 0.01031772 189 189 -0.2799308 -0.008383944 190 189 -0.06393453 0.01031772 191 189 0.01597157 -0.002577484 192 189 -0.007089509 0.001144101 193 189 0.003980742 -0.0006424099 194 189 -0.002541777 0.0004101906 195 189 0.001760065 -0.0002840383 196 189 -0.001288661 0.0002079635 197 189 0.0009826448 -0.0001585787 198 189 -0.0007727812 0.000124711 199 189 0.0006226054 -0.0001004757 200 189 -0.0005114288 8.253411e-05 201 189 0.0004268045 -6.887749e-05 202 189 -0.0003608797 5.823857e-05 203 189 0.0003085011 -4.978574e-05 204 189 -0.0002661734 4.295492e-05 205 189 0.0002314578 -3.735254e-05 206 189 -0.0002026106 3.26972e-05 207 189 0.0001783582 -2.878335e-05 208 189 -0.0001577525 2.545802e-05 209 189 0.000140076 -2.26054e-05 210 189 -0.0001247774 2.013652e-05 211 189 0.0001114272 -1.798207e-05 212 189 -9.968672e-05 1.608739e-05 213 189 8.928565e-05 -1.440887e-05 214 189 -8.000611e-05 1.291134e-05 215 189 7.167061e-05 -1.156616e-05 216 189 -6.413319e-05 1.034978e-05 217 189 5.727273e-05 -9.242642e-06 218 189 -5.098776e-05 8.228377e-06 219 189 4.519256e-05 -7.293151e-06 220 189 -3.981401e-05 6.425164e-06 221 189 3.478917e-05 -5.614257e-06 222 189 -3.00633e-05 4.851599e-06 223 189 2.558831e-05 -4.129428e-06 224 189 -2.132146e-05 3.440846e-06 225 189 1.722429e-05 -2.779647e-06 226 189 -1.326172e-05 2.14017e-06 227 189 9.401297e-06 -1.517176e-06 228 189 -5.612495e-06 9.057414e-07 229 189 1.866144e-06 -3.011573e-07 230 189 1.866144e-06 -3.011573e-07 231 189 -5.612495e-06 9.057414e-07 232 189 9.401297e-06 -1.517176e-06 233 189 -1.326172e-05 2.14017e-06 234 189 1.722429e-05 -2.779647e-06 235 189 -2.132146e-05 3.440846e-06 236 189 2.558831e-05 -4.129428e-06 237 189 -3.00633e-05 4.851599e-06 238 189 3.478917e-05 -5.614257e-06 239 189 -3.981401e-05 6.425164e-06 240 189 4.519256e-05 -7.293151e-06 241 189 -5.098776e-05 8.228377e-06 242 189 5.727273e-05 -9.242642e-06 270 189 0.0005040657 3.656486e-05 109 190 0.000518868 3.794342e-05 162 190 5.727273e-05 -9.242642e-06 163 190 -6.413319e-05 1.034978e-05 164 190 7.167061e-05 -1.156616e-05 165 190 -8.000611e-05 1.291134e-05 166 190 8.928565e-05 -1.440887e-05 167 190 -9.968672e-05 1.608739e-05 168 190 0.0001114272 -1.798207e-05 169 190 -0.0001247774 2.013652e-05 170 190 0.000140076 -2.26054e-05 171 190 -0.0001577525 2.545802e-05 172 190 0.0001783582 -2.878335e-05 173 190 -0.0002026106 3.26972e-05 174 190 0.0002314578 -3.735254e-05 175 190 -0.0002661734 4.295492e-05 176 190 0.0003085011 -4.978574e-05 177 190 -0.0003608797 5.823857e-05 178 190 0.0004268045 -6.887749e-05 179 190 -0.0005114288 8.253411e-05 180 190 0.0006226054 -0.0001004757 181 190 -0.0007727812 0.000124711 182 190 0.0009826448 -0.0001585787 183 190 -0.001288661 0.0002079635 184 190 0.001760065 -0.0002840383 185 190 -0.002541777 0.0004101906 186 190 0.003980742 -0.0006424099 187 190 -0.007089509 0.001144101 188 190 0.01597157 -0.002577484 189 190 -0.06393453 0.01031772 190 190 -0.2765337 -0.008676436 191 190 -0.06393453 0.01031772 192 190 0.01597157 -0.002577484 193 190 -0.007089509 0.001144101 194 190 0.003980742 -0.0006424099 195 190 -0.002541777 0.0004101906 196 190 0.001760065 -0.0002840383 197 190 -0.001288661 0.0002079635 198 190 0.0009826448 -0.0001585787 199 190 -0.0007727812 0.000124711 200 190 0.0006226054 -0.0001004757 201 190 -0.0005114288 8.253411e-05 202 190 0.0004268045 -6.887749e-05 203 190 -0.0003608797 5.823857e-05 204 190 0.0003085011 -4.978574e-05 205 190 -0.0002661734 4.295492e-05 206 190 0.0002314578 -3.735254e-05 207 190 -0.0002026106 3.26972e-05 208 190 0.0001783582 -2.878335e-05 209 190 -0.0001577525 2.545802e-05 210 190 0.000140076 -2.26054e-05 211 190 -0.0001247774 2.013652e-05 212 190 0.0001114272 -1.798207e-05 213 190 -9.968672e-05 1.608739e-05 214 190 8.928565e-05 -1.440887e-05 215 190 -8.000611e-05 1.291134e-05 216 190 7.167061e-05 -1.156616e-05 217 190 -6.413319e-05 1.034978e-05 218 190 5.727273e-05 -9.242642e-06 219 190 -5.098776e-05 8.228377e-06 220 190 4.519256e-05 -7.293151e-06 221 190 -3.981401e-05 6.425164e-06 222 190 3.478917e-05 -5.614257e-06 223 190 -3.00633e-05 4.851599e-06 224 190 2.558831e-05 -4.129428e-06 225 190 -2.132146e-05 3.440846e-06 226 190 1.722429e-05 -2.779647e-06 227 190 -1.326172e-05 2.14017e-06 228 190 9.401297e-06 -1.517176e-06 229 190 -5.612495e-06 9.057414e-07 230 190 1.866144e-06 -3.011573e-07 231 190 1.866144e-06 -3.011573e-07 232 190 -5.612495e-06 9.057414e-07 233 190 9.401297e-06 -1.517176e-06 234 190 -1.326172e-05 2.14017e-06 235 190 1.722429e-05 -2.779647e-06 236 190 -2.132146e-05 3.440846e-06 237 190 2.558831e-05 -4.129428e-06 238 190 -3.00633e-05 4.851599e-06 239 190 3.478917e-05 -5.614257e-06 240 190 -3.981401e-05 6.425164e-06 241 190 4.519256e-05 -7.293151e-06 242 190 -5.098776e-05 8.228377e-06 271 190 0.000518868 3.794342e-05 110 191 0.0005337456 3.933516e-05 162 191 -5.098776e-05 8.228377e-06 163 191 5.727273e-05 -9.242642e-06 164 191 -6.413319e-05 1.034978e-05 165 191 7.167061e-05 -1.156616e-05 166 191 -8.000611e-05 1.291134e-05 167 191 8.928565e-05 -1.440887e-05 168 191 -9.968672e-05 1.608739e-05 169 191 0.0001114272 -1.798207e-05 170 191 -0.0001247774 2.013652e-05 171 191 0.000140076 -2.26054e-05 172 191 -0.0001577525 2.545802e-05 173 191 0.0001783582 -2.878335e-05 174 191 -0.0002026106 3.26972e-05 175 191 0.0002314578 -3.735254e-05 176 191 -0.0002661734 4.295492e-05 177 191 0.0003085011 -4.978574e-05 178 191 -0.0003608797 5.823857e-05 179 191 0.0004268045 -6.887749e-05 180 191 -0.0005114288 8.253411e-05 181 191 0.0006226054 -0.0001004757 182 191 -0.0007727812 0.000124711 183 191 0.0009826448 -0.0001585787 184 191 -0.001288661 0.0002079635 185 191 0.001760065 -0.0002840383 186 191 -0.002541777 0.0004101906 187 191 0.003980742 -0.0006424099 188 191 -0.007089509 0.001144101 189 191 0.01597157 -0.002577484 190 191 -0.06393453 0.01031772 191 191 -0.2733634 -0.008991451 192 191 -0.06393453 0.01031772 193 191 0.01597157 -0.002577484 194 191 -0.007089509 0.001144101 195 191 0.003980742 -0.0006424099 196 191 -0.002541777 0.0004101906 197 191 0.001760065 -0.0002840383 198 191 -0.001288661 0.0002079635 199 191 0.0009826448 -0.0001585787 200 191 -0.0007727812 0.000124711 201 191 0.0006226054 -0.0001004757 202 191 -0.0005114288 8.253411e-05 203 191 0.0004268045 -6.887749e-05 204 191 -0.0003608797 5.823857e-05 205 191 0.0003085011 -4.978574e-05 206 191 -0.0002661734 4.295492e-05 207 191 0.0002314578 -3.735254e-05 208 191 -0.0002026106 3.26972e-05 209 191 0.0001783582 -2.878335e-05 210 191 -0.0001577525 2.545802e-05 211 191 0.000140076 -2.26054e-05 212 191 -0.0001247774 2.013652e-05 213 191 0.0001114272 -1.798207e-05 214 191 -9.968672e-05 1.608739e-05 215 191 8.928565e-05 -1.440887e-05 216 191 -8.000611e-05 1.291134e-05 217 191 7.167061e-05 -1.156616e-05 218 191 -6.413319e-05 1.034978e-05 219 191 5.727273e-05 -9.242642e-06 220 191 -5.098776e-05 8.228377e-06 221 191 4.519256e-05 -7.293151e-06 222 191 -3.981401e-05 6.425164e-06 223 191 3.478917e-05 -5.614257e-06 224 191 -3.00633e-05 4.851599e-06 225 191 2.558831e-05 -4.129428e-06 226 191 -2.132146e-05 3.440846e-06 227 191 1.722429e-05 -2.779647e-06 228 191 -1.326172e-05 2.14017e-06 229 191 9.401297e-06 -1.517176e-06 230 191 -5.612495e-06 9.057414e-07 231 191 1.866144e-06 -3.011573e-07 232 191 1.866144e-06 -3.011573e-07 233 191 -5.612495e-06 9.057414e-07 234 191 9.401297e-06 -1.517176e-06 235 191 -1.326172e-05 2.14017e-06 236 191 1.722429e-05 -2.779647e-06 237 191 -2.132146e-05 3.440846e-06 238 191 2.558831e-05 -4.129428e-06 239 191 -3.00633e-05 4.851599e-06 240 191 3.478917e-05 -5.614257e-06 241 191 -3.981401e-05 6.425164e-06 242 191 4.519256e-05 -7.293151e-06 272 191 0.0005337456 3.933516e-05 111 192 0.0005486991 4.074018e-05 162 192 4.519256e-05 -7.293151e-06 163 192 -5.098776e-05 8.228377e-06 164 192 5.727273e-05 -9.242642e-06 165 192 -6.413319e-05 1.034978e-05 166 192 7.167061e-05 -1.156616e-05 167 192 -8.000611e-05 1.291134e-05 168 192 8.928565e-05 -1.440887e-05 169 192 -9.968672e-05 1.608739e-05 170 192 0.0001114272 -1.798207e-05 171 192 -0.0001247774 2.013652e-05 172 192 0.000140076 -2.26054e-05 173 192 -0.0001577525 2.545802e-05 174 192 0.0001783582 -2.878335e-05 175 192 -0.0002026106 3.26972e-05 176 192 0.0002314578 -3.735254e-05 177 192 -0.0002661734 4.295492e-05 178 192 0.0003085011 -4.978574e-05 179 192 -0.0003608797 5.823857e-05 180 192 0.0004268045 -6.887749e-05 181 192 -0.0005114288 8.253411e-05 182 192 0.0006226054 -0.0001004757 183 192 -0.0007727812 0.000124711 184 192 0.0009826448 -0.0001585787 185 192 -0.001288661 0.0002079635 186 192 0.001760065 -0.0002840383 187 192 -0.002541777 0.0004101906 188 192 0.003980742 -0.0006424099 189 192 -0.007089509 0.001144101 190 192 0.01597157 -0.002577484 191 192 -0.06393453 0.01031772 192 192 -0.2704133 -0.009322081 193 192 -0.06393453 0.01031772 194 192 0.01597157 -0.002577484 195 192 -0.007089509 0.001144101 196 192 0.003980742 -0.0006424099 197 192 -0.002541777 0.0004101906 198 192 0.001760065 -0.0002840383 199 192 -0.001288661 0.0002079635 200 192 0.0009826448 -0.0001585787 201 192 -0.0007727812 0.000124711 202 192 0.0006226054 -0.0001004757 203 192 -0.0005114288 8.253411e-05 204 192 0.0004268045 -6.887749e-05 205 192 -0.0003608797 5.823857e-05 206 192 0.0003085011 -4.978574e-05 207 192 -0.0002661734 4.295492e-05 208 192 0.0002314578 -3.735254e-05 209 192 -0.0002026106 3.26972e-05 210 192 0.0001783582 -2.878335e-05 211 192 -0.0001577525 2.545802e-05 212 192 0.000140076 -2.26054e-05 213 192 -0.0001247774 2.013652e-05 214 192 0.0001114272 -1.798207e-05 215 192 -9.968672e-05 1.608739e-05 216 192 8.928565e-05 -1.440887e-05 217 192 -8.000611e-05 1.291134e-05 218 192 7.167061e-05 -1.156616e-05 219 192 -6.413319e-05 1.034978e-05 220 192 5.727273e-05 -9.242642e-06 221 192 -5.098776e-05 8.228377e-06 222 192 4.519256e-05 -7.293151e-06 223 192 -3.981401e-05 6.425164e-06 224 192 3.478917e-05 -5.614257e-06 225 192 -3.00633e-05 4.851599e-06 226 192 2.558831e-05 -4.129428e-06 227 192 -2.132146e-05 3.440846e-06 228 192 1.722429e-05 -2.779647e-06 229 192 -1.326172e-05 2.14017e-06 230 192 9.401297e-06 -1.517176e-06 231 192 -5.612495e-06 9.057414e-07 232 192 1.866144e-06 -3.011573e-07 233 192 1.866144e-06 -3.011573e-07 234 192 -5.612495e-06 9.057414e-07 235 192 9.401297e-06 -1.517176e-06 236 192 -1.326172e-05 2.14017e-06 237 192 1.722429e-05 -2.779647e-06 238 192 -2.132146e-05 3.440846e-06 239 192 2.558831e-05 -4.129428e-06 240 192 -3.00633e-05 4.851599e-06 241 192 3.478917e-05 -5.614257e-06 242 192 -3.981401e-05 6.425164e-06 273 192 0.0005486991 4.074018e-05 112 193 0.0005637286 4.215856e-05 162 193 -3.981401e-05 6.425164e-06 163 193 4.519256e-05 -7.293151e-06 164 193 -5.098776e-05 8.228377e-06 165 193 5.727273e-05 -9.242642e-06 166 193 -6.413319e-05 1.034978e-05 167 193 7.167061e-05 -1.156616e-05 168 193 -8.000611e-05 1.291134e-05 169 193 8.928565e-05 -1.440887e-05 170 193 -9.968672e-05 1.608739e-05 171 193 0.0001114272 -1.798207e-05 172 193 -0.0001247774 2.013652e-05 173 193 0.000140076 -2.26054e-05 174 193 -0.0001577525 2.545802e-05 175 193 0.0001783582 -2.878335e-05 176 193 -0.0002026106 3.26972e-05 177 193 0.0002314578 -3.735254e-05 178 193 -0.0002661734 4.295492e-05 179 193 0.0003085011 -4.978574e-05 180 193 -0.0003608797 5.823857e-05 181 193 0.0004268045 -6.887749e-05 182 193 -0.0005114288 8.253411e-05 183 193 0.0006226054 -0.0001004757 184 193 -0.0007727812 0.000124711 185 193 0.0009826448 -0.0001585787 186 193 -0.001288661 0.0002079635 187 193 0.001760065 -0.0002840383 188 193 -0.002541777 0.0004101906 189 193 0.003980742 -0.0006424099 190 193 -0.007089509 0.001144101 191 193 0.01597157 -0.002577484 192 193 -0.06393453 0.01031772 193 193 -0.267675 -0.009662483 194 193 -0.06393453 0.01031772 195 193 0.01597157 -0.002577484 196 193 -0.007089509 0.001144101 197 193 0.003980742 -0.0006424099 198 193 -0.002541777 0.0004101906 199 193 0.001760065 -0.0002840383 200 193 -0.001288661 0.0002079635 201 193 0.0009826448 -0.0001585787 202 193 -0.0007727812 0.000124711 203 193 0.0006226054 -0.0001004757 204 193 -0.0005114288 8.253411e-05 205 193 0.0004268045 -6.887749e-05 206 193 -0.0003608797 5.823857e-05 207 193 0.0003085011 -4.978574e-05 208 193 -0.0002661734 4.295492e-05 209 193 0.0002314578 -3.735254e-05 210 193 -0.0002026106 3.26972e-05 211 193 0.0001783582 -2.878335e-05 212 193 -0.0001577525 2.545802e-05 213 193 0.000140076 -2.26054e-05 214 193 -0.0001247774 2.013652e-05 215 193 0.0001114272 -1.798207e-05 216 193 -9.968672e-05 1.608739e-05 217 193 8.928565e-05 -1.440887e-05 218 193 -8.000611e-05 1.291134e-05 219 193 7.167061e-05 -1.156616e-05 220 193 -6.413319e-05 1.034978e-05 221 193 5.727273e-05 -9.242642e-06 222 193 -5.098776e-05 8.228377e-06 223 193 4.519256e-05 -7.293151e-06 224 193 -3.981401e-05 6.425164e-06 225 193 3.478917e-05 -5.614257e-06 226 193 -3.00633e-05 4.851599e-06 227 193 2.558831e-05 -4.129428e-06 228 193 -2.132146e-05 3.440846e-06 229 193 1.722429e-05 -2.779647e-06 230 193 -1.326172e-05 2.14017e-06 231 193 9.401297e-06 -1.517176e-06 232 193 -5.612495e-06 9.057414e-07 233 193 1.866144e-06 -3.011573e-07 234 193 1.866144e-06 -3.011573e-07 235 193 -5.612495e-06 9.057414e-07 236 193 9.401297e-06 -1.517176e-06 237 193 -1.326172e-05 2.14017e-06 238 193 1.722429e-05 -2.779647e-06 239 193 -2.132146e-05 3.440846e-06 240 193 2.558831e-05 -4.129428e-06 241 193 -3.00633e-05 4.851599e-06 242 193 3.478917e-05 -5.614257e-06 274 193 0.0005637286 4.215856e-05 113 194 0.0005788347 4.359042e-05 162 194 3.478917e-05 -5.614257e-06 163 194 -3.981401e-05 6.425164e-06 164 194 4.519256e-05 -7.293151e-06 165 194 -5.098776e-05 8.228377e-06 166 194 5.727273e-05 -9.242642e-06 167 194 -6.413319e-05 1.034978e-05 168 194 7.167061e-05 -1.156616e-05 169 194 -8.000611e-05 1.291134e-05 170 194 8.928565e-05 -1.440887e-05 171 194 -9.968672e-05 1.608739e-05 172 194 0.0001114272 -1.798207e-05 173 194 -0.0001247774 2.013652e-05 174 194 0.000140076 -2.26054e-05 175 194 -0.0001577525 2.545802e-05 176 194 0.0001783582 -2.878335e-05 177 194 -0.0002026106 3.26972e-05 178 194 0.0002314578 -3.735254e-05 179 194 -0.0002661734 4.295492e-05 180 194 0.0003085011 -4.978574e-05 181 194 -0.0003608797 5.823857e-05 182 194 0.0004268045 -6.887749e-05 183 194 -0.0005114288 8.253411e-05 184 194 0.0006226054 -0.0001004757 185 194 -0.0007727812 0.000124711 186 194 0.0009826448 -0.0001585787 187 194 -0.001288661 0.0002079635 188 194 0.001760065 -0.0002840383 189 194 -0.002541777 0.0004101906 190 194 0.003980742 -0.0006424099 191 194 -0.007089509 0.001144101 192 194 0.01597157 -0.002577484 193 194 -0.06393453 0.01031772 194 194 -0.265139 -0.01000776 195 194 -0.06393453 0.01031772 196 194 0.01597157 -0.002577484 197 194 -0.007089509 0.001144101 198 194 0.003980742 -0.0006424099 199 194 -0.002541777 0.0004101906 200 194 0.001760065 -0.0002840383 201 194 -0.001288661 0.0002079635 202 194 0.0009826448 -0.0001585787 203 194 -0.0007727812 0.000124711 204 194 0.0006226054 -0.0001004757 205 194 -0.0005114288 8.253411e-05 206 194 0.0004268045 -6.887749e-05 207 194 -0.0003608797 5.823857e-05 208 194 0.0003085011 -4.978574e-05 209 194 -0.0002661734 4.295492e-05 210 194 0.0002314578 -3.735254e-05 211 194 -0.0002026106 3.26972e-05 212 194 0.0001783582 -2.878335e-05 213 194 -0.0001577525 2.545802e-05 214 194 0.000140076 -2.26054e-05 215 194 -0.0001247774 2.013652e-05 216 194 0.0001114272 -1.798207e-05 217 194 -9.968672e-05 1.608739e-05 218 194 8.928565e-05 -1.440887e-05 219 194 -8.000611e-05 1.291134e-05 220 194 7.167061e-05 -1.156616e-05 221 194 -6.413319e-05 1.034978e-05 222 194 5.727273e-05 -9.242642e-06 223 194 -5.098776e-05 8.228377e-06 224 194 4.519256e-05 -7.293151e-06 225 194 -3.981401e-05 6.425164e-06 226 194 3.478917e-05 -5.614257e-06 227 194 -3.00633e-05 4.851599e-06 228 194 2.558831e-05 -4.129428e-06 229 194 -2.132146e-05 3.440846e-06 230 194 1.722429e-05 -2.779647e-06 231 194 -1.326172e-05 2.14017e-06 232 194 9.401297e-06 -1.517176e-06 233 194 -5.612495e-06 9.057414e-07 234 194 1.866144e-06 -3.011573e-07 235 194 1.866144e-06 -3.011573e-07 236 194 -5.612495e-06 9.057414e-07 237 194 9.401297e-06 -1.517176e-06 238 194 -1.326172e-05 2.14017e-06 239 194 1.722429e-05 -2.779647e-06 240 194 -2.132146e-05 3.440846e-06 241 194 2.558831e-05 -4.129428e-06 242 194 -3.00633e-05 4.851599e-06 275 194 0.0005788347 4.359042e-05 114 195 0.0005940177 4.503586e-05 162 195 -3.00633e-05 4.851599e-06 163 195 3.478917e-05 -5.614257e-06 164 195 -3.981401e-05 6.425164e-06 165 195 4.519256e-05 -7.293151e-06 166 195 -5.098776e-05 8.228377e-06 167 195 5.727273e-05 -9.242642e-06 168 195 -6.413319e-05 1.034978e-05 169 195 7.167061e-05 -1.156616e-05 170 195 -8.000611e-05 1.291134e-05 171 195 8.928565e-05 -1.440887e-05 172 195 -9.968672e-05 1.608739e-05 173 195 0.0001114272 -1.798207e-05 174 195 -0.0001247774 2.013652e-05 175 195 0.000140076 -2.26054e-05 176 195 -0.0001577525 2.545802e-05 177 195 0.0001783582 -2.878335e-05 178 195 -0.0002026106 3.26972e-05 179 195 0.0002314578 -3.735254e-05 180 195 -0.0002661734 4.295492e-05 181 195 0.0003085011 -4.978574e-05 182 195 -0.0003608797 5.823857e-05 183 195 0.0004268045 -6.887749e-05 184 195 -0.0005114288 8.253411e-05 185 195 0.0006226054 -0.0001004757 186 195 -0.0007727812 0.000124711 187 195 0.0009826448 -0.0001585787 188 195 -0.001288661 0.0002079635 189 195 0.001760065 -0.0002840383 190 195 -0.002541777 0.0004101906 191 195 0.003980742 -0.0006424099 192 195 -0.007089509 0.001144101 193 195 0.01597157 -0.002577484 194 195 -0.06393453 0.01031772 195 195 -0.2627948 -0.01035382 196 195 -0.06393453 0.01031772 197 195 0.01597157 -0.002577484 198 195 -0.007089509 0.001144101 199 195 0.003980742 -0.0006424099 200 195 -0.002541777 0.0004101906 201 195 0.001760065 -0.0002840383 202 195 -0.001288661 0.0002079635 203 195 0.0009826448 -0.0001585787 204 195 -0.0007727812 0.000124711 205 195 0.0006226054 -0.0001004757 206 195 -0.0005114288 8.253411e-05 207 195 0.0004268045 -6.887749e-05 208 195 -0.0003608797 5.823857e-05 209 195 0.0003085011 -4.978574e-05 210 195 -0.0002661734 4.295492e-05 211 195 0.0002314578 -3.735254e-05 212 195 -0.0002026106 3.26972e-05 213 195 0.0001783582 -2.878335e-05 214 195 -0.0001577525 2.545802e-05 215 195 0.000140076 -2.26054e-05 216 195 -0.0001247774 2.013652e-05 217 195 0.0001114272 -1.798207e-05 218 195 -9.968672e-05 1.608739e-05 219 195 8.928565e-05 -1.440887e-05 220 195 -8.000611e-05 1.291134e-05 221 195 7.167061e-05 -1.156616e-05 222 195 -6.413319e-05 1.034978e-05 223 195 5.727273e-05 -9.242642e-06 224 195 -5.098776e-05 8.228377e-06 225 195 4.519256e-05 -7.293151e-06 226 195 -3.981401e-05 6.425164e-06 227 195 3.478917e-05 -5.614257e-06 228 195 -3.00633e-05 4.851599e-06 229 195 2.558831e-05 -4.129428e-06 230 195 -2.132146e-05 3.440846e-06 231 195 1.722429e-05 -2.779647e-06 232 195 -1.326172e-05 2.14017e-06 233 195 9.401297e-06 -1.517176e-06 234 195 -5.612495e-06 9.057414e-07 235 195 1.866144e-06 -3.011573e-07 236 195 1.866144e-06 -3.011573e-07 237 195 -5.612495e-06 9.057414e-07 238 195 9.401297e-06 -1.517176e-06 239 195 -1.326172e-05 2.14017e-06 240 195 1.722429e-05 -2.779647e-06 241 195 -2.132146e-05 3.440846e-06 242 195 2.558831e-05 -4.129428e-06 276 195 0.0005940177 4.503586e-05 115 196 0.0006092779 4.649497e-05 162 196 2.558831e-05 -4.129428e-06 163 196 -3.00633e-05 4.851599e-06 164 196 3.478917e-05 -5.614257e-06 165 196 -3.981401e-05 6.425164e-06 166 196 4.519256e-05 -7.293151e-06 167 196 -5.098776e-05 8.228377e-06 168 196 5.727273e-05 -9.242642e-06 169 196 -6.413319e-05 1.034978e-05 170 196 7.167061e-05 -1.156616e-05 171 196 -8.000611e-05 1.291134e-05 172 196 8.928565e-05 -1.440887e-05 173 196 -9.968672e-05 1.608739e-05 174 196 0.0001114272 -1.798207e-05 175 196 -0.0001247774 2.013652e-05 176 196 0.000140076 -2.26054e-05 177 196 -0.0001577525 2.545802e-05 178 196 0.0001783582 -2.878335e-05 179 196 -0.0002026106 3.26972e-05 180 196 0.0002314578 -3.735254e-05 181 196 -0.0002661734 4.295492e-05 182 196 0.0003085011 -4.978574e-05 183 196 -0.0003608797 5.823857e-05 184 196 0.0004268045 -6.887749e-05 185 196 -0.0005114288 8.253411e-05 186 196 0.0006226054 -0.0001004757 187 196 -0.0007727812 0.000124711 188 196 0.0009826448 -0.0001585787 189 196 -0.001288661 0.0002079635 190 196 0.001760065 -0.0002840383 191 196 -0.002541777 0.0004101906 192 196 0.003980742 -0.0006424099 193 196 -0.007089509 0.001144101 194 196 0.01597157 -0.002577484 195 196 -0.06393453 0.01031772 196 196 -0.2606317 -0.01069733 197 196 -0.06393453 0.01031772 198 196 0.01597157 -0.002577484 199 196 -0.007089509 0.001144101 200 196 0.003980742 -0.0006424099 201 196 -0.002541777 0.0004101906 202 196 0.001760065 -0.0002840383 203 196 -0.001288661 0.0002079635 204 196 0.0009826448 -0.0001585787 205 196 -0.0007727812 0.000124711 206 196 0.0006226054 -0.0001004757 207 196 -0.0005114288 8.253411e-05 208 196 0.0004268045 -6.887749e-05 209 196 -0.0003608797 5.823857e-05 210 196 0.0003085011 -4.978574e-05 211 196 -0.0002661734 4.295492e-05 212 196 0.0002314578 -3.735254e-05 213 196 -0.0002026106 3.26972e-05 214 196 0.0001783582 -2.878335e-05 215 196 -0.0001577525 2.545802e-05 216 196 0.000140076 -2.26054e-05 217 196 -0.0001247774 2.013652e-05 218 196 0.0001114272 -1.798207e-05 219 196 -9.968672e-05 1.608739e-05 220 196 8.928565e-05 -1.440887e-05 221 196 -8.000611e-05 1.291134e-05 222 196 7.167061e-05 -1.156616e-05 223 196 -6.413319e-05 1.034978e-05 224 196 5.727273e-05 -9.242642e-06 225 196 -5.098776e-05 8.228377e-06 226 196 4.519256e-05 -7.293151e-06 227 196 -3.981401e-05 6.425164e-06 228 196 3.478917e-05 -5.614257e-06 229 196 -3.00633e-05 4.851599e-06 230 196 2.558831e-05 -4.129428e-06 231 196 -2.132146e-05 3.440846e-06 232 196 1.722429e-05 -2.779647e-06 233 196 -1.326172e-05 2.14017e-06 234 196 9.401297e-06 -1.517176e-06 235 196 -5.612495e-06 9.057414e-07 236 196 1.866144e-06 -3.011573e-07 237 196 1.866144e-06 -3.011573e-07 238 196 -5.612495e-06 9.057414e-07 239 196 9.401297e-06 -1.517176e-06 240 196 -1.326172e-05 2.14017e-06 241 196 1.722429e-05 -2.779647e-06 242 196 -2.132146e-05 3.440846e-06 277 196 0.0006092779 4.649497e-05 116 197 0.0006246159 4.796785e-05 162 197 -2.132146e-05 3.440846e-06 163 197 2.558831e-05 -4.129428e-06 164 197 -3.00633e-05 4.851599e-06 165 197 3.478917e-05 -5.614257e-06 166 197 -3.981401e-05 6.425164e-06 167 197 4.519256e-05 -7.293151e-06 168 197 -5.098776e-05 8.228377e-06 169 197 5.727273e-05 -9.242642e-06 170 197 -6.413319e-05 1.034978e-05 171 197 7.167061e-05 -1.156616e-05 172 197 -8.000611e-05 1.291134e-05 173 197 8.928565e-05 -1.440887e-05 174 197 -9.968672e-05 1.608739e-05 175 197 0.0001114272 -1.798207e-05 176 197 -0.0001247774 2.013652e-05 177 197 0.000140076 -2.26054e-05 178 197 -0.0001577525 2.545802e-05 179 197 0.0001783582 -2.878335e-05 180 197 -0.0002026106 3.26972e-05 181 197 0.0002314578 -3.735254e-05 182 197 -0.0002661734 4.295492e-05 183 197 0.0003085011 -4.978574e-05 184 197 -0.0003608797 5.823857e-05 185 197 0.0004268045 -6.887749e-05 186 197 -0.0005114288 8.253411e-05 187 197 0.0006226054 -0.0001004757 188 197 -0.0007727812 0.000124711 189 197 0.0009826448 -0.0001585787 190 197 -0.001288661 0.0002079635 191 197 0.001760065 -0.0002840383 192 197 -0.002541777 0.0004101906 193 197 0.003980742 -0.0006424099 194 197 -0.007089509 0.001144101 195 197 0.01597157 -0.002577484 196 197 -0.06393453 0.01031772 197 197 -0.2586388 -0.01103557 198 197 -0.06393453 0.01031772 199 197 0.01597157 -0.002577484 200 197 -0.007089509 0.001144101 201 197 0.003980742 -0.0006424099 202 197 -0.002541777 0.0004101906 203 197 0.001760065 -0.0002840383 204 197 -0.001288661 0.0002079635 205 197 0.0009826448 -0.0001585787 206 197 -0.0007727812 0.000124711 207 197 0.0006226054 -0.0001004757 208 197 -0.0005114288 8.253411e-05 209 197 0.0004268045 -6.887749e-05 210 197 -0.0003608797 5.823857e-05 211 197 0.0003085011 -4.978574e-05 212 197 -0.0002661734 4.295492e-05 213 197 0.0002314578 -3.735254e-05 214 197 -0.0002026106 3.26972e-05 215 197 0.0001783582 -2.878335e-05 216 197 -0.0001577525 2.545802e-05 217 197 0.000140076 -2.26054e-05 218 197 -0.0001247774 2.013652e-05 219 197 0.0001114272 -1.798207e-05 220 197 -9.968672e-05 1.608739e-05 221 197 8.928565e-05 -1.440887e-05 222 197 -8.000611e-05 1.291134e-05 223 197 7.167061e-05 -1.156616e-05 224 197 -6.413319e-05 1.034978e-05 225 197 5.727273e-05 -9.242642e-06 226 197 -5.098776e-05 8.228377e-06 227 197 4.519256e-05 -7.293151e-06 228 197 -3.981401e-05 6.425164e-06 229 197 3.478917e-05 -5.614257e-06 230 197 -3.00633e-05 4.851599e-06 231 197 2.558831e-05 -4.129428e-06 232 197 -2.132146e-05 3.440846e-06 233 197 1.722429e-05 -2.779647e-06 234 197 -1.326172e-05 2.14017e-06 235 197 9.401297e-06 -1.517176e-06 236 197 -5.612495e-06 9.057414e-07 237 197 1.866144e-06 -3.011573e-07 238 197 1.866144e-06 -3.011573e-07 239 197 -5.612495e-06 9.057414e-07 240 197 9.401297e-06 -1.517176e-06 241 197 -1.326172e-05 2.14017e-06 242 197 1.722429e-05 -2.779647e-06 278 197 0.0006246159 4.796785e-05 117 198 0.0006400319 4.945462e-05 162 198 1.722429e-05 -2.779647e-06 163 198 -2.132146e-05 3.440846e-06 164 198 2.558831e-05 -4.129428e-06 165 198 -3.00633e-05 4.851599e-06 166 198 3.478917e-05 -5.614257e-06 167 198 -3.981401e-05 6.425164e-06 168 198 4.519256e-05 -7.293151e-06 169 198 -5.098776e-05 8.228377e-06 170 198 5.727273e-05 -9.242642e-06 171 198 -6.413319e-05 1.034978e-05 172 198 7.167061e-05 -1.156616e-05 173 198 -8.000611e-05 1.291134e-05 174 198 8.928565e-05 -1.440887e-05 175 198 -9.968672e-05 1.608739e-05 176 198 0.0001114272 -1.798207e-05 177 198 -0.0001247774 2.013652e-05 178 198 0.000140076 -2.26054e-05 179 198 -0.0001577525 2.545802e-05 180 198 0.0001783582 -2.878335e-05 181 198 -0.0002026106 3.26972e-05 182 198 0.0002314578 -3.735254e-05 183 198 -0.0002661734 4.295492e-05 184 198 0.0003085011 -4.978574e-05 185 198 -0.0003608797 5.823857e-05 186 198 0.0004268045 -6.887749e-05 187 198 -0.0005114288 8.253411e-05 188 198 0.0006226054 -0.0001004757 189 198 -0.0007727812 0.000124711 190 198 0.0009826448 -0.0001585787 191 198 -0.001288661 0.0002079635 192 198 0.001760065 -0.0002840383 193 198 -0.002541777 0.0004101906 194 198 0.003980742 -0.0006424099 195 198 -0.007089509 0.001144101 196 198 0.01597157 -0.002577484 197 198 -0.06393453 0.01031772 198 198 -0.2568051 -0.01136635 199 198 -0.06393453 0.01031772 200 198 0.01597157 -0.002577484 201 198 -0.007089509 0.001144101 202 198 0.003980742 -0.0006424099 203 198 -0.002541777 0.0004101906 204 198 0.001760065 -0.0002840383 205 198 -0.001288661 0.0002079635 206 198 0.0009826448 -0.0001585787 207 198 -0.0007727812 0.000124711 208 198 0.0006226054 -0.0001004757 209 198 -0.0005114288 8.253411e-05 210 198 0.0004268045 -6.887749e-05 211 198 -0.0003608797 5.823857e-05 212 198 0.0003085011 -4.978574e-05 213 198 -0.0002661734 4.295492e-05 214 198 0.0002314578 -3.735254e-05 215 198 -0.0002026106 3.26972e-05 216 198 0.0001783582 -2.878335e-05 217 198 -0.0001577525 2.545802e-05 218 198 0.000140076 -2.26054e-05 219 198 -0.0001247774 2.013652e-05 220 198 0.0001114272 -1.798207e-05 221 198 -9.968672e-05 1.608739e-05 222 198 8.928565e-05 -1.440887e-05 223 198 -8.000611e-05 1.291134e-05 224 198 7.167061e-05 -1.156616e-05 225 198 -6.413319e-05 1.034978e-05 226 198 5.727273e-05 -9.242642e-06 227 198 -5.098776e-05 8.228377e-06 228 198 4.519256e-05 -7.293151e-06 229 198 -3.981401e-05 6.425164e-06 230 198 3.478917e-05 -5.614257e-06 231 198 -3.00633e-05 4.851599e-06 232 198 2.558831e-05 -4.129428e-06 233 198 -2.132146e-05 3.440846e-06 234 198 1.722429e-05 -2.779647e-06 235 198 -1.326172e-05 2.14017e-06 236 198 9.401297e-06 -1.517176e-06 237 198 -5.612495e-06 9.057414e-07 238 198 1.866144e-06 -3.011573e-07 239 198 1.866144e-06 -3.011573e-07 240 198 -5.612495e-06 9.057414e-07 241 198 9.401297e-06 -1.517176e-06 242 198 -1.326172e-05 2.14017e-06 279 198 0.0006400319 4.945462e-05 118 199 0.0006555264 5.095537e-05 162 199 -1.326172e-05 2.14017e-06 163 199 1.722429e-05 -2.779647e-06 164 199 -2.132146e-05 3.440846e-06 165 199 2.558831e-05 -4.129428e-06 166 199 -3.00633e-05 4.851599e-06 167 199 3.478917e-05 -5.614257e-06 168 199 -3.981401e-05 6.425164e-06 169 199 4.519256e-05 -7.293151e-06 170 199 -5.098776e-05 8.228377e-06 171 199 5.727273e-05 -9.242642e-06 172 199 -6.413319e-05 1.034978e-05 173 199 7.167061e-05 -1.156616e-05 174 199 -8.000611e-05 1.291134e-05 175 199 8.928565e-05 -1.440887e-05 176 199 -9.968672e-05 1.608739e-05 177 199 0.0001114272 -1.798207e-05 178 199 -0.0001247774 2.013652e-05 179 199 0.000140076 -2.26054e-05 180 199 -0.0001577525 2.545802e-05 181 199 0.0001783582 -2.878335e-05 182 199 -0.0002026106 3.26972e-05 183 199 0.0002314578 -3.735254e-05 184 199 -0.0002661734 4.295492e-05 185 199 0.0003085011 -4.978574e-05 186 199 -0.0003608797 5.823857e-05 187 199 0.0004268045 -6.887749e-05 188 199 -0.0005114288 8.253411e-05 189 199 0.0006226054 -0.0001004757 190 199 -0.0007727812 0.000124711 191 199 0.0009826448 -0.0001585787 192 199 -0.001288661 0.0002079635 193 199 0.001760065 -0.0002840383 194 199 -0.002541777 0.0004101906 195 199 0.003980742 -0.0006424099 196 199 -0.007089509 0.001144101 197 199 0.01597157 -0.002577484 198 199 -0.06393453 0.01031772 199 199 -0.2551201 -0.01168797 200 199 -0.06393453 0.01031772 201 199 0.01597157 -0.002577484 202 199 -0.007089509 0.001144101 203 199 0.003980742 -0.0006424099 204 199 -0.002541777 0.0004101906 205 199 0.001760065 -0.0002840383 206 199 -0.001288661 0.0002079635 207 199 0.0009826448 -0.0001585787 208 199 -0.0007727812 0.000124711 209 199 0.0006226054 -0.0001004757 210 199 -0.0005114288 8.253411e-05 211 199 0.0004268045 -6.887749e-05 212 199 -0.0003608797 5.823857e-05 213 199 0.0003085011 -4.978574e-05 214 199 -0.0002661734 4.295492e-05 215 199 0.0002314578 -3.735254e-05 216 199 -0.0002026106 3.26972e-05 217 199 0.0001783582 -2.878335e-05 218 199 -0.0001577525 2.545802e-05 219 199 0.000140076 -2.26054e-05 220 199 -0.0001247774 2.013652e-05 221 199 0.0001114272 -1.798207e-05 222 199 -9.968672e-05 1.608739e-05 223 199 8.928565e-05 -1.440887e-05 224 199 -8.000611e-05 1.291134e-05 225 199 7.167061e-05 -1.156616e-05 226 199 -6.413319e-05 1.034978e-05 227 199 5.727273e-05 -9.242642e-06 228 199 -5.098776e-05 8.228377e-06 229 199 4.519256e-05 -7.293151e-06 230 199 -3.981401e-05 6.425164e-06 231 199 3.478917e-05 -5.614257e-06 232 199 -3.00633e-05 4.851599e-06 233 199 2.558831e-05 -4.129428e-06 234 199 -2.132146e-05 3.440846e-06 235 199 1.722429e-05 -2.779647e-06 236 199 -1.326172e-05 2.14017e-06 237 199 9.401297e-06 -1.517176e-06 238 199 -5.612495e-06 9.057414e-07 239 199 1.866144e-06 -3.011573e-07 240 199 1.866144e-06 -3.011573e-07 241 199 -5.612495e-06 9.057414e-07 242 199 9.401297e-06 -1.517176e-06 280 199 0.0006555264 5.095537e-05 119 200 0.0006710998 5.247021e-05 162 200 9.401297e-06 -1.517176e-06 163 200 -1.326172e-05 2.14017e-06 164 200 1.722429e-05 -2.779647e-06 165 200 -2.132146e-05 3.440846e-06 166 200 2.558831e-05 -4.129428e-06 167 200 -3.00633e-05 4.851599e-06 168 200 3.478917e-05 -5.614257e-06 169 200 -3.981401e-05 6.425164e-06 170 200 4.519256e-05 -7.293151e-06 171 200 -5.098776e-05 8.228377e-06 172 200 5.727273e-05 -9.242642e-06 173 200 -6.413319e-05 1.034978e-05 174 200 7.167061e-05 -1.156616e-05 175 200 -8.000611e-05 1.291134e-05 176 200 8.928565e-05 -1.440887e-05 177 200 -9.968672e-05 1.608739e-05 178 200 0.0001114272 -1.798207e-05 179 200 -0.0001247774 2.013652e-05 180 200 0.000140076 -2.26054e-05 181 200 -0.0001577525 2.545802e-05 182 200 0.0001783582 -2.878335e-05 183 200 -0.0002026106 3.26972e-05 184 200 0.0002314578 -3.735254e-05 185 200 -0.0002661734 4.295492e-05 186 200 0.0003085011 -4.978574e-05 187 200 -0.0003608797 5.823857e-05 188 200 0.0004268045 -6.887749e-05 189 200 -0.0005114288 8.253411e-05 190 200 0.0006226054 -0.0001004757 191 200 -0.0007727812 0.000124711 192 200 0.0009826448 -0.0001585787 193 200 -0.001288661 0.0002079635 194 200 0.001760065 -0.0002840383 195 200 -0.002541777 0.0004101906 196 200 0.003980742 -0.0006424099 197 200 -0.007089509 0.001144101 198 200 0.01597157 -0.002577484 199 200 -0.06393453 0.01031772 200 200 -0.2535733 -0.01199912 201 200 -0.06393453 0.01031772 202 200 0.01597157 -0.002577484 203 200 -0.007089509 0.001144101 204 200 0.003980742 -0.0006424099 205 200 -0.002541777 0.0004101906 206 200 0.001760065 -0.0002840383 207 200 -0.001288661 0.0002079635 208 200 0.0009826448 -0.0001585787 209 200 -0.0007727812 0.000124711 210 200 0.0006226054 -0.0001004757 211 200 -0.0005114288 8.253411e-05 212 200 0.0004268045 -6.887749e-05 213 200 -0.0003608797 5.823857e-05 214 200 0.0003085011 -4.978574e-05 215 200 -0.0002661734 4.295492e-05 216 200 0.0002314578 -3.735254e-05 217 200 -0.0002026106 3.26972e-05 218 200 0.0001783582 -2.878335e-05 219 200 -0.0001577525 2.545802e-05 220 200 0.000140076 -2.26054e-05 221 200 -0.0001247774 2.013652e-05 222 200 0.0001114272 -1.798207e-05 223 200 -9.968672e-05 1.608739e-05 224 200 8.928565e-05 -1.440887e-05 225 200 -8.000611e-05 1.291134e-05 226 200 7.167061e-05 -1.156616e-05 227 200 -6.413319e-05 1.034978e-05 228 200 5.727273e-05 -9.242642e-06 229 200 -5.098776e-05 8.228377e-06 230 200 4.519256e-05 -7.293151e-06 231 200 -3.981401e-05 6.425164e-06 232 200 3.478917e-05 -5.614257e-06 233 200 -3.00633e-05 4.851599e-06 234 200 2.558831e-05 -4.129428e-06 235 200 -2.132146e-05 3.440846e-06 236 200 1.722429e-05 -2.779647e-06 237 200 -1.326172e-05 2.14017e-06 238 200 9.401297e-06 -1.517176e-06 239 200 -5.612495e-06 9.057414e-07 240 200 1.866144e-06 -3.011573e-07 241 200 1.866144e-06 -3.011573e-07 242 200 -5.612495e-06 9.057414e-07 281 200 0.0006710998 5.247021e-05 120 201 0.0006867524 5.399924e-05 162 201 -5.612495e-06 9.057414e-07 163 201 9.401297e-06 -1.517176e-06 164 201 -1.326172e-05 2.14017e-06 165 201 1.722429e-05 -2.779647e-06 166 201 -2.132146e-05 3.440846e-06 167 201 2.558831e-05 -4.129428e-06 168 201 -3.00633e-05 4.851599e-06 169 201 3.478917e-05 -5.614257e-06 170 201 -3.981401e-05 6.425164e-06 171 201 4.519256e-05 -7.293151e-06 172 201 -5.098776e-05 8.228377e-06 173 201 5.727273e-05 -9.242642e-06 174 201 -6.413319e-05 1.034978e-05 175 201 7.167061e-05 -1.156616e-05 176 201 -8.000611e-05 1.291134e-05 177 201 8.928565e-05 -1.440887e-05 178 201 -9.968672e-05 1.608739e-05 179 201 0.0001114272 -1.798207e-05 180 201 -0.0001247774 2.013652e-05 181 201 0.000140076 -2.26054e-05 182 201 -0.0001577525 2.545802e-05 183 201 0.0001783582 -2.878335e-05 184 201 -0.0002026106 3.26972e-05 185 201 0.0002314578 -3.735254e-05 186 201 -0.0002661734 4.295492e-05 187 201 0.0003085011 -4.978574e-05 188 201 -0.0003608797 5.823857e-05 189 201 0.0004268045 -6.887749e-05 190 201 -0.0005114288 8.253411e-05 191 201 0.0006226054 -0.0001004757 192 201 -0.0007727812 0.000124711 193 201 0.0009826448 -0.0001585787 194 201 -0.001288661 0.0002079635 195 201 0.001760065 -0.0002840383 196 201 -0.002541777 0.0004101906 197 201 0.003980742 -0.0006424099 198 201 -0.007089509 0.001144101 199 201 0.01597157 -0.002577484 200 201 -0.06393453 0.01031772 201 201 -0.2521548 -0.01229882 202 201 -0.06393453 0.01031772 203 201 0.01597157 -0.002577484 204 201 -0.007089509 0.001144101 205 201 0.003980742 -0.0006424099 206 201 -0.002541777 0.0004101906 207 201 0.001760065 -0.0002840383 208 201 -0.001288661 0.0002079635 209 201 0.0009826448 -0.0001585787 210 201 -0.0007727812 0.000124711 211 201 0.0006226054 -0.0001004757 212 201 -0.0005114288 8.253411e-05 213 201 0.0004268045 -6.887749e-05 214 201 -0.0003608797 5.823857e-05 215 201 0.0003085011 -4.978574e-05 216 201 -0.0002661734 4.295492e-05 217 201 0.0002314578 -3.735254e-05 218 201 -0.0002026106 3.26972e-05 219 201 0.0001783582 -2.878335e-05 220 201 -0.0001577525 2.545802e-05 221 201 0.000140076 -2.26054e-05 222 201 -0.0001247774 2.013652e-05 223 201 0.0001114272 -1.798207e-05 224 201 -9.968672e-05 1.608739e-05 225 201 8.928565e-05 -1.440887e-05 226 201 -8.000611e-05 1.291134e-05 227 201 7.167061e-05 -1.156616e-05 228 201 -6.413319e-05 1.034978e-05 229 201 5.727273e-05 -9.242642e-06 230 201 -5.098776e-05 8.228377e-06 231 201 4.519256e-05 -7.293151e-06 232 201 -3.981401e-05 6.425164e-06 233 201 3.478917e-05 -5.614257e-06 234 201 -3.00633e-05 4.851599e-06 235 201 2.558831e-05 -4.129428e-06 236 201 -2.132146e-05 3.440846e-06 237 201 1.722429e-05 -2.779647e-06 238 201 -1.326172e-05 2.14017e-06 239 201 9.401297e-06 -1.517176e-06 240 201 -5.612495e-06 9.057414e-07 241 201 1.866144e-06 -3.011573e-07 242 201 1.866144e-06 -3.011573e-07 282 201 0.0006867524 5.399924e-05 121 202 0.0007024847 5.554257e-05 162 202 1.866144e-06 -3.011573e-07 163 202 -5.612495e-06 9.057414e-07 164 202 9.401297e-06 -1.517176e-06 165 202 -1.326172e-05 2.14017e-06 166 202 1.722429e-05 -2.779647e-06 167 202 -2.132146e-05 3.440846e-06 168 202 2.558831e-05 -4.129428e-06 169 202 -3.00633e-05 4.851599e-06 170 202 3.478917e-05 -5.614257e-06 171 202 -3.981401e-05 6.425164e-06 172 202 4.519256e-05 -7.293151e-06 173 202 -5.098776e-05 8.228377e-06 174 202 5.727273e-05 -9.242642e-06 175 202 -6.413319e-05 1.034978e-05 176 202 7.167061e-05 -1.156616e-05 177 202 -8.000611e-05 1.291134e-05 178 202 8.928565e-05 -1.440887e-05 179 202 -9.968672e-05 1.608739e-05 180 202 0.0001114272 -1.798207e-05 181 202 -0.0001247774 2.013652e-05 182 202 0.000140076 -2.26054e-05 183 202 -0.0001577525 2.545802e-05 184 202 0.0001783582 -2.878335e-05 185 202 -0.0002026106 3.26972e-05 186 202 0.0002314578 -3.735254e-05 187 202 -0.0002661734 4.295492e-05 188 202 0.0003085011 -4.978574e-05 189 202 -0.0003608797 5.823857e-05 190 202 0.0004268045 -6.887749e-05 191 202 -0.0005114288 8.253411e-05 192 202 0.0006226054 -0.0001004757 193 202 -0.0007727812 0.000124711 194 202 0.0009826448 -0.0001585787 195 202 -0.001288661 0.0002079635 196 202 0.001760065 -0.0002840383 197 202 -0.002541777 0.0004101906 198 202 0.003980742 -0.0006424099 199 202 -0.007089509 0.001144101 200 202 0.01597157 -0.002577484 201 202 -0.06393453 0.01031772 202 202 -0.2508551 -0.01258639 203 202 -0.06393453 0.01031772 204 202 0.01597157 -0.002577484 205 202 -0.007089509 0.001144101 206 202 0.003980742 -0.0006424099 207 202 -0.002541777 0.0004101906 208 202 0.001760065 -0.0002840383 209 202 -0.001288661 0.0002079635 210 202 0.0009826448 -0.0001585787 211 202 -0.0007727812 0.000124711 212 202 0.0006226054 -0.0001004757 213 202 -0.0005114288 8.253411e-05 214 202 0.0004268045 -6.887749e-05 215 202 -0.0003608797 5.823857e-05 216 202 0.0003085011 -4.978574e-05 217 202 -0.0002661734 4.295492e-05 218 202 0.0002314578 -3.735254e-05 219 202 -0.0002026106 3.26972e-05 220 202 0.0001783582 -2.878335e-05 221 202 -0.0001577525 2.545802e-05 222 202 0.000140076 -2.26054e-05 223 202 -0.0001247774 2.013652e-05 224 202 0.0001114272 -1.798207e-05 225 202 -9.968672e-05 1.608739e-05 226 202 8.928565e-05 -1.440887e-05 227 202 -8.000611e-05 1.291134e-05 228 202 7.167061e-05 -1.156616e-05 229 202 -6.413319e-05 1.034978e-05 230 202 5.727273e-05 -9.242642e-06 231 202 -5.098776e-05 8.228377e-06 232 202 4.519256e-05 -7.293151e-06 233 202 -3.981401e-05 6.425164e-06 234 202 3.478917e-05 -5.614257e-06 235 202 -3.00633e-05 4.851599e-06 236 202 2.558831e-05 -4.129428e-06 237 202 -2.132146e-05 3.440846e-06 238 202 1.722429e-05 -2.779647e-06 239 202 -1.326172e-05 2.14017e-06 240 202 9.401297e-06 -1.517176e-06 241 202 -5.612495e-06 9.057414e-07 242 202 1.866144e-06 -3.011573e-07 283 202 0.0007024847 5.554257e-05 122 203 0.000718297 5.71003e-05 162 203 1.866144e-06 -3.011573e-07 163 203 1.866144e-06 -3.011573e-07 164 203 -5.612495e-06 9.057414e-07 165 203 9.401297e-06 -1.517176e-06 166 203 -1.326172e-05 2.14017e-06 167 203 1.722429e-05 -2.779647e-06 168 203 -2.132146e-05 3.440846e-06 169 203 2.558831e-05 -4.129428e-06 170 203 -3.00633e-05 4.851599e-06 171 203 3.478917e-05 -5.614257e-06 172 203 -3.981401e-05 6.425164e-06 173 203 4.519256e-05 -7.293151e-06 174 203 -5.098776e-05 8.228377e-06 175 203 5.727273e-05 -9.242642e-06 176 203 -6.413319e-05 1.034978e-05 177 203 7.167061e-05 -1.156616e-05 178 203 -8.000611e-05 1.291134e-05 179 203 8.928565e-05 -1.440887e-05 180 203 -9.968672e-05 1.608739e-05 181 203 0.0001114272 -1.798207e-05 182 203 -0.0001247774 2.013652e-05 183 203 0.000140076 -2.26054e-05 184 203 -0.0001577525 2.545802e-05 185 203 0.0001783582 -2.878335e-05 186 203 -0.0002026106 3.26972e-05 187 203 0.0002314578 -3.735254e-05 188 203 -0.0002661734 4.295492e-05 189 203 0.0003085011 -4.978574e-05 190 203 -0.0003608797 5.823857e-05 191 203 0.0004268045 -6.887749e-05 192 203 -0.0005114288 8.253411e-05 193 203 0.0006226054 -0.0001004757 194 203 -0.0007727812 0.000124711 195 203 0.0009826448 -0.0001585787 196 203 -0.001288661 0.0002079635 197 203 0.001760065 -0.0002840383 198 203 -0.002541777 0.0004101906 199 203 0.003980742 -0.0006424099 200 203 -0.007089509 0.001144101 201 203 0.01597157 -0.002577484 202 203 -0.06393453 0.01031772 203 203 -0.2496652 -0.0128614 204 203 -0.06393453 0.01031772 205 203 0.01597157 -0.002577484 206 203 -0.007089509 0.001144101 207 203 0.003980742 -0.0006424099 208 203 -0.002541777 0.0004101906 209 203 0.001760065 -0.0002840383 210 203 -0.001288661 0.0002079635 211 203 0.0009826448 -0.0001585787 212 203 -0.0007727812 0.000124711 213 203 0.0006226054 -0.0001004757 214 203 -0.0005114288 8.253411e-05 215 203 0.0004268045 -6.887749e-05 216 203 -0.0003608797 5.823857e-05 217 203 0.0003085011 -4.978574e-05 218 203 -0.0002661734 4.295492e-05 219 203 0.0002314578 -3.735254e-05 220 203 -0.0002026106 3.26972e-05 221 203 0.0001783582 -2.878335e-05 222 203 -0.0001577525 2.545802e-05 223 203 0.000140076 -2.26054e-05 224 203 -0.0001247774 2.013652e-05 225 203 0.0001114272 -1.798207e-05 226 203 -9.968672e-05 1.608739e-05 227 203 8.928565e-05 -1.440887e-05 228 203 -8.000611e-05 1.291134e-05 229 203 7.167061e-05 -1.156616e-05 230 203 -6.413319e-05 1.034978e-05 231 203 5.727273e-05 -9.242642e-06 232 203 -5.098776e-05 8.228377e-06 233 203 4.519256e-05 -7.293151e-06 234 203 -3.981401e-05 6.425164e-06 235 203 3.478917e-05 -5.614257e-06 236 203 -3.00633e-05 4.851599e-06 237 203 2.558831e-05 -4.129428e-06 238 203 -2.132146e-05 3.440846e-06 239 203 1.722429e-05 -2.779647e-06 240 203 -1.326172e-05 2.14017e-06 241 203 9.401297e-06 -1.517176e-06 242 203 -5.612495e-06 9.057414e-07 284 203 0.000718297 5.71003e-05 123 204 0.0007341899 5.867254e-05 162 204 -5.612495e-06 9.057414e-07 163 204 1.866144e-06 -3.011573e-07 164 204 1.866144e-06 -3.011573e-07 165 204 -5.612495e-06 9.057414e-07 166 204 9.401297e-06 -1.517176e-06 167 204 -1.326172e-05 2.14017e-06 168 204 1.722429e-05 -2.779647e-06 169 204 -2.132146e-05 3.440846e-06 170 204 2.558831e-05 -4.129428e-06 171 204 -3.00633e-05 4.851599e-06 172 204 3.478917e-05 -5.614257e-06 173 204 -3.981401e-05 6.425164e-06 174 204 4.519256e-05 -7.293151e-06 175 204 -5.098776e-05 8.228377e-06 176 204 5.727273e-05 -9.242642e-06 177 204 -6.413319e-05 1.034978e-05 178 204 7.167061e-05 -1.156616e-05 179 204 -8.000611e-05 1.291134e-05 180 204 8.928565e-05 -1.440887e-05 181 204 -9.968672e-05 1.608739e-05 182 204 0.0001114272 -1.798207e-05 183 204 -0.0001247774 2.013652e-05 184 204 0.000140076 -2.26054e-05 185 204 -0.0001577525 2.545802e-05 186 204 0.0001783582 -2.878335e-05 187 204 -0.0002026106 3.26972e-05 188 204 0.0002314578 -3.735254e-05 189 204 -0.0002661734 4.295492e-05 190 204 0.0003085011 -4.978574e-05 191 204 -0.0003608797 5.823857e-05 192 204 0.0004268045 -6.887749e-05 193 204 -0.0005114288 8.253411e-05 194 204 0.0006226054 -0.0001004757 195 204 -0.0007727812 0.000124711 196 204 0.0009826448 -0.0001585787 197 204 -0.001288661 0.0002079635 198 204 0.001760065 -0.0002840383 199 204 -0.002541777 0.0004101906 200 204 0.003980742 -0.0006424099 201 204 -0.007089509 0.001144101 202 204 0.01597157 -0.002577484 203 204 -0.06393453 0.01031772 204 204 -0.2485767 -0.0131236 205 204 -0.06393453 0.01031772 206 204 0.01597157 -0.002577484 207 204 -0.007089509 0.001144101 208 204 0.003980742 -0.0006424099 209 204 -0.002541777 0.0004101906 210 204 0.001760065 -0.0002840383 211 204 -0.001288661 0.0002079635 212 204 0.0009826448 -0.0001585787 213 204 -0.0007727812 0.000124711 214 204 0.0006226054 -0.0001004757 215 204 -0.0005114288 8.253411e-05 216 204 0.0004268045 -6.887749e-05 217 204 -0.0003608797 5.823857e-05 218 204 0.0003085011 -4.978574e-05 219 204 -0.0002661734 4.295492e-05 220 204 0.0002314578 -3.735254e-05 221 204 -0.0002026106 3.26972e-05 222 204 0.0001783582 -2.878335e-05 223 204 -0.0001577525 2.545802e-05 224 204 0.000140076 -2.26054e-05 225 204 -0.0001247774 2.013652e-05 226 204 0.0001114272 -1.798207e-05 227 204 -9.968672e-05 1.608739e-05 228 204 8.928565e-05 -1.440887e-05 229 204 -8.000611e-05 1.291134e-05 230 204 7.167061e-05 -1.156616e-05 231 204 -6.413319e-05 1.034978e-05 232 204 5.727273e-05 -9.242642e-06 233 204 -5.098776e-05 8.228377e-06 234 204 4.519256e-05 -7.293151e-06 235 204 -3.981401e-05 6.425164e-06 236 204 3.478917e-05 -5.614257e-06 237 204 -3.00633e-05 4.851599e-06 238 204 2.558831e-05 -4.129428e-06 239 204 -2.132146e-05 3.440846e-06 240 204 1.722429e-05 -2.779647e-06 241 204 -1.326172e-05 2.14017e-06 242 204 9.401297e-06 -1.517176e-06 285 204 0.0007341899 5.867254e-05 124 205 0.0007501636 6.025941e-05 162 205 9.401297e-06 -1.517176e-06 163 205 -5.612495e-06 9.057414e-07 164 205 1.866144e-06 -3.011573e-07 165 205 1.866144e-06 -3.011573e-07 166 205 -5.612495e-06 9.057414e-07 167 205 9.401297e-06 -1.517176e-06 168 205 -1.326172e-05 2.14017e-06 169 205 1.722429e-05 -2.779647e-06 170 205 -2.132146e-05 3.440846e-06 171 205 2.558831e-05 -4.129428e-06 172 205 -3.00633e-05 4.851599e-06 173 205 3.478917e-05 -5.614257e-06 174 205 -3.981401e-05 6.425164e-06 175 205 4.519256e-05 -7.293151e-06 176 205 -5.098776e-05 8.228377e-06 177 205 5.727273e-05 -9.242642e-06 178 205 -6.413319e-05 1.034978e-05 179 205 7.167061e-05 -1.156616e-05 180 205 -8.000611e-05 1.291134e-05 181 205 8.928565e-05 -1.440887e-05 182 205 -9.968672e-05 1.608739e-05 183 205 0.0001114272 -1.798207e-05 184 205 -0.0001247774 2.013652e-05 185 205 0.000140076 -2.26054e-05 186 205 -0.0001577525 2.545802e-05 187 205 0.0001783582 -2.878335e-05 188 205 -0.0002026106 3.26972e-05 189 205 0.0002314578 -3.735254e-05 190 205 -0.0002661734 4.295492e-05 191 205 0.0003085011 -4.978574e-05 192 205 -0.0003608797 5.823857e-05 193 205 0.0004268045 -6.887749e-05 194 205 -0.0005114288 8.253411e-05 195 205 0.0006226054 -0.0001004757 196 205 -0.0007727812 0.000124711 197 205 0.0009826448 -0.0001585787 198 205 -0.001288661 0.0002079635 199 205 0.001760065 -0.0002840383 200 205 -0.002541777 0.0004101906 201 205 0.003980742 -0.0006424099 202 205 -0.007089509 0.001144101 203 205 0.01597157 -0.002577484 204 205 -0.06393453 0.01031772 205 205 -0.2475814 -0.01337292 206 205 -0.06393453 0.01031772 207 205 0.01597157 -0.002577484 208 205 -0.007089509 0.001144101 209 205 0.003980742 -0.0006424099 210 205 -0.002541777 0.0004101906 211 205 0.001760065 -0.0002840383 212 205 -0.001288661 0.0002079635 213 205 0.0009826448 -0.0001585787 214 205 -0.0007727812 0.000124711 215 205 0.0006226054 -0.0001004757 216 205 -0.0005114288 8.253411e-05 217 205 0.0004268045 -6.887749e-05 218 205 -0.0003608797 5.823857e-05 219 205 0.0003085011 -4.978574e-05 220 205 -0.0002661734 4.295492e-05 221 205 0.0002314578 -3.735254e-05 222 205 -0.0002026106 3.26972e-05 223 205 0.0001783582 -2.878335e-05 224 205 -0.0001577525 2.545802e-05 225 205 0.000140076 -2.26054e-05 226 205 -0.0001247774 2.013652e-05 227 205 0.0001114272 -1.798207e-05 228 205 -9.968672e-05 1.608739e-05 229 205 8.928565e-05 -1.440887e-05 230 205 -8.000611e-05 1.291134e-05 231 205 7.167061e-05 -1.156616e-05 232 205 -6.413319e-05 1.034978e-05 233 205 5.727273e-05 -9.242642e-06 234 205 -5.098776e-05 8.228377e-06 235 205 4.519256e-05 -7.293151e-06 236 205 -3.981401e-05 6.425164e-06 237 205 3.478917e-05 -5.614257e-06 238 205 -3.00633e-05 4.851599e-06 239 205 2.558831e-05 -4.129428e-06 240 205 -2.132146e-05 3.440846e-06 241 205 1.722429e-05 -2.779647e-06 242 205 -1.326172e-05 2.14017e-06 286 205 0.0007501636 6.025941e-05 125 206 0.0007662186 6.186099e-05 162 206 -1.326172e-05 2.14017e-06 163 206 9.401297e-06 -1.517176e-06 164 206 -5.612495e-06 9.057414e-07 165 206 1.866144e-06 -3.011573e-07 166 206 1.866144e-06 -3.011573e-07 167 206 -5.612495e-06 9.057414e-07 168 206 9.401297e-06 -1.517176e-06 169 206 -1.326172e-05 2.14017e-06 170 206 1.722429e-05 -2.779647e-06 171 206 -2.132146e-05 3.440846e-06 172 206 2.558831e-05 -4.129428e-06 173 206 -3.00633e-05 4.851599e-06 174 206 3.478917e-05 -5.614257e-06 175 206 -3.981401e-05 6.425164e-06 176 206 4.519256e-05 -7.293151e-06 177 206 -5.098776e-05 8.228377e-06 178 206 5.727273e-05 -9.242642e-06 179 206 -6.413319e-05 1.034978e-05 180 206 7.167061e-05 -1.156616e-05 181 206 -8.000611e-05 1.291134e-05 182 206 8.928565e-05 -1.440887e-05 183 206 -9.968672e-05 1.608739e-05 184 206 0.0001114272 -1.798207e-05 185 206 -0.0001247774 2.013652e-05 186 206 0.000140076 -2.26054e-05 187 206 -0.0001577525 2.545802e-05 188 206 0.0001783582 -2.878335e-05 189 206 -0.0002026106 3.26972e-05 190 206 0.0002314578 -3.735254e-05 191 206 -0.0002661734 4.295492e-05 192 206 0.0003085011 -4.978574e-05 193 206 -0.0003608797 5.823857e-05 194 206 0.0004268045 -6.887749e-05 195 206 -0.0005114288 8.253411e-05 196 206 0.0006226054 -0.0001004757 197 206 -0.0007727812 0.000124711 198 206 0.0009826448 -0.0001585787 199 206 -0.001288661 0.0002079635 200 206 0.001760065 -0.0002840383 201 206 -0.002541777 0.0004101906 202 206 0.003980742 -0.0006424099 203 206 -0.007089509 0.001144101 204 206 0.01597157 -0.002577484 205 206 -0.06393453 0.01031772 206 206 -0.2466721 -0.01360941 207 206 -0.06393453 0.01031772 208 206 0.01597157 -0.002577484 209 206 -0.007089509 0.001144101 210 206 0.003980742 -0.0006424099 211 206 -0.002541777 0.0004101906 212 206 0.001760065 -0.0002840383 213 206 -0.001288661 0.0002079635 214 206 0.0009826448 -0.0001585787 215 206 -0.0007727812 0.000124711 216 206 0.0006226054 -0.0001004757 217 206 -0.0005114288 8.253411e-05 218 206 0.0004268045 -6.887749e-05 219 206 -0.0003608797 5.823857e-05 220 206 0.0003085011 -4.978574e-05 221 206 -0.0002661734 4.295492e-05 222 206 0.0002314578 -3.735254e-05 223 206 -0.0002026106 3.26972e-05 224 206 0.0001783582 -2.878335e-05 225 206 -0.0001577525 2.545802e-05 226 206 0.000140076 -2.26054e-05 227 206 -0.0001247774 2.013652e-05 228 206 0.0001114272 -1.798207e-05 229 206 -9.968672e-05 1.608739e-05 230 206 8.928565e-05 -1.440887e-05 231 206 -8.000611e-05 1.291134e-05 232 206 7.167061e-05 -1.156616e-05 233 206 -6.413319e-05 1.034978e-05 234 206 5.727273e-05 -9.242642e-06 235 206 -5.098776e-05 8.228377e-06 236 206 4.519256e-05 -7.293151e-06 237 206 -3.981401e-05 6.425164e-06 238 206 3.478917e-05 -5.614257e-06 239 206 -3.00633e-05 4.851599e-06 240 206 2.558831e-05 -4.129428e-06 241 206 -2.132146e-05 3.440846e-06 242 206 1.722429e-05 -2.779647e-06 287 206 0.0007662186 6.186099e-05 126 207 0.0007823553 6.347742e-05 162 207 1.722429e-05 -2.779647e-06 163 207 -1.326172e-05 2.14017e-06 164 207 9.401297e-06 -1.517176e-06 165 207 -5.612495e-06 9.057414e-07 166 207 1.866144e-06 -3.011573e-07 167 207 1.866144e-06 -3.011573e-07 168 207 -5.612495e-06 9.057414e-07 169 207 9.401297e-06 -1.517176e-06 170 207 -1.326172e-05 2.14017e-06 171 207 1.722429e-05 -2.779647e-06 172 207 -2.132146e-05 3.440846e-06 173 207 2.558831e-05 -4.129428e-06 174 207 -3.00633e-05 4.851599e-06 175 207 3.478917e-05 -5.614257e-06 176 207 -3.981401e-05 6.425164e-06 177 207 4.519256e-05 -7.293151e-06 178 207 -5.098776e-05 8.228377e-06 179 207 5.727273e-05 -9.242642e-06 180 207 -6.413319e-05 1.034978e-05 181 207 7.167061e-05 -1.156616e-05 182 207 -8.000611e-05 1.291134e-05 183 207 8.928565e-05 -1.440887e-05 184 207 -9.968672e-05 1.608739e-05 185 207 0.0001114272 -1.798207e-05 186 207 -0.0001247774 2.013652e-05 187 207 0.000140076 -2.26054e-05 188 207 -0.0001577525 2.545802e-05 189 207 0.0001783582 -2.878335e-05 190 207 -0.0002026106 3.26972e-05 191 207 0.0002314578 -3.735254e-05 192 207 -0.0002661734 4.295492e-05 193 207 0.0003085011 -4.978574e-05 194 207 -0.0003608797 5.823857e-05 195 207 0.0004268045 -6.887749e-05 196 207 -0.0005114288 8.253411e-05 197 207 0.0006226054 -0.0001004757 198 207 -0.0007727812 0.000124711 199 207 0.0009826448 -0.0001585787 200 207 -0.001288661 0.0002079635 201 207 0.001760065 -0.0002840383 202 207 -0.002541777 0.0004101906 203 207 0.003980742 -0.0006424099 204 207 -0.007089509 0.001144101 205 207 0.01597157 -0.002577484 206 207 -0.06393453 0.01031772 207 207 -0.2458416 -0.01383326 208 207 -0.06393453 0.01031772 209 207 0.01597157 -0.002577484 210 207 -0.007089509 0.001144101 211 207 0.003980742 -0.0006424099 212 207 -0.002541777 0.0004101906 213 207 0.001760065 -0.0002840383 214 207 -0.001288661 0.0002079635 215 207 0.0009826448 -0.0001585787 216 207 -0.0007727812 0.000124711 217 207 0.0006226054 -0.0001004757 218 207 -0.0005114288 8.253411e-05 219 207 0.0004268045 -6.887749e-05 220 207 -0.0003608797 5.823857e-05 221 207 0.0003085011 -4.978574e-05 222 207 -0.0002661734 4.295492e-05 223 207 0.0002314578 -3.735254e-05 224 207 -0.0002026106 3.26972e-05 225 207 0.0001783582 -2.878335e-05 226 207 -0.0001577525 2.545802e-05 227 207 0.000140076 -2.26054e-05 228 207 -0.0001247774 2.013652e-05 229 207 0.0001114272 -1.798207e-05 230 207 -9.968672e-05 1.608739e-05 231 207 8.928565e-05 -1.440887e-05 232 207 -8.000611e-05 1.291134e-05 233 207 7.167061e-05 -1.156616e-05 234 207 -6.413319e-05 1.034978e-05 235 207 5.727273e-05 -9.242642e-06 236 207 -5.098776e-05 8.228377e-06 237 207 4.519256e-05 -7.293151e-06 238 207 -3.981401e-05 6.425164e-06 239 207 3.478917e-05 -5.614257e-06 240 207 -3.00633e-05 4.851599e-06 241 207 2.558831e-05 -4.129428e-06 242 207 -2.132146e-05 3.440846e-06 288 207 0.0007823553 6.347742e-05 127 208 0.0007985741 6.510879e-05 162 208 -2.132146e-05 3.440846e-06 163 208 1.722429e-05 -2.779647e-06 164 208 -1.326172e-05 2.14017e-06 165 208 9.401297e-06 -1.517176e-06 166 208 -5.612495e-06 9.057414e-07 167 208 1.866144e-06 -3.011573e-07 168 208 1.866144e-06 -3.011573e-07 169 208 -5.612495e-06 9.057414e-07 170 208 9.401297e-06 -1.517176e-06 171 208 -1.326172e-05 2.14017e-06 172 208 1.722429e-05 -2.779647e-06 173 208 -2.132146e-05 3.440846e-06 174 208 2.558831e-05 -4.129428e-06 175 208 -3.00633e-05 4.851599e-06 176 208 3.478917e-05 -5.614257e-06 177 208 -3.981401e-05 6.425164e-06 178 208 4.519256e-05 -7.293151e-06 179 208 -5.098776e-05 8.228377e-06 180 208 5.727273e-05 -9.242642e-06 181 208 -6.413319e-05 1.034978e-05 182 208 7.167061e-05 -1.156616e-05 183 208 -8.000611e-05 1.291134e-05 184 208 8.928565e-05 -1.440887e-05 185 208 -9.968672e-05 1.608739e-05 186 208 0.0001114272 -1.798207e-05 187 208 -0.0001247774 2.013652e-05 188 208 0.000140076 -2.26054e-05 189 208 -0.0001577525 2.545802e-05 190 208 0.0001783582 -2.878335e-05 191 208 -0.0002026106 3.26972e-05 192 208 0.0002314578 -3.735254e-05 193 208 -0.0002661734 4.295492e-05 194 208 0.0003085011 -4.978574e-05 195 208 -0.0003608797 5.823857e-05 196 208 0.0004268045 -6.887749e-05 197 208 -0.0005114288 8.253411e-05 198 208 0.0006226054 -0.0001004757 199 208 -0.0007727812 0.000124711 200 208 0.0009826448 -0.0001585787 201 208 -0.001288661 0.0002079635 202 208 0.001760065 -0.0002840383 203 208 -0.002541777 0.0004101906 204 208 0.003980742 -0.0006424099 205 208 -0.007089509 0.001144101 206 208 0.01597157 -0.002577484 207 208 -0.06393453 0.01031772 208 208 -0.2450836 -0.01404472 209 208 -0.06393453 0.01031772 210 208 0.01597157 -0.002577484 211 208 -0.007089509 0.001144101 212 208 0.003980742 -0.0006424099 213 208 -0.002541777 0.0004101906 214 208 0.001760065 -0.0002840383 215 208 -0.001288661 0.0002079635 216 208 0.0009826448 -0.0001585787 217 208 -0.0007727812 0.000124711 218 208 0.0006226054 -0.0001004757 219 208 -0.0005114288 8.253411e-05 220 208 0.0004268045 -6.887749e-05 221 208 -0.0003608797 5.823857e-05 222 208 0.0003085011 -4.978574e-05 223 208 -0.0002661734 4.295492e-05 224 208 0.0002314578 -3.735254e-05 225 208 -0.0002026106 3.26972e-05 226 208 0.0001783582 -2.878335e-05 227 208 -0.0001577525 2.545802e-05 228 208 0.000140076 -2.26054e-05 229 208 -0.0001247774 2.013652e-05 230 208 0.0001114272 -1.798207e-05 231 208 -9.968672e-05 1.608739e-05 232 208 8.928565e-05 -1.440887e-05 233 208 -8.000611e-05 1.291134e-05 234 208 7.167061e-05 -1.156616e-05 235 208 -6.413319e-05 1.034978e-05 236 208 5.727273e-05 -9.242642e-06 237 208 -5.098776e-05 8.228377e-06 238 208 4.519256e-05 -7.293151e-06 239 208 -3.981401e-05 6.425164e-06 240 208 3.478917e-05 -5.614257e-06 241 208 -3.00633e-05 4.851599e-06 242 208 2.558831e-05 -4.129428e-06 289 208 0.0007985741 6.510879e-05 128 209 0.0008148755 6.675522e-05 162 209 2.558831e-05 -4.129428e-06 163 209 -2.132146e-05 3.440846e-06 164 209 1.722429e-05 -2.779647e-06 165 209 -1.326172e-05 2.14017e-06 166 209 9.401297e-06 -1.517176e-06 167 209 -5.612495e-06 9.057414e-07 168 209 1.866144e-06 -3.011573e-07 169 209 1.866144e-06 -3.011573e-07 170 209 -5.612495e-06 9.057414e-07 171 209 9.401297e-06 -1.517176e-06 172 209 -1.326172e-05 2.14017e-06 173 209 1.722429e-05 -2.779647e-06 174 209 -2.132146e-05 3.440846e-06 175 209 2.558831e-05 -4.129428e-06 176 209 -3.00633e-05 4.851599e-06 177 209 3.478917e-05 -5.614257e-06 178 209 -3.981401e-05 6.425164e-06 179 209 4.519256e-05 -7.293151e-06 180 209 -5.098776e-05 8.228377e-06 181 209 5.727273e-05 -9.242642e-06 182 209 -6.413319e-05 1.034978e-05 183 209 7.167061e-05 -1.156616e-05 184 209 -8.000611e-05 1.291134e-05 185 209 8.928565e-05 -1.440887e-05 186 209 -9.968672e-05 1.608739e-05 187 209 0.0001114272 -1.798207e-05 188 209 -0.0001247774 2.013652e-05 189 209 0.000140076 -2.26054e-05 190 209 -0.0001577525 2.545802e-05 191 209 0.0001783582 -2.878335e-05 192 209 -0.0002026106 3.26972e-05 193 209 0.0002314578 -3.735254e-05 194 209 -0.0002661734 4.295492e-05 195 209 0.0003085011 -4.978574e-05 196 209 -0.0003608797 5.823857e-05 197 209 0.0004268045 -6.887749e-05 198 209 -0.0005114288 8.253411e-05 199 209 0.0006226054 -0.0001004757 200 209 -0.0007727812 0.000124711 201 209 0.0009826448 -0.0001585787 202 209 -0.001288661 0.0002079635 203 209 0.001760065 -0.0002840383 204 209 -0.002541777 0.0004101906 205 209 0.003980742 -0.0006424099 206 209 -0.007089509 0.001144101 207 209 0.01597157 -0.002577484 208 209 -0.06393453 0.01031772 209 209 -0.244392 -0.01424411 210 209 -0.06393453 0.01031772 211 209 0.01597157 -0.002577484 212 209 -0.007089509 0.001144101 213 209 0.003980742 -0.0006424099 214 209 -0.002541777 0.0004101906 215 209 0.001760065 -0.0002840383 216 209 -0.001288661 0.0002079635 217 209 0.0009826448 -0.0001585787 218 209 -0.0007727812 0.000124711 219 209 0.0006226054 -0.0001004757 220 209 -0.0005114288 8.253411e-05 221 209 0.0004268045 -6.887749e-05 222 209 -0.0003608797 5.823857e-05 223 209 0.0003085011 -4.978574e-05 224 209 -0.0002661734 4.295492e-05 225 209 0.0002314578 -3.735254e-05 226 209 -0.0002026106 3.26972e-05 227 209 0.0001783582 -2.878335e-05 228 209 -0.0001577525 2.545802e-05 229 209 0.000140076 -2.26054e-05 230 209 -0.0001247774 2.013652e-05 231 209 0.0001114272 -1.798207e-05 232 209 -9.968672e-05 1.608739e-05 233 209 8.928565e-05 -1.440887e-05 234 209 -8.000611e-05 1.291134e-05 235 209 7.167061e-05 -1.156616e-05 236 209 -6.413319e-05 1.034978e-05 237 209 5.727273e-05 -9.242642e-06 238 209 -5.098776e-05 8.228377e-06 239 209 4.519256e-05 -7.293151e-06 240 209 -3.981401e-05 6.425164e-06 241 209 3.478917e-05 -5.614257e-06 242 209 -3.00633e-05 4.851599e-06 290 209 0.0008148755 6.675522e-05 129 210 0.0008312598 6.841681e-05 162 210 -3.00633e-05 4.851599e-06 163 210 2.558831e-05 -4.129428e-06 164 210 -2.132146e-05 3.440846e-06 165 210 1.722429e-05 -2.779647e-06 166 210 -1.326172e-05 2.14017e-06 167 210 9.401297e-06 -1.517176e-06 168 210 -5.612495e-06 9.057414e-07 169 210 1.866144e-06 -3.011573e-07 170 210 1.866144e-06 -3.011573e-07 171 210 -5.612495e-06 9.057414e-07 172 210 9.401297e-06 -1.517176e-06 173 210 -1.326172e-05 2.14017e-06 174 210 1.722429e-05 -2.779647e-06 175 210 -2.132146e-05 3.440846e-06 176 210 2.558831e-05 -4.129428e-06 177 210 -3.00633e-05 4.851599e-06 178 210 3.478917e-05 -5.614257e-06 179 210 -3.981401e-05 6.425164e-06 180 210 4.519256e-05 -7.293151e-06 181 210 -5.098776e-05 8.228377e-06 182 210 5.727273e-05 -9.242642e-06 183 210 -6.413319e-05 1.034978e-05 184 210 7.167061e-05 -1.156616e-05 185 210 -8.000611e-05 1.291134e-05 186 210 8.928565e-05 -1.440887e-05 187 210 -9.968672e-05 1.608739e-05 188 210 0.0001114272 -1.798207e-05 189 210 -0.0001247774 2.013652e-05 190 210 0.000140076 -2.26054e-05 191 210 -0.0001577525 2.545802e-05 192 210 0.0001783582 -2.878335e-05 193 210 -0.0002026106 3.26972e-05 194 210 0.0002314578 -3.735254e-05 195 210 -0.0002661734 4.295492e-05 196 210 0.0003085011 -4.978574e-05 197 210 -0.0003608797 5.823857e-05 198 210 0.0004268045 -6.887749e-05 199 210 -0.0005114288 8.253411e-05 200 210 0.0006226054 -0.0001004757 201 210 -0.0007727812 0.000124711 202 210 0.0009826448 -0.0001585787 203 210 -0.001288661 0.0002079635 204 210 0.001760065 -0.0002840383 205 210 -0.002541777 0.0004101906 206 210 0.003980742 -0.0006424099 207 210 -0.007089509 0.001144101 208 210 0.01597157 -0.002577484 209 210 -0.06393453 0.01031772 210 210 -0.2437612 -0.01443183 211 210 -0.06393453 0.01031772 212 210 0.01597157 -0.002577484 213 210 -0.007089509 0.001144101 214 210 0.003980742 -0.0006424099 215 210 -0.002541777 0.0004101906 216 210 0.001760065 -0.0002840383 217 210 -0.001288661 0.0002079635 218 210 0.0009826448 -0.0001585787 219 210 -0.0007727812 0.000124711 220 210 0.0006226054 -0.0001004757 221 210 -0.0005114288 8.253411e-05 222 210 0.0004268045 -6.887749e-05 223 210 -0.0003608797 5.823857e-05 224 210 0.0003085011 -4.978574e-05 225 210 -0.0002661734 4.295492e-05 226 210 0.0002314578 -3.735254e-05 227 210 -0.0002026106 3.26972e-05 228 210 0.0001783582 -2.878335e-05 229 210 -0.0001577525 2.545802e-05 230 210 0.000140076 -2.26054e-05 231 210 -0.0001247774 2.013652e-05 232 210 0.0001114272 -1.798207e-05 233 210 -9.968672e-05 1.608739e-05 234 210 8.928565e-05 -1.440887e-05 235 210 -8.000611e-05 1.291134e-05 236 210 7.167061e-05 -1.156616e-05 237 210 -6.413319e-05 1.034978e-05 238 210 5.727273e-05 -9.242642e-06 239 210 -5.098776e-05 8.228377e-06 240 210 4.519256e-05 -7.293151e-06 241 210 -3.981401e-05 6.425164e-06 242 210 3.478917e-05 -5.614257e-06 291 210 0.0008312598 6.841681e-05 130 211 0.0008477274 7.009369e-05 162 211 3.478917e-05 -5.614257e-06 163 211 -3.00633e-05 4.851599e-06 164 211 2.558831e-05 -4.129428e-06 165 211 -2.132146e-05 3.440846e-06 166 211 1.722429e-05 -2.779647e-06 167 211 -1.326172e-05 2.14017e-06 168 211 9.401297e-06 -1.517176e-06 169 211 -5.612495e-06 9.057414e-07 170 211 1.866144e-06 -3.011573e-07 171 211 1.866144e-06 -3.011573e-07 172 211 -5.612495e-06 9.057414e-07 173 211 9.401297e-06 -1.517176e-06 174 211 -1.326172e-05 2.14017e-06 175 211 1.722429e-05 -2.779647e-06 176 211 -2.132146e-05 3.440846e-06 177 211 2.558831e-05 -4.129428e-06 178 211 -3.00633e-05 4.851599e-06 179 211 3.478917e-05 -5.614257e-06 180 211 -3.981401e-05 6.425164e-06 181 211 4.519256e-05 -7.293151e-06 182 211 -5.098776e-05 8.228377e-06 183 211 5.727273e-05 -9.242642e-06 184 211 -6.413319e-05 1.034978e-05 185 211 7.167061e-05 -1.156616e-05 186 211 -8.000611e-05 1.291134e-05 187 211 8.928565e-05 -1.440887e-05 188 211 -9.968672e-05 1.608739e-05 189 211 0.0001114272 -1.798207e-05 190 211 -0.0001247774 2.013652e-05 191 211 0.000140076 -2.26054e-05 192 211 -0.0001577525 2.545802e-05 193 211 0.0001783582 -2.878335e-05 194 211 -0.0002026106 3.26972e-05 195 211 0.0002314578 -3.735254e-05 196 211 -0.0002661734 4.295492e-05 197 211 0.0003085011 -4.978574e-05 198 211 -0.0003608797 5.823857e-05 199 211 0.0004268045 -6.887749e-05 200 211 -0.0005114288 8.253411e-05 201 211 0.0006226054 -0.0001004757 202 211 -0.0007727812 0.000124711 203 211 0.0009826448 -0.0001585787 204 211 -0.001288661 0.0002079635 205 211 0.001760065 -0.0002840383 206 211 -0.002541777 0.0004101906 207 211 0.003980742 -0.0006424099 208 211 -0.007089509 0.001144101 209 211 0.01597157 -0.002577484 210 211 -0.06393453 0.01031772 211 211 -0.2431862 -0.01460829 212 211 -0.06393453 0.01031772 213 211 0.01597157 -0.002577484 214 211 -0.007089509 0.001144101 215 211 0.003980742 -0.0006424099 216 211 -0.002541777 0.0004101906 217 211 0.001760065 -0.0002840383 218 211 -0.001288661 0.0002079635 219 211 0.0009826448 -0.0001585787 220 211 -0.0007727812 0.000124711 221 211 0.0006226054 -0.0001004757 222 211 -0.0005114288 8.253411e-05 223 211 0.0004268045 -6.887749e-05 224 211 -0.0003608797 5.823857e-05 225 211 0.0003085011 -4.978574e-05 226 211 -0.0002661734 4.295492e-05 227 211 0.0002314578 -3.735254e-05 228 211 -0.0002026106 3.26972e-05 229 211 0.0001783582 -2.878335e-05 230 211 -0.0001577525 2.545802e-05 231 211 0.000140076 -2.26054e-05 232 211 -0.0001247774 2.013652e-05 233 211 0.0001114272 -1.798207e-05 234 211 -9.968672e-05 1.608739e-05 235 211 8.928565e-05 -1.440887e-05 236 211 -8.000611e-05 1.291134e-05 237 211 7.167061e-05 -1.156616e-05 238 211 -6.413319e-05 1.034978e-05 239 211 5.727273e-05 -9.242642e-06 240 211 -5.098776e-05 8.228377e-06 241 211 4.519256e-05 -7.293151e-06 242 211 -3.981401e-05 6.425164e-06 292 211 0.0008477274 7.009369e-05 131 212 0.0008642789 7.178596e-05 162 212 -3.981401e-05 6.425164e-06 163 212 3.478917e-05 -5.614257e-06 164 212 -3.00633e-05 4.851599e-06 165 212 2.558831e-05 -4.129428e-06 166 212 -2.132146e-05 3.440846e-06 167 212 1.722429e-05 -2.779647e-06 168 212 -1.326172e-05 2.14017e-06 169 212 9.401297e-06 -1.517176e-06 170 212 -5.612495e-06 9.057414e-07 171 212 1.866144e-06 -3.011573e-07 172 212 1.866144e-06 -3.011573e-07 173 212 -5.612495e-06 9.057414e-07 174 212 9.401297e-06 -1.517176e-06 175 212 -1.326172e-05 2.14017e-06 176 212 1.722429e-05 -2.779647e-06 177 212 -2.132146e-05 3.440846e-06 178 212 2.558831e-05 -4.129428e-06 179 212 -3.00633e-05 4.851599e-06 180 212 3.478917e-05 -5.614257e-06 181 212 -3.981401e-05 6.425164e-06 182 212 4.519256e-05 -7.293151e-06 183 212 -5.098776e-05 8.228377e-06 184 212 5.727273e-05 -9.242642e-06 185 212 -6.413319e-05 1.034978e-05 186 212 7.167061e-05 -1.156616e-05 187 212 -8.000611e-05 1.291134e-05 188 212 8.928565e-05 -1.440887e-05 189 212 -9.968672e-05 1.608739e-05 190 212 0.0001114272 -1.798207e-05 191 212 -0.0001247774 2.013652e-05 192 212 0.000140076 -2.26054e-05 193 212 -0.0001577525 2.545802e-05 194 212 0.0001783582 -2.878335e-05 195 212 -0.0002026106 3.26972e-05 196 212 0.0002314578 -3.735254e-05 197 212 -0.0002661734 4.295492e-05 198 212 0.0003085011 -4.978574e-05 199 212 -0.0003608797 5.823857e-05 200 212 0.0004268045 -6.887749e-05 201 212 -0.0005114288 8.253411e-05 202 212 0.0006226054 -0.0001004757 203 212 -0.0007727812 0.000124711 204 212 0.0009826448 -0.0001585787 205 212 -0.001288661 0.0002079635 206 212 0.001760065 -0.0002840383 207 212 -0.002541777 0.0004101906 208 212 0.003980742 -0.0006424099 209 212 -0.007089509 0.001144101 210 212 0.01597157 -0.002577484 211 212 -0.06393453 0.01031772 212 212 -0.2426622 -0.01477394 213 212 -0.06393453 0.01031772 214 212 0.01597157 -0.002577484 215 212 -0.007089509 0.001144101 216 212 0.003980742 -0.0006424099 217 212 -0.002541777 0.0004101906 218 212 0.001760065 -0.0002840383 219 212 -0.001288661 0.0002079635 220 212 0.0009826448 -0.0001585787 221 212 -0.0007727812 0.000124711 222 212 0.0006226054 -0.0001004757 223 212 -0.0005114288 8.253411e-05 224 212 0.0004268045 -6.887749e-05 225 212 -0.0003608797 5.823857e-05 226 212 0.0003085011 -4.978574e-05 227 212 -0.0002661734 4.295492e-05 228 212 0.0002314578 -3.735254e-05 229 212 -0.0002026106 3.26972e-05 230 212 0.0001783582 -2.878335e-05 231 212 -0.0001577525 2.545802e-05 232 212 0.000140076 -2.26054e-05 233 212 -0.0001247774 2.013652e-05 234 212 0.0001114272 -1.798207e-05 235 212 -9.968672e-05 1.608739e-05 236 212 8.928565e-05 -1.440887e-05 237 212 -8.000611e-05 1.291134e-05 238 212 7.167061e-05 -1.156616e-05 239 212 -6.413319e-05 1.034978e-05 240 212 5.727273e-05 -9.242642e-06 241 212 -5.098776e-05 8.228377e-06 242 212 4.519256e-05 -7.293151e-06 293 212 0.0008642789 7.178596e-05 132 213 0.0008809146 7.349373e-05 162 213 4.519256e-05 -7.293151e-06 163 213 -3.981401e-05 6.425164e-06 164 213 3.478917e-05 -5.614257e-06 165 213 -3.00633e-05 4.851599e-06 166 213 2.558831e-05 -4.129428e-06 167 213 -2.132146e-05 3.440846e-06 168 213 1.722429e-05 -2.779647e-06 169 213 -1.326172e-05 2.14017e-06 170 213 9.401297e-06 -1.517176e-06 171 213 -5.612495e-06 9.057414e-07 172 213 1.866144e-06 -3.011573e-07 173 213 1.866144e-06 -3.011573e-07 174 213 -5.612495e-06 9.057414e-07 175 213 9.401297e-06 -1.517176e-06 176 213 -1.326172e-05 2.14017e-06 177 213 1.722429e-05 -2.779647e-06 178 213 -2.132146e-05 3.440846e-06 179 213 2.558831e-05 -4.129428e-06 180 213 -3.00633e-05 4.851599e-06 181 213 3.478917e-05 -5.614257e-06 182 213 -3.981401e-05 6.425164e-06 183 213 4.519256e-05 -7.293151e-06 184 213 -5.098776e-05 8.228377e-06 185 213 5.727273e-05 -9.242642e-06 186 213 -6.413319e-05 1.034978e-05 187 213 7.167061e-05 -1.156616e-05 188 213 -8.000611e-05 1.291134e-05 189 213 8.928565e-05 -1.440887e-05 190 213 -9.968672e-05 1.608739e-05 191 213 0.0001114272 -1.798207e-05 192 213 -0.0001247774 2.013652e-05 193 213 0.000140076 -2.26054e-05 194 213 -0.0001577525 2.545802e-05 195 213 0.0001783582 -2.878335e-05 196 213 -0.0002026106 3.26972e-05 197 213 0.0002314578 -3.735254e-05 198 213 -0.0002661734 4.295492e-05 199 213 0.0003085011 -4.978574e-05 200 213 -0.0003608797 5.823857e-05 201 213 0.0004268045 -6.887749e-05 202 213 -0.0005114288 8.253411e-05 203 213 0.0006226054 -0.0001004757 204 213 -0.0007727812 0.000124711 205 213 0.0009826448 -0.0001585787 206 213 -0.001288661 0.0002079635 207 213 0.001760065 -0.0002840383 208 213 -0.002541777 0.0004101906 209 213 0.003980742 -0.0006424099 210 213 -0.007089509 0.001144101 211 213 0.01597157 -0.002577484 212 213 -0.06393453 0.01031772 213 213 -0.2421848 -0.01492925 214 213 -0.06393453 0.01031772 215 213 0.01597157 -0.002577484 216 213 -0.007089509 0.001144101 217 213 0.003980742 -0.0006424099 218 213 -0.002541777 0.0004101906 219 213 0.001760065 -0.0002840383 220 213 -0.001288661 0.0002079635 221 213 0.0009826448 -0.0001585787 222 213 -0.0007727812 0.000124711 223 213 0.0006226054 -0.0001004757 224 213 -0.0005114288 8.253411e-05 225 213 0.0004268045 -6.887749e-05 226 213 -0.0003608797 5.823857e-05 227 213 0.0003085011 -4.978574e-05 228 213 -0.0002661734 4.295492e-05 229 213 0.0002314578 -3.735254e-05 230 213 -0.0002026106 3.26972e-05 231 213 0.0001783582 -2.878335e-05 232 213 -0.0001577525 2.545802e-05 233 213 0.000140076 -2.26054e-05 234 213 -0.0001247774 2.013652e-05 235 213 0.0001114272 -1.798207e-05 236 213 -9.968672e-05 1.608739e-05 237 213 8.928565e-05 -1.440887e-05 238 213 -8.000611e-05 1.291134e-05 239 213 7.167061e-05 -1.156616e-05 240 213 -6.413319e-05 1.034978e-05 241 213 5.727273e-05 -9.242642e-06 242 213 -5.098776e-05 8.228377e-06 294 213 0.0008809146 7.349373e-05 133 214 0.0008976348 7.521712e-05 162 214 -5.098776e-05 8.228377e-06 163 214 4.519256e-05 -7.293151e-06 164 214 -3.981401e-05 6.425164e-06 165 214 3.478917e-05 -5.614257e-06 166 214 -3.00633e-05 4.851599e-06 167 214 2.558831e-05 -4.129428e-06 168 214 -2.132146e-05 3.440846e-06 169 214 1.722429e-05 -2.779647e-06 170 214 -1.326172e-05 2.14017e-06 171 214 9.401297e-06 -1.517176e-06 172 214 -5.612495e-06 9.057414e-07 173 214 1.866144e-06 -3.011573e-07 174 214 1.866144e-06 -3.011573e-07 175 214 -5.612495e-06 9.057414e-07 176 214 9.401297e-06 -1.517176e-06 177 214 -1.326172e-05 2.14017e-06 178 214 1.722429e-05 -2.779647e-06 179 214 -2.132146e-05 3.440846e-06 180 214 2.558831e-05 -4.129428e-06 181 214 -3.00633e-05 4.851599e-06 182 214 3.478917e-05 -5.614257e-06 183 214 -3.981401e-05 6.425164e-06 184 214 4.519256e-05 -7.293151e-06 185 214 -5.098776e-05 8.228377e-06 186 214 5.727273e-05 -9.242642e-06 187 214 -6.413319e-05 1.034978e-05 188 214 7.167061e-05 -1.156616e-05 189 214 -8.000611e-05 1.291134e-05 190 214 8.928565e-05 -1.440887e-05 191 214 -9.968672e-05 1.608739e-05 192 214 0.0001114272 -1.798207e-05 193 214 -0.0001247774 2.013652e-05 194 214 0.000140076 -2.26054e-05 195 214 -0.0001577525 2.545802e-05 196 214 0.0001783582 -2.878335e-05 197 214 -0.0002026106 3.26972e-05 198 214 0.0002314578 -3.735254e-05 199 214 -0.0002661734 4.295492e-05 200 214 0.0003085011 -4.978574e-05 201 214 -0.0003608797 5.823857e-05 202 214 0.0004268045 -6.887749e-05 203 214 -0.0005114288 8.253411e-05 204 214 0.0006226054 -0.0001004757 205 214 -0.0007727812 0.000124711 206 214 0.0009826448 -0.0001585787 207 214 -0.001288661 0.0002079635 208 214 0.001760065 -0.0002840383 209 214 -0.002541777 0.0004101906 210 214 0.003980742 -0.0006424099 211 214 -0.007089509 0.001144101 212 214 0.01597157 -0.002577484 213 214 -0.06393453 0.01031772 214 214 -0.2417499 -0.01507469 215 214 -0.06393453 0.01031772 216 214 0.01597157 -0.002577484 217 214 -0.007089509 0.001144101 218 214 0.003980742 -0.0006424099 219 214 -0.002541777 0.0004101906 220 214 0.001760065 -0.0002840383 221 214 -0.001288661 0.0002079635 222 214 0.0009826448 -0.0001585787 223 214 -0.0007727812 0.000124711 224 214 0.0006226054 -0.0001004757 225 214 -0.0005114288 8.253411e-05 226 214 0.0004268045 -6.887749e-05 227 214 -0.0003608797 5.823857e-05 228 214 0.0003085011 -4.978574e-05 229 214 -0.0002661734 4.295492e-05 230 214 0.0002314578 -3.735254e-05 231 214 -0.0002026106 3.26972e-05 232 214 0.0001783582 -2.878335e-05 233 214 -0.0001577525 2.545802e-05 234 214 0.000140076 -2.26054e-05 235 214 -0.0001247774 2.013652e-05 236 214 0.0001114272 -1.798207e-05 237 214 -9.968672e-05 1.608739e-05 238 214 8.928565e-05 -1.440887e-05 239 214 -8.000611e-05 1.291134e-05 240 214 7.167061e-05 -1.156616e-05 241 214 -6.413319e-05 1.034978e-05 242 214 5.727273e-05 -9.242642e-06 295 214 0.0008976348 7.521712e-05 134 215 0.0009144402 7.695625e-05 162 215 5.727273e-05 -9.242642e-06 163 215 -5.098776e-05 8.228377e-06 164 215 4.519256e-05 -7.293151e-06 165 215 -3.981401e-05 6.425164e-06 166 215 3.478917e-05 -5.614257e-06 167 215 -3.00633e-05 4.851599e-06 168 215 2.558831e-05 -4.129428e-06 169 215 -2.132146e-05 3.440846e-06 170 215 1.722429e-05 -2.779647e-06 171 215 -1.326172e-05 2.14017e-06 172 215 9.401297e-06 -1.517176e-06 173 215 -5.612495e-06 9.057414e-07 174 215 1.866144e-06 -3.011573e-07 175 215 1.866144e-06 -3.011573e-07 176 215 -5.612495e-06 9.057414e-07 177 215 9.401297e-06 -1.517176e-06 178 215 -1.326172e-05 2.14017e-06 179 215 1.722429e-05 -2.779647e-06 180 215 -2.132146e-05 3.440846e-06 181 215 2.558831e-05 -4.129428e-06 182 215 -3.00633e-05 4.851599e-06 183 215 3.478917e-05 -5.614257e-06 184 215 -3.981401e-05 6.425164e-06 185 215 4.519256e-05 -7.293151e-06 186 215 -5.098776e-05 8.228377e-06 187 215 5.727273e-05 -9.242642e-06 188 215 -6.413319e-05 1.034978e-05 189 215 7.167061e-05 -1.156616e-05 190 215 -8.000611e-05 1.291134e-05 191 215 8.928565e-05 -1.440887e-05 192 215 -9.968672e-05 1.608739e-05 193 215 0.0001114272 -1.798207e-05 194 215 -0.0001247774 2.013652e-05 195 215 0.000140076 -2.26054e-05 196 215 -0.0001577525 2.545802e-05 197 215 0.0001783582 -2.878335e-05 198 215 -0.0002026106 3.26972e-05 199 215 0.0002314578 -3.735254e-05 200 215 -0.0002661734 4.295492e-05 201 215 0.0003085011 -4.978574e-05 202 215 -0.0003608797 5.823857e-05 203 215 0.0004268045 -6.887749e-05 204 215 -0.0005114288 8.253411e-05 205 215 0.0006226054 -0.0001004757 206 215 -0.0007727812 0.000124711 207 215 0.0009826448 -0.0001585787 208 215 -0.001288661 0.0002079635 209 215 0.001760065 -0.0002840383 210 215 -0.002541777 0.0004101906 211 215 0.003980742 -0.0006424099 212 215 -0.007089509 0.001144101 213 215 0.01597157 -0.002577484 214 215 -0.06393453 0.01031772 215 215 -0.241354 -0.01521075 216 215 -0.06393453 0.01031772 217 215 0.01597157 -0.002577484 218 215 -0.007089509 0.001144101 219 215 0.003980742 -0.0006424099 220 215 -0.002541777 0.0004101906 221 215 0.001760065 -0.0002840383 222 215 -0.001288661 0.0002079635 223 215 0.0009826448 -0.0001585787 224 215 -0.0007727812 0.000124711 225 215 0.0006226054 -0.0001004757 226 215 -0.0005114288 8.253411e-05 227 215 0.0004268045 -6.887749e-05 228 215 -0.0003608797 5.823857e-05 229 215 0.0003085011 -4.978574e-05 230 215 -0.0002661734 4.295492e-05 231 215 0.0002314578 -3.735254e-05 232 215 -0.0002026106 3.26972e-05 233 215 0.0001783582 -2.878335e-05 234 215 -0.0001577525 2.545802e-05 235 215 0.000140076 -2.26054e-05 236 215 -0.0001247774 2.013652e-05 237 215 0.0001114272 -1.798207e-05 238 215 -9.968672e-05 1.608739e-05 239 215 8.928565e-05 -1.440887e-05 240 215 -8.000611e-05 1.291134e-05 241 215 7.167061e-05 -1.156616e-05 242 215 -6.413319e-05 1.034978e-05 296 215 0.0009144402 7.695625e-05 135 216 0.0009313311 7.871123e-05 162 216 -6.413319e-05 1.034978e-05 163 216 5.727273e-05 -9.242642e-06 164 216 -5.098776e-05 8.228377e-06 165 216 4.519256e-05 -7.293151e-06 166 216 -3.981401e-05 6.425164e-06 167 216 3.478917e-05 -5.614257e-06 168 216 -3.00633e-05 4.851599e-06 169 216 2.558831e-05 -4.129428e-06 170 216 -2.132146e-05 3.440846e-06 171 216 1.722429e-05 -2.779647e-06 172 216 -1.326172e-05 2.14017e-06 173 216 9.401297e-06 -1.517176e-06 174 216 -5.612495e-06 9.057414e-07 175 216 1.866144e-06 -3.011573e-07 176 216 1.866144e-06 -3.011573e-07 177 216 -5.612495e-06 9.057414e-07 178 216 9.401297e-06 -1.517176e-06 179 216 -1.326172e-05 2.14017e-06 180 216 1.722429e-05 -2.779647e-06 181 216 -2.132146e-05 3.440846e-06 182 216 2.558831e-05 -4.129428e-06 183 216 -3.00633e-05 4.851599e-06 184 216 3.478917e-05 -5.614257e-06 185 216 -3.981401e-05 6.425164e-06 186 216 4.519256e-05 -7.293151e-06 187 216 -5.098776e-05 8.228377e-06 188 216 5.727273e-05 -9.242642e-06 189 216 -6.413319e-05 1.034978e-05 190 216 7.167061e-05 -1.156616e-05 191 216 -8.000611e-05 1.291134e-05 192 216 8.928565e-05 -1.440887e-05 193 216 -9.968672e-05 1.608739e-05 194 216 0.0001114272 -1.798207e-05 195 216 -0.0001247774 2.013652e-05 196 216 0.000140076 -2.26054e-05 197 216 -0.0001577525 2.545802e-05 198 216 0.0001783582 -2.878335e-05 199 216 -0.0002026106 3.26972e-05 200 216 0.0002314578 -3.735254e-05 201 216 -0.0002661734 4.295492e-05 202 216 0.0003085011 -4.978574e-05 203 216 -0.0003608797 5.823857e-05 204 216 0.0004268045 -6.887749e-05 205 216 -0.0005114288 8.253411e-05 206 216 0.0006226054 -0.0001004757 207 216 -0.0007727812 0.000124711 208 216 0.0009826448 -0.0001585787 209 216 -0.001288661 0.0002079635 210 216 0.001760065 -0.0002840383 211 216 -0.002541777 0.0004101906 212 216 0.003980742 -0.0006424099 213 216 -0.007089509 0.001144101 214 216 0.01597157 -0.002577484 215 216 -0.06393453 0.01031772 216 216 -0.2409936 -0.0153379 217 216 -0.06393453 0.01031772 218 216 0.01597157 -0.002577484 219 216 -0.007089509 0.001144101 220 216 0.003980742 -0.0006424099 221 216 -0.002541777 0.0004101906 222 216 0.001760065 -0.0002840383 223 216 -0.001288661 0.0002079635 224 216 0.0009826448 -0.0001585787 225 216 -0.0007727812 0.000124711 226 216 0.0006226054 -0.0001004757 227 216 -0.0005114288 8.253411e-05 228 216 0.0004268045 -6.887749e-05 229 216 -0.0003608797 5.823857e-05 230 216 0.0003085011 -4.978574e-05 231 216 -0.0002661734 4.295492e-05 232 216 0.0002314578 -3.735254e-05 233 216 -0.0002026106 3.26972e-05 234 216 0.0001783582 -2.878335e-05 235 216 -0.0001577525 2.545802e-05 236 216 0.000140076 -2.26054e-05 237 216 -0.0001247774 2.013652e-05 238 216 0.0001114272 -1.798207e-05 239 216 -9.968672e-05 1.608739e-05 240 216 8.928565e-05 -1.440887e-05 241 216 -8.000611e-05 1.291134e-05 242 216 7.167061e-05 -1.156616e-05 297 216 0.0009313311 7.871123e-05 136 217 0.0009483078 8.048218e-05 162 217 7.167061e-05 -1.156616e-05 163 217 -6.413319e-05 1.034978e-05 164 217 5.727273e-05 -9.242642e-06 165 217 -5.098776e-05 8.228377e-06 166 217 4.519256e-05 -7.293151e-06 167 217 -3.981401e-05 6.425164e-06 168 217 3.478917e-05 -5.614257e-06 169 217 -3.00633e-05 4.851599e-06 170 217 2.558831e-05 -4.129428e-06 171 217 -2.132146e-05 3.440846e-06 172 217 1.722429e-05 -2.779647e-06 173 217 -1.326172e-05 2.14017e-06 174 217 9.401297e-06 -1.517176e-06 175 217 -5.612495e-06 9.057414e-07 176 217 1.866144e-06 -3.011573e-07 177 217 1.866144e-06 -3.011573e-07 178 217 -5.612495e-06 9.057414e-07 179 217 9.401297e-06 -1.517176e-06 180 217 -1.326172e-05 2.14017e-06 181 217 1.722429e-05 -2.779647e-06 182 217 -2.132146e-05 3.440846e-06 183 217 2.558831e-05 -4.129428e-06 184 217 -3.00633e-05 4.851599e-06 185 217 3.478917e-05 -5.614257e-06 186 217 -3.981401e-05 6.425164e-06 187 217 4.519256e-05 -7.293151e-06 188 217 -5.098776e-05 8.228377e-06 189 217 5.727273e-05 -9.242642e-06 190 217 -6.413319e-05 1.034978e-05 191 217 7.167061e-05 -1.156616e-05 192 217 -8.000611e-05 1.291134e-05 193 217 8.928565e-05 -1.440887e-05 194 217 -9.968672e-05 1.608739e-05 195 217 0.0001114272 -1.798207e-05 196 217 -0.0001247774 2.013652e-05 197 217 0.000140076 -2.26054e-05 198 217 -0.0001577525 2.545802e-05 199 217 0.0001783582 -2.878335e-05 200 217 -0.0002026106 3.26972e-05 201 217 0.0002314578 -3.735254e-05 202 217 -0.0002661734 4.295492e-05 203 217 0.0003085011 -4.978574e-05 204 217 -0.0003608797 5.823857e-05 205 217 0.0004268045 -6.887749e-05 206 217 -0.0005114288 8.253411e-05 207 217 0.0006226054 -0.0001004757 208 217 -0.0007727812 0.000124711 209 217 0.0009826448 -0.0001585787 210 217 -0.001288661 0.0002079635 211 217 0.001760065 -0.0002840383 212 217 -0.002541777 0.0004101906 213 217 0.003980742 -0.0006424099 214 217 -0.007089509 0.001144101 215 217 0.01597157 -0.002577484 216 217 -0.06393453 0.01031772 217 217 -0.2406656 -0.01545662 218 217 -0.06393453 0.01031772 219 217 0.01597157 -0.002577484 220 217 -0.007089509 0.001144101 221 217 0.003980742 -0.0006424099 222 217 -0.002541777 0.0004101906 223 217 0.001760065 -0.0002840383 224 217 -0.001288661 0.0002079635 225 217 0.0009826448 -0.0001585787 226 217 -0.0007727812 0.000124711 227 217 0.0006226054 -0.0001004757 228 217 -0.0005114288 8.253411e-05 229 217 0.0004268045 -6.887749e-05 230 217 -0.0003608797 5.823857e-05 231 217 0.0003085011 -4.978574e-05 232 217 -0.0002661734 4.295492e-05 233 217 0.0002314578 -3.735254e-05 234 217 -0.0002026106 3.26972e-05 235 217 0.0001783582 -2.878335e-05 236 217 -0.0001577525 2.545802e-05 237 217 0.000140076 -2.26054e-05 238 217 -0.0001247774 2.013652e-05 239 217 0.0001114272 -1.798207e-05 240 217 -9.968672e-05 1.608739e-05 241 217 8.928565e-05 -1.440887e-05 242 217 -8.000611e-05 1.291134e-05 298 217 0.0009483078 8.048218e-05 137 218 0.000965371 8.226921e-05 162 218 -8.000611e-05 1.291134e-05 163 218 7.167061e-05 -1.156616e-05 164 218 -6.413319e-05 1.034978e-05 165 218 5.727273e-05 -9.242642e-06 166 218 -5.098776e-05 8.228377e-06 167 218 4.519256e-05 -7.293151e-06 168 218 -3.981401e-05 6.425164e-06 169 218 3.478917e-05 -5.614257e-06 170 218 -3.00633e-05 4.851599e-06 171 218 2.558831e-05 -4.129428e-06 172 218 -2.132146e-05 3.440846e-06 173 218 1.722429e-05 -2.779647e-06 174 218 -1.326172e-05 2.14017e-06 175 218 9.401297e-06 -1.517176e-06 176 218 -5.612495e-06 9.057414e-07 177 218 1.866144e-06 -3.011573e-07 178 218 1.866144e-06 -3.011573e-07 179 218 -5.612495e-06 9.057414e-07 180 218 9.401297e-06 -1.517176e-06 181 218 -1.326172e-05 2.14017e-06 182 218 1.722429e-05 -2.779647e-06 183 218 -2.132146e-05 3.440846e-06 184 218 2.558831e-05 -4.129428e-06 185 218 -3.00633e-05 4.851599e-06 186 218 3.478917e-05 -5.614257e-06 187 218 -3.981401e-05 6.425164e-06 188 218 4.519256e-05 -7.293151e-06 189 218 -5.098776e-05 8.228377e-06 190 218 5.727273e-05 -9.242642e-06 191 218 -6.413319e-05 1.034978e-05 192 218 7.167061e-05 -1.156616e-05 193 218 -8.000611e-05 1.291134e-05 194 218 8.928565e-05 -1.440887e-05 195 218 -9.968672e-05 1.608739e-05 196 218 0.0001114272 -1.798207e-05 197 218 -0.0001247774 2.013652e-05 198 218 0.000140076 -2.26054e-05 199 218 -0.0001577525 2.545802e-05 200 218 0.0001783582 -2.878335e-05 201 218 -0.0002026106 3.26972e-05 202 218 0.0002314578 -3.735254e-05 203 218 -0.0002661734 4.295492e-05 204 218 0.0003085011 -4.978574e-05 205 218 -0.0003608797 5.823857e-05 206 218 0.0004268045 -6.887749e-05 207 218 -0.0005114288 8.253411e-05 208 218 0.0006226054 -0.0001004757 209 218 -0.0007727812 0.000124711 210 218 0.0009826448 -0.0001585787 211 218 -0.001288661 0.0002079635 212 218 0.001760065 -0.0002840383 213 218 -0.002541777 0.0004101906 214 218 0.003980742 -0.0006424099 215 218 -0.007089509 0.001144101 216 218 0.01597157 -0.002577484 217 218 -0.06393453 0.01031772 218 218 -0.2403671 -0.01556737 219 218 -0.06393453 0.01031772 220 218 0.01597157 -0.002577484 221 218 -0.007089509 0.001144101 222 218 0.003980742 -0.0006424099 223 218 -0.002541777 0.0004101906 224 218 0.001760065 -0.0002840383 225 218 -0.001288661 0.0002079635 226 218 0.0009826448 -0.0001585787 227 218 -0.0007727812 0.000124711 228 218 0.0006226054 -0.0001004757 229 218 -0.0005114288 8.253411e-05 230 218 0.0004268045 -6.887749e-05 231 218 -0.0003608797 5.823857e-05 232 218 0.0003085011 -4.978574e-05 233 218 -0.0002661734 4.295492e-05 234 218 0.0002314578 -3.735254e-05 235 218 -0.0002026106 3.26972e-05 236 218 0.0001783582 -2.878335e-05 237 218 -0.0001577525 2.545802e-05 238 218 0.000140076 -2.26054e-05 239 218 -0.0001247774 2.013652e-05 240 218 0.0001114272 -1.798207e-05 241 218 -9.968672e-05 1.608739e-05 242 218 8.928565e-05 -1.440887e-05 299 218 0.000965371 8.226921e-05 138 219 0.0009825209 8.407245e-05 162 219 8.928565e-05 -1.440887e-05 163 219 -8.000611e-05 1.291134e-05 164 219 7.167061e-05 -1.156616e-05 165 219 -6.413319e-05 1.034978e-05 166 219 5.727273e-05 -9.242642e-06 167 219 -5.098776e-05 8.228377e-06 168 219 4.519256e-05 -7.293151e-06 169 219 -3.981401e-05 6.425164e-06 170 219 3.478917e-05 -5.614257e-06 171 219 -3.00633e-05 4.851599e-06 172 219 2.558831e-05 -4.129428e-06 173 219 -2.132146e-05 3.440846e-06 174 219 1.722429e-05 -2.779647e-06 175 219 -1.326172e-05 2.14017e-06 176 219 9.401297e-06 -1.517176e-06 177 219 -5.612495e-06 9.057414e-07 178 219 1.866144e-06 -3.011573e-07 179 219 1.866144e-06 -3.011573e-07 180 219 -5.612495e-06 9.057414e-07 181 219 9.401297e-06 -1.517176e-06 182 219 -1.326172e-05 2.14017e-06 183 219 1.722429e-05 -2.779647e-06 184 219 -2.132146e-05 3.440846e-06 185 219 2.558831e-05 -4.129428e-06 186 219 -3.00633e-05 4.851599e-06 187 219 3.478917e-05 -5.614257e-06 188 219 -3.981401e-05 6.425164e-06 189 219 4.519256e-05 -7.293151e-06 190 219 -5.098776e-05 8.228377e-06 191 219 5.727273e-05 -9.242642e-06 192 219 -6.413319e-05 1.034978e-05 193 219 7.167061e-05 -1.156616e-05 194 219 -8.000611e-05 1.291134e-05 195 219 8.928565e-05 -1.440887e-05 196 219 -9.968672e-05 1.608739e-05 197 219 0.0001114272 -1.798207e-05 198 219 -0.0001247774 2.013652e-05 199 219 0.000140076 -2.26054e-05 200 219 -0.0001577525 2.545802e-05 201 219 0.0001783582 -2.878335e-05 202 219 -0.0002026106 3.26972e-05 203 219 0.0002314578 -3.735254e-05 204 219 -0.0002661734 4.295492e-05 205 219 0.0003085011 -4.978574e-05 206 219 -0.0003608797 5.823857e-05 207 219 0.0004268045 -6.887749e-05 208 219 -0.0005114288 8.253411e-05 209 219 0.0006226054 -0.0001004757 210 219 -0.0007727812 0.000124711 211 219 0.0009826448 -0.0001585787 212 219 -0.001288661 0.0002079635 213 219 0.001760065 -0.0002840383 214 219 -0.002541777 0.0004101906 215 219 0.003980742 -0.0006424099 216 219 -0.007089509 0.001144101 217 219 0.01597157 -0.002577484 218 219 -0.06393453 0.01031772 219 219 -0.2400956 -0.0156706 220 219 -0.06393453 0.01031772 221 219 0.01597157 -0.002577484 222 219 -0.007089509 0.001144101 223 219 0.003980742 -0.0006424099 224 219 -0.002541777 0.0004101906 225 219 0.001760065 -0.0002840383 226 219 -0.001288661 0.0002079635 227 219 0.0009826448 -0.0001585787 228 219 -0.0007727812 0.000124711 229 219 0.0006226054 -0.0001004757 230 219 -0.0005114288 8.253411e-05 231 219 0.0004268045 -6.887749e-05 232 219 -0.0003608797 5.823857e-05 233 219 0.0003085011 -4.978574e-05 234 219 -0.0002661734 4.295492e-05 235 219 0.0002314578 -3.735254e-05 236 219 -0.0002026106 3.26972e-05 237 219 0.0001783582 -2.878335e-05 238 219 -0.0001577525 2.545802e-05 239 219 0.000140076 -2.26054e-05 240 219 -0.0001247774 2.013652e-05 241 219 0.0001114272 -1.798207e-05 242 219 -9.968672e-05 1.608739e-05 300 219 0.0009825209 8.407245e-05 139 220 0.0009997581 8.589201e-05 162 220 -9.968672e-05 1.608739e-05 163 220 8.928565e-05 -1.440887e-05 164 220 -8.000611e-05 1.291134e-05 165 220 7.167061e-05 -1.156616e-05 166 220 -6.413319e-05 1.034978e-05 167 220 5.727273e-05 -9.242642e-06 168 220 -5.098776e-05 8.228377e-06 169 220 4.519256e-05 -7.293151e-06 170 220 -3.981401e-05 6.425164e-06 171 220 3.478917e-05 -5.614257e-06 172 220 -3.00633e-05 4.851599e-06 173 220 2.558831e-05 -4.129428e-06 174 220 -2.132146e-05 3.440846e-06 175 220 1.722429e-05 -2.779647e-06 176 220 -1.326172e-05 2.14017e-06 177 220 9.401297e-06 -1.517176e-06 178 220 -5.612495e-06 9.057414e-07 179 220 1.866144e-06 -3.011573e-07 180 220 1.866144e-06 -3.011573e-07 181 220 -5.612495e-06 9.057414e-07 182 220 9.401297e-06 -1.517176e-06 183 220 -1.326172e-05 2.14017e-06 184 220 1.722429e-05 -2.779647e-06 185 220 -2.132146e-05 3.440846e-06 186 220 2.558831e-05 -4.129428e-06 187 220 -3.00633e-05 4.851599e-06 188 220 3.478917e-05 -5.614257e-06 189 220 -3.981401e-05 6.425164e-06 190 220 4.519256e-05 -7.293151e-06 191 220 -5.098776e-05 8.228377e-06 192 220 5.727273e-05 -9.242642e-06 193 220 -6.413319e-05 1.034978e-05 194 220 7.167061e-05 -1.156616e-05 195 220 -8.000611e-05 1.291134e-05 196 220 8.928565e-05 -1.440887e-05 197 220 -9.968672e-05 1.608739e-05 198 220 0.0001114272 -1.798207e-05 199 220 -0.0001247774 2.013652e-05 200 220 0.000140076 -2.26054e-05 201 220 -0.0001577525 2.545802e-05 202 220 0.0001783582 -2.878335e-05 203 220 -0.0002026106 3.26972e-05 204 220 0.0002314578 -3.735254e-05 205 220 -0.0002661734 4.295492e-05 206 220 0.0003085011 -4.978574e-05 207 220 -0.0003608797 5.823857e-05 208 220 0.0004268045 -6.887749e-05 209 220 -0.0005114288 8.253411e-05 210 220 0.0006226054 -0.0001004757 211 220 -0.0007727812 0.000124711 212 220 0.0009826448 -0.0001585787 213 220 -0.001288661 0.0002079635 214 220 0.001760065 -0.0002840383 215 220 -0.002541777 0.0004101906 216 220 0.003980742 -0.0006424099 217 220 -0.007089509 0.001144101 218 220 0.01597157 -0.002577484 219 220 -0.06393453 0.01031772 220 220 -0.2398487 -0.01576676 221 220 -0.06393453 0.01031772 222 220 0.01597157 -0.002577484 223 220 -0.007089509 0.001144101 224 220 0.003980742 -0.0006424099 225 220 -0.002541777 0.0004101906 226 220 0.001760065 -0.0002840383 227 220 -0.001288661 0.0002079635 228 220 0.0009826448 -0.0001585787 229 220 -0.0007727812 0.000124711 230 220 0.0006226054 -0.0001004757 231 220 -0.0005114288 8.253411e-05 232 220 0.0004268045 -6.887749e-05 233 220 -0.0003608797 5.823857e-05 234 220 0.0003085011 -4.978574e-05 235 220 -0.0002661734 4.295492e-05 236 220 0.0002314578 -3.735254e-05 237 220 -0.0002026106 3.26972e-05 238 220 0.0001783582 -2.878335e-05 239 220 -0.0001577525 2.545802e-05 240 220 0.000140076 -2.26054e-05 241 220 -0.0001247774 2.013652e-05 242 220 0.0001114272 -1.798207e-05 301 220 0.0009997581 8.589201e-05 140 221 0.001017083 8.772801e-05 162 221 0.0001114272 -1.798207e-05 163 221 -9.968672e-05 1.608739e-05 164 221 8.928565e-05 -1.440887e-05 165 221 -8.000611e-05 1.291134e-05 166 221 7.167061e-05 -1.156616e-05 167 221 -6.413319e-05 1.034978e-05 168 221 5.727273e-05 -9.242642e-06 169 221 -5.098776e-05 8.228377e-06 170 221 4.519256e-05 -7.293151e-06 171 221 -3.981401e-05 6.425164e-06 172 221 3.478917e-05 -5.614257e-06 173 221 -3.00633e-05 4.851599e-06 174 221 2.558831e-05 -4.129428e-06 175 221 -2.132146e-05 3.440846e-06 176 221 1.722429e-05 -2.779647e-06 177 221 -1.326172e-05 2.14017e-06 178 221 9.401297e-06 -1.517176e-06 179 221 -5.612495e-06 9.057414e-07 180 221 1.866144e-06 -3.011573e-07 181 221 1.866144e-06 -3.011573e-07 182 221 -5.612495e-06 9.057414e-07 183 221 9.401297e-06 -1.517176e-06 184 221 -1.326172e-05 2.14017e-06 185 221 1.722429e-05 -2.779647e-06 186 221 -2.132146e-05 3.440846e-06 187 221 2.558831e-05 -4.129428e-06 188 221 -3.00633e-05 4.851599e-06 189 221 3.478917e-05 -5.614257e-06 190 221 -3.981401e-05 6.425164e-06 191 221 4.519256e-05 -7.293151e-06 192 221 -5.098776e-05 8.228377e-06 193 221 5.727273e-05 -9.242642e-06 194 221 -6.413319e-05 1.034978e-05 195 221 7.167061e-05 -1.156616e-05 196 221 -8.000611e-05 1.291134e-05 197 221 8.928565e-05 -1.440887e-05 198 221 -9.968672e-05 1.608739e-05 199 221 0.0001114272 -1.798207e-05 200 221 -0.0001247774 2.013652e-05 201 221 0.000140076 -2.26054e-05 202 221 -0.0001577525 2.545802e-05 203 221 0.0001783582 -2.878335e-05 204 221 -0.0002026106 3.26972e-05 205 221 0.0002314578 -3.735254e-05 206 221 -0.0002661734 4.295492e-05 207 221 0.0003085011 -4.978574e-05 208 221 -0.0003608797 5.823857e-05 209 221 0.0004268045 -6.887749e-05 210 221 -0.0005114288 8.253411e-05 211 221 0.0006226054 -0.0001004757 212 221 -0.0007727812 0.000124711 213 221 0.0009826448 -0.0001585787 214 221 -0.001288661 0.0002079635 215 221 0.001760065 -0.0002840383 216 221 -0.002541777 0.0004101906 217 221 0.003980742 -0.0006424099 218 221 -0.007089509 0.001144101 219 221 0.01597157 -0.002577484 220 221 -0.06393453 0.01031772 221 221 -0.2396241 -0.01585626 222 221 -0.06393453 0.01031772 223 221 0.01597157 -0.002577484 224 221 -0.007089509 0.001144101 225 221 0.003980742 -0.0006424099 226 221 -0.002541777 0.0004101906 227 221 0.001760065 -0.0002840383 228 221 -0.001288661 0.0002079635 229 221 0.0009826448 -0.0001585787 230 221 -0.0007727812 0.000124711 231 221 0.0006226054 -0.0001004757 232 221 -0.0005114288 8.253411e-05 233 221 0.0004268045 -6.887749e-05 234 221 -0.0003608797 5.823857e-05 235 221 0.0003085011 -4.978574e-05 236 221 -0.0002661734 4.295492e-05 237 221 0.0002314578 -3.735254e-05 238 221 -0.0002026106 3.26972e-05 239 221 0.0001783582 -2.878335e-05 240 221 -0.0001577525 2.545802e-05 241 221 0.000140076 -2.26054e-05 242 221 -0.0001247774 2.013652e-05 302 221 0.001017083 8.772801e-05 141 222 0.001034496 8.958057e-05 162 222 -0.0001247774 2.013652e-05 163 222 0.0001114272 -1.798207e-05 164 222 -9.968672e-05 1.608739e-05 165 222 8.928565e-05 -1.440887e-05 166 222 -8.000611e-05 1.291134e-05 167 222 7.167061e-05 -1.156616e-05 168 222 -6.413319e-05 1.034978e-05 169 222 5.727273e-05 -9.242642e-06 170 222 -5.098776e-05 8.228377e-06 171 222 4.519256e-05 -7.293151e-06 172 222 -3.981401e-05 6.425164e-06 173 222 3.478917e-05 -5.614257e-06 174 222 -3.00633e-05 4.851599e-06 175 222 2.558831e-05 -4.129428e-06 176 222 -2.132146e-05 3.440846e-06 177 222 1.722429e-05 -2.779647e-06 178 222 -1.326172e-05 2.14017e-06 179 222 9.401297e-06 -1.517176e-06 180 222 -5.612495e-06 9.057414e-07 181 222 1.866144e-06 -3.011573e-07 182 222 1.866144e-06 -3.011573e-07 183 222 -5.612495e-06 9.057414e-07 184 222 9.401297e-06 -1.517176e-06 185 222 -1.326172e-05 2.14017e-06 186 222 1.722429e-05 -2.779647e-06 187 222 -2.132146e-05 3.440846e-06 188 222 2.558831e-05 -4.129428e-06 189 222 -3.00633e-05 4.851599e-06 190 222 3.478917e-05 -5.614257e-06 191 222 -3.981401e-05 6.425164e-06 192 222 4.519256e-05 -7.293151e-06 193 222 -5.098776e-05 8.228377e-06 194 222 5.727273e-05 -9.242642e-06 195 222 -6.413319e-05 1.034978e-05 196 222 7.167061e-05 -1.156616e-05 197 222 -8.000611e-05 1.291134e-05 198 222 8.928565e-05 -1.440887e-05 199 222 -9.968672e-05 1.608739e-05 200 222 0.0001114272 -1.798207e-05 201 222 -0.0001247774 2.013652e-05 202 222 0.000140076 -2.26054e-05 203 222 -0.0001577525 2.545802e-05 204 222 0.0001783582 -2.878335e-05 205 222 -0.0002026106 3.26972e-05 206 222 0.0002314578 -3.735254e-05 207 222 -0.0002661734 4.295492e-05 208 222 0.0003085011 -4.978574e-05 209 222 -0.0003608797 5.823857e-05 210 222 0.0004268045 -6.887749e-05 211 222 -0.0005114288 8.253411e-05 212 222 0.0006226054 -0.0001004757 213 222 -0.0007727812 0.000124711 214 222 0.0009826448 -0.0001585787 215 222 -0.001288661 0.0002079635 216 222 0.001760065 -0.0002840383 217 222 -0.002541777 0.0004101906 218 222 0.003980742 -0.0006424099 219 222 -0.007089509 0.001144101 220 222 0.01597157 -0.002577484 221 222 -0.06393453 0.01031772 222 222 -0.2394199 -0.01593952 223 222 -0.06393453 0.01031772 224 222 0.01597157 -0.002577484 225 222 -0.007089509 0.001144101 226 222 0.003980742 -0.0006424099 227 222 -0.002541777 0.0004101906 228 222 0.001760065 -0.0002840383 229 222 -0.001288661 0.0002079635 230 222 0.0009826448 -0.0001585787 231 222 -0.0007727812 0.000124711 232 222 0.0006226054 -0.0001004757 233 222 -0.0005114288 8.253411e-05 234 222 0.0004268045 -6.887749e-05 235 222 -0.0003608797 5.823857e-05 236 222 0.0003085011 -4.978574e-05 237 222 -0.0002661734 4.295492e-05 238 222 0.0002314578 -3.735254e-05 239 222 -0.0002026106 3.26972e-05 240 222 0.0001783582 -2.878335e-05 241 222 -0.0001577525 2.545802e-05 242 222 0.000140076 -2.26054e-05 303 222 0.001034496 8.958057e-05 142 223 0.001051997 9.144981e-05 162 223 0.000140076 -2.26054e-05 163 223 -0.0001247774 2.013652e-05 164 223 0.0001114272 -1.798207e-05 165 223 -9.968672e-05 1.608739e-05 166 223 8.928565e-05 -1.440887e-05 167 223 -8.000611e-05 1.291134e-05 168 223 7.167061e-05 -1.156616e-05 169 223 -6.413319e-05 1.034978e-05 170 223 5.727273e-05 -9.242642e-06 171 223 -5.098776e-05 8.228377e-06 172 223 4.519256e-05 -7.293151e-06 173 223 -3.981401e-05 6.425164e-06 174 223 3.478917e-05 -5.614257e-06 175 223 -3.00633e-05 4.851599e-06 176 223 2.558831e-05 -4.129428e-06 177 223 -2.132146e-05 3.440846e-06 178 223 1.722429e-05 -2.779647e-06 179 223 -1.326172e-05 2.14017e-06 180 223 9.401297e-06 -1.517176e-06 181 223 -5.612495e-06 9.057414e-07 182 223 1.866144e-06 -3.011573e-07 183 223 1.866144e-06 -3.011573e-07 184 223 -5.612495e-06 9.057414e-07 185 223 9.401297e-06 -1.517176e-06 186 223 -1.326172e-05 2.14017e-06 187 223 1.722429e-05 -2.779647e-06 188 223 -2.132146e-05 3.440846e-06 189 223 2.558831e-05 -4.129428e-06 190 223 -3.00633e-05 4.851599e-06 191 223 3.478917e-05 -5.614257e-06 192 223 -3.981401e-05 6.425164e-06 193 223 4.519256e-05 -7.293151e-06 194 223 -5.098776e-05 8.228377e-06 195 223 5.727273e-05 -9.242642e-06 196 223 -6.413319e-05 1.034978e-05 197 223 7.167061e-05 -1.156616e-05 198 223 -8.000611e-05 1.291134e-05 199 223 8.928565e-05 -1.440887e-05 200 223 -9.968672e-05 1.608739e-05 201 223 0.0001114272 -1.798207e-05 202 223 -0.0001247774 2.013652e-05 203 223 0.000140076 -2.26054e-05 204 223 -0.0001577525 2.545802e-05 205 223 0.0001783582 -2.878335e-05 206 223 -0.0002026106 3.26972e-05 207 223 0.0002314578 -3.735254e-05 208 223 -0.0002661734 4.295492e-05 209 223 0.0003085011 -4.978574e-05 210 223 -0.0003608797 5.823857e-05 211 223 0.0004268045 -6.887749e-05 212 223 -0.0005114288 8.253411e-05 213 223 0.0006226054 -0.0001004757 214 223 -0.0007727812 0.000124711 215 223 0.0009826448 -0.0001585787 216 223 -0.001288661 0.0002079635 217 223 0.001760065 -0.0002840383 218 223 -0.002541777 0.0004101906 219 223 0.003980742 -0.0006424099 220 223 -0.007089509 0.001144101 221 223 0.01597157 -0.002577484 222 223 -0.06393453 0.01031772 223 223 -0.2392343 -0.01601691 224 223 -0.06393453 0.01031772 225 223 0.01597157 -0.002577484 226 223 -0.007089509 0.001144101 227 223 0.003980742 -0.0006424099 228 223 -0.002541777 0.0004101906 229 223 0.001760065 -0.0002840383 230 223 -0.001288661 0.0002079635 231 223 0.0009826448 -0.0001585787 232 223 -0.0007727812 0.000124711 233 223 0.0006226054 -0.0001004757 234 223 -0.0005114288 8.253411e-05 235 223 0.0004268045 -6.887749e-05 236 223 -0.0003608797 5.823857e-05 237 223 0.0003085011 -4.978574e-05 238 223 -0.0002661734 4.295492e-05 239 223 0.0002314578 -3.735254e-05 240 223 -0.0002026106 3.26972e-05 241 223 0.0001783582 -2.878335e-05 242 223 -0.0001577525 2.545802e-05 304 223 0.001051997 9.144981e-05 143 224 0.001069588 9.333586e-05 162 224 -0.0001577525 2.545802e-05 163 224 0.000140076 -2.26054e-05 164 224 -0.0001247774 2.013652e-05 165 224 0.0001114272 -1.798207e-05 166 224 -9.968672e-05 1.608739e-05 167 224 8.928565e-05 -1.440887e-05 168 224 -8.000611e-05 1.291134e-05 169 224 7.167061e-05 -1.156616e-05 170 224 -6.413319e-05 1.034978e-05 171 224 5.727273e-05 -9.242642e-06 172 224 -5.098776e-05 8.228377e-06 173 224 4.519256e-05 -7.293151e-06 174 224 -3.981401e-05 6.425164e-06 175 224 3.478917e-05 -5.614257e-06 176 224 -3.00633e-05 4.851599e-06 177 224 2.558831e-05 -4.129428e-06 178 224 -2.132146e-05 3.440846e-06 179 224 1.722429e-05 -2.779647e-06 180 224 -1.326172e-05 2.14017e-06 181 224 9.401297e-06 -1.517176e-06 182 224 -5.612495e-06 9.057414e-07 183 224 1.866144e-06 -3.011573e-07 184 224 1.866144e-06 -3.011573e-07 185 224 -5.612495e-06 9.057414e-07 186 224 9.401297e-06 -1.517176e-06 187 224 -1.326172e-05 2.14017e-06 188 224 1.722429e-05 -2.779647e-06 189 224 -2.132146e-05 3.440846e-06 190 224 2.558831e-05 -4.129428e-06 191 224 -3.00633e-05 4.851599e-06 192 224 3.478917e-05 -5.614257e-06 193 224 -3.981401e-05 6.425164e-06 194 224 4.519256e-05 -7.293151e-06 195 224 -5.098776e-05 8.228377e-06 196 224 5.727273e-05 -9.242642e-06 197 224 -6.413319e-05 1.034978e-05 198 224 7.167061e-05 -1.156616e-05 199 224 -8.000611e-05 1.291134e-05 200 224 8.928565e-05 -1.440887e-05 201 224 -9.968672e-05 1.608739e-05 202 224 0.0001114272 -1.798207e-05 203 224 -0.0001247774 2.013652e-05 204 224 0.000140076 -2.26054e-05 205 224 -0.0001577525 2.545802e-05 206 224 0.0001783582 -2.878335e-05 207 224 -0.0002026106 3.26972e-05 208 224 0.0002314578 -3.735254e-05 209 224 -0.0002661734 4.295492e-05 210 224 0.0003085011 -4.978574e-05 211 224 -0.0003608797 5.823857e-05 212 224 0.0004268045 -6.887749e-05 213 224 -0.0005114288 8.253411e-05 214 224 0.0006226054 -0.0001004757 215 224 -0.0007727812 0.000124711 216 224 0.0009826448 -0.0001585787 217 224 -0.001288661 0.0002079635 218 224 0.001760065 -0.0002840383 219 224 -0.002541777 0.0004101906 220 224 0.003980742 -0.0006424099 221 224 -0.007089509 0.001144101 222 224 0.01597157 -0.002577484 223 224 -0.06393453 0.01031772 224 224 -0.2390655 -0.01608881 225 224 -0.06393453 0.01031772 226 224 0.01597157 -0.002577484 227 224 -0.007089509 0.001144101 228 224 0.003980742 -0.0006424099 229 224 -0.002541777 0.0004101906 230 224 0.001760065 -0.0002840383 231 224 -0.001288661 0.0002079635 232 224 0.0009826448 -0.0001585787 233 224 -0.0007727812 0.000124711 234 224 0.0006226054 -0.0001004757 235 224 -0.0005114288 8.253411e-05 236 224 0.0004268045 -6.887749e-05 237 224 -0.0003608797 5.823857e-05 238 224 0.0003085011 -4.978574e-05 239 224 -0.0002661734 4.295492e-05 240 224 0.0002314578 -3.735254e-05 241 224 -0.0002026106 3.26972e-05 242 224 0.0001783582 -2.878335e-05 305 224 0.001069588 9.333586e-05 144 225 0.001087268 9.523884e-05 162 225 0.0001783582 -2.878335e-05 163 225 -0.0001577525 2.545802e-05 164 225 0.000140076 -2.26054e-05 165 225 -0.0001247774 2.013652e-05 166 225 0.0001114272 -1.798207e-05 167 225 -9.968672e-05 1.608739e-05 168 225 8.928565e-05 -1.440887e-05 169 225 -8.000611e-05 1.291134e-05 170 225 7.167061e-05 -1.156616e-05 171 225 -6.413319e-05 1.034978e-05 172 225 5.727273e-05 -9.242642e-06 173 225 -5.098776e-05 8.228377e-06 174 225 4.519256e-05 -7.293151e-06 175 225 -3.981401e-05 6.425164e-06 176 225 3.478917e-05 -5.614257e-06 177 225 -3.00633e-05 4.851599e-06 178 225 2.558831e-05 -4.129428e-06 179 225 -2.132146e-05 3.440846e-06 180 225 1.722429e-05 -2.779647e-06 181 225 -1.326172e-05 2.14017e-06 182 225 9.401297e-06 -1.517176e-06 183 225 -5.612495e-06 9.057414e-07 184 225 1.866144e-06 -3.011573e-07 185 225 1.866144e-06 -3.011573e-07 186 225 -5.612495e-06 9.057414e-07 187 225 9.401297e-06 -1.517176e-06 188 225 -1.326172e-05 2.14017e-06 189 225 1.722429e-05 -2.779647e-06 190 225 -2.132146e-05 3.440846e-06 191 225 2.558831e-05 -4.129428e-06 192 225 -3.00633e-05 4.851599e-06 193 225 3.478917e-05 -5.614257e-06 194 225 -3.981401e-05 6.425164e-06 195 225 4.519256e-05 -7.293151e-06 196 225 -5.098776e-05 8.228377e-06 197 225 5.727273e-05 -9.242642e-06 198 225 -6.413319e-05 1.034978e-05 199 225 7.167061e-05 -1.156616e-05 200 225 -8.000611e-05 1.291134e-05 201 225 8.928565e-05 -1.440887e-05 202 225 -9.968672e-05 1.608739e-05 203 225 0.0001114272 -1.798207e-05 204 225 -0.0001247774 2.013652e-05 205 225 0.000140076 -2.26054e-05 206 225 -0.0001577525 2.545802e-05 207 225 0.0001783582 -2.878335e-05 208 225 -0.0002026106 3.26972e-05 209 225 0.0002314578 -3.735254e-05 210 225 -0.0002661734 4.295492e-05 211 225 0.0003085011 -4.978574e-05 212 225 -0.0003608797 5.823857e-05 213 225 0.0004268045 -6.887749e-05 214 225 -0.0005114288 8.253411e-05 215 225 0.0006226054 -0.0001004757 216 225 -0.0007727812 0.000124711 217 225 0.0009826448 -0.0001585787 218 225 -0.001288661 0.0002079635 219 225 0.001760065 -0.0002840383 220 225 -0.002541777 0.0004101906 221 225 0.003980742 -0.0006424099 222 225 -0.007089509 0.001144101 223 225 0.01597157 -0.002577484 224 225 -0.06393453 0.01031772 225 225 -0.2389122 -0.01615558 226 225 -0.06393453 0.01031772 227 225 0.01597157 -0.002577484 228 225 -0.007089509 0.001144101 229 225 0.003980742 -0.0006424099 230 225 -0.002541777 0.0004101906 231 225 0.001760065 -0.0002840383 232 225 -0.001288661 0.0002079635 233 225 0.0009826448 -0.0001585787 234 225 -0.0007727812 0.000124711 235 225 0.0006226054 -0.0001004757 236 225 -0.0005114288 8.253411e-05 237 225 0.0004268045 -6.887749e-05 238 225 -0.0003608797 5.823857e-05 239 225 0.0003085011 -4.978574e-05 240 225 -0.0002661734 4.295492e-05 241 225 0.0002314578 -3.735254e-05 242 225 -0.0002026106 3.26972e-05 306 225 0.001087268 9.523884e-05 145 226 0.001105038 9.715887e-05 162 226 -0.0002026106 3.26972e-05 163 226 0.0001783582 -2.878335e-05 164 226 -0.0001577525 2.545802e-05 165 226 0.000140076 -2.26054e-05 166 226 -0.0001247774 2.013652e-05 167 226 0.0001114272 -1.798207e-05 168 226 -9.968672e-05 1.608739e-05 169 226 8.928565e-05 -1.440887e-05 170 226 -8.000611e-05 1.291134e-05 171 226 7.167061e-05 -1.156616e-05 172 226 -6.413319e-05 1.034978e-05 173 226 5.727273e-05 -9.242642e-06 174 226 -5.098776e-05 8.228377e-06 175 226 4.519256e-05 -7.293151e-06 176 226 -3.981401e-05 6.425164e-06 177 226 3.478917e-05 -5.614257e-06 178 226 -3.00633e-05 4.851599e-06 179 226 2.558831e-05 -4.129428e-06 180 226 -2.132146e-05 3.440846e-06 181 226 1.722429e-05 -2.779647e-06 182 226 -1.326172e-05 2.14017e-06 183 226 9.401297e-06 -1.517176e-06 184 226 -5.612495e-06 9.057414e-07 185 226 1.866144e-06 -3.011573e-07 186 226 1.866144e-06 -3.011573e-07 187 226 -5.612495e-06 9.057414e-07 188 226 9.401297e-06 -1.517176e-06 189 226 -1.326172e-05 2.14017e-06 190 226 1.722429e-05 -2.779647e-06 191 226 -2.132146e-05 3.440846e-06 192 226 2.558831e-05 -4.129428e-06 193 226 -3.00633e-05 4.851599e-06 194 226 3.478917e-05 -5.614257e-06 195 226 -3.981401e-05 6.425164e-06 196 226 4.519256e-05 -7.293151e-06 197 226 -5.098776e-05 8.228377e-06 198 226 5.727273e-05 -9.242642e-06 199 226 -6.413319e-05 1.034978e-05 200 226 7.167061e-05 -1.156616e-05 201 226 -8.000611e-05 1.291134e-05 202 226 8.928565e-05 -1.440887e-05 203 226 -9.968672e-05 1.608739e-05 204 226 0.0001114272 -1.798207e-05 205 226 -0.0001247774 2.013652e-05 206 226 0.000140076 -2.26054e-05 207 226 -0.0001577525 2.545802e-05 208 226 0.0001783582 -2.878335e-05 209 226 -0.0002026106 3.26972e-05 210 226 0.0002314578 -3.735254e-05 211 226 -0.0002661734 4.295492e-05 212 226 0.0003085011 -4.978574e-05 213 226 -0.0003608797 5.823857e-05 214 226 0.0004268045 -6.887749e-05 215 226 -0.0005114288 8.253411e-05 216 226 0.0006226054 -0.0001004757 217 226 -0.0007727812 0.000124711 218 226 0.0009826448 -0.0001585787 219 226 -0.001288661 0.0002079635 220 226 0.001760065 -0.0002840383 221 226 -0.002541777 0.0004101906 222 226 0.003980742 -0.0006424099 223 226 -0.007089509 0.001144101 224 226 0.01597157 -0.002577484 225 226 -0.06393453 0.01031772 226 226 -0.2387729 -0.01621755 227 226 -0.06393453 0.01031772 228 226 0.01597157 -0.002577484 229 226 -0.007089509 0.001144101 230 226 0.003980742 -0.0006424099 231 226 -0.002541777 0.0004101906 232 226 0.001760065 -0.0002840383 233 226 -0.001288661 0.0002079635 234 226 0.0009826448 -0.0001585787 235 226 -0.0007727812 0.000124711 236 226 0.0006226054 -0.0001004757 237 226 -0.0005114288 8.253411e-05 238 226 0.0004268045 -6.887749e-05 239 226 -0.0003608797 5.823857e-05 240 226 0.0003085011 -4.978574e-05 241 226 -0.0002661734 4.295492e-05 242 226 0.0002314578 -3.735254e-05 307 226 0.001105038 9.715887e-05 146 227 0.001122898 9.909608e-05 162 227 0.0002314578 -3.735254e-05 163 227 -0.0002026106 3.26972e-05 164 227 0.0001783582 -2.878335e-05 165 227 -0.0001577525 2.545802e-05 166 227 0.000140076 -2.26054e-05 167 227 -0.0001247774 2.013652e-05 168 227 0.0001114272 -1.798207e-05 169 227 -9.968672e-05 1.608739e-05 170 227 8.928565e-05 -1.440887e-05 171 227 -8.000611e-05 1.291134e-05 172 227 7.167061e-05 -1.156616e-05 173 227 -6.413319e-05 1.034978e-05 174 227 5.727273e-05 -9.242642e-06 175 227 -5.098776e-05 8.228377e-06 176 227 4.519256e-05 -7.293151e-06 177 227 -3.981401e-05 6.425164e-06 178 227 3.478917e-05 -5.614257e-06 179 227 -3.00633e-05 4.851599e-06 180 227 2.558831e-05 -4.129428e-06 181 227 -2.132146e-05 3.440846e-06 182 227 1.722429e-05 -2.779647e-06 183 227 -1.326172e-05 2.14017e-06 184 227 9.401297e-06 -1.517176e-06 185 227 -5.612495e-06 9.057414e-07 186 227 1.866144e-06 -3.011573e-07 187 227 1.866144e-06 -3.011573e-07 188 227 -5.612495e-06 9.057414e-07 189 227 9.401297e-06 -1.517176e-06 190 227 -1.326172e-05 2.14017e-06 191 227 1.722429e-05 -2.779647e-06 192 227 -2.132146e-05 3.440846e-06 193 227 2.558831e-05 -4.129428e-06 194 227 -3.00633e-05 4.851599e-06 195 227 3.478917e-05 -5.614257e-06 196 227 -3.981401e-05 6.425164e-06 197 227 4.519256e-05 -7.293151e-06 198 227 -5.098776e-05 8.228377e-06 199 227 5.727273e-05 -9.242642e-06 200 227 -6.413319e-05 1.034978e-05 201 227 7.167061e-05 -1.156616e-05 202 227 -8.000611e-05 1.291134e-05 203 227 8.928565e-05 -1.440887e-05 204 227 -9.968672e-05 1.608739e-05 205 227 0.0001114272 -1.798207e-05 206 227 -0.0001247774 2.013652e-05 207 227 0.000140076 -2.26054e-05 208 227 -0.0001577525 2.545802e-05 209 227 0.0001783582 -2.878335e-05 210 227 -0.0002026106 3.26972e-05 211 227 0.0002314578 -3.735254e-05 212 227 -0.0002661734 4.295492e-05 213 227 0.0003085011 -4.978574e-05 214 227 -0.0003608797 5.823857e-05 215 227 0.0004268045 -6.887749e-05 216 227 -0.0005114288 8.253411e-05 217 227 0.0006226054 -0.0001004757 218 227 -0.0007727812 0.000124711 219 227 0.0009826448 -0.0001585787 220 227 -0.001288661 0.0002079635 221 227 0.001760065 -0.0002840383 222 227 -0.002541777 0.0004101906 223 227 0.003980742 -0.0006424099 224 227 -0.007089509 0.001144101 225 227 0.01597157 -0.002577484 226 227 -0.06393453 0.01031772 227 227 -0.2386463 -0.01627503 228 227 -0.06393453 0.01031772 229 227 0.01597157 -0.002577484 230 227 -0.007089509 0.001144101 231 227 0.003980742 -0.0006424099 232 227 -0.002541777 0.0004101906 233 227 0.001760065 -0.0002840383 234 227 -0.001288661 0.0002079635 235 227 0.0009826448 -0.0001585787 236 227 -0.0007727812 0.000124711 237 227 0.0006226054 -0.0001004757 238 227 -0.0005114288 8.253411e-05 239 227 0.0004268045 -6.887749e-05 240 227 -0.0003608797 5.823857e-05 241 227 0.0003085011 -4.978574e-05 242 227 -0.0002661734 4.295492e-05 308 227 0.001122898 9.909608e-05 147 228 0.001140849 0.0001010506 162 228 -0.0002661734 4.295492e-05 163 228 0.0002314578 -3.735254e-05 164 228 -0.0002026106 3.26972e-05 165 228 0.0001783582 -2.878335e-05 166 228 -0.0001577525 2.545802e-05 167 228 0.000140076 -2.26054e-05 168 228 -0.0001247774 2.013652e-05 169 228 0.0001114272 -1.798207e-05 170 228 -9.968672e-05 1.608739e-05 171 228 8.928565e-05 -1.440887e-05 172 228 -8.000611e-05 1.291134e-05 173 228 7.167061e-05 -1.156616e-05 174 228 -6.413319e-05 1.034978e-05 175 228 5.727273e-05 -9.242642e-06 176 228 -5.098776e-05 8.228377e-06 177 228 4.519256e-05 -7.293151e-06 178 228 -3.981401e-05 6.425164e-06 179 228 3.478917e-05 -5.614257e-06 180 228 -3.00633e-05 4.851599e-06 181 228 2.558831e-05 -4.129428e-06 182 228 -2.132146e-05 3.440846e-06 183 228 1.722429e-05 -2.779647e-06 184 228 -1.326172e-05 2.14017e-06 185 228 9.401297e-06 -1.517176e-06 186 228 -5.612495e-06 9.057414e-07 187 228 1.866144e-06 -3.011573e-07 188 228 1.866144e-06 -3.011573e-07 189 228 -5.612495e-06 9.057414e-07 190 228 9.401297e-06 -1.517176e-06 191 228 -1.326172e-05 2.14017e-06 192 228 1.722429e-05 -2.779647e-06 193 228 -2.132146e-05 3.440846e-06 194 228 2.558831e-05 -4.129428e-06 195 228 -3.00633e-05 4.851599e-06 196 228 3.478917e-05 -5.614257e-06 197 228 -3.981401e-05 6.425164e-06 198 228 4.519256e-05 -7.293151e-06 199 228 -5.098776e-05 8.228377e-06 200 228 5.727273e-05 -9.242642e-06 201 228 -6.413319e-05 1.034978e-05 202 228 7.167061e-05 -1.156616e-05 203 228 -8.000611e-05 1.291134e-05 204 228 8.928565e-05 -1.440887e-05 205 228 -9.968672e-05 1.608739e-05 206 228 0.0001114272 -1.798207e-05 207 228 -0.0001247774 2.013652e-05 208 228 0.000140076 -2.26054e-05 209 228 -0.0001577525 2.545802e-05 210 228 0.0001783582 -2.878335e-05 211 228 -0.0002026106 3.26972e-05 212 228 0.0002314578 -3.735254e-05 213 228 -0.0002661734 4.295492e-05 214 228 0.0003085011 -4.978574e-05 215 228 -0.0003608797 5.823857e-05 216 228 0.0004268045 -6.887749e-05 217 228 -0.0005114288 8.253411e-05 218 228 0.0006226054 -0.0001004757 219 228 -0.0007727812 0.000124711 220 228 0.0009826448 -0.0001585787 221 228 -0.001288661 0.0002079635 222 228 0.001760065 -0.0002840383 223 228 -0.002541777 0.0004101906 224 228 0.003980742 -0.0006424099 225 228 -0.007089509 0.001144101 226 228 0.01597157 -0.002577484 227 228 -0.06393453 0.01031772 228 228 -0.2385312 -0.01632833 229 228 -0.06393453 0.01031772 230 228 0.01597157 -0.002577484 231 228 -0.007089509 0.001144101 232 228 0.003980742 -0.0006424099 233 228 -0.002541777 0.0004101906 234 228 0.001760065 -0.0002840383 235 228 -0.001288661 0.0002079635 236 228 0.0009826448 -0.0001585787 237 228 -0.0007727812 0.000124711 238 228 0.0006226054 -0.0001004757 239 228 -0.0005114288 8.253411e-05 240 228 0.0004268045 -6.887749e-05 241 228 -0.0003608797 5.823857e-05 242 228 0.0003085011 -4.978574e-05 309 228 0.001140849 0.0001010506 148 229 0.001158892 0.0001030225 162 229 0.0003085011 -4.978574e-05 163 229 -0.0002661734 4.295492e-05 164 229 0.0002314578 -3.735254e-05 165 229 -0.0002026106 3.26972e-05 166 229 0.0001783582 -2.878335e-05 167 229 -0.0001577525 2.545802e-05 168 229 0.000140076 -2.26054e-05 169 229 -0.0001247774 2.013652e-05 170 229 0.0001114272 -1.798207e-05 171 229 -9.968672e-05 1.608739e-05 172 229 8.928565e-05 -1.440887e-05 173 229 -8.000611e-05 1.291134e-05 174 229 7.167061e-05 -1.156616e-05 175 229 -6.413319e-05 1.034978e-05 176 229 5.727273e-05 -9.242642e-06 177 229 -5.098776e-05 8.228377e-06 178 229 4.519256e-05 -7.293151e-06 179 229 -3.981401e-05 6.425164e-06 180 229 3.478917e-05 -5.614257e-06 181 229 -3.00633e-05 4.851599e-06 182 229 2.558831e-05 -4.129428e-06 183 229 -2.132146e-05 3.440846e-06 184 229 1.722429e-05 -2.779647e-06 185 229 -1.326172e-05 2.14017e-06 186 229 9.401297e-06 -1.517176e-06 187 229 -5.612495e-06 9.057414e-07 188 229 1.866144e-06 -3.011573e-07 189 229 1.866144e-06 -3.011573e-07 190 229 -5.612495e-06 9.057414e-07 191 229 9.401297e-06 -1.517176e-06 192 229 -1.326172e-05 2.14017e-06 193 229 1.722429e-05 -2.779647e-06 194 229 -2.132146e-05 3.440846e-06 195 229 2.558831e-05 -4.129428e-06 196 229 -3.00633e-05 4.851599e-06 197 229 3.478917e-05 -5.614257e-06 198 229 -3.981401e-05 6.425164e-06 199 229 4.519256e-05 -7.293151e-06 200 229 -5.098776e-05 8.228377e-06 201 229 5.727273e-05 -9.242642e-06 202 229 -6.413319e-05 1.034978e-05 203 229 7.167061e-05 -1.156616e-05 204 229 -8.000611e-05 1.291134e-05 205 229 8.928565e-05 -1.440887e-05 206 229 -9.968672e-05 1.608739e-05 207 229 0.0001114272 -1.798207e-05 208 229 -0.0001247774 2.013652e-05 209 229 0.000140076 -2.26054e-05 210 229 -0.0001577525 2.545802e-05 211 229 0.0001783582 -2.878335e-05 212 229 -0.0002026106 3.26972e-05 213 229 0.0002314578 -3.735254e-05 214 229 -0.0002661734 4.295492e-05 215 229 0.0003085011 -4.978574e-05 216 229 -0.0003608797 5.823857e-05 217 229 0.0004268045 -6.887749e-05 218 229 -0.0005114288 8.253411e-05 219 229 0.0006226054 -0.0001004757 220 229 -0.0007727812 0.000124711 221 229 0.0009826448 -0.0001585787 222 229 -0.001288661 0.0002079635 223 229 0.001760065 -0.0002840383 224 229 -0.002541777 0.0004101906 225 229 0.003980742 -0.0006424099 226 229 -0.007089509 0.001144101 227 229 0.01597157 -0.002577484 228 229 -0.06393453 0.01031772 229 229 -0.2384268 -0.01637773 230 229 -0.06393453 0.01031772 231 229 0.01597157 -0.002577484 232 229 -0.007089509 0.001144101 233 229 0.003980742 -0.0006424099 234 229 -0.002541777 0.0004101906 235 229 0.001760065 -0.0002840383 236 229 -0.001288661 0.0002079635 237 229 0.0009826448 -0.0001585787 238 229 -0.0007727812 0.000124711 239 229 0.0006226054 -0.0001004757 240 229 -0.0005114288 8.253411e-05 241 229 0.0004268045 -6.887749e-05 242 229 -0.0003608797 5.823857e-05 310 229 0.001158892 0.0001030225 149 230 0.001177026 0.000105012 162 230 -0.0003608797 5.823857e-05 163 230 0.0003085011 -4.978574e-05 164 230 -0.0002661734 4.295492e-05 165 230 0.0002314578 -3.735254e-05 166 230 -0.0002026106 3.26972e-05 167 230 0.0001783582 -2.878335e-05 168 230 -0.0001577525 2.545802e-05 169 230 0.000140076 -2.26054e-05 170 230 -0.0001247774 2.013652e-05 171 230 0.0001114272 -1.798207e-05 172 230 -9.968672e-05 1.608739e-05 173 230 8.928565e-05 -1.440887e-05 174 230 -8.000611e-05 1.291134e-05 175 230 7.167061e-05 -1.156616e-05 176 230 -6.413319e-05 1.034978e-05 177 230 5.727273e-05 -9.242642e-06 178 230 -5.098776e-05 8.228377e-06 179 230 4.519256e-05 -7.293151e-06 180 230 -3.981401e-05 6.425164e-06 181 230 3.478917e-05 -5.614257e-06 182 230 -3.00633e-05 4.851599e-06 183 230 2.558831e-05 -4.129428e-06 184 230 -2.132146e-05 3.440846e-06 185 230 1.722429e-05 -2.779647e-06 186 230 -1.326172e-05 2.14017e-06 187 230 9.401297e-06 -1.517176e-06 188 230 -5.612495e-06 9.057414e-07 189 230 1.866144e-06 -3.011573e-07 190 230 1.866144e-06 -3.011573e-07 191 230 -5.612495e-06 9.057414e-07 192 230 9.401297e-06 -1.517176e-06 193 230 -1.326172e-05 2.14017e-06 194 230 1.722429e-05 -2.779647e-06 195 230 -2.132146e-05 3.440846e-06 196 230 2.558831e-05 -4.129428e-06 197 230 -3.00633e-05 4.851599e-06 198 230 3.478917e-05 -5.614257e-06 199 230 -3.981401e-05 6.425164e-06 200 230 4.519256e-05 -7.293151e-06 201 230 -5.098776e-05 8.228377e-06 202 230 5.727273e-05 -9.242642e-06 203 230 -6.413319e-05 1.034978e-05 204 230 7.167061e-05 -1.156616e-05 205 230 -8.000611e-05 1.291134e-05 206 230 8.928565e-05 -1.440887e-05 207 230 -9.968672e-05 1.608739e-05 208 230 0.0001114272 -1.798207e-05 209 230 -0.0001247774 2.013652e-05 210 230 0.000140076 -2.26054e-05 211 230 -0.0001577525 2.545802e-05 212 230 0.0001783582 -2.878335e-05 213 230 -0.0002026106 3.26972e-05 214 230 0.0002314578 -3.735254e-05 215 230 -0.0002661734 4.295492e-05 216 230 0.0003085011 -4.978574e-05 217 230 -0.0003608797 5.823857e-05 218 230 0.0004268045 -6.887749e-05 219 230 -0.0005114288 8.253411e-05 220 230 0.0006226054 -0.0001004757 221 230 -0.0007727812 0.000124711 222 230 0.0009826448 -0.0001585787 223 230 -0.001288661 0.0002079635 224 230 0.001760065 -0.0002840383 225 230 -0.002541777 0.0004101906 226 230 0.003980742 -0.0006424099 227 230 -0.007089509 0.001144101 228 230 0.01597157 -0.002577484 229 230 -0.06393453 0.01031772 230 230 -0.2383319 -0.01642349 231 230 -0.06393453 0.01031772 232 230 0.01597157 -0.002577484 233 230 -0.007089509 0.001144101 234 230 0.003980742 -0.0006424099 235 230 -0.002541777 0.0004101906 236 230 0.001760065 -0.0002840383 237 230 -0.001288661 0.0002079635 238 230 0.0009826448 -0.0001585787 239 230 -0.0007727812 0.000124711 240 230 0.0006226054 -0.0001004757 241 230 -0.0005114288 8.253411e-05 242 230 0.0004268045 -6.887749e-05 311 230 0.001177026 0.000105012 150 231 0.001195252 0.0001070192 162 231 0.0004268045 -6.887749e-05 163 231 -0.0003608797 5.823857e-05 164 231 0.0003085011 -4.978574e-05 165 231 -0.0002661734 4.295492e-05 166 231 0.0002314578 -3.735254e-05 167 231 -0.0002026106 3.26972e-05 168 231 0.0001783582 -2.878335e-05 169 231 -0.0001577525 2.545802e-05 170 231 0.000140076 -2.26054e-05 171 231 -0.0001247774 2.013652e-05 172 231 0.0001114272 -1.798207e-05 173 231 -9.968672e-05 1.608739e-05 174 231 8.928565e-05 -1.440887e-05 175 231 -8.000611e-05 1.291134e-05 176 231 7.167061e-05 -1.156616e-05 177 231 -6.413319e-05 1.034978e-05 178 231 5.727273e-05 -9.242642e-06 179 231 -5.098776e-05 8.228377e-06 180 231 4.519256e-05 -7.293151e-06 181 231 -3.981401e-05 6.425164e-06 182 231 3.478917e-05 -5.614257e-06 183 231 -3.00633e-05 4.851599e-06 184 231 2.558831e-05 -4.129428e-06 185 231 -2.132146e-05 3.440846e-06 186 231 1.722429e-05 -2.779647e-06 187 231 -1.326172e-05 2.14017e-06 188 231 9.401297e-06 -1.517176e-06 189 231 -5.612495e-06 9.057414e-07 190 231 1.866144e-06 -3.011573e-07 191 231 1.866144e-06 -3.011573e-07 192 231 -5.612495e-06 9.057414e-07 193 231 9.401297e-06 -1.517176e-06 194 231 -1.326172e-05 2.14017e-06 195 231 1.722429e-05 -2.779647e-06 196 231 -2.132146e-05 3.440846e-06 197 231 2.558831e-05 -4.129428e-06 198 231 -3.00633e-05 4.851599e-06 199 231 3.478917e-05 -5.614257e-06 200 231 -3.981401e-05 6.425164e-06 201 231 4.519256e-05 -7.293151e-06 202 231 -5.098776e-05 8.228377e-06 203 231 5.727273e-05 -9.242642e-06 204 231 -6.413319e-05 1.034978e-05 205 231 7.167061e-05 -1.156616e-05 206 231 -8.000611e-05 1.291134e-05 207 231 8.928565e-05 -1.440887e-05 208 231 -9.968672e-05 1.608739e-05 209 231 0.0001114272 -1.798207e-05 210 231 -0.0001247774 2.013652e-05 211 231 0.000140076 -2.26054e-05 212 231 -0.0001577525 2.545802e-05 213 231 0.0001783582 -2.878335e-05 214 231 -0.0002026106 3.26972e-05 215 231 0.0002314578 -3.735254e-05 216 231 -0.0002661734 4.295492e-05 217 231 0.0003085011 -4.978574e-05 218 231 -0.0003608797 5.823857e-05 219 231 0.0004268045 -6.887749e-05 220 231 -0.0005114288 8.253411e-05 221 231 0.0006226054 -0.0001004757 222 231 -0.0007727812 0.000124711 223 231 0.0009826448 -0.0001585787 224 231 -0.001288661 0.0002079635 225 231 0.001760065 -0.0002840383 226 231 -0.002541777 0.0004101906 227 231 0.003980742 -0.0006424099 228 231 -0.007089509 0.001144101 229 231 0.01597157 -0.002577484 230 231 -0.06393453 0.01031772 231 231 -0.2382457 -0.01646587 232 231 -0.06393453 0.01031772 233 231 0.01597157 -0.002577484 234 231 -0.007089509 0.001144101 235 231 0.003980742 -0.0006424099 236 231 -0.002541777 0.0004101906 237 231 0.001760065 -0.0002840383 238 231 -0.001288661 0.0002079635 239 231 0.0009826448 -0.0001585787 240 231 -0.0007727812 0.000124711 241 231 0.0006226054 -0.0001004757 242 231 -0.0005114288 8.253411e-05 312 231 0.001195252 0.0001070192 151 232 0.001213571 0.0001090442 162 232 -0.0005114288 8.253411e-05 163 232 0.0004268045 -6.887749e-05 164 232 -0.0003608797 5.823857e-05 165 232 0.0003085011 -4.978574e-05 166 232 -0.0002661734 4.295492e-05 167 232 0.0002314578 -3.735254e-05 168 232 -0.0002026106 3.26972e-05 169 232 0.0001783582 -2.878335e-05 170 232 -0.0001577525 2.545802e-05 171 232 0.000140076 -2.26054e-05 172 232 -0.0001247774 2.013652e-05 173 232 0.0001114272 -1.798207e-05 174 232 -9.968672e-05 1.608739e-05 175 232 8.928565e-05 -1.440887e-05 176 232 -8.000611e-05 1.291134e-05 177 232 7.167061e-05 -1.156616e-05 178 232 -6.413319e-05 1.034978e-05 179 232 5.727273e-05 -9.242642e-06 180 232 -5.098776e-05 8.228377e-06 181 232 4.519256e-05 -7.293151e-06 182 232 -3.981401e-05 6.425164e-06 183 232 3.478917e-05 -5.614257e-06 184 232 -3.00633e-05 4.851599e-06 185 232 2.558831e-05 -4.129428e-06 186 232 -2.132146e-05 3.440846e-06 187 232 1.722429e-05 -2.779647e-06 188 232 -1.326172e-05 2.14017e-06 189 232 9.401297e-06 -1.517176e-06 190 232 -5.612495e-06 9.057414e-07 191 232 1.866144e-06 -3.011573e-07 192 232 1.866144e-06 -3.011573e-07 193 232 -5.612495e-06 9.057414e-07 194 232 9.401297e-06 -1.517176e-06 195 232 -1.326172e-05 2.14017e-06 196 232 1.722429e-05 -2.779647e-06 197 232 -2.132146e-05 3.440846e-06 198 232 2.558831e-05 -4.129428e-06 199 232 -3.00633e-05 4.851599e-06 200 232 3.478917e-05 -5.614257e-06 201 232 -3.981401e-05 6.425164e-06 202 232 4.519256e-05 -7.293151e-06 203 232 -5.098776e-05 8.228377e-06 204 232 5.727273e-05 -9.242642e-06 205 232 -6.413319e-05 1.034978e-05 206 232 7.167061e-05 -1.156616e-05 207 232 -8.000611e-05 1.291134e-05 208 232 8.928565e-05 -1.440887e-05 209 232 -9.968672e-05 1.608739e-05 210 232 0.0001114272 -1.798207e-05 211 232 -0.0001247774 2.013652e-05 212 232 0.000140076 -2.26054e-05 213 232 -0.0001577525 2.545802e-05 214 232 0.0001783582 -2.878335e-05 215 232 -0.0002026106 3.26972e-05 216 232 0.0002314578 -3.735254e-05 217 232 -0.0002661734 4.295492e-05 218 232 0.0003085011 -4.978574e-05 219 232 -0.0003608797 5.823857e-05 220 232 0.0004268045 -6.887749e-05 221 232 -0.0005114288 8.253411e-05 222 232 0.0006226054 -0.0001004757 223 232 -0.0007727812 0.000124711 224 232 0.0009826448 -0.0001585787 225 232 -0.001288661 0.0002079635 226 232 0.001760065 -0.0002840383 227 232 -0.002541777 0.0004101906 228 232 0.003980742 -0.0006424099 229 232 -0.007089509 0.001144101 230 232 0.01597157 -0.002577484 231 232 -0.06393453 0.01031772 232 232 -0.2381674 -0.0165051 233 232 -0.06393453 0.01031772 234 232 0.01597157 -0.002577484 235 232 -0.007089509 0.001144101 236 232 0.003980742 -0.0006424099 237 232 -0.002541777 0.0004101906 238 232 0.001760065 -0.0002840383 239 232 -0.001288661 0.0002079635 240 232 0.0009826448 -0.0001585787 241 232 -0.0007727812 0.000124711 242 232 0.0006226054 -0.0001004757 313 232 0.001213571 0.0001090442 152 233 0.001231983 0.0001110871 162 233 0.0006226054 -0.0001004757 163 233 -0.0005114288 8.253411e-05 164 233 0.0004268045 -6.887749e-05 165 233 -0.0003608797 5.823857e-05 166 233 0.0003085011 -4.978574e-05 167 233 -0.0002661734 4.295492e-05 168 233 0.0002314578 -3.735254e-05 169 233 -0.0002026106 3.26972e-05 170 233 0.0001783582 -2.878335e-05 171 233 -0.0001577525 2.545802e-05 172 233 0.000140076 -2.26054e-05 173 233 -0.0001247774 2.013652e-05 174 233 0.0001114272 -1.798207e-05 175 233 -9.968672e-05 1.608739e-05 176 233 8.928565e-05 -1.440887e-05 177 233 -8.000611e-05 1.291134e-05 178 233 7.167061e-05 -1.156616e-05 179 233 -6.413319e-05 1.034978e-05 180 233 5.727273e-05 -9.242642e-06 181 233 -5.098776e-05 8.228377e-06 182 233 4.519256e-05 -7.293151e-06 183 233 -3.981401e-05 6.425164e-06 184 233 3.478917e-05 -5.614257e-06 185 233 -3.00633e-05 4.851599e-06 186 233 2.558831e-05 -4.129428e-06 187 233 -2.132146e-05 3.440846e-06 188 233 1.722429e-05 -2.779647e-06 189 233 -1.326172e-05 2.14017e-06 190 233 9.401297e-06 -1.517176e-06 191 233 -5.612495e-06 9.057414e-07 192 233 1.866144e-06 -3.011573e-07 193 233 1.866144e-06 -3.011573e-07 194 233 -5.612495e-06 9.057414e-07 195 233 9.401297e-06 -1.517176e-06 196 233 -1.326172e-05 2.14017e-06 197 233 1.722429e-05 -2.779647e-06 198 233 -2.132146e-05 3.440846e-06 199 233 2.558831e-05 -4.129428e-06 200 233 -3.00633e-05 4.851599e-06 201 233 3.478917e-05 -5.614257e-06 202 233 -3.981401e-05 6.425164e-06 203 233 4.519256e-05 -7.293151e-06 204 233 -5.098776e-05 8.228377e-06 205 233 5.727273e-05 -9.242642e-06 206 233 -6.413319e-05 1.034978e-05 207 233 7.167061e-05 -1.156616e-05 208 233 -8.000611e-05 1.291134e-05 209 233 8.928565e-05 -1.440887e-05 210 233 -9.968672e-05 1.608739e-05 211 233 0.0001114272 -1.798207e-05 212 233 -0.0001247774 2.013652e-05 213 233 0.000140076 -2.26054e-05 214 233 -0.0001577525 2.545802e-05 215 233 0.0001783582 -2.878335e-05 216 233 -0.0002026106 3.26972e-05 217 233 0.0002314578 -3.735254e-05 218 233 -0.0002661734 4.295492e-05 219 233 0.0003085011 -4.978574e-05 220 233 -0.0003608797 5.823857e-05 221 233 0.0004268045 -6.887749e-05 222 233 -0.0005114288 8.253411e-05 223 233 0.0006226054 -0.0001004757 224 233 -0.0007727812 0.000124711 225 233 0.0009826448 -0.0001585787 226 233 -0.001288661 0.0002079635 227 233 0.001760065 -0.0002840383 228 233 -0.002541777 0.0004101906 229 233 0.003980742 -0.0006424099 230 233 -0.007089509 0.001144101 231 233 0.01597157 -0.002577484 232 233 -0.06393453 0.01031772 233 233 -0.2380964 -0.0165414 234 233 -0.06393453 0.01031772 235 233 0.01597157 -0.002577484 236 233 -0.007089509 0.001144101 237 233 0.003980742 -0.0006424099 238 233 -0.002541777 0.0004101906 239 233 0.001760065 -0.0002840383 240 233 -0.001288661 0.0002079635 241 233 0.0009826448 -0.0001585787 242 233 -0.0007727812 0.000124711 314 233 0.001231983 0.0001110871 153 234 0.001250489 0.0001131481 162 234 -0.0007727812 0.000124711 163 234 0.0006226054 -0.0001004757 164 234 -0.0005114288 8.253411e-05 165 234 0.0004268045 -6.887749e-05 166 234 -0.0003608797 5.823857e-05 167 234 0.0003085011 -4.978574e-05 168 234 -0.0002661734 4.295492e-05 169 234 0.0002314578 -3.735254e-05 170 234 -0.0002026106 3.26972e-05 171 234 0.0001783582 -2.878335e-05 172 234 -0.0001577525 2.545802e-05 173 234 0.000140076 -2.26054e-05 174 234 -0.0001247774 2.013652e-05 175 234 0.0001114272 -1.798207e-05 176 234 -9.968672e-05 1.608739e-05 177 234 8.928565e-05 -1.440887e-05 178 234 -8.000611e-05 1.291134e-05 179 234 7.167061e-05 -1.156616e-05 180 234 -6.413319e-05 1.034978e-05 181 234 5.727273e-05 -9.242642e-06 182 234 -5.098776e-05 8.228377e-06 183 234 4.519256e-05 -7.293151e-06 184 234 -3.981401e-05 6.425164e-06 185 234 3.478917e-05 -5.614257e-06 186 234 -3.00633e-05 4.851599e-06 187 234 2.558831e-05 -4.129428e-06 188 234 -2.132146e-05 3.440846e-06 189 234 1.722429e-05 -2.779647e-06 190 234 -1.326172e-05 2.14017e-06 191 234 9.401297e-06 -1.517176e-06 192 234 -5.612495e-06 9.057414e-07 193 234 1.866144e-06 -3.011573e-07 194 234 1.866144e-06 -3.011573e-07 195 234 -5.612495e-06 9.057414e-07 196 234 9.401297e-06 -1.517176e-06 197 234 -1.326172e-05 2.14017e-06 198 234 1.722429e-05 -2.779647e-06 199 234 -2.132146e-05 3.440846e-06 200 234 2.558831e-05 -4.129428e-06 201 234 -3.00633e-05 4.851599e-06 202 234 3.478917e-05 -5.614257e-06 203 234 -3.981401e-05 6.425164e-06 204 234 4.519256e-05 -7.293151e-06 205 234 -5.098776e-05 8.228377e-06 206 234 5.727273e-05 -9.242642e-06 207 234 -6.413319e-05 1.034978e-05 208 234 7.167061e-05 -1.156616e-05 209 234 -8.000611e-05 1.291134e-05 210 234 8.928565e-05 -1.440887e-05 211 234 -9.968672e-05 1.608739e-05 212 234 0.0001114272 -1.798207e-05 213 234 -0.0001247774 2.013652e-05 214 234 0.000140076 -2.26054e-05 215 234 -0.0001577525 2.545802e-05 216 234 0.0001783582 -2.878335e-05 217 234 -0.0002026106 3.26972e-05 218 234 0.0002314578 -3.735254e-05 219 234 -0.0002661734 4.295492e-05 220 234 0.0003085011 -4.978574e-05 221 234 -0.0003608797 5.823857e-05 222 234 0.0004268045 -6.887749e-05 223 234 -0.0005114288 8.253411e-05 224 234 0.0006226054 -0.0001004757 225 234 -0.0007727812 0.000124711 226 234 0.0009826448 -0.0001585787 227 234 -0.001288661 0.0002079635 228 234 0.001760065 -0.0002840383 229 234 -0.002541777 0.0004101906 230 234 0.003980742 -0.0006424099 231 234 -0.007089509 0.001144101 232 234 0.01597157 -0.002577484 233 234 -0.06393453 0.01031772 234 234 -0.2380319 -0.01657498 235 234 -0.06393453 0.01031772 236 234 0.01597157 -0.002577484 237 234 -0.007089509 0.001144101 238 234 0.003980742 -0.0006424099 239 234 -0.002541777 0.0004101906 240 234 0.001760065 -0.0002840383 241 234 -0.001288661 0.0002079635 242 234 0.0009826448 -0.0001585787 315 234 0.001250489 0.0001131481 154 235 0.001269089 0.0001152273 162 235 0.0009826448 -0.0001585787 163 235 -0.0007727812 0.000124711 164 235 0.0006226054 -0.0001004757 165 235 -0.0005114288 8.253411e-05 166 235 0.0004268045 -6.887749e-05 167 235 -0.0003608797 5.823857e-05 168 235 0.0003085011 -4.978574e-05 169 235 -0.0002661734 4.295492e-05 170 235 0.0002314578 -3.735254e-05 171 235 -0.0002026106 3.26972e-05 172 235 0.0001783582 -2.878335e-05 173 235 -0.0001577525 2.545802e-05 174 235 0.000140076 -2.26054e-05 175 235 -0.0001247774 2.013652e-05 176 235 0.0001114272 -1.798207e-05 177 235 -9.968672e-05 1.608739e-05 178 235 8.928565e-05 -1.440887e-05 179 235 -8.000611e-05 1.291134e-05 180 235 7.167061e-05 -1.156616e-05 181 235 -6.413319e-05 1.034978e-05 182 235 5.727273e-05 -9.242642e-06 183 235 -5.098776e-05 8.228377e-06 184 235 4.519256e-05 -7.293151e-06 185 235 -3.981401e-05 6.425164e-06 186 235 3.478917e-05 -5.614257e-06 187 235 -3.00633e-05 4.851599e-06 188 235 2.558831e-05 -4.129428e-06 189 235 -2.132146e-05 3.440846e-06 190 235 1.722429e-05 -2.779647e-06 191 235 -1.326172e-05 2.14017e-06 192 235 9.401297e-06 -1.517176e-06 193 235 -5.612495e-06 9.057414e-07 194 235 1.866144e-06 -3.011573e-07 195 235 1.866144e-06 -3.011573e-07 196 235 -5.612495e-06 9.057414e-07 197 235 9.401297e-06 -1.517176e-06 198 235 -1.326172e-05 2.14017e-06 199 235 1.722429e-05 -2.779647e-06 200 235 -2.132146e-05 3.440846e-06 201 235 2.558831e-05 -4.129428e-06 202 235 -3.00633e-05 4.851599e-06 203 235 3.478917e-05 -5.614257e-06 204 235 -3.981401e-05 6.425164e-06 205 235 4.519256e-05 -7.293151e-06 206 235 -5.098776e-05 8.228377e-06 207 235 5.727273e-05 -9.242642e-06 208 235 -6.413319e-05 1.034978e-05 209 235 7.167061e-05 -1.156616e-05 210 235 -8.000611e-05 1.291134e-05 211 235 8.928565e-05 -1.440887e-05 212 235 -9.968672e-05 1.608739e-05 213 235 0.0001114272 -1.798207e-05 214 235 -0.0001247774 2.013652e-05 215 235 0.000140076 -2.26054e-05 216 235 -0.0001577525 2.545802e-05 217 235 0.0001783582 -2.878335e-05 218 235 -0.0002026106 3.26972e-05 219 235 0.0002314578 -3.735254e-05 220 235 -0.0002661734 4.295492e-05 221 235 0.0003085011 -4.978574e-05 222 235 -0.0003608797 5.823857e-05 223 235 0.0004268045 -6.887749e-05 224 235 -0.0005114288 8.253411e-05 225 235 0.0006226054 -0.0001004757 226 235 -0.0007727812 0.000124711 227 235 0.0009826448 -0.0001585787 228 235 -0.001288661 0.0002079635 229 235 0.001760065 -0.0002840383 230 235 -0.002541777 0.0004101906 231 235 0.003980742 -0.0006424099 232 235 -0.007089509 0.001144101 233 235 0.01597157 -0.002577484 234 235 -0.06393453 0.01031772 235 235 -0.2379733 -0.01660604 236 235 -0.06393453 0.01031772 237 235 0.01597157 -0.002577484 238 235 -0.007089509 0.001144101 239 235 0.003980742 -0.0006424099 240 235 -0.002541777 0.0004101906 241 235 0.001760065 -0.0002840383 242 235 -0.001288661 0.0002079635 316 235 0.001269089 0.0001152273 155 236 0.001287783 0.0001173249 162 236 -0.001288661 0.0002079635 163 236 0.0009826448 -0.0001585787 164 236 -0.0007727812 0.000124711 165 236 0.0006226054 -0.0001004757 166 236 -0.0005114288 8.253411e-05 167 236 0.0004268045 -6.887749e-05 168 236 -0.0003608797 5.823857e-05 169 236 0.0003085011 -4.978574e-05 170 236 -0.0002661734 4.295492e-05 171 236 0.0002314578 -3.735254e-05 172 236 -0.0002026106 3.26972e-05 173 236 0.0001783582 -2.878335e-05 174 236 -0.0001577525 2.545802e-05 175 236 0.000140076 -2.26054e-05 176 236 -0.0001247774 2.013652e-05 177 236 0.0001114272 -1.798207e-05 178 236 -9.968672e-05 1.608739e-05 179 236 8.928565e-05 -1.440887e-05 180 236 -8.000611e-05 1.291134e-05 181 236 7.167061e-05 -1.156616e-05 182 236 -6.413319e-05 1.034978e-05 183 236 5.727273e-05 -9.242642e-06 184 236 -5.098776e-05 8.228377e-06 185 236 4.519256e-05 -7.293151e-06 186 236 -3.981401e-05 6.425164e-06 187 236 3.478917e-05 -5.614257e-06 188 236 -3.00633e-05 4.851599e-06 189 236 2.558831e-05 -4.129428e-06 190 236 -2.132146e-05 3.440846e-06 191 236 1.722429e-05 -2.779647e-06 192 236 -1.326172e-05 2.14017e-06 193 236 9.401297e-06 -1.517176e-06 194 236 -5.612495e-06 9.057414e-07 195 236 1.866144e-06 -3.011573e-07 196 236 1.866144e-06 -3.011573e-07 197 236 -5.612495e-06 9.057414e-07 198 236 9.401297e-06 -1.517176e-06 199 236 -1.326172e-05 2.14017e-06 200 236 1.722429e-05 -2.779647e-06 201 236 -2.132146e-05 3.440846e-06 202 236 2.558831e-05 -4.129428e-06 203 236 -3.00633e-05 4.851599e-06 204 236 3.478917e-05 -5.614257e-06 205 236 -3.981401e-05 6.425164e-06 206 236 4.519256e-05 -7.293151e-06 207 236 -5.098776e-05 8.228377e-06 208 236 5.727273e-05 -9.242642e-06 209 236 -6.413319e-05 1.034978e-05 210 236 7.167061e-05 -1.156616e-05 211 236 -8.000611e-05 1.291134e-05 212 236 8.928565e-05 -1.440887e-05 213 236 -9.968672e-05 1.608739e-05 214 236 0.0001114272 -1.798207e-05 215 236 -0.0001247774 2.013652e-05 216 236 0.000140076 -2.26054e-05 217 236 -0.0001577525 2.545802e-05 218 236 0.0001783582 -2.878335e-05 219 236 -0.0002026106 3.26972e-05 220 236 0.0002314578 -3.735254e-05 221 236 -0.0002661734 4.295492e-05 222 236 0.0003085011 -4.978574e-05 223 236 -0.0003608797 5.823857e-05 224 236 0.0004268045 -6.887749e-05 225 236 -0.0005114288 8.253411e-05 226 236 0.0006226054 -0.0001004757 227 236 -0.0007727812 0.000124711 228 236 0.0009826448 -0.0001585787 229 236 -0.001288661 0.0002079635 230 236 0.001760065 -0.0002840383 231 236 -0.002541777 0.0004101906 232 236 0.003980742 -0.0006424099 233 236 -0.007089509 0.001144101 234 236 0.01597157 -0.002577484 235 236 -0.06393453 0.01031772 236 236 -0.2379202 -0.01663475 237 236 -0.06393453 0.01031772 238 236 0.01597157 -0.002577484 239 236 -0.007089509 0.001144101 240 236 0.003980742 -0.0006424099 241 236 -0.002541777 0.0004101906 242 236 0.001760065 -0.0002840383 317 236 0.001287783 0.0001173249 156 237 0.001306573 0.0001194409 162 237 0.001760065 -0.0002840383 163 237 -0.001288661 0.0002079635 164 237 0.0009826448 -0.0001585787 165 237 -0.0007727812 0.000124711 166 237 0.0006226054 -0.0001004757 167 237 -0.0005114288 8.253411e-05 168 237 0.0004268045 -6.887749e-05 169 237 -0.0003608797 5.823857e-05 170 237 0.0003085011 -4.978574e-05 171 237 -0.0002661734 4.295492e-05 172 237 0.0002314578 -3.735254e-05 173 237 -0.0002026106 3.26972e-05 174 237 0.0001783582 -2.878335e-05 175 237 -0.0001577525 2.545802e-05 176 237 0.000140076 -2.26054e-05 177 237 -0.0001247774 2.013652e-05 178 237 0.0001114272 -1.798207e-05 179 237 -9.968672e-05 1.608739e-05 180 237 8.928565e-05 -1.440887e-05 181 237 -8.000611e-05 1.291134e-05 182 237 7.167061e-05 -1.156616e-05 183 237 -6.413319e-05 1.034978e-05 184 237 5.727273e-05 -9.242642e-06 185 237 -5.098776e-05 8.228377e-06 186 237 4.519256e-05 -7.293151e-06 187 237 -3.981401e-05 6.425164e-06 188 237 3.478917e-05 -5.614257e-06 189 237 -3.00633e-05 4.851599e-06 190 237 2.558831e-05 -4.129428e-06 191 237 -2.132146e-05 3.440846e-06 192 237 1.722429e-05 -2.779647e-06 193 237 -1.326172e-05 2.14017e-06 194 237 9.401297e-06 -1.517176e-06 195 237 -5.612495e-06 9.057414e-07 196 237 1.866144e-06 -3.011573e-07 197 237 1.866144e-06 -3.011573e-07 198 237 -5.612495e-06 9.057414e-07 199 237 9.401297e-06 -1.517176e-06 200 237 -1.326172e-05 2.14017e-06 201 237 1.722429e-05 -2.779647e-06 202 237 -2.132146e-05 3.440846e-06 203 237 2.558831e-05 -4.129428e-06 204 237 -3.00633e-05 4.851599e-06 205 237 3.478917e-05 -5.614257e-06 206 237 -3.981401e-05 6.425164e-06 207 237 4.519256e-05 -7.293151e-06 208 237 -5.098776e-05 8.228377e-06 209 237 5.727273e-05 -9.242642e-06 210 237 -6.413319e-05 1.034978e-05 211 237 7.167061e-05 -1.156616e-05 212 237 -8.000611e-05 1.291134e-05 213 237 8.928565e-05 -1.440887e-05 214 237 -9.968672e-05 1.608739e-05 215 237 0.0001114272 -1.798207e-05 216 237 -0.0001247774 2.013652e-05 217 237 0.000140076 -2.26054e-05 218 237 -0.0001577525 2.545802e-05 219 237 0.0001783582 -2.878335e-05 220 237 -0.0002026106 3.26972e-05 221 237 0.0002314578 -3.735254e-05 222 237 -0.0002661734 4.295492e-05 223 237 0.0003085011 -4.978574e-05 224 237 -0.0003608797 5.823857e-05 225 237 0.0004268045 -6.887749e-05 226 237 -0.0005114288 8.253411e-05 227 237 0.0006226054 -0.0001004757 228 237 -0.0007727812 0.000124711 229 237 0.0009826448 -0.0001585787 230 237 -0.001288661 0.0002079635 231 237 0.001760065 -0.0002840383 232 237 -0.002541777 0.0004101906 233 237 0.003980742 -0.0006424099 234 237 -0.007089509 0.001144101 235 237 0.01597157 -0.002577484 236 237 -0.06393453 0.01031772 237 237 -0.2378719 -0.01666128 238 237 -0.06393453 0.01031772 239 237 0.01597157 -0.002577484 240 237 -0.007089509 0.001144101 241 237 0.003980742 -0.0006424099 242 237 -0.002541777 0.0004101906 318 237 0.001306573 0.0001194409 157 238 0.001325458 0.0001215755 162 238 -0.002541777 0.0004101906 163 238 0.001760065 -0.0002840383 164 238 -0.001288661 0.0002079635 165 238 0.0009826448 -0.0001585787 166 238 -0.0007727812 0.000124711 167 238 0.0006226054 -0.0001004757 168 238 -0.0005114288 8.253411e-05 169 238 0.0004268045 -6.887749e-05 170 238 -0.0003608797 5.823857e-05 171 238 0.0003085011 -4.978574e-05 172 238 -0.0002661734 4.295492e-05 173 238 0.0002314578 -3.735254e-05 174 238 -0.0002026106 3.26972e-05 175 238 0.0001783582 -2.878335e-05 176 238 -0.0001577525 2.545802e-05 177 238 0.000140076 -2.26054e-05 178 238 -0.0001247774 2.013652e-05 179 238 0.0001114272 -1.798207e-05 180 238 -9.968672e-05 1.608739e-05 181 238 8.928565e-05 -1.440887e-05 182 238 -8.000611e-05 1.291134e-05 183 238 7.167061e-05 -1.156616e-05 184 238 -6.413319e-05 1.034978e-05 185 238 5.727273e-05 -9.242642e-06 186 238 -5.098776e-05 8.228377e-06 187 238 4.519256e-05 -7.293151e-06 188 238 -3.981401e-05 6.425164e-06 189 238 3.478917e-05 -5.614257e-06 190 238 -3.00633e-05 4.851599e-06 191 238 2.558831e-05 -4.129428e-06 192 238 -2.132146e-05 3.440846e-06 193 238 1.722429e-05 -2.779647e-06 194 238 -1.326172e-05 2.14017e-06 195 238 9.401297e-06 -1.517176e-06 196 238 -5.612495e-06 9.057414e-07 197 238 1.866144e-06 -3.011573e-07 198 238 1.866144e-06 -3.011573e-07 199 238 -5.612495e-06 9.057414e-07 200 238 9.401297e-06 -1.517176e-06 201 238 -1.326172e-05 2.14017e-06 202 238 1.722429e-05 -2.779647e-06 203 238 -2.132146e-05 3.440846e-06 204 238 2.558831e-05 -4.129428e-06 205 238 -3.00633e-05 4.851599e-06 206 238 3.478917e-05 -5.614257e-06 207 238 -3.981401e-05 6.425164e-06 208 238 4.519256e-05 -7.293151e-06 209 238 -5.098776e-05 8.228377e-06 210 238 5.727273e-05 -9.242642e-06 211 238 -6.413319e-05 1.034978e-05 212 238 7.167061e-05 -1.156616e-05 213 238 -8.000611e-05 1.291134e-05 214 238 8.928565e-05 -1.440887e-05 215 238 -9.968672e-05 1.608739e-05 216 238 0.0001114272 -1.798207e-05 217 238 -0.0001247774 2.013652e-05 218 238 0.000140076 -2.26054e-05 219 238 -0.0001577525 2.545802e-05 220 238 0.0001783582 -2.878335e-05 221 238 -0.0002026106 3.26972e-05 222 238 0.0002314578 -3.735254e-05 223 238 -0.0002661734 4.295492e-05 224 238 0.0003085011 -4.978574e-05 225 238 -0.0003608797 5.823857e-05 226 238 0.0004268045 -6.887749e-05 227 238 -0.0005114288 8.253411e-05 228 238 0.0006226054 -0.0001004757 229 238 -0.0007727812 0.000124711 230 238 0.0009826448 -0.0001585787 231 238 -0.001288661 0.0002079635 232 238 0.001760065 -0.0002840383 233 238 -0.002541777 0.0004101906 234 238 0.003980742 -0.0006424099 235 238 -0.007089509 0.001144101 236 238 0.01597157 -0.002577484 237 238 -0.06393453 0.01031772 238 238 -0.2378281 -0.01668579 239 238 -0.06393453 0.01031772 240 238 0.01597157 -0.002577484 241 238 -0.007089509 0.001144101 242 238 0.003980742 -0.0006424099 319 238 0.001325458 0.0001215755 158 239 0.001344439 0.0001237288 162 239 0.003980742 -0.0006424099 163 239 -0.002541777 0.0004101906 164 239 0.001760065 -0.0002840383 165 239 -0.001288661 0.0002079635 166 239 0.0009826448 -0.0001585787 167 239 -0.0007727812 0.000124711 168 239 0.0006226054 -0.0001004757 169 239 -0.0005114288 8.253411e-05 170 239 0.0004268045 -6.887749e-05 171 239 -0.0003608797 5.823857e-05 172 239 0.0003085011 -4.978574e-05 173 239 -0.0002661734 4.295492e-05 174 239 0.0002314578 -3.735254e-05 175 239 -0.0002026106 3.26972e-05 176 239 0.0001783582 -2.878335e-05 177 239 -0.0001577525 2.545802e-05 178 239 0.000140076 -2.26054e-05 179 239 -0.0001247774 2.013652e-05 180 239 0.0001114272 -1.798207e-05 181 239 -9.968672e-05 1.608739e-05 182 239 8.928565e-05 -1.440887e-05 183 239 -8.000611e-05 1.291134e-05 184 239 7.167061e-05 -1.156616e-05 185 239 -6.413319e-05 1.034978e-05 186 239 5.727273e-05 -9.242642e-06 187 239 -5.098776e-05 8.228377e-06 188 239 4.519256e-05 -7.293151e-06 189 239 -3.981401e-05 6.425164e-06 190 239 3.478917e-05 -5.614257e-06 191 239 -3.00633e-05 4.851599e-06 192 239 2.558831e-05 -4.129428e-06 193 239 -2.132146e-05 3.440846e-06 194 239 1.722429e-05 -2.779647e-06 195 239 -1.326172e-05 2.14017e-06 196 239 9.401297e-06 -1.517176e-06 197 239 -5.612495e-06 9.057414e-07 198 239 1.866144e-06 -3.011573e-07 199 239 1.866144e-06 -3.011573e-07 200 239 -5.612495e-06 9.057414e-07 201 239 9.401297e-06 -1.517176e-06 202 239 -1.326172e-05 2.14017e-06 203 239 1.722429e-05 -2.779647e-06 204 239 -2.132146e-05 3.440846e-06 205 239 2.558831e-05 -4.129428e-06 206 239 -3.00633e-05 4.851599e-06 207 239 3.478917e-05 -5.614257e-06 208 239 -3.981401e-05 6.425164e-06 209 239 4.519256e-05 -7.293151e-06 210 239 -5.098776e-05 8.228377e-06 211 239 5.727273e-05 -9.242642e-06 212 239 -6.413319e-05 1.034978e-05 213 239 7.167061e-05 -1.156616e-05 214 239 -8.000611e-05 1.291134e-05 215 239 8.928565e-05 -1.440887e-05 216 239 -9.968672e-05 1.608739e-05 217 239 0.0001114272 -1.798207e-05 218 239 -0.0001247774 2.013652e-05 219 239 0.000140076 -2.26054e-05 220 239 -0.0001577525 2.545802e-05 221 239 0.0001783582 -2.878335e-05 222 239 -0.0002026106 3.26972e-05 223 239 0.0002314578 -3.735254e-05 224 239 -0.0002661734 4.295492e-05 225 239 0.0003085011 -4.978574e-05 226 239 -0.0003608797 5.823857e-05 227 239 0.0004268045 -6.887749e-05 228 239 -0.0005114288 8.253411e-05 229 239 0.0006226054 -0.0001004757 230 239 -0.0007727812 0.000124711 231 239 0.0009826448 -0.0001585787 232 239 -0.001288661 0.0002079635 233 239 0.001760065 -0.0002840383 234 239 -0.002541777 0.0004101906 235 239 0.003980742 -0.0006424099 236 239 -0.007089509 0.001144101 237 239 0.01597157 -0.002577484 238 239 -0.06393453 0.01031772 239 239 -0.2377884 -0.01670843 240 239 -0.06393453 0.01031772 241 239 0.01597157 -0.002577484 242 239 -0.007089509 0.001144101 320 239 0.001344439 0.0001237288 159 240 0.001363516 0.0001259011 162 240 -0.007089509 0.001144101 163 240 0.003980742 -0.0006424099 164 240 -0.002541777 0.0004101906 165 240 0.001760065 -0.0002840383 166 240 -0.001288661 0.0002079635 167 240 0.0009826448 -0.0001585787 168 240 -0.0007727812 0.000124711 169 240 0.0006226054 -0.0001004757 170 240 -0.0005114288 8.253411e-05 171 240 0.0004268045 -6.887749e-05 172 240 -0.0003608797 5.823857e-05 173 240 0.0003085011 -4.978574e-05 174 240 -0.0002661734 4.295492e-05 175 240 0.0002314578 -3.735254e-05 176 240 -0.0002026106 3.26972e-05 177 240 0.0001783582 -2.878335e-05 178 240 -0.0001577525 2.545802e-05 179 240 0.000140076 -2.26054e-05 180 240 -0.0001247774 2.013652e-05 181 240 0.0001114272 -1.798207e-05 182 240 -9.968672e-05 1.608739e-05 183 240 8.928565e-05 -1.440887e-05 184 240 -8.000611e-05 1.291134e-05 185 240 7.167061e-05 -1.156616e-05 186 240 -6.413319e-05 1.034978e-05 187 240 5.727273e-05 -9.242642e-06 188 240 -5.098776e-05 8.228377e-06 189 240 4.519256e-05 -7.293151e-06 190 240 -3.981401e-05 6.425164e-06 191 240 3.478917e-05 -5.614257e-06 192 240 -3.00633e-05 4.851599e-06 193 240 2.558831e-05 -4.129428e-06 194 240 -2.132146e-05 3.440846e-06 195 240 1.722429e-05 -2.779647e-06 196 240 -1.326172e-05 2.14017e-06 197 240 9.401297e-06 -1.517176e-06 198 240 -5.612495e-06 9.057414e-07 199 240 1.866144e-06 -3.011573e-07 200 240 1.866144e-06 -3.011573e-07 201 240 -5.612495e-06 9.057414e-07 202 240 9.401297e-06 -1.517176e-06 203 240 -1.326172e-05 2.14017e-06 204 240 1.722429e-05 -2.779647e-06 205 240 -2.132146e-05 3.440846e-06 206 240 2.558831e-05 -4.129428e-06 207 240 -3.00633e-05 4.851599e-06 208 240 3.478917e-05 -5.614257e-06 209 240 -3.981401e-05 6.425164e-06 210 240 4.519256e-05 -7.293151e-06 211 240 -5.098776e-05 8.228377e-06 212 240 5.727273e-05 -9.242642e-06 213 240 -6.413319e-05 1.034978e-05 214 240 7.167061e-05 -1.156616e-05 215 240 -8.000611e-05 1.291134e-05 216 240 8.928565e-05 -1.440887e-05 217 240 -9.968672e-05 1.608739e-05 218 240 0.0001114272 -1.798207e-05 219 240 -0.0001247774 2.013652e-05 220 240 0.000140076 -2.26054e-05 221 240 -0.0001577525 2.545802e-05 222 240 0.0001783582 -2.878335e-05 223 240 -0.0002026106 3.26972e-05 224 240 0.0002314578 -3.735254e-05 225 240 -0.0002661734 4.295492e-05 226 240 0.0003085011 -4.978574e-05 227 240 -0.0003608797 5.823857e-05 228 240 0.0004268045 -6.887749e-05 229 240 -0.0005114288 8.253411e-05 230 240 0.0006226054 -0.0001004757 231 240 -0.0007727812 0.000124711 232 240 0.0009826448 -0.0001585787 233 240 -0.001288661 0.0002079635 234 240 0.001760065 -0.0002840383 235 240 -0.002541777 0.0004101906 236 240 0.003980742 -0.0006424099 237 240 -0.007089509 0.001144101 238 240 0.01597157 -0.002577484 239 240 -0.06393453 0.01031772 240 240 -0.2377523 -0.01672934 241 240 -0.06393453 0.01031772 242 240 0.01597157 -0.002577484 321 240 0.001363516 0.0001259011 160 241 0.00138269 0.0001280923 162 241 0.01597157 -0.002577484 163 241 -0.007089509 0.001144101 164 241 0.003980742 -0.0006424099 165 241 -0.002541777 0.0004101906 166 241 0.001760065 -0.0002840383 167 241 -0.001288661 0.0002079635 168 241 0.0009826448 -0.0001585787 169 241 -0.0007727812 0.000124711 170 241 0.0006226054 -0.0001004757 171 241 -0.0005114288 8.253411e-05 172 241 0.0004268045 -6.887749e-05 173 241 -0.0003608797 5.823857e-05 174 241 0.0003085011 -4.978574e-05 175 241 -0.0002661734 4.295492e-05 176 241 0.0002314578 -3.735254e-05 177 241 -0.0002026106 3.26972e-05 178 241 0.0001783582 -2.878335e-05 179 241 -0.0001577525 2.545802e-05 180 241 0.000140076 -2.26054e-05 181 241 -0.0001247774 2.013652e-05 182 241 0.0001114272 -1.798207e-05 183 241 -9.968672e-05 1.608739e-05 184 241 8.928565e-05 -1.440887e-05 185 241 -8.000611e-05 1.291134e-05 186 241 7.167061e-05 -1.156616e-05 187 241 -6.413319e-05 1.034978e-05 188 241 5.727273e-05 -9.242642e-06 189 241 -5.098776e-05 8.228377e-06 190 241 4.519256e-05 -7.293151e-06 191 241 -3.981401e-05 6.425164e-06 192 241 3.478917e-05 -5.614257e-06 193 241 -3.00633e-05 4.851599e-06 194 241 2.558831e-05 -4.129428e-06 195 241 -2.132146e-05 3.440846e-06 196 241 1.722429e-05 -2.779647e-06 197 241 -1.326172e-05 2.14017e-06 198 241 9.401297e-06 -1.517176e-06 199 241 -5.612495e-06 9.057414e-07 200 241 1.866144e-06 -3.011573e-07 201 241 1.866144e-06 -3.011573e-07 202 241 -5.612495e-06 9.057414e-07 203 241 9.401297e-06 -1.517176e-06 204 241 -1.326172e-05 2.14017e-06 205 241 1.722429e-05 -2.779647e-06 206 241 -2.132146e-05 3.440846e-06 207 241 2.558831e-05 -4.129428e-06 208 241 -3.00633e-05 4.851599e-06 209 241 3.478917e-05 -5.614257e-06 210 241 -3.981401e-05 6.425164e-06 211 241 4.519256e-05 -7.293151e-06 212 241 -5.098776e-05 8.228377e-06 213 241 5.727273e-05 -9.242642e-06 214 241 -6.413319e-05 1.034978e-05 215 241 7.167061e-05 -1.156616e-05 216 241 -8.000611e-05 1.291134e-05 217 241 8.928565e-05 -1.440887e-05 218 241 -9.968672e-05 1.608739e-05 219 241 0.0001114272 -1.798207e-05 220 241 -0.0001247774 2.013652e-05 221 241 0.000140076 -2.26054e-05 222 241 -0.0001577525 2.545802e-05 223 241 0.0001783582 -2.878335e-05 224 241 -0.0002026106 3.26972e-05 225 241 0.0002314578 -3.735254e-05 226 241 -0.0002661734 4.295492e-05 227 241 0.0003085011 -4.978574e-05 228 241 -0.0003608797 5.823857e-05 229 241 0.0004268045 -6.887749e-05 230 241 -0.0005114288 8.253411e-05 231 241 0.0006226054 -0.0001004757 232 241 -0.0007727812 0.000124711 233 241 0.0009826448 -0.0001585787 234 241 -0.001288661 0.0002079635 235 241 0.001760065 -0.0002840383 236 241 -0.002541777 0.0004101906 237 241 0.003980742 -0.0006424099 238 241 -0.007089509 0.001144101 239 241 0.01597157 -0.002577484 240 241 -0.06393453 0.01031772 241 241 -0.2377196 -0.01674864 242 241 -0.06393453 0.01031772 322 241 0.00138269 0.0001280923 161 242 0.001401962 0.0001303027 162 242 -0.06393453 0.01031772 163 242 0.01597157 -0.002577484 164 242 -0.007089509 0.001144101 165 242 0.003980742 -0.0006424099 166 242 -0.002541777 0.0004101906 167 242 0.001760065 -0.0002840383 168 242 -0.001288661 0.0002079635 169 242 0.0009826448 -0.0001585787 170 242 -0.0007727812 0.000124711 171 242 0.0006226054 -0.0001004757 172 242 -0.0005114288 8.253411e-05 173 242 0.0004268045 -6.887749e-05 174 242 -0.0003608797 5.823857e-05 175 242 0.0003085011 -4.978574e-05 176 242 -0.0002661734 4.295492e-05 177 242 0.0002314578 -3.735254e-05 178 242 -0.0002026106 3.26972e-05 179 242 0.0001783582 -2.878335e-05 180 242 -0.0001577525 2.545802e-05 181 242 0.000140076 -2.26054e-05 182 242 -0.0001247774 2.013652e-05 183 242 0.0001114272 -1.798207e-05 184 242 -9.968672e-05 1.608739e-05 185 242 8.928565e-05 -1.440887e-05 186 242 -8.000611e-05 1.291134e-05 187 242 7.167061e-05 -1.156616e-05 188 242 -6.413319e-05 1.034978e-05 189 242 5.727273e-05 -9.242642e-06 190 242 -5.098776e-05 8.228377e-06 191 242 4.519256e-05 -7.293151e-06 192 242 -3.981401e-05 6.425164e-06 193 242 3.478917e-05 -5.614257e-06 194 242 -3.00633e-05 4.851599e-06 195 242 2.558831e-05 -4.129428e-06 196 242 -2.132146e-05 3.440846e-06 197 242 1.722429e-05 -2.779647e-06 198 242 -1.326172e-05 2.14017e-06 199 242 9.401297e-06 -1.517176e-06 200 242 -5.612495e-06 9.057414e-07 201 242 1.866144e-06 -3.011573e-07 202 242 1.866144e-06 -3.011573e-07 203 242 -5.612495e-06 9.057414e-07 204 242 9.401297e-06 -1.517176e-06 205 242 -1.326172e-05 2.14017e-06 206 242 1.722429e-05 -2.779647e-06 207 242 -2.132146e-05 3.440846e-06 208 242 2.558831e-05 -4.129428e-06 209 242 -3.00633e-05 4.851599e-06 210 242 3.478917e-05 -5.614257e-06 211 242 -3.981401e-05 6.425164e-06 212 242 4.519256e-05 -7.293151e-06 213 242 -5.098776e-05 8.228377e-06 214 242 5.727273e-05 -9.242642e-06 215 242 -6.413319e-05 1.034978e-05 216 242 7.167061e-05 -1.156616e-05 217 242 -8.000611e-05 1.291134e-05 218 242 8.928565e-05 -1.440887e-05 219 242 -9.968672e-05 1.608739e-05 220 242 0.0001114272 -1.798207e-05 221 242 -0.0001247774 2.013652e-05 222 242 0.000140076 -2.26054e-05 223 242 -0.0001577525 2.545802e-05 224 242 0.0001783582 -2.878335e-05 225 242 -0.0002026106 3.26972e-05 226 242 0.0002314578 -3.735254e-05 227 242 -0.0002661734 4.295492e-05 228 242 0.0003085011 -4.978574e-05 229 242 -0.0003608797 5.823857e-05 230 242 0.0004268045 -6.887749e-05 231 242 -0.0005114288 8.253411e-05 232 242 0.0006226054 -0.0001004757 233 242 -0.0007727812 0.000124711 234 242 0.0009826448 -0.0001585787 235 242 -0.001288661 0.0002079635 236 242 0.001760065 -0.0002840383 237 242 -0.002541777 0.0004101906 238 242 0.003980742 -0.0006424099 239 242 -0.007089509 0.001144101 240 242 0.01597157 -0.002577484 241 242 -0.06393453 0.01031772 242 242 -0.23769 -0.01676645 323 242 0.001401962 0.0001303027 162 243 0.0001315499 3.980931e-06 243 243 1.153132 -0.08758582 244 243 -0.06393453 0.01031772 245 243 0.01597157 -0.002577484 246 243 -0.007089509 0.001144101 247 243 0.003980742 -0.0006424099 248 243 -0.002541777 0.0004101906 249 243 0.001760065 -0.0002840383 250 243 -0.001288661 0.0002079635 251 243 0.0009826448 -0.0001585787 252 243 -0.0007727812 0.000124711 253 243 0.0006226054 -0.0001004757 254 243 -0.0005114288 8.253411e-05 255 243 0.0004268045 -6.887749e-05 256 243 -0.0003608797 5.823857e-05 257 243 0.0003085011 -4.978574e-05 258 243 -0.0002661734 4.295492e-05 259 243 0.0002314578 -3.735254e-05 260 243 -0.0002026106 3.26972e-05 261 243 0.0001783582 -2.878335e-05 262 243 -0.0001577525 2.545802e-05 263 243 0.000140076 -2.26054e-05 264 243 -0.0001247774 2.013652e-05 265 243 0.0001114272 -1.798207e-05 266 243 -9.968672e-05 1.608739e-05 267 243 8.928565e-05 -1.440887e-05 268 243 -8.000611e-05 1.291134e-05 269 243 7.167061e-05 -1.156616e-05 270 243 -6.413319e-05 1.034978e-05 271 243 5.727273e-05 -9.242642e-06 272 243 -5.098776e-05 8.228377e-06 273 243 4.519256e-05 -7.293151e-06 274 243 -3.981401e-05 6.425164e-06 275 243 3.478917e-05 -5.614257e-06 276 243 -3.00633e-05 4.851599e-06 277 243 2.558831e-05 -4.129428e-06 278 243 -2.132146e-05 3.440846e-06 279 243 1.722429e-05 -2.779647e-06 280 243 -1.326172e-05 2.14017e-06 281 243 9.401297e-06 -1.517176e-06 282 243 -5.612495e-06 9.057414e-07 283 243 1.866144e-06 -3.011573e-07 284 243 1.866144e-06 -3.011573e-07 285 243 -5.612495e-06 9.057414e-07 286 243 9.401297e-06 -1.517176e-06 287 243 -1.326172e-05 2.14017e-06 288 243 1.722429e-05 -2.779647e-06 289 243 -2.132146e-05 3.440846e-06 290 243 2.558831e-05 -4.129428e-06 291 243 -3.00633e-05 4.851599e-06 292 243 3.478917e-05 -5.614257e-06 293 243 -3.981401e-05 6.425164e-06 294 243 4.519256e-05 -7.293151e-06 295 243 -5.098776e-05 8.228377e-06 296 243 5.727273e-05 -9.242642e-06 297 243 -6.413319e-05 1.034978e-05 298 243 7.167061e-05 -1.156616e-05 299 243 -8.000611e-05 1.291134e-05 300 243 8.928565e-05 -1.440887e-05 301 243 -9.968672e-05 1.608739e-05 302 243 0.0001114272 -1.798207e-05 303 243 -0.0001247774 2.013652e-05 304 243 0.000140076 -2.26054e-05 305 243 -0.0001577525 2.545802e-05 306 243 0.0001783582 -2.878335e-05 307 243 -0.0002026106 3.26972e-05 308 243 0.0002314578 -3.735254e-05 309 243 -0.0002661734 4.295492e-05 310 243 0.0003085011 -4.978574e-05 311 243 -0.0003608797 5.823857e-05 312 243 0.0004268045 -6.887749e-05 313 243 -0.0005114288 8.253411e-05 314 243 0.0006226054 -0.0001004757 315 243 -0.0007727812 0.000124711 316 243 0.0009826448 -0.0001585787 317 243 -0.001288661 0.0002079635 318 243 0.001760065 -0.0002840383 319 243 -0.002541777 0.0004101906 320 243 0.003980742 -0.0006424099 321 243 -0.007089509 0.001144101 322 243 0.01597157 -0.002577484 323 243 -0.06393453 0.01031772 163 244 0.0001444547 5.03874e-06 243 244 -0.06393453 0.01031772 244 244 0.9414376 -0.09274586 245 244 -0.06393453 0.01031772 246 244 0.01597157 -0.002577484 247 244 -0.007089509 0.001144101 248 244 0.003980742 -0.0006424099 249 244 -0.002541777 0.0004101906 250 244 0.001760065 -0.0002840383 251 244 -0.001288661 0.0002079635 252 244 0.0009826448 -0.0001585787 253 244 -0.0007727812 0.000124711 254 244 0.0006226054 -0.0001004757 255 244 -0.0005114288 8.253411e-05 256 244 0.0004268045 -6.887749e-05 257 244 -0.0003608797 5.823857e-05 258 244 0.0003085011 -4.978574e-05 259 244 -0.0002661734 4.295492e-05 260 244 0.0002314578 -3.735254e-05 261 244 -0.0002026106 3.26972e-05 262 244 0.0001783582 -2.878335e-05 263 244 -0.0001577525 2.545802e-05 264 244 0.000140076 -2.26054e-05 265 244 -0.0001247774 2.013652e-05 266 244 0.0001114272 -1.798207e-05 267 244 -9.968672e-05 1.608739e-05 268 244 8.928565e-05 -1.440887e-05 269 244 -8.000611e-05 1.291134e-05 270 244 7.167061e-05 -1.156616e-05 271 244 -6.413319e-05 1.034978e-05 272 244 5.727273e-05 -9.242642e-06 273 244 -5.098776e-05 8.228377e-06 274 244 4.519256e-05 -7.293151e-06 275 244 -3.981401e-05 6.425164e-06 276 244 3.478917e-05 -5.614257e-06 277 244 -3.00633e-05 4.851599e-06 278 244 2.558831e-05 -4.129428e-06 279 244 -2.132146e-05 3.440846e-06 280 244 1.722429e-05 -2.779647e-06 281 244 -1.326172e-05 2.14017e-06 282 244 9.401297e-06 -1.517176e-06 283 244 -5.612495e-06 9.057414e-07 284 244 1.866144e-06 -3.011573e-07 285 244 1.866144e-06 -3.011573e-07 286 244 -5.612495e-06 9.057414e-07 287 244 9.401297e-06 -1.517176e-06 288 244 -1.326172e-05 2.14017e-06 289 244 1.722429e-05 -2.779647e-06 290 244 -2.132146e-05 3.440846e-06 291 244 2.558831e-05 -4.129428e-06 292 244 -3.00633e-05 4.851599e-06 293 244 3.478917e-05 -5.614257e-06 294 244 -3.981401e-05 6.425164e-06 295 244 4.519256e-05 -7.293151e-06 296 244 -5.098776e-05 8.228377e-06 297 244 5.727273e-05 -9.242642e-06 298 244 -6.413319e-05 1.034978e-05 299 244 7.167061e-05 -1.156616e-05 300 244 -8.000611e-05 1.291134e-05 301 244 8.928565e-05 -1.440887e-05 302 244 -9.968672e-05 1.608739e-05 303 244 0.0001114272 -1.798207e-05 304 244 -0.0001247774 2.013652e-05 305 244 0.000140076 -2.26054e-05 306 244 -0.0001577525 2.545802e-05 307 244 0.0001783582 -2.878335e-05 308 244 -0.0002026106 3.26972e-05 309 244 0.0002314578 -3.735254e-05 310 244 -0.0002661734 4.295492e-05 311 244 0.0003085011 -4.978574e-05 312 244 -0.0003608797 5.823857e-05 313 244 0.0004268045 -6.887749e-05 314 244 -0.0005114288 8.253411e-05 315 244 0.0006226054 -0.0001004757 316 244 -0.0007727812 0.000124711 317 244 0.0009826448 -0.0001585787 318 244 -0.001288661 0.0002079635 319 244 0.001760065 -0.0002840383 320 244 -0.002541777 0.0004101906 321 244 0.003980742 -0.0006424099 322 244 -0.007089509 0.001144101 323 244 0.01597157 -0.002577484 164 245 0.0001574252 6.107297e-06 243 245 0.01597157 -0.002577484 244 245 -0.06393453 0.01031772 245 245 0.7608135 -0.09497235 246 245 -0.06393453 0.01031772 247 245 0.01597157 -0.002577484 248 245 -0.007089509 0.001144101 249 245 0.003980742 -0.0006424099 250 245 -0.002541777 0.0004101906 251 245 0.001760065 -0.0002840383 252 245 -0.001288661 0.0002079635 253 245 0.0009826448 -0.0001585787 254 245 -0.0007727812 0.000124711 255 245 0.0006226054 -0.0001004757 256 245 -0.0005114288 8.253411e-05 257 245 0.0004268045 -6.887749e-05 258 245 -0.0003608797 5.823857e-05 259 245 0.0003085011 -4.978574e-05 260 245 -0.0002661734 4.295492e-05 261 245 0.0002314578 -3.735254e-05 262 245 -0.0002026106 3.26972e-05 263 245 0.0001783582 -2.878335e-05 264 245 -0.0001577525 2.545802e-05 265 245 0.000140076 -2.26054e-05 266 245 -0.0001247774 2.013652e-05 267 245 0.0001114272 -1.798207e-05 268 245 -9.968672e-05 1.608739e-05 269 245 8.928565e-05 -1.440887e-05 270 245 -8.000611e-05 1.291134e-05 271 245 7.167061e-05 -1.156616e-05 272 245 -6.413319e-05 1.034978e-05 273 245 5.727273e-05 -9.242642e-06 274 245 -5.098776e-05 8.228377e-06 275 245 4.519256e-05 -7.293151e-06 276 245 -3.981401e-05 6.425164e-06 277 245 3.478917e-05 -5.614257e-06 278 245 -3.00633e-05 4.851599e-06 279 245 2.558831e-05 -4.129428e-06 280 245 -2.132146e-05 3.440846e-06 281 245 1.722429e-05 -2.779647e-06 282 245 -1.326172e-05 2.14017e-06 283 245 9.401297e-06 -1.517176e-06 284 245 -5.612495e-06 9.057414e-07 285 245 1.866144e-06 -3.011573e-07 286 245 1.866144e-06 -3.011573e-07 287 245 -5.612495e-06 9.057414e-07 288 245 9.401297e-06 -1.517176e-06 289 245 -1.326172e-05 2.14017e-06 290 245 1.722429e-05 -2.779647e-06 291 245 -2.132146e-05 3.440846e-06 292 245 2.558831e-05 -4.129428e-06 293 245 -3.00633e-05 4.851599e-06 294 245 3.478917e-05 -5.614257e-06 295 245 -3.981401e-05 6.425164e-06 296 245 4.519256e-05 -7.293151e-06 297 245 -5.098776e-05 8.228377e-06 298 245 5.727273e-05 -9.242642e-06 299 245 -6.413319e-05 1.034978e-05 300 245 7.167061e-05 -1.156616e-05 301 245 -8.000611e-05 1.291134e-05 302 245 8.928565e-05 -1.440887e-05 303 245 -9.968672e-05 1.608739e-05 304 245 0.0001114272 -1.798207e-05 305 245 -0.0001247774 2.013652e-05 306 245 0.000140076 -2.26054e-05 307 245 -0.0001577525 2.545802e-05 308 245 0.0001783582 -2.878335e-05 309 245 -0.0002026106 3.26972e-05 310 245 0.0002314578 -3.735254e-05 311 245 -0.0002661734 4.295492e-05 312 245 0.0003085011 -4.978574e-05 313 245 -0.0003608797 5.823857e-05 314 245 0.0004268045 -6.887749e-05 315 245 -0.0005114288 8.253411e-05 316 245 0.0006226054 -0.0001004757 317 245 -0.0007727812 0.000124711 318 245 0.0009826448 -0.0001585787 319 245 -0.001288661 0.0002079635 320 245 0.001760065 -0.0002840383 321 245 -0.002541777 0.0004101906 322 245 0.003980742 -0.0006424099 323 245 -0.007089509 0.001144101 165 246 0.0001704618 7.186683e-06 243 246 -0.007089509 0.001144101 244 246 0.01597157 -0.002577484 245 246 -0.06393453 0.01031772 246 246 0.6064428 -0.0950654 247 246 -0.06393453 0.01031772 248 246 0.01597157 -0.002577484 249 246 -0.007089509 0.001144101 250 246 0.003980742 -0.0006424099 251 246 -0.002541777 0.0004101906 252 246 0.001760065 -0.0002840383 253 246 -0.001288661 0.0002079635 254 246 0.0009826448 -0.0001585787 255 246 -0.0007727812 0.000124711 256 246 0.0006226054 -0.0001004757 257 246 -0.0005114288 8.253411e-05 258 246 0.0004268045 -6.887749e-05 259 246 -0.0003608797 5.823857e-05 260 246 0.0003085011 -4.978574e-05 261 246 -0.0002661734 4.295492e-05 262 246 0.0002314578 -3.735254e-05 263 246 -0.0002026106 3.26972e-05 264 246 0.0001783582 -2.878335e-05 265 246 -0.0001577525 2.545802e-05 266 246 0.000140076 -2.26054e-05 267 246 -0.0001247774 2.013652e-05 268 246 0.0001114272 -1.798207e-05 269 246 -9.968672e-05 1.608739e-05 270 246 8.928565e-05 -1.440887e-05 271 246 -8.000611e-05 1.291134e-05 272 246 7.167061e-05 -1.156616e-05 273 246 -6.413319e-05 1.034978e-05 274 246 5.727273e-05 -9.242642e-06 275 246 -5.098776e-05 8.228377e-06 276 246 4.519256e-05 -7.293151e-06 277 246 -3.981401e-05 6.425164e-06 278 246 3.478917e-05 -5.614257e-06 279 246 -3.00633e-05 4.851599e-06 280 246 2.558831e-05 -4.129428e-06 281 246 -2.132146e-05 3.440846e-06 282 246 1.722429e-05 -2.779647e-06 283 246 -1.326172e-05 2.14017e-06 284 246 9.401297e-06 -1.517176e-06 285 246 -5.612495e-06 9.057414e-07 286 246 1.866144e-06 -3.011573e-07 287 246 1.866144e-06 -3.011573e-07 288 246 -5.612495e-06 9.057414e-07 289 246 9.401297e-06 -1.517176e-06 290 246 -1.326172e-05 2.14017e-06 291 246 1.722429e-05 -2.779647e-06 292 246 -2.132146e-05 3.440846e-06 293 246 2.558831e-05 -4.129428e-06 294 246 -3.00633e-05 4.851599e-06 295 246 3.478917e-05 -5.614257e-06 296 246 -3.981401e-05 6.425164e-06 297 246 4.519256e-05 -7.293151e-06 298 246 -5.098776e-05 8.228377e-06 299 246 5.727273e-05 -9.242642e-06 300 246 -6.413319e-05 1.034978e-05 301 246 7.167061e-05 -1.156616e-05 302 246 -8.000611e-05 1.291134e-05 303 246 8.928565e-05 -1.440887e-05 304 246 -9.968672e-05 1.608739e-05 305 246 0.0001114272 -1.798207e-05 306 246 -0.0001247774 2.013652e-05 307 246 0.000140076 -2.26054e-05 308 246 -0.0001577525 2.545802e-05 309 246 0.0001783582 -2.878335e-05 310 246 -0.0002026106 3.26972e-05 311 246 0.0002314578 -3.735254e-05 312 246 -0.0002661734 4.295492e-05 313 246 0.0003085011 -4.978574e-05 314 246 -0.0003608797 5.823857e-05 315 246 0.0004268045 -6.887749e-05 316 246 -0.0005114288 8.253411e-05 317 246 0.0006226054 -0.0001004757 318 246 -0.0007727812 0.000124711 319 246 0.0009826448 -0.0001585787 320 246 -0.001288661 0.0002079635 321 246 0.001760065 -0.0002840383 322 246 -0.002541777 0.0004101906 323 246 0.003980742 -0.0006424099 166 247 0.0001835649 8.276982e-06 243 247 0.003980742 -0.0006424099 244 247 -0.007089509 0.001144101 245 247 0.01597157 -0.002577484 246 247 -0.06393453 0.01031772 247 247 0.4742801 -0.09363985 248 247 -0.06393453 0.01031772 249 247 0.01597157 -0.002577484 250 247 -0.007089509 0.001144101 251 247 0.003980742 -0.0006424099 252 247 -0.002541777 0.0004101906 253 247 0.001760065 -0.0002840383 254 247 -0.001288661 0.0002079635 255 247 0.0009826448 -0.0001585787 256 247 -0.0007727812 0.000124711 257 247 0.0006226054 -0.0001004757 258 247 -0.0005114288 8.253411e-05 259 247 0.0004268045 -6.887749e-05 260 247 -0.0003608797 5.823857e-05 261 247 0.0003085011 -4.978574e-05 262 247 -0.0002661734 4.295492e-05 263 247 0.0002314578 -3.735254e-05 264 247 -0.0002026106 3.26972e-05 265 247 0.0001783582 -2.878335e-05 266 247 -0.0001577525 2.545802e-05 267 247 0.000140076 -2.26054e-05 268 247 -0.0001247774 2.013652e-05 269 247 0.0001114272 -1.798207e-05 270 247 -9.968672e-05 1.608739e-05 271 247 8.928565e-05 -1.440887e-05 272 247 -8.000611e-05 1.291134e-05 273 247 7.167061e-05 -1.156616e-05 274 247 -6.413319e-05 1.034978e-05 275 247 5.727273e-05 -9.242642e-06 276 247 -5.098776e-05 8.228377e-06 277 247 4.519256e-05 -7.293151e-06 278 247 -3.981401e-05 6.425164e-06 279 247 3.478917e-05 -5.614257e-06 280 247 -3.00633e-05 4.851599e-06 281 247 2.558831e-05 -4.129428e-06 282 247 -2.132146e-05 3.440846e-06 283 247 1.722429e-05 -2.779647e-06 284 247 -1.326172e-05 2.14017e-06 285 247 9.401297e-06 -1.517176e-06 286 247 -5.612495e-06 9.057414e-07 287 247 1.866144e-06 -3.011573e-07 288 247 1.866144e-06 -3.011573e-07 289 247 -5.612495e-06 9.057414e-07 290 247 9.401297e-06 -1.517176e-06 291 247 -1.326172e-05 2.14017e-06 292 247 1.722429e-05 -2.779647e-06 293 247 -2.132146e-05 3.440846e-06 294 247 2.558831e-05 -4.129428e-06 295 247 -3.00633e-05 4.851599e-06 296 247 3.478917e-05 -5.614257e-06 297 247 -3.981401e-05 6.425164e-06 298 247 4.519256e-05 -7.293151e-06 299 247 -5.098776e-05 8.228377e-06 300 247 5.727273e-05 -9.242642e-06 301 247 -6.413319e-05 1.034978e-05 302 247 7.167061e-05 -1.156616e-05 303 247 -8.000611e-05 1.291134e-05 304 247 8.928565e-05 -1.440887e-05 305 247 -9.968672e-05 1.608739e-05 306 247 0.0001114272 -1.798207e-05 307 247 -0.0001247774 2.013652e-05 308 247 0.000140076 -2.26054e-05 309 247 -0.0001577525 2.545802e-05 310 247 0.0001783582 -2.878335e-05 311 247 -0.0002026106 3.26972e-05 312 247 0.0002314578 -3.735254e-05 313 247 -0.0002661734 4.295492e-05 314 247 0.0003085011 -4.978574e-05 315 247 -0.0003608797 5.823857e-05 316 247 0.0004268045 -6.887749e-05 317 247 -0.0005114288 8.253411e-05 318 247 0.0006226054 -0.0001004757 319 247 -0.0007727812 0.000124711 320 247 0.0009826448 -0.0001585787 321 247 -0.001288661 0.0002079635 322 247 0.001760065 -0.0002840383 323 247 -0.002541777 0.0004101906 167 248 0.0001967347 9.378277e-06 243 248 -0.002541777 0.0004101906 244 248 0.003980742 -0.0006424099 245 248 -0.007089509 0.001144101 246 248 0.01597157 -0.002577484 247 248 -0.06393453 0.01031772 248 248 0.3609256 -0.09116507 249 248 -0.06393453 0.01031772 250 248 0.01597157 -0.002577484 251 248 -0.007089509 0.001144101 252 248 0.003980742 -0.0006424099 253 248 -0.002541777 0.0004101906 254 248 0.001760065 -0.0002840383 255 248 -0.001288661 0.0002079635 256 248 0.0009826448 -0.0001585787 257 248 -0.0007727812 0.000124711 258 248 0.0006226054 -0.0001004757 259 248 -0.0005114288 8.253411e-05 260 248 0.0004268045 -6.887749e-05 261 248 -0.0003608797 5.823857e-05 262 248 0.0003085011 -4.978574e-05 263 248 -0.0002661734 4.295492e-05 264 248 0.0002314578 -3.735254e-05 265 248 -0.0002026106 3.26972e-05 266 248 0.0001783582 -2.878335e-05 267 248 -0.0001577525 2.545802e-05 268 248 0.000140076 -2.26054e-05 269 248 -0.0001247774 2.013652e-05 270 248 0.0001114272 -1.798207e-05 271 248 -9.968672e-05 1.608739e-05 272 248 8.928565e-05 -1.440887e-05 273 248 -8.000611e-05 1.291134e-05 274 248 7.167061e-05 -1.156616e-05 275 248 -6.413319e-05 1.034978e-05 276 248 5.727273e-05 -9.242642e-06 277 248 -5.098776e-05 8.228377e-06 278 248 4.519256e-05 -7.293151e-06 279 248 -3.981401e-05 6.425164e-06 280 248 3.478917e-05 -5.614257e-06 281 248 -3.00633e-05 4.851599e-06 282 248 2.558831e-05 -4.129428e-06 283 248 -2.132146e-05 3.440846e-06 284 248 1.722429e-05 -2.779647e-06 285 248 -1.326172e-05 2.14017e-06 286 248 9.401297e-06 -1.517176e-06 287 248 -5.612495e-06 9.057414e-07 288 248 1.866144e-06 -3.011573e-07 289 248 1.866144e-06 -3.011573e-07 290 248 -5.612495e-06 9.057414e-07 291 248 9.401297e-06 -1.517176e-06 292 248 -1.326172e-05 2.14017e-06 293 248 1.722429e-05 -2.779647e-06 294 248 -2.132146e-05 3.440846e-06 295 248 2.558831e-05 -4.129428e-06 296 248 -3.00633e-05 4.851599e-06 297 248 3.478917e-05 -5.614257e-06 298 248 -3.981401e-05 6.425164e-06 299 248 4.519256e-05 -7.293151e-06 300 248 -5.098776e-05 8.228377e-06 301 248 5.727273e-05 -9.242642e-06 302 248 -6.413319e-05 1.034978e-05 303 248 7.167061e-05 -1.156616e-05 304 248 -8.000611e-05 1.291134e-05 305 248 8.928565e-05 -1.440887e-05 306 248 -9.968672e-05 1.608739e-05 307 248 0.0001114272 -1.798207e-05 308 248 -0.0001247774 2.013652e-05 309 248 0.000140076 -2.26054e-05 310 248 -0.0001577525 2.545802e-05 311 248 0.0001783582 -2.878335e-05 312 248 -0.0002026106 3.26972e-05 313 248 0.0002314578 -3.735254e-05 314 248 -0.0002661734 4.295492e-05 315 248 0.0003085011 -4.978574e-05 316 248 -0.0003608797 5.823857e-05 317 248 0.0004268045 -6.887749e-05 318 248 -0.0005114288 8.253411e-05 319 248 0.0006226054 -0.0001004757 320 248 -0.0007727812 0.000124711 321 248 0.0009826448 -0.0001585787 322 248 -0.001288661 0.0002079635 323 248 0.001760065 -0.0002840383 168 249 0.0002099716 1.049065e-05 243 249 0.001760065 -0.0002840383 244 249 -0.002541777 0.0004101906 245 249 0.003980742 -0.0006424099 246 249 -0.007089509 0.001144101 247 249 0.01597157 -0.002577484 248 249 -0.06393453 0.01031772 249 249 0.2635201 -0.08799666 250 249 -0.06393453 0.01031772 251 249 0.01597157 -0.002577484 252 249 -0.007089509 0.001144101 253 249 0.003980742 -0.0006424099 254 249 -0.002541777 0.0004101906 255 249 0.001760065 -0.0002840383 256 249 -0.001288661 0.0002079635 257 249 0.0009826448 -0.0001585787 258 249 -0.0007727812 0.000124711 259 249 0.0006226054 -0.0001004757 260 249 -0.0005114288 8.253411e-05 261 249 0.0004268045 -6.887749e-05 262 249 -0.0003608797 5.823857e-05 263 249 0.0003085011 -4.978574e-05 264 249 -0.0002661734 4.295492e-05 265 249 0.0002314578 -3.735254e-05 266 249 -0.0002026106 3.26972e-05 267 249 0.0001783582 -2.878335e-05 268 249 -0.0001577525 2.545802e-05 269 249 0.000140076 -2.26054e-05 270 249 -0.0001247774 2.013652e-05 271 249 0.0001114272 -1.798207e-05 272 249 -9.968672e-05 1.608739e-05 273 249 8.928565e-05 -1.440887e-05 274 249 -8.000611e-05 1.291134e-05 275 249 7.167061e-05 -1.156616e-05 276 249 -6.413319e-05 1.034978e-05 277 249 5.727273e-05 -9.242642e-06 278 249 -5.098776e-05 8.228377e-06 279 249 4.519256e-05 -7.293151e-06 280 249 -3.981401e-05 6.425164e-06 281 249 3.478917e-05 -5.614257e-06 282 249 -3.00633e-05 4.851599e-06 283 249 2.558831e-05 -4.129428e-06 284 249 -2.132146e-05 3.440846e-06 285 249 1.722429e-05 -2.779647e-06 286 249 -1.326172e-05 2.14017e-06 287 249 9.401297e-06 -1.517176e-06 288 249 -5.612495e-06 9.057414e-07 289 249 1.866144e-06 -3.011573e-07 290 249 1.866144e-06 -3.011573e-07 291 249 -5.612495e-06 9.057414e-07 292 249 9.401297e-06 -1.517176e-06 293 249 -1.326172e-05 2.14017e-06 294 249 1.722429e-05 -2.779647e-06 295 249 -2.132146e-05 3.440846e-06 296 249 2.558831e-05 -4.129428e-06 297 249 -3.00633e-05 4.851599e-06 298 249 3.478917e-05 -5.614257e-06 299 249 -3.981401e-05 6.425164e-06 300 249 4.519256e-05 -7.293151e-06 301 249 -5.098776e-05 8.228377e-06 302 249 5.727273e-05 -9.242642e-06 303 249 -6.413319e-05 1.034978e-05 304 249 7.167061e-05 -1.156616e-05 305 249 -8.000611e-05 1.291134e-05 306 249 8.928565e-05 -1.440887e-05 307 249 -9.968672e-05 1.608739e-05 308 249 0.0001114272 -1.798207e-05 309 249 -0.0001247774 2.013652e-05 310 249 0.000140076 -2.26054e-05 311 249 -0.0001577525 2.545802e-05 312 249 0.0001783582 -2.878335e-05 313 249 -0.0002026106 3.26972e-05 314 249 0.0002314578 -3.735254e-05 315 249 -0.0002661734 4.295492e-05 316 249 0.0003085011 -4.978574e-05 317 249 -0.0003608797 5.823857e-05 318 249 0.0004268045 -6.887749e-05 319 249 -0.0005114288 8.253411e-05 320 249 0.0006226054 -0.0001004757 321 249 -0.0007727812 0.000124711 322 249 0.0009826448 -0.0001585787 323 249 -0.001288661 0.0002079635 169 250 0.000223276 1.161419e-05 243 250 -0.001288661 0.0002079635 244 250 0.001760065 -0.0002840383 245 250 -0.002541777 0.0004101906 246 250 0.003980742 -0.0006424099 247 250 -0.007089509 0.001144101 248 250 0.01597157 -0.002577484 249 250 -0.06393453 0.01031772 250 250 0.1796575 -0.08440152 251 250 -0.06393453 0.01031772 252 250 0.01597157 -0.002577484 253 250 -0.007089509 0.001144101 254 250 0.003980742 -0.0006424099 255 250 -0.002541777 0.0004101906 256 250 0.001760065 -0.0002840383 257 250 -0.001288661 0.0002079635 258 250 0.0009826448 -0.0001585787 259 250 -0.0007727812 0.000124711 260 250 0.0006226054 -0.0001004757 261 250 -0.0005114288 8.253411e-05 262 250 0.0004268045 -6.887749e-05 263 250 -0.0003608797 5.823857e-05 264 250 0.0003085011 -4.978574e-05 265 250 -0.0002661734 4.295492e-05 266 250 0.0002314578 -3.735254e-05 267 250 -0.0002026106 3.26972e-05 268 250 0.0001783582 -2.878335e-05 269 250 -0.0001577525 2.545802e-05 270 250 0.000140076 -2.26054e-05 271 250 -0.0001247774 2.013652e-05 272 250 0.0001114272 -1.798207e-05 273 250 -9.968672e-05 1.608739e-05 274 250 8.928565e-05 -1.440887e-05 275 250 -8.000611e-05 1.291134e-05 276 250 7.167061e-05 -1.156616e-05 277 250 -6.413319e-05 1.034978e-05 278 250 5.727273e-05 -9.242642e-06 279 250 -5.098776e-05 8.228377e-06 280 250 4.519256e-05 -7.293151e-06 281 250 -3.981401e-05 6.425164e-06 282 250 3.478917e-05 -5.614257e-06 283 250 -3.00633e-05 4.851599e-06 284 250 2.558831e-05 -4.129428e-06 285 250 -2.132146e-05 3.440846e-06 286 250 1.722429e-05 -2.779647e-06 287 250 -1.326172e-05 2.14017e-06 288 250 9.401297e-06 -1.517176e-06 289 250 -5.612495e-06 9.057414e-07 290 250 1.866144e-06 -3.011573e-07 291 250 1.866144e-06 -3.011573e-07 292 250 -5.612495e-06 9.057414e-07 293 250 9.401297e-06 -1.517176e-06 294 250 -1.326172e-05 2.14017e-06 295 250 1.722429e-05 -2.779647e-06 296 250 -2.132146e-05 3.440846e-06 297 250 2.558831e-05 -4.129428e-06 298 250 -3.00633e-05 4.851599e-06 299 250 3.478917e-05 -5.614257e-06 300 250 -3.981401e-05 6.425164e-06 301 250 4.519256e-05 -7.293151e-06 302 250 -5.098776e-05 8.228377e-06 303 250 5.727273e-05 -9.242642e-06 304 250 -6.413319e-05 1.034978e-05 305 250 7.167061e-05 -1.156616e-05 306 250 -8.000611e-05 1.291134e-05 307 250 8.928565e-05 -1.440887e-05 308 250 -9.968672e-05 1.608739e-05 309 250 0.0001114272 -1.798207e-05 310 250 -0.0001247774 2.013652e-05 311 250 0.000140076 -2.26054e-05 312 250 -0.0001577525 2.545802e-05 313 250 0.0001783582 -2.878335e-05 314 250 -0.0002026106 3.26972e-05 315 250 0.0002314578 -3.735254e-05 316 250 -0.0002661734 4.295492e-05 317 250 0.0003085011 -4.978574e-05 318 250 -0.0003608797 5.823857e-05 319 250 0.0004268045 -6.887749e-05 320 250 -0.0005114288 8.253411e-05 321 250 0.0006226054 -0.0001004757 322 250 -0.0007727812 0.000124711 323 250 0.0009826448 -0.0001585787 170 251 0.0002366482 1.274898e-05 243 251 0.0009826448 -0.0001585787 244 251 -0.001288661 0.0002079635 245 251 0.001760065 -0.0002840383 246 251 -0.002541777 0.0004101906 247 251 0.003980742 -0.0006424099 248 251 -0.007089509 0.001144101 249 251 0.01597157 -0.002577484 250 251 -0.06393453 0.01031772 251 251 0.1073113 -0.08057775 252 251 -0.06393453 0.01031772 253 251 0.01597157 -0.002577484 254 251 -0.007089509 0.001144101 255 251 0.003980742 -0.0006424099 256 251 -0.002541777 0.0004101906 257 251 0.001760065 -0.0002840383 258 251 -0.001288661 0.0002079635 259 251 0.0009826448 -0.0001585787 260 251 -0.0007727812 0.000124711 261 251 0.0006226054 -0.0001004757 262 251 -0.0005114288 8.253411e-05 263 251 0.0004268045 -6.887749e-05 264 251 -0.0003608797 5.823857e-05 265 251 0.0003085011 -4.978574e-05 266 251 -0.0002661734 4.295492e-05 267 251 0.0002314578 -3.735254e-05 268 251 -0.0002026106 3.26972e-05 269 251 0.0001783582 -2.878335e-05 270 251 -0.0001577525 2.545802e-05 271 251 0.000140076 -2.26054e-05 272 251 -0.0001247774 2.013652e-05 273 251 0.0001114272 -1.798207e-05 274 251 -9.968672e-05 1.608739e-05 275 251 8.928565e-05 -1.440887e-05 276 251 -8.000611e-05 1.291134e-05 277 251 7.167061e-05 -1.156616e-05 278 251 -6.413319e-05 1.034978e-05 279 251 5.727273e-05 -9.242642e-06 280 251 -5.098776e-05 8.228377e-06 281 251 4.519256e-05 -7.293151e-06 282 251 -3.981401e-05 6.425164e-06 283 251 3.478917e-05 -5.614257e-06 284 251 -3.00633e-05 4.851599e-06 285 251 2.558831e-05 -4.129428e-06 286 251 -2.132146e-05 3.440846e-06 287 251 1.722429e-05 -2.779647e-06 288 251 -1.326172e-05 2.14017e-06 289 251 9.401297e-06 -1.517176e-06 290 251 -5.612495e-06 9.057414e-07 291 251 1.866144e-06 -3.011573e-07 292 251 1.866144e-06 -3.011573e-07 293 251 -5.612495e-06 9.057414e-07 294 251 9.401297e-06 -1.517176e-06 295 251 -1.326172e-05 2.14017e-06 296 251 1.722429e-05 -2.779647e-06 297 251 -2.132146e-05 3.440846e-06 298 251 2.558831e-05 -4.129428e-06 299 251 -3.00633e-05 4.851599e-06 300 251 3.478917e-05 -5.614257e-06 301 251 -3.981401e-05 6.425164e-06 302 251 4.519256e-05 -7.293151e-06 303 251 -5.098776e-05 8.228377e-06 304 251 5.727273e-05 -9.242642e-06 305 251 -6.413319e-05 1.034978e-05 306 251 7.167061e-05 -1.156616e-05 307 251 -8.000611e-05 1.291134e-05 308 251 8.928565e-05 -1.440887e-05 309 251 -9.968672e-05 1.608739e-05 310 251 0.0001114272 -1.798207e-05 311 251 -0.0001247774 2.013652e-05 312 251 0.000140076 -2.26054e-05 313 251 -0.0001577525 2.545802e-05 314 251 0.0001783582 -2.878335e-05 315 251 -0.0002026106 3.26972e-05 316 251 0.0002314578 -3.735254e-05 317 251 -0.0002661734 4.295492e-05 318 251 0.0003085011 -4.978574e-05 319 251 -0.0003608797 5.823857e-05 320 251 0.0004268045 -6.887749e-05 321 251 -0.0005114288 8.253411e-05 322 251 0.0006226054 -0.0001004757 323 251 -0.0007727812 0.000124711 171 252 0.0002500884 1.38951e-05 243 252 -0.0007727812 0.000124711 244 252 0.0009826448 -0.0001585787 245 252 -0.001288661 0.0002079635 246 252 0.001760065 -0.0002840383 247 252 -0.002541777 0.0004101906 248 252 0.003980742 -0.0006424099 249 252 -0.007089509 0.001144101 250 252 0.01597157 -0.002577484 251 252 -0.06393453 0.01031772 252 252 0.04477307 -0.07667025 253 252 -0.06393453 0.01031772 254 252 0.01597157 -0.002577484 255 252 -0.007089509 0.001144101 256 252 0.003980742 -0.0006424099 257 252 -0.002541777 0.0004101906 258 252 0.001760065 -0.0002840383 259 252 -0.001288661 0.0002079635 260 252 0.0009826448 -0.0001585787 261 252 -0.0007727812 0.000124711 262 252 0.0006226054 -0.0001004757 263 252 -0.0005114288 8.253411e-05 264 252 0.0004268045 -6.887749e-05 265 252 -0.0003608797 5.823857e-05 266 252 0.0003085011 -4.978574e-05 267 252 -0.0002661734 4.295492e-05 268 252 0.0002314578 -3.735254e-05 269 252 -0.0002026106 3.26972e-05 270 252 0.0001783582 -2.878335e-05 271 252 -0.0001577525 2.545802e-05 272 252 0.000140076 -2.26054e-05 273 252 -0.0001247774 2.013652e-05 274 252 0.0001114272 -1.798207e-05 275 252 -9.968672e-05 1.608739e-05 276 252 8.928565e-05 -1.440887e-05 277 252 -8.000611e-05 1.291134e-05 278 252 7.167061e-05 -1.156616e-05 279 252 -6.413319e-05 1.034978e-05 280 252 5.727273e-05 -9.242642e-06 281 252 -5.098776e-05 8.228377e-06 282 252 4.519256e-05 -7.293151e-06 283 252 -3.981401e-05 6.425164e-06 284 252 3.478917e-05 -5.614257e-06 285 252 -3.00633e-05 4.851599e-06 286 252 2.558831e-05 -4.129428e-06 287 252 -2.132146e-05 3.440846e-06 288 252 1.722429e-05 -2.779647e-06 289 252 -1.326172e-05 2.14017e-06 290 252 9.401297e-06 -1.517176e-06 291 252 -5.612495e-06 9.057414e-07 292 252 1.866144e-06 -3.011573e-07 293 252 1.866144e-06 -3.011573e-07 294 252 -5.612495e-06 9.057414e-07 295 252 9.401297e-06 -1.517176e-06 296 252 -1.326172e-05 2.14017e-06 297 252 1.722429e-05 -2.779647e-06 298 252 -2.132146e-05 3.440846e-06 299 252 2.558831e-05 -4.129428e-06 300 252 -3.00633e-05 4.851599e-06 301 252 3.478917e-05 -5.614257e-06 302 252 -3.981401e-05 6.425164e-06 303 252 4.519256e-05 -7.293151e-06 304 252 -5.098776e-05 8.228377e-06 305 252 5.727273e-05 -9.242642e-06 306 252 -6.413319e-05 1.034978e-05 307 252 7.167061e-05 -1.156616e-05 308 252 -8.000611e-05 1.291134e-05 309 252 8.928565e-05 -1.440887e-05 310 252 -9.968672e-05 1.608739e-05 311 252 0.0001114272 -1.798207e-05 312 252 -0.0001247774 2.013652e-05 313 252 0.000140076 -2.26054e-05 314 252 -0.0001577525 2.545802e-05 315 252 0.0001783582 -2.878335e-05 316 252 -0.0002026106 3.26972e-05 317 252 0.0002314578 -3.735254e-05 318 252 -0.0002661734 4.295492e-05 319 252 0.0003085011 -4.978574e-05 320 252 -0.0003608797 5.823857e-05 321 252 0.0004268045 -6.887749e-05 322 252 -0.0005114288 8.253411e-05 323 252 0.0006226054 -0.0001004757 172 253 0.0002635972 1.505265e-05 243 253 0.0006226054 -0.0001004757 244 253 -0.0007727812 0.000124711 245 253 0.0009826448 -0.0001585787 246 253 -0.001288661 0.0002079635 247 253 0.001760065 -0.0002840383 248 253 -0.002541777 0.0004101906 249 253 0.003980742 -0.0006424099 250 253 -0.007089509 0.001144101 251 253 0.01597157 -0.002577484 252 253 -0.06393453 0.01031772 253 253 -0.009398557 -0.07278305 254 253 -0.06393453 0.01031772 255 253 0.01597157 -0.002577484 256 253 -0.007089509 0.001144101 257 253 0.003980742 -0.0006424099 258 253 -0.002541777 0.0004101906 259 253 0.001760065 -0.0002840383 260 253 -0.001288661 0.0002079635 261 253 0.0009826448 -0.0001585787 262 253 -0.0007727812 0.000124711 263 253 0.0006226054 -0.0001004757 264 253 -0.0005114288 8.253411e-05 265 253 0.0004268045 -6.887749e-05 266 253 -0.0003608797 5.823857e-05 267 253 0.0003085011 -4.978574e-05 268 253 -0.0002661734 4.295492e-05 269 253 0.0002314578 -3.735254e-05 270 253 -0.0002026106 3.26972e-05 271 253 0.0001783582 -2.878335e-05 272 253 -0.0001577525 2.545802e-05 273 253 0.000140076 -2.26054e-05 274 253 -0.0001247774 2.013652e-05 275 253 0.0001114272 -1.798207e-05 276 253 -9.968672e-05 1.608739e-05 277 253 8.928565e-05 -1.440887e-05 278 253 -8.000611e-05 1.291134e-05 279 253 7.167061e-05 -1.156616e-05 280 253 -6.413319e-05 1.034978e-05 281 253 5.727273e-05 -9.242642e-06 282 253 -5.098776e-05 8.228377e-06 283 253 4.519256e-05 -7.293151e-06 284 253 -3.981401e-05 6.425164e-06 285 253 3.478917e-05 -5.614257e-06 286 253 -3.00633e-05 4.851599e-06 287 253 2.558831e-05 -4.129428e-06 288 253 -2.132146e-05 3.440846e-06 289 253 1.722429e-05 -2.779647e-06 290 253 -1.326172e-05 2.14017e-06 291 253 9.401297e-06 -1.517176e-06 292 253 -5.612495e-06 9.057414e-07 293 253 1.866144e-06 -3.011573e-07 294 253 1.866144e-06 -3.011573e-07 295 253 -5.612495e-06 9.057414e-07 296 253 9.401297e-06 -1.517176e-06 297 253 -1.326172e-05 2.14017e-06 298 253 1.722429e-05 -2.779647e-06 299 253 -2.132146e-05 3.440846e-06 300 253 2.558831e-05 -4.129428e-06 301 253 -3.00633e-05 4.851599e-06 302 253 3.478917e-05 -5.614257e-06 303 253 -3.981401e-05 6.425164e-06 304 253 4.519256e-05 -7.293151e-06 305 253 -5.098776e-05 8.228377e-06 306 253 5.727273e-05 -9.242642e-06 307 253 -6.413319e-05 1.034978e-05 308 253 7.167061e-05 -1.156616e-05 309 253 -8.000611e-05 1.291134e-05 310 253 8.928565e-05 -1.440887e-05 311 253 -9.968672e-05 1.608739e-05 312 253 0.0001114272 -1.798207e-05 313 253 -0.0001247774 2.013652e-05 314 253 0.000140076 -2.26054e-05 315 253 -0.0001577525 2.545802e-05 316 253 0.0001783582 -2.878335e-05 317 253 -0.0002026106 3.26972e-05 318 253 0.0002314578 -3.735254e-05 319 253 -0.0002661734 4.295492e-05 320 253 0.0003085011 -4.978574e-05 321 253 -0.0003608797 5.823857e-05 322 253 0.0004268045 -6.887749e-05 323 253 -0.0005114288 8.253411e-05 173 254 0.0002771748 1.62217e-05 243 254 -0.0005114288 8.253411e-05 244 254 0.0006226054 -0.0001004757 245 254 -0.0007727812 0.000124711 246 254 0.0009826448 -0.0001585787 247 254 -0.001288661 0.0002079635 248 254 0.001760065 -0.0002840383 249 254 -0.002541777 0.0004101906 250 254 0.003980742 -0.0006424099 251 254 -0.007089509 0.001144101 252 254 0.01597157 -0.002577484 253 254 -0.06393453 0.01031772 254 254 -0.05642116 -0.06898902 255 254 -0.06393453 0.01031772 256 254 0.01597157 -0.002577484 257 254 -0.007089509 0.001144101 258 254 0.003980742 -0.0006424099 259 254 -0.002541777 0.0004101906 260 254 0.001760065 -0.0002840383 261 254 -0.001288661 0.0002079635 262 254 0.0009826448 -0.0001585787 263 254 -0.0007727812 0.000124711 264 254 0.0006226054 -0.0001004757 265 254 -0.0005114288 8.253411e-05 266 254 0.0004268045 -6.887749e-05 267 254 -0.0003608797 5.823857e-05 268 254 0.0003085011 -4.978574e-05 269 254 -0.0002661734 4.295492e-05 270 254 0.0002314578 -3.735254e-05 271 254 -0.0002026106 3.26972e-05 272 254 0.0001783582 -2.878335e-05 273 254 -0.0001577525 2.545802e-05 274 254 0.000140076 -2.26054e-05 275 254 -0.0001247774 2.013652e-05 276 254 0.0001114272 -1.798207e-05 277 254 -9.968672e-05 1.608739e-05 278 254 8.928565e-05 -1.440887e-05 279 254 -8.000611e-05 1.291134e-05 280 254 7.167061e-05 -1.156616e-05 281 254 -6.413319e-05 1.034978e-05 282 254 5.727273e-05 -9.242642e-06 283 254 -5.098776e-05 8.228377e-06 284 254 4.519256e-05 -7.293151e-06 285 254 -3.981401e-05 6.425164e-06 286 254 3.478917e-05 -5.614257e-06 287 254 -3.00633e-05 4.851599e-06 288 254 2.558831e-05 -4.129428e-06 289 254 -2.132146e-05 3.440846e-06 290 254 1.722429e-05 -2.779647e-06 291 254 -1.326172e-05 2.14017e-06 292 254 9.401297e-06 -1.517176e-06 293 254 -5.612495e-06 9.057414e-07 294 254 1.866144e-06 -3.011573e-07 295 254 1.866144e-06 -3.011573e-07 296 254 -5.612495e-06 9.057414e-07 297 254 9.401297e-06 -1.517176e-06 298 254 -1.326172e-05 2.14017e-06 299 254 1.722429e-05 -2.779647e-06 300 254 -2.132146e-05 3.440846e-06 301 254 2.558831e-05 -4.129428e-06 302 254 -3.00633e-05 4.851599e-06 303 254 3.478917e-05 -5.614257e-06 304 254 -3.981401e-05 6.425164e-06 305 254 4.519256e-05 -7.293151e-06 306 254 -5.098776e-05 8.228377e-06 307 254 5.727273e-05 -9.242642e-06 308 254 -6.413319e-05 1.034978e-05 309 254 7.167061e-05 -1.156616e-05 310 254 -8.000611e-05 1.291134e-05 311 254 8.928565e-05 -1.440887e-05 312 254 -9.968672e-05 1.608739e-05 313 254 0.0001114272 -1.798207e-05 314 254 -0.0001247774 2.013652e-05 315 254 0.000140076 -2.26054e-05 316 254 -0.0001577525 2.545802e-05 317 254 0.0001783582 -2.878335e-05 318 254 -0.0002026106 3.26972e-05 319 254 0.0002314578 -3.735254e-05 320 254 -0.0002661734 4.295492e-05 321 254 0.0003085011 -4.978574e-05 322 254 -0.0003608797 5.823857e-05 323 254 0.0004268045 -6.887749e-05 174 255 0.0002908216 1.740235e-05 243 255 0.0004268045 -6.887749e-05 244 255 -0.0005114288 8.253411e-05 245 255 0.0006226054 -0.0001004757 246 255 -0.0007727812 0.000124711 247 255 0.0009826448 -0.0001585787 248 255 -0.001288661 0.0002079635 249 255 0.001760065 -0.0002840383 250 255 -0.002541777 0.0004101906 251 255 0.003980742 -0.0006424099 252 255 -0.007089509 0.001144101 253 255 0.01597157 -0.002577484 254 255 -0.06393453 0.01031772 255 255 -0.09732428 -0.06533737 256 255 -0.06393453 0.01031772 257 255 0.01597157 -0.002577484 258 255 -0.007089509 0.001144101 259 255 0.003980742 -0.0006424099 260 255 -0.002541777 0.0004101906 261 255 0.001760065 -0.0002840383 262 255 -0.001288661 0.0002079635 263 255 0.0009826448 -0.0001585787 264 255 -0.0007727812 0.000124711 265 255 0.0006226054 -0.0001004757 266 255 -0.0005114288 8.253411e-05 267 255 0.0004268045 -6.887749e-05 268 255 -0.0003608797 5.823857e-05 269 255 0.0003085011 -4.978574e-05 270 255 -0.0002661734 4.295492e-05 271 255 0.0002314578 -3.735254e-05 272 255 -0.0002026106 3.26972e-05 273 255 0.0001783582 -2.878335e-05 274 255 -0.0001577525 2.545802e-05 275 255 0.000140076 -2.26054e-05 276 255 -0.0001247774 2.013652e-05 277 255 0.0001114272 -1.798207e-05 278 255 -9.968672e-05 1.608739e-05 279 255 8.928565e-05 -1.440887e-05 280 255 -8.000611e-05 1.291134e-05 281 255 7.167061e-05 -1.156616e-05 282 255 -6.413319e-05 1.034978e-05 283 255 5.727273e-05 -9.242642e-06 284 255 -5.098776e-05 8.228377e-06 285 255 4.519256e-05 -7.293151e-06 286 255 -3.981401e-05 6.425164e-06 287 255 3.478917e-05 -5.614257e-06 288 255 -3.00633e-05 4.851599e-06 289 255 2.558831e-05 -4.129428e-06 290 255 -2.132146e-05 3.440846e-06 291 255 1.722429e-05 -2.779647e-06 292 255 -1.326172e-05 2.14017e-06 293 255 9.401297e-06 -1.517176e-06 294 255 -5.612495e-06 9.057414e-07 295 255 1.866144e-06 -3.011573e-07 296 255 1.866144e-06 -3.011573e-07 297 255 -5.612495e-06 9.057414e-07 298 255 9.401297e-06 -1.517176e-06 299 255 -1.326172e-05 2.14017e-06 300 255 1.722429e-05 -2.779647e-06 301 255 -2.132146e-05 3.440846e-06 302 255 2.558831e-05 -4.129428e-06 303 255 -3.00633e-05 4.851599e-06 304 255 3.478917e-05 -5.614257e-06 305 255 -3.981401e-05 6.425164e-06 306 255 4.519256e-05 -7.293151e-06 307 255 -5.098776e-05 8.228377e-06 308 255 5.727273e-05 -9.242642e-06 309 255 -6.413319e-05 1.034978e-05 310 255 7.167061e-05 -1.156616e-05 311 255 -8.000611e-05 1.291134e-05 312 255 8.928565e-05 -1.440887e-05 313 255 -9.968672e-05 1.608739e-05 314 255 0.0001114272 -1.798207e-05 315 255 -0.0001247774 2.013652e-05 316 255 0.000140076 -2.26054e-05 317 255 -0.0001577525 2.545802e-05 318 255 0.0001783582 -2.878335e-05 319 255 -0.0002026106 3.26972e-05 320 255 0.0002314578 -3.735254e-05 321 255 -0.0002661734 4.295492e-05 322 255 0.0003085011 -4.978574e-05 323 255 -0.0003608797 5.823857e-05 175 256 0.0003045378 1.859469e-05 243 256 -0.0003608797 5.823857e-05 244 256 0.0004268045 -6.887749e-05 245 256 -0.0005114288 8.253411e-05 246 256 0.0006226054 -0.0001004757 247 256 -0.0007727812 0.000124711 248 256 0.0009826448 -0.0001585787 249 256 -0.001288661 0.0002079635 250 256 0.001760065 -0.0002840383 251 256 -0.002541777 0.0004101906 252 256 0.003980742 -0.0006424099 253 256 -0.007089509 0.001144101 254 256 0.01597157 -0.002577484 255 256 -0.06393453 0.01031772 256 256 -0.1329796 -0.06185955 257 256 -0.06393453 0.01031772 258 256 0.01597157 -0.002577484 259 256 -0.007089509 0.001144101 260 256 0.003980742 -0.0006424099 261 256 -0.002541777 0.0004101906 262 256 0.001760065 -0.0002840383 263 256 -0.001288661 0.0002079635 264 256 0.0009826448 -0.0001585787 265 256 -0.0007727812 0.000124711 266 256 0.0006226054 -0.0001004757 267 256 -0.0005114288 8.253411e-05 268 256 0.0004268045 -6.887749e-05 269 256 -0.0003608797 5.823857e-05 270 256 0.0003085011 -4.978574e-05 271 256 -0.0002661734 4.295492e-05 272 256 0.0002314578 -3.735254e-05 273 256 -0.0002026106 3.26972e-05 274 256 0.0001783582 -2.878335e-05 275 256 -0.0001577525 2.545802e-05 276 256 0.000140076 -2.26054e-05 277 256 -0.0001247774 2.013652e-05 278 256 0.0001114272 -1.798207e-05 279 256 -9.968672e-05 1.608739e-05 280 256 8.928565e-05 -1.440887e-05 281 256 -8.000611e-05 1.291134e-05 282 256 7.167061e-05 -1.156616e-05 283 256 -6.413319e-05 1.034978e-05 284 256 5.727273e-05 -9.242642e-06 285 256 -5.098776e-05 8.228377e-06 286 256 4.519256e-05 -7.293151e-06 287 256 -3.981401e-05 6.425164e-06 288 256 3.478917e-05 -5.614257e-06 289 256 -3.00633e-05 4.851599e-06 290 256 2.558831e-05 -4.129428e-06 291 256 -2.132146e-05 3.440846e-06 292 256 1.722429e-05 -2.779647e-06 293 256 -1.326172e-05 2.14017e-06 294 256 9.401297e-06 -1.517176e-06 295 256 -5.612495e-06 9.057414e-07 296 256 1.866144e-06 -3.011573e-07 297 256 1.866144e-06 -3.011573e-07 298 256 -5.612495e-06 9.057414e-07 299 256 9.401297e-06 -1.517176e-06 300 256 -1.326172e-05 2.14017e-06 301 256 1.722429e-05 -2.779647e-06 302 256 -2.132146e-05 3.440846e-06 303 256 2.558831e-05 -4.129428e-06 304 256 -3.00633e-05 4.851599e-06 305 256 3.478917e-05 -5.614257e-06 306 256 -3.981401e-05 6.425164e-06 307 256 4.519256e-05 -7.293151e-06 308 256 -5.098776e-05 8.228377e-06 309 256 5.727273e-05 -9.242642e-06 310 256 -6.413319e-05 1.034978e-05 311 256 7.167061e-05 -1.156616e-05 312 256 -8.000611e-05 1.291134e-05 313 256 8.928565e-05 -1.440887e-05 314 256 -9.968672e-05 1.608739e-05 315 256 0.0001114272 -1.798207e-05 316 256 -0.0001247774 2.013652e-05 317 256 0.000140076 -2.26054e-05 318 256 -0.0001577525 2.545802e-05 319 256 0.0001783582 -2.878335e-05 320 256 -0.0002026106 3.26972e-05 321 256 0.0002314578 -3.735254e-05 322 256 -0.0002661734 4.295492e-05 323 256 0.0003085011 -4.978574e-05 176 257 0.000318324 1.979879e-05 243 257 0.0003085011 -4.978574e-05 244 257 -0.0003608797 5.823857e-05 245 257 0.0004268045 -6.887749e-05 246 257 -0.0005114288 8.253411e-05 247 257 0.0006226054 -0.0001004757 248 257 -0.0007727812 0.000124711 249 257 0.0009826448 -0.0001585787 250 257 -0.001288661 0.0002079635 251 257 0.001760065 -0.0002840383 252 257 -0.002541777 0.0004101906 253 257 0.003980742 -0.0006424099 254 257 -0.007089509 0.001144101 255 257 0.01597157 -0.002577484 256 257 -0.06393453 0.01031772 257 257 -0.1641259 -0.05857382 258 257 -0.06393453 0.01031772 259 257 0.01597157 -0.002577484 260 257 -0.007089509 0.001144101 261 257 0.003980742 -0.0006424099 262 257 -0.002541777 0.0004101906 263 257 0.001760065 -0.0002840383 264 257 -0.001288661 0.0002079635 265 257 0.0009826448 -0.0001585787 266 257 -0.0007727812 0.000124711 267 257 0.0006226054 -0.0001004757 268 257 -0.0005114288 8.253411e-05 269 257 0.0004268045 -6.887749e-05 270 257 -0.0003608797 5.823857e-05 271 257 0.0003085011 -4.978574e-05 272 257 -0.0002661734 4.295492e-05 273 257 0.0002314578 -3.735254e-05 274 257 -0.0002026106 3.26972e-05 275 257 0.0001783582 -2.878335e-05 276 257 -0.0001577525 2.545802e-05 277 257 0.000140076 -2.26054e-05 278 257 -0.0001247774 2.013652e-05 279 257 0.0001114272 -1.798207e-05 280 257 -9.968672e-05 1.608739e-05 281 257 8.928565e-05 -1.440887e-05 282 257 -8.000611e-05 1.291134e-05 283 257 7.167061e-05 -1.156616e-05 284 257 -6.413319e-05 1.034978e-05 285 257 5.727273e-05 -9.242642e-06 286 257 -5.098776e-05 8.228377e-06 287 257 4.519256e-05 -7.293151e-06 288 257 -3.981401e-05 6.425164e-06 289 257 3.478917e-05 -5.614257e-06 290 257 -3.00633e-05 4.851599e-06 291 257 2.558831e-05 -4.129428e-06 292 257 -2.132146e-05 3.440846e-06 293 257 1.722429e-05 -2.779647e-06 294 257 -1.326172e-05 2.14017e-06 295 257 9.401297e-06 -1.517176e-06 296 257 -5.612495e-06 9.057414e-07 297 257 1.866144e-06 -3.011573e-07 298 257 1.866144e-06 -3.011573e-07 299 257 -5.612495e-06 9.057414e-07 300 257 9.401297e-06 -1.517176e-06 301 257 -1.326172e-05 2.14017e-06 302 257 1.722429e-05 -2.779647e-06 303 257 -2.132146e-05 3.440846e-06 304 257 2.558831e-05 -4.129428e-06 305 257 -3.00633e-05 4.851599e-06 306 257 3.478917e-05 -5.614257e-06 307 257 -3.981401e-05 6.425164e-06 308 257 4.519256e-05 -7.293151e-06 309 257 -5.098776e-05 8.228377e-06 310 257 5.727273e-05 -9.242642e-06 311 257 -6.413319e-05 1.034978e-05 312 257 7.167061e-05 -1.156616e-05 313 257 -8.000611e-05 1.291134e-05 314 257 8.928565e-05 -1.440887e-05 315 257 -9.968672e-05 1.608739e-05 316 257 0.0001114272 -1.798207e-05 317 257 -0.0001247774 2.013652e-05 318 257 0.000140076 -2.26054e-05 319 257 -0.0001577525 2.545802e-05 320 257 0.0001783582 -2.878335e-05 321 257 -0.0002026106 3.26972e-05 322 257 0.0002314578 -3.735254e-05 323 257 -0.0002661734 4.295492e-05 177 258 0.0003321804 2.101476e-05 243 258 -0.0002661734 4.295492e-05 244 258 0.0003085011 -4.978574e-05 245 258 -0.0003608797 5.823857e-05 246 258 0.0004268045 -6.887749e-05 247 258 -0.0005114288 8.253411e-05 248 258 0.0006226054 -0.0001004757 249 258 -0.0007727812 0.000124711 250 258 0.0009826448 -0.0001585787 251 258 -0.001288661 0.0002079635 252 258 0.001760065 -0.0002840383 253 258 -0.002541777 0.0004101906 254 258 0.003980742 -0.0006424099 255 258 -0.007089509 0.001144101 256 258 0.01597157 -0.002577484 257 258 -0.06393453 0.01031772 258 258 -0.1913906 -0.05548876 259 258 -0.06393453 0.01031772 260 258 0.01597157 -0.002577484 261 258 -0.007089509 0.001144101 262 258 0.003980742 -0.0006424099 263 258 -0.002541777 0.0004101906 264 258 0.001760065 -0.0002840383 265 258 -0.001288661 0.0002079635 266 258 0.0009826448 -0.0001585787 267 258 -0.0007727812 0.000124711 268 258 0.0006226054 -0.0001004757 269 258 -0.0005114288 8.253411e-05 270 258 0.0004268045 -6.887749e-05 271 258 -0.0003608797 5.823857e-05 272 258 0.0003085011 -4.978574e-05 273 258 -0.0002661734 4.295492e-05 274 258 0.0002314578 -3.735254e-05 275 258 -0.0002026106 3.26972e-05 276 258 0.0001783582 -2.878335e-05 277 258 -0.0001577525 2.545802e-05 278 258 0.000140076 -2.26054e-05 279 258 -0.0001247774 2.013652e-05 280 258 0.0001114272 -1.798207e-05 281 258 -9.968672e-05 1.608739e-05 282 258 8.928565e-05 -1.440887e-05 283 258 -8.000611e-05 1.291134e-05 284 258 7.167061e-05 -1.156616e-05 285 258 -6.413319e-05 1.034978e-05 286 258 5.727273e-05 -9.242642e-06 287 258 -5.098776e-05 8.228377e-06 288 258 4.519256e-05 -7.293151e-06 289 258 -3.981401e-05 6.425164e-06 290 258 3.478917e-05 -5.614257e-06 291 258 -3.00633e-05 4.851599e-06 292 258 2.558831e-05 -4.129428e-06 293 258 -2.132146e-05 3.440846e-06 294 258 1.722429e-05 -2.779647e-06 295 258 -1.326172e-05 2.14017e-06 296 258 9.401297e-06 -1.517176e-06 297 258 -5.612495e-06 9.057414e-07 298 258 1.866144e-06 -3.011573e-07 299 258 1.866144e-06 -3.011573e-07 300 258 -5.612495e-06 9.057414e-07 301 258 9.401297e-06 -1.517176e-06 302 258 -1.326172e-05 2.14017e-06 303 258 1.722429e-05 -2.779647e-06 304 258 -2.132146e-05 3.440846e-06 305 258 2.558831e-05 -4.129428e-06 306 258 -3.00633e-05 4.851599e-06 307 258 3.478917e-05 -5.614257e-06 308 258 -3.981401e-05 6.425164e-06 309 258 4.519256e-05 -7.293151e-06 310 258 -5.098776e-05 8.228377e-06 311 258 5.727273e-05 -9.242642e-06 312 258 -6.413319e-05 1.034978e-05 313 258 7.167061e-05 -1.156616e-05 314 258 -8.000611e-05 1.291134e-05 315 258 8.928565e-05 -1.440887e-05 316 258 -9.968672e-05 1.608739e-05 317 258 0.0001114272 -1.798207e-05 318 258 -0.0001247774 2.013652e-05 319 258 0.000140076 -2.26054e-05 320 258 -0.0001577525 2.545802e-05 321 258 0.0001783582 -2.878335e-05 322 258 -0.0002026106 3.26972e-05 323 258 0.0002314578 -3.735254e-05 178 259 0.0003461073 2.224268e-05 243 259 0.0002314578 -3.735254e-05 244 259 -0.0002661734 4.295492e-05 245 259 0.0003085011 -4.978574e-05 246 259 -0.0003608797 5.823857e-05 247 259 0.0004268045 -6.887749e-05 248 259 -0.0005114288 8.253411e-05 249 259 0.0006226054 -0.0001004757 250 259 -0.0007727812 0.000124711 251 259 0.0009826448 -0.0001585787 252 259 -0.001288661 0.0002079635 253 259 0.001760065 -0.0002840383 254 259 -0.002541777 0.0004101906 255 259 0.003980742 -0.0006424099 256 259 -0.007089509 0.001144101 257 259 0.01597157 -0.002577484 258 259 -0.06393453 0.01031772 259 259 -0.2153068 -0.052606 260 259 -0.06393453 0.01031772 261 259 0.01597157 -0.002577484 262 259 -0.007089509 0.001144101 263 259 0.003980742 -0.0006424099 264 259 -0.002541777 0.0004101906 265 259 0.001760065 -0.0002840383 266 259 -0.001288661 0.0002079635 267 259 0.0009826448 -0.0001585787 268 259 -0.0007727812 0.000124711 269 259 0.0006226054 -0.0001004757 270 259 -0.0005114288 8.253411e-05 271 259 0.0004268045 -6.887749e-05 272 259 -0.0003608797 5.823857e-05 273 259 0.0003085011 -4.978574e-05 274 259 -0.0002661734 4.295492e-05 275 259 0.0002314578 -3.735254e-05 276 259 -0.0002026106 3.26972e-05 277 259 0.0001783582 -2.878335e-05 278 259 -0.0001577525 2.545802e-05 279 259 0.000140076 -2.26054e-05 280 259 -0.0001247774 2.013652e-05 281 259 0.0001114272 -1.798207e-05 282 259 -9.968672e-05 1.608739e-05 283 259 8.928565e-05 -1.440887e-05 284 259 -8.000611e-05 1.291134e-05 285 259 7.167061e-05 -1.156616e-05 286 259 -6.413319e-05 1.034978e-05 287 259 5.727273e-05 -9.242642e-06 288 259 -5.098776e-05 8.228377e-06 289 259 4.519256e-05 -7.293151e-06 290 259 -3.981401e-05 6.425164e-06 291 259 3.478917e-05 -5.614257e-06 292 259 -3.00633e-05 4.851599e-06 293 259 2.558831e-05 -4.129428e-06 294 259 -2.132146e-05 3.440846e-06 295 259 1.722429e-05 -2.779647e-06 296 259 -1.326172e-05 2.14017e-06 297 259 9.401297e-06 -1.517176e-06 298 259 -5.612495e-06 9.057414e-07 299 259 1.866144e-06 -3.011573e-07 300 259 1.866144e-06 -3.011573e-07 301 259 -5.612495e-06 9.057414e-07 302 259 9.401297e-06 -1.517176e-06 303 259 -1.326172e-05 2.14017e-06 304 259 1.722429e-05 -2.779647e-06 305 259 -2.132146e-05 3.440846e-06 306 259 2.558831e-05 -4.129428e-06 307 259 -3.00633e-05 4.851599e-06 308 259 3.478917e-05 -5.614257e-06 309 259 -3.981401e-05 6.425164e-06 310 259 4.519256e-05 -7.293151e-06 311 259 -5.098776e-05 8.228377e-06 312 259 5.727273e-05 -9.242642e-06 313 259 -6.413319e-05 1.034978e-05 314 259 7.167061e-05 -1.156616e-05 315 259 -8.000611e-05 1.291134e-05 316 259 8.928565e-05 -1.440887e-05 317 259 -9.968672e-05 1.608739e-05 318 259 0.0001114272 -1.798207e-05 319 259 -0.0001247774 2.013652e-05 320 259 0.000140076 -2.26054e-05 321 259 -0.0001577525 2.545802e-05 322 259 0.0001783582 -2.878335e-05 323 259 -0.0002026106 3.26972e-05 179 260 0.0003601052 2.348264e-05 243 260 -0.0002026106 3.26972e-05 244 260 0.0002314578 -3.735254e-05 245 260 -0.0002661734 4.295492e-05 246 260 0.0003085011 -4.978574e-05 247 260 -0.0003608797 5.823857e-05 248 260 0.0004268045 -6.887749e-05 249 260 -0.0005114288 8.253411e-05 250 260 0.0006226054 -0.0001004757 251 260 -0.0007727812 0.000124711 252 260 0.0009826448 -0.0001585787 253 260 -0.001288661 0.0002079635 254 260 0.001760065 -0.0002840383 255 260 -0.002541777 0.0004101906 256 260 0.003980742 -0.0006424099 257 260 -0.007089509 0.001144101 258 260 0.01597157 -0.002577484 259 260 -0.06393453 0.01031772 260 260 -0.2363286 -0.04992224 261 260 -0.06393453 0.01031772 262 260 0.01597157 -0.002577484 263 260 -0.007089509 0.001144101 264 260 0.003980742 -0.0006424099 265 260 -0.002541777 0.0004101906 266 260 0.001760065 -0.0002840383 267 260 -0.001288661 0.0002079635 268 260 0.0009826448 -0.0001585787 269 260 -0.0007727812 0.000124711 270 260 0.0006226054 -0.0001004757 271 260 -0.0005114288 8.253411e-05 272 260 0.0004268045 -6.887749e-05 273 260 -0.0003608797 5.823857e-05 274 260 0.0003085011 -4.978574e-05 275 260 -0.0002661734 4.295492e-05 276 260 0.0002314578 -3.735254e-05 277 260 -0.0002026106 3.26972e-05 278 260 0.0001783582 -2.878335e-05 279 260 -0.0001577525 2.545802e-05 280 260 0.000140076 -2.26054e-05 281 260 -0.0001247774 2.013652e-05 282 260 0.0001114272 -1.798207e-05 283 260 -9.968672e-05 1.608739e-05 284 260 8.928565e-05 -1.440887e-05 285 260 -8.000611e-05 1.291134e-05 286 260 7.167061e-05 -1.156616e-05 287 260 -6.413319e-05 1.034978e-05 288 260 5.727273e-05 -9.242642e-06 289 260 -5.098776e-05 8.228377e-06 290 260 4.519256e-05 -7.293151e-06 291 260 -3.981401e-05 6.425164e-06 292 260 3.478917e-05 -5.614257e-06 293 260 -3.00633e-05 4.851599e-06 294 260 2.558831e-05 -4.129428e-06 295 260 -2.132146e-05 3.440846e-06 296 260 1.722429e-05 -2.779647e-06 297 260 -1.326172e-05 2.14017e-06 298 260 9.401297e-06 -1.517176e-06 299 260 -5.612495e-06 9.057414e-07 300 260 1.866144e-06 -3.011573e-07 301 260 1.866144e-06 -3.011573e-07 302 260 -5.612495e-06 9.057414e-07 303 260 9.401297e-06 -1.517176e-06 304 260 -1.326172e-05 2.14017e-06 305 260 1.722429e-05 -2.779647e-06 306 260 -2.132146e-05 3.440846e-06 307 260 2.558831e-05 -4.129428e-06 308 260 -3.00633e-05 4.851599e-06 309 260 3.478917e-05 -5.614257e-06 310 260 -3.981401e-05 6.425164e-06 311 260 4.519256e-05 -7.293151e-06 312 260 -5.098776e-05 8.228377e-06 313 260 5.727273e-05 -9.242642e-06 314 260 -6.413319e-05 1.034978e-05 315 260 7.167061e-05 -1.156616e-05 316 260 -8.000611e-05 1.291134e-05 317 260 8.928565e-05 -1.440887e-05 318 260 -9.968672e-05 1.608739e-05 319 260 0.0001114272 -1.798207e-05 320 260 -0.0001247774 2.013652e-05 321 260 0.000140076 -2.26054e-05 322 260 -0.0001577525 2.545802e-05 323 260 0.0001783582 -2.878335e-05 180 261 0.0003741744 2.473473e-05 243 261 0.0001783582 -2.878335e-05 244 261 -0.0002026106 3.26972e-05 245 261 0.0002314578 -3.735254e-05 246 261 -0.0002661734 4.295492e-05 247 261 0.0003085011 -4.978574e-05 248 261 -0.0003608797 5.823857e-05 249 261 0.0004268045 -6.887749e-05 250 261 -0.0005114288 8.253411e-05 251 261 0.0006226054 -0.0001004757 252 261 -0.0007727812 0.000124711 253 261 0.0009826448 -0.0001585787 254 261 -0.001288661 0.0002079635 255 261 0.001760065 -0.0002840383 256 261 -0.002541777 0.0004101906 257 261 0.003980742 -0.0006424099 258 261 -0.007089509 0.001144101 259 261 0.01597157 -0.002577484 260 261 -0.06393453 0.01031772 261 261 -0.2548431 -0.04743086 262 261 -0.06393453 0.01031772 263 261 0.01597157 -0.002577484 264 261 -0.007089509 0.001144101 265 261 0.003980742 -0.0006424099 266 261 -0.002541777 0.0004101906 267 261 0.001760065 -0.0002840383 268 261 -0.001288661 0.0002079635 269 261 0.0009826448 -0.0001585787 270 261 -0.0007727812 0.000124711 271 261 0.0006226054 -0.0001004757 272 261 -0.0005114288 8.253411e-05 273 261 0.0004268045 -6.887749e-05 274 261 -0.0003608797 5.823857e-05 275 261 0.0003085011 -4.978574e-05 276 261 -0.0002661734 4.295492e-05 277 261 0.0002314578 -3.735254e-05 278 261 -0.0002026106 3.26972e-05 279 261 0.0001783582 -2.878335e-05 280 261 -0.0001577525 2.545802e-05 281 261 0.000140076 -2.26054e-05 282 261 -0.0001247774 2.013652e-05 283 261 0.0001114272 -1.798207e-05 284 261 -9.968672e-05 1.608739e-05 285 261 8.928565e-05 -1.440887e-05 286 261 -8.000611e-05 1.291134e-05 287 261 7.167061e-05 -1.156616e-05 288 261 -6.413319e-05 1.034978e-05 289 261 5.727273e-05 -9.242642e-06 290 261 -5.098776e-05 8.228377e-06 291 261 4.519256e-05 -7.293151e-06 292 261 -3.981401e-05 6.425164e-06 293 261 3.478917e-05 -5.614257e-06 294 261 -3.00633e-05 4.851599e-06 295 261 2.558831e-05 -4.129428e-06 296 261 -2.132146e-05 3.440846e-06 297 261 1.722429e-05 -2.779647e-06 298 261 -1.326172e-05 2.14017e-06 299 261 9.401297e-06 -1.517176e-06 300 261 -5.612495e-06 9.057414e-07 301 261 1.866144e-06 -3.011573e-07 302 261 1.866144e-06 -3.011573e-07 303 261 -5.612495e-06 9.057414e-07 304 261 9.401297e-06 -1.517176e-06 305 261 -1.326172e-05 2.14017e-06 306 261 1.722429e-05 -2.779647e-06 307 261 -2.132146e-05 3.440846e-06 308 261 2.558831e-05 -4.129428e-06 309 261 -3.00633e-05 4.851599e-06 310 261 3.478917e-05 -5.614257e-06 311 261 -3.981401e-05 6.425164e-06 312 261 4.519256e-05 -7.293151e-06 313 261 -5.098776e-05 8.228377e-06 314 261 5.727273e-05 -9.242642e-06 315 261 -6.413319e-05 1.034978e-05 316 261 7.167061e-05 -1.156616e-05 317 261 -8.000611e-05 1.291134e-05 318 261 8.928565e-05 -1.440887e-05 319 261 -9.968672e-05 1.608739e-05 320 261 0.0001114272 -1.798207e-05 321 261 -0.0001247774 2.013652e-05 322 261 0.000140076 -2.26054e-05 323 261 -0.0001577525 2.545802e-05 181 262 0.0003883153 2.599905e-05 243 262 -0.0001577525 2.545802e-05 244 262 0.0001783582 -2.878335e-05 245 262 -0.0002026106 3.26972e-05 246 262 0.0002314578 -3.735254e-05 247 262 -0.0002661734 4.295492e-05 248 262 0.0003085011 -4.978574e-05 249 262 -0.0003608797 5.823857e-05 250 262 0.0004268045 -6.887749e-05 251 262 -0.0005114288 8.253411e-05 252 262 0.0006226054 -0.0001004757 253 262 -0.0007727812 0.000124711 254 262 0.0009826448 -0.0001585787 255 262 -0.001288661 0.0002079635 256 262 0.001760065 -0.0002840383 257 262 -0.002541777 0.0004101906 258 262 0.003980742 -0.0006424099 259 262 -0.007089509 0.001144101 260 262 0.01597157 -0.002577484 261 262 -0.06393453 0.01031772 262 262 -0.2711812 -0.04512305 263 262 -0.06393453 0.01031772 264 262 0.01597157 -0.002577484 265 262 -0.007089509 0.001144101 266 262 0.003980742 -0.0006424099 267 262 -0.002541777 0.0004101906 268 262 0.001760065 -0.0002840383 269 262 -0.001288661 0.0002079635 270 262 0.0009826448 -0.0001585787 271 262 -0.0007727812 0.000124711 272 262 0.0006226054 -0.0001004757 273 262 -0.0005114288 8.253411e-05 274 262 0.0004268045 -6.887749e-05 275 262 -0.0003608797 5.823857e-05 276 262 0.0003085011 -4.978574e-05 277 262 -0.0002661734 4.295492e-05 278 262 0.0002314578 -3.735254e-05 279 262 -0.0002026106 3.26972e-05 280 262 0.0001783582 -2.878335e-05 281 262 -0.0001577525 2.545802e-05 282 262 0.000140076 -2.26054e-05 283 262 -0.0001247774 2.013652e-05 284 262 0.0001114272 -1.798207e-05 285 262 -9.968672e-05 1.608739e-05 286 262 8.928565e-05 -1.440887e-05 287 262 -8.000611e-05 1.291134e-05 288 262 7.167061e-05 -1.156616e-05 289 262 -6.413319e-05 1.034978e-05 290 262 5.727273e-05 -9.242642e-06 291 262 -5.098776e-05 8.228377e-06 292 262 4.519256e-05 -7.293151e-06 293 262 -3.981401e-05 6.425164e-06 294 262 3.478917e-05 -5.614257e-06 295 262 -3.00633e-05 4.851599e-06 296 262 2.558831e-05 -4.129428e-06 297 262 -2.132146e-05 3.440846e-06 298 262 1.722429e-05 -2.779647e-06 299 262 -1.326172e-05 2.14017e-06 300 262 9.401297e-06 -1.517176e-06 301 262 -5.612495e-06 9.057414e-07 302 262 1.866144e-06 -3.011573e-07 303 262 1.866144e-06 -3.011573e-07 304 262 -5.612495e-06 9.057414e-07 305 262 9.401297e-06 -1.517176e-06 306 262 -1.326172e-05 2.14017e-06 307 262 1.722429e-05 -2.779647e-06 308 262 -2.132146e-05 3.440846e-06 309 262 2.558831e-05 -4.129428e-06 310 262 -3.00633e-05 4.851599e-06 311 262 3.478917e-05 -5.614257e-06 312 262 -3.981401e-05 6.425164e-06 313 262 4.519256e-05 -7.293151e-06 314 262 -5.098776e-05 8.228377e-06 315 262 5.727273e-05 -9.242642e-06 316 262 -6.413319e-05 1.034978e-05 317 262 7.167061e-05 -1.156616e-05 318 262 -8.000611e-05 1.291134e-05 319 262 8.928565e-05 -1.440887e-05 320 262 -9.968672e-05 1.608739e-05 321 262 0.0001114272 -1.798207e-05 322 262 -0.0001247774 2.013652e-05 323 262 0.000140076 -2.26054e-05 182 263 0.0004025281 2.727568e-05 243 263 0.000140076 -2.26054e-05 244 263 -0.0001577525 2.545802e-05 245 263 0.0001783582 -2.878335e-05 246 263 -0.0002026106 3.26972e-05 247 263 0.0002314578 -3.735254e-05 248 263 -0.0002661734 4.295492e-05 249 263 0.0003085011 -4.978574e-05 250 263 -0.0003608797 5.823857e-05 251 263 0.0004268045 -6.887749e-05 252 263 -0.0005114288 8.253411e-05 253 263 0.0006226054 -0.0001004757 254 263 -0.0007727812 0.000124711 255 263 0.0009826448 -0.0001585787 256 263 -0.001288661 0.0002079635 257 263 0.001760065 -0.0002840383 258 263 -0.002541777 0.0004101906 259 263 0.003980742 -0.0006424099 260 263 -0.007089509 0.001144101 261 263 0.01597157 -0.002577484 262 263 -0.06393453 0.01031772 263 263 -0.2856259 -0.04298872 264 263 -0.06393453 0.01031772 265 263 0.01597157 -0.002577484 266 263 -0.007089509 0.001144101 267 263 0.003980742 -0.0006424099 268 263 -0.002541777 0.0004101906 269 263 0.001760065 -0.0002840383 270 263 -0.001288661 0.0002079635 271 263 0.0009826448 -0.0001585787 272 263 -0.0007727812 0.000124711 273 263 0.0006226054 -0.0001004757 274 263 -0.0005114288 8.253411e-05 275 263 0.0004268045 -6.887749e-05 276 263 -0.0003608797 5.823857e-05 277 263 0.0003085011 -4.978574e-05 278 263 -0.0002661734 4.295492e-05 279 263 0.0002314578 -3.735254e-05 280 263 -0.0002026106 3.26972e-05 281 263 0.0001783582 -2.878335e-05 282 263 -0.0001577525 2.545802e-05 283 263 0.000140076 -2.26054e-05 284 263 -0.0001247774 2.013652e-05 285 263 0.0001114272 -1.798207e-05 286 263 -9.968672e-05 1.608739e-05 287 263 8.928565e-05 -1.440887e-05 288 263 -8.000611e-05 1.291134e-05 289 263 7.167061e-05 -1.156616e-05 290 263 -6.413319e-05 1.034978e-05 291 263 5.727273e-05 -9.242642e-06 292 263 -5.098776e-05 8.228377e-06 293 263 4.519256e-05 -7.293151e-06 294 263 -3.981401e-05 6.425164e-06 295 263 3.478917e-05 -5.614257e-06 296 263 -3.00633e-05 4.851599e-06 297 263 2.558831e-05 -4.129428e-06 298 263 -2.132146e-05 3.440846e-06 299 263 1.722429e-05 -2.779647e-06 300 263 -1.326172e-05 2.14017e-06 301 263 9.401297e-06 -1.517176e-06 302 263 -5.612495e-06 9.057414e-07 303 263 1.866144e-06 -3.011573e-07 304 263 1.866144e-06 -3.011573e-07 305 263 -5.612495e-06 9.057414e-07 306 263 9.401297e-06 -1.517176e-06 307 263 -1.326172e-05 2.14017e-06 308 263 1.722429e-05 -2.779647e-06 309 263 -2.132146e-05 3.440846e-06 310 263 2.558831e-05 -4.129428e-06 311 263 -3.00633e-05 4.851599e-06 312 263 3.478917e-05 -5.614257e-06 313 263 -3.981401e-05 6.425164e-06 314 263 4.519256e-05 -7.293151e-06 315 263 -5.098776e-05 8.228377e-06 316 263 5.727273e-05 -9.242642e-06 317 263 -6.413319e-05 1.034978e-05 318 263 7.167061e-05 -1.156616e-05 319 263 -8.000611e-05 1.291134e-05 320 263 8.928565e-05 -1.440887e-05 321 263 -9.968672e-05 1.608739e-05 322 263 0.0001114272 -1.798207e-05 323 263 -0.0001247774 2.013652e-05 183 264 0.0004168134 2.856472e-05 243 264 -0.0001247774 2.013652e-05 244 264 0.000140076 -2.26054e-05 245 264 -0.0001577525 2.545802e-05 246 264 0.0001783582 -2.878335e-05 247 264 -0.0002026106 3.26972e-05 248 264 0.0002314578 -3.735254e-05 249 264 -0.0002661734 4.295492e-05 250 264 0.0003085011 -4.978574e-05 251 264 -0.0003608797 5.823857e-05 252 264 0.0004268045 -6.887749e-05 253 264 -0.0005114288 8.253411e-05 254 264 0.0006226054 -0.0001004757 255 264 -0.0007727812 0.000124711 256 264 0.0009826448 -0.0001585787 257 264 -0.001288661 0.0002079635 258 264 0.001760065 -0.0002840383 259 264 -0.002541777 0.0004101906 260 264 0.003980742 -0.0006424099 261 264 -0.007089509 0.001144101 262 264 0.01597157 -0.002577484 263 264 -0.06393453 0.01031772 264 264 -0.29842 -0.04101709 265 264 -0.06393453 0.01031772 266 264 0.01597157 -0.002577484 267 264 -0.007089509 0.001144101 268 264 0.003980742 -0.0006424099 269 264 -0.002541777 0.0004101906 270 264 0.001760065 -0.0002840383 271 264 -0.001288661 0.0002079635 272 264 0.0009826448 -0.0001585787 273 264 -0.0007727812 0.000124711 274 264 0.0006226054 -0.0001004757 275 264 -0.0005114288 8.253411e-05 276 264 0.0004268045 -6.887749e-05 277 264 -0.0003608797 5.823857e-05 278 264 0.0003085011 -4.978574e-05 279 264 -0.0002661734 4.295492e-05 280 264 0.0002314578 -3.735254e-05 281 264 -0.0002026106 3.26972e-05 282 264 0.0001783582 -2.878335e-05 283 264 -0.0001577525 2.545802e-05 284 264 0.000140076 -2.26054e-05 285 264 -0.0001247774 2.013652e-05 286 264 0.0001114272 -1.798207e-05 287 264 -9.968672e-05 1.608739e-05 288 264 8.928565e-05 -1.440887e-05 289 264 -8.000611e-05 1.291134e-05 290 264 7.167061e-05 -1.156616e-05 291 264 -6.413319e-05 1.034978e-05 292 264 5.727273e-05 -9.242642e-06 293 264 -5.098776e-05 8.228377e-06 294 264 4.519256e-05 -7.293151e-06 295 264 -3.981401e-05 6.425164e-06 296 264 3.478917e-05 -5.614257e-06 297 264 -3.00633e-05 4.851599e-06 298 264 2.558831e-05 -4.129428e-06 299 264 -2.132146e-05 3.440846e-06 300 264 1.722429e-05 -2.779647e-06 301 264 -1.326172e-05 2.14017e-06 302 264 9.401297e-06 -1.517176e-06 303 264 -5.612495e-06 9.057414e-07 304 264 1.866144e-06 -3.011573e-07 305 264 1.866144e-06 -3.011573e-07 306 264 -5.612495e-06 9.057414e-07 307 264 9.401297e-06 -1.517176e-06 308 264 -1.326172e-05 2.14017e-06 309 264 1.722429e-05 -2.779647e-06 310 264 -2.132146e-05 3.440846e-06 311 264 2.558831e-05 -4.129428e-06 312 264 -3.00633e-05 4.851599e-06 313 264 3.478917e-05 -5.614257e-06 314 264 -3.981401e-05 6.425164e-06 315 264 4.519256e-05 -7.293151e-06 316 264 -5.098776e-05 8.228377e-06 317 264 5.727273e-05 -9.242642e-06 318 264 -6.413319e-05 1.034978e-05 319 264 7.167061e-05 -1.156616e-05 320 264 -8.000611e-05 1.291134e-05 321 264 8.928565e-05 -1.440887e-05 322 264 -9.968672e-05 1.608739e-05 323 264 0.0001114272 -1.798207e-05 184 265 0.0004311714 2.986627e-05 243 265 0.0001114272 -1.798207e-05 244 265 -0.0001247774 2.013652e-05 245 265 0.000140076 -2.26054e-05 246 265 -0.0001577525 2.545802e-05 247 265 0.0001783582 -2.878335e-05 248 265 -0.0002026106 3.26972e-05 249 265 0.0002314578 -3.735254e-05 250 265 -0.0002661734 4.295492e-05 251 265 0.0003085011 -4.978574e-05 252 265 -0.0003608797 5.823857e-05 253 265 0.0004268045 -6.887749e-05 254 265 -0.0005114288 8.253411e-05 255 265 0.0006226054 -0.0001004757 256 265 -0.0007727812 0.000124711 257 265 0.0009826448 -0.0001585787 258 265 -0.001288661 0.0002079635 259 265 0.001760065 -0.0002840383 260 265 -0.002541777 0.0004101906 261 265 0.003980742 -0.0006424099 262 265 -0.007089509 0.001144101 263 265 0.01597157 -0.002577484 264 265 -0.06393453 0.01031772 265 265 -0.3097721 -0.03919719 266 265 -0.06393453 0.01031772 267 265 0.01597157 -0.002577484 268 265 -0.007089509 0.001144101 269 265 0.003980742 -0.0006424099 270 265 -0.002541777 0.0004101906 271 265 0.001760065 -0.0002840383 272 265 -0.001288661 0.0002079635 273 265 0.0009826448 -0.0001585787 274 265 -0.0007727812 0.000124711 275 265 0.0006226054 -0.0001004757 276 265 -0.0005114288 8.253411e-05 277 265 0.0004268045 -6.887749e-05 278 265 -0.0003608797 5.823857e-05 279 265 0.0003085011 -4.978574e-05 280 265 -0.0002661734 4.295492e-05 281 265 0.0002314578 -3.735254e-05 282 265 -0.0002026106 3.26972e-05 283 265 0.0001783582 -2.878335e-05 284 265 -0.0001577525 2.545802e-05 285 265 0.000140076 -2.26054e-05 286 265 -0.0001247774 2.013652e-05 287 265 0.0001114272 -1.798207e-05 288 265 -9.968672e-05 1.608739e-05 289 265 8.928565e-05 -1.440887e-05 290 265 -8.000611e-05 1.291134e-05 291 265 7.167061e-05 -1.156616e-05 292 265 -6.413319e-05 1.034978e-05 293 265 5.727273e-05 -9.242642e-06 294 265 -5.098776e-05 8.228377e-06 295 265 4.519256e-05 -7.293151e-06 296 265 -3.981401e-05 6.425164e-06 297 265 3.478917e-05 -5.614257e-06 298 265 -3.00633e-05 4.851599e-06 299 265 2.558831e-05 -4.129428e-06 300 265 -2.132146e-05 3.440846e-06 301 265 1.722429e-05 -2.779647e-06 302 265 -1.326172e-05 2.14017e-06 303 265 9.401297e-06 -1.517176e-06 304 265 -5.612495e-06 9.057414e-07 305 265 1.866144e-06 -3.011573e-07 306 265 1.866144e-06 -3.011573e-07 307 265 -5.612495e-06 9.057414e-07 308 265 9.401297e-06 -1.517176e-06 309 265 -1.326172e-05 2.14017e-06 310 265 1.722429e-05 -2.779647e-06 311 265 -2.132146e-05 3.440846e-06 312 265 2.558831e-05 -4.129428e-06 313 265 -3.00633e-05 4.851599e-06 314 265 3.478917e-05 -5.614257e-06 315 265 -3.981401e-05 6.425164e-06 316 265 4.519256e-05 -7.293151e-06 317 265 -5.098776e-05 8.228377e-06 318 265 5.727273e-05 -9.242642e-06 319 265 -6.413319e-05 1.034978e-05 320 265 7.167061e-05 -1.156616e-05 321 265 -8.000611e-05 1.291134e-05 322 265 8.928565e-05 -1.440887e-05 323 265 -9.968672e-05 1.608739e-05 185 266 0.0004456025 3.118041e-05 243 266 -9.968672e-05 1.608739e-05 244 266 0.0001114272 -1.798207e-05 245 266 -0.0001247774 2.013652e-05 246 266 0.000140076 -2.26054e-05 247 266 -0.0001577525 2.545802e-05 248 266 0.0001783582 -2.878335e-05 249 266 -0.0002026106 3.26972e-05 250 266 0.0002314578 -3.735254e-05 251 266 -0.0002661734 4.295492e-05 252 266 0.0003085011 -4.978574e-05 253 266 -0.0003608797 5.823857e-05 254 266 0.0004268045 -6.887749e-05 255 266 -0.0005114288 8.253411e-05 256 266 0.0006226054 -0.0001004757 257 266 -0.0007727812 0.000124711 258 266 0.0009826448 -0.0001585787 259 266 -0.001288661 0.0002079635 260 266 0.001760065 -0.0002840383 261 266 -0.002541777 0.0004101906 262 266 0.003980742 -0.0006424099 263 266 -0.007089509 0.001144101 264 266 0.01597157 -0.002577484 265 266 -0.06393453 0.01031772 266 266 -0.3198616 -0.03751817 267 266 -0.06393453 0.01031772 268 266 0.01597157 -0.002577484 269 266 -0.007089509 0.001144101 270 266 0.003980742 -0.0006424099 271 266 -0.002541777 0.0004101906 272 266 0.001760065 -0.0002840383 273 266 -0.001288661 0.0002079635 274 266 0.0009826448 -0.0001585787 275 266 -0.0007727812 0.000124711 276 266 0.0006226054 -0.0001004757 277 266 -0.0005114288 8.253411e-05 278 266 0.0004268045 -6.887749e-05 279 266 -0.0003608797 5.823857e-05 280 266 0.0003085011 -4.978574e-05 281 266 -0.0002661734 4.295492e-05 282 266 0.0002314578 -3.735254e-05 283 266 -0.0002026106 3.26972e-05 284 266 0.0001783582 -2.878335e-05 285 266 -0.0001577525 2.545802e-05 286 266 0.000140076 -2.26054e-05 287 266 -0.0001247774 2.013652e-05 288 266 0.0001114272 -1.798207e-05 289 266 -9.968672e-05 1.608739e-05 290 266 8.928565e-05 -1.440887e-05 291 266 -8.000611e-05 1.291134e-05 292 266 7.167061e-05 -1.156616e-05 293 266 -6.413319e-05 1.034978e-05 294 266 5.727273e-05 -9.242642e-06 295 266 -5.098776e-05 8.228377e-06 296 266 4.519256e-05 -7.293151e-06 297 266 -3.981401e-05 6.425164e-06 298 266 3.478917e-05 -5.614257e-06 299 266 -3.00633e-05 4.851599e-06 300 266 2.558831e-05 -4.129428e-06 301 266 -2.132146e-05 3.440846e-06 302 266 1.722429e-05 -2.779647e-06 303 266 -1.326172e-05 2.14017e-06 304 266 9.401297e-06 -1.517176e-06 305 266 -5.612495e-06 9.057414e-07 306 266 1.866144e-06 -3.011573e-07 307 266 1.866144e-06 -3.011573e-07 308 266 -5.612495e-06 9.057414e-07 309 266 9.401297e-06 -1.517176e-06 310 266 -1.326172e-05 2.14017e-06 311 266 1.722429e-05 -2.779647e-06 312 266 -2.132146e-05 3.440846e-06 313 266 2.558831e-05 -4.129428e-06 314 266 -3.00633e-05 4.851599e-06 315 266 3.478917e-05 -5.614257e-06 316 266 -3.981401e-05 6.425164e-06 317 266 4.519256e-05 -7.293151e-06 318 266 -5.098776e-05 8.228377e-06 319 266 5.727273e-05 -9.242642e-06 320 266 -6.413319e-05 1.034978e-05 321 266 7.167061e-05 -1.156616e-05 322 266 -8.000611e-05 1.291134e-05 323 266 8.928565e-05 -1.440887e-05 186 267 0.0004601072 3.250725e-05 243 267 8.928565e-05 -1.440887e-05 244 267 -9.968672e-05 1.608739e-05 245 267 0.0001114272 -1.798207e-05 246 267 -0.0001247774 2.013652e-05 247 267 0.000140076 -2.26054e-05 248 267 -0.0001577525 2.545802e-05 249 267 0.0001783582 -2.878335e-05 250 267 -0.0002026106 3.26972e-05 251 267 0.0002314578 -3.735254e-05 252 267 -0.0002661734 4.295492e-05 253 267 0.0003085011 -4.978574e-05 254 267 -0.0003608797 5.823857e-05 255 267 0.0004268045 -6.887749e-05 256 267 -0.0005114288 8.253411e-05 257 267 0.0006226054 -0.0001004757 258 267 -0.0007727812 0.000124711 259 267 0.0009826448 -0.0001585787 260 267 -0.001288661 0.0002079635 261 267 0.001760065 -0.0002840383 262 267 -0.002541777 0.0004101906 263 267 0.003980742 -0.0006424099 264 267 -0.007089509 0.001144101 265 267 0.01597157 -0.002577484 266 267 -0.06393453 0.01031772 267 267 -0.3288435 -0.03596951 268 267 -0.06393453 0.01031772 269 267 0.01597157 -0.002577484 270 267 -0.007089509 0.001144101 271 267 0.003980742 -0.0006424099 272 267 -0.002541777 0.0004101906 273 267 0.001760065 -0.0002840383 274 267 -0.001288661 0.0002079635 275 267 0.0009826448 -0.0001585787 276 267 -0.0007727812 0.000124711 277 267 0.0006226054 -0.0001004757 278 267 -0.0005114288 8.253411e-05 279 267 0.0004268045 -6.887749e-05 280 267 -0.0003608797 5.823857e-05 281 267 0.0003085011 -4.978574e-05 282 267 -0.0002661734 4.295492e-05 283 267 0.0002314578 -3.735254e-05 284 267 -0.0002026106 3.26972e-05 285 267 0.0001783582 -2.878335e-05 286 267 -0.0001577525 2.545802e-05 287 267 0.000140076 -2.26054e-05 288 267 -0.0001247774 2.013652e-05 289 267 0.0001114272 -1.798207e-05 290 267 -9.968672e-05 1.608739e-05 291 267 8.928565e-05 -1.440887e-05 292 267 -8.000611e-05 1.291134e-05 293 267 7.167061e-05 -1.156616e-05 294 267 -6.413319e-05 1.034978e-05 295 267 5.727273e-05 -9.242642e-06 296 267 -5.098776e-05 8.228377e-06 297 267 4.519256e-05 -7.293151e-06 298 267 -3.981401e-05 6.425164e-06 299 267 3.478917e-05 -5.614257e-06 300 267 -3.00633e-05 4.851599e-06 301 267 2.558831e-05 -4.129428e-06 302 267 -2.132146e-05 3.440846e-06 303 267 1.722429e-05 -2.779647e-06 304 267 -1.326172e-05 2.14017e-06 305 267 9.401297e-06 -1.517176e-06 306 267 -5.612495e-06 9.057414e-07 307 267 1.866144e-06 -3.011573e-07 308 267 1.866144e-06 -3.011573e-07 309 267 -5.612495e-06 9.057414e-07 310 267 9.401297e-06 -1.517176e-06 311 267 -1.326172e-05 2.14017e-06 312 267 1.722429e-05 -2.779647e-06 313 267 -2.132146e-05 3.440846e-06 314 267 2.558831e-05 -4.129428e-06 315 267 -3.00633e-05 4.851599e-06 316 267 3.478917e-05 -5.614257e-06 317 267 -3.981401e-05 6.425164e-06 318 267 4.519256e-05 -7.293151e-06 319 267 -5.098776e-05 8.228377e-06 320 267 5.727273e-05 -9.242642e-06 321 267 -6.413319e-05 1.034978e-05 322 267 7.167061e-05 -1.156616e-05 323 267 -8.000611e-05 1.291134e-05 187 268 0.0004746856 3.384687e-05 243 268 -8.000611e-05 1.291134e-05 244 268 8.928565e-05 -1.440887e-05 245 268 -9.968672e-05 1.608739e-05 246 268 0.0001114272 -1.798207e-05 247 268 -0.0001247774 2.013652e-05 248 268 0.000140076 -2.26054e-05 249 268 -0.0001577525 2.545802e-05 250 268 0.0001783582 -2.878335e-05 251 268 -0.0002026106 3.26972e-05 252 268 0.0002314578 -3.735254e-05 253 268 -0.0002661734 4.295492e-05 254 268 0.0003085011 -4.978574e-05 255 268 -0.0003608797 5.823857e-05 256 268 0.0004268045 -6.887749e-05 257 268 -0.0005114288 8.253411e-05 258 268 0.0006226054 -0.0001004757 259 268 -0.0007727812 0.000124711 260 268 0.0009826448 -0.0001585787 261 268 -0.001288661 0.0002079635 262 268 0.001760065 -0.0002840383 263 268 -0.002541777 0.0004101906 264 268 0.003980742 -0.0006424099 265 268 -0.007089509 0.001144101 266 268 0.01597157 -0.002577484 267 268 -0.06393453 0.01031772 268 268 -0.3368515 -0.03454119 269 268 -0.06393453 0.01031772 270 268 0.01597157 -0.002577484 271 268 -0.007089509 0.001144101 272 268 0.003980742 -0.0006424099 273 268 -0.002541777 0.0004101906 274 268 0.001760065 -0.0002840383 275 268 -0.001288661 0.0002079635 276 268 0.0009826448 -0.0001585787 277 268 -0.0007727812 0.000124711 278 268 0.0006226054 -0.0001004757 279 268 -0.0005114288 8.253411e-05 280 268 0.0004268045 -6.887749e-05 281 268 -0.0003608797 5.823857e-05 282 268 0.0003085011 -4.978574e-05 283 268 -0.0002661734 4.295492e-05 284 268 0.0002314578 -3.735254e-05 285 268 -0.0002026106 3.26972e-05 286 268 0.0001783582 -2.878335e-05 287 268 -0.0001577525 2.545802e-05 288 268 0.000140076 -2.26054e-05 289 268 -0.0001247774 2.013652e-05 290 268 0.0001114272 -1.798207e-05 291 268 -9.968672e-05 1.608739e-05 292 268 8.928565e-05 -1.440887e-05 293 268 -8.000611e-05 1.291134e-05 294 268 7.167061e-05 -1.156616e-05 295 268 -6.413319e-05 1.034978e-05 296 268 5.727273e-05 -9.242642e-06 297 268 -5.098776e-05 8.228377e-06 298 268 4.519256e-05 -7.293151e-06 299 268 -3.981401e-05 6.425164e-06 300 268 3.478917e-05 -5.614257e-06 301 268 -3.00633e-05 4.851599e-06 302 268 2.558831e-05 -4.129428e-06 303 268 -2.132146e-05 3.440846e-06 304 268 1.722429e-05 -2.779647e-06 305 268 -1.326172e-05 2.14017e-06 306 268 9.401297e-06 -1.517176e-06 307 268 -5.612495e-06 9.057414e-07 308 268 1.866144e-06 -3.011573e-07 309 268 1.866144e-06 -3.011573e-07 310 268 -5.612495e-06 9.057414e-07 311 268 9.401297e-06 -1.517176e-06 312 268 -1.326172e-05 2.14017e-06 313 268 1.722429e-05 -2.779647e-06 314 268 -2.132146e-05 3.440846e-06 315 268 2.558831e-05 -4.129428e-06 316 268 -3.00633e-05 4.851599e-06 317 268 3.478917e-05 -5.614257e-06 318 268 -3.981401e-05 6.425164e-06 319 268 4.519256e-05 -7.293151e-06 320 268 -5.098776e-05 8.228377e-06 321 268 5.727273e-05 -9.242642e-06 322 268 -6.413319e-05 1.034978e-05 323 268 7.167061e-05 -1.156616e-05 188 269 0.0004893383 3.519938e-05 243 269 7.167061e-05 -1.156616e-05 244 269 -8.000611e-05 1.291134e-05 245 269 8.928565e-05 -1.440887e-05 246 269 -9.968672e-05 1.608739e-05 247 269 0.0001114272 -1.798207e-05 248 269 -0.0001247774 2.013652e-05 249 269 0.000140076 -2.26054e-05 250 269 -0.0001577525 2.545802e-05 251 269 0.0001783582 -2.878335e-05 252 269 -0.0002026106 3.26972e-05 253 269 0.0002314578 -3.735254e-05 254 269 -0.0002661734 4.295492e-05 255 269 0.0003085011 -4.978574e-05 256 269 -0.0003608797 5.823857e-05 257 269 0.0004268045 -6.887749e-05 258 269 -0.0005114288 8.253411e-05 259 269 0.0006226054 -0.0001004757 260 269 -0.0007727812 0.000124711 261 269 0.0009826448 -0.0001585787 262 269 -0.001288661 0.0002079635 263 269 0.001760065 -0.0002840383 264 269 -0.002541777 0.0004101906 265 269 0.003980742 -0.0006424099 266 269 -0.007089509 0.001144101 267 269 0.01597157 -0.002577484 268 269 -0.06393453 0.01031772 269 269 -0.3440016 -0.03322374 270 269 -0.06393453 0.01031772 271 269 0.01597157 -0.002577484 272 269 -0.007089509 0.001144101 273 269 0.003980742 -0.0006424099 274 269 -0.002541777 0.0004101906 275 269 0.001760065 -0.0002840383 276 269 -0.001288661 0.0002079635 277 269 0.0009826448 -0.0001585787 278 269 -0.0007727812 0.000124711 279 269 0.0006226054 -0.0001004757 280 269 -0.0005114288 8.253411e-05 281 269 0.0004268045 -6.887749e-05 282 269 -0.0003608797 5.823857e-05 283 269 0.0003085011 -4.978574e-05 284 269 -0.0002661734 4.295492e-05 285 269 0.0002314578 -3.735254e-05 286 269 -0.0002026106 3.26972e-05 287 269 0.0001783582 -2.878335e-05 288 269 -0.0001577525 2.545802e-05 289 269 0.000140076 -2.26054e-05 290 269 -0.0001247774 2.013652e-05 291 269 0.0001114272 -1.798207e-05 292 269 -9.968672e-05 1.608739e-05 293 269 8.928565e-05 -1.440887e-05 294 269 -8.000611e-05 1.291134e-05 295 269 7.167061e-05 -1.156616e-05 296 269 -6.413319e-05 1.034978e-05 297 269 5.727273e-05 -9.242642e-06 298 269 -5.098776e-05 8.228377e-06 299 269 4.519256e-05 -7.293151e-06 300 269 -3.981401e-05 6.425164e-06 301 269 3.478917e-05 -5.614257e-06 302 269 -3.00633e-05 4.851599e-06 303 269 2.558831e-05 -4.129428e-06 304 269 -2.132146e-05 3.440846e-06 305 269 1.722429e-05 -2.779647e-06 306 269 -1.326172e-05 2.14017e-06 307 269 9.401297e-06 -1.517176e-06 308 269 -5.612495e-06 9.057414e-07 309 269 1.866144e-06 -3.011573e-07 310 269 1.866144e-06 -3.011573e-07 311 269 -5.612495e-06 9.057414e-07 312 269 9.401297e-06 -1.517176e-06 313 269 -1.326172e-05 2.14017e-06 314 269 1.722429e-05 -2.779647e-06 315 269 -2.132146e-05 3.440846e-06 316 269 2.558831e-05 -4.129428e-06 317 269 -3.00633e-05 4.851599e-06 318 269 3.478917e-05 -5.614257e-06 319 269 -3.981401e-05 6.425164e-06 320 269 4.519256e-05 -7.293151e-06 321 269 -5.098776e-05 8.228377e-06 322 269 5.727273e-05 -9.242642e-06 323 269 -6.413319e-05 1.034978e-05 189 270 0.0005040657 3.656486e-05 243 270 -6.413319e-05 1.034978e-05 244 270 7.167061e-05 -1.156616e-05 245 270 -8.000611e-05 1.291134e-05 246 270 8.928565e-05 -1.440887e-05 247 270 -9.968672e-05 1.608739e-05 248 270 0.0001114272 -1.798207e-05 249 270 -0.0001247774 2.013652e-05 250 270 0.000140076 -2.26054e-05 251 270 -0.0001577525 2.545802e-05 252 270 0.0001783582 -2.878335e-05 253 270 -0.0002026106 3.26972e-05 254 270 0.0002314578 -3.735254e-05 255 270 -0.0002661734 4.295492e-05 256 270 0.0003085011 -4.978574e-05 257 270 -0.0003608797 5.823857e-05 258 270 0.0004268045 -6.887749e-05 259 270 -0.0005114288 8.253411e-05 260 270 0.0006226054 -0.0001004757 261 270 -0.0007727812 0.000124711 262 270 0.0009826448 -0.0001585787 263 270 -0.001288661 0.0002079635 264 270 0.001760065 -0.0002840383 265 270 -0.002541777 0.0004101906 266 270 0.003980742 -0.0006424099 267 270 -0.007089509 0.001144101 268 270 0.01597157 -0.002577484 269 270 -0.06393453 0.01031772 270 270 -0.3503946 -0.0320083 271 270 -0.06393453 0.01031772 272 270 0.01597157 -0.002577484 273 270 -0.007089509 0.001144101 274 270 0.003980742 -0.0006424099 275 270 -0.002541777 0.0004101906 276 270 0.001760065 -0.0002840383 277 270 -0.001288661 0.0002079635 278 270 0.0009826448 -0.0001585787 279 270 -0.0007727812 0.000124711 280 270 0.0006226054 -0.0001004757 281 270 -0.0005114288 8.253411e-05 282 270 0.0004268045 -6.887749e-05 283 270 -0.0003608797 5.823857e-05 284 270 0.0003085011 -4.978574e-05 285 270 -0.0002661734 4.295492e-05 286 270 0.0002314578 -3.735254e-05 287 270 -0.0002026106 3.26972e-05 288 270 0.0001783582 -2.878335e-05 289 270 -0.0001577525 2.545802e-05 290 270 0.000140076 -2.26054e-05 291 270 -0.0001247774 2.013652e-05 292 270 0.0001114272 -1.798207e-05 293 270 -9.968672e-05 1.608739e-05 294 270 8.928565e-05 -1.440887e-05 295 270 -8.000611e-05 1.291134e-05 296 270 7.167061e-05 -1.156616e-05 297 270 -6.413319e-05 1.034978e-05 298 270 5.727273e-05 -9.242642e-06 299 270 -5.098776e-05 8.228377e-06 300 270 4.519256e-05 -7.293151e-06 301 270 -3.981401e-05 6.425164e-06 302 270 3.478917e-05 -5.614257e-06 303 270 -3.00633e-05 4.851599e-06 304 270 2.558831e-05 -4.129428e-06 305 270 -2.132146e-05 3.440846e-06 306 270 1.722429e-05 -2.779647e-06 307 270 -1.326172e-05 2.14017e-06 308 270 9.401297e-06 -1.517176e-06 309 270 -5.612495e-06 9.057414e-07 310 270 1.866144e-06 -3.011573e-07 311 270 1.866144e-06 -3.011573e-07 312 270 -5.612495e-06 9.057414e-07 313 270 9.401297e-06 -1.517176e-06 314 270 -1.326172e-05 2.14017e-06 315 270 1.722429e-05 -2.779647e-06 316 270 -2.132146e-05 3.440846e-06 317 270 2.558831e-05 -4.129428e-06 318 270 -3.00633e-05 4.851599e-06 319 270 3.478917e-05 -5.614257e-06 320 270 -3.981401e-05 6.425164e-06 321 270 4.519256e-05 -7.293151e-06 322 270 -5.098776e-05 8.228377e-06 323 270 5.727273e-05 -9.242642e-06 190 271 0.000518868 3.794342e-05 243 271 5.727273e-05 -9.242642e-06 244 271 -6.413319e-05 1.034978e-05 245 271 7.167061e-05 -1.156616e-05 246 271 -8.000611e-05 1.291134e-05 247 271 8.928565e-05 -1.440887e-05 248 271 -9.968672e-05 1.608739e-05 249 271 0.0001114272 -1.798207e-05 250 271 -0.0001247774 2.013652e-05 251 271 0.000140076 -2.26054e-05 252 271 -0.0001577525 2.545802e-05 253 271 0.0001783582 -2.878335e-05 254 271 -0.0002026106 3.26972e-05 255 271 0.0002314578 -3.735254e-05 256 271 -0.0002661734 4.295492e-05 257 271 0.0003085011 -4.978574e-05 258 271 -0.0003608797 5.823857e-05 259 271 0.0004268045 -6.887749e-05 260 271 -0.0005114288 8.253411e-05 261 271 0.0006226054 -0.0001004757 262 271 -0.0007727812 0.000124711 263 271 0.0009826448 -0.0001585787 264 271 -0.001288661 0.0002079635 265 271 0.001760065 -0.0002840383 266 271 -0.002541777 0.0004101906 267 271 0.003980742 -0.0006424099 268 271 -0.007089509 0.001144101 269 271 0.01597157 -0.002577484 270 271 -0.06393453 0.01031772 271 271 -0.3561178 -0.03088667 272 271 -0.06393453 0.01031772 273 271 0.01597157 -0.002577484 274 271 -0.007089509 0.001144101 275 271 0.003980742 -0.0006424099 276 271 -0.002541777 0.0004101906 277 271 0.001760065 -0.0002840383 278 271 -0.001288661 0.0002079635 279 271 0.0009826448 -0.0001585787 280 271 -0.0007727812 0.000124711 281 271 0.0006226054 -0.0001004757 282 271 -0.0005114288 8.253411e-05 283 271 0.0004268045 -6.887749e-05 284 271 -0.0003608797 5.823857e-05 285 271 0.0003085011 -4.978574e-05 286 271 -0.0002661734 4.295492e-05 287 271 0.0002314578 -3.735254e-05 288 271 -0.0002026106 3.26972e-05 289 271 0.0001783582 -2.878335e-05 290 271 -0.0001577525 2.545802e-05 291 271 0.000140076 -2.26054e-05 292 271 -0.0001247774 2.013652e-05 293 271 0.0001114272 -1.798207e-05 294 271 -9.968672e-05 1.608739e-05 295 271 8.928565e-05 -1.440887e-05 296 271 -8.000611e-05 1.291134e-05 297 271 7.167061e-05 -1.156616e-05 298 271 -6.413319e-05 1.034978e-05 299 271 5.727273e-05 -9.242642e-06 300 271 -5.098776e-05 8.228377e-06 301 271 4.519256e-05 -7.293151e-06 302 271 -3.981401e-05 6.425164e-06 303 271 3.478917e-05 -5.614257e-06 304 271 -3.00633e-05 4.851599e-06 305 271 2.558831e-05 -4.129428e-06 306 271 -2.132146e-05 3.440846e-06 307 271 1.722429e-05 -2.779647e-06 308 271 -1.326172e-05 2.14017e-06 309 271 9.401297e-06 -1.517176e-06 310 271 -5.612495e-06 9.057414e-07 311 271 1.866144e-06 -3.011573e-07 312 271 1.866144e-06 -3.011573e-07 313 271 -5.612495e-06 9.057414e-07 314 271 9.401297e-06 -1.517176e-06 315 271 -1.326172e-05 2.14017e-06 316 271 1.722429e-05 -2.779647e-06 317 271 -2.132146e-05 3.440846e-06 318 271 2.558831e-05 -4.129428e-06 319 271 -3.00633e-05 4.851599e-06 320 271 3.478917e-05 -5.614257e-06 321 271 -3.981401e-05 6.425164e-06 322 271 4.519256e-05 -7.293151e-06 323 271 -5.098776e-05 8.228377e-06 191 272 0.0005337456 3.933516e-05 243 272 -5.098776e-05 8.228377e-06 244 272 5.727273e-05 -9.242642e-06 245 272 -6.413319e-05 1.034978e-05 246 272 7.167061e-05 -1.156616e-05 247 272 -8.000611e-05 1.291134e-05 248 272 8.928565e-05 -1.440887e-05 249 272 -9.968672e-05 1.608739e-05 250 272 0.0001114272 -1.798207e-05 251 272 -0.0001247774 2.013652e-05 252 272 0.000140076 -2.26054e-05 253 272 -0.0001577525 2.545802e-05 254 272 0.0001783582 -2.878335e-05 255 272 -0.0002026106 3.26972e-05 256 272 0.0002314578 -3.735254e-05 257 272 -0.0002661734 4.295492e-05 258 272 0.0003085011 -4.978574e-05 259 272 -0.0003608797 5.823857e-05 260 272 0.0004268045 -6.887749e-05 261 272 -0.0005114288 8.253411e-05 262 272 0.0006226054 -0.0001004757 263 272 -0.0007727812 0.000124711 264 272 0.0009826448 -0.0001585787 265 272 -0.001288661 0.0002079635 266 272 0.001760065 -0.0002840383 267 272 -0.002541777 0.0004101906 268 272 0.003980742 -0.0006424099 269 272 -0.007089509 0.001144101 270 272 0.01597157 -0.002577484 271 272 -0.06393453 0.01031772 272 272 -0.3612478 -0.02985125 273 272 -0.06393453 0.01031772 274 272 0.01597157 -0.002577484 275 272 -0.007089509 0.001144101 276 272 0.003980742 -0.0006424099 277 272 -0.002541777 0.0004101906 278 272 0.001760065 -0.0002840383 279 272 -0.001288661 0.0002079635 280 272 0.0009826448 -0.0001585787 281 272 -0.0007727812 0.000124711 282 272 0.0006226054 -0.0001004757 283 272 -0.0005114288 8.253411e-05 284 272 0.0004268045 -6.887749e-05 285 272 -0.0003608797 5.823857e-05 286 272 0.0003085011 -4.978574e-05 287 272 -0.0002661734 4.295492e-05 288 272 0.0002314578 -3.735254e-05 289 272 -0.0002026106 3.26972e-05 290 272 0.0001783582 -2.878335e-05 291 272 -0.0001577525 2.545802e-05 292 272 0.000140076 -2.26054e-05 293 272 -0.0001247774 2.013652e-05 294 272 0.0001114272 -1.798207e-05 295 272 -9.968672e-05 1.608739e-05 296 272 8.928565e-05 -1.440887e-05 297 272 -8.000611e-05 1.291134e-05 298 272 7.167061e-05 -1.156616e-05 299 272 -6.413319e-05 1.034978e-05 300 272 5.727273e-05 -9.242642e-06 301 272 -5.098776e-05 8.228377e-06 302 272 4.519256e-05 -7.293151e-06 303 272 -3.981401e-05 6.425164e-06 304 272 3.478917e-05 -5.614257e-06 305 272 -3.00633e-05 4.851599e-06 306 272 2.558831e-05 -4.129428e-06 307 272 -2.132146e-05 3.440846e-06 308 272 1.722429e-05 -2.779647e-06 309 272 -1.326172e-05 2.14017e-06 310 272 9.401297e-06 -1.517176e-06 311 272 -5.612495e-06 9.057414e-07 312 272 1.866144e-06 -3.011573e-07 313 272 1.866144e-06 -3.011573e-07 314 272 -5.612495e-06 9.057414e-07 315 272 9.401297e-06 -1.517176e-06 316 272 -1.326172e-05 2.14017e-06 317 272 1.722429e-05 -2.779647e-06 318 272 -2.132146e-05 3.440846e-06 319 272 2.558831e-05 -4.129428e-06 320 272 -3.00633e-05 4.851599e-06 321 272 3.478917e-05 -5.614257e-06 322 272 -3.981401e-05 6.425164e-06 323 272 4.519256e-05 -7.293151e-06 192 273 0.0005486991 4.074018e-05 243 273 4.519256e-05 -7.293151e-06 244 273 -5.098776e-05 8.228377e-06 245 273 5.727273e-05 -9.242642e-06 246 273 -6.413319e-05 1.034978e-05 247 273 7.167061e-05 -1.156616e-05 248 273 -8.000611e-05 1.291134e-05 249 273 8.928565e-05 -1.440887e-05 250 273 -9.968672e-05 1.608739e-05 251 273 0.0001114272 -1.798207e-05 252 273 -0.0001247774 2.013652e-05 253 273 0.000140076 -2.26054e-05 254 273 -0.0001577525 2.545802e-05 255 273 0.0001783582 -2.878335e-05 256 273 -0.0002026106 3.26972e-05 257 273 0.0002314578 -3.735254e-05 258 273 -0.0002661734 4.295492e-05 259 273 0.0003085011 -4.978574e-05 260 273 -0.0003608797 5.823857e-05 261 273 0.0004268045 -6.887749e-05 262 273 -0.0005114288 8.253411e-05 263 273 0.0006226054 -0.0001004757 264 273 -0.0007727812 0.000124711 265 273 0.0009826448 -0.0001585787 266 273 -0.001288661 0.0002079635 267 273 0.001760065 -0.0002840383 268 273 -0.002541777 0.0004101906 269 273 0.003980742 -0.0006424099 270 273 -0.007089509 0.001144101 271 273 0.01597157 -0.002577484 272 273 -0.06393453 0.01031772 273 273 -0.3658513 -0.02889503 274 273 -0.06393453 0.01031772 275 273 0.01597157 -0.002577484 276 273 -0.007089509 0.001144101 277 273 0.003980742 -0.0006424099 278 273 -0.002541777 0.0004101906 279 273 0.001760065 -0.0002840383 280 273 -0.001288661 0.0002079635 281 273 0.0009826448 -0.0001585787 282 273 -0.0007727812 0.000124711 283 273 0.0006226054 -0.0001004757 284 273 -0.0005114288 8.253411e-05 285 273 0.0004268045 -6.887749e-05 286 273 -0.0003608797 5.823857e-05 287 273 0.0003085011 -4.978574e-05 288 273 -0.0002661734 4.295492e-05 289 273 0.0002314578 -3.735254e-05 290 273 -0.0002026106 3.26972e-05 291 273 0.0001783582 -2.878335e-05 292 273 -0.0001577525 2.545802e-05 293 273 0.000140076 -2.26054e-05 294 273 -0.0001247774 2.013652e-05 295 273 0.0001114272 -1.798207e-05 296 273 -9.968672e-05 1.608739e-05 297 273 8.928565e-05 -1.440887e-05 298 273 -8.000611e-05 1.291134e-05 299 273 7.167061e-05 -1.156616e-05 300 273 -6.413319e-05 1.034978e-05 301 273 5.727273e-05 -9.242642e-06 302 273 -5.098776e-05 8.228377e-06 303 273 4.519256e-05 -7.293151e-06 304 273 -3.981401e-05 6.425164e-06 305 273 3.478917e-05 -5.614257e-06 306 273 -3.00633e-05 4.851599e-06 307 273 2.558831e-05 -4.129428e-06 308 273 -2.132146e-05 3.440846e-06 309 273 1.722429e-05 -2.779647e-06 310 273 -1.326172e-05 2.14017e-06 311 273 9.401297e-06 -1.517176e-06 312 273 -5.612495e-06 9.057414e-07 313 273 1.866144e-06 -3.011573e-07 314 273 1.866144e-06 -3.011573e-07 315 273 -5.612495e-06 9.057414e-07 316 273 9.401297e-06 -1.517176e-06 317 273 -1.326172e-05 2.14017e-06 318 273 1.722429e-05 -2.779647e-06 319 273 -2.132146e-05 3.440846e-06 320 273 2.558831e-05 -4.129428e-06 321 273 -3.00633e-05 4.851599e-06 322 273 3.478917e-05 -5.614257e-06 323 273 -3.981401e-05 6.425164e-06 193 274 0.0005637286 4.215856e-05 243 274 -3.981401e-05 6.425164e-06 244 274 4.519256e-05 -7.293151e-06 245 274 -5.098776e-05 8.228377e-06 246 274 5.727273e-05 -9.242642e-06 247 274 -6.413319e-05 1.034978e-05 248 274 7.167061e-05 -1.156616e-05 249 274 -8.000611e-05 1.291134e-05 250 274 8.928565e-05 -1.440887e-05 251 274 -9.968672e-05 1.608739e-05 252 274 0.0001114272 -1.798207e-05 253 274 -0.0001247774 2.013652e-05 254 274 0.000140076 -2.26054e-05 255 274 -0.0001577525 2.545802e-05 256 274 0.0001783582 -2.878335e-05 257 274 -0.0002026106 3.26972e-05 258 274 0.0002314578 -3.735254e-05 259 274 -0.0002661734 4.295492e-05 260 274 0.0003085011 -4.978574e-05 261 274 -0.0003608797 5.823857e-05 262 274 0.0004268045 -6.887749e-05 263 274 -0.0005114288 8.253411e-05 264 274 0.0006226054 -0.0001004757 265 274 -0.0007727812 0.000124711 266 274 0.0009826448 -0.0001585787 267 274 -0.001288661 0.0002079635 268 274 0.001760065 -0.0002840383 269 274 -0.002541777 0.0004101906 270 274 0.003980742 -0.0006424099 271 274 -0.007089509 0.001144101 272 274 0.01597157 -0.002577484 273 274 -0.06393453 0.01031772 274 274 -0.3699865 -0.02801161 275 274 -0.06393453 0.01031772 276 274 0.01597157 -0.002577484 277 274 -0.007089509 0.001144101 278 274 0.003980742 -0.0006424099 279 274 -0.002541777 0.0004101906 280 274 0.001760065 -0.0002840383 281 274 -0.001288661 0.0002079635 282 274 0.0009826448 -0.0001585787 283 274 -0.0007727812 0.000124711 284 274 0.0006226054 -0.0001004757 285 274 -0.0005114288 8.253411e-05 286 274 0.0004268045 -6.887749e-05 287 274 -0.0003608797 5.823857e-05 288 274 0.0003085011 -4.978574e-05 289 274 -0.0002661734 4.295492e-05 290 274 0.0002314578 -3.735254e-05 291 274 -0.0002026106 3.26972e-05 292 274 0.0001783582 -2.878335e-05 293 274 -0.0001577525 2.545802e-05 294 274 0.000140076 -2.26054e-05 295 274 -0.0001247774 2.013652e-05 296 274 0.0001114272 -1.798207e-05 297 274 -9.968672e-05 1.608739e-05 298 274 8.928565e-05 -1.440887e-05 299 274 -8.000611e-05 1.291134e-05 300 274 7.167061e-05 -1.156616e-05 301 274 -6.413319e-05 1.034978e-05 302 274 5.727273e-05 -9.242642e-06 303 274 -5.098776e-05 8.228377e-06 304 274 4.519256e-05 -7.293151e-06 305 274 -3.981401e-05 6.425164e-06 306 274 3.478917e-05 -5.614257e-06 307 274 -3.00633e-05 4.851599e-06 308 274 2.558831e-05 -4.129428e-06 309 274 -2.132146e-05 3.440846e-06 310 274 1.722429e-05 -2.779647e-06 311 274 -1.326172e-05 2.14017e-06 312 274 9.401297e-06 -1.517176e-06 313 274 -5.612495e-06 9.057414e-07 314 274 1.866144e-06 -3.011573e-07 315 274 1.866144e-06 -3.011573e-07 316 274 -5.612495e-06 9.057414e-07 317 274 9.401297e-06 -1.517176e-06 318 274 -1.326172e-05 2.14017e-06 319 274 1.722429e-05 -2.779647e-06 320 274 -2.132146e-05 3.440846e-06 321 274 2.558831e-05 -4.129428e-06 322 274 -3.00633e-05 4.851599e-06 323 274 3.478917e-05 -5.614257e-06 194 275 0.0005788347 4.359042e-05 243 275 3.478917e-05 -5.614257e-06 244 275 -3.981401e-05 6.425164e-06 245 275 4.519256e-05 -7.293151e-06 246 275 -5.098776e-05 8.228377e-06 247 275 5.727273e-05 -9.242642e-06 248 275 -6.413319e-05 1.034978e-05 249 275 7.167061e-05 -1.156616e-05 250 275 -8.000611e-05 1.291134e-05 251 275 8.928565e-05 -1.440887e-05 252 275 -9.968672e-05 1.608739e-05 253 275 0.0001114272 -1.798207e-05 254 275 -0.0001247774 2.013652e-05 255 275 0.000140076 -2.26054e-05 256 275 -0.0001577525 2.545802e-05 257 275 0.0001783582 -2.878335e-05 258 275 -0.0002026106 3.26972e-05 259 275 0.0002314578 -3.735254e-05 260 275 -0.0002661734 4.295492e-05 261 275 0.0003085011 -4.978574e-05 262 275 -0.0003608797 5.823857e-05 263 275 0.0004268045 -6.887749e-05 264 275 -0.0005114288 8.253411e-05 265 275 0.0006226054 -0.0001004757 266 275 -0.0007727812 0.000124711 267 275 0.0009826448 -0.0001585787 268 275 -0.001288661 0.0002079635 269 275 0.001760065 -0.0002840383 270 275 -0.002541777 0.0004101906 271 275 0.003980742 -0.0006424099 272 275 -0.007089509 0.001144101 273 275 0.01597157 -0.002577484 274 275 -0.06393453 0.01031772 275 275 -0.3737049 -0.02719509 276 275 -0.06393453 0.01031772 277 275 0.01597157 -0.002577484 278 275 -0.007089509 0.001144101 279 275 0.003980742 -0.0006424099 280 275 -0.002541777 0.0004101906 281 275 0.001760065 -0.0002840383 282 275 -0.001288661 0.0002079635 283 275 0.0009826448 -0.0001585787 284 275 -0.0007727812 0.000124711 285 275 0.0006226054 -0.0001004757 286 275 -0.0005114288 8.253411e-05 287 275 0.0004268045 -6.887749e-05 288 275 -0.0003608797 5.823857e-05 289 275 0.0003085011 -4.978574e-05 290 275 -0.0002661734 4.295492e-05 291 275 0.0002314578 -3.735254e-05 292 275 -0.0002026106 3.26972e-05 293 275 0.0001783582 -2.878335e-05 294 275 -0.0001577525 2.545802e-05 295 275 0.000140076 -2.26054e-05 296 275 -0.0001247774 2.013652e-05 297 275 0.0001114272 -1.798207e-05 298 275 -9.968672e-05 1.608739e-05 299 275 8.928565e-05 -1.440887e-05 300 275 -8.000611e-05 1.291134e-05 301 275 7.167061e-05 -1.156616e-05 302 275 -6.413319e-05 1.034978e-05 303 275 5.727273e-05 -9.242642e-06 304 275 -5.098776e-05 8.228377e-06 305 275 4.519256e-05 -7.293151e-06 306 275 -3.981401e-05 6.425164e-06 307 275 3.478917e-05 -5.614257e-06 308 275 -3.00633e-05 4.851599e-06 309 275 2.558831e-05 -4.129428e-06 310 275 -2.132146e-05 3.440846e-06 311 275 1.722429e-05 -2.779647e-06 312 275 -1.326172e-05 2.14017e-06 313 275 9.401297e-06 -1.517176e-06 314 275 -5.612495e-06 9.057414e-07 315 275 1.866144e-06 -3.011573e-07 316 275 1.866144e-06 -3.011573e-07 317 275 -5.612495e-06 9.057414e-07 318 275 9.401297e-06 -1.517176e-06 319 275 -1.326172e-05 2.14017e-06 320 275 1.722429e-05 -2.779647e-06 321 275 -2.132146e-05 3.440846e-06 322 275 2.558831e-05 -4.129428e-06 323 275 -3.00633e-05 4.851599e-06 195 276 0.0005940177 4.503586e-05 243 276 -3.00633e-05 4.851599e-06 244 276 3.478917e-05 -5.614257e-06 245 276 -3.981401e-05 6.425164e-06 246 276 4.519256e-05 -7.293151e-06 247 276 -5.098776e-05 8.228377e-06 248 276 5.727273e-05 -9.242642e-06 249 276 -6.413319e-05 1.034978e-05 250 276 7.167061e-05 -1.156616e-05 251 276 -8.000611e-05 1.291134e-05 252 276 8.928565e-05 -1.440887e-05 253 276 -9.968672e-05 1.608739e-05 254 276 0.0001114272 -1.798207e-05 255 276 -0.0001247774 2.013652e-05 256 276 0.000140076 -2.26054e-05 257 276 -0.0001577525 2.545802e-05 258 276 0.0001783582 -2.878335e-05 259 276 -0.0002026106 3.26972e-05 260 276 0.0002314578 -3.735254e-05 261 276 -0.0002661734 4.295492e-05 262 276 0.0003085011 -4.978574e-05 263 276 -0.0003608797 5.823857e-05 264 276 0.0004268045 -6.887749e-05 265 276 -0.0005114288 8.253411e-05 266 276 0.0006226054 -0.0001004757 267 276 -0.0007727812 0.000124711 268 276 0.0009826448 -0.0001585787 269 276 -0.001288661 0.0002079635 270 276 0.001760065 -0.0002840383 271 276 -0.002541777 0.0004101906 272 276 0.003980742 -0.0006424099 273 276 -0.007089509 0.001144101 274 276 0.01597157 -0.002577484 275 276 -0.06393453 0.01031772 276 276 -0.3770515 -0.02644011 277 276 -0.06393453 0.01031772 278 276 0.01597157 -0.002577484 279 276 -0.007089509 0.001144101 280 276 0.003980742 -0.0006424099 281 276 -0.002541777 0.0004101906 282 276 0.001760065 -0.0002840383 283 276 -0.001288661 0.0002079635 284 276 0.0009826448 -0.0001585787 285 276 -0.0007727812 0.000124711 286 276 0.0006226054 -0.0001004757 287 276 -0.0005114288 8.253411e-05 288 276 0.0004268045 -6.887749e-05 289 276 -0.0003608797 5.823857e-05 290 276 0.0003085011 -4.978574e-05 291 276 -0.0002661734 4.295492e-05 292 276 0.0002314578 -3.735254e-05 293 276 -0.0002026106 3.26972e-05 294 276 0.0001783582 -2.878335e-05 295 276 -0.0001577525 2.545802e-05 296 276 0.000140076 -2.26054e-05 297 276 -0.0001247774 2.013652e-05 298 276 0.0001114272 -1.798207e-05 299 276 -9.968672e-05 1.608739e-05 300 276 8.928565e-05 -1.440887e-05 301 276 -8.000611e-05 1.291134e-05 302 276 7.167061e-05 -1.156616e-05 303 276 -6.413319e-05 1.034978e-05 304 276 5.727273e-05 -9.242642e-06 305 276 -5.098776e-05 8.228377e-06 306 276 4.519256e-05 -7.293151e-06 307 276 -3.981401e-05 6.425164e-06 308 276 3.478917e-05 -5.614257e-06 309 276 -3.00633e-05 4.851599e-06 310 276 2.558831e-05 -4.129428e-06 311 276 -2.132146e-05 3.440846e-06 312 276 1.722429e-05 -2.779647e-06 313 276 -1.326172e-05 2.14017e-06 314 276 9.401297e-06 -1.517176e-06 315 276 -5.612495e-06 9.057414e-07 316 276 1.866144e-06 -3.011573e-07 317 276 1.866144e-06 -3.011573e-07 318 276 -5.612495e-06 9.057414e-07 319 276 9.401297e-06 -1.517176e-06 320 276 -1.326172e-05 2.14017e-06 321 276 1.722429e-05 -2.779647e-06 322 276 -2.132146e-05 3.440846e-06 323 276 2.558831e-05 -4.129428e-06 196 277 0.0006092779 4.649497e-05 243 277 2.558831e-05 -4.129428e-06 244 277 -3.00633e-05 4.851599e-06 245 277 3.478917e-05 -5.614257e-06 246 277 -3.981401e-05 6.425164e-06 247 277 4.519256e-05 -7.293151e-06 248 277 -5.098776e-05 8.228377e-06 249 277 5.727273e-05 -9.242642e-06 250 277 -6.413319e-05 1.034978e-05 251 277 7.167061e-05 -1.156616e-05 252 277 -8.000611e-05 1.291134e-05 253 277 8.928565e-05 -1.440887e-05 254 277 -9.968672e-05 1.608739e-05 255 277 0.0001114272 -1.798207e-05 256 277 -0.0001247774 2.013652e-05 257 277 0.000140076 -2.26054e-05 258 277 -0.0001577525 2.545802e-05 259 277 0.0001783582 -2.878335e-05 260 277 -0.0002026106 3.26972e-05 261 277 0.0002314578 -3.735254e-05 262 277 -0.0002661734 4.295492e-05 263 277 0.0003085011 -4.978574e-05 264 277 -0.0003608797 5.823857e-05 265 277 0.0004268045 -6.887749e-05 266 277 -0.0005114288 8.253411e-05 267 277 0.0006226054 -0.0001004757 268 277 -0.0007727812 0.000124711 269 277 0.0009826448 -0.0001585787 270 277 -0.001288661 0.0002079635 271 277 0.001760065 -0.0002840383 272 277 -0.002541777 0.0004101906 273 277 0.003980742 -0.0006424099 274 277 -0.007089509 0.001144101 275 277 0.01597157 -0.002577484 276 277 -0.06393453 0.01031772 277 277 -0.3800659 -0.02574174 278 277 -0.06393453 0.01031772 279 277 0.01597157 -0.002577484 280 277 -0.007089509 0.001144101 281 277 0.003980742 -0.0006424099 282 277 -0.002541777 0.0004101906 283 277 0.001760065 -0.0002840383 284 277 -0.001288661 0.0002079635 285 277 0.0009826448 -0.0001585787 286 277 -0.0007727812 0.000124711 287 277 0.0006226054 -0.0001004757 288 277 -0.0005114288 8.253411e-05 289 277 0.0004268045 -6.887749e-05 290 277 -0.0003608797 5.823857e-05 291 277 0.0003085011 -4.978574e-05 292 277 -0.0002661734 4.295492e-05 293 277 0.0002314578 -3.735254e-05 294 277 -0.0002026106 3.26972e-05 295 277 0.0001783582 -2.878335e-05 296 277 -0.0001577525 2.545802e-05 297 277 0.000140076 -2.26054e-05 298 277 -0.0001247774 2.013652e-05 299 277 0.0001114272 -1.798207e-05 300 277 -9.968672e-05 1.608739e-05 301 277 8.928565e-05 -1.440887e-05 302 277 -8.000611e-05 1.291134e-05 303 277 7.167061e-05 -1.156616e-05 304 277 -6.413319e-05 1.034978e-05 305 277 5.727273e-05 -9.242642e-06 306 277 -5.098776e-05 8.228377e-06 307 277 4.519256e-05 -7.293151e-06 308 277 -3.981401e-05 6.425164e-06 309 277 3.478917e-05 -5.614257e-06 310 277 -3.00633e-05 4.851599e-06 311 277 2.558831e-05 -4.129428e-06 312 277 -2.132146e-05 3.440846e-06 313 277 1.722429e-05 -2.779647e-06 314 277 -1.326172e-05 2.14017e-06 315 277 9.401297e-06 -1.517176e-06 316 277 -5.612495e-06 9.057414e-07 317 277 1.866144e-06 -3.011573e-07 318 277 1.866144e-06 -3.011573e-07 319 277 -5.612495e-06 9.057414e-07 320 277 9.401297e-06 -1.517176e-06 321 277 -1.326172e-05 2.14017e-06 322 277 1.722429e-05 -2.779647e-06 323 277 -2.132146e-05 3.440846e-06 197 278 0.0006246159 4.796785e-05 243 278 -2.132146e-05 3.440846e-06 244 278 2.558831e-05 -4.129428e-06 245 278 -3.00633e-05 4.851599e-06 246 278 3.478917e-05 -5.614257e-06 247 278 -3.981401e-05 6.425164e-06 248 278 4.519256e-05 -7.293151e-06 249 278 -5.098776e-05 8.228377e-06 250 278 5.727273e-05 -9.242642e-06 251 278 -6.413319e-05 1.034978e-05 252 278 7.167061e-05 -1.156616e-05 253 278 -8.000611e-05 1.291134e-05 254 278 8.928565e-05 -1.440887e-05 255 278 -9.968672e-05 1.608739e-05 256 278 0.0001114272 -1.798207e-05 257 278 -0.0001247774 2.013652e-05 258 278 0.000140076 -2.26054e-05 259 278 -0.0001577525 2.545802e-05 260 278 0.0001783582 -2.878335e-05 261 278 -0.0002026106 3.26972e-05 262 278 0.0002314578 -3.735254e-05 263 278 -0.0002661734 4.295492e-05 264 278 0.0003085011 -4.978574e-05 265 278 -0.0003608797 5.823857e-05 266 278 0.0004268045 -6.887749e-05 267 278 -0.0005114288 8.253411e-05 268 278 0.0006226054 -0.0001004757 269 278 -0.0007727812 0.000124711 270 278 0.0009826448 -0.0001585787 271 278 -0.001288661 0.0002079635 272 278 0.001760065 -0.0002840383 273 278 -0.002541777 0.0004101906 274 278 0.003980742 -0.0006424099 275 278 -0.007089509 0.001144101 276 278 0.01597157 -0.002577484 277 278 -0.06393453 0.01031772 278 278 -0.3827834 -0.0250955 279 278 -0.06393453 0.01031772 280 278 0.01597157 -0.002577484 281 278 -0.007089509 0.001144101 282 278 0.003980742 -0.0006424099 283 278 -0.002541777 0.0004101906 284 278 0.001760065 -0.0002840383 285 278 -0.001288661 0.0002079635 286 278 0.0009826448 -0.0001585787 287 278 -0.0007727812 0.000124711 288 278 0.0006226054 -0.0001004757 289 278 -0.0005114288 8.253411e-05 290 278 0.0004268045 -6.887749e-05 291 278 -0.0003608797 5.823857e-05 292 278 0.0003085011 -4.978574e-05 293 278 -0.0002661734 4.295492e-05 294 278 0.0002314578 -3.735254e-05 295 278 -0.0002026106 3.26972e-05 296 278 0.0001783582 -2.878335e-05 297 278 -0.0001577525 2.545802e-05 298 278 0.000140076 -2.26054e-05 299 278 -0.0001247774 2.013652e-05 300 278 0.0001114272 -1.798207e-05 301 278 -9.968672e-05 1.608739e-05 302 278 8.928565e-05 -1.440887e-05 303 278 -8.000611e-05 1.291134e-05 304 278 7.167061e-05 -1.156616e-05 305 278 -6.413319e-05 1.034978e-05 306 278 5.727273e-05 -9.242642e-06 307 278 -5.098776e-05 8.228377e-06 308 278 4.519256e-05 -7.293151e-06 309 278 -3.981401e-05 6.425164e-06 310 278 3.478917e-05 -5.614257e-06 311 278 -3.00633e-05 4.851599e-06 312 278 2.558831e-05 -4.129428e-06 313 278 -2.132146e-05 3.440846e-06 314 278 1.722429e-05 -2.779647e-06 315 278 -1.326172e-05 2.14017e-06 316 278 9.401297e-06 -1.517176e-06 317 278 -5.612495e-06 9.057414e-07 318 278 1.866144e-06 -3.011573e-07 319 278 1.866144e-06 -3.011573e-07 320 278 -5.612495e-06 9.057414e-07 321 278 9.401297e-06 -1.517176e-06 322 278 -1.326172e-05 2.14017e-06 323 278 1.722429e-05 -2.779647e-06 198 279 0.0006400319 4.945462e-05 243 279 1.722429e-05 -2.779647e-06 244 279 -2.132146e-05 3.440846e-06 245 279 2.558831e-05 -4.129428e-06 246 279 -3.00633e-05 4.851599e-06 247 279 3.478917e-05 -5.614257e-06 248 279 -3.981401e-05 6.425164e-06 249 279 4.519256e-05 -7.293151e-06 250 279 -5.098776e-05 8.228377e-06 251 279 5.727273e-05 -9.242642e-06 252 279 -6.413319e-05 1.034978e-05 253 279 7.167061e-05 -1.156616e-05 254 279 -8.000611e-05 1.291134e-05 255 279 8.928565e-05 -1.440887e-05 256 279 -9.968672e-05 1.608739e-05 257 279 0.0001114272 -1.798207e-05 258 279 -0.0001247774 2.013652e-05 259 279 0.000140076 -2.26054e-05 260 279 -0.0001577525 2.545802e-05 261 279 0.0001783582 -2.878335e-05 262 279 -0.0002026106 3.26972e-05 263 279 0.0002314578 -3.735254e-05 264 279 -0.0002661734 4.295492e-05 265 279 0.0003085011 -4.978574e-05 266 279 -0.0003608797 5.823857e-05 267 279 0.0004268045 -6.887749e-05 268 279 -0.0005114288 8.253411e-05 269 279 0.0006226054 -0.0001004757 270 279 -0.0007727812 0.000124711 271 279 0.0009826448 -0.0001585787 272 279 -0.001288661 0.0002079635 273 279 0.001760065 -0.0002840383 274 279 -0.002541777 0.0004101906 275 279 0.003980742 -0.0006424099 276 279 -0.007089509 0.001144101 277 279 0.01597157 -0.002577484 278 279 -0.06393453 0.01031772 279 279 -0.3852349 -0.02449727 280 279 -0.06393453 0.01031772 281 279 0.01597157 -0.002577484 282 279 -0.007089509 0.001144101 283 279 0.003980742 -0.0006424099 284 279 -0.002541777 0.0004101906 285 279 0.001760065 -0.0002840383 286 279 -0.001288661 0.0002079635 287 279 0.0009826448 -0.0001585787 288 279 -0.0007727812 0.000124711 289 279 0.0006226054 -0.0001004757 290 279 -0.0005114288 8.253411e-05 291 279 0.0004268045 -6.887749e-05 292 279 -0.0003608797 5.823857e-05 293 279 0.0003085011 -4.978574e-05 294 279 -0.0002661734 4.295492e-05 295 279 0.0002314578 -3.735254e-05 296 279 -0.0002026106 3.26972e-05 297 279 0.0001783582 -2.878335e-05 298 279 -0.0001577525 2.545802e-05 299 279 0.000140076 -2.26054e-05 300 279 -0.0001247774 2.013652e-05 301 279 0.0001114272 -1.798207e-05 302 279 -9.968672e-05 1.608739e-05 303 279 8.928565e-05 -1.440887e-05 304 279 -8.000611e-05 1.291134e-05 305 279 7.167061e-05 -1.156616e-05 306 279 -6.413319e-05 1.034978e-05 307 279 5.727273e-05 -9.242642e-06 308 279 -5.098776e-05 8.228377e-06 309 279 4.519256e-05 -7.293151e-06 310 279 -3.981401e-05 6.425164e-06 311 279 3.478917e-05 -5.614257e-06 312 279 -3.00633e-05 4.851599e-06 313 279 2.558831e-05 -4.129428e-06 314 279 -2.132146e-05 3.440846e-06 315 279 1.722429e-05 -2.779647e-06 316 279 -1.326172e-05 2.14017e-06 317 279 9.401297e-06 -1.517176e-06 318 279 -5.612495e-06 9.057414e-07 319 279 1.866144e-06 -3.011573e-07 320 279 1.866144e-06 -3.011573e-07 321 279 -5.612495e-06 9.057414e-07 322 279 9.401297e-06 -1.517176e-06 323 279 -1.326172e-05 2.14017e-06 199 280 0.0006555264 5.095537e-05 243 280 -1.326172e-05 2.14017e-06 244 280 1.722429e-05 -2.779647e-06 245 280 -2.132146e-05 3.440846e-06 246 280 2.558831e-05 -4.129428e-06 247 280 -3.00633e-05 4.851599e-06 248 280 3.478917e-05 -5.614257e-06 249 280 -3.981401e-05 6.425164e-06 250 280 4.519256e-05 -7.293151e-06 251 280 -5.098776e-05 8.228377e-06 252 280 5.727273e-05 -9.242642e-06 253 280 -6.413319e-05 1.034978e-05 254 280 7.167061e-05 -1.156616e-05 255 280 -8.000611e-05 1.291134e-05 256 280 8.928565e-05 -1.440887e-05 257 280 -9.968672e-05 1.608739e-05 258 280 0.0001114272 -1.798207e-05 259 280 -0.0001247774 2.013652e-05 260 280 0.000140076 -2.26054e-05 261 280 -0.0001577525 2.545802e-05 262 280 0.0001783582 -2.878335e-05 263 280 -0.0002026106 3.26972e-05 264 280 0.0002314578 -3.735254e-05 265 280 -0.0002661734 4.295492e-05 266 280 0.0003085011 -4.978574e-05 267 280 -0.0003608797 5.823857e-05 268 280 0.0004268045 -6.887749e-05 269 280 -0.0005114288 8.253411e-05 270 280 0.0006226054 -0.0001004757 271 280 -0.0007727812 0.000124711 272 280 0.0009826448 -0.0001585787 273 280 -0.001288661 0.0002079635 274 280 0.001760065 -0.0002840383 275 280 -0.002541777 0.0004101906 276 280 0.003980742 -0.0006424099 277 280 -0.007089509 0.001144101 278 280 0.01597157 -0.002577484 279 280 -0.06393453 0.01031772 280 280 -0.3874478 -0.02394331 281 280 -0.06393453 0.01031772 282 280 0.01597157 -0.002577484 283 280 -0.007089509 0.001144101 284 280 0.003980742 -0.0006424099 285 280 -0.002541777 0.0004101906 286 280 0.001760065 -0.0002840383 287 280 -0.001288661 0.0002079635 288 280 0.0009826448 -0.0001585787 289 280 -0.0007727812 0.000124711 290 280 0.0006226054 -0.0001004757 291 280 -0.0005114288 8.253411e-05 292 280 0.0004268045 -6.887749e-05 293 280 -0.0003608797 5.823857e-05 294 280 0.0003085011 -4.978574e-05 295 280 -0.0002661734 4.295492e-05 296 280 0.0002314578 -3.735254e-05 297 280 -0.0002026106 3.26972e-05 298 280 0.0001783582 -2.878335e-05 299 280 -0.0001577525 2.545802e-05 300 280 0.000140076 -2.26054e-05 301 280 -0.0001247774 2.013652e-05 302 280 0.0001114272 -1.798207e-05 303 280 -9.968672e-05 1.608739e-05 304 280 8.928565e-05 -1.440887e-05 305 280 -8.000611e-05 1.291134e-05 306 280 7.167061e-05 -1.156616e-05 307 280 -6.413319e-05 1.034978e-05 308 280 5.727273e-05 -9.242642e-06 309 280 -5.098776e-05 8.228377e-06 310 280 4.519256e-05 -7.293151e-06 311 280 -3.981401e-05 6.425164e-06 312 280 3.478917e-05 -5.614257e-06 313 280 -3.00633e-05 4.851599e-06 314 280 2.558831e-05 -4.129428e-06 315 280 -2.132146e-05 3.440846e-06 316 280 1.722429e-05 -2.779647e-06 317 280 -1.326172e-05 2.14017e-06 318 280 9.401297e-06 -1.517176e-06 319 280 -5.612495e-06 9.057414e-07 320 280 1.866144e-06 -3.011573e-07 321 280 1.866144e-06 -3.011573e-07 322 280 -5.612495e-06 9.057414e-07 323 280 9.401297e-06 -1.517176e-06 200 281 0.0006710998 5.247021e-05 243 281 9.401297e-06 -1.517176e-06 244 281 -1.326172e-05 2.14017e-06 245 281 1.722429e-05 -2.779647e-06 246 281 -2.132146e-05 3.440846e-06 247 281 2.558831e-05 -4.129428e-06 248 281 -3.00633e-05 4.851599e-06 249 281 3.478917e-05 -5.614257e-06 250 281 -3.981401e-05 6.425164e-06 251 281 4.519256e-05 -7.293151e-06 252 281 -5.098776e-05 8.228377e-06 253 281 5.727273e-05 -9.242642e-06 254 281 -6.413319e-05 1.034978e-05 255 281 7.167061e-05 -1.156616e-05 256 281 -8.000611e-05 1.291134e-05 257 281 8.928565e-05 -1.440887e-05 258 281 -9.968672e-05 1.608739e-05 259 281 0.0001114272 -1.798207e-05 260 281 -0.0001247774 2.013652e-05 261 281 0.000140076 -2.26054e-05 262 281 -0.0001577525 2.545802e-05 263 281 0.0001783582 -2.878335e-05 264 281 -0.0002026106 3.26972e-05 265 281 0.0002314578 -3.735254e-05 266 281 -0.0002661734 4.295492e-05 267 281 0.0003085011 -4.978574e-05 268 281 -0.0003608797 5.823857e-05 269 281 0.0004268045 -6.887749e-05 270 281 -0.0005114288 8.253411e-05 271 281 0.0006226054 -0.0001004757 272 281 -0.0007727812 0.000124711 273 281 0.0009826448 -0.0001585787 274 281 -0.001288661 0.0002079635 275 281 0.001760065 -0.0002840383 276 281 -0.002541777 0.0004101906 277 281 0.003980742 -0.0006424099 278 281 -0.007089509 0.001144101 279 281 0.01597157 -0.002577484 280 281 -0.06393453 0.01031772 281 281 -0.3894467 -0.02343019 282 281 -0.06393453 0.01031772 283 281 0.01597157 -0.002577484 284 281 -0.007089509 0.001144101 285 281 0.003980742 -0.0006424099 286 281 -0.002541777 0.0004101906 287 281 0.001760065 -0.0002840383 288 281 -0.001288661 0.0002079635 289 281 0.0009826448 -0.0001585787 290 281 -0.0007727812 0.000124711 291 281 0.0006226054 -0.0001004757 292 281 -0.0005114288 8.253411e-05 293 281 0.0004268045 -6.887749e-05 294 281 -0.0003608797 5.823857e-05 295 281 0.0003085011 -4.978574e-05 296 281 -0.0002661734 4.295492e-05 297 281 0.0002314578 -3.735254e-05 298 281 -0.0002026106 3.26972e-05 299 281 0.0001783582 -2.878335e-05 300 281 -0.0001577525 2.545802e-05 301 281 0.000140076 -2.26054e-05 302 281 -0.0001247774 2.013652e-05 303 281 0.0001114272 -1.798207e-05 304 281 -9.968672e-05 1.608739e-05 305 281 8.928565e-05 -1.440887e-05 306 281 -8.000611e-05 1.291134e-05 307 281 7.167061e-05 -1.156616e-05 308 281 -6.413319e-05 1.034978e-05 309 281 5.727273e-05 -9.242642e-06 310 281 -5.098776e-05 8.228377e-06 311 281 4.519256e-05 -7.293151e-06 312 281 -3.981401e-05 6.425164e-06 313 281 3.478917e-05 -5.614257e-06 314 281 -3.00633e-05 4.851599e-06 315 281 2.558831e-05 -4.129428e-06 316 281 -2.132146e-05 3.440846e-06 317 281 1.722429e-05 -2.779647e-06 318 281 -1.326172e-05 2.14017e-06 319 281 9.401297e-06 -1.517176e-06 320 281 -5.612495e-06 9.057414e-07 321 281 1.866144e-06 -3.011573e-07 322 281 1.866144e-06 -3.011573e-07 323 281 -5.612495e-06 9.057414e-07 201 282 0.0006867524 5.399924e-05 243 282 -5.612495e-06 9.057414e-07 244 282 9.401297e-06 -1.517176e-06 245 282 -1.326172e-05 2.14017e-06 246 282 1.722429e-05 -2.779647e-06 247 282 -2.132146e-05 3.440846e-06 248 282 2.558831e-05 -4.129428e-06 249 282 -3.00633e-05 4.851599e-06 250 282 3.478917e-05 -5.614257e-06 251 282 -3.981401e-05 6.425164e-06 252 282 4.519256e-05 -7.293151e-06 253 282 -5.098776e-05 8.228377e-06 254 282 5.727273e-05 -9.242642e-06 255 282 -6.413319e-05 1.034978e-05 256 282 7.167061e-05 -1.156616e-05 257 282 -8.000611e-05 1.291134e-05 258 282 8.928565e-05 -1.440887e-05 259 282 -9.968672e-05 1.608739e-05 260 282 0.0001114272 -1.798207e-05 261 282 -0.0001247774 2.013652e-05 262 282 0.000140076 -2.26054e-05 263 282 -0.0001577525 2.545802e-05 264 282 0.0001783582 -2.878335e-05 265 282 -0.0002026106 3.26972e-05 266 282 0.0002314578 -3.735254e-05 267 282 -0.0002661734 4.295492e-05 268 282 0.0003085011 -4.978574e-05 269 282 -0.0003608797 5.823857e-05 270 282 0.0004268045 -6.887749e-05 271 282 -0.0005114288 8.253411e-05 272 282 0.0006226054 -0.0001004757 273 282 -0.0007727812 0.000124711 274 282 0.0009826448 -0.0001585787 275 282 -0.001288661 0.0002079635 276 282 0.001760065 -0.0002840383 277 282 -0.002541777 0.0004101906 278 282 0.003980742 -0.0006424099 279 282 -0.007089509 0.001144101 280 282 0.01597157 -0.002577484 281 282 -0.06393453 0.01031772 282 282 -0.3912532 -0.02295479 283 282 -0.06393453 0.01031772 284 282 0.01597157 -0.002577484 285 282 -0.007089509 0.001144101 286 282 0.003980742 -0.0006424099 287 282 -0.002541777 0.0004101906 288 282 0.001760065 -0.0002840383 289 282 -0.001288661 0.0002079635 290 282 0.0009826448 -0.0001585787 291 282 -0.0007727812 0.000124711 292 282 0.0006226054 -0.0001004757 293 282 -0.0005114288 8.253411e-05 294 282 0.0004268045 -6.887749e-05 295 282 -0.0003608797 5.823857e-05 296 282 0.0003085011 -4.978574e-05 297 282 -0.0002661734 4.295492e-05 298 282 0.0002314578 -3.735254e-05 299 282 -0.0002026106 3.26972e-05 300 282 0.0001783582 -2.878335e-05 301 282 -0.0001577525 2.545802e-05 302 282 0.000140076 -2.26054e-05 303 282 -0.0001247774 2.013652e-05 304 282 0.0001114272 -1.798207e-05 305 282 -9.968672e-05 1.608739e-05 306 282 8.928565e-05 -1.440887e-05 307 282 -8.000611e-05 1.291134e-05 308 282 7.167061e-05 -1.156616e-05 309 282 -6.413319e-05 1.034978e-05 310 282 5.727273e-05 -9.242642e-06 311 282 -5.098776e-05 8.228377e-06 312 282 4.519256e-05 -7.293151e-06 313 282 -3.981401e-05 6.425164e-06 314 282 3.478917e-05 -5.614257e-06 315 282 -3.00633e-05 4.851599e-06 316 282 2.558831e-05 -4.129428e-06 317 282 -2.132146e-05 3.440846e-06 318 282 1.722429e-05 -2.779647e-06 319 282 -1.326172e-05 2.14017e-06 320 282 9.401297e-06 -1.517176e-06 321 282 -5.612495e-06 9.057414e-07 322 282 1.866144e-06 -3.011573e-07 323 282 1.866144e-06 -3.011573e-07 202 283 0.0007024847 5.554257e-05 243 283 1.866144e-06 -3.011573e-07 244 283 -5.612495e-06 9.057414e-07 245 283 9.401297e-06 -1.517176e-06 246 283 -1.326172e-05 2.14017e-06 247 283 1.722429e-05 -2.779647e-06 248 283 -2.132146e-05 3.440846e-06 249 283 2.558831e-05 -4.129428e-06 250 283 -3.00633e-05 4.851599e-06 251 283 3.478917e-05 -5.614257e-06 252 283 -3.981401e-05 6.425164e-06 253 283 4.519256e-05 -7.293151e-06 254 283 -5.098776e-05 8.228377e-06 255 283 5.727273e-05 -9.242642e-06 256 283 -6.413319e-05 1.034978e-05 257 283 7.167061e-05 -1.156616e-05 258 283 -8.000611e-05 1.291134e-05 259 283 8.928565e-05 -1.440887e-05 260 283 -9.968672e-05 1.608739e-05 261 283 0.0001114272 -1.798207e-05 262 283 -0.0001247774 2.013652e-05 263 283 0.000140076 -2.26054e-05 264 283 -0.0001577525 2.545802e-05 265 283 0.0001783582 -2.878335e-05 266 283 -0.0002026106 3.26972e-05 267 283 0.0002314578 -3.735254e-05 268 283 -0.0002661734 4.295492e-05 269 283 0.0003085011 -4.978574e-05 270 283 -0.0003608797 5.823857e-05 271 283 0.0004268045 -6.887749e-05 272 283 -0.0005114288 8.253411e-05 273 283 0.0006226054 -0.0001004757 274 283 -0.0007727812 0.000124711 275 283 0.0009826448 -0.0001585787 276 283 -0.001288661 0.0002079635 277 283 0.001760065 -0.0002840383 278 283 -0.002541777 0.0004101906 279 283 0.003980742 -0.0006424099 280 283 -0.007089509 0.001144101 281 283 0.01597157 -0.002577484 282 283 -0.06393453 0.01031772 283 283 -0.3928867 -0.02251421 284 283 -0.06393453 0.01031772 285 283 0.01597157 -0.002577484 286 283 -0.007089509 0.001144101 287 283 0.003980742 -0.0006424099 288 283 -0.002541777 0.0004101906 289 283 0.001760065 -0.0002840383 290 283 -0.001288661 0.0002079635 291 283 0.0009826448 -0.0001585787 292 283 -0.0007727812 0.000124711 293 283 0.0006226054 -0.0001004757 294 283 -0.0005114288 8.253411e-05 295 283 0.0004268045 -6.887749e-05 296 283 -0.0003608797 5.823857e-05 297 283 0.0003085011 -4.978574e-05 298 283 -0.0002661734 4.295492e-05 299 283 0.0002314578 -3.735254e-05 300 283 -0.0002026106 3.26972e-05 301 283 0.0001783582 -2.878335e-05 302 283 -0.0001577525 2.545802e-05 303 283 0.000140076 -2.26054e-05 304 283 -0.0001247774 2.013652e-05 305 283 0.0001114272 -1.798207e-05 306 283 -9.968672e-05 1.608739e-05 307 283 8.928565e-05 -1.440887e-05 308 283 -8.000611e-05 1.291134e-05 309 283 7.167061e-05 -1.156616e-05 310 283 -6.413319e-05 1.034978e-05 311 283 5.727273e-05 -9.242642e-06 312 283 -5.098776e-05 8.228377e-06 313 283 4.519256e-05 -7.293151e-06 314 283 -3.981401e-05 6.425164e-06 315 283 3.478917e-05 -5.614257e-06 316 283 -3.00633e-05 4.851599e-06 317 283 2.558831e-05 -4.129428e-06 318 283 -2.132146e-05 3.440846e-06 319 283 1.722429e-05 -2.779647e-06 320 283 -1.326172e-05 2.14017e-06 321 283 9.401297e-06 -1.517176e-06 322 283 -5.612495e-06 9.057414e-07 323 283 1.866144e-06 -3.011573e-07 203 284 0.000718297 5.71003e-05 243 284 1.866144e-06 -3.011573e-07 244 284 1.866144e-06 -3.011573e-07 245 284 -5.612495e-06 9.057414e-07 246 284 9.401297e-06 -1.517176e-06 247 284 -1.326172e-05 2.14017e-06 248 284 1.722429e-05 -2.779647e-06 249 284 -2.132146e-05 3.440846e-06 250 284 2.558831e-05 -4.129428e-06 251 284 -3.00633e-05 4.851599e-06 252 284 3.478917e-05 -5.614257e-06 253 284 -3.981401e-05 6.425164e-06 254 284 4.519256e-05 -7.293151e-06 255 284 -5.098776e-05 8.228377e-06 256 284 5.727273e-05 -9.242642e-06 257 284 -6.413319e-05 1.034978e-05 258 284 7.167061e-05 -1.156616e-05 259 284 -8.000611e-05 1.291134e-05 260 284 8.928565e-05 -1.440887e-05 261 284 -9.968672e-05 1.608739e-05 262 284 0.0001114272 -1.798207e-05 263 284 -0.0001247774 2.013652e-05 264 284 0.000140076 -2.26054e-05 265 284 -0.0001577525 2.545802e-05 266 284 0.0001783582 -2.878335e-05 267 284 -0.0002026106 3.26972e-05 268 284 0.0002314578 -3.735254e-05 269 284 -0.0002661734 4.295492e-05 270 284 0.0003085011 -4.978574e-05 271 284 -0.0003608797 5.823857e-05 272 284 0.0004268045 -6.887749e-05 273 284 -0.0005114288 8.253411e-05 274 284 0.0006226054 -0.0001004757 275 284 -0.0007727812 0.000124711 276 284 0.0009826448 -0.0001585787 277 284 -0.001288661 0.0002079635 278 284 0.001760065 -0.0002840383 279 284 -0.002541777 0.0004101906 280 284 0.003980742 -0.0006424099 281 284 -0.007089509 0.001144101 282 284 0.01597157 -0.002577484 283 284 -0.06393453 0.01031772 284 284 -0.3943643 -0.02210584 285 284 -0.06393453 0.01031772 286 284 0.01597157 -0.002577484 287 284 -0.007089509 0.001144101 288 284 0.003980742 -0.0006424099 289 284 -0.002541777 0.0004101906 290 284 0.001760065 -0.0002840383 291 284 -0.001288661 0.0002079635 292 284 0.0009826448 -0.0001585787 293 284 -0.0007727812 0.000124711 294 284 0.0006226054 -0.0001004757 295 284 -0.0005114288 8.253411e-05 296 284 0.0004268045 -6.887749e-05 297 284 -0.0003608797 5.823857e-05 298 284 0.0003085011 -4.978574e-05 299 284 -0.0002661734 4.295492e-05 300 284 0.0002314578 -3.735254e-05 301 284 -0.0002026106 3.26972e-05 302 284 0.0001783582 -2.878335e-05 303 284 -0.0001577525 2.545802e-05 304 284 0.000140076 -2.26054e-05 305 284 -0.0001247774 2.013652e-05 306 284 0.0001114272 -1.798207e-05 307 284 -9.968672e-05 1.608739e-05 308 284 8.928565e-05 -1.440887e-05 309 284 -8.000611e-05 1.291134e-05 310 284 7.167061e-05 -1.156616e-05 311 284 -6.413319e-05 1.034978e-05 312 284 5.727273e-05 -9.242642e-06 313 284 -5.098776e-05 8.228377e-06 314 284 4.519256e-05 -7.293151e-06 315 284 -3.981401e-05 6.425164e-06 316 284 3.478917e-05 -5.614257e-06 317 284 -3.00633e-05 4.851599e-06 318 284 2.558831e-05 -4.129428e-06 319 284 -2.132146e-05 3.440846e-06 320 284 1.722429e-05 -2.779647e-06 321 284 -1.326172e-05 2.14017e-06 322 284 9.401297e-06 -1.517176e-06 323 284 -5.612495e-06 9.057414e-07 204 285 0.0007341899 5.867254e-05 243 285 -5.612495e-06 9.057414e-07 244 285 1.866144e-06 -3.011573e-07 245 285 1.866144e-06 -3.011573e-07 246 285 -5.612495e-06 9.057414e-07 247 285 9.401297e-06 -1.517176e-06 248 285 -1.326172e-05 2.14017e-06 249 285 1.722429e-05 -2.779647e-06 250 285 -2.132146e-05 3.440846e-06 251 285 2.558831e-05 -4.129428e-06 252 285 -3.00633e-05 4.851599e-06 253 285 3.478917e-05 -5.614257e-06 254 285 -3.981401e-05 6.425164e-06 255 285 4.519256e-05 -7.293151e-06 256 285 -5.098776e-05 8.228377e-06 257 285 5.727273e-05 -9.242642e-06 258 285 -6.413319e-05 1.034978e-05 259 285 7.167061e-05 -1.156616e-05 260 285 -8.000611e-05 1.291134e-05 261 285 8.928565e-05 -1.440887e-05 262 285 -9.968672e-05 1.608739e-05 263 285 0.0001114272 -1.798207e-05 264 285 -0.0001247774 2.013652e-05 265 285 0.000140076 -2.26054e-05 266 285 -0.0001577525 2.545802e-05 267 285 0.0001783582 -2.878335e-05 268 285 -0.0002026106 3.26972e-05 269 285 0.0002314578 -3.735254e-05 270 285 -0.0002661734 4.295492e-05 271 285 0.0003085011 -4.978574e-05 272 285 -0.0003608797 5.823857e-05 273 285 0.0004268045 -6.887749e-05 274 285 -0.0005114288 8.253411e-05 275 285 0.0006226054 -0.0001004757 276 285 -0.0007727812 0.000124711 277 285 0.0009826448 -0.0001585787 278 285 -0.001288661 0.0002079635 279 285 0.001760065 -0.0002840383 280 285 -0.002541777 0.0004101906 281 285 0.003980742 -0.0006424099 282 285 -0.007089509 0.001144101 283 285 0.01597157 -0.002577484 284 285 -0.06393453 0.01031772 285 285 -0.3957016 -0.02172727 286 285 -0.06393453 0.01031772 287 285 0.01597157 -0.002577484 288 285 -0.007089509 0.001144101 289 285 0.003980742 -0.0006424099 290 285 -0.002541777 0.0004101906 291 285 0.001760065 -0.0002840383 292 285 -0.001288661 0.0002079635 293 285 0.0009826448 -0.0001585787 294 285 -0.0007727812 0.000124711 295 285 0.0006226054 -0.0001004757 296 285 -0.0005114288 8.253411e-05 297 285 0.0004268045 -6.887749e-05 298 285 -0.0003608797 5.823857e-05 299 285 0.0003085011 -4.978574e-05 300 285 -0.0002661734 4.295492e-05 301 285 0.0002314578 -3.735254e-05 302 285 -0.0002026106 3.26972e-05 303 285 0.0001783582 -2.878335e-05 304 285 -0.0001577525 2.545802e-05 305 285 0.000140076 -2.26054e-05 306 285 -0.0001247774 2.013652e-05 307 285 0.0001114272 -1.798207e-05 308 285 -9.968672e-05 1.608739e-05 309 285 8.928565e-05 -1.440887e-05 310 285 -8.000611e-05 1.291134e-05 311 285 7.167061e-05 -1.156616e-05 312 285 -6.413319e-05 1.034978e-05 313 285 5.727273e-05 -9.242642e-06 314 285 -5.098776e-05 8.228377e-06 315 285 4.519256e-05 -7.293151e-06 316 285 -3.981401e-05 6.425164e-06 317 285 3.478917e-05 -5.614257e-06 318 285 -3.00633e-05 4.851599e-06 319 285 2.558831e-05 -4.129428e-06 320 285 -2.132146e-05 3.440846e-06 321 285 1.722429e-05 -2.779647e-06 322 285 -1.326172e-05 2.14017e-06 323 285 9.401297e-06 -1.517176e-06 205 286 0.0007501636 6.025941e-05 243 286 9.401297e-06 -1.517176e-06 244 286 -5.612495e-06 9.057414e-07 245 286 1.866144e-06 -3.011573e-07 246 286 1.866144e-06 -3.011573e-07 247 286 -5.612495e-06 9.057414e-07 248 286 9.401297e-06 -1.517176e-06 249 286 -1.326172e-05 2.14017e-06 250 286 1.722429e-05 -2.779647e-06 251 286 -2.132146e-05 3.440846e-06 252 286 2.558831e-05 -4.129428e-06 253 286 -3.00633e-05 4.851599e-06 254 286 3.478917e-05 -5.614257e-06 255 286 -3.981401e-05 6.425164e-06 256 286 4.519256e-05 -7.293151e-06 257 286 -5.098776e-05 8.228377e-06 258 286 5.727273e-05 -9.242642e-06 259 286 -6.413319e-05 1.034978e-05 260 286 7.167061e-05 -1.156616e-05 261 286 -8.000611e-05 1.291134e-05 262 286 8.928565e-05 -1.440887e-05 263 286 -9.968672e-05 1.608739e-05 264 286 0.0001114272 -1.798207e-05 265 286 -0.0001247774 2.013652e-05 266 286 0.000140076 -2.26054e-05 267 286 -0.0001577525 2.545802e-05 268 286 0.0001783582 -2.878335e-05 269 286 -0.0002026106 3.26972e-05 270 286 0.0002314578 -3.735254e-05 271 286 -0.0002661734 4.295492e-05 272 286 0.0003085011 -4.978574e-05 273 286 -0.0003608797 5.823857e-05 274 286 0.0004268045 -6.887749e-05 275 286 -0.0005114288 8.253411e-05 276 286 0.0006226054 -0.0001004757 277 286 -0.0007727812 0.000124711 278 286 0.0009826448 -0.0001585787 279 286 -0.001288661 0.0002079635 280 286 0.001760065 -0.0002840383 281 286 -0.002541777 0.0004101906 282 286 0.003980742 -0.0006424099 283 286 -0.007089509 0.001144101 284 286 0.01597157 -0.002577484 285 286 -0.06393453 0.01031772 286 286 -0.3969123 -0.02137626 287 286 -0.06393453 0.01031772 288 286 0.01597157 -0.002577484 289 286 -0.007089509 0.001144101 290 286 0.003980742 -0.0006424099 291 286 -0.002541777 0.0004101906 292 286 0.001760065 -0.0002840383 293 286 -0.001288661 0.0002079635 294 286 0.0009826448 -0.0001585787 295 286 -0.0007727812 0.000124711 296 286 0.0006226054 -0.0001004757 297 286 -0.0005114288 8.253411e-05 298 286 0.0004268045 -6.887749e-05 299 286 -0.0003608797 5.823857e-05 300 286 0.0003085011 -4.978574e-05 301 286 -0.0002661734 4.295492e-05 302 286 0.0002314578 -3.735254e-05 303 286 -0.0002026106 3.26972e-05 304 286 0.0001783582 -2.878335e-05 305 286 -0.0001577525 2.545802e-05 306 286 0.000140076 -2.26054e-05 307 286 -0.0001247774 2.013652e-05 308 286 0.0001114272 -1.798207e-05 309 286 -9.968672e-05 1.608739e-05 310 286 8.928565e-05 -1.440887e-05 311 286 -8.000611e-05 1.291134e-05 312 286 7.167061e-05 -1.156616e-05 313 286 -6.413319e-05 1.034978e-05 314 286 5.727273e-05 -9.242642e-06 315 286 -5.098776e-05 8.228377e-06 316 286 4.519256e-05 -7.293151e-06 317 286 -3.981401e-05 6.425164e-06 318 286 3.478917e-05 -5.614257e-06 319 286 -3.00633e-05 4.851599e-06 320 286 2.558831e-05 -4.129428e-06 321 286 -2.132146e-05 3.440846e-06 322 286 1.722429e-05 -2.779647e-06 323 286 -1.326172e-05 2.14017e-06 206 287 0.0007662186 6.186099e-05 243 287 -1.326172e-05 2.14017e-06 244 287 9.401297e-06 -1.517176e-06 245 287 -5.612495e-06 9.057414e-07 246 287 1.866144e-06 -3.011573e-07 247 287 1.866144e-06 -3.011573e-07 248 287 -5.612495e-06 9.057414e-07 249 287 9.401297e-06 -1.517176e-06 250 287 -1.326172e-05 2.14017e-06 251 287 1.722429e-05 -2.779647e-06 252 287 -2.132146e-05 3.440846e-06 253 287 2.558831e-05 -4.129428e-06 254 287 -3.00633e-05 4.851599e-06 255 287 3.478917e-05 -5.614257e-06 256 287 -3.981401e-05 6.425164e-06 257 287 4.519256e-05 -7.293151e-06 258 287 -5.098776e-05 8.228377e-06 259 287 5.727273e-05 -9.242642e-06 260 287 -6.413319e-05 1.034978e-05 261 287 7.167061e-05 -1.156616e-05 262 287 -8.000611e-05 1.291134e-05 263 287 8.928565e-05 -1.440887e-05 264 287 -9.968672e-05 1.608739e-05 265 287 0.0001114272 -1.798207e-05 266 287 -0.0001247774 2.013652e-05 267 287 0.000140076 -2.26054e-05 268 287 -0.0001577525 2.545802e-05 269 287 0.0001783582 -2.878335e-05 270 287 -0.0002026106 3.26972e-05 271 287 0.0002314578 -3.735254e-05 272 287 -0.0002661734 4.295492e-05 273 287 0.0003085011 -4.978574e-05 274 287 -0.0003608797 5.823857e-05 275 287 0.0004268045 -6.887749e-05 276 287 -0.0005114288 8.253411e-05 277 287 0.0006226054 -0.0001004757 278 287 -0.0007727812 0.000124711 279 287 0.0009826448 -0.0001585787 280 287 -0.001288661 0.0002079635 281 287 0.001760065 -0.0002840383 282 287 -0.002541777 0.0004101906 283 287 0.003980742 -0.0006424099 284 287 -0.007089509 0.001144101 285 287 0.01597157 -0.002577484 286 287 -0.06393453 0.01031772 287 287 -0.3980087 -0.02105079 288 287 -0.06393453 0.01031772 289 287 0.01597157 -0.002577484 290 287 -0.007089509 0.001144101 291 287 0.003980742 -0.0006424099 292 287 -0.002541777 0.0004101906 293 287 0.001760065 -0.0002840383 294 287 -0.001288661 0.0002079635 295 287 0.0009826448 -0.0001585787 296 287 -0.0007727812 0.000124711 297 287 0.0006226054 -0.0001004757 298 287 -0.0005114288 8.253411e-05 299 287 0.0004268045 -6.887749e-05 300 287 -0.0003608797 5.823857e-05 301 287 0.0003085011 -4.978574e-05 302 287 -0.0002661734 4.295492e-05 303 287 0.0002314578 -3.735254e-05 304 287 -0.0002026106 3.26972e-05 305 287 0.0001783582 -2.878335e-05 306 287 -0.0001577525 2.545802e-05 307 287 0.000140076 -2.26054e-05 308 287 -0.0001247774 2.013652e-05 309 287 0.0001114272 -1.798207e-05 310 287 -9.968672e-05 1.608739e-05 311 287 8.928565e-05 -1.440887e-05 312 287 -8.000611e-05 1.291134e-05 313 287 7.167061e-05 -1.156616e-05 314 287 -6.413319e-05 1.034978e-05 315 287 5.727273e-05 -9.242642e-06 316 287 -5.098776e-05 8.228377e-06 317 287 4.519256e-05 -7.293151e-06 318 287 -3.981401e-05 6.425164e-06 319 287 3.478917e-05 -5.614257e-06 320 287 -3.00633e-05 4.851599e-06 321 287 2.558831e-05 -4.129428e-06 322 287 -2.132146e-05 3.440846e-06 323 287 1.722429e-05 -2.779647e-06 207 288 0.0007823553 6.347742e-05 243 288 1.722429e-05 -2.779647e-06 244 288 -1.326172e-05 2.14017e-06 245 288 9.401297e-06 -1.517176e-06 246 288 -5.612495e-06 9.057414e-07 247 288 1.866144e-06 -3.011573e-07 248 288 1.866144e-06 -3.011573e-07 249 288 -5.612495e-06 9.057414e-07 250 288 9.401297e-06 -1.517176e-06 251 288 -1.326172e-05 2.14017e-06 252 288 1.722429e-05 -2.779647e-06 253 288 -2.132146e-05 3.440846e-06 254 288 2.558831e-05 -4.129428e-06 255 288 -3.00633e-05 4.851599e-06 256 288 3.478917e-05 -5.614257e-06 257 288 -3.981401e-05 6.425164e-06 258 288 4.519256e-05 -7.293151e-06 259 288 -5.098776e-05 8.228377e-06 260 288 5.727273e-05 -9.242642e-06 261 288 -6.413319e-05 1.034978e-05 262 288 7.167061e-05 -1.156616e-05 263 288 -8.000611e-05 1.291134e-05 264 288 8.928565e-05 -1.440887e-05 265 288 -9.968672e-05 1.608739e-05 266 288 0.0001114272 -1.798207e-05 267 288 -0.0001247774 2.013652e-05 268 288 0.000140076 -2.26054e-05 269 288 -0.0001577525 2.545802e-05 270 288 0.0001783582 -2.878335e-05 271 288 -0.0002026106 3.26972e-05 272 288 0.0002314578 -3.735254e-05 273 288 -0.0002661734 4.295492e-05 274 288 0.0003085011 -4.978574e-05 275 288 -0.0003608797 5.823857e-05 276 288 0.0004268045 -6.887749e-05 277 288 -0.0005114288 8.253411e-05 278 288 0.0006226054 -0.0001004757 279 288 -0.0007727812 0.000124711 280 288 0.0009826448 -0.0001585787 281 288 -0.001288661 0.0002079635 282 288 0.001760065 -0.0002840383 283 288 -0.002541777 0.0004101906 284 288 0.003980742 -0.0006424099 285 288 -0.007089509 0.001144101 286 288 0.01597157 -0.002577484 287 288 -0.06393453 0.01031772 288 288 -0.399002 -0.02074898 289 288 -0.06393453 0.01031772 290 288 0.01597157 -0.002577484 291 288 -0.007089509 0.001144101 292 288 0.003980742 -0.0006424099 293 288 -0.002541777 0.0004101906 294 288 0.001760065 -0.0002840383 295 288 -0.001288661 0.0002079635 296 288 0.0009826448 -0.0001585787 297 288 -0.0007727812 0.000124711 298 288 0.0006226054 -0.0001004757 299 288 -0.0005114288 8.253411e-05 300 288 0.0004268045 -6.887749e-05 301 288 -0.0003608797 5.823857e-05 302 288 0.0003085011 -4.978574e-05 303 288 -0.0002661734 4.295492e-05 304 288 0.0002314578 -3.735254e-05 305 288 -0.0002026106 3.26972e-05 306 288 0.0001783582 -2.878335e-05 307 288 -0.0001577525 2.545802e-05 308 288 0.000140076 -2.26054e-05 309 288 -0.0001247774 2.013652e-05 310 288 0.0001114272 -1.798207e-05 311 288 -9.968672e-05 1.608739e-05 312 288 8.928565e-05 -1.440887e-05 313 288 -8.000611e-05 1.291134e-05 314 288 7.167061e-05 -1.156616e-05 315 288 -6.413319e-05 1.034978e-05 316 288 5.727273e-05 -9.242642e-06 317 288 -5.098776e-05 8.228377e-06 318 288 4.519256e-05 -7.293151e-06 319 288 -3.981401e-05 6.425164e-06 320 288 3.478917e-05 -5.614257e-06 321 288 -3.00633e-05 4.851599e-06 322 288 2.558831e-05 -4.129428e-06 323 288 -2.132146e-05 3.440846e-06 208 289 0.0007985741 6.510879e-05 243 289 -2.132146e-05 3.440846e-06 244 289 1.722429e-05 -2.779647e-06 245 289 -1.326172e-05 2.14017e-06 246 289 9.401297e-06 -1.517176e-06 247 289 -5.612495e-06 9.057414e-07 248 289 1.866144e-06 -3.011573e-07 249 289 1.866144e-06 -3.011573e-07 250 289 -5.612495e-06 9.057414e-07 251 289 9.401297e-06 -1.517176e-06 252 289 -1.326172e-05 2.14017e-06 253 289 1.722429e-05 -2.779647e-06 254 289 -2.132146e-05 3.440846e-06 255 289 2.558831e-05 -4.129428e-06 256 289 -3.00633e-05 4.851599e-06 257 289 3.478917e-05 -5.614257e-06 258 289 -3.981401e-05 6.425164e-06 259 289 4.519256e-05 -7.293151e-06 260 289 -5.098776e-05 8.228377e-06 261 289 5.727273e-05 -9.242642e-06 262 289 -6.413319e-05 1.034978e-05 263 289 7.167061e-05 -1.156616e-05 264 289 -8.000611e-05 1.291134e-05 265 289 8.928565e-05 -1.440887e-05 266 289 -9.968672e-05 1.608739e-05 267 289 0.0001114272 -1.798207e-05 268 289 -0.0001247774 2.013652e-05 269 289 0.000140076 -2.26054e-05 270 289 -0.0001577525 2.545802e-05 271 289 0.0001783582 -2.878335e-05 272 289 -0.0002026106 3.26972e-05 273 289 0.0002314578 -3.735254e-05 274 289 -0.0002661734 4.295492e-05 275 289 0.0003085011 -4.978574e-05 276 289 -0.0003608797 5.823857e-05 277 289 0.0004268045 -6.887749e-05 278 289 -0.0005114288 8.253411e-05 279 289 0.0006226054 -0.0001004757 280 289 -0.0007727812 0.000124711 281 289 0.0009826448 -0.0001585787 282 289 -0.001288661 0.0002079635 283 289 0.001760065 -0.0002840383 284 289 -0.002541777 0.0004101906 285 289 0.003980742 -0.0006424099 286 289 -0.007089509 0.001144101 287 289 0.01597157 -0.002577484 288 289 -0.06393453 0.01031772 289 289 -0.3999021 -0.02046909 290 289 -0.06393453 0.01031772 291 289 0.01597157 -0.002577484 292 289 -0.007089509 0.001144101 293 289 0.003980742 -0.0006424099 294 289 -0.002541777 0.0004101906 295 289 0.001760065 -0.0002840383 296 289 -0.001288661 0.0002079635 297 289 0.0009826448 -0.0001585787 298 289 -0.0007727812 0.000124711 299 289 0.0006226054 -0.0001004757 300 289 -0.0005114288 8.253411e-05 301 289 0.0004268045 -6.887749e-05 302 289 -0.0003608797 5.823857e-05 303 289 0.0003085011 -4.978574e-05 304 289 -0.0002661734 4.295492e-05 305 289 0.0002314578 -3.735254e-05 306 289 -0.0002026106 3.26972e-05 307 289 0.0001783582 -2.878335e-05 308 289 -0.0001577525 2.545802e-05 309 289 0.000140076 -2.26054e-05 310 289 -0.0001247774 2.013652e-05 311 289 0.0001114272 -1.798207e-05 312 289 -9.968672e-05 1.608739e-05 313 289 8.928565e-05 -1.440887e-05 314 289 -8.000611e-05 1.291134e-05 315 289 7.167061e-05 -1.156616e-05 316 289 -6.413319e-05 1.034978e-05 317 289 5.727273e-05 -9.242642e-06 318 289 -5.098776e-05 8.228377e-06 319 289 4.519256e-05 -7.293151e-06 320 289 -3.981401e-05 6.425164e-06 321 289 3.478917e-05 -5.614257e-06 322 289 -3.00633e-05 4.851599e-06 323 289 2.558831e-05 -4.129428e-06 209 290 0.0008148755 6.675522e-05 243 290 2.558831e-05 -4.129428e-06 244 290 -2.132146e-05 3.440846e-06 245 290 1.722429e-05 -2.779647e-06 246 290 -1.326172e-05 2.14017e-06 247 290 9.401297e-06 -1.517176e-06 248 290 -5.612495e-06 9.057414e-07 249 290 1.866144e-06 -3.011573e-07 250 290 1.866144e-06 -3.011573e-07 251 290 -5.612495e-06 9.057414e-07 252 290 9.401297e-06 -1.517176e-06 253 290 -1.326172e-05 2.14017e-06 254 290 1.722429e-05 -2.779647e-06 255 290 -2.132146e-05 3.440846e-06 256 290 2.558831e-05 -4.129428e-06 257 290 -3.00633e-05 4.851599e-06 258 290 3.478917e-05 -5.614257e-06 259 290 -3.981401e-05 6.425164e-06 260 290 4.519256e-05 -7.293151e-06 261 290 -5.098776e-05 8.228377e-06 262 290 5.727273e-05 -9.242642e-06 263 290 -6.413319e-05 1.034978e-05 264 290 7.167061e-05 -1.156616e-05 265 290 -8.000611e-05 1.291134e-05 266 290 8.928565e-05 -1.440887e-05 267 290 -9.968672e-05 1.608739e-05 268 290 0.0001114272 -1.798207e-05 269 290 -0.0001247774 2.013652e-05 270 290 0.000140076 -2.26054e-05 271 290 -0.0001577525 2.545802e-05 272 290 0.0001783582 -2.878335e-05 273 290 -0.0002026106 3.26972e-05 274 290 0.0002314578 -3.735254e-05 275 290 -0.0002661734 4.295492e-05 276 290 0.0003085011 -4.978574e-05 277 290 -0.0003608797 5.823857e-05 278 290 0.0004268045 -6.887749e-05 279 290 -0.0005114288 8.253411e-05 280 290 0.0006226054 -0.0001004757 281 290 -0.0007727812 0.000124711 282 290 0.0009826448 -0.0001585787 283 290 -0.001288661 0.0002079635 284 290 0.001760065 -0.0002840383 285 290 -0.002541777 0.0004101906 286 290 0.003980742 -0.0006424099 287 290 -0.007089509 0.001144101 288 290 0.01597157 -0.002577484 289 290 -0.06393453 0.01031772 290 290 -0.4007179 -0.02020954 291 290 -0.06393453 0.01031772 292 290 0.01597157 -0.002577484 293 290 -0.007089509 0.001144101 294 290 0.003980742 -0.0006424099 295 290 -0.002541777 0.0004101906 296 290 0.001760065 -0.0002840383 297 290 -0.001288661 0.0002079635 298 290 0.0009826448 -0.0001585787 299 290 -0.0007727812 0.000124711 300 290 0.0006226054 -0.0001004757 301 290 -0.0005114288 8.253411e-05 302 290 0.0004268045 -6.887749e-05 303 290 -0.0003608797 5.823857e-05 304 290 0.0003085011 -4.978574e-05 305 290 -0.0002661734 4.295492e-05 306 290 0.0002314578 -3.735254e-05 307 290 -0.0002026106 3.26972e-05 308 290 0.0001783582 -2.878335e-05 309 290 -0.0001577525 2.545802e-05 310 290 0.000140076 -2.26054e-05 311 290 -0.0001247774 2.013652e-05 312 290 0.0001114272 -1.798207e-05 313 290 -9.968672e-05 1.608739e-05 314 290 8.928565e-05 -1.440887e-05 315 290 -8.000611e-05 1.291134e-05 316 290 7.167061e-05 -1.156616e-05 317 290 -6.413319e-05 1.034978e-05 318 290 5.727273e-05 -9.242642e-06 319 290 -5.098776e-05 8.228377e-06 320 290 4.519256e-05 -7.293151e-06 321 290 -3.981401e-05 6.425164e-06 322 290 3.478917e-05 -5.614257e-06 323 290 -3.00633e-05 4.851599e-06 210 291 0.0008312598 6.841681e-05 243 291 -3.00633e-05 4.851599e-06 244 291 2.558831e-05 -4.129428e-06 245 291 -2.132146e-05 3.440846e-06 246 291 1.722429e-05 -2.779647e-06 247 291 -1.326172e-05 2.14017e-06 248 291 9.401297e-06 -1.517176e-06 249 291 -5.612495e-06 9.057414e-07 250 291 1.866144e-06 -3.011573e-07 251 291 1.866144e-06 -3.011573e-07 252 291 -5.612495e-06 9.057414e-07 253 291 9.401297e-06 -1.517176e-06 254 291 -1.326172e-05 2.14017e-06 255 291 1.722429e-05 -2.779647e-06 256 291 -2.132146e-05 3.440846e-06 257 291 2.558831e-05 -4.129428e-06 258 291 -3.00633e-05 4.851599e-06 259 291 3.478917e-05 -5.614257e-06 260 291 -3.981401e-05 6.425164e-06 261 291 4.519256e-05 -7.293151e-06 262 291 -5.098776e-05 8.228377e-06 263 291 5.727273e-05 -9.242642e-06 264 291 -6.413319e-05 1.034978e-05 265 291 7.167061e-05 -1.156616e-05 266 291 -8.000611e-05 1.291134e-05 267 291 8.928565e-05 -1.440887e-05 268 291 -9.968672e-05 1.608739e-05 269 291 0.0001114272 -1.798207e-05 270 291 -0.0001247774 2.013652e-05 271 291 0.000140076 -2.26054e-05 272 291 -0.0001577525 2.545802e-05 273 291 0.0001783582 -2.878335e-05 274 291 -0.0002026106 3.26972e-05 275 291 0.0002314578 -3.735254e-05 276 291 -0.0002661734 4.295492e-05 277 291 0.0003085011 -4.978574e-05 278 291 -0.0003608797 5.823857e-05 279 291 0.0004268045 -6.887749e-05 280 291 -0.0005114288 8.253411e-05 281 291 0.0006226054 -0.0001004757 282 291 -0.0007727812 0.000124711 283 291 0.0009826448 -0.0001585787 284 291 -0.001288661 0.0002079635 285 291 0.001760065 -0.0002840383 286 291 -0.002541777 0.0004101906 287 291 0.003980742 -0.0006424099 288 291 -0.007089509 0.001144101 289 291 0.01597157 -0.002577484 290 291 -0.06393453 0.01031772 291 291 -0.4014575 -0.01996885 292 291 -0.06393453 0.01031772 293 291 0.01597157 -0.002577484 294 291 -0.007089509 0.001144101 295 291 0.003980742 -0.0006424099 296 291 -0.002541777 0.0004101906 297 291 0.001760065 -0.0002840383 298 291 -0.001288661 0.0002079635 299 291 0.0009826448 -0.0001585787 300 291 -0.0007727812 0.000124711 301 291 0.0006226054 -0.0001004757 302 291 -0.0005114288 8.253411e-05 303 291 0.0004268045 -6.887749e-05 304 291 -0.0003608797 5.823857e-05 305 291 0.0003085011 -4.978574e-05 306 291 -0.0002661734 4.295492e-05 307 291 0.0002314578 -3.735254e-05 308 291 -0.0002026106 3.26972e-05 309 291 0.0001783582 -2.878335e-05 310 291 -0.0001577525 2.545802e-05 311 291 0.000140076 -2.26054e-05 312 291 -0.0001247774 2.013652e-05 313 291 0.0001114272 -1.798207e-05 314 291 -9.968672e-05 1.608739e-05 315 291 8.928565e-05 -1.440887e-05 316 291 -8.000611e-05 1.291134e-05 317 291 7.167061e-05 -1.156616e-05 318 291 -6.413319e-05 1.034978e-05 319 291 5.727273e-05 -9.242642e-06 320 291 -5.098776e-05 8.228377e-06 321 291 4.519256e-05 -7.293151e-06 322 291 -3.981401e-05 6.425164e-06 323 291 3.478917e-05 -5.614257e-06 211 292 0.0008477274 7.009369e-05 243 292 3.478917e-05 -5.614257e-06 244 292 -3.00633e-05 4.851599e-06 245 292 2.558831e-05 -4.129428e-06 246 292 -2.132146e-05 3.440846e-06 247 292 1.722429e-05 -2.779647e-06 248 292 -1.326172e-05 2.14017e-06 249 292 9.401297e-06 -1.517176e-06 250 292 -5.612495e-06 9.057414e-07 251 292 1.866144e-06 -3.011573e-07 252 292 1.866144e-06 -3.011573e-07 253 292 -5.612495e-06 9.057414e-07 254 292 9.401297e-06 -1.517176e-06 255 292 -1.326172e-05 2.14017e-06 256 292 1.722429e-05 -2.779647e-06 257 292 -2.132146e-05 3.440846e-06 258 292 2.558831e-05 -4.129428e-06 259 292 -3.00633e-05 4.851599e-06 260 292 3.478917e-05 -5.614257e-06 261 292 -3.981401e-05 6.425164e-06 262 292 4.519256e-05 -7.293151e-06 263 292 -5.098776e-05 8.228377e-06 264 292 5.727273e-05 -9.242642e-06 265 292 -6.413319e-05 1.034978e-05 266 292 7.167061e-05 -1.156616e-05 267 292 -8.000611e-05 1.291134e-05 268 292 8.928565e-05 -1.440887e-05 269 292 -9.968672e-05 1.608739e-05 270 292 0.0001114272 -1.798207e-05 271 292 -0.0001247774 2.013652e-05 272 292 0.000140076 -2.26054e-05 273 292 -0.0001577525 2.545802e-05 274 292 0.0001783582 -2.878335e-05 275 292 -0.0002026106 3.26972e-05 276 292 0.0002314578 -3.735254e-05 277 292 -0.0002661734 4.295492e-05 278 292 0.0003085011 -4.978574e-05 279 292 -0.0003608797 5.823857e-05 280 292 0.0004268045 -6.887749e-05 281 292 -0.0005114288 8.253411e-05 282 292 0.0006226054 -0.0001004757 283 292 -0.0007727812 0.000124711 284 292 0.0009826448 -0.0001585787 285 292 -0.001288661 0.0002079635 286 292 0.001760065 -0.0002840383 287 292 -0.002541777 0.0004101906 288 292 0.003980742 -0.0006424099 289 292 -0.007089509 0.001144101 290 292 0.01597157 -0.002577484 291 292 -0.06393453 0.01031772 292 292 -0.4021282 -0.01974566 293 292 -0.06393453 0.01031772 294 292 0.01597157 -0.002577484 295 292 -0.007089509 0.001144101 296 292 0.003980742 -0.0006424099 297 292 -0.002541777 0.0004101906 298 292 0.001760065 -0.0002840383 299 292 -0.001288661 0.0002079635 300 292 0.0009826448 -0.0001585787 301 292 -0.0007727812 0.000124711 302 292 0.0006226054 -0.0001004757 303 292 -0.0005114288 8.253411e-05 304 292 0.0004268045 -6.887749e-05 305 292 -0.0003608797 5.823857e-05 306 292 0.0003085011 -4.978574e-05 307 292 -0.0002661734 4.295492e-05 308 292 0.0002314578 -3.735254e-05 309 292 -0.0002026106 3.26972e-05 310 292 0.0001783582 -2.878335e-05 311 292 -0.0001577525 2.545802e-05 312 292 0.000140076 -2.26054e-05 313 292 -0.0001247774 2.013652e-05 314 292 0.0001114272 -1.798207e-05 315 292 -9.968672e-05 1.608739e-05 316 292 8.928565e-05 -1.440887e-05 317 292 -8.000611e-05 1.291134e-05 318 292 7.167061e-05 -1.156616e-05 319 292 -6.413319e-05 1.034978e-05 320 292 5.727273e-05 -9.242642e-06 321 292 -5.098776e-05 8.228377e-06 322 292 4.519256e-05 -7.293151e-06 323 292 -3.981401e-05 6.425164e-06 212 293 0.0008642789 7.178596e-05 243 293 -3.981401e-05 6.425164e-06 244 293 3.478917e-05 -5.614257e-06 245 293 -3.00633e-05 4.851599e-06 246 293 2.558831e-05 -4.129428e-06 247 293 -2.132146e-05 3.440846e-06 248 293 1.722429e-05 -2.779647e-06 249 293 -1.326172e-05 2.14017e-06 250 293 9.401297e-06 -1.517176e-06 251 293 -5.612495e-06 9.057414e-07 252 293 1.866144e-06 -3.011573e-07 253 293 1.866144e-06 -3.011573e-07 254 293 -5.612495e-06 9.057414e-07 255 293 9.401297e-06 -1.517176e-06 256 293 -1.326172e-05 2.14017e-06 257 293 1.722429e-05 -2.779647e-06 258 293 -2.132146e-05 3.440846e-06 259 293 2.558831e-05 -4.129428e-06 260 293 -3.00633e-05 4.851599e-06 261 293 3.478917e-05 -5.614257e-06 262 293 -3.981401e-05 6.425164e-06 263 293 4.519256e-05 -7.293151e-06 264 293 -5.098776e-05 8.228377e-06 265 293 5.727273e-05 -9.242642e-06 266 293 -6.413319e-05 1.034978e-05 267 293 7.167061e-05 -1.156616e-05 268 293 -8.000611e-05 1.291134e-05 269 293 8.928565e-05 -1.440887e-05 270 293 -9.968672e-05 1.608739e-05 271 293 0.0001114272 -1.798207e-05 272 293 -0.0001247774 2.013652e-05 273 293 0.000140076 -2.26054e-05 274 293 -0.0001577525 2.545802e-05 275 293 0.0001783582 -2.878335e-05 276 293 -0.0002026106 3.26972e-05 277 293 0.0002314578 -3.735254e-05 278 293 -0.0002661734 4.295492e-05 279 293 0.0003085011 -4.978574e-05 280 293 -0.0003608797 5.823857e-05 281 293 0.0004268045 -6.887749e-05 282 293 -0.0005114288 8.253411e-05 283 293 0.0006226054 -0.0001004757 284 293 -0.0007727812 0.000124711 285 293 0.0009826448 -0.0001585787 286 293 -0.001288661 0.0002079635 287 293 0.001760065 -0.0002840383 288 293 -0.002541777 0.0004101906 289 293 0.003980742 -0.0006424099 290 293 -0.007089509 0.001144101 291 293 0.01597157 -0.002577484 292 293 -0.06393453 0.01031772 293 293 -0.4027364 -0.01953871 294 293 -0.06393453 0.01031772 295 293 0.01597157 -0.002577484 296 293 -0.007089509 0.001144101 297 293 0.003980742 -0.0006424099 298 293 -0.002541777 0.0004101906 299 293 0.001760065 -0.0002840383 300 293 -0.001288661 0.0002079635 301 293 0.0009826448 -0.0001585787 302 293 -0.0007727812 0.000124711 303 293 0.0006226054 -0.0001004757 304 293 -0.0005114288 8.253411e-05 305 293 0.0004268045 -6.887749e-05 306 293 -0.0003608797 5.823857e-05 307 293 0.0003085011 -4.978574e-05 308 293 -0.0002661734 4.295492e-05 309 293 0.0002314578 -3.735254e-05 310 293 -0.0002026106 3.26972e-05 311 293 0.0001783582 -2.878335e-05 312 293 -0.0001577525 2.545802e-05 313 293 0.000140076 -2.26054e-05 314 293 -0.0001247774 2.013652e-05 315 293 0.0001114272 -1.798207e-05 316 293 -9.968672e-05 1.608739e-05 317 293 8.928565e-05 -1.440887e-05 318 293 -8.000611e-05 1.291134e-05 319 293 7.167061e-05 -1.156616e-05 320 293 -6.413319e-05 1.034978e-05 321 293 5.727273e-05 -9.242642e-06 322 293 -5.098776e-05 8.228377e-06 323 293 4.519256e-05 -7.293151e-06 213 294 0.0008809146 7.349373e-05 243 294 4.519256e-05 -7.293151e-06 244 294 -3.981401e-05 6.425164e-06 245 294 3.478917e-05 -5.614257e-06 246 294 -3.00633e-05 4.851599e-06 247 294 2.558831e-05 -4.129428e-06 248 294 -2.132146e-05 3.440846e-06 249 294 1.722429e-05 -2.779647e-06 250 294 -1.326172e-05 2.14017e-06 251 294 9.401297e-06 -1.517176e-06 252 294 -5.612495e-06 9.057414e-07 253 294 1.866144e-06 -3.011573e-07 254 294 1.866144e-06 -3.011573e-07 255 294 -5.612495e-06 9.057414e-07 256 294 9.401297e-06 -1.517176e-06 257 294 -1.326172e-05 2.14017e-06 258 294 1.722429e-05 -2.779647e-06 259 294 -2.132146e-05 3.440846e-06 260 294 2.558831e-05 -4.129428e-06 261 294 -3.00633e-05 4.851599e-06 262 294 3.478917e-05 -5.614257e-06 263 294 -3.981401e-05 6.425164e-06 264 294 4.519256e-05 -7.293151e-06 265 294 -5.098776e-05 8.228377e-06 266 294 5.727273e-05 -9.242642e-06 267 294 -6.413319e-05 1.034978e-05 268 294 7.167061e-05 -1.156616e-05 269 294 -8.000611e-05 1.291134e-05 270 294 8.928565e-05 -1.440887e-05 271 294 -9.968672e-05 1.608739e-05 272 294 0.0001114272 -1.798207e-05 273 294 -0.0001247774 2.013652e-05 274 294 0.000140076 -2.26054e-05 275 294 -0.0001577525 2.545802e-05 276 294 0.0001783582 -2.878335e-05 277 294 -0.0002026106 3.26972e-05 278 294 0.0002314578 -3.735254e-05 279 294 -0.0002661734 4.295492e-05 280 294 0.0003085011 -4.978574e-05 281 294 -0.0003608797 5.823857e-05 282 294 0.0004268045 -6.887749e-05 283 294 -0.0005114288 8.253411e-05 284 294 0.0006226054 -0.0001004757 285 294 -0.0007727812 0.000124711 286 294 0.0009826448 -0.0001585787 287 294 -0.001288661 0.0002079635 288 294 0.001760065 -0.0002840383 289 294 -0.002541777 0.0004101906 290 294 0.003980742 -0.0006424099 291 294 -0.007089509 0.001144101 292 294 0.01597157 -0.002577484 293 294 -0.06393453 0.01031772 294 294 -0.4032881 -0.01934683 295 294 -0.06393453 0.01031772 296 294 0.01597157 -0.002577484 297 294 -0.007089509 0.001144101 298 294 0.003980742 -0.0006424099 299 294 -0.002541777 0.0004101906 300 294 0.001760065 -0.0002840383 301 294 -0.001288661 0.0002079635 302 294 0.0009826448 -0.0001585787 303 294 -0.0007727812 0.000124711 304 294 0.0006226054 -0.0001004757 305 294 -0.0005114288 8.253411e-05 306 294 0.0004268045 -6.887749e-05 307 294 -0.0003608797 5.823857e-05 308 294 0.0003085011 -4.978574e-05 309 294 -0.0002661734 4.295492e-05 310 294 0.0002314578 -3.735254e-05 311 294 -0.0002026106 3.26972e-05 312 294 0.0001783582 -2.878335e-05 313 294 -0.0001577525 2.545802e-05 314 294 0.000140076 -2.26054e-05 315 294 -0.0001247774 2.013652e-05 316 294 0.0001114272 -1.798207e-05 317 294 -9.968672e-05 1.608739e-05 318 294 8.928565e-05 -1.440887e-05 319 294 -8.000611e-05 1.291134e-05 320 294 7.167061e-05 -1.156616e-05 321 294 -6.413319e-05 1.034978e-05 322 294 5.727273e-05 -9.242642e-06 323 294 -5.098776e-05 8.228377e-06 214 295 0.0008976348 7.521712e-05 243 295 -5.098776e-05 8.228377e-06 244 295 4.519256e-05 -7.293151e-06 245 295 -3.981401e-05 6.425164e-06 246 295 3.478917e-05 -5.614257e-06 247 295 -3.00633e-05 4.851599e-06 248 295 2.558831e-05 -4.129428e-06 249 295 -2.132146e-05 3.440846e-06 250 295 1.722429e-05 -2.779647e-06 251 295 -1.326172e-05 2.14017e-06 252 295 9.401297e-06 -1.517176e-06 253 295 -5.612495e-06 9.057414e-07 254 295 1.866144e-06 -3.011573e-07 255 295 1.866144e-06 -3.011573e-07 256 295 -5.612495e-06 9.057414e-07 257 295 9.401297e-06 -1.517176e-06 258 295 -1.326172e-05 2.14017e-06 259 295 1.722429e-05 -2.779647e-06 260 295 -2.132146e-05 3.440846e-06 261 295 2.558831e-05 -4.129428e-06 262 295 -3.00633e-05 4.851599e-06 263 295 3.478917e-05 -5.614257e-06 264 295 -3.981401e-05 6.425164e-06 265 295 4.519256e-05 -7.293151e-06 266 295 -5.098776e-05 8.228377e-06 267 295 5.727273e-05 -9.242642e-06 268 295 -6.413319e-05 1.034978e-05 269 295 7.167061e-05 -1.156616e-05 270 295 -8.000611e-05 1.291134e-05 271 295 8.928565e-05 -1.440887e-05 272 295 -9.968672e-05 1.608739e-05 273 295 0.0001114272 -1.798207e-05 274 295 -0.0001247774 2.013652e-05 275 295 0.000140076 -2.26054e-05 276 295 -0.0001577525 2.545802e-05 277 295 0.0001783582 -2.878335e-05 278 295 -0.0002026106 3.26972e-05 279 295 0.0002314578 -3.735254e-05 280 295 -0.0002661734 4.295492e-05 281 295 0.0003085011 -4.978574e-05 282 295 -0.0003608797 5.823857e-05 283 295 0.0004268045 -6.887749e-05 284 295 -0.0005114288 8.253411e-05 285 295 0.0006226054 -0.0001004757 286 295 -0.0007727812 0.000124711 287 295 0.0009826448 -0.0001585787 288 295 -0.001288661 0.0002079635 289 295 0.001760065 -0.0002840383 290 295 -0.002541777 0.0004101906 291 295 0.003980742 -0.0006424099 292 295 -0.007089509 0.001144101 293 295 0.01597157 -0.002577484 294 295 -0.06393453 0.01031772 295 295 -0.4037886 -0.01916894 296 295 -0.06393453 0.01031772 297 295 0.01597157 -0.002577484 298 295 -0.007089509 0.001144101 299 295 0.003980742 -0.0006424099 300 295 -0.002541777 0.0004101906 301 295 0.001760065 -0.0002840383 302 295 -0.001288661 0.0002079635 303 295 0.0009826448 -0.0001585787 304 295 -0.0007727812 0.000124711 305 295 0.0006226054 -0.0001004757 306 295 -0.0005114288 8.253411e-05 307 295 0.0004268045 -6.887749e-05 308 295 -0.0003608797 5.823857e-05 309 295 0.0003085011 -4.978574e-05 310 295 -0.0002661734 4.295492e-05 311 295 0.0002314578 -3.735254e-05 312 295 -0.0002026106 3.26972e-05 313 295 0.0001783582 -2.878335e-05 314 295 -0.0001577525 2.545802e-05 315 295 0.000140076 -2.26054e-05 316 295 -0.0001247774 2.013652e-05 317 295 0.0001114272 -1.798207e-05 318 295 -9.968672e-05 1.608739e-05 319 295 8.928565e-05 -1.440887e-05 320 295 -8.000611e-05 1.291134e-05 321 295 7.167061e-05 -1.156616e-05 322 295 -6.413319e-05 1.034978e-05 323 295 5.727273e-05 -9.242642e-06 215 296 0.0009144402 7.695625e-05 243 296 5.727273e-05 -9.242642e-06 244 296 -5.098776e-05 8.228377e-06 245 296 4.519256e-05 -7.293151e-06 246 296 -3.981401e-05 6.425164e-06 247 296 3.478917e-05 -5.614257e-06 248 296 -3.00633e-05 4.851599e-06 249 296 2.558831e-05 -4.129428e-06 250 296 -2.132146e-05 3.440846e-06 251 296 1.722429e-05 -2.779647e-06 252 296 -1.326172e-05 2.14017e-06 253 296 9.401297e-06 -1.517176e-06 254 296 -5.612495e-06 9.057414e-07 255 296 1.866144e-06 -3.011573e-07 256 296 1.866144e-06 -3.011573e-07 257 296 -5.612495e-06 9.057414e-07 258 296 9.401297e-06 -1.517176e-06 259 296 -1.326172e-05 2.14017e-06 260 296 1.722429e-05 -2.779647e-06 261 296 -2.132146e-05 3.440846e-06 262 296 2.558831e-05 -4.129428e-06 263 296 -3.00633e-05 4.851599e-06 264 296 3.478917e-05 -5.614257e-06 265 296 -3.981401e-05 6.425164e-06 266 296 4.519256e-05 -7.293151e-06 267 296 -5.098776e-05 8.228377e-06 268 296 5.727273e-05 -9.242642e-06 269 296 -6.413319e-05 1.034978e-05 270 296 7.167061e-05 -1.156616e-05 271 296 -8.000611e-05 1.291134e-05 272 296 8.928565e-05 -1.440887e-05 273 296 -9.968672e-05 1.608739e-05 274 296 0.0001114272 -1.798207e-05 275 296 -0.0001247774 2.013652e-05 276 296 0.000140076 -2.26054e-05 277 296 -0.0001577525 2.545802e-05 278 296 0.0001783582 -2.878335e-05 279 296 -0.0002026106 3.26972e-05 280 296 0.0002314578 -3.735254e-05 281 296 -0.0002661734 4.295492e-05 282 296 0.0003085011 -4.978574e-05 283 296 -0.0003608797 5.823857e-05 284 296 0.0004268045 -6.887749e-05 285 296 -0.0005114288 8.253411e-05 286 296 0.0006226054 -0.0001004757 287 296 -0.0007727812 0.000124711 288 296 0.0009826448 -0.0001585787 289 296 -0.001288661 0.0002079635 290 296 0.001760065 -0.0002840383 291 296 -0.002541777 0.0004101906 292 296 0.003980742 -0.0006424099 293 296 -0.007089509 0.001144101 294 296 0.01597157 -0.002577484 295 296 -0.06393453 0.01031772 296 296 -0.4042426 -0.01900404 297 296 -0.06393453 0.01031772 298 296 0.01597157 -0.002577484 299 296 -0.007089509 0.001144101 300 296 0.003980742 -0.0006424099 301 296 -0.002541777 0.0004101906 302 296 0.001760065 -0.0002840383 303 296 -0.001288661 0.0002079635 304 296 0.0009826448 -0.0001585787 305 296 -0.0007727812 0.000124711 306 296 0.0006226054 -0.0001004757 307 296 -0.0005114288 8.253411e-05 308 296 0.0004268045 -6.887749e-05 309 296 -0.0003608797 5.823857e-05 310 296 0.0003085011 -4.978574e-05 311 296 -0.0002661734 4.295492e-05 312 296 0.0002314578 -3.735254e-05 313 296 -0.0002026106 3.26972e-05 314 296 0.0001783582 -2.878335e-05 315 296 -0.0001577525 2.545802e-05 316 296 0.000140076 -2.26054e-05 317 296 -0.0001247774 2.013652e-05 318 296 0.0001114272 -1.798207e-05 319 296 -9.968672e-05 1.608739e-05 320 296 8.928565e-05 -1.440887e-05 321 296 -8.000611e-05 1.291134e-05 322 296 7.167061e-05 -1.156616e-05 323 296 -6.413319e-05 1.034978e-05 216 297 0.0009313311 7.871123e-05 243 297 -6.413319e-05 1.034978e-05 244 297 5.727273e-05 -9.242642e-06 245 297 -5.098776e-05 8.228377e-06 246 297 4.519256e-05 -7.293151e-06 247 297 -3.981401e-05 6.425164e-06 248 297 3.478917e-05 -5.614257e-06 249 297 -3.00633e-05 4.851599e-06 250 297 2.558831e-05 -4.129428e-06 251 297 -2.132146e-05 3.440846e-06 252 297 1.722429e-05 -2.779647e-06 253 297 -1.326172e-05 2.14017e-06 254 297 9.401297e-06 -1.517176e-06 255 297 -5.612495e-06 9.057414e-07 256 297 1.866144e-06 -3.011573e-07 257 297 1.866144e-06 -3.011573e-07 258 297 -5.612495e-06 9.057414e-07 259 297 9.401297e-06 -1.517176e-06 260 297 -1.326172e-05 2.14017e-06 261 297 1.722429e-05 -2.779647e-06 262 297 -2.132146e-05 3.440846e-06 263 297 2.558831e-05 -4.129428e-06 264 297 -3.00633e-05 4.851599e-06 265 297 3.478917e-05 -5.614257e-06 266 297 -3.981401e-05 6.425164e-06 267 297 4.519256e-05 -7.293151e-06 268 297 -5.098776e-05 8.228377e-06 269 297 5.727273e-05 -9.242642e-06 270 297 -6.413319e-05 1.034978e-05 271 297 7.167061e-05 -1.156616e-05 272 297 -8.000611e-05 1.291134e-05 273 297 8.928565e-05 -1.440887e-05 274 297 -9.968672e-05 1.608739e-05 275 297 0.0001114272 -1.798207e-05 276 297 -0.0001247774 2.013652e-05 277 297 0.000140076 -2.26054e-05 278 297 -0.0001577525 2.545802e-05 279 297 0.0001783582 -2.878335e-05 280 297 -0.0002026106 3.26972e-05 281 297 0.0002314578 -3.735254e-05 282 297 -0.0002661734 4.295492e-05 283 297 0.0003085011 -4.978574e-05 284 297 -0.0003608797 5.823857e-05 285 297 0.0004268045 -6.887749e-05 286 297 -0.0005114288 8.253411e-05 287 297 0.0006226054 -0.0001004757 288 297 -0.0007727812 0.000124711 289 297 0.0009826448 -0.0001585787 290 297 -0.001288661 0.0002079635 291 297 0.001760065 -0.0002840383 292 297 -0.002541777 0.0004101906 293 297 0.003980742 -0.0006424099 294 297 -0.007089509 0.001144101 295 297 0.01597157 -0.002577484 296 297 -0.06393453 0.01031772 297 297 -0.4046546 -0.01885121 298 297 -0.06393453 0.01031772 299 297 0.01597157 -0.002577484 300 297 -0.007089509 0.001144101 301 297 0.003980742 -0.0006424099 302 297 -0.002541777 0.0004101906 303 297 0.001760065 -0.0002840383 304 297 -0.001288661 0.0002079635 305 297 0.0009826448 -0.0001585787 306 297 -0.0007727812 0.000124711 307 297 0.0006226054 -0.0001004757 308 297 -0.0005114288 8.253411e-05 309 297 0.0004268045 -6.887749e-05 310 297 -0.0003608797 5.823857e-05 311 297 0.0003085011 -4.978574e-05 312 297 -0.0002661734 4.295492e-05 313 297 0.0002314578 -3.735254e-05 314 297 -0.0002026106 3.26972e-05 315 297 0.0001783582 -2.878335e-05 316 297 -0.0001577525 2.545802e-05 317 297 0.000140076 -2.26054e-05 318 297 -0.0001247774 2.013652e-05 319 297 0.0001114272 -1.798207e-05 320 297 -9.968672e-05 1.608739e-05 321 297 8.928565e-05 -1.440887e-05 322 297 -8.000611e-05 1.291134e-05 323 297 7.167061e-05 -1.156616e-05 217 298 0.0009483078 8.048218e-05 243 298 7.167061e-05 -1.156616e-05 244 298 -6.413319e-05 1.034978e-05 245 298 5.727273e-05 -9.242642e-06 246 298 -5.098776e-05 8.228377e-06 247 298 4.519256e-05 -7.293151e-06 248 298 -3.981401e-05 6.425164e-06 249 298 3.478917e-05 -5.614257e-06 250 298 -3.00633e-05 4.851599e-06 251 298 2.558831e-05 -4.129428e-06 252 298 -2.132146e-05 3.440846e-06 253 298 1.722429e-05 -2.779647e-06 254 298 -1.326172e-05 2.14017e-06 255 298 9.401297e-06 -1.517176e-06 256 298 -5.612495e-06 9.057414e-07 257 298 1.866144e-06 -3.011573e-07 258 298 1.866144e-06 -3.011573e-07 259 298 -5.612495e-06 9.057414e-07 260 298 9.401297e-06 -1.517176e-06 261 298 -1.326172e-05 2.14017e-06 262 298 1.722429e-05 -2.779647e-06 263 298 -2.132146e-05 3.440846e-06 264 298 2.558831e-05 -4.129428e-06 265 298 -3.00633e-05 4.851599e-06 266 298 3.478917e-05 -5.614257e-06 267 298 -3.981401e-05 6.425164e-06 268 298 4.519256e-05 -7.293151e-06 269 298 -5.098776e-05 8.228377e-06 270 298 5.727273e-05 -9.242642e-06 271 298 -6.413319e-05 1.034978e-05 272 298 7.167061e-05 -1.156616e-05 273 298 -8.000611e-05 1.291134e-05 274 298 8.928565e-05 -1.440887e-05 275 298 -9.968672e-05 1.608739e-05 276 298 0.0001114272 -1.798207e-05 277 298 -0.0001247774 2.013652e-05 278 298 0.000140076 -2.26054e-05 279 298 -0.0001577525 2.545802e-05 280 298 0.0001783582 -2.878335e-05 281 298 -0.0002026106 3.26972e-05 282 298 0.0002314578 -3.735254e-05 283 298 -0.0002661734 4.295492e-05 284 298 0.0003085011 -4.978574e-05 285 298 -0.0003608797 5.823857e-05 286 298 0.0004268045 -6.887749e-05 287 298 -0.0005114288 8.253411e-05 288 298 0.0006226054 -0.0001004757 289 298 -0.0007727812 0.000124711 290 298 0.0009826448 -0.0001585787 291 298 -0.001288661 0.0002079635 292 298 0.001760065 -0.0002840383 293 298 -0.002541777 0.0004101906 294 298 0.003980742 -0.0006424099 295 298 -0.007089509 0.001144101 296 298 0.01597157 -0.002577484 297 298 -0.06393453 0.01031772 298 298 -0.4050285 -0.01870957 299 298 -0.06393453 0.01031772 300 298 0.01597157 -0.002577484 301 298 -0.007089509 0.001144101 302 298 0.003980742 -0.0006424099 303 298 -0.002541777 0.0004101906 304 298 0.001760065 -0.0002840383 305 298 -0.001288661 0.0002079635 306 298 0.0009826448 -0.0001585787 307 298 -0.0007727812 0.000124711 308 298 0.0006226054 -0.0001004757 309 298 -0.0005114288 8.253411e-05 310 298 0.0004268045 -6.887749e-05 311 298 -0.0003608797 5.823857e-05 312 298 0.0003085011 -4.978574e-05 313 298 -0.0002661734 4.295492e-05 314 298 0.0002314578 -3.735254e-05 315 298 -0.0002026106 3.26972e-05 316 298 0.0001783582 -2.878335e-05 317 298 -0.0001577525 2.545802e-05 318 298 0.000140076 -2.26054e-05 319 298 -0.0001247774 2.013652e-05 320 298 0.0001114272 -1.798207e-05 321 298 -9.968672e-05 1.608739e-05 322 298 8.928565e-05 -1.440887e-05 323 298 -8.000611e-05 1.291134e-05 218 299 0.000965371 8.226921e-05 243 299 -8.000611e-05 1.291134e-05 244 299 7.167061e-05 -1.156616e-05 245 299 -6.413319e-05 1.034978e-05 246 299 5.727273e-05 -9.242642e-06 247 299 -5.098776e-05 8.228377e-06 248 299 4.519256e-05 -7.293151e-06 249 299 -3.981401e-05 6.425164e-06 250 299 3.478917e-05 -5.614257e-06 251 299 -3.00633e-05 4.851599e-06 252 299 2.558831e-05 -4.129428e-06 253 299 -2.132146e-05 3.440846e-06 254 299 1.722429e-05 -2.779647e-06 255 299 -1.326172e-05 2.14017e-06 256 299 9.401297e-06 -1.517176e-06 257 299 -5.612495e-06 9.057414e-07 258 299 1.866144e-06 -3.011573e-07 259 299 1.866144e-06 -3.011573e-07 260 299 -5.612495e-06 9.057414e-07 261 299 9.401297e-06 -1.517176e-06 262 299 -1.326172e-05 2.14017e-06 263 299 1.722429e-05 -2.779647e-06 264 299 -2.132146e-05 3.440846e-06 265 299 2.558831e-05 -4.129428e-06 266 299 -3.00633e-05 4.851599e-06 267 299 3.478917e-05 -5.614257e-06 268 299 -3.981401e-05 6.425164e-06 269 299 4.519256e-05 -7.293151e-06 270 299 -5.098776e-05 8.228377e-06 271 299 5.727273e-05 -9.242642e-06 272 299 -6.413319e-05 1.034978e-05 273 299 7.167061e-05 -1.156616e-05 274 299 -8.000611e-05 1.291134e-05 275 299 8.928565e-05 -1.440887e-05 276 299 -9.968672e-05 1.608739e-05 277 299 0.0001114272 -1.798207e-05 278 299 -0.0001247774 2.013652e-05 279 299 0.000140076 -2.26054e-05 280 299 -0.0001577525 2.545802e-05 281 299 0.0001783582 -2.878335e-05 282 299 -0.0002026106 3.26972e-05 283 299 0.0002314578 -3.735254e-05 284 299 -0.0002661734 4.295492e-05 285 299 0.0003085011 -4.978574e-05 286 299 -0.0003608797 5.823857e-05 287 299 0.0004268045 -6.887749e-05 288 299 -0.0005114288 8.253411e-05 289 299 0.0006226054 -0.0001004757 290 299 -0.0007727812 0.000124711 291 299 0.0009826448 -0.0001585787 292 299 -0.001288661 0.0002079635 293 299 0.001760065 -0.0002840383 294 299 -0.002541777 0.0004101906 295 299 0.003980742 -0.0006424099 296 299 -0.007089509 0.001144101 297 299 0.01597157 -0.002577484 298 299 -0.06393453 0.01031772 299 299 -0.4053677 -0.01857833 300 299 -0.06393453 0.01031772 301 299 0.01597157 -0.002577484 302 299 -0.007089509 0.001144101 303 299 0.003980742 -0.0006424099 304 299 -0.002541777 0.0004101906 305 299 0.001760065 -0.0002840383 306 299 -0.001288661 0.0002079635 307 299 0.0009826448 -0.0001585787 308 299 -0.0007727812 0.000124711 309 299 0.0006226054 -0.0001004757 310 299 -0.0005114288 8.253411e-05 311 299 0.0004268045 -6.887749e-05 312 299 -0.0003608797 5.823857e-05 313 299 0.0003085011 -4.978574e-05 314 299 -0.0002661734 4.295492e-05 315 299 0.0002314578 -3.735254e-05 316 299 -0.0002026106 3.26972e-05 317 299 0.0001783582 -2.878335e-05 318 299 -0.0001577525 2.545802e-05 319 299 0.000140076 -2.26054e-05 320 299 -0.0001247774 2.013652e-05 321 299 0.0001114272 -1.798207e-05 322 299 -9.968672e-05 1.608739e-05 323 299 8.928565e-05 -1.440887e-05 219 300 0.0009825209 8.407245e-05 243 300 8.928565e-05 -1.440887e-05 244 300 -8.000611e-05 1.291134e-05 245 300 7.167061e-05 -1.156616e-05 246 300 -6.413319e-05 1.034978e-05 247 300 5.727273e-05 -9.242642e-06 248 300 -5.098776e-05 8.228377e-06 249 300 4.519256e-05 -7.293151e-06 250 300 -3.981401e-05 6.425164e-06 251 300 3.478917e-05 -5.614257e-06 252 300 -3.00633e-05 4.851599e-06 253 300 2.558831e-05 -4.129428e-06 254 300 -2.132146e-05 3.440846e-06 255 300 1.722429e-05 -2.779647e-06 256 300 -1.326172e-05 2.14017e-06 257 300 9.401297e-06 -1.517176e-06 258 300 -5.612495e-06 9.057414e-07 259 300 1.866144e-06 -3.011573e-07 260 300 1.866144e-06 -3.011573e-07 261 300 -5.612495e-06 9.057414e-07 262 300 9.401297e-06 -1.517176e-06 263 300 -1.326172e-05 2.14017e-06 264 300 1.722429e-05 -2.779647e-06 265 300 -2.132146e-05 3.440846e-06 266 300 2.558831e-05 -4.129428e-06 267 300 -3.00633e-05 4.851599e-06 268 300 3.478917e-05 -5.614257e-06 269 300 -3.981401e-05 6.425164e-06 270 300 4.519256e-05 -7.293151e-06 271 300 -5.098776e-05 8.228377e-06 272 300 5.727273e-05 -9.242642e-06 273 300 -6.413319e-05 1.034978e-05 274 300 7.167061e-05 -1.156616e-05 275 300 -8.000611e-05 1.291134e-05 276 300 8.928565e-05 -1.440887e-05 277 300 -9.968672e-05 1.608739e-05 278 300 0.0001114272 -1.798207e-05 279 300 -0.0001247774 2.013652e-05 280 300 0.000140076 -2.26054e-05 281 300 -0.0001577525 2.545802e-05 282 300 0.0001783582 -2.878335e-05 283 300 -0.0002026106 3.26972e-05 284 300 0.0002314578 -3.735254e-05 285 300 -0.0002661734 4.295492e-05 286 300 0.0003085011 -4.978574e-05 287 300 -0.0003608797 5.823857e-05 288 300 0.0004268045 -6.887749e-05 289 300 -0.0005114288 8.253411e-05 290 300 0.0006226054 -0.0001004757 291 300 -0.0007727812 0.000124711 292 300 0.0009826448 -0.0001585787 293 300 -0.001288661 0.0002079635 294 300 0.001760065 -0.0002840383 295 300 -0.002541777 0.0004101906 296 300 0.003980742 -0.0006424099 297 300 -0.007089509 0.001144101 298 300 0.01597157 -0.002577484 299 300 -0.06393453 0.01031772 300 300 -0.4056756 -0.01845675 301 300 -0.06393453 0.01031772 302 300 0.01597157 -0.002577484 303 300 -0.007089509 0.001144101 304 300 0.003980742 -0.0006424099 305 300 -0.002541777 0.0004101906 306 300 0.001760065 -0.0002840383 307 300 -0.001288661 0.0002079635 308 300 0.0009826448 -0.0001585787 309 300 -0.0007727812 0.000124711 310 300 0.0006226054 -0.0001004757 311 300 -0.0005114288 8.253411e-05 312 300 0.0004268045 -6.887749e-05 313 300 -0.0003608797 5.823857e-05 314 300 0.0003085011 -4.978574e-05 315 300 -0.0002661734 4.295492e-05 316 300 0.0002314578 -3.735254e-05 317 300 -0.0002026106 3.26972e-05 318 300 0.0001783582 -2.878335e-05 319 300 -0.0001577525 2.545802e-05 320 300 0.000140076 -2.26054e-05 321 300 -0.0001247774 2.013652e-05 322 300 0.0001114272 -1.798207e-05 323 300 -9.968672e-05 1.608739e-05 220 301 0.0009997581 8.589201e-05 243 301 -9.968672e-05 1.608739e-05 244 301 8.928565e-05 -1.440887e-05 245 301 -8.000611e-05 1.291134e-05 246 301 7.167061e-05 -1.156616e-05 247 301 -6.413319e-05 1.034978e-05 248 301 5.727273e-05 -9.242642e-06 249 301 -5.098776e-05 8.228377e-06 250 301 4.519256e-05 -7.293151e-06 251 301 -3.981401e-05 6.425164e-06 252 301 3.478917e-05 -5.614257e-06 253 301 -3.00633e-05 4.851599e-06 254 301 2.558831e-05 -4.129428e-06 255 301 -2.132146e-05 3.440846e-06 256 301 1.722429e-05 -2.779647e-06 257 301 -1.326172e-05 2.14017e-06 258 301 9.401297e-06 -1.517176e-06 259 301 -5.612495e-06 9.057414e-07 260 301 1.866144e-06 -3.011573e-07 261 301 1.866144e-06 -3.011573e-07 262 301 -5.612495e-06 9.057414e-07 263 301 9.401297e-06 -1.517176e-06 264 301 -1.326172e-05 2.14017e-06 265 301 1.722429e-05 -2.779647e-06 266 301 -2.132146e-05 3.440846e-06 267 301 2.558831e-05 -4.129428e-06 268 301 -3.00633e-05 4.851599e-06 269 301 3.478917e-05 -5.614257e-06 270 301 -3.981401e-05 6.425164e-06 271 301 4.519256e-05 -7.293151e-06 272 301 -5.098776e-05 8.228377e-06 273 301 5.727273e-05 -9.242642e-06 274 301 -6.413319e-05 1.034978e-05 275 301 7.167061e-05 -1.156616e-05 276 301 -8.000611e-05 1.291134e-05 277 301 8.928565e-05 -1.440887e-05 278 301 -9.968672e-05 1.608739e-05 279 301 0.0001114272 -1.798207e-05 280 301 -0.0001247774 2.013652e-05 281 301 0.000140076 -2.26054e-05 282 301 -0.0001577525 2.545802e-05 283 301 0.0001783582 -2.878335e-05 284 301 -0.0002026106 3.26972e-05 285 301 0.0002314578 -3.735254e-05 286 301 -0.0002661734 4.295492e-05 287 301 0.0003085011 -4.978574e-05 288 301 -0.0003608797 5.823857e-05 289 301 0.0004268045 -6.887749e-05 290 301 -0.0005114288 8.253411e-05 291 301 0.0006226054 -0.0001004757 292 301 -0.0007727812 0.000124711 293 301 0.0009826448 -0.0001585787 294 301 -0.001288661 0.0002079635 295 301 0.001760065 -0.0002840383 296 301 -0.002541777 0.0004101906 297 301 0.003980742 -0.0006424099 298 301 -0.007089509 0.001144101 299 301 0.01597157 -0.002577484 300 301 -0.06393453 0.01031772 301 301 -0.4059551 -0.01834413 302 301 -0.06393453 0.01031772 303 301 0.01597157 -0.002577484 304 301 -0.007089509 0.001144101 305 301 0.003980742 -0.0006424099 306 301 -0.002541777 0.0004101906 307 301 0.001760065 -0.0002840383 308 301 -0.001288661 0.0002079635 309 301 0.0009826448 -0.0001585787 310 301 -0.0007727812 0.000124711 311 301 0.0006226054 -0.0001004757 312 301 -0.0005114288 8.253411e-05 313 301 0.0004268045 -6.887749e-05 314 301 -0.0003608797 5.823857e-05 315 301 0.0003085011 -4.978574e-05 316 301 -0.0002661734 4.295492e-05 317 301 0.0002314578 -3.735254e-05 318 301 -0.0002026106 3.26972e-05 319 301 0.0001783582 -2.878335e-05 320 301 -0.0001577525 2.545802e-05 321 301 0.000140076 -2.26054e-05 322 301 -0.0001247774 2.013652e-05 323 301 0.0001114272 -1.798207e-05 221 302 0.001017083 8.772801e-05 243 302 0.0001114272 -1.798207e-05 244 302 -9.968672e-05 1.608739e-05 245 302 8.928565e-05 -1.440887e-05 246 302 -8.000611e-05 1.291134e-05 247 302 7.167061e-05 -1.156616e-05 248 302 -6.413319e-05 1.034978e-05 249 302 5.727273e-05 -9.242642e-06 250 302 -5.098776e-05 8.228377e-06 251 302 4.519256e-05 -7.293151e-06 252 302 -3.981401e-05 6.425164e-06 253 302 3.478917e-05 -5.614257e-06 254 302 -3.00633e-05 4.851599e-06 255 302 2.558831e-05 -4.129428e-06 256 302 -2.132146e-05 3.440846e-06 257 302 1.722429e-05 -2.779647e-06 258 302 -1.326172e-05 2.14017e-06 259 302 9.401297e-06 -1.517176e-06 260 302 -5.612495e-06 9.057414e-07 261 302 1.866144e-06 -3.011573e-07 262 302 1.866144e-06 -3.011573e-07 263 302 -5.612495e-06 9.057414e-07 264 302 9.401297e-06 -1.517176e-06 265 302 -1.326172e-05 2.14017e-06 266 302 1.722429e-05 -2.779647e-06 267 302 -2.132146e-05 3.440846e-06 268 302 2.558831e-05 -4.129428e-06 269 302 -3.00633e-05 4.851599e-06 270 302 3.478917e-05 -5.614257e-06 271 302 -3.981401e-05 6.425164e-06 272 302 4.519256e-05 -7.293151e-06 273 302 -5.098776e-05 8.228377e-06 274 302 5.727273e-05 -9.242642e-06 275 302 -6.413319e-05 1.034978e-05 276 302 7.167061e-05 -1.156616e-05 277 302 -8.000611e-05 1.291134e-05 278 302 8.928565e-05 -1.440887e-05 279 302 -9.968672e-05 1.608739e-05 280 302 0.0001114272 -1.798207e-05 281 302 -0.0001247774 2.013652e-05 282 302 0.000140076 -2.26054e-05 283 302 -0.0001577525 2.545802e-05 284 302 0.0001783582 -2.878335e-05 285 302 -0.0002026106 3.26972e-05 286 302 0.0002314578 -3.735254e-05 287 302 -0.0002661734 4.295492e-05 288 302 0.0003085011 -4.978574e-05 289 302 -0.0003608797 5.823857e-05 290 302 0.0004268045 -6.887749e-05 291 302 -0.0005114288 8.253411e-05 292 302 0.0006226054 -0.0001004757 293 302 -0.0007727812 0.000124711 294 302 0.0009826448 -0.0001585787 295 302 -0.001288661 0.0002079635 296 302 0.001760065 -0.0002840383 297 302 -0.002541777 0.0004101906 298 302 0.003980742 -0.0006424099 299 302 -0.007089509 0.001144101 300 302 0.01597157 -0.002577484 301 302 -0.06393453 0.01031772 302 302 -0.4062087 -0.01823983 303 302 -0.06393453 0.01031772 304 302 0.01597157 -0.002577484 305 302 -0.007089509 0.001144101 306 302 0.003980742 -0.0006424099 307 302 -0.002541777 0.0004101906 308 302 0.001760065 -0.0002840383 309 302 -0.001288661 0.0002079635 310 302 0.0009826448 -0.0001585787 311 302 -0.0007727812 0.000124711 312 302 0.0006226054 -0.0001004757 313 302 -0.0005114288 8.253411e-05 314 302 0.0004268045 -6.887749e-05 315 302 -0.0003608797 5.823857e-05 316 302 0.0003085011 -4.978574e-05 317 302 -0.0002661734 4.295492e-05 318 302 0.0002314578 -3.735254e-05 319 302 -0.0002026106 3.26972e-05 320 302 0.0001783582 -2.878335e-05 321 302 -0.0001577525 2.545802e-05 322 302 0.000140076 -2.26054e-05 323 302 -0.0001247774 2.013652e-05 222 303 0.001034496 8.958057e-05 243 303 -0.0001247774 2.013652e-05 244 303 0.0001114272 -1.798207e-05 245 303 -9.968672e-05 1.608739e-05 246 303 8.928565e-05 -1.440887e-05 247 303 -8.000611e-05 1.291134e-05 248 303 7.167061e-05 -1.156616e-05 249 303 -6.413319e-05 1.034978e-05 250 303 5.727273e-05 -9.242642e-06 251 303 -5.098776e-05 8.228377e-06 252 303 4.519256e-05 -7.293151e-06 253 303 -3.981401e-05 6.425164e-06 254 303 3.478917e-05 -5.614257e-06 255 303 -3.00633e-05 4.851599e-06 256 303 2.558831e-05 -4.129428e-06 257 303 -2.132146e-05 3.440846e-06 258 303 1.722429e-05 -2.779647e-06 259 303 -1.326172e-05 2.14017e-06 260 303 9.401297e-06 -1.517176e-06 261 303 -5.612495e-06 9.057414e-07 262 303 1.866144e-06 -3.011573e-07 263 303 1.866144e-06 -3.011573e-07 264 303 -5.612495e-06 9.057414e-07 265 303 9.401297e-06 -1.517176e-06 266 303 -1.326172e-05 2.14017e-06 267 303 1.722429e-05 -2.779647e-06 268 303 -2.132146e-05 3.440846e-06 269 303 2.558831e-05 -4.129428e-06 270 303 -3.00633e-05 4.851599e-06 271 303 3.478917e-05 -5.614257e-06 272 303 -3.981401e-05 6.425164e-06 273 303 4.519256e-05 -7.293151e-06 274 303 -5.098776e-05 8.228377e-06 275 303 5.727273e-05 -9.242642e-06 276 303 -6.413319e-05 1.034978e-05 277 303 7.167061e-05 -1.156616e-05 278 303 -8.000611e-05 1.291134e-05 279 303 8.928565e-05 -1.440887e-05 280 303 -9.968672e-05 1.608739e-05 281 303 0.0001114272 -1.798207e-05 282 303 -0.0001247774 2.013652e-05 283 303 0.000140076 -2.26054e-05 284 303 -0.0001577525 2.545802e-05 285 303 0.0001783582 -2.878335e-05 286 303 -0.0002026106 3.26972e-05 287 303 0.0002314578 -3.735254e-05 288 303 -0.0002661734 4.295492e-05 289 303 0.0003085011 -4.978574e-05 290 303 -0.0003608797 5.823857e-05 291 303 0.0004268045 -6.887749e-05 292 303 -0.0005114288 8.253411e-05 293 303 0.0006226054 -0.0001004757 294 303 -0.0007727812 0.000124711 295 303 0.0009826448 -0.0001585787 296 303 -0.001288661 0.0002079635 297 303 0.001760065 -0.0002840383 298 303 -0.002541777 0.0004101906 299 303 0.003980742 -0.0006424099 300 303 -0.007089509 0.001144101 301 303 0.01597157 -0.002577484 302 303 -0.06393453 0.01031772 303 303 -0.4064389 -0.01814325 304 303 -0.06393453 0.01031772 305 303 0.01597157 -0.002577484 306 303 -0.007089509 0.001144101 307 303 0.003980742 -0.0006424099 308 303 -0.002541777 0.0004101906 309 303 0.001760065 -0.0002840383 310 303 -0.001288661 0.0002079635 311 303 0.0009826448 -0.0001585787 312 303 -0.0007727812 0.000124711 313 303 0.0006226054 -0.0001004757 314 303 -0.0005114288 8.253411e-05 315 303 0.0004268045 -6.887749e-05 316 303 -0.0003608797 5.823857e-05 317 303 0.0003085011 -4.978574e-05 318 303 -0.0002661734 4.295492e-05 319 303 0.0002314578 -3.735254e-05 320 303 -0.0002026106 3.26972e-05 321 303 0.0001783582 -2.878335e-05 322 303 -0.0001577525 2.545802e-05 323 303 0.000140076 -2.26054e-05 223 304 0.001051997 9.144981e-05 243 304 0.000140076 -2.26054e-05 244 304 -0.0001247774 2.013652e-05 245 304 0.0001114272 -1.798207e-05 246 304 -9.968672e-05 1.608739e-05 247 304 8.928565e-05 -1.440887e-05 248 304 -8.000611e-05 1.291134e-05 249 304 7.167061e-05 -1.156616e-05 250 304 -6.413319e-05 1.034978e-05 251 304 5.727273e-05 -9.242642e-06 252 304 -5.098776e-05 8.228377e-06 253 304 4.519256e-05 -7.293151e-06 254 304 -3.981401e-05 6.425164e-06 255 304 3.478917e-05 -5.614257e-06 256 304 -3.00633e-05 4.851599e-06 257 304 2.558831e-05 -4.129428e-06 258 304 -2.132146e-05 3.440846e-06 259 304 1.722429e-05 -2.779647e-06 260 304 -1.326172e-05 2.14017e-06 261 304 9.401297e-06 -1.517176e-06 262 304 -5.612495e-06 9.057414e-07 263 304 1.866144e-06 -3.011573e-07 264 304 1.866144e-06 -3.011573e-07 265 304 -5.612495e-06 9.057414e-07 266 304 9.401297e-06 -1.517176e-06 267 304 -1.326172e-05 2.14017e-06 268 304 1.722429e-05 -2.779647e-06 269 304 -2.132146e-05 3.440846e-06 270 304 2.558831e-05 -4.129428e-06 271 304 -3.00633e-05 4.851599e-06 272 304 3.478917e-05 -5.614257e-06 273 304 -3.981401e-05 6.425164e-06 274 304 4.519256e-05 -7.293151e-06 275 304 -5.098776e-05 8.228377e-06 276 304 5.727273e-05 -9.242642e-06 277 304 -6.413319e-05 1.034978e-05 278 304 7.167061e-05 -1.156616e-05 279 304 -8.000611e-05 1.291134e-05 280 304 8.928565e-05 -1.440887e-05 281 304 -9.968672e-05 1.608739e-05 282 304 0.0001114272 -1.798207e-05 283 304 -0.0001247774 2.013652e-05 284 304 0.000140076 -2.26054e-05 285 304 -0.0001577525 2.545802e-05 286 304 0.0001783582 -2.878335e-05 287 304 -0.0002026106 3.26972e-05 288 304 0.0002314578 -3.735254e-05 289 304 -0.0002661734 4.295492e-05 290 304 0.0003085011 -4.978574e-05 291 304 -0.0003608797 5.823857e-05 292 304 0.0004268045 -6.887749e-05 293 304 -0.0005114288 8.253411e-05 294 304 0.0006226054 -0.0001004757 295 304 -0.0007727812 0.000124711 296 304 0.0009826448 -0.0001585787 297 304 -0.001288661 0.0002079635 298 304 0.001760065 -0.0002840383 299 304 -0.002541777 0.0004101906 300 304 0.003980742 -0.0006424099 301 304 -0.007089509 0.001144101 302 304 0.01597157 -0.002577484 303 304 -0.06393453 0.01031772 304 304 -0.4066478 -0.01805384 305 304 -0.06393453 0.01031772 306 304 0.01597157 -0.002577484 307 304 -0.007089509 0.001144101 308 304 0.003980742 -0.0006424099 309 304 -0.002541777 0.0004101906 310 304 0.001760065 -0.0002840383 311 304 -0.001288661 0.0002079635 312 304 0.0009826448 -0.0001585787 313 304 -0.0007727812 0.000124711 314 304 0.0006226054 -0.0001004757 315 304 -0.0005114288 8.253411e-05 316 304 0.0004268045 -6.887749e-05 317 304 -0.0003608797 5.823857e-05 318 304 0.0003085011 -4.978574e-05 319 304 -0.0002661734 4.295492e-05 320 304 0.0002314578 -3.735254e-05 321 304 -0.0002026106 3.26972e-05 322 304 0.0001783582 -2.878335e-05 323 304 -0.0001577525 2.545802e-05 224 305 0.001069588 9.333586e-05 243 305 -0.0001577525 2.545802e-05 244 305 0.000140076 -2.26054e-05 245 305 -0.0001247774 2.013652e-05 246 305 0.0001114272 -1.798207e-05 247 305 -9.968672e-05 1.608739e-05 248 305 8.928565e-05 -1.440887e-05 249 305 -8.000611e-05 1.291134e-05 250 305 7.167061e-05 -1.156616e-05 251 305 -6.413319e-05 1.034978e-05 252 305 5.727273e-05 -9.242642e-06 253 305 -5.098776e-05 8.228377e-06 254 305 4.519256e-05 -7.293151e-06 255 305 -3.981401e-05 6.425164e-06 256 305 3.478917e-05 -5.614257e-06 257 305 -3.00633e-05 4.851599e-06 258 305 2.558831e-05 -4.129428e-06 259 305 -2.132146e-05 3.440846e-06 260 305 1.722429e-05 -2.779647e-06 261 305 -1.326172e-05 2.14017e-06 262 305 9.401297e-06 -1.517176e-06 263 305 -5.612495e-06 9.057414e-07 264 305 1.866144e-06 -3.011573e-07 265 305 1.866144e-06 -3.011573e-07 266 305 -5.612495e-06 9.057414e-07 267 305 9.401297e-06 -1.517176e-06 268 305 -1.326172e-05 2.14017e-06 269 305 1.722429e-05 -2.779647e-06 270 305 -2.132146e-05 3.440846e-06 271 305 2.558831e-05 -4.129428e-06 272 305 -3.00633e-05 4.851599e-06 273 305 3.478917e-05 -5.614257e-06 274 305 -3.981401e-05 6.425164e-06 275 305 4.519256e-05 -7.293151e-06 276 305 -5.098776e-05 8.228377e-06 277 305 5.727273e-05 -9.242642e-06 278 305 -6.413319e-05 1.034978e-05 279 305 7.167061e-05 -1.156616e-05 280 305 -8.000611e-05 1.291134e-05 281 305 8.928565e-05 -1.440887e-05 282 305 -9.968672e-05 1.608739e-05 283 305 0.0001114272 -1.798207e-05 284 305 -0.0001247774 2.013652e-05 285 305 0.000140076 -2.26054e-05 286 305 -0.0001577525 2.545802e-05 287 305 0.0001783582 -2.878335e-05 288 305 -0.0002026106 3.26972e-05 289 305 0.0002314578 -3.735254e-05 290 305 -0.0002661734 4.295492e-05 291 305 0.0003085011 -4.978574e-05 292 305 -0.0003608797 5.823857e-05 293 305 0.0004268045 -6.887749e-05 294 305 -0.0005114288 8.253411e-05 295 305 0.0006226054 -0.0001004757 296 305 -0.0007727812 0.000124711 297 305 0.0009826448 -0.0001585787 298 305 -0.001288661 0.0002079635 299 305 0.001760065 -0.0002840383 300 305 -0.002541777 0.0004101906 301 305 0.003980742 -0.0006424099 302 305 -0.007089509 0.001144101 303 305 0.01597157 -0.002577484 304 305 -0.06393453 0.01031772 305 305 -0.4068375 -0.01797109 306 305 -0.06393453 0.01031772 307 305 0.01597157 -0.002577484 308 305 -0.007089509 0.001144101 309 305 0.003980742 -0.0006424099 310 305 -0.002541777 0.0004101906 311 305 0.001760065 -0.0002840383 312 305 -0.001288661 0.0002079635 313 305 0.0009826448 -0.0001585787 314 305 -0.0007727812 0.000124711 315 305 0.0006226054 -0.0001004757 316 305 -0.0005114288 8.253411e-05 317 305 0.0004268045 -6.887749e-05 318 305 -0.0003608797 5.823857e-05 319 305 0.0003085011 -4.978574e-05 320 305 -0.0002661734 4.295492e-05 321 305 0.0002314578 -3.735254e-05 322 305 -0.0002026106 3.26972e-05 323 305 0.0001783582 -2.878335e-05 225 306 0.001087268 9.523884e-05 243 306 0.0001783582 -2.878335e-05 244 306 -0.0001577525 2.545802e-05 245 306 0.000140076 -2.26054e-05 246 306 -0.0001247774 2.013652e-05 247 306 0.0001114272 -1.798207e-05 248 306 -9.968672e-05 1.608739e-05 249 306 8.928565e-05 -1.440887e-05 250 306 -8.000611e-05 1.291134e-05 251 306 7.167061e-05 -1.156616e-05 252 306 -6.413319e-05 1.034978e-05 253 306 5.727273e-05 -9.242642e-06 254 306 -5.098776e-05 8.228377e-06 255 306 4.519256e-05 -7.293151e-06 256 306 -3.981401e-05 6.425164e-06 257 306 3.478917e-05 -5.614257e-06 258 306 -3.00633e-05 4.851599e-06 259 306 2.558831e-05 -4.129428e-06 260 306 -2.132146e-05 3.440846e-06 261 306 1.722429e-05 -2.779647e-06 262 306 -1.326172e-05 2.14017e-06 263 306 9.401297e-06 -1.517176e-06 264 306 -5.612495e-06 9.057414e-07 265 306 1.866144e-06 -3.011573e-07 266 306 1.866144e-06 -3.011573e-07 267 306 -5.612495e-06 9.057414e-07 268 306 9.401297e-06 -1.517176e-06 269 306 -1.326172e-05 2.14017e-06 270 306 1.722429e-05 -2.779647e-06 271 306 -2.132146e-05 3.440846e-06 272 306 2.558831e-05 -4.129428e-06 273 306 -3.00633e-05 4.851599e-06 274 306 3.478917e-05 -5.614257e-06 275 306 -3.981401e-05 6.425164e-06 276 306 4.519256e-05 -7.293151e-06 277 306 -5.098776e-05 8.228377e-06 278 306 5.727273e-05 -9.242642e-06 279 306 -6.413319e-05 1.034978e-05 280 306 7.167061e-05 -1.156616e-05 281 306 -8.000611e-05 1.291134e-05 282 306 8.928565e-05 -1.440887e-05 283 306 -9.968672e-05 1.608739e-05 284 306 0.0001114272 -1.798207e-05 285 306 -0.0001247774 2.013652e-05 286 306 0.000140076 -2.26054e-05 287 306 -0.0001577525 2.545802e-05 288 306 0.0001783582 -2.878335e-05 289 306 -0.0002026106 3.26972e-05 290 306 0.0002314578 -3.735254e-05 291 306 -0.0002661734 4.295492e-05 292 306 0.0003085011 -4.978574e-05 293 306 -0.0003608797 5.823857e-05 294 306 0.0004268045 -6.887749e-05 295 306 -0.0005114288 8.253411e-05 296 306 0.0006226054 -0.0001004757 297 306 -0.0007727812 0.000124711 298 306 0.0009826448 -0.0001585787 299 306 -0.001288661 0.0002079635 300 306 0.001760065 -0.0002840383 301 306 -0.002541777 0.0004101906 302 306 0.003980742 -0.0006424099 303 306 -0.007089509 0.001144101 304 306 0.01597157 -0.002577484 305 306 -0.06393453 0.01031772 306 306 -0.4070096 -0.0178945 307 306 -0.06393453 0.01031772 308 306 0.01597157 -0.002577484 309 306 -0.007089509 0.001144101 310 306 0.003980742 -0.0006424099 311 306 -0.002541777 0.0004101906 312 306 0.001760065 -0.0002840383 313 306 -0.001288661 0.0002079635 314 306 0.0009826448 -0.0001585787 315 306 -0.0007727812 0.000124711 316 306 0.0006226054 -0.0001004757 317 306 -0.0005114288 8.253411e-05 318 306 0.0004268045 -6.887749e-05 319 306 -0.0003608797 5.823857e-05 320 306 0.0003085011 -4.978574e-05 321 306 -0.0002661734 4.295492e-05 322 306 0.0002314578 -3.735254e-05 323 306 -0.0002026106 3.26972e-05 226 307 0.001105038 9.715887e-05 243 307 -0.0002026106 3.26972e-05 244 307 0.0001783582 -2.878335e-05 245 307 -0.0001577525 2.545802e-05 246 307 0.000140076 -2.26054e-05 247 307 -0.0001247774 2.013652e-05 248 307 0.0001114272 -1.798207e-05 249 307 -9.968672e-05 1.608739e-05 250 307 8.928565e-05 -1.440887e-05 251 307 -8.000611e-05 1.291134e-05 252 307 7.167061e-05 -1.156616e-05 253 307 -6.413319e-05 1.034978e-05 254 307 5.727273e-05 -9.242642e-06 255 307 -5.098776e-05 8.228377e-06 256 307 4.519256e-05 -7.293151e-06 257 307 -3.981401e-05 6.425164e-06 258 307 3.478917e-05 -5.614257e-06 259 307 -3.00633e-05 4.851599e-06 260 307 2.558831e-05 -4.129428e-06 261 307 -2.132146e-05 3.440846e-06 262 307 1.722429e-05 -2.779647e-06 263 307 -1.326172e-05 2.14017e-06 264 307 9.401297e-06 -1.517176e-06 265 307 -5.612495e-06 9.057414e-07 266 307 1.866144e-06 -3.011573e-07 267 307 1.866144e-06 -3.011573e-07 268 307 -5.612495e-06 9.057414e-07 269 307 9.401297e-06 -1.517176e-06 270 307 -1.326172e-05 2.14017e-06 271 307 1.722429e-05 -2.779647e-06 272 307 -2.132146e-05 3.440846e-06 273 307 2.558831e-05 -4.129428e-06 274 307 -3.00633e-05 4.851599e-06 275 307 3.478917e-05 -5.614257e-06 276 307 -3.981401e-05 6.425164e-06 277 307 4.519256e-05 -7.293151e-06 278 307 -5.098776e-05 8.228377e-06 279 307 5.727273e-05 -9.242642e-06 280 307 -6.413319e-05 1.034978e-05 281 307 7.167061e-05 -1.156616e-05 282 307 -8.000611e-05 1.291134e-05 283 307 8.928565e-05 -1.440887e-05 284 307 -9.968672e-05 1.608739e-05 285 307 0.0001114272 -1.798207e-05 286 307 -0.0001247774 2.013652e-05 287 307 0.000140076 -2.26054e-05 288 307 -0.0001577525 2.545802e-05 289 307 0.0001783582 -2.878335e-05 290 307 -0.0002026106 3.26972e-05 291 307 0.0002314578 -3.735254e-05 292 307 -0.0002661734 4.295492e-05 293 307 0.0003085011 -4.978574e-05 294 307 -0.0003608797 5.823857e-05 295 307 0.0004268045 -6.887749e-05 296 307 -0.0005114288 8.253411e-05 297 307 0.0006226054 -0.0001004757 298 307 -0.0007727812 0.000124711 299 307 0.0009826448 -0.0001585787 300 307 -0.001288661 0.0002079635 301 307 0.001760065 -0.0002840383 302 307 -0.002541777 0.0004101906 303 307 0.003980742 -0.0006424099 304 307 -0.007089509 0.001144101 305 307 0.01597157 -0.002577484 306 307 -0.06393453 0.01031772 307 307 -0.4071659 -0.01782364 308 307 -0.06393453 0.01031772 309 307 0.01597157 -0.002577484 310 307 -0.007089509 0.001144101 311 307 0.003980742 -0.0006424099 312 307 -0.002541777 0.0004101906 313 307 0.001760065 -0.0002840383 314 307 -0.001288661 0.0002079635 315 307 0.0009826448 -0.0001585787 316 307 -0.0007727812 0.000124711 317 307 0.0006226054 -0.0001004757 318 307 -0.0005114288 8.253411e-05 319 307 0.0004268045 -6.887749e-05 320 307 -0.0003608797 5.823857e-05 321 307 0.0003085011 -4.978574e-05 322 307 -0.0002661734 4.295492e-05 323 307 0.0002314578 -3.735254e-05 227 308 0.001122898 9.909608e-05 243 308 0.0002314578 -3.735254e-05 244 308 -0.0002026106 3.26972e-05 245 308 0.0001783582 -2.878335e-05 246 308 -0.0001577525 2.545802e-05 247 308 0.000140076 -2.26054e-05 248 308 -0.0001247774 2.013652e-05 249 308 0.0001114272 -1.798207e-05 250 308 -9.968672e-05 1.608739e-05 251 308 8.928565e-05 -1.440887e-05 252 308 -8.000611e-05 1.291134e-05 253 308 7.167061e-05 -1.156616e-05 254 308 -6.413319e-05 1.034978e-05 255 308 5.727273e-05 -9.242642e-06 256 308 -5.098776e-05 8.228377e-06 257 308 4.519256e-05 -7.293151e-06 258 308 -3.981401e-05 6.425164e-06 259 308 3.478917e-05 -5.614257e-06 260 308 -3.00633e-05 4.851599e-06 261 308 2.558831e-05 -4.129428e-06 262 308 -2.132146e-05 3.440846e-06 263 308 1.722429e-05 -2.779647e-06 264 308 -1.326172e-05 2.14017e-06 265 308 9.401297e-06 -1.517176e-06 266 308 -5.612495e-06 9.057414e-07 267 308 1.866144e-06 -3.011573e-07 268 308 1.866144e-06 -3.011573e-07 269 308 -5.612495e-06 9.057414e-07 270 308 9.401297e-06 -1.517176e-06 271 308 -1.326172e-05 2.14017e-06 272 308 1.722429e-05 -2.779647e-06 273 308 -2.132146e-05 3.440846e-06 274 308 2.558831e-05 -4.129428e-06 275 308 -3.00633e-05 4.851599e-06 276 308 3.478917e-05 -5.614257e-06 277 308 -3.981401e-05 6.425164e-06 278 308 4.519256e-05 -7.293151e-06 279 308 -5.098776e-05 8.228377e-06 280 308 5.727273e-05 -9.242642e-06 281 308 -6.413319e-05 1.034978e-05 282 308 7.167061e-05 -1.156616e-05 283 308 -8.000611e-05 1.291134e-05 284 308 8.928565e-05 -1.440887e-05 285 308 -9.968672e-05 1.608739e-05 286 308 0.0001114272 -1.798207e-05 287 308 -0.0001247774 2.013652e-05 288 308 0.000140076 -2.26054e-05 289 308 -0.0001577525 2.545802e-05 290 308 0.0001783582 -2.878335e-05 291 308 -0.0002026106 3.26972e-05 292 308 0.0002314578 -3.735254e-05 293 308 -0.0002661734 4.295492e-05 294 308 0.0003085011 -4.978574e-05 295 308 -0.0003608797 5.823857e-05 296 308 0.0004268045 -6.887749e-05 297 308 -0.0005114288 8.253411e-05 298 308 0.0006226054 -0.0001004757 299 308 -0.0007727812 0.000124711 300 308 0.0009826448 -0.0001585787 301 308 -0.001288661 0.0002079635 302 308 0.001760065 -0.0002840383 303 308 -0.002541777 0.0004101906 304 308 0.003980742 -0.0006424099 305 308 -0.007089509 0.001144101 306 308 0.01597157 -0.002577484 307 308 -0.06393453 0.01031772 308 308 -0.4073077 -0.0177581 309 308 -0.06393453 0.01031772 310 308 0.01597157 -0.002577484 311 308 -0.007089509 0.001144101 312 308 0.003980742 -0.0006424099 313 308 -0.002541777 0.0004101906 314 308 0.001760065 -0.0002840383 315 308 -0.001288661 0.0002079635 316 308 0.0009826448 -0.0001585787 317 308 -0.0007727812 0.000124711 318 308 0.0006226054 -0.0001004757 319 308 -0.0005114288 8.253411e-05 320 308 0.0004268045 -6.887749e-05 321 308 -0.0003608797 5.823857e-05 322 308 0.0003085011 -4.978574e-05 323 308 -0.0002661734 4.295492e-05 228 309 0.001140849 0.0001010506 243 309 -0.0002661734 4.295492e-05 244 309 0.0002314578 -3.735254e-05 245 309 -0.0002026106 3.26972e-05 246 309 0.0001783582 -2.878335e-05 247 309 -0.0001577525 2.545802e-05 248 309 0.000140076 -2.26054e-05 249 309 -0.0001247774 2.013652e-05 250 309 0.0001114272 -1.798207e-05 251 309 -9.968672e-05 1.608739e-05 252 309 8.928565e-05 -1.440887e-05 253 309 -8.000611e-05 1.291134e-05 254 309 7.167061e-05 -1.156616e-05 255 309 -6.413319e-05 1.034978e-05 256 309 5.727273e-05 -9.242642e-06 257 309 -5.098776e-05 8.228377e-06 258 309 4.519256e-05 -7.293151e-06 259 309 -3.981401e-05 6.425164e-06 260 309 3.478917e-05 -5.614257e-06 261 309 -3.00633e-05 4.851599e-06 262 309 2.558831e-05 -4.129428e-06 263 309 -2.132146e-05 3.440846e-06 264 309 1.722429e-05 -2.779647e-06 265 309 -1.326172e-05 2.14017e-06 266 309 9.401297e-06 -1.517176e-06 267 309 -5.612495e-06 9.057414e-07 268 309 1.866144e-06 -3.011573e-07 269 309 1.866144e-06 -3.011573e-07 270 309 -5.612495e-06 9.057414e-07 271 309 9.401297e-06 -1.517176e-06 272 309 -1.326172e-05 2.14017e-06 273 309 1.722429e-05 -2.779647e-06 274 309 -2.132146e-05 3.440846e-06 275 309 2.558831e-05 -4.129428e-06 276 309 -3.00633e-05 4.851599e-06 277 309 3.478917e-05 -5.614257e-06 278 309 -3.981401e-05 6.425164e-06 279 309 4.519256e-05 -7.293151e-06 280 309 -5.098776e-05 8.228377e-06 281 309 5.727273e-05 -9.242642e-06 282 309 -6.413319e-05 1.034978e-05 283 309 7.167061e-05 -1.156616e-05 284 309 -8.000611e-05 1.291134e-05 285 309 8.928565e-05 -1.440887e-05 286 309 -9.968672e-05 1.608739e-05 287 309 0.0001114272 -1.798207e-05 288 309 -0.0001247774 2.013652e-05 289 309 0.000140076 -2.26054e-05 290 309 -0.0001577525 2.545802e-05 291 309 0.0001783582 -2.878335e-05 292 309 -0.0002026106 3.26972e-05 293 309 0.0002314578 -3.735254e-05 294 309 -0.0002661734 4.295492e-05 295 309 0.0003085011 -4.978574e-05 296 309 -0.0003608797 5.823857e-05 297 309 0.0004268045 -6.887749e-05 298 309 -0.0005114288 8.253411e-05 299 309 0.0006226054 -0.0001004757 300 309 -0.0007727812 0.000124711 301 309 0.0009826448 -0.0001585787 302 309 -0.001288661 0.0002079635 303 309 0.001760065 -0.0002840383 304 309 -0.002541777 0.0004101906 305 309 0.003980742 -0.0006424099 306 309 -0.007089509 0.001144101 307 309 0.01597157 -0.002577484 308 309 -0.06393453 0.01031772 309 309 -0.4074364 -0.01769747 310 309 -0.06393453 0.01031772 311 309 0.01597157 -0.002577484 312 309 -0.007089509 0.001144101 313 309 0.003980742 -0.0006424099 314 309 -0.002541777 0.0004101906 315 309 0.001760065 -0.0002840383 316 309 -0.001288661 0.0002079635 317 309 0.0009826448 -0.0001585787 318 309 -0.0007727812 0.000124711 319 309 0.0006226054 -0.0001004757 320 309 -0.0005114288 8.253411e-05 321 309 0.0004268045 -6.887749e-05 322 309 -0.0003608797 5.823857e-05 323 309 0.0003085011 -4.978574e-05 229 310 0.001158892 0.0001030225 243 310 0.0003085011 -4.978574e-05 244 310 -0.0002661734 4.295492e-05 245 310 0.0002314578 -3.735254e-05 246 310 -0.0002026106 3.26972e-05 247 310 0.0001783582 -2.878335e-05 248 310 -0.0001577525 2.545802e-05 249 310 0.000140076 -2.26054e-05 250 310 -0.0001247774 2.013652e-05 251 310 0.0001114272 -1.798207e-05 252 310 -9.968672e-05 1.608739e-05 253 310 8.928565e-05 -1.440887e-05 254 310 -8.000611e-05 1.291134e-05 255 310 7.167061e-05 -1.156616e-05 256 310 -6.413319e-05 1.034978e-05 257 310 5.727273e-05 -9.242642e-06 258 310 -5.098776e-05 8.228377e-06 259 310 4.519256e-05 -7.293151e-06 260 310 -3.981401e-05 6.425164e-06 261 310 3.478917e-05 -5.614257e-06 262 310 -3.00633e-05 4.851599e-06 263 310 2.558831e-05 -4.129428e-06 264 310 -2.132146e-05 3.440846e-06 265 310 1.722429e-05 -2.779647e-06 266 310 -1.326172e-05 2.14017e-06 267 310 9.401297e-06 -1.517176e-06 268 310 -5.612495e-06 9.057414e-07 269 310 1.866144e-06 -3.011573e-07 270 310 1.866144e-06 -3.011573e-07 271 310 -5.612495e-06 9.057414e-07 272 310 9.401297e-06 -1.517176e-06 273 310 -1.326172e-05 2.14017e-06 274 310 1.722429e-05 -2.779647e-06 275 310 -2.132146e-05 3.440846e-06 276 310 2.558831e-05 -4.129428e-06 277 310 -3.00633e-05 4.851599e-06 278 310 3.478917e-05 -5.614257e-06 279 310 -3.981401e-05 6.425164e-06 280 310 4.519256e-05 -7.293151e-06 281 310 -5.098776e-05 8.228377e-06 282 310 5.727273e-05 -9.242642e-06 283 310 -6.413319e-05 1.034978e-05 284 310 7.167061e-05 -1.156616e-05 285 310 -8.000611e-05 1.291134e-05 286 310 8.928565e-05 -1.440887e-05 287 310 -9.968672e-05 1.608739e-05 288 310 0.0001114272 -1.798207e-05 289 310 -0.0001247774 2.013652e-05 290 310 0.000140076 -2.26054e-05 291 310 -0.0001577525 2.545802e-05 292 310 0.0001783582 -2.878335e-05 293 310 -0.0002026106 3.26972e-05 294 310 0.0002314578 -3.735254e-05 295 310 -0.0002661734 4.295492e-05 296 310 0.0003085011 -4.978574e-05 297 310 -0.0003608797 5.823857e-05 298 310 0.0004268045 -6.887749e-05 299 310 -0.0005114288 8.253411e-05 300 310 0.0006226054 -0.0001004757 301 310 -0.0007727812 0.000124711 302 310 0.0009826448 -0.0001585787 303 310 -0.001288661 0.0002079635 304 310 0.001760065 -0.0002840383 305 310 -0.002541777 0.0004101906 306 310 0.003980742 -0.0006424099 307 310 -0.007089509 0.001144101 308 310 0.01597157 -0.002577484 309 310 -0.06393453 0.01031772 310 310 -0.4075532 -0.01764141 311 310 -0.06393453 0.01031772 312 310 0.01597157 -0.002577484 313 310 -0.007089509 0.001144101 314 310 0.003980742 -0.0006424099 315 310 -0.002541777 0.0004101906 316 310 0.001760065 -0.0002840383 317 310 -0.001288661 0.0002079635 318 310 0.0009826448 -0.0001585787 319 310 -0.0007727812 0.000124711 320 310 0.0006226054 -0.0001004757 321 310 -0.0005114288 8.253411e-05 322 310 0.0004268045 -6.887749e-05 323 310 -0.0003608797 5.823857e-05 230 311 0.001177026 0.000105012 243 311 -0.0003608797 5.823857e-05 244 311 0.0003085011 -4.978574e-05 245 311 -0.0002661734 4.295492e-05 246 311 0.0002314578 -3.735254e-05 247 311 -0.0002026106 3.26972e-05 248 311 0.0001783582 -2.878335e-05 249 311 -0.0001577525 2.545802e-05 250 311 0.000140076 -2.26054e-05 251 311 -0.0001247774 2.013652e-05 252 311 0.0001114272 -1.798207e-05 253 311 -9.968672e-05 1.608739e-05 254 311 8.928565e-05 -1.440887e-05 255 311 -8.000611e-05 1.291134e-05 256 311 7.167061e-05 -1.156616e-05 257 311 -6.413319e-05 1.034978e-05 258 311 5.727273e-05 -9.242642e-06 259 311 -5.098776e-05 8.228377e-06 260 311 4.519256e-05 -7.293151e-06 261 311 -3.981401e-05 6.425164e-06 262 311 3.478917e-05 -5.614257e-06 263 311 -3.00633e-05 4.851599e-06 264 311 2.558831e-05 -4.129428e-06 265 311 -2.132146e-05 3.440846e-06 266 311 1.722429e-05 -2.779647e-06 267 311 -1.326172e-05 2.14017e-06 268 311 9.401297e-06 -1.517176e-06 269 311 -5.612495e-06 9.057414e-07 270 311 1.866144e-06 -3.011573e-07 271 311 1.866144e-06 -3.011573e-07 272 311 -5.612495e-06 9.057414e-07 273 311 9.401297e-06 -1.517176e-06 274 311 -1.326172e-05 2.14017e-06 275 311 1.722429e-05 -2.779647e-06 276 311 -2.132146e-05 3.440846e-06 277 311 2.558831e-05 -4.129428e-06 278 311 -3.00633e-05 4.851599e-06 279 311 3.478917e-05 -5.614257e-06 280 311 -3.981401e-05 6.425164e-06 281 311 4.519256e-05 -7.293151e-06 282 311 -5.098776e-05 8.228377e-06 283 311 5.727273e-05 -9.242642e-06 284 311 -6.413319e-05 1.034978e-05 285 311 7.167061e-05 -1.156616e-05 286 311 -8.000611e-05 1.291134e-05 287 311 8.928565e-05 -1.440887e-05 288 311 -9.968672e-05 1.608739e-05 289 311 0.0001114272 -1.798207e-05 290 311 -0.0001247774 2.013652e-05 291 311 0.000140076 -2.26054e-05 292 311 -0.0001577525 2.545802e-05 293 311 0.0001783582 -2.878335e-05 294 311 -0.0002026106 3.26972e-05 295 311 0.0002314578 -3.735254e-05 296 311 -0.0002661734 4.295492e-05 297 311 0.0003085011 -4.978574e-05 298 311 -0.0003608797 5.823857e-05 299 311 0.0004268045 -6.887749e-05 300 311 -0.0005114288 8.253411e-05 301 311 0.0006226054 -0.0001004757 302 311 -0.0007727812 0.000124711 303 311 0.0009826448 -0.0001585787 304 311 -0.001288661 0.0002079635 305 311 0.001760065 -0.0002840383 306 311 -0.002541777 0.0004101906 307 311 0.003980742 -0.0006424099 308 311 -0.007089509 0.001144101 309 311 0.01597157 -0.002577484 310 311 -0.06393453 0.01031772 311 311 -0.4076592 -0.01758959 312 311 -0.06393453 0.01031772 313 311 0.01597157 -0.002577484 314 311 -0.007089509 0.001144101 315 311 0.003980742 -0.0006424099 316 311 -0.002541777 0.0004101906 317 311 0.001760065 -0.0002840383 318 311 -0.001288661 0.0002079635 319 311 0.0009826448 -0.0001585787 320 311 -0.0007727812 0.000124711 321 311 0.0006226054 -0.0001004757 322 311 -0.0005114288 8.253411e-05 323 311 0.0004268045 -6.887749e-05 231 312 0.001195252 0.0001070192 243 312 0.0004268045 -6.887749e-05 244 312 -0.0003608797 5.823857e-05 245 312 0.0003085011 -4.978574e-05 246 312 -0.0002661734 4.295492e-05 247 312 0.0002314578 -3.735254e-05 248 312 -0.0002026106 3.26972e-05 249 312 0.0001783582 -2.878335e-05 250 312 -0.0001577525 2.545802e-05 251 312 0.000140076 -2.26054e-05 252 312 -0.0001247774 2.013652e-05 253 312 0.0001114272 -1.798207e-05 254 312 -9.968672e-05 1.608739e-05 255 312 8.928565e-05 -1.440887e-05 256 312 -8.000611e-05 1.291134e-05 257 312 7.167061e-05 -1.156616e-05 258 312 -6.413319e-05 1.034978e-05 259 312 5.727273e-05 -9.242642e-06 260 312 -5.098776e-05 8.228377e-06 261 312 4.519256e-05 -7.293151e-06 262 312 -3.981401e-05 6.425164e-06 263 312 3.478917e-05 -5.614257e-06 264 312 -3.00633e-05 4.851599e-06 265 312 2.558831e-05 -4.129428e-06 266 312 -2.132146e-05 3.440846e-06 267 312 1.722429e-05 -2.779647e-06 268 312 -1.326172e-05 2.14017e-06 269 312 9.401297e-06 -1.517176e-06 270 312 -5.612495e-06 9.057414e-07 271 312 1.866144e-06 -3.011573e-07 272 312 1.866144e-06 -3.011573e-07 273 312 -5.612495e-06 9.057414e-07 274 312 9.401297e-06 -1.517176e-06 275 312 -1.326172e-05 2.14017e-06 276 312 1.722429e-05 -2.779647e-06 277 312 -2.132146e-05 3.440846e-06 278 312 2.558831e-05 -4.129428e-06 279 312 -3.00633e-05 4.851599e-06 280 312 3.478917e-05 -5.614257e-06 281 312 -3.981401e-05 6.425164e-06 282 312 4.519256e-05 -7.293151e-06 283 312 -5.098776e-05 8.228377e-06 284 312 5.727273e-05 -9.242642e-06 285 312 -6.413319e-05 1.034978e-05 286 312 7.167061e-05 -1.156616e-05 287 312 -8.000611e-05 1.291134e-05 288 312 8.928565e-05 -1.440887e-05 289 312 -9.968672e-05 1.608739e-05 290 312 0.0001114272 -1.798207e-05 291 312 -0.0001247774 2.013652e-05 292 312 0.000140076 -2.26054e-05 293 312 -0.0001577525 2.545802e-05 294 312 0.0001783582 -2.878335e-05 295 312 -0.0002026106 3.26972e-05 296 312 0.0002314578 -3.735254e-05 297 312 -0.0002661734 4.295492e-05 298 312 0.0003085011 -4.978574e-05 299 312 -0.0003608797 5.823857e-05 300 312 0.0004268045 -6.887749e-05 301 312 -0.0005114288 8.253411e-05 302 312 0.0006226054 -0.0001004757 303 312 -0.0007727812 0.000124711 304 312 0.0009826448 -0.0001585787 305 312 -0.001288661 0.0002079635 306 312 0.001760065 -0.0002840383 307 312 -0.002541777 0.0004101906 308 312 0.003980742 -0.0006424099 309 312 -0.007089509 0.001144101 310 312 0.01597157 -0.002577484 311 312 -0.06393453 0.01031772 312 312 -0.4077554 -0.01754169 313 312 -0.06393453 0.01031772 314 312 0.01597157 -0.002577484 315 312 -0.007089509 0.001144101 316 312 0.003980742 -0.0006424099 317 312 -0.002541777 0.0004101906 318 312 0.001760065 -0.0002840383 319 312 -0.001288661 0.0002079635 320 312 0.0009826448 -0.0001585787 321 312 -0.0007727812 0.000124711 322 312 0.0006226054 -0.0001004757 323 312 -0.0005114288 8.253411e-05 232 313 0.001213571 0.0001090442 243 313 -0.0005114288 8.253411e-05 244 313 0.0004268045 -6.887749e-05 245 313 -0.0003608797 5.823857e-05 246 313 0.0003085011 -4.978574e-05 247 313 -0.0002661734 4.295492e-05 248 313 0.0002314578 -3.735254e-05 249 313 -0.0002026106 3.26972e-05 250 313 0.0001783582 -2.878335e-05 251 313 -0.0001577525 2.545802e-05 252 313 0.000140076 -2.26054e-05 253 313 -0.0001247774 2.013652e-05 254 313 0.0001114272 -1.798207e-05 255 313 -9.968672e-05 1.608739e-05 256 313 8.928565e-05 -1.440887e-05 257 313 -8.000611e-05 1.291134e-05 258 313 7.167061e-05 -1.156616e-05 259 313 -6.413319e-05 1.034978e-05 260 313 5.727273e-05 -9.242642e-06 261 313 -5.098776e-05 8.228377e-06 262 313 4.519256e-05 -7.293151e-06 263 313 -3.981401e-05 6.425164e-06 264 313 3.478917e-05 -5.614257e-06 265 313 -3.00633e-05 4.851599e-06 266 313 2.558831e-05 -4.129428e-06 267 313 -2.132146e-05 3.440846e-06 268 313 1.722429e-05 -2.779647e-06 269 313 -1.326172e-05 2.14017e-06 270 313 9.401297e-06 -1.517176e-06 271 313 -5.612495e-06 9.057414e-07 272 313 1.866144e-06 -3.011573e-07 273 313 1.866144e-06 -3.011573e-07 274 313 -5.612495e-06 9.057414e-07 275 313 9.401297e-06 -1.517176e-06 276 313 -1.326172e-05 2.14017e-06 277 313 1.722429e-05 -2.779647e-06 278 313 -2.132146e-05 3.440846e-06 279 313 2.558831e-05 -4.129428e-06 280 313 -3.00633e-05 4.851599e-06 281 313 3.478917e-05 -5.614257e-06 282 313 -3.981401e-05 6.425164e-06 283 313 4.519256e-05 -7.293151e-06 284 313 -5.098776e-05 8.228377e-06 285 313 5.727273e-05 -9.242642e-06 286 313 -6.413319e-05 1.034978e-05 287 313 7.167061e-05 -1.156616e-05 288 313 -8.000611e-05 1.291134e-05 289 313 8.928565e-05 -1.440887e-05 290 313 -9.968672e-05 1.608739e-05 291 313 0.0001114272 -1.798207e-05 292 313 -0.0001247774 2.013652e-05 293 313 0.000140076 -2.26054e-05 294 313 -0.0001577525 2.545802e-05 295 313 0.0001783582 -2.878335e-05 296 313 -0.0002026106 3.26972e-05 297 313 0.0002314578 -3.735254e-05 298 313 -0.0002661734 4.295492e-05 299 313 0.0003085011 -4.978574e-05 300 313 -0.0003608797 5.823857e-05 301 313 0.0004268045 -6.887749e-05 302 313 -0.0005114288 8.253411e-05 303 313 0.0006226054 -0.0001004757 304 313 -0.0007727812 0.000124711 305 313 0.0009826448 -0.0001585787 306 313 -0.001288661 0.0002079635 307 313 0.001760065 -0.0002840383 308 313 -0.002541777 0.0004101906 309 313 0.003980742 -0.0006424099 310 313 -0.007089509 0.001144101 311 313 0.01597157 -0.002577484 312 313 -0.06393453 0.01031772 313 313 -0.4078427 -0.01749742 314 313 -0.06393453 0.01031772 315 313 0.01597157 -0.002577484 316 313 -0.007089509 0.001144101 317 313 0.003980742 -0.0006424099 318 313 -0.002541777 0.0004101906 319 313 0.001760065 -0.0002840383 320 313 -0.001288661 0.0002079635 321 313 0.0009826448 -0.0001585787 322 313 -0.0007727812 0.000124711 323 313 0.0006226054 -0.0001004757 233 314 0.001231983 0.0001110871 243 314 0.0006226054 -0.0001004757 244 314 -0.0005114288 8.253411e-05 245 314 0.0004268045 -6.887749e-05 246 314 -0.0003608797 5.823857e-05 247 314 0.0003085011 -4.978574e-05 248 314 -0.0002661734 4.295492e-05 249 314 0.0002314578 -3.735254e-05 250 314 -0.0002026106 3.26972e-05 251 314 0.0001783582 -2.878335e-05 252 314 -0.0001577525 2.545802e-05 253 314 0.000140076 -2.26054e-05 254 314 -0.0001247774 2.013652e-05 255 314 0.0001114272 -1.798207e-05 256 314 -9.968672e-05 1.608739e-05 257 314 8.928565e-05 -1.440887e-05 258 314 -8.000611e-05 1.291134e-05 259 314 7.167061e-05 -1.156616e-05 260 314 -6.413319e-05 1.034978e-05 261 314 5.727273e-05 -9.242642e-06 262 314 -5.098776e-05 8.228377e-06 263 314 4.519256e-05 -7.293151e-06 264 314 -3.981401e-05 6.425164e-06 265 314 3.478917e-05 -5.614257e-06 266 314 -3.00633e-05 4.851599e-06 267 314 2.558831e-05 -4.129428e-06 268 314 -2.132146e-05 3.440846e-06 269 314 1.722429e-05 -2.779647e-06 270 314 -1.326172e-05 2.14017e-06 271 314 9.401297e-06 -1.517176e-06 272 314 -5.612495e-06 9.057414e-07 273 314 1.866144e-06 -3.011573e-07 274 314 1.866144e-06 -3.011573e-07 275 314 -5.612495e-06 9.057414e-07 276 314 9.401297e-06 -1.517176e-06 277 314 -1.326172e-05 2.14017e-06 278 314 1.722429e-05 -2.779647e-06 279 314 -2.132146e-05 3.440846e-06 280 314 2.558831e-05 -4.129428e-06 281 314 -3.00633e-05 4.851599e-06 282 314 3.478917e-05 -5.614257e-06 283 314 -3.981401e-05 6.425164e-06 284 314 4.519256e-05 -7.293151e-06 285 314 -5.098776e-05 8.228377e-06 286 314 5.727273e-05 -9.242642e-06 287 314 -6.413319e-05 1.034978e-05 288 314 7.167061e-05 -1.156616e-05 289 314 -8.000611e-05 1.291134e-05 290 314 8.928565e-05 -1.440887e-05 291 314 -9.968672e-05 1.608739e-05 292 314 0.0001114272 -1.798207e-05 293 314 -0.0001247774 2.013652e-05 294 314 0.000140076 -2.26054e-05 295 314 -0.0001577525 2.545802e-05 296 314 0.0001783582 -2.878335e-05 297 314 -0.0002026106 3.26972e-05 298 314 0.0002314578 -3.735254e-05 299 314 -0.0002661734 4.295492e-05 300 314 0.0003085011 -4.978574e-05 301 314 -0.0003608797 5.823857e-05 302 314 0.0004268045 -6.887749e-05 303 314 -0.0005114288 8.253411e-05 304 314 0.0006226054 -0.0001004757 305 314 -0.0007727812 0.000124711 306 314 0.0009826448 -0.0001585787 307 314 -0.001288661 0.0002079635 308 314 0.001760065 -0.0002840383 309 314 -0.002541777 0.0004101906 310 314 0.003980742 -0.0006424099 311 314 -0.007089509 0.001144101 312 314 0.01597157 -0.002577484 313 314 -0.06393453 0.01031772 314 314 -0.4079219 -0.01745652 315 314 -0.06393453 0.01031772 316 314 0.01597157 -0.002577484 317 314 -0.007089509 0.001144101 318 314 0.003980742 -0.0006424099 319 314 -0.002541777 0.0004101906 320 314 0.001760065 -0.0002840383 321 314 -0.001288661 0.0002079635 322 314 0.0009826448 -0.0001585787 323 314 -0.0007727812 0.000124711 234 315 0.001250489 0.0001131481 243 315 -0.0007727812 0.000124711 244 315 0.0006226054 -0.0001004757 245 315 -0.0005114288 8.253411e-05 246 315 0.0004268045 -6.887749e-05 247 315 -0.0003608797 5.823857e-05 248 315 0.0003085011 -4.978574e-05 249 315 -0.0002661734 4.295492e-05 250 315 0.0002314578 -3.735254e-05 251 315 -0.0002026106 3.26972e-05 252 315 0.0001783582 -2.878335e-05 253 315 -0.0001577525 2.545802e-05 254 315 0.000140076 -2.26054e-05 255 315 -0.0001247774 2.013652e-05 256 315 0.0001114272 -1.798207e-05 257 315 -9.968672e-05 1.608739e-05 258 315 8.928565e-05 -1.440887e-05 259 315 -8.000611e-05 1.291134e-05 260 315 7.167061e-05 -1.156616e-05 261 315 -6.413319e-05 1.034978e-05 262 315 5.727273e-05 -9.242642e-06 263 315 -5.098776e-05 8.228377e-06 264 315 4.519256e-05 -7.293151e-06 265 315 -3.981401e-05 6.425164e-06 266 315 3.478917e-05 -5.614257e-06 267 315 -3.00633e-05 4.851599e-06 268 315 2.558831e-05 -4.129428e-06 269 315 -2.132146e-05 3.440846e-06 270 315 1.722429e-05 -2.779647e-06 271 315 -1.326172e-05 2.14017e-06 272 315 9.401297e-06 -1.517176e-06 273 315 -5.612495e-06 9.057414e-07 274 315 1.866144e-06 -3.011573e-07 275 315 1.866144e-06 -3.011573e-07 276 315 -5.612495e-06 9.057414e-07 277 315 9.401297e-06 -1.517176e-06 278 315 -1.326172e-05 2.14017e-06 279 315 1.722429e-05 -2.779647e-06 280 315 -2.132146e-05 3.440846e-06 281 315 2.558831e-05 -4.129428e-06 282 315 -3.00633e-05 4.851599e-06 283 315 3.478917e-05 -5.614257e-06 284 315 -3.981401e-05 6.425164e-06 285 315 4.519256e-05 -7.293151e-06 286 315 -5.098776e-05 8.228377e-06 287 315 5.727273e-05 -9.242642e-06 288 315 -6.413319e-05 1.034978e-05 289 315 7.167061e-05 -1.156616e-05 290 315 -8.000611e-05 1.291134e-05 291 315 8.928565e-05 -1.440887e-05 292 315 -9.968672e-05 1.608739e-05 293 315 0.0001114272 -1.798207e-05 294 315 -0.0001247774 2.013652e-05 295 315 0.000140076 -2.26054e-05 296 315 -0.0001577525 2.545802e-05 297 315 0.0001783582 -2.878335e-05 298 315 -0.0002026106 3.26972e-05 299 315 0.0002314578 -3.735254e-05 300 315 -0.0002661734 4.295492e-05 301 315 0.0003085011 -4.978574e-05 302 315 -0.0003608797 5.823857e-05 303 315 0.0004268045 -6.887749e-05 304 315 -0.0005114288 8.253411e-05 305 315 0.0006226054 -0.0001004757 306 315 -0.0007727812 0.000124711 307 315 0.0009826448 -0.0001585787 308 315 -0.001288661 0.0002079635 309 315 0.001760065 -0.0002840383 310 315 -0.002541777 0.0004101906 311 315 0.003980742 -0.0006424099 312 315 -0.007089509 0.001144101 313 315 0.01597157 -0.002577484 314 315 -0.06393453 0.01031772 315 315 -0.4079938 -0.01741874 316 315 -0.06393453 0.01031772 317 315 0.01597157 -0.002577484 318 315 -0.007089509 0.001144101 319 315 0.003980742 -0.0006424099 320 315 -0.002541777 0.0004101906 321 315 0.001760065 -0.0002840383 322 315 -0.001288661 0.0002079635 323 315 0.0009826448 -0.0001585787 235 316 0.001269089 0.0001152273 243 316 0.0009826448 -0.0001585787 244 316 -0.0007727812 0.000124711 245 316 0.0006226054 -0.0001004757 246 316 -0.0005114288 8.253411e-05 247 316 0.0004268045 -6.887749e-05 248 316 -0.0003608797 5.823857e-05 249 316 0.0003085011 -4.978574e-05 250 316 -0.0002661734 4.295492e-05 251 316 0.0002314578 -3.735254e-05 252 316 -0.0002026106 3.26972e-05 253 316 0.0001783582 -2.878335e-05 254 316 -0.0001577525 2.545802e-05 255 316 0.000140076 -2.26054e-05 256 316 -0.0001247774 2.013652e-05 257 316 0.0001114272 -1.798207e-05 258 316 -9.968672e-05 1.608739e-05 259 316 8.928565e-05 -1.440887e-05 260 316 -8.000611e-05 1.291134e-05 261 316 7.167061e-05 -1.156616e-05 262 316 -6.413319e-05 1.034978e-05 263 316 5.727273e-05 -9.242642e-06 264 316 -5.098776e-05 8.228377e-06 265 316 4.519256e-05 -7.293151e-06 266 316 -3.981401e-05 6.425164e-06 267 316 3.478917e-05 -5.614257e-06 268 316 -3.00633e-05 4.851599e-06 269 316 2.558831e-05 -4.129428e-06 270 316 -2.132146e-05 3.440846e-06 271 316 1.722429e-05 -2.779647e-06 272 316 -1.326172e-05 2.14017e-06 273 316 9.401297e-06 -1.517176e-06 274 316 -5.612495e-06 9.057414e-07 275 316 1.866144e-06 -3.011573e-07 276 316 1.866144e-06 -3.011573e-07 277 316 -5.612495e-06 9.057414e-07 278 316 9.401297e-06 -1.517176e-06 279 316 -1.326172e-05 2.14017e-06 280 316 1.722429e-05 -2.779647e-06 281 316 -2.132146e-05 3.440846e-06 282 316 2.558831e-05 -4.129428e-06 283 316 -3.00633e-05 4.851599e-06 284 316 3.478917e-05 -5.614257e-06 285 316 -3.981401e-05 6.425164e-06 286 316 4.519256e-05 -7.293151e-06 287 316 -5.098776e-05 8.228377e-06 288 316 5.727273e-05 -9.242642e-06 289 316 -6.413319e-05 1.034978e-05 290 316 7.167061e-05 -1.156616e-05 291 316 -8.000611e-05 1.291134e-05 292 316 8.928565e-05 -1.440887e-05 293 316 -9.968672e-05 1.608739e-05 294 316 0.0001114272 -1.798207e-05 295 316 -0.0001247774 2.013652e-05 296 316 0.000140076 -2.26054e-05 297 316 -0.0001577525 2.545802e-05 298 316 0.0001783582 -2.878335e-05 299 316 -0.0002026106 3.26972e-05 300 316 0.0002314578 -3.735254e-05 301 316 -0.0002661734 4.295492e-05 302 316 0.0003085011 -4.978574e-05 303 316 -0.0003608797 5.823857e-05 304 316 0.0004268045 -6.887749e-05 305 316 -0.0005114288 8.253411e-05 306 316 0.0006226054 -0.0001004757 307 316 -0.0007727812 0.000124711 308 316 0.0009826448 -0.0001585787 309 316 -0.001288661 0.0002079635 310 316 0.001760065 -0.0002840383 311 316 -0.002541777 0.0004101906 312 316 0.003980742 -0.0006424099 313 316 -0.007089509 0.001144101 314 316 0.01597157 -0.002577484 315 316 -0.06393453 0.01031772 316 316 -0.4080591 -0.01738384 317 316 -0.06393453 0.01031772 318 316 0.01597157 -0.002577484 319 316 -0.007089509 0.001144101 320 316 0.003980742 -0.0006424099 321 316 -0.002541777 0.0004101906 322 316 0.001760065 -0.0002840383 323 316 -0.001288661 0.0002079635 236 317 0.001287783 0.0001173249 243 317 -0.001288661 0.0002079635 244 317 0.0009826448 -0.0001585787 245 317 -0.0007727812 0.000124711 246 317 0.0006226054 -0.0001004757 247 317 -0.0005114288 8.253411e-05 248 317 0.0004268045 -6.887749e-05 249 317 -0.0003608797 5.823857e-05 250 317 0.0003085011 -4.978574e-05 251 317 -0.0002661734 4.295492e-05 252 317 0.0002314578 -3.735254e-05 253 317 -0.0002026106 3.26972e-05 254 317 0.0001783582 -2.878335e-05 255 317 -0.0001577525 2.545802e-05 256 317 0.000140076 -2.26054e-05 257 317 -0.0001247774 2.013652e-05 258 317 0.0001114272 -1.798207e-05 259 317 -9.968672e-05 1.608739e-05 260 317 8.928565e-05 -1.440887e-05 261 317 -8.000611e-05 1.291134e-05 262 317 7.167061e-05 -1.156616e-05 263 317 -6.413319e-05 1.034978e-05 264 317 5.727273e-05 -9.242642e-06 265 317 -5.098776e-05 8.228377e-06 266 317 4.519256e-05 -7.293151e-06 267 317 -3.981401e-05 6.425164e-06 268 317 3.478917e-05 -5.614257e-06 269 317 -3.00633e-05 4.851599e-06 270 317 2.558831e-05 -4.129428e-06 271 317 -2.132146e-05 3.440846e-06 272 317 1.722429e-05 -2.779647e-06 273 317 -1.326172e-05 2.14017e-06 274 317 9.401297e-06 -1.517176e-06 275 317 -5.612495e-06 9.057414e-07 276 317 1.866144e-06 -3.011573e-07 277 317 1.866144e-06 -3.011573e-07 278 317 -5.612495e-06 9.057414e-07 279 317 9.401297e-06 -1.517176e-06 280 317 -1.326172e-05 2.14017e-06 281 317 1.722429e-05 -2.779647e-06 282 317 -2.132146e-05 3.440846e-06 283 317 2.558831e-05 -4.129428e-06 284 317 -3.00633e-05 4.851599e-06 285 317 3.478917e-05 -5.614257e-06 286 317 -3.981401e-05 6.425164e-06 287 317 4.519256e-05 -7.293151e-06 288 317 -5.098776e-05 8.228377e-06 289 317 5.727273e-05 -9.242642e-06 290 317 -6.413319e-05 1.034978e-05 291 317 7.167061e-05 -1.156616e-05 292 317 -8.000611e-05 1.291134e-05 293 317 8.928565e-05 -1.440887e-05 294 317 -9.968672e-05 1.608739e-05 295 317 0.0001114272 -1.798207e-05 296 317 -0.0001247774 2.013652e-05 297 317 0.000140076 -2.26054e-05 298 317 -0.0001577525 2.545802e-05 299 317 0.0001783582 -2.878335e-05 300 317 -0.0002026106 3.26972e-05 301 317 0.0002314578 -3.735254e-05 302 317 -0.0002661734 4.295492e-05 303 317 0.0003085011 -4.978574e-05 304 317 -0.0003608797 5.823857e-05 305 317 0.0004268045 -6.887749e-05 306 317 -0.0005114288 8.253411e-05 307 317 0.0006226054 -0.0001004757 308 317 -0.0007727812 0.000124711 309 317 0.0009826448 -0.0001585787 310 317 -0.001288661 0.0002079635 311 317 0.001760065 -0.0002840383 312 317 -0.002541777 0.0004101906 313 317 0.003980742 -0.0006424099 314 317 -0.007089509 0.001144101 315 317 0.01597157 -0.002577484 316 317 -0.06393453 0.01031772 317 317 -0.4081183 -0.01735162 318 317 -0.06393453 0.01031772 319 317 0.01597157 -0.002577484 320 317 -0.007089509 0.001144101 321 317 0.003980742 -0.0006424099 322 317 -0.002541777 0.0004101906 323 317 0.001760065 -0.0002840383 237 318 0.001306573 0.0001194409 243 318 0.001760065 -0.0002840383 244 318 -0.001288661 0.0002079635 245 318 0.0009826448 -0.0001585787 246 318 -0.0007727812 0.000124711 247 318 0.0006226054 -0.0001004757 248 318 -0.0005114288 8.253411e-05 249 318 0.0004268045 -6.887749e-05 250 318 -0.0003608797 5.823857e-05 251 318 0.0003085011 -4.978574e-05 252 318 -0.0002661734 4.295492e-05 253 318 0.0002314578 -3.735254e-05 254 318 -0.0002026106 3.26972e-05 255 318 0.0001783582 -2.878335e-05 256 318 -0.0001577525 2.545802e-05 257 318 0.000140076 -2.26054e-05 258 318 -0.0001247774 2.013652e-05 259 318 0.0001114272 -1.798207e-05 260 318 -9.968672e-05 1.608739e-05 261 318 8.928565e-05 -1.440887e-05 262 318 -8.000611e-05 1.291134e-05 263 318 7.167061e-05 -1.156616e-05 264 318 -6.413319e-05 1.034978e-05 265 318 5.727273e-05 -9.242642e-06 266 318 -5.098776e-05 8.228377e-06 267 318 4.519256e-05 -7.293151e-06 268 318 -3.981401e-05 6.425164e-06 269 318 3.478917e-05 -5.614257e-06 270 318 -3.00633e-05 4.851599e-06 271 318 2.558831e-05 -4.129428e-06 272 318 -2.132146e-05 3.440846e-06 273 318 1.722429e-05 -2.779647e-06 274 318 -1.326172e-05 2.14017e-06 275 318 9.401297e-06 -1.517176e-06 276 318 -5.612495e-06 9.057414e-07 277 318 1.866144e-06 -3.011573e-07 278 318 1.866144e-06 -3.011573e-07 279 318 -5.612495e-06 9.057414e-07 280 318 9.401297e-06 -1.517176e-06 281 318 -1.326172e-05 2.14017e-06 282 318 1.722429e-05 -2.779647e-06 283 318 -2.132146e-05 3.440846e-06 284 318 2.558831e-05 -4.129428e-06 285 318 -3.00633e-05 4.851599e-06 286 318 3.478917e-05 -5.614257e-06 287 318 -3.981401e-05 6.425164e-06 288 318 4.519256e-05 -7.293151e-06 289 318 -5.098776e-05 8.228377e-06 290 318 5.727273e-05 -9.242642e-06 291 318 -6.413319e-05 1.034978e-05 292 318 7.167061e-05 -1.156616e-05 293 318 -8.000611e-05 1.291134e-05 294 318 8.928565e-05 -1.440887e-05 295 318 -9.968672e-05 1.608739e-05 296 318 0.0001114272 -1.798207e-05 297 318 -0.0001247774 2.013652e-05 298 318 0.000140076 -2.26054e-05 299 318 -0.0001577525 2.545802e-05 300 318 0.0001783582 -2.878335e-05 301 318 -0.0002026106 3.26972e-05 302 318 0.0002314578 -3.735254e-05 303 318 -0.0002661734 4.295492e-05 304 318 0.0003085011 -4.978574e-05 305 318 -0.0003608797 5.823857e-05 306 318 0.0004268045 -6.887749e-05 307 318 -0.0005114288 8.253411e-05 308 318 0.0006226054 -0.0001004757 309 318 -0.0007727812 0.000124711 310 318 0.0009826448 -0.0001585787 311 318 -0.001288661 0.0002079635 312 318 0.001760065 -0.0002840383 313 318 -0.002541777 0.0004101906 314 318 0.003980742 -0.0006424099 315 318 -0.007089509 0.001144101 316 318 0.01597157 -0.002577484 317 318 -0.06393453 0.01031772 318 318 -0.408172 -0.01732187 319 318 -0.06393453 0.01031772 320 318 0.01597157 -0.002577484 321 318 -0.007089509 0.001144101 322 318 0.003980742 -0.0006424099 323 318 -0.002541777 0.0004101906 238 319 0.001325458 0.0001215755 243 319 -0.002541777 0.0004101906 244 319 0.001760065 -0.0002840383 245 319 -0.001288661 0.0002079635 246 319 0.0009826448 -0.0001585787 247 319 -0.0007727812 0.000124711 248 319 0.0006226054 -0.0001004757 249 319 -0.0005114288 8.253411e-05 250 319 0.0004268045 -6.887749e-05 251 319 -0.0003608797 5.823857e-05 252 319 0.0003085011 -4.978574e-05 253 319 -0.0002661734 4.295492e-05 254 319 0.0002314578 -3.735254e-05 255 319 -0.0002026106 3.26972e-05 256 319 0.0001783582 -2.878335e-05 257 319 -0.0001577525 2.545802e-05 258 319 0.000140076 -2.26054e-05 259 319 -0.0001247774 2.013652e-05 260 319 0.0001114272 -1.798207e-05 261 319 -9.968672e-05 1.608739e-05 262 319 8.928565e-05 -1.440887e-05 263 319 -8.000611e-05 1.291134e-05 264 319 7.167061e-05 -1.156616e-05 265 319 -6.413319e-05 1.034978e-05 266 319 5.727273e-05 -9.242642e-06 267 319 -5.098776e-05 8.228377e-06 268 319 4.519256e-05 -7.293151e-06 269 319 -3.981401e-05 6.425164e-06 270 319 3.478917e-05 -5.614257e-06 271 319 -3.00633e-05 4.851599e-06 272 319 2.558831e-05 -4.129428e-06 273 319 -2.132146e-05 3.440846e-06 274 319 1.722429e-05 -2.779647e-06 275 319 -1.326172e-05 2.14017e-06 276 319 9.401297e-06 -1.517176e-06 277 319 -5.612495e-06 9.057414e-07 278 319 1.866144e-06 -3.011573e-07 279 319 1.866144e-06 -3.011573e-07 280 319 -5.612495e-06 9.057414e-07 281 319 9.401297e-06 -1.517176e-06 282 319 -1.326172e-05 2.14017e-06 283 319 1.722429e-05 -2.779647e-06 284 319 -2.132146e-05 3.440846e-06 285 319 2.558831e-05 -4.129428e-06 286 319 -3.00633e-05 4.851599e-06 287 319 3.478917e-05 -5.614257e-06 288 319 -3.981401e-05 6.425164e-06 289 319 4.519256e-05 -7.293151e-06 290 319 -5.098776e-05 8.228377e-06 291 319 5.727273e-05 -9.242642e-06 292 319 -6.413319e-05 1.034978e-05 293 319 7.167061e-05 -1.156616e-05 294 319 -8.000611e-05 1.291134e-05 295 319 8.928565e-05 -1.440887e-05 296 319 -9.968672e-05 1.608739e-05 297 319 0.0001114272 -1.798207e-05 298 319 -0.0001247774 2.013652e-05 299 319 0.000140076 -2.26054e-05 300 319 -0.0001577525 2.545802e-05 301 319 0.0001783582 -2.878335e-05 302 319 -0.0002026106 3.26972e-05 303 319 0.0002314578 -3.735254e-05 304 319 -0.0002661734 4.295492e-05 305 319 0.0003085011 -4.978574e-05 306 319 -0.0003608797 5.823857e-05 307 319 0.0004268045 -6.887749e-05 308 319 -0.0005114288 8.253411e-05 309 319 0.0006226054 -0.0001004757 310 319 -0.0007727812 0.000124711 311 319 0.0009826448 -0.0001585787 312 319 -0.001288661 0.0002079635 313 319 0.001760065 -0.0002840383 314 319 -0.002541777 0.0004101906 315 319 0.003980742 -0.0006424099 316 319 -0.007089509 0.001144101 317 319 0.01597157 -0.002577484 318 319 -0.06393453 0.01031772 319 319 -0.4082207 -0.01729441 320 319 -0.06393453 0.01031772 321 319 0.01597157 -0.002577484 322 319 -0.007089509 0.001144101 323 319 0.003980742 -0.0006424099 239 320 0.001344439 0.0001237288 243 320 0.003980742 -0.0006424099 244 320 -0.002541777 0.0004101906 245 320 0.001760065 -0.0002840383 246 320 -0.001288661 0.0002079635 247 320 0.0009826448 -0.0001585787 248 320 -0.0007727812 0.000124711 249 320 0.0006226054 -0.0001004757 250 320 -0.0005114288 8.253411e-05 251 320 0.0004268045 -6.887749e-05 252 320 -0.0003608797 5.823857e-05 253 320 0.0003085011 -4.978574e-05 254 320 -0.0002661734 4.295492e-05 255 320 0.0002314578 -3.735254e-05 256 320 -0.0002026106 3.26972e-05 257 320 0.0001783582 -2.878335e-05 258 320 -0.0001577525 2.545802e-05 259 320 0.000140076 -2.26054e-05 260 320 -0.0001247774 2.013652e-05 261 320 0.0001114272 -1.798207e-05 262 320 -9.968672e-05 1.608739e-05 263 320 8.928565e-05 -1.440887e-05 264 320 -8.000611e-05 1.291134e-05 265 320 7.167061e-05 -1.156616e-05 266 320 -6.413319e-05 1.034978e-05 267 320 5.727273e-05 -9.242642e-06 268 320 -5.098776e-05 8.228377e-06 269 320 4.519256e-05 -7.293151e-06 270 320 -3.981401e-05 6.425164e-06 271 320 3.478917e-05 -5.614257e-06 272 320 -3.00633e-05 4.851599e-06 273 320 2.558831e-05 -4.129428e-06 274 320 -2.132146e-05 3.440846e-06 275 320 1.722429e-05 -2.779647e-06 276 320 -1.326172e-05 2.14017e-06 277 320 9.401297e-06 -1.517176e-06 278 320 -5.612495e-06 9.057414e-07 279 320 1.866144e-06 -3.011573e-07 280 320 1.866144e-06 -3.011573e-07 281 320 -5.612495e-06 9.057414e-07 282 320 9.401297e-06 -1.517176e-06 283 320 -1.326172e-05 2.14017e-06 284 320 1.722429e-05 -2.779647e-06 285 320 -2.132146e-05 3.440846e-06 286 320 2.558831e-05 -4.129428e-06 287 320 -3.00633e-05 4.851599e-06 288 320 3.478917e-05 -5.614257e-06 289 320 -3.981401e-05 6.425164e-06 290 320 4.519256e-05 -7.293151e-06 291 320 -5.098776e-05 8.228377e-06 292 320 5.727273e-05 -9.242642e-06 293 320 -6.413319e-05 1.034978e-05 294 320 7.167061e-05 -1.156616e-05 295 320 -8.000611e-05 1.291134e-05 296 320 8.928565e-05 -1.440887e-05 297 320 -9.968672e-05 1.608739e-05 298 320 0.0001114272 -1.798207e-05 299 320 -0.0001247774 2.013652e-05 300 320 0.000140076 -2.26054e-05 301 320 -0.0001577525 2.545802e-05 302 320 0.0001783582 -2.878335e-05 303 320 -0.0002026106 3.26972e-05 304 320 0.0002314578 -3.735254e-05 305 320 -0.0002661734 4.295492e-05 306 320 0.0003085011 -4.978574e-05 307 320 -0.0003608797 5.823857e-05 308 320 0.0004268045 -6.887749e-05 309 320 -0.0005114288 8.253411e-05 310 320 0.0006226054 -0.0001004757 311 320 -0.0007727812 0.000124711 312 320 0.0009826448 -0.0001585787 313 320 -0.001288661 0.0002079635 314 320 0.001760065 -0.0002840383 315 320 -0.002541777 0.0004101906 316 320 0.003980742 -0.0006424099 317 320 -0.007089509 0.001144101 318 320 0.01597157 -0.002577484 319 320 -0.06393453 0.01031772 320 320 -0.4082649 -0.01726907 321 320 -0.06393453 0.01031772 322 320 0.01597157 -0.002577484 323 320 -0.007089509 0.001144101 240 321 0.001363516 0.0001259011 243 321 -0.007089509 0.001144101 244 321 0.003980742 -0.0006424099 245 321 -0.002541777 0.0004101906 246 321 0.001760065 -0.0002840383 247 321 -0.001288661 0.0002079635 248 321 0.0009826448 -0.0001585787 249 321 -0.0007727812 0.000124711 250 321 0.0006226054 -0.0001004757 251 321 -0.0005114288 8.253411e-05 252 321 0.0004268045 -6.887749e-05 253 321 -0.0003608797 5.823857e-05 254 321 0.0003085011 -4.978574e-05 255 321 -0.0002661734 4.295492e-05 256 321 0.0002314578 -3.735254e-05 257 321 -0.0002026106 3.26972e-05 258 321 0.0001783582 -2.878335e-05 259 321 -0.0001577525 2.545802e-05 260 321 0.000140076 -2.26054e-05 261 321 -0.0001247774 2.013652e-05 262 321 0.0001114272 -1.798207e-05 263 321 -9.968672e-05 1.608739e-05 264 321 8.928565e-05 -1.440887e-05 265 321 -8.000611e-05 1.291134e-05 266 321 7.167061e-05 -1.156616e-05 267 321 -6.413319e-05 1.034978e-05 268 321 5.727273e-05 -9.242642e-06 269 321 -5.098776e-05 8.228377e-06 270 321 4.519256e-05 -7.293151e-06 271 321 -3.981401e-05 6.425164e-06 272 321 3.478917e-05 -5.614257e-06 273 321 -3.00633e-05 4.851599e-06 274 321 2.558831e-05 -4.129428e-06 275 321 -2.132146e-05 3.440846e-06 276 321 1.722429e-05 -2.779647e-06 277 321 -1.326172e-05 2.14017e-06 278 321 9.401297e-06 -1.517176e-06 279 321 -5.612495e-06 9.057414e-07 280 321 1.866144e-06 -3.011573e-07 281 321 1.866144e-06 -3.011573e-07 282 321 -5.612495e-06 9.057414e-07 283 321 9.401297e-06 -1.517176e-06 284 321 -1.326172e-05 2.14017e-06 285 321 1.722429e-05 -2.779647e-06 286 321 -2.132146e-05 3.440846e-06 287 321 2.558831e-05 -4.129428e-06 288 321 -3.00633e-05 4.851599e-06 289 321 3.478917e-05 -5.614257e-06 290 321 -3.981401e-05 6.425164e-06 291 321 4.519256e-05 -7.293151e-06 292 321 -5.098776e-05 8.228377e-06 293 321 5.727273e-05 -9.242642e-06 294 321 -6.413319e-05 1.034978e-05 295 321 7.167061e-05 -1.156616e-05 296 321 -8.000611e-05 1.291134e-05 297 321 8.928565e-05 -1.440887e-05 298 321 -9.968672e-05 1.608739e-05 299 321 0.0001114272 -1.798207e-05 300 321 -0.0001247774 2.013652e-05 301 321 0.000140076 -2.26054e-05 302 321 -0.0001577525 2.545802e-05 303 321 0.0001783582 -2.878335e-05 304 321 -0.0002026106 3.26972e-05 305 321 0.0002314578 -3.735254e-05 306 321 -0.0002661734 4.295492e-05 307 321 0.0003085011 -4.978574e-05 308 321 -0.0003608797 5.823857e-05 309 321 0.0004268045 -6.887749e-05 310 321 -0.0005114288 8.253411e-05 311 321 0.0006226054 -0.0001004757 312 321 -0.0007727812 0.000124711 313 321 0.0009826448 -0.0001585787 314 321 -0.001288661 0.0002079635 315 321 0.001760065 -0.0002840383 316 321 -0.002541777 0.0004101906 317 321 0.003980742 -0.0006424099 318 321 -0.007089509 0.001144101 319 321 0.01597157 -0.002577484 320 321 -0.06393453 0.01031772 321 321 -0.408305 -0.01724569 322 321 -0.06393453 0.01031772 323 321 0.01597157 -0.002577484 241 322 0.00138269 0.0001280923 243 322 0.01597157 -0.002577484 244 322 -0.007089509 0.001144101 245 322 0.003980742 -0.0006424099 246 322 -0.002541777 0.0004101906 247 322 0.001760065 -0.0002840383 248 322 -0.001288661 0.0002079635 249 322 0.0009826448 -0.0001585787 250 322 -0.0007727812 0.000124711 251 322 0.0006226054 -0.0001004757 252 322 -0.0005114288 8.253411e-05 253 322 0.0004268045 -6.887749e-05 254 322 -0.0003608797 5.823857e-05 255 322 0.0003085011 -4.978574e-05 256 322 -0.0002661734 4.295492e-05 257 322 0.0002314578 -3.735254e-05 258 322 -0.0002026106 3.26972e-05 259 322 0.0001783582 -2.878335e-05 260 322 -0.0001577525 2.545802e-05 261 322 0.000140076 -2.26054e-05 262 322 -0.0001247774 2.013652e-05 263 322 0.0001114272 -1.798207e-05 264 322 -9.968672e-05 1.608739e-05 265 322 8.928565e-05 -1.440887e-05 266 322 -8.000611e-05 1.291134e-05 267 322 7.167061e-05 -1.156616e-05 268 322 -6.413319e-05 1.034978e-05 269 322 5.727273e-05 -9.242642e-06 270 322 -5.098776e-05 8.228377e-06 271 322 4.519256e-05 -7.293151e-06 272 322 -3.981401e-05 6.425164e-06 273 322 3.478917e-05 -5.614257e-06 274 322 -3.00633e-05 4.851599e-06 275 322 2.558831e-05 -4.129428e-06 276 322 -2.132146e-05 3.440846e-06 277 322 1.722429e-05 -2.779647e-06 278 322 -1.326172e-05 2.14017e-06 279 322 9.401297e-06 -1.517176e-06 280 322 -5.612495e-06 9.057414e-07 281 322 1.866144e-06 -3.011573e-07 282 322 1.866144e-06 -3.011573e-07 283 322 -5.612495e-06 9.057414e-07 284 322 9.401297e-06 -1.517176e-06 285 322 -1.326172e-05 2.14017e-06 286 322 1.722429e-05 -2.779647e-06 287 322 -2.132146e-05 3.440846e-06 288 322 2.558831e-05 -4.129428e-06 289 322 -3.00633e-05 4.851599e-06 290 322 3.478917e-05 -5.614257e-06 291 322 -3.981401e-05 6.425164e-06 292 322 4.519256e-05 -7.293151e-06 293 322 -5.098776e-05 8.228377e-06 294 322 5.727273e-05 -9.242642e-06 295 322 -6.413319e-05 1.034978e-05 296 322 7.167061e-05 -1.156616e-05 297 322 -8.000611e-05 1.291134e-05 298 322 8.928565e-05 -1.440887e-05 299 322 -9.968672e-05 1.608739e-05 300 322 0.0001114272 -1.798207e-05 301 322 -0.0001247774 2.013652e-05 302 322 0.000140076 -2.26054e-05 303 322 -0.0001577525 2.545802e-05 304 322 0.0001783582 -2.878335e-05 305 322 -0.0002026106 3.26972e-05 306 322 0.0002314578 -3.735254e-05 307 322 -0.0002661734 4.295492e-05 308 322 0.0003085011 -4.978574e-05 309 322 -0.0003608797 5.823857e-05 310 322 0.0004268045 -6.887749e-05 311 322 -0.0005114288 8.253411e-05 312 322 0.0006226054 -0.0001004757 313 322 -0.0007727812 0.000124711 314 322 0.0009826448 -0.0001585787 315 322 -0.001288661 0.0002079635 316 322 0.001760065 -0.0002840383 317 322 -0.002541777 0.0004101906 318 322 0.003980742 -0.0006424099 319 322 -0.007089509 0.001144101 320 322 0.01597157 -0.002577484 321 322 -0.06393453 0.01031772 322 322 -0.4083414 -0.01722412 323 322 -0.06393453 0.01031772 242 323 0.001401962 0.0001303027 243 323 -0.06393453 0.01031772 244 323 0.01597157 -0.002577484 245 323 -0.007089509 0.001144101 246 323 0.003980742 -0.0006424099 247 323 -0.002541777 0.0004101906 248 323 0.001760065 -0.0002840383 249 323 -0.001288661 0.0002079635 250 323 0.0009826448 -0.0001585787 251 323 -0.0007727812 0.000124711 252 323 0.0006226054 -0.0001004757 253 323 -0.0005114288 8.253411e-05 254 323 0.0004268045 -6.887749e-05 255 323 -0.0003608797 5.823857e-05 256 323 0.0003085011 -4.978574e-05 257 323 -0.0002661734 4.295492e-05 258 323 0.0002314578 -3.735254e-05 259 323 -0.0002026106 3.26972e-05 260 323 0.0001783582 -2.878335e-05 261 323 -0.0001577525 2.545802e-05 262 323 0.000140076 -2.26054e-05 263 323 -0.0001247774 2.013652e-05 264 323 0.0001114272 -1.798207e-05 265 323 -9.968672e-05 1.608739e-05 266 323 8.928565e-05 -1.440887e-05 267 323 -8.000611e-05 1.291134e-05 268 323 7.167061e-05 -1.156616e-05 269 323 -6.413319e-05 1.034978e-05 270 323 5.727273e-05 -9.242642e-06 271 323 -5.098776e-05 8.228377e-06 272 323 4.519256e-05 -7.293151e-06 273 323 -3.981401e-05 6.425164e-06 274 323 3.478917e-05 -5.614257e-06 275 323 -3.00633e-05 4.851599e-06 276 323 2.558831e-05 -4.129428e-06 277 323 -2.132146e-05 3.440846e-06 278 323 1.722429e-05 -2.779647e-06 279 323 -1.326172e-05 2.14017e-06 280 323 9.401297e-06 -1.517176e-06 281 323 -5.612495e-06 9.057414e-07 282 323 1.866144e-06 -3.011573e-07 283 323 1.866144e-06 -3.011573e-07 284 323 -5.612495e-06 9.057414e-07 285 323 9.401297e-06 -1.517176e-06 286 323 -1.326172e-05 2.14017e-06 287 323 1.722429e-05 -2.779647e-06 288 323 -2.132146e-05 3.440846e-06 289 323 2.558831e-05 -4.129428e-06 290 323 -3.00633e-05 4.851599e-06 291 323 3.478917e-05 -5.614257e-06 292 323 -3.981401e-05 6.425164e-06 293 323 4.519256e-05 -7.293151e-06 294 323 -5.098776e-05 8.228377e-06 295 323 5.727273e-05 -9.242642e-06 296 323 -6.413319e-05 1.034978e-05 297 323 7.167061e-05 -1.156616e-05 298 323 -8.000611e-05 1.291134e-05 299 323 8.928565e-05 -1.440887e-05 300 323 -9.968672e-05 1.608739e-05 301 323 0.0001114272 -1.798207e-05 302 323 -0.0001247774 2.013652e-05 303 323 0.000140076 -2.26054e-05 304 323 -0.0001577525 2.545802e-05 305 323 0.0001783582 -2.878335e-05 306 323 -0.0002026106 3.26972e-05 307 323 0.0002314578 -3.735254e-05 308 323 -0.0002661734 4.295492e-05 309 323 0.0003085011 -4.978574e-05 310 323 -0.0003608797 5.823857e-05 311 323 0.0004268045 -6.887749e-05 312 323 -0.0005114288 8.253411e-05 313 323 0.0006226054 -0.0001004757 314 323 -0.0007727812 0.000124711 315 323 0.0009826448 -0.0001585787 316 323 -0.001288661 0.0002079635 317 323 0.001760065 -0.0002840383 318 323 -0.002541777 0.0004101906 319 323 0.003980742 -0.0006424099 320 323 -0.007089509 0.001144101 321 323 0.01597157 -0.002577484 322 323 -0.06393453 0.01031772 323 323 -0.4083744 -0.01720423 SuiteSparse/CXSparse_newfiles/Matrix/mhd1280b0000644001170100242450000123135510375437447017777 0ustar davisfac0 0 2 0 1 1 0.2525058 0 3 1 0.0001443808 -1.114648e-18 32 1 0.1010026 0 33 1 -0.0252507 0 34 1 7.219086e-05 -6.042257e-19 35 1 -3.609384e-05 2.083113e-19 2 2 2 0 3 3 0.2525058 0 32 3 7.219086e-05 6.042257e-19 33 3 -3.609384e-05 -2.083113e-19 34 3 0.1010026 0 35 3 -0.0252507 0 4 4 2 0 5 5 4.495093e-05 0 7 5 -2.409091e-08 -4.208044e-23 9 5 0 -1.404665e-11 11 5 4.117515e-08 -1.31036e-10 13 5 0 -1.404665e-11 15 5 4.117515e-08 -1.31036e-10 36 5 0.003462152 0 37 5 -2.247837e-05 0 38 5 -2.934405e-06 -3.632268e-21 39 5 1.765039e-08 2.420399e-23 40 5 0 -5.898861e-11 41 5 0 -2.981307e-13 42 5 4.849889e-07 -4.385329e-10 43 5 4.003321e-08 1.009301e-11 44 5 0 -5.898861e-11 45 5 0 -2.981307e-13 46 5 4.849889e-07 -4.385329e-10 47 5 4.003321e-08 1.009301e-11 6 6 2 0 7 7 4.495093e-05 0 9 7 -4.117515e-08 -1.31036e-10 11 7 0 -1.404665e-11 13 7 -4.117515e-08 -1.31036e-10 15 7 0 -1.404665e-11 36 7 -2.934405e-06 3.632268e-21 37 7 1.765039e-08 -2.420399e-23 38 7 0.003462152 0 39 7 -2.247837e-05 0 40 7 -4.849889e-07 -4.385329e-10 41 7 -4.003321e-08 1.009301e-11 42 7 0 -5.898861e-11 43 7 0 -2.981307e-13 44 7 -4.849889e-07 -4.385329e-10 45 7 -4.003321e-08 1.009301e-11 46 7 0 -5.898861e-11 47 7 0 -2.981307e-13 8 8 2 0 9 9 2.251394e-05 0 11 9 -3.866978e-06 -9.55469e-21 13 9 2.251394e-05 0 15 9 -3.866978e-06 -9.55469e-21 36 9 0 -6.326913e-10 37 9 0 2.981307e-13 38 9 1.391706e-05 -1.936455e-09 39 9 -4.003321e-08 -1.009301e-11 40 9 1.63169e-08 0 41 9 -2.248786e-05 0 42 9 -2.51329e-06 -4.589182e-21 43 9 9.710396e-08 2.67085e-21 44 9 1.63169e-08 0 45 9 -2.248786e-05 0 46 9 -2.51329e-06 -4.589182e-21 47 9 9.710396e-08 2.67085e-21 10 10 2 0 11 11 2.251394e-05 0 13 11 -3.866978e-06 9.55469e-21 15 11 2.251394e-05 0 36 11 -1.391706e-05 -1.936455e-09 37 11 4.003321e-08 -1.009301e-11 38 11 0 -6.326913e-10 39 11 0 2.981307e-13 40 11 -2.51329e-06 4.589182e-21 41 11 9.710396e-08 -2.67085e-21 42 11 1.63169e-08 0 43 11 -2.248786e-05 0 44 11 -2.51329e-06 4.589182e-21 45 11 9.710396e-08 -2.67085e-21 46 11 1.63169e-08 0 47 11 -2.248786e-05 0 12 12 2 0 13 13 53.24487 0 15 13 0.06089043 4.807985e-17 36 13 0 -6.326913e-10 37 13 0 2.981307e-13 38 13 1.391706e-05 -1.936455e-09 39 13 -4.003321e-08 -1.009301e-11 40 13 1.63169e-08 0 41 13 -2.248786e-05 0 42 13 -2.51329e-06 -4.589182e-21 43 13 9.710396e-08 2.67085e-21 44 13 21.298 0 45 13 -5.324508 0 46 13 0.03044548 3.86047e-17 47 13 -0.01522194 9.825463e-18 14 14 2 0 15 15 53.24487 0 36 15 -1.391706e-05 -1.936455e-09 37 15 4.003321e-08 -1.009301e-11 38 15 0 -6.326913e-10 39 15 0 2.981307e-13 40 15 -2.51329e-06 4.589182e-21 41 15 9.710396e-08 -2.67085e-21 42 15 1.63169e-08 0 43 15 -2.248786e-05 0 44 15 0.03044548 -3.86047e-17 45 15 -0.01522194 -9.825463e-18 46 15 21.298 0 47 15 -5.324508 0 16 16 2 0 17 17 0.2525058 0 19 17 0.0001443808 -1.114648e-18 48 17 0.1010026 0 49 17 -0.0252507 0 50 17 7.219086e-05 -6.042257e-19 51 17 -3.609384e-05 2.083113e-19 18 18 2 0 19 19 0.2525058 0 48 19 7.219086e-05 6.042257e-19 49 19 -3.609384e-05 -2.083113e-19 50 19 0.1010026 0 51 19 -0.0252507 0 20 20 2 0 21 21 2.253941e-05 0 23 21 -2.675896e-06 -4.897501e-21 25 21 0 -1.379406e-11 27 21 4.116899e-08 -1.310063e-10 52 21 3.188648e-08 0 53 21 -2.248998e-05 0 54 21 -1.739273e-06 -2.10582e-21 55 21 6.702784e-08 1.738703e-21 56 21 0 5.77059e-10 57 21 0 -1.491006e-13 58 21 -1.391771e-05 1.926151e-09 59 21 4.003609e-08 1.012275e-11 22 22 2 0 23 23 2.253941e-05 0 25 23 -4.116899e-08 -1.310063e-10 27 23 0 -1.379406e-11 52 23 -1.739273e-06 2.10582e-21 53 23 6.702784e-08 -1.738703e-21 54 23 3.188648e-08 0 55 23 -2.248998e-05 0 56 23 1.391771e-05 1.926151e-09 57 23 -4.003609e-08 1.012275e-11 58 23 0 5.77059e-10 59 23 0 -1.491006e-13 24 24 2 0 25 25 4.493934e-05 0 27 25 -1.15557e-07 7.814754e-22 52 25 0 5.657887e-11 53 25 0 1.491006e-13 54 25 -4.849692e-07 4.381761e-10 55 25 -4.003609e-08 -1.012275e-11 56 25 0.003461756 0 57 25 -2.247517e-05 0 58 25 -1.440673e-05 8.14287e-20 59 25 8.638776e-08 -5.109934e-22 26 26 2 0 27 27 4.493934e-05 0 52 27 4.849692e-07 4.381761e-10 53 27 4.003609e-08 -1.012275e-11 54 27 0 5.657887e-11 55 27 0 1.491006e-13 56 27 -1.440673e-05 -8.14287e-20 57 27 8.638776e-08 5.109934e-22 58 27 0.003461756 0 59 27 -2.247517e-05 0 28 28 8.759427e-06 0 29 28 4.423505e-08 0 60 28 6.569811e-06 0 61 28 -3.791658e-08 0 29 29 2.461808e-10 0 60 29 4.423656e-08 0 61 29 -2.461861e-10 0 30 30 8.759427e-06 0 31 30 4.423505e-08 0 62 30 6.569811e-06 0 63 30 -3.791658e-08 0 31 31 2.461808e-10 0 62 31 4.423656e-08 0 63 31 -2.461861e-10 0 32 32 0.2020076 0 33 32 2.536731e-07 0 34 32 0.0005774964 -3.332991e-18 35 32 7.218452e-05 -2.290193e-19 33 33 0.04342277 0 34 33 7.218452e-05 -2.290193e-19 35 33 0.0002887462 -9.302658e-19 64 33 0.009439714 0 65 33 -0.003540036 0 66 33 7.218483e-05 -1.920057e-19 67 33 -3.60962e-05 6.177731e-20 34 34 0.2020076 0 35 34 2.536731e-07 0 35 35 0.04342277 0 64 35 7.218483e-05 1.920057e-19 65 35 -3.60962e-05 -6.177731e-20 66 35 0.009439714 0 67 35 -0.003540036 0 36 36 1.647553 0 37 36 -0.002232054 0 38 36 -0.002655858 1.260034e-18 39 36 7.860619e-08 1.165262e-20 40 36 0 -1.166192e-08 41 36 0 -1.322132e-08 42 36 0.0001365305 -7.373275e-08 43 36 0.0002383469 -6.195047e-08 44 36 0 -1.166192e-08 45 36 0 -1.322132e-08 46 36 0.0001365305 -7.373275e-08 47 36 0.0002383469 -6.195047e-08 68 36 0.1742194 0 69 36 -0.001116984 0 70 36 -0.0004556703 1.050521e-18 71 36 2.850169e-06 -6.203773e-21 72 36 0 -1.208572e-08 73 36 0 6.072846e-10 74 36 0.0002968279 -4.306148e-08 75 36 -7.750998e-06 3.11617e-09 76 36 0 -1.208572e-08 77 36 0 6.072846e-10 78 36 0.0002968279 -4.306148e-08 79 36 -7.750998e-06 3.11617e-09 37 37 3.194032e-05 0 38 37 7.860619e-08 1.165262e-20 39 37 -4.605654e-08 2.115808e-23 40 37 0 6.018114e-11 41 37 0 -1.632629e-13 42 37 -6.451217e-07 3.981608e-10 43 37 8.005461e-08 1.53186e-11 44 37 0 6.018114e-11 45 37 0 -1.632629e-13 46 37 -6.451217e-07 3.981608e-10 47 37 8.005461e-08 1.53186e-11 68 37 0.001060364 0 69 37 -6.516707e-06 0 70 37 -2.847795e-06 6.937466e-21 71 37 1.707479e-08 -3.941283e-23 72 37 0 -6.27693e-11 73 37 0 2.374676e-14 74 37 1.60584e-06 -2.143362e-10 75 37 4.00319e-08 5.225984e-12 76 37 0 -6.27693e-11 77 37 0 2.374676e-14 78 37 1.60584e-06 -2.143362e-10 79 37 4.00319e-08 5.225984e-12 38 38 1.647553 0 39 38 -0.002232054 0 40 38 -0.0001365305 -7.373275e-08 41 38 -0.0002383469 -6.195047e-08 42 38 0 -1.166192e-08 43 38 0 -1.322132e-08 44 38 -0.0001365305 -7.373275e-08 45 38 -0.0002383469 -6.195047e-08 46 38 0 -1.166192e-08 47 38 0 -1.322132e-08 68 38 -0.0004556703 -1.050521e-18 69 38 2.850169e-06 6.203773e-21 70 38 0.1742194 0 71 38 -0.001116984 0 72 38 -0.0002968279 -4.306148e-08 73 38 7.750998e-06 3.11617e-09 74 38 0 -1.208572e-08 75 38 0 6.072846e-10 76 38 -0.0002968279 -4.306148e-08 77 38 7.750998e-06 3.11617e-09 78 38 0 -1.208572e-08 79 38 0 6.072846e-10 39 39 3.194032e-05 0 40 39 6.451217e-07 3.981608e-10 41 39 -8.005461e-08 1.53186e-11 42 39 0 6.018114e-11 43 39 0 -1.632629e-13 44 39 6.451217e-07 3.981608e-10 45 39 -8.005461e-08 1.53186e-11 46 39 0 6.018114e-11 47 39 0 -1.632629e-13 68 39 -2.847795e-06 -6.937466e-21 69 39 1.707479e-08 3.941283e-23 70 39 0.001060364 0 71 39 -6.516707e-06 0 72 39 -1.60584e-06 -2.143362e-10 73 39 -4.00319e-08 5.225984e-12 74 39 0 -6.27693e-11 75 39 0 2.374676e-14 76 39 -1.60584e-06 -2.143362e-10 77 39 -4.00319e-08 5.225984e-12 78 39 0 -6.27693e-11 79 39 0 2.374676e-14 40 40 0.0003597929 0 41 40 8.993511e-05 0 42 40 -1.554146e-06 -4.273307e-20 43 40 2.124874e-06 -6.09422e-21 44 40 0.0003597929 0 45 40 8.993511e-05 0 46 40 -1.554146e-06 -4.273307e-20 47 40 2.124874e-06 -6.09422e-21 41 41 0.0003597621 0 42 41 2.124874e-06 -6.09422e-21 43 41 8.590192e-06 -2.543427e-20 44 41 8.993511e-05 0 45 41 0.0003597621 0 46 41 2.124874e-06 -6.09422e-21 47 41 8.590192e-06 -2.543427e-20 68 41 0 -5.983103e-10 69 41 0 -2.374676e-14 70 41 2.47064e-05 -9.027101e-10 71 41 -4.00319e-08 -5.225984e-12 72 41 8.993551e-05 0 73 41 -6.746247e-05 0 74 41 1.890819e-06 -3.342437e-21 75 41 -2.482417e-06 6.478311e-21 76 41 8.993551e-05 0 77 41 -6.746247e-05 0 78 41 1.890819e-06 -3.342437e-21 79 41 -2.482417e-06 6.478311e-21 42 42 0.0003597929 0 43 42 8.993511e-05 0 44 42 -1.554146e-06 4.273307e-20 45 42 2.124874e-06 6.09422e-21 46 42 0.0003597929 0 47 42 8.993511e-05 0 43 43 0.0003597621 0 44 43 2.124874e-06 6.09422e-21 45 43 8.590192e-06 2.543427e-20 46 43 8.993511e-05 0 47 43 0.0003597621 0 68 43 -2.47064e-05 -9.027101e-10 69 43 4.00319e-08 -5.225984e-12 70 43 0 -5.983103e-10 71 43 0 -2.374676e-14 72 43 1.890819e-06 3.342437e-21 73 43 -2.482417e-06 -6.478311e-21 74 43 8.993551e-05 0 75 43 -6.746247e-05 0 76 43 1.890819e-06 3.342437e-21 77 43 -2.482417e-06 -6.478311e-21 78 43 8.993551e-05 0 79 43 -6.746247e-05 0 44 44 42.59645 0 45 44 3.45529e-05 0 46 44 0.2435488 -1.571936e-16 47 44 0.03044226 -7.790655e-17 45 45 9.156307 0 46 45 0.03044226 -7.790655e-17 47 45 0.1217725 -3.053459e-16 68 45 0 -5.983103e-10 69 45 0 -2.374676e-14 70 45 2.47064e-05 -9.027101e-10 71 45 -4.00319e-08 -5.225984e-12 72 45 8.993551e-05 0 73 45 -6.746247e-05 0 74 45 1.890819e-06 -3.342437e-21 75 45 -2.482417e-06 6.478311e-21 76 45 1.990495 0 77 45 -0.7464588 0 78 45 0.03044242 -9.432651e-17 79 45 -0.01522263 4.987261e-17 46 46 42.59645 0 47 46 3.45529e-05 0 47 47 9.156307 0 68 47 -2.47064e-05 -9.027101e-10 69 47 4.00319e-08 -5.225984e-12 70 47 0 -5.983103e-10 71 47 0 -2.374676e-14 72 47 1.890819e-06 3.342437e-21 73 47 -2.482417e-06 -6.478311e-21 74 47 8.993551e-05 0 75 47 -6.746247e-05 0 76 47 0.03044242 9.432651e-17 77 47 -0.01522263 -4.987261e-17 78 47 1.990495 0 79 47 -0.7464588 0 48 48 0.2020076 0 49 48 2.536731e-07 0 50 48 0.0005774964 -3.332991e-18 51 48 7.218452e-05 -2.290193e-19 49 49 0.04342277 0 50 49 7.218452e-05 -2.290193e-19 51 49 0.0002887462 -9.302658e-19 80 49 0.009439714 0 81 49 -0.003540036 0 82 49 7.218483e-05 -1.920057e-19 83 49 -3.60962e-05 6.177731e-20 50 50 0.2020076 0 51 50 2.536731e-07 0 51 51 0.04342277 0 80 51 7.218483e-05 1.920057e-19 81 51 -3.60962e-05 -6.177731e-20 82 51 0.009439714 0 83 51 -0.003540036 0 52 52 0.0003598268 0 53 52 8.992801e-05 0 54 52 -1.07278e-06 -2.781872e-20 55 52 1.471162e-06 -4.848993e-21 56 52 0 -1.104529e-08 57 52 0 5.717527e-11 58 52 0.0001365305 -7.363201e-08 59 52 -6.451136e-07 3.976851e-10 53 53 0.0003597323 0 54 53 1.471162e-06 -4.848993e-21 55 53 5.947467e-06 -2.009559e-20 56 53 0 -1.234573e-08 57 53 0 -8.045094e-14 58 53 0.0002383646 -6.177416e-08 59 53 8.007795e-08 1.537809e-11 84 53 8.993216e-05 0 85 53 -6.744911e-05 0 86 53 1.309044e-06 -3.029145e-21 87 53 -1.718582e-06 5.130738e-21 88 53 0 5.594732e-10 89 53 0 1.299782e-14 90 53 -2.471497e-05 8.843894e-10 91 53 4.005565e-08 5.255726e-12 54 54 0.0003598268 0 55 54 8.992801e-05 0 56 54 -0.0001365305 -7.363201e-08 57 54 6.451136e-07 3.976851e-10 58 54 0 -1.104529e-08 59 54 0 5.717527e-11 55 55 0.0003597323 0 56 55 -0.0002383646 -6.177416e-08 57 55 -8.007795e-08 1.537809e-11 58 55 0 -1.234573e-08 59 55 0 -8.045094e-14 84 55 1.309044e-06 3.029145e-21 85 55 -1.718582e-06 -5.130738e-21 86 55 8.993216e-05 0 87 55 -6.744911e-05 0 88 55 2.471497e-05 8.843894e-10 89 55 -4.005565e-08 5.255726e-12 90 55 0 5.594732e-10 91 55 0 1.299782e-14 56 56 1.64791 0 57 56 -0.002231052 0 58 56 -0.01327367 3.530512e-17 59 56 5.940606e-08 -9.258599e-20 84 56 0 1.125494e-08 85 56 0 -5.644367e-10 86 56 -0.0002968775 4.284164e-08 87 56 7.749471e-06 -3.110447e-09 88 56 0.1743318 0 89 56 -0.001117671 0 90 56 -0.002294169 1.063477e-18 91 56 1.434488e-05 -7.24079e-21 57 57 3.194487e-05 0 58 57 5.940606e-08 -9.258599e-20 59 57 -2.296472e-07 6.572728e-22 84 57 0 5.845578e-11 85 57 0 -1.299782e-14 86 57 -1.606131e-06 2.131468e-10 87 57 -4.005565e-08 -5.255726e-12 88 57 0.001061081 0 89 57 -6.520919e-06 0 90 57 -1.43428e-05 5.819599e-21 91 57 8.596734e-08 -3.753307e-23 58 58 1.64791 0 59 58 -0.002231052 0 84 58 0.0002968775 4.284164e-08 85 58 -7.749471e-06 -3.110447e-09 86 58 0 1.125494e-08 87 58 0 -5.644367e-10 88 58 -0.002294169 -1.063477e-18 89 58 1.434488e-05 7.24079e-21 90 58 0.1743318 0 91 58 -0.001117671 0 59 59 3.194487e-05 0 84 59 1.606131e-06 2.131468e-10 85 59 4.005565e-08 -5.255726e-12 86 59 0 5.845578e-11 87 59 0 -1.299782e-14 88 59 -1.43428e-05 -5.819599e-21 89 59 8.596734e-08 3.753307e-23 90 59 0.001061081 0 91 59 -6.520919e-06 0 60 60 7.592949e-05 0 61 60 8.851623e-08 0 92 60 1.97165e-05 0 93 60 -1.2011e-07 0 61 61 1.313253e-09 0 92 61 1.264371e-07 0 93 61 -7.388184e-10 0 62 62 7.592949e-05 0 63 62 8.851623e-08 0 94 62 1.97165e-05 0 95 62 -1.2011e-07 0 63 63 1.313253e-09 0 94 63 1.264371e-07 0 95 63 -7.388184e-10 0 64 64 0.05475263 0 65 64 0.004720429 0 66 64 0.0005775356 -8.141829e-19 67 64 7.219999e-05 -5.510355e-20 65 65 0.02040002 0 66 65 7.219999e-05 -5.510355e-20 67 65 0.000288803 -4.377471e-19 96 65 0.00493416 0 97 65 -0.002056069 0 98 65 7.219984e-05 -1.106595e-19 99 65 -3.610602e-05 9.745263e-20 66 66 0.05475263 0 67 66 0.004720429 0 67 67 0.02040002 0 96 67 7.219984e-05 1.106595e-19 97 67 -3.610602e-05 -9.745263e-20 98 67 0.00493416 0 99 67 -0.002056069 0 68 68 0.7593159 0 69 68 -0.0004546433 0 70 68 -0.002618177 9.704372e-18 71 68 3.57549e-08 7.00339e-21 72 68 0 -1.205714e-08 73 68 0 -1.320487e-08 74 68 0.0003523183 -3.581742e-08 75 68 0.0004757213 -3.094502e-08 76 68 0 -1.205714e-08 77 68 0 -1.320487e-08 78 68 0.0003523183 -3.581742e-08 79 68 0.0004757213 -3.094502e-08 100 68 0.1035502 0 101 68 -0.0006572898 0 102 68 -0.0004502217 2.042495e-18 103 68 2.816555e-06 -1.272997e-20 104 68 0 -1.200122e-08 105 68 0 5.981201e-10 106 68 0.0005126339 -2.386402e-08 107 68 -1.854034e-05 1.454424e-09 108 68 0 -1.200122e-08 109 68 0 5.981201e-10 110 68 0.0005126339 -2.386402e-08 111 68 -1.854034e-05 1.454424e-09 69 69 1.342562e-05 0 70 69 3.57549e-08 7.00339e-21 71 69 -4.527211e-08 1.624895e-22 72 69 0 6.267431e-11 73 69 0 3.870764e-14 74 69 -1.765968e-06 1.934323e-10 75 69 8.006613e-08 5.478245e-12 76 69 0 6.267431e-11 77 69 0 3.870764e-14 78 69 -1.765968e-06 1.934323e-10 79 69 8.006613e-08 5.478245e-12 100 69 0.0006373192 0 101 69 -3.877864e-06 0 102 69 -2.813303e-06 1.282588e-20 103 69 1.687094e-08 -7.668546e-23 104 69 0 -6.234973e-11 105 69 0 -1.250618e-14 106 69 2.726786e-06 -1.212993e-10 107 69 4.003716e-08 1.376273e-12 108 69 0 -6.234973e-11 109 69 0 -1.250618e-14 110 69 2.726786e-06 -1.212993e-10 111 69 4.003716e-08 1.376273e-12 70 70 0.7593159 0 71 70 -0.0004546433 0 72 70 -0.0003523183 -3.581742e-08 73 70 -0.0004757213 -3.094502e-08 74 70 0 -1.205714e-08 75 70 0 -1.320487e-08 76 70 -0.0003523183 -3.581742e-08 77 70 -0.0004757213 -3.094502e-08 78 70 0 -1.205714e-08 79 70 0 -1.320487e-08 100 70 -0.0004502217 -2.042495e-18 101 70 2.816555e-06 1.272997e-20 102 70 0.1035502 0 103 70 -0.0006572898 0 104 70 -0.0005126339 -2.386402e-08 105 70 1.854034e-05 1.454424e-09 106 70 0 -1.200122e-08 107 70 0 5.981201e-10 108 70 -0.0005126339 -2.386402e-08 109 70 1.854034e-05 1.454424e-09 110 70 0 -1.200122e-08 111 70 0 5.981201e-10 71 71 1.342562e-05 0 72 71 1.765968e-06 1.934323e-10 73 71 -8.006613e-08 5.478245e-12 74 71 0 6.267431e-11 75 71 0 3.870764e-14 76 71 1.765968e-06 1.934323e-10 77 71 -8.006613e-08 5.478245e-12 78 71 0 6.267431e-11 79 71 0 3.870764e-14 100 71 -2.813303e-06 -1.282588e-20 101 71 1.687094e-08 7.668546e-23 102 71 0.0006373192 0 103 71 -3.877864e-06 0 104 71 -2.726786e-06 -1.212993e-10 105 71 -4.003716e-08 1.376273e-12 106 71 0 -6.234973e-11 107 71 0 -1.250618e-14 108 71 -2.726786e-06 -1.212993e-10 109 71 -4.003716e-08 1.376273e-12 110 71 0 -6.234973e-11 111 71 0 -1.250618e-14 72 72 0.001079384 0 73 72 0.0001799144 0 74 72 3.861525e-05 -9.069933e-20 75 72 8.03885e-06 -2.257081e-20 76 72 0.001079384 0 77 72 0.0001799144 0 78 72 3.861525e-05 -9.069933e-20 79 72 8.03885e-06 -2.257081e-20 73 73 0.000719678 0 74 73 8.03885e-06 -2.257081e-20 75 73 3.369593e-05 -1.054249e-19 76 73 0.0001799144 0 77 73 0.000719678 0 78 73 8.03885e-06 -2.257081e-20 79 73 3.369593e-05 -1.054249e-19 100 73 0 -6.031351e-10 101 73 0 1.250618e-14 102 73 3.549801e-05 -8.620055e-10 103 73 -4.003716e-08 -1.376273e-12 104 73 0.0001799119 0 105 73 -0.0001124685 0 106 73 8.039351e-06 -2.886998e-20 107 73 -6.634848e-06 2.125005e-20 108 73 0.0001799119 0 109 73 -0.0001124685 0 110 73 8.039351e-06 -2.886998e-20 111 73 -6.634848e-06 2.125005e-20 74 74 0.001079384 0 75 74 0.0001799144 0 76 74 3.861525e-05 9.069933e-20 77 74 8.03885e-06 2.257081e-20 78 74 0.001079384 0 79 74 0.0001799144 0 75 75 0.000719678 0 76 75 8.03885e-06 2.257081e-20 77 75 3.369593e-05 1.054249e-19 78 75 0.0001799144 0 79 75 0.000719678 0 100 75 -3.549801e-05 -8.620055e-10 101 75 4.003716e-08 -1.376273e-12 102 75 0 -6.031351e-10 103 75 0 1.250618e-14 104 75 8.039351e-06 2.886998e-20 105 75 -6.634848e-06 -2.125005e-20 106 75 0.0001799119 0 107 75 -0.0001124685 0 108 75 8.039351e-06 2.886998e-20 109 75 -6.634848e-06 -2.125005e-20 110 75 0.0001799119 0 111 75 -0.0001124685 0 76 76 11.54524 0 77 76 0.9953399 0 78 76 0.2435606 -8.752442e-16 79 76 0.03044809 -1.051639e-16 77 77 4.301519 0 78 77 0.03044809 -1.051639e-16 79 77 0.1217935 -3.276211e-16 100 77 0 -6.031351e-10 101 77 0 1.250618e-14 102 77 3.549801e-05 -8.620055e-10 103 77 -4.003716e-08 -1.376273e-12 104 77 0.0001799119 0 105 77 -0.0001124685 0 106 77 8.039351e-06 -2.886998e-20 107 77 -6.634848e-06 2.125005e-20 108 77 1.040409 0 109 77 -0.4335312 0 110 77 0.03044803 -7.334213e-17 111 77 -0.01522628 1.767263e-17 78 78 11.54524 0 79 78 0.9953399 0 79 79 4.301519 0 100 79 -3.549801e-05 -8.620055e-10 101 79 4.003716e-08 -1.376273e-12 102 79 0 -6.031351e-10 103 79 0 1.250618e-14 104 79 8.039351e-06 2.886998e-20 105 79 -6.634848e-06 -2.125005e-20 106 79 0.0001799119 0 107 79 -0.0001124685 0 108 79 0.03044803 7.334213e-17 109 79 -0.01522628 -1.767263e-17 110 79 1.040409 0 111 79 -0.4335312 0 80 80 0.05475263 0 81 80 0.004720429 0 82 80 0.0005775356 -8.141829e-19 83 80 7.219999e-05 -5.510355e-20 81 81 0.02040002 0 82 81 7.219999e-05 -5.510355e-20 83 81 0.000288803 -4.377471e-19 112 81 0.00493416 0 113 81 -0.002056069 0 114 81 7.219984e-05 -1.106595e-19 115 81 -3.610602e-05 9.745263e-20 82 82 0.05475263 0 83 82 0.004720429 0 83 83 0.02040002 0 112 83 7.219984e-05 1.106595e-19 113 83 -3.610602e-05 -9.745263e-20 114 83 0.00493416 0 115 83 -0.002056069 0 84 84 0.001079188 0 85 84 0.0001798643 0 86 84 2.673303e-05 -7.352728e-20 87 84 5.565284e-06 -1.749381e-20 88 84 0 -1.123909e-08 89 84 0 5.840379e-11 90 84 0.0003524009 -3.555636e-08 91 84 -1.766353e-06 1.921239e-10 85 85 0.0007194519 0 86 85 5.565284e-06 -1.749381e-20 87 85 2.332817e-05 -7.937546e-20 88 85 0 -1.233081e-08 89 85 0 2.282713e-14 90 85 0.0004758836 -3.059237e-08 91 85 8.014372e-08 5.537678e-12 116 85 0.0001798639 0 117 85 -0.0001124119 0 118 85 5.565655e-06 -2.296505e-20 119 85 -4.593635e-06 1.421481e-20 120 85 0 5.612853e-10 121 85 0 -4.304413e-15 122 85 -3.55254e-05 8.356694e-10 123 85 4.009735e-08 1.406017e-12 86 86 0.001079188 0 87 86 0.0001798643 0 88 86 -0.0003524009 -3.555636e-08 89 86 1.766353e-06 1.921239e-10 90 86 0 -1.123909e-08 91 86 0 5.840379e-11 87 87 0.0007194519 0 88 87 -0.0004758836 -3.059237e-08 89 87 -8.014372e-08 5.537678e-12 90 87 0 -1.233081e-08 91 87 0 2.282713e-14 116 87 5.565655e-06 2.296505e-20 117 87 -4.593635e-06 -1.421481e-20 118 87 0.0001798639 0 119 87 -0.0001124119 0 120 87 3.55254e-05 8.356694e-10 121 87 -4.009735e-08 1.406017e-12 122 87 0 5.612853e-10 123 87 0 -4.304413e-15 88 88 0.7601524 0 89 88 -0.0004541859 0 90 88 -0.01324307 2.348748e-17 91 88 2.877434e-08 7.204698e-20 116 88 0 1.120456e-08 117 88 0 -5.596001e-10 118 88 -0.0005128774 2.348392e-08 119 88 1.854219e-05 -1.440687e-09 120 88 0.1037305 0 121 88 -0.000658399 0 122 88 -0.002289771 9.259947e-18 123 88 1.431758e-05 -5.657267e-20 89 89 1.344017e-05 0 90 89 2.877434e-08 7.204698e-20 91 89 -2.290319e-07 4.592284e-22 116 89 0 5.82022e-11 117 89 0 4.304413e-15 118 89 -2.728138e-06 1.192774e-10 119 89 -4.009735e-08 -1.406017e-12 120 89 0.0006384641 0 121 89 -3.884619e-06 0 122 89 -1.431506e-05 5.947918e-20 123 89 8.58024e-08 -3.495217e-22 90 90 0.7601524 0 91 90 -0.0004541859 0 116 90 0.0005128774 2.348392e-08 117 90 -1.854219e-05 -1.440687e-09 118 90 0 1.120456e-08 119 90 0 -5.596001e-10 120 90 -0.002289771 -9.259947e-18 121 90 1.431758e-05 5.657267e-20 122 90 0.1037305 0 123 90 -0.000658399 0 91 91 1.344017e-05 0 116 91 2.728138e-06 1.192774e-10 117 91 4.009735e-08 -1.406017e-12 118 91 0 5.82022e-11 119 91 0 4.304413e-15 120 91 -1.431506e-05 -5.947918e-20 121 91 8.58024e-08 3.495217e-22 122 91 0.0006384641 0 123 91 -3.884619e-06 0 92 92 0.0001519451 0 93 92 8.867022e-08 0 124 92 3.288609e-05 0 125 92 -2.024423e-07 0 93 93 2.627984e-09 0 124 93 2.087841e-07 0 125 93 -1.232303e-09 0 94 94 0.0001519451 0 95 94 8.867022e-08 0 126 94 3.288609e-05 0 127 94 -2.024423e-07 0 95 95 2.627984e-09 0 126 95 2.087841e-07 0 127 95 -1.232303e-09 0 96 96 0.03251468 0 97 96 0.003290114 0 98 96 0.0005776937 -1.640367e-18 99 96 7.222426e-05 -2.79151e-19 97 97 0.01352689 0 98 97 7.222426e-05 -2.79151e-19 99 97 0.0002889 -9.776643e-19 128 97 0.003328393 0 129 97 -0.001456342 0 130 97 7.222404e-05 -2.521041e-19 131 97 -3.612051e-05 1.083426e-19 98 98 0.03251468 0 99 98 0.003290114 0 99 99 0.01352689 0 128 99 7.222404e-05 2.521041e-19 129 99 -3.612051e-05 -1.083426e-19 130 99 0.003328393 0 131 99 -0.001456342 0 100 100 0.5006249 0 101 100 -0.0001962082 0 102 100 -0.002578451 1.07737e-17 103 100 5.838957e-08 -4.349838e-21 104 100 0 -1.201743e-08 105 100 0 -1.324572e-08 106 100 0.0005681317 -2.191829e-08 107 100 0.0007131237 -2.171479e-08 108 100 0 -1.201743e-08 109 100 0 -1.324572e-08 110 100 0.0005681317 -2.191829e-08 111 100 0.0007131237 -2.171479e-08 132 100 0.07384468 0 133 100 -0.0004667165 0 134 100 -0.0004415898 1.535908e-18 135 100 2.763427e-06 -9.70935e-21 136 100 0 -1.205332e-08 137 100 0 6.02137e-10 138 100 0.0007284036 -1.793882e-08 139 100 -2.933983e-05 1.041484e-09 140 100 0 -1.205332e-08 141 100 0 6.02137e-10 142 100 0.0007284036 -1.793882e-08 143 100 -2.933983e-05 1.041484e-09 101 101 8.740609e-06 0 102 101 5.838957e-08 -4.349838e-21 103 101 -4.457845e-08 1.8292e-22 104 101 0 6.239976e-11 105 101 0 -1.940025e-14 106 101 -2.886934e-06 1.157942e-10 107 101 8.007628e-08 1.863557e-12 108 101 0 6.239976e-11 109 101 0 -1.940025e-14 110 101 -2.886934e-06 1.157942e-10 111 101 8.007628e-08 1.863557e-12 132 101 0.0004565902 0 133 101 -2.76624e-06 0 134 101 -2.758471e-06 9.483706e-21 135 101 1.654733e-08 -5.742878e-23 136 101 0 -6.261318e-11 137 101 0 -2.616657e-15 138 101 3.847451e-06 -9.181968e-11 139 101 3.996719e-08 7.986372e-13 140 101 0 -6.261318e-11 141 101 0 -2.616657e-15 142 101 3.847451e-06 -9.181968e-11 143 101 3.996719e-08 7.986372e-13 102 102 0.5006249 0 103 102 -0.0001962082 0 104 102 -0.0005681317 -2.191829e-08 105 102 -0.0007131237 -2.171479e-08 106 102 0 -1.201743e-08 107 102 0 -1.324572e-08 108 102 -0.0005681317 -2.191829e-08 109 102 -0.0007131237 -2.171479e-08 110 102 0 -1.201743e-08 111 102 0 -1.324572e-08 132 102 -0.0004415898 -1.535908e-18 133 102 2.763427e-06 9.70935e-21 134 102 0.07384468 0 135 102 -0.0004667165 0 136 102 -0.0007284036 -1.793882e-08 137 102 2.933983e-05 1.041484e-09 138 102 0 -1.205332e-08 139 102 0 6.02137e-10 140 102 -0.0007284036 -1.793882e-08 141 102 2.933983e-05 1.041484e-09 142 102 0 -1.205332e-08 143 102 0 6.02137e-10 103 103 8.740609e-06 0 104 103 2.886934e-06 1.157942e-10 105 103 -8.007628e-08 1.863557e-12 106 103 0 6.239976e-11 107 103 0 -1.940025e-14 108 103 2.886934e-06 1.157942e-10 109 103 -8.007628e-08 1.863557e-12 110 103 0 6.239976e-11 111 103 0 -1.940025e-14 132 103 -2.758471e-06 -9.483706e-21 133 103 1.654733e-08 5.742878e-23 134 103 0.0004565902 0 135 103 -2.76624e-06 0 136 103 -3.847451e-06 -9.181968e-11 137 103 -3.996719e-08 7.986372e-13 138 103 0 -6.261318e-11 139 103 0 -2.616657e-15 140 103 -3.847451e-06 -9.181968e-11 141 103 -3.996719e-08 7.986372e-13 142 103 0 -6.261318e-11 143 103 0 -2.616657e-15 104 104 0.001799469 0 105 104 0.0002699621 0 106 104 0.000104956 -3.565354e-19 107 104 1.850004e-05 -5.613021e-20 108 104 0.001799469 0 109 104 0.0002699621 0 110 104 0.000104956 -3.565354e-19 111 104 1.850004e-05 -5.613021e-20 105 105 0.001079885 0 106 105 1.850004e-05 -5.613021e-20 107 105 7.548005e-05 -2.030986e-19 108 105 0.0002699621 0 109 105 0.001079885 0 110 105 1.850004e-05 -5.613021e-20 111 105 7.548005e-05 -2.030986e-19 132 105 0 -6.033041e-10 133 105 0 2.616657e-15 134 105 4.626737e-05 -7.038957e-10 135 105 -3.996719e-08 -7.986372e-13 136 105 0.00026996 0 137 105 -0.0001575211 0 138 105 1.849962e-05 -4.729471e-20 139 105 -1.290144e-05 2.767816e-20 140 105 0.00026996 0 141 105 -0.0001575211 0 142 105 1.849962e-05 -4.729471e-20 143 105 -1.290144e-05 2.767816e-20 106 106 0.001799469 0 107 106 0.0002699621 0 108 106 0.000104956 3.565354e-19 109 106 1.850004e-05 5.613021e-20 110 106 0.001799469 0 111 106 0.0002699621 0 107 107 0.001079885 0 108 107 1.850004e-05 5.613021e-20 109 107 7.548005e-05 2.030986e-19 110 107 0.0002699621 0 111 107 0.001079885 0 132 107 -4.626737e-05 -7.038957e-10 133 107 3.996719e-08 -7.986372e-13 134 107 0 -6.033041e-10 135 107 0 2.616657e-15 136 107 1.849962e-05 4.729471e-20 137 107 -1.290144e-05 -2.767816e-20 138 107 0.00026996 0 139 107 -0.0001575211 0 140 107 1.849962e-05 4.729471e-20 141 107 -1.290144e-05 -2.767816e-20 142 107 0.00026996 0 143 107 -0.0001575211 0 108 108 6.85586 0 109 108 0.6937163 0 110 108 0.2436195 -2.1175e-16 111 108 0.03045708 2.651628e-18 109 109 2.852133 0 110 109 0.03045708 2.651628e-18 111 109 0.1218294 -9.80371e-17 132 109 0 -6.033041e-10 133 109 0 2.616657e-15 134 109 4.626737e-05 -7.038957e-10 135 109 -3.996719e-08 -7.986372e-13 136 109 0.00026996 0 137 109 -0.0001575211 0 138 109 1.849962e-05 -4.729471e-20 139 109 -1.290144e-05 2.767816e-20 140 109 0.701788 0 141 109 -0.3070598 0 142 109 0.03045699 -1.486912e-17 143 109 -0.01523164 4.018418e-17 110 110 6.85586 0 111 110 0.6937163 0 111 111 2.852133 0 132 111 -4.626737e-05 -7.038957e-10 133 111 3.996719e-08 -7.986372e-13 134 111 0 -6.033041e-10 135 111 0 2.616657e-15 136 111 1.849962e-05 4.729471e-20 137 111 -1.290144e-05 -2.767816e-20 138 111 0.00026996 0 139 111 -0.0001575211 0 140 111 0.03045699 1.486912e-17 141 111 -0.01523164 -4.018418e-17 142 111 0.701788 0 143 111 -0.3070598 0 112 112 0.03251468 0 113 112 0.003290114 0 114 112 0.0005776937 -1.640367e-18 115 112 7.222426e-05 -2.79151e-19 113 113 0.01352689 0 114 113 7.222426e-05 -2.79151e-19 115 113 0.0002889 -9.776643e-19 144 113 0.003328393 0 145 113 -0.001456342 0 146 113 7.222404e-05 -2.521041e-19 147 113 -3.612051e-05 1.083426e-19 114 114 0.03251468 0 115 114 0.003290114 0 115 115 0.01352689 0 144 115 7.222404e-05 2.521041e-19 145 115 -3.612051e-05 -1.083426e-19 146 115 0.003328393 0 147 115 -0.001456342 0 116 116 0.001798593 0 117 116 0.0002697838 0 118 116 7.266604e-05 -2.447471e-19 119 116 1.280888e-05 -3.38942e-20 120 116 0 -1.120997e-08 121 116 0 5.821942e-11 122 116 0.0005684588 -2.149695e-08 123 116 -2.888527e-06 1.136533e-10 117 117 0.001079132 0 118 117 1.280888e-05 -3.38942e-20 119 117 5.226045e-05 -1.126649e-19 120 117 0 -1.233995e-08 121 117 0 -5.948733e-15 122 117 0.0007136475 -2.118573e-08 123 117 8.024622e-08 1.923201e-12 148 117 0.0002697838 0 149 117 -0.0001573695 0 150 117 1.280852e-05 -2.736256e-20 151 117 -8.932988e-06 9.435762e-21 152 117 0 5.604916e-10 153 117 0 1.777102e-15 154 117 -4.633057e-05 6.695549e-10 155 117 4.008462e-08 8.28326e-13 118 118 0.001798593 0 119 118 0.0002697838 0 120 118 -0.0005684588 -2.149695e-08 121 118 2.888527e-06 1.136533e-10 122 118 0 -1.120997e-08 123 118 0 5.821942e-11 119 119 0.001079132 0 120 119 -0.0007136475 -2.118573e-08 121 119 -8.024622e-08 1.923201e-12 122 119 0 -1.233995e-08 123 119 0 -5.948733e-15 148 119 1.280852e-05 2.736256e-20 149 119 -8.932988e-06 -9.435762e-21 150 119 0.0002697838 0 151 119 -0.0001573695 0 152 119 4.633057e-05 6.695549e-10 153 119 -4.008462e-08 8.28326e-13 154 119 0 5.604916e-10 155 119 0 1.777102e-15 120 120 0.5018792 0 121 120 -0.0001957158 0 122 120 -0.01321183 3.866182e-17 123 120 4.63976e-08 -7.541353e-20 148 120 0 1.12193e-08 149 120 0 -5.61224e-10 150 120 -0.0007290776 1.739824e-08 151 120 2.935324e-05 -1.019717e-09 152 120 0.07409811 0 153 120 -0.0004682836 0 154 120 -0.002282933 9.53436e-19 155 120 1.42755e-05 -7.594027e-21 121 121 8.762289e-06 0 122 121 4.63976e-08 -7.541353e-20 123 121 -2.284816e-07 5.944465e-22 148 121 0 5.827381e-11 149 121 0 -1.777102e-15 150 121 -3.851126e-06 8.896425e-11 151 121 -4.008462e-08 -8.28326e-13 152 121 0.0004581921 0 153 121 -2.775737e-06 0 154 121 -1.427154e-05 4.046501e-21 155 121 8.554558e-08 -3.298289e-23 122 122 0.5018792 0 123 122 -0.0001957158 0 148 122 0.0007290776 1.739824e-08 149 122 -2.935324e-05 -1.019717e-09 150 122 0 1.12193e-08 151 122 0 -5.61224e-10 152 122 -0.002282933 -9.53436e-19 153 122 1.42755e-05 7.594027e-21 154 122 0.07409811 0 155 122 -0.0004682836 0 123 123 8.762289e-06 0 148 123 3.851126e-06 8.896425e-11 149 123 4.008462e-08 -8.28326e-13 150 123 0 5.827381e-11 151 123 0 -1.777102e-15 152 123 -1.427154e-05 -4.046501e-21 153 123 8.554558e-08 3.298289e-23 154 123 0.0004581921 0 155 123 -2.775737e-06 0 124 124 0.0002281367 0 125 124 8.892393e-08 0 156 124 4.609351e-05 0 157 124 -2.850071e-07 0 125 125 3.94574e-09 0 156 125 2.913706e-07 0 157 125 -1.7272e-09 0 126 126 0.0002281367 0 127 126 8.892393e-08 0 158 126 4.609351e-05 0 159 126 -2.850071e-07 0 127 127 3.94574e-09 0 158 127 2.913706e-07 0 159 127 -1.7272e-09 0 128 128 0.02316448 0 129 128 0.002496976 0 130 128 0.0005779254 -1.714126e-18 131 128 7.225801e-05 -1.812664e-19 129 129 0.0101293 0 130 129 7.225801e-05 -1.812664e-19 131 129 0.0002890351 -7.728197e-19 160 129 0.002508701 0 161 129 -0.001129091 0 162 129 7.22578e-05 -1.922142e-19 163 129 -3.613985e-05 9.632002e-20 130 130 0.02316448 0 131 130 0.002496976 0 131 131 0.0101293 0 160 131 7.22578e-05 1.922142e-19 161 131 -3.613985e-05 -9.632002e-20 162 131 0.002508701 0 163 131 -0.001129091 0 132 132 0.3744323 0 133 132 -0.0001091893 0 134 132 -0.002519347 9.121917e-18 135 132 7.84221e-08 2.619037e-21 136 132 0 -1.205719e-08 137 132 0 -1.326839e-08 138 132 0.0007838024 -1.683447e-08 139 132 0.0009500544 -1.706105e-08 140 132 0 -1.205719e-08 141 132 0 -1.326839e-08 142 132 0.0007838024 -1.683447e-08 143 132 0.0009500544 -1.706105e-08 164 132 0.05745497 0 165 132 -0.0003622544 0 166 132 -0.000429935 1.79579e-18 167 132 2.691212e-06 -1.11589e-20 168 132 0 -1.207441e-08 169 132 0 6.019254e-10 170 132 0.0009433574 -1.453577e-08 171 132 -4.012966e-05 8.004846e-10 172 132 0 -1.207441e-08 173 132 0 6.019254e-10 174 132 0.0009433574 -1.453577e-08 175 132 -4.012966e-05 8.004846e-10 133 133 6.509851e-06 0 134 133 7.84221e-08 2.619037e-21 135 133 -4.355977e-08 1.616375e-22 136 133 0 6.262365e-11 137 133 0 -4.765393e-15 138 133 -4.00732e-06 8.862513e-11 139 133 7.967775e-08 1.102884e-12 140 133 0 6.262365e-11 141 133 0 -4.765393e-15 142 133 -4.00732e-06 8.862513e-11 143 133 7.967775e-08 1.102884e-12 164 133 0.0003561507 0 165 133 -2.152528e-06 0 166 133 -2.684933e-06 1.13072e-20 167 133 1.611052e-08 -6.73946e-23 168 133 0 -6.273048e-11 169 133 0 -1.092319e-14 170 133 4.963573e-06 -7.480282e-11 171 133 3.972719e-08 4.051399e-13 172 133 0 -6.273048e-11 173 133 0 -1.092319e-14 174 133 4.963573e-06 -7.480282e-11 175 133 3.972719e-08 4.051399e-13 134 134 0.3744323 0 135 134 -0.0001091893 0 136 134 -0.0007838024 -1.683447e-08 137 134 -0.0009500544 -1.706105e-08 138 134 0 -1.205719e-08 139 134 0 -1.326839e-08 140 134 -0.0007838024 -1.683447e-08 141 134 -0.0009500544 -1.706105e-08 142 134 0 -1.205719e-08 143 134 0 -1.326839e-08 164 134 -0.000429935 -1.79579e-18 165 134 2.691212e-06 1.11589e-20 166 134 0.05745497 0 167 134 -0.0003622544 0 168 134 -0.0009433574 -1.453577e-08 169 134 4.012966e-05 8.004846e-10 170 134 0 -1.207441e-08 171 134 0 6.019254e-10 172 134 -0.0009433574 -1.453577e-08 173 134 4.012966e-05 8.004846e-10 174 134 0 -1.207441e-08 175 134 0 6.019254e-10 135 135 6.509851e-06 0 136 135 4.00732e-06 8.862513e-11 137 135 -7.967775e-08 1.102884e-12 138 135 0 6.262365e-11 139 135 0 -4.765393e-15 140 135 4.00732e-06 8.862513e-11 141 135 -7.967775e-08 1.102884e-12 142 135 0 6.262365e-11 143 135 0 -4.765393e-15 164 135 -2.684933e-06 -1.13072e-20 165 135 1.611052e-08 6.73946e-23 166 135 0.0003561507 0 167 135 -2.152528e-06 0 168 135 -4.963573e-06 -7.480282e-11 169 135 -3.972719e-08 4.051399e-13 170 135 0 -6.273048e-11 171 135 0 -1.092319e-14 172 135 -4.963573e-06 -7.480282e-11 173 135 -3.972719e-08 4.051399e-13 174 135 0 -6.273048e-11 175 135 0 -1.092319e-14 136 136 0.002520301 0 137 136 0.0003601246 0 138 136 0.0002052329 -4.201597e-19 139 136 3.310614e-05 -6.341794e-20 140 136 0.002520301 0 141 136 0.0003601246 0 142 136 0.0002052329 -4.201597e-19 143 136 3.310614e-05 -6.341794e-20 137 137 0.001440547 0 138 137 3.310614e-05 -6.341794e-20 139 137 0.0001339154 -2.772572e-19 140 137 0.0003601246 0 141 137 0.001440547 0 142 137 3.310614e-05 -6.341794e-20 143 137 0.0001339154 -2.772572e-19 164 137 0 -6.065717e-10 165 137 0 1.092319e-14 166 137 5.695633e-05 -6.281234e-10 167 137 -3.972719e-08 -4.051399e-13 168 137 0.0003601219 0 169 137 -0.00020264 0 170 137 3.310686e-05 -8.211906e-20 171 137 -2.124763e-05 3.555467e-20 172 137 0.0003601219 0 173 137 -0.00020264 0 174 137 3.310686e-05 -8.211906e-20 175 137 -2.124763e-05 3.555467e-20 138 138 0.002520301 0 139 138 0.0003601246 0 140 138 0.0002052329 4.201597e-19 141 138 3.310614e-05 6.341794e-20 142 138 0.002520301 0 143 138 0.0003601246 0 139 139 0.001440547 0 140 139 3.310614e-05 6.341794e-20 141 139 0.0001339154 2.772572e-19 142 139 0.0003601246 0 143 139 0.001440547 0 164 139 -5.695633e-05 -6.281234e-10 165 139 3.972719e-08 -4.051399e-13 166 139 0 -6.065717e-10 167 139 0 1.092319e-14 168 139 3.310686e-05 8.211906e-20 169 139 -2.124763e-05 -3.555467e-20 170 139 0.0003601219 0 171 139 -0.00020264 0 172 139 3.310686e-05 8.211906e-20 173 139 -2.124763e-05 -3.555467e-20 174 139 0.0003601219 0 175 139 -0.00020264 0 140 140 4.884069 0 141 140 0.5264514 0 142 140 0.2437052 -6.407568e-16 143 140 0.03046955 -1.458676e-16 141 141 2.135622 0 142 141 0.03046955 -1.458676e-16 143 141 0.1218793 -5.566677e-16 164 141 0 -6.065717e-10 165 141 0 1.092319e-14 166 141 5.695633e-05 -6.281234e-10 167 141 -3.972719e-08 -4.051399e-13 168 141 0.0003601219 0 169 141 -0.00020264 0 170 141 3.310686e-05 -8.211906e-20 171 141 -2.124763e-05 3.555467e-20 172 141 0.5289239 0 173 141 -0.2380443 0 174 141 0.03046947 -1.595571e-16 175 141 -0.01523877 7.479081e-17 142 142 4.884069 0 143 142 0.5264514 0 143 143 2.135622 0 164 143 -5.695633e-05 -6.281234e-10 165 143 3.972719e-08 -4.051399e-13 166 143 0 -6.065717e-10 167 143 0 1.092319e-14 168 143 3.310686e-05 8.211906e-20 169 143 -2.124763e-05 -3.555467e-20 170 143 0.0003601219 0 171 143 -0.00020264 0 172 143 0.03046947 1.595571e-16 173 143 -0.01523877 -7.479081e-17 174 143 0.5289239 0 175 143 -0.2380443 0 144 144 0.02316448 0 145 144 0.002496976 0 146 144 0.0005779254 -1.714126e-18 147 144 7.225801e-05 -1.812664e-19 145 145 0.0101293 0 146 145 7.225801e-05 -1.812664e-19 147 145 0.0002890351 -7.728197e-19 176 145 0.002508701 0 177 145 -0.001129091 0 178 145 7.22578e-05 -1.922142e-19 179 145 -3.613985e-05 9.632002e-20 146 146 0.02316448 0 147 146 0.002496976 0 147 147 0.0101293 0 176 147 7.22578e-05 1.922142e-19 177 147 -3.613985e-05 -9.632002e-20 178 147 0.002508701 0 179 147 -0.001129091 0 148 148 0.002517916 0 149 148 0.0003596942 0 150 148 0.0001421032 -1.390449e-19 151 148 2.292344e-05 -1.038049e-20 152 148 0 -1.121692e-08 153 148 0 5.82667e-11 154 148 0.0007846394 -1.625275e-08 155 148 -4.011465e-06 8.565094e-11 149 149 0.001438771 0 150 149 2.292344e-05 -1.038049e-20 151 149 9.272685e-05 -6.329309e-20 152 149 0 -1.233221e-08 153 149 0 8.063593e-15 154 149 0.0009512797 -1.635606e-08 155 149 7.998549e-08 1.161696e-12 180 149 0.0003596936 0 181 149 -0.0002023209 0 182 149 2.292387e-05 -9.877793e-21 183 149 -1.47132e-05 1.658599e-20 184 149 0 5.615569e-10 185 149 0 -3.688147e-15 186 149 -5.70782e-05 5.856926e-10 187 149 3.992315e-08 4.351727e-13 150 150 0.002517916 0 151 150 0.0003596942 0 152 150 -0.0007846394 -1.625275e-08 153 150 4.011465e-06 8.565094e-11 154 150 0 -1.121692e-08 155 150 0 5.82667e-11 151 151 0.001438771 0 152 151 -0.0009512797 -1.635606e-08 153 151 -7.998549e-08 1.161696e-12 154 151 0 -1.233221e-08 155 151 0 8.063593e-15 180 151 2.292387e-05 9.877793e-21 181 151 -1.47132e-05 -1.658599e-20 182 151 0.0003596936 0 183 151 -0.0002023209 0 184 151 5.70782e-05 5.856926e-10 185 151 -3.992315e-08 4.351727e-13 186 151 0 5.615569e-10 187 151 0 -3.688147e-15 152 152 0.3761059 0 153 152 -0.0001087002 0 154 152 -0.01316469 1.972819e-17 155 152 6.259222e-08 7.848508e-20 180 152 0 1.120961e-08 181 152 0 -5.599621e-10 182 152 -0.0009448153 1.383548e-08 183 152 4.01685e-05 -7.707779e-10 184 152 0.05778103 0 185 152 -0.0003642755 0 186 152 -0.002273639 9.763092e-18 187 152 1.421787e-05 -5.875397e-20 153 153 6.538799e-06 0 154 153 6.259222e-08 7.848508e-20 155 153 -2.276691e-07 4.27735e-22 180 153 0 5.822714e-11 181 153 0 3.688147e-15 182 153 -4.971442e-06 7.111763e-11 183 153 -3.992315e-08 -4.351727e-13 184 153 0.0003582069 0 185 153 -2.164746e-06 0 186 153 -1.421287e-05 6.356094e-20 187 153 8.519686e-08 -3.681002e-22 154 154 0.3761059 0 155 154 -0.0001087002 0 180 154 0.0009448153 1.383548e-08 181 154 -4.01685e-05 -7.707779e-10 182 154 0 1.120961e-08 183 154 0 -5.599621e-10 184 154 -0.002273639 -9.763092e-18 185 154 1.421787e-05 5.875397e-20 186 154 0.05778103 0 187 154 -0.0003642755 0 155 155 6.538799e-06 0 180 155 4.971442e-06 7.111763e-11 181 155 3.992315e-08 -4.351727e-13 182 155 0 5.822714e-11 183 155 0 3.688147e-15 184 155 -1.421287e-05 -6.356094e-20 185 155 8.519686e-08 3.681002e-22 186 155 0.0003582069 0 187 155 -2.164746e-06 0 156 156 0.0003045903 0 157 156 8.92807e-08 0 188 156 5.935404e-05 0 189 156 -3.678997e-07 0 157 157 5.268018e-09 0 188 157 3.742925e-07 0 189 157 -2.22408e-09 0 158 158 0.0003045903 0 159 158 8.92807e-08 0 190 158 5.935404e-05 0 191 158 -3.678997e-07 0 159 159 5.268018e-09 0 190 159 3.742925e-07 0 191 159 -2.22408e-09 0 160 160 0.01800145 0 161 160 0.002007665 0 162 160 0.0005782348 -1.554622e-18 163 160 7.230159e-05 -1.930658e-19 161 161 0.008099522 0 162 161 7.230159e-05 -1.930658e-19 163 161 0.0002892094 -7.540415e-19 192 161 0.002012395 0 193 161 -0.0009225267 0 194 161 7.230137e-05 -1.804715e-19 195 161 -3.616409e-05 9.55811e-20 162 162 0.01800145 0 163 162 0.002007665 0 163 163 0.008099522 0 192 163 7.230137e-05 1.804715e-19 193 163 -3.616409e-05 -9.55811e-20 194 163 0.002012395 0 195 163 -0.0009225267 0 164 164 0.2994879 0 165 164 -6.946323e-05 0 166 164 -0.002443782 9.865756e-18 167 164 9.800586e-08 -3.076757e-21 168 164 0 -1.208963e-08 169 164 0 -1.333325e-08 170 164 0.0009984266 -1.397112e-08 171 164 0.001185641 -1.457657e-08 172 164 0 -1.208963e-08 173 164 0 -1.333325e-08 174 164 0.0009984266 -1.397112e-08 175 164 0.001185641 -1.457657e-08 196 164 0.04706867 0 197 164 -0.0002963102 0 198 164 -0.0004153882 1.423383e-18 199 164 2.600962e-06 -9.044098e-21 200 164 0 -1.213874e-08 201 164 0 6.077464e-10 202 164 0.00115712 -1.266735e-08 203 164 -5.08525e-05 6.770851e-10 204 164 0 -1.213874e-08 205 164 0 6.077464e-10 206 164 0.00115712 -1.266735e-08 207 164 -5.08525e-05 6.770851e-10 165 165 5.19686e-06 0 166 165 9.800586e-08 -3.076757e-21 167 165 -4.225166e-08 1.664574e-22 168 165 0 6.277418e-11 169 165 0 -4.108872e-14 170 165 -5.122482e-06 7.318226e-11 171 165 7.925148e-08 6.591247e-13 172 165 0 6.277418e-11 173 165 0 -4.108872e-14 174 165 -5.122482e-06 7.318226e-11 175 165 7.925148e-08 6.591247e-13 196 165 0.0002922362 0 197 165 -1.763507e-06 0 198 165 -2.593266e-06 8.750835e-21 199 165 1.556533e-08 -5.329982e-23 200 165 0 -6.305172e-11 201 165 0 7.38034e-15 202 165 6.07356e-06 -6.53761e-11 203 165 3.953195e-08 2.384106e-13 204 165 0 -6.305172e-11 205 165 0 7.38034e-15 206 165 6.07356e-06 -6.53761e-11 207 165 3.953195e-08 2.384106e-13 166 166 0.2994879 0 167 166 -6.946323e-05 0 168 166 -0.0009984266 -1.397112e-08 169 166 -0.001185641 -1.457657e-08 170 166 0 -1.208963e-08 171 166 0 -1.333325e-08 172 166 -0.0009984266 -1.397112e-08 173 166 -0.001185641 -1.457657e-08 174 166 0 -1.208963e-08 175 166 0 -1.333325e-08 196 166 -0.0004153882 -1.423383e-18 197 166 2.600962e-06 9.044098e-21 198 166 0.04706867 0 199 166 -0.0002963102 0 200 166 -0.00115712 -1.266735e-08 201 166 5.08525e-05 6.770851e-10 202 166 0 -1.213874e-08 203 166 0 6.077464e-10 204 166 -0.00115712 -1.266735e-08 205 166 5.08525e-05 6.770851e-10 206 166 0 -1.213874e-08 207 166 0 6.077464e-10 167 167 5.19686e-06 0 168 167 5.122482e-06 7.318226e-11 169 167 -7.925148e-08 6.591247e-13 170 167 0 6.277418e-11 171 167 0 -4.108872e-14 172 167 5.122482e-06 7.318226e-11 173 167 -7.925148e-08 6.591247e-13 174 167 0 6.277418e-11 175 167 0 -4.108872e-14 196 167 -2.593266e-06 -8.750835e-21 197 167 1.556533e-08 5.329982e-23 198 167 0.0002922362 0 199 167 -1.763507e-06 0 200 167 -6.07356e-06 -6.53761e-11 201 167 -3.953195e-08 2.384106e-13 202 167 0 -6.305172e-11 203 167 0 7.38034e-15 204 167 -6.07356e-06 -6.53761e-11 205 167 -3.953195e-08 2.384106e-13 206 167 0 -6.305172e-11 207 167 0 7.38034e-15 168 168 0.003242191 0 169 168 0.000450438 0 170 168 0.0003387728 -6.280183e-19 171 168 5.188366e-05 -6.009962e-20 172 168 0.003242191 0 173 168 0.000450438 0 174 168 0.0003387728 -6.280183e-19 175 168 5.188366e-05 -6.009962e-20 169 169 0.001801814 0 170 169 5.188366e-05 -6.009962e-20 171 169 0.0002090199 -1.983965e-19 172 169 0.000450438 0 173 169 0.001801814 0 174 169 5.188366e-05 -6.009962e-20 175 169 0.0002090199 -1.983965e-19 196 169 0 -6.044699e-10 197 169 0 -7.38034e-15 198 169 6.759626e-05 -5.762055e-10 199 169 -3.953195e-08 -2.384106e-13 200 169 0.0004504351 0 201 169 -0.0002478439 0 202 169 5.188383e-05 -4.960311e-21 203 169 -3.167549e-05 4.484877e-20 204 169 0.0004504351 0 205 169 -0.0002478439 0 206 169 5.188383e-05 -4.960311e-21 207 169 -3.167549e-05 4.484877e-20 170 170 0.003242191 0 171 170 0.000450438 0 172 170 0.0003387728 6.280183e-19 173 170 5.188366e-05 6.009962e-20 174 170 0.003242191 0 175 170 0.000450438 0 171 171 0.001801814 0 172 171 5.188366e-05 6.009962e-20 173 171 0.0002090199 1.983965e-19 174 171 0.000450438 0 175 171 0.001801814 0 196 171 -6.759626e-05 -5.762055e-10 197 171 3.953195e-08 -2.384106e-13 198 171 0 -6.044699e-10 199 171 0 -7.38034e-15 200 171 5.188383e-05 4.960311e-21 201 171 -3.167549e-05 -4.484877e-20 202 171 0.0004504351 0 203 171 -0.0002478439 0 204 171 5.188383e-05 4.960311e-21 205 171 -3.167549e-05 -4.484877e-20 206 171 0.0004504351 0 207 171 -0.0002478439 0 172 172 3.79521 0 173 172 0.4232531 0 174 172 0.2438193 -1.272542e-15 175 172 0.03048561 -1.396061e-16 173 173 1.707533 0 174 173 0.03048561 -1.396061e-16 175 173 0.1219435 -4.799699e-16 196 173 0 -6.044699e-10 197 173 0 -7.38034e-15 198 173 6.759626e-05 -5.762055e-10 199 173 -3.953195e-08 -2.384106e-13 200 173 0.0004504351 0 201 173 -0.0002478439 0 202 173 5.188383e-05 -4.960311e-21 203 173 -3.167549e-05 4.484877e-20 204 173 0.4242505 0 205 173 -0.1944772 0 206 173 0.03048552 -1.104063e-16 207 173 -0.01524769 3.659837e-17 174 174 3.79521 0 175 174 0.4232531 0 175 175 1.707533 0 196 175 -6.759626e-05 -5.762055e-10 197 175 3.953195e-08 -2.384106e-13 198 175 0 -6.044699e-10 199 175 0 -7.38034e-15 200 175 5.188383e-05 4.960311e-21 201 175 -3.167549e-05 -4.484877e-20 202 175 0.0004504351 0 203 175 -0.0002478439 0 204 175 0.03048552 1.104063e-16 205 175 -0.01524769 -3.659837e-17 206 175 0.4242505 0 207 175 -0.1944772 0 176 176 0.01800145 0 177 176 0.002007665 0 178 176 0.0005782348 -1.554622e-18 179 176 7.230159e-05 -1.930658e-19 177 177 0.008099522 0 178 177 7.230159e-05 -1.930658e-19 179 177 0.0002892094 -7.540415e-19 208 177 0.002012395 0 209 177 -0.0009225267 0 210 177 7.230137e-05 -1.804715e-19 211 177 -3.616409e-05 9.55811e-20 178 178 0.01800145 0 179 178 0.002007665 0 179 179 0.008099522 0 208 179 7.230137e-05 1.804715e-19 209 179 -3.616409e-05 -9.55811e-20 210 179 0.002012395 0 211 179 -0.0009225267 0 180 180 0.003237138 0 181 180 0.0004495899 0 182 180 0.0002345868 -2.470244e-19 183 180 3.592891e-05 -5.646615e-20 184 180 0 -1.121486e-08 185 180 0 5.824189e-11 186 180 0.001000156 -1.322918e-08 187 180 -5.131135e-06 6.937694e-11 181 181 0.001798352 0 182 181 3.592891e-05 -5.646615e-20 183 181 0.0001447453 -2.458794e-19 184 181 0 -1.235541e-08 185 181 0 -2.753309e-14 186 181 0.001188032 -1.369329e-08 187 181 7.973277e-08 7.210386e-13 212 181 0.0004495891 0 213 181 -0.0002472642 0 214 181 3.592891e-05 -5.947312e-20 215 181 -2.193646e-05 5.120987e-20 216 181 0 5.565937e-10 217 181 0 1.762913e-14 218 181 -6.78041e-05 5.261955e-10 219 181 3.982423e-08 2.665894e-13 182 182 0.003237138 0 183 182 0.0004495899 0 184 182 -0.001000156 -1.322918e-08 185 182 5.131135e-06 6.937694e-11 186 182 0 -1.121486e-08 187 182 0 5.824189e-11 183 183 0.001798352 0 184 183 -0.001188032 -1.369329e-08 185 183 -7.973277e-08 7.210386e-13 186 183 0 -1.235541e-08 187 183 0 -2.753309e-14 212 183 3.592891e-05 5.947312e-20 213 183 -2.193646e-05 -5.120987e-20 214 183 0.0004495891 0 215 183 -0.0002472642 0 216 183 6.78041e-05 5.261955e-10 217 183 -3.982423e-08 2.665894e-13 218 183 0 5.565937e-10 219 183 0 1.762913e-14 184 184 0.3015826 0 185 184 -6.897165e-05 0 186 184 -0.01310445 5.555215e-17 187 184 7.831121e-08 -4.0549e-20 212 184 0 1.123332e-08 213 184 0 -5.642291e-10 214 184 -0.001159819 1.180472e-08 215 184 5.09365e-05 -6.389944e-10 216 184 0.04746775 0 217 184 -0.0002987877 0 218 184 -0.00226203 5.826614e-18 219 184 1.414582e-05 -3.802911e-20 185 185 5.233088e-06 0 186 185 7.831121e-08 -4.0549e-20 187 185 -2.266248e-07 8.827604e-22 212 185 0 5.833401e-11 213 185 0 -1.762913e-14 214 185 -6.088028e-06 6.084909e-11 215 185 -3.982423e-08 -2.665894e-13 216 185 0.0002947489 0 217 185 -1.778461e-06 0 218 185 -1.413967e-05 3.47039e-20 219 185 8.476131e-08 -2.171066e-22 186 186 0.3015826 0 187 186 -6.897165e-05 0 212 186 0.001159819 1.180472e-08 213 186 -5.09365e-05 -6.389944e-10 214 186 0 1.123332e-08 215 186 0 -5.642291e-10 216 186 -0.00226203 -5.826614e-18 217 186 1.414582e-05 3.802911e-20 218 186 0.04746775 0 219 186 -0.0002987877 0 187 187 5.233088e-06 0 212 187 6.088028e-06 6.084909e-11 213 187 3.982423e-08 -2.665894e-13 214 187 0 5.833401e-11 215 187 0 -1.762913e-14 216 187 -1.413967e-05 -3.47039e-20 217 187 8.476131e-08 2.171066e-22 218 187 0.0002947489 0 219 187 -1.778461e-06 0 188 188 0.0003813963 0 189 188 8.974314e-08 0 220 188 7.268339e-05 0 221 188 -4.512183e-07 0 189 189 6.596372e-09 0 220 189 4.57648e-07 0 221 189 -2.723534e-09 0 190 190 0.0003813963 0 191 190 8.974314e-08 0 222 190 7.268339e-05 0 223 190 -4.512183e-07 0 191 191 6.596372e-09 0 222 191 4.57648e-07 0 223 191 -2.723534e-09 0 192 192 0.01472549 0 193 192 0.001677712 0 194 192 0.0005786226 -1.490713e-18 195 192 7.2355e-05 -2.018529e-19 193 193 0.006749446 0 194 193 7.2355e-05 -2.018529e-19 195 193 0.0002894231 -8.513367e-19 224 193 0.001679974 0 225 193 -0.0007801697 0 226 193 7.235479e-05 -2.153148e-19 227 193 -3.619328e-05 1.246111e-19 194 194 0.01472549 0 195 194 0.001677712 0 195 195 0.006749446 0 224 195 7.235479e-05 2.153148e-19 225 195 -3.619328e-05 -1.246111e-19 226 195 0.001679974 0 227 195 -0.0007801697 0 196 196 0.2498297 0 197 196 -4.802688e-05 0 198 196 -0.002351336 7.066065e-18 199 196 1.174471e-07 -1.807108e-21 200 196 0 -1.212791e-08 201 196 0 -1.327538e-08 202 196 0.001211918 -1.233727e-08 203 196 0.001420039 -1.317105e-08 204 196 0 -1.212791e-08 205 196 0 -1.327538e-08 206 196 0.001211918 -1.233727e-08 207 196 0.001420039 -1.317105e-08 228 196 0.03990249 0 229 196 -0.0002509265 0 230 196 -0.0003979409 1.132708e-18 231 196 2.492573e-06 -7.101487e-21 232 196 0 -1.197528e-08 233 196 0 6.067728e-10 234 196 0.00136974 -1.173151e-08 235 196 -6.153051e-05 6.046201e-10 236 196 0 -1.197528e-08 237 196 0 6.067728e-10 238 196 0.00136974 -1.173151e-08 239 196 -6.153051e-05 6.046201e-10 197 197 4.33066e-06 0 198 197 1.174471e-07 -1.807108e-21 199 197 -4.065276e-08 1.245059e-22 200 197 0 6.30222e-11 201 197 0 9.582963e-14 202 197 -6.231688e-06 6.442246e-11 203 197 7.883946e-08 2.748063e-13 204 197 0 6.30222e-11 205 197 0 9.582963e-14 206 197 -6.231688e-06 6.442246e-11 207 197 7.883946e-08 2.748063e-13 228 197 0.0002480179 0 229 197 -1.495058e-06 0 230 197 -2.483472e-06 7.061023e-21 231 197 1.491148e-08 -4.243059e-23 232 197 0 -6.212685e-11 233 197 0 4.448376e-14 234 197 7.177513e-06 -6.076405e-11 235 197 3.926026e-08 9.915866e-14 236 197 0 -6.212685e-11 237 197 0 4.448376e-14 238 197 7.177513e-06 -6.076405e-11 239 197 3.926026e-08 9.915866e-14 198 198 0.2498297 0 199 198 -4.802688e-05 0 200 198 -0.001211918 -1.233727e-08 201 198 -0.001420039 -1.317105e-08 202 198 0 -1.212791e-08 203 198 0 -1.327538e-08 204 198 -0.001211918 -1.233727e-08 205 198 -0.001420039 -1.317105e-08 206 198 0 -1.212791e-08 207 198 0 -1.327538e-08 228 198 -0.0003979409 -1.132708e-18 229 198 2.492573e-06 7.101487e-21 230 198 0.03990249 0 231 198 -0.0002509265 0 232 198 -0.00136974 -1.173151e-08 233 198 6.153051e-05 6.046201e-10 234 198 0 -1.197528e-08 235 198 0 6.067728e-10 236 198 -0.00136974 -1.173151e-08 237 198 6.153051e-05 6.046201e-10 238 198 0 -1.197528e-08 239 198 0 6.067728e-10 199 199 4.33066e-06 0 200 199 6.231688e-06 6.442246e-11 201 199 -7.883946e-08 2.748063e-13 202 199 0 6.30222e-11 203 199 0 9.582963e-14 204 199 6.231688e-06 6.442246e-11 205 199 -7.883946e-08 2.748063e-13 206 199 0 6.30222e-11 207 199 0 9.582963e-14 228 199 -2.483472e-06 -7.061023e-21 229 199 1.491148e-08 4.243059e-23 230 199 0.0002480179 0 231 199 -1.495058e-06 0 232 199 -7.177513e-06 -6.076405e-11 233 199 -3.926026e-08 9.915866e-14 234 199 0 -6.212685e-11 235 199 0 4.448376e-14 236 199 -7.177513e-06 -6.076405e-11 237 199 -3.926026e-08 9.915866e-14 238 199 0 -6.212685e-11 239 199 0 4.448376e-14 200 200 0.003965442 0 201 200 0.0005409404 0 202 200 0.0005056204 -5.321319e-19 203 200 7.481814e-05 -1.744348e-19 204 200 0.003965442 0 205 200 0.0005409404 0 206 200 0.0005056204 -5.321319e-19 207 200 7.481814e-05 -1.744348e-19 201 201 0.002163836 0 202 201 7.481814e-05 -1.744348e-19 203 201 0.0003007559 -8.582638e-19 204 201 0.0005409404 0 205 201 0.002163836 0 206 201 7.481814e-05 -1.744348e-19 207 201 0.0003007559 -8.582638e-19 228 201 0 -5.881131e-10 229 201 0 -4.448376e-14 230 201 7.815921e-05 -5.623481e-10 231 201 -3.926026e-08 -9.915866e-14 232 201 0.000540937 0 233 201 -0.0002931517 0 234 201 7.48186e-05 -2.808129e-19 235 201 -4.418045e-05 1.454556e-19 236 201 0.000540937 0 237 201 -0.0002931517 0 238 201 7.48186e-05 -2.808129e-19 239 201 -4.418045e-05 1.454556e-19 202 202 0.003965442 0 203 202 0.0005409404 0 204 202 0.0005056204 5.321319e-19 205 202 7.481814e-05 1.744348e-19 206 202 0.003965442 0 207 202 0.0005409404 0 203 203 0.002163836 0 204 203 7.481814e-05 1.744348e-19 205 203 0.0003007559 8.582638e-19 206 203 0.0005409404 0 207 203 0.002163836 0 228 203 -7.815921e-05 -5.623481e-10 229 203 3.926026e-08 -9.915866e-14 230 203 0 -5.881131e-10 231 203 0 -4.448376e-14 232 203 7.48186e-05 2.808129e-19 233 203 -4.418045e-05 -1.454556e-19 234 203 0.000540937 0 235 203 -0.0002931517 0 236 203 7.48186e-05 2.808129e-19 237 203 -4.418045e-05 -1.454556e-19 238 203 0.000540937 0 239 203 -0.0002931517 0 204 204 3.104268 0 205 204 0.3536582 0 206 204 0.243962 -5.247708e-16 207 204 0.03050523 -3.598719e-17 205 205 1.422771 0 206 205 0.03050523 -3.598719e-17 207 205 0.122022 -2.212302e-16 228 205 0 -5.881131e-10 229 205 0 -4.448376e-14 230 205 7.815921e-05 -5.623481e-10 231 205 -3.926026e-08 -9.915866e-14 232 205 0.000540937 0 233 205 -0.0002931517 0 234 205 7.48186e-05 -2.808129e-19 235 205 -4.418045e-05 1.454556e-19 236 205 0.354135 0 237 205 -0.1644493 0 238 205 0.03050515 -5.497542e-17 239 205 -0.01525839 3.569227e-17 206 206 3.104268 0 207 206 0.3536582 0 207 207 1.422771 0 228 207 -7.815921e-05 -5.623481e-10 229 207 3.926026e-08 -9.915866e-14 230 207 0 -5.881131e-10 231 207 0 -4.448376e-14 232 207 7.48186e-05 2.808129e-19 233 207 -4.418045e-05 -1.454556e-19 234 207 0.000540937 0 235 207 -0.0002931517 0 236 207 0.03050515 5.497542e-17 237 207 -0.01525839 -3.569227e-17 238 207 0.354135 0 239 207 -0.1644493 0 208 208 0.01472549 0 209 208 0.001677712 0 210 208 0.0005786226 -1.490713e-18 211 208 7.2355e-05 -2.018529e-19 209 209 0.006749446 0 210 209 7.2355e-05 -2.018529e-19 211 209 0.0002894231 -8.513367e-19 240 209 0.001679974 0 241 209 -0.0007801697 0 242 209 7.235479e-05 -2.153148e-19 243 209 -3.619328e-05 1.246111e-19 210 210 0.01472549 0 211 210 0.001677712 0 211 211 0.006749446 0 240 211 7.235479e-05 2.153148e-19 241 211 -3.619328e-05 -1.246111e-19 242 211 0.001679974 0 243 211 -0.0007801697 0 212 212 0.003956232 0 213 212 0.0005394677 0 214 212 0.0003501596 -8.149022e-19 215 212 5.181693e-05 -1.453664e-19 216 212 0 -1.120821e-08 217 212 0 5.82635e-11 218 212 0.001215022 -1.143564e-08 219 212 -6.247325e-06 5.978273e-11 213 213 0.002157861 0 214 213 5.181693e-05 -1.453664e-19 215 213 0.0002082969 -5.922927e-19 216 213 0 -1.2235e-08 217 213 0 1.26358e-13 218 213 0.001424167 -1.212222e-08 219 213 7.9534e-08 3.229122e-13 244 213 0.0005394663 0 245 213 -0.0002921975 0 246 213 5.181719e-05 -1.38519e-19 247 213 -3.060058e-05 1.075901e-19 248 213 0 5.3515e-10 249 213 0 6.107762e-14 250 213 -7.848557e-05 5.064726e-10 251 213 3.966768e-08 1.227016e-13 214 214 0.003956232 0 215 214 0.0005394677 0 216 214 -0.001215022 -1.143564e-08 217 214 6.247325e-06 5.978273e-11 218 214 0 -1.120821e-08 219 214 0 5.82635e-11 215 215 0.002157861 0 216 215 -0.001424167 -1.212222e-08 217 215 -7.9534e-08 3.229122e-13 218 215 0 -1.2235e-08 219 215 0 1.26358e-13 244 215 5.181719e-05 1.38519e-19 245 215 -3.060058e-05 -1.075901e-19 246 215 0.0005394663 0 247 215 -0.0002921975 0 248 215 7.848557e-05 5.064726e-10 249 215 -3.966768e-08 1.227016e-13 250 215 0 5.3515e-10 251 215 0 6.107762e-14 216 216 0.2523471 0 217 216 -4.753315e-05 0 218 216 -0.01303061 2.970778e-17 219 216 9.394038e-08 1.097978e-20 244 216 0 1.099775e-08 245 216 0 -5.608217e-10 246 216 -0.001374239 1.073033e-08 247 216 6.168427e-05 -5.587322e-10 248 216 0.0403749 0 249 216 -0.0002538624 0 250 216 -0.002248084 6.290916e-18 251 216 1.405915e-05 -3.894866e-20 217 217 4.374199e-06 0 218 217 9.394038e-08 1.097978e-20 219 217 -2.253466e-07 5.523798e-22 244 217 0 5.702319e-11 245 217 0 -6.107762e-14 246 217 -7.201513e-06 5.552606e-11 247 217 -3.966768e-08 -1.227016e-13 248 217 0.0002509892 0 249 217 -1.51276e-06 0 250 217 -1.405187e-05 3.978177e-20 251 217 8.423826e-08 -2.363713e-22 218 218 0.2523471 0 219 218 -4.753315e-05 0 244 218 0.001374239 1.073033e-08 245 218 -6.168427e-05 -5.587322e-10 246 218 0 1.099775e-08 247 218 0 -5.608217e-10 248 218 -0.002248084 -6.290916e-18 249 218 1.405915e-05 3.894866e-20 250 218 0.0403749 0 251 218 -0.0002538624 0 219 219 4.374199e-06 0 244 219 7.201513e-06 5.552606e-11 245 219 3.966768e-08 -1.227016e-13 246 219 0 5.702319e-11 247 219 0 -6.107762e-14 248 219 -1.405187e-05 -3.978177e-20 249 219 8.423826e-08 2.363713e-22 250 219 0.0002509892 0 251 219 -1.51276e-06 0 220 220 0.0004586456 0 221 220 9.031262e-08 0 252 220 8.609744e-05 0 253 220 -5.350621e-07 0 221 221 7.932378e-09 0 252 221 5.415364e-07 0 253 221 -3.226155e-09 0 222 222 0.0004586456 0 223 222 9.031262e-08 0 254 222 8.609744e-05 0 255 222 -5.350621e-07 0 223 223 7.932378e-09 0 254 223 5.415364e-07 0 255 223 -3.226155e-09 0 224 224 0.01246159 0 225 224 0.001440705 0 226 224 0.0005790897 -2.012319e-18 227 224 7.241834e-05 -2.831295e-19 225 225 0.00578659 0 226 225 7.241834e-05 -2.831295e-19 227 225 0.0002896765 -1.116029e-18 256 225 0.001441918 0 257 225 -0.0006760833 0 258 225 7.24181e-05 -2.715735e-19 259 225 -3.622745e-05 1.570547e-19 226 226 0.01246159 0 227 226 0.001440705 0 227 227 0.00578659 0 256 227 7.24181e-05 2.715735e-19 257 227 -3.622745e-05 -1.570547e-19 258 227 0.001441918 0 259 227 -0.0006760833 0 228 228 0.2145235 0 229 228 -3.515091e-05 0 230 228 -0.002241979 6.526293e-18 231 228 1.374739e-07 4.442257e-22 232 228 0 -1.191435e-08 233 228 0 -1.303127e-08 234 228 0.001424161 -1.159297e-08 235 228 0.001652827 -1.255307e-08 236 228 0 -1.191435e-08 237 228 0 -1.303127e-08 238 228 0.001424161 -1.159297e-08 239 228 0.001652827 -1.255307e-08 260 228 0.03466415 0 261 228 -0.0002178117 0 262 228 -0.000377533 1.221006e-18 263 228 2.365675e-06 -7.540537e-21 264 228 0 -1.180552e-08 265 228 0 5.929785e-10 266 228 0.001580731 -1.125536e-08 267 228 -7.213212e-05 5.752392e-10 268 228 0 -1.180552e-08 269 228 0 5.929785e-10 270 228 0.001580731 -1.125536e-08 271 228 -7.213212e-05 5.752392e-10 229 229 3.716317e-06 0 230 229 1.374739e-07 4.442257e-22 231 229 -3.876126e-08 1.148129e-22 232 229 0 6.194891e-11 233 229 0 5.041697e-14 234 229 -7.334554e-06 6.036741e-11 235 229 7.816089e-08 1.696811e-13 236 229 0 6.194891e-11 237 229 0 5.041697e-14 238 229 -7.334554e-06 6.036741e-11 239 229 7.816089e-08 1.696811e-13 260 229 0.0002156337 0 261 229 -1.29881e-06 0 262 229 -2.355165e-06 7.722325e-21 263 229 1.414667e-08 -4.570267e-23 264 229 0 -6.12925e-11 265 229 0 1.442564e-14 266 229 8.272922e-06 -5.834487e-11 267 229 3.897118e-08 6.898352e-14 268 229 0 -6.12925e-11 269 229 0 1.442564e-14 270 229 8.272922e-06 -5.834487e-11 271 229 3.897118e-08 6.898352e-14 230 230 0.2145235 0 231 230 -3.515091e-05 0 232 230 -0.001424161 -1.159297e-08 233 230 -0.001652827 -1.255307e-08 234 230 0 -1.191435e-08 235 230 0 -1.303127e-08 236 230 -0.001424161 -1.159297e-08 237 230 -0.001652827 -1.255307e-08 238 230 0 -1.191435e-08 239 230 0 -1.303127e-08 260 230 -0.000377533 -1.221006e-18 261 230 2.365675e-06 7.540537e-21 262 230 0.03466415 0 263 230 -0.0002178117 0 264 230 -0.001580731 -1.125536e-08 265 230 7.213212e-05 5.752392e-10 266 230 0 -1.180552e-08 267 230 0 5.929785e-10 268 230 -0.001580731 -1.125536e-08 269 230 7.213212e-05 5.752392e-10 270 230 0 -1.180552e-08 271 230 0 5.929785e-10 231 231 3.716317e-06 0 232 231 7.334554e-06 6.036741e-11 233 231 -7.816089e-08 1.696811e-13 234 231 0 6.194891e-11 235 231 0 5.041697e-14 236 231 7.334554e-06 6.036741e-11 237 231 -7.816089e-08 1.696811e-13 238 231 0 6.194891e-11 239 231 0 5.041697e-14 260 231 -2.355165e-06 -7.722325e-21 261 231 1.414667e-08 4.570267e-23 262 231 0.0002156337 0 263 231 -1.29881e-06 0 264 231 -8.272922e-06 -5.834487e-11 265 231 -3.897118e-08 6.898352e-14 266 231 0 -6.12925e-11 267 231 0 1.442564e-14 268 231 -8.272922e-06 -5.834487e-11 269 231 -3.897118e-08 6.898352e-14 270 231 0 -6.12925e-11 271 231 0 1.442564e-14 232 232 0.004690356 0 233 232 0.0006316697 0 234 232 0.0007057028 -2.605611e-18 235 232 0.0001019032 -3.010094e-19 236 232 0.004690356 0 237 232 0.0006316697 0 238 232 0.0007057028 -2.605611e-18 239 232 0.0001019032 -3.010094e-19 233 233 0.002526766 0 234 233 0.0001019032 -3.010094e-19 235 233 0.0004090918 -9.670359e-19 236 233 0.0006316697 0 237 233 0.002526766 0 238 233 0.0001019032 -3.010094e-19 239 233 0.0004090918 -9.670359e-19 260 233 0 -5.868336e-10 261 233 0 -1.442564e-14 262 233 8.863848e-05 -5.46021e-10 263 233 -3.897118e-08 -6.898352e-14 264 233 0.0006316661 0 265 233 -0.0003385825 0 266 233 0.0001019032 -1.606e-19 267 233 -5.875793e-05 1.171296e-19 268 233 0.0006316661 0 269 233 -0.0003385825 0 270 233 0.0001019032 -1.606e-19 271 233 -5.875793e-05 1.171296e-19 234 234 0.004690356 0 235 234 0.0006316697 0 236 234 0.0007057028 2.605611e-18 237 234 0.0001019032 3.010094e-19 238 234 0.004690356 0 239 234 0.0006316697 0 235 235 0.002526766 0 236 235 0.0001019032 3.010094e-19 237 235 0.0004090918 9.670359e-19 238 235 0.0006316697 0 239 235 0.002526766 0 260 235 -8.863848e-05 -5.46021e-10 261 235 3.897118e-08 -6.898352e-14 262 235 0 -5.868336e-10 263 235 0 -1.442564e-14 264 235 0.0001019032 1.606e-19 265 235 -5.875793e-05 -1.171296e-19 266 235 0.0006316661 0 267 235 -0.0003385825 0 268 235 0.0001019032 1.606e-19 269 235 -5.875793e-05 -1.171296e-19 270 235 0.0006316661 0 271 235 -0.0003385825 0 236 236 2.626734 0 237 236 0.303662 0 238 236 0.2441332 -5.881046e-16 239 236 0.03052841 -8.779367e-17 237 237 1.21966 0 238 237 0.03052841 -8.779367e-17 239 237 0.1221147 -3.293495e-16 260 237 0 -5.868336e-10 261 237 0 -1.442564e-14 262 237 8.863848e-05 -5.46021e-10 263 237 -3.897118e-08 -6.898352e-14 264 237 0.0006316661 0 265 237 -0.0003385825 0 266 237 0.0001019032 -1.606e-19 267 237 -5.875793e-05 1.171296e-19 268 237 0.3039178 0 269 237 -0.1424912 0 270 237 0.03052831 -7.865533e-17 271 237 -0.01527086 4.534623e-17 238 238 2.626734 0 239 238 0.303662 0 239 239 1.21966 0 260 239 -8.863848e-05 -5.46021e-10 261 239 3.897118e-08 -6.898352e-14 262 239 0 -5.868336e-10 263 239 0 -1.442564e-14 264 239 0.0001019032 1.606e-19 265 239 -5.875793e-05 -1.171296e-19 266 239 0.0006316661 0 267 239 -0.0003385825 0 268 239 0.03052831 7.865533e-17 269 239 -0.01527086 -4.534623e-17 270 239 0.3039178 0 271 239 -0.1424912 0 240 240 0.01246159 0 241 240 0.001440705 0 242 240 0.0005790897 -2.012319e-18 243 240 7.241834e-05 -2.831295e-19 241 241 0.00578659 0 242 241 7.241834e-05 -2.831295e-19 243 241 0.0002896765 -1.116029e-18 272 241 0.001441918 0 273 241 -0.0006760833 0 274 241 7.24181e-05 -2.715735e-19 275 241 -3.622745e-05 1.570547e-19 242 242 0.01246159 0 243 242 0.001440705 0 243 243 0.00578659 0 272 243 7.24181e-05 2.715735e-19 273 243 -3.622745e-05 -1.570547e-19 274 243 0.001441918 0 275 243 -0.0006760833 0 244 244 0.004675167 0 245 244 0.0006293238 0 246 244 0.0004887872 -1.69394e-18 247 244 7.058513e-05 -2.918412e-19 248 244 0 -1.091388e-08 249 244 0 5.677888e-11 250 244 0.001429225 -1.055909e-08 251 244 -7.360184e-06 5.503525e-11 245 245 0.002517284 0 246 245 7.058513e-05 -2.918412e-19 247 245 0.0002833674 -1.167134e-18 248 245 0 -1.189429e-08 249 245 0 8.334773e-14 250 245 0.001659375 -1.136289e-08 251 245 7.910198e-08 2.185462e-13 276 245 0.0006293223 0 277 245 -0.0003371193 0 278 245 7.058498e-05 -3.227228e-19 279 245 -4.070344e-05 1.567442e-19 280 245 0 5.293787e-10 281 245 0 3.110904e-14 282 245 -8.912092e-05 4.832779e-10 283 245 3.951291e-08 9.40021e-14 246 246 0.004675167 0 247 246 0.0006293238 0 248 246 -0.001429225 -1.055909e-08 249 246 7.360184e-06 5.503525e-11 250 246 0 -1.091388e-08 251 246 0 5.677888e-11 247 247 0.002517284 0 248 247 -0.001659375 -1.136289e-08 249 247 -7.910198e-08 2.185462e-13 250 247 0 -1.189429e-08 251 247 0 8.334773e-14 276 247 7.058498e-05 3.227228e-19 277 247 -4.070344e-05 -1.567442e-19 278 247 0.0006293223 0 279 247 -0.0003371193 0 280 247 8.912092e-05 4.832779e-10 281 247 -3.951291e-08 9.40021e-14 282 247 0 5.293787e-10 283 247 0 3.110904e-14 248 248 0.2174656 0 249 248 -3.465461e-05 0 250 248 -0.01294306 3.357085e-17 251 248 1.103198e-07 -1.606776e-20 276 248 0 1.073876e-08 277 248 0 -5.425912e-10 278 248 -0.001587687 1.012394e-08 279 248 7.238508e-05 -5.230916e-10 280 248 0.03521028 0 281 248 -0.0002212084 0 282 248 -0.002231721 4.470142e-18 283 248 1.395738e-05 -2.85041e-20 249 249 3.767202e-06 0 250 249 1.103198e-07 -1.606776e-20 251 249 -2.238311e-07 5.628276e-22 276 249 0 5.572502e-11 277 249 0 -3.110904e-14 278 249 -8.30989e-06 5.242831e-11 279 249 -3.951291e-08 -9.40021e-14 280 249 0.0002190659 0 281 249 -1.319274e-06 0 282 249 -1.394895e-05 2.735776e-20 283 249 8.362463e-08 -1.671635e-22 250 250 0.2174656 0 251 250 -3.465461e-05 0 276 250 0.001587687 1.012394e-08 277 250 -7.238508e-05 -5.230916e-10 278 250 0 1.073876e-08 279 250 0 -5.425912e-10 280 250 -0.002231721 -4.470142e-18 281 250 1.395738e-05 2.85041e-20 282 250 0.03521028 0 283 250 -0.0002212084 0 251 251 3.767202e-06 0 276 251 8.30989e-06 5.242831e-11 277 251 3.951291e-08 -9.40021e-14 278 251 0 5.572502e-11 279 251 0 -3.110904e-14 280 251 -1.394895e-05 -2.735776e-20 281 251 8.362463e-08 1.671635e-22 282 251 0.0002190659 0 283 251 -1.319274e-06 0 252 252 0.0005364307 0 253 252 9.099083e-08 0 284 252 9.961237e-05 0 285 252 -6.195322e-07 0 253 253 9.277639e-09 0 284 253 6.26059e-07 0 285 253 -3.732551e-09 0 254 254 0.0005364307 0 255 254 9.099083e-08 0 286 254 9.961237e-05 0 287 254 -6.195322e-07 0 255 255 9.277639e-09 0 286 255 6.26059e-07 0 287 255 -3.732551e-09 0 256 256 0.0108036 0 257 256 0.001262415 0 258 256 0.0005796363 -2.495417e-18 259 256 7.249169e-05 -3.566452e-19 257 257 0.005065326 0 258 257 7.249169e-05 -3.566452e-19 259 257 0.00028997 -1.401625e-18 288 257 0.001263123 0 289 257 -0.000596661 0 290 257 7.249149e-05 -3.914784e-19 291 257 -3.626667e-05 1.516025e-19 258 258 0.0108036 0 259 258 0.001262415 0 259 259 0.005065326 0 288 259 7.249149e-05 3.914784e-19 289 259 -3.626667e-05 -1.516025e-19 290 259 0.001263123 0 291 259 -0.000596661 0 260 260 0.1881529 0 261 260 -2.681069e-05 0 262 260 -0.002115703 8.606245e-18 263 260 1.569073e-07 4.164141e-21 264 260 0 -1.178538e-08 265 260 0 -1.294165e-08 266 260 0.001634751 -1.115973e-08 267 260 0.001883901 -1.214404e-08 268 260 0 -1.178538e-08 269 260 0 -1.294165e-08 270 260 0.001634751 -1.115973e-08 271 260 0.001883901 -1.214404e-08 292 260 0.03067188 0 293 260 -0.0001926081 0 294 260 -0.0003542239 1.806287e-18 295 260 2.220646e-06 -1.114854e-20 296 260 0 -1.175745e-08 297 260 0 5.879163e-10 298 260 0.001790231 -1.094352e-08 299 260 -8.2666e-05 5.547596e-10 300 260 0 -1.175745e-08 301 260 0 5.879163e-10 302 260 0.001790231 -1.094352e-08 303 260 -8.2666e-05 5.547596e-10 261 261 3.258155e-06 0 262 261 1.569073e-07 4.164141e-21 263 261 -3.657705e-08 1.498317e-22 264 261 0 6.12348e-11 265 261 0 1.402987e-14 266 261 -8.428807e-06 5.806894e-11 267 261 7.768482e-08 1.057519e-13 268 261 0 6.12348e-11 269 261 0 1.402987e-14 270 261 -8.428807e-06 5.806894e-11 271 261 7.768482e-08 1.057519e-13 292 261 0.000190918 0 293 261 -1.149236e-06 0 294 261 -2.208717e-06 1.144134e-20 295 261 1.32732e-08 -6.771605e-23 296 261 0 -6.106727e-11 297 261 0 -3.913232e-16 298 261 9.360565e-06 -5.677067e-11 299 261 3.862893e-08 4.190202e-14 300 261 0 -6.106727e-11 301 261 0 -3.913232e-16 302 261 9.360565e-06 -5.677067e-11 303 261 3.862893e-08 4.190202e-14 262 262 0.1881529 0 263 262 -2.681069e-05 0 264 262 -0.001634751 -1.115973e-08 265 262 -0.001883901 -1.214404e-08 266 262 0 -1.178538e-08 267 262 0 -1.294165e-08 268 262 -0.001634751 -1.115973e-08 269 262 -0.001883901 -1.214404e-08 270 262 0 -1.178538e-08 271 262 0 -1.294165e-08 292 262 -0.0003542239 -1.806287e-18 293 262 2.220646e-06 1.114854e-20 294 262 0.03067188 0 295 262 -0.0001926081 0 296 262 -0.001790231 -1.094352e-08 297 262 8.2666e-05 5.547596e-10 298 262 0 -1.175745e-08 299 262 0 5.879163e-10 300 262 -0.001790231 -1.094352e-08 301 262 8.2666e-05 5.547596e-10 302 262 0 -1.175745e-08 303 262 0 5.879163e-10 263 263 3.258155e-06 0 264 263 8.428807e-06 5.806894e-11 265 263 -7.768482e-08 1.057519e-13 266 263 0 6.12348e-11 267 263 0 1.402987e-14 268 263 8.428807e-06 5.806894e-11 269 263 -7.768482e-08 1.057519e-13 270 263 0 6.12348e-11 271 263 0 1.402987e-14 292 263 -2.208717e-06 -1.144134e-20 293 263 1.32732e-08 6.771605e-23 294 263 0.000190918 0 295 263 -1.149236e-06 0 296 263 -9.360565e-06 -5.677067e-11 297 263 -3.862893e-08 4.190202e-14 298 263 0 -6.106727e-11 299 263 0 -3.913232e-16 300 263 -9.360565e-06 -5.677067e-11 301 263 -3.862893e-08 4.190202e-14 302 263 0 -6.106727e-11 303 263 0 -3.913232e-16 264 264 0.005417238 0 265 264 0.0007226638 0 266 264 0.0009389447 -1.550852e-18 267 264 0.0001331285 -3.079183e-19 268 264 0.005417238 0 269 264 0.0007226638 0 270 264 0.0009389447 -1.550852e-18 271 264 0.0001331285 -3.079183e-19 265 265 0.002890756 0 266 265 0.0001331285 -3.079183e-19 267 265 0.0005339893 -1.491271e-18 268 265 0.0007226638 0 269 265 0.002890756 0 270 265 0.0001331285 -3.079183e-19 271 265 0.0005339893 -1.491271e-18 292 265 0 -5.88076e-10 293 265 0 3.913232e-16 294 265 9.902751e-05 -5.36995e-10 295 265 -3.862893e-08 -4.190202e-14 296 265 0.0007226597 0 297 265 -0.0003841553 0 298 265 0.0001331289 -4.515737e-19 299 265 -7.540289e-05 2.424938e-19 300 265 0.0007226597 0 301 265 -0.0003841553 0 302 265 0.0001331289 -4.515737e-19 303 265 -7.540289e-05 2.424938e-19 266 266 0.005417238 0 267 266 0.0007226638 0 268 266 0.0009389447 1.550852e-18 269 266 0.0001331285 3.079183e-19 270 266 0.005417238 0 271 266 0.0007226638 0 267 267 0.002890756 0 268 267 0.0001331285 3.079183e-19 269 267 0.0005339893 1.491271e-18 270 267 0.0007226638 0 271 267 0.002890756 0 292 267 -9.902751e-05 -5.36995e-10 293 267 3.862893e-08 -4.190202e-14 294 267 0 -5.88076e-10 295 267 0 3.913232e-16 296 267 0.0001331289 4.515737e-19 297 267 -7.540289e-05 -2.424938e-19 298 267 0.0007226597 0 299 267 -0.0003841553 0 300 267 0.0001331289 4.515737e-19 301 267 -7.540289e-05 -2.424938e-19 302 267 0.0007226597 0 303 267 -0.0003841553 0 268 268 2.276964 0 269 268 0.2660471 0 270 268 0.2443327 -7.093226e-16 271 268 0.03055512 -1.027296e-16 269 269 1.067492 0 270 269 0.03055512 -1.027296e-16 271 269 0.1222216 -4.217929e-16 292 269 0 -5.88076e-10 293 269 0 3.913232e-16 294 269 9.902751e-05 -5.36995e-10 295 269 -3.862893e-08 -4.190202e-14 296 269 0.0007226597 0 297 269 -0.0003841553 0 298 269 0.0001331289 -4.515737e-19 299 269 -7.540289e-05 2.424938e-19 300 269 0.2661964 0 301 269 -0.1257339 0 302 269 0.03055504 -1.122242e-16 303 269 -0.0152851 5.639614e-17 270 270 2.276964 0 271 270 0.2660471 0 271 271 1.067492 0 292 271 -9.902751e-05 -5.36995e-10 293 271 3.862893e-08 -4.190202e-14 294 271 0 -5.88076e-10 295 271 0 3.913232e-16 296 271 0.0001331289 4.515737e-19 297 271 -7.540289e-05 -2.424938e-19 298 271 0.0007226597 0 299 271 -0.0003841553 0 300 271 0.03055504 1.122242e-16 301 271 -0.0152851 -5.639614e-17 302 271 0.2661964 0 303 271 -0.1257339 0 272 272 0.0108036 0 273 272 0.001262415 0 274 272 0.0005796363 -2.495417e-18 275 272 7.249169e-05 -3.566452e-19 273 273 0.005065326 0 274 273 7.249169e-05 -3.566452e-19 275 273 0.00028997 -1.401625e-18 304 273 0.001263123 0 305 273 -0.000596661 0 306 273 7.249149e-05 -3.914784e-19 307 273 -3.626667e-05 1.516025e-19 274 274 0.0108036 0 275 274 0.001262415 0 275 275 0.005065326 0 304 275 7.249149e-05 3.914784e-19 305 275 -3.626667e-05 -1.516025e-19 306 275 0.001263123 0 307 275 -0.000596661 0 276 276 0.005393915 0 277 276 0.0007191547 0 278 276 0.0006504334 -2.611017e-18 279 276 9.222878e-05 -3.042541e-19 280 276 0 -1.069549e-08 281 276 0 5.560059e-11 282 276 0.001642459 -9.99364e-09 283 276 -8.467942e-06 5.20523e-11 277 277 0.002876605 0 278 277 9.222878e-05 -3.042541e-19 279 277 0.0003699406 -1.148394e-18 280 277 0 -1.170559e-08 281 277 0 4.809096e-14 282 277 0.001893666 -1.080566e-08 283 277 7.891679e-08 1.566842e-13 308 277 0.0007191526 0 309 277 -0.0003820275 0 310 277 9.2229e-05 -2.534883e-19 311 277 -5.224293e-05 1.449626e-19 312 277 0 5.259205e-10 313 277 0 1.686673e-14 314 277 -9.970879e-05 4.67158e-10 315 277 3.932346e-08 6.794533e-14 278 278 0.005393915 0 279 278 0.0007191547 0 280 278 -0.001642459 -9.99364e-09 281 278 8.467942e-06 5.20523e-11 282 278 0 -1.069549e-08 283 278 0 5.560059e-11 279 279 0.002876605 0 280 279 -0.001893666 -1.080566e-08 281 279 -7.891679e-08 1.566842e-13 282 279 0 -1.170559e-08 283 279 0 4.809096e-14 308 279 9.2229e-05 2.534883e-19 309 279 -5.224293e-05 -1.449626e-19 310 279 0.0007191526 0 311 279 -0.0003820275 0 312 279 9.970879e-05 4.67158e-10 313 279 -3.932346e-08 6.794533e-14 314 279 0 5.259205e-10 315 279 0 1.686673e-14 280 280 0.1915223 0 281 280 -2.631128e-05 0 282 280 -0.01284172 2.474872e-17 283 280 1.261237e-07 7.54976e-21 308 280 0 1.059946e-08 309 280 0 -5.330704e-10 310 280 -0.001800409 9.67532e-09 311 280 8.305308e-05 -4.959536e-10 312 280 0.03129218 0 313 280 -0.0001964684 0 314 280 -0.002212994 5.66376e-18 315 280 1.384084e-05 -3.415366e-20 281 281 3.316428e-06 0 282 281 1.261237e-07 7.54976e-21 283 281 -2.22077e-07 4.6058e-22 308 281 0 5.502502e-11 309 281 0 -1.686673e-14 310 281 -9.414508e-06 5.014206e-11 311 281 -3.932346e-08 -6.794533e-14 312 281 0.0001948141 0 313 281 -1.172479e-06 0 314 281 -1.383124e-05 3.662505e-20 315 281 8.292243e-08 -2.118063e-22 282 282 0.1915223 0 283 282 -2.631128e-05 0 308 282 0.001800409 9.67532e-09 309 282 -8.305308e-05 -4.959536e-10 310 282 0 1.059946e-08 311 282 0 -5.330704e-10 312 282 -0.002212994 -5.66376e-18 313 282 1.384084e-05 3.415366e-20 314 282 0.03129218 0 315 282 -0.0001964684 0 283 283 3.316428e-06 0 308 283 9.414508e-06 5.014206e-11 309 283 3.932346e-08 -6.794533e-14 310 283 0 5.502502e-11 311 283 0 -1.686673e-14 312 283 -1.383124e-05 -3.662505e-20 313 283 8.292243e-08 2.118063e-22 314 283 0.0001948141 0 315 283 -1.172479e-06 0 284 284 0.000614847 0 285 284 9.178232e-08 0 316 284 0.000113245 0 317 284 -7.047333e-07 0 285 285 1.06338e-08 0 316 285 7.113208e-07 0 317 285 -4.243349e-09 0 286 286 0.000614847 0 287 286 9.178232e-08 0 318 286 0.000113245 0 319 286 -7.047333e-07 0 287 287 1.06338e-08 0 318 287 7.113208e-07 0 319 287 -4.243349e-09 0 288 288 0.009537151 0 289 288 0.001123521 0 290 288 0.0005802639 -2.54809e-18 291 288 7.25752e-05 -2.149314e-19 289 289 0.004504948 0 290 289 7.25752e-05 -2.149314e-19 291 289 0.000290304 -7.912575e-19 320 289 0.001123961 0 321 289 -0.0005340693 0 322 289 7.257497e-05 -1.578293e-19 323 289 -3.631097e-05 6.670367e-20 290 290 0.009537151 0 291 290 0.001123521 0 291 291 0.004504948 0 320 291 7.257497e-05 1.578293e-19 321 291 -3.631097e-05 -6.670367e-20 322 291 0.001123961 0 323 291 -0.0005340693 0 292 292 0.1677245 0 293 292 -2.11038e-05 0 294 292 -0.001972418 1.132431e-17 295 292 1.770044e-07 2.934292e-22 296 292 0 -1.175797e-08 297 292 0 -1.294327e-08 298 292 0.001843778 -1.088537e-08 299 292 0.002112953 -1.189354e-08 300 292 0 -1.175797e-08 301 292 0 -1.294327e-08 302 292 0.001843778 -1.088537e-08 303 292 0.002112953 -1.189354e-08 324 292 0.02753119 0 325 292 -0.0001728013 0 326 292 -0.0003279448 1.799262e-18 327 292 2.057037e-06 -1.146812e-20 328 292 0 -1.178545e-08 329 292 0 5.87161e-10 330 292 0.001997622 -1.075425e-08 331 292 -9.310553e-05 5.421403e-10 332 292 0 -1.178545e-08 333 292 0 5.87161e-10 334 292 0.001997622 -1.075425e-08 335 292 -9.310553e-05 5.421403e-10 293 293 2.903591e-06 0 294 293 1.770044e-07 2.934292e-22 295 293 -3.409909e-08 1.892356e-22 296 293 0 6.106883e-11 297 293 0 -1.442442e-14 298 293 -9.515081e-06 5.660306e-11 299 293 7.679856e-08 6.501625e-14 300 293 0 6.106883e-11 301 293 0 -1.442442e-14 302 293 -9.515081e-06 5.660306e-11 303 293 7.679856e-08 6.501625e-14 324 293 0.0001714532 0 325 293 -1.031563e-06 0 326 293 -2.043709e-06 1.104172e-20 327 293 1.228842e-08 -6.752914e-23 328 293 0 -6.123259e-11 329 293 0 -1.235233e-14 330 293 1.04371e-05 -5.581659e-11 331 293 3.823872e-08 2.429823e-14 332 293 0 -6.123259e-11 333 293 0 -1.235233e-14 334 293 1.04371e-05 -5.581659e-11 335 293 3.823872e-08 2.429823e-14 294 294 0.1677245 0 295 294 -2.11038e-05 0 296 294 -0.001843778 -1.088537e-08 297 294 -0.002112953 -1.189354e-08 298 294 0 -1.175797e-08 299 294 0 -1.294327e-08 300 294 -0.001843778 -1.088537e-08 301 294 -0.002112953 -1.189354e-08 302 294 0 -1.175797e-08 303 294 0 -1.294327e-08 324 294 -0.0003279448 -1.799262e-18 325 294 2.057037e-06 1.146812e-20 326 294 0.02753119 0 327 294 -0.0001728013 0 328 294 -0.001997622 -1.075425e-08 329 294 9.310553e-05 5.421403e-10 330 294 0 -1.178545e-08 331 294 0 5.87161e-10 332 294 -0.001997622 -1.075425e-08 333 294 9.310553e-05 5.421403e-10 334 294 0 -1.178545e-08 335 294 0 5.87161e-10 295 295 2.903591e-06 0 296 295 9.515081e-06 5.660306e-11 297 295 -7.679856e-08 6.501625e-14 298 295 0 6.106883e-11 299 295 0 -1.442442e-14 300 295 9.515081e-06 5.660306e-11 301 295 -7.679856e-08 6.501625e-14 302 295 0 6.106883e-11 303 295 0 -1.442442e-14 324 295 -2.043709e-06 -1.104172e-20 325 295 1.228842e-08 6.752914e-23 326 295 0.0001714532 0 327 295 -1.031563e-06 0 328 295 -1.04371e-05 -5.581659e-11 329 295 -3.823872e-08 2.429823e-14 330 295 0 -6.123259e-11 331 295 0 -1.235233e-14 332 295 -1.04371e-05 -5.581659e-11 333 295 -3.823872e-08 2.429823e-14 334 295 0 -6.123259e-11 335 295 0 -1.235233e-14 296 296 0.006146392 0 297 296 0.0008139614 0 298 296 0.001205269 -4.169813e-18 299 296 0.0001684827 -5.184016e-19 300 296 0.006146392 0 301 296 0.0008139614 0 302 296 0.001205269 -4.169813e-18 303 296 0.0001684827 -5.184016e-19 297 297 0.003255959 0 298 297 0.0001684827 -5.184016e-19 299 297 0.0006754007 -1.871513e-18 300 297 0.0008139614 0 301 297 0.003255959 0 302 297 0.0001684827 -5.184016e-19 303 297 0.0006754007 -1.871513e-18 324 297 0 -5.923873e-10 325 297 0 1.235233e-14 326 297 0.0001093017 -5.318405e-10 327 297 -3.823872e-08 -2.429823e-14 328 297 0.0008139573 0 329 297 -0.0004298893 0 330 297 0.0001684825 -3.95612e-19 331 297 -9.410885e-05 2.453095e-19 332 297 0.0008139573 0 333 297 -0.0004298893 0 334 297 0.0001684825 -3.95612e-19 335 297 -9.410885e-05 2.453095e-19 298 298 0.006146392 0 299 298 0.0008139614 0 300 298 0.001205269 4.169813e-18 301 298 0.0001684827 5.184016e-19 302 298 0.006146392 0 303 298 0.0008139614 0 299 299 0.003255959 0 300 299 0.0001684827 5.184016e-19 301 299 0.0006754007 1.871513e-18 302 299 0.0008139614 0 303 299 0.003255959 0 324 299 -0.0001093017 -5.318405e-10 325 299 3.823872e-08 -2.429823e-14 326 299 0 -5.923873e-10 327 299 0 1.235233e-14 328 299 0.0001684825 3.95612e-19 329 299 -9.410885e-05 -2.453095e-19 330 299 0.0008139573 0 331 299 -0.0004298893 0 332 299 0.0001684825 3.95612e-19 333 299 -9.410885e-05 -2.453095e-19 334 299 0.0008139573 0 335 299 -0.0004298893 0 300 300 2.009755 0 301 300 0.2367393 0 302 300 0.2445607 -9.265768e-16 303 300 0.03058537 -1.133604e-16 301 301 0.9492479 0 302 301 0.03058537 -1.133604e-16 303 301 0.1223425 -4.336483e-16 324 301 0 -5.923873e-10 325 301 0 1.235233e-14 326 301 0.0001093017 -5.318405e-10 327 301 -3.823872e-08 -2.429823e-14 328 301 0.0008139573 0 329 301 -0.0004298893 0 330 301 0.0001684825 -3.95612e-19 331 301 -9.410885e-05 2.453095e-19 332 301 0.236832 0 333 301 -0.1125255 0 334 301 0.03058527 -1.051338e-16 335 301 -0.0153011 5.059049e-17 302 302 2.009755 0 303 302 0.2367393 0 303 303 0.9492479 0 324 303 -0.0001093017 -5.318405e-10 325 303 3.823872e-08 -2.429823e-14 326 303 0 -5.923873e-10 327 303 0 1.235233e-14 328 303 0.0001684825 3.95612e-19 329 303 -9.410885e-05 -2.453095e-19 330 303 0.0008139573 0 331 303 -0.0004298893 0 332 303 0.03058527 1.051338e-16 333 303 -0.0153011 -5.059049e-17 334 303 0.236832 0 335 303 -0.1125255 0 304 304 0.009537151 0 305 304 0.001123521 0 306 304 0.0005802639 -2.54809e-18 307 304 7.25752e-05 -2.149314e-19 305 305 0.004504948 0 306 305 7.25752e-05 -2.149314e-19 307 305 0.000290304 -7.912575e-19 336 305 0.001123961 0 337 305 -0.0005340693 0 338 305 7.257497e-05 -1.578293e-19 339 305 -3.631097e-05 6.670367e-20 306 306 0.009537151 0 307 306 0.001123521 0 307 307 0.004504948 0 336 307 7.257497e-05 1.578293e-19 337 307 -3.631097e-05 -6.670367e-20 338 307 0.001123961 0 339 307 -0.0005340693 0 308 308 0.006112448 0 309 308 0.0008089575 0 310 308 0.000835068 -2.202868e-18 311 308 0.0001167427 -3.263619e-19 312 308 0 -1.057606e-08 313 308 0 5.495755e-11 314 308 0.001854918 -9.581068e-09 315 308 -9.571802e-06 4.987028e-11 309 309 0.003235814 0 310 309 0.0001167427 -3.263619e-19 311 309 0.0004679935 -1.383902e-18 312 309 0 -1.16049e-08 313 309 0 2.049086e-14 314 309 0.00212684 -1.04007e-08 315 309 7.835137e-08 1.182721e-13 340 309 0.0008089553 0 341 309 -0.0004269208 0 342 309 0.0001167423 -3.751704e-19 343 309 -6.521589e-05 1.925808e-19 344 309 0 5.254278e-10 345 309 0 5.349975e-15 346 309 -0.0001102296 4.54586e-10 347 309 3.91055e-08 5.148655e-14 310 310 0.006112448 0 311 310 0.0008089575 0 312 310 -0.001854918 -9.581068e-09 313 310 9.571802e-06 4.987028e-11 314 310 0 -1.057606e-08 315 310 0 5.495755e-11 311 311 0.003235814 0 312 311 -0.00212684 -1.04007e-08 313 311 -7.835137e-08 1.182721e-13 314 311 0 -1.16049e-08 315 311 0 2.049086e-14 340 311 0.0001167423 3.751704e-19 341 311 -6.521589e-05 -1.925808e-19 342 311 0.0008089553 0 343 311 -0.0004269208 0 344 311 0.0001102296 4.54586e-10 345 311 -3.91055e-08 5.148655e-14 346 311 0 5.254278e-10 347 311 0 5.349975e-15 312 312 0.1715239 0 313 312 -2.060101e-05 0 314 312 -0.01272638 4.834752e-17 315 312 1.428421e-07 3.359045e-20 340 312 0 1.053358e-08 341 312 0 -5.276995e-10 342 312 -0.002011879 9.343336e-09 343 312 9.366625e-05 -4.764016e-10 344 312 0.02822618 0 345 312 -0.0001771284 0 346 312 -0.002191801 1.00474e-17 347 312 1.370888e-05 -6.276309e-20 313 313 2.969301e-06 0 314 313 1.428421e-07 3.359045e-20 315 313 -2.20081e-07 8.140423e-22 340 313 0 5.470204e-11 341 313 0 -5.349975e-15 342 313 -1.05125e-05 4.844486e-11 343 313 -3.91055e-08 -5.148655e-14 344 313 0.0001758163 0 345 313 -1.057604e-06 0 346 313 -1.369812e-05 6.295018e-20 347 313 8.212783e-08 -3.772339e-22 314 314 0.1715239 0 315 314 -2.060101e-05 0 340 314 0.002011879 9.343336e-09 341 314 -9.366625e-05 -4.764016e-10 342 314 0 1.053358e-08 343 314 0 -5.276995e-10 344 314 -0.002191801 -1.00474e-17 345 314 1.370888e-05 6.276309e-20 346 314 0.02822618 0 347 314 -0.0001771284 0 315 315 2.969301e-06 0 340 315 1.05125e-05 4.844486e-11 341 315 3.91055e-08 -5.148655e-14 342 315 0 5.470204e-11 343 315 0 -5.349975e-15 344 315 -1.369812e-05 -6.295018e-20 345 315 8.212783e-08 3.772339e-22 346 315 0.0001758163 0 347 315 -1.057604e-06 0 316 316 0.0006939918 0 317 316 9.268767e-08 0 348 316 0.0001270122 0 349 316 -7.907716e-07 0 317 317 1.200255e-08 0 348 317 7.974281e-07 0 349 317 -4.759187e-09 0 318 318 0.0006939918 0 319 318 9.268767e-08 0 350 318 0.0001270122 0 351 318 -7.907716e-07 0 319 319 1.200255e-08 0 350 319 7.974281e-07 0 351 319 -4.759187e-09 0 320 320 0.00853836 0 321 320 0.001012316 0 322 320 0.0005809726 -9.272779e-19 323 320 7.266893e-05 -1.089854e-19 321 321 0.004057108 0 322 321 7.266893e-05 -1.089854e-19 323 321 0.000290679 -5.583205e-19 352 321 0.001012604 0 353 321 -0.000483478 0 354 321 7.266872e-05 -1.447023e-19 355 321 -3.636045e-05 9.519647e-20 322 322 0.00853836 0 323 322 0.001012316 0 323 323 0.004057108 0 352 323 7.266872e-05 1.447023e-19 353 323 -3.636045e-05 -9.519647e-20 354 323 0.001012604 0 355 323 -0.000483478 0 324 324 0.1514488 0 325 324 -1.702342e-05 0 326 324 -0.001812238 7.356266e-18 327 324 1.964681e-07 -7.082107e-21 328 324 0 -1.180255e-08 329 324 0 -1.301579e-08 330 324 0.002050627 -1.072054e-08 331 324 0.002339684 -1.174849e-08 332 324 0 -1.180255e-08 333 324 0 -1.301579e-08 334 324 0.002050627 -1.072054e-08 335 324 0.002339684 -1.174849e-08 356 324 0.02499872 0 357 324 -0.0001568435 0 358 324 -0.0002987599 8.547101e-19 359 324 1.875281e-06 -5.442144e-21 360 324 0 -1.186976e-08 361 324 0 5.89856e-10 362 324 0.002203004 -1.065188e-08 363 324 -0.0001034442 5.345943e-10 364 324 0 -1.186976e-08 365 324 0 5.89856e-10 366 324 0.002203004 -1.065188e-08 367 324 -0.0001034442 5.345943e-10 325 325 2.621302e-06 0 326 325 1.964681e-07 -7.082107e-21 327 325 -3.132835e-08 1.297156e-22 328 325 0 6.1282e-11 329 325 0 -3.379248e-14 330 325 -1.059005e-05 5.57194e-11 331 325 7.610836e-08 3.374677e-14 332 325 0 6.1282e-11 333 325 0 -3.379248e-14 334 325 -1.059005e-05 5.57194e-11 335 325 7.610836e-08 3.374677e-14 356 325 0.0001557443 0 357 325 -9.366755e-07 0 358 325 -1.860518e-06 5.235552e-21 359 325 1.11948e-08 -3.193031e-23 360 325 0 -6.168438e-11 361 325 0 -2.083989e-14 362 325 1.150323e-05 -5.530715e-11 363 325 3.784063e-08 1.077588e-14 364 325 0 -6.168438e-11 365 325 0 -2.083989e-14 366 325 1.150323e-05 -5.530715e-11 367 325 3.784063e-08 1.077588e-14 326 326 0.1514488 0 327 326 -1.702342e-05 0 328 326 -0.002050627 -1.072054e-08 329 326 -0.002339684 -1.174849e-08 330 326 0 -1.180255e-08 331 326 0 -1.301579e-08 332 326 -0.002050627 -1.072054e-08 333 326 -0.002339684 -1.174849e-08 334 326 0 -1.180255e-08 335 326 0 -1.301579e-08 356 326 -0.0002987599 -8.547101e-19 357 326 1.875281e-06 5.442144e-21 358 326 0.02499872 0 359 326 -0.0001568435 0 360 326 -0.002203004 -1.065188e-08 361 326 0.0001034442 5.345943e-10 362 326 0 -1.186976e-08 363 326 0 5.89856e-10 364 326 -0.002203004 -1.065188e-08 365 326 0.0001034442 5.345943e-10 366 326 0 -1.186976e-08 367 326 0 5.89856e-10 327 327 2.621302e-06 0 328 327 1.059005e-05 5.57194e-11 329 327 -7.610836e-08 3.374677e-14 330 327 0 6.1282e-11 331 327 0 -3.379248e-14 332 327 1.059005e-05 5.57194e-11 333 327 -7.610836e-08 3.374677e-14 334 327 0 6.1282e-11 335 327 0 -3.379248e-14 356 327 -1.860518e-06 -5.235552e-21 357 327 1.11948e-08 3.193031e-23 358 327 0.0001557443 0 359 327 -9.366755e-07 0 360 327 -1.150323e-05 -5.530715e-11 361 327 -3.784063e-08 1.077588e-14 362 327 0 -6.168438e-11 363 327 0 -2.083989e-14 364 327 -1.150323e-05 -5.530715e-11 365 327 -3.784063e-08 1.077588e-14 366 327 0 -6.168438e-11 367 327 0 -2.083989e-14 328 328 0.006878126 0 329 328 0.0009056001 0 330 328 0.001504567 -3.679332e-18 331 328 0.0002079529 -5.856259e-19 332 328 0.006878126 0 333 328 0.0009056001 0 334 328 0.001504567 -3.679332e-18 335 328 0.0002079529 -5.856259e-19 329 329 0.003622527 0 330 329 0.0002079529 -5.856259e-19 331 329 0.0008332769 -2.510649e-18 332 329 0.0009056001 0 333 329 0.003622527 0 334 329 0.0002079529 -5.856259e-19 335 329 0.0008332769 -2.510649e-18 356 329 0 -5.986792e-10 357 329 0 2.083989e-14 358 329 0.0001194717 -5.300247e-10 359 329 -3.784063e-08 -1.077588e-14 360 329 0.0009055954 0 361 329 -0.0004758035 0 362 329 0.0002079531 -6.722958e-19 363 329 -0.0001148695 3.792722e-19 364 329 0.0009055954 0 365 329 -0.0004758035 0 366 329 0.0002079531 -6.722958e-19 367 329 -0.0001148695 3.792722e-19 330 330 0.006878126 0 331 330 0.0009056001 0 332 330 0.001504567 3.679332e-18 333 330 0.0002079529 5.856259e-19 334 330 0.006878126 0 335 330 0.0009056001 0 331 331 0.003622527 0 332 331 0.0002079529 5.856259e-19 333 331 0.0008332769 2.510649e-18 334 331 0.0009056001 0 335 331 0.003622527 0 356 331 -0.0001194717 -5.300247e-10 357 331 3.784063e-08 -1.077588e-14 358 331 0 -5.986792e-10 359 331 0 2.083989e-14 360 331 0.0002079531 6.722958e-19 361 331 -0.0001148695 -3.792722e-19 362 331 0.0009055954 0 363 331 -0.0004758035 0 364 331 0.0002079531 6.722958e-19 365 331 -0.0001148695 -3.792722e-19 366 331 0.0009055954 0 367 331 -0.0004758035 0 332 332 1.798985 0 333 332 0.21327 0 334 332 0.2448165 -7.960214e-16 335 332 0.03061911 -9.722819e-17 333 333 0.8547335 0 334 333 0.03061911 -9.722819e-17 335 333 0.1224775 -4.008728e-16 356 333 0 -5.986792e-10 357 333 0 2.083989e-14 358 333 0.0001194717 -5.300247e-10 359 333 -3.784063e-08 -1.077588e-14 360 333 0.0009055954 0 361 333 -0.0004758035 0 362 333 0.0002079531 -6.722958e-19 363 333 -0.0001148695 3.792722e-19 364 333 0.2133306 0 365 333 -0.1018474 0 366 333 0.03061903 -1.003217e-16 367 333 -0.01531885 5.221778e-17 334 334 1.798985 0 335 334 0.21327 0 335 335 0.8547335 0 356 335 -0.0001194717 -5.300247e-10 357 335 3.784063e-08 -1.077588e-14 358 335 0 -5.986792e-10 359 335 0 2.083989e-14 360 335 0.0002079531 6.722958e-19 361 335 -0.0001148695 -3.792722e-19 362 335 0.0009055954 0 363 335 -0.0004758035 0 364 335 0.03061903 1.003217e-16 365 335 -0.01531885 -5.221778e-17 366 335 0.2133306 0 367 335 -0.1018474 0 336 336 0.00853836 0 337 336 0.001012316 0 338 336 0.0005809726 -9.272779e-19 339 336 7.266893e-05 -1.089854e-19 337 337 0.004057108 0 338 337 7.266893e-05 -1.089854e-19 339 337 0.000290679 -5.583205e-19 368 337 0.001012604 0 369 337 -0.000483478 0 370 337 7.266872e-05 -1.447023e-19 371 337 -3.636045e-05 9.519647e-20 338 338 0.00853836 0 339 338 0.001012316 0 339 339 0.004057108 0 368 339 7.266872e-05 1.447023e-19 369 339 -3.636045e-05 -9.519647e-20 370 339 0.001012604 0 371 339 -0.000483478 0 340 340 0.006830742 0 341 340 0.0008987277 0 342 340 0.001042636 -3.17149e-18 343 340 0.0001441212 -3.951527e-19 344 340 0 -1.052614e-08 345 340 0 5.468064e-11 346 340 0.002066086 -9.271934e-09 347 340 -1.066892e-05 4.823891e-11 341 341 0.003594893 0 342 341 0.0001441212 -3.951527e-19 343 341 0.0005775057 -1.542452e-18 344 341 0 -1.157245e-08 345 341 0 2.085635e-15 346 341 0.002358716 -1.009444e-08 347 341 7.802798e-08 8.92185e-14 372 341 0.000898725 0 373 341 -0.0004717969 0 374 341 0.0001441213 -3.537184e-19 375 341 -7.961977e-05 2.129716e-19 376 341 0 5.267835e-10 377 341 0 -2.662625e-15 378 341 -0.0001206992 4.450562e-10 379 341 3.889814e-08 3.907884e-14 342 342 0.006830742 0 343 342 0.0008987277 0 344 342 -0.002066086 -9.271934e-09 345 342 1.066892e-05 4.823891e-11 346 342 0 -1.052614e-08 347 342 0 5.468064e-11 343 343 0.003594893 0 344 343 -0.002358716 -1.009444e-08 345 343 -7.802798e-08 8.92185e-14 346 343 0 -1.157245e-08 347 343 0 2.085635e-15 372 343 0.0001441213 3.537184e-19 373 343 -7.961977e-05 -2.129716e-19 374 343 0.000898725 0 375 343 -0.0004717969 0 376 343 0.0001206992 4.450562e-10 377 343 -3.889814e-08 3.907884e-14 378 343 0 5.267835e-10 379 343 0 -2.662625e-15 344 344 0.1556814 0 345 344 -1.651661e-05 0 346 344 -0.01259704 5.270236e-17 347 344 1.589419e-07 -2.006011e-20 372 344 0 1.052151e-08 373 344 0 -5.256595e-10 374 344 -0.002222311 9.092177e-09 375 344 0.0001042237 -4.616137e-10 376 344 0.02576898 0 377 344 -0.0001616411 0 378 344 -0.0021682 7.496652e-18 379 344 1.356188e-05 -4.762435e-20 345 345 2.694503e-06 0 346 345 1.589419e-07 -2.006011e-20 347 345 -2.178424e-07 8.977412e-22 372 345 0 5.465246e-11 373 345 0 2.662625e-15 374 345 -1.160516e-05 4.716086e-11 375 345 -3.889814e-08 -3.907884e-14 376 345 0.0001605783 0 377 345 -9.655374e-07 0 378 345 -1.354992e-05 4.60997e-20 379 345 8.124301e-08 -2.807432e-22 346 346 0.1556814 0 347 346 -1.651661e-05 0 372 346 0.002222311 9.092177e-09 373 346 -0.0001042237 -4.616137e-10 374 346 0 1.052151e-08 375 346 0 -5.256595e-10 376 346 -0.0021682 -7.496652e-18 377 346 1.356188e-05 4.762435e-20 378 346 0.02576898 0 379 346 -0.0001616411 0 347 347 2.694503e-06 0 372 347 1.160516e-05 4.716086e-11 373 347 3.889814e-08 -3.907884e-14 374 347 0 5.465246e-11 375 347 0 2.662625e-15 376 347 -1.354992e-05 -4.60997e-20 377 347 8.124301e-08 2.807432e-22 378 347 0.0001605783 0 379 347 -9.655374e-07 0 348 348 0.0007739658 0 349 348 9.371385e-08 0 380 348 0.000140932 0 381 348 -8.777586e-07 0 349 349 1.338562e-08 0 380 349 8.844928e-07 0 381 349 -5.280733e-09 0 350 350 0.0007739658 0 351 350 9.371385e-08 0 382 350 0.000140932 0 383 350 -8.777586e-07 0 351 351 1.338562e-08 0 382 351 8.844928e-07 0 383 351 -5.280733e-09 0 352 352 0.007730652 0 353 352 0.0009213081 0 354 352 0.0005817642 -1.562416e-18 355 352 7.277307e-05 -2.360836e-19 353 353 0.003691076 0 354 353 7.277307e-05 -2.360836e-19 355 353 0.0002910956 -8.895893e-19 384 353 0.0009215034 0 385 353 -0.0004417451 0 386 353 7.277285e-05 -2.321394e-19 387 353 -3.641515e-05 1.063684e-19 354 354 0.007730652 0 355 354 0.0009213081 0 355 355 0.003691076 0 384 355 7.277285e-05 2.321394e-19 385 355 -3.641515e-05 -1.063684e-19 386 355 0.0009215034 0 387 355 -0.0004417451 0 356 356 0.1381905 0 357 356 -1.400794e-05 0 358 356 -0.001634929 4.295518e-18 359 356 2.167307e-07 -1.0314e-21 360 356 0 -1.189864e-08 361 356 0 -1.31389e-08 362 356 0.002255458 -1.063692e-08 363 356 0.002564038 -1.168391e-08 364 356 0 -1.189864e-08 365 356 0 -1.31389e-08 366 356 0.002255458 -1.063692e-08 367 356 0.002564038 -1.168391e-08 388 356 0.02291547 0 389 356 -0.0001437253 0 390 356 -0.0002665771 6.368398e-19 391 356 1.674773e-06 -4.067794e-21 392 356 0 -1.199584e-08 393 356 0 5.949871e-10 394 356 0.002405988 -1.061539e-08 395 356 -0.0001136837 5.309172e-10 396 356 0 -1.199584e-08 397 356 0 5.949871e-10 398 356 0.002405988 -1.061539e-08 399 356 -0.0001136837 5.309172e-10 357 357 2.391463e-06 0 358 357 2.167307e-07 -1.0314e-21 359 357 -2.826202e-08 7.414152e-23 360 357 0 6.176774e-11 361 357 0 -4.873276e-14 362 357 -1.165459e-05 5.526405e-11 363 357 7.517764e-08 1.046772e-14 364 357 0 6.176774e-11 365 357 0 -4.873276e-14 366 357 -1.165459e-05 5.526405e-11 367 357 7.517764e-08 1.046772e-14 388 357 0.0001428129 0 389 357 -8.586179e-07 0 390 357 -1.658592e-06 3.898556e-21 391 357 9.988833e-09 -2.389303e-23 392 357 0 -6.234988e-11 393 357 0 -2.738132e-14 394 357 1.25567e-05 -5.513451e-11 395 357 3.73271e-08 4.256755e-16 396 357 0 -6.234988e-11 397 357 0 -2.738132e-14 398 357 1.25567e-05 -5.513451e-11 399 357 3.73271e-08 4.256755e-16 358 358 0.1381905 0 359 358 -1.400794e-05 0 360 358 -0.002255458 -1.063692e-08 361 358 -0.002564038 -1.168391e-08 362 358 0 -1.189864e-08 363 358 0 -1.31389e-08 364 358 -0.002255458 -1.063692e-08 365 358 -0.002564038 -1.168391e-08 366 358 0 -1.189864e-08 367 358 0 -1.31389e-08 388 358 -0.0002665771 -6.368398e-19 389 358 1.674773e-06 4.067794e-21 390 358 0.02291547 0 391 358 -0.0001437253 0 392 358 -0.002405988 -1.061539e-08 393 358 0.0001136837 5.309172e-10 394 358 0 -1.199584e-08 395 358 0 5.949871e-10 396 358 -0.002405988 -1.061539e-08 397 358 0.0001136837 5.309172e-10 398 358 0 -1.199584e-08 399 358 0 5.949871e-10 359 359 2.391463e-06 0 360 359 1.165459e-05 5.526405e-11 361 359 -7.517764e-08 1.046772e-14 362 359 0 6.176774e-11 363 359 0 -4.873276e-14 364 359 1.165459e-05 5.526405e-11 365 359 -7.517764e-08 1.046772e-14 366 359 0 6.176774e-11 367 359 0 -4.873276e-14 388 359 -1.658592e-06 -3.898556e-21 389 359 9.988833e-09 2.389303e-23 390 359 0.0001428129 0 391 359 -8.586179e-07 0 392 359 -1.25567e-05 -5.513451e-11 393 359 -3.73271e-08 4.256755e-16 394 359 0 -6.234988e-11 395 359 0 -2.738132e-14 396 359 -1.25567e-05 -5.513451e-11 397 359 -3.73271e-08 4.256755e-16 398 359 0 -6.234988e-11 399 359 0 -2.738132e-14 360 360 0.007612741 0 361 360 0.0009976185 0 362 360 0.001836742 -6.230847e-18 363 360 0.0002515248 -8.44793e-19 364 360 0.007612741 0 365 360 0.0009976185 0 366 360 0.001836742 -6.230847e-18 367 360 0.0002515248 -8.44793e-19 361 361 0.003990614 0 362 361 0.0002515248 -8.44793e-19 363 361 0.001007558 -3.233182e-18 364 361 0.0009976185 0 365 361 0.003990614 0 366 361 0.0002515248 -8.44793e-19 367 361 0.001007558 -3.233182e-18 388 361 0 -6.065823e-10 389 361 0 2.738132e-14 390 361 0.0001294942 -5.307331e-10 391 361 -3.73271e-08 -4.256755e-16 392 361 0.0009976137 0 393 361 -0.0005219172 0 394 361 0.0002515245 -8.085693e-19 395 361 -0.0001376767 3.966178e-19 396 361 0.0009976137 0 397 361 -0.0005219172 0 398 361 0.0002515245 -8.085693e-19 399 361 -0.0001376767 3.966178e-19 362 362 0.007612741 0 363 362 0.0009976185 0 364 362 0.001836742 6.230847e-18 365 362 0.0002515248 8.44793e-19 366 362 0.007612741 0 367 362 0.0009976185 0 363 363 0.003990614 0 364 363 0.0002515248 8.44793e-19 365 363 0.001007558 3.233182e-18 366 363 0.0009976185 0 367 363 0.003990614 0 388 363 -0.0001294942 -5.307331e-10 389 363 3.73271e-08 -4.256755e-16 390 363 0 -6.065823e-10 391 363 0 2.738132e-14 392 363 0.0002515245 8.085693e-19 393 363 -0.0001376767 -3.966178e-19 394 363 0.0009976137 0 395 363 -0.0005219172 0 396 363 0.0002515245 8.085693e-19 397 363 -0.0001376767 -3.966178e-19 398 363 0.0009976137 0 399 363 -0.0005219172 0 364 364 1.628505 0 365 364 0.1940591 0 366 364 0.2451005 -8.3335e-16 367 364 0.03065635 -1.085495e-16 365 365 0.7774685 0 366 365 0.03065635 -1.085495e-16 367 365 0.1226265 -4.448801e-16 388 365 0 -6.065823e-10 389 365 0 2.738132e-14 390 365 0.0001294942 -5.307331e-10 391 365 -3.73271e-08 -4.256755e-16 392 365 0.0009976137 0 393 365 -0.0005219172 0 394 365 0.0002515245 -8.085693e-19 395 365 -0.0001376767 3.966178e-19 396 365 0.1941003 0 397 365 -0.09303713 0 398 365 0.03065626 -1.068123e-16 399 365 -0.01533833 6.537406e-17 366 366 1.628505 0 367 366 0.1940591 0 367 367 0.7774685 0 388 367 -0.0001294942 -5.307331e-10 389 367 3.73271e-08 -4.256755e-16 390 367 0 -6.065823e-10 391 367 0 2.738132e-14 392 367 0.0002515245 8.085693e-19 393 367 -0.0001376767 -3.966178e-19 394 367 0.0009976137 0 395 367 -0.0005219172 0 396 367 0.03065626 1.068123e-16 397 367 -0.01533833 -6.537406e-17 398 367 0.1941003 0 399 367 -0.09303713 0 368 368 0.007730652 0 369 368 0.0009213081 0 370 368 0.0005817642 -1.562416e-18 371 368 7.277307e-05 -2.360836e-19 369 369 0.003691076 0 370 369 7.277307e-05 -2.360836e-19 371 369 0.0002910956 -8.895893e-19 400 369 0.0009215034 0 401 369 -0.0004417451 0 402 369 7.277285e-05 -2.321394e-19 403 369 -3.641515e-05 1.063684e-19 370 370 0.007730652 0 371 370 0.0009213081 0 371 371 0.003691076 0 400 371 7.277285e-05 2.321394e-19 401 371 -3.641515e-05 -1.063684e-19 402 371 0.0009215034 0 403 371 -0.0004417451 0 372 372 0.00754876 0 373 372 0.0009884625 0 374 372 0.001273101 -3.323157e-18 375 372 0.0001743578 -4.98168e-19 376 372 0 -1.052519e-08 377 372 0 5.466311e-11 378 372 0.00227623 -9.037985e-09 379 372 -1.176075e-05 4.700455e-11 373 373 0.00395383 0 374 373 0.0001743578 -4.98168e-19 375 373 0.0006984485 -2.017719e-18 376 373 0 -1.158777e-08 377 373 0 -1.192149e-14 378 373 0.002589344 -9.862042e-09 379 373 7.749296e-08 6.81815e-14 404 373 0.0009884597 0 405 373 -0.0005166544 0 406 373 0.0001743573 -5.332891e-19 407 373 -9.545061e-05 2.707712e-19 408 373 0 5.296244e-10 409 373 0 -8.73364e-15 410 373 -0.000131078 4.377487e-10 411 373 3.859092e-08 2.984588e-14 374 374 0.00754876 0 375 374 0.0009884625 0 376 374 -0.00227623 -9.037985e-09 377 374 1.176075e-05 4.700455e-11 378 374 0 -1.052519e-08 379 374 0 5.466311e-11 375 375 0.00395383 0 376 375 -0.002589344 -9.862042e-09 377 375 -7.749296e-08 6.81815e-14 378 375 0 -1.158777e-08 379 375 0 -1.192149e-14 404 375 0.0001743573 5.332891e-19 405 375 -9.545061e-05 -2.707712e-19 406 375 0.0009884597 0 407 375 -0.0005166544 0 408 375 0.000131078 4.377487e-10 409 375 -3.859092e-08 2.984588e-14 410 375 0 5.296244e-10 411 375 0 -8.73364e-15 376 376 0.1428598 0 377 376 -1.349683e-05 0 378 376 -0.01245333 3.663798e-17 379 376 1.761292e-07 -1.136729e-20 404 376 0 1.054866e-08 405 376 0 -5.259277e-10 406 376 -0.002431402 8.900876e-09 407 376 0.0001147322 -4.503941e-10 408 376 0.02376165 0 409 376 -0.0001489974 0 410 376 -0.002142059 5.785564e-18 411 376 1.3399e-05 -3.626998e-20 377 377 2.472216e-06 0 378 377 1.761292e-07 -1.136729e-20 379 377 -2.15356e-07 6.466354e-22 404 377 0 5.48034e-11 405 377 0 8.73364e-15 406 377 -1.269068e-05 4.618237e-11 407 377 -3.859092e-08 -2.984588e-14 408 377 0.0001481216 0 409 377 -8.903242e-07 0 410 377 -1.338584e-05 3.607253e-20 411 377 8.026301e-08 -2.167694e-22 378 378 0.1428598 0 379 378 -1.349683e-05 0 404 378 0.002431402 8.900876e-09 405 378 -0.0001147322 -4.503941e-10 406 378 0 1.054866e-08 407 378 0 -5.259277e-10 408 378 -0.002142059 -5.785564e-18 409 378 1.3399e-05 3.626998e-20 410 378 0.02376165 0 411 378 -0.0001489974 0 379 379 2.472216e-06 0 404 379 1.269068e-05 4.618237e-11 405 379 3.859092e-08 -2.984588e-14 406 379 0 5.48034e-11 407 379 0 8.73364e-15 408 379 -1.338584e-05 -3.607253e-20 409 379 8.026301e-08 2.167694e-22 410 379 0.0001481216 0 411 379 -8.903242e-07 0 380 380 0.0008548735 0 381 380 9.486257e-08 0 412 380 0.0001550225 0 413 380 -9.658084e-07 0 381 381 1.478482e-08 0 412 381 9.726292e-07 0 413 381 -5.808672e-09 0 382 382 0.0008548735 0 383 382 9.486257e-08 0 414 382 0.0001550225 0 415 382 -9.658084e-07 0 383 383 1.478482e-08 0 414 383 9.726292e-07 0 415 383 -5.808672e-09 0 384 384 0.00706412 0 385 384 0.0008454769 0 386 384 0.0005826393 -1.703687e-18 387 384 7.288773e-05 -1.933343e-19 385 385 0.003386379 0 386 385 7.288773e-05 -1.933343e-19 387 385 0.0002915543 -8.191253e-19 416 385 0.0008456142 0 417 385 -0.0004067384 0 418 385 7.288751e-05 -1.84191e-19 419 385 -3.647516e-05 1.282022e-19 386 386 0.00706412 0 387 386 0.0008454769 0 387 387 0.003386379 0 416 387 7.288751e-05 1.84191e-19 417 387 -3.647516e-05 -1.282022e-19 418 387 0.0008456142 0 419 387 -0.0004067384 0 388 388 0.1271923 0 389 388 -1.171572e-05 0 390 388 -0.001440484 2.606082e-18 391 388 2.365646e-07 -2.340056e-21 392 388 0 -1.203379e-08 393 388 0 -1.330093e-08 394 388 0.002457732 -1.061478e-08 395 388 0.002785391 -1.16809e-08 396 388 0 -1.203379e-08 397 388 0 -1.330093e-08 398 388 0.002457732 -1.061478e-08 399 388 0.002785391 -1.16809e-08 420 388 0.02117351 0 421 388 -0.0001327623 0 422 388 -0.0002314411 3.22011e-19 423 388 1.455815e-06 -2.035446e-21 424 388 0 -1.215409e-08 425 388 0 6.019845e-10 426 388 0.002606199 -1.063026e-08 427 388 -0.000123782 5.301856e-10 428 388 0 -1.215409e-08 429 388 0 6.019845e-10 430 388 0.002606199 -1.063026e-08 431 388 -0.000123782 5.301856e-10 389 389 2.200878e-06 0 390 389 2.365646e-07 -2.340056e-21 391 389 -2.48989e-08 4.635158e-23 392 389 0 6.24594e-11 393 389 0 -6.017571e-14 394 389 -1.270601e-05 5.513281e-11 395 389 7.412622e-08 -7.92732e-15 396 389 0 6.24594e-11 397 389 0 -6.017571e-14 398 389 -1.270601e-05 5.513281e-11 399 389 7.412622e-08 -7.92732e-15 420 389 0.0001319938 0 421 389 -7.933474e-07 0 422 389 -1.438194e-06 1.986949e-21 423 389 8.672242e-09 -1.202576e-23 424 389 0 -6.318005e-11 425 389 0 -3.249467e-14 426 389 1.359577e-05 -5.522514e-11 427 389 3.683374e-08 -7.820657e-15 428 389 0 -6.318005e-11 429 389 0 -3.249467e-14 430 389 1.359577e-05 -5.522514e-11 431 389 3.683374e-08 -7.820657e-15 390 390 0.1271923 0 391 390 -1.171572e-05 0 392 390 -0.002457732 -1.061478e-08 393 390 -0.002785391 -1.16809e-08 394 390 0 -1.203379e-08 395 390 0 -1.330093e-08 396 390 -0.002457732 -1.061478e-08 397 390 -0.002785391 -1.16809e-08 398 390 0 -1.203379e-08 399 390 0 -1.330093e-08 420 390 -0.0002314411 -3.22011e-19 421 390 1.455815e-06 2.035446e-21 422 390 0.02117351 0 423 390 -0.0001327623 0 424 390 -0.002606199 -1.063026e-08 425 390 0.000123782 5.301856e-10 426 390 0 -1.215409e-08 427 390 0 6.019845e-10 428 390 -0.002606199 -1.063026e-08 429 390 0.000123782 5.301856e-10 430 390 0 -1.215409e-08 431 390 0 6.019845e-10 391 391 2.200878e-06 0 392 391 1.270601e-05 5.513281e-11 393 391 -7.412622e-08 -7.92732e-15 394 391 0 6.24594e-11 395 391 0 -6.017571e-14 396 391 1.270601e-05 5.513281e-11 397 391 -7.412622e-08 -7.92732e-15 398 391 0 6.24594e-11 399 391 0 -6.017571e-14 420 391 -1.438194e-06 -1.986949e-21 421 391 8.672242e-09 1.202576e-23 422 391 0.0001319938 0 423 391 -7.933474e-07 0 424 391 -1.359577e-05 -5.522514e-11 425 391 -3.683374e-08 -7.820657e-15 426 391 0 -6.318005e-11 427 391 0 -3.249467e-14 428 391 -1.359577e-05 -5.522514e-11 429 391 -3.683374e-08 -7.820657e-15 430 391 0 -6.318005e-11 431 391 0 -3.249467e-14 392 392 0.00835055 0 393 392 0.001090055 0 394 392 0.002201662 -6.309329e-18 395 392 0.0002991825 -7.779018e-19 396 392 0.00835055 0 397 392 0.001090055 0 398 392 0.002201662 -6.309329e-18 399 392 0.0002991825 -7.779018e-19 393 393 0.004360373 0 394 393 0.0002991825 -7.779018e-19 395 393 0.001198183 -3.19071e-18 396 393 0.001090055 0 397 393 0.004360373 0 398 393 0.0002991825 -7.779018e-19 399 393 0.001198183 -3.19071e-18 420 393 0 -6.157462e-10 421 393 0 3.249467e-14 422 393 0.0001393831 -5.334955e-10 423 393 -3.683374e-08 7.820657e-15 424 393 0.00109005 0 425 393 -0.0005682495 0 426 393 0.0002991824 -7.815949e-19 427 393 -0.0001625226 4.343943e-19 428 393 0.00109005 0 429 393 -0.0005682495 0 430 393 0.0002991824 -7.815949e-19 431 393 -0.0001625226 4.343943e-19 394 394 0.00835055 0 395 394 0.001090055 0 396 394 0.002201662 6.309329e-18 397 394 0.0002991825 7.779018e-19 398 394 0.00835055 0 399 394 0.001090055 0 395 395 0.004360373 0 396 395 0.0002991825 7.779018e-19 397 395 0.001198183 3.19071e-18 398 395 0.001090055 0 399 395 0.004360373 0 420 395 -0.0001393831 -5.334955e-10 421 395 3.683374e-08 7.820657e-15 422 395 0 -6.157462e-10 423 395 0 3.249467e-14 424 395 0.0002991824 7.815949e-19 425 395 -0.0001625226 -4.343943e-19 426 395 0.00109005 0 427 395 -0.0005682495 0 428 395 0.0002991824 7.815949e-19 429 395 -0.0001625226 -4.343943e-19 430 395 0.00109005 0 431 395 -0.0005682495 0 396 396 1.487793 0 397 396 0.1780483 0 398 396 0.2454123 -1.045259e-15 399 396 0.03069705 -1.54684e-16 397 397 0.7131358 0 398 397 0.03069705 -1.54684e-16 399 397 0.1227892 -5.945257e-16 420 397 0 -6.157462e-10 421 397 0 3.249467e-14 422 397 0.0001393831 -5.334955e-10 423 397 -3.683374e-08 7.820657e-15 424 397 0.00109005 0 425 397 -0.0005682495 0 426 397 0.0002991824 -7.815949e-19 427 397 -0.0001625226 4.343943e-19 428 397 0.1780772 0 429 397 -0.08564501 0 430 397 0.03069696 -1.611025e-16 431 397 -0.01535954 6.615796e-17 398 398 1.487793 0 399 398 0.1780483 0 399 399 0.7131358 0 420 399 -0.0001393831 -5.334955e-10 421 399 3.683374e-08 7.820657e-15 422 399 0 -6.157462e-10 423 399 0 3.249467e-14 424 399 0.0002991824 7.815949e-19 425 399 -0.0001625226 -4.343943e-19 426 399 0.00109005 0 427 399 -0.0005682495 0 428 399 0.03069696 1.611025e-16 429 399 -0.01535954 -6.615796e-17 430 399 0.1780772 0 431 399 -0.08564501 0 400 400 0.00706412 0 401 400 0.0008454769 0 402 400 0.0005826393 -1.703687e-18 403 400 7.288773e-05 -1.933343e-19 401 401 0.003386379 0 402 401 7.288773e-05 -1.933343e-19 403 401 0.0002915543 -8.191253e-19 432 401 0.0008456142 0 433 401 -0.0004067384 0 434 401 7.288751e-05 -1.84191e-19 435 401 -3.647516e-05 1.282022e-19 402 402 0.00706412 0 403 402 0.0008454769 0 403 403 0.003386379 0 432 403 7.288751e-05 1.84191e-19 433 403 -3.647516e-05 -1.282022e-19 434 403 0.0008456142 0 435 403 -0.0004067384 0 404 404 0.008266483 0 405 404 0.001078158 0 406 404 0.001526396 -4.402856e-18 407 404 0.0002074451 -5.497956e-19 408 404 0 -1.056076e-08 409 404 0 5.483834e-11 410 404 0.002484897 -8.859489e-09 411 404 -1.284505e-05 4.606298e-11 405 405 0.004312611 0 406 405 0.0002074451 -5.497956e-19 407 405 0.0008307953 -2.180548e-18 408 405 0 -1.163923e-08 409 405 0 -2.241863e-14 410 405 0.002818196 -9.684582e-09 411 405 7.687329e-08 5.201248e-14 436 405 0.001078155 0 437 405 -0.0005614914 0 438 405 0.000207445 -5.247632e-19 439 405 -0.000112705 2.89433e-19 440 405 0 5.335982e-10 441 405 0 -1.337357e-14 442 405 -0.0001413859 4.321958e-10 443 405 3.832452e-08 2.271236e-14 406 406 0.008266483 0 407 406 0.001078158 0 408 406 -0.002484897 -8.859489e-09 409 406 1.284505e-05 4.606298e-11 410 406 0 -1.056076e-08 411 406 0 5.483834e-11 407 407 0.004312611 0 408 407 -0.002818196 -9.684582e-09 409 407 -7.687329e-08 5.201248e-14 410 407 0 -1.163923e-08 411 407 0 -2.241863e-14 436 407 0.000207445 5.247632e-19 437 407 -0.000112705 -2.89433e-19 438 407 0.001078155 0 439 407 -0.0005614914 0 440 407 0.0001413859 4.321958e-10 441 407 -3.832452e-08 2.271236e-14 442 407 0 5.335982e-10 443 407 0 -1.337357e-14 408 408 0.1323023 0 409 408 -1.119978e-05 0 410 408 -0.01229506 2.978085e-17 411 408 1.930376e-07 -1.424758e-20 436 408 0 1.060544e-08 437 408 0 -5.279355e-10 438 408 -0.002638872 8.754923e-09 439 408 0.0001251534 -4.418186e-10 440 408 0.02209633 0 441 408 -0.0001385133 0 442 408 -0.002113399 3.551275e-18 443 408 1.32204e-05 -2.332064e-20 409 409 2.289252e-06 0 410 409 1.930376e-07 -1.424758e-20 411 409 -2.126172e-07 4.927326e-22 436 409 0 5.51058e-11 437 409 0 1.337357e-14 438 409 -1.376782e-05 4.543593e-11 439 409 -3.832452e-08 -2.271236e-14 440 409 0.0001377818 0 441 409 -8.27925e-07 0 442 409 -1.320599e-05 2.109287e-20 443 409 7.918865e-08 -1.331397e-22 410 410 0.1323023 0 411 410 -1.119978e-05 0 436 410 0.002638872 8.754923e-09 437 410 -0.0001251534 -4.418186e-10 438 410 0 1.060544e-08 439 410 0 -5.279355e-10 440 410 -0.002113399 -3.551275e-18 441 410 1.32204e-05 2.332064e-20 442 410 0.02209633 0 443 410 -0.0001385133 0 411 411 2.289252e-06 0 436 411 1.376782e-05 4.543593e-11 437 411 3.832452e-08 -2.271236e-14 438 411 0 5.51058e-11 439 411 0 1.337357e-14 440 411 -1.320599e-05 -2.109287e-20 441 411 7.918865e-08 1.331397e-22 442 411 0.0001377818 0 443 411 -8.27925e-07 0 412 412 0.0009368227 0 413 412 9.614066e-08 0 444 412 0.000169303 0 445 412 -1.055041e-06 0 413 413 1.620203e-08 0 444 413 1.061958e-06 0 445 413 -6.343723e-09 0 414 414 0.0009368227 0 415 414 9.614066e-08 0 446 414 0.000169303 0 447 414 -1.055041e-06 0 415 415 1.620203e-08 0 446 415 1.061958e-06 0 447 415 -6.343723e-09 0 416 416 0.006504854 0 417 416 0.0007813394 0 418 416 0.0005835995 -2.036648e-18 419 416 7.301314e-05 -3.286177e-19 417 417 0.003128854 0 418 417 7.301314e-05 -3.286177e-19 419 417 0.000292056 -1.244602e-18 448 417 0.0007814385 0 449 417 -0.0003769597 0 450 417 7.301291e-05 -3.46541e-19 451 417 -3.654059e-05 1.327857e-19 418 418 0.006504854 0 419 418 0.0007813394 0 419 419 0.003128854 0 448 419 7.301291e-05 3.46541e-19 449 419 -3.654059e-05 -1.327857e-19 450 419 0.0007814385 0 451 419 -0.0003769597 0 420 420 0.1179324 0 421 420 -9.931545e-06 0 422 420 -0.001228836 1.989672e-18 423 420 2.566389e-07 8.996726e-22 424 420 0 -1.219912e-08 425 420 0 -1.349336e-08 426 420 0.002657257 -1.064109e-08 427 420 0.003003771 -1.172692e-08 428 420 0 -1.219912e-08 429 420 0 -1.349336e-08 430 420 0.002657257 -1.064109e-08 431 420 0.003003771 -1.172692e-08 452 420 0.01969708 0 453 420 -0.0001234749 0 454 420 -0.000193327 4.363576e-19 455 420 1.218226e-06 -2.675718e-21 456 420 0 -1.233777e-08 457 420 0 6.104346e-10 458 420 0.002803655 -1.068633e-08 459 420 -0.0001337545 5.317884e-10 460 420 0 -1.233777e-08 461 420 0 6.104346e-10 462 420 0.002803655 -1.068633e-08 463 420 -0.0001337545 5.317884e-10 421 421 2.040461e-06 0 422 421 2.566389e-07 8.996726e-22 423 421 -2.123889e-08 3.592428e-23 424 421 0 6.331003e-11 425 421 0 -6.929392e-14 426 421 -1.374311e-05 5.525642e-11 427 421 7.31134e-08 -2.271693e-14 428 421 0 6.331003e-11 429 421 0 -6.929392e-14 430 421 -1.374311e-05 5.525642e-11 431 421 7.31134e-08 -2.271693e-14 452 421 0.0001228193 0 453 421 -7.380255e-07 0 454 421 -1.199189e-06 2.781894e-21 455 421 7.244074e-09 -1.636299e-23 456 421 0 -6.414066e-11 457 421 0 -3.660035e-14 458 421 1.462044e-05 -5.552723e-11 459 421 3.626608e-08 -1.454268e-14 460 421 0 -6.414066e-11 461 421 0 -3.660035e-14 462 421 1.462044e-05 -5.552723e-11 463 421 3.626608e-08 -1.454268e-14 422 422 0.1179324 0 423 422 -9.931545e-06 0 424 422 -0.002657257 -1.064109e-08 425 422 -0.003003771 -1.172692e-08 426 422 0 -1.219912e-08 427 422 0 -1.349336e-08 428 422 -0.002657257 -1.064109e-08 429 422 -0.003003771 -1.172692e-08 430 422 0 -1.219912e-08 431 422 0 -1.349336e-08 452 422 -0.000193327 -4.363576e-19 453 422 1.218226e-06 2.675718e-21 454 422 0.01969708 0 455 422 -0.0001234749 0 456 422 -0.002803655 -1.068633e-08 457 422 0.0001337545 5.317884e-10 458 422 0 -1.233777e-08 459 422 0 6.104346e-10 460 422 -0.002803655 -1.068633e-08 461 422 0.0001337545 5.317884e-10 462 422 0 -1.233777e-08 463 422 0 6.104346e-10 423 423 2.040461e-06 0 424 423 1.374311e-05 5.525642e-11 425 423 -7.31134e-08 -2.271693e-14 426 423 0 6.331003e-11 427 423 0 -6.929392e-14 428 423 1.374311e-05 5.525642e-11 429 423 -7.31134e-08 -2.271693e-14 430 423 0 6.331003e-11 431 423 0 -6.929392e-14 452 423 -1.199189e-06 -2.781894e-21 453 423 7.244074e-09 1.636299e-23 454 423 0.0001228193 0 455 423 -7.380255e-07 0 456 423 -1.462044e-05 -5.552723e-11 457 423 -3.626608e-08 -1.454268e-14 458 423 0 -6.414066e-11 459 423 0 -3.660035e-14 460 423 -1.462044e-05 -5.552723e-11 461 423 -3.626608e-08 -1.454268e-14 462 423 0 -6.414066e-11 463 423 0 -3.660035e-14 424 424 0.009091855 0 425 424 0.001182948 0 426 424 0.002599203 -6.98169e-18 427 424 0.0003509081 -9.559822e-19 428 424 0.009091855 0 429 424 0.001182948 0 430 424 0.002599203 -6.98169e-18 431 424 0.0003509081 -9.559822e-19 425 425 0.004731958 0 426 425 0.0003509081 -9.559822e-19 427 425 0.001405078 -3.658459e-18 428 425 0.001182948 0 429 425 0.004731958 0 430 425 0.0003509081 -9.559822e-19 431 425 0.001405078 -3.658459e-18 452 425 0 -6.259357e-10 453 425 0 3.660035e-14 454 425 0.0001491155 -5.379461e-10 455 425 -3.626608e-08 1.454268e-14 456 425 0.001182943 0 457 425 -0.0006148197 0 458 425 0.0003509078 -9.603421e-19 459 425 -0.0001893976 3.962497e-19 460 425 0.001182943 0 461 425 -0.0006148197 0 462 425 0.0003509078 -9.603421e-19 463 425 -0.0001893976 3.962497e-19 426 426 0.009091855 0 427 426 0.001182948 0 428 426 0.002599203 6.98169e-18 429 426 0.0003509081 9.559822e-19 430 426 0.009091855 0 431 426 0.001182948 0 427 427 0.004731958 0 428 427 0.0003509081 9.559822e-19 429 427 0.001405078 3.658459e-18 430 427 0.001182948 0 431 427 0.004731958 0 452 427 -0.0001491155 -5.379461e-10 453 427 3.626608e-08 1.454268e-14 454 427 0 -6.259357e-10 455 427 0 3.660035e-14 456 427 0.0003509078 9.603421e-19 457 427 -0.0001893976 -3.962497e-19 458 427 0.001182943 0 459 427 -0.0006148197 0 460 427 0.0003509078 9.603421e-19 461 427 -0.0001893976 -3.962497e-19 462 427 0.001182943 0 463 427 -0.0006148197 0 428 428 1.369696 0 429 428 0.1645028 0 430 428 0.2457516 -1.079483e-15 431 428 0.03074119 -1.035293e-16 429 429 0.6587487 0 430 429 0.03074119 -1.035293e-16 431 429 0.1229658 -4.227459e-16 452 429 0 -6.259357e-10 453 429 0 3.660035e-14 454 429 0.0001491155 -5.379461e-10 455 429 -3.626608e-08 1.454268e-14 456 429 0.001182943 0 457 429 -0.0006148197 0 458 429 0.0003509078 -9.603421e-19 459 429 -0.0001893976 3.962497e-19 460 429 0.1645237 0 461 429 -0.07935512 0 462 429 0.0307411 -9.486812e-17 463 429 -0.01538246 5.209489e-17 430 430 1.369696 0 431 430 0.1645028 0 431 431 0.6587487 0 452 431 -0.0001491155 -5.379461e-10 453 431 3.626608e-08 1.454268e-14 454 431 0 -6.259357e-10 455 431 0 3.660035e-14 456 431 0.0003509078 9.603421e-19 457 431 -0.0001893976 -3.962497e-19 458 431 0.001182943 0 459 431 -0.0006148197 0 460 431 0.0307411 9.486812e-17 461 431 -0.01538246 -5.209489e-17 462 431 0.1645237 0 463 431 -0.07935512 0 432 432 0.006504854 0 433 432 0.0007813394 0 434 432 0.0005835995 -2.036648e-18 435 432 7.301314e-05 -3.286177e-19 433 433 0.003128854 0 434 433 7.301314e-05 -3.286177e-19 435 433 0.000292056 -1.244602e-18 464 433 0.0007814385 0 465 433 -0.0003769597 0 466 433 7.301291e-05 -3.46541e-19 467 433 -3.654059e-05 1.327857e-19 434 434 0.006504854 0 435 434 0.0007813394 0 435 435 0.003128854 0 464 435 7.301291e-05 3.46541e-19 465 435 -3.654059e-05 -1.327857e-19 466 435 0.0007814385 0 467 435 -0.0003769597 0 436 436 0.008983876 0 437 436 0.001167811 0 438 436 0.001802469 -4.584842e-18 439 436 0.000243375 -6.329689e-19 440 436 0 -1.062397e-08 441 436 0 5.51593e-11 442 436 0.002691997 -8.723428e-09 443 436 -1.392111e-05 4.534508e-11 437 437 0.00467122 0 438 437 0.000243375 -6.329689e-19 439 437 0.0009745113 -2.544446e-18 440 437 0 -1.171829e-08 441 437 0 -3.058991e-14 442 437 0.003045419 -9.549553e-09 443 437 7.633498e-08 3.944451e-14 468 437 0.001167808 0 469 437 -0.0006063062 0 470 437 0.0002433746 -6.319216e-19 471 437 -0.0001313783 3.510027e-19 472 437 0 5.384695e-10 473 437 0 -1.70043e-14 474 437 -0.0001516051 4.280325e-10 475 437 3.800245e-08 1.709951e-14 438 438 0.008983876 0 439 438 0.001167811 0 440 438 -0.002691997 -8.723428e-09 441 438 1.392111e-05 4.534508e-11 442 438 0 -1.062397e-08 443 438 0 5.51593e-11 439 439 0.00467122 0 440 439 -0.003045419 -9.549553e-09 441 439 -7.633498e-08 3.944451e-14 442 439 0 -1.171829e-08 443 439 0 -3.058991e-14 468 439 0.0002433746 6.319216e-19 469 439 -0.0001313783 -3.510027e-19 470 439 0.001167808 0 471 439 -0.0006063062 0 472 439 0.0001516051 4.280325e-10 473 439 -3.800245e-08 1.709951e-14 474 439 0 5.384695e-10 475 439 0 -1.70043e-14 440 440 0.1234874 0 441 440 -9.410289e-06 0 442 440 -0.01212202 1.101244e-17 443 440 2.103872e-07 -1.262512e-20 468 440 0 1.06851e-08 469 440 0 -5.312685e-10 470 440 -0.00284485 8.644181e-09 471 440 0.0001355086 -4.352772e-10 472 440 0.02069733 0 473 440 -0.0001297097 0 474 440 -0.002082165 1.992505e-18 475 440 1.30257e-05 -1.165773e-20 441 441 2.136531e-06 0 442 441 2.103872e-07 -1.262512e-20 443 441 -2.096236e-07 2.288557e-22 468 441 0 5.552538e-11 469 441 0 1.70043e-14 470 441 -1.483714e-05 4.486984e-11 471 441 -3.800245e-08 -1.709951e-14 472 441 0.0001290916 0 473 441 -7.75504e-07 0 474 441 -1.301006e-05 1.319843e-20 475 441 7.801787e-08 -7.408884e-23 442 442 0.1234874 0 443 442 -9.410289e-06 0 468 442 0.00284485 8.644181e-09 469 442 -0.0001355086 -4.352772e-10 470 442 0 1.06851e-08 471 442 0 -5.312685e-10 472 442 -0.002082165 -1.992505e-18 473 442 1.30257e-05 1.165773e-20 474 442 0.02069733 0 475 442 -0.0001297097 0 443 443 2.136531e-06 0 468 443 1.483714e-05 4.486984e-11 469 443 3.800245e-08 -1.709951e-14 470 443 0 5.552538e-11 471 443 0 1.70043e-14 472 443 -1.301006e-05 -1.319843e-20 473 443 7.801787e-08 7.408884e-23 474 443 0.0001290916 0 475 443 -7.75504e-07 0 444 444 0.001019927 0 445 444 9.755302e-08 0 476 444 0.0001837934 0 477 444 -1.14558e-06 0 445 445 1.763919e-08 0 476 445 1.152603e-06 0 477 445 -6.886634e-09 0 446 446 0.001019927 0 447 446 9.755302e-08 0 478 446 0.0001837934 0 479 446 -1.14558e-06 0 447 447 1.763919e-08 0 478 447 1.152603e-06 0 479 447 -6.886634e-09 0 448 448 0.006029006 0 449 448 0.0007264004 0 450 448 0.0005846463 -2.180029e-18 451 448 7.314944e-05 -1.846018e-19 449 449 0.002908388 0 450 449 7.314944e-05 -1.846018e-19 451 449 0.0002926013 -7.630897e-19 480 449 0.0007264736 0 481 449 -0.0003513254 0 482 449 7.314921e-05 -1.638561e-19 483 449 -3.661152e-05 9.063973e-20 450 450 0.006029006 0 451 450 0.0007264004 0 451 451 0.002908388 0 480 451 7.314921e-05 1.638561e-19 481 451 -3.661152e-05 -9.063973e-20 482 451 0.0007264736 0 483 451 -0.0003513254 0 452 452 0.1100376 0 453 452 -8.516697e-06 0 454 452 -0.001000055 2.754264e-18 455 452 2.767518e-07 -2.098192e-22 456 452 0 -1.23885e-08 457 452 0 -1.37102e-08 458 452 0.002853927 -1.070648e-08 459 452 0.003218818 -1.181289e-08 460 452 0 -1.23885e-08 461 452 0 -1.37102e-08 462 452 0.002853927 -1.070648e-08 463 452 0.003218818 -1.181289e-08 484 452 0.01843117 0 485 452 -0.0001155148 0 486 452 -0.0001522229 4.220381e-19 487 452 9.619698e-07 -2.672873e-21 488 452 0 -1.254201e-08 489 452 0 6.200458e-10 490 452 0.002997962 -1.077628e-08 491 452 -0.0001435756 5.352853e-10 492 452 0 -1.254201e-08 493 452 0 6.200458e-10 494 452 0.002997962 -1.077628e-08 495 452 -0.0001435756 5.352853e-10 453 453 1.903726e-06 0 454 453 2.767518e-07 -2.098192e-22 455 453 -1.728175e-08 4.525165e-23 456 453 0 6.428706e-11 457 453 0 -7.668336e-14 458 453 -1.47655e-05 5.55854e-11 459 453 7.192038e-08 -3.493369e-14 460 453 0 6.428706e-11 461 453 0 -7.668336e-14 462 453 -1.47655e-05 5.55854e-11 463 453 7.192038e-08 -3.493369e-14 484 453 0.0001149498 0 485 453 -6.905912e-07 0 486 453 -9.414667e-07 2.600245e-21 487 453 5.703892e-09 -1.577352e-23 488 453 0 -6.520682e-11 489 453 0 -3.996427e-14 490 453 1.562868e-05 -5.600345e-11 491 453 3.566794e-08 -2.014956e-14 492 453 0 -6.520682e-11 493 453 0 -3.996427e-14 494 453 1.562868e-05 -5.600345e-11 495 453 3.566794e-08 -2.014956e-14 454 454 0.1100376 0 455 454 -8.516697e-06 0 456 454 -0.002853927 -1.070648e-08 457 454 -0.003218818 -1.181289e-08 458 454 0 -1.23885e-08 459 454 0 -1.37102e-08 460 454 -0.002853927 -1.070648e-08 461 454 -0.003218818 -1.181289e-08 462 454 0 -1.23885e-08 463 454 0 -1.37102e-08 484 454 -0.0001522229 -4.220381e-19 485 454 9.619698e-07 2.672873e-21 486 454 0.01843117 0 487 454 -0.0001155148 0 488 454 -0.002997962 -1.077628e-08 489 454 0.0001435756 5.352853e-10 490 454 0 -1.254201e-08 491 454 0 6.200458e-10 492 454 -0.002997962 -1.077628e-08 493 454 0.0001435756 5.352853e-10 494 454 0 -1.254201e-08 495 454 0 6.200458e-10 455 455 1.903726e-06 0 456 455 1.47655e-05 5.55854e-11 457 455 -7.192038e-08 -3.493369e-14 458 455 0 6.428706e-11 459 455 0 -7.668336e-14 460 455 1.47655e-05 5.55854e-11 461 455 -7.192038e-08 -3.493369e-14 462 455 0 6.428706e-11 463 455 0 -7.668336e-14 484 455 -9.414667e-07 -2.600245e-21 485 455 5.703892e-09 1.577352e-23 486 455 0.0001149498 0 487 455 -6.905912e-07 0 488 455 -1.562868e-05 -5.600345e-11 489 455 -3.566794e-08 -2.014956e-14 490 455 0 -6.520682e-11 491 455 0 -3.996427e-14 492 455 -1.562868e-05 -5.600345e-11 493 455 -3.566794e-08 -2.014956e-14 494 455 0 -6.520682e-11 495 455 0 -3.996427e-14 456 456 0.009836968 0 457 456 0.001276336 0 458 456 0.003029208 -6.316378e-18 459 456 0.0004066827 -6.246568e-19 460 456 0.009836968 0 461 456 0.001276336 0 462 456 0.003029208 -6.316378e-18 463 456 0.0004066827 -6.246568e-19 457 457 0.005105524 0 458 457 0.0004066827 -6.246568e-19 459 457 0.001628169 -2.77288e-18 460 457 0.001276336 0 461 457 0.005105524 0 462 457 0.0004066827 -6.246568e-19 463 457 0.001628169 -2.77288e-18 484 457 0 -6.369722e-10 485 457 0 3.996427e-14 486 457 0.0001586831 -5.438183e-10 487 457 -3.566794e-08 2.014956e-14 488 457 0.00127633 0 489 457 -0.0006616469 0 490 457 0.0004066824 -6.074132e-19 491 457 -0.000218292 4.470946e-19 492 457 0.00127633 0 493 457 -0.0006616469 0 494 457 0.0004066824 -6.074132e-19 495 457 -0.000218292 4.470946e-19 458 458 0.009836968 0 459 458 0.001276336 0 460 458 0.003029208 6.316378e-18 461 458 0.0004066827 6.246568e-19 462 458 0.009836968 0 463 458 0.001276336 0 459 459 0.005105524 0 460 459 0.0004066827 6.246568e-19 461 459 0.001628169 2.77288e-18 462 459 0.001276336 0 463 459 0.005105524 0 484 459 -0.0001586831 -5.438183e-10 485 459 3.566794e-08 2.014956e-14 486 459 0 -6.369722e-10 487 459 0 3.996427e-14 488 459 0.0004066824 6.074132e-19 489 459 -0.000218292 -4.470946e-19 490 459 0.00127633 0 491 459 -0.0006616469 0 492 459 0.0004066824 6.074132e-19 493 459 -0.000218292 -4.470946e-19 494 459 0.00127633 0 495 459 -0.0006616469 0 460 460 1.269187 0 461 460 0.1528967 0 462 460 0.2461184 -8.153501e-16 463 460 0.03078874 -1.135114e-16 461 461 0.6121744 0 462 461 0.03078874 -1.135114e-16 463 461 0.123156 -4.480732e-16 484 461 0 -6.369722e-10 485 461 0 3.996427e-14 486 461 0.0001586831 -5.438183e-10 487 461 -3.566794e-08 2.014956e-14 488 461 0.00127633 0 489 461 -0.0006616469 0 490 461 0.0004066824 -6.074132e-19 491 461 -0.000218292 4.470946e-19 492 461 0.1529122 0 493 461 -0.07393894 0 494 461 0.03078865 -1.2061e-16 495 461 -0.01540708 5.004643e-17 462 462 1.269187 0 463 462 0.1528967 0 463 463 0.6121744 0 484 463 -0.0001586831 -5.438183e-10 485 463 3.566794e-08 2.014956e-14 486 463 0 -6.369722e-10 487 463 0 3.996427e-14 488 463 0.0004066824 6.074132e-19 489 463 -0.000218292 -4.470946e-19 490 463 0.00127633 0 491 463 -0.0006616469 0 492 463 0.03078865 1.2061e-16 493 463 -0.01540708 -5.004643e-17 494 463 0.1529122 0 495 463 -0.07393894 0 464 464 0.006029006 0 465 464 0.0007264004 0 466 464 0.0005846463 -2.180029e-18 467 464 7.314944e-05 -1.846018e-19 465 465 0.002908388 0 466 465 7.314944e-05 -1.846018e-19 467 465 0.0002926013 -7.630897e-19 496 465 0.0007264736 0 497 465 -0.0003513254 0 498 465 7.314921e-05 -1.638561e-19 499 465 -3.661152e-05 9.063973e-20 466 466 0.006029006 0 467 466 0.0007264004 0 467 467 0.002908388 0 496 467 7.314921e-05 1.638561e-19 497 467 -3.661152e-05 -9.063973e-20 498 467 0.0007264736 0 499 467 -0.0003513254 0 468 468 0.009700913 0 469 468 0.001257417 0 470 468 0.002101244 -5.530473e-18 471 468 0.0002821386 -7.720893e-19 472 468 0 -1.070867e-08 473 468 0 5.55934e-11 474 468 0.002897529 -8.62047e-09 475 468 -1.498915e-05 4.480144e-11 469 469 0.005029644 0 470 469 0.0002821386 -7.720893e-19 471 469 0.001129562 -3.288441e-18 472 469 0 -1.181893e-08 473 469 0 -3.70281e-14 474 469 0.003270766 -9.447889e-09 475 469 7.564665e-08 2.944072e-14 500 469 0.001257414 0 501 469 -0.0006510967 0 502 469 0.0002821382 -8.113037e-19 503 469 -0.0001514661 5.347419e-19 504 469 0 5.440589e-10 505 469 0 -1.989114e-14 506 469 -0.0001617304 4.249931e-10 507 469 3.766348e-08 1.259789e-14 470 470 0.009700913 0 471 470 0.001257417 0 472 470 -0.002897529 -8.62047e-09 473 470 1.498915e-05 4.480144e-11 474 470 0 -1.070867e-08 475 470 0 5.55934e-11 471 471 0.005029644 0 472 471 -0.003270766 -9.447889e-09 473 471 -7.564665e-08 2.944072e-14 474 471 0 -1.181893e-08 475 471 0 -3.70281e-14 500 471 0.0002821382 8.113037e-19 501 471 -0.0001514661 -5.347419e-19 502 471 0.001257414 0 503 471 -0.0006510967 0 504 471 0.0001617304 4.249931e-10 505 471 -3.766348e-08 1.259789e-14 506 471 0 5.440589e-10 507 471 0 -1.989114e-14 472 472 0.1160424 0 473 472 -7.989645e-06 0 474 472 -0.01193408 2.465323e-17 475 472 2.280202e-07 3.439269e-20 500 472 0 1.078275e-08 501 472 0 -5.356348e-10 502 472 -0.003049031 8.561348e-09 503 472 0.0001457776 -4.303307e-10 504 472 0.0195097 0 505 472 -0.0001222389 0 506 472 -0.002048309 6.706204e-18 507 472 1.281464e-05 -4.097837e-20 473 473 2.007574e-06 0 474 473 2.280202e-07 3.439269e-20 475 473 -2.063714e-07 4.296167e-22 500 473 0 5.603719e-11 501 473 0 1.989114e-14 502 473 -1.589707e-05 4.444687e-11 503 473 -3.766348e-08 -1.259789e-14 504 473 0.0001217118 0 505 473 -7.310028e-07 0 506 473 -1.279771e-05 4.292022e-20 507 473 7.674888e-08 -2.516986e-22 474 474 0.1160424 0 475 474 -7.989645e-06 0 500 474 0.003049031 8.561348e-09 501 474 -0.0001457776 -4.303307e-10 502 474 0 1.078275e-08 503 474 0 -5.356348e-10 504 474 -0.002048309 -6.706204e-18 505 474 1.281464e-05 4.097837e-20 506 474 0.0195097 0 507 474 -0.0001222389 0 475 475 2.007574e-06 0 500 475 1.589707e-05 4.444687e-11 501 475 3.766348e-08 -1.259789e-14 502 475 0 5.603719e-11 503 475 0 1.989114e-14 504 475 -1.279771e-05 -4.292022e-20 505 475 7.674888e-08 2.516986e-22 506 475 0.0001217118 0 507 475 -7.310028e-07 0 476 476 0.001104304 0 477 476 9.910605e-08 0 508 476 0.0001985147 0 509 476 -1.237557e-06 0 477 477 1.909835e-08 0 508 477 1.244696e-06 0 509 477 -7.438187e-09 0 478 478 0.001104304 0 479 478 9.910605e-08 0 510 478 0.0001985147 0 511 478 -1.237557e-06 0 479 479 1.909835e-08 0 510 479 1.244696e-06 0 511 479 -7.438187e-09 0 480 480 0.005619311 0 481 480 0.0006788281 0 482 480 0.0005857811 -1.397738e-18 483 480 7.329687e-05 -1.987029e-19 481 481 0.002717569 0 482 481 7.329687e-05 -1.987029e-19 483 481 0.0002931911 -8.080221e-19 512 481 0.0006788833 0 513 481 -0.0003290324 0 514 481 7.329664e-05 -2.065502e-19 515 481 -3.668807e-05 1.083703e-19 482 482 0.005619311 0 483 482 0.0006788281 0 483 483 0.002717569 0 512 483 7.329664e-05 2.065502e-19 513 483 -3.668807e-05 -1.083703e-19 514 483 0.0006788833 0 515 483 -0.0003290324 0 484 484 0.1032347 0 485 484 -7.375372e-06 0 486 484 -0.0007538061 3.052492e-18 487 484 2.970321e-07 3.303784e-21 488 484 0 -1.259741e-08 489 484 0 -1.394702e-08 490 484 0.003047405 -1.080421e-08 491 484 0.003430292 -1.193216e-08 492 484 0 -1.259741e-08 493 484 0 -1.394702e-08 494 484 0.003047405 -1.080421e-08 495 484 0.003430292 -1.193216e-08 516 484 0.01733503 0 517 484 -0.0001086247 0 518 484 -0.0001081076 8.660024e-19 519 484 6.868693e-07 -5.231053e-21 520 484 0 -1.276321e-08 521 484 0 6.30605e-10 522 484 0.003188919 -1.089469e-08 523 484 -0.0001532406 5.403554e-10 524 484 0 -1.276321e-08 525 484 0 6.30605e-10 526 484 0.003188919 -1.089469e-08 527 484 -0.0001532406 5.403554e-10 485 485 1.785921e-06 0 486 485 2.970321e-07 3.303784e-21 487 485 -1.302365e-08 5.847923e-23 488 485 0 6.536668e-11 489 485 0 -8.280024e-14 490 485 -1.577135e-05 5.608405e-11 491 485 7.066227e-08 -4.522866e-14 492 485 0 6.536668e-11 493 485 0 -8.280024e-14 494 485 -1.577135e-05 5.608405e-11 495 485 7.066227e-08 -4.522866e-14 516 485 0.0001081332 0 517 485 -6.495178e-07 0 518 485 -6.649398e-07 5.605556e-21 519 485 4.0509e-09 -3.252653e-23 520 485 0 -6.636015e-11 521 485 0 -4.277103e-14 522 485 1.661941e-05 -5.662609e-11 523 485 3.500434e-08 -2.491864e-14 524 485 0 -6.636015e-11 525 485 0 -4.277103e-14 526 485 1.661941e-05 -5.662609e-11 527 485 3.500434e-08 -2.491864e-14 486 486 0.1032347 0 487 486 -7.375372e-06 0 488 486 -0.003047405 -1.080421e-08 489 486 -0.003430292 -1.193216e-08 490 486 0 -1.259741e-08 491 486 0 -1.394702e-08 492 486 -0.003047405 -1.080421e-08 493 486 -0.003430292 -1.193216e-08 494 486 0 -1.259741e-08 495 486 0 -1.394702e-08 516 486 -0.0001081076 -8.660024e-19 517 486 6.868693e-07 5.231053e-21 518 486 0.01733503 0 519 486 -0.0001086247 0 520 486 -0.003188919 -1.089469e-08 521 486 0.0001532406 5.403554e-10 522 486 0 -1.276321e-08 523 486 0 6.30605e-10 524 486 -0.003188919 -1.089469e-08 525 486 0.0001532406 5.403554e-10 526 486 0 -1.276321e-08 527 486 0 6.30605e-10 487 487 1.785921e-06 0 488 487 1.577135e-05 5.608405e-11 489 487 -7.066227e-08 -4.522866e-14 490 487 0 6.536668e-11 491 487 0 -8.280024e-14 492 487 1.577135e-05 5.608405e-11 493 487 -7.066227e-08 -4.522866e-14 494 487 0 6.536668e-11 495 487 0 -8.280024e-14 516 487 -6.649398e-07 -5.605556e-21 517 487 4.0509e-09 3.252653e-23 518 487 0.0001081332 0 519 487 -6.495178e-07 0 520 487 -1.661941e-05 -5.662609e-11 521 487 -3.500434e-08 -2.491864e-14 522 487 0 -6.636015e-11 523 487 0 -4.277103e-14 524 487 -1.661941e-05 -5.662609e-11 525 487 -3.500434e-08 -2.491864e-14 526 487 0 -6.636015e-11 527 487 0 -4.277103e-14 488 488 0.01058619 0 489 488 0.001370257 0 490 488 0.003491524 -7.09142e-18 491 488 0.0004664855 -1.180965e-18 492 488 0.01058619 0 493 488 0.001370257 0 494 488 0.003491524 -7.09142e-18 495 488 0.0004664855 -1.180965e-18 489 489 0.005481222 0 490 489 0.0004664855 -1.180965e-18 491 489 0.001867372 -4.522589e-18 492 489 0.001370257 0 493 489 0.005481222 0 494 489 0.0004664855 -1.180965e-18 495 489 0.001867372 -4.522589e-18 516 489 0 -6.487205e-10 517 489 0 4.277103e-14 518 489 0.0001680672 -5.509088e-10 519 489 -3.500434e-08 2.491864e-14 520 489 0.001370251 0 521 489 -0.0007087509 0 522 489 0.0004664852 -1.175113e-18 523 489 -0.0002491951 5.836825e-19 524 489 0.001370251 0 525 489 -0.0007087509 0 526 489 0.0004664852 -1.175113e-18 527 489 -0.0002491951 5.836825e-19 490 490 0.01058619 0 491 490 0.001370257 0 492 490 0.003491524 7.09142e-18 493 490 0.0004664855 1.180965e-18 494 490 0.01058619 0 495 490 0.001370257 0 491 491 0.005481222 0 492 491 0.0004664855 1.180965e-18 493 491 0.001867372 4.522589e-18 494 491 0.001370257 0 495 491 0.005481222 0 516 491 -0.0001680672 -5.509088e-10 517 491 3.500434e-08 2.491864e-14 518 491 0 -6.487205e-10 519 491 0 4.277103e-14 520 491 0.0004664852 1.175113e-18 521 491 -0.0002491951 -5.836825e-19 522 491 0.001370251 0 523 491 -0.0007087509 0 524 491 0.0004664852 1.175113e-18 525 491 -0.0002491951 -5.836825e-19 526 491 0.001370251 0 527 491 -0.0007087509 0 492 492 1.182623 0 493 492 0.1428436 0 494 492 0.2465123 -8.20577e-16 495 492 0.03083967 -7.957571e-17 493 493 0.5718499 0 494 493 0.03083967 -7.957571e-17 495 493 0.1233597 -3.07814e-16 516 493 0 -6.487205e-10 517 493 0 4.277103e-14 518 493 0.0001680672 -5.509088e-10 519 493 -3.500434e-08 2.491864e-14 520 493 0.001370251 0 521 493 -0.0007087509 0 522 493 0.0004664852 -1.175113e-18 523 493 -0.0002491951 5.836825e-19 524 493 0.1428552 0 525 493 -0.06922708 0 526 493 0.03083958 -7.1175e-17 527 493 -0.01543338 2.965977e-17 494 494 1.182623 0 495 494 0.1428436 0 495 495 0.5718499 0 516 495 -0.0001680672 -5.509088e-10 517 495 3.500434e-08 2.491864e-14 518 495 0 -6.487205e-10 519 495 0 4.277103e-14 520 495 0.0004664852 1.175113e-18 521 495 -0.0002491951 -5.836825e-19 522 495 0.001370251 0 523 495 -0.0007087509 0 524 495 0.03083958 7.1175e-17 525 495 -0.01543338 -2.965977e-17 526 495 0.1428552 0 527 495 -0.06922708 0 496 496 0.005619311 0 497 496 0.0006788281 0 498 496 0.0005857811 -1.397738e-18 499 496 7.329687e-05 -1.987029e-19 497 497 0.002717569 0 498 497 7.329687e-05 -1.987029e-19 499 497 0.0002931911 -8.080221e-19 528 497 0.0006788833 0 529 497 -0.0003290324 0 530 497 7.329664e-05 -2.065502e-19 531 497 -3.668807e-05 1.083703e-19 498 498 0.005619311 0 499 498 0.0006788281 0 499 499 0.002717569 0 528 499 7.329664e-05 2.065502e-19 529 499 -3.668807e-05 -1.083703e-19 530 499 0.0006788833 0 531 499 -0.0003290324 0 500 500 0.01041756 0 501 500 0.001346973 0 502 500 0.002422652 -8.757894e-18 503 500 0.0003237263 -1.327664e-18 504 500 0 -1.081032e-08 505 500 0 5.611675e-11 506 500 0.00310124 -8.543879e-09 507 500 -1.604772e-05 4.439648e-11 501 501 0.005387866 0 502 501 0.0003237263 -1.327664e-18 503 501 0.001295909 -4.780187e-18 504 501 0 -1.193672e-08 505 501 0 -4.218961e-14 506 501 0.003494078 -9.372977e-09 507 501 7.492636e-08 2.135073e-14 532 501 0.001346969 0 533 501 -0.0006958613 0 534 501 0.0003237258 -1.267817e-18 535 501 -0.0001729636 4.557519e-19 536 501 0 5.502309e-10 537 501 0 -2.221865e-14 538 501 -0.000171749 4.228755e-10 539 501 3.727939e-08 8.929766e-15 502 502 0.01041756 0 503 502 0.001346973 0 504 502 -0.00310124 -8.543879e-09 505 502 1.604772e-05 4.439648e-11 506 502 0 -1.081032e-08 507 502 0 5.611675e-11 503 503 0.005387866 0 504 503 -0.003494078 -9.372977e-09 505 503 -7.492636e-08 2.135073e-14 506 503 0 -1.193672e-08 507 503 0 -4.218961e-14 532 503 0.0003237258 1.267817e-18 533 503 -0.0001729636 -4.557519e-19 534 503 0.001346969 0 535 503 -0.0006958613 0 536 503 0.000171749 4.228755e-10 537 503 -3.727939e-08 8.929766e-15 538 503 0 5.502309e-10 539 503 0 -2.221865e-14 504 504 0.1096945 0 505 504 -6.842032e-06 0 506 504 -0.01173068 4.312297e-17 507 504 2.460977e-07 -2.322312e-21 532 504 0 1.089479e-08 533 504 0 -5.408207e-10 534 504 -0.003251297 8.501025e-09 535 504 0.0001559587 -4.266591e-10 536 504 0.01849278 0 537 504 -0.0001158438 0 538 504 -0.00201177 6.471889e-18 539 504 1.25868e-05 -4.140526e-20 505 505 1.897637e-06 0 506 505 2.460977e-07 -2.322312e-21 507 505 -2.028531e-07 7.069286e-22 532 505 0 5.662278e-11 533 505 0 2.221865e-14 534 505 -1.694699e-05 4.413943e-11 535 505 -3.727939e-08 -8.929766e-15 536 505 0.0001153907 0 537 505 -6.928976e-07 0 538 505 -1.256859e-05 3.953451e-20 539 505 7.537933e-08 -2.426384e-22 506 506 0.1096945 0 507 506 -6.842032e-06 0 532 506 0.003251297 8.501025e-09 533 506 -0.0001559587 -4.266591e-10 534 506 0 1.089479e-08 535 506 0 -5.408207e-10 536 506 -0.00201177 -6.471889e-18 537 506 1.25868e-05 4.140526e-20 538 506 0.01849278 0 539 506 -0.0001158438 0 507 507 1.897637e-06 0 532 507 1.694699e-05 4.413943e-11 533 507 3.727939e-08 -8.929766e-15 534 507 0 5.662278e-11 535 507 0 2.221865e-14 536 507 -1.256859e-05 -3.953451e-20 537 507 7.537933e-08 2.426384e-22 538 507 0.0001153907 0 539 507 -6.928976e-07 0 508 508 0.001190077 0 509 508 1.008072e-07 0 540 508 0.0002134888 0 541 508 -1.331108e-06 0 509 509 2.058165e-08 0 540 509 1.338374e-06 0 541 509 -7.999206e-09 0 510 510 0.001190077 0 511 510 1.008072e-07 0 542 510 0.0002134888 0 543 510 -1.331108e-06 0 511 511 2.058165e-08 0 542 511 1.338374e-06 0 543 511 -7.999206e-09 0 512 512 0.005262965 0 513 512 0.0006372462 0 514 512 0.0005870058 -1.727658e-18 515 512 7.345564e-05 -2.269308e-19 513 513 0.002550837 0 514 513 7.345564e-05 -2.269308e-19 515 513 0.0002938263 -9.398216e-19 544 513 0.0006372884 0 545 513 -0.0003094725 0 546 513 7.345541e-05 -2.360903e-19 547 513 -3.677036e-05 1.345588e-19 514 514 0.005262965 0 515 514 0.0006372462 0 515 515 0.002550837 0 544 515 7.345541e-05 2.360903e-19 545 515 -3.677036e-05 -1.345588e-19 546 515 0.0006372884 0 547 515 -0.0003094725 0 516 516 0.09731856 0 517 516 -6.441057e-06 0 518 516 -0.0004902652 5.258846e-18 519 516 3.173688e-07 -2.919361e-21 520 516 0 -1.28225e-08 521 516 0 -1.420052e-08 522 516 0.003237442 -1.092923e-08 523 516 0.003637862 -1.207974e-08 524 516 0 -1.28225e-08 525 516 0 -1.420052e-08 526 516 0.003237442 -1.092923e-08 527 516 0.003637862 -1.207974e-08 548 516 0.01637784 0 549 516 -0.0001026097 0 550 516 -6.097153e-05 5.024908e-19 551 516 3.929108e-07 -3.410225e-21 552 516 0 -1.299865e-08 553 516 0 6.419523e-10 554 516 0.003376281 -1.103747e-08 555 516 -0.0001627277 5.467584e-10 556 516 0 -1.299865e-08 557 516 0 6.419523e-10 558 516 0.003376281 -1.103747e-08 559 516 -0.0001627277 5.467584e-10 517 517 1.68349e-06 0 518 517 3.173688e-07 -2.919361e-21 519 517 -8.465467e-09 8.027249e-23 520 517 0 6.653124e-11 521 517 0 -8.794809e-14 522 517 -1.675943e-05 5.672577e-11 523 517 6.932578e-08 -5.406845e-14 524 517 0 6.653124e-11 525 517 0 -8.794809e-14 526 517 -1.675943e-05 5.672577e-11 527 517 6.932578e-08 -5.406845e-14 548 517 0.0001021789 0 549 517 -6.136507e-07 0 550 517 -3.695024e-07 2.866262e-21 551 517 2.284743e-09 -1.876263e-23 552 517 0 -6.758671e-11 553 517 0 -4.51514e-14 554 517 1.759145e-05 -5.737421e-11 555 517 3.433085e-08 -2.904667e-14 556 517 0 -6.758671e-11 557 517 0 -4.51514e-14 558 517 1.759145e-05 -5.737421e-11 559 517 3.433085e-08 -2.904667e-14 518 518 0.09731856 0 519 518 -6.441057e-06 0 520 518 -0.003237442 -1.092923e-08 521 518 -0.003637862 -1.207974e-08 522 518 0 -1.28225e-08 523 518 0 -1.420052e-08 524 518 -0.003237442 -1.092923e-08 525 518 -0.003637862 -1.207974e-08 526 518 0 -1.28225e-08 527 518 0 -1.420052e-08 548 518 -6.097153e-05 -5.024908e-19 549 518 3.929108e-07 3.410225e-21 550 518 0.01637784 0 551 518 -0.0001026097 0 552 518 -0.003376281 -1.103747e-08 553 518 0.0001627277 5.467584e-10 554 518 0 -1.299865e-08 555 518 0 6.419523e-10 556 518 -0.003376281 -1.103747e-08 557 518 0.0001627277 5.467584e-10 558 518 0 -1.299865e-08 559 518 0 6.419523e-10 519 519 1.68349e-06 0 520 519 1.675943e-05 5.672577e-11 521 519 -6.932578e-08 -5.406845e-14 522 519 0 6.653124e-11 523 519 0 -8.794809e-14 524 519 1.675943e-05 5.672577e-11 525 519 -6.932578e-08 -5.406845e-14 526 519 0 6.653124e-11 527 519 0 -8.794809e-14 548 519 -3.695024e-07 -2.866262e-21 549 519 2.284743e-09 1.876263e-23 550 519 0.0001021789 0 551 519 -6.136507e-07 0 552 519 -1.759145e-05 -5.737421e-11 553 519 -3.433085e-08 -2.904667e-14 554 519 0 -6.758671e-11 555 519 0 -4.51514e-14 556 519 -1.759145e-05 -5.737421e-11 557 519 -3.433085e-08 -2.904667e-14 558 519 0 -6.758671e-11 559 519 0 -4.51514e-14 520 520 0.01133984 0 521 520 0.001464752 0 522 520 0.003985981 -9.234136e-18 523 520 0.0005302954 -1.159617e-18 524 520 0.01133984 0 525 520 0.001464752 0 526 520 0.003985981 -9.234136e-18 527 520 0.0005302954 -1.159617e-18 521 521 0.005859215 0 522 521 0.0005302954 -1.159617e-18 523 521 0.002122603 -5.046498e-18 524 521 0.001464752 0 525 521 0.005859215 0 526 521 0.0005302954 -1.159617e-18 527 521 0.002122603 -5.046498e-18 548 521 0 -6.610762e-10 549 521 0 4.51514e-14 550 521 0.0001772689 -5.590606e-10 551 521 -3.433085e-08 2.904667e-14 552 521 0.001464746 0 553 521 -0.000756151 0 554 521 0.0005302951 -1.217867e-18 555 521 -0.0002820957 8.256332e-19 556 521 0.001464746 0 557 521 -0.000756151 0 558 521 0.0005302951 -1.217867e-18 559 521 -0.0002820957 8.256332e-19 522 522 0.01133984 0 523 522 0.001464752 0 524 522 0.003985981 9.234136e-18 525 522 0.0005302954 1.159617e-18 526 522 0.01133984 0 527 522 0.001464752 0 523 523 0.005859215 0 524 523 0.0005302954 1.159617e-18 525 523 0.002122603 5.046498e-18 526 523 0.001464752 0 527 523 0.005859215 0 548 523 -0.0001772689 -5.590606e-10 549 523 3.433085e-08 2.904667e-14 550 523 0 -6.610762e-10 551 523 0 4.51514e-14 552 523 0.0005302951 1.217867e-18 553 523 -0.0002820957 -8.256332e-19 554 523 0.001464746 0 555 523 -0.000756151 0 556 523 0.0005302951 1.217867e-18 557 523 -0.0002820957 -8.256332e-19 558 523 0.001464746 0 559 523 -0.000756151 0 524 524 1.107306 0 525 524 0.1340531 0 526 524 0.2469331 -4.438216e-16 527 524 0.03089395 -4.746409e-17 525 525 0.5366029 0 526 525 0.03089395 -4.746409e-17 527 525 0.1235768 -2.388251e-16 548 525 0 -6.610762e-10 549 525 0 4.51514e-14 550 525 0.0001772689 -5.590606e-10 551 525 -3.433085e-08 2.904667e-14 552 525 0.001464746 0 553 525 -0.000756151 0 554 525 0.0005302951 -1.217867e-18 555 525 -0.0002820957 8.256332e-19 556 525 0.134062 0 557 525 -0.06509133 0 558 525 0.03089386 -5.426046e-17 559 525 -0.01546135 4.696469e-17 526 526 1.107306 0 527 526 0.1340531 0 527 527 0.5366029 0 548 527 -0.0001772689 -5.590606e-10 549 527 3.433085e-08 2.904667e-14 550 527 0 -6.610762e-10 551 527 0 4.51514e-14 552 527 0.0005302951 1.217867e-18 553 527 -0.0002820957 -8.256332e-19 554 527 0.001464746 0 555 527 -0.000756151 0 556 527 0.03089386 5.426046e-17 557 527 -0.01546135 -4.696469e-17 558 527 0.134062 0 559 527 -0.06509133 0 528 528 0.005262965 0 529 528 0.0006372462 0 530 528 0.0005870058 -1.727658e-18 531 528 7.345564e-05 -2.269308e-19 529 529 0.002550837 0 530 529 7.345564e-05 -2.269308e-19 531 529 0.0002938263 -9.398216e-19 560 529 0.0006372884 0 561 529 -0.0003094725 0 562 529 7.345541e-05 -2.360903e-19 563 529 -3.677036e-05 1.345588e-19 530 530 0.005262965 0 531 530 0.0006372462 0 531 531 0.002550837 0 560 531 7.345541e-05 2.360903e-19 561 531 -3.677036e-05 -1.345588e-19 562 531 0.0006372884 0 563 531 -0.0003094725 0 532 532 0.0111338 0 533 532 0.001436476 0 534 532 0.002766615 -7.123963e-18 535 532 0.0003681286 -5.55191e-19 536 532 0 -1.092559e-08 537 532 0 5.671165e-11 538 532 0.003302975 -8.488642e-09 539 532 -1.709611e-05 4.410371e-11 533 533 0.005745876 0 534 533 0.0003681286 -5.55191e-19 535 533 0.001473514 -2.88705e-18 536 533 0 -1.206835e-08 537 533 0 -4.637698e-14 538 533 0.003715141 -9.319857e-09 539 533 7.416362e-08 1.470743e-14 564 533 0.001436472 0 565 533 -0.0007405982 0 566 533 0.0003681281 -5.808106e-19 567 533 -0.0001958654 5.642759e-19 568 533 0 5.568802e-10 569 533 0 -2.411704e-14 570 533 -0.0001816656 4.21524e-10 571 533 3.68998e-08 5.898399e-15 534 534 0.0111338 0 535 534 0.001436476 0 536 534 -0.003302975 -8.488642e-09 537 534 1.709611e-05 4.410371e-11 538 534 0 -1.092559e-08 539 534 0 5.671165e-11 535 535 0.005745876 0 536 535 -0.003715141 -9.319857e-09 537 535 -7.416362e-08 1.470743e-14 538 535 0 -1.206835e-08 539 535 0 -4.637698e-14 564 535 0.0003681281 5.808106e-19 565 535 -0.0001958654 -5.642759e-19 566 535 0.001436472 0 567 535 -0.0007405982 0 568 535 0.0001816656 4.21524e-10 569 535 -3.68998e-08 5.898399e-15 570 535 0 5.568802e-10 571 535 0 -2.411704e-14 536 536 0.104239 0 537 536 -5.900875e-06 0 538 536 -0.01151176 2.782178e-17 539 536 2.644957e-07 -1.791457e-20 564 536 0 1.101848e-08 565 536 0 -5.466657e-10 566 536 -0.003451506 8.459138e-09 567 536 0.0001660363 -4.240233e-10 568 536 0.01761583 0 569 536 -0.0001103303 0 570 536 -0.001972497 3.848201e-18 571 536 1.23419e-05 -2.432892e-20 537 537 1.803171e-06 0 538 537 2.644957e-07 -1.791457e-20 539 537 -1.990653e-07 4.981009e-22 564 537 0 5.726815e-11 565 537 0 2.411704e-14 566 537 -1.798622e-05 4.392671e-11 567 537 -3.68998e-08 -5.898399e-15 568 537 0.0001099383 0 569 537 -6.600367e-07 0 570 537 -1.232234e-05 2.378768e-20 571 537 7.390739e-08 -1.441727e-22 538 538 0.104239 0 539 538 -5.900875e-06 0 564 538 0.003451506 8.459138e-09 565 538 -0.0001660363 -4.240233e-10 566 538 0 1.101848e-08 567 538 0 -5.466657e-10 568 538 -0.001972497 -3.848201e-18 569 538 1.23419e-05 2.432892e-20 570 538 0.01761583 0 571 538 -0.0001103303 0 539 539 1.803171e-06 0 564 539 1.798622e-05 4.392671e-11 565 539 3.68998e-08 -5.898399e-15 566 539 0 5.726815e-11 567 539 0 2.411704e-14 568 539 -1.232234e-05 -2.378768e-20 569 539 7.390739e-08 1.441727e-22 570 539 0.0001099383 0 571 539 -6.600367e-07 0 540 540 0.001277377 0 541 540 1.026645e-07 0 572 540 0.0002287389 0 573 540 -1.426379e-06 0 541 541 2.209135e-08 0 572 541 1.433784e-06 0 573 541 -8.570562e-09 0 542 542 0.001277377 0 543 542 1.026645e-07 0 574 542 0.0002287389 0 575 542 -1.426379e-06 0 543 543 2.209135e-08 0 574 543 1.433784e-06 0 575 543 -8.570562e-09 0 544 544 0.004950273 0 545 544 0.0006006017 0 546 544 0.0005883224 -2.194002e-18 547 544 7.362603e-05 -3.021448e-19 545 545 0.002403946 0 546 545 7.362603e-05 -3.021448e-19 547 545 0.0002945079 -1.118689e-18 576 545 0.0006006345 0 577 545 -0.0002921772 0 578 545 7.36258e-05 -2.993827e-19 579 545 -3.685852e-05 1.057572e-19 546 546 0.004950273 0 547 546 0.0006006017 0 547 547 0.002403946 0 576 547 7.36258e-05 2.993827e-19 577 547 -3.685852e-05 -1.057572e-19 578 547 0.0006006345 0 579 547 -0.0002921772 0 548 548 0.0921332 0 549 548 -5.666646e-06 0 550 548 -0.0002090918 1.74733e-18 551 548 3.378396e-07 1.126192e-21 552 548 0 -1.306124e-08 553 548 0 -1.446814e-08 554 548 0.00342387 -1.107773e-08 555 548 0.003841404 -1.225184e-08 556 548 0 -1.306124e-08 557 548 0 -1.446814e-08 558 548 0.00342387 -1.107773e-08 559 548 0.003841404 -1.225184e-08 580 548 0.0155358 0 581 548 -9.731982e-05 0 582 548 -1.07935e-05 6.254939e-19 583 548 7.992099e-08 -3.6314e-21 584 548 0 -1.324622e-08 585 548 0 6.53966e-10 586 548 0.003559858 -1.120144e-08 587 548 -0.0001720389 5.543113e-10 588 548 0 -1.324622e-08 589 548 0 6.53966e-10 590 548 0.003559858 -1.120144e-08 591 548 -0.0001720389 5.543113e-10 549 549 1.59372e-06 0 550 549 3.378396e-07 1.126192e-21 551 549 -3.603384e-09 4.219317e-23 552 549 0 6.776731e-11 553 549 0 -9.234576e-14 554 549 -1.772878e-05 5.74904e-11 555 549 6.789932e-08 -6.17814e-14 556 549 0 6.776731e-11 557 549 0 -9.234576e-14 558 549 -1.772878e-05 5.74904e-11 559 549 6.789932e-08 -6.17814e-14 580 549 9.693945e-05 0 581 549 -5.820983e-07 0 582 549 -5.506294e-08 4.188199e-21 583 549 4.046299e-10 -2.342091e-23 584 549 0 -6.887573e-11 585 549 0 -4.719815e-14 586 549 1.85437e-05 -5.823165e-11 587 549 3.358091e-08 -3.267421e-14 588 549 0 -6.887573e-11 589 549 0 -4.719815e-14 590 549 1.85437e-05 -5.823165e-11 591 549 3.358091e-08 -3.267421e-14 550 550 0.0921332 0 551 550 -5.666646e-06 0 552 550 -0.00342387 -1.107773e-08 553 550 -0.003841404 -1.225184e-08 554 550 0 -1.306124e-08 555 550 0 -1.446814e-08 556 550 -0.00342387 -1.107773e-08 557 550 -0.003841404 -1.225184e-08 558 550 0 -1.306124e-08 559 550 0 -1.446814e-08 580 550 -1.07935e-05 -6.254939e-19 581 550 7.992099e-08 3.6314e-21 582 550 0.0155358 0 583 550 -9.731982e-05 0 584 550 -0.003559858 -1.120144e-08 585 550 0.0001720389 5.543113e-10 586 550 0 -1.324622e-08 587 550 0 6.53966e-10 588 550 -0.003559858 -1.120144e-08 589 550 0.0001720389 5.543113e-10 590 550 0 -1.324622e-08 591 550 0 6.53966e-10 551 551 1.59372e-06 0 552 551 1.772878e-05 5.74904e-11 553 551 -6.789932e-08 -6.17814e-14 554 551 0 6.776731e-11 555 551 0 -9.234576e-14 556 551 1.772878e-05 5.74904e-11 557 551 -6.789932e-08 -6.17814e-14 558 551 0 6.776731e-11 559 551 0 -9.234576e-14 580 551 -5.506294e-08 -4.188199e-21 581 551 4.046299e-10 2.342091e-23 582 551 9.693945e-05 0 583 551 -5.820983e-07 0 584 551 -1.85437e-05 -5.823165e-11 585 551 -3.358091e-08 -3.267421e-14 586 551 0 -6.887573e-11 587 551 0 -4.719815e-14 588 551 -1.85437e-05 -5.823165e-11 589 551 -3.358091e-08 -3.267421e-14 590 551 0 -6.887573e-11 591 551 0 -4.719815e-14 552 552 0.01209824 0 553 552 0.001559858 0 554 552 0.004512397 -1.338348e-17 555 552 0.0005980878 -2.084666e-18 556 552 0.01209824 0 557 552 0.001559858 0 558 552 0.004512397 -1.338348e-17 559 552 0.0005980878 -2.084666e-18 553 553 0.006239651 0 554 553 0.0005980878 -2.084666e-18 555 553 0.002393764 -7.827645e-18 556 553 0.001559858 0 557 553 0.006239651 0 558 553 0.0005980878 -2.084666e-18 559 553 0.002393764 -7.827645e-18 580 553 0 -6.739571e-10 581 553 0 4.719815e-14 582 553 0.0001862627 -5.681503e-10 583 553 -3.358091e-08 3.267421e-14 584 553 0.001559851 0 585 553 -0.0008038664 0 586 553 0.0005980874 -1.972104e-18 587 553 -0.0003169812 9.863594e-19 588 553 0.001559851 0 589 553 -0.0008038664 0 590 553 0.0005980874 -1.972104e-18 591 553 -0.0003169812 9.863594e-19 554 554 0.01209824 0 555 554 0.001559858 0 556 554 0.004512397 1.338348e-17 557 554 0.0005980878 2.084666e-18 558 554 0.01209824 0 559 554 0.001559858 0 555 555 0.006239651 0 556 555 0.0005980878 2.084666e-18 557 555 0.002393764 7.827645e-18 558 555 0.001559858 0 559 555 0.006239651 0 580 555 -0.0001862627 -5.681503e-10 581 555 3.358091e-08 3.267421e-14 582 555 0 -6.739571e-10 583 555 0 4.719815e-14 584 555 0.0005980874 1.972104e-18 585 555 -0.0003169812 -9.863594e-19 586 555 0.001559851 0 587 555 -0.0008038664 0 588 555 0.0005980874 1.972104e-18 589 555 -0.0003169812 -9.863594e-19 590 555 0.001559851 0 591 555 -0.0008038664 0 556 556 1.04119 0 557 556 0.1263033 0 558 556 0.2473807 -7.572009e-16 559 556 0.03095154 -1.335983e-16 557 557 0.5055375 0 558 557 0.03095154 -1.335983e-16 559 557 0.1238072 -5.0223e-16 580 557 0 -6.739571e-10 581 557 0 4.719815e-14 582 557 0.0001862627 -5.681503e-10 583 557 -3.358091e-08 3.267421e-14 584 557 0.001559851 0 585 557 -0.0008038664 0 586 557 0.0005980874 -1.972104e-18 587 557 -0.0003169812 9.863594e-19 588 557 0.1263102 0 589 557 -0.06143281 0 590 557 0.03095145 -1.354743e-16 591 557 -0.01549097 6.174971e-17 558 558 1.04119 0 559 558 0.1263033 0 559 559 0.5055375 0 580 559 -0.0001862627 -5.681503e-10 581 559 3.358091e-08 3.267421e-14 582 559 0 -6.739571e-10 583 559 0 4.719815e-14 584 559 0.0005980874 1.972104e-18 585 559 -0.0003169812 -9.863594e-19 586 559 0.001559851 0 587 559 -0.0008038664 0 588 559 0.03095145 1.354743e-16 589 559 -0.01549097 -6.174971e-17 590 559 0.1263102 0 591 559 -0.06143281 0 560 560 0.004950273 0 561 560 0.0006006017 0 562 560 0.0005883224 -2.194002e-18 563 560 7.362603e-05 -3.021448e-19 561 561 0.002403946 0 562 561 7.362603e-05 -3.021448e-19 563 561 0.0002945079 -1.118689e-18 592 561 0.0006006345 0 593 561 -0.0002921772 0 594 561 7.36258e-05 -2.993827e-19 595 561 -3.685852e-05 1.057572e-19 562 562 0.004950273 0 563 562 0.0006006017 0 563 563 0.002403946 0 592 563 7.36258e-05 2.993827e-19 593 563 -3.685852e-05 -1.057572e-19 594 563 0.0006006345 0 595 563 -0.0002921772 0 564 564 0.01184959 0 565 564 0.001525921 0 566 564 0.003133048 -8.920486e-18 567 564 0.0004153336 -1.676293e-18 568 564 0 -1.105191e-08 569 564 0 5.736462e-11 570 564 0.003502657 -8.450958e-09 571 564 -1.813382e-05 4.390311e-11 565 565 0.006103653 0 566 565 0.0004153336 -1.676293e-18 567 565 0.00166233 -6.43442e-18 568 565 0 -1.221125e-08 569 565 0 -4.98097e-14 570 565 0.003933922 -9.284742e-09 571 565 7.334411e-08 9.18089e-15 596 565 0.001525917 0 597 565 -0.0007853054 0 598 565 0.000415333 -1.764025e-18 599 565 -0.0002201656 8.359613e-19 600 565 0 5.63924e-10 601 565 0 -2.567975e-14 602 565 -0.0001914599 4.208167e-10 603 565 3.646221e-08 3.362012e-15 566 566 0.01184959 0 567 566 0.001525921 0 568 566 -0.003502657 -8.450958e-09 569 566 1.813382e-05 4.390311e-11 570 566 0 -1.105191e-08 571 566 0 5.736462e-11 567 567 0.006103653 0 568 567 -0.003933922 -9.284742e-09 569 567 -7.334411e-08 9.18089e-15 570 567 0 -1.221125e-08 571 567 0 -4.98097e-14 596 567 0.000415333 1.764025e-18 597 567 -0.0002201656 -8.359613e-19 598 567 0.001525917 0 599 567 -0.0007853054 0 600 567 0.0001914599 4.208167e-10 601 567 -3.646221e-08 3.362012e-15 602 567 0 5.63924e-10 603 567 0 -2.567975e-14 568 568 0.09952033 0 569 568 -5.119079e-06 0 570 568 -0.01127675 1.77023e-17 571 568 2.83346e-07 -1.264159e-20 596 568 0 1.11517e-08 597 568 0 -5.530474e-10 598 568 -0.003649551 8.432555e-09 599 568 0.0001760157 -4.222415e-10 600 568 0.01685513 0 601 568 -0.0001055486 0 602 568 -0.001930424 2.181459e-18 603 568 1.207949e-05 -1.387891e-20 569 569 1.721473e-06 0 570 569 2.83346e-07 -1.264159e-20 571 569 -1.950002e-07 3.017447e-22 596 569 0 5.796247e-11 597 569 0 2.567975e-14 598 569 -1.901412e-05 4.379265e-11 599 569 -3.646221e-08 -3.362012e-15 600 569 0.0001052076 0 601 569 -6.315316e-07 0 602 569 -1.205859e-05 1.335454e-20 603 569 7.233052e-08 -8.131199e-23 570 570 0.09952033 0 571 570 -5.119079e-06 0 596 570 0.003649551 8.432555e-09 597 570 -0.0001760157 -4.222415e-10 598 570 0 1.11517e-08 599 570 0 -5.530474e-10 600 570 -0.001930424 -2.181459e-18 601 570 1.207949e-05 1.387891e-20 602 570 0.01685513 0 603 570 -0.0001055486 0 571 571 1.721473e-06 0 596 571 1.901412e-05 4.379265e-11 597 571 3.646221e-08 -3.362012e-15 598 571 0 5.796247e-11 599 571 0 2.567975e-14 600 571 -1.205859e-05 -1.335454e-20 601 571 7.233052e-08 8.131199e-23 602 571 0.0001052076 0 603 571 -6.315316e-07 0 572 572 0.001366342 0 573 572 1.046865e-07 0 604 572 0.0002442895 0 605 572 -1.523522e-06 0 573 573 2.362982e-08 0 604 573 1.531077e-06 0 605 573 -9.153169e-09 0 574 574 0.001366342 0 575 574 1.046865e-07 0 606 574 0.0002442895 0 607 574 -1.523522e-06 0 575 575 2.362982e-08 0 606 575 1.531077e-06 0 607 575 -9.153169e-09 0 576 576 0.004673756 0 577 576 0.0005680742 0 578 576 0.0005897329 -1.731494e-18 579 576 7.380828e-05 -1.236462e-19 577 577 0.00227359 0 578 577 7.380828e-05 -1.236462e-19 579 577 0.000295237 -4.793581e-19 608 577 0.0005681001 0 609 577 -0.0002767792 0 610 577 7.380805e-05 -1.009576e-19 611 577 -3.69527e-05 2.744492e-20 578 578 0.004673756 0 579 578 0.0005680742 0 579 579 0.00227359 0 608 579 7.380805e-05 1.009576e-19 609 579 -3.69527e-05 -2.744492e-20 610 579 0.0005681001 0 611 579 -0.0002767792 0 580 580 0.08755647 0 581 580 -5.017686e-06 0 582 580 8.96016e-05 6.056718e-18 583 580 3.584151e-07 3.622046e-21 584 580 0 -1.331165e-08 585 580 0 -1.474793e-08 586 580 0.003606408 -1.124674e-08 587 580 0.004040525 -1.244547e-08 588 580 0 -1.331165e-08 589 580 0 -1.474793e-08 590 580 0.003606408 -1.124674e-08 591 580 0.004040525 -1.244547e-08 612 580 0.01479024 0 613 580 -9.263707e-05 0 614 580 4.244014e-05 1.098018e-18 615 580 -2.521515e-07 -7.014803e-21 616 580 0 -1.350428e-08 617 580 0 6.66551e-10 618 580 0.003739339 -1.138416e-08 619 580 -0.0001811504 5.628714e-10 620 580 0 -1.350428e-08 621 580 0 6.66551e-10 622 580 0.003739339 -1.138416e-08 623 580 -0.0001811504 5.628714e-10 581 581 1.514496e-06 0 582 581 3.584151e-07 3.622046e-21 583 581 1.562391e-09 9.672735e-23 584 581 0 6.906452e-11 585 581 0 -9.615487e-14 586 581 -1.867803e-05 5.836234e-11 587 581 6.637266e-08 -6.861078e-14 588 581 0 6.906452e-11 589 581 0 -9.615487e-14 590 581 -1.867803e-05 5.836234e-11 591 581 6.637266e-08 -6.861078e-14 612 581 9.229928e-05 0 613 581 -5.54161e-07 0 614 581 2.784972e-07 6.732844e-21 615 581 -1.58995e-09 -4.13167e-23 616 581 0 -7.021877e-11 617 581 0 -4.898253e-14 618 581 1.947463e-05 -5.918572e-11 619 581 3.280326e-08 -3.590762e-14 620 581 0 -7.021877e-11 621 581 0 -4.898253e-14 622 581 1.947463e-05 -5.918572e-11 623 581 3.280326e-08 -3.590762e-14 582 582 0.08755647 0 583 582 -5.017686e-06 0 584 582 -0.003606408 -1.124674e-08 585 582 -0.004040525 -1.244547e-08 586 582 0 -1.331165e-08 587 582 0 -1.474793e-08 588 582 -0.003606408 -1.124674e-08 589 582 -0.004040525 -1.244547e-08 590 582 0 -1.331165e-08 591 582 0 -1.474793e-08 612 582 4.244014e-05 -1.098018e-18 613 582 -2.521515e-07 7.014803e-21 614 582 0.01479024 0 615 582 -9.263707e-05 0 616 582 -0.003739339 -1.138416e-08 617 582 0.0001811504 5.628714e-10 618 582 0 -1.350428e-08 619 582 0 6.66551e-10 620 582 -0.003739339 -1.138416e-08 621 582 0.0001811504 5.628714e-10 622 582 0 -1.350428e-08 623 582 0 6.66551e-10 583 583 1.514496e-06 0 584 583 1.867803e-05 5.836234e-11 585 583 -6.637266e-08 -6.861078e-14 586 583 0 6.906452e-11 587 583 0 -9.615487e-14 588 583 1.867803e-05 5.836234e-11 589 583 -6.637266e-08 -6.861078e-14 590 583 0 6.906452e-11 591 583 0 -9.615487e-14 612 583 2.784972e-07 -6.732844e-21 613 583 -1.58995e-09 4.13167e-23 614 583 9.229928e-05 0 615 583 -5.54161e-07 0 616 583 -1.947463e-05 -5.918572e-11 617 583 -3.280326e-08 -3.590762e-14 618 583 0 -7.021877e-11 619 583 0 -4.898253e-14 620 583 -1.947463e-05 -5.918572e-11 621 583 -3.280326e-08 -3.590762e-14 622 583 0 -7.021877e-11 623 583 0 -4.898253e-14 584 584 0.01286167 0 585 584 0.001655614 0 586 584 0.005070572 -1.545429e-17 587 584 0.0006698374 -1.973334e-18 588 584 0.01286167 0 589 584 0.001655614 0 590 584 0.005070572 -1.545429e-17 591 584 0.0006698374 -1.973334e-18 585 585 0.00662269 0 586 585 0.0006698374 -1.973334e-18 587 585 0.002680752 -8.537595e-18 588 585 0.001655614 0 589 585 0.00662269 0 590 585 0.0006698374 -1.973334e-18 591 585 0.002680752 -8.537595e-18 612 585 0 -6.87298e-10 613 585 0 4.898253e-14 614 585 0.0001950447 -5.780802e-10 615 585 -3.280326e-08 3.590762e-14 616 585 0.001655608 0 617 585 -0.000851917 0 618 585 0.0006698369 -2.25684e-18 619 585 -0.0003538387 1.19874e-18 620 585 0.001655608 0 621 585 -0.000851917 0 622 585 0.0006698369 -2.25684e-18 623 585 -0.0003538387 1.19874e-18 586 586 0.01286167 0 587 586 0.001655614 0 588 586 0.005070572 1.545429e-17 589 586 0.0006698374 1.973334e-18 590 586 0.01286167 0 591 586 0.001655614 0 587 587 0.00662269 0 588 587 0.0006698374 1.973334e-18 589 587 0.002680752 8.537595e-18 590 587 0.001655614 0 591 587 0.00662269 0 612 587 -0.0001950447 -5.780802e-10 613 587 3.280326e-08 3.590762e-14 614 587 0 -6.87298e-10 615 587 0 4.898253e-14 616 587 0.0006698369 2.25684e-18 617 587 -0.0003538387 -1.19874e-18 618 587 0.001655608 0 619 587 -0.000851917 0 620 587 0.0006698369 2.25684e-18 621 587 -0.0003538387 -1.19874e-18 622 587 0.001655608 0 623 587 -0.000851917 0 588 588 0.9826976 0 589 588 0.119421 0 590 588 0.2478545 -1.012351e-15 591 588 0.03101241 -1.115246e-16 589 589 0.4779567 0 590 589 0.03101241 -1.115246e-16 591 589 0.1240506 -4.259564e-16 612 589 0 -6.87298e-10 613 589 0 4.898253e-14 614 589 0.0001950447 -5.780802e-10 615 589 -3.280326e-08 3.590762e-14 616 589 0.001655608 0 617 589 -0.000851917 0 618 589 0.0006698369 -2.25684e-18 619 589 -0.0003538387 1.19874e-18 620 589 0.1194265 0 621 589 -0.05817408 0 622 589 0.03101232 -1.06033e-16 623 589 -0.01552221 4.061537e-17 590 590 0.9826976 0 591 590 0.119421 0 591 591 0.4779567 0 612 591 -0.0001950447 -5.780802e-10 613 591 3.280326e-08 3.590762e-14 614 591 0 -6.87298e-10 615 591 0 4.898253e-14 616 591 0.0006698369 2.25684e-18 617 591 -0.0003538387 -1.19874e-18 618 591 0.001655608 0 619 591 -0.000851917 0 620 591 0.03101232 1.06033e-16 621 591 -0.01552221 -4.061537e-17 622 591 0.1194265 0 623 591 -0.05817408 0 592 592 0.004673756 0 593 592 0.0005680742 0 594 592 0.0005897329 -1.731494e-18 595 592 7.380828e-05 -1.236462e-19 593 593 0.00227359 0 594 593 7.380828e-05 -1.236462e-19 595 593 0.000295237 -4.793581e-19 624 593 0.0005681001 0 625 593 -0.0002767792 0 626 593 7.380805e-05 -1.009576e-19 627 593 -3.69527e-05 2.744492e-20 594 594 0.004673756 0 595 594 0.0005680742 0 595 595 0.00227359 0 624 595 7.380805e-05 1.009576e-19 625 595 -3.69527e-05 -2.744492e-20 626 595 0.0005681001 0 627 595 -0.0002767792 0 596 596 0.0125649 0 597 596 0.001615305 0 598 596 0.003521854 -1.387555e-17 599 596 0.0004653293 -1.57982e-18 600 596 0 -1.118729e-08 601 596 0 5.806519e-11 602 596 0.003700096 -8.427892e-09 603 596 -1.915997e-05 4.37792e-11 597 597 0.006461187 0 598 597 0.0004653293 -1.57982e-18 599 597 0.001862308 -5.818102e-18 600 597 0 -1.236343e-08 601 597 0 -5.264846e-14 602 597 0.00415013 -9.264691e-09 603 597 7.245464e-08 4.527534e-15 628 597 0.0016153 0 629 597 -0.000829981 0 630 597 0.0004653286 -1.33246e-18 631 597 -0.000245858 6.083222e-19 632 597 0 5.712962e-10 633 597 0 -2.697683e-14 634 597 -0.0002011311 4.206571e-10 635 597 3.600984e-08 1.214861e-15 598 598 0.0125649 0 599 598 0.001615305 0 600 598 -0.003700096 -8.427892e-09 601 598 1.915997e-05 4.37792e-11 602 598 0 -1.118729e-08 603 598 0 5.806519e-11 599 599 0.006461187 0 600 599 -0.00415013 -9.264691e-09 601 599 -7.245464e-08 4.527534e-15 602 599 0 -1.236343e-08 603 599 0 -5.264846e-14 628 599 0.0004653286 1.33246e-18 629 599 -0.000245858 -6.083222e-19 630 599 0.0016153 0 631 599 -0.000829981 0 632 599 0.0002011311 4.206571e-10 633 599 -3.600984e-08 1.214861e-15 634 599 0 5.712962e-10 635 599 0 -2.697683e-14 600 600 0.09541692 0 601 600 -4.462172e-06 0 602 600 -0.01102546 1.611782e-17 603 600 3.026359e-07 1.808265e-20 628 600 0 1.129278e-08 629 600 0 -5.598701e-10 630 600 -0.00384521 8.418833e-09 631 600 0.0001858785 -4.211723e-10 632 600 0.01619209 0 633 600 -0.0001013814 0 634 600 -0.001885485 4.463302e-18 635 600 1.179921e-05 -2.707744e-20 601 601 1.650433e-06 0 602 601 3.026359e-07 1.808265e-20 603 601 -1.906529e-07 3.033402e-22 628 601 0 5.869722e-11 629 601 0 2.697683e-14 630 601 -2.002959e-05 4.372476e-11 631 601 -3.600984e-08 -1.214861e-15 632 601 0.0001010836 0 633 601 -6.066858e-07 0 634 601 -1.177689e-05 2.876713e-20 635 601 7.064632e-08 -1.675786e-22 602 602 0.09541692 0 603 602 -4.462172e-06 0 628 602 0.00384521 8.418833e-09 629 602 -0.0001858785 -4.211723e-10 630 602 0 1.129278e-08 631 602 0 -5.598701e-10 632 602 -0.001885485 -4.463302e-18 633 602 1.179921e-05 2.707744e-20 634 602 0.01619209 0 635 602 -0.0001013814 0 603 603 1.650433e-06 0 628 603 2.002959e-05 4.372476e-11 629 603 3.600984e-08 -1.214861e-15 630 603 0 5.869722e-11 631 603 0 2.697683e-14 632 603 -1.177689e-05 -2.876713e-20 633 603 7.064632e-08 1.675786e-22 634 603 0.0001010836 0 635 603 -6.066858e-07 0 604 604 0.001457118 0 605 604 1.068834e-07 0 636 604 0.0002601666 0 637 604 -1.622699e-06 0 605 605 2.519958e-08 0 636 605 1.630418e-06 0 637 605 -9.748003e-09 0 606 606 0.001457118 0 607 606 1.068834e-07 0 638 606 0.0002601666 0 639 606 -1.622699e-06 0 607 607 2.519958e-08 0 638 607 1.630418e-06 0 639 607 -9.748003e-09 0 608 608 0.004427554 0 609 608 0.0005390167 0 610 608 0.0005912396 -3.468364e-19 611 608 7.400273e-05 -8.822057e-21 609 609 0.002157164 0 610 609 7.400273e-05 -8.822057e-21 611 609 0.0002960149 -1.706268e-19 640 609 0.0005390373 0 641 609 -0.000262987 0 642 609 7.40025e-05 -2.086579e-20 643 609 -3.705304e-05 6.543608e-20 610 610 0.004427554 0 611 610 0.0005390167 0 611 611 0.002157164 0 640 611 7.40025e-05 2.086579e-20 641 611 -3.705304e-05 -6.543608e-20 642 611 0.0005390373 0 643 611 -0.000262987 0 612 612 0.08349258 0 613 612 -4.468208e-06 0 614 612 0.0004061063 2.836434e-18 615 612 3.792123e-07 -1.034383e-20 616 612 0 -1.357218e-08 617 612 0 -1.50383e-08 618 612 0.003784811 -1.143393e-08 619 612 0.00423502 -1.265829e-08 620 612 0 -1.357218e-08 621 612 0 -1.50383e-08 622 612 0.003784811 -1.143393e-08 623 612 0.00423502 -1.265829e-08 644 612 0.01412637 0 645 612 -8.846822e-05 0 646 612 9.876253e-05 -2.682394e-19 647 612 -6.035362e-07 1.391136e-21 648 612 0 -1.377152e-08 649 612 0 6.796327e-10 650 612 0.003914516 -1.158364e-08 651 612 -0.0001900559 5.723267e-10 652 612 0 -1.377152e-08 653 612 0 6.796327e-10 654 612 0.003914516 -1.158364e-08 655 612 -0.0001900559 5.723267e-10 613 613 1.444155e-06 0 614 613 3.792123e-07 -1.034383e-20 615 613 7.035634e-09 4.548087e-23 616 613 0 7.04147e-11 617 613 0 -9.949522e-14 618 613 -1.960584e-05 5.932935e-11 619 613 6.475775e-08 -7.473677e-14 620 613 0 7.04147e-11 621 613 0 -9.949522e-14 622 613 -1.960584e-05 5.932935e-11 623 613 6.475775e-08 -7.473677e-14 644 613 8.816664e-05 0 645 613 -5.292844e-07 0 646 613 6.313633e-07 -1.981959e-21 647 613 -3.700238e-09 1.02359e-23 648 613 0 -7.160914e-11 649 613 0 -5.05558e-14 650 613 2.038312e-05 -6.022638e-11 651 613 3.197356e-08 -3.882453e-14 652 613 0 -7.160914e-11 653 613 0 -5.05558e-14 654 613 2.038312e-05 -6.022638e-11 655 613 3.197356e-08 -3.882453e-14 614 614 0.08349258 0 615 614 -4.468208e-06 0 616 614 -0.003784811 -1.143393e-08 617 614 -0.00423502 -1.265829e-08 618 614 0 -1.357218e-08 619 614 0 -1.50383e-08 620 614 -0.003784811 -1.143393e-08 621 614 -0.00423502 -1.265829e-08 622 614 0 -1.357218e-08 623 614 0 -1.50383e-08 644 614 9.876253e-05 2.682394e-19 645 614 -6.035362e-07 -1.391136e-21 646 614 0.01412637 0 647 614 -8.846822e-05 0 648 614 -0.003914516 -1.158364e-08 649 614 0.0001900559 5.723267e-10 650 614 0 -1.377152e-08 651 614 0 6.796327e-10 652 614 -0.003914516 -1.158364e-08 653 614 0.0001900559 5.723267e-10 654 614 0 -1.377152e-08 655 614 0 6.796327e-10 615 615 1.444155e-06 0 616 615 1.960584e-05 5.932935e-11 617 615 -6.475775e-08 -7.473677e-14 618 615 0 7.04147e-11 619 615 0 -9.949522e-14 620 615 1.960584e-05 5.932935e-11 621 615 -6.475775e-08 -7.473677e-14 622 615 0 7.04147e-11 623 615 0 -9.949522e-14 644 615 6.313633e-07 1.981959e-21 645 615 -3.700238e-09 -1.02359e-23 646 615 8.816664e-05 0 647 615 -5.292844e-07 0 648 615 -2.038312e-05 -6.022638e-11 649 615 -3.197356e-08 -3.882453e-14 650 615 0 -7.160914e-11 651 615 0 -5.05558e-14 652 615 -2.038312e-05 -6.022638e-11 653 615 -3.197356e-08 -3.882453e-14 654 615 0 -7.160914e-11 655 615 0 -5.05558e-14 616 616 0.01363047 0 617 616 0.001752061 0 618 616 0.0056603 -2.01821e-17 619 616 0.0007455178 -2.538122e-18 620 616 0.01363047 0 621 616 0.001752061 0 622 616 0.0056603 -2.01821e-17 623 616 0.0007455178 -2.538122e-18 617 617 0.007008489 0 618 617 0.0007455178 -2.538122e-18 619 617 0.002983464 -8.707314e-18 620 617 0.001752061 0 621 617 0.007008489 0 622 617 0.0007455178 -2.538122e-18 623 617 0.002983464 -8.707314e-18 644 617 0 -7.010462e-10 645 617 0 5.05558e-14 646 617 0.0002035989 -5.887711e-10 647 617 -3.197356e-08 3.882453e-14 648 617 0.001752054 0 649 617 -0.0009003224 0 650 617 0.0007455171 -1.932321e-18 651 617 -0.0003926543 8.608634e-19 652 617 0.001752054 0 653 617 -0.0009003224 0 654 617 0.0007455171 -1.932321e-18 655 617 -0.0003926543 8.608634e-19 618 618 0.01363047 0 619 618 0.001752061 0 620 618 0.0056603 2.01821e-17 621 618 0.0007455178 2.538122e-18 622 618 0.01363047 0 623 618 0.001752061 0 619 619 0.007008489 0 620 619 0.0007455178 2.538122e-18 621 619 0.002983464 8.707314e-18 622 619 0.001752061 0 623 619 0.007008489 0 644 619 -0.0002035989 -5.887711e-10 645 619 3.197356e-08 3.882453e-14 646 619 0 -7.010462e-10 647 619 0 5.05558e-14 648 619 0.0007455171 1.932321e-18 649 619 -0.0003926543 -8.608634e-19 650 619 0.001752054 0 651 619 -0.0009003224 0 652 619 0.0007455171 1.932321e-18 653 619 -0.0003926543 -8.608634e-19 654 619 0.001752054 0 655 619 -0.0009003224 0 620 620 0.9305929 0 621 620 0.1132699 0 622 620 0.2483545 -6.412481e-16 623 620 0.03107652 -5.642845e-17 621 621 0.4533105 0 622 621 0.03107652 -5.642845e-17 623 621 0.1243071 -2.438997e-16 644 621 0 -7.010462e-10 645 621 0 5.05558e-14 646 621 0.0002035989 -5.887711e-10 647 621 -3.197356e-08 3.882453e-14 648 621 0.001752054 0 649 621 -0.0009003224 0 650 621 0.0007455171 -1.932321e-18 651 621 -0.0003926543 8.608634e-19 652 621 0.1132742 0 653 621 -0.05525363 0 654 621 0.03107643 -5.372893e-17 655 621 -0.01555506 3.095197e-17 622 622 0.9305929 0 623 622 0.1132699 0 623 623 0.4533105 0 644 623 -0.0002035989 -5.887711e-10 645 623 3.197356e-08 3.882453e-14 646 623 0 -7.010462e-10 647 623 0 5.05558e-14 648 623 0.0007455171 1.932321e-18 649 623 -0.0003926543 -8.608634e-19 650 623 0.001752054 0 651 623 -0.0009003224 0 652 623 0.03107643 5.372893e-17 653 623 -0.01555506 -3.095197e-17 654 623 0.1132742 0 655 623 -0.05525363 0 624 624 0.004427554 0 625 624 0.0005390167 0 626 624 0.0005912396 -3.468364e-19 627 624 7.400273e-05 -8.822057e-21 625 625 0.002157164 0 626 625 7.400273e-05 -8.822057e-21 627 625 0.0002960149 -1.706268e-19 656 625 0.0005390373 0 657 625 -0.000262987 0 658 625 7.40025e-05 -2.086579e-20 659 625 -3.705304e-05 6.543608e-20 626 626 0.004427554 0 627 626 0.0005390167 0 627 627 0.002157164 0 656 627 7.40025e-05 2.086579e-20 657 627 -3.705304e-05 -6.543608e-20 658 627 0.0005390373 0 659 627 -0.000262987 0 628 628 0.01327971 0 629 628 0.001704624 0 630 628 0.003932936 -8.917779e-18 631 628 0.0005181033 -1.100829e-18 632 628 0 -1.133018e-08 633 628 0 5.880513e-11 634 628 0.003895128 -8.417146e-09 635 628 -2.017363e-05 4.37199e-11 629 629 0.00681846 0 630 629 0.0005181033 -1.100829e-18 631 629 0.002073399 -5.573135e-18 632 629 0 -1.252332e-08 633 629 0 -5.501207e-14 634 629 0.004363644 -9.257389e-09 635 629 7.150654e-08 5.669496e-16 660 629 0.001704619 0 661 629 -0.000874623 0 662 629 0.0005181025 -1.480722e-18 663 629 -0.0002729359 9.771171e-19 664 629 0 5.789434e-10 665 629 0 -2.805965e-14 666 629 -0.0002106682 4.209678e-10 667 629 3.552297e-08 -6.214899e-16 630 630 0.01327971 0 631 630 0.001704624 0 632 630 -0.003895128 -8.417146e-09 633 630 2.017363e-05 4.37199e-11 634 630 0 -1.133018e-08 635 630 0 5.880513e-11 631 631 0.00681846 0 632 631 -0.004363644 -9.257389e-09 633 631 -7.150654e-08 5.669496e-16 634 631 0 -1.252332e-08 635 631 0 -5.501207e-14 660 631 0.0005181025 1.480722e-18 661 631 -0.0002729359 -9.771171e-19 662 631 0.001704619 0 663 631 -0.000874623 0 664 631 0.0002106682 4.209678e-10 665 631 -3.552297e-08 -6.214899e-16 666 631 0 5.789434e-10 667 631 0 -2.805965e-14 632 632 0.09183341 0 633 632 -3.904171e-06 0 634 632 -0.01075731 2.970105e-17 635 632 3.225289e-07 -8.670186e-23 660 632 0 1.144042e-08 661 632 0 -5.670585e-10 662 632 -0.004038353 8.416037e-09 663 632 0.0001956217 -4.207051e-10 664 632 0.015612 0 665 632 -9.773603e-05 0 666 632 -0.001837592 4.834939e-18 667 632 1.150046e-05 -3.039603e-20 633 633 1.588399e-06 0 634 633 3.225289e-07 -8.670186e-23 635 633 -1.860144e-07 4.911313e-22 660 633 0 5.946562e-11 661 633 0 2.805965e-14 662 633 -2.103193e-05 4.37131e-11 663 633 -3.552297e-08 6.214899e-16 664 633 9.747506e-05 0 665 633 -5.849482e-07 0 666 633 -1.147672e-05 3.00296e-20 667 633 6.885145e-08 -1.808623e-22 634 634 0.09183341 0 635 634 -3.904171e-06 0 660 634 0.004038353 8.416037e-09 661 634 -0.0001956217 -4.207051e-10 662 634 0 1.144042e-08 663 634 0 -5.670585e-10 664 634 -0.001837592 -4.834939e-18 665 634 1.150046e-05 3.039603e-20 666 634 0.015612 0 667 634 -9.773603e-05 0 635 635 1.588399e-06 0 660 635 2.103193e-05 4.37131e-11 661 635 3.552297e-08 6.214899e-16 662 635 0 5.946562e-11 663 635 0 2.805965e-14 664 635 -1.147672e-05 -3.00296e-20 665 635 6.885145e-08 1.808623e-22 666 635 9.747506e-05 0 667 635 -5.849482e-07 0 636 636 0.001549859 0 637 636 1.092667e-07 0 668 636 0.0002763979 0 669 636 -1.724083e-06 0 637 637 2.680332e-08 0 668 637 1.731979e-06 0 669 637 -1.03561e-08 0 638 638 0.001549859 0 639 638 1.092667e-07 0 670 638 0.0002763979 0 671 638 -1.724083e-06 0 639 639 2.680332e-08 0 670 639 1.731979e-06 0 671 639 -1.03561e-08 0 640 640 0.004207011 0 641 640 0.0005129106 0 642 640 0.0005928451 -1.005593e-18 643 640 7.420968e-05 -2.408785e-19 641 641 0.002052581 0 642 641 7.420968e-05 -2.408785e-19 643 641 0.0002968428 -9.63051e-19 672 641 0.0005129271 0 673 641 -0.0002505658 0 674 641 7.420944e-05 -2.851466e-19 675 641 -3.715973e-05 1.359382e-19 642 642 0.004207011 0 643 642 0.0005129106 0 643 643 0.002052581 0 672 643 7.420944e-05 2.851466e-19 673 643 -3.715973e-05 -1.359382e-19 674 643 0.0005129271 0 675 643 -0.0002505658 0 644 644 0.07986473 0 645 644 -3.998776e-06 0 646 644 0.0007404214 -2.412832e-18 647 644 3.999479e-07 1.829007e-21 648 644 0 -1.38416e-08 649 644 0 -1.533801e-08 650 644 0.003958838 -1.163746e-08 651 644 0.004424603 -1.288843e-08 652 644 0 -1.38416e-08 653 644 0 -1.533801e-08 654 644 0.003958838 -1.163746e-08 655 644 0.004424603 -1.288843e-08 676 644 0.01353227 0 677 644 -8.473818e-05 0 678 644 0.0001581664 -1.384375e-19 679 644 -9.741818e-07 1.041217e-21 680 644 0 -1.404689e-08 681 644 0 6.931512e-10 682 644 0.00408515 -1.179832e-08 683 644 -0.0001987417 5.825874e-10 684 644 0 -1.404689e-08 685 644 0 6.931512e-10 686 644 0.00408515 -1.179832e-08 687 644 -0.0001987417 5.825874e-10 645 645 1.381366e-06 0 646 645 3.999479e-07 1.829007e-21 647 645 1.281692e-08 -3.241076e-23 648 645 0 7.181136e-11 649 645 0 -1.024578e-13 650 645 -2.051101e-05 6.038168e-11 651 645 6.30679e-08 -8.029588e-14 652 645 0 7.181136e-11 653 645 0 -1.024578e-13 654 645 -2.051101e-05 6.038168e-11 655 645 6.30679e-08 -8.029588e-14 676 645 8.446765e-05 0 677 645 -5.070222e-07 0 678 645 1.003495e-06 -6.840299e-22 679 645 -5.925956e-09 5.130845e-24 680 645 0 -7.304143e-11 681 645 0 -5.195846e-14 682 645 2.126793e-05 -6.134552e-11 683 645 3.110092e-08 -4.148536e-14 684 645 0 -7.304143e-11 685 645 0 -5.195846e-14 686 645 2.126793e-05 -6.134552e-11 687 645 3.110092e-08 -4.148536e-14 646 646 0.07986473 0 647 646 -3.998776e-06 0 648 646 -0.003958838 -1.163746e-08 649 646 -0.004424603 -1.288843e-08 650 646 0 -1.38416e-08 651 646 0 -1.533801e-08 652 646 -0.003958838 -1.163746e-08 653 646 -0.004424603 -1.288843e-08 654 646 0 -1.38416e-08 655 646 0 -1.533801e-08 676 646 0.0001581664 1.384375e-19 677 646 -9.741818e-07 -1.041217e-21 678 646 0.01353227 0 679 646 -8.473818e-05 0 680 646 -0.00408515 -1.179832e-08 681 646 0.0001987417 5.825874e-10 682 646 0 -1.404689e-08 683 646 0 6.931512e-10 684 646 -0.00408515 -1.179832e-08 685 646 0.0001987417 5.825874e-10 686 646 0 -1.404689e-08 687 646 0 6.931512e-10 647 647 1.381366e-06 0 648 647 2.051101e-05 6.038168e-11 649 647 -6.30679e-08 -8.029588e-14 650 647 0 7.181136e-11 651 647 0 -1.024578e-13 652 647 2.051101e-05 6.038168e-11 653 647 -6.30679e-08 -8.029588e-14 654 647 0 7.181136e-11 655 647 0 -1.024578e-13 676 647 1.003495e-06 6.840299e-22 677 647 -5.925956e-09 -5.130845e-24 678 647 8.446765e-05 0 679 647 -5.070222e-07 0 680 647 -2.126793e-05 -6.134552e-11 681 647 -3.110092e-08 -4.148536e-14 682 647 0 -7.304143e-11 683 647 0 -5.195846e-14 684 647 -2.126793e-05 -6.134552e-11 685 647 -3.110092e-08 -4.148536e-14 686 647 0 -7.304143e-11 687 647 0 -5.195846e-14 648 648 0.01440494 0 649 648 0.001849236 0 650 648 0.006281358 -1.194315e-17 651 648 0.0008251001 -1.511132e-18 652 648 0.01440494 0 653 648 0.001849236 0 654 648 0.006281358 -1.194315e-17 655 648 0.0008251001 -1.511132e-18 649 649 0.007397204 0 650 649 0.0008251001 -1.511132e-18 651 649 0.003301782 -8.743388e-18 652 649 0.001849236 0 653 649 0.007397204 0 654 649 0.0008251001 -1.511132e-18 655 649 0.003301782 -8.743388e-18 676 649 0 -7.15159e-10 677 649 0 5.195846e-14 678 649 0.000211915 -6.00159e-10 679 649 -3.110092e-08 4.148536e-14 680 649 0.001849229 0 681 649 -0.0009491022 0 682 649 0.0008250993 -2.13808e-18 683 649 -0.0004334134 1.968899e-18 684 649 0.001849229 0 685 649 -0.0009491022 0 686 649 0.0008250993 -2.13808e-18 687 649 -0.0004334134 1.968899e-18 650 650 0.01440494 0 651 650 0.001849236 0 652 650 0.006281358 1.194315e-17 653 650 0.0008251001 1.511132e-18 654 650 0.01440494 0 655 650 0.001849236 0 651 651 0.007397204 0 652 651 0.0008251001 1.511132e-18 653 651 0.003301782 8.743388e-18 654 651 0.001849236 0 655 651 0.007397204 0 676 651 -0.000211915 -6.00159e-10 677 651 3.110092e-08 4.148536e-14 678 651 0 -7.15159e-10 679 651 0 5.195846e-14 680 651 0.0008250993 2.13808e-18 681 651 -0.0004334134 -1.968899e-18 682 651 0.001849229 0 683 651 -0.0009491022 0 684 651 0.0008250993 2.13808e-18 685 651 -0.0004334134 -1.968899e-18 686 651 0.001849229 0 687 651 -0.0009491022 0 652 652 0.8838938 0 653 652 0.1077403 0 654 652 0.2488801 -4.697834e-16 655 652 0.03114383 -7.007893e-17 653 653 0.4311591 0 654 653 0.03114383 -7.007893e-17 655 653 0.1245763 -3.078038e-16 676 653 0 -7.15159e-10 677 653 0 5.195846e-14 678 653 0.000211915 -6.00159e-10 679 653 -3.110092e-08 4.148536e-14 680 653 0.001849229 0 681 653 -0.0009491022 0 682 653 0.0008250993 -2.13808e-18 683 653 -0.0004334134 1.968899e-18 684 653 0.1077438 0 685 653 -0.05262195 0 686 653 0.03114374 -7.908311e-17 687 653 -0.0155895 5.020766e-17 654 654 0.8838938 0 655 654 0.1077403 0 655 655 0.4311591 0 676 655 -0.000211915 -6.00159e-10 677 655 3.110092e-08 4.148536e-14 678 655 0 -7.15159e-10 679 655 0 5.195846e-14 680 655 0.0008250993 2.13808e-18 681 655 -0.0004334134 -1.968899e-18 682 655 0.001849229 0 683 655 -0.0009491022 0 684 655 0.03114374 7.908311e-17 685 655 -0.0155895 -5.020766e-17 686 655 0.1077438 0 687 655 -0.05262195 0 656 656 0.004207011 0 657 656 0.0005129106 0 658 656 0.0005928451 -1.005593e-18 659 656 7.420968e-05 -2.408785e-19 657 657 0.002052581 0 658 657 7.420968e-05 -2.408785e-19 659 657 0.0002968428 -9.63051e-19 688 657 0.0005129271 0 689 657 -0.0002505658 0 690 657 7.420944e-05 -2.851466e-19 691 657 -3.715973e-05 1.359382e-19 658 658 0.004207011 0 659 658 0.0005129106 0 659 659 0.002052581 0 688 659 7.420944e-05 2.851466e-19 689 659 -3.715973e-05 -1.359382e-19 690 659 0.0005129271 0 691 659 -0.0002505658 0 660 660 0.01399399 0 661 660 0.001793873 0 662 660 0.004366187 -1.658124e-17 663 660 0.0005736413 -2.427746e-18 664 660 0 -1.147931e-08 665 660 0 5.957786e-11 666 660 0.004087596 -8.416897e-09 667 660 -2.117402e-05 4.371559e-11 661 661 0.007175457 0 662 661 0.0005736413 -2.427746e-18 663 661 0.002295545 -8.229644e-18 664 661 0 -1.268964e-08 665 661 0 -5.699115e-14 666 661 0.004574278 -9.26099e-09 667 661 7.052107e-08 -2.838379e-15 692 661 0.001793868 0 693 661 -0.0009192296 0 694 661 0.0005736404 -2.081634e-18 695 661 -0.0003013923 7.285328e-19 696 661 0 5.868216e-10 697 661 0 -2.896826e-14 698 661 -0.0002200652 4.216862e-10 699 661 3.500906e-08 -2.20766e-15 662 662 0.01399399 0 663 662 0.001793873 0 664 662 -0.004087596 -8.416897e-09 665 662 2.117402e-05 4.371559e-11 666 662 0 -1.147931e-08 667 662 0 5.957786e-11 663 663 0.007175457 0 664 663 -0.004574278 -9.26099e-09 665 663 -7.052107e-08 -2.838379e-15 666 663 0 -1.268964e-08 667 663 0 -5.699115e-14 692 663 0.0005736404 2.081634e-18 693 663 -0.0003013923 -7.285328e-19 694 663 0.001793868 0 695 663 -0.0009192296 0 696 663 0.0002200652 4.216862e-10 697 663 -3.500906e-08 -2.20766e-15 698 663 0 5.868216e-10 699 663 0 -2.896826e-14 664 664 0.08869355 0 665 664 -3.425513e-06 0 666 664 -0.01047195 3.072659e-17 667 664 3.427601e-07 1.363598e-20 692 664 0 1.159353e-08 693 664 0 -5.745518e-10 694 664 -0.004228836 8.422621e-09 695 664 0.0002052365 -4.207515e-10 696 664 0.01510305 0 697 664 -9.453801e-05 0 698 664 -0.001786693 6.559475e-18 699 664 1.118294e-05 -4.038213e-20 665 665 1.534048e-06 0 666 665 3.427601e-07 1.363598e-20 667 665 -1.810783e-07 5.481525e-22 692 665 0 6.026217e-11 693 665 0 2.896826e-14 694 665 -2.202041e-05 4.374975e-11 695 665 -3.500906e-08 2.20766e-15 696 665 9.430878e-05 0 697 665 -5.658763e-07 0 698 665 -1.115773e-05 4.16548e-20 699 665 6.694394e-08 -2.459439e-22 666 666 0.08869355 0 667 666 -3.425513e-06 0 692 666 0.004228836 8.422621e-09 693 666 -0.0002052365 -4.207515e-10 694 666 0 1.159353e-08 695 666 0 -5.745518e-10 696 666 -0.001786693 -6.559475e-18 697 666 1.118294e-05 4.038213e-20 698 666 0.01510305 0 699 666 -9.453801e-05 0 667 667 1.534048e-06 0 692 667 2.202041e-05 4.374975e-11 693 667 3.500906e-08 2.20766e-15 694 667 0 6.026217e-11 695 667 0 2.896826e-14 696 667 -1.115773e-05 -4.16548e-20 697 667 6.694394e-08 2.459439e-22 698 667 9.430878e-05 0 699 667 -5.658763e-07 0 668 668 0.001644729 0 669 668 1.118481e-07 0 700 668 0.0002930128 0 701 668 -1.827857e-06 0 669 669 2.844389e-08 0 700 669 1.835945e-06 0 701 669 -1.097856e-08 0 670 670 0.001644729 0 671 670 1.118481e-07 0 702 670 0.0002930128 0 703 670 -1.827857e-06 0 671 671 2.844389e-08 0 702 671 1.835945e-06 0 703 671 -1.097856e-08 0 672 672 0.004008381 0 673 672 0.0004893362 0 674 672 0.000594552 -2.363794e-18 675 672 7.442949e-05 -2.58606e-19 673 673 0.001958154 0 674 673 7.442949e-05 -2.58606e-19 675 673 0.0002977222 -8.369059e-19 704 673 0.0004893496 0 705 673 -0.0002393249 0 706 673 7.442925e-05 -1.667545e-19 707 673 -3.727295e-05 6.738347e-20 674 674 0.004008381 0 675 674 0.0004893362 0 675 675 0.001958154 0 704 675 7.442925e-05 1.667545e-19 705 675 -3.727295e-05 -6.738347e-20 706 675 0.0004893496 0 707 675 -0.0002393249 0 676 676 0.07661073 0 677 676 -3.594989e-06 0 678 676 0.001092599 3.995183e-19 679 676 4.208643e-07 1.70103e-21 680 676 0 -1.411891e-08 681 676 0 -1.564604e-08 682 676 0.004128263 -1.185582e-08 683 676 0.004609002 -1.313435e-08 684 676 0 -1.411891e-08 685 676 0 -1.564604e-08 686 676 0.004128263 -1.185582e-08 687 676 0.004609002 -1.313435e-08 708 676 0.01299819 0 709 676 -8.138551e-05 0 710 676 0.0002206775 2.228423e-19 711 676 -1.364243e-06 -1.257178e-21 712 676 0 -1.432952e-08 713 676 0 7.070584e-10 714 676 0.004250945 -1.20269e-08 715 676 -0.0002071961 5.935811e-10 716 676 0 -1.432952e-08 717 676 0 7.070584e-10 718 676 0.004250945 -1.20269e-08 719 676 -0.0002071961 5.935811e-10 677 677 1.32505e-06 0 678 677 4.208643e-07 1.70103e-21 679 677 1.890715e-08 5.537601e-24 680 677 0 7.324926e-11 681 677 0 -1.051117e-13 682 677 -2.139234e-05 6.151147e-11 683 677 6.124755e-08 -8.53922e-14 684 677 0 7.324926e-11 685 677 0 -1.051117e-13 686 677 -2.139234e-05 6.151147e-11 687 677 6.124755e-08 -8.53922e-14 708 677 8.11418e-05 0 709 677 -4.87009e-07 0 710 677 1.395059e-06 1.518641e-21 711 677 -8.268068e-09 -8.246429e-24 712 677 0 -7.451125e-11 713 677 0 -5.322061e-14 714 677 2.212751e-05 -6.253655e-11 715 677 3.016908e-08 -4.393576e-14 716 677 0 -7.451125e-11 717 677 0 -5.322061e-14 718 677 2.212751e-05 -6.253655e-11 719 677 3.016908e-08 -4.393576e-14 678 678 0.07661073 0 679 678 -3.594989e-06 0 680 678 -0.004128263 -1.185582e-08 681 678 -0.004609002 -1.313435e-08 682 678 0 -1.411891e-08 683 678 0 -1.564604e-08 684 678 -0.004128263 -1.185582e-08 685 678 -0.004609002 -1.313435e-08 686 678 0 -1.411891e-08 687 678 0 -1.564604e-08 708 678 0.0002206775 -2.228423e-19 709 678 -1.364243e-06 1.257178e-21 710 678 0.01299819 0 711 678 -8.138551e-05 0 712 678 -0.004250945 -1.20269e-08 713 678 0.0002071961 5.935811e-10 714 678 0 -1.432952e-08 715 678 0 7.070584e-10 716 678 -0.004250945 -1.20269e-08 717 678 0.0002071961 5.935811e-10 718 678 0 -1.432952e-08 719 678 0 7.070584e-10 679 679 1.32505e-06 0 680 679 2.139234e-05 6.151147e-11 681 679 -6.124755e-08 -8.53922e-14 682 679 0 7.324926e-11 683 679 0 -1.051117e-13 684 679 2.139234e-05 6.151147e-11 685 679 -6.124755e-08 -8.53922e-14 686 679 0 7.324926e-11 687 679 0 -1.051117e-13 708 679 1.395059e-06 -1.518641e-21 709 679 -8.268068e-09 8.246429e-24 710 679 8.11418e-05 0 711 679 -4.87009e-07 0 712 679 -2.212751e-05 -6.253655e-11 713 679 -3.016908e-08 -4.393576e-14 714 679 0 -7.451125e-11 715 679 0 -5.322061e-14 716 679 -2.212751e-05 -6.253655e-11 717 679 -3.016908e-08 -4.393576e-14 718 679 0 -7.451125e-11 719 679 0 -5.322061e-14 680 680 0.01518541 0 681 680 0.00194718 0 682 680 0.006933512 -3.237464e-17 683 680 0.0009085544 -5.737515e-18 684 680 0.01518541 0 685 680 0.00194718 0 686 680 0.006933512 -3.237464e-17 687 680 0.0009085544 -5.737515e-18 681 681 0.007788995 0 682 681 0.0009085544 -5.737515e-18 683 681 0.003635587 -2.111996e-17 684 681 0.00194718 0 685 681 0.007788995 0 686 681 0.0009085544 -5.737515e-18 687 681 0.003635587 -2.111996e-17 708 681 0 -7.296009e-10 709 681 0 5.322061e-14 710 681 0.0002199749 -6.121907e-10 711 681 -3.016908e-08 4.393576e-14 712 681 0.001947173 0 713 681 -0.0009982765 0 714 681 0.0009085533 -5.741394e-18 715 681 -0.0004761006 2.501735e-18 716 681 0.001947173 0 717 681 -0.0009982765 0 718 681 0.0009085533 -5.741394e-18 719 681 -0.0004761006 2.501735e-18 682 682 0.01518541 0 683 682 0.00194718 0 684 682 0.006933512 3.237464e-17 685 682 0.0009085544 5.737515e-18 686 682 0.01518541 0 687 682 0.00194718 0 683 683 0.007788995 0 684 683 0.0009085544 5.737515e-18 685 683 0.003635587 2.111996e-17 686 683 0.00194718 0 687 683 0.007788995 0 708 683 -0.0002199749 -6.121907e-10 709 683 3.016908e-08 4.393576e-14 710 683 0 -7.296009e-10 711 683 0 5.322061e-14 712 683 0.0009085533 5.741394e-18 713 683 -0.0004761006 -2.501735e-18 714 683 0.001947173 0 715 683 -0.0009982765 0 716 683 0.0009085533 5.741394e-18 717 683 -0.0004761006 -2.501735e-18 718 683 0.001947173 0 719 683 -0.0009982765 0 684 684 0.8418097 0 685 684 0.102744 0 686 684 0.2494312 -8.237392e-16 687 684 0.03121428 -1.217475e-16 685 685 0.4111462 0 686 685 0.03121428 -1.217475e-16 687 685 0.1248581 -4.482778e-16 708 685 0 -7.296009e-10 709 685 0 5.322061e-14 710 685 0.0002199749 -6.121907e-10 711 685 -3.016908e-08 4.393576e-14 712 685 0.001947173 0 713 685 -0.0009982765 0 714 685 0.0009085533 -5.741394e-18 715 685 -0.0004761006 2.501735e-18 716 685 0.1027468 0 717 685 -0.05023875 0 718 685 0.03121419 -1.261926e-16 719 685 -0.01562551 4.093943e-17 686 686 0.8418097 0 687 686 0.102744 0 687 687 0.4111462 0 708 687 -0.0002199749 -6.121907e-10 709 687 3.016908e-08 4.393576e-14 710 687 0 -7.296009e-10 711 687 0 5.322061e-14 712 687 0.0009085533 5.741394e-18 713 687 -0.0004761006 -2.501735e-18 714 687 0.001947173 0 715 687 -0.0009982765 0 716 687 0.03121419 1.261926e-16 717 687 -0.01562551 -4.093943e-17 718 687 0.1027468 0 719 687 -0.05023875 0 688 688 0.004008381 0 689 688 0.0004893362 0 690 688 0.000594552 -2.363794e-18 691 688 7.442949e-05 -2.58606e-19 689 689 0.001958154 0 690 689 7.442949e-05 -2.58606e-19 691 689 0.0002977222 -8.369059e-19 720 689 0.0004893496 0 721 689 -0.0002393249 0 722 689 7.442925e-05 -1.667545e-19 723 689 -3.727295e-05 6.738347e-20 690 690 0.004008381 0 691 690 0.0004893362 0 691 691 0.001958154 0 720 691 7.442925e-05 1.667545e-19 721 691 -3.727295e-05 -6.738347e-20 722 691 0.0004893496 0 723 691 -0.0002393249 0 692 692 0.01470769 0 693 692 0.00188305 0 694 692 0.004821494 -1.116781e-17 695 692 0.0006319289 -8.324972e-19 696 692 0 -1.163368e-08 697 692 0 6.037805e-11 698 692 0.004277366 -8.42568e-09 699 692 -2.216044e-05 4.375858e-11 693 693 0.007532163 0 694 693 0.0006319289 -8.324972e-19 695 693 0.00252869 -4.28147e-18 696 693 0 -1.286135e-08 697 693 0 -5.865422e-14 698 693 0.004781854 -9.274007e-09 699 693 6.942782e-08 -5.793253e-15 724 693 0.001883045 0 725 693 -0.0009637989 0 726 693 0.0006319278 -9.187266e-19 727 693 -0.0003312196 6.836136e-19 728 693 0 5.948944e-10 729 693 0 -2.97325e-14 730 693 -0.0002293066 4.227611e-10 731 693 3.444727e-08 -3.589826e-15 694 694 0.01470769 0 695 694 0.00188305 0 696 694 -0.004277366 -8.42568e-09 697 694 2.216044e-05 4.375858e-11 698 694 0 -1.163368e-08 699 694 0 6.037805e-11 695 695 0.007532163 0 696 695 -0.004781854 -9.274007e-09 697 695 -6.942782e-08 -5.793253e-15 698 695 0 -1.286135e-08 699 695 0 -5.865422e-14 724 695 0.0006319278 9.187266e-19 725 695 -0.0003312196 -6.836136e-19 726 695 0.001883045 0 727 695 -0.0009637989 0 728 695 0.0002293066 4.227611e-10 729 695 -3.444727e-08 -3.589826e-15 730 695 0 5.948944e-10 731 695 0 -2.97325e-14 696 696 0.08593572 0 697 696 -3.011912e-06 0 698 696 -0.01016897 4.270028e-17 699 696 3.636154e-07 7.240264e-21 724 696 0 1.175124e-08 725 696 0 -5.823008e-10 726 696 -0.004416434 8.437332e-09 727 696 0.0002147157 -4.212408e-10 728 696 0.01465559 0 729 696 -9.172646e-05 0 730 696 -0.001732695 7.803887e-18 731 696 1.084607e-05 -4.861523e-20 697 697 1.486312e-06 0 698 697 3.636154e-07 7.240264e-21 699 697 -1.758375e-07 7.294275e-22 724 697 0 6.108237e-11 725 697 0 2.97325e-14 726 697 -2.299382e-05 4.382828e-11 727 697 -3.444727e-08 3.589826e-15 728 697 9.152478e-05 0 729 697 -5.49108e-07 0 730 697 -1.081935e-05 4.895801e-20 731 697 6.492038e-08 -2.923397e-22 698 698 0.08593572 0 699 698 -3.011912e-06 0 724 698 0.004416434 8.437332e-09 725 698 -0.0002147157 -4.212408e-10 726 698 0 1.175124e-08 727 698 0 -5.823008e-10 728 698 -0.001732695 -7.803887e-18 729 698 1.084607e-05 4.861523e-20 730 698 0.01465559 0 731 698 -9.172646e-05 0 699 699 1.486312e-06 0 724 699 2.299382e-05 4.382828e-11 725 699 3.444727e-08 3.589826e-15 726 699 0 6.108237e-11 727 699 0 2.97325e-14 728 699 -1.081935e-05 -4.895801e-20 729 699 6.492038e-08 2.923397e-22 730 699 9.152478e-05 0 731 699 -5.49108e-07 0 700 700 0.001741907 0 701 700 1.146418e-07 0 732 700 0.0003100428 0 733 700 -1.934219e-06 0 701 701 3.012433e-08 0 732 701 1.942514e-06 0 733 701 -1.161657e-08 0 702 702 0.001741907 0 703 702 1.146418e-07 0 734 702 0.0003100428 0 735 702 -1.934219e-06 0 703 703 3.012433e-08 0 734 703 1.942514e-06 0 735 703 -1.161657e-08 0 704 704 0.003828616 0 705 704 0.0004679501 0 706 704 0.0005963633 -8.455897e-19 707 704 7.466254e-05 -1.027794e-19 705 705 0.001872503 0 706 705 7.466254e-05 -1.027794e-19 707 705 0.0002986546 -6.77569e-19 736 705 0.000467961 0 737 705 -0.0002291074 0 738 705 7.46623e-05 -1.988284e-19 739 705 -3.739289e-05 1.337117e-19 706 706 0.003828616 0 707 706 0.0004679501 0 707 707 0.001872503 0 736 707 7.46623e-05 1.988284e-19 737 707 -3.739289e-05 -1.337117e-19 738 707 0.000467961 0 739 707 -0.0002291074 0 708 708 0.07367959 0 709 708 -3.244613e-06 0 710 708 0.001462833 3.450214e-18 711 708 4.420182e-07 4.767494e-21 712 708 0 -1.44033e-08 713 708 0 -1.596157e-08 714 708 0.004292766 -1.208781e-08 715 708 0.004787884 -1.339481e-08 716 708 0 -1.44033e-08 717 708 0 -1.596157e-08 718 708 0.004292766 -1.208781e-08 719 708 0.004787884 -1.339481e-08 740 708 0.01251618 0 741 708 -7.836013e-05 0 742 708 0.0002863309 7.033094e-19 743 708 -1.773939e-06 -4.602153e-21 744 708 0 -1.461872e-08 745 708 0 7.213145e-10 746 708 0.00441165 -1.226834e-08 747 708 -0.0002154026 6.052484e-10 748 708 0 -1.461872e-08 749 708 0 7.213145e-10 750 708 0.00441165 -1.226834e-08 751 708 -0.0002154026 6.052484e-10 709 709 1.274325e-06 0 710 709 4.420182e-07 4.767494e-21 711 709 2.530954e-08 5.426176e-23 712 709 0 7.472413e-11 713 709 0 -1.075104e-13 714 709 -2.224819e-05 6.27123e-11 715 709 5.935279e-08 -9.010657e-14 716 709 0 7.472413e-11 717 709 0 -1.075104e-13 718 709 -2.224819e-05 6.27123e-11 719 709 5.935279e-08 -9.010657e-14 740 709 7.813978e-05 0 741 709 -4.689469e-07 0 742 709 1.806273e-06 4.222694e-21 743 709 -1.072789e-08 -2.665102e-23 744 709 0 -7.601495e-11 745 709 0 -5.436626e-14 746 709 2.296059e-05 -6.379403e-11 747 709 2.920021e-08 -4.621188e-14 748 709 0 -7.601495e-11 749 709 0 -5.436626e-14 750 709 2.296059e-05 -6.379403e-11 751 709 2.920021e-08 -4.621188e-14 710 710 0.07367959 0 711 710 -3.244613e-06 0 712 710 -0.004292766 -1.208781e-08 713 710 -0.004787884 -1.339481e-08 714 710 0 -1.44033e-08 715 710 0 -1.596157e-08 716 710 -0.004292766 -1.208781e-08 717 710 -0.004787884 -1.339481e-08 718 710 0 -1.44033e-08 719 710 0 -1.596157e-08 740 710 0.0002863309 -7.033094e-19 741 710 -1.773939e-06 4.602153e-21 742 710 0.01251618 0 743 710 -7.836013e-05 0 744 710 -0.00441165 -1.226834e-08 745 710 0.0002154026 6.052484e-10 746 710 0 -1.461872e-08 747 710 0 7.213145e-10 748 710 -0.00441165 -1.226834e-08 749 710 0.0002154026 6.052484e-10 750 710 0 -1.461872e-08 751 710 0 7.213145e-10 711 711 1.274325e-06 0 712 711 2.224819e-05 6.27123e-11 713 711 -5.935279e-08 -9.010657e-14 714 711 0 7.472413e-11 715 711 0 -1.075104e-13 716 711 2.224819e-05 6.27123e-11 717 711 -5.935279e-08 -9.010657e-14 718 711 0 7.472413e-11 719 711 0 -1.075104e-13 740 711 1.806273e-06 -4.222694e-21 741 711 -1.072789e-08 2.665102e-23 742 711 7.813978e-05 0 743 711 -4.689469e-07 0 744 711 -2.296059e-05 -6.379403e-11 745 711 -2.920021e-08 -4.621188e-14 746 711 0 -7.601495e-11 747 711 0 -5.436626e-14 748 711 -2.296059e-05 -6.379403e-11 749 711 -2.920021e-08 -4.621188e-14 750 711 0 -7.601495e-11 751 711 0 -5.436626e-14 712 712 0.01597219 0 713 712 0.002045933 0 714 712 0.007616516 -4.132416e-17 715 712 0.000995849 -4.265544e-18 716 712 0.01597219 0 717 712 0.002045933 0 718 712 0.007616516 -4.132416e-17 719 712 0.000995849 -4.265544e-18 713 713 0.008184021 0 714 713 0.000995849 -4.265544e-18 715 713 0.003984753 -1.597087e-17 716 713 0.002045933 0 717 713 0.008184021 0 718 713 0.000995849 -4.265544e-18 719 713 0.003984753 -1.597087e-17 740 713 0 -7.443425e-10 741 713 0 5.436626e-14 742 713 0.000227771 -6.248223e-10 743 713 -2.920021e-08 4.621188e-14 744 713 0.002045926 0 745 713 -0.001047865 0 746 713 0.0009958478 -3.804125e-18 747 713 -0.0005206995 1.416758e-18 748 713 0.002045926 0 749 713 -0.001047865 0 750 713 0.0009958478 -3.804125e-18 751 713 -0.0005206995 1.416758e-18 714 714 0.01597219 0 715 714 0.002045933 0 716 714 0.007616516 4.132416e-17 717 714 0.000995849 4.265544e-18 718 714 0.01597219 0 719 714 0.002045933 0 715 715 0.008184021 0 716 715 0.000995849 4.265544e-18 717 715 0.003984753 1.597087e-17 718 715 0.002045933 0 719 715 0.008184021 0 740 715 -0.000227771 -6.248223e-10 741 715 2.920021e-08 4.621188e-14 742 715 0 -7.443425e-10 743 715 0 5.436626e-14 744 715 0.0009958478 3.804125e-18 745 715 -0.0005206995 -1.416758e-18 746 715 0.002045926 0 747 715 -0.001047865 0 748 715 0.0009958478 3.804125e-18 749 715 -0.0005206995 -1.416758e-18 750 715 0.002045926 0 751 715 -0.001047865 0 716 716 0.8036973 0 717 716 0.09820821 0 718 716 0.2500073 -6.971287e-16 719 716 0.03128784 -3.756517e-17 717 717 0.3929807 0 718 717 0.03128784 -3.756517e-17 719 717 0.1251523 -1.293288e-16 740 717 0 -7.443425e-10 741 717 0 5.436626e-14 742 717 0.000227771 -6.248223e-10 743 717 -2.920021e-08 4.621188e-14 744 717 0.002045926 0 745 717 -0.001047865 0 746 717 0.0009958478 -3.804125e-18 747 717 -0.0005206995 1.416758e-18 748 717 0.09821051 0 749 717 -0.04807093 0 750 717 0.03128775 -4.665959e-18 751 717 -0.01566305 1.106091e-17 718 718 0.8036973 0 719 718 0.09820821 0 719 719 0.3929807 0 740 719 -0.000227771 -6.248223e-10 741 719 2.920021e-08 4.621188e-14 742 719 0 -7.443425e-10 743 719 0 5.436626e-14 744 719 0.0009958478 3.804125e-18 745 719 -0.0005206995 -1.416758e-18 746 719 0.002045926 0 747 719 -0.001047865 0 748 719 0.03128775 4.665959e-18 749 719 -0.01566305 -1.106091e-17 750 719 0.09821051 0 751 719 -0.04807093 0 720 720 0.003828616 0 721 720 0.0004679501 0 722 720 0.0005963633 -8.455897e-19 723 720 7.466254e-05 -1.027794e-19 721 721 0.001872503 0 722 721 7.466254e-05 -1.027794e-19 723 721 0.0002986546 -6.77569e-19 752 721 0.000467961 0 753 721 -0.0002291074 0 754 721 7.46623e-05 -1.988284e-19 755 721 -3.739289e-05 1.337117e-19 722 722 0.003828616 0 723 722 0.0004679501 0 723 723 0.001872503 0 752 723 7.46623e-05 1.988284e-19 753 723 -3.739289e-05 -1.337117e-19 754 723 0.000467961 0 755 723 -0.0002291074 0 724 724 0.0154208 0 725 724 0.001972151 0 726 724 0.005298734 -1.062631e-17 727 724 0.0006929505 -1.815728e-18 728 724 0 -1.179245e-08 729 724 0 6.12013e-11 730 724 0.004464186 -8.442307e-09 731 724 -2.313161e-05 4.384264e-11 725 725 0.007888563 0 726 725 0.0006929505 -1.815728e-18 727 725 0.00277277 -7.455699e-18 728 725 0 -1.30376e-08 729 725 0 -6.005398e-14 730 725 0.004986109 -9.29523e-09 731 725 6.828763e-08 -8.379669e-15 756 725 0.001972145 0 757 725 -0.001008329 0 758 725 0.0006929493 -1.910141e-18 759 725 -0.0003624096 1.183324e-18 760 725 0 6.031312e-10 761 725 0 -3.037604e-14 762 725 -0.0002383888 4.241501e-10 763 725 3.386247e-08 -4.804682e-15 726 726 0.0154208 0 727 726 0.001972151 0 728 726 -0.004464186 -8.442307e-09 729 726 2.313161e-05 4.384264e-11 730 726 0 -1.179245e-08 731 726 0 6.12013e-11 727 727 0.007888563 0 728 727 -0.004986109 -9.29523e-09 729 727 -6.828763e-08 -8.379669e-15 730 727 0 -1.30376e-08 731 727 0 -6.005398e-14 756 727 0.0006929493 1.910141e-18 757 727 -0.0003624096 -1.183324e-18 758 727 0.001972145 0 759 727 -0.001008329 0 760 727 0.0002383888 4.241501e-10 761 727 -3.386247e-08 -4.804682e-15 762 727 0 6.031312e-10 763 727 0 -3.037604e-14 728 728 0.08350946 0 729 728 -2.651039e-06 0 730 728 -0.009847789 4.726432e-17 731 728 3.851947e-07 4.020781e-21 756 728 0 1.191282e-08 757 728 0 -5.902649e-10 758 728 -0.004600967 8.459148e-09 759 728 0.0002240456 -4.221153e-10 760 728 0.01426175 0 761 728 -8.925192e-05 0 762 728 -0.001675492 8.169008e-18 763 728 1.04892e-05 -5.138066e-20 729 729 1.444317e-06 0 730 729 3.851947e-07 4.020781e-21 731 729 -1.702818e-07 8.094706e-22 756 729 0 6.192248e-11 757 729 0 3.037604e-14 758 729 -2.395127e-05 4.394344e-11 759 729 -3.386247e-08 4.804682e-15 760 729 8.907437e-05 0 761 729 -5.343492e-07 0 762 729 -1.04609e-05 5.079897e-20 763 729 6.277673e-08 -3.0642e-22 730 730 0.08350946 0 731 730 -2.651039e-06 0 756 730 0.004600967 8.459148e-09 757 730 -0.0002240456 -4.221153e-10 758 730 0 1.191282e-08 759 730 0 -5.902649e-10 760 730 -0.001675492 -8.169008e-18 761 730 1.04892e-05 5.138066e-20 762 730 0.01426175 0 763 730 -8.925192e-05 0 731 731 1.444317e-06 0 756 731 2.395127e-05 4.394344e-11 757 731 3.386247e-08 4.804682e-15 758 731 0 6.192248e-11 759 731 0 3.037604e-14 760 731 -1.04609e-05 -5.079897e-20 761 731 6.277673e-08 3.0642e-22 762 731 8.907437e-05 0 763 731 -5.343492e-07 0 732 732 0.001841579 0 733 732 1.176631e-07 0 764 732 0.0003275219 0 765 732 -2.043378e-06 0 733 733 3.18479e-08 0 764 733 2.051898e-06 0 765 733 -1.22714e-08 0 734 734 0.001841579 0 735 734 1.176631e-07 0 766 734 0.0003275219 0 767 734 -2.043378e-06 0 735 735 3.18479e-08 0 766 735 2.051898e-06 0 767 735 -1.22714e-08 0 736 736 0.00366521 0 737 736 0.0004484686 0 738 736 0.0005982823 -2.325062e-18 739 736 7.490926e-05 -3.360183e-19 737 737 0.001794489 0 738 737 7.490926e-05 -3.360183e-19 739 737 0.0002996416 -1.11532e-18 768 737 0.0004484776 0 769 737 -0.0002197833 0 770 737 7.490901e-05 -2.825643e-19 771 737 -3.751977e-05 9.256096e-20 738 738 0.00366521 0 739 738 0.0004484686 0 739 739 0.001794489 0 768 739 7.490901e-05 2.825643e-19 769 739 -3.751977e-05 -9.256096e-20 770 739 0.0004484776 0 771 739 -0.0002197833 0 740 740 0.07102956 0 741 740 -2.938649e-06 0 742 740 0.001851301 -6.448481e-19 743 740 4.633309e-07 -1.2976e-20 744 740 0 -1.469408e-08 745 740 0 -1.628389e-08 746 740 0.004452129 -1.23324e-08 747 740 0.004961016 -1.366878e-08 748 740 0 -1.469408e-08 749 740 0 -1.628389e-08 750 740 0.004452129 -1.23324e-08 751 740 0.004961016 -1.366878e-08 772 740 0.01207964 0 773 740 -7.562048e-05 0 774 740 0.0003551495 -8.919381e-19 775 740 -2.203418e-06 5.438993e-21 776 740 0 -1.491389e-08 777 740 0 7.358868e-10 778 740 0.004567028 -1.252174e-08 779 740 -0.0002233521 6.175401e-10 780 740 0 -1.491389e-08 781 740 0 7.358868e-10 782 740 0.004567028 -1.252174e-08 783 740 -0.0002233521 6.175401e-10 741 741 1.228466e-06 0 742 741 4.633309e-07 -1.2976e-20 743 741 3.202708e-08 -1.037057e-23 744 741 0 7.623241e-11 745 741 0 -1.096969e-13 746 741 -2.30774e-05 6.397888e-11 747 741 5.736203e-08 -9.450316e-14 748 741 0 7.623241e-11 749 741 0 -1.096969e-13 750 741 -2.30774e-05 6.397888e-11 751 741 5.736203e-08 -9.450316e-14 772 741 7.542058e-05 0 773 741 -4.525885e-07 0 774 741 2.237276e-06 -5.74488e-21 775 741 -1.330627e-08 3.372292e-23 776 741 0 -7.754952e-11 777 741 0 -5.541483e-14 778 741 2.376592e-05 -6.511343e-11 779 741 2.817861e-08 -4.834254e-14 780 741 0 -7.754952e-11 781 741 0 -5.541483e-14 782 741 2.376592e-05 -6.511343e-11 783 741 2.817861e-08 -4.834254e-14 742 742 0.07102956 0 743 742 -2.938649e-06 0 744 742 -0.004452129 -1.23324e-08 745 742 -0.004961016 -1.366878e-08 746 742 0 -1.469408e-08 747 742 0 -1.628389e-08 748 742 -0.004452129 -1.23324e-08 749 742 -0.004961016 -1.366878e-08 750 742 0 -1.469408e-08 751 742 0 -1.628389e-08 772 742 0.0003551495 8.919381e-19 773 742 -2.203418e-06 -5.438993e-21 774 742 0.01207964 0 775 742 -7.562048e-05 0 776 742 -0.004567028 -1.252174e-08 777 742 0.0002233521 6.175401e-10 778 742 0 -1.491389e-08 779 742 0 7.358868e-10 780 742 -0.004567028 -1.252174e-08 781 742 0.0002233521 6.175401e-10 782 742 0 -1.491389e-08 783 742 0 7.358868e-10 743 743 1.228466e-06 0 744 743 2.30774e-05 6.397888e-11 745 743 -5.736203e-08 -9.450316e-14 746 743 0 7.623241e-11 747 743 0 -1.096969e-13 748 743 2.30774e-05 6.397888e-11 749 743 -5.736203e-08 -9.450316e-14 750 743 0 7.623241e-11 751 743 0 -1.096969e-13 772 743 2.237276e-06 5.74488e-21 773 743 -1.330627e-08 -3.372292e-23 774 743 7.542058e-05 0 775 743 -4.525885e-07 0 776 743 -2.376592e-05 -6.511343e-11 777 743 -2.817861e-08 -4.834254e-14 778 743 0 -7.754952e-11 779 743 0 -5.541483e-14 780 743 -2.376592e-05 -6.511343e-11 781 743 -2.817861e-08 -4.834254e-14 782 743 0 -7.754952e-11 783 743 0 -5.541483e-14 744 744 0.01676559 0 745 744 0.002145535 0 746 744 0.00833011 -2.157385e-17 747 744 0.00108695 -1.862905e-18 748 744 0.01676559 0 749 744 0.002145535 0 750 744 0.00833011 -2.157385e-17 751 744 0.00108695 -1.862905e-18 745 745 0.008582441 0 746 745 0.00108695 -1.862905e-18 747 745 0.004349146 -9.060317e-18 748 745 0.002145535 0 749 745 0.008582441 0 750 745 0.00108695 -1.862905e-18 751 745 0.004349146 -9.060317e-18 772 745 0 -7.59359e-10 773 745 0 5.541483e-14 774 745 0.0002352877 -6.380166e-10 775 745 -2.817861e-08 4.834254e-14 776 745 0.002145527 0 777 745 -0.001097888 0 778 745 0.001086949 -1.906137e-18 779 745 -0.0005671932 1.512177e-18 780 745 0.002145527 0 781 745 -0.001097888 0 782 745 0.001086949 -1.906137e-18 783 745 -0.0005671932 1.512177e-18 746 746 0.01676559 0 747 746 0.002145535 0 748 746 0.00833011 2.157385e-17 749 746 0.00108695 1.862905e-18 750 746 0.01676559 0 751 746 0.002145535 0 747 747 0.008582441 0 748 747 0.00108695 1.862905e-18 749 747 0.004349146 9.060317e-18 750 747 0.002145535 0 751 747 0.008582441 0 772 747 -0.0002352877 -6.380166e-10 773 747 2.817861e-08 4.834254e-14 774 747 0 -7.59359e-10 775 747 0 5.541483e-14 776 747 0.001086949 1.906137e-18 777 747 -0.0005671932 -1.512177e-18 778 747 0.002145527 0 779 747 -0.001097888 0 780 747 0.001086949 1.906137e-18 781 747 -0.0005671932 -1.512177e-18 782 747 0.002145527 0 783 747 -0.001097888 0 748 748 0.7690278 0 749 748 0.0940732 0 750 748 0.250608 -7.047337e-17 751 748 0.03136445 -3.957767e-17 749 749 0.376422 0 750 749 0.03136445 -3.957767e-17 751 749 0.1254587 -2.485691e-16 772 749 0 -7.59359e-10 773 749 0 5.541483e-14 774 749 0.0002352877 -6.380166e-10 775 749 -2.817861e-08 4.834254e-14 776 749 0.002145527 0 777 749 -0.001097888 0 778 749 0.001086949 -1.906137e-18 779 749 -0.0005671932 1.512177e-18 780 749 0.0940751 0 781 749 -0.04609103 0 782 749 0.03136436 -9.029204e-17 783 749 -0.01570211 4.625626e-17 750 750 0.7690278 0 751 750 0.0940732 0 751 751 0.376422 0 772 751 -0.0002352877 -6.380166e-10 773 751 2.817861e-08 4.834254e-14 774 751 0 -7.59359e-10 775 751 0 5.541483e-14 776 751 0.001086949 1.906137e-18 777 751 -0.0005671932 -1.512177e-18 778 751 0.002145527 0 779 751 -0.001097888 0 780 751 0.03136436 9.029204e-17 781 751 -0.01570211 -4.625626e-17 782 751 0.0940751 0 783 751 -0.04609103 0 752 752 0.00366521 0 753 752 0.0004484686 0 754 752 0.0005982823 -2.325062e-18 755 752 7.490926e-05 -3.360183e-19 753 753 0.001794489 0 754 753 7.490926e-05 -3.360183e-19 755 753 0.0002996416 -1.11532e-18 784 753 0.0004484776 0 785 753 -0.0002197833 0 786 753 7.490901e-05 -2.825643e-19 787 753 -3.751977e-05 9.256096e-20 754 754 0.00366521 0 755 754 0.0004484686 0 755 755 0.001794489 0 784 755 7.490901e-05 2.825643e-19 785 755 -3.751977e-05 -9.256096e-20 786 755 0.0004484776 0 787 755 -0.0002197833 0 756 756 0.01613328 0 757 756 0.00206117 0 758 756 0.00579778 -1.919049e-17 759 756 0.0007566893 -2.823155e-18 760 756 0 -1.195492e-08 761 756 0 6.204398e-11 762 756 0.004647908 -8.465808e-09 763 756 -2.408672e-05 4.396266e-11 757 757 0.008244638 0 758 757 0.0007566893 -2.823155e-18 759 757 0.003027719 -1.087352e-17 760 757 0 -1.321767e-08 761 757 0 -6.123265e-14 762 757 0.00518689 -9.323663e-09 763 757 6.70776e-08 -1.066268e-14 788 757 0.002061164 0 789 757 -0.001052817 0 790 757 0.0007566878 -2.855316e-18 791 757 -0.0003949539 1.323244e-18 792 757 0 6.11506e-10 793 757 0 -3.091777e-14 794 757 -0.0002472997 4.258185e-10 795 757 3.323794e-08 -5.881398e-15 758 758 0.01613328 0 759 758 0.00206117 0 760 758 -0.004647908 -8.465808e-09 761 758 2.408672e-05 4.396266e-11 762 758 0 -1.195492e-08 763 758 0 6.204398e-11 759 759 0.008244638 0 760 759 -0.00518689 -9.323663e-09 761 759 -6.70776e-08 -1.066268e-14 762 759 0 -1.321767e-08 763 759 0 -6.123265e-14 788 759 0.0007566878 2.855316e-18 789 759 -0.0003949539 -1.323244e-18 790 759 0.002061164 0 791 759 -0.001052817 0 792 759 0.0002472997 4.258185e-10 793 759 -3.323794e-08 -5.881398e-15 794 759 0 6.11506e-10 795 759 0 -3.091777e-14 760 760 0.08137364 0 761 760 -2.333848e-06 0 762 760 -0.009507785 4.048294e-17 763 760 4.074529e-07 -1.917574e-20 788 760 0 1.207766e-08 789 760 0 -5.984102e-10 790 760 -0.004782268 8.487227e-09 791 760 0.000233221 -4.233275e-10 792 760 0.01391505 0 793 760 -8.707351e-05 0 794 760 -0.001614982 5.604471e-18 795 760 1.011167e-05 -3.561493e-20 761 761 1.40735e-06 0 762 761 4.074529e-07 -1.917574e-20 763 761 -1.644008e-07 6.952991e-22 788 761 0 6.277934e-11 789 761 0 3.091777e-14 790 761 -2.489186e-05 4.409089e-11 791 761 -3.323794e-08 5.881398e-15 792 761 8.691724e-05 0 793 761 -5.213565e-07 0 794 761 -1.008177e-05 3.444895e-20 795 761 6.050925e-08 -2.098547e-22 762 762 0.08137364 0 763 762 -2.333848e-06 0 788 762 0.004782268 8.487227e-09 789 762 -0.000233221 -4.233275e-10 790 762 0 1.207766e-08 791 762 0 -5.984102e-10 792 762 -0.001614982 -5.604471e-18 793 762 1.011167e-05 3.561493e-20 794 762 0.01391505 0 795 762 -8.707351e-05 0 763 763 1.40735e-06 0 788 763 2.489186e-05 4.409089e-11 789 763 3.323794e-08 5.881398e-15 790 763 0 6.277934e-11 791 763 0 3.091777e-14 792 763 -1.008177e-05 -3.444895e-20 793 763 6.050925e-08 2.098547e-22 794 763 8.691724e-05 0 795 763 -5.213565e-07 0 764 764 0.001943949 0 765 764 1.209292e-07 0 796 764 0.0003454862 0 797 764 -2.155562e-06 0 765 765 3.361812e-08 0 796 765 2.164325e-06 0 797 765 -1.29444e-08 0 766 766 0.001943949 0 767 766 1.209292e-07 0 798 766 0.0003454862 0 799 766 -2.155562e-06 0 767 767 3.361812e-08 0 798 767 2.164325e-06 0 799 767 -1.29444e-08 0 768 768 0.003516085 0 769 768 0.0004306554 0 770 768 0.0006003122 -1.435978e-18 771 768 7.517007e-05 -8.767953e-20 769 769 0.001723162 0 770 769 7.517007e-05 -8.767953e-20 771 769 0.000300685 -4.41861e-19 800 769 0.0004306628 0 801 769 -0.0002112437 0 802 769 7.516983e-05 -8.231446e-20 803 769 -3.765383e-05 6.201764e-20 770 770 0.003516085 0 771 770 0.0004306554 0 771 771 0.001723162 0 800 771 7.516983e-05 8.231446e-20 801 771 -3.765383e-05 -6.201764e-20 802 771 0.0004306628 0 803 771 -0.0002112437 0 772 772 0.06862561 0 773 772 -2.670032e-06 0 774 772 0.002258084 -4.379203e-18 775 772 4.847153e-07 4.370968e-21 776 772 0 -1.499071e-08 777 772 0 -1.661244e-08 778 772 0.00460609 -1.258876e-08 779 772 0.005128092 -1.395538e-08 780 772 0 -1.499071e-08 781 772 0 -1.661244e-08 782 772 0.00460609 -1.258876e-08 783 772 0.005128092 -1.395538e-08 804 772 0.01168301 0 805 772 -7.313163e-05 0 806 772 0.0004271469 -5.194292e-19 807 772 -2.652761e-06 3.212832e-21 808 772 0 -1.521455e-08 809 772 0 7.507479e-10 810 772 0.004716804 -1.278638e-08 811 772 -0.0002310293 6.304155e-10 812 772 0 -1.521455e-08 813 772 0 7.507479e-10 814 772 0.004716804 -1.278638e-08 815 772 -0.0002310293 6.304155e-10 773 773 1.186867e-06 0 774 773 4.847153e-07 4.370968e-21 775 773 3.906133e-08 -7.37331e-23 776 773 0 7.777118e-11 777 773 0 -1.117055e-13 778 773 -2.387863e-05 6.53068e-11 779 773 5.526761e-08 -9.863331e-14 780 773 0 7.777118e-11 781 773 0 -1.117055e-13 782 773 -2.387863e-05 6.53068e-11 783 773 5.526761e-08 -9.863331e-14 804 773 7.294974e-05 0 805 773 -4.377258e-07 0 806 773 2.688159e-06 -3.259401e-21 807 773 -1.600372e-08 1.924153e-23 808 773 0 -7.911243e-11 809 773 0 -5.63813e-14 810 773 2.454206e-05 -6.649097e-11 811 773 2.71131e-08 -5.035033e-14 812 773 0 -7.911243e-11 813 773 0 -5.63813e-14 814 773 2.454206e-05 -6.649097e-11 815 773 2.71131e-08 -5.035033e-14 774 774 0.06862561 0 775 774 -2.670032e-06 0 776 774 -0.00460609 -1.258876e-08 777 774 -0.005128092 -1.395538e-08 778 774 0 -1.499071e-08 779 774 0 -1.661244e-08 780 774 -0.00460609 -1.258876e-08 781 774 -0.005128092 -1.395538e-08 782 774 0 -1.499071e-08 783 774 0 -1.661244e-08 804 774 0.0004271469 5.194292e-19 805 774 -2.652761e-06 -3.212832e-21 806 774 0.01168301 0 807 774 -7.313163e-05 0 808 774 -0.004716804 -1.278638e-08 809 774 0.0002310293 6.304155e-10 810 774 0 -1.521455e-08 811 774 0 7.507479e-10 812 774 -0.004716804 -1.278638e-08 813 774 0.0002310293 6.304155e-10 814 774 0 -1.521455e-08 815 774 0 7.507479e-10 775 775 1.186867e-06 0 776 775 2.387863e-05 6.53068e-11 777 775 -5.526761e-08 -9.863331e-14 778 775 0 7.777118e-11 779 775 0 -1.117055e-13 780 775 2.387863e-05 6.53068e-11 781 775 -5.526761e-08 -9.863331e-14 782 775 0 7.777118e-11 783 775 0 -1.117055e-13 804 775 2.688159e-06 3.259401e-21 805 775 -1.600372e-08 -1.924153e-23 806 775 7.294974e-05 0 807 775 -4.377258e-07 0 808 775 -2.454206e-05 -6.649097e-11 809 775 -2.71131e-08 -5.035033e-14 810 775 0 -7.911243e-11 811 775 0 -5.63813e-14 812 775 -2.454206e-05 -6.649097e-11 813 775 -2.71131e-08 -5.035033e-14 814 775 0 -7.911243e-11 815 775 0 -5.63813e-14 776 776 0.01756595 0 777 776 0.002246025 0 778 776 0.009074017 -2.340198e-17 779 776 0.001181824 -4.142569e-18 780 776 0.01756595 0 781 776 0.002246025 0 782 776 0.009074017 -2.340198e-17 783 776 0.001181824 -4.142569e-18 777 777 0.008984416 0 778 777 0.001181824 -4.142569e-18 779 777 0.004728626 -1.667131e-17 780 777 0.002246025 0 781 777 0.008984416 0 782 777 0.001181824 -4.142569e-18 783 777 0.004728626 -1.667131e-17 804 777 0 -7.746295e-10 805 777 0 5.63813e-14 806 777 0.0002425137 -6.517425e-10 807 777 -2.71131e-08 5.035033e-14 808 777 0.002246017 0 809 777 -0.001148366 0 810 777 0.001181822 -4.736579e-18 811 777 -0.0006155638 2.178644e-18 812 777 0.002246017 0 813 777 -0.001148366 0 814 777 0.001181822 -4.736579e-18 815 777 -0.0006155638 2.178644e-18 778 778 0.01756595 0 779 778 0.002246025 0 780 778 0.009074017 2.340198e-17 781 778 0.001181824 4.142569e-18 782 778 0.01756595 0 783 778 0.002246025 0 779 779 0.008984416 0 780 779 0.001181824 4.142569e-18 781 779 0.004728626 1.667131e-17 782 779 0.002246025 0 783 779 0.008984416 0 804 779 -0.0002425137 -6.517425e-10 805 779 2.71131e-08 5.035033e-14 806 779 0 -7.746295e-10 807 779 0 5.63813e-14 808 779 0.001181822 4.736579e-18 809 779 -0.0006155638 -2.178644e-18 810 779 0.002246017 0 811 779 -0.001148366 0 812 779 0.001181822 4.736579e-18 813 779 -0.0006155638 -2.178644e-18 814 779 0.002246017 0 815 779 -0.001148366 0 780 780 0.7373624 0 781 780 0.09028901 0 782 780 0.2512329 -8.540024e-16 783 780 0.03144407 -9.473299e-17 781 781 0.3612696 0 782 781 0.03144407 -9.473299e-17 783 781 0.1257771 -2.856901e-16 804 781 0 -7.746295e-10 805 781 0 5.63813e-14 806 781 0.0002425137 -6.517425e-10 807 781 -2.71131e-08 5.035033e-14 808 781 0.002246017 0 809 781 -0.001148366 0 810 781 0.001181822 -4.736579e-18 811 781 -0.0006155638 2.178644e-18 812 781 0.09029058 0 813 781 -0.04427607 0 814 781 0.03144398 -4.53434e-17 815 781 -0.01574265 2.755393e-17 782 782 0.7373624 0 783 782 0.09028901 0 783 783 0.3612696 0 804 783 -0.0002425137 -6.517425e-10 805 783 2.71131e-08 5.035033e-14 806 783 0 -7.746295e-10 807 783 0 5.63813e-14 808 783 0.001181822 4.736579e-18 809 783 -0.0006155638 -2.178644e-18 810 783 0.002246017 0 811 783 -0.001148366 0 812 783 0.03144398 4.53434e-17 813 783 -0.01574265 -2.755393e-17 814 783 0.09029058 0 815 783 -0.04427607 0 784 784 0.003516085 0 785 784 0.0004306554 0 786 784 0.0006003122 -1.435978e-18 787 784 7.517007e-05 -8.767953e-20 785 785 0.001723162 0 786 785 7.517007e-05 -8.767953e-20 787 785 0.000300685 -4.41861e-19 816 785 0.0004306628 0 817 785 -0.0002112437 0 818 785 7.516983e-05 -8.231446e-20 819 785 -3.765383e-05 6.201764e-20 786 786 0.003516085 0 787 786 0.0004306554 0 787 787 0.001723162 0 816 787 7.516983e-05 8.231446e-20 817 787 -3.765383e-05 -6.201764e-20 818 787 0.0004306628 0 819 787 -0.0002112437 0 788 788 0.0168451 0 789 788 0.002150104 0 790 788 0.006318493 -2.153517e-17 791 788 0.0008231278 -2.437662e-18 792 788 0 -1.212052e-08 793 788 0 6.290301e-11 794 788 0.004828344 -8.49538e-09 795 788 -2.502481e-05 4.411442e-11 789 789 0.008600373 0 790 789 0.0008231278 -2.437662e-18 791 789 0.003293466 -9.577927e-18 792 789 0 -1.340095e-08 793 789 0 -6.222368e-14 794 789 0.00538397 -9.358487e-09 795 789 6.579003e-08 -1.269435e-14 820 789 0.002150098 0 821 789 -0.001097262 0 822 789 0.0008231263 -2.237487e-18 823 789 -0.0004288435 1.1694e-18 824 789 0 6.199965e-10 825 789 0 -3.137239e-14 826 789 -0.000256031 4.277371e-10 827 789 3.258164e-08 -6.843238e-15 790 790 0.0168451 0 791 790 0.002150104 0 792 790 -0.004828344 -8.49538e-09 793 790 2.502481e-05 4.411442e-11 794 790 0 -1.212052e-08 795 790 0 6.290301e-11 791 791 0.008600373 0 792 791 -0.00538397 -9.358487e-09 793 791 -6.579003e-08 -1.269435e-14 794 791 0 -1.340095e-08 795 791 0 -6.222368e-14 820 791 0.0008231263 2.237487e-18 821 791 -0.0004288435 -1.1694e-18 822 791 0.002150098 0 823 791 -0.001097262 0 824 791 0.000256031 4.277371e-10 825 791 -3.258164e-08 -6.843238e-15 826 791 0 6.199965e-10 827 791 0 -3.137239e-14 792 792 0.07949387 0 793 792 -2.053227e-06 0 794 792 -0.009148411 2.499574e-17 795 792 4.303589e-07 -2.013542e-20 820 792 0 1.224524e-08 821 792 0 -6.067081e-10 822 792 -0.004960133 8.520874e-09 823 792 0.0002422303 -4.248386e-10 824 792 0.01361006 0 825 792 -8.515703e-05 0 826 792 -0.001551069 2.273074e-18 827 792 9.712896e-06 -1.565896e-20 793 793 1.374815e-06 0 794 793 4.303589e-07 -2.013542e-20 795 793 -1.581849e-07 4.154744e-22 820 793 0 6.365029e-11 821 793 0 3.137239e-14 822 793 -2.581455e-05 4.426708e-11 823 793 -3.258164e-08 6.843238e-15 824 793 8.501966e-05 0 825 793 -5.099265e-07 0 826 793 -9.681321e-06 1.278826e-20 827 793 5.811424e-08 -8.541132e-23 794 794 0.07949387 0 795 794 -2.053227e-06 0 820 794 0.004960133 8.520874e-09 821 794 -0.0002422303 -4.248386e-10 822 794 0 1.224524e-08 823 794 0 -6.067081e-10 824 794 -0.001551069 -2.273074e-18 825 794 9.712896e-06 1.565896e-20 826 794 0.01361006 0 827 794 -8.515703e-05 0 795 795 1.374815e-06 0 820 795 2.581455e-05 4.426708e-11 821 795 3.258164e-08 6.843238e-15 822 795 0 6.365029e-11 823 795 0 3.137239e-14 824 795 -9.681321e-06 -1.278826e-20 825 795 5.811424e-08 8.541132e-23 826 795 8.501966e-05 0 827 795 -5.099265e-07 0 796 796 0.002049234 0 797 796 1.244592e-07 0 828 796 0.0003639751 0 829 796 -2.271015e-06 0 797 797 3.543874e-08 0 828 797 2.280039e-06 0 829 797 -1.363704e-08 0 798 798 0.002049234 0 799 798 1.244592e-07 0 830 798 0.0003639751 0 831 798 -2.271015e-06 0 799 799 3.543874e-08 0 830 799 2.280039e-06 0 831 799 -1.363704e-08 0 800 800 0.003379504 0 801 800 0.0004143119 0 802 800 0.000602457 -9.234746e-19 803 800 7.544548e-05 -1.657561e-19 801 801 0.001657725 0 802 801 7.544548e-05 -1.657561e-19 803 801 0.0003017868 -6.890246e-19 832 801 0.000414318 0 833 801 -0.0002033971 0 834 801 7.544523e-05 -2.003721e-19 835 801 -3.779531e-05 9.165644e-20 802 802 0.003379504 0 803 802 0.0004143119 0 803 803 0.001657725 0 832 803 7.544523e-05 2.003721e-19 833 803 -3.779531e-05 -9.165644e-20 834 803 0.000414318 0 835 803 -0.0002033971 0 804 804 0.06643848 0 805 804 -2.432488e-06 0 806 804 0.002683359 -5.842072e-18 807 804 5.064258e-07 -1.033027e-20 808 804 0 -1.529271e-08 809 804 0 -1.694672e-08 810 804 0.004754389 -1.285618e-08 811 804 0.00528885 -1.42539e-08 812 804 0 -1.529271e-08 813 804 0 -1.694672e-08 814 804 0.004754389 -1.285618e-08 815 804 0.00528885 -1.42539e-08 836 804 0.01132169 0 837 804 -7.086448e-05 0 838 804 0.0005023682 -1.973977e-18 839 804 -3.122248e-06 1.176984e-20 840 804 0 -1.552028e-08 841 804 0 7.658746e-10 842 804 0.004860756 -1.306163e-08 843 804 -0.0002384227 6.438398e-10 844 804 0 -1.552028e-08 845 804 0 7.658746e-10 846 804 0.004860756 -1.306163e-08 847 804 -0.0002384227 6.438398e-10 805 805 1.149022e-06 0 806 805 5.064258e-07 -1.033027e-20 807 805 4.641531e-08 -1.107671e-22 808 805 0 7.933796e-11 809 805 0 -1.135632e-13 810 805 -2.465052e-05 6.669237e-11 811 805 5.309811e-08 -1.025373e-13 812 805 0 7.933796e-11 813 805 0 -1.135632e-13 814 805 -2.465052e-05 6.669237e-11 815 805 5.309811e-08 -1.025373e-13 836 805 7.069857e-05 0 837 805 -4.241858e-07 0 838 805 3.159203e-06 -1.290986e-20 839 805 -1.882193e-08 7.393566e-23 840 805 0 -8.070154e-11 841 805 0 -5.727907e-14 842 805 2.52879e-05 -6.792344e-11 843 805 2.600521e-08 -5.225471e-14 844 805 0 -8.070154e-11 845 805 0 -5.727907e-14 846 805 2.52879e-05 -6.792344e-11 847 805 2.600521e-08 -5.225471e-14 806 806 0.06643848 0 807 806 -2.432488e-06 0 808 806 -0.004754389 -1.285618e-08 809 806 -0.00528885 -1.42539e-08 810 806 0 -1.529271e-08 811 806 0 -1.694672e-08 812 806 -0.004754389 -1.285618e-08 813 806 -0.00528885 -1.42539e-08 814 806 0 -1.529271e-08 815 806 0 -1.694672e-08 836 806 0.0005023682 1.973977e-18 837 806 -3.122248e-06 -1.176984e-20 838 806 0.01132169 0 839 806 -7.086448e-05 0 840 806 -0.004860756 -1.306163e-08 841 806 0.0002384227 6.438398e-10 842 806 0 -1.552028e-08 843 806 0 7.658746e-10 844 806 -0.004860756 -1.306163e-08 845 806 0.0002384227 6.438398e-10 846 806 0 -1.552028e-08 847 806 0 7.658746e-10 807 807 1.149022e-06 0 808 807 2.465052e-05 6.669237e-11 809 807 -5.309811e-08 -1.025373e-13 810 807 0 7.933796e-11 811 807 0 -1.135632e-13 812 807 2.465052e-05 6.669237e-11 813 807 -5.309811e-08 -1.025373e-13 814 807 0 7.933796e-11 815 807 0 -1.135632e-13 836 807 3.159203e-06 1.290986e-20 837 807 -1.882193e-08 -7.393566e-23 838 807 7.069857e-05 0 839 807 -4.241858e-07 0 840 807 -2.52879e-05 -6.792344e-11 841 807 -2.600521e-08 -5.225471e-14 842 807 0 -8.070154e-11 843 807 0 -5.727907e-14 844 807 -2.52879e-05 -6.792344e-11 845 807 -2.600521e-08 -5.225471e-14 846 807 0 -8.070154e-11 847 807 0 -5.727907e-14 808 808 0.01837358 0 809 808 0.002347445 0 810 808 0.009847959 -3.6831e-17 811 808 0.001280433 -3.977997e-18 812 808 0.01837358 0 813 808 0.002347445 0 814 808 0.009847959 -3.6831e-17 815 808 0.001280433 -3.977997e-18 809 809 0.009390111 0 810 809 0.001280433 -3.977997e-18 811 809 0.005123049 -1.410163e-17 812 809 0.002347445 0 813 809 0.009390111 0 814 809 0.001280433 -3.977997e-18 815 809 0.005123049 -1.410163e-17 836 809 0 -7.901366e-10 837 809 0 5.727907e-14 838 809 0.0002494378 -6.659735e-10 839 809 -2.600521e-08 5.225471e-14 840 809 0.002347437 0 841 809 -0.001199318 0 842 809 0.001280431 -3.407777e-18 843 809 -0.0006657925 1.062403e-18 844 809 0.002347437 0 845 809 -0.001199318 0 846 809 0.001280431 -3.407777e-18 847 809 -0.0006657925 1.062403e-18 810 810 0.01837358 0 811 810 0.002347445 0 812 810 0.009847959 3.6831e-17 813 810 0.001280433 3.977997e-18 814 810 0.01837358 0 815 810 0.002347445 0 811 811 0.009390111 0 812 811 0.001280433 3.977997e-18 813 811 0.005123049 1.410163e-17 814 811 0.002347445 0 815 811 0.009390111 0 836 811 -0.0002494378 -6.659735e-10 837 811 2.600521e-08 5.225471e-14 838 811 0 -7.901366e-10 839 811 0 5.727907e-14 840 811 0.001280431 3.407777e-18 841 811 -0.0006657925 -1.062403e-18 842 811 0.002347437 0 843 811 -0.001199318 0 844 811 0.001280431 3.407777e-18 845 811 -0.0006657925 -1.062403e-18 846 811 0.002347437 0 847 811 -0.001199318 0 812 812 0.7083341 0 813 812 0.08681369 0 814 812 0.2518815 -3.43812e-16 815 812 0.03152662 -6.487231e-17 813 813 0.3473551 0 814 813 0.03152662 -6.487231e-17 815 813 0.1261073 -3.28536e-16 836 813 0 -7.901366e-10 837 813 0 5.727907e-14 838 813 0.0002494378 -6.659735e-10 839 813 -2.600521e-08 5.225471e-14 840 813 0.002347437 0 841 813 -0.001199318 0 842 813 0.001280431 -3.407777e-18 843 813 -0.0006657925 1.062403e-18 844 813 0.08681499 0 845 813 -0.04260669 0 846 813 0.03152653 -1.0465e-16 847 813 -0.01578465 4.98622e-17 814 814 0.7083341 0 815 814 0.08681369 0 815 815 0.3473551 0 836 815 -0.0002494378 -6.659735e-10 837 815 2.600521e-08 5.225471e-14 838 815 0 -7.901366e-10 839 815 0 5.727907e-14 840 815 0.001280431 3.407777e-18 841 815 -0.0006657925 -1.062403e-18 842 815 0.002347437 0 843 815 -0.001199318 0 844 815 0.03152653 1.0465e-16 845 815 -0.01578465 -4.98622e-17 846 815 0.08681499 0 847 815 -0.04260669 0 816 816 0.003379504 0 817 816 0.0004143119 0 818 816 0.000602457 -9.234746e-19 819 816 7.544548e-05 -1.657561e-19 817 817 0.001657725 0 818 817 7.544548e-05 -1.657561e-19 819 817 0.0003017868 -6.890246e-19 848 817 0.000414318 0 849 817 -0.0002033971 0 850 817 7.544523e-05 -2.003721e-19 851 817 -3.779531e-05 9.165644e-20 818 818 0.003379504 0 819 818 0.0004143119 0 819 819 0.001657725 0 848 819 7.544523e-05 2.003721e-19 849 819 -3.779531e-05 -9.165644e-20 850 819 0.000414318 0 851 819 -0.0002033971 0 820 820 0.01755622 0 821 820 0.00223895 0 822 820 0.006860733 -1.818488e-17 823 820 0.0008922478 -2.440115e-18 824 820 0 -1.228873e-08 825 820 0 6.377578e-11 826 820 0.005005299 -8.530359e-09 827 820 -2.594488e-05 4.429445e-11 821 821 0.008955755 0 822 821 0.0008922478 -2.440115e-18 823 821 0.003569938 -1.01307e-17 824 821 0 -1.358693e-08 825 821 0 -6.30531e-14 826 821 0.005577159 -9.39902e-09 827 821 6.445e-08 -1.451651e-14 852 821 0.002238944 0 853 821 -0.001141662 0 854 821 0.000892246 -2.644867e-18 855 821 -0.0004640687 1.346388e-18 856 821 0 6.285835e-10 857 821 0 -3.175225e-14 858 821 -0.0002645749 4.298817e-10 859 821 3.189465e-08 -7.709698e-15 822 822 0.01755622 0 823 822 0.00223895 0 824 822 -0.005005299 -8.530359e-09 825 822 2.594488e-05 4.429445e-11 826 822 0 -1.228873e-08 827 822 0 6.377578e-11 823 823 0.008955755 0 824 823 -0.005577159 -9.39902e-09 825 823 -6.445e-08 -1.451651e-14 826 823 0 -1.358693e-08 827 823 0 -6.30531e-14 852 823 0.000892246 2.644867e-18 853 823 -0.0004640687 -1.346388e-18 854 823 0.002238944 0 855 823 -0.001141662 0 856 823 0.0002645749 4.298817e-10 857 823 -3.189465e-08 -7.709698e-15 858 823 0 6.285835e-10 859 823 0 -3.175225e-14 824 824 0.07784156 0 825 824 -1.802883e-06 0 826 824 -0.008768988 7.931207e-19 827 824 4.541807e-07 -1.356448e-20 852 824 0 1.241512e-08 853 824 0 -6.151341e-10 854 824 -0.005134403 8.559508e-09 855 824 0.0002510652 -4.266161e-10 856 824 0.01334226 0 857 824 -8.34741e-05 0 858 824 -0.001483617 1.26829e-18 859 824 9.292035e-06 -5.646968e-21 825 825 1.346217e-06 0 826 825 4.541807e-07 -1.356448e-20 827 825 -1.516222e-07 8.380779e-23 852 825 0 6.453304e-11 853 825 0 3.175225e-14 854 825 -2.671852e-05 4.446901e-11 855 825 -3.189465e-08 7.709698e-15 856 825 8.335365e-05 0 857 825 -4.998902e-07 0 858 825 -9.258728e-06 1.007968e-20 859 825 5.55867e-08 -4.623627e-23 826 826 0.07784156 0 827 826 -1.802883e-06 0 852 826 0.005134403 8.559508e-09 853 826 -0.0002510652 -4.266161e-10 854 826 0 1.241512e-08 855 826 0 -6.151341e-10 856 826 -0.001483617 -1.26829e-18 857 826 9.292035e-06 5.646968e-21 858 826 0.01334226 0 859 826 -8.34741e-05 0 827 827 1.346217e-06 0 852 827 2.671852e-05 4.446901e-11 853 827 3.189465e-08 7.709698e-15 854 827 0 6.453304e-11 855 827 0 3.175225e-14 856 827 -9.258728e-06 -1.007968e-20 857 827 5.55867e-08 4.623627e-23 858 827 8.335365e-05 0 859 827 -4.998902e-07 0 828 828 0.002157671 0 829 828 1.282743e-07 0 860 828 0.0003830309 0 861 828 -2.390001e-06 0 829 829 3.731385e-08 0 860 829 2.399309e-06 0 861 829 -1.435092e-08 0 830 830 0.002157671 0 831 830 1.282743e-07 0 862 830 0.0003830309 0 863 830 -2.390001e-06 0 831 831 3.731385e-08 0 862 831 2.399309e-06 0 863 831 -1.435092e-08 0 832 832 0.003254002 0 833 832 0.0003992702 0 834 832 0.0006047206 -1.544741e-18 835 832 7.573602e-05 -1.662536e-19 833 833 0.001597505 0 834 833 7.573602e-05 -1.662536e-19 835 833 0.0003029492 -6.388168e-19 864 833 0.0003992754 0 865 833 -0.0001961657 0 866 833 7.573577e-05 -1.270615e-19 867 833 -3.794451e-05 9.152319e-20 834 834 0.003254002 0 835 834 0.0003992702 0 835 835 0.001597505 0 864 835 7.573577e-05 1.270615e-19 865 835 -3.794451e-05 -9.152319e-20 866 835 0.0003992754 0 867 835 -0.0001961657 0 836 836 0.06444351 0 837 836 -2.221634e-06 0 838 836 0.003127331 -1.714656e-17 839 836 5.282301e-07 -1.044884e-20 840 836 0 -1.559968e-08 841 836 0 -1.728633e-08 842 836 0.004896805 -1.313407e-08 843 836 0.005443031 -1.456371e-08 844 836 0 -1.559968e-08 845 836 0 -1.728633e-08 846 836 0.004896805 -1.313407e-08 847 836 0.005443031 -1.456371e-08 868 836 0.01099169 0 869 836 -6.879408e-05 0 870 836 0.000580828 -3.360507e-18 871 836 -3.611979e-06 2.114217e-20 872 836 0 -1.583072e-08 873 836 0 7.81248e-10 874 836 0.004998613 -1.334696e-08 875 836 -0.0002455228 6.577842e-10 876 836 0 -1.583072e-08 877 836 0 7.81248e-10 878 836 0.004998613 -1.334696e-08 879 836 -0.0002455228 6.577842e-10 837 837 1.114502e-06 0 838 837 5.282301e-07 -1.044884e-20 839 837 5.409231e-08 -2.838426e-22 840 837 0 8.093066e-11 841 837 0 -1.152943e-13 842 837 -2.539192e-05 6.813246e-11 843 837 5.082365e-08 -1.062507e-13 844 837 0 8.093066e-11 845 837 0 -1.152943e-13 846 837 -2.539192e-05 6.813246e-11 847 837 5.082365e-08 -1.062507e-13 868 837 6.864237e-05 0 869 837 -4.118196e-07 0 870 837 3.65049e-06 -2.090856e-20 871 837 -2.176144e-08 1.262185e-22 872 837 0 -8.231505e-11 873 837 0 -5.811641e-14 874 837 2.600197e-05 -6.940812e-11 875 837 2.483243e-08 -5.406891e-14 876 837 0 -8.231505e-11 877 837 0 -5.811641e-14 878 837 2.600197e-05 -6.940812e-11 879 837 2.483243e-08 -5.406891e-14 838 838 0.06444351 0 839 838 -2.221634e-06 0 840 838 -0.004896805 -1.313407e-08 841 838 -0.005443031 -1.456371e-08 842 838 0 -1.559968e-08 843 838 0 -1.728633e-08 844 838 -0.004896805 -1.313407e-08 845 838 -0.005443031 -1.456371e-08 846 838 0 -1.559968e-08 847 838 0 -1.728633e-08 868 838 0.000580828 3.360507e-18 869 838 -3.611979e-06 -2.114217e-20 870 838 0.01099169 0 871 838 -6.879408e-05 0 872 838 -0.004998613 -1.334696e-08 873 838 0.0002455228 6.577842e-10 874 838 0 -1.583072e-08 875 838 0 7.81248e-10 876 838 -0.004998613 -1.334696e-08 877 838 0.0002455228 6.577842e-10 878 838 0 -1.583072e-08 879 838 0 7.81248e-10 839 839 1.114502e-06 0 840 839 2.539192e-05 6.813246e-11 841 839 -5.082365e-08 -1.062507e-13 842 839 0 8.093066e-11 843 839 0 -1.152943e-13 844 839 2.539192e-05 6.813246e-11 845 839 -5.082365e-08 -1.062507e-13 846 839 0 8.093066e-11 847 839 0 -1.152943e-13 868 839 3.65049e-06 2.090856e-20 869 839 -2.176144e-08 -1.262185e-22 870 839 6.864237e-05 0 871 839 -4.118196e-07 0 872 839 -2.600197e-05 -6.940812e-11 873 839 -2.483243e-08 -5.406891e-14 874 839 0 -8.231505e-11 875 839 0 -5.811641e-14 876 839 -2.600197e-05 -6.940812e-11 877 839 -2.483243e-08 -5.406891e-14 878 839 0 -8.231505e-11 879 839 0 -5.811641e-14 840 840 0.0191888 0 841 840 0.002449836 0 842 840 0.01065163 -1.572706e-17 843 840 0.001382739 -8.418356e-19 844 840 0.0191888 0 845 840 0.002449836 0 846 840 0.01065163 -1.572706e-17 847 840 0.001382739 -8.418356e-19 841 841 0.009799685 0 842 841 0.001382739 -8.418356e-19 843 841 0.005532258 -6.101194e-18 844 841 0.002449836 0 845 841 0.009799685 0 846 841 0.001382739 -8.418356e-19 847 841 0.005532258 -6.101194e-18 868 841 0 -8.058647e-10 869 841 0 5.811641e-14 870 841 0.0002560412 -6.806865e-10 871 841 -2.483243e-08 5.406891e-14 872 841 0.002449826 0 873 841 -0.001250766 0 874 841 0.001382737 -5.454475e-19 875 841 -0.0007178598 1.935567e-18 876 841 0.002449826 0 877 841 -0.001250766 0 878 841 0.001382737 -5.454475e-19 879 841 -0.0007178598 1.935567e-18 842 842 0.0191888 0 843 842 0.002449836 0 844 842 0.01065163 1.572706e-17 845 842 0.001382739 8.418356e-19 846 842 0.0191888 0 847 842 0.002449836 0 843 843 0.009799685 0 844 843 0.001382739 8.418356e-19 845 843 0.005532258 6.101194e-18 846 843 0.002449836 0 847 843 0.009799685 0 868 843 -0.0002560412 -6.806865e-10 869 843 2.483243e-08 5.406891e-14 870 843 0 -8.058647e-10 871 843 0 5.811641e-14 872 843 0.001382737 5.454475e-19 873 843 -0.0007178598 -1.935567e-18 874 843 0.002449826 0 875 843 -0.001250766 0 876 843 0.001382737 5.454475e-19 877 843 -0.0007178598 -1.935567e-18 878 843 0.002449826 0 879 843 -0.001250766 0 844 844 0.6816334 0 845 844 0.08361176 0 846 844 0.2525535 -8.766032e-16 847 844 0.03161206 -9.479884e-17 845 845 0.3345361 0 846 845 0.03161206 -9.479884e-17 847 845 0.1264491 -3.194605e-16 868 845 0 -8.058647e-10 869 845 0 5.811641e-14 870 845 0.0002560412 -6.806865e-10 871 845 -2.483243e-08 5.406891e-14 872 845 0.002449826 0 873 845 -0.001250766 0 874 845 0.001382737 -5.454475e-19 875 845 -0.0007178598 1.935567e-18 876 845 0.08361284 0 877 845 -0.04106645 0 878 845 0.03161197 -7.045887e-17 879 845 -0.01582807 2.525265e-17 846 846 0.6816334 0 847 846 0.08361176 0 847 847 0.3345361 0 868 847 -0.0002560412 -6.806865e-10 869 847 2.483243e-08 5.406891e-14 870 847 0 -8.058647e-10 871 847 0 5.811641e-14 872 847 0.001382737 5.454475e-19 873 847 -0.0007178598 -1.935567e-18 874 847 0.002449826 0 875 847 -0.001250766 0 876 847 0.03161197 7.045887e-17 877 847 -0.01582807 -2.525265e-17 878 847 0.08361284 0 879 847 -0.04106645 0 848 848 0.003254002 0 849 848 0.0003992702 0 850 848 0.0006047206 -1.544741e-18 851 848 7.573602e-05 -1.662536e-19 849 849 0.001597505 0 850 849 7.573602e-05 -1.662536e-19 851 849 0.0003029492 -6.388168e-19 880 849 0.0003992754 0 881 849 -0.0001961657 0 882 849 7.573577e-05 -1.270615e-19 883 849 -3.794451e-05 9.152319e-20 850 850 0.003254002 0 851 850 0.0003992702 0 851 851 0.001597505 0 880 851 7.573577e-05 1.270615e-19 881 851 -3.794451e-05 -9.152319e-20 882 851 0.0003992754 0 883 851 -0.0001961657 0 852 852 0.01826661 0 853 852 0.002327703 0 854 852 0.007424341 -2.19332e-17 855 852 0.0009640286 -2.740685e-18 856 852 0 -1.245913e-08 857 852 0 6.466005e-11 858 852 0.005178617 -8.570195e-09 859 852 -2.68461e-05 4.449985e-11 853 853 0.009310763 0 854 853 0.0009640286 -2.740685e-18 855 853 0.003857054 -1.068091e-17 856 853 0 -1.377517e-08 857 853 0 -6.374329e-14 858 853 0.005766266 -9.444694e-09 859 853 6.302823e-08 -1.616448e-14 884 853 0.002327696 0 885 853 -0.001186013 0 886 853 0.0009640267 -2.602368e-18 887 853 -0.0005006192 1.32331e-18 888 853 0 6.3725e-10 889 853 0 -3.206599e-14 890 853 -0.000272915 4.322317e-10 891 853 3.11526e-08 -8.495573e-15 854 854 0.01826661 0 855 854 0.002327703 0 856 854 -0.005178617 -8.570195e-09 857 854 2.68461e-05 4.449985e-11 858 854 0 -1.245913e-08 859 854 0 6.466005e-11 855 855 0.009310763 0 856 855 -0.005766266 -9.444694e-09 857 855 -6.302823e-08 -1.616448e-14 858 855 0 -1.377517e-08 859 855 0 -6.374329e-14 884 855 0.0009640267 2.602368e-18 885 855 -0.0005006192 -1.32331e-18 886 855 0.002327696 0 887 855 -0.001186013 0 888 855 0.000272915 4.322317e-10 889 855 -3.11526e-08 -8.495573e-15 890 855 0 6.3725e-10 891 855 0 -3.206599e-14 856 856 0.07639278 0 857 856 -1.578346e-06 0 858 856 -0.008368771 3.510979e-17 859 856 4.78776e-07 5.403374e-20 884 856 0 1.258691e-08 885 856 0 -6.236676e-10 886 856 -0.005304869 8.602647e-09 887 856 0.0002597194 -4.286333e-10 888 856 0.01310783 0 889 856 -8.200061e-05 0 890 856 -0.001412512 7.641868e-18 891 856 8.848361e-06 -4.910799e-20 857 857 1.321141e-06 0 858 857 4.78776e-07 5.403374e-20 859 857 -1.447003e-07 5.345122e-22 884 857 0 6.542562e-11 885 857 0 3.206599e-14 886 857 -2.760264e-05 4.469421e-11 887 857 -3.11526e-08 8.495573e-15 888 857 8.189536e-05 0 889 857 -4.91104e-07 0 890 857 -8.813274e-06 4.661096e-20 891 857 5.292231e-08 -2.879453e-22 858 858 0.07639278 0 859 858 -1.578346e-06 0 884 858 0.005304869 8.602647e-09 885 858 -0.0002597194 -4.286333e-10 886 858 0 1.258691e-08 887 858 0 -6.236676e-10 888 858 -0.001412512 -7.641868e-18 889 858 8.848361e-06 4.910799e-20 890 858 0.01310783 0 891 858 -8.200061e-05 0 859 859 1.321141e-06 0 884 859 2.760264e-05 4.469421e-11 885 859 3.11526e-08 8.495573e-15 886 859 0 6.542562e-11 887 859 0 3.206599e-14 888 859 -8.813274e-06 -4.661096e-20 889 859 5.292231e-08 2.879453e-22 890 859 8.189536e-05 0 891 859 -4.91104e-07 0 860 860 0.002269514 0 861 860 1.323992e-07 0 892 860 0.0004026997 0 893 860 -2.512806e-06 0 861 861 3.924785e-08 0 892 861 2.522421e-06 0 893 861 -1.508775e-08 0 862 862 0.002269514 0 863 862 1.323992e-07 0 894 862 0.0004026997 0 895 862 -2.512806e-06 0 863 863 3.924785e-08 0 894 863 2.522421e-06 0 895 863 -1.508775e-08 0 864 864 0.003138339 0 865 864 0.0003853875 0 866 864 0.0006071075 -1.362446e-18 867 864 7.604226e-05 -2.390313e-19 865 865 0.001541929 0 866 865 7.604226e-05 -2.390313e-19 867 865 0.0003041743 -1.03595e-18 896 865 0.0003853918 0 897 865 -0.0001894833 0 898 865 7.6042e-05 -2.710787e-19 899 865 -3.81017e-05 1.743148e-19 866 866 0.003138339 0 867 866 0.0003853875 0 867 867 0.001541929 0 896 867 7.6042e-05 2.710787e-19 897 867 -3.81017e-05 -1.743148e-19 898 867 0.0003853918 0 899 867 -0.0001894833 0 868 868 0.06261928 0 869 868 -2.033852e-06 0 870 868 0.003590021 -1.484701e-17 871 868 5.501138e-07 1.502817e-20 872 868 0 -1.591128e-08 873 868 0 -1.76309e-08 874 868 0.005033037 -1.342191e-08 875 868 0.005590267 -1.488429e-08 876 868 0 -1.591128e-08 877 868 0 -1.76309e-08 878 868 0.005033037 -1.342191e-08 879 868 0.005590267 -1.488429e-08 900 868 0.0106896 0 901 868 -6.689891e-05 0 902 868 0.0006625413 -1.281366e-18 903 868 -4.122036e-06 8.679922e-21 904 868 0 -1.614557e-08 905 868 0 7.968508e-10 906 868 0.005130046 -1.364191e-08 907 868 -0.0002523097 6.722235e-10 908 868 0 -1.614557e-08 909 868 0 7.968508e-10 910 868 0.005130046 -1.364191e-08 911 868 -0.0002523097 6.722235e-10 869 869 1.082937e-06 0 870 869 5.501138e-07 1.502817e-20 871 869 6.209318e-08 -2.4606e-22 872 869 0 8.254751e-11 873 869 0 -1.16912e-13 874 869 -2.61013e-05 6.962439e-11 875 869 4.842014e-08 -1.097952e-13 876 869 0 8.254751e-11 877 869 0 -1.16912e-13 878 869 -2.61013e-05 6.962439e-11 879 869 4.842014e-08 -1.097952e-13 900 869 6.675989e-05 0 901 869 -4.00499e-07 0 902 869 4.162126e-06 -7.329804e-21 903 869 -2.482281e-08 4.789103e-23 904 869 0 -8.395135e-11 905 869 0 -5.89028e-14 906 869 2.668259e-05 -7.094263e-11 907 869 2.361558e-08 -5.580633e-14 908 869 0 -8.395135e-11 909 869 0 -5.89028e-14 910 869 2.668259e-05 -7.094263e-11 911 869 2.361558e-08 -5.580633e-14 870 870 0.06261928 0 871 870 -2.033852e-06 0 872 870 -0.005033037 -1.342191e-08 873 870 -0.005590267 -1.488429e-08 874 870 0 -1.591128e-08 875 870 0 -1.76309e-08 876 870 -0.005033037 -1.342191e-08 877 870 -0.005590267 -1.488429e-08 878 870 0 -1.591128e-08 879 870 0 -1.76309e-08 900 870 0.0006625413 1.281366e-18 901 870 -4.122036e-06 -8.679922e-21 902 870 0.0106896 0 903 870 -6.689891e-05 0 904 870 -0.005130046 -1.364191e-08 905 870 0.0002523097 6.722235e-10 906 870 0 -1.614557e-08 907 870 0 7.968508e-10 908 870 -0.005130046 -1.364191e-08 909 870 0.0002523097 6.722235e-10 910 870 0 -1.614557e-08 911 870 0 7.968508e-10 871 871 1.082937e-06 0 872 871 2.61013e-05 6.962439e-11 873 871 -4.842014e-08 -1.097952e-13 874 871 0 8.254751e-11 875 871 0 -1.16912e-13 876 871 2.61013e-05 6.962439e-11 877 871 -4.842014e-08 -1.097952e-13 878 871 0 8.254751e-11 879 871 0 -1.16912e-13 900 871 4.162126e-06 7.329804e-21 901 871 -2.482281e-08 -4.789103e-23 902 871 6.675989e-05 0 903 871 -4.00499e-07 0 904 871 -2.668259e-05 -7.094263e-11 905 871 -2.361558e-08 -5.580633e-14 906 871 0 -8.395135e-11 907 871 0 -5.89028e-14 908 871 -2.668259e-05 -7.094263e-11 909 871 -2.361558e-08 -5.580633e-14 910 871 0 -8.395135e-11 911 871 0 -5.89028e-14 872 872 0.02001196 0 873 872 0.002553236 0 874 872 0.01148472 -2.961866e-17 875 872 0.001488702 -7.196819e-18 876 872 0.02001196 0 877 872 0.002553236 0 878 872 0.01148472 -2.961866e-17 879 872 0.001488702 -7.196819e-18 873 873 0.0102133 0 874 873 0.001488702 -7.196819e-18 875 873 0.005956095 -2.673045e-17 876 873 0.002553236 0 877 873 0.0102133 0 878 873 0.001488702 -7.196819e-18 879 873 0.005956095 -2.673045e-17 900 873 0 -8.218008e-10 901 873 0 5.89028e-14 902 873 0.0002623127 -6.958618e-10 903 873 -2.361558e-08 5.580633e-14 904 873 0.002553227 0 905 873 -0.001302729 0 906 873 0.0014887 -8.514736e-18 907 873 -0.0007717451 2.606887e-18 908 873 0.002553227 0 909 873 -0.001302729 0 910 873 0.0014887 -8.514736e-18 911 873 -0.0007717451 2.606887e-18 874 874 0.02001196 0 875 874 0.002553236 0 876 874 0.01148472 2.961866e-17 877 874 0.001488702 7.196819e-18 878 874 0.02001196 0 879 874 0.002553236 0 875 875 0.0102133 0 876 875 0.001488702 7.196819e-18 877 875 0.005956095 2.673045e-17 878 875 0.002553236 0 879 875 0.0102133 0 900 875 -0.0002623127 -6.958618e-10 901 875 2.361558e-08 5.580633e-14 902 875 0 -8.218008e-10 903 875 0 5.89028e-14 904 875 0.0014887 8.514736e-18 905 875 -0.0007717451 -2.606887e-18 906 875 0.002553227 0 907 875 -0.001302729 0 908 875 0.0014887 8.514736e-18 909 875 -0.0007717451 -2.606887e-18 910 875 0.002553227 0 911 875 -0.001302729 0 876 876 0.6569976 0 877 876 0.08065296 0 878 876 0.2532484 -3.6627e-16 879 876 0.03170032 -3.055174e-17 877 877 0.3226913 0 878 877 0.03170032 -3.055174e-17 879 877 0.1268021 -1.587695e-16 900 877 0 -8.218008e-10 901 877 0 5.89028e-14 902 877 0.0002623127 -6.958618e-10 903 877 -2.361558e-08 5.580633e-14 904 877 0.002553227 0 905 877 -0.001302729 0 906 877 0.0014887 -8.514736e-18 907 877 -0.0007717451 2.606887e-18 908 877 0.08065387 0 909 877 -0.03964131 0 910 877 0.03170023 -3.725921e-17 911 877 -0.01587289 2.471575e-17 878 878 0.6569976 0 879 878 0.08065296 0 879 879 0.3226913 0 900 879 -0.0002623127 -6.958618e-10 901 879 2.361558e-08 5.580633e-14 902 879 0 -8.218008e-10 903 879 0 5.89028e-14 904 879 0.0014887 8.514736e-18 905 879 -0.0007717451 -2.606887e-18 906 879 0.002553227 0 907 879 -0.001302729 0 908 879 0.03170023 3.725921e-17 909 879 -0.01587289 -2.471575e-17 910 879 0.08065387 0 911 879 -0.03964131 0 880 880 0.003138339 0 881 880 0.0003853875 0 882 880 0.0006071075 -1.362446e-18 883 880 7.604226e-05 -2.390313e-19 881 881 0.001541929 0 882 881 7.604226e-05 -2.390313e-19 883 881 0.0003041743 -1.03595e-18 912 881 0.0003853918 0 913 881 -0.0001894833 0 914 881 7.6042e-05 -2.710787e-19 915 881 -3.81017e-05 1.743148e-19 882 882 0.003138339 0 883 882 0.0003853875 0 883 883 0.001541929 0 912 883 7.6042e-05 2.710787e-19 913 883 -3.81017e-05 -1.743148e-19 914 883 0.0003853918 0 915 883 -0.0001894833 0 884 884 0.01897624 0 885 884 0.002416358 0 886 884 0.008009155 -2.084501e-17 887 884 0.00103845 -2.690871e-18 888 884 0 -1.263136e-08 889 884 0 6.555389e-11 890 884 0.005348055 -8.614423e-09 891 884 -2.772725e-05 4.472819e-11 885 885 0.00966538 0 886 885 0.00103845 -2.690871e-18 887 885 0.004154731 -1.123291e-17 888 885 0 -1.396527e-08 889 885 0 -6.430889e-14 890 885 0.005950982 -9.495031e-09 891 885 6.149443e-08 -1.76643e-14 916 885 0.002416351 0 917 885 -0.001230315 0 918 885 0.001038448 -2.743717e-18 919 885 -0.0005384843 1.649832e-18 920 885 0 6.459808e-10 921 885 0 -3.232192e-14 922 885 -0.0002810421 4.347702e-10 923 885 3.037496e-08 -9.214277e-15 886 886 0.01897624 0 887 886 0.002416358 0 888 886 -0.005348055 -8.614423e-09 889 886 2.772725e-05 4.472819e-11 890 886 0 -1.263136e-08 891 886 0 6.555389e-11 887 887 0.00966538 0 888 887 -0.005950982 -9.495031e-09 889 887 -6.149443e-08 -1.76643e-14 890 887 0 -1.396527e-08 891 887 0 -6.430889e-14 916 887 0.001038448 2.743717e-18 917 887 -0.0005384843 -1.649832e-18 918 887 0.002416351 0 919 887 -0.001230315 0 920 887 0.0002810421 4.347702e-10 921 887 -3.037496e-08 -9.214277e-15 922 887 0 6.459808e-10 923 887 0 -3.232192e-14 888 888 0.07512686 0 889 888 -1.376005e-06 0 890 888 -0.007947128 2.416558e-17 891 888 5.041895e-07 -4.247395e-20 916 888 0 1.276027e-08 917 888 0 -6.3229e-10 918 888 -0.00547125 8.649883e-09 919 888 0.000268176 -4.308673e-10 920 888 0.01290346 0 921 888 -8.071582e-05 0 922 888 -0.001337629 2.814358e-18 923 888 8.38111e-06 -1.671296e-20 889 889 1.299231e-06 0 890 889 5.041895e-07 -4.247395e-20 891 889 -1.374075e-07 4.678838e-22 916 889 0 6.632627e-11 917 889 0 3.232192e-14 918 889 -2.846547e-05 4.494058e-11 919 889 -3.037496e-08 9.214277e-15 920 889 8.062435e-05 0 921 889 -4.834444e-07 0 922 889 -8.344163e-06 1.83542e-20 923 889 5.011642e-08 -1.042501e-22 890 890 0.07512686 0 891 890 -1.376005e-06 0 916 890 0.00547125 8.649883e-09 917 890 -0.000268176 -4.308673e-10 918 890 0 1.276027e-08 919 890 0 -6.3229e-10 920 890 -0.001337629 -2.814358e-18 921 890 8.38111e-06 1.671296e-20 922 890 0.01290346 0 923 890 -8.071582e-05 0 891 891 1.299231e-06 0 916 891 2.846547e-05 4.494058e-11 917 891 3.037496e-08 9.214277e-15 918 891 0 6.632627e-11 919 891 0 3.232192e-14 920 891 -8.344163e-06 -1.83542e-20 921 891 5.011642e-08 1.042501e-22 922 891 8.062435e-05 0 923 891 -4.834444e-07 0 892 892 0.00238504 0 893 892 1.368599e-07 0 924 892 0.0004230313 0 925 892 -2.639743e-06 0 893 893 4.124554e-08 0 924 893 2.649689e-06 0 925 893 -1.584941e-08 0 894 894 0.00238504 0 895 894 1.368599e-07 0 926 894 0.0004230313 0 927 894 -2.639743e-06 0 895 895 4.124554e-08 0 926 895 2.649689e-06 0 927 895 -1.584941e-08 0 896 896 0.003031452 0 897 896 0.0003725413 0 898 896 0.0006096225 -2.880745e-18 899 896 7.63648e-05 -4.261805e-19 897 897 0.001490505 0 898 897 7.63648e-05 -4.261805e-19 899 897 0.0003054648 -1.526816e-18 928 897 0.0003725448 0 929 897 -0.0001832928 0 930 897 7.636455e-05 -4.234367e-19 931 897 -3.826722e-05 1.270813e-19 898 898 0.003031452 0 899 898 0.0003725413 0 899 899 0.001490505 0 928 899 7.636455e-05 4.234367e-19 929 899 -3.826722e-05 -1.270813e-19 930 899 0.0003725448 0 931 899 -0.0001832928 0 900 900 0.06094778 0 901 900 -1.86534e-06 0 902 900 0.004071674 -3.218574e-18 903 900 5.723693e-07 1.766179e-21 904 900 0 -1.622723e-08 905 900 0 -1.798014e-08 906 900 0.005162783 -1.371927e-08 907 900 0.005730279 -1.521516e-08 908 900 0 -1.622723e-08 909 900 0 -1.798014e-08 910 900 0.005162783 -1.371927e-08 911 900 0.005730279 -1.521516e-08 932 900 0.01041254 0 933 900 -6.51609e-05 0 934 900 0.0007475593 -1.135755e-18 935 900 -4.652742e-06 6.342735e-21 936 900 0 -1.646457e-08 937 900 0 8.126692e-10 938 900 0.005254817 -1.394609e-08 939 900 -0.0002587731 6.871363e-10 940 900 0 -1.646457e-08 941 900 0 8.126692e-10 942 900 0.005254817 -1.394609e-08 943 900 -0.0002587731 6.871363e-10 901 901 1.054016e-06 0 902 901 5.723693e-07 1.766179e-21 903 901 7.042172e-08 -8.448242e-23 904 901 0 8.418696e-11 905 901 0 -1.184345e-13 906 901 -2.677705e-05 7.116586e-11 907 901 4.593876e-08 -1.131968e-13 908 901 0 8.418696e-11 909 901 0 -1.184345e-13 910 901 -2.677705e-05 7.116586e-11 911 901 4.593876e-08 -1.131968e-13 932 901 6.503328e-05 0 933 901 -3.901165e-07 0 934 901 4.694427e-06 -7.832655e-21 935 901 -2.800796e-08 4.230262e-23 936 901 0 -8.56091e-11 937 901 0 -5.964268e-14 938 901 2.732853e-05 -7.252495e-11 939 901 2.234363e-08 -5.74751e-14 940 901 0 -8.56091e-11 941 901 0 -5.964268e-14 942 901 2.732853e-05 -7.252495e-11 943 901 2.234363e-08 -5.74751e-14 902 902 0.06094778 0 903 902 -1.86534e-06 0 904 902 -0.005162783 -1.371927e-08 905 902 -0.005730279 -1.521516e-08 906 902 0 -1.622723e-08 907 902 0 -1.798014e-08 908 902 -0.005162783 -1.371927e-08 909 902 -0.005730279 -1.521516e-08 910 902 0 -1.622723e-08 911 902 0 -1.798014e-08 932 902 0.0007475593 1.135755e-18 933 902 -4.652742e-06 -6.342735e-21 934 902 0.01041254 0 935 902 -6.51609e-05 0 936 902 -0.005254817 -1.394609e-08 937 902 0.0002587731 6.871363e-10 938 902 0 -1.646457e-08 939 902 0 8.126692e-10 940 902 -0.005254817 -1.394609e-08 941 902 0.0002587731 6.871363e-10 942 902 0 -1.646457e-08 943 902 0 8.126692e-10 903 903 1.054016e-06 0 904 903 2.677705e-05 7.116586e-11 905 903 -4.593876e-08 -1.131968e-13 906 903 0 8.418696e-11 907 903 0 -1.184345e-13 908 903 2.677705e-05 7.116586e-11 909 903 -4.593876e-08 -1.131968e-13 910 903 0 8.418696e-11 911 903 0 -1.184345e-13 932 903 4.694427e-06 7.832655e-21 933 903 -2.800796e-08 -4.230262e-23 934 903 6.503328e-05 0 935 903 -3.901165e-07 0 936 903 -2.732853e-05 -7.252495e-11 937 903 -2.234363e-08 -5.74751e-14 938 903 0 -8.56091e-11 939 903 0 -5.964268e-14 940 903 -2.732853e-05 -7.252495e-11 941 903 -2.234363e-08 -5.74751e-14 942 903 0 -8.56091e-11 943 903 0 -5.964268e-14 904 904 0.02084336 0 905 904 0.002657689 0 906 904 0.01234689 -4.538678e-17 907 904 0.001598281 -1.912814e-18 908 904 0.02084336 0 909 904 0.002657689 0 910 904 0.01234689 -4.538678e-17 911 904 0.001598281 -1.912814e-18 905 905 0.01063113 0 906 905 0.001598281 -1.912814e-18 907 905 0.006394393 -7.945746e-18 908 905 0.002657689 0 909 905 0.01063113 0 910 905 0.001598281 -1.912814e-18 911 905 0.006394393 -7.945746e-18 932 905 0 -8.379327e-10 933 905 0 5.964268e-14 934 905 0.0002682374 -7.114815e-10 935 905 -2.234363e-08 5.74751e-14 936 905 0.002657679 0 937 905 -0.001355229 0 938 905 0.001598278 -3.071941e-19 939 905 -0.0008274272 1.049349e-18 940 905 0.002657679 0 941 905 -0.001355229 0 942 905 0.001598278 -3.071941e-19 943 905 -0.0008274272 1.049349e-18 906 906 0.02084336 0 907 906 0.002657689 0 908 906 0.01234689 4.538678e-17 909 906 0.001598281 1.912814e-18 910 906 0.02084336 0 911 906 0.002657689 0 907 907 0.01063113 0 908 907 0.001598281 1.912814e-18 909 907 0.006394393 7.945746e-18 910 907 0.002657689 0 911 907 0.01063113 0 932 907 -0.0002682374 -7.114815e-10 933 907 2.234363e-08 5.74751e-14 934 907 0 -8.379327e-10 935 907 0 5.964268e-14 936 907 0.001598278 3.071941e-19 937 907 -0.0008274272 -1.049349e-18 938 907 0.002657679 0 939 907 -0.001355229 0 940 907 0.001598278 3.071941e-19 941 907 -0.0008274272 -1.049349e-18 942 907 0.002657679 0 943 907 -0.001355229 0 908 908 0.6342023 0 909 908 0.07791139 0 910 908 0.2539655 -3.930437e-16 911 908 0.03179134 -6.160378e-17 909 909 0.3117167 0 910 909 0.03179134 -6.160378e-17 911 909 0.1271661 -2.454324e-16 932 909 0 -8.379327e-10 933 909 0 5.964268e-14 934 909 0.0002682374 -7.114815e-10 935 909 -2.234363e-08 5.74751e-14 936 909 0.002657679 0 937 909 -0.001355229 0 938 909 0.001598278 -3.071941e-19 939 909 -0.0008274272 1.049349e-18 940 909 0.07791215 0 941 909 -0.03831921 0 942 909 0.03179125 -6.246042e-17 943 909 -0.01591908 3.534647e-17 910 910 0.6342023 0 911 910 0.07791139 0 911 911 0.3117167 0 932 911 -0.0002682374 -7.114815e-10 933 911 2.234363e-08 5.74751e-14 934 911 0 -8.379327e-10 935 911 0 5.964268e-14 936 911 0.001598278 3.071941e-19 937 911 -0.0008274272 -1.049349e-18 938 911 0.002657679 0 939 911 -0.001355229 0 940 911 0.03179125 6.246042e-17 941 911 -0.01591908 -3.534647e-17 942 911 0.07791215 0 943 911 -0.03831921 0 912 912 0.003031452 0 913 912 0.0003725413 0 914 912 0.0006096225 -2.880745e-18 915 912 7.63648e-05 -4.261805e-19 913 913 0.001490505 0 914 913 7.63648e-05 -4.261805e-19 915 913 0.0003054648 -1.526816e-18 944 913 0.0003725448 0 945 913 -0.0001832928 0 946 913 7.636455e-05 -4.234367e-19 947 913 -3.826722e-05 1.270813e-19 914 914 0.003031452 0 915 914 0.0003725413 0 915 915 0.001490505 0 944 915 7.636455e-05 4.234367e-19 945 915 -3.826722e-05 -1.270813e-19 946 915 0.0003725448 0 947 915 -0.0001832928 0 916 916 0.01968507 0 917 916 0.00250491 0 918 916 0.008615004 -2.662189e-17 919 916 0.001115489 -3.855611e-18 920 916 0 -1.280508e-08 921 916 0 6.645556e-11 922 916 0.005513357 -8.662656e-09 923 916 -2.858697e-05 4.497744e-11 917 917 0.01001959 0 918 917 0.001115489 -3.855611e-18 919 917 0.004462879 -1.444819e-17 920 917 0 -1.415689e-08 921 917 0 -6.476424e-14 922 917 0.006131078 -9.549632e-09 923 917 5.989806e-08 -1.904116e-14 948 917 0.002504903 0 949 917 -0.001274565 0 950 917 0.001115487 -3.966377e-18 951 917 -0.0005776525 1.403428e-18 952 917 0 6.547621e-10 953 917 0 -3.252424e-14 954 917 -0.0002889432 4.374825e-10 955 917 2.954871e-08 -9.87567e-15 918 918 0.01968507 0 919 918 0.00250491 0 920 918 -0.005513357 -8.662656e-09 921 918 2.858697e-05 4.497744e-11 922 918 0 -1.280508e-08 923 918 0 6.645556e-11 919 919 0.01001959 0 920 919 -0.006131078 -9.549632e-09 921 919 -5.989806e-08 -1.904116e-14 922 919 0 -1.415689e-08 923 919 0 -6.476424e-14 948 919 0.001115487 3.966377e-18 949 919 -0.0005776525 -1.403428e-18 950 919 0.002504903 0 951 919 -0.001274565 0 952 919 0.0002889432 4.374825e-10 953 919 -2.954871e-08 -9.87567e-15 954 919 0 6.547621e-10 955 919 0 -3.252424e-14 920 920 0.07402657 0 921 920 -1.191992e-06 0 922 920 -0.007503152 3.033717e-17 923 920 5.307804e-07 3.169512e-20 948 920 0 1.29349e-08 949 920 0 -6.409855e-10 950 920 -0.00563335 8.700876e-09 951 920 0.0002764269 -4.332994e-10 952 920 0.01272643 0 953 920 -7.960257e-05 0 954 920 -0.001258797 6.648154e-18 955 920 7.889213e-06 -4.169239e-20 921 921 1.280186e-06 0 922 921 5.307804e-07 3.169512e-20 923 921 -1.297288e-07 4.976485e-22 948 921 0 6.723342e-11 949 921 0 3.252424e-14 950 921 -2.930599e-05 4.520636e-11 951 921 -2.954871e-08 9.87567e-15 952 921 7.952364e-05 0 953 921 -4.768091e-07 0 954 921 -7.850332e-06 4.149219e-20 955 921 4.716262e-08 -2.496518e-22 922 922 0.07402657 0 923 922 -1.191992e-06 0 948 922 0.00563335 8.700876e-09 949 922 -0.0002764269 -4.332994e-10 950 922 0 1.29349e-08 951 922 0 -6.409855e-10 952 922 -0.001258797 -6.648154e-18 953 922 7.889213e-06 4.169239e-20 954 922 0.01272643 0 955 922 -7.960257e-05 0 923 923 1.280186e-06 0 948 923 2.930599e-05 4.520636e-11 949 923 2.954871e-08 9.87567e-15 950 923 0 6.723342e-11 951 923 0 3.252424e-14 952 923 -7.850332e-06 -4.149219e-20 953 923 4.716262e-08 2.496518e-22 954 923 7.952364e-05 0 955 923 -4.768091e-07 0 924 924 0.00250455 0 925 924 1.416872e-07 0 956 924 0.0004440803 0 957 924 -2.771149e-06 0 925 925 4.331212e-08 0 956 925 2.781454e-06 0 957 925 -1.663794e-08 0 926 926 0.00250455 0 927 926 1.416872e-07 0 958 926 0.0004440803 0 959 926 -2.771149e-06 0 927 927 4.331212e-08 0 958 927 2.781454e-06 0 959 927 -1.663794e-08 0 928 928 0.002932431 0 929 928 0.0003606262 0 930 928 0.0006122706 -2.038758e-18 931 928 7.670434e-05 -8.48885e-20 929 929 0.001442811 0 930 929 7.670434e-05 -8.48885e-20 931 929 0.0003068232 -5.297415e-19 960 929 0.0003606291 0 961 929 -0.000177545 0 962 929 7.670408e-05 -5.805476e-20 963 929 -3.844142e-05 1.22974e-19 930 930 0.002932431 0 931 930 0.0003606262 0 931 931 0.001442811 0 960 931 7.670408e-05 5.805476e-20 961 931 -3.844142e-05 -1.22974e-19 962 931 0.0003606291 0 963 931 -0.000177545 0 932 932 0.05941344 0 933 932 -1.713619e-06 0 934 932 0.004572497 -1.482709e-17 935 932 5.948187e-07 -1.552639e-20 936 932 0 -1.654725e-08 937 932 0 -1.833377e-08 938 932 0.005285792 -1.402576e-08 939 932 0.005862759 -1.555594e-08 940 932 0 -1.654725e-08 941 932 0 -1.833377e-08 942 932 0.005285792 -1.402576e-08 943 932 0.005862759 -1.555594e-08 964 932 0.01015802 0 965 932 -6.356439e-05 0 966 932 0.0008359135 -3.189892e-18 967 932 -5.204291e-06 2.003896e-20 968 932 0 -1.678748e-08 969 932 0 8.286898e-10 970 932 0.005372655 -1.425915e-08 971 932 -0.0002648961 7.025032e-10 972 932 0 -1.678748e-08 973 932 0 8.286898e-10 974 932 0.005372655 -1.425915e-08 975 932 -0.0002648961 7.025032e-10 933 933 1.027468e-06 0 934 933 5.948187e-07 -1.552639e-20 935 933 7.908177e-08 -2.375145e-22 936 933 0 8.584767e-11 937 933 0 -1.198759e-13 938 933 -2.74179e-05 7.275485e-11 939 933 4.335217e-08 -1.164733e-13 940 933 0 8.584767e-11 941 933 0 -1.198759e-13 942 933 -2.74179e-05 7.275485e-11 943 933 4.335217e-08 -1.164733e-13 964 933 6.344709e-05 0 965 933 -3.805787e-07 0 966 933 5.247593e-06 -1.98748e-20 967 933 -3.131807e-08 1.197918e-22 968 933 0 -8.728712e-11 969 933 0 -6.034644e-14 970 933 2.793839e-05 -7.415328e-11 971 933 2.103724e-08 -5.908663e-14 972 933 0 -8.728712e-11 973 933 0 -6.034644e-14 974 933 2.793839e-05 -7.415328e-11 975 933 2.103724e-08 -5.908663e-14 934 934 0.05941344 0 935 934 -1.713619e-06 0 936 934 -0.005285792 -1.402576e-08 937 934 -0.005862759 -1.555594e-08 938 934 0 -1.654725e-08 939 934 0 -1.833377e-08 940 934 -0.005285792 -1.402576e-08 941 934 -0.005862759 -1.555594e-08 942 934 0 -1.654725e-08 943 934 0 -1.833377e-08 964 934 0.0008359135 3.189892e-18 965 934 -5.204291e-06 -2.003896e-20 966 934 0.01015802 0 967 934 -6.356439e-05 0 968 934 -0.005372655 -1.425915e-08 969 934 0.0002648961 7.025032e-10 970 934 0 -1.678748e-08 971 934 0 8.286898e-10 972 934 -0.005372655 -1.425915e-08 973 934 0.0002648961 7.025032e-10 974 934 0 -1.678748e-08 975 934 0 8.286898e-10 935 935 1.027468e-06 0 936 935 2.74179e-05 7.275485e-11 937 935 -4.335217e-08 -1.164733e-13 938 935 0 8.584767e-11 939 935 0 -1.198759e-13 940 935 2.74179e-05 7.275485e-11 941 935 -4.335217e-08 -1.164733e-13 942 935 0 8.584767e-11 943 935 0 -1.198759e-13 964 935 5.247593e-06 1.98748e-20 965 935 -3.131807e-08 -1.197918e-22 966 935 6.344709e-05 0 967 935 -3.805787e-07 0 968 935 -2.793839e-05 -7.415328e-11 969 935 -2.103724e-08 -5.908663e-14 970 935 0 -8.728712e-11 971 935 0 -6.034644e-14 972 935 -2.793839e-05 -7.415328e-11 973 935 -2.103724e-08 -5.908663e-14 974 935 0 -8.728712e-11 975 935 0 -6.034644e-14 936 936 0.02168334 0 937 936 0.002763236 0 938 936 0.01323782 -1.315002e-17 939 936 0.001711431 -3.890202e-18 940 936 0.02168334 0 941 936 0.002763236 0 942 936 0.01323782 -1.315002e-17 943 936 0.001711431 -3.890202e-18 937 937 0.01105333 0 938 937 0.001711431 -3.890202e-18 939 937 0.006846977 -1.63571e-17 940 937 0.002763236 0 941 937 0.01105333 0 942 937 0.001711431 -3.890202e-18 943 937 0.006846977 -1.63571e-17 964 937 0 -8.542514e-10 965 937 0 6.034644e-14 966 937 0.000273807 -7.275311e-10 967 937 -2.103724e-08 5.908663e-14 968 937 0.002763226 0 969 937 -0.001408286 0 970 937 0.001711428 -5.041844e-18 971 937 -0.000884884 2.270332e-18 972 937 0.002763226 0 973 937 -0.001408286 0 974 937 0.001711428 -5.041844e-18 975 937 -0.000884884 2.270332e-18 938 938 0.02168334 0 939 938 0.002763236 0 940 938 0.01323782 1.315002e-17 941 938 0.001711431 3.890202e-18 942 938 0.02168334 0 943 938 0.002763236 0 939 939 0.01105333 0 940 939 0.001711431 3.890202e-18 941 939 0.006846977 1.63571e-17 942 939 0.002763236 0 943 939 0.01105333 0 964 939 -0.000273807 -7.275311e-10 965 939 2.103724e-08 5.908663e-14 966 939 0 -8.542514e-10 967 939 0 6.034644e-14 968 939 0.001711428 5.041844e-18 969 939 -0.000884884 -2.270332e-18 970 939 0.002763226 0 971 939 -0.001408286 0 972 939 0.001711428 5.041844e-18 973 939 -0.000884884 -2.270332e-18 974 939 0.002763226 0 975 939 -0.001408286 0 940 940 0.6130545 0 941 940 0.07536469 0 942 940 0.2547044 -5.66112e-16 943 940 0.03188505 -7.892546e-17 941 941 0.3015228 0 942 941 0.03188505 -7.892546e-17 943 941 0.1275409 -3.199916e-16 964 941 0 -8.542514e-10 965 941 0 6.034644e-14 966 941 0.000273807 -7.275311e-10 967 941 -2.103724e-08 5.908663e-14 968 941 0.002763226 0 969 941 -0.001408286 0 970 941 0.001711428 -5.041844e-18 971 941 -0.000884884 2.270332e-18 972 941 0.07536533 0 973 941 -0.03708971 0 974 941 0.03188496 -7.868954e-17 975 941 -0.01596658 4.703715e-17 942 942 0.6130545 0 943 942 0.07536469 0 943 943 0.3015228 0 964 943 -0.000273807 -7.275311e-10 965 943 2.103724e-08 5.908663e-14 966 943 0 -8.542514e-10 967 943 0 6.034644e-14 968 943 0.001711428 5.041844e-18 969 943 -0.000884884 -2.270332e-18 970 943 0.002763226 0 971 943 -0.001408286 0 972 943 0.03188496 7.868954e-17 973 943 -0.01596658 -4.703715e-17 974 943 0.07536533 0 975 943 -0.03708971 0 944 944 0.002932431 0 945 944 0.0003606262 0 946 944 0.0006122706 -2.038758e-18 947 944 7.670434e-05 -8.48885e-20 945 945 0.001442811 0 946 945 7.670434e-05 -8.48885e-20 947 945 0.0003068232 -5.297415e-19 976 945 0.0003606291 0 977 945 -0.000177545 0 978 945 7.670408e-05 -5.805476e-20 979 945 -3.844142e-05 1.22974e-19 946 946 0.002932431 0 947 946 0.0003606262 0 947 947 0.001442811 0 976 947 7.670408e-05 5.805476e-20 977 947 -3.844142e-05 -1.22974e-19 978 947 0.0003606291 0 979 947 -0.000177545 0 948 948 0.02039307 0 949 948 0.002593357 0 950 948 0.009241701 -2.281712e-17 951 948 0.001195123 -1.647336e-18 952 948 0 -1.297999e-08 953 948 0 6.736352e-11 954 948 0.005674312 -8.714566e-09 955 948 -2.942418e-05 4.524586e-11 949 949 0.01037337 0 950 949 0.001195123 -1.647336e-18 951 949 0.004781405 -7.412716e-18 952 949 0 -1.434972e-08 953 949 0 -6.512367e-14 954 949 0.006306286 -9.608158e-09 955 949 5.821239e-08 -2.031322e-14 980 949 0.00259335 0 981 949 -0.001318761 0 982 949 0.001195121 -1.396899e-18 983 949 -0.0006181119 1.089646e-18 984 949 0 6.635824e-10 985 949 0 -3.268232e-14 986 949 -0.0002966128 4.403565e-10 987 949 2.869843e-08 -1.048964e-14 950 950 0.02039307 0 951 950 0.002593357 0 952 950 -0.005674312 -8.714566e-09 953 950 2.942418e-05 4.524586e-11 954 950 0 -1.297999e-08 955 950 0 6.736352e-11 951 951 0.01037337 0 952 951 -0.006306286 -9.608158e-09 953 951 -5.821239e-08 -2.031322e-14 954 951 0 -1.434972e-08 955 951 0 -6.512367e-14 980 951 0.001195121 1.396899e-18 981 951 -0.0006181119 -1.089646e-18 982 951 0.00259335 0 983 951 -0.001318761 0 984 951 0.0002966128 4.403565e-10 985 951 -2.869843e-08 -1.048964e-14 986 951 0 6.635824e-10 987 951 0 -3.268232e-14 952 952 0.07307718 0 953 952 -1.023713e-06 0 954 952 -0.007035929 3.572634e-17 955 952 5.58396e-07 -4.931331e-21 980 952 0 1.311054e-08 981 952 0 -6.497389e-10 982 952 -0.005790939 8.755337e-09 983 952 0.0002844568 -4.359133e-10 984 952 0.01257441 0 985 952 -7.864615e-05 0 986 952 -0.001175862 6.180934e-18 987 952 7.371704e-06 -3.84376e-20 953 953 1.263753e-06 0 954 953 5.58396e-07 -4.931331e-21 955 953 -1.216481e-07 6.317392e-22 980 953 0 6.814571e-11 981 953 0 3.268232e-14 982 953 -3.012303e-05 4.549008e-11 983 953 -2.869843e-08 1.048964e-14 984 953 7.857876e-05 0 985 953 -4.711107e-07 0 986 953 -7.330806e-06 3.885572e-20 987 953 4.405509e-08 -2.316675e-22 954 954 0.07307718 0 955 954 -1.023713e-06 0 980 954 0.005790939 8.755337e-09 981 954 -0.0002844568 -4.359133e-10 982 954 0 1.311054e-08 983 954 0 -6.497389e-10 984 954 -0.001175862 -6.180934e-18 985 954 7.371704e-06 3.84376e-20 986 954 0.01257441 0 987 954 -7.864615e-05 0 955 955 1.263753e-06 0 980 955 3.012303e-05 4.549008e-11 981 955 2.869843e-08 1.048964e-14 982 955 0 6.814571e-11 983 955 0 3.268232e-14 984 955 -7.330806e-06 -3.885572e-20 985 955 4.405509e-08 2.316675e-22 986 955 7.857876e-05 0 987 955 -4.711107e-07 0 956 956 0.002628374 0 957 956 1.46915e-07 0 988 956 0.0004659061 0 989 956 -2.907396e-06 0 957 957 4.545329e-08 0 988 957 2.91809e-06 0 989 957 -1.745556e-08 0 958 958 0.002628374 0 959 958 1.46915e-07 0 990 958 0.0004659061 0 991 958 -2.907396e-06 0 959 959 4.545329e-08 0 990 959 2.91809e-06 0 991 959 -1.745556e-08 0 960 960 0.002840492 0 961 960 0.000349551 0 962 960 0.0006150575 -1.896093e-18 963 960 7.706159e-05 -4.338414e-19 961 961 0.001398481 0 962 961 7.706159e-05 -4.338414e-19 963 961 0.0003082525 -1.575479e-18 992 961 0.0003495535 0 993 961 -0.0001721975 0 994 961 7.706133e-05 -4.710242e-19 995 961 -3.862467e-05 1.556258e-19 962 962 0.002840492 0 963 962 0.000349551 0 963 963 0.001398481 0 992 963 7.706133e-05 4.710242e-19 993 963 -3.862467e-05 -1.556258e-19 994 963 0.0003495535 0 995 963 -0.0001721975 0 964 964 0.05800308 0 965 964 -1.576252e-06 0 966 964 0.005092741 -1.599786e-17 967 964 6.175935e-07 6.56463e-21 968 964 0 -1.687114e-08 969 964 0 -1.869156e-08 970 964 0.005401818 -1.434106e-08 971 964 0.005987478 -1.590627e-08 972 964 0 -1.687114e-08 973 964 0 -1.869156e-08 974 964 0.005401818 -1.434106e-08 975 964 0.005987478 -1.590627e-08 996 964 0.009923912 0 997 964 -6.209595e-05 0 998 964 0.0009276496 -2.381002e-18 999 964 -5.776974e-06 1.496635e-20 1000 964 0 -1.711408e-08 1001 964 0 8.449027e-10 1002 964 0.005483334 -1.458076e-08 1003 964 -0.0002706723 7.183085e-10 1004 964 0 -1.711408e-08 1005 964 0 8.449027e-10 1006 964 0.005483334 -1.458076e-08 1007 964 -0.0002706723 7.183085e-10 965 965 1.003066e-06 0 966 965 6.175935e-07 6.56463e-21 967 965 8.807745e-08 -2.781637e-22 968 965 0 8.752851e-11 969 965 0 -1.212177e-13 970 965 -2.802254e-05 7.438963e-11 971 965 4.068597e-08 -1.196218e-13 972 965 0 8.752851e-11 973 965 0 -1.212177e-13 974 965 -2.802254e-05 7.438963e-11 975 965 4.068597e-08 -1.196218e-13 996 965 6.198796e-05 0 997 965 -3.718054e-07 0 998 965 5.821907e-06 -1.479195e-20 999 965 -3.475485e-08 8.908275e-23 1000 965 0 -8.898419e-11 1001 965 0 -6.100605e-14 1002 965 2.851097e-05 -7.582594e-11 1003 965 1.966668e-08 -6.063984e-14 1004 965 0 -8.898419e-11 1005 965 0 -6.100605e-14 1006 965 2.851097e-05 -7.582594e-11 1007 965 1.966668e-08 -6.063984e-14 966 966 0.05800308 0 967 966 -1.576252e-06 0 968 966 -0.005401818 -1.434106e-08 969 966 -0.005987478 -1.590627e-08 970 966 0 -1.687114e-08 971 966 0 -1.869156e-08 972 966 -0.005401818 -1.434106e-08 973 966 -0.005987478 -1.590627e-08 974 966 0 -1.687114e-08 975 966 0 -1.869156e-08 996 966 0.0009276496 2.381002e-18 997 966 -5.776974e-06 -1.496635e-20 998 966 0.009923912 0 999 966 -6.209595e-05 0 1000 966 -0.005483334 -1.458076e-08 1001 966 0.0002706723 7.183085e-10 1002 966 0 -1.711408e-08 1003 966 0 8.449027e-10 1004 966 -0.005483334 -1.458076e-08 1005 966 0.0002706723 7.183085e-10 1006 966 0 -1.711408e-08 1007 966 0 8.449027e-10 967 967 1.003066e-06 0 968 967 2.802254e-05 7.438963e-11 969 967 -4.068597e-08 -1.196218e-13 970 967 0 8.752851e-11 971 967 0 -1.212177e-13 972 967 2.802254e-05 7.438963e-11 973 967 -4.068597e-08 -1.196218e-13 974 967 0 8.752851e-11 975 967 0 -1.212177e-13 996 967 5.821907e-06 1.479195e-20 997 967 -3.475485e-08 -8.908275e-23 998 967 6.198796e-05 0 999 967 -3.718054e-07 0 1000 967 -2.851097e-05 -7.582594e-11 1001 967 -1.966668e-08 -6.063984e-14 1002 967 0 -8.898419e-11 1003 967 0 -6.100605e-14 1004 967 -2.851097e-05 -7.582594e-11 1005 967 -1.966668e-08 -6.063984e-14 1006 967 0 -8.898419e-11 1007 967 0 -6.100605e-14 968 968 0.02253225 0 969 968 0.002869919 0 970 968 0.01415714 -3.861439e-17 971 968 0.001828108 -4.039483e-18 972 968 0.02253225 0 973 968 0.002869919 0 974 968 0.01415714 -3.861439e-17 975 968 0.001828108 -4.039483e-18 969 969 0.01148007 0 970 969 0.001828108 -4.039483e-18 971 969 0.007313669 -1.498567e-17 972 969 0.002869919 0 973 969 0.01148007 0 974 969 0.001828108 -4.039483e-18 975 969 0.007313669 -1.498567e-17 996 969 0 -8.707442e-10 997 969 0 6.100605e-14 998 969 0.0002790027 -7.439947e-10 999 969 -1.966668e-08 6.063984e-14 1000 969 0.002869908 0 1001 969 -0.001461922 0 1002 969 0.001828105 -3.302223e-18 1003 969 -0.0009440926 1.631823e-18 1004 969 0.002869908 0 1005 969 -0.001461922 0 1006 969 0.001828105 -3.302223e-18 1007 969 -0.0009440926 1.631823e-18 970 970 0.02253225 0 971 970 0.002869919 0 972 970 0.01415714 3.861439e-17 973 970 0.001828108 4.039483e-18 974 970 0.02253225 0 975 970 0.002869919 0 971 971 0.01148007 0 972 971 0.001828108 4.039483e-18 973 971 0.007313669 1.498567e-17 974 971 0.002869919 0 975 971 0.01148007 0 996 971 -0.0002790027 -7.439947e-10 997 971 1.966668e-08 6.063984e-14 998 971 0 -8.707442e-10 999 971 0 6.100605e-14 1000 971 0.001828105 3.302223e-18 1001 971 -0.0009440926 -1.631823e-18 1002 971 0.002869908 0 1003 971 -0.001461922 0 1004 971 0.001828105 3.302223e-18 1005 971 -0.0009440926 -1.631823e-18 1006 971 0.002869908 0 1007 971 -0.001461922 0 972 972 0.5933876 0 973 972 0.0729935 0 974 972 0.2554646 -7.543427e-16 975 972 0.03198137 -1.09459e-16 973 973 0.2920318 0 974 973 0.03198137 -1.09459e-16 975 973 0.1279262 -4.270828e-16 996 973 0 -8.707442e-10 997 973 0 6.100605e-14 998 973 0.0002790027 -7.439947e-10 999 973 -1.966668e-08 6.063984e-14 1000 973 0.002869908 0 1001 973 -0.001461922 0 1002 973 0.001828105 -3.302223e-18 1003 973 -0.0009440926 1.631823e-18 1004 973 0.07299403 0 1005 973 -0.03594375 0 1006 973 0.03198128 -1.107101e-16 1007 973 -0.01601538 5.342706e-17 974 974 0.5933876 0 975 974 0.0729935 0 975 975 0.2920318 0 996 975 -0.0002790027 -7.439947e-10 997 975 1.966668e-08 6.063984e-14 998 975 0 -8.707442e-10 999 975 0 6.100605e-14 1000 975 0.001828105 3.302223e-18 1001 975 -0.0009440926 -1.631823e-18 1002 975 0.002869908 0 1003 975 -0.001461922 0 1004 975 0.03198128 1.107101e-16 1005 975 -0.01601538 -5.342706e-17 1006 975 0.07299403 0 1007 975 -0.03594375 0 976 976 0.002840492 0 977 976 0.000349551 0 978 976 0.0006150575 -1.896093e-18 979 976 7.706159e-05 -4.338414e-19 977 977 0.001398481 0 978 977 7.706159e-05 -4.338414e-19 979 977 0.0003082525 -1.575479e-18 1008 977 0.0003495535 0 1009 977 -0.0001721975 0 1010 977 7.706133e-05 -4.710242e-19 1011 977 -3.862467e-05 1.556258e-19 978 978 0.002840492 0 979 978 0.000349551 0 979 979 0.001398481 0 1008 979 7.706133e-05 4.710242e-19 1009 979 -3.862467e-05 -1.556258e-19 1010 979 0.0003495535 0 1011 979 -0.0001721975 0 980 980 0.0211002 0 981 980 0.002681692 0 982 980 0.00988906 -1.676336e-17 983 980 0.001277327 -2.961685e-18 984 980 0 -1.315585e-08 985 980 0 6.827644e-11 986 980 0.005830722 -8.769878e-09 987 980 -3.023783e-05 4.553203e-11 981 981 0.01072671 0 982 981 0.001277327 -2.961685e-18 983 981 0.005110211 -1.147051e-17 984 981 0 -1.454347e-08 985 981 0 -6.536931e-14 986 981 0.006476436 -9.670325e-09 987 981 5.646264e-08 -2.149501e-14 1012 981 0.002681685 0 1013 981 -0.001362899 0 1014 981 0.001277324 -3.057315e-18 1015 981 -0.0006598499 1.466266e-18 1016 981 0 6.724271e-10 1017 981 0 -3.27883e-14 1018 981 -0.0003040325 4.433818e-10 1019 981 2.778664e-08 -1.106297e-14 982 982 0.0211002 0 983 982 0.002681692 0 984 982 -0.005830722 -8.769878e-09 985 982 3.023783e-05 4.553203e-11 986 982 0 -1.315585e-08 987 982 0 6.827644e-11 983 983 0.01072671 0 984 983 -0.006476436 -9.670325e-09 985 983 -5.646264e-08 -2.149501e-14 986 983 0 -1.454347e-08 987 983 0 -6.536931e-14 1012 983 0.001277324 3.057315e-18 1013 983 -0.0006598499 -1.466266e-18 1014 983 0.002681685 0 1015 983 -0.001362899 0 1016 983 0.0003040325 4.433818e-10 1017 983 -2.778664e-08 -1.106297e-14 1018 983 0 6.724271e-10 1019 983 0 -3.27883e-14 984 984 0.0722665 0 985 984 -8.686532e-07 0 986 984 -0.006544465 3.24185e-17 987 984 5.872721e-07 -1.944937e-20 1012 984 0 1.328691e-08 1013 984 0 -6.585382e-10 1014 984 -0.005943836 8.81302e-09 1015 984 0.0002922626 -4.386957e-10 1016 984 0.01244542 0 1017 984 -7.783419e-05 0 1018 984 -0.001088638 3.329072e-18 1019 984 6.82743e-06 -2.232924e-20 985 985 1.249719e-06 0 986 985 5.872721e-07 -1.944937e-20 987 985 -1.131482e-07 5.199894e-22 1012 985 0 6.906168e-11 1013 985 0 3.27883e-14 1014 985 -3.091561e-05 4.579046e-11 1015 985 -2.778664e-08 1.106297e-14 1016 985 7.777742e-05 0 1017 985 -4.662752e-07 0 1018 985 -6.784427e-06 1.928699e-20 1019 985 4.078693e-08 -1.246389e-22 986 986 0.0722665 0 987 986 -8.686532e-07 0 1012 986 0.005943836 8.81302e-09 1013 986 -0.0002922626 -4.386957e-10 1014 986 0 1.328691e-08 1015 986 0 -6.585382e-10 1016 986 -0.001088638 -3.329072e-18 1017 986 6.82743e-06 2.232924e-20 1018 986 0.01244542 0 1019 986 -7.783419e-05 0 987 987 1.249719e-06 0 1012 987 3.091561e-05 4.579046e-11 1013 987 2.778664e-08 1.106297e-14 1014 987 0 6.906168e-11 1015 987 0 3.27883e-14 1016 987 -6.784427e-06 -1.928699e-20 1017 987 4.078693e-08 1.246389e-22 1018 987 7.777742e-05 0 1019 987 -4.662752e-07 0 988 988 0.002756871 0 989 988 1.525823e-07 0 1020 988 0.000488574 0 1021 988 -3.048891e-06 0 989 989 4.767527e-08 0 1020 989 3.060007e-06 0 1021 989 -1.830472e-08 0 990 990 0.002756871 0 991 990 1.525823e-07 0 1022 990 0.000488574 0 1023 990 -3.048891e-06 0 991 991 4.767527e-08 0 1022 991 3.060007e-06 0 1023 991 -1.830472e-08 0 992 992 0.002754952 0 993 992 0.0003392364 0 994 992 0.0006179894 -2.603081e-18 995 992 7.743737e-05 -1.51479e-19 993 993 0.001357197 0 994 993 7.743737e-05 -1.51479e-19 995 993 0.0003097558 -6.560749e-19 1024 993 0.0003392384 0 1025 993 -0.0001672129 0 1026 993 7.74371e-05 -1.121239e-19 1027 993 -3.88174e-05 7.221728e-20 994 994 0.002754952 0 995 994 0.0003392364 0 995 995 0.001357197 0 1024 995 7.74371e-05 1.121239e-19 1025 995 -3.88174e-05 -7.221728e-20 1026 995 0.0003392384 0 1027 995 -0.0001672129 0 996 996 0.05670477 0 997 996 -1.45218e-06 0 998 996 0.005632553 -1.42367e-17 999 996 6.40353e-07 -3.424449e-21 1000 996 0 -1.719865e-08 1001 996 0 -1.905331e-08 1002 996 0.005510597 -1.466482e-08 1003 996 0.006104073 -1.626584e-08 1004 996 0 -1.719865e-08 1005 996 0 -1.905331e-08 1006 996 0.005510597 -1.466482e-08 1007 996 0.006104073 -1.626584e-08 1028 996 0.009708236 0 1029 996 -6.07432e-05 0 1030 996 0.001022768 -2.82493e-18 1031 996 -6.370801e-06 1.744784e-20 1032 996 0 -1.744432e-08 1033 996 0 8.612996e-10 1034 996 0.005586493 -1.491075e-08 1035 996 -0.0002760838 7.34539e-10 1036 996 0 -1.744432e-08 1037 996 0 8.612996e-10 1038 996 0.005586493 -1.491075e-08 1039 996 -0.0002760838 7.34539e-10 997 997 9.806023e-07 0 998 997 6.40353e-07 -3.424449e-21 999 997 9.741118e-08 -2.523613e-22 1000 997 0 8.922821e-11 1001 997 0 -1.226259e-13 1002 997 -2.858963e-05 7.60685e-11 1003 997 3.787689e-08 -1.227598e-13 1004 997 0 8.922821e-11 1005 997 0 -1.226259e-13 1006 997 -2.858963e-05 7.60685e-11 1007 997 3.787689e-08 -1.227598e-13 1028 997 6.064365e-05 0 1029 997 -3.637229e-07 0 1030 997 6.41736e-06 -1.787738e-20 1031 997 -3.83183e-08 1.058736e-22 1032 997 0 -9.070019e-11 1033 997 0 -6.164595e-14 1034 997 2.904439e-05 -7.754206e-11 1035 997 1.823256e-08 -6.214973e-14 1036 997 0 -9.070019e-11 1037 997 0 -6.164595e-14 1038 997 2.904439e-05 -7.754206e-11 1039 997 1.823256e-08 -6.214973e-14 998 998 0.05670477 0 999 998 -1.45218e-06 0 1000 998 -0.005510597 -1.466482e-08 1001 998 -0.006104073 -1.626584e-08 1002 998 0 -1.719865e-08 1003 998 0 -1.905331e-08 1004 998 -0.005510597 -1.466482e-08 1005 998 -0.006104073 -1.626584e-08 1006 998 0 -1.719865e-08 1007 998 0 -1.905331e-08 1028 998 0.001022768 2.82493e-18 1029 998 -6.370801e-06 -1.744784e-20 1030 998 0.009708236 0 1031 998 -6.07432e-05 0 1032 998 -0.005586493 -1.491075e-08 1033 998 0.0002760838 7.34539e-10 1034 998 0 -1.744432e-08 1035 998 0 8.612996e-10 1036 998 -0.005586493 -1.491075e-08 1037 998 0.0002760838 7.34539e-10 1038 998 0 -1.744432e-08 1039 998 0 8.612996e-10 999 999 9.806023e-07 0 1000 999 2.858963e-05 7.60685e-11 1001 999 -3.787689e-08 -1.227598e-13 1002 999 0 8.922821e-11 1003 999 0 -1.226259e-13 1004 999 2.858963e-05 7.60685e-11 1005 999 -3.787689e-08 -1.227598e-13 1006 999 0 8.922821e-11 1007 999 0 -1.226259e-13 1028 999 6.41736e-06 1.787738e-20 1029 999 -3.83183e-08 -1.058736e-22 1030 999 6.064365e-05 0 1031 999 -3.637229e-07 0 1032 999 -2.904439e-05 -7.754206e-11 1033 999 -1.823256e-08 -6.214973e-14 1034 999 0 -9.070019e-11 1035 999 0 -6.164595e-14 1036 999 -2.904439e-05 -7.754206e-11 1037 999 -1.823256e-08 -6.214973e-14 1038 999 0 -9.070019e-11 1039 999 0 -6.164595e-14 1000 1000 0.02339041 0 1001 1000 0.00297778 0 1002 1000 0.01510449 -2.405049e-17 1003 1000 0.001948266 -3.225067e-18 1004 1000 0.02339041 0 1005 1000 0.00297778 0 1006 1000 0.01510449 -2.405049e-17 1007 1000 0.001948266 -3.225067e-18 1001 1001 0.01191153 0 1002 1001 0.001948266 -3.225067e-18 1003 1001 0.007794281 -1.593351e-17 1004 1001 0.00297778 0 1005 1001 0.01191153 0 1006 1001 0.001948266 -3.225067e-18 1007 1001 0.007794281 -1.593351e-17 1028 1001 0 -8.874104e-10 1029 1001 0 6.164595e-14 1030 1001 0.0002838067 -7.608636e-10 1031 1001 -1.823256e-08 6.214973e-14 1032 1001 0.002977769 0 1033 1001 -0.001516158 0 1034 1001 0.001948262 -3.722509e-18 1035 1001 -0.001005029 3.334166e-18 1036 1001 0.002977769 0 1037 1001 -0.001516158 0 1038 1001 0.001948262 -3.722509e-18 1039 1001 -0.001005029 3.334166e-18 1002 1002 0.02339041 0 1003 1002 0.00297778 0 1004 1002 0.01510449 2.405049e-17 1005 1002 0.001948266 3.225067e-18 1006 1002 0.02339041 0 1007 1002 0.00297778 0 1003 1003 0.01191153 0 1004 1003 0.001948266 3.225067e-18 1005 1003 0.007794281 1.593351e-17 1006 1003 0.00297778 0 1007 1003 0.01191153 0 1028 1003 -0.0002838067 -7.608636e-10 1029 1003 1.823256e-08 6.214973e-14 1030 1003 0 -8.874104e-10 1031 1003 0 6.164595e-14 1032 1003 0.001948262 3.722509e-18 1033 1003 -0.001005029 -3.334166e-18 1034 1003 0.002977769 0 1035 1003 -0.001516158 0 1036 1003 0.001948262 3.722509e-18 1037 1003 -0.001005029 -3.334166e-18 1038 1003 0.002977769 0 1039 1003 -0.001516158 0 1004 1004 0.5750568 0 1005 1004 0.07078095 0 1006 1004 0.2562454 -8.627544e-16 1007 1004 0.03208024 -1.029981e-16 1005 1005 0.2831761 0 1006 1005 0.03208024 -1.029981e-16 1007 1005 0.1283217 -4.08688e-16 1028 1005 0 -8.874104e-10 1029 1005 0 6.164595e-14 1030 1005 0.0002838067 -7.608636e-10 1031 1005 -1.823256e-08 6.214973e-14 1032 1005 0.002977769 0 1033 1005 -0.001516158 0 1034 1005 0.001948262 -3.722509e-18 1035 1005 -0.001005029 3.334166e-18 1036 1005 0.0707814 0 1037 1005 -0.03487342 0 1038 1005 0.03208015 -1.019688e-16 1039 1005 -0.01606543 4.841346e-17 1006 1006 0.5750568 0 1007 1006 0.07078095 0 1007 1007 0.2831761 0 1028 1007 -0.0002838067 -7.608636e-10 1029 1007 1.823256e-08 6.214973e-14 1030 1007 0 -8.874104e-10 1031 1007 0 6.164595e-14 1032 1007 0.001948262 3.722509e-18 1033 1007 -0.001005029 -3.334166e-18 1034 1007 0.002977769 0 1035 1007 -0.001516158 0 1036 1007 0.03208015 1.019688e-16 1037 1007 -0.01606543 -4.841346e-17 1038 1007 0.0707814 0 1039 1007 -0.03487342 0 1008 1008 0.002754952 0 1009 1008 0.0003392364 0 1010 1008 0.0006179894 -2.603081e-18 1011 1008 7.743737e-05 -1.51479e-19 1009 1009 0.001357197 0 1010 1009 7.743737e-05 -1.51479e-19 1011 1009 0.0003097558 -6.560749e-19 1040 1009 0.0003392384 0 1041 1009 -0.0001672129 0 1042 1009 7.74371e-05 -1.121239e-19 1043 1009 -3.88174e-05 7.221728e-20 1010 1010 0.002754952 0 1011 1010 0.0003392364 0 1011 1011 0.001357197 0 1040 1011 7.74371e-05 1.121239e-19 1041 1011 -3.88174e-05 -7.221728e-20 1042 1011 0.0003392384 0 1043 1011 -0.0001672129 0 1012 1012 0.02180642 0 1013 1012 0.002769913 0 1014 1012 0.01055687 -2.314237e-17 1015 1012 0.001362075 -2.807748e-18 1016 1012 0 -1.333236e-08 1017 1012 0 6.919283e-11 1018 1012 0.005982356 -8.828356e-09 1019 1012 -3.102676e-05 4.583471e-11 1013 1013 0.01107959 0 1014 1013 0.001362075 -2.807748e-18 1015 1013 0.005449194 -1.277383e-17 1016 1013 0 -1.473789e-08 1017 1013 0 -6.564963e-14 1018 1013 0.006641185 -9.7359e-09 1019 1013 5.45773e-08 -2.262493e-14 1044 1013 0.002769905 0 1045 1013 -0.00140698 0 1046 1013 0.001362072 -3.040088e-18 1047 1013 -0.000702853 2.28779e-18 1048 1013 0 6.812928e-10 1049 1013 0 -3.286655e-14 1050 1013 -0.0003111861 4.465489e-10 1051 1013 2.681667e-08 -1.159832e-14 1014 1014 0.02180642 0 1015 1014 0.002769913 0 1016 1014 -0.005982356 -8.828356e-09 1017 1014 3.102676e-05 4.583471e-11 1018 1014 0 -1.333236e-08 1019 1014 0 6.919283e-11 1015 1015 0.01107959 0 1016 1015 -0.006641185 -9.7359e-09 1017 1015 -5.45773e-08 -2.262493e-14 1018 1015 0 -1.473789e-08 1019 1015 0 -6.564963e-14 1044 1015 0.001362072 3.040088e-18 1045 1015 -0.000702853 -2.28779e-18 1046 1015 0.002769905 0 1047 1015 -0.00140698 0 1048 1015 0.0003111861 4.465489e-10 1049 1015 -2.681667e-08 -1.159832e-14 1050 1015 0 6.812928e-10 1051 1015 0 -3.286655e-14 1016 1016 0.07158352 0 1017 1016 -7.25735e-07 0 1018 1016 -0.00602774 8.268502e-18 1019 1016 6.171967e-07 -1.057206e-20 1044 1016 0 1.34639e-08 1045 1016 0 -6.673724e-10 1046 1016 -0.006091699 8.873743e-09 1047 1016 0.0002998271 -4.416364e-10 1048 1016 0.01233766 0 1049 1016 -7.715538e-05 0 1050 1016 -0.0009969667 1.816761e-18 1051 1016 6.255394e-06 -1.046796e-20 1017 1017 1.237895e-06 0 1018 1017 6.171967e-07 -1.057206e-20 1019 1017 -1.042119e-07 1.954294e-22 1044 1017 0 6.99809e-11 1045 1017 0 3.286655e-14 1046 1017 -3.168194e-05 4.610658e-11 1047 1017 -2.681667e-08 1.159832e-14 1048 1017 7.710844e-05 0 1049 1017 -4.622354e-07 0 1050 1017 -6.210216e-06 1.221911e-20 1051 1017 3.73522e-08 -6.778533e-23 1018 1018 0.07158352 0 1019 1018 -7.25735e-07 0 1044 1018 0.006091699 8.873743e-09 1045 1018 -0.0002998271 -4.416364e-10 1046 1018 0 1.34639e-08 1047 1018 0 -6.673724e-10 1048 1018 -0.0009969667 -1.816761e-18 1049 1018 6.255394e-06 1.046796e-20 1050 1018 0.01233766 0 1051 1018 -7.715538e-05 0 1019 1019 1.237895e-06 0 1044 1019 3.168194e-05 4.610658e-11 1045 1019 2.681667e-08 1.159832e-14 1046 1019 0 6.99809e-11 1047 1019 0 3.286655e-14 1048 1019 -6.210216e-06 -1.221911e-20 1049 1019 3.73522e-08 6.778533e-23 1050 1019 7.710844e-05 0 1051 1019 -4.622354e-07 0 1020 1020 0.002890437 0 1021 1020 1.587312e-07 0 1052 1020 0.0005121556 0 1053 1020 -3.19608e-06 0 1021 1021 4.998489e-08 0 1052 1021 3.207653e-06 0 1053 1021 -1.918811e-08 0 1022 1022 0.002890437 0 1023 1022 1.587312e-07 0 1054 1022 0.0005121556 0 1055 1022 -3.19608e-06 0 1023 1023 4.998489e-08 0 1054 1023 3.207653e-06 0 1055 1023 -1.918811e-08 0 1024 1024 0.002675217 0 1025 1024 0.000329613 0 1026 1024 0.0006210727 -1.026121e-18 1027 1024 7.78325e-05 -1.767452e-19 1025 1025 0.001318681 0 1026 1025 7.78325e-05 -1.767452e-19 1027 1025 0.0003113367 -8.062545e-19 1056 1025 0.0003296148 0 1057 1025 -0.0001625588 0 1058 1025 7.783222e-05 -2.089339e-19 1059 1025 -3.902004e-05 1.448708e-19 1026 1026 0.002675217 0 1027 1026 0.000329613 0 1027 1027 0.001318681 0 1056 1027 7.783222e-05 2.089339e-19 1057 1027 -3.902004e-05 -1.448708e-19 1058 1027 0.0003296148 0 1059 1027 -0.0001625588 0 1028 1028 0.05550795 0 1029 1028 -1.339424e-06 0 1030 1028 0.006191949 -1.766788e-17 1031 1028 6.633519e-07 -7.998015e-22 1032 1028 0 -1.752977e-08 1033 1028 0 -1.941865e-08 1034 1028 0.005611768 -1.49969e-08 1035 1028 0.006212164 -1.663423e-08 1036 1028 0 -1.752977e-08 1037 1028 0 -1.941865e-08 1038 1028 0.005611768 -1.49969e-08 1039 1028 0.006212164 -1.663423e-08 1060 1028 0.009509317 0 1061 1028 -5.949558e-05 0 1062 1028 0.001121305 -2.945249e-18 1063 1028 -6.985976e-06 1.857284e-20 1064 1028 0 -1.777718e-08 1065 1028 0 8.77866e-10 1066 1028 0.005681806 -1.524822e-08 1067 1028 -0.000281112 7.511813e-10 1068 1028 0 -1.777718e-08 1069 1028 0 8.77866e-10 1070 1028 0.005681806 -1.524822e-08 1071 1028 -0.000281112 7.511813e-10 1029 1029 9.598949e-07 0 1030 1029 6.633519e-07 -7.998015e-22 1031 1029 1.070839e-07 -2.977514e-22 1032 1029 0 9.094677e-11 1033 1029 0 -1.233209e-13 1034 1029 -2.911732e-05 7.779066e-11 1035 1029 3.494461e-08 -1.253516e-13 1036 1029 0 9.094677e-11 1037 1029 0 -1.233209e-13 1038 1029 -2.911732e-05 7.779066e-11 1039 1029 3.494461e-08 -1.253516e-13 1060 1029 5.940373e-05 0 1061 1029 -3.562683e-07 0 1062 1029 7.034201e-06 -1.825852e-20 1063 1029 -4.200979e-08 1.103985e-22 1064 1029 0 -9.242938e-11 1065 1029 0 -6.210255e-14 1066 1029 2.953696e-05 -7.929666e-11 1067 1029 1.674858e-08 -6.346631e-14 1068 1029 0 -9.242938e-11 1069 1029 0 -6.210255e-14 1070 1029 2.953696e-05 -7.929666e-11 1071 1029 1.674858e-08 -6.346631e-14 1030 1030 0.05550795 0 1031 1030 -1.339424e-06 0 1032 1030 -0.005611768 -1.49969e-08 1033 1030 -0.006212164 -1.663423e-08 1034 1030 0 -1.752977e-08 1035 1030 0 -1.941865e-08 1036 1030 -0.005611768 -1.49969e-08 1037 1030 -0.006212164 -1.663423e-08 1038 1030 0 -1.752977e-08 1039 1030 0 -1.941865e-08 1060 1030 0.001121305 2.945249e-18 1061 1030 -6.985976e-06 -1.857284e-20 1062 1030 0.009509317 0 1063 1030 -5.949558e-05 0 1064 1030 -0.005681806 -1.524822e-08 1065 1030 0.000281112 7.511813e-10 1066 1030 0 -1.777718e-08 1067 1030 0 8.77866e-10 1068 1030 -0.005681806 -1.524822e-08 1069 1030 0.000281112 7.511813e-10 1070 1030 0 -1.777718e-08 1071 1030 0 8.77866e-10 1031 1031 9.598949e-07 0 1032 1031 2.911732e-05 7.779066e-11 1033 1031 -3.494461e-08 -1.253516e-13 1034 1031 0 9.094677e-11 1035 1031 0 -1.233209e-13 1036 1031 2.911732e-05 7.779066e-11 1037 1031 -3.494461e-08 -1.253516e-13 1038 1031 0 9.094677e-11 1039 1031 0 -1.233209e-13 1060 1031 7.034201e-06 1.825852e-20 1061 1031 -4.200979e-08 -1.103985e-22 1062 1031 5.940373e-05 0 1063 1031 -3.562683e-07 0 1064 1031 -2.953696e-05 -7.929666e-11 1065 1031 -1.674858e-08 -6.346631e-14 1066 1031 0 -9.242938e-11 1067 1031 0 -6.210255e-14 1068 1031 -2.953696e-05 -7.929666e-11 1069 1031 -1.674858e-08 -6.346631e-14 1070 1031 0 -9.242938e-11 1071 1031 0 -6.210255e-14 1032 1032 0.02425817 0 1033 1032 0.003086861 0 1034 1032 0.01607949 -5.420544e-17 1035 1032 0.002071855 -9.614154e-18 1036 1032 0.02425817 0 1037 1032 0.003086861 0 1038 1032 0.01607949 -5.420544e-17 1039 1032 0.002071855 -9.614154e-18 1033 1033 0.01234787 0 1034 1033 0.002071855 -9.614154e-18 1035 1033 0.008288618 -3.551349e-17 1036 1033 0.003086861 0 1037 1033 0.01234787 0 1038 1033 0.002071855 -9.614154e-18 1039 1033 0.008288618 -3.551349e-17 1060 1033 0 -9.041756e-10 1061 1033 0 6.210255e-14 1062 1033 0.0002882065 -7.780669e-10 1063 1033 -1.674858e-08 6.346631e-14 1064 1033 0.00308685 0 1065 1033 -0.001571014 0 1066 1033 0.002071851 -9.586772e-18 1067 1033 -0.001067668 4.170324e-18 1068 1033 0.00308685 0 1069 1033 -0.001571014 0 1070 1033 0.002071851 -9.586772e-18 1071 1033 -0.001067668 4.170324e-18 1034 1034 0.02425817 0 1035 1034 0.003086861 0 1036 1034 0.01607949 5.420544e-17 1037 1034 0.002071855 9.614154e-18 1038 1034 0.02425817 0 1039 1034 0.003086861 0 1035 1035 0.01234787 0 1036 1035 0.002071855 9.614154e-18 1037 1035 0.008288618 3.551349e-17 1038 1035 0.003086861 0 1039 1035 0.01234787 0 1060 1035 -0.0002882065 -7.780669e-10 1061 1035 1.674858e-08 6.346631e-14 1062 1035 0 -9.041756e-10 1063 1035 0 6.210255e-14 1064 1035 0.002071851 9.586772e-18 1065 1035 -0.001067668 -4.170324e-18 1066 1035 0.00308685 0 1067 1035 -0.001571014 0 1068 1035 0.002071851 9.586772e-18 1069 1035 -0.001067668 -4.170324e-18 1070 1035 0.00308685 0 1071 1035 -0.001571014 0 1036 1036 0.5579355 0 1037 1036 0.06871228 0 1038 1036 0.2570461 -7.761171e-16 1039 1036 0.03218156 -9.168509e-17 1037 1037 0.2748967 0 1038 1037 0.03218156 -9.168509e-17 1039 1037 0.1287269 -3.627017e-16 1060 1037 0 -9.041756e-10 1061 1037 0 6.210255e-14 1062 1037 0.0002882065 -7.780669e-10 1063 1037 -1.674858e-08 6.346631e-14 1064 1037 0.00308685 0 1065 1037 -0.001571014 0 1066 1037 0.002071851 -9.586772e-18 1067 1037 -0.001067668 4.170324e-18 1068 1037 0.06871266 0 1069 1037 -0.0338718 0 1070 1037 0.03218147 -8.978028e-17 1071 1037 -0.01611668 4.194321e-17 1038 1038 0.5579355 0 1039 1038 0.06871228 0 1039 1039 0.2748967 0 1060 1039 -0.0002882065 -7.780669e-10 1061 1039 1.674858e-08 6.346631e-14 1062 1039 0 -9.041756e-10 1063 1039 0 6.210255e-14 1064 1039 0.002071851 9.586772e-18 1065 1039 -0.001067668 -4.170324e-18 1066 1039 0.00308685 0 1067 1039 -0.001571014 0 1068 1039 0.03218147 8.978028e-17 1069 1039 -0.01611668 -4.194321e-17 1070 1039 0.06871266 0 1071 1039 -0.0338718 0 1040 1040 0.002675217 0 1041 1040 0.000329613 0 1042 1040 0.0006210727 -1.026121e-18 1043 1040 7.78325e-05 -1.767452e-19 1041 1041 0.001318681 0 1042 1041 7.78325e-05 -1.767452e-19 1043 1041 0.0003113367 -8.062545e-19 1072 1041 0.0003296148 0 1073 1041 -0.0001625588 0 1074 1041 7.783222e-05 -2.089339e-19 1075 1041 -3.902004e-05 1.448708e-19 1042 1042 0.002675217 0 1043 1042 0.000329613 0 1043 1043 0.001318681 0 1072 1043 7.783222e-05 2.089339e-19 1073 1043 -3.902004e-05 -1.448708e-19 1074 1043 0.0003296148 0 1075 1043 -0.0001625588 0 1044 1044 0.02251171 0 1045 1044 0.002858014 0 1046 1044 0.01124493 -3.760203e-17 1047 1044 0.00144934 -6.111073e-18 1048 1044 0 -1.350946e-08 1049 1044 0 7.011237e-11 1050 1044 0.006128873 -8.88982e-09 1051 1044 -3.178921e-05 4.615297e-11 1045 1045 0.01143199 0 1046 1045 0.00144934 -6.111073e-18 1047 1045 0.00579824 -2.16372e-17 1048 1045 0 -1.49326e-08 1049 1045 0 -6.527653e-14 1050 1045 0.006800177 -9.804611e-09 1051 1045 5.256771e-08 -2.356069e-14 1076 1045 0.002858005 0 1077 1045 -0.001450998 0 1078 1045 0.001449337 -5.680132e-18 1079 1045 -0.0007471066 2.155996e-18 1080 1045 0 6.901193e-10 1081 1045 0 -3.279831e-14 1082 1045 -0.0003180597 4.498168e-10 1083 1045 2.579443e-08 -1.200782e-14 1046 1046 0.02251171 0 1047 1046 0.002858014 0 1048 1046 -0.006128873 -8.88982e-09 1049 1046 3.178921e-05 4.615297e-11 1050 1046 0 -1.350946e-08 1051 1046 0 7.011237e-11 1047 1047 0.01143199 0 1048 1047 -0.006800177 -9.804611e-09 1049 1047 -5.256771e-08 -2.356069e-14 1050 1047 0 -1.49326e-08 1051 1047 0 -6.527653e-14 1076 1047 0.001449337 5.680132e-18 1077 1047 -0.0007471066 -2.155996e-18 1078 1047 0.002858005 0 1079 1047 -0.001450998 0 1080 1047 0.0003180597 4.498168e-10 1081 1047 -2.579443e-08 -1.200782e-14 1082 1047 0 6.901193e-10 1083 1047 0 -3.279831e-14 1048 1048 0.07101874 0 1049 1048 -5.929399e-07 0 1050 1048 -0.005484811 1.964289e-17 1051 1048 6.484789e-07 1.62302e-20 1076 1048 0 1.364058e-08 1077 1048 0 -6.762227e-10 1078 1048 -0.006234209 8.937089e-09 1079 1048 0.0003071334 -4.447305e-10 1080 1048 0.01224964 0 1081 1048 -7.660029e-05 0 1082 1048 -0.0009006467 3.973065e-18 1083 1048 5.65436e-06 -2.504659e-20 1049 1049 1.228116e-06 0 1050 1049 6.484789e-07 1.62302e-20 1051 1049 -9.482193e-08 3.165239e-22 1076 1049 0 7.089814e-11 1077 1049 0 3.279831e-14 1078 1049 -3.242038e-05 4.643612e-11 1079 1049 -2.579443e-08 1.200782e-14 1080 1049 7.656253e-05 0 1081 1049 -4.589351e-07 0 1082 1049 -5.606881e-06 2.467527e-20 1083 1049 3.374334e-08 -1.492881e-22 1050 1050 0.07101874 0 1051 1050 -5.929399e-07 0 1076 1050 0.006234209 8.937089e-09 1077 1050 -0.0003071334 -4.447305e-10 1078 1050 0 1.364058e-08 1079 1050 0 -6.762227e-10 1080 1050 -0.0009006467 -3.973065e-18 1081 1050 5.65436e-06 2.504659e-20 1082 1050 0.01224964 0 1083 1050 -7.660029e-05 0 1051 1051 1.228116e-06 0 1076 1051 3.242038e-05 4.643612e-11 1077 1051 2.579443e-08 1.200782e-14 1078 1051 0 7.089814e-11 1079 1051 0 3.279831e-14 1080 1051 -5.606881e-06 -2.467527e-20 1081 1051 3.374334e-08 1.492881e-22 1082 1051 7.656253e-05 0 1083 1051 -4.589351e-07 0 1052 1052 0.003029505 0 1053 1052 1.654126e-07 0 1084 1052 0.0005367301 0 1085 1052 -3.349454e-06 0 1053 1053 5.238968e-08 0 1084 1053 3.361525e-06 0 1085 1053 -2.010868e-08 0 1054 1054 0.003029505 0 1055 1054 1.654126e-07 0 1086 1054 0.0005367301 0 1087 1054 -3.349454e-06 0 1055 1055 5.238968e-08 0 1086 1055 3.361525e-06 0 1087 1055 -2.010868e-08 0 1056 1056 0.002600768 0 1057 1056 0.0003206204 0 1058 1056 0.0006243148 -2.382908e-18 1059 1056 7.824796e-05 -3.705495e-19 1057 1057 0.001282691 0 1058 1057 7.824796e-05 -3.705495e-19 1059 1057 0.0003129989 -1.366819e-18 1088 1057 0.0003206218 0 1089 1057 -0.0001582067 0 1090 1057 7.824767e-05 -3.587141e-19 1091 1057 -3.92331e-05 1.540923e-19 1058 1058 0.002600768 0 1059 1058 0.0003206204 0 1059 1059 0.001282691 0 1088 1059 7.824767e-05 3.587141e-19 1089 1059 -3.92331e-05 -1.540923e-19 1090 1059 0.0003206218 0 1091 1059 -0.0001582067 0 1060 1060 0.05440389 0 1061 1060 -1.235617e-06 0 1062 1060 0.00677136 -1.519155e-17 1063 1060 6.869546e-07 3.46301e-21 1064 1060 0 -1.786329e-08 1065 1060 0 -1.978728e-08 1066 1060 0.005705024 -1.533622e-08 1067 1060 0.006311469 -1.701077e-08 1068 1060 0 -1.786329e-08 1069 1060 0 -1.978728e-08 1070 1060 0.005705024 -1.533622e-08 1071 1060 0.006311469 -1.701077e-08 1092 1060 0.00932581 0 1093 1060 -5.834462e-05 0 1094 1060 0.001223346 -2.561103e-18 1095 1060 -7.623039e-06 1.585335e-20 1096 1060 0 -1.811334e-08 1097 1060 0 8.947569e-10 1098 1060 0.005769086 -1.559292e-08 1099 1060 -0.0002857434 7.683409e-10 1100 1060 0 -1.811334e-08 1101 1060 0 8.947569e-10 1102 1060 0.005769086 -1.559292e-08 1103 1060 -0.0002857434 7.683409e-10 1061 1061 9.407932e-07 0 1062 1061 6.869546e-07 3.46301e-21 1063 1061 1.171025e-07 -2.675685e-22 1064 1061 0 9.267779e-11 1065 1061 0 -1.258576e-13 1066 1061 -2.960395e-05 7.955052e-11 1067 1061 3.196912e-08 -1.289121e-13 1068 1061 0 9.267779e-11 1069 1061 0 -1.258576e-13 1070 1061 -2.960395e-05 7.955052e-11 1071 1061 3.196912e-08 -1.289121e-13 1092 1061 5.825988e-05 0 1093 1061 -3.493912e-07 0 1094 1061 7.672961e-06 -1.614256e-20 1095 1061 -4.583252e-08 9.569229e-23 1096 1061 0 -9.417495e-11 1097 1061 0 -6.140347e-14 1098 1061 2.998778e-05 -8.108786e-11 1099 1061 1.52363e-08 -6.371512e-14 1100 1061 0 -9.417495e-11 1101 1061 0 -6.140347e-14 1102 1061 2.998778e-05 -8.108786e-11 1103 1061 1.52363e-08 -6.371512e-14 1062 1062 0.05440389 0 1063 1062 -1.235617e-06 0 1064 1062 -0.005705024 -1.533622e-08 1065 1062 -0.006311469 -1.701077e-08 1066 1062 0 -1.786329e-08 1067 1062 0 -1.978728e-08 1068 1062 -0.005705024 -1.533622e-08 1069 1062 -0.006311469 -1.701077e-08 1070 1062 0 -1.786329e-08 1071 1062 0 -1.978728e-08 1092 1062 0.001223346 2.561103e-18 1093 1062 -7.623039e-06 -1.585335e-20 1094 1062 0.00932581 0 1095 1062 -5.834462e-05 0 1096 1062 -0.005769086 -1.559292e-08 1097 1062 0.0002857434 7.683409e-10 1098 1062 0 -1.811334e-08 1099 1062 0 8.947569e-10 1100 1062 -0.005769086 -1.559292e-08 1101 1062 0.0002857434 7.683409e-10 1102 1062 0 -1.811334e-08 1103 1062 0 8.947569e-10 1063 1063 9.407932e-07 0 1064 1063 2.960395e-05 7.955052e-11 1065 1063 -3.196912e-08 -1.289121e-13 1066 1063 0 9.267779e-11 1067 1063 0 -1.258576e-13 1068 1063 2.960395e-05 7.955052e-11 1069 1063 -3.196912e-08 -1.289121e-13 1070 1063 0 9.267779e-11 1071 1063 0 -1.258576e-13 1092 1063 7.672961e-06 1.614256e-20 1093 1063 -4.583252e-08 -9.569229e-23 1094 1063 5.825988e-05 0 1095 1063 -3.493912e-07 0 1096 1063 -2.998778e-05 -8.108786e-11 1097 1063 -1.52363e-08 -6.371512e-14 1098 1063 0 -9.417495e-11 1099 1063 0 -6.140347e-14 1100 1063 -2.998778e-05 -8.108786e-11 1101 1063 -1.52363e-08 -6.371512e-14 1102 1063 0 -9.417495e-11 1103 1063 0 -6.140347e-14 1064 1064 0.02513585 0 1065 1064 0.003197204 0 1066 1064 0.01708173 -6.789007e-17 1067 1064 0.002198822 -7.094522e-18 1068 1064 0.02513585 0 1069 1064 0.003197204 0 1070 1064 0.01708173 -6.789007e-17 1071 1064 0.002198822 -7.094522e-18 1065 1065 0.01278926 0 1066 1065 0.002198822 -7.094522e-18 1067 1065 0.008796471 -2.82352e-17 1068 1065 0.003197204 0 1069 1065 0.01278926 0 1070 1065 0.002198822 -7.094522e-18 1071 1065 0.008796471 -2.82352e-17 1092 1065 0 -9.207445e-10 1093 1065 0 6.140347e-14 1094 1065 0.0002921971 -7.953136e-10 1095 1065 -1.52363e-08 6.371512e-14 1096 1065 0.003197193 0 1097 1065 -0.001626512 0 1098 1065 0.002198818 -6.784365e-18 1099 1065 -0.001131984 3.122911e-18 1100 1065 0.003197193 0 1101 1065 -0.001626512 0 1102 1065 0.002198818 -6.784365e-18 1103 1065 -0.001131984 3.122911e-18 1066 1066 0.02513585 0 1067 1066 0.003197204 0 1068 1066 0.01708173 6.789007e-17 1069 1066 0.002198822 7.094522e-18 1070 1066 0.02513585 0 1071 1066 0.003197204 0 1067 1067 0.01278926 0 1068 1067 0.002198822 7.094522e-18 1069 1067 0.008796471 2.82352e-17 1070 1067 0.003197204 0 1071 1067 0.01278926 0 1092 1067 -0.0002921971 -7.953136e-10 1093 1067 1.52363e-08 6.371512e-14 1094 1067 0 -9.207445e-10 1095 1067 0 6.140347e-14 1096 1067 0.002198818 6.784365e-18 1097 1067 -0.001131984 -3.122911e-18 1098 1067 0.003197193 0 1099 1067 -0.001626512 0 1100 1067 0.002198818 6.784365e-18 1101 1067 -0.001131984 -3.122911e-18 1102 1067 0.003197193 0 1103 1067 -0.001626512 0 1068 1068 0.5419131 0 1069 1068 0.06677453 0 1070 1068 0.2578662 -6.625367e-16 1071 1068 0.03228526 -7.799257e-17 1069 1069 0.2671414 0 1070 1069 0.03228526 -7.799257e-17 1071 1069 0.1291417 -3.266058e-16 1092 1069 0 -9.207445e-10 1093 1069 0 6.140347e-14 1094 1069 0.0002921971 -7.953136e-10 1095 1069 -1.52363e-08 6.371512e-14 1096 1069 0.003197193 0 1097 1069 -0.001626512 0 1098 1069 0.002198818 -6.784365e-18 1099 1069 -0.001131984 3.122911e-18 1100 1069 0.06677484 0 1101 1069 -0.03293278 0 1102 1069 0.03228516 -8.260357e-17 1103 1069 -0.0161691 4.24754e-17 1070 1070 0.5419131 0 1071 1070 0.06677453 0 1071 1071 0.2671414 0 1092 1071 -0.0002921971 -7.953136e-10 1093 1071 1.52363e-08 6.371512e-14 1094 1071 0 -9.207445e-10 1095 1071 0 6.140347e-14 1096 1071 0.002198818 6.784365e-18 1097 1071 -0.001131984 -3.122911e-18 1098 1071 0.003197193 0 1099 1071 -0.001626512 0 1100 1071 0.03228516 8.260357e-17 1101 1071 -0.0161691 -4.24754e-17 1102 1071 0.06677484 0 1103 1071 -0.03293278 0 1072 1072 0.002600768 0 1073 1072 0.0003206204 0 1074 1072 0.0006243148 -2.382908e-18 1075 1072 7.824796e-05 -3.705495e-19 1073 1073 0.001282691 0 1074 1073 7.824796e-05 -3.705495e-19 1075 1073 0.0003129989 -1.366819e-18 1104 1073 0.0003206218 0 1105 1073 -0.0001582067 0 1106 1073 7.824767e-05 -3.587141e-19 1107 1073 -3.92331e-05 1.540923e-19 1074 1074 0.002600768 0 1075 1074 0.0003206204 0 1075 1075 0.001282691 0 1104 1075 7.824767e-05 3.587141e-19 1105 1075 -3.92331e-05 -1.540923e-19 1106 1075 0.0003206218 0 1107 1075 -0.0001582067 0 1076 1076 0.02321601 0 1077 1076 0.002945987 0 1078 1076 0.011953 -3.347993e-17 1079 1076 0.00153909 -2.943851e-18 1080 1076 0 -1.368607e-08 1081 1076 0 7.102934e-11 1082 1076 0.006269967 -8.953735e-09 1083 1076 -3.252356e-05 4.648415e-11 1077 1077 0.01178389 0 1078 1077 0.00153909 -2.943851e-18 1079 1077 0.00615723 -1.481081e-17 1080 1077 0 -1.512744e-08 1081 1077 0 -6.667503e-14 1082 1077 0.006953129 -9.875781e-09 1083 1077 5.052982e-08 -2.440135e-14 1108 1077 0.002945979 0 1109 1077 -0.001494953 0 1110 1077 0.001539087 -3.421849e-18 1111 1077 -0.0007925958 2.552708e-18 1112 1077 0 6.98698e-10 1113 1077 0 -3.186705e-14 1114 1077 -0.0003246516 4.529984e-10 1115 1077 2.475244e-08 -1.179425e-14 1078 1078 0.02321601 0 1079 1078 0.002945987 0 1080 1078 -0.006269967 -8.953735e-09 1081 1078 3.252356e-05 4.648415e-11 1082 1078 0 -1.368607e-08 1083 1078 0 7.102934e-11 1079 1079 0.01178389 0 1080 1079 -0.006953129 -9.875781e-09 1081 1079 -5.052982e-08 -2.440135e-14 1082 1079 0 -1.512744e-08 1083 1079 0 -6.667503e-14 1108 1079 0.001539087 3.421849e-18 1109 1079 -0.0007925958 -2.552708e-18 1110 1079 0.002945979 0 1111 1079 -0.001494953 0 1112 1079 0.0003246516 4.529984e-10 1113 1079 -2.475244e-08 -1.179425e-14 1114 1079 0 6.98698e-10 1115 1079 0 -3.186705e-14 1080 1080 0.07056452 0 1081 1080 -4.675961e-07 0 1082 1080 -0.004914251 1.645882e-17 1083 1080 6.815511e-07 -2.034093e-20 1108 1080 0 1.381788e-08 1109 1080 0 -6.852184e-10 1110 1080 -0.0063712 9.002123e-09 1111 1080 0.000314167 -4.480081e-10 1112 1080 0.01218023 0 1113 1080 -7.616178e-05 0 1114 1080 -0.0007994153 1.338648e-18 1115 1080 5.022684e-06 -8.920905e-21 1081 1081 1.220251e-06 0 1082 1081 6.815511e-07 -2.034093e-20 1083 1081 -8.495444e-08 2.754584e-22 1108 1081 0 7.181818e-11 1109 1081 0 3.186705e-14 1110 1081 -3.313013e-05 4.677372e-11 1111 1081 -2.475244e-08 1.179425e-14 1112 1081 7.613273e-05 0 1113 1081 -4.56332e-07 0 1114 1081 -4.972786e-06 7.771232e-21 1115 1081 2.995051e-08 -4.970896e-23 1082 1082 0.07056452 0 1083 1082 -4.675961e-07 0 1108 1082 0.0063712 9.002123e-09 1109 1082 -0.000314167 -4.480081e-10 1110 1082 0 1.381788e-08 1111 1082 0 -6.852184e-10 1112 1082 -0.0007994153 -1.338648e-18 1113 1082 5.022684e-06 8.920905e-21 1114 1082 0.01218023 0 1115 1082 -7.616178e-05 0 1083 1083 1.220251e-06 0 1108 1083 3.313013e-05 4.677372e-11 1109 1083 2.475244e-08 1.179425e-14 1110 1083 0 7.181818e-11 1111 1083 0 3.186705e-14 1112 1083 -4.972786e-06 -7.771232e-21 1113 1083 2.995051e-08 4.970896e-23 1114 1083 7.613273e-05 0 1115 1083 -4.56332e-07 0 1084 1084 0.003174558 0 1085 1084 1.726818e-07 0 1116 1084 0.0005623848 0 1117 1084 -3.509559e-06 0 1085 1085 5.489795e-08 0 1116 1085 3.522172e-06 0 1117 1085 -2.106971e-08 0 1086 1086 0.003174558 0 1087 1086 1.726818e-07 0 1118 1086 0.0005623848 0 1119 1086 -3.509559e-06 0 1087 1087 5.489795e-08 0 1118 1087 3.522172e-06 0 1119 1087 -2.106971e-08 0 1088 1088 0.00253115 0 1089 1088 0.0003122051 0 1090 1088 0.0006277234 -2.480992e-18 1091 1088 7.868475e-05 -2.576552e-19 1089 1089 0.001249012 0 1090 1089 7.868475e-05 -2.576552e-19 1091 1089 0.0003147465 -1.05101e-18 1120 1089 0.0003122064 0 1121 1089 -0.0001541316 0 1122 1089 7.868449e-05 -2.517026e-19 1123 1089 -3.945712e-05 1.23546e-19 1090 1090 0.00253115 0 1091 1090 0.0003122051 0 1091 1091 0.001249012 0 1120 1091 7.868449e-05 2.517026e-19 1121 1091 -3.945712e-05 -1.23546e-19 1122 1091 0.0003122064 0 1123 1091 -0.0001541316 0 1092 1092 0.05338506 0 1093 1092 -1.141003e-06 0 1094 1092 0.007371119 -1.971889e-17 1095 1092 7.106741e-07 -1.553151e-20 1096 1092 0 -1.819837e-08 1097 1092 0 -2.014917e-08 1098 1092 0.005790207 -1.568118e-08 1099 1092 0.006401776 -1.738695e-08 1100 1092 0 -1.819837e-08 1101 1092 0 -2.014917e-08 1102 1092 0.005790207 -1.568118e-08 1103 1092 0.006401776 -1.738695e-08 1124 1092 0.009156364 0 1125 1092 -5.728191e-05 0 1126 1092 0.001328912 -4.567337e-18 1127 1092 -8.282133e-06 2.81402e-20 1128 1092 0 -1.84361e-08 1129 1092 0 9.108883e-10 1130 1092 0.005848012 -1.593144e-08 1131 1092 -0.0002899737 7.852076e-10 1132 1092 0 -1.84361e-08 1133 1092 0 9.108883e-10 1134 1092 0.005848012 -1.593144e-08 1135 1092 -0.0002899737 7.852076e-10 1093 1093 9.231648e-07 0 1094 1093 7.106741e-07 -1.553151e-20 1095 1093 1.274725e-07 -3.484561e-22 1096 1093 0 9.442056e-11 1097 1093 0 -1.147397e-13 1098 1093 -3.004872e-05 8.134272e-11 1099 1093 2.883894e-08 -1.222772e-13 1100 1093 0 9.442056e-11 1101 1093 0 -1.147397e-13 1102 1093 -3.004872e-05 8.134272e-11 1103 1093 2.883894e-08 -1.222772e-13 1124 1093 5.720362e-05 0 1125 1093 -3.43041e-07 0 1126 1093 8.333749e-06 -2.900414e-20 1127 1093 -4.978725e-08 1.714763e-22 1128 1093 0 -9.584882e-11 1129 1093 0 -6.218392e-14 1130 1093 3.039505e-05 -8.284488e-11 1131 1093 1.363026e-08 -6.454373e-14 1132 1093 0 -9.584882e-11 1133 1093 0 -6.218392e-14 1134 1093 3.039505e-05 -8.284488e-11 1135 1093 1.363026e-08 -6.454373e-14 1094 1094 0.05338506 0 1095 1094 -1.141003e-06 0 1096 1094 -0.005790207 -1.568118e-08 1097 1094 -0.006401776 -1.738695e-08 1098 1094 0 -1.819837e-08 1099 1094 0 -2.014917e-08 1100 1094 -0.005790207 -1.568118e-08 1101 1094 -0.006401776 -1.738695e-08 1102 1094 0 -1.819837e-08 1103 1094 0 -2.014917e-08 1124 1094 0.001328912 4.567337e-18 1125 1094 -8.282133e-06 -2.81402e-20 1126 1094 0.009156364 0 1127 1094 -5.728191e-05 0 1128 1094 -0.005848012 -1.593144e-08 1129 1094 0.0002899737 7.852076e-10 1130 1094 0 -1.84361e-08 1131 1094 0 9.108883e-10 1132 1094 -0.005848012 -1.593144e-08 1133 1094 0.0002899737 7.852076e-10 1134 1094 0 -1.84361e-08 1135 1094 0 9.108883e-10 1095 1095 9.231648e-07 0 1096 1095 3.004872e-05 8.134272e-11 1097 1095 -2.883894e-08 -1.222772e-13 1098 1095 0 9.442056e-11 1099 1095 0 -1.147397e-13 1100 1095 3.004872e-05 8.134272e-11 1101 1095 -2.883894e-08 -1.222772e-13 1102 1095 0 9.442056e-11 1103 1095 0 -1.147397e-13 1124 1095 8.333749e-06 2.900414e-20 1125 1095 -4.978725e-08 -1.714763e-22 1126 1095 5.720362e-05 0 1127 1095 -3.43041e-07 0 1128 1095 -3.039505e-05 -8.284488e-11 1129 1095 -1.363026e-08 -6.454373e-14 1130 1095 0 -9.584882e-11 1131 1095 0 -6.218392e-14 1132 1095 -3.039505e-05 -8.284488e-11 1133 1095 -1.363026e-08 -6.454373e-14 1134 1095 0 -9.584882e-11 1135 1095 0 -6.218392e-14 1096 1096 0.02602381 0 1097 1096 0.003308855 0 1098 1096 0.01811081 -4.898527e-17 1099 1096 0.002329119 -5.707281e-18 1100 1096 0.02602381 0 1101 1096 0.003308855 0 1102 1096 0.01811081 -4.898527e-17 1103 1096 0.002329119 -5.707281e-18 1097 1097 0.01323588 0 1098 1097 0.002329119 -5.707281e-18 1099 1097 0.009317638 -2.384773e-17 1100 1097 0.003308855 0 1101 1097 0.01323588 0 1102 1097 0.002329119 -5.707281e-18 1103 1097 0.009317638 -2.384773e-17 1124 1097 0 -9.372843e-10 1125 1097 0 6.218392e-14 1126 1097 0.0002957473 -8.125839e-10 1127 1097 -1.363026e-08 6.454373e-14 1128 1097 0.003308844 0 1129 1097 -0.001682675 0 1130 1097 0.002329116 -6.231956e-18 1131 1097 -0.001197951 2.838339e-18 1132 1097 0.003308844 0 1133 1097 -0.001682675 0 1134 1097 0.002329116 -6.231956e-18 1135 1097 -0.001197951 2.838339e-18 1098 1098 0.02602381 0 1099 1098 0.003308855 0 1100 1098 0.01811081 4.898527e-17 1101 1098 0.002329119 5.707281e-18 1102 1098 0.02602381 0 1103 1098 0.003308855 0 1099 1099 0.01323588 0 1100 1099 0.002329119 5.707281e-18 1101 1099 0.009317638 2.384773e-17 1102 1099 0.003308855 0 1103 1099 0.01323588 0 1124 1099 -0.0002957473 -8.125839e-10 1125 1099 1.363026e-08 6.454373e-14 1126 1099 0 -9.372843e-10 1127 1099 0 6.218392e-14 1128 1099 0.002329116 6.231956e-18 1129 1099 -0.001197951 -2.838339e-18 1130 1099 0.003308844 0 1131 1099 -0.001682675 0 1132 1099 0.002329116 6.231956e-18 1133 1099 -0.001197951 -2.838339e-18 1134 1099 0.003308844 0 1135 1099 -0.001682675 0 1100 1100 0.5268917 0 1101 1100 0.06495626 0 1102 1100 0.258705 -6.938504e-16 1103 1100 0.03239124 -8.729805e-17 1101 1101 0.2598647 0 1102 1101 0.03239124 -8.729805e-17 1103 1101 0.1295656 -3.245118e-16 1124 1101 0 -9.372843e-10 1125 1101 0 6.218392e-14 1126 1101 0.0002957473 -8.125839e-10 1127 1101 -1.363026e-08 6.454373e-14 1128 1101 0.003308844 0 1129 1101 -0.001682675 0 1130 1101 0.002329116 -6.231956e-18 1131 1101 -0.001197951 2.838339e-18 1132 1101 0.06495654 0 1133 1101 -0.03205096 0 1134 1101 0.03239116 -8.029211e-17 1135 1101 -0.01622264 3.355927e-17 1102 1102 0.5268917 0 1103 1102 0.06495626 0 1103 1103 0.2598647 0 1124 1103 -0.0002957473 -8.125839e-10 1125 1103 1.363026e-08 6.454373e-14 1126 1103 0 -9.372843e-10 1127 1103 0 6.218392e-14 1128 1103 0.002329116 6.231956e-18 1129 1103 -0.001197951 -2.838339e-18 1130 1103 0.003308844 0 1131 1103 -0.001682675 0 1132 1103 0.03239116 8.029211e-17 1133 1103 -0.01622264 -3.355927e-17 1134 1103 0.06495654 0 1135 1103 -0.03205096 0 1104 1104 0.00253115 0 1105 1104 0.0003122051 0 1106 1104 0.0006277234 -2.480992e-18 1107 1104 7.868475e-05 -2.576552e-19 1105 1105 0.001249012 0 1106 1105 7.868475e-05 -2.576552e-19 1107 1105 0.0003147465 -1.05101e-18 1136 1105 0.0003122064 0 1137 1105 -0.0001541316 0 1138 1105 7.868449e-05 -2.517026e-19 1139 1105 -3.945712e-05 1.23546e-19 1106 1106 0.00253115 0 1107 1106 0.0003122051 0 1107 1107 0.001249012 0 1136 1107 7.868449e-05 2.517026e-19 1137 1107 -3.945712e-05 -1.23546e-19 1138 1107 0.0003122064 0 1139 1107 -0.0001541316 0 1108 1108 0.02391928 0 1109 1108 0.003033832 0 1110 1108 0.01268084 -4.166445e-17 1111 1108 0.001631297 -6.788982e-18 1112 1108 0 -1.386199e-08 1113 1108 0 7.194565e-11 1114 1108 0.006405512 -9.018451e-09 1115 1108 -3.322914e-05 4.682089e-11 1109 1109 0.01213526 0 1110 1109 0.001631297 -6.788982e-18 1111 1109 0.006526047 -2.48104e-17 1112 1109 0 -1.531451e-08 1113 1109 0 -5.650268e-14 1114 1109 0.007099862 -9.945125e-09 1115 1109 4.832397e-08 -2.149721e-14 1140 1109 0.003033824 0 1141 1109 -0.001538841 0 1142 1109 0.001631294 -6.1682e-18 1143 1109 -0.0008393052 3.117048e-18 1144 1109 0 7.072699e-10 1145 1109 0 -3.25415e-14 1146 1109 -0.0003309257 4.559288e-10 1147 1109 2.360503e-08 -1.121926e-14 1110 1110 0.02391928 0 1111 1110 0.003033832 0 1112 1110 -0.006405512 -9.018451e-09 1113 1110 3.322914e-05 4.682089e-11 1114 1110 0 -1.386199e-08 1115 1110 0 7.194565e-11 1111 1111 0.01213526 0 1112 1111 -0.007099862 -9.945125e-09 1113 1111 -4.832397e-08 -2.149721e-14 1114 1111 0 -1.531451e-08 1115 1111 0 -5.650268e-14 1140 1111 0.001631294 6.1682e-18 1141 1111 -0.0008393052 -3.117048e-18 1142 1111 0.003033824 0 1143 1111 -0.001538841 0 1144 1111 0.0003309257 4.559288e-10 1145 1111 -2.360503e-08 -1.121926e-14 1146 1111 0 7.072699e-10 1147 1111 0 -3.25415e-14 1112 1112 0.07021465 0 1113 1112 -3.501052e-07 0 1114 1112 -0.004314658 7.541902e-18 1115 1112 7.160794e-07 9.09801e-21 1140 1112 0 1.398223e-08 1141 1112 0 -6.934351e-10 1142 1112 -0.006502344 9.062906e-09 1143 1112 0.0003209269 -4.51169e-10 1144 1112 0.01212828 0 1145 1112 -7.583274e-05 0 1146 1112 -0.0006930538 2.218196e-18 1147 1112 4.358989e-06 -1.349441e-20 1113 1113 1.214188e-06 0 1114 1113 7.160794e-07 9.09801e-21 1115 1113 -7.458523e-08 1.524478e-22 1140 1113 0 7.266952e-11 1141 1113 0 3.25415e-14 1142 1113 -3.380933e-05 4.708783e-11 1143 1113 -2.360503e-08 1.121926e-14 1144 1113 7.581182e-05 0 1145 1113 -4.543832e-07 0 1146 1113 -4.306573e-06 1.428682e-20 1147 1113 2.596553e-08 -8.355486e-23 1114 1114 0.07021465 0 1115 1114 -3.501052e-07 0 1140 1114 0.006502344 9.062906e-09 1141 1114 -0.0003209269 -4.51169e-10 1142 1114 0 1.398223e-08 1143 1114 0 -6.934351e-10 1144 1114 -0.0006930538 -2.218196e-18 1145 1114 4.358989e-06 1.349441e-20 1146 1114 0.01212828 0 1147 1114 -7.583274e-05 0 1115 1115 1.214188e-06 0 1140 1115 3.380933e-05 4.708783e-11 1141 1115 2.360503e-08 1.121926e-14 1142 1115 0 7.266952e-11 1143 1115 0 3.25415e-14 1144 1115 -4.306573e-06 -1.428682e-20 1145 1115 2.596553e-08 8.355486e-23 1146 1115 7.581182e-05 0 1147 1115 -4.543832e-07 0 1116 1116 0.003326126 0 1117 1116 1.806062e-07 0 1148 1116 0.0005892169 0 1149 1116 -3.676999e-06 0 1117 1117 5.75189e-08 0 1148 1117 3.690202e-06 0 1149 1117 -2.207484e-08 0 1118 1118 0.003326126 0 1119 1118 1.806062e-07 0 1150 1118 0.0005892169 0 1151 1118 -3.676999e-06 0 1119 1119 5.75189e-08 0 1150 1119 3.690202e-06 0 1151 1119 -2.207484e-08 0 1120 1120 0.00246596 0 1121 1120 0.0003043199 0 1122 1120 0.0006313074 -1.942648e-18 1123 1120 7.914397e-05 -2.424815e-19 1121 1121 0.001217456 0 1122 1121 7.914397e-05 -2.424815e-19 1123 1121 0.0003165837 -1.003496e-18 1152 1121 0.0003043204 0 1153 1121 -0.0001503111 0 1154 1121 7.914356e-05 -2.543468e-19 1155 1121 -3.969266e-05 1.318765e-19 1122 1122 0.00246596 0 1123 1122 0.0003043199 0 1123 1123 0.001217456 0 1152 1123 7.914356e-05 2.543468e-19 1153 1123 -3.969266e-05 -1.318765e-19 1154 1123 0.0003043204 0 1155 1123 -0.0001503111 0 1124 1124 0.0524439 0 1125 1124 -1.054136e-06 0 1126 1124 0.007991254 -2.632942e-17 1127 1124 7.345036e-07 7.378387e-21 1128 1124 0 -1.852253e-08 1129 1124 0 -2.052158e-08 1130 1124 0.005866908 -1.602106e-08 1131 1124 0.006482582 -1.777179e-08 1132 1124 0 -1.852253e-08 1133 1124 0 -2.052158e-08 1134 1124 0.005866908 -1.602106e-08 1135 1124 0.006482582 -1.777179e-08 1156 1124 0.00899982 0 1157 1124 -5.630009e-05 0 1158 1124 0.001438021 -3.838493e-18 1159 1124 -8.963362e-06 2.429661e-20 1160 1124 0 -1.876526e-08 1161 1124 0 9.322802e-10 1162 1124 0.005918206 -1.6271e-08 1163 1124 -0.0002937733 8.063167e-10 1164 1124 0 -1.876526e-08 1165 1124 0 9.322802e-10 1166 1124 0.005918206 -1.6271e-08 1167 1124 -0.0002937733 8.063167e-10 1125 1125 9.068811e-07 0 1126 1125 7.345036e-07 7.378387e-21 1127 1125 1.38195e-07 -4.392162e-22 1128 1125 0 9.609755e-11 1129 1125 0 -1.446118e-13 1130 1125 -3.044957e-05 8.310306e-11 1131 1125 2.558458e-08 -1.428369e-13 1132 1125 0 9.609755e-11 1133 1125 0 -1.446118e-13 1134 1125 -3.044957e-05 8.310306e-11 1135 1125 2.558458e-08 -1.428369e-13 1156 1125 5.622777e-05 0 1157 1125 -3.371741e-07 0 1158 1125 9.016701e-06 -2.366576e-20 1159 1125 -5.387468e-08 1.434993e-22 1160 1125 0 -9.752844e-11 1161 1125 0 -2.936056e-14 1162 1125 3.075691e-05 -8.458256e-11 1163 1125 1.199283e-08 -3.733899e-14 1164 1125 0 -9.752844e-11 1165 1125 0 -2.936056e-14 1166 1125 3.075691e-05 -8.458256e-11 1167 1125 1.199283e-08 -3.733899e-14 1126 1126 0.0524439 0 1127 1126 -1.054136e-06 0 1128 1126 -0.005866908 -1.602106e-08 1129 1126 -0.006482582 -1.777179e-08 1130 1126 0 -1.852253e-08 1131 1126 0 -2.052158e-08 1132 1126 -0.005866908 -1.602106e-08 1133 1126 -0.006482582 -1.777179e-08 1134 1126 0 -1.852253e-08 1135 1126 0 -2.052158e-08 1156 1126 0.001438021 3.838493e-18 1157 1126 -8.963362e-06 -2.429661e-20 1158 1126 0.00899982 0 1159 1126 -5.630009e-05 0 1160 1126 -0.005918206 -1.6271e-08 1161 1126 0.0002937733 8.063167e-10 1162 1126 0 -1.876526e-08 1163 1126 0 9.322802e-10 1164 1126 -0.005918206 -1.6271e-08 1165 1126 0.0002937733 8.063167e-10 1166 1126 0 -1.876526e-08 1167 1126 0 9.322802e-10 1127 1127 9.068811e-07 0 1128 1127 3.044957e-05 8.310306e-11 1129 1127 -2.558458e-08 -1.428369e-13 1130 1127 0 9.609755e-11 1131 1127 0 -1.446118e-13 1132 1127 3.044957e-05 8.310306e-11 1133 1127 -2.558458e-08 -1.428369e-13 1134 1127 0 9.609755e-11 1135 1127 0 -1.446118e-13 1156 1127 9.016701e-06 2.366576e-20 1157 1127 -5.387468e-08 -1.434993e-22 1158 1127 5.622777e-05 0 1159 1127 -3.371741e-07 0 1160 1127 -3.075691e-05 -8.458256e-11 1161 1127 -1.199283e-08 -3.733899e-14 1162 1127 0 -9.752844e-11 1163 1127 0 -2.936056e-14 1164 1127 -3.075691e-05 -8.458256e-11 1165 1127 -1.199283e-08 -3.733899e-14 1166 1127 0 -9.752844e-11 1167 1127 0 -2.936056e-14 1128 1128 0.02692241 0 1129 1128 0.003421854 0 1130 1128 0.01916629 -4.715167e-17 1131 1128 0.002462689 -5.121399e-18 1132 1128 0.02692241 0 1133 1128 0.003421854 0 1134 1128 0.01916629 -4.715167e-17 1135 1128 0.002462689 -5.121399e-18 1129 1129 0.01368789 0 1130 1129 0.002462689 -5.121399e-18 1131 1129 0.009851896 -1.826482e-17 1132 1129 0.003421854 0 1133 1129 0.01368789 0 1134 1129 0.002462689 -5.121399e-18 1135 1129 0.009851896 -1.826482e-17 1156 1129 0 -9.4443e-10 1157 1129 0 2.936056e-14 1158 1129 0.0002988532 -8.21895e-10 1159 1129 -1.199283e-08 3.733899e-14 1160 1129 0.003421838 0 1161 1129 -0.001739525 0 1162 1129 0.002462682 -4.000149e-18 1163 1129 -0.001265542 1.725715e-18 1164 1129 0.003421838 0 1165 1129 -0.001739525 0 1166 1129 0.002462682 -4.000149e-18 1167 1129 -0.001265542 1.725715e-18 1130 1130 0.02692241 0 1131 1130 0.003421854 0 1132 1130 0.01916629 4.715167e-17 1133 1130 0.002462689 5.121399e-18 1134 1130 0.02692241 0 1135 1130 0.003421854 0 1131 1131 0.01368789 0 1132 1131 0.002462689 5.121399e-18 1133 1131 0.009851896 1.826482e-17 1134 1131 0.003421854 0 1135 1131 0.01368789 0 1156 1131 -0.0002988532 -8.21895e-10 1157 1131 1.199283e-08 3.733899e-14 1158 1131 0 -9.4443e-10 1159 1131 0 2.936056e-14 1160 1131 0.002462682 4.000149e-18 1161 1131 -0.001265542 -1.725715e-18 1162 1131 0.003421838 0 1163 1131 -0.001739525 0 1164 1131 0.002462682 4.000149e-18 1165 1131 -0.001265542 -1.725715e-18 1166 1131 0.003421838 0 1167 1131 -0.001739525 0 1132 1132 0.5127856 0 1133 1132 0.0632473 0 1134 1132 0.2595617 -5.194702e-16 1135 1132 0.03249941 -5.394497e-17 1133 1133 0.2530254 0 1134 1133 0.03249941 -5.394497e-17 1135 1133 0.1299982 -2.446169e-16 1156 1133 0 -9.4443e-10 1157 1133 0 2.936056e-14 1158 1133 0.0002988532 -8.21895e-10 1159 1133 -1.199283e-08 3.733899e-14 1160 1133 0.003421838 0 1161 1133 -0.001739525 0 1162 1133 0.002462682 -4.000149e-18 1163 1133 -0.001265542 1.725715e-18 1164 1133 0.06324742 0 1165 1133 -0.03122157 0 1166 1133 0.03249927 -6.309516e-17 1167 1133 -0.01627726 3.242379e-17 1134 1134 0.5127856 0 1135 1134 0.0632473 0 1135 1135 0.2530254 0 1156 1135 -0.0002988532 -8.21895e-10 1157 1135 1.199283e-08 3.733899e-14 1158 1135 0 -9.4443e-10 1159 1135 0 2.936056e-14 1160 1135 0.002462682 4.000149e-18 1161 1135 -0.001265542 -1.725715e-18 1162 1135 0.003421838 0 1163 1135 -0.001739525 0 1164 1135 0.03249927 6.309516e-17 1165 1135 -0.01627726 -3.242379e-17 1166 1135 0.06324742 0 1167 1135 -0.03122157 0 1136 1136 0.00246596 0 1137 1136 0.0003043199 0 1138 1136 0.0006313074 -1.942648e-18 1139 1136 7.914397e-05 -2.424815e-19 1137 1137 0.001217456 0 1138 1137 7.914397e-05 -2.424815e-19 1139 1137 0.0003165837 -1.003496e-18 1168 1137 0.0003043204 0 1169 1137 -0.0001503111 0 1170 1137 7.914356e-05 -2.543468e-19 1171 1137 -3.969266e-05 1.318765e-19 1138 1138 0.00246596 0 1139 1138 0.0003043199 0 1139 1139 0.001217456 0 1168 1139 7.914356e-05 2.543468e-19 1169 1139 -3.969266e-05 -1.318765e-19 1170 1139 0.0003043204 0 1171 1139 -0.0001503111 0 1140 1140 0.02462149 0 1141 1140 0.003121539 0 1142 1140 0.0134282 -4.825057e-17 1143 1140 0.001725927 -6.299994e-18 1144 1140 0 -1.402754e-08 1145 1140 0 7.279969e-11 1146 1140 0.006535067 -9.078489e-09 1147 1140 -3.390375e-05 4.713271e-11 1141 1141 0.01248608 0 1142 1141 0.001725927 -6.299994e-18 1143 1141 0.006904553 -2.784291e-17 1144 1141 0 -1.551101e-08 1145 1141 0 -8.332309e-14 1146 1141 0.00723982 -1.001171e-08 1147 1141 4.59929e-08 -2.482056e-14 1172 1141 0.003121525 0 1173 1141 -0.00158266 0 1174 1141 0.001725921 -7.416364e-18 1175 1141 -0.0008872185 4.040887e-18 1176 1141 0 7.086565e-10 1177 1141 0 -7.009762e-15 1178 1141 -0.0003368807 4.545286e-10 1179 1141 2.243014e-08 3.071534e-15 1142 1142 0.02462149 0 1143 1142 0.003121539 0 1144 1142 -0.006535067 -9.078489e-09 1145 1142 3.390375e-05 4.713271e-11 1146 1142 0 -1.402754e-08 1147 1142 0 7.279969e-11 1143 1143 0.01248608 0 1144 1143 -0.00723982 -1.001171e-08 1145 1143 -4.59929e-08 -2.482056e-14 1146 1143 0 -1.551101e-08 1147 1143 0 -8.332309e-14 1172 1143 0.001725921 7.416364e-18 1173 1143 -0.0008872185 -4.040887e-18 1174 1143 0.003121525 0 1175 1143 -0.00158266 0 1176 1143 0.0003368807 4.545286e-10 1177 1143 -2.243014e-08 3.071534e-15 1178 1143 0 7.086565e-10 1179 1143 0 -7.009762e-15 1144 1144 0.06996273 0 1145 1144 -2.387055e-07 0 1146 1144 -0.003684782 9.979118e-18 1147 1144 7.522085e-07 -1.803453e-20 1172 1144 0 1.41557e-08 1173 1144 0 -7.059115e-10 1174 1144 -0.006627239 9.113582e-09 1175 1144 0.0003273796 -4.559447e-10 1176 1144 0.01209288 0 1177 1144 -7.560731e-05 0 1178 1144 -0.0005813196 -1.103337e-19 1179 1144 3.661783e-06 -3.812709e-22 1145 1145 1.209822e-06 0 1146 1145 7.522085e-07 -1.803453e-20 1147 1145 -6.369208e-08 1.429952e-22 1172 1145 0 7.354812e-11 1173 1145 0 7.009762e-15 1174 1145 -3.445603e-05 4.733554e-11 1175 1145 -2.243014e-08 -3.071534e-15 1176 1145 7.559416e-05 0 1177 1145 -4.530542e-07 0 1178 1145 -3.606704e-06 -1.772774e-21 1179 1145 2.177933e-08 4.250096e-24 1146 1146 0.06996273 0 1147 1146 -2.387055e-07 0 1172 1146 0.006627239 9.113582e-09 1173 1146 -0.0003273796 -4.559447e-10 1174 1146 0 1.41557e-08 1175 1146 0 -7.059115e-10 1176 1146 -0.0005813196 1.103337e-19 1177 1146 3.661783e-06 3.812709e-22 1178 1146 0.01209288 0 1179 1146 -7.560731e-05 0 1147 1147 1.209822e-06 0 1172 1147 3.445603e-05 4.733554e-11 1173 1147 2.243014e-08 -3.071534e-15 1174 1147 0 7.354812e-11 1175 1147 0 7.009762e-15 1176 1147 -3.606704e-06 1.772774e-21 1177 1147 2.177933e-08 -4.250096e-24 1178 1147 7.559416e-05 0 1179 1147 -4.530542e-07 0 1148 1148 0.003484798 0 1149 1148 1.892446e-07 0 1180 1148 0.0006173334 0 1181 1148 -3.852439e-06 0 1149 1149 6.02627e-08 0 1180 1149 3.86629e-06 0 1181 1149 -2.312807e-08 0 1150 1150 0.003484798 0 1151 1150 1.892446e-07 0 1182 1150 0.0006173334 0 1183 1150 -3.852439e-06 0 1151 1151 6.02627e-08 0 1182 1151 3.86629e-06 0 1183 1151 -2.312807e-08 0 1152 1152 0.002404842 0 1153 1152 0.000296924 0 1154 1152 0.0006350752 -2.137738e-18 1155 1152 7.962709e-05 -2.731592e-19 1153 1153 0.00118786 0 1154 1153 7.962709e-05 -2.731592e-19 1155 1153 0.000318517 -1.055243e-18 1184 1153 0.0002969266 0 1185 1153 -0.0001467256 0 1186 1153 7.962726e-05 -2.594216e-19 1187 1153 -3.994035e-05 1.275346e-19 1154 1154 0.002404842 0 1155 1154 0.000296924 0 1155 1155 0.00118786 0 1184 1155 7.962726e-05 2.594216e-19 1185 1155 -3.994035e-05 -1.275346e-19 1186 1155 0.0002969266 0 1187 1155 -0.0001467256 0 1156 1156 0.05157438 0 1157 1156 -9.739825e-07 0 1158 1156 0.008632089 -2.327332e-17 1159 1156 7.588632e-07 -9.582705e-21 1160 1156 0 -1.880481e-08 1161 1156 0 -2.06697e-08 1162 1156 0.005934832 -1.632181e-08 1163 1156 0.00655367 -1.797001e-08 1164 1156 0 -1.880481e-08 1165 1156 0 -2.06697e-08 1166 1156 0.005934832 -1.632181e-08 1167 1156 0.00655367 -1.797001e-08 1188 1156 0.00885519 0 1189 1156 -5.539299e-05 0 1190 1156 0.001550739 -5.007785e-18 1191 1156 -9.667148e-06 3.075255e-20 1192 1156 0 -1.87359e-08 1193 1156 0 9.397714e-10 1194 1156 0.005979452 -1.629305e-08 1195 1156 -0.0002971414 8.195994e-10 1196 1156 0 -1.87359e-08 1197 1156 0 9.397714e-10 1198 1156 0.005979452 -1.629305e-08 1199 1156 -0.0002971414 8.195994e-10 1157 1157 8.918368e-07 0 1158 1157 7.588632e-07 -9.582705e-21 1159 1157 1.492751e-07 -4.195481e-22 1160 1157 0 9.764588e-11 1161 1157 0 7.679511e-14 1162 1157 -3.080489e-05 8.473191e-11 1163 1157 2.227822e-08 3.515165e-14 1164 1157 0 9.764588e-11 1165 1157 0 7.679511e-14 1166 1157 -3.080489e-05 8.473191e-11 1167 1157 2.227822e-08 3.515165e-14 1188 1157 5.532619e-05 0 1189 1157 -3.317537e-07 0 1190 1157 9.722206e-06 -3.187072e-20 1191 1157 -5.809727e-08 1.877046e-22 1192 1157 0 -9.727491e-11 1193 1157 0 1.46095e-14 1194 1157 3.107217e-05 -8.458e-11 1195 1157 1.025865e-08 2.916388e-14 1196 1157 0 -9.727491e-11 1197 1157 0 1.46095e-14 1198 1157 3.107217e-05 -8.458e-11 1199 1157 1.025865e-08 2.916388e-14 1158 1158 0.05157438 0 1159 1158 -9.739825e-07 0 1160 1158 -0.005934832 -1.632181e-08 1161 1158 -0.00655367 -1.797001e-08 1162 1158 0 -1.880481e-08 1163 1158 0 -2.06697e-08 1164 1158 -0.005934832 -1.632181e-08 1165 1158 -0.00655367 -1.797001e-08 1166 1158 0 -1.880481e-08 1167 1158 0 -2.06697e-08 1188 1158 0.001550739 5.007785e-18 1189 1158 -9.667148e-06 -3.075255e-20 1190 1158 0.00885519 0 1191 1158 -5.539299e-05 0 1192 1158 -0.005979452 -1.629305e-08 1193 1158 0.0002971414 8.195994e-10 1194 1158 0 -1.87359e-08 1195 1158 0 9.397714e-10 1196 1158 -0.005979452 -1.629305e-08 1197 1158 0.0002971414 8.195994e-10 1198 1158 0 -1.87359e-08 1199 1158 0 9.397714e-10 1159 1159 8.918368e-07 0 1160 1159 3.080489e-05 8.473191e-11 1161 1159 -2.227822e-08 3.515165e-14 1162 1159 0 9.764588e-11 1163 1159 0 7.679511e-14 1164 1159 3.080489e-05 8.473191e-11 1165 1159 -2.227822e-08 3.515165e-14 1166 1159 0 9.764588e-11 1167 1159 0 7.679511e-14 1188 1159 9.722206e-06 3.187072e-20 1189 1159 -5.809727e-08 -1.877046e-22 1190 1159 5.532619e-05 0 1191 1159 -3.317537e-07 0 1192 1159 -3.107217e-05 -8.458e-11 1193 1159 -1.025865e-08 2.916388e-14 1194 1159 0 -9.727491e-11 1195 1159 0 1.46095e-14 1196 1159 -3.107217e-05 -8.458e-11 1197 1159 -1.025865e-08 2.916388e-14 1198 1159 0 -9.727491e-11 1199 1159 0 1.46095e-14 1160 1160 0.02783197 0 1161 1160 0.003536261 0 1162 1160 0.02024775 -2.40475e-17 1163 1160 0.002599487 -2.902709e-18 1164 1160 0.02783197 0 1165 1160 0.003536261 0 1166 1160 0.02024775 -2.40475e-17 1167 1160 0.002599487 -2.902709e-18 1161 1161 0.01414555 0 1162 1161 0.002599487 -2.902709e-18 1163 1161 0.01039908 -1.642532e-17 1164 1161 0.003536261 0 1165 1161 0.01414555 0 1166 1161 0.002599487 -2.902709e-18 1167 1161 0.01039908 -1.642532e-17 1188 1161 0 -9.326504e-10 1189 1161 0 -1.46095e-14 1190 1161 0.0003014867 -8.0633e-10 1191 1161 -1.025865e-08 -2.916388e-14 1192 1161 0.003536269 0 1193 1161 -0.001797082 0 1194 1161 0.002599496 -4.276726e-18 1195 1161 -0.001334727 3.295121e-18 1196 1161 0.003536269 0 1197 1161 -0.001797082 0 1198 1161 0.002599496 -4.276726e-18 1199 1161 -0.001334727 3.295121e-18 1162 1162 0.02783197 0 1163 1162 0.003536261 0 1164 1162 0.02024775 2.40475e-17 1165 1162 0.002599487 2.902709e-18 1166 1162 0.02783197 0 1167 1162 0.003536261 0 1163 1163 0.01414555 0 1164 1163 0.002599487 2.902709e-18 1165 1163 0.01039908 1.642532e-17 1166 1163 0.003536261 0 1167 1163 0.01414555 0 1188 1163 -0.0003014867 -8.0633e-10 1189 1163 1.025865e-08 -2.916388e-14 1190 1163 0 -9.326504e-10 1191 1163 0 -1.46095e-14 1192 1163 0.002599496 4.276726e-18 1193 1163 -0.001334727 -3.295121e-18 1194 1163 0.003536269 0 1195 1163 -0.001797082 0 1196 1163 0.002599496 4.276726e-18 1197 1163 -0.001334727 -3.295121e-18 1198 1163 0.003536269 0 1199 1163 -0.001797082 0 1164 1164 0.4995173 0 1165 1164 0.06163885 0 1166 1164 0.2604354 -5.409078e-16 1167 1164 0.03260977 -6.66e-17 1165 1165 0.246589 0 1166 1165 0.03260977 -6.66e-17 1167 1165 0.1304397 -2.327666e-16 1188 1165 0 -9.326504e-10 1189 1165 0 -1.46095e-14 1190 1165 0.0003014867 -8.0633e-10 1191 1165 -1.025865e-08 -2.916388e-14 1192 1165 0.003536269 0 1193 1165 -0.001797082 0 1194 1165 0.002599496 -4.276726e-18 1195 1165 -0.001334727 3.295121e-18 1196 1165 0.0616394 0 1197 1165 -0.03044031 0 1198 1165 0.03260987 -5.780763e-17 1199 1165 -0.01633288 1.872485e-17 1166 1166 0.4995173 0 1167 1166 0.06163885 0 1167 1167 0.246589 0 1188 1167 -0.0003014867 -8.0633e-10 1189 1167 1.025865e-08 -2.916388e-14 1190 1167 0 -9.326504e-10 1191 1167 0 -1.46095e-14 1192 1167 0.002599496 4.276726e-18 1193 1167 -0.001334727 -3.295121e-18 1194 1167 0.003536269 0 1195 1167 -0.001797082 0 1196 1167 0.03260987 5.780763e-17 1197 1167 -0.01633288 -1.872485e-17 1198 1167 0.0616394 0 1199 1167 -0.03044031 0 1168 1168 0.002404842 0 1169 1168 0.000296924 0 1170 1168 0.0006350752 -2.137738e-18 1171 1168 7.962709e-05 -2.731592e-19 1169 1169 0.00118786 0 1170 1169 7.962709e-05 -2.731592e-19 1171 1169 0.000318517 -1.055243e-18 1200 1169 0.0002969266 0 1201 1169 -0.0001467256 0 1202 1169 7.962726e-05 -2.594216e-19 1203 1169 -3.994035e-05 1.275346e-19 1170 1170 0.002404842 0 1171 1170 0.000296924 0 1171 1171 0.00118786 0 1200 1171 7.962726e-05 2.594216e-19 1201 1171 -3.994035e-05 -1.275346e-19 1202 1171 0.0002969266 0 1203 1171 -0.0001467256 0 1172 1172 0.02532259 0 1173 1172 0.003209116 0 1174 1172 0.01419481 -6.796462e-17 1175 1172 0.001822953 -8.747183e-18 1176 1172 0 -1.416452e-08 1177 1172 0 7.357616e-11 1178 1172 0.006658333 -9.108864e-09 1179 1172 -3.454575e-05 4.732325e-11 1173 1173 0.01283641 0 1174 1173 0.001822953 -8.747183e-18 1175 1173 0.007292652 -3.049683e-17 1176 1173 0 -1.553352e-08 1177 1173 0 9.367624e-14 1178 1173 0.007372799 -9.980625e-09 1179 1173 4.360466e-08 5.774037e-14 1204 1173 0.003209125 0 1205 1173 -0.001626407 0 1206 1173 0.001822959 -7.248896e-18 1207 1173 -0.0009363172 2.922485e-18 1208 1173 0 7.022003e-10 1209 1173 0 4.626203e-15 1210 1173 -0.0003424838 4.315535e-10 1211 1173 2.114592e-08 6.663004e-14 1174 1174 0.02532259 0 1175 1174 0.003209116 0 1176 1174 -0.006658333 -9.108864e-09 1177 1174 3.454575e-05 4.732325e-11 1178 1174 0 -1.416452e-08 1179 1174 0 7.357616e-11 1175 1175 0.01283641 0 1176 1175 -0.007372799 -9.980625e-09 1177 1175 -4.360466e-08 5.774037e-14 1178 1175 0 -1.553352e-08 1179 1175 0 9.367624e-14 1204 1175 0.001822959 7.248896e-18 1205 1175 -0.0009363172 -2.922485e-18 1206 1175 0.003209125 0 1207 1175 -0.001626407 0 1208 1175 0.0003424838 4.315535e-10 1209 1175 -2.114592e-08 6.663004e-14 1210 1175 0 7.022003e-10 1211 1175 0 4.626203e-15 1176 1176 0.06980425 0 1177 1176 -1.323311e-07 0 1178 1176 -0.003022906 -9.26259e-18 1179 1176 7.905842e-07 -1.146859e-20 1204 1176 0 1.406488e-08 1205 1176 0 -7.047759e-10 1206 1176 -0.006745661 8.984322e-09 1207 1176 0.0003335267 -4.603588e-10 1208 1176 0.0120733 0 1209 1176 -7.548091e-05 0 1210 1176 -0.0004639023 -1.58583e-18 1211 1176 2.929097e-06 1.062109e-20 1177 1177 1.207072e-06 0 1178 1177 7.905842e-07 -1.146859e-20 1179 1177 -5.224614e-08 -1.287983e-22 1204 1177 0 7.302267e-11 1205 1177 0 -4.626203e-15 1206 1177 -3.506896e-05 4.657228e-11 1207 1177 -2.114592e-08 -6.663004e-14 1208 1177 7.547524e-05 0 1209 1177 -4.523179e-07 0 1210 1177 -2.871261e-06 -9.277706e-21 1211 1177 1.738022e-08 6.010026e-23 1178 1178 0.06980425 0 1179 1178 -1.323311e-07 0 1204 1178 0.006745661 8.984322e-09 1205 1178 -0.0003335267 -4.603588e-10 1206 1178 0 1.406488e-08 1207 1178 0 -7.047759e-10 1208 1178 -0.0004639023 1.58583e-18 1209 1178 2.929097e-06 -1.062109e-20 1210 1178 0.0120733 0 1211 1178 -7.548091e-05 0 1179 1179 1.207072e-06 0 1204 1179 3.506896e-05 4.657228e-11 1205 1179 2.114592e-08 -6.663004e-14 1206 1179 0 7.302267e-11 1207 1179 0 -4.626203e-15 1208 1179 -2.871261e-06 9.277706e-21 1209 1179 1.738022e-08 -6.010026e-23 1210 1179 7.547524e-05 0 1211 1179 -4.523179e-07 0 1180 1180 0.00365125 0 1181 1180 1.987366e-07 0 1212 1180 0.0006468575 0 1213 1180 -4.036652e-06 0 1181 1181 6.314098e-08 0 1212 1181 4.051203e-06 0 1213 1181 -2.423403e-08 0 1182 1182 0.00365125 0 1183 1182 1.987366e-07 0 1214 1182 0.0006468575 0 1215 1182 -4.036652e-06 0 1183 1183 6.314098e-08 0 1214 1183 4.051203e-06 0 1215 1183 -2.423403e-08 0 1184 1184 0.002347491 0 1185 1184 0.0002899758 0 1186 1184 0.0006390398 -2.008854e-18 1187 1184 8.013413e-05 -2.507169e-19 1185 1185 0.001017605 0 1186 1185 8.013413e-05 -2.507169e-19 1187 1185 0.0002809272 -9.088635e-19 1216 1185 0.0002184066 0 1217 1185 -0.0001082726 0 1218 1185 6.035381e-05 -1.98005e-19 1219 1185 -3.025281e-05 1.022234e-19 1186 1186 0.002347491 0 1187 1186 0.0002899758 0 1187 1187 0.001017605 0 1216 1187 6.035381e-05 1.98005e-19 1217 1187 -3.025281e-05 -1.022234e-19 1218 1187 0.0002184066 0 1219 1187 -0.0001082726 0 1188 1188 0.04454328 0 1189 1188 -4.087583e-05 0 1190 1188 0.008112937 -2.924983e-17 1191 1188 -6.806579e-06 2.048429e-20 1192 1188 0 -1.871192e-08 1193 1188 0 -1.793674e-08 1194 1188 0.005993673 -1.624895e-08 1195 1188 0.005796747 -1.550957e-08 1196 1188 0 -1.871192e-08 1197 1188 0 -1.793674e-08 1198 1188 0.005993673 -1.624895e-08 1199 1188 0.005796747 -1.550957e-08 1220 1188 0.006580725 0 1221 1188 -3.099877e-05 0 1222 1188 0.001244584 -4.667179e-18 1223 1188 -5.848036e-06 2.191954e-20 1224 1188 0 -1.344608e-08 1225 1188 0 7.614827e-10 1226 1188 0.00453927 -1.156471e-08 1227 1188 -0.0002260753 6.596472e-10 1228 1188 0 -1.344608e-08 1229 1188 0 7.614827e-10 1230 1188 0.00453927 -1.156471e-08 1231 1188 -0.0002260753 6.596472e-10 1189 1189 6.282042e-07 0 1190 1189 -6.806579e-06 2.048429e-20 1191 1189 1.132083e-07 -3.956265e-22 1192 1189 0 9.721648e-11 1193 1189 0 1.060946e-11 1194 1189 -3.111321e-05 8.446334e-11 1195 1189 -3.36541e-06 9.249575e-12 1196 1189 0 9.721648e-11 1197 1189 0 1.060946e-11 1198 1189 -3.111321e-05 8.446334e-11 1199 1189 -3.36541e-06 9.249575e-12 1220 1189 3.097211e-05 0 1221 1189 -1.398523e-07 0 1222 1189 5.872246e-06 -2.203353e-20 1223 1189 -2.644963e-08 9.920148e-23 1224 1189 0 -5.209228e-11 1225 1189 0 4.131971e-13 1226 1189 1.776232e-05 -4.476993e-11 1227 1189 3.755707e-09 3.748795e-13 1228 1189 0 -5.209228e-11 1229 1189 0 4.131971e-13 1230 1189 1.776232e-05 -4.476993e-11 1231 1189 3.755707e-09 3.748795e-13 1190 1190 0.04454328 0 1191 1190 -4.087583e-05 0 1192 1190 -0.005993673 -1.624895e-08 1193 1190 -0.005796747 -1.550957e-08 1194 1190 0 -1.871192e-08 1195 1190 0 -1.793674e-08 1196 1190 -0.005993673 -1.624895e-08 1197 1190 -0.005796747 -1.550957e-08 1198 1190 0 -1.871192e-08 1199 1190 0 -1.793674e-08 1220 1190 0.001244584 4.667179e-18 1221 1190 -5.848036e-06 -2.191954e-20 1222 1190 0.006580725 0 1223 1190 -3.099877e-05 0 1224 1190 -0.00453927 -1.156471e-08 1225 1190 0.0002260753 6.596472e-10 1226 1190 0 -1.344608e-08 1227 1190 0 7.614827e-10 1228 1190 -0.00453927 -1.156471e-08 1229 1190 0.0002260753 6.596472e-10 1230 1190 0 -1.344608e-08 1231 1190 0 7.614827e-10 1191 1191 6.282042e-07 0 1192 1191 3.111321e-05 8.446334e-11 1193 1191 3.36541e-06 9.249575e-12 1194 1191 0 9.721648e-11 1195 1191 0 1.060946e-11 1196 1191 3.111321e-05 8.446334e-11 1197 1191 3.36541e-06 9.249575e-12 1198 1191 0 9.721648e-11 1199 1191 0 1.060946e-11 1220 1191 5.872246e-06 2.203353e-20 1221 1191 -2.644963e-08 -9.920148e-23 1222 1191 3.097211e-05 0 1223 1191 -1.398523e-07 0 1224 1191 -1.776232e-05 -4.476993e-11 1225 1191 -3.755707e-09 3.748795e-13 1226 1191 0 -5.209228e-11 1227 1191 0 4.131971e-13 1228 1191 -1.776232e-05 -4.476993e-11 1229 1191 -3.755707e-09 3.748795e-13 1230 1191 0 -5.209228e-11 1231 1191 0 4.131971e-13 1192 1192 0.02875297 0 1193 1192 0.00365206 0 1194 1192 0.02135479 -5.520553e-17 1195 1192 0.002739412 -8.903759e-18 1196 1192 0.02875297 0 1197 1192 0.00365206 0 1198 1192 0.02135479 -5.520553e-17 1199 1192 0.002739412 -8.903759e-18 1193 1193 0.01279311 0 1194 1193 0.002739412 -8.903759e-18 1195 1193 0.009590881 -2.795001e-17 1196 1193 0.00365206 0 1197 1193 0.01279311 0 1198 1193 0.002739412 -8.903759e-18 1199 1193 0.009590881 -2.795001e-17 1220 1193 0 -5.267127e-10 1221 1193 0 -4.131971e-13 1222 1193 0.0002281879 -4.468904e-10 1223 1193 -3.755707e-09 -3.748795e-13 1224 1193 0.002750595 0 1225 1193 -0.001391932 0 1226 1193 0.002063273 -6.165598e-18 1227 1193 -0.001051885 2.799498e-18 1228 1193 0.002750595 0 1229 1193 -0.001391932 0 1230 1193 0.002063273 -6.165598e-18 1231 1193 -0.001051885 2.799498e-18 1194 1194 0.02875297 0 1195 1194 0.00365206 0 1196 1194 0.02135479 5.520553e-17 1197 1194 0.002739412 8.903759e-18 1198 1194 0.02875297 0 1199 1194 0.00365206 0 1195 1195 0.01279311 0 1196 1195 0.002739412 8.903759e-18 1197 1195 0.009590881 2.795001e-17 1198 1195 0.00365206 0 1199 1195 0.01279311 0 1220 1195 -0.0002281879 -4.468904e-10 1221 1195 3.755707e-09 -3.748795e-13 1222 1195 0 -5.267127e-10 1223 1195 0 -4.131971e-13 1224 1195 0.002063273 6.165598e-18 1225 1195 -0.001051885 -2.799498e-18 1226 1195 0.002750595 0 1227 1195 -0.001391932 0 1228 1195 0.002063273 6.165598e-18 1229 1195 -0.001051885 -2.799498e-18 1230 1195 0.002750595 0 1231 1195 -0.001391932 0 1196 1196 0.4870209 0 1197 1196 0.06012184 0 1198 1196 0.2613262 -2.847119e-16 1199 1196 0.03272166 -1.709176e-17 1197 1197 0.2109919 0 1198 1197 0.03272166 -1.709176e-17 1199 1197 0.1147209 -8.363345e-17 1220 1197 0 -5.267127e-10 1221 1197 0 -4.131971e-13 1222 1197 0.0002281879 -4.468904e-10 1223 1197 -3.755707e-09 -3.748795e-13 1224 1197 0.002750595 0 1225 1197 -0.001391932 0 1226 1197 0.002063273 -6.165598e-18 1227 1197 -0.001051885 2.799498e-18 1228 1197 0.04528308 0 1229 1197 -0.02243753 0 1230 1197 0.02464446 -1.479076e-17 1231 1197 -0.01233862 1.096084e-17 1198 1198 0.4870209 0 1199 1198 0.06012184 0 1199 1199 0.2109919 0 1220 1199 -0.0002281879 -4.468904e-10 1221 1199 3.755707e-09 -3.748795e-13 1222 1199 0 -5.267127e-10 1223 1199 0 -4.131971e-13 1224 1199 0.002063273 6.165598e-18 1225 1199 -0.001051885 -2.799498e-18 1226 1199 0.002750595 0 1227 1199 -0.001391932 0 1228 1199 0.02464446 1.479076e-17 1229 1199 -0.01233862 -1.096084e-17 1230 1199 0.04528308 0 1231 1199 -0.02243753 0 1200 1200 0.002347491 0 1201 1200 0.0002899758 0 1202 1200 0.0006390398 -2.008854e-18 1203 1200 8.013413e-05 -2.507169e-19 1201 1201 0.001017605 0 1202 1201 8.013413e-05 -2.507169e-19 1203 1201 0.0002809272 -9.088635e-19 1232 1201 0.0002184066 0 1233 1201 -0.0001082726 0 1234 1201 6.035381e-05 -1.98005e-19 1235 1201 -3.025281e-05 1.022234e-19 1202 1202 0.002347491 0 1203 1202 0.0002899758 0 1203 1203 0.001017605 0 1232 1203 6.035381e-05 1.98005e-19 1233 1203 -3.025281e-05 -1.022234e-19 1234 1203 0.0002184066 0 1235 1203 -0.0001082726 0 1204 1204 0.02602262 0 1205 1204 0.003296505 0 1206 1204 0.01498044 -4.353582e-17 1207 1204 0.00192231 -4.441044e-18 1208 1204 0 -1.4056e-08 1209 1204 0 7.300416e-11 1210 1204 0.006774975 -8.889627e-09 1211 1204 -3.515354e-05 4.630576e-11 1205 1205 0.0115491 0 1206 1205 0.00192231 -4.441044e-18 1207 1205 0.006730054 -1.908635e-17 1208 1205 0 -1.351331e-08 1209 1205 0 7.943374e-12 1210 1205 0.006569706 -8.361244e-09 1211 1205 -3.800943e-06 5.104011e-12 1236 1205 0.00248277 0 1237 1205 -0.001253785 0 1238 1205 0.00144785 -4.146985e-18 1239 1205 -0.0007383167 2.502817e-18 1240 1205 0 4.025349e-10 1241 1205 0 2.994427e-13 1242 1205 -0.000260655 2.283005e-10 1243 1205 8.577065e-09 2.275729e-13 1206 1206 0.02602262 0 1207 1206 0.003296505 0 1208 1206 -0.006774975 -8.889627e-09 1209 1206 3.515354e-05 4.630576e-11 1210 1206 0 -1.4056e-08 1211 1206 0 7.300416e-11 1207 1207 0.0115491 0 1208 1207 -0.006569706 -8.361244e-09 1209 1207 3.800943e-06 5.104011e-12 1210 1207 0 -1.351331e-08 1211 1207 0 7.943374e-12 1236 1207 0.00144785 4.146985e-18 1237 1207 -0.0007383167 -2.502817e-18 1238 1207 0.00248277 0 1239 1207 -0.001253785 0 1240 1207 0.000260655 2.283005e-10 1241 1207 -8.577065e-09 2.275729e-13 1242 1207 0 4.025349e-10 1243 1207 0 2.994427e-13 1208 1208 0.06112968 0 1209 1208 -5.528345e-05 0 1210 1208 -0.002076316 2.50051e-18 1211 1208 2.435107e-06 2.330542e-20 1236 1208 0 1.017087e-08 1237 1208 0 -5.728404e-10 1238 1208 -0.005157025 6.139829e-09 1239 1208 0.0002558307 -3.571533e-10 1240 1208 0.009089616 0 1241 1208 -4.279848e-05 0 1242 1208 -0.0002682671 2.122967e-18 1243 1208 1.276079e-06 -9.594714e-21 1209 1209 8.605797e-07 0 1210 1209 2.435107e-06 2.330542e-20 1211 1209 -3.027575e-08 -8.893975e-24 1236 1209 0 3.942606e-11 1237 1209 0 -2.994427e-13 1238 1209 -2.018648e-05 2.371874e-11 1239 1209 -8.577065e-09 -2.275729e-13 1240 1209 4.27987e-05 0 1241 1209 -1.931708e-07 0 1242 1209 -1.250218e-06 1.042343e-20 1243 1209 5.701294e-09 -4.530835e-23 1210 1210 0.06112968 0 1211 1210 -5.528345e-05 0 1236 1210 0.005157025 6.139829e-09 1237 1210 -0.0002558307 -3.571533e-10 1238 1210 0 1.017087e-08 1239 1210 0 -5.728404e-10 1240 1210 -0.0002682671 -2.122967e-18 1241 1210 1.276079e-06 9.594714e-21 1242 1210 0.009089616 0 1243 1210 -4.279848e-05 0 1211 1211 8.605797e-07 0 1236 1211 2.018648e-05 2.371874e-11 1237 1211 8.577065e-09 -2.275729e-13 1238 1211 0 3.942606e-11 1239 1211 0 -2.994427e-13 1240 1211 -1.250218e-06 -1.042343e-20 1241 1211 5.701294e-09 4.530835e-23 1242 1211 4.27987e-05 0 1243 1211 -1.931708e-07 0 1212 1212 0.003344908 0 1213 1212 -2.883146e-06 0 1244 1212 0.0005076161 0 1245 1212 -2.386859e-06 0 1213 1213 4.682134e-08 0 1244 1213 2.393374e-06 0 1245 1213 -1.078774e-08 0 1214 1214 0.003344908 0 1215 1214 -2.883146e-06 0 1246 1214 0.0005076161 0 1247 1214 -2.386859e-06 0 1215 1215 4.682134e-08 0 1246 1215 2.393374e-06 0 1247 1215 -1.078774e-08 0 1216 1216 0.001732302 0 1217 1216 0.000214684 0 1218 1216 0.0004840388 -1.650721e-18 1219 1216 6.065742e-05 -2.108887e-19 1217 1217 0.0008588082 0 1218 1217 6.065742e-05 -2.108887e-19 1219 1217 0.0002426368 -8.170413e-19 1248 1217 0.0002146914 0 1249 1217 -0.0001064552 0 1250 1217 6.065933e-05 -2.119156e-19 1251 1217 -3.040792e-05 8.917966e-20 1218 1218 0.001732302 0 1219 1218 0.000214684 0 1219 1219 0.0008588082 0 1248 1219 6.065933e-05 2.119156e-19 1249 1219 -3.040792e-05 -8.917966e-20 1250 1219 0.0002146914 0 1251 1219 -0.0001064552 0 1220 1220 0.03781296 0 1221 1220 -3.624085e-07 0 1222 1220 0.007385604 -2.767498e-17 1223 1220 3.435106e-07 -1.043808e-21 1224 1220 0 -1.267601e-08 1225 1220 0 -1.188443e-08 1226 1220 0.004546184 -1.086702e-08 1227 1220 0.005011404 -1.014647e-08 1228 1220 0 -1.267601e-08 1229 1220 0 -1.188443e-08 1230 1220 0.004546184 -1.086702e-08 1231 1220 0.005011404 -1.014647e-08 1252 1220 0.006509281 0 1253 1220 -3.066157e-05 0 1254 1220 0.001312302 -4.876508e-18 1255 1220 -6.166596e-06 2.293882e-20 1256 1220 0 -7.661435e-09 1257 1220 0 7.275701e-10 1258 1220 0.004564803 -6.522564e-09 1259 1220 -0.0002274883 6.204679e-10 1260 1220 0 -7.661435e-09 1261 1220 0 7.275701e-10 1262 1220 0.004564803 -6.522564e-09 1263 1220 -0.0002274883 6.204679e-10 1221 1221 3.709004e-07 0 1222 1221 3.435106e-07 -1.043808e-21 1223 1221 7.244588e-08 -2.710609e-22 1224 1221 0 5.04395e-11 1225 1221 0 1.857166e-12 1226 1221 -1.777735e-05 4.327041e-11 1227 1221 7.070393e-09 1.610556e-12 1228 1221 0 5.04395e-11 1229 1221 0 1.857166e-12 1230 1221 -1.777735e-05 4.327041e-11 1231 1221 7.070393e-09 1.610556e-12 1252 1221 3.063652e-05 0 1253 1221 -1.38334e-07 0 1254 1221 6.191387e-06 -2.298433e-20 1255 1221 -2.788878e-08 1.036414e-22 1256 1221 0 -2.777735e-11 1257 1221 0 1.515345e-12 1258 1221 1.786132e-05 -2.363825e-11 1259 1221 3.162069e-09 1.293608e-12 1260 1221 0 -2.777735e-11 1261 1221 0 1.515345e-12 1262 1221 1.786132e-05 -2.363825e-11 1263 1221 3.162069e-09 1.293608e-12 1222 1222 0.03781296 0 1223 1222 -3.624085e-07 0 1224 1222 -0.004546184 -1.086702e-08 1225 1222 -0.005011404 -1.014647e-08 1226 1222 0 -1.267601e-08 1227 1222 0 -1.188443e-08 1228 1222 -0.004546184 -1.086702e-08 1229 1222 -0.005011404 -1.014647e-08 1230 1222 0 -1.267601e-08 1231 1222 0 -1.188443e-08 1252 1222 0.001312302 4.876508e-18 1253 1222 -6.166596e-06 -2.293882e-20 1254 1222 0.006509281 0 1255 1222 -3.066157e-05 0 1256 1222 -0.004564803 -6.522564e-09 1257 1222 0.0002274883 6.204679e-10 1258 1222 0 -7.661435e-09 1259 1222 0 7.275701e-10 1260 1222 -0.004564803 -6.522564e-09 1261 1222 0.0002274883 6.204679e-10 1262 1222 0 -7.661435e-09 1263 1222 0 7.275701e-10 1223 1223 3.709004e-07 0 1224 1223 1.777735e-05 4.327041e-11 1225 1223 -7.070393e-09 1.610556e-12 1226 1223 0 5.04395e-11 1227 1223 0 1.857166e-12 1228 1223 1.777735e-05 4.327041e-11 1229 1223 -7.070393e-09 1.610556e-12 1230 1223 0 5.04395e-11 1231 1223 0 1.857166e-12 1252 1223 6.191387e-06 2.298433e-20 1253 1223 -2.788878e-08 -1.036414e-22 1254 1223 3.063652e-05 0 1255 1223 -1.38334e-07 0 1256 1223 -1.786132e-05 -2.363825e-11 1257 1223 -3.162069e-09 1.293608e-12 1258 1223 0 -2.777735e-11 1259 1223 0 1.515345e-12 1260 1223 -1.786132e-05 -2.363825e-11 1261 1223 -3.162069e-09 1.293608e-12 1262 1223 0 -2.777735e-11 1263 1223 0 1.515345e-12 1224 1224 0.02227061 0 1225 1224 0.002817133 0 1226 1224 0.0168297 -4.484064e-17 1227 1224 0.002144266 -5.032394e-18 1228 1224 0.02227061 0 1229 1224 0.002817133 0 1230 1224 0.0168297 -4.484064e-17 1231 1224 0.002144266 -5.032394e-18 1225 1225 0.01126889 0 1226 1225 0.002144266 -5.032394e-18 1227 1225 0.008577622 -2.043194e-17 1228 1225 0.002817133 0 1229 1225 0.01126889 0 1230 1225 0.002144266 -5.032394e-18 1231 1225 0.008577622 -2.043194e-17 1252 1225 0 1.248277e-10 1253 1225 0 -1.515345e-12 1254 1225 0.0002292653 1.071975e-10 1255 1225 -3.162069e-09 -1.293608e-12 1256 1225 0.002817217 0 1257 1225 -0.001425376 0 1258 1225 0.002144327 -4.982625e-18 1259 1225 -0.001092717 2.489438e-18 1260 1225 0.002817217 0 1261 1225 -0.001425376 0 1262 1225 0.002144327 -4.982625e-18 1263 1225 -0.001092717 2.489438e-18 1226 1226 0.02227061 0 1227 1226 0.002817133 0 1228 1226 0.0168297 4.484064e-17 1229 1226 0.002144266 5.032394e-18 1230 1226 0.02227061 0 1231 1226 0.002817133 0 1227 1227 0.01126889 0 1228 1227 0.002144266 5.032394e-18 1229 1227 0.008577622 2.043194e-17 1230 1227 0.002817133 0 1231 1227 0.01126889 0 1252 1227 -0.0002292653 1.071975e-10 1253 1227 3.162069e-09 -1.293608e-12 1254 1227 0 1.248277e-10 1255 1227 0 -1.515345e-12 1256 1227 0.002144327 4.982625e-18 1257 1227 -0.001092717 -2.489438e-18 1258 1227 0.002817217 0 1259 1227 -0.001425376 0 1260 1227 0.002144327 4.982625e-18 1261 1227 -0.001092717 -2.489438e-18 1262 1227 0.002817217 0 1263 1227 -0.001425376 0 1228 1228 0.3589884 0 1229 1228 0.04446706 0 1230 1228 0.1974165 -1.668356e-16 1231 1228 0.02471001 -2.905258e-17 1229 1229 0.1778829 0 1230 1229 0.02471001 -2.905258e-17 1231 1229 0.09884151 -1.263605e-16 1252 1229 0 1.248277e-10 1253 1229 0 -1.515345e-12 1254 1229 0.0002292653 1.071975e-10 1255 1229 -3.162069e-09 -1.293608e-12 1256 1229 0.002817217 0 1257 1229 -0.001425376 0 1258 1229 0.002144327 -4.982625e-18 1259 1229 -0.001092717 2.489438e-18 1260 1229 0.0444686 0 1261 1229 -0.02203839 0 1262 1229 0.02471079 -2.913596e-17 1263 1229 -0.01237172 2.51217e-17 1230 1230 0.3589884 0 1231 1230 0.04446706 0 1231 1231 0.1778829 0 1252 1231 -0.0002292653 1.071975e-10 1253 1231 3.162069e-09 -1.293608e-12 1254 1231 0 1.248277e-10 1255 1231 0 -1.515345e-12 1256 1231 0.002144327 4.982625e-18 1257 1231 -0.001092717 -2.489438e-18 1258 1231 0.002817217 0 1259 1231 -0.001425376 0 1260 1231 0.02471079 2.913596e-17 1261 1231 -0.01237172 -2.51217e-17 1262 1231 0.0444686 0 1263 1231 -0.02203839 0 1232 1232 0.001732302 0 1233 1232 0.000214684 0 1234 1232 0.0004840388 -1.650721e-18 1235 1232 6.065742e-05 -2.108887e-19 1233 1233 0.0008588082 0 1234 1233 6.065742e-05 -2.108887e-19 1235 1233 0.0002426368 -8.170413e-19 1264 1233 0.0002146914 0 1265 1233 -0.0001064552 0 1266 1233 6.065933e-05 -2.119156e-19 1267 1233 -3.040792e-05 8.917966e-20 1234 1234 0.001732302 0 1235 1234 0.000214684 0 1235 1235 0.0008588082 0 1264 1235 6.065933e-05 2.119156e-19 1265 1235 -3.040792e-05 -8.917966e-20 1266 1235 0.0002146914 0 1267 1235 -0.0001064552 0 1236 1236 0.02006047 0 1237 1236 0.002532371 0 1238 1236 0.01181273 -4.07589e-17 1239 1236 0.001505417 -5.864283e-18 1240 1236 0 -9.612125e-09 1241 1236 0 3.822829e-11 1242 1236 0.005172814 -5.717502e-09 1243 1236 -2.022078e-05 2.280845e-11 1237 1237 0.01012957 0 1238 1237 0.001505417 -5.864283e-18 1239 1237 0.006022079 -2.195876e-17 1240 1237 0 -9.040208e-09 1241 1237 0 1.395769e-12 1242 1237 0.005714927 -5.277563e-09 1243 1237 1.686926e-08 8.737505e-13 1268 1237 0.002532447 0 1269 1237 -0.001278581 0 1270 1237 0.001505459 -5.946672e-18 1271 1237 -0.0007673506 2.238294e-18 1272 1237 0 -9.453109e-11 1273 1237 0 1.15278e-12 1274 1237 -0.0002635222 -5.666305e-11 1275 1237 8.121719e-09 6.726616e-13 1238 1238 0.02006047 0 1239 1238 0.002532371 0 1240 1238 -0.005172814 -5.717502e-09 1241 1238 2.022078e-05 2.280845e-11 1242 1238 0 -9.612125e-09 1243 1238 0 3.822829e-11 1239 1239 0.01012957 0 1240 1239 -0.005714927 -5.277563e-09 1241 1239 -1.686926e-08 8.737505e-13 1242 1239 0 -9.040208e-09 1243 1239 0 1.395769e-12 1268 1239 0.001505459 5.946672e-18 1269 1239 -0.0007673506 -2.238294e-18 1270 1239 0.002532447 0 1271 1239 -0.001278581 0 1272 1239 0.0002635222 -5.666305e-11 1273 1239 -8.121719e-09 6.726616e-13 1274 1239 0 -9.453109e-11 1275 1239 0 1.15278e-12 1240 1240 0.05252462 0 1241 1240 1.833697e-08 0 1242 1240 -0.001341034 1.343027e-17 1243 1240 3.698507e-07 -4.920497e-21 1268 1240 0 5.840381e-09 1269 1240 0 -5.539221e-10 1270 1240 -0.005217465 3.365862e-09 1271 1240 0.0002589561 -3.217104e-10 1272 1240 0.009093288 0 1273 1240 -4.28146e-05 0 1274 1240 -0.0001953778 1.118754e-18 1275 1240 9.333653e-07 -6.102684e-21 1241 1241 5.152049e-07 0 1242 1241 3.698507e-07 -4.920497e-21 1243 1241 -1.314702e-08 1.151478e-22 1268 1241 0 2.118169e-11 1269 1241 0 -1.15278e-12 1270 1241 -2.042224e-05 1.218359e-11 1271 1241 -8.121719e-09 -6.726616e-13 1272 1241 4.281715e-05 0 1273 1241 -1.932488e-07 0 1274 1241 -9.065231e-07 4.470181e-21 1275 1241 4.152204e-09 -2.405079e-23 1242 1242 0.05252462 0 1243 1242 1.833697e-08 0 1268 1242 0.005217465 3.365862e-09 1269 1242 -0.0002589561 -3.217104e-10 1270 1242 0 5.840381e-09 1271 1242 0 -5.539221e-10 1272 1242 -0.0001953778 -1.118754e-18 1273 1242 9.333653e-07 6.102684e-21 1274 1242 0.009093288 0 1275 1242 -4.28146e-05 0 1243 1243 5.152049e-07 0 1268 1243 2.042224e-05 1.218359e-11 1269 1243 8.121719e-09 -6.726616e-13 1270 1243 0 2.118169e-11 1271 1243 0 -1.15278e-12 1272 1243 -9.065231e-07 -4.470181e-21 1273 1243 4.152204e-09 2.405079e-23 1274 1243 4.281715e-05 0 1275 1243 -1.932488e-07 0 1244 1244 0.002985534 0 1245 1244 9.319611e-08 0 1276 1244 0.0005259869 0 1277 1244 -2.473228e-06 0 1245 1245 2.928548e-08 0 1276 1245 2.480005e-06 0 1277 1245 -1.117817e-08 0 1246 1246 0.002985534 0 1247 1246 9.319611e-08 0 1278 1246 0.0005259869 0 1279 1246 -2.473228e-06 0 1247 1247 2.928548e-08 0 1278 1247 2.480005e-06 0 1279 1247 -1.117817e-08 0 1248 1248 0.001703261 0 1249 1248 0.0002111293 0 1250 1248 0.0004865304 -1.451455e-18 1251 1248 6.097235e-05 -1.448031e-19 1249 1249 0.0004231516 0 1250 1249 6.097235e-05 -1.448031e-19 1251 1249 0.0001218653 -3.017823e-19 1250 1250 0.001703261 0 1251 1250 0.0002111293 0 1251 1251 0.0004231516 0 1252 1252 0.01875129 0 1253 1252 -5.176797e-05 0 1254 1252 0.003844417 -1.416887e-17 1255 1252 -1.055602e-05 3.902192e-20 1256 1252 0 -4.871666e-09 1257 1252 0 -9.384626e-10 1258 1252 0.004570617 -4.141028e-09 1259 1252 0.002516835 -7.960523e-10 1260 1252 0 -4.871666e-09 1261 1252 0 -9.384626e-10 1262 1252 0.004570617 -4.141028e-09 1263 1252 0.002516835 -7.960523e-10 1253 1253 1.84201e-07 0 1254 1253 -1.055602e-05 3.902192e-20 1255 1253 3.742761e-08 -1.386136e-22 1256 1253 0 2.171597e-11 1257 1253 0 2.104598e-12 1258 1253 -1.787396e-05 1.846382e-11 1259 1253 -4.474588e-06 1.784207e-12 1260 1253 0 2.171597e-11 1261 1253 0 2.104598e-12 1262 1253 -1.787396e-05 1.846382e-11 1263 1253 -4.474588e-06 1.784207e-12 1254 1254 0.01875129 0 1255 1254 -5.176797e-05 0 1256 1254 -0.004570617 -4.141028e-09 1257 1254 -0.002516835 -7.960523e-10 1258 1254 0 -4.871666e-09 1259 1254 0 -9.384626e-10 1260 1254 -0.004570617 -4.141028e-09 1261 1254 -0.002516835 -7.960523e-10 1262 1254 0 -4.871666e-09 1263 1254 0 -9.384626e-10 1255 1255 1.84201e-07 0 1256 1255 1.787396e-05 1.846382e-11 1257 1255 4.474588e-06 1.784207e-12 1258 1255 0 2.171597e-11 1259 1255 0 2.104598e-12 1260 1255 1.787396e-05 1.846382e-11 1261 1255 4.474588e-06 1.784207e-12 1262 1255 0 2.171597e-11 1263 1255 0 2.104598e-12 1256 1256 0.02280615 0 1257 1256 0.002884287 0 1258 1256 0.01748333 -3.942485e-17 1259 1256 0.002226539 -4.975126e-18 1260 1256 0.02280615 0 1261 1256 0.002884287 0 1262 1256 0.01748333 -3.942485e-17 1263 1256 0.002226539 -4.975126e-18 1257 1257 0.005751761 0 1258 1257 0.002226539 -4.975126e-18 1259 1257 0.004432536 -1.002809e-17 1260 1257 0.002884287 0 1261 1257 0.005751761 0 1262 1257 0.002226539 -4.975126e-18 1263 1257 0.004432536 -1.002809e-17 1258 1258 0.02280615 0 1259 1258 0.002884287 0 1260 1258 0.01748333 3.942485e-17 1261 1258 0.002226539 4.975126e-18 1262 1258 0.02280615 0 1263 1258 0.002884287 0 1259 1259 0.005751761 0 1260 1259 0.002226539 4.975126e-18 1261 1259 0.004432536 1.002809e-17 1262 1259 0.002884287 0 1263 1259 0.005751761 0 1260 1260 0.35261 0 1261 1260 0.04368494 0 1262 1260 0.1979503 -3.941225e-16 1263 1260 0.02477611 -7.135086e-17 1261 1261 0.08756625 0 1262 1261 0.02477611 -7.135086e-17 1263 1261 0.0495352 -1.336125e-16 1262 1262 0.35261 0 1263 1262 0.04368494 0 1263 1263 0.08756625 0 1264 1264 0.001703261 0 1265 1264 0.0002111293 0 1266 1264 0.0004865304 -1.451455e-18 1267 1264 6.097235e-05 -1.448031e-19 1265 1265 0.0004231516 0 1266 1265 6.097235e-05 -1.448031e-19 1267 1265 0.0001218653 -3.017823e-19 1266 1266 0.001703261 0 1267 1266 0.0002111293 0 1267 1267 0.0004231516 0 1268 1268 0.0204576 0 1269 1268 0.002581877 0 1270 1268 0.01227749 -3.728226e-17 1271 1268 0.001563943 -3.006504e-18 1272 1268 0 -3.71809e-09 1273 1268 0 1.657057e-11 1274 1268 0.005232407 -2.127507e-09 1275 1268 -2.045473e-05 9.492944e-12 1269 1269 0.00515132 0 1270 1269 0.001563943 -3.006504e-18 1271 1269 0.003113276 -6.472977e-18 1272 1269 0 -7.173663e-10 1273 1269 0 1.609458e-12 1274 1269 0.002885808 -4.065613e-10 1275 1269 -5.129722e-06 9.097432e-13 1270 1270 0.0204576 0 1271 1270 0.002581877 0 1272 1270 -0.005232407 -2.127507e-09 1273 1270 2.045473e-05 9.492944e-12 1274 1270 0 -3.71809e-09 1275 1270 0 1.657057e-11 1271 1271 0.00515132 0 1272 1271 -0.002885808 -4.065613e-10 1273 1271 5.129722e-06 9.097432e-13 1274 1271 0 -7.173663e-10 1275 1271 0 1.609458e-12 1272 1272 0.02627571 0 1273 1272 -7.246864e-05 0 1274 1272 -0.0005066484 -9.311711e-19 1275 1272 1.449306e-06 -1.689561e-21 1273 1273 2.576909e-07 0 1274 1273 1.449306e-06 -1.689561e-21 1275 1273 -5.273578e-09 1.527746e-23 1274 1274 0.02627571 0 1275 1274 -7.246864e-05 0 1275 1275 2.576909e-07 0 1276 1276 0.001534117 0 1277 1276 -4.218357e-06 0 1277 1277 1.497056e-08 0 1278 1278 0.001534117 0 1279 1278 -4.218357e-06 0 1279 1279 1.497056e-08 0 SuiteSparse/CXSparse_newfiles/Matrix/young1c0000644001170100242450000017671010375437451020134 0ustar davisfac0 0 -218.46 0 1 0 128 0 29 0 128 0 0 1 128 0 1 1 -218.46 0 2 1 128 0 30 1 128 0 1 2 128 0 2 2 -218.46 0 3 2 128 0 31 2 128 0 2 3 128 0 3 3 -218.46 0 4 3 128 0 32 3 128 0 3 4 128 0 4 4 -218.46 0 5 4 128 0 33 4 128 0 4 5 128 0 5 5 -218.46 0 6 5 128 0 34 5 128 0 5 6 128 0 6 6 -218.46 0 7 6 128 0 35 6 128 0 6 7 128 0 7 7 -218.46 0 8 7 128 0 36 7 128 0 7 8 128 0 8 8 -218.46 0 9 8 128 0 37 8 128 0 8 9 128 0 9 9 -218.46 0 10 9 128 0 38 9 128 0 9 10 128 0 10 10 -218.46 0 11 10 128 0 39 10 128 0 10 11 128 0 11 11 -218.46 0 12 11 128 0 40 11 128 0 11 12 128 0 12 12 -218.46 0 13 12 128 0 41 12 128 0 12 13 128 0 13 13 -218.46 0 14 13 128 0 42 13 128 0 13 14 128 0 14 14 -218.46 0 15 14 128 0 43 14 128 0 14 15 128 0 15 15 -218.46 0 16 15 128 0 44 15 128 0 15 16 128 0 16 16 -218.46 0 17 16 128 0 45 16 128 0 16 17 128 0 17 17 -218.46 0 18 17 128 0 46 17 128 0 17 18 128 0 18 18 -218.46 0 19 18 128 0 47 18 128 0 18 19 128 0 19 19 -218.46 0 20 19 128 0 48 19 128 0 19 20 128 0 20 20 -218.46 0 21 20 128 0 49 20 128 0 20 21 128 0 21 21 -218.46 0 22 21 128 0 50 21 128 0 21 22 128 0 22 22 -218.46 0 23 22 128 0 51 22 128 0 22 23 128 0 23 23 -218.46 0 24 23 128 0 52 23 128 0 23 24 128 0 24 24 -218.46 0 25 24 128 0 53 24 128 0 24 25 128 0 25 25 -218.46 0 26 25 128 0 54 25 128 0 25 26 128 0 26 26 -218.46 0 27 26 128 0 55 26 128 0 26 27 128 0 27 27 -218.46 0 28 27 128 0 56 27 128 0 27 28 128 0 28 28 -218.46 0 57 28 128 0 0 29 128 0 29 29 -218.46 0 30 29 128 0 58 29 128 0 1 30 128 0 29 30 128 0 30 30 -218.46 0 31 30 128 0 59 30 128 0 2 31 128 0 30 31 128 0 31 31 -218.46 0 32 31 128 0 60 31 128 0 3 32 128 0 31 32 128 0 32 32 -218.46 0 33 32 128 0 61 32 128 0 4 33 128 0 32 33 128 0 33 33 -218.46 0 34 33 128 0 62 33 128 0 5 34 128 0 33 34 128 0 34 34 -218.46 0 35 34 128 0 63 34 128 0 6 35 128 0 34 35 128 0 35 35 -218.46 0 36 35 128 0 64 35 128 0 7 36 128 0 35 36 128 0 36 36 -218.46 0 37 36 128 0 65 36 128 0 8 37 128 0 36 37 128 0 37 37 -218.46 0 38 37 128 0 66 37 128 0 9 38 128 0 37 38 128 0 38 38 -218.46 0 39 38 128 0 67 38 128 0 10 39 128 0 38 39 128 0 39 39 -218.46 0 40 39 128 0 68 39 128 0 11 40 128 0 39 40 128 0 40 40 -218.46 0 41 40 128 0 69 40 128 0 12 41 128 0 40 41 128 0 41 41 -218.46 0 42 41 128 0 70 41 128 0 13 42 128 0 41 42 128 0 42 42 -218.46 0 43 42 128 0 71 42 128 0 14 43 128 0 42 43 128 0 43 43 -218.46 0 44 43 128 0 72 43 128 0 15 44 128 0 43 44 128 0 44 44 -218.46 0 45 44 128 0 73 44 128 0 16 45 128 0 44 45 128 0 45 45 -218.46 0 46 45 128 0 74 45 128 0 17 46 128 0 45 46 128 0 46 46 -218.46 0 47 46 128 0 75 46 128 0 18 47 128 0 46 47 128 0 47 47 -218.46 0 48 47 128 0 76 47 128 0 19 48 128 0 47 48 128 0 48 48 -218.46 0 49 48 128 0 77 48 128 0 20 49 128 0 48 49 128 0 49 49 -218.46 0 50 49 128 0 78 49 128 0 21 50 128 0 49 50 128 0 50 50 -218.46 0 51 50 128 0 79 50 128 0 22 51 128 0 50 51 128 0 51 51 -218.46 0 52 51 128 0 80 51 128 0 23 52 128 0 51 52 128 0 52 52 -218.46 0 53 52 128 0 81 52 128 0 24 53 128 0 52 53 128 0 53 53 -218.46 0 54 53 128 0 82 53 128 0 25 54 128 0 53 54 128 0 54 54 -218.46 0 55 54 128 0 83 54 128 0 26 55 128 0 54 55 128 0 55 55 -218.46 0 56 55 128 0 84 55 128 0 27 56 128 0 55 56 128 0 56 56 -218.46 0 57 56 128 0 85 56 128 0 28 57 128 0 56 57 128 0 57 57 -218.46 0 86 57 128 0 29 58 128 0 58 58 -218.46 0 59 58 128 0 87 58 128 0 30 59 128 0 58 59 128 0 59 59 -218.46 0 60 59 128 0 88 59 128 0 31 60 128 0 59 60 128 0 60 60 -218.46 0 61 60 128 0 89 60 128 0 32 61 128 0 60 61 128 0 61 61 -218.46 0 62 61 128 0 90 61 128 0 33 62 128 0 61 62 128 0 62 62 -218.46 0 63 62 128 0 91 62 128 0 34 63 128 0 62 63 128 0 63 63 -218.46 0 64 63 128 0 92 63 128 0 35 64 128 0 63 64 128 0 64 64 -218.46 0 65 64 128 0 93 64 128 0 36 65 128 0 64 65 128 0 65 65 -218.46 0 66 65 128 0 94 65 128 0 37 66 128 0 65 66 128 0 66 66 -218.46 0 67 66 128 0 95 66 128 0 38 67 128 0 66 67 128 0 67 67 -218.46 0 68 67 128 0 96 67 128 0 39 68 128 0 67 68 128 0 68 68 -218.46 0 69 68 128 0 97 68 86.627 0 40 69 128 0 68 69 128 0 69 69 -218.46 0 70 69 128 0 98 69 86.627 0 41 70 128 0 69 70 128 0 70 70 -218.46 0 71 70 128 0 99 70 86.627 0 42 71 128 0 70 71 128 0 71 71 -218.46 0 72 71 128 0 100 71 128 0 43 72 128 0 71 72 128 0 72 72 -218.46 0 73 72 128 0 101 72 128 0 44 73 128 0 72 73 128 0 73 73 -218.46 0 74 73 128 0 102 73 128 0 45 74 128 0 73 74 128 0 74 74 -218.46 0 75 74 128 0 103 74 86.627 0 46 75 128 0 74 75 128 0 75 75 -218.46 0 76 75 128 0 104 75 86.627 0 47 76 128 0 75 76 128 0 76 76 -218.46 0 77 76 128 0 105 76 86.627 0 48 77 128 0 76 77 128 0 77 77 -218.46 0 78 77 128 0 106 77 128 0 49 78 128 0 77 78 128 0 78 78 -218.46 0 79 78 128 0 107 78 128 0 50 79 128 0 78 79 128 0 79 79 -218.46 0 80 79 128 0 108 79 128 0 51 80 128 0 79 80 128 0 80 80 -218.46 0 81 80 128 0 109 80 128 0 52 81 128 0 80 81 128 0 81 81 -218.46 0 82 81 128 0 110 81 128 0 53 82 128 0 81 82 128 0 82 82 -218.46 0 83 82 128 0 111 82 128 0 54 83 128 0 82 83 128 0 83 83 -218.46 0 84 83 128 0 112 83 128 0 55 84 128 0 83 84 128 0 84 84 -218.46 0 85 84 128 0 113 84 128 0 56 85 128 0 84 85 128 0 85 85 -218.46 0 86 85 128 0 114 85 128 0 57 86 128 0 85 86 128 0 86 86 -218.46 0 115 86 128 0 58 87 128 0 87 87 -218.46 0 88 87 128 0 116 87 128 0 59 88 128 0 87 88 128 0 88 88 -218.46 0 89 88 128 0 117 88 128 0 60 89 128 0 88 89 128 0 89 89 -218.46 0 90 89 128 0 118 89 128 0 61 90 128 0 89 90 128 0 90 90 -218.46 0 91 90 128 0 119 90 128 0 62 91 128 0 90 91 128 0 91 91 -218.46 0 92 91 128 0 120 91 128 0 63 92 128 0 91 92 128 0 92 92 -218.46 0 93 92 128 0 121 92 128 0 64 93 128 0 92 93 128 0 93 93 -218.46 0 94 93 128 0 122 93 128 0 65 94 128 0 93 94 128 0 94 94 -218.46 0 95 94 128 0 123 94 128 0 66 95 128 0 94 95 128 0 95 95 -218.46 0 96 95 128 0 124 95 86.627 0 67 96 128 0 95 96 128 0 96 96 -218.46 0 97 96 86.627 0 125 96 86.627 0 68 97 86.627 0 96 97 86.627 0 97 97 -63.965 -26.544 98 97 45.254 0 126 97 45.254 0 69 98 86.627 0 97 98 45.254 0 98 98 -63.965 -26.544 99 98 45.254 0 127 98 45.254 0 70 99 86.627 0 98 99 45.254 0 99 99 -63.965 -26.544 100 99 86.627 0 128 99 22.627064 0 71 100 128 0 99 100 86.627 0 100 100 -218.46 0 101 100 128 0 129 100 128 0 72 101 128 0 100 101 128 0 101 101 -218.46 0 102 101 128 0 130 101 128 0 73 102 128 0 101 102 128 0 102 102 -218.46 0 103 102 86.627 0 131 102 128 0 74 103 86.627 0 102 103 86.627 0 103 103 -63.965 -26.544 104 103 45.254 0 132 103 22.627064 0 75 104 86.627 0 103 104 45.254 0 104 104 -63.965 -26.544 105 104 45.254 0 133 104 45.254 0 76 105 86.627 0 104 105 45.254 0 105 105 -63.965 -26.544 106 105 86.627 0 134 105 45.254 0 77 106 128 0 105 106 86.627 0 106 106 -218.46 0 107 106 128 0 135 106 86.627 0 78 107 128 0 106 107 128 0 107 107 -218.46 0 108 107 128 0 136 107 86.627 0 79 108 128 0 107 108 128 0 108 108 -218.46 0 109 108 128 0 137 108 128 0 80 109 128 0 108 109 128 0 109 109 -218.46 0 110 109 128 0 138 109 128 0 81 110 128 0 109 110 128 0 110 110 -218.46 0 111 110 128 0 139 110 128 0 82 111 128 0 110 111 128 0 111 111 -218.46 0 112 111 128 0 140 111 128 0 83 112 128 0 111 112 128 0 112 112 -218.46 0 113 112 128 0 141 112 128 0 84 113 128 0 112 113 128 0 113 113 -218.46 0 114 113 128 0 142 113 128 0 85 114 128 0 113 114 128 0 114 114 -218.46 0 115 114 128 0 143 114 128 0 86 115 128 0 114 115 128 0 115 115 -218.46 0 144 115 128 0 87 116 128 0 116 116 -218.46 0 117 116 128 0 145 116 128 0 88 117 128 0 116 117 128 0 117 117 -218.46 0 118 117 128 0 146 117 128 0 89 118 128 0 117 118 128 0 118 118 -218.46 0 119 118 128 0 147 118 128 0 90 119 128 0 118 119 128 0 119 119 -218.46 0 120 119 128 0 148 119 128 0 91 120 128 0 119 120 128 0 120 120 -218.46 0 121 120 128 0 149 120 128 0 92 121 128 0 120 121 128 0 121 121 -218.46 0 122 121 128 0 150 121 128 0 93 122 128 0 121 122 128 0 122 122 -218.46 0 123 122 128 0 151 122 128 0 94 123 128 0 122 123 128 0 123 123 -218.46 0 124 123 86.627 0 152 123 86.627 0 95 124 86.627 0 123 124 86.627 0 124 124 -63.965 -26.544 125 124 45.254 0 153 124 45.254 0 96 125 86.627 0 124 125 45.254 0 125 125 -63.965 -26.544 126 125 45.254 0 154 125 22.627064 0 97 126 45.254 0 125 126 45.254 0 126 126 -63.965 -26.544 127 126 45.254 0 155 126 22.627064 0 98 127 45.254 0 126 127 45.254 0 127 127 -63.965 -26.544 128 127 22.627064 0 156 127 22.627064 0 99 128 22.627064 0 127 128 22.627064 0 128 128 -0.000218 -37.54 129 128 64.000064 0 157 128 0.000128 0 100 129 128 0 128 129 64.000064 0 129 129 -218.46 0 130 129 128 0 158 129 128 0 101 130 128 0 129 130 128 0 130 130 -218.46 0 131 130 128 0 159 130 128 0 102 131 128 0 130 131 128 0 131 131 -218.46 0 132 131 64.000064 0 160 131 128 0 103 132 22.627064 0 131 132 64.000064 0 132 132 -0.000218 -37.54 133 132 22.627064 0 161 132 0.000128 0 104 133 45.254 0 132 133 22.627064 0 133 133 -63.965 -26.544 134 133 45.254 0 162 133 22.627064 0 105 134 45.254 0 133 134 45.254 0 134 134 -63.965 -26.544 135 134 45.254 0 163 134 22.627064 0 106 135 86.627 0 134 135 45.254 0 135 135 -63.965 -26.544 136 135 45.254 0 164 135 22.627064 0 107 136 86.627 0 135 136 45.254 0 136 136 -63.965 -26.544 137 136 86.627 0 165 136 45.254 0 108 137 128 0 136 137 86.627 0 137 137 -218.46 0 138 137 128 0 166 137 86.627 0 109 138 128 0 137 138 128 0 138 138 -218.46 0 139 138 128 0 167 138 128 0 110 139 128 0 138 139 128 0 139 139 -218.46 0 140 139 128 0 168 139 128 0 111 140 128 0 139 140 128 0 140 140 -218.46 0 141 140 128 0 169 140 128 0 112 141 128 0 140 141 128 0 141 141 -218.46 0 142 141 128 0 170 141 128 0 113 142 128 0 141 142 128 0 142 142 -218.46 0 143 142 128 0 171 142 128 0 114 143 128 0 142 143 128 0 143 143 -218.46 0 144 143 128 0 172 143 128 0 115 144 128 0 143 144 128 0 144 144 -218.46 0 173 144 128 0 116 145 128 0 145 145 -218.46 0 146 145 128 0 174 145 128 0 117 146 128 0 145 146 128 0 146 146 -218.46 0 147 146 128 0 175 146 128 0 118 147 128 0 146 147 128 0 147 147 -218.46 0 148 147 128 0 176 147 128 0 119 148 128 0 147 148 128 0 148 148 -218.46 0 149 148 128 0 177 148 128 0 120 149 128 0 148 149 128 0 149 149 -218.46 0 150 149 128 0 178 149 128 0 121 150 128 0 149 150 128 0 150 150 -218.46 0 151 150 128 0 179 150 128 0 122 151 128 0 150 151 128 0 151 151 -218.46 0 152 151 86.627 0 180 151 86.627 0 123 152 86.627 0 151 152 86.627 0 152 152 -63.965 -26.544 153 152 45.254 0 181 152 45.254 0 124 153 45.254 0 152 153 45.254 0 153 153 -63.965 -26.544 154 153 22.627064 0 182 153 22.627064 0 125 154 22.627064 0 153 154 22.627064 0 154 154 -0.000218 -37.54 155 154 0.000128 0 183 154 0.000128 0 126 155 22.627064 0 154 155 0.000128 0 155 155 -0.000218 -37.54 156 155 0.000128 0 184 155 0.000128 0 127 156 22.627064 0 155 156 0.000128 0 156 156 -0.000218 -37.54 157 156 0.000128 0 185 156 64.000064 0 128 157 0.000128 0 156 157 0.000128 0 157 157 -0.000218 -37.54 158 157 64.000064 0 186 157 64.000064 0 129 158 128 0 157 158 64.000064 0 158 158 -218.46 0 159 158 128 0 187 158 128 0 130 159 128 0 158 159 128 0 159 159 -218.46 0 160 159 128 0 188 159 128 0 131 160 128 0 159 160 128 0 160 160 -218.46 0 161 160 64.000064 0 189 160 128 0 132 161 0.000128 0 160 161 64.000064 0 161 161 -0.000218 -37.54 162 161 0.000128 0 190 161 64.000064 0 133 162 22.627064 0 161 162 0.000128 0 162 162 -0.000218 -37.54 163 162 0.000128 0 191 162 64.000064 0 134 163 22.627064 0 162 163 0.000128 0 163 163 -0.000218 -37.54 164 163 0.000128 0 192 163 0.000128 0 135 164 22.627064 0 163 164 0.000128 0 164 164 -0.000218 -37.54 165 164 22.627064 0 193 164 0.000128 0 136 165 45.254 0 164 165 22.627064 0 165 165 -63.965 -26.544 166 165 45.254 0 194 165 22.627064 0 137 166 86.627 0 165 166 45.254 0 166 166 -63.965 -26.544 167 166 86.627 0 195 166 45.254 0 138 167 128 0 166 167 86.627 0 167 167 -218.46 0 168 167 128 0 196 167 86.627 0 139 168 128 0 167 168 128 0 168 168 -218.46 0 169 168 128 0 197 168 128 0 140 169 128 0 168 169 128 0 169 169 -218.46 0 170 169 128 0 198 169 128 0 141 170 128 0 169 170 128 0 170 170 -218.46 0 171 170 128 0 199 170 128 0 142 171 128 0 170 171 128 0 171 171 -218.46 0 172 171 128 0 200 171 128 0 143 172 128 0 171 172 128 0 172 172 -218.46 0 173 172 128 0 201 172 128 0 144 173 128 0 172 173 128 0 173 173 -218.46 0 202 173 128 0 145 174 128 0 174 174 -218.46 0 175 174 128 0 203 174 128 0 146 175 128 0 174 175 128 0 175 175 -218.46 0 176 175 128 0 204 175 128 0 147 176 128 0 175 176 128 0 176 176 -218.46 0 177 176 128 0 205 176 128 0 148 177 128 0 176 177 128 0 177 177 -218.46 0 178 177 128 0 206 177 128 0 149 178 128 0 177 178 128 0 178 178 -218.46 0 179 178 128 0 207 178 128 0 150 179 128 0 178 179 128 0 179 179 -218.46 0 180 179 86.627 0 208 179 86.627 0 151 180 86.627 0 179 180 86.627 0 180 180 -63.965 -26.544 181 180 45.254 0 209 180 45.254 0 152 181 45.254 0 180 181 45.254 0 181 181 -63.965 -26.544 182 181 22.627064 0 210 181 22.627064 0 153 182 22.627064 0 181 182 22.627064 0 182 182 -0.000218 -37.54 183 182 0.000128 0 211 182 0.000128 0 154 183 0.000128 0 182 183 0.000128 0 183 183 -0.000218 -37.54 184 183 0.000128 0 212 183 64.000064 0 155 184 0.000128 0 183 184 0.000128 0 184 184 -0.000218 -37.54 185 184 64.000064 0 213 184 64.000064 0 156 185 64.000064 0 184 185 64.000064 0 185 185 -218.46 0 186 185 128 0 214 185 128 0 157 186 64.000064 0 185 186 128 0 186 186 -218.46 0 187 186 128 0 215 186 128 0 158 187 128 0 186 187 128 0 187 187 -218.46 0 188 187 128 0 216 187 128 0 159 188 128 0 187 188 128 0 188 188 -218.46 0 189 188 128 0 217 188 128 0 160 189 128 0 188 189 128 0 189 189 -218.46 0 190 189 128 0 218 189 128 0 161 190 64.000064 0 189 190 128 0 190 190 -218.46 0 191 190 128 0 219 190 128 0 162 191 64.000064 0 190 191 128 0 191 191 -218.46 0 192 191 64.000064 0 220 191 128 0 163 192 0.000128 0 191 192 64.000064 0 192 192 -0.000218 -37.54 193 192 0.000128 0 221 192 64.000064 0 164 193 0.000128 0 192 193 0.000128 0 193 193 -0.000218 -37.54 194 193 0.000128 0 222 193 64.000064 0 165 194 22.627064 0 193 194 0.000128 0 194 194 -0.000218 -37.54 195 194 22.627064 0 223 194 0.000128 0 166 195 45.254 0 194 195 22.627064 0 195 195 -63.965 -26.544 196 195 45.254 0 224 195 22.627064 0 167 196 86.627 0 195 196 45.254 0 196 196 -63.965 -26.544 197 196 86.627 0 225 196 45.254 0 168 197 128 0 196 197 86.627 0 197 197 -218.46 0 198 197 128 0 226 197 86.627 0 169 198 128 0 197 198 128 0 198 198 -218.46 0 199 198 128 0 227 198 128 0 170 199 128 0 198 199 128 0 199 199 -218.46 0 200 199 128 0 228 199 128 0 171 200 128 0 199 200 128 0 200 200 -218.46 0 201 200 128 0 229 200 128 0 172 201 128 0 200 201 128 0 201 201 -218.46 0 202 201 128 0 230 201 128 0 173 202 128 0 201 202 128 0 202 202 -218.46 0 231 202 128 0 174 203 128 0 203 203 -218.46 0 204 203 128 0 232 203 128 0 175 204 128 0 203 204 128 0 204 204 -218.46 0 205 204 128 0 233 204 128 0 176 205 128 0 204 205 128 0 205 205 -218.46 0 206 205 128 0 234 205 128 0 177 206 128 0 205 206 128 0 206 206 -218.46 0 207 206 128 0 235 206 128 0 178 207 128 0 206 207 128 0 207 207 -218.46 0 208 207 86.627 0 236 207 86.627 0 179 208 86.627 0 207 208 86.627 0 208 208 -63.965 -26.544 209 208 45.254 0 237 208 45.254 0 180 209 45.254 0 208 209 45.254 0 209 209 -63.965 -26.544 210 209 22.627064 0 238 209 22.627064 0 181 210 22.627064 0 209 210 22.627064 0 210 210 -0.000218 -37.54 211 210 0.000128 0 239 210 0.000128 0 182 211 0.000128 0 210 211 0.000128 0 211 211 -0.000218 -37.54 212 211 64.000064 0 240 211 64.000064 0 183 212 64.000064 0 211 212 64.000064 0 212 212 -218.46 0 213 212 128 0 241 212 128 0 184 213 64.000064 0 212 213 128 0 213 213 -218.46 0 214 213 128 0 242 213 128 0 185 214 128 0 213 214 128 0 214 214 -218.46 0 215 214 128 0 243 214 128 0 186 215 128 0 214 215 128 0 215 215 -218.46 0 216 215 128 0 244 215 128 0 187 216 128 0 215 216 128 0 216 216 -218.46 0 217 216 128 0 245 216 128 0 188 217 128 0 216 217 128 0 217 217 -218.46 0 218 217 128 0 246 217 128 0 189 218 128 0 217 218 128 0 218 218 -218.46 0 219 218 128 0 247 218 128 0 190 219 128 0 218 219 128 0 219 219 -218.46 0 220 219 128 0 248 219 128 0 191 220 128 0 219 220 128 0 220 220 -218.46 0 221 220 128 0 249 220 128 0 192 221 64.000064 0 220 221 128 0 221 221 -218.46 0 222 221 128 0 250 221 128 0 193 222 64.000064 0 221 222 128 0 222 222 -218.46 0 223 222 64.000064 0 251 222 128 0 194 223 0.000128 0 222 223 64.000064 0 223 223 -0.000218 -37.54 224 223 0.000128 0 252 223 64.000064 0 195 224 22.627064 0 223 224 0.000128 0 224 224 -0.000218 -37.54 225 224 22.627064 0 253 224 0.000128 0 196 225 45.254 0 224 225 22.627064 0 225 225 -63.965 -26.544 226 225 45.254 0 254 225 22.627064 0 197 226 86.627 0 225 226 45.254 0 226 226 -63.965 -26.544 227 226 86.627 0 255 226 45.254 0 198 227 128 0 226 227 86.627 0 227 227 -218.46 0 228 227 128 0 256 227 86.627 0 199 228 128 0 227 228 128 0 228 228 -218.46 0 229 228 128 0 257 228 128 0 200 229 128 0 228 229 128 0 229 229 -218.46 0 230 229 128 0 258 229 128 0 201 230 128 0 229 230 128 0 230 230 -218.46 0 231 230 128 0 259 230 128 0 202 231 128 0 230 231 128 0 231 231 -218.46 0 260 231 128 0 203 232 128 0 232 232 -218.46 0 233 232 128 0 261 232 128 0 204 233 128 0 232 233 128 0 233 233 -218.46 0 234 233 128 0 262 233 128 0 205 234 128 0 233 234 128 0 234 234 -218.46 0 235 234 128 0 263 234 128 0 206 235 128 0 234 235 128 0 235 235 -218.46 0 236 235 86.627 0 264 235 128 0 207 236 86.627 0 235 236 86.627 0 236 236 -63.965 -26.544 237 236 45.254 0 265 236 45.254 0 208 237 45.254 0 236 237 45.254 0 237 237 -63.965 -26.544 238 237 22.627064 0 266 237 22.627064 0 209 238 22.627064 0 237 238 22.627064 0 238 238 -0.000218 -37.54 239 238 0.000128 0 267 238 0.000128 0 210 239 0.000128 0 238 239 0.000128 0 239 239 -0.000218 -37.54 240 239 64.000064 0 268 239 64.000064 0 211 240 64.000064 0 239 240 64.000064 0 240 240 -218.46 0 241 240 128 0 269 240 128 0 212 241 128 0 240 241 128 0 241 241 -218.46 0 242 241 128 0 270 241 128 0 213 242 128 0 241 242 128 0 242 242 -218.46 0 243 242 128 0 271 242 128 0 214 243 128 0 242 243 128 0 243 243 -218.46 0 244 243 128 0 272 243 128 0 215 244 128 0 243 244 128 0 244 244 -218.46 0 245 244 128 0 273 244 128 0 216 245 128 0 244 245 128 0 245 245 -218.46 0 246 245 128 0 274 245 128 0 217 246 128 0 245 246 128 0 246 246 -218.46 0 247 246 128 0 275 246 128 0 218 247 128 0 246 247 128 0 247 247 -218.46 0 248 247 128 0 276 247 128 0 219 248 128 0 247 248 128 0 248 248 -218.46 0 249 248 128 0 277 248 128 0 220 249 128 0 248 249 128 0 249 249 -218.46 0 250 249 128 0 278 249 128 0 221 250 128 0 249 250 128 0 250 250 -218.46 0 251 250 128 0 279 250 128 0 222 251 128 0 250 251 128 0 251 251 -218.46 0 252 251 128 0 280 251 128 0 223 252 64.000064 0 251 252 128 0 252 252 -218.46 0 253 252 64.000064 0 281 252 128 0 224 253 0.000128 0 252 253 64.000064 0 253 253 -0.000218 -37.54 254 253 0.000128 0 282 253 64.000064 0 225 254 22.627064 0 253 254 0.000128 0 254 254 -0.000218 -37.54 255 254 22.627064 0 283 254 0.000128 0 226 255 45.254 0 254 255 22.627064 0 255 255 -63.965 -26.544 256 255 45.254 0 284 255 22.627064 0 227 256 86.627 0 255 256 45.254 0 256 256 -63.965 -26.544 257 256 86.627 0 285 256 45.254 0 228 257 128 0 256 257 86.627 0 257 257 -218.46 0 258 257 128 0 286 257 128 0 229 258 128 0 257 258 128 0 258 258 -218.46 0 259 258 128 0 287 258 128 0 230 259 128 0 258 259 128 0 259 259 -218.46 0 260 259 128 0 288 259 128 0 231 260 128 0 259 260 128 0 260 260 -218.46 0 289 260 128 0 232 261 128 0 261 261 -218.46 0 262 261 128 0 290 261 128 0 233 262 128 0 261 262 128 0 262 262 -218.46 0 263 262 128 0 291 262 128 0 234 263 128 0 262 263 128 0 263 263 -218.46 0 264 263 128 0 292 263 128 0 235 264 128 0 263 264 128 0 264 264 -218.46 0 265 264 86.627 0 293 264 86.627 0 236 265 45.254 0 264 265 86.627 0 265 265 -63.965 -26.544 266 265 22.627064 0 294 265 45.254 0 237 266 22.627064 0 265 266 22.627064 0 266 266 -0.000218 -37.54 267 266 0.000128 0 295 266 0.000128 0 238 267 0.000128 0 266 267 0.000128 0 267 267 -0.000218 -37.54 268 267 64.000064 0 296 267 0.000128 0 239 268 64.000064 0 267 268 64.000064 0 268 268 -218.46 0 269 268 128 0 297 268 128 0 240 269 128 0 268 269 128 0 269 269 -218.46 0 270 269 128 0 298 269 128 0 241 270 128 0 269 270 128 0 270 270 -218.46 0 271 270 128 0 299 270 128 0 242 271 128 0 270 271 128 0 271 271 -218.46 0 272 271 128 0 300 271 128 0 243 272 128 0 271 272 128 0 272 272 -218.46 0 273 272 128 0 301 272 128 0 244 273 128 0 272 273 128 0 273 273 -218.46 0 274 273 128 0 302 273 128 0 245 274 128 0 273 274 128 0 274 274 -218.46 0 275 274 128 0 303 274 128 0 246 275 128 0 274 275 128 0 275 275 -218.46 0 276 275 128 0 304 275 128 0 247 276 128 0 275 276 128 0 276 276 -218.46 0 277 276 128 0 305 276 128 0 248 277 128 0 276 277 128 0 277 277 -218.46 0 278 277 128 0 306 277 128 0 249 278 128 0 277 278 128 0 278 278 -218.46 0 279 278 128 0 307 278 128 0 250 279 128 0 278 279 128 0 279 279 -218.46 0 280 279 128 0 308 279 128 0 251 280 128 0 279 280 128 0 280 280 -218.46 0 281 280 128 0 309 280 128 0 252 281 128 0 280 281 128 0 281 281 -218.46 0 282 281 128 0 310 281 128 0 253 282 64.000064 0 281 282 128 0 282 282 -218.46 0 283 282 64.000064 0 311 282 128 0 254 283 0.000128 0 282 283 64.000064 0 283 283 -0.000218 -37.54 284 283 0.000128 0 312 283 0.000128 0 255 284 22.627064 0 283 284 0.000128 0 284 284 -0.000218 -37.54 285 284 22.627064 0 313 284 0.000128 0 256 285 45.254 0 284 285 22.627064 0 285 285 -63.965 -26.544 286 285 86.627 0 314 285 45.254 0 257 286 128 0 285 286 86.627 0 286 286 -218.46 0 287 286 128 0 315 286 86.627 0 258 287 128 0 286 287 128 0 287 287 -218.46 0 288 287 128 0 316 287 128 0 259 288 128 0 287 288 128 0 288 288 -218.46 0 289 288 128 0 317 288 128 0 260 289 128 0 288 289 128 0 289 289 -218.46 0 318 289 128 0 261 290 128 0 290 290 -218.46 0 291 290 128 0 319 290 128 0 262 291 128 0 290 291 128 0 291 291 -218.46 0 292 291 128 0 320 291 128 0 263 292 128 0 291 292 128 0 292 292 -218.46 0 293 292 86.627 0 321 292 128 0 264 293 86.627 0 292 293 86.627 0 293 293 -63.965 -26.544 294 293 45.254 0 322 293 45.254 0 265 294 45.254 0 293 294 45.254 0 294 294 -63.965 -26.544 295 294 22.627064 0 323 294 45.254 0 266 295 0.000128 0 294 295 22.627064 0 295 295 -0.000218 -37.54 296 295 0.000128 0 324 295 0.000128 0 267 296 0.000128 0 295 296 0.000128 0 296 296 -0.000218 -37.54 297 296 64.000064 0 325 296 64.000064 0 268 297 128 0 296 297 64.000064 0 297 297 -218.46 0 298 297 128 0 326 297 128 0 269 298 128 0 297 298 128 0 298 298 -218.46 0 299 298 128 0 327 298 128 0 270 299 128 0 298 299 128 0 299 299 -218.46 0 300 299 128 0 328 299 128 0 271 300 128 0 299 300 128 0 300 300 -218.46 0 301 300 128 0 329 300 128 0 272 301 128 0 300 301 128 0 301 301 -218.46 0 302 301 128 0 330 301 128 0 273 302 128 0 301 302 128 0 302 302 -218.46 0 303 302 128 0 331 302 128 0 274 303 128 0 302 303 128 0 303 303 -218.46 0 304 303 128 0 332 303 128 0 275 304 128 0 303 304 128 0 304 304 -218.46 0 305 304 128 0 333 304 128 0 276 305 128 0 304 305 128 0 305 305 -218.46 0 306 305 128 0 334 305 128 0 277 306 128 0 305 306 128 0 306 306 -218.46 0 307 306 128 0 335 306 128 0 278 307 128 0 306 307 128 0 307 307 -218.46 0 308 307 128 0 336 307 128 0 279 308 128 0 307 308 128 0 308 308 -218.46 0 309 308 128 0 337 308 128 0 280 309 128 0 308 309 128 0 309 309 -218.46 0 310 309 128 0 338 309 128 0 281 310 128 0 309 310 128 0 310 310 -218.46 0 311 310 128 0 339 310 128 0 282 311 128 0 310 311 128 0 311 311 -218.46 0 312 311 64.000064 0 340 311 128 0 283 312 0.000128 0 311 312 64.000064 0 312 312 -0.000218 -37.54 313 312 0.000128 0 341 312 64.000064 0 284 313 0.000128 0 312 313 0.000128 0 313 313 -0.000218 -37.54 314 313 22.627064 0 342 313 0.000128 0 285 314 45.254 0 313 314 22.627064 0 314 314 -63.965 -26.544 315 314 45.254 0 343 314 45.254 0 286 315 86.627 0 314 315 45.254 0 315 315 -63.965 -26.544 316 315 86.627 0 344 315 45.254 0 287 316 128 0 315 316 86.627 0 316 316 -218.46 0 317 316 128 0 345 316 128 0 288 317 128 0 316 317 128 0 317 317 -218.46 0 318 317 128 0 346 317 128 0 289 318 128 0 317 318 128 0 318 318 -218.46 0 347 318 128 0 290 319 128 0 319 319 -218.46 0 320 319 128 0 348 319 128 0 291 320 128 0 319 320 128 0 320 320 -218.46 0 321 320 128 0 349 320 128 0 292 321 128 0 320 321 128 0 321 321 -218.46 0 322 321 86.627 0 350 321 128 0 293 322 45.254 0 321 322 86.627 0 322 322 -63.965 -26.544 323 322 45.254 0 351 322 45.254 0 294 323 45.254 0 322 323 45.254 0 323 323 -63.965 -26.544 324 323 22.627064 0 352 323 22.627064 0 295 324 0.000128 0 323 324 22.627064 0 324 324 -0.000218 -37.54 325 324 64.000064 0 353 324 0.000128 0 296 325 64.000064 0 324 325 64.000064 0 325 325 -218.46 0 326 325 128 0 354 325 128 0 297 326 128 0 325 326 128 0 326 326 -218.46 0 327 326 128 0 355 326 128 0 298 327 128 0 326 327 128 0 327 327 -218.46 0 328 327 128 0 356 327 128 0 299 328 128 0 327 328 128 0 328 328 -218.46 0 329 328 128 0 357 328 128 0 300 329 128 0 328 329 128 0 329 329 -218.46 0 330 329 128 0 358 329 128 0 301 330 128 0 329 330 128 0 330 330 -218.46 0 331 330 128 0 359 330 128 0 302 331 128 0 330 331 128 0 331 331 -218.46 0 332 331 128 0 360 331 128 0 303 332 128 0 331 332 128 0 332 332 -218.46 0 333 332 128 0 361 332 128 0 304 333 128 0 332 333 128 0 333 333 -218.46 0 334 333 128 0 362 333 128 0 305 334 128 0 333 334 128 0 334 334 -218.46 0 335 334 128 0 363 334 128 0 306 335 128 0 334 335 128 0 335 335 -218.46 0 336 335 128 0 364 335 128 0 307 336 128 0 335 336 128 0 336 336 -218.46 0 337 336 128 0 365 336 128 0 308 337 128 0 336 337 128 0 337 337 -218.46 0 338 337 128 0 366 337 128 0 309 338 128 0 337 338 128 0 338 338 -218.46 0 339 338 128 0 367 338 128 0 310 339 128 0 338 339 128 0 339 339 -218.46 0 340 339 128 0 368 339 128 0 311 340 128 0 339 340 128 0 340 340 -218.46 0 341 340 128 0 369 340 128 0 312 341 64.000064 0 340 341 128 0 341 341 -218.46 0 342 341 64.000064 0 370 341 128 0 313 342 0.000128 0 341 342 64.000064 0 342 342 -0.000218 -37.54 343 342 22.627064 0 371 342 0.000128 0 314 343 45.254 0 342 343 22.627064 0 343 343 -63.965 -26.544 344 343 45.254 0 372 343 22.627064 0 315 344 45.254 0 343 344 45.254 0 344 344 -63.965 -26.544 345 344 86.627 0 373 344 45.254 0 316 345 128 0 344 345 86.627 0 345 345 -218.46 0 346 345 128 0 374 345 128 0 317 346 128 0 345 346 128 0 346 346 -218.46 0 347 346 128 0 375 346 128 0 318 347 128 0 346 347 128 0 347 347 -218.46 0 376 347 128 0 319 348 128 0 348 348 -218.46 0 349 348 128 0 377 348 128 0 320 349 128 0 348 349 128 0 349 349 -218.46 0 350 349 128 0 378 349 128 0 321 350 128 0 349 350 128 0 350 350 -218.46 0 351 350 86.627 0 379 350 128 0 322 351 45.254 0 350 351 86.627 0 351 351 -63.965 -26.544 352 351 22.627064 0 380 351 45.254 0 323 352 22.627064 0 351 352 22.627064 0 352 352 -0.000218 -37.54 353 352 0.000128 0 381 352 0.000128 0 324 353 0.000128 0 352 353 0.000128 0 353 353 -0.000218 -37.54 354 353 64.000064 0 382 353 0.000128 0 325 354 128 0 353 354 64.000064 0 354 354 -218.46 0 355 354 128 0 383 354 128 0 326 355 128 0 354 355 128 0 355 355 -218.46 0 356 355 128 0 384 355 128 0 327 356 128 0 355 356 128 0 356 356 -218.46 0 357 356 128 0 385 356 128 0 328 357 128 0 356 357 128 0 357 357 -218.46 0 358 357 128 0 386 357 128 0 329 358 128 0 357 358 128 0 358 358 -218.46 0 359 358 128 0 387 358 128 0 330 359 128 0 358 359 128 0 359 359 -218.46 0 360 359 128 0 388 359 128 0 331 360 128 0 359 360 128 0 360 360 -218.46 0 361 360 128 0 389 360 128 0 332 361 128 0 360 361 128 0 361 361 -218.46 0 362 361 128 0 390 361 128 0 333 362 128 0 361 362 128 0 362 362 -218.46 0 363 362 128 0 391 362 128 0 334 363 128 0 362 363 128 0 363 363 -218.46 0 364 363 128 0 392 363 128 0 335 364 128 0 363 364 128 0 364 364 -218.46 0 365 364 128 0 393 364 128 0 336 365 128 0 364 365 128 0 365 365 -218.46 0 366 365 128 0 394 365 128 0 337 366 128 0 365 366 128 0 366 366 -218.46 0 367 366 128 0 395 366 128 0 338 367 128 0 366 367 128 0 367 367 -218.46 0 368 367 128 0 396 367 128 0 339 368 128 0 367 368 128 0 368 368 -218.46 0 369 368 128 0 397 368 128 0 340 369 128 0 368 369 128 0 369 369 -218.46 0 370 369 128 0 398 369 128 0 341 370 128 0 369 370 128 0 370 370 -218.46 0 371 370 64.000064 0 399 370 128 0 342 371 0.000128 0 370 371 64.000064 0 371 371 -0.000218 -37.54 372 371 0.000128 0 400 371 0.000128 0 343 372 22.627064 0 371 372 0.000128 0 372 372 -0.000218 -37.54 373 372 22.627064 0 401 372 0.000128 0 344 373 45.254 0 372 373 22.627064 0 373 373 -63.965 -26.544 374 373 86.627 0 402 373 45.254 0 345 374 128 0 373 374 86.627 0 374 374 -218.46 0 375 374 128 0 403 374 128 0 346 375 128 0 374 375 128 0 375 375 -218.46 0 376 375 128 0 404 375 128 0 347 376 128 0 375 376 128 0 376 376 -218.46 0 405 376 128 0 348 377 128 0 377 377 -218.46 0 378 377 128 0 406 377 128 0 349 378 128 0 377 378 128 0 378 378 -218.46 0 379 378 128 0 407 378 128 0 350 379 128 0 378 379 128 0 379 379 -218.46 0 380 379 86.627 0 408 379 86.627 0 351 380 45.254 0 379 380 86.627 0 380 380 -63.965 -26.544 381 380 22.627064 0 409 380 45.254 0 352 381 0.000128 0 380 381 22.627064 0 381 381 -0.000218 -37.54 382 381 0.000128 0 410 381 0.000128 0 353 382 0.000128 0 381 382 0.000128 0 382 382 -0.000218 -37.54 383 382 64.000064 0 411 382 0.000128 0 354 383 128 0 382 383 64.000064 0 383 383 -218.46 0 384 383 128 0 412 383 128 0 355 384 128 0 383 384 128 0 384 384 -218.46 0 385 384 128 0 413 384 128 0 356 385 128 0 384 385 128 0 385 385 -218.46 0 386 385 128 0 414 385 128 0 357 386 128 0 385 386 128 0 386 386 -218.46 0 387 386 128 0 415 386 128 0 358 387 128 0 386 387 128 0 387 387 -218.46 0 388 387 128 0 416 387 128 0 359 388 128 0 387 388 128 0 388 388 -218.46 0 389 388 128 0 417 388 128 0 360 389 128 0 388 389 128 0 389 389 -218.46 0 390 389 128 0 418 389 128 0 361 390 128 0 389 390 128 0 390 390 -218.46 0 391 390 128 0 419 390 128 0 362 391 128 0 390 391 128 0 391 391 -218.46 0 392 391 128 0 420 391 128 0 363 392 128 0 391 392 128 0 392 392 -218.46 0 393 392 128 0 421 392 128 0 364 393 128 0 392 393 128 0 393 393 -218.46 0 394 393 128 0 422 393 128 0 365 394 128 0 393 394 128 0 394 394 -218.46 0 395 394 128 0 423 394 128 0 366 395 128 0 394 395 128 0 395 395 -218.46 0 396 395 128 0 424 395 128 0 367 396 128 0 395 396 128 0 396 396 -218.46 0 397 396 128 0 425 396 128 0 368 397 128 0 396 397 128 0 397 397 -218.46 0 398 397 128 0 426 397 128 0 369 398 128 0 397 398 128 0 398 398 -218.46 0 399 398 128 0 427 398 128 0 370 399 128 0 398 399 128 0 399 399 -218.46 0 400 399 64.000064 0 428 399 128 0 371 400 0.000128 0 399 400 64.000064 0 400 400 -0.000218 -37.54 401 400 0.000128 0 429 400 0.000128 0 372 401 0.000128 0 400 401 0.000128 0 401 401 -0.000218 -37.54 402 401 22.627064 0 430 401 0.000128 0 373 402 45.254 0 401 402 22.627064 0 402 402 -63.965 -26.544 403 402 86.627 0 431 402 45.254 0 374 403 128 0 402 403 86.627 0 403 403 -218.46 0 404 403 128 0 432 403 86.627 0 375 404 128 0 403 404 128 0 404 404 -218.46 0 405 404 128 0 433 404 128 0 376 405 128 0 404 405 128 0 405 405 -218.46 0 434 405 128 0 377 406 128 0 406 406 -218.46 0 407 406 128 0 435 406 128 0 378 407 128 0 406 407 128 0 407 407 -218.46 0 408 407 86.627 0 436 407 128 0 379 408 86.627 0 407 408 86.627 0 408 408 -63.965 -26.544 409 408 45.254 0 437 408 86.627 0 380 409 45.254 0 408 409 45.254 0 409 409 -63.965 -26.544 410 409 22.627064 0 438 409 45.254 0 381 410 0.000128 0 409 410 22.627064 0 410 410 -0.000218 -37.54 411 410 0.000128 0 439 410 0.000128 0 382 411 0.000128 0 410 411 0.000128 0 411 411 -0.000218 -37.54 412 411 64.000064 0 440 411 0.000128 0 383 412 128 0 411 412 64.000064 0 412 412 -218.46 0 413 412 128 0 441 412 128 0 384 413 128 0 412 413 128 0 413 413 -218.46 0 414 413 128 0 442 413 128 0 385 414 128 0 413 414 128 0 414 414 -218.46 0 415 414 128 0 443 414 128 0 386 415 128 0 414 415 128 0 415 415 -218.46 0 416 415 128 0 444 415 128 0 387 416 128 0 415 416 128 0 416 416 -218.46 0 417 416 128 0 445 416 128 0 388 417 128 0 416 417 128 0 417 417 -218.46 0 418 417 128 0 446 417 128 0 389 418 128 0 417 418 128 0 418 418 -218.46 0 419 418 128 0 447 418 128 0 390 419 128 0 418 419 128 0 419 419 -218.46 0 420 419 128 0 448 419 128 0 391 420 128 0 419 420 128 0 420 420 -218.46 0 421 420 128 0 449 420 128 0 392 421 128 0 420 421 128 0 421 421 -218.46 0 422 421 128 0 450 421 128 0 393 422 128 0 421 422 128 0 422 422 -218.46 0 423 422 128 0 451 422 128 0 394 423 128 0 422 423 128 0 423 423 -218.46 0 424 423 128 0 452 423 128 0 395 424 128 0 423 424 128 0 424 424 -218.46 0 425 424 128 0 453 424 128 0 396 425 128 0 424 425 128 0 425 425 -218.46 0 426 425 128 0 454 425 128 0 397 426 128 0 425 426 128 0 426 426 -218.46 0 427 426 128 0 455 426 128 0 398 427 128 0 426 427 128 0 427 427 -218.46 0 428 427 128 0 456 427 128 0 399 428 128 0 427 428 128 0 428 428 -218.46 0 429 428 64.000064 0 457 428 128 0 400 429 0.000128 0 428 429 64.000064 0 429 429 -0.000218 -37.54 430 429 0.000128 0 458 429 0.000128 0 401 430 0.000128 0 429 430 0.000128 0 430 430 -0.000218 -37.54 431 430 22.627064 0 459 430 0.000128 0 402 431 45.254 0 430 431 22.627064 0 431 431 -63.965 -26.544 432 431 45.254 0 460 431 45.254 0 403 432 86.627 0 431 432 45.254 0 432 432 -63.965 -26.544 433 432 86.627 0 461 432 86.627 0 404 433 128 0 432 433 86.627 0 433 433 -218.46 0 434 433 128 0 462 433 128 0 405 434 128 0 433 434 128 0 434 434 -218.46 0 463 434 128 0 406 435 128 0 435 435 -218.46 0 436 435 128 0 464 435 128 0 407 436 128 0 435 436 128 0 436 436 -218.46 0 437 436 128 0 465 436 128 0 408 437 86.627 0 436 437 128 0 437 437 -218.46 0 438 437 86.627 0 466 437 128 0 409 438 45.254 0 437 438 86.627 0 438 438 -63.965 -26.544 439 438 22.627064 0 467 438 45.254 0 410 439 0.000128 0 438 439 22.627064 0 439 439 -0.000218 -37.54 440 439 0.000128 0 468 439 0.000128 0 411 440 0.000128 0 439 440 0.000128 0 440 440 -0.000218 -37.54 441 440 64.000064 0 469 440 0.000128 0 412 441 128 0 440 441 64.000064 0 441 441 -218.46 0 442 441 128 0 470 441 128 0 413 442 128 0 441 442 128 0 442 442 -218.46 0 443 442 128 0 471 442 128 0 414 443 128 0 442 443 128 0 443 443 -218.46 0 444 443 128 0 472 443 128 0 415 444 128 0 443 444 128 0 444 444 -218.46 0 445 444 128 0 473 444 128 0 416 445 128 0 444 445 128 0 445 445 -218.46 0 446 445 128 0 474 445 128 0 417 446 128 0 445 446 128 0 446 446 -218.46 0 447 446 128 0 475 446 128 0 418 447 128 0 446 447 128 0 447 447 -218.46 0 448 447 128 0 476 447 128 0 419 448 128 0 447 448 128 0 448 448 -218.46 0 449 448 128 0 477 448 128 0 420 449 128 0 448 449 128 0 449 449 -218.46 0 450 449 128 0 478 449 128 0 421 450 128 0 449 450 128 0 450 450 -218.46 0 451 450 128 0 479 450 128 0 422 451 128 0 450 451 128 0 451 451 -218.46 0 452 451 128 0 480 451 128 0 423 452 128 0 451 452 128 0 452 452 -218.46 0 453 452 128 0 481 452 128 0 424 453 128 0 452 453 128 0 453 453 -218.46 0 454 453 128 0 482 453 128 0 425 454 128 0 453 454 128 0 454 454 -218.46 0 455 454 128 0 483 454 128 0 426 455 128 0 454 455 128 0 455 455 -218.46 0 456 455 128 0 484 455 128 0 427 456 128 0 455 456 128 0 456 456 -218.46 0 457 456 128 0 485 456 128 0 428 457 128 0 456 457 128 0 457 457 -218.46 0 458 457 64.000064 0 486 457 128 0 429 458 0.000128 0 457 458 64.000064 0 458 458 -0.000218 -37.54 459 458 0.000128 0 487 458 0.000128 0 430 459 0.000128 0 458 459 0.000128 0 459 459 -0.000218 -37.54 460 459 22.627064 0 488 459 0.000128 0 431 460 45.254 0 459 460 22.627064 0 460 460 -63.965 -26.544 461 460 86.627 0 489 460 45.254 0 432 461 86.627 0 460 461 86.627 0 461 461 -218.46 0 462 461 128 0 490 461 128 0 433 462 128 0 461 462 128 0 462 462 -218.46 0 463 462 128 0 491 462 128 0 434 463 128 0 462 463 128 0 463 463 -218.46 0 492 463 128 0 435 464 128 0 464 464 -218.46 0 465 464 128 0 493 464 128 0 436 465 128 0 464 465 128 0 465 465 -218.46 0 466 465 128 0 494 465 128 0 437 466 128 0 465 466 128 0 466 466 -218.46 0 467 466 86.627 0 495 466 128 0 438 467 45.254 0 466 467 86.627 0 467 467 -63.965 -26.544 468 467 22.627064 0 496 467 45.254 0 439 468 0.000128 0 467 468 22.627064 0 468 468 -0.000218 -37.54 469 468 0.000128 0 497 468 22.627064 0 440 469 0.000128 0 468 469 0.000128 0 469 469 -0.000218 -37.54 470 469 64.000064 0 498 469 0.000128 0 441 470 128 0 469 470 64.000064 0 470 470 -218.46 0 471 470 128 0 499 470 128 0 442 471 128 0 470 471 128 0 471 471 -218.46 0 472 471 128 0 500 471 128 0 443 472 128 0 471 472 128 0 472 472 -218.46 0 473 472 128 0 501 472 128 0 444 473 128 0 472 473 128 0 473 473 -218.46 0 474 473 128 0 502 473 128 0 445 474 128 0 473 474 128 0 474 474 -218.46 0 475 474 128 0 503 474 128 0 446 475 128 0 474 475 128 0 475 475 -218.46 0 476 475 128 0 504 475 128 0 447 476 128 0 475 476 128 0 476 476 -218.46 0 477 476 128 0 505 476 128 0 448 477 128 0 476 477 128 0 477 477 -218.46 0 478 477 128 0 506 477 128 0 449 478 128 0 477 478 128 0 478 478 -218.46 0 479 478 128 0 507 478 128 0 450 479 128 0 478 479 128 0 479 479 -218.46 0 480 479 128 0 508 479 128 0 451 480 128 0 479 480 128 0 480 480 -218.46 0 481 480 128 0 509 480 128 0 452 481 128 0 480 481 128 0 481 481 -218.46 0 482 481 128 0 510 481 128 0 453 482 128 0 481 482 128 0 482 482 -218.46 0 483 482 128 0 511 482 128 0 454 483 128 0 482 483 128 0 483 483 -218.46 0 484 483 128 0 512 483 128 0 455 484 128 0 483 484 128 0 484 484 -218.46 0 485 484 128 0 513 484 128 0 456 485 128 0 484 485 128 0 485 485 -218.46 0 486 485 128 0 514 485 128 0 457 486 128 0 485 486 128 0 486 486 -218.46 0 487 486 64.000064 0 515 486 128 0 458 487 0.000128 0 486 487 64.000064 0 487 487 -0.000218 -37.54 488 487 0.000128 0 516 487 0.000128 0 459 488 0.000128 0 487 488 0.000128 0 488 488 -0.000218 -37.54 489 488 22.627064 0 517 488 22.627064 0 460 489 45.254 0 488 489 22.627064 0 489 489 -63.965 -26.544 490 489 86.627 0 518 489 45.254 0 461 490 128 0 489 490 86.627 0 490 490 -218.46 0 491 490 128 0 519 490 128 0 462 491 128 0 490 491 128 0 491 491 -218.46 0 492 491 128 0 520 491 128 0 463 492 128 0 491 492 128 0 492 492 -218.46 0 521 492 128 0 464 493 128 0 493 493 -218.46 0 494 493 128 0 522 493 128 0 465 494 128 0 493 494 128 0 494 494 -218.46 0 495 494 128 0 523 494 128 0 466 495 128 0 494 495 128 0 495 495 -218.46 0 496 495 86.627 0 524 495 128 0 467 496 45.254 0 495 496 86.627 0 496 496 -63.965 -26.544 497 496 45.254 0 525 496 45.254 0 468 497 22.627064 0 496 497 45.254 0 497 497 -63.965 -26.544 498 497 22.627064 0 526 497 45.254 0 469 498 0.000128 0 497 498 22.627064 0 498 498 -0.000218 -37.54 499 498 64.000064 0 527 498 0.000128 0 470 499 128 0 498 499 64.000064 0 499 499 -218.46 0 500 499 128 0 528 499 64.000064 0 471 500 128 0 499 500 128 0 500 500 -218.46 0 501 500 128 0 529 500 128 0 472 501 128 0 500 501 128 0 501 501 -218.46 0 502 501 128 0 530 501 128 0 473 502 128 0 501 502 128 0 502 502 -218.46 0 503 502 128 0 531 502 128 0 474 503 128 0 502 503 128 0 503 503 -218.46 0 504 503 128 0 532 503 128 0 475 504 128 0 503 504 128 0 504 504 -218.46 0 505 504 128 0 533 504 128 0 476 505 128 0 504 505 128 0 505 505 -218.46 0 506 505 128 0 534 505 128 0 477 506 128 0 505 506 128 0 506 506 -218.46 0 507 506 128 0 535 506 128 0 478 507 128 0 506 507 128 0 507 507 -218.46 0 508 507 128 0 536 507 128 0 479 508 128 0 507 508 128 0 508 508 -218.46 0 509 508 128 0 537 508 128 0 480 509 128 0 508 509 128 0 509 509 -218.46 0 510 509 128 0 538 509 128 0 481 510 128 0 509 510 128 0 510 510 -218.46 0 511 510 128 0 539 510 128 0 482 511 128 0 510 511 128 0 511 511 -218.46 0 512 511 128 0 540 511 128 0 483 512 128 0 511 512 128 0 512 512 -218.46 0 513 512 128 0 541 512 128 0 484 513 128 0 512 513 128 0 513 513 -218.46 0 514 513 128 0 542 513 128 0 485 514 128 0 513 514 128 0 514 514 -218.46 0 515 514 128 0 543 514 128 0 486 515 128 0 514 515 128 0 515 515 -218.46 0 516 515 64.000064 0 544 515 64.000064 0 487 516 0.000128 0 515 516 64.000064 0 516 516 -0.000218 -37.54 517 516 22.627064 0 545 516 0.000128 0 488 517 22.627064 0 516 517 22.627064 0 517 517 -63.965 -26.544 518 517 45.254 0 546 517 45.254 0 489 518 45.254 0 517 518 45.254 0 518 518 -63.965 -26.544 519 518 86.627 0 547 518 45.254 0 490 519 128 0 518 519 86.627 0 519 519 -218.46 0 520 519 128 0 548 519 128 0 491 520 128 0 519 520 128 0 520 520 -218.46 0 521 520 128 0 549 520 128 0 492 521 128 0 520 521 128 0 521 521 -218.46 0 550 521 128 0 493 522 128 0 522 522 -218.46 0 523 522 128 0 551 522 128 0 494 523 128 0 522 523 128 0 523 523 -218.46 0 524 523 128 0 552 523 128 0 495 524 128 0 523 524 128 0 524 524 -218.46 0 525 524 86.627 0 553 524 128 0 496 525 45.254 0 524 525 86.627 0 525 525 -63.965 -26.544 526 525 45.254 0 554 525 86.627 0 497 526 45.254 0 525 526 45.254 0 526 526 -63.965 -26.544 527 526 22.627064 0 555 526 45.254 0 498 527 0.000128 0 526 527 22.627064 0 527 527 -0.000218 -37.54 528 527 0.000128 0 556 527 0.000128 0 499 528 64.000064 0 527 528 0.000128 0 528 528 -0.000218 -37.54 529 528 64.000064 0 557 528 0.000128 0 500 529 128 0 528 529 64.000064 0 529 529 -218.46 0 530 529 128 0 558 529 128 0 501 530 128 0 529 530 128 0 530 530 -218.46 0 531 530 128 0 559 530 128 0 502 531 128 0 530 531 128 0 531 531 -218.46 0 532 531 128 0 560 531 128 0 503 532 128 0 531 532 128 0 532 532 -218.46 0 533 532 128 0 561 532 128 0 504 533 128 0 532 533 128 0 533 533 -218.46 0 534 533 128 0 562 533 128 0 505 534 128 0 533 534 128 0 534 534 -218.46 0 535 534 128 0 563 534 128 0 506 535 128 0 534 535 128 0 535 535 -218.46 0 536 535 128 0 564 535 128 0 507 536 128 0 535 536 128 0 536 536 -218.46 0 537 536 128 0 565 536 128 0 508 537 128 0 536 537 128 0 537 537 -218.46 0 538 537 128 0 566 537 128 0 509 538 128 0 537 538 128 0 538 538 -218.46 0 539 538 128 0 567 538 128 0 510 539 128 0 538 539 128 0 539 539 -218.46 0 540 539 128 0 568 539 128 0 511 540 128 0 539 540 128 0 540 540 -218.46 0 541 540 128 0 569 540 128 0 512 541 128 0 540 541 128 0 541 541 -218.46 0 542 541 128 0 570 541 128 0 513 542 128 0 541 542 128 0 542 542 -218.46 0 543 542 128 0 571 542 128 0 514 543 128 0 542 543 128 0 543 543 -218.46 0 544 543 64.000064 0 572 543 128 0 515 544 64.000064 0 543 544 64.000064 0 544 544 -0.000218 -37.54 545 544 0.000128 0 573 544 0.000128 0 516 545 0.000128 0 544 545 0.000128 0 545 545 -0.000218 -37.54 546 545 22.627064 0 574 545 0.000128 0 517 546 45.254 0 545 546 22.627064 0 546 546 -63.965 -26.544 547 546 45.254 0 575 546 45.254 0 518 547 45.254 0 546 547 45.254 0 547 547 -63.965 -26.544 548 547 86.627 0 576 547 86.627 0 519 548 128 0 547 548 86.627 0 548 548 -218.46 0 549 548 128 0 577 548 128 0 520 549 128 0 548 549 128 0 549 549 -218.46 0 550 549 128 0 578 549 128 0 521 550 128 0 549 550 128 0 550 550 -218.46 0 579 550 128 0 522 551 128 0 551 551 -218.46 0 552 551 128 0 580 551 128 0 523 552 128 0 551 552 128 0 552 552 -218.46 0 553 552 128 0 581 552 128 0 524 553 128 0 552 553 128 0 553 553 -218.46 0 554 553 128 0 582 553 128 0 525 554 86.627 0 553 554 128 0 554 554 -218.46 0 555 554 86.627 0 583 554 128 0 526 555 45.254 0 554 555 86.627 0 555 555 -63.965 -26.544 556 555 22.627064 0 584 555 45.254 0 527 556 0.000128 0 555 556 22.627064 0 556 556 -0.000218 -37.54 557 556 0.000128 0 585 556 22.627064 0 528 557 0.000128 0 556 557 0.000128 0 557 557 -0.000218 -37.54 558 557 64.000064 0 586 557 0.000128 0 529 558 128 0 557 558 64.000064 0 558 558 -218.46 0 559 558 128 0 587 558 64.000064 0 530 559 128 0 558 559 128 0 559 559 -218.46 0 560 559 128 0 588 559 128 0 531 560 128 0 559 560 128 0 560 560 -218.46 0 561 560 128 0 589 560 128 0 532 561 128 0 560 561 128 0 561 561 -218.46 0 562 561 128 0 590 561 128 0 533 562 128 0 561 562 128 0 562 562 -218.46 0 563 562 128 0 591 562 128 0 534 563 128 0 562 563 128 0 563 563 -218.46 0 564 563 128 0 592 563 128 0 535 564 128 0 563 564 128 0 564 564 -218.46 0 565 564 128 0 593 564 128 0 536 565 128 0 564 565 128 0 565 565 -218.46 0 566 565 128 0 594 565 128 0 537 566 128 0 565 566 128 0 566 566 -218.46 0 567 566 128 0 595 566 128 0 538 567 128 0 566 567 128 0 567 567 -218.46 0 568 567 128 0 596 567 128 0 539 568 128 0 567 568 128 0 568 568 -218.46 0 569 568 128 0 597 568 128 0 540 569 128 0 568 569 128 0 569 569 -218.46 0 570 569 128 0 598 569 128 0 541 570 128 0 569 570 128 0 570 570 -218.46 0 571 570 128 0 599 570 128 0 542 571 128 0 570 571 128 0 571 571 -218.46 0 572 571 128 0 600 571 128 0 543 572 128 0 571 572 128 0 572 572 -218.46 0 573 572 64.000064 0 601 572 64.000064 0 544 573 0.000128 0 572 573 64.000064 0 573 573 -0.000218 -37.54 574 573 0.000128 0 602 573 0.000128 0 545 574 0.000128 0 573 574 0.000128 0 574 574 -0.000218 -37.54 575 574 22.627064 0 603 574 22.627064 0 546 575 45.254 0 574 575 22.627064 0 575 575 -63.965 -26.544 576 575 86.627 0 604 575 45.254 0 547 576 86.627 0 575 576 86.627 0 576 576 -218.46 0 577 576 128 0 605 576 128 0 548 577 128 0 576 577 128 0 577 577 -218.46 0 578 577 128 0 606 577 128 0 549 578 128 0 577 578 128 0 578 578 -218.46 0 579 578 128 0 607 578 128 0 550 579 128 0 578 579 128 0 579 579 -218.46 0 608 579 128 0 551 580 128 0 580 580 -218.46 0 581 580 128 0 609 580 128 0 552 581 128 0 580 581 128 0 581 581 -218.46 0 582 581 128 0 610 581 128 0 553 582 128 0 581 582 128 0 582 582 -218.46 0 583 582 128 0 611 582 128 0 554 583 128 0 582 583 128 0 583 583 -218.46 0 584 583 86.627 0 612 583 128 0 555 584 45.254 0 583 584 86.627 0 584 584 -63.965 -26.544 585 584 45.254 0 613 584 86.627 0 556 585 22.627064 0 584 585 45.254 0 585 585 -63.965 -26.544 586 585 22.627064 0 614 585 45.254 0 557 586 0.000128 0 585 586 22.627064 0 586 586 -0.000218 -37.54 587 586 0.000128 0 615 586 22.627064 0 558 587 64.000064 0 586 587 0.000128 0 587 587 -0.000218 -37.54 588 587 64.000064 0 616 587 0.000128 0 559 588 128 0 587 588 64.000064 0 588 588 -218.46 0 589 588 128 0 617 588 64.000064 0 560 589 128 0 588 589 128 0 589 589 -218.46 0 590 589 128 0 618 589 128 0 561 590 128 0 589 590 128 0 590 590 -218.46 0 591 590 128 0 619 590 128 0 562 591 128 0 590 591 128 0 591 591 -218.46 0 592 591 128 0 620 591 128 0 563 592 128 0 591 592 128 0 592 592 -218.46 0 593 592 128 0 621 592 128 0 564 593 128 0 592 593 128 0 593 593 -218.46 0 594 593 128 0 622 593 128 0 565 594 128 0 593 594 128 0 594 594 -218.46 0 595 594 128 0 623 594 128 0 566 595 128 0 594 595 128 0 595 595 -218.46 0 596 595 128 0 624 595 128 0 567 596 128 0 595 596 128 0 596 596 -218.46 0 597 596 128 0 625 596 128 0 568 597 128 0 596 597 128 0 597 597 -218.46 0 598 597 128 0 626 597 128 0 569 598 128 0 597 598 128 0 598 598 -218.46 0 599 598 128 0 627 598 128 0 570 599 128 0 598 599 128 0 599 599 -218.46 0 600 599 128 0 628 599 128 0 571 600 128 0 599 600 128 0 600 600 -218.46 0 601 600 64.000064 0 629 600 64.000064 0 572 601 64.000064 0 600 601 64.000064 0 601 601 -0.000218 -37.54 602 601 0.000128 0 630 601 0.000128 0 573 602 0.000128 0 601 602 0.000128 0 602 602 -0.000218 -37.54 603 602 22.627064 0 631 602 22.627064 0 574 603 22.627064 0 602 603 22.627064 0 603 603 -63.965 -26.544 604 603 45.254 0 632 603 45.254 0 575 604 45.254 0 603 604 45.254 0 604 604 -63.965 -26.544 605 604 86.627 0 633 604 86.627 0 576 605 128 0 604 605 86.627 0 605 605 -218.46 0 606 605 128 0 634 605 128 0 577 606 128 0 605 606 128 0 606 606 -218.46 0 607 606 128 0 635 606 128 0 578 607 128 0 606 607 128 0 607 607 -218.46 0 608 607 128 0 636 607 128 0 579 608 128 0 607 608 128 0 608 608 -218.46 0 637 608 128 0 580 609 128 0 609 609 -218.46 0 610 609 128 0 638 609 128 0 581 610 128 0 609 610 128 0 610 610 -218.46 0 611 610 128 0 639 610 128 0 582 611 128 0 610 611 128 0 611 611 -218.46 0 612 611 128 0 640 611 128 0 583 612 128 0 611 612 128 0 612 612 -218.46 0 613 612 128 0 641 612 128 0 584 613 86.627 0 612 613 128 0 613 613 -218.46 0 614 613 86.627 0 642 613 128 0 585 614 45.254 0 613 614 86.627 0 614 614 -63.965 -26.544 615 614 45.254 0 643 614 86.627 0 586 615 22.627064 0 614 615 45.254 0 615 615 -63.965 -26.544 616 615 22.627064 0 644 615 45.254 0 587 616 0.000128 0 615 616 22.627064 0 616 616 -0.000218 -37.54 617 616 0.000128 0 645 616 22.627064 0 588 617 64.000064 0 616 617 0.000128 0 617 617 -0.000218 -37.54 618 617 64.000064 0 646 617 0.000128 0 589 618 128 0 617 618 64.000064 0 618 618 -218.46 0 619 618 128 0 647 618 64.000064 0 590 619 128 0 618 619 128 0 619 619 -218.46 0 620 619 128 0 648 619 64.000064 0 591 620 128 0 619 620 128 0 620 620 -218.46 0 621 620 128 0 649 620 128 0 592 621 128 0 620 621 128 0 621 621 -218.46 0 622 621 128 0 650 621 128 0 593 622 128 0 621 622 128 0 622 622 -218.46 0 623 622 128 0 651 622 128 0 594 623 128 0 622 623 128 0 623 623 -218.46 0 624 623 128 0 652 623 128 0 595 624 128 0 623 624 128 0 624 624 -218.46 0 625 624 128 0 653 624 128 0 596 625 128 0 624 625 128 0 625 625 -218.46 0 626 625 128 0 654 625 128 0 597 626 128 0 625 626 128 0 626 626 -218.46 0 627 626 128 0 655 626 128 0 598 627 128 0 626 627 128 0 627 627 -218.46 0 628 627 128 0 656 627 64.000064 0 599 628 128 0 627 628 128 0 628 628 -218.46 0 629 628 64.000064 0 657 628 64.000064 0 600 629 64.000064 0 628 629 64.000064 0 629 629 -0.000218 -37.54 630 629 0.000128 0 658 629 0.000128 0 601 630 0.000128 0 629 630 0.000128 0 630 630 -0.000218 -37.54 631 630 22.627064 0 659 630 22.627064 0 602 631 22.627064 0 630 631 22.627064 0 631 631 -63.965 -26.544 632 631 45.254 0 660 631 45.254 0 603 632 45.254 0 631 632 45.254 0 632 632 -63.965 -26.544 633 632 86.627 0 661 632 86.627 0 604 633 86.627 0 632 633 86.627 0 633 633 -218.46 0 634 633 128 0 662 633 128 0 605 634 128 0 633 634 128 0 634 634 -218.46 0 635 634 128 0 663 634 128 0 606 635 128 0 634 635 128 0 635 635 -218.46 0 636 635 128 0 664 635 128 0 607 636 128 0 635 636 128 0 636 636 -218.46 0 637 636 128 0 665 636 128 0 608 637 128 0 636 637 128 0 637 637 -218.46 0 666 637 128 0 609 638 128 0 638 638 -218.46 0 639 638 128 0 667 638 128 0 610 639 128 0 638 639 128 0 639 639 -218.46 0 640 639 128 0 668 639 128 0 611 640 128 0 639 640 128 0 640 640 -218.46 0 641 640 128 0 669 640 128 0 612 641 128 0 640 641 128 0 641 641 -218.46 0 642 641 128 0 670 641 128 0 613 642 128 0 641 642 128 0 642 642 -218.46 0 643 642 128 0 671 642 128 0 614 643 86.627 0 642 643 128 0 643 643 -218.46 0 644 643 86.627 0 672 643 128 0 615 644 45.254 0 643 644 86.627 0 644 644 -63.965 -26.544 645 644 45.254 0 673 644 86.627 0 616 645 22.627064 0 644 645 45.254 0 645 645 -63.965 -26.544 646 645 22.627064 0 674 645 45.254 0 617 646 0.000128 0 645 646 22.627064 0 646 646 -0.000218 -37.54 647 646 0.000128 0 675 646 22.627064 0 618 647 64.000064 0 646 647 0.000128 0 647 647 -0.000218 -37.54 648 647 0.000128 0 676 647 0.000128 0 619 648 64.000064 0 647 648 0.000128 0 648 648 -0.000218 -37.54 649 648 64.000064 0 677 648 0.000128 0 620 649 128 0 648 649 64.000064 0 649 649 -218.46 0 650 649 128 0 678 649 64.000064 0 621 650 128 0 649 650 128 0 650 650 -218.46 0 651 650 128 0 679 650 64.000064 0 622 651 128 0 650 651 128 0 651 651 -218.46 0 652 651 128 0 680 651 64.000064 0 623 652 128 0 651 652 128 0 652 652 -218.46 0 653 652 128 0 681 652 64.000064 0 624 653 128 0 652 653 128 0 653 653 -218.46 0 654 653 128 0 682 653 64.000064 0 625 654 128 0 653 654 128 0 654 654 -218.46 0 655 654 128 0 683 654 64.000064 0 626 655 128 0 654 655 128 0 655 655 -218.46 0 656 655 64.000064 0 684 655 64.000064 0 627 656 64.000064 0 655 656 64.000064 0 656 656 -0.000218 -37.54 657 656 0.000128 0 685 656 0.000128 0 628 657 64.000064 0 656 657 0.000128 0 657 657 -0.000218 -37.54 658 657 0.000128 0 686 657 0.000128 0 629 658 0.000128 0 657 658 0.000128 0 658 658 -0.000218 -37.54 659 658 22.627064 0 687 658 22.627064 0 630 659 22.627064 0 658 659 22.627064 0 659 659 -63.965 -26.544 660 659 45.254 0 688 659 45.254 0 631 660 45.254 0 659 660 45.254 0 660 660 -63.965 -26.544 661 660 86.627 0 689 660 86.627 0 632 661 86.627 0 660 661 86.627 0 661 661 -218.46 0 662 661 128 0 690 661 128 0 633 662 128 0 661 662 128 0 662 662 -218.46 0 663 662 128 0 691 662 128 0 634 663 128 0 662 663 128 0 663 663 -218.46 0 664 663 128 0 692 663 128 0 635 664 128 0 663 664 128 0 664 664 -218.46 0 665 664 128 0 693 664 128 0 636 665 128 0 664 665 128 0 665 665 -218.46 0 666 665 128 0 694 665 128 0 637 666 128 0 665 666 128 0 666 666 -218.46 0 695 666 128 0 638 667 128 0 667 667 -218.46 0 668 667 128 0 696 667 128 0 639 668 128 0 667 668 128 0 668 668 -218.46 0 669 668 128 0 697 668 128 0 640 669 128 0 668 669 128 0 669 669 -218.46 0 670 669 128 0 698 669 128 0 641 670 128 0 669 670 128 0 670 670 -218.46 0 671 670 128 0 699 670 128 0 642 671 128 0 670 671 128 0 671 671 -218.46 0 672 671 128 0 700 671 128 0 643 672 128 0 671 672 128 0 672 672 -218.46 0 673 672 128 0 701 672 128 0 644 673 86.627 0 672 673 128 0 673 673 -218.46 0 674 673 86.627 0 702 673 128 0 645 674 45.254 0 673 674 86.627 0 674 674 -63.965 -26.544 675 674 45.254 0 703 674 86.627 0 646 675 22.627064 0 674 675 45.254 0 675 675 -63.965 -26.544 676 675 22.627064 0 704 675 45.254 0 647 676 0.000128 0 675 676 22.627064 0 676 676 -0.000218 -37.54 677 676 0.000128 0 705 676 22.627064 0 648 677 0.000128 0 676 677 0.000128 0 677 677 -0.000218 -37.54 678 677 0.000128 0 706 677 22.627064 0 649 678 64.000064 0 677 678 0.000128 0 678 678 -0.000218 -37.54 679 678 0.000128 0 707 678 22.627064 0 650 679 64.000064 0 678 679 0.000128 0 679 679 -0.000218 -37.54 680 679 0.000128 0 708 679 0.000128 0 651 680 64.000064 0 679 680 0.000128 0 680 680 -0.000218 -37.54 681 680 0.000128 0 709 680 0.000128 0 652 681 64.000064 0 680 681 0.000128 0 681 681 -0.000218 -37.54 682 681 0.000128 0 710 681 0.000128 0 653 682 64.000064 0 681 682 0.000128 0 682 682 -0.000218 -37.54 683 682 0.000128 0 711 682 0.000128 0 654 683 64.000064 0 682 683 0.000128 0 683 683 -0.000218 -37.54 684 683 0.000128 0 712 683 0.000128 0 655 684 64.000064 0 683 684 0.000128 0 684 684 -0.000218 -37.54 685 684 0.000128 0 713 684 22.627064 0 656 685 0.000128 0 684 685 0.000128 0 685 685 -0.000218 -37.54 686 685 0.000128 0 714 685 22.627064 0 657 686 0.000128 0 685 686 0.000128 0 686 686 -0.000218 -37.54 687 686 22.627064 0 715 686 22.627064 0 658 687 22.627064 0 686 687 22.627064 0 687 687 -63.965 -26.544 688 687 45.254 0 716 687 45.254 0 659 688 45.254 0 687 688 45.254 0 688 688 -63.965 -26.544 689 688 86.627 0 717 688 86.627 0 660 689 86.627 0 688 689 86.627 0 689 689 -218.46 0 690 689 128 0 718 689 128 0 661 690 128 0 689 690 128 0 690 690 -218.46 0 691 690 128 0 719 690 128 0 662 691 128 0 690 691 128 0 691 691 -218.46 0 692 691 128 0 720 691 128 0 663 692 128 0 691 692 128 0 692 692 -218.46 0 693 692 128 0 721 692 128 0 664 693 128 0 692 693 128 0 693 693 -218.46 0 694 693 128 0 722 693 128 0 665 694 128 0 693 694 128 0 694 694 -218.46 0 695 694 128 0 723 694 128 0 666 695 128 0 694 695 128 0 695 695 -218.46 0 724 695 128 0 667 696 128 0 696 696 -218.46 0 697 696 128 0 725 696 128 0 668 697 128 0 696 697 128 0 697 697 -218.46 0 698 697 128 0 726 697 128 0 669 698 128 0 697 698 128 0 698 698 -218.46 0 699 698 128 0 727 698 128 0 670 699 128 0 698 699 128 0 699 699 -218.46 0 700 699 128 0 728 699 128 0 671 700 128 0 699 700 128 0 700 700 -218.46 0 701 700 128 0 729 700 128 0 672 701 128 0 700 701 128 0 701 701 -218.46 0 702 701 128 0 730 701 128 0 673 702 128 0 701 702 128 0 702 702 -218.46 0 703 702 128 0 731 702 128 0 674 703 86.627 0 702 703 128 0 703 703 -218.46 0 704 703 86.627 0 732 703 128 0 675 704 45.254 0 703 704 86.627 0 704 704 -63.965 -26.544 705 704 45.254 0 733 704 86.627 0 676 705 22.627064 0 704 705 45.254 0 705 705 -63.965 -26.544 706 705 45.254 0 734 705 86.627 0 677 706 22.627064 0 705 706 45.254 0 706 706 -63.965 -26.544 707 706 45.254 0 735 706 45.254 0 678 707 22.627064 0 706 707 45.254 0 707 707 -63.965 -26.544 708 707 22.627064 0 736 707 45.254 0 679 708 0.000128 0 707 708 22.627064 0 708 708 -0.000218 -37.54 709 708 0.000128 0 737 708 22.627064 0 680 709 0.000128 0 708 709 0.000128 0 709 709 -0.000218 -37.54 710 709 0.000128 0 738 709 22.627064 0 681 710 0.000128 0 709 710 0.000128 0 710 710 -0.000218 -37.54 711 710 0.000128 0 739 710 22.627064 0 682 711 0.000128 0 710 711 0.000128 0 711 711 -0.000218 -37.54 712 711 0.000128 0 740 711 22.627064 0 683 712 0.000128 0 711 712 0.000128 0 712 712 -0.000218 -37.54 713 712 22.627064 0 741 712 22.627064 0 684 713 22.627064 0 712 713 22.627064 0 713 713 -63.965 -26.544 714 713 45.254 0 742 713 45.254 0 685 714 22.627064 0 713 714 45.254 0 714 714 -63.965 -26.544 715 714 45.254 0 743 714 45.254 0 686 715 22.627064 0 714 715 45.254 0 715 715 -63.965 -26.544 716 715 45.254 0 744 715 86.627 0 687 716 45.254 0 715 716 45.254 0 716 716 -63.965 -26.544 717 716 86.627 0 745 716 86.627 0 688 717 86.627 0 716 717 86.627 0 717 717 -218.46 0 718 717 128 0 746 717 128 0 689 718 128 0 717 718 128 0 718 718 -218.46 0 719 718 128 0 747 718 128 0 690 719 128 0 718 719 128 0 719 719 -218.46 0 720 719 128 0 748 719 128 0 691 720 128 0 719 720 128 0 720 720 -218.46 0 721 720 128 0 749 720 128 0 692 721 128 0 720 721 128 0 721 721 -218.46 0 722 721 128 0 750 721 128 0 693 722 128 0 721 722 128 0 722 722 -218.46 0 723 722 128 0 751 722 128 0 694 723 128 0 722 723 128 0 723 723 -218.46 0 724 723 128 0 752 723 128 0 695 724 128 0 723 724 128 0 724 724 -218.46 0 753 724 128 0 696 725 128 0 725 725 -218.46 0 726 725 128 0 754 725 128 0 697 726 128 0 725 726 128 0 726 726 -218.46 0 727 726 128 0 755 726 128 0 698 727 128 0 726 727 128 0 727 727 -218.46 0 728 727 128 0 756 727 128 0 699 728 128 0 727 728 128 0 728 728 -218.46 0 729 728 128 0 757 728 128 0 700 729 128 0 728 729 128 0 729 729 -218.46 0 730 729 128 0 758 729 128 0 701 730 128 0 729 730 128 0 730 730 -218.46 0 731 730 128 0 759 730 128 0 702 731 128 0 730 731 128 0 731 731 -218.46 0 732 731 128 0 760 731 128 0 703 732 128 0 731 732 128 0 732 732 -218.46 0 733 732 128 0 761 732 128 0 704 733 86.627 0 732 733 128 0 733 733 -218.46 0 734 733 128 0 762 733 128 0 705 734 86.627 0 733 734 128 0 734 734 -218.46 0 735 734 86.627 0 763 734 128 0 706 735 45.254 0 734 735 86.627 0 735 735 -63.965 -26.544 736 735 45.254 0 764 735 86.627 0 707 736 45.254 0 735 736 45.254 0 736 736 -63.965 -26.544 737 736 45.254 0 765 736 86.627 0 708 737 22.627064 0 736 737 45.254 0 737 737 -63.965 -26.544 738 737 45.254 0 766 737 86.627 0 709 738 22.627064 0 737 738 45.254 0 738 738 -63.965 -26.544 739 738 45.254 0 767 738 86.627 0 710 739 22.627064 0 738 739 45.254 0 739 739 -63.965 -26.544 740 739 45.254 0 768 739 45.254 0 711 740 22.627064 0 739 740 45.254 0 740 740 -63.965 -26.544 741 740 45.254 0 769 740 86.627 0 712 741 22.627064 0 740 741 45.254 0 741 741 -63.965 -26.544 742 741 45.254 0 770 741 86.627 0 713 742 45.254 0 741 742 45.254 0 742 742 -63.965 -26.544 743 742 45.254 0 771 742 86.627 0 714 743 45.254 0 742 743 45.254 0 743 743 -63.965 -26.544 744 743 86.627 0 772 743 86.627 0 715 744 86.627 0 743 744 86.627 0 744 744 -218.46 0 745 744 128 0 773 744 128 0 716 745 86.627 0 744 745 128 0 745 745 -218.46 0 746 745 128 0 774 745 128 0 717 746 128 0 745 746 128 0 746 746 -218.46 0 747 746 128 0 775 746 128 0 718 747 128 0 746 747 128 0 747 747 -218.46 0 748 747 128 0 776 747 128 0 719 748 128 0 747 748 128 0 748 748 -218.46 0 749 748 128 0 777 748 128 0 720 749 128 0 748 749 128 0 749 749 -218.46 0 750 749 128 0 778 749 128 0 721 750 128 0 749 750 128 0 750 750 -218.46 0 751 750 128 0 779 750 128 0 722 751 128 0 750 751 128 0 751 751 -218.46 0 752 751 128 0 780 751 128 0 723 752 128 0 751 752 128 0 752 752 -218.46 0 753 752 128 0 781 752 128 0 724 753 128 0 752 753 128 0 753 753 -218.46 0 782 753 128 0 725 754 128 0 754 754 -218.46 0 755 754 128 0 783 754 128 0 726 755 128 0 754 755 128 0 755 755 -218.46 0 756 755 128 0 784 755 128 0 727 756 128 0 755 756 128 0 756 756 -218.46 0 757 756 128 0 785 756 128 0 728 757 128 0 756 757 128 0 757 757 -218.46 0 758 757 128 0 786 757 128 0 729 758 128 0 757 758 128 0 758 758 -218.46 0 759 758 128 0 787 758 128 0 730 759 128 0 758 759 128 0 759 759 -218.46 0 760 759 128 0 788 759 128 0 731 760 128 0 759 760 128 0 760 760 -218.46 0 761 760 128 0 789 760 128 0 732 761 128 0 760 761 128 0 761 761 -218.46 0 762 761 128 0 790 761 128 0 733 762 128 0 761 762 128 0 762 762 -218.46 0 763 762 128 0 791 762 128 0 734 763 128 0 762 763 128 0 763 763 -218.46 0 764 763 128 0 792 763 128 0 735 764 86.627 0 763 764 128 0 764 764 -218.46 0 765 764 128 0 793 764 128 0 736 765 86.627 0 764 765 128 0 765 765 -218.46 0 766 765 128 0 794 765 128 0 737 766 86.627 0 765 766 128 0 766 766 -218.46 0 767 766 128 0 795 766 128 0 738 767 86.627 0 766 767 128 0 767 767 -218.46 0 768 767 86.627 0 796 767 128 0 739 768 45.254 0 767 768 86.627 0 768 768 -63.965 -26.544 769 768 86.627 0 797 768 86.627 0 740 769 86.627 0 768 769 86.627 0 769 769 -218.46 0 770 769 128 0 798 769 128 0 741 770 86.627 0 769 770 128 0 770 770 -218.46 0 771 770 128 0 799 770 128 0 742 771 86.627 0 770 771 128 0 771 771 -218.46 0 772 771 128 0 800 771 128 0 743 772 86.627 0 771 772 128 0 772 772 -218.46 0 773 772 128 0 801 772 128 0 744 773 128 0 772 773 128 0 773 773 -218.46 0 774 773 128 0 802 773 128 0 745 774 128 0 773 774 128 0 774 774 -218.46 0 775 774 128 0 803 774 128 0 746 775 128 0 774 775 128 0 775 775 -218.46 0 776 775 128 0 804 775 128 0 747 776 128 0 775 776 128 0 776 776 -218.46 0 777 776 128 0 805 776 128 0 748 777 128 0 776 777 128 0 777 777 -218.46 0 778 777 128 0 806 777 128 0 749 778 128 0 777 778 128 0 778 778 -218.46 0 779 778 128 0 807 778 128 0 750 779 128 0 778 779 128 0 779 779 -218.46 0 780 779 128 0 808 779 128 0 751 780 128 0 779 780 128 0 780 780 -218.46 0 781 780 128 0 809 780 128 0 752 781 128 0 780 781 128 0 781 781 -218.46 0 782 781 128 0 810 781 128 0 753 782 128 0 781 782 128 0 782 782 -218.46 0 811 782 128 0 754 783 128 0 783 783 -218.46 0 784 783 128 0 812 783 128 0 755 784 128 0 783 784 128 0 784 784 -218.46 0 785 784 128 0 813 784 128 0 756 785 128 0 784 785 128 0 785 785 -218.46 0 786 785 128 0 814 785 128 0 757 786 128 0 785 786 128 0 786 786 -218.46 0 787 786 128 0 815 786 128 0 758 787 128 0 786 787 128 0 787 787 -218.46 0 788 787 128 0 816 787 128 0 759 788 128 0 787 788 128 0 788 788 -218.46 0 789 788 128 0 817 788 128 0 760 789 128 0 788 789 128 0 789 789 -218.46 0 790 789 128 0 818 789 128 0 761 790 128 0 789 790 128 0 790 790 -218.46 0 791 790 128 0 819 790 128 0 762 791 128 0 790 791 128 0 791 791 -218.46 0 792 791 128 0 820 791 128 0 763 792 128 0 791 792 128 0 792 792 -218.46 0 793 792 128 0 821 792 128 0 764 793 128 0 792 793 128 0 793 793 -218.46 0 794 793 128 0 822 793 128 0 765 794 128 0 793 794 128 0 794 794 -218.46 0 795 794 128 0 823 794 128 0 766 795 128 0 794 795 128 0 795 795 -218.46 0 796 795 128 0 824 795 128 0 767 796 128 0 795 796 128 0 796 796 -218.46 0 797 796 128 0 825 796 128 0 768 797 86.627 0 796 797 128 0 797 797 -218.46 0 798 797 128 0 826 797 128 0 769 798 128 0 797 798 128 0 798 798 -218.46 0 799 798 128 0 827 798 128 0 770 799 128 0 798 799 128 0 799 799 -218.46 0 800 799 128 0 828 799 128 0 771 800 128 0 799 800 128 0 800 800 -218.46 0 801 800 128 0 829 800 128 0 772 801 128 0 800 801 128 0 801 801 -218.46 0 802 801 128 0 830 801 128 0 773 802 128 0 801 802 128 0 802 802 -218.46 0 803 802 128 0 831 802 128 0 774 803 128 0 802 803 128 0 803 803 -218.46 0 804 803 128 0 832 803 128 0 775 804 128 0 803 804 128 0 804 804 -218.46 0 805 804 128 0 833 804 128 0 776 805 128 0 804 805 128 0 805 805 -218.46 0 806 805 128 0 834 805 128 0 777 806 128 0 805 806 128 0 806 806 -218.46 0 807 806 128 0 835 806 128 0 778 807 128 0 806 807 128 0 807 807 -218.46 0 808 807 128 0 836 807 128 0 779 808 128 0 807 808 128 0 808 808 -218.46 0 809 808 128 0 837 808 128 0 780 809 128 0 808 809 128 0 809 809 -218.46 0 810 809 128 0 838 809 128 0 781 810 128 0 809 810 128 0 810 810 -218.46 0 811 810 128 0 839 810 128 0 782 811 128 0 810 811 128 0 811 811 -218.46 0 840 811 128 0 783 812 128 0 812 812 -218.46 0 813 812 128 0 784 813 128 0 812 813 128 0 813 813 -218.46 0 814 813 128 0 785 814 128 0 813 814 128 0 814 814 -218.46 0 815 814 128 0 786 815 128 0 814 815 128 0 815 815 -218.46 0 816 815 128 0 787 816 128 0 815 816 128 0 816 816 -218.46 0 817 816 128 0 788 817 128 0 816 817 128 0 817 817 -218.46 0 818 817 128 0 789 818 128 0 817 818 128 0 818 818 -218.46 0 819 818 128 0 790 819 128 0 818 819 128 0 819 819 -218.46 0 820 819 128 0 791 820 128 0 819 820 128 0 820 820 -218.46 0 821 820 128 0 792 821 128 0 820 821 128 0 821 821 -218.46 0 822 821 128 0 793 822 128 0 821 822 128 0 822 822 -218.46 0 823 822 128 0 794 823 128 0 822 823 128 0 823 823 -218.46 0 824 823 128 0 795 824 128 0 823 824 128 0 824 824 -218.46 0 825 824 128 0 796 825 128 0 824 825 128 0 825 825 -218.46 0 826 825 128 0 797 826 128 0 825 826 128 0 826 826 -218.46 0 827 826 128 0 798 827 128 0 826 827 128 0 827 827 -218.46 0 828 827 128 0 799 828 128 0 827 828 128 0 828 828 -218.46 0 829 828 128 0 800 829 128 0 828 829 128 0 829 829 -218.46 0 830 829 128 0 801 830 128 0 829 830 128 0 830 830 -218.46 0 831 830 128 0 802 831 128 0 830 831 128 0 831 831 -218.46 0 832 831 128 0 803 832 128 0 831 832 128 0 832 832 -218.46 0 833 832 128 0 804 833 128 0 832 833 128 0 833 833 -218.46 0 834 833 128 0 805 834 128 0 833 834 128 0 834 834 -218.46 0 835 834 128 0 806 835 128 0 834 835 128 0 835 835 -218.46 0 836 835 128 0 807 836 128 0 835 836 128 0 836 836 -218.46 0 837 836 128 0 808 837 128 0 836 837 128 0 837 837 -218.46 0 838 837 128 0 809 838 128 0 837 838 128 0 838 838 -218.46 0 839 838 128 0 810 839 128 0 838 839 128 0 839 839 -218.46 0 840 839 128 0 811 840 128 0 839 840 128 0 840 840 -218.46 0 SuiteSparse/CXSparse_newfiles/Matrix/c_mbeacxc0000644001170100242450000470760210376375430020456 0ustar davisfac5 0 0.0045458972 1e-6 6 0 0.24555165 1e-6 18 0 0.025517598 1e-6 24 0 7.0999988e-05 1e-6 62 0 0.0068898983 1e-6 98 0 0.0028766999 1e-6 102 0 0.11666727 1e-6 103 0 8.8799992e-05 1e-6 104 0 0.0011898 1e-6 107 0 0.0042084977 1e-6 108 0 1.779999e-05 1e-6 111 0 0.00094119995 1e-6 114 0 8.8799992e-05 1e-6 117 0 0.0014915999 1e-6 118 0 0.012057398 1e-6 119 0 0.0002308 1e-6 120 0 0.0001776 1e-6 126 0 1.779999e-05 1e-6 141 0 3.5499994e-05 1e-6 143 0 0.0015626999 1e-6 160 0 0.0002485998 1e-6 171 0 8.8799992e-05 1e-6 172 0 1.779999e-05 1e-6 189 0 1.779999e-05 1e-6 194 0 1.779999e-05 1e-6 198 0 0.00014209999 1e-6 200 0 8.8799992e-05 1e-6 201 0 7.0999988e-05 1e-6 206 0 3.5499994e-05 1e-6 214 0 0.00062149996 1e-6 217 0 0.0011719998 1e-6 223 0 0.00095889997 1e-6 228 0 0.00037289993 1e-6 229 0 0.0037113 1e-6 234 0 0.0047767982 1e-6 237 0 0.0039421991 1e-6 242 0 1.779999e-05 1e-6 253 0 0.00039069983 1e-6 279 0 8.8799992e-05 1e-6 283 0 3.5499994e-05 1e-6 307 0 0.0001065 1e-6 315 0 0.0017402 1e-6 317 0 0.00095889997 1e-6 318 0 1.779999e-05 1e-6 322 0 5.3299998e-05 1e-6 329 0 0.0049720965 1e-6 356 0 8.8799992e-05 1e-6 357 0 0.00014209999 1e-6 358 0 8.8799992e-05 1e-6 384 0 7.0999988e-05 1e-6 387 0 1.779999e-05 1e-6 394 0 0.00026639993 1e-6 397 0 5.3299998e-05 1e-6 402 0 0.00062149996 1e-6 422 0 1.779999e-05 1e-6 438 0 3.5499994e-05 1e-6 442 0 3.5499994e-05 1e-6 443 0 0.0044926964 1e-6 444 0 1.779999e-05 1e-6 445 0 0.032176699 1e-6 446 0 0.00053269998 1e-6 447 0 3.5499994e-05 1e-6 448 0 0.00012429999 1e-6 450 0 0.0026991998 1e-6 452 0 0.0080086999 1e-6 454 0 0.0002308 1e-6 455 0 0.021841798 1e-6 456 0 0.00078129978 1e-6 457 0 0.0098198988 1e-6 458 0 0.00037289993 1e-6 459 0 3.5499994e-05 1e-6 460 0 0.0055580996 1e-6 463 0 0.029246699 1e-6 464 0 1.779999e-05 1e-6 467 0 0.0031963999 1e-6 468 0 0.00021309999 1e-6 469 0 0.0013851 1e-6 470 0 0.00040839985 1e-6 471 0 0.0032495998 1e-6 473 0 1.779999e-05 1e-6 476 0 0.0017402 1e-6 478 0 0.00035519991 1e-6 483 0 0.00014209999 1e-6 490 0 3.5499994e-05 1e-6 6 1 0.16098946 1e-6 18 1 0.12319708 1e-6 62 1 0.0048390999 1e-6 102 1 0.38757879 1e-6 114 1 2.3599991e-05 1e-6 117 1 0.0025966 1e-6 118 1 0.020938098 1e-6 119 1 0.00040129991 1e-6 120 1 0.00030689989 1e-6 126 1 2.3599991e-05 1e-6 141 1 4.7199996e-05 1e-6 171 1 9.4399991e-05 1e-6 172 1 2.3599991e-05 1e-6 194 1 0.0046738982 1e-6 195 1 0.011023797 1e-6 200 1 9.4399991e-05 1e-6 201 1 9.4399991e-05 1e-6 206 1 4.7199996e-05 1e-6 214 1 0.00028329995 1e-6 217 1 0.00054289983 1e-6 223 1 0.00092059979 1e-6 228 1 0.0059249997 1e-6 229 1 0.00068459986 1e-6 234 1 0.0055944994 1e-6 237 1 0.0020772999 1e-6 279 1 0.00014159999 1e-6 283 1 4.7199996e-05 1e-6 307 1 0.000118 1e-6 317 1 0.00096779992 1e-6 318 1 2.3599991e-05 1e-6 322 1 2.3599991e-05 1e-6 329 1 0.0028326998 1e-6 356 1 9.4399991e-05 1e-6 357 1 7.0799986e-05 1e-6 358 1 4.7199996e-05 1e-6 384 1 4.7199996e-05 1e-6 394 1 0.00016519999 1e-6 397 1 4.7199996e-05 1e-6 402 1 0.00028329995 1e-6 438 1 4.7199996e-05 1e-6 442 1 4.7199996e-05 1e-6 443 1 0.010575298 1e-6 445 1 0.0052403994 1e-6 446 1 0.0011094999 1e-6 447 1 4.7199996e-05 1e-6 448 1 0.00014159999 1e-6 450 1 0.0026909998 1e-6 452 1 0.0080494992 1e-6 453 1 0.00051929988 1e-6 454 1 0.00023609999 1e-6 455 1 0.042230196 1e-6 456 1 0.012062397 1e-6 457 1 0.0048862994 1e-6 458 1 0.00037769997 1e-6 459 1 2.3599991e-05 1e-6 460 1 0.0033047998 1e-6 463 1 0.0162878 1e-6 464 1 2.3599991e-05 1e-6 467 1 0.0015815999 1e-6 468 1 0.00021239999 1e-6 469 1 0.0014398999 1e-6 470 1 0.00040129991 1e-6 471 1 0.0017467998 1e-6 473 1 2.3599991e-05 1e-6 476 1 0.027901698 1e-6 478 1 0.00035409979 1e-6 483 1 0.00014159999 1e-6 490 1 4.7199996e-05 1e-6 0 2 0.0031091999 1e-6 2 2 0.36019218 1e-6 3 2 0.0014519999 1e-6 5 2 0.0087651983 1e-6 6 2 0.22969705 1e-6 9 2 3.2999997e-06 1e-6 11 2 7.9399993e-05 1e-6 14 2 0.00015219999 1e-6 18 2 0.016207296 1e-6 62 2 0.0048456974 1e-6 82 2 1.32e-05 1e-6 83 2 3.2999997e-06 1e-6 84 2 3.2999997e-06 1e-6 98 2 0.00080039981 1e-6 102 2 0.058878798 1e-6 103 2 2.9799994e-05 1e-6 104 2 0.00033739978 1e-6 107 2 0.0011741999 1e-6 108 2 3.2999997e-06 1e-6 111 2 0.00025799987 1e-6 113 2 6.5999993e-06 1e-6 114 2 5.2899995e-05 1e-6 117 2 0.0015479999 1e-6 118 2 0.012585498 1e-6 119 2 0.00022819999 1e-6 120 2 0.00017859999 1e-6 126 2 6.5999993e-06 1e-6 141 2 2.6499998e-05 1e-6 171 2 8.5999985e-05 1e-6 172 2 1.9799991e-05 1e-6 189 2 6.5999993e-06 1e-6 193 2 1.6499995e-05 1e-6 194 2 9.8999999e-06 1e-6 197 2 3.2999997e-06 1e-6 200 2 9.5899988e-05 1e-6 201 2 7.2799987e-05 1e-6 203 2 6.5999993e-06 1e-6 204 2 6.5999993e-06 1e-6 206 2 1.32e-05 1e-6 207 2 3.2999997e-06 1e-6 214 2 0.00036709988 1e-6 217 2 0.0007077998 1e-6 223 2 0.00086989999 1e-6 228 2 0.00048289984 1e-6 234 2 0.0037838998 1e-6 237 2 0.0030958999 1e-6 242 2 9.8999999e-06 1e-6 252 2 3.2999997e-06 1e-6 279 2 9.5899988e-05 1e-6 283 2 4.9599999e-05 1e-6 307 2 0.00010579999 1e-6 317 2 0.00093609979 1e-6 318 2 9.8999999e-06 1e-6 322 2 3.6399986e-05 1e-6 329 2 0.0040253997 1e-6 356 2 8.9299996e-05 1e-6 357 2 0.00010919999 1e-6 358 2 5.6199991e-05 1e-6 384 2 4.9599999e-05 1e-6 387 2 3.2999997e-06 1e-6 394 2 0.00020839999 1e-6 397 2 4.6299989e-05 1e-6 402 2 0.00043659983 1e-6 419 2 3.2999997e-06 1e-6 422 2 9.8999999e-06 1e-6 423 2 3.2999997e-06 1e-6 425 2 3.2999997e-06 1e-6 430 2 3.2999997e-06 1e-6 431 2 3.2999997e-06 1e-6 433 2 3.2999997e-06 1e-6 434 2 3.2999997e-06 1e-6 438 2 2.9799994e-05 1e-6 442 2 3.9699997e-05 1e-6 443 2 0.0041576996 1e-6 444 2 9.8999999e-06 1e-6 445 2 0.004623998 1e-6 446 2 0.00069129979 1e-6 447 2 3.6399986e-05 1e-6 448 2 7.9399993e-05 1e-6 450 2 0.0026791999 1e-6 452 2 0.0080043972 1e-6 454 2 0.00015219999 1e-6 455 2 0.032106999 1e-6 456 2 0.0010187 1e-6 457 2 0.0087452978 1e-6 458 2 4.6299989e-05 1e-6 459 2 1.6499995e-05 1e-6 460 2 0.0044586994 1e-6 463 2 0.022627398 1e-6 464 2 1.32e-05 1e-6 467 2 0.0026625998 1e-6 468 2 0.0002249 1e-6 469 2 0.0014056999 1e-6 470 2 0.00039689988 1e-6 471 2 0.0028014998 1e-6 473 2 9.8999999e-06 1e-6 476 2 0.0022987998 1e-6 478 2 0.00035389978 1e-6 483 2 0.0001389 1e-6 490 2 3.309999e-05 1e-6 3 3 0.068147898 1e-6 5 3 0.00082899979 1e-6 6 3 0.21903497 1e-6 18 3 0.0076272972 1e-6 62 3 0.0031503998 1e-6 98 3 0.012104098 1e-6 101 3 0.037307199 1e-6 102 3 0.16630739 1e-6 103 3 0.00049739983 1e-6 104 3 0.0049742982 1e-6 107 3 0.017741699 1e-6 111 3 0.0039793998 1e-6 114 3 0.0014922998 1e-6 117 3 0.00066319993 1e-6 118 3 0.0051400997 1e-6 119 3 0.0001658 1e-6 200 3 0.0001658 1e-6 201 3 0.0001658 1e-6 214 3 0.00066319993 1e-6 217 3 0.00099489978 1e-6 223 3 0.0024871 1e-6 228 3 0.0021555 1e-6 234 3 0.0084562972 1e-6 237 3 0.0013265 1e-6 251 3 0.023379199 1e-6 279 3 0.0001658 1e-6 307 3 0.0001658 1e-6 317 3 0.00082899979 1e-6 322 3 0.0016580999 1e-6 329 3 0.00082899979 1e-6 356 3 0.0001658 1e-6 394 3 0.0001658 1e-6 402 3 0.0001658 1e-6 443 3 0.0061349981 1e-6 445 3 0.0051400997 1e-6 446 3 0.00066319993 1e-6 447 3 0.00049739983 1e-6 448 3 0.0001658 1e-6 450 3 0.0026529999 1e-6 452 3 0.0079588965 1e-6 453 3 0.00066319993 1e-6 454 3 0.0001658 1e-6 455 3 0.030343197 1e-6 456 3 0.0043110996 1e-6 457 3 0.0024871 1e-6 458 3 0.00049739983 1e-6 460 3 0.0023212999 1e-6 463 3 0.028685097 1e-6 467 3 0.0021555 1e-6 468 3 0.0001658 1e-6 469 3 0.0014922998 1e-6 470 3 0.00049739983 1e-6 471 3 0.0013265 1e-6 476 3 0.0096169971 1e-6 478 3 0.00033159996 1e-6 483 3 0.0001658 1e-6 490 3 0.0001658 1e-6 0 4 0.00024319999 1e-6 1 4 0.00072969985 1e-6 2 4 0.0031619 1e-6 3 4 0.0087560974 1e-6 4 4 0.012696397 1e-6 18 4 0.18679768 1e-6 24 4 0.0016538999 1e-6 25 4 0.0018485 1e-6 62 4 0.0087074973 1e-6 114 4 4.8599992e-05 1e-6 171 4 9.7299999e-05 1e-6 200 4 9.7299999e-05 1e-6 201 4 9.7299999e-05 1e-6 206 4 4.8599992e-05 1e-6 214 4 0.028019696 1e-6 215 4 0.078124166 1e-6 217 4 0.045775197 1e-6 223 4 0.00029189978 1e-6 234 4 0.022765998 1e-6 237 4 0.0063724965 1e-6 273 4 9.7299999e-05 1e-6 279 4 4.8599992e-05 1e-6 283 4 4.8599992e-05 1e-6 307 4 9.7299999e-05 1e-6 317 4 0.00097289984 1e-6 322 4 9.7299999e-05 1e-6 329 4 0.0094857998 1e-6 356 4 0.00029189978 1e-6 357 4 0.0001946 1e-6 358 4 9.7299999e-05 1e-6 384 4 4.8599992e-05 1e-6 394 4 0.00087559992 1e-6 397 4 9.7299999e-05 1e-6 402 4 0.00068099983 1e-6 438 4 4.8599992e-05 1e-6 442 4 4.8599992e-05 1e-6 443 4 0.0069075972 1e-6 445 4 0.0049617998 1e-6 446 4 0.0019944999 1e-6 447 4 4.8599992e-05 1e-6 448 4 0.00048649986 1e-6 450 4 0.0026268 1e-6 453 4 0.006858997 1e-6 454 4 0.0070535988 1e-6 455 4 0.038672999 1e-6 457 4 0.010118198 1e-6 458 4 0.00034049992 1e-6 460 4 0.009388499 1e-6 463 4 0.17463636 1e-6 467 4 0.012745097 1e-6 468 4 0.0001946 1e-6 469 4 0.0014106999 1e-6 470 4 0.00038919994 1e-6 471 4 0.0042807981 1e-6 478 4 0.00034049992 1e-6 483 4 0.00014589999 1e-6 490 4 4.8599992e-05 1e-6 0 5 0.00028399983 1e-6 1 5 0.00099389977 1e-6 2 5 0.023086797 1e-6 3 5 0.0034359999 1e-6 5 5 0.043362197 1e-6 18 5 0.017066598 1e-6 24 5 0.0023852999 1e-6 25 5 0.0011642999 1e-6 62 5 0.010109298 1e-6 114 5 2.8399998e-05 1e-6 141 5 2.8399998e-05 1e-6 171 5 8.5199994e-05 1e-6 172 5 2.8399998e-05 1e-6 200 5 8.5199994e-05 1e-6 201 5 8.5199994e-05 1e-6 206 5 5.6799996e-05 1e-6 214 5 0.0090017989 1e-6 215 5 0.037569199 1e-6 217 5 0.0083486997 1e-6 223 5 0.00017039999 1e-6 234 5 0.025670897 1e-6 237 5 0.0047706999 1e-6 242 5 2.8399998e-05 1e-6 273 5 8.5199994e-05 1e-6 279 5 0.00017039999 1e-6 283 5 5.6799996e-05 1e-6 307 5 0.00011359999 1e-6 317 5 0.0009370998 1e-6 318 5 2.8399998e-05 1e-6 322 5 5.6799996e-05 1e-6 329 5 0.0070991963 1e-6 356 5 0.00031239982 1e-6 357 5 0.00011359999 1e-6 358 5 5.6799996e-05 1e-6 384 5 2.8399998e-05 1e-6 394 5 0.00070989993 1e-6 397 5 5.6799996e-05 1e-6 402 5 0.00045439997 1e-6 438 5 2.8399998e-05 1e-6 442 5 5.6799996e-05 1e-6 443 5 0.0051114969 1e-6 445 5 0.0034075999 1e-6 446 5 0.0017037999 1e-6 447 5 5.6799996e-05 1e-6 448 5 0.0005394998 1e-6 450 5 0.0026409 1e-6 453 5 0.0031804999 1e-6 454 5 0.0026125 1e-6 455 5 0.0240523 1e-6 457 5 0.0058497973 1e-6 458 5 0.00036919978 1e-6 459 5 2.8399998e-05 1e-6 460 5 0.0082350969 1e-6 463 5 0.15800089 1e-6 464 5 2.8399998e-05 1e-6 467 5 0.010506898 1e-6 468 5 0.0002272 1e-6 469 5 0.0013914998 1e-6 470 5 0.00039759977 1e-6 471 5 0.0026976999 1e-6 478 5 0.00036919978 1e-6 483 5 0.00014199999 1e-6 490 5 5.6799996e-05 1e-6 0 6 0.0077898987 1e-6 1 6 0.0020032998 1e-6 2 6 0.028940197 1e-6 3 6 0.0054982975 1e-6 6 6 0.023989499 1e-6 7 6 0.0047560968 1e-6 13 6 0.0006773998 1e-6 18 6 0.018692899 1e-6 24 6 0.0040714964 1e-6 25 6 0.0020754 1e-6 62 6 0.0094761997 1e-6 108 6 7.1999993e-06 1e-6 114 6 7.1999993e-06 1e-6 126 6 7.1999993e-06 1e-6 141 6 0.0035670998 1e-6 171 6 8.6499989e-05 1e-6 172 6 2.159999e-05 1e-6 189 6 0.0001657 1e-6 194 6 1.44e-05 1e-6 200 6 9.3699986e-05 1e-6 201 6 7.2099996e-05 1e-6 203 6 7.1999993e-06 1e-6 204 6 7.1999993e-06 1e-6 206 6 1.44e-05 1e-6 214 6 0.020516098 1e-6 215 6 0.054731198 1e-6 217 6 0.019910797 1e-6 223 6 0.0001946 1e-6 234 6 0.031282198 1e-6 237 6 0.0060171969 1e-6 241 6 0.00040349993 1e-6 242 6 1.44e-05 1e-6 273 6 0.00020179999 1e-6 279 6 8.6499989e-05 1e-6 283 6 5.0399991e-05 1e-6 307 6 0.0001009 1e-6 317 6 0.00093679992 1e-6 318 6 1.44e-05 1e-6 322 6 0.0012683 1e-6 329 6 0.009490598 1e-6 356 6 0.00030989992 1e-6 357 6 0.00010809999 1e-6 358 6 6.4899999e-05 1e-6 384 6 2.8799986e-05 1e-6 387 6 7.1999993e-06 1e-6 394 6 0.0010016998 1e-6 397 6 5.0399991e-05 1e-6 402 6 0.00046839984 1e-6 422 6 7.1999993e-06 1e-6 430 6 7.1999993e-06 1e-6 434 6 7.1999993e-06 1e-6 438 6 2.159999e-05 1e-6 442 6 5.0399991e-05 1e-6 443 6 0.0065648966 1e-6 444 6 1.44e-05 1e-6 445 6 0.0085104965 1e-6 446 6 0.0025221999 1e-6 447 6 0.00011529999 1e-6 448 6 0.00069179991 1e-6 450 6 0.0026590999 1e-6 453 6 0.0036175 1e-6 454 6 0.006672997 1e-6 455 6 0.039324299 1e-6 456 6 2.159999e-05 1e-6 457 6 0.0064423978 1e-6 458 6 0.00036749989 1e-6 459 6 2.159999e-05 1e-6 460 6 0.0073791966 1e-6 463 6 0.1141609 1e-6 464 6 2.159999e-05 1e-6 467 6 0.015197899 1e-6 468 6 0.0002234 1e-6 469 6 0.0013907999 1e-6 470 6 0.00039629987 1e-6 471 6 0.0029400999 1e-6 473 6 7.1999993e-06 1e-6 478 6 0.00036029983 1e-6 483 6 0.00013689999 1e-6 490 6 3.5999998e-05 1e-6 3 7 0.0092790984 1e-6 7 7 0.0563883 1e-6 18 7 0.0513919 1e-6 24 7 0.00071379985 1e-6 62 7 0.0028551 1e-6 153 7 0.00071379985 1e-6 154 7 0.0028551 1e-6 172 7 0.00071379985 1e-6 193 7 0.0028551 1e-6 214 7 0.0107066 1e-6 215 7 0.044967897 1e-6 217 7 0.015703097 1e-6 223 7 0.00071379985 1e-6 234 7 0.030692399 1e-6 237 7 0.0099928975 1e-6 241 7 0.024982199 1e-6 317 7 0.0014275999 1e-6 329 7 0.014275499 1e-6 357 7 0.00071379985 1e-6 394 7 0.0014275999 1e-6 402 7 0.00071379985 1e-6 443 7 0.0035688998 1e-6 445 7 0.0135617 1e-6 446 7 0.00071379985 1e-6 448 7 0.00071379985 1e-6 450 7 0.0028551 1e-6 453 7 0.00071379985 1e-6 454 7 0.0064239986 1e-6 455 7 0.037116297 1e-6 457 7 0.016416799 1e-6 460 7 0.011420399 1e-6 463 7 0.084225595 1e-6 467 7 0.016416799 1e-6 469 7 0.0014275999 1e-6 470 7 0.00071379985 1e-6 471 7 0.0064239986 1e-6 478 7 0.00071379985 1e-6 0 8 0.00013659999 1e-6 1 8 0.00020489999 1e-6 2 8 0.00027319998 1e-6 3 8 0.0088114999 1e-6 8 8 0.00095629995 1e-6 18 8 0.019398898 1e-6 24 8 0.0011612 1e-6 25 8 0.00013659999 1e-6 62 8 0.0118852 1e-6 114 8 6.8299996e-05 1e-6 130 8 0.0064890981 1e-6 171 8 0.00013659999 1e-6 200 8 0.00013659999 1e-6 201 8 6.8299996e-05 1e-6 206 8 6.8299996e-05 1e-6 214 8 0.0077185966 1e-6 217 8 0.0088114999 1e-6 223 8 0.00040979986 1e-6 234 8 0.014275998 1e-6 237 8 0.0064207986 1e-6 241 8 0.0020491998 1e-6 273 8 6.8299996e-05 1e-6 279 8 6.8299996e-05 1e-6 283 8 6.8299996e-05 1e-6 307 8 0.00013659999 1e-6 317 8 0.00088799978 1e-6 329 8 0.0085382983 1e-6 356 8 0.00027319998 1e-6 357 8 0.00020489999 1e-6 358 8 0.00013659999 1e-6 384 8 6.8299996e-05 1e-6 394 8 0.00054639997 1e-6 397 8 0.00013659999 1e-6 402 8 0.00081969984 1e-6 438 8 6.8299996e-05 1e-6 442 8 6.8299996e-05 1e-6 443 8 0.00081969984 1e-6 445 8 0.0017759998 1e-6 446 8 0.0004780998 1e-6 448 8 0.00034149992 1e-6 450 8 0.0027321998 1e-6 454 8 0.00034149992 1e-6 455 8 0.048497297 1e-6 457 8 0.0061474964 1e-6 458 8 0.00034149992 1e-6 460 8 0.011816896 1e-6 463 8 0.12233609 1e-6 467 8 0.0062157996 1e-6 468 8 0.00020489999 1e-6 469 8 0.0013660998 1e-6 470 8 0.00040979986 1e-6 471 8 0.0049179979 1e-6 478 8 0.00034149992 1e-6 483 8 0.00013659999 1e-6 490 8 6.8299996e-05 1e-6 0 9 4.4799992e-05 1e-6 1 9 0.0001792 1e-6 2 9 0.00013439999 1e-6 3 9 0.00094079995 1e-6 16 9 0.011827398 1e-6 18 9 0.073786974 1e-6 24 9 0.0014783998 1e-6 25 9 8.9599998e-05 1e-6 62 9 0.0079297982 1e-6 114 9 4.4799992e-05 1e-6 141 9 4.4799992e-05 1e-6 153 9 0.00062719989 1e-6 154 9 0.0023743999 1e-6 171 9 8.9599998e-05 1e-6 172 9 0.049460098 1e-6 189 9 4.4799992e-05 1e-6 193 9 0.0023743999 1e-6 198 9 8.9599998e-05 1e-6 200 9 0.00013439999 1e-6 201 9 8.9599998e-05 1e-6 206 9 4.4799992e-05 1e-6 214 9 0.0173827 1e-6 215 9 0.12580079 1e-6 217 9 0.0284485 1e-6 223 9 0.0001792 1e-6 234 9 0.030823 1e-6 237 9 0.0035392998 1e-6 273 9 4.4799992e-05 1e-6 283 9 4.4799992e-05 1e-6 307 9 0.00013439999 1e-6 317 9 0.0010751998 1e-6 322 9 4.4799992e-05 1e-6 329 9 0.0050176978 1e-6 356 9 0.00031359983 1e-6 357 9 8.9599998e-05 1e-6 358 9 8.9599998e-05 1e-6 384 9 4.4799992e-05 1e-6 394 9 0.00044799992 1e-6 397 9 4.4799992e-05 1e-6 402 9 0.00035839994 1e-6 438 9 4.4799992e-05 1e-6 442 9 4.4799992e-05 1e-6 443 9 0.010259397 1e-6 445 9 0.0056896992 1e-6 446 9 0.0021952 1e-6 447 9 4.4799992e-05 1e-6 448 9 0.00058239978 1e-6 450 9 0.0026433 1e-6 453 9 0.00022399999 1e-6 454 9 0.0046144985 1e-6 455 9 0.053178597 1e-6 456 9 0.0053760968 1e-6 457 9 0.0056448989 1e-6 458 9 0.00040319981 1e-6 460 9 0.0054208972 1e-6 463 9 0.021862797 1e-6 467 9 0.0072577 1e-6 468 9 0.00022399999 1e-6 469 9 0.0014336 1e-6 470 9 0.00044799992 1e-6 471 9 0.0022847999 1e-6 478 9 0.00035839994 1e-6 483 9 0.00013439999 1e-6 490 9 4.4799992e-05 1e-6 3 10 0.0016096998 1e-6 16 10 0.0072434992 1e-6 18 10 0.074849069 1e-6 24 10 0.0016096998 1e-6 62 10 0.013279699 1e-6 153 10 0.00080479984 1e-6 154 10 0.0024144999 1e-6 172 10 0.00080479984 1e-6 193 10 0.0024144999 1e-6 214 10 0.012072399 1e-6 215 10 0.1191147 1e-6 217 10 0.016498998 1e-6 234 10 0.029376298 1e-6 237 10 0.0040240996 1e-6 317 10 0.0012071999 1e-6 329 10 0.0028168999 1e-6 356 10 0.0004023998 1e-6 394 10 0.0004023998 1e-6 443 10 0.0088530965 1e-6 445 10 0.0040240996 1e-6 446 10 0.0016096998 1e-6 448 10 0.00080479984 1e-6 450 10 0.0028168999 1e-6 453 10 0.0016096998 1e-6 455 10 0.047082499 1e-6 456 10 0.0040240996 1e-6 457 10 0.0060361996 1e-6 458 10 0.0004023998 1e-6 460 10 0.006438598 1e-6 463 10 0.024144899 1e-6 467 10 0.0100604 1e-6 468 10 0.0004023998 1e-6 469 10 0.0016096998 1e-6 470 10 0.0004023998 1e-6 471 10 0.0024144999 1e-6 478 10 0.0004023998 1e-6 0 11 0.0001144 1e-6 1 11 0.0001716 1e-6 2 11 0.00028599985 1e-6 3 11 0.0028891 1e-6 11 11 0.015704099 1e-6 16 11 0.016247597 1e-6 18 11 0.048456799 1e-6 24 11 0.001373 1e-6 25 11 0.0011441999 1e-6 62 11 0.0060069971 1e-6 114 11 2.8599999e-05 1e-6 141 11 2.8599999e-05 1e-6 153 11 0.00062929979 1e-6 154 11 0.0024027999 1e-6 171 11 8.5799998e-05 1e-6 172 11 0.00077229994 1e-6 193 11 0.0024599999 1e-6 198 11 8.5799998e-05 1e-6 200 11 8.5799998e-05 1e-6 201 11 8.5799998e-05 1e-6 206 11 5.7199999e-05 1e-6 214 11 0.0097256973 1e-6 215 11 0.046883497 1e-6 217 11 0.0125576 1e-6 223 11 0.0001716 1e-6 234 11 0.011356197 1e-6 237 11 0.0036613999 1e-6 273 11 8.5799998e-05 1e-6 283 11 5.7199999e-05 1e-6 307 11 0.0001144 1e-6 317 11 0.0010583999 1e-6 322 11 5.7199999e-05 1e-6 329 11 0.0051202998 1e-6 356 11 0.00028599985 1e-6 357 11 0.0001144 1e-6 358 11 8.5799998e-05 1e-6 384 11 2.8599999e-05 1e-6 394 11 0.00042909989 1e-6 397 11 5.7199999e-05 1e-6 402 11 0.00037189992 1e-6 438 11 2.8599999e-05 1e-6 442 11 5.7199999e-05 1e-6 443 11 0.0042620972 1e-6 445 11 0.0073514991 1e-6 446 11 0.0010869999 1e-6 447 11 5.7199999e-05 1e-6 448 11 0.0002288 1e-6 450 11 0.0026602999 1e-6 453 11 0.0001144 1e-6 454 11 0.0031178999 1e-6 455 11 0.051946599 1e-6 456 11 0.0074086972 1e-6 457 11 0.0062930994 1e-6 458 11 0.00037189992 1e-6 459 11 2.8599999e-05 1e-6 460 11 0.0046339966 1e-6 463 11 0.044938397 1e-6 464 11 2.8599999e-05 1e-6 467 11 0.0062358975 1e-6 468 11 0.0002288 1e-6 469 11 0.0014016 1e-6 470 11 0.00040049991 1e-6 471 11 0.0025743998 1e-6 478 11 0.00037189992 1e-6 483 11 0.000143 1e-6 490 11 5.7199999e-05 1e-6 3 12 0.0059012994 1e-6 12 12 0.0362124 1e-6 18 12 0.046405599 1e-6 24 12 0.0020118 1e-6 25 12 0.00013409999 1e-6 62 12 0.008851897 1e-6 171 12 0.00013409999 1e-6 200 12 0.00013409999 1e-6 201 12 0.00013409999 1e-6 214 12 0.014216699 1e-6 215 12 0.10005355 1e-6 217 12 0.0189109 1e-6 223 12 0.00026819995 1e-6 234 12 0.017972097 1e-6 237 12 0.0046941973 1e-6 273 12 0.00013409999 1e-6 279 12 0.00013409999 1e-6 307 12 0.00013409999 1e-6 317 12 0.00093879993 1e-6 329 12 0.0060353987 1e-6 356 12 0.0004023998 1e-6 357 12 0.00013409999 1e-6 394 12 0.00080469996 1e-6 397 12 0.00013409999 1e-6 402 12 0.00026819995 1e-6 442 12 0.00013409999 1e-6 443 12 0.0068400986 1e-6 445 12 0.0040235966 1e-6 446 12 0.0013412 1e-6 448 12 0.0004023998 1e-6 450 12 0.0028164999 1e-6 453 12 0.00093879993 1e-6 455 12 0.032188799 1e-6 457 12 0.010058999 1e-6 458 12 0.0004023998 1e-6 460 12 0.0115343 1e-6 463 12 0.11614805 1e-6 467 12 0.0107296 1e-6 468 12 0.00026819995 1e-6 469 12 0.0014752999 1e-6 470 12 0.0004023998 1e-6 471 12 0.0033529999 1e-6 478 12 0.0004023998 1e-6 483 12 0.00013409999 1e-6 490 12 0.00013409999 1e-6 3 13 0.0014612998 1e-6 13 13 0.010715999 1e-6 16 13 0.0029225999 1e-6 18 13 0.049683399 1e-6 24 13 0.0053579994 1e-6 25 13 0.00048709987 1e-6 62 13 0.0014612998 1e-6 214 13 0.017535299 1e-6 215 13 0.2513395 1e-6 217 13 0.014612798 1e-6 234 13 0.014612798 1e-6 237 13 0.0043837987 1e-6 273 13 0.00048709987 1e-6 317 13 0.0014612998 1e-6 329 13 0.0043837987 1e-6 443 13 0.017048199 1e-6 445 13 0.007306397 1e-6 446 13 0.0019483999 1e-6 450 13 0.0024354998 1e-6 453 13 0.00097419997 1e-6 455 13 0.069654167 1e-6 457 13 0.009741798 1e-6 460 13 0.004870899 1e-6 463 13 0.07355088 1e-6 467 13 0.010715999 1e-6 469 13 0.0014612998 1e-6 470 13 0.00048709987 1e-6 471 13 0.0038967 1e-6 478 13 0.00048709987 1e-6 0 14 0.0011772998 1e-6 1 14 0.0014295999 1e-6 2 14 0.011142597 1e-6 3 14 0.0033006999 1e-6 14 14 0.056007598 1e-6 18 14 0.021213099 1e-6 24 14 0.00058869994 1e-6 25 14 0.00077789999 1e-6 62 14 0.0082623996 1e-6 114 14 2.1e-05 1e-6 126 14 2.1e-05 1e-6 141 14 4.2e-05 1e-6 171 14 0.0001051 1e-6 172 14 2.1e-05 1e-6 194 14 2.1e-05 1e-6 200 14 8.4099986e-05 1e-6 201 14 8.4099986e-05 1e-6 206 14 4.2e-05 1e-6 214 14 0.015767898 1e-6 215 14 0.010911398 1e-6 217 14 0.026931599 1e-6 223 14 0.00016819999 1e-6 234 14 0.022348396 1e-6 237 14 0.0057184994 1e-6 242 14 2.1e-05 1e-6 273 14 2.1e-05 1e-6 279 14 0.00014719999 1e-6 283 14 4.2e-05 1e-6 307 14 0.0001051 1e-6 317 14 0.0009670998 1e-6 318 14 2.1e-05 1e-6 322 14 4.2e-05 1e-6 329 14 0.0089350976 1e-6 356 14 0.00031539984 1e-6 357 14 0.0001261 1e-6 358 14 0.0001051 1e-6 384 14 4.2e-05 1e-6 394 14 0.0009039999 1e-6 397 14 6.3099986e-05 1e-6 402 14 0.00054659997 1e-6 438 14 4.2e-05 1e-6 442 14 6.3099986e-05 1e-6 443 14 0.0023546999 1e-6 444 14 2.1e-05 1e-6 445 14 0.0030063998 1e-6 446 14 0.0012403999 1e-6 447 14 4.2e-05 1e-6 448 14 0.00046249991 1e-6 450 14 0.0026910999 1e-6 453 14 0.00031539984 1e-6 454 14 0.00086199981 1e-6 455 14 0.020182896 1e-6 457 14 0.0066434965 1e-6 458 14 0.00037839985 1e-6 459 14 2.1e-05 1e-6 460 14 0.0073162988 1e-6 463 14 0.10947114 1e-6 464 14 2.1e-05 1e-6 467 14 0.013875697 1e-6 468 14 0.0002102 1e-6 469 14 0.0013875999 1e-6 470 14 0.0003994999 1e-6 471 14 0.0029222998 1e-6 473 14 2.1e-05 1e-6 478 14 0.00035739993 1e-6 483 14 0.00014719999 1e-6 490 14 4.2e-05 1e-6 1 16 0.00035179988 1e-6 3 16 0.0021813998 1e-6 16 16 0.054183397 1e-6 18 16 0.013932899 1e-6 22 16 0.00056289998 1e-6 24 16 0.0019703 1e-6 25 16 7.0399998e-05 1e-6 60 16 0.00014069999 1e-6 62 16 0.0052775964 1e-6 101 16 7.0399998e-05 1e-6 114 16 7.0399998e-05 1e-6 141 16 0.00091479998 1e-6 143 16 0.0015480998 1e-6 171 16 7.0399998e-05 1e-6 198 16 0.0033072999 1e-6 200 16 7.0399998e-05 1e-6 201 16 7.0399998e-05 1e-6 206 16 7.0399998e-05 1e-6 214 16 0.0030961998 1e-6 215 16 0.00014069999 1e-6 217 16 0.0026035998 1e-6 223 16 0.00021109999 1e-6 234 16 0.016114298 1e-6 237 16 0.0038701999 1e-6 241 16 0.010766298 1e-6 263 16 0.0040109977 1e-6 273 16 7.0399998e-05 1e-6 279 16 7.0399998e-05 1e-6 283 16 7.0399998e-05 1e-6 307 16 7.0399998e-05 1e-6 317 16 0.00077399984 1e-6 328 16 7.0399998e-05 1e-6 329 16 0.005840499 1e-6 356 16 0.00028149993 1e-6 357 16 0.00014069999 1e-6 394 16 0.00056289998 1e-6 397 16 7.0399998e-05 1e-6 402 16 0.00028149993 1e-6 442 16 7.0399998e-05 1e-6 443 16 0.0012665999 1e-6 444 16 7.0399998e-05 1e-6 445 16 0.0052775964 1e-6 446 16 0.00063329982 1e-6 447 16 0.00014069999 1e-6 448 16 0.00028149993 1e-6 450 16 0.0023924999 1e-6 452 16 0.0069663972 1e-6 453 16 0.0074589998 1e-6 454 16 0.00049259979 1e-6 455 16 0.053550098 1e-6 456 16 0.0247695 1e-6 457 16 0.0041516982 1e-6 458 16 0.00035179988 1e-6 460 16 0.0045738965 1e-6 463 16 0.0157624 1e-6 467 16 0.0066849999 1e-6 468 16 0.012806997 1e-6 469 16 0.0013369999 1e-6 470 16 0.00042219996 1e-6 471 16 0.0028851 1e-6 478 16 0.00028149993 1e-6 483 16 0.00014069999 1e-6 490 16 7.0399998e-05 1e-6 3 17 0.0019595998 1e-6 6 17 0.0056116991 1e-6 12 17 0.00017809999 1e-6 16 17 0.00093529979 1e-6 17 17 0.0040973984 1e-6 18 17 0.023560297 1e-6 62 17 0.0004453999 1e-6 98 17 0.00031179981 1e-6 101 17 0.010822598 1e-6 102 17 0.0042755976 1e-6 104 17 0.0001336 1e-6 107 17 0.0004453999 1e-6 108 17 4.449999e-05 1e-6 111 17 8.9099995e-05 1e-6 114 17 0.00017809999 1e-6 118 17 0.0001336 1e-6 123 17 0.010599896 1e-6 126 17 4.449999e-05 1e-6 139 17 0.0083284974 1e-6 141 17 0.011401597 1e-6 143 17 0.0035184999 1e-6 154 17 0.010020897 1e-6 194 17 4.449999e-05 1e-6 200 17 4.449999e-05 1e-6 206 17 8.9099995e-05 1e-6 207 17 0.001737 1e-6 214 17 0.0089965984 1e-6 215 17 0.00071259984 1e-6 217 17 0.00075709983 1e-6 223 17 0.0016923998 1e-6 228 17 0.0001336 1e-6 233 17 0.0037856998 1e-6 234 17 0.023248598 1e-6 237 17 0.0018259999 1e-6 240 17 4.449999e-05 1e-6 251 17 0.00062349997 1e-6 252 17 0.0001336 1e-6 300 17 0.017414197 1e-6 317 17 0.0013806999 1e-6 319 17 0.004587397 1e-6 322 17 0.0084620975 1e-6 326 17 0.0042755976 1e-6 328 17 0.0079721995 1e-6 329 17 0.00031179981 1e-6 350 17 0.0076603964 1e-6 356 17 8.9099995e-05 1e-6 384 17 0.0011133999 1e-6 387 17 4.449999e-05 1e-6 394 17 8.9099995e-05 1e-6 397 17 4.449999e-05 1e-6 402 17 8.9099995e-05 1e-6 404 17 4.449999e-05 1e-6 406 17 0.020353597 1e-6 407 17 0.0082393996 1e-6 414 17 0.0036074999 1e-6 422 17 4.449999e-05 1e-6 430 17 0.0031621999 1e-6 443 17 0.0021378 1e-6 444 17 0.0016033 1e-6 445 17 0.011134397 1e-6 446 17 0.00080169993 1e-6 447 17 0.0016033 1e-6 448 17 0.0004453999 1e-6 450 17 0.0021378 1e-6 452 17 0.0003562998 1e-6 453 17 0.00031179981 1e-6 454 17 4.449999e-05 1e-6 455 17 0.031443499 1e-6 456 17 0.00066809985 1e-6 457 17 0.0050326996 1e-6 458 17 4.449999e-05 1e-6 459 17 8.9099995e-05 1e-6 460 17 0.0068141967 1e-6 463 17 0.010688998 1e-6 464 17 0.0022713998 1e-6 465 17 0.00062349997 1e-6 467 17 0.017235998 1e-6 468 17 0.0019150998 1e-6 469 17 0.0035629999 1e-6 470 17 0.0019150998 1e-6 471 17 0.0096200965 1e-6 473 17 4.449999e-05 1e-6 476 17 0.00026719994 1e-6 477 17 0.0004453999 1e-6 478 17 0.0001336 1e-6 483 17 0.00026719994 1e-6 489 17 0.00017809999 1e-6 490 17 0.00026719994 1e-6 491 17 0.0011133999 1e-6 0 18 0.0003849999 1e-6 1 18 0.045257699 1e-6 2 18 0.019127999 1e-6 3 18 0.00055339979 1e-6 4 18 9.619999e-05 1e-6 5 18 0.00076989993 1e-6 6 18 0.016721997 1e-6 7 18 0.0018044999 1e-6 9 18 2.4099994e-05 1e-6 11 18 9.619999e-05 1e-6 12 18 9.619999e-05 1e-6 13 18 2.4099994e-05 1e-6 14 18 0.00052929996 1e-6 16 18 0.0096481964 1e-6 17 18 0.0025262998 1e-6 18 18 0.030460499 1e-6 24 18 0.00045709987 1e-6 25 18 9.619999e-05 1e-6 60 18 0.013112899 1e-6 62 18 0.00096239988 1e-6 79 18 2.4099994e-05 1e-6 82 18 2.4099994e-05 1e-6 83 18 2.4099994e-05 1e-6 84 18 2.4099994e-05 1e-6 98 18 0.00055339979 1e-6 101 18 0.0049564987 1e-6 102 18 0.0056061 1e-6 104 18 0.00057749986 1e-6 107 18 0.0001203 1e-6 108 18 4.8099988e-05 1e-6 111 18 2.4099994e-05 1e-6 113 18 7.2199997e-05 1e-6 114 18 0.0001203 1e-6 117 18 9.619999e-05 1e-6 118 18 0.00079399999 1e-6 126 18 7.2199997e-05 1e-6 127 18 2.4099994e-05 1e-6 130 18 2.4099994e-05 1e-6 141 18 9.619999e-05 1e-6 143 18 0.010249697 1e-6 153 18 0.0031518999 1e-6 154 18 4.8099988e-05 1e-6 172 18 0.0043789968 1e-6 192 18 0.00021649999 1e-6 193 18 4.8099988e-05 1e-6 194 18 0.00048119994 1e-6 195 18 4.8099988e-05 1e-6 196 18 7.2199997e-05 1e-6 197 18 0.0001203 1e-6 198 18 0.027837899 1e-6 201 18 7.2199997e-05 1e-6 203 18 0.0003849999 1e-6 204 18 0.00055339979 1e-6 206 18 0.00093839993 1e-6 207 18 0.00031279982 1e-6 209 18 9.619999e-05 1e-6 214 18 0.0013714 1e-6 215 18 0.017564099 1e-6 217 18 0.014508396 1e-6 219 18 2.4099994e-05 1e-6 223 18 0.0001203 1e-6 228 18 4.8099988e-05 1e-6 229 18 2.4099994e-05 1e-6 234 18 0.0194408 1e-6 237 18 0.0015399 1e-6 240 18 2.4099994e-05 1e-6 241 18 0.0001203 1e-6 248 18 2.4099994e-05 1e-6 250 18 2.4099994e-05 1e-6 251 18 0.00079399999 1e-6 252 18 0.00033679977 1e-6 263 18 2.4099994e-05 1e-6 267 18 0.0022856998 1e-6 279 18 2.4099994e-05 1e-6 315 18 2.4099994e-05 1e-6 317 18 7.2199997e-05 1e-6 322 18 0.0037774998 1e-6 326 18 0.0036090999 1e-6 328 18 0.0042827986 1e-6 329 18 0.0027188 1e-6 330 18 0.0027669999 1e-6 356 18 4.8099988e-05 1e-6 363 18 2.4099994e-05 1e-6 387 18 4.8099988e-05 1e-6 394 18 0.00014439999 1e-6 397 18 7.2199997e-05 1e-6 398 18 0.0019007998 1e-6 402 18 0.0038977999 1e-6 404 18 0.0013714 1e-6 412 18 0.00079399999 1e-6 419 18 2.4099994e-05 1e-6 422 18 0.00043309992 1e-6 423 18 2.4099994e-05 1e-6 425 18 2.4099994e-05 1e-6 430 18 4.8099988e-05 1e-6 431 18 7.2199997e-05 1e-6 432 18 7.2199997e-05 1e-6 433 18 0.0002406 1e-6 434 18 0.00028869999 1e-6 438 18 0.00055339979 1e-6 443 18 0.0034647 1e-6 444 18 0.0045714974 1e-6 445 18 0.0066406988 1e-6 446 18 0.00089019979 1e-6 447 18 0.017179199 1e-6 448 18 0.0003849999 1e-6 449 18 2.4099994e-05 1e-6 450 18 0.0056541972 1e-6 452 18 0.0075308979 1e-6 453 18 0.0026225999 1e-6 454 18 0.00033679977 1e-6 455 18 0.031446997 1e-6 456 18 0.0060872994 1e-6 457 18 0.0045233965 1e-6 458 18 0.0041383989 1e-6 459 18 7.2199997e-05 1e-6 460 18 0.0058706999 1e-6 463 18 0.035681598 1e-6 464 18 0.0041383989 1e-6 465 18 0.0012270999 1e-6 467 18 0.047423098 1e-6 468 18 0.0051007979 1e-6 469 18 0.0114046 1e-6 470 18 0.0067849979 1e-6 471 18 0.016000196 1e-6 473 18 0.00014439999 1e-6 474 18 4.8099988e-05 1e-6 476 18 0.00098649994 1e-6 477 18 7.2199997e-05 1e-6 478 18 0.0027909998 1e-6 483 18 0.0013714 1e-6 489 18 0.0002406 1e-6 490 18 0.00052929996 1e-6 491 18 9.619999e-05 1e-6 19 19 0.018687297 1e-6 20 19 0.0071814992 1e-6 21 19 0.0027798999 1e-6 22 19 0.0033976999 1e-6 24 19 0.0048648976 1e-6 60 19 0.025250997 1e-6 114 19 7.7199991e-05 1e-6 126 19 7.7199991e-05 1e-6 159 19 0.00054049981 1e-6 160 19 0.0015443999 1e-6 206 19 0.0001544 1e-6 214 19 0.0068725981 1e-6 215 19 0.00092659984 1e-6 220 19 0.010965299 1e-6 234 19 0.010115799 1e-6 237 19 0.010038599 1e-6 242 19 0.0026254999 1e-6 252 19 0.00030889991 1e-6 254 19 0.00030889991 1e-6 267 19 0.0012355 1e-6 272 19 0.00023169999 1e-6 277 19 0.010656398 1e-6 282 19 0.014517397 1e-6 283 19 0.0108108 1e-6 294 19 7.7199991e-05 1e-6 295 19 0.0041699 1e-6 312 19 0.0016215998 1e-6 317 19 0.00061779981 1e-6 322 19 0.011196896 1e-6 328 19 0.0035520999 1e-6 331 19 0.009034697 1e-6 332 19 0.009034697 1e-6 335 19 0.0020848999 1e-6 336 19 7.7199991e-05 1e-6 340 19 0.00023169999 1e-6 343 19 7.7199991e-05 1e-6 350 19 0.00092659984 1e-6 352 19 0.0019304999 1e-6 356 19 0.00030889991 1e-6 372 19 0.0020076998 1e-6 374 19 0.00023169999 1e-6 384 19 0.0003860998 1e-6 398 19 0.0001544 1e-6 402 19 0.018455599 1e-6 408 19 0.0016215998 1e-6 442 19 0.0020848999 1e-6 443 19 0.0056370981 1e-6 444 19 0.0035520999 1e-6 445 19 0.0078763999 1e-6 446 19 0.00069499994 1e-6 447 19 0.0030887998 1e-6 448 19 7.7199991e-05 1e-6 450 19 0.00077219983 1e-6 452 19 0.038146697 1e-6 453 19 0.0203861 1e-6 454 19 0.0064864978 1e-6 455 19 0.023629297 1e-6 456 19 0.00030889991 1e-6 457 19 0.0030115999 1e-6 459 19 0.0014672 1e-6 460 19 0.0010038998 1e-6 463 19 0.19752896 1e-6 464 19 0.00023169999 1e-6 465 19 0.00030889991 1e-6 467 19 0.019845597 1e-6 468 19 0.0097296983 1e-6 469 19 0.0013126999 1e-6 470 19 0.0012355 1e-6 471 19 0.0019304999 1e-6 473 19 7.7199991e-05 1e-6 477 19 0.0003860998 1e-6 478 19 0.00069499994 1e-6 483 19 0.0013899999 1e-6 489 19 0.0029344 1e-6 490 19 0.0001544 1e-6 491 19 0.0094207972 1e-6 19 20 6.4199994e-05 1e-6 20 20 0.13482279 1e-6 21 20 0.0053928979 1e-6 22 20 0.0001926 1e-6 24 20 0.00038519991 1e-6 60 20 0.0049434975 1e-6 114 20 6.4199994e-05 1e-6 126 20 6.4199994e-05 1e-6 130 20 0.00038519991 1e-6 143 20 6.4199994e-05 1e-6 159 20 0.0026322999 1e-6 160 20 6.4199994e-05 1e-6 194 20 6.4199994e-05 1e-6 206 20 0.00012839999 1e-6 214 20 0.026001498 1e-6 215 20 0.0015407999 1e-6 220 20 0.006805297 1e-6 234 20 0.010336399 1e-6 237 20 0.024011299 1e-6 242 20 0.00070619979 1e-6 252 20 0.00038519991 1e-6 254 20 0.00077039981 1e-6 265 20 0.0001926 1e-6 267 20 0.0069978982 1e-6 277 20 0.0044298992 1e-6 282 20 0.010464799 1e-6 283 20 0.0079609975 1e-6 284 20 6.4199994e-05 1e-6 294 20 0.001926 1e-6 312 20 0.0030174998 1e-6 317 20 0.00051359995 1e-6 322 20 0.0082177967 1e-6 328 20 6.4199994e-05 1e-6 331 20 0.0093733966 1e-6 332 20 0.0090523995 1e-6 335 20 0.001284 1e-6 336 20 0.00089879986 1e-6 350 20 6.4199994e-05 1e-6 356 20 0.00038519991 1e-6 358 20 0.00012839999 1e-6 372 20 0.00070619979 1e-6 384 20 0.00025679986 1e-6 386 20 0.00025679986 1e-6 398 20 0.00044939993 1e-6 402 20 0.00077039981 1e-6 408 20 0.0017976 1e-6 413 20 0.00032099988 1e-6 422 20 6.4199994e-05 1e-6 442 20 6.4199994e-05 1e-6 443 20 0.0041731 1e-6 444 20 0.00012839999 1e-6 445 20 0.0041731 1e-6 446 20 0.00096299988 1e-6 447 20 0.00038519991 1e-6 448 20 0.0001926 1e-6 450 20 0.00077039981 1e-6 452 20 0.027413998 1e-6 453 20 0.0050076991 1e-6 454 20 0.0012198 1e-6 455 20 0.032999497 1e-6 456 20 0.00051359995 1e-6 457 20 0.0059706978 1e-6 458 20 6.4199994e-05 1e-6 459 20 0.0030174998 1e-6 460 20 0.00083459984 1e-6 463 20 0.010528997 1e-6 464 20 6.4199994e-05 1e-6 465 20 0.00044939993 1e-6 467 20 0.014766298 1e-6 468 20 0.00083459984 1e-6 469 20 0.0013481998 1e-6 470 20 0.0015407999 1e-6 471 20 0.0023753999 1e-6 473 20 6.4199994e-05 1e-6 477 20 0.00032099988 1e-6 478 20 0.00077039981 1e-6 483 20 0.00070619979 1e-6 489 20 0.00070619979 1e-6 490 20 0.0001926 1e-6 491 20 0.022984099 1e-6 20 21 0.0012299998 1e-6 21 21 0.045971699 1e-6 22 21 0.00015379999 1e-6 24 21 0.00015379999 1e-6 60 21 0.013837598 1e-6 114 21 0.00015379999 1e-6 159 21 0.0053812973 1e-6 160 21 0.0039974973 1e-6 206 21 0.0003074999 1e-6 214 21 0.021678999 1e-6 215 21 0.0003074999 1e-6 220 21 0.0087637976 1e-6 223 21 0.0015374999 1e-6 224 21 0.0003074999 1e-6 234 21 0.012915097 1e-6 237 21 0.0063037984 1e-6 242 21 0.0007687998 1e-6 252 21 0.00061499979 1e-6 254 21 0.00061499979 1e-6 272 21 0.0038437999 1e-6 277 21 0.017681397 1e-6 282 21 0.00015379999 1e-6 295 21 0.0003074999 1e-6 305 21 0.00015379999 1e-6 312 21 0.0044588 1e-6 322 21 0.0072262995 1e-6 328 21 0.010762598 1e-6 331 21 0.014145099 1e-6 332 21 0.0133764 1e-6 335 21 0.0018449998 1e-6 336 21 0.0010762999 1e-6 341 21 0.0010762999 1e-6 350 21 0.00015379999 1e-6 352 21 0.0003074999 1e-6 356 21 0.0004612999 1e-6 358 21 0.0130689 1e-6 372 21 0.0026137999 1e-6 384 21 0.0003074999 1e-6 398 21 0.0018449998 1e-6 402 21 0.0015374999 1e-6 442 21 0.0063037984 1e-6 443 21 0.0030749999 1e-6 444 21 0.0070725977 1e-6 445 21 0.0047662966 1e-6 446 21 0.0004612999 1e-6 447 21 0.0044588 1e-6 450 21 0.0007687998 1e-6 452 21 0.029520299 1e-6 453 21 0.0035362998 1e-6 454 21 0.0024599999 1e-6 455 21 0.019372698 1e-6 456 21 0.00061499979 1e-6 457 21 0.011377599 1e-6 458 21 0.0041512996 1e-6 459 21 0.0069187991 1e-6 460 21 0.0052275993 1e-6 463 21 0.0435117 1e-6 464 21 0.0027674998 1e-6 465 21 0.00061499979 1e-6 467 21 0.023216497 1e-6 468 21 0.0010762999 1e-6 469 21 0.0018449998 1e-6 470 21 0.0012299998 1e-6 471 21 0.0033824998 1e-6 477 21 0.0007687998 1e-6 478 21 0.0010762999 1e-6 483 21 0.0013837998 1e-6 489 21 0.00061499979 1e-6 490 21 0.00015379999 1e-6 491 21 0.0047662966 1e-6 19 22 0.00029419991 1e-6 22 22 0.12051398 1e-6 60 22 0.0083099976 1e-6 82 22 1.8399995e-05 1e-6 108 22 1.8399995e-05 1e-6 114 22 1.8399995e-05 1e-6 126 22 1.8399995e-05 1e-6 130 22 0.0020774999 1e-6 150 22 0.00071699987 1e-6 159 22 0.0068943985 1e-6 189 22 1.8399995e-05 1e-6 190 22 9.1899987e-05 1e-6 192 22 1.8399995e-05 1e-6 193 22 0.0022796998 1e-6 194 22 1.8399995e-05 1e-6 200 22 1.8399995e-05 1e-6 203 22 1.8399995e-05 1e-6 204 22 3.6799989e-05 1e-6 206 22 5.5199998e-05 1e-6 207 22 1.8399995e-05 1e-6 214 22 0.00051479996 1e-6 215 22 0.0025738999 1e-6 220 22 0.0070965998 1e-6 223 22 3.6799989e-05 1e-6 234 22 0.014395498 1e-6 237 22 0.0050558969 1e-6 242 22 0.0036401998 1e-6 252 22 3.6799989e-05 1e-6 264 22 0.00049639982 1e-6 265 22 0.0012502 1e-6 267 22 0.00012869999 1e-6 272 22 5.5199998e-05 1e-6 273 22 0.0029048 1e-6 277 22 0.0097991973 1e-6 282 22 1.8399995e-05 1e-6 284 22 1.8399995e-05 1e-6 295 22 0.0026841999 1e-6 305 22 1.8399995e-05 1e-6 312 22 0.012299597 1e-6 317 22 0.00029419991 1e-6 322 22 0.0033276998 1e-6 328 22 0.0015626999 1e-6 331 22 0.031125899 1e-6 332 22 0.016270798 1e-6 335 22 0.0027760998 1e-6 340 22 0.00018389999 1e-6 352 22 0.00068019982 1e-6 356 22 0.00034929998 1e-6 358 22 0.00064349989 1e-6 372 22 0.00049639982 1e-6 374 22 5.5199998e-05 1e-6 384 22 0.0001103 1e-6 385 22 0.0020223998 1e-6 387 22 1.8399995e-05 1e-6 394 22 3.6799989e-05 1e-6 397 22 3.6799989e-05 1e-6 402 22 0.00022059999 1e-6 417 22 0.00012869999 1e-6 422 22 1.8399995e-05 1e-6 430 22 1.8399995e-05 1e-6 433 22 1.8399995e-05 1e-6 434 22 1.8399995e-05 1e-6 442 22 0.00068019982 1e-6 443 22 0.0030334999 1e-6 444 22 0.00022059999 1e-6 445 22 0.0035299 1e-6 446 22 0.00047799991 1e-6 447 22 0.0022429998 1e-6 448 22 0.00018389999 1e-6 450 22 0.00093759992 1e-6 452 22 0.019524898 1e-6 453 22 0.0001103 1e-6 454 22 0.00055159978 1e-6 455 22 0.030004397 1e-6 456 22 0.00064349989 1e-6 457 22 0.0031989999 1e-6 458 22 9.1899987e-05 1e-6 459 22 0.00080889999 1e-6 460 22 0.0025370999 1e-6 463 22 0.041090596 1e-6 464 22 9.1899987e-05 1e-6 465 22 0.00064349989 1e-6 467 22 0.022742298 1e-6 468 22 0.0010478999 1e-6 469 22 0.0025922998 1e-6 470 22 0.0013052998 1e-6 471 22 0.0035850999 1e-6 473 22 3.6799989e-05 1e-6 477 22 0.00027579977 1e-6 478 22 0.0009192999 1e-6 483 22 0.0005698998 1e-6 489 22 0.00027579977 1e-6 490 22 0.0001103 1e-6 491 22 0.0050926991 1e-6 9 23 1.7899991e-05 1e-6 16 23 5.9999993e-06 1e-6 21 23 2.3899993e-05 1e-6 22 23 5.9999993e-06 1e-6 23 23 0.033729199 1e-6 24 23 3.5899997e-05 1e-6 25 23 5.9999993e-06 1e-6 60 23 0.0041899979 1e-6 66 23 4.1799998e-05 1e-6 74 23 0.036938999 1e-6 79 23 5.9999993e-06 1e-6 82 23 2.3899993e-05 1e-6 83 23 2.3899993e-05 1e-6 84 23 1.7899991e-05 1e-6 108 23 2.9899995e-05 1e-6 113 23 4.1799998e-05 1e-6 114 23 9.5599986e-05 1e-6 126 23 4.7799986e-05 1e-6 127 23 5.9999993e-06 1e-6 150 23 0.0001255 1e-6 189 23 4.1799998e-05 1e-6 190 23 2.3899993e-05 1e-6 192 23 1.2e-05 1e-6 194 23 1.7899991e-05 1e-6 196 23 5.9999993e-06 1e-6 197 23 1.2e-05 1e-6 200 23 2.3899993e-05 1e-6 201 23 1.2e-05 1e-6 203 23 1.7899991e-05 1e-6 204 23 1.7899991e-05 1e-6 206 23 3.5899997e-05 1e-6 207 23 1.2e-05 1e-6 209 23 5.9999993e-06 1e-6 214 23 0.0043453984 1e-6 215 23 5.9999993e-06 1e-6 223 23 0.0021098999 1e-6 233 23 0.00019129999 1e-6 234 23 0.0036699998 1e-6 237 23 0.0002331 1e-6 241 23 1.2e-05 1e-6 242 23 5.9999993e-06 1e-6 248 23 1.7899991e-05 1e-6 250 23 1.2e-05 1e-6 251 23 5.9999993e-06 1e-6 252 23 0.0002331 1e-6 254 23 0.0001255 1e-6 263 23 5.9999993e-06 1e-6 272 23 8.3699997e-05 1e-6 277 23 0.006281998 1e-6 281 23 0.00028689997 1e-6 287 23 5.9999993e-06 1e-6 307 23 0.00093839993 1e-6 311 23 2.3899993e-05 1e-6 317 23 5.9999993e-06 1e-6 319 23 0.0001853 1e-6 324 23 0.0032754999 1e-6 326 23 0.0010758999 1e-6 328 23 0.0025462999 1e-6 331 23 0.00053789979 1e-6 333 23 0.0060369968 1e-6 340 23 0.00016739999 1e-6 349 23 5.9999993e-06 1e-6 350 23 0.0024924998 1e-6 351 23 0.0001375 1e-6 354 23 0.0010519999 1e-6 356 23 0.00039449986 1e-6 358 23 0.0041301996 1e-6 369 23 0.00028089993 1e-6 370 23 0.0004482998 1e-6 372 23 0.0051223971 1e-6 374 23 0.00094439997 1e-6 380 23 5.9999993e-06 1e-6 385 23 0.0002331 1e-6 386 23 0.00010159999 1e-6 387 23 3.5899997e-05 1e-6 390 23 0.00016139999 1e-6 394 23 1.7899991e-05 1e-6 397 23 1.7899991e-05 1e-6 402 23 0.00010759999 1e-6 404 23 0.0001853 1e-6 414 23 0.00047819992 1e-6 419 23 5.9999993e-06 1e-6 422 23 2.9899995e-05 1e-6 423 23 1.2e-05 1e-6 425 23 5.9999993e-06 1e-6 430 23 2.3899993e-05 1e-6 431 23 5.9999993e-06 1e-6 432 23 5.9999993e-06 1e-6 433 23 1.2e-05 1e-6 434 23 1.2e-05 1e-6 442 23 0.0002271 1e-6 443 23 0.00059169997 1e-6 444 23 0.0005857998 1e-6 445 23 0.0013149998 1e-6 446 23 0.0001733 1e-6 447 23 0.0033053998 1e-6 448 23 7.7699995e-05 1e-6 449 23 1.2e-05 1e-6 450 23 0.0026000999 1e-6 452 23 0.0088342987 1e-6 453 23 0.0029348 1e-6 454 23 0.0021756999 1e-6 455 23 0.0046322979 1e-6 456 23 0.00054389983 1e-6 457 23 0.0033710999 1e-6 458 23 8.9699999e-05 1e-6 459 23 0.00082489988 1e-6 460 23 0.0020740998 1e-6 463 23 0.15183824 1e-6 464 23 0.00059769978 1e-6 465 23 0.00030479999 1e-6 467 23 0.014524497 1e-6 468 23 0.00026299991 1e-6 469 23 0.007280197 1e-6 470 23 0.0056543984 1e-6 471 23 0.0014344999 1e-6 473 23 0.00010159999 1e-6 477 23 1.7899991e-05 1e-6 478 23 0.00035859994 1e-6 483 23 0.00055589993 1e-6 489 23 0.00039449986 1e-6 490 23 0.00035859994 1e-6 491 23 5.3799988e-05 1e-6 22 24 0.0014771998 1e-6 24 24 0.025145996 1e-6 25 24 3.4399985e-05 1e-6 60 24 0.0065956973 1e-6 108 24 3.4399985e-05 1e-6 114 24 6.8699999e-05 1e-6 126 24 3.4399985e-05 1e-6 150 24 0.00072139991 1e-6 160 24 6.8699999e-05 1e-6 169 24 0.0002061 1e-6 171 24 3.4399985e-05 1e-6 190 24 0.0001374 1e-6 191 24 3.4399985e-05 1e-6 192 24 0.0001374 1e-6 193 24 0.0040535964 1e-6 194 24 0.0001031 1e-6 197 24 3.4399985e-05 1e-6 198 24 0.0001374 1e-6 200 24 6.8699999e-05 1e-6 203 24 6.8699999e-05 1e-6 204 24 6.8699999e-05 1e-6 206 24 0.0001374 1e-6 207 24 3.4399985e-05 1e-6 214 24 0.0023015998 1e-6 215 24 0.0015115 1e-6 218 24 3.4399985e-05 1e-6 220 24 0.009275198 1e-6 223 24 0.0002748 1e-6 231 24 0.0001718 1e-6 233 24 6.8699999e-05 1e-6 234 24 0.030951597 1e-6 235 24 0.0001031 1e-6 237 24 0.0067673996 1e-6 240 24 0.00034349994 1e-6 241 24 0.0002061 1e-6 242 24 0.0021986 1e-6 252 24 0.0001374 1e-6 254 24 0.0083132982 1e-6 266 24 0.0002061 1e-6 267 24 3.4399985e-05 1e-6 269 24 3.4399985e-05 1e-6 270 24 0.0001031 1e-6 272 24 0.00061829994 1e-6 273 24 0.00037789997 1e-6 276 24 3.4399985e-05 1e-6 277 24 0.011954699 1e-6 282 24 0.0089659989 1e-6 283 24 0.00079009985 1e-6 289 24 0.00079009985 1e-6 292 24 0.00030919979 1e-6 295 24 0.0015801999 1e-6 297 24 0.0009961999 1e-6 300 24 3.4399985e-05 1e-6 301 24 3.4399985e-05 1e-6 305 24 0.0012367 1e-6 307 24 0.00037789997 1e-6 312 24 0.0018206998 1e-6 317 24 0.0002748 1e-6 322 24 0.0071452968 1e-6 326 24 3.4399985e-05 1e-6 328 24 0.011130199 1e-6 331 24 0.020336699 1e-6 332 24 0.015218098 1e-6 335 24 0.0041909963 1e-6 336 24 0.0029199999 1e-6 337 24 0.0014771998 1e-6 341 24 6.8699999e-05 1e-6 350 24 0.0002405 1e-6 351 24 0.0018549999 1e-6 352 24 0.00034349994 1e-6 354 24 0.0020611 1e-6 356 24 0.00048089982 1e-6 358 24 0.00085879979 1e-6 371 24 0.0001031 1e-6 372 24 0.0012023 1e-6 373 24 3.4399985e-05 1e-6 374 24 0.0002061 1e-6 384 24 0.0001031 1e-6 386 24 0.00030919979 1e-6 387 24 3.4399985e-05 1e-6 394 24 0.0001031 1e-6 397 24 6.8699999e-05 1e-6 402 24 0.0059772991 1e-6 422 24 0.0001031 1e-6 433 24 3.4399985e-05 1e-6 434 24 3.4399985e-05 1e-6 438 24 3.4399985e-05 1e-6 442 24 0.0012023 1e-6 443 24 0.0036413998 1e-6 444 24 0.0017519998 1e-6 445 24 0.009275198 1e-6 446 24 0.0012709999 1e-6 447 24 0.0022328999 1e-6 448 24 0.00044659991 1e-6 450 24 0.0012709999 1e-6 452 24 0.025523897 1e-6 453 24 0.0073857978 1e-6 454 24 0.0037101 1e-6 455 24 0.0282721 1e-6 456 24 0.0018549999 1e-6 457 24 0.0065269992 1e-6 458 24 0.0002748 1e-6 459 24 0.0027137999 1e-6 460 24 0.004637599 1e-6 463 24 0.0366541 1e-6 464 24 0.0012023 1e-6 465 24 0.00085879979 1e-6 467 24 0.0297492 1e-6 468 24 0.0016832999 1e-6 469 24 0.0038130998 1e-6 470 24 0.0011679998 1e-6 471 24 0.0098247975 1e-6 473 24 3.4399985e-05 1e-6 477 24 3.4399985e-05 1e-6 478 24 0.0012367 1e-6 483 24 0.00054959999 1e-6 489 24 0.00092749996 1e-6 490 24 0.0001031 1e-6 491 24 0.0042253993 1e-6 22 25 0.0014227999 1e-6 24 25 0.017073199 1e-6 25 25 0.032520298 1e-6 60 25 0.011788599 1e-6 104 25 0.00020329999 1e-6 114 25 0.00020329999 1e-6 126 25 0.00020329999 1e-6 130 25 0.00060979999 1e-6 160 25 0.0008129999 1e-6 190 25 0.00020329999 1e-6 193 25 0.0028454999 1e-6 194 25 0.00020329999 1e-6 206 25 0.00020329999 1e-6 214 25 0.015243899 1e-6 218 25 0.00060979999 1e-6 220 25 0.0044714995 1e-6 223 25 0.0012194999 1e-6 231 25 0.00020329999 1e-6 234 25 0.016869899 1e-6 237 25 0.0028454999 1e-6 240 25 0.00020329999 1e-6 242 25 0.00040649995 1e-6 252 25 0.00020329999 1e-6 257 25 0.00020329999 1e-6 272 25 0.00020329999 1e-6 277 25 0.017886199 1e-6 282 25 0.0028454999 1e-6 283 25 0.0024389999 1e-6 292 25 0.00060979999 1e-6 295 25 0.00060979999 1e-6 297 25 0.00020329999 1e-6 305 25 0.0020325 1e-6 308 25 0.00020329999 1e-6 312 25 0.0071137995 1e-6 322 25 0.0022357998 1e-6 328 25 0.0079267994 1e-6 331 25 0.013821099 1e-6 332 25 0.0097560994 1e-6 333 25 0.00020329999 1e-6 335 25 0.0008129999 1e-6 336 25 0.0020325 1e-6 337 25 0.0012194999 1e-6 350 25 0.0008129999 1e-6 351 25 0.00060979999 1e-6 352 25 0.0008129999 1e-6 354 25 0.0010162999 1e-6 356 25 0.0010162999 1e-6 371 25 0.00040649995 1e-6 372 25 0.0016259998 1e-6 374 25 0.00060979999 1e-6 384 25 0.00020329999 1e-6 394 25 0.00020329999 1e-6 402 25 0.0020325 1e-6 408 25 0.00060979999 1e-6 442 25 0.0054877996 1e-6 443 25 0.0065040998 1e-6 444 25 0.0044714995 1e-6 445 25 0.0032519998 1e-6 446 25 0.00060979999 1e-6 447 25 0.0038617998 1e-6 448 25 0.00020329999 1e-6 450 25 0.0014227999 1e-6 452 25 0.038008098 1e-6 453 25 0.041260198 1e-6 454 25 0.0091462992 1e-6 455 25 0.014837399 1e-6 456 25 0.0014227999 1e-6 457 25 0.015447199 1e-6 458 25 0.00020329999 1e-6 459 25 0.0014227999 1e-6 460 25 0.0018292998 1e-6 463 25 0.045934997 1e-6 464 25 0.00060979999 1e-6 465 25 0.00040649995 1e-6 467 25 0.034349598 1e-6 468 25 0.0010162999 1e-6 469 25 0.0022357998 1e-6 470 25 0.0022357998 1e-6 471 25 0.0063007995 1e-6 473 25 0.00020329999 1e-6 478 25 0.0010162999 1e-6 483 25 0.0034552999 1e-6 489 25 0.0014227999 1e-6 490 25 0.00020329999 1e-6 491 25 0.0052846 1e-6 7 26 0.00024609989 1e-6 9 26 2.0499996e-05 1e-6 16 26 0.0015481999 1e-6 17 26 3.3999995e-06 1e-6 18 26 0.0011995998 1e-6 24 26 0.0024024998 1e-6 60 26 0.00048529985 1e-6 79 26 1.7099999e-05 1e-6 80 26 2.729999e-05 1e-6 82 26 3.7599995e-05 1e-6 83 26 2.729999e-05 1e-6 84 26 2.729999e-05 1e-6 108 26 3.7599995e-05 1e-6 113 26 4.4399989e-05 1e-6 114 26 0.00015379999 1e-6 126 26 7.1799994e-05 1e-6 127 26 1.0299999e-05 1e-6 134 26 0.010697 1e-6 135 26 0.00015379999 1e-6 139 26 0.0018010999 1e-6 141 26 2.729999e-05 1e-6 142 26 0.0001162 1e-6 150 26 0.00012299999 1e-6 154 26 2.3899993e-05 1e-6 160 26 0.051157497 1e-6 161 26 0.0011312 1e-6 162 26 0.0035849998 1e-6 163 26 0.038553499 1e-6 164 26 0.0095007978 1e-6 165 26 0.024753399 1e-6 167 26 0.023434199 1e-6 168 26 2.3899993e-05 1e-6 170 26 0.00059119985 1e-6 171 26 0.0032124999 1e-6 177 26 0.0012063999 1e-6 182 26 0.0015207999 1e-6 189 26 3.7599995e-05 1e-6 191 26 0.0027818999 1e-6 192 26 0.00058439979 1e-6 194 26 4.0999992e-05 1e-6 195 26 3.0799987e-05 1e-6 196 26 6.7999999e-06 1e-6 197 26 0.001432 1e-6 198 26 4.4399989e-05 1e-6 201 26 3.0799987e-05 1e-6 203 26 4.7799986e-05 1e-6 204 26 7.1799994e-05 1e-6 206 26 0.0001504 1e-6 207 26 3.7599995e-05 1e-6 209 26 1.37e-05 1e-6 214 26 0.0002153 1e-6 215 26 0.00011959999 1e-6 218 26 1.7099999e-05 1e-6 219 26 0.00026999996 1e-6 223 26 0.00023919999 1e-6 233 26 0.0032295999 1e-6 234 26 0.00068689999 1e-6 235 26 0.00024949992 1e-6 236 26 0.0061754994 1e-6 237 26 0.0013601999 1e-6 240 26 0.00090909982 1e-6 241 26 0.0094802976 1e-6 242 26 0.00021869999 1e-6 248 26 3.0799987e-05 1e-6 250 26 1.37e-05 1e-6 251 26 6.7999999e-06 1e-6 252 26 0.0011586 1e-6 254 26 0.0029424999 1e-6 255 26 0.0065069981 1e-6 256 26 0.0031817998 1e-6 257 26 0.00080649997 1e-6 258 26 0.0017497998 1e-6 259 26 0.0032090999 1e-6 263 26 3.3999995e-06 1e-6 264 26 0.010167297 1e-6 265 26 0.0019172998 1e-6 266 26 0.0312468 1e-6 267 26 9.229999e-05 1e-6 268 26 0.0056013986 1e-6 269 26 0.0021940998 1e-6 270 26 4.7799986e-05 1e-6 271 26 0.0014079998 1e-6 272 26 8.8899993e-05 1e-6 273 26 0.00046139979 1e-6 274 26 0.0028126999 1e-6 277 26 0.0026348999 1e-6 279 26 0.0020915 1e-6 282 26 0.0013020998 1e-6 285 26 3.0799987e-05 1e-6 292 26 0.0030109 1e-6 293 26 4.7799986e-05 1e-6 295 26 0.0049144998 1e-6 302 26 0.0050374977 1e-6 303 26 0.004220698 1e-6 304 26 0.0028331999 1e-6 305 26 2.0499996e-05 1e-6 306 26 0.015512299 1e-6 307 26 0.0004784998 1e-6 308 26 0.01055 1e-6 309 26 0.00057069981 1e-6 310 26 0.00022209999 1e-6 311 26 0.0017497998 1e-6 312 26 0.0001299 1e-6 317 26 0.0024913999 1e-6 318 26 7.5199991e-05 1e-6 319 26 0.0058884993 1e-6 322 26 0.0011687998 1e-6 323 26 6.7999999e-06 1e-6 324 26 0.00042379997 1e-6 326 26 3.3999995e-06 1e-6 331 26 0.0014524998 1e-6 341 26 0.00020509999 1e-6 350 26 0.0020949999 1e-6 352 26 0.00039639999 1e-6 356 26 4.0999992e-05 1e-6 358 26 0.00016059999 1e-6 363 26 3.3999995e-06 1e-6 366 26 0.012026399 1e-6 368 26 0.00056389999 1e-6 371 26 0.0032398999 1e-6 374 26 6.7999999e-06 1e-6 380 26 0.0010799998 1e-6 383 26 0.0015207999 1e-6 384 26 3.7599995e-05 1e-6 385 26 0.0040019974 1e-6 386 26 0.0019479999 1e-6 387 26 6.8399997e-05 1e-6 390 26 0.00065279985 1e-6 394 26 0.0001333 1e-6 397 26 3.3999995e-06 1e-6 398 26 0.00053659989 1e-6 402 26 0.00028019981 1e-6 412 26 6.7999999e-06 1e-6 414 26 1.0299999e-05 1e-6 415 26 0.0013840999 1e-6 419 26 1.0299999e-05 1e-6 422 26 0.0001948 1e-6 423 26 2.3899993e-05 1e-6 425 26 1.0299999e-05 1e-6 430 26 3.4199998e-05 1e-6 431 26 2.3899993e-05 1e-6 432 26 1.0299999e-05 1e-6 433 26 2.729999e-05 1e-6 434 26 3.0799987e-05 1e-6 438 26 0.00026659993 1e-6 439 26 0.0014729998 1e-6 441 26 6.7999999e-06 1e-6 442 26 3.3999995e-06 1e-6 443 26 0.010608099 1e-6 444 26 0.00020509999 1e-6 445 26 0.0136429 1e-6 446 26 0.0016814 1e-6 447 26 0.0010115998 1e-6 448 26 3.3999995e-06 1e-6 449 26 1.37e-05 1e-6 450 26 0.0049417987 1e-6 452 26 0.00074499985 1e-6 453 26 8.8899993e-05 1e-6 454 26 0.0014660999 1e-6 455 26 0.046813797 1e-6 456 26 0.059373397 1e-6 457 26 0.0051946975 1e-6 458 26 0.00037929998 1e-6 459 26 2.729999e-05 1e-6 460 26 0.0038002999 1e-6 463 26 0.010515798 1e-6 464 26 0.00026319991 1e-6 465 26 0.00015719999 1e-6 467 26 0.012781698 1e-6 468 26 0.00077919988 1e-6 469 26 0.033734798 1e-6 470 26 0.0076621994 1e-6 471 26 0.0042445995 1e-6 473 26 0.00017429999 1e-6 477 26 5.1299998e-05 1e-6 478 26 0.00086119981 1e-6 483 26 0.00054679997 1e-6 489 26 9.9099998e-05 1e-6 490 26 0.00061519979 1e-6 491 26 0.00019139999 1e-6 7 27 0.00040699984 1e-6 16 27 0.0021831999 1e-6 18 27 0.0016281998 1e-6 24 27 0.0034043998 1e-6 60 27 0.00014799999 1e-6 80 27 7.3999996e-05 1e-6 108 27 3.6999991e-05 1e-6 113 27 3.6999991e-05 1e-6 114 27 7.3999996e-05 1e-6 126 27 3.6999991e-05 1e-6 134 27 0.011175297 1e-6 135 27 0.00014799999 1e-6 139 27 0.0010730999 1e-6 141 27 3.6999991e-05 1e-6 142 27 7.3999996e-05 1e-6 150 27 3.6999991e-05 1e-6 154 27 7.3999996e-05 1e-6 160 27 0.033488799 1e-6 161 27 0.00070309988 1e-6 162 27 0.0018871999 1e-6 163 27 0.026161898 1e-6 164 27 0.0076228976 1e-6 165 27 0.021869399 1e-6 167 27 0.0045144968 1e-6 168 27 0.00048109982 1e-6 170 27 0.00055509992 1e-6 171 27 0.0026642999 1e-6 177 27 0.00099909981 1e-6 182 27 0.0012210999 1e-6 191 27 0.0023312999 1e-6 192 27 0.00055509992 1e-6 195 27 0.00040699984 1e-6 197 27 0.00096209999 1e-6 198 27 3.6999991e-05 1e-6 206 27 7.3999996e-05 1e-6 214 27 0.00029599993 1e-6 215 27 0.00011099999 1e-6 219 27 0.0017392 1e-6 223 27 0.00036999979 1e-6 233 27 0.0055875964 1e-6 234 27 0.0017392 1e-6 235 27 0.0014062 1e-6 236 27 0.0037743999 1e-6 237 27 0.0010360999 1e-6 240 27 0.00092509994 1e-6 241 27 0.0099540986 1e-6 242 27 0.000185 1e-6 252 27 0.00085109985 1e-6 254 27 0.0026642999 1e-6 255 27 0.0043294989 1e-6 256 27 0.0021092 1e-6 257 27 0.00059209997 1e-6 258 27 0.0012951 1e-6 259 27 0.0022201999 1e-6 262 27 3.6999991e-05 1e-6 264 27 0.0068827979 1e-6 265 27 0.0042554997 1e-6 266 27 0.025939897 1e-6 267 27 0.00025899988 1e-6 268 27 0.0059946999 1e-6 269 27 0.0013320998 1e-6 270 27 3.6999991e-05 1e-6 271 27 0.0023683 1e-6 272 27 7.3999996e-05 1e-6 273 27 0.00029599993 1e-6 274 27 0.0027382998 1e-6 277 27 0.0046254992 1e-6 279 27 0.0016651999 1e-6 282 27 0.0019611998 1e-6 285 27 0.00014799999 1e-6 292 27 0.0025902998 1e-6 293 27 0.00011099999 1e-6 295 27 0.0052175969 1e-6 302 27 0.0028122999 1e-6 303 27 0.0038113999 1e-6 304 27 0.0027013 1e-6 305 27 0.00025899988 1e-6 306 27 0.016577899 1e-6 307 27 0.00048109982 1e-6 308 27 0.0099910982 1e-6 309 27 0.0017021999 1e-6 310 27 0.00022199999 1e-6 311 27 0.0028863 1e-6 312 27 0.00025899988 1e-6 317 27 0.00092509994 1e-6 318 27 3.6999991e-05 1e-6 319 27 0.0049955994 1e-6 322 27 0.0017761998 1e-6 324 27 0.00044399989 1e-6 331 27 0.0010730999 1e-6 334 27 0.00025899988 1e-6 341 27 7.3999996e-05 1e-6 350 27 0.0030713 1e-6 352 27 0.0010730999 1e-6 356 27 7.3999996e-05 1e-6 358 27 3.6999991e-05 1e-6 366 27 0.013173498 1e-6 368 27 0.0011470998 1e-6 371 27 0.0042554997 1e-6 380 27 0.0012951 1e-6 381 27 0.0012210999 1e-6 383 27 0.0017761998 1e-6 384 27 0.00011099999 1e-6 385 27 0.0032933999 1e-6 386 27 0.0027382998 1e-6 387 27 3.6999991e-05 1e-6 390 27 0.00066609983 1e-6 394 27 7.3999996e-05 1e-6 398 27 0.00040699984 1e-6 402 27 0.00025899988 1e-6 415 27 0.0012951 1e-6 422 27 3.6999991e-05 1e-6 430 27 3.6999991e-05 1e-6 438 27 0.00025899988 1e-6 439 27 0.00096209999 1e-6 441 27 3.6999991e-05 1e-6 443 27 0.0071787983 1e-6 444 27 7.3999996e-05 1e-6 445 27 0.013617497 1e-6 446 27 0.00085109985 1e-6 447 27 0.00036999979 1e-6 450 27 0.0016651999 1e-6 452 27 0.00025899988 1e-6 453 27 3.6999991e-05 1e-6 454 27 0.00048109982 1e-6 455 27 0.037374198 1e-6 456 27 0.045145098 1e-6 457 27 0.0017392 1e-6 458 27 0.00022199999 1e-6 460 27 0.0022942999 1e-6 463 27 0.0035523998 1e-6 464 27 7.3999996e-05 1e-6 465 27 3.6999991e-05 1e-6 467 27 0.008547999 1e-6 468 27 0.00025899988 1e-6 469 27 0.065201283 1e-6 470 27 0.0025902998 1e-6 471 27 0.0027752998 1e-6 473 27 7.3999996e-05 1e-6 478 27 0.00029599993 1e-6 483 27 0.000185 1e-6 489 27 3.6999991e-05 1e-6 490 27 0.00022199999 1e-6 491 27 0.00014799999 1e-6 7 28 0.00049079978 1e-6 9 28 8.2999995e-06 1e-6 16 28 0.0028199998 1e-6 18 28 0.0021046 1e-6 24 28 0.0045419969 1e-6 60 28 0.00010809999 1e-6 80 28 7.4899988e-05 1e-6 82 28 8.2999995e-06 1e-6 83 28 8.2999995e-06 1e-6 84 28 8.2999995e-06 1e-6 108 28 1.6599995e-05 1e-6 113 28 1.6599995e-05 1e-6 114 28 3.3299992e-05 1e-6 126 28 2.4999987e-05 1e-6 127 28 8.2999995e-06 1e-6 134 28 0.012502898 1e-6 135 28 0.00019129999 1e-6 139 28 0.00054899999 1e-6 141 28 2.4999987e-05 1e-6 142 28 4.1599997e-05 1e-6 150 28 3.3299992e-05 1e-6 154 28 9.1499998e-05 1e-6 159 28 8.2999995e-06 1e-6 160 28 0.0223605 1e-6 161 28 0.00031609996 1e-6 162 28 0.00069879997 1e-6 163 28 0.018567197 1e-6 164 28 0.013417996 1e-6 165 28 0.021229196 1e-6 167 28 0.0083601996 1e-6 168 28 0.0009066998 1e-6 170 28 0.00054069981 1e-6 171 28 0.0023873998 1e-6 177 28 0.0017386 1e-6 182 28 0.0021627999 1e-6 183 28 1.6599995e-05 1e-6 189 28 8.2999995e-06 1e-6 191 28 0.0021378999 1e-6 192 28 0.00049909996 1e-6 194 28 8.2999995e-06 1e-6 195 28 0.0007487 1e-6 197 28 0.00069879997 1e-6 198 28 3.3299992e-05 1e-6 201 28 8.2999995e-06 1e-6 203 28 8.2999995e-06 1e-6 204 28 1.6599995e-05 1e-6 206 28 4.1599997e-05 1e-6 207 28 8.2999995e-06 1e-6 214 28 0.00029119989 1e-6 215 28 0.00010809999 1e-6 218 28 2.4999987e-05 1e-6 219 28 0.0021545 1e-6 220 28 8.2999995e-06 1e-6 223 28 0.00048249983 1e-6 233 28 0.0054736994 1e-6 234 28 0.0026868999 1e-6 235 28 0.0023624999 1e-6 236 28 0.0021627999 1e-6 237 28 0.00064049987 1e-6 240 28 0.00092339981 1e-6 241 28 0.010914098 1e-6 242 28 0.000183 1e-6 248 28 8.2999995e-06 1e-6 250 28 8.2999995e-06 1e-6 252 28 0.00066549983 1e-6 254 28 0.0025787998 1e-6 255 28 0.0029281999 1e-6 256 28 0.0012643998 1e-6 257 28 0.00049079978 1e-6 258 28 0.00095659983 1e-6 259 28 0.0015472998 1e-6 262 28 7.4899988e-05 1e-6 264 28 0.0048413984 1e-6 265 28 0.0064219981 1e-6 266 28 0.023990899 1e-6 267 28 0.00034939987 1e-6 268 28 0.0068461969 1e-6 269 28 0.00059059984 1e-6 270 28 2.4999987e-05 1e-6 271 28 0.0028948998 1e-6 272 28 7.4899988e-05 1e-6 273 28 0.00019129999 1e-6 274 28 0.0030029998 1e-6 277 28 0.0063969977 1e-6 279 28 0.0014308 1e-6 282 28 0.0026785999 1e-6 285 28 0.00014969999 1e-6 292 28 0.0025121998 1e-6 293 28 0.0001581 1e-6 295 28 0.0057481974 1e-6 302 28 0.0021046 1e-6 303 28 0.0046583973 1e-6 304 28 0.0027700998 1e-6 305 28 0.00031609996 1e-6 306 28 0.018883299 1e-6 307 28 0.00045749987 1e-6 308 28 0.020472199 1e-6 309 28 0.0026452998 1e-6 310 28 0.00025789998 1e-6 311 28 0.0038681999 1e-6 312 28 0.0003992999 1e-6 317 28 0.00057399995 1e-6 318 28 1.6599995e-05 1e-6 319 28 0.004724998 1e-6 322 28 0.0022127999 1e-6 324 28 0.00048249983 1e-6 331 28 0.00066549983 1e-6 334 28 0.00044089998 1e-6 335 28 8.2999995e-06 1e-6 341 28 4.1599997e-05 1e-6 350 28 0.004009597 1e-6 352 28 0.0013392998 1e-6 356 28 0.00014969999 1e-6 358 28 4.1599997e-05 1e-6 366 28 0.011454798 1e-6 368 28 0.0014640999 1e-6 371 28 0.0054736994 1e-6 374 28 2.4999987e-05 1e-6 380 28 0.0015305998 1e-6 383 28 0.0020879998 1e-6 384 28 0.0001581 1e-6 385 28 0.0029447998 1e-6 386 28 0.0034605998 1e-6 387 28 1.6599995e-05 1e-6 390 28 0.00074039982 1e-6 394 28 4.1599997e-05 1e-6 397 28 8.2999995e-06 1e-6 398 28 0.00032439991 1e-6 402 28 0.00016639999 1e-6 412 28 8.2999995e-06 1e-6 414 28 8.2999995e-06 1e-6 415 28 0.0013059999 1e-6 419 28 3.3299992e-05 1e-6 422 28 4.9899987e-05 1e-6 423 28 8.2999995e-06 1e-6 425 28 8.2999995e-06 1e-6 430 28 1.6599995e-05 1e-6 431 28 8.2999995e-06 1e-6 433 28 8.2999995e-06 1e-6 434 28 8.2999995e-06 1e-6 438 28 0.00029119989 1e-6 439 28 0.00041589979 1e-6 441 28 6.6499997e-05 1e-6 443 28 0.0068212971 1e-6 444 28 4.9899987e-05 1e-6 445 28 0.017810199 1e-6 446 28 0.00080689997 1e-6 447 28 0.0003992999 1e-6 448 28 8.2999995e-06 1e-6 450 28 0.0011063998 1e-6 452 28 0.00016639999 1e-6 453 28 1.6599995e-05 1e-6 454 28 0.00033269986 1e-6 455 28 0.0379912 1e-6 456 28 0.041984197 1e-6 457 28 0.0011562998 1e-6 458 28 0.00013309999 1e-6 460 28 0.0017551999 1e-6 463 28 0.0023542 1e-6 464 28 5.8199992e-05 1e-6 465 28 3.3299992e-05 1e-6 467 28 0.0056566969 1e-6 468 28 0.00017469999 1e-6 469 28 0.060168698 1e-6 470 28 0.0017135998 1e-6 471 28 0.0017718999 1e-6 473 28 4.1599997e-05 1e-6 477 28 8.2999995e-06 1e-6 478 28 0.00019129999 1e-6 483 28 0.0001165 1e-6 489 28 2.4999987e-05 1e-6 490 28 0.0001414 1e-6 491 28 6.6499997e-05 1e-6 7 29 0.00025089993 1e-6 9 29 2.5099987e-05 1e-6 16 29 0.0013299999 1e-6 18 29 0.0010038 1e-6 24 29 0.0021329999 1e-6 60 29 0.00030109985 1e-6 80 29 0.00022579999 1e-6 82 29 2.5099987e-05 1e-6 83 29 2.5099987e-05 1e-6 84 29 2.5099987e-05 1e-6 108 29 5.0199989e-05 1e-6 113 29 5.0199989e-05 1e-6 114 29 0.00010039999 1e-6 126 29 7.5299991e-05 1e-6 127 29 2.5099987e-05 1e-6 139 29 0.00030109985 1e-6 141 29 5.0199989e-05 1e-6 142 29 2.5099987e-05 1e-6 150 29 0.00010039999 1e-6 154 29 0.00010039999 1e-6 160 29 0.0070262998 1e-6 161 29 0.00087829982 1e-6 162 29 2.5099987e-05 1e-6 163 29 0.0124969 1e-6 164 29 0.0074528977 1e-6 165 29 0.0085821971 1e-6 168 29 0.00022579999 1e-6 170 29 0.00022579999 1e-6 171 29 0.0026850998 1e-6 177 29 0.00097869989 1e-6 182 29 0.0012546999 1e-6 183 29 2.5099987e-05 1e-6 189 29 2.5099987e-05 1e-6 191 29 0.00020079999 1e-6 192 29 0.00032619992 1e-6 194 29 2.5099987e-05 1e-6 197 29 0.0011292 1e-6 198 29 5.0199989e-05 1e-6 201 29 2.5099987e-05 1e-6 203 29 2.5099987e-05 1e-6 204 29 5.0199989e-05 1e-6 206 29 0.0001255 1e-6 207 29 2.5099987e-05 1e-6 214 29 7.5299991e-05 1e-6 215 29 7.5299991e-05 1e-6 219 29 0.0030866 1e-6 223 29 0.0003513 1e-6 233 29 0.0041655973 1e-6 234 29 0.0017064 1e-6 235 29 0.0010038 1e-6 236 29 0.00037639984 1e-6 237 29 0.00095359981 1e-6 240 29 0.0008280999 1e-6 241 29 0.00040149991 1e-6 242 29 0.00010039999 1e-6 252 29 0.00037639984 1e-6 254 29 0.0025093998 1e-6 255 29 0.0077540986 1e-6 256 29 0.0014052999 1e-6 257 29 0.00020079999 1e-6 258 29 0.00045169983 1e-6 259 29 0.0023337998 1e-6 264 29 0.0091592968 1e-6 265 29 0.0091342963 1e-6 266 29 0.035558298 1e-6 267 29 0.0001757 1e-6 268 29 0.0074027963 1e-6 269 29 0.00040149991 1e-6 270 29 5.0199989e-05 1e-6 271 29 0.0032872998 1e-6 272 29 0.00022579999 1e-6 273 29 0.00020079999 1e-6 274 29 0.0020325999 1e-6 277 29 0.011467997 1e-6 279 29 0.00090339989 1e-6 282 29 0.0032119998 1e-6 285 29 7.5299991e-05 1e-6 292 29 0.0027353 1e-6 293 29 0.00020079999 1e-6 295 29 0.0055206977 1e-6 302 29 0.0031116998 1e-6 303 29 0.0045419969 1e-6 304 29 0.0030363998 1e-6 305 29 0.0047678985 1e-6 306 29 0.033726498 1e-6 307 29 0.00095359981 1e-6 308 29 0.026599698 1e-6 309 29 0.0032621999 1e-6 310 29 0.0035132 1e-6 311 29 0.0069259964 1e-6 312 29 0.0011292 1e-6 317 29 0.0015808998 1e-6 318 29 5.0199989e-05 1e-6 319 29 0.0050689988 1e-6 322 29 0.0084064975 1e-6 324 29 0.0016311 1e-6 331 29 0.00095359981 1e-6 334 29 0.0085068978 1e-6 335 29 2.5099987e-05 1e-6 341 29 0.0001255 1e-6 350 29 0.0024089999 1e-6 352 29 0.0036887999 1e-6 356 29 0.0019071999 1e-6 358 29 0.00010039999 1e-6 366 29 0.0050940998 1e-6 368 29 0.00097869989 1e-6 371 29 0.0062985979 1e-6 374 29 0.0001757 1e-6 380 29 0.00092849997 1e-6 383 29 0.00077789999 1e-6 384 29 0.0001757 1e-6 385 29 0.0027853998 1e-6 386 29 0.0039648972 1e-6 387 29 5.0199989e-05 1e-6 390 29 0.0016059999 1e-6 394 29 0.00010039999 1e-6 398 29 0.00022579999 1e-6 402 29 0.00020079999 1e-6 412 29 2.5099987e-05 1e-6 414 29 2.5099987e-05 1e-6 415 29 0.0044416972 1e-6 419 29 0.00020079999 1e-6 422 29 0.0001506 1e-6 423 29 2.5099987e-05 1e-6 425 29 2.5099987e-05 1e-6 430 29 5.0199989e-05 1e-6 431 29 2.5099987e-05 1e-6 433 29 2.5099987e-05 1e-6 434 29 2.5099987e-05 1e-6 438 29 0.00020079999 1e-6 439 29 0.00045169983 1e-6 441 29 5.0199989e-05 1e-6 443 29 0.0043161996 1e-6 444 29 0.0001255 1e-6 445 29 0.011066496 1e-6 446 29 0.00072769984 1e-6 447 29 0.00060229981 1e-6 450 29 0.0030614999 1e-6 452 29 0.00045169983 1e-6 453 29 5.0199989e-05 1e-6 454 29 0.00092849997 1e-6 455 29 0.034479298 1e-6 456 29 0.028030097 1e-6 457 29 0.0032119998 1e-6 458 29 0.00022579999 1e-6 460 29 0.0025344999 1e-6 463 29 0.0065495968 1e-6 464 29 0.0001757 1e-6 465 29 0.00010039999 1e-6 467 29 0.0081304982 1e-6 468 29 0.00047679991 1e-6 469 29 0.072547078 1e-6 470 29 0.0047678985 1e-6 471 29 0.00266 1e-6 473 29 0.00010039999 1e-6 477 29 2.5099987e-05 1e-6 478 29 0.00052699982 1e-6 483 29 0.00032619992 1e-6 489 29 7.5299991e-05 1e-6 490 29 0.00037639984 1e-6 491 29 0.00020079999 1e-6 9 30 1.3399999e-05 1e-6 16 30 4.0199986e-05 1e-6 24 30 0.0016213998 1e-6 60 30 0.00012059999 1e-6 80 30 1.3399999e-05 1e-6 82 30 1.3399999e-05 1e-6 83 30 1.3399999e-05 1e-6 84 30 1.3399999e-05 1e-6 108 30 1.3399999e-05 1e-6 113 30 2.6799986e-05 1e-6 114 30 5.3599986e-05 1e-6 126 30 2.6799986e-05 1e-6 134 30 0.0025459998 1e-6 135 30 4.0199986e-05 1e-6 139 30 0.00072359992 1e-6 141 30 2.6799986e-05 1e-6 142 30 5.3599986e-05 1e-6 150 30 4.0199986e-05 1e-6 160 30 0.040333398 1e-6 161 30 0.00033499999 1e-6 162 30 0.0014605999 1e-6 163 30 0.050034799 1e-6 164 30 0.022015899 1e-6 165 30 0.031891499 1e-6 167 30 0.010009598 1e-6 170 30 0.00080399984 1e-6 171 30 0.0067802966 1e-6 177 30 0.0028541998 1e-6 182 30 0.0034973 1e-6 189 30 1.3399999e-05 1e-6 191 30 0.003082 1e-6 192 30 0.0020367999 1e-6 194 30 1.3399999e-05 1e-6 195 30 1.3399999e-05 1e-6 197 30 0.0011925998 1e-6 198 30 2.6799986e-05 1e-6 203 30 1.3399999e-05 1e-6 204 30 1.3399999e-05 1e-6 206 30 4.0199986e-05 1e-6 207 30 1.3399999e-05 1e-6 214 30 0.00013399999 1e-6 215 30 4.0199986e-05 1e-6 218 30 4.0199986e-05 1e-6 219 30 0.00095139979 1e-6 223 30 0.00016079999 1e-6 233 30 0.010545596 1e-6 234 30 0.00077719986 1e-6 235 30 0.00010719999 1e-6 236 30 0.0021439998 1e-6 237 30 0.00077719986 1e-6 240 30 0.00054939999 1e-6 241 30 0.017205298 1e-6 242 30 0.00030819979 1e-6 252 30 0.00046899985 1e-6 254 30 0.0018759998 1e-6 255 30 0.0026397998 1e-6 256 30 0.0044754967 1e-6 257 30 0.00032159989 1e-6 258 30 0.0009782 1e-6 259 30 0.0035642998 1e-6 264 30 0.0041538998 1e-6 265 30 0.0016213998 1e-6 266 30 0.021734498 1e-6 267 30 9.3799987e-05 1e-6 268 30 0.0076378994 1e-6 269 30 0.00049579982 1e-6 270 30 2.6799986e-05 1e-6 271 30 0.0017553999 1e-6 272 30 2.6799986e-05 1e-6 273 30 0.00020099999 1e-6 274 30 0.0039126985 1e-6 277 30 0.0031355999 1e-6 279 30 0.0014739998 1e-6 282 30 0.0011657998 1e-6 285 30 1.3399999e-05 1e-6 292 30 0.003966298 1e-6 293 30 4.0199986e-05 1e-6 295 30 0.018196899 1e-6 302 30 0.0028541998 1e-6 303 30 0.023275398 1e-6 304 30 0.0019161999 1e-6 306 30 0.019228697 1e-6 307 30 0.00053599989 1e-6 308 30 0.0144316 1e-6 309 30 0.0016615998 1e-6 310 30 0.007879097 1e-6 311 30 0.0019697999 1e-6 312 30 5.3599986e-05 1e-6 317 30 0.0006163998 1e-6 318 30 2.6799986e-05 1e-6 319 30 0.0043548979 1e-6 322 30 0.0062442981 1e-6 324 30 0.00025459984 1e-6 331 30 0.00079059997 1e-6 334 30 8.0399986e-05 1e-6 341 30 5.3599986e-05 1e-6 350 30 0.0018357998 1e-6 352 30 0.00017419999 1e-6 356 30 2.6799986e-05 1e-6 358 30 4.0199986e-05 1e-6 366 30 0.011992797 1e-6 368 30 0.00068339985 1e-6 371 30 0.0128638 1e-6 380 30 0.0019295998 1e-6 383 30 0.0013533998 1e-6 385 30 0.013614196 1e-6 386 30 0.0025727998 1e-6 387 30 1.3399999e-05 1e-6 390 30 0.0021573999 1e-6 394 30 4.0199986e-05 1e-6 397 30 1.3399999e-05 1e-6 398 30 0.00033499999 1e-6 402 30 0.00020099999 1e-6 414 30 1.3399999e-05 1e-6 415 30 0.0013935999 1e-6 422 30 6.6999986e-05 1e-6 423 30 1.3399999e-05 1e-6 425 30 1.3399999e-05 1e-6 430 30 1.3399999e-05 1e-6 431 30 1.3399999e-05 1e-6 433 30 1.3399999e-05 1e-6 434 30 1.3399999e-05 1e-6 438 30 0.00057619996 1e-6 439 30 0.00071019982 1e-6 441 30 1.3399999e-05 1e-6 443 30 0.0095942989 1e-6 444 30 5.3599986e-05 1e-6 445 30 0.011228997 1e-6 446 30 0.00091119995 1e-6 447 30 0.00036179996 1e-6 450 30 0.0011925998 1e-6 452 30 0.00017419999 1e-6 453 30 2.6799986e-05 1e-6 454 30 0.00036179996 1e-6 455 30 0.051950999 1e-6 456 30 0.068982184 1e-6 457 30 0.0012461999 1e-6 458 30 0.00014739999 1e-6 460 30 0.0017955999 1e-6 463 30 0.0025459998 1e-6 464 30 6.6999986e-05 1e-6 465 30 2.6799986e-05 1e-6 467 30 0.006740097 1e-6 468 30 0.00018759999 1e-6 469 30 0.0037518998 1e-6 470 30 0.0018491999 1e-6 471 30 0.0021171998 1e-6 473 30 4.0199986e-05 1e-6 477 30 1.3399999e-05 1e-6 478 30 0.00020099999 1e-6 483 30 0.00012059999 1e-6 489 30 2.6799986e-05 1e-6 490 30 0.00014739999 1e-6 491 30 8.0399986e-05 1e-6 7 31 0.00010629999 1e-6 9 31 5.3099997e-05 1e-6 16 31 0.00042509986 1e-6 18 31 0.00026569981 1e-6 24 31 0.0066949986 1e-6 60 31 0.00037189992 1e-6 80 31 0.00010629999 1e-6 82 31 5.3099997e-05 1e-6 83 31 5.3099997e-05 1e-6 84 31 5.3099997e-05 1e-6 108 31 5.3099997e-05 1e-6 113 31 0.00010629999 1e-6 114 31 0.00015939999 1e-6 126 31 5.3099997e-05 1e-6 134 31 0.0017002998 1e-6 135 31 5.3099997e-05 1e-6 139 31 0.00031879987 1e-6 141 31 5.3099997e-05 1e-6 150 31 0.00010629999 1e-6 154 31 0.00010629999 1e-6 160 31 0.007704597 1e-6 162 31 0.00031879987 1e-6 163 31 0.0030286999 1e-6 164 31 0.0019659998 1e-6 165 31 0.0065886974 1e-6 166 31 0.012646098 1e-6 167 31 0.0034538 1e-6 168 31 0.0013814999 1e-6 170 31 0.00021249999 1e-6 171 31 0.00085019995 1e-6 177 31 0.00026569981 1e-6 182 31 0.005313497 1e-6 183 31 0.0034005998 1e-6 189 31 5.3099997e-05 1e-6 191 31 0.0006907999 1e-6 192 31 0.00085019995 1e-6 194 31 5.3099997e-05 1e-6 197 31 0.00015939999 1e-6 198 31 5.3099997e-05 1e-6 203 31 5.3099997e-05 1e-6 204 31 5.3099997e-05 1e-6 206 31 0.00015939999 1e-6 207 31 5.3099997e-05 1e-6 214 31 0.00010629999 1e-6 219 31 0.0030286999 1e-6 223 31 0.00042509986 1e-6 233 31 0.0077576973 1e-6 234 31 0.0034005998 1e-6 235 31 0.0054197982 1e-6 236 31 0.0028692998 1e-6 237 31 0.00074389996 1e-6 240 31 0.00026569981 1e-6 241 31 0.008554697 1e-6 242 31 5.3099997e-05 1e-6 252 31 0.0044632964 1e-6 254 31 0.0042507984 1e-6 255 31 0.004728999 1e-6 256 31 0.0030818 1e-6 257 31 0.00026569981 1e-6 258 31 0.00074389996 1e-6 259 31 0.0020722998 1e-6 262 31 0.00015939999 1e-6 264 31 0.0074919984 1e-6 265 31 0.011105198 1e-6 266 31 0.037353899 1e-6 267 31 0.00058449991 1e-6 268 31 0.0073325969 1e-6 269 31 0.00058449991 1e-6 271 31 0.0028161998 1e-6 272 31 0.00015939999 1e-6 273 31 0.00010629999 1e-6 274 31 0.0070137978 1e-6 277 31 0.010573898 1e-6 279 31 0.0011689998 1e-6 282 31 0.0038256999 1e-6 292 31 0.0042507984 1e-6 293 31 0.00015939999 1e-6 295 31 0.011105198 1e-6 302 31 0.0031349999 1e-6 303 31 0.0026566999 1e-6 304 31 0.0057916977 1e-6 305 31 0.020669498 1e-6 306 31 0.016524997 1e-6 307 31 0.00079699978 1e-6 308 31 0.014665198 1e-6 309 31 0.0037725999 1e-6 310 31 0.0063761994 1e-6 311 31 0.010254998 1e-6 312 31 0.00047819992 1e-6 315 31 0.00015939999 1e-6 317 31 0.0019659998 1e-6 318 31 5.3099997e-05 1e-6 319 31 0.013974499 1e-6 322 31 0.0040382966 1e-6 324 31 0.0013814999 1e-6 331 31 0.00063759997 1e-6 334 31 0.0071200989 1e-6 335 31 0.0019659998 1e-6 341 31 0.00015939999 1e-6 350 31 0.00090329978 1e-6 352 31 0.0021784999 1e-6 356 31 0.00079699978 1e-6 358 31 0.00010629999 1e-6 366 31 0.011530299 1e-6 368 31 0.00026569981 1e-6 371 31 0.011689696 1e-6 380 31 0.00095639983 1e-6 383 31 0.0014877999 1e-6 384 31 0.00031879987 1e-6 385 31 0.0038788998 1e-6 386 31 0.0071200989 1e-6 387 31 5.3099997e-05 1e-6 390 31 0.0012220999 1e-6 394 31 0.00015939999 1e-6 398 31 0.00031879987 1e-6 402 31 0.00015939999 1e-6 414 31 0.00026569981 1e-6 415 31 0.0032943999 1e-6 419 31 0.00010629999 1e-6 422 31 0.00015939999 1e-6 423 31 5.3099997e-05 1e-6 430 31 5.3099997e-05 1e-6 431 31 5.3099997e-05 1e-6 433 31 5.3099997e-05 1e-6 434 31 5.3099997e-05 1e-6 438 31 0.00037189992 1e-6 439 31 0.00037189992 1e-6 441 31 0.00015939999 1e-6 443 31 0.0047820993 1e-6 444 31 0.00015939999 1e-6 445 31 0.017481398 1e-6 446 31 0.00042509986 1e-6 447 31 0.00058449991 1e-6 450 31 0.0038256999 1e-6 452 31 0.00058449991 1e-6 453 31 5.3099997e-05 1e-6 454 31 0.0011157999 1e-6 455 31 0.036769398 1e-6 456 31 0.028799098 1e-6 457 31 0.0040382966 1e-6 458 31 0.00021249999 1e-6 460 31 0.0027098998 1e-6 463 31 0.0081827976 1e-6 464 31 0.00021249999 1e-6 465 31 0.00010629999 1e-6 467 31 0.0064292997 1e-6 468 31 0.00058449991 1e-6 469 31 0.085440993 1e-6 470 31 0.0059510991 1e-6 471 31 0.0021253999 1e-6 473 31 0.00010629999 1e-6 478 31 0.0006907999 1e-6 483 31 0.00042509986 1e-6 489 31 5.3099997e-05 1e-6 490 31 0.00047819992 1e-6 491 31 0.00026569981 1e-6 16 32 0.00054049981 1e-6 18 32 0.00027029985 1e-6 24 32 0.0064864978 1e-6 60 32 0.00054049981 1e-6 114 32 0.00027029985 1e-6 126 32 0.00027029985 1e-6 134 32 0.0056756996 1e-6 139 32 0.00027029985 1e-6 160 32 0.0078377984 1e-6 162 32 0.00027029985 1e-6 163 32 0.0032431998 1e-6 164 32 0.0018918999 1e-6 165 32 0.0070269965 1e-6 166 32 0.012432396 1e-6 167 32 0.0035134999 1e-6 168 32 0.0027027 1e-6 170 32 0.00027029985 1e-6 171 32 0.00081079989 1e-6 177 32 0.00027029985 1e-6 182 32 0.0043242984 1e-6 183 32 0.0029729998 1e-6 191 32 0.0010811 1e-6 192 32 0.00054049981 1e-6 214 32 0.00027029985 1e-6 219 32 0.0027027 1e-6 223 32 0.00054049981 1e-6 233 32 0.004594598 1e-6 234 32 0.0016215998 1e-6 235 32 0.0013513998 1e-6 236 32 0.0021621999 1e-6 237 32 0.0010811 1e-6 240 32 0.00027029985 1e-6 241 32 0.0081080981 1e-6 242 32 0.00027029985 1e-6 252 32 0.0021621999 1e-6 254 32 0.0072972998 1e-6 255 32 0.010270298 1e-6 256 32 0.0029729998 1e-6 257 32 0.00054049981 1e-6 258 32 0.0010811 1e-6 259 32 0.0024323999 1e-6 262 32 0.00027029985 1e-6 264 32 0.0162162 1e-6 265 32 0.014054097 1e-6 266 32 0.045135099 1e-6 267 32 0.0010811 1e-6 268 32 0.0024323999 1e-6 269 32 0.0029729998 1e-6 271 32 0.0040540993 1e-6 273 32 0.00027029985 1e-6 274 32 0.0067567974 1e-6 277 32 0.010270298 1e-6 279 32 0.0010811 1e-6 282 32 0.0043242984 1e-6 285 32 0.00027029985 1e-6 292 32 0.0043242984 1e-6 293 32 0.00027029985 1e-6 295 32 0.0083783977 1e-6 302 32 0.0037837999 1e-6 303 32 0.0032431998 1e-6 304 32 0.0043242984 1e-6 305 32 0.0075675994 1e-6 306 32 0.034054097 1e-6 307 32 0.00054049981 1e-6 308 32 0.012432396 1e-6 309 32 0.0081080981 1e-6 310 32 0.0097296983 1e-6 311 32 0.012162197 1e-6 312 32 0.00027029985 1e-6 315 32 0.00027029985 1e-6 317 32 0.0021621999 1e-6 319 32 0.013783798 1e-6 322 32 0.004594598 1e-6 324 32 0.0010811 1e-6 331 32 0.00081079989 1e-6 334 32 0.0072972998 1e-6 335 32 0.0016215998 1e-6 341 32 0.00027029985 1e-6 350 32 0.0010811 1e-6 352 32 0.0016215998 1e-6 356 32 0.00054049981 1e-6 366 32 0.0078377984 1e-6 368 32 0.00054049981 1e-6 371 32 0.0091891997 1e-6 380 32 0.0010811 1e-6 383 32 0.0018918999 1e-6 384 32 0.00027029985 1e-6 385 32 0.0040540993 1e-6 386 32 0.0054053999 1e-6 390 32 0.00081079989 1e-6 394 32 0.00027029985 1e-6 398 32 0.00027029985 1e-6 402 32 0.00027029985 1e-6 414 32 0.00027029985 1e-6 415 32 0.0018918999 1e-6 438 32 0.00027029985 1e-6 439 32 0.00027029985 1e-6 441 32 0.00027029985 1e-6 443 32 0.0035134999 1e-6 444 32 0.00027029985 1e-6 445 32 0.012432396 1e-6 446 32 0.00054049981 1e-6 447 32 0.00054049981 1e-6 450 32 0.0040540993 1e-6 452 32 0.00054049981 1e-6 454 32 0.0010811 1e-6 455 32 0.031621598 1e-6 456 32 0.024054099 1e-6 457 32 0.0043242984 1e-6 458 32 0.00027029985 1e-6 460 32 0.0027027 1e-6 463 32 0.0086485967 1e-6 464 32 0.00027029985 1e-6 467 32 0.0072972998 1e-6 468 32 0.00054049981 1e-6 469 32 0.085945845 1e-6 470 32 0.0064864978 1e-6 471 32 0.0024323999 1e-6 473 32 0.00027029985 1e-6 478 32 0.00054049981 1e-6 483 32 0.00054049981 1e-6 490 32 0.00054049981 1e-6 491 32 0.00027029985 1e-6 7 33 5.7599987e-05 1e-6 16 33 0.00026869983 1e-6 18 33 0.00023029999 1e-6 24 33 0.0027830999 1e-6 80 33 5.7599987e-05 1e-6 134 33 0.00021109999 1e-6 139 33 3.8399987e-05 1e-6 141 33 1.9199986e-05 1e-6 154 33 1.9199986e-05 1e-6 159 33 1.9199986e-05 1e-6 160 33 0.0011515999 1e-6 162 33 0.00011519999 1e-6 163 33 0.00042229984 1e-6 164 33 0.00028789998 1e-6 165 33 0.0014203 1e-6 166 33 0.0017273999 1e-6 167 33 0.00051819999 1e-6 168 33 0.0012476 1e-6 170 33 5.7599987e-05 1e-6 171 33 0.00015359999 1e-6 177 33 3.8399987e-05 1e-6 182 33 0.00069099991 1e-6 183 33 0.00044149999 1e-6 191 33 0.00023029999 1e-6 192 33 0.00030709989 1e-6 197 33 1.9199986e-05 1e-6 198 33 1.9199986e-05 1e-6 214 33 3.8399987e-05 1e-6 215 33 1.9199986e-05 1e-6 219 33 0.0004606999 1e-6 223 33 0.00011519999 1e-6 233 33 0.0058348998 1e-6 234 33 0.0018809999 1e-6 235 33 0.0012859998 1e-6 236 33 0.0023991999 1e-6 237 33 0.00024949992 1e-6 240 33 3.8399987e-05 1e-6 241 33 0.0029558998 1e-6 242 33 1.9199986e-05 1e-6 252 33 0.00084449979 1e-6 254 33 0.0013436 1e-6 255 33 0.0020344998 1e-6 256 33 0.00013439999 1e-6 257 33 0.0025527999 1e-6 258 33 0.00015359999 1e-6 259 33 0.00042229984 1e-6 262 33 7.6799988e-05 1e-6 264 33 0.0031478 1e-6 265 33 0.00044149999 1e-6 266 33 0.011784997 1e-6 267 33 0.00015359999 1e-6 268 33 0.00038389978 1e-6 269 33 0.00069099991 1e-6 271 33 0.0016122998 1e-6 272 33 7.6799988e-05 1e-6 273 33 0.00086369994 1e-6 274 33 0.0050671995 1e-6 275 33 0.023781199 1e-6 276 33 0.0015354999 1e-6 277 33 0.0068905987 1e-6 279 33 0.00030709989 1e-6 282 33 0.0010556998 1e-6 285 33 7.6799988e-05 1e-6 292 33 0.0018809999 1e-6 293 33 0.00036469987 1e-6 295 33 0.0047216974 1e-6 302 33 0.00069099991 1e-6 303 33 0.00057579996 1e-6 304 33 0.004875198 1e-6 305 33 0.098656356 1e-6 306 33 0.0040882975 1e-6 307 33 0.055930898 1e-6 308 33 0.012322497 1e-6 309 33 0.0128599 1e-6 310 33 0.0025336 1e-6 311 33 0.0035316998 1e-6 312 33 0.00026869983 1e-6 315 33 7.6799988e-05 1e-6 319 33 0.0012476 1e-6 322 33 0.0013627999 1e-6 324 33 0.11134356 1e-6 331 33 0.00028789998 1e-6 334 33 0.00049899984 1e-6 335 33 0.00023029999 1e-6 336 33 0.030153599 1e-6 350 33 0.0004606999 1e-6 351 33 0.00030709989 1e-6 352 33 0.0012283998 1e-6 354 33 0.00024949992 1e-6 356 33 0.0004606999 1e-6 366 33 0.0061035976 1e-6 368 33 5.7599987e-05 1e-6 371 33 0.004875198 1e-6 374 33 1.9199986e-05 1e-6 380 33 0.00038389978 1e-6 383 33 0.00042229984 1e-6 384 33 0.00013439999 1e-6 385 33 0.011458699 1e-6 386 33 0.0031478 1e-6 390 33 0.00049899984 1e-6 398 33 0.00021109999 1e-6 402 33 7.6799988e-05 1e-6 414 33 0.00090209977 1e-6 415 33 0.0019769999 1e-6 419 33 3.8399987e-05 1e-6 438 33 9.5999989e-05 1e-6 439 33 5.7599987e-05 1e-6 441 33 0.00015359999 1e-6 443 33 0.006161198 1e-6 445 33 0.014299396 1e-6 446 33 0.00057579996 1e-6 447 33 0.00017269999 1e-6 455 33 0.041708298 1e-6 456 33 0.020921297 1e-6 458 33 3.8399987e-05 1e-6 460 33 0.00049899984 1e-6 467 33 0.0027062998 1e-6 469 33 0.033301298 1e-6 471 33 0.00071019982 1e-6 7 34 0.00020759999 1e-6 9 34 3.1899996e-05 1e-6 16 34 0.0010856998 1e-6 18 34 0.00079829991 1e-6 24 34 0.0053009987 1e-6 60 34 0.00036719977 1e-6 79 34 1.5999991e-05 1e-6 80 34 0.00011179999 1e-6 82 34 3.1899996e-05 1e-6 83 34 3.1899996e-05 1e-6 84 34 3.1899996e-05 1e-6 108 34 4.7899986e-05 1e-6 113 34 7.9799996e-05 1e-6 114 34 0.00014369999 1e-6 126 34 7.9799996e-05 1e-6 127 34 1.5999991e-05 1e-6 134 34 0.0025227999 1e-6 135 34 4.7899986e-05 1e-6 139 34 9.5799987e-05 1e-6 141 34 4.7899986e-05 1e-6 150 34 0.00011179999 1e-6 154 34 3.1899996e-05 1e-6 159 34 1.5999991e-05 1e-6 160 34 0.002874 1e-6 162 34 7.9799996e-05 1e-6 163 34 0.00094199996 1e-6 164 34 0.00065459986 1e-6 165 34 0.0030496998 1e-6 166 34 0.0038959 1e-6 167 34 0.0010537999 1e-6 168 34 0.0023630999 1e-6 170 34 7.9799996e-05 1e-6 171 34 0.0004629998 1e-6 177 34 9.5799987e-05 1e-6 182 34 0.0025386999 1e-6 183 34 0.0016445999 1e-6 189 34 3.1899996e-05 1e-6 191 34 0.00075039989 1e-6 192 34 0.00076639978 1e-6 194 34 4.7899986e-05 1e-6 196 34 3.1899996e-05 1e-6 197 34 7.9799996e-05 1e-6 198 34 4.7899986e-05 1e-6 201 34 4.7899986e-05 1e-6 203 34 4.7899986e-05 1e-6 204 34 6.3899992e-05 1e-6 206 34 0.0001277 1e-6 207 34 4.7899986e-05 1e-6 209 34 1.5999991e-05 1e-6 214 34 0.00023949999 1e-6 215 34 4.7899986e-05 1e-6 219 34 0.0017084 1e-6 223 34 0.00038319989 1e-6 233 34 0.0027462998 1e-6 234 34 0.0018041998 1e-6 235 34 0.0024269999 1e-6 236 34 0.0017084 1e-6 237 34 0.00070249988 1e-6 240 34 0.0003513 1e-6 241 34 0.0072329976 1e-6 242 34 0.0001277 1e-6 248 34 4.7899986e-05 1e-6 250 34 3.1899996e-05 1e-6 251 34 1.5999991e-05 1e-6 252 34 0.0052370988 1e-6 254 34 0.0042311996 1e-6 255 34 0.0035605999 1e-6 256 34 0.0016285998 1e-6 257 34 0.00019159999 1e-6 258 34 0.00033529988 1e-6 259 34 0.0010698 1e-6 262 34 0.00020759999 1e-6 263 34 1.5999991e-05 1e-6 264 34 0.0056042969 1e-6 265 34 0.0083665997 1e-6 266 34 0.030768 1e-6 267 34 0.0004629998 1e-6 268 34 0.0023790998 1e-6 269 34 0.0035126999 1e-6 270 34 4.7899986e-05 1e-6 271 34 0.0033849999 1e-6 272 34 0.0001756 1e-6 273 34 0.0002235 1e-6 274 34 0.0098674968 1e-6 277 34 0.0091968998 1e-6 279 34 0.00075039989 1e-6 282 34 0.0024269999 1e-6 285 34 0.00011179999 1e-6 292 34 0.0032891999 1e-6 293 34 0.00039919978 1e-6 294 34 3.1899996e-05 1e-6 295 34 0.011543997 1e-6 302 34 0.0016285998 1e-6 303 34 0.0015008999 1e-6 304 34 0.0074245967 1e-6 305 34 0.0407153 1e-6 306 34 0.013172597 1e-6 307 34 0.0010698 1e-6 308 34 0.024045996 1e-6 309 34 0.0075841993 1e-6 310 34 0.026504897 1e-6 311 34 0.020102199 1e-6 312 34 0.00052689994 1e-6 315 34 0.0007185 1e-6 317 34 0.0019159999 1e-6 318 34 9.5799987e-05 1e-6 319 34 0.0056362972 1e-6 322 34 0.0038959 1e-6 323 34 1.5999991e-05 1e-6 324 34 0.0011974999 1e-6 331 34 0.00060669985 1e-6 334 34 0.010553997 1e-6 335 34 0.00095799984 1e-6 341 34 0.00015969999 1e-6 350 34 0.00051089982 1e-6 352 34 0.0028261 1e-6 356 34 0.00083029992 1e-6 358 34 0.0001277 1e-6 363 34 1.5999991e-05 1e-6 366 34 0.016365997 1e-6 368 34 0.00014369999 1e-6 371 34 0.012102798 1e-6 374 34 3.1899996e-05 1e-6 380 34 0.00095799984 1e-6 383 34 0.00094199996 1e-6 384 34 0.00036719977 1e-6 385 34 0.0107616 1e-6 386 34 0.0073446967 1e-6 387 34 4.7899986e-05 1e-6 390 34 0.0012613998 1e-6 394 34 0.00011179999 1e-6 398 34 0.00049499981 1e-6 402 34 0.00014369999 1e-6 412 34 1.5999991e-05 1e-6 414 34 0.00015969999 1e-6 415 34 0.0047261976 1e-6 419 34 0.00011179999 1e-6 422 34 0.00020759999 1e-6 423 34 3.1899996e-05 1e-6 425 34 1.5999991e-05 1e-6 430 34 3.1899996e-05 1e-6 431 34 3.1899996e-05 1e-6 432 34 1.5999991e-05 1e-6 433 34 4.7899986e-05 1e-6 434 34 3.1899996e-05 1e-6 438 34 0.0001277 1e-6 439 34 0.00020759999 1e-6 443 34 0.0047899969 1e-6 444 34 0.00015969999 1e-6 445 34 0.017898798 1e-6 446 34 0.00086219981 1e-6 447 34 0.00079829991 1e-6 449 34 1.5999991e-05 1e-6 450 34 0.0036882998 1e-6 452 34 0.00055879983 1e-6 453 34 7.9799996e-05 1e-6 454 34 0.0011335998 1e-6 455 34 0.037553899 1e-6 456 34 0.027047697 1e-6 457 34 0.0038959 1e-6 458 34 0.00020759999 1e-6 459 34 4.7899986e-05 1e-6 460 34 0.0025546998 1e-6 463 34 0.0078556985 1e-6 464 34 0.00019159999 1e-6 465 34 0.00011179999 1e-6 467 34 0.0058916993 1e-6 468 34 0.00059079984 1e-6 469 34 0.074852288 1e-6 470 34 0.0057160966 1e-6 471 34 0.0019159999 1e-6 473 34 0.0001277 1e-6 477 34 6.3899992e-05 1e-6 478 34 0.00068659987 1e-6 483 34 0.00039919978 1e-6 489 34 7.9799996e-05 1e-6 490 34 0.0004629998 1e-6 491 34 0.0002235 1e-6 7 35 0.00016639999 1e-6 9 35 5.5499986e-05 1e-6 16 35 0.0010537999 1e-6 18 35 0.00077649998 1e-6 24 35 0.0083194971 1e-6 60 35 0.00033279997 1e-6 80 35 0.00011089999 1e-6 82 35 5.5499986e-05 1e-6 108 35 5.5499986e-05 1e-6 113 35 5.5499986e-05 1e-6 114 35 0.00011089999 1e-6 126 35 5.5499986e-05 1e-6 139 35 5.5499986e-05 1e-6 141 35 5.5499986e-05 1e-6 150 35 0.00011089999 1e-6 154 35 5.5499986e-05 1e-6 160 35 0.0023294999 1e-6 162 35 0.00033279997 1e-6 163 35 0.00083189993 1e-6 164 35 0.0005545998 1e-6 165 35 0.0032168999 1e-6 166 35 0.0034941998 1e-6 167 35 0.0009982998 1e-6 168 35 0.0026621998 1e-6 170 35 0.00011089999 1e-6 171 35 0.00044369977 1e-6 177 35 0.00011089999 1e-6 182 35 0.0012202 1e-6 183 35 0.00077649998 1e-6 189 35 5.5499986e-05 1e-6 191 35 0.0007209999 1e-6 192 35 0.0005545998 1e-6 194 35 5.5499986e-05 1e-6 197 35 5.5499986e-05 1e-6 198 35 5.5499986e-05 1e-6 203 35 5.5499986e-05 1e-6 206 35 0.00011089999 1e-6 214 35 5.5499986e-05 1e-6 215 35 5.5499986e-05 1e-6 219 35 0.0010537999 1e-6 223 35 0.00038819993 1e-6 233 35 0.017914597 1e-6 234 35 0.0065445974 1e-6 235 35 0.0046588965 1e-6 236 35 0.0085967965 1e-6 237 35 0.0007209999 1e-6 240 35 5.5499986e-05 1e-6 241 35 0.0061008967 1e-6 242 35 5.5499986e-05 1e-6 252 35 0.0021076 1e-6 254 35 0.0034941998 1e-6 255 35 0.0038824 1e-6 256 35 0.00022189999 1e-6 257 35 0.00016639999 1e-6 258 35 0.0002772999 1e-6 259 35 0.00077649998 1e-6 262 35 0.00016639999 1e-6 264 35 0.0059899986 1e-6 265 35 0.0066000968 1e-6 266 35 0.025013898 1e-6 267 35 0.0002772999 1e-6 268 35 0.00083189993 1e-6 269 35 0.0038824 1e-6 270 35 5.5499986e-05 1e-6 271 35 0.0028285999 1e-6 272 35 0.00011089999 1e-6 273 35 0.0002772999 1e-6 274 35 0.0063227974 1e-6 277 35 0.011258997 1e-6 279 35 0.0007209999 1e-6 282 35 0.0018302999 1e-6 285 35 0.00016639999 1e-6 292 35 0.0037159999 1e-6 293 35 0.00016639999 1e-6 294 35 5.5499986e-05 1e-6 295 35 0.007820297 1e-6 302 35 0.0012756998 1e-6 303 35 0.0011646999 1e-6 304 35 0.0047697984 1e-6 305 35 0.072157443 1e-6 306 35 0.018635597 1e-6 307 35 0.049473099 1e-6 308 35 0.014808699 1e-6 309 35 0.0074320994 1e-6 310 35 0.012756497 1e-6 311 35 0.0167499 1e-6 312 35 0.00061009987 1e-6 315 35 0.00038819993 1e-6 317 35 0.0017193998 1e-6 318 35 5.5499986e-05 1e-6 319 35 0.0027731999 1e-6 322 35 0.0024957999 1e-6 324 35 0.0023294999 1e-6 331 35 0.00066559995 1e-6 334 35 0.00016639999 1e-6 335 35 0.00044369977 1e-6 341 35 0.00016639999 1e-6 350 35 0.00033279997 1e-6 352 35 0.0018302999 1e-6 356 35 0.00066559995 1e-6 358 35 0.00011089999 1e-6 366 35 0.0091513991 1e-6 368 35 0.00011089999 1e-6 371 35 0.0082639977 1e-6 380 35 0.00061009987 1e-6 383 35 0.00066559995 1e-6 384 35 0.0002772999 1e-6 385 35 0.007820297 1e-6 386 35 0.0050470978 1e-6 387 35 5.5499986e-05 1e-6 390 35 0.00083189993 1e-6 394 35 0.00011089999 1e-6 398 35 0.00033279997 1e-6 402 35 0.00011089999 1e-6 414 35 0.00011089999 1e-6 415 35 0.002995 1e-6 419 35 5.5499986e-05 1e-6 422 35 0.00016639999 1e-6 430 35 5.5499986e-05 1e-6 434 35 5.5499986e-05 1e-6 438 35 0.00016639999 1e-6 439 35 0.00011089999 1e-6 441 35 0.00011089999 1e-6 443 35 0.0051580966 1e-6 444 35 0.00011089999 1e-6 445 35 0.0253466 1e-6 446 35 0.0009982998 1e-6 447 35 0.00049919984 1e-6 450 35 0.0033278 1e-6 452 35 0.00049919984 1e-6 453 35 5.5499986e-05 1e-6 454 35 0.0009982998 1e-6 455 35 0.035607297 1e-6 456 35 0.028618999 1e-6 457 35 0.0034941998 1e-6 458 35 0.00022189999 1e-6 460 35 0.0024404 1e-6 463 35 0.0070992969 1e-6 464 35 0.00016639999 1e-6 465 35 0.00011089999 1e-6 467 35 0.0058235973 1e-6 468 35 0.00049919984 1e-6 469 35 0.065723777 1e-6 470 35 0.0051580966 1e-6 471 35 0.0019967 1e-6 473 35 0.00011089999 1e-6 478 35 0.0005545998 1e-6 483 35 0.00033279997 1e-6 489 35 5.5499986e-05 1e-6 490 35 0.00038819993 1e-6 491 35 0.00022189999 1e-6 7 36 0.00045729987 1e-6 16 36 0.0022865999 1e-6 18 36 0.0015244 1e-6 24 36 0.0057926998 1e-6 60 36 0.00030489988 1e-6 80 36 0.0001524 1e-6 114 36 0.0001524 1e-6 126 36 0.0001524 1e-6 150 36 0.0001524 1e-6 160 36 0.0042682998 1e-6 162 36 0.00030489988 1e-6 163 36 0.0036584998 1e-6 164 36 0.00045729987 1e-6 165 36 0.0038109999 1e-6 166 36 0.0022865999 1e-6 167 36 0.00076219998 1e-6 168 36 0.0033536998 1e-6 170 36 0.0001524 1e-6 171 36 0.00030489988 1e-6 182 36 0.0092987977 1e-6 183 36 0.0060975999 1e-6 191 36 0.00076219998 1e-6 192 36 0.00045729987 1e-6 214 36 0.00045729987 1e-6 215 36 0.0001524 1e-6 219 36 0.0018292998 1e-6 223 36 0.00060979999 1e-6 233 36 0.0030487999 1e-6 234 36 0.0045731999 1e-6 235 36 0.0032011999 1e-6 236 36 0.0054877996 1e-6 237 36 0.00060979999 1e-6 241 36 0.0050304979 1e-6 252 36 0.0022865999 1e-6 254 36 0.0042682998 1e-6 255 36 0.0025914998 1e-6 256 36 0.00091459998 1e-6 257 36 0.0001524 1e-6 258 36 0.00030489988 1e-6 259 36 0.00076219998 1e-6 262 36 0.0001524 1e-6 264 36 0.005335398 1e-6 265 36 0.010823198 1e-6 266 36 0.046951197 1e-6 267 36 0.00045729987 1e-6 268 36 0.00091459998 1e-6 269 36 0.0015244 1e-6 271 36 0.0024389999 1e-6 272 36 0.0001524 1e-6 273 36 0.00030489988 1e-6 274 36 0.0056401975 1e-6 277 36 0.010213397 1e-6 279 36 0.00060979999 1e-6 282 36 0.001372 1e-6 285 36 0.0001524 1e-6 292 36 0.0024389999 1e-6 293 36 0.00030489988 1e-6 295 36 0.0065548979 1e-6 302 36 0.00091459998 1e-6 303 36 0.001372 1e-6 304 36 0.0047255978 1e-6 305 36 0.046341497 1e-6 306 36 0.021036599 1e-6 307 36 0.0035060998 1e-6 308 36 0.016006097 1e-6 309 36 0.0065548979 1e-6 310 36 0.010975599 1e-6 311 36 0.017530497 1e-6 312 36 0.00045729987 1e-6 315 36 0.00045729987 1e-6 317 36 0.0012194999 1e-6 319 36 0.0018292998 1e-6 322 36 0.0041158982 1e-6 324 36 0.0018292998 1e-6 331 36 0.00045729987 1e-6 334 36 0.056097597 1e-6 335 36 0.0035060998 1e-6 341 36 0.0001524 1e-6 350 36 0.0001524 1e-6 352 36 0.0015244 1e-6 356 36 0.00045729987 1e-6 358 36 0.0001524 1e-6 366 36 0.0079267994 1e-6 368 36 0.00091459998 1e-6 371 36 0.0082316995 1e-6 380 36 0.00045729987 1e-6 383 36 0.00045729987 1e-6 384 36 0.00030489988 1e-6 385 36 0.018140197 1e-6 386 36 0.0048779994 1e-6 390 36 0.00060979999 1e-6 394 36 0.0001524 1e-6 398 36 0.00030489988 1e-6 402 36 0.0001524 1e-6 415 36 0.0028962998 1e-6 438 36 0.0001524 1e-6 441 36 0.0030487999 1e-6 443 36 0.0035060998 1e-6 444 36 0.0001524 1e-6 445 36 0.023323197 1e-6 446 36 0.00045729987 1e-6 447 36 0.00030489988 1e-6 450 36 0.0027438998 1e-6 452 36 0.00045729987 1e-6 454 36 0.00076219998 1e-6 455 36 0.035975598 1e-6 456 36 0.021493897 1e-6 457 36 0.0028962998 1e-6 458 36 0.0001524 1e-6 460 36 0.0015244 1e-6 463 36 0.0057926998 1e-6 464 36 0.0001524 1e-6 467 36 0.0051828995 1e-6 468 36 0.00045729987 1e-6 469 36 0.062652349 1e-6 470 36 0.0041158982 1e-6 471 36 0.0015244 1e-6 473 36 0.0001524 1e-6 478 36 0.00030489988 1e-6 483 36 0.00030489988 1e-6 490 36 0.00030489988 1e-6 491 36 0.0001524 1e-6 7 37 5.2299991e-05 1e-6 9 37 3.4899989e-05 1e-6 16 37 0.00034869998 1e-6 18 37 0.0002441 1e-6 24 37 0.0072867982 1e-6 60 37 0.00034869998 1e-6 79 37 1.7399987e-05 1e-6 80 37 0.0001395 1e-6 82 37 3.4899989e-05 1e-6 83 37 3.4899989e-05 1e-6 84 37 3.4899989e-05 1e-6 108 37 5.2299991e-05 1e-6 113 37 5.2299991e-05 1e-6 114 37 0.000122 1e-6 126 37 6.9699992e-05 1e-6 127 37 1.7399987e-05 1e-6 134 37 6.9699992e-05 1e-6 139 37 0.0001395 1e-6 141 37 3.4899989e-05 1e-6 142 37 1.7399987e-05 1e-6 150 37 0.0001046 1e-6 154 37 3.4899989e-05 1e-6 159 37 1.7399987e-05 1e-6 160 37 0.0036259999 1e-6 162 37 0.00020919999 1e-6 163 37 0.0012899998 1e-6 164 37 0.00081929984 1e-6 165 37 0.0039048998 1e-6 166 37 0.0053691976 1e-6 167 37 0.0014294998 1e-6 168 37 0.0028763998 1e-6 170 37 0.0001046 1e-6 171 37 0.00041839993 1e-6 177 37 0.000122 1e-6 182 37 0.0014294998 1e-6 183 37 0.0008890999 1e-6 189 37 3.4899989e-05 1e-6 191 37 0.0010284998 1e-6 192 37 0.00092389993 1e-6 194 37 3.4899989e-05 1e-6 196 37 1.7399987e-05 1e-6 197 37 6.9699992e-05 1e-6 198 37 3.4899989e-05 1e-6 201 37 5.2299991e-05 1e-6 203 37 3.4899989e-05 1e-6 204 37 5.2299991e-05 1e-6 206 37 0.0001395 1e-6 207 37 3.4899989e-05 1e-6 209 37 1.7399987e-05 1e-6 214 37 0.00015689999 1e-6 215 37 1.7399987e-05 1e-6 218 37 1.7399987e-05 1e-6 219 37 0.0016909998 1e-6 223 37 0.00034869998 1e-6 233 37 0.0037479999 1e-6 234 37 0.0047938973 1e-6 235 37 0.0036084999 1e-6 236 37 0.0058398992 1e-6 237 37 0.00059269997 1e-6 240 37 0.00026149978 1e-6 241 37 0.008507099 1e-6 242 37 6.9699992e-05 1e-6 248 37 1.7399987e-05 1e-6 250 37 1.7399987e-05 1e-6 252 37 0.0040442981 1e-6 254 37 0.0039222986 1e-6 255 37 0.0050205998 1e-6 256 37 0.00083679985 1e-6 257 37 0.00022659999 1e-6 258 37 0.00031379983 1e-6 259 37 0.00083679985 1e-6 264 37 0.0078794993 1e-6 265 37 0.0077399984 1e-6 266 37 0.029129799 1e-6 267 37 0.00052299979 1e-6 268 37 0.0029634999 1e-6 269 37 0.0022314 1e-6 270 37 3.4899989e-05 1e-6 271 37 0.0044452995 1e-6 272 37 0.00019179999 1e-6 273 37 0.00027889991 1e-6 274 37 0.013318498 1e-6 277 37 0.013684496 1e-6 279 37 0.0011504998 1e-6 282 37 0.0021964998 1e-6 285 37 0.00015689999 1e-6 292 37 0.0040617995 1e-6 293 37 0.00027889991 1e-6 294 37 3.4899989e-05 1e-6 295 37 0.0139286 1e-6 302 37 0.0012725999 1e-6 303 37 0.0011157 1e-6 304 37 0.0080363974 1e-6 305 37 0.051443398 1e-6 306 37 0.010041099 1e-6 307 37 0.0011157 1e-6 308 37 0.020570397 1e-6 309 37 0.0080712996 1e-6 310 37 0.0038176998 1e-6 311 37 0.0119587 1e-6 312 37 0.00066239992 1e-6 315 37 0.0001046 1e-6 317 37 0.0017955999 1e-6 318 37 6.9699992e-05 1e-6 319 37 0.0042534992 1e-6 322 37 0.0042360984 1e-6 324 37 0.0027019999 1e-6 331 37 0.00048809987 1e-6 334 37 0.0027542999 1e-6 335 37 0.00050549977 1e-6 341 37 0.00015689999 1e-6 350 37 0.00080189994 1e-6 352 37 0.0030856 1e-6 356 37 0.0010807998 1e-6 358 37 0.000122 1e-6 366 37 0.016142499 1e-6 368 37 0.0001046 1e-6 371 37 0.0148177 1e-6 374 37 3.4899989e-05 1e-6 380 37 0.0010982 1e-6 383 37 0.00080189994 1e-6 384 37 0.00043579983 1e-6 385 37 0.0128478 1e-6 386 37 0.0088382997 1e-6 387 37 6.9699992e-05 1e-6 390 37 0.0014991998 1e-6 394 37 0.0001046 1e-6 398 37 0.00054039992 1e-6 402 37 0.0001046 1e-6 412 37 1.7399987e-05 1e-6 414 37 0.00015689999 1e-6 415 37 0.0052297972 1e-6 419 37 0.00015689999 1e-6 422 37 0.00017429999 1e-6 423 37 1.7399987e-05 1e-6 425 37 1.7399987e-05 1e-6 430 37 3.4899989e-05 1e-6 431 37 1.7399987e-05 1e-6 432 37 1.7399987e-05 1e-6 433 37 1.7399987e-05 1e-6 434 37 3.4899989e-05 1e-6 438 37 0.00017429999 1e-6 439 37 0.00022659999 1e-6 441 37 0.00022659999 1e-6 443 37 0.0057178997 1e-6 444 37 0.0001395 1e-6 445 37 0.023655999 1e-6 446 37 0.00081929984 1e-6 447 37 0.00062759989 1e-6 450 37 0.0034864999 1e-6 452 37 0.00052299979 1e-6 453 37 5.2299991e-05 1e-6 454 37 0.0010284998 1e-6 455 37 0.037288196 1e-6 456 37 0.027403899 1e-6 457 37 0.0036783 1e-6 458 37 0.00019179999 1e-6 459 37 1.7399987e-05 1e-6 460 37 0.0024406 1e-6 463 37 0.0074262992 1e-6 464 37 0.00019179999 1e-6 465 37 0.000122 1e-6 467 37 0.0046021976 1e-6 468 37 0.00054039992 1e-6 469 37 0.077069163 1e-6 470 37 0.0054214969 1e-6 471 37 0.0015689 1e-6 473 37 0.000122 1e-6 477 37 3.4899989e-05 1e-6 478 37 0.00061009987 1e-6 483 37 0.00036609988 1e-6 489 37 6.9699992e-05 1e-6 490 37 0.00043579983 1e-6 491 37 0.00020919999 1e-6 24 38 0.0020142 1e-6 60 38 0.00011849999 1e-6 114 38 0.00011849999 1e-6 162 38 0.0003554998 1e-6 163 38 0.0033175 1e-6 164 38 0.0020142 1e-6 165 38 0.005568698 1e-6 166 38 0.24111366 1e-6 167 38 0.062085297 1e-6 168 38 0.00011849999 1e-6 170 38 0.00023699999 1e-6 171 38 0.0003554998 1e-6 177 38 0.00023699999 1e-6 182 38 0.0034359999 1e-6 183 38 0.0021326998 1e-6 191 38 0.00059239985 1e-6 192 38 0.0004739 1e-6 219 38 0.0008293998 1e-6 223 38 0.00011849999 1e-6 233 38 0.0034359999 1e-6 234 38 0.0017772999 1e-6 235 38 0.00059239985 1e-6 236 38 0.0024881999 1e-6 237 38 0.0004739 1e-6 241 38 0.0023697 1e-6 252 38 0.0014217999 1e-6 254 38 0.0015403 1e-6 255 38 0.0033175 1e-6 256 38 0.00011849999 1e-6 257 38 0.00011849999 1e-6 258 38 0.00011849999 1e-6 259 38 0.0004739 1e-6 262 38 0.00011849999 1e-6 264 38 0.0052132979 1e-6 265 38 0.0028436 1e-6 266 38 0.0088862963 1e-6 267 38 0.00023699999 1e-6 268 38 0.00071089994 1e-6 269 38 0.00023699999 1e-6 271 38 0.0018956999 1e-6 272 38 0.00011849999 1e-6 273 38 0.00011849999 1e-6 274 38 0.0034359999 1e-6 277 38 0.0034359999 1e-6 279 38 0.00071089994 1e-6 282 38 0.00094789988 1e-6 285 38 0.00011849999 1e-6 292 38 0.0016587998 1e-6 295 38 0.0042653978 1e-6 302 38 0.00071089994 1e-6 303 38 0.0004739 1e-6 304 38 0.0029620999 1e-6 305 38 0.0063980967 1e-6 306 38 0.0068719983 1e-6 307 38 0.00011849999 1e-6 308 38 0.0068719983 1e-6 309 38 0.0049762987 1e-6 311 38 0.0041468963 1e-6 312 38 0.00023699999 1e-6 315 38 0.00011849999 1e-6 317 38 0.0004739 1e-6 319 38 0.004502397 1e-6 322 38 0.0015403 1e-6 324 38 0.0004739 1e-6 331 38 0.00023699999 1e-6 334 38 0.00011849999 1e-6 335 38 0.0011847999 1e-6 350 38 0.00011849999 1e-6 352 38 0.0013032998 1e-6 356 38 0.00023699999 1e-6 366 38 0.0059241988 1e-6 368 38 0.00011849999 1e-6 371 38 0.004502397 1e-6 380 38 0.0003554998 1e-6 383 38 0.0004739 1e-6 384 38 0.00011849999 1e-6 385 38 0.0042653978 1e-6 386 38 0.0026065998 1e-6 390 38 0.0004739 1e-6 398 38 0.00023699999 1e-6 415 38 0.0018956999 1e-6 438 38 0.00023699999 1e-6 439 38 0.00011849999 1e-6 441 38 0.00011849999 1e-6 443 38 0.0028436 1e-6 445 38 0.0074644983 1e-6 446 38 0.0011847999 1e-6 447 38 0.00011849999 1e-6 450 38 0.0010664 1e-6 452 38 0.00011849999 1e-6 454 38 0.00023699999 1e-6 455 38 0.036611397 1e-6 456 38 0.021919399 1e-6 457 38 0.0010664 1e-6 460 38 0.0004739 1e-6 463 38 0.0022511999 1e-6 467 38 0.0023697 1e-6 468 38 0.00011849999 1e-6 469 38 0.0479858 1e-6 470 38 0.0016587998 1e-6 471 38 0.0008293998 1e-6 478 38 0.00011849999 1e-6 483 38 0.00011849999 1e-6 490 38 0.00011849999 1e-6 7 39 0.00021789999 1e-6 9 39 3.1099989e-05 1e-6 16 39 0.0013229998 1e-6 18 39 0.0009804999 1e-6 24 39 0.0079221986 1e-6 60 39 0.00031129993 1e-6 79 39 1.5599988e-05 1e-6 80 39 0.00012449999 1e-6 82 39 3.1099989e-05 1e-6 83 39 3.1099989e-05 1e-6 84 39 3.1099989e-05 1e-6 108 39 4.6699992e-05 1e-6 113 39 6.2299994e-05 1e-6 114 39 0.0001089 1e-6 126 39 6.2299994e-05 1e-6 127 39 1.5599988e-05 1e-6 134 39 0.0097120963 1e-6 135 39 0.00015559999 1e-6 139 39 9.3399998e-05 1e-6 141 39 3.1099989e-05 1e-6 150 39 0.0001089 1e-6 154 39 3.1099989e-05 1e-6 159 39 1.5599988e-05 1e-6 160 39 0.0035330998 1e-6 162 39 0.00014009999 1e-6 163 39 0.0014475 1e-6 164 39 0.00088719977 1e-6 165 39 0.003393 1e-6 166 39 0.0056030974 1e-6 167 39 0.0015409 1e-6 168 39 0.0022100999 1e-6 170 39 9.3399998e-05 1e-6 171 39 0.00045139994 1e-6 177 39 0.00012449999 1e-6 181 39 0.0011672999 1e-6 182 39 0.0014008 1e-6 183 39 0.0008405 1e-6 189 39 3.1099989e-05 1e-6 191 39 0.0011517999 1e-6 192 39 0.00082489988 1e-6 194 39 4.6699992e-05 1e-6 196 39 1.5599988e-05 1e-6 197 39 7.7799996e-05 1e-6 198 39 3.1099989e-05 1e-6 201 39 4.6699992e-05 1e-6 203 39 3.1099989e-05 1e-6 204 39 4.6699992e-05 1e-6 206 39 0.00012449999 1e-6 207 39 3.1099989e-05 1e-6 209 39 1.5599988e-05 1e-6 214 39 0.00026459992 1e-6 215 39 6.2299994e-05 1e-6 218 39 1.5599988e-05 1e-6 219 39 0.0017120999 1e-6 223 39 0.00032679993 1e-6 233 39 0.0035641999 1e-6 234 39 0.0041244999 1e-6 235 39 0.0070194975 1e-6 236 39 0.0034397 1e-6 237 39 0.00082489988 1e-6 240 39 0.00062259985 1e-6 241 39 0.0071127973 1e-6 242 39 0.00012449999 1e-6 248 39 3.1099989e-05 1e-6 250 39 1.5599988e-05 1e-6 252 39 0.0027548999 1e-6 254 39 0.0035797998 1e-6 255 39 0.0049649999 1e-6 256 39 0.00077819987 1e-6 257 39 0.0002023 1e-6 258 39 0.00034239981 1e-6 259 39 0.0010427998 1e-6 262 39 0.00021789999 1e-6 264 39 0.0077197999 1e-6 265 39 0.0059921965 1e-6 266 39 0.0221323 1e-6 267 39 0.00054469984 1e-6 268 39 0.0023657999 1e-6 269 39 0.0020544999 1e-6 270 39 3.1099989e-05 1e-6 271 39 0.0026925998 1e-6 272 39 0.00014009999 1e-6 273 39 0.0002489998 1e-6 274 39 0.0094785988 1e-6 277 39 0.0075952969 1e-6 279 39 0.000856 1e-6 282 39 0.0023035 1e-6 285 39 0.00012449999 1e-6 292 39 0.0034552999 1e-6 293 39 0.0002023 1e-6 294 39 4.6699992e-05 1e-6 295 39 0.011782099 1e-6 302 39 0.0015874999 1e-6 303 39 0.0014942 1e-6 304 39 0.0062411986 1e-6 305 39 0.050972797 1e-6 306 39 0.023797698 1e-6 307 39 0.00088719977 1e-6 308 39 0.015766498 1e-6 309 39 0.011595298 1e-6 310 39 0.0058365986 1e-6 311 39 0.012964997 1e-6 312 39 0.00057589984 1e-6 315 39 0.00017119999 1e-6 317 39 0.0016186999 1e-6 318 39 7.7799996e-05 1e-6 319 39 0.0081555992 1e-6 322 39 0.0039376989 1e-6 323 39 1.5599988e-05 1e-6 324 39 0.000856 1e-6 331 39 0.00073149987 1e-6 334 39 0.0016031 1e-6 335 39 0.00048249983 1e-6 341 39 0.00014009999 1e-6 350 39 0.00046689995 1e-6 352 39 0.0023657999 1e-6 356 39 0.00079379999 1e-6 358 39 0.0001089 1e-6 366 39 0.0123735 1e-6 368 39 0.00014009999 1e-6 371 39 0.012638099 1e-6 374 39 4.6699992e-05 1e-6 380 39 0.0009649999 1e-6 383 39 0.00087159988 1e-6 384 39 0.00038909982 1e-6 385 39 0.011891097 1e-6 386 39 0.0075952969 1e-6 387 39 4.6699992e-05 1e-6 390 39 0.0012762998 1e-6 394 39 9.3399998e-05 1e-6 397 39 1.5599988e-05 1e-6 398 39 0.00042019994 1e-6 402 39 0.0002023 1e-6 412 39 1.5599988e-05 1e-6 414 39 0.00014009999 1e-6 415 39 0.0039532967 1e-6 419 39 0.0001089 1e-6 422 39 0.00015559999 1e-6 423 39 1.5599988e-05 1e-6 425 39 1.5599988e-05 1e-6 430 39 3.1099989e-05 1e-6 431 39 3.1099989e-05 1e-6 432 39 1.5599988e-05 1e-6 433 39 3.1099989e-05 1e-6 434 39 3.1099989e-05 1e-6 438 39 0.00015559999 1e-6 439 39 0.00015559999 1e-6 441 39 0.0002023 1e-6 443 39 0.0054629967 1e-6 444 39 0.00012449999 1e-6 445 39 0.019937698 1e-6 446 39 0.00094939978 1e-6 447 39 0.00063809985 1e-6 449 39 1.5599988e-05 1e-6 450 39 0.003144 1e-6 452 39 0.00046689995 1e-6 453 39 6.2299994e-05 1e-6 454 39 0.00094939978 1e-6 455 39 0.035844397 1e-6 456 39 0.026381299 1e-6 457 39 0.0033151999 1e-6 458 39 0.00021789999 1e-6 459 39 1.5599988e-05 1e-6 460 39 0.0026303998 1e-6 463 39 0.0067081973 1e-6 464 39 0.00017119999 1e-6 465 39 0.0001089 1e-6 467 39 0.0065057985 1e-6 468 39 0.00051359995 1e-6 469 39 0.11573535 1e-6 470 39 0.0048559979 1e-6 471 39 0.0022256998 1e-6 473 39 0.0001089 1e-6 477 39 4.6699992e-05 1e-6 478 39 0.00054469984 1e-6 483 39 0.00034239981 1e-6 489 39 7.7799996e-05 1e-6 490 39 0.00038909982 1e-6 491 39 0.0002023 1e-6 7 40 7.1799994e-05 1e-6 9 40 2.3899993e-05 1e-6 16 40 0.00035889982 1e-6 18 40 0.00028709997 1e-6 24 40 0.0048085973 1e-6 60 40 0.00026319991 1e-6 80 40 9.5699987e-05 1e-6 82 40 2.3899993e-05 1e-6 83 40 2.3899993e-05 1e-6 84 40 2.3899993e-05 1e-6 108 40 4.7799986e-05 1e-6 113 40 4.7799986e-05 1e-6 114 40 9.5699987e-05 1e-6 126 40 7.1799994e-05 1e-6 127 40 2.3899993e-05 1e-6 134 40 0.0011243999 1e-6 135 40 2.3899993e-05 1e-6 139 40 0.00023919999 1e-6 141 40 2.3899993e-05 1e-6 142 40 2.3899993e-05 1e-6 150 40 7.1799994e-05 1e-6 154 40 4.7799986e-05 1e-6 159 40 2.3899993e-05 1e-6 160 40 0.0047846995 1e-6 162 40 9.5699987e-05 1e-6 163 40 0.0018659998 1e-6 164 40 0.0012679 1e-6 165 40 0.0040190965 1e-6 166 40 0.0077989995 1e-6 167 40 0.0021052998 1e-6 168 40 0.0014354 1e-6 170 40 9.5699987e-05 1e-6 171 40 0.00071769999 1e-6 177 40 0.00016749999 1e-6 182 40 0.00081339991 1e-6 183 40 0.00040669995 1e-6 189 40 2.3899993e-05 1e-6 191 40 0.0011482998 1e-6 192 40 0.00093299989 1e-6 194 40 2.3899993e-05 1e-6 197 40 9.5699987e-05 1e-6 198 40 2.3899993e-05 1e-6 201 40 2.3899993e-05 1e-6 203 40 2.3899993e-05 1e-6 204 40 4.7799986e-05 1e-6 206 40 0.00011959999 1e-6 207 40 2.3899993e-05 1e-6 214 40 0.0002153 1e-6 215 40 2.3899993e-05 1e-6 219 40 0.00189 1e-6 223 40 0.00026319991 1e-6 233 40 0.004162699 1e-6 234 40 0.001555 1e-6 235 40 0.0013875999 1e-6 236 40 0.0016985999 1e-6 237 40 0.00045449985 1e-6 240 40 0.00031099981 1e-6 241 40 0.0091147982 1e-6 242 40 7.1799994e-05 1e-6 252 40 0.00088519999 1e-6 254 40 0.0031339999 1e-6 255 40 0.0023206 1e-6 256 40 0.0012439999 1e-6 257 40 0.00011959999 1e-6 258 40 0.00062199985 1e-6 259 40 0.0018420999 1e-6 262 40 0.00023919999 1e-6 264 40 0.0036841999 1e-6 265 40 0.0065549985 1e-6 266 40 0.021626797 1e-6 267 40 0.00052629993 1e-6 268 40 0.0054305978 1e-6 269 40 0.0018420999 1e-6 270 40 2.3899993e-05 1e-6 271 40 0.0035885 1e-6 272 40 0.00023919999 1e-6 273 40 0.00014349999 1e-6 274 40 0.0099760965 1e-6 277 40 0.010287099 1e-6 279 40 0.0009808999 1e-6 282 40 0.0038516999 1e-6 285 40 0.00014349999 1e-6 292 40 0.0048085973 1e-6 293 40 0.0002153 1e-6 294 40 2.3899993e-05 1e-6 295 40 0.013468899 1e-6 302 40 0.0028468999 1e-6 304 40 0.010071799 1e-6 305 40 0.031674597 1e-6 306 40 0.012416299 1e-6 307 40 0.0012439999 1e-6 308 40 0.019928198 1e-6 309 40 0.0046650991 1e-6 311 40 0.0082535967 1e-6 312 40 0.0005502 1e-6 315 40 7.1799994e-05 1e-6 317 40 0.0014114999 1e-6 318 40 4.7799986e-05 1e-6 319 40 0.011770297 1e-6 322 40 0.0045454986 1e-6 324 40 0.0013875999 1e-6 331 40 0.00035889982 1e-6 334 40 0.0089233965 1e-6 335 40 0.0002153 1e-6 341 40 0.00011959999 1e-6 350 40 0.00078949984 1e-6 352 40 0.0038037999 1e-6 356 40 0.00093299989 1e-6 358 40 9.5699987e-05 1e-6 366 40 0.020909097 1e-6 368 40 0.00026319991 1e-6 371 40 0.014162697 1e-6 374 40 2.3899993e-05 1e-6 380 40 0.0011482998 1e-6 383 40 0.0014832998 1e-6 384 40 0.00035889982 1e-6 385 40 0.011770297 1e-6 386 40 0.0085884966 1e-6 387 40 4.7799986e-05 1e-6 390 40 0.0014354 1e-6 394 40 9.5699987e-05 1e-6 398 40 0.00066989986 1e-6 402 40 9.5699987e-05 1e-6 412 40 2.3899993e-05 1e-6 414 40 0.00028709997 1e-6 415 40 0.0062678978 1e-6 419 40 0.00011959999 1e-6 422 40 0.00014349999 1e-6 423 40 2.3899993e-05 1e-6 425 40 2.3899993e-05 1e-6 430 40 4.7799986e-05 1e-6 431 40 2.3899993e-05 1e-6 433 40 2.3899993e-05 1e-6 434 40 2.3899993e-05 1e-6 438 40 0.0002153 1e-6 439 40 0.00026319991 1e-6 441 40 0.0002153 1e-6 443 40 0.0043779984 1e-6 444 40 0.00011959999 1e-6 445 40 0.0179426 1e-6 446 40 0.00052629993 1e-6 447 40 0.0004784998 1e-6 450 40 0.0027272999 1e-6 452 40 0.00040669995 1e-6 453 40 4.7799986e-05 1e-6 454 40 0.00078949984 1e-6 455 40 0.033803798 1e-6 456 40 0.024880398 1e-6 457 40 0.0028468999 1e-6 458 40 0.00014349999 1e-6 460 40 0.0018420999 1e-6 463 40 0.0057655983 1e-6 464 40 0.00014349999 1e-6 465 40 9.5699987e-05 1e-6 467 40 0.0039233975 1e-6 468 40 0.00043059979 1e-6 469 40 0.11217695 1e-6 470 40 0.0042104982 1e-6 471 40 0.0012200999 1e-6 473 40 9.5699987e-05 1e-6 477 40 2.3899993e-05 1e-6 478 40 0.00045449985 1e-6 483 40 0.00028709997 1e-6 489 40 7.1799994e-05 1e-6 490 40 0.00033489987 1e-6 491 40 0.00016749999 1e-6 7 41 6.8799985e-05 1e-6 9 41 3.4399985e-05 1e-6 16 41 0.00020639999 1e-6 18 41 0.00013759999 1e-6 24 41 0.0057435967 1e-6 60 41 0.00037829997 1e-6 80 41 0.00010319999 1e-6 82 41 3.4399985e-05 1e-6 83 41 3.4399985e-05 1e-6 84 41 3.4399985e-05 1e-6 108 41 6.8799985e-05 1e-6 113 41 6.8799985e-05 1e-6 114 41 0.00013759999 1e-6 126 41 0.00010319999 1e-6 134 41 0.0020291999 1e-6 135 41 3.4399985e-05 1e-6 139 41 0.00013759999 1e-6 141 41 3.4399985e-05 1e-6 150 41 0.00010319999 1e-6 154 41 3.4399985e-05 1e-6 159 41 3.4399985e-05 1e-6 160 41 0.0044365972 1e-6 162 41 0.00020639999 1e-6 163 41 0.0016508 1e-6 164 41 0.0010662 1e-6 165 41 0.0042990968 1e-6 166 41 0.0068096966 1e-6 167 41 0.0018227999 1e-6 168 41 0.0024074998 1e-6 170 41 0.00013759999 1e-6 171 41 0.00061909994 1e-6 177 41 0.00013759999 1e-6 181 41 0.0026481999 1e-6 182 41 0.011383999 1e-6 183 41 0.0073255971 1e-6 189 41 3.4399985e-05 1e-6 191 41 0.00079099997 1e-6 192 41 0.00072219991 1e-6 194 41 3.4399985e-05 1e-6 197 41 6.8799985e-05 1e-6 198 41 3.4399985e-05 1e-6 201 41 3.4399985e-05 1e-6 203 41 3.4399985e-05 1e-6 204 41 6.8799985e-05 1e-6 206 41 0.00017199999 1e-6 207 41 3.4399985e-05 1e-6 214 41 0.00027509988 1e-6 219 41 0.001926 1e-6 223 41 0.00037829997 1e-6 233 41 0.0034049 1e-6 234 41 0.0020635999 1e-6 235 41 0.0010317999 1e-6 236 41 0.0026825999 1e-6 237 41 0.00075659994 1e-6 240 41 0.00030949991 1e-6 241 41 0.0082541965 1e-6 242 41 0.00010319999 1e-6 252 41 0.0023387 1e-6 254 41 0.0058123991 1e-6 255 41 0.0036455998 1e-6 256 41 0.0011349998 1e-6 257 41 0.00020639999 1e-6 258 41 0.00051589985 1e-6 259 41 0.0014444999 1e-6 262 41 0.00017199999 1e-6 264 41 0.0057091974 1e-6 265 41 0.0091827996 1e-6 266 41 0.032672998 1e-6 267 41 0.0004127 1e-6 269 41 0.0073255971 1e-6 270 41 0.00010319999 1e-6 271 41 0.0035079999 1e-6 272 41 0.00020639999 1e-6 273 41 0.00017199999 1e-6 274 41 0.010902498 1e-6 277 41 0.012622099 1e-6 282 41 0.0031297 1e-6 285 41 0.00013759999 1e-6 292 41 0.0044022985 1e-6 293 41 0.00027509988 1e-6 295 41 0.010489799 1e-6 302 41 0.0022010999 1e-6 303 41 0.0018916 1e-6 304 41 0.0090108998 1e-6 305 41 0.023490198 1e-6 306 41 0.017196298 1e-6 307 41 0.00079099997 1e-6 308 41 0.0208763 1e-6 309 41 0.007875897 1e-6 310 41 0.0073599964 1e-6 311 41 0.010386597 1e-6 312 41 0.00055029988 1e-6 315 41 0.00020639999 1e-6 317 41 0.0019947998 1e-6 318 41 6.8799985e-05 1e-6 319 41 0.0088732988 1e-6 322 41 0.0037143999 1e-6 324 41 0.0019947998 1e-6 331 41 0.00061909994 1e-6 334 41 0.0060874969 1e-6 335 41 0.0042646974 1e-6 341 41 0.00017199999 1e-6 350 41 0.00065349997 1e-6 352 41 0.0034736998 1e-6 356 41 0.0008254 1e-6 358 41 0.00010319999 1e-6 366 41 0.018675197 1e-6 368 41 0.00017199999 1e-6 371 41 0.011005599 1e-6 374 41 6.8799985e-05 1e-6 380 41 0.00089419982 1e-6 383 41 0.0011349998 1e-6 384 41 0.00027509988 1e-6 385 41 0.0098706968 1e-6 386 41 0.0067409985 1e-6 387 41 6.8799985e-05 1e-6 390 41 0.0011006 1e-6 394 41 0.00013759999 1e-6 398 41 0.00061909994 1e-6 402 41 0.00020639999 1e-6 412 41 3.4399985e-05 1e-6 414 41 0.00020639999 1e-6 415 41 0.0057091974 1e-6 419 41 0.00013759999 1e-6 422 41 0.00020639999 1e-6 423 41 3.4399985e-05 1e-6 425 41 3.4399985e-05 1e-6 430 41 6.8799985e-05 1e-6 431 41 3.4399985e-05 1e-6 433 41 3.4399985e-05 1e-6 434 41 3.4399985e-05 1e-6 438 41 0.00017199999 1e-6 439 41 0.0002407 1e-6 441 41 0.00020639999 1e-6 443 41 0.0044022985 1e-6 444 41 0.00017199999 1e-6 445 41 0.016233299 1e-6 446 41 0.0010317999 1e-6 447 41 0.00061909994 1e-6 450 41 0.0037487999 1e-6 452 41 0.00055029988 1e-6 453 41 6.8799985e-05 1e-6 454 41 0.0011006 1e-6 455 41 0.037281599 1e-6 456 41 0.024143599 1e-6 457 41 0.0039207973 1e-6 458 41 0.0002407 1e-6 460 41 0.0024074998 1e-6 463 41 0.0079790987 1e-6 464 41 0.00020639999 1e-6 465 41 0.00013759999 1e-6 467 41 0.0060186982 1e-6 468 41 0.00058469991 1e-6 469 41 0.10001379 1e-6 470 41 0.0058123991 1e-6 471 41 0.0020635999 1e-6 473 41 0.00013759999 1e-6 477 41 3.4399985e-05 1e-6 478 41 0.00065349997 1e-6 483 41 0.00037829997 1e-6 489 41 0.00010319999 1e-6 490 41 0.00048149982 1e-6 491 41 0.00020639999 1e-6 7 42 6.179999e-05 1e-6 16 42 0.00030909991 1e-6 18 42 0.00018549999 1e-6 24 42 0.0051932 1e-6 60 42 0.0001236 1e-6 80 42 9.2699993e-05 1e-6 108 42 3.0899988e-05 1e-6 113 42 3.0899988e-05 1e-6 114 42 6.179999e-05 1e-6 126 42 3.0899988e-05 1e-6 134 42 0.00046369992 1e-6 139 42 3.0899988e-05 1e-6 141 42 3.0899988e-05 1e-6 150 42 3.0899988e-05 1e-6 159 42 6.179999e-05 1e-6 160 42 0.0017001999 1e-6 162 42 6.179999e-05 1e-6 163 42 0.00021639999 1e-6 164 42 0.00018549999 1e-6 165 42 0.00095829996 1e-6 166 42 0.00095829996 1e-6 167 42 0.00027819979 1e-6 168 42 0.0066460967 1e-6 170 42 3.0899988e-05 1e-6 171 42 0.0001546 1e-6 182 42 0.00055639981 1e-6 183 42 0.00033999979 1e-6 191 42 0.00018549999 1e-6 192 42 0.0002472999 1e-6 195 42 0.00046369992 1e-6 197 42 3.0899988e-05 1e-6 198 42 3.0899988e-05 1e-6 206 42 6.179999e-05 1e-6 214 42 3.0899988e-05 1e-6 219 42 0.00040189992 1e-6 223 42 0.00021639999 1e-6 233 42 0.0012365 1e-6 234 42 0.0051004998 1e-6 235 42 0.0096753985 1e-6 236 42 0.00095829996 1e-6 237 42 0.0012055999 1e-6 240 42 3.0899988e-05 1e-6 241 42 0.0017310998 1e-6 242 42 3.0899988e-05 1e-6 252 42 0.0011747 1e-6 254 42 0.0014218998 1e-6 255 42 0.00092739984 1e-6 256 42 0.00030909991 1e-6 257 42 6.179999e-05 1e-6 258 42 0.0013291999 1e-6 259 42 0.0002472999 1e-6 262 42 0.0017001999 1e-6 264 42 0.0014837999 1e-6 265 42 0.0059041977 1e-6 266 42 0.016043298 1e-6 267 42 0.0001236 1e-6 268 42 0.00046369992 1e-6 269 42 0.0011127999 1e-6 271 42 0.0034311998 1e-6 272 42 3.0899988e-05 1e-6 273 42 6.179999e-05 1e-6 274 42 0.0022874998 1e-6 277 42 0.0034620999 1e-6 279 42 0.00018549999 1e-6 282 42 0.0013291999 1e-6 285 42 3.0899988e-05 1e-6 292 42 0.00083459984 1e-6 293 42 9.2699993e-05 1e-6 295 42 0.27020085 1e-6 302 42 0.00037089991 1e-6 303 42 0.00037089991 1e-6 304 42 0.0016691999 1e-6 305 42 0.027573399 1e-6 306 42 0.0035857998 1e-6 307 42 0.0002472999 1e-6 308 42 0.0058732964 1e-6 309 42 0.0022256998 1e-6 310 42 0.005656898 1e-6 311 42 0.0059968978 1e-6 312 42 0.0004327998 1e-6 315 42 0.0001546 1e-6 317 42 0.00068009994 1e-6 318 42 3.0899988e-05 1e-6 319 42 0.0012055999 1e-6 322 42 0.0029365998 1e-6 324 42 0.016723298 1e-6 331 42 0.0013291999 1e-6 334 42 0.0018855999 1e-6 335 42 0.00021639999 1e-6 341 42 6.179999e-05 1e-6 350 42 9.2699993e-05 1e-6 352 42 0.0012673999 1e-6 356 42 0.00068009994 1e-6 358 42 3.0899988e-05 1e-6 366 42 0.0036166999 1e-6 368 42 3.0899988e-05 1e-6 371 42 0.0027202 1e-6 380 42 0.00021639999 1e-6 383 42 0.00021639999 1e-6 384 42 0.0010509999 1e-6 385 42 0.0040803999 1e-6 386 42 0.030757297 1e-6 387 42 3.0899988e-05 1e-6 390 42 0.00027819979 1e-6 394 42 3.0899988e-05 1e-6 397 42 3.0899988e-05 1e-6 398 42 0.0001236 1e-6 402 42 0.00033999979 1e-6 414 42 3.0899988e-05 1e-6 415 42 0.0010201 1e-6 419 42 3.0899988e-05 1e-6 422 42 3.0899988e-05 1e-6 430 42 3.0899988e-05 1e-6 438 42 6.179999e-05 1e-6 439 42 6.179999e-05 1e-6 441 42 6.179999e-05 1e-6 443 42 0.0033075998 1e-6 444 42 6.179999e-05 1e-6 445 42 0.016383298 1e-6 446 42 0.00089639984 1e-6 447 42 0.00018549999 1e-6 448 42 3.0899988e-05 1e-6 450 42 0.0011747 1e-6 452 42 0.00018549999 1e-6 453 42 3.0899988e-05 1e-6 454 42 0.00033999979 1e-6 455 42 0.037341598 1e-6 456 42 0.013137598 1e-6 457 42 0.0012365 1e-6 458 42 0.00021639999 1e-6 460 42 0.0018546998 1e-6 463 42 0.0025348 1e-6 464 42 6.179999e-05 1e-6 465 42 3.0899988e-05 1e-6 467 42 0.010324597 1e-6 468 42 0.00018549999 1e-6 469 42 0.018485297 1e-6 470 42 0.0018546998 1e-6 471 42 0.0034311998 1e-6 473 42 3.0899988e-05 1e-6 478 42 0.00018549999 1e-6 483 42 0.0001236 1e-6 489 42 3.0899988e-05 1e-6 490 42 0.0001546 1e-6 491 42 0.0001236 1e-6 24 43 0.013648998 1e-6 134 43 0.00027859979 1e-6 160 43 0.004735399 1e-6 163 43 0.0011141999 1e-6 164 43 0.00055709993 1e-6 165 43 0.0013927999 1e-6 166 43 0.0033425998 1e-6 167 43 0.00083569996 1e-6 168 43 0.019220099 1e-6 191 43 0.00027859979 1e-6 192 43 0.00083569996 1e-6 233 43 0.00027859979 1e-6 234 43 0.0019498998 1e-6 235 43 0.0066851974 1e-6 236 43 0.00055709993 1e-6 237 43 0.00083569996 1e-6 241 43 0.0027854999 1e-6 252 43 0.00027859979 1e-6 255 43 0.00055709993 1e-6 262 43 0.00027859979 1e-6 264 43 0.00055709993 1e-6 265 43 0.011977699 1e-6 266 43 0.0061280988 1e-6 268 43 0.00027859979 1e-6 271 43 0.00055709993 1e-6 274 43 0.0011141999 1e-6 277 43 0.14512527 1e-6 279 43 0.00027859979 1e-6 282 43 0.00027859979 1e-6 285 43 0.00027859979 1e-6 292 43 0.00055709993 1e-6 295 43 0.013091899 1e-6 302 43 0.00027859979 1e-6 303 43 0.00027859979 1e-6 304 43 0.00055709993 1e-6 305 43 0.021726999 1e-6 306 43 0.0011141999 1e-6 308 43 0.0011141999 1e-6 309 43 0.0011141999 1e-6 310 43 0.0016712998 1e-6 311 43 0.0019498998 1e-6 317 43 0.00027859979 1e-6 319 43 0.00083569996 1e-6 322 43 0.0036211999 1e-6 324 43 0.084958196 1e-6 326 43 0.067687988 1e-6 331 43 0.00055709993 1e-6 334 43 0.00055709993 1e-6 356 43 0.00083569996 1e-6 366 43 0.0011141999 1e-6 371 43 0.0144847 1e-6 380 43 0.00083569996 1e-6 384 43 0.00055709993 1e-6 385 43 0.020055696 1e-6 386 43 0.029247899 1e-6 390 43 0.0013927999 1e-6 402 43 0.00027859979 1e-6 415 43 0.00027859979 1e-6 441 43 0.00027859979 1e-6 443 43 0.0055709966 1e-6 445 43 0.0231198 1e-6 446 43 0.00055709993 1e-6 450 43 0.00055709993 1e-6 455 43 0.0462396 1e-6 456 43 0.0064066984 1e-6 457 43 0.00055709993 1e-6 460 43 0.00083569996 1e-6 463 43 0.0011141999 1e-6 467 43 0.0066851974 1e-6 469 43 0.010306399 1e-6 470 43 0.00083569996 1e-6 471 43 0.0019498998 1e-6 7 44 2.4899986e-05 1e-6 9 44 1.24e-05 1e-6 16 44 8.7099994e-05 1e-6 18 44 6.2199993e-05 1e-6 24 44 0.0012937 1e-6 60 44 7.4599986e-05 1e-6 80 44 7.4599986e-05 1e-6 82 44 1.24e-05 1e-6 108 44 1.24e-05 1e-6 113 44 1.24e-05 1e-6 114 44 2.4899986e-05 1e-6 126 44 1.24e-05 1e-6 134 44 4.9799986e-05 1e-6 141 44 2.4899986e-05 1e-6 150 44 2.4899986e-05 1e-6 159 44 0.00011199999 1e-6 160 44 0.0042542964 1e-6 162 44 2.4899986e-05 1e-6 163 44 6.2199993e-05 1e-6 164 44 6.2199993e-05 1e-6 165 44 0.0010076 1e-6 166 44 0.00027369987 1e-6 167 44 7.4599986e-05 1e-6 168 44 0.022316199 1e-6 170 44 3.7299993e-05 1e-6 171 44 0.00018659999 1e-6 182 44 0.00012439999 1e-6 183 44 7.4599986e-05 1e-6 189 44 1.24e-05 1e-6 191 44 6.2199993e-05 1e-6 192 44 0.00018659999 1e-6 194 44 1.24e-05 1e-6 195 44 0.00080859987 1e-6 198 44 2.4899986e-05 1e-6 203 44 1.24e-05 1e-6 206 44 2.4899986e-05 1e-6 214 44 0.00013679999 1e-6 219 44 0.00013679999 1e-6 220 44 2.4899986e-05 1e-6 223 44 0.00016169999 1e-6 233 44 0.00079609989 1e-6 234 44 0.00083339983 1e-6 235 44 0.00077119982 1e-6 236 44 0.00059709977 1e-6 237 44 0.0010324998 1e-6 241 44 0.00073389988 1e-6 242 44 6.2199993e-05 1e-6 252 44 0.00023629999 1e-6 254 44 0.0019405 1e-6 255 44 0.0011816998 1e-6 256 44 2.4899986e-05 1e-6 257 44 0.0010698 1e-6 258 44 0.0005349 1e-6 259 44 6.2199993e-05 1e-6 262 44 0.013733096 1e-6 264 44 0.0010698 1e-6 265 44 0.015511896 1e-6 266 44 0.016730897 1e-6 267 44 8.7099994e-05 1e-6 268 44 8.7099994e-05 1e-6 269 44 0.00033589988 1e-6 271 44 0.0074138977 1e-6 272 44 0.0007836998 1e-6 273 44 0.00039809989 1e-6 274 44 0.0008582999 1e-6 277 44 0.024605099 1e-6 279 44 0.0012563998 1e-6 282 44 0.00075879996 1e-6 285 44 1.24e-05 1e-6 292 44 0.00055979984 1e-6 293 44 1.24e-05 1e-6 294 44 1.24e-05 1e-6 295 44 0.0496579 1e-6 302 44 9.9499986e-05 1e-6 303 44 9.9499986e-05 1e-6 304 44 0.00069659995 1e-6 305 44 0.058265999 1e-6 306 44 0.0013807998 1e-6 307 44 0.06998378 1e-6 308 44 0.0015299998 1e-6 309 44 0.0016668998 1e-6 310 44 0.0012314999 1e-6 311 44 0.0072520971 1e-6 312 44 0.00059709977 1e-6 315 44 3.7299993e-05 1e-6 317 44 0.00038559991 1e-6 318 44 1.24e-05 1e-6 319 44 0.00028609997 1e-6 322 44 0.0016543998 1e-6 324 44 0.099614382 1e-6 331 44 0.0011443999 1e-6 334 44 0.00022389999 1e-6 335 44 4.9799986e-05 1e-6 341 44 3.7299993e-05 1e-6 350 44 2.4899986e-05 1e-6 352 44 0.00079609989 1e-6 356 44 0.00062199985 1e-6 358 44 2.4899986e-05 1e-6 366 44 0.00087079988 1e-6 368 44 1.24e-05 1e-6 371 44 0.00072149979 1e-6 374 44 0.00073389988 1e-6 380 44 6.2199993e-05 1e-6 383 44 8.7099994e-05 1e-6 384 44 2.4899986e-05 1e-6 385 44 0.0225899 1e-6 386 44 0.021619599 1e-6 387 44 1.24e-05 1e-6 390 44 7.4599986e-05 1e-6 394 44 2.4899986e-05 1e-6 397 44 2.4899986e-05 1e-6 398 44 2.4899986e-05 1e-6 402 44 0.00028609997 1e-6 414 44 0.0061698966 1e-6 415 44 0.0002487998 1e-6 422 44 3.7299993e-05 1e-6 430 44 1.24e-05 1e-6 438 44 6.2199993e-05 1e-6 439 44 1.24e-05 1e-6 441 44 7.4599986e-05 1e-6 443 44 0.0043661967 1e-6 444 44 2.4899986e-05 1e-6 445 44 0.0088318996 1e-6 446 44 0.0011568998 1e-6 447 44 0.00026119989 1e-6 450 44 0.00073389988 1e-6 452 44 0.00011199999 1e-6 453 44 1.24e-05 1e-6 454 44 0.0002115 1e-6 455 44 0.0447568 1e-6 456 44 0.016880199 1e-6 457 44 0.00077119982 1e-6 458 44 0.00018659999 1e-6 460 44 0.0016917998 1e-6 463 44 0.0015673998 1e-6 464 44 3.7299993e-05 1e-6 465 44 2.4899986e-05 1e-6 467 44 0.0087572969 1e-6 468 44 0.00011199999 1e-6 469 44 0.035539199 1e-6 470 44 0.0011443999 1e-6 471 44 0.0028859 1e-6 473 44 2.4899986e-05 1e-6 478 44 0.00012439999 1e-6 483 44 7.4599986e-05 1e-6 489 44 1.24e-05 1e-6 490 44 8.7099994e-05 1e-6 491 44 6.2199993e-05 1e-6 16 45 0.00012079999 1e-6 18 45 6.0399994e-05 1e-6 24 45 0.010453198 1e-6 60 45 0.00024169999 1e-6 108 45 6.0399994e-05 1e-6 113 45 6.0399994e-05 1e-6 114 45 0.00012079999 1e-6 126 45 6.0399994e-05 1e-6 134 45 6.0399994e-05 1e-6 141 45 6.0399994e-05 1e-6 150 45 6.0399994e-05 1e-6 160 45 0.00030209986 1e-6 163 45 6.0399994e-05 1e-6 164 45 6.0399994e-05 1e-6 165 45 0.0001813 1e-6 166 45 0.0001813 1e-6 168 45 0.00030209986 1e-6 171 45 6.0399994e-05 1e-6 182 45 0.00012079999 1e-6 183 45 6.0399994e-05 1e-6 191 45 6.0399994e-05 1e-6 192 45 0.00012079999 1e-6 198 45 6.0399994e-05 1e-6 206 45 0.00012079999 1e-6 214 45 0.0033232998 1e-6 219 45 6.0399994e-05 1e-6 220 45 0.0010271999 1e-6 223 45 0.00024169999 1e-6 233 45 0.0045316964 1e-6 234 45 0.060120799 1e-6 235 45 0.0087008998 1e-6 236 45 0.00036249985 1e-6 237 45 0.0016917998 1e-6 241 45 0.0070090964 1e-6 242 45 0.00012079999 1e-6 252 45 0.00024169999 1e-6 254 45 0.00030209986 1e-6 255 45 0.00024169999 1e-6 256 45 6.0399994e-05 1e-6 259 45 6.0399994e-05 1e-6 264 45 0.00036249985 1e-6 265 45 0.0016917998 1e-6 266 45 0.023867097 1e-6 268 45 0.00012079999 1e-6 269 45 0.00012079999 1e-6 271 45 0.0001813 1e-6 274 45 0.00036249985 1e-6 277 45 0.088157058 1e-6 279 45 6.0399994e-05 1e-6 282 45 0.00012079999 1e-6 292 45 0.00060419994 1e-6 295 45 0.0069485977 1e-6 302 45 0.00012079999 1e-6 303 45 0.00012079999 1e-6 304 45 0.00024169999 1e-6 305 45 0.010876097 1e-6 306 45 0.0009062998 1e-6 307 45 0.086344361 1e-6 308 45 0.006525699 1e-6 309 45 0.0087008998 1e-6 310 45 0.0009062998 1e-6 311 45 0.0032627999 1e-6 312 45 6.0399994e-05 1e-6 317 45 0.0013897 1e-6 318 45 6.0399994e-05 1e-6 319 45 0.00024169999 1e-6 322 45 0.004048299 1e-6 324 45 0.083504498 1e-6 331 45 0.0018126999 1e-6 334 45 0.00024169999 1e-6 335 45 6.0399994e-05 1e-6 341 45 0.00012079999 1e-6 352 45 0.00012079999 1e-6 356 45 0.0029002998 1e-6 358 45 6.0399994e-05 1e-6 366 45 0.00066469982 1e-6 371 45 0.012144998 1e-6 374 45 0.0039274991 1e-6 380 45 6.0399994e-05 1e-6 385 45 0.0018730999 1e-6 386 45 0.0012689 1e-6 387 45 6.0399994e-05 1e-6 390 45 6.0399994e-05 1e-6 394 45 6.0399994e-05 1e-6 402 45 0.00042299996 1e-6 414 45 0.039154097 1e-6 415 45 0.0001813 1e-6 422 45 6.0399994e-05 1e-6 430 45 6.0399994e-05 1e-6 443 45 0.0048942976 1e-6 444 45 0.00012079999 1e-6 445 45 0.011842899 1e-6 446 45 0.0025982 1e-6 447 45 0.00078549981 1e-6 448 45 0.0012084998 1e-6 450 45 0.0024772999 1e-6 452 45 0.00036249985 1e-6 453 45 6.0399994e-05 1e-6 454 45 0.00072509982 1e-6 455 45 0.067190289 1e-6 456 45 0.028398797 1e-6 457 45 0.0025982 1e-6 458 45 0.00030209986 1e-6 460 45 0.0029002998 1e-6 463 45 0.0053172 1e-6 464 45 0.00012079999 1e-6 465 45 6.0399994e-05 1e-6 467 45 0.013534699 1e-6 468 45 0.00036249985 1e-6 469 45 0.015528698 1e-6 470 45 0.0038671 1e-6 471 45 0.0045920983 1e-6 473 45 6.0399994e-05 1e-6 478 45 0.00042299996 1e-6 483 45 0.00024169999 1e-6 489 45 6.0399994e-05 1e-6 490 45 0.00030209986 1e-6 491 45 0.00024169999 1e-6 24 46 0.0098591968 1e-6 214 46 0.0031689999 1e-6 220 46 0.0014084999 1e-6 233 46 0.015140798 1e-6 234 46 0.058098599 1e-6 235 46 0.0056337975 1e-6 237 46 0.0021126999 1e-6 265 46 0.0014084999 1e-6 266 46 0.0038731999 1e-6 277 46 0.20352107 1e-6 295 46 0.011619698 1e-6 305 46 0.0014084999 1e-6 306 46 0.00035209977 1e-6 307 46 0.12746477 1e-6 311 46 0.00070419977 1e-6 317 46 0.00035209977 1e-6 322 46 0.0031689999 1e-6 324 46 0.025704198 1e-6 331 46 0.0024647999 1e-6 356 46 0.0028168999 1e-6 371 46 0.021830998 1e-6 374 46 0.0021126999 1e-6 385 46 0.0028168999 1e-6 386 46 0.0017605999 1e-6 390 46 0.0014084999 1e-6 402 46 0.00070419977 1e-6 414 46 0.0098591968 1e-6 443 46 0.0056337975 1e-6 445 46 0.010211296 1e-6 446 46 0.0024647999 1e-6 448 46 0.0010562998 1e-6 450 46 0.00070419977 1e-6 455 46 0.063028157 1e-6 456 46 0.020774599 1e-6 457 46 0.00070419977 1e-6 458 46 0.00035209977 1e-6 460 46 0.0021126999 1e-6 463 46 0.0014084999 1e-6 467 46 0.019718297 1e-6 469 46 0.011971798 1e-6 470 46 0.0010562998 1e-6 471 46 0.0063379966 1e-6 16 47 0.00018589999 1e-6 24 47 0.0015798998 1e-6 60 47 9.2899994e-05 1e-6 114 47 9.2899994e-05 1e-6 160 47 0.00037169992 1e-6 165 47 0.00046469993 1e-6 214 47 9.2899994e-05 1e-6 220 47 9.2899994e-05 1e-6 223 47 9.2899994e-05 1e-6 233 47 0.00092939986 1e-6 234 47 0.0045538992 1e-6 235 47 0.00083639985 1e-6 236 47 9.2899994e-05 1e-6 237 47 0.00065059983 1e-6 241 47 0.010408897 1e-6 254 47 0.0028809998 1e-6 255 47 0.00027879979 1e-6 258 47 9.2899994e-05 1e-6 259 47 0.00018589999 1e-6 264 47 0.00055759982 1e-6 265 47 0.019330896 1e-6 266 47 0.0096653998 1e-6 271 47 0.020817798 1e-6 274 47 0.00037169992 1e-6 277 47 0.013196997 1e-6 282 47 0.20836425 1e-6 292 47 0.00027879979 1e-6 295 47 0.00055759982 1e-6 302 47 9.2899994e-05 1e-6 306 47 0.00046469993 1e-6 307 47 0.071840048 1e-6 308 47 0.0070631988 1e-6 309 47 0.0010223 1e-6 310 47 0.0055761971 1e-6 311 47 0.0013010998 1e-6 312 47 9.2899994e-05 1e-6 317 47 0.00027879979 1e-6 319 47 0.00018589999 1e-6 322 47 0.00018589999 1e-6 324 47 0.096096694 1e-6 331 47 0.00065059983 1e-6 350 47 9.2899994e-05 1e-6 356 47 0.00083639985 1e-6 371 47 0.004089199 1e-6 374 47 0.00065059983 1e-6 385 47 0.0043679997 1e-6 386 47 0.00046469993 1e-6 402 47 9.2899994e-05 1e-6 414 47 0.0098512992 1e-6 443 47 0.0029739998 1e-6 445 47 0.0092936978 1e-6 446 47 0.00065059983 1e-6 447 47 0.00018589999 1e-6 448 47 9.2899994e-05 1e-6 450 47 0.00074349996 1e-6 452 47 9.2899994e-05 1e-6 454 47 0.00018589999 1e-6 455 47 0.039405197 1e-6 456 47 0.029182199 1e-6 457 47 0.00074349996 1e-6 458 47 9.2899994e-05 1e-6 460 47 0.0072490983 1e-6 463 47 0.0015798998 1e-6 467 47 0.015613399 1e-6 468 47 9.2899994e-05 1e-6 469 47 0.022676598 1e-6 470 47 0.0012081999 1e-6 471 47 0.0016728998 1e-6 478 47 9.2899994e-05 1e-6 483 47 9.2899994e-05 1e-6 490 47 9.2899994e-05 1e-6 7 48 0.00019979999 1e-6 16 48 0.0013486999 1e-6 18 48 0.00094909989 1e-6 24 48 0.012986999 1e-6 60 48 0.00024979981 1e-6 80 48 9.9899989e-05 1e-6 82 48 4.9999988e-05 1e-6 108 48 4.9999988e-05 1e-6 113 48 4.9999988e-05 1e-6 114 48 9.9899989e-05 1e-6 126 48 4.9999988e-05 1e-6 134 48 4.9999988e-05 1e-6 139 48 9.9899989e-05 1e-6 141 48 4.9999988e-05 1e-6 150 48 9.9899989e-05 1e-6 154 48 4.9999988e-05 1e-6 160 48 0.0023975999 1e-6 163 48 0.00024979981 1e-6 165 48 0.0012987 1e-6 166 48 4.9999988e-05 1e-6 168 48 0.00089909998 1e-6 170 48 4.9999988e-05 1e-6 171 48 4.9999988e-05 1e-6 182 48 0.00014989999 1e-6 183 48 9.9899989e-05 1e-6 189 48 4.9999988e-05 1e-6 191 48 9.9899989e-05 1e-6 192 48 9.9899989e-05 1e-6 194 48 4.9999988e-05 1e-6 197 48 4.9999988e-05 1e-6 198 48 4.9999988e-05 1e-6 203 48 4.9999988e-05 1e-6 206 48 9.9899989e-05 1e-6 214 48 4.9999988e-05 1e-6 215 48 9.9899989e-05 1e-6 219 48 0.00074929977 1e-6 220 48 0.00069929985 1e-6 223 48 0.00034969999 1e-6 233 48 0.0010988999 1e-6 234 48 0.0015484998 1e-6 235 48 0.0051448978 1e-6 236 48 0.00019979999 1e-6 237 48 0.0016982998 1e-6 241 48 0.0035963999 1e-6 242 48 0.00024979981 1e-6 252 48 4.9999988e-05 1e-6 254 48 0.00069929985 1e-6 255 48 0.00059939991 1e-6 256 48 4.9999988e-05 1e-6 257 48 9.9899989e-05 1e-6 258 48 0.015734296 1e-6 259 48 4.9999988e-05 1e-6 264 48 0.0013486999 1e-6 265 48 0.075074852 1e-6 266 48 0.022827197 1e-6 267 48 4.9999988e-05 1e-6 268 48 4.9999988e-05 1e-6 269 48 0.00029969984 1e-6 271 48 0.0143856 1e-6 273 48 9.9899989e-05 1e-6 274 48 0.004245799 1e-6 277 48 0.012287699 1e-6 279 48 0.00049949996 1e-6 282 48 0.084765196 1e-6 285 48 4.9999988e-05 1e-6 292 48 0.00014989999 1e-6 293 48 4.9999988e-05 1e-6 295 48 0.0023476998 1e-6 302 48 4.9999988e-05 1e-6 303 48 0.0024974998 1e-6 304 48 0.0056942999 1e-6 305 48 0.017981999 1e-6 306 48 0.0028471998 1e-6 307 48 0.0020978998 1e-6 308 48 0.0065933987 1e-6 309 48 0.0019480998 1e-6 310 48 0.0019480998 1e-6 311 48 0.0049450994 1e-6 312 48 0.00039959978 1e-6 317 48 0.0013985999 1e-6 318 48 4.9999988e-05 1e-6 319 48 0.00069929985 1e-6 322 48 0.0015484998 1e-6 324 48 0.00089909998 1e-6 331 48 0.0017982 1e-6 334 48 4.9999988e-05 1e-6 335 48 0.0021478999 1e-6 336 48 0.0027971999 1e-6 341 48 0.00014989999 1e-6 350 48 0.00089909998 1e-6 352 48 0.0015484998 1e-6 356 48 9.9899989e-05 1e-6 358 48 9.9899989e-05 1e-6 366 48 0.00014989999 1e-6 368 48 0.039210796 1e-6 371 48 0.0091408975 1e-6 374 48 9.9899989e-05 1e-6 380 48 9.9899989e-05 1e-6 384 48 4.9999988e-05 1e-6 385 48 0.0014984999 1e-6 386 48 0.0014984999 1e-6 387 48 4.9999988e-05 1e-6 394 48 9.9899989e-05 1e-6 402 48 0.00039959978 1e-6 414 48 0.0031468999 1e-6 415 48 0.0016982998 1e-6 422 48 0.00014989999 1e-6 430 48 4.9999988e-05 1e-6 438 48 4.9999988e-05 1e-6 439 48 4.9999988e-05 1e-6 441 48 4.9999988e-05 1e-6 443 48 0.0033965998 1e-6 444 48 9.9899989e-05 1e-6 445 48 0.015534498 1e-6 446 48 0.00089909998 1e-6 447 48 0.00049949996 1e-6 450 48 0.0026473999 1e-6 452 48 0.00039959978 1e-6 453 48 4.9999988e-05 1e-6 454 48 0.0007991998 1e-6 455 48 0.0412088 1e-6 456 48 0.011438597 1e-6 457 48 0.0027971999 1e-6 458 48 0.00034969999 1e-6 460 48 0.0053945966 1e-6 463 48 0.0056942999 1e-6 464 48 0.00014989999 1e-6 465 48 9.9899989e-05 1e-6 467 48 0.016683299 1e-6 468 48 0.00039959978 1e-6 469 48 0.026923098 1e-6 470 48 0.0041458979 1e-6 471 48 0.0046453997 1e-6 473 48 9.9899989e-05 1e-6 478 48 0.00044959993 1e-6 483 48 0.00029969984 1e-6 489 48 4.9999988e-05 1e-6 490 48 0.00034969999 1e-6 491 48 0.00019979999 1e-6 7 49 0.00058139977 1e-6 16 49 0.0027131999 1e-6 18 49 0.0017441998 1e-6 24 49 0.014534898 1e-6 60 49 0.00019379999 1e-6 114 49 0.00019379999 1e-6 160 49 0.006395299 1e-6 165 49 0.0015503999 1e-6 166 49 0.00019379999 1e-6 168 49 0.0015503999 1e-6 192 49 0.00019379999 1e-6 215 49 0.00019379999 1e-6 219 49 0.00019379999 1e-6 223 49 0.00038759992 1e-6 233 49 0.00058139977 1e-6 234 49 0.0021317999 1e-6 235 49 0.006007798 1e-6 236 49 0.00058139977 1e-6 237 49 0.0015503999 1e-6 241 49 0.0017441998 1e-6 252 49 0.00038759992 1e-6 254 49 0.0025193999 1e-6 255 49 0.00038759992 1e-6 257 49 0.00019379999 1e-6 258 49 0.00038759992 1e-6 259 49 0.00019379999 1e-6 264 49 0.00038759992 1e-6 265 49 0.014728699 1e-6 266 49 0.032364298 1e-6 267 49 0.00038759992 1e-6 268 49 0.00019379999 1e-6 269 49 0.00019379999 1e-6 271 49 0.00058139977 1e-6 273 49 0.00019379999 1e-6 274 49 0.0019379999 1e-6 277 49 0.0093022995 1e-6 279 49 0.00019379999 1e-6 282 49 0.00077519985 1e-6 292 49 0.00058139977 1e-6 295 49 0.013372097 1e-6 302 49 0.00019379999 1e-6 303 49 0.00058139977 1e-6 304 49 0.00077519985 1e-6 305 49 0.06996119 1e-6 306 49 0.0029069998 1e-6 307 49 0.0050387979 1e-6 308 49 0.0023255998 1e-6 309 49 0.0032945999 1e-6 310 49 0.0029069998 1e-6 311 49 0.0071704984 1e-6 312 49 0.00038759992 1e-6 317 49 0.0015503999 1e-6 319 49 0.00038759992 1e-6 322 49 0.0029069998 1e-6 324 49 0.017829496 1e-6 326 49 0.00096899993 1e-6 331 49 0.0017441998 1e-6 334 49 0.012984499 1e-6 341 49 0.00019379999 1e-6 352 49 0.0034883998 1e-6 356 49 0.00019379999 1e-6 366 49 0.0038759999 1e-6 371 49 0.0054263994 1e-6 380 49 0.00019379999 1e-6 385 49 0.0050387979 1e-6 386 49 0.0067828968 1e-6 390 49 0.00038759992 1e-6 394 49 0.00019379999 1e-6 402 49 0.00038759992 1e-6 415 49 0.00038759992 1e-6 441 49 0.0034883998 1e-6 443 49 0.0032945999 1e-6 444 49 0.00019379999 1e-6 445 49 0.049418598 1e-6 446 49 0.00038759992 1e-6 447 49 0.00038759992 1e-6 450 49 0.0029069998 1e-6 452 49 0.00038759992 1e-6 454 49 0.00077519985 1e-6 455 49 0.020736396 1e-6 456 49 0.0073642991 1e-6 457 49 0.0029069998 1e-6 458 49 0.00038759992 1e-6 460 49 0.0027131999 1e-6 463 49 0.0058139972 1e-6 464 49 0.00019379999 1e-6 467 49 0.013953499 1e-6 468 49 0.00038759992 1e-6 469 49 0.096705377 1e-6 470 49 0.0044573992 1e-6 471 49 0.0046511963 1e-6 473 49 0.00019379999 1e-6 478 49 0.00038759992 1e-6 483 49 0.00038759992 1e-6 490 49 0.00038759992 1e-6 491 49 0.00019379999 1e-6 7 50 8.6299988e-05 1e-6 9 50 9.5999994e-06 1e-6 16 50 0.00047939993 1e-6 18 50 0.00035479991 1e-6 24 50 0.043887198 1e-6 60 50 0.00012469999 1e-6 82 50 9.5999994e-06 1e-6 83 50 9.5999994e-06 1e-6 84 50 9.5999994e-06 1e-6 108 50 1.9199986e-05 1e-6 113 50 1.9199986e-05 1e-6 114 50 3.8399987e-05 1e-6 126 50 2.8799986e-05 1e-6 127 50 9.5999994e-06 1e-6 141 50 4.7899986e-05 1e-6 150 50 3.8399987e-05 1e-6 159 50 9.5999994e-06 1e-6 160 50 0.0011026999 1e-6 165 50 0.0043340996 1e-6 168 50 0.00093969982 1e-6 170 50 0.00010549999 1e-6 171 50 3.8399987e-05 1e-6 189 50 9.5999994e-06 1e-6 192 50 0.00020139999 1e-6 194 50 9.5999994e-06 1e-6 198 50 4.7899986e-05 1e-6 201 50 9.5999994e-06 1e-6 203 50 9.5999994e-06 1e-6 204 50 1.9199986e-05 1e-6 206 50 4.7899986e-05 1e-6 207 50 9.5999994e-06 1e-6 215 50 0.00070959982 1e-6 218 50 9.5999994e-06 1e-6 220 50 0.0011697998 1e-6 223 50 0.00024929992 1e-6 233 50 0.005781997 1e-6 234 50 0.043580398 1e-6 235 50 0.032093197 1e-6 237 50 0.0017450999 1e-6 241 50 0.00012469999 1e-6 242 50 3.8399987e-05 1e-6 248 50 9.5999994e-06 1e-6 250 50 9.5999994e-06 1e-6 252 50 9.5999994e-06 1e-6 254 50 0.016645897 1e-6 255 50 0.00012469999 1e-6 258 50 0.0015628999 1e-6 265 50 0.070208073 1e-6 266 50 0.032745197 1e-6 269 50 4.7899986e-05 1e-6 270 50 0.00014379999 1e-6 274 50 0.0026464998 1e-6 277 50 0.010806397 1e-6 279 50 0.00068079983 1e-6 282 50 0.00017259999 1e-6 295 50 0.0011409998 1e-6 305 50 0.028391998 1e-6 308 50 0.013232298 1e-6 309 50 0.0077283978 1e-6 311 50 0.016003497 1e-6 312 50 1.9199986e-05 1e-6 317 50 0.00064239977 1e-6 318 50 1.9199986e-05 1e-6 319 50 2.8799986e-05 1e-6 322 50 0.007440798 1e-6 331 50 0.0019943998 1e-6 341 50 4.7899986e-05 1e-6 358 50 3.8399987e-05 1e-6 371 50 0.00026849983 1e-6 385 50 0.0078818984 1e-6 386 50 0.0014094999 1e-6 387 50 1.9199986e-05 1e-6 394 50 4.7899986e-05 1e-6 397 50 2.8799986e-05 1e-6 402 50 0.000489 1e-6 412 50 9.5999994e-06 1e-6 419 50 9.5999994e-06 1e-6 422 50 5.7499987e-05 1e-6 423 50 9.5999994e-06 1e-6 425 50 9.5999994e-06 1e-6 430 50 1.9199986e-05 1e-6 431 50 9.5999994e-06 1e-6 433 50 9.5999994e-06 1e-6 434 50 9.5999994e-06 1e-6 438 50 0.00026849983 1e-6 441 50 0.0048230998 1e-6 443 50 0.0090708993 1e-6 444 50 4.7899986e-05 1e-6 445 50 0.026196197 1e-6 446 50 0.0030491999 1e-6 447 50 0.00045069982 1e-6 448 50 0.00089169992 1e-6 450 50 0.0012464998 1e-6 452 50 0.00018219999 1e-6 453 50 1.9199986e-05 1e-6 454 50 0.00037399982 1e-6 455 50 0.047914498 1e-6 456 50 0.018026698 1e-6 457 50 0.0013040998 1e-6 458 50 0.00030679977 1e-6 460 50 0.00373 1e-6 463 50 0.0026464998 1e-6 464 50 6.7099987e-05 1e-6 465 50 3.8399987e-05 1e-6 467 50 0.0151213 1e-6 468 50 0.00019179999 1e-6 469 50 0.0253428 1e-6 470 50 0.0019272999 1e-6 471 50 0.0050244965 1e-6 473 50 3.8399987e-05 1e-6 477 50 9.5999994e-06 1e-6 478 50 0.00022049999 1e-6 483 50 0.00013419999 1e-6 489 50 2.8799986e-05 1e-6 490 50 0.00015339999 1e-6 491 50 8.6299988e-05 1e-6 7 51 0.0001736 1e-6 16 51 0.00086809997 1e-6 18 51 0.00069439993 1e-6 24 51 0.0022568998 1e-6 60 51 0.0001736 1e-6 114 51 0.0001736 1e-6 134 51 0.0062499978 1e-6 135 51 0.0001736 1e-6 139 51 0.0012152998 1e-6 142 51 0.0001736 1e-6 160 51 0.0446181 1e-6 161 51 0.00086809997 1e-6 162 51 0.0027778 1e-6 163 51 0.043402798 1e-6 164 51 0.0119792 1e-6 165 51 0.027777798 1e-6 167 51 0.016145799 1e-6 170 51 0.00069439993 1e-6 171 51 0.0024305999 1e-6 177 51 0.0015624999 1e-6 182 51 0.0019097 1e-6 191 51 0.0031249998 1e-6 192 51 0.0015624999 1e-6 197 51 0.00086809997 1e-6 214 51 0.0001736 1e-6 215 51 0.0001736 1e-6 219 51 0.0010416999 1e-6 223 51 0.0001736 1e-6 233 51 0.0086805969 1e-6 234 51 0.00069439993 1e-6 235 51 0.0001736 1e-6 236 51 0.0041666999 1e-6 237 51 0.0012152998 1e-6 240 51 0.00052079977 1e-6 241 51 0.013715297 1e-6 242 51 0.00034719985 1e-6 252 51 0.00069439993 1e-6 254 51 0.0024305999 1e-6 255 51 0.004513897 1e-6 256 51 0.0043402985 1e-6 257 51 0.00069439993 1e-6 258 51 0.0013889 1e-6 259 51 0.0032986 1e-6 264 51 0.0071180984 1e-6 265 51 0.0015624999 1e-6 266 51 0.025694396 1e-6 267 51 0.0001736 1e-6 268 51 0.0062499978 1e-6 269 51 0.0013889 1e-6 271 51 0.0017360998 1e-6 273 51 0.00034719985 1e-6 274 51 0.0036457998 1e-6 277 51 0.0029513999 1e-6 279 51 0.0017360998 1e-6 282 51 0.0012152998 1e-6 292 51 0.0034721999 1e-6 295 51 0.0119792 1e-6 302 51 0.0039930977 1e-6 303 51 0.013888899 1e-6 304 51 0.0024305999 1e-6 306 51 0.0170139 1e-6 307 51 0.00052079977 1e-6 308 51 0.013020799 1e-6 309 51 0.0010416999 1e-6 310 51 0.0043402985 1e-6 311 51 0.0019097 1e-6 312 51 0.0001736 1e-6 317 51 0.00086809997 1e-6 319 51 0.0050346963 1e-6 322 51 0.0043402985 1e-6 324 51 0.00034719985 1e-6 331 51 0.0012152998 1e-6 341 51 0.0001736 1e-6 350 51 0.0019097 1e-6 352 51 0.00034719985 1e-6 366 51 0.011805598 1e-6 368 51 0.00086809997 1e-6 371 51 0.0085068978 1e-6 380 51 0.00069439993 1e-6 383 51 0.0017360998 1e-6 385 51 0.0093749985 1e-6 386 51 0.0043402985 1e-6 390 51 0.0013889 1e-6 398 51 0.00052079977 1e-6 402 51 0.00034719985 1e-6 415 51 0.0012152998 1e-6 438 51 0.00052079977 1e-6 439 51 0.0010416999 1e-6 443 51 0.0083332993 1e-6 445 51 0.0088541992 1e-6 446 51 0.00086809997 1e-6 447 51 0.00034719985 1e-6 450 51 0.0019097 1e-6 452 51 0.00034719985 1e-6 454 51 0.00052079977 1e-6 455 51 0.0432292 1e-6 456 51 0.057638898 1e-6 457 51 0.0019097 1e-6 458 51 0.0001736 1e-6 460 51 0.0024305999 1e-6 463 51 0.0039930977 1e-6 464 51 0.0001736 1e-6 467 51 0.0105903 1e-6 468 51 0.00034719985 1e-6 469 51 0.031423599 1e-6 470 51 0.0029513999 1e-6 471 51 0.0034721999 1e-6 478 51 0.0001736 1e-6 483 51 0.0001736 1e-6 490 51 0.0001736 1e-6 491 51 0.0001736 1e-6 24 52 0.011103399 1e-6 60 52 6.9799993e-05 1e-6 114 52 6.9799993e-05 1e-6 141 52 6.9799993e-05 1e-6 159 52 0.00013969999 1e-6 160 52 0.035265397 1e-6 162 52 0.0025837999 1e-6 163 52 0.014804497 1e-6 165 52 0.020530697 1e-6 168 52 0.015642498 1e-6 170 52 0.00055869995 1e-6 171 52 0.00069829985 1e-6 191 52 0.0038407999 1e-6 192 52 0.00090779993 1e-6 197 52 0.00013969999 1e-6 198 52 6.9799993e-05 1e-6 214 52 6.9799993e-05 1e-6 223 52 0.0004888 1e-6 233 52 0.0055865981 1e-6 234 52 0.0023742998 1e-6 235 52 0.0035615 1e-6 236 52 0.0065641999 1e-6 237 52 0.00090779993 1e-6 241 52 0.0147346 1e-6 254 52 0.0045390986 1e-6 255 52 0.00027929991 1e-6 262 52 0.0047485977 1e-6 264 52 0.0111732 1e-6 265 52 0.032681599 1e-6 266 52 0.071298897 1e-6 268 52 0.0036312998 1e-6 274 52 0.00069829985 1e-6 277 52 0.008379899 1e-6 279 52 0.011871498 1e-6 292 52 0.00090779993 1e-6 293 52 0.0037010999 1e-6 295 52 0.015921798 1e-6 304 52 6.9799993e-05 1e-6 306 52 0.0050278977 1e-6 307 52 0.0097764991 1e-6 308 52 0.099860251 1e-6 309 52 0.0023742998 1e-6 310 52 0.046159197 1e-6 311 52 0.00083799986 1e-6 317 52 0.0004888 1e-6 319 52 0.0030027998 1e-6 322 52 0.037150797 1e-6 324 52 0.0017457998 1e-6 331 52 0.00090779993 1e-6 341 52 6.9799993e-05 1e-6 350 52 0.0011172998 1e-6 356 52 0.00020949999 1e-6 366 52 6.9799993e-05 1e-6 371 52 0.0023742998 1e-6 385 52 0.0071228966 1e-6 386 52 0.0027234999 1e-6 398 52 0.00020949999 1e-6 402 52 0.00020949999 1e-6 415 52 0.0007681998 1e-6 438 52 0.00034919987 1e-6 443 52 0.010125697 1e-6 444 52 6.9799993e-05 1e-6 445 52 0.016969297 1e-6 446 52 0.0011172998 1e-6 447 52 0.00083799986 1e-6 450 52 0.00090779993 1e-6 452 52 0.00013969999 1e-6 454 52 0.00020949999 1e-6 455 52 0.051815599 1e-6 456 52 0.054189898 1e-6 457 52 0.00097769988 1e-6 458 52 0.00013969999 1e-6 460 52 0.002933 1e-6 463 52 0.0019552999 1e-6 464 52 6.9799993e-05 1e-6 467 52 0.0078910999 1e-6 468 52 0.00013969999 1e-6 469 52 0.0062150992 1e-6 470 52 0.0014664999 1e-6 471 52 0.0025139998 1e-6 478 52 0.00013969999 1e-6 483 52 6.9799993e-05 1e-6 490 52 0.00013969999 1e-6 491 52 6.9799993e-05 1e-6 24 53 0.00089739985 1e-6 60 53 4.269999e-05 1e-6 80 53 0.00029909983 1e-6 114 53 4.269999e-05 1e-6 160 53 0.00029909983 1e-6 192 53 4.269999e-05 1e-6 214 53 0.014828399 1e-6 220 53 0.00051279995 1e-6 223 53 0.021152899 1e-6 233 53 0.0012392998 1e-6 234 53 0.021323897 1e-6 237 53 0.0061107986 1e-6 241 53 0.00025639986 1e-6 242 53 0.00025639986 1e-6 254 53 0.0276911 1e-6 273 53 0.012050796 1e-6 277 53 0.17024904 1e-6 312 53 0.0014101998 1e-6 317 53 0.00025639986 1e-6 319 53 0.00081189978 1e-6 322 53 0.00094009982 1e-6 324 53 0.0018374999 1e-6 331 53 0.0071363971 1e-6 333 53 0.048630398 1e-6 341 53 4.269999e-05 1e-6 350 53 0.006794598 1e-6 356 53 0.00068369997 1e-6 374 53 0.0014528998 1e-6 397 53 8.5499996e-05 1e-6 402 53 0.0017092999 1e-6 438 53 8.5499996e-05 1e-6 443 53 0.014272898 1e-6 445 53 0.0099567994 1e-6 446 53 0.0043587983 1e-6 447 53 0.00017089999 1e-6 448 53 0.00042729988 1e-6 450 53 0.00047009997 1e-6 452 53 8.5499996e-05 1e-6 454 53 0.00012819999 1e-6 455 53 0.041322999 1e-6 456 53 0.0062817968 1e-6 457 53 0.00051279995 1e-6 458 53 0.00098289992 1e-6 460 53 0.0068799965 1e-6 463 53 0.0010255999 1e-6 464 53 4.269999e-05 1e-6 467 53 0.053459298 1e-6 468 53 8.5499996e-05 1e-6 469 53 0.00068369997 1e-6 470 53 0.0007691998 1e-6 471 53 0.017606098 1e-6 478 53 8.5499996e-05 1e-6 483 53 4.269999e-05 1e-6 490 53 4.269999e-05 1e-6 491 53 8.5499996e-05 1e-6 60 54 0.00026829983 1e-6 114 54 0.00026829983 1e-6 214 54 0.0085859969 1e-6 220 54 0.035148896 1e-6 234 54 0.036222197 1e-6 237 54 0.0053661987 1e-6 317 54 0.0018781999 1e-6 331 54 0.0059028976 1e-6 341 54 0.00026829983 1e-6 394 54 0.00026829983 1e-6 402 54 0.0016098998 1e-6 443 54 0.0026830998 1e-6 444 54 0.00026829983 1e-6 445 54 0.007244397 1e-6 446 54 0.0021464999 1e-6 447 54 0.00053659989 1e-6 448 54 0.00053659989 1e-6 450 54 0.0037564 1e-6 452 54 0.00053659989 1e-6 454 54 0.00080489996 1e-6 455 54 0.0238798 1e-6 456 54 0.0056345984 1e-6 457 54 0.0040246993 1e-6 458 54 0.00080489996 1e-6 460 54 0.0053661987 1e-6 463 54 0.0080493987 1e-6 464 54 0.00026829983 1e-6 467 54 0.042124998 1e-6 468 54 0.00053659989 1e-6 469 54 0.0050978996 1e-6 470 54 0.0059028976 1e-6 471 54 0.014488898 1e-6 478 54 0.00053659989 1e-6 483 54 0.00026829983 1e-6 490 54 0.00053659989 1e-6 491 54 0.00026829983 1e-6 7 55 0.00027599977 1e-6 16 55 0.0018398999 1e-6 18 55 0.0012878999 1e-6 24 55 0.011315499 1e-6 60 55 0.00018399999 1e-6 80 55 9.1999987e-05 1e-6 108 55 9.1999987e-05 1e-6 113 55 9.1999987e-05 1e-6 114 55 0.00018399999 1e-6 126 55 9.1999987e-05 1e-6 134 55 0.0016558999 1e-6 139 55 9.1999987e-05 1e-6 150 55 9.1999987e-05 1e-6 160 55 0.0030359 1e-6 162 55 0.00018399999 1e-6 164 55 0.00055199978 1e-6 165 55 0.0029438999 1e-6 166 55 0.0033119 1e-6 167 55 0.0010119998 1e-6 168 55 0.0030359 1e-6 170 55 9.1999987e-05 1e-6 171 55 0.00027599977 1e-6 182 55 0.0033119 1e-6 183 55 0.0022078999 1e-6 191 55 0.00045999978 1e-6 192 55 0.00073599978 1e-6 195 55 9.1999987e-05 1e-6 197 55 9.1999987e-05 1e-6 206 55 9.1999987e-05 1e-6 214 55 0.00027599977 1e-6 215 55 0.00018399999 1e-6 219 55 0.0010119998 1e-6 220 55 0.00027599977 1e-6 223 55 0.00027599977 1e-6 233 55 0.0074516982 1e-6 234 55 0.010395598 1e-6 235 55 0.0068076998 1e-6 236 55 0.00055199978 1e-6 237 55 0.0018398999 1e-6 241 55 0.0062556975 1e-6 242 55 9.1999987e-05 1e-6 252 55 0.0014718999 1e-6 254 55 0.0050597973 1e-6 255 55 0.0022998999 1e-6 256 55 0.00064399978 1e-6 258 55 0.0018398999 1e-6 259 55 0.00073599978 1e-6 262 55 0.00091999979 1e-6 264 55 0.0037717998 1e-6 265 55 0.022999097 1e-6 266 55 0.025758997 1e-6 267 55 0.00036799978 1e-6 268 55 0.0013798999 1e-6 269 55 0.0022998999 1e-6 271 55 0.0046917982 1e-6 272 55 0.00018399999 1e-6 273 55 0.00027599977 1e-6 274 55 0.0056117997 1e-6 277 55 0.014903396 1e-6 279 55 0.00055199978 1e-6 282 55 0.0035879 1e-6 285 55 9.1999987e-05 1e-6 292 55 0.0022998999 1e-6 293 55 0.00018399999 1e-6 295 55 0.018215299 1e-6 302 55 0.0011039998 1e-6 303 55 0.0013798999 1e-6 304 55 0.0048757978 1e-6 305 55 0.025482997 1e-6 306 55 0.010487597 1e-6 307 55 0.027506899 1e-6 308 55 0.014075398 1e-6 309 55 0.0060717985 1e-6 310 55 0.0053357966 1e-6 311 55 0.014167398 1e-6 312 55 0.00036799978 1e-6 315 55 0.00018399999 1e-6 317 55 0.0011039998 1e-6 319 55 0.0043237992 1e-6 322 55 0.0045997985 1e-6 324 55 0.0111316 1e-6 326 55 0.0011039998 1e-6 331 55 0.0018398999 1e-6 334 55 0.0034959 1e-6 335 55 0.0013798999 1e-6 336 55 0.00018399999 1e-6 341 55 9.1999987e-05 1e-6 350 55 0.00045999978 1e-6 352 55 0.0046917982 1e-6 356 55 0.00082799979 1e-6 358 55 9.1999987e-05 1e-6 366 55 0.0085556991 1e-6 368 55 0.0033119 1e-6 371 55 0.010763597 1e-6 374 55 0.00027599977 1e-6 380 55 0.00073599978 1e-6 383 55 0.00064399978 1e-6 384 55 0.00027599977 1e-6 385 55 0.011959497 1e-6 386 55 0.0081876963 1e-6 387 55 9.1999987e-05 1e-6 390 55 0.0010119998 1e-6 394 55 9.1999987e-05 1e-6 398 55 0.00027599977 1e-6 402 55 0.00055199978 1e-6 414 55 0.0022078999 1e-6 415 55 0.0027598999 1e-6 419 55 9.1999987e-05 1e-6 422 55 9.1999987e-05 1e-6 438 55 0.00018399999 1e-6 439 55 0.00018399999 1e-6 441 55 0.0010119998 1e-6 443 55 0.0037717998 1e-6 444 55 9.1999987e-05 1e-6 445 55 0.017295297 1e-6 446 55 0.0010119998 1e-6 447 55 0.00027599977 1e-6 448 55 9.1999987e-05 1e-6 450 55 0.0022078999 1e-6 452 55 0.00036799978 1e-6 454 55 0.00064399978 1e-6 455 55 0.037074499 1e-6 456 55 0.023643099 1e-6 457 55 0.0022998999 1e-6 458 55 0.00036799978 1e-6 460 55 0.0028518999 1e-6 463 55 0.0045997985 1e-6 464 55 9.1999987e-05 1e-6 467 55 0.015639398 1e-6 468 55 0.00036799978 1e-6 469 55 0.081600666 1e-6 470 55 0.0034039 1e-6 471 55 0.004783798 1e-6 473 55 9.1999987e-05 1e-6 478 55 0.00036799978 1e-6 483 55 0.00018399999 1e-6 490 55 0.00027599977 1e-6 491 55 9.1999987e-05 1e-6 7 56 9.2099988e-05 1e-6 16 56 0.00032229978 1e-6 18 56 0.00023019999 1e-6 24 56 0.017541397 1e-6 60 56 9.2099988e-05 1e-6 80 56 0.00013809999 1e-6 108 56 4.5999986e-05 1e-6 113 56 4.5999986e-05 1e-6 114 56 9.2099988e-05 1e-6 126 56 4.5999986e-05 1e-6 150 56 4.5999986e-05 1e-6 159 56 4.5999986e-05 1e-6 160 56 0.0020717999 1e-6 165 56 0.0017955999 1e-6 166 56 4.5999986e-05 1e-6 168 56 0.0075045973 1e-6 170 56 9.2099988e-05 1e-6 171 56 9.2099988e-05 1e-6 191 56 4.5999986e-05 1e-6 192 56 0.00013809999 1e-6 195 56 4.5999986e-05 1e-6 206 56 4.5999986e-05 1e-6 214 56 0.00023019999 1e-6 215 56 0.00013809999 1e-6 217 56 4.5999986e-05 1e-6 220 56 0.0029006 1e-6 223 56 0.00018419999 1e-6 233 56 0.0014272998 1e-6 234 56 0.037891299 1e-6 235 56 0.0029006 1e-6 236 56 0.00023019999 1e-6 237 56 0.0029006 1e-6 240 56 9.2099988e-05 1e-6 241 56 0.004557997 1e-6 242 56 0.0014272998 1e-6 252 56 4.5999986e-05 1e-6 254 56 0.015009198 1e-6 255 56 0.00013809999 1e-6 257 56 4.5999986e-05 1e-6 258 56 0.00023019999 1e-6 259 56 4.5999986e-05 1e-6 262 56 0.0035911999 1e-6 264 56 0.00064459979 1e-6 265 56 0.0081951991 1e-6 266 56 0.0084714964 1e-6 267 56 4.5999986e-05 1e-6 268 56 4.5999986e-05 1e-6 271 56 0.0005063999 1e-6 272 56 0.00018419999 1e-6 273 56 0.00018419999 1e-6 274 56 0.0004143999 1e-6 277 56 0.011325996 1e-6 279 56 0.00073659979 1e-6 282 56 0.00027619977 1e-6 292 56 0.00013809999 1e-6 293 56 4.5999986e-05 1e-6 295 56 0.016482498 1e-6 302 56 4.5999986e-05 1e-6 303 56 9.2099988e-05 1e-6 304 56 4.5999986e-05 1e-6 305 56 0.026058897 1e-6 306 56 0.0006905999 1e-6 307 56 0.027532198 1e-6 308 56 0.0050183982 1e-6 309 56 0.0010128999 1e-6 310 56 0.00032229978 1e-6 311 56 0.0090699978 1e-6 312 56 0.0005524999 1e-6 317 56 0.00059849978 1e-6 319 56 0.0004143999 1e-6 322 56 0.0040975995 1e-6 324 56 0.0031768 1e-6 331 56 0.0031768 1e-6 333 56 0.00027619977 1e-6 334 56 4.5999986e-05 1e-6 341 56 4.5999986e-05 1e-6 352 56 0.0015192998 1e-6 356 56 0.00087479991 1e-6 358 56 4.5999986e-05 1e-6 366 56 0.00023019999 1e-6 368 56 4.5999986e-05 1e-6 371 56 0.00013809999 1e-6 374 56 0.0005524999 1e-6 380 56 4.5999986e-05 1e-6 385 56 0.0031307999 1e-6 386 56 0.0054787993 1e-6 387 56 4.5999986e-05 1e-6 394 56 4.5999986e-05 1e-6 397 56 4.5999986e-05 1e-6 402 56 0.00078269979 1e-6 414 56 0.0019336999 1e-6 415 56 4.5999986e-05 1e-6 422 56 4.5999986e-05 1e-6 438 56 9.2099988e-05 1e-6 441 56 0.00036829989 1e-6 443 56 0.0048802979 1e-6 444 56 4.5999986e-05 1e-6 445 56 0.013075497 1e-6 446 56 0.0022559999 1e-6 447 56 0.00013809999 1e-6 448 56 0.00073659979 1e-6 450 56 0.0011509999 1e-6 452 56 0.00018419999 1e-6 454 56 0.00036829989 1e-6 455 56 0.034300197 1e-6 456 56 0.012522999 1e-6 457 56 0.0011970999 1e-6 458 56 0.00046039978 1e-6 460 56 0.0031768 1e-6 463 56 0.0023941 1e-6 464 56 4.5999986e-05 1e-6 467 56 0.0240792 1e-6 468 56 0.00018419999 1e-6 469 56 0.034990799 1e-6 470 56 0.0017494999 1e-6 471 56 0.0079189986 1e-6 473 56 4.5999986e-05 1e-6 478 56 0.00018419999 1e-6 483 56 0.00013809999 1e-6 490 56 0.00013809999 1e-6 491 56 9.2099988e-05 1e-6 7 57 0.000103 1e-6 16 57 0.00056669977 1e-6 18 57 0.00036059995 1e-6 24 57 0.0215353 1e-6 60 57 0.000103 1e-6 80 57 5.1499999e-05 1e-6 114 57 5.1499999e-05 1e-6 126 57 5.1499999e-05 1e-6 134 57 0.00025759987 1e-6 141 57 5.1499999e-05 1e-6 159 57 0.000103 1e-6 160 57 0.0035548999 1e-6 161 57 5.1499999e-05 1e-6 162 57 0.000103 1e-6 163 57 0.0012365 1e-6 164 57 0.00077279983 1e-6 165 57 0.0034002999 1e-6 166 57 0.0051519983 1e-6 167 57 0.0014425998 1e-6 168 57 0.013137598 1e-6 170 57 0.000103 1e-6 171 57 0.00025759987 1e-6 177 57 0.000103 1e-6 182 57 0.00056669977 1e-6 183 57 0.00030909991 1e-6 191 57 0.00025759987 1e-6 192 57 0.0001546 1e-6 198 57 5.1499999e-05 1e-6 214 57 0.000103 1e-6 215 57 0.0001546 1e-6 219 57 0.00036059995 1e-6 220 57 0.00025759987 1e-6 223 57 0.00030909991 1e-6 233 57 0.0026789999 1e-6 234 57 0.014425598 1e-6 235 57 0.024626497 1e-6 236 57 0.0011333998 1e-6 237 57 0.0017517 1e-6 241 57 0.0031941999 1e-6 242 57 5.1499999e-05 1e-6 252 57 0.00041219988 1e-6 254 57 0.0047397986 1e-6 255 57 0.00066979998 1e-6 256 57 5.1499999e-05 1e-6 257 57 0.0021122999 1e-6 258 57 0.0019061998 1e-6 259 57 0.00041219988 1e-6 264 57 0.0011333998 1e-6 265 57 0.024574999 1e-6 266 57 0.023132399 1e-6 267 57 0.0001546 1e-6 268 57 0.0002061 1e-6 269 57 0.0013909999 1e-6 271 57 0.0048428997 1e-6 273 57 0.0010303999 1e-6 274 57 0.0029365998 1e-6 277 57 0.0092735998 1e-6 279 57 0.00041219988 1e-6 282 57 0.0042245984 1e-6 285 57 5.1499999e-05 1e-6 292 57 0.00087579992 1e-6 293 57 5.1499999e-05 1e-6 294 57 5.1499999e-05 1e-6 295 57 0.0015455999 1e-6 302 57 0.00061819982 1e-6 303 57 0.00077279983 1e-6 304 57 0.0022153999 1e-6 305 57 0.0303967 1e-6 306 57 0.0026789999 1e-6 307 57 0.018341098 1e-6 308 57 0.0065944977 1e-6 309 57 0.0045852996 1e-6 310 57 0.0032972998 1e-6 311 57 0.013807297 1e-6 312 57 0.0002061 1e-6 315 57 5.1499999e-05 1e-6 317 57 0.00041219988 1e-6 319 57 0.00097889989 1e-6 322 57 0.0067490973 1e-6 324 57 0.033642497 1e-6 331 57 0.0020607999 1e-6 334 57 0.00072129979 1e-6 335 57 0.00036059995 1e-6 336 57 0.00025759987 1e-6 341 57 5.1499999e-05 1e-6 350 57 0.00025759987 1e-6 351 57 0.00030909991 1e-6 352 57 0.00051519996 1e-6 354 57 0.0002061 1e-6 356 57 0.00051519996 1e-6 358 57 5.1499999e-05 1e-6 366 57 0.0015970999 1e-6 368 57 0.0037608999 1e-6 371 57 0.0026274999 1e-6 374 57 0.000103 1e-6 380 57 0.0001546 1e-6 383 57 0.00036059995 1e-6 385 57 0.0088613965 1e-6 386 57 0.0010819 1e-6 390 57 0.0001546 1e-6 394 57 5.1499999e-05 1e-6 398 57 5.1499999e-05 1e-6 402 57 0.00046369992 1e-6 414 57 0.0016486 1e-6 415 57 0.00061819982 1e-6 438 57 0.000103 1e-6 441 57 0.00082429987 1e-6 443 57 0.0053580999 1e-6 444 57 5.1499999e-05 1e-6 445 57 0.026944898 1e-6 446 57 0.0012879998 1e-6 447 57 0.000103 1e-6 448 57 0.000103 1e-6 450 57 0.00087579992 1e-6 452 57 0.000103 1e-6 454 57 0.0002061 1e-6 455 57 0.033642497 1e-6 456 57 0.014270999 1e-6 457 57 0.00087579992 1e-6 458 57 0.00030909991 1e-6 460 57 0.0032456999 1e-6 463 57 0.0017517 1e-6 464 57 5.1499999e-05 1e-6 467 57 0.017568298 1e-6 468 57 0.0001546 1e-6 469 57 0.059659999 1e-6 470 57 0.0013394998 1e-6 471 57 0.0050488971 1e-6 473 57 5.1499999e-05 1e-6 478 57 0.000103 1e-6 483 57 0.000103 1e-6 490 57 0.000103 1e-6 491 57 0.000103 1e-6 16 58 0.00056229997 1e-6 24 58 0.017992698 1e-6 160 58 0.0061849989 1e-6 165 58 0.0022490998 1e-6 168 58 0.0044981986 1e-6 192 58 0.0014056999 1e-6 215 58 0.00028109993 1e-6 220 58 0.00028109993 1e-6 223 58 0.00028109993 1e-6 233 58 0.0016867998 1e-6 234 58 0.0132134 1e-6 235 58 0.0081528984 1e-6 237 58 0.0022490998 1e-6 241 58 0.0042169988 1e-6 254 58 0.0053415969 1e-6 258 58 0.00028109993 1e-6 262 58 0.00056229997 1e-6 265 58 0.022209696 1e-6 266 58 0.025021099 1e-6 267 58 0.00028109993 1e-6 273 58 0.00028109993 1e-6 274 58 0.0011244998 1e-6 277 58 0.024739899 1e-6 279 58 0.00028109993 1e-6 285 58 0.00028109993 1e-6 292 58 0.00028109993 1e-6 295 58 0.021366298 1e-6 305 58 0.027832396 1e-6 308 58 0.0030924999 1e-6 309 58 0.0047792979 1e-6 311 58 0.0168681 1e-6 317 58 0.00056229997 1e-6 319 58 0.00028109993 1e-6 322 58 0.0084340982 1e-6 326 58 0.0033735998 1e-6 331 58 0.0025301999 1e-6 334 58 0.0084340982 1e-6 356 58 0.0014056999 1e-6 366 58 0.0014056999 1e-6 371 58 0.022490896 1e-6 380 58 0.0014056999 1e-6 384 58 0.0008433999 1e-6 385 58 0.019117199 1e-6 386 58 0.016586997 1e-6 390 58 0.0025301999 1e-6 402 58 0.00056229997 1e-6 419 58 0.00028109993 1e-6 441 58 0.0016867998 1e-6 443 58 0.0033735998 1e-6 445 58 0.030081499 1e-6 446 58 0.0008433999 1e-6 450 58 0.0011244998 1e-6 452 58 0.00028109993 1e-6 454 58 0.00028109993 1e-6 455 58 0.027551297 1e-6 456 58 0.014900196 1e-6 457 58 0.0011244998 1e-6 458 58 0.00028109993 1e-6 460 58 0.0025301999 1e-6 463 58 0.0022490998 1e-6 467 58 0.0205229 1e-6 468 58 0.00028109993 1e-6 469 58 0.0019679999 1e-6 470 58 0.0016867998 1e-6 471 58 0.0064660981 1e-6 478 58 0.00028109993 1e-6 9 59 9.7999991e-06 1e-6 16 59 9.7999991e-06 1e-6 24 59 0.00025509996 1e-6 60 59 0.00025509996 1e-6 79 59 9.7999991e-06 1e-6 82 59 1.9599989e-05 1e-6 83 59 9.7999991e-06 1e-6 84 59 9.7999991e-06 1e-6 108 59 2.9399991e-05 1e-6 113 59 3.9199993e-05 1e-6 114 59 7.8499987e-05 1e-6 126 59 3.9199993e-05 1e-6 127 59 9.7999991e-06 1e-6 134 59 0.0015109999 1e-6 135 59 2.9399991e-05 1e-6 139 59 0.00052979984 1e-6 141 59 2.9399991e-05 1e-6 142 59 4.9099996e-05 1e-6 150 59 7.8499987e-05 1e-6 154 59 2.9399991e-05 1e-6 158 59 0.0020309999 1e-6 160 59 0.0040913969 1e-6 161 59 0.00024529989 1e-6 162 59 0.00037279981 1e-6 163 59 0.0039147995 1e-6 164 59 0.0097917989 1e-6 165 59 0.0057003982 1e-6 168 59 1.9599989e-05 1e-6 171 59 6.8699999e-05 1e-6 177 59 0.0009321 1e-6 182 59 0.0027275998 1e-6 189 59 1.9599989e-05 1e-6 191 59 0.000206 1e-6 192 59 0.00038259989 1e-6 194 59 1.9599989e-05 1e-6 195 59 0.00010789999 1e-6 196 59 9.7999991e-06 1e-6 197 59 0.006004598 1e-6 201 59 2.9399991e-05 1e-6 203 59 2.9399991e-05 1e-6 204 59 2.9399991e-05 1e-6 206 59 7.8499987e-05 1e-6 207 59 1.9599989e-05 1e-6 209 59 9.7999991e-06 1e-6 214 59 2.9399991e-05 1e-6 218 59 3.9199993e-05 1e-6 219 59 0.0039147995 1e-6 223 59 3.9199993e-05 1e-6 233 59 0.056719799 1e-6 234 59 0.0032769998 1e-6 235 59 0.00036299997 1e-6 236 59 0.026902899 1e-6 237 59 0.0011478998 1e-6 240 59 0.00089279981 1e-6 241 59 0.0093992986 1e-6 242 59 0.00027469988 1e-6 248 59 1.9599989e-05 1e-6 250 59 9.7999991e-06 1e-6 251 59 9.7999991e-06 1e-6 252 59 0.0023546999 1e-6 254 59 0.00018639999 1e-6 255 59 0.00026489981 1e-6 256 59 0.00017659999 1e-6 258 59 0.00060829986 1e-6 259 59 0.00061809993 1e-6 263 59 9.7999991e-06 1e-6 264 59 0.00056909979 1e-6 265 59 0.0024136 1e-6 266 59 0.0012361999 1e-6 267 59 2.9399991e-05 1e-6 268 59 0.0032867999 1e-6 269 59 2.9399991e-05 1e-6 271 59 0.007397797 1e-6 273 59 4.9099996e-05 1e-6 274 59 0.00066719996 1e-6 277 59 0.0010890998 1e-6 279 59 0.00055929995 1e-6 282 59 0.00042189984 1e-6 292 59 0.0017857 1e-6 293 59 0.00052979984 1e-6 295 59 0.0015993 1e-6 303 59 0.0054158978 1e-6 304 59 0.0092619993 1e-6 305 59 7.8499987e-05 1e-6 306 59 0.0022075998 1e-6 307 59 0.0010890998 1e-6 308 59 0.016561698 1e-6 309 59 7.8499987e-05 1e-6 310 59 1.9599989e-05 1e-6 311 59 5.8899997e-05 1e-6 312 59 9.7999991e-06 1e-6 317 59 0.0013343999 1e-6 318 59 5.8899997e-05 1e-6 319 59 0.00030419999 1e-6 322 59 0.00090269977 1e-6 323 59 9.7999991e-06 1e-6 331 59 0.00049059978 1e-6 334 59 0.0065441988 1e-6 335 59 0.0010399998 1e-6 336 59 0.0045916997 1e-6 341 59 0.00036299997 1e-6 350 59 0.00091249985 1e-6 352 59 0.0001962 1e-6 356 59 0.0011282999 1e-6 358 59 0.00024529989 1e-6 366 59 0.027471997 1e-6 368 59 0.00030419999 1e-6 371 59 0.0024626998 1e-6 380 59 0.0023252999 1e-6 381 59 0.00022569999 1e-6 383 59 0.019279398 1e-6 384 59 1.9599989e-05 1e-6 385 59 0.0040716976 1e-6 386 59 0.0024037999 1e-6 387 59 2.9399991e-05 1e-6 390 59 1.9599989e-05 1e-6 394 59 7.8499987e-05 1e-6 397 59 2.9399991e-05 1e-6 398 59 0.0011086999 1e-6 402 59 0.0002942998 1e-6 412 59 9.7999991e-06 1e-6 415 59 0.005219698 1e-6 419 59 9.7999991e-06 1e-6 422 59 2.9399991e-05 1e-6 423 59 9.7999991e-06 1e-6 425 59 9.7999991e-06 1e-6 430 59 2.9399991e-05 1e-6 431 59 9.7999991e-06 1e-6 432 59 9.7999991e-06 1e-6 433 59 9.7999991e-06 1e-6 434 59 9.7999991e-06 1e-6 438 59 0.0040520988 1e-6 439 59 0.0046799965 1e-6 441 59 9.7999991e-06 1e-6 443 59 0.0037479999 1e-6 444 59 9.809999e-05 1e-6 445 59 0.016954098 1e-6 446 59 0.00084379991 1e-6 447 59 0.00057889987 1e-6 448 59 6.8699999e-05 1e-6 449 59 9.7999991e-06 1e-6 450 59 0.0025509999 1e-6 452 59 0.00038259989 1e-6 453 59 4.9099996e-05 1e-6 454 59 0.0006769998 1e-6 455 59 0.0474873 1e-6 456 59 0.064951599 1e-6 457 59 0.0026980999 1e-6 458 59 8.8299988e-05 1e-6 459 59 2.9399991e-05 1e-6 460 59 0.0033064999 1e-6 463 59 0.0053962991 1e-6 464 59 0.0001275 1e-6 465 59 9.809999e-05 1e-6 467 59 0.0048369989 1e-6 468 59 0.00040229992 1e-6 469 59 0.0040324964 1e-6 470 59 0.003953997 1e-6 471 59 0.0026294999 1e-6 473 59 8.8299988e-05 1e-6 477 59 3.9199993e-05 1e-6 478 59 0.00045129983 1e-6 483 59 0.00028449995 1e-6 489 59 5.8899997e-05 1e-6 490 59 0.00030419999 1e-6 491 59 0.0001374 1e-6 9 60 2.6099995e-05 1e-6 16 60 0.0002345 1e-6 24 60 0.00038219988 1e-6 60 60 0.00059929979 1e-6 79 60 8.6999999e-06 1e-6 82 60 4.3399996e-05 1e-6 83 60 3.4699988e-05 1e-6 84 60 3.4699988e-05 1e-6 108 60 5.2099989e-05 1e-6 113 60 7.8199999e-05 1e-6 114 60 0.0001911 1e-6 126 60 7.8199999e-05 1e-6 127 60 1.7399987e-05 1e-6 134 60 0.000139 1e-6 139 60 0.00097279996 1e-6 141 60 6.9499991e-05 1e-6 142 60 0.00010419999 1e-6 150 60 0.00018239999 1e-6 154 60 6.9499991e-05 1e-6 160 60 0.0064015985 1e-6 161 60 0.0001563 1e-6 162 60 0.00022579999 1e-6 163 60 0.0030140998 1e-6 164 60 0.00022579999 1e-6 165 60 0.0102496 1e-6 167 60 6.9499991e-05 1e-6 168 60 1.7399987e-05 1e-6 171 60 0.000139 1e-6 182 60 0.00014769999 1e-6 189 60 6.0799997e-05 1e-6 191 60 0.00043429993 1e-6 192 60 0.000139 1e-6 194 60 6.0799997e-05 1e-6 195 60 8.6899992e-05 1e-6 196 60 8.6999999e-06 1e-6 197 60 0.0002345 1e-6 198 60 8.6999999e-06 1e-6 201 60 6.0799997e-05 1e-6 203 60 5.2099989e-05 1e-6 204 60 6.9499991e-05 1e-6 206 60 0.00018239999 1e-6 207 60 4.3399996e-05 1e-6 209 60 1.7399987e-05 1e-6 214 60 0.00011289999 1e-6 218 60 1.7399987e-05 1e-6 219 60 0.0030226998 1e-6 223 60 8.6899992e-05 1e-6 233 60 0.022627197 1e-6 234 60 0.012143098 1e-6 235 60 0.00085119996 1e-6 236 60 0.011274498 1e-6 237 60 0.0027621998 1e-6 240 60 0.00057329983 1e-6 241 60 0.0073831975 1e-6 242 60 0.00031269994 1e-6 248 60 4.3399996e-05 1e-6 250 60 1.7399987e-05 1e-6 251 60 8.6999999e-06 1e-6 252 60 0.0023886999 1e-6 254 60 0.00061669992 1e-6 255 60 0.00058199978 1e-6 256 60 0.00067749992 1e-6 257 60 0.015556697 1e-6 258 60 0.00016499999 1e-6 259 60 0.0020325 1e-6 263 60 8.6999999e-06 1e-6 264 60 0.0039434992 1e-6 265 60 0.0012681999 1e-6 266 60 0.0058022998 1e-6 267 60 4.3399996e-05 1e-6 268 60 0.0013897999 1e-6 269 60 6.9499991e-05 1e-6 271 60 0.00071229995 1e-6 273 60 5.2099989e-05 1e-6 274 60 0.00044299988 1e-6 275 60 0.015930198 1e-6 277 60 0.0024667999 1e-6 279 60 0.00098149991 1e-6 282 60 0.00096419989 1e-6 292 60 0.00058199978 1e-6 293 60 0.00057329983 1e-6 295 60 0.0023104998 1e-6 302 60 0.0010162999 1e-6 303 60 0.0043516979 1e-6 304 60 0.010049798 1e-6 305 60 0.0004168998 1e-6 306 60 0.0023712998 1e-6 307 60 0.0021019999 1e-6 308 60 0.0074525997 1e-6 311 60 0.0004776998 1e-6 312 60 0.00044299988 1e-6 317 60 0.0031529998 1e-6 318 60 0.00013029999 1e-6 319 60 0.0016416998 1e-6 322 60 0.00087729981 1e-6 323 60 1.7399987e-05 1e-6 324 60 0.0015721999 1e-6 331 60 0.0011812998 1e-6 334 60 0.0042213984 1e-6 335 60 0.00067749992 1e-6 336 60 0.0029618999 1e-6 341 60 0.00026059989 1e-6 350 60 0.00030399999 1e-6 352 60 0.00028659985 1e-6 356 60 0.00071229995 1e-6 358 60 0.0003560998 1e-6 363 60 8.6999999e-06 1e-6 366 60 0.0284121 1e-6 368 60 0.00018239999 1e-6 371 60 0.0062191971 1e-6 374 60 6.0799997e-05 1e-6 380 60 0.00013029999 1e-6 381 60 8.6999999e-06 1e-6 383 60 0.0001563 1e-6 384 60 3.4699988e-05 1e-6 385 60 0.013854299 1e-6 386 60 0.018040899 1e-6 387 60 7.8199999e-05 1e-6 390 60 0.0019456998 1e-6 394 60 0.00019979999 1e-6 397 60 2.6099995e-05 1e-6 398 60 8.6999999e-06 1e-6 402 60 0.00071229995 1e-6 412 60 1.7399987e-05 1e-6 415 60 0.0042474978 1e-6 419 60 2.6099995e-05 1e-6 422 60 7.8199999e-05 1e-6 423 60 2.6099995e-05 1e-6 425 60 1.7399987e-05 1e-6 430 60 5.2099989e-05 1e-6 431 60 1.7399987e-05 1e-6 432 60 1.7399987e-05 1e-6 433 60 2.6099995e-05 1e-6 434 60 3.4699988e-05 1e-6 438 60 0.0014852998 1e-6 439 60 0.0001737 1e-6 441 60 1.7399987e-05 1e-6 443 60 0.004516799 1e-6 444 60 0.00025189994 1e-6 445 60 0.017789099 1e-6 446 60 0.0014070999 1e-6 447 60 0.0010162999 1e-6 448 60 0.00019979999 1e-6 449 60 1.7399987e-05 1e-6 450 60 0.0060888976 1e-6 452 60 0.00090339989 1e-6 453 60 0.00011289999 1e-6 454 60 0.0016156 1e-6 455 60 0.038305499 1e-6 456 60 0.036133997 1e-6 457 60 0.0064015985 1e-6 458 60 7.8199999e-05 1e-6 459 60 4.3399996e-05 1e-6 460 60 0.005072698 1e-6 463 60 0.012881398 1e-6 464 60 0.00032139989 1e-6 465 60 0.00021719999 1e-6 467 60 0.0067577995 1e-6 468 60 0.00095549994 1e-6 469 60 0.0096327998 1e-6 470 60 0.0094330981 1e-6 471 60 0.0056111999 1e-6 473 60 0.00019979999 1e-6 477 60 7.8199999e-05 1e-6 478 60 0.0010684 1e-6 483 60 0.00066009979 1e-6 489 60 0.00013029999 1e-6 490 60 0.00071229995 1e-6 491 60 0.00027799979 1e-6 24 61 0.00032479991 1e-6 60 61 0.00064959982 1e-6 108 61 0.00032479991 1e-6 114 61 0.00064959982 1e-6 126 61 0.00032479991 1e-6 134 61 0.00032479991 1e-6 139 61 0.0012991 1e-6 150 61 0.00032479991 1e-6 160 61 0.0045468993 1e-6 161 61 0.00032479991 1e-6 162 61 0.00064959982 1e-6 163 61 0.0045468993 1e-6 164 61 0.00032479991 1e-6 165 61 0.010392997 1e-6 182 61 0.0032477998 1e-6 191 61 0.00032479991 1e-6 192 61 0.00064959982 1e-6 197 61 0.0077946968 1e-6 206 61 0.00064959982 1e-6 219 61 0.0051964968 1e-6 233 61 0.069503069 1e-6 234 61 0.0074699968 1e-6 235 61 0.00032479991 1e-6 236 61 0.031828497 1e-6 237 61 0.0025982 1e-6 240 61 0.00064959982 1e-6 241 61 0.015264697 1e-6 242 61 0.00032479991 1e-6 252 61 0.0025982 1e-6 254 61 0.00032479991 1e-6 255 61 0.00032479991 1e-6 258 61 0.00032479991 1e-6 259 61 0.00064959982 1e-6 264 61 0.00064959982 1e-6 265 61 0.0029229999 1e-6 266 61 0.0016238999 1e-6 268 61 0.0035726 1e-6 271 61 0.0087690987 1e-6 273 61 0.00032479991 1e-6 274 61 0.00097429985 1e-6 277 61 0.0012991 1e-6 279 61 0.00097429985 1e-6 282 61 0.00064959982 1e-6 292 61 0.0022735 1e-6 293 61 0.00064959982 1e-6 295 61 0.0016238999 1e-6 303 61 0.0061707981 1e-6 304 61 0.011692099 1e-6 306 61 0.0025982 1e-6 307 61 0.0025982 1e-6 308 61 0.023059398 1e-6 317 61 0.0025982 1e-6 319 61 0.00032479991 1e-6 322 61 0.0016238999 1e-6 324 61 0.025332898 1e-6 331 61 0.00097429985 1e-6 334 61 0.0084442981 1e-6 335 61 0.0012991 1e-6 336 61 0.0058460981 1e-6 341 61 0.00064959982 1e-6 350 61 0.0012991 1e-6 356 61 0.0016238999 1e-6 366 61 0.011692099 1e-6 368 61 0.00032479991 1e-6 371 61 0.0032477998 1e-6 380 61 0.0025982 1e-6 381 61 0.00032479991 1e-6 383 61 0.022409897 1e-6 385 61 0.0058460981 1e-6 386 61 0.0032477998 1e-6 387 61 0.00032479991 1e-6 394 61 0.00032479991 1e-6 398 61 0.0012991 1e-6 402 61 0.00064959982 1e-6 415 61 0.0058460981 1e-6 438 61 0.0048717 1e-6 439 61 0.0051964968 1e-6 443 61 0.0019486998 1e-6 445 61 0.019811597 1e-6 446 61 0.00097429985 1e-6 447 61 0.00064959982 1e-6 450 61 0.0058460981 1e-6 452 61 0.00097429985 1e-6 454 61 0.0012991 1e-6 455 61 0.051964898 1e-6 456 61 0.070477366 1e-6 457 61 0.0058460981 1e-6 460 61 0.0055212975 1e-6 463 61 0.012341697 1e-6 464 61 0.00032479991 1e-6 467 61 0.011367299 1e-6 468 61 0.00097429985 1e-6 469 61 0.0087690987 1e-6 470 61 0.0090938993 1e-6 471 61 0.0058460981 1e-6 473 61 0.00032479991 1e-6 478 61 0.00064959982 1e-6 483 61 0.00064959982 1e-6 490 61 0.00097429985 1e-6 491 61 0.00032479991 1e-6 18 62 0.0013247 1e-6 24 62 0.029640697 1e-6 60 62 0.00016559999 1e-6 114 62 0.00016559999 1e-6 126 62 0.00016559999 1e-6 134 62 0.007948298 1e-6 139 62 0.00049679982 1e-6 160 62 0.033945996 1e-6 162 62 0.0009935 1e-6 163 62 0.0026493999 1e-6 165 62 0.015896697 1e-6 166 62 0.0011590999 1e-6 168 62 0.0155655 1e-6 170 62 0.00033119996 1e-6 171 62 0.0009935 1e-6 191 62 0.0021527 1e-6 192 62 0.00049679982 1e-6 206 62 0.00016559999 1e-6 219 62 0.00049679982 1e-6 233 62 0.055141598 1e-6 234 62 0.0099353977 1e-6 235 62 0.022685897 1e-6 236 62 0.010432199 1e-6 237 62 0.0009935 1e-6 241 62 0.012088098 1e-6 254 62 0.0041397996 1e-6 255 62 0.00016559999 1e-6 262 62 0.0019870999 1e-6 264 62 0.010266598 1e-6 265 62 0.055638399 1e-6 266 62 0.030468598 1e-6 268 62 0.0039741993 1e-6 271 62 0.0009935 1e-6 273 62 0.00033119996 1e-6 274 62 0.00049679982 1e-6 277 62 0.026825599 1e-6 279 62 0.010763399 1e-6 292 62 0.0024838999 1e-6 295 62 0.010929 1e-6 305 62 0.0061267987 1e-6 306 62 0.0018214998 1e-6 307 62 0.0038085999 1e-6 308 62 0.058287799 1e-6 311 62 0.0019870999 1e-6 317 62 0.00066239992 1e-6 319 62 0.0026493999 1e-6 322 62 0.035105098 1e-6 324 62 0.0157311 1e-6 331 62 0.005464498 1e-6 350 62 0.0011590999 1e-6 371 62 0.0016558999 1e-6 385 62 0.005464498 1e-6 386 62 0.0029805999 1e-6 398 62 0.0013247 1e-6 402 62 0.00016559999 1e-6 438 62 0.0038085999 1e-6 441 62 0.00049679982 1e-6 443 62 0.0110946 1e-6 445 62 0.025997698 1e-6 446 62 0.0009935 1e-6 447 62 0.00033119996 1e-6 450 62 0.0016558999 1e-6 452 62 0.00033119996 1e-6 454 62 0.00033119996 1e-6 455 62 0.057956599 1e-6 456 62 0.070707083 1e-6 457 62 0.0016558999 1e-6 458 62 0.00016559999 1e-6 460 62 0.0076171979 1e-6 463 62 0.0034773999 1e-6 467 62 0.0064579993 1e-6 468 62 0.00033119996 1e-6 469 62 0.0026493999 1e-6 470 62 0.0024838999 1e-6 471 62 0.0019870999 1e-6 473 62 0.00016559999 1e-6 478 62 0.00016559999 1e-6 483 62 0.00016559999 1e-6 490 62 0.00033119996 1e-6 16 63 0.00010599999 1e-6 60 63 0.00031799986 1e-6 108 63 0.00010599999 1e-6 114 63 0.00010599999 1e-6 126 63 0.00010599999 1e-6 139 63 0.00052989996 1e-6 142 63 0.00010599999 1e-6 150 63 0.00010599999 1e-6 160 63 0.00074189994 1e-6 162 63 0.00010599999 1e-6 163 63 0.00052989996 1e-6 165 63 0.042713299 1e-6 168 63 0.00095389993 1e-6 171 63 0.00010599999 1e-6 191 63 0.00010599999 1e-6 194 63 0.00010599999 1e-6 206 63 0.00031799986 1e-6 219 63 0.00063589984 1e-6 223 63 0.00010599999 1e-6 233 63 0.0047694966 1e-6 234 63 0.0076311976 1e-6 235 63 0.0057233982 1e-6 236 63 0.0014837999 1e-6 237 63 0.0018018 1e-6 241 63 0.0044514984 1e-6 242 63 0.00010599999 1e-6 252 63 0.00042399997 1e-6 254 63 0.0023316999 1e-6 255 63 0.00010599999 1e-6 256 63 0.00010599999 1e-6 259 63 0.000212 1e-6 262 63 0.0010598998 1e-6 264 63 0.00042399997 1e-6 265 63 0.00031799986 1e-6 266 63 0.0026496998 1e-6 268 63 0.00031799986 1e-6 271 63 0.00010599999 1e-6 273 63 0.000212 1e-6 277 63 0.00031799986 1e-6 279 63 0.000212 1e-6 292 63 0.00010599999 1e-6 295 63 0.0051933974 1e-6 302 63 0.000212 1e-6 303 63 0.00063589984 1e-6 304 63 0.0014837999 1e-6 305 63 0.00042399997 1e-6 306 63 0.00042399997 1e-6 307 63 0.0026496998 1e-6 308 63 0.0041334964 1e-6 309 63 0.00095389993 1e-6 310 63 0.000212 1e-6 311 63 0.000212 1e-6 312 63 0.00074189994 1e-6 317 63 0.0020138 1e-6 318 63 0.00010599999 1e-6 319 63 0.000212 1e-6 322 63 0.0012718998 1e-6 324 63 0.000212 1e-6 331 63 0.00074189994 1e-6 334 63 0.00063589984 1e-6 335 63 0.00010599999 1e-6 336 63 0.00031799986 1e-6 356 63 0.00010599999 1e-6 358 63 0.00010599999 1e-6 366 63 0.0108108 1e-6 371 63 0.00084789982 1e-6 385 63 0.019607797 1e-6 386 63 0.066772699 1e-6 387 63 0.00010599999 1e-6 390 63 0.000212 1e-6 394 63 0.00010599999 1e-6 402 63 0.00052989996 1e-6 415 63 0.0010598998 1e-6 422 63 0.00010599999 1e-6 430 63 0.00010599999 1e-6 438 63 0.00031799986 1e-6 441 63 0.000212 1e-6 443 63 0.0027556999 1e-6 444 63 0.000212 1e-6 445 63 0.0083730966 1e-6 446 63 0.00063589984 1e-6 447 63 0.00063589984 1e-6 448 63 0.00010599999 1e-6 450 63 0.0036036 1e-6 452 63 0.00052989996 1e-6 453 63 0.00010599999 1e-6 454 63 0.00095389993 1e-6 455 63 0.025649197 1e-6 456 63 0.029994696 1e-6 457 63 0.0037095998 1e-6 458 63 0.00052989996 1e-6 460 63 0.0025436999 1e-6 463 63 0.0075251982 1e-6 464 63 0.00031799986 1e-6 467 63 0.018865898 1e-6 468 63 0.00052989996 1e-6 469 63 0.0055113994 1e-6 470 63 0.0055113994 1e-6 471 63 0.0052993968 1e-6 473 63 0.00010599999 1e-6 478 63 0.00063589984 1e-6 483 63 0.00042399997 1e-6 490 63 0.00052989996 1e-6 491 63 0.000212 1e-6 9 64 5.1999989e-05 1e-6 24 64 0.010512598 1e-6 60 64 0.00031229993 1e-6 80 64 0.00010409999 1e-6 82 64 5.1999989e-05 1e-6 83 64 5.1999989e-05 1e-6 84 64 5.1999989e-05 1e-6 108 64 5.1999989e-05 1e-6 113 64 0.00010409999 1e-6 114 64 0.00010409999 1e-6 126 64 5.1999989e-05 1e-6 139 64 0.00046839984 1e-6 141 64 5.1999989e-05 1e-6 142 64 5.1999989e-05 1e-6 150 64 0.00010409999 1e-6 154 64 5.1999989e-05 1e-6 159 64 0.014675997 1e-6 160 64 0.010720797 1e-6 163 64 0.0002082 1e-6 165 64 0.0050480999 1e-6 168 64 0.032890998 1e-6 171 64 0.00010409999 1e-6 189 64 5.1999989e-05 1e-6 191 64 5.1999989e-05 1e-6 194 64 5.1999989e-05 1e-6 203 64 5.1999989e-05 1e-6 204 64 0.00010409999 1e-6 206 64 5.1999989e-05 1e-6 207 64 5.1999989e-05 1e-6 219 64 0.0001561 1e-6 220 64 0.00026019989 1e-6 223 64 5.1999989e-05 1e-6 233 64 0.0060889982 1e-6 234 64 0.0062971972 1e-6 235 64 0.00078059989 1e-6 236 64 0.0006765998 1e-6 237 64 0.0014052 1e-6 241 64 0.0036429998 1e-6 242 64 0.00010409999 1e-6 252 64 0.0002082 1e-6 254 64 0.0013530999 1e-6 255 64 5.1999989e-05 1e-6 256 64 5.1999989e-05 1e-6 259 64 0.00010409999 1e-6 264 64 0.0002082 1e-6 265 64 0.0001561 1e-6 266 64 0.00052039977 1e-6 268 64 0.00010409999 1e-6 271 64 0.0002082 1e-6 273 64 0.00026019989 1e-6 274 64 5.1999989e-05 1e-6 277 64 0.024407998 1e-6 279 64 0.00026019989 1e-6 292 64 5.1999989e-05 1e-6 293 64 5.1999989e-05 1e-6 295 64 0.0013010998 1e-6 302 64 0.00010409999 1e-6 303 64 0.0002082 1e-6 304 64 0.00046839984 1e-6 305 64 0.0083788969 1e-6 306 64 0.00010409999 1e-6 307 64 0.0023939998 1e-6 308 64 0.0034347998 1e-6 312 64 0.0039551966 1e-6 317 64 0.0016132998 1e-6 318 64 5.1999989e-05 1e-6 319 64 0.00010409999 1e-6 322 64 0.0006765998 1e-6 324 64 0.0006765998 1e-6 326 64 0.0247203 1e-6 331 64 0.00062449998 1e-6 334 64 0.00026019989 1e-6 335 64 5.1999989e-05 1e-6 336 64 0.00010409999 1e-6 356 64 5.1999989e-05 1e-6 358 64 5.1999989e-05 1e-6 366 64 0.0041633993 1e-6 371 64 0.00036429986 1e-6 374 64 0.0029663998 1e-6 385 64 0.0029143998 1e-6 386 64 0.0047358982 1e-6 387 64 5.1999989e-05 1e-6 390 64 0.016185299 1e-6 394 64 0.00010409999 1e-6 402 64 0.00036429986 1e-6 415 64 0.00036429986 1e-6 422 64 5.1999989e-05 1e-6 423 64 5.1999989e-05 1e-6 430 64 5.1999989e-05 1e-6 431 64 5.1999989e-05 1e-6 434 64 5.1999989e-05 1e-6 438 64 0.00041629979 1e-6 443 64 0.0057766996 1e-6 444 64 0.0001561 1e-6 445 64 0.014311697 1e-6 446 64 0.0037470998 1e-6 447 64 0.00062449998 1e-6 448 64 0.00010409999 1e-6 450 64 0.0031225998 1e-6 452 64 0.00046839984 1e-6 453 64 5.1999989e-05 1e-6 454 64 0.00083269994 1e-6 455 64 0.048191499 1e-6 456 64 0.0091074966 1e-6 457 64 0.0032786999 1e-6 458 64 0.00041629979 1e-6 460 64 0.0023418998 1e-6 463 64 0.0066093989 1e-6 464 64 0.0001561 1e-6 465 64 0.00010409999 1e-6 467 64 0.015872996 1e-6 468 64 0.00046839984 1e-6 469 64 0.0051001981 1e-6 470 64 0.0048399977 1e-6 471 64 0.0045276992 1e-6 473 64 0.00010409999 1e-6 478 64 0.00052039977 1e-6 483 64 0.00031229993 1e-6 489 64 5.1999989e-05 1e-6 490 64 0.00041629979 1e-6 491 64 0.00026019989 1e-6 60 65 7.2199997e-05 1e-6 114 65 7.2199997e-05 1e-6 139 65 0.00014439999 1e-6 160 65 0.00043329992 1e-6 163 65 0.00021669999 1e-6 165 65 0.0024553998 1e-6 191 65 7.2199997e-05 1e-6 195 65 0.00014439999 1e-6 206 65 7.2199997e-05 1e-6 217 65 0.00064999983 1e-6 219 65 0.00072219991 1e-6 233 65 0.0086660981 1e-6 234 65 0.0022387998 1e-6 235 65 0.0010833 1e-6 236 65 0.0007944 1e-6 237 65 0.00043329992 1e-6 241 65 0.00086659985 1e-6 252 65 0.00021669999 1e-6 254 65 0.0012276999 1e-6 255 65 7.2199997e-05 1e-6 257 65 0.0025997998 1e-6 259 65 0.00014439999 1e-6 262 65 0.0011554998 1e-6 264 65 0.00028889999 1e-6 265 65 0.0017331999 1e-6 266 65 0.00072219991 1e-6 268 65 0.00014439999 1e-6 271 65 0.0011554998 1e-6 272 65 0.00021669999 1e-6 273 65 0.00021669999 1e-6 274 65 0.00064999983 1e-6 275 65 0.052574597 1e-6 277 65 0.0064995997 1e-6 279 65 7.2199997e-05 1e-6 292 65 7.2199997e-05 1e-6 293 65 7.2199997e-05 1e-6 295 65 0.015093498 1e-6 302 65 7.2199997e-05 1e-6 303 65 0.00028889999 1e-6 304 65 0.0044052973 1e-6 305 65 0.0064273998 1e-6 306 65 0.0010833 1e-6 307 65 0.0096771978 1e-6 308 65 0.0024553998 1e-6 309 65 0.00028889999 1e-6 310 65 7.2199997e-05 1e-6 311 65 0.00014439999 1e-6 312 65 0.005127497 1e-6 317 65 0.00028889999 1e-6 319 65 0.00014439999 1e-6 322 65 0.00093879993 1e-6 324 65 0.021087598 1e-6 331 65 0.0044774972 1e-6 334 65 0.00028889999 1e-6 335 65 7.2199997e-05 1e-6 336 65 0.00014439999 1e-6 356 65 7.2199997e-05 1e-6 358 65 7.2199997e-05 1e-6 366 65 0.0052718967 1e-6 371 65 0.0023832 1e-6 374 65 0.007655099 1e-6 385 65 0.0037552998 1e-6 386 65 0.031198099 1e-6 390 65 0.00014439999 1e-6 402 65 7.2199997e-05 1e-6 414 65 0.0036831 1e-6 415 65 0.00050549977 1e-6 438 65 0.00036109984 1e-6 443 65 0.0038274999 1e-6 445 65 0.0032497998 1e-6 446 65 7.2199997e-05 1e-6 447 65 7.2199997e-05 1e-6 450 65 0.00064999983 1e-6 452 65 7.2199997e-05 1e-6 454 65 0.00014439999 1e-6 455 65 0.021376498 1e-6 456 65 0.011771496 1e-6 457 65 0.00064999983 1e-6 458 65 0.00043329992 1e-6 460 65 0.00036109984 1e-6 463 65 0.0013720999 1e-6 464 65 7.2199997e-05 1e-6 467 65 0.016393397 1e-6 468 65 7.2199997e-05 1e-6 469 65 0.0010109998 1e-6 470 65 0.0010109998 1e-6 471 65 0.0028164999 1e-6 478 65 7.2199997e-05 1e-6 483 65 7.2199997e-05 1e-6 490 65 0.00014439999 1e-6 18 66 0.00024149999 1e-6 24 66 0.014734298 1e-6 60 66 0.00024149999 1e-6 114 66 0.00024149999 1e-6 126 66 0.00024149999 1e-6 134 66 0.0024154999 1e-6 139 66 0.00048309984 1e-6 160 66 0.00072459993 1e-6 163 66 0.00024149999 1e-6 165 66 0.0050724968 1e-6 168 66 0.00024149999 1e-6 206 66 0.00024149999 1e-6 214 66 0.00096619991 1e-6 219 66 0.00072459993 1e-6 223 66 0.00048309984 1e-6 233 66 0.0084540993 1e-6 234 66 0.012077298 1e-6 235 66 0.025603898 1e-6 236 66 0.0016907998 1e-6 237 66 0.0014493 1e-6 240 66 0.00072459993 1e-6 241 66 0.0043477975 1e-6 242 66 0.00024149999 1e-6 252 66 0.00024149999 1e-6 254 66 0.00072459993 1e-6 255 66 0.00024149999 1e-6 259 66 0.00024149999 1e-6 264 66 0.00024149999 1e-6 266 66 0.015942 1e-6 268 66 0.00024149999 1e-6 269 66 0.00096619991 1e-6 273 66 0.00048309984 1e-6 274 66 0.00024149999 1e-6 277 66 0.12294686 1e-6 282 66 0.0014493 1e-6 295 66 0.00024149999 1e-6 303 66 0.00048309984 1e-6 304 66 0.00072459993 1e-6 305 66 0.0048308969 1e-6 306 66 0.00024149999 1e-6 307 66 0.0031400998 1e-6 308 66 0.0036231999 1e-6 311 66 0.0014493 1e-6 317 66 0.0014493 1e-6 322 66 0.0028986 1e-6 324 66 0.029951699 1e-6 331 66 0.00096619991 1e-6 334 66 0.00024149999 1e-6 336 66 0.00024149999 1e-6 366 66 0.0050724968 1e-6 371 66 0.00072459993 1e-6 374 66 0.0014493 1e-6 385 66 0.0016907998 1e-6 386 66 0.0014493 1e-6 390 66 0.00024149999 1e-6 402 66 0.00024149999 1e-6 414 66 0.0014493 1e-6 415 66 0.00048309984 1e-6 438 66 0.00072459993 1e-6 441 66 0.00048309984 1e-6 443 66 0.0041062981 1e-6 445 66 0.0135266 1e-6 446 66 0.00096619991 1e-6 447 66 0.00048309984 1e-6 450 66 0.0028986 1e-6 452 66 0.00048309984 1e-6 454 66 0.00072459993 1e-6 455 66 0.022946898 1e-6 456 66 0.0099033974 1e-6 457 66 0.0028986 1e-6 458 66 0.00048309984 1e-6 460 66 0.0016907998 1e-6 463 66 0.0060385987 1e-6 464 66 0.00024149999 1e-6 467 66 0.018599 1e-6 468 66 0.00048309984 1e-6 469 66 0.0045893975 1e-6 470 66 0.0045893975 1e-6 471 66 0.0048308969 1e-6 473 66 0.00024149999 1e-6 478 66 0.00048309984 1e-6 483 66 0.00024149999 1e-6 490 66 0.00048309984 1e-6 491 66 0.00024149999 1e-6 18 67 0.001003 1e-6 24 67 0.0090270974 1e-6 165 67 0.0040119998 1e-6 166 67 0.0030089999 1e-6 214 67 0.001003 1e-6 220 67 0.001003 1e-6 233 67 0.011033099 1e-6 234 67 0.041123398 1e-6 235 67 0.005014997 1e-6 237 67 0.001003 1e-6 241 67 0.0030089999 1e-6 266 67 0.0040119998 1e-6 271 67 0.001003 1e-6 273 67 0.001003 1e-6 274 67 0.001003 1e-6 277 67 0.15346038 1e-6 295 67 0.010030098 1e-6 305 67 0.023069199 1e-6 307 67 0.0080240965 1e-6 308 67 0.0020059999 1e-6 317 67 0.001003 1e-6 322 67 0.0040119998 1e-6 324 67 0.076228678 1e-6 331 67 0.0040119998 1e-6 366 67 0.001003 1e-6 371 67 0.014042098 1e-6 374 67 0.0030089999 1e-6 385 67 0.0020059999 1e-6 386 67 0.0040119998 1e-6 414 67 0.0070210993 1e-6 438 67 0.001003 1e-6 443 67 0.0030089999 1e-6 445 67 0.010030098 1e-6 450 67 0.0020059999 1e-6 455 67 0.033099297 1e-6 456 67 0.018054198 1e-6 457 67 0.0020059999 1e-6 460 67 0.0030089999 1e-6 463 67 0.0040119998 1e-6 467 67 0.018054198 1e-6 469 67 0.0030089999 1e-6 470 67 0.0030089999 1e-6 471 67 0.005014997 1e-6 490 67 0.001003 1e-6 7 68 0.00013489999 1e-6 16 68 0.00040459982 1e-6 18 68 0.0016857998 1e-6 24 68 0.020633899 1e-6 60 68 0.00026969984 1e-6 82 68 6.7399989e-05 1e-6 108 68 6.7399989e-05 1e-6 114 68 6.7399989e-05 1e-6 126 68 6.7399989e-05 1e-6 139 68 0.00040459982 1e-6 142 68 6.7399989e-05 1e-6 150 68 6.7399989e-05 1e-6 154 68 6.7399989e-05 1e-6 160 68 0.00033719977 1e-6 163 68 0.00013489999 1e-6 165 68 0.0046526976 1e-6 168 68 0.00013489999 1e-6 171 68 6.7399989e-05 1e-6 191 68 6.7399989e-05 1e-6 192 68 6.7399989e-05 1e-6 194 68 6.7399989e-05 1e-6 203 68 6.7399989e-05 1e-6 204 68 6.7399989e-05 1e-6 206 68 0.0002023 1e-6 219 68 0.00053939992 1e-6 223 68 6.7399989e-05 1e-6 233 68 0.036817297 1e-6 234 68 0.0087659992 1e-6 235 68 0.0225893 1e-6 236 68 0.00053939992 1e-6 237 68 0.0014159998 1e-6 241 68 0.011867799 1e-6 242 68 6.7399989e-05 1e-6 252 68 0.00013489999 1e-6 254 68 0.012002699 1e-6 259 68 0.00013489999 1e-6 264 68 0.0002023 1e-6 265 68 0.0095077977 1e-6 266 68 0.0093728974 1e-6 268 68 6.7399989e-05 1e-6 269 68 0.00053939992 1e-6 271 68 0.0030343998 1e-6 273 68 0.00033719977 1e-6 274 68 0.0015508998 1e-6 277 68 0.0036412999 1e-6 279 68 6.7399989e-05 1e-6 282 68 0.0071476996 1e-6 292 68 0.00013489999 1e-6 295 68 6.7399989e-05 1e-6 302 68 6.7399989e-05 1e-6 303 68 0.00013489999 1e-6 304 68 0.00040459982 1e-6 305 68 0.0048549995 1e-6 306 68 0.00013489999 1e-6 307 68 0.0022251999 1e-6 308 68 0.0043829978 1e-6 311 68 0.00013489999 1e-6 317 68 0.0014834998 1e-6 318 68 6.7399989e-05 1e-6 319 68 6.7399989e-05 1e-6 322 68 0.0016182999 1e-6 324 68 0.040391099 1e-6 331 68 0.00053939992 1e-6 334 68 0.0002023 1e-6 336 68 0.00013489999 1e-6 350 68 6.7399989e-05 1e-6 358 68 6.7399989e-05 1e-6 366 68 0.0033714999 1e-6 371 68 0.0020228999 1e-6 374 68 0.0052595995 1e-6 385 68 0.0010114999 1e-6 386 68 0.00087659992 1e-6 387 68 6.7399989e-05 1e-6 390 68 6.7399989e-05 1e-6 394 68 6.7399989e-05 1e-6 402 68 0.00040459982 1e-6 414 68 0.0025624 1e-6 415 68 0.00033719977 1e-6 430 68 6.7399989e-05 1e-6 438 68 0.0026297998 1e-6 441 68 0.00047199987 1e-6 443 68 0.0036412999 1e-6 444 68 0.0002023 1e-6 445 68 0.017464597 1e-6 446 68 0.0010788999 1e-6 447 68 0.00053939992 1e-6 448 68 6.7399989e-05 1e-6 450 68 0.0027647 1e-6 452 68 0.00040459982 1e-6 453 68 6.7399989e-05 1e-6 454 68 0.00074169994 1e-6 455 68 0.0277141 1e-6 456 68 0.030815899 1e-6 457 68 0.0028994998 1e-6 458 68 0.00040459982 1e-6 460 68 0.0017531998 1e-6 463 68 0.0057990998 1e-6 464 68 0.0002023 1e-6 465 68 6.7399989e-05 1e-6 467 68 0.015643999 1e-6 468 68 0.00040459982 1e-6 469 68 0.0051246993 1e-6 470 68 0.0042480975 1e-6 471 68 0.0041806996 1e-6 473 68 0.00013489999 1e-6 478 68 0.00047199987 1e-6 483 68 0.00026969984 1e-6 489 68 6.7399989e-05 1e-6 490 68 0.00040459982 1e-6 491 68 0.0002023 1e-6 16 69 0.0001604 1e-6 18 69 0.00048129982 1e-6 24 69 0.013637099 1e-6 60 69 0.00080219982 1e-6 82 69 0.0001604 1e-6 108 69 0.0001604 1e-6 114 69 0.0001604 1e-6 126 69 0.0001604 1e-6 134 69 0.0016043999 1e-6 139 69 0.0011230998 1e-6 141 69 0.0001604 1e-6 142 69 0.0001604 1e-6 150 69 0.0001604 1e-6 154 69 0.0001604 1e-6 160 69 0.0016043999 1e-6 162 69 0.0001604 1e-6 163 69 0.0011230998 1e-6 165 69 0.012513999 1e-6 171 69 0.0001604 1e-6 191 69 0.0001604 1e-6 194 69 0.0001604 1e-6 203 69 0.0001604 1e-6 206 69 0.0001604 1e-6 207 69 0.0001604 1e-6 219 69 0.00096259988 1e-6 220 69 0.0001604 1e-6 223 69 0.0001604 1e-6 233 69 0.014278799 1e-6 234 69 0.017166696 1e-6 235 69 0.0097865984 1e-6 236 69 0.0022461 1e-6 237 69 0.0035295999 1e-6 240 69 0.0011230998 1e-6 241 69 0.0091448985 1e-6 242 69 0.00048129982 1e-6 252 69 0.00064169988 1e-6 254 69 0.021177597 1e-6 255 69 0.0054547973 1e-6 256 69 0.0001604 1e-6 258 69 0.0028879 1e-6 259 69 0.0003209 1e-6 264 69 0.0038504999 1e-6 265 69 0.0145997 1e-6 266 69 0.012995299 1e-6 267 69 0.0001604 1e-6 268 69 0.00048129982 1e-6 269 69 0.0003209 1e-6 271 69 0.0016043999 1e-6 273 69 0.00048129982 1e-6 274 69 0.00064169988 1e-6 277 69 0.0036899999 1e-6 279 69 0.0003209 1e-6 282 69 0.004171297 1e-6 292 69 0.0001604 1e-6 293 69 0.0001604 1e-6 295 69 0.00048129982 1e-6 302 69 0.0003209 1e-6 303 69 0.00096259988 1e-6 304 69 0.0022461 1e-6 305 69 0.0027273998 1e-6 306 69 0.00080219982 1e-6 307 69 0.0044921972 1e-6 308 69 0.008503098 1e-6 311 69 0.008021798 1e-6 312 69 0.0001604 1e-6 317 69 0.0040108971 1e-6 318 69 0.0001604 1e-6 319 69 0.0003209 1e-6 322 69 0.013155799 1e-6 324 69 0.011230499 1e-6 331 69 0.0014438999 1e-6 334 69 0.00096259988 1e-6 335 69 0.0001604 1e-6 336 69 0.00048129982 1e-6 356 69 0.0001604 1e-6 358 69 0.0001604 1e-6 366 69 0.016204096 1e-6 371 69 0.00064169988 1e-6 374 69 0.0014438999 1e-6 385 69 0.0032086999 1e-6 386 69 0.0038504999 1e-6 387 69 0.0001604 1e-6 390 69 0.0003209 1e-6 394 69 0.0003209 1e-6 402 69 0.0011230998 1e-6 415 69 0.0016043999 1e-6 422 69 0.0001604 1e-6 430 69 0.0001604 1e-6 434 69 0.0001604 1e-6 438 69 0.00096259988 1e-6 441 69 0.0003209 1e-6 443 69 0.0046526976 1e-6 444 69 0.00048129982 1e-6 445 69 0.023102798 1e-6 446 69 0.0017647999 1e-6 447 69 0.0012834999 1e-6 448 69 0.0001604 1e-6 450 69 0.0073800981 1e-6 452 69 0.0011230998 1e-6 453 69 0.0001604 1e-6 454 69 0.0019252 1e-6 455 69 0.029038999 1e-6 456 69 0.022300698 1e-6 457 69 0.0077008978 1e-6 458 69 0.00064169988 1e-6 460 69 0.0062569976 1e-6 463 69 0.0155623 1e-6 464 69 0.00064169988 1e-6 465 69 0.0001604 1e-6 467 69 0.027755499 1e-6 468 69 0.0011230998 1e-6 469 69 0.012032699 1e-6 470 69 0.011390999 1e-6 471 69 0.0093052983 1e-6 473 69 0.0003209 1e-6 478 69 0.0012834999 1e-6 483 69 0.00080219982 1e-6 489 69 0.0001604 1e-6 490 69 0.00096259988 1e-6 491 69 0.00048129982 1e-6 24 70 0.0033783999 1e-6 60 70 0.00067569991 1e-6 114 70 0.00067569991 1e-6 126 70 0.00067569991 1e-6 139 70 0.0013513998 1e-6 159 70 0.0013513998 1e-6 160 70 0.0027027 1e-6 165 70 0.0094594993 1e-6 168 70 0.0027027 1e-6 206 70 0.00067569991 1e-6 233 70 0.019594599 1e-6 234 70 0.012162197 1e-6 235 70 0.00067569991 1e-6 236 70 0.0020269998 1e-6 237 70 0.0040540993 1e-6 241 70 0.0087837987 1e-6 254 70 0.0013513998 1e-6 264 70 0.00067569991 1e-6 266 70 0.0013513998 1e-6 277 70 0.0027027 1e-6 295 70 0.0060810968 1e-6 303 70 0.0013513998 1e-6 304 70 0.00067569991 1e-6 305 70 0.0020269998 1e-6 307 70 0.0020269998 1e-6 308 70 0.0081080981 1e-6 312 70 0.0047296993 1e-6 317 70 0.0033783999 1e-6 324 70 0.00067569991 1e-6 326 70 0.0027027 1e-6 331 70 0.0013513998 1e-6 334 70 0.00067569991 1e-6 366 70 0.0087837987 1e-6 371 70 0.00067569991 1e-6 374 70 0.00067569991 1e-6 385 70 0.0067567974 1e-6 386 70 0.0108108 1e-6 390 70 0.017567597 1e-6 402 70 0.00067569991 1e-6 415 70 0.00067569991 1e-6 438 70 0.0013513998 1e-6 443 70 0.00067569991 1e-6 445 70 0.013513498 1e-6 446 70 0.00067569991 1e-6 447 70 0.00067569991 1e-6 450 70 0.0074323975 1e-6 452 70 0.0013513998 1e-6 454 70 0.0020269998 1e-6 455 70 0.0162162 1e-6 456 70 0.014189199 1e-6 457 70 0.0074323975 1e-6 460 70 0.0047296993 1e-6 463 70 0.014864899 1e-6 467 70 0.0074323975 1e-6 468 70 0.0013513998 1e-6 469 70 0.011486497 1e-6 470 70 0.011486497 1e-6 471 70 0.0060810968 1e-6 473 70 0.00067569991 1e-6 478 70 0.00067569991 1e-6 483 70 0.00067569991 1e-6 490 70 0.0013513998 1e-6 491 70 0.00067569991 1e-6 16 71 0.0001258 1e-6 18 71 0.0001258 1e-6 24 71 0.018867899 1e-6 60 71 0.00037739985 1e-6 108 71 0.0001258 1e-6 114 71 0.0001258 1e-6 126 71 0.0001258 1e-6 134 71 0.00025159982 1e-6 139 71 0.00062889978 1e-6 142 71 0.0001258 1e-6 150 71 0.0001258 1e-6 160 71 0.0056603998 1e-6 161 71 0.0001258 1e-6 162 71 0.00025159982 1e-6 163 71 0.0020126 1e-6 164 71 0.0001258 1e-6 165 71 0.0085534975 1e-6 168 71 0.0001258 1e-6 171 71 0.0001258 1e-6 182 71 0.0001258 1e-6 191 71 0.00025159982 1e-6 192 71 0.0001258 1e-6 194 71 0.0001258 1e-6 195 71 0.0001258 1e-6 197 71 0.0001258 1e-6 206 71 0.00025159982 1e-6 219 71 0.0023898999 1e-6 223 71 0.0001258 1e-6 233 71 0.021006297 1e-6 234 71 0.018490598 1e-6 235 71 0.011949699 1e-6 236 71 0.0075471997 1e-6 237 71 0.0020126 1e-6 240 71 0.00025159982 1e-6 241 71 0.0057861991 1e-6 242 71 0.00025159982 1e-6 252 71 0.0017609999 1e-6 254 71 0.0016351999 1e-6 255 71 0.00050309999 1e-6 256 71 0.00050309999 1e-6 257 71 0.0001258 1e-6 258 71 0.0001258 1e-6 259 71 0.0013835998 1e-6 264 71 0.0027672998 1e-6 265 71 0.0020126 1e-6 266 71 0.0094339997 1e-6 268 71 0.00088049984 1e-6 269 71 0.0001258 1e-6 271 71 0.00075469981 1e-6 273 71 0.00025159982 1e-6 274 71 0.00037739985 1e-6 277 71 0.0023898999 1e-6 279 71 0.00075469981 1e-6 282 71 0.0010062999 1e-6 292 71 0.00037739985 1e-6 293 71 0.00037739985 1e-6 295 71 0.0022641998 1e-6 302 71 0.00075469981 1e-6 303 71 0.0027672998 1e-6 304 71 0.007169798 1e-6 305 71 0.0050313994 1e-6 306 71 0.0017609999 1e-6 307 71 0.0022641998 1e-6 308 71 0.0069181994 1e-6 309 71 0.00088049984 1e-6 310 71 0.0001258 1e-6 311 71 0.0010062999 1e-6 312 71 0.00050309999 1e-6 317 71 0.0021384 1e-6 318 71 0.0001258 1e-6 319 71 0.0010062999 1e-6 322 71 0.0022641998 1e-6 324 71 0.0038993999 1e-6 331 71 0.0010062999 1e-6 334 71 0.0027672998 1e-6 335 71 0.00050309999 1e-6 336 71 0.0018867999 1e-6 341 71 0.00025159982 1e-6 350 71 0.00025159982 1e-6 352 71 0.0001258 1e-6 356 71 0.00050309999 1e-6 358 71 0.00062889978 1e-6 366 71 0.053459097 1e-6 368 71 0.0001258 1e-6 371 71 0.004528299 1e-6 374 71 0.00062889978 1e-6 380 71 0.0001258 1e-6 385 71 0.0099370964 1e-6 386 71 0.013584897 1e-6 387 71 0.0001258 1e-6 390 71 0.0012578999 1e-6 394 71 0.0001258 1e-6 402 71 0.00050309999 1e-6 414 71 0.00025159982 1e-6 415 71 0.0054087974 1e-6 422 71 0.0001258 1e-6 430 71 0.0001258 1e-6 438 71 0.0012578999 1e-6 439 71 0.0001258 1e-6 441 71 0.00050309999 1e-6 443 71 0.0038993999 1e-6 444 71 0.00025159982 1e-6 445 71 0.017987397 1e-6 446 71 0.0011320999 1e-6 447 71 0.00062889978 1e-6 448 71 0.0001258 1e-6 450 71 0.0040251985 1e-6 452 71 0.00062889978 1e-6 453 71 0.0001258 1e-6 454 71 0.0011320999 1e-6 455 71 0.030440297 1e-6 456 71 0.0261635 1e-6 457 71 0.0041508973 1e-6 458 71 0.00025159982 1e-6 460 71 0.0032704 1e-6 463 71 0.0084276982 1e-6 464 71 0.00025159982 1e-6 467 71 0.010817599 1e-6 468 71 0.00062889978 1e-6 469 71 0.0065408982 1e-6 470 71 0.0062892996 1e-6 471 71 0.004528299 1e-6 473 71 0.0001258 1e-6 478 71 0.00062889978 1e-6 483 71 0.00037739985 1e-6 490 71 0.00050309999 1e-6 491 71 0.00025159982 1e-6 16 72 0.000166 1e-6 18 72 0.000166 1e-6 24 72 0.0041500963 1e-6 60 72 0.00033199997 1e-6 80 72 0.00049799983 1e-6 108 72 0.000166 1e-6 114 72 0.00033199997 1e-6 126 72 0.000166 1e-6 139 72 0.00049799983 1e-6 141 72 0.00049799983 1e-6 150 72 0.000166 1e-6 160 72 0.0016599998 1e-6 162 72 0.000166 1e-6 163 72 0.0008299998 1e-6 165 72 0.005478099 1e-6 182 72 0.000166 1e-6 191 72 0.000166 1e-6 206 72 0.00033199997 1e-6 217 72 0.000166 1e-6 219 72 0.0009959999 1e-6 220 72 0.0024899999 1e-6 233 72 0.012782197 1e-6 234 72 0.032868497 1e-6 235 72 0.0018259999 1e-6 236 72 0.0023239998 1e-6 237 72 0.0013279999 1e-6 240 72 0.0019919998 1e-6 241 72 0.0041500963 1e-6 242 72 0.00049799983 1e-6 252 72 0.00066399993 1e-6 255 72 0.000166 1e-6 256 72 0.000166 1e-6 257 72 0.00033199997 1e-6 259 72 0.00033199997 1e-6 262 72 0.000166 1e-6 264 72 0.00066399993 1e-6 265 72 0.00049799983 1e-6 266 72 0.0023239998 1e-6 268 72 0.0009959999 1e-6 271 72 0.00049799983 1e-6 273 72 0.000166 1e-6 274 72 0.000166 1e-6 275 72 0.000166 1e-6 277 72 0.0018259999 1e-6 279 72 0.00033199997 1e-6 292 72 0.000166 1e-6 293 72 0.000166 1e-6 295 72 0.0049800985 1e-6 302 72 0.00033199997 1e-6 303 72 0.0009959999 1e-6 304 72 0.002656 1e-6 305 72 0.0029879999 1e-6 306 72 0.0008299998 1e-6 307 72 0.0048140995 1e-6 308 72 0.0044820979 1e-6 311 72 0.0011619998 1e-6 312 72 0.0016599998 1e-6 317 72 0.0013279999 1e-6 319 72 0.00033199997 1e-6 322 72 0.0046480969 1e-6 324 72 0.007802099 1e-6 331 72 0.001494 1e-6 333 72 0.00066399993 1e-6 334 72 0.0009959999 1e-6 335 72 0.000166 1e-6 336 72 0.00049799983 1e-6 356 72 0.00066399993 1e-6 358 72 0.000166 1e-6 366 72 0.016932297 1e-6 371 72 0.001494 1e-6 374 72 0.0009959999 1e-6 385 72 0.0034860999 1e-6 386 72 0.013280198 1e-6 387 72 0.000166 1e-6 390 72 0.00049799983 1e-6 394 72 0.000166 1e-6 402 72 0.00033199997 1e-6 414 72 0.00033199997 1e-6 415 72 0.0016599998 1e-6 438 72 0.0008299998 1e-6 443 72 0.0013279999 1e-6 445 72 0.0091300979 1e-6 446 72 0.0009959999 1e-6 447 72 0.00033199997 1e-6 448 72 0.000166 1e-6 450 72 0.0028219998 1e-6 452 72 0.00049799983 1e-6 454 72 0.00066399993 1e-6 455 72 0.020916298 1e-6 456 72 0.014608197 1e-6 457 72 0.0029879999 1e-6 458 72 0.00049799983 1e-6 460 72 0.0021579999 1e-6 463 72 0.0061420985 1e-6 464 72 0.000166 1e-6 467 72 0.018094297 1e-6 468 72 0.00049799983 1e-6 469 72 0.0044820979 1e-6 470 72 0.0044820979 1e-6 471 72 0.0048140995 1e-6 473 72 0.000166 1e-6 478 72 0.00033199997 1e-6 483 72 0.00033199997 1e-6 490 72 0.00049799983 1e-6 491 72 0.000166 1e-6 9 73 2.3899993e-05 1e-6 16 73 2.3899993e-05 1e-6 24 73 0.061835498 1e-6 60 73 0.00033449987 1e-6 79 73 2.3899993e-05 1e-6 80 73 4.7799986e-05 1e-6 82 73 2.3899993e-05 1e-6 83 73 2.3899993e-05 1e-6 84 73 2.3899993e-05 1e-6 108 73 2.3899993e-05 1e-6 113 73 7.1699993e-05 1e-6 114 73 0.00011949999 1e-6 126 73 7.1699993e-05 1e-6 127 73 2.3899993e-05 1e-6 134 73 0.00038229977 1e-6 139 73 0.00054949988 1e-6 141 73 4.7799986e-05 1e-6 142 73 7.1699993e-05 1e-6 150 73 9.5599986e-05 1e-6 154 73 4.7799986e-05 1e-6 160 73 0.0054714978 1e-6 165 73 0.0093660988 1e-6 168 73 0.00062119984 1e-6 171 73 7.1699993e-05 1e-6 189 73 2.3899993e-05 1e-6 192 73 2.3899993e-05 1e-6 194 73 4.7799986e-05 1e-6 197 73 2.3899993e-05 1e-6 201 73 4.7799986e-05 1e-6 203 73 4.7799986e-05 1e-6 204 73 4.7799986e-05 1e-6 206 73 9.5599986e-05 1e-6 207 73 2.3899993e-05 1e-6 209 73 2.3899993e-05 1e-6 219 73 0.00066899997 1e-6 220 73 0.00014339999 1e-6 223 73 4.7799986e-05 1e-6 233 73 0.0071440972 1e-6 234 73 0.037679497 1e-6 235 73 0.035696398 1e-6 237 73 0.0016007998 1e-6 241 73 0.0055909976 1e-6 242 73 0.00011949999 1e-6 248 73 2.3899993e-05 1e-6 250 73 2.3899993e-05 1e-6 252 73 2.3899993e-05 1e-6 254 73 0.0018875999 1e-6 258 73 9.5599986e-05 1e-6 265 73 0.0027476999 1e-6 266 73 0.017872099 1e-6 271 73 2.3899993e-05 1e-6 273 73 0.00052559981 1e-6 277 73 0.00074069994 1e-6 305 73 0.014718197 1e-6 307 73 0.0021025999 1e-6 308 73 0.010680199 1e-6 309 73 0.0018636999 1e-6 310 73 0.00050179986 1e-6 311 73 0.0022459999 1e-6 317 73 0.0017919999 1e-6 318 73 4.7799986e-05 1e-6 322 73 0.0033210998 1e-6 324 73 0.00023889999 1e-6 331 73 0.00066899997 1e-6 384 73 2.3899993e-05 1e-6 385 73 0.00083629997 1e-6 387 73 4.7799986e-05 1e-6 394 73 0.00011949999 1e-6 397 73 2.3899993e-05 1e-6 402 73 0.00040619983 1e-6 412 73 2.3899993e-05 1e-6 419 73 2.3899993e-05 1e-6 422 73 7.1699993e-05 1e-6 423 73 2.3899993e-05 1e-6 425 73 2.3899993e-05 1e-6 430 73 2.3899993e-05 1e-6 431 73 2.3899993e-05 1e-6 433 73 2.3899993e-05 1e-6 434 73 2.3899993e-05 1e-6 438 73 0.00040619983 1e-6 441 73 0.0015052999 1e-6 443 73 0.0086731985 1e-6 444 73 0.00014339999 1e-6 445 73 0.034358297 1e-6 446 73 0.0028671999 1e-6 447 73 0.0004778998 1e-6 448 73 0.0004300999 1e-6 450 73 0.0034883998 1e-6 452 73 0.00052559981 1e-6 453 73 7.1699993e-05 1e-6 454 73 0.00093179988 1e-6 455 73 0.022029497 1e-6 456 73 0.013810199 1e-6 457 73 0.0036795 1e-6 458 73 0.00028669997 1e-6 460 73 0.0026282 1e-6 463 73 0.0073590986 1e-6 464 73 0.00016729999 1e-6 465 73 0.00011949999 1e-6 467 73 0.012496099 1e-6 468 73 0.00054949988 1e-6 469 73 0.0054475963 1e-6 470 73 0.0053998977 1e-6 471 73 0.004396297 1e-6 473 73 0.00011949999 1e-6 477 73 4.7799986e-05 1e-6 478 73 0.00062119984 1e-6 483 73 0.00035839994 1e-6 489 73 7.1699993e-05 1e-6 490 73 0.0004300999 1e-6 491 73 0.00021499999 1e-6 18 74 0.00030299998 1e-6 24 74 0.00090909982 1e-6 60 74 0.00045449985 1e-6 80 74 0.00015149999 1e-6 108 74 0.00015149999 1e-6 114 74 0.00015149999 1e-6 126 74 0.00015149999 1e-6 139 74 0.00075759995 1e-6 142 74 0.00015149999 1e-6 150 74 0.00015149999 1e-6 160 74 0.00030299998 1e-6 165 74 0.007878799 1e-6 171 74 0.00015149999 1e-6 182 74 0.0018181999 1e-6 183 74 0.00090909982 1e-6 194 74 0.00015149999 1e-6 206 74 0.00045449985 1e-6 214 74 0.013181798 1e-6 220 74 0.00060609984 1e-6 223 74 0.017878797 1e-6 233 74 0.00060609984 1e-6 234 74 0.017727297 1e-6 237 74 0.0033332999 1e-6 240 74 0.00045449985 1e-6 241 74 0.0057575963 1e-6 242 74 0.00030299998 1e-6 254 74 0.022121198 1e-6 265 74 0.0031817998 1e-6 266 74 0.00030299998 1e-6 273 74 0.010302998 1e-6 274 74 0.00030299998 1e-6 277 74 0.053484797 1e-6 305 74 0.00015149999 1e-6 307 74 0.0034848 1e-6 308 74 0.0056061 1e-6 312 74 0.0010605999 1e-6 317 74 0.0027272999 1e-6 318 74 0.00015149999 1e-6 322 74 0.0042423978 1e-6 324 74 0.0081817992 1e-6 331 74 0.0287879 1e-6 333 74 0.040757596 1e-6 350 74 0.0056061 1e-6 371 74 0.00030299998 1e-6 374 74 0.00090909982 1e-6 387 74 0.00015149999 1e-6 394 74 0.00015149999 1e-6 402 74 0.00075759995 1e-6 422 74 0.00015149999 1e-6 430 74 0.00015149999 1e-6 443 74 0.010606099 1e-6 444 74 0.00030299998 1e-6 445 74 0.014848497 1e-6 446 74 0.0015151999 1e-6 447 74 0.00090909982 1e-6 448 74 0.00015149999 1e-6 450 74 0.004999999 1e-6 452 74 0.00075759995 1e-6 453 74 0.00015149999 1e-6 454 74 0.004999999 1e-6 455 74 0.030151498 1e-6 456 74 0.0075757988 1e-6 457 74 0.0053029992 1e-6 458 74 0.00045449985 1e-6 460 74 0.0040908977 1e-6 463 74 0.010606099 1e-6 464 74 0.00030299998 1e-6 467 74 0.021818198 1e-6 468 74 0.00075759995 1e-6 469 74 0.007878799 1e-6 470 74 0.007878799 1e-6 471 74 0.0069696978 1e-6 473 74 0.00015149999 1e-6 478 74 0.00090909982 1e-6 483 74 0.00045449985 1e-6 490 74 0.00075759995 1e-6 491 74 0.00030299998 1e-6 16 75 0.0001852 1e-6 24 75 0.014999997 1e-6 60 75 0.00037039979 1e-6 108 75 0.0001852 1e-6 114 75 0.00037039979 1e-6 126 75 0.0001852 1e-6 134 75 0.0001852 1e-6 139 75 0.00055559981 1e-6 150 75 0.0001852 1e-6 160 75 0.007407397 1e-6 162 75 0.0001852 1e-6 163 75 0.0024073999 1e-6 165 75 0.0072221979 1e-6 166 75 0.0001852 1e-6 167 75 0.0012963 1e-6 182 75 0.00055559981 1e-6 191 75 0.00037039979 1e-6 192 75 0.0001852 1e-6 206 75 0.00037039979 1e-6 219 75 0.0012963 1e-6 233 75 0.025185198 1e-6 234 75 0.014259297 1e-6 235 75 0.0087036975 1e-6 236 75 0.0024073999 1e-6 237 75 0.0014815 1e-6 241 75 0.004444398 1e-6 242 75 0.0001852 1e-6 252 75 0.00074069994 1e-6 254 75 0.0012963 1e-6 255 75 0.0001852 1e-6 256 75 0.0001852 1e-6 257 75 0.0001852 1e-6 259 75 0.00037039979 1e-6 264 75 0.00074069994 1e-6 265 75 0.0022221999 1e-6 266 75 0.0092592984 1e-6 268 75 0.0024073999 1e-6 271 75 0.00037039979 1e-6 273 75 0.00037039979 1e-6 277 75 0.0014815 1e-6 279 75 0.00055559981 1e-6 292 75 0.0001852 1e-6 293 75 0.0001852 1e-6 295 75 0.0024073999 1e-6 302 75 0.00037039979 1e-6 303 75 0.00092589995 1e-6 304 75 0.0024073999 1e-6 305 75 0.0062962994 1e-6 306 75 0.0012963 1e-6 307 75 0.002963 1e-6 308 75 0.0055555999 1e-6 309 75 0.00055559981 1e-6 311 75 0.0014815 1e-6 312 75 0.00037039979 1e-6 317 75 0.0016666998 1e-6 319 75 0.0011111 1e-6 322 75 0.0025926 1e-6 324 75 0.0014815 1e-6 331 75 0.00074069994 1e-6 334 75 0.00092589995 1e-6 335 75 0.0001852 1e-6 336 75 0.00055559981 1e-6 356 75 0.0001852 1e-6 358 75 0.0001852 1e-6 366 75 0.017036997 1e-6 371 75 0.0025926 1e-6 374 75 0.00037039979 1e-6 380 75 0.0001852 1e-6 385 75 0.0038888999 1e-6 386 75 0.0062962994 1e-6 387 75 0.0001852 1e-6 390 75 0.00055559981 1e-6 394 75 0.0001852 1e-6 402 75 0.00037039979 1e-6 414 75 0.0001852 1e-6 415 75 0.0014815 1e-6 438 75 0.0016666998 1e-6 441 75 0.00037039979 1e-6 443 75 0.0031480999 1e-6 444 75 0.0001852 1e-6 445 75 0.014259297 1e-6 446 75 0.00092589995 1e-6 447 75 0.00037039979 1e-6 450 75 0.0033332999 1e-6 452 75 0.00055559981 1e-6 454 75 0.00092589995 1e-6 455 75 0.018333297 1e-6 456 75 0.022222199 1e-6 457 75 0.0035184999 1e-6 458 75 0.00055559981 1e-6 460 75 0.0025926 1e-6 463 75 0.0072221979 1e-6 464 75 0.0001852 1e-6 467 75 0.018518496 1e-6 468 75 0.00055559981 1e-6 469 75 0.005185198 1e-6 470 75 0.005185198 1e-6 471 75 0.004999999 1e-6 473 75 0.0001852 1e-6 478 75 0.00037039979 1e-6 483 75 0.00037039979 1e-6 490 75 0.00055559981 1e-6 491 75 0.0001852 1e-6 9 76 7.9199992e-05 1e-6 16 76 2.6399997e-05 1e-6 18 76 2.6399997e-05 1e-6 22 76 7.9199992e-05 1e-6 60 76 0.0039842986 1e-6 76 76 0.012955498 1e-6 79 76 2.6399997e-05 1e-6 81 76 0.00060689985 1e-6 82 76 0.0001583 1e-6 83 76 0.00010549999 1e-6 84 76 0.00010549999 1e-6 108 76 0.00018469999 1e-6 113 76 0.0002638998 1e-6 114 76 0.00055409991 1e-6 126 76 0.00029019988 1e-6 127 76 5.2799995e-05 1e-6 130 76 7.9199992e-05 1e-6 134 76 2.6399997e-05 1e-6 150 76 0.00042219996 1e-6 181 76 5.2799995e-05 1e-6 187 76 2.6399997e-05 1e-6 189 76 0.00029019988 1e-6 190 76 0.00010549999 1e-6 192 76 5.2799995e-05 1e-6 194 76 7.9199992e-05 1e-6 196 76 2.6399997e-05 1e-6 197 76 5.2799995e-05 1e-6 198 76 5.2799995e-05 1e-6 200 76 0.00010549999 1e-6 201 76 7.9199992e-05 1e-6 203 76 7.9199992e-05 1e-6 204 76 0.00010549999 1e-6 206 76 0.00021109999 1e-6 207 76 5.2799995e-05 1e-6 209 76 2.6399997e-05 1e-6 214 76 5.2799995e-05 1e-6 223 76 5.2799995e-05 1e-6 224 76 0.001161 1e-6 233 76 0.00081799994 1e-6 234 76 0.0016886999 1e-6 237 76 7.9199992e-05 1e-6 240 76 0.00047489977 1e-6 241 76 0.0015039998 1e-6 248 76 0.00010549999 1e-6 250 76 5.2799995e-05 1e-6 251 76 2.6399997e-05 1e-6 252 76 0.00023749999 1e-6 263 76 2.6399997e-05 1e-6 270 76 0.00034299982 1e-6 272 76 0.00076519977 1e-6 277 76 0.0067019984 1e-6 282 76 0.00021109999 1e-6 283 76 0.00036939979 1e-6 284 76 0.00044859992 1e-6 292 76 0.00013189999 1e-6 293 76 0.0024275 1e-6 294 76 0.00063329982 1e-6 295 76 0.00071239984 1e-6 296 76 0.00084429979 1e-6 298 76 0.0020052998 1e-6 299 76 0.0010026998 1e-6 312 76 0.0048285984 1e-6 315 76 0.0013720999 1e-6 319 76 0.0017414999 1e-6 320 76 0.00092349993 1e-6 321 76 0.00097629987 1e-6 322 76 7.9199992e-05 1e-6 324 76 0.00047489977 1e-6 326 76 0.00010549999 1e-6 338 76 2.6399997e-05 1e-6 339 76 0.00013189999 1e-6 340 76 0.003694 1e-6 350 76 0.0023482998 1e-6 351 76 0.0002638998 1e-6 354 76 0.0007387998 1e-6 356 76 2.6399997e-05 1e-6 358 76 0.0027704998 1e-6 359 76 0.0001583 1e-6 369 76 0.00039579999 1e-6 370 76 2.6399997e-05 1e-6 372 76 0.0019788998 1e-6 380 76 5.2799995e-05 1e-6 384 76 5.2799995e-05 1e-6 386 76 7.9199992e-05 1e-6 387 76 0.00029019988 1e-6 390 76 0.032058898 1e-6 391 76 0.00010549999 1e-6 392 76 0.0019788998 1e-6 393 76 0.023430698 1e-6 396 76 2.6399997e-05 1e-6 397 76 0.00010549999 1e-6 402 76 0.0029815999 1e-6 403 76 0.00010549999 1e-6 404 76 0.006965898 1e-6 405 76 0.08731097 1e-6 413 76 0.0062797964 1e-6 414 76 0.00081799994 1e-6 419 76 7.9199992e-05 1e-6 420 76 0.00010549999 1e-6 422 76 0.00021109999 1e-6 423 76 7.9199992e-05 1e-6 425 76 5.2799995e-05 1e-6 430 76 0.0001583 1e-6 431 76 2.6399997e-05 1e-6 432 76 2.6399997e-05 1e-6 433 76 5.2799995e-05 1e-6 434 76 5.2799995e-05 1e-6 443 76 0.00044859992 1e-6 444 76 0.0014775998 1e-6 445 76 0.0020844999 1e-6 446 76 0.00013189999 1e-6 447 76 0.0027704998 1e-6 449 76 5.2799995e-05 1e-6 450 76 0.0058048964 1e-6 452 76 0.0045647994 1e-6 453 76 0.00036939979 1e-6 454 76 0.00031659985 1e-6 455 76 0.0078893974 1e-6 456 76 0.0021372999 1e-6 457 76 0.0027704998 1e-6 458 76 0.0013984998 1e-6 459 76 0.00058049988 1e-6 460 76 0.00089709996 1e-6 463 76 0.0092086978 1e-6 464 76 0.0014511999 1e-6 465 76 0.0031398998 1e-6 467 76 0.023931999 1e-6 468 76 0.0011345998 1e-6 469 76 0.012981899 1e-6 470 76 0.028786998 1e-6 471 76 0.0031398998 1e-6 473 76 0.00058049988 1e-6 477 76 0.00013189999 1e-6 478 76 0.0015568 1e-6 479 76 2.6399997e-05 1e-6 483 76 0.0038786998 1e-6 490 76 0.0022427998 1e-6 491 76 0.00010549999 1e-6 9 77 7.0099995e-05 1e-6 22 77 0.0034355 1e-6 24 77 0.00035059988 1e-6 60 77 0.0043468997 1e-6 77 77 0.082521141 1e-6 78 77 0.00070109987 1e-6 82 77 7.0099995e-05 1e-6 83 77 7.0099995e-05 1e-6 84 77 7.0099995e-05 1e-6 108 77 7.0099995e-05 1e-6 113 77 0.00014019999 1e-6 114 77 0.00021029999 1e-6 126 77 0.00014019999 1e-6 127 77 7.0099995e-05 1e-6 137 77 0.00063099992 1e-6 150 77 0.008833997 1e-6 165 77 7.0099995e-05 1e-6 171 77 7.0099995e-05 1e-6 172 77 0.021173697 1e-6 189 77 7.0099995e-05 1e-6 190 77 0.00014019999 1e-6 192 77 7.0099995e-05 1e-6 194 77 7.0099995e-05 1e-6 198 77 0.010867298 1e-6 200 77 0.00014019999 1e-6 201 77 7.0099995e-05 1e-6 203 77 7.0099995e-05 1e-6 204 77 0.00014019999 1e-6 206 77 0.00028039981 1e-6 207 77 7.0099995e-05 1e-6 214 77 0.00091139995 1e-6 218 77 0.00014019999 1e-6 220 77 0.0086937994 1e-6 224 77 0.0018228998 1e-6 229 77 0.0010517 1e-6 233 77 0.00014019999 1e-6 234 77 0.0060996972 1e-6 237 77 0.00028039981 1e-6 240 77 0.00084129977 1e-6 241 77 0.0016125999 1e-6 242 77 0.00035059988 1e-6 248 77 7.0099995e-05 1e-6 250 77 7.0099995e-05 1e-6 252 77 0.00035059988 1e-6 270 77 0.00021029999 1e-6 271 77 7.0099995e-05 1e-6 272 77 7.0099995e-05 1e-6 273 77 0.00014019999 1e-6 277 77 0.15754044 1e-6 282 77 0.0051180981 1e-6 283 77 0.008833997 1e-6 284 77 0.00056089996 1e-6 285 77 0.023206897 1e-6 288 77 0.00014019999 1e-6 292 77 0.0084834993 1e-6 293 77 0.022645999 1e-6 294 77 0.00028039981 1e-6 295 77 0.0011217999 1e-6 296 77 0.0065904967 1e-6 298 77 0.00014019999 1e-6 299 77 0.0056789964 1e-6 304 77 0.00014019999 1e-6 307 77 7.0099995e-05 1e-6 308 77 7.0099995e-05 1e-6 312 77 0.0035055999 1e-6 315 77 0.0077823997 1e-6 319 77 0.00035059988 1e-6 320 77 0.0021734999 1e-6 321 77 7.0099995e-05 1e-6 322 77 0.0082731992 1e-6 324 77 0.00028039981 1e-6 326 77 0.0046974979 1e-6 328 77 0.00035059988 1e-6 331 77 0.00063099992 1e-6 333 77 7.0099995e-05 1e-6 338 77 0.00063099992 1e-6 339 77 7.0099995e-05 1e-6 340 77 0.008833997 1e-6 341 77 7.0099995e-05 1e-6 349 77 7.0099995e-05 1e-6 350 77 0.00014019999 1e-6 351 77 0.00077119982 1e-6 352 77 7.0099995e-05 1e-6 354 77 0.00070109987 1e-6 356 77 7.0099995e-05 1e-6 358 77 0.0072214976 1e-6 366 77 0.00028039981 1e-6 369 77 0.00014019999 1e-6 370 77 0.00014019999 1e-6 371 77 0.00035059988 1e-6 372 77 0.0014722999 1e-6 373 77 0.00014019999 1e-6 384 77 7.0099995e-05 1e-6 386 77 0.00028039981 1e-6 387 77 7.0099995e-05 1e-6 390 77 0.00091139995 1e-6 391 77 7.0099995e-05 1e-6 392 77 0.0072915964 1e-6 393 77 0.0051180981 1e-6 398 77 0.00014019999 1e-6 402 77 0.00028039981 1e-6 404 77 0.00021029999 1e-6 405 77 0.0011918999 1e-6 413 77 0.00021029999 1e-6 415 77 7.0099995e-05 1e-6 419 77 0.0030848999 1e-6 422 77 0.00021029999 1e-6 423 77 0.00014019999 1e-6 424 77 7.0099995e-05 1e-6 425 77 7.0099995e-05 1e-6 426 77 7.0099995e-05 1e-6 430 77 7.0099995e-05 1e-6 431 77 7.0099995e-05 1e-6 433 77 7.0099995e-05 1e-6 434 77 7.0099995e-05 1e-6 438 77 0.00014019999 1e-6 441 77 0.00014019999 1e-6 442 77 7.0099995e-05 1e-6 443 77 0.0077823997 1e-6 444 77 0.00063099992 1e-6 445 77 0.0082731992 1e-6 446 77 0.00084129977 1e-6 447 77 0.0015425 1e-6 448 77 7.0099995e-05 1e-6 450 77 0.0068007968 1e-6 452 77 0.0178083 1e-6 453 77 0.0081328973 1e-6 454 77 0.00084129977 1e-6 455 77 0.0250999 1e-6 456 77 0.00056089996 1e-6 457 77 0.00098159979 1e-6 458 77 0.0013320998 1e-6 459 77 0.00014019999 1e-6 460 77 0.0010517 1e-6 463 77 0.0058893971 1e-6 464 77 0.00077119982 1e-6 465 77 0.0022435999 1e-6 467 77 0.025941197 1e-6 468 77 0.0060996972 1e-6 469 77 0.0091144964 1e-6 470 77 0.010306399 1e-6 471 77 0.0013320998 1e-6 473 77 0.00021029999 1e-6 477 77 0.00014019999 1e-6 478 77 0.0016125999 1e-6 483 77 0.00098159979 1e-6 489 77 7.0099995e-05 1e-6 490 77 0.00091139995 1e-6 491 77 0.00098159979 1e-6 22 78 0.00031939987 1e-6 60 78 0.0022356999 1e-6 77 78 0.020121399 1e-6 78 78 0.16671985 1e-6 114 78 0.00031939987 1e-6 130 78 0.00031939987 1e-6 156 78 0.017246898 1e-6 172 78 0.00031939987 1e-6 198 78 0.00031939987 1e-6 206 78 0.00031939987 1e-6 214 78 0.00063879997 1e-6 225 78 0.00095819985 1e-6 234 78 0.0015968999 1e-6 237 78 0.00031939987 1e-6 240 78 0.0114979 1e-6 241 78 0.00063879997 1e-6 252 78 0.00031939987 1e-6 270 78 0.00031939987 1e-6 271 78 0.00031939987 1e-6 277 78 0.035451896 1e-6 278 78 0.00031939987 1e-6 282 78 0.047588598 1e-6 283 78 0.0099009983 1e-6 284 78 0.00063879997 1e-6 285 78 0.00031939987 1e-6 292 78 0.00095819985 1e-6 293 78 0.0325775 1e-6 294 78 0.0028744999 1e-6 295 78 0.028744798 1e-6 296 78 0.004152 1e-6 298 78 0.0092621967 1e-6 299 78 0.0086233988 1e-6 312 78 0.0038325998 1e-6 313 78 0.0025550998 1e-6 315 78 0.0035132999 1e-6 319 78 0.00063879997 1e-6 320 78 0.0038325998 1e-6 321 78 0.0038325998 1e-6 323 78 0.00031939987 1e-6 324 78 0.00031939987 1e-6 326 78 0.0031939 1e-6 328 78 0.0105398 1e-6 340 78 0.0092621967 1e-6 351 78 0.0083040968 1e-6 353 78 0.00063879997 1e-6 354 78 0.016288698 1e-6 357 78 0.00031939987 1e-6 358 78 0.0079846978 1e-6 366 78 0.00095819985 1e-6 369 78 0.00031939987 1e-6 372 78 0.00095819985 1e-6 373 78 0.00063879997 1e-6 375 78 0.00031939987 1e-6 386 78 0.00031939987 1e-6 387 78 0.00031939987 1e-6 390 78 0.0022356999 1e-6 391 78 0.00031939987 1e-6 392 78 0.0015968999 1e-6 393 78 0.0038325998 1e-6 397 78 0.00095819985 1e-6 398 78 0.00031939987 1e-6 401 78 0.00095819985 1e-6 402 78 0.0079846978 1e-6 404 78 0.0073458999 1e-6 405 78 0.0025550998 1e-6 414 78 0.00063879997 1e-6 443 78 0.0031939 1e-6 444 78 0.00031939987 1e-6 445 78 0.015330598 1e-6 447 78 0.0015968999 1e-6 450 78 0.004152 1e-6 452 78 0.0044713989 1e-6 453 78 0.0012774998 1e-6 454 78 0.00063879997 1e-6 455 78 0.020760097 1e-6 457 78 0.00063879997 1e-6 458 78 0.00063879997 1e-6 460 78 0.00063879997 1e-6 463 78 0.0038325998 1e-6 464 78 0.00031939987 1e-6 465 78 0.0012774998 1e-6 467 78 0.015969299 1e-6 468 78 0.0012774998 1e-6 469 78 0.0038325998 1e-6 470 78 0.0057489984 1e-6 471 78 0.0015968999 1e-6 478 78 0.00095819985 1e-6 483 78 0.0019162998 1e-6 490 78 0.00063879997 1e-6 491 78 0.013094898 1e-6 22 79 0.00051709986 1e-6 60 79 0.0033608999 1e-6 79 79 0.026628699 1e-6 108 79 0.00025849999 1e-6 114 79 0.00051709986 1e-6 126 79 0.00025849999 1e-6 161 79 0.018355697 1e-6 190 79 0.00025849999 1e-6 194 79 0.00025849999 1e-6 198 79 0.0028437998 1e-6 200 79 0.00025849999 1e-6 206 79 0.00051709986 1e-6 220 79 0.0072388984 1e-6 229 79 0.00051709986 1e-6 234 79 0.0033608999 1e-6 237 79 0.00025849999 1e-6 240 79 0.00025849999 1e-6 241 79 0.010082699 1e-6 252 79 0.00025849999 1e-6 270 79 0.00025849999 1e-6 277 79 0.036711499 1e-6 282 79 0.010082699 1e-6 283 79 0.015253399 1e-6 284 79 0.00051709986 1e-6 292 79 0.0012926999 1e-6 293 79 0.0054291971 1e-6 294 79 0.0025852998 1e-6 296 79 0.0043949969 1e-6 298 79 0.008272998 1e-6 299 79 0.0010340998 1e-6 312 79 0.012409497 1e-6 313 79 0.00025849999 1e-6 315 79 0.0080144964 1e-6 320 79 0.0072388984 1e-6 321 79 0.0031023999 1e-6 322 79 0.013443597 1e-6 340 79 0.018097199 1e-6 351 79 0.0020682998 1e-6 358 79 0.0056876987 1e-6 387 79 0.00025849999 1e-6 392 79 0.0018096999 1e-6 393 79 0.0025852998 1e-6 402 79 0.00051709986 1e-6 422 79 0.00025849999 1e-6 441 79 0.0028437998 1e-6 443 79 0.0023267998 1e-6 444 79 0.00051709986 1e-6 445 79 0.003878 1e-6 446 79 0.00025849999 1e-6 447 79 0.011892498 1e-6 450 79 0.0067217983 1e-6 452 79 0.0067217983 1e-6 453 79 0.0020682998 1e-6 454 79 0.0015511999 1e-6 455 79 0.016287498 1e-6 456 79 0.00025849999 1e-6 457 79 0.00077559985 1e-6 458 79 0.0023267998 1e-6 459 79 0.00025849999 1e-6 460 79 0.0010340998 1e-6 463 79 0.004136499 1e-6 464 79 0.00077559985 1e-6 465 79 0.0023267998 1e-6 467 79 0.028955497 1e-6 468 79 0.0074973963 1e-6 469 79 0.008272998 1e-6 470 79 0.0093070976 1e-6 471 79 0.0010340998 1e-6 473 79 0.00025849999 1e-6 477 79 0.00025849999 1e-6 478 79 0.0020682998 1e-6 483 79 0.0012926999 1e-6 490 79 0.0010340998 1e-6 491 79 0.0018096999 1e-6 22 80 0.00066919997 1e-6 24 80 0.0002231 1e-6 60 80 0.010484099 1e-6 79 80 0.009368699 1e-6 80 80 0.020521998 1e-6 108 80 0.0002231 1e-6 114 80 0.00044609979 1e-6 126 80 0.0002231 1e-6 135 80 0.0002231 1e-6 160 80 0.0022306 1e-6 171 80 0.0013383999 1e-6 191 80 0.0011153 1e-6 194 80 0.0002231 1e-6 198 80 0.013160799 1e-6 206 80 0.00044609979 1e-6 220 80 0.039036397 1e-6 225 80 0.00044609979 1e-6 229 80 0.00089229993 1e-6 234 80 0.0026767999 1e-6 237 80 0.0002231 1e-6 241 80 0.010260999 1e-6 252 80 0.0002231 1e-6 270 80 0.0071380995 1e-6 271 80 0.0002231 1e-6 277 80 0.017845199 1e-6 284 80 0.00044609979 1e-6 287 80 0.052866399 1e-6 292 80 0.16417575 1e-6 315 80 0.036805697 1e-6 320 80 0.0044612996 1e-6 321 80 0.009368699 1e-6 340 80 0.013606999 1e-6 351 80 0.0002231 1e-6 358 80 0.0040151998 1e-6 387 80 0.0002231 1e-6 443 80 0.0051304996 1e-6 444 80 0.010260999 1e-6 445 80 0.017175999 1e-6 446 80 0.00044609979 1e-6 447 80 0.0064688995 1e-6 450 80 0.0055765994 1e-6 452 80 0.0071380995 1e-6 453 80 0.0017845 1e-6 454 80 0.00089229993 1e-6 455 80 0.023867898 1e-6 456 80 0.0002231 1e-6 457 80 0.00066919997 1e-6 458 80 0.0011153 1e-6 459 80 0.0002231 1e-6 460 80 0.00089229993 1e-6 463 80 0.0017845 1e-6 464 80 0.00066919997 1e-6 465 80 0.0013383999 1e-6 467 80 0.024090998 1e-6 468 80 0.0055765994 1e-6 469 80 0.0057996996 1e-6 470 80 0.0066918992 1e-6 471 80 0.00066919997 1e-6 473 80 0.0002231 1e-6 477 80 0.0002231 1e-6 478 80 0.0013383999 1e-6 483 80 0.00066919997 1e-6 490 80 0.00066919997 1e-6 491 80 0.0013383999 1e-6 9 81 0.00017429999 1e-6 22 81 0.00052279979 1e-6 24 81 0.00017429999 1e-6 60 81 0.0060996972 1e-6 77 81 0.013419297 1e-6 79 81 0.010108098 1e-6 81 81 0.00017429999 1e-6 82 81 0.00017429999 1e-6 108 81 0.00017429999 1e-6 114 81 0.00034859986 1e-6 120 81 0.00017429999 1e-6 126 81 0.00017429999 1e-6 130 81 0.00017429999 1e-6 150 81 0.00052279979 1e-6 160 81 0.0012198999 1e-6 161 81 0.00052279979 1e-6 172 81 0.0012198999 1e-6 181 81 0.00017429999 1e-6 189 81 0.00017429999 1e-6 190 81 0.00017429999 1e-6 194 81 0.00017429999 1e-6 198 81 0.0017428 1e-6 200 81 0.00017429999 1e-6 203 81 0.00017429999 1e-6 204 81 0.00017429999 1e-6 206 81 0.00052279979 1e-6 214 81 0.00052279979 1e-6 218 81 0.00017429999 1e-6 220 81 0.005053997 1e-6 223 81 0.00017429999 1e-6 224 81 0.00017429999 1e-6 229 81 0.00052279979 1e-6 234 81 0.0033113 1e-6 237 81 0.00017429999 1e-6 240 81 0.0015685 1e-6 241 81 0.0024398998 1e-6 252 81 0.00017429999 1e-6 270 81 0.00017429999 1e-6 277 81 0.031892598 1e-6 282 81 0.011327997 1e-6 283 81 0.0087137967 1e-6 284 81 0.00052279979 1e-6 285 81 0.0012198999 1e-6 287 81 0.00017429999 1e-6 289 81 0.0024398998 1e-6 290 81 0.00017429999 1e-6 292 81 0.0020913 1e-6 293 81 0.006622497 1e-6 294 81 0.0022655998 1e-6 295 81 0.00017429999 1e-6 296 81 0.009585198 1e-6 298 81 0.0024398998 1e-6 299 81 0.0067967996 1e-6 312 81 0.0031369999 1e-6 313 81 0.00034859986 1e-6 315 81 0.0026141999 1e-6 318 81 0.0017428 1e-6 319 81 0.00034859986 1e-6 320 81 0.0087137967 1e-6 321 81 0.0013941999 1e-6 322 81 0.0078424998 1e-6 326 81 0.0043568984 1e-6 328 81 0.0017428 1e-6 333 81 0.00017429999 1e-6 338 81 0.00087139988 1e-6 340 81 0.0041825995 1e-6 351 81 0.0047054999 1e-6 354 81 0.00017429999 1e-6 358 81 0.011153698 1e-6 369 81 0.00017429999 1e-6 386 81 0.00017429999 1e-6 387 81 0.00017429999 1e-6 390 81 0.0026141999 1e-6 391 81 0.00017429999 1e-6 392 81 0.0202161 1e-6 393 81 0.0085395984 1e-6 397 81 0.00017429999 1e-6 402 81 0.00034859986 1e-6 403 81 0.00017429999 1e-6 404 81 0.0047054999 1e-6 405 81 0.026315797 1e-6 414 81 0.00017429999 1e-6 419 81 0.0013941999 1e-6 422 81 0.00017429999 1e-6 430 81 0.00017429999 1e-6 434 81 0.00017429999 1e-6 442 81 0.00017429999 1e-6 443 81 0.0017428 1e-6 444 81 0.0010456999 1e-6 445 81 0.0031369999 1e-6 447 81 0.0022655998 1e-6 450 81 0.0078424998 1e-6 452 81 0.010979399 1e-6 453 81 0.0020913 1e-6 454 81 0.0012198999 1e-6 455 81 0.012896497 1e-6 456 81 0.00069709984 1e-6 457 81 0.00087139988 1e-6 458 81 0.0017428 1e-6 459 81 0.00034859986 1e-6 460 81 0.00087139988 1e-6 463 81 0.0031369999 1e-6 464 81 0.0013941999 1e-6 465 81 0.0024398998 1e-6 467 81 0.033286899 1e-6 468 81 0.0027883998 1e-6 469 81 0.013244998 1e-6 470 81 0.016033497 1e-6 471 81 0.0013941999 1e-6 473 81 0.00034859986 1e-6 478 81 0.0020913 1e-6 483 81 0.0026141999 1e-6 490 81 0.0013941999 1e-6 491 81 0.0034854999 1e-6 0 82 6.5899992e-05 1e-6 1 82 4.2299987e-05 1e-6 2 82 0.72868645 1e-6 3 82 4.2299987e-05 1e-6 5 82 0.00035749981 1e-6 6 82 0.0049346983 1e-6 9 82 3.2899989e-05 1e-6 11 82 2.349999e-05 1e-6 14 82 4.6999994e-06 1e-6 17 82 6.5899992e-05 1e-6 18 82 0.00033399998 1e-6 22 82 0.0001317 1e-6 25 82 4.2299987e-05 1e-6 60 82 0.00076209987 1e-6 62 82 9.8799996e-05 1e-6 79 82 4.6999994e-06 1e-6 82 82 0.067349672 1e-6 83 82 0.0025684999 1e-6 84 82 2.349999e-05 1e-6 88 82 0.00019759999 1e-6 94 82 9.3999997e-06 1e-6 97 82 4.6999994e-06 1e-6 98 82 2.349999e-05 1e-6 102 82 0.0012089999 1e-6 104 82 9.3999997e-06 1e-6 107 82 2.8199996e-05 1e-6 108 82 4.6999994e-06 1e-6 111 82 4.6999994e-06 1e-6 113 82 9.3999997e-06 1e-6 114 82 1.4099999e-05 1e-6 117 82 4.2299987e-05 1e-6 118 82 0.00030109985 1e-6 119 82 1.8799998e-05 1e-6 120 82 0.0002774999 1e-6 122 82 2.349999e-05 1e-6 125 82 0.0014253999 1e-6 126 82 9.3999997e-06 1e-6 127 82 4.6999994e-06 1e-6 141 82 4.6999994e-06 1e-6 149 82 4.6999994e-06 1e-6 150 82 0.00012699999 1e-6 153 82 0.00013639999 1e-6 172 82 0.00011289999 1e-6 189 82 3.2899989e-05 1e-6 190 82 1.8799998e-05 1e-6 192 82 1.8799998e-05 1e-6 193 82 3.2899989e-05 1e-6 194 82 1.4099999e-05 1e-6 196 82 4.6999994e-06 1e-6 197 82 4.6999994e-06 1e-6 198 82 0.0048499964 1e-6 200 82 9.3999997e-06 1e-6 201 82 9.3999997e-06 1e-6 203 82 1.4099999e-05 1e-6 204 82 0.00019759999 1e-6 206 82 9.8799996e-05 1e-6 207 82 9.3999997e-06 1e-6 209 82 4.6999994e-06 1e-6 214 82 0.00036219996 1e-6 217 82 1.4099999e-05 1e-6 218 82 9.3999997e-06 1e-6 223 82 0.00013639999 1e-6 228 82 9.3999997e-06 1e-6 229 82 0.00068209996 1e-6 230 82 0.00015519999 1e-6 234 82 0.00088439998 1e-6 237 82 0.00015519999 1e-6 241 82 0.0053721964 1e-6 242 82 0.0001599 1e-6 248 82 4.6999994e-06 1e-6 250 82 4.6999994e-06 1e-6 251 82 4.6999994e-06 1e-6 252 82 1.4099999e-05 1e-6 253 82 4.6999994e-06 1e-6 272 82 0.00013639999 1e-6 279 82 0.0002023 1e-6 300 82 0.0019945998 1e-6 301 82 0.00011759999 1e-6 317 82 1.8799998e-05 1e-6 325 82 1.4099999e-05 1e-6 329 82 8.469999e-05 1e-6 344 82 0.00054099993 1e-6 356 82 6.5899992e-05 1e-6 358 82 7.0599999e-05 1e-6 384 82 9.3999997e-06 1e-6 387 82 9.3999997e-06 1e-6 394 82 9.3999997e-06 1e-6 397 82 4.6999994e-06 1e-6 402 82 4.6999994e-05 1e-6 404 82 1.8799998e-05 1e-6 414 82 0.00010819999 1e-6 419 82 4.6999994e-06 1e-6 422 82 1.8799998e-05 1e-6 423 82 4.6999994e-06 1e-6 425 82 4.6999994e-06 1e-6 430 82 4.6999994e-06 1e-6 431 82 4.6999994e-06 1e-6 432 82 4.6999994e-06 1e-6 433 82 9.3999997e-06 1e-6 434 82 9.3999997e-06 1e-6 443 82 0.0012371999 1e-6 444 82 1.8799998e-05 1e-6 445 82 0.0057108998 1e-6 446 82 0.00031519984 1e-6 447 82 6.5899992e-05 1e-6 448 82 1.4099999e-05 1e-6 450 82 0.00055979984 1e-6 452 82 0.0028036998 1e-6 453 82 0.0011336999 1e-6 454 82 0.00030109985 1e-6 455 82 0.030807696 1e-6 456 82 0.0001599 1e-6 457 82 0.0010537 1e-6 458 82 9.8799996e-05 1e-6 459 82 0.00038099987 1e-6 460 82 0.00071029994 1e-6 463 82 0.0011713 1e-6 464 82 2.349999e-05 1e-6 465 82 0.00030579977 1e-6 467 82 0.0025072999 1e-6 468 82 0.0014489 1e-6 469 82 0.00072439993 1e-6 470 82 0.00078559993 1e-6 471 82 0.00066799996 1e-6 472 82 7.9999998e-05 1e-6 473 82 1.4099999e-05 1e-6 476 82 4.6999994e-05 1e-6 477 82 4.2299987e-05 1e-6 478 82 0.00021639999 1e-6 483 82 0.00040459982 1e-6 489 82 4.2299987e-05 1e-6 490 82 6.1199986e-05 1e-6 491 82 0.00044219987 1e-6 0 83 7.9699996e-05 1e-6 1 83 0.00090279989 1e-6 2 83 0.34128594 1e-6 3 83 2.6599999e-05 1e-6 5 83 0.00037169992 1e-6 6 83 0.00023899999 1e-6 9 83 5.3099997e-05 1e-6 11 83 9.2899994e-05 1e-6 13 83 1.3299999e-05 1e-6 14 83 1.3299999e-05 1e-6 17 83 0.00018589999 1e-6 22 83 7.9699996e-05 1e-6 25 83 1.3299999e-05 1e-6 60 83 0.0011815999 1e-6 82 83 0.31769359 1e-6 83 83 0.033775397 1e-6 84 83 0.00029209978 1e-6 85 83 1.3299999e-05 1e-6 87 83 6.6399996e-05 1e-6 88 83 0.00099569978 1e-6 90 83 2.6599999e-05 1e-6 93 83 5.3099997e-05 1e-6 94 83 7.9699996e-05 1e-6 98 83 3.9799997e-05 1e-6 103 83 1.3299999e-05 1e-6 104 83 1.3299999e-05 1e-6 107 83 3.9799997e-05 1e-6 108 83 1.3299999e-05 1e-6 114 83 3.9799997e-05 1e-6 115 83 1.3299999e-05 1e-6 118 83 2.6599999e-05 1e-6 120 83 1.3299999e-05 1e-6 122 83 3.9799997e-05 1e-6 124 83 3.9799997e-05 1e-6 125 83 0.0055628978 1e-6 126 83 1.3299999e-05 1e-6 130 83 1.3299999e-05 1e-6 149 83 1.3299999e-05 1e-6 150 83 0.00022569999 1e-6 153 83 6.6399996e-05 1e-6 172 83 5.3099997e-05 1e-6 189 83 3.9799997e-05 1e-6 190 83 3.9799997e-05 1e-6 192 83 0.00087619992 1e-6 193 83 0.0072090998 1e-6 194 83 2.6599999e-05 1e-6 198 83 0.011377998 1e-6 200 83 1.3299999e-05 1e-6 203 83 1.3299999e-05 1e-6 204 83 0.010090098 1e-6 206 83 0.00019909999 1e-6 207 83 1.3299999e-05 1e-6 214 83 0.00033189985 1e-6 223 83 0.00019909999 1e-6 224 83 0.00010619999 1e-6 229 83 0.00066379993 1e-6 230 83 0.00026549981 1e-6 234 83 0.0013408998 1e-6 237 83 0.00014599999 1e-6 240 83 0.00010619999 1e-6 241 83 0.011616897 1e-6 242 83 0.00017259999 1e-6 252 83 1.3299999e-05 1e-6 253 83 0.00014599999 1e-6 272 83 0.00018589999 1e-6 277 83 1.3299999e-05 1e-6 279 83 0.00049119978 1e-6 300 83 0.0060009994 1e-6 301 83 5.3099997e-05 1e-6 314 83 2.6599999e-05 1e-6 315 83 1.3299999e-05 1e-6 316 83 0.00017259999 1e-6 318 83 1.3299999e-05 1e-6 344 83 0.00051779998 1e-6 356 83 6.6399996e-05 1e-6 358 83 0.00010619999 1e-6 384 83 1.3299999e-05 1e-6 387 83 1.3299999e-05 1e-6 394 83 1.3299999e-05 1e-6 402 83 5.3099997e-05 1e-6 404 83 1.3299999e-05 1e-6 414 83 5.3099997e-05 1e-6 422 83 2.6599999e-05 1e-6 430 83 1.3299999e-05 1e-6 433 83 1.3299999e-05 1e-6 434 83 1.3299999e-05 1e-6 442 83 6.6399996e-05 1e-6 443 83 0.0023498998 1e-6 444 83 6.6399996e-05 1e-6 445 83 0.012984399 1e-6 446 83 0.00037169992 1e-6 447 83 0.0014072999 1e-6 448 83 1.3299999e-05 1e-6 450 83 0.00082309986 1e-6 452 83 0.0034385999 1e-6 453 83 0.0017259 1e-6 454 83 0.00039829989 1e-6 455 83 0.0437859 1e-6 456 83 0.00018589999 1e-6 457 83 0.001009 1e-6 458 83 0.00023899999 1e-6 459 83 0.0010753998 1e-6 460 83 0.00086299982 1e-6 463 83 0.0031597998 1e-6 464 83 7.9699996e-05 1e-6 465 83 0.0013408998 1e-6 467 83 0.003359 1e-6 468 83 0.0026021998 1e-6 469 83 0.0012877998 1e-6 470 83 0.0014205999 1e-6 471 83 0.0010753998 1e-6 472 83 3.9799997e-05 1e-6 473 83 3.9799997e-05 1e-6 477 83 3.9799997e-05 1e-6 478 83 0.00034519983 1e-6 483 83 0.00057089981 1e-6 489 83 5.3099997e-05 1e-6 490 83 0.00014599999 1e-6 491 83 0.00029209978 1e-6 1 84 0.62848139 1e-6 2 84 0.00014199999 1e-6 3 84 0.0009937 1e-6 4 84 2.8399998e-05 1e-6 5 84 5.6799996e-05 1e-6 6 84 0.00031229993 1e-6 9 84 5.6799996e-05 1e-6 11 84 8.5199994e-05 1e-6 14 84 0.004059799 1e-6 18 84 0.0001987 1e-6 60 84 0.0010221 1e-6 82 84 0.0013626998 1e-6 83 84 0.00014199999 1e-6 84 84 0.026374798 1e-6 85 84 0.00011359999 1e-6 94 84 8.5199994e-05 1e-6 102 84 0.00059619988 1e-6 108 84 2.8399998e-05 1e-6 114 84 5.6799996e-05 1e-6 118 84 0.00017029999 1e-6 120 84 2.8399998e-05 1e-6 122 84 2.8399998e-05 1e-6 125 84 2.8399998e-05 1e-6 126 84 2.8399998e-05 1e-6 150 84 0.00045419997 1e-6 172 84 0.0029525999 1e-6 189 84 2.8399998e-05 1e-6 190 84 8.5199994e-05 1e-6 192 84 2.8399998e-05 1e-6 193 84 0.012775697 1e-6 194 84 8.5199994e-05 1e-6 195 84 0.0002271 1e-6 197 84 2.8399998e-05 1e-6 198 84 0.015728399 1e-6 200 84 2.8399998e-05 1e-6 203 84 5.6799996e-05 1e-6 204 84 0.0010787998 1e-6 206 84 0.00017029999 1e-6 207 84 2.8399998e-05 1e-6 214 84 0.0024699999 1e-6 223 84 0.00014199999 1e-6 229 84 0.00059619988 1e-6 230 84 0.00053939992 1e-6 234 84 0.0023563998 1e-6 237 84 0.00028389995 1e-6 240 84 2.8399998e-05 1e-6 241 84 0.00014199999 1e-6 242 84 0.00017029999 1e-6 252 84 2.8399998e-05 1e-6 272 84 0.00025549997 1e-6 277 84 2.8399998e-05 1e-6 279 84 0.00079489988 1e-6 300 84 0.00025549997 1e-6 325 84 2.8399998e-05 1e-6 344 84 0.00045419997 1e-6 356 84 5.6799996e-05 1e-6 358 84 0.0002271 1e-6 366 84 2.8399998e-05 1e-6 387 84 2.8399998e-05 1e-6 394 84 2.8399998e-05 1e-6 397 84 2.8399998e-05 1e-6 402 84 0.00014199999 1e-6 422 84 8.5199994e-05 1e-6 433 84 2.8399998e-05 1e-6 434 84 2.8399998e-05 1e-6 443 84 0.0009368998 1e-6 444 84 5.6799996e-05 1e-6 445 84 0.010845199 1e-6 446 84 0.00017029999 1e-6 447 84 0.00082329987 1e-6 448 84 2.8399998e-05 1e-6 450 84 0.0017317999 1e-6 452 84 0.0049682967 1e-6 453 84 0.0012492 1e-6 454 84 0.0015330999 1e-6 455 84 0.049796999 1e-6 456 84 0.00039749988 1e-6 457 84 0.00028389995 1e-6 458 84 0.00028389995 1e-6 459 84 0.00014199999 1e-6 460 84 0.0007664999 1e-6 463 84 0.0015330999 1e-6 464 84 8.5199994e-05 1e-6 465 84 0.0010787998 1e-6 467 84 0.0041449964 1e-6 468 84 0.0030377998 1e-6 469 84 0.0009937 1e-6 470 84 0.0011355998 1e-6 471 84 0.0022429 1e-6 473 84 2.8399998e-05 1e-6 476 84 5.6799996e-05 1e-6 477 84 2.8399998e-05 1e-6 478 84 0.00070979982 1e-6 483 84 0.0003690999 1e-6 489 84 0.00014199999 1e-6 490 84 0.00011359999 1e-6 491 84 0.00031229993 1e-6 1 85 0.41609979 1e-6 2 85 0.000189 1e-6 9 85 0.0032123998 1e-6 11 85 0.0022675998 1e-6 60 85 0.0015117 1e-6 82 85 0.0041571967 1e-6 83 85 0.00056689978 1e-6 84 85 0.14852607 1e-6 85 85 0.0060468987 1e-6 97 85 0.000189 1e-6 98 85 0.00037789997 1e-6 105 85 0.000189 1e-6 107 85 0.00037789997 1e-6 114 85 0.000189 1e-6 122 85 0.00094479998 1e-6 125 85 0.000189 1e-6 172 85 0.000189 1e-6 189 85 0.00037789997 1e-6 192 85 0.00075589982 1e-6 193 85 0.013416499 1e-6 194 85 0.000189 1e-6 198 85 0.034580499 1e-6 204 85 0.00037789997 1e-6 206 85 0.00037789997 1e-6 214 85 0.00056689978 1e-6 223 85 0.00056689978 1e-6 229 85 0.00056689978 1e-6 230 85 0.00075589982 1e-6 234 85 0.0032123998 1e-6 237 85 0.00037789997 1e-6 240 85 0.00094479998 1e-6 241 85 0.0011337998 1e-6 242 85 0.000189 1e-6 253 85 0.000189 1e-6 272 85 0.00056689978 1e-6 279 85 0.0015117 1e-6 300 85 0.0096371993 1e-6 325 85 0.0015117 1e-6 344 85 0.00056689978 1e-6 358 85 0.00037789997 1e-6 366 85 0.000189 1e-6 402 85 0.000189 1e-6 443 85 0.00094479998 1e-6 445 85 0.011526797 1e-6 446 85 0.00037789997 1e-6 447 85 0.00075589982 1e-6 450 85 0.0020786 1e-6 452 85 0.0056688972 1e-6 453 85 0.0020786 1e-6 454 85 0.0013227998 1e-6 455 85 0.062547147 1e-6 456 85 0.00037789997 1e-6 457 85 0.0049130991 1e-6 458 85 0.00094479998 1e-6 459 85 0.00094479998 1e-6 460 85 0.00075589982 1e-6 463 85 0.0047240965 1e-6 465 85 0.0011337998 1e-6 467 85 0.0060468987 1e-6 468 85 0.0079364963 1e-6 469 85 0.0013227998 1e-6 470 85 0.0015117 1e-6 471 85 0.0022675998 1e-6 478 85 0.00075589982 1e-6 483 85 0.00037789997 1e-6 490 85 0.000189 1e-6 491 85 0.000189 1e-6 0 86 0.32495898 1e-6 1 86 0.0032823998 1e-6 22 86 0.00025249994 1e-6 60 86 0.0020198999 1e-6 82 86 0.00025249994 1e-6 84 86 0.00050499989 1e-6 86 86 0.019820698 1e-6 87 86 0.011614699 1e-6 88 86 0.020704497 1e-6 90 86 0.31662667 1e-6 107 86 0.0036611999 1e-6 115 86 0.0013887 1e-6 125 86 0.00025249994 1e-6 192 86 0.021840699 1e-6 193 86 0.0020198999 1e-6 194 86 0.00025249994 1e-6 198 86 0.023355599 1e-6 204 86 0.0041660964 1e-6 206 86 0.00025249994 1e-6 214 86 0.00050499989 1e-6 223 86 0.00025249994 1e-6 229 86 0.00088369986 1e-6 230 86 0.00012619999 1e-6 234 86 0.0027774 1e-6 237 86 0.00025249994 1e-6 240 86 0.00012619999 1e-6 241 86 0.0045448989 1e-6 242 86 0.00050499989 1e-6 253 86 0.00012619999 1e-6 272 86 0.00025249994 1e-6 277 86 0.00012619999 1e-6 279 86 0.00012619999 1e-6 300 86 0.012119699 1e-6 325 86 0.00050499989 1e-6 344 86 0.00088369986 1e-6 350 86 0.00037869997 1e-6 351 86 0.00025249994 1e-6 356 86 0.00012619999 1e-6 366 86 0.00012619999 1e-6 443 86 0.0018936999 1e-6 444 86 0.00037869997 1e-6 445 86 0.0090897977 1e-6 446 86 0.00025249994 1e-6 447 86 0.0018936999 1e-6 450 86 0.00088369986 1e-6 452 86 0.0034087 1e-6 453 86 0.0032823998 1e-6 454 86 0.00050499989 1e-6 455 86 0.050498698 1e-6 456 86 0.00037869997 1e-6 457 86 0.0021461998 1e-6 458 86 0.00025249994 1e-6 459 86 0.00050499989 1e-6 460 86 0.0011361998 1e-6 463 86 0.0017674998 1e-6 464 86 0.00012619999 1e-6 465 86 0.0050498992 1e-6 467 86 0.0039136 1e-6 468 86 0.004797399 1e-6 469 86 0.00088369986 1e-6 470 86 0.00075749983 1e-6 471 86 0.0025248998 1e-6 478 86 0.00025249994 1e-6 483 86 0.00075749983 1e-6 490 86 0.00025249994 1e-6 491 86 0.00075749983 1e-6 0 87 0.29069388 1e-6 3 87 3.6099998e-05 1e-6 9 87 3.6099998e-05 1e-6 11 87 7.2199997e-05 1e-6 13 87 3.6099998e-05 1e-6 14 87 7.2199997e-05 1e-6 22 87 7.2199997e-05 1e-6 25 87 0.00014429999 1e-6 60 87 0.00093819993 1e-6 82 87 7.2199997e-05 1e-6 86 87 0.0014795 1e-6 87 87 0.24414527 1e-6 88 87 0.0046548992 1e-6 90 87 0.088875294 1e-6 104 87 3.6099998e-05 1e-6 105 87 3.6099998e-05 1e-6 107 87 0.0010463998 1e-6 114 87 3.6099998e-05 1e-6 122 87 7.2199997e-05 1e-6 125 87 0.0019484998 1e-6 130 87 0.0011908 1e-6 150 87 0.0012629 1e-6 151 87 0.0013712 1e-6 190 87 3.6099998e-05 1e-6 192 87 0.023887698 1e-6 193 87 0.0117273 1e-6 194 87 3.6099998e-05 1e-6 198 87 0.0105366 1e-6 203 87 3.6099998e-05 1e-6 204 87 0.0088767 1e-6 206 87 0.00018039999 1e-6 214 87 0.0037527999 1e-6 223 87 0.00050519989 1e-6 229 87 0.00079389988 1e-6 230 87 0.00014429999 1e-6 234 87 0.0029227999 1e-6 237 87 0.00036079995 1e-6 240 87 0.00021649999 1e-6 241 87 0.018727697 1e-6 242 87 0.0010103998 1e-6 253 87 3.6099998e-05 1e-6 272 87 0.00032479991 1e-6 277 87 7.2199997e-05 1e-6 279 87 0.00036079995 1e-6 300 87 0.0055569969 1e-6 317 87 0.0011908 1e-6 324 87 0.00014429999 1e-6 325 87 0.0022371998 1e-6 326 87 0.00082989992 1e-6 340 87 0.0010463998 1e-6 344 87 0.002165 1e-6 349 87 3.6099998e-05 1e-6 356 87 7.2199997e-05 1e-6 358 87 0.0001083 1e-6 366 87 0.00086599984 1e-6 394 87 3.6099998e-05 1e-6 402 87 0.00014429999 1e-6 422 87 3.6099998e-05 1e-6 434 87 3.6099998e-05 1e-6 442 87 0.00075779995 1e-6 443 87 0.0022733 1e-6 444 87 0.0016599 1e-6 445 87 0.0093457997 1e-6 446 87 0.00028869999 1e-6 447 87 0.0011185999 1e-6 448 87 7.2199997e-05 1e-6 450 87 0.0020567998 1e-6 452 87 0.0031392998 1e-6 453 87 0.0030671998 1e-6 454 87 0.0014072999 1e-6 455 87 0.071266174 1e-6 456 87 0.0004329998 1e-6 457 87 0.0020567998 1e-6 458 87 0.00032479991 1e-6 459 87 0.0018041998 1e-6 460 87 0.0011908 1e-6 463 87 0.0046908967 1e-6 464 87 0.00093819993 1e-6 465 87 0.005448699 1e-6 467 87 0.007469397 1e-6 468 87 0.0110057 1e-6 469 87 0.0004329998 1e-6 470 87 0.0004329998 1e-6 471 87 0.0024175998 1e-6 472 87 0.00036079995 1e-6 477 87 3.6099998e-05 1e-6 478 87 0.00028869999 1e-6 483 87 0.00028869999 1e-6 489 87 0.0001083 1e-6 490 87 0.00018039999 1e-6 491 87 3.6099998e-05 1e-6 0 88 0.30537045 1e-6 1 88 0.0011586999 1e-6 2 88 5.789999e-05 1e-6 3 88 5.789999e-05 1e-6 5 88 5.789999e-05 1e-6 9 88 0.00011589999 1e-6 10 88 5.789999e-05 1e-6 11 88 0.00011589999 1e-6 13 88 0.00011589999 1e-6 14 88 0.0001738 1e-6 22 88 0.00052139978 1e-6 60 88 0.0017959999 1e-6 82 88 0.00028969999 1e-6 84 88 0.00011589999 1e-6 86 88 0.0057354979 1e-6 87 88 0.0069520995 1e-6 88 88 0.071896195 1e-6 90 88 0.1147095 1e-6 98 88 0.00011589999 1e-6 104 88 0.00023169999 1e-6 105 88 0.0001738 1e-6 107 88 0.009443298 1e-6 109 88 0.00011589999 1e-6 114 88 5.789999e-05 1e-6 115 88 0.0079948977 1e-6 116 88 0.00023169999 1e-6 122 88 0.0001738 1e-6 125 88 5.789999e-05 1e-6 150 88 0.00023169999 1e-6 151 88 5.789999e-05 1e-6 172 88 5.789999e-05 1e-6 192 88 0.040495899 1e-6 193 88 0.009443298 1e-6 194 88 0.00034759985 1e-6 198 88 0.023173597 1e-6 204 88 0.0057933964 1e-6 206 88 0.00028969999 1e-6 214 88 0.0020277 1e-6 223 88 0.00011589999 1e-6 229 88 0.00063729985 1e-6 230 88 0.0001738 1e-6 234 88 0.0034180998 1e-6 237 88 0.00034759985 1e-6 240 88 0.00023169999 1e-6 241 88 0.0057933964 1e-6 242 88 0.0016800999 1e-6 253 88 0.00057929987 1e-6 272 88 0.00034759985 1e-6 277 88 5.789999e-05 1e-6 279 88 0.00040549994 1e-6 300 88 0.067261457 1e-6 301 88 5.789999e-05 1e-6 314 88 5.789999e-05 1e-6 324 88 0.0001738 1e-6 325 88 0.0018538998 1e-6 340 88 0.00011589999 1e-6 344 88 0.0012166 1e-6 350 88 0.0021435998 1e-6 351 88 0.0012166 1e-6 356 88 5.789999e-05 1e-6 358 88 0.00011589999 1e-6 366 88 0.00023169999 1e-6 402 88 0.0001738 1e-6 443 88 0.0038816 1e-6 444 88 0.0012166 1e-6 445 88 0.0064885989 1e-6 446 88 0.00052139978 1e-6 447 88 0.0019697999 1e-6 450 88 0.0010427998 1e-6 452 88 0.0047505982 1e-6 453 88 0.004171297 1e-6 454 88 0.00092689996 1e-6 455 88 0.0436823 1e-6 456 88 0.00052139978 1e-6 457 88 0.0022594 1e-6 458 88 0.00046349992 1e-6 459 88 0.00046349992 1e-6 460 88 0.0013903999 1e-6 463 88 0.0036497999 1e-6 464 88 0.00011589999 1e-6 465 88 0.0057354979 1e-6 467 88 0.0074734986 1e-6 468 88 0.016858798 1e-6 469 88 0.0011586999 1e-6 470 88 0.00086899986 1e-6 471 88 0.0029545999 1e-6 472 88 5.789999e-05 1e-6 477 88 5.789999e-05 1e-6 478 88 0.00040549994 1e-6 483 88 0.00057929987 1e-6 489 88 0.0001738 1e-6 490 88 0.00034759985 1e-6 491 88 0.001738 1e-6 0 89 0.15343666 1e-6 2 89 0.0001314 1e-6 10 89 0.0053225979 1e-6 14 89 6.5699991e-05 1e-6 22 89 6.5699991e-05 1e-6 60 89 0.0025628 1e-6 86 89 0.0048626997 1e-6 87 89 0.00072279992 1e-6 88 89 0.083322346 1e-6 89 89 0.0011170998 1e-6 90 89 0.12938625 1e-6 104 89 0.012682296 1e-6 105 89 0.0085424967 1e-6 107 89 0.027795997 1e-6 108 89 0.00019709999 1e-6 109 89 0.0076225996 1e-6 114 89 6.5699991e-05 1e-6 115 89 0.00019709999 1e-6 116 89 0.0089367963 1e-6 117 89 0.0001314 1e-6 119 89 0.00098569994 1e-6 125 89 6.5699991e-05 1e-6 126 89 6.5699991e-05 1e-6 150 89 0.0001314 1e-6 172 89 6.5699991e-05 1e-6 189 89 0.0001314 1e-6 190 89 6.5699991e-05 1e-6 192 89 0.010645296 1e-6 193 89 0.0081481971 1e-6 194 89 0.00052569993 1e-6 198 89 0.065645874 1e-6 203 89 6.5699991e-05 1e-6 204 89 0.0001314 1e-6 206 89 0.00032859994 1e-6 214 89 0.0017084999 1e-6 223 89 0.00019709999 1e-6 229 89 0.00059139985 1e-6 230 89 0.00026279991 1e-6 234 89 0.0048626997 1e-6 237 89 0.00078849983 1e-6 240 89 0.00019709999 1e-6 241 89 0.0083453991 1e-6 242 89 0.00059139985 1e-6 253 89 6.5699991e-05 1e-6 272 89 0.00059139985 1e-6 279 89 0.00039429986 1e-6 300 89 0.0017741998 1e-6 301 89 0.0001314 1e-6 314 89 6.5699991e-05 1e-6 324 89 0.00026279991 1e-6 325 89 0.00019709999 1e-6 344 89 0.00045999978 1e-6 350 89 6.5699991e-05 1e-6 351 89 0.00032859994 1e-6 356 89 6.5699991e-05 1e-6 358 89 0.00026279991 1e-6 366 89 0.00091999979 1e-6 402 89 0.00026279991 1e-6 422 89 6.5699991e-05 1e-6 434 89 6.5699991e-05 1e-6 443 89 0.0045340993 1e-6 444 89 0.00019709999 1e-6 445 89 0.0056511983 1e-6 446 89 0.0006571 1e-6 447 89 0.0032199 1e-6 448 89 6.5699991e-05 1e-6 450 89 0.0019055998 1e-6 452 89 0.0095938966 1e-6 453 89 0.0018398999 1e-6 454 89 0.00052569993 1e-6 455 89 0.048429497 1e-6 456 89 0.00098569994 1e-6 457 89 0.0022341998 1e-6 458 89 0.0006571 1e-6 459 89 0.00052569993 1e-6 460 89 0.0019055998 1e-6 463 89 0.0058482997 1e-6 464 89 0.0001314 1e-6 465 89 0.0080167986 1e-6 467 89 0.0065054968 1e-6 468 89 0.017413598 1e-6 469 89 0.0025628 1e-6 470 89 0.0024312998 1e-6 471 89 0.0061111972 1e-6 472 89 6.5699991e-05 1e-6 473 89 6.5699991e-05 1e-6 478 89 0.0006571 1e-6 483 89 0.0017084999 1e-6 489 89 0.00026279991 1e-6 490 89 0.00026279991 1e-6 491 89 6.5699991e-05 1e-6 0 90 0.3519575 1e-6 1 90 0.00019929999 1e-6 2 90 0.00029369979 1e-6 5 90 0.00087069999 1e-6 6 90 0.047343798 1e-6 9 90 2.1e-05 1e-6 10 90 1.05e-05 1e-6 11 90 1.05e-05 1e-6 18 90 0.0049200989 1e-6 22 90 0.00028319983 1e-6 24 90 1.05e-05 1e-6 60 90 0.0015840998 1e-6 62 90 0.0013322998 1e-6 79 90 1.05e-05 1e-6 82 90 1.05e-05 1e-6 83 90 1.05e-05 1e-6 84 90 3.1499992e-05 1e-6 86 90 0.0024128 1e-6 87 90 0.0039653964 1e-6 88 90 0.011634 1e-6 90 90 0.098159969 1e-6 98 90 0.00055599981 1e-6 102 90 0.022502199 1e-6 103 90 2.1e-05 1e-6 104 90 0.00026229979 1e-6 105 90 2.1e-05 1e-6 107 90 0.0067034997 1e-6 108 90 1.05e-05 1e-6 109 90 2.1e-05 1e-6 111 90 0.00017829999 1e-6 113 90 2.1e-05 1e-6 114 90 6.2899999e-05 1e-6 115 90 0.00015739999 1e-6 116 90 2.1e-05 1e-6 117 90 0.00028319983 1e-6 118 90 0.0023184 1e-6 119 90 4.2e-05 1e-6 120 90 3.1499992e-05 1e-6 122 90 2.1e-05 1e-6 125 90 2.1e-05 1e-6 126 90 3.1499992e-05 1e-6 127 90 1.05e-05 1e-6 130 90 1.05e-05 1e-6 141 90 1.05e-05 1e-6 143 90 0.00030419999 1e-6 150 90 0.00015739999 1e-6 151 90 3.1499992e-05 1e-6 160 90 5.2499992e-05 1e-6 171 90 2.1e-05 1e-6 172 90 0.00013639999 1e-6 189 90 0.00011539999 1e-6 190 90 4.2e-05 1e-6 191 90 2.1e-05 1e-6 192 90 0.0013007999 1e-6 193 90 0.00037769997 1e-6 194 90 0.0012484 1e-6 196 90 1.05e-05 1e-6 197 90 1.05e-05 1e-6 198 90 0.047238898 1e-6 200 90 4.2e-05 1e-6 201 90 3.1499992e-05 1e-6 203 90 3.1499992e-05 1e-6 204 90 0.00028319983 1e-6 206 90 0.00013639999 1e-6 207 90 2.1e-05 1e-6 209 90 1.05e-05 1e-6 214 90 0.00048259995 1e-6 217 90 0.0002308 1e-6 218 90 2.1e-05 1e-6 223 90 0.00024129999 1e-6 228 90 7.3399991e-05 1e-6 229 90 0.0012063999 1e-6 230 90 0.00017829999 1e-6 234 90 0.0041751973 1e-6 237 90 0.0013007999 1e-6 240 90 0.00015739999 1e-6 241 90 0.0055389963 1e-6 242 90 0.00030419999 1e-6 248 90 1.05e-05 1e-6 250 90 1.05e-05 1e-6 251 90 1.05e-05 1e-6 252 90 2.1e-05 1e-6 253 90 0.0002098 1e-6 272 90 0.00030419999 1e-6 279 90 0.0001888 1e-6 283 90 1.05e-05 1e-6 300 90 0.0025072 1e-6 301 90 0.00032519992 1e-6 307 90 2.1e-05 1e-6 314 90 0.0001678 1e-6 315 90 0.00033569988 1e-6 317 90 0.00019929999 1e-6 322 90 1.05e-05 1e-6 324 90 0.0001049 1e-6 325 90 8.3899999e-05 1e-6 326 90 1.05e-05 1e-6 329 90 0.00096509978 1e-6 334 90 1.05e-05 1e-6 340 90 2.1e-05 1e-6 344 90 0.00044059986 1e-6 350 90 8.3899999e-05 1e-6 351 90 0.00083919987 1e-6 356 90 9.4399991e-05 1e-6 357 90 2.1e-05 1e-6 358 90 0.0001469 1e-6 366 90 0.00087069999 1e-6 384 90 3.1499992e-05 1e-6 387 90 2.1e-05 1e-6 394 90 8.3899999e-05 1e-6 397 90 2.1e-05 1e-6 402 90 0.00032519992 1e-6 419 90 1.05e-05 1e-6 422 90 4.2e-05 1e-6 423 90 1.05e-05 1e-6 425 90 1.05e-05 1e-6 430 90 1.05e-05 1e-6 431 90 1.05e-05 1e-6 432 90 1.05e-05 1e-6 433 90 2.1e-05 1e-6 434 90 2.1e-05 1e-6 442 90 2.1e-05 1e-6 443 90 0.0019302999 1e-6 444 90 0.0001678 1e-6 445 90 0.0083399974 1e-6 446 90 0.00034619984 1e-6 447 90 0.0011119999 1e-6 448 90 9.4399991e-05 1e-6 450 90 0.0017833998 1e-6 452 90 0.0056123994 1e-6 453 90 0.0013742999 1e-6 454 90 0.00038809981 1e-6 455 90 0.026121397 1e-6 456 90 0.00093369978 1e-6 457 90 0.0036821999 1e-6 458 90 0.00055599981 1e-6 459 90 0.00071339984 1e-6 460 90 0.0023079 1e-6 463 90 0.0089064986 1e-6 464 90 9.4399991e-05 1e-6 465 90 0.0013951999 1e-6 467 90 0.0063572973 1e-6 468 90 0.0058431998 1e-6 469 90 0.0034408998 1e-6 470 90 0.0020456999 1e-6 471 90 0.0050039999 1e-6 472 90 0.0001888 1e-6 473 90 5.2499992e-05 1e-6 476 90 0.00033569988 1e-6 477 90 6.2899999e-05 1e-6 478 90 0.00070289988 1e-6 483 90 0.0014161998 1e-6 489 90 0.00015739999 1e-6 490 90 0.00017829999 1e-6 491 90 4.2e-05 1e-6 0 91 0.0030756998 1e-6 3 91 0.00096119987 1e-6 9 91 0.00019219999 1e-6 11 91 0.00096119987 1e-6 17 91 0.37677819 1e-6 22 91 0.00019219999 1e-6 60 91 0.0024989999 1e-6 82 91 0.0049980991 1e-6 83 91 0.00038449978 1e-6 84 91 0.00038449978 1e-6 90 91 0.00076889992 1e-6 91 91 0.005190298 1e-6 93 91 0.00096119987 1e-6 94 91 0.0011533999 1e-6 96 91 0.00019219999 1e-6 98 91 0.00038449978 1e-6 103 91 0.00019219999 1e-6 104 91 0.00019219999 1e-6 107 91 0.00057669985 1e-6 114 91 0.00019219999 1e-6 115 91 0.00019219999 1e-6 116 91 0.00019219999 1e-6 118 91 0.00019219999 1e-6 120 91 0.00019219999 1e-6 122 91 0.0096116997 1e-6 124 91 0.00057669985 1e-6 125 91 0.00038449978 1e-6 150 91 0.00019219999 1e-6 192 91 0.00038449978 1e-6 193 91 0.00038449978 1e-6 194 91 0.00019219999 1e-6 198 91 0.0151865 1e-6 204 91 0.017493296 1e-6 206 91 0.00096119987 1e-6 214 91 0.00096119987 1e-6 223 91 0.00076889992 1e-6 229 91 0.00038449978 1e-6 230 91 0.00076889992 1e-6 233 91 0.00019219999 1e-6 234 91 0.0028835 1e-6 237 91 0.00019219999 1e-6 240 91 0.0013455998 1e-6 241 91 0.0086504966 1e-6 242 91 0.0023067999 1e-6 252 91 0.00019219999 1e-6 253 91 0.0019222999 1e-6 272 91 0.00057669985 1e-6 277 91 0.00019219999 1e-6 300 91 0.051326398 1e-6 314 91 0.00038449978 1e-6 340 91 0.00019219999 1e-6 344 91 0.00038449978 1e-6 356 91 0.00019219999 1e-6 358 91 0.00076889992 1e-6 366 91 0.00019219999 1e-6 402 91 0.00019219999 1e-6 443 91 0.0015379 1e-6 444 91 0.00019219999 1e-6 445 91 0.0042290986 1e-6 447 91 0.0098038986 1e-6 450 91 0.0021145998 1e-6 452 91 0.0036523999 1e-6 453 91 0.0013455998 1e-6 454 91 0.0017300998 1e-6 455 91 0.10976547 1e-6 456 91 0.00019219999 1e-6 457 91 0.0017300998 1e-6 458 91 0.0011533999 1e-6 459 91 0.00038449978 1e-6 460 91 0.0017300998 1e-6 463 91 0.0065358989 1e-6 464 91 0.00038449978 1e-6 465 91 0.0013455998 1e-6 467 91 0.0078815967 1e-6 468 91 0.012110699 1e-6 469 91 0.0019222999 1e-6 470 91 0.0019222999 1e-6 471 91 0.0021145998 1e-6 478 91 0.00076889992 1e-6 483 91 0.0011533999 1e-6 489 91 0.00076889992 1e-6 490 91 0.00038449978 1e-6 491 91 0.0021145998 1e-6 0 92 0.00061319978 1e-6 1 92 0.0018396999 1e-6 2 92 0.0011037998 1e-6 3 92 6.1299987e-05 1e-6 5 92 6.1299987e-05 1e-6 9 92 0.0063775964 1e-6 11 92 0.027472898 1e-6 13 92 0.0017170999 1e-6 14 92 0.00012259999 1e-6 16 92 0.00098119979 1e-6 17 92 0.0051511973 1e-6 22 92 0.00067459978 1e-6 60 92 0.0036793998 1e-6 82 92 0.066045284 1e-6 83 92 0.00079719978 1e-6 84 92 0.010424998 1e-6 85 92 0.00018399999 1e-6 88 92 0.0019009998 1e-6 90 92 0.00018399999 1e-6 92 92 0.00024529989 1e-6 93 92 0.0226283 1e-6 94 92 0.028024796 1e-6 95 92 0.00024529989 1e-6 98 92 0.0072974972 1e-6 103 92 0.0025755998 1e-6 104 92 0.0038019998 1e-6 107 92 0.014288299 1e-6 108 92 6.1299987e-05 1e-6 114 92 0.00012259999 1e-6 115 92 0.0038633998 1e-6 116 92 0.0005518999 1e-6 118 92 0.0036181 1e-6 119 92 0.0009198999 1e-6 122 92 0.0072974972 1e-6 124 92 0.013920397 1e-6 125 92 0.010976899 1e-6 126 92 6.1299987e-05 1e-6 150 92 6.1299987e-05 1e-6 169 92 6.1299987e-05 1e-6 172 92 0.00012259999 1e-6 189 92 6.1299987e-05 1e-6 190 92 6.1299987e-05 1e-6 192 92 0.00042929989 1e-6 193 92 0.00036789989 1e-6 194 92 6.1299987e-05 1e-6 198 92 0.016128 1e-6 203 92 6.1299987e-05 1e-6 204 92 0.0172932 1e-6 206 92 0.00018399999 1e-6 214 92 0.0036793998 1e-6 223 92 0.0012877998 1e-6 229 92 0.00079719978 1e-6 230 92 0.00042929989 1e-6 234 92 0.0026981998 1e-6 237 92 0.00018399999 1e-6 240 92 0.0014717998 1e-6 241 92 0.0082172975 1e-6 242 92 0.0011650999 1e-6 252 92 6.1299987e-05 1e-6 253 92 0.045317996 1e-6 272 92 0.0005518999 1e-6 277 92 6.1299987e-05 1e-6 300 92 0.11522657 1e-6 314 92 0.0109156 1e-6 325 92 6.1299987e-05 1e-6 344 92 0.00036789989 1e-6 356 92 6.1299987e-05 1e-6 358 92 0.00042929989 1e-6 366 92 0.0016556999 1e-6 387 92 6.1299987e-05 1e-6 402 92 0.00012259999 1e-6 414 92 6.1299987e-05 1e-6 422 92 6.1299987e-05 1e-6 434 92 6.1299987e-05 1e-6 443 92 0.0065002963 1e-6 444 92 0.00030659977 1e-6 445 92 0.027104899 1e-6 446 92 0.0011037998 1e-6 447 92 0.0031274999 1e-6 448 92 6.1299987e-05 1e-6 450 92 0.0015943998 1e-6 452 92 0.0029434999 1e-6 453 92 0.0021462999 1e-6 454 92 0.0012877998 1e-6 455 92 0.057092 1e-6 456 92 0.00018399999 1e-6 457 92 0.0013490999 1e-6 458 92 0.00049059978 1e-6 459 92 0.00024529989 1e-6 460 92 0.0016556999 1e-6 463 92 0.0075427964 1e-6 464 92 0.00018399999 1e-6 465 92 0.0054577999 1e-6 467 92 0.0082172975 1e-6 468 92 0.053473998 1e-6 469 92 0.0017170999 1e-6 470 92 0.0018396999 1e-6 471 92 0.0028208999 1e-6 473 92 6.1299987e-05 1e-6 477 92 6.1299987e-05 1e-6 478 92 0.00067459978 1e-6 483 92 0.0011037998 1e-6 489 92 0.00024529989 1e-6 490 92 0.0024528999 1e-6 491 92 0.00024529989 1e-6 0 93 0.0046974979 1e-6 1 93 0.0001777 1e-6 3 93 7.6199998e-05 1e-6 5 93 5.0799994e-05 1e-6 9 93 0.053576399 1e-6 10 93 2.539999e-05 1e-6 11 93 0.060482897 1e-6 12 93 0.00010159999 1e-6 13 93 0.00022849999 1e-6 14 93 0.00010159999 1e-6 16 93 0.015742797 1e-6 17 93 0.00096489978 1e-6 21 93 2.539999e-05 1e-6 22 93 0.0001777 1e-6 24 93 7.6199998e-05 1e-6 60 93 0.0026152998 1e-6 82 93 0.0047227964 1e-6 83 93 0.00012699999 1e-6 84 93 0.0012949998 1e-6 85 93 0.00022849999 1e-6 86 93 2.539999e-05 1e-6 87 93 0.00012699999 1e-6 88 93 0.00027929991 1e-6 90 93 0.0012695999 1e-6 93 93 0.0323998 1e-6 94 93 0.0075412989 1e-6 95 93 0.0021582998 1e-6 97 93 0.00020309999 1e-6 98 93 0.0018789999 1e-6 103 93 0.00012699999 1e-6 104 93 0.006804999 1e-6 105 93 0.00010159999 1e-6 107 93 0.025924899 1e-6 108 93 7.6199998e-05 1e-6 109 93 5.0799994e-05 1e-6 114 93 5.0799994e-05 1e-6 115 93 0.0018028 1e-6 116 93 0.0045450963 1e-6 117 93 2.539999e-05 1e-6 118 93 0.00033009984 1e-6 119 93 0.00010159999 1e-6 120 93 0.00012699999 1e-6 122 93 0.0035547998 1e-6 124 93 0.0006601999 1e-6 125 93 0.0029707998 1e-6 126 93 2.539999e-05 1e-6 150 93 0.00045699999 1e-6 151 93 2.539999e-05 1e-6 160 93 0.00048239995 1e-6 169 93 0.0010410999 1e-6 172 93 0.0020566999 1e-6 189 93 5.0799994e-05 1e-6 190 93 7.6199998e-05 1e-6 192 93 0.00091409986 1e-6 193 93 0.00045699999 1e-6 194 93 0.00010159999 1e-6 197 93 2.539999e-05 1e-6 198 93 0.015996698 1e-6 200 93 2.539999e-05 1e-6 203 93 5.0799994e-05 1e-6 204 93 0.018256597 1e-6 206 93 0.00063479994 1e-6 207 93 2.539999e-05 1e-6 214 93 0.0013203998 1e-6 218 93 5.0799994e-05 1e-6 223 93 0.00096489978 1e-6 224 93 5.0799994e-05 1e-6 228 93 2.539999e-05 1e-6 229 93 0.00083789998 1e-6 230 93 0.00053319987 1e-6 234 93 0.0027676998 1e-6 237 93 0.00025389995 1e-6 240 93 0.0014726999 1e-6 241 93 0.0060939975 1e-6 242 93 0.00093949982 1e-6 252 93 0.00010159999 1e-6 253 93 0.0412107 1e-6 272 93 0.00055859983 1e-6 277 93 5.0799994e-05 1e-6 279 93 7.6199998e-05 1e-6 300 93 0.12799937 1e-6 301 93 5.0799994e-05 1e-6 314 93 0.006982699 1e-6 325 93 0.0011171999 1e-6 340 93 2.539999e-05 1e-6 344 93 0.00048239995 1e-6 350 93 2.539999e-05 1e-6 351 93 0.0003554998 1e-6 356 93 7.6199998e-05 1e-6 358 93 0.00053319987 1e-6 366 93 0.0001523 1e-6 384 93 5.0799994e-05 1e-6 387 93 2.539999e-05 1e-6 394 93 2.539999e-05 1e-6 397 93 2.539999e-05 1e-6 402 93 0.00012699999 1e-6 414 93 0.00060939998 1e-6 422 93 7.6199998e-05 1e-6 430 93 2.539999e-05 1e-6 433 93 2.539999e-05 1e-6 434 93 2.539999e-05 1e-6 443 93 0.008937899 1e-6 444 93 0.00048239995 1e-6 445 93 0.055937797 1e-6 446 93 0.0022851999 1e-6 447 93 0.0031486 1e-6 448 93 5.0799994e-05 1e-6 450 93 0.0020058998 1e-6 452 93 0.0042911991 1e-6 453 93 0.0040626973 1e-6 454 93 0.0014726999 1e-6 455 93 0.074194372 1e-6 456 93 0.00030469988 1e-6 457 93 0.0013203998 1e-6 458 93 0.00063479994 1e-6 459 93 0.00038089999 1e-6 460 93 0.0017773998 1e-6 463 93 0.0087854974 1e-6 464 93 0.00022849999 1e-6 465 93 0.0040626973 1e-6 467 93 0.0091917999 1e-6 468 93 0.014092397 1e-6 469 93 0.0017519998 1e-6 470 93 0.0018535999 1e-6 471 93 0.0018789999 1e-6 473 93 5.0799994e-05 1e-6 477 93 2.539999e-05 1e-6 478 93 0.00076169986 1e-6 483 93 0.00081249978 1e-6 489 93 0.0001523 1e-6 490 93 0.0013964998 1e-6 491 93 0.00055859983 1e-6 3 94 0.00027609989 1e-6 5 94 0.0016562999 1e-6 6 94 0.00013799999 1e-6 9 94 0.017529298 1e-6 11 94 0.067632854 1e-6 13 94 0.00069009978 1e-6 14 94 0.00041409978 1e-6 16 94 0.0019323998 1e-6 17 94 0.00013799999 1e-6 18 94 0.011594199 1e-6 24 94 0.00027609989 1e-6 60 94 0.0019323998 1e-6 62 94 0.0012421999 1e-6 82 94 0.0011041998 1e-6 84 94 0.0005520999 1e-6 85 94 0.0011041998 1e-6 88 94 0.0030365998 1e-6 93 94 0.0005520999 1e-6 94 94 0.14837819 1e-6 95 94 0.0005520999 1e-6 97 94 0.00013799999 1e-6 98 94 0.0012421999 1e-6 104 94 0.0011041998 1e-6 105 94 0.00027609989 1e-6 107 94 0.0067632981 1e-6 114 94 0.00013799999 1e-6 115 94 0.00013799999 1e-6 116 94 0.0012421999 1e-6 118 94 0.00027609989 1e-6 122 94 0.0051069967 1e-6 125 94 0.0026224998 1e-6 153 94 0.00013799999 1e-6 154 94 0.00041409978 1e-6 172 94 0.0077294968 1e-6 192 94 0.010489997 1e-6 193 94 0.0093857981 1e-6 198 94 0.067080677 1e-6 204 94 0.015182897 1e-6 206 94 0.00027609989 1e-6 214 94 0.004140798 1e-6 215 94 0.019875798 1e-6 217 94 0.0044167973 1e-6 223 94 0.0015182998 1e-6 228 94 0.00013799999 1e-6 229 94 0.00069009978 1e-6 230 94 0.00041409978 1e-6 234 94 0.0063491985 1e-6 237 94 0.00069009978 1e-6 241 94 0.0092477985 1e-6 242 94 0.00041409978 1e-6 252 94 0.00013799999 1e-6 253 94 0.0042787977 1e-6 272 94 0.0005520999 1e-6 279 94 0.00069009978 1e-6 300 94 0.0016562999 1e-6 314 94 0.00082819979 1e-6 317 94 0.00013799999 1e-6 325 94 0.0099378973 1e-6 329 94 0.00082819979 1e-6 344 94 0.00027609989 1e-6 358 94 0.00041409978 1e-6 394 94 0.00013799999 1e-6 443 94 0.0097998977 1e-6 444 94 0.00013799999 1e-6 445 94 0.026362997 1e-6 446 94 0.0011041998 1e-6 447 94 0.0026224998 1e-6 448 94 0.00013799999 1e-6 450 94 0.0019323998 1e-6 452 94 0.0048308969 1e-6 453 94 0.0075913966 1e-6 454 94 0.0017942998 1e-6 455 94 0.065286398 1e-6 456 94 0.00096619991 1e-6 457 94 0.0019323998 1e-6 458 94 0.0005520999 1e-6 459 94 0.00027609989 1e-6 460 94 0.0022083998 1e-6 463 94 0.0066252984 1e-6 464 94 0.00041409978 1e-6 465 94 0.00096619991 1e-6 467 94 0.0267771 1e-6 468 94 0.033264298 1e-6 469 94 0.0017942998 1e-6 470 94 0.0017942998 1e-6 471 94 0.0017942998 1e-6 478 94 0.0005520999 1e-6 483 94 0.00041409978 1e-6 490 94 0.0016562999 1e-6 491 94 0.0022083998 1e-6 0 95 0.018136699 1e-6 3 95 0.00051329983 1e-6 5 95 8.5599997e-05 1e-6 9 95 0.0129181 1e-6 10 95 0.00017109999 1e-6 11 95 0.035332397 1e-6 12 95 0.00034219981 1e-6 13 95 0.0106938 1e-6 14 95 0.0021388 1e-6 16 95 0.00085549988 1e-6 17 95 0.00051329983 1e-6 22 95 0.00025669998 1e-6 60 95 0.0020531998 1e-6 82 95 0.0097527988 1e-6 83 95 8.5599997e-05 1e-6 84 95 0.0004278 1e-6 85 95 0.028402798 1e-6 86 95 8.5599997e-05 1e-6 87 95 0.014543597 1e-6 88 95 0.00059889979 1e-6 90 95 0.0053896978 1e-6 93 95 0.0022242998 1e-6 94 95 0.0015399 1e-6 95 95 0.016254596 1e-6 97 95 8.5599997e-05 1e-6 98 95 0.0011121999 1e-6 103 95 8.5599997e-05 1e-6 104 95 0.0073572993 1e-6 105 95 0.00025669998 1e-6 106 95 8.5599997e-05 1e-6 107 95 0.0269484 1e-6 108 95 0.00034219981 1e-6 109 95 0.00017109999 1e-6 112 95 8.5599997e-05 1e-6 114 95 0.00017109999 1e-6 115 95 0.00025669998 1e-6 116 95 0.00094109983 1e-6 117 95 0.0012832999 1e-6 118 95 0.0091538988 1e-6 119 95 0.0023953998 1e-6 122 95 0.11925739 1e-6 124 95 0.00034219981 1e-6 125 95 0.016938999 1e-6 126 95 8.5599997e-05 1e-6 130 95 8.5599997e-05 1e-6 150 95 8.5599997e-05 1e-6 151 95 8.5599997e-05 1e-6 169 95 8.5599997e-05 1e-6 172 95 8.5599997e-05 1e-6 189 95 8.5599997e-05 1e-6 190 95 8.5599997e-05 1e-6 192 95 0.0023098998 1e-6 193 95 0.010266099 1e-6 194 95 8.5599997e-05 1e-6 198 95 0.035161298 1e-6 204 95 0.0180512 1e-6 206 95 0.00017109999 1e-6 214 95 0.0014543999 1e-6 223 95 0.0014543999 1e-6 229 95 0.00085549988 1e-6 230 95 0.0004278 1e-6 231 95 8.5599997e-05 1e-6 234 95 0.001711 1e-6 237 95 0.00025669998 1e-6 240 95 8.5599997e-05 1e-6 241 95 0.016083498 1e-6 242 95 0.00094109983 1e-6 252 95 8.5599997e-05 1e-6 253 95 0.094875455 1e-6 272 95 0.00068439986 1e-6 277 95 8.5599997e-05 1e-6 279 95 0.0011976999 1e-6 300 95 0.013003699 1e-6 301 95 8.5599997e-05 1e-6 314 95 0.018906698 1e-6 317 95 8.5599997e-05 1e-6 325 95 0.00068439986 1e-6 326 95 8.5599997e-05 1e-6 340 95 8.5599997e-05 1e-6 344 95 0.00059889979 1e-6 350 95 8.5599997e-05 1e-6 351 95 8.5599997e-05 1e-6 356 95 8.5599997e-05 1e-6 358 95 0.0004278 1e-6 366 95 0.00017109999 1e-6 387 95 8.5599997e-05 1e-6 402 95 8.5599997e-05 1e-6 422 95 8.5599997e-05 1e-6 442 95 8.5599997e-05 1e-6 443 95 0.0082127973 1e-6 444 95 0.0004278 1e-6 445 95 0.0376422 1e-6 446 95 0.0011976999 1e-6 447 95 0.0032509 1e-6 450 95 0.0015399 1e-6 452 95 0.003422 1e-6 453 95 0.0021388 1e-6 454 95 0.004619699 1e-6 455 95 0.066472769 1e-6 456 95 8.5599997e-05 1e-6 457 95 0.0014543999 1e-6 458 95 0.00068439986 1e-6 459 95 0.00051329983 1e-6 460 95 0.0017965999 1e-6 463 95 0.012233697 1e-6 464 95 0.00025669998 1e-6 465 95 0.0036787 1e-6 467 95 0.0062451996 1e-6 468 95 0.065788269 1e-6 469 95 0.0020531998 1e-6 470 95 0.0022242998 1e-6 471 95 0.0016254999 1e-6 473 95 8.5599997e-05 1e-6 478 95 0.00051329983 1e-6 483 95 0.00076999981 1e-6 489 95 8.5599997e-05 1e-6 490 95 0.003422 1e-6 491 95 0.00025669998 1e-6 3 96 0.0285137 1e-6 9 96 0.0010110999 1e-6 11 96 0.0007077998 1e-6 17 96 0.49484324 1e-6 22 96 0.0002022 1e-6 60 96 0.0070778988 1e-6 82 96 0.00050559989 1e-6 84 96 0.00030329986 1e-6 91 96 0.0001011 1e-6 96 96 0.0077855997 1e-6 97 96 0.0001011 1e-6 98 96 0.0001011 1e-6 107 96 0.0001011 1e-6 114 96 0.0001011 1e-6 120 96 0.00050559989 1e-6 122 96 0.0059655979 1e-6 125 96 0.0001011 1e-6 126 96 0.0001011 1e-6 190 96 0.0001011 1e-6 192 96 0.0029322999 1e-6 193 96 0.013346799 1e-6 194 96 0.0001011 1e-6 198 96 0.021031298 1e-6 204 96 0.021132499 1e-6 206 96 0.0002022 1e-6 214 96 0.0015166998 1e-6 223 96 0.0007077998 1e-6 229 96 0.00040439982 1e-6 230 96 0.00060669985 1e-6 234 96 0.0028310998 1e-6 237 96 0.00030329986 1e-6 241 96 0.0038422998 1e-6 242 96 0.0045500994 1e-6 252 96 0.0001011 1e-6 272 96 0.00040439982 1e-6 277 96 0.0001011 1e-6 279 96 0.00040439982 1e-6 300 96 0.004752297 1e-6 301 96 0.0024267 1e-6 325 96 0.0035388998 1e-6 344 96 0.00050559989 1e-6 356 96 0.0001011 1e-6 358 96 0.00060669985 1e-6 366 96 0.0069766976 1e-6 384 96 0.0001011 1e-6 402 96 0.0001011 1e-6 422 96 0.0001011 1e-6 443 96 0.0026288999 1e-6 444 96 0.0030333998 1e-6 445 96 0.0052577965 1e-6 446 96 0.0002022 1e-6 447 96 0.0075833984 1e-6 450 96 0.0023255998 1e-6 452 96 0.0049544983 1e-6 453 96 0.00030329986 1e-6 454 96 0.00090999994 1e-6 455 96 0.12275028 1e-6 456 96 0.00030329986 1e-6 457 96 0.0012132998 1e-6 458 96 0.00080889999 1e-6 459 96 0.0002022 1e-6 460 96 0.0021233999 1e-6 463 96 0.0079878978 1e-6 464 96 0.00030329986 1e-6 465 96 0.0010110999 1e-6 467 96 0.0089989975 1e-6 468 96 0.0078867972 1e-6 469 96 0.0019210998 1e-6 470 96 0.0022244998 1e-6 471 96 0.0019210998 1e-6 473 96 0.0001011 1e-6 478 96 0.00080889999 1e-6 483 96 0.00060669985 1e-6 489 96 0.0001011 1e-6 490 96 0.0002022 1e-6 491 96 0.0012132998 1e-6 0 97 0.00035029999 1e-6 1 97 0.0016347999 1e-6 2 97 0.0019267998 1e-6 3 97 0.00011679999 1e-6 5 97 5.8399994e-05 1e-6 6 97 5.8399994e-05 1e-6 9 97 0.069860458 1e-6 10 97 0.00011679999 1e-6 11 97 0.049862798 1e-6 13 97 2.919999e-05 1e-6 14 97 8.7599998e-05 1e-6 16 97 0.00052549993 1e-6 17 97 0.0025106999 1e-6 24 97 2.919999e-05 1e-6 60 97 0.0020436 1e-6 82 97 0.038214497 1e-6 83 97 0.0036199999 1e-6 84 97 0.0235301 1e-6 85 97 8.7599998e-05 1e-6 86 97 2.919999e-05 1e-6 87 97 2.919999e-05 1e-6 88 97 0.00014599999 1e-6 90 97 8.7599998e-05 1e-6 93 97 0.0012552999 1e-6 94 97 0.00075899996 1e-6 95 97 8.7599998e-05 1e-6 96 97 2.919999e-05 1e-6 97 97 0.0060430989 1e-6 98 97 0.010480497 1e-6 100 97 8.7599998e-05 1e-6 102 97 2.919999e-05 1e-6 103 97 2.919999e-05 1e-6 104 97 0.00037949998 1e-6 105 97 0.0023939 1e-6 107 97 0.011502299 1e-6 108 97 0.0001752 1e-6 109 97 0.0011676999 1e-6 114 97 0.00011679999 1e-6 115 97 8.7599998e-05 1e-6 116 97 0.0022186998 1e-6 118 97 0.00011679999 1e-6 119 97 2.919999e-05 1e-6 120 97 5.8399994e-05 1e-6 122 97 0.017662197 1e-6 124 97 0.00011679999 1e-6 125 97 0.0057219975 1e-6 126 97 5.8399994e-05 1e-6 150 97 0.00040869997 1e-6 151 97 2.919999e-05 1e-6 160 97 2.919999e-05 1e-6 169 97 2.919999e-05 1e-6 172 97 5.8399994e-05 1e-6 189 97 5.8399994e-05 1e-6 190 97 8.7599998e-05 1e-6 192 97 0.014480099 1e-6 193 97 0.010714099 1e-6 194 97 8.7599998e-05 1e-6 197 97 2.919999e-05 1e-6 198 97 0.058650099 1e-6 200 97 2.919999e-05 1e-6 203 97 5.8399994e-05 1e-6 204 97 0.0047001988 1e-6 206 97 0.00011679999 1e-6 207 97 2.919999e-05 1e-6 214 97 0.0097214989 1e-6 218 97 2.919999e-05 1e-6 223 97 0.0012844999 1e-6 224 97 2.919999e-05 1e-6 228 97 2.919999e-05 1e-6 229 97 0.00037949998 1e-6 230 97 0.00058389991 1e-6 234 97 0.0028025999 1e-6 237 97 0.00026269979 1e-6 240 97 0.00043789996 1e-6 241 97 0.026974998 1e-6 242 97 0.00096339989 1e-6 252 97 8.7599998e-05 1e-6 253 97 0.0020436 1e-6 272 97 0.00081739994 1e-6 277 97 2.919999e-05 1e-6 300 97 0.019326199 1e-6 301 97 0.00090499991 1e-6 314 97 0.00035029999 1e-6 325 97 0.034156598 1e-6 340 97 0.00099259987 1e-6 344 97 0.0012844999 1e-6 350 97 0.00081739994 1e-6 351 97 0.0012260999 1e-6 356 97 5.8399994e-05 1e-6 358 97 0.00058389991 1e-6 366 97 0.0021894998 1e-6 384 97 2.919999e-05 1e-6 387 97 5.8399994e-05 1e-6 394 97 2.919999e-05 1e-6 397 97 2.919999e-05 1e-6 402 97 0.00011679999 1e-6 414 97 2.919999e-05 1e-6 422 97 8.7599998e-05 1e-6 433 97 2.919999e-05 1e-6 434 97 2.919999e-05 1e-6 443 97 0.0088456981 1e-6 444 97 0.00087579992 1e-6 445 97 0.057073597 1e-6 446 97 0.0024522999 1e-6 447 97 0.0038828 1e-6 448 97 2.919999e-05 1e-6 450 97 0.0021018998 1e-6 452 97 0.0071815997 1e-6 453 97 0.0032988999 1e-6 454 97 0.0028901999 1e-6 455 97 0.076691747 1e-6 456 97 0.00029189978 1e-6 457 97 0.0013428999 1e-6 458 97 0.00075899996 1e-6 459 97 0.0013136999 1e-6 460 97 0.0017807998 1e-6 463 97 0.0060430989 1e-6 464 97 0.0011968999 1e-6 465 97 0.0023355 1e-6 467 97 0.0078238994 1e-6 468 97 0.025310896 1e-6 469 97 0.0021018998 1e-6 470 97 0.0022186998 1e-6 471 97 0.002715 1e-6 472 97 0.00029189978 1e-6 473 97 5.8399994e-05 1e-6 477 97 5.8399994e-05 1e-6 478 97 0.00081739994 1e-6 483 97 0.0006130999 1e-6 489 97 0.0002044 1e-6 490 97 0.00037949998 1e-6 491 97 0.00035029999 1e-6 1 98 0.0003554998 1e-6 3 98 4.4399989e-05 1e-6 4 98 4.4399989e-05 1e-6 5 98 0.39633876 1e-6 6 98 0.053274699 1e-6 9 98 0.00026659993 1e-6 10 98 0.00022219999 1e-6 11 98 0.00031099981 1e-6 13 98 8.8899993e-05 1e-6 14 98 0.0059983991 1e-6 16 98 8.8899993e-05 1e-6 22 98 8.8899993e-05 1e-6 25 98 4.4399989e-05 1e-6 60 98 0.0023104998 1e-6 82 98 0.00044429977 1e-6 84 98 8.8899993e-05 1e-6 85 98 0.00044429977 1e-6 88 98 0.0026659998 1e-6 91 98 4.4399989e-05 1e-6 93 98 0.0001333 1e-6 94 98 4.4399989e-05 1e-6 98 98 0.018750597 1e-6 99 98 4.4399989e-05 1e-6 102 98 0.0033324 1e-6 103 98 0.00062209996 1e-6 104 98 0.0018661998 1e-6 105 98 4.4399989e-05 1e-6 107 98 0.010086197 1e-6 108 98 4.4399989e-05 1e-6 109 98 0.00062209996 1e-6 111 98 4.4399989e-05 1e-6 114 98 0.0001333 1e-6 116 98 0.0027547998 1e-6 117 98 0.00026659993 1e-6 118 98 0.005865097 1e-6 119 98 4.4399989e-05 1e-6 120 98 0.00097749988 1e-6 122 98 0.0034212999 1e-6 126 98 4.4399989e-05 1e-6 143 98 0.0011996999 1e-6 153 98 0.0052874982 1e-6 189 98 4.4399989e-05 1e-6 190 98 4.4399989e-05 1e-6 191 98 4.4399989e-05 1e-6 192 98 0.008442197 1e-6 193 98 0.017328698 1e-6 194 98 4.4399989e-05 1e-6 198 98 0.0039545 1e-6 204 98 8.8899993e-05 1e-6 206 98 0.00066649984 1e-6 214 98 0.0010664 1e-6 215 98 8.8899993e-05 1e-6 223 98 0.00053319987 1e-6 228 98 0.0025770999 1e-6 229 98 0.00044429977 1e-6 230 98 0.0001777 1e-6 234 98 0.0011996999 1e-6 237 98 0.0001333 1e-6 241 98 0.00026659993 1e-6 242 98 0.0023548999 1e-6 252 98 4.4399989e-05 1e-6 253 98 0.00026659993 1e-6 272 98 0.00026659993 1e-6 300 98 0.00084419991 1e-6 314 98 4.4399989e-05 1e-6 325 98 8.8899993e-05 1e-6 344 98 0.00053319987 1e-6 356 98 8.8899993e-05 1e-6 358 98 0.0001777 1e-6 384 98 4.4399989e-05 1e-6 387 98 4.4399989e-05 1e-6 402 98 8.8899993e-05 1e-6 414 98 0.0003998999 1e-6 422 98 4.4399989e-05 1e-6 430 98 4.4399989e-05 1e-6 443 98 0.0379899 1e-6 444 98 0.0022660999 1e-6 445 98 0.011730198 1e-6 446 98 0.004309997 1e-6 447 98 0.0060872994 1e-6 450 98 0.0017328998 1e-6 452 98 0.0065315999 1e-6 453 98 0.00084419991 1e-6 454 98 0.00022219999 1e-6 455 98 0.035634898 1e-6 456 98 0.0001777 1e-6 457 98 0.0018216998 1e-6 458 98 4.4399989e-05 1e-6 459 98 0.0004888 1e-6 460 98 0.0024438 1e-6 463 98 0.0025770999 1e-6 464 98 0.0022215999 1e-6 465 98 0.00044429977 1e-6 467 98 0.0078200996 1e-6 468 98 0.028036997 1e-6 469 98 0.0023993999 1e-6 470 98 0.0027547998 1e-6 471 98 0.0012884999 1e-6 473 98 8.8899993e-05 1e-6 477 98 4.4399989e-05 1e-6 478 98 0.00031099981 1e-6 483 98 0.00062209996 1e-6 489 98 4.4399989e-05 1e-6 490 98 0.00031099981 1e-6 491 98 0.00097749988 1e-6 0 99 0.00053259986 1e-6 3 99 0.00063909986 1e-6 5 99 0.081699967 1e-6 6 99 0.042181499 1e-6 9 99 0.00053259986 1e-6 10 99 0.0095866993 1e-6 11 99 0.0011717 1e-6 13 99 0.00074559986 1e-6 14 99 0.00074559986 1e-6 17 99 0.00031959987 1e-6 22 99 0.0001065 1e-6 60 99 0.0019172998 1e-6 82 99 0.0056454986 1e-6 84 99 0.0012782 1e-6 85 99 0.00042609987 1e-6 88 99 0.0063910969 1e-6 90 99 0.0001065 1e-6 91 99 0.00031959987 1e-6 93 99 0.00042609987 1e-6 94 99 0.00063909986 1e-6 98 99 0.023753699 1e-6 99 99 0.0014912998 1e-6 101 99 0.00021299999 1e-6 102 99 0.00085219997 1e-6 103 99 0.021623299 1e-6 104 99 0.0021303999 1e-6 105 99 0.00021299999 1e-6 106 99 0.0001065 1e-6 107 99 0.043566298 1e-6 108 99 0.00074559986 1e-6 109 99 0.00063909986 1e-6 114 99 0.00021299999 1e-6 115 99 0.00021299999 1e-6 118 99 0.0028759998 1e-6 120 99 0.0017042998 1e-6 122 99 0.0063910969 1e-6 124 99 0.00031959987 1e-6 125 99 0.00031959987 1e-6 126 99 0.0001065 1e-6 143 99 0.00053259986 1e-6 153 99 0.00042609987 1e-6 192 99 0.016510397 1e-6 193 99 0.009480197 1e-6 194 99 0.0001065 1e-6 198 99 0.0498509 1e-6 204 99 0.00074559986 1e-6 206 99 0.00021299999 1e-6 214 99 0.00095869997 1e-6 223 99 0.00053259986 1e-6 228 99 0.0060715973 1e-6 229 99 0.00021299999 1e-6 230 99 0.00031959987 1e-6 234 99 0.0025564998 1e-6 237 99 0.00031959987 1e-6 241 99 0.010545399 1e-6 242 99 0.0025564998 1e-6 252 99 0.0001065 1e-6 253 99 0.0013846999 1e-6 272 99 0.00042609987 1e-6 277 99 0.00021299999 1e-6 300 99 0.0087345988 1e-6 314 99 0.00031959987 1e-6 325 99 0.0038347 1e-6 344 99 0.00031959987 1e-6 356 99 0.0001065 1e-6 358 99 0.00031959987 1e-6 387 99 0.0001065 1e-6 402 99 0.0001065 1e-6 443 99 0.019279897 1e-6 444 99 0.0014912998 1e-6 445 99 0.012782298 1e-6 446 99 0.0020238999 1e-6 447 99 0.0054324977 1e-6 450 99 0.0015977998 1e-6 452 99 0.0047933981 1e-6 453 99 0.0025564998 1e-6 454 99 0.00063909986 1e-6 455 99 0.037707698 1e-6 456 99 0.00031959987 1e-6 457 99 0.0025564998 1e-6 458 99 0.00021299999 1e-6 459 99 0.0033020999 1e-6 460 99 0.0026629998 1e-6 463 99 0.0027694998 1e-6 464 99 0.00042609987 1e-6 465 99 0.004473798 1e-6 467 99 0.0046867989 1e-6 468 99 0.097358286 1e-6 469 99 0.0031955999 1e-6 470 99 0.0033020999 1e-6 471 99 0.0021303999 1e-6 473 99 0.0001065 1e-6 478 99 0.00042609987 1e-6 483 99 0.00063909986 1e-6 489 99 0.0001065 1e-6 490 99 0.0013846999 1e-6 491 99 0.00063909986 1e-6 0 100 0.0015001998 1e-6 3 100 0.00024999981 1e-6 5 100 0.13676709 1e-6 6 100 0.015126899 1e-6 9 100 0.00062509999 1e-6 10 100 0.0012502 1e-6 11 100 0.0015001998 1e-6 13 100 0.00037499983 1e-6 14 100 0.00050009997 1e-6 17 100 0.00012499999 1e-6 60 100 0.0018751998 1e-6 82 100 0.0028753998 1e-6 84 100 0.00050009997 1e-6 85 100 0.0041254982 1e-6 88 100 0.025878198 1e-6 90 100 0.00037499983 1e-6 93 100 0.00062509999 1e-6 94 100 0.00087509979 1e-6 98 100 0.074884355 1e-6 99 100 0.00024999981 1e-6 102 100 0.00024999981 1e-6 103 100 0.0031253998 1e-6 104 100 0.013626698 1e-6 105 100 0.00024999981 1e-6 107 100 0.057257198 1e-6 108 100 0.0050005987 1e-6 109 100 0.0056256987 1e-6 114 100 0.00024999981 1e-6 115 100 0.00012499999 1e-6 116 100 0.00062509999 1e-6 118 100 0.0080009997 1e-6 120 100 0.00037499983 1e-6 122 100 0.0221278 1e-6 124 100 0.00050009997 1e-6 125 100 0.00062509999 1e-6 126 100 0.00012499999 1e-6 143 100 0.00037499983 1e-6 153 100 0.0011250998 1e-6 192 100 0.012501597 1e-6 193 100 0.013751697 1e-6 198 100 0.058382299 1e-6 204 100 0.00062509999 1e-6 206 100 0.00037499983 1e-6 214 100 0.0038754998 1e-6 223 100 0.00062509999 1e-6 228 100 0.0011250998 1e-6 229 100 0.00037499983 1e-6 230 100 0.00024999981 1e-6 231 100 0.00024999981 1e-6 232 100 0.00012499999 1e-6 234 100 0.0020003 1e-6 237 100 0.00024999981 1e-6 241 100 0.012126498 1e-6 242 100 0.0025002998 1e-6 252 100 0.00012499999 1e-6 253 100 0.0016251998 1e-6 272 100 0.00050009997 1e-6 300 100 0.0071258992 1e-6 314 100 0.00050009997 1e-6 325 100 0.0032503998 1e-6 344 100 0.00050009997 1e-6 356 100 0.00012499999 1e-6 358 100 0.00024999981 1e-6 387 100 0.00012499999 1e-6 402 100 0.00012499999 1e-6 414 100 0.00012499999 1e-6 443 100 0.021252699 1e-6 444 100 0.00075009977 1e-6 445 100 0.013376698 1e-6 446 100 0.0017501998 1e-6 447 100 0.0061257966 1e-6 450 100 0.0015001998 1e-6 452 100 0.0042504966 1e-6 453 100 0.0011250998 1e-6 454 100 0.00050009997 1e-6 455 100 0.0426303 1e-6 456 100 0.00024999981 1e-6 457 100 0.0022502998 1e-6 458 100 0.00012499999 1e-6 459 100 0.0010000998 1e-6 460 100 0.0027502999 1e-6 463 100 0.0053756982 1e-6 464 100 0.00075009977 1e-6 465 100 0.0056256987 1e-6 467 100 0.0052506998 1e-6 468 100 0.030628797 1e-6 469 100 0.0040004998 1e-6 470 100 0.0042504966 1e-6 471 100 0.0018751998 1e-6 473 100 0.00012499999 1e-6 478 100 0.00050009997 1e-6 483 100 0.00075009977 1e-6 490 100 0.0012502 1e-6 491 100 0.00024999981 1e-6 1 101 0.00034169992 1e-6 2 101 0.0030756998 1e-6 3 101 0.0053994991 1e-6 5 101 0.005331099 1e-6 6 101 0.036839597 1e-6 9 101 0.00047839992 1e-6 11 101 0.00054679997 1e-6 12 101 6.8299996e-05 1e-6 13 101 0.0092952996 1e-6 16 101 6.8299996e-05 1e-6 17 101 0.012165897 1e-6 22 101 6.8299996e-05 1e-6 24 101 6.8299996e-05 1e-6 25 101 0.00027339999 1e-6 60 101 0.0017769998 1e-6 82 101 0.11195409 1e-6 84 101 0.027407598 1e-6 85 101 6.8299996e-05 1e-6 88 101 0.0021187998 1e-6 91 101 0.0071081966 1e-6 93 101 0.00013669999 1e-6 94 101 6.8299996e-05 1e-6 98 101 0.0134646 1e-6 101 101 0.0041691996 1e-6 102 101 0.020914499 1e-6 103 101 0.0018453998 1e-6 104 101 0.0056728981 1e-6 107 101 0.0095686987 1e-6 111 101 0.00047839992 1e-6 112 101 0.00034169992 1e-6 114 101 0.00082019996 1e-6 116 101 6.8299996e-05 1e-6 117 101 0.0020503998 1e-6 118 101 0.049073897 1e-6 119 101 0.00034169992 1e-6 120 101 0.045178 1e-6 122 101 0.0007517999 1e-6 125 101 0.00041009998 1e-6 143 101 0.00082019996 1e-6 153 101 0.00041009998 1e-6 189 101 6.8299996e-05 1e-6 192 101 0.00013669999 1e-6 193 101 0.018043898 1e-6 194 101 6.8299996e-05 1e-6 198 101 0.023306698 1e-6 204 101 0.0069714971 1e-6 206 101 0.00013669999 1e-6 214 101 0.0047843978 1e-6 215 101 0.0013669999 1e-6 223 101 0.0013669999 1e-6 228 101 0.013942998 1e-6 229 101 0.00034169992 1e-6 230 101 0.00027339999 1e-6 231 101 0.00013669999 1e-6 232 101 6.8299996e-05 1e-6 234 101 0.0019820998 1e-6 237 101 0.00020499999 1e-6 240 101 6.8299996e-05 1e-6 241 101 0.0037590999 1e-6 242 101 0.0033490998 1e-6 252 101 6.8299996e-05 1e-6 253 101 0.00034169992 1e-6 272 101 0.00082019996 1e-6 277 101 0.00013669999 1e-6 300 101 0.06855309 1e-6 314 101 6.8299996e-05 1e-6 325 101 0.00013669999 1e-6 344 101 0.00034169992 1e-6 356 101 6.8299996e-05 1e-6 358 101 0.00020499999 1e-6 402 101 6.8299996e-05 1e-6 422 101 6.8299996e-05 1e-6 443 101 0.010115497 1e-6 444 101 0.0010935999 1e-6 445 101 0.012917798 1e-6 446 101 0.0012302999 1e-6 447 101 0.0038274999 1e-6 450 101 0.0013669999 1e-6 452 101 0.0048526973 1e-6 453 101 0.0033490998 1e-6 454 101 0.0008884999 1e-6 455 101 0.054063298 1e-6 456 101 0.00020499999 1e-6 457 101 0.0018453998 1e-6 458 101 0.00054679997 1e-6 459 101 0.0007517999 1e-6 460 101 0.0025288998 1e-6 463 101 0.0038274999 1e-6 464 101 0.00013669999 1e-6 465 101 0.00041009998 1e-6 467 101 0.0052627996 1e-6 468 101 0.058300897 1e-6 469 101 0.00068349997 1e-6 470 101 0.00068349997 1e-6 471 101 0.0015719999 1e-6 478 101 0.00034169992 1e-6 483 101 0.00068349997 1e-6 489 101 6.8299996e-05 1e-6 490 101 6.8299996e-05 1e-6 491 101 0.00034169992 1e-6 0 102 8.4199986e-05 1e-6 1 102 0.00060659996 1e-6 2 102 0.0006571 1e-6 3 102 3.3699995e-05 1e-6 4 102 0.00021899999 1e-6 5 102 0.010412797 1e-6 6 102 0.12756526 1e-6 9 102 6.7399989e-05 1e-6 10 102 1.6799997e-05 1e-6 11 102 5.0499992e-05 1e-6 13 102 6.7399989e-05 1e-6 14 102 0.011322699 1e-6 17 102 3.3699995e-05 1e-6 22 102 8.4199986e-05 1e-6 24 102 0.00084249978 1e-6 25 102 0.0006571 1e-6 60 102 0.0013647999 1e-6 82 102 0.00092669996 1e-6 84 102 0.00025269995 1e-6 88 102 0.0071608983 1e-6 90 102 1.6799997e-05 1e-6 91 102 5.0499992e-05 1e-6 93 102 0.00016849999 1e-6 98 102 0.040438097 1e-6 101 102 3.3699995e-05 1e-6 102 102 0.19804549 1e-6 103 102 0.0059308968 1e-6 104 102 0.012620099 1e-6 107 102 0.015534997 1e-6 108 102 1.6799997e-05 1e-6 111 102 0.0031339999 1e-6 112 102 0.0010277999 1e-6 114 102 0.0017859999 1e-6 116 102 1.6799997e-05 1e-6 117 102 0.016882896 1e-6 118 102 0.12475145 1e-6 119 102 0.0031675999 1e-6 120 102 0.050648697 1e-6 122 102 6.7399989e-05 1e-6 125 102 0.00047179987 1e-6 126 102 1.6799997e-05 1e-6 143 102 0.0014489999 1e-6 151 102 1.6799997e-05 1e-6 153 102 0.0018533999 1e-6 189 102 5.0499992e-05 1e-6 190 102 1.6799997e-05 1e-6 192 102 0.00013479999 1e-6 193 102 0.0064194985 1e-6 194 102 1.6799997e-05 1e-6 198 102 0.00050549977 1e-6 200 102 1.6799997e-05 1e-6 203 102 1.6799997e-05 1e-6 204 102 6.7399989e-05 1e-6 206 102 5.0499992e-05 1e-6 207 102 1.6799997e-05 1e-6 214 102 0.008744698 1e-6 215 102 0.0059140995 1e-6 217 102 1.6799997e-05 1e-6 218 102 1.6799997e-05 1e-6 223 102 0.0013142 1e-6 228 102 0.033058099 1e-6 229 102 0.00038749981 1e-6 230 102 0.0001853 1e-6 234 102 0.0016343999 1e-6 237 102 0.0001853 1e-6 241 102 0.0001179 1e-6 242 102 0.00084249978 1e-6 252 102 5.0499992e-05 1e-6 253 102 1.6799997e-05 1e-6 272 102 0.00023589999 1e-6 277 102 3.3699995e-05 1e-6 300 102 0.00053919991 1e-6 301 102 1.6799997e-05 1e-6 324 102 8.4199986e-05 1e-6 325 102 3.3699995e-05 1e-6 344 102 0.00043809996 1e-6 356 102 6.7399989e-05 1e-6 358 102 0.0001853 1e-6 384 102 1.6799997e-05 1e-6 387 102 1.6799997e-05 1e-6 394 102 1.6799997e-05 1e-6 397 102 1.6799997e-05 1e-6 402 102 8.4199986e-05 1e-6 422 102 1.6799997e-05 1e-6 433 102 1.6799997e-05 1e-6 434 102 1.6799997e-05 1e-6 443 102 0.030210599 1e-6 444 102 0.00089299981 1e-6 445 102 0.013513099 1e-6 446 102 0.0031507998 1e-6 447 102 0.00094359997 1e-6 448 102 3.3699995e-05 1e-6 450 102 0.00094359997 1e-6 452 102 0.0041280985 1e-6 453 102 0.0027126998 1e-6 454 102 0.0001011 1e-6 455 102 0.063875258 1e-6 456 102 0.0002022 1e-6 457 102 0.0022745999 1e-6 458 102 0.00025269995 1e-6 459 102 0.0012973999 1e-6 460 102 0.0020050998 1e-6 463 102 0.0025104999 1e-6 464 102 0.00015159999 1e-6 465 102 0.00032009999 1e-6 467 102 0.006924998 1e-6 468 102 0.0045323968 1e-6 469 102 0.00074139982 1e-6 470 102 0.00072449981 1e-6 471 102 0.0016848999 1e-6 473 102 1.6799997e-05 1e-6 477 102 3.3699995e-05 1e-6 478 102 0.00026959996 1e-6 483 102 0.00092669996 1e-6 489 102 5.0499992e-05 1e-6 490 102 6.7399989e-05 1e-6 491 102 0.00025269995 1e-6 5 103 0.58880275 1e-6 60 103 0.0017541 1e-6 88 103 0.00014619999 1e-6 98 103 0.0002923999 1e-6 103 103 0.0029234998 1e-6 107 103 0.0002923999 1e-6 114 103 0.00014619999 1e-6 122 103 0.00014619999 1e-6 126 103 0.00014619999 1e-6 153 103 0.014763899 1e-6 193 103 0.014617696 1e-6 198 103 0.012571298 1e-6 204 103 0.00014619999 1e-6 206 103 0.00014619999 1e-6 229 103 0.00043849996 1e-6 230 103 0.00014619999 1e-6 234 103 0.00043849996 1e-6 237 103 0.00014619999 1e-6 241 103 0.00014619999 1e-6 242 103 0.0057008974 1e-6 253 103 0.0002923999 1e-6 272 103 0.00014619999 1e-6 279 103 0.0002923999 1e-6 300 103 0.00087709981 1e-6 344 103 0.00058469991 1e-6 356 103 0.00014619999 1e-6 358 103 0.00014619999 1e-6 414 103 0.0002923999 1e-6 443 103 0.0024849998 1e-6 444 103 0.0039467998 1e-6 445 103 0.024996299 1e-6 446 103 0.0055546984 1e-6 447 103 0.0065779984 1e-6 450 103 0.00073089986 1e-6 452 103 0.0032158999 1e-6 453 103 0.0011693998 1e-6 454 103 0.00058469991 1e-6 455 103 0.10261655 1e-6 457 103 0.0017541 1e-6 458 103 0.00014619999 1e-6 459 103 0.0002923999 1e-6 460 103 0.0024849998 1e-6 463 103 0.0019002999 1e-6 464 103 0.0002923999 1e-6 465 103 0.004677698 1e-6 467 103 0.0029234998 1e-6 468 103 0.013009798 1e-6 469 103 0.0020464999 1e-6 470 103 0.0023387999 1e-6 471 103 0.00087709981 1e-6 473 103 0.00014619999 1e-6 478 103 0.00014619999 1e-6 483 103 0.00043849996 1e-6 490 103 0.0073088966 1e-6 491 103 0.011694197 1e-6 5 104 0.020244498 1e-6 6 104 0.35014009 1e-6 13 104 0.00012729999 1e-6 14 104 0.0025464999 1e-6 21 104 0.00012729999 1e-6 22 104 0.0076393969 1e-6 24 104 0.00038199988 1e-6 60 104 0.0061114989 1e-6 82 104 0.0036923999 1e-6 98 104 0.00025459984 1e-6 104 104 0.0418895 1e-6 107 104 0.00012729999 1e-6 108 104 0.00012729999 1e-6 114 104 0.00012729999 1e-6 119 104 0.00012729999 1e-6 120 104 0.0005092998 1e-6 126 104 0.00012729999 1e-6 153 104 0.00012729999 1e-6 189 104 0.00012729999 1e-6 192 104 0.00012729999 1e-6 193 104 0.0005092998 1e-6 194 104 0.00012729999 1e-6 198 104 0.020881098 1e-6 204 104 0.0057295971 1e-6 206 104 0.00025459984 1e-6 214 104 0.0020371999 1e-6 218 104 0.00038199988 1e-6 223 104 0.00025459984 1e-6 224 104 0.00025459984 1e-6 229 104 0.00038199988 1e-6 230 104 0.00038199988 1e-6 231 104 0.00012729999 1e-6 234 104 0.0034377 1e-6 237 104 0.00038199988 1e-6 241 104 0.00012729999 1e-6 242 104 0.00012729999 1e-6 252 104 0.00012729999 1e-6 272 104 0.0014006 1e-6 279 104 0.0005092998 1e-6 301 104 0.00025459984 1e-6 344 104 0.00038199988 1e-6 356 104 0.00012729999 1e-6 358 104 0.00038199988 1e-6 384 104 0.00012729999 1e-6 387 104 0.00012729999 1e-6 402 104 0.00012729999 1e-6 414 104 0.00089129992 1e-6 430 104 0.00012729999 1e-6 443 104 0.031448897 1e-6 444 104 0.00025459984 1e-6 445 104 0.0076393969 1e-6 446 104 0.0049655996 1e-6 447 104 0.00089129992 1e-6 450 104 0.0019099 1e-6 452 104 0.010822497 1e-6 453 104 0.017443299 1e-6 454 104 0.0029283999 1e-6 455 104 0.0537306 1e-6 456 104 0.0005092998 1e-6 457 104 0.0019099 1e-6 458 104 0.00076389988 1e-6 459 104 0.00089129992 1e-6 460 104 0.0029283999 1e-6 463 104 0.0021644998 1e-6 464 104 0.00038199988 1e-6 465 104 0.00063659996 1e-6 467 104 0.0099311993 1e-6 468 104 0.0031830999 1e-6 469 104 0.006366197 1e-6 470 104 0.0068754964 1e-6 471 104 0.0021644998 1e-6 473 104 0.00012729999 1e-6 478 104 0.00063659996 1e-6 483 104 0.0010185998 1e-6 489 104 0.00089129992 1e-6 490 104 0.00063659996 1e-6 491 104 0.0019099 1e-6 0 105 0.0006465998 1e-6 5 105 0.0020903 1e-6 6 105 0.00070679979 1e-6 9 105 0.00010529999 1e-6 10 105 0.004180599 1e-6 11 105 7.5199991e-05 1e-6 14 105 0.00042109983 1e-6 22 105 1.5e-05 1e-6 60 105 0.0036843999 1e-6 82 105 0.0055941977 1e-6 83 105 1.5e-05 1e-6 84 105 4.5099994e-05 1e-6 85 105 0.0062709972 1e-6 86 105 3.0099996e-05 1e-6 87 105 0.0039550997 1e-6 88 105 0.0076845996 1e-6 90 105 0.00018049999 1e-6 93 105 0.0037596 1e-6 94 105 0.0031579998 1e-6 97 105 0.0032031999 1e-6 98 105 0.11024559 1e-6 100 105 0.012256198 1e-6 103 105 0.00063159992 1e-6 104 105 0.0066318996 1e-6 105 105 0.0075341985 1e-6 106 105 0.00027069985 1e-6 107 105 0.032753397 1e-6 108 105 1.5e-05 1e-6 109 105 0.00061659981 1e-6 113 105 3.0099996e-05 1e-6 114 105 4.5099994e-05 1e-6 116 105 0.0035189998 1e-6 118 105 0.0014285999 1e-6 119 105 0.00055639981 1e-6 122 105 0.017639898 1e-6 125 105 0.013474297 1e-6 126 105 1.5e-05 1e-6 150 105 0.00093239988 1e-6 189 105 0.00022559999 1e-6 190 105 9.0199988e-05 1e-6 192 105 0.0009474 1e-6 193 105 0.012481797 1e-6 194 105 9.0199988e-05 1e-6 196 105 1.5e-05 1e-6 197 105 3.0099996e-05 1e-6 198 105 0.018331699 1e-6 200 105 4.5099994e-05 1e-6 201 105 1.5e-05 1e-6 203 105 7.5199991e-05 1e-6 204 105 0.013233699 1e-6 206 105 0.00025569997 1e-6 207 105 6.0199993e-05 1e-6 209 105 1.5e-05 1e-6 214 105 0.0063761994 1e-6 218 105 1.5e-05 1e-6 223 105 0.00034589996 1e-6 228 105 0.0024812999 1e-6 229 105 0.00016539999 1e-6 230 105 0.00072179991 1e-6 234 105 0.0048723966 1e-6 237 105 0.00076699979 1e-6 241 105 0.020542298 1e-6 242 105 0.0006616998 1e-6 252 105 3.0099996e-05 1e-6 253 105 1.5e-05 1e-6 272 105 0.00052629993 1e-6 279 105 0.00036089984 1e-6 284 105 3.0099996e-05 1e-6 300 105 4.5099994e-05 1e-6 317 105 1.5e-05 1e-6 325 105 0.0023759999 1e-6 340 105 0.00025569997 1e-6 344 105 0.00048119994 1e-6 356 105 6.0199993e-05 1e-6 358 105 0.00063159992 1e-6 384 105 3.0099996e-05 1e-6 387 105 1.5e-05 1e-6 394 105 4.5099994e-05 1e-6 397 105 3.0099996e-05 1e-6 402 105 0.00028569996 1e-6 422 105 7.5199991e-05 1e-6 423 105 1.5e-05 1e-6 430 105 1.5e-05 1e-6 431 105 3.0099996e-05 1e-6 432 105 1.5e-05 1e-6 433 105 3.0099996e-05 1e-6 434 105 6.0199993e-05 1e-6 443 105 0.012557 1e-6 444 105 0.00045109983 1e-6 445 105 0.0090379976 1e-6 446 105 0.0008270999 1e-6 447 105 0.0020601999 1e-6 448 105 0.00010529999 1e-6 450 105 0.0057445988 1e-6 452 105 0.0041354969 1e-6 453 105 0.0030377 1e-6 454 105 0.00054139993 1e-6 455 105 0.032557897 1e-6 456 105 0.0010527 1e-6 457 105 0.0031880999 1e-6 458 105 0.00037599984 1e-6 459 105 0.00085719978 1e-6 460 105 0.0015940999 1e-6 463 105 0.0077897981 1e-6 464 105 0.00060149981 1e-6 465 105 0.0032782999 1e-6 467 105 0.010496698 1e-6 468 105 0.013684798 1e-6 469 105 0.009519197 1e-6 470 105 0.0016391999 1e-6 471 105 0.0088725984 1e-6 473 105 4.5099994e-05 1e-6 477 105 6.0199993e-05 1e-6 478 105 0.0013533998 1e-6 483 105 0.0028873 1e-6 489 105 0.00022559999 1e-6 490 105 0.0016541998 1e-6 491 105 3.0099996e-05 1e-6 3 106 0.00012139999 1e-6 5 106 0.0021237 1e-6 6 106 0.0010314998 1e-6 9 106 0.0011527999 1e-6 10 106 0.0011527999 1e-6 11 106 0.0002427 1e-6 13 106 0.0002427 1e-6 14 106 0.00072809984 1e-6 22 106 0.00012139999 1e-6 60 106 0.0029123998 1e-6 82 106 0.012256499 1e-6 85 106 0.0029730999 1e-6 87 106 6.0699997e-05 1e-6 88 106 0.0024269999 1e-6 93 106 6.0699997e-05 1e-6 94 106 6.0699997e-05 1e-6 97 106 6.0699997e-05 1e-6 98 106 0.085917056 1e-6 100 106 0.0026697 1e-6 103 106 0.00030339998 1e-6 104 106 0.014683597 1e-6 105 106 0.0040045977 1e-6 106 106 0.00030339998 1e-6 107 106 0.0461744 1e-6 108 106 0.0014561999 1e-6 109 106 0.024634399 1e-6 114 106 6.0699997e-05 1e-6 116 106 0.0050967969 1e-6 118 106 0.0052787997 1e-6 122 106 0.028092999 1e-6 125 106 0.0079484992 1e-6 126 106 6.0699997e-05 1e-6 189 106 6.0699997e-05 1e-6 190 106 6.0699997e-05 1e-6 192 106 0.0058855973 1e-6 193 106 0.0074630976 1e-6 194 106 6.0699997e-05 1e-6 198 106 0.054062299 1e-6 200 106 6.0699997e-05 1e-6 203 106 6.0699997e-05 1e-6 204 106 0.017049897 1e-6 206 106 0.0002427 1e-6 207 106 6.0699997e-05 1e-6 214 106 0.0081305988 1e-6 223 106 0.00066739996 1e-6 228 106 0.0020629999 1e-6 229 106 0.00018199999 1e-6 230 106 0.00060679996 1e-6 234 106 0.0038832999 1e-6 237 106 0.00060679996 1e-6 241 106 0.020144399 1e-6 242 106 0.00012139999 1e-6 253 106 0.0002427 1e-6 272 106 0.00042469986 1e-6 277 106 6.0699997e-05 1e-6 279 106 0.00066739996 1e-6 300 106 0.0002427 1e-6 314 106 6.0699997e-05 1e-6 325 106 0.0019415999 1e-6 344 106 0.00030339998 1e-6 356 106 6.0699997e-05 1e-6 358 106 0.00054609985 1e-6 394 106 6.0699997e-05 1e-6 402 106 0.0002427 1e-6 422 106 6.0699997e-05 1e-6 433 106 6.0699997e-05 1e-6 434 106 6.0699997e-05 1e-6 443 106 0.011649799 1e-6 444 106 0.00012139999 1e-6 445 106 0.0090406984 1e-6 446 106 0.00072809984 1e-6 447 106 0.0014561999 1e-6 448 106 6.0699997e-05 1e-6 450 106 0.0023057 1e-6 452 106 0.0037011998 1e-6 453 106 0.0030944999 1e-6 454 106 0.00048539997 1e-6 455 106 0.0364662 1e-6 456 106 0.00066739996 1e-6 457 106 0.0020023 1e-6 458 106 0.00048539997 1e-6 459 106 0.00036409986 1e-6 460 106 0.0016988998 1e-6 463 106 0.0157151 1e-6 464 106 0.00012139999 1e-6 465 106 0.0043079965 1e-6 467 106 0.014440898 1e-6 468 106 0.013652097 1e-6 469 106 0.0013348998 1e-6 470 106 0.0014561999 1e-6 471 106 0.0041259974 1e-6 473 106 6.0699997e-05 1e-6 477 106 6.0699997e-05 1e-6 478 106 0.00066739996 1e-6 483 106 0.00097079994 1e-6 489 106 0.00018199999 1e-6 490 106 0.00060679996 1e-6 5 107 3.119999e-05 1e-6 11 107 3.119999e-05 1e-6 12 107 0.22531909 1e-6 18 107 3.119999e-05 1e-6 22 107 0.0014044999 1e-6 24 107 0.00059299986 1e-6 60 107 0.0024656998 1e-6 85 107 3.119999e-05 1e-6 88 107 3.119999e-05 1e-6 93 107 0.00012479999 1e-6 95 107 3.119999e-05 1e-6 98 107 3.119999e-05 1e-6 104 107 0.00053059985 1e-6 107 107 0.36892539 1e-6 108 107 3.119999e-05 1e-6 112 107 3.119999e-05 1e-6 113 107 3.119999e-05 1e-6 114 107 9.36e-05 1e-6 115 107 6.2399995e-05 1e-6 116 107 0.00062419986 1e-6 118 107 9.36e-05 1e-6 119 107 3.119999e-05 1e-6 122 107 0.00012479999 1e-6 125 107 3.119999e-05 1e-6 126 107 3.119999e-05 1e-6 150 107 3.119999e-05 1e-6 151 107 0.00068669999 1e-6 189 107 0.00012479999 1e-6 190 107 3.119999e-05 1e-6 193 107 0.0058053993 1e-6 194 107 6.2399995e-05 1e-6 198 107 0.0039950982 1e-6 200 107 3.119999e-05 1e-6 203 107 3.119999e-05 1e-6 204 107 0.0001561 1e-6 206 107 6.2399995e-05 1e-6 214 107 0.0034957 1e-6 215 107 6.2399995e-05 1e-6 223 107 0.00024969992 1e-6 228 107 6.2399995e-05 1e-6 229 107 0.00040579983 1e-6 230 107 0.00018729999 1e-6 234 107 0.0043696985 1e-6 237 107 0.00018729999 1e-6 241 107 3.119999e-05 1e-6 242 107 0.0011547999 1e-6 252 107 6.2399995e-05 1e-6 253 107 0.00040579983 1e-6 267 107 0.0040575974 1e-6 272 107 0.00056179985 1e-6 277 107 0.0012484998 1e-6 279 107 0.00012479999 1e-6 300 107 0.0001561 1e-6 301 107 0.00056179985 1e-6 314 107 6.2399995e-05 1e-6 324 107 0.00021849999 1e-6 344 107 0.00046819984 1e-6 350 107 0.0017166999 1e-6 356 107 6.2399995e-05 1e-6 358 107 0.00037449994 1e-6 384 107 3.119999e-05 1e-6 387 107 3.119999e-05 1e-6 402 107 9.36e-05 1e-6 422 107 6.2399995e-05 1e-6 434 107 3.119999e-05 1e-6 443 107 0.013358697 1e-6 444 107 0.0016853998 1e-6 445 107 0.0134211 1e-6 446 107 0.00034329994 1e-6 447 107 0.00099879992 1e-6 450 107 0.0011547999 1e-6 452 107 0.0019351 1e-6 453 107 0.010362398 1e-6 454 107 0.0025281999 1e-6 455 107 0.028434098 1e-6 456 107 0.00028089993 1e-6 457 107 0.0044008978 1e-6 458 107 0.00040579983 1e-6 459 107 0.00037449994 1e-6 460 107 0.00024969992 1e-6 463 107 0.0035581999 1e-6 464 107 0.0013732999 1e-6 465 107 0.00040579983 1e-6 467 107 0.0042447969 1e-6 468 107 0.0046817996 1e-6 469 107 0.0035269998 1e-6 470 107 0.0010611999 1e-6 471 107 0.0014044999 1e-6 473 107 3.119999e-05 1e-6 477 107 3.119999e-05 1e-6 478 107 0.00034329994 1e-6 483 107 0.00031209993 1e-6 489 107 0.00056179985 1e-6 490 107 0.00021849999 1e-6 491 107 6.2399995e-05 1e-6 0 108 0.00015159999 1e-6 3 108 0.0002274 1e-6 5 108 7.5799995e-05 1e-6 9 108 0.00041679991 1e-6 10 108 0.054111399 1e-6 11 108 0.00064419978 1e-6 13 108 0.0032587999 1e-6 14 108 0.027927198 1e-6 16 108 3.7899998e-05 1e-6 17 108 3.7899998e-05 1e-6 22 108 0.00018949999 1e-6 60 108 0.0023872999 1e-6 82 108 0.00041679991 1e-6 85 108 7.5799995e-05 1e-6 86 108 0.0019703999 1e-6 88 108 0.019439198 1e-6 90 108 3.7899998e-05 1e-6 93 108 0.00045469985 1e-6 94 108 7.5799995e-05 1e-6 95 108 3.7899998e-05 1e-6 98 108 0.00037889997 1e-6 104 108 0.015460398 1e-6 105 108 0.00015159999 1e-6 106 108 3.7899998e-05 1e-6 107 108 0.066881359 1e-6 108 108 0.083175361 1e-6 109 108 0.053164098 1e-6 110 108 0.00079579977 1e-6 112 108 3.7899998e-05 1e-6 114 108 7.5799995e-05 1e-6 115 108 3.7899998e-05 1e-6 116 108 0.030503999 1e-6 118 108 0.00037889997 1e-6 119 108 7.5799995e-05 1e-6 122 108 0.0039408989 1e-6 124 108 3.7899998e-05 1e-6 125 108 0.0053807981 1e-6 126 108 3.7899998e-05 1e-6 150 108 0.00049259979 1e-6 151 108 3.7899998e-05 1e-6 189 108 0.00011369999 1e-6 190 108 7.5799995e-05 1e-6 192 108 0.011746898 1e-6 193 108 0.0022356999 1e-6 194 108 0.00011369999 1e-6 197 108 3.7899998e-05 1e-6 198 108 0.040394098 1e-6 200 108 3.7899998e-05 1e-6 203 108 7.5799995e-05 1e-6 204 108 0.0025008998 1e-6 206 108 0.00049259979 1e-6 207 108 3.7899998e-05 1e-6 214 108 0.00060629984 1e-6 223 108 0.0012125999 1e-6 229 108 0.00030309986 1e-6 230 108 0.00060629984 1e-6 231 108 0.0002274 1e-6 234 108 0.0023494 1e-6 237 108 0.0002274 1e-6 241 108 0.010647997 1e-6 242 108 0.00015159999 1e-6 252 108 7.5799995e-05 1e-6 253 108 0.0025766999 1e-6 272 108 0.00049259979 1e-6 277 108 3.7899998e-05 1e-6 279 108 0.00068209996 1e-6 300 108 0.011367898 1e-6 301 108 0.00011369999 1e-6 314 108 0.00064419978 1e-6 324 108 0.00018949999 1e-6 325 108 0.0061007999 1e-6 344 108 0.00037889997 1e-6 356 108 7.5799995e-05 1e-6 358 108 0.00071999989 1e-6 384 108 3.7899998e-05 1e-6 387 108 3.7899998e-05 1e-6 402 108 0.00011369999 1e-6 414 108 0.00026529981 1e-6 422 108 0.00011369999 1e-6 430 108 3.7899998e-05 1e-6 433 108 3.7899998e-05 1e-6 434 108 3.7899998e-05 1e-6 443 108 0.0087911971 1e-6 444 108 0.00026529981 1e-6 445 108 0.012959499 1e-6 446 108 0.0013263 1e-6 447 108 0.00079579977 1e-6 448 108 3.7899998e-05 1e-6 450 108 0.0023494 1e-6 452 108 0.0053807981 1e-6 453 108 0.0018189 1e-6 454 108 0.00037889997 1e-6 455 108 0.061424799 1e-6 456 108 0.0003409998 1e-6 457 108 0.0024251998 1e-6 458 108 0.00037889997 1e-6 459 108 0.00045469985 1e-6 460 108 0.0016293998 1e-6 463 108 0.005342897 1e-6 464 108 0.00018949999 1e-6 465 108 0.0020082998 1e-6 467 108 0.0153846 1e-6 468 108 0.033383898 1e-6 469 108 0.0027282999 1e-6 470 108 0.0030314999 1e-6 471 108 0.0017051999 1e-6 473 108 7.5799995e-05 1e-6 477 108 3.7899998e-05 1e-6 478 108 0.00079579977 1e-6 479 108 0.00018949999 1e-6 483 108 0.0014777998 1e-6 489 108 7.5799995e-05 1e-6 490 108 0.027775697 1e-6 491 108 0.00026529981 1e-6 3 109 0.0030345998 1e-6 5 109 0.0030345998 1e-6 9 109 0.0030345998 1e-6 10 109 0.0064737983 1e-6 11 109 0.0046529993 1e-6 13 109 0.0032368999 1e-6 14 109 0.0072829984 1e-6 17 109 0.00040459982 1e-6 22 109 0.00060689985 1e-6 60 109 0.0022253999 1e-6 85 109 0.0002023 1e-6 86 109 0.012542997 1e-6 88 109 0.033380497 1e-6 98 109 0.0046529993 1e-6 104 109 0.020432897 1e-6 105 109 0.0014161 1e-6 106 109 0.00040459982 1e-6 107 109 0.087396264 1e-6 108 109 0.015375298 1e-6 109 109 0.074044049 1e-6 113 109 0.0002023 1e-6 114 109 0.0002023 1e-6 115 109 0.00040459982 1e-6 116 109 0.00060689985 1e-6 117 109 0.0002023 1e-6 118 109 0.00080919988 1e-6 119 109 0.00040459982 1e-6 122 109 0.0093060993 1e-6 125 109 0.0024277 1e-6 191 109 0.0002023 1e-6 192 109 0.0036414999 1e-6 193 109 0.0020230999 1e-6 198 109 0.038235899 1e-6 204 109 0.0052599981 1e-6 206 109 0.0002023 1e-6 214 109 0.0022253999 1e-6 223 109 0.0028322998 1e-6 229 109 0.0002023 1e-6 230 109 0.0002023 1e-6 234 109 0.0016184999 1e-6 237 109 0.0002023 1e-6 241 109 0.013352197 1e-6 242 109 0.00040459982 1e-6 253 109 0.0030345998 1e-6 272 109 0.00060689985 1e-6 279 109 0.00060689985 1e-6 300 109 0.023669798 1e-6 301 109 0.00080919988 1e-6 314 109 0.00080919988 1e-6 324 109 0.0002023 1e-6 325 109 0.0056645982 1e-6 344 109 0.00060689985 1e-6 356 109 0.0002023 1e-6 358 109 0.00060689985 1e-6 443 109 0.012947597 1e-6 444 109 0.00040459982 1e-6 445 109 0.014970697 1e-6 446 109 0.0028322998 1e-6 447 109 0.0016184999 1e-6 450 109 0.0014161 1e-6 452 109 0.0058668964 1e-6 453 109 0.0016184999 1e-6 454 109 0.00040459982 1e-6 455 109 0.066154182 1e-6 456 109 0.00040459982 1e-6 457 109 0.0026299998 1e-6 458 109 0.0002023 1e-6 459 109 0.00040459982 1e-6 460 109 0.0020230999 1e-6 463 109 0.0044506975 1e-6 464 109 0.0002023 1e-6 465 109 0.0016184999 1e-6 467 109 0.0226583 1e-6 468 109 0.027311299 1e-6 469 109 0.0022253999 1e-6 470 109 0.0022253999 1e-6 471 109 0.0016184999 1e-6 478 109 0.00060689985 1e-6 483 109 0.00080919988 1e-6 489 109 0.0002023 1e-6 490 109 0.16710496 1e-6 491 109 0.0002023 1e-6 10 110 0.0034111999 1e-6 13 110 0.0002623999 1e-6 14 110 0.0015743999 1e-6 60 110 0.0031488 1e-6 82 110 0.0002623999 1e-6 88 110 0.00078719994 1e-6 102 110 0.0002623999 1e-6 104 110 0.023091096 1e-6 107 110 0.055890799 1e-6 108 110 0.004985597 1e-6 109 110 0.002624 1e-6 110 110 0.073996246 1e-6 114 110 0.0002623999 1e-6 116 110 0.050642896 1e-6 118 110 0.0057727993 1e-6 122 110 0.0002623999 1e-6 125 110 0.0002623999 1e-6 192 110 0.0028863999 1e-6 193 110 0.0020991999 1e-6 198 110 0.048281297 1e-6 204 110 0.015481498 1e-6 206 110 0.00052479981 1e-6 214 110 0.0023615998 1e-6 223 110 0.0002623999 1e-6 228 110 0.0041983984 1e-6 230 110 0.00052479981 1e-6 234 110 0.0055103973 1e-6 237 110 0.0002623999 1e-6 241 110 0.012070298 1e-6 253 110 0.0010495998 1e-6 272 110 0.0010495998 1e-6 279 110 0.00078719994 1e-6 300 110 0.00078719994 1e-6 314 110 0.0002623999 1e-6 324 110 0.0002623999 1e-6 325 110 0.0057727993 1e-6 344 110 0.0002623999 1e-6 358 110 0.00052479981 1e-6 443 110 0.0057727993 1e-6 444 110 0.0070847981 1e-6 445 110 0.0073471963 1e-6 446 110 0.001312 1e-6 447 110 0.012070298 1e-6 450 110 0.0020991999 1e-6 452 110 0.0047231987 1e-6 453 110 0.00052479981 1e-6 454 110 0.00078719994 1e-6 455 110 0.031750198 1e-6 457 110 0.0023615998 1e-6 459 110 0.00078719994 1e-6 460 110 0.0010495998 1e-6 463 110 0.0028863999 1e-6 464 110 0.00052479981 1e-6 465 110 0.010233499 1e-6 467 110 0.0083966963 1e-6 468 110 0.047756497 1e-6 469 110 0.0034111999 1e-6 470 110 0.0036735998 1e-6 471 110 0.0010495998 1e-6 477 110 0.0002623999 1e-6 478 110 0.00078719994 1e-6 483 110 0.0015743999 1e-6 490 110 0.014431898 1e-6 491 110 0.0002623999 1e-6 5 111 0.0064279996 1e-6 6 111 0.012103099 1e-6 13 111 0.0072193965 1e-6 22 111 0.00021229999 1e-6 60 111 0.0038798999 1e-6 82 111 1.9299987e-05 1e-6 98 111 0.0092654973 1e-6 103 111 0.0063120984 1e-6 104 111 0.002104 1e-6 107 111 0.0010616998 1e-6 108 111 1.9299987e-05 1e-6 111 111 0.0027796999 1e-6 112 111 0.035575699 1e-6 113 111 3.8599988e-05 1e-6 114 111 0.00086859986 1e-6 116 111 7.7199991e-05 1e-6 118 111 3.8599988e-05 1e-6 125 111 0.0008299998 1e-6 126 111 1.9299987e-05 1e-6 151 111 1.9299987e-05 1e-6 189 111 3.8599988e-05 1e-6 190 111 3.8599988e-05 1e-6 192 111 0.0014862998 1e-6 194 111 5.789999e-05 1e-6 197 111 1.9299987e-05 1e-6 198 111 0.0283756 1e-6 200 111 1.9299987e-05 1e-6 203 111 3.8599988e-05 1e-6 204 111 0.0051731989 1e-6 206 111 0.00021229999 1e-6 207 111 1.9299987e-05 1e-6 214 111 0.00030889991 1e-6 218 111 1.9299987e-05 1e-6 223 111 1.9299987e-05 1e-6 229 111 0.00067559979 1e-6 230 111 0.0001737 1e-6 234 111 0.0025672999 1e-6 237 111 0.00021229999 1e-6 241 111 0.0008299998 1e-6 242 111 0.00055979984 1e-6 252 111 5.789999e-05 1e-6 253 111 0.0545507 1e-6 272 111 0.0005983999 1e-6 277 111 5.789999e-05 1e-6 279 111 0.00069489982 1e-6 300 111 0.22260398 1e-6 314 111 0.0065437965 1e-6 324 111 0.00030889991 1e-6 344 111 0.00027019996 1e-6 350 111 0.00079139997 1e-6 356 111 5.789999e-05 1e-6 358 111 0.00034749997 1e-6 384 111 5.789999e-05 1e-6 387 111 1.9299987e-05 1e-6 394 111 1.9299987e-05 1e-6 402 111 7.7199991e-05 1e-6 422 111 5.789999e-05 1e-6 430 111 1.9299987e-05 1e-6 433 111 1.9299987e-05 1e-6 434 111 1.9299987e-05 1e-6 443 111 0.0065437965 1e-6 444 111 0.00086859986 1e-6 445 111 0.0078177974 1e-6 446 111 0.00065629999 1e-6 447 111 0.00027019996 1e-6 448 111 1.9299987e-05 1e-6 450 111 0.0012353999 1e-6 452 111 0.0037061998 1e-6 453 111 0.0023549998 1e-6 454 111 0.0020653999 1e-6 455 111 0.0219284 1e-6 456 111 0.00032819994 1e-6 457 111 0.0034938999 1e-6 458 111 0.00032819994 1e-6 459 111 0.0003668 1e-6 460 111 0.00023159999 1e-6 463 111 0.0025479998 1e-6 464 111 0.0001351 1e-6 465 111 0.0014283999 1e-6 467 111 0.0054241978 1e-6 468 111 0.043547899 1e-6 469 111 0.0070649981 1e-6 470 111 0.0013897999 1e-6 471 111 0.0031849998 1e-6 473 111 3.8599988e-05 1e-6 477 111 1.9299987e-05 1e-6 478 111 0.00034749997 1e-6 483 111 0.00052119978 1e-6 489 111 0.0001351 1e-6 490 111 0.00011579999 1e-6 491 111 1.9299987e-05 1e-6 5 112 0.020178299 1e-6 6 112 0.49460346 1e-6 22 112 0.00046929996 1e-6 60 112 0.0065696985 1e-6 111 112 0.00046929996 1e-6 112 112 0.014077898 1e-6 114 112 0.00046929996 1e-6 116 112 0.00046929996 1e-6 198 112 0.0014077998 1e-6 229 112 0.00093849981 1e-6 234 112 0.0018771 1e-6 253 112 0.00046929996 1e-6 272 112 0.00093849981 1e-6 277 112 0.00046929996 1e-6 300 112 0.00093849981 1e-6 344 112 0.00046929996 1e-6 350 112 0.00046929996 1e-6 358 112 0.00046929996 1e-6 443 112 0.025809497 1e-6 444 112 0.00046929996 1e-6 445 112 0.029094297 1e-6 446 112 0.0046925992 1e-6 447 112 0.0098544993 1e-6 450 112 0.00093849981 1e-6 452 112 0.015954997 1e-6 453 112 0.0229939 1e-6 454 112 0.0023462998 1e-6 455 112 0.13233215 1e-6 457 112 0.0046925992 1e-6 459 112 0.00046929996 1e-6 460 112 -0.0018771 1e-6 463 112 0.0126701 1e-6 464 112 0.00046929996 1e-6 467 112 0.0056311972 1e-6 468 112 0.00046929996 1e-6 469 112 0.00046929996 1e-6 470 112 0.00093849981 1e-6 471 112 0.00046929996 1e-6 478 112 0.00046929996 1e-6 490 112 0.00046929996 1e-6 491 112 0.00093849981 1e-6 6 113 0.00015889999 1e-6 9 113 0.081519067 1e-6 11 113 0.00015889999 1e-6 60 113 0.0016684998 1e-6 93 113 0.0373431 1e-6 94 113 0.0030987 1e-6 104 113 7.9499994e-05 1e-6 107 113 0.0081041977 1e-6 112 113 0.0027013998 1e-6 113 113 0.073335469 1e-6 114 113 0.0080247968 1e-6 116 113 0.0002384 1e-6 126 113 7.9499994e-05 1e-6 171 113 0.0025424999 1e-6 172 113 0.00015889999 1e-6 192 113 0.00055619981 1e-6 194 113 7.9499994e-05 1e-6 198 113 0.0041315965 1e-6 204 113 0.013268698 1e-6 206 113 0.00031779986 1e-6 223 113 7.9499994e-05 1e-6 229 113 0.00039729988 1e-6 230 113 0.00015889999 1e-6 234 113 0.0011918 1e-6 237 113 0.0002384 1e-6 241 113 0.00063559995 1e-6 242 113 0.0025424999 1e-6 253 113 0.06991899 1e-6 272 113 0.00071509997 1e-6 279 113 0.0002384 1e-6 300 113 0.00031779986 1e-6 314 113 0.0080247968 1e-6 324 113 0.00039729988 1e-6 325 113 0.00039729988 1e-6 344 113 0.00031779986 1e-6 356 113 7.9499994e-05 1e-6 358 113 0.0002384 1e-6 402 113 7.9499994e-05 1e-6 443 113 0.0077863969 1e-6 444 113 0.0038137999 1e-6 445 113 0.039567798 1e-6 446 113 0.0025424999 1e-6 447 113 0.0032575999 1e-6 450 113 0.0008739999 1e-6 452 113 0.0021451998 1e-6 453 113 0.0014301999 1e-6 454 113 0.0002384 1e-6 455 113 0.064198256 1e-6 456 113 0.00015889999 1e-6 457 113 0.0041315965 1e-6 459 113 0.0010328998 1e-6 460 113 0.00095339981 1e-6 463 113 0.0040520988 1e-6 464 113 0.0002384 1e-6 465 113 0.0002384 1e-6 467 113 0.0026219999 1e-6 468 113 0.042984299 1e-6 469 113 0.0011123 1e-6 470 113 0.0011918 1e-6 471 113 0.0011918 1e-6 472 113 0.0015890999 1e-6 473 113 7.9499994e-05 1e-6 478 113 0.0002384 1e-6 483 113 0.0002384 1e-6 490 113 0.0002384 1e-6 5 114 0.0005551998 1e-6 6 114 0.0077535994 1e-6 9 114 0.00069409981 1e-6 22 114 0.00057509984 1e-6 60 114 0.0010707998 1e-6 93 114 0.0036288998 1e-6 98 114 0.00041639991 1e-6 102 114 0.0001586 1e-6 104 114 7.9299993e-05 1e-6 107 114 0.00021809999 1e-6 112 114 0.0019631998 1e-6 113 114 0.00059489999 1e-6 114 114 0.041227099 1e-6 117 114 1.9799991e-05 1e-6 118 114 9.9199999e-05 1e-6 120 114 3.9699997e-05 1e-6 126 114 1.9799991e-05 1e-6 169 114 0.00061469991 1e-6 171 114 0.0013682998 1e-6 172 114 0.0072776973 1e-6 190 114 1.9799991e-05 1e-6 192 114 0.0025978 1e-6 194 114 1.9799991e-05 1e-6 198 114 0.0045807995 1e-6 203 114 1.9799991e-05 1e-6 204 114 0.0059291981 1e-6 206 114 9.9199999e-05 1e-6 214 114 7.9299993e-05 1e-6 228 114 1.9799991e-05 1e-6 229 114 9.9199999e-05 1e-6 230 114 5.9499987e-05 1e-6 234 114 0.00079319999 1e-6 237 114 7.9299993e-05 1e-6 241 114 0.0027762 1e-6 242 114 0.0010311999 1e-6 252 114 1.9799991e-05 1e-6 253 114 0.031629298 1e-6 272 114 0.00013879999 1e-6 279 114 3.9699997e-05 1e-6 314 114 0.0017053999 1e-6 324 114 5.9499987e-05 1e-6 325 114 0.00023799999 1e-6 344 114 7.9299993e-05 1e-6 350 114 0.0013682998 1e-6 351 114 0.00047589978 1e-6 356 114 1.9799991e-05 1e-6 358 114 0.00011899999 1e-6 384 114 1.9799991e-05 1e-6 402 114 3.9699997e-05 1e-6 404 114 1.9799991e-05 1e-6 422 114 1.9799991e-05 1e-6 434 114 1.9799991e-05 1e-6 443 114 0.0019234999 1e-6 444 114 0.0022012 1e-6 445 114 0.0047592968 1e-6 446 114 0.0001983 1e-6 447 114 0.0093003996 1e-6 450 114 0.00043629995 1e-6 452 114 0.00085269986 1e-6 453 114 0.00045609986 1e-6 454 114 0.00033709989 1e-6 455 114 0.017073799 1e-6 456 114 7.9299993e-05 1e-6 457 114 0.0039660968 1e-6 458 114 0.00011899999 1e-6 459 114 0.0020424998 1e-6 460 114 0.00093199988 1e-6 463 114 0.0075552985 1e-6 464 114 0.0016062998 1e-6 465 114 0.00013879999 1e-6 467 114 0.0016855998 1e-6 468 114 0.042099599 1e-6 469 114 0.0012889998 1e-6 470 114 0.00031729997 1e-6 471 114 0.0005551998 1e-6 473 114 1.9799991e-05 1e-6 477 114 1.9799991e-05 1e-6 478 114 0.00011899999 1e-6 483 114 9.9199999e-05 1e-6 489 114 3.9699997e-05 1e-6 490 114 0.0016458998 1e-6 491 114 9.9199999e-05 1e-6 0 115 0.0055522993 1e-6 1 115 8.1699996e-05 1e-6 9 115 0.00081649981 1e-6 10 115 2.0399995e-05 1e-6 11 115 0.00083689997 1e-6 16 115 0.0001429 1e-6 17 115 2.0399995e-05 1e-6 22 115 0.00089819985 1e-6 60 115 0.0023882999 1e-6 82 115 0.00036739977 1e-6 83 115 4.0799991e-05 1e-6 84 115 0.00016329999 1e-6 86 115 4.0799991e-05 1e-6 87 115 2.0399995e-05 1e-6 88 115 0.00059199985 1e-6 90 115 0.0015309998 1e-6 93 115 0.0083079971 1e-6 94 115 0.0001429 1e-6 95 115 2.0399995e-05 1e-6 97 115 2.0399995e-05 1e-6 98 115 8.1699996e-05 1e-6 104 115 0.0014493 1e-6 105 115 2.0399995e-05 1e-6 107 115 0.069770753 1e-6 108 115 4.0799991e-05 1e-6 113 115 4.0799991e-05 1e-6 114 115 6.1199986e-05 1e-6 115 115 0.0053276978 1e-6 116 115 0.12029225 1e-6 118 115 4.0799991e-05 1e-6 122 115 0.00012249999 1e-6 124 115 4.0799991e-05 1e-6 125 115 0.00012249999 1e-6 126 115 4.0799991e-05 1e-6 127 115 2.0399995e-05 1e-6 150 115 0.00030619977 1e-6 151 115 2.0399995e-05 1e-6 172 115 0.0022249999 1e-6 189 115 0.0001429 1e-6 190 115 8.1699996e-05 1e-6 192 115 0.00010209999 1e-6 193 115 4.0799991e-05 1e-6 194 115 0.00010209999 1e-6 196 115 2.0399995e-05 1e-6 197 115 2.0399995e-05 1e-6 198 115 0.023066398 1e-6 200 115 6.1199986e-05 1e-6 201 115 2.0399995e-05 1e-6 203 115 6.1199986e-05 1e-6 204 115 0.0027965 1e-6 206 115 0.00032659993 1e-6 207 115 6.1199986e-05 1e-6 209 115 2.0399995e-05 1e-6 214 115 0.0031843998 1e-6 218 115 2.0399995e-05 1e-6 223 115 6.1199986e-05 1e-6 229 115 0.00091859978 1e-6 230 115 0.00042869989 1e-6 234 115 0.0039804988 1e-6 237 115 0.00057159993 1e-6 240 115 2.0399995e-05 1e-6 241 115 0.0041029975 1e-6 242 115 0.00083689997 1e-6 248 115 2.0399995e-05 1e-6 252 115 0.0001429 1e-6 253 115 0.12004739 1e-6 272 115 0.00085729989 1e-6 279 115 0.00067359977 1e-6 284 115 2.0399995e-05 1e-6 300 115 0.16075039 1e-6 314 115 0.014452197 1e-6 324 115 0.00044909981 1e-6 325 115 0.00030619977 1e-6 344 115 0.00036739977 1e-6 351 115 0.00030619977 1e-6 356 115 8.1699996e-05 1e-6 358 115 0.00087769981 1e-6 366 115 2.0399995e-05 1e-6 384 115 4.0799991e-05 1e-6 387 115 2.0399995e-05 1e-6 394 115 4.0799991e-05 1e-6 397 115 2.0399995e-05 1e-6 402 115 0.0002041 1e-6 419 115 2.0399995e-05 1e-6 422 115 8.1699996e-05 1e-6 423 115 2.0399995e-05 1e-6 425 115 2.0399995e-05 1e-6 430 115 2.0399995e-05 1e-6 431 115 4.0799991e-05 1e-6 432 115 2.0399995e-05 1e-6 433 115 4.0799991e-05 1e-6 434 115 4.0799991e-05 1e-6 443 115 0.0050827973 1e-6 444 115 0.00040829997 1e-6 445 115 0.011880197 1e-6 446 115 0.0011838998 1e-6 447 115 0.0011022999 1e-6 448 115 8.1699996e-05 1e-6 450 115 0.0031027 1e-6 452 115 0.0041233972 1e-6 453 115 0.0017758999 1e-6 454 115 0.00073489989 1e-6 455 115 0.0303129 1e-6 456 115 0.00091859978 1e-6 457 115 0.0046132989 1e-6 458 115 0.00040829997 1e-6 459 115 0.0013676998 1e-6 460 115 0.0012859998 1e-6 463 115 0.0109616 1e-6 464 115 0.00016329999 1e-6 465 115 0.0012451999 1e-6 467 115 0.011206597 1e-6 468 115 0.057380199 1e-6 469 115 0.0087161995 1e-6 470 115 0.0031639999 1e-6 471 115 0.0057155974 1e-6 473 115 6.1199986e-05 1e-6 477 115 8.1699996e-05 1e-6 478 115 0.0029189999 1e-6 483 115 0.0018575999 1e-6 489 115 0.00018369999 1e-6 490 115 0.00028579985 1e-6 491 115 2.0399995e-05 1e-6 0 116 0.00080389995 1e-6 3 116 0.00053589977 1e-6 5 116 0.0039522983 1e-6 6 116 0.0026794998 1e-6 9 116 0.0017416999 1e-6 10 116 0.00033489987 1e-6 11 116 0.0015407 1e-6 13 116 0.0013398 1e-6 14 116 0.0010717998 1e-6 16 116 6.6999986e-05 1e-6 17 116 6.6999986e-05 1e-6 60 116 0.0014736999 1e-6 82 116 0.00026799995 1e-6 84 116 6.6999986e-05 1e-6 85 116 0.00020099999 1e-6 87 116 0.00020099999 1e-6 88 116 0.00026799995 1e-6 90 116 0.00020099999 1e-6 93 116 0.0089763999 1e-6 94 116 0.00020099999 1e-6 95 116 0.00013399999 1e-6 98 116 0.0012057999 1e-6 99 116 6.6999986e-05 1e-6 102 116 0.0013398 1e-6 103 116 0.00073689991 1e-6 104 116 0.007167697 1e-6 105 116 0.00026799995 1e-6 106 116 6.6999986e-05 1e-6 107 116 0.14529735 1e-6 108 116 0.00013399999 1e-6 109 116 0.00013399999 1e-6 110 116 0.00013399999 1e-6 112 116 0.0016076998 1e-6 113 116 0.0020095999 1e-6 114 116 0.0020766 1e-6 115 116 0.0050240979 1e-6 116 116 0.044145197 1e-6 117 116 0.00013399999 1e-6 118 116 0.0063638985 1e-6 119 116 0.0014067998 1e-6 120 116 0.00040189992 1e-6 122 116 0.0020095999 1e-6 125 116 0.0013398 1e-6 126 116 6.6999986e-05 1e-6 172 116 6.6999986e-05 1e-6 192 116 0.0010048 1e-6 193 116 0.00060289982 1e-6 194 116 6.6999986e-05 1e-6 198 116 0.018957697 1e-6 204 116 0.0061628968 1e-6 206 116 0.00013399999 1e-6 214 116 0.0050910972 1e-6 215 116 6.6999986e-05 1e-6 223 116 0.016880997 1e-6 228 116 0.0041532964 1e-6 229 116 0.00066989986 1e-6 230 116 0.00013399999 1e-6 231 116 0.00013399999 1e-6 232 116 0.00013399999 1e-6 234 116 0.0018086999 1e-6 237 116 0.00020099999 1e-6 241 116 0.0044211969 1e-6 242 116 0.0030814998 1e-6 252 116 6.6999986e-05 1e-6 253 116 0.025187597 1e-6 272 116 0.00026799995 1e-6 277 116 6.6999986e-05 1e-6 279 116 0.00026799995 1e-6 300 116 0.011053097 1e-6 301 116 0.0019426998 1e-6 314 116 0.0034163999 1e-6 317 116 6.6999986e-05 1e-6 325 116 0.00040189992 1e-6 344 116 0.00033489987 1e-6 349 116 6.6999986e-05 1e-6 356 116 6.6999986e-05 1e-6 358 116 0.00026799995 1e-6 402 116 6.6999986e-05 1e-6 443 116 0.0086414963 1e-6 444 116 0.0024116 1e-6 445 116 0.0087084994 1e-6 446 116 0.0019426998 1e-6 447 116 0.0028804999 1e-6 450 116 0.0010048 1e-6 452 116 0.0024785998 1e-6 453 116 0.00087079988 1e-6 454 116 0.0010048 1e-6 455 116 0.030948598 1e-6 456 116 0.00013399999 1e-6 457 116 0.0045551993 1e-6 458 116 0.00040189992 1e-6 459 116 0.00046889996 1e-6 460 116 0.00020099999 1e-6 463 116 0.014670398 1e-6 464 116 0.0026794998 1e-6 465 116 0.00053589977 1e-6 467 116 0.0042202994 1e-6 468 116 0.016278099 1e-6 469 116 0.0014736999 1e-6 470 116 0.0013398 1e-6 471 116 0.0036173998 1e-6 473 116 6.6999986e-05 1e-6 478 116 0.00026799995 1e-6 483 116 0.00040189992 1e-6 490 116 0.0148714 1e-6 491 116 0.00093779992 1e-6 4 117 0.43876797 1e-6 5 117 0.027132697 1e-6 6 117 0.0068442971 1e-6 13 117 0.0002444 1e-6 14 117 0.12613046 1e-6 60 117 0.0034220999 1e-6 82 117 0.0031776999 1e-6 88 117 0.0002444 1e-6 98 117 0.00073329988 1e-6 102 117 0.0034220999 1e-6 104 117 0.00097779999 1e-6 107 117 0.0002444 1e-6 114 117 0.0002444 1e-6 117 117 0.032265898 1e-6 118 117 0.016132999 1e-6 119 117 0.0043998994 1e-6 120 117 0.00097779999 1e-6 122 117 0.0065998994 1e-6 198 117 0.0012222 1e-6 204 117 0.00097779999 1e-6 206 117 0.0002444 1e-6 214 117 0.0012222 1e-6 228 117 0.00048889988 1e-6 229 117 0.00048889988 1e-6 230 117 0.0002444 1e-6 231 117 0.0002444 1e-6 234 117 0.0014666 1e-6 237 117 0.0002444 1e-6 241 117 0.00073329988 1e-6 242 117 0.00048889988 1e-6 253 117 0.00073329988 1e-6 272 117 0.00048889988 1e-6 300 117 0.00097779999 1e-6 301 117 0.0014666 1e-6 314 117 0.0002444 1e-6 325 117 0.0002444 1e-6 344 117 0.00048889988 1e-6 351 117 0.0002444 1e-6 358 117 0.00048889988 1e-6 443 117 0.023710597 1e-6 444 117 0.00048889988 1e-6 445 117 0.023466099 1e-6 446 117 0.0012222 1e-6 447 117 0.00048889988 1e-6 450 117 0.0014666 1e-6 452 117 0.014177497 1e-6 453 117 0.0051331967 1e-6 454 117 0.0002444 1e-6 455 117 0.070642889 1e-6 456 117 0.0002444 1e-6 457 117 0.0024444 1e-6 459 117 0.00048889988 1e-6 460 117 0.0063553974 1e-6 463 117 0.00048889988 1e-6 464 117 0.0002444 1e-6 465 117 0.0012222 1e-6 467 117 0.0065998994 1e-6 468 117 0.0024444 1e-6 469 117 0.0012222 1e-6 470 117 0.0012222 1e-6 471 117 0.0017110999 1e-6 478 117 0.00048889988 1e-6 483 117 0.00073329988 1e-6 490 117 0.00048889988 1e-6 491 117 0.0031776999 1e-6 4 118 0.0095405988 1e-6 5 118 0.0085460991 1e-6 6 118 0.0083986968 1e-6 13 118 3.6799989e-05 1e-6 14 118 0.74266028 1e-6 17 118 7.3699994e-05 1e-6 22 118 0.00077359984 1e-6 60 118 0.0012155999 1e-6 82 118 0.007993497 1e-6 84 118 3.6799989e-05 1e-6 94 118 3.6799989e-05 1e-6 102 118 3.6799989e-05 1e-6 104 118 0.001584 1e-6 114 118 3.6799989e-05 1e-6 117 118 0.0023206999 1e-6 118 118 0.022654399 1e-6 119 118 0.0025416999 1e-6 120 118 0.00062619988 1e-6 122 118 0.0020627999 1e-6 126 118 3.6799989e-05 1e-6 151 118 3.6799989e-05 1e-6 193 118 0.00092089991 1e-6 198 118 0.0014734999 1e-6 204 118 0.0002946998 1e-6 206 118 7.3699994e-05 1e-6 214 118 0.00092089991 1e-6 224 118 3.6799989e-05 1e-6 229 118 0.00051569985 1e-6 230 118 7.3699994e-05 1e-6 231 118 3.6799989e-05 1e-6 234 118 0.0010682999 1e-6 237 118 7.3699994e-05 1e-6 241 118 0.0014366 1e-6 242 118 0.0013628998 1e-6 252 118 3.6799989e-05 1e-6 253 118 0.00033149985 1e-6 272 118 0.00022099999 1e-6 277 118 3.6799989e-05 1e-6 279 118 3.6799989e-05 1e-6 300 118 0.00040519983 1e-6 301 118 0.0015470998 1e-6 314 118 3.6799989e-05 1e-6 325 118 3.6799989e-05 1e-6 344 118 0.00058939983 1e-6 350 118 3.6799989e-05 1e-6 351 118 0.00022099999 1e-6 358 118 0.00014729999 1e-6 402 118 3.6799989e-05 1e-6 443 118 0.019891698 1e-6 444 118 0.0016207998 1e-6 445 118 0.011861298 1e-6 446 118 0.0042729974 1e-6 447 118 0.0012524 1e-6 450 118 0.00040519983 1e-6 452 118 0.0045308992 1e-6 453 118 0.0044203997 1e-6 454 118 0.00033149985 1e-6 455 118 0.015581798 1e-6 456 118 7.3699994e-05 1e-6 457 118 0.0025785998 1e-6 458 118 0.00018419999 1e-6 459 118 0.00044199987 1e-6 460 118 0.00040519983 1e-6 463 118 0.0011419 1e-6 464 118 0.0016575998 1e-6 465 118 0.00014729999 1e-6 467 118 0.0021733998 1e-6 468 118 0.00081039988 1e-6 469 118 0.0020996998 1e-6 470 118 0.0005524999 1e-6 471 118 0.0034625998 1e-6 473 118 3.6799989e-05 1e-6 477 118 3.6799989e-05 1e-6 478 118 0.0001105 1e-6 483 118 0.0001105 1e-6 489 118 3.6799989e-05 1e-6 490 118 0.00014729999 1e-6 491 118 0.0036099998 1e-6 4 119 0.030545499 1e-6 5 119 0.0025454999 1e-6 6 119 0.00072729983 1e-6 9 119 0.00036359997 1e-6 10 119 0.0036364 1e-6 11 119 0.00036359997 1e-6 13 119 0.056727298 1e-6 14 119 0.34036356 1e-6 17 119 0.0029090999 1e-6 22 119 0.00036359997 1e-6 24 119 0.0032726999 1e-6 60 119 0.0018181999 1e-6 82 119 0.0105455 1e-6 84 119 0.00072729983 1e-6 88 119 0.0010908998 1e-6 104 119 0.0029090999 1e-6 107 119 0.0036364 1e-6 108 119 0.0050908998 1e-6 109 119 0.0025454999 1e-6 116 119 0.0018181999 1e-6 117 119 0.0079999976 1e-6 118 119 0.038545497 1e-6 119 119 0.012727298 1e-6 120 119 0.021454498 1e-6 122 119 0.017454498 1e-6 125 119 0.00036359997 1e-6 192 119 0.00072729983 1e-6 198 119 0.0058181994 1e-6 204 119 0.0025454999 1e-6 214 119 0.0021817998 1e-6 215 119 0.0010908998 1e-6 231 119 0.00036359997 1e-6 234 119 0.0021817998 1e-6 241 119 0.0029090999 1e-6 242 119 0.00036359997 1e-6 253 119 0.0025454999 1e-6 272 119 0.0029090999 1e-6 300 119 0.0043635964 1e-6 301 119 0.0054544993 1e-6 314 119 0.00036359997 1e-6 325 119 0.0010908998 1e-6 344 119 0.00036359997 1e-6 350 119 0.00036359997 1e-6 351 119 0.00036359997 1e-6 356 119 0.00036359997 1e-6 443 119 0.016727298 1e-6 444 119 0.00072729983 1e-6 445 119 0.0192727 1e-6 446 119 0.0149091 1e-6 447 119 0.0021817998 1e-6 450 119 0.00036359997 1e-6 452 119 0.006545499 1e-6 453 119 0.0047272965 1e-6 454 119 0.00072729983 1e-6 455 119 0.044 1e-6 457 119 0.0025454999 1e-6 459 119 0.0101818 1e-6 460 119 0.0025454999 1e-6 463 119 0.0018181999 1e-6 464 119 0.00036359997 1e-6 465 119 0.00072729983 1e-6 467 119 0.0050908998 1e-6 468 119 0.021090899 1e-6 469 119 0.00072729983 1e-6 470 119 0.0010908998 1e-6 489 119 0.00036359997 1e-6 490 119 0.081090868 1e-6 491 119 0.0061817989 1e-6 1 120 0.004378397 1e-6 2 120 0.18949187 1e-6 6 120 0.00020359999 1e-6 13 120 0.00020359999 1e-6 14 120 0.0016291998 1e-6 17 120 0.036656097 1e-6 21 120 0.00010179999 1e-6 22 120 0.00010179999 1e-6 24 120 0.00030549988 1e-6 60 120 0.0021382999 1e-6 82 120 0.040728997 1e-6 83 120 0.00061089988 1e-6 84 120 0.0096731 1e-6 85 120 0.0011199999 1e-6 88 120 0.00010179999 1e-6 91 120 0.0019345998 1e-6 96 120 0.00091639999 1e-6 102 120 0.00010179999 1e-6 104 120 0.00030549988 1e-6 114 120 0.00010179999 1e-6 117 120 0.00081459992 1e-6 118 120 0.0046837963 1e-6 119 120 0.0016291998 1e-6 120 120 0.25180739 1e-6 122 120 0.0023418998 1e-6 125 120 0.00040729996 1e-6 126 120 0.00010179999 1e-6 153 120 0.00010179999 1e-6 193 120 0.00020359999 1e-6 194 120 0.00010179999 1e-6 198 120 0.0023418998 1e-6 204 120 0.00040729996 1e-6 206 120 0.00020359999 1e-6 214 120 0.0029528998 1e-6 218 120 0.00040729996 1e-6 223 120 0.00040729996 1e-6 224 120 0.00040729996 1e-6 225 120 0.00010179999 1e-6 229 120 0.00040729996 1e-6 230 120 0.00020359999 1e-6 231 120 0.00020359999 1e-6 232 120 0.00010179999 1e-6 234 120 0.0060075 1e-6 237 120 0.00020359999 1e-6 241 120 0.0021382999 1e-6 252 120 0.00010179999 1e-6 253 120 0.00030549988 1e-6 277 120 0.00030549988 1e-6 279 120 0.00010179999 1e-6 300 120 0.0015272999 1e-6 301 120 0.0037673998 1e-6 324 120 0.00020359999 1e-6 325 120 0.00010179999 1e-6 344 120 0.00040729996 1e-6 358 120 0.0005090998 1e-6 402 120 0.00010179999 1e-6 443 120 0.0079421997 1e-6 444 120 0.00010179999 1e-6 445 120 0.0091639981 1e-6 446 120 0.0015272999 1e-6 447 120 0.0019345998 1e-6 450 120 0.0016291998 1e-6 452 120 0.008145798 1e-6 453 120 0.0085530989 1e-6 454 120 0.00071279984 1e-6 455 120 0.044700097 1e-6 456 120 0.00020359999 1e-6 457 120 0.0021382999 1e-6 458 120 0.00010179999 1e-6 459 120 0.00061089988 1e-6 460 120 0.0016291998 1e-6 463 120 0.0047856979 1e-6 464 120 0.00020359999 1e-6 465 120 0.0065165982 1e-6 467 120 0.0054983981 1e-6 468 120 0.0039710999 1e-6 469 120 0.0019345998 1e-6 470 120 0.0021382999 1e-6 471 120 0.0016291998 1e-6 473 120 0.00010179999 1e-6 478 120 0.00040729996 1e-6 483 120 0.00071279984 1e-6 490 120 0.00040729996 1e-6 491 120 0.004378397 1e-6 3 121 0.00041569979 1e-6 5 121 4.6199988e-05 1e-6 9 121 0.00046189991 1e-6 10 121 4.6199988e-05 1e-6 11 121 0.00073899981 1e-6 13 121 0.0012469999 1e-6 14 121 0.00073899981 1e-6 17 121 4.6199988e-05 1e-6 22 121 4.6199988e-05 1e-6 60 121 0.0013394 1e-6 93 121 4.6199988e-05 1e-6 94 121 9.2399991e-05 1e-6 98 121 0.00013859999 1e-6 104 121 0.00018469999 1e-6 105 121 0.00018469999 1e-6 106 121 4.6199988e-05 1e-6 107 121 0.0006465998 1e-6 108 121 0.00013859999 1e-6 109 121 4.6199988e-05 1e-6 114 121 9.2399991e-05 1e-6 115 121 4.6199988e-05 1e-6 116 121 9.2399991e-05 1e-6 118 121 4.6199988e-05 1e-6 119 121 9.2399991e-05 1e-6 120 121 9.2399991e-05 1e-6 121 121 0.0005541998 1e-6 122 121 0.00073899981 1e-6 125 121 0.00013859999 1e-6 126 121 4.6199988e-05 1e-6 151 121 0.0015703 1e-6 153 121 0.0016627 1e-6 189 121 4.6199988e-05 1e-6 192 121 0.00032329978 1e-6 193 121 0.0078514963 1e-6 194 121 4.6199988e-05 1e-6 198 121 0.031775396 1e-6 204 121 0.0052650981 1e-6 206 121 9.2399991e-05 1e-6 214 121 0.001986 1e-6 223 121 0.0002309 1e-6 229 121 0.0003694999 1e-6 230 121 0.00013859999 1e-6 231 121 0.00018469999 1e-6 232 121 4.6199988e-05 1e-6 234 121 0.0015703 1e-6 237 121 0.00013859999 1e-6 241 121 0.0060501993 1e-6 242 121 0.0015240998 1e-6 252 121 4.6199988e-05 1e-6 253 121 0.015379597 1e-6 272 121 0.0002770999 1e-6 279 121 0.0005541998 1e-6 300 121 0.052004397 1e-6 314 121 0.0026786998 1e-6 325 121 9.2399991e-05 1e-6 344 121 0.00050799991 1e-6 356 121 4.6199988e-05 1e-6 358 121 0.0002309 1e-6 387 121 4.6199988e-05 1e-6 402 121 4.6199988e-05 1e-6 443 121 0.0036024 1e-6 444 121 0.0043875985 1e-6 445 121 0.004202798 1e-6 446 121 0.023323499 1e-6 447 121 0.0015703 1e-6 450 121 0.00073899981 1e-6 452 121 0.0023553998 1e-6 453 121 0.0013394 1e-6 454 121 0.0018936 1e-6 455 121 0.032745197 1e-6 456 121 0.00013859999 1e-6 457 121 0.0024015999 1e-6 458 121 4.6199988e-05 1e-6 459 121 0.00041569979 1e-6 460 121 0.0029557999 1e-6 463 121 0.0037872 1e-6 464 121 0.0017088 1e-6 465 121 0.00032329978 1e-6 467 121 0.0039718971 1e-6 468 121 0.042259399 1e-6 469 121 0.0033714999 1e-6 470 121 0.0013394 1e-6 471 121 0.0049879998 1e-6 473 121 4.6199988e-05 1e-6 477 121 4.6199988e-05 1e-6 478 121 0.0002309 1e-6 483 121 0.00069279992 1e-6 490 121 0.4301219 1e-6 491 121 0.00032329978 1e-6 0 122 0.0065629967 1e-6 2 122 0.0081926994 1e-6 3 122 4.3999986e-05 1e-6 4 122 0.0040082969 1e-6 5 122 0.0023345 1e-6 6 122 0.0011011998 1e-6 9 122 0.00057259994 1e-6 10 122 0.0002642998 1e-6 11 122 0.0017618998 1e-6 13 122 0.00096899993 1e-6 14 122 0.10064745 1e-6 17 122 4.3999986e-05 1e-6 22 122 0.00048449985 1e-6 24 122 4.3999986e-05 1e-6 60 122 0.0016737999 1e-6 82 122 0.041712496 1e-6 83 122 4.3999986e-05 1e-6 85 122 0.0015856999 1e-6 86 122 8.8099987e-05 1e-6 87 122 0.0051975995 1e-6 88 122 0.00017619999 1e-6 90 122 0.0025106999 1e-6 93 122 4.3999986e-05 1e-6 95 122 0.00088089984 1e-6 98 122 4.3999986e-05 1e-6 104 122 0.012377199 1e-6 107 122 0.0016297 1e-6 108 122 0.00044049998 1e-6 109 122 0.00022019999 1e-6 114 122 4.3999986e-05 1e-6 116 122 0.00017619999 1e-6 117 122 0.0342246 1e-6 118 122 0.18530589 1e-6 119 122 0.0606528 1e-6 120 122 0.0003082999 1e-6 122 122 0.096683264 1e-6 125 122 0.00096899993 1e-6 126 122 4.3999986e-05 1e-6 130 122 4.3999986e-05 1e-6 150 122 4.3999986e-05 1e-6 151 122 8.8099987e-05 1e-6 189 122 4.3999986e-05 1e-6 192 122 0.00061669992 1e-6 193 122 0.00092499983 1e-6 194 122 4.3999986e-05 1e-6 198 122 0.0198652 1e-6 204 122 0.013874799 1e-6 206 122 8.8099987e-05 1e-6 214 122 0.0064308979 1e-6 223 122 4.3999986e-05 1e-6 229 122 0.00048449985 1e-6 230 122 0.00013209999 1e-6 231 122 0.0016737999 1e-6 234 122 0.0023345 1e-6 237 122 0.00013209999 1e-6 241 122 0.012200996 1e-6 242 122 0.0013213998 1e-6 252 122 4.3999986e-05 1e-6 253 122 0.016473599 1e-6 272 122 0.00035239989 1e-6 279 122 0.00092499983 1e-6 300 122 0.014667697 1e-6 301 122 0.0015856999 1e-6 314 122 0.0027749999 1e-6 317 122 4.3999986e-05 1e-6 324 122 0.00013209999 1e-6 325 122 0.0024225998 1e-6 340 122 0.00013209999 1e-6 344 122 0.00057259994 1e-6 350 122 0.0014535999 1e-6 351 122 0.0019381 1e-6 356 122 4.3999986e-05 1e-6 358 122 0.00022019999 1e-6 402 122 4.3999986e-05 1e-6 443 122 0.018455699 1e-6 444 122 0.0021582998 1e-6 445 122 0.025371097 1e-6 446 122 0.0014535999 1e-6 447 122 0.0026427999 1e-6 450 122 0.00088089984 1e-6 452 122 0.0037439999 1e-6 453 122 0.0035677999 1e-6 454 122 0.0010130999 1e-6 455 122 0.045280397 1e-6 456 122 0.00013209999 1e-6 457 122 0.0022023998 1e-6 458 122 0.00048449985 1e-6 459 122 0.00052859983 1e-6 460 122 0.0016737999 1e-6 463 122 0.0020261998 1e-6 464 122 0.00039639999 1e-6 465 122 0.00048449985 1e-6 467 122 0.005770199 1e-6 468 122 0.0306127 1e-6 469 122 0.0012333 1e-6 470 122 0.0010570998 1e-6 471 122 0.0011892999 1e-6 473 122 4.3999986e-05 1e-6 477 122 4.3999986e-05 1e-6 478 122 0.0002642998 1e-6 483 122 0.00039639999 1e-6 490 122 0.00088089984 1e-6 491 122 0.0013213998 1e-6 17 123 0.00091659999 1e-6 22 123 0.00091659999 1e-6 60 123 0.021998197 1e-6 114 123 0.00091659999 1e-6 123 123 0.0018332 1e-6 193 123 0.0183318 1e-6 198 123 0.00091659999 1e-6 206 123 0.0018332 1e-6 230 123 0.00091659999 1e-6 234 123 0.0082492977 1e-6 237 123 0.0018332 1e-6 241 123 0.013748899 1e-6 272 123 0.0018332 1e-6 277 123 0.00091659999 1e-6 324 123 0.00091659999 1e-6 334 123 0.00091659999 1e-6 358 123 0.0027498 1e-6 366 123 0.00091659999 1e-6 444 123 0.00091659999 1e-6 445 123 0.016498599 1e-6 447 123 0.0064160973 1e-6 450 123 0.0082492977 1e-6 452 123 0.076076984 1e-6 453 123 0.00091659999 1e-6 454 123 0.012832299 1e-6 455 123 0.0073326975 1e-6 456 123 0.00091659999 1e-6 457 123 0.0027498 1e-6 458 123 0.0018332 1e-6 459 123 0.00091659999 1e-6 460 123 0.0036664 1e-6 463 123 0.010082498 1e-6 464 123 0.0018332 1e-6 465 123 0.0018332 1e-6 467 123 0.034830399 1e-6 468 123 0.0054994971 1e-6 469 123 0.010082498 1e-6 470 123 0.010999098 1e-6 471 123 0.009165898 1e-6 478 123 0.0018332 1e-6 483 123 0.0054994971 1e-6 490 123 0.0018332 1e-6 0 124 0.0088593997 1e-6 3 124 0.00055369991 1e-6 5 124 0.024640098 1e-6 9 124 0.00055369991 1e-6 11 124 0.0011073998 1e-6 13 124 0.00055369991 1e-6 14 124 0.0127353 1e-6 60 124 0.0024917 1e-6 85 124 0.020210396 1e-6 87 124 0.0074750967 1e-6 88 124 0.00055369991 1e-6 90 124 0.0027684998 1e-6 94 124 0.0019379999 1e-6 97 124 0.0002768999 1e-6 98 124 0.27380949 1e-6 104 124 0.00055369991 1e-6 105 124 0.0002768999 1e-6 107 124 0.0019379999 1e-6 114 124 0.0002768999 1e-6 118 124 0.0011073998 1e-6 122 124 0.0016611 1e-6 124 124 0.011627898 1e-6 125 124 0.0002768999 1e-6 192 124 0.013012197 1e-6 193 124 0.0096898973 1e-6 198 124 0.059523799 1e-6 204 124 0.00083059981 1e-6 206 124 0.00055369991 1e-6 214 124 0.0011073998 1e-6 223 124 0.00055369991 1e-6 228 124 0.0127353 1e-6 229 124 0.0002768999 1e-6 230 124 0.00055369991 1e-6 234 124 0.0038759999 1e-6 237 124 0.00055369991 1e-6 241 124 0.033222597 1e-6 252 124 0.0002768999 1e-6 253 124 0.00055369991 1e-6 272 124 0.0002768999 1e-6 279 124 0.0013842999 1e-6 300 124 0.0011073998 1e-6 314 124 0.0002768999 1e-6 325 124 0.0002768999 1e-6 340 124 0.0002768999 1e-6 344 124 0.0002768999 1e-6 358 124 0.00083059981 1e-6 443 124 0.023255799 1e-6 444 124 0.0002768999 1e-6 445 124 0.018826097 1e-6 446 124 0.00055369991 1e-6 447 124 0.011627898 1e-6 450 124 0.0024917 1e-6 452 124 0.0066444986 1e-6 453 124 0.0016611 1e-6 454 124 0.00055369991 1e-6 455 124 0.040974498 1e-6 456 124 0.0002768999 1e-6 457 124 0.0024917 1e-6 458 124 0.00055369991 1e-6 459 124 0.00055369991 1e-6 460 124 0.0024917 1e-6 463 124 0.0063676983 1e-6 464 124 0.00055369991 1e-6 465 124 0.0011073998 1e-6 467 124 0.0083055981 1e-6 468 124 0.026854899 1e-6 469 124 0.0033222998 1e-6 470 124 0.0035990998 1e-6 471 124 0.0024917 1e-6 478 124 0.00055369991 1e-6 483 124 0.00083059981 1e-6 490 124 0.0027684998 1e-6 0 125 0.0035058998 1e-6 1 125 0.00034269993 1e-6 2 125 0.0018189 1e-6 3 125 0.014418997 1e-6 5 125 0.0044284984 1e-6 6 125 0.0038221998 1e-6 9 125 0.017160498 1e-6 10 125 0.0001318 1e-6 11 125 0.025437597 1e-6 12 125 7.9099991e-05 1e-6 13 125 0.016079698 1e-6 14 125 0.025463898 1e-6 16 125 0.0004480998 1e-6 17 125 0.0026623998 1e-6 22 125 0.00021089999 1e-6 24 125 2.6399997e-05 1e-6 60 125 0.0020297 1e-6 82 125 0.0025042 1e-6 83 125 0.00010539999 1e-6 84 125 0.00052719982 1e-6 85 125 0.00055359979 1e-6 86 125 7.9099991e-05 1e-6 87 125 0.0006589999 1e-6 88 125 0.0011862 1e-6 90 125 0.0013970998 1e-6 91 125 2.6399997e-05 1e-6 93 125 0.0011862 1e-6 94 125 0.0010279999 1e-6 95 125 0.00028999988 1e-6 97 125 7.9099991e-05 1e-6 98 125 0.0091469996 1e-6 100 125 0.00010539999 1e-6 102 125 0.00010539999 1e-6 103 125 0.0001318 1e-6 104 125 0.0079607964 1e-6 105 125 0.006563697 1e-6 106 125 0.0020560999 1e-6 107 125 0.026043899 1e-6 108 125 0.0001582 1e-6 109 125 0.00081719994 1e-6 112 125 2.6399997e-05 1e-6 113 125 0.00063259993 1e-6 114 125 0.0001318 1e-6 115 125 0.0022143 1e-6 116 125 0.0027150998 1e-6 117 125 0.00097529986 1e-6 118 125 0.0044284984 1e-6 119 125 0.0021088 1e-6 120 125 0.00026359991 1e-6 121 125 2.6399997e-05 1e-6 122 125 0.029022597 1e-6 124 125 0.00010539999 1e-6 125 125 0.0054301992 1e-6 126 125 5.2699994e-05 1e-6 150 125 0.00036899978 1e-6 151 125 5.2699994e-05 1e-6 153 125 5.2699994e-05 1e-6 160 125 2.6399997e-05 1e-6 169 125 2.6399997e-05 1e-6 172 125 5.2699994e-05 1e-6 189 125 5.2699994e-05 1e-6 190 125 5.2699994e-05 1e-6 191 125 0.00068539986 1e-6 192 125 0.011862099 1e-6 193 125 0.0037958999 1e-6 194 125 0.00010539999 1e-6 197 125 2.6399997e-05 1e-6 198 125 0.0279154 1e-6 200 125 2.6399997e-05 1e-6 203 125 5.2699994e-05 1e-6 204 125 0.0081188977 1e-6 206 125 0.0001318 1e-6 207 125 2.6399997e-05 1e-6 214 125 0.004191298 1e-6 218 125 5.2699994e-05 1e-6 219 125 5.2699994e-05 1e-6 223 125 0.0088569969 1e-6 224 125 2.6399997e-05 1e-6 228 125 0.00023719999 1e-6 229 125 0.00031629996 1e-6 230 125 0.0004480998 1e-6 231 125 0.00028999988 1e-6 232 125 0.00010539999 1e-6 234 125 0.0031895998 1e-6 237 125 0.00034269993 1e-6 240 125 2.6399997e-05 1e-6 241 125 0.029628798 1e-6 242 125 0.0014497999 1e-6 252 125 0.0001582 1e-6 253 125 0.018715698 1e-6 270 125 2.6399997e-05 1e-6 272 125 0.00036899978 1e-6 277 125 7.9099991e-05 1e-6 279 125 0.0006589999 1e-6 300 125 0.021483596 1e-6 301 125 0.00092259981 1e-6 314 125 0.0045866966 1e-6 317 125 2.6399997e-05 1e-6 325 125 0.0043230988 1e-6 326 125 2.6399997e-05 1e-6 340 125 7.9099991e-05 1e-6 344 125 0.00092259981 1e-6 350 125 2.6399997e-05 1e-6 351 125 5.2699994e-05 1e-6 358 125 0.00068539986 1e-6 366 125 2.6399997e-05 1e-6 384 125 2.6399997e-05 1e-6 387 125 2.6399997e-05 1e-6 394 125 2.6399997e-05 1e-6 397 125 2.6399997e-05 1e-6 402 125 0.0001582 1e-6 414 125 2.6399997e-05 1e-6 419 125 2.6399997e-05 1e-6 422 125 0.00010539999 1e-6 423 125 2.6399997e-05 1e-6 425 125 2.6399997e-05 1e-6 430 125 2.6399997e-05 1e-6 431 125 2.6399997e-05 1e-6 433 125 2.6399997e-05 1e-6 434 125 2.6399997e-05 1e-6 443 125 0.0096214972 1e-6 444 125 0.0019506998 1e-6 445 125 0.0294443 1e-6 446 125 0.0036640998 1e-6 447 125 0.0058255978 1e-6 448 125 2.6399997e-05 1e-6 450 125 0.0023196999 1e-6 452 125 0.0047711991 1e-6 453 125 0.0030313998 1e-6 454 125 0.00052719982 1e-6 455 125 0.053959299 1e-6 456 125 0.00050079986 1e-6 457 125 0.0041121989 1e-6 458 125 0.00047449977 1e-6 459 125 0.00050079986 1e-6 460 125 0.0021352 1e-6 463 125 0.0137337 1e-6 464 125 0.00023719999 1e-6 465 125 0.0050083995 1e-6 467 125 0.011651199 1e-6 468 125 0.0526677 1e-6 469 125 0.0032686999 1e-6 470 125 0.0035322998 1e-6 471 125 0.0049029998 1e-6 473 125 7.9099991e-05 1e-6 477 125 5.2699994e-05 1e-6 478 125 0.00068539986 1e-6 483 125 0.00086989999 1e-6 489 125 0.00023719999 1e-6 490 125 0.049688898 1e-6 491 125 0.00026359991 1e-6 22 126 0.0002077 1e-6 60 126 0.00064049987 1e-6 104 126 0.00027699978 1e-6 108 126 1.7299986e-05 1e-6 114 126 1.7299986e-05 1e-6 126 126 1.7299986e-05 1e-6 129 126 0.19280237 1e-6 151 126 1.7299986e-05 1e-6 187 126 0.012584597 1e-6 189 126 1.7299986e-05 1e-6 190 126 1.7299986e-05 1e-6 194 126 3.4599987e-05 1e-6 198 126 0.0089147985 1e-6 200 126 1.7299986e-05 1e-6 203 126 1.7299986e-05 1e-6 204 126 0.010316998 1e-6 206 126 3.4599987e-05 1e-6 214 126 0.00015579999 1e-6 229 126 0.00076169986 1e-6 234 126 0.00070969993 1e-6 237 126 8.659999e-05 1e-6 241 126 0.016150497 1e-6 252 126 3.4599987e-05 1e-6 272 126 0.00034619984 1e-6 279 126 0.00019039999 1e-6 284 126 1.7299986e-05 1e-6 325 126 0.0047775991 1e-6 340 126 5.1899988e-05 1e-6 350 126 0.0006750999 1e-6 356 126 1.7299986e-05 1e-6 358 126 0.00032889983 1e-6 387 126 1.7299986e-05 1e-6 402 126 5.1899988e-05 1e-6 404 126 1.7299986e-05 1e-6 422 126 3.4599987e-05 1e-6 430 126 1.7299986e-05 1e-6 434 126 1.7299986e-05 1e-6 443 126 0.0009347999 1e-6 444 126 0.00079629989 1e-6 445 126 0.0020252999 1e-6 446 126 0.00012119999 1e-6 447 126 0.00076169986 1e-6 450 126 0.00060589984 1e-6 452 126 0.0010213 1e-6 453 126 0.0002597 1e-6 454 126 0.0002597 1e-6 455 126 0.0051584989 1e-6 456 126 0.00010389999 1e-6 457 126 0.0014020998 1e-6 458 126 0.00098669995 1e-6 459 126 0.0017309999 1e-6 460 126 0.0004153999 1e-6 463 126 0.0018867999 1e-6 464 126 0.000225 1e-6 465 126 0.0042063966 1e-6 467 126 0.0027003998 1e-6 468 126 0.059530199 1e-6 469 126 0.00084819994 1e-6 470 126 0.00091739977 1e-6 471 126 0.00057119993 1e-6 472 126 0.00017309999 1e-6 473 126 1.7299986e-05 1e-6 477 126 6.9199989e-05 1e-6 478 126 0.000225 1e-6 483 126 0.0018002999 1e-6 489 126 1.7299986e-05 1e-6 490 126 8.659999e-05 1e-6 491 126 0.00072699995 1e-6 8 127 0.017421599 1e-6 60 127 0.0017422 1e-6 104 127 0.00049779983 1e-6 114 127 0.00024889992 1e-6 126 127 0.00024889992 1e-6 127 127 0.0014932998 1e-6 129 127 0.25311095 1e-6 150 127 0.00024889992 1e-6 172 127 0.00049779983 1e-6 187 127 0.00099549978 1e-6 194 127 0.00024889992 1e-6 198 127 0.033847697 1e-6 204 127 0.00074659986 1e-6 206 127 0.00049779983 1e-6 229 127 0.00074659986 1e-6 234 127 0.0032354 1e-6 237 127 0.00049779983 1e-6 241 127 0.017670497 1e-6 252 127 0.00024889992 1e-6 272 127 0.00024889992 1e-6 279 127 0.00049779983 1e-6 317 127 0.00024889992 1e-6 325 127 0.0069685988 1e-6 358 127 0.0017422 1e-6 402 127 0.00024889992 1e-6 443 127 0.00024889992 1e-6 444 127 0.00024889992 1e-6 445 127 0.0037331998 1e-6 447 127 0.0017422 1e-6 450 127 0.0029865999 1e-6 452 127 0.0037331998 1e-6 453 127 0.00074659986 1e-6 454 127 0.0014932998 1e-6 455 127 0.0052264966 1e-6 456 127 0.00024889992 1e-6 457 127 0.0019909998 1e-6 458 127 0.00099549978 1e-6 459 127 0.0012443999 1e-6 460 127 0.00049779983 1e-6 463 127 0.0032354 1e-6 464 127 0.00024889992 1e-6 465 127 0.0047286972 1e-6 467 127 0.010452997 1e-6 468 127 0.020408198 1e-6 469 127 0.0037331998 1e-6 470 127 0.0039820969 1e-6 471 127 0.0029865999 1e-6 473 127 0.00024889992 1e-6 478 127 0.00099549978 1e-6 483 127 0.0037331998 1e-6 490 127 0.00049779983 1e-6 491 127 0.00024889992 1e-6 8 128 0.017788097 1e-6 22 128 0.0011600999 1e-6 60 128 0.0023202 1e-6 104 128 0.015854597 1e-6 114 128 0.0003866998 1e-6 128 128 0.0023202 1e-6 129 128 0.25870067 1e-6 187 128 0.0042536967 1e-6 192 128 0.0019334999 1e-6 193 128 0.0073472969 1e-6 198 128 0.017788097 1e-6 204 128 0.0069605969 1e-6 206 128 0.0003866998 1e-6 229 128 0.0011600999 1e-6 234 128 0.0015467999 1e-6 241 128 0.0073472969 1e-6 272 128 0.00077339984 1e-6 279 128 0.0003866998 1e-6 300 128 0.0019334999 1e-6 325 128 0.0061871968 1e-6 340 128 0.0003866998 1e-6 350 128 0.0003866998 1e-6 358 128 0.00077339984 1e-6 443 128 0.0023202 1e-6 444 128 0.0019334999 1e-6 445 128 0.0042536967 1e-6 446 128 0.0003866998 1e-6 447 128 0.018561497 1e-6 450 128 0.0015467999 1e-6 452 128 0.0019334999 1e-6 453 128 0.00077339984 1e-6 455 128 0.0058004968 1e-6 457 128 0.0023202 1e-6 458 128 0.0003866998 1e-6 459 128 0.0019334999 1e-6 460 128 0.0003866998 1e-6 463 128 0.012760997 1e-6 464 128 0.0003866998 1e-6 465 128 0.0015467999 1e-6 467 128 0.0050270967 1e-6 468 128 0.11136889 1e-6 469 128 0.0030935998 1e-6 470 128 0.0034802998 1e-6 471 128 0.0015467999 1e-6 478 128 0.0003866998 1e-6 483 128 0.0038669999 1e-6 490 128 0.0003866998 1e-6 491 128 0.0030935998 1e-6 8 129 0.5532372 1e-6 22 129 7.1599992e-05 1e-6 60 129 0.00093049998 1e-6 104 129 7.1599992e-05 1e-6 114 129 3.5799996e-05 1e-6 126 129 3.5799996e-05 1e-6 129 129 0.26316166 1e-6 130 129 3.5799996e-05 1e-6 151 129 3.5799996e-05 1e-6 159 129 0.00010739999 1e-6 160 129 0.00057259994 1e-6 172 129 0.0016104998 1e-6 186 129 0.00025049993 1e-6 187 129 0.0001432 1e-6 189 129 3.5799996e-05 1e-6 193 129 3.5799996e-05 1e-6 198 129 0.00071579986 1e-6 204 129 0.00010739999 1e-6 206 129 7.1599992e-05 1e-6 214 129 7.1599992e-05 1e-6 229 129 0.0016462998 1e-6 234 129 0.00078739994 1e-6 237 129 3.5799996e-05 1e-6 241 129 0.00017889999 1e-6 252 129 3.5799996e-05 1e-6 272 129 0.00010739999 1e-6 279 129 3.5799996e-05 1e-6 325 129 7.1599992e-05 1e-6 356 129 3.5799996e-05 1e-6 358 129 0.00021469999 1e-6 443 129 0.0017894998 1e-6 444 129 7.1599992e-05 1e-6 445 129 0.043949798 1e-6 446 129 0.00028629997 1e-6 447 129 0.00071579986 1e-6 450 129 0.00035789981 1e-6 452 129 0.0013599999 1e-6 453 129 0.00028629997 1e-6 454 129 0.00010739999 1e-6 455 129 0.0012526 1e-6 456 129 3.5799996e-05 1e-6 457 129 0.0012883998 1e-6 458 129 0.00010739999 1e-6 459 129 0.00071579986 1e-6 460 129 0.00028629997 1e-6 463 129 0.0025768999 1e-6 464 129 7.1599992e-05 1e-6 465 129 0.00010739999 1e-6 467 129 0.0091263987 1e-6 468 129 0.0015389998 1e-6 469 129 0.0007515999 1e-6 470 129 0.00085899979 1e-6 471 129 0.0005367999 1e-6 473 129 3.5799996e-05 1e-6 477 129 3.5799996e-05 1e-6 478 129 0.00010739999 1e-6 483 129 0.0019325998 1e-6 490 129 0.0070147999 1e-6 491 129 3.5799996e-05 1e-6 2 130 0.0017565 1e-6 4 130 0.0603249 1e-6 9 130 8.8999996e-06 1e-6 13 130 0.0001508 1e-6 16 130 8.8999996e-06 1e-6 18 130 8.8999996e-06 1e-6 22 130 0.00074519985 1e-6 25 130 4.4399989e-05 1e-6 60 130 0.0025903999 1e-6 79 130 8.8999996e-06 1e-6 82 130 8.8999996e-06 1e-6 83 130 8.8999996e-06 1e-6 84 130 6.2099993e-05 1e-6 104 130 0.0018451998 1e-6 108 130 1.7699989e-05 1e-6 113 130 2.6599999e-05 1e-6 114 130 6.2099993e-05 1e-6 126 130 2.6599999e-05 1e-6 127 130 8.8999996e-06 1e-6 130 130 0.32233 1e-6 131 130 0.00015969999 1e-6 132 130 0.052855197 1e-6 133 130 0.00045239995 1e-6 134 130 4.4399989e-05 1e-6 136 130 2.6599999e-05 1e-6 137 130 0.0001242 1e-6 138 130 0.0014016998 1e-6 139 130 0.00025729998 1e-6 140 130 6.2099993e-05 1e-6 141 130 1.7699989e-05 1e-6 142 130 0.00028389995 1e-6 143 130 0.0058816969 1e-6 145 130 1.7699989e-05 1e-6 146 130 2.6599999e-05 1e-6 149 130 0.0011443999 1e-6 150 130 0.00078949984 1e-6 151 130 0.00014189999 1e-6 152 130 0.00021289999 1e-6 155 130 8.8999996e-06 1e-6 156 130 8.8999996e-06 1e-6 157 130 0.00013309999 1e-6 158 130 7.0999988e-05 1e-6 171 130 0.00015969999 1e-6 186 130 1.7699989e-05 1e-6 187 130 8.8999996e-06 1e-6 189 130 7.9799996e-05 1e-6 190 130 8.8699991e-05 1e-6 192 130 0.0014282998 1e-6 193 130 0.0001065 1e-6 194 130 5.3199998e-05 1e-6 196 130 8.8999996e-06 1e-6 197 130 2.6599999e-05 1e-6 198 130 0.0062630996 1e-6 200 130 2.6599999e-05 1e-6 201 130 1.7699989e-05 1e-6 203 130 4.4399989e-05 1e-6 204 130 5.3199998e-05 1e-6 206 130 0.0001065 1e-6 207 130 3.5499994e-05 1e-6 209 130 8.8999996e-06 1e-6 214 130 0.024351697 1e-6 219 130 2.6599999e-05 1e-6 221 130 0.0012774998 1e-6 222 130 1.7699989e-05 1e-6 223 130 0.0039565973 1e-6 224 130 0.0014548998 1e-6 225 130 0.00019519999 1e-6 226 130 0.0220984 1e-6 227 130 0.043566998 1e-6 231 130 0.0045598969 1e-6 232 130 1.7699989e-05 1e-6 233 130 0.00040809996 1e-6 234 130 0.0025016998 1e-6 237 130 8.8699991e-05 1e-6 240 130 0.0001065 1e-6 241 130 0.0035662998 1e-6 242 130 5.3199998e-05 1e-6 243 130 8.8999996e-06 1e-6 248 130 8.8999996e-06 1e-6 250 130 8.8999996e-06 1e-6 251 130 8.8999996e-06 1e-6 252 130 0.0047815964 1e-6 253 130 1.7699989e-05 1e-6 263 130 8.8999996e-06 1e-6 271 130 0.0001242 1e-6 272 130 0.00050569978 1e-6 277 130 7.9799996e-05 1e-6 279 130 0.00011529999 1e-6 284 130 1.7699989e-05 1e-6 300 130 1.7699989e-05 1e-6 317 130 0.00014189999 1e-6 319 130 0.00038149999 1e-6 322 130 1.7699989e-05 1e-6 326 130 0.00079839979 1e-6 334 130 8.8999996e-06 1e-6 335 130 0.00095809996 1e-6 336 130 0.00078069977 1e-6 340 130 8.8999996e-06 1e-6 345 130 0.0062187985 1e-6 350 130 0.0002307 1e-6 351 130 1.7699989e-05 1e-6 356 130 7.0999988e-05 1e-6 358 130 0.0013927999 1e-6 365 130 0.0001774 1e-6 384 130 4.4399989e-05 1e-6 387 130 2.6599999e-05 1e-6 392 130 8.8999996e-06 1e-6 394 130 8.8999996e-06 1e-6 397 130 8.8999996e-06 1e-6 402 130 4.4399989e-05 1e-6 404 130 1.7699989e-05 1e-6 414 130 0.0001774 1e-6 419 130 8.8999996e-06 1e-6 421 130 0.00040809996 1e-6 422 130 0.00076289987 1e-6 423 130 8.8999996e-06 1e-6 425 130 8.8999996e-06 1e-6 430 130 1.7699989e-05 1e-6 431 130 1.7699989e-05 1e-6 432 130 8.8999996e-06 1e-6 433 130 1.7699989e-05 1e-6 434 130 2.6599999e-05 1e-6 435 130 2.6599999e-05 1e-6 437 130 2.6599999e-05 1e-6 442 130 8.8999996e-06 1e-6 443 130 0.0043380968 1e-6 444 130 0.0018540998 1e-6 445 130 0.0093946978 1e-6 446 130 0.00051449984 1e-6 447 130 0.0042670965 1e-6 448 130 1.7699989e-05 1e-6 449 130 8.8999996e-06 1e-6 450 130 0.0029187 1e-6 452 130 0.010015696 1e-6 453 130 0.0026169999 1e-6 454 130 0.0018806998 1e-6 455 130 0.043017 1e-6 456 130 0.000275 1e-6 457 130 0.0022089998 1e-6 458 130 0.00062989979 1e-6 459 130 0.00055889995 1e-6 460 130 0.00048789987 1e-6 463 130 0.0063518994 1e-6 464 130 0.0014725998 1e-6 465 130 0.00086049992 1e-6 467 130 0.012473099 1e-6 468 130 0.0026258999 1e-6 469 130 0.0025372 1e-6 470 130 0.0027945 1e-6 471 130 0.0010467998 1e-6 473 130 6.2099993e-05 1e-6 477 130 5.3199998e-05 1e-6 478 130 0.00096699991 1e-6 479 130 0.00079839979 1e-6 483 130 0.0012153999 1e-6 489 130 6.2099993e-05 1e-6 490 130 0.00040809996 1e-6 491 130 0.0013750999 1e-6 4 131 0.0029487999 1e-6 22 131 0.00018429999 1e-6 60 131 0.0027645 1e-6 108 131 0.00018429999 1e-6 114 131 0.00036859978 1e-6 126 131 0.00018429999 1e-6 130 131 0.014190897 1e-6 131 131 0.0086619966 1e-6 132 131 0.20586067 1e-6 138 131 0.00018429999 1e-6 139 131 0.00018429999 1e-6 142 131 0.013085097 1e-6 143 131 0.00018429999 1e-6 144 131 0.00018429999 1e-6 149 131 0.00036859978 1e-6 171 131 0.00018429999 1e-6 189 131 0.00018429999 1e-6 190 131 0.00018429999 1e-6 194 131 0.00018429999 1e-6 198 131 0.0014743998 1e-6 206 131 0.00036859978 1e-6 214 131 0.0014743998 1e-6 223 131 0.00018429999 1e-6 224 131 0.00018429999 1e-6 225 131 0.0005528999 1e-6 226 131 0.072797596 1e-6 227 131 0.10523409 1e-6 231 131 0.00018429999 1e-6 234 131 0.0031331 1e-6 237 131 0.00018429999 1e-6 240 131 0.030040499 1e-6 241 131 0.00018429999 1e-6 252 131 0.0038702998 1e-6 272 131 0.00036859978 1e-6 279 131 0.00092149992 1e-6 345 131 0.0129008 1e-6 356 131 0.00018429999 1e-6 358 131 0.0014743998 1e-6 387 131 0.00018429999 1e-6 422 131 0.00018429999 1e-6 443 131 0.0011057998 1e-6 444 131 0.0005528999 1e-6 445 131 0.0145595 1e-6 447 131 0.0064503998 1e-6 450 131 0.0031331 1e-6 452 131 0.009399198 1e-6 453 131 0.0022115998 1e-6 454 131 0.00036859978 1e-6 455 131 0.028566197 1e-6 457 131 0.0022115998 1e-6 458 131 0.0005528999 1e-6 459 131 0.00036859978 1e-6 460 131 0.0005528999 1e-6 463 131 0.016033899 1e-6 464 131 0.0005528999 1e-6 465 131 0.0014743998 1e-6 467 131 0.009399198 1e-6 468 131 0.0053445995 1e-6 469 131 0.005528897 1e-6 470 131 0.0060817972 1e-6 471 131 0.00092149992 1e-6 473 131 0.00018429999 1e-6 478 131 0.0018429998 1e-6 479 131 0.0053445995 1e-6 483 131 0.0018429998 1e-6 490 131 0.0005528999 1e-6 491 131 0.00092149992 1e-6 2 132 0.0075674988 1e-6 4 132 0.057291199 1e-6 9 132 1.9799991e-05 1e-6 13 132 0.00021789999 1e-6 18 132 1.9799991e-05 1e-6 22 132 0.00045559998 1e-6 60 132 0.0024167998 1e-6 82 132 1.9799991e-05 1e-6 83 132 1.9799991e-05 1e-6 84 132 1.9799991e-05 1e-6 104 132 0.0017432999 1e-6 108 132 1.9799991e-05 1e-6 113 132 3.9599996e-05 1e-6 114 132 7.9199992e-05 1e-6 118 132 5.9399987e-05 1e-6 126 132 3.9599996e-05 1e-6 127 132 1.9799991e-05 1e-6 130 132 0.016917899 1e-6 131 132 0.0015254 1e-6 132 132 0.087363064 1e-6 133 132 0.0001981 1e-6 134 132 0.0001981 1e-6 135 132 1.9799991e-05 1e-6 137 132 1.9799991e-05 1e-6 138 132 0.0011687998 1e-6 140 132 0.00011889999 1e-6 142 132 0.00021789999 1e-6 143 132 0.0086372979 1e-6 144 132 0.00013869999 1e-6 149 132 0.0010499 1e-6 150 132 0.0008121999 1e-6 151 132 1.9799991e-05 1e-6 155 132 3.9599996e-05 1e-6 158 132 3.9599996e-05 1e-6 171 132 0.0072703995 1e-6 186 132 0.00051509985 1e-6 189 132 1.9799991e-05 1e-6 190 132 9.9099998e-05 1e-6 192 132 9.9099998e-05 1e-6 193 132 5.9399987e-05 1e-6 194 132 0.00011889999 1e-6 197 132 1.9799991e-05 1e-6 198 132 0.009409897 1e-6 200 132 1.9799991e-05 1e-6 203 132 3.9599996e-05 1e-6 204 132 5.9399987e-05 1e-6 206 132 9.9099998e-05 1e-6 207 132 3.9599996e-05 1e-6 209 132 1.9799991e-05 1e-6 214 132 0.035856497 1e-6 215 132 9.9099998e-05 1e-6 221 132 5.9399987e-05 1e-6 223 132 0.0016243998 1e-6 224 132 0.0025356999 1e-6 225 132 0.00021789999 1e-6 226 132 0.031042598 1e-6 227 132 0.25824594 1e-6 231 132 0.0012876999 1e-6 233 132 1.9799991e-05 1e-6 234 132 0.0025752999 1e-6 237 132 7.9199992e-05 1e-6 240 132 0.00021789999 1e-6 241 132 0.0055071972 1e-6 242 132 0.00075279991 1e-6 252 132 0.00075279991 1e-6 272 132 0.0010102999 1e-6 277 132 7.9199992e-05 1e-6 279 132 0.00025749998 1e-6 284 132 1.9799991e-05 1e-6 319 132 1.9799991e-05 1e-6 324 132 3.9599996e-05 1e-6 326 132 3.9599996e-05 1e-6 334 132 1.9799991e-05 1e-6 335 132 5.9399987e-05 1e-6 336 132 3.9599996e-05 1e-6 345 132 0.0073693991 1e-6 349 132 0.00051509985 1e-6 350 132 1.9799991e-05 1e-6 351 132 3.9599996e-05 1e-6 356 132 0.00013869999 1e-6 358 132 0.0010102999 1e-6 377 132 1.9799991e-05 1e-6 382 132 0.0001585 1e-6 384 132 3.9599996e-05 1e-6 387 132 1.9799991e-05 1e-6 392 132 0.0015848 1e-6 402 132 3.9599996e-05 1e-6 404 132 3.9599996e-05 1e-6 414 132 0.0016441999 1e-6 417 132 1.9799991e-05 1e-6 419 132 1.9799991e-05 1e-6 421 132 1.9799991e-05 1e-6 422 132 0.00013869999 1e-6 423 132 1.9799991e-05 1e-6 425 132 1.9799991e-05 1e-6 430 132 1.9799991e-05 1e-6 431 132 1.9799991e-05 1e-6 432 132 1.9799991e-05 1e-6 433 132 1.9799991e-05 1e-6 434 132 3.9599996e-05 1e-6 443 132 0.0042987987 1e-6 444 132 0.00073299999 1e-6 445 132 0.0061411969 1e-6 446 132 0.00045559998 1e-6 447 132 0.00065369997 1e-6 450 132 0.0022781999 1e-6 452 132 0.0135304 1e-6 453 132 0.0021592998 1e-6 454 132 0.0010698 1e-6 455 132 0.035836697 1e-6 456 132 0.00023769999 1e-6 457 132 0.0022584 1e-6 458 132 0.00045559998 1e-6 459 132 0.0005349 1e-6 460 132 0.00073299999 1e-6 463 132 0.0063788965 1e-6 464 132 0.00033679977 1e-6 465 132 0.00099049998 1e-6 467 132 0.0069533996 1e-6 468 132 0.0029516998 1e-6 469 132 0.0030111999 1e-6 470 132 0.0030903998 1e-6 471 132 0.00067349989 1e-6 473 132 5.9399987e-05 1e-6 477 132 1.9799991e-05 1e-6 478 132 0.0010895999 1e-6 479 132 5.9399987e-05 1e-6 483 132 0.00073299999 1e-6 489 132 7.9199992e-05 1e-6 490 132 0.00057449983 1e-6 491 132 0.0016243998 1e-6 2 133 0.0011536998 1e-6 4 133 0.039515398 1e-6 22 133 0.0011536998 1e-6 60 133 0.0025958999 1e-6 104 133 0.00086529995 1e-6 114 133 0.00028839987 1e-6 130 133 0.008653 1e-6 132 133 0.28901064 1e-6 133 133 0.010383599 1e-6 138 133 0.00086529995 1e-6 143 133 0.0017305999 1e-6 171 133 0.046149399 1e-6 198 133 0.013556398 1e-6 206 133 0.00057689985 1e-6 214 133 0.029420197 1e-6 226 133 0.0028843 1e-6 227 133 0.090279758 1e-6 231 133 0.0040380992 1e-6 234 133 0.0028843 1e-6 240 133 0.00028839987 1e-6 241 133 0.011248898 1e-6 272 133 0.00057689985 1e-6 279 133 0.00057689985 1e-6 345 133 0.0106721 1e-6 358 133 0.00086529995 1e-6 443 133 0.0034611998 1e-6 444 133 0.00028839987 1e-6 445 133 0.015575398 1e-6 446 133 0.00057689985 1e-6 447 133 0.010383599 1e-6 450 133 0.0020189998 1e-6 452 133 0.012402698 1e-6 453 133 0.0017305999 1e-6 454 133 0.0020189998 1e-6 455 133 0.0409576 1e-6 457 133 0.0020189998 1e-6 458 133 0.00028839987 1e-6 460 133 0.00028839987 1e-6 463 133 0.026535898 1e-6 464 133 0.00057689985 1e-6 465 133 0.00086529995 1e-6 467 133 0.0072107986 1e-6 468 133 0.026535898 1e-6 469 133 0.0034611998 1e-6 470 133 0.0040380992 1e-6 471 133 0.0037495999 1e-6 478 133 0.00086529995 1e-6 483 133 0.0014421998 1e-6 490 133 0.0011536998 1e-6 491 133 0.00057689985 1e-6 2 134 3.2199998e-05 1e-6 4 134 0.00061109988 1e-6 22 134 0.00028939988 1e-6 60 134 0.0012863998 1e-6 82 134 3.2199998e-05 1e-6 104 134 3.2199998e-05 1e-6 108 134 3.2199998e-05 1e-6 114 134 3.2199998e-05 1e-6 126 134 3.2199998e-05 1e-6 130 134 0.028204799 1e-6 131 134 0.00032159989 1e-6 132 134 0.39058977 1e-6 133 134 3.2199998e-05 1e-6 134 134 0.035247996 1e-6 137 134 3.2199998e-05 1e-6 138 134 3.2199998e-05 1e-6 139 134 6.4299995e-05 1e-6 142 134 0.014247097 1e-6 143 134 0.046568498 1e-6 149 134 0.00028939988 1e-6 150 134 0.00041809981 1e-6 151 134 3.2199998e-05 1e-6 152 134 6.4299995e-05 1e-6 157 134 3.2199998e-05 1e-6 158 134 0.0047597997 1e-6 171 134 3.2199998e-05 1e-6 189 134 0.00048239995 1e-6 190 134 6.4299995e-05 1e-6 191 134 3.2199998e-05 1e-6 192 134 3.2199998e-05 1e-6 193 134 3.2199998e-05 1e-6 194 134 9.6499993e-05 1e-6 197 134 3.2199998e-05 1e-6 198 134 0.0052421987 1e-6 200 134 3.2199998e-05 1e-6 203 134 6.4299995e-05 1e-6 204 134 6.4299995e-05 1e-6 206 134 9.6499993e-05 1e-6 207 134 3.2199998e-05 1e-6 214 134 0.014793899 1e-6 223 134 3.2199998e-05 1e-6 224 134 3.2199998e-05 1e-6 225 134 0.018974699 1e-6 226 134 0.0019295998 1e-6 227 134 0.012542598 1e-6 231 134 0.0015758998 1e-6 234 134 0.0034411999 1e-6 237 134 9.6499993e-05 1e-6 240 134 0.027111299 1e-6 241 134 0.0048240982 1e-6 252 134 6.4299995e-05 1e-6 272 134 0.00051459996 1e-6 277 134 3.2199998e-05 1e-6 279 134 0.00012859999 1e-6 345 134 0.0020260999 1e-6 351 134 0.0027015 1e-6 356 134 6.4299995e-05 1e-6 358 134 0.00080399984 1e-6 384 134 0.00012859999 1e-6 387 134 3.2199998e-05 1e-6 402 134 3.2199998e-05 1e-6 422 134 9.6499993e-05 1e-6 430 134 3.2199998e-05 1e-6 433 134 3.2199998e-05 1e-6 434 134 3.2199998e-05 1e-6 443 134 0.0032803998 1e-6 444 134 0.0013506999 1e-6 445 134 0.0097124986 1e-6 446 134 0.0003537999 1e-6 447 134 0.0031516999 1e-6 448 134 3.2199998e-05 1e-6 450 134 0.0056923963 1e-6 452 134 0.004180897 1e-6 453 134 0.0034411999 1e-6 454 134 0.0035376998 1e-6 455 134 0.043995596 1e-6 456 134 0.00016079999 1e-6 457 134 0.0019617998 1e-6 458 134 0.00048239995 1e-6 459 134 0.00025729998 1e-6 460 134 0.00041809981 1e-6 463 134 0.0090692975 1e-6 464 134 0.000193 1e-6 465 134 0.00051459996 1e-6 467 134 0.0080400966 1e-6 468 134 0.019650098 1e-6 469 134 0.0019295998 1e-6 470 134 0.0021225999 1e-6 471 134 0.00077189994 1e-6 473 134 6.4299995e-05 1e-6 477 134 3.2199998e-05 1e-6 478 134 0.00064319978 1e-6 483 134 0.00073969993 1e-6 489 134 6.4299995e-05 1e-6 490 134 0.00032159989 1e-6 491 134 0.00025729998 1e-6 2 135 0.029029798 1e-6 23 135 0.0045836978 1e-6 60 135 0.0030558 1e-6 114 135 0.00076389988 1e-6 117 135 0.0015278999 1e-6 130 135 0.0068754964 1e-6 132 135 0.060351398 1e-6 134 135 0.0022918 1e-6 135 135 0.0022918 1e-6 138 135 0.11764705 1e-6 139 135 0.0022918 1e-6 142 135 0.0038196999 1e-6 143 135 0.073338389 1e-6 149 135 0.00076389988 1e-6 186 135 0.00076389988 1e-6 192 135 0.00076389988 1e-6 198 135 0.0022918 1e-6 206 135 0.00076389988 1e-6 214 135 0.019862499 1e-6 219 135 0.00076389988 1e-6 224 135 0.011459097 1e-6 225 135 0.0015278999 1e-6 226 135 0.0045836978 1e-6 227 135 0.033613399 1e-6 234 135 0.0068754964 1e-6 240 135 0.011459097 1e-6 241 135 0.0084033981 1e-6 243 135 0.00076389988 1e-6 272 135 0.00076389988 1e-6 279 135 0.0015278999 1e-6 345 135 0.0091672987 1e-6 358 135 0.0015278999 1e-6 442 135 0.010695197 1e-6 443 135 0.0068754964 1e-6 444 135 0.0038196999 1e-6 445 135 0.0076393969 1e-6 446 135 0.00076389988 1e-6 447 135 0.029793698 1e-6 450 135 0.0045836978 1e-6 452 135 0.0084033981 1e-6 453 135 0.0022918 1e-6 454 135 0.0015278999 1e-6 455 135 0.032849498 1e-6 457 135 0.0022918 1e-6 458 135 0.00076389988 1e-6 463 135 0.039724998 1e-6 464 135 0.00076389988 1e-6 465 135 0.00076389988 1e-6 467 135 0.0061114989 1e-6 468 135 0.0045836978 1e-6 469 135 0.0038196999 1e-6 470 135 0.0038196999 1e-6 471 135 0.00076389988 1e-6 478 135 0.00076389988 1e-6 483 135 0.0022918 1e-6 490 135 0.0015278999 1e-6 60 136 0.0062240995 1e-6 130 136 0.0020746998 1e-6 132 136 0.18672198 1e-6 136 136 0.016597498 1e-6 143 136 0.0020746998 1e-6 149 136 0.0062240995 1e-6 198 136 0.012448099 1e-6 206 136 0.0020746998 1e-6 214 136 0.0394191 1e-6 226 136 0.029045597 1e-6 227 136 0.010373399 1e-6 234 136 0.0082987994 1e-6 345 136 0.0082987994 1e-6 358 136 0.0020746998 1e-6 447 136 0.0020746998 1e-6 450 136 0.0041493997 1e-6 452 136 0.010373399 1e-6 453 136 0.0062240995 1e-6 455 136 0.018672198 1e-6 457 136 0.0020746998 1e-6 463 136 0.014522798 1e-6 467 136 0.0082987994 1e-6 468 136 0.016597498 1e-6 469 136 0.0041493997 1e-6 470 136 0.0041493997 1e-6 478 136 0.0020746998 1e-6 483 136 0.0041493997 1e-6 490 136 0.0020746998 1e-6 491 136 0.0020746998 1e-6 2 137 0.0018843999 1e-6 22 137 0.00062809978 1e-6 24 137 0.00062809978 1e-6 25 137 0.00062809978 1e-6 60 137 0.0031406998 1e-6 114 137 0.00062809978 1e-6 117 137 0.040200997 1e-6 130 137 0.010678399 1e-6 131 137 0.00062809978 1e-6 132 137 0.089195967 1e-6 133 137 0.00062809978 1e-6 134 137 0.00062809978 1e-6 135 137 0.021356799 1e-6 137 137 0.0031406998 1e-6 138 137 0.15515077 1e-6 142 137 0.0031406998 1e-6 143 137 0.0069094971 1e-6 149 137 0.00062809978 1e-6 158 137 0.00062809978 1e-6 160 137 0.00062809978 1e-6 161 137 0.00062809978 1e-6 178 137 0.00062809978 1e-6 186 137 0.00062809978 1e-6 187 137 0.0012562999 1e-6 188 137 0.00062809978 1e-6 192 137 0.0018843999 1e-6 193 137 0.0012562999 1e-6 198 137 0.015075397 1e-6 206 137 0.00062809978 1e-6 214 137 0.0050251 1e-6 219 137 0.0056532994 1e-6 223 137 0.0012562999 1e-6 224 137 0.0056532994 1e-6 225 137 0.00062809978 1e-6 226 137 0.0062813982 1e-6 227 137 0.0056532994 1e-6 234 137 0.0025125998 1e-6 240 137 0.0012562999 1e-6 241 137 0.0050251 1e-6 252 137 0.0012562999 1e-6 272 137 0.00062809978 1e-6 273 137 0.00062809978 1e-6 277 137 0.0012562999 1e-6 279 137 0.00062809978 1e-6 293 137 0.0012562999 1e-6 322 137 0.0037687998 1e-6 325 137 0.00062809978 1e-6 345 137 0.0037687998 1e-6 358 137 0.0012562999 1e-6 442 137 0.0012562999 1e-6 443 137 0.013191 1e-6 444 137 0.0012562999 1e-6 445 137 0.011934698 1e-6 446 137 0.0043969974 1e-6 447 137 0.0031406998 1e-6 450 137 0.0025125998 1e-6 452 137 0.0094220974 1e-6 453 137 0.0056532994 1e-6 454 137 0.0012562999 1e-6 455 137 0.039572898 1e-6 457 137 0.0018843999 1e-6 463 137 0.0075376965 1e-6 464 137 0.0012562999 1e-6 465 137 0.00062809978 1e-6 467 137 0.0056532994 1e-6 468 137 0.011934698 1e-6 469 137 0.0025125998 1e-6 470 137 0.0025125998 1e-6 471 137 0.00062809978 1e-6 478 137 0.00062809978 1e-6 483 137 0.0018843999 1e-6 490 137 0.026381899 1e-6 491 137 0.0012562999 1e-6 4 138 0.0418569 1e-6 60 138 0.0022830998 1e-6 130 138 0.0045661964 1e-6 132 138 0.0030440998 1e-6 138 138 0.0045661964 1e-6 142 138 0.0015220998 1e-6 143 138 0.0091323964 1e-6 186 138 0.00076099997 1e-6 192 138 0.00076099997 1e-6 198 138 0.0098934993 1e-6 206 138 0.00076099997 1e-6 214 138 0.025114197 1e-6 219 138 0.00076099997 1e-6 223 138 0.00076099997 1e-6 224 138 0.0015220998 1e-6 226 138 0.0038051999 1e-6 227 138 0.0060882978 1e-6 230 138 0.0091323964 1e-6 234 138 0.0030440998 1e-6 241 138 0.00076099997 1e-6 272 138 0.00076099997 1e-6 279 138 0.00076099997 1e-6 345 138 0.026636198 1e-6 358 138 0.0015220998 1e-6 443 138 0.0304414 1e-6 444 138 0.0068492964 1e-6 445 138 0.0053271987 1e-6 446 138 0.0022830998 1e-6 447 138 0.027397297 1e-6 450 138 0.0022830998 1e-6 452 138 0.0076103993 1e-6 453 138 0.0015220998 1e-6 454 138 0.0030440998 1e-6 455 138 0.15144598 1e-6 457 138 0.0022830998 1e-6 463 138 0.045662098 1e-6 464 138 0.00076099997 1e-6 465 138 0.042617999 1e-6 467 138 0.0045661964 1e-6 468 138 0.00076099997 1e-6 469 138 0.0022830998 1e-6 470 138 0.0022830998 1e-6 478 138 0.00076099997 1e-6 483 138 0.0015220998 1e-6 490 138 0.0015220998 1e-6 491 138 0.21308976 1e-6 2 139 0.0001161 1e-6 4 139 0.0001161 1e-6 60 139 0.0019734998 1e-6 82 139 0.0011608999 1e-6 108 139 0.0001161 1e-6 114 139 0.00023219999 1e-6 118 139 0.0001161 1e-6 126 139 0.0001161 1e-6 130 139 0.12955648 1e-6 131 139 0.020663999 1e-6 132 139 0.010215897 1e-6 134 139 0.0001161 1e-6 138 139 0.0001161 1e-6 139 139 0.0087067969 1e-6 140 139 0.0001161 1e-6 141 139 0.0001161 1e-6 142 139 0.027977698 1e-6 143 139 0.030647799 1e-6 149 139 0.068144858 1e-6 158 139 0.017993998 1e-6 160 139 0.0001161 1e-6 161 139 0.00023219999 1e-6 171 139 0.0001161 1e-6 184 139 0.00092869997 1e-6 187 139 0.00023219999 1e-6 188 139 0.0001161 1e-6 190 139 0.0001161 1e-6 194 139 0.00034829997 1e-6 198 139 0.012537699 1e-6 206 139 0.00023219999 1e-6 214 139 0.042256799 1e-6 219 139 0.0001161 1e-6 222 139 0.00023219999 1e-6 223 139 0.013930798 1e-6 224 139 0.063501298 1e-6 225 139 0.0032505 1e-6 226 139 0.00046439981 1e-6 227 139 0.00046439981 1e-6 230 139 0.0001161 1e-6 233 139 0.0069653988 1e-6 234 139 0.0033665998 1e-6 237 139 0.0001161 1e-6 239 139 0.0001161 1e-6 240 139 0.0012769999 1e-6 241 139 0.047596898 1e-6 243 139 0.00046439981 1e-6 252 139 0.00023219999 1e-6 272 139 0.00069649983 1e-6 276 139 0.0001161 1e-6 277 139 0.0012769999 1e-6 279 139 0.00058049988 1e-6 282 139 0.00034829997 1e-6 286 139 0.0001161 1e-6 290 139 0.0001161 1e-6 292 139 0.0001161 1e-6 293 139 0.00046439981 1e-6 294 139 0.0001161 1e-6 295 139 0.0001161 1e-6 300 139 0.00023219999 1e-6 312 139 0.00058049988 1e-6 315 139 0.0008125999 1e-6 319 139 0.0001161 1e-6 320 139 0.00023219999 1e-6 322 139 0.0001161 1e-6 326 139 0.00046439981 1e-6 340 139 0.00034829997 1e-6 345 139 0.0068492964 1e-6 349 139 0.00023219999 1e-6 350 139 0.0046435967 1e-6 356 139 0.0001161 1e-6 358 139 0.0011608999 1e-6 387 139 0.0001161 1e-6 392 139 0.00034829997 1e-6 393 139 0.0015091999 1e-6 422 139 0.0081262998 1e-6 443 139 0.0071975999 1e-6 444 139 0.0039470978 1e-6 445 139 0.011725098 1e-6 446 139 0.0008125999 1e-6 447 139 0.0071975999 1e-6 450 139 0.0018573999 1e-6 452 139 0.0070814975 1e-6 453 139 0.0034826999 1e-6 454 139 0.0012769999 1e-6 455 139 0.050383098 1e-6 456 139 0.0001161 1e-6 457 139 0.0035987999 1e-6 458 139 0.00034829997 1e-6 459 139 0.00034829997 1e-6 460 139 0.00069649983 1e-6 463 139 0.024611097 1e-6 464 139 0.0008125999 1e-6 465 139 0.010680299 1e-6 467 139 0.0049918965 1e-6 468 139 0.0022056999 1e-6 469 139 0.0032505 1e-6 470 139 0.0034826999 1e-6 471 139 0.004527498 1e-6 473 139 0.0001161 1e-6 478 139 0.00058049988 1e-6 483 139 0.0012769999 1e-6 490 139 0.0010447998 1e-6 491 139 0.0013930998 1e-6 4 140 0.018298399 1e-6 22 140 0.00031279982 1e-6 60 140 0.0014075998 1e-6 114 140 0.0001564 1e-6 130 140 0.0086017996 1e-6 132 140 0.0014075998 1e-6 140 140 0.022364698 1e-6 143 140 0.0001564 1e-6 186 140 0.00093839993 1e-6 187 140 0.0001564 1e-6 198 140 0.0075069964 1e-6 206 140 0.00031279982 1e-6 214 140 0.011729699 1e-6 223 140 0.0029714999 1e-6 225 140 0.017359998 1e-6 226 140 0.038160797 1e-6 227 140 0.56803244 1e-6 231 140 0.0001564 1e-6 234 140 0.00046919985 1e-6 241 140 0.0001564 1e-6 242 140 0.0064122975 1e-6 252 140 0.032999698 1e-6 272 140 0.00031279982 1e-6 279 140 0.00046919985 1e-6 334 140 0.0034406998 1e-6 345 140 0.012824498 1e-6 356 140 0.0001564 1e-6 358 140 0.00062559987 1e-6 443 140 0.0029714999 1e-6 444 140 0.0039098971 1e-6 445 140 0.0043790974 1e-6 446 140 0.0001564 1e-6 447 140 0.005317498 1e-6 450 140 0.0014075998 1e-6 452 140 0.0095401965 1e-6 453 140 0.0017203998 1e-6 454 140 0.0014075998 1e-6 455 140 0.035189196 1e-6 457 140 0.0018767999 1e-6 459 140 0.00031279982 1e-6 460 140 0.00031279982 1e-6 463 140 0.012824498 1e-6 464 140 0.0057866983 1e-6 465 140 0.0048482977 1e-6 467 140 0.0028150999 1e-6 468 140 0.0007819999 1e-6 469 140 0.0021895999 1e-6 470 140 0.0007819999 1e-6 471 140 0.00046919985 1e-6 478 140 0.00046919985 1e-6 483 140 0.0007819999 1e-6 490 140 0.0001564 1e-6 491 140 0.0001564 1e-6 2 141 0.00057939999 1e-6 4 141 0.0069524981 1e-6 60 141 0.0028968998 1e-6 114 141 0.00057939999 1e-6 130 141 0.0023174998 1e-6 132 141 0.070683658 1e-6 138 141 0.084588587 1e-6 143 141 0.018539999 1e-6 160 141 0.0011586999 1e-6 171 141 0.0011586999 1e-6 198 141 0.023754299 1e-6 206 141 0.0011586999 1e-6 214 141 0.0069524981 1e-6 224 141 0.0011586999 1e-6 227 141 0.11066049 1e-6 234 141 0.0034761999 1e-6 240 141 0.00057939999 1e-6 241 141 0.030706797 1e-6 271 141 0.0011586999 1e-6 272 141 0.00057939999 1e-6 277 141 0.0017380998 1e-6 279 141 0.0011586999 1e-6 312 141 0.00057939999 1e-6 326 141 0.00057939999 1e-6 345 141 0.0063731 1e-6 358 141 0.0023174998 1e-6 430 141 0.0011586999 1e-6 442 141 0.00057939999 1e-6 443 141 0.0069524981 1e-6 444 141 0.00057939999 1e-6 445 141 0.0086905994 1e-6 446 141 0.022595599 1e-6 447 141 0.0017380998 1e-6 450 141 0.0040555969 1e-6 452 141 0.011587497 1e-6 453 141 0.0017380998 1e-6 454 141 0.00057939999 1e-6 455 141 0.0330243 1e-6 457 141 0.0023174998 1e-6 458 141 0.00057939999 1e-6 459 141 0.0028968998 1e-6 460 141 0.00057939999 1e-6 463 141 0.011008099 1e-6 464 141 0.00057939999 1e-6 465 141 0.0040555969 1e-6 467 141 0.011587497 1e-6 468 141 0.025492497 1e-6 469 141 0.0046349987 1e-6 470 141 0.0040555969 1e-6 471 141 0.0017380998 1e-6 478 141 0.0017380998 1e-6 483 141 0.0017380998 1e-6 490 141 0.056199297 1e-6 491 141 0.00057939999 1e-6 2 142 0.00075669982 1e-6 4 142 0.00094589987 1e-6 6 142 0.00018919999 1e-6 22 142 0.0026484998 1e-6 24 142 0.00037839985 1e-6 60 142 0.0032159998 1e-6 84 142 0.00018919999 1e-6 104 142 0.00075669982 1e-6 114 142 0.00018919999 1e-6 117 142 0.00056749978 1e-6 118 142 0.00018919999 1e-6 130 142 0.012107499 1e-6 131 142 0.00018919999 1e-6 132 142 0.014755998 1e-6 133 142 0.00037839985 1e-6 135 142 0.00037839985 1e-6 137 142 0.00018919999 1e-6 138 142 0.033106297 1e-6 139 142 0.0011350999 1e-6 140 142 0.00018919999 1e-6 142 142 0.024404097 1e-6 143 142 0.031971198 1e-6 149 142 0.00018919999 1e-6 152 142 0.00037839985 1e-6 157 142 0.00018919999 1e-6 159 142 0.0034051999 1e-6 160 142 0.0013243 1e-6 171 142 0.00018919999 1e-6 186 142 0.0181612 1e-6 187 142 0.010593999 1e-6 188 142 0.00037839985 1e-6 189 142 0.00056749978 1e-6 192 142 0.011918299 1e-6 193 142 0.00018919999 1e-6 197 142 0.0032159998 1e-6 198 142 0.020431299 1e-6 204 142 0.00094589987 1e-6 206 142 0.00037839985 1e-6 208 142 0.0017025999 1e-6 214 142 0.086454749 1e-6 215 142 0.00037839985 1e-6 219 142 0.013999198 1e-6 221 142 0.00075669982 1e-6 223 142 0.0083238967 1e-6 224 142 0.016269397 1e-6 225 142 0.00037839985 1e-6 226 142 0.070942044 1e-6 227 142 0.060726397 1e-6 231 142 0.0030268999 1e-6 234 142 0.0045402981 1e-6 240 142 0.00018919999 1e-6 241 142 0.022890698 1e-6 243 142 0.00018919999 1e-6 252 142 0.00018919999 1e-6 272 142 0.00056749978 1e-6 279 142 0.00094589987 1e-6 322 142 0.00018919999 1e-6 324 142 0.00018919999 1e-6 326 142 0.00018919999 1e-6 345 142 0.0024593 1e-6 347 142 0.00018919999 1e-6 349 142 0.0017025999 1e-6 356 142 0.00018919999 1e-6 358 142 0.0011350999 1e-6 414 142 0.00018919999 1e-6 422 142 0.00018919999 1e-6 442 142 0.00018919999 1e-6 443 142 0.010404799 1e-6 444 142 0.0077562965 1e-6 445 142 0.015323497 1e-6 446 142 0.0013243 1e-6 447 142 0.0096480995 1e-6 450 142 0.0028376998 1e-6 452 142 0.0102157 1e-6 453 142 0.0017025999 1e-6 454 142 0.0054861978 1e-6 455 142 0.031782098 1e-6 457 142 0.0026484998 1e-6 458 142 0.00018919999 1e-6 459 142 0.00075669982 1e-6 460 142 0.00037839985 1e-6 463 142 0.015890997 1e-6 464 142 0.0049186982 1e-6 465 142 0.00056749978 1e-6 467 142 0.0081346966 1e-6 468 142 0.0088913999 1e-6 469 142 0.0035943999 1e-6 470 142 0.0032159998 1e-6 471 142 0.00056749978 1e-6 478 142 0.00075669982 1e-6 479 142 0.00037839985 1e-6 483 142 0.0013243 1e-6 489 142 0.00037839985 1e-6 490 142 0.00094589987 1e-6 491 142 0.0018918 1e-6 2 143 0.16462457 1e-6 4 143 0.0047124997 1e-6 60 143 0.0018849999 1e-6 114 143 0.00031419983 1e-6 117 143 0.00031419983 1e-6 130 143 0.00094249984 1e-6 132 143 0.057807099 1e-6 138 143 0.0065974966 1e-6 143 143 0.17844796 1e-6 149 143 0.0062833987 1e-6 171 143 0.0301602 1e-6 198 143 0.0087966993 1e-6 206 143 0.00062829978 1e-6 214 143 0.014451798 1e-6 223 143 0.0084825978 1e-6 224 143 0.00031419983 1e-6 226 143 0.0040841997 1e-6 227 143 0.025133498 1e-6 231 143 0.00031419983 1e-6 234 143 0.0043983981 1e-6 241 143 0.00094249984 1e-6 242 143 0.00031419983 1e-6 272 143 0.00094249984 1e-6 277 143 0.00031419983 1e-6 279 143 0.00031419983 1e-6 345 143 0.0037699998 1e-6 358 143 0.0012566999 1e-6 443 143 0.0031416998 1e-6 444 143 0.0141376 1e-6 445 143 0.016965099 1e-6 446 143 0.0018849999 1e-6 447 143 0.013823397 1e-6 450 143 0.0021992 1e-6 452 143 0.0081683993 1e-6 453 143 0.0015707999 1e-6 454 143 0.0135093 1e-6 455 143 0.033930298 1e-6 457 143 0.0015707999 1e-6 458 143 0.00094249984 1e-6 459 143 0.00031419983 1e-6 460 143 0.00031419983 1e-6 463 143 0.0094250999 1e-6 464 143 0.0081683993 1e-6 465 143 0.00031419983 1e-6 467 143 0.0053408965 1e-6 468 143 0.033301897 1e-6 469 143 0.0025133998 1e-6 470 143 0.0028275 1e-6 471 143 0.00094249984 1e-6 478 143 0.00062829978 1e-6 483 143 0.0018849999 1e-6 490 143 0.019792598 1e-6 491 143 0.0025133998 1e-6 4 144 0.00010929999 1e-6 22 144 0.00010929999 1e-6 60 144 0.0022957998 1e-6 114 144 0.00010929999 1e-6 126 144 0.00010929999 1e-6 132 144 0.22160268 1e-6 144 144 0.14245105 1e-6 145 144 0.0036076999 1e-6 146 144 0.00032799994 1e-6 149 144 0.00010929999 1e-6 150 144 0.0014211999 1e-6 187 144 0.00010929999 1e-6 189 144 0.00010929999 1e-6 190 144 0.00021869999 1e-6 193 144 0.027768698 1e-6 194 144 0.028315298 1e-6 198 144 0.0317044 1e-6 203 144 0.00010929999 1e-6 204 144 0.00076529989 1e-6 206 144 0.00021869999 1e-6 214 144 0.0027331 1e-6 227 144 0.027987298 1e-6 231 144 0.0064501986 1e-6 234 144 0.0019679 1e-6 237 144 0.00010929999 1e-6 241 144 0.0081993975 1e-6 272 144 0.00032799994 1e-6 279 144 0.00065599987 1e-6 345 144 0.0049195997 1e-6 358 144 0.0010932998 1e-6 422 144 0.00021869999 1e-6 443 144 0.0016398998 1e-6 444 144 0.0029517999 1e-6 445 144 0.0059035979 1e-6 446 144 0.00010929999 1e-6 447 144 0.0030610999 1e-6 450 144 0.0029517999 1e-6 452 144 0.0089646988 1e-6 453 144 0.0018584998 1e-6 454 144 0.00087459991 1e-6 455 144 0.042855598 1e-6 456 144 0.00010929999 1e-6 457 144 0.0067781992 1e-6 458 144 0.0010932998 1e-6 459 144 0.00021869999 1e-6 460 144 0.0017491998 1e-6 463 144 0.011479199 1e-6 464 144 0.0021864998 1e-6 465 144 0.0014211999 1e-6 467 144 0.012791097 1e-6 468 144 0.010932498 1e-6 469 144 0.0022957998 1e-6 470 144 0.0019679 1e-6 471 144 0.00087459991 1e-6 473 144 0.00010929999 1e-6 478 144 0.0016398998 1e-6 483 144 0.0025144999 1e-6 490 144 0.00021869999 1e-6 4 145 0.00033049984 1e-6 22 145 0.00033049984 1e-6 60 145 0.0019830998 1e-6 114 145 0.00016529999 1e-6 130 145 0.00066099991 1e-6 132 145 0.24838865 1e-6 144 145 0.0066104978 1e-6 145 145 0.13435799 1e-6 146 145 0.00049579982 1e-6 149 145 0.00066099991 1e-6 150 145 0.0013220999 1e-6 190 145 0.00016529999 1e-6 193 145 0.0099156983 1e-6 194 145 0.0026441999 1e-6 198 145 0.015038799 1e-6 203 145 0.00016529999 1e-6 204 145 0.011072498 1e-6 206 145 0.00033049984 1e-6 214 145 0.0072714984 1e-6 226 145 0.00033049984 1e-6 227 145 0.062303796 1e-6 231 145 0.0062799975 1e-6 234 145 0.0026441999 1e-6 237 145 0.00016529999 1e-6 241 145 0.017517798 1e-6 272 145 0.00049579982 1e-6 279 145 0.00049579982 1e-6 345 145 0.0094198994 1e-6 358 145 0.0011568 1e-6 422 145 0.00016529999 1e-6 434 145 0.00016529999 1e-6 443 145 0.0013220999 1e-6 444 145 0.0072714984 1e-6 445 145 0.0097504966 1e-6 447 145 0.007436797 1e-6 450 145 0.0029746999 1e-6 452 145 0.0064451993 1e-6 453 145 0.0023136998 1e-6 454 145 0.00066099991 1e-6 455 145 0.042472299 1e-6 456 145 0.00016529999 1e-6 457 145 0.0021483998 1e-6 459 145 0.00033049984 1e-6 460 145 0.0016525998 1e-6 463 145 0.0059493966 1e-6 464 145 0.00066099991 1e-6 465 145 0.0013220999 1e-6 467 145 0.0071062967 1e-6 468 145 0.011733599 1e-6 469 145 0.0018179 1e-6 470 145 0.0018179 1e-6 471 145 0.00082629989 1e-6 478 145 0.0016525998 1e-6 483 145 0.0026441999 1e-6 490 145 0.00033049984 1e-6 491 145 0.00016529999 1e-6 60 146 0.00088069984 1e-6 130 146 0.0017612998 1e-6 131 146 0.0074856989 1e-6 132 146 0.29854685 1e-6 133 146 0.015411697 1e-6 144 146 0.0026419999 1e-6 145 146 0.0022016999 1e-6 146 146 0.12549537 1e-6 149 146 0.015851997 1e-6 150 146 0.0030822998 1e-6 198 146 0.013650399 1e-6 226 146 0.00088069984 1e-6 227 146 0.0114487 1e-6 231 146 0.004843697 1e-6 234 146 0.0017612998 1e-6 272 146 0.00044029998 1e-6 279 146 0.00044029998 1e-6 345 146 0.0039629973 1e-6 358 146 0.00088069984 1e-6 436 146 0.004843697 1e-6 437 146 0.0079259984 1e-6 443 146 0.00044029998 1e-6 444 146 0.0022016999 1e-6 445 146 0.0070453994 1e-6 447 146 0.0017612998 1e-6 450 146 0.0035226999 1e-6 452 146 0.0044032969 1e-6 453 146 0.0013209998 1e-6 454 146 0.0017612998 1e-6 455 146 0.028181396 1e-6 457 146 0.0017612998 1e-6 458 146 0.00044029998 1e-6 459 146 0.00044029998 1e-6 460 146 0.0022016999 1e-6 463 146 0.011888999 1e-6 464 146 0.0022016999 1e-6 465 146 0.0013209998 1e-6 467 146 0.0061646998 1e-6 468 146 0.0026419999 1e-6 469 146 0.0017612998 1e-6 470 146 0.0017612998 1e-6 471 146 0.00088069984 1e-6 478 146 0.0013209998 1e-6 483 146 0.00088069984 1e-6 131 147 0.023809496 1e-6 132 147 0.28571427 1e-6 133 147 0.023809496 1e-6 147 147 0.023809496 1e-6 149 147 0.047618996 1e-6 194 147 0.023809496 1e-6 214 147 0.023809496 1e-6 226 147 0.023809496 1e-6 227 147 0.023809496 1e-6 445 147 0.023809496 1e-6 455 147 0.023809496 1e-6 467 147 0.023809496 1e-6 132 148 0.25 1e-6 227 148 0.083333254 1e-6 463 148 0.083333254 1e-6 2 149 5.3199998e-05 1e-6 4 149 0.0058772974 1e-6 18 149 0.0010372 1e-6 22 149 0.0001064 1e-6 60 149 0.00087759993 1e-6 104 149 5.3199998e-05 1e-6 108 149 2.6599999e-05 1e-6 114 149 5.3199998e-05 1e-6 126 149 2.6599999e-05 1e-6 130 149 0.011728097 1e-6 131 149 0.00023929999 1e-6 132 149 0.30360085 1e-6 133 149 0.00029249978 1e-6 138 149 5.3199998e-05 1e-6 139 149 2.6599999e-05 1e-6 142 149 5.3199998e-05 1e-6 143 149 0.00023929999 1e-6 144 149 5.3199998e-05 1e-6 145 149 5.3199998e-05 1e-6 146 149 0.0020744 1e-6 147 149 5.3199998e-05 1e-6 148 149 7.9799996e-05 1e-6 149 149 0.096138477 1e-6 150 149 0.00071799988 1e-6 151 149 0.00085099996 1e-6 171 149 0.0047337972 1e-6 190 149 7.9799996e-05 1e-6 192 149 5.3199998e-05 1e-6 193 149 2.6599999e-05 1e-6 194 149 0.0001064 1e-6 197 149 2.6599999e-05 1e-6 198 149 0.023722097 1e-6 200 149 2.6599999e-05 1e-6 203 149 5.3199998e-05 1e-6 204 149 7.9799996e-05 1e-6 206 149 5.3199998e-05 1e-6 207 149 2.6599999e-05 1e-6 214 149 0.025291197 1e-6 218 149 2.6599999e-05 1e-6 221 149 5.3199998e-05 1e-6 223 149 0.00013299999 1e-6 224 149 0.0001064 1e-6 225 149 0.0001064 1e-6 226 149 0.027604897 1e-6 227 149 0.078958571 1e-6 231 149 0.0071804971 1e-6 233 149 2.6599999e-05 1e-6 234 149 0.0029785999 1e-6 237 149 5.3199998e-05 1e-6 240 149 0.0001064 1e-6 241 149 0.011861097 1e-6 242 149 0.004122097 1e-6 252 149 0.00015959999 1e-6 272 149 0.0016488 1e-6 277 149 0.0001064 1e-6 279 149 0.00045209983 1e-6 282 149 2.6599999e-05 1e-6 315 149 2.6599999e-05 1e-6 326 149 2.6599999e-05 1e-6 335 149 0.0013828999 1e-6 336 149 2.6599999e-05 1e-6 345 149 0.0023136998 1e-6 351 149 0.0022338999 1e-6 358 149 0.00055849995 1e-6 387 149 2.6599999e-05 1e-6 402 149 2.6599999e-05 1e-6 421 149 2.6599999e-05 1e-6 422 149 0.0001064 1e-6 433 149 2.6599999e-05 1e-6 434 149 2.6599999e-05 1e-6 436 149 7.9799996e-05 1e-6 437 149 0.00013299999 1e-6 443 149 0.0030582999 1e-6 444 149 0.0013828999 1e-6 445 149 0.0065421984 1e-6 446 149 0.00031909999 1e-6 447 149 0.0012232999 1e-6 448 149 2.6599999e-05 1e-6 450 149 0.0014094999 1e-6 452 149 0.0069676973 1e-6 453 149 0.0022604999 1e-6 454 149 0.0021274998 1e-6 455 149 0.038003299 1e-6 456 149 7.9799996e-05 1e-6 457 149 0.0019147999 1e-6 458 149 0.00069149979 1e-6 459 149 0.00066489982 1e-6 460 149 0.0017551999 1e-6 463 149 0.0085633993 1e-6 464 149 0.0011435999 1e-6 465 149 0.00069149979 1e-6 467 149 0.0045741983 1e-6 468 149 0.0057709999 1e-6 469 149 0.0018881999 1e-6 470 149 0.0013563 1e-6 471 149 0.00050529977 1e-6 473 149 2.6599999e-05 1e-6 477 149 0.00082439999 1e-6 478 149 0.00079779979 1e-6 479 149 2.6599999e-05 1e-6 483 149 0.00074459985 1e-6 489 149 5.3199998e-05 1e-6 490 149 0.00015959999 1e-6 491 149 0.00018619999 1e-6 4 150 6.0799997e-05 1e-6 9 150 1.2199999e-05 1e-6 16 150 4.0999994e-06 1e-6 17 150 0.0029328 1e-6 18 150 4.0999994e-06 1e-6 22 150 3.6499987e-05 1e-6 60 150 0.00058819982 1e-6 79 150 4.0999994e-06 1e-6 82 150 1.6199992e-05 1e-6 83 150 1.6199992e-05 1e-6 84 150 0.00027579977 1e-6 108 150 2.4299996e-05 1e-6 113 150 3.2499986e-05 1e-6 114 150 8.1099992e-05 1e-6 126 150 4.0599989e-05 1e-6 127 150 4.0999994e-06 1e-6 130 150 0.16148525 1e-6 131 150 0.0065591969 1e-6 132 150 0.0249631 1e-6 133 150 0.0069688968 1e-6 135 150 7.709999e-05 1e-6 136 150 0.0019226999 1e-6 137 150 1.6199992e-05 1e-6 138 150 8.0999998e-06 1e-6 139 150 4.8699992e-05 1e-6 140 150 8.0999998e-06 1e-6 141 150 4.0999994e-06 1e-6 142 150 0.00038939994 1e-6 143 150 0.0014928 1e-6 144 150 0.00031229993 1e-6 145 150 0.00034069992 1e-6 146 150 0.0071067996 1e-6 147 150 0.00027579977 1e-6 149 150 0.12158644 1e-6 150 150 0.15409046 1e-6 151 150 4.0999994e-06 1e-6 152 150 1.2199999e-05 1e-6 155 150 0.0036954 1e-6 156 150 0.0087739974 1e-6 157 150 0.0025189999 1e-6 158 150 0.00056379987 1e-6 171 150 8.0999998e-06 1e-6 188 150 4.0999994e-06 1e-6 189 150 9.74e-05 1e-6 190 150 0.00017039999 1e-6 192 150 7.709999e-05 1e-6 193 150 0.0001947 1e-6 194 150 0.0004015998 1e-6 196 150 1.2199999e-05 1e-6 197 150 2.4299996e-05 1e-6 198 150 0.0050826967 1e-6 200 150 3.6499987e-05 1e-6 201 150 1.6199992e-05 1e-6 203 150 6.8999987e-05 1e-6 204 150 0.00029609981 1e-6 206 150 0.00017439999 1e-6 207 150 5.6799996e-05 1e-6 208 150 0.0001298 1e-6 209 150 1.6199992e-05 1e-6 214 150 0.00045029982 1e-6 219 150 4.0999994e-06 1e-6 222 150 1.2199999e-05 1e-6 223 150 2.4299996e-05 1e-6 224 150 3.2499986e-05 1e-6 225 150 0.00014599999 1e-6 226 150 0.00060849986 1e-6 227 150 0.0012290999 1e-6 231 150 0.00041779992 1e-6 234 150 0.0016711999 1e-6 237 150 0.0001582 1e-6 239 150 4.0999994e-06 1e-6 240 150 0.00018659999 1e-6 241 150 0.00064499979 1e-6 242 150 4.0999994e-06 1e-6 243 150 0.0057438985 1e-6 248 150 1.6199992e-05 1e-6 249 150 4.0999994e-06 1e-6 250 150 8.0999998e-06 1e-6 251 150 4.0999994e-06 1e-6 252 150 1.2199999e-05 1e-6 263 150 4.0999994e-06 1e-6 272 150 0.00011359999 1e-6 276 150 4.0999994e-06 1e-6 277 150 6.8999987e-05 1e-6 279 150 0.00010949999 1e-6 282 150 1.6199992e-05 1e-6 292 150 1.2199999e-05 1e-6 293 150 8.0999998e-06 1e-6 308 150 4.0999994e-06 1e-6 315 150 3.2499986e-05 1e-6 317 150 0.00079099997 1e-6 319 150 1.6199992e-05 1e-6 326 150 4.0999994e-06 1e-6 328 150 4.0999994e-06 1e-6 340 150 4.0999994e-06 1e-6 345 150 0.00034889998 1e-6 349 150 4.0999994e-06 1e-6 351 150 4.0999994e-06 1e-6 356 150 2.4299996e-05 1e-6 358 150 0.0003205 1e-6 363 150 4.0999994e-06 1e-6 380 150 4.0999994e-06 1e-6 382 150 0.00074639986 1e-6 384 150 8.0999998e-06 1e-6 387 150 3.2499986e-05 1e-6 394 150 1.2199999e-05 1e-6 397 150 1.2199999e-05 1e-6 402 150 6.0799997e-05 1e-6 409 150 4.0999994e-06 1e-6 412 150 4.0999994e-06 1e-6 419 150 4.0999994e-06 1e-6 422 150 8.1099992e-05 1e-6 423 150 8.0999998e-06 1e-6 425 150 4.0999994e-06 1e-6 430 150 2.0299995e-05 1e-6 431 150 1.2199999e-05 1e-6 432 150 1.2199999e-05 1e-6 433 150 4.459999e-05 1e-6 434 150 5.6799996e-05 1e-6 435 150 0.0010302998 1e-6 436 150 0.0035899 1e-6 437 150 0.0138404 1e-6 442 150 4.0999994e-06 1e-6 443 150 0.00054359995 1e-6 444 150 0.0022107 1e-6 445 150 0.0054842979 1e-6 446 150 0.00011359999 1e-6 447 150 0.0041374974 1e-6 448 150 2.4299996e-05 1e-6 449 150 8.0999998e-06 1e-6 450 150 0.004161898 1e-6 452 150 0.0032491998 1e-6 453 150 0.00070579979 1e-6 454 150 0.00033259997 1e-6 455 150 0.035749096 1e-6 456 150 0.00039349985 1e-6 457 150 0.0043321997 1e-6 458 150 0.00058409991 1e-6 459 150 0.00064089987 1e-6 460 150 0.00087619992 1e-6 463 150 0.0098286979 1e-6 464 150 0.0023567998 1e-6 465 150 0.0014886998 1e-6 467 150 0.012002897 1e-6 468 150 0.0055937991 1e-6 469 150 0.0033749 1e-6 470 150 0.0036791998 1e-6 471 150 0.0011357998 1e-6 472 150 8.1099992e-05 1e-6 473 150 7.709999e-05 1e-6 477 150 0.00011359999 1e-6 478 150 0.0016387999 1e-6 483 150 0.0026974999 1e-6 489 150 4.459999e-05 1e-6 490 150 0.00048679998 1e-6 491 150 0.00021499999 1e-6 4 151 0.00014559999 1e-6 84 151 0.00029119989 1e-6 114 151 0.00014559999 1e-6 126 151 0.00014559999 1e-6 130 151 0.44182318 1e-6 131 151 0.0020386998 1e-6 132 151 0.017474897 1e-6 133 151 0.0018930999 1e-6 134 151 0.00014559999 1e-6 136 151 0.0037862 1e-6 137 151 0.00072809984 1e-6 138 151 0.0005824999 1e-6 139 151 0.011795498 1e-6 141 151 0.0027669 1e-6 142 151 0.011212997 1e-6 143 151 0.00087369978 1e-6 149 151 0.00072809984 1e-6 151 151 0.030580997 1e-6 152 151 0.0013106 1e-6 155 151 0.0011649998 1e-6 157 151 0.00087369978 1e-6 158 151 0.00014559999 1e-6 171 151 0.00043689995 1e-6 184 151 0.00014559999 1e-6 190 151 0.00014559999 1e-6 193 151 0.010048099 1e-6 194 151 0.00029119989 1e-6 198 151 0.0042230971 1e-6 203 151 0.00014559999 1e-6 204 151 0.00014559999 1e-6 206 151 0.00029119989 1e-6 225 151 0.00014559999 1e-6 226 151 0.00014559999 1e-6 227 151 0.0005824999 1e-6 234 151 0.0017474999 1e-6 237 151 0.00029119989 1e-6 240 151 0.00043689995 1e-6 241 151 0.0055336989 1e-6 272 151 0.00029119989 1e-6 277 151 0.00029119989 1e-6 279 151 0.00014559999 1e-6 282 151 0.00014559999 1e-6 322 151 0.00014559999 1e-6 358 151 0.00072809984 1e-6 382 151 0.00029119989 1e-6 402 151 0.00014559999 1e-6 422 151 0.00029119989 1e-6 435 151 0.00014559999 1e-6 437 151 0.0052424967 1e-6 443 151 0.0005824999 1e-6 444 151 0.0040774979 1e-6 445 151 0.013106197 1e-6 447 151 0.0045142993 1e-6 450 151 0.0040774979 1e-6 452 151 0.0032036998 1e-6 453 151 0.00072809984 1e-6 454 151 0.00014559999 1e-6 455 151 0.036551598 1e-6 456 151 0.00014559999 1e-6 457 151 0.0026211999 1e-6 458 151 0.0005824999 1e-6 459 151 0.00029119989 1e-6 460 151 0.0016019 1e-6 463 151 0.038444698 1e-6 464 151 0.0046599992 1e-6 465 151 0.0065530986 1e-6 467 151 0.005824998 1e-6 468 151 0.015727397 1e-6 469 151 0.0027669 1e-6 470 151 0.0030580999 1e-6 471 151 0.0017474999 1e-6 473 151 0.00014559999 1e-6 477 151 0.0021843999 1e-6 478 151 0.0014561999 1e-6 483 151 0.0016019 1e-6 490 151 0.00029119989 1e-6 491 151 0.00014559999 1e-6 2 152 0.00062999991 1e-6 4 152 0.022501197 1e-6 13 152 0.00013499999 1e-6 22 152 0.00076499977 1e-6 24 152 4.4999993e-05 1e-6 60 152 0.00099009997 1e-6 84 152 0.0036001999 1e-6 104 152 0.00067499978 1e-6 108 152 4.4999993e-05 1e-6 114 152 8.9999987e-05 1e-6 117 152 4.4999993e-05 1e-6 120 152 4.4999993e-05 1e-6 126 152 4.4999993e-05 1e-6 130 152 0.33387339 1e-6 131 152 0.0040051974 1e-6 132 152 0.031906798 1e-6 133 152 0.0054452978 1e-6 136 152 0.0020250999 1e-6 137 152 0.0074703991 1e-6 138 152 0.0071103983 1e-6 139 152 0.012510698 1e-6 141 152 0.00017999999 1e-6 142 152 0.0103506 1e-6 143 152 0.0082354993 1e-6 144 152 4.4999993e-05 1e-6 145 152 4.4999993e-05 1e-6 149 152 0.0092254989 1e-6 150 152 0.0016200999 1e-6 151 152 0.00049499981 1e-6 152 152 0.014265798 1e-6 155 152 0.00031499984 1e-6 156 152 4.4999993e-05 1e-6 157 152 0.0092254989 1e-6 158 152 0.0018451 1e-6 160 152 0.00013499999 1e-6 161 152 8.9999987e-05 1e-6 171 152 0.0046802983 1e-6 178 152 4.4999993e-05 1e-6 189 152 8.9999987e-05 1e-6 190 152 0.00013499999 1e-6 192 152 0.00062999991 1e-6 193 152 0.0063452981 1e-6 194 152 8.9999987e-05 1e-6 198 152 0.0155259 1e-6 200 152 4.4999993e-05 1e-6 203 152 4.4999993e-05 1e-6 204 152 8.9999987e-05 1e-6 206 152 0.00013499999 1e-6 207 152 4.4999993e-05 1e-6 214 152 0.0096304975 1e-6 221 152 0.00049499981 1e-6 223 152 0.0016200999 1e-6 224 152 0.00080999988 1e-6 226 152 0.0096754991 1e-6 227 152 0.022096198 1e-6 230 152 8.9999987e-05 1e-6 231 152 0.0019351 1e-6 232 152 0.00017999999 1e-6 233 152 0.00017999999 1e-6 234 152 0.0018000999 1e-6 237 152 0.00013499999 1e-6 240 152 0.0027001 1e-6 241 152 0.014175799 1e-6 243 152 8.9999987e-05 1e-6 248 152 8.9999987e-05 1e-6 252 152 0.0017551 1e-6 253 152 0.00013499999 1e-6 271 152 4.4999993e-05 1e-6 272 152 0.00044999993 1e-6 277 152 0.00017999999 1e-6 279 152 0.000225 1e-6 300 152 0.00044999993 1e-6 315 152 0.00013499999 1e-6 317 152 4.4999993e-05 1e-6 319 152 0.00035999995 1e-6 322 152 0.000225 1e-6 326 152 0.00035999995 1e-6 335 152 0.00035999995 1e-6 336 152 0.00031499984 1e-6 345 152 0.0023850999 1e-6 350 152 8.9999987e-05 1e-6 356 152 8.9999987e-05 1e-6 358 152 0.00085499999 1e-6 365 152 8.9999987e-05 1e-6 382 152 0.00013499999 1e-6 387 152 4.4999993e-05 1e-6 402 152 4.4999993e-05 1e-6 414 152 4.4999993e-05 1e-6 421 152 0.00013499999 1e-6 422 152 0.00031499984 1e-6 433 152 4.4999993e-05 1e-6 434 152 8.9999987e-05 1e-6 435 152 0.0021150999 1e-6 437 152 0.00080999988 1e-6 442 152 0.00017999999 1e-6 443 152 0.0033302 1e-6 444 152 0.0018900998 1e-6 445 152 0.0117906 1e-6 446 152 0.00031499984 1e-6 447 152 0.0034651998 1e-6 450 152 0.0040501989 1e-6 452 152 0.0063903965 1e-6 453 152 0.0018451 1e-6 454 152 0.0026550998 1e-6 455 152 0.043832399 1e-6 456 152 0.00017999999 1e-6 457 152 0.0023850999 1e-6 458 152 0.00044999993 1e-6 459 152 0.00035999995 1e-6 460 152 0.0015300999 1e-6 463 152 0.010620598 1e-6 464 152 0.0027901998 1e-6 465 152 0.0010801 1e-6 467 152 0.0089104995 1e-6 468 152 0.012420699 1e-6 469 152 0.0025650999 1e-6 470 152 0.0028801998 1e-6 471 152 0.0012600999 1e-6 473 152 4.4999993e-05 1e-6 477 152 0.0010801 1e-6 478 152 0.0011250998 1e-6 479 152 0.00031499984 1e-6 483 152 0.0016200999 1e-6 489 152 4.4999993e-05 1e-6 490 152 0.00035999995 1e-6 491 152 0.00080999988 1e-6 4 153 0.0016991999 1e-6 60 153 0.0016991999 1e-6 114 153 0.00042479998 1e-6 130 153 0.15590477 1e-6 131 153 0.019965999 1e-6 132 153 0.030161399 1e-6 133 153 0.0042480975 1e-6 139 153 0.014443498 1e-6 143 153 0.28377229 1e-6 149 153 0.00084959995 1e-6 150 153 0.00084959995 1e-6 153 153 0.0046728998 1e-6 158 153 0.025913298 1e-6 187 153 0.031435899 1e-6 188 153 0.00042479998 1e-6 193 153 0.00042479998 1e-6 198 153 0.011469796 1e-6 206 153 0.00084959995 1e-6 214 153 0.0012743999 1e-6 219 153 0.00042479998 1e-6 221 153 0.00084959995 1e-6 223 153 0.00042479998 1e-6 224 153 0.0050976984 1e-6 226 153 0.00042479998 1e-6 227 153 0.0012743999 1e-6 234 153 0.00084959995 1e-6 241 153 0.0033984999 1e-6 242 153 0.0016991999 1e-6 272 153 0.00042479998 1e-6 279 153 0.00042479998 1e-6 358 153 0.00042479998 1e-6 437 153 0.00084959995 1e-6 443 153 0.0025489 1e-6 444 153 0.00042479998 1e-6 445 153 0.010195397 1e-6 450 153 0.0025489 1e-6 452 153 0.0038232999 1e-6 453 153 0.0012743999 1e-6 455 153 0.048852999 1e-6 457 153 0.0025489 1e-6 460 153 0.0012743999 1e-6 463 153 0.0093457997 1e-6 464 153 0.00042479998 1e-6 465 153 0.00084959995 1e-6 467 153 0.0042480975 1e-6 468 153 0.0016991999 1e-6 469 153 0.0025489 1e-6 470 153 0.0025489 1e-6 471 153 0.0012743999 1e-6 478 153 0.00084959995 1e-6 483 153 0.0012743999 1e-6 490 153 0.00042479998 1e-6 491 153 0.00042479998 1e-6 4 154 0.0003562998 1e-6 22 154 0.0003562998 1e-6 60 154 0.0010688 1e-6 114 154 0.0003562998 1e-6 130 154 0.19202 1e-6 131 154 0.028856397 1e-6 132 154 0.044531498 1e-6 133 154 0.0042749979 1e-6 137 154 0.0010688 1e-6 139 154 0.085500479 1e-6 141 154 0.0078374967 1e-6 142 154 0.0024937999 1e-6 143 154 0.0049874969 1e-6 149 154 0.0021374999 1e-6 150 154 0.0003562998 1e-6 152 154 0.0003562998 1e-6 154 154 0.0092625991 1e-6 157 154 0.0003562998 1e-6 158 154 0.027431399 1e-6 160 154 0.0003562998 1e-6 187 154 0.0003562998 1e-6 193 154 0.0014249999 1e-6 194 154 0.0003562998 1e-6 198 154 0.0056999996 1e-6 206 154 0.00071249995 1e-6 223 154 0.0003562998 1e-6 227 154 0.0003562998 1e-6 234 154 0.0014249999 1e-6 237 154 0.0010688 1e-6 241 154 0.0003562998 1e-6 252 154 0.0003562998 1e-6 272 154 0.0003562998 1e-6 277 154 0.0028499998 1e-6 279 154 0.0003562998 1e-6 282 154 0.00071249995 1e-6 283 154 0.0003562998 1e-6 293 154 0.0003562998 1e-6 312 154 0.0003562998 1e-6 315 154 0.0003562998 1e-6 328 154 0.0017812999 1e-6 329 154 0.00071249995 1e-6 345 154 0.0032062999 1e-6 350 154 0.0003562998 1e-6 351 154 0.0003562998 1e-6 354 154 0.00071249995 1e-6 358 154 0.0010688 1e-6 382 154 0.0003562998 1e-6 402 154 0.00071249995 1e-6 412 154 0.0003562998 1e-6 430 154 0.0003562998 1e-6 437 154 0.0363377 1e-6 443 154 0.0014249999 1e-6 444 154 0.0003562998 1e-6 445 154 0.0071249977 1e-6 447 154 0.00071249995 1e-6 450 154 0.0039187968 1e-6 452 154 0.0035624998 1e-6 453 154 0.0014249999 1e-6 455 154 0.047025297 1e-6 457 154 0.0021374999 1e-6 458 154 0.0003562998 1e-6 460 154 0.0014249999 1e-6 463 154 0.012112599 1e-6 464 154 0.00071249995 1e-6 465 154 0.0010688 1e-6 467 154 0.0067687966 1e-6 468 154 0.0024937999 1e-6 469 154 0.0042749979 1e-6 470 154 0.0042749979 1e-6 471 154 0.0014249999 1e-6 478 154 0.0014249999 1e-6 483 154 0.0021374999 1e-6 490 154 0.00071249995 1e-6 4 155 0.00033979979 1e-6 114 155 0.00033979979 1e-6 130 155 0.084947288 1e-6 132 155 0.17804956 1e-6 133 155 0.06252116 1e-6 135 155 0.0061161965 1e-6 137 155 0.0088344999 1e-6 139 155 0.00033979979 1e-6 142 155 0.032279998 1e-6 143 155 0.0040774979 1e-6 149 155 0.00033979979 1e-6 150 155 0.00067959982 1e-6 155 155 0.015630297 1e-6 157 155 0.00033979979 1e-6 171 155 0.00033979979 1e-6 187 155 0.00033979979 1e-6 190 155 0.00033979979 1e-6 193 155 0.013591599 1e-6 194 155 0.00033979979 1e-6 198 155 0.0040774979 1e-6 202 155 0.0013591999 1e-6 206 155 0.00067959982 1e-6 210 155 0.00033979979 1e-6 227 155 0.00033979979 1e-6 234 155 0.0016988998 1e-6 237 155 0.00033979979 1e-6 272 155 0.00033979979 1e-6 279 155 0.00033979979 1e-6 358 155 0.00067959982 1e-6 377 155 0.012572199 1e-6 382 155 0.00033979979 1e-6 437 155 0.0010193998 1e-6 443 155 0.00067959982 1e-6 444 155 0.0088344999 1e-6 445 155 0.0292219 1e-6 447 155 0.0142712 1e-6 450 155 0.0044172965 1e-6 452 155 0.0050967969 1e-6 453 155 0.0016988998 1e-6 455 155 0.032279998 1e-6 456 155 0.00033979979 1e-6 457 155 0.026163798 1e-6 460 155 0.0016988998 1e-6 463 155 0.027183097 1e-6 464 155 0.013591599 1e-6 465 155 0.013931397 1e-6 467 155 0.0057763979 1e-6 468 155 0.0020386998 1e-6 469 155 0.0030580999 1e-6 470 155 0.0033978999 1e-6 471 155 0.0016988998 1e-6 478 155 0.0016988998 1e-6 483 155 0.0016988998 1e-6 490 155 0.00033979979 1e-6 491 155 0.00033979979 1e-6 22 156 0.00025529996 1e-6 60 156 0.0015318999 1e-6 114 156 8.5099993e-05 1e-6 117 156 8.5099993e-05 1e-6 126 156 8.5099993e-05 1e-6 130 156 0.12017018 1e-6 131 156 0.016936198 1e-6 132 156 0.0194043 1e-6 133 156 0.011914898 1e-6 136 156 0.0013616998 1e-6 137 156 0.0065531991 1e-6 138 156 0.00017019999 1e-6 139 156 0.13455319 1e-6 142 156 0.035233997 1e-6 143 156 0.0003403998 1e-6 149 156 0.00085109985 1e-6 150 156 8.5099993e-05 1e-6 155 156 0.0068935975 1e-6 156 156 0.0020426 1e-6 157 156 8.5099993e-05 1e-6 158 156 0.0069786981 1e-6 171 156 8.5099993e-05 1e-6 172 156 8.5099993e-05 1e-6 188 156 8.5099993e-05 1e-6 189 156 8.5099993e-05 1e-6 190 156 8.5099993e-05 1e-6 194 156 0.0077446997 1e-6 198 156 0.0045956969 1e-6 203 156 8.5099993e-05 1e-6 204 156 0.006808497 1e-6 206 156 0.00017019999 1e-6 214 156 0.00051059993 1e-6 223 156 0.00017019999 1e-6 224 156 0.00068089995 1e-6 226 156 0.00025529996 1e-6 227 156 0.00051059993 1e-6 233 156 8.5099993e-05 1e-6 234 156 0.00093619991 1e-6 237 156 8.5099993e-05 1e-6 240 156 8.5099993e-05 1e-6 241 156 0.061361697 1e-6 243 156 0.026638299 1e-6 272 156 0.00017019999 1e-6 277 156 0.0094467998 1e-6 279 156 0.00025529996 1e-6 282 156 8.5099993e-05 1e-6 292 156 8.5099993e-05 1e-6 293 156 0.00017019999 1e-6 298 156 0.00017019999 1e-6 299 156 8.5099993e-05 1e-6 312 156 0.0003403998 1e-6 313 156 0.00076599978 1e-6 320 156 8.5099993e-05 1e-6 339 156 8.5099993e-05 1e-6 340 156 0.00017019999 1e-6 345 156 0.00017019999 1e-6 350 156 8.5099993e-05 1e-6 356 156 8.5099993e-05 1e-6 358 156 0.0005957 1e-6 382 156 8.5099993e-05 1e-6 402 156 8.5099993e-05 1e-6 422 156 0.00017019999 1e-6 434 156 8.5099993e-05 1e-6 437 156 0.00068089995 1e-6 443 156 0.0020426 1e-6 444 156 0.0039999969 1e-6 445 156 0.014893599 1e-6 446 156 0.00017019999 1e-6 447 156 0.0035744999 1e-6 450 156 0.0047659986 1e-6 452 156 0.0030637998 1e-6 453 156 0.0005957 1e-6 455 156 0.040680896 1e-6 456 156 8.5099993e-05 1e-6 457 156 0.0022127999 1e-6 458 156 0.0003403998 1e-6 459 156 0.00025529996 1e-6 460 156 0.0017020998 1e-6 463 156 0.013191499 1e-6 464 156 0.0029787 1e-6 465 156 0.00068089995 1e-6 467 156 0.0056169964 1e-6 468 156 0.00085109985 1e-6 469 156 0.0057871975 1e-6 470 156 0.0018722999 1e-6 471 156 0.00076599978 1e-6 473 156 8.5099993e-05 1e-6 477 156 0.0034893998 1e-6 478 156 0.00068089995 1e-6 479 156 0.0042552985 1e-6 483 156 0.0012765999 1e-6 490 156 0.00017019999 1e-6 491 156 0.00017019999 1e-6 60 157 0.0034188 1e-6 130 157 0.060683798 1e-6 132 157 0.15982908 1e-6 133 157 0.00085469987 1e-6 139 157 0.00085469987 1e-6 157 157 0.11025637 1e-6 198 157 0.0017094 1e-6 206 157 0.00085469987 1e-6 234 157 0.0025640999 1e-6 358 157 0.00085469987 1e-6 444 157 0.00085469987 1e-6 445 157 0.0025640999 1e-6 447 157 0.029059798 1e-6 450 157 0.0042734966 1e-6 452 157 0.0051281974 1e-6 455 157 0.0153846 1e-6 457 157 0.0034188 1e-6 460 157 0.00085469987 1e-6 463 157 0.041880298 1e-6 464 157 0.00085469987 1e-6 465 157 0.00085469987 1e-6 467 157 0.0051281974 1e-6 468 157 0.0017094 1e-6 469 157 0.0025640999 1e-6 470 157 0.0025640999 1e-6 471 157 0.0017094 1e-6 472 157 0.0085469969 1e-6 478 157 0.0017094 1e-6 483 157 0.0025640999 1e-6 490 157 0.00085469987 1e-6 2 158 0.0003994999 1e-6 4 158 0.0027965999 1e-6 23 158 0.0003994999 1e-6 60 158 0.0015980999 1e-6 84 158 0.0034624999 1e-6 104 158 0.00026629982 1e-6 114 158 0.0001332 1e-6 126 158 0.0001332 1e-6 130 158 0.14848846 1e-6 131 158 0.033959199 1e-6 132 158 0.094020486 1e-6 133 158 0.015181798 1e-6 134 158 0.00066589983 1e-6 135 158 0.0025302998 1e-6 137 158 0.018377896 1e-6 138 158 0.0011985998 1e-6 139 158 0.016912997 1e-6 141 158 0.014116399 1e-6 142 158 0.046077996 1e-6 143 158 0.0019975998 1e-6 149 158 0.023038998 1e-6 150 158 0.0025302998 1e-6 151 158 0.0001332 1e-6 152 158 0.0003994999 1e-6 155 158 0.0001332 1e-6 156 158 0.0001332 1e-6 157 158 0.00053269998 1e-6 158 158 0.026101999 1e-6 171 158 0.00026629982 1e-6 187 158 0.0027965999 1e-6 188 158 0.0001332 1e-6 190 158 0.0001332 1e-6 192 158 0.0001332 1e-6 193 158 0.0085230991 1e-6 194 158 0.00026629982 1e-6 198 158 0.013983198 1e-6 203 158 0.0001332 1e-6 206 158 0.00026629982 1e-6 214 158 0.0018644 1e-6 219 158 0.0001332 1e-6 221 158 0.0001332 1e-6 223 158 0.0071913972 1e-6 224 158 0.0015980999 1e-6 225 158 0.0003994999 1e-6 226 158 0.0037288999 1e-6 227 158 0.0093220994 1e-6 231 158 0.00026629982 1e-6 234 158 0.0023971 1e-6 237 158 0.0003994999 1e-6 240 158 0.00093219988 1e-6 241 158 0.0051937997 1e-6 243 158 0.0001332 1e-6 252 158 0.00026629982 1e-6 271 158 0.00026629982 1e-6 272 158 0.00066589983 1e-6 277 158 0.0038619998 1e-6 279 158 0.0003994999 1e-6 282 158 0.0026634999 1e-6 283 158 0.0010654 1e-6 292 158 0.0003994999 1e-6 293 158 0.00026629982 1e-6 295 158 0.0001332 1e-6 296 158 0.00053269998 1e-6 308 158 0.0001332 1e-6 312 158 0.0003994999 1e-6 313 158 0.00053269998 1e-6 315 158 0.0001332 1e-6 320 158 0.0001332 1e-6 326 158 0.0001332 1e-6 328 158 0.00026629982 1e-6 340 158 0.0001332 1e-6 345 158 0.0003994999 1e-6 351 158 0.00026629982 1e-6 357 158 0.00026629982 1e-6 358 158 0.0007989998 1e-6 382 158 0.00026629982 1e-6 397 158 0.0001332 1e-6 402 158 0.0023971 1e-6 412 158 0.00026629982 1e-6 422 158 0.0001332 1e-6 434 158 0.0001332 1e-6 437 158 0.012251999 1e-6 442 158 0.0001332 1e-6 443 158 0.0023971 1e-6 444 158 0.00026629982 1e-6 445 158 0.012118798 1e-6 446 158 0.00026629982 1e-6 447 158 0.0011985998 1e-6 450 158 0.0038619998 1e-6 452 158 0.0051937997 1e-6 453 158 0.0010654 1e-6 454 158 0.00026629982 1e-6 455 158 0.048475198 1e-6 456 158 0.0001332 1e-6 457 158 0.0026634999 1e-6 458 158 0.00093219988 1e-6 459 158 0.0003994999 1e-6 460 158 0.0017312998 1e-6 463 158 0.0094552971 1e-6 464 158 0.0003994999 1e-6 465 158 0.0010654 1e-6 467 158 0.0067917965 1e-6 468 158 0.0035956998 1e-6 469 158 0.0027965999 1e-6 470 158 0.0029298 1e-6 471 158 0.0021307999 1e-6 473 158 0.0001332 1e-6 478 158 0.0011985998 1e-6 483 158 0.0015980999 1e-6 490 158 0.00026629982 1e-6 491 158 0.0017312998 1e-6 3 159 4.2e-05 1e-6 9 159 2.1e-05 1e-6 16 159 0.00027299998 1e-6 17 159 0.35643339 1e-6 18 159 0.0015119999 1e-6 22 159 0.0036119998 1e-6 24 159 2.1e-05 1e-6 60 159 0.00081899995 1e-6 62 159 8.3999999e-05 1e-6 75 159 0.0018689998 1e-6 82 159 2.1e-05 1e-6 83 159 2.1e-05 1e-6 84 159 2.1e-05 1e-6 104 159 2.1e-05 1e-6 108 159 2.1e-05 1e-6 113 159 4.2e-05 1e-6 114 159 6.2999999e-05 1e-6 126 159 2.1e-05 1e-6 130 159 2.1e-05 1e-6 141 159 0.0020579998 1e-6 150 159 0.00079799979 1e-6 151 159 0.00079799979 1e-6 159 159 0.026312999 1e-6 160 159 0.003759 1e-6 161 159 2.1e-05 1e-6 165 159 0.0010289999 1e-6 170 159 2.1e-05 1e-6 186 159 0.00027299998 1e-6 190 159 6.2999999e-05 1e-6 192 159 2.1e-05 1e-6 194 159 2.1e-05 1e-6 198 159 0.00088199996 1e-6 200 159 2.1e-05 1e-6 206 159 4.2e-05 1e-6 214 159 0.00081899995 1e-6 215 159 0.00067199999 1e-6 217 159 0.000189 1e-6 218 159 0.000147 1e-6 219 159 0.000105 1e-6 220 159 0.00075599994 1e-6 223 159 6.2999999e-05 1e-6 224 159 6.2999999e-05 1e-6 233 159 0.0008609998 1e-6 234 159 0.033809997 1e-6 237 159 0.002226 1e-6 240 159 0.0017849999 1e-6 241 159 0.0041579977 1e-6 242 159 0.0013229998 1e-6 251 159 0.00062999991 1e-6 252 159 4.2e-05 1e-6 270 159 0.000105 1e-6 271 159 0.00060899998 1e-6 272 159 0.0016589998 1e-6 277 159 0.0044309981 1e-6 279 159 2.1e-05 1e-6 283 159 0.0040109977 1e-6 292 159 0.00060899998 1e-6 295 159 0.00058799982 1e-6 312 159 0.00088199996 1e-6 315 159 0.0017429998 1e-6 317 159 0.0034019998 1e-6 318 159 0.0068459995 1e-6 319 159 0.0098699965 1e-6 322 159 0.0534871 1e-6 326 159 0.0023729999 1e-6 329 159 8.3999999e-05 1e-6 331 159 0.00065099983 1e-6 334 159 0.00071399985 1e-6 335 159 4.2e-05 1e-6 337 159 0.0025829999 1e-6 340 159 0.00046199979 1e-6 341 159 0.0017219998 1e-6 346 159 0.0019739999 1e-6 349 159 0.000126 1e-6 350 159 2.1e-05 1e-6 352 159 4.2e-05 1e-6 354 159 0.0036749998 1e-6 356 159 2.1e-05 1e-6 358 159 0.00058799982 1e-6 372 159 0.00094499998 1e-6 374 159 0.00056699989 1e-6 384 159 0.00073499978 1e-6 387 159 2.1e-05 1e-6 394 159 0.000231 1e-6 397 159 4.2e-05 1e-6 398 159 0.00054599997 1e-6 400 159 0.0018059998 1e-6 401 159 2.1e-05 1e-6 402 159 0.0039269999 1e-6 412 159 0.00039899978 1e-6 417 159 0.000105 1e-6 421 159 2.1e-05 1e-6 423 159 2.1e-05 1e-6 430 159 2.1e-05 1e-6 431 159 2.1e-05 1e-6 442 159 0.00094499998 1e-6 443 159 0.0050399974 1e-6 444 159 0.0011339998 1e-6 445 159 0.006719999 1e-6 446 159 0.0021209999 1e-6 447 159 0.0026459999 1e-6 448 159 0.0008609998 1e-6 450 159 0.00079799979 1e-6 452 159 0.0011759999 1e-6 453 159 0.00048299995 1e-6 454 159 0.0008609998 1e-6 455 159 0.032697 1e-6 456 159 0.0025829999 1e-6 457 159 0.0018269999 1e-6 458 159 0.00050399988 1e-6 459 159 0.0013649999 1e-6 460 159 0.0021629999 1e-6 463 159 0.0040109977 1e-6 464 159 0.00065099983 1e-6 465 159 0.00052499981 1e-6 467 159 0.0096599981 1e-6 468 159 0.00079799979 1e-6 469 159 0.0021629999 1e-6 470 159 0.002289 1e-6 471 159 0.013250999 1e-6 473 159 4.2e-05 1e-6 477 159 0.00071399985 1e-6 478 159 0.00060899998 1e-6 483 159 0.000147 1e-6 489 159 0.00050399988 1e-6 490 159 0.000189 1e-6 491 159 8.3999999e-05 1e-6 9 160 1.6399994e-05 1e-6 17 160 0.0038231998 1e-6 18 160 0.00065629999 1e-6 22 160 0.0026089998 1e-6 60 160 0.0022971998 1e-6 75 160 0.0015915998 1e-6 82 160 1.6399994e-05 1e-6 83 160 1.6399994e-05 1e-6 84 160 1.6399994e-05 1e-6 108 160 1.6399994e-05 1e-6 113 160 3.2799988e-05 1e-6 114 160 4.9199996e-05 1e-6 117 160 1.6399994e-05 1e-6 126 160 1.6399994e-05 1e-6 130 160 6.559999e-05 1e-6 139 160 1.6399994e-05 1e-6 141 160 1.6399994e-05 1e-6 150 160 0.00049229991 1e-6 151 160 0.00044299988 1e-6 159 160 0.33716196 1e-6 160 160 0.070589364 1e-6 161 160 0.00014769999 1e-6 162 160 0.0001313 1e-6 163 160 1.6399994e-05 1e-6 165 160 0.0066782981 1e-6 170 160 0.00014769999 1e-6 171 160 0.0001313 1e-6 172 160 3.2799988e-05 1e-6 186 160 8.1999999e-05 1e-6 189 160 4.9199996e-05 1e-6 190 160 8.1999999e-05 1e-6 192 160 0.00034459983 1e-6 194 160 6.559999e-05 1e-6 197 160 1.6399994e-05 1e-6 198 160 8.1999999e-05 1e-6 200 160 3.2799988e-05 1e-6 203 160 3.2799988e-05 1e-6 204 160 3.2799988e-05 1e-6 206 160 6.559999e-05 1e-6 207 160 1.6399994e-05 1e-6 214 160 0.0016243998 1e-6 215 160 1.6399994e-05 1e-6 218 160 9.8499993e-05 1e-6 219 160 0.0005086998 1e-6 223 160 4.9199996e-05 1e-6 224 160 0.00057429983 1e-6 233 160 0.0009680998 1e-6 234 160 0.0093363971 1e-6 237 160 0.0012469999 1e-6 240 160 1.6399994e-05 1e-6 241 160 0.00068919989 1e-6 242 160 0.0005086998 1e-6 251 160 3.2799988e-05 1e-6 252 160 0.00057429983 1e-6 270 160 0.0009680998 1e-6 272 160 0.0010008998 1e-6 277 160 0.00067269988 1e-6 279 160 0.0005086998 1e-6 283 160 4.9199996e-05 1e-6 312 160 0.00060709985 1e-6 315 160 0.0012963 1e-6 317 160 0.0005086998 1e-6 318 160 0.0025104999 1e-6 319 160 0.0018048999 1e-6 322 160 0.0012635 1e-6 324 160 1.6399994e-05 1e-6 326 160 0.0069079995 1e-6 335 160 0.00063989987 1e-6 337 160 0.00082039996 1e-6 341 160 1.6399994e-05 1e-6 346 160 0.0012141999 1e-6 349 160 0.0026417999 1e-6 350 160 0.00041019986 1e-6 352 160 0.00067269988 1e-6 354 160 3.2799988e-05 1e-6 356 160 0.00014769999 1e-6 358 160 0.00063989987 1e-6 372 160 1.6399994e-05 1e-6 384 160 4.9199996e-05 1e-6 387 160 1.6399994e-05 1e-6 394 160 8.1999999e-05 1e-6 397 160 3.2799988e-05 1e-6 400 160 1.6399994e-05 1e-6 401 160 0.00031179981 1e-6 402 160 0.0010666 1e-6 417 160 0.00032819994 1e-6 421 160 4.9199996e-05 1e-6 422 160 4.9199996e-05 1e-6 423 160 1.6399994e-05 1e-6 430 160 1.6399994e-05 1e-6 431 160 1.6399994e-05 1e-6 433 160 1.6399994e-05 1e-6 434 160 1.6399994e-05 1e-6 442 160 1.6399994e-05 1e-6 443 160 0.019017499 1e-6 444 160 0.00055789994 1e-6 445 160 0.0055788979 1e-6 446 160 0.0017392999 1e-6 447 160 0.0019197999 1e-6 448 160 0.00019689999 1e-6 450 160 0.0015423999 1e-6 452 160 0.0095989965 1e-6 453 160 0.0019689999 1e-6 454 160 0.0011157999 1e-6 455 160 0.031323798 1e-6 456 160 0.0017720999 1e-6 457 160 0.0040856972 1e-6 458 160 0.00080399984 1e-6 459 160 0.0013126999 1e-6 460 160 0.0027565998 1e-6 463 160 0.0041184984 1e-6 464 160 0.00045939977 1e-6 465 160 0.00085319998 1e-6 467 160 0.010041997 1e-6 468 160 0.0027729999 1e-6 469 160 0.0027565998 1e-6 470 160 0.0016736998 1e-6 471 160 0.0091230981 1e-6 473 160 3.2799988e-05 1e-6 477 160 0.00045939977 1e-6 478 160 0.00085319998 1e-6 483 160 0.00059069996 1e-6 489 160 0.0005086998 1e-6 490 160 0.00014769999 1e-6 491 160 0.0011649998 1e-6 17 161 0.00068559987 1e-6 18 161 0.00034279982 1e-6 22 161 0.00034279982 1e-6 60 161 0.0025710999 1e-6 114 161 0.0001714 1e-6 126 161 0.0001714 1e-6 130 161 0.00034279982 1e-6 156 161 0.0001714 1e-6 159 161 0.082790494 1e-6 160 161 0.23260194 1e-6 161 161 0.014569797 1e-6 162 161 0.0001714 1e-6 165 161 0.0020568999 1e-6 170 161 0.00068559987 1e-6 171 161 0.00068559987 1e-6 190 161 0.0001714 1e-6 194 161 0.0001714 1e-6 198 161 0.0022282999 1e-6 206 161 0.00034279982 1e-6 214 161 0.0001714 1e-6 219 161 0.0017140999 1e-6 233 161 0.0022282999 1e-6 234 161 0.0059992969 1e-6 237 161 0.00068559987 1e-6 241 161 0.0011998999 1e-6 252 161 0.0001714 1e-6 270 161 0.0435379 1e-6 272 161 0.00051419996 1e-6 277 161 0.00051419996 1e-6 317 161 0.0001714 1e-6 318 161 0.0022282999 1e-6 319 161 0.00085699977 1e-6 322 161 0.0001714 1e-6 326 161 0.015940998 1e-6 346 161 0.0022282999 1e-6 349 161 0.0001714 1e-6 356 161 0.0001714 1e-6 358 161 0.0058278963 1e-6 402 161 0.0001714 1e-6 417 161 0.00068559987 1e-6 421 161 0.0001714 1e-6 422 161 0.0001714 1e-6 443 161 0.023825798 1e-6 444 161 0.0029139998 1e-6 445 161 0.0078847967 1e-6 446 161 0.0018854998 1e-6 447 161 0.0053136982 1e-6 450 161 0.0030854 1e-6 452 161 0.016112398 1e-6 453 161 0.0027424998 1e-6 454 161 0.0011998999 1e-6 455 161 0.056050699 1e-6 456 161 0.00085699977 1e-6 457 161 0.0042851977 1e-6 458 161 0.00051419996 1e-6 459 161 0.00034279982 1e-6 460 161 0.0015427 1e-6 463 161 0.010455899 1e-6 464 161 0.00051419996 1e-6 465 161 0.0015427 1e-6 467 161 0.0099416971 1e-6 468 161 0.0068563968 1e-6 469 161 0.0030854 1e-6 470 161 0.0034281998 1e-6 471 161 0.012684297 1e-6 473 161 0.0001714 1e-6 477 161 0.0001714 1e-6 478 161 0.0015427 1e-6 483 161 0.0011998999 1e-6 489 161 0.0001714 1e-6 490 161 0.00034279982 1e-6 491 161 0.0013712998 1e-6 17 162 0.0051753968 1e-6 60 162 0.0011500998 1e-6 114 162 0.00057499995 1e-6 159 162 0.29039675 1e-6 160 162 0.086256444 1e-6 161 162 0.028752197 1e-6 162 162 0.00057499995 1e-6 165 162 0.00057499995 1e-6 206 162 0.00057499995 1e-6 234 162 0.0063254982 1e-6 241 162 0.013800997 1e-6 270 162 0.00057499995 1e-6 272 162 0.00057499995 1e-6 277 162 0.00057499995 1e-6 317 162 0.00057499995 1e-6 318 162 0.0023001998 1e-6 319 162 0.0011500998 1e-6 322 162 0.00057499995 1e-6 346 162 0.0028751998 1e-6 358 162 0.0011500998 1e-6 417 162 0.00057499995 1e-6 443 162 0.021276597 1e-6 444 162 0.00057499995 1e-6 445 162 0.014951099 1e-6 446 162 0.0017251 1e-6 447 162 0.0034502998 1e-6 450 162 0.0023001998 1e-6 452 162 0.0069004968 1e-6 454 162 0.010350797 1e-6 455 162 0.033927497 1e-6 457 162 0.0028751998 1e-6 459 162 0.017826296 1e-6 460 162 0.0046002977 1e-6 463 162 0.0086255968 1e-6 464 162 0.00057499995 1e-6 465 162 0.0011500998 1e-6 467 162 0.0069004968 1e-6 468 162 0.0011500998 1e-6 469 162 0.0017251 1e-6 470 162 0.0017251 1e-6 471 162 0.0034502998 1e-6 478 162 0.0011500998 1e-6 483 162 0.0011500998 1e-6 490 162 0.00057499995 1e-6 491 162 0.0011500998 1e-6 18 163 0.00030919979 1e-6 22 163 0.00017669999 1e-6 60 163 0.0012808 1e-6 75 163 0.00013249999 1e-6 82 163 4.4199987e-05 1e-6 108 163 4.4199987e-05 1e-6 114 163 8.8299988e-05 1e-6 126 163 4.4199987e-05 1e-6 139 163 4.4199987e-05 1e-6 150 163 0.00057419995 1e-6 151 163 4.4199987e-05 1e-6 156 163 4.4199987e-05 1e-6 159 163 0.017710399 1e-6 160 163 0.24949205 1e-6 161 163 0.0032682999 1e-6 162 163 4.4199987e-05 1e-6 163 163 0.0022965998 1e-6 165 163 0.045137398 1e-6 170 163 0.006315697 1e-6 171 163 0.012852199 1e-6 184 163 4.4199987e-05 1e-6 187 163 4.4199987e-05 1e-6 189 163 4.4199987e-05 1e-6 190 163 8.8299988e-05 1e-6 192 163 0.0012365999 1e-6 194 163 8.8299988e-05 1e-6 198 163 0.0042840987 1e-6 200 163 4.4199987e-05 1e-6 203 163 4.4199987e-05 1e-6 204 163 4.4199987e-05 1e-6 206 163 8.8299988e-05 1e-6 214 163 4.4199987e-05 1e-6 215 163 0.0028265999 1e-6 219 163 0.0018107998 1e-6 224 163 4.4199987e-05 1e-6 233 163 0.0064923987 1e-6 234 163 0.0027382998 1e-6 236 163 4.4199987e-05 1e-6 237 163 0.00039749988 1e-6 240 163 0.00013249999 1e-6 241 163 0.0051673986 1e-6 252 163 0.016694598 1e-6 268 163 4.4199987e-05 1e-6 270 163 0.013338 1e-6 272 163 0.00052999984 1e-6 277 163 0.000795 1e-6 279 163 8.8299988e-05 1e-6 289 163 0.00035329978 1e-6 290 163 4.4199987e-05 1e-6 293 163 0.00070669991 1e-6 297 163 4.4199987e-05 1e-6 306 163 4.4199987e-05 1e-6 312 163 0.0063598976 1e-6 315 163 0.0077289976 1e-6 317 163 0.011041399 1e-6 318 163 0.0013249998 1e-6 319 163 0.040323298 1e-6 322 163 0.00052999984 1e-6 326 163 0.0065364987 1e-6 346 163 0.0012808 1e-6 349 163 4.4199987e-05 1e-6 358 163 0.0021640998 1e-6 387 163 4.4199987e-05 1e-6 402 163 0.00013249999 1e-6 417 163 0.00039749988 1e-6 421 163 4.4199987e-05 1e-6 422 163 8.8299988e-05 1e-6 430 163 4.4199987e-05 1e-6 434 163 4.4199987e-05 1e-6 438 163 4.4199987e-05 1e-6 443 163 0.026499398 1e-6 444 163 0.0021199998 1e-6 445 163 0.0076406971 1e-6 446 163 0.00159 1e-6 447 163 0.0041956976 1e-6 448 163 4.4199987e-05 1e-6 450 163 0.0018549999 1e-6 452 163 0.0052556992 1e-6 453 163 0.0012365999 1e-6 454 163 0.0010157998 1e-6 455 163 0.058475398 1e-6 456 163 0.00061829994 1e-6 457 163 0.006094899 1e-6 458 163 0.00057419995 1e-6 459 163 0.00039749988 1e-6 460 163 0.0022524998 1e-6 463 163 0.0094514973 1e-6 464 163 0.0014132999 1e-6 465 163 0.0010599999 1e-6 467 163 0.0071989968 1e-6 468 163 0.0052998997 1e-6 469 163 0.0029590998 1e-6 470 163 0.0032241 1e-6 471 163 0.0044165999 1e-6 473 163 8.8299988e-05 1e-6 477 163 8.8299988e-05 1e-6 478 163 0.0010157998 1e-6 483 163 0.00097159995 1e-6 489 163 8.8299988e-05 1e-6 490 163 0.00026499992 1e-6 491 163 0.00017669999 1e-6 18 164 0.00045799999 1e-6 22 164 0.000229 1e-6 60 164 0.0017175998 1e-6 108 164 0.0001145 1e-6 114 164 0.000229 1e-6 126 164 0.0001145 1e-6 139 164 0.0001145 1e-6 159 164 0.0010305999 1e-6 160 164 0.051757697 1e-6 161 164 0.035611998 1e-6 163 164 0.0001145 1e-6 164 164 0.0012595998 1e-6 165 164 0.080728292 1e-6 170 164 0.025535297 1e-6 171 164 0.015916597 1e-6 190 164 0.0001145 1e-6 192 164 0.0032062 1e-6 194 164 0.0001145 1e-6 198 164 0.0016031 1e-6 206 164 0.000229 1e-6 215 164 0.0001145 1e-6 219 164 0.013282899 1e-6 233 164 0.014771599 1e-6 234 164 0.0036642998 1e-6 237 164 0.00045799999 1e-6 240 164 0.0001145 1e-6 241 164 0.0320623 1e-6 252 164 0.00068699988 1e-6 270 164 0.0269094 1e-6 272 164 0.00068699988 1e-6 277 164 0.00057249982 1e-6 279 164 0.000229 1e-6 293 164 0.000229 1e-6 312 164 0.0018320999 1e-6 315 164 0.0067559965 1e-6 317 164 0.0069849975 1e-6 318 164 0.0017175998 1e-6 319 164 0.028512497 1e-6 326 164 0.010992799 1e-6 346 164 0.0018320999 1e-6 358 164 0.0042367987 1e-6 387 164 0.0001145 1e-6 402 164 0.000229 1e-6 417 164 0.00057249982 1e-6 421 164 0.0001145 1e-6 422 164 0.0001145 1e-6 438 164 0.0030916999 1e-6 443 164 0.018206798 1e-6 444 164 0.0027482 1e-6 445 164 0.006870497 1e-6 446 164 0.00057249982 1e-6 447 164 0.0037787999 1e-6 450 164 0.0025191999 1e-6 452 164 0.0056108981 1e-6 453 164 0.0016031 1e-6 454 164 0.00045799999 1e-6 455 164 0.048207898 1e-6 456 164 0.00045799999 1e-6 457 164 0.0042367987 1e-6 458 164 0.00080159982 1e-6 459 164 0.00045799999 1e-6 460 164 0.0064124987 1e-6 463 164 0.022100098 1e-6 464 164 0.00045799999 1e-6 465 164 0.0014885999 1e-6 467 164 0.010420199 1e-6 468 164 0.0045802966 1e-6 469 164 0.0041222982 1e-6 470 164 0.0044657998 1e-6 471 164 0.0090460964 1e-6 473 164 0.0001145 1e-6 477 164 0.0001145 1e-6 478 164 0.0014885999 1e-6 483 164 0.00091609987 1e-6 489 164 0.000229 1e-6 490 164 0.00045799999 1e-6 17 165 0.0015085 1e-6 18 165 0.00028069993 1e-6 22 165 0.0012278999 1e-6 60 165 0.0018944 1e-6 75 165 0.0074372999 1e-6 108 165 3.5099991e-05 1e-6 114 165 7.0199996e-05 1e-6 126 165 3.5099991e-05 1e-6 150 165 0.00045609986 1e-6 151 165 7.0199996e-05 1e-6 159 165 0.23322219 1e-6 160 165 0.018663399 1e-6 161 165 3.5099991e-05 1e-6 162 165 3.5099991e-05 1e-6 165 165 0.1547097 1e-6 170 165 0.0037185999 1e-6 171 165 0.00021049999 1e-6 190 165 7.0199996e-05 1e-6 192 165 0.0011225999 1e-6 194 165 7.0199996e-05 1e-6 198 165 0.00010519999 1e-6 200 165 3.5099991e-05 1e-6 203 165 3.5099991e-05 1e-6 204 165 3.5099991e-05 1e-6 206 165 7.0199996e-05 1e-6 214 165 0.00010519999 1e-6 218 165 3.5099991e-05 1e-6 219 165 0.015049998 1e-6 224 165 0.0052621998 1e-6 233 165 0.011296298 1e-6 234 165 0.0035432 1e-6 237 165 0.00031569996 1e-6 241 165 0.0025609999 1e-6 242 165 3.5099991e-05 1e-6 252 165 0.0001754 1e-6 270 165 0.0054726973 1e-6 272 165 0.00031569996 1e-6 277 165 0.00045609986 1e-6 279 165 3.5099991e-05 1e-6 312 165 7.0199996e-05 1e-6 315 165 0.00014029999 1e-6 317 165 0.0049464963 1e-6 318 165 0.0014382999 1e-6 319 165 0.0003858998 1e-6 322 165 0.00024559977 1e-6 326 165 0.0033326999 1e-6 335 165 3.5099991e-05 1e-6 337 165 0.00010519999 1e-6 346 165 0.0010173998 1e-6 349 165 0.0001754 1e-6 350 165 0.00084199989 1e-6 352 165 3.5099991e-05 1e-6 356 165 0.00014029999 1e-6 358 165 0.0015786998 1e-6 384 165 0.00014029999 1e-6 387 165 3.5099991e-05 1e-6 401 165 3.5099991e-05 1e-6 402 165 0.0001754 1e-6 404 165 7.0199996e-05 1e-6 417 165 0.00031569996 1e-6 421 165 3.5099991e-05 1e-6 422 165 7.0199996e-05 1e-6 434 165 3.5099991e-05 1e-6 443 165 0.023644999 1e-6 444 165 0.0018241999 1e-6 445 165 0.0067005977 1e-6 446 165 0.0014733998 1e-6 447 165 0.0012629 1e-6 448 165 3.5099991e-05 1e-6 450 165 0.0014382999 1e-6 452 165 0.0081739984 1e-6 453 165 0.0039641969 1e-6 454 165 0.00091209984 1e-6 455 165 0.0390458 1e-6 456 165 0.00045609986 1e-6 457 165 0.0047008991 1e-6 458 165 0.00042099995 1e-6 459 165 0.00035079988 1e-6 460 165 0.0016488 1e-6 463 165 0.0050516985 1e-6 464 165 0.0001754 1e-6 465 165 0.00080689997 1e-6 467 165 0.006139297 1e-6 468 165 0.0054726973 1e-6 469 165 0.0014382999 1e-6 470 165 0.0015085 1e-6 471 165 0.0037536998 1e-6 473 165 3.5099991e-05 1e-6 477 165 7.0199996e-05 1e-6 478 165 0.00080689997 1e-6 483 165 0.00031569996 1e-6 489 165 0.00014029999 1e-6 490 165 0.00014029999 1e-6 491 165 0.00056129997 1e-6 18 166 0.00021719999 1e-6 22 166 0.00021719999 1e-6 60 166 0.00086859986 1e-6 114 166 0.00021719999 1e-6 126 166 0.00021719999 1e-6 159 166 0.006731797 1e-6 160 166 0.33333325 1e-6 161 166 0.00086859986 1e-6 162 166 0.00043429993 1e-6 163 166 0.0017372 1e-6 164 166 0.00021719999 1e-6 165 166 0.014983699 1e-6 166 166 0.0045602992 1e-6 167 166 0.00043429993 1e-6 170 166 0.0045602992 1e-6 171 166 0.00065149995 1e-6 191 166 0.00021719999 1e-6 206 166 0.00021719999 1e-6 219 166 0.0043430999 1e-6 224 166 0.00086859986 1e-6 233 166 0.0076003969 1e-6 234 166 0.0028229998 1e-6 236 166 0.00043429993 1e-6 237 166 0.00043429993 1e-6 241 166 0.00065149995 1e-6 252 166 0.00065149995 1e-6 256 166 0.00043429993 1e-6 268 166 0.00043429993 1e-6 270 166 0.00086859986 1e-6 272 166 0.0028229998 1e-6 274 166 0.00021719999 1e-6 277 166 0.00021719999 1e-6 279 166 0.0062974989 1e-6 292 166 0.00021719999 1e-6 293 166 0.00021719999 1e-6 302 166 0.00021719999 1e-6 303 166 0.00021719999 1e-6 304 166 0.00021719999 1e-6 305 166 0.00043429993 1e-6 306 166 0.00065149995 1e-6 308 166 0.00021719999 1e-6 312 166 0.0060802996 1e-6 315 166 0.00021719999 1e-6 317 166 0.004777398 1e-6 318 166 0.0010857999 1e-6 319 166 0.0078175999 1e-6 324 166 0.00021719999 1e-6 326 166 0.020195398 1e-6 346 166 0.0013028998 1e-6 356 166 0.00021719999 1e-6 358 166 0.0056459978 1e-6 366 166 0.00043429993 1e-6 385 166 0.0052116998 1e-6 402 166 0.00021719999 1e-6 417 166 0.00043429993 1e-6 443 166 0.0286645 1e-6 444 166 0.0086861998 1e-6 445 166 0.0086861998 1e-6 446 166 0.0017372 1e-6 447 166 0.011509199 1e-6 450 166 0.0017372 1e-6 452 166 0.0028229998 1e-6 453 166 0.00086859986 1e-6 455 166 0.052117299 1e-6 456 166 0.00043429993 1e-6 457 166 0.0043430999 1e-6 458 166 0.00065149995 1e-6 459 166 0.0010857999 1e-6 460 166 0.0058631971 1e-6 463 166 0.017589599 1e-6 464 166 0.0089033991 1e-6 465 166 0.00065149995 1e-6 467 166 0.0065146983 1e-6 468 166 0.0013028998 1e-6 469 166 0.0032572998 1e-6 470 166 0.0036915999 1e-6 471 166 0.0021715998 1e-6 473 166 0.00021719999 1e-6 478 166 0.00086859986 1e-6 483 166 0.00043429993 1e-6 490 166 0.00043429993 1e-6 18 167 0.00019359999 1e-6 22 167 9.6799995e-05 1e-6 60 167 0.0008711 1e-6 108 167 9.6799995e-05 1e-6 114 167 0.00019359999 1e-6 126 167 9.6799995e-05 1e-6 134 167 0.0003870998 1e-6 139 167 9.6799995e-05 1e-6 159 167 0.0015485999 1e-6 160 167 0.16376305 1e-6 161 167 0.021196298 1e-6 162 167 0.0067750998 1e-6 163 167 0.041134298 1e-6 164 167 0.0076460987 1e-6 165 167 0.0564266 1e-6 166 167 9.6799995e-05 1e-6 167 167 0.009775497 1e-6 170 167 0.0035810999 1e-6 171 167 0.0090978965 1e-6 173 167 9.6799995e-05 1e-6 176 167 9.6799995e-05 1e-6 177 167 0.0015485999 1e-6 190 167 9.6799995e-05 1e-6 191 167 0.0061942972 1e-6 194 167 9.6799995e-05 1e-6 206 167 0.00019359999 1e-6 219 167 0.0003870998 1e-6 224 167 0.00029039988 1e-6 233 167 0.0028068 1e-6 234 167 0.0020325 1e-6 236 167 0.011033699 1e-6 237 167 0.0003870998 1e-6 240 167 9.6799995e-05 1e-6 241 167 0.0049360991 1e-6 252 167 0.00019359999 1e-6 256 167 0.0083236992 1e-6 259 167 0.0022260998 1e-6 268 167 0.010162599 1e-6 270 167 0.012679096 1e-6 272 167 0.00058069988 1e-6 274 167 0.0057103969 1e-6 277 167 0.0014517999 1e-6 279 167 0.0053232983 1e-6 289 167 0.00019359999 1e-6 292 167 0.0030003998 1e-6 293 167 0.0009678998 1e-6 295 167 0.0026131999 1e-6 302 167 0.0029036 1e-6 303 167 0.005032897 1e-6 304 167 0.0048392974 1e-6 305 167 0.0084203966 1e-6 306 167 0.013550099 1e-6 308 167 0.0039682984 1e-6 312 167 0.0010646998 1e-6 317 167 0.00019359999 1e-6 318 167 0.0009678998 1e-6 319 167 0.011227299 1e-6 324 167 0.0043553971 1e-6 326 167 0.0003870998 1e-6 346 167 0.0009678998 1e-6 356 167 0.00019359999 1e-6 358 167 0.0047424994 1e-6 366 167 0.0082268976 1e-6 377 167 0.00019359999 1e-6 378 167 0.00029039988 1e-6 383 167 0.00067749992 1e-6 385 167 0.0016454 1e-6 386 167 0.0017422 1e-6 387 167 9.6799995e-05 1e-6 402 167 0.00077429996 1e-6 415 167 0.0020325 1e-6 417 167 0.00029039988 1e-6 439 167 0.0020325 1e-6 443 167 0.023035198 1e-6 444 167 0.0009678998 1e-6 445 167 0.0133566 1e-6 446 167 0.0013549998 1e-6 447 167 0.0042585991 1e-6 450 167 0.0072589964 1e-6 452 167 0.0021292998 1e-6 453 167 0.00067749992 1e-6 454 167 0.0003870998 1e-6 455 167 0.060588498 1e-6 456 167 0.00029039988 1e-6 457 167 0.0041617975 1e-6 458 167 0.0010646998 1e-6 459 167 0.0003870998 1e-6 460 167 0.0059039965 1e-6 463 167 0.020905897 1e-6 464 167 0.00048389984 1e-6 465 167 0.0008711 1e-6 467 167 0.0063878968 1e-6 468 167 0.0036778999 1e-6 469 167 0.0032906998 1e-6 470 167 0.0037747 1e-6 471 167 0.0037747 1e-6 472 167 0.0019357 1e-6 473 167 9.6799995e-05 1e-6 477 167 9.6799995e-05 1e-6 478 167 0.0008711 1e-6 483 167 0.00058069988 1e-6 490 167 0.0003870998 1e-6 491 167 9.6799995e-05 1e-6 17 168 0.0010572998 1e-6 22 168 0.0002115 1e-6 60 168 0.0014801999 1e-6 114 168 0.0002115 1e-6 159 168 0.17635858 1e-6 160 168 0.21251845 1e-6 168 168 0.0074010976 1e-6 206 168 0.00042289984 1e-6 214 168 0.10467327 1e-6 233 168 0.010573097 1e-6 234 168 0.0046520978 1e-6 237 168 0.0002115 1e-6 272 168 0.00063439994 1e-6 317 168 0.0002115 1e-6 318 168 0.0002115 1e-6 322 168 0.0002115 1e-6 326 168 0.0088813975 1e-6 346 168 0.0012687999 1e-6 356 168 0.0002115 1e-6 358 168 0.00084579992 1e-6 417 168 0.00042289984 1e-6 443 168 0.028335799 1e-6 444 168 0.0002115 1e-6 445 168 0.0086698979 1e-6 446 168 0.002749 1e-6 447 168 0.010573097 1e-6 450 168 0.0019031998 1e-6 452 168 0.0067667998 1e-6 453 168 0.0078240968 1e-6 454 168 0.00084579992 1e-6 455 168 0.056037199 1e-6 456 168 0.0002115 1e-6 457 168 0.0025374999 1e-6 458 168 0.00063439994 1e-6 459 168 0.0002115 1e-6 460 168 0.0050750971 1e-6 463 168 0.0012687999 1e-6 464 168 0.00042289984 1e-6 465 168 0.00042289984 1e-6 467 168 0.0063437968 1e-6 468 168 0.00084579992 1e-6 469 168 0.0025374999 1e-6 470 168 0.0029604998 1e-6 471 168 0.0016917 1e-6 478 168 0.00063439994 1e-6 483 168 0.00063439994 1e-6 490 168 0.00042289984 1e-6 17 169 0.0020547998 1e-6 18 169 0.00034249993 1e-6 22 169 0.00068489998 1e-6 60 169 0.0075341985 1e-6 114 169 0.00034249993 1e-6 159 169 0.073287666 1e-6 160 169 0.28150678 1e-6 161 169 0.004794497 1e-6 162 169 0.0017122999 1e-6 165 169 0.0023973 1e-6 169 169 0.0044520982 1e-6 170 169 0.00034249993 1e-6 171 169 0.0027396998 1e-6 172 169 0.00034249993 1e-6 188 169 0.0017122999 1e-6 198 169 0.0010273999 1e-6 206 169 0.00068489998 1e-6 219 169 0.0013698998 1e-6 224 169 0.0020547998 1e-6 233 169 0.00034249993 1e-6 234 169 0.0041095987 1e-6 237 169 0.00034249993 1e-6 270 169 0.0010273999 1e-6 272 169 0.00068489998 1e-6 277 169 0.0010273999 1e-6 279 169 0.030479498 1e-6 315 169 0.00034249993 1e-6 318 169 0.0020547998 1e-6 319 169 0.00034249993 1e-6 322 169 0.00034249993 1e-6 326 169 0.00068489998 1e-6 346 169 0.0023973 1e-6 358 169 0.0017122999 1e-6 417 169 0.00068489998 1e-6 438 169 0.0027396998 1e-6 443 169 0.027397297 1e-6 444 169 0.00034249993 1e-6 445 169 0.024315096 1e-6 446 169 0.0017122999 1e-6 447 169 0.0023973 1e-6 450 169 0.0034246999 1e-6 452 169 0.0092465989 1e-6 453 169 0.0054794997 1e-6 455 169 0.044862997 1e-6 456 169 0.00034249993 1e-6 457 169 0.0023973 1e-6 458 169 0.0023973 1e-6 459 169 0.00068489998 1e-6 460 169 0.0013698998 1e-6 463 169 0.004794497 1e-6 464 169 0.00068489998 1e-6 465 169 0.00068489998 1e-6 467 169 0.013013698 1e-6 468 169 0.0051369965 1e-6 469 169 0.0037670999 1e-6 470 169 0.0041095987 1e-6 471 169 0.0034246999 1e-6 478 169 0.0013698998 1e-6 483 169 0.0010273999 1e-6 490 169 0.00068489998 1e-6 491 169 0.00034249993 1e-6 22 170 0.00067869993 1e-6 60 170 0.0023752998 1e-6 114 170 0.00033929991 1e-6 159 170 0.015269797 1e-6 160 170 0.087885976 1e-6 161 170 0.0074651986 1e-6 162 170 0.0095011964 1e-6 165 170 0.010519199 1e-6 170 170 0.00033929991 1e-6 206 170 0.00033929991 1e-6 219 170 0.17237866 1e-6 233 170 0.0010179998 1e-6 234 170 0.016966399 1e-6 241 170 0.014591098 1e-6 270 170 0.019002397 1e-6 272 170 0.0023752998 1e-6 277 170 0.00033929991 1e-6 315 170 0.0020359999 1e-6 317 170 0.00033929991 1e-6 318 170 0.00033929991 1e-6 319 170 0.00033929991 1e-6 326 170 0.012894496 1e-6 346 170 0.0016965999 1e-6 358 170 0.0010179998 1e-6 417 170 0.00033929991 1e-6 438 170 0.0074651986 1e-6 443 170 0.010858499 1e-6 444 170 0.003054 1e-6 445 170 0.024092298 1e-6 446 170 0.00067869993 1e-6 447 170 0.0159484 1e-6 450 170 0.0020359999 1e-6 452 170 0.0288429 1e-6 453 170 0.0098404996 1e-6 454 170 0.0013573 1e-6 455 170 0.047845297 1e-6 457 170 0.0023752998 1e-6 458 170 0.00067869993 1e-6 459 170 0.00067869993 1e-6 460 170 0.0010179998 1e-6 463 170 0.012215797 1e-6 464 170 0.00067869993 1e-6 465 170 0.00033929991 1e-6 467 170 0.0074651986 1e-6 468 170 0.015609097 1e-6 469 170 0.0023752998 1e-6 470 170 0.0023752998 1e-6 471 170 0.0016965999 1e-6 478 170 0.00067869993 1e-6 483 170 0.00067869993 1e-6 490 170 0.00033929991 1e-6 491 170 0.00033929991 1e-6 13 171 6.6999986e-05 1e-6 18 171 0.00033519999 1e-6 22 171 0.00093849981 1e-6 24 171 0.00046919985 1e-6 60 171 0.0024132 1e-6 75 171 6.6999986e-05 1e-6 82 171 0.00013409999 1e-6 104 171 0.00020109999 1e-6 107 171 0.00020109999 1e-6 108 171 6.6999986e-05 1e-6 114 171 6.6999986e-05 1e-6 126 171 6.6999986e-05 1e-6 130 171 0.00060329982 1e-6 131 171 6.6999986e-05 1e-6 132 171 6.6999986e-05 1e-6 139 171 6.6999986e-05 1e-6 150 171 0.00093849981 1e-6 156 171 6.6999986e-05 1e-6 159 171 0.032041799 1e-6 160 171 0.13601017 1e-6 161 171 0.011730798 1e-6 162 171 0.0065021999 1e-6 163 171 6.6999986e-05 1e-6 165 171 0.010457199 1e-6 169 171 0.0010724999 1e-6 170 171 0.013473697 1e-6 171 171 0.056374799 1e-6 172 171 0.00093849981 1e-6 186 171 0.0012065999 1e-6 187 171 0.00033519999 1e-6 188 171 6.6999986e-05 1e-6 189 171 6.6999986e-05 1e-6 190 171 0.00013409999 1e-6 191 171 0.0004021998 1e-6 192 171 0.0049604997 1e-6 193 171 0.00053629978 1e-6 194 171 0.00013409999 1e-6 198 171 0.032913297 1e-6 200 171 6.6999986e-05 1e-6 203 171 6.6999986e-05 1e-6 204 171 6.6999986e-05 1e-6 206 171 6.6999986e-05 1e-6 207 171 6.6999986e-05 1e-6 214 171 0.0010054999 1e-6 219 171 0.010993399 1e-6 223 171 6.6999986e-05 1e-6 224 171 0.0091164969 1e-6 225 171 6.6999986e-05 1e-6 233 171 0.0081109963 1e-6 234 171 0.0043571964 1e-6 237 171 0.0004021998 1e-6 240 171 0.00026809983 1e-6 241 171 0.0062340982 1e-6 252 171 0.0029495 1e-6 267 171 0.00013409999 1e-6 270 171 0.016154997 1e-6 272 171 0.0011395998 1e-6 273 171 0.00013409999 1e-6 277 171 0.0012065999 1e-6 279 171 0.00020109999 1e-6 282 171 6.6999986e-05 1e-6 285 171 6.6999986e-05 1e-6 292 171 0.00013409999 1e-6 293 171 0.00020109999 1e-6 298 171 6.6999986e-05 1e-6 312 171 0.00046919985 1e-6 313 171 0.0047593974 1e-6 315 171 0.0085801966 1e-6 317 171 0.00013409999 1e-6 318 171 0.0017428999 1e-6 319 171 0.0030834998 1e-6 322 171 0.0004021998 1e-6 325 171 6.6999986e-05 1e-6 326 171 0.0053625964 1e-6 334 171 6.6999986e-05 1e-6 340 171 0.00020109999 1e-6 346 171 0.0018098999 1e-6 347 171 6.6999986e-05 1e-6 350 171 0.00020109999 1e-6 356 171 0.00013409999 1e-6 358 171 0.0016758 1e-6 387 171 6.6999986e-05 1e-6 402 171 0.00020109999 1e-6 417 171 0.00060329982 1e-6 421 171 6.6999986e-05 1e-6 422 171 6.6999986e-05 1e-6 430 171 6.6999986e-05 1e-6 431 171 6.6999986e-05 1e-6 433 171 6.6999986e-05 1e-6 434 171 0.00013409999 1e-6 438 171 0.0018098999 1e-6 442 171 0.00026809983 1e-6 443 171 0.018836297 1e-6 444 171 0.00087139988 1e-6 445 171 0.0090494975 1e-6 446 171 0.0023461999 1e-6 447 171 0.0075076967 1e-6 448 171 6.6999986e-05 1e-6 450 171 0.0031505998 1e-6 452 171 0.0146803 1e-6 453 171 0.0089823976 1e-6 454 171 0.00087139988 1e-6 455 171 0.044040799 1e-6 456 171 0.00053629978 1e-6 457 171 0.0026143 1e-6 458 171 0.00067029987 1e-6 459 171 0.00053629978 1e-6 460 171 0.0014746999 1e-6 463 171 0.011730798 1e-6 464 171 0.0004021998 1e-6 465 171 0.0010724999 1e-6 467 171 0.0091835 1e-6 468 171 0.0095186979 1e-6 469 171 0.0042230971 1e-6 470 171 0.0045582987 1e-6 471 171 0.0057647973 1e-6 473 171 0.00013409999 1e-6 477 171 6.6999986e-05 1e-6 478 171 0.0014076999 1e-6 483 171 0.0010724999 1e-6 489 171 0.00020109999 1e-6 490 171 0.0004021998 1e-6 491 171 0.0010054999 1e-6 17 172 0.0017462999 1e-6 18 172 0.00043659983 1e-6 60 172 0.0028378 1e-6 114 172 0.00021829999 1e-6 126 172 0.00021829999 1e-6 159 172 0.058284197 1e-6 160 172 0.21305388 1e-6 161 172 0.0032743998 1e-6 162 172 0.054136697 1e-6 165 172 0.067015886 1e-6 169 172 0.0024011999 1e-6 170 172 0.00043659983 1e-6 171 172 0.00043659983 1e-6 172 172 0.0106964 1e-6 190 172 0.00021829999 1e-6 194 172 0.00021829999 1e-6 206 172 0.00043659983 1e-6 233 172 0.00021829999 1e-6 234 172 0.004584197 1e-6 237 172 0.00043659983 1e-6 241 172 0.00043659983 1e-6 252 172 0.00043659983 1e-6 270 172 0.00021829999 1e-6 272 172 0.00043659983 1e-6 277 172 0.023139097 1e-6 279 172 0.017026898 1e-6 312 172 0.0021829 1e-6 315 172 0.00021829999 1e-6 317 172 0.00021829999 1e-6 318 172 0.0017462999 1e-6 319 172 0.0010914998 1e-6 322 172 0.00021829999 1e-6 326 172 0.00021829999 1e-6 346 172 0.0019645998 1e-6 356 172 0.00021829999 1e-6 358 172 0.0019645998 1e-6 402 172 0.00021829999 1e-6 417 172 0.00065489998 1e-6 442 172 0.0010914998 1e-6 443 172 0.029906098 1e-6 444 172 0.00021829999 1e-6 445 172 0.0111329 1e-6 446 172 0.0024011999 1e-6 447 172 0.0015280999 1e-6 450 172 0.0034926999 1e-6 452 172 0.0082950965 1e-6 453 172 0.0024011999 1e-6 454 172 0.00043659983 1e-6 455 172 0.058502499 1e-6 456 172 0.00043659983 1e-6 457 172 0.0028378 1e-6 458 172 0.0008731999 1e-6 459 172 0.013752498 1e-6 460 172 0.0010914998 1e-6 463 172 0.0072036982 1e-6 464 172 0.00043659983 1e-6 465 172 0.0010914998 1e-6 467 172 0.0098231994 1e-6 468 172 0.0019645998 1e-6 469 172 0.0032743998 1e-6 470 172 0.0037109999 1e-6 471 172 0.0030560999 1e-6 473 172 0.00021829999 1e-6 478 172 0.0015280999 1e-6 483 172 0.0013098 1e-6 490 172 0.00043659983 1e-6 491 172 0.00021829999 1e-6 9 173 3.6199999e-05 1e-6 18 173 0.00018079999 1e-6 22 173 0.0005063999 1e-6 60 173 0.0027849998 1e-6 82 173 3.6199999e-05 1e-6 83 173 3.6199999e-05 1e-6 84 173 3.6199999e-05 1e-6 108 173 3.6199999e-05 1e-6 113 173 7.2299998e-05 1e-6 114 173 7.2299998e-05 1e-6 117 173 7.2299998e-05 1e-6 126 173 3.6199999e-05 1e-6 130 173 0.0043040998 1e-6 131 173 3.6199999e-05 1e-6 132 173 3.6199999e-05 1e-6 133 173 7.2299998e-05 1e-6 137 173 0.00061489991 1e-6 139 173 0.0040870979 1e-6 141 173 3.6199999e-05 1e-6 143 173 3.6199999e-05 1e-6 149 173 7.2299998e-05 1e-6 150 173 0.0011211999 1e-6 151 173 3.6199999e-05 1e-6 154 173 3.6199999e-05 1e-6 159 173 0.00018079999 1e-6 160 173 0.094437182 1e-6 161 173 0.041630499 1e-6 162 173 0.0030743999 1e-6 165 173 0.037507199 1e-6 169 173 0.0005063999 1e-6 170 173 0.019133396 1e-6 171 173 0.022280097 1e-6 172 173 0.00043399981 1e-6 173 173 0.0013382998 1e-6 175 173 3.6199999e-05 1e-6 176 173 3.6199999e-05 1e-6 178 173 3.6199999e-05 1e-6 188 173 3.6199999e-05 1e-6 189 173 7.2299998e-05 1e-6 190 173 0.0001447 1e-6 192 173 0.0014829 1e-6 194 173 0.00054249982 1e-6 198 173 0.019386597 1e-6 200 173 0.0001085 1e-6 203 173 0.0001447 1e-6 204 173 7.2299998e-05 1e-6 206 173 0.00021699999 1e-6 207 173 7.2299998e-05 1e-6 214 173 0.0001447 1e-6 219 173 0.00021699999 1e-6 223 173 3.6199999e-05 1e-6 224 173 0.00054249982 1e-6 225 173 3.6199999e-05 1e-6 227 173 3.6199999e-05 1e-6 233 173 0.018807899 1e-6 234 173 0.0030019998 1e-6 237 173 0.00036169984 1e-6 240 173 0.00021699999 1e-6 241 173 0.0326606 1e-6 243 173 0.0001447 1e-6 252 173 0.0088251978 1e-6 270 173 0.012080397 1e-6 272 173 0.00068719988 1e-6 277 173 0.0027849998 1e-6 279 173 0.00075949985 1e-6 282 173 3.6199999e-05 1e-6 283 173 3.6199999e-05 1e-6 293 173 0.00028939988 1e-6 296 173 3.6199999e-05 1e-6 312 173 0.0064380988 1e-6 315 173 0.0001085 1e-6 317 173 0.0067635998 1e-6 318 173 0.0020615999 1e-6 319 173 0.030164897 1e-6 322 173 0.0013744 1e-6 326 173 0.0014105998 1e-6 346 173 0.0026764998 1e-6 356 173 0.0001085 1e-6 358 173 0.0010851 1e-6 372 173 3.6199999e-05 1e-6 384 173 3.6199999e-05 1e-6 387 173 3.6199999e-05 1e-6 391 173 3.6199999e-05 1e-6 393 173 7.2299998e-05 1e-6 394 173 3.6199999e-05 1e-6 397 173 3.6199999e-05 1e-6 402 173 0.00018079999 1e-6 419 173 3.6199999e-05 1e-6 422 173 0.0001447 1e-6 423 173 3.6199999e-05 1e-6 427 173 3.6199999e-05 1e-6 428 173 7.2299998e-05 1e-6 430 173 0.00021699999 1e-6 431 173 3.6199999e-05 1e-6 432 173 3.6199999e-05 1e-6 433 173 7.2299998e-05 1e-6 434 173 7.2299998e-05 1e-6 437 173 7.2299998e-05 1e-6 438 173 0.0013020998 1e-6 443 173 0.017433397 1e-6 444 173 0.0013020998 1e-6 445 173 0.0073422976 1e-6 446 173 0.0010851 1e-6 447 173 0.0036531 1e-6 448 173 3.6199999e-05 1e-6 450 173 0.0038339 1e-6 452 173 0.0061848983 1e-6 453 173 0.0011574 1e-6 454 173 0.0003254998 1e-6 455 173 0.056351297 1e-6 456 173 0.00047019986 1e-6 457 173 0.0033998999 1e-6 458 173 0.00043399981 1e-6 459 173 0.0003254998 1e-6 460 173 0.0061486997 1e-6 463 173 0.0098017976 1e-6 464 173 0.0005063999 1e-6 465 173 0.0012296999 1e-6 467 173 0.014322899 1e-6 468 173 0.0112486 1e-6 469 173 0.0031466999 1e-6 470 173 0.0035446 1e-6 471 173 0.0026041998 1e-6 473 173 7.2299998e-05 1e-6 477 173 0.0001447 1e-6 478 173 0.0015913998 1e-6 483 173 0.0011574 1e-6 489 173 0.0001085 1e-6 490 173 0.00028939988 1e-6 491 173 0.0003254998 1e-6 60 174 0.0020682998 1e-6 114 174 0.00051709986 1e-6 130 174 0.0046535991 1e-6 139 174 0.0031023999 1e-6 159 174 0.0010340998 1e-6 160 174 0.0062047988 1e-6 161 174 0.043433297 1e-6 165 174 0.012926597 1e-6 170 174 0.0010340998 1e-6 171 174 0.013443597 1e-6 187 174 0.00051709986 1e-6 192 174 0.00051709986 1e-6 193 174 0.00051709986 1e-6 194 174 0.0010340998 1e-6 197 174 0.00051709986 1e-6 198 174 0.020682499 1e-6 206 174 0.00051709986 1e-6 214 174 0.0051705986 1e-6 219 174 0.020682499 1e-6 224 174 0.029472597 1e-6 225 174 0.00051709986 1e-6 233 174 0.00051709986 1e-6 234 174 0.0036193999 1e-6 240 174 0.00051709986 1e-6 241 174 0.16287488 1e-6 252 174 0.0015511999 1e-6 272 174 0.00051709986 1e-6 274 174 0.00051709986 1e-6 277 174 0.0025852998 1e-6 279 174 0.0010340998 1e-6 282 174 0.00051709986 1e-6 292 174 0.00051709986 1e-6 293 174 0.0010340998 1e-6 294 174 0.00051709986 1e-6 295 174 0.00051709986 1e-6 312 174 0.00051709986 1e-6 315 174 0.0020682998 1e-6 318 174 0.00051709986 1e-6 319 174 0.016028997 1e-6 320 174 0.0010340998 1e-6 322 174 0.0010340998 1e-6 326 174 0.0020682998 1e-6 338 174 0.00051709986 1e-6 340 174 0.0010340998 1e-6 349 174 0.00051709986 1e-6 350 174 0.00051709986 1e-6 358 174 0.0020682998 1e-6 373 174 0.00051709986 1e-6 385 174 0.00051709986 1e-6 392 174 0.0010340998 1e-6 393 174 0.0062047988 1e-6 442 174 0.00051709986 1e-6 443 174 0.0046535991 1e-6 444 174 0.008272998 1e-6 445 174 0.0087900981 1e-6 447 174 0.023267798 1e-6 450 174 0.0031023999 1e-6 452 174 0.010858297 1e-6 453 174 0.00051709986 1e-6 455 174 0.0506722 1e-6 457 174 0.004136499 1e-6 458 174 0.00051709986 1e-6 459 174 0.024301998 1e-6 460 174 0.0051705986 1e-6 463 174 0.013443597 1e-6 464 174 0.0020682998 1e-6 465 174 0.0010340998 1e-6 467 174 0.0072388984 1e-6 468 174 0.020682499 1e-6 469 174 0.0036193999 1e-6 470 174 0.004136499 1e-6 471 174 0.0025852998 1e-6 478 174 0.0010340998 1e-6 479 174 0.00051709986 1e-6 490 174 0.0067217983 1e-6 491 174 0.00051709986 1e-6 22 175 0.00063229981 1e-6 60 175 0.0022131 1e-6 114 175 0.00031619985 1e-6 126 175 0.00031619985 1e-6 150 175 0.00031619985 1e-6 159 175 0.0031615999 1e-6 160 175 0.075877249 1e-6 161 175 0.036990199 1e-6 162 175 0.0123301 1e-6 165 175 0.053430296 1e-6 170 175 0.026240896 1e-6 171 175 0.024660099 1e-6 174 175 0.00063229981 1e-6 175 175 0.0018968999 1e-6 190 175 0.00031619985 1e-6 192 175 0.00031619985 1e-6 194 175 0.00031619985 1e-6 198 175 0.0237117 1e-6 206 175 0.00063229981 1e-6 219 175 0.00063229981 1e-6 233 175 0.016756199 1e-6 234 175 0.0025291999 1e-6 237 175 0.00031619985 1e-6 241 175 0.042680997 1e-6 252 175 0.00094849989 1e-6 270 175 0.015491597 1e-6 272 175 0.00063229981 1e-6 277 175 0.00063229981 1e-6 279 175 0.0012645999 1e-6 295 175 0.00031619985 1e-6 312 175 0.00094849989 1e-6 315 175 0.00063229981 1e-6 317 175 0.0063230991 1e-6 318 175 0.0022131 1e-6 319 175 0.035093296 1e-6 322 175 0.0063230991 1e-6 326 175 0.0069553964 1e-6 340 175 0.00031619985 1e-6 358 175 0.0012645999 1e-6 386 175 0.00031619985 1e-6 387 175 0.0012645999 1e-6 391 175 0.0041099973 1e-6 392 175 0.00063229981 1e-6 393 175 0.0041099973 1e-6 422 175 0.00031619985 1e-6 443 175 0.019285496 1e-6 444 175 0.00031619985 1e-6 445 175 0.0079039 1e-6 446 175 0.0012645999 1e-6 447 175 0.0098007992 1e-6 450 175 0.0041099973 1e-6 452 175 0.0066392981 1e-6 453 175 0.0012645999 1e-6 454 175 0.00063229981 1e-6 455 175 0.046790998 1e-6 456 175 0.00031619985 1e-6 457 175 0.0018968999 1e-6 458 175 0.00094849989 1e-6 459 175 0.00031619985 1e-6 460 175 0.0053745992 1e-6 463 175 0.035409398 1e-6 464 175 0.00031619985 1e-6 465 175 0.0022131 1e-6 467 175 0.010116998 1e-6 468 175 0.011381596 1e-6 469 175 0.0034776998 1e-6 470 175 0.0037938999 1e-6 471 175 0.0028453998 1e-6 473 175 0.00031619985 1e-6 478 175 0.0015807999 1e-6 483 175 0.0015807999 1e-6 490 175 0.00063229981 1e-6 491 175 0.00031619985 1e-6 9 176 4.9599999e-05 1e-6 18 176 0.0012888999 1e-6 22 176 9.9099998e-05 1e-6 60 176 0.0014375998 1e-6 82 176 4.9599999e-05 1e-6 83 176 4.9599999e-05 1e-6 84 176 4.9599999e-05 1e-6 108 176 4.9599999e-05 1e-6 114 176 9.9099998e-05 1e-6 117 176 0.0062462986 1e-6 126 176 4.9599999e-05 1e-6 130 176 0.13315487 1e-6 131 176 0.0029247999 1e-6 132 176 0.0016854999 1e-6 133 176 0.003024 1e-6 137 176 0.011302799 1e-6 139 176 0.018193498 1e-6 141 176 0.0027265998 1e-6 143 176 0.0036684999 1e-6 149 176 0.0015864 1e-6 150 176 0.0011401998 1e-6 152 176 4.9599999e-05 1e-6 156 176 0.00039659999 1e-6 158 176 9.9099998e-05 1e-6 160 176 0.043575298 1e-6 161 176 0.052845497 1e-6 162 176 0.0016854999 1e-6 165 176 0.0052547976 1e-6 170 176 0.0011401998 1e-6 171 176 0.010360897 1e-6 172 176 0.0001983 1e-6 173 176 4.9599999e-05 1e-6 176 176 0.0016358998 1e-6 178 176 0.00024789991 1e-6 187 176 0.0006444999 1e-6 189 176 9.9099998e-05 1e-6 190 176 0.0001487 1e-6 192 176 4.9599999e-05 1e-6 194 176 0.0001983 1e-6 197 176 4.9599999e-05 1e-6 198 176 0.010013897 1e-6 200 176 4.9599999e-05 1e-6 203 176 9.9099998e-05 1e-6 204 176 4.9599999e-05 1e-6 206 176 0.0001983 1e-6 207 176 4.9599999e-05 1e-6 214 176 4.9599999e-05 1e-6 219 176 0.0014871999 1e-6 233 176 0.003024 1e-6 234 176 0.0027265998 1e-6 237 176 0.00034699985 1e-6 240 176 0.010162599 1e-6 241 176 0.044715397 1e-6 243 176 0.0066428967 1e-6 252 176 0.00034699985 1e-6 270 176 0.0017847 1e-6 272 176 0.00049569993 1e-6 277 176 0.00044619991 1e-6 279 176 0.00049569993 1e-6 293 176 4.9599999e-05 1e-6 312 176 0.0047094971 1e-6 315 176 4.9599999e-05 1e-6 317 176 0.0066923983 1e-6 318 176 0.0017350998 1e-6 319 176 0.014673799 1e-6 322 176 0.023844898 1e-6 326 176 0.00024789991 1e-6 346 176 9.9099998e-05 1e-6 356 176 9.9099998e-05 1e-6 358 176 0.0010409998 1e-6 387 176 4.9599999e-05 1e-6 402 176 0.0001487 1e-6 422 176 0.0001487 1e-6 423 176 4.9599999e-05 1e-6 430 176 4.9599999e-05 1e-6 433 176 4.9599999e-05 1e-6 434 176 4.9599999e-05 1e-6 437 176 0.0045111999 1e-6 438 176 4.9599999e-05 1e-6 442 176 4.9599999e-05 1e-6 443 176 0.0078821965 1e-6 444 176 0.0016854999 1e-6 445 176 0.0089727975 1e-6 446 176 0.00054529984 1e-6 447 176 0.0054530986 1e-6 448 176 4.9599999e-05 1e-6 450 176 0.0036189 1e-6 452 176 0.0034701999 1e-6 453 176 0.00089229993 1e-6 454 176 0.0016854999 1e-6 455 176 0.049573697 1e-6 456 176 0.00044619991 1e-6 457 176 0.0023299998 1e-6 458 176 0.00049569993 1e-6 459 176 0.00034699985 1e-6 460 176 0.0013881 1e-6 463 176 0.013682298 1e-6 464 176 0.0013881 1e-6 465 176 0.0011898 1e-6 467 176 0.012839597 1e-6 468 176 0.010063499 1e-6 469 176 0.0037675998 1e-6 470 176 0.0040649995 1e-6 471 176 0.004312899 1e-6 473 176 9.9099998e-05 1e-6 477 176 0.0020325 1e-6 478 176 0.0013384998 1e-6 483 176 0.0012392998 1e-6 489 176 9.9099998e-05 1e-6 490 176 0.00034699985 1e-6 491 176 0.0001983 1e-6 22 177 0.00022939999 1e-6 60 177 0.0017205998 1e-6 108 177 0.00011469999 1e-6 114 177 0.00022939999 1e-6 117 177 0.00011469999 1e-6 126 177 0.00011469999 1e-6 130 177 0.0020646998 1e-6 131 177 0.00057349983 1e-6 133 177 0.00057349983 1e-6 137 177 0.011126399 1e-6 139 177 0.022482198 1e-6 141 177 0.00011469999 1e-6 149 177 0.0038999999 1e-6 150 177 0.0035559 1e-6 154 177 0.0057352968 1e-6 156 177 0.00022939999 1e-6 158 177 0.00011469999 1e-6 160 177 0.0080293976 1e-6 161 177 0.0018352999 1e-6 165 177 0.012043998 1e-6 170 177 0.014452897 1e-6 171 177 0.0038999999 1e-6 178 177 0.00022939999 1e-6 188 177 0.00011469999 1e-6 189 177 0.00011469999 1e-6 190 177 0.00011469999 1e-6 194 177 0.00022939999 1e-6 198 177 0.027873397 1e-6 200 177 0.0041293986 1e-6 203 177 0.00011469999 1e-6 204 177 0.00011469999 1e-6 206 177 0.00022939999 1e-6 214 177 0.0038999999 1e-6 223 177 0.00011469999 1e-6 224 177 0.0012617998 1e-6 225 177 0.00011469999 1e-6 227 177 0.00011469999 1e-6 233 177 0.0069969967 1e-6 234 177 0.0033264998 1e-6 237 177 0.00034409994 1e-6 240 177 0.010438196 1e-6 241 177 0.085914195 1e-6 243 177 0.00011469999 1e-6 252 177 0.020188097 1e-6 270 177 0.00011469999 1e-6 272 177 0.00034409994 1e-6 277 177 0.10690528 1e-6 282 177 0.00057349983 1e-6 283 177 0.00011469999 1e-6 285 177 0.00011469999 1e-6 286 177 0.00022939999 1e-6 289 177 0.00034409994 1e-6 290 177 0.00022939999 1e-6 292 177 0.00011469999 1e-6 293 177 0.051158499 1e-6 294 177 0.00022939999 1e-6 295 177 0.00011469999 1e-6 307 177 0.00022939999 1e-6 312 177 0.0056205988 1e-6 313 177 0.00011469999 1e-6 315 177 0.013764597 1e-6 317 177 0.00022939999 1e-6 318 177 0.00011469999 1e-6 319 177 0.018926397 1e-6 320 177 0.00011469999 1e-6 321 177 0.00091759977 1e-6 322 177 0.0035559 1e-6 324 177 0.00011469999 1e-6 326 177 0.036476299 1e-6 328 177 0.00022939999 1e-6 340 177 0.0010322998 1e-6 349 177 0.00022939999 1e-6 350 177 0.00011469999 1e-6 351 177 0.00011469999 1e-6 354 177 0.00034409994 1e-6 356 177 0.00011469999 1e-6 358 177 0.0011470998 1e-6 372 177 0.00011469999 1e-6 373 177 0.00011469999 1e-6 384 177 0.0019499999 1e-6 387 177 0.00011469999 1e-6 402 177 0.00011469999 1e-6 419 177 0.0037852998 1e-6 422 177 0.0034411999 1e-6 428 177 0.00034409994 1e-6 430 177 0.00034409994 1e-6 437 177 0.00011469999 1e-6 443 177 0.0096351989 1e-6 444 177 0.00022939999 1e-6 445 177 0.011241097 1e-6 446 177 0.00045879977 1e-6 447 177 0.00091759977 1e-6 450 177 0.0032116999 1e-6 452 177 0.0048175976 1e-6 453 177 0.0030969998 1e-6 454 177 0.00068819989 1e-6 455 177 0.057008497 1e-6 456 177 0.00034409994 1e-6 457 177 0.0026381998 1e-6 458 177 0.00080289994 1e-6 459 177 0.00022939999 1e-6 460 177 0.0013764999 1e-6 463 177 0.010438196 1e-6 464 177 0.00022939999 1e-6 465 177 0.0010322998 1e-6 467 177 0.0077999979 1e-6 468 177 0.0056205988 1e-6 469 177 0.0038999999 1e-6 470 177 0.0043587983 1e-6 471 177 0.0021793998 1e-6 473 177 0.00011469999 1e-6 477 177 0.00034409994 1e-6 478 177 0.0013764999 1e-6 483 177 0.0013764999 1e-6 489 177 0.00011469999 1e-6 490 177 0.00034409994 1e-6 491 177 0.00022939999 1e-6 18 178 0.00018419999 1e-6 60 178 0.0018420999 1e-6 108 178 9.2099988e-05 1e-6 114 178 0.00018419999 1e-6 117 178 0.015658099 1e-6 126 178 9.2099988e-05 1e-6 130 178 0.10776454 1e-6 131 178 0.0013815998 1e-6 132 178 0.00036839978 1e-6 133 178 0.0046973974 1e-6 137 178 0.025329299 1e-6 138 178 9.2099988e-05 1e-6 139 178 0.008565899 1e-6 141 178 0.0045131966 1e-6 142 178 9.2099988e-05 1e-6 143 178 0.0004604999 1e-6 149 178 0.0070000999 1e-6 150 178 0.0043289997 1e-6 152 178 9.2099988e-05 1e-6 158 178 0.0076447986 1e-6 160 178 0.025881898 1e-6 161 178 0.0298425 1e-6 162 178 0.00018419999 1e-6 165 178 0.0038684998 1e-6 170 178 0.00073689991 1e-6 171 178 0.0011973998 1e-6 172 178 0.00027629989 1e-6 176 178 0.00018419999 1e-6 178 178 0.023855597 1e-6 187 178 9.2099988e-05 1e-6 189 178 9.2099988e-05 1e-6 190 178 9.2099988e-05 1e-6 194 178 0.00018419999 1e-6 198 178 0.0165792 1e-6 203 178 9.2099988e-05 1e-6 204 178 9.2099988e-05 1e-6 206 178 0.00018419999 1e-6 219 178 0.00018419999 1e-6 233 178 0.0038684998 1e-6 234 178 0.0022105998 1e-6 237 178 0.00027629989 1e-6 240 178 0.013355397 1e-6 241 178 0.0350926 1e-6 243 178 0.00073689991 1e-6 252 178 9.2099988e-05 1e-6 270 178 0.00027629989 1e-6 272 178 0.0004604999 1e-6 277 178 0.017776497 1e-6 279 178 0.00092109991 1e-6 293 178 9.2099988e-05 1e-6 312 178 0.0004604999 1e-6 315 178 0.0040526986 1e-6 317 178 0.00073689991 1e-6 318 178 0.00018419999 1e-6 319 178 0.004144799 1e-6 321 178 9.2099988e-05 1e-6 322 178 0.10905409 1e-6 326 178 0.0131712 1e-6 356 178 9.2099988e-05 1e-6 358 178 0.00073689991 1e-6 384 178 0.0019341998 1e-6 387 178 9.2099988e-05 1e-6 402 178 9.2099988e-05 1e-6 422 178 9.2099988e-05 1e-6 437 178 0.0016578999 1e-6 442 178 0.004144799 1e-6 443 178 0.0097632967 1e-6 444 178 0.0032237 1e-6 445 178 0.010407999 1e-6 446 178 0.0004604999 1e-6 447 178 0.0040526986 1e-6 450 178 0.0026711 1e-6 452 178 0.0030395 1e-6 453 178 0.0011973998 1e-6 454 178 0.00073689991 1e-6 455 178 0.049921699 1e-6 456 178 0.00036839978 1e-6 457 178 0.0024869 1e-6 458 178 0.0006446999 1e-6 459 178 0.0051579997 1e-6 460 178 0.0011973998 1e-6 463 178 0.011605397 1e-6 464 178 0.0012894999 1e-6 465 178 0.00082899979 1e-6 467 178 0.014184397 1e-6 468 178 0.0157502 1e-6 469 178 0.004144799 1e-6 470 178 0.004605297 1e-6 471 178 0.0020262999 1e-6 473 178 9.2099988e-05 1e-6 477 178 0.0004604999 1e-6 478 178 0.0011973998 1e-6 483 178 0.0015657998 1e-6 489 178 9.2099988e-05 1e-6 490 178 0.00036839978 1e-6 491 178 0.00018419999 1e-6 22 179 0.00075819995 1e-6 60 179 0.0022745 1e-6 114 179 0.00037909998 1e-6 130 179 0.0041697994 1e-6 133 179 0.0068233982 1e-6 137 179 0.011372298 1e-6 139 179 0.017058399 1e-6 141 179 0.00037909998 1e-6 149 179 0.00037909998 1e-6 150 179 0.0049279965 1e-6 156 179 0.00037909998 1e-6 158 179 0.00037909998 1e-6 160 179 0.075056851 1e-6 161 179 0.0064442977 1e-6 165 179 0.040560998 1e-6 169 179 0.00037909998 1e-6 170 179 0.015162997 1e-6 171 179 0.025018997 1e-6 179 179 0.005307097 1e-6 180 179 0.0011371998 1e-6 185 179 0.00037909998 1e-6 198 179 0.015162997 1e-6 200 179 0.00037909998 1e-6 206 179 0.00075819995 1e-6 214 179 0.00037909998 1e-6 219 179 0.0015162998 1e-6 233 179 0.007202398 1e-6 234 179 0.0026534998 1e-6 237 179 0.00037909998 1e-6 240 179 0.005307097 1e-6 241 179 0.034874897 1e-6 243 179 0.012130398 1e-6 252 179 0.00037909998 1e-6 270 179 0.012130398 1e-6 272 179 0.00037909998 1e-6 277 179 0.018953796 1e-6 279 179 0.00075819995 1e-6 293 179 0.00037909998 1e-6 312 179 0.012130398 1e-6 315 179 0.00075819995 1e-6 317 179 0.0060651973 1e-6 318 179 0.0018954 1e-6 319 179 0.042835496 1e-6 322 179 0.0022745 1e-6 326 179 0.0015162998 1e-6 351 179 0.00037909998 1e-6 358 179 0.0011371998 1e-6 437 179 0.0018954 1e-6 442 179 0.00037909998 1e-6 443 179 0.012509499 1e-6 444 179 0.010234997 1e-6 445 179 0.0060651973 1e-6 446 179 0.00037909998 1e-6 447 179 0.018195599 1e-6 450 179 0.0037908 1e-6 452 179 0.0056860968 1e-6 453 179 0.0018954 1e-6 454 179 0.0011371998 1e-6 455 179 0.052312396 1e-6 456 179 0.00037909998 1e-6 457 179 0.0034116998 1e-6 460 179 0.0060651973 1e-6 463 179 0.0094768964 1e-6 464 179 0.0015162998 1e-6 465 179 0.00075819995 1e-6 467 179 0.0094768964 1e-6 468 179 0.0056860968 1e-6 469 179 0.0045488998 1e-6 470 179 0.0049279965 1e-6 471 179 0.0022745 1e-6 478 179 0.0011371998 1e-6 483 179 0.00075819995 1e-6 490 179 0.00075819995 1e-6 22 180 0.0026427999 1e-6 60 180 0.0035237998 1e-6 108 180 0.0001258 1e-6 114 180 0.00025169994 1e-6 126 180 0.0001258 1e-6 130 180 0.0090611987 1e-6 133 180 0.0021394 1e-6 137 180 0.0057890974 1e-6 139 180 0.0090611987 1e-6 141 180 0.0001258 1e-6 149 180 0.0047822967 1e-6 150 180 0.0055373982 1e-6 156 180 0.00025169994 1e-6 158 180 0.0032720999 1e-6 160 180 0.0036495999 1e-6 161 180 0.0032720999 1e-6 165 180 0.0057890974 1e-6 169 180 0.0050339997 1e-6 170 180 0.0022652999 1e-6 171 180 0.0022652999 1e-6 172 180 0.00037749996 1e-6 180 180 0.0096903965 1e-6 185 180 0.0036495999 1e-6 187 180 0.00075509981 1e-6 188 180 0.0006291999 1e-6 189 180 0.0001258 1e-6 190 180 0.0001258 1e-6 194 180 0.0001258 1e-6 198 180 0.018877398 1e-6 200 180 0.0042788982 1e-6 203 180 0.0001258 1e-6 206 180 0.00025169994 1e-6 214 180 0.0032720999 1e-6 224 180 0.0015101999 1e-6 233 180 0.0096903965 1e-6 234 180 0.0021394 1e-6 237 180 0.00037749996 1e-6 240 180 0.0039012998 1e-6 241 180 0.040649399 1e-6 243 180 0.0001258 1e-6 252 180 0.00088089984 1e-6 270 180 0.00025169994 1e-6 272 180 0.00075509981 1e-6 277 180 0.10596526 1e-6 279 180 0.0010068 1e-6 282 180 0.00050339988 1e-6 283 180 0.00025169994 1e-6 284 180 0.0001258 1e-6 285 180 0.00037749996 1e-6 286 180 0.0001258 1e-6 289 180 0.00075509981 1e-6 290 180 0.00050339988 1e-6 292 180 0.00037749996 1e-6 293 180 0.0076767989 1e-6 294 180 0.00037749996 1e-6 295 180 0.00025169994 1e-6 296 180 0.0001258 1e-6 299 180 0.0001258 1e-6 301 180 0.0001258 1e-6 308 180 0.0001258 1e-6 312 180 0.004027199 1e-6 315 180 0.010319699 1e-6 319 180 0.038509898 1e-6 320 180 0.00037749996 1e-6 321 180 0.00075509981 1e-6 322 180 0.0023910999 1e-6 325 180 0.0001258 1e-6 326 180 0.018374 1e-6 328 180 0.0006291999 1e-6 339 180 0.0001258 1e-6 340 180 0.00088089984 1e-6 351 180 0.0035237998 1e-6 356 180 0.0001258 1e-6 358 180 0.0013842999 1e-6 387 180 0.0001258 1e-6 392 180 0.0001258 1e-6 393 180 0.0001258 1e-6 402 180 0.00025169994 1e-6 405 180 0.0001258 1e-6 413 180 0.0001258 1e-6 422 180 0.0001258 1e-6 434 180 0.0001258 1e-6 437 180 0.0006291999 1e-6 443 180 0.0045305975 1e-6 444 180 0.0045305975 1e-6 445 180 0.0064182989 1e-6 446 180 0.00050339988 1e-6 447 180 0.0055373982 1e-6 450 180 0.0028944998 1e-6 452 180 0.0059148967 1e-6 453 180 0.0035237998 1e-6 454 180 0.0015101999 1e-6 455 180 0.040523499 1e-6 456 180 0.0001258 1e-6 457 180 0.010948896 1e-6 458 180 0.00075509981 1e-6 459 180 0.00037749996 1e-6 460 180 0.0013842999 1e-6 463 180 0.014976099 1e-6 464 180 0.0056631975 1e-6 465 180 0.0010068 1e-6 467 180 0.024666499 1e-6 468 180 0.0059148967 1e-6 469 180 0.0052856989 1e-6 470 180 0.0055373982 1e-6 471 180 0.0052856989 1e-6 473 180 0.0001258 1e-6 477 180 0.0010068 1e-6 478 180 0.0011325998 1e-6 483 180 0.0013842999 1e-6 490 180 0.00050339988 1e-6 491 180 0.00050339988 1e-6 22 181 0.0005804 1e-6 60 181 0.0021280998 1e-6 108 181 0.00019349999 1e-6 114 181 0.0003868998 1e-6 117 181 0.00019349999 1e-6 126 181 0.00019349999 1e-6 130 181 0.013735697 1e-6 133 181 0.0013541998 1e-6 137 181 0.0061907992 1e-6 139 181 0.017217997 1e-6 141 181 0.00019349999 1e-6 150 181 0.0058037974 1e-6 156 181 0.032694899 1e-6 158 181 0.0071580969 1e-6 160 181 0.036370698 1e-6 161 181 0.0027084998 1e-6 165 181 0.022441499 1e-6 169 181 0.0032887999 1e-6 170 181 0.0096731 1e-6 171 181 0.0046430975 1e-6 178 181 0.00019349999 1e-6 180 181 0.00019349999 1e-6 181 181 0.0029018999 1e-6 189 181 0.00019349999 1e-6 190 181 0.00019349999 1e-6 194 181 0.00019349999 1e-6 198 181 0.012381498 1e-6 206 181 0.0003868998 1e-6 214 181 0.0005804 1e-6 219 181 0.0011608 1e-6 224 181 0.0011608 1e-6 233 181 0.0069645979 1e-6 234 181 0.0023214999 1e-6 237 181 0.0009672998 1e-6 240 181 0.0021280998 1e-6 241 181 0.055329897 1e-6 243 181 0.00019349999 1e-6 252 181 0.00077379984 1e-6 269 181 0.0003868998 1e-6 270 181 0.0077383965 1e-6 272 181 0.0005804 1e-6 277 181 0.068678677 1e-6 283 181 0.00019349999 1e-6 286 181 0.00019349999 1e-6 290 181 0.00019349999 1e-6 293 181 0.011220697 1e-6 296 181 0.00019349999 1e-6 312 181 0.017024599 1e-6 315 181 0.011220697 1e-6 317 181 0.00019349999 1e-6 318 181 0.0015476998 1e-6 319 181 0.023602199 1e-6 320 181 0.0005804 1e-6 321 181 0.0005804 1e-6 322 181 0.017411496 1e-6 325 181 0.00019349999 1e-6 326 181 0.0056103989 1e-6 328 181 0.00019349999 1e-6 330 181 0.00019349999 1e-6 340 181 0.0005804 1e-6 354 181 0.0011608 1e-6 356 181 0.00019349999 1e-6 358 181 0.0013541998 1e-6 372 181 0.00019349999 1e-6 387 181 0.00019349999 1e-6 402 181 0.0003868998 1e-6 409 181 0.0021280998 1e-6 412 181 0.0003868998 1e-6 422 181 0.00019349999 1e-6 437 181 0.0003868998 1e-6 442 181 0.00019349999 1e-6 443 181 0.0102534 1e-6 444 181 0.0096731 1e-6 445 181 0.017411496 1e-6 446 181 0.00019349999 1e-6 447 181 0.011414196 1e-6 450 181 0.0030953998 1e-6 452 181 0.0058037974 1e-6 453 181 0.0025149998 1e-6 455 181 0.0433353 1e-6 456 181 0.00019349999 1e-6 457 181 0.0090926997 1e-6 458 181 0.0011608 1e-6 459 181 0.00019349999 1e-6 460 181 0.0058037974 1e-6 463 181 0.013155296 1e-6 464 181 0.0034822999 1e-6 465 181 0.0011608 1e-6 467 181 0.0085122995 1e-6 468 181 0.0021280998 1e-6 469 181 0.0056103989 1e-6 470 181 0.0059972964 1e-6 471 181 0.0019345998 1e-6 473 181 0.00019349999 1e-6 477 181 0.0003868998 1e-6 478 181 0.0013541998 1e-6 483 181 0.0017410999 1e-6 490 181 0.0005804 1e-6 491 181 0.00019349999 1e-6 60 182 0.0017557 1e-6 108 182 0.00012539999 1e-6 114 182 0.00025079981 1e-6 126 182 0.00012539999 1e-6 130 182 0.00062699988 1e-6 137 182 0.00025079981 1e-6 139 182 0.0016303 1e-6 150 182 0.005643297 1e-6 156 182 0.00062699988 1e-6 158 182 0.00012539999 1e-6 159 182 0.00062699988 1e-6 160 182 0.040381197 1e-6 161 182 0.0051416978 1e-6 163 182 0.00012539999 1e-6 165 182 0.041008297 1e-6 169 182 0.00012539999 1e-6 170 182 0.034110896 1e-6 171 182 0.015675899 1e-6 180 182 0.00012539999 1e-6 182 182 0.0050162971 1e-6 183 182 0.00012539999 1e-6 189 182 0.00012539999 1e-6 190 182 0.00012539999 1e-6 194 182 0.00025079981 1e-6 198 182 0.0061449967 1e-6 203 182 0.00012539999 1e-6 204 182 0.00012539999 1e-6 206 182 0.00025079981 1e-6 219 182 0.0018810998 1e-6 224 182 0.00037619984 1e-6 233 182 0.0079007 1e-6 234 182 0.0025081998 1e-6 237 182 0.00037619984 1e-6 241 182 0.081514895 1e-6 243 182 0.00012539999 1e-6 252 182 0.0219463 1e-6 270 182 0.0041383989 1e-6 272 182 0.00037619984 1e-6 277 182 0.023074999 1e-6 279 182 0.0012540999 1e-6 293 182 0.0043892972 1e-6 312 182 0.005894199 1e-6 315 182 0.00087789982 1e-6 317 182 0.0067719966 1e-6 318 182 0.0015048999 1e-6 319 182 0.030850299 1e-6 320 182 0.00012539999 1e-6 321 182 0.00087789982 1e-6 322 182 0.00050159986 1e-6 326 182 0.0057686977 1e-6 340 182 0.0020064998 1e-6 354 182 0.00012539999 1e-6 356 182 0.00012539999 1e-6 358 182 0.00087789982 1e-6 372 182 0.00012539999 1e-6 385 182 0.00050159986 1e-6 387 182 0.00012539999 1e-6 402 182 0.00012539999 1e-6 422 182 0.00012539999 1e-6 442 182 0.0097817965 1e-6 443 182 0.015550498 1e-6 444 182 0.0045146979 1e-6 445 182 0.0081514977 1e-6 446 182 0.00037619984 1e-6 447 182 0.0053924993 1e-6 450 182 0.0032605999 1e-6 452 182 0.0051416978 1e-6 453 182 0.0026335998 1e-6 454 182 0.0028843998 1e-6 455 182 0.0451467 1e-6 456 182 0.00037619984 1e-6 457 182 0.0028843998 1e-6 458 182 0.00050159986 1e-6 459 182 0.00025079981 1e-6 460 182 0.0062703975 1e-6 463 182 0.0200652 1e-6 464 182 0.005643297 1e-6 465 182 0.0010032998 1e-6 467 182 0.0077752993 1e-6 468 182 0.0070227981 1e-6 469 182 0.0046400987 1e-6 470 182 0.0051416978 1e-6 471 182 0.008026097 1e-6 473 182 0.00012539999 1e-6 477 182 0.0017557 1e-6 478 182 0.0012540999 1e-6 483 182 0.0015048999 1e-6 489 182 0.00012539999 1e-6 490 182 0.00050159986 1e-6 491 182 0.00012539999 1e-6 60 183 0.0025807999 1e-6 108 183 0.00013579999 1e-6 114 183 0.00027169986 1e-6 126 183 0.00013579999 1e-6 130 183 0.00040749996 1e-6 137 183 0.00027169986 1e-6 139 183 0.00067919982 1e-6 149 183 0.00013579999 1e-6 150 183 0.0042107999 1e-6 156 183 0.00040749996 1e-6 158 183 0.00027169986 1e-6 160 183 0.0059765987 1e-6 161 183 0.0014942 1e-6 165 183 0.0055690967 1e-6 169 183 0.0039390996 1e-6 170 183 0.0031241998 1e-6 171 183 0.0099157989 1e-6 172 183 0.00027169986 1e-6 180 183 0.00027169986 1e-6 182 183 0.00013579999 1e-6 183 183 0.0029882998 1e-6 185 183 0.00013579999 1e-6 189 183 0.00013579999 1e-6 190 183 0.00013579999 1e-6 194 183 0.00013579999 1e-6 198 183 0.014398299 1e-6 200 183 0.00013579999 1e-6 203 183 0.00013579999 1e-6 206 183 0.00027169986 1e-6 223 183 0.00013579999 1e-6 224 183 0.00027169986 1e-6 233 183 0.012360796 1e-6 234 183 0.0023091999 1e-6 237 183 0.00027169986 1e-6 240 183 0.00013579999 1e-6 241 183 0.031648997 1e-6 242 183 0.00013579999 1e-6 252 183 0.014534097 1e-6 270 183 0.00013579999 1e-6 272 183 0.00054329983 1e-6 277 183 0.20320565 1e-6 282 183 0.00027169986 1e-6 288 183 0.00013579999 1e-6 289 183 0.00040749996 1e-6 292 183 0.00040749996 1e-6 293 183 0.012224898 1e-6 294 183 0.00013579999 1e-6 295 183 0.00040749996 1e-6 296 183 0.00013579999 1e-6 297 183 0.00013579999 1e-6 298 183 0.00013579999 1e-6 307 183 0.00027169986 1e-6 312 183 0.012224898 1e-6 315 183 0.013583299 1e-6 317 183 0.00040749996 1e-6 318 183 0.00040749996 1e-6 319 183 0.0162999 1e-6 320 183 0.00013579999 1e-6 321 183 0.027166497 1e-6 322 183 0.00013579999 1e-6 324 183 0.00027169986 1e-6 326 183 0.0039390996 1e-6 328 183 0.00013579999 1e-6 335 183 0.00027169986 1e-6 340 183 0.0036674999 1e-6 351 183 0.00027169986 1e-6 352 183 0.00013579999 1e-6 354 183 0.00027169986 1e-6 356 183 0.00013579999 1e-6 358 183 0.0010866998 1e-6 366 183 0.00040749996 1e-6 371 183 0.00013579999 1e-6 372 183 0.0012224999 1e-6 373 183 0.00027169986 1e-6 380 183 0.00013579999 1e-6 385 183 0.00040749996 1e-6 386 183 0.00027169986 1e-6 387 183 0.00013579999 1e-6 402 183 0.00013579999 1e-6 415 183 0.00013579999 1e-6 422 183 0.00013579999 1e-6 434 183 0.00013579999 1e-6 442 183 0.00013579999 1e-6 443 183 0.0051615983 1e-6 444 183 0.006248299 1e-6 445 183 0.0059765987 1e-6 446 183 0.00040749996 1e-6 447 183 0.0065199994 1e-6 450 183 0.0027166998 1e-6 452 183 0.005704999 1e-6 453 183 0.0040749982 1e-6 454 183 0.0052974969 1e-6 455 183 0.035995699 1e-6 456 183 0.00013579999 1e-6 457 183 0.0074707977 1e-6 458 183 0.00081499992 1e-6 459 183 0.00027169986 1e-6 460 183 0.0013583 1e-6 463 183 0.0152133 1e-6 464 183 0.0036674999 1e-6 465 183 0.00095079979 1e-6 467 183 0.0081499964 1e-6 468 183 0.006248299 1e-6 469 183 0.0047541 1e-6 470 183 0.0054332986 1e-6 471 183 0.006384097 1e-6 473 183 0.00013579999 1e-6 477 183 0.0046182983 1e-6 478 183 0.0012224999 1e-6 483 183 0.0019016999 1e-6 490 183 0.00054329983 1e-6 491 183 0.00027169986 1e-6 16 184 0.00032139989 1e-6 22 184 0.00064289989 1e-6 60 184 0.0025714999 1e-6 84 184 0.00064289989 1e-6 114 184 0.00032139989 1e-6 126 184 0.00032139989 1e-6 130 184 0.0022500998 1e-6 131 184 0.0022500998 1e-6 133 184 0.00032139989 1e-6 139 184 0.094503343 1e-6 141 184 0.0070716999 1e-6 160 184 0.005142998 1e-6 161 184 0.0080359988 1e-6 165 184 0.00032139989 1e-6 184 184 0.057216298 1e-6 187 184 0.00032139989 1e-6 198 184 0.0038572999 1e-6 206 184 0.00064289989 1e-6 214 184 0.011250399 1e-6 233 184 0.00032139989 1e-6 234 184 0.0028929999 1e-6 237 184 0.00032139989 1e-6 241 184 0.072966874 1e-6 272 184 0.00064289989 1e-6 277 184 0.0520733 1e-6 279 184 0.00032139989 1e-6 289 184 0.0025714999 1e-6 293 184 0.026036598 1e-6 312 184 0.022179399 1e-6 315 184 0.0057858974 1e-6 318 184 0.00032139989 1e-6 320 184 0.0016071999 1e-6 321 184 0.0035357999 1e-6 326 184 0.0073930994 1e-6 358 184 0.00096429978 1e-6 435 184 0.00032139989 1e-6 443 184 0.0070716999 1e-6 444 184 0.0016071999 1e-6 445 184 0.018964998 1e-6 447 184 0.0176792 1e-6 450 184 0.0032143998 1e-6 452 184 0.0041786991 1e-6 453 184 0.0019285998 1e-6 454 184 0.00064289989 1e-6 455 184 0.0347155 1e-6 456 184 0.00064289989 1e-6 457 184 0.0028929999 1e-6 458 184 0.00096429978 1e-6 459 184 0.0012857998 1e-6 460 184 0.00096429978 1e-6 463 184 0.018643498 1e-6 464 184 0.00064289989 1e-6 465 184 0.00064289989 1e-6 467 184 0.0077145994 1e-6 468 184 0.016071998 1e-6 469 184 0.005464498 1e-6 470 184 0.0061073974 1e-6 471 184 0.0016071999 1e-6 473 184 0.00032139989 1e-6 477 184 0.00032139989 1e-6 478 184 0.0012857998 1e-6 479 184 0.0012857998 1e-6 483 184 0.0019285998 1e-6 490 184 0.0019285998 1e-6 491 184 0.00064289989 1e-6 22 185 0.00025809999 1e-6 60 185 0.0010322998 1e-6 114 185 0.00025809999 1e-6 117 185 0.00025809999 1e-6 126 185 0.00025809999 1e-6 130 185 0.0025805999 1e-6 137 185 0.0015483999 1e-6 139 185 0.0136774 1e-6 142 185 0.00025809999 1e-6 149 185 0.0028386998 1e-6 150 185 0.0018064999 1e-6 156 185 0.00077419984 1e-6 158 185 0.00025809999 1e-6 160 185 0.0229677 1e-6 161 185 0.0072257966 1e-6 165 185 0.017548397 1e-6 169 185 0.00025809999 1e-6 170 185 0.0087741986 1e-6 171 185 0.0043870993 1e-6 178 185 0.0049031973 1e-6 183 185 0.00025809999 1e-6 185 185 0.0046451986 1e-6 186 185 0.00025809999 1e-6 187 185 0.0020644998 1e-6 193 185 0.00025809999 1e-6 194 185 0.00025809999 1e-6 198 185 0.0077418983 1e-6 206 185 0.00051609986 1e-6 214 185 0.00025809999 1e-6 233 185 0.0064515993 1e-6 234 185 0.0028386998 1e-6 237 185 0.00025809999 1e-6 240 185 0.0041289963 1e-6 241 185 0.0335484 1e-6 242 185 0.00025809999 1e-6 252 185 0.0018064999 1e-6 253 185 0.00025809999 1e-6 270 185 0.0077418983 1e-6 272 185 0.00077419984 1e-6 277 185 0.078451574 1e-6 279 185 0.00051609986 1e-6 286 185 0.00077419984 1e-6 290 185 0.00077419984 1e-6 293 185 0.0061934963 1e-6 312 185 0.0098064989 1e-6 315 185 0.010838699 1e-6 317 185 0.00051609986 1e-6 318 185 0.0015483999 1e-6 319 185 0.014451597 1e-6 320 185 0.0092902966 1e-6 321 185 0.011870999 1e-6 322 185 0.0020644998 1e-6 325 185 0.00051609986 1e-6 326 185 0.0079999976 1e-6 328 185 0.00051609986 1e-6 340 185 0.0012902999 1e-6 354 185 0.0085160993 1e-6 358 185 0.00077419984 1e-6 366 185 0.00025809999 1e-6 372 185 0.017290298 1e-6 401 185 0.00051609986 1e-6 402 185 0.00051609986 1e-6 414 185 0.00025809999 1e-6 416 185 0.00025809999 1e-6 422 185 0.00025809999 1e-6 443 185 0.0074838996 1e-6 444 185 0.010064498 1e-6 445 185 0.0054193996 1e-6 447 185 0.013161298 1e-6 450 185 0.0030967998 1e-6 452 185 0.0051612966 1e-6 453 185 0.0015483999 1e-6 454 185 0.0015483999 1e-6 455 185 0.038967699 1e-6 456 185 0.00025809999 1e-6 457 185 0.0030967998 1e-6 458 185 0.00025809999 1e-6 459 185 0.00025809999 1e-6 460 185 0.0056773983 1e-6 463 185 0.038709696 1e-6 464 185 0.0015483999 1e-6 465 185 0.00051609986 1e-6 467 185 0.0079999976 1e-6 468 185 0.0054193996 1e-6 469 185 0.0046451986 1e-6 470 185 0.0054193996 1e-6 471 185 0.0023226 1e-6 473 185 0.00025809999 1e-6 477 185 0.00051609986 1e-6 478 185 0.0010322998 1e-6 483 185 0.00077419984 1e-6 490 185 0.00051609986 1e-6 491 185 0.00077419984 1e-6 6 186 0.00053219986 1e-6 17 186 0.0001774 1e-6 18 186 8.8699991e-05 1e-6 21 186 0.0001774 1e-6 22 186 0.0046127997 1e-6 24 186 0.0025724999 1e-6 25 186 0.0020402998 1e-6 60 186 0.011443298 1e-6 75 186 0.015878599 1e-6 104 186 0.0041692965 1e-6 114 186 8.8699991e-05 1e-6 117 186 0.0062981993 1e-6 126 186 8.8699991e-05 1e-6 130 186 0.0038143999 1e-6 139 186 0.0011531999 1e-6 150 186 0.0001774 1e-6 159 186 0.1312871 1e-6 160 186 0.076554596 1e-6 169 186 0.00079839979 1e-6 171 186 0.00044349977 1e-6 186 186 0.043821499 1e-6 187 186 0.00079839979 1e-6 192 186 0.00053219986 1e-6 193 186 0.00044349977 1e-6 198 186 0.0015079998 1e-6 206 186 0.0001774 1e-6 209 186 0.0001774 1e-6 214 186 0.050563298 1e-6 215 186 0.00035479991 1e-6 218 186 0.00035479991 1e-6 219 186 0.0001774 1e-6 223 186 0.0028386 1e-6 224 186 0.0020402998 1e-6 225 186 0.0013305999 1e-6 231 186 0.0015966999 1e-6 233 186 0.0001774 1e-6 234 186 0.018184997 1e-6 240 186 0.00035479991 1e-6 241 186 0.0017741998 1e-6 267 186 0.0018628999 1e-6 272 186 0.0029272998 1e-6 273 186 8.8699991e-05 1e-6 277 186 0.00062099984 1e-6 287 186 8.8699991e-05 1e-6 318 186 0.00035479991 1e-6 322 186 0.0021289999 1e-6 324 186 0.0094029978 1e-6 326 186 0.0011531999 1e-6 347 186 0.0031935 1e-6 349 186 8.8699991e-05 1e-6 350 186 0.00088709989 1e-6 356 186 0.00044349977 1e-6 358 186 0.00088709989 1e-6 384 186 0.00035479991 1e-6 414 186 0.0018628999 1e-6 442 186 8.8699991e-05 1e-6 443 186 0.038676497 1e-6 444 186 0.0014193 1e-6 445 186 0.011088397 1e-6 446 186 0.0037256998 1e-6 447 186 0.0066530965 1e-6 448 186 8.8699991e-05 1e-6 450 186 0.0015966999 1e-6 452 186 0.017475396 1e-6 453 186 0.015612498 1e-6 454 186 0.020491399 1e-6 455 186 0.038853899 1e-6 456 186 8.8699991e-05 1e-6 457 186 0.0031935 1e-6 458 186 0.0010644998 1e-6 459 186 0.0017741998 1e-6 460 186 0.0012418998 1e-6 463 186 0.010999698 1e-6 464 186 0.00097579998 1e-6 465 186 0.00044349977 1e-6 467 186 0.015257698 1e-6 468 186 0.0031935 1e-6 469 186 0.0041692965 1e-6 470 186 0.0039030998 1e-6 471 186 0.00062099984 1e-6 473 186 8.8699991e-05 1e-6 477 186 8.8699991e-05 1e-6 478 186 0.00062099984 1e-6 483 186 0.0012418998 1e-6 489 186 0.0028386 1e-6 490 186 0.00044349977 1e-6 491 186 0.020313997 1e-6 4 187 1.589999e-05 1e-6 6 187 0.0022057998 1e-6 9 187 1.589999e-05 1e-6 16 187 1.589999e-05 1e-6 17 187 0.00058719981 1e-6 18 187 0.0002063 1e-6 21 187 0.00042849989 1e-6 22 187 0.0086645968 1e-6 24 187 0.0089025982 1e-6 25 187 0.00041259988 1e-6 60 187 0.012679499 1e-6 79 187 1.589999e-05 1e-6 82 187 1.589999e-05 1e-6 83 187 1.589999e-05 1e-6 84 187 1.589999e-05 1e-6 104 187 0.011584498 1e-6 108 187 3.1699994e-05 1e-6 113 187 4.7599999e-05 1e-6 114 187 7.9299993e-05 1e-6 117 187 0.00092039979 1e-6 126 187 4.7599999e-05 1e-6 127 187 1.589999e-05 1e-6 130 187 0.011235397 1e-6 132 187 1.589999e-05 1e-6 139 187 7.9299993e-05 1e-6 142 187 6.3499989e-05 1e-6 143 187 3.1699994e-05 1e-6 150 187 0.0004918999 1e-6 151 187 1.589999e-05 1e-6 159 187 0.072744548 1e-6 160 187 0.027564898 1e-6 161 187 7.9299993e-05 1e-6 169 187 0.0019359998 1e-6 170 187 0.00012699999 1e-6 171 187 0.00017459999 1e-6 172 187 0.00017459999 1e-6 186 187 0.14163285 1e-6 187 187 0.0062524974 1e-6 188 187 0.00031739986 1e-6 189 187 7.9299993e-05 1e-6 190 187 6.3499989e-05 1e-6 192 187 0.0012694998 1e-6 193 187 0.0013170999 1e-6 194 187 6.3499989e-05 1e-6 198 187 0.005189199 1e-6 200 187 3.1699994e-05 1e-6 201 187 3.1699994e-05 1e-6 203 187 6.3499989e-05 1e-6 204 187 3.1699994e-05 1e-6 206 187 7.9299993e-05 1e-6 207 187 3.1699994e-05 1e-6 208 187 3.1699994e-05 1e-6 209 187 4.7599999e-05 1e-6 214 187 0.038514599 1e-6 215 187 0.00099979993 1e-6 217 187 1.589999e-05 1e-6 218 187 0.00012699999 1e-6 219 187 0.00055539981 1e-6 221 187 0.00017459999 1e-6 223 187 0.0040624999 1e-6 224 187 0.005649399 1e-6 225 187 0.0031579998 1e-6 231 187 0.0019677998 1e-6 233 187 0.00023799999 1e-6 234 187 0.014361698 1e-6 237 187 7.9299993e-05 1e-6 240 187 0.0008886999 1e-6 241 187 0.0074584968 1e-6 248 187 1.589999e-05 1e-6 250 187 1.589999e-05 1e-6 251 187 4.7599999e-05 1e-6 252 187 7.9299993e-05 1e-6 267 187 0.0013647999 1e-6 272 187 0.0012061 1e-6 273 187 6.3499989e-05 1e-6 277 187 0.00033329986 1e-6 279 187 1.589999e-05 1e-6 284 187 1.589999e-05 1e-6 290 187 3.1699994e-05 1e-6 293 187 0.00011109999 1e-6 294 187 1.589999e-05 1e-6 317 187 1.589999e-05 1e-6 318 187 9.5199997e-05 1e-6 322 187 0.0051733963 1e-6 324 187 0.00069819996 1e-6 325 187 4.7599999e-05 1e-6 326 187 0.0024120999 1e-6 337 187 1.589999e-05 1e-6 347 187 0.0029199 1e-6 350 187 0.00042849989 1e-6 356 187 0.00036499999 1e-6 358 187 0.0010155998 1e-6 384 187 7.9299993e-05 1e-6 387 187 3.1699994e-05 1e-6 392 187 1.589999e-05 1e-6 402 187 3.1699994e-05 1e-6 404 187 3.1699994e-05 1e-6 414 187 0.0019995 1e-6 419 187 1.589999e-05 1e-6 420 187 1.589999e-05 1e-6 422 187 9.5199997e-05 1e-6 423 187 1.589999e-05 1e-6 425 187 1.589999e-05 1e-6 430 187 3.1699994e-05 1e-6 431 187 1.589999e-05 1e-6 432 187 1.589999e-05 1e-6 433 187 3.1699994e-05 1e-6 434 187 3.1699994e-05 1e-6 442 187 0.00042849989 1e-6 443 187 0.031421099 1e-6 444 187 0.0023804 1e-6 445 187 0.013726898 1e-6 446 187 0.0034118998 1e-6 447 187 0.008061599 1e-6 448 187 9.5199997e-05 1e-6 449 187 1.589999e-05 1e-6 450 187 0.0019995 1e-6 452 187 0.023534097 1e-6 453 187 0.013028599 1e-6 454 187 0.0056017973 1e-6 455 187 0.037340298 1e-6 456 187 0.00042849989 1e-6 457 187 0.0031420998 1e-6 458 187 0.00038089999 1e-6 459 187 0.0016504 1e-6 460 187 0.0008886999 1e-6 463 187 0.010838699 1e-6 464 187 0.0022216998 1e-6 465 187 0.00072999997 1e-6 467 187 0.014298197 1e-6 468 187 0.008109197 1e-6 469 187 0.0053002983 1e-6 470 187 0.0045702979 1e-6 471 187 0.0014123998 1e-6 473 187 9.5199997e-05 1e-6 477 187 0.00011109999 1e-6 478 187 0.00076169986 1e-6 483 187 0.001095 1e-6 489 187 0.0019202 1e-6 490 187 0.00034909998 1e-6 491 187 0.015202697 1e-6 6 188 0.00013659999 1e-6 9 188 2.729999e-05 1e-6 17 188 2.729999e-05 1e-6 18 188 0.0001639 1e-6 21 188 2.729999e-05 1e-6 22 188 0.011200298 1e-6 24 188 0.0021853999 1e-6 25 188 0.00032779993 1e-6 60 188 0.016336098 1e-6 75 188 2.729999e-05 1e-6 82 188 2.729999e-05 1e-6 83 188 2.729999e-05 1e-6 84 188 2.729999e-05 1e-6 104 188 0.008277297 1e-6 108 188 2.729999e-05 1e-6 113 188 5.4599994e-05 1e-6 114 188 8.1999999e-05 1e-6 117 188 5.4599994e-05 1e-6 126 188 5.4599994e-05 1e-6 127 188 2.729999e-05 1e-6 130 188 0.0066108964 1e-6 139 188 0.0011473999 1e-6 150 188 0.00035509979 1e-6 151 188 2.729999e-05 1e-6 159 188 0.12257546 1e-6 160 188 0.057613499 1e-6 169 188 0.0022673998 1e-6 171 188 0.0027863998 1e-6 172 188 5.4599994e-05 1e-6 186 188 0.02251 1e-6 187 188 0.00019119999 1e-6 188 188 0.0001639 1e-6 189 188 5.4599994e-05 1e-6 190 188 5.4599994e-05 1e-6 192 188 0.0015297998 1e-6 193 188 0.00071029994 1e-6 194 188 5.4599994e-05 1e-6 197 188 2.729999e-05 1e-6 198 188 0.002322 1e-6 200 188 2.729999e-05 1e-6 203 188 5.4599994e-05 1e-6 204 188 5.4599994e-05 1e-6 206 188 5.4599994e-05 1e-6 207 188 2.729999e-05 1e-6 209 188 0.00084689981 1e-6 214 188 0.028793097 1e-6 215 188 8.1999999e-05 1e-6 217 188 2.729999e-05 1e-6 218 188 0.00024589989 1e-6 219 188 0.00030049984 1e-6 223 188 0.0088509992 1e-6 224 188 0.0050810985 1e-6 225 188 0.0032235 1e-6 231 188 0.0026497999 1e-6 233 188 0.00024589989 1e-6 234 188 0.020761598 1e-6 237 188 8.1999999e-05 1e-6 240 188 0.00084689981 1e-6 241 188 0.00040979986 1e-6 248 188 2.729999e-05 1e-6 251 188 5.4599994e-05 1e-6 252 188 8.1999999e-05 1e-6 267 188 0.0013658998 1e-6 272 188 0.0015297998 1e-6 277 188 0.00076489989 1e-6 284 188 2.729999e-05 1e-6 317 188 2.729999e-05 1e-6 318 188 0.00013659999 1e-6 322 188 0.0054908991 1e-6 324 188 0.0017756999 1e-6 326 188 0.0035785998 1e-6 347 188 0.0029229999 1e-6 350 188 0.0010107998 1e-6 356 188 0.00038249977 1e-6 358 188 0.0008741999 1e-6 384 188 0.00010929999 1e-6 387 188 2.729999e-05 1e-6 402 188 2.729999e-05 1e-6 404 188 5.4599994e-05 1e-6 414 188 0.0015024999 1e-6 419 188 2.729999e-05 1e-6 422 188 0.00010929999 1e-6 423 188 2.729999e-05 1e-6 425 188 2.729999e-05 1e-6 430 188 2.729999e-05 1e-6 431 188 2.729999e-05 1e-6 433 188 2.729999e-05 1e-6 434 188 2.729999e-05 1e-6 442 188 2.729999e-05 1e-6 443 188 0.0303775 1e-6 444 188 0.0025952 1e-6 445 188 0.010353498 1e-6 446 188 0.0035239998 1e-6 447 188 0.0047259964 1e-6 448 188 0.00010929999 1e-6 450 188 0.0016937 1e-6 452 188 0.017019097 1e-6 453 188 0.017947897 1e-6 454 188 0.0038518 1e-6 455 188 0.052040599 1e-6 456 188 0.00024589989 1e-6 457 188 0.0031961999 1e-6 458 188 0.00030049984 1e-6 459 188 0.0011747 1e-6 460 188 0.00092879985 1e-6 463 188 0.015489299 1e-6 464 188 0.0018575999 1e-6 465 188 0.00054639997 1e-6 467 188 0.012866698 1e-6 468 188 0.0048352964 1e-6 469 188 0.0047259964 1e-6 470 188 0.0037971998 1e-6 471 188 0.0013385999 1e-6 473 188 8.1999999e-05 1e-6 477 188 0.00010929999 1e-6 478 188 0.00065559987 1e-6 483 188 0.0009015 1e-6 489 188 0.0017482999 1e-6 490 188 0.00030049984 1e-6 491 188 0.038436297 1e-6 60 189 0.0015085 1e-6 104 189 0.00033519999 1e-6 108 189 0.0001676 1e-6 114 189 0.00033519999 1e-6 126 189 0.0001676 1e-6 139 189 0.0001676 1e-6 187 189 0.26651019 1e-6 188 189 0.0098893978 1e-6 189 189 0.010224599 1e-6 190 189 0.0001676 1e-6 192 189 0.0018437998 1e-6 194 189 0.00033519999 1e-6 196 189 0.00033519999 1e-6 198 189 0.030841399 1e-6 203 189 0.0001676 1e-6 204 189 0.00033519999 1e-6 206 189 0.00033519999 1e-6 219 189 0.014079798 1e-6 234 189 0.0026818998 1e-6 237 189 0.0001676 1e-6 241 189 0.027991999 1e-6 252 189 0.0001676 1e-6 272 189 0.00067049987 1e-6 279 189 0.00083809998 1e-6 317 189 0.0010056999 1e-6 347 189 0.0031846999 1e-6 356 189 0.00033519999 1e-6 358 189 0.0018437998 1e-6 387 189 0.0001676 1e-6 422 189 0.0001676 1e-6 443 189 0.0095540993 1e-6 444 189 0.0001676 1e-6 445 189 0.017934997 1e-6 446 189 0.0001676 1e-6 447 189 0.0010056999 1e-6 450 189 0.0045255981 1e-6 452 189 0.007207498 1e-6 453 189 0.0011733 1e-6 454 189 0.00050279987 1e-6 455 189 0.046262197 1e-6 456 189 0.00033519999 1e-6 457 189 0.0015085 1e-6 458 189 0.00050279987 1e-6 459 189 0.00033519999 1e-6 460 189 0.00050279987 1e-6 463 189 0.031176697 1e-6 464 189 0.00033519999 1e-6 465 189 0.0092188977 1e-6 467 189 0.011733197 1e-6 468 189 0.0020113999 1e-6 469 189 0.0041903965 1e-6 470 189 0.0046932995 1e-6 471 189 0.0013408998 1e-6 473 189 0.0001676 1e-6 477 189 0.0001676 1e-6 478 189 0.0013408998 1e-6 483 189 0.0013408998 1e-6 490 189 0.00050279987 1e-6 491 189 0.0050284974 1e-6 18 190 0.00010029999 1e-6 22 190 5.0199989e-05 1e-6 60 190 0.00321 1e-6 82 190 5.0199989e-05 1e-6 108 190 5.0199989e-05 1e-6 114 190 0.00010029999 1e-6 126 190 5.0199989e-05 1e-6 130 190 0.015548199 1e-6 131 190 0.0002006 1e-6 132 190 0.0003511 1e-6 133 190 5.0199989e-05 1e-6 137 190 5.0199989e-05 1e-6 138 190 0.0003511 1e-6 139 190 0.00010029999 1e-6 141 190 5.0199989e-05 1e-6 142 190 0.040024098 1e-6 143 190 0.00030089985 1e-6 149 190 5.0199989e-05 1e-6 151 190 5.0199989e-05 1e-6 158 190 0.00010029999 1e-6 186 190 0.027334698 1e-6 187 190 0.32330215 1e-6 188 190 0.0026081 1e-6 189 190 0.0002006 1e-6 190 190 0.00070219999 1e-6 192 190 0.0014044 1e-6 193 190 5.0199989e-05 1e-6 194 190 0.0001505 1e-6 197 190 5.0199989e-05 1e-6 198 190 0.048550498 1e-6 203 190 5.0199989e-05 1e-6 204 190 0.0004011998 1e-6 206 190 0.00010029999 1e-6 208 190 0.00060189981 1e-6 214 190 0.00055169989 1e-6 219 190 0.0040123984 1e-6 221 190 0.0024575999 1e-6 223 190 5.0199989e-05 1e-6 224 190 0.0002006 1e-6 225 190 0.0001505 1e-6 226 190 0.00075229979 1e-6 227 190 0.00050159986 1e-6 228 190 0.0002006 1e-6 231 190 5.0199989e-05 1e-6 234 190 0.0019560999 1e-6 237 190 5.0199989e-05 1e-6 240 190 0.00095299981 1e-6 241 190 0.017754998 1e-6 252 190 0.00010029999 1e-6 253 190 5.0199989e-05 1e-6 272 190 0.0011535999 1e-6 277 190 5.0199989e-05 1e-6 293 190 5.0199989e-05 1e-6 300 190 5.0199989e-05 1e-6 312 190 5.0199989e-05 1e-6 347 190 0.0034606999 1e-6 356 190 0.0004011998 1e-6 358 190 0.00065199984 1e-6 384 190 5.0199989e-05 1e-6 387 190 5.0199989e-05 1e-6 393 190 5.0199989e-05 1e-6 416 190 5.0199989e-05 1e-6 417 190 5.0199989e-05 1e-6 422 190 0.0001505 1e-6 437 190 5.0199989e-05 1e-6 443 190 0.012639198 1e-6 444 190 0.0026081 1e-6 445 190 0.015899297 1e-6 446 190 0.00055169989 1e-6 447 190 0.0054167993 1e-6 450 190 0.0015548 1e-6 452 190 0.0042631999 1e-6 453 190 0.00095299981 1e-6 454 190 0.00070219999 1e-6 455 190 0.058079999 1e-6 456 190 0.00010029999 1e-6 457 190 0.0016550999 1e-6 458 190 0.00025079981 1e-6 459 190 0.00055169989 1e-6 460 190 0.00090279989 1e-6 463 190 0.0089276992 1e-6 464 190 0.00060189981 1e-6 465 190 0.0049151964 1e-6 467 190 0.0062192976 1e-6 468 190 0.024074599 1e-6 469 190 0.0013541998 1e-6 470 190 0.0015046999 1e-6 471 190 0.0017052998 1e-6 473 190 5.0199989e-05 1e-6 477 190 0.00010029999 1e-6 478 190 0.00045139994 1e-6 479 190 0.00010029999 1e-6 483 190 0.0004011998 1e-6 490 190 0.0002006 1e-6 491 190 0.00010029999 1e-6 18 191 0.00049479981 1e-6 22 191 0.0079168975 1e-6 24 191 0.016576 1e-6 60 191 0.00074219983 1e-6 104 191 0.0069272965 1e-6 107 191 0.011380497 1e-6 114 191 0.00024739979 1e-6 126 191 0.00024739979 1e-6 130 191 0.011133097 1e-6 138 191 0.00024739979 1e-6 159 191 0.036120698 1e-6 160 191 0.028698698 1e-6 161 191 0.00024739979 1e-6 165 191 0.00024739979 1e-6 169 191 0.0071746968 1e-6 170 191 0.00024739979 1e-6 171 191 0.00098959985 1e-6 186 191 0.022018798 1e-6 191 191 0.00024739979 1e-6 198 191 0.011133097 1e-6 206 191 0.00049479981 1e-6 214 191 0.028698698 1e-6 219 191 0.0242454 1e-6 223 191 0.0017317999 1e-6 224 191 0.0022266 1e-6 225 191 0.0012369999 1e-6 231 191 0.0014843999 1e-6 233 191 0.008411698 1e-6 234 191 0.010638297 1e-6 241 191 0.00024739979 1e-6 267 191 0.0059376992 1e-6 270 191 0.00024739979 1e-6 272 191 0.00098959985 1e-6 273 191 0.0054428987 1e-6 277 191 0.00074219983 1e-6 315 191 0.00024739979 1e-6 317 191 0.00024739979 1e-6 322 191 0.011627898 1e-6 326 191 0.00024739979 1e-6 334 191 0.0039583966 1e-6 340 191 0.0012369999 1e-6 347 191 0.0027213998 1e-6 350 191 0.0098960996 1e-6 356 191 0.00049479981 1e-6 358 191 0.0012369999 1e-6 443 191 0.017812997 1e-6 444 191 0.0091538988 1e-6 445 191 0.024492797 1e-6 446 191 0.0022266 1e-6 447 191 0.012617499 1e-6 450 191 0.0022266 1e-6 452 191 0.033399299 1e-6 453 191 0.021276597 1e-6 454 191 0.0049479976 1e-6 455 191 0.042058397 1e-6 457 191 0.0029687998 1e-6 458 191 0.00024739979 1e-6 459 191 0.00098959985 1e-6 460 191 0.00074219983 1e-6 463 191 0.0098960996 1e-6 464 191 0.005690299 1e-6 465 191 0.00049479981 1e-6 467 191 0.014101896 1e-6 468 191 0.013112299 1e-6 469 191 0.0037109999 1e-6 470 191 0.0039583966 1e-6 471 191 0.00074219983 1e-6 473 191 0.00024739979 1e-6 477 191 0.00049479981 1e-6 478 191 0.00098959985 1e-6 483 191 0.0012369999 1e-6 489 191 0.00049479981 1e-6 490 191 0.00049479981 1e-6 491 191 0.023503199 1e-6 18 192 0.00019119999 1e-6 21 192 6.369999e-05 1e-6 22 192 0.00063729985 1e-6 24 192 0.0013382998 1e-6 60 192 0.0027403999 1e-6 82 192 0.0001275 1e-6 104 192 0.0098782964 1e-6 108 192 6.369999e-05 1e-6 114 192 6.369999e-05 1e-6 126 192 6.369999e-05 1e-6 130 192 0.0092409998 1e-6 131 192 0.00057359994 1e-6 132 192 6.369999e-05 1e-6 138 192 6.369999e-05 1e-6 139 192 0.00031869998 1e-6 142 192 0.0042699985 1e-6 143 192 0.0014658 1e-6 149 192 0.00044609979 1e-6 150 192 0.0016569998 1e-6 158 192 0.0001275 1e-6 159 192 0.0015294999 1e-6 160 192 0.0019756998 1e-6 169 192 0.0012745999 1e-6 171 192 0.0001275 1e-6 186 192 0.0014020998 1e-6 187 192 0.1773628 1e-6 188 192 0.017462198 1e-6 189 192 6.369999e-05 1e-6 190 192 6.369999e-05 1e-6 192 192 0.0080937967 1e-6 193 192 0.0001275 1e-6 194 192 0.00019119999 1e-6 197 192 6.369999e-05 1e-6 198 192 0.032566398 1e-6 200 192 6.369999e-05 1e-6 203 192 6.369999e-05 1e-6 204 192 0.00050979992 1e-6 205 192 0.0001275 1e-6 206 192 0.0001275 1e-6 207 192 6.369999e-05 1e-6 208 192 0.0020393999 1e-6 209 192 0.0001275 1e-6 211 192 0.00019119999 1e-6 212 192 0.00019119999 1e-6 213 192 0.0001275 1e-6 214 192 0.017972097 1e-6 219 192 0.015550297 1e-6 221 192 0.0099419989 1e-6 223 192 0.0001275 1e-6 224 192 0.027786598 1e-6 229 192 6.369999e-05 1e-6 233 192 0.0013382998 1e-6 234 192 0.0073289983 1e-6 237 192 6.369999e-05 1e-6 240 192 0.0043336973 1e-6 241 192 0.040022898 1e-6 252 192 0.00019119999 1e-6 270 192 0.0015294999 1e-6 271 192 0.0001275 1e-6 272 192 0.00063729985 1e-6 273 192 0.00057359994 1e-6 276 192 6.369999e-05 1e-6 277 192 0.00044609979 1e-6 287 192 6.369999e-05 1e-6 289 192 6.369999e-05 1e-6 290 192 0.0017845 1e-6 292 192 6.369999e-05 1e-6 293 192 0.0081574991 1e-6 294 192 0.00019119999 1e-6 296 192 6.369999e-05 1e-6 300 192 6.369999e-05 1e-6 312 192 6.369999e-05 1e-6 315 192 0.00019119999 1e-6 322 192 0.0001275 1e-6 325 192 0.0026766998 1e-6 326 192 0.00019119999 1e-6 340 192 0.00038239988 1e-6 345 192 6.369999e-05 1e-6 347 192 0.0028678998 1e-6 348 192 6.369999e-05 1e-6 350 192 6.369999e-05 1e-6 356 192 0.00044609979 1e-6 358 192 0.00095599983 1e-6 387 192 6.369999e-05 1e-6 392 192 0.0001275 1e-6 393 192 0.0001275 1e-6 404 192 0.0001275 1e-6 416 192 6.369999e-05 1e-6 417 192 0.0001275 1e-6 420 192 6.369999e-05 1e-6 422 192 0.00050979992 1e-6 430 192 6.369999e-05 1e-6 433 192 6.369999e-05 1e-6 434 192 6.369999e-05 1e-6 443 192 0.011471499 1e-6 444 192 0.0015932999 1e-6 445 192 0.013765898 1e-6 446 192 0.00089219981 1e-6 447 192 0.0026766998 1e-6 450 192 0.0025491999 1e-6 452 192 0.006691698 1e-6 453 192 0.0028041999 1e-6 454 192 0.0017206999 1e-6 455 192 0.041233797 1e-6 456 192 0.00025489996 1e-6 457 192 0.0016569998 1e-6 458 192 0.00038239988 1e-6 459 192 0.00038239988 1e-6 460 192 0.00076479977 1e-6 463 192 0.0123 1e-6 464 192 0.00089219981 1e-6 465 192 0.0028678998 1e-6 467 192 0.0087948963 1e-6 468 192 0.0077113993 1e-6 469 192 0.0033139999 1e-6 470 192 0.0035688998 1e-6 471 192 0.00076479977 1e-6 473 192 0.0001275 1e-6 477 192 0.00025489996 1e-6 478 192 0.00082849991 1e-6 483 192 0.00095599983 1e-6 489 192 0.0001275 1e-6 490 192 0.00038239988 1e-6 491 192 0.0012108998 1e-6 4 193 5.4299991e-05 1e-6 10 193 5.4299991e-05 1e-6 14 193 5.4299991e-05 1e-6 18 193 0.00016279999 1e-6 22 193 5.4299991e-05 1e-6 23 193 0.0011398999 1e-6 24 193 5.4299991e-05 1e-6 60 193 0.0023341998 1e-6 104 193 0.0038540999 1e-6 107 193 5.4299991e-05 1e-6 108 193 0.00016279999 1e-6 109 193 5.4299991e-05 1e-6 114 193 5.4299991e-05 1e-6 116 193 5.4299991e-05 1e-6 126 193 5.4299991e-05 1e-6 130 193 0.011670798 1e-6 131 193 0.0001086 1e-6 132 193 0.0003256998 1e-6 138 193 5.4299991e-05 1e-6 139 193 0.0001086 1e-6 142 193 0.0012484998 1e-6 143 193 0.0019542 1e-6 150 193 0.00081419991 1e-6 153 193 5.4299991e-05 1e-6 158 193 0.00016279999 1e-6 160 193 5.4299991e-05 1e-6 169 193 5.4299991e-05 1e-6 186 193 0.00075999997 1e-6 187 193 0.24546736 1e-6 188 193 0.0094451979 1e-6 189 193 0.0001086 1e-6 190 193 0.0001086 1e-6 192 193 0.00048849988 1e-6 193 193 0.0041254982 1e-6 194 193 0.0003256998 1e-6 197 193 5.4299991e-05 1e-6 198 193 0.027467199 1e-6 200 193 5.4299991e-05 1e-6 203 193 0.0001086 1e-6 204 193 0.00037999987 1e-6 205 193 0.0001086 1e-6 206 193 0.0001086 1e-6 207 193 5.4299991e-05 1e-6 208 193 5.4299991e-05 1e-6 209 193 0.0020084998 1e-6 211 193 0.00016279999 1e-6 212 193 0.00097709987 1e-6 213 193 0.00016279999 1e-6 214 193 0.0032026998 1e-6 219 193 0.0068395995 1e-6 221 193 0.0158506 1e-6 224 193 0.062099699 1e-6 227 193 0.00016279999 1e-6 233 193 5.4299991e-05 1e-6 234 193 0.0020627999 1e-6 237 193 0.0001086 1e-6 240 193 0.00092279981 1e-6 241 193 0.060145497 1e-6 242 193 5.4299991e-05 1e-6 252 193 0.0001086 1e-6 271 193 5.4299991e-05 1e-6 272 193 0.00059709977 1e-6 277 193 0.00016279999 1e-6 290 193 5.4299991e-05 1e-6 293 193 0.0019542 1e-6 295 193 0.0001086 1e-6 296 193 5.4299991e-05 1e-6 315 193 0.0001086 1e-6 325 193 0.0034740998 1e-6 326 193 5.4299991e-05 1e-6 340 193 0.00016279999 1e-6 347 193 0.0032026998 1e-6 348 193 5.4299991e-05 1e-6 356 193 0.00037999987 1e-6 358 193 0.0011941998 1e-6 372 193 5.4299991e-05 1e-6 387 193 5.4299991e-05 1e-6 422 193 0.00027139997 1e-6 430 193 5.4299991e-05 1e-6 433 193 5.4299991e-05 1e-6 434 193 5.4299991e-05 1e-6 443 193 0.011507999 1e-6 444 193 0.0028227 1e-6 445 193 0.015036397 1e-6 446 193 0.0007056999 1e-6 447 193 0.0022798998 1e-6 448 193 5.4299991e-05 1e-6 450 193 0.0029312999 1e-6 452 193 0.0063510984 1e-6 453 193 0.0015741999 1e-6 454 193 0.0013027999 1e-6 455 193 0.047008999 1e-6 456 193 0.00016279999 1e-6 457 193 0.0016284999 1e-6 458 193 0.00043429993 1e-6 459 193 0.00027139997 1e-6 460 193 0.00086849998 1e-6 463 193 0.026815798 1e-6 464 193 0.00037999987 1e-6 465 193 0.0084138997 1e-6 467 193 0.0086852983 1e-6 468 193 0.0067310967 1e-6 469 193 0.0028227 1e-6 470 193 0.0030940999 1e-6 471 193 0.0030397999 1e-6 473 193 5.4299991e-05 1e-6 477 193 0.00016279999 1e-6 478 193 0.00081419991 1e-6 483 193 0.00092279981 1e-6 489 193 5.4299991e-05 1e-6 490 193 0.0003256998 1e-6 491 193 0.00016279999 1e-6 22 194 0.00030299998 1e-6 60 194 0.0025757998 1e-6 104 194 0.0019697 1e-6 114 194 0.00015149999 1e-6 126 194 0.00015149999 1e-6 130 194 0.00030299998 1e-6 159 194 0.0037878999 1e-6 160 194 0.0018181999 1e-6 171 194 0.00015149999 1e-6 186 194 0.0010605999 1e-6 187 194 0.15742415 1e-6 188 194 0.18045449 1e-6 192 194 0.00030299998 1e-6 194 194 0.0039393976 1e-6 198 194 0.051666699 1e-6 204 194 0.00015149999 1e-6 206 194 0.00030299998 1e-6 211 194 0.00030299998 1e-6 214 194 0.0021211999 1e-6 219 194 0.0039393976 1e-6 221 194 0.00045449985 1e-6 223 194 0.00030299998 1e-6 224 194 0.0013635999 1e-6 225 194 0.00015149999 1e-6 234 194 0.0025757998 1e-6 240 194 0.00075759995 1e-6 241 194 0.0077272989 1e-6 272 194 0.00030299998 1e-6 277 194 0.0012120998 1e-6 279 194 0.0013635999 1e-6 294 194 0.00030299998 1e-6 296 194 0.00015149999 1e-6 312 194 0.00030299998 1e-6 317 194 0.00090909982 1e-6 319 194 0.00015149999 1e-6 322 194 0.00015149999 1e-6 326 194 0.00045449985 1e-6 340 194 0.0015151999 1e-6 347 194 0.0037878999 1e-6 356 194 0.00045449985 1e-6 358 194 0.0012120998 1e-6 361 194 0.00015149999 1e-6 372 194 0.00015149999 1e-6 392 194 0.00030299998 1e-6 393 194 0.00015149999 1e-6 419 194 0.00090909982 1e-6 420 194 0.00015149999 1e-6 422 194 0.00075759995 1e-6 434 194 0.00015149999 1e-6 443 194 0.020909097 1e-6 444 194 0.0046969987 1e-6 445 194 0.012727298 1e-6 446 194 0.00090909982 1e-6 447 194 0.0068181977 1e-6 450 194 0.0027272999 1e-6 452 194 0.0042423978 1e-6 453 194 0.0015151999 1e-6 454 194 0.0025757998 1e-6 455 194 0.0375758 1e-6 457 194 0.0018181999 1e-6 458 194 0.00030299998 1e-6 459 194 0.00030299998 1e-6 460 194 0.00060609984 1e-6 463 194 0.037878796 1e-6 464 194 0.0054544993 1e-6 465 194 0.016060598 1e-6 467 194 0.0098484978 1e-6 468 194 0.0092423968 1e-6 469 194 0.0033332999 1e-6 470 194 0.0036364 1e-6 471 194 0.00060609984 1e-6 473 194 0.00015149999 1e-6 477 194 0.00015149999 1e-6 478 194 0.00075759995 1e-6 483 194 0.00090909982 1e-6 490 194 0.00030299998 1e-6 491 194 0.0033332999 1e-6 22 195 0.0087335967 1e-6 60 195 0.0074859969 1e-6 114 195 0.00062379986 1e-6 186 195 0.076731086 1e-6 187 195 0.0043667965 1e-6 188 195 0.0087335967 1e-6 192 195 0.0074859969 1e-6 195 195 0.00062379986 1e-6 198 195 0.040548999 1e-6 206 195 0.0012476998 1e-6 214 195 0.016843397 1e-6 219 195 0.0037429999 1e-6 224 195 0.0043667965 1e-6 234 195 0.0081097968 1e-6 241 195 0.026824698 1e-6 272 195 0.00062379986 1e-6 279 195 0.0018714999 1e-6 340 195 0.00062379986 1e-6 347 195 0.0043667965 1e-6 356 195 0.00062379986 1e-6 358 195 0.0018714999 1e-6 443 195 0.013100397 1e-6 444 195 0.00062379986 1e-6 445 195 0.026200898 1e-6 446 195 0.0012476998 1e-6 447 195 0.013100397 1e-6 450 195 0.0043667965 1e-6 452 195 0.036805999 1e-6 453 195 0.014348097 1e-6 454 195 0.0043667965 1e-6 455 195 0.034934498 1e-6 457 195 0.0018714999 1e-6 458 195 0.00062379986 1e-6 459 195 0.021210197 1e-6 463 195 0.0037429999 1e-6 464 195 0.00062379986 1e-6 465 195 0.0012476998 1e-6 467 195 0.010605097 1e-6 468 195 0.0012476998 1e-6 469 195 0.0037429999 1e-6 470 195 0.0037429999 1e-6 471 195 0.00062379986 1e-6 478 195 0.0012476998 1e-6 483 195 0.0012476998 1e-6 489 195 0.0018714999 1e-6 490 195 0.00062379986 1e-6 491 195 0.037429798 1e-6 60 196 0.0018582998 1e-6 114 196 0.00023229999 1e-6 126 196 0.00023229999 1e-6 131 196 0.00023229999 1e-6 138 196 0.00023229999 1e-6 139 196 0.0023228999 1e-6 187 196 0.26666665 1e-6 188 196 0.027874596 1e-6 189 196 0.0013936998 1e-6 192 196 0.005342599 1e-6 194 196 0.0011614 1e-6 196 196 0.0062717982 1e-6 198 196 0.021370497 1e-6 204 196 0.0020905999 1e-6 206 196 0.00046459981 1e-6 207 196 0.0011614 1e-6 208 196 0.0037165999 1e-6 214 196 0.00023229999 1e-6 219 196 0.0030196998 1e-6 221 196 0.0013936998 1e-6 233 196 0.00023229999 1e-6 234 196 0.0018582998 1e-6 241 196 0.080139399 1e-6 272 196 0.00046459981 1e-6 277 196 0.00092919986 1e-6 326 196 0.00046459981 1e-6 347 196 0.0032519998 1e-6 348 196 0.00023229999 1e-6 356 196 0.00046459981 1e-6 358 196 0.0016259998 1e-6 422 196 0.00069689984 1e-6 443 196 0.0109175 1e-6 444 196 0.0013936998 1e-6 445 196 0.0141696 1e-6 446 196 0.00023229999 1e-6 447 196 0.0020905999 1e-6 450 196 0.0039488971 1e-6 452 196 0.0048779994 1e-6 453 196 0.00092919986 1e-6 455 196 0.054587699 1e-6 457 196 0.0020905999 1e-6 458 196 0.00092919986 1e-6 459 196 0.00046459981 1e-6 460 196 0.00046459981 1e-6 463 196 0.0157956 1e-6 464 196 0.00069689984 1e-6 465 196 0.0016259998 1e-6 467 196 0.011614397 1e-6 468 196 0.0027874999 1e-6 469 196 0.0046457984 1e-6 470 196 0.0051102974 1e-6 471 196 0.00069689984 1e-6 473 196 0.00023229999 1e-6 478 196 0.00092919986 1e-6 479 196 0.00069689984 1e-6 483 196 0.0013936998 1e-6 490 196 0.00046459981 1e-6 22 197 0.00014729999 1e-6 60 197 0.0029463999 1e-6 104 197 0.00029459991 1e-6 114 197 0.00014729999 1e-6 126 197 0.00014729999 1e-6 130 197 0.0013259 1e-6 131 197 0.00058929995 1e-6 139 197 0.0047141984 1e-6 142 197 0.0025044 1e-6 159 197 0.00073659979 1e-6 160 197 0.0010311999 1e-6 161 197 0.00014729999 1e-6 165 197 0.00029459991 1e-6 170 197 0.00014729999 1e-6 171 197 0.00044199987 1e-6 186 197 0.0013259 1e-6 187 197 0.20035356 1e-6 188 197 0.022834398 1e-6 189 197 0.0011785999 1e-6 190 197 0.00014729999 1e-6 192 197 0.0010311999 1e-6 193 197 0.00014729999 1e-6 194 197 0.00044199987 1e-6 196 197 0.00014729999 1e-6 197 197 0.0039775968 1e-6 198 197 0.039628796 1e-6 203 197 0.00014729999 1e-6 204 197 0.0025044 1e-6 205 197 0.00014729999 1e-6 206 197 0.00029459991 1e-6 208 197 0.0033882998 1e-6 211 197 0.0017678 1e-6 212 197 0.00014729999 1e-6 214 197 0.014142599 1e-6 219 197 0.0064819977 1e-6 221 197 0.011490896 1e-6 222 197 0.0010311999 1e-6 223 197 0.00014729999 1e-6 224 197 0.0072185993 1e-6 225 197 0.00073659979 1e-6 233 197 0.00014729999 1e-6 234 197 0.0027990998 1e-6 237 197 0.00014729999 1e-6 240 197 0.00044199987 1e-6 241 197 0.059074797 1e-6 270 197 0.00014729999 1e-6 271 197 0.00014729999 1e-6 272 197 0.00058929995 1e-6 276 197 0.00014729999 1e-6 277 197 0.00058929995 1e-6 282 197 0.00014729999 1e-6 293 197 0.0066292994 1e-6 294 197 0.00029459991 1e-6 296 197 0.00014729999 1e-6 315 197 0.00044199987 1e-6 325 197 0.0048614964 1e-6 326 197 0.00044199987 1e-6 340 197 0.00044199987 1e-6 347 197 0.0029463999 1e-6 356 197 0.00029459991 1e-6 358 197 0.0013259 1e-6 392 197 0.00044199987 1e-6 393 197 0.00014729999 1e-6 420 197 0.00014729999 1e-6 422 197 0.0011785999 1e-6 434 197 0.00014729999 1e-6 443 197 0.0095756985 1e-6 444 197 0.0048614964 1e-6 445 197 0.0123748 1e-6 446 197 0.00058929995 1e-6 447 197 0.0082498975 1e-6 450 197 0.0035356998 1e-6 452 197 0.0060400963 1e-6 453 197 0.0016204999 1e-6 454 197 0.00058929995 1e-6 455 197 0.043017097 1e-6 457 197 0.0017678 1e-6 458 197 0.00029459991 1e-6 459 197 0.00029459991 1e-6 460 197 0.00073659979 1e-6 463 197 0.034767199 1e-6 464 197 0.00058929995 1e-6 465 197 0.0016204999 1e-6 467 197 0.011343498 1e-6 468 197 0.0079551972 1e-6 469 197 0.0038302999 1e-6 470 197 0.0042721964 1e-6 471 197 0.00088389986 1e-6 473 197 0.00014729999 1e-6 477 197 0.00014729999 1e-6 478 197 0.0011785999 1e-6 479 197 0.00073659979 1e-6 483 197 0.0017678 1e-6 490 197 0.00058929995 1e-6 491 197 0.0035356998 1e-6 9 198 1.26e-05 1e-6 16 198 1.26e-05 1e-6 18 198 6.2899999e-05 1e-6 22 198 0.00016339999 1e-6 24 198 1.26e-05 1e-6 60 198 0.0056322999 1e-6 79 198 1.26e-05 1e-6 82 198 1.26e-05 1e-6 83 198 1.26e-05 1e-6 84 198 1.26e-05 1e-6 104 198 1.26e-05 1e-6 108 198 2.5099987e-05 1e-6 113 198 3.7699996e-05 1e-6 114 198 7.5399992e-05 1e-6 126 198 3.7699996e-05 1e-6 127 198 1.26e-05 1e-6 130 198 2.5099987e-05 1e-6 142 198 1.26e-05 1e-6 150 198 0.00057829986 1e-6 151 198 1.26e-05 1e-6 159 198 0.00022629999 1e-6 160 198 0.00033939979 1e-6 162 198 2.5099987e-05 1e-6 165 198 3.7699996e-05 1e-6 169 198 1.26e-05 1e-6 171 198 2.5099987e-05 1e-6 186 198 3.7699996e-05 1e-6 187 198 0.025232296 1e-6 188 198 0.3545844 1e-6 189 198 0.0001509 1e-6 190 198 8.7999986e-05 1e-6 192 198 0.0021247 1e-6 194 198 0.012685299 1e-6 196 198 1.26e-05 1e-6 197 198 0.00095549994 1e-6 198 198 0.0183427 1e-6 200 198 3.7699996e-05 1e-6 201 198 2.5099987e-05 1e-6 202 198 3.7699996e-05 1e-6 203 198 6.2899999e-05 1e-6 204 198 0.00055319979 1e-6 205 198 1.26e-05 1e-6 206 198 0.00016339999 1e-6 207 198 5.029999e-05 1e-6 208 198 0.00025139982 1e-6 209 198 1.26e-05 1e-6 210 198 1.26e-05 1e-6 211 198 1.26e-05 1e-6 212 198 1.26e-05 1e-6 213 198 1.26e-05 1e-6 214 198 0.0020114998 1e-6 218 198 1.26e-05 1e-6 219 198 0.0070906989 1e-6 221 198 0.0099570975 1e-6 223 198 2.5099987e-05 1e-6 224 198 0.0090896972 1e-6 229 198 1.26e-05 1e-6 233 198 0.00013829999 1e-6 234 198 0.0061602965 1e-6 237 198 0.0001886 1e-6 240 198 0.00023889999 1e-6 241 198 0.0014583999 1e-6 248 198 1.26e-05 1e-6 250 198 1.26e-05 1e-6 252 198 5.029999e-05 1e-6 272 198 0.00052799983 1e-6 273 198 1.26e-05 1e-6 277 198 0.0053305998 1e-6 279 198 0.0012824 1e-6 282 198 1.26e-05 1e-6 284 198 1.26e-05 1e-6 285 198 1.26e-05 1e-6 287 198 3.7699996e-05 1e-6 289 198 0.00057829986 1e-6 290 198 2.5099987e-05 1e-6 292 198 2.5099987e-05 1e-6 293 198 0.0022127 1e-6 295 198 3.7699996e-05 1e-6 296 198 1.26e-05 1e-6 297 198 1.26e-05 1e-6 299 198 1.26e-05 1e-6 300 198 1.26e-05 1e-6 301 198 1.26e-05 1e-6 312 198 3.7699996e-05 1e-6 315 198 6.2899999e-05 1e-6 317 198 0.0002137 1e-6 319 198 1.26e-05 1e-6 320 198 2.5099987e-05 1e-6 321 198 2.5099987e-05 1e-6 322 198 2.5099987e-05 1e-6 326 198 0.0012069 1e-6 328 198 0.0001509 1e-6 330 198 5.029999e-05 1e-6 340 198 0.0022629998 1e-6 347 198 0.0033944999 1e-6 349 198 1.26e-05 1e-6 350 198 1.26e-05 1e-6 351 198 0.00013829999 1e-6 354 198 3.7699996e-05 1e-6 356 198 0.0001509 1e-6 358 198 0.0012949 1e-6 372 198 2.5099987e-05 1e-6 384 198 3.7699996e-05 1e-6 387 198 2.5099987e-05 1e-6 394 198 1.26e-05 1e-6 395 198 1.26e-05 1e-6 397 198 1.26e-05 1e-6 402 198 6.2899999e-05 1e-6 419 198 1.26e-05 1e-6 422 198 0.0001257 1e-6 423 198 1.26e-05 1e-6 425 198 1.26e-05 1e-6 430 198 2.5099987e-05 1e-6 431 198 1.26e-05 1e-6 432 198 1.26e-05 1e-6 433 198 2.5099987e-05 1e-6 434 198 3.7699996e-05 1e-6 442 198 0.0009680998 1e-6 443 198 0.029934198 1e-6 444 198 0.0025143998 1e-6 445 198 0.013514999 1e-6 446 198 0.00098059978 1e-6 447 198 0.0054185987 1e-6 448 198 2.5099987e-05 1e-6 449 198 1.26e-05 1e-6 450 198 0.0042493977 1e-6 452 198 0.0060094967 1e-6 453 198 0.0022880998 1e-6 454 198 0.00055319979 1e-6 455 198 0.0278221 1e-6 456 198 0.00045259995 1e-6 457 198 0.0016217998 1e-6 458 198 0.00056569977 1e-6 459 198 0.0010937999 1e-6 460 198 0.00093029998 1e-6 463 198 0.014030498 1e-6 464 198 0.0021749998 1e-6 465 198 0.0039350986 1e-6 467 198 0.011591498 1e-6 468 198 0.0071283989 1e-6 469 198 0.0031933 1e-6 470 198 0.0035452999 1e-6 471 198 0.0023383999 1e-6 473 198 7.5399992e-05 1e-6 477 198 0.00010059999 1e-6 478 198 0.00094289985 1e-6 479 198 5.029999e-05 1e-6 483 198 0.0010308998 1e-6 489 198 5.029999e-05 1e-6 490 198 0.00027659978 1e-6 491 198 0.0001886 1e-6 9 199 5.0899995e-05 1e-6 18 199 0.00040749996 1e-6 60 199 0.0058062971 1e-6 82 199 0.00010189999 1e-6 83 199 5.0899995e-05 1e-6 84 199 5.0899995e-05 1e-6 108 199 0.00010189999 1e-6 113 199 0.0001528 1e-6 114 199 0.0003564998 1e-6 126 199 0.0001528 1e-6 141 199 0.00025469996 1e-6 150 199 5.0899995e-05 1e-6 151 199 0.00020369999 1e-6 187 199 0.1624223 1e-6 189 199 0.00025469996 1e-6 190 199 0.00020369999 1e-6 192 199 0.0001528 1e-6 194 199 0.0003056 1e-6 196 199 5.0899995e-05 1e-6 197 199 0.00010189999 1e-6 200 199 0.0019864 1e-6 201 199 0.00010189999 1e-6 203 199 0.0003056 1e-6 204 199 0.019659799 1e-6 205 199 0.0029540998 1e-6 206 199 0.0010696 1e-6 207 199 0.00025469996 1e-6 209 199 0.00020369999 1e-6 212 199 0.0005092998 1e-6 213 199 0.00010189999 1e-6 214 199 0.00040749996 1e-6 221 199 0.0040745996 1e-6 223 199 5.0899995e-05 1e-6 233 199 0.0003056 1e-6 234 199 0.0024446999 1e-6 237 199 0.0004584 1e-6 241 199 0.0019864 1e-6 248 199 5.0899995e-05 1e-6 250 199 5.0899995e-05 1e-6 252 199 5.0899995e-05 1e-6 272 199 0.0009168 1e-6 277 199 5.0899995e-05 1e-6 317 199 0.00025469996 1e-6 334 199 0.00040749996 1e-6 340 199 0.0003564998 1e-6 348 199 0.0015788998 1e-6 356 199 5.0899995e-05 1e-6 358 199 0.00040749996 1e-6 384 199 5.0899995e-05 1e-6 387 199 0.0001528 1e-6 402 199 0.0001528 1e-6 422 199 0.0057552978 1e-6 423 199 5.0899995e-05 1e-6 425 199 5.0899995e-05 1e-6 430 199 0.00010189999 1e-6 431 199 5.0899995e-05 1e-6 432 199 5.0899995e-05 1e-6 433 199 0.0001528 1e-6 434 199 0.00020369999 1e-6 443 199 0.0049912967 1e-6 444 199 0.0123256 1e-6 445 199 0.006519299 1e-6 446 199 0.00025469996 1e-6 447 199 0.027706999 1e-6 448 199 5.0899995e-05 1e-6 449 199 5.0899995e-05 1e-6 450 199 0.021798898 1e-6 452 199 0.0045329966 1e-6 453 199 0.0006620998 1e-6 454 199 0.0003564998 1e-6 455 199 0.0251095 1e-6 456 199 0.0016297998 1e-6 457 199 0.0071304999 1e-6 458 199 0.00056029996 1e-6 459 199 0.0012732998 1e-6 460 199 0.0018336 1e-6 463 199 0.028623797 1e-6 464 199 0.019557897 1e-6 465 199 0.0014260998 1e-6 467 199 0.031781599 1e-6 468 199 0.0096261986 1e-6 469 199 0.015788898 1e-6 470 199 0.0170113 1e-6 471 199 0.0057043992 1e-6 472 199 0.00010189999 1e-6 473 199 0.0003564998 1e-6 477 199 0.00020369999 1e-6 478 199 0.0034633998 1e-6 483 199 0.011765298 1e-6 489 199 0.00010189999 1e-6 490 199 0.0013752 1e-6 9 200 7.0999988e-05 1e-6 60 200 0.0023425999 1e-6 82 200 7.0999988e-05 1e-6 83 200 7.0999988e-05 1e-6 84 200 7.0999988e-05 1e-6 108 200 7.0999988e-05 1e-6 113 200 7.0999988e-05 1e-6 114 200 0.00021299999 1e-6 126 200 0.00014199999 1e-6 139 200 0.00021299999 1e-6 150 200 0.00035489979 1e-6 187 200 0.097536683 1e-6 188 200 7.0999988e-05 1e-6 189 200 0.0034073999 1e-6 190 200 0.00014199999 1e-6 192 200 0.0095832981 1e-6 194 200 7.0999988e-05 1e-6 198 200 0.0013487998 1e-6 200 200 0.0033363998 1e-6 201 200 0.0013487998 1e-6 202 200 0.060055397 1e-6 203 200 0.00014199999 1e-6 204 200 0.1510613 1e-6 205 200 0.00014199999 1e-6 206 200 0.00085179997 1e-6 207 200 7.0999988e-05 1e-6 209 200 0.00085179997 1e-6 210 200 0.010932099 1e-6 211 200 0.014410399 1e-6 214 200 0.00092279981 1e-6 221 200 0.0041172989 1e-6 234 200 0.00078089978 1e-6 237 200 0.00014199999 1e-6 241 200 0.00035489979 1e-6 272 200 0.00028389995 1e-6 279 200 7.0999988e-05 1e-6 325 200 0.00014199999 1e-6 340 200 0.00042589987 1e-6 348 200 0.0010648 1e-6 356 200 7.0999988e-05 1e-6 358 200 0.00014199999 1e-6 387 200 0.00014199999 1e-6 402 200 7.0999988e-05 1e-6 404 200 7.0999988e-05 1e-6 422 200 0.0017746999 1e-6 430 200 7.0999988e-05 1e-6 433 200 7.0999988e-05 1e-6 434 200 7.0999988e-05 1e-6 443 200 0.0034073999 1e-6 444 200 0.0051820986 1e-6 445 200 0.0056789964 1e-6 446 200 0.00014199999 1e-6 447 200 0.012564797 1e-6 450 200 0.0047561973 1e-6 452 200 0.0015616999 1e-6 453 200 0.00021299999 1e-6 455 200 0.0203024 1e-6 456 200 0.0010648 1e-6 457 200 0.0055369996 1e-6 458 200 0.00056789978 1e-6 459 200 0.0015616999 1e-6 460 200 0.0012778 1e-6 463 200 0.12209839 1e-6 464 200 0.0056079999 1e-6 465 200 0.0026974999 1e-6 467 200 0.0326542 1e-6 468 200 0.0472776 1e-6 469 200 0.012209799 1e-6 470 200 0.013629597 1e-6 471 200 0.0040462986 1e-6 473 200 0.00028389995 1e-6 477 200 7.0999988e-05 1e-6 478 200 0.0024136 1e-6 483 200 0.054376397 1e-6 490 200 0.0010648 1e-6 491 200 0.00070989993 1e-6 9 201 3.309999e-05 1e-6 16 201 3.309999e-05 1e-6 18 201 3.309999e-05 1e-6 60 201 0.0013891 1e-6 79 201 3.309999e-05 1e-6 82 201 3.309999e-05 1e-6 83 201 3.309999e-05 1e-6 84 201 3.309999e-05 1e-6 108 201 6.6099994e-05 1e-6 113 201 9.9199999e-05 1e-6 114 201 0.00026459992 1e-6 126 201 9.9199999e-05 1e-6 127 201 3.309999e-05 1e-6 133 201 3.309999e-05 1e-6 139 201 0.0024474999 1e-6 150 201 0.00033069984 1e-6 158 201 3.309999e-05 1e-6 160 201 6.6099994e-05 1e-6 171 201 3.309999e-05 1e-6 187 201 0.058045298 1e-6 188 201 6.6099994e-05 1e-6 189 201 0.0020836999 1e-6 190 201 9.9199999e-05 1e-6 192 201 0.0011906999 1e-6 194 201 0.00013229999 1e-6 198 201 0.0021497998 1e-6 200 201 0.0014552998 1e-6 201 201 0.015941799 1e-6 202 201 0.19222754 1e-6 203 201 0.0014221999 1e-6 204 201 0.018686999 1e-6 205 201 0.0021167998 1e-6 206 201 0.00095919985 1e-6 207 201 6.6099994e-05 1e-6 208 201 0.00039689988 1e-6 209 201 9.9199999e-05 1e-6 210 201 0.037605397 1e-6 211 201 0.0056225993 1e-6 212 201 3.309999e-05 1e-6 213 201 3.309999e-05 1e-6 214 201 9.9199999e-05 1e-6 221 201 0.0030427999 1e-6 224 201 0.0001984 1e-6 234 201 0.00092609995 1e-6 237 201 0.00023149999 1e-6 240 201 3.309999e-05 1e-6 241 201 0.005324997 1e-6 243 201 0.00026459992 1e-6 248 201 3.309999e-05 1e-6 250 201 3.309999e-05 1e-6 252 201 3.309999e-05 1e-6 263 201 3.309999e-05 1e-6 272 201 0.00036379998 1e-6 277 201 6.6099994e-05 1e-6 279 201 3.309999e-05 1e-6 312 201 3.309999e-05 1e-6 317 201 3.309999e-05 1e-6 325 201 0.0014882998 1e-6 326 201 3.309999e-05 1e-6 340 201 3.309999e-05 1e-6 348 201 0.00079379999 1e-6 356 201 3.309999e-05 1e-6 358 201 0.0001984 1e-6 372 201 3.309999e-05 1e-6 387 201 9.9199999e-05 1e-6 388 201 3.309999e-05 1e-6 390 201 3.309999e-05 1e-6 402 201 6.6099994e-05 1e-6 404 201 3.309999e-05 1e-6 405 201 6.6099994e-05 1e-6 419 201 3.309999e-05 1e-6 422 201 0.0014552998 1e-6 423 201 3.309999e-05 1e-6 425 201 3.309999e-05 1e-6 428 201 0.00013229999 1e-6 430 201 6.6099994e-05 1e-6 431 201 3.309999e-05 1e-6 432 201 3.309999e-05 1e-6 433 201 6.6099994e-05 1e-6 434 201 6.6099994e-05 1e-6 443 201 0.0019182998 1e-6 444 201 0.0068793967 1e-6 445 201 0.0051264986 1e-6 446 201 6.6099994e-05 1e-6 447 201 0.014486499 1e-6 449 201 3.309999e-05 1e-6 450 201 0.0051264986 1e-6 452 201 0.0016205998 1e-6 453 201 0.00029769982 1e-6 454 201 9.9199999e-05 1e-6 455 201 0.012898996 1e-6 456 201 0.00079379999 1e-6 457 201 0.0054902993 1e-6 458 201 0.0006614998 1e-6 459 201 0.0006614998 1e-6 460 201 0.0014221999 1e-6 463 201 0.11992717 1e-6 464 201 0.0058210976 1e-6 465 201 0.0012236999 1e-6 467 201 0.0168017 1e-6 468 201 0.025632497 1e-6 469 201 0.011179097 1e-6 470 201 0.012435898 1e-6 471 201 0.0023482998 1e-6 473 201 0.00026459992 1e-6 477 201 6.6099994e-05 1e-6 478 201 0.0019514 1e-6 479 201 9.9199999e-05 1e-6 483 201 0.031817399 1e-6 489 201 3.309999e-05 1e-6 490 201 0.0011906999 1e-6 491 201 0.0013229998 1e-6 60 202 0.0036038999 1e-6 82 202 9.4799994e-05 1e-6 108 202 9.4799994e-05 1e-6 114 202 9.4799994e-05 1e-6 126 202 9.4799994e-05 1e-6 130 202 9.4799994e-05 1e-6 132 202 9.4799994e-05 1e-6 139 202 0.0027504 1e-6 150 202 0.0034142998 1e-6 158 202 9.4799994e-05 1e-6 160 202 0.00028449995 1e-6 165 202 9.4799994e-05 1e-6 171 202 0.00018969999 1e-6 172 202 9.4799994e-05 1e-6 187 202 0.13154399 1e-6 188 202 0.0185888 1e-6 189 202 9.4799994e-05 1e-6 190 202 0.00037939986 1e-6 192 202 0.013941597 1e-6 194 202 0.00028449995 1e-6 197 202 9.4799994e-05 1e-6 198 202 0.0036038999 1e-6 200 202 0.0024658998 1e-6 201 202 9.4799994e-05 1e-6 202 202 0.0018967998 1e-6 203 202 0.0036038999 1e-6 204 202 0.006069798 1e-6 205 202 0.017166197 1e-6 206 202 0.0013277999 1e-6 207 202 9.4799994e-05 1e-6 209 202 0.0014225999 1e-6 210 202 0.0090098977 1e-6 211 202 0.024848297 1e-6 212 202 0.0040780976 1e-6 213 202 0.00085359998 1e-6 214 202 0.0020864999 1e-6 219 202 0.010527298 1e-6 221 202 0.016502298 1e-6 224 202 0.00075869984 1e-6 233 202 0.00028449995 1e-6 234 202 0.0021813 1e-6 237 202 0.00047419989 1e-6 241 202 0.011855099 1e-6 243 202 0.0018967998 1e-6 272 202 0.00075869984 1e-6 277 202 0.00047419989 1e-6 279 202 9.4799994e-05 1e-6 293 202 9.4799994e-05 1e-6 294 202 9.4799994e-05 1e-6 312 202 0.00018969999 1e-6 315 202 9.4799994e-05 1e-6 317 202 9.4799994e-05 1e-6 325 202 0.0043626986 1e-6 326 202 9.4799994e-05 1e-6 348 202 0.0027504 1e-6 358 202 0.00037939986 1e-6 372 202 9.4799994e-05 1e-6 387 202 9.4799994e-05 1e-6 398 202 9.4799994e-05 1e-6 402 202 9.4799994e-05 1e-6 409 202 9.4799994e-05 1e-6 422 202 0.014415797 1e-6 428 202 0.00075869984 1e-6 430 202 9.4799994e-05 1e-6 431 202 9.4799994e-05 1e-6 433 202 9.4799994e-05 1e-6 434 202 0.00037939986 1e-6 443 202 0.0063542984 1e-6 444 202 0.0027504 1e-6 445 202 0.029305797 1e-6 446 202 0.00018969999 1e-6 447 202 0.0088201985 1e-6 450 202 0.0080614984 1e-6 452 202 0.0070181973 1e-6 453 202 0.001802 1e-6 454 202 0.00047419989 1e-6 455 202 0.030348998 1e-6 456 202 0.00047419989 1e-6 457 202 0.0037935998 1e-6 458 202 0.00075869984 1e-6 459 202 0.00085359998 1e-6 460 202 0.0018967998 1e-6 463 202 0.015553899 1e-6 464 202 0.0023709999 1e-6 465 202 0.0019916999 1e-6 467 202 0.019252699 1e-6 468 202 0.018019699 1e-6 469 202 0.0065439977 1e-6 470 202 0.0073026977 1e-6 471 202 0.0061645992 1e-6 472 202 9.4799994e-05 1e-6 473 202 0.00018969999 1e-6 478 202 0.0016122998 1e-6 479 202 9.4799994e-05 1e-6 483 202 0.0022761999 1e-6 489 202 9.4799994e-05 1e-6 490 202 0.00056899991 1e-6 9 203 0.00015369999 1e-6 60 203 0.0012297998 1e-6 82 203 0.00015369999 1e-6 83 203 0.00015369999 1e-6 84 203 0.00015369999 1e-6 108 203 0.00015369999 1e-6 113 203 0.00015369999 1e-6 114 203 0.0003074999 1e-6 126 203 0.00015369999 1e-6 127 203 0.00015369999 1e-6 133 203 0.00015369999 1e-6 150 203 0.0019985 1e-6 160 203 0.00015369999 1e-6 187 203 0.0424289 1e-6 188 203 0.0003074999 1e-6 189 203 0.00046119979 1e-6 190 203 0.00015369999 1e-6 192 203 0.00046119979 1e-6 194 203 0.0003074999 1e-6 197 203 0.00015369999 1e-6 198 203 0.0013835998 1e-6 200 203 0.0033819999 1e-6 201 203 0.00046119979 1e-6 202 203 0.050576497 1e-6 203 203 0.010299798 1e-6 204 203 0.026748698 1e-6 205 203 0.0003074999 1e-6 206 203 0.0012297998 1e-6 207 203 0.00015369999 1e-6 208 203 0.00015369999 1e-6 210 203 0.069792449 1e-6 211 203 0.0064565986 1e-6 221 203 0.0015372999 1e-6 224 203 0.00015369999 1e-6 234 203 0.0015372999 1e-6 237 203 0.0003074999 1e-6 241 203 0.0073788986 1e-6 248 203 0.00015369999 1e-6 250 203 0.00015369999 1e-6 252 203 0.00015369999 1e-6 272 203 0.00046119979 1e-6 277 203 0.00015369999 1e-6 279 203 0.00015369999 1e-6 317 203 0.00015369999 1e-6 348 203 0.0007685998 1e-6 358 203 0.0003074999 1e-6 387 203 0.00015369999 1e-6 402 203 0.00015369999 1e-6 419 203 0.00015369999 1e-6 422 203 0.0084549971 1e-6 423 203 0.00015369999 1e-6 425 203 0.00015369999 1e-6 428 203 0.00015369999 1e-6 430 203 0.00015369999 1e-6 431 203 0.00015369999 1e-6 433 203 0.00015369999 1e-6 434 203 0.00015369999 1e-6 443 203 0.0012297998 1e-6 444 203 0.0081475973 1e-6 445 203 0.0027671 1e-6 446 203 0.00015369999 1e-6 447 203 0.0167563 1e-6 450 203 0.006917797 1e-6 452 203 0.0024595999 1e-6 453 203 0.0003074999 1e-6 455 203 0.010299798 1e-6 456 203 0.0007685998 1e-6 457 203 0.0039968975 1e-6 458 203 0.00061489991 1e-6 459 203 0.00046119979 1e-6 460 203 0.0012297998 1e-6 463 203 0.023674097 1e-6 464 203 0.0083012991 1e-6 465 203 0.0016909998 1e-6 467 203 0.035972297 1e-6 468 203 0.017217498 1e-6 469 203 0.013835497 1e-6 470 203 0.0152191 1e-6 471 203 0.004919298 1e-6 473 203 0.0003074999 1e-6 477 203 0.00015369999 1e-6 478 203 0.0041506998 1e-6 483 203 0.0063027963 1e-6 489 203 0.00015369999 1e-6 490 203 0.0012297998 1e-6 491 203 0.00015369999 1e-6 9 204 2.0699998e-05 1e-6 18 204 6.2199993e-05 1e-6 22 204 2.0699998e-05 1e-6 60 204 0.0037759 1e-6 82 204 2.0699998e-05 1e-6 83 204 2.0699998e-05 1e-6 84 204 2.0699998e-05 1e-6 104 204 8.2999992e-05 1e-6 108 204 2.0699998e-05 1e-6 113 204 6.2199993e-05 1e-6 114 204 0.0001452 1e-6 126 204 4.1499996e-05 1e-6 130 204 0.00029049977 1e-6 131 204 2.0699998e-05 1e-6 132 204 0.00010369999 1e-6 133 204 2.0699998e-05 1e-6 138 204 2.0699998e-05 1e-6 139 204 0.0001867 1e-6 141 204 2.0699998e-05 1e-6 142 204 6.2199993e-05 1e-6 143 204 4.1499996e-05 1e-6 150 204 0.00072609982 1e-6 151 204 2.0699998e-05 1e-6 159 204 4.1499996e-05 1e-6 160 204 2.0699998e-05 1e-6 169 204 2.0699998e-05 1e-6 171 204 2.0699998e-05 1e-6 180 204 2.0699998e-05 1e-6 187 204 0.16491359 1e-6 188 204 0.0081533976 1e-6 189 204 0.0002489998 1e-6 190 204 0.000166 1e-6 192 204 0.0082985982 1e-6 193 204 4.1499996e-05 1e-6 194 204 0.00041489978 1e-6 196 204 2.0699998e-05 1e-6 197 204 4.1499996e-05 1e-6 198 204 0.0039832965 1e-6 200 204 0.00041489978 1e-6 201 204 8.2999992e-05 1e-6 202 204 0.00062239985 1e-6 203 204 0.00064309989 1e-6 204 204 0.022240199 1e-6 205 204 0.010041296 1e-6 206 204 0.0011824998 1e-6 207 204 0.00022819999 1e-6 208 204 0.000166 1e-6 209 204 0.0040455982 1e-6 210 204 0.0018048999 1e-6 211 204 0.015352398 1e-6 212 204 0.011244599 1e-6 213 204 0.0022198998 1e-6 214 204 0.0075101964 1e-6 219 204 0.0011824998 1e-6 221 204 0.021472599 1e-6 223 204 4.1499996e-05 1e-6 224 204 0.0010372999 1e-6 225 204 2.0699998e-05 1e-6 226 204 8.2999992e-05 1e-6 227 204 6.2199993e-05 1e-6 233 204 0.00076759979 1e-6 234 204 0.0021160999 1e-6 237 204 0.00031119981 1e-6 240 204 4.1499996e-05 1e-6 241 204 0.008174099 1e-6 243 204 6.2199993e-05 1e-6 248 204 2.0699998e-05 1e-6 252 204 4.1499996e-05 1e-6 270 204 2.0699998e-05 1e-6 271 204 2.0699998e-05 1e-6 272 204 0.00078839995 1e-6 277 204 0.0026969998 1e-6 279 204 0.00012449999 1e-6 287 204 8.2999992e-05 1e-6 289 204 0.00091279997 1e-6 290 204 6.2199993e-05 1e-6 292 204 6.2199993e-05 1e-6 293 204 0.0018671998 1e-6 294 204 6.2199993e-05 1e-6 295 204 2.0699998e-05 1e-6 315 204 4.1499996e-05 1e-6 317 204 2.0699998e-05 1e-6 319 204 6.2199993e-05 1e-6 320 204 2.0699998e-05 1e-6 321 204 2.0699998e-05 1e-6 325 204 0.0024065999 1e-6 326 204 8.2999992e-05 1e-6 334 204 2.0699998e-05 1e-6 340 204 0.00010369999 1e-6 347 204 8.2999992e-05 1e-6 348 204 0.0040247999 1e-6 356 204 2.0699998e-05 1e-6 358 204 0.00035269978 1e-6 370 204 2.0699998e-05 1e-6 384 204 2.0699998e-05 1e-6 387 204 6.2199993e-05 1e-6 392 204 2.0699998e-05 1e-6 394 204 2.0699998e-05 1e-6 397 204 2.0699998e-05 1e-6 402 204 8.2999992e-05 1e-6 421 204 2.0699998e-05 1e-6 422 204 0.010829698 1e-6 430 204 4.1499996e-05 1e-6 431 204 0.00033189985 1e-6 432 204 2.0699998e-05 1e-6 433 204 8.2999992e-05 1e-6 434 204 0.0011824998 1e-6 441 204 2.0699998e-05 1e-6 442 204 2.0699998e-05 1e-6 443 204 0.0067218989 1e-6 444 204 0.0023651 1e-6 445 204 0.0089831986 1e-6 446 204 0.00029049977 1e-6 447 204 0.0070122965 1e-6 448 204 2.0699998e-05 1e-6 450 204 0.0079665966 1e-6 452 204 0.0060994998 1e-6 453 204 0.0020538999 1e-6 454 204 0.00039419997 1e-6 455 204 0.031990997 1e-6 456 204 0.00078839995 1e-6 457 204 0.0033608999 1e-6 458 204 0.00066389982 1e-6 459 204 0.0011202998 1e-6 460 204 0.0017633999 1e-6 463 204 0.014315099 1e-6 464 204 0.0024895999 1e-6 465 204 0.0024895999 1e-6 467 204 0.027924698 1e-6 468 204 0.0080080964 1e-6 469 204 0.0065973997 1e-6 470 204 0.0073441975 1e-6 471 204 0.0028007999 1e-6 472 204 0.0001867 1e-6 473 204 0.0001452 1e-6 477 204 8.2999992e-05 1e-6 478 204 0.0014936998 1e-6 479 204 4.1499996e-05 1e-6 483 204 0.0037550998 1e-6 489 204 8.2999992e-05 1e-6 490 204 0.00053939992 1e-6 491 204 0.0002489998 1e-6 60 205 0.003268 1e-6 130 205 0.00065359985 1e-6 187 205 0.014379099 1e-6 188 205 0.00065359985 1e-6 192 205 0.00065359985 1e-6 198 205 0.0013071999 1e-6 200 205 0.010457497 1e-6 203 205 0.0078430995 1e-6 204 205 0.0026143999 1e-6 205 205 0.00065359985 1e-6 206 205 0.00065359985 1e-6 208 205 0.00065359985 1e-6 209 205 0.00065359985 1e-6 211 205 0.0013071999 1e-6 212 205 0.0019607998 1e-6 214 205 0.029411796 1e-6 218 205 0.00065359985 1e-6 221 205 0.0019607998 1e-6 222 205 0.00065359985 1e-6 224 205 0.0019607998 1e-6 225 205 0.00065359985 1e-6 233 205 0.0013071999 1e-6 234 205 0.003268 1e-6 241 205 0.0071894974 1e-6 270 205 0.0071894974 1e-6 272 205 0.00065359985 1e-6 292 205 0.0045751967 1e-6 293 205 0.069934547 1e-6 294 205 0.0071894974 1e-6 301 205 0.00065359985 1e-6 320 205 0.013725497 1e-6 348 205 0.0019607998 1e-6 422 205 0.0372549 1e-6 434 205 0.0078430995 1e-6 442 205 0.011111099 1e-6 443 205 0.003268 1e-6 444 205 0.0078430995 1e-6 445 205 0.0065358989 1e-6 447 205 0.016993497 1e-6 450 205 0.0065358989 1e-6 452 205 0.0058823973 1e-6 453 205 0.0019607998 1e-6 455 205 0.022222199 1e-6 457 205 0.003268 1e-6 460 205 0.055555597 1e-6 463 205 0.018300697 1e-6 464 205 0.00065359985 1e-6 465 205 0.00065359985 1e-6 467 205 0.013725497 1e-6 468 205 0.0026143999 1e-6 469 205 0.008496698 1e-6 470 205 0.0098038986 1e-6 471 205 0.0013071999 1e-6 478 205 0.0013071999 1e-6 483 205 0.00065359985 1e-6 490 205 0.00065359985 1e-6 9 206 7.1799994e-05 1e-6 60 206 0.0017233 1e-6 82 206 7.1799994e-05 1e-6 108 206 7.1799994e-05 1e-6 114 206 0.00014359999 1e-6 126 206 7.1799994e-05 1e-6 131 206 7.1799994e-05 1e-6 139 206 7.1799994e-05 1e-6 150 206 0.0021541 1e-6 187 206 0.24965888 1e-6 188 206 0.0031593 1e-6 189 206 7.1799994e-05 1e-6 190 206 7.1799994e-05 1e-6 192 206 0.0034464998 1e-6 194 206 0.0022976999 1e-6 197 206 7.1799994e-05 1e-6 198 206 0.010554999 1e-6 200 206 0.0017233 1e-6 203 206 0.0019387 1e-6 204 206 0.0056005977 1e-6 205 206 0.00078979996 1e-6 206 206 0.0099087991 1e-6 207 206 0.00028719986 1e-6 208 206 7.1799994e-05 1e-6 209 206 0.00028719986 1e-6 210 206 7.1799994e-05 1e-6 211 206 0.018309798 1e-6 212 206 0.0016514999 1e-6 213 206 0.00028719986 1e-6 214 206 0.00050259987 1e-6 219 206 0.0028720999 1e-6 221 206 0.0055287965 1e-6 233 206 7.1799994e-05 1e-6 234 206 0.0013642998 1e-6 237 206 0.0002154 1e-6 241 206 0.00071799988 1e-6 272 206 0.00071799988 1e-6 277 206 7.1799994e-05 1e-6 279 206 0.00014359999 1e-6 317 206 7.1799994e-05 1e-6 325 206 0.00014359999 1e-6 326 206 7.1799994e-05 1e-6 348 206 0.0022976999 1e-6 358 206 0.0002154 1e-6 387 206 7.1799994e-05 1e-6 402 206 7.1799994e-05 1e-6 422 206 0.0041645989 1e-6 430 206 7.1799994e-05 1e-6 433 206 7.1799994e-05 1e-6 434 206 0.030229099 1e-6 443 206 0.0081136972 1e-6 444 206 0.0027284999 1e-6 445 206 0.010267798 1e-6 446 206 0.00035899994 1e-6 447 206 0.0081854984 1e-6 450 206 0.0053133965 1e-6 452 206 0.0053851977 1e-6 453 206 0.0010052 1e-6 454 206 0.0015079 1e-6 455 206 0.046743698 1e-6 456 206 0.00028719986 1e-6 457 206 0.0033028999 1e-6 458 206 0.00071799988 1e-6 459 206 0.00043079979 1e-6 460 206 0.0015079 1e-6 463 206 0.0078264996 1e-6 464 206 0.0021541 1e-6 465 206 0.0013642998 1e-6 467 206 0.010124199 1e-6 468 206 0.0052415989 1e-6 469 206 0.0053851977 1e-6 470 206 0.0061032996 1e-6 471 206 0.0015796998 1e-6 473 206 0.00014359999 1e-6 478 206 0.0010769998 1e-6 483 206 0.0016514999 1e-6 489 206 7.1799994e-05 1e-6 490 206 0.00050259987 1e-6 491 206 7.1799994e-05 1e-6 60 207 0.0015452998 1e-6 108 207 0.0001717 1e-6 114 207 0.00034339982 1e-6 126 207 0.0001717 1e-6 130 207 0.00034339982 1e-6 131 207 0.0072114989 1e-6 133 207 0.0001717 1e-6 139 207 0.013221197 1e-6 141 207 0.0001717 1e-6 150 207 0.0001717 1e-6 187 207 0.11933374 1e-6 188 207 0.028674498 1e-6 189 207 0.0001717 1e-6 190 207 0.0001717 1e-6 192 207 0.0015452998 1e-6 194 207 0.016998596 1e-6 196 207 0.00034339982 1e-6 198 207 0.008928597 1e-6 200 207 0.00034339982 1e-6 203 207 0.0024037999 1e-6 204 207 0.00068679987 1e-6 205 207 0.0001717 1e-6 206 207 0.00051509985 1e-6 207 207 0.026270598 1e-6 210 207 0.00034339982 1e-6 211 207 0.00034339982 1e-6 212 207 0.0001717 1e-6 214 207 0.00051509985 1e-6 219 207 0.00051509985 1e-6 221 207 0.00034339982 1e-6 224 207 0.0018886998 1e-6 234 207 0.0024037999 1e-6 237 207 0.00034339982 1e-6 241 207 0.027815897 1e-6 243 207 0.00034339982 1e-6 252 207 0.0001717 1e-6 272 207 0.00051509985 1e-6 277 207 0.0070397966 1e-6 279 207 0.0001717 1e-6 312 207 0.0001717 1e-6 315 207 0.0001717 1e-6 326 207 0.012019198 1e-6 340 207 0.0001717 1e-6 347 207 0.0001717 1e-6 348 207 0.0024037999 1e-6 358 207 0.00034339982 1e-6 387 207 0.0001717 1e-6 422 207 0.0029189999 1e-6 433 207 0.0001717 1e-6 434 207 0.0001717 1e-6 443 207 0.0065246969 1e-6 444 207 0.0010301999 1e-6 445 207 0.013221197 1e-6 446 207 0.0001717 1e-6 447 207 0.0077265985 1e-6 450 207 0.0078983977 1e-6 452 207 0.0058378987 1e-6 453 207 0.0018886998 1e-6 454 207 0.00034339982 1e-6 455 207 0.0331387 1e-6 456 207 0.0001717 1e-6 457 207 0.0029189999 1e-6 458 207 0.0010301999 1e-6 459 207 0.00034339982 1e-6 460 207 0.0017169998 1e-6 463 207 0.021291196 1e-6 464 207 0.00051509985 1e-6 465 207 0.0017169998 1e-6 467 207 0.012877699 1e-6 468 207 0.0070397966 1e-6 469 207 0.0060095973 1e-6 470 207 0.0065246969 1e-6 471 207 0.0022320999 1e-6 473 207 0.0001717 1e-6 477 207 0.0001717 1e-6 478 207 0.0018886998 1e-6 483 207 0.0017169998 1e-6 489 207 0.0001717 1e-6 490 207 0.00068679987 1e-6 491 207 0.0001717 1e-6 9 208 0.00016349999 1e-6 60 208 0.0024517998 1e-6 82 208 0.00016349999 1e-6 83 208 0.00016349999 1e-6 84 208 0.00016349999 1e-6 108 208 0.00016349999 1e-6 113 208 0.00032689981 1e-6 114 208 0.00032689981 1e-6 126 208 0.00016349999 1e-6 150 208 0.00049039978 1e-6 187 208 0.07682246 1e-6 188 208 0.00032689981 1e-6 189 208 0.018960398 1e-6 190 208 0.00016349999 1e-6 192 208 0.0034324999 1e-6 194 208 0.00032689981 1e-6 198 208 0.0068649985 1e-6 200 208 0.00016349999 1e-6 203 208 0.00016349999 1e-6 204 208 0.039065097 1e-6 205 208 0.00016349999 1e-6 206 208 0.00032689981 1e-6 207 208 0.00016349999 1e-6 208 208 0.064400077 1e-6 211 208 0.00032689981 1e-6 212 208 0.00016349999 1e-6 214 208 0.00032689981 1e-6 221 208 0.015200999 1e-6 233 208 0.0024517998 1e-6 234 208 0.001798 1e-6 237 208 0.00032689981 1e-6 241 208 0.044295497 1e-6 252 208 0.00016349999 1e-6 272 208 0.0014710999 1e-6 279 208 0.00016349999 1e-6 317 208 0.00016349999 1e-6 348 208 0.0014710999 1e-6 358 208 0.00032689981 1e-6 387 208 0.00016349999 1e-6 422 208 0.0062111989 1e-6 423 208 0.00016349999 1e-6 430 208 0.00016349999 1e-6 431 208 0.00016349999 1e-6 433 208 0.00016349999 1e-6 434 208 0.00016349999 1e-6 443 208 0.0027786999 1e-6 444 208 0.004086297 1e-6 445 208 0.009153299 1e-6 447 208 0.014383797 1e-6 450 208 0.0053939 1e-6 452 208 0.0044131987 1e-6 453 208 0.0009806999 1e-6 454 208 0.00065379986 1e-6 455 208 0.0246813 1e-6 456 208 0.00032689981 1e-6 457 208 0.0037594 1e-6 458 208 0.0013075999 1e-6 459 208 0.0009806999 1e-6 460 208 0.0014710999 1e-6 463 208 0.062602162 1e-6 464 208 0.00081729982 1e-6 465 208 0.0014710999 1e-6 467 208 0.048872199 1e-6 468 208 0.0080091991 1e-6 469 208 0.0107878 1e-6 470 208 0.0120955 1e-6 471 208 0.0014710999 1e-6 473 208 0.00032689981 1e-6 477 208 0.00016349999 1e-6 478 208 0.0014710999 1e-6 479 208 0.012912698 1e-6 483 208 0.0031055999 1e-6 490 208 0.0013075999 1e-6 491 208 0.00016349999 1e-6 60 209 0.0014450999 1e-6 114 209 0.00048169983 1e-6 126 209 0.00048169983 1e-6 130 209 0.032273598 1e-6 150 209 0.00048169983 1e-6 187 209 0.094412267 1e-6 188 209 0.0014450999 1e-6 192 209 0.00048169983 1e-6 194 209 0.00048169983 1e-6 198 209 0.0048169978 1e-6 204 209 0.0019267998 1e-6 205 209 0.00048169983 1e-6 206 209 0.00096339989 1e-6 208 209 0.00048169983 1e-6 209 209 0.0019267998 1e-6 211 209 0.0096338987 1e-6 212 209 0.00096339989 1e-6 214 209 0.0019267998 1e-6 221 209 0.0062619969 1e-6 225 209 0.0086704977 1e-6 234 209 0.0028901999 1e-6 237 209 0.00048169983 1e-6 241 209 0.0019267998 1e-6 272 209 0.00048169983 1e-6 292 209 0.0024084998 1e-6 293 209 0.00048169983 1e-6 294 209 0.00096339989 1e-6 317 209 0.00048169983 1e-6 348 209 0.0033718999 1e-6 358 209 0.00048169983 1e-6 422 209 0.0028901999 1e-6 443 209 0.0038535998 1e-6 444 209 0.00048169983 1e-6 445 209 0.0057802983 1e-6 447 209 0.0077070966 1e-6 450 209 0.008188799 1e-6 452 209 0.0067436993 1e-6 453 209 0.00096339989 1e-6 454 209 0.0014450999 1e-6 455 209 0.015896 1e-6 456 209 0.00048169983 1e-6 457 209 0.0033718999 1e-6 458 209 0.00048169983 1e-6 459 209 0.015414298 1e-6 460 209 0.0033718999 1e-6 463 209 0.025048196 1e-6 464 209 0.00096339989 1e-6 465 209 0.0014450999 1e-6 467 209 0.014450897 1e-6 468 209 0.0086704977 1e-6 469 209 0.0077070966 1e-6 470 209 0.0091521963 1e-6 471 209 0.0019267998 1e-6 472 209 0.0048169978 1e-6 473 209 0.00048169983 1e-6 478 209 0.0019267998 1e-6 483 209 0.0024084998 1e-6 490 209 0.00096339989 1e-6 60 210 0.00076079997 1e-6 108 210 0.00025359984 1e-6 114 210 0.0005071999 1e-6 126 210 0.00025359984 1e-6 131 210 0.00025359984 1e-6 139 210 0.024600599 1e-6 150 210 0.00025359984 1e-6 187 210 0.043875199 1e-6 188 210 0.029165599 1e-6 189 210 0.00025359984 1e-6 190 210 0.00025359984 1e-6 192 210 0.0010144999 1e-6 194 210 0.0010144999 1e-6 198 210 0.0017752999 1e-6 200 210 0.00025359984 1e-6 201 210 0.0005071999 1e-6 202 210 0.0076083988 1e-6 203 210 0.00025359984 1e-6 204 210 0.0017752999 1e-6 205 210 0.0005071999 1e-6 206 210 0.00076079997 1e-6 207 210 0.0053258985 1e-6 210 210 0.019274697 1e-6 211 210 0.00076079997 1e-6 212 210 0.00025359984 1e-6 214 210 0.00025359984 1e-6 219 210 0.022317998 1e-6 221 210 0.0005071999 1e-6 234 210 0.0035505998 1e-6 237 210 0.0005071999 1e-6 241 210 0.0050722994 1e-6 243 210 0.00025359984 1e-6 272 210 0.0005071999 1e-6 277 210 0.0045650974 1e-6 290 210 0.00025359984 1e-6 326 210 0.00025359984 1e-6 348 210 0.0038041999 1e-6 358 210 0.0005071999 1e-6 387 210 0.00025359984 1e-6 422 210 0.00076079997 1e-6 433 210 0.00025359984 1e-6 434 210 0.00025359984 1e-6 443 210 0.0035505998 1e-6 444 210 0.0005071999 1e-6 445 210 0.0053258985 1e-6 447 210 0.0017752999 1e-6 450 210 0.011919897 1e-6 452 210 0.0068475977 1e-6 453 210 0.00076079997 1e-6 454 210 0.00025359984 1e-6 455 210 0.015724096 1e-6 456 210 0.00025359984 1e-6 457 210 0.0035505998 1e-6 458 210 0.0005071999 1e-6 459 210 0.00025359984 1e-6 460 210 0.0015216998 1e-6 463 210 0.015470497 1e-6 464 210 0.00076079997 1e-6 465 210 0.003297 1e-6 467 210 0.017499398 1e-6 468 210 0.0043113977 1e-6 469 210 0.0063402988 1e-6 470 210 0.0071011968 1e-6 471 210 0.003297 1e-6 473 210 0.00025359984 1e-6 478 210 0.0022824998 1e-6 483 210 0.003297 1e-6 489 210 0.00025359984 1e-6 490 210 0.00076079997 1e-6 60 211 0.0014368 1e-6 114 211 0.00035919994 1e-6 150 211 0.00035919994 1e-6 187 211 0.022270098 1e-6 188 211 0.0014368 1e-6 192 211 0.0014368 1e-6 194 211 0.00035919994 1e-6 198 211 0.00035919994 1e-6 202 211 0.0010775998 1e-6 203 211 0.00035919994 1e-6 204 211 0.0025143998 1e-6 205 211 0.0014368 1e-6 206 211 0.00035919994 1e-6 209 211 0.00035919994 1e-6 210 211 0.00071839988 1e-6 211 211 0.0021551999 1e-6 212 211 0.00071839988 1e-6 214 211 0.0010775998 1e-6 219 211 0.00071839988 1e-6 221 211 0.0021551999 1e-6 234 211 0.0017959999 1e-6 237 211 0.00035919994 1e-6 241 211 0.0010775998 1e-6 272 211 0.00035919994 1e-6 287 211 0.014008597 1e-6 293 211 0.0010775998 1e-6 294 211 0.00035919994 1e-6 320 211 0.00035919994 1e-6 325 211 0.00035919994 1e-6 348 211 0.021192499 1e-6 358 211 0.00035919994 1e-6 422 211 0.026221298 1e-6 443 211 0.0010775998 1e-6 444 211 0.00071839988 1e-6 445 211 0.010057498 1e-6 447 211 0.0079022981 1e-6 450 211 0.0096982978 1e-6 452 211 0.0071838982 1e-6 453 211 0.00071839988 1e-6 455 211 0.011135098 1e-6 457 211 0.0035919999 1e-6 458 211 0.0014368 1e-6 459 211 0.00035919994 1e-6 460 211 0.0021551999 1e-6 463 211 0.024425298 1e-6 464 211 0.0010775998 1e-6 465 211 0.0014368 1e-6 467 211 0.0172414 1e-6 468 211 0.011853397 1e-6 469 211 0.0075430982 1e-6 470 211 0.0082614981 1e-6 471 211 0.0032327999 1e-6 478 211 0.0017959999 1e-6 483 211 0.0028736 1e-6 490 211 0.00071839988 1e-6 60 212 0.0015552 1e-6 114 212 0.00077759987 1e-6 130 212 0.00077759987 1e-6 187 212 0.029548999 1e-6 188 212 0.00077759987 1e-6 192 212 0.00077759987 1e-6 200 212 0.00077759987 1e-6 202 212 0.0031103999 1e-6 203 212 0.00077759987 1e-6 204 212 0.0038879998 1e-6 205 212 0.00077759987 1e-6 206 212 0.00077759987 1e-6 210 212 0.00077759987 1e-6 211 212 0.0015552 1e-6 212 212 0.0093312971 1e-6 214 212 0.0046655983 1e-6 221 212 0.0023327998 1e-6 234 212 0.0015552 1e-6 241 212 0.031881798 1e-6 270 212 0.00077759987 1e-6 292 212 0.024105798 1e-6 293 212 0.0077759996 1e-6 294 212 0.038102597 1e-6 320 212 0.0015552 1e-6 348 212 0.0031103999 1e-6 422 212 0.013996899 1e-6 434 212 0.00077759987 1e-6 442 212 0.0015552 1e-6 443 212 0.00077759987 1e-6 444 212 0.0015552 1e-6 445 212 0.013996899 1e-6 447 212 0.0062207989 1e-6 450 212 0.0093312971 1e-6 452 212 0.0062207989 1e-6 453 212 0.0015552 1e-6 455 212 0.013996899 1e-6 457 212 0.0031103999 1e-6 459 212 0.00077759987 1e-6 460 212 0.050544299 1e-6 463 212 0.022550497 1e-6 464 212 0.0023327998 1e-6 465 212 0.00077759987 1e-6 467 212 0.014774498 1e-6 468 212 0.0038879998 1e-6 469 212 0.010886498 1e-6 470 212 0.010886498 1e-6 471 212 0.0015552 1e-6 478 212 0.0015552 1e-6 483 212 0.0054431967 1e-6 490 212 0.00077759987 1e-6 114 213 0.0039840974 1e-6 187 213 0.011952199 1e-6 198 213 0.0039840974 1e-6 206 213 0.0039840974 1e-6 214 213 0.07171309 1e-6 241 213 0.0039840974 1e-6 292 213 0.023904398 1e-6 293 213 0.0039840974 1e-6 294 213 0.011952199 1e-6 348 213 0.0079680979 1e-6 422 213 0.019920297 1e-6 443 213 0.0079680979 1e-6 444 213 0.0039840974 1e-6 445 213 0.0039840974 1e-6 447 213 0.07171309 1e-6 450 213 0.0079680979 1e-6 452 213 0.0079680979 1e-6 455 213 0.011952199 1e-6 457 213 0.0039840974 1e-6 460 213 0.011952199 1e-6 463 213 0.035856597 1e-6 464 213 0.0039840974 1e-6 467 213 0.011952199 1e-6 468 213 0.0039840974 1e-6 469 213 0.0079680979 1e-6 470 213 0.0079680979 1e-6 478 213 0.0039840974 1e-6 483 213 0.0079680979 1e-6 490 213 0.0039840974 1e-6 5 214 1.7299986e-05 1e-6 6 214 0.00015029999 1e-6 9 214 2.8899987e-05 1e-6 10 214 6.359999e-05 1e-6 12 214 1.1599999e-05 1e-6 13 214 5.1999989e-05 1e-6 14 214 4.6199988e-05 1e-6 16 214 1.7299986e-05 1e-6 17 214 0.0001734 1e-6 18 214 0.0002138 1e-6 19 214 0.0024389999 1e-6 20 214 0.00068779988 1e-6 21 214 0.0076001994 1e-6 22 214 0.0053634979 1e-6 23 214 0.047849398 1e-6 24 214 0.0022598 1e-6 25 214 0.0090277977 1e-6 60 214 0.011460997 1e-6 66 214 6.939999e-05 1e-6 75 214 1.7299986e-05 1e-6 79 214 1.7299986e-05 1e-6 82 214 0.00050859991 1e-6 83 214 2.3099987e-05 1e-6 84 214 2.3099987e-05 1e-6 88 214 0.00012139999 1e-6 98 214 0.00071669999 1e-6 102 214 0.00010399999 1e-6 103 214 5.7999996e-06 1e-6 104 214 0.00053749979 1e-6 107 214 0.0004623998 1e-6 108 214 0.00014449999 1e-6 109 214 5.1999989e-05 1e-6 113 214 6.359999e-05 1e-6 114 214 0.0001734 1e-6 116 214 4.0499988e-05 1e-6 117 214 8.6699991e-05 1e-6 118 214 0.00014449999 1e-6 119 214 0.00030629989 1e-6 120 214 0.00062419986 1e-6 122 214 5.7999996e-06 1e-6 125 214 5.7999996e-06 1e-6 126 214 6.359999e-05 1e-6 127 214 1.7299986e-05 1e-6 130 214 3.4699988e-05 1e-6 131 214 1.1599999e-05 1e-6 132 214 2.8899987e-05 1e-6 139 214 1.1599999e-05 1e-6 140 214 0.00012139999 1e-6 150 214 0.0002023 1e-6 151 214 0.00010399999 1e-6 153 214 5.7999996e-06 1e-6 158 214 5.7999996e-06 1e-6 159 214 0.0001965 1e-6 160 214 0.00015599999 1e-6 162 214 5.7999996e-06 1e-6 169 214 5.7999996e-06 1e-6 171 214 4.0499988e-05 1e-6 186 214 0.0022308999 1e-6 187 214 0.0002023 1e-6 188 214 1.1599999e-05 1e-6 189 214 8.089999e-05 1e-6 190 214 4.0499988e-05 1e-6 192 214 0.00052589993 1e-6 193 214 0.0007050999 1e-6 194 214 6.359999e-05 1e-6 196 214 5.7999996e-06 1e-6 197 214 1.1599999e-05 1e-6 198 214 0.0035601999 1e-6 200 214 4.6199988e-05 1e-6 201 214 2.8899987e-05 1e-6 202 214 5.7999996e-06 1e-6 203 214 2.8899987e-05 1e-6 204 214 0.00010979999 1e-6 206 214 0.00046809996 1e-6 207 214 2.3099987e-05 1e-6 209 214 5.7999996e-06 1e-6 214 214 0.17221504 1e-6 215 214 0.0048374981 1e-6 217 214 0.00058949995 1e-6 218 214 0.00062999991 1e-6 219 214 1.1599999e-05 1e-6 220 214 8.089999e-05 1e-6 222 214 0.0001907 1e-6 223 214 0.0035023999 1e-6 224 214 0.0036122999 1e-6 225 214 0.00023699999 1e-6 226 214 5.7999996e-06 1e-6 227 214 2.8899987e-05 1e-6 228 214 0.00028899987 1e-6 229 214 0.0001849 1e-6 230 214 1.1599999e-05 1e-6 231 214 0.00073979981 1e-6 232 214 5.7799989e-05 1e-6 233 214 0.0014044 1e-6 234 214 0.013911497 1e-6 237 214 0.00011559999 1e-6 239 214 5.7999996e-06 1e-6 240 214 9.2499991e-05 1e-6 241 214 0.0076290965 1e-6 242 214 1.1599999e-05 1e-6 248 214 2.3099987e-05 1e-6 250 214 1.7299986e-05 1e-6 251 214 0.00023699999 1e-6 252 214 0.00039879978 1e-6 253 214 0.00010979999 1e-6 254 214 5.7999996e-06 1e-6 257 214 5.7999996e-06 1e-6 263 214 1.7299986e-05 1e-6 267 214 0.0013581999 1e-6 270 214 2.3099987e-05 1e-6 272 214 0.0002254 1e-6 273 214 0.00035259989 1e-6 276 214 5.7999996e-06 1e-6 277 214 0.0051727965 1e-6 278 214 6.939999e-05 1e-6 279 214 2.3099987e-05 1e-6 282 214 9.8299992e-05 1e-6 283 214 4.6199988e-05 1e-6 284 214 2.8899987e-05 1e-6 285 214 0.0018032 1e-6 286 214 0.00078599993 1e-6 287 214 0.0064731985 1e-6 288 214 0.0012830999 1e-6 289 214 0.00082069985 1e-6 290 214 0.0031093999 1e-6 291 214 5.7999996e-06 1e-6 292 214 4.0499988e-05 1e-6 293 214 1.7299986e-05 1e-6 294 214 0.00082649989 1e-6 295 214 3.4699988e-05 1e-6 297 214 1.7299986e-05 1e-6 298 214 1.7299986e-05 1e-6 300 214 0.0011038999 1e-6 301 214 0.0036527 1e-6 305 214 4.0499988e-05 1e-6 307 214 4.6199988e-05 1e-6 308 214 5.7999996e-06 1e-6 312 214 0.00014449999 1e-6 314 214 1.7299986e-05 1e-6 315 214 2.8899987e-05 1e-6 317 214 5.7999996e-06 1e-6 320 214 5.7999996e-06 1e-6 321 214 1.7299986e-05 1e-6 322 214 5.1999989e-05 1e-6 324 214 0.0014564998 1e-6 325 214 2.3099987e-05 1e-6 326 214 0.0002427 1e-6 328 214 0.00012139999 1e-6 331 214 0.0002081 1e-6 332 214 0.00015029999 1e-6 333 214 5.7999996e-06 1e-6 335 214 1.1599999e-05 1e-6 336 214 2.8899987e-05 1e-6 337 214 2.3099987e-05 1e-6 340 214 4.6199988e-05 1e-6 341 214 5.7999996e-06 1e-6 343 214 5.7999996e-06 1e-6 349 214 0.0099986978 1e-6 350 214 0.0044040978 1e-6 351 214 5.1999989e-05 1e-6 352 214 2.3099987e-05 1e-6 354 214 4.6199988e-05 1e-6 356 214 0.0014853999 1e-6 358 214 0.00076289987 1e-6 359 214 5.7999996e-06 1e-6 364 214 5.7999996e-06 1e-6 366 214 0.0010287999 1e-6 370 214 2.3099987e-05 1e-6 371 214 1.7299986e-05 1e-6 372 214 3.4699988e-05 1e-6 373 214 1.1599999e-05 1e-6 374 214 1.7299986e-05 1e-6 375 214 0.00059529999 1e-6 380 214 1.1599999e-05 1e-6 384 214 8.089999e-05 1e-6 386 214 5.7999996e-06 1e-6 387 214 6.359999e-05 1e-6 392 214 5.7999996e-06 1e-6 393 214 5.7999996e-06 1e-6 394 214 5.7999996e-06 1e-6 397 214 5.7999996e-06 1e-6 402 214 7.509999e-05 1e-6 404 214 1.7299986e-05 1e-6 408 214 1.1599999e-05 1e-6 414 214 0.0010346 1e-6 416 214 5.7999996e-06 1e-6 417 214 0.00015029999 1e-6 419 214 2.3099987e-05 1e-6 421 214 8.089999e-05 1e-6 422 214 7.509999e-05 1e-6 423 214 1.7299986e-05 1e-6 425 214 1.7299986e-05 1e-6 430 214 5.1999989e-05 1e-6 431 214 2.3099987e-05 1e-6 432 214 5.7999996e-06 1e-6 433 214 1.1599999e-05 1e-6 434 214 1.7299986e-05 1e-6 441 214 5.7999996e-06 1e-6 442 214 0.00013289999 1e-6 443 214 0.014957599 1e-6 444 214 0.00278 1e-6 445 214 0.011374298 1e-6 446 214 0.0048721991 1e-6 447 214 0.0071493983 1e-6 448 214 0.0033753 1e-6 449 214 1.7299986e-05 1e-6 450 214 0.0031382998 1e-6 452 214 0.023696396 1e-6 453 214 0.024459299 1e-6 454 214 0.0027279998 1e-6 455 214 0.022164799 1e-6 456 214 0.00061839982 1e-6 457 214 0.0034330999 1e-6 458 214 0.00071089994 1e-6 459 214 0.0013581999 1e-6 460 214 0.0014910998 1e-6 463 214 0.0194542 1e-6 464 214 0.0027973 1e-6 465 214 0.00071089994 1e-6 467 214 0.017697196 1e-6 468 214 0.008941099 1e-6 469 214 0.010102797 1e-6 470 214 0.0076001994 1e-6 471 214 0.0015604999 1e-6 472 214 5.7999996e-06 1e-6 473 214 0.0001676 1e-6 477 214 0.00043349992 1e-6 478 214 0.00068779988 1e-6 483 214 0.0011500998 1e-6 489 214 0.0015315998 1e-6 490 214 0.0025603999 1e-6 491 214 0.00087849982 1e-6 6 215 0.00011199999 1e-6 9 215 7.4699987e-05 1e-6 10 215 3.7299993e-05 1e-6 11 215 3.7299993e-05 1e-6 14 215 0.00033609988 1e-6 17 215 3.7299993e-05 1e-6 18 215 0.00014939999 1e-6 19 215 0.00056019984 1e-6 21 215 0.00093369978 1e-6 22 215 0.0020915999 1e-6 23 215 0.0058638975 1e-6 24 215 0.0077313967 1e-6 25 215 0.046799097 1e-6 60 215 0.0043698996 1e-6 72 215 0.00052289991 1e-6 82 215 0.0025397998 1e-6 84 215 3.7299993e-05 1e-6 98 215 7.4699987e-05 1e-6 102 215 0.0001867 1e-6 104 215 3.7299993e-05 1e-6 107 215 7.4699987e-05 1e-6 108 215 0.00014939999 1e-6 109 215 3.7299993e-05 1e-6 114 215 0.00011199999 1e-6 116 215 3.7299993e-05 1e-6 118 215 0.00011199999 1e-6 120 215 0.00029879995 1e-6 122 215 3.7299993e-05 1e-6 126 215 7.4699987e-05 1e-6 153 215 0.0029505999 1e-6 171 215 3.7299993e-05 1e-6 186 215 0.00014939999 1e-6 189 215 7.4699987e-05 1e-6 190 215 3.7299993e-05 1e-6 192 215 0.0015312999 1e-6 193 215 0.0090385973 1e-6 194 215 0.00011199999 1e-6 198 215 0.002353 1e-6 200 215 3.7299993e-05 1e-6 203 215 3.7299993e-05 1e-6 204 215 3.7299993e-05 1e-6 206 215 0.00037349993 1e-6 214 215 0.089452446 1e-6 215 215 0.13501894 1e-6 216 215 0.0024277 1e-6 217 215 0.0013446 1e-6 218 215 7.4699987e-05 1e-6 220 215 7.4699987e-05 1e-6 222 215 3.7299993e-05 1e-6 223 215 0.00029879995 1e-6 224 215 0.00022409999 1e-6 228 215 3.7299993e-05 1e-6 229 215 7.4699987e-05 1e-6 231 215 3.7299993e-05 1e-6 233 215 0.00014939999 1e-6 234 215 0.0051542968 1e-6 237 215 0.0001867 1e-6 240 215 3.7299993e-05 1e-6 241 215 0.0042578988 1e-6 251 215 3.7299993e-05 1e-6 252 215 0.00037349993 1e-6 267 215 0.00026139989 1e-6 272 215 0.00082169985 1e-6 273 215 3.7299993e-05 1e-6 277 215 0.0013818999 1e-6 278 215 0.00014939999 1e-6 282 215 7.4699987e-05 1e-6 284 215 3.7299993e-05 1e-6 285 215 0.00014939999 1e-6 286 215 3.7299993e-05 1e-6 287 215 0.00052289991 1e-6 288 215 0.00014939999 1e-6 289 215 0.0011951998 1e-6 290 215 0.00044819992 1e-6 294 215 7.4699987e-05 1e-6 295 215 3.7299993e-05 1e-6 300 215 0.0017553999 1e-6 301 215 0.0084036998 1e-6 312 215 3.7299993e-05 1e-6 324 215 0.0012698998 1e-6 325 215 3.7299993e-05 1e-6 326 215 3.7299993e-05 1e-6 340 215 3.7299993e-05 1e-6 349 215 0.0040710978 1e-6 350 215 0.0027264999 1e-6 351 215 3.7299993e-05 1e-6 354 215 3.7299993e-05 1e-6 356 215 0.0013818999 1e-6 358 215 0.00041079987 1e-6 366 215 7.4699987e-05 1e-6 370 215 3.7299993e-05 1e-6 371 215 3.7299993e-05 1e-6 375 215 7.4699987e-05 1e-6 384 215 7.4699987e-05 1e-6 387 215 7.4699987e-05 1e-6 402 215 3.7299993e-05 1e-6 414 215 0.00041079987 1e-6 417 215 0.00011199999 1e-6 421 215 7.4699987e-05 1e-6 422 215 0.00011199999 1e-6 430 215 3.7299993e-05 1e-6 434 215 3.7299993e-05 1e-6 443 215 0.023119397 1e-6 444 215 0.0017180999 1e-6 445 215 0.03664 1e-6 446 215 0.011727799 1e-6 447 215 0.0040337965 1e-6 448 215 0.00044819992 1e-6 450 215 0.0025770999 1e-6 452 215 0.024688099 1e-6 453 215 0.059087198 1e-6 454 215 0.0045192987 1e-6 455 215 0.023156799 1e-6 456 215 0.00026139989 1e-6 457 215 0.0010457998 1e-6 458 215 0.00085899979 1e-6 459 215 0.00048549986 1e-6 460 215 0.0015312999 1e-6 463 215 0.013819396 1e-6 464 215 0.0019047998 1e-6 465 215 0.00037349993 1e-6 467 215 0.010943498 1e-6 468 215 0.0056770965 1e-6 469 215 0.0045192987 1e-6 470 215 0.0046686977 1e-6 471 215 0.0011951998 1e-6 473 215 0.00011199999 1e-6 477 215 0.00022409999 1e-6 478 215 0.00056019984 1e-6 483 215 0.00082169985 1e-6 489 215 0.00093369978 1e-6 490 215 0.0070216991 1e-6 491 215 0.0022035998 1e-6 24 216 0.023255799 1e-6 60 216 0.007751897 1e-6 82 216 0.007751897 1e-6 153 216 0.007751897 1e-6 192 216 0.007751897 1e-6 193 216 0.015503898 1e-6 198 216 0.007751897 1e-6 214 216 0.13178289 1e-6 215 216 0.28682166 1e-6 216 216 0.007751897 1e-6 217 216 0.007751897 1e-6 300 216 0.007751897 1e-6 301 216 0.007751897 1e-6 350 216 0.007751897 1e-6 443 216 0.023255799 1e-6 444 216 0.007751897 1e-6 445 216 0.031007797 1e-6 446 216 0.007751897 1e-6 447 216 0.007751897 1e-6 452 216 0.007751897 1e-6 455 216 0.038759697 1e-6 463 216 0.038759697 1e-6 464 216 0.007751897 1e-6 467 216 0.015503898 1e-6 468 216 0.007751897 1e-6 469 216 0.007751897 1e-6 470 216 0.007751897 1e-6 3 217 0.0001661 1e-6 6 217 0.0037368999 1e-6 10 217 8.2999992e-05 1e-6 13 217 8.2999992e-05 1e-6 14 217 8.2999992e-05 1e-6 17 217 0.00033219997 1e-6 18 217 0.0001661 1e-6 19 217 0.00024909992 1e-6 20 217 0.00049829995 1e-6 21 217 0.0012455999 1e-6 22 217 0.0011625998 1e-6 23 217 0.0004151999 1e-6 24 217 0.0082211979 1e-6 25 217 0.0053977966 1e-6 60 217 0.00382 1e-6 82 217 0.00033219997 1e-6 98 217 0.0074737966 1e-6 102 217 0.00049829995 1e-6 104 217 0.0021590998 1e-6 107 217 0.0001661 1e-6 108 217 0.00024909992 1e-6 109 217 8.2999992e-05 1e-6 114 217 8.2999992e-05 1e-6 116 217 8.2999992e-05 1e-6 118 217 0.00066429982 1e-6 119 217 0.00033219997 1e-6 120 217 0.00058129989 1e-6 122 217 8.2999992e-05 1e-6 126 217 8.2999992e-05 1e-6 153 217 0.0001661 1e-6 159 217 0.0011625998 1e-6 160 217 0.0017438999 1e-6 186 217 0.00049829995 1e-6 189 217 8.2999992e-05 1e-6 192 217 0.0033216998 1e-6 193 217 0.0048164986 1e-6 194 217 8.2999992e-05 1e-6 198 217 0.0070585981 1e-6 204 217 0.00033219997 1e-6 206 217 0.00074739987 1e-6 214 217 0.20445108 1e-6 215 217 0.0047333986 1e-6 216 217 8.2999992e-05 1e-6 217 217 0.024414498 1e-6 218 217 0.0032386999 1e-6 223 217 0.0015777999 1e-6 224 217 0.0012455999 1e-6 228 217 0.00091349985 1e-6 229 217 8.2999992e-05 1e-6 230 217 0.0014948 1e-6 231 217 0.0015777999 1e-6 232 217 0.00066429982 1e-6 233 217 0.0008303998 1e-6 234 217 0.012622498 1e-6 237 217 0.0001661 1e-6 240 217 8.2999992e-05 1e-6 241 217 0.0076398998 1e-6 252 217 0.00033219997 1e-6 253 217 0.00074739987 1e-6 267 217 0.00049829995 1e-6 273 217 0.00091349985 1e-6 277 217 0.00066429982 1e-6 279 217 0.0001661 1e-6 285 217 0.00024909992 1e-6 286 217 0.00049829995 1e-6 287 217 0.0008303998 1e-6 288 217 0.0001661 1e-6 289 217 0.0010795998 1e-6 290 217 0.00049829995 1e-6 294 217 8.2999992e-05 1e-6 300 217 0.018435497 1e-6 301 217 0.0088024996 1e-6 314 217 0.00033219997 1e-6 315 217 0.00066429982 1e-6 324 217 0.0015777999 1e-6 325 217 8.2999992e-05 1e-6 326 217 0.0014948 1e-6 349 217 0.0013287 1e-6 350 217 0.0031555998 1e-6 356 217 0.0013287 1e-6 358 217 0.00033219997 1e-6 366 217 0.0001661 1e-6 375 217 8.2999992e-05 1e-6 387 217 8.2999992e-05 1e-6 414 217 0.0004151999 1e-6 417 217 8.2999992e-05 1e-6 421 217 0.0001661 1e-6 422 217 8.2999992e-05 1e-6 430 217 8.2999992e-05 1e-6 443 217 0.011792097 1e-6 444 217 0.0047333986 1e-6 445 217 0.012207299 1e-6 446 217 0.0048994981 1e-6 447 217 0.0064772964 1e-6 448 217 0.0001661 1e-6 450 217 0.0023251998 1e-6 452 217 0.0087194964 1e-6 453 217 0.0064772964 1e-6 454 217 0.0042351969 1e-6 455 217 0.030891899 1e-6 456 217 0.00033219997 1e-6 457 217 0.0085533969 1e-6 458 217 0.00058129989 1e-6 459 217 0.00066429982 1e-6 460 217 0.0014116999 1e-6 463 217 0.032137498 1e-6 464 217 0.0046503991 1e-6 465 217 0.0008303998 1e-6 467 217 0.025078896 1e-6 468 217 0.024746697 1e-6 469 217 0.0057298988 1e-6 470 217 0.0058129989 1e-6 471 217 0.0011625998 1e-6 473 217 8.2999992e-05 1e-6 477 217 0.00024909992 1e-6 478 217 0.00066429982 1e-6 483 217 0.0010795998 1e-6 489 217 0.00033219997 1e-6 490 217 0.014698599 1e-6 491 217 0.0017438999 1e-6 17 218 0.013446998 1e-6 22 218 0.0019679 1e-6 24 218 0.00098389992 1e-6 60 218 0.0052475967 1e-6 75 218 0.00032799994 1e-6 82 218 0.00032799994 1e-6 104 218 0.0013118999 1e-6 114 218 0.00032799994 1e-6 120 218 0.00032799994 1e-6 130 218 0.0013118999 1e-6 139 218 0.00032799994 1e-6 159 218 0.069858968 1e-6 160 218 0.075434566 1e-6 169 218 0.00032799994 1e-6 171 218 0.00032799994 1e-6 186 218 0.018694699 1e-6 192 218 0.00032799994 1e-6 193 218 0.015086897 1e-6 198 218 0.0085273981 1e-6 206 218 0.00098389992 1e-6 214 218 0.020662498 1e-6 218 218 0.1197114 1e-6 219 218 0.00032799994 1e-6 223 218 0.0016398998 1e-6 224 218 0.0032797998 1e-6 225 218 0.00098389992 1e-6 231 218 0.00032799994 1e-6 234 218 0.011151198 1e-6 240 218 0.00032799994 1e-6 241 218 0.00065599987 1e-6 252 218 0.00032799994 1e-6 267 218 0.00032799994 1e-6 272 218 0.00098389992 1e-6 277 218 0.00098389992 1e-6 279 218 0.00032799994 1e-6 284 218 0.00032799994 1e-6 287 218 0.00032799994 1e-6 300 218 0.0059035979 1e-6 301 218 0.0022957998 1e-6 322 218 0.00098389992 1e-6 324 218 0.0016398998 1e-6 326 218 0.00098389992 1e-6 347 218 0.00032799994 1e-6 350 218 0.0075434968 1e-6 356 218 0.00098389992 1e-6 358 218 0.00065599987 1e-6 414 218 0.00032799994 1e-6 417 218 0.00032799994 1e-6 421 218 0.00065599987 1e-6 443 218 0.0242703 1e-6 444 218 0.0042636991 1e-6 445 218 0.010495197 1e-6 446 218 0.0029517999 1e-6 447 218 0.015086897 1e-6 450 218 0.0026238 1e-6 452 218 0.0098392963 1e-6 453 218 0.011479199 1e-6 454 218 0.0045916997 1e-6 455 218 0.042308997 1e-6 457 218 0.0026238 1e-6 458 218 0.00065599987 1e-6 459 218 0.0081993975 1e-6 460 218 0.00065599987 1e-6 463 218 0.0121351 1e-6 464 218 0.00065599987 1e-6 465 218 0.00032799994 1e-6 467 218 0.010167297 1e-6 468 218 0.022958297 1e-6 469 218 0.0032797998 1e-6 470 218 0.0032797998 1e-6 471 218 0.0088553987 1e-6 477 218 0.00032799994 1e-6 478 218 0.00098389992 1e-6 483 218 0.00098389992 1e-6 489 218 0.00065599987 1e-6 490 218 0.011479199 1e-6 491 218 0.0091832988 1e-6 0 219 0.00031229993 1e-6 5 219 0.00010409999 1e-6 6 219 0.00031229993 1e-6 12 219 0.00041639991 1e-6 13 219 0.00010409999 1e-6 14 219 0.0070781969 1e-6 17 219 0.00031229993 1e-6 18 219 0.0002082 1e-6 21 219 0.0002082 1e-6 22 219 0.0002082 1e-6 23 219 0.00052049989 1e-6 24 219 0.0057249963 1e-6 60 219 0.0023941 1e-6 82 219 0.0087435991 1e-6 87 219 0.0002082 1e-6 90 219 0.0015613998 1e-6 104 219 0.0047881976 1e-6 107 219 0.00062449998 1e-6 108 219 0.00010409999 1e-6 114 219 0.00010409999 1e-6 118 219 0.0010408999 1e-6 119 219 0.0030185999 1e-6 120 219 0.00093679992 1e-6 126 219 0.00010409999 1e-6 130 219 0.0014572998 1e-6 131 219 0.00010409999 1e-6 142 219 0.00010409999 1e-6 149 219 0.00010409999 1e-6 159 219 0.00041639991 1e-6 160 219 0.00031229993 1e-6 161 219 0.00010409999 1e-6 169 219 0.00010409999 1e-6 187 219 0.0029145 1e-6 188 219 0.0002082 1e-6 191 219 0.00093679992 1e-6 192 219 0.00229 1e-6 193 219 0.0026022999 1e-6 194 219 0.0002082 1e-6 198 219 0.0087435991 1e-6 204 219 0.00031229993 1e-6 206 219 0.0002082 1e-6 208 219 0.00010409999 1e-6 214 219 0.16519195 1e-6 215 219 0.00093679992 1e-6 218 219 0.018736299 1e-6 219 219 0.0091599971 1e-6 222 219 0.00031229993 1e-6 223 219 0.0066617988 1e-6 224 219 0.060372598 1e-6 225 219 0.030498598 1e-6 227 219 0.00010409999 1e-6 228 219 0.00010409999 1e-6 229 219 0.0002082 1e-6 230 219 0.00010409999 1e-6 231 219 0.00031229993 1e-6 232 219 0.00010409999 1e-6 233 219 0.00052049989 1e-6 234 219 0.021026298 1e-6 237 219 0.00010409999 1e-6 240 219 0.0069740973 1e-6 241 219 0.0052044988 1e-6 243 219 0.00031229993 1e-6 252 219 0.00041639991 1e-6 273 219 0.0011449999 1e-6 277 219 0.00041639991 1e-6 279 219 0.0002082 1e-6 282 219 0.0002082 1e-6 284 219 0.00010409999 1e-6 285 219 0.00010409999 1e-6 287 219 0.0066617988 1e-6 288 219 0.00010409999 1e-6 290 219 0.00010409999 1e-6 300 219 0.0086394995 1e-6 301 219 0.026439097 1e-6 315 219 0.0002082 1e-6 317 219 0.00010409999 1e-6 319 219 0.00010409999 1e-6 322 219 0.00010409999 1e-6 324 219 0.00062449998 1e-6 326 219 0.0092640966 1e-6 337 219 0.00010409999 1e-6 340 219 0.0002082 1e-6 349 219 0.00010409999 1e-6 350 219 0.0031226999 1e-6 356 219 0.0012490998 1e-6 358 219 0.00052049989 1e-6 387 219 0.00010409999 1e-6 393 219 0.00010409999 1e-6 402 219 0.00010409999 1e-6 417 219 0.0002082 1e-6 421 219 0.0002082 1e-6 422 219 0.00010409999 1e-6 430 219 0.00010409999 1e-6 442 219 0.00010409999 1e-6 443 219 0.011866298 1e-6 444 219 0.00229 1e-6 445 219 0.012699097 1e-6 446 219 0.0028104999 1e-6 447 219 0.006245397 1e-6 448 219 0.00031229993 1e-6 450 219 0.0029145 1e-6 452 219 0.0063494965 1e-6 453 219 0.0029145 1e-6 454 219 0.00229 1e-6 455 219 0.031643599 1e-6 456 219 0.0002082 1e-6 457 219 0.0020817998 1e-6 458 219 0.00041639991 1e-6 459 219 0.00041639991 1e-6 460 219 0.0017694999 1e-6 463 219 0.046112198 1e-6 464 219 0.00093679992 1e-6 465 219 0.00083269994 1e-6 467 219 0.010825399 1e-6 468 219 0.050483998 1e-6 469 219 0.0059331991 1e-6 470 219 0.0065576993 1e-6 471 219 0.0010408999 1e-6 473 219 0.00010409999 1e-6 477 219 0.0002082 1e-6 478 219 0.00072859996 1e-6 483 219 0.0010408999 1e-6 490 219 0.0030185999 1e-6 491 219 0.00093679992 1e-6 18 220 0.00050529977 1e-6 21 220 0.00025269995 1e-6 22 220 0.0149065 1e-6 25 220 0.00025269995 1e-6 60 220 0.0058109984 1e-6 77 220 0.00025269995 1e-6 104 220 0.0017686 1e-6 108 220 0.00025269995 1e-6 114 220 0.00025269995 1e-6 126 220 0.00025269995 1e-6 171 220 0.0063162968 1e-6 189 220 0.00025269995 1e-6 190 220 0.00025269995 1e-6 192 220 0.0050530992 1e-6 193 220 0.00025269995 1e-6 194 220 0.00025269995 1e-6 198 220 0.0078321993 1e-6 200 220 0.00025269995 1e-6 203 220 0.00025269995 1e-6 206 220 0.00050529977 1e-6 214 220 0.044214197 1e-6 215 220 0.043708898 1e-6 220 220 0.016927697 1e-6 223 220 0.00025269995 1e-6 229 220 0.0096007995 1e-6 234 220 0.0073268972 1e-6 237 220 0.00050529977 1e-6 241 220 0.0098534971 1e-6 252 220 0.0010105998 1e-6 272 220 0.0015158998 1e-6 277 220 0.0027792 1e-6 282 220 0.00025269995 1e-6 284 220 0.00050529977 1e-6 287 220 0.00025269995 1e-6 292 220 0.0025264998 1e-6 301 220 0.032844897 1e-6 333 220 0.00025269995 1e-6 349 220 0.00025269995 1e-6 350 220 0.0078321993 1e-6 356 220 0.0012633 1e-6 358 220 0.0017686 1e-6 387 220 0.00025269995 1e-6 417 220 0.00050529977 1e-6 421 220 0.00050529977 1e-6 422 220 0.00025269995 1e-6 430 220 0.00025269995 1e-6 434 220 0.00025269995 1e-6 443 220 0.0149065 1e-6 444 220 0.00075799995 1e-6 445 220 0.0060636997 1e-6 446 220 0.0017686 1e-6 447 220 0.0012633 1e-6 450 220 0.0070742965 1e-6 452 220 0.017180398 1e-6 453 220 0.0078321993 1e-6 454 220 0.0010105998 1e-6 455 220 0.017685696 1e-6 456 220 0.00050529977 1e-6 457 220 0.0010105998 1e-6 459 220 0.00050529977 1e-6 460 220 0.015159197 1e-6 463 220 0.0083374977 1e-6 464 220 0.00075799995 1e-6 465 220 0.0012633 1e-6 467 220 0.017685696 1e-6 468 220 0.0020211998 1e-6 469 220 0.011116698 1e-6 470 220 0.012379996 1e-6 471 220 0.0020211998 1e-6 473 220 0.00025269995 1e-6 477 220 0.00025269995 1e-6 478 220 0.0022739 1e-6 483 220 0.0020211998 1e-6 489 220 0.0025264998 1e-6 490 220 0.0010105998 1e-6 491 220 0.00050529977 1e-6 13 221 0.0001981 1e-6 21 221 0.0001981 1e-6 22 221 0.0001981 1e-6 24 221 0.0025752999 1e-6 25 221 0.0001981 1e-6 60 221 0.0021790999 1e-6 108 221 0.0001981 1e-6 114 221 0.00039619999 1e-6 118 221 0.0001981 1e-6 119 221 0.0063390993 1e-6 120 221 0.00039619999 1e-6 126 221 0.0001981 1e-6 131 221 0.00039619999 1e-6 171 221 0.00039619999 1e-6 187 221 0.0011886 1e-6 192 221 0.0017829 1e-6 193 221 0.0001981 1e-6 194 221 0.0001981 1e-6 198 221 0.004754398 1e-6 206 221 0.00039619999 1e-6 214 221 0.29793978 1e-6 215 221 0.0035657999 1e-6 218 221 0.014659297 1e-6 221 221 0.00039619999 1e-6 222 221 0.011093497 1e-6 223 221 0.0031695999 1e-6 224 221 0.036846299 1e-6 225 221 0.0093105994 1e-6 230 221 0.0015848 1e-6 233 221 0.031893797 1e-6 234 221 0.034865297 1e-6 237 221 0.0001981 1e-6 240 221 0.0001981 1e-6 241 221 0.0013867 1e-6 252 221 0.00039619999 1e-6 276 221 0.0001981 1e-6 277 221 0.00099049998 1e-6 279 221 0.0001981 1e-6 284 221 0.0001981 1e-6 287 221 0.0001981 1e-6 292 221 0.0001981 1e-6 293 221 0.00039619999 1e-6 294 221 0.0001981 1e-6 300 221 0.0021790999 1e-6 301 221 0.010499198 1e-6 312 221 0.0001981 1e-6 315 221 0.00039619999 1e-6 324 221 0.00059429999 1e-6 326 221 0.0001981 1e-6 349 221 0.0001981 1e-6 350 221 0.0063390993 1e-6 356 221 0.0013867 1e-6 358 221 0.00079239998 1e-6 359 221 0.0001981 1e-6 361 221 0.0001981 1e-6 363 221 0.0001981 1e-6 372 221 0.0001981 1e-6 387 221 0.0001981 1e-6 392 221 0.0001981 1e-6 417 221 0.0001981 1e-6 419 221 0.0001981 1e-6 422 221 0.0001981 1e-6 443 221 0.014263097 1e-6 444 221 0.001981 1e-6 445 221 0.011093497 1e-6 446 221 0.0027733999 1e-6 447 221 0.010895398 1e-6 448 221 0.00059429999 1e-6 450 221 0.0029714999 1e-6 452 221 0.0063390993 1e-6 453 221 0.0015848 1e-6 454 221 0.00059429999 1e-6 455 221 0.043977797 1e-6 457 221 0.0011886 1e-6 458 221 0.0001981 1e-6 459 221 0.00059429999 1e-6 460 221 0.0013867 1e-6 463 221 0.015847899 1e-6 464 221 0.00059429999 1e-6 465 221 0.00059429999 1e-6 467 221 0.0089143999 1e-6 468 221 0.017036498 1e-6 469 221 0.006537199 1e-6 470 221 0.0073295981 1e-6 471 221 0.00079239998 1e-6 473 221 0.0001981 1e-6 477 221 0.0001981 1e-6 478 221 0.00099049998 1e-6 483 221 0.0011886 1e-6 490 221 0.00059429999 1e-6 491 221 0.00039619999 1e-6 23 222 0.051610097 1e-6 60 222 0.0039699972 1e-6 114 222 0.00044109998 1e-6 153 222 0.0066166967 1e-6 169 222 0.0066166967 1e-6 193 222 0.034406699 1e-6 198 222 0.0022055998 1e-6 206 222 0.00044109998 1e-6 214 222 0.00044109998 1e-6 223 222 0.00044109998 1e-6 234 222 0.16453457 1e-6 252 222 0.00044109998 1e-6 272 222 0.00088219997 1e-6 277 222 0.00044109998 1e-6 350 222 0.014556699 1e-6 358 222 0.00044109998 1e-6 443 222 0.0022055998 1e-6 444 222 0.00044109998 1e-6 445 222 0.0083810985 1e-6 446 222 0.0039699972 1e-6 447 222 0.016321097 1e-6 450 222 0.0022055998 1e-6 452 222 0.021173399 1e-6 453 222 0.022496697 1e-6 454 222 0.0017643999 1e-6 455 222 0.0410234 1e-6 457 222 0.0017643999 1e-6 459 222 0.029995598 1e-6 460 222 0.0013232999 1e-6 463 222 0.029113397 1e-6 464 222 0.00044109998 1e-6 467 222 0.0070577972 1e-6 468 222 0.037494499 1e-6 469 222 0.0026466998 1e-6 470 222 0.0022055998 1e-6 478 222 0.00044109998 1e-6 483 222 0.00088219997 1e-6 489 222 0.00044109998 1e-6 490 222 0.00044109998 1e-6 491 222 0.0013232999 1e-6 0 223 0.00043869996 1e-6 2 223 0.00035099988 1e-6 3 223 4.39e-05 1e-6 6 223 0.00026319991 1e-6 9 223 0.00048259995 1e-6 11 223 0.00030709989 1e-6 13 223 0.0089061968 1e-6 14 223 4.39e-05 1e-6 17 223 0.00035099988 1e-6 18 223 0.0002194 1e-6 19 223 0.0002194 1e-6 21 223 0.0064054988 1e-6 22 223 0.0019303998 1e-6 23 223 0.0025008 1e-6 24 223 0.022594698 1e-6 25 223 0.00065809977 1e-6 60 223 0.0034220999 1e-6 77 223 0.00074579986 1e-6 82 223 0.0083358996 1e-6 83 223 4.39e-05 1e-6 84 223 0.0001755 1e-6 88 223 0.0001755 1e-6 90 223 0.0001316 1e-6 97 223 4.39e-05 1e-6 98 223 0.00057039992 1e-6 102 223 0.0010090999 1e-6 104 223 0.0010090999 1e-6 107 223 0.00048259995 1e-6 108 223 4.39e-05 1e-6 113 223 8.7699998e-05 1e-6 114 223 0.0001755 1e-6 116 223 0.0001755 1e-6 117 223 0.0001755 1e-6 118 223 0.00061419979 1e-6 119 223 0.0046066977 1e-6 120 223 0.030755099 1e-6 122 223 0.00035099988 1e-6 125 223 4.39e-05 1e-6 126 223 8.7699998e-05 1e-6 130 223 0.00039489986 1e-6 131 223 0.0001316 1e-6 135 223 4.39e-05 1e-6 140 223 4.39e-05 1e-6 142 223 4.39e-05 1e-6 150 223 0.0001316 1e-6 151 223 4.39e-05 1e-6 159 223 0.0015355998 1e-6 160 223 0.0019742998 1e-6 171 223 0.0001755 1e-6 172 223 0.0001755 1e-6 186 223 0.00043869996 1e-6 187 223 0.00070199999 1e-6 189 223 8.7699998e-05 1e-6 190 223 4.39e-05 1e-6 191 223 4.39e-05 1e-6 192 223 0.00070199999 1e-6 193 223 0.011494797 1e-6 194 223 0.00026319991 1e-6 197 223 4.39e-05 1e-6 198 223 0.0165402 1e-6 200 223 4.39e-05 1e-6 203 223 4.39e-05 1e-6 204 223 0.00048259995 1e-6 206 223 0.00039489986 1e-6 207 223 4.39e-05 1e-6 214 223 0.12438029 1e-6 215 223 0.00039489986 1e-6 217 223 0.00030709989 1e-6 218 223 0.020795897 1e-6 219 223 8.7699998e-05 1e-6 220 223 0.00061419979 1e-6 222 223 0.00083359983 1e-6 223 223 0.018689897 1e-6 224 223 0.019084796 1e-6 225 223 0.0020181998 1e-6 228 223 0.00048259995 1e-6 229 223 0.0001755 1e-6 230 223 0.00039489986 1e-6 231 223 0.0048698969 1e-6 232 223 0.00083359983 1e-6 233 223 0.00083359983 1e-6 234 223 0.016496297 1e-6 237 223 0.0001316 1e-6 240 223 0.00030709989 1e-6 241 223 0.009081699 1e-6 252 223 0.00057039992 1e-6 253 223 0.00057039992 1e-6 254 223 0.0010090999 1e-6 267 223 8.7699998e-05 1e-6 270 223 8.7699998e-05 1e-6 273 223 0.00083359983 1e-6 274 223 4.39e-05 1e-6 277 223 0.0048698969 1e-6 278 223 4.39e-05 1e-6 282 223 0.00035099988 1e-6 283 223 8.7699998e-05 1e-6 284 223 0.0001755 1e-6 285 223 0.00035099988 1e-6 286 223 4.39e-05 1e-6 287 223 0.00052649993 1e-6 288 223 0.0001755 1e-6 289 223 0.0002194 1e-6 290 223 0.00057039992 1e-6 292 223 0.00026319991 1e-6 293 223 0.00061419979 1e-6 294 223 0.0001755 1e-6 295 223 0.0001755 1e-6 296 223 0.0001316 1e-6 297 223 4.39e-05 1e-6 298 223 4.39e-05 1e-6 299 223 4.39e-05 1e-6 300 223 0.0044750981 1e-6 301 223 0.012547698 1e-6 307 223 4.39e-05 1e-6 312 223 0.0001755 1e-6 314 223 0.0014477998 1e-6 315 223 0.00057039992 1e-6 319 223 4.39e-05 1e-6 322 223 0.0002194 1e-6 324 223 0.00087749981 1e-6 325 223 0.00026319991 1e-6 326 223 0.00057039992 1e-6 328 223 8.7699998e-05 1e-6 338 223 0.0002194 1e-6 340 223 0.00039489986 1e-6 349 223 0.00083359983 1e-6 350 223 0.002413 1e-6 351 223 4.39e-05 1e-6 354 223 8.7699998e-05 1e-6 355 223 4.39e-05 1e-6 356 223 0.0013161998 1e-6 358 223 0.00092129991 1e-6 366 223 8.7699998e-05 1e-6 370 223 0.0001316 1e-6 372 223 0.0002194 1e-6 373 223 0.00039489986 1e-6 374 223 0.0001316 1e-6 375 223 4.39e-05 1e-6 384 223 4.39e-05 1e-6 385 223 4.39e-05 1e-6 387 223 4.39e-05 1e-6 392 223 0.0001316 1e-6 393 223 8.7699998e-05 1e-6 402 223 8.7699998e-05 1e-6 414 223 8.7699998e-05 1e-6 417 223 0.0002194 1e-6 419 223 4.39e-05 1e-6 420 223 4.39e-05 1e-6 421 223 8.7699998e-05 1e-6 422 223 0.0002194 1e-6 423 223 4.39e-05 1e-6 425 223 4.39e-05 1e-6 430 223 4.39e-05 1e-6 431 223 8.7699998e-05 1e-6 433 223 4.39e-05 1e-6 434 223 4.39e-05 1e-6 442 223 4.39e-05 1e-6 443 223 0.013512898 1e-6 444 223 0.0021497998 1e-6 445 223 0.017066598 1e-6 446 223 0.0036414999 1e-6 447 223 0.0044311993 1e-6 448 223 0.00043869996 1e-6 450 223 0.0041678995 1e-6 452 223 0.0075899996 1e-6 453 223 0.0065370984 1e-6 454 223 0.0012722998 1e-6 455 223 0.035712697 1e-6 456 223 0.00035099988 1e-6 457 223 0.0055718981 1e-6 458 223 0.00048259995 1e-6 459 223 0.0028078998 1e-6 460 223 0.0015793999 1e-6 463 223 0.023428198 1e-6 464 223 0.00078969984 1e-6 465 223 0.0022813999 1e-6 467 223 0.023472097 1e-6 468 223 0.025753498 1e-6 469 223 0.0062299967 1e-6 470 223 0.0065370984 1e-6 471 223 0.0023691 1e-6 473 223 0.0001316 1e-6 477 223 0.0002194 1e-6 478 223 0.00078969984 1e-6 479 223 4.39e-05 1e-6 483 223 0.0011407 1e-6 489 223 0.00026319991 1e-6 490 223 0.0021058999 1e-6 491 223 0.0030711 1e-6 9 224 2.2099994e-05 1e-6 13 224 2.2099994e-05 1e-6 14 224 6.6199995e-05 1e-6 16 224 2.2099994e-05 1e-6 17 224 0.00013249999 1e-6 18 224 0.00017669999 1e-6 19 224 0.00037539983 1e-6 20 224 4.4199987e-05 1e-6 21 224 0.0014574998 1e-6 22 224 0.0032241 1e-6 23 224 0.0043502972 1e-6 24 224 0.00044169999 1e-6 25 224 0.0014574998 1e-6 60 224 0.0091864988 1e-6 79 224 2.2099994e-05 1e-6 82 224 0.00022079999 1e-6 83 224 2.2099994e-05 1e-6 84 224 2.2099994e-05 1e-6 88 224 2.2099994e-05 1e-6 98 224 0.0001104 1e-6 104 224 0.0001104 1e-6 107 224 6.6199995e-05 1e-6 108 224 2.2099994e-05 1e-6 113 224 6.6199995e-05 1e-6 114 224 0.00013249999 1e-6 118 224 0.0020758 1e-6 119 224 0.0026719999 1e-6 120 224 0.0001987 1e-6 126 224 8.8299988e-05 1e-6 127 224 2.2099994e-05 1e-6 130 224 0.00072869984 1e-6 131 224 4.4199987e-05 1e-6 140 224 0.00046369992 1e-6 149 224 2.2099994e-05 1e-6 150 224 0.0001987 1e-6 151 224 4.4199987e-05 1e-6 159 224 0.00024289999 1e-6 160 224 0.00033119996 1e-6 171 224 0.00081709982 1e-6 186 224 0.0014354 1e-6 187 224 0.0001104 1e-6 188 224 8.8299988e-05 1e-6 189 224 6.6199995e-05 1e-6 190 224 4.4199987e-05 1e-6 192 224 0.0071989968 1e-6 193 224 0.00090539991 1e-6 194 224 0.00013249999 1e-6 197 224 2.2099994e-05 1e-6 198 224 0.0083472989 1e-6 200 224 4.4199987e-05 1e-6 201 224 2.2099994e-05 1e-6 202 224 4.4199987e-05 1e-6 203 224 2.2099994e-05 1e-6 204 224 0.0001546 1e-6 206 224 0.00048579997 1e-6 207 224 2.2099994e-05 1e-6 208 224 2.2099994e-05 1e-6 214 224 0.30310929 1e-6 215 224 0.0022745 1e-6 217 224 6.6199995e-05 1e-6 218 224 0.0037319998 1e-6 219 224 4.4199987e-05 1e-6 222 224 0.0010821 1e-6 223 224 0.0061831996 1e-6 224 224 0.023164898 1e-6 225 224 0.0022745 1e-6 226 224 4.4199987e-05 1e-6 227 224 0.00026499992 1e-6 229 224 0.0025173998 1e-6 231 224 0.0014354 1e-6 233 224 0.0027162 1e-6 234 224 0.010555599 1e-6 237 224 8.8299988e-05 1e-6 239 224 4.4199987e-05 1e-6 240 224 0.00028709997 1e-6 241 224 0.022126999 1e-6 248 224 2.2099994e-05 1e-6 250 224 2.2099994e-05 1e-6 251 224 6.6199995e-05 1e-6 252 224 0.0011924999 1e-6 267 224 0.00035329978 1e-6 270 224 0.00046369992 1e-6 272 224 2.2099994e-05 1e-6 273 224 0.0001546 1e-6 274 224 2.2099994e-05 1e-6 276 224 2.2099994e-05 1e-6 277 224 0.0010599999 1e-6 282 224 6.6199995e-05 1e-6 285 224 0.00033119996 1e-6 286 224 4.4199987e-05 1e-6 287 224 0.0012365999 1e-6 288 224 0.00022079999 1e-6 289 224 0.0001546 1e-6 290 224 0.0010157998 1e-6 294 224 0.00013249999 1e-6 300 224 0.00068459986 1e-6 301 224 0.0045269988 1e-6 315 224 0.00017669999 1e-6 319 224 4.4199987e-05 1e-6 322 224 2.2099994e-05 1e-6 324 224 0.0013911999 1e-6 326 224 0.00017669999 1e-6 340 224 0.00083909999 1e-6 349 224 0.0028486999 1e-6 350 224 0.0021861999 1e-6 356 224 0.0010378999 1e-6 358 224 0.00070669991 1e-6 366 224 0.00017669999 1e-6 375 224 8.8299988e-05 1e-6 384 224 8.8299988e-05 1e-6 385 224 2.2099994e-05 1e-6 387 224 6.6199995e-05 1e-6 402 224 4.4199987e-05 1e-6 404 224 4.4199987e-05 1e-6 414 224 0.00081709982 1e-6 417 224 0.0001546 1e-6 419 224 2.2099994e-05 1e-6 421 224 4.4199987e-05 1e-6 422 224 6.6199995e-05 1e-6 423 224 2.2099994e-05 1e-6 425 224 2.2099994e-05 1e-6 430 224 2.2099994e-05 1e-6 431 224 2.2099994e-05 1e-6 433 224 2.2099994e-05 1e-6 434 224 2.2099994e-05 1e-6 442 224 4.4199987e-05 1e-6 443 224 0.0093630999 1e-6 444 224 0.0025615999 1e-6 445 224 0.0096501969 1e-6 446 224 0.0033344999 1e-6 447 224 0.012189697 1e-6 448 224 0.00033119996 1e-6 450 224 0.0038645 1e-6 452 224 0.016098399 1e-6 453 224 0.0083914995 1e-6 454 224 0.0022304 1e-6 455 224 0.031843498 1e-6 456 224 0.00035329978 1e-6 457 224 0.0038423999 1e-6 458 224 0.00046369992 1e-6 459 224 0.0014795999 1e-6 460 224 0.0015678999 1e-6 463 224 0.016716696 1e-6 464 224 0.0023628999 1e-6 465 224 0.0036436999 1e-6 467 224 0.014132999 1e-6 468 224 0.021354098 1e-6 469 224 0.0075302981 1e-6 470 224 0.0070002973 1e-6 471 224 0.0024291 1e-6 473 224 0.00013249999 1e-6 477 224 0.0010157998 1e-6 478 224 0.00059619988 1e-6 479 224 2.2099994e-05 1e-6 483 224 0.00081709982 1e-6 489 224 0.00064039999 1e-6 490 224 0.0010599999 1e-6 491 224 0.0018107998 1e-6 18 225 0.00022819999 1e-6 19 225 0.00038039987 1e-6 20 225 7.6099997e-05 1e-6 21 225 0.0012933 1e-6 22 225 0.0017496999 1e-6 23 225 0.007531397 1e-6 24 225 0.00038039987 1e-6 25 225 0.0016735999 1e-6 60 225 0.0059337988 1e-6 82 225 7.6099997e-05 1e-6 98 225 0.00015209999 1e-6 104 225 7.6099997e-05 1e-6 107 225 7.6099997e-05 1e-6 108 225 7.6099997e-05 1e-6 114 225 0.00015209999 1e-6 118 225 0.00015209999 1e-6 119 225 0.0021300998 1e-6 120 225 7.6099997e-05 1e-6 126 225 7.6099997e-05 1e-6 130 225 0.00022819999 1e-6 140 225 0.0015975998 1e-6 150 225 7.6099997e-05 1e-6 171 225 7.6099997e-05 1e-6 186 225 0.00045639998 1e-6 187 225 7.6099997e-05 1e-6 189 225 7.6099997e-05 1e-6 192 225 0.0058576986 1e-6 193 225 0.00015209999 1e-6 198 225 0.0072270967 1e-6 206 225 0.00022819999 1e-6 214 225 0.31243819 1e-6 215 225 0.0055533983 1e-6 217 225 7.6099997e-05 1e-6 218 225 0.0074552968 1e-6 222 225 0.019018598 1e-6 223 225 0.0025864998 1e-6 224 225 0.0024343999 1e-6 225 225 0.0067705996 1e-6 229 225 0.011106897 1e-6 231 225 0.0064662993 1e-6 233 225 0.0031951 1e-6 234 225 0.013084799 1e-6 239 225 7.6099997e-05 1e-6 240 225 0.00030429987 1e-6 241 225 0.0031951 1e-6 251 225 7.6099997e-05 1e-6 252 225 0.00030429987 1e-6 267 225 0.00022819999 1e-6 272 225 0.00045639998 1e-6 273 225 7.6099997e-05 1e-6 277 225 0.0013692998 1e-6 282 225 7.6099997e-05 1e-6 285 225 0.00038039987 1e-6 286 225 7.6099997e-05 1e-6 287 225 0.0012933 1e-6 288 225 0.00022819999 1e-6 290 225 0.0058576986 1e-6 294 225 0.00015209999 1e-6 300 225 0.00015209999 1e-6 301 225 0.00098899985 1e-6 315 225 7.6099997e-05 1e-6 324 225 0.00091289985 1e-6 340 225 0.00030429987 1e-6 349 225 0.0050969981 1e-6 350 225 0.0034993999 1e-6 356 225 0.0011411 1e-6 358 225 0.00060859998 1e-6 366 225 0.00022819999 1e-6 375 225 7.6099997e-05 1e-6 387 225 7.6099997e-05 1e-6 402 225 7.6099997e-05 1e-6 414 225 0.00030429987 1e-6 417 225 7.6099997e-05 1e-6 421 225 0.00015209999 1e-6 443 225 0.011182997 1e-6 444 225 0.0034993999 1e-6 445 225 0.0089006983 1e-6 446 225 0.0031951 1e-6 447 225 0.0058576986 1e-6 448 225 0.00076069986 1e-6 450 225 0.0020539998 1e-6 452 225 0.014986698 1e-6 453 225 0.012095898 1e-6 454 225 0.0019778998 1e-6 455 225 0.029212598 1e-6 456 225 7.6099997e-05 1e-6 457 225 0.0038037 1e-6 458 225 0.00060859998 1e-6 459 225 0.0012172 1e-6 460 225 0.0014453998 1e-6 463 225 0.015367098 1e-6 464 225 0.0012172 1e-6 465 225 0.0041840971 1e-6 467 225 0.0095853992 1e-6 468 225 0.018105697 1e-6 469 225 0.0050969981 1e-6 470 225 0.0047926977 1e-6 471 225 0.0025864998 1e-6 473 225 7.6099997e-05 1e-6 477 225 0.00030429987 1e-6 478 225 0.00053249998 1e-6 483 225 0.00076069986 1e-6 489 225 0.00053249998 1e-6 490 225 0.0012172 1e-6 491 225 0.0026625998 1e-6 18 226 0.00014969999 1e-6 22 226 0.019760497 1e-6 60 226 0.0094310977 1e-6 114 226 0.00014969999 1e-6 118 226 0.00029939995 1e-6 126 226 0.00014969999 1e-6 130 226 0.0017963999 1e-6 132 226 0.012425099 1e-6 150 226 0.00014969999 1e-6 186 226 0.13757485 1e-6 190 226 0.00014969999 1e-6 192 226 0.00014969999 1e-6 198 226 0.011526898 1e-6 206 226 0.00089819985 1e-6 214 226 0.21347308 1e-6 215 226 0.00029939995 1e-6 223 226 0.017664697 1e-6 224 226 0.010628697 1e-6 226 226 0.00089819985 1e-6 227 226 0.0055388995 1e-6 231 226 0.0025448999 1e-6 234 226 0.002994 1e-6 241 226 0.013622798 1e-6 252 226 0.00029939995 1e-6 277 226 0.0011975998 1e-6 324 226 0.0013472999 1e-6 349 226 0.008981999 1e-6 350 226 0.00014969999 1e-6 356 226 0.0010478999 1e-6 358 226 0.001497 1e-6 384 226 0.00014969999 1e-6 414 226 0.0032933999 1e-6 417 226 0.0005987999 1e-6 443 226 0.030987997 1e-6 444 226 0.00029939995 1e-6 445 226 0.012125697 1e-6 446 226 0.0041915998 1e-6 447 226 0.0010478999 1e-6 450 226 0.0031436998 1e-6 452 226 0.010329299 1e-6 453 226 0.0077843964 1e-6 454 226 0.0028442999 1e-6 455 226 0.024401199 1e-6 457 226 0.0043412969 1e-6 458 226 0.0005987999 1e-6 459 226 0.001497 1e-6 460 226 0.0017963999 1e-6 463 226 0.0074849986 1e-6 464 226 0.00029939995 1e-6 465 226 0.0007485 1e-6 467 226 0.011826299 1e-6 468 226 0.0035927999 1e-6 469 226 0.0043412969 1e-6 470 226 0.004041899 1e-6 471 226 0.00029939995 1e-6 473 226 0.00014969999 1e-6 477 226 0.00014969999 1e-6 478 226 0.0011975998 1e-6 483 226 0.0007485 1e-6 489 226 0.0011975998 1e-6 490 226 0.00044909981 1e-6 491 226 0.0010478999 1e-6 2 227 0.00010149999 1e-6 4 227 0.00087939994 1e-6 9 227 3.3799995e-05 1e-6 18 227 0.00016909999 1e-6 22 227 0.0043630973 1e-6 25 227 0.00016909999 1e-6 60 227 0.0095717981 1e-6 82 227 3.3799995e-05 1e-6 83 227 3.3799995e-05 1e-6 84 227 3.3799995e-05 1e-6 104 227 3.3799995e-05 1e-6 108 227 3.3799995e-05 1e-6 113 227 6.7599991e-05 1e-6 114 227 0.00010149999 1e-6 118 227 0.0010485 1e-6 119 227 0.00016909999 1e-6 126 227 6.7599991e-05 1e-6 127 227 3.3799995e-05 1e-6 130 227 0.0024351999 1e-6 131 227 3.3799995e-05 1e-6 132 227 0.0013867 1e-6 143 227 0.0001353 1e-6 150 227 0.0004735 1e-6 151 227 3.3799995e-05 1e-6 171 227 0.0001353 1e-6 186 227 0.0088953972 1e-6 189 227 3.3799995e-05 1e-6 190 227 0.00010149999 1e-6 192 227 0.00010149999 1e-6 194 227 0.00010149999 1e-6 198 227 0.013224598 1e-6 200 227 6.7599991e-05 1e-6 203 227 3.3799995e-05 1e-6 204 227 3.3799995e-05 1e-6 206 227 0.00040589995 1e-6 207 227 3.3799995e-05 1e-6 214 227 0.26828104 1e-6 215 227 0.0016572999 1e-6 223 227 0.0052086972 1e-6 224 227 0.0383549 1e-6 225 227 0.00010149999 1e-6 226 227 0.0040248968 1e-6 227 227 0.029188897 1e-6 231 227 0.0015896999 1e-6 234 227 0.0046674982 1e-6 237 227 6.7599991e-05 1e-6 240 227 0.00010149999 1e-6 241 227 0.013123199 1e-6 248 227 3.3799995e-05 1e-6 252 227 0.00030439999 1e-6 277 227 3.3799995e-05 1e-6 284 227 3.3799995e-05 1e-6 315 227 6.7599991e-05 1e-6 322 227 3.3799995e-05 1e-6 324 227 0.00071029994 1e-6 326 227 6.7599991e-05 1e-6 340 227 6.7599991e-05 1e-6 345 227 0.00010149999 1e-6 349 227 0.0080835968 1e-6 350 227 3.3799995e-05 1e-6 356 227 0.0010146999 1e-6 358 227 0.0013867 1e-6 384 227 0.00010149999 1e-6 387 227 3.3799995e-05 1e-6 392 227 3.3799995e-05 1e-6 414 227 6.7599991e-05 1e-6 417 227 0.00033819978 1e-6 419 227 3.3799995e-05 1e-6 421 227 6.7599991e-05 1e-6 422 227 6.7599991e-05 1e-6 423 227 3.3799995e-05 1e-6 425 227 3.3799995e-05 1e-6 430 227 3.3799995e-05 1e-6 431 227 3.3799995e-05 1e-6 433 227 3.3799995e-05 1e-6 434 227 3.3799995e-05 1e-6 443 227 0.0065953992 1e-6 444 227 0.00020289999 1e-6 445 227 0.0069335997 1e-6 446 227 0.0023337998 1e-6 447 227 0.0011499999 1e-6 448 227 3.3799995e-05 1e-6 450 227 0.0039910972 1e-6 452 227 0.0126158 1e-6 453 227 0.0044645965 1e-6 454 227 0.0021307999 1e-6 455 227 0.021714099 1e-6 456 227 0.0002368 1e-6 457 227 0.0039571971 1e-6 458 227 0.00037199981 1e-6 459 227 0.0016911 1e-6 460 227 0.0015219999 1e-6 463 227 0.012480598 1e-6 464 227 0.0002368 1e-6 465 227 0.00064259977 1e-6 467 227 0.0097408965 1e-6 468 227 0.010112997 1e-6 469 227 0.0067644976 1e-6 470 227 0.0042616986 1e-6 471 227 0.0004735 1e-6 473 227 0.00010149999 1e-6 477 227 0.0002368 1e-6 478 227 0.00087939994 1e-6 483 227 0.00030439999 1e-6 489 227 0.00060879998 1e-6 490 227 0.00037199981 1e-6 491 227 0.00094699999 1e-6 0 228 0.00020699999 1e-6 5 228 1.2899999e-05 1e-6 6 228 0.0013325999 1e-6 9 228 7.7599994e-05 1e-6 10 228 1.2899999e-05 1e-6 13 228 0.00032349979 1e-6 14 228 1.2899999e-05 1e-6 16 228 3.879999e-05 1e-6 17 228 0.0001811 1e-6 18 228 0.0001164 1e-6 19 228 3.879999e-05 1e-6 21 228 0.0001294 1e-6 22 228 0.00032349979 1e-6 23 228 3.879999e-05 1e-6 24 228 6.4699998e-05 1e-6 25 228 0.00016819999 1e-6 60 228 0.0092896968 1e-6 79 228 2.5899993e-05 1e-6 82 228 0.0022123998 1e-6 83 228 7.7599994e-05 1e-6 84 228 7.7599994e-05 1e-6 85 228 0.00051749987 1e-6 88 228 0.00020699999 1e-6 90 228 5.1799987e-05 1e-6 98 228 6.4699998e-05 1e-6 102 228 0.0029628999 1e-6 104 228 0.0014231999 1e-6 107 228 0.0011514998 1e-6 108 228 0.00016819999 1e-6 109 228 1.2899999e-05 1e-6 110 228 0.00014229999 1e-6 113 228 0.00019409999 1e-6 114 228 0.0004916999 1e-6 115 228 1.2899999e-05 1e-6 116 228 0.00037519983 1e-6 117 228 2.5899993e-05 1e-6 118 228 9.0599991e-05 1e-6 119 228 2.5899993e-05 1e-6 120 228 0.0016949 1e-6 125 228 0.00055629993 1e-6 126 228 0.00020699999 1e-6 127 228 3.879999e-05 1e-6 130 228 9.0599991e-05 1e-6 131 228 7.7599994e-05 1e-6 133 228 1.2899999e-05 1e-6 135 228 1.2899999e-05 1e-6 138 228 5.1799987e-05 1e-6 139 228 2.5899993e-05 1e-6 142 228 3.879999e-05 1e-6 149 228 1.2899999e-05 1e-6 150 228 0.00019409999 1e-6 151 228 6.4699998e-05 1e-6 158 228 1.2899999e-05 1e-6 159 228 1.2899999e-05 1e-6 160 228 1.2899999e-05 1e-6 165 228 2.5899993e-05 1e-6 170 228 1.2899999e-05 1e-6 171 228 1.2899999e-05 1e-6 186 228 3.879999e-05 1e-6 187 228 9.0599991e-05 1e-6 188 228 1.2899999e-05 1e-6 189 228 0.00010349999 1e-6 190 228 5.1799987e-05 1e-6 192 228 0.0056151971 1e-6 193 228 0.0025487999 1e-6 194 228 0.00010349999 1e-6 196 228 1.2899999e-05 1e-6 197 228 3.879999e-05 1e-6 198 228 0.013818096 1e-6 200 228 7.7599994e-05 1e-6 201 228 7.7599994e-05 1e-6 203 228 7.7599994e-05 1e-6 204 228 0.0015137999 1e-6 206 228 0.00097039994 1e-6 207 228 6.4699998e-05 1e-6 209 228 1.2899999e-05 1e-6 214 228 0.039177097 1e-6 215 228 7.7599994e-05 1e-6 217 228 0.0019407 1e-6 222 228 1.2899999e-05 1e-6 223 228 0.0053046979 1e-6 224 228 0.00016819999 1e-6 228 228 0.058778599 1e-6 229 228 0.00080219982 1e-6 230 228 1.2899999e-05 1e-6 231 228 0.0001164 1e-6 232 228 0.00071159983 1e-6 233 228 5.1799987e-05 1e-6 234 228 0.0033380999 1e-6 237 228 0.0001294 1e-6 240 228 0.00014229999 1e-6 241 228 0.024893299 1e-6 242 228 1.2899999e-05 1e-6 248 228 6.4699998e-05 1e-6 250 228 5.1799987e-05 1e-6 251 228 1.2899999e-05 1e-6 252 228 0.00032349979 1e-6 253 228 0.016548097 1e-6 263 228 1.2899999e-05 1e-6 267 228 2.5899993e-05 1e-6 271 228 2.5899993e-05 1e-6 272 228 7.7599994e-05 1e-6 273 228 1.2899999e-05 1e-6 277 228 0.00021999999 1e-6 282 228 1.2899999e-05 1e-6 285 228 3.879999e-05 1e-6 286 228 6.4699998e-05 1e-6 287 228 0.0001294 1e-6 288 228 2.5899993e-05 1e-6 290 228 0.00054339995 1e-6 293 228 0.00020699999 1e-6 294 228 0.00024579978 1e-6 296 228 1.2899999e-05 1e-6 300 228 0.0056927986 1e-6 301 228 0.00067279977 1e-6 312 228 0.00010349999 1e-6 314 228 0.0026781999 1e-6 315 228 7.7599994e-05 1e-6 317 228 1.2899999e-05 1e-6 319 228 3.879999e-05 1e-6 320 228 2.5899993e-05 1e-6 321 228 5.1799987e-05 1e-6 324 228 3.879999e-05 1e-6 325 228 0.00075039989 1e-6 326 228 0.0018113998 1e-6 340 228 3.879999e-05 1e-6 349 228 0.00019409999 1e-6 350 228 0.00075039989 1e-6 354 228 3.879999e-05 1e-6 356 228 0.00014229999 1e-6 358 228 0.00036229985 1e-6 366 228 2.5899993e-05 1e-6 372 228 1.2899999e-05 1e-6 375 228 2.5899993e-05 1e-6 380 228 3.879999e-05 1e-6 384 228 6.4699998e-05 1e-6 387 228 0.00019409999 1e-6 391 228 3.879999e-05 1e-6 393 228 6.4699998e-05 1e-6 394 228 1.2899999e-05 1e-6 396 228 3.879999e-05 1e-6 397 228 1.2899999e-05 1e-6 402 228 3.879999e-05 1e-6 414 228 0.00016819999 1e-6 416 228 0.0016689999 1e-6 417 228 0.0001811 1e-6 419 228 3.879999e-05 1e-6 421 228 2.5899993e-05 1e-6 422 228 0.00015529999 1e-6 423 228 5.1799987e-05 1e-6 425 228 3.879999e-05 1e-6 430 228 0.0001164 1e-6 431 228 3.879999e-05 1e-6 432 228 1.2899999e-05 1e-6 433 228 3.879999e-05 1e-6 434 228 5.1799987e-05 1e-6 438 228 1.2899999e-05 1e-6 442 228 1.2899999e-05 1e-6 443 228 0.0034544999 1e-6 444 228 0.0014231999 1e-6 445 228 0.0054340996 1e-6 446 228 0.00080219982 1e-6 447 228 0.0030663998 1e-6 448 228 3.879999e-05 1e-6 449 228 3.879999e-05 1e-6 450 228 0.0056410991 1e-6 452 228 0.0049941987 1e-6 453 228 0.0017336998 1e-6 454 228 0.0012549998 1e-6 455 228 0.023469999 1e-6 456 228 0.0017207998 1e-6 457 228 0.0041013993 1e-6 458 228 0.0010091998 1e-6 459 228 0.0022123998 1e-6 460 228 0.001462 1e-6 463 228 0.026730496 1e-6 464 228 0.0015137999 1e-6 465 228 0.0081381984 1e-6 467 228 0.0363307 1e-6 468 228 0.099805892 1e-6 469 228 0.022486698 1e-6 470 228 0.023172498 1e-6 471 228 0.0022382999 1e-6 472 228 0.00024579978 1e-6 473 228 0.00050459988 1e-6 477 228 0.0023806 1e-6 478 228 0.0038426998 1e-6 479 228 1.2899999e-05 1e-6 483 228 0.0020183998 1e-6 489 228 0.00014229999 1e-6 490 228 0.0082028992 1e-6 491 228 0.0014878998 1e-6 3 229 0.0001026 1e-6 6 229 0.00017089999 1e-6 9 229 3.4199998e-05 1e-6 13 229 6.8399997e-05 1e-6 14 229 3.4199998e-05 1e-6 17 229 0.0001026 1e-6 18 229 0.00078629982 1e-6 19 229 3.4199998e-05 1e-6 21 229 0.00027349987 1e-6 22 229 0.00047859992 1e-6 23 229 0.0001026 1e-6 24 229 0.00044439989 1e-6 25 229 0.00017089999 1e-6 60 229 0.0020853998 1e-6 82 229 0.00017089999 1e-6 83 229 3.4199998e-05 1e-6 84 229 3.4199998e-05 1e-6 104 229 0.0003076999 1e-6 107 229 0.00068369997 1e-6 108 229 3.4199998e-05 1e-6 113 229 6.8399997e-05 1e-6 114 229 0.0001026 1e-6 117 229 6.8399997e-05 1e-6 118 229 0.00051279995 1e-6 119 229 0.0069398992 1e-6 120 229 0.017640397 1e-6 122 229 0.00017089999 1e-6 126 229 3.4199998e-05 1e-6 130 229 0.00071789999 1e-6 131 229 3.4199998e-05 1e-6 132 229 0.0001026 1e-6 137 229 6.8399997e-05 1e-6 138 229 3.4199998e-05 1e-6 139 229 3.4199998e-05 1e-6 142 229 6.8399997e-05 1e-6 143 229 0.00023929999 1e-6 149 229 6.8399997e-05 1e-6 151 229 0.00051279995 1e-6 152 229 3.4199998e-05 1e-6 157 229 3.4199998e-05 1e-6 158 229 6.8399997e-05 1e-6 160 229 6.8399997e-05 1e-6 186 229 3.4199998e-05 1e-6 187 229 3.4199998e-05 1e-6 189 229 6.8399997e-05 1e-6 190 229 3.4199998e-05 1e-6 192 229 0.0031794 1e-6 193 229 0.005914297 1e-6 194 229 0.0001026 1e-6 197 229 3.4199998e-05 1e-6 198 229 0.036067098 1e-6 200 229 3.4199998e-05 1e-6 202 229 0.00085469987 1e-6 203 229 6.8399997e-05 1e-6 204 229 0.0076236986 1e-6 206 229 0.00034189993 1e-6 207 229 3.4199998e-05 1e-6 214 229 0.10997909 1e-6 215 229 0.00013669999 1e-6 218 229 0.0010255999 1e-6 223 229 0.0044100992 1e-6 224 229 0.0018461 1e-6 228 229 0.00013669999 1e-6 229 229 0.0029400999 1e-6 230 229 0.00095719984 1e-6 231 229 0.039656799 1e-6 232 229 0.015110597 1e-6 233 229 0.00051279995 1e-6 234 229 0.0049912967 1e-6 237 229 6.8399997e-05 1e-6 240 229 6.8399997e-05 1e-6 241 229 0.057092097 1e-6 252 229 0.00068369997 1e-6 253 229 0.0031452 1e-6 260 229 6.8399997e-05 1e-6 261 229 3.4199998e-05 1e-6 267 229 3.4199998e-05 1e-6 270 229 0.0021537999 1e-6 273 229 3.4199998e-05 1e-6 277 229 0.00013669999 1e-6 285 229 3.4199998e-05 1e-6 287 229 0.00017089999 1e-6 288 229 3.4199998e-05 1e-6 289 229 0.00027349987 1e-6 290 229 0.0001026 1e-6 294 229 3.4199998e-05 1e-6 300 229 0.014392696 1e-6 301 229 0.0030083999 1e-6 314 229 0.0006153998 1e-6 315 229 0.00047859992 1e-6 316 229 0.00027349987 1e-6 324 229 0.0008888999 1e-6 325 229 0.0030767999 1e-6 326 229 0.00034189993 1e-6 349 229 0.00020509999 1e-6 350 229 0.0017434999 1e-6 356 229 0.00017089999 1e-6 358 229 0.0003076999 1e-6 366 229 3.4199998e-05 1e-6 384 229 3.4199998e-05 1e-6 387 229 3.4199998e-05 1e-6 402 229 3.4199998e-05 1e-6 404 229 6.8399997e-05 1e-6 414 229 0.00054699997 1e-6 417 229 0.0001026 1e-6 422 229 0.0001026 1e-6 423 229 3.4199998e-05 1e-6 425 229 0.00037609995 1e-6 426 229 0.00027349987 1e-6 428 229 0.00058119977 1e-6 430 229 3.4199998e-05 1e-6 431 229 0.00085469987 1e-6 433 229 3.4199998e-05 1e-6 434 229 3.4199998e-05 1e-6 443 229 0.0116577 1e-6 444 229 0.0035895999 1e-6 445 229 0.0094697997 1e-6 446 229 0.0030767999 1e-6 447 229 0.0133329 1e-6 448 229 3.4199998e-05 1e-6 450 229 0.0026323998 1e-6 452 229 0.0038973 1e-6 453 229 0.0030083999 1e-6 454 229 0.002017 1e-6 455 229 0.034460399 1e-6 456 229 0.00020509999 1e-6 457 229 0.0024614998 1e-6 458 229 0.00034189993 1e-6 459 229 0.0006153998 1e-6 460 229 0.0014699998 1e-6 463 229 0.026460599 1e-6 464 229 0.0031109999 1e-6 465 229 0.0047519989 1e-6 467 229 0.011623498 1e-6 468 229 0.12539738 1e-6 469 229 0.0088201985 1e-6 470 229 0.004717797 1e-6 471 229 0.00064959982 1e-6 472 229 3.4199998e-05 1e-6 473 229 0.0001026 1e-6 477 229 0.0011282 1e-6 478 229 0.00041019986 1e-6 483 229 0.0016067999 1e-6 489 229 0.00013669999 1e-6 490 229 0.0017776999 1e-6 491 229 0.00037609995 1e-6 3 230 0.0021062 1e-6 5 230 0.00073999981 1e-6 6 230 0.0059201978 1e-6 9 230 5.6899997e-05 1e-6 11 230 5.6899997e-05 1e-6 13 230 5.6899997e-05 1e-6 18 230 0.00017079999 1e-6 19 230 5.6899997e-05 1e-6 21 230 0.00017079999 1e-6 22 230 0.00022769999 1e-6 23 230 5.6899997e-05 1e-6 24 230 0.0052370988 1e-6 25 230 0.00028459984 1e-6 60 230 0.0015369998 1e-6 82 230 0.00011379999 1e-6 83 230 5.6899997e-05 1e-6 84 230 5.6899997e-05 1e-6 85 230 5.6899997e-05 1e-6 98 230 5.6899997e-05 1e-6 102 230 0.00022769999 1e-6 104 230 0.00022769999 1e-6 107 230 0.00011379999 1e-6 108 230 5.6899997e-05 1e-6 113 230 0.00011379999 1e-6 114 230 0.00017079999 1e-6 118 230 0.00017079999 1e-6 119 230 0.0017646998 1e-6 120 230 0.0025615999 1e-6 122 230 0.00022769999 1e-6 125 230 5.6899997e-05 1e-6 126 230 5.6899997e-05 1e-6 130 230 0.0009676998 1e-6 132 230 0.00011379999 1e-6 137 230 5.6899997e-05 1e-6 138 230 5.6899997e-05 1e-6 139 230 5.6899997e-05 1e-6 142 230 0.00017079999 1e-6 149 230 5.6899997e-05 1e-6 151 230 5.6899997e-05 1e-6 152 230 5.6899997e-05 1e-6 157 230 5.6899997e-05 1e-6 160 230 0.0011384999 1e-6 186 230 0.00011379999 1e-6 187 230 0.0010245999 1e-6 189 230 5.6899997e-05 1e-6 190 230 5.6899997e-05 1e-6 191 230 5.6899997e-05 1e-6 192 230 0.004440099 1e-6 193 230 0.0019353998 1e-6 194 230 0.00011379999 1e-6 198 230 0.023282297 1e-6 200 230 5.6899997e-05 1e-6 202 230 0.00011379999 1e-6 203 230 5.6899997e-05 1e-6 204 230 0.0042693987 1e-6 206 230 0.00022769999 1e-6 207 230 5.6899997e-05 1e-6 214 230 0.080890298 1e-6 215 230 0.00028459984 1e-6 217 230 5.6899997e-05 1e-6 218 230 0.00022769999 1e-6 223 230 0.010815699 1e-6 224 230 0.0048954971 1e-6 226 230 5.6899997e-05 1e-6 227 230 5.6899997e-05 1e-6 228 230 0.00028459984 1e-6 229 230 0.00051229983 1e-6 230 230 0.020720698 1e-6 231 230 0.019126799 1e-6 232 230 0.0085956976 1e-6 233 230 0.0086525977 1e-6 234 230 0.0055216998 1e-6 237 230 0.00011379999 1e-6 240 230 5.6899997e-05 1e-6 241 230 0.060226597 1e-6 242 230 0.00011379999 1e-6 252 230 0.00039849989 1e-6 253 230 0.0078555979 1e-6 270 230 0.00022769999 1e-6 277 230 0.00056919991 1e-6 282 230 0.00017079999 1e-6 285 230 5.6899997e-05 1e-6 287 230 0.00011379999 1e-6 290 230 0.00011379999 1e-6 293 230 5.6899997e-05 1e-6 294 230 5.6899997e-05 1e-6 295 230 0.00017079999 1e-6 296 230 0.00011379999 1e-6 300 230 0.06330049 1e-6 301 230 0.0033586 1e-6 307 230 5.6899997e-05 1e-6 312 230 5.6899997e-05 1e-6 314 230 0.0046677999 1e-6 315 230 0.0096202977 1e-6 319 230 5.6899997e-05 1e-6 322 230 5.6899997e-05 1e-6 324 230 0.0031309 1e-6 325 230 0.00034149992 1e-6 326 230 0.0038139999 1e-6 349 230 0.00022769999 1e-6 350 230 0.00028459984 1e-6 352 230 5.6899997e-05 1e-6 356 230 0.00017079999 1e-6 358 230 0.00045539998 1e-6 368 230 5.6899997e-05 1e-6 371 230 5.6899997e-05 1e-6 372 230 0.00017079999 1e-6 386 230 0.00011379999 1e-6 387 230 5.6899997e-05 1e-6 398 230 5.6899997e-05 1e-6 402 230 5.6899997e-05 1e-6 414 230 5.6899997e-05 1e-6 417 230 0.00011379999 1e-6 421 230 0.00011379999 1e-6 422 230 5.6899997e-05 1e-6 423 230 5.6899997e-05 1e-6 425 230 5.6899997e-05 1e-6 426 230 5.6899997e-05 1e-6 428 230 5.6899997e-05 1e-6 430 230 5.6899997e-05 1e-6 431 230 0.00017079999 1e-6 433 230 5.6899997e-05 1e-6 434 230 5.6899997e-05 1e-6 438 230 5.6899997e-05 1e-6 441 230 5.6899997e-05 1e-6 443 230 0.012466598 1e-6 444 230 0.0024477998 1e-6 445 230 0.011897299 1e-6 446 230 0.0021630998 1e-6 447 230 0.0043831989 1e-6 448 230 5.6899997e-05 1e-6 450 230 0.0027892999 1e-6 452 230 0.0042693987 1e-6 453 230 0.0026184998 1e-6 454 230 0.00085389987 1e-6 455 230 0.035236496 1e-6 456 230 0.00022769999 1e-6 457 230 0.0022769999 1e-6 458 230 0.00045539998 1e-6 459 230 0.00056919991 1e-6 460 230 0.0012522999 1e-6 463 230 0.059828099 1e-6 464 230 0.0014799999 1e-6 465 230 0.0039846972 1e-6 467 230 0.019752897 1e-6 468 230 0.11686689 1e-6 469 230 0.0059770979 1e-6 470 230 0.0056924969 1e-6 471 230 0.00062619988 1e-6 472 230 0.00051229983 1e-6 473 230 0.00011379999 1e-6 477 230 0.00062619988 1e-6 478 230 0.00062619988 1e-6 483 230 0.0012522999 1e-6 489 230 0.00011379999 1e-6 490 230 0.0020492999 1e-6 491 230 0.00034149992 1e-6 13 231 0.0003382999 1e-6 17 231 0.00016909999 1e-6 19 231 0.00050739991 1e-6 21 231 0.0018606 1e-6 22 231 0.0011839999 1e-6 23 231 0.025372099 1e-6 24 231 0.0015222998 1e-6 25 231 0.0020297999 1e-6 60 231 0.0049052984 1e-6 82 231 0.0035520999 1e-6 88 231 0.0006765998 1e-6 98 231 0.00016909999 1e-6 104 231 0.0003382999 1e-6 108 231 0.00016909999 1e-6 114 231 0.0003382999 1e-6 117 231 0.00016909999 1e-6 118 231 0.0037211999 1e-6 119 231 0.019790299 1e-6 120 231 0.0087956972 1e-6 122 231 0.0006765998 1e-6 126 231 0.00016909999 1e-6 130 231 0.00016909999 1e-6 159 231 0.00016909999 1e-6 160 231 0.00016909999 1e-6 186 231 0.0008456998 1e-6 192 231 0.00050739991 1e-6 193 231 0.0015222998 1e-6 194 231 0.00016909999 1e-6 198 231 0.015223298 1e-6 204 231 0.012347799 1e-6 206 231 0.00050739991 1e-6 214 231 0.14918804 1e-6 215 231 0.0010148999 1e-6 217 231 0.00050739991 1e-6 218 231 0.0013531998 1e-6 219 231 0.00016909999 1e-6 223 231 0.0529432 1e-6 224 231 0.0023681 1e-6 225 231 0.0008456998 1e-6 228 231 0.0003382999 1e-6 229 231 0.011332899 1e-6 230 231 0.00016909999 1e-6 231 231 0.0018606 1e-6 232 231 0.0006765998 1e-6 233 231 0.00050739991 1e-6 234 231 0.061400499 1e-6 240 231 0.00016909999 1e-6 241 231 0.027401898 1e-6 252 231 0.0003382999 1e-6 253 231 0.00016909999 1e-6 267 231 0.0003382999 1e-6 277 231 0.0013531998 1e-6 285 231 0.00050739991 1e-6 287 231 0.0015222998 1e-6 288 231 0.0003382999 1e-6 290 231 0.0006765998 1e-6 294 231 0.00016909999 1e-6 300 231 0.020466797 1e-6 301 231 0.019621097 1e-6 324 231 0.0003382999 1e-6 325 231 0.00016909999 1e-6 326 231 0.00016909999 1e-6 349 231 0.0023681 1e-6 350 231 0.0010148999 1e-6 356 231 0.00050739991 1e-6 358 231 0.00050739991 1e-6 366 231 0.00016909999 1e-6 375 231 0.00016909999 1e-6 387 231 0.00016909999 1e-6 414 231 0.00016909999 1e-6 417 231 0.00016909999 1e-6 443 231 0.0145467 1e-6 444 231 0.0011839999 1e-6 445 231 0.014884997 1e-6 446 231 0.0049052984 1e-6 447 231 0.0035520999 1e-6 448 231 0.0027063999 1e-6 450 231 0.0033828998 1e-6 452 231 0.010994598 1e-6 453 231 0.0091339983 1e-6 454 231 0.0016915 1e-6 455 231 0.038565598 1e-6 456 231 0.00016909999 1e-6 457 231 0.0028754999 1e-6 458 231 0.0003382999 1e-6 459 231 0.0010148999 1e-6 460 231 0.0013531998 1e-6 463 231 0.018606197 1e-6 464 231 0.0011839999 1e-6 465 231 0.0010148999 1e-6 467 231 0.0121786 1e-6 468 231 0.032137997 1e-6 469 231 0.0071041994 1e-6 470 231 0.0069349967 1e-6 471 231 0.0010148999 1e-6 473 231 0.00016909999 1e-6 477 231 0.0003382999 1e-6 478 231 0.00050739991 1e-6 483 231 0.0016915 1e-6 489 231 0.00050739991 1e-6 490 231 0.0013531998 1e-6 491 231 0.0013531998 1e-6 3 232 2.3399989e-05 1e-6 6 232 9.3399998e-05 1e-6 9 232 2.3399989e-05 1e-6 10 232 0.00011679999 1e-6 13 232 4.6699992e-05 1e-6 14 232 4.6699992e-05 1e-6 17 232 0.00030359998 1e-6 18 232 0.00011679999 1e-6 19 232 2.3399989e-05 1e-6 21 232 4.6699992e-05 1e-6 22 232 0.00016349999 1e-6 23 232 0.00037369994 1e-6 24 232 0.00014009999 1e-6 25 232 4.6699992e-05 1e-6 60 232 0.0019150998 1e-6 82 232 0.00030359998 1e-6 83 232 2.3399989e-05 1e-6 84 232 2.3399989e-05 1e-6 85 232 2.3399989e-05 1e-6 88 232 2.3399989e-05 1e-6 93 232 4.6699992e-05 1e-6 102 232 0.00016349999 1e-6 104 232 0.00011679999 1e-6 107 232 0.00091089983 1e-6 108 232 0.0001868 1e-6 109 232 9.3399998e-05 1e-6 113 232 7.0099995e-05 1e-6 114 232 9.3399998e-05 1e-6 115 232 2.3399989e-05 1e-6 116 232 0.00030359998 1e-6 117 232 2.3399989e-05 1e-6 118 232 2.3399989e-05 1e-6 119 232 0.0009341999 1e-6 120 232 0.0034098998 1e-6 125 232 2.3399989e-05 1e-6 126 232 7.0099995e-05 1e-6 127 232 2.3399989e-05 1e-6 130 232 0.00028029992 1e-6 131 232 0.0002102 1e-6 133 232 2.3399989e-05 1e-6 135 232 2.3399989e-05 1e-6 138 232 0.00014009999 1e-6 139 232 7.0099995e-05 1e-6 142 232 0.00014009999 1e-6 149 232 2.3399989e-05 1e-6 151 232 4.6699992e-05 1e-6 158 232 0.0009341999 1e-6 160 232 4.6699992e-05 1e-6 186 232 2.3399989e-05 1e-6 187 232 0.0021954 1e-6 188 232 4.6699992e-05 1e-6 189 232 4.6699992e-05 1e-6 190 232 4.6699992e-05 1e-6 192 232 0.0024522999 1e-6 193 232 0.00046709995 1e-6 194 232 0.00011679999 1e-6 197 232 2.3399989e-05 1e-6 198 232 0.033070996 1e-6 200 232 4.6699992e-05 1e-6 202 232 4.6699992e-05 1e-6 203 232 4.6699992e-05 1e-6 204 232 0.00058389991 1e-6 206 232 0.00051379995 1e-6 207 232 4.6699992e-05 1e-6 209 232 2.3399989e-05 1e-6 214 232 0.036364097 1e-6 215 232 2.3399989e-05 1e-6 217 232 0.00011679999 1e-6 218 232 7.0099995e-05 1e-6 223 232 0.007964097 1e-6 224 232 0.0009808999 1e-6 228 232 0.0036201 1e-6 229 232 0.0023355 1e-6 230 232 0.00028029992 1e-6 231 232 0.0074736997 1e-6 232 232 0.024733197 1e-6 233 232 0.00065389997 1e-6 234 232 0.0033397998 1e-6 237 232 9.3399998e-05 1e-6 240 232 0.0002102 1e-6 241 232 0.061050497 1e-6 242 232 2.3399989e-05 1e-6 248 232 2.3399989e-05 1e-6 250 232 9.3399998e-05 1e-6 252 232 0.00088749989 1e-6 253 232 0.026204497 1e-6 270 232 0.00011679999 1e-6 271 232 7.0099995e-05 1e-6 273 232 0.00074739987 1e-6 276 232 4.6699992e-05 1e-6 277 232 0.00030359998 1e-6 282 232 4.6699992e-05 1e-6 285 232 2.3399989e-05 1e-6 287 232 4.6699992e-05 1e-6 290 232 0.0012844999 1e-6 293 232 7.0099995e-05 1e-6 294 232 0.00037369994 1e-6 296 232 2.3399989e-05 1e-6 300 232 0.036340699 1e-6 301 232 0.00028029992 1e-6 312 232 0.0001868 1e-6 314 232 0.0039936975 1e-6 315 232 0.0019385 1e-6 319 232 2.3399989e-05 1e-6 320 232 2.3399989e-05 1e-6 324 232 0.0010742999 1e-6 325 232 0.0009341999 1e-6 326 232 0.0096456967 1e-6 340 232 0.00056049996 1e-6 349 232 7.0099995e-05 1e-6 350 232 0.00014009999 1e-6 356 232 0.00011679999 1e-6 358 232 0.00037369994 1e-6 372 232 2.3399989e-05 1e-6 384 232 2.3399989e-05 1e-6 387 232 7.0099995e-05 1e-6 393 232 0.00011679999 1e-6 402 232 2.3399989e-05 1e-6 414 232 0.00063059991 1e-6 416 232 0.00025689998 1e-6 417 232 0.00028029992 1e-6 419 232 4.6699992e-05 1e-6 421 232 4.6699992e-05 1e-6 422 232 9.3399998e-05 1e-6 423 232 7.0099995e-05 1e-6 424 232 0.00072399992 1e-6 425 232 4.6699992e-05 1e-6 426 232 2.3399989e-05 1e-6 428 232 2.3399989e-05 1e-6 430 232 2.3399989e-05 1e-6 431 232 7.0099995e-05 1e-6 432 232 2.3399989e-05 1e-6 433 232 2.3399989e-05 1e-6 434 232 4.6699992e-05 1e-6 438 232 0.0005371999 1e-6 441 232 2.3399989e-05 1e-6 442 232 2.3399989e-05 1e-6 443 232 0.0034098998 1e-6 444 232 0.0037602 1e-6 445 232 0.0071699992 1e-6 446 232 0.00074739987 1e-6 447 232 0.0159049 1e-6 448 232 4.6699992e-05 1e-6 450 232 0.0027325999 1e-6 452 232 0.0025223999 1e-6 453 232 0.00065389997 1e-6 454 232 0.00067729992 1e-6 455 232 0.0275358 1e-6 456 232 0.00035029999 1e-6 457 232 0.0024522999 1e-6 458 232 0.00042039994 1e-6 459 232 0.00060719997 1e-6 460 232 0.0014479998 1e-6 463 232 0.023401897 1e-6 464 232 0.0024756999 1e-6 465 232 0.011140399 1e-6 467 232 0.032300297 1e-6 468 232 0.20006067 1e-6 469 232 0.010673299 1e-6 470 232 0.006235797 1e-6 471 232 0.00079409988 1e-6 472 232 2.3399989e-05 1e-6 473 232 0.00011679999 1e-6 477 232 0.00063059991 1e-6 478 232 0.00074739987 1e-6 479 232 2.3399989e-05 1e-6 483 232 0.0015180998 1e-6 489 232 2.3399989e-05 1e-6 490 232 0.0009808999 1e-6 491 232 0.00042039994 1e-6 9 233 2.8099996e-05 1e-6 13 233 2.8099996e-05 1e-6 14 233 0.0054736994 1e-6 16 233 2.8099996e-05 1e-6 17 233 0.0037052999 1e-6 18 233 8.4199986e-05 1e-6 19 233 0.00047719991 1e-6 21 233 0.0019929998 1e-6 22 233 8.4199986e-05 1e-6 23 233 0.0012069999 1e-6 24 233 0.0024981999 1e-6 25 233 5.6099991e-05 1e-6 60 233 0.0028350998 1e-6 79 233 2.8099996e-05 1e-6 82 233 0.0001123 1e-6 83 233 2.8099996e-05 1e-6 84 233 2.8099996e-05 1e-6 104 233 2.8099996e-05 1e-6 108 233 2.8099996e-05 1e-6 113 233 8.4199986e-05 1e-6 114 233 0.00014039999 1e-6 118 233 0.015101798 1e-6 119 233 0.0069052987 1e-6 120 233 0.00022459999 1e-6 126 233 8.4199986e-05 1e-6 127 233 2.8099996e-05 1e-6 130 233 2.8099996e-05 1e-6 135 233 2.8099996e-05 1e-6 150 233 2.8099996e-05 1e-6 151 233 2.8099996e-05 1e-6 159 233 0.0001123 1e-6 160 233 0.00016839999 1e-6 169 233 2.8099996e-05 1e-6 187 233 0.00053329999 1e-6 188 233 0.00022459999 1e-6 189 233 0.00014039999 1e-6 190 233 5.6099991e-05 1e-6 191 233 0.0001123 1e-6 192 233 0.00014039999 1e-6 193 233 0.0012631998 1e-6 194 233 0.0001123 1e-6 196 233 2.8099996e-05 1e-6 197 233 2.8099996e-05 1e-6 198 233 0.0085052997 1e-6 200 233 5.6099991e-05 1e-6 201 233 5.6099991e-05 1e-6 203 233 8.4199986e-05 1e-6 204 233 0.0064841993 1e-6 206 233 0.00047719991 1e-6 207 233 5.6099991e-05 1e-6 208 233 0.0011788998 1e-6 209 233 2.8099996e-05 1e-6 214 233 0.19489115 1e-6 215 233 2.8099996e-05 1e-6 218 233 0.0030315998 1e-6 219 233 5.6099991e-05 1e-6 222 233 0.0012631998 1e-6 223 233 0.0058385991 1e-6 224 233 0.087663174 1e-6 225 233 0.0023578999 1e-6 226 233 0.00016839999 1e-6 227 233 0.0029473999 1e-6 229 233 0.0016841998 1e-6 230 233 8.4199986e-05 1e-6 231 233 0.00064559979 1e-6 232 233 8.4199986e-05 1e-6 233 233 0.0099648982 1e-6 234 233 0.014877196 1e-6 237 233 0.0001965 1e-6 240 233 8.4199986e-05 1e-6 241 233 0.0028350998 1e-6 242 233 2.8099996e-05 1e-6 248 233 2.8099996e-05 1e-6 250 233 2.8099996e-05 1e-6 252 233 0.00078599993 1e-6 253 233 0.00030879979 1e-6 266 233 2.8099996e-05 1e-6 267 233 2.8099996e-05 1e-6 273 233 0.0052210987 1e-6 277 233 0.00022459999 1e-6 284 233 5.6099991e-05 1e-6 285 233 0.0013754 1e-6 287 233 0.0067648999 1e-6 288 233 0.0013754 1e-6 289 233 8.4199986e-05 1e-6 290 233 0.0025825 1e-6 293 233 0.00016839999 1e-6 300 233 0.045192998 1e-6 301 233 0.0104982 1e-6 314 233 2.8099996e-05 1e-6 315 233 0.00039299997 1e-6 319 233 5.6099991e-05 1e-6 322 233 2.8099996e-05 1e-6 324 233 0.00056139985 1e-6 326 233 0.0030595998 1e-6 332 233 2.8099996e-05 1e-6 349 233 5.6099991e-05 1e-6 350 233 8.4199986e-05 1e-6 356 233 5.6099991e-05 1e-6 358 233 0.00022459999 1e-6 384 233 5.6099991e-05 1e-6 387 233 5.6099991e-05 1e-6 402 233 5.6099991e-05 1e-6 414 233 0.00025259983 1e-6 417 233 0.00014039999 1e-6 419 233 2.8099996e-05 1e-6 421 233 5.6099991e-05 1e-6 422 233 0.0001123 1e-6 423 233 2.8099996e-05 1e-6 425 233 2.8099996e-05 1e-6 430 233 2.8099996e-05 1e-6 431 233 2.8099996e-05 1e-6 432 233 2.8099996e-05 1e-6 433 233 5.6099991e-05 1e-6 434 233 5.6099991e-05 1e-6 442 233 0.0018806998 1e-6 443 233 0.010806996 1e-6 444 233 0.0028350998 1e-6 445 233 0.011059597 1e-6 446 233 0.0019929998 1e-6 447 233 0.010919299 1e-6 448 233 8.4199986e-05 1e-6 450 233 0.0054174997 1e-6 452 233 0.0045473985 1e-6 453 233 0.0019648999 1e-6 454 233 0.00053329999 1e-6 455 233 0.033459596 1e-6 456 233 0.00047719991 1e-6 457 233 0.0031999999 1e-6 458 233 0.00039299997 1e-6 459 233 0.00039299997 1e-6 460 233 0.0014876998 1e-6 463 233 0.029585999 1e-6 464 233 0.0020772 1e-6 465 233 0.0066525973 1e-6 467 233 0.0118737 1e-6 468 233 0.0168982 1e-6 469 233 0.0056701973 1e-6 470 233 0.007719297 1e-6 471 233 0.0021052998 1e-6 473 233 0.00014039999 1e-6 477 233 0.00042109983 1e-6 478 233 0.00084209978 1e-6 483 233 0.0018245999 1e-6 489 233 2.8099996e-05 1e-6 490 233 0.0019087999 1e-6 491 233 0.00047719991 1e-6 9 234 1.0399999e-05 1e-6 16 234 3.4999994e-06 1e-6 18 234 4.1599997e-05 1e-6 19 234 3.4999994e-06 1e-6 21 234 2.0799998e-05 1e-6 22 234 0.00087069999 1e-6 23 234 0.49135369 1e-6 24 234 1.0399999e-05 1e-6 25 234 2.4299996e-05 1e-6 60 234 0.017792199 1e-6 66 234 3.4999994e-06 1e-6 74 234 0.0010753998 1e-6 79 234 3.4999994e-06 1e-6 82 234 0.0001145 1e-6 83 234 6.8999998e-06 1e-6 84 234 6.8999998e-06 1e-6 104 234 3.4999994e-06 1e-6 108 234 1.0399999e-05 1e-6 113 234 2.0799998e-05 1e-6 114 234 5.1999989e-05 1e-6 117 234 0.00012839999 1e-6 118 234 0.0002081 1e-6 119 234 0.0001908 1e-6 120 234 0.00039199996 1e-6 122 234 2.0799998e-05 1e-6 126 234 2.0799998e-05 1e-6 127 234 3.4999994e-06 1e-6 135 234 3.4999994e-06 1e-6 150 234 5.8999998e-05 1e-6 151 234 3.4999994e-06 1e-6 160 234 3.4699988e-05 1e-6 186 234 3.4999994e-06 1e-6 189 234 4.1599997e-05 1e-6 190 234 1.3899999e-05 1e-6 191 234 4.1599997e-05 1e-6 192 234 2.4299996e-05 1e-6 194 234 1.3899999e-05 1e-6 196 234 3.4999994e-06 1e-6 197 234 3.4999994e-06 1e-6 198 234 0.0029451 1e-6 200 234 1.3899999e-05 1e-6 201 234 1.0399999e-05 1e-6 203 234 1.0399999e-05 1e-6 204 234 2.4299996e-05 1e-6 206 234 1.3899999e-05 1e-6 207 234 1.0399999e-05 1e-6 209 234 1.7299986e-05 1e-6 214 234 0.023873199 1e-6 215 234 6.8999998e-06 1e-6 218 234 4.5099994e-05 1e-6 223 234 0.0035660998 1e-6 224 234 3.4999994e-06 1e-6 229 234 3.4999994e-06 1e-6 230 234 6.8999998e-06 1e-6 231 234 0.0029936999 1e-6 232 234 3.4999994e-06 1e-6 233 234 2.0799998e-05 1e-6 234 234 0.064313948 1e-6 235 234 6.8999998e-06 1e-6 237 234 9.0199988e-05 1e-6 241 234 0.00074929977 1e-6 242 234 5.1999989e-05 1e-6 248 234 6.8999998e-06 1e-6 250 234 3.4999994e-06 1e-6 251 234 2.0799998e-05 1e-6 252 234 6.939999e-05 1e-6 253 234 1.0399999e-05 1e-6 254 234 3.4999994e-06 1e-6 263 234 3.4999994e-06 1e-6 267 234 0.00010059999 1e-6 272 234 0.00072499993 1e-6 273 234 6.2399995e-05 1e-6 277 234 0.00048909988 1e-6 279 234 6.8999998e-06 1e-6 281 234 6.8999998e-06 1e-6 285 234 3.4999994e-06 1e-6 287 234 1.0399999e-05 1e-6 289 234 3.119999e-05 1e-6 290 234 0.0015262999 1e-6 294 234 6.8999998e-06 1e-6 300 234 0.0038053999 1e-6 301 234 0.0047523975 1e-6 307 234 2.7799993e-05 1e-6 315 234 3.4999994e-06 1e-6 317 234 3.4999994e-06 1e-6 319 234 6.8999998e-06 1e-6 324 234 0.0002462999 1e-6 326 234 0.0014118999 1e-6 328 234 7.2799987e-05 1e-6 331 234 1.7299986e-05 1e-6 333 234 0.00017689999 1e-6 334 234 6.8999998e-06 1e-6 337 234 3.4999994e-06 1e-6 340 234 1.0399999e-05 1e-6 349 234 1.3899999e-05 1e-6 350 234 0.0010302998 1e-6 351 234 0.00029139989 1e-6 354 234 3.119999e-05 1e-6 356 234 0.00017689999 1e-6 358 234 0.00031909999 1e-6 369 234 6.8999998e-06 1e-6 370 234 1.3899999e-05 1e-6 372 234 0.00014919999 1e-6 374 234 2.7799993e-05 1e-6 380 234 3.4999994e-06 1e-6 384 234 7.9799996e-05 1e-6 385 234 6.8999998e-06 1e-6 386 234 3.4999994e-06 1e-6 387 234 2.0799998e-05 1e-6 390 234 3.4999994e-06 1e-6 394 234 6.8999998e-06 1e-6 397 234 6.8999998e-06 1e-6 402 234 4.1599997e-05 1e-6 404 234 1.7299986e-05 1e-6 414 234 0.00042319996 1e-6 417 234 3.4699988e-05 1e-6 419 234 3.4999994e-06 1e-6 421 234 1.7299986e-05 1e-6 422 234 2.7799993e-05 1e-6 423 234 3.4999994e-06 1e-6 425 234 3.4999994e-06 1e-6 430 234 1.0399999e-05 1e-6 431 234 6.8999998e-06 1e-6 432 234 3.4999994e-06 1e-6 433 234 6.8999998e-06 1e-6 434 234 6.8999998e-06 1e-6 441 234 8.6699991e-05 1e-6 442 234 6.8999998e-06 1e-6 443 234 0.0035903 1e-6 444 234 7.6299999e-05 1e-6 445 234 0.0046101995 1e-6 446 234 0.0086861998 1e-6 447 234 0.0020015999 1e-6 448 234 0.033485599 1e-6 449 234 3.4999994e-06 1e-6 450 234 0.0018177 1e-6 452 234 0.0066880994 1e-6 453 234 0.012245297 1e-6 454 234 0.0013979999 1e-6 455 234 0.0072083995 1e-6 456 234 0.0002462999 1e-6 457 234 0.0045477971 1e-6 458 234 0.00017689999 1e-6 459 234 0.00058619981 1e-6 460 234 0.0011377998 1e-6 463 234 0.013358898 1e-6 464 234 9.3699986e-05 1e-6 465 234 0.00017689999 1e-6 467 234 0.0081554987 1e-6 468 234 0.0116001 1e-6 469 234 0.0021402999 1e-6 470 234 0.0023067999 1e-6 471 234 0.00060359994 1e-6 472 234 6.5899992e-05 1e-6 473 234 4.8599992e-05 1e-6 477 234 0.0001318 1e-6 478 234 0.0001943 1e-6 483 234 0.00077009993 1e-6 489 234 0.00041279988 1e-6 490 234 0.00018389999 1e-6 18 235 0.00021619999 1e-6 22 235 0.0057284981 1e-6 23 235 0.00043229992 1e-6 24 235 0.085170746 1e-6 25 235 0.00010809999 1e-6 60 235 0.0023778998 1e-6 114 235 0.00010809999 1e-6 126 235 0.00010809999 1e-6 135 235 0.00010809999 1e-6 160 235 0.00010809999 1e-6 171 235 0.0048637986 1e-6 191 235 0.00097279996 1e-6 192 235 0.0064850971 1e-6 193 235 0.00021619999 1e-6 194 235 0.00010809999 1e-6 198 235 0.0033505999 1e-6 203 235 0.00010809999 1e-6 206 235 0.00021619999 1e-6 214 235 0.00043229992 1e-6 215 235 0.00010809999 1e-6 218 235 0.00010809999 1e-6 220 235 0.00043229992 1e-6 223 235 0.00010809999 1e-6 231 235 0.013078298 1e-6 233 235 0.0014050999 1e-6 234 235 0.21379155 1e-6 235 235 0.011565097 1e-6 237 235 0.00086469995 1e-6 241 235 0.020103797 1e-6 242 235 0.00010809999 1e-6 252 235 0.00021619999 1e-6 254 235 0.0073497966 1e-6 264 235 0.00021619999 1e-6 266 235 0.00010809999 1e-6 269 235 0.00021619999 1e-6 272 235 0.0011888999 1e-6 273 235 0.0069173984 1e-6 277 235 0.0016212999 1e-6 279 235 0.00010809999 1e-6 282 235 0.00043229992 1e-6 295 235 0.00010809999 1e-6 300 235 0.0029183 1e-6 301 235 0.0042152964 1e-6 305 235 0.00010809999 1e-6 312 235 0.00010809999 1e-6 317 235 0.00010809999 1e-6 322 235 0.00043229992 1e-6 326 235 0.0036748999 1e-6 328 235 0.00054039992 1e-6 331 235 0.00097279996 1e-6 332 235 0.00086469995 1e-6 335 235 0.00021619999 1e-6 336 235 0.00010809999 1e-6 337 235 0.00010809999 1e-6 340 235 0.00021619999 1e-6 351 235 0.00010809999 1e-6 354 235 0.00010809999 1e-6 356 235 0.00010809999 1e-6 358 235 0.00064849993 1e-6 372 235 0.00010809999 1e-6 402 235 0.00064849993 1e-6 417 235 0.00010809999 1e-6 421 235 0.00021619999 1e-6 422 235 0.00010809999 1e-6 434 235 0.00010809999 1e-6 442 235 0.00010809999 1e-6 443 235 0.011889298 1e-6 444 235 0.0019454998 1e-6 445 235 0.070146978 1e-6 446 235 0.0070254989 1e-6 447 235 0.0033505999 1e-6 448 235 0.00021619999 1e-6 450 235 0.0022697998 1e-6 452 235 0.012105498 1e-6 453 235 0.0088628978 1e-6 454 235 0.00075659994 1e-6 455 235 0.033073898 1e-6 456 235 0.00054039992 1e-6 457 235 0.0030264 1e-6 458 235 0.0014050999 1e-6 459 235 0.00054039992 1e-6 460 235 0.0022697998 1e-6 463 235 0.0155642 1e-6 464 235 0.00054039992 1e-6 465 235 0.00021619999 1e-6 467 235 0.010808498 1e-6 468 235 0.0056203976 1e-6 469 235 0.0021616998 1e-6 470 235 0.0019454998 1e-6 471 235 0.0041071996 1e-6 473 235 0.00010809999 1e-6 477 235 0.00010809999 1e-6 478 235 0.00064849993 1e-6 483 235 0.00064849993 1e-6 489 235 0.00010809999 1e-6 490 235 0.00021619999 1e-6 491 235 0.00021619999 1e-6 18 236 0.0002194 1e-6 22 236 0.0038389999 1e-6 23 236 0.0015355998 1e-6 24 236 0.0085553974 1e-6 25 236 0.00010969999 1e-6 60 236 0.0023033998 1e-6 114 236 0.00010969999 1e-6 117 236 0.0042776987 1e-6 118 236 0.0036195999 1e-6 119 236 0.0037292999 1e-6 126 236 0.00010969999 1e-6 130 236 0.00010969999 1e-6 135 236 0.010749098 1e-6 171 236 0.00010969999 1e-6 189 236 0.00010969999 1e-6 190 236 0.00010969999 1e-6 191 236 0.084347844 1e-6 192 236 0.0039486997 1e-6 194 236 0.00010969999 1e-6 198 236 0.013162199 1e-6 203 236 0.00010969999 1e-6 206 236 0.0002194 1e-6 214 236 0.0063616969 1e-6 218 236 0.00010969999 1e-6 224 236 0.0026323998 1e-6 225 236 0.00010969999 1e-6 231 236 0.0002194 1e-6 233 236 0.0014258998 1e-6 234 236 0.15761757 1e-6 235 236 0.0010968999 1e-6 237 236 0.00065809977 1e-6 241 236 0.0084457994 1e-6 252 236 0.0002194 1e-6 264 236 0.00032909983 1e-6 267 236 0.0019742998 1e-6 269 236 0.0002194 1e-6 272 236 0.00043869996 1e-6 273 236 0.055062 1e-6 277 236 0.0028517998 1e-6 279 236 0.00010969999 1e-6 300 236 0.0043873973 1e-6 301 236 0.0106395 1e-6 315 236 0.00010969999 1e-6 317 236 0.00010969999 1e-6 326 236 0.0002194 1e-6 334 236 0.0002194 1e-6 340 236 0.0002194 1e-6 349 236 0.00010969999 1e-6 356 236 0.00010969999 1e-6 358 236 0.00076779979 1e-6 402 236 0.00032909983 1e-6 417 236 0.00010969999 1e-6 421 236 0.0002194 1e-6 422 236 0.0042776987 1e-6 434 236 0.00010969999 1e-6 443 236 0.040912598 1e-6 444 236 0.0028517998 1e-6 445 236 0.044203099 1e-6 446 236 0.0049357973 1e-6 447 236 0.0031808999 1e-6 448 236 0.0002194 1e-6 450 236 0.0025227999 1e-6 452 236 0.0062520988 1e-6 453 236 0.0084457994 1e-6 454 236 0.0017549999 1e-6 455 236 0.047932398 1e-6 456 236 0.00076779979 1e-6 457 236 0.0029614998 1e-6 458 236 0.0013161998 1e-6 459 236 0.00010969999 1e-6 460 236 0.0018646 1e-6 463 236 0.0065810978 1e-6 464 236 0.00032909983 1e-6 465 236 0.00043869996 1e-6 467 236 0.0086650997 1e-6 468 236 0.0043873973 1e-6 469 236 0.0019742998 1e-6 470 236 0.0020839998 1e-6 471 236 0.0040583983 1e-6 473 236 0.00010969999 1e-6 477 236 0.00010969999 1e-6 478 236 0.00065809977 1e-6 483 236 0.00098719983 1e-6 489 236 0.00010969999 1e-6 490 236 0.0002194 1e-6 491 236 0.00032909983 1e-6 9 237 1.7499988e-05 1e-6 18 237 0.00068069994 1e-6 22 237 0.00078539993 1e-6 24 237 0.0018151999 1e-6 25 237 0.0031241998 1e-6 60 237 0.0055676997 1e-6 79 237 1.7499988e-05 1e-6 82 237 1.7499988e-05 1e-6 83 237 1.7499988e-05 1e-6 84 237 1.7499988e-05 1e-6 108 237 1.7499988e-05 1e-6 113 237 5.2399992e-05 1e-6 114 237 8.7299995e-05 1e-6 126 237 5.2399992e-05 1e-6 127 237 1.7499988e-05 1e-6 130 237 0.0065799989 1e-6 131 237 1.7499988e-05 1e-6 140 237 0.10304558 1e-6 150 237 0.0003839999 1e-6 151 237 0.00034909998 1e-6 160 237 0.00017449999 1e-6 189 237 5.2399992e-05 1e-6 190 237 5.2399992e-05 1e-6 192 237 5.2399992e-05 1e-6 193 237 0.00099489978 1e-6 194 237 6.9799993e-05 1e-6 198 237 0.0011518998 1e-6 200 237 3.4899989e-05 1e-6 201 237 1.7499988e-05 1e-6 203 237 6.9799993e-05 1e-6 204 237 3.4899989e-05 1e-6 206 237 6.9799993e-05 1e-6 207 237 3.4899989e-05 1e-6 214 237 0.030456398 1e-6 222 237 0.022794299 1e-6 223 237 0.0019373 1e-6 224 237 0.0021292998 1e-6 225 237 0.10222524 1e-6 234 237 0.0021467998 1e-6 237 237 0.0002269 1e-6 239 237 0.0060912967 1e-6 240 237 0.0051661991 1e-6 241 237 0.0094772987 1e-6 248 237 1.7499988e-05 1e-6 250 237 1.7499988e-05 1e-6 251 237 1.7499988e-05 1e-6 252 237 0.0001222 1e-6 272 237 0.00094249984 1e-6 277 237 0.010314997 1e-6 282 237 3.4899989e-05 1e-6 284 237 3.4899989e-05 1e-6 288 237 1.7499988e-05 1e-6 312 237 1.7499988e-05 1e-6 315 237 3.4899989e-05 1e-6 319 237 0.00048869988 1e-6 326 237 1.7499988e-05 1e-6 349 237 1.7499988e-05 1e-6 350 237 0.00095989997 1e-6 356 237 0.00024429988 1e-6 358 237 0.00095989997 1e-6 384 237 3.4899989e-05 1e-6 387 237 3.4899989e-05 1e-6 402 237 0.0035430999 1e-6 404 237 6.9799993e-05 1e-6 414 237 0.00047119986 1e-6 417 237 0.00027929991 1e-6 419 237 1.7499988e-05 1e-6 421 237 3.4899989e-05 1e-6 422 237 6.9799993e-05 1e-6 423 237 1.7499988e-05 1e-6 425 237 1.7499988e-05 1e-6 430 237 3.4899989e-05 1e-6 431 237 1.7499988e-05 1e-6 432 237 1.7499988e-05 1e-6 433 237 3.4899989e-05 1e-6 434 237 3.4899989e-05 1e-6 443 237 0.0091979988 1e-6 444 237 0.0014312 1e-6 445 237 0.011938199 1e-6 446 237 0.0023910999 1e-6 447 237 0.0065450966 1e-6 448 237 1.7499988e-05 1e-6 450 237 0.0028275 1e-6 452 237 0.0078191981 1e-6 453 237 0.0026528998 1e-6 454 237 0.0013438999 1e-6 455 237 0.018134199 1e-6 456 237 0.0002617999 1e-6 457 237 0.0046425983 1e-6 458 237 6.9799993e-05 1e-6 459 237 0.0020420998 1e-6 460 237 0.001309 1e-6 463 237 0.0075049996 1e-6 464 237 0.0011169999 1e-6 465 237 0.0037175999 1e-6 467 237 0.015900198 1e-6 468 237 0.027297299 1e-6 469 237 0.0041538998 1e-6 470 237 0.0045029968 1e-6 471 237 0.0021990999 1e-6 473 237 8.7299995e-05 1e-6 477 237 0.00061089988 1e-6 478 237 0.00069809984 1e-6 483 237 0.00085519999 1e-6 489 237 5.2399992e-05 1e-6 490 237 0.024469797 1e-6 491 237 0.00041889981 1e-6 24 238 0.0001967 1e-6 60 238 0.0017698999 1e-6 108 238 0.0001967 1e-6 114 238 0.00039329985 1e-6 126 238 0.0001967 1e-6 130 238 0.075909495 1e-6 131 238 0.0078662969 1e-6 133 238 0.012192696 1e-6 149 238 0.0019665998 1e-6 150 238 0.0001967 1e-6 171 238 0.018092398 1e-6 187 238 0.0001967 1e-6 189 238 0.0001967 1e-6 190 238 0.0001967 1e-6 192 238 0.012389399 1e-6 194 238 0.00039329985 1e-6 198 238 0.024778798 1e-6 200 238 0.0001967 1e-6 203 238 0.0001967 1e-6 204 238 0.0001967 1e-6 206 238 0.00039329985 1e-6 214 238 0.017895799 1e-6 219 238 0.0070795976 1e-6 222 238 0.010816097 1e-6 224 238 0.0330383 1e-6 225 238 0.019075699 1e-6 233 238 0.0031464999 1e-6 234 238 0.0043265 1e-6 238 238 0.00098329992 1e-6 239 238 0.0001967 1e-6 240 238 0.0214356 1e-6 241 238 0.027925298 1e-6 252 238 0.00039329985 1e-6 270 238 0.0041297972 1e-6 272 238 0.00078659994 1e-6 277 238 0.0001967 1e-6 340 238 0.00039329985 1e-6 358 238 0.0031464999 1e-6 387 238 0.0001967 1e-6 417 238 0.00098329992 1e-6 421 238 0.0001967 1e-6 422 238 0.00039329985 1e-6 437 238 0.0088495985 1e-6 443 238 0.0045230985 1e-6 444 238 0.0047197975 1e-6 445 238 0.0090461969 1e-6 446 238 0.00098329992 1e-6 447 238 0.010226198 1e-6 450 238 0.0060963966 1e-6 452 238 0.0076695979 1e-6 453 238 0.00078659994 1e-6 454 238 0.0011798998 1e-6 455 238 0.026745297 1e-6 456 238 0.00039329985 1e-6 457 238 0.0033431998 1e-6 458 238 0.00098329992 1e-6 459 238 0.00058999984 1e-6 460 238 0.0011798998 1e-6 463 238 0.0078662969 1e-6 464 238 0.00078659994 1e-6 465 238 0.0019665998 1e-6 467 238 0.016322497 1e-6 468 238 0.021632299 1e-6 469 238 0.0074729994 1e-6 470 238 0.0082595982 1e-6 471 238 0.0011798998 1e-6 473 238 0.0001967 1e-6 477 238 0.0001967 1e-6 478 238 0.0021631999 1e-6 483 238 0.0019665998 1e-6 490 238 0.0104228 1e-6 21 239 0.0019607998 1e-6 22 239 0.0039215982 1e-6 25 239 0.0019607998 1e-6 60 239 0.0058823973 1e-6 130 239 0.0019607998 1e-6 140 239 0.0156863 1e-6 192 239 0.0019607998 1e-6 198 239 0.0019607998 1e-6 214 239 0.060784299 1e-6 215 239 0.0019607998 1e-6 218 239 0.0078430995 1e-6 222 239 0.0039215982 1e-6 224 239 0.0039215982 1e-6 225 239 0.021568596 1e-6 233 239 0.0019607998 1e-6 234 239 0.031372499 1e-6 236 239 0.0019607998 1e-6 239 239 0.074509799 1e-6 240 239 0.0156863 1e-6 241 239 0.0058823973 1e-6 277 239 0.0039215982 1e-6 287 239 0.0019607998 1e-6 334 239 0.0019607998 1e-6 340 239 0.0019607998 1e-6 349 239 0.0019607998 1e-6 350 239 0.0019607998 1e-6 443 239 0.013725497 1e-6 444 239 0.0019607998 1e-6 445 239 0.023529399 1e-6 446 239 0.0039215982 1e-6 447 239 0.0039215982 1e-6 450 239 0.0019607998 1e-6 452 239 0.033333298 1e-6 453 239 0.0098038986 1e-6 455 239 0.031372499 1e-6 457 239 0.0019607998 1e-6 463 239 0.0058823973 1e-6 464 239 0.0019607998 1e-6 467 239 0.0156863 1e-6 468 239 0.0078430995 1e-6 469 239 0.0058823973 1e-6 470 239 0.0058823973 1e-6 490 239 0.0078430995 1e-6 491 239 0.019607797 1e-6 0 240 0.00046659983 1e-6 4 240 0.00015549999 1e-6 9 240 3.8899991e-05 1e-6 18 240 0.00011659999 1e-6 21 240 0.0001944 1e-6 22 240 0.001283 1e-6 24 240 0.00093309977 1e-6 25 240 7.7799996e-05 1e-6 60 240 0.0031103999 1e-6 79 240 3.8899991e-05 1e-6 82 240 0.00011659999 1e-6 83 240 3.8899991e-05 1e-6 84 240 3.8899991e-05 1e-6 88 240 0.00015549999 1e-6 90 240 0.00011659999 1e-6 104 240 7.7799996e-05 1e-6 108 240 3.8899991e-05 1e-6 113 240 7.7799996e-05 1e-6 114 240 0.00015549999 1e-6 115 240 3.8899991e-05 1e-6 117 240 3.8899991e-05 1e-6 126 240 7.7799996e-05 1e-6 127 240 3.8899991e-05 1e-6 130 240 0.028887998 1e-6 131 240 0.0039268993 1e-6 132 240 0.00050539989 1e-6 133 240 0.00046659983 1e-6 135 240 0.0001944 1e-6 138 240 0.00031099981 1e-6 139 240 0.0001944 1e-6 140 240 0.0059486963 1e-6 142 240 0.00042769988 1e-6 143 240 0.00034989999 1e-6 149 240 0.00050539989 1e-6 150 240 0.00077759987 1e-6 151 240 3.8899991e-05 1e-6 152 240 3.8899991e-05 1e-6 157 240 3.8899991e-05 1e-6 158 240 0.00015549999 1e-6 160 240 0.00077759987 1e-6 161 240 3.8899991e-05 1e-6 165 240 3.8899991e-05 1e-6 169 240 0.00093309977 1e-6 171 240 0.00077759987 1e-6 186 240 7.7799996e-05 1e-6 187 240 0.0018273999 1e-6 188 240 0.0013218999 1e-6 189 240 0.00015549999 1e-6 190 240 0.00011659999 1e-6 191 240 0.00042769988 1e-6 192 240 0.0012053 1e-6 193 240 7.7799996e-05 1e-6 194 240 0.00023329999 1e-6 197 240 0.00023329999 1e-6 198 240 0.013685796 1e-6 200 240 7.7799996e-05 1e-6 201 240 3.8899991e-05 1e-6 203 240 7.7799996e-05 1e-6 204 240 0.00081649981 1e-6 206 240 0.00015549999 1e-6 207 240 7.7799996e-05 1e-6 209 240 3.8899991e-05 1e-6 214 240 0.053887997 1e-6 218 240 0.00023329999 1e-6 219 240 0.001283 1e-6 221 240 3.8899991e-05 1e-6 222 240 0.0059486963 1e-6 223 240 0.0026826998 1e-6 224 240 0.015435498 1e-6 225 240 0.077293873 1e-6 226 240 0.00038879993 1e-6 227 240 0.0024883 1e-6 228 240 7.7799996e-05 1e-6 233 240 0.00023329999 1e-6 234 240 0.0036546998 1e-6 237 240 7.7799996e-05 1e-6 239 240 0.0020607 1e-6 240 240 0.028188199 1e-6 241 240 0.031765196 1e-6 242 240 3.8899991e-05 1e-6 243 240 0.00062209996 1e-6 248 240 3.8899991e-05 1e-6 250 240 3.8899991e-05 1e-6 251 240 3.8899991e-05 1e-6 252 240 0.00050539989 1e-6 254 240 3.8899991e-05 1e-6 270 240 3.8899991e-05 1e-6 271 240 0.00011659999 1e-6 272 240 3.8899991e-05 1e-6 273 240 0.00062209996 1e-6 274 240 7.7799996e-05 1e-6 276 240 0.0020994998 1e-6 277 240 0.0088257976 1e-6 282 240 0.0096422993 1e-6 283 240 0.0001944 1e-6 284 240 7.7799996e-05 1e-6 292 240 7.7799996e-05 1e-6 293 240 0.00011659999 1e-6 296 240 7.7799996e-05 1e-6 300 240 0.0001944 1e-6 312 240 0.00015549999 1e-6 313 240 3.8899991e-05 1e-6 315 240 0.011003099 1e-6 319 240 0.0020994998 1e-6 322 240 0.00046659983 1e-6 324 240 3.8899991e-05 1e-6 326 240 0.0027604999 1e-6 340 240 0.0020607 1e-6 345 240 7.7799996e-05 1e-6 348 240 7.7799996e-05 1e-6 349 240 0.0026049998 1e-6 350 240 7.7799996e-05 1e-6 351 240 7.7799996e-05 1e-6 354 240 3.8899991e-05 1e-6 356 240 0.00027219998 1e-6 357 240 3.8899991e-05 1e-6 358 240 0.0020217998 1e-6 372 240 7.7799996e-05 1e-6 384 240 7.7799996e-05 1e-6 385 240 3.8899991e-05 1e-6 387 240 7.7799996e-05 1e-6 393 240 3.8899991e-05 1e-6 402 240 0.00027219998 1e-6 414 240 0.00093309977 1e-6 416 240 3.8899991e-05 1e-6 417 240 0.00058319978 1e-6 419 240 3.8899991e-05 1e-6 421 240 7.7799996e-05 1e-6 422 240 0.0001944 1e-6 423 240 3.8899991e-05 1e-6 425 240 3.8899991e-05 1e-6 430 240 0.00042769988 1e-6 431 240 3.8899991e-05 1e-6 432 240 3.8899991e-05 1e-6 433 240 3.8899991e-05 1e-6 434 240 0.00011659999 1e-6 437 240 3.8899991e-05 1e-6 442 240 0.00015549999 1e-6 443 240 0.0079315975 1e-6 444 240 0.0033437 1e-6 445 240 0.0087480992 1e-6 446 240 0.0019828998 1e-6 447 240 0.0077759996 1e-6 448 240 3.8899991e-05 1e-6 450 240 0.0037324999 1e-6 452 240 0.01007 1e-6 453 240 0.0033825999 1e-6 454 240 0.0013218999 1e-6 455 240 0.0315708 1e-6 456 240 0.00038879993 1e-6 457 240 0.0033047998 1e-6 458 240 0.00050539989 1e-6 459 240 0.00062209996 1e-6 460 240 0.0014385998 1e-6 463 240 0.0071539991 1e-6 464 240 0.0023327998 1e-6 465 240 0.0023716998 1e-6 467 240 0.0146579 1e-6 468 240 0.016990699 1e-6 469 240 0.0063374974 1e-6 470 240 0.0069595985 1e-6 471 240 0.00089419982 1e-6 473 240 0.00015549999 1e-6 477 240 0.00015549999 1e-6 478 240 0.0013218999 1e-6 479 240 0.00011659999 1e-6 483 240 0.0019439999 1e-6 489 240 0.00011659999 1e-6 490 240 0.0183126 1e-6 491 240 0.0027215998 1e-6 0 241 4.4299988e-05 1e-6 2 241 0.00027469988 1e-6 4 241 6.1999992e-05 1e-6 9 241 8.8999996e-06 1e-6 13 241 7.9799996e-05 1e-6 16 241 8.8999996e-06 1e-6 18 241 0.00013289999 1e-6 19 241 1.7699989e-05 1e-6 21 241 3.5399993e-05 1e-6 22 241 0.00024809991 1e-6 23 241 0.00058489991 1e-6 24 241 0.00026589981 1e-6 25 241 1.7699989e-05 1e-6 60 241 0.0055033974 1e-6 77 241 1.7699989e-05 1e-6 79 241 8.8999996e-06 1e-6 82 241 0.00016839999 1e-6 83 241 1.7699989e-05 1e-6 84 241 1.7699989e-05 1e-6 90 241 8.8999996e-06 1e-6 104 241 5.3199998e-05 1e-6 107 241 2.6599999e-05 1e-6 108 241 2.6599999e-05 1e-6 110 241 3.5399993e-05 1e-6 113 241 3.5399993e-05 1e-6 114 241 7.0899987e-05 1e-6 116 241 2.6599999e-05 1e-6 118 241 0.0002216 1e-6 119 241 9.7499986e-05 1e-6 120 241 7.0899987e-05 1e-6 126 241 3.5399993e-05 1e-6 127 241 8.8999996e-06 1e-6 130 241 0.012008198 1e-6 131 241 0.0015419999 1e-6 132 241 0.00021269999 1e-6 133 241 0.0001241 1e-6 135 241 1.7699989e-05 1e-6 137 241 8.8999996e-06 1e-6 138 241 3.5399993e-05 1e-6 139 241 0.00027469988 1e-6 140 241 9.7499986e-05 1e-6 141 241 8.8999996e-06 1e-6 142 241 0.00014179999 1e-6 143 241 0.0001507 1e-6 149 241 0.00025699986 1e-6 150 241 0.0010279999 1e-6 151 241 2.6599999e-05 1e-6 152 241 0.0001772 1e-6 157 241 8.8999996e-06 1e-6 158 241 9.7499986e-05 1e-6 159 241 0.0001772 1e-6 160 241 0.00074439985 1e-6 161 241 0.00052289991 1e-6 162 241 2.6599999e-05 1e-6 165 241 0.0001507 1e-6 169 241 0.00068239984 1e-6 170 241 0.00046079978 1e-6 171 241 0.0037486998 1e-6 172 241 2.6599999e-05 1e-6 181 241 8.8999996e-06 1e-6 184 241 5.3199998e-05 1e-6 186 241 0.0001241 1e-6 187 241 0.0040853992 1e-6 188 241 0.0011254998 1e-6 189 241 4.4299988e-05 1e-6 190 241 9.7499986e-05 1e-6 191 241 7.0899987e-05 1e-6 192 241 0.0019673998 1e-6 193 241 0.0015065998 1e-6 194 241 0.0067705996 1e-6 196 241 8.8999996e-06 1e-6 197 241 0.001799 1e-6 198 241 0.021012098 1e-6 200 241 5.3199998e-05 1e-6 201 241 2.6599999e-05 1e-6 203 241 6.1999992e-05 1e-6 204 241 0.00027469988 1e-6 206 241 0.0001507 1e-6 207 241 4.4299988e-05 1e-6 209 241 3.5399993e-05 1e-6 212 241 8.8999996e-06 1e-6 214 241 0.041448098 1e-6 215 241 0.00035449979 1e-6 218 241 0.0001507 1e-6 219 241 0.00084189977 1e-6 221 241 0.00068239984 1e-6 222 241 0.00011519999 1e-6 223 241 0.00071779988 1e-6 224 241 0.15698326 1e-6 225 241 0.0032612998 1e-6 226 241 0.00020379999 1e-6 227 241 0.0010988999 1e-6 228 241 3.5399993e-05 1e-6 229 241 0.00047859992 1e-6 230 241 2.6599999e-05 1e-6 231 241 8.8599991e-05 1e-6 232 241 4.4299988e-05 1e-6 233 241 0.0021888998 1e-6 234 241 0.0034385 1e-6 237 241 0.00010629999 1e-6 239 241 4.4299988e-05 1e-6 240 241 0.0023749999 1e-6 241 241 0.046685599 1e-6 242 241 1.7699989e-05 1e-6 243 241 7.0899987e-05 1e-6 248 241 1.7699989e-05 1e-6 250 241 1.7699989e-05 1e-6 251 241 1.7699989e-05 1e-6 252 241 0.0075504966 1e-6 253 241 5.3199998e-05 1e-6 254 241 2.6599999e-05 1e-6 262 241 1.7699989e-05 1e-6 263 241 8.8999996e-06 1e-6 269 241 8.8999996e-06 1e-6 270 241 0.00024809991 1e-6 271 241 0.0003101998 1e-6 272 241 8.8999996e-06 1e-6 273 241 0.00042539998 1e-6 274 241 0.0016128998 1e-6 276 241 7.9799996e-05 1e-6 277 241 0.0040322989 1e-6 282 241 0.00080649997 1e-6 283 241 6.1999992e-05 1e-6 284 241 4.4299988e-05 1e-6 285 241 4.4299988e-05 1e-6 286 241 0.00018609999 1e-6 287 241 3.5399993e-05 1e-6 288 241 0.00033679977 1e-6 289 241 0.00019499999 1e-6 290 241 0.00021269999 1e-6 292 241 0.0011342999 1e-6 293 241 0.0014356999 1e-6 294 241 0.00013289999 1e-6 295 241 0.00018609999 1e-6 296 241 0.00010629999 1e-6 297 241 7.9799996e-05 1e-6 298 241 6.1999992e-05 1e-6 299 241 2.6599999e-05 1e-6 300 241 0.00013289999 1e-6 301 241 0.0001772 1e-6 305 241 8.8999996e-06 1e-6 307 241 2.6599999e-05 1e-6 312 241 0.00066469982 1e-6 313 241 8.8999996e-06 1e-6 314 241 3.5399993e-05 1e-6 315 241 0.0099520981 1e-6 317 241 0.00042539998 1e-6 319 241 0.0017014998 1e-6 320 241 9.7499986e-05 1e-6 321 241 5.3199998e-05 1e-6 322 241 0.0029687998 1e-6 324 241 7.9799996e-05 1e-6 325 241 0.00094819977 1e-6 326 241 0.0083126985 1e-6 328 241 0.00010629999 1e-6 330 241 8.8999996e-06 1e-6 335 241 7.9799996e-05 1e-6 336 241 8.8599991e-05 1e-6 338 241 2.6599999e-05 1e-6 340 241 0.0061768964 1e-6 341 241 8.8999996e-06 1e-6 344 241 8.8999996e-06 1e-6 345 241 2.6599999e-05 1e-6 347 241 3.5399993e-05 1e-6 348 241 0.00060259993 1e-6 349 241 0.0035979999 1e-6 350 241 8.8599991e-05 1e-6 351 241 5.3199998e-05 1e-6 352 241 8.8999996e-06 1e-6 353 241 8.8999996e-06 1e-6 354 241 5.3199998e-05 1e-6 355 241 8.8999996e-06 1e-6 356 241 0.00058489991 1e-6 357 241 1.7699989e-05 1e-6 358 241 0.003146 1e-6 363 241 8.8999996e-06 1e-6 366 241 8.8999996e-06 1e-6 369 241 8.8999996e-06 1e-6 370 241 5.3199998e-05 1e-6 371 241 2.6599999e-05 1e-6 372 241 9.7499986e-05 1e-6 373 241 2.6599999e-05 1e-6 376 241 8.8999996e-06 1e-6 380 241 1.7699989e-05 1e-6 384 241 2.6599999e-05 1e-6 385 241 0.0014799999 1e-6 386 241 0.00035449979 1e-6 387 241 2.6599999e-05 1e-6 390 241 6.1999992e-05 1e-6 392 241 0.0001241 1e-6 393 241 0.00024809991 1e-6 394 241 8.8999996e-06 1e-6 397 241 1.7699989e-05 1e-6 398 241 2.6599999e-05 1e-6 402 241 4.4299988e-05 1e-6 404 241 2.6599999e-05 1e-6 405 241 0.00023929999 1e-6 409 241 2.6599999e-05 1e-6 414 241 0.00074439985 1e-6 416 241 8.8999996e-06 1e-6 417 241 0.00050509977 1e-6 419 241 3.5399993e-05 1e-6 420 241 8.8999996e-06 1e-6 421 241 0.0001241 1e-6 422 241 0.0001241 1e-6 423 241 8.8999996e-06 1e-6 424 241 2.6599999e-05 1e-6 425 241 8.8999996e-06 1e-6 426 241 8.8999996e-06 1e-6 428 241 0.00023929999 1e-6 430 241 0.00035449979 1e-6 431 241 2.6599999e-05 1e-6 432 241 1.7699989e-05 1e-6 433 241 3.5399993e-05 1e-6 434 241 4.4299988e-05 1e-6 437 241 0.0004164998 1e-6 438 241 1.7699989e-05 1e-6 441 241 1.7699989e-05 1e-6 442 241 0.0015596999 1e-6 443 241 0.0089240968 1e-6 444 241 0.0048209988 1e-6 445 241 0.010873798 1e-6 446 241 0.0012496 1e-6 447 241 0.014968097 1e-6 448 241 6.1999992e-05 1e-6 449 241 8.8999996e-06 1e-6 450 241 0.0045107976 1e-6 452 241 0.012442399 1e-6 453 241 0.0037308999 1e-6 454 241 0.0012317998 1e-6 455 241 0.030441299 1e-6 456 241 0.00047859992 1e-6 457 241 0.0022952999 1e-6 458 241 0.00069119991 1e-6 459 241 0.0013116 1e-6 460 241 0.0013913999 1e-6 463 241 0.014223699 1e-6 464 241 0.0044753999 1e-6 465 241 0.0025699998 1e-6 467 241 0.0080467984 1e-6 468 241 0.0087822974 1e-6 469 241 0.0036334998 1e-6 470 241 0.0048032999 1e-6 471 241 0.0017547 1e-6 473 241 7.0899987e-05 1e-6 477 241 0.00053169997 1e-6 478 241 0.0011077998 1e-6 479 241 0.0016748998 1e-6 483 241 0.00069119991 1e-6 489 241 0.00010629999 1e-6 490 241 0.00062029995 1e-6 491 241 0.00093939994 1e-6 9 242 0.0001121 1e-6 22 242 0.00056059984 1e-6 24 242 0.0001121 1e-6 25 242 0.0001121 1e-6 60 242 0.0029151 1e-6 82 242 0.0001121 1e-6 108 242 0.0001121 1e-6 114 242 0.00022419999 1e-6 126 242 0.0001121 1e-6 130 242 0.066935778 1e-6 131 242 0.0077362992 1e-6 132 242 0.00022419999 1e-6 140 242 0.0076241978 1e-6 142 242 0.0001121 1e-6 156 242 0.0001121 1e-6 158 242 0.0001121 1e-6 160 242 0.0001121 1e-6 165 242 0.0001121 1e-6 171 242 0.0001121 1e-6 187 242 0.00022419999 1e-6 189 242 0.0001121 1e-6 190 242 0.0001121 1e-6 192 242 0.00056059984 1e-6 193 242 0.0001121 1e-6 194 242 0.00044849981 1e-6 197 242 0.0024665999 1e-6 198 242 0.0065029971 1e-6 200 242 0.0001121 1e-6 203 242 0.0001121 1e-6 204 242 0.0001121 1e-6 206 242 0.00022419999 1e-6 214 242 0.026908796 1e-6 222 242 0.0107635 1e-6 223 242 0.0011211999 1e-6 224 242 0.0244422 1e-6 225 242 0.072093248 1e-6 233 242 0.0001121 1e-6 234 242 0.0038120998 1e-6 237 242 0.0001121 1e-6 239 242 0.0025787998 1e-6 240 242 0.013790797 1e-6 241 242 0.0028029999 1e-6 252 242 0.00056059984 1e-6 272 242 0.00067269988 1e-6 274 242 0.0001121 1e-6 277 242 0.013118099 1e-6 282 242 0.00056059984 1e-6 284 242 0.0001121 1e-6 307 242 0.0001121 1e-6 312 242 0.0001121 1e-6 315 242 0.00067269988 1e-6 319 242 0.011324096 1e-6 322 242 0.0077362992 1e-6 324 242 0.0001121 1e-6 326 242 0.0087453984 1e-6 328 242 0.0001121 1e-6 340 242 0.0052695982 1e-6 349 242 0.00022419999 1e-6 350 242 0.0001121 1e-6 351 242 0.0001121 1e-6 354 242 0.0001121 1e-6 356 242 0.00033639977 1e-6 358 242 0.0019059998 1e-6 372 242 0.00022419999 1e-6 385 242 0.0001121 1e-6 387 242 0.0001121 1e-6 402 242 0.00022419999 1e-6 417 242 0.00056059984 1e-6 421 242 0.0001121 1e-6 422 242 0.00022419999 1e-6 430 242 0.0001121 1e-6 443 242 0.0061665997 1e-6 444 242 0.0012333 1e-6 445 242 0.0065029971 1e-6 446 242 0.00067269988 1e-6 447 242 0.0050453991 1e-6 450 242 0.0034756998 1e-6 452 242 0.0086332969 1e-6 453 242 0.0030271998 1e-6 454 242 0.0010090999 1e-6 455 242 0.0225362 1e-6 456 242 0.00044849981 1e-6 457 242 0.0047089979 1e-6 458 242 0.00078479992 1e-6 459 242 0.00078479992 1e-6 460 242 0.0014575999 1e-6 463 242 0.009081699 1e-6 464 242 0.00078479992 1e-6 465 242 0.0014575999 1e-6 467 242 0.011996899 1e-6 468 242 0.023769498 1e-6 469 242 0.0076241978 1e-6 470 242 0.0084089972 1e-6 471 242 0.0023544999 1e-6 473 242 0.00022419999 1e-6 477 242 0.0001121 1e-6 478 242 0.0012333 1e-6 479 242 0.0001121 1e-6 483 242 0.0017938998 1e-6 490 242 0.0056059994 1e-6 491 242 0.00089699985 1e-6 22 243 0.00066699996 1e-6 25 243 0.0009527998 1e-6 60 243 0.0021914998 1e-6 82 243 0.41629344 1e-6 104 243 0.0015244999 1e-6 114 243 9.5299998e-05 1e-6 126 243 9.5299998e-05 1e-6 130 243 0.00028589997 1e-6 142 243 9.5299998e-05 1e-6 143 243 9.5299998e-05 1e-6 160 243 0.00028589997 1e-6 161 243 9.5299998e-05 1e-6 188 243 0.0001906 1e-6 189 243 9.5299998e-05 1e-6 190 243 9.5299998e-05 1e-6 194 243 9.5299998e-05 1e-6 198 243 0.00057169981 1e-6 206 243 0.0001906 1e-6 214 243 0.052786998 1e-6 218 243 0.012100998 1e-6 223 243 0.0012386998 1e-6 224 243 9.5299998e-05 1e-6 230 243 0.020867098 1e-6 231 243 0.014864199 1e-6 234 243 0.0046688989 1e-6 237 243 9.5299998e-05 1e-6 240 243 9.5299998e-05 1e-6 241 243 9.5299998e-05 1e-6 243 243 0.08575505 1e-6 252 243 9.5299998e-05 1e-6 267 243 0.0031444 1e-6 272 243 0.00028589997 1e-6 277 243 0.0004763999 1e-6 312 243 9.5299998e-05 1e-6 350 243 9.5299998e-05 1e-6 358 243 0.00076229987 1e-6 422 243 9.5299998e-05 1e-6 430 243 0.00028589997 1e-6 442 243 0.00066699996 1e-6 443 243 0.0078131966 1e-6 444 243 0.0001906 1e-6 445 243 0.016769897 1e-6 446 243 0.0012386998 1e-6 447 243 0.0014292998 1e-6 450 243 0.0015244999 1e-6 452 243 0.0059075989 1e-6 453 243 0.0033348999 1e-6 454 243 0.00038109999 1e-6 455 243 0.052120097 1e-6 456 243 9.5299998e-05 1e-6 457 243 0.0035255 1e-6 458 243 0.00057169981 1e-6 459 243 0.00028589997 1e-6 460 243 0.0004763999 1e-6 463 243 0.0071462989 1e-6 464 243 0.0001906 1e-6 465 243 0.00076229987 1e-6 467 243 0.0044782981 1e-6 468 243 0.0010480999 1e-6 469 243 0.0019057 1e-6 470 243 0.0020009999 1e-6 471 243 0.00085759978 1e-6 473 243 9.5299998e-05 1e-6 478 243 0.00076229987 1e-6 483 243 0.0012386998 1e-6 490 243 0.00076229987 1e-6 491 243 0.0014292998 1e-6 60 244 0.0025038 1e-6 82 244 0.025538299 1e-6 114 244 0.00050079986 1e-6 130 244 0.075112641 1e-6 131 244 0.00050079986 1e-6 133 244 0.00050079986 1e-6 135 244 0.0095142983 1e-6 142 244 0.035553299 1e-6 143 244 0.027541298 1e-6 149 244 0.0010014998 1e-6 158 244 0.00050079986 1e-6 160 244 0.0045067966 1e-6 161 244 0.047571398 1e-6 188 244 0.070105195 1e-6 192 244 0.00050079986 1e-6 198 244 0.010015 1e-6 206 244 0.00050079986 1e-6 214 244 0.0075112991 1e-6 218 244 0.0015022999 1e-6 223 244 0.00050079986 1e-6 224 244 0.0015022999 1e-6 225 244 0.0015022999 1e-6 230 244 0.0065097995 1e-6 231 244 0.0015022999 1e-6 234 244 0.0035052998 1e-6 240 244 0.00050079986 1e-6 241 244 0.014020998 1e-6 243 244 0.17526287 1e-6 244 244 0.0075112991 1e-6 272 244 0.00050079986 1e-6 277 244 0.010015 1e-6 279 244 0.00050079986 1e-6 317 244 0.0010014998 1e-6 358 244 0.0010014998 1e-6 443 244 0.0080119967 1e-6 444 244 0.00050079986 1e-6 445 244 0.010015 1e-6 446 244 0.0015022999 1e-6 450 244 0.0030044999 1e-6 452 244 0.0055082999 1e-6 453 244 0.00050079986 1e-6 454 244 0.0015022999 1e-6 455 244 0.045568399 1e-6 457 244 0.0035052998 1e-6 458 244 0.00050079986 1e-6 460 244 0.0010014998 1e-6 463 244 0.0080119967 1e-6 464 244 0.00050079986 1e-6 465 244 0.00050079986 1e-6 467 244 0.0065097995 1e-6 468 244 0.0020029999 1e-6 469 244 0.0030044999 1e-6 470 244 0.0035052998 1e-6 471 244 0.00050079986 1e-6 478 244 0.0015022999 1e-6 483 244 0.0065097995 1e-6 490 244 0.0010014998 1e-6 491 244 0.00050079986 1e-6 18 245 3.3199991e-05 1e-6 22 245 6.6399996e-05 1e-6 60 245 0.0011292 1e-6 108 245 6.6399996e-05 1e-6 114 245 0.00013279999 1e-6 126 245 9.9599987e-05 1e-6 130 245 0.0106606 1e-6 131 245 0.0046494976 1e-6 132 245 0.0028893 1e-6 133 245 0.0055128969 1e-6 139 245 0.020889398 1e-6 141 245 0.0015608999 1e-6 142 245 0.0029224998 1e-6 143 245 0.0070737973 1e-6 149 245 0.0027564999 1e-6 150 245 0.0016272999 1e-6 151 245 3.3199991e-05 1e-6 161 245 0.0031881998 1e-6 171 245 0.0027896999 1e-6 188 245 0.0015940999 1e-6 189 245 0.00019929999 1e-6 190 245 0.0001661 1e-6 192 245 0.0012951999 1e-6 193 245 0.0011292 1e-6 194 245 9.9599987e-05 1e-6 196 245 3.3199991e-05 1e-6 197 245 3.3199991e-05 1e-6 198 245 0.0155425 1e-6 200 245 3.3199991e-05 1e-6 203 245 9.9599987e-05 1e-6 204 245 9.9599987e-05 1e-6 206 245 0.0001661 1e-6 207 245 6.6399996e-05 1e-6 209 245 3.3199991e-05 1e-6 214 245 0.0025239999 1e-6 219 245 0.007571999 1e-6 224 245 3.3199991e-05 1e-6 230 245 0.0009631 1e-6 233 245 0.0010626998 1e-6 234 245 0.0017269 1e-6 237 245 0.00019929999 1e-6 240 245 0.0220185 1e-6 241 245 0.049217898 1e-6 243 245 0.20706719 1e-6 244 245 0.019826598 1e-6 245 245 0.0063099973 1e-6 246 245 6.6399996e-05 1e-6 251 245 0.0022914999 1e-6 272 245 0.0002325 1e-6 279 245 0.00019929999 1e-6 284 245 3.3199991e-05 1e-6 292 245 0.0057453997 1e-6 315 245 0.0062435977 1e-6 317 245 0.00099629979 1e-6 335 245 0.0017269 1e-6 349 245 0.0057453997 1e-6 356 245 6.6399996e-05 1e-6 358 245 0.0011292 1e-6 387 245 6.6399996e-05 1e-6 402 245 6.6399996e-05 1e-6 422 245 9.9599987e-05 1e-6 430 245 3.3199991e-05 1e-6 432 245 3.3199991e-05 1e-6 433 245 6.6399996e-05 1e-6 434 245 6.6399996e-05 1e-6 437 245 0.0052804984 1e-6 442 245 0.0029888998 1e-6 443 245 0.0009631 1e-6 444 245 0.0010626998 1e-6 445 245 0.0096974969 1e-6 446 245 0.00053139986 1e-6 447 245 0.0039519966 1e-6 450 245 0.0032213998 1e-6 452 245 0.0038192 1e-6 453 245 0.00033209985 1e-6 454 245 0.0001661 1e-6 455 245 0.035468798 1e-6 456 245 0.00019929999 1e-6 457 245 0.0055128969 1e-6 458 245 0.0010958998 1e-6 459 245 0.00053139986 1e-6 460 245 0.00099629979 1e-6 463 245 0.011523999 1e-6 464 245 0.00073059998 1e-6 465 245 0.0014944999 1e-6 467 245 0.015011098 1e-6 468 245 0.012453899 1e-6 469 245 0.0034538999 1e-6 470 245 0.0038855998 1e-6 471 245 0.0011623998 1e-6 473 245 9.9599987e-05 1e-6 477 245 6.6399996e-05 1e-6 478 245 0.0017269 1e-6 483 245 0.0044169985 1e-6 489 245 3.3199991e-05 1e-6 490 245 0.00033209985 1e-6 491 245 6.6399996e-05 1e-6 60 246 0.0012084998 1e-6 114 246 0.00060419994 1e-6 130 246 0.047129899 1e-6 131 246 0.027190298 1e-6 132 246 0.0054380968 1e-6 133 246 0.0018126999 1e-6 139 246 0.062839866 1e-6 143 246 0.031419899 1e-6 145 246 0.0084591992 1e-6 146 246 0.00060419994 1e-6 149 246 0.0012084998 1e-6 150 246 0.00060419994 1e-6 171 246 0.00060419994 1e-6 192 246 0.00060419994 1e-6 198 246 0.022960696 1e-6 206 246 0.00060419994 1e-6 214 246 0.00060419994 1e-6 219 246 0.010876097 1e-6 222 246 0.00060419994 1e-6 224 246 0.0012084998 1e-6 225 246 0.00060419994 1e-6 230 246 0.00060419994 1e-6 234 246 0.0018126999 1e-6 240 246 0.0277946 1e-6 241 246 0.051963698 1e-6 243 246 0.068277895 1e-6 244 246 0.0054380968 1e-6 245 246 0.00060419994 1e-6 246 246 0.030815698 1e-6 292 246 0.00060419994 1e-6 315 246 0.00060419994 1e-6 317 246 0.0012084998 1e-6 349 246 0.00060419994 1e-6 358 246 0.0012084998 1e-6 377 246 0.00060419994 1e-6 437 246 0.0012084998 1e-6 444 246 0.00060419994 1e-6 445 246 0.006646499 1e-6 447 246 0.0048337989 1e-6 450 246 0.0030210998 1e-6 452 246 0.0036253999 1e-6 453 246 0.00060419994 1e-6 455 246 0.033232599 1e-6 457 246 0.0042295977 1e-6 458 246 0.00060419994 1e-6 459 246 0.00060419994 1e-6 460 246 0.0012084998 1e-6 463 246 0.0096676983 1e-6 464 246 0.00060419994 1e-6 465 246 0.00060419994 1e-6 467 246 0.0090633966 1e-6 468 246 0.039879199 1e-6 469 246 0.0060422979 1e-6 470 246 0.0060422979 1e-6 471 246 0.00060419994 1e-6 478 246 0.0018126999 1e-6 483 246 0.0060422979 1e-6 490 246 0.0012084998 1e-6 60 247 0.0012361 1e-6 82 247 0.0074165985 1e-6 114 247 0.0012361 1e-6 130 247 0.063040793 1e-6 131 247 0.0012361 1e-6 133 247 0.034610599 1e-6 139 247 0.0037082999 1e-6 149 247 0.029666297 1e-6 150 247 0.022249699 1e-6 156 247 0.0012361 1e-6 198 247 0.0173053 1e-6 206 247 0.0012361 1e-6 214 247 0.0012361 1e-6 224 247 0.004944399 1e-6 234 247 0.0037082999 1e-6 243 247 0.31149566 1e-6 317 247 0.0012361 1e-6 358 247 0.0012361 1e-6 382 247 0.0024722 1e-6 437 247 0.009888798 1e-6 445 247 0.0086526982 1e-6 450 247 0.004944399 1e-6 452 247 0.0037082999 1e-6 453 247 0.0012361 1e-6 455 247 0.028430197 1e-6 457 247 0.004944399 1e-6 460 247 0.0012361 1e-6 463 247 0.0037082999 1e-6 465 247 0.0012361 1e-6 467 247 0.0086526982 1e-6 468 247 0.0074165985 1e-6 469 247 0.004944399 1e-6 470 247 0.0061804987 1e-6 471 247 0.0037082999 1e-6 478 247 0.0012361 1e-6 483 247 0.0037082999 1e-6 490 247 0.0012361 1e-6 491 247 0.0012361 1e-6 60 248 0.0021007999 1e-6 114 248 0.00030009984 1e-6 126 248 0.00030009984 1e-6 130 248 0.036914799 1e-6 131 248 0.023109198 1e-6 132 248 0.00030009984 1e-6 133 248 0.016206499 1e-6 135 248 0.00030009984 1e-6 139 248 0.061224498 1e-6 141 248 0.00030009984 1e-6 142 248 0.021308497 1e-6 156 248 0.0054021999 1e-6 160 248 0.0024009999 1e-6 161 248 0.0015005998 1e-6 165 248 0.006902799 1e-6 169 248 0.00030009984 1e-6 171 248 0.0018006999 1e-6 190 248 0.00030009984 1e-6 192 248 0.016206499 1e-6 194 248 0.00060019991 1e-6 198 248 0.0066025965 1e-6 206 248 0.00060019991 1e-6 224 248 0.0057022981 1e-6 234 248 0.0030011998 1e-6 237 248 0.00030009984 1e-6 241 248 0.076530576 1e-6 243 248 0.017106798 1e-6 248 248 0.027010798 1e-6 272 248 0.00060019991 1e-6 279 248 0.00030009984 1e-6 284 248 0.00030009984 1e-6 315 248 0.017106798 1e-6 317 248 0.00090039987 1e-6 319 248 0.072328866 1e-6 322 248 0.00030009984 1e-6 326 248 0.00030009984 1e-6 358 248 0.0012004999 1e-6 378 248 0.00030009984 1e-6 419 248 0.00060019991 1e-6 422 248 0.00030009984 1e-6 437 248 0.027911197 1e-6 442 248 0.021608599 1e-6 443 248 0.0024009999 1e-6 444 248 0.00060019991 1e-6 445 248 0.013505399 1e-6 447 248 0.0021007999 1e-6 450 248 0.0045017973 1e-6 452 248 0.0048018992 1e-6 453 248 0.0012004999 1e-6 454 248 0.00060019991 1e-6 455 248 0.045618199 1e-6 456 248 0.00030009984 1e-6 457 248 0.0036013999 1e-6 458 248 0.0021007999 1e-6 459 248 0.00060019991 1e-6 460 248 0.0015005998 1e-6 463 248 0.034513798 1e-6 464 248 0.00060019991 1e-6 465 248 0.0012004999 1e-6 467 248 0.0090035982 1e-6 468 248 0.014405798 1e-6 469 248 0.0057022981 1e-6 470 248 0.0063024983 1e-6 471 248 0.0021007999 1e-6 473 248 0.00030009984 1e-6 478 248 0.0015005998 1e-6 483 248 0.0030011998 1e-6 490 248 0.00060019991 1e-6 491 248 0.00090039987 1e-6 60 249 0.00085229985 1e-6 114 249 0.00028409995 1e-6 126 249 0.00028409995 1e-6 130 249 0.025568198 1e-6 131 249 0.0068181977 1e-6 133 249 0.0065340996 1e-6 139 249 0.11363637 1e-6 141 249 0.00028409995 1e-6 149 249 0.0011363998 1e-6 150 249 0.0014205 1e-6 156 249 0.0068181977 1e-6 160 249 0.00028409995 1e-6 190 249 0.00028409995 1e-6 194 249 0.00028409995 1e-6 198 249 0.0028408999 1e-6 203 249 0.00028409995 1e-6 206 249 0.0005681999 1e-6 219 249 0.0073863976 1e-6 224 249 0.00028409995 1e-6 234 249 0.0022727 1e-6 237 249 0.00028409995 1e-6 241 249 0.093181789 1e-6 243 249 0.076420486 1e-6 248 249 0.00028409995 1e-6 249 249 0.012784097 1e-6 272 249 0.00028409995 1e-6 277 249 0.00028409995 1e-6 279 249 0.00028409995 1e-6 284 249 0.00028409995 1e-6 292 249 0.00028409995 1e-6 317 249 0.0011363998 1e-6 319 249 0.025284097 1e-6 326 249 0.00028409995 1e-6 358 249 0.0014205 1e-6 422 249 0.00028409995 1e-6 430 249 0.00028409995 1e-6 434 249 0.00028409995 1e-6 437 249 0.018181797 1e-6 442 249 0.0088067986 1e-6 443 249 0.0011363998 1e-6 444 249 0.00028409995 1e-6 445 249 0.010511398 1e-6 447 249 0.00085229985 1e-6 450 249 0.0056817979 1e-6 452 249 0.0053976998 1e-6 453 249 0.00085229985 1e-6 455 249 0.0480114 1e-6 456 249 0.00028409995 1e-6 457 249 0.0034091 1e-6 458 249 0.0005681999 1e-6 459 249 0.00028409995 1e-6 460 249 0.0017044998 1e-6 463 249 0.014772698 1e-6 464 249 0.0005681999 1e-6 465 249 0.0014205 1e-6 467 249 0.0085226968 1e-6 468 249 0.0082385987 1e-6 469 249 0.0048294999 1e-6 470 249 0.0053976998 1e-6 471 249 0.0025567999 1e-6 473 249 0.00028409995 1e-6 478 249 0.0019885998 1e-6 483 249 0.0036931999 1e-6 490 249 0.0005681999 1e-6 60 250 0.0012578999 1e-6 82 250 0.0012578999 1e-6 114 250 0.00041929982 1e-6 126 250 0.00041929982 1e-6 130 250 0.027672999 1e-6 131 250 0.018029399 1e-6 133 250 0.0075471997 1e-6 139 250 0.032285098 1e-6 141 250 0.00041929982 1e-6 142 250 0.00041929982 1e-6 149 250 0.00083859987 1e-6 150 250 0.00083859987 1e-6 156 250 0.020545099 1e-6 160 250 0.0096435994 1e-6 161 250 0.00083859987 1e-6 171 250 0.00041929982 1e-6 188 250 0.00041929982 1e-6 193 250 0.0037735999 1e-6 198 250 0.018867899 1e-6 206 250 0.00083859987 1e-6 219 250 0.0075471997 1e-6 224 250 0.00041929982 1e-6 231 250 0.00041929982 1e-6 234 250 0.0033542998 1e-6 237 250 0.00041929982 1e-6 241 250 0.064570189 1e-6 243 250 0.092662454 1e-6 249 250 0.00041929982 1e-6 250 250 0.00041929982 1e-6 251 250 0.00083859987 1e-6 252 250 0.00041929982 1e-6 272 250 0.00041929982 1e-6 279 250 0.00041929982 1e-6 290 250 0.0016770998 1e-6 292 250 0.00041929982 1e-6 298 250 0.0012578999 1e-6 312 250 0.0033542998 1e-6 315 250 0.00083859987 1e-6 317 250 0.00083859987 1e-6 319 250 0.015513599 1e-6 322 250 0.012578599 1e-6 326 250 0.018867899 1e-6 358 250 0.0012578999 1e-6 378 250 0.014255799 1e-6 421 250 0.00083859987 1e-6 424 250 0.0012578999 1e-6 426 250 0.00041929982 1e-6 437 250 0.0083856992 1e-6 442 250 0.0012578999 1e-6 443 250 0.0012578999 1e-6 444 250 0.0037735999 1e-6 445 250 0.021802898 1e-6 447 250 0.020545099 1e-6 450 250 0.0041928999 1e-6 452 250 0.0037735999 1e-6 455 250 0.031027298 1e-6 456 250 0.00041929982 1e-6 457 250 0.0037735999 1e-6 458 250 0.00083859987 1e-6 460 250 0.0012578999 1e-6 463 250 0.012159299 1e-6 464 250 0.00083859987 1e-6 465 250 0.00041929982 1e-6 467 250 0.010062899 1e-6 468 250 0.019706499 1e-6 469 250 0.0062892996 1e-6 470 250 0.0075471997 1e-6 471 250 0.0016770998 1e-6 473 250 0.00041929982 1e-6 478 250 0.0012578999 1e-6 483 250 0.0041928999 1e-6 490 250 0.00083859987 1e-6 60 251 0.00065449998 1e-6 82 251 0.033376999 1e-6 114 251 0.00065449998 1e-6 130 251 0.0032722999 1e-6 133 251 0.00065449998 1e-6 139 251 0.0032722999 1e-6 142 251 0.00065449998 1e-6 149 251 0.0013088998 1e-6 150 251 0.0013088998 1e-6 161 251 0.028141398 1e-6 171 251 0.00065449998 1e-6 188 251 0.0026177999 1e-6 191 251 0.00065449998 1e-6 193 251 0.0157068 1e-6 198 251 0.0058900975 1e-6 206 251 0.0013088998 1e-6 214 251 0.0013088998 1e-6 225 251 0.00065449998 1e-6 230 251 0.00065449998 1e-6 231 251 0.021596897 1e-6 234 251 0.0045811981 1e-6 237 251 0.00065449998 1e-6 240 251 0.00065449998 1e-6 241 251 0.0039266981 1e-6 243 251 0.19437164 1e-6 251 251 0.0058900975 1e-6 312 251 0.0091622993 1e-6 315 251 0.0078534 1e-6 317 251 0.00065449998 1e-6 319 251 0.0235602 1e-6 358 251 0.0013088998 1e-6 437 251 0.059554998 1e-6 443 251 0.00065449998 1e-6 445 251 0.0045811981 1e-6 450 251 0.0045811981 1e-6 452 251 0.0052355975 1e-6 453 251 0.0019633998 1e-6 455 251 0.038612597 1e-6 457 251 0.0039266981 1e-6 458 251 0.00065449998 1e-6 460 251 -0.024869099 1e-6 463 251 0.0065444969 1e-6 464 251 0.0013088998 1e-6 465 251 0.00065449998 1e-6 467 251 0.0065444969 1e-6 468 251 0.052355997 1e-6 469 251 0.0052355975 1e-6 470 251 0.0052355975 1e-6 471 251 0.0019633998 1e-6 478 251 0.0013088998 1e-6 483 251 0.0019633998 1e-6 490 251 0.00065449998 1e-6 491 251 0.00065449998 1e-6 4 252 2.8299997e-05 1e-6 18 252 0.0011618 1e-6 22 252 0.00042499998 1e-6 24 252 0.006403897 1e-6 25 252 0.00045339996 1e-6 60 252 0.0098324977 1e-6 82 252 2.8299997e-05 1e-6 108 252 8.4999992e-05 1e-6 114 252 0.00011329999 1e-6 126 252 8.4999992e-05 1e-6 130 252 0.00028339983 1e-6 132 252 5.6699995e-05 1e-6 135 252 2.8299997e-05 1e-6 139 252 5.6699995e-05 1e-6 150 252 0.00062339986 1e-6 151 252 0.00085009984 1e-6 156 252 2.8299997e-05 1e-6 159 252 2.8299997e-05 1e-6 160 252 0.0043920986 1e-6 161 252 0.00039669988 1e-6 162 252 0.00076509989 1e-6 165 252 0.00036839978 1e-6 169 252 0.0012750998 1e-6 170 252 0.00022669999 1e-6 171 252 0.010144196 1e-6 172 252 0.0031452999 1e-6 187 252 5.6699995e-05 1e-6 189 252 8.4999992e-05 1e-6 190 252 8.4999992e-05 1e-6 192 252 0.0022384999 1e-6 193 252 0.00076509989 1e-6 194 252 0.00011329999 1e-6 197 252 2.8299997e-05 1e-6 198 252 0.01873 1e-6 200 252 2.8299997e-05 1e-6 203 252 5.6699995e-05 1e-6 204 252 8.4999992e-05 1e-6 206 252 0.00011329999 1e-6 207 252 2.8299997e-05 1e-6 214 252 0.015612997 1e-6 218 252 2.8299997e-05 1e-6 219 252 0.0016150998 1e-6 223 252 0.0024368998 1e-6 224 252 0.00028339983 1e-6 227 252 2.8299997e-05 1e-6 228 252 2.8299997e-05 1e-6 233 252 0.0028902998 1e-6 234 252 0.0026918999 1e-6 237 252 0.00017 1e-6 240 252 0.0012750998 1e-6 241 252 0.059986997 1e-6 242 252 0.0012750998 1e-6 252 252 0.12668949 1e-6 253 252 2.8299997e-05 1e-6 263 252 0.00073669991 1e-6 267 252 0.00070839981 1e-6 268 252 0.00031169993 1e-6 270 252 0.00042499998 1e-6 271 252 2.8299997e-05 1e-6 272 252 0.00073669991 1e-6 273 252 0.0047603995 1e-6 274 252 0.0009066998 1e-6 277 252 0.0013317999 1e-6 279 252 0.0010201 1e-6 282 252 0.00028339983 1e-6 283 252 8.4999992e-05 1e-6 284 252 8.4999992e-05 1e-6 285 252 2.8299997e-05 1e-6 289 252 2.8299997e-05 1e-6 290 252 0.0024935999 1e-6 292 252 0.00025499985 1e-6 293 252 0.00025499985 1e-6 295 252 0.00011329999 1e-6 296 252 0.00014169999 1e-6 298 252 8.4999992e-05 1e-6 312 252 0.00017 1e-6 313 252 2.8299997e-05 1e-6 315 252 0.0029753 1e-6 317 252 0.00028339983 1e-6 318 252 2.8299997e-05 1e-6 319 252 0.00031169993 1e-6 320 252 5.6699995e-05 1e-6 322 252 5.6699995e-05 1e-6 324 252 2.8299997e-05 1e-6 325 252 2.8299997e-05 1e-6 326 252 0.00014169999 1e-6 328 252 8.4999992e-05 1e-6 340 252 0.00036839978 1e-6 345 252 0.0010483998 1e-6 346 252 2.8299997e-05 1e-6 349 252 0.00059509999 1e-6 350 252 0.00082169985 1e-6 351 252 5.6699995e-05 1e-6 352 252 0.00011329999 1e-6 354 252 5.6699995e-05 1e-6 356 252 0.00022669999 1e-6 357 252 2.8299997e-05 1e-6 358 252 0.0030318999 1e-6 369 252 2.8299997e-05 1e-6 370 252 0.00031169993 1e-6 372 252 8.4999992e-05 1e-6 375 252 0.0013317999 1e-6 377 252 0.00059509999 1e-6 384 252 0.00017 1e-6 385 252 8.4999992e-05 1e-6 386 252 0.0010201 1e-6 387 252 8.4999992e-05 1e-6 393 252 5.6699995e-05 1e-6 397 252 2.8299997e-05 1e-6 398 252 5.6699995e-05 1e-6 401 252 5.6699995e-05 1e-6 402 252 0.00025499985 1e-6 412 252 2.8299997e-05 1e-6 414 252 0.00076509989 1e-6 417 252 0.00042499998 1e-6 419 252 0.0013885 1e-6 420 252 2.8299997e-05 1e-6 421 252 8.4999992e-05 1e-6 422 252 8.4999992e-05 1e-6 430 252 5.6699995e-05 1e-6 433 252 2.8299997e-05 1e-6 434 252 2.8299997e-05 1e-6 442 252 8.4999992e-05 1e-6 443 252 0.015131298 1e-6 444 252 0.0011333998 1e-6 445 252 0.011249296 1e-6 446 252 0.00085009984 1e-6 447 252 0.0041653998 1e-6 450 252 0.0032869999 1e-6 452 252 0.010710899 1e-6 453 252 0.020628497 1e-6 454 252 0.0017567999 1e-6 455 252 0.038423397 1e-6 456 252 0.00028339983 1e-6 457 252 0.0035702998 1e-6 458 252 0.0021819 1e-6 459 252 0.0020684998 1e-6 460 252 0.00082169985 1e-6 463 252 0.012071099 1e-6 464 252 0.0012750998 1e-6 465 252 0.00079339999 1e-6 467 252 0.015074696 1e-6 468 252 0.014196299 1e-6 469 252 0.0047320984 1e-6 470 252 0.0053554997 1e-6 471 252 0.0069138967 1e-6 473 252 8.4999992e-05 1e-6 477 252 0.00096339989 1e-6 478 252 0.0010767998 1e-6 483 252 0.0012467999 1e-6 489 252 0.00014169999 1e-6 490 252 0.00039669988 1e-6 491 252 0.0042219982 1e-6 9 253 4.7299996e-05 1e-6 18 253 0.0002366 1e-6 24 253 0.011972897 1e-6 60 253 0.0037385998 1e-6 82 253 4.7299996e-05 1e-6 108 253 4.7299996e-05 1e-6 114 253 9.4599993e-05 1e-6 126 253 4.7299996e-05 1e-6 150 253 0.00075719994 1e-6 160 253 0.00037859986 1e-6 162 253 0.0022715 1e-6 169 253 0.0021768999 1e-6 172 253 0.00099379988 1e-6 189 253 4.7299996e-05 1e-6 190 253 9.4599993e-05 1e-6 192 253 0.0032179998 1e-6 193 253 4.7299996e-05 1e-6 194 253 0.00014199999 1e-6 198 253 0.089867949 1e-6 200 253 4.7299996e-05 1e-6 203 253 4.7299996e-05 1e-6 204 253 0.0036912998 1e-6 206 253 0.00014199999 1e-6 207 253 4.7299996e-05 1e-6 214 253 0.033694599 1e-6 233 253 0.0015143999 1e-6 234 253 0.0053475983 1e-6 237 253 0.00014199999 1e-6 241 253 0.0048743971 1e-6 252 253 0.00033129985 1e-6 253 253 0.0031706998 1e-6 267 253 0.0065779984 1e-6 270 253 0.0020821998 1e-6 273 253 0.015948098 1e-6 276 253 9.4599993e-05 1e-6 277 253 9.4599993e-05 1e-6 279 253 0.0041171983 1e-6 284 253 9.4599993e-05 1e-6 314 253 0.0026027998 1e-6 317 253 0.0010410999 1e-6 326 253 4.7299996e-05 1e-6 340 253 0.0056788996 1e-6 349 253 0.0128721 1e-6 356 253 0.00018929999 1e-6 358 253 0.0035492999 1e-6 384 253 4.7299996e-05 1e-6 387 253 4.7299996e-05 1e-6 402 253 4.7299996e-05 1e-6 414 253 0.00094649987 1e-6 417 253 0.00052059977 1e-6 421 253 9.4599993e-05 1e-6 422 253 4.7299996e-05 1e-6 430 253 4.7299996e-05 1e-6 433 253 4.7299996e-05 1e-6 434 253 4.7299996e-05 1e-6 442 253 0.0032652998 1e-6 443 253 0.0387582 1e-6 444 253 0.00014199999 1e-6 445 253 0.015096299 1e-6 446 253 0.0019403 1e-6 447 253 0.00056789978 1e-6 448 253 4.7299996e-05 1e-6 450 253 0.0026974999 1e-6 452 253 0.017604496 1e-6 453 253 0.030145299 1e-6 454 253 0.0022241999 1e-6 455 253 0.0234253 1e-6 456 253 0.00033129985 1e-6 457 253 0.0026974999 1e-6 458 253 0.00033129985 1e-6 459 253 0.00080449996 1e-6 460 253 0.00085179997 1e-6 463 253 0.017415199 1e-6 464 253 0.00018929999 1e-6 465 253 0.00099379988 1e-6 467 253 0.0090861991 1e-6 468 253 0.0043537989 1e-6 469 253 0.0031706998 1e-6 470 253 0.0035019999 1e-6 471 253 0.0010410999 1e-6 472 253 0.00047319988 1e-6 473 253 9.4599993e-05 1e-6 477 253 4.7299996e-05 1e-6 478 253 0.0012303998 1e-6 483 253 0.0010883999 1e-6 489 253 9.4599993e-05 1e-6 490 253 0.00028389995 1e-6 491 253 0.0077137984 1e-6 18 254 0.00061059999 1e-6 19 254 0.00088809989 1e-6 21 254 5.5499986e-05 1e-6 22 254 0.025312196 1e-6 24 254 0.0511241 1e-6 25 254 5.5499986e-05 1e-6 60 254 0.034415796 1e-6 68 254 0.00088809989 1e-6 69 254 0.00044409977 1e-6 73 254 0.00011099999 1e-6 75 254 5.5499986e-05 1e-6 108 254 5.5499986e-05 1e-6 114 254 0.00011099999 1e-6 126 254 5.5499986e-05 1e-6 160 254 0.0017762999 1e-6 169 254 0.0027754998 1e-6 189 254 5.5499986e-05 1e-6 190 254 5.5499986e-05 1e-6 193 254 0.012323096 1e-6 194 254 0.00011099999 1e-6 200 254 5.5499986e-05 1e-6 203 254 5.5499986e-05 1e-6 204 254 5.5499986e-05 1e-6 206 254 0.00011099999 1e-6 214 254 0.025978398 1e-6 219 254 0.0015542998 1e-6 220 254 0.0023313998 1e-6 224 254 0.0016097999 1e-6 234 254 0.014654499 1e-6 235 254 0.00272 1e-6 237 254 0.00066609983 1e-6 241 254 5.5499986e-05 1e-6 242 254 0.0044406988 1e-6 251 254 0.00011099999 1e-6 252 254 5.5499986e-05 1e-6 254 254 0.0020537998 1e-6 270 254 0.0029419998 1e-6 273 254 0.014987499 1e-6 277 254 0.0032195 1e-6 287 254 5.5499986e-05 1e-6 295 254 0.0018872998 1e-6 305 254 0.00016649999 1e-6 320 254 0.0019427999 1e-6 322 254 0.0013321999 1e-6 324 254 0.00049959985 1e-6 328 254 0.00055509992 1e-6 331 254 0.0049957968 1e-6 349 254 0.0011656999 1e-6 350 254 0.0023868999 1e-6 356 254 0.00038859993 1e-6 358 254 0.00038859993 1e-6 384 254 0.00016649999 1e-6 386 254 0.0025533999 1e-6 387 254 5.5499986e-05 1e-6 402 254 0.00016649999 1e-6 404 254 5.5499986e-05 1e-6 414 254 0.00049959985 1e-6 417 254 0.00016649999 1e-6 422 254 5.5499986e-05 1e-6 442 254 0.0044962987 1e-6 443 254 0.0329725 1e-6 444 254 0.0021094 1e-6 445 254 0.0286428 1e-6 446 254 0.0036636 1e-6 447 254 0.0022759 1e-6 448 254 0.00016649999 1e-6 450 254 0.0021094 1e-6 452 254 0.050402399 1e-6 453 254 0.043297298 1e-6 454 254 0.0032749998 1e-6 455 254 0.016097698 1e-6 456 254 0.00066609983 1e-6 457 254 0.017596398 1e-6 458 254 0.00038859993 1e-6 459 254 0.0013321999 1e-6 460 254 0.0018318 1e-6 463 254 0.0085483976 1e-6 464 254 0.0016097999 1e-6 465 254 0.00044409977 1e-6 467 254 0.018706597 1e-6 468 254 0.0026089 1e-6 469 254 0.0064945966 1e-6 470 254 0.0020537998 1e-6 471 254 0.0062169991 1e-6 473 254 5.5499986e-05 1e-6 477 254 0.0017762999 1e-6 478 254 0.00061059999 1e-6 483 254 0.00044409977 1e-6 489 254 0.00044409977 1e-6 490 254 0.00016649999 1e-6 491 254 5.5499986e-05 1e-6 18 255 0.00042859977 1e-6 22 255 0.0021431998 1e-6 24 255 0.051007297 1e-6 60 255 0.0092155971 1e-6 108 255 0.00021429999 1e-6 114 255 0.00042859977 1e-6 126 255 0.00021429999 1e-6 160 255 0.0032146999 1e-6 169 255 0.0021431998 1e-6 189 255 0.00021429999 1e-6 190 255 0.00021429999 1e-6 194 255 0.00021429999 1e-6 198 255 0.0062151998 1e-6 206 255 0.00042859977 1e-6 214 255 0.0070723966 1e-6 218 255 0.00021429999 1e-6 220 255 0.00064289989 1e-6 233 255 0.0060008988 1e-6 234 255 0.0098585971 1e-6 235 255 0.0034290999 1e-6 237 255 0.00042859977 1e-6 240 255 0.0012858999 1e-6 252 255 0.00021429999 1e-6 254 255 0.00042859977 1e-6 255 255 0.0032146999 1e-6 260 255 0.0021431998 1e-6 271 255 0.00021429999 1e-6 272 255 0.0017144999 1e-6 273 255 0.00085729989 1e-6 277 255 0.0045005977 1e-6 282 255 0.0019287998 1e-6 283 255 0.00042859977 1e-6 284 255 0.00021429999 1e-6 292 255 0.00021429999 1e-6 295 255 0.00042859977 1e-6 297 255 0.00042859977 1e-6 305 255 0.00085729989 1e-6 322 255 0.0010715998 1e-6 324 255 0.00042859977 1e-6 326 255 0.010930099 1e-6 328 255 0.0034290999 1e-6 331 255 0.0045005977 1e-6 335 255 0.0027860999 1e-6 351 255 0.0017144999 1e-6 354 255 0.0034290999 1e-6 356 255 0.00042859977 1e-6 358 255 0.0021431998 1e-6 372 255 0.00085729989 1e-6 387 255 0.00021429999 1e-6 402 255 0.0021431998 1e-6 417 255 0.00064289989 1e-6 443 255 0.010501496 1e-6 444 255 0.0070723966 1e-6 445 255 0.034933597 1e-6 446 255 0.0021431998 1e-6 447 255 0.0062151998 1e-6 448 255 0.00021429999 1e-6 450 255 0.0038576999 1e-6 452 255 0.025932297 1e-6 453 255 0.076082289 1e-6 454 255 0.00064289989 1e-6 455 255 0.012430299 1e-6 456 255 0.00042859977 1e-6 457 255 0.0070723966 1e-6 458 255 0.0012858999 1e-6 459 255 0.00085729989 1e-6 460 255 0.0077153966 1e-6 463 255 0.0117874 1e-6 464 255 0.00064289989 1e-6 465 255 0.0012858999 1e-6 467 255 0.0145735 1e-6 468 255 0.0079296976 1e-6 469 255 0.0057864971 1e-6 470 255 0.0062151998 1e-6 471 255 0.013501897 1e-6 473 255 0.00021429999 1e-6 478 255 0.0017144999 1e-6 483 255 0.0017144999 1e-6 490 255 0.00064289989 1e-6 19 256 0.0012429999 1e-6 24 256 0.011187099 1e-6 60 256 0.0074579976 1e-6 114 256 0.00062149996 1e-6 160 256 0.0055934973 1e-6 198 256 0.032939699 1e-6 206 256 0.00062149996 1e-6 214 256 0.070229948 1e-6 223 256 0.025481697 1e-6 233 256 0.013051599 1e-6 234 256 0.0018644999 1e-6 235 256 0.003729 1e-6 240 256 0.0055934973 1e-6 256 256 0.0031074998 1e-6 263 256 0.0012429999 1e-6 268 256 0.00062149996 1e-6 272 256 0.0012429999 1e-6 273 256 0.011808597 1e-6 279 256 0.0018644999 1e-6 340 256 0.0012429999 1e-6 356 256 0.00062149996 1e-6 358 256 0.0024859998 1e-6 417 256 0.00062149996 1e-6 443 256 0.0074579976 1e-6 444 256 0.022374097 1e-6 445 256 0.010565598 1e-6 446 256 0.00062149996 1e-6 447 256 0.028589197 1e-6 450 256 0.0043504983 1e-6 452 256 0.0149161 1e-6 453 256 0.025481697 1e-6 454 256 0.0018644999 1e-6 455 256 0.016159099 1e-6 457 256 0.011808597 1e-6 458 256 0.0012429999 1e-6 459 256 0.00062149996 1e-6 460 256 0.0074579976 1e-6 463 256 0.0074579976 1e-6 464 256 0.0012429999 1e-6 465 256 0.00062149996 1e-6 467 256 0.010565598 1e-6 468 256 0.013051599 1e-6 469 256 0.0074579976 1e-6 470 256 0.0074579976 1e-6 471 256 0.003729 1e-6 478 256 0.0012429999 1e-6 483 256 0.0031074998 1e-6 490 256 0.0012429999 1e-6 18 257 0.00032939995 1e-6 19 257 0.0013174999 1e-6 21 257 0.056324098 1e-6 22 257 0.0029644 1e-6 24 257 0.072463751 1e-6 60 257 0.0062581971 1e-6 114 257 0.00032939995 1e-6 126 257 0.00032939995 1e-6 160 257 0.0059288964 1e-6 169 257 0.012516499 1e-6 193 257 0.00032939995 1e-6 198 257 0.00032939995 1e-6 206 257 0.00065879989 1e-6 214 257 0.0108696 1e-6 220 257 0.00032939995 1e-6 234 257 0.0042818971 1e-6 237 257 0.00065879989 1e-6 240 257 0.00032939995 1e-6 241 257 0.00032939995 1e-6 257 257 0.030961797 1e-6 267 257 0.00032939995 1e-6 270 257 0.00032939995 1e-6 272 257 0.00065879989 1e-6 273 257 0.0075757988 1e-6 275 257 0.0046112984 1e-6 277 257 0.0023057 1e-6 278 257 0.00032939995 1e-6 282 257 0.00032939995 1e-6 284 257 0.00032939995 1e-6 286 257 0.00032939995 1e-6 287 257 0.00032939995 1e-6 288 257 0.00032939995 1e-6 289 257 0.00098809996 1e-6 290 257 0.0088932998 1e-6 291 257 0.00032939995 1e-6 301 257 0.0042818971 1e-6 324 257 0.00032939995 1e-6 326 257 0.00032939995 1e-6 328 257 0.00065879989 1e-6 331 257 0.00098809996 1e-6 335 257 0.00065879989 1e-6 340 257 0.00032939995 1e-6 351 257 0.00032939995 1e-6 354 257 0.00065879989 1e-6 356 257 0.00032939995 1e-6 358 257 0.0013174999 1e-6 370 257 0.00098809996 1e-6 402 257 0.00032939995 1e-6 417 257 0.00032939995 1e-6 443 257 0.024374198 1e-6 444 257 0.00065879989 1e-6 445 257 0.062582254 1e-6 446 257 0.0023057 1e-6 447 257 0.0082344972 1e-6 450 257 0.0029644 1e-6 452 257 0.014163397 1e-6 453 257 0.0408432 1e-6 454 257 0.00065879989 1e-6 455 257 0.019104097 1e-6 456 257 0.00032939995 1e-6 457 257 0.0029644 1e-6 458 257 0.00065879989 1e-6 459 257 0.00065879989 1e-6 460 257 0.0065875985 1e-6 463 257 0.015151497 1e-6 464 257 0.00065879989 1e-6 465 257 0.00065879989 1e-6 467 257 0.0079050995 1e-6 468 257 0.0059288964 1e-6 469 257 0.0059288964 1e-6 470 257 0.0065875985 1e-6 471 257 0.0016468999 1e-6 473 257 0.00032939995 1e-6 478 257 0.00098809996 1e-6 483 257 0.0013174999 1e-6 490 257 0.00065879989 1e-6 491 257 0.0026349998 1e-6 22 258 0.0040863976 1e-6 24 258 0.061295997 1e-6 60 258 0.0087565966 1e-6 114 258 0.00058379979 1e-6 160 258 0.004670199 1e-6 169 258 0.0029189 1e-6 198 258 0.0017512999 1e-6 206 258 0.00058379979 1e-6 214 258 0.0017512999 1e-6 220 258 0.00058379979 1e-6 223 258 0.00058379979 1e-6 233 258 0.0011674999 1e-6 234 258 0.006421499 1e-6 237 258 0.0023351 1e-6 240 258 0.0011674999 1e-6 258 258 0.0017512999 1e-6 268 258 0.004670199 1e-6 272 258 0.0011674999 1e-6 273 258 0.00058379979 1e-6 277 258 0.0023351 1e-6 282 258 0.0017512999 1e-6 283 258 0.00058379979 1e-6 295 258 0.00058379979 1e-6 297 258 0.00058379979 1e-6 305 258 0.00058379979 1e-6 322 258 0.0011674999 1e-6 326 258 0.00058379979 1e-6 328 258 0.0035025999 1e-6 331 258 0.004670199 1e-6 335 258 0.0029189 1e-6 351 258 0.0017512999 1e-6 354 258 0.0029189 1e-6 358 258 0.0017512999 1e-6 372 258 0.00058379979 1e-6 402 258 0.0023351 1e-6 417 258 0.00058379979 1e-6 443 258 0.012842998 1e-6 444 258 0.0052538998 1e-6 445 258 0.067133665 1e-6 446 258 0.0023351 1e-6 447 258 0.016929399 1e-6 450 258 0.0035025999 1e-6 452 258 0.018096898 1e-6 453 258 0.060128398 1e-6 455 258 0.0075889975 1e-6 457 258 0.0035025999 1e-6 458 258 0.0023351 1e-6 459 258 0.00058379979 1e-6 460 258 0.0075889975 1e-6 463 258 0.004670199 1e-6 464 258 0.00058379979 1e-6 465 258 0.00058379979 1e-6 467 258 0.011675399 1e-6 468 258 0.0017512999 1e-6 469 258 0.0058376975 1e-6 470 258 0.0058376975 1e-6 471 258 0.0040863976 1e-6 478 258 0.0011674999 1e-6 483 258 0.0017512999 1e-6 490 258 0.0011674999 1e-6 22 259 0.00040019979 1e-6 24 259 0.036814697 1e-6 25 259 0.00040019979 1e-6 60 259 0.0052020997 1e-6 114 259 0.00040019979 1e-6 160 259 0.0016005998 1e-6 198 259 0.028011199 1e-6 206 259 0.00080029992 1e-6 214 259 0.075630248 1e-6 223 259 0.0028010998 1e-6 224 259 0.00040019979 1e-6 233 259 0.0024009999 1e-6 234 259 0.0024009999 1e-6 240 259 0.00040019979 1e-6 241 259 0.00040019979 1e-6 267 259 0.00080029992 1e-6 268 259 0.0024009999 1e-6 270 259 0.0016005998 1e-6 272 259 0.00040019979 1e-6 273 259 0.016406599 1e-6 277 259 0.008803498 1e-6 279 259 0.00080029992 1e-6 282 259 0.00080029992 1e-6 284 259 0.00040019979 1e-6 288 259 0.00080029992 1e-6 292 259 0.00080029992 1e-6 295 259 0.00040019979 1e-6 297 259 0.0012004999 1e-6 298 259 0.00040019979 1e-6 312 259 0.00080029992 1e-6 315 259 0.00080029992 1e-6 317 259 0.00040019979 1e-6 319 259 0.00040019979 1e-6 320 259 0.00040019979 1e-6 321 259 0.0012004999 1e-6 324 259 0.00040019979 1e-6 340 259 0.00040019979 1e-6 356 259 0.00040019979 1e-6 358 259 0.0032012998 1e-6 372 259 0.00080029992 1e-6 380 259 0.00040019979 1e-6 386 259 0.00040019979 1e-6 415 259 0.00080029992 1e-6 417 259 0.00040019979 1e-6 422 259 0.010003999 1e-6 443 259 0.012805097 1e-6 444 259 0.0052020997 1e-6 445 259 0.041216496 1e-6 446 259 0.0016005998 1e-6 447 259 0.0172069 1e-6 450 259 0.0032012998 1e-6 452 259 0.008803498 1e-6 453 259 0.016006399 1e-6 454 259 0.0024009999 1e-6 455 259 0.016806699 1e-6 457 259 0.0032012998 1e-6 458 259 0.00040019979 1e-6 459 259 0.00040019979 1e-6 460 259 0.00080029992 1e-6 463 259 0.0172069 1e-6 464 259 0.00040019979 1e-6 465 259 0.00080029992 1e-6 467 259 0.0068026967 1e-6 468 259 0.022409 1e-6 469 259 0.0032012998 1e-6 470 259 0.0032012998 1e-6 471 259 0.0016005998 1e-6 478 259 0.0012004999 1e-6 483 259 0.0012004999 1e-6 490 259 0.00040019979 1e-6 491 259 0.00080029992 1e-6 22 260 0.0012135999 1e-6 24 260 0.0072815977 1e-6 60 260 0.0060679987 1e-6 114 260 0.0012135999 1e-6 198 260 0.0097086988 1e-6 206 260 0.0012135999 1e-6 214 260 0.040048499 1e-6 223 260 0.0133495 1e-6 234 260 0.0048543997 1e-6 260 260 0.0012135999 1e-6 263 260 0.0024271999 1e-6 267 260 0.0012135999 1e-6 268 260 0.0133495 1e-6 273 260 0.0133495 1e-6 358 260 0.0072815977 1e-6 417 260 0.0012135999 1e-6 443 260 0.0097086988 1e-6 444 260 0.0012135999 1e-6 445 260 0.0097086988 1e-6 446 260 0.0012135999 1e-6 447 260 0.0048543997 1e-6 450 260 0.0060679987 1e-6 452 260 0.0097086988 1e-6 453 260 0.016990297 1e-6 454 260 0.0012135999 1e-6 455 260 0.0072815977 1e-6 457 260 0.0024271999 1e-6 463 260 0.033980597 1e-6 464 260 0.0012135999 1e-6 465 260 0.0012135999 1e-6 467 260 0.0097086988 1e-6 468 260 0.0084950998 1e-6 469 260 0.0097086988 1e-6 470 260 0.0097086988 1e-6 478 260 0.0024271999 1e-6 483 260 0.0024271999 1e-6 490 260 0.0012135999 1e-6 491 260 0.0012135999 1e-6 24 261 0.020134199 1e-6 60 261 0.0033556998 1e-6 114 261 0.0016778999 1e-6 160 261 0.0033556998 1e-6 198 261 0.011744998 1e-6 206 261 0.0016778999 1e-6 214 261 0.050335597 1e-6 223 261 0.020134199 1e-6 234 261 0.0050335974 1e-6 263 261 0.026845597 1e-6 268 261 0.0218121 1e-6 272 261 0.0016778999 1e-6 273 261 0.0083892979 1e-6 284 261 0.0016778999 1e-6 358 261 0.0067113973 1e-6 417 261 0.0016778999 1e-6 443 261 0.0067113973 1e-6 444 261 0.0067113973 1e-6 445 261 0.018456399 1e-6 446 261 0.0016778999 1e-6 447 261 0.036912799 1e-6 450 261 0.0067113973 1e-6 452 261 0.0083892979 1e-6 453 261 0.020134199 1e-6 455 261 0.010067098 1e-6 457 261 0.0050335974 1e-6 464 261 0.0016778999 1e-6 465 261 0.0016778999 1e-6 467 261 0.010067098 1e-6 468 261 0.0067113973 1e-6 469 261 0.0083892979 1e-6 470 261 0.010067098 1e-6 471 261 0.0016778999 1e-6 478 261 0.0033556998 1e-6 483 261 0.0033556998 1e-6 490 261 0.0016778999 1e-6 18 262 0.00038309977 1e-6 22 262 0.0137931 1e-6 24 262 0.047892697 1e-6 60 262 0.0042145997 1e-6 114 262 0.00038309977 1e-6 126 262 0.00038309977 1e-6 160 262 0.0015325998 1e-6 198 262 0.016475096 1e-6 206 262 0.0007662999 1e-6 214 262 0.062835157 1e-6 233 262 0.00038309977 1e-6 234 262 0.0042145997 1e-6 240 262 0.00038309977 1e-6 241 262 0.0007662999 1e-6 252 262 0.0007662999 1e-6 262 262 0.0011493999 1e-6 263 262 0.00038309977 1e-6 268 262 0.0022988999 1e-6 272 262 0.00038309977 1e-6 273 262 0.023754798 1e-6 277 262 0.0007662999 1e-6 279 262 0.0007662999 1e-6 284 262 0.00038309977 1e-6 286 262 0.00038309977 1e-6 287 262 0.00038309977 1e-6 288 262 0.00038309977 1e-6 289 262 0.0049807988 1e-6 290 262 0.0084290989 1e-6 291 262 0.00038309977 1e-6 292 262 0.00038309977 1e-6 294 262 0.00038309977 1e-6 295 262 0.0007662999 1e-6 315 262 0.00038309977 1e-6 317 262 0.00038309977 1e-6 326 262 0.00038309977 1e-6 340 262 0.0007662999 1e-6 356 262 0.00038309977 1e-6 358 262 0.0038313998 1e-6 385 262 0.023754798 1e-6 386 262 0.0007662999 1e-6 417 262 0.0007662999 1e-6 438 262 0.014559399 1e-6 443 262 0.014559399 1e-6 444 262 0.0019156998 1e-6 445 262 0.027969297 1e-6 446 262 0.0030650999 1e-6 447 262 0.013409998 1e-6 450 262 0.0038313998 1e-6 452 262 0.011494298 1e-6 453 262 0.013026796 1e-6 454 262 0.0026819999 1e-6 455 262 0.017624497 1e-6 456 262 0.00038309977 1e-6 457 262 0.0030650999 1e-6 458 262 0.00038309977 1e-6 459 262 0.00038309977 1e-6 460 262 0.0007662999 1e-6 463 262 0.0038313998 1e-6 464 262 0.0007662999 1e-6 465 262 0.0011493999 1e-6 467 262 0.0095784999 1e-6 468 262 0.0019156998 1e-6 469 262 0.0061302967 1e-6 470 262 0.0068965964 1e-6 471 262 0.0015325998 1e-6 473 262 0.00038309977 1e-6 478 262 0.0019156998 1e-6 483 262 0.0019156998 1e-6 490 262 0.0007662999 1e-6 491 262 0.0019156998 1e-6 21 263 0.00067749992 1e-6 22 263 0.00067749992 1e-6 24 263 0.014905099 1e-6 25 263 0.00067749992 1e-6 60 263 0.0060975999 1e-6 114 263 0.00067749992 1e-6 160 263 0.0013549998 1e-6 198 263 0.012195099 1e-6 206 263 0.0013549998 1e-6 214 263 0.0616531 1e-6 223 263 0.018292699 1e-6 234 263 0.0033874998 1e-6 241 263 0.0013549998 1e-6 263 263 0.0040649995 1e-6 268 263 0.018292699 1e-6 272 263 0.00067749992 1e-6 273 263 0.018970199 1e-6 279 263 0.00067749992 1e-6 284 263 0.00067749992 1e-6 287 263 0.00067749992 1e-6 349 263 0.00067749992 1e-6 356 263 0.00067749992 1e-6 358 263 0.0054200999 1e-6 385 263 0.00067749992 1e-6 393 263 0.00067749992 1e-6 417 263 0.00067749992 1e-6 420 263 0.0013549998 1e-6 438 263 0.00067749992 1e-6 443 263 0.013550099 1e-6 444 263 0.00067749992 1e-6 445 263 0.018970199 1e-6 446 263 0.0013549998 1e-6 447 263 0.0088075995 1e-6 450 263 0.0047424994 1e-6 452 263 0.010840099 1e-6 453 263 0.017615199 1e-6 454 263 0.0033874998 1e-6 455 263 0.017615199 1e-6 457 263 0.0027099999 1e-6 460 263 0.00067749992 1e-6 463 263 0.017615199 1e-6 464 263 0.00067749992 1e-6 465 263 0.0013549998 1e-6 467 263 0.010162599 1e-6 468 263 0.0094850995 1e-6 469 263 0.0074525997 1e-6 470 263 0.0074525997 1e-6 471 263 0.0027099999 1e-6 478 263 0.0020325 1e-6 483 263 0.0020325 1e-6 490 263 0.0013549998 1e-6 491 263 0.00067749992 1e-6 18 264 0.0002485998 1e-6 22 264 0.00074589998 1e-6 24 264 0.090377867 1e-6 60 264 0.0031078998 1e-6 108 264 0.00012429999 1e-6 114 264 0.0002485998 1e-6 126 264 0.00012429999 1e-6 160 264 0.0016160998 1e-6 169 264 0.00012429999 1e-6 189 264 0.00012429999 1e-6 190 264 0.00012429999 1e-6 193 264 0.00012429999 1e-6 194 264 0.00012429999 1e-6 198 264 0.0013674998 1e-6 203 264 0.00012429999 1e-6 206 264 0.0002485998 1e-6 214 264 0.0042267963 1e-6 218 264 0.00012429999 1e-6 223 264 0.00049729994 1e-6 231 264 0.00037289993 1e-6 233 264 0.0014918 1e-6 234 264 0.0104426 1e-6 235 264 0.00074589998 1e-6 237 264 0.00099449977 1e-6 240 264 0.00012429999 1e-6 242 264 0.00012429999 1e-6 252 264 0.00012429999 1e-6 254 264 0.14022869 1e-6 264 264 0.0012431999 1e-6 265 264 0.00049729994 1e-6 266 264 0.0012431999 1e-6 269 264 0.0002485998 1e-6 270 264 0.015290897 1e-6 272 264 0.0012431999 1e-6 273 264 0.033316799 1e-6 276 264 0.00012429999 1e-6 277 264 0.0037294999 1e-6 317 264 0.00012429999 1e-6 322 264 0.0039780997 1e-6 326 264 0.005842898 1e-6 332 264 0.00037289993 1e-6 356 264 0.00037289993 1e-6 358 264 0.00074589998 1e-6 387 264 0.00012429999 1e-6 402 264 0.00037289993 1e-6 417 264 0.0002485998 1e-6 422 264 0.00012429999 1e-6 434 264 0.00012429999 1e-6 438 264 0.00012429999 1e-6 442 264 0.00037289993 1e-6 443 264 0.034062698 1e-6 444 264 0.0026105999 1e-6 445 264 0.059298899 1e-6 446 264 0.0041023977 1e-6 447 264 0.0070859976 1e-6 448 264 0.0002485998 1e-6 450 264 0.0036052 1e-6 452 264 0.0085777976 1e-6 453 264 0.0068373978 1e-6 454 264 0.00062159984 1e-6 455 264 0.023744397 1e-6 456 264 0.0013674998 1e-6 457 264 0.0032321999 1e-6 458 264 0.00099449977 1e-6 459 264 0.00074589998 1e-6 460 264 0.0021133998 1e-6 463 264 0.031576298 1e-6 464 264 0.00099449977 1e-6 465 264 0.00087019987 1e-6 467 264 0.017031297 1e-6 468 264 0.005842898 1e-6 469 264 0.0057184994 1e-6 470 264 0.0060914978 1e-6 471 264 0.0064643994 1e-6 473 264 0.00012429999 1e-6 478 264 0.0012431999 1e-6 483 264 0.0011187999 1e-6 489 264 0.0002485998 1e-6 490 264 0.00049729994 1e-6 9 265 5.2299991e-05 1e-6 18 265 0.00036609988 1e-6 22 265 0.0023534 1e-6 24 265 0.035929099 1e-6 60 265 0.0023534 1e-6 82 265 5.2299991e-05 1e-6 83 265 5.2299991e-05 1e-6 84 265 5.2299991e-05 1e-6 108 265 5.2299991e-05 1e-6 114 265 0.0001046 1e-6 120 265 5.2299991e-05 1e-6 126 265 5.2299991e-05 1e-6 130 265 5.2299991e-05 1e-6 137 265 5.2299991e-05 1e-6 150 265 0.00041839993 1e-6 160 265 0.0015689998 1e-6 169 265 0.0025626 1e-6 189 265 5.2299991e-05 1e-6 190 265 0.0001046 1e-6 191 265 0.0001046 1e-6 193 265 0.0046545975 1e-6 194 265 0.00015689999 1e-6 197 265 5.2299991e-05 1e-6 198 265 5.2299991e-05 1e-6 200 265 5.2299991e-05 1e-6 203 265 0.0001046 1e-6 204 265 0.0001046 1e-6 206 265 0.0001046 1e-6 207 265 5.2299991e-05 1e-6 214 265 0.018147599 1e-6 218 265 0.00015689999 1e-6 223 265 0.0047068968 1e-6 231 265 0.00020919999 1e-6 233 265 0.0073740967 1e-6 234 265 0.0088906996 1e-6 235 265 0.0019872999 1e-6 237 265 0.0010982999 1e-6 240 265 0.0014644 1e-6 242 265 0.0019872999 1e-6 252 265 0.00015689999 1e-6 254 265 0.078761578 1e-6 264 265 0.0013597999 1e-6 265 265 0.016212497 1e-6 266 265 0.025103297 1e-6 269 265 0.0013074998 1e-6 270 265 0.0043407977 1e-6 272 265 0.0010459998 1e-6 273 265 0.0026671998 1e-6 277 265 0.0151143 1e-6 293 265 0.0001046 1e-6 317 265 5.2299991e-05 1e-6 319 265 5.2299991e-05 1e-6 322 265 0.060875498 1e-6 326 265 0.0001046 1e-6 332 265 0.0025102999 1e-6 340 265 0.00015689999 1e-6 356 265 0.00041839993 1e-6 358 265 0.0008890999 1e-6 384 265 0.00094139995 1e-6 386 265 0.0012551998 1e-6 387 265 5.2299991e-05 1e-6 394 265 5.2299991e-05 1e-6 397 265 5.2299991e-05 1e-6 402 265 0.00041839993 1e-6 404 265 5.2299991e-05 1e-6 417 265 0.00031379983 1e-6 421 265 5.2299991e-05 1e-6 422 265 0.00015689999 1e-6 423 265 5.2299991e-05 1e-6 430 265 5.2299991e-05 1e-6 433 265 5.2299991e-05 1e-6 434 265 5.2299991e-05 1e-6 440 265 0.0001046 1e-6 442 265 0.0020395999 1e-6 443 265 0.0157419 1e-6 444 265 0.0020919 1e-6 445 265 0.041315798 1e-6 446 265 0.0025626 1e-6 447 265 0.0050729997 1e-6 448 265 0.00015689999 1e-6 450 265 0.0040269978 1e-6 452 265 0.0055958964 1e-6 453 265 0.0030332999 1e-6 454 265 0.00067989994 1e-6 455 265 0.031065296 1e-6 456 265 0.0015689998 1e-6 457 265 0.0028763998 1e-6 458 265 0.00073219999 1e-6 459 265 0.00052299979 1e-6 460 265 0.0018304 1e-6 463 265 0.0136499 1e-6 464 265 0.0007844998 1e-6 465 265 0.0008890999 1e-6 467 265 0.014172897 1e-6 468 265 0.0040792972 1e-6 469 265 0.004236199 1e-6 470 265 0.0047068968 1e-6 471 265 0.0071125999 1e-6 473 265 0.0001046 1e-6 477 265 0.00020919999 1e-6 478 265 0.0012029 1e-6 483 265 0.00067989994 1e-6 489 265 0.00031379983 1e-6 490 265 0.00036609988 1e-6 9 266 2.739999e-05 1e-6 18 266 0.0002193 1e-6 22 266 0.0041934997 1e-6 24 266 0.10689318 1e-6 60 266 0.0023023 1e-6 79 266 2.739999e-05 1e-6 82 266 2.739999e-05 1e-6 83 266 2.739999e-05 1e-6 84 266 2.739999e-05 1e-6 108 266 2.739999e-05 1e-6 113 266 5.4799995e-05 1e-6 114 266 8.2199986e-05 1e-6 126 266 5.4799995e-05 1e-6 127 266 2.739999e-05 1e-6 150 266 0.00032889983 1e-6 151 266 2.739999e-05 1e-6 160 266 0.0017815998 1e-6 169 266 2.739999e-05 1e-6 171 266 2.739999e-05 1e-6 189 266 5.4799995e-05 1e-6 190 266 8.2199986e-05 1e-6 192 266 2.739999e-05 1e-6 193 266 8.2199986e-05 1e-6 194 266 0.00010959999 1e-6 197 266 2.739999e-05 1e-6 198 266 0.0013155998 1e-6 200 266 5.4799995e-05 1e-6 201 266 2.739999e-05 1e-6 203 266 5.4799995e-05 1e-6 204 266 2.739999e-05 1e-6 206 266 0.00010959999 1e-6 207 266 2.739999e-05 1e-6 214 266 0.0024941999 1e-6 218 266 0.00019189999 1e-6 220 266 0.00043849996 1e-6 223 266 0.0037823999 1e-6 231 266 0.0015075 1e-6 233 266 0.00010959999 1e-6 234 266 0.010771498 1e-6 235 266 5.4799995e-05 1e-6 237 266 0.00073999981 1e-6 241 266 8.2199986e-05 1e-6 242 266 2.739999e-05 1e-6 248 266 2.739999e-05 1e-6 250 266 2.739999e-05 1e-6 252 266 0.00010959999 1e-6 254 266 0.23031378 1e-6 265 266 0.00010959999 1e-6 266 266 0.0048512965 1e-6 270 266 0.00010959999 1e-6 272 266 0.0012881998 1e-6 273 266 0.0055090971 1e-6 277 266 0.0002193 1e-6 282 266 5.4799995e-05 1e-6 284 266 2.739999e-05 1e-6 301 266 2.739999e-05 1e-6 317 266 2.739999e-05 1e-6 322 266 0.0024667999 1e-6 326 266 5.4799995e-05 1e-6 328 266 8.2199986e-05 1e-6 331 266 0.000137 1e-6 332 266 0.0018638 1e-6 335 266 2.739999e-05 1e-6 336 266 2.739999e-05 1e-6 340 266 2.739999e-05 1e-6 351 266 0.000137 1e-6 354 266 0.00010959999 1e-6 358 266 0.0010688999 1e-6 384 266 5.4799995e-05 1e-6 386 266 8.2199986e-05 1e-6 387 266 5.4799995e-05 1e-6 394 266 2.739999e-05 1e-6 397 266 2.739999e-05 1e-6 402 266 0.00032889983 1e-6 417 266 0.0002193 1e-6 419 266 2.739999e-05 1e-6 421 266 2.739999e-05 1e-6 422 266 0.00010959999 1e-6 423 266 2.739999e-05 1e-6 425 266 2.739999e-05 1e-6 430 266 2.739999e-05 1e-6 431 266 2.739999e-05 1e-6 433 266 2.739999e-05 1e-6 434 266 2.739999e-05 1e-6 438 266 0.00057559996 1e-6 442 266 0.0026311998 1e-6 443 266 0.033383597 1e-6 444 266 0.002412 1e-6 445 266 0.097793579 1e-6 446 266 0.0064409971 1e-6 447 266 0.0060024969 1e-6 448 266 0.00019189999 1e-6 450 266 0.0040290989 1e-6 452 266 0.004714299 1e-6 453 266 0.0012059999 1e-6 454 266 0.00060299993 1e-6 455 266 0.0260107 1e-6 456 266 0.0011236998 1e-6 457 266 0.0029600998 1e-6 458 266 0.00071259984 1e-6 459 266 0.00063039991 1e-6 460 266 0.0027682998 1e-6 463 266 0.010853797 1e-6 464 266 0.002686 1e-6 465 266 0.00060299993 1e-6 467 266 0.014087997 1e-6 468 266 0.0055090971 1e-6 469 266 0.0054542981 1e-6 470 266 0.0046319999 1e-6 471 266 0.0046045966 1e-6 473 266 0.00010959999 1e-6 477 266 0.00010959999 1e-6 478 266 0.0007948 1e-6 483 266 0.0007948 1e-6 489 266 0.0002193 1e-6 490 266 0.00038369978 1e-6 491 266 2.739999e-05 1e-6 19 267 0.0012536999 1e-6 21 267 0.00041789981 1e-6 22 267 0.047221098 1e-6 24 267 0.0589219 1e-6 60 267 0.0058503971 1e-6 114 267 0.00041789981 1e-6 160 267 0.0025072999 1e-6 169 267 0.026744697 1e-6 192 267 0.0091934986 1e-6 193 267 0.026744697 1e-6 198 267 0.0071040988 1e-6 206 267 0.00041789981 1e-6 214 267 0.011282898 1e-6 220 267 0.0029251999 1e-6 233 267 0.0087755993 1e-6 234 267 0.015043899 1e-6 237 267 0.00041789981 1e-6 240 267 0.00083579984 1e-6 254 267 0.0020893998 1e-6 265 267 0.00041789981 1e-6 266 267 0.00083579984 1e-6 267 267 0.0033431 1e-6 270 267 0.00041789981 1e-6 272 267 0.0029251999 1e-6 273 267 0.0041788965 1e-6 275 267 0.00041789981 1e-6 277 267 0.0033431 1e-6 282 267 0.0016714998 1e-6 283 267 0.0016714998 1e-6 289 267 0.0016714998 1e-6 295 267 0.00041789981 1e-6 296 267 0.00041789981 1e-6 305 267 0.00041789981 1e-6 317 267 0.00041789981 1e-6 322 267 0.0025072999 1e-6 328 267 0.00041789981 1e-6 331 267 0.00083579984 1e-6 340 267 0.00083579984 1e-6 356 267 0.00041789981 1e-6 358 267 0.00041789981 1e-6 370 267 0.0016714998 1e-6 386 267 0.0104471 1e-6 402 267 0.0020893998 1e-6 417 267 0.00041789981 1e-6 443 267 0.042206399 1e-6 444 267 0.014208097 1e-6 445 267 0.028416198 1e-6 446 267 0.0041788965 1e-6 447 267 0.021729998 1e-6 450 267 0.0025072999 1e-6 452 267 0.032177199 1e-6 453 267 0.071040452 1e-6 454 267 0.0029251999 1e-6 455 267 0.021729998 1e-6 456 267 0.00083579984 1e-6 457 267 0.0025072999 1e-6 459 267 0.0012536999 1e-6 460 267 0.0020893998 1e-6 463 267 0.0075218976 1e-6 464 267 0.00083579984 1e-6 465 267 0.00041789981 1e-6 467 267 0.0071040988 1e-6 468 267 0.013790198 1e-6 469 267 0.0033431 1e-6 470 267 0.0029251999 1e-6 471 267 0.0041788965 1e-6 478 267 0.00083579984 1e-6 483 267 0.00083579984 1e-6 490 267 0.00041789981 1e-6 22 268 0.0059717 1e-6 24 268 0.097082376 1e-6 60 268 0.0092133991 1e-6 114 268 0.00017059999 1e-6 160 268 0.0078484975 1e-6 169 268 0.013137698 1e-6 188 268 0.085650861 1e-6 192 268 0.0061422996 1e-6 193 268 0.0324177 1e-6 206 268 0.0003411998 1e-6 214 268 0.00051189982 1e-6 220 268 0.00017059999 1e-6 223 268 0.0054597966 1e-6 231 268 0.0030711 1e-6 233 268 0.0059717 1e-6 234 268 0.0095546991 1e-6 237 268 0.00051189982 1e-6 240 268 0.00051189982 1e-6 241 268 0.0040948987 1e-6 242 268 0.0058010966 1e-6 254 268 0.0010237 1e-6 266 268 0.0063128993 1e-6 272 268 0.00085309986 1e-6 273 268 0.028322797 1e-6 276 268 0.00017059999 1e-6 277 268 0.0010237 1e-6 282 268 0.00068249996 1e-6 283 268 0.00017059999 1e-6 295 268 0.00017059999 1e-6 297 268 0.00017059999 1e-6 305 268 0.00017059999 1e-6 317 268 0.00017059999 1e-6 322 268 0.0003411998 1e-6 328 268 0.0010237 1e-6 331 268 0.0013649999 1e-6 332 268 0.0056303963 1e-6 335 268 0.0010237 1e-6 340 268 0.0018767999 1e-6 351 268 0.00051189982 1e-6 354 268 0.0010237 1e-6 356 268 0.0003411998 1e-6 358 268 0.00051189982 1e-6 372 268 0.00017059999 1e-6 384 268 0.00017059999 1e-6 402 268 0.00068249996 1e-6 417 268 0.00017059999 1e-6 443 268 0.030882098 1e-6 444 268 0.005289197 1e-6 445 268 0.034123898 1e-6 446 268 0.005289197 1e-6 447 268 0.0059717 1e-6 450 268 0.0022180998 1e-6 452 268 0.018768098 1e-6 453 268 0.026616599 1e-6 454 268 0.0022180998 1e-6 455 268 0.021497998 1e-6 456 268 0.00068249996 1e-6 457 268 0.0027298999 1e-6 459 268 0.00051189982 1e-6 460 268 0.0015355998 1e-6 463 268 0.010237198 1e-6 464 268 0.0068247989 1e-6 465 268 0.00017059999 1e-6 467 268 0.0066541992 1e-6 468 268 0.0059717 1e-6 469 268 0.0020474 1e-6 470 268 0.0022180998 1e-6 471 268 0.0035829998 1e-6 478 268 0.00051189982 1e-6 483 268 0.00051189982 1e-6 489 268 0.00017059999 1e-6 490 268 0.0003411998 1e-6 491 268 0.00017059999 1e-6 22 269 0.00033639977 1e-6 24 269 0.057853997 1e-6 60 269 0.0036999998 1e-6 114 269 0.00033639977 1e-6 126 269 0.00033639977 1e-6 160 269 0.0057180971 1e-6 188 269 0.0033635998 1e-6 193 269 0.051126797 1e-6 194 269 0.00033639977 1e-6 206 269 0.00067269988 1e-6 214 269 0.00033639977 1e-6 218 269 0.00033639977 1e-6 233 269 0.0043726973 1e-6 234 269 0.0063908994 1e-6 237 269 0.00067269988 1e-6 241 269 0.0016817998 1e-6 252 269 0.00033639977 1e-6 254 269 0.0026908999 1e-6 266 269 0.00033639977 1e-6 269 269 0.0084089972 1e-6 270 269 0.028254297 1e-6 272 269 0.0010090999 1e-6 276 269 0.016481698 1e-6 277 269 0.00067269988 1e-6 282 269 0.00033639977 1e-6 284 269 0.00033639977 1e-6 317 269 0.00033639977 1e-6 322 269 0.00067269988 1e-6 332 269 0.0023544999 1e-6 340 269 0.0010090999 1e-6 356 269 0.00033639977 1e-6 358 269 0.012781698 1e-6 386 269 0.0043726973 1e-6 417 269 0.00067269988 1e-6 443 269 0.0070635974 1e-6 444 269 0.0057180971 1e-6 445 269 0.043390498 1e-6 446 269 0.053481299 1e-6 447 269 0.0094180964 1e-6 450 269 0.0057180971 1e-6 452 269 0.013790797 1e-6 453 269 0.0013454 1e-6 454 269 0.0013454 1e-6 455 269 0.021190699 1e-6 456 269 0.00033639977 1e-6 457 269 0.0050453991 1e-6 458 269 0.00033639977 1e-6 459 269 0.00067269988 1e-6 460 269 0.0013454 1e-6 463 269 0.042045098 1e-6 464 269 0.0010090999 1e-6 465 269 0.0010090999 1e-6 467 269 0.011436298 1e-6 468 269 0.019172598 1e-6 469 269 0.0057180971 1e-6 470 269 0.0063908994 1e-6 471 269 0.016817998 1e-6 473 269 0.00033639977 1e-6 478 269 0.0016817998 1e-6 483 269 0.0020181998 1e-6 490 269 0.00067269988 1e-6 18 270 0.00022099999 1e-6 21 270 0.005857598 1e-6 22 270 0.00033159996 1e-6 24 270 0.014367796 1e-6 60 270 0.0045313984 1e-6 104 270 0.00066309981 1e-6 108 270 0.0001105 1e-6 114 270 0.0001105 1e-6 120 270 0.0001105 1e-6 126 270 0.0001105 1e-6 130 270 0.025640998 1e-6 131 270 0.016246699 1e-6 142 270 0.00022099999 1e-6 143 270 0.00033159996 1e-6 150 270 0.0001105 1e-6 160 270 0.00033159996 1e-6 169 270 0.0001105 1e-6 187 270 0.018346597 1e-6 188 270 0.0011051998 1e-6 189 270 0.00022099999 1e-6 190 270 0.0001105 1e-6 192 270 0.00055259978 1e-6 193 270 0.0022103998 1e-6 194 270 0.00022099999 1e-6 198 270 0.012599498 1e-6 203 270 0.0001105 1e-6 204 270 0.0001105 1e-6 206 270 0.00022099999 1e-6 208 270 0.0001105 1e-6 214 270 0.020004399 1e-6 219 270 0.024425298 1e-6 221 270 0.00066309981 1e-6 224 270 0.0081785992 1e-6 227 270 0.0020998998 1e-6 233 270 0.0001105 1e-6 234 270 0.0050839968 1e-6 237 270 0.00033159996 1e-6 240 270 0.00033159996 1e-6 241 270 0.0036471998 1e-6 242 270 0.0001105 1e-6 252 270 0.00022099999 1e-6 270 270 0.11063218 1e-6 273 270 0.0011051998 1e-6 277 270 0.0080680996 1e-6 282 270 0.0016577998 1e-6 283 270 0.00033159996 1e-6 284 270 0.00033159996 1e-6 285 270 0.0001105 1e-6 286 270 0.00033159996 1e-6 289 270 0.0062996969 1e-6 290 270 0.0013263 1e-6 292 270 0.00022099999 1e-6 293 270 0.00055259978 1e-6 294 270 0.002321 1e-6 296 270 0.0001105 1e-6 297 270 0.0001105 1e-6 307 270 0.0011051998 1e-6 312 270 0.00022099999 1e-6 317 270 0.0001105 1e-6 320 270 0.0001105 1e-6 321 270 0.00033159996 1e-6 322 270 0.00022099999 1e-6 324 270 0.00044209999 1e-6 325 270 0.0001105 1e-6 326 270 0.00022099999 1e-6 328 270 0.00022099999 1e-6 335 270 0.0001105 1e-6 338 270 0.00044209999 1e-6 339 270 0.0001105 1e-6 340 270 0.00055259978 1e-6 347 270 0.00033159996 1e-6 349 270 0.00088419998 1e-6 350 270 0.00044209999 1e-6 351 270 0.00044209999 1e-6 352 270 0.0001105 1e-6 354 270 0.0013263 1e-6 356 270 0.00033159996 1e-6 358 270 0.0028736 1e-6 371 270 0.0001105 1e-6 372 270 0.00066309981 1e-6 373 270 0.00077369995 1e-6 375 270 0.0011051998 1e-6 387 270 0.0001105 1e-6 393 270 0.0001105 1e-6 402 270 0.00033159996 1e-6 417 270 0.00033159996 1e-6 422 270 0.0001105 1e-6 424 270 0.0019893998 1e-6 430 270 0.0001105 1e-6 443 270 0.0087311976 1e-6 444 270 0.0011051998 1e-6 445 270 0.017020296 1e-6 446 270 0.0013263 1e-6 447 270 0.0097258985 1e-6 450 270 0.0035366998 1e-6 452 270 0.0099468976 1e-6 453 270 0.0032050998 1e-6 454 270 0.00099469977 1e-6 455 270 0.037577398 1e-6 456 270 0.00033159996 1e-6 457 270 0.0028736 1e-6 458 270 0.00088419998 1e-6 459 270 0.00033159996 1e-6 460 270 0.002321 1e-6 463 270 0.0172414 1e-6 464 270 0.00055259978 1e-6 465 270 0.00088419998 1e-6 467 270 0.0119363 1e-6 468 270 0.016799297 1e-6 469 270 0.0059681982 1e-6 470 270 0.0065207966 1e-6 471 270 0.0054155998 1e-6 473 270 0.0001105 1e-6 477 270 0.0001105 1e-6 478 270 0.0011051998 1e-6 483 270 0.0025419998 1e-6 490 270 0.00055259978 1e-6 491 270 0.0039787963 1e-6 4 271 0.0001318 1e-6 17 271 0.0017127998 1e-6 18 271 0.00026349979 1e-6 22 271 0.00065879989 1e-6 24 271 0.049407098 1e-6 60 271 0.0044795983 1e-6 108 271 0.0001318 1e-6 114 271 0.00026349979 1e-6 117 271 0.0001318 1e-6 118 271 0.0001318 1e-6 119 271 0.0042160973 1e-6 126 271 0.0001318 1e-6 130 271 0.00052699982 1e-6 135 271 0.00065879989 1e-6 160 271 0.0018445 1e-6 169 271 0.00026349979 1e-6 171 271 0.0023714998 1e-6 172 271 0.0038208 1e-6 186 271 0.0039525963 1e-6 189 271 0.0001318 1e-6 190 271 0.0001318 1e-6 191 271 0.0088273995 1e-6 192 271 0.0001318 1e-6 194 271 0.00026349979 1e-6 198 271 0.014360998 1e-6 203 271 0.0001318 1e-6 206 271 0.00026349979 1e-6 214 271 0.049143597 1e-6 219 271 0.032938097 1e-6 224 271 0.012121197 1e-6 225 271 0.00092229992 1e-6 227 271 0.0052700974 1e-6 234 271 0.016205497 1e-6 237 271 0.00026349979 1e-6 239 271 0.0001318 1e-6 240 271 0.0054017976 1e-6 241 271 0.027667999 1e-6 252 271 0.00026349979 1e-6 254 271 0.013043497 1e-6 267 271 0.0001318 1e-6 270 271 0.0014493 1e-6 271 271 0.0028986 1e-6 272 271 0.0001318 1e-6 273 271 0.0038208 1e-6 274 271 0.0001318 1e-6 276 271 0.0068510994 1e-6 277 271 0.0061923973 1e-6 282 271 0.0001318 1e-6 283 271 0.0001318 1e-6 284 271 0.00026349979 1e-6 285 271 0.0080368966 1e-6 300 271 0.0001318 1e-6 301 271 0.00039529987 1e-6 315 271 0.0060605966 1e-6 317 271 0.00026349979 1e-6 322 271 0.0043477975 1e-6 326 271 0.0001318 1e-6 328 271 0.0001318 1e-6 331 271 0.00026349979 1e-6 337 271 0.00026349979 1e-6 340 271 0.0001318 1e-6 349 271 0.0001318 1e-6 354 271 0.0001318 1e-6 356 271 0.00039529987 1e-6 358 271 0.0018445 1e-6 386 271 0.0047430992 1e-6 387 271 0.0001318 1e-6 417 271 0.00039529987 1e-6 422 271 0.00026349979 1e-6 434 271 0.0001318 1e-6 442 271 0.0038208 1e-6 443 271 0.015942 1e-6 444 271 0.0064558983 1e-6 445 271 0.058893297 1e-6 446 271 0.0035573 1e-6 447 271 0.0044795983 1e-6 448 271 0.0001318 1e-6 450 271 0.0035573 1e-6 452 271 0.011989497 1e-6 453 271 0.0054017976 1e-6 454 271 0.0018445 1e-6 455 271 0.027536198 1e-6 456 271 0.00026349979 1e-6 457 271 0.0038208 1e-6 458 271 0.00092229992 1e-6 459 271 0.00092229992 1e-6 460 271 0.0019762998 1e-6 463 271 0.0094861984 1e-6 464 271 0.0013174999 1e-6 465 271 0.0010539999 1e-6 467 271 0.0118577 1e-6 468 271 0.012252998 1e-6 469 271 0.0048747994 1e-6 470 271 0.0048747994 1e-6 471 271 0.002108 1e-6 473 271 0.0001318 1e-6 477 271 0.0001318 1e-6 478 271 0.0015809999 1e-6 483 271 0.0014493 1e-6 490 271 0.00052699982 1e-6 491 271 0.0046112984 1e-6 13 272 0.0001356 1e-6 18 272 0.00027109985 1e-6 21 272 0.0001356 1e-6 22 272 0.00027109985 1e-6 24 272 0.011522297 1e-6 25 272 0.0001356 1e-6 60 272 0.0020333 1e-6 82 272 0.00054219994 1e-6 108 272 0.0001356 1e-6 114 272 0.0001356 1e-6 119 272 0.00027109985 1e-6 120 272 0.00067779981 1e-6 126 272 0.0001356 1e-6 130 272 0.0035244999 1e-6 131 272 0.00040669995 1e-6 135 272 0.0085400976 1e-6 138 272 0.0001356 1e-6 140 272 0.00067779981 1e-6 143 272 0.0001356 1e-6 150 272 0.0001356 1e-6 160 272 0.0013555998 1e-6 161 272 0.0001356 1e-6 169 272 0.0001356 1e-6 171 272 0.06466037 1e-6 172 272 0.0001356 1e-6 186 272 0.0040666983 1e-6 187 272 0.0001356 1e-6 188 272 0.0001356 1e-6 189 272 0.0001356 1e-6 190 272 0.0001356 1e-6 191 272 0.056255899 1e-6 192 272 0.0001356 1e-6 193 272 0.00027109985 1e-6 194 272 0.00054219994 1e-6 197 272 0.0020333 1e-6 198 272 0.0126068 1e-6 200 272 0.0001356 1e-6 203 272 0.0001356 1e-6 204 272 0.0001356 1e-6 206 272 0.00027109985 1e-6 214 272 0.0094889998 1e-6 218 272 0.00040669995 1e-6 219 272 0.0044733994 1e-6 222 272 0.00081329979 1e-6 223 272 0.00067779981 1e-6 224 272 0.0036599999 1e-6 225 272 0.036057997 1e-6 227 272 0.0001356 1e-6 231 272 0.0001356 1e-6 233 272 0.0001356 1e-6 234 272 0.0066422969 1e-6 237 272 0.00040669995 1e-6 239 272 0.0048799999 1e-6 240 272 0.0032533999 1e-6 241 272 0.0044733994 1e-6 243 272 0.00067779981 1e-6 252 272 0.00027109985 1e-6 254 272 0.00054219994 1e-6 271 272 0.0070488974 1e-6 272 272 0.0028466999 1e-6 273 272 0.0010845 1e-6 274 272 0.0040666983 1e-6 276 272 0.00040669995 1e-6 277 272 0.0032533999 1e-6 279 272 0.00054219994 1e-6 282 272 0.0010845 1e-6 284 272 0.00040669995 1e-6 285 272 0.00040669995 1e-6 293 272 0.0001356 1e-6 301 272 0.00027109985 1e-6 312 272 0.0001356 1e-6 315 272 0.0014910998 1e-6 317 272 0.0001356 1e-6 319 272 0.00027109985 1e-6 322 272 0.00027109985 1e-6 326 272 0.00054219994 1e-6 340 272 0.00040669995 1e-6 349 272 0.00027109985 1e-6 356 272 0.00040669995 1e-6 358 272 0.0029821999 1e-6 386 272 0.00027109985 1e-6 387 272 0.0001356 1e-6 402 272 0.00027109985 1e-6 404 272 0.0001356 1e-6 414 272 0.0001356 1e-6 417 272 0.00054219994 1e-6 421 272 0.0001356 1e-6 422 272 0.0001356 1e-6 430 272 0.0001356 1e-6 434 272 0.0001356 1e-6 437 272 0.0001356 1e-6 442 272 0.0001356 1e-6 443 272 0.013284497 1e-6 444 272 0.00094889989 1e-6 445 272 0.035515796 1e-6 446 272 0.0027110998 1e-6 447 272 0.0014910998 1e-6 450 272 0.0046088994 1e-6 452 272 0.0085400976 1e-6 453 272 0.0020333 1e-6 454 272 0.00067779981 1e-6 455 272 0.0322624 1e-6 456 272 0.00054219994 1e-6 457 272 0.0028466999 1e-6 458 272 0.00081329979 1e-6 459 272 0.00054219994 1e-6 460 272 0.00122 1e-6 463 272 0.0070488974 1e-6 464 272 0.00067779981 1e-6 465 272 0.00122 1e-6 467 272 0.010573398 1e-6 468 272 0.0043377988 1e-6 469 272 0.0066422969 1e-6 470 272 0.0074555986 1e-6 471 272 0.00244 1e-6 473 272 0.0001356 1e-6 477 272 0.0001356 1e-6 478 272 0.0014910998 1e-6 483 272 0.0020333 1e-6 490 272 0.0040666983 1e-6 491 272 0.0010845 1e-6 19 273 0.014090497 1e-6 21 273 0.0002135 1e-6 22 273 0.0017078998 1e-6 23 273 0.00042699999 1e-6 24 273 0.075362861 1e-6 25 273 0.043552499 1e-6 60 273 0.0070452988 1e-6 114 273 0.0002135 1e-6 126 273 0.0002135 1e-6 160 273 0.0019214 1e-6 169 273 0.00042699999 1e-6 188 273 0.0034158998 1e-6 192 273 0.0002135 1e-6 193 273 0.013876997 1e-6 206 273 0.00042699999 1e-6 214 273 0.0215628 1e-6 215 273 0.0002135 1e-6 218 273 0.0002135 1e-6 220 273 0.0010674999 1e-6 223 273 0.0002135 1e-6 224 273 0.00064049987 1e-6 225 273 0.0002135 1e-6 231 273 0.0002135 1e-6 233 273 0.0002135 1e-6 234 273 0.0098206997 1e-6 237 273 0.0010674999 1e-6 241 273 0.0002135 1e-6 242 273 0.00042699999 1e-6 254 273 0.0029888998 1e-6 257 273 0.0002135 1e-6 266 273 0.0002135 1e-6 267 273 0.0017078998 1e-6 268 273 0.0002135 1e-6 270 273 0.00042699999 1e-6 273 273 0.047395397 1e-6 276 273 0.00085399998 1e-6 277 273 0.048676297 1e-6 282 273 0.0010674999 1e-6 283 273 0.0002135 1e-6 284 273 0.0002135 1e-6 295 273 0.0002135 1e-6 301 273 0.0002135 1e-6 305 273 0.0002135 1e-6 312 273 0.00064049987 1e-6 322 273 0.00064049987 1e-6 326 273 0.0002135 1e-6 328 273 0.0014944 1e-6 331 273 0.0023484 1e-6 332 273 0.0019214 1e-6 335 273 0.00042699999 1e-6 336 273 0.0002135 1e-6 337 273 0.0002135 1e-6 351 273 0.0002135 1e-6 354 273 0.0002135 1e-6 356 273 0.00042699999 1e-6 358 273 0.0010674999 1e-6 402 273 0.00042699999 1e-6 417 273 0.0002135 1e-6 442 273 0.0002135 1e-6 443 273 0.056789096 1e-6 444 273 0.00085399998 1e-6 445 273 0.058069997 1e-6 446 273 0.0053372979 1e-6 447 273 0.001281 1e-6 450 273 0.0021348998 1e-6 452 273 0.0213493 1e-6 453 273 0.019214299 1e-6 454 273 0.0027753999 1e-6 455 273 0.016865898 1e-6 456 273 0.00042699999 1e-6 457 273 0.0040563978 1e-6 458 273 0.0010674999 1e-6 459 273 0.0010674999 1e-6 460 273 0.0017078998 1e-6 463 273 0.0098206997 1e-6 464 273 0.0002135 1e-6 465 273 0.0002135 1e-6 467 273 0.011528596 1e-6 468 273 0.0014944 1e-6 469 273 0.0029888998 1e-6 470 273 0.0029888998 1e-6 471 273 0.0023484 1e-6 473 273 0.0002135 1e-6 478 273 0.00085399998 1e-6 483 273 0.00085399998 1e-6 489 273 0.00042699999 1e-6 490 273 0.00042699999 1e-6 491 273 0.00085399998 1e-6 18 274 0.00027009984 1e-6 21 274 0.00027009984 1e-6 22 274 0.00081029977 1e-6 24 274 0.010263298 1e-6 25 274 0.0054017976 1e-6 60 274 0.0035110998 1e-6 104 274 0.0024307999 1e-6 107 274 0.00054019992 1e-6 108 274 0.00013499999 1e-6 114 274 0.00027009984 1e-6 126 274 0.00013499999 1e-6 130 274 0.014989898 1e-6 159 274 0.0010803998 1e-6 160 274 0.0032410999 1e-6 169 274 0.00040509994 1e-6 171 274 0.00013499999 1e-6 186 274 0.0010803998 1e-6 187 274 0.0171506 1e-6 190 274 0.00013499999 1e-6 191 274 0.0033761 1e-6 192 274 0.0066171996 1e-6 193 274 0.011343699 1e-6 194 274 0.00013499999 1e-6 198 274 0.0094530992 1e-6 206 274 0.00027009984 1e-6 214 274 0.011073597 1e-6 219 274 0.0540176 1e-6 223 274 0.0059418976 1e-6 224 274 0.0239028 1e-6 225 274 0.0031059999 1e-6 231 274 0.00013499999 1e-6 233 274 0.00054019992 1e-6 234 274 0.0054017976 1e-6 237 274 0.00013499999 1e-6 241 274 0.031330198 1e-6 252 274 0.011748798 1e-6 254 274 0.00094529986 1e-6 257 274 0.00013499999 1e-6 265 274 0.00027009984 1e-6 266 274 0.00027009984 1e-6 267 274 0.0016204999 1e-6 270 274 0.0033761 1e-6 273 274 0.0094530992 1e-6 276 274 0.00013499999 1e-6 277 274 0.0059418976 1e-6 284 274 0.00027009984 1e-6 290 274 0.0013503998 1e-6 293 274 0.0118839 1e-6 322 274 0.013774499 1e-6 325 274 0.0082376972 1e-6 334 274 0.00013499999 1e-6 340 274 0.00013499999 1e-6 347 274 0.00013499999 1e-6 350 274 0.00054019992 1e-6 356 274 0.00040509994 1e-6 358 274 0.0017555999 1e-6 387 274 0.00013499999 1e-6 417 274 0.00027009984 1e-6 422 274 0.00013499999 1e-6 443 274 0.014449697 1e-6 444 274 0.0010803998 1e-6 445 274 0.0201215 1e-6 446 274 0.0018906 1e-6 447 274 0.0064820983 1e-6 450 274 0.0028358998 1e-6 452 274 0.019446298 1e-6 453 274 0.023092497 1e-6 454 274 0.0022956999 1e-6 455 274 0.034571197 1e-6 456 274 0.00027009984 1e-6 457 274 0.0029709998 1e-6 458 274 0.0010803998 1e-6 459 274 0.00067519979 1e-6 460 274 0.0012153999 1e-6 463 274 0.015529998 1e-6 464 274 0.00054019992 1e-6 465 274 0.00054019992 1e-6 467 274 0.0074273981 1e-6 468 274 0.0059418976 1e-6 469 274 0.0033761 1e-6 470 274 0.0037811999 1e-6 471 274 0.0014854998 1e-6 473 274 0.00013499999 1e-6 478 274 0.00081029977 1e-6 483 274 0.00081029977 1e-6 490 274 0.00040509994 1e-6 491 274 0.0081025995 1e-6 19 275 0.019535098 1e-6 21 275 0.012116697 1e-6 22 275 0.0039564967 1e-6 24 275 0.044263098 1e-6 25 275 0.0046982989 1e-6 60 275 0.0059346966 1e-6 114 275 0.0002472999 1e-6 120 275 0.0002472999 1e-6 126 275 0.0002472999 1e-6 130 275 0.00074179983 1e-6 131 275 0.00049459981 1e-6 160 275 0.0029673998 1e-6 169 275 0.0061819963 1e-6 187 275 0.0002472999 1e-6 192 275 0.0002472999 1e-6 193 275 0.0061819963 1e-6 198 275 0.0037091998 1e-6 206 275 0.00049459981 1e-6 214 275 0.010632999 1e-6 218 275 0.0002472999 1e-6 219 275 0.00074179983 1e-6 223 275 0.0002472999 1e-6 224 275 0.0027200999 1e-6 233 275 0.0002472999 1e-6 234 275 0.0044509992 1e-6 241 275 0.0002472999 1e-6 254 275 0.00049459981 1e-6 257 275 0.0024728 1e-6 267 275 0.0093965977 1e-6 270 275 0.0066765994 1e-6 273 275 0.064787269 1e-6 275 275 0.0064292997 1e-6 277 275 0.005687397 1e-6 284 275 0.0002472999 1e-6 289 275 0.022255197 1e-6 301 275 0.00049459981 1e-6 340 275 0.0002472999 1e-6 349 275 0.0022254998 1e-6 356 275 0.0002472999 1e-6 358 275 0.0014836998 1e-6 370 275 0.025717098 1e-6 386 275 0.0002472999 1e-6 417 275 0.0002472999 1e-6 443 275 0.051186897 1e-6 444 275 0.00074179983 1e-6 445 275 0.037091997 1e-6 446 275 0.0029673998 1e-6 447 275 0.0096438974 1e-6 450 275 0.0027200999 1e-6 452 275 0.015084099 1e-6 453 275 0.019287799 1e-6 454 275 0.00098909996 1e-6 455 275 0.017062299 1e-6 457 275 0.0027200999 1e-6 458 275 0.00049459981 1e-6 459 275 0.00049459981 1e-6 460 275 0.0017309999 1e-6 463 275 0.014836799 1e-6 464 275 0.00049459981 1e-6 465 275 0.0002472999 1e-6 467 275 0.0071710981 1e-6 468 275 0.0022254998 1e-6 469 275 0.0044509992 1e-6 470 275 0.0046982989 1e-6 471 275 0.0042037964 1e-6 473 275 0.0002472999 1e-6 478 275 0.00049459981 1e-6 483 275 0.00098909996 1e-6 490 275 0.00049459981 1e-6 491 275 0.0022254998 1e-6 21 276 0.00059769978 1e-6 24 276 0.0101614 1e-6 25 276 0.00059769978 1e-6 60 276 0.0023908999 1e-6 114 276 0.00059769978 1e-6 118 276 0.00059769978 1e-6 130 276 0.0017931999 1e-6 131 276 0.0011954999 1e-6 160 276 0.0011954999 1e-6 187 276 0.00059769978 1e-6 193 276 0.050806899 1e-6 198 276 0.0059772991 1e-6 206 276 0.00059769978 1e-6 214 276 0.023311399 1e-6 219 276 0.0041840971 1e-6 224 276 0.0035863998 1e-6 233 276 0.0059772991 1e-6 234 276 0.0059772991 1e-6 241 276 0.00059769978 1e-6 252 276 0.00059769978 1e-6 268 276 0.0203228 1e-6 270 276 0.0071726963 1e-6 272 276 0.00059769978 1e-6 273 276 0.0017931999 1e-6 276 276 0.083084285 1e-6 277 276 0.0017931999 1e-6 284 276 0.00059769978 1e-6 289 276 0.00059769978 1e-6 300 276 0.0017931999 1e-6 301 276 0.00059769978 1e-6 326 276 0.026300099 1e-6 340 276 0.0011954999 1e-6 356 276 0.00059769978 1e-6 358 276 0.0023908999 1e-6 417 276 0.00059769978 1e-6 443 276 0.011954598 1e-6 444 276 0.0101614 1e-6 445 276 0.022713698 1e-6 447 276 0.028690998 1e-6 450 276 0.0047817975 1e-6 452 276 0.011356797 1e-6 453 276 0.0173341 1e-6 454 276 0.0011954999 1e-6 455 276 0.034070499 1e-6 457 276 0.0029885999 1e-6 459 276 0.019724999 1e-6 460 276 0.00059769978 1e-6 463 276 0.037059199 1e-6 464 276 0.0011954999 1e-6 465 276 0.00059769978 1e-6 467 276 0.0083681978 1e-6 468 276 0.0029885999 1e-6 469 276 0.0053795986 1e-6 470 276 0.0053795986 1e-6 471 276 0.0029885999 1e-6 478 276 0.0011954999 1e-6 483 276 0.0017931999 1e-6 490 276 0.00059769978 1e-6 491 276 0.00059769978 1e-6 9 277 1.17e-05 1e-6 16 277 3.8999997e-06 1e-6 18 277 0.00011659999 1e-6 19 277 0.057920396 1e-6 21 277 0.00047409977 1e-6 22 277 0.027266096 1e-6 23 277 0.00014769999 1e-6 24 277 0.0018845999 1e-6 25 277 0.0011034999 1e-6 60 277 0.0140002 1e-6 66 277 1.5499987e-05 1e-6 79 277 3.8999997e-06 1e-6 82 277 1.17e-05 1e-6 83 277 7.7999994e-06 1e-6 84 277 7.7999994e-06 1e-6 108 277 1.9399988e-05 1e-6 113 277 1.9399988e-05 1e-6 114 277 6.6099994e-05 1e-6 126 277 2.7199989e-05 1e-6 127 277 3.8999997e-06 1e-6 150 277 0.00035749981 1e-6 151 277 2.7199989e-05 1e-6 153 277 1.17e-05 1e-6 154 277 0.0001127 1e-6 160 277 0.0020826999 1e-6 161 277 6.9899994e-05 1e-6 165 277 0.00057119993 1e-6 169 277 0.0011656999 1e-6 171 277 0.000101 1e-6 172 277 0.0002293 1e-6 183 277 0.00058669993 1e-6 189 277 6.6099994e-05 1e-6 190 277 6.6099994e-05 1e-6 192 277 1.5499987e-05 1e-6 194 277 4.269999e-05 1e-6 195 277 0.00039629987 1e-6 196 277 1.17e-05 1e-6 197 277 7.7999994e-06 1e-6 198 277 0.00054399995 1e-6 200 277 1.9399988e-05 1e-6 201 277 7.7999994e-06 1e-6 203 277 0.00034189993 1e-6 204 277 4.269999e-05 1e-6 206 277 0.00048179994 1e-6 207 277 2.3299988e-05 1e-6 209 277 7.7999994e-06 1e-6 214 277 0.020030897 1e-6 218 277 5.0499992e-05 1e-6 223 277 0.00064109988 1e-6 224 277 2.3299988e-05 1e-6 233 277 0.00048959977 1e-6 234 277 0.0049153976 1e-6 237 277 6.9899994e-05 1e-6 240 277 0.00048569986 1e-6 241 277 0.00042349985 1e-6 242 277 0.0002137 1e-6 248 277 7.7999994e-06 1e-6 250 277 3.8999997e-06 1e-6 251 277 4.6599991e-05 1e-6 252 277 0.00011659999 1e-6 262 277 3.8999997e-06 1e-6 263 277 3.8999997e-06 1e-6 267 277 0.0029958999 1e-6 270 277 0.0017990998 1e-6 272 277 0.00076159998 1e-6 273 277 0.0011463 1e-6 276 277 0.00013209999 1e-6 277 277 0.17267716 1e-6 278 277 0.019902598 1e-6 279 277 0.0001049 1e-6 280 277 0.00092479982 1e-6 281 277 1.9399988e-05 1e-6 282 277 0.012259398 1e-6 283 277 0.00037299981 1e-6 284 277 0.0022421 1e-6 285 277 3.8999997e-06 1e-6 286 277 0.00062949979 1e-6 287 277 0.00045849988 1e-6 288 277 0.0045229979 1e-6 289 277 0.0016786 1e-6 290 277 0.010495298 1e-6 291 277 0.0015153999 1e-6 292 277 0.00015149999 1e-6 293 277 0.000101 1e-6 294 277 1.5499987e-05 1e-6 295 277 0.0018728999 1e-6 296 277 7.7999994e-06 1e-6 297 277 3.499999e-05 1e-6 298 277 7.7999994e-06 1e-6 300 277 0.0001088 1e-6 301 277 0.00037299981 1e-6 302 277 0.00018259999 1e-6 303 277 0.0001127 1e-6 306 277 0.00032249978 1e-6 307 277 3.8999997e-06 1e-6 308 277 0.00033029984 1e-6 309 277 8.5499996e-05 1e-6 310 277 0.0004778998 1e-6 312 277 0.0068737976 1e-6 313 277 3.8999997e-06 1e-6 315 277 0.0018223999 1e-6 317 277 0.000101 1e-6 318 277 0.0001088 1e-6 319 277 0.00038859993 1e-6 320 277 0.0018145998 1e-6 321 277 0.0022926 1e-6 322 277 0.0019622999 1e-6 324 277 0.00086649996 1e-6 326 277 0.0067805983 1e-6 328 277 7.7999994e-06 1e-6 330 277 3.8999997e-06 1e-6 331 277 3.8999997e-06 1e-6 333 277 3.8999997e-06 1e-6 336 277 0.00024869991 1e-6 337 277 0.00083929999 1e-6 338 277 0.000101 1e-6 339 277 0.00012819999 1e-6 340 277 0.0039866976 1e-6 341 277 0.0001088 1e-6 342 277 0.00068779988 1e-6 343 277 0.00082379999 1e-6 349 277 0.00030309986 1e-6 350 277 0.0035593 1e-6 351 277 0.0033572998 1e-6 352 277 0.0021060999 1e-6 353 277 1.9399988e-05 1e-6 354 277 0.0045384988 1e-6 355 277 0.00036139996 1e-6 356 277 0.00042349985 1e-6 357 277 0.00012049999 1e-6 358 277 0.0026305998 1e-6 359 277 0.0014260998 1e-6 362 277 5.0499992e-05 1e-6 363 277 0.000101 1e-6 368 277 0.00013989999 1e-6 370 277 0.0017018998 1e-6 371 277 0.00058669993 1e-6 372 277 0.0001049 1e-6 373 277 0.00091309985 1e-6 374 277 0.00047019986 1e-6 375 277 0.0026655998 1e-6 376 277 0.00011659999 1e-6 380 277 3.8999997e-06 1e-6 384 277 0.0032017999 1e-6 385 277 0.00027199998 1e-6 386 277 0.00013989999 1e-6 387 277 3.1099989e-05 1e-6 393 277 3.8999997e-06 1e-6 394 277 3.8999997e-06 1e-6 395 277 0.00013599999 1e-6 397 277 3.8999997e-06 1e-6 402 277 3.1099989e-05 1e-6 404 277 2.3299988e-05 1e-6 408 277 0.00083929999 1e-6 409 277 4.269999e-05 1e-6 412 277 9.3299997e-05 1e-6 413 277 0.00062169996 1e-6 414 277 0.00082379999 1e-6 415 277 0.00017489999 1e-6 417 277 0.00024479977 1e-6 419 277 0.0001088 1e-6 421 277 0.00014379999 1e-6 422 277 3.8899991e-05 1e-6 423 277 3.8999997e-06 1e-6 425 277 3.8999997e-06 1e-6 430 277 1.9399988e-05 1e-6 431 277 7.7999994e-06 1e-6 432 277 7.7999994e-06 1e-6 433 277 1.9399988e-05 1e-6 434 277 2.3299988e-05 1e-6 438 277 0.00029139989 1e-6 441 277 0.00014769999 1e-6 442 277 8.9399997e-05 1e-6 443 277 0.037411597 1e-6 444 277 0.0020088998 1e-6 445 277 0.0133591 1e-6 446 277 0.008540798 1e-6 447 277 0.0046472996 1e-6 448 277 0.0002176 1e-6 449 277 3.8999997e-06 1e-6 450 277 0.0018106999 1e-6 452 277 0.016898997 1e-6 453 277 0.014497597 1e-6 454 277 0.0019701 1e-6 455 277 0.0368676 1e-6 456 277 0.00026809983 1e-6 457 277 0.0021448999 1e-6 458 277 0.00040019979 1e-6 459 277 0.00054009981 1e-6 460 277 0.0022964999 1e-6 463 277 0.0014648999 1e-6 464 277 0.0019583998 1e-6 465 277 0.00076159998 1e-6 467 277 0.011863098 1e-6 468 277 0.0030075 1e-6 469 277 0.0039866976 1e-6 470 277 0.0024518999 1e-6 471 277 0.0010064 1e-6 472 277 7.7699995e-05 1e-6 473 277 5.8299993e-05 1e-6 477 277 0.00042739999 1e-6 478 277 0.00067999982 1e-6 483 277 0.00083539984 1e-6 489 277 0.0014260998 1e-6 490 277 0.0001943 1e-6 491 277 0.019747198 1e-6 19 278 0.20604849 1e-6 21 278 0.032901298 1e-6 22 278 0.016118299 1e-6 24 278 0.026088398 1e-6 25 278 0.0001662 1e-6 60 278 0.0144566 1e-6 114 278 0.0001662 1e-6 130 278 0.00049849995 1e-6 131 278 0.00033229985 1e-6 160 278 0.0023263998 1e-6 169 278 0.0069790967 1e-6 172 278 0.00049849995 1e-6 187 278 0.0001662 1e-6 198 278 0.0001662 1e-6 206 278 0.00049849995 1e-6 214 278 0.0018277999 1e-6 219 278 0.00049849995 1e-6 223 278 0.00049849995 1e-6 224 278 0.0001662 1e-6 234 278 0.0021601999 1e-6 252 278 0.0001662 1e-6 267 278 0.00033229985 1e-6 270 278 0.0023263998 1e-6 272 278 0.00083079981 1e-6 273 278 0.0001662 1e-6 276 278 0.0069790967 1e-6 277 278 0.024426699 1e-6 278 278 0.010634799 1e-6 282 278 0.00099699991 1e-6 284 278 0.0019939998 1e-6 286 278 0.00049849995 1e-6 288 278 0.0011631998 1e-6 289 278 0.016949199 1e-6 290 278 0.027251597 1e-6 291 278 0.0001662 1e-6 295 278 0.0001662 1e-6 312 278 0.00049849995 1e-6 315 278 0.0001662 1e-6 320 278 0.0001662 1e-6 321 278 0.0001662 1e-6 322 278 0.0001662 1e-6 324 278 0.00049849995 1e-6 326 278 0.00033229985 1e-6 340 278 0.00033229985 1e-6 350 278 0.00033229985 1e-6 351 278 0.00033229985 1e-6 352 278 0.0001662 1e-6 354 278 0.00033229985 1e-6 355 278 0.00083079981 1e-6 356 278 0.0001662 1e-6 358 278 0.0011631998 1e-6 359 278 0.0001662 1e-6 375 278 0.028248597 1e-6 384 278 0.00033229985 1e-6 417 278 0.0001662 1e-6 443 278 0.023429699 1e-6 444 278 0.0084745996 1e-6 445 278 0.019773997 1e-6 446 278 0.0034894999 1e-6 447 278 0.0054834969 1e-6 450 278 0.0014954999 1e-6 452 278 0.086739779 1e-6 453 278 0.0034894999 1e-6 454 278 0.0053173974 1e-6 455 278 0.0224327 1e-6 457 278 0.0019939998 1e-6 459 278 0.00049849995 1e-6 460 278 0.0019939998 1e-6 463 278 0.0058158971 1e-6 464 278 0.0046526976 1e-6 465 278 0.00049849995 1e-6 467 278 0.016616799 1e-6 468 278 0.0084745996 1e-6 469 278 0.0023263998 1e-6 470 278 0.0021601999 1e-6 471 278 0.0001662 1e-6 478 278 0.00049849995 1e-6 483 278 0.00083079981 1e-6 489 278 0.0036556998 1e-6 490 278 0.0018277999 1e-6 491 278 0.013958097 1e-6 19 279 0.0188291 1e-6 21 279 0.00029419991 1e-6 22 279 0.0088260993 1e-6 24 279 0.0011767999 1e-6 25 279 0.00029419991 1e-6 60 279 0.0079434998 1e-6 160 279 0.0023536 1e-6 165 279 0.00029419991 1e-6 169 279 0.00029419991 1e-6 171 279 0.0029419998 1e-6 172 279 0.00029419991 1e-6 183 279 0.00029419991 1e-6 187 279 0.00029419991 1e-6 198 279 0.0067666993 1e-6 203 279 0.0026477999 1e-6 206 279 0.00029419991 1e-6 214 279 0.015592799 1e-6 223 279 0.017652299 1e-6 233 279 0.00029419991 1e-6 234 279 0.0047072992 1e-6 241 279 0.00088259997 1e-6 267 279 0.0035305 1e-6 270 279 0.00029419991 1e-6 272 279 0.00058839982 1e-6 273 279 0.00029419991 1e-6 277 279 0.22418356 1e-6 278 279 0.0064724982 1e-6 279 279 0.0055898987 1e-6 280 279 0.00029419991 1e-6 282 279 0.0038246999 1e-6 284 279 0.0044130981 1e-6 286 279 0.0082376972 1e-6 287 279 0.00058839982 1e-6 288 279 0.0061782971 1e-6 289 279 0.0011767999 1e-6 290 279 0.0035305 1e-6 291 279 0.00058839982 1e-6 293 279 0.00029419991 1e-6 295 279 0.0023536 1e-6 310 279 0.00029419991 1e-6 312 279 0.0067666993 1e-6 315 279 0.00058839982 1e-6 320 279 0.00058839982 1e-6 321 279 0.00058839982 1e-6 322 279 0.00058839982 1e-6 324 279 0.00058839982 1e-6 326 279 0.0035305 1e-6 337 279 0.00029419991 1e-6 340 279 0.029420398 1e-6 343 279 0.00029419991 1e-6 350 279 0.0032362 1e-6 351 279 0.0050014965 1e-6 352 279 0.00058839982 1e-6 354 279 0.0032362 1e-6 355 279 0.00029419991 1e-6 356 279 0.00029419991 1e-6 358 279 0.0017651999 1e-6 359 279 0.00058839982 1e-6 361 279 0.00029419991 1e-6 370 279 0.00029419991 1e-6 372 279 0.00029419991 1e-6 373 279 0.0011767999 1e-6 374 279 0.00058839982 1e-6 375 279 0.00088259997 1e-6 384 279 0.0011767999 1e-6 408 279 0.00029419991 1e-6 413 279 0.00029419991 1e-6 414 279 0.00029419991 1e-6 417 279 0.00029419991 1e-6 419 279 0.00029419991 1e-6 443 279 0.017652299 1e-6 444 279 0.0020593998 1e-6 445 279 0.0097086988 1e-6 446 279 0.0032362 1e-6 447 279 0.0038246999 1e-6 450 279 0.0020593998 1e-6 452 279 0.012650799 1e-6 453 279 0.0085318983 1e-6 454 279 0.0032362 1e-6 455 279 0.032656699 1e-6 456 279 0.00058839982 1e-6 457 279 0.0020593998 1e-6 458 279 0.00058839982 1e-6 459 279 0.00058839982 1e-6 460 279 0.0011767999 1e-6 463 279 0.0035305 1e-6 464 279 0.0026477999 1e-6 465 279 0.00088259997 1e-6 467 279 0.018240698 1e-6 468 279 0.0038246999 1e-6 469 279 0.0038246999 1e-6 470 279 0.0035305 1e-6 471 279 0.00058839982 1e-6 477 279 0.0020593998 1e-6 478 279 0.00088259997 1e-6 483 279 0.00088259997 1e-6 489 279 0.00058839982 1e-6 490 279 0.00029419991 1e-6 491 279 0.0064724982 1e-6 60 280 0.0054445975 1e-6 160 280 0.0018149 1e-6 169 280 0.0018149 1e-6 198 280 0.0018149 1e-6 203 280 0.0018149 1e-6 214 280 0.058076199 1e-6 234 280 0.0018149 1e-6 240 280 0.0036297999 1e-6 270 280 0.010889299 1e-6 277 280 0.44283116 1e-6 280 280 0.0054445975 1e-6 282 280 0.0072594993 1e-6 284 280 0.0018149 1e-6 290 280 0.010889299 1e-6 295 280 0.0018149 1e-6 312 280 0.010889299 1e-6 321 280 0.0054445975 1e-6 322 280 0.0054445975 1e-6 326 280 0.0272232 1e-6 342 280 0.0036297999 1e-6 350 280 0.0054445975 1e-6 351 280 0.0018149 1e-6 352 280 0.0090743974 1e-6 354 280 0.010889299 1e-6 358 280 0.010889299 1e-6 370 280 0.019963697 1e-6 373 280 0.0018149 1e-6 443 280 0.012704197 1e-6 444 280 0.0036297999 1e-6 445 280 0.010889299 1e-6 446 280 0.0018149 1e-6 447 280 0.0036297999 1e-6 450 280 0.0018149 1e-6 452 280 0.0072594993 1e-6 453 280 0.0054445975 1e-6 454 280 0.0036297999 1e-6 455 280 0.016333897 1e-6 457 280 0.0018149 1e-6 460 280 0.0036297999 1e-6 463 280 0.0036297999 1e-6 464 280 0.0018149 1e-6 467 280 0.025408298 1e-6 468 280 0.0018149 1e-6 469 280 0.0090743974 1e-6 470 280 0.0018149 1e-6 477 280 0.0018149 1e-6 60 281 0.0036100999 1e-6 160 281 0.0036100999 1e-6 169 281 0.0036100999 1e-6 214 281 0.07581228 1e-6 223 281 0.0072201975 1e-6 277 281 0.38267148 1e-6 282 281 0.010830298 1e-6 284 281 0.0036100999 1e-6 288 281 0.0072201975 1e-6 312 281 0.010830298 1e-6 320 281 0.0036100999 1e-6 321 281 0.0036100999 1e-6 324 281 0.0036100999 1e-6 326 281 0.0072201975 1e-6 340 281 0.0072201975 1e-6 349 281 0.0036100999 1e-6 350 281 0.0036100999 1e-6 351 281 0.0036100999 1e-6 354 281 0.018050499 1e-6 358 281 0.014440399 1e-6 370 281 0.010830298 1e-6 371 281 0.0072201975 1e-6 375 281 0.0036100999 1e-6 414 281 0.0036100999 1e-6 443 281 0.014440399 1e-6 444 281 0.0036100999 1e-6 445 281 0.010830298 1e-6 447 281 0.0036100999 1e-6 452 281 0.0072201975 1e-6 453 281 0.0072201975 1e-6 454 281 0.0036100999 1e-6 455 281 0.014440399 1e-6 457 281 0.0036100999 1e-6 460 281 0.0036100999 1e-6 463 281 0.0036100999 1e-6 464 281 0.0036100999 1e-6 467 281 0.0216606 1e-6 468 281 0.0036100999 1e-6 469 281 0.0036100999 1e-6 470 281 0.0036100999 1e-6 477 281 0.0036100999 1e-6 9 282 1.6999998e-05 1e-6 18 282 0.00015339999 1e-6 19 282 0.0019434998 1e-6 21 282 1.6999998e-05 1e-6 22 282 0.0018070999 1e-6 24 282 0.0056257993 1e-6 25 282 0.0003409998 1e-6 60 282 0.010058299 1e-6 77 282 1.6999998e-05 1e-6 78 282 0.00013639999 1e-6 79 282 1.6999998e-05 1e-6 82 282 1.6999998e-05 1e-6 83 282 1.6999998e-05 1e-6 84 282 1.6999998e-05 1e-6 98 282 1.6999998e-05 1e-6 104 282 0.00018749999 1e-6 108 282 1.6999998e-05 1e-6 113 282 3.4099998e-05 1e-6 114 282 8.5199994e-05 1e-6 126 282 5.1099996e-05 1e-6 127 282 1.6999998e-05 1e-6 134 282 6.8199995e-05 1e-6 150 282 0.00081829983 1e-6 151 282 1.6999998e-05 1e-6 156 282 0.00040919986 1e-6 158 282 0.00010229999 1e-6 159 282 3.4099998e-05 1e-6 160 282 0.0029662999 1e-6 161 282 1.6999998e-05 1e-6 162 282 1.6999998e-05 1e-6 165 282 3.4099998e-05 1e-6 169 282 0.00075009977 1e-6 170 282 1.6999998e-05 1e-6 171 282 8.5199994e-05 1e-6 172 282 0.0010910998 1e-6 181 282 8.5199994e-05 1e-6 183 282 1.6999998e-05 1e-6 189 282 6.8199995e-05 1e-6 190 282 0.00011929999 1e-6 192 282 3.4099998e-05 1e-6 194 282 0.00010229999 1e-6 195 282 1.6999998e-05 1e-6 196 282 1.6999998e-05 1e-6 197 282 1.6999998e-05 1e-6 198 282 0.0015001998 1e-6 200 282 3.4099998e-05 1e-6 201 282 3.4099998e-05 1e-6 203 282 5.1099996e-05 1e-6 204 282 8.5199994e-05 1e-6 206 282 0.00035799993 1e-6 207 282 5.1099996e-05 1e-6 209 282 1.6999998e-05 1e-6 214 282 0.00080129993 1e-6 218 282 3.4099998e-05 1e-6 219 282 5.1099996e-05 1e-6 223 282 0.0048415996 1e-6 224 282 1.6999998e-05 1e-6 233 282 0.00011929999 1e-6 234 282 0.0030685998 1e-6 236 282 1.6999998e-05 1e-6 237 282 0.00073309988 1e-6 240 282 0.00083539984 1e-6 241 282 0.00020459999 1e-6 242 282 0.00013639999 1e-6 248 282 1.6999998e-05 1e-6 250 282 1.6999998e-05 1e-6 252 282 0.0004602999 1e-6 267 282 0.00010229999 1e-6 270 282 0.0080124997 1e-6 271 282 1.6999998e-05 1e-6 272 282 0.0010058 1e-6 273 282 3.4099998e-05 1e-6 276 282 3.4099998e-05 1e-6 277 282 0.060400996 1e-6 278 282 0.022094198 1e-6 279 282 8.5199994e-05 1e-6 280 282 6.8199995e-05 1e-6 282 282 0.0060349964 1e-6 283 282 0.0023866999 1e-6 284 282 0.0077738985 1e-6 285 282 5.1099996e-05 1e-6 286 282 0.0027788 1e-6 287 282 0.00027279998 1e-6 288 282 0.0003409998 1e-6 289 282 0.001773 1e-6 290 282 0.0043983981 1e-6 291 282 5.1099996e-05 1e-6 292 282 0.00018749999 1e-6 293 282 0.00018749999 1e-6 294 282 0.00013639999 1e-6 295 282 6.8199995e-05 1e-6 296 282 0.00015339999 1e-6 297 282 0.00013639999 1e-6 298 282 8.5199994e-05 1e-6 299 282 3.4099998e-05 1e-6 301 282 1.6999998e-05 1e-6 304 282 5.1099996e-05 1e-6 305 282 1.6999998e-05 1e-6 306 282 1.6999998e-05 1e-6 307 282 0.00011929999 1e-6 308 282 1.6999998e-05 1e-6 310 282 1.6999998e-05 1e-6 312 282 0.00075009977 1e-6 313 282 0.0018070999 1e-6 315 282 0.00030689989 1e-6 319 282 0.00051139994 1e-6 320 282 8.5199994e-05 1e-6 321 282 6.8199995e-05 1e-6 322 282 0.00020459999 1e-6 323 282 0.00017049999 1e-6 324 282 0.00015339999 1e-6 326 282 0.00068189995 1e-6 328 282 0.0015683998 1e-6 329 282 0.00027279998 1e-6 330 282 5.1099996e-05 1e-6 331 282 0.00013639999 1e-6 332 282 1.6999998e-05 1e-6 333 282 1.6999998e-05 1e-6 335 282 3.4099998e-05 1e-6 337 282 3.4099998e-05 1e-6 338 282 0.00027279998 1e-6 339 282 6.8199995e-05 1e-6 340 282 0.0069215 1e-6 341 282 5.1099996e-05 1e-6 342 282 0.00011929999 1e-6 343 282 5.1099996e-05 1e-6 344 282 1.6999998e-05 1e-6 345 282 6.8199995e-05 1e-6 347 282 0.00010229999 1e-6 349 282 0.0036823999 1e-6 350 282 0.0004602999 1e-6 351 282 0.0012274999 1e-6 352 282 8.5199994e-05 1e-6 353 282 0.023509197 1e-6 354 282 0.012444999 1e-6 355 282 0.00013639999 1e-6 356 282 0.00030689989 1e-6 357 282 0.00020459999 1e-6 358 282 0.015632998 1e-6 359 282 5.1099996e-05 1e-6 366 282 0.00020459999 1e-6 370 282 1.6999998e-05 1e-6 371 282 6.8199995e-05 1e-6 372 282 0.00040919986 1e-6 373 282 0.0002387 1e-6 374 282 0.0024037999 1e-6 375 282 0.013689499 1e-6 384 282 0.00030689989 1e-6 385 282 0.00011929999 1e-6 386 282 1.6999998e-05 1e-6 387 282 0.00017049999 1e-6 392 282 1.6999998e-05 1e-6 394 282 8.5199994e-05 1e-6 397 282 0.00047729979 1e-6 399 282 5.1099996e-05 1e-6 401 282 0.00080129993 1e-6 402 282 0.0055234991 1e-6 408 282 0.0002387 1e-6 412 282 1.6999998e-05 1e-6 413 282 1.6999998e-05 1e-6 414 282 5.1099996e-05 1e-6 415 282 3.4099998e-05 1e-6 417 282 0.00054549985 1e-6 419 282 3.4099998e-05 1e-6 421 282 0.00032389979 1e-6 422 282 6.8199995e-05 1e-6 423 282 1.6999998e-05 1e-6 425 282 1.6999998e-05 1e-6 430 282 1.6999998e-05 1e-6 431 282 3.4099998e-05 1e-6 432 282 1.6999998e-05 1e-6 433 282 3.4099998e-05 1e-6 434 282 3.4099998e-05 1e-6 438 282 0.001432 1e-6 443 282 0.012922399 1e-6 444 282 0.0015513999 1e-6 445 282 0.010160599 1e-6 446 282 0.00098879985 1e-6 447 282 0.0035118998 1e-6 448 282 1.6999998e-05 1e-6 450 282 0.0040573999 1e-6 452 282 0.020269997 1e-6 453 282 0.0080806985 1e-6 454 282 0.0017217998 1e-6 455 282 0.049456198 1e-6 456 282 0.00049439981 1e-6 457 282 0.0048415996 1e-6 458 282 0.00093759992 1e-6 459 282 0.0013297 1e-6 460 282 0.0020458 1e-6 463 282 0.0021479998 1e-6 464 282 0.0012444998 1e-6 465 282 0.0010739998 1e-6 467 282 0.011405099 1e-6 468 282 0.0028640998 1e-6 469 282 0.0035289 1e-6 470 282 0.0038698998 1e-6 471 282 0.0017899999 1e-6 473 282 8.5199994e-05 1e-6 477 282 0.00010229999 1e-6 478 282 0.0012786 1e-6 483 282 0.00092059979 1e-6 489 282 0.00015339999 1e-6 490 282 0.0003409998 1e-6 491 282 0.035630297 1e-6 18 283 0.00010799999 1e-6 19 283 0.010635398 1e-6 21 283 0.00010799999 1e-6 22 283 0.0059924982 1e-6 24 283 0.00032389979 1e-6 25 283 0.0002159 1e-6 60 283 0.0078820996 1e-6 78 283 5.3999989e-05 1e-6 108 283 5.3999989e-05 1e-6 114 283 0.00010799999 1e-6 126 283 5.3999989e-05 1e-6 134 283 5.3999989e-05 1e-6 150 283 0.00010799999 1e-6 156 283 0.00032389979 1e-6 158 283 0.00010799999 1e-6 160 283 0.00032389979 1e-6 165 283 0.00010799999 1e-6 168 283 5.3999989e-05 1e-6 169 283 0.000162 1e-6 171 283 0.00037789997 1e-6 172 283 5.3999989e-05 1e-6 181 283 5.3999989e-05 1e-6 183 283 0.00010799999 1e-6 189 283 5.3999989e-05 1e-6 190 283 5.3999989e-05 1e-6 194 283 5.3999989e-05 1e-6 195 283 5.3999989e-05 1e-6 198 283 0.0025913999 1e-6 203 283 0.00010799999 1e-6 206 283 0.00048589986 1e-6 214 283 0.0026453999 1e-6 223 283 0.0002159 1e-6 224 283 0.0005398998 1e-6 229 283 0.00070179999 1e-6 233 283 0.0002159 1e-6 234 283 0.0054527 1e-6 237 283 0.00075579993 1e-6 240 283 0.0014036999 1e-6 241 283 0.0029153 1e-6 242 283 0.00043189991 1e-6 252 283 0.00037789997 1e-6 262 283 0.0002159 1e-6 267 283 0.0005398998 1e-6 270 283 0.0012416998 1e-6 271 283 0.000162 1e-6 272 283 0.00043189991 1e-6 273 283 0.0002159 1e-6 277 283 0.28499699 1e-6 278 283 0.0098795965 1e-6 279 283 0.00010799999 1e-6 280 283 0.00010799999 1e-6 282 283 0.0055606999 1e-6 283 283 0.0084758997 1e-6 284 283 0.0043189973 1e-6 286 283 0.00043189991 1e-6 287 283 0.00010799999 1e-6 288 283 0.00091779977 1e-6 289 283 0.0019975 1e-6 290 283 0.0017815998 1e-6 291 283 0.00026989984 1e-6 292 283 0.0021594998 1e-6 293 283 0.0025913999 1e-6 294 283 0.013766699 1e-6 295 283 0.00091779977 1e-6 296 283 0.00059389998 1e-6 297 283 0.00010799999 1e-6 298 283 5.3999989e-05 1e-6 299 283 0.000162 1e-6 301 283 5.3999989e-05 1e-6 302 283 5.3999989e-05 1e-6 305 283 5.3999989e-05 1e-6 306 283 5.3999989e-05 1e-6 307 283 5.3999989e-05 1e-6 308 283 5.3999989e-05 1e-6 310 283 0.00010799999 1e-6 312 283 0.0024293999 1e-6 313 283 0.0016196 1e-6 315 283 0.00097179995 1e-6 317 283 0.000162 1e-6 319 283 0.00048589986 1e-6 320 283 0.00091779977 1e-6 321 283 0.0051826984 1e-6 322 283 0.00064779981 1e-6 323 283 0.000162 1e-6 324 283 0.0027532999 1e-6 326 283 0.0051287971 1e-6 328 283 0.0010257999 1e-6 329 283 0.00048589986 1e-6 330 283 5.3999989e-05 1e-6 331 283 0.00032389979 1e-6 333 283 0.00086379983 1e-6 336 283 5.3999989e-05 1e-6 337 283 0.000162 1e-6 338 283 0.00075579993 1e-6 339 283 0.0010257999 1e-6 340 283 0.0131188 1e-6 341 283 5.3999989e-05 1e-6 342 283 0.000162 1e-6 343 283 0.0002159 1e-6 349 283 5.3999989e-05 1e-6 350 283 0.0010257999 1e-6 351 283 0.0025374 1e-6 352 283 0.00026989984 1e-6 353 283 5.3999989e-05 1e-6 354 283 0.0028072998 1e-6 355 283 0.00037789997 1e-6 356 283 0.00026989984 1e-6 357 283 0.00032389979 1e-6 358 283 0.0073961988 1e-6 359 283 0.00026989984 1e-6 366 283 0.00010799999 1e-6 370 283 0.00010799999 1e-6 371 283 0.0002159 1e-6 372 283 0.00010799999 1e-6 373 283 0.00032389979 1e-6 374 283 0.00010799999 1e-6 375 283 0.00048589986 1e-6 376 283 5.3999989e-05 1e-6 384 283 0.00070179999 1e-6 385 283 0.000162 1e-6 386 283 0.0011336999 1e-6 387 283 0.000162 1e-6 392 283 5.3999989e-05 1e-6 393 283 0.00010799999 1e-6 394 283 5.3999989e-05 1e-6 397 283 0.00048589986 1e-6 398 283 0.00010799999 1e-6 399 283 5.3999989e-05 1e-6 401 283 0.00059389998 1e-6 402 283 0.0053986982 1e-6 408 283 0.00032389979 1e-6 413 283 0.00010799999 1e-6 414 283 0.00010799999 1e-6 415 283 5.3999989e-05 1e-6 417 283 0.00032389979 1e-6 421 283 0.00010799999 1e-6 422 283 5.3999989e-05 1e-6 434 283 5.3999989e-05 1e-6 438 283 5.3999989e-05 1e-6 443 283 0.012093097 1e-6 444 283 0.0016196 1e-6 445 283 0.0080979988 1e-6 446 283 0.0023753999 1e-6 447 283 0.0028072998 1e-6 448 283 0.00010799999 1e-6 450 283 0.0022674999 1e-6 452 283 0.010419499 1e-6 453 283 0.012362998 1e-6 454 283 0.0014575999 1e-6 455 283 0.031312399 1e-6 456 283 0.0002159 1e-6 457 283 0.0022135 1e-6 458 283 0.00048589986 1e-6 459 283 0.00032389979 1e-6 460 283 0.0020514999 1e-6 463 283 0.0028612998 1e-6 464 283 0.00059389998 1e-6 465 283 0.00075579993 1e-6 467 283 0.011823099 1e-6 468 283 0.0018894998 1e-6 469 283 0.0031311999 1e-6 470 283 0.0031851998 1e-6 471 283 0.0010797 1e-6 473 283 5.3999989e-05 1e-6 477 283 0.00010799999 1e-6 478 283 0.00086379983 1e-6 483 283 0.00086379983 1e-6 489 283 0.00026989984 1e-6 490 283 0.00026989984 1e-6 491 283 0.0046428964 1e-6 60 284 0.0027506999 1e-6 114 284 0.0002116 1e-6 126 284 0.0002116 1e-6 190 284 0.0002116 1e-6 194 284 0.0002116 1e-6 206 284 0.00042319996 1e-6 214 284 0.0086753964 1e-6 218 284 0.0002116 1e-6 223 284 0.049513299 1e-6 233 284 0.0093101971 1e-6 234 284 0.018620398 1e-6 237 284 0.0002116 1e-6 240 284 0.0012695999 1e-6 241 284 0.0002116 1e-6 270 284 0.0002116 1e-6 272 284 0.0010579999 1e-6 277 284 0.055649597 1e-6 284 284 0.0080405995 1e-6 285 284 0.018197197 1e-6 286 284 0.0021159998 1e-6 287 284 0.0040202998 1e-6 288 284 0.00042319996 1e-6 289 284 0.0048666969 1e-6 290 284 0.018408798 1e-6 320 284 0.0019043998 1e-6 321 284 0.0002116 1e-6 354 284 0.0012695999 1e-6 355 284 0.0010579999 1e-6 356 284 0.0002116 1e-6 358 284 0.0029622999 1e-6 417 284 0.00063479994 1e-6 443 284 0.0050782971 1e-6 444 284 0.0019043998 1e-6 445 284 0.005924698 1e-6 446 284 0.00042319996 1e-6 447 284 0.0063478984 1e-6 450 284 0.0025390999 1e-6 452 284 0.027930599 1e-6 453 284 0.0247567 1e-6 454 284 0.0012695999 1e-6 455 284 0.015234899 1e-6 456 284 0.0027506999 1e-6 457 284 0.0016927999 1e-6 458 284 0.0010579999 1e-6 459 284 0.00063479994 1e-6 460 284 0.0014811999 1e-6 463 284 0.013753697 1e-6 464 284 0.00042319996 1e-6 465 284 0.00084639993 1e-6 467 284 0.0082521997 1e-6 468 284 0.0012695999 1e-6 469 284 0.0044434965 1e-6 470 284 0.0048666969 1e-6 471 284 0.0010579999 1e-6 473 284 0.0002116 1e-6 478 284 0.0012695999 1e-6 483 284 0.0012695999 1e-6 490 284 0.00063479994 1e-6 19 285 0.045200396 1e-6 20 285 0.0023298999 1e-6 21 285 0.0055917986 1e-6 24 285 0.00093199988 1e-6 25 285 0.00046599982 1e-6 60 285 0.0018638999 1e-6 114 285 0.000233 1e-6 169 285 0.00069899997 1e-6 171 285 0.019105297 1e-6 193 285 0.000233 1e-6 198 285 0.0067567974 1e-6 206 285 0.00069899997 1e-6 214 285 0.046365298 1e-6 223 285 0.00046599982 1e-6 224 285 0.00046599982 1e-6 225 285 0.000233 1e-6 234 285 0.0037278999 1e-6 240 285 0.0013978998 1e-6 241 285 0.0020968998 1e-6 270 285 0.00093199988 1e-6 272 285 0.0011649998 1e-6 273 285 0.00069899997 1e-6 276 285 0.000233 1e-6 277 285 0.0090866983 1e-6 278 285 0.00046599982 1e-6 279 285 0.000233 1e-6 282 285 0.0011649998 1e-6 284 285 0.0041937977 1e-6 285 285 0.0011649998 1e-6 286 285 0.023532197 1e-6 287 285 0.0044267997 1e-6 288 285 0.0039608963 1e-6 289 285 0.12744635 1e-6 290 285 0.038443599 1e-6 291 285 0.00069899997 1e-6 292 285 0.00046599982 1e-6 293 285 0.00046599982 1e-6 294 285 0.0016309 1e-6 295 285 0.046598297 1e-6 296 285 0.00069899997 1e-6 298 285 0.00069899997 1e-6 301 285 0.0072226971 1e-6 312 285 0.0011649998 1e-6 315 285 0.00046599982 1e-6 320 285 0.011882599 1e-6 321 285 0.012814499 1e-6 322 285 0.00046599982 1e-6 326 285 0.0018638999 1e-6 338 285 0.000233 1e-6 340 285 0.017707396 1e-6 351 285 0.00093199988 1e-6 354 285 0.010950599 1e-6 355 285 0.0011649998 1e-6 356 285 0.000233 1e-6 358 285 0.0032618998 1e-6 370 285 0.000233 1e-6 371 285 0.000233 1e-6 373 285 0.000233 1e-6 375 285 0.00069899997 1e-6 386 285 0.000233 1e-6 392 285 0.00046599982 1e-6 396 285 0.000233 1e-6 397 285 0.0039608963 1e-6 402 285 0.000233 1e-6 417 285 0.000233 1e-6 438 285 0.000233 1e-6 443 285 0.010950599 1e-6 444 285 0.0083876997 1e-6 445 285 0.0034949 1e-6 446 285 0.00046599982 1e-6 447 285 0.011416599 1e-6 450 285 0.0018638999 1e-6 452 285 0.017940398 1e-6 453 285 0.0097855963 1e-6 454 285 0.0016309 1e-6 455 285 0.018639296 1e-6 457 285 0.0023298999 1e-6 458 285 0.000233 1e-6 459 285 0.00069899997 1e-6 460 285 0.0016309 1e-6 463 285 0.016076397 1e-6 464 285 0.0011649998 1e-6 465 285 0.00046599982 1e-6 467 285 0.0067567974 1e-6 468 285 0.0020968998 1e-6 469 285 0.0032618998 1e-6 470 285 0.0023298999 1e-6 471 285 0.00093199988 1e-6 478 285 0.00046599982 1e-6 483 285 0.0013978998 1e-6 490 285 0.00046599982 1e-6 491 285 0.0018638999 1e-6 18 286 0.00028329995 1e-6 20 286 0.35669565 1e-6 22 286 0.00033999979 1e-6 60 286 0.00079319999 1e-6 108 286 2.8299997e-05 1e-6 114 286 5.6699995e-05 1e-6 126 286 5.6699995e-05 1e-6 150 286 2.8299997e-05 1e-6 151 286 2.8299997e-05 1e-6 160 286 5.6699995e-05 1e-6 169 286 2.8299997e-05 1e-6 172 286 2.8299997e-05 1e-6 189 286 2.8299997e-05 1e-6 190 286 5.6699995e-05 1e-6 194 286 5.6699995e-05 1e-6 198 286 5.6699995e-05 1e-6 206 286 0.00042489986 1e-6 214 286 0.0034844999 1e-6 218 286 2.8299997e-05 1e-6 223 286 0.00048159994 1e-6 224 286 2.8299997e-05 1e-6 233 286 2.8299997e-05 1e-6 234 286 0.0030311998 1e-6 237 286 2.8299997e-05 1e-6 240 286 0.00033999979 1e-6 241 286 0.00093489978 1e-6 242 286 2.8299997e-05 1e-6 252 286 5.6699995e-05 1e-6 262 286 2.8299997e-05 1e-6 267 286 0.00056659989 1e-6 272 286 0.00067989994 1e-6 277 286 0.0010481998 1e-6 282 286 5.6699995e-05 1e-6 283 286 2.8299997e-05 1e-6 284 286 0.00059489999 1e-6 285 286 0.0032578998 1e-6 286 286 0.36805576 1e-6 287 286 0.0034844999 1e-6 288 286 0.0054675974 1e-6 289 286 0.0016148 1e-6 290 286 0.016601 1e-6 291 286 0.0028612998 1e-6 292 286 0.00056659989 1e-6 293 286 5.6699995e-05 1e-6 294 286 5.6699995e-05 1e-6 295 286 0.00011329999 1e-6 296 286 2.8299997e-05 1e-6 312 286 8.4999992e-05 1e-6 315 286 5.6699995e-05 1e-6 317 286 0.00017 1e-6 318 286 0.00017 1e-6 319 286 2.8299997e-05 1e-6 320 286 2.8299997e-05 1e-6 321 286 5.6699995e-05 1e-6 324 286 0.0001983 1e-6 326 286 8.4999992e-05 1e-6 340 286 0.00033999979 1e-6 350 286 2.8299997e-05 1e-6 351 286 2.8299997e-05 1e-6 354 286 0.0014730999 1e-6 356 286 0.0001983 1e-6 358 286 0.0018696999 1e-6 373 286 2.8299997e-05 1e-6 375 286 0.0011047998 1e-6 386 286 0.00011329999 1e-6 387 286 2.8299997e-05 1e-6 417 286 0.00011329999 1e-6 443 286 0.013229799 1e-6 444 286 0.00042489986 1e-6 445 286 0.0018980999 1e-6 446 286 0.00033999979 1e-6 447 286 0.00045329984 1e-6 448 286 2.8299997e-05 1e-6 450 286 0.00084989984 1e-6 452 286 0.0044476986 1e-6 453 286 0.0058924966 1e-6 454 286 0.0011614999 1e-6 455 286 0.0246749 1e-6 456 286 0.0026629998 1e-6 457 286 0.0021529999 1e-6 458 286 0.00014159999 1e-6 459 286 0.00082159997 1e-6 460 286 0.0017563999 1e-6 463 286 0.0016997999 1e-6 464 286 0.00036829989 1e-6 465 286 0.00014159999 1e-6 467 286 0.0039094985 1e-6 468 286 0.0028328998 1e-6 469 286 0.0035128 1e-6 470 286 0.00082159997 1e-6 471 286 0.00045329984 1e-6 473 286 5.6699995e-05 1e-6 477 286 5.6699995e-05 1e-6 478 286 0.00022659999 1e-6 483 286 0.0001983 1e-6 489 286 0.00011329999 1e-6 490 286 8.4999992e-05 1e-6 491 286 0.050086398 1e-6 18 287 0.00073289988 1e-6 19 287 0.00043979986 1e-6 20 287 0.00043979986 1e-6 21 287 0.13559067 1e-6 22 287 0.00073289988 1e-6 60 287 0.0016123999 1e-6 206 287 0.0002931999 1e-6 214 287 0.021108199 1e-6 223 287 0.0016123999 1e-6 234 287 0.0087950975 1e-6 240 287 0.00087949983 1e-6 241 287 0.0051304996 1e-6 272 287 0.0002931999 1e-6 277 287 0.0083552971 1e-6 278 287 0.0001466 1e-6 284 287 0.0013192999 1e-6 285 287 0.012313098 1e-6 286 287 0.0095279999 1e-6 287 287 0.22339487 1e-6 288 287 0.015391398 1e-6 289 287 0.0086484998 1e-6 290 287 0.053649999 1e-6 291 287 0.0082086995 1e-6 317 287 0.00043979986 1e-6 318 287 0.00043979986 1e-6 326 287 0.0001466 1e-6 340 287 0.0014658 1e-6 353 287 0.0002931999 1e-6 354 287 0.0038111999 1e-6 356 287 0.0002931999 1e-6 358 287 0.0043974966 1e-6 375 287 0.0032249 1e-6 417 287 0.0001466 1e-6 443 287 0.028584 1e-6 444 287 0.0042509995 1e-6 445 287 0.0055701993 1e-6 446 287 0.00058629992 1e-6 447 287 0.005423598 1e-6 450 287 0.0014658 1e-6 452 287 0.0045440979 1e-6 453 287 0.0051304996 1e-6 454 287 0.0014658 1e-6 455 287 0.061125796 1e-6 456 287 0.0077689998 1e-6 457 287 0.0023453999 1e-6 458 287 0.0001466 1e-6 459 287 0.00058629992 1e-6 460 287 0.0026385 1e-6 463 287 0.0043974966 1e-6 464 287 0.0011727 1e-6 465 287 0.0001466 1e-6 467 287 0.0055701993 1e-6 468 287 0.0071825981 1e-6 469 287 0.0095279999 1e-6 470 287 0.0013192999 1e-6 471 287 0.00087949983 1e-6 478 287 0.0033713998 1e-6 483 287 0.00043979986 1e-6 489 287 0.0001466 1e-6 490 287 0.0010260998 1e-6 491 287 0.12826145 1e-6 18 288 0.00042659999 1e-6 20 288 0.0034129999 1e-6 21 288 0.24850678 1e-6 22 288 0.0055460967 1e-6 24 288 0.00021329999 1e-6 60 288 0.0021330998 1e-6 114 288 0.00021329999 1e-6 120 288 0.00021329999 1e-6 206 288 0.00063989987 1e-6 214 288 0.0153584 1e-6 223 288 0.0010666 1e-6 234 288 0.022397596 1e-6 240 288 0.00063989987 1e-6 241 288 0.0017064998 1e-6 272 288 0.00063989987 1e-6 277 288 0.0076791979 1e-6 284 288 0.0014932 1e-6 285 288 0.0066125989 1e-6 286 288 0.010025598 1e-6 287 288 0.015571699 1e-6 288 288 0.070392489 1e-6 289 288 0.0029862998 1e-6 290 288 0.052687697 1e-6 291 288 0.0057593994 1e-6 317 288 0.00042659999 1e-6 318 288 0.00042659999 1e-6 324 288 0.00021329999 1e-6 340 288 0.00063989987 1e-6 354 288 0.0025596998 1e-6 356 288 0.00021329999 1e-6 358 288 0.0038395999 1e-6 375 288 0.0021330998 1e-6 417 288 0.00021329999 1e-6 443 288 0.036262799 1e-6 444 288 0.0012798999 1e-6 445 288 0.016638197 1e-6 446 288 0.0012798999 1e-6 447 288 0.0070391968 1e-6 450 288 0.0021330998 1e-6 452 288 0.012158699 1e-6 453 288 0.012585297 1e-6 454 288 0.011732098 1e-6 455 288 0.0505546 1e-6 456 288 0.0053327978 1e-6 457 288 0.0025596998 1e-6 458 288 0.00021329999 1e-6 459 288 0.00085319998 1e-6 460 288 0.0023463999 1e-6 463 288 0.0104522 1e-6 464 288 0.00085319998 1e-6 465 288 0.00021329999 1e-6 467 288 0.0068258978 1e-6 468 288 0.0049060993 1e-6 469 288 0.007465899 1e-6 470 288 0.0019197999 1e-6 471 288 0.00063989987 1e-6 478 288 0.00063989987 1e-6 483 288 0.00085319998 1e-6 489 288 0.0023463999 1e-6 490 288 0.00021329999 1e-6 491 288 0.10025597 1e-6 18 289 0.0012138998 1e-6 19 289 3.6799989e-05 1e-6 21 289 0.052896798 1e-6 22 289 0.0012874999 1e-6 60 289 0.010630898 1e-6 114 289 7.3599993e-05 1e-6 126 289 3.6799989e-05 1e-6 150 289 3.6799989e-05 1e-6 151 289 0.0015449999 1e-6 160 289 0.00022069999 1e-6 169 289 7.3599993e-05 1e-6 172 289 0.00025749998 1e-6 190 289 3.6799989e-05 1e-6 194 289 3.6799989e-05 1e-6 198 289 0.0001104 1e-6 206 289 0.00058859983 1e-6 214 289 0.044436298 1e-6 223 289 0.00099319988 1e-6 233 289 0.0002942998 1e-6 234 289 0.016442899 1e-6 237 289 7.3599993e-05 1e-6 240 289 0.00033109984 1e-6 241 289 0.0045612976 1e-6 242 289 0.0001471 1e-6 251 289 3.6799989e-05 1e-6 252 289 3.6799989e-05 1e-6 267 289 0.0018391998 1e-6 272 289 0.00088279997 1e-6 277 289 0.00022069999 1e-6 278 289 0.0041198991 1e-6 282 289 0.0001104 1e-6 284 289 0.00091959978 1e-6 285 289 0.0034945998 1e-6 286 289 0.0049291998 1e-6 287 289 0.0037152998 1e-6 288 289 0.0085340999 1e-6 289 289 0.19466615 1e-6 290 289 0.0337318 1e-6 291 289 0.0031266999 1e-6 292 289 3.6799989e-05 1e-6 293 289 0.0064741969 1e-6 295 289 0.0036416999 1e-6 312 289 0.0001471 1e-6 315 289 3.6799989e-05 1e-6 317 289 0.0011034999 1e-6 318 289 0.00018389999 1e-6 319 289 3.6799989e-05 1e-6 321 289 0.00018389999 1e-6 322 289 3.6799989e-05 1e-6 324 289 0.00033109984 1e-6 326 289 0.00091959978 1e-6 337 289 0.00084609981 1e-6 340 289 0.0018024999 1e-6 350 289 0.00084609981 1e-6 351 289 0.0001104 1e-6 354 289 0.0016921 1e-6 356 289 0.00018389999 1e-6 358 289 0.0022070999 1e-6 370 289 0.0053705983 1e-6 371 289 0.0029059998 1e-6 373 289 7.3599993e-05 1e-6 375 289 0.0057751983 1e-6 384 289 7.3599993e-05 1e-6 386 289 0.0010668 1e-6 404 289 7.3599993e-05 1e-6 417 289 0.00018389999 1e-6 421 289 7.3599993e-05 1e-6 422 289 3.6799989e-05 1e-6 438 289 3.6799989e-05 1e-6 443 289 0.025859799 1e-6 444 289 0.0022806998 1e-6 445 289 0.0068051964 1e-6 446 289 0.0015817999 1e-6 447 289 0.0015081998 1e-6 450 289 0.0026852998 1e-6 452 289 0.073643565 1e-6 453 289 0.011955097 1e-6 454 289 0.0031635 1e-6 455 289 0.037814997 1e-6 456 289 0.0028692 1e-6 457 289 0.0068419985 1e-6 458 289 0.00055179978 1e-6 459 289 0.00095639983 1e-6 460 289 0.0023542 1e-6 463 289 0.0049659982 1e-6 464 289 0.0018391998 1e-6 465 289 0.00033109984 1e-6 467 289 0.0082397982 1e-6 468 289 0.0020599999 1e-6 469 289 0.012139 1e-6 470 289 0.00099319988 1e-6 471 289 0.00069889985 1e-6 473 289 3.6799989e-05 1e-6 477 289 0.0001104 1e-6 478 289 0.00044139987 1e-6 483 289 0.00033109984 1e-6 489 289 0.00058859983 1e-6 490 289 0.00018389999 1e-6 491 289 0.045907699 1e-6 18 290 0.00068219984 1e-6 19 290 0.0074187964 1e-6 20 290 0.0902192 1e-6 21 290 0.093459487 1e-6 22 290 0.00025579985 1e-6 24 290 8.5299995e-05 1e-6 25 290 0.00025579985 1e-6 60 290 0.0014495999 1e-6 114 290 8.5299995e-05 1e-6 160 290 8.5299995e-05 1e-6 171 290 8.5299995e-05 1e-6 198 290 0.00025579985 1e-6 206 290 0.00068219984 1e-6 214 290 0.015519697 1e-6 223 290 0.0013643999 1e-6 233 290 8.5299995e-05 1e-6 234 290 0.0039225966 1e-6 240 290 0.00085269986 1e-6 241 290 0.0031550999 1e-6 242 290 8.5299995e-05 1e-6 267 290 0.00068219984 1e-6 270 290 8.5299995e-05 1e-6 272 290 0.00059689977 1e-6 276 290 0.00017049999 1e-6 277 290 0.0020466 1e-6 278 290 0.0038373 1e-6 282 290 8.5299995e-05 1e-6 284 290 0.0010233 1e-6 285 290 0.008953698 1e-6 286 290 0.10701799 1e-6 287 290 0.037349697 1e-6 288 290 0.023535397 1e-6 289 290 0.0050310977 1e-6 290 290 0.067280591 1e-6 291 290 0.0081009977 1e-6 292 290 0.00034109992 1e-6 294 290 8.5299995e-05 1e-6 295 290 0.00017049999 1e-6 312 290 0.00017049999 1e-6 315 290 8.5299995e-05 1e-6 317 290 0.00042639999 1e-6 318 290 0.00051159994 1e-6 320 290 8.5299995e-05 1e-6 321 290 0.00025579985 1e-6 324 290 0.00025579985 1e-6 326 290 0.00085269986 1e-6 340 290 0.0017054998 1e-6 349 290 8.5299995e-05 1e-6 350 290 8.5299995e-05 1e-6 351 290 0.00034109992 1e-6 353 290 8.5299995e-05 1e-6 354 290 0.0036668 1e-6 356 290 8.5299995e-05 1e-6 358 290 0.0047752969 1e-6 373 290 8.5299995e-05 1e-6 375 290 0.0030697999 1e-6 386 290 8.5299995e-05 1e-6 417 290 8.5299995e-05 1e-6 438 290 8.5299995e-05 1e-6 442 290 8.5299995e-05 1e-6 443 290 0.018248498 1e-6 444 290 0.0034108998 1e-6 445 290 0.0043488964 1e-6 446 290 0.00059689977 1e-6 447 290 0.0045194998 1e-6 450 290 0.0017906998 1e-6 452 290 0.016542997 1e-6 453 290 0.0070776977 1e-6 454 290 0.0019612999 1e-6 455 290 0.060288198 1e-6 456 290 0.0070776977 1e-6 457 290 0.0023876999 1e-6 458 290 0.00025579985 1e-6 459 290 0.00093799992 1e-6 460 290 0.0032404 1e-6 463 290 0.0071629994 1e-6 464 290 0.0011085998 1e-6 465 290 0.00017049999 1e-6 467 290 0.0066512972 1e-6 468 290 0.0061396994 1e-6 469 290 0.0092947967 1e-6 470 290 0.0018759998 1e-6 471 290 0.0010233 1e-6 478 290 0.00068219984 1e-6 483 290 0.00034109992 1e-6 489 290 0.0013643999 1e-6 490 290 0.0119383 1e-6 491 290 0.11469257 1e-6 18 291 0.0017605999 1e-6 60 291 0.00088029983 1e-6 214 291 0.024647899 1e-6 223 291 0.0035210999 1e-6 234 291 0.0026407999 1e-6 240 291 0.0026407999 1e-6 241 291 0.005281698 1e-6 277 291 0.00088029983 1e-6 284 291 0.00088029983 1e-6 285 291 0.023767598 1e-6 286 291 0.022007 1e-6 287 291 0.0255282 1e-6 288 291 0.036091499 1e-6 289 291 0.0105634 1e-6 290 291 0.073063374 1e-6 291 291 0.021126799 1e-6 317 291 0.00088029983 1e-6 318 291 0.00088029983 1e-6 340 291 0.00088029983 1e-6 354 291 0.0096830986 1e-6 358 291 0.0096830986 1e-6 375 291 0.0079224966 1e-6 443 291 0.0255282 1e-6 444 291 0.0026407999 1e-6 445 291 0.005281698 1e-6 446 291 0.00088029983 1e-6 447 291 0.0017605999 1e-6 450 291 0.0026407999 1e-6 452 291 0.004401397 1e-6 453 291 0.006161999 1e-6 454 291 0.0017605999 1e-6 455 291 0.12147886 1e-6 456 291 0.019366197 1e-6 457 291 0.0026407999 1e-6 459 291 0.00088029983 1e-6 460 291 0.004401397 1e-6 463 291 0.0079224966 1e-6 464 291 0.0017605999 1e-6 467 291 0.0088027976 1e-6 468 291 0.0017605999 1e-6 469 291 0.022007 1e-6 470 291 0.0026407999 1e-6 471 291 0.0026407999 1e-6 483 291 0.00088029983 1e-6 491 291 0.29577458 1e-6 18 292 0.00013619999 1e-6 22 292 0.00013619999 1e-6 60 292 0.0013275 1e-6 108 292 3.3999997e-05 1e-6 114 292 6.8099995e-05 1e-6 126 292 3.3999997e-05 1e-6 131 292 0.00010209999 1e-6 132 292 0.00013619999 1e-6 139 292 0.00010209999 1e-6 151 292 6.8099995e-05 1e-6 160 292 0.0036761998 1e-6 161 292 0.00030639977 1e-6 169 292 0.0012593998 1e-6 171 292 0.00071479985 1e-6 172 292 0.00078289979 1e-6 187 292 0.00010209999 1e-6 189 292 3.3999997e-05 1e-6 190 292 3.3999997e-05 1e-6 194 292 6.8099995e-05 1e-6 197 292 6.8099995e-05 1e-6 198 292 0.0010211999 1e-6 200 292 3.3999997e-05 1e-6 203 292 3.3999997e-05 1e-6 204 292 3.3999997e-05 1e-6 206 292 6.8099995e-05 1e-6 214 292 0.0066375993 1e-6 223 292 0.00037439982 1e-6 224 292 0.0015997998 1e-6 225 292 0.00027229986 1e-6 233 292 0.0021784999 1e-6 234 292 0.0021103998 1e-6 237 292 6.8099995e-05 1e-6 240 292 0.00017019999 1e-6 241 292 0.0066716969 1e-6 242 292 0.0011572998 1e-6 251 292 3.3999997e-05 1e-6 252 292 0.00017019999 1e-6 270 292 6.8099995e-05 1e-6 271 292 3.3999997e-05 1e-6 272 292 0.00047649979 1e-6 276 292 0.00010209999 1e-6 277 292 0.00068079983 1e-6 278 292 3.3999997e-05 1e-6 279 292 3.3999997e-05 1e-6 282 292 0.0021784999 1e-6 283 292 0.00017019999 1e-6 284 292 0.0017019999 1e-6 285 292 0.00098709995 1e-6 286 292 0.37371498 1e-6 287 292 0.0010892998 1e-6 288 292 0.026550498 1e-6 289 292 0.0080331974 1e-6 290 292 0.021274399 1e-6 291 292 0.0012253998 1e-6 292 292 0.033256199 1e-6 293 292 0.0046973974 1e-6 294 292 0.0002383 1e-6 295 292 0.0066375993 1e-6 297 292 3.3999997e-05 1e-6 299 292 3.3999997e-05 1e-6 308 292 0.00010209999 1e-6 312 292 0.0016678998 1e-6 315 292 0.0012935 1e-6 317 292 6.8099995e-05 1e-6 318 292 3.3999997e-05 1e-6 319 292 0.0013615999 1e-6 320 292 3.3999997e-05 1e-6 321 292 0.0011232998 1e-6 326 292 0.0051398985 1e-6 327 292 3.3999997e-05 1e-6 337 292 6.8099995e-05 1e-6 340 292 0.0070119984 1e-6 350 292 0.00078289979 1e-6 351 292 0.0010551999 1e-6 354 292 0.0056163967 1e-6 358 292 0.0012935 1e-6 369 292 3.3999997e-05 1e-6 370 292 3.3999997e-05 1e-6 371 292 6.8099995e-05 1e-6 372 292 0.00010209999 1e-6 373 292 0.0017019999 1e-6 375 292 3.3999997e-05 1e-6 376 292 3.3999997e-05 1e-6 386 292 0.0014976999 1e-6 387 292 3.3999997e-05 1e-6 389 292 0.00037439982 1e-6 390 292 6.8099995e-05 1e-6 392 292 0.00017019999 1e-6 393 292 0.0003403998 1e-6 417 292 0.0002042 1e-6 421 292 6.8099995e-05 1e-6 422 292 6.8099995e-05 1e-6 438 292 3.3999997e-05 1e-6 443 292 0.014977198 1e-6 444 292 0.0013955999 1e-6 445 292 0.0037443 1e-6 446 292 0.00047649979 1e-6 447 292 0.0014295999 1e-6 450 292 0.0013615999 1e-6 452 292 0.0085437968 1e-6 453 292 0.0037103 1e-6 454 292 0.0028932998 1e-6 455 292 0.0584451 1e-6 456 292 0.00010209999 1e-6 457 292 0.0024848999 1e-6 458 292 0.00040849997 1e-6 459 292 0.00078289979 1e-6 460 292 0.0014976999 1e-6 463 292 0.0049356967 1e-6 464 292 0.0012593998 1e-6 465 292 0.00051059993 1e-6 467 292 0.0099053979 1e-6 468 292 0.0039825998 1e-6 469 292 0.0020082998 1e-6 470 292 0.0016678998 1e-6 471 292 0.0018720999 1e-6 473 292 3.3999997e-05 1e-6 477 292 6.8099995e-05 1e-6 478 292 0.00051059993 1e-6 483 292 0.00071479985 1e-6 489 292 0.00010209999 1e-6 490 292 0.00017019999 1e-6 491 292 0.11202258 1e-6 18 293 0.00016649999 1e-6 19 293 5.5499986e-05 1e-6 21 293 0.0014149998 1e-6 22 293 0.00027739978 1e-6 60 293 0.0024138 1e-6 108 293 2.7699993e-05 1e-6 114 293 5.5499986e-05 1e-6 126 293 2.7699993e-05 1e-6 130 293 2.7699993e-05 1e-6 131 293 2.7699993e-05 1e-6 132 293 2.7699993e-05 1e-6 139 293 2.7699993e-05 1e-6 150 293 0.00033289986 1e-6 151 293 5.5499986e-05 1e-6 160 293 0.0029131998 1e-6 169 293 0.0010543 1e-6 171 293 0.00038839993 1e-6 172 293 0.0037455 1e-6 187 293 5.5499986e-05 1e-6 189 293 2.7699993e-05 1e-6 190 293 5.5499986e-05 1e-6 192 293 2.7699993e-05 1e-6 194 293 5.5499986e-05 1e-6 197 293 2.7699993e-05 1e-6 198 293 0.0018865999 1e-6 200 293 2.7699993e-05 1e-6 203 293 2.7699993e-05 1e-6 204 293 0.00022199999 1e-6 206 293 0.00033289986 1e-6 207 293 2.7699993e-05 1e-6 214 293 0.005105 1e-6 223 293 0.0010819999 1e-6 224 293 0.0007491 1e-6 225 293 8.3199993e-05 1e-6 233 293 0.0039674975 1e-6 234 293 0.0018865999 1e-6 237 293 8.3199993e-05 1e-6 240 293 8.3199993e-05 1e-6 241 293 0.0051327981 1e-6 242 293 0.0021917999 1e-6 251 293 2.7699993e-05 1e-6 252 293 0.00033289986 1e-6 267 293 5.5499986e-05 1e-6 270 293 2.7699993e-05 1e-6 271 293 2.7699993e-05 1e-6 272 293 0.00066589983 1e-6 276 293 2.7699993e-05 1e-6 277 293 0.0011652999 1e-6 278 293 0.0023859998 1e-6 279 293 0.00022199999 1e-6 282 293 0.0018034 1e-6 284 293 0.0021640998 1e-6 285 293 0.0012208 1e-6 286 293 0.010015797 1e-6 287 293 0.0011097998 1e-6 288 293 0.0030242 1e-6 289 293 0.40240818 1e-6 290 293 0.016147397 1e-6 291 293 0.0022195999 1e-6 292 293 0.0029964 1e-6 293 293 0.091806948 1e-6 294 293 5.5499986e-05 1e-6 295 293 0.0038564999 1e-6 297 293 2.7699993e-05 1e-6 312 293 0.0022751 1e-6 315 293 0.00080459984 1e-6 317 293 0.0013595 1e-6 318 293 0.00013869999 1e-6 319 293 0.00083229993 1e-6 321 293 0.0025247999 1e-6 322 293 0.00063809985 1e-6 324 293 2.7699993e-05 1e-6 326 293 0.0047720969 1e-6 337 293 0.0016368998 1e-6 340 293 0.0077961981 1e-6 350 293 8.3199993e-05 1e-6 351 293 0.0017756999 1e-6 354 293 0.0043003969 1e-6 356 293 0.00016649999 1e-6 358 293 0.0013316998 1e-6 370 293 0.00013869999 1e-6 371 293 0.00011099999 1e-6 373 293 0.0011374999 1e-6 375 293 0.00011099999 1e-6 384 293 5.5499986e-05 1e-6 386 293 0.00077679986 1e-6 387 293 2.7699993e-05 1e-6 401 293 2.7699993e-05 1e-6 402 293 2.7699993e-05 1e-6 408 293 2.7699993e-05 1e-6 417 293 0.00024969992 1e-6 421 293 5.5499986e-05 1e-6 422 293 2.7699993e-05 1e-6 433 293 2.7699993e-05 1e-6 434 293 2.7699993e-05 1e-6 438 293 0.00066589983 1e-6 443 293 0.013594899 1e-6 444 293 0.0012762998 1e-6 445 293 0.0055488981 1e-6 446 293 0.0003052 1e-6 447 293 0.0011097998 1e-6 450 293 0.001526 1e-6 452 293 0.013039999 1e-6 453 293 0.0095718987 1e-6 454 293 0.00099879992 1e-6 455 293 0.032100499 1e-6 456 293 0.00013869999 1e-6 457 293 0.0025803 1e-6 458 293 0.0012484998 1e-6 459 293 0.00086009991 1e-6 460 293 0.0016923998 1e-6 463 293 0.0021917999 1e-6 464 293 0.00083229993 1e-6 465 293 0.00041619991 1e-6 467 293 0.0076574981 1e-6 468 293 0.0065476969 1e-6 469 293 0.0029964 1e-6 470 293 0.0011374999 1e-6 471 293 0.0017756999 1e-6 473 293 2.7699993e-05 1e-6 477 293 0.00083229993 1e-6 478 293 0.00055489992 1e-6 483 293 0.00055489992 1e-6 489 293 8.3199993e-05 1e-6 490 293 0.00013869999 1e-6 491 293 0.029575799 1e-6 19 294 0.00075719994 1e-6 21 294 0.0019876999 1e-6 22 294 0.0004733 1e-6 60 294 0.0020822999 1e-6 108 294 9.4699993e-05 1e-6 114 294 0.00018929999 1e-6 126 294 9.4699993e-05 1e-6 160 294 0.0020822999 1e-6 189 294 9.4699993e-05 1e-6 190 294 9.4699993e-05 1e-6 194 294 9.4699993e-05 1e-6 198 294 0.0038806999 1e-6 206 294 0.00018929999 1e-6 214 294 0.027354497 1e-6 223 294 0.0021769998 1e-6 224 294 9.4699993e-05 1e-6 233 294 0.0020822999 1e-6 234 294 0.0015143999 1e-6 237 294 9.4699993e-05 1e-6 240 294 9.4699993e-05 1e-6 241 294 0.015333597 1e-6 242 294 0.0021769998 1e-6 252 294 9.4699993e-05 1e-6 272 294 0.0004733 1e-6 277 294 0.0032181998 1e-6 278 294 0.005584497 1e-6 282 294 0.0022717 1e-6 284 294 0.0015143999 1e-6 285 294 0.00028399983 1e-6 286 294 0.020350199 1e-6 287 294 0.023284398 1e-6 288 294 0.017415997 1e-6 289 294 0.0070988983 1e-6 290 294 0.42953146 1e-6 291 294 0.013724599 1e-6 292 294 0.0015143999 1e-6 293 294 0.0017036998 1e-6 294 294 0.0032181998 1e-6 295 294 0.00066259992 1e-6 312 294 0.0031234999 1e-6 315 294 0.0025555999 1e-6 317 294 9.4699993e-05 1e-6 318 294 9.4699993e-05 1e-6 320 294 9.4699993e-05 1e-6 321 294 0.0037860998 1e-6 322 294 9.4699993e-05 1e-6 326 294 0.014860399 1e-6 337 294 9.4699993e-05 1e-6 340 294 0.0107903 1e-6 350 294 0.0021769998 1e-6 351 294 0.005584497 1e-6 353 294 9.4699993e-05 1e-6 354 294 0.0023663 1e-6 356 294 0.00028399983 1e-6 358 294 0.0078560971 1e-6 373 294 0.0011357998 1e-6 375 294 0.00018929999 1e-6 386 294 0.0034075 1e-6 387 294 9.4699993e-05 1e-6 389 294 0.0019876999 1e-6 390 294 0.00037859986 1e-6 391 294 9.4699993e-05 1e-6 392 294 0.00085189985 1e-6 393 294 0.0010411998 1e-6 397 294 0.00028399983 1e-6 398 294 9.4699993e-05 1e-6 417 294 0.00028399983 1e-6 438 294 0.0029342 1e-6 442 294 0.0019876999 1e-6 443 294 0.0073828995 1e-6 444 294 0.0035020998 1e-6 445 294 0.0042592995 1e-6 446 294 0.00037859986 1e-6 447 294 0.0043539964 1e-6 450 294 0.0016090998 1e-6 452 294 0.0086132996 1e-6 453 294 0.0043539964 1e-6 454 294 0.0024609999 1e-6 455 294 0.022148598 1e-6 456 294 0.00028399983 1e-6 457 294 0.0025555999 1e-6 458 294 0.0004733 1e-6 459 294 0.00085189985 1e-6 460 294 0.0017984 1e-6 463 294 0.010317098 1e-6 464 294 0.0027448998 1e-6 465 294 0.0004733 1e-6 467 294 0.012588698 1e-6 468 294 0.0035020998 1e-6 469 294 0.0039753988 1e-6 470 294 0.0025555999 1e-6 471 294 0.0036913999 1e-6 473 294 9.4699993e-05 1e-6 477 294 0.00094649987 1e-6 478 294 0.00056789978 1e-6 483 294 0.00094649987 1e-6 490 294 0.00037859986 1e-6 491 294 0.0088972971 1e-6 9 295 2.2199994e-05 1e-6 18 295 0.00057599996 1e-6 19 295 4.4299988e-05 1e-6 21 295 2.2199994e-05 1e-6 22 295 8.8599991e-05 1e-6 25 295 2.2199994e-05 1e-6 60 295 0.0013956998 1e-6 82 295 2.2199994e-05 1e-6 83 295 2.2199994e-05 1e-6 84 295 2.2199994e-05 1e-6 108 295 2.2199994e-05 1e-6 113 295 4.4299988e-05 1e-6 114 295 4.4299988e-05 1e-6 126 295 2.2199994e-05 1e-6 130 295 2.2199994e-05 1e-6 131 295 0.0021046 1e-6 132 295 0.0025919999 1e-6 139 295 0.002016 1e-6 150 295 0.00033229985 1e-6 151 295 0.00042089983 1e-6 160 295 0.0026805999 1e-6 169 295 0.0011298 1e-6 171 295 0.0095925964 1e-6 172 295 0.00064249989 1e-6 187 295 0.0022153999 1e-6 189 295 4.4299988e-05 1e-6 190 295 4.4299988e-05 1e-6 194 295 6.6499997e-05 1e-6 197 295 0.0016393999 1e-6 198 295 0.0036774999 1e-6 200 295 2.2199994e-05 1e-6 203 295 4.4299988e-05 1e-6 204 295 4.4299988e-05 1e-6 206 295 4.4299988e-05 1e-6 207 295 2.2199994e-05 1e-6 214 295 0.010855399 1e-6 215 295 2.2199994e-05 1e-6 223 295 0.0015064999 1e-6 224 295 0.031945799 1e-6 225 295 0.005471997 1e-6 233 295 0.0016615 1e-6 234 295 0.0022374999 1e-6 237 295 6.6499997e-05 1e-6 240 295 0.0018608999 1e-6 241 295 0.010434397 1e-6 242 295 0.00062029995 1e-6 252 295 0.002016 1e-6 262 295 2.2199994e-05 1e-6 270 295 0.0015729 1e-6 271 295 0.0010854998 1e-6 272 295 0.00066459994 1e-6 276 295 0.0021488999 1e-6 277 295 0.0036553999 1e-6 278 295 0.00013289999 1e-6 279 295 0.00019939999 1e-6 282 295 0.00086399983 1e-6 283 295 0.0002215 1e-6 284 295 0.0015507999 1e-6 285 295 4.4299988e-05 1e-6 286 295 0.10673696 1e-6 287 295 0.0064023994 1e-6 288 295 0.0027027999 1e-6 289 295 0.0173021 1e-6 290 295 0.0081746988 1e-6 291 295 0.00026579993 1e-6 292 295 0.1619221 1e-6 293 295 0.0580872 1e-6 294 295 0.0038547998 1e-6 295 295 0.082389951 1e-6 296 295 0.0001772 1e-6 297 295 2.2199994e-05 1e-6 298 295 2.2199994e-05 1e-6 312 295 0.0022596999 1e-6 313 295 0.0001108 1e-6 315 295 0.0004431 1e-6 317 295 0.00090829981 1e-6 319 295 4.4299988e-05 1e-6 320 295 0.0001772 1e-6 321 295 0.0044971965 1e-6 322 295 6.6499997e-05 1e-6 324 295 2.2199994e-05 1e-6 326 295 0.0060700998 1e-6 328 295 2.2199994e-05 1e-6 337 295 0.0007974999 1e-6 340 295 0.0066682994 1e-6 349 295 2.2199994e-05 1e-6 350 295 0.0010411998 1e-6 351 295 0.0021267999 1e-6 354 295 0.0040097982 1e-6 356 295 0.00019939999 1e-6 357 295 6.6499997e-05 1e-6 358 295 0.0015950999 1e-6 370 295 0.00057599996 1e-6 371 295 0.00097479997 1e-6 372 295 0.00066459994 1e-6 373 295 0.0010411998 1e-6 375 295 0.00050949981 1e-6 376 295 2.2199994e-05 1e-6 380 295 2.2199994e-05 1e-6 384 295 0.00015509999 1e-6 386 295 0.0022374999 1e-6 387 295 2.2199994e-05 1e-6 390 295 6.6499997e-05 1e-6 391 295 2.2199994e-05 1e-6 392 295 0.0001772 1e-6 393 295 0.00035449979 1e-6 397 295 0.00024369999 1e-6 398 295 0.0007974999 1e-6 402 295 0.00048739999 1e-6 417 295 0.00024369999 1e-6 421 295 4.4299988e-05 1e-6 422 295 4.4299988e-05 1e-6 423 295 2.2199994e-05 1e-6 430 295 2.2199994e-05 1e-6 431 295 2.2199994e-05 1e-6 433 295 2.2199994e-05 1e-6 434 295 2.2199994e-05 1e-6 438 295 6.6499997e-05 1e-6 442 295 2.2199994e-05 1e-6 443 295 0.0076651983 1e-6 444 295 0.0012627998 1e-6 445 295 0.0082190968 1e-6 446 295 0.00073109986 1e-6 447 295 0.0027470998 1e-6 448 295 2.2199994e-05 1e-6 450 295 0.0028799998 1e-6 452 295 0.0079974979 1e-6 453 295 0.0021931999 1e-6 454 295 0.0014842998 1e-6 455 295 0.042003598 1e-6 456 295 0.00013289999 1e-6 457 295 0.0034337998 1e-6 458 295 0.00033229985 1e-6 459 295 0.00090829981 1e-6 460 295 0.0016615 1e-6 463 295 0.0047187991 1e-6 464 295 0.0011298 1e-6 465 295 0.00050949981 1e-6 467 295 0.0081968978 1e-6 468 295 0.0052725971 1e-6 469 295 0.0068897977 1e-6 470 295 0.0023260999 1e-6 471 295 0.002016 1e-6 473 295 4.4299988e-05 1e-6 477 295 0.0007974999 1e-6 478 295 0.00057599996 1e-6 483 295 0.00075319991 1e-6 489 295 4.4299988e-05 1e-6 490 295 0.00099689979 1e-6 491 295 0.0029020999 1e-6 9 296 8.4599989e-05 1e-6 18 296 0.00016919999 1e-6 21 296 0.00016919999 1e-6 24 296 0.0012687999 1e-6 60 296 0.013703298 1e-6 82 296 8.4599989e-05 1e-6 83 296 8.4599989e-05 1e-6 84 296 8.4599989e-05 1e-6 104 296 0.00016919999 1e-6 108 296 8.4599989e-05 1e-6 113 296 0.00016919999 1e-6 114 296 0.00033839978 1e-6 126 296 0.00016919999 1e-6 150 296 0.00059209997 1e-6 160 296 0.00016919999 1e-6 189 296 8.4599989e-05 1e-6 190 296 8.4599989e-05 1e-6 194 296 0.00016919999 1e-6 198 296 0.0036372999 1e-6 200 296 8.4599989e-05 1e-6 203 296 8.4599989e-05 1e-6 204 296 8.4599989e-05 1e-6 206 296 0.00016919999 1e-6 214 296 0.0014379998 1e-6 223 296 0.0047368966 1e-6 224 296 8.4599989e-05 1e-6 234 296 0.0025376 1e-6 237 296 0.00025379984 1e-6 241 296 0.0038065 1e-6 242 296 8.4599989e-05 1e-6 252 296 0.00025379984 1e-6 268 296 0.0016917998 1e-6 270 296 0.00042289984 1e-6 272 296 0.00059209997 1e-6 276 296 0.00059209997 1e-6 277 296 0.0035526999 1e-6 278 296 0.0020301 1e-6 279 296 0.00016919999 1e-6 282 296 0.0011841999 1e-6 283 296 8.4599989e-05 1e-6 284 296 0.0028759998 1e-6 286 296 0.014887497 1e-6 287 296 0.00016919999 1e-6 288 296 0.023600098 1e-6 289 296 0.21324646 1e-6 290 296 0.0032988999 1e-6 291 296 8.4599989e-05 1e-6 293 296 0.00016919999 1e-6 294 296 0.00016919999 1e-6 295 296 0.00016919999 1e-6 296 296 0.0014379998 1e-6 297 296 0.00025379984 1e-6 298 296 0.00025379984 1e-6 312 296 0.00059209997 1e-6 315 296 0.00016919999 1e-6 320 296 8.4599989e-05 1e-6 326 296 0.0065978989 1e-6 328 296 0.00059209997 1e-6 329 296 8.4599989e-05 1e-6 339 296 0.0016917998 1e-6 340 296 0.036372896 1e-6 341 296 8.4599989e-05 1e-6 349 296 8.4599989e-05 1e-6 350 296 0.00016919999 1e-6 351 296 0.00042289984 1e-6 353 296 0.014295399 1e-6 354 296 0.00033839978 1e-6 356 296 0.00025379984 1e-6 357 296 8.4599989e-05 1e-6 358 296 0.0073591992 1e-6 372 296 0.00025379984 1e-6 374 296 8.4599989e-05 1e-6 375 296 0.00025379984 1e-6 384 296 0.00025379984 1e-6 387 296 8.4599989e-05 1e-6 397 296 8.4599989e-05 1e-6 402 296 0.00025379984 1e-6 417 296 0.00050749979 1e-6 419 296 8.4599989e-05 1e-6 421 296 8.4599989e-05 1e-6 422 296 0.00025379984 1e-6 423 296 8.4599989e-05 1e-6 425 296 8.4599989e-05 1e-6 430 296 8.4599989e-05 1e-6 431 296 8.4599989e-05 1e-6 434 296 8.4599989e-05 1e-6 443 296 0.0084587969 1e-6 444 296 0.00059209997 1e-6 445 296 0.0074437 1e-6 446 296 8.4599989e-05 1e-6 447 296 0.0019454998 1e-6 450 296 0.0032988999 1e-6 452 296 0.011419397 1e-6 453 296 0.012011498 1e-6 454 296 0.00067669991 1e-6 455 296 0.0190323 1e-6 456 296 0.00050749979 1e-6 457 296 0.0027067999 1e-6 458 296 0.00076129986 1e-6 459 296 0.00084589981 1e-6 460 296 0.0021146999 1e-6 463 296 0.0077820979 1e-6 464 296 0.00042289984 1e-6 465 296 0.0011841999 1e-6 467 296 0.015733398 1e-6 468 296 0.0036372999 1e-6 469 296 0.0084587969 1e-6 470 296 0.0094738975 1e-6 471 296 0.0010996 1e-6 473 296 0.00025379984 1e-6 477 296 8.4599989e-05 1e-6 478 296 0.0015226 1e-6 483 296 0.00093049998 1e-6 490 296 0.00076129986 1e-6 491 296 0.017848097 1e-6 19 297 0.00042689987 1e-6 24 297 0.0029882998 1e-6 60 297 0.0087512992 1e-6 104 297 0.0002134 1e-6 108 297 0.0002134 1e-6 114 297 0.00042689987 1e-6 126 297 0.0002134 1e-6 160 297 0.0002134 1e-6 190 297 0.0002134 1e-6 194 297 0.0002134 1e-6 198 297 0.0040554963 1e-6 206 297 0.00042689987 1e-6 214 297 0.00042689987 1e-6 223 297 0.0049092993 1e-6 234 297 0.0036285999 1e-6 241 297 0.00042689987 1e-6 252 297 0.00042689987 1e-6 268 297 0.0002134 1e-6 270 297 0.00064029987 1e-6 272 297 0.00085379998 1e-6 277 297 0.010245498 1e-6 278 297 0.011739597 1e-6 279 297 0.0002134 1e-6 282 297 0.001921 1e-6 283 297 0.00064029987 1e-6 284 297 0.0034151999 1e-6 286 297 0.20234787 1e-6 288 297 0.0040554963 1e-6 289 297 0.032017097 1e-6 290 297 0.0017076 1e-6 292 297 0.0010672 1e-6 293 297 0.0002134 1e-6 295 297 0.00042689987 1e-6 296 297 0.0002134 1e-6 297 297 0.0070437975 1e-6 312 297 0.00042689987 1e-6 313 297 0.0002134 1e-6 315 297 0.0002134 1e-6 319 297 0.0002134 1e-6 322 297 0.0002134 1e-6 324 297 0.0002134 1e-6 326 297 0.00064029987 1e-6 328 297 0.00042689987 1e-6 340 297 0.011739597 1e-6 341 297 0.0002134 1e-6 349 297 0.0002134 1e-6 351 297 0.00042689987 1e-6 353 297 0.027534697 1e-6 354 297 0.0010672 1e-6 356 297 0.0002134 1e-6 358 297 0.0096050985 1e-6 374 297 0.0002134 1e-6 375 297 0.00085379998 1e-6 377 297 0.0002134 1e-6 380 297 0.0002134 1e-6 386 297 0.0002134 1e-6 387 297 0.0002134 1e-6 402 297 0.00064029987 1e-6 415 297 0.00042689987 1e-6 417 297 0.00042689987 1e-6 419 297 0.0002134 1e-6 443 297 0.010031998 1e-6 444 297 0.00042689987 1e-6 445 297 0.014514398 1e-6 447 297 0.0061899982 1e-6 450 297 0.0032016998 1e-6 452 297 0.011099298 1e-6 453 297 0.0064033978 1e-6 454 297 0.00042689987 1e-6 455 297 0.033724699 1e-6 456 297 0.0002134 1e-6 457 297 0.0027747999 1e-6 458 297 0.0002134 1e-6 459 297 0.00085379998 1e-6 460 297 0.0017076 1e-6 463 297 0.022411998 1e-6 464 297 0.00064029987 1e-6 465 297 0.00085379998 1e-6 467 297 0.011099298 1e-6 468 297 0.0017076 1e-6 469 297 0.0070437975 1e-6 470 297 0.0076840967 1e-6 471 297 0.0010672 1e-6 473 297 0.0002134 1e-6 478 297 0.0012806999 1e-6 483 297 0.0012806999 1e-6 490 297 0.00085379998 1e-6 491 297 0.052721497 1e-6 21 298 0.00081929984 1e-6 24 298 0.0001639 1e-6 60 298 0.010650497 1e-6 104 298 0.0001639 1e-6 114 298 0.0001639 1e-6 126 298 0.0001639 1e-6 150 298 0.0001639 1e-6 190 298 0.0001639 1e-6 194 298 0.0001639 1e-6 198 298 0.0075372979 1e-6 206 298 0.00032769982 1e-6 214 298 0.0086842999 1e-6 223 298 0.0045878999 1e-6 234 298 0.0026216998 1e-6 237 298 0.0001639 1e-6 241 298 0.0065541975 1e-6 252 298 0.0001639 1e-6 268 298 0.00032769982 1e-6 270 298 0.0045878999 1e-6 272 298 0.00065539987 1e-6 276 298 0.013927598 1e-6 277 298 0.0026216998 1e-6 278 298 0.0029493999 1e-6 279 298 0.00032769982 1e-6 284 298 0.0036048 1e-6 286 298 0.0058986992 1e-6 287 298 0.0052432977 1e-6 288 298 0.13747334 1e-6 289 298 0.053580198 1e-6 290 298 0.038833398 1e-6 291 298 0.00098309992 1e-6 294 298 0.00032769982 1e-6 295 298 0.00032769982 1e-6 296 298 0.0001639 1e-6 298 298 0.0022939998 1e-6 312 298 0.012125198 1e-6 321 298 0.0001639 1e-6 326 298 0.014582999 1e-6 339 298 0.0026216998 1e-6 340 298 0.061772898 1e-6 351 298 0.0062263981 1e-6 353 298 0.0077010989 1e-6 354 298 0.0001639 1e-6 356 298 0.0001639 1e-6 358 298 0.015238397 1e-6 370 298 0.0001639 1e-6 373 298 0.0001639 1e-6 374 298 0.0001639 1e-6 375 298 0.0001639 1e-6 384 298 0.0001639 1e-6 386 298 0.0001639 1e-6 417 298 0.00065539987 1e-6 422 298 0.0001639 1e-6 438 298 0.0001639 1e-6 443 298 0.0049155988 1e-6 444 298 0.0058986992 1e-6 445 298 0.0093396977 1e-6 447 298 0.0075372979 1e-6 450 298 0.0034408998 1e-6 452 298 0.011797499 1e-6 453 298 0.0091757998 1e-6 454 298 0.00098309992 1e-6 455 298 0.017532397 1e-6 456 298 0.00049159979 1e-6 457 298 0.0042601973 1e-6 458 298 0.00098309992 1e-6 459 298 0.00098309992 1e-6 460 298 0.0021300998 1e-6 463 298 0.018679298 1e-6 464 298 0.00049159979 1e-6 465 298 0.00098309992 1e-6 467 298 0.0119613 1e-6 468 298 0.0016384998 1e-6 469 298 0.0042601973 1e-6 470 298 0.0045878999 1e-6 471 298 0.0011469999 1e-6 473 298 0.0001639 1e-6 478 298 0.0011469999 1e-6 483 298 0.00098309992 1e-6 490 298 0.00065539987 1e-6 491 298 0.0044240989 1e-6 22 299 0.0013623999 1e-6 60 299 0.0030653998 1e-6 114 299 0.0003405998 1e-6 160 299 0.00068119983 1e-6 172 299 0.0003405998 1e-6 198 299 0.0047683977 1e-6 206 299 0.0003405998 1e-6 214 299 0.0061307997 1e-6 223 299 0.0003405998 1e-6 229 299 0.00068119983 1e-6 233 299 0.00068119983 1e-6 234 299 0.0023842 1e-6 240 299 0.00068119983 1e-6 241 299 0.014305197 1e-6 272 299 0.0003405998 1e-6 277 299 0.091961861 1e-6 278 299 0.0013623999 1e-6 279 299 0.0003405998 1e-6 282 299 0.0010217999 1e-6 283 299 0.0013623999 1e-6 284 299 0.0023842 1e-6 286 299 0.044959098 1e-6 288 299 0.0034059999 1e-6 289 299 0.09162128 1e-6 290 299 0.0040871985 1e-6 292 299 0.028950997 1e-6 293 299 0.070163488 1e-6 294 299 0.053814698 1e-6 295 299 0.00068119983 1e-6 299 299 0.0057901964 1e-6 307 299 0.0003405998 1e-6 312 299 0.0003405998 1e-6 320 299 0.0003405998 1e-6 321 299 0.013964597 1e-6 324 299 0.0010217999 1e-6 326 299 0.010217998 1e-6 333 299 0.0003405998 1e-6 339 299 0.0003405998 1e-6 340 299 0.016008198 1e-6 351 299 0.00068119983 1e-6 354 299 0.0013623999 1e-6 358 299 0.0051089972 1e-6 417 299 0.0003405998 1e-6 443 299 0.0071525984 1e-6 444 299 0.00068119983 1e-6 445 299 0.0207766 1e-6 447 299 0.0057901964 1e-6 450 299 0.0017029999 1e-6 452 299 0.012942798 1e-6 453 299 0.011580396 1e-6 454 299 0.0020436 1e-6 455 299 0.027588598 1e-6 457 299 0.0023842 1e-6 458 299 0.00068119983 1e-6 460 299 0.0017029999 1e-6 463 299 0.010899197 1e-6 464 299 0.0003405998 1e-6 465 299 0.00068119983 1e-6 467 299 0.009536799 1e-6 468 299 0.0013623999 1e-6 469 299 0.0047683977 1e-6 470 299 0.0037465999 1e-6 471 299 0.0003405998 1e-6 478 299 0.00068119983 1e-6 483 299 0.0010217999 1e-6 490 299 0.00068119983 1e-6 491 299 0.016008198 1e-6 0 300 0.0003052 1e-6 9 300 7.0399998e-05 1e-6 11 300 4.6899993e-05 1e-6 18 300 0.00056339987 1e-6 22 300 2.349999e-05 1e-6 60 300 0.0020187998 1e-6 82 300 2.349999e-05 1e-6 84 300 2.349999e-05 1e-6 88 300 0.00011739999 1e-6 90 300 9.3899987e-05 1e-6 93 300 2.349999e-05 1e-6 107 300 0.0003052 1e-6 108 300 2.349999e-05 1e-6 114 300 2.349999e-05 1e-6 115 300 4.6899993e-05 1e-6 116 300 0.0005398998 1e-6 122 300 2.349999e-05 1e-6 126 300 2.349999e-05 1e-6 130 300 2.349999e-05 1e-6 150 300 0.00032859994 1e-6 151 300 0.00068079983 1e-6 160 300 0.0001408 1e-6 169 300 0.0015492998 1e-6 187 300 0.0003052 1e-6 188 300 0.0013849998 1e-6 189 300 2.349999e-05 1e-6 190 300 4.6899993e-05 1e-6 192 300 0.0002347 1e-6 193 300 2.349999e-05 1e-6 194 300 7.0399998e-05 1e-6 197 300 2.349999e-05 1e-6 198 300 0.0081691965 1e-6 200 300 2.349999e-05 1e-6 203 300 4.6899993e-05 1e-6 204 300 0.050517596 1e-6 206 300 4.6899993e-05 1e-6 207 300 2.349999e-05 1e-6 214 300 0.00011739999 1e-6 219 300 0.00072769984 1e-6 221 300 0.0019248999 1e-6 224 300 0.00021129999 1e-6 229 300 0.0010797998 1e-6 233 300 0.018239897 1e-6 234 300 0.0015962999 1e-6 237 300 9.3899987e-05 1e-6 240 300 0.0010797998 1e-6 241 300 9.3899987e-05 1e-6 252 300 2.349999e-05 1e-6 253 300 0.0005398998 1e-6 270 300 0.00058689993 1e-6 272 300 0.0006573 1e-6 277 300 0.33648676 1e-6 279 300 0.00037559983 1e-6 284 300 0.00082159997 1e-6 287 300 0.0054226965 1e-6 290 300 0.00046949997 1e-6 293 300 0.090729773 1e-6 300 300 0.0022065998 1e-6 312 300 2.349999e-05 1e-6 314 300 7.0399998e-05 1e-6 315 300 0.0006573 1e-6 317 300 0.00072769984 1e-6 321 300 0.0040845983 1e-6 322 300 4.6899993e-05 1e-6 325 300 2.349999e-05 1e-6 326 300 9.3899987e-05 1e-6 339 300 0.0010563999 1e-6 340 300 0.0045305975 1e-6 341 300 4.6899993e-05 1e-6 351 300 0.00070419977 1e-6 356 300 0.0001408 1e-6 358 300 0.0026525999 1e-6 384 300 4.6899993e-05 1e-6 387 300 2.349999e-05 1e-6 401 300 2.349999e-05 1e-6 402 300 4.6899993e-05 1e-6 417 300 0.0002347 1e-6 421 300 2.349999e-05 1e-6 422 300 7.0399998e-05 1e-6 430 300 2.349999e-05 1e-6 433 300 2.349999e-05 1e-6 434 300 2.349999e-05 1e-6 443 300 0.0071832985 1e-6 444 300 0.0044366978 1e-6 445 300 0.0084039979 1e-6 446 300 0.00089199981 1e-6 447 300 0.029319897 1e-6 450 300 0.0015962999 1e-6 452 300 0.0048592985 1e-6 453 300 0.0033098999 1e-6 454 300 0.0011737 1e-6 455 300 0.031385697 1e-6 456 300 0.00018779999 1e-6 457 300 0.0020893 1e-6 458 300 0.0012910999 1e-6 459 300 0.0017136999 1e-6 460 300 0.0016901998 1e-6 463 300 0.0102585 1e-6 464 300 0.0036150999 1e-6 465 300 0.00042249984 1e-6 467 300 0.015610699 1e-6 468 300 0.012089498 1e-6 469 300 0.0064085983 1e-6 470 300 0.0031690998 1e-6 471 300 0.0015023998 1e-6 473 300 2.349999e-05 1e-6 477 300 0.0007511999 1e-6 478 300 0.00056339987 1e-6 483 300 0.00025819987 1e-6 489 300 2.349999e-05 1e-6 490 300 0.00011739999 1e-6 491 300 0.00011739999 1e-6 23 301 0.0011695998 1e-6 60 301 0.0029239999 1e-6 114 301 0.0001949 1e-6 156 301 0.0001949 1e-6 187 301 0.0001949 1e-6 188 301 0.0015594999 1e-6 198 301 0.0017543999 1e-6 204 301 0.0017543999 1e-6 206 301 0.00038989983 1e-6 214 301 0.0001949 1e-6 219 301 0.00038989983 1e-6 223 301 0.0001949 1e-6 224 301 0.012280699 1e-6 229 301 0.00097469985 1e-6 233 301 0.022806998 1e-6 234 301 0.0027289998 1e-6 237 301 0.0001949 1e-6 240 301 0.0001949 1e-6 241 301 0.00038989983 1e-6 272 301 0.00038989983 1e-6 277 301 0.3705653 1e-6 284 301 0.00097469985 1e-6 285 301 0.0001949 1e-6 287 301 0.0001949 1e-6 292 301 0.0005847998 1e-6 293 301 0.007017497 1e-6 295 301 0.0005847998 1e-6 298 301 0.00038989983 1e-6 299 301 0.0001949 1e-6 301 301 0.0011695998 1e-6 305 301 0.0001949 1e-6 312 301 0.0015594999 1e-6 313 301 0.00097469985 1e-6 315 301 0.0005847998 1e-6 319 301 0.0005847998 1e-6 320 301 0.00038989983 1e-6 321 301 0.0011695998 1e-6 322 301 0.020467799 1e-6 324 301 0.0001949 1e-6 326 301 0.043469798 1e-6 339 301 0.00097469985 1e-6 340 301 0.0050681978 1e-6 341 301 0.0001949 1e-6 351 301 0.0072124973 1e-6 356 301 0.0001949 1e-6 358 301 0.0031188999 1e-6 371 301 0.0001949 1e-6 372 301 0.0005847998 1e-6 380 301 0.0001949 1e-6 386 301 0.00038989983 1e-6 402 301 0.0001949 1e-6 415 301 0.0005847998 1e-6 417 301 0.0001949 1e-6 443 301 0.0081870966 1e-6 444 301 0.0062377974 1e-6 445 301 0.0087718964 1e-6 446 301 0.0005847998 1e-6 447 301 0.017543897 1e-6 450 301 0.0019492998 1e-6 452 301 0.0066276975 1e-6 453 301 0.0044833981 1e-6 454 301 0.00097469985 1e-6 455 301 0.0391813 1e-6 456 301 0.0001949 1e-6 457 301 0.0031188999 1e-6 458 301 0.0005847998 1e-6 459 301 0.00038989983 1e-6 460 301 0.0011695998 1e-6 463 301 0.012670599 1e-6 464 301 0.0005847998 1e-6 465 301 0.00038989983 1e-6 467 301 0.0079921968 1e-6 468 301 0.0079921968 1e-6 469 301 0.0031188999 1e-6 470 301 0.0023391999 1e-6 471 301 0.0007797 1e-6 478 301 0.0005847998 1e-6 483 301 0.0005847998 1e-6 490 301 0.00038989983 1e-6 491 301 0.00038989983 1e-6 22 302 0.0012425999 1e-6 24 302 0.0021745998 1e-6 60 302 0.0040384978 1e-6 114 302 0.00031069992 1e-6 160 302 0.0012425999 1e-6 169 302 0.0012425999 1e-6 198 302 0.012736898 1e-6 206 302 0.00062129996 1e-6 214 302 0.00093199988 1e-6 223 302 0.013358198 1e-6 224 302 0.0018638999 1e-6 229 302 0.00093199988 1e-6 233 302 0.018018 1e-6 234 302 0.0027959 1e-6 237 302 0.00031069992 1e-6 240 302 0.00093199988 1e-6 241 302 0.0012425999 1e-6 270 302 0.0096302964 1e-6 272 302 0.0040384978 1e-6 277 302 0.14103758 1e-6 279 302 0.00062129996 1e-6 282 302 0.016154099 1e-6 283 302 0.0034171999 1e-6 284 302 0.0015532998 1e-6 286 302 0.0037278999 1e-6 288 302 0.013979498 1e-6 289 302 0.0024851998 1e-6 292 302 0.010251597 1e-6 293 302 0.0034171999 1e-6 295 302 0.00031069992 1e-6 296 302 0.0034171999 1e-6 297 302 0.014290199 1e-6 299 302 0.00031069992 1e-6 302 302 0.00031069992 1e-6 303 302 0.00062129996 1e-6 312 302 0.010251597 1e-6 313 302 0.00062129996 1e-6 315 302 0.0052810982 1e-6 317 302 0.00031069992 1e-6 319 302 0.00031069992 1e-6 320 302 0.0055917986 1e-6 321 302 0.023299199 1e-6 326 302 0.00031069992 1e-6 339 302 0.0040384978 1e-6 340 302 0.0052810982 1e-6 353 302 0.0031065999 1e-6 358 302 0.0021745998 1e-6 374 302 0.00062129996 1e-6 417 302 0.00062129996 1e-6 443 302 0.0086983964 1e-6 444 302 0.0074556991 1e-6 445 302 0.014290199 1e-6 446 302 0.00031069992 1e-6 447 302 0.0080769993 1e-6 450 302 0.0031065999 1e-6 452 302 0.0083876997 1e-6 453 302 0.0083876997 1e-6 454 302 0.0015532998 1e-6 455 302 0.031065498 1e-6 456 302 0.00031069992 1e-6 457 302 0.0086983964 1e-6 458 302 0.0012425999 1e-6 459 302 0.00093199988 1e-6 460 302 0.0015532998 1e-6 463 302 0.012115598 1e-6 464 302 0.00062129996 1e-6 465 302 0.00062129996 1e-6 467 302 0.010251597 1e-6 468 302 0.013668798 1e-6 469 302 0.0031065999 1e-6 470 302 0.0027959 1e-6 471 302 0.0012425999 1e-6 478 302 0.00093199988 1e-6 483 302 0.0015532998 1e-6 490 302 0.00062129996 1e-6 491 302 0.011183597 1e-6 24 303 0.00072109979 1e-6 60 303 0.0015864 1e-6 114 303 0.00014419999 1e-6 126 303 0.00014419999 1e-6 160 303 0.0012979999 1e-6 190 303 0.00014419999 1e-6 194 303 0.00014419999 1e-6 198 303 0.0087971985 1e-6 206 303 0.00028839987 1e-6 214 303 0.00043269992 1e-6 223 303 0.0047591999 1e-6 229 303 0.00086529995 1e-6 233 303 0.00086529995 1e-6 234 303 0.0024516999 1e-6 237 303 0.00057689985 1e-6 240 303 0.0011536998 1e-6 241 303 0.0046148971 1e-6 270 303 0.0070665963 1e-6 272 303 0.0040380992 1e-6 277 303 0.0291318 1e-6 279 303 0.00028839987 1e-6 282 303 0.0067781992 1e-6 283 303 0.00057689985 1e-6 284 303 0.0015864 1e-6 286 303 0.024228398 1e-6 288 303 0.00072109979 1e-6 289 303 0.0054801963 1e-6 290 303 0.00028839987 1e-6 292 303 0.11595035 1e-6 293 303 0.0036054 1e-6 296 303 0.0015864 1e-6 297 303 0.059128899 1e-6 298 303 0.015575398 1e-6 303 303 0.006633997 1e-6 312 303 0.041534498 1e-6 315 303 0.040092297 1e-6 317 303 0.00014419999 1e-6 320 303 0.042544 1e-6 321 303 0.0011536998 1e-6 324 303 0.00043269992 1e-6 328 303 0.0023075 1e-6 330 303 0.00086529995 1e-6 339 303 0.0021632998 1e-6 340 303 0.0038939 1e-6 341 303 0.00014419999 1e-6 350 303 0.00014419999 1e-6 351 303 0.00086529995 1e-6 353 303 0.00014419999 1e-6 354 303 0.00057689985 1e-6 358 303 0.006201297 1e-6 372 303 0.00043269992 1e-6 374 303 0.00028839987 1e-6 386 303 0.00014419999 1e-6 395 303 0.00014419999 1e-6 397 303 0.00014419999 1e-6 417 303 0.00043269992 1e-6 422 303 0.00014419999 1e-6 443 303 0.0043265 1e-6 444 303 0.0015864 1e-6 445 303 0.0102394 1e-6 446 303 0.00014419999 1e-6 447 303 0.0060570985 1e-6 450 303 0.0027400998 1e-6 452 303 0.0057686977 1e-6 453 303 0.0027400998 1e-6 454 303 0.00057689985 1e-6 455 303 0.034612097 1e-6 456 303 0.00028839987 1e-6 457 303 0.0060570985 1e-6 458 303 0.00072109979 1e-6 459 303 0.00072109979 1e-6 460 303 0.0017305999 1e-6 463 303 0.0070665963 1e-6 464 303 0.00028839987 1e-6 465 303 0.00057689985 1e-6 467 303 0.0074992999 1e-6 468 303 0.0095182993 1e-6 469 303 0.0033169999 1e-6 470 303 0.0036054 1e-6 471 303 0.0011536998 1e-6 473 303 0.00014419999 1e-6 478 303 0.00086529995 1e-6 483 303 0.00072109979 1e-6 490 303 0.00043269992 1e-6 491 303 0.0030285998 1e-6 21 304 0.00010399999 1e-6 22 304 0.00010399999 1e-6 60 304 0.0033270998 1e-6 108 304 0.00010399999 1e-6 114 304 0.00010399999 1e-6 126 304 0.00010399999 1e-6 135 304 0.00010399999 1e-6 160 304 0.0023912999 1e-6 169 304 0.00093569979 1e-6 171 304 0.0002079 1e-6 172 304 0.0023912999 1e-6 189 304 0.00010399999 1e-6 190 304 0.00010399999 1e-6 194 304 0.0002079 1e-6 198 304 0.0091494992 1e-6 203 304 0.00010399999 1e-6 206 304 0.0002079 1e-6 214 304 0.00031189993 1e-6 223 304 0.00010399999 1e-6 224 304 0.00010399999 1e-6 229 304 0.00083179981 1e-6 233 304 0.0058223978 1e-6 234 304 0.0034310999 1e-6 236 304 0.00031189993 1e-6 237 304 0.0002079 1e-6 240 304 0.0021833999 1e-6 241 304 0.00051989988 1e-6 242 304 0.0002079 1e-6 252 304 0.0002079 1e-6 270 304 0.0022874 1e-6 271 304 0.00010399999 1e-6 272 304 0.00010399999 1e-6 274 304 0.0002079 1e-6 277 304 0.078706563 1e-6 278 304 0.00010399999 1e-6 279 304 0.00010399999 1e-6 282 304 0.011748798 1e-6 283 304 0.0002079 1e-6 284 304 0.0016635 1e-6 285 304 0.00010399999 1e-6 286 304 0.0016635 1e-6 289 304 0.0016635 1e-6 292 304 0.021522097 1e-6 293 304 0.015595797 1e-6 294 304 0.00010399999 1e-6 295 304 0.00051989988 1e-6 296 304 0.0029111998 1e-6 297 304 0.0017674998 1e-6 298 304 0.0039508976 1e-6 304 304 0.040964898 1e-6 307 304 0.00041589979 1e-6 312 304 0.0066541992 1e-6 315 304 0.011644799 1e-6 319 304 0.00041589979 1e-6 320 304 0.0010396999 1e-6 321 304 0.004782699 1e-6 322 304 0.0069660991 1e-6 324 304 0.013828199 1e-6 326 304 0.013620298 1e-6 328 304 0.0011437 1e-6 339 304 0.0019754998 1e-6 340 304 0.0046786964 1e-6 343 304 0.00010399999 1e-6 350 304 0.00083179981 1e-6 351 304 0.00072779995 1e-6 352 304 0.014348097 1e-6 353 304 0.0012476998 1e-6 354 304 0.00041589979 1e-6 355 304 0.00010399999 1e-6 356 304 0.00010399999 1e-6 358 304 0.0041588992 1e-6 366 304 0.023809496 1e-6 370 304 0.0081097968 1e-6 371 304 0.00041589979 1e-6 372 304 0.039925098 1e-6 373 304 0.0019754998 1e-6 374 304 0.00083179981 1e-6 375 304 0.00010399999 1e-6 376 304 0.0042627975 1e-6 377 304 0.00010399999 1e-6 380 304 0.0002079 1e-6 386 304 0.00051989988 1e-6 387 304 0.00010399999 1e-6 402 304 0.00010399999 1e-6 415 304 0.029839899 1e-6 417 304 0.00041589979 1e-6 419 304 0.004782699 1e-6 421 304 0.00010399999 1e-6 422 304 0.00010399999 1e-6 430 304 0.00010399999 1e-6 434 304 0.00010399999 1e-6 441 304 0.0025992999 1e-6 443 304 0.0043667965 1e-6 444 304 0.0030151999 1e-6 445 304 0.0065501966 1e-6 446 304 0.0002079 1e-6 447 304 0.014867999 1e-6 450 304 0.0083176978 1e-6 452 304 0.0049905963 1e-6 453 304 0.0025992999 1e-6 454 304 0.00083179981 1e-6 455 304 0.044915799 1e-6 456 304 0.00031189993 1e-6 457 304 0.0051985979 1e-6 458 304 0.00072779995 1e-6 459 304 0.00072779995 1e-6 460 304 0.0016635 1e-6 463 304 0.016011599 1e-6 464 304 0.00051989988 1e-6 465 304 0.0010396999 1e-6 467 304 0.0085256994 1e-6 468 304 0.011020999 1e-6 469 304 0.004782699 1e-6 470 304 0.0049905963 1e-6 471 304 0.0041588992 1e-6 473 304 0.00010399999 1e-6 477 304 0.00010399999 1e-6 478 304 0.0010396999 1e-6 483 304 0.0011437 1e-6 490 304 0.00041589979 1e-6 491 304 0.0049905963 1e-6 9 305 2.9599993e-05 1e-6 18 305 0.00097779999 1e-6 19 305 0.00029629981 1e-6 21 305 5.9299986e-05 1e-6 22 305 0.00023699999 1e-6 60 305 0.0025185 1e-6 79 305 2.9599993e-05 1e-6 82 305 2.9599993e-05 1e-6 83 305 2.9599993e-05 1e-6 84 305 2.9599993e-05 1e-6 108 305 2.9599993e-05 1e-6 113 305 5.9299986e-05 1e-6 114 305 0.00011849999 1e-6 126 305 5.9299986e-05 1e-6 127 305 2.9599993e-05 1e-6 150 305 0.00062219985 1e-6 151 305 0.00047409977 1e-6 160 305 0.0016295998 1e-6 169 305 0.00068149995 1e-6 172 305 8.8899993e-05 1e-6 189 305 8.8899993e-05 1e-6 190 305 8.8899993e-05 1e-6 191 305 2.9599993e-05 1e-6 192 305 5.9299986e-05 1e-6 194 305 8.8899993e-05 1e-6 197 305 2.9599993e-05 1e-6 198 305 0.0023999999 1e-6 200 305 5.9299986e-05 1e-6 201 305 5.9299986e-05 1e-6 203 305 5.9299986e-05 1e-6 204 305 8.8899993e-05 1e-6 206 305 0.00011849999 1e-6 207 305 5.9299986e-05 1e-6 209 305 2.9599993e-05 1e-6 214 305 0.00068149995 1e-6 218 305 2.9599993e-05 1e-6 224 305 2.9599993e-05 1e-6 229 305 0.00085929991 1e-6 233 305 0.0093036965 1e-6 234 305 0.0024295999 1e-6 237 305 0.00029629981 1e-6 240 305 0.00029629981 1e-6 241 305 0.0029926 1e-6 242 305 2.9599993e-05 1e-6 248 305 2.9599993e-05 1e-6 250 305 2.9599993e-05 1e-6 252 305 0.00017779999 1e-6 262 305 2.9599993e-05 1e-6 267 305 2.9599993e-05 1e-6 270 305 0.00077039981 1e-6 272 305 0.00044439989 1e-6 274 305 2.9599993e-05 1e-6 277 305 0.34613329 1e-6 278 305 0.00011849999 1e-6 279 305 0.00011849999 1e-6 280 305 0.0025185 1e-6 282 305 0.0040295981 1e-6 283 305 0.00023699999 1e-6 284 305 0.00056299986 1e-6 285 305 0.0013925999 1e-6 286 305 2.9599993e-05 1e-6 288 305 0.0019258999 1e-6 289 305 0.0034667 1e-6 290 305 0.0024295999 1e-6 292 305 0.00079999981 1e-6 293 305 0.010903697 1e-6 294 305 0.00011849999 1e-6 295 305 8.8899993e-05 1e-6 296 305 0.00017779999 1e-6 297 305 0.0024889 1e-6 299 305 8.8899993e-05 1e-6 305 305 0.013748098 1e-6 307 305 0.0004147999 1e-6 308 305 2.9599993e-05 1e-6 309 305 2.9599993e-05 1e-6 312 305 0.026370399 1e-6 315 305 0.0055703968 1e-6 317 305 0.00047409977 1e-6 318 305 0.0028740999 1e-6 319 305 0.00011849999 1e-6 320 305 0.0012147999 1e-6 321 305 0.0092443973 1e-6 322 305 0.0053036995 1e-6 324 305 0.00026669982 1e-6 326 305 0.0013629999 1e-6 327 305 0.00017779999 1e-6 328 305 0.00026669982 1e-6 331 305 8.8899993e-05 1e-6 332 305 2.9599993e-05 1e-6 338 305 0.00077039981 1e-6 339 305 0.0021332998 1e-6 340 305 0.0028147998 1e-6 341 305 2.9599993e-05 1e-6 343 305 2.9599993e-05 1e-6 349 305 8.8899993e-05 1e-6 350 305 5.9299986e-05 1e-6 351 305 0.0010074 1e-6 352 305 8.8899993e-05 1e-6 353 305 0.00097779999 1e-6 354 305 0.0004147999 1e-6 356 305 2.9599993e-05 1e-6 358 305 0.012503698 1e-6 371 305 0.00011849999 1e-6 372 305 0.0023703999 1e-6 373 305 8.8899993e-05 1e-6 374 305 0.006933298 1e-6 375 305 2.9599993e-05 1e-6 384 305 8.8899993e-05 1e-6 386 305 8.8899993e-05 1e-6 387 305 5.9299986e-05 1e-6 390 305 5.9299986e-05 1e-6 394 305 2.9599993e-05 1e-6 397 305 2.9599993e-05 1e-6 398 305 2.9599993e-05 1e-6 402 305 0.00023699999 1e-6 405 305 2.9599993e-05 1e-6 408 305 0.00044439989 1e-6 417 305 0.00044439989 1e-6 419 305 2.9599993e-05 1e-6 421 305 5.9299986e-05 1e-6 422 305 0.0012443999 1e-6 423 305 2.9599993e-05 1e-6 425 305 2.9599993e-05 1e-6 430 305 2.9599993e-05 1e-6 431 305 2.9599993e-05 1e-6 432 305 2.9599993e-05 1e-6 433 305 2.9599993e-05 1e-6 434 305 5.9299986e-05 1e-6 443 305 0.0072295964 1e-6 444 305 0.0012147999 1e-6 445 305 0.0091851987 1e-6 446 305 0.00085929991 1e-6 447 305 0.0083555989 1e-6 448 305 2.9599993e-05 1e-6 450 305 0.0033481 1e-6 452 305 0.0056592971 1e-6 453 305 0.0019556 1e-6 454 305 0.0013036998 1e-6 455 305 0.034725897 1e-6 456 305 0.00056299986 1e-6 457 305 0.0028147998 1e-6 458 305 0.00047409977 1e-6 459 305 0.0003258998 1e-6 460 305 0.0022814998 1e-6 463 305 0.010607399 1e-6 464 305 0.0015703999 1e-6 465 305 0.0008888999 1e-6 467 305 0.0096592978 1e-6 468 305 0.0042962991 1e-6 469 305 0.0093332976 1e-6 470 305 0.007407397 1e-6 471 305 0.0016888999 1e-6 473 305 0.00011849999 1e-6 477 305 0.00091849989 1e-6 478 305 0.001037 1e-6 483 305 0.001037 1e-6 489 305 8.8899993e-05 1e-6 490 305 0.00047409977 1e-6 491 305 0.0015703999 1e-6 9 306 5.1799987e-05 1e-6 18 306 0.00015539999 1e-6 24 306 0.00020719999 1e-6 60 306 0.0015538 1e-6 82 306 5.1799987e-05 1e-6 83 306 5.1799987e-05 1e-6 84 306 5.1799987e-05 1e-6 108 306 5.1799987e-05 1e-6 113 306 0.00010359999 1e-6 114 306 0.00020719999 1e-6 126 306 0.00010359999 1e-6 130 306 5.1799987e-05 1e-6 139 306 0.00010359999 1e-6 150 306 0.00077689998 1e-6 159 306 0.00020719999 1e-6 160 306 0.0062667988 1e-6 161 306 0.00010359999 1e-6 163 306 5.1799987e-05 1e-6 165 306 0.0032628998 1e-6 170 306 0.00015539999 1e-6 171 306 0.00046609994 1e-6 172 306 0.00025899988 1e-6 184 306 5.1799987e-05 1e-6 187 306 0.0060078986 1e-6 189 306 0.00010359999 1e-6 190 306 0.00010359999 1e-6 191 306 5.1799987e-05 1e-6 194 306 0.0009323 1e-6 197 306 5.1799987e-05 1e-6 198 306 0.0065775998 1e-6 200 306 5.1799987e-05 1e-6 203 306 0.00010359999 1e-6 204 306 0.00010359999 1e-6 206 306 0.00010359999 1e-6 207 306 5.1799987e-05 1e-6 214 306 0.0024859998 1e-6 215 306 5.1799987e-05 1e-6 219 306 5.1799987e-05 1e-6 224 306 0.00041429978 1e-6 229 306 0.00088049984 1e-6 233 306 0.0078205988 1e-6 234 306 0.0029520998 1e-6 237 306 0.00025899988 1e-6 240 306 5.1799987e-05 1e-6 241 306 0.0100476 1e-6 242 306 5.1799987e-05 1e-6 252 306 0.052361697 1e-6 254 306 0.00031079981 1e-6 270 306 0.0013983999 1e-6 271 306 5.1799987e-05 1e-6 272 306 0.0005696998 1e-6 273 306 0.00010359999 1e-6 274 306 0.0012947998 1e-6 277 306 0.061114598 1e-6 278 306 5.1799987e-05 1e-6 279 306 0.00025899988 1e-6 280 306 5.1799987e-05 1e-6 282 306 0.0010358 1e-6 283 306 0.00010359999 1e-6 284 306 0.00072509982 1e-6 286 306 5.1799987e-05 1e-6 287 306 5.1799987e-05 1e-6 288 306 0.00036249985 1e-6 289 306 0.06287545 1e-6 290 306 0.009633299 1e-6 291 306 5.1799987e-05 1e-6 292 306 0.0016055999 1e-6 293 306 0.11471927 1e-6 295 306 0.00010359999 1e-6 296 306 0.00062149996 1e-6 297 306 0.0076133981 1e-6 305 306 5.1799987e-05 1e-6 306 306 0.0030038999 1e-6 311 306 5.1799987e-05 1e-6 312 306 0.0082866997 1e-6 313 306 5.1799987e-05 1e-6 315 306 0.004246898 1e-6 317 306 0.00025899988 1e-6 318 306 5.1799987e-05 1e-6 319 306 0.037652798 1e-6 320 306 0.0020198999 1e-6 321 306 0.0022787999 1e-6 322 306 0.011135299 1e-6 326 306 0.0097886994 1e-6 335 306 5.1799987e-05 1e-6 337 306 5.1799987e-05 1e-6 339 306 0.0011912 1e-6 340 306 0.0012947998 1e-6 350 306 5.1799987e-05 1e-6 351 306 0.0016055999 1e-6 353 306 0.0016572999 1e-6 354 306 0.00010359999 1e-6 356 306 5.1799987e-05 1e-6 357 306 5.1799987e-05 1e-6 358 306 0.0030556999 1e-6 366 306 5.1799987e-05 1e-6 371 306 5.1799987e-05 1e-6 372 306 5.1799987e-05 1e-6 374 306 0.00015539999 1e-6 387 306 5.1799987e-05 1e-6 402 306 0.00036249985 1e-6 417 306 0.00051789987 1e-6 419 306 5.1799987e-05 1e-6 421 306 5.1799987e-05 1e-6 422 306 0.00020719999 1e-6 423 306 5.1799987e-05 1e-6 425 306 5.1799987e-05 1e-6 430 306 5.1799987e-05 1e-6 431 306 5.1799987e-05 1e-6 433 306 5.1799987e-05 1e-6 434 306 5.1799987e-05 1e-6 443 306 0.0073026977 1e-6 444 306 0.0018126999 1e-6 445 306 0.0093225986 1e-6 446 306 0.00036249985 1e-6 447 306 0.0097368993 1e-6 448 306 5.1799987e-05 1e-6 450 306 0.0040915981 1e-6 452 306 0.0053345971 1e-6 453 306 0.0038325998 1e-6 454 306 0.00041429978 1e-6 455 306 0.034182698 1e-6 456 306 0.0005696998 1e-6 457 306 0.0027967999 1e-6 458 306 0.00072509982 1e-6 459 306 0.00031079981 1e-6 460 306 0.0018126999 1e-6 463 306 0.028174799 1e-6 464 306 0.0011912 1e-6 465 306 0.0009323 1e-6 467 306 0.0097886994 1e-6 468 306 0.0047648996 1e-6 469 306 0.0060596988 1e-6 470 306 0.0066294 1e-6 471 306 0.0040397979 1e-6 473 306 0.00015539999 1e-6 477 306 0.00010359999 1e-6 478 306 0.0012947998 1e-6 483 306 0.0014501999 1e-6 489 306 5.1799987e-05 1e-6 490 306 0.0005696998 1e-6 491 306 0.0021235 1e-6 9 307 2.9699993e-05 1e-6 18 307 0.00074129994 1e-6 19 307 0.00029649981 1e-6 21 307 0.004685197 1e-6 22 307 0.00017789999 1e-6 24 307 2.9699993e-05 1e-6 60 307 0.0024611999 1e-6 77 307 5.9299986e-05 1e-6 79 307 2.9699993e-05 1e-6 82 307 2.9699993e-05 1e-6 83 307 2.9699993e-05 1e-6 84 307 2.9699993e-05 1e-6 108 307 2.9699993e-05 1e-6 113 307 5.9299986e-05 1e-6 114 307 0.00011859999 1e-6 126 307 5.9299986e-05 1e-6 127 307 2.9699993e-05 1e-6 142 307 2.9699993e-05 1e-6 150 307 0.00062269997 1e-6 151 307 0.00059309998 1e-6 160 307 0.00083029992 1e-6 161 307 2.9699993e-05 1e-6 169 307 2.9699993e-05 1e-6 171 307 8.8999994e-05 1e-6 172 307 0.00026689982 1e-6 189 307 8.8999994e-05 1e-6 190 307 8.8999994e-05 1e-6 191 307 2.9699993e-05 1e-6 194 307 0.00011859999 1e-6 197 307 2.9699993e-05 1e-6 198 307 0.00074129994 1e-6 200 307 5.9299986e-05 1e-6 201 307 5.9299986e-05 1e-6 203 307 5.9299986e-05 1e-6 204 307 5.9299986e-05 1e-6 206 307 0.00011859999 1e-6 207 307 2.9699993e-05 1e-6 214 307 0.0010082 1e-6 218 307 2.9699993e-05 1e-6 223 307 0.0014827 1e-6 224 307 2.9699993e-05 1e-6 229 307 0.00083029992 1e-6 233 307 0.0013046998 1e-6 234 307 0.0031728998 1e-6 237 307 0.00029649981 1e-6 240 307 0.00032619992 1e-6 241 307 0.0033211999 1e-6 242 307 0.00011859999 1e-6 248 307 2.9699993e-05 1e-6 250 307 2.9699993e-05 1e-6 252 307 0.0017494999 1e-6 270 307 0.0022239999 1e-6 272 307 0.00094889989 1e-6 274 307 0.0014529999 1e-6 276 307 0.00077099982 1e-6 277 307 0.25199419 1e-6 278 307 0.00017789999 1e-6 280 307 0.00011859999 1e-6 282 307 0.008480899 1e-6 283 307 0.0012750998 1e-6 284 307 0.00059309998 1e-6 285 307 0.0027280999 1e-6 286 307 5.9299986e-05 1e-6 287 307 0.0011268 1e-6 288 307 0.00014829999 1e-6 289 307 0.0033507999 1e-6 290 307 0.00085989991 1e-6 291 307 2.9699993e-05 1e-6 292 307 0.0079470985 1e-6 293 307 0.006227199 1e-6 294 307 0.0013936998 1e-6 295 307 0.00023719999 1e-6 296 307 0.00041509978 1e-6 297 307 0.0053375997 1e-6 298 307 0.00023719999 1e-6 299 307 0.00023719999 1e-6 304 307 0.00041509978 1e-6 305 307 0.0030246 1e-6 307 307 0.023248199 1e-6 308 307 0.00017789999 1e-6 312 307 0.0053079985 1e-6 313 307 2.9699993e-05 1e-6 315 307 0.00088959979 1e-6 317 307 0.00068199984 1e-6 318 307 0.00074129994 1e-6 319 307 0.0012750998 1e-6 320 307 0.0016013 1e-6 321 307 0.0023722998 1e-6 322 307 0.0028763998 1e-6 324 307 0.014144599 1e-6 326 307 0.0088069998 1e-6 327 307 0.0010972 1e-6 328 307 0.00035579992 1e-6 329 307 2.9699993e-05 1e-6 331 307 2.9699993e-05 1e-6 332 307 2.9699993e-05 1e-6 333 307 5.9299986e-05 1e-6 338 307 0.00074129994 1e-6 339 307 0.0016901998 1e-6 340 307 0.0032321999 1e-6 341 307 2.9699993e-05 1e-6 343 307 0.0032025999 1e-6 344 307 0.00014829999 1e-6 347 307 0.00014829999 1e-6 349 307 5.9299986e-05 1e-6 350 307 0.00083029992 1e-6 351 307 0.0015123 1e-6 352 307 0.0031136 1e-6 353 307 0.00020759999 1e-6 354 307 0.0020164 1e-6 355 307 2.9699993e-05 1e-6 356 307 0.00011859999 1e-6 357 307 5.9299986e-05 1e-6 358 307 0.0046555996 1e-6 366 307 0.0019274999 1e-6 369 307 2.9699993e-05 1e-6 370 307 8.8999994e-05 1e-6 371 307 0.00014829999 1e-6 372 307 0.0044182986 1e-6 373 307 0.00041509978 1e-6 374 307 0.0031432998 1e-6 375 307 0.00071169995 1e-6 380 307 2.9699993e-05 1e-6 384 307 5.9299986e-05 1e-6 386 307 8.8999994e-05 1e-6 387 307 5.9299986e-05 1e-6 390 307 0.00011859999 1e-6 392 307 5.9299986e-05 1e-6 393 307 0.00011859999 1e-6 394 307 2.9699993e-05 1e-6 397 307 5.9299986e-05 1e-6 398 307 0.00014829999 1e-6 401 307 5.9299986e-05 1e-6 402 307 0.0014529999 1e-6 404 307 0.0010674999 1e-6 405 307 0.00047449977 1e-6 408 307 0.00011859999 1e-6 414 307 0.0011564998 1e-6 415 307 0.0012750998 1e-6 417 307 0.00038549979 1e-6 419 307 5.9299986e-05 1e-6 421 307 5.9299986e-05 1e-6 422 307 0.00014829999 1e-6 423 307 2.9699993e-05 1e-6 425 307 2.9699993e-05 1e-6 430 307 2.9699993e-05 1e-6 431 307 2.9699993e-05 1e-6 433 307 2.9699993e-05 1e-6 434 307 2.9699993e-05 1e-6 441 307 0.0013343999 1e-6 442 307 2.9699993e-05 1e-6 443 307 0.0061678998 1e-6 444 307 0.0029652999 1e-6 445 307 0.0093704984 1e-6 446 307 0.00080059981 1e-6 447 307 0.011179298 1e-6 448 307 2.9699993e-05 1e-6 450 307 0.0048927963 1e-6 452 307 0.0057527982 1e-6 453 307 0.0028466999 1e-6 454 307 0.0011564998 1e-6 455 307 0.0355247 1e-6 456 307 0.00059309998 1e-6 457 307 0.0027280999 1e-6 458 307 0.00044479989 1e-6 459 307 0.00029649981 1e-6 460 307 0.0018681998 1e-6 463 307 0.0109124 1e-6 464 307 0.0024909 1e-6 465 307 0.0091924965 1e-6 467 307 0.0094890967 1e-6 468 307 0.0021646998 1e-6 469 307 0.011001397 1e-6 470 307 0.0074725971 1e-6 471 307 0.0032321999 1e-6 473 307 0.00011859999 1e-6 477 307 0.0010082 1e-6 478 307 0.0010674999 1e-6 483 307 0.0011268 1e-6 489 307 8.8999994e-05 1e-6 490 307 0.00047449977 1e-6 491 307 0.0020756999 1e-6 9 308 3.6999991e-05 1e-6 18 308 0.0014416999 1e-6 19 308 0.0014785999 1e-6 21 308 3.6999991e-05 1e-6 22 308 0.0023657999 1e-6 24 308 3.6999991e-05 1e-6 25 308 3.6999991e-05 1e-6 60 308 0.0023287998 1e-6 82 308 3.6999991e-05 1e-6 83 308 3.6999991e-05 1e-6 84 308 3.6999991e-05 1e-6 108 308 3.6999991e-05 1e-6 113 308 7.3899995e-05 1e-6 114 308 0.00014789999 1e-6 126 308 7.3899995e-05 1e-6 127 308 3.6999991e-05 1e-6 130 308 3.6999991e-05 1e-6 139 308 3.6999991e-05 1e-6 150 308 0.00055449991 1e-6 151 308 0.00048059993 1e-6 160 308 0.0044728965 1e-6 165 308 7.3899995e-05 1e-6 169 308 0.0018112999 1e-6 171 308 3.6999991e-05 1e-6 172 308 0.00022179999 1e-6 187 308 0.0001848 1e-6 189 308 7.3899995e-05 1e-6 190 308 7.3899995e-05 1e-6 191 308 0.0038443999 1e-6 194 308 0.00014789999 1e-6 197 308 3.6999991e-05 1e-6 198 308 0.0125314 1e-6 200 308 3.6999991e-05 1e-6 203 308 7.3899995e-05 1e-6 204 308 7.3899995e-05 1e-6 206 308 0.00011089999 1e-6 207 308 3.6999991e-05 1e-6 214 308 0.00096109998 1e-6 223 308 0.0003696999 1e-6 224 308 3.6999991e-05 1e-6 229 308 0.00096109998 1e-6 233 308 0.021994699 1e-6 234 308 0.0042140968 1e-6 236 308 0.0011459 1e-6 237 308 0.00033269986 1e-6 240 308 0.00025879988 1e-6 241 308 0.0059514977 1e-6 242 308 7.3899995e-05 1e-6 252 308 0.0020700998 1e-6 254 308 3.6999991e-05 1e-6 267 308 7.3899995e-05 1e-6 270 308 0.00092409994 1e-6 271 308 3.6999991e-05 1e-6 272 308 3.6999991e-05 1e-6 273 308 3.6999991e-05 1e-6 274 308 7.3899995e-05 1e-6 277 308 0.17909944 1e-6 278 308 0.00059149996 1e-6 280 308 0.0026246 1e-6 282 308 0.0040292963 1e-6 283 308 0.0001848 1e-6 284 308 0.00059149996 1e-6 285 308 0.0015155999 1e-6 286 308 7.3899995e-05 1e-6 287 308 0.0028463998 1e-6 288 308 0.0018852998 1e-6 289 308 0.018076297 1e-6 290 308 0.0011459 1e-6 291 308 0.0018483 1e-6 292 308 0.0043249987 1e-6 293 308 0.070863485 1e-6 294 308 0.00088719977 1e-6 295 308 0.00029569981 1e-6 296 308 0.0022548998 1e-6 297 308 0.0038814 1e-6 304 308 7.3899995e-05 1e-6 305 308 0.0003696999 1e-6 306 308 7.3899995e-05 1e-6 307 308 0.00022179999 1e-6 308 308 0.0011459 1e-6 310 308 3.6999991e-05 1e-6 311 308 0.0017003999 1e-6 312 308 0.012605399 1e-6 313 308 7.3899995e-05 1e-6 315 308 0.0026614999 1e-6 317 308 0.0011459 1e-6 318 308 0.0011089998 1e-6 319 308 0.0019591998 1e-6 320 308 0.0023287998 1e-6 321 308 0.0097589977 1e-6 322 308 0.0024396998 1e-6 324 308 0.0014416999 1e-6 326 308 0.0028094 1e-6 328 308 0.00011089999 1e-6 337 308 7.3899995e-05 1e-6 338 308 0.0011459 1e-6 339 308 0.0018112999 1e-6 340 308 0.0046946965 1e-6 343 308 0.00059149996 1e-6 350 308 0.0024396998 1e-6 351 308 0.0014785999 1e-6 352 308 0.0013307999 1e-6 353 308 0.0012937998 1e-6 354 308 0.0012198999 1e-6 355 308 3.6999991e-05 1e-6 356 308 0.0016635 1e-6 357 308 3.6999991e-05 1e-6 358 308 0.0047685988 1e-6 359 308 7.3899995e-05 1e-6 366 308 0.0023657999 1e-6 369 308 3.6999991e-05 1e-6 370 308 7.3899995e-05 1e-6 371 308 0.0029942 1e-6 372 308 0.0051382966 1e-6 373 308 0.00014789999 1e-6 374 308 0.00066539994 1e-6 375 308 7.3899995e-05 1e-6 377 308 3.6999991e-05 1e-6 380 308 3.6999991e-05 1e-6 384 308 0.0017003999 1e-6 385 308 3.6999991e-05 1e-6 386 308 0.00048059993 1e-6 387 308 3.6999991e-05 1e-6 390 308 3.6999991e-05 1e-6 393 308 3.6999991e-05 1e-6 397 308 3.6999991e-05 1e-6 398 308 0.0011459 1e-6 401 308 0.0015525999 1e-6 402 308 0.00066539994 1e-6 405 308 3.6999991e-05 1e-6 408 308 3.6999991e-05 1e-6 412 308 0.00092409994 1e-6 414 308 3.6999991e-05 1e-6 415 308 0.00022179999 1e-6 417 308 0.00040659984 1e-6 419 308 0.00014789999 1e-6 421 308 7.3899995e-05 1e-6 422 308 0.0001848 1e-6 423 308 3.6999991e-05 1e-6 425 308 3.6999991e-05 1e-6 430 308 3.6999991e-05 1e-6 431 308 3.6999991e-05 1e-6 433 308 3.6999991e-05 1e-6 434 308 3.6999991e-05 1e-6 438 308 3.6999991e-05 1e-6 439 308 0.0011089998 1e-6 443 308 0.0071343966 1e-6 444 308 0.0015894999 1e-6 445 308 0.0096111 1e-6 446 308 0.00092409994 1e-6 447 308 0.0084651969 1e-6 448 308 7.3899995e-05 1e-6 450 308 0.0031420998 1e-6 452 308 0.0048055984 1e-6 453 308 0.0028833 1e-6 454 308 0.0011828998 1e-6 455 308 0.036854897 1e-6 456 308 0.00044359989 1e-6 457 308 0.0027723999 1e-6 458 308 0.00033269986 1e-6 459 308 0.00033269986 1e-6 460 308 0.0018852998 1e-6 463 308 0.025802199 1e-6 464 308 0.0017003999 1e-6 465 308 0.00088719977 1e-6 467 308 0.0086499974 1e-6 468 308 0.0057296976 1e-6 469 308 0.0050273985 1e-6 470 308 0.0064689964 1e-6 471 308 0.0038074998 1e-6 473 308 0.00011089999 1e-6 477 308 0.001035 1e-6 478 308 0.0011089998 1e-6 483 308 0.0009980998 1e-6 489 308 7.3899995e-05 1e-6 490 308 0.00040659984 1e-6 491 308 0.0035118 1e-6 22 309 0.0034929998 1e-6 60 309 0.0019959998 1e-6 108 309 0.00016629999 1e-6 114 309 0.00033269986 1e-6 126 309 0.00016629999 1e-6 139 309 0.00033269986 1e-6 160 309 0.0018296998 1e-6 184 309 0.00016629999 1e-6 190 309 0.00016629999 1e-6 191 309 0.00016629999 1e-6 192 309 0.0033266998 1e-6 194 309 0.00016629999 1e-6 198 309 0.0078176968 1e-6 206 309 0.00033269986 1e-6 214 309 0.0078176968 1e-6 229 309 0.00066529983 1e-6 233 309 0.013140399 1e-6 234 309 0.0033266998 1e-6 237 309 0.00033269986 1e-6 240 309 0.00016629999 1e-6 241 309 0.012474999 1e-6 242 309 0.00016629999 1e-6 252 309 0.00083169993 1e-6 270 309 0.00016629999 1e-6 272 309 0.00049899984 1e-6 277 309 0.16566867 1e-6 279 309 0.00016629999 1e-6 280 309 0.00016629999 1e-6 282 309 0.0056553967 1e-6 284 309 0.00066529983 1e-6 285 309 0.00016629999 1e-6 287 309 0.00016629999 1e-6 288 309 0.0016633 1e-6 289 309 0.033433098 1e-6 290 309 0.00033269986 1e-6 292 309 0.001497 1e-6 293 309 0.056719899 1e-6 296 309 0.0023286999 1e-6 297 309 0.00033269986 1e-6 305 309 0.0013306998 1e-6 309 309 0.0024949999 1e-6 312 309 0.015302699 1e-6 315 309 0.0073186979 1e-6 317 309 0.00016629999 1e-6 318 309 0.00033269986 1e-6 319 309 0.00033269986 1e-6 320 309 0.0033266998 1e-6 321 309 0.0084829964 1e-6 322 309 0.0054889992 1e-6 324 309 0.00016629999 1e-6 326 309 0.029274799 1e-6 327 309 0.00016629999 1e-6 331 309 0.00016629999 1e-6 335 309 0.00033269986 1e-6 339 309 0.0033266998 1e-6 340 309 0.0039919987 1e-6 351 309 0.00016629999 1e-6 352 309 0.00033269986 1e-6 353 309 0.0041582994 1e-6 354 309 0.00033269986 1e-6 358 309 0.027944099 1e-6 366 309 0.00099799992 1e-6 370 309 0.00033269986 1e-6 371 309 0.00016629999 1e-6 372 309 0.001497 1e-6 373 309 0.00049899984 1e-6 374 309 0.0028277 1e-6 387 309 0.00016629999 1e-6 390 309 0.00016629999 1e-6 402 309 0.00033269986 1e-6 405 309 0.00016629999 1e-6 417 309 0.00049899984 1e-6 422 309 0.00033269986 1e-6 443 309 0.006486997 1e-6 444 309 0.0056553967 1e-6 445 309 0.014304698 1e-6 446 309 0.00033269986 1e-6 447 309 0.0088156983 1e-6 450 309 0.0041582994 1e-6 452 309 0.0053226985 1e-6 453 309 0.001497 1e-6 454 309 0.00066529983 1e-6 455 309 0.034930099 1e-6 456 309 0.00033269986 1e-6 457 309 0.0024949999 1e-6 458 309 0.00083169993 1e-6 459 309 0.00033269986 1e-6 460 309 0.0023286999 1e-6 463 309 0.017797697 1e-6 464 309 0.00099799992 1e-6 465 309 0.00083169993 1e-6 467 309 0.0093146972 1e-6 468 309 0.0059879981 1e-6 469 309 0.0066533983 1e-6 470 309 0.0069859996 1e-6 471 309 0.0023286999 1e-6 473 309 0.00016629999 1e-6 478 309 0.001497 1e-6 483 309 0.00099799992 1e-6 490 309 0.00066529983 1e-6 491 309 0.0046573989 1e-6 22 310 0.0055714995 1e-6 60 310 0.0021947999 1e-6 114 310 0.00016879999 1e-6 126 310 0.00016879999 1e-6 160 310 0.00033769989 1e-6 191 310 0.00016879999 1e-6 194 310 0.00016879999 1e-6 198 310 0.0047272965 1e-6 206 310 0.00033769989 1e-6 214 310 0.00016879999 1e-6 229 310 0.0010129998 1e-6 233 310 0.0064156987 1e-6 234 310 0.0018571999 1e-6 237 310 0.00016879999 1e-6 240 310 0.00016879999 1e-6 241 310 0.00033769989 1e-6 252 310 0.0013506999 1e-6 272 310 0.00033769989 1e-6 277 310 0.31723785 1e-6 279 310 0.00016879999 1e-6 280 310 0.00016879999 1e-6 282 310 0.0006752999 1e-6 283 310 0.00016879999 1e-6 284 310 0.00033769989 1e-6 289 310 0.0042207986 1e-6 290 310 0.00016879999 1e-6 292 310 0.0057402998 1e-6 293 310 0.013000198 1e-6 296 310 0.00033769989 1e-6 297 310 0.00016879999 1e-6 305 310 0.00050649978 1e-6 310 310 0.0054026991 1e-6 312 310 0.031065296 1e-6 315 310 0.0251562 1e-6 318 310 0.00016879999 1e-6 319 310 0.00016879999 1e-6 320 310 0.0016882999 1e-6 321 310 0.0060779974 1e-6 322 310 0.012155998 1e-6 326 310 0.0297147 1e-6 328 310 0.00016879999 1e-6 329 310 0.00016879999 1e-6 339 310 0.0030389999 1e-6 340 310 0.0033767 1e-6 351 310 0.0052337982 1e-6 353 310 0.0067532994 1e-6 358 310 0.0079351999 1e-6 366 310 0.00016879999 1e-6 372 310 0.00016879999 1e-6 374 310 0.0047272965 1e-6 390 310 0.00033769989 1e-6 392 310 0.00033769989 1e-6 393 310 0.00016879999 1e-6 404 310 0.00016879999 1e-6 405 310 0.0010129998 1e-6 417 310 0.00033769989 1e-6 443 310 0.0074286982 1e-6 444 310 0.0055714995 1e-6 445 310 0.0087792985 1e-6 446 310 0.00084419991 1e-6 447 310 0.0089481995 1e-6 450 310 0.0027013 1e-6 452 310 0.0037143 1e-6 453 310 0.0025324998 1e-6 454 310 0.00050649978 1e-6 455 310 0.035455 1e-6 456 310 0.00016879999 1e-6 457 310 0.0027013 1e-6 458 310 0.00084419991 1e-6 459 310 0.00033769989 1e-6 460 310 0.0015194998 1e-6 463 310 0.011142999 1e-6 464 310 0.0020259998 1e-6 465 310 0.00033769989 1e-6 467 310 0.0072597973 1e-6 468 310 0.0077662989 1e-6 469 310 0.0042207986 1e-6 470 310 0.0048961975 1e-6 471 310 0.0011817999 1e-6 473 310 0.00016879999 1e-6 478 310 0.00084419991 1e-6 483 310 0.00084419991 1e-6 490 310 0.00050649978 1e-6 491 310 0.0011817999 1e-6 18 311 9.9899989e-05 1e-6 19 311 0.005791299 1e-6 22 311 0.0027957999 1e-6 24 311 0.00039939978 1e-6 25 311 9.9899989e-05 1e-6 60 311 0.0030953998 1e-6 108 311 9.9899989e-05 1e-6 114 311 9.9899989e-05 1e-6 126 311 9.9899989e-05 1e-6 160 311 0.0027957999 1e-6 165 311 0.00019969999 1e-6 169 311 0.00069899997 1e-6 172 311 0.0012981 1e-6 183 311 9.9899989e-05 1e-6 187 311 0.00019969999 1e-6 188 311 0.00019969999 1e-6 189 311 9.9899989e-05 1e-6 190 311 9.9899989e-05 1e-6 191 311 9.9899989e-05 1e-6 193 311 9.9899989e-05 1e-6 194 311 9.9899989e-05 1e-6 198 311 0.0022965998 1e-6 206 311 0.00019969999 1e-6 214 311 0.0016974998 1e-6 229 311 0.0010984 1e-6 233 311 0.0013978998 1e-6 234 311 0.0023963999 1e-6 237 311 9.9899989e-05 1e-6 240 311 0.00019969999 1e-6 241 311 0.0007987998 1e-6 252 311 0.0030953998 1e-6 267 311 0.00029959995 1e-6 270 311 9.9899989e-05 1e-6 272 311 0.00059909979 1e-6 273 311 0.00019969999 1e-6 277 311 0.36575139 1e-6 278 311 0.0019969998 1e-6 279 311 9.9899989e-05 1e-6 280 311 0.00039939978 1e-6 282 311 0.0061906986 1e-6 284 311 0.00059909979 1e-6 285 311 9.9899989e-05 1e-6 287 311 9.9899989e-05 1e-6 288 311 0.0018971998 1e-6 289 311 0.0060908981 1e-6 290 311 0.0013978998 1e-6 291 311 0.00019969999 1e-6 292 311 0.0013978998 1e-6 293 311 0.044932596 1e-6 295 311 0.00029959995 1e-6 296 311 9.9899989e-05 1e-6 297 311 0.00059909979 1e-6 305 311 0.0007987998 1e-6 306 311 9.9899989e-05 1e-6 307 311 0.00029959995 1e-6 311 311 0.0042935982 1e-6 312 311 0.0027957999 1e-6 315 311 0.0112831 1e-6 318 311 0.00019969999 1e-6 319 311 0.0011981998 1e-6 320 311 0.0014978 1e-6 321 311 0.0017972998 1e-6 322 311 0.014677998 1e-6 324 311 0.00029959995 1e-6 326 311 0.019370899 1e-6 337 311 9.9899989e-05 1e-6 339 311 0.00059909979 1e-6 340 311 0.0025960999 1e-6 343 311 9.9899989e-05 1e-6 350 311 0.00039939978 1e-6 351 311 0.0026959998 1e-6 352 311 0.00029959995 1e-6 353 311 0.0009984998 1e-6 354 311 0.00039939978 1e-6 358 311 0.0040938966 1e-6 359 311 9.9899989e-05 1e-6 366 311 9.9899989e-05 1e-6 368 311 9.9899989e-05 1e-6 371 311 9.9899989e-05 1e-6 372 311 0.00029959995 1e-6 373 311 9.9899989e-05 1e-6 374 311 0.00059909979 1e-6 375 311 0.00029959995 1e-6 384 311 0.00029959995 1e-6 386 311 9.9899989e-05 1e-6 387 311 9.9899989e-05 1e-6 408 311 0.00029959995 1e-6 413 311 9.9899989e-05 1e-6 414 311 9.9899989e-05 1e-6 417 311 0.00029959995 1e-6 422 311 0.00019969999 1e-6 430 311 9.9899989e-05 1e-6 443 311 0.011382896 1e-6 444 311 0.0025960999 1e-6 445 311 0.0090863965 1e-6 446 311 0.0015975998 1e-6 447 311 0.0046929978 1e-6 450 311 0.0028956998 1e-6 452 311 0.0066899993 1e-6 453 311 0.0034947998 1e-6 454 311 0.00069899997 1e-6 455 311 0.0390414 1e-6 456 311 0.00029959995 1e-6 457 311 0.0029954999 1e-6 458 311 0.00049929996 1e-6 459 311 0.00049929996 1e-6 460 311 0.0019969998 1e-6 463 311 0.0091861971 1e-6 464 311 0.00069899997 1e-6 465 311 0.00069899997 1e-6 467 311 0.0075885989 1e-6 468 311 0.0054917969 1e-6 469 311 0.0053918995 1e-6 470 311 0.005791299 1e-6 471 311 0.0013978998 1e-6 473 311 9.9899989e-05 1e-6 477 311 9.9899989e-05 1e-6 478 311 0.0009984998 1e-6 483 311 0.0011981998 1e-6 489 311 9.9899989e-05 1e-6 490 311 0.00039939978 1e-6 491 311 0.0036944998 1e-6 9 312 3.1899996e-05 1e-6 18 312 0.0011181999 1e-6 19 312 0.0022043998 1e-6 21 312 3.1899996e-05 1e-6 22 312 0.0011181999 1e-6 24 312 6.3899992e-05 1e-6 25 312 3.1899996e-05 1e-6 60 312 0.0029391998 1e-6 82 312 3.1899996e-05 1e-6 83 312 3.1899996e-05 1e-6 84 312 3.1899996e-05 1e-6 108 312 3.1899996e-05 1e-6 113 312 6.3899992e-05 1e-6 114 312 9.5799987e-05 1e-6 126 312 3.1899996e-05 1e-6 150 312 0.00070289988 1e-6 153 312 0.00083059981 1e-6 160 312 6.3899992e-05 1e-6 165 312 3.1899996e-05 1e-6 169 312 0.0014056999 1e-6 172 312 0.00079869991 1e-6 183 312 3.1899996e-05 1e-6 189 312 6.3899992e-05 1e-6 190 312 9.5799987e-05 1e-6 192 312 9.5799987e-05 1e-6 193 312 0.00083059981 1e-6 194 312 0.0001278 1e-6 198 312 0.0025238998 1e-6 200 312 3.1899996e-05 1e-6 203 312 0.0001278 1e-6 204 312 6.3899992e-05 1e-6 206 312 0.00015969999 1e-6 207 312 6.3899992e-05 1e-6 214 312 0.0036420999 1e-6 223 312 3.1899996e-05 1e-6 224 312 3.1899996e-05 1e-6 229 312 0.00063899998 1e-6 233 312 3.1899996e-05 1e-6 234 312 0.0050477982 1e-6 237 312 0.00025559985 1e-6 240 312 0.0021086 1e-6 241 312 0.0071562976 1e-6 242 312 6.3899992e-05 1e-6 252 312 6.3899992e-05 1e-6 262 312 3.1899996e-05 1e-6 267 312 0.0001278 1e-6 270 312 0.0048240982 1e-6 271 312 3.1899996e-05 1e-6 272 312 0.00063899998 1e-6 273 312 3.1899996e-05 1e-6 277 312 0.19002587 1e-6 278 312 0.0007666999 1e-6 279 312 0.0001278 1e-6 280 312 3.1899996e-05 1e-6 282 312 0.0043129995 1e-6 283 312 0.00031949999 1e-6 284 312 0.0061019994 1e-6 285 312 3.1899996e-05 1e-6 286 312 0.0011820998 1e-6 287 312 9.5799987e-05 1e-6 288 312 0.0016931999 1e-6 289 312 0.00041529979 1e-6 290 312 0.00060699997 1e-6 291 312 9.5799987e-05 1e-6 292 312 0.0277946 1e-6 293 312 0.0095843971 1e-6 294 312 0.00092649995 1e-6 295 312 0.0017251999 1e-6 296 312 0.00025559985 1e-6 297 312 0.0058144964 1e-6 298 312 6.3899992e-05 1e-6 299 312 3.1899996e-05 1e-6 301 312 0.0028752999 1e-6 304 312 3.1899996e-05 1e-6 307 312 3.1899996e-05 1e-6 310 312 3.1899996e-05 1e-6 312 312 0.006836798 1e-6 313 312 9.5799987e-05 1e-6 315 312 0.0054630972 1e-6 318 312 0.00054309983 1e-6 320 312 0.013481997 1e-6 321 312 0.00095839985 1e-6 322 312 0.0011500998 1e-6 324 312 0.0001278 1e-6 326 312 0.0010543 1e-6 327 312 3.1899996e-05 1e-6 328 312 0.00067089987 1e-6 329 312 9.5799987e-05 1e-6 337 312 0.00092649995 1e-6 338 312 0.0010543 1e-6 339 312 0.00038339989 1e-6 340 312 0.027219597 1e-6 341 312 0.0001278 1e-6 342 312 3.1899996e-05 1e-6 343 312 3.1899996e-05 1e-6 350 312 0.00019169999 1e-6 351 312 0.00099039986 1e-6 352 312 6.3899992e-05 1e-6 354 312 0.00028749998 1e-6 356 312 9.5799987e-05 1e-6 357 312 0.00019169999 1e-6 358 312 0.037155397 1e-6 359 312 6.3899992e-05 1e-6 366 312 3.1899996e-05 1e-6 367 312 3.1899996e-05 1e-6 372 312 0.0001278 1e-6 373 312 9.5799987e-05 1e-6 374 312 3.1899996e-05 1e-6 375 312 9.5799987e-05 1e-6 384 312 0.00015969999 1e-6 386 312 9.5799987e-05 1e-6 387 312 3.1899996e-05 1e-6 390 312 3.1899996e-05 1e-6 392 312 3.1899996e-05 1e-6 393 312 3.1899996e-05 1e-6 397 312 0.00015969999 1e-6 398 312 0.00083059981 1e-6 402 312 0.00041529979 1e-6 405 312 0.0001278 1e-6 408 312 3.1899996e-05 1e-6 413 312 3.1899996e-05 1e-6 414 312 0.0001278 1e-6 417 312 0.00047919992 1e-6 421 312 6.3899992e-05 1e-6 422 312 9.5799987e-05 1e-6 423 312 3.1899996e-05 1e-6 430 312 3.1899996e-05 1e-6 431 312 3.1899996e-05 1e-6 432 312 3.1899996e-05 1e-6 433 312 6.3899992e-05 1e-6 434 312 6.3899992e-05 1e-6 443 312 0.0060380995 1e-6 444 312 0.0011820998 1e-6 445 312 0.0092648976 1e-6 446 312 0.00099039986 1e-6 447 312 0.008466199 1e-6 448 312 3.1899996e-05 1e-6 450 312 0.0034822999 1e-6 452 312 0.0083702989 1e-6 453 312 0.0040892996 1e-6 454 312 0.0021404999 1e-6 455 312 0.028657198 1e-6 456 312 0.00067089987 1e-6 457 312 0.0050157979 1e-6 458 312 0.00060699997 1e-6 459 312 0.00041529979 1e-6 460 312 0.0018529999 1e-6 463 312 0.011724897 1e-6 464 312 0.0010543 1e-6 465 312 0.00092649995 1e-6 467 312 0.0096801966 1e-6 468 312 0.0046962984 1e-6 469 312 0.010478899 1e-6 470 312 0.0046323985 1e-6 471 312 0.0015653998 1e-6 473 312 6.3899992e-05 1e-6 477 312 0.0014376999 1e-6 478 312 0.0011500998 1e-6 479 312 0.0031947999 1e-6 483 312 0.0013098998 1e-6 489 312 0.0001278 1e-6 490 312 0.00028749998 1e-6 491 312 0.0048560984 1e-6 9 313 1.9299987e-05 1e-6 18 313 5.789999e-05 1e-6 19 313 0.00034749997 1e-6 22 313 0.00046329992 1e-6 24 313 1.9299987e-05 1e-6 60 313 0.0044206977 1e-6 77 313 0.0005983999 1e-6 82 313 1.9299987e-05 1e-6 83 313 1.9299987e-05 1e-6 84 313 1.9299987e-05 1e-6 108 313 1.9299987e-05 1e-6 113 313 3.8599988e-05 1e-6 114 313 3.8599988e-05 1e-6 126 313 1.9299987e-05 1e-6 134 313 0.0001351 1e-6 150 313 0.00061769993 1e-6 151 313 1.9299987e-05 1e-6 156 313 0.003976699 1e-6 158 313 0.000193 1e-6 160 313 0.00042469986 1e-6 169 313 0.00054049981 1e-6 171 313 5.789999e-05 1e-6 172 313 0.0019496998 1e-6 181 313 0.0001544 1e-6 187 313 0.00061769993 1e-6 188 313 0.0015056999 1e-6 189 313 3.8599988e-05 1e-6 190 313 7.7199991e-05 1e-6 192 313 5.789999e-05 1e-6 194 313 7.7199991e-05 1e-6 197 313 1.9299987e-05 1e-6 198 313 0.0025095998 1e-6 200 313 3.8599988e-05 1e-6 203 313 3.8599988e-05 1e-6 204 313 5.789999e-05 1e-6 206 313 7.7199991e-05 1e-6 207 313 3.8599988e-05 1e-6 209 313 1.9299987e-05 1e-6 214 313 0.0016215998 1e-6 218 313 1.9299987e-05 1e-6 219 313 0.0007528998 1e-6 220 313 5.789999e-05 1e-6 223 313 0.00081079989 1e-6 224 313 0.0007528998 1e-6 229 313 0.00086869998 1e-6 233 313 0.0010616998 1e-6 234 313 0.0021042 1e-6 236 313 1.9299987e-05 1e-6 237 313 0.00084939995 1e-6 240 313 0.0013319999 1e-6 241 313 0.001525 1e-6 242 313 7.7199991e-05 1e-6 252 313 0.00067559979 1e-6 267 313 1.9299987e-05 1e-6 270 313 0.0001544 1e-6 271 313 7.7199991e-05 1e-6 272 313 0.00025099982 1e-6 274 313 3.8599988e-05 1e-6 277 313 0.31369448 1e-6 278 313 0.0001351 1e-6 279 313 3.8599988e-05 1e-6 282 313 0.0029342 1e-6 283 313 0.00042469986 1e-6 284 313 0.00084939995 1e-6 285 313 0.00025099982 1e-6 286 313 0.00057909987 1e-6 288 313 0.00092659984 1e-6 289 313 0.00023169999 1e-6 290 313 7.7199991e-05 1e-6 292 313 0.0041503981 1e-6 293 313 0.0065054968 1e-6 294 313 0.00027029985 1e-6 295 313 0.00030889991 1e-6 296 313 0.00094589987 1e-6 297 313 5.789999e-05 1e-6 298 313 0.0049611963 1e-6 299 313 0.0020462999 1e-6 301 313 5.789999e-05 1e-6 312 313 0.012547798 1e-6 313 313 0.029052898 1e-6 315 313 0.00030889991 1e-6 318 313 1.9299987e-05 1e-6 319 313 0.0016408998 1e-6 320 313 0.0040152967 1e-6 321 313 0.00034749997 1e-6 322 313 0.00086869998 1e-6 323 313 0.00028959988 1e-6 325 313 0.00046329992 1e-6 326 313 0.0012161999 1e-6 328 313 0.00042469986 1e-6 330 313 0.00061769993 1e-6 338 313 0.00048259995 1e-6 339 313 0.0016601998 1e-6 340 313 0.0049997978 1e-6 350 313 1.9299987e-05 1e-6 351 313 0.00086869998 1e-6 354 313 1.9299987e-05 1e-6 356 313 3.8599988e-05 1e-6 357 313 0.00030889991 1e-6 358 313 0.0093818977 1e-6 366 313 0.00025099982 1e-6 372 313 5.789999e-05 1e-6 373 313 0.0010231 1e-6 374 313 1.9299987e-05 1e-6 375 313 1.9299987e-05 1e-6 384 313 0.00011579999 1e-6 385 313 0.0003668 1e-6 386 313 1.9299987e-05 1e-6 387 313 0.00028959988 1e-6 392 313 7.7199991e-05 1e-6 393 313 3.8599988e-05 1e-6 394 313 0.0001351 1e-6 397 313 0.00083009992 1e-6 399 313 5.789999e-05 1e-6 401 313 0.0014863999 1e-6 402 313 0.012953199 1e-6 405 313 0.0007528998 1e-6 414 313 5.789999e-05 1e-6 417 313 0.0003668 1e-6 419 313 1.9299987e-05 1e-6 421 313 5.789999e-05 1e-6 422 313 5.789999e-05 1e-6 423 313 1.9299987e-05 1e-6 430 313 1.9299987e-05 1e-6 432 313 1.9299987e-05 1e-6 433 313 1.9299987e-05 1e-6 434 313 3.8599988e-05 1e-6 441 313 1.9299987e-05 1e-6 443 313 0.0069301985 1e-6 444 313 0.00098449993 1e-6 445 313 0.0069494992 1e-6 446 313 0.00086869998 1e-6 447 313 0.0023936999 1e-6 448 313 1.9299987e-05 1e-6 450 313 0.0019689999 1e-6 452 313 0.0071618967 1e-6 453 313 0.0017759998 1e-6 454 313 0.00052119978 1e-6 455 313 0.028937098 1e-6 456 313 0.00025099982 1e-6 457 313 0.0027990998 1e-6 458 313 0.00027029985 1e-6 459 313 0.0022199999 1e-6 460 313 0.0017374 1e-6 463 313 0.0052121989 1e-6 464 313 0.0011195999 1e-6 465 313 0.00067559979 1e-6 467 313 0.0072004981 1e-6 468 313 0.0014477998 1e-6 469 313 0.0044592991 1e-6 470 313 0.0017952998 1e-6 471 313 0.0010809998 1e-6 473 313 3.8599988e-05 1e-6 477 313 7.7199991e-05 1e-6 478 313 0.00079149986 1e-6 483 313 0.00057909987 1e-6 489 313 5.789999e-05 1e-6 490 313 0.0001351 1e-6 491 313 0.0020462999 1e-6 0 314 0.0036722999 1e-6 22 314 0.00056499988 1e-6 24 314 0.00028249994 1e-6 60 314 0.0036722999 1e-6 87 314 0.0031072998 1e-6 90 314 0.0011298999 1e-6 114 314 0.00028249994 1e-6 130 314 0.00056499988 1e-6 135 314 0.00028249994 1e-6 169 314 0.00084749982 1e-6 171 314 0.005649697 1e-6 172 314 0.0016949 1e-6 187 314 0.0050846972 1e-6 188 314 0.011299398 1e-6 191 314 0.0011298999 1e-6 192 314 0.00056499988 1e-6 193 314 0.00028249994 1e-6 194 314 0.00028249994 1e-6 198 314 0.011299398 1e-6 204 314 0.0033898 1e-6 206 314 0.00028249994 1e-6 214 314 0.003954798 1e-6 223 314 0.017231598 1e-6 224 314 0.020338997 1e-6 225 314 0.00056499988 1e-6 229 314 0.00084749982 1e-6 233 314 0.017231598 1e-6 234 314 0.0019773999 1e-6 241 314 0.019491497 1e-6 252 314 0.00056499988 1e-6 270 314 0.0031072998 1e-6 272 314 0.0064971969 1e-6 277 314 0.19039547 1e-6 284 314 0.00084749982 1e-6 287 314 0.00028249994 1e-6 292 314 0.00028249994 1e-6 293 314 0.088983059 1e-6 294 314 0.00028249994 1e-6 312 314 0.0025423998 1e-6 314 314 0.046045199 1e-6 315 314 0.00084749982 1e-6 321 314 0.0050846972 1e-6 322 314 0.00028249994 1e-6 326 314 0.00056499988 1e-6 339 314 0.0014123998 1e-6 340 314 0.005649697 1e-6 349 314 0.00028249994 1e-6 351 314 0.00028249994 1e-6 358 314 0.0045197979 1e-6 385 314 0.00028249994 1e-6 417 314 0.00028249994 1e-6 443 314 0.0079095997 1e-6 444 314 0.00084749982 1e-6 445 314 0.0093219988 1e-6 446 314 0.00028249994 1e-6 447 314 0.005649697 1e-6 450 314 0.0019773999 1e-6 452 314 0.0062146969 1e-6 453 314 0.0028249 1e-6 454 314 0.00028249994 1e-6 455 314 0.031638399 1e-6 457 314 0.0016949 1e-6 458 314 0.00028249994 1e-6 459 314 0.00028249994 1e-6 460 314 0.0014123998 1e-6 463 314 0.0084745996 1e-6 464 314 0.00084749982 1e-6 465 314 0.00028249994 1e-6 467 314 0.0081920996 1e-6 468 314 0.0019773999 1e-6 469 314 0.0022598999 1e-6 470 314 0.0022598999 1e-6 471 314 0.00084749982 1e-6 478 314 0.00056499988 1e-6 483 314 0.00056499988 1e-6 490 314 0.00028249994 1e-6 491 314 0.00056499988 1e-6 9 315 3.7899998e-05 1e-6 18 315 0.00011359999 1e-6 19 315 0.0003407998 1e-6 21 315 3.7899998e-05 1e-6 22 315 0.00060589984 1e-6 25 315 3.7899998e-05 1e-6 60 315 0.0035974998 1e-6 77 315 0.00011359999 1e-6 82 315 3.7899998e-05 1e-6 108 315 3.7899998e-05 1e-6 114 315 7.5699994e-05 1e-6 126 315 3.7899998e-05 1e-6 130 315 0.00026509981 1e-6 131 315 7.5699994e-05 1e-6 139 315 0.00015149999 1e-6 141 315 3.7899998e-05 1e-6 150 315 0.00075739995 1e-6 151 315 3.7899998e-05 1e-6 156 315 0.00011359999 1e-6 160 315 0.0010225 1e-6 169 315 0.00053019985 1e-6 171 315 0.0041655973 1e-6 172 315 0.0020827998 1e-6 187 315 0.0020069999 1e-6 188 315 0.0051500984 1e-6 189 315 3.7899998e-05 1e-6 190 315 0.00011359999 1e-6 192 315 3.7899998e-05 1e-6 194 315 0.00018929999 1e-6 197 315 3.7899998e-05 1e-6 198 315 0.014996 1e-6 200 315 3.7899998e-05 1e-6 203 315 7.5699994e-05 1e-6 204 315 0.00018929999 1e-6 206 315 0.00015149999 1e-6 207 315 3.7899998e-05 1e-6 214 315 0.0054530986 1e-6 219 315 0.0019312999 1e-6 220 315 3.7899998e-05 1e-6 221 315 3.7899998e-05 1e-6 223 315 0.0029537999 1e-6 224 315 0.001742 1e-6 225 315 0.00015149999 1e-6 229 315 0.00075739995 1e-6 233 315 0.0040140972 1e-6 234 315 0.0027643999 1e-6 237 315 0.00018929999 1e-6 240 315 0.00030289986 1e-6 241 315 0.013973597 1e-6 243 315 3.7899998e-05 1e-6 252 315 0.0036732999 1e-6 270 315 0.00037869997 1e-6 272 315 0.00053019985 1e-6 274 315 0.0027264999 1e-6 277 315 0.16366869 1e-6 278 315 0.00011359999 1e-6 279 315 3.7899998e-05 1e-6 280 315 3.7899998e-05 1e-6 282 315 0.0025750999 1e-6 283 315 0.00011359999 1e-6 284 315 0.004506398 1e-6 285 315 0.0048850998 1e-6 286 315 0.0003407998 1e-6 287 315 7.5699994e-05 1e-6 288 315 0.00083309994 1e-6 289 315 0.00079519977 1e-6 290 315 0.00026509981 1e-6 292 315 0.014314398 1e-6 293 315 0.038663998 1e-6 294 315 0.0021584998 1e-6 295 315 0.015791297 1e-6 296 315 0.0019691999 1e-6 297 315 0.00094669987 1e-6 298 315 0.00083309994 1e-6 299 315 0.0055287965 1e-6 301 315 0.0034460998 1e-6 305 315 3.7899998e-05 1e-6 307 315 3.7899998e-05 1e-6 308 315 3.7899998e-05 1e-6 312 315 0.0095807984 1e-6 313 315 0.00094669987 1e-6 314 315 3.7899998e-05 1e-6 315 315 0.017306 1e-6 318 315 0.00064379978 1e-6 319 315 0.006361898 1e-6 320 315 0.0093535967 1e-6 321 315 0.0028402 1e-6 322 315 0.0014389998 1e-6 324 315 0.00011359999 1e-6 325 315 0.0012117999 1e-6 326 315 0.004619997 1e-6 328 315 0.00011359999 1e-6 330 315 7.5699994e-05 1e-6 331 315 7.5699994e-05 1e-6 338 315 0.00060589984 1e-6 339 315 0.0018555999 1e-6 340 315 0.0063240975 1e-6 341 315 3.7899998e-05 1e-6 344 315 0.00045439997 1e-6 349 315 3.7899998e-05 1e-6 350 315 3.7899998e-05 1e-6 351 315 0.00079519977 1e-6 352 315 3.7899998e-05 1e-6 354 315 7.5699994e-05 1e-6 356 315 3.7899998e-05 1e-6 358 315 0.006361898 1e-6 359 315 0.0016661999 1e-6 366 315 3.7899998e-05 1e-6 370 315 0.0002272 1e-6 371 315 0.00015149999 1e-6 372 315 0.0033324 1e-6 373 315 0.00087099988 1e-6 375 315 3.7899998e-05 1e-6 376 315 3.7899998e-05 1e-6 377 315 7.5699994e-05 1e-6 380 315 0.00079519977 1e-6 384 315 7.5699994e-05 1e-6 385 315 0.0002272 1e-6 386 315 0.0023478998 1e-6 387 315 3.7899998e-05 1e-6 389 315 3.7899998e-05 1e-6 390 315 0.00015149999 1e-6 392 315 0.00053019985 1e-6 393 315 0.00075739995 1e-6 398 315 7.5699994e-05 1e-6 402 315 0.0049228966 1e-6 405 315 0.00011359999 1e-6 415 315 0.00041659991 1e-6 417 315 0.0005679999 1e-6 419 315 0.00018929999 1e-6 421 315 7.5699994e-05 1e-6 422 315 0.00011359999 1e-6 430 315 0.00015149999 1e-6 433 315 3.7899998e-05 1e-6 434 315 3.7899998e-05 1e-6 441 315 0.00011359999 1e-6 442 315 3.7899998e-05 1e-6 443 315 0.0059453994 1e-6 444 315 0.00094669987 1e-6 445 315 0.0065133981 1e-6 446 315 0.00068159983 1e-6 447 315 0.0055666976 1e-6 450 315 0.0028779998 1e-6 452 315 0.0069677979 1e-6 453 315 0.0024992998 1e-6 454 315 0.00053019985 1e-6 455 315 0.031052399 1e-6 456 315 0.00030289986 1e-6 457 315 0.0035597 1e-6 458 315 0.00049229991 1e-6 459 315 0.00037869997 1e-6 460 315 0.0018555999 1e-6 463 315 0.012458798 1e-6 464 315 0.0020448999 1e-6 465 315 0.00094669987 1e-6 467 315 0.0095807984 1e-6 468 315 0.0054151975 1e-6 469 315 0.0079523996 1e-6 470 315 0.0033702999 1e-6 471 315 0.0013253998 1e-6 473 315 7.5699994e-05 1e-6 477 315 7.5699994e-05 1e-6 478 315 0.0011739 1e-6 483 315 0.00064379978 1e-6 489 315 3.7899998e-05 1e-6 490 315 0.00026509981 1e-6 491 315 0.00064379978 1e-6 60 316 0.0038768998 1e-6 114 316 0.0002423 1e-6 160 316 0.00048459996 1e-6 168 316 0.0002423 1e-6 171 316 0.0055730976 1e-6 194 316 0.0002423 1e-6 198 316 0.0167192 1e-6 206 316 0.00048459996 1e-6 214 316 0.0062999986 1e-6 224 316 0.0012114998 1e-6 229 316 0.00048459996 1e-6 234 316 0.0048460998 1e-6 237 316 0.0002423 1e-6 240 316 0.010176897 1e-6 241 316 0.017930698 1e-6 272 316 0.00048459996 1e-6 277 316 0.046765197 1e-6 279 316 0.0002423 1e-6 282 316 0.0029076999 1e-6 283 316 0.0036346 1e-6 284 316 0.0046037994 1e-6 292 316 0.0065422989 1e-6 293 316 0.0048460998 1e-6 294 316 0.0012114998 1e-6 296 316 0.00048459996 1e-6 299 316 0.0002423 1e-6 312 316 0.018899899 1e-6 315 316 0.0196268 1e-6 316 316 0.0019385 1e-6 317 316 0.0002423 1e-6 319 316 0.0121153 1e-6 320 316 0.016961496 1e-6 326 316 0.033438299 1e-6 340 316 0.0048460998 1e-6 353 316 0.0072691999 1e-6 356 316 0.0002423 1e-6 358 316 0.0026653998 1e-6 417 316 0.00048459996 1e-6 441 316 0.0096922964 1e-6 443 316 0.0019385 1e-6 444 316 0.0099345967 1e-6 445 316 0.0043614991 1e-6 447 316 0.0067845993 1e-6 450 316 0.0036346 1e-6 452 316 0.0058153979 1e-6 453 316 0.0019385 1e-6 454 316 0.0031499998 1e-6 455 316 0.019142199 1e-6 456 316 0.00048459996 1e-6 457 316 0.0016961 1e-6 458 316 0.00048459996 1e-6 459 316 0.00048459996 1e-6 460 316 0.0019385 1e-6 463 316 0.0050883964 1e-6 464 316 0.00096919993 1e-6 465 316 0.00072689983 1e-6 467 316 0.0094499998 1e-6 468 316 0.1344803 1e-6 469 316 0.0031499998 1e-6 470 316 0.0033922999 1e-6 471 316 0.00096919993 1e-6 478 316 0.00096919993 1e-6 479 316 0.0048460998 1e-6 483 316 0.0012114998 1e-6 490 316 0.00048459996 1e-6 491 316 0.00096919993 1e-6 22 317 8.6699991e-05 1e-6 24 317 8.6699991e-05 1e-6 60 317 0.0027729999 1e-6 108 317 8.6699991e-05 1e-6 114 317 0.0001733 1e-6 126 317 8.6699991e-05 1e-6 142 317 0.0001733 1e-6 159 317 8.6699991e-05 1e-6 160 317 0.00086659985 1e-6 161 317 0.00034659985 1e-6 168 317 0.0036394999 1e-6 171 317 0.050606597 1e-6 172 317 0.00060659996 1e-6 189 317 8.6699991e-05 1e-6 190 317 8.6699991e-05 1e-6 192 317 8.6699991e-05 1e-6 194 317 0.0001733 1e-6 198 317 0.011525098 1e-6 200 317 8.6699991e-05 1e-6 203 317 8.6699991e-05 1e-6 204 317 8.6699991e-05 1e-6 206 317 0.0001733 1e-6 207 317 8.6699991e-05 1e-6 214 317 8.6699991e-05 1e-6 224 317 8.6699991e-05 1e-6 229 317 0.00060659996 1e-6 234 317 0.0038127999 1e-6 237 317 0.00025999988 1e-6 240 317 0.00043329992 1e-6 241 317 0.013431497 1e-6 270 317 0.0019063998 1e-6 271 317 8.6699991e-05 1e-6 272 317 0.00060659996 1e-6 277 317 0.095580578 1e-6 278 317 0.0001733 1e-6 279 317 0.00025999988 1e-6 282 317 0.017071098 1e-6 283 317 0.027902897 1e-6 284 317 0.0044193976 1e-6 285 317 0.00034659985 1e-6 286 317 8.6699991e-05 1e-6 288 317 8.6699991e-05 1e-6 289 317 0.00043329992 1e-6 290 317 8.6699991e-05 1e-6 292 317 0.0033794998 1e-6 293 317 0.0032928998 1e-6 294 317 0.0001733 1e-6 295 317 0.00043329992 1e-6 296 317 0.005632598 1e-6 297 317 8.6699991e-05 1e-6 298 317 0.00025999988 1e-6 299 317 0.0064990968 1e-6 307 317 0.00025999988 1e-6 308 317 8.6699991e-05 1e-6 312 317 0.0013865 1e-6 313 317 8.6699991e-05 1e-6 315 317 0.0048526973 1e-6 317 317 0.0045926981 1e-6 318 317 8.6699991e-05 1e-6 319 317 0.00025999988 1e-6 320 317 0.020277299 1e-6 324 317 0.0001733 1e-6 326 317 0.011785097 1e-6 328 317 0.00034659985 1e-6 330 317 8.6699991e-05 1e-6 338 317 0.0012997999 1e-6 339 317 0.00051989988 1e-6 340 317 0.0086654983 1e-6 341 317 0.0001733 1e-6 350 317 0.0001733 1e-6 351 317 0.00077989977 1e-6 353 317 0.00025999988 1e-6 354 317 0.00060659996 1e-6 355 317 8.6699991e-05 1e-6 356 317 0.00025999988 1e-6 357 317 8.6699991e-05 1e-6 358 317 0.011525098 1e-6 371 317 8.6699991e-05 1e-6 372 317 0.00025999988 1e-6 373 317 0.00069319992 1e-6 375 317 8.6699991e-05 1e-6 386 317 0.00025999988 1e-6 387 317 8.6699991e-05 1e-6 397 317 8.6699991e-05 1e-6 401 317 8.6699991e-05 1e-6 402 317 0.00095319981 1e-6 412 317 8.6699991e-05 1e-6 417 317 0.00051989988 1e-6 421 317 8.6699991e-05 1e-6 422 317 8.6699991e-05 1e-6 430 317 8.6699991e-05 1e-6 433 317 8.6699991e-05 1e-6 434 317 8.6699991e-05 1e-6 441 317 8.6699991e-05 1e-6 443 317 0.0034661999 1e-6 444 317 0.0041593984 1e-6 445 317 0.013864797 1e-6 446 317 0.00034659985 1e-6 447 317 0.005632598 1e-6 450 317 0.0036394999 1e-6 452 317 0.005979199 1e-6 453 317 0.0037262 1e-6 454 317 0.00043329992 1e-6 455 317 0.033882096 1e-6 456 317 0.00025999988 1e-6 457 317 0.0019930999 1e-6 458 317 0.00086659985 1e-6 459 317 0.00043329992 1e-6 460 317 0.0019930999 1e-6 463 317 0.0088387989 1e-6 464 317 0.0027729999 1e-6 465 317 0.0010398999 1e-6 467 317 0.017850999 1e-6 468 317 0.0076255985 1e-6 469 317 0.0069323964 1e-6 470 317 0.0040727966 1e-6 471 317 0.0016464 1e-6 473 317 8.6699991e-05 1e-6 477 317 8.6699991e-05 1e-6 478 317 0.0012131999 1e-6 479 317 0.0026862998 1e-6 483 317 0.0013865 1e-6 489 317 8.6699991e-05 1e-6 490 317 0.00043329992 1e-6 491 317 0.0026862998 1e-6 60 318 0.0023991999 1e-6 114 318 0.00047979993 1e-6 171 318 0.0062379986 1e-6 172 318 0.00047979993 1e-6 198 318 0.0052782968 1e-6 206 318 0.00095969997 1e-6 224 318 0.00047979993 1e-6 229 318 0.00047979993 1e-6 234 318 0.0033588998 1e-6 237 318 0.00095969997 1e-6 240 318 0.00047979993 1e-6 241 318 0.012475997 1e-6 270 318 0.022072896 1e-6 272 318 0.00047979993 1e-6 276 318 0.00047979993 1e-6 277 318 0.14635319 1e-6 282 318 0.0038387999 1e-6 283 318 0.0014394999 1e-6 284 318 0.0043185987 1e-6 285 318 0.0014394999 1e-6 292 318 0.00047979993 1e-6 293 318 0.00047979993 1e-6 294 318 0.0023991999 1e-6 295 318 0.0033588998 1e-6 296 318 0.0033588998 1e-6 297 318 0.00047979993 1e-6 298 318 0.00095969997 1e-6 307 318 0.00095969997 1e-6 312 318 0.0014394999 1e-6 315 318 0.0014394999 1e-6 317 318 0.00047979993 1e-6 318 318 0.0038387999 1e-6 320 318 0.047504798 1e-6 326 318 0.00047979993 1e-6 328 318 0.0052782968 1e-6 330 318 0.0019193999 1e-6 333 318 0.00047979993 1e-6 338 318 0.00047979993 1e-6 340 318 0.013435699 1e-6 341 318 0.00047979993 1e-6 351 318 0.0019193999 1e-6 354 318 0.0019193999 1e-6 358 318 0.0086371973 1e-6 371 318 0.00047979993 1e-6 372 318 0.0014394999 1e-6 373 318 0.0038387999 1e-6 386 318 0.0019193999 1e-6 398 318 0.00047979993 1e-6 417 318 0.00047979993 1e-6 443 318 0.0028790999 1e-6 444 318 0.00047979993 1e-6 445 318 0.0043185987 1e-6 447 318 0.018714 1e-6 450 318 0.0033588998 1e-6 452 318 0.006717898 1e-6 453 318 0.0019193999 1e-6 454 318 0.00047979993 1e-6 455 318 0.024951998 1e-6 457 318 0.0023991999 1e-6 458 318 0.00095969997 1e-6 459 318 0.00047979993 1e-6 460 318 0.0014394999 1e-6 463 318 0.0091170967 1e-6 464 318 0.00047979993 1e-6 465 318 0.00047979993 1e-6 467 318 0.011516299 1e-6 468 318 0.011516299 1e-6 469 318 0.0043185987 1e-6 470 318 0.0043185987 1e-6 471 318 0.0014394999 1e-6 478 318 0.00095969997 1e-6 483 318 0.0014394999 1e-6 490 318 0.00047979993 1e-6 491 318 0.0014394999 1e-6 9 319 3.1499992e-05 1e-6 18 319 9.4399991e-05 1e-6 22 319 0.00034609996 1e-6 60 319 0.0032406999 1e-6 82 319 3.1499992e-05 1e-6 83 319 3.1499992e-05 1e-6 84 319 3.1499992e-05 1e-6 108 319 3.1499992e-05 1e-6 113 319 6.2899999e-05 1e-6 114 319 9.4399991e-05 1e-6 126 319 6.2899999e-05 1e-6 139 319 0.00062929979 1e-6 150 319 0.00072369981 1e-6 151 319 3.1499992e-05 1e-6 160 319 0.00044049998 1e-6 169 319 0.00091239996 1e-6 171 319 0.0050655976 1e-6 172 319 0.00037759985 1e-6 189 319 9.4399991e-05 1e-6 190 319 9.4399991e-05 1e-6 192 319 6.2899999e-05 1e-6 194 319 0.0001259 1e-6 198 319 0.0090613998 1e-6 200 319 6.2899999e-05 1e-6 203 319 0.0001259 1e-6 204 319 6.2899999e-05 1e-6 206 319 0.00022019999 1e-6 207 319 6.2899999e-05 1e-6 214 319 0.0026429 1e-6 223 319 0.0025485 1e-6 224 319 0.0050026998 1e-6 229 319 0.00066069979 1e-6 233 319 0.0013528999 1e-6 234 319 0.0030834 1e-6 237 319 0.0010698 1e-6 240 319 0.0060723983 1e-6 241 319 0.024258297 1e-6 242 319 3.1499992e-05 1e-6 252 319 0.0020450999 1e-6 253 319 0.0016675999 1e-6 270 319 0.0014473 1e-6 272 319 3.1499992e-05 1e-6 277 319 0.10058838 1e-6 279 319 3.1499992e-05 1e-6 282 319 0.0094074979 1e-6 283 319 0.00037759985 1e-6 284 319 0.0040901974 1e-6 285 319 0.00056629977 1e-6 286 319 0.0023597998 1e-6 288 319 0.018122897 1e-6 289 319 0.00056629977 1e-6 290 319 9.4399991e-05 1e-6 292 319 0.013875298 1e-6 293 319 0.0098479986 1e-6 294 319 0.0026115 1e-6 295 319 0.0025171 1e-6 296 319 0.0024226999 1e-6 297 319 0.0033350999 1e-6 298 319 0.0023911998 1e-6 304 319 3.1499992e-05 1e-6 305 319 3.1499992e-05 1e-6 312 319 0.0182487 1e-6 313 319 6.2899999e-05 1e-6 315 319 0.0082748979 1e-6 317 319 3.1499992e-05 1e-6 319 319 0.028600197 1e-6 320 319 0.00031459983 1e-6 321 319 0.0079287998 1e-6 322 319 0.0040272996 1e-6 324 319 9.4399991e-05 1e-6 326 319 0.0072679967 1e-6 328 319 3.1499992e-05 1e-6 335 319 3.1499992e-05 1e-6 337 319 6.2899999e-05 1e-6 338 319 0.00050339988 1e-6 339 319 0.00062929979 1e-6 340 319 0.0056948997 1e-6 341 319 6.2899999e-05 1e-6 350 319 3.1499992e-05 1e-6 351 319 0.00088099996 1e-6 353 319 0.00015729999 1e-6 354 319 0.00028319983 1e-6 356 319 0.00015729999 1e-6 357 319 3.1499992e-05 1e-6 358 319 0.0042789988 1e-6 359 319 6.2899999e-05 1e-6 366 319 9.4399991e-05 1e-6 367 319 3.1499992e-05 1e-6 369 319 0.0001888 1e-6 370 319 9.4399991e-05 1e-6 372 319 0.008872699 1e-6 373 319 3.1499992e-05 1e-6 384 319 9.4399991e-05 1e-6 385 319 6.2899999e-05 1e-6 386 319 0.00022019999 1e-6 387 319 6.2899999e-05 1e-6 390 319 0.0017618998 1e-6 391 319 0.00022019999 1e-6 392 319 0.0012899998 1e-6 393 319 0.0027372998 1e-6 402 319 9.4399991e-05 1e-6 405 319 9.4399991e-05 1e-6 414 319 6.2899999e-05 1e-6 415 319 3.1499992e-05 1e-6 417 319 0.00047199987 1e-6 419 319 3.1499992e-05 1e-6 421 319 6.2899999e-05 1e-6 422 319 9.4399991e-05 1e-6 423 319 3.1499992e-05 1e-6 425 319 3.1499992e-05 1e-6 430 319 3.1499992e-05 1e-6 431 319 3.1499992e-05 1e-6 432 319 3.1499992e-05 1e-6 433 319 6.2899999e-05 1e-6 434 319 6.2899999e-05 1e-6 441 319 0.0011955998 1e-6 443 319 0.0042160973 1e-6 444 319 0.0016675999 1e-6 445 319 0.0092816986 1e-6 446 319 0.00040899985 1e-6 447 319 0.012176298 1e-6 448 319 3.1499992e-05 1e-6 450 319 0.0033979998 1e-6 452 319 0.0061038993 1e-6 453 319 0.0017933999 1e-6 454 319 0.00078659994 1e-6 455 319 0.029732898 1e-6 456 319 0.0005349 1e-6 457 319 0.0019192998 1e-6 458 319 0.0016989999 1e-6 459 319 0.00050339988 1e-6 460 319 0.0018877999 1e-6 463 319 0.009438999 1e-6 464 319 0.0018248998 1e-6 465 319 0.0010382999 1e-6 467 319 0.0128056 1e-6 468 319 0.0011640999 1e-6 469 319 0.0066387989 1e-6 470 319 0.0042160973 1e-6 471 319 0.0012584999 1e-6 473 319 9.4399991e-05 1e-6 477 319 6.2899999e-05 1e-6 478 319 0.0011326999 1e-6 483 319 0.0014159 1e-6 489 319 6.2899999e-05 1e-6 490 319 0.00034609996 1e-6 491 319 0.00069219992 1e-6 18 320 0.0001928 1e-6 22 320 9.6399992e-05 1e-6 60 320 0.015715398 1e-6 108 320 9.6399992e-05 1e-6 114 320 9.6399992e-05 1e-6 126 320 9.6399992e-05 1e-6 150 320 0.001157 1e-6 189 320 9.6399992e-05 1e-6 190 320 0.0001928 1e-6 192 320 9.6399992e-05 1e-6 194 320 0.0001928 1e-6 198 320 0.0019282999 1e-6 200 320 9.6399992e-05 1e-6 203 320 9.6399992e-05 1e-6 204 320 9.6399992e-05 1e-6 206 320 0.00028919987 1e-6 207 320 9.6399992e-05 1e-6 214 320 0.024006899 1e-6 218 320 9.6399992e-05 1e-6 223 320 0.094967186 1e-6 224 320 9.6399992e-05 1e-6 229 320 0.00038569979 1e-6 233 320 0.0037600999 1e-6 234 320 0.0062668994 1e-6 237 320 0.00038569979 1e-6 240 320 0.0010604998 1e-6 241 320 0.0034708998 1e-6 252 320 0.0031815998 1e-6 270 320 0.0071345977 1e-6 277 320 0.0086771995 1e-6 278 320 9.6399992e-05 1e-6 284 320 0.0026995998 1e-6 286 320 0.004049398 1e-6 287 320 0.0001928 1e-6 288 320 0.0074237995 1e-6 289 320 0.0016389999 1e-6 290 320 0.027767099 1e-6 291 320 0.0001928 1e-6 292 320 9.6399992e-05 1e-6 293 320 0.00048209983 1e-6 294 320 9.6399992e-05 1e-6 295 320 9.6399992e-05 1e-6 312 320 0.0012534 1e-6 315 320 0.0042421967 1e-6 320 320 0.0006748999 1e-6 326 320 0.0001928 1e-6 340 320 0.0001928 1e-6 349 320 0.0031815998 1e-6 351 320 9.6399992e-05 1e-6 356 320 0.0001928 1e-6 358 320 0.0030852 1e-6 384 320 0.00028919987 1e-6 387 320 9.6399992e-05 1e-6 392 320 0.0001928 1e-6 393 320 0.001157 1e-6 402 320 0.0001928 1e-6 417 320 0.00077129994 1e-6 421 320 9.6399992e-05 1e-6 422 320 9.6399992e-05 1e-6 430 320 9.6399992e-05 1e-6 433 320 9.6399992e-05 1e-6 434 320 9.6399992e-05 1e-6 443 320 0.0078094974 1e-6 444 320 0.00057849986 1e-6 445 320 0.013883498 1e-6 446 320 0.0006748999 1e-6 447 320 0.0041457973 1e-6 450 320 0.0052062981 1e-6 452 320 0.022271499 1e-6 453 320 0.0095448978 1e-6 454 320 0.0017353999 1e-6 455 320 0.017450798 1e-6 456 320 0.00077129994 1e-6 457 320 0.0054955967 1e-6 458 320 0.00086769997 1e-6 459 320 0.00057849986 1e-6 460 320 0.0024102998 1e-6 463 320 0.023814097 1e-6 464 320 0.00038569979 1e-6 465 320 0.0015425999 1e-6 467 320 0.014751296 1e-6 468 320 0.0019282999 1e-6 469 320 0.0046277978 1e-6 470 320 0.0051098987 1e-6 471 320 0.0026995998 1e-6 473 320 9.6399992e-05 1e-6 478 320 0.0018318999 1e-6 483 320 0.0010604998 1e-6 489 320 0.0001928 1e-6 490 320 0.00048209983 1e-6 491 320 0.00028919987 1e-6 19 321 0.0001372 1e-6 22 321 0.0001372 1e-6 24 321 0.00041159987 1e-6 25 321 0.0001372 1e-6 60 321 0.0026069998 1e-6 108 321 0.0001372 1e-6 114 321 0.00027439999 1e-6 126 321 0.0001372 1e-6 130 321 0.0001372 1e-6 160 321 0.0001372 1e-6 171 321 0.00027439999 1e-6 187 321 0.0015093 1e-6 190 321 0.0001372 1e-6 192 321 0.0001372 1e-6 194 321 0.00041159987 1e-6 198 321 0.0032930998 1e-6 203 321 0.0001372 1e-6 204 321 0.0001372 1e-6 205 321 0.0001372 1e-6 206 321 0.00027439999 1e-6 211 321 0.0001372 1e-6 212 321 0.0001372 1e-6 214 321 0.058452297 1e-6 221 321 0.0001372 1e-6 223 321 0.00027439999 1e-6 224 321 0.0024697999 1e-6 229 321 0.00068609999 1e-6 233 321 0.10812289 1e-6 234 321 0.0030186998 1e-6 237 321 0.00027439999 1e-6 240 321 0.023874898 1e-6 241 321 0.014132798 1e-6 250 321 0.0001372 1e-6 252 321 0.00027439999 1e-6 270 321 0.019072399 1e-6 272 321 0.00068609999 1e-6 273 321 0.0001372 1e-6 277 321 0.0057628974 1e-6 278 321 0.00041159987 1e-6 279 321 0.0001372 1e-6 282 321 0.00027439999 1e-6 284 321 0.0020581998 1e-6 286 321 0.00027439999 1e-6 288 321 0.0429473 1e-6 289 321 0.0042535998 1e-6 290 321 0.0017837998 1e-6 292 321 0.00068609999 1e-6 293 321 0.0021954 1e-6 295 321 0.00082329987 1e-6 298 321 0.00041159987 1e-6 308 321 0.00054879999 1e-6 312 321 0.00041159987 1e-6 315 321 0.0001372 1e-6 320 321 0.024286497 1e-6 321 321 0.026619099 1e-6 326 321 0.0001372 1e-6 340 321 0.0097419992 1e-6 353 321 0.00041159987 1e-6 354 321 0.00027439999 1e-6 356 321 0.0001372 1e-6 358 321 0.00041159987 1e-6 369 321 0.00027439999 1e-6 370 321 0.0001372 1e-6 371 321 0.00027439999 1e-6 372 321 0.00041159987 1e-6 373 321 0.0032930998 1e-6 375 321 0.00027439999 1e-6 376 321 0.0001372 1e-6 386 321 0.00041159987 1e-6 387 321 0.0001372 1e-6 393 321 0.00082329987 1e-6 402 321 0.0001372 1e-6 417 321 0.00054879999 1e-6 421 321 0.0001372 1e-6 422 321 0.00027439999 1e-6 424 321 0.00054879999 1e-6 426 321 0.0001372 1e-6 434 321 0.0001372 1e-6 442 321 0.0001372 1e-6 443 321 0.0086442977 1e-6 444 321 0.0043907985 1e-6 445 321 0.013172299 1e-6 446 321 0.001921 1e-6 447 321 0.0080954991 1e-6 450 321 0.0039790981 1e-6 452 321 0.011662997 1e-6 453 321 0.011662997 1e-6 454 321 0.0038418998 1e-6 455 321 0.037184399 1e-6 456 321 0.00027439999 1e-6 457 321 0.0031558999 1e-6 458 321 0.0010976999 1e-6 459 321 0.00041159987 1e-6 460 321 0.0017837998 1e-6 463 321 0.025932997 1e-6 464 321 0.0045279972 1e-6 465 321 0.0012349 1e-6 467 321 0.010702498 1e-6 468 321 0.0017837998 1e-6 469 321 0.0038418998 1e-6 470 321 0.0042535998 1e-6 471 321 0.001921 1e-6 473 321 0.0001372 1e-6 477 321 0.0032930998 1e-6 478 321 0.0012349 1e-6 483 321 0.00082329987 1e-6 490 321 0.00041159987 1e-6 491 321 0.0010976999 1e-6 18 322 0.00016269999 1e-6 19 322 0.0076869987 1e-6 21 322 8.1299993e-05 1e-6 22 322 0.0036604998 1e-6 24 322 0.00048809987 1e-6 25 322 0.00016269999 1e-6 60 322 0.0049212985 1e-6 77 322 8.1299993e-05 1e-6 108 322 8.1299993e-05 1e-6 114 322 8.1299993e-05 1e-6 126 322 8.1299993e-05 1e-6 131 322 4.069999e-05 1e-6 132 322 4.069999e-05 1e-6 139 322 4.069999e-05 1e-6 141 322 0.0037417999 1e-6 150 322 0.00052869995 1e-6 160 322 0.0055720992 1e-6 165 322 8.1299993e-05 1e-6 169 322 0.00044739991 1e-6 171 322 0.0018302 1e-6 172 322 0.0012607998 1e-6 183 322 8.1299993e-05 1e-6 187 322 4.069999e-05 1e-6 189 322 8.1299993e-05 1e-6 190 322 0.000122 1e-6 192 322 8.1299993e-05 1e-6 194 322 0.00016269999 1e-6 195 322 4.069999e-05 1e-6 197 322 4.069999e-05 1e-6 198 322 0.011184797 1e-6 200 322 4.069999e-05 1e-6 203 322 0.0010574998 1e-6 204 322 4.069999e-05 1e-6 206 322 0.00032539992 1e-6 207 322 4.069999e-05 1e-6 214 322 0.0093544982 1e-6 223 322 0.0065074973 1e-6 224 322 0.00069139991 1e-6 225 322 0.000122 1e-6 229 322 0.00052869995 1e-6 233 322 0.000244 1e-6 234 322 0.0039044998 1e-6 237 322 0.00081339991 1e-6 240 322 0.0037417999 1e-6 241 322 0.0117542 1e-6 242 322 4.069999e-05 1e-6 252 322 0.000122 1e-6 267 322 0.0014234998 1e-6 270 322 0.00020339999 1e-6 271 322 4.069999e-05 1e-6 272 322 0.00056939991 1e-6 273 322 0.00016269999 1e-6 276 322 4.069999e-05 1e-6 277 322 0.22190589 1e-6 278 322 0.0026842998 1e-6 279 322 0.0021555999 1e-6 280 322 8.1299993e-05 1e-6 282 322 0.014926597 1e-6 283 322 8.1299993e-05 1e-6 284 322 0.0028063999 1e-6 285 322 0.0012202 1e-6 286 322 0.0059380978 1e-6 287 322 0.00044739991 1e-6 288 322 0.0097612999 1e-6 289 322 0.00077279983 1e-6 290 322 0.0019928999 1e-6 291 322 0.00020339999 1e-6 292 322 0.010737397 1e-6 293 322 0.0057753995 1e-6 294 322 8.1299993e-05 1e-6 295 322 0.010493398 1e-6 301 322 4.069999e-05 1e-6 302 322 4.069999e-05 1e-6 306 322 4.069999e-05 1e-6 307 322 4.069999e-05 1e-6 308 322 4.069999e-05 1e-6 310 322 8.1299993e-05 1e-6 311 322 4.069999e-05 1e-6 312 322 0.0061820969 1e-6 315 322 0.0015454998 1e-6 318 322 0.00044739991 1e-6 319 322 0.0012202 1e-6 320 322 0.004189197 1e-6 321 322 0.005734697 1e-6 322 322 0.0060193986 1e-6 323 322 4.069999e-05 1e-6 324 322 0.00016269999 1e-6 326 322 0.0017082 1e-6 328 322 0.000122 1e-6 329 322 4.069999e-05 1e-6 330 322 4.069999e-05 1e-6 335 322 4.069999e-05 1e-6 336 322 4.069999e-05 1e-6 337 322 0.000122 1e-6 339 322 0.00032539992 1e-6 340 322 0.012892999 1e-6 342 322 4.069999e-05 1e-6 343 322 0.000122 1e-6 345 322 4.069999e-05 1e-6 347 322 4.069999e-05 1e-6 349 322 4.069999e-05 1e-6 350 322 0.0013014998 1e-6 351 322 0.0029689998 1e-6 352 322 0.000244 1e-6 353 322 4.069999e-05 1e-6 354 322 0.0014234998 1e-6 355 322 0.00028469996 1e-6 356 322 0.00016269999 1e-6 358 322 0.0030503999 1e-6 359 322 0.00020339999 1e-6 361 322 4.069999e-05 1e-6 370 322 4.069999e-05 1e-6 371 322 4.069999e-05 1e-6 372 322 0.000122 1e-6 373 322 0.00044739991 1e-6 374 322 0.00093549979 1e-6 375 322 0.00032539992 1e-6 384 322 0.00040669995 1e-6 385 322 4.069999e-05 1e-6 387 322 8.1299993e-05 1e-6 402 322 0.00020339999 1e-6 408 322 0.000122 1e-6 413 322 8.1299993e-05 1e-6 414 322 8.1299993e-05 1e-6 415 322 4.069999e-05 1e-6 417 322 0.00048809987 1e-6 421 322 8.1299993e-05 1e-6 422 322 8.1299993e-05 1e-6 430 322 4.069999e-05 1e-6 433 322 4.069999e-05 1e-6 434 322 8.1299993e-05 1e-6 438 322 4.069999e-05 1e-6 441 322 0.0010167998 1e-6 443 322 0.011062797 1e-6 444 322 0.0021555999 1e-6 445 322 0.0079716966 1e-6 446 322 0.0017488999 1e-6 447 322 0.0033350999 1e-6 448 322 4.069999e-05 1e-6 450 322 0.0030910999 1e-6 452 322 0.0089884996 1e-6 453 322 0.0052466989 1e-6 454 322 0.0015048999 1e-6 455 322 0.030625898 1e-6 456 322 0.00052869995 1e-6 457 322 0.0036604998 1e-6 458 322 0.00065079983 1e-6 459 322 0.00040669995 1e-6 460 322 0.0020742998 1e-6 463 322 0.0090697967 1e-6 464 322 0.0013422 1e-6 465 322 0.00093549979 1e-6 467 322 0.012160897 1e-6 468 322 0.0036197999 1e-6 469 322 0.0035384998 1e-6 470 322 0.0036604998 1e-6 471 322 0.0014234998 1e-6 473 322 8.1299993e-05 1e-6 477 322 0.00089479983 1e-6 478 322 0.0010980999 1e-6 483 322 0.0010980999 1e-6 489 322 0.00028469996 1e-6 490 322 0.00036599999 1e-6 491 322 0.0032943999 1e-6 60 323 0.0021851999 1e-6 114 323 0.00027309987 1e-6 141 323 0.00054629985 1e-6 156 323 0.00054629985 1e-6 158 323 0.00027309987 1e-6 160 323 0.00081939995 1e-6 172 323 0.00027309987 1e-6 198 323 0.015842699 1e-6 206 323 0.00054629985 1e-6 214 323 0.0081944987 1e-6 223 323 0.00027309987 1e-6 224 323 0.00027309987 1e-6 229 323 0.00081939995 1e-6 233 323 0.0090138987 1e-6 234 323 0.0021851999 1e-6 237 323 0.00054629985 1e-6 240 323 0.020213097 1e-6 241 323 0.0027315 1e-6 252 323 0.00054629985 1e-6 270 323 0.00027309987 1e-6 271 323 0.00081939995 1e-6 272 323 0.00027309987 1e-6 277 323 0.23900568 1e-6 278 323 0.00027309987 1e-6 279 323 0.00027309987 1e-6 282 323 0.011745397 1e-6 283 323 0.0032777998 1e-6 284 323 0.0016388998 1e-6 285 323 0.016935296 1e-6 288 323 0.0013656998 1e-6 292 323 0.0024583 1e-6 293 323 0.0013656998 1e-6 294 323 0.00054629985 1e-6 295 323 0.0019119999 1e-6 296 323 0.0019119999 1e-6 312 323 0.023763999 1e-6 313 323 0.0040971972 1e-6 315 323 0.00081939995 1e-6 319 323 0.0010925999 1e-6 320 323 0.0098333992 1e-6 321 323 0.00081939995 1e-6 322 323 0.0010925999 1e-6 323 323 0.0046434999 1e-6 328 323 0.0024583 1e-6 329 323 0.00027309987 1e-6 340 323 0.012018599 1e-6 351 323 0.0013656998 1e-6 354 323 0.00054629985 1e-6 355 323 0.0081944987 1e-6 357 323 0.0013656998 1e-6 358 323 0.0030045998 1e-6 366 323 0.00027309987 1e-6 374 323 0.0065555982 1e-6 385 323 0.00027309987 1e-6 387 323 0.00027309987 1e-6 397 323 0.0013656998 1e-6 401 323 0.0013656998 1e-6 402 323 0.013657499 1e-6 417 323 0.00027309987 1e-6 441 323 0.00027309987 1e-6 443 323 0.0060092993 1e-6 444 323 0.0084675997 1e-6 445 323 0.0062823966 1e-6 446 323 0.00027309987 1e-6 447 323 0.0084675997 1e-6 450 323 0.0024583 1e-6 452 323 0.0060092993 1e-6 453 323 0.0076481998 1e-6 454 323 0.0079212971 1e-6 455 323 0.031412199 1e-6 457 323 0.0032777998 1e-6 458 323 0.00027309987 1e-6 459 323 0.00027309987 1e-6 460 323 0.0016388998 1e-6 463 323 0.0114723 1e-6 464 323 0.010925997 1e-6 465 323 0.00027309987 1e-6 467 323 0.0068286993 1e-6 468 323 0.0019119999 1e-6 469 323 0.0024583 1e-6 470 323 0.0027315 1e-6 471 323 0.0038240999 1e-6 478 323 0.0010925999 1e-6 483 323 0.0010925999 1e-6 490 323 0.00027309987 1e-6 491 323 0.0010925999 1e-6 9 324 2.739999e-05 1e-6 18 324 0.00079379999 1e-6 19 324 0.00027369987 1e-6 21 324 2.739999e-05 1e-6 22 324 0.00021899999 1e-6 24 324 0.0006295999 1e-6 60 324 0.0029563999 1e-6 82 324 2.739999e-05 1e-6 83 324 2.739999e-05 1e-6 84 324 2.739999e-05 1e-6 108 324 5.4699995e-05 1e-6 113 324 5.4699995e-05 1e-6 114 324 0.00013689999 1e-6 126 324 8.2099999e-05 1e-6 135 324 2.739999e-05 1e-6 142 324 0.00010949999 1e-6 150 324 0.00065699988 1e-6 151 324 0.0010401998 1e-6 160 324 0.0003558998 1e-6 171 324 0.0006295999 1e-6 172 324 2.739999e-05 1e-6 187 324 2.739999e-05 1e-6 189 324 8.2099999e-05 1e-6 190 324 0.00010949999 1e-6 191 324 2.739999e-05 1e-6 192 324 5.4699995e-05 1e-6 194 324 0.00010949999 1e-6 198 324 0.0055021979 1e-6 200 324 5.4699995e-05 1e-6 203 324 0.00010949999 1e-6 204 324 8.2099999e-05 1e-6 206 324 0.00010949999 1e-6 207 324 5.4699995e-05 1e-6 214 324 0.00038319989 1e-6 223 324 0.0015876999 1e-6 224 324 0.00021899999 1e-6 229 324 0.00071169995 1e-6 233 324 8.2099999e-05 1e-6 234 324 0.0034218 1e-6 237 324 0.00027369987 1e-6 240 324 0.0103474 1e-6 241 324 0.0028742999 1e-6 242 324 0.0032574998 1e-6 252 324 0.00013689999 1e-6 254 324 5.4699995e-05 1e-6 262 324 8.2099999e-05 1e-6 266 324 2.739999e-05 1e-6 267 324 2.739999e-05 1e-6 270 324 0.0038596999 1e-6 272 324 0.0037228998 1e-6 277 324 0.077824295 1e-6 278 324 0.00021899999 1e-6 279 324 2.739999e-05 1e-6 282 324 0.0447018 1e-6 283 324 0.013933398 1e-6 284 324 0.0017245999 1e-6 285 324 8.2099999e-05 1e-6 286 324 0.016725499 1e-6 288 324 0.0016971999 1e-6 289 324 0.00060219993 1e-6 290 324 0.010292597 1e-6 292 324 0.023596399 1e-6 293 324 0.0034490998 1e-6 294 324 0.00049269991 1e-6 295 324 0.0029837999 1e-6 296 324 0.0044345967 1e-6 297 324 0.0130574 1e-6 298 324 0.0101831 1e-6 299 324 0.0021352 1e-6 303 324 8.2099999e-05 1e-6 304 324 0.00010949999 1e-6 305 324 8.2099999e-05 1e-6 307 324 0.00060219993 1e-6 308 324 8.2099999e-05 1e-6 312 324 0.013960697 1e-6 313 324 2.739999e-05 1e-6 315 324 0.0060222968 1e-6 317 324 0.00065699988 1e-6 318 324 0.00010949999 1e-6 319 324 0.001314 1e-6 320 324 0.0030385 1e-6 321 324 0.0019983 1e-6 322 324 0.0028468999 1e-6 324 324 0.0213244 1e-6 326 324 0.0017519 1e-6 327 324 0.00013689999 1e-6 328 324 0.00073909992 1e-6 329 324 5.4699995e-05 1e-6 330 324 0.00068439986 1e-6 333 324 0.00049269991 1e-6 335 324 2.739999e-05 1e-6 338 324 0.0012591998 1e-6 339 324 2.739999e-05 1e-6 340 324 0.0058032982 1e-6 341 324 0.00027369987 1e-6 349 324 8.2099999e-05 1e-6 350 324 0.0010401998 1e-6 351 324 0.0018340999 1e-6 352 324 0.00010949999 1e-6 353 324 0.0023542 1e-6 354 324 0.00087599992 1e-6 356 324 0.0003558998 1e-6 358 324 0.018559597 1e-6 359 324 2.739999e-05 1e-6 366 324 0.00032849982 1e-6 368 324 0.00090329978 1e-6 369 324 0.00021899999 1e-6 370 324 0.0001642 1e-6 371 324 0.0003558998 1e-6 372 324 0.0076099969 1e-6 373 324 0.00090329978 1e-6 375 324 2.739999e-05 1e-6 384 324 8.2099999e-05 1e-6 386 324 0.00027369987 1e-6 387 324 5.4699995e-05 1e-6 390 324 2.739999e-05 1e-6 392 324 8.2099999e-05 1e-6 393 324 0.0012865998 1e-6 394 324 2.739999e-05 1e-6 397 324 2.739999e-05 1e-6 398 324 2.739999e-05 1e-6 402 324 0.00024639978 1e-6 404 324 2.739999e-05 1e-6 405 324 2.739999e-05 1e-6 413 324 5.4699995e-05 1e-6 414 324 0.0006295999 1e-6 415 324 0.00013689999 1e-6 417 324 0.00043799984 1e-6 419 324 0.00013689999 1e-6 421 324 5.4699995e-05 1e-6 422 324 0.00010949999 1e-6 423 324 2.739999e-05 1e-6 425 324 2.739999e-05 1e-6 430 324 5.4699995e-05 1e-6 431 324 2.739999e-05 1e-6 432 324 2.739999e-05 1e-6 433 324 5.4699995e-05 1e-6 434 324 5.4699995e-05 1e-6 443 324 0.0039144978 1e-6 444 324 0.0027647999 1e-6 445 324 0.0051736981 1e-6 446 324 0.00038319989 1e-6 447 324 0.0081574991 1e-6 448 324 2.739999e-05 1e-6 450 324 0.0035038998 1e-6 452 324 0.0064602979 1e-6 453 324 0.0027099999 1e-6 454 324 0.0016697999 1e-6 455 324 0.031534899 1e-6 456 324 0.00052009989 1e-6 457 324 0.0069803968 1e-6 458 324 0.0017245999 1e-6 459 324 0.0028468999 1e-6 460 324 0.0017792999 1e-6 463 324 0.0082942992 1e-6 464 324 0.0024362998 1e-6 465 324 0.0010401998 1e-6 467 324 0.010210499 1e-6 468 324 0.0015876999 1e-6 469 324 0.014097597 1e-6 470 324 0.0063780993 1e-6 471 324 0.0044345967 1e-6 473 324 0.00010949999 1e-6 477 324 5.4699995e-05 1e-6 478 324 0.0011771 1e-6 483 324 0.0014507999 1e-6 489 324 0.00010949999 1e-6 490 324 0.00043799984 1e-6 491 324 0.0068160966 1e-6 24 325 0.0001928 1e-6 60 325 0.0028923999 1e-6 77 325 0.00057849986 1e-6 104 325 0.00077129994 1e-6 114 325 0.0001928 1e-6 130 325 0.001157 1e-6 139 325 0.0001928 1e-6 142 325 0.00038569979 1e-6 143 325 0.0001928 1e-6 150 325 0.00038569979 1e-6 160 325 0.001157 1e-6 169 325 0.00057849986 1e-6 171 325 0.00038569979 1e-6 172 325 0.0015425999 1e-6 187 325 0.033744697 1e-6 188 325 0.0025066999 1e-6 189 325 0.00038569979 1e-6 192 325 0.001157 1e-6 194 325 0.0001928 1e-6 197 325 0.0001928 1e-6 198 325 0.052834596 1e-6 204 325 0.0017353999 1e-6 205 325 0.00057849986 1e-6 206 325 0.00038569979 1e-6 208 325 0.001157 1e-6 209 325 0.0001928 1e-6 211 325 0.00077129994 1e-6 212 325 0.00057849986 1e-6 213 325 0.0001928 1e-6 214 325 0.004820697 1e-6 219 325 0.0015425999 1e-6 221 325 0.0026995998 1e-6 223 325 0.00077129994 1e-6 224 325 0.0088699982 1e-6 229 325 0.00057849986 1e-6 233 325 0.0019282999 1e-6 234 325 0.0026995998 1e-6 240 325 0.00057849986 1e-6 241 325 0.06440419 1e-6 242 325 0.00077129994 1e-6 252 325 0.0001928 1e-6 271 325 0.0030852 1e-6 272 325 0.00077129994 1e-6 277 325 0.0053991973 1e-6 278 325 0.00077129994 1e-6 279 325 0.0001928 1e-6 282 325 0.00057849986 1e-6 284 325 0.0013497998 1e-6 285 325 0.00057849986 1e-6 286 325 0.00057849986 1e-6 287 325 0.0025066999 1e-6 288 325 0.00077129994 1e-6 289 325 0.13825679 1e-6 290 325 0.0059775971 1e-6 291 325 0.00077129994 1e-6 292 325 0.0019282999 1e-6 293 325 0.1396066 1e-6 295 325 0.00077129994 1e-6 312 325 0.00077129994 1e-6 314 325 0.001157 1e-6 315 325 0.00057849986 1e-6 317 325 0.00038569979 1e-6 319 325 0.0001928 1e-6 321 325 0.00096409977 1e-6 322 325 0.00038569979 1e-6 325 325 0.012148097 1e-6 326 325 0.0019282999 1e-6 337 325 0.00057849986 1e-6 340 325 0.0034708998 1e-6 347 325 0.00038569979 1e-6 348 325 0.0001928 1e-6 349 325 0.0001928 1e-6 351 325 0.00057849986 1e-6 354 325 0.0015425999 1e-6 358 325 0.0013497998 1e-6 373 325 0.00038569979 1e-6 386 325 0.0001928 1e-6 417 325 0.0001928 1e-6 422 325 0.00077129994 1e-6 438 325 0.0001928 1e-6 443 325 0.0080986992 1e-6 444 325 0.0050134994 1e-6 445 325 0.010026999 1e-6 446 325 0.0001928 1e-6 447 325 0.0061704963 1e-6 450 325 0.0023138998 1e-6 452 325 0.010026999 1e-6 453 325 0.0055919997 1e-6 454 325 0.0013497998 1e-6 455 325 0.029116899 1e-6 457 325 0.0028923999 1e-6 458 325 0.00057849986 1e-6 459 325 0.00057849986 1e-6 460 325 0.0019282999 1e-6 463 325 0.014269199 1e-6 464 325 0.00096409977 1e-6 465 325 0.00077129994 1e-6 467 325 0.0084843971 1e-6 468 325 0.004049398 1e-6 469 325 0.0034708998 1e-6 470 325 0.0028923999 1e-6 471 325 0.001157 1e-6 477 325 0.00038569979 1e-6 478 325 0.00057849986 1e-6 479 325 0.0001928 1e-6 483 325 0.00077129994 1e-6 490 325 0.0001928 1e-6 491 325 0.010219797 1e-6 9 326 4.5399996e-05 1e-6 18 326 0.00013619999 1e-6 19 326 0.0032229 1e-6 21 326 4.5399996e-05 1e-6 22 326 0.0015886999 1e-6 24 326 0.0010893999 1e-6 25 326 4.5399996e-05 1e-6 60 326 0.0026781999 1e-6 77 326 0.00013619999 1e-6 82 326 9.0799993e-05 1e-6 84 326 4.5399996e-05 1e-6 108 326 4.5399996e-05 1e-6 114 326 9.0799993e-05 1e-6 126 326 4.5399996e-05 1e-6 130 326 0.00018159999 1e-6 131 326 0.00027239998 1e-6 132 326 4.5399996e-05 1e-6 135 326 4.5399996e-05 1e-6 139 326 0.00013619999 1e-6 141 326 4.5399996e-05 1e-6 142 326 9.0799993e-05 1e-6 150 326 0.00059009995 1e-6 156 326 4.5399996e-05 1e-6 159 326 0.00013619999 1e-6 160 326 0.0032682999 1e-6 161 326 4.5399996e-05 1e-6 165 326 0.00027239998 1e-6 169 326 0.00072629983 1e-6 170 326 0.00013619999 1e-6 171 326 0.0030866999 1e-6 172 326 0.000227 1e-6 175 326 4.5399996e-05 1e-6 183 326 4.5399996e-05 1e-6 188 326 0.00013619999 1e-6 189 326 4.5399996e-05 1e-6 190 326 9.0799993e-05 1e-6 191 326 4.5399996e-05 1e-6 194 326 0.000227 1e-6 197 326 4.5399996e-05 1e-6 198 326 0.0052201971 1e-6 200 326 4.5399996e-05 1e-6 203 326 9.0799993e-05 1e-6 204 326 0.00027239998 1e-6 206 326 9.0799993e-05 1e-6 207 326 4.5399996e-05 1e-6 214 326 0.0040398985 1e-6 223 326 0.0012255998 1e-6 224 326 0.0022241999 1e-6 225 326 4.5399996e-05 1e-6 227 326 4.5399996e-05 1e-6 229 326 0.00063549983 1e-6 233 326 0.0068542995 1e-6 234 326 0.0032682999 1e-6 237 326 0.00027239998 1e-6 240 326 0.0048115999 1e-6 241 326 0.0192011 1e-6 242 326 9.0799993e-05 1e-6 243 326 4.5399996e-05 1e-6 252 326 0.0023603998 1e-6 267 326 0.00018159999 1e-6 270 326 0.0016794999 1e-6 271 326 9.0799993e-05 1e-6 272 326 0.0016341 1e-6 273 326 4.5399996e-05 1e-6 274 326 4.5399996e-05 1e-6 276 326 4.5399996e-05 1e-6 277 326 0.13091236 1e-6 278 326 0.0012709999 1e-6 280 326 4.5399996e-05 1e-6 282 326 0.0088969991 1e-6 283 326 0.0022695998 1e-6 284 326 0.0015886999 1e-6 285 326 0.0067180991 1e-6 286 326 0.0024057999 1e-6 287 326 0.00063549983 1e-6 288 326 0.0018610999 1e-6 289 326 0.013708599 1e-6 290 326 0.0093054995 1e-6 291 326 0.00013619999 1e-6 292 326 0.0054470971 1e-6 293 326 0.028324999 1e-6 294 326 0.005810298 1e-6 295 326 0.0062187985 1e-6 296 326 0.0015886999 1e-6 297 326 0.0012709999 1e-6 298 326 0.000227 1e-6 299 326 0.0020881 1e-6 300 326 0.00086249993 1e-6 301 326 0.0014525999 1e-6 304 326 9.0799993e-05 1e-6 306 326 0.00063549983 1e-6 307 326 0.00013619999 1e-6 308 326 0.0011347998 1e-6 310 326 4.5399996e-05 1e-6 312 326 0.0071719997 1e-6 313 326 0.00027239998 1e-6 315 326 0.0145256 1e-6 317 326 4.5399996e-05 1e-6 319 326 0.0060825981 1e-6 320 326 0.0048115999 1e-6 321 326 0.0049931966 1e-6 322 326 0.0057648979 1e-6 324 326 0.00068089995 1e-6 326 326 0.016386699 1e-6 327 326 4.5399996e-05 1e-6 328 326 0.010304097 1e-6 329 326 9.0799993e-05 1e-6 331 326 4.5399996e-05 1e-6 332 326 4.5399996e-05 1e-6 337 326 4.5399996e-05 1e-6 338 326 4.5399996e-05 1e-6 339 326 0.0019518998 1e-6 340 326 0.013027698 1e-6 341 326 4.5399996e-05 1e-6 342 326 4.5399996e-05 1e-6 343 326 4.5399996e-05 1e-6 344 326 4.5399996e-05 1e-6 345 326 4.5399996e-05 1e-6 349 326 0.00054469984 1e-6 350 326 0.00031769997 1e-6 351 326 0.0012709999 1e-6 352 326 0.00013619999 1e-6 353 326 0.00018159999 1e-6 354 326 0.00072629983 1e-6 355 326 4.5399996e-05 1e-6 356 326 0.000227 1e-6 357 326 9.0799993e-05 1e-6 358 326 0.0077620968 1e-6 359 326 0.00013619999 1e-6 364 326 4.5399996e-05 1e-6 366 326 0.00018159999 1e-6 369 326 0.000227 1e-6 370 326 0.000227 1e-6 371 326 0.00031769997 1e-6 372 326 0.00090789981 1e-6 373 326 0.0018610999 1e-6 374 326 4.5399996e-05 1e-6 375 326 0.000227 1e-6 376 326 0.00018159999 1e-6 380 326 4.5399996e-05 1e-6 384 326 0.000227 1e-6 385 326 4.5399996e-05 1e-6 386 326 0.00059009995 1e-6 387 326 4.5399996e-05 1e-6 389 326 0.00090789981 1e-6 390 326 0.000227 1e-6 391 326 0.00013619999 1e-6 392 326 0.00045389985 1e-6 393 326 0.0012709999 1e-6 397 326 4.5399996e-05 1e-6 401 326 9.0799993e-05 1e-6 402 326 0.0011801999 1e-6 404 326 9.0799993e-05 1e-6 405 326 0.00013619999 1e-6 408 326 9.0799993e-05 1e-6 413 326 4.5399996e-05 1e-6 414 326 9.0799993e-05 1e-6 415 326 0.00013619999 1e-6 417 326 0.00040849997 1e-6 421 326 4.5399996e-05 1e-6 422 326 9.0799993e-05 1e-6 424 326 4.5399996e-05 1e-6 428 326 4.5399996e-05 1e-6 430 326 0.00018159999 1e-6 433 326 4.5399996e-05 1e-6 434 326 4.5399996e-05 1e-6 437 326 9.0799993e-05 1e-6 441 326 9.0799993e-05 1e-6 442 326 0.00013619999 1e-6 443 326 0.0062187985 1e-6 444 326 0.00081709982 1e-6 445 326 0.0072173998 1e-6 446 326 0.00077169994 1e-6 447 326 0.0061733983 1e-6 450 326 0.0034043998 1e-6 452 326 0.0077620968 1e-6 453 326 0.0037221999 1e-6 454 326 0.00040849997 1e-6 455 326 0.028778899 1e-6 456 326 0.00036309985 1e-6 457 326 0.0055832975 1e-6 458 326 0.00040849997 1e-6 459 326 0.00049929996 1e-6 460 326 0.0017249 1e-6 463 326 0.013073098 1e-6 464 326 0.0018157 1e-6 465 326 0.0010893999 1e-6 467 326 0.010213297 1e-6 468 326 0.0025419998 1e-6 469 326 0.0044484995 1e-6 470 326 0.0044484995 1e-6 471 326 0.0017702999 1e-6 473 326 9.0799993e-05 1e-6 477 326 9.0799993e-05 1e-6 478 326 0.0010439998 1e-6 483 326 0.00068089995 1e-6 489 326 0.00013619999 1e-6 490 326 0.00031769997 1e-6 491 326 0.0032682999 1e-6 9 327 4.6199988e-05 1e-6 18 327 0.00013869999 1e-6 60 327 0.0018952999 1e-6 77 327 9.2499991e-05 1e-6 79 327 9.2499991e-05 1e-6 82 327 4.6199988e-05 1e-6 83 327 4.6199988e-05 1e-6 84 327 4.6199988e-05 1e-6 108 327 4.6199988e-05 1e-6 113 327 9.2499991e-05 1e-6 114 327 0.0001849 1e-6 126 327 4.6199988e-05 1e-6 130 327 4.6199988e-05 1e-6 150 327 0.00036979979 1e-6 172 327 4.6199988e-05 1e-6 181 327 4.6199988e-05 1e-6 187 327 4.6199988e-05 1e-6 189 327 4.6199988e-05 1e-6 190 327 9.2499991e-05 1e-6 192 327 4.6199988e-05 1e-6 194 327 4.6199988e-05 1e-6 198 327 0.0002311 1e-6 200 327 4.6199988e-05 1e-6 203 327 4.6199988e-05 1e-6 204 327 4.6199988e-05 1e-6 206 327 0.0002311 1e-6 207 327 4.6199988e-05 1e-6 214 327 0.00013869999 1e-6 218 327 4.6199988e-05 1e-6 220 327 4.6199988e-05 1e-6 224 327 0.0002311 1e-6 233 327 0.00013869999 1e-6 234 327 0.0035595 1e-6 237 327 4.6199988e-05 1e-6 240 327 0.0005084998 1e-6 241 327 0.0016641999 1e-6 242 327 4.6199988e-05 1e-6 252 327 9.2499991e-05 1e-6 270 327 0.00046229991 1e-6 272 327 0.0005084998 1e-6 276 327 4.6199988e-05 1e-6 277 327 0.049509998 1e-6 282 327 0.047475997 1e-6 283 327 0.055149797 1e-6 284 327 0.001618 1e-6 289 327 0.0001849 1e-6 290 327 4.6199988e-05 1e-6 292 327 0.0066567995 1e-6 293 327 0.0013867998 1e-6 294 327 0.0012943998 1e-6 295 327 0.0068878978 1e-6 296 327 0.0011094999 1e-6 297 327 0.0012019 1e-6 298 327 0.00087829982 1e-6 299 327 0.0083209984 1e-6 305 327 0.015671197 1e-6 307 327 0.016364597 1e-6 308 327 0.010817297 1e-6 312 327 0.0065642968 1e-6 315 327 0.0002311 1e-6 318 327 4.6199988e-05 1e-6 319 327 0.00013869999 1e-6 320 327 0.00069339992 1e-6 321 327 0.0014793 1e-6 322 327 0.00013869999 1e-6 324 327 0.0096616 1e-6 326 327 0.00013869999 1e-6 327 327 0.065920889 1e-6 328 327 0.0082285963 1e-6 331 327 4.6199988e-05 1e-6 338 327 0.0010631999 1e-6 339 327 0.0002311 1e-6 340 327 0.0075813979 1e-6 341 327 0.00013869999 1e-6 343 327 4.6199988e-05 1e-6 350 327 0.0020339999 1e-6 351 327 0.0034671 1e-6 352 327 4.6199988e-05 1e-6 354 327 0.0061020963 1e-6 355 327 0.00013869999 1e-6 356 327 0.00041609979 1e-6 357 327 0.0001849 1e-6 358 327 0.014423098 1e-6 370 327 0.0023575998 1e-6 371 327 0.00013869999 1e-6 372 327 0.0046689995 1e-6 373 327 0.0023113999 1e-6 374 327 4.6199988e-05 1e-6 375 327 4.6199988e-05 1e-6 376 327 4.6199988e-05 1e-6 387 327 4.6199988e-05 1e-6 390 327 0.00087829982 1e-6 392 327 0.00092459982 1e-6 393 327 0.00069339992 1e-6 396 327 4.6199988e-05 1e-6 397 327 0.00036979979 1e-6 398 327 0.0091068968 1e-6 403 327 4.6199988e-05 1e-6 404 327 0.0054548979 1e-6 405 327 0.0042529963 1e-6 408 327 0.0001849 1e-6 413 327 9.2499991e-05 1e-6 414 327 0.0002311 1e-6 417 327 0.0003235999 1e-6 421 327 4.6199988e-05 1e-6 422 327 4.6199988e-05 1e-6 423 327 4.6199988e-05 1e-6 430 327 4.6199988e-05 1e-6 431 327 4.6199988e-05 1e-6 433 327 4.6199988e-05 1e-6 434 327 9.2499991e-05 1e-6 443 327 0.0024962998 1e-6 444 327 0.00060099992 1e-6 445 327 0.0042991973 1e-6 446 327 0.0002311 1e-6 447 327 0.0051774979 1e-6 450 327 0.0028660998 1e-6 452 327 0.0042529963 1e-6 453 327 0.0010169998 1e-6 454 327 0.00092459982 1e-6 455 327 0.018629797 1e-6 456 327 0.00046229991 1e-6 457 327 0.0028660998 1e-6 458 327 0.0002311 1e-6 459 327 0.00041609979 1e-6 460 327 0.0010631999 1e-6 463 327 0.0058247 1e-6 464 327 0.00064719981 1e-6 465 327 0.0011556998 1e-6 467 327 0.0092917979 1e-6 468 327 0.00092459982 1e-6 469 327 0.0049463995 1e-6 470 327 0.0063331984 1e-6 471 327 0.0018491 1e-6 473 327 0.00013869999 1e-6 477 327 9.2499991e-05 1e-6 478 327 0.0010169998 1e-6 483 327 0.0011556998 1e-6 489 327 0.0002311 1e-6 490 327 0.00055469992 1e-6 491 327 0.0026349998 1e-6 9 328 2.8699986e-05 1e-6 18 328 8.6099986e-05 1e-6 22 328 0.00028689997 1e-6 60 328 0.0022374999 1e-6 82 328 2.8699986e-05 1e-6 83 328 2.8699986e-05 1e-6 84 328 2.8699986e-05 1e-6 108 328 2.8699986e-05 1e-6 113 328 5.7399986e-05 1e-6 114 328 8.6099986e-05 1e-6 126 328 2.8699986e-05 1e-6 130 328 2.8699986e-05 1e-6 134 328 2.8699986e-05 1e-6 150 328 0.00045899977 1e-6 151 328 2.8699986e-05 1e-6 156 328 2.8699986e-05 1e-6 160 328 0.00022949999 1e-6 161 328 2.8699986e-05 1e-6 169 328 5.7399986e-05 1e-6 172 328 0.00011469999 1e-6 187 328 0.00045899977 1e-6 189 328 5.7399986e-05 1e-6 190 328 5.7399986e-05 1e-6 194 328 8.6099986e-05 1e-6 197 328 2.8699986e-05 1e-6 198 328 0.0039299987 1e-6 200 328 2.8699986e-05 1e-6 203 328 5.7399986e-05 1e-6 204 328 5.7399986e-05 1e-6 206 328 0.00020079999 1e-6 207 328 2.8699986e-05 1e-6 214 328 8.6099986e-05 1e-6 223 328 2.8699986e-05 1e-6 224 328 0.00011469999 1e-6 233 328 0.00077449996 1e-6 234 328 0.0027825998 1e-6 237 328 0.00091799977 1e-6 240 328 0.00077449996 1e-6 241 328 0.0038438998 1e-6 242 328 0.00034419983 1e-6 252 328 0.00014339999 1e-6 270 328 0.0044176988 1e-6 271 328 0.0004015998 1e-6 272 328 0.0059666969 1e-6 276 328 2.8699986e-05 1e-6 277 328 0.026190497 1e-6 282 328 0.069219649 1e-6 283 328 0.018932898 1e-6 284 328 0.0016637999 1e-6 285 328 2.8699986e-05 1e-6 286 328 2.8699986e-05 1e-6 289 328 0.0066551976 1e-6 290 328 2.8699986e-05 1e-6 292 328 0.0038438998 1e-6 293 328 0.00077449996 1e-6 294 328 0.013568599 1e-6 295 328 0.0018071998 1e-6 296 328 0.024555396 1e-6 297 328 0.0012908999 1e-6 298 328 0.00037289993 1e-6 299 328 0.0050200969 1e-6 307 328 0.0049913973 1e-6 312 328 0.0088926964 1e-6 313 328 0.00048769987 1e-6 315 328 0.020309798 1e-6 317 328 0.0025531 1e-6 319 328 0.00017209999 1e-6 320 328 0.0029546998 1e-6 321 328 5.7399986e-05 1e-6 322 328 0.0041307993 1e-6 323 328 0.00014339999 1e-6 324 328 0.001922 1e-6 326 328 0.00011469999 1e-6 327 328 0.0021227999 1e-6 328 328 0.1164372 1e-6 329 328 0.00028689997 1e-6 330 328 0.001004 1e-6 331 328 0.0034136998 1e-6 332 328 5.7399986e-05 1e-6 338 328 0.001463 1e-6 339 328 2.8699986e-05 1e-6 340 328 0.0094950981 1e-6 341 328 0.00028689997 1e-6 344 328 2.8699986e-05 1e-6 350 328 0.0059379973 1e-6 351 328 0.0090074986 1e-6 352 328 8.6099986e-05 1e-6 354 328 0.010728598 1e-6 356 328 0.00091799977 1e-6 357 328 0.022289198 1e-6 358 328 0.021658096 1e-6 366 328 2.8699986e-05 1e-6 370 328 0.001004 1e-6 371 328 0.00045899977 1e-6 372 328 0.0059093982 1e-6 373 328 0.0011187999 1e-6 375 328 2.8699986e-05 1e-6 376 328 2.8699986e-05 1e-6 384 328 2.8699986e-05 1e-6 387 328 5.7399986e-05 1e-6 390 328 5.7399986e-05 1e-6 392 328 2.8699986e-05 1e-6 393 328 0.00025819987 1e-6 397 328 0.011876099 1e-6 399 328 8.6099986e-05 1e-6 401 328 0.00014339999 1e-6 402 328 0.0093229972 1e-6 404 328 0.0019506998 1e-6 405 328 0.0004302999 1e-6 408 328 0.0011473999 1e-6 412 328 5.7399986e-05 1e-6 413 328 2.8699986e-05 1e-6 414 328 0.00011469999 1e-6 417 328 0.00031549996 1e-6 421 328 2.8699986e-05 1e-6 422 328 8.6099986e-05 1e-6 423 328 2.8699986e-05 1e-6 430 328 2.8699986e-05 1e-6 431 328 2.8699986e-05 1e-6 433 328 2.8699986e-05 1e-6 434 328 2.8699986e-05 1e-6 441 328 2.8699986e-05 1e-6 443 328 0.0022948999 1e-6 444 328 0.00094659999 1e-6 445 328 0.0071428977 1e-6 446 328 0.00020079999 1e-6 447 328 0.0037292 1e-6 450 328 0.0027538999 1e-6 452 328 0.0044749975 1e-6 453 328 0.0014916998 1e-6 454 328 0.0010326998 1e-6 455 328 0.031812999 1e-6 456 328 0.0004302999 1e-6 457 328 0.0028972998 1e-6 458 328 0.0013482999 1e-6 459 328 0.0004302999 1e-6 460 328 0.001004 1e-6 463 328 0.0026677998 1e-6 464 328 0.0011473999 1e-6 465 328 0.0008605998 1e-6 467 328 0.0091795996 1e-6 468 328 0.0046184994 1e-6 469 328 0.0033849999 1e-6 470 328 0.0036144999 1e-6 471 328 0.0053642988 1e-6 473 328 5.7399986e-05 1e-6 477 328 8.6099986e-05 1e-6 478 328 0.0008892999 1e-6 483 328 0.0008605998 1e-6 489 328 2.8699986e-05 1e-6 490 328 0.00034419983 1e-6 491 328 0.0038438998 1e-6 6 329 2.3299988e-05 1e-6 9 329 2.3299988e-05 1e-6 18 329 0.00016329999 1e-6 22 329 0.0002799998 1e-6 24 329 2.3299988e-05 1e-6 60 329 0.0022401998 1e-6 78 329 4.6699992e-05 1e-6 79 329 2.3299988e-05 1e-6 82 329 2.3299988e-05 1e-6 83 329 2.3299988e-05 1e-6 84 329 2.3299988e-05 1e-6 98 329 0.0014700999 1e-6 102 329 4.6699992e-05 1e-6 108 329 2.3299988e-05 1e-6 113 329 4.6699992e-05 1e-6 114 329 9.3299997e-05 1e-6 118 329 2.3299988e-05 1e-6 120 329 2.3299988e-05 1e-6 126 329 4.6699992e-05 1e-6 127 329 2.3299988e-05 1e-6 139 329 2.3299988e-05 1e-6 142 329 2.3299988e-05 1e-6 150 329 0.00046669994 1e-6 151 329 2.3299988e-05 1e-6 156 329 4.6699992e-05 1e-6 160 329 0.0020301 1e-6 161 329 9.3299997e-05 1e-6 163 329 2.3299988e-05 1e-6 165 329 4.6699992e-05 1e-6 169 329 0.00037339982 1e-6 171 329 2.3299988e-05 1e-6 172 329 0.00079339999 1e-6 173 329 2.3299988e-05 1e-6 176 329 2.3299988e-05 1e-6 189 329 0.00011669999 1e-6 190 329 6.9999995e-05 1e-6 192 329 2.3299988e-05 1e-6 194 329 9.3299997e-05 1e-6 198 329 0.0012133999 1e-6 200 329 4.6699992e-05 1e-6 201 329 4.6699992e-05 1e-6 203 329 9.3299997e-05 1e-6 204 329 6.9999995e-05 1e-6 206 329 0.0002799998 1e-6 207 329 4.6699992e-05 1e-6 214 329 0.00030339998 1e-6 224 329 2.3299988e-05 1e-6 233 329 0.0024734999 1e-6 234 329 0.0027534999 1e-6 237 329 0.017781299 1e-6 240 329 0.0072104968 1e-6 241 329 0.0020067999 1e-6 242 329 0.0021702 1e-6 248 329 2.3299988e-05 1e-6 250 329 2.3299988e-05 1e-6 252 329 0.00011669999 1e-6 270 329 2.3299988e-05 1e-6 271 329 0.0020067999 1e-6 272 329 0.00084009999 1e-6 277 329 0.087039649 1e-6 278 329 4.6699992e-05 1e-6 279 329 2.3299988e-05 1e-6 282 329 0.041209698 1e-6 283 329 0.0107341 1e-6 284 329 0.0018900998 1e-6 285 329 0.00067669991 1e-6 286 329 2.3299988e-05 1e-6 289 329 0.00016329999 1e-6 292 329 0.0022868 1e-6 293 329 0.0013533998 1e-6 294 329 6.9999995e-05 1e-6 295 329 2.3299988e-05 1e-6 296 329 0.0015633998 1e-6 297 329 6.9999995e-05 1e-6 298 329 0.00062999991 1e-6 302 329 2.3299988e-05 1e-6 304 329 2.3299988e-05 1e-6 305 329 2.3299988e-05 1e-6 306 329 9.3299997e-05 1e-6 307 329 0.00023339999 1e-6 308 329 4.6699992e-05 1e-6 312 329 0.0105941 1e-6 313 329 0.00025669998 1e-6 315 329 0.011037499 1e-6 317 329 4.6699992e-05 1e-6 318 329 0.00039669988 1e-6 319 329 9.3299997e-05 1e-6 320 329 4.6699992e-05 1e-6 321 329 4.6699992e-05 1e-6 322 329 0.0075138994 1e-6 323 329 0.0023335 1e-6 324 329 0.0001867 1e-6 326 329 6.9999995e-05 1e-6 328 329 0.037499398 1e-6 329 329 0.034022499 1e-6 330 329 0.0036169 1e-6 331 329 0.0013067999 1e-6 335 329 2.3299988e-05 1e-6 337 329 4.6699992e-05 1e-6 338 329 0.0025668999 1e-6 339 329 0.00048999977 1e-6 340 329 0.0052736998 1e-6 341 329 0.00011669999 1e-6 343 329 4.6699992e-05 1e-6 344 329 2.3299988e-05 1e-6 349 329 4.6699992e-05 1e-6 350 329 0.014117699 1e-6 351 329 0.014047697 1e-6 353 329 4.6699992e-05 1e-6 354 329 0.026205298 1e-6 356 329 0.0018667998 1e-6 357 329 0.0064637996 1e-6 358 329 0.0089372993 1e-6 366 329 0.00011669999 1e-6 371 329 6.9999995e-05 1e-6 372 329 0.0045269988 1e-6 373 329 0.00016329999 1e-6 375 329 2.3299988e-05 1e-6 377 329 2.3299988e-05 1e-6 378 329 4.6699992e-05 1e-6 383 329 2.3299988e-05 1e-6 384 329 4.6699992e-05 1e-6 386 329 0.00025669998 1e-6 387 329 6.9999995e-05 1e-6 395 329 0.00023339999 1e-6 397 329 0.0060203969 1e-6 399 329 0.0028702 1e-6 401 329 0.00011669999 1e-6 402 329 0.020814899 1e-6 412 329 2.3299988e-05 1e-6 417 329 0.00034999987 1e-6 419 329 2.3299988e-05 1e-6 421 329 4.6699992e-05 1e-6 422 329 9.3299997e-05 1e-6 423 329 2.3299988e-05 1e-6 425 329 2.3299988e-05 1e-6 430 329 2.3299988e-05 1e-6 431 329 2.3299988e-05 1e-6 432 329 2.3299988e-05 1e-6 433 329 4.6699992e-05 1e-6 434 329 4.6699992e-05 1e-6 439 329 2.3299988e-05 1e-6 441 329 0.00025669998 1e-6 442 329 0.00039669988 1e-6 443 329 0.0041069984 1e-6 444 329 0.00023339999 1e-6 445 329 0.0065104999 1e-6 446 329 0.00037339982 1e-6 447 329 0.0030568999 1e-6 450 329 0.0035003 1e-6 452 329 0.0037802998 1e-6 453 329 0.0026135 1e-6 454 329 0.00051339995 1e-6 455 329 0.039786298 1e-6 456 329 0.00044339988 1e-6 457 329 0.0032435998 1e-6 458 329 0.00039669988 1e-6 459 329 0.0012834 1e-6 460 329 0.0010733998 1e-6 463 329 0.0024734999 1e-6 464 329 0.0001867 1e-6 465 329 0.0018435 1e-6 467 329 0.0097539984 1e-6 468 329 0.011364199 1e-6 469 329 0.0039202981 1e-6 470 329 0.0043869987 1e-6 471 329 0.0012600999 1e-6 473 329 9.3299997e-05 1e-6 477 329 9.3299997e-05 1e-6 478 329 0.00088669988 1e-6 483 329 0.0015401 1e-6 489 329 6.9999995e-05 1e-6 490 329 0.00084009999 1e-6 491 329 0.0033602 1e-6 18 330 0.00016719999 1e-6 22 330 0.00016719999 1e-6 60 330 0.0015886 1e-6 98 330 8.3599996e-05 1e-6 108 330 8.3599996e-05 1e-6 114 330 0.00016719999 1e-6 126 330 8.3599996e-05 1e-6 139 330 8.3599996e-05 1e-6 160 330 0.0030099999 1e-6 172 330 0.00083609996 1e-6 189 330 8.3599996e-05 1e-6 190 330 8.3599996e-05 1e-6 194 330 8.3599996e-05 1e-6 198 330 0.0087792985 1e-6 203 330 8.3599996e-05 1e-6 206 330 0.00016719999 1e-6 214 330 8.3599996e-05 1e-6 223 330 8.3599996e-05 1e-6 224 330 8.3599996e-05 1e-6 233 330 0.0024247 1e-6 234 330 0.0020066998 1e-6 237 330 0.026672199 1e-6 240 330 0.0061036982 1e-6 241 330 0.0095317997 1e-6 242 330 0.00016719999 1e-6 270 330 0.00016719999 1e-6 271 330 0.00041809981 1e-6 272 330 0.00083609996 1e-6 276 330 0.00016719999 1e-6 277 330 0.065551758 1e-6 282 330 0.014715698 1e-6 283 330 0.0048494972 1e-6 284 330 0.0015886 1e-6 285 330 0.0027591998 1e-6 286 330 8.3599996e-05 1e-6 292 330 0.0011705998 1e-6 293 330 0.0015886 1e-6 294 330 0.00058529992 1e-6 295 330 0.00058529992 1e-6 296 330 0.010117099 1e-6 297 330 0.0067725964 1e-6 298 330 0.00058529992 1e-6 299 330 0.0018394999 1e-6 307 330 0.00033439999 1e-6 312 330 0.017056897 1e-6 313 330 0.00050169998 1e-6 315 330 0.017391298 1e-6 317 330 0.0091136992 1e-6 318 330 8.3599996e-05 1e-6 320 330 0.0011705998 1e-6 321 330 0.0031772999 1e-6 322 330 0.0013377999 1e-6 323 330 0.0010032998 1e-6 324 330 8.3599996e-05 1e-6 326 330 0.00016719999 1e-6 328 330 0.13185614 1e-6 329 330 0.0024247 1e-6 330 330 0.049581897 1e-6 338 330 0.00016719999 1e-6 340 330 0.0061872974 1e-6 341 330 0.00016719999 1e-6 350 330 0.0071069971 1e-6 351 330 0.010953199 1e-6 354 330 0.034949798 1e-6 356 330 0.0010869999 1e-6 357 330 0.0011705998 1e-6 358 330 0.0072741993 1e-6 371 330 0.00025079981 1e-6 372 330 0.018896297 1e-6 373 330 0.0012541998 1e-6 385 330 8.3599996e-05 1e-6 386 330 0.0056855977 1e-6 387 330 8.3599996e-05 1e-6 395 330 0.0057691969 1e-6 397 330 0.0058527999 1e-6 398 330 0.00016719999 1e-6 399 330 0.00016719999 1e-6 401 330 0.00016719999 1e-6 402 330 0.0036789 1e-6 409 330 0.0056019984 1e-6 412 330 0.00033439999 1e-6 417 330 0.00025079981 1e-6 419 330 8.3599996e-05 1e-6 422 330 8.3599996e-05 1e-6 434 330 8.3599996e-05 1e-6 441 330 0.0012541998 1e-6 442 330 0.0015049998 1e-6 443 330 0.0028428 1e-6 444 330 0.00083609996 1e-6 445 330 0.0064380988 1e-6 446 330 0.00025079981 1e-6 447 330 0.0056855977 1e-6 450 330 0.0025083998 1e-6 452 330 0.0032608998 1e-6 453 330 0.0016721999 1e-6 454 330 0.00025079981 1e-6 455 330 0.053344499 1e-6 456 330 0.00016719999 1e-6 457 330 0.010200698 1e-6 458 330 0.00041809981 1e-6 459 330 0.00066889985 1e-6 460 330 0.0009196999 1e-6 463 330 0.0043477975 1e-6 464 330 0.00033439999 1e-6 465 330 0.0030099999 1e-6 467 330 0.011956498 1e-6 468 330 0.013545197 1e-6 469 330 0.0039297976 1e-6 470 330 0.0042641982 1e-6 471 330 0.0026755999 1e-6 472 330 8.3599996e-05 1e-6 473 330 8.3599996e-05 1e-6 477 330 8.3599996e-05 1e-6 478 330 0.00083609996 1e-6 483 330 0.0011705998 1e-6 490 330 0.00050169998 1e-6 491 330 0.0012541998 1e-6 9 331 1.7199985e-05 1e-6 16 331 1.7199985e-05 1e-6 18 331 8.6199987e-05 1e-6 22 331 0.00031049992 1e-6 60 331 0.0054679997 1e-6 78 331 3.4499986e-05 1e-6 79 331 1.7199985e-05 1e-6 82 331 1.7199985e-05 1e-6 83 331 1.7199985e-05 1e-6 84 331 1.7199985e-05 1e-6 98 331 3.4499986e-05 1e-6 108 331 1.7199985e-05 1e-6 113 331 5.1699986e-05 1e-6 114 331 0.00010349999 1e-6 126 331 5.1699986e-05 1e-6 127 331 1.7199985e-05 1e-6 134 331 1.7199985e-05 1e-6 135 331 1.7199985e-05 1e-6 140 331 0.00010349999 1e-6 142 331 3.4499986e-05 1e-6 150 331 0.00044849981 1e-6 151 331 1.7199985e-05 1e-6 156 331 3.4499986e-05 1e-6 160 331 0.0020698998 1e-6 161 331 1.7199985e-05 1e-6 165 331 1.7199985e-05 1e-6 169 331 0.00046569994 1e-6 171 331 1.7199985e-05 1e-6 172 331 0.00043119979 1e-6 181 331 1.7199985e-05 1e-6 189 331 6.8999987e-05 1e-6 190 331 6.8999987e-05 1e-6 192 331 3.4499986e-05 1e-6 194 331 8.6199987e-05 1e-6 196 331 1.7199985e-05 1e-6 197 331 1.7199985e-05 1e-6 198 331 8.6199987e-05 1e-6 200 331 5.1699986e-05 1e-6 201 331 3.4499986e-05 1e-6 203 331 5.1699986e-05 1e-6 204 331 8.6199987e-05 1e-6 206 331 0.00024149999 1e-6 207 331 5.1699986e-05 1e-6 209 331 1.7199985e-05 1e-6 214 331 0.00024149999 1e-6 222 331 1.7199985e-05 1e-6 225 331 0.00010349999 1e-6 233 331 0.0020525998 1e-6 234 331 0.0028460999 1e-6 237 331 0.013005797 1e-6 240 331 0.0030185999 1e-6 241 331 0.00091419998 1e-6 242 331 0.0015006999 1e-6 248 331 1.7199985e-05 1e-6 250 331 1.7199985e-05 1e-6 251 331 1.7199985e-05 1e-6 252 331 0.00010349999 1e-6 263 331 1.7199985e-05 1e-6 270 331 0.00012069999 1e-6 271 331 0.0036050999 1e-6 272 331 0.0027253998 1e-6 277 331 0.069686353 1e-6 279 331 1.7199985e-05 1e-6 282 331 0.047072798 1e-6 283 331 0.028564498 1e-6 284 331 0.0018801999 1e-6 285 331 8.6199987e-05 1e-6 289 331 3.4499986e-05 1e-6 292 331 0.0010176999 1e-6 293 331 0.0007071998 1e-6 294 331 0.00010349999 1e-6 295 331 0.00048299995 1e-6 296 331 0.0024320998 1e-6 297 331 0.00060369982 1e-6 298 331 0.00086249993 1e-6 299 331 8.6199987e-05 1e-6 304 331 6.8999987e-05 1e-6 305 331 6.8999987e-05 1e-6 307 331 0.0053645 1e-6 308 331 1.7199985e-05 1e-6 312 331 0.0080897994 1e-6 313 331 0.00017249999 1e-6 315 331 0.0055024996 1e-6 318 331 1.7199985e-05 1e-6 319 331 0.00012069999 1e-6 320 331 5.1699986e-05 1e-6 321 331 3.4499986e-05 1e-6 322 331 0.0024493998 1e-6 323 331 0.0010866998 1e-6 324 331 0.0053645 1e-6 326 331 0.00018969999 1e-6 327 331 3.4499986e-05 1e-6 328 331 0.037775598 1e-6 329 331 0.00079349987 1e-6 330 331 0.00010349999 1e-6 331 331 0.061251599 1e-6 332 331 0.00032769982 1e-6 333 331 8.6199987e-05 1e-6 336 331 3.4499986e-05 1e-6 337 331 0.00015519999 1e-6 338 331 0.0010003999 1e-6 339 331 0.0005347 1e-6 340 331 0.010142498 1e-6 341 331 0.00020699999 1e-6 346 331 1.7199985e-05 1e-6 349 331 1.7199985e-05 1e-6 350 331 0.011125699 1e-6 351 331 0.011349898 1e-6 352 331 0.00051749987 1e-6 353 331 1.7199985e-05 1e-6 354 331 0.034256697 1e-6 356 331 0.0015178998 1e-6 357 331 0.00024149999 1e-6 358 331 0.015731197 1e-6 366 331 0.00010349999 1e-6 370 331 0.00012069999 1e-6 371 331 0.0033463 1e-6 372 331 0.0053645 1e-6 373 331 0.0019836 1e-6 374 331 3.4499986e-05 1e-6 376 331 3.4499986e-05 1e-6 384 331 3.4499986e-05 1e-6 387 331 5.1699986e-05 1e-6 390 331 6.8999987e-05 1e-6 392 331 3.4499986e-05 1e-6 393 331 1.7199985e-05 1e-6 394 331 1.7199985e-05 1e-6 397 331 0.00031049992 1e-6 398 331 6.8999987e-05 1e-6 399 331 0.0013626998 1e-6 401 331 0.0011556998 1e-6 402 331 0.014333997 1e-6 404 331 0.00037949998 1e-6 405 331 0.00018969999 1e-6 408 331 0.00089699985 1e-6 412 331 5.1699986e-05 1e-6 414 331 1.7199985e-05 1e-6 415 331 5.1699986e-05 1e-6 417 331 0.0002931999 1e-6 419 331 1.7199985e-05 1e-6 421 331 5.1699986e-05 1e-6 422 331 6.8999987e-05 1e-6 423 331 1.7199985e-05 1e-6 425 331 1.7199985e-05 1e-6 430 331 1.7199985e-05 1e-6 431 331 3.4499986e-05 1e-6 432 331 1.7199985e-05 1e-6 433 331 3.4499986e-05 1e-6 434 331 3.4499986e-05 1e-6 441 331 0.00041399989 1e-6 442 331 1.7199985e-05 1e-6 443 331 0.0035532999 1e-6 444 331 0.0006899999 1e-6 445 331 0.0053126998 1e-6 446 331 0.00037949998 1e-6 447 331 0.0025873999 1e-6 448 331 1.7199985e-05 1e-6 450 331 0.0045709983 1e-6 452 331 0.0044847988 1e-6 453 331 0.0018973998 1e-6 454 331 0.00062099984 1e-6 455 331 0.042156797 1e-6 456 331 0.00050019985 1e-6 457 331 0.0042259991 1e-6 458 331 0.0010521999 1e-6 459 331 0.0014316998 1e-6 460 331 0.0010348998 1e-6 463 331 0.0040362999 1e-6 464 331 0.00081069977 1e-6 465 331 0.00077619986 1e-6 467 331 0.015196498 1e-6 468 331 0.0045364983 1e-6 469 331 0.0041052997 1e-6 470 331 0.0041397996 1e-6 471 331 0.0015697 1e-6 472 331 0.00018969999 1e-6 473 331 8.6199987e-05 1e-6 477 331 0.00012069999 1e-6 478 331 0.00087969983 1e-6 483 331 0.0011211999 1e-6 489 331 3.4499986e-05 1e-6 490 331 0.00032769982 1e-6 491 331 0.00081069977 1e-6 22 332 0.00013089999 1e-6 60 332 0.0027486999 1e-6 77 332 0.0002617999 1e-6 82 332 0.00013089999 1e-6 108 332 0.00013089999 1e-6 114 332 0.0002617999 1e-6 126 332 0.00013089999 1e-6 130 332 0.00013089999 1e-6 131 332 0.00013089999 1e-6 138 332 0.00013089999 1e-6 142 332 0.0002617999 1e-6 151 332 0.00013089999 1e-6 160 332 0.0037957998 1e-6 172 332 0.00078529981 1e-6 187 332 0.00013089999 1e-6 189 332 0.00013089999 1e-6 190 332 0.00013089999 1e-6 194 332 0.00013089999 1e-6 198 332 0.0002617999 1e-6 203 332 0.00013089999 1e-6 206 332 0.00039269985 1e-6 214 332 0.00078529981 1e-6 224 332 0.00013089999 1e-6 233 332 0.0014397998 1e-6 234 332 0.0036648999 1e-6 237 332 0.0026177999 1e-6 240 332 0.0002617999 1e-6 241 332 0.0019633998 1e-6 242 332 0.010863896 1e-6 252 332 0.00013089999 1e-6 263 332 0.0011779999 1e-6 270 332 0.012565397 1e-6 271 332 0.0013088998 1e-6 272 332 0.0028795998 1e-6 277 332 0.070026159 1e-6 282 332 0.042670198 1e-6 283 332 0.024476398 1e-6 284 332 0.0024869 1e-6 285 332 0.0060208999 1e-6 286 332 0.00013089999 1e-6 289 332 0.00013089999 1e-6 292 332 0.00065449998 1e-6 293 332 0.0010470999 1e-6 294 332 0.0089004971 1e-6 295 332 0.0023559998 1e-6 296 332 0.0010470999 1e-6 297 332 0.0014397998 1e-6 298 332 0.00078529981 1e-6 305 332 0.00013089999 1e-6 307 332 0.0060208999 1e-6 312 332 0.0082460977 1e-6 315 332 0.00078529981 1e-6 320 332 0.00013089999 1e-6 321 332 0.0002617999 1e-6 322 332 0.00013089999 1e-6 324 332 0.0023559998 1e-6 326 332 0.0066753998 1e-6 328 332 0.011387397 1e-6 331 332 0.0075915977 1e-6 332 332 0.045549698 1e-6 333 332 0.0011779999 1e-6 339 332 0.00078529981 1e-6 340 332 0.014790598 1e-6 341 332 0.00013089999 1e-6 343 332 0.00013089999 1e-6 344 332 0.00013089999 1e-6 349 332 0.0002617999 1e-6 350 332 0.0058900975 1e-6 351 332 0.014005199 1e-6 352 332 0.0036648999 1e-6 354 332 0.017277498 1e-6 356 332 0.00078529981 1e-6 358 332 0.014921498 1e-6 370 332 0.00013089999 1e-6 371 332 0.0023559998 1e-6 372 332 0.015314098 1e-6 373 332 0.0013088998 1e-6 385 332 0.00013089999 1e-6 387 332 0.00013089999 1e-6 390 332 0.00013089999 1e-6 393 332 0.00013089999 1e-6 398 332 0.0091622993 1e-6 399 332 0.00013089999 1e-6 402 332 0.0010470999 1e-6 408 332 0.00013089999 1e-6 416 332 0.00013089999 1e-6 417 332 0.0005235998 1e-6 422 332 0.00013089999 1e-6 434 332 0.00013089999 1e-6 441 332 0.0030105 1e-6 443 332 0.0027486999 1e-6 444 332 0.0013088998 1e-6 445 332 0.0066753998 1e-6 446 332 0.00013089999 1e-6 447 332 0.004973799 1e-6 450 332 0.0044502988 1e-6 452 332 0.0058900975 1e-6 453 332 0.0022250998 1e-6 454 332 0.00078529981 1e-6 455 332 0.036911 1e-6 456 332 0.00039269985 1e-6 457 332 0.0030105 1e-6 458 332 0.0010470999 1e-6 459 332 0.00065449998 1e-6 460 332 0.0010470999 1e-6 463 332 0.0069371983 1e-6 464 332 0.0005235998 1e-6 465 332 0.00078529981 1e-6 467 332 0.0115183 1e-6 468 332 0.0052355975 1e-6 469 332 0.0058900975 1e-6 470 332 0.0064135976 1e-6 471 332 0.0066753998 1e-6 472 332 0.0024869 1e-6 473 332 0.00013089999 1e-6 477 332 0.00013089999 1e-6 478 332 0.0010470999 1e-6 483 332 0.0014397998 1e-6 490 332 0.0005235998 1e-6 491 332 0.0047119968 1e-6 9 333 9.2199989e-05 1e-6 19 333 9.2199989e-05 1e-6 22 333 9.2199989e-05 1e-6 60 333 0.0023961 1e-6 77 333 0.00027649989 1e-6 79 333 9.2199989e-05 1e-6 82 333 9.2199989e-05 1e-6 108 333 9.2199989e-05 1e-6 114 333 0.00018429999 1e-6 126 333 9.2199989e-05 1e-6 160 333 0.0012901998 1e-6 169 333 0.00027649989 1e-6 172 333 0.0005528999 1e-6 189 333 9.2199989e-05 1e-6 190 333 9.2199989e-05 1e-6 192 333 9.2199989e-05 1e-6 194 333 9.2199989e-05 1e-6 198 333 0.00018429999 1e-6 200 333 9.2199989e-05 1e-6 203 333 9.2199989e-05 1e-6 204 333 9.2199989e-05 1e-6 206 333 0.00027649989 1e-6 207 333 9.2199989e-05 1e-6 214 333 0.0028569 1e-6 220 333 9.2199989e-05 1e-6 233 333 0.0011058999 1e-6 234 333 0.0030411999 1e-6 237 333 0.0011979998 1e-6 240 333 0.00036859978 1e-6 241 333 0.0043313988 1e-6 242 333 0.0109667 1e-6 270 333 0.0043313988 1e-6 272 333 0.00018429999 1e-6 277 333 0.072712183 1e-6 282 333 0.0319786 1e-6 283 333 0.015851099 1e-6 284 333 0.0024881999 1e-6 285 333 9.2199989e-05 1e-6 286 333 0.00027649989 1e-6 290 333 0.00018429999 1e-6 292 333 0.0020275 1e-6 293 333 0.0011979998 1e-6 294 333 9.2199989e-05 1e-6 296 333 0.00027649989 1e-6 297 333 0.0014744999 1e-6 298 333 0.00018429999 1e-6 299 333 0.00018429999 1e-6 305 333 0.0024881999 1e-6 307 333 0.00027649989 1e-6 312 333 0.0035940998 1e-6 315 333 0.0011979998 1e-6 319 333 9.2199989e-05 1e-6 320 333 9.2199989e-05 1e-6 321 333 0.0029489999 1e-6 322 333 9.2199989e-05 1e-6 324 333 0.011335399 1e-6 326 333 0.0037784998 1e-6 327 333 9.2199989e-05 1e-6 328 333 0.010874599 1e-6 331 333 0.00027649989 1e-6 333 333 0.0359414 1e-6 338 333 0.0019353 1e-6 339 333 0.00036859978 1e-6 340 333 0.010229498 1e-6 341 333 0.00036859978 1e-6 350 333 0.0025803999 1e-6 351 333 0.012533396 1e-6 354 333 0.0073725991 1e-6 356 333 0.00046079978 1e-6 357 333 0.0008293998 1e-6 358 333 0.023684498 1e-6 370 333 9.2199989e-05 1e-6 371 333 0.0062666982 1e-6 372 333 0.0038705999 1e-6 373 333 0.0037784998 1e-6 374 333 9.2199989e-05 1e-6 376 333 0.0009215998 1e-6 387 333 9.2199989e-05 1e-6 390 333 9.2199989e-05 1e-6 392 333 0.00018429999 1e-6 393 333 9.2199989e-05 1e-6 402 333 0.0042391978 1e-6 404 333 9.2199989e-05 1e-6 405 333 0.00027649989 1e-6 408 333 0.0015666999 1e-6 417 333 0.00046079978 1e-6 421 333 9.2199989e-05 1e-6 422 333 9.2199989e-05 1e-6 430 333 9.2199989e-05 1e-6 433 333 9.2199989e-05 1e-6 434 333 0.00018429999 1e-6 443 333 0.0020275 1e-6 444 333 0.0014744999 1e-6 445 333 0.0036862998 1e-6 446 333 0.00036859978 1e-6 447 333 0.0029489999 1e-6 450 333 0.0087549984 1e-6 452 333 0.0062666982 1e-6 453 333 0.0023961 1e-6 454 333 0.00036859978 1e-6 455 333 0.026725598 1e-6 456 333 0.00046079978 1e-6 457 333 0.0035940998 1e-6 458 333 0.00027649989 1e-6 459 333 0.00073729991 1e-6 460 333 0.0010136999 1e-6 463 333 0.017509896 1e-6 464 333 0.0005528999 1e-6 465 333 0.0010136999 1e-6 467 333 0.014837299 1e-6 468 333 0.0077411979 1e-6 469 333 0.006082397 1e-6 470 333 0.0064509995 1e-6 471 333 0.0032255 1e-6 473 333 0.00018429999 1e-6 477 333 9.2199989e-05 1e-6 478 333 0.0011058999 1e-6 483 333 0.0008293998 1e-6 490 333 0.0005528999 1e-6 491 333 0.0077411979 1e-6 22 334 0.0002291 1e-6 60 334 0.0027498 1e-6 108 334 0.0002291 1e-6 114 334 0.00045829988 1e-6 126 334 0.0002291 1e-6 160 334 0.0013748999 1e-6 172 334 0.0029789 1e-6 189 334 0.0002291 1e-6 194 334 0.0002291 1e-6 198 334 0.0016039999 1e-6 206 334 0.00045829988 1e-6 214 334 0.0002291 1e-6 233 334 0.00068739988 1e-6 234 334 0.0041246973 1e-6 241 334 0.0183318 1e-6 242 334 0.00091659999 1e-6 270 334 0.0016039999 1e-6 272 334 0.00045829988 1e-6 277 334 0.086388588 1e-6 282 334 0.021310698 1e-6 283 334 0.0054994971 1e-6 284 334 0.0029789 1e-6 292 334 0.0045829974 1e-6 293 334 0.0020623 1e-6 295 334 0.009165898 1e-6 296 334 0.0061869994 1e-6 297 334 0.06393218 1e-6 312 334 0.014207099 1e-6 320 334 0.0036664 1e-6 321 334 0.0192484 1e-6 322 334 0.0075618997 1e-6 324 334 0.00091659999 1e-6 326 334 0.0107699 1e-6 328 334 0.034142997 1e-6 334 334 0.0087075979 1e-6 335 334 0.0002291 1e-6 340 334 0.020623296 1e-6 351 334 0.0087075979 1e-6 354 334 0.031164099 1e-6 358 334 0.010082498 1e-6 367 334 0.00068739988 1e-6 371 334 0.0032080999 1e-6 372 334 0.0304766 1e-6 387 334 0.0002291 1e-6 414 334 0.0018332 1e-6 417 334 0.00045829988 1e-6 422 334 0.0002291 1e-6 443 334 0.0029789 1e-6 444 334 0.0032080999 1e-6 445 334 0.0045829974 1e-6 446 334 0.0002291 1e-6 447 334 0.011228196 1e-6 450 334 0.004812099 1e-6 452 334 0.004812099 1e-6 453 334 0.0013748999 1e-6 454 334 0.0002291 1e-6 455 334 0.026122797 1e-6 456 334 0.0002291 1e-6 457 334 0.0029789 1e-6 458 334 0.00091659999 1e-6 459 334 0.0013748999 1e-6 460 334 0.00068739988 1e-6 463 334 0.0192484 1e-6 464 334 0.00068739988 1e-6 465 334 0.00091659999 1e-6 467 334 0.012603097 1e-6 468 334 0.020164996 1e-6 469 334 0.009165898 1e-6 470 334 0.0096241981 1e-6 471 334 0.0089367963 1e-6 473 334 0.0002291 1e-6 478 334 0.0013748999 1e-6 483 334 0.0020623 1e-6 490 334 0.00091659999 1e-6 491 334 0.00068739988 1e-6 22 335 0.00011339999 1e-6 24 335 0.00011339999 1e-6 60 335 0.0020419999 1e-6 82 335 0.00011339999 1e-6 108 335 0.00011339999 1e-6 114 335 0.00011339999 1e-6 120 335 0.0002269 1e-6 126 335 0.00011339999 1e-6 135 335 0.00011339999 1e-6 150 335 0.00011339999 1e-6 160 335 0.0013612998 1e-6 172 335 0.0005671999 1e-6 189 335 0.00011339999 1e-6 190 335 0.00011339999 1e-6 193 335 0.00011339999 1e-6 194 335 0.0002269 1e-6 198 335 0.00079409988 1e-6 200 335 0.00011339999 1e-6 203 335 0.00011339999 1e-6 204 335 0.00011339999 1e-6 206 335 0.00034029991 1e-6 214 335 0.0011343998 1e-6 218 335 0.00011339999 1e-6 223 335 0.00011339999 1e-6 224 335 0.0002269 1e-6 233 335 0.00045379996 1e-6 234 335 0.0037435999 1e-6 237 335 0.0049914978 1e-6 241 335 0.0014747998 1e-6 242 335 0.012705598 1e-6 270 335 0.00011339999 1e-6 271 335 0.00011339999 1e-6 277 335 0.13045937 1e-6 282 335 0.012365296 1e-6 283 335 0.0069199987 1e-6 284 335 0.0026091998 1e-6 286 335 0.00011339999 1e-6 288 335 0.00011339999 1e-6 289 335 0.00011339999 1e-6 292 335 0.0020419999 1e-6 293 335 0.0040838979 1e-6 294 335 0.00034029991 1e-6 295 335 0.0010209999 1e-6 296 335 0.0023822999 1e-6 297 335 0.00011339999 1e-6 298 335 0.00045379996 1e-6 299 335 0.00011339999 1e-6 301 335 0.00011339999 1e-6 305 335 0.0081678964 1e-6 307 335 0.0005671999 1e-6 312 335 0.0057855994 1e-6 315 335 0.0029495 1e-6 319 335 0.0039704964 1e-6 320 335 0.00011339999 1e-6 321 335 0.00011339999 1e-6 322 335 0.0010209999 1e-6 324 335 0.0039704964 1e-6 326 335 0.00011339999 1e-6 328 335 0.0015882 1e-6 329 335 0.00011339999 1e-6 331 335 0.0010209999 1e-6 332 335 0.0002269 1e-6 335 335 0.034373198 1e-6 337 335 0.0036301999 1e-6 339 335 0.0010209999 1e-6 340 335 0.0031764 1e-6 344 335 0.0002269 1e-6 347 335 0.00011339999 1e-6 349 335 0.0002269 1e-6 350 335 0.0038570999 1e-6 351 335 0.018831499 1e-6 352 335 0.0002269 1e-6 354 335 0.019739099 1e-6 355 335 0.00011339999 1e-6 356 335 0.00045379996 1e-6 357 335 0.0020419999 1e-6 358 335 0.0080544986 1e-6 371 335 0.0057855994 1e-6 372 335 0.012138397 1e-6 373 335 0.0034033 1e-6 387 335 0.00011339999 1e-6 390 335 0.00045379996 1e-6 392 335 0.00034029991 1e-6 393 335 0.0002269 1e-6 398 335 0.00011339999 1e-6 402 335 0.00034029991 1e-6 404 335 0.0002269 1e-6 405 335 0.0013612998 1e-6 417 335 0.00045379996 1e-6 421 335 0.00011339999 1e-6 422 335 0.0002269 1e-6 430 335 0.00011339999 1e-6 443 335 0.0027225998 1e-6 444 335 0.0015882 1e-6 445 335 0.0063527972 1e-6 446 335 0.00011339999 1e-6 447 335 0.0043107979 1e-6 450 335 0.0044242963 1e-6 452 335 0.0049914978 1e-6 453 335 0.0018151 1e-6 454 335 0.00011339999 1e-6 455 335 0.034146298 1e-6 456 335 0.00045379996 1e-6 457 335 0.0030629998 1e-6 458 335 0.0005671999 1e-6 459 335 0.00045379996 1e-6 460 335 0.0010209999 1e-6 463 335 0.016789597 1e-6 464 335 0.00068069994 1e-6 465 335 0.00090749981 1e-6 467 335 0.011571199 1e-6 468 335 0.0060124993 1e-6 469 335 0.0076006986 1e-6 470 335 0.008508198 1e-6 471 335 0.0057855994 1e-6 473 335 0.0002269 1e-6 477 335 0.00011339999 1e-6 478 335 0.0012478998 1e-6 483 335 0.0018151 1e-6 490 335 0.00068069994 1e-6 491 335 0.0014747998 1e-6 60 336 0.0024917 1e-6 108 336 0.00020759999 1e-6 114 336 0.00041529979 1e-6 126 336 0.00020759999 1e-6 160 336 0.0018687998 1e-6 165 336 0.00020759999 1e-6 181 336 0.00020759999 1e-6 190 336 0.00020759999 1e-6 194 336 0.00020759999 1e-6 198 336 0.00020759999 1e-6 206 336 0.00062289997 1e-6 214 336 0.00020759999 1e-6 233 336 0.00062289997 1e-6 234 336 0.0033222998 1e-6 237 336 0.0020764 1e-6 241 336 0.0078903995 1e-6 242 336 0.0083055981 1e-6 252 336 0.00020759999 1e-6 270 336 0.00062289997 1e-6 272 336 0.0035299 1e-6 277 336 0.11025745 1e-6 282 336 0.030107997 1e-6 283 336 0.0091362 1e-6 284 336 0.0026992999 1e-6 285 336 0.00020759999 1e-6 292 336 0.009551499 1e-6 293 336 0.0012457999 1e-6 294 336 0.00041529979 1e-6 295 336 0.0064368993 1e-6 296 336 0.0062291995 1e-6 297 336 0.0014534998 1e-6 298 336 0.010382097 1e-6 305 336 0.00020759999 1e-6 307 336 0.00062289997 1e-6 312 336 0.011420298 1e-6 313 336 0.00020759999 1e-6 315 336 0.00062289997 1e-6 319 336 0.00020759999 1e-6 320 336 0.0014534998 1e-6 322 336 0.0014534998 1e-6 323 336 0.00041529979 1e-6 324 336 0.0020764 1e-6 328 336 0.0047756992 1e-6 331 336 0.0016611 1e-6 332 336 0.00062289997 1e-6 335 336 0.00041529979 1e-6 336 336 0.0049833991 1e-6 337 336 0.00062289997 1e-6 338 336 0.00020759999 1e-6 339 336 0.0010382 1e-6 340 336 0.0085132979 1e-6 344 336 0.00020759999 1e-6 350 336 0.00041529979 1e-6 351 336 0.013081398 1e-6 354 336 0.056893699 1e-6 357 336 0.00020759999 1e-6 358 336 0.034883697 1e-6 366 336 0.00041529979 1e-6 370 336 0.012043197 1e-6 371 336 0.0168189 1e-6 372 336 0.017649498 1e-6 373 336 0.010797299 1e-6 376 336 0.004360497 1e-6 386 336 0.00020759999 1e-6 387 336 0.00020759999 1e-6 397 336 0.00041529979 1e-6 398 336 0.00020759999 1e-6 399 336 0.00020759999 1e-6 401 336 0.0014534998 1e-6 402 336 0.00083059981 1e-6 417 336 0.00041529979 1e-6 422 336 0.00020759999 1e-6 443 336 0.0022840998 1e-6 444 336 0.0016611 1e-6 445 336 0.016195998 1e-6 446 336 0.00020759999 1e-6 447 336 0.0056062974 1e-6 450 336 0.004360497 1e-6 452 336 0.0049833991 1e-6 453 336 0.0031146 1e-6 454 336 0.00041529979 1e-6 455 336 0.030938499 1e-6 456 336 0.00020759999 1e-6 457 336 0.0029069998 1e-6 458 336 0.0012457999 1e-6 459 336 0.00062289997 1e-6 460 336 0.00083059981 1e-6 463 336 0.011004999 1e-6 464 336 0.00062289997 1e-6 465 336 0.0012457999 1e-6 467 336 0.011835497 1e-6 468 336 0.0014534998 1e-6 469 336 0.0060215965 1e-6 470 336 0.0070597976 1e-6 471 336 0.0078903995 1e-6 473 336 0.00020759999 1e-6 478 336 0.0012457999 1e-6 483 336 0.0010382 1e-6 490 336 0.00083059981 1e-6 491 336 0.0016611 1e-6 60 337 0.0020203998 1e-6 108 337 9.619999e-05 1e-6 114 337 9.619999e-05 1e-6 126 337 9.619999e-05 1e-6 150 337 9.619999e-05 1e-6 160 337 0.0017317999 1e-6 169 337 0.00028859987 1e-6 171 337 9.619999e-05 1e-6 172 337 0.00028859987 1e-6 181 337 0.0014430999 1e-6 189 337 9.619999e-05 1e-6 190 337 9.619999e-05 1e-6 194 337 0.0001924 1e-6 198 337 0.0001924 1e-6 200 337 9.619999e-05 1e-6 203 337 9.619999e-05 1e-6 206 337 0.00048099994 1e-6 214 337 0.0001924 1e-6 233 337 0.0011544998 1e-6 234 337 0.0031748998 1e-6 236 337 0.0001924 1e-6 237 337 0.016163196 1e-6 240 337 9.619999e-05 1e-6 241 337 0.0013468999 1e-6 242 337 0.0050990991 1e-6 270 337 9.619999e-05 1e-6 271 337 0.0018279999 1e-6 272 337 9.619999e-05 1e-6 277 337 0.076197743 1e-6 282 337 0.038772397 1e-6 283 337 0.0074080974 1e-6 284 337 0.0022127999 1e-6 288 337 9.619999e-05 1e-6 292 337 0.0010582998 1e-6 293 337 0.0053876974 1e-6 295 337 0.0010582998 1e-6 296 337 0.0015393 1e-6 297 337 9.619999e-05 1e-6 298 337 9.619999e-05 1e-6 305 337 0.0084663965 1e-6 307 337 9.619999e-05 1e-6 312 337 0.0063497983 1e-6 313 337 0.0011544998 1e-6 315 337 0.0012506999 1e-6 319 337 0.0078891963 1e-6 322 337 0.00076969992 1e-6 323 337 0.00028859987 1e-6 324 337 0.0054838993 1e-6 326 337 0.0010582998 1e-6 328 337 0.024725799 1e-6 329 337 0.0001924 1e-6 331 337 0.0016355999 1e-6 335 337 0.0001924 1e-6 337 337 0.059072498 1e-6 339 337 0.00067349989 1e-6 340 337 0.0053876974 1e-6 341 337 9.619999e-05 1e-6 350 337 0.0085625984 1e-6 351 337 0.011833798 1e-6 353 337 0.0003847999 1e-6 354 337 0.037232999 1e-6 356 337 0.0010582998 1e-6 357 337 0.016836599 1e-6 358 337 0.016547997 1e-6 366 337 9.619999e-05 1e-6 370 337 9.619999e-05 1e-6 371 337 0.010871697 1e-6 372 337 0.011160299 1e-6 373 337 0.0066383965 1e-6 376 337 0.0029824998 1e-6 387 337 9.619999e-05 1e-6 390 337 9.619999e-05 1e-6 394 337 0.0058688 1e-6 397 337 0.00028859987 1e-6 401 337 0.0003847999 1e-6 402 337 0.0011544998 1e-6 408 337 0.00067349989 1e-6 417 337 0.00028859987 1e-6 422 337 9.619999e-05 1e-6 430 337 9.619999e-05 1e-6 441 337 0.0013468999 1e-6 443 337 0.0023089999 1e-6 444 337 0.0003847999 1e-6 445 337 0.0077929981 1e-6 446 337 0.0001924 1e-6 447 337 0.0058688 1e-6 450 337 0.0033672999 1e-6 452 337 0.0036559999 1e-6 453 337 0.0018279999 1e-6 454 337 0.0001924 1e-6 455 337 0.035308797 1e-6 456 337 0.0003847999 1e-6 457 337 0.0027900999 1e-6 458 337 0.0010582998 1e-6 459 337 0.00048099994 1e-6 460 337 0.0010582998 1e-6 463 337 0.010679197 1e-6 464 337 0.0003847999 1e-6 465 337 0.00076969992 1e-6 467 337 0.010294396 1e-6 468 337 0.0049066991 1e-6 469 337 0.0052914992 1e-6 470 337 0.0058688 1e-6 471 337 0.0024051999 1e-6 473 337 9.619999e-05 1e-6 477 337 9.619999e-05 1e-6 478 337 0.0010582998 1e-6 483 337 0.0011544998 1e-6 490 337 0.00048099994 1e-6 491 337 0.0022127999 1e-6 9 338 7.4899988e-05 1e-6 18 338 7.4899988e-05 1e-6 22 338 0.00022469999 1e-6 60 338 0.0049426965 1e-6 82 338 7.4899988e-05 1e-6 83 338 7.4899988e-05 1e-6 84 338 7.4899988e-05 1e-6 108 338 7.4899988e-05 1e-6 113 338 0.00014979999 1e-6 114 338 0.00022469999 1e-6 126 338 0.00014979999 1e-6 127 338 7.4899988e-05 1e-6 150 338 0.00082379999 1e-6 160 338 0.0020219998 1e-6 171 338 0.00029959995 1e-6 172 338 0.00022469999 1e-6 189 338 0.00022469999 1e-6 190 338 0.00014979999 1e-6 192 338 7.4899988e-05 1e-6 194 338 0.00014979999 1e-6 198 338 0.00014979999 1e-6 200 338 7.4899988e-05 1e-6 203 338 7.4899988e-05 1e-6 204 338 7.4899988e-05 1e-6 206 338 0.00037439982 1e-6 207 338 7.4899988e-05 1e-6 214 338 0.00089869997 1e-6 223 338 7.4899988e-05 1e-6 233 338 7.4899988e-05 1e-6 234 338 0.0072642975 1e-6 237 338 0.00014979999 1e-6 241 338 0.00029959995 1e-6 242 338 7.4899988e-05 1e-6 248 338 7.4899988e-05 1e-6 250 338 7.4899988e-05 1e-6 252 338 0.00014979999 1e-6 270 338 0.0050175972 1e-6 272 338 7.4899988e-05 1e-6 277 338 0.046206798 1e-6 282 338 0.038118798 1e-6 283 338 0.0038194 1e-6 284 338 0.0032203 1e-6 285 338 0.00059909979 1e-6 286 338 7.4899988e-05 1e-6 288 338 7.4899988e-05 1e-6 289 338 0.00014979999 1e-6 292 338 0.0014978 1e-6 293 338 0.0014228998 1e-6 294 338 0.00029959995 1e-6 295 338 0.0019470998 1e-6 296 338 0.0034448998 1e-6 297 338 0.0010485 1e-6 298 338 0.007788498 1e-6 299 338 7.4899988e-05 1e-6 300 338 7.4899988e-05 1e-6 307 338 0.010185 1e-6 312 338 0.0070395991 1e-6 315 338 7.4899988e-05 1e-6 317 338 0.0007489 1e-6 318 338 0.0014978 1e-6 319 338 7.4899988e-05 1e-6 320 338 0.0017225 1e-6 321 338 7.4899988e-05 1e-6 322 338 0.0020968998 1e-6 324 338 0.00014979999 1e-6 326 338 0.00029959995 1e-6 328 338 0.00037439982 1e-6 331 338 7.4899988e-05 1e-6 338 338 0.046057098 1e-6 339 338 0.0007489 1e-6 340 338 0.017748799 1e-6 341 338 0.00059909979 1e-6 343 338 0.00014979999 1e-6 344 338 7.4899988e-05 1e-6 347 338 7.4899988e-05 1e-6 349 338 0.00029959995 1e-6 350 338 0.018048398 1e-6 351 338 0.012656298 1e-6 353 338 7.4899988e-05 1e-6 354 338 0.0065153986 1e-6 356 338 0.0024714 1e-6 358 338 0.027559299 1e-6 366 338 7.4899988e-05 1e-6 371 338 0.0034448998 1e-6 372 338 0.016101297 1e-6 373 338 0.031678297 1e-6 384 338 7.4899988e-05 1e-6 387 338 0.00014979999 1e-6 393 338 7.4899988e-05 1e-6 402 338 7.4899988e-05 1e-6 404 338 7.4899988e-05 1e-6 405 338 7.4899988e-05 1e-6 417 338 0.0056915991 1e-6 419 338 7.4899988e-05 1e-6 421 338 7.4899988e-05 1e-6 422 338 0.00014979999 1e-6 423 338 7.4899988e-05 1e-6 425 338 7.4899988e-05 1e-6 430 338 7.4899988e-05 1e-6 431 338 7.4899988e-05 1e-6 433 338 7.4899988e-05 1e-6 434 338 7.4899988e-05 1e-6 443 338 0.0017972998 1e-6 444 338 0.00029959995 1e-6 445 338 0.0032950998 1e-6 446 338 0.00029959995 1e-6 447 338 0.0010485 1e-6 450 338 0.0062906966 1e-6 452 338 0.0077135973 1e-6 453 338 0.0020219998 1e-6 454 338 0.00037439982 1e-6 455 338 0.036246497 1e-6 456 338 0.0010485 1e-6 457 338 0.0035946998 1e-6 458 338 0.00082379999 1e-6 459 338 0.00037439982 1e-6 460 338 0.0011981998 1e-6 463 338 0.0057664998 1e-6 464 338 0.00037439982 1e-6 465 338 0.0013479998 1e-6 467 338 0.012656298 1e-6 468 338 0.0017972998 1e-6 469 338 0.010185 1e-6 470 338 0.011308298 1e-6 471 338 0.0013479998 1e-6 473 338 0.00029959995 1e-6 477 338 7.4899988e-05 1e-6 478 338 0.0016476 1e-6 483 338 0.0028457998 1e-6 489 338 7.4899988e-05 1e-6 490 338 0.0014978 1e-6 491 338 0.0053172 1e-6 19 339 0.00014199999 1e-6 24 339 0.00028409995 1e-6 60 339 0.0041186996 1e-6 82 339 0.00014199999 1e-6 108 339 0.00014199999 1e-6 114 339 0.00014199999 1e-6 126 339 0.00014199999 1e-6 150 339 0.00014199999 1e-6 160 339 0.0015622999 1e-6 169 339 0.00028409995 1e-6 172 339 0.00056809979 1e-6 189 339 0.00014199999 1e-6 190 339 0.00014199999 1e-6 193 339 0.00014199999 1e-6 194 339 0.00014199999 1e-6 203 339 0.00014199999 1e-6 204 339 0.00028409995 1e-6 206 339 0.00042609987 1e-6 214 339 0.00071009994 1e-6 223 339 0.0018463 1e-6 233 339 0.00014199999 1e-6 234 339 0.0069591999 1e-6 237 339 0.00014199999 1e-6 240 339 0.00014199999 1e-6 241 339 0.00014199999 1e-6 254 339 0.00042609987 1e-6 265 339 0.00014199999 1e-6 266 339 0.00014199999 1e-6 270 339 0.0052548982 1e-6 272 339 0.0052548982 1e-6 277 339 0.073284984 1e-6 282 339 0.041187298 1e-6 283 339 0.010651898 1e-6 284 339 0.0032666 1e-6 285 339 0.00028409995 1e-6 286 339 0.00014199999 1e-6 289 339 0.00014199999 1e-6 292 339 0.0017042998 1e-6 293 339 0.0019883998 1e-6 294 339 0.0019883998 1e-6 295 339 0.00099419989 1e-6 296 339 0.0015622999 1e-6 297 339 0.0048288964 1e-6 298 339 0.0088055991 1e-6 307 339 0.0083794966 1e-6 312 339 0.0053969994 1e-6 317 339 0.0028404999 1e-6 320 339 0.00014199999 1e-6 321 339 0.00028409995 1e-6 322 339 0.0026984999 1e-6 324 339 0.00014199999 1e-6 328 339 0.00014199999 1e-6 338 339 0.0042607971 1e-6 339 339 0.032239698 1e-6 340 339 0.012356199 1e-6 341 339 0.00042609987 1e-6 342 339 0.00028409995 1e-6 343 339 0.00028409995 1e-6 349 339 0.00028409995 1e-6 350 339 0.0124982 1e-6 351 339 0.0086634979 1e-6 352 339 0.00014199999 1e-6 353 339 0.00099419989 1e-6 354 339 0.015622798 1e-6 355 339 0.00014199999 1e-6 356 339 0.0015622999 1e-6 358 339 0.035222299 1e-6 370 339 0.00014199999 1e-6 371 339 0.0032666 1e-6 372 339 0.011930097 1e-6 373 339 0.027410898 1e-6 374 339 0.00014199999 1e-6 386 339 0.00014199999 1e-6 387 339 0.00014199999 1e-6 417 339 0.00071009994 1e-6 421 339 0.00014199999 1e-6 422 339 0.00014199999 1e-6 430 339 0.00014199999 1e-6 434 339 0.00014199999 1e-6 443 339 0.0021303999 1e-6 444 339 0.00042609987 1e-6 445 339 0.0036926998 1e-6 446 339 0.00028409995 1e-6 447 339 0.0012782 1e-6 450 339 0.0042607971 1e-6 452 339 0.0066751987 1e-6 453 339 0.0022723998 1e-6 454 339 0.00028409995 1e-6 455 339 0.034086097 1e-6 456 339 0.00071009994 1e-6 457 339 0.0038347 1e-6 458 339 0.0011361998 1e-6 459 339 0.00042609987 1e-6 460 339 0.0011361998 1e-6 463 339 0.0066751987 1e-6 464 339 0.00042609987 1e-6 465 339 0.00085219997 1e-6 467 339 0.011646099 1e-6 468 339 0.0012782 1e-6 469 339 0.0085214972 1e-6 470 339 0.0092315972 1e-6 471 339 0.00085219997 1e-6 473 339 0.00028409995 1e-6 477 339 0.00014199999 1e-6 478 339 0.0012782 1e-6 483 339 0.0018463 1e-6 490 339 0.00085219997 1e-6 491 339 0.0061070994 1e-6 9 340 4.9099996e-05 1e-6 18 340 4.9099996e-05 1e-6 22 340 7.3599993e-05 1e-6 60 340 0.0030415 1e-6 82 340 4.9099996e-05 1e-6 83 340 4.9099996e-05 1e-6 84 340 4.9099996e-05 1e-6 108 340 4.9099996e-05 1e-6 113 340 9.809999e-05 1e-6 114 340 0.00014719999 1e-6 126 340 7.3599993e-05 1e-6 127 340 2.4499997e-05 1e-6 130 340 0.0002942998 1e-6 131 340 4.9099996e-05 1e-6 134 340 4.9099996e-05 1e-6 139 340 2.4499997e-05 1e-6 142 340 2.4499997e-05 1e-6 150 340 0.0008584999 1e-6 156 340 0.00039249985 1e-6 158 340 4.9099996e-05 1e-6 160 340 0.00026979996 1e-6 169 340 0.0001717 1e-6 171 340 0.0002942998 1e-6 172 340 0.0006622998 1e-6 181 340 4.9099996e-05 1e-6 187 340 0.0001717 1e-6 188 340 0.0001962 1e-6 189 340 9.809999e-05 1e-6 190 340 0.00012259999 1e-6 192 340 7.3599993e-05 1e-6 193 340 2.4499997e-05 1e-6 194 340 0.00022079999 1e-6 196 340 2.4499997e-05 1e-6 197 340 4.9099996e-05 1e-6 198 340 0.0011037998 1e-6 200 340 7.3599993e-05 1e-6 201 340 2.4499997e-05 1e-6 203 340 7.3599993e-05 1e-6 204 340 7.3599993e-05 1e-6 206 340 0.00031889998 1e-6 207 340 4.9099996e-05 1e-6 209 340 2.4499997e-05 1e-6 214 340 0.0037528998 1e-6 218 340 2.4499997e-05 1e-6 219 340 9.809999e-05 1e-6 223 340 0.00068679987 1e-6 224 340 0.0033604 1e-6 225 340 0.00012259999 1e-6 227 340 2.4499997e-05 1e-6 229 340 4.9099996e-05 1e-6 233 340 0.0015207999 1e-6 234 340 0.0060830973 1e-6 237 340 0.00039249985 1e-6 240 340 0.00034339982 1e-6 241 340 0.0037037998 1e-6 242 340 2.4499997e-05 1e-6 248 340 2.4499997e-05 1e-6 252 340 0.00053959992 1e-6 253 340 2.4499997e-05 1e-6 270 340 0.0083641969 1e-6 271 340 4.9099996e-05 1e-6 272 340 0.00049059978 1e-6 274 340 4.9099996e-05 1e-6 276 340 4.9099996e-05 1e-6 277 340 0.067526758 1e-6 278 340 4.9099996e-05 1e-6 282 340 0.012460399 1e-6 283 340 0.0021584998 1e-6 284 340 0.0032867999 1e-6 285 340 0.017586898 1e-6 286 340 0.0001962 1e-6 287 340 0.00078489981 1e-6 288 340 0.0009321 1e-6 289 340 0.0019622999 1e-6 290 340 0.0001962 1e-6 292 340 0.0023546999 1e-6 293 340 0.0029678999 1e-6 294 340 0.00053959992 1e-6 295 340 0.0007358999 1e-6 296 340 0.0026490998 1e-6 297 340 0.0009321 1e-6 298 340 0.0024773998 1e-6 299 340 0.0001962 1e-6 301 340 4.9099996e-05 1e-6 307 340 0.00041699992 1e-6 312 340 0.0037773999 1e-6 313 340 0.0022810998 1e-6 315 340 0.00076039997 1e-6 317 340 0.0012754998 1e-6 318 340 2.4499997e-05 1e-6 319 340 0.00076039997 1e-6 320 340 0.0024283 1e-6 321 340 0.0001962 1e-6 322 340 0.00039249985 1e-6 323 340 7.3599993e-05 1e-6 324 340 2.4499997e-05 1e-6 325 340 7.3599993e-05 1e-6 326 340 0.0023792998 1e-6 328 340 0.00026979996 1e-6 330 340 2.4499997e-05 1e-6 331 340 4.9099996e-05 1e-6 332 340 2.4499997e-05 1e-6 338 340 0.0048320964 1e-6 339 340 0.00083399983 1e-6 340 340 0.044813499 1e-6 341 340 0.00022079999 1e-6 343 340 0.00044149999 1e-6 344 340 7.3599993e-05 1e-6 345 340 2.4499997e-05 1e-6 347 340 2.4499997e-05 1e-6 348 340 2.4499997e-05 1e-6 349 340 0.00014719999 1e-6 350 340 0.00095659983 1e-6 351 340 0.0032378 1e-6 353 340 0.0013245 1e-6 354 340 0.0011282999 1e-6 355 340 2.4499997e-05 1e-6 356 340 0.00041699992 1e-6 357 340 0.00012259999 1e-6 358 340 0.020309497 1e-6 366 340 7.3599993e-05 1e-6 369 340 0.00012259999 1e-6 370 340 9.809999e-05 1e-6 371 340 0.00095659983 1e-6 372 340 0.0013245 1e-6 373 340 0.0015452998 1e-6 374 340 0.00058869994 1e-6 375 340 2.4499997e-05 1e-6 376 340 2.4499997e-05 1e-6 384 340 9.809999e-05 1e-6 385 340 9.809999e-05 1e-6 386 340 0.0001717 1e-6 387 340 0.00012259999 1e-6 390 340 4.9099996e-05 1e-6 392 340 9.809999e-05 1e-6 393 340 0.00026979996 1e-6 394 340 7.3599993e-05 1e-6 397 340 0.00026979996 1e-6 398 340 7.3599993e-05 1e-6 399 340 2.4499997e-05 1e-6 401 340 0.00039249985 1e-6 402 340 0.0032867999 1e-6 404 340 7.3599993e-05 1e-6 405 340 0.0001717 1e-6 414 340 9.809999e-05 1e-6 415 340 2.4499997e-05 1e-6 417 340 0.00068679987 1e-6 419 340 2.4499997e-05 1e-6 420 340 2.4499997e-05 1e-6 421 340 7.3599993e-05 1e-6 422 340 0.00012259999 1e-6 423 340 4.9099996e-05 1e-6 424 340 0.00071129994 1e-6 425 340 2.4499997e-05 1e-6 430 340 4.9099996e-05 1e-6 431 340 4.9099996e-05 1e-6 432 340 2.4499997e-05 1e-6 433 340 4.9099996e-05 1e-6 434 340 4.9099996e-05 1e-6 441 340 4.9099996e-05 1e-6 442 340 4.9099996e-05 1e-6 443 340 0.0025754999 1e-6 444 340 0.00061319978 1e-6 445 340 0.0030169999 1e-6 446 340 0.00034339982 1e-6 447 340 0.0025263999 1e-6 448 340 2.4499997e-05 1e-6 450 340 0.0048565976 1e-6 452 340 0.0076773986 1e-6 453 340 0.0018886998 1e-6 454 340 0.00024529989 1e-6 455 340 0.019009497 1e-6 456 340 0.00083399983 1e-6 457 340 0.0035075999 1e-6 458 340 0.0007358999 1e-6 459 340 0.00056419987 1e-6 460 340 0.0012999999 1e-6 463 340 0.0094188973 1e-6 464 340 0.00049059978 1e-6 465 340 0.0012263998 1e-6 467 340 0.012215197 1e-6 468 340 0.0018642 1e-6 469 340 0.0062301978 1e-6 470 340 0.0068924986 1e-6 471 340 0.0014962 1e-6 473 340 0.00014719999 1e-6 477 340 0.00012259999 1e-6 478 340 0.0014471998 1e-6 479 340 2.4499997e-05 1e-6 483 340 0.0014962 1e-6 489 340 4.9099996e-05 1e-6 490 340 0.0038019 1e-6 491 340 0.0014225999 1e-6 19 341 0.0001582 1e-6 22 341 0.0001582 1e-6 60 341 0.0014240998 1e-6 108 341 0.0001582 1e-6 114 341 0.0001582 1e-6 126 341 0.0001582 1e-6 150 341 0.0001582 1e-6 160 341 0.0012657999 1e-6 171 341 0.00031649997 1e-6 172 341 0.00094939978 1e-6 189 341 0.0001582 1e-6 190 341 0.0001582 1e-6 194 341 0.0001582 1e-6 198 341 0.0068037994 1e-6 203 341 0.00031649997 1e-6 206 341 0.00047469977 1e-6 214 341 0.00079109985 1e-6 223 341 0.0017404999 1e-6 234 341 0.0080695972 1e-6 237 341 0.0001582 1e-6 240 341 0.0018986999 1e-6 241 341 0.012025297 1e-6 267 341 0.0001582 1e-6 270 341 0.0022151999 1e-6 276 341 0.0042721964 1e-6 277 341 0.041139197 1e-6 279 341 0.00079109985 1e-6 282 341 0.013291098 1e-6 283 341 0.0026898999 1e-6 284 341 0.0031645999 1e-6 285 341 0.011075899 1e-6 286 341 0.00047469977 1e-6 288 341 0.00031649997 1e-6 289 341 0.0014240998 1e-6 292 341 0.0015822998 1e-6 293 341 0.0020569998 1e-6 294 341 0.015189897 1e-6 295 341 0.013449397 1e-6 296 341 0.032911398 1e-6 297 341 0.0011075998 1e-6 298 341 0.0128165 1e-6 307 341 0.0088607967 1e-6 312 341 0.011075899 1e-6 315 341 0.0026898999 1e-6 317 341 0.00079109985 1e-6 318 341 0.0022151999 1e-6 320 341 0.0031645999 1e-6 321 341 0.0001582 1e-6 322 341 0.0001582 1e-6 326 341 0.0001582 1e-6 328 341 0.0001582 1e-6 331 341 0.0001582 1e-6 332 341 0.0001582 1e-6 338 341 0.0001582 1e-6 339 341 0.0001582 1e-6 340 341 0.036392398 1e-6 341 341 0.0049050972 1e-6 344 341 0.0001582 1e-6 350 341 0.0001582 1e-6 351 341 0.014873397 1e-6 353 341 0.0001582 1e-6 354 341 0.0128165 1e-6 356 341 0.00094939978 1e-6 358 341 0.014398698 1e-6 371 341 0.0063290969 1e-6 372 341 0.0131329 1e-6 373 341 0.0344937 1e-6 386 341 0.0068037994 1e-6 387 341 0.0001582 1e-6 417 341 0.00063289981 1e-6 421 341 0.0001582 1e-6 422 341 0.0001582 1e-6 430 341 0.0001582 1e-6 434 341 0.0001582 1e-6 443 341 0.0017404999 1e-6 444 341 0.00079109985 1e-6 445 341 0.0037974999 1e-6 447 341 0.0075948983 1e-6 450 341 0.0036391998 1e-6 452 341 0.005854398 1e-6 453 341 0.0014240998 1e-6 454 341 0.00063289981 1e-6 455 341 0.031329099 1e-6 456 341 0.00079109985 1e-6 457 341 0.0036391998 1e-6 458 341 0.0011075998 1e-6 459 341 0.00047469977 1e-6 460 341 0.0011075998 1e-6 463 341 0.012183499 1e-6 464 341 0.00079109985 1e-6 465 341 0.00094939978 1e-6 467 341 0.0099683963 1e-6 468 341 0.0028480999 1e-6 469 341 0.0066455975 1e-6 470 341 0.0074366964 1e-6 471 341 0.00094939978 1e-6 472 341 0.0014240998 1e-6 473 341 0.0001582 1e-6 477 341 0.00031649997 1e-6 478 341 0.0012657999 1e-6 483 341 0.0012657999 1e-6 490 341 0.0020569998 1e-6 491 341 0.0026898999 1e-6 22 342 0.00036019995 1e-6 24 342 0.00036019995 1e-6 60 342 0.0072045997 1e-6 108 342 0.00036019995 1e-6 114 342 0.00072049978 1e-6 126 342 0.00036019995 1e-6 160 342 0.0010807 1e-6 172 342 0.00072049978 1e-6 206 342 0.00072049978 1e-6 223 342 0.0021613999 1e-6 234 342 0.0068443976 1e-6 240 342 0.0057636984 1e-6 270 342 0.0018012 1e-6 276 342 0.0010807 1e-6 277 342 0.049351599 1e-6 278 342 0.0014408999 1e-6 282 342 0.015129697 1e-6 283 342 0.032780997 1e-6 284 342 0.0032420999 1e-6 285 342 0.00036019995 1e-6 290 342 0.00036019995 1e-6 292 342 0.0010807 1e-6 294 342 0.012247797 1e-6 295 342 0.0010807 1e-6 296 342 0.00036019995 1e-6 297 342 0.0039624982 1e-6 298 342 0.0043227971 1e-6 307 342 0.0064840987 1e-6 312 342 0.0093659982 1e-6 315 342 0.0025215999 1e-6 317 342 0.00072049978 1e-6 328 342 0.00036019995 1e-6 338 342 0.00036019995 1e-6 339 342 0.0093659982 1e-6 340 342 0.013688799 1e-6 341 342 0.00036019995 1e-6 342 342 0.013328496 1e-6 349 342 0.00036019995 1e-6 350 342 0.0223343 1e-6 351 342 0.011167098 1e-6 353 342 0.0014408999 1e-6 354 342 0.011527397 1e-6 356 342 0.0014408999 1e-6 358 342 0.027017299 1e-6 370 342 0.00036019995 1e-6 371 342 0.0028817998 1e-6 372 342 0.0028817998 1e-6 373 342 0.0162104 1e-6 374 342 0.00036019995 1e-6 375 342 0.00072049978 1e-6 386 342 0.0036022998 1e-6 387 342 0.00036019995 1e-6 417 342 0.00072049978 1e-6 443 342 0.0021613999 1e-6 444 342 0.00072049978 1e-6 445 342 0.0028817998 1e-6 447 342 0.0010807 1e-6 450 342 0.0036022998 1e-6 452 342 0.0079250969 1e-6 453 342 0.0068443976 1e-6 454 342 0.00072049978 1e-6 455 342 0.024495699 1e-6 456 342 0.00036019995 1e-6 457 342 0.0039624982 1e-6 458 342 0.00072049978 1e-6 459 342 0.00036019995 1e-6 460 342 0.0010807 1e-6 463 342 0.0025215999 1e-6 464 342 0.00036019995 1e-6 465 342 0.00072049978 1e-6 467 342 0.011167098 1e-6 468 342 0.0010807 1e-6 469 342 0.0079250969 1e-6 470 342 0.0090057999 1e-6 471 342 0.0010807 1e-6 473 342 0.00036019995 1e-6 478 342 0.0010807 1e-6 483 342 0.0018012 1e-6 490 342 0.0014408999 1e-6 491 342 0.0108069 1e-6 60 343 0.0016154998 1e-6 108 343 0.0002308 1e-6 114 343 0.00046159979 1e-6 126 343 0.0002308 1e-6 142 343 0.0002308 1e-6 160 343 0.0011538998 1e-6 172 343 0.00092309993 1e-6 194 343 0.0002308 1e-6 198 343 0.00069239992 1e-6 206 343 0.00069239992 1e-6 214 343 0.0011538998 1e-6 223 343 0.0023079 1e-6 233 343 0.0002308 1e-6 234 343 0.0060004964 1e-6 236 343 0.0002308 1e-6 237 343 0.0002308 1e-6 240 343 0.0011538998 1e-6 241 343 0.0062311999 1e-6 270 343 0.0018463 1e-6 277 343 0.045465 1e-6 282 343 0.013385598 1e-6 283 343 0.0018463 1e-6 284 343 0.0030001998 1e-6 285 343 0.0057696998 1e-6 286 343 0.0002308 1e-6 289 343 0.0066927969 1e-6 290 343 0.0002308 1e-6 292 343 0.018924497 1e-6 293 343 0.0027693999 1e-6 294 343 0.010616198 1e-6 295 343 0.0025386999 1e-6 296 343 0.0043849982 1e-6 297 343 0.0053080991 1e-6 298 343 0.0034617998 1e-6 307 343 0.010846999 1e-6 312 343 0.012231696 1e-6 315 343 0.0078467987 1e-6 317 343 0.00046159979 1e-6 318 343 0.0002308 1e-6 320 343 0.0023079 1e-6 321 343 0.00046159979 1e-6 322 343 0.0069235973 1e-6 324 343 0.0002308 1e-6 326 343 0.0080774985 1e-6 328 343 0.00069239992 1e-6 338 343 0.00046159979 1e-6 339 343 0.00092309993 1e-6 340 343 0.026540499 1e-6 341 343 0.0002308 1e-6 343 343 0.0270021 1e-6 347 343 0.0002308 1e-6 349 343 0.00046159979 1e-6 350 343 0.0120009 1e-6 351 343 0.0055388995 1e-6 353 343 0.0002308 1e-6 354 343 0.011539299 1e-6 355 343 0.0002308 1e-6 356 343 0.0016154998 1e-6 358 343 0.016616698 1e-6 370 343 0.00046159979 1e-6 371 343 0.0023079 1e-6 372 343 0.0120009 1e-6 373 343 0.014539599 1e-6 374 343 0.00046159979 1e-6 387 343 0.0002308 1e-6 401 343 0.0002308 1e-6 402 343 0.0002308 1e-6 405 343 0.0002308 1e-6 417 343 0.00046159979 1e-6 443 343 0.0013846999 1e-6 444 343 0.0023079 1e-6 445 343 0.0090007 1e-6 447 343 0.011077799 1e-6 450 343 0.0041541979 1e-6 452 343 0.0053080991 1e-6 453 343 0.0016154998 1e-6 454 343 0.0002308 1e-6 455 343 0.025155798 1e-6 456 343 0.00046159979 1e-6 457 343 0.0036925999 1e-6 458 343 0.00069239992 1e-6 459 343 0.00046159979 1e-6 460 343 0.00069239992 1e-6 463 343 0.013847198 1e-6 464 343 0.00069239992 1e-6 465 343 0.00092309993 1e-6 467 343 0.010616198 1e-6 468 343 0.0016154998 1e-6 469 343 0.0083082989 1e-6 470 343 0.0092314966 1e-6 471 343 0.00069239992 1e-6 473 343 0.0002308 1e-6 478 343 0.0013846999 1e-6 483 343 0.00069239992 1e-6 490 343 0.0011538998 1e-6 491 343 0.0032309999 1e-6 9 344 0.00010729999 1e-6 22 344 0.00010729999 1e-6 60 344 0.0025758999 1e-6 82 344 0.00010729999 1e-6 108 344 0.00010729999 1e-6 114 344 0.00021469999 1e-6 126 344 0.00010729999 1e-6 142 344 0.00010729999 1e-6 150 344 0.00010729999 1e-6 160 344 0.0038639 1e-6 169 344 0.00085859979 1e-6 171 344 0.00010729999 1e-6 172 344 0.00042929989 1e-6 187 344 0.00010729999 1e-6 188 344 0.00021469999 1e-6 189 344 0.00010729999 1e-6 190 344 0.00010729999 1e-6 194 344 0.00021469999 1e-6 198 344 0.00053669978 1e-6 200 344 0.00010729999 1e-6 203 344 0.00010729999 1e-6 204 344 0.00010729999 1e-6 206 344 0.00021469999 1e-6 214 344 0.0010732999 1e-6 223 344 0.00021469999 1e-6 224 344 0.00021469999 1e-6 233 344 0.00042929989 1e-6 234 344 0.0064397976 1e-6 236 344 0.00021469999 1e-6 237 344 0.00021469999 1e-6 240 344 0.00021469999 1e-6 241 344 0.0052591972 1e-6 242 344 0.0086937994 1e-6 252 344 0.00021469999 1e-6 270 344 0.00021469999 1e-6 272 344 0.00010729999 1e-6 277 344 0.066759646 1e-6 282 344 0.0226468 1e-6 283 344 0.0031126 1e-6 284 344 0.0018245999 1e-6 285 344 0.0010732999 1e-6 286 344 0.00010729999 1e-6 289 344 0.00021469999 1e-6 292 344 0.0017172999 1e-6 293 344 0.004937198 1e-6 294 344 0.0015025998 1e-6 295 344 0.0095523968 1e-6 296 344 0.0047225989 1e-6 297 344 0.0024685999 1e-6 298 344 0.00010729999 1e-6 299 344 0.00010729999 1e-6 301 344 0.00010729999 1e-6 307 344 0.012665 1e-6 312 344 0.0027905998 1e-6 314 344 0.00042929989 1e-6 315 344 0.0078350976 1e-6 319 344 0.00010729999 1e-6 320 344 0.00021469999 1e-6 321 344 0.0053664967 1e-6 322 344 0.0048298985 1e-6 324 344 0.0059031993 1e-6 326 344 0.0040785968 1e-6 328 344 0.00053669978 1e-6 329 344 0.00021469999 1e-6 331 344 0.00010729999 1e-6 338 344 0.0015025998 1e-6 339 344 0.00075129978 1e-6 340 344 0.0080497973 1e-6 341 344 0.00021469999 1e-6 344 344 0.047654796 1e-6 347 344 0.00064399978 1e-6 349 344 0.00042929989 1e-6 350 344 0.0061177984 1e-6 351 344 0.0084790997 1e-6 352 344 0.0012879998 1e-6 354 344 0.018890198 1e-6 356 344 0.0010732999 1e-6 358 344 0.018031597 1e-6 362 344 0.00096599991 1e-6 366 344 0.0030053 1e-6 371 344 0.0015025998 1e-6 372 344 0.015884899 1e-6 373 344 0.0084790997 1e-6 386 344 0.00010729999 1e-6 387 344 0.00010729999 1e-6 393 344 0.00010729999 1e-6 402 344 0.00021469999 1e-6 417 344 0.00053669978 1e-6 421 344 0.00010729999 1e-6 422 344 0.00021469999 1e-6 430 344 0.00010729999 1e-6 443 344 0.0021465998 1e-6 444 344 0.00042929989 1e-6 445 344 0.0040785968 1e-6 446 344 0.00021469999 1e-6 447 344 0.011913698 1e-6 450 344 0.0044005997 1e-6 452 344 0.0050444975 1e-6 453 344 0.0016099999 1e-6 454 344 0.00032199989 1e-6 455 344 0.0296233 1e-6 456 344 0.00085859979 1e-6 457 344 0.0042931996 1e-6 458 344 0.00064399978 1e-6 459 344 0.00032199989 1e-6 460 344 0.0010732999 1e-6 463 344 0.023290798 1e-6 464 344 0.00053669978 1e-6 465 344 0.0011805999 1e-6 467 344 0.0099817999 1e-6 468 344 0.0015025998 1e-6 469 344 0.0078350976 1e-6 470 344 0.0085864998 1e-6 471 344 0.00096599991 1e-6 473 344 0.00021469999 1e-6 477 344 0.00010729999 1e-6 478 344 0.0012879998 1e-6 483 344 0.0020392998 1e-6 490 344 0.00075129978 1e-6 491 344 0.0042931996 1e-6 60 345 0.0033787999 1e-6 82 345 0.00012999999 1e-6 108 345 0.00012999999 1e-6 114 345 0.00012999999 1e-6 126 345 0.00012999999 1e-6 130 345 0.0005198 1e-6 150 345 0.00012999999 1e-6 160 345 0.005847998 1e-6 161 345 0.0015594999 1e-6 172 345 0.00038989983 1e-6 189 345 0.00012999999 1e-6 190 345 0.00012999999 1e-6 194 345 0.0002599 1e-6 200 345 0.00012999999 1e-6 203 345 0.00012999999 1e-6 204 345 0.00012999999 1e-6 206 345 0.0002599 1e-6 214 345 0.00064979983 1e-6 218 345 0.00012999999 1e-6 222 345 0.00012999999 1e-6 224 345 0.00012999999 1e-6 225 345 0.0005198 1e-6 234 345 0.0090967976 1e-6 236 345 0.00012999999 1e-6 237 345 0.00012999999 1e-6 240 345 0.00012999999 1e-6 241 345 0.017023999 1e-6 242 345 0.0057179965 1e-6 277 345 0.079662085 1e-6 282 345 0.033138398 1e-6 283 345 0.0015594999 1e-6 284 345 0.0022091998 1e-6 290 345 0.0031188999 1e-6 292 345 0.0018193999 1e-6 293 345 0.012085799 1e-6 294 345 0.0031188999 1e-6 296 345 0.011305999 1e-6 305 345 0.00012999999 1e-6 307 345 0.0010396 1e-6 312 345 0.010526299 1e-6 317 345 0.0011695998 1e-6 319 345 0.00012999999 1e-6 324 345 0.0025990999 1e-6 326 345 0.00012999999 1e-6 328 345 0.00012999999 1e-6 331 345 0.00012999999 1e-6 338 345 0.0027289998 1e-6 340 345 0.007017497 1e-6 341 345 0.00038989983 1e-6 344 345 0.00012999999 1e-6 345 345 0.043534797 1e-6 347 345 0.00012999999 1e-6 349 345 0.00012999999 1e-6 350 345 0.0038985999 1e-6 351 345 0.0109162 1e-6 354 345 0.014684897 1e-6 356 345 0.0005198 1e-6 358 345 0.0162443 1e-6 366 345 0.00012999999 1e-6 371 345 0.0014294998 1e-6 372 345 0.011176098 1e-6 373 345 0.0081870966 1e-6 387 345 0.00012999999 1e-6 417 345 0.00064979983 1e-6 421 345 0.00012999999 1e-6 422 345 0.0002599 1e-6 430 345 0.00012999999 1e-6 443 345 0.0024690998 1e-6 444 345 0.0005198 1e-6 445 345 0.0042884983 1e-6 446 345 0.0002599 1e-6 447 345 0.0011695998 1e-6 450 345 0.004938297 1e-6 452 345 0.007017497 1e-6 453 345 0.0012995 1e-6 454 345 0.00038989983 1e-6 455 345 0.026640698 1e-6 456 345 0.0010396 1e-6 457 345 0.0038985999 1e-6 458 345 0.0012995 1e-6 459 345 0.0005198 1e-6 460 345 0.0012995 1e-6 463 345 0.010396399 1e-6 464 345 0.0005198 1e-6 465 345 0.0012995 1e-6 467 345 0.011695899 1e-6 468 345 0.0016893998 1e-6 469 345 0.007407397 1e-6 470 345 0.0084469989 1e-6 471 345 0.0010396 1e-6 473 345 0.0002599 1e-6 477 345 0.00012999999 1e-6 478 345 0.0016893998 1e-6 483 345 0.0022091998 1e-6 490 345 0.017023999 1e-6 491 345 0.0053280964 1e-6 60 346 0.0017275 1e-6 108 346 0.0002159 1e-6 114 346 0.00043189991 1e-6 126 346 0.0002159 1e-6 160 346 0.0023752998 1e-6 194 346 0.0002159 1e-6 198 346 0.0090692975 1e-6 206 346 0.00043189991 1e-6 214 346 0.0002159 1e-6 233 346 0.0047505982 1e-6 234 346 0.0056142993 1e-6 236 346 0.0002159 1e-6 237 346 0.00064779981 1e-6 241 346 0.0095011964 1e-6 242 346 0.0071258992 1e-6 270 346 0.0060461983 1e-6 272 346 0.00064779981 1e-6 277 346 0.041675698 1e-6 282 346 0.029799197 1e-6 283 346 0.010580897 1e-6 284 346 0.0017275 1e-6 285 346 0.0088533983 1e-6 293 346 0.0010797 1e-6 294 346 0.0002159 1e-6 295 346 0.0002159 1e-6 296 346 0.015331499 1e-6 297 346 0.0002159 1e-6 298 346 0.00043189991 1e-6 307 346 0.0097170994 1e-6 311 346 0.0010797 1e-6 312 346 0.00064779981 1e-6 315 346 0.0002159 1e-6 317 346 0.0002159 1e-6 318 346 0.0002159 1e-6 320 346 0.0062620975 1e-6 328 346 0.093284369 1e-6 330 346 0.0010797 1e-6 331 346 0.0002159 1e-6 338 346 0.0017275 1e-6 339 346 0.0002159 1e-6 340 346 0.06780386 1e-6 341 346 0.0002159 1e-6 346 346 0.0051824972 1e-6 347 346 0.0002159 1e-6 350 346 0.00086369994 1e-6 351 346 0.014683697 1e-6 353 346 0.0066939965 1e-6 354 346 0.0015115999 1e-6 356 346 0.0002159 1e-6 358 346 0.021377698 1e-6 371 346 0.0002159 1e-6 372 346 0.0246167 1e-6 373 346 0.0017275 1e-6 387 346 0.0002159 1e-6 395 346 0.0002159 1e-6 417 346 0.00064779981 1e-6 443 346 0.0017275 1e-6 444 346 0.0095011964 1e-6 445 346 0.0041027963 1e-6 447 346 0.011876497 1e-6 450 346 0.0038867998 1e-6 452 346 0.0047505982 1e-6 453 346 0.0019433999 1e-6 454 346 0.00086369994 1e-6 455 346 0.031742599 1e-6 456 346 0.00043189991 1e-6 457 346 0.0043186992 1e-6 458 346 0.00064779981 1e-6 459 346 0.00043189991 1e-6 460 346 0.00064779981 1e-6 463 346 0.025696397 1e-6 464 346 0.00086369994 1e-6 465 346 0.00064779981 1e-6 467 346 0.0090692975 1e-6 468 346 0.0012955999 1e-6 469 346 0.0060461983 1e-6 470 346 0.0064780973 1e-6 471 346 0.00064779981 1e-6 473 346 0.0002159 1e-6 478 346 0.0010797 1e-6 483 346 0.0012955999 1e-6 490 346 0.00064779981 1e-6 491 346 0.003239 1e-6 60 347 0.0046533979 1e-6 108 347 0.00024489989 1e-6 114 347 0.00048979977 1e-6 126 347 0.00024489989 1e-6 142 347 0.00024489989 1e-6 160 347 0.0034288999 1e-6 169 347 0.00073479977 1e-6 172 347 0.00097969989 1e-6 187 347 0.00024489989 1e-6 188 347 0.00048979977 1e-6 189 347 0.00024489989 1e-6 190 347 0.00024489989 1e-6 194 347 0.00024489989 1e-6 206 347 0.00048979977 1e-6 214 347 0.0029389998 1e-6 223 347 0.00024489989 1e-6 234 347 0.0063678995 1e-6 236 347 0.00024489989 1e-6 237 347 0.00024489989 1e-6 240 347 0.0097966976 1e-6 241 347 0.00024489989 1e-6 242 347 0.00024489989 1e-6 252 347 0.00024489989 1e-6 270 347 0.00048979977 1e-6 277 347 0.066372752 1e-6 282 347 0.023022298 1e-6 283 347 0.012735698 1e-6 284 347 0.0019592999 1e-6 285 347 0.00024489989 1e-6 286 347 0.00048979977 1e-6 289 347 0.00048979977 1e-6 290 347 0.00024489989 1e-6 292 347 0.0031838999 1e-6 293 347 0.00024489989 1e-6 294 347 0.00073479977 1e-6 295 347 0.0036737998 1e-6 296 347 0.00024489989 1e-6 305 347 0.00024489989 1e-6 307 347 0.0058779977 1e-6 312 347 0.0034288999 1e-6 320 347 0.00048979977 1e-6 321 347 0.00048979977 1e-6 322 347 0.0024491998 1e-6 324 347 0.0036737998 1e-6 326 347 0.00024489989 1e-6 328 347 0.00048979977 1e-6 332 347 0.00048979977 1e-6 338 347 0.0026940999 1e-6 340 347 0.0061228983 1e-6 341 347 0.00048979977 1e-6 347 347 0.064903259 1e-6 349 347 0.0014694999 1e-6 350 347 0.00048979977 1e-6 351 347 0.015674699 1e-6 354 347 0.027675699 1e-6 356 347 0.00048979977 1e-6 358 347 0.031349499 1e-6 371 347 0.0034288999 1e-6 372 347 0.013715398 1e-6 373 347 0.017634097 1e-6 387 347 0.00024489989 1e-6 390 347 0.00024489989 1e-6 393 347 0.00024489989 1e-6 408 347 0.00024489989 1e-6 417 347 0.00048979977 1e-6 443 347 0.0012245998 1e-6 444 347 0.00048979977 1e-6 445 347 0.013715398 1e-6 447 347 0.0012245998 1e-6 450 347 0.0048983991 1e-6 452 347 0.0058779977 1e-6 453 347 0.0019592999 1e-6 454 347 0.00024489989 1e-6 455 347 0.038696997 1e-6 456 347 0.00048979977 1e-6 457 347 0.0039186999 1e-6 458 347 0.00073479977 1e-6 459 347 0.00048979977 1e-6 460 347 0.0012245998 1e-6 463 347 0.016899299 1e-6 464 347 0.00048979977 1e-6 465 347 0.00097969989 1e-6 467 347 0.012000997 1e-6 468 347 0.0012245998 1e-6 469 347 0.0088169985 1e-6 470 347 0.0097966976 1e-6 471 347 0.0014694999 1e-6 473 347 0.00024489989 1e-6 478 347 0.0017143998 1e-6 483 347 0.0026940999 1e-6 490 347 0.00097969989 1e-6 491 347 0.012000997 1e-6 22 348 0.0001314 1e-6 24 348 0.0001314 1e-6 60 348 0.0031545998 1e-6 108 348 0.0001314 1e-6 114 348 0.0001314 1e-6 120 348 0.0001314 1e-6 126 348 0.0001314 1e-6 130 348 0.00052579981 1e-6 140 348 0.00039429986 1e-6 150 348 0.0001314 1e-6 160 348 0.0067034997 1e-6 172 348 0.00052579981 1e-6 187 348 0.0010515 1e-6 189 348 0.0001314 1e-6 190 348 0.0001314 1e-6 194 348 0.00026289979 1e-6 198 348 0.00039429986 1e-6 204 348 0.00026289979 1e-6 206 348 0.00026289979 1e-6 208 348 0.0001314 1e-6 211 348 0.0001314 1e-6 214 348 0.0010515 1e-6 218 348 0.0001314 1e-6 221 348 0.0001314 1e-6 222 348 0.0001314 1e-6 223 348 0.00026289979 1e-6 224 348 0.00052579981 1e-6 225 348 0.0009200999 1e-6 227 348 0.0001314 1e-6 234 348 0.0064405985 1e-6 236 348 0.0001314 1e-6 237 348 0.0001314 1e-6 240 348 0.00039429986 1e-6 241 348 0.0024973999 1e-6 242 348 0.0092007965 1e-6 243 348 0.0001314 1e-6 270 348 0.0032859999 1e-6 277 348 0.025499497 1e-6 282 348 0.033385899 1e-6 283 348 0.0093322992 1e-6 284 348 0.0017086999 1e-6 290 348 0.0013144 1e-6 292 348 0.0162986 1e-6 293 348 0.0056518987 1e-6 294 348 0.0013144 1e-6 295 348 0.0009200999 1e-6 296 348 0.0047318973 1e-6 301 348 0.0001314 1e-6 307 348 0.0077549964 1e-6 308 348 0.0013144 1e-6 312 348 0.0051261969 1e-6 315 348 0.0001314 1e-6 317 348 0.0014457998 1e-6 320 348 0.0001314 1e-6 322 348 0.0015772998 1e-6 324 348 0.0014457998 1e-6 340 348 0.0086750984 1e-6 341 348 0.00026289979 1e-6 345 348 0.0001314 1e-6 347 348 0.00078859995 1e-6 348 348 0.054942198 1e-6 350 348 0.0068348981 1e-6 351 348 0.011698198 1e-6 353 348 0.0001314 1e-6 354 348 0.027733997 1e-6 356 348 0.00052579981 1e-6 358 348 0.016693 1e-6 359 348 0.0042060986 1e-6 361 348 0.0001314 1e-6 369 348 0.00026289979 1e-6 371 348 0.0015772998 1e-6 372 348 0.013144098 1e-6 373 348 0.0098579973 1e-6 386 348 0.00026289979 1e-6 387 348 0.0001314 1e-6 392 348 0.0009200999 1e-6 393 348 0.0057833977 1e-6 417 348 0.00039429986 1e-6 422 348 0.00039429986 1e-6 430 348 0.00052579981 1e-6 443 348 0.0015772998 1e-6 444 348 0.0052575991 1e-6 445 348 0.0039431974 1e-6 446 348 0.0001314 1e-6 447 348 0.012224 1e-6 450 348 0.0039431974 1e-6 452 348 0.0051261969 1e-6 453 348 0.0009200999 1e-6 454 348 0.0030230999 1e-6 455 348 0.023922198 1e-6 456 348 0.00078859995 1e-6 457 348 0.0078863986 1e-6 458 348 0.00065719988 1e-6 459 348 0.00039429986 1e-6 460 348 0.0011829999 1e-6 463 348 0.033254497 1e-6 464 348 0.0056518987 1e-6 465 348 0.0009200999 1e-6 467 348 0.010778099 1e-6 468 348 0.0019715999 1e-6 469 348 0.007492099 1e-6 470 348 0.0082807988 1e-6 471 348 0.0010515 1e-6 473 348 0.0001314 1e-6 477 348 0.0001314 1e-6 478 348 0.0011829999 1e-6 483 348 0.0015772998 1e-6 490 348 0.0009200999 1e-6 491 348 0.0055204965 1e-6 9 349 3.8899991e-05 1e-6 18 349 0.00011659999 1e-6 21 349 3.8899991e-05 1e-6 22 349 3.8899991e-05 1e-6 60 349 0.0023705999 1e-6 77 349 7.7699995e-05 1e-6 79 349 3.8899991e-05 1e-6 82 349 3.8899991e-05 1e-6 83 349 3.8899991e-05 1e-6 84 349 3.8899991e-05 1e-6 108 349 3.8899991e-05 1e-6 113 349 7.7699995e-05 1e-6 114 349 0.00015539999 1e-6 126 349 7.7699995e-05 1e-6 127 349 3.8899991e-05 1e-6 130 349 0.00015539999 1e-6 131 349 3.8899991e-05 1e-6 135 349 0.00015539999 1e-6 142 349 0.00023319999 1e-6 150 349 0.00062179985 1e-6 158 349 3.8899991e-05 1e-6 160 349 0.0044690967 1e-6 165 349 3.8899991e-05 1e-6 168 349 3.8899991e-05 1e-6 169 349 0.00015539999 1e-6 171 349 0.00054409984 1e-6 172 349 0.00027199998 1e-6 187 349 3.8899991e-05 1e-6 189 349 7.7699995e-05 1e-6 190 349 7.7699995e-05 1e-6 191 349 3.8899991e-05 1e-6 194 349 0.00011659999 1e-6 197 349 3.8899991e-05 1e-6 198 349 0.0012435999 1e-6 200 349 3.8899991e-05 1e-6 201 349 3.8899991e-05 1e-6 203 349 7.7699995e-05 1e-6 204 349 0.00011659999 1e-6 206 349 0.00015539999 1e-6 207 349 3.8899991e-05 1e-6 214 349 0.035714298 1e-6 219 349 3.8899991e-05 1e-6 220 349 3.8899991e-05 1e-6 223 349 0.0001943 1e-6 224 349 0.00077719986 1e-6 225 349 0.00038859993 1e-6 227 349 7.7699995e-05 1e-6 233 349 0.00069949985 1e-6 234 349 0.0054406971 1e-6 236 349 0.00015539999 1e-6 237 349 0.0012824 1e-6 240 349 0.00038859993 1e-6 241 349 0.0033032999 1e-6 242 349 0.0033421 1e-6 243 349 7.7699995e-05 1e-6 248 349 3.8899991e-05 1e-6 250 349 3.8899991e-05 1e-6 251 349 0.00015539999 1e-6 252 349 0.0040416978 1e-6 262 349 7.7699995e-05 1e-6 270 349 0.0023705999 1e-6 271 349 3.8899991e-05 1e-6 272 349 0.00011659999 1e-6 274 349 0.0010103998 1e-6 275 349 3.8899991e-05 1e-6 276 349 3.8899991e-05 1e-6 277 349 0.051647797 1e-6 282 349 0.0242888 1e-6 283 349 0.0043136999 1e-6 284 349 0.0015155999 1e-6 285 349 0.0010880998 1e-6 286 349 0.0061401986 1e-6 287 349 0.00011659999 1e-6 288 349 7.7699995e-05 1e-6 289 349 0.0073060989 1e-6 290 349 0.0024482999 1e-6 292 349 0.0052463971 1e-6 293 349 0.0034586999 1e-6 294 349 0.0099486969 1e-6 295 349 0.0010493 1e-6 296 349 0.0025648999 1e-6 297 349 0.0016710998 1e-6 298 349 0.00042749988 1e-6 299 349 0.0001943 1e-6 305 349 7.7699995e-05 1e-6 307 349 0.019081298 1e-6 312 349 0.0050908998 1e-6 315 349 0.00089379982 1e-6 317 349 0.0014767998 1e-6 318 349 3.8899991e-05 1e-6 319 349 3.8899991e-05 1e-6 320 349 0.0026814998 1e-6 321 349 0.0054017976 1e-6 322 349 0.0032255999 1e-6 324 349 0.0083164982 1e-6 326 349 0.0034975999 1e-6 327 349 3.8899991e-05 1e-6 328 349 0.0036141998 1e-6 331 349 0.00015539999 1e-6 332 349 7.7699995e-05 1e-6 333 349 3.8899991e-05 1e-6 334 349 7.7699995e-05 1e-6 335 349 0.0012824 1e-6 338 349 0.0015155999 1e-6 339 349 0.00046629994 1e-6 340 349 0.0054795966 1e-6 341 349 0.0001943 1e-6 344 349 0.00066069979 1e-6 345 349 0.00011659999 1e-6 347 349 0.0018264998 1e-6 349 349 0.017021596 1e-6 350 349 0.0070728995 1e-6 351 349 0.0072283968 1e-6 352 349 0.0016321999 1e-6 353 349 7.7699995e-05 1e-6 354 349 0.027086899 1e-6 355 349 0.00050519989 1e-6 356 349 0.0010103998 1e-6 357 349 3.8899991e-05 1e-6 358 349 0.012630198 1e-6 366 349 7.7699995e-05 1e-6 369 349 0.00011659999 1e-6 370 349 0.00015539999 1e-6 371 349 0.0024094998 1e-6 372 349 0.011503197 1e-6 373 349 0.011697497 1e-6 374 349 0.00089379982 1e-6 375 349 3.8899991e-05 1e-6 384 349 3.8899991e-05 1e-6 385 349 3.8899991e-05 1e-6 386 349 0.00011659999 1e-6 387 349 7.7699995e-05 1e-6 389 349 0.00034979987 1e-6 390 349 0.00027199998 1e-6 392 349 0.00066069979 1e-6 393 349 0.0052463971 1e-6 397 349 7.7699995e-05 1e-6 398 349 0.0012047 1e-6 402 349 0.0012435999 1e-6 404 349 0.0016710998 1e-6 405 349 0.00066069979 1e-6 408 349 3.8899991e-05 1e-6 414 349 0.00015539999 1e-6 415 349 3.8899991e-05 1e-6 417 349 0.00046629994 1e-6 419 349 3.8899991e-05 1e-6 420 349 7.7699995e-05 1e-6 421 349 0.00031089992 1e-6 422 349 0.00015539999 1e-6 423 349 3.8899991e-05 1e-6 425 349 3.8899991e-05 1e-6 430 349 0.00046629994 1e-6 431 349 3.8899991e-05 1e-6 433 349 3.8899991e-05 1e-6 434 349 3.8899991e-05 1e-6 442 349 0.00011659999 1e-6 443 349 0.0034586999 1e-6 444 349 0.0012435999 1e-6 445 349 0.0049743988 1e-6 446 349 0.0011658999 1e-6 447 349 0.0051297992 1e-6 450 349 0.0089382976 1e-6 452 349 0.0053240992 1e-6 453 349 0.0014767998 1e-6 454 349 0.00031089992 1e-6 455 349 0.029301997 1e-6 456 349 0.00093269977 1e-6 457 349 0.0041581988 1e-6 458 349 0.00054409984 1e-6 459 349 0.00050519989 1e-6 460 349 0.001127 1e-6 463 349 0.023433898 1e-6 464 349 0.0005828999 1e-6 465 349 0.00097159995 1e-6 467 349 0.010181896 1e-6 468 349 0.0019041998 1e-6 469 349 0.006917499 1e-6 470 349 0.0077723972 1e-6 471 349 0.0025648999 1e-6 473 349 0.00015539999 1e-6 477 349 0.00015539999 1e-6 478 349 0.0011658999 1e-6 479 349 3.8899991e-05 1e-6 483 349 0.0013989999 1e-6 489 349 3.8899991e-05 1e-6 490 349 0.00085499999 1e-6 491 349 0.0014378999 1e-6 9 350 3.9599996e-05 1e-6 18 350 7.9199992e-05 1e-6 19 350 3.9599996e-05 1e-6 22 350 0.0001583 1e-6 24 350 3.9599996e-05 1e-6 60 350 0.0024146999 1e-6 79 350 3.9599996e-05 1e-6 82 350 7.9199992e-05 1e-6 83 350 3.9599996e-05 1e-6 84 350 3.9599996e-05 1e-6 108 350 7.9199992e-05 1e-6 113 350 7.9199992e-05 1e-6 114 350 0.00019789999 1e-6 126 350 0.00011879999 1e-6 127 350 3.9599996e-05 1e-6 142 350 3.9599996e-05 1e-6 150 350 0.00059379986 1e-6 151 350 3.9599996e-05 1e-6 160 350 0.0025334 1e-6 169 350 0.00019789999 1e-6 171 350 3.9599996e-05 1e-6 172 350 0.00075209979 1e-6 187 350 0.00031669997 1e-6 188 350 0.0003562998 1e-6 189 350 0.00011879999 1e-6 190 350 0.00011879999 1e-6 192 350 0.0002770999 1e-6 194 350 0.0001583 1e-6 197 350 0.00031669997 1e-6 198 350 0.0027313998 1e-6 200 350 7.9199992e-05 1e-6 201 350 3.9599996e-05 1e-6 203 350 7.9199992e-05 1e-6 204 350 3.9599996e-05 1e-6 206 350 0.0001583 1e-6 207 350 3.9599996e-05 1e-6 214 350 0.00047499989 1e-6 224 350 7.9199992e-05 1e-6 233 350 7.9199992e-05 1e-6 234 350 0.0058982 1e-6 237 350 0.0002770999 1e-6 240 350 0.00011879999 1e-6 241 350 0.0055022985 1e-6 242 350 0.0093420967 1e-6 248 350 3.9599996e-05 1e-6 250 350 3.9599996e-05 1e-6 252 350 0.00011879999 1e-6 270 350 0.00011879999 1e-6 271 350 3.9599996e-05 1e-6 272 350 0.0049480982 1e-6 276 350 3.9599996e-05 1e-6 277 350 0.040376898 1e-6 282 350 0.067809343 1e-6 283 350 0.010410897 1e-6 284 350 0.0016229998 1e-6 285 350 3.9599996e-05 1e-6 286 350 0.0013458999 1e-6 289 350 0.00011879999 1e-6 290 350 0.00019789999 1e-6 292 350 0.0043147989 1e-6 293 350 0.0012667 1e-6 294 350 0.0060564987 1e-6 295 350 0.0027313998 1e-6 296 350 0.0068085976 1e-6 297 350 0.0090649985 1e-6 298 350 0.0001583 1e-6 299 350 0.0019792998 1e-6 304 350 0.0001583 1e-6 305 350 0.00011879999 1e-6 307 350 0.0129839 1e-6 308 350 7.9199992e-05 1e-6 312 350 0.013894398 1e-6 313 350 7.9199992e-05 1e-6 315 350 0.0005541998 1e-6 317 350 3.9599996e-05 1e-6 320 350 0.00019789999 1e-6 321 350 0.0012270999 1e-6 322 350 0.00011879999 1e-6 324 350 0.014369398 1e-6 326 350 0.00019789999 1e-6 327 350 0.00039589987 1e-6 328 350 0.0134985 1e-6 329 350 7.9199992e-05 1e-6 331 350 0.0003562998 1e-6 332 350 0.00019789999 1e-6 333 350 0.0003562998 1e-6 338 350 0.0017021999 1e-6 339 350 3.9599996e-05 1e-6 340 350 0.010252599 1e-6 341 350 0.0002770999 1e-6 349 350 0.00011879999 1e-6 350 350 0.028738797 1e-6 351 350 0.010410897 1e-6 352 350 0.0001583 1e-6 353 350 3.9599996e-05 1e-6 354 350 0.014092296 1e-6 355 350 3.9599996e-05 1e-6 356 350 0.0033251999 1e-6 357 350 0.00011879999 1e-6 358 350 0.016665298 1e-6 366 350 0.00011879999 1e-6 367 350 0.0002770999 1e-6 368 350 7.9199992e-05 1e-6 369 350 3.9599996e-05 1e-6 370 350 0.0026521999 1e-6 371 350 0.004987698 1e-6 372 350 0.049164798 1e-6 373 350 0.0027709999 1e-6 375 350 7.9199992e-05 1e-6 376 350 0.0001583 1e-6 384 350 3.9599996e-05 1e-6 386 350 7.9199992e-05 1e-6 387 350 0.00011879999 1e-6 390 350 3.9599996e-05 1e-6 392 350 3.9599996e-05 1e-6 393 350 0.00094999978 1e-6 397 350 0.00047499989 1e-6 398 350 7.9199992e-05 1e-6 401 350 3.9599996e-05 1e-6 402 350 0.00071249995 1e-6 404 350 0.00019789999 1e-6 405 350 0.00019789999 1e-6 408 350 0.00011879999 1e-6 413 350 3.9599996e-05 1e-6 414 350 0.0016229998 1e-6 415 350 0.00011879999 1e-6 417 350 0.00043539982 1e-6 419 350 7.9199992e-05 1e-6 421 350 7.9199992e-05 1e-6 422 350 0.0001583 1e-6 423 350 3.9599996e-05 1e-6 425 350 3.9599996e-05 1e-6 430 350 7.9199992e-05 1e-6 431 350 3.9599996e-05 1e-6 433 350 3.9599996e-05 1e-6 434 350 3.9599996e-05 1e-6 443 350 0.0019397 1e-6 444 350 0.0020979999 1e-6 445 350 0.0053439997 1e-6 446 350 0.00023749999 1e-6 447 350 0.0041959994 1e-6 450 350 0.0051064976 1e-6 452 350 0.0054231994 1e-6 453 350 0.0018208998 1e-6 454 350 0.0005541998 1e-6 455 350 0.033924498 1e-6 456 350 0.00091049983 1e-6 457 350 0.0037606 1e-6 458 350 0.00083129993 1e-6 459 350 0.0013062998 1e-6 460 350 0.00098959985 1e-6 463 350 0.0067690983 1e-6 464 350 0.00067289989 1e-6 465 350 0.0011083998 1e-6 467 350 0.011083797 1e-6 468 350 0.004275199 1e-6 469 350 0.0088274963 1e-6 470 350 0.0099358968 1e-6 471 350 0.0026917998 1e-6 473 350 0.00023749999 1e-6 477 350 0.00011879999 1e-6 478 350 0.0011876 1e-6 483 350 0.0016229998 1e-6 489 350 3.9599996e-05 1e-6 490 350 0.0008709 1e-6 491 350 0.0044334978 1e-6 18 351 0.0001394 1e-6 19 351 0.00027889991 1e-6 22 351 0.00034859986 1e-6 60 351 0.003973797 1e-6 82 351 6.9699992e-05 1e-6 108 351 6.9699992e-05 1e-6 114 351 6.9699992e-05 1e-6 126 351 6.9699992e-05 1e-6 150 351 0.00069719995 1e-6 160 351 0.0016035 1e-6 169 351 0.00034859986 1e-6 172 351 0.00027889991 1e-6 189 351 6.9699992e-05 1e-6 190 351 0.0001394 1e-6 192 351 6.9699992e-05 1e-6 194 351 0.00020909999 1e-6 198 351 0.0052286983 1e-6 200 351 6.9699992e-05 1e-6 203 351 6.9699992e-05 1e-6 204 351 6.9699992e-05 1e-6 206 351 0.00020909999 1e-6 207 351 6.9699992e-05 1e-6 214 351 0.00020909999 1e-6 234 351 0.011851598 1e-6 237 351 0.0001394 1e-6 270 351 0.0073200986 1e-6 277 351 0.15184045 1e-6 278 351 6.9699992e-05 1e-6 282 351 0.0098995976 1e-6 283 351 0.015616298 1e-6 284 351 0.0018125998 1e-6 285 351 0.00034859986 1e-6 286 351 0.0011153999 1e-6 290 351 6.9699992e-05 1e-6 292 351 0.0020217998 1e-6 294 351 0.0001394 1e-6 296 351 0.0010456999 1e-6 297 351 0.0039040998 1e-6 299 351 0.0001394 1e-6 312 351 0.0025795 1e-6 320 351 0.0013245998 1e-6 338 351 0.0009062998 1e-6 340 351 0.025306698 1e-6 341 351 0.0001394 1e-6 351 351 0.075711071 1e-6 354 351 0.00244 1e-6 356 351 0.0001394 1e-6 358 351 0.0092721991 1e-6 372 351 0.00083659985 1e-6 384 351 6.9699992e-05 1e-6 387 351 6.9699992e-05 1e-6 402 351 6.9699992e-05 1e-6 417 351 0.00048799999 1e-6 421 351 6.9699992e-05 1e-6 422 351 6.9699992e-05 1e-6 430 351 6.9699992e-05 1e-6 433 351 6.9699992e-05 1e-6 434 351 6.9699992e-05 1e-6 443 351 0.0036251999 1e-6 444 351 0.00020909999 1e-6 445 351 0.0047406964 1e-6 446 351 0.00069719995 1e-6 447 351 0.00069719995 1e-6 450 351 0.0039040998 1e-6 452 351 0.0092721991 1e-6 453 351 0.0041828975 1e-6 454 351 0.0010456999 1e-6 455 351 0.024888497 1e-6 456 351 0.0007668999 1e-6 457 351 0.0036251999 1e-6 458 351 0.00020909999 1e-6 459 351 0.0011153999 1e-6 460 351 0.0011851999 1e-6 463 351 0.0046011992 1e-6 464 351 0.00027889991 1e-6 465 351 0.0010456999 1e-6 467 351 0.0087841973 1e-6 468 351 0.0020217998 1e-6 469 351 0.003973797 1e-6 470 351 0.0043920986 1e-6 471 351 0.0011851999 1e-6 473 351 0.0001394 1e-6 477 351 6.9699992e-05 1e-6 478 351 0.0012548999 1e-6 483 351 0.001464 1e-6 489 351 6.9699992e-05 1e-6 490 351 0.00041829981 1e-6 491 351 0.0029280998 1e-6 24 352 0.000141 1e-6 25 352 0.000141 1e-6 60 352 0.0018324999 1e-6 82 352 0.000141 1e-6 108 352 0.000141 1e-6 114 352 0.000141 1e-6 126 352 0.000141 1e-6 130 352 0.00070479978 1e-6 131 352 0.00042289984 1e-6 135 352 0.0087397993 1e-6 138 352 0.00028189993 1e-6 139 352 0.000141 1e-6 142 352 0.00042289984 1e-6 150 352 0.000141 1e-6 160 352 0.0029602 1e-6 169 352 0.00042289984 1e-6 172 352 0.00098669995 1e-6 187 352 0.00056389999 1e-6 188 352 0.000141 1e-6 189 352 0.000141 1e-6 190 352 0.000141 1e-6 192 352 0.000141 1e-6 193 352 0.00028189993 1e-6 194 352 0.00042289984 1e-6 198 352 0.0028192999 1e-6 206 352 0.00028189993 1e-6 214 352 0.0014095998 1e-6 219 352 0.00098669995 1e-6 223 352 0.000141 1e-6 224 352 0.00084579992 1e-6 229 352 0.000141 1e-6 233 352 0.00028189993 1e-6 234 352 0.0056385994 1e-6 236 352 0.00042289984 1e-6 237 352 0.000141 1e-6 240 352 0.00028189993 1e-6 241 352 0.0014095998 1e-6 242 352 0.0031011999 1e-6 252 352 0.00056389999 1e-6 270 352 0.00028189993 1e-6 271 352 0.000141 1e-6 272 352 0.00070479978 1e-6 273 352 0.000141 1e-6 277 352 0.07569778 1e-6 279 352 0.000141 1e-6 282 352 0.015083198 1e-6 283 352 0.0022553999 1e-6 284 352 0.0015505999 1e-6 285 352 0.0014095998 1e-6 286 352 0.00028189993 1e-6 289 352 0.00056389999 1e-6 292 352 0.014237396 1e-6 293 352 0.011136197 1e-6 294 352 0.00042289984 1e-6 295 352 0.021003697 1e-6 296 352 0.0057794973 1e-6 297 352 0.00070479978 1e-6 298 352 0.0097264983 1e-6 300 352 0.000141 1e-6 304 352 0.00028189993 1e-6 307 352 0.00070479978 1e-6 312 352 0.0139555 1e-6 315 352 0.0081758983 1e-6 317 352 0.000141 1e-6 320 352 0.0029602 1e-6 321 352 0.0043698996 1e-6 322 352 0.0067662969 1e-6 324 352 0.0098674968 1e-6 325 352 0.000141 1e-6 326 352 0.0094445981 1e-6 327 352 0.000141 1e-6 328 352 0.011277098 1e-6 331 352 0.000141 1e-6 335 352 0.00028189993 1e-6 338 352 0.000141 1e-6 339 352 0.00098669995 1e-6 340 352 0.0046517998 1e-6 349 352 0.00056389999 1e-6 350 352 0.00042289984 1e-6 351 352 0.0094445981 1e-6 352 352 0.037073597 1e-6 353 352 0.0018324999 1e-6 354 352 0.015224099 1e-6 355 352 0.000141 1e-6 356 352 0.00028189993 1e-6 358 352 0.0059204996 1e-6 366 352 0.0011276999 1e-6 370 352 0.0018324999 1e-6 371 352 0.0014095998 1e-6 372 352 0.033549499 1e-6 373 352 0.0023963999 1e-6 380 352 0.000141 1e-6 386 352 0.00028189993 1e-6 387 352 0.000141 1e-6 393 352 0.00028189993 1e-6 402 352 0.000141 1e-6 414 352 0.000141 1e-6 415 352 0.0018324999 1e-6 416 352 0.00028189993 1e-6 417 352 0.00070479978 1e-6 419 352 0.0012687 1e-6 422 352 0.00028189993 1e-6 430 352 0.000141 1e-6 443 352 0.0035240999 1e-6 444 352 0.00056389999 1e-6 445 352 0.0063433982 1e-6 446 352 0.00028189993 1e-6 447 352 0.0067662969 1e-6 450 352 0.0039469972 1e-6 452 352 0.0047927983 1e-6 453 352 0.0025374 1e-6 454 352 0.00042289984 1e-6 455 352 0.043698899 1e-6 456 352 0.00084579992 1e-6 457 352 0.0038059999 1e-6 458 352 0.00070479978 1e-6 459 352 0.0012687 1e-6 460 352 0.00084579992 1e-6 463 352 0.021567497 1e-6 464 352 0.00056389999 1e-6 465 352 0.00098669995 1e-6 467 352 0.0091626979 1e-6 468 352 0.0070481971 1e-6 469 352 0.0057794973 1e-6 470 352 0.0064843968 1e-6 471 352 0.0011276999 1e-6 473 352 0.000141 1e-6 477 352 0.000141 1e-6 478 352 0.0012687 1e-6 483 352 0.0012687 1e-6 490 352 0.00070479978 1e-6 491 352 0.0043698996 1e-6 21 353 0.0020937999 1e-6 24 353 0.0033500998 1e-6 60 353 0.0054438971 1e-6 114 353 0.00041879993 1e-6 160 353 0.023031797 1e-6 165 353 0.0037687998 1e-6 169 353 0.00041879993 1e-6 198 353 0.00083749997 1e-6 206 353 0.00083749997 1e-6 214 353 0.00041879993 1e-6 223 353 0.0012562999 1e-6 234 353 0.0058625974 1e-6 257 353 0.0012562999 1e-6 270 353 0.0012562999 1e-6 272 353 0.00041879993 1e-6 277 353 0.015912898 1e-6 278 353 0.0029312999 1e-6 282 353 0.0196817 1e-6 283 353 0.00041879993 1e-6 284 353 0.0029312999 1e-6 286 353 0.0025125998 1e-6 288 353 0.0020937999 1e-6 289 353 0.011306498 1e-6 290 353 0.00083749997 1e-6 293 353 0.0041875988 1e-6 296 353 0.015075397 1e-6 297 353 0.0016749999 1e-6 326 353 0.00041879993 1e-6 340 353 0.010887798 1e-6 349 353 0.00041879993 1e-6 351 353 0.00041879993 1e-6 353 353 0.0087939985 1e-6 354 353 0.0016749999 1e-6 356 353 0.00041879993 1e-6 358 353 0.0062813982 1e-6 374 353 0.00041879993 1e-6 375 353 0.0016749999 1e-6 417 353 0.00041879993 1e-6 443 353 0.0050251 1e-6 444 353 0.00041879993 1e-6 445 353 0.0046063997 1e-6 447 353 0.0029312999 1e-6 450 353 0.0046063997 1e-6 452 353 0.0096314996 1e-6 453 353 0.0058625974 1e-6 454 353 0.00041879993 1e-6 455 353 0.048576199 1e-6 456 353 0.00041879993 1e-6 457 353 0.0033500998 1e-6 459 353 0.00083749997 1e-6 460 353 0.0016749999 1e-6 463 353 0.010887798 1e-6 464 353 0.00041879993 1e-6 465 353 0.00041879993 1e-6 467 353 0.011306498 1e-6 468 353 0.0020937999 1e-6 469 353 0.0037687998 1e-6 470 353 0.0041875988 1e-6 471 353 0.0020937999 1e-6 478 353 0.0012562999 1e-6 483 353 0.00083749997 1e-6 490 353 0.00041879993 1e-6 491 353 0.0062813982 1e-6 9 354 6.2399995e-05 1e-6 18 354 0.00012479999 1e-6 22 354 0.00018729999 1e-6 60 354 0.002809 1e-6 82 354 6.2399995e-05 1e-6 83 354 6.2399995e-05 1e-6 84 354 6.2399995e-05 1e-6 108 354 6.2399995e-05 1e-6 113 354 0.00012479999 1e-6 114 354 0.00018729999 1e-6 126 354 6.2399995e-05 1e-6 135 354 6.2399995e-05 1e-6 139 354 6.2399995e-05 1e-6 142 354 6.2399995e-05 1e-6 150 354 0.00062419986 1e-6 160 354 0.0013108999 1e-6 169 354 0.00037449994 1e-6 171 354 6.2399995e-05 1e-6 172 354 0.0010611999 1e-6 184 354 6.2399995e-05 1e-6 189 354 6.2399995e-05 1e-6 190 354 0.00012479999 1e-6 192 354 6.2399995e-05 1e-6 194 354 0.00012479999 1e-6 198 354 0.0035581 1e-6 200 354 6.2399995e-05 1e-6 203 354 6.2399995e-05 1e-6 204 354 6.2399995e-05 1e-6 206 354 0.00024969992 1e-6 207 354 6.2399995e-05 1e-6 214 354 0.00037449994 1e-6 224 354 0.00018729999 1e-6 233 354 0.00068659987 1e-6 234 354 0.0079275966 1e-6 237 354 0.00012479999 1e-6 240 354 0.00018729999 1e-6 241 354 0.00037449994 1e-6 242 354 0.0035581 1e-6 252 354 6.2399995e-05 1e-6 270 354 0.0015604999 1e-6 271 354 0.00012479999 1e-6 272 354 0.0025592998 1e-6 276 354 6.2399995e-05 1e-6 277 354 0.070661664 1e-6 278 354 0.00012479999 1e-6 282 354 0.037702899 1e-6 283 354 0.0360175 1e-6 284 354 0.0017477998 1e-6 285 354 0.0019975 1e-6 286 354 0.0043070987 1e-6 289 354 0.00018729999 1e-6 290 354 6.2399995e-05 1e-6 292 354 0.0054306984 1e-6 293 354 0.00043699984 1e-6 294 354 0.0059924982 1e-6 295 354 0.0012484 1e-6 296 354 0.0045567974 1e-6 297 354 0.0068663992 1e-6 298 354 0.0013108999 1e-6 299 354 0.0053682998 1e-6 303 354 6.2399995e-05 1e-6 304 354 6.2399995e-05 1e-6 305 354 6.2399995e-05 1e-6 307 354 0.00024969992 1e-6 308 354 6.2399995e-05 1e-6 312 354 0.0077402964 1e-6 313 354 0.00018729999 1e-6 315 354 0.00068659987 1e-6 317 354 6.2399995e-05 1e-6 318 354 6.2399995e-05 1e-6 319 354 0.00012479999 1e-6 320 354 0.0018726999 1e-6 322 354 6.2399995e-05 1e-6 324 354 0.00056179985 1e-6 326 354 0.00012479999 1e-6 327 354 0.00049939984 1e-6 328 354 0.00043699984 1e-6 333 354 0.00031209993 1e-6 335 354 0.00012479999 1e-6 338 354 0.0022471999 1e-6 340 354 0.011235997 1e-6 341 354 0.00037449994 1e-6 342 354 6.2399995e-05 1e-6 343 354 6.2399995e-05 1e-6 349 354 6.2399995e-05 1e-6 350 354 0.00018729999 1e-6 351 354 0.019350797 1e-6 352 354 0.00031209993 1e-6 353 354 0.00024969992 1e-6 354 354 0.029587999 1e-6 356 354 0.00018729999 1e-6 357 354 0.00024969992 1e-6 358 354 0.026841398 1e-6 366 354 0.0007491 1e-6 371 354 0.00037449994 1e-6 372 354 0.012983799 1e-6 373 354 0.00068659987 1e-6 375 354 0.00012479999 1e-6 376 354 0.00012479999 1e-6 386 354 6.2399995e-05 1e-6 387 354 6.2399995e-05 1e-6 390 354 0.00018729999 1e-6 392 354 6.2399995e-05 1e-6 393 354 0.00018729999 1e-6 397 354 0.00031209993 1e-6 398 354 6.2399995e-05 1e-6 401 354 6.2399995e-05 1e-6 402 354 0.00099879992 1e-6 404 354 0.0068039969 1e-6 405 354 0.0016229998 1e-6 413 354 6.2399995e-05 1e-6 414 354 0.00031209993 1e-6 415 354 6.2399995e-05 1e-6 417 354 0.00043699984 1e-6 419 354 6.2399995e-05 1e-6 421 354 6.2399995e-05 1e-6 422 354 6.2399995e-05 1e-6 423 354 6.2399995e-05 1e-6 430 354 6.2399995e-05 1e-6 431 354 6.2399995e-05 1e-6 433 354 6.2399995e-05 1e-6 434 354 6.2399995e-05 1e-6 443 354 0.0022471999 1e-6 444 354 0.00049939984 1e-6 445 354 0.0036829 1e-6 446 354 0.00018729999 1e-6 447 354 0.0025592998 1e-6 450 354 0.0041822977 1e-6 452 354 0.0069287978 1e-6 453 354 0.0029962999 1e-6 454 354 0.00056179985 1e-6 455 354 0.023969997 1e-6 456 354 0.00087389979 1e-6 457 354 0.0036829 1e-6 458 354 0.00099879992 1e-6 459 354 0.00087389979 1e-6 460 354 0.001186 1e-6 463 354 0.007116098 1e-6 464 354 0.00037449994 1e-6 465 354 0.0013732999 1e-6 467 354 0.010798998 1e-6 468 354 0.0041198991 1e-6 469 354 0.006242197 1e-6 470 354 0.0076154992 1e-6 471 354 0.0028714 1e-6 472 354 0.001186 1e-6 473 354 0.00018729999 1e-6 477 354 6.2399995e-05 1e-6 478 354 0.0013108999 1e-6 483 354 0.0015604999 1e-6 489 354 6.2399995e-05 1e-6 490 354 0.00068659987 1e-6 491 354 0.0050561987 1e-6 60 355 0.0024044998 1e-6 108 355 0.00026719994 1e-6 114 355 0.00053429999 1e-6 126 355 0.00026719994 1e-6 160 355 0.0024044998 1e-6 187 355 0.00080149993 1e-6 188 355 0.00080149993 1e-6 189 355 0.00026719994 1e-6 192 355 0.00053429999 1e-6 194 355 0.00026719994 1e-6 197 355 0.00053429999 1e-6 198 355 0.00026719994 1e-6 206 355 0.00053429999 1e-6 214 355 0.00080149993 1e-6 223 355 0.00080149993 1e-6 233 355 0.00026719994 1e-6 234 355 0.0050760992 1e-6 237 355 0.00026719994 1e-6 240 355 0.0053432994 1e-6 241 355 0.0029387998 1e-6 257 355 0.003206 1e-6 272 355 0.0029387998 1e-6 275 355 0.0042745993 1e-6 277 355 0.10633177 1e-6 282 355 0.009350799 1e-6 284 355 0.0018701998 1e-6 289 355 0.00026719994 1e-6 292 355 0.009350799 1e-6 293 355 0.0048089996 1e-6 294 355 0.0085492991 1e-6 295 355 0.00080149993 1e-6 307 355 0.015495598 1e-6 312 355 0.0085492991 1e-6 324 355 0.012022398 1e-6 328 355 0.00026719994 1e-6 339 355 0.0010686999 1e-6 340 355 0.003206 1e-6 349 355 0.00053429999 1e-6 350 355 0.0050760992 1e-6 351 355 0.00026719994 1e-6 352 355 0.0024044998 1e-6 354 355 0.015762798 1e-6 355 355 0.063585341 1e-6 356 355 0.0010686999 1e-6 358 355 0.0048089996 1e-6 366 355 0.00026719994 1e-6 370 355 0.0082820989 1e-6 371 355 0.014159799 1e-6 372 355 0.0037403 1e-6 373 355 0.0085492991 1e-6 374 355 0.00026719994 1e-6 387 355 0.00026719994 1e-6 393 355 0.018434398 1e-6 405 355 0.00026719994 1e-6 414 355 0.0050760992 1e-6 415 355 0.0040074997 1e-6 417 355 0.00053429999 1e-6 443 355 0.0029387998 1e-6 444 355 0.00026719994 1e-6 445 355 0.0045417994 1e-6 447 355 0.024846397 1e-6 450 355 0.0042745993 1e-6 452 355 0.0050760992 1e-6 453 355 0.0026717 1e-6 455 355 0.049425598 1e-6 456 355 0.00053429999 1e-6 457 355 0.0037403 1e-6 458 355 0.00080149993 1e-6 459 355 0.0010686999 1e-6 460 355 0.00080149993 1e-6 463 355 0.010419399 1e-6 464 355 0.00053429999 1e-6 465 355 0.0010686999 1e-6 467 355 0.010152299 1e-6 468 355 0.0013357999 1e-6 469 355 0.0082820989 1e-6 470 355 0.009350799 1e-6 471 355 0.00080149993 1e-6 473 355 0.00026719994 1e-6 478 355 0.0016029999 1e-6 483 355 0.0026717 1e-6 490 355 0.0010686999 1e-6 491 355 0.0029387998 1e-6 9 356 8.4999992e-05 1e-6 13 356 0.0001699 1e-6 19 356 8.4999992e-05 1e-6 21 356 0.0001699 1e-6 22 356 8.4999992e-05 1e-6 24 356 0.00042479998 1e-6 60 356 0.0028039999 1e-6 82 356 0.00025489996 1e-6 83 356 8.4999992e-05 1e-6 84 356 8.4999992e-05 1e-6 108 356 8.4999992e-05 1e-6 113 356 0.0001699 1e-6 114 356 0.0001699 1e-6 119 356 8.4999992e-05 1e-6 120 356 0.00050979992 1e-6 126 356 8.4999992e-05 1e-6 135 356 0.0056928992 1e-6 142 356 0.019203 1e-6 150 356 8.4999992e-05 1e-6 160 356 0.0011896 1e-6 172 356 0.00059479987 1e-6 187 356 0.0050131977 1e-6 189 356 0.0001699 1e-6 190 356 8.4999992e-05 1e-6 191 356 0.0030588999 1e-6 193 356 0.0001699 1e-6 194 356 0.0001699 1e-6 198 356 0.0046732984 1e-6 200 356 8.4999992e-05 1e-6 203 356 8.4999992e-05 1e-6 204 356 8.4999992e-05 1e-6 206 356 0.00025489996 1e-6 214 356 0.0029738999 1e-6 218 356 0.00025489996 1e-6 221 356 8.4999992e-05 1e-6 223 356 0.00025489996 1e-6 224 356 0.0031438998 1e-6 231 356 8.4999992e-05 1e-6 233 356 8.4999992e-05 1e-6 234 356 0.006542597 1e-6 236 356 0.0001699 1e-6 237 356 0.00033989991 1e-6 240 356 0.0023790998 1e-6 241 356 0.010366198 1e-6 242 356 0.00076469989 1e-6 252 356 0.0001699 1e-6 270 356 0.00025489996 1e-6 272 356 0.0041634999 1e-6 277 356 0.066700697 1e-6 278 356 0.0001699 1e-6 282 356 0.024641 1e-6 283 356 0.0045033991 1e-6 284 356 0.0017843 1e-6 285 356 8.4999992e-05 1e-6 286 356 0.00050979992 1e-6 289 356 0.00025489996 1e-6 290 356 0.00033989991 1e-6 292 356 0.007817097 1e-6 293 356 0.0069674999 1e-6 294 356 0.0024640998 1e-6 295 356 0.0075621977 1e-6 296 356 0.0033987998 1e-6 297 356 0.0057778992 1e-6 298 356 0.00042479998 1e-6 301 356 0.0001699 1e-6 304 356 0.00025489996 1e-6 305 356 8.4999992e-05 1e-6 307 356 0.0076471977 1e-6 312 356 0.0073922984 1e-6 315 356 0.010876 1e-6 317 356 8.4999992e-05 1e-6 320 356 0.0011045998 1e-6 321 356 0.00093469978 1e-6 322 356 0.00025489996 1e-6 324 356 0.0073922984 1e-6 326 356 0.00042479998 1e-6 328 356 0.00076469989 1e-6 329 356 0.00042479998 1e-6 338 356 0.0011896 1e-6 339 356 0.00050979992 1e-6 340 356 0.006457597 1e-6 341 356 0.0001699 1e-6 344 356 0.00025489996 1e-6 347 356 0.00025489996 1e-6 349 356 0.00050979992 1e-6 350 356 0.012150597 1e-6 351 356 0.005438 1e-6 352 356 0.0001699 1e-6 353 356 0.0001699 1e-6 354 356 0.022431798 1e-6 355 356 0.00050979992 1e-6 356 356 0.017333698 1e-6 357 356 8.4999992e-05 1e-6 358 356 0.017078798 1e-6 364 356 8.4999992e-05 1e-6 365 356 8.4999992e-05 1e-6 366 356 0.00033989991 1e-6 367 356 0.00025489996 1e-6 368 356 8.4999992e-05 1e-6 370 356 0.0029738999 1e-6 371 356 0.006542597 1e-6 372 356 0.015294399 1e-6 373 356 0.0070523992 1e-6 375 356 8.4999992e-05 1e-6 386 356 8.4999992e-05 1e-6 387 356 8.4999992e-05 1e-6 393 356 0.0042483993 1e-6 397 356 8.4999992e-05 1e-6 402 356 0.00033989991 1e-6 405 356 8.4999992e-05 1e-6 414 356 0.0035686998 1e-6 415 356 0.00025489996 1e-6 417 356 0.00042479998 1e-6 419 356 8.4999992e-05 1e-6 421 356 8.4999992e-05 1e-6 422 356 0.00025489996 1e-6 423 356 8.4999992e-05 1e-6 430 356 8.4999992e-05 1e-6 442 356 8.4999992e-05 1e-6 443 356 0.0028889 1e-6 444 356 0.0013595 1e-6 445 356 0.010026298 1e-6 446 356 0.0001699 1e-6 447 356 0.0039934963 1e-6 450 356 0.0084118992 1e-6 452 356 0.005438 1e-6 453 356 0.0014444999 1e-6 454 356 0.00025489996 1e-6 455 356 0.057438999 1e-6 456 356 0.00076469989 1e-6 457 356 0.0036537 1e-6 458 356 0.00067979982 1e-6 459 356 0.0013595 1e-6 460 356 0.0011045998 1e-6 463 356 0.021922 1e-6 464 356 0.00042479998 1e-6 465 356 0.0010195998 1e-6 467 356 0.015209399 1e-6 468 356 0.005098097 1e-6 469 356 0.0073072985 1e-6 470 356 0.0076471977 1e-6 471 356 0.0044183992 1e-6 473 356 0.0001699 1e-6 477 356 8.4999992e-05 1e-6 478 356 0.0011896 1e-6 483 356 0.0021241999 1e-6 490 356 0.00059479987 1e-6 491 356 0.0032287999 1e-6 19 357 0.0001127 1e-6 22 357 0.0002254 1e-6 60 357 0.0021412999 1e-6 108 357 0.0001127 1e-6 114 357 0.0002254 1e-6 126 357 0.0001127 1e-6 135 357 0.0003380999 1e-6 143 357 0.0001127 1e-6 150 357 0.0003380999 1e-6 160 357 0.0001127 1e-6 189 357 0.0001127 1e-6 190 357 0.0001127 1e-6 194 357 0.0002254 1e-6 198 357 0.0052969977 1e-6 200 357 0.0001127 1e-6 203 357 0.0001127 1e-6 206 357 0.0003380999 1e-6 214 357 0.00056349998 1e-6 223 357 0.0001127 1e-6 224 357 0.00045079994 1e-6 225 357 0.0002254 1e-6 233 357 0.0001127 1e-6 234 357 0.008452598 1e-6 237 357 0.0001127 1e-6 240 357 0.0013523998 1e-6 241 357 0.0025920998 1e-6 242 357 0.0019158998 1e-6 262 357 0.0001127 1e-6 270 357 0.0048461966 1e-6 271 357 0.0001127 1e-6 272 357 0.0020285998 1e-6 274 357 0.0002254 1e-6 277 357 0.062549293 1e-6 282 357 0.037529599 1e-6 283 357 0.0031555998 1e-6 284 357 0.0015777999 1e-6 286 357 0.00067619979 1e-6 288 357 0.0003380999 1e-6 289 357 0.0029302 1e-6 290 357 0.00067619979 1e-6 292 357 0.0041699968 1e-6 293 357 0.017355997 1e-6 294 357 0.0067620985 1e-6 295 357 0.0061985999 1e-6 296 357 0.010030396 1e-6 297 357 0.0032682999 1e-6 298 357 0.017130598 1e-6 299 357 0.0001127 1e-6 312 357 0.010931998 1e-6 313 357 0.0001127 1e-6 315 357 0.0032682999 1e-6 317 357 0.001127 1e-6 318 357 0.0010142999 1e-6 320 357 0.0123972 1e-6 321 357 0.00045079994 1e-6 322 357 0.0027047999 1e-6 324 357 0.00090159988 1e-6 326 357 0.001127 1e-6 328 357 0.00045079994 1e-6 338 357 0.0020285998 1e-6 340 357 0.015214697 1e-6 341 357 0.0003380999 1e-6 343 357 0.0003380999 1e-6 351 357 0.0013523998 1e-6 353 357 0.0003380999 1e-6 354 357 0.001127 1e-6 355 357 0.0001127 1e-6 356 357 0.0001127 1e-6 357 357 0.0024793998 1e-6 358 357 0.041699499 1e-6 370 357 0.00056349998 1e-6 372 357 0.0002254 1e-6 374 357 0.0001127 1e-6 375 357 0.0002254 1e-6 376 357 0.0003380999 1e-6 386 357 0.0001127 1e-6 387 357 0.0001127 1e-6 392 357 0.00056349998 1e-6 396 357 0.0002254 1e-6 397 357 0.0046207979 1e-6 398 357 0.00056349998 1e-6 402 357 0.00090159988 1e-6 417 357 0.00056349998 1e-6 421 357 0.0001127 1e-6 422 357 0.0001127 1e-6 442 357 0.0014650999 1e-6 443 357 0.0023667 1e-6 444 357 0.00078889984 1e-6 445 357 0.0065366998 1e-6 446 357 0.0002254 1e-6 447 357 0.0048461966 1e-6 450 357 0.0039445981 1e-6 452 357 0.0089033991 1e-6 453 357 0.0025920998 1e-6 454 357 0.00067619979 1e-6 455 357 0.020060897 1e-6 456 357 0.00056349998 1e-6 457 357 0.0032682999 1e-6 458 357 0.00078889984 1e-6 459 357 0.00045079994 1e-6 460 357 0.001127 1e-6 463 357 0.020962499 1e-6 464 357 0.00078889984 1e-6 465 357 0.001127 1e-6 467 357 0.0103685 1e-6 468 357 0.0034936999 1e-6 469 357 0.0039445981 1e-6 470 357 0.0043953992 1e-6 471 357 0.0029302 1e-6 473 357 0.0001127 1e-6 477 357 0.0001127 1e-6 478 357 0.0012396998 1e-6 483 357 0.0012396998 1e-6 490 357 0.0003380999 1e-6 491 357 0.0029302 1e-6 9 358 2.7899994e-05 1e-6 18 358 0.0001393 1e-6 22 358 0.00066889985 1e-6 60 358 0.0020344998 1e-6 79 358 2.7899994e-05 1e-6 82 358 2.7899994e-05 1e-6 83 358 2.7899994e-05 1e-6 84 358 2.7899994e-05 1e-6 108 358 2.7899994e-05 1e-6 113 358 5.5699988e-05 1e-6 114 358 8.3599996e-05 1e-6 126 358 5.5699988e-05 1e-6 127 358 2.7899994e-05 1e-6 135 358 0.001923 1e-6 142 358 2.7899994e-05 1e-6 143 358 0.00075249979 1e-6 150 358 0.0017278998 1e-6 151 358 2.7899994e-05 1e-6 160 358 0.00064099999 1e-6 169 358 0.00019509999 1e-6 172 358 0.00019509999 1e-6 187 358 2.7899994e-05 1e-6 189 358 8.3599996e-05 1e-6 190 358 0.0001393 1e-6 192 358 5.5699988e-05 1e-6 194 358 0.0001393 1e-6 196 358 2.7899994e-05 1e-6 197 358 2.7899994e-05 1e-6 198 358 0.0080264993 1e-6 200 358 8.3599996e-05 1e-6 201 358 5.5699988e-05 1e-6 203 358 8.3599996e-05 1e-6 204 358 0.0001393 1e-6 206 358 0.00019509999 1e-6 207 358 8.3599996e-05 1e-6 209 358 2.7899994e-05 1e-6 214 358 0.0026755 1e-6 218 358 2.7899994e-05 1e-6 219 358 2.7899994e-05 1e-6 223 358 0.00089179981 1e-6 224 358 2.7899994e-05 1e-6 229 358 0.00030659977 1e-6 233 358 0.00072459993 1e-6 234 358 0.0123742 1e-6 237 358 0.00030659977 1e-6 240 358 0.0016442998 1e-6 241 358 0.0037066999 1e-6 242 358 5.5699988e-05 1e-6 248 358 2.7899994e-05 1e-6 250 358 2.7899994e-05 1e-6 252 358 8.3599996e-05 1e-6 270 358 0.003929697 1e-6 271 358 2.7899994e-05 1e-6 272 358 0.000223 1e-6 274 358 0.0020623999 1e-6 277 358 0.061285898 1e-6 278 358 5.5699988e-05 1e-6 282 358 0.024163198 1e-6 283 358 0.0012262999 1e-6 284 358 0.0022852998 1e-6 285 358 5.5699988e-05 1e-6 286 358 0.00078039989 1e-6 288 358 0.00016719999 1e-6 289 358 0.00025079981 1e-6 290 358 0.0024247 1e-6 292 358 0.010562699 1e-6 293 358 0.0085002966 1e-6 294 358 0.0017000998 1e-6 295 358 0.0009476 1e-6 296 358 0.0073576979 1e-6 297 358 0.0024247 1e-6 298 358 0.0043476969 1e-6 299 358 2.7899994e-05 1e-6 307 358 0.00016719999 1e-6 312 358 0.008639697 1e-6 313 358 8.3599996e-05 1e-6 315 358 0.0054067969 1e-6 317 358 0.0022016999 1e-6 318 358 0.00041799992 1e-6 320 358 0.0042919964 1e-6 321 358 0.0009476 1e-6 322 358 0.0054903999 1e-6 324 358 0.0019508998 1e-6 326 358 0.0040410981 1e-6 328 358 0.0022016999 1e-6 333 358 2.7899994e-05 1e-6 335 358 2.7899994e-05 1e-6 338 358 0.0034000999 1e-6 339 358 0.00016719999 1e-6 340 358 0.014353 1e-6 341 358 0.00055739982 1e-6 343 358 0.003205 1e-6 345 358 2.7899994e-05 1e-6 347 358 2.7899994e-05 1e-6 349 358 2.7899994e-05 1e-6 350 358 0.00025079981 1e-6 351 358 0.0048771985 1e-6 352 358 2.7899994e-05 1e-6 353 358 0.00097539998 1e-6 354 358 0.0049329996 1e-6 355 358 0.0010868998 1e-6 356 358 0.00025079981 1e-6 357 358 0.00030659977 1e-6 358 358 0.0624565 1e-6 359 358 0.00025079981 1e-6 366 358 0.0001393 1e-6 370 358 0.0043755993 1e-6 371 358 2.7899994e-05 1e-6 372 358 0.00066889985 1e-6 373 358 0.00030659977 1e-6 374 358 0.00083609996 1e-6 375 358 5.5699988e-05 1e-6 376 358 0.0024803998 1e-6 384 358 2.7899994e-05 1e-6 386 358 5.5699988e-05 1e-6 387 358 5.5699988e-05 1e-6 390 358 8.3599996e-05 1e-6 392 358 0.0001393 1e-6 393 358 0.00011149999 1e-6 394 358 2.7899994e-05 1e-6 397 358 0.00016719999 1e-6 398 358 0.0051001981 1e-6 401 358 5.5699988e-05 1e-6 402 358 0.0027590999 1e-6 404 358 5.5699988e-05 1e-6 405 358 0.000223 1e-6 417 358 0.00064099999 1e-6 419 358 2.7899994e-05 1e-6 421 358 8.3599996e-05 1e-6 422 358 0.00011149999 1e-6 423 358 2.7899994e-05 1e-6 425 358 2.7899994e-05 1e-6 430 358 2.7899994e-05 1e-6 431 358 5.5699988e-05 1e-6 432 358 2.7899994e-05 1e-6 433 358 5.5699988e-05 1e-6 434 358 5.5699988e-05 1e-6 442 358 0.0006130999 1e-6 443 358 0.0028426999 1e-6 444 358 0.0027033999 1e-6 445 358 0.0071346983 1e-6 446 358 0.0006130999 1e-6 447 358 0.0074133985 1e-6 448 358 0.00011149999 1e-6 450 358 0.0051280968 1e-6 452 358 0.008054398 1e-6 453 358 0.0025082999 1e-6 454 358 0.0001393 1e-6 455 358 0.021376196 1e-6 456 358 0.0012540999 1e-6 457 358 0.0051558986 1e-6 458 358 0.00047379988 1e-6 459 358 0.00030659977 1e-6 460 358 0.0011983998 1e-6 463 358 0.018505599 1e-6 464 358 0.0019508998 1e-6 465 358 0.0012262999 1e-6 467 358 0.012151297 1e-6 468 358 0.0026755 1e-6 469 358 0.0046820976 1e-6 470 358 0.0072739981 1e-6 471 358 0.0020344998 1e-6 473 358 0.00011149999 1e-6 477 358 0.00011149999 1e-6 478 358 0.0015886 1e-6 483 358 0.0011704999 1e-6 489 358 8.3599996e-05 1e-6 490 358 0.00039019994 1e-6 491 358 0.0012540999 1e-6 9 359 3.2899989e-05 1e-6 16 359 1.6399994e-05 1e-6 18 359 6.5799992e-05 1e-6 22 359 1.6399994e-05 1e-6 24 359 1.6399994e-05 1e-6 60 359 0.0012828 1e-6 76 359 1.6399994e-05 1e-6 79 359 1.6399994e-05 1e-6 82 359 8.2199986e-05 1e-6 83 359 6.5799992e-05 1e-6 84 359 6.5799992e-05 1e-6 104 359 0.0001316 1e-6 108 359 9.8699995e-05 1e-6 113 359 0.0001316 1e-6 114 359 0.00032889983 1e-6 126 359 0.00014799999 1e-6 127 359 3.2899989e-05 1e-6 130 359 8.2199986e-05 1e-6 142 359 4.9299997e-05 1e-6 143 359 1.6399994e-05 1e-6 150 359 0.0002795998 1e-6 151 359 1.6399994e-05 1e-6 160 359 0.0002138 1e-6 169 359 1.6399994e-05 1e-6 175 359 8.2199986e-05 1e-6 187 359 0.0024174999 1e-6 188 359 0.00026309979 1e-6 189 359 9.8699995e-05 1e-6 190 359 8.2199986e-05 1e-6 192 359 0.00014799999 1e-6 193 359 6.5799992e-05 1e-6 194 359 0.00037829997 1e-6 196 359 1.6399994e-05 1e-6 197 359 3.2899989e-05 1e-6 198 359 0.0017104 1e-6 200 359 0.0001316 1e-6 201 359 6.5799992e-05 1e-6 203 359 0.00075649982 1e-6 204 359 9.8699995e-05 1e-6 206 359 0.0009209998 1e-6 207 359 6.5799992e-05 1e-6 208 359 3.2899989e-05 1e-6 209 359 1.6399994e-05 1e-6 214 359 0.00078939996 1e-6 219 359 0.00026309979 1e-6 221 359 0.0001316 1e-6 223 359 0.0002138 1e-6 224 359 0.00069069979 1e-6 233 359 0.0002138 1e-6 234 359 0.0015787999 1e-6 237 359 0.00011509999 1e-6 240 359 0.00052629993 1e-6 241 359 0.010936398 1e-6 248 359 4.9299997e-05 1e-6 250 359 3.2899989e-05 1e-6 251 359 1.6399994e-05 1e-6 252 359 0.0013485998 1e-6 262 359 0.0001316 1e-6 263 359 1.6399994e-05 1e-6 276 359 0.00059199985 1e-6 277 359 0.0052296966 1e-6 282 359 0.00064139999 1e-6 283 359 3.2899989e-05 1e-6 284 359 8.2199986e-05 1e-6 285 359 0.00011509999 1e-6 289 359 9.8699995e-05 1e-6 290 359 8.2199986e-05 1e-6 292 359 0.00050979992 1e-6 293 359 0.0023846 1e-6 294 359 0.0014142999 1e-6 295 359 0.0109693 1e-6 296 359 0.0025326 1e-6 297 359 6.5799992e-05 1e-6 298 359 0.0013649999 1e-6 299 359 0.00054269983 1e-6 305 359 1.6399994e-05 1e-6 308 359 0.0045883991 1e-6 312 359 0.0045883991 1e-6 315 359 0.010837696 1e-6 317 359 1.6399994e-05 1e-6 319 359 6.5799992e-05 1e-6 320 359 0.0058875978 1e-6 321 359 0.0013813998 1e-6 322 359 0.0020227998 1e-6 325 359 0.00011509999 1e-6 326 359 0.0016445999 1e-6 338 359 0.00014799999 1e-6 340 359 0.0028450999 1e-6 341 359 1.6399994e-05 1e-6 347 359 3.2899989e-05 1e-6 351 359 0.00083869998 1e-6 354 359 0.0011840998 1e-6 356 359 0.0001316 1e-6 358 359 0.0023516999 1e-6 359 359 0.17314076 1e-6 360 359 3.2899989e-05 1e-6 361 359 0.00083869998 1e-6 363 359 1.6399994e-05 1e-6 369 359 0.0001809 1e-6 370 359 9.8699995e-05 1e-6 371 359 0.0025819999 1e-6 372 359 0.0053119995 1e-6 373 359 0.011166699 1e-6 375 359 8.2199986e-05 1e-6 376 359 0.0036181 1e-6 380 359 3.2899989e-05 1e-6 384 359 1.6399994e-05 1e-6 386 359 0.0043580979 1e-6 387 359 0.00014799999 1e-6 389 359 0.0013649999 1e-6 390 359 0.00077299983 1e-6 391 359 0.0004276 1e-6 392 359 0.049254999 1e-6 393 359 0.061112396 1e-6 394 359 1.6399994e-05 1e-6 396 359 3.2899989e-05 1e-6 397 359 1.6399994e-05 1e-6 402 359 6.5799992e-05 1e-6 404 359 4.9299997e-05 1e-6 405 359 9.8699995e-05 1e-6 417 359 0.00019729999 1e-6 419 359 0.0010032 1e-6 421 359 1.6399994e-05 1e-6 422 359 0.00011509999 1e-6 423 359 4.9299997e-05 1e-6 425 359 3.2899989e-05 1e-6 430 359 9.8699995e-05 1e-6 431 359 3.2899989e-05 1e-6 432 359 1.6399994e-05 1e-6 433 359 3.2899989e-05 1e-6 434 359 4.9299997e-05 1e-6 441 359 0.00047689979 1e-6 442 359 0.00062489999 1e-6 443 359 0.00090449979 1e-6 444 359 0.0027957999 1e-6 445 359 0.0027792999 1e-6 446 359 0.0001316 1e-6 447 359 0.010656796 1e-6 448 359 1.6399994e-05 1e-6 449 359 3.2899989e-05 1e-6 450 359 0.0061013997 1e-6 452 359 0.0042100996 1e-6 453 359 0.00074009993 1e-6 454 359 0.0002795998 1e-6 455 359 0.032578997 1e-6 456 359 0.0012828 1e-6 457 359 0.0062165 1e-6 458 359 0.0002795998 1e-6 459 359 0.0022859999 1e-6 460 359 0.0011347998 1e-6 463 359 0.042676698 1e-6 464 359 0.0028615999 1e-6 465 359 0.0019898999 1e-6 467 359 0.008913599 1e-6 468 359 0.0056737997 1e-6 469 359 0.0044567995 1e-6 470 359 0.016478598 1e-6 471 359 0.0026641998 1e-6 472 359 0.00014799999 1e-6 473 359 0.00034539984 1e-6 477 359 0.00023019999 1e-6 478 359 0.0015129999 1e-6 483 359 0.0012663 1e-6 489 359 4.9299997e-05 1e-6 490 359 0.0016116998 1e-6 491 359 0.0001809 1e-6 9 360 0.00013569999 1e-6 22 360 0.00054289983 1e-6 60 360 0.0039358996 1e-6 82 360 0.00013569999 1e-6 83 360 0.00013569999 1e-6 84 360 0.00013569999 1e-6 108 360 0.00013569999 1e-6 113 360 0.00027139997 1e-6 114 360 0.00040719984 1e-6 126 360 0.00013569999 1e-6 175 360 0.00027139997 1e-6 187 360 0.0008142998 1e-6 189 360 0.00013569999 1e-6 190 360 0.00013569999 1e-6 194 360 0.0008142998 1e-6 198 360 0.0013571999 1e-6 200 360 0.00013569999 1e-6 206 360 0.0023073 1e-6 214 360 0.0010857999 1e-6 221 360 0.00013569999 1e-6 223 360 0.00013569999 1e-6 224 360 0.00013569999 1e-6 234 360 0.0016286999 1e-6 237 360 0.00013569999 1e-6 240 360 0.00067859981 1e-6 241 360 0.0089576989 1e-6 252 360 0.00054289983 1e-6 262 360 0.00013569999 1e-6 277 360 0.012486398 1e-6 279 360 0.00027139997 1e-6 282 360 0.0010857999 1e-6 283 360 0.0036644998 1e-6 284 360 0.0009500999 1e-6 290 360 0.00027139997 1e-6 292 360 0.0062431991 1e-6 293 360 0.0008142998 1e-6 294 360 0.0016286999 1e-6 295 360 0.0021715998 1e-6 296 360 0.0021715998 1e-6 298 360 0.0009500999 1e-6 299 360 0.00067859981 1e-6 308 360 0.0044787973 1e-6 312 360 0.0047502965 1e-6 315 360 0.010450598 1e-6 320 360 0.0059717968 1e-6 321 360 0.00027139997 1e-6 322 360 0.00013569999 1e-6 326 360 0.0017643999 1e-6 340 360 0.006107498 1e-6 341 360 0.00013569999 1e-6 351 360 0.0012214999 1e-6 354 360 0.0013571999 1e-6 358 360 0.0096362978 1e-6 359 360 0.046552699 1e-6 360 360 0.010450598 1e-6 361 360 0.0008142998 1e-6 362 360 0.00040719984 1e-6 363 360 0.00013569999 1e-6 364 360 0.00013569999 1e-6 366 360 0.00013569999 1e-6 369 360 0.0019000999 1e-6 370 360 0.00013569999 1e-6 371 360 0.0028501998 1e-6 372 360 0.0065146983 1e-6 373 360 0.011807799 1e-6 376 360 0.0036644998 1e-6 386 360 0.0057002977 1e-6 387 360 0.00027139997 1e-6 390 360 0.00013569999 1e-6 391 360 0.0044787973 1e-6 392 360 0.086862087 1e-6 393 360 0.061753497 1e-6 417 360 0.00040719984 1e-6 419 360 0.00013569999 1e-6 423 360 0.00013569999 1e-6 424 360 0.00013569999 1e-6 430 360 0.00013569999 1e-6 431 360 0.00013569999 1e-6 434 360 0.0009500999 1e-6 441 360 0.0044787973 1e-6 443 360 0.00067859981 1e-6 444 360 0.0016286999 1e-6 445 360 0.0021715998 1e-6 447 360 0.010179199 1e-6 450 360 0.006107498 1e-6 452 360 0.0033930999 1e-6 453 360 0.00054289983 1e-6 454 360 0.00040719984 1e-6 455 360 0.026330099 1e-6 456 360 0.00067859981 1e-6 457 360 0.0055645965 1e-6 458 360 0.0009500999 1e-6 459 360 0.0020357999 1e-6 460 360 0.0012214999 1e-6 463 360 0.031351797 1e-6 464 360 0.0010857999 1e-6 465 360 0.030944597 1e-6 467 360 0.0299946 1e-6 468 360 0.006921798 1e-6 469 360 0.012893599 1e-6 470 360 0.014657997 1e-6 471 360 0.0013571999 1e-6 472 360 0.0027143999 1e-6 473 360 0.00027139997 1e-6 477 360 0.00013569999 1e-6 478 360 0.0016286999 1e-6 483 360 0.0014928998 1e-6 490 360 0.0014928998 1e-6 491 360 0.0059717968 1e-6 9 361 0.0002058 1e-6 60 361 0.0022642999 1e-6 82 361 0.0002058 1e-6 83 361 0.0002058 1e-6 84 361 0.0002058 1e-6 108 361 0.0002058 1e-6 113 361 0.00041169999 1e-6 114 361 0.00082339998 1e-6 126 361 0.00041169999 1e-6 131 361 0.00041169999 1e-6 187 361 0.00061749993 1e-6 189 361 0.0002058 1e-6 190 361 0.0002058 1e-6 194 361 0.00041169999 1e-6 198 361 0.0146151 1e-6 200 361 0.0002058 1e-6 203 361 0.0026759999 1e-6 206 361 0.0028817998 1e-6 224 361 0.0049402975 1e-6 233 361 0.011939097 1e-6 234 361 0.0016468 1e-6 237 361 0.0002058 1e-6 240 361 0.0022642999 1e-6 241 361 0.074310362 1e-6 252 361 0.0002058 1e-6 272 361 0.0018525999 1e-6 277 361 0.022025499 1e-6 279 361 0.00082339998 1e-6 282 361 0.0049402975 1e-6 284 361 0.0010291999 1e-6 293 361 0.0032934998 1e-6 295 361 0.00082339998 1e-6 296 361 0.011527397 1e-6 298 361 0.0069987997 1e-6 312 361 0.0010291999 1e-6 315 361 0.012350798 1e-6 320 361 0.011527397 1e-6 321 361 0.013997499 1e-6 322 361 0.0002058 1e-6 326 361 0.012968298 1e-6 340 361 0.0002058 1e-6 351 361 0.0014408999 1e-6 356 361 0.0002058 1e-6 359 361 0.00082339998 1e-6 361 361 0.0181145 1e-6 372 361 0.0057636984 1e-6 386 361 0.0034993999 1e-6 387 361 0.0002058 1e-6 392 361 0.0024702 1e-6 393 361 0.0002058 1e-6 417 361 0.00041169999 1e-6 419 361 0.0002058 1e-6 422 361 0.00041169999 1e-6 423 361 0.0002058 1e-6 425 361 0.0002058 1e-6 430 361 0.0002058 1e-6 431 361 0.0002058 1e-6 434 361 0.0014408999 1e-6 441 361 0.0032934998 1e-6 443 361 0.0010291999 1e-6 444 361 0.0012351 1e-6 445 361 0.012968298 1e-6 447 361 0.016673498 1e-6 450 361 0.0053519979 1e-6 452 361 0.004528597 1e-6 453 361 0.0024702 1e-6 454 361 0.0002058 1e-6 455 361 0.023672298 1e-6 456 361 0.00082339998 1e-6 457 361 0.0063811988 1e-6 458 361 0.0024702 1e-6 459 361 0.0020585 1e-6 460 361 0.0014408999 1e-6 463 361 0.042198397 1e-6 464 361 0.0010291999 1e-6 465 361 0.0016468 1e-6 467 361 0.0296418 1e-6 468 361 0.0148209 1e-6 469 361 0.0181145 1e-6 470 361 0.020172898 1e-6 471 361 0.00082339998 1e-6 473 361 0.00061749993 1e-6 477 361 0.00041169999 1e-6 478 361 0.0016468 1e-6 483 361 0.0018525999 1e-6 490 361 0.0018525999 1e-6 491 361 0.0018525999 1e-6 60 362 0.0015439999 1e-6 108 362 0.00051469984 1e-6 114 362 0.00051469984 1e-6 126 362 0.00051469984 1e-6 187 362 0.00051469984 1e-6 198 362 0.0087493993 1e-6 206 362 0.0010292998 1e-6 233 362 0.0056612976 1e-6 234 362 0.0020587 1e-6 240 362 0.021616098 1e-6 241 362 0.071538866 1e-6 262 362 0.00051469984 1e-6 272 362 0.0041172989 1e-6 277 362 0.044261497 1e-6 279 362 0.00051469984 1e-6 282 362 0.0036026998 1e-6 283 362 0.00051469984 1e-6 284 362 0.0010292998 1e-6 292 362 0.014410697 1e-6 293 362 0.0041172989 1e-6 295 362 0.0077199973 1e-6 296 362 0.0077199973 1e-6 298 362 0.0046319999 1e-6 312 362 0.00051469984 1e-6 315 362 0.021101397 1e-6 317 362 0.00051469984 1e-6 320 362 0.009778697 1e-6 321 362 0.020586699 1e-6 326 362 0.00051469984 1e-6 333 362 0.00051469984 1e-6 340 362 0.010807998 1e-6 351 362 0.0010292998 1e-6 353 362 0.0036026998 1e-6 358 362 0.0092639998 1e-6 362 362 0.033968098 1e-6 370 362 0.00051469984 1e-6 371 362 0.00051469984 1e-6 372 362 0.0082346983 1e-6 376 362 0.00051469984 1e-6 386 362 0.0066906996 1e-6 387 362 0.00051469984 1e-6 392 362 0.0061759986 1e-6 393 362 0.0015439999 1e-6 414 362 0.00051469984 1e-6 417 362 0.00051469984 1e-6 430 362 0.00051469984 1e-6 443 362 0.0010292998 1e-6 444 362 0.0010292998 1e-6 445 362 0.0046319999 1e-6 447 362 0.003088 1e-6 450 362 0.0066906996 1e-6 452 362 0.0051466972 1e-6 453 362 0.0020587 1e-6 455 362 0.029850699 1e-6 456 362 0.00051469984 1e-6 457 362 0.0056612976 1e-6 458 362 0.0015439999 1e-6 459 362 0.0020587 1e-6 460 362 0.0010292998 1e-6 463 362 0.0416881 1e-6 464 362 0.0025732999 1e-6 465 362 0.0020587 1e-6 467 362 0.032938797 1e-6 468 362 0.0056612976 1e-6 469 362 0.022130698 1e-6 470 362 0.025218699 1e-6 471 362 0.0010292998 1e-6 473 362 0.00051469984 1e-6 478 362 0.0020587 1e-6 483 362 0.0025732999 1e-6 490 362 0.0025732999 1e-6 491 362 0.0015439999 1e-6 9 363 0.0001637 1e-6 22 363 0.0001637 1e-6 60 363 0.0034387 1e-6 82 363 0.0001637 1e-6 83 363 0.0001637 1e-6 84 363 0.0001637 1e-6 104 363 0.0001637 1e-6 108 363 0.0001637 1e-6 113 363 0.00032749982 1e-6 114 363 0.00049119978 1e-6 126 363 0.00032749982 1e-6 127 363 0.0001637 1e-6 130 363 0.0001637 1e-6 131 363 0.00098249991 1e-6 151 363 0.0001637 1e-6 160 363 0.00081869983 1e-6 171 363 0.00081869983 1e-6 187 363 0.022924498 1e-6 188 363 0.00081869983 1e-6 189 363 0.0001637 1e-6 190 363 0.0001637 1e-6 192 363 0.00098249991 1e-6 194 363 0.00049119978 1e-6 198 363 0.015392199 1e-6 200 363 0.0001637 1e-6 203 363 0.00032749982 1e-6 206 363 0.0022924999 1e-6 211 363 0.0001637 1e-6 214 363 0.0037661998 1e-6 219 363 0.0001637 1e-6 221 363 0.0088422969 1e-6 223 363 0.00098249991 1e-6 224 363 0.0034387 1e-6 233 363 0.00081869983 1e-6 234 363 0.0024561998 1e-6 237 363 0.0001637 1e-6 240 363 0.0039298981 1e-6 241 363 0.011789698 1e-6 242 363 0.0001637 1e-6 248 363 0.0001637 1e-6 250 363 0.00032749982 1e-6 252 363 0.00049119978 1e-6 270 363 0.00032749982 1e-6 276 363 0.00049119978 1e-6 277 363 0.0442116 1e-6 279 363 0.0001637 1e-6 282 363 0.0024561998 1e-6 283 363 0.0001637 1e-6 284 363 0.00098249991 1e-6 285 363 0.00049119978 1e-6 286 363 0.0001637 1e-6 288 363 0.0001637 1e-6 290 363 0.0001637 1e-6 292 363 0.0081872977 1e-6 293 363 0.0027836999 1e-6 294 363 0.0057310984 1e-6 295 363 0.0011461999 1e-6 296 363 0.0039298981 1e-6 298 363 0.0026198998 1e-6 307 363 0.0001637 1e-6 308 363 0.006713599 1e-6 312 363 0.013918497 1e-6 315 363 0.0099884979 1e-6 317 363 0.0001637 1e-6 320 363 0.0021286998 1e-6 321 363 0.0055673979 1e-6 322 363 0.0026198998 1e-6 326 363 0.0021286998 1e-6 339 363 0.0001637 1e-6 340 363 0.0070410967 1e-6 348 363 0.00098249991 1e-6 350 363 0.0001637 1e-6 351 363 0.0050760992 1e-6 354 363 0.0021286998 1e-6 356 363 0.0001637 1e-6 358 363 0.0078597963 1e-6 359 363 0.0096609965 1e-6 360 363 0.0001637 1e-6 361 363 0.00081869983 1e-6 363 363 0.0081872977 1e-6 370 363 0.0016374998 1e-6 371 363 0.0029473999 1e-6 372 363 0.016865898 1e-6 373 363 0.0016374998 1e-6 376 363 0.00049119978 1e-6 384 363 0.0001637 1e-6 386 363 0.0055673979 1e-6 387 363 0.00032749982 1e-6 390 363 0.00049119978 1e-6 392 363 0.0099884979 1e-6 393 363 0.0024561998 1e-6 398 363 0.0001637 1e-6 413 363 0.0001637 1e-6 417 363 0.00032749982 1e-6 419 363 0.016538396 1e-6 420 363 0.00049119978 1e-6 422 363 0.0026198998 1e-6 423 363 0.00032749982 1e-6 424 363 0.0001637 1e-6 425 363 0.0001637 1e-6 426 363 0.0001637 1e-6 430 363 0.0001637 1e-6 431 363 0.0001637 1e-6 434 363 0.0001637 1e-6 441 363 0.0054035969 1e-6 442 363 0.00049119978 1e-6 443 363 0.0021286998 1e-6 444 363 0.0024561998 1e-6 445 363 0.0058948994 1e-6 446 363 0.0001637 1e-6 447 363 0.0027836999 1e-6 450 363 0.0050760992 1e-6 452 363 0.0049123988 1e-6 453 363 0.0018012 1e-6 454 363 0.00049119978 1e-6 455 363 0.034386799 1e-6 456 363 0.0011461999 1e-6 457 363 0.0065498985 1e-6 458 363 0.00081869983 1e-6 459 363 0.0031111999 1e-6 460 363 0.00098249991 1e-6 463 363 0.040936597 1e-6 464 363 0.00131 1e-6 465 363 0.0027836999 1e-6 467 363 0.027836896 1e-6 468 363 0.0065498985 1e-6 469 363 0.020468298 1e-6 470 363 0.022760797 1e-6 471 363 0.00081869983 1e-6 473 363 0.00065499987 1e-6 478 363 0.0019649998 1e-6 479 363 0.0001637 1e-6 483 363 0.0019649998 1e-6 490 363 0.0019649998 1e-6 491 363 0.0027836999 1e-6 60 364 0.0018743998 1e-6 104 364 0.00031239982 1e-6 107 364 0.00093719992 1e-6 110 364 0.0012496 1e-6 114 364 0.00031239982 1e-6 116 364 0.00093719992 1e-6 126 364 0.00031239982 1e-6 174 364 0.00031239982 1e-6 175 364 0.00062479987 1e-6 198 364 0.010309298 1e-6 204 364 0.00031239982 1e-6 206 364 0.00062479987 1e-6 233 364 0.0068728998 1e-6 234 364 0.0053107999 1e-6 236 364 0.00031239982 1e-6 240 364 0.0024991999 1e-6 241 364 0.011871297 1e-6 242 364 0.011246499 1e-6 277 364 0.061543297 1e-6 282 364 0.00093719992 1e-6 284 364 0.0018743998 1e-6 292 364 0.0012496 1e-6 293 364 0.005623199 1e-6 294 364 0.0034363999 1e-6 295 364 0.032802198 1e-6 296 364 0.0012496 1e-6 297 364 0.0034363999 1e-6 298 364 0.00093719992 1e-6 312 364 0.037175898 1e-6 315 364 0.023742598 1e-6 319 364 0.0062479973 1e-6 320 364 0.0062479973 1e-6 340 364 0.0059355982 1e-6 358 364 0.0012496 1e-6 364 364 0.028740998 1e-6 366 364 0.036238696 1e-6 370 364 0.0309278 1e-6 371 364 0.0134333 1e-6 372 364 0.020930998 1e-6 373 364 0.0084348992 1e-6 375 364 0.0021867999 1e-6 376 364 0.021868199 1e-6 386 364 0.0090596974 1e-6 387 364 0.00031239982 1e-6 391 364 0.0012496 1e-6 392 364 0.00031239982 1e-6 393 364 0.0018743998 1e-6 415 364 0.0018743998 1e-6 417 364 0.00062479987 1e-6 441 364 0.022492997 1e-6 443 364 0.0012496 1e-6 444 364 0.0031239998 1e-6 445 364 0.0065603964 1e-6 447 364 0.013745699 1e-6 450 364 0.0037487999 1e-6 452 364 0.0037487999 1e-6 453 364 0.0028116 1e-6 454 364 0.00093719992 1e-6 455 364 0.036551099 1e-6 456 364 0.00062479987 1e-6 457 364 0.0012496 1e-6 458 364 0.00062479987 1e-6 459 364 0.010309298 1e-6 460 364 0.00062479987 1e-6 463 364 0.016244899 1e-6 464 364 0.00062479987 1e-6 465 364 0.0012496 1e-6 467 364 0.0090596974 1e-6 468 364 0.0121837 1e-6 469 364 0.0062479973 1e-6 470 364 0.0068728998 1e-6 471 364 0.00093719992 1e-6 473 364 0.00031239982 1e-6 478 364 0.0012496 1e-6 483 364 0.0018743998 1e-6 490 364 0.00093719992 1e-6 491 364 0.0021867999 1e-6 60 365 0.0021243 1e-6 114 365 0.00053109997 1e-6 172 365 0.0010620998 1e-6 198 365 0.012214597 1e-6 206 365 0.00053109997 1e-6 233 365 0.0058416985 1e-6 234 365 0.0047795996 1e-6 236 365 0.00053109997 1e-6 240 365 0.0026552998 1e-6 241 365 0.012214597 1e-6 242 365 0.011152398 1e-6 270 365 0.00053109997 1e-6 277 365 0.082846463 1e-6 279 365 0.00053109997 1e-6 282 365 0.015400998 1e-6 284 365 0.0015931998 1e-6 292 365 0.0047795996 1e-6 293 365 0.0031863998 1e-6 295 365 0.0074348971 1e-6 296 365 0.0026552998 1e-6 297 365 0.0026552998 1e-6 298 365 0.0095591992 1e-6 312 365 0.0132767 1e-6 315 365 0.0074348971 1e-6 319 365 0.00053109997 1e-6 320 365 0.0058416985 1e-6 321 365 0.00053109997 1e-6 322 365 0.0026552998 1e-6 324 365 0.0058416985 1e-6 340 365 0.010090299 1e-6 341 365 0.00053109997 1e-6 351 365 0.0021243 1e-6 352 365 0.00053109997 1e-6 354 365 0.0053106993 1e-6 358 365 0.006903898 1e-6 364 365 0.0265534 1e-6 365 365 0.019649498 1e-6 366 365 0.0053106993 1e-6 370 365 0.00053109997 1e-6 372 365 0.050982498 1e-6 373 365 0.0015931998 1e-6 376 365 0.00053109997 1e-6 377 365 0.0010620998 1e-6 379 365 0.00053109997 1e-6 385 365 0.00053109997 1e-6 386 365 0.00053109997 1e-6 398 365 0.0015931998 1e-6 415 365 0.0175252 1e-6 417 365 0.00053109997 1e-6 419 365 0.016994197 1e-6 441 365 0.0037174998 1e-6 443 365 0.0010620998 1e-6 444 365 0.0010620998 1e-6 445 365 0.029208697 1e-6 447 365 0.0042484999 1e-6 450 365 0.0037174998 1e-6 452 365 0.0047795996 1e-6 453 365 0.0026552998 1e-6 455 365 0.034519397 1e-6 456 365 0.00053109997 1e-6 457 365 0.0015931998 1e-6 458 365 0.00053109997 1e-6 459 365 0.027084399 1e-6 460 365 0.00053109997 1e-6 463 365 0.014338799 1e-6 464 365 0.00053109997 1e-6 465 365 0.00053109997 1e-6 467 365 0.0090280995 1e-6 468 365 0.0090280995 1e-6 469 365 0.0053106993 1e-6 470 365 0.0053106993 1e-6 478 365 0.00053109997 1e-6 483 365 0.0015931998 1e-6 490 365 0.00053109997 1e-6 491 365 0.0037174998 1e-6 9 366 1.5399986e-05 1e-6 16 366 1.5399986e-05 1e-6 18 366 7.7199991e-05 1e-6 22 366 0.0002931999 1e-6 25 366 1.5399986e-05 1e-6 60 366 0.0012653 1e-6 79 366 1.5399986e-05 1e-6 82 366 1.5399986e-05 1e-6 83 366 1.5399986e-05 1e-6 84 366 1.5399986e-05 1e-6 108 366 3.0899988e-05 1e-6 113 366 4.6299989e-05 1e-6 114 366 9.2599992e-05 1e-6 126 366 4.6299989e-05 1e-6 127 366 1.5399986e-05 1e-6 130 366 1.5399986e-05 1e-6 131 366 6.169999e-05 1e-6 135 366 4.6299989e-05 1e-6 139 366 1.5399986e-05 1e-6 150 366 0.0004474998 1e-6 151 366 1.5399986e-05 1e-6 160 366 0.0023145999 1e-6 169 366 0.00021599999 1e-6 171 366 1.5399986e-05 1e-6 172 366 0.0017127998 1e-6 187 366 0.00066349981 1e-6 189 366 4.6299989e-05 1e-6 190 366 7.7199991e-05 1e-6 191 366 0.00050919992 1e-6 192 366 3.0899988e-05 1e-6 194 366 7.7199991e-05 1e-6 196 366 1.5399986e-05 1e-6 197 366 1.5399986e-05 1e-6 198 366 0.006881997 1e-6 200 366 4.6299989e-05 1e-6 201 366 3.0899988e-05 1e-6 203 366 4.6299989e-05 1e-6 204 366 7.7199991e-05 1e-6 206 366 0.00010799999 1e-6 207 366 4.6299989e-05 1e-6 209 366 1.5399986e-05 1e-6 214 366 0.0035026998 1e-6 218 366 1.5399986e-05 1e-6 219 366 0.00021599999 1e-6 223 366 0.00041659991 1e-6 224 366 7.7199991e-05 1e-6 229 366 1.5399986e-05 1e-6 233 366 0.0028237998 1e-6 234 366 0.0038884999 1e-6 236 366 0.00066349981 1e-6 237 366 0.0001389 1e-6 240 366 0.0038729999 1e-6 241 366 0.0081009977 1e-6 242 366 0.0035489998 1e-6 248 366 1.5399986e-05 1e-6 250 366 1.5399986e-05 1e-6 252 366 0.00098749995 1e-6 270 366 0.0018670999 1e-6 271 366 6.169999e-05 1e-6 272 366 0.00026229979 1e-6 274 366 0.0023453999 1e-6 277 366 0.052201197 1e-6 279 366 4.6299989e-05 1e-6 282 366 0.015754499 1e-6 283 366 0.0023916999 1e-6 284 366 0.0011264 1e-6 285 366 0.00067889993 1e-6 286 366 0.00063259993 1e-6 287 366 3.0899988e-05 1e-6 288 366 6.169999e-05 1e-6 289 366 7.7199991e-05 1e-6 290 366 0.0002468999 1e-6 292 366 0.0293178 1e-6 293 366 0.016078498 1e-6 294 366 0.0025614998 1e-6 295 366 0.0031168999 1e-6 296 366 0.0048605986 1e-6 297 366 0.0025922998 1e-6 298 366 0.0025459998 1e-6 299 366 1.5399986e-05 1e-6 304 366 0.0033020999 1e-6 307 366 0.0001852 1e-6 312 366 0.0068510994 1e-6 313 366 0.00010799999 1e-6 315 366 0.014782399 1e-6 317 366 1.5399986e-05 1e-6 318 366 1.5399986e-05 1e-6 319 366 0.0036878998 1e-6 320 366 0.00055549992 1e-6 321 366 0.0011880998 1e-6 322 366 0.0025151998 1e-6 324 366 0.0169889 1e-6 326 366 0.0013269999 1e-6 327 366 1.5399986e-05 1e-6 328 366 0.0037958999 1e-6 329 366 3.0899988e-05 1e-6 331 366 6.169999e-05 1e-6 332 366 1.5399986e-05 1e-6 338 366 0.00032399991 1e-6 339 366 0.00037029991 1e-6 340 366 0.0022836998 1e-6 341 366 4.6299989e-05 1e-6 344 366 4.6299989e-05 1e-6 349 366 6.169999e-05 1e-6 350 366 0.00080239982 1e-6 351 366 0.0042124987 1e-6 352 366 0.0085329972 1e-6 353 366 0.00046289992 1e-6 354 366 0.0018670999 1e-6 355 366 0.0001852 1e-6 356 366 7.7199991e-05 1e-6 357 366 0.00010799999 1e-6 358 366 0.0035952998 1e-6 364 366 3.0899988e-05 1e-6 366 366 0.069853544 1e-6 368 366 0.0004474998 1e-6 370 366 0.0001389 1e-6 371 366 0.0041353963 1e-6 372 366 0.071689785 1e-6 373 366 0.033159997 1e-6 374 366 1.5399986e-05 1e-6 376 366 6.169999e-05 1e-6 377 366 3.0899988e-05 1e-6 380 366 3.0899988e-05 1e-6 384 366 3.0899988e-05 1e-6 385 366 0.00012339999 1e-6 386 366 0.0033175 1e-6 387 366 3.0899988e-05 1e-6 390 366 6.169999e-05 1e-6 392 366 4.6299989e-05 1e-6 393 366 0.00012339999 1e-6 397 366 7.7199991e-05 1e-6 398 366 0.0004782998 1e-6 401 366 1.5399986e-05 1e-6 402 366 0.00057089981 1e-6 404 366 1.5399986e-05 1e-6 405 366 4.6299989e-05 1e-6 414 366 1.5399986e-05 1e-6 415 366 0.0066041984 1e-6 417 366 0.00032399991 1e-6 419 366 0.0045982972 1e-6 421 366 4.6299989e-05 1e-6 422 366 6.169999e-05 1e-6 423 366 1.5399986e-05 1e-6 425 366 1.5399986e-05 1e-6 430 366 1.5399986e-05 1e-6 431 366 3.0899988e-05 1e-6 432 366 1.5399986e-05 1e-6 433 366 3.0899988e-05 1e-6 434 366 3.0899988e-05 1e-6 441 366 0.0018824998 1e-6 442 366 0.00032399991 1e-6 443 366 0.0033175 1e-6 444 366 0.0012498999 1e-6 445 366 0.0063727982 1e-6 446 366 0.00043209991 1e-6 447 366 0.0022219999 1e-6 448 366 1.5399986e-05 1e-6 450 366 0.0042433999 1e-6 452 366 0.004227899 1e-6 453 366 0.0016355999 1e-6 454 366 0.00092579983 1e-6 455 366 0.040119097 1e-6 456 366 0.00063259993 1e-6 457 366 0.0018516998 1e-6 458 366 0.0001543 1e-6 459 366 0.00078699994 1e-6 460 366 0.00095669995 1e-6 463 366 0.0080237985 1e-6 464 366 0.0016355999 1e-6 465 366 0.00087949983 1e-6 467 366 0.0094433986 1e-6 468 366 0.010199498 1e-6 469 366 0.0055394992 1e-6 470 366 0.0039192997 1e-6 471 366 0.0041044988 1e-6 473 366 9.2599992e-05 1e-6 477 366 0.0001389 1e-6 478 366 0.00083319983 1e-6 483 366 0.00083319983 1e-6 489 366 4.6299989e-05 1e-6 490 366 0.00030859979 1e-6 491 366 0.0026385998 1e-6 60 367 0.0020736 1e-6 114 367 0.00051839999 1e-6 126 367 0.00051839999 1e-6 160 367 0.00051839999 1e-6 198 367 0.0088128969 1e-6 206 367 0.0010368 1e-6 214 367 0.0025919999 1e-6 233 367 0.00051839999 1e-6 234 367 0.0051839985 1e-6 241 367 0.012441698 1e-6 242 367 0.034214597 1e-6 270 367 0.00051839999 1e-6 272 367 0.0020736 1e-6 277 367 0.046656299 1e-6 279 367 0.00051839999 1e-6 282 367 0.020736098 1e-6 283 367 0.0057023987 1e-6 284 367 0.0015552 1e-6 285 367 0.00051839999 1e-6 286 367 0.00051839999 1e-6 289 367 0.00051839999 1e-6 292 367 0.0031103999 1e-6 293 367 0.0015552 1e-6 294 367 0.0010368 1e-6 295 367 0.0010368 1e-6 296 367 0.011923298 1e-6 297 367 0.0010368 1e-6 298 367 0.0010368 1e-6 307 367 0.0020736 1e-6 312 367 0.0015552 1e-6 321 367 0.020736098 1e-6 324 367 0.033696197 1e-6 328 367 0.0041471981 1e-6 329 367 0.00051839999 1e-6 333 367 0.00051839999 1e-6 340 367 0.0098496974 1e-6 349 367 0.0010368 1e-6 350 367 0.0010368 1e-6 351 367 0.0031103999 1e-6 354 367 0.0041471981 1e-6 358 367 0.0155521 1e-6 367 367 0.025920197 1e-6 372 367 0.023846596 1e-6 373 367 0.0020736 1e-6 402 367 0.00051839999 1e-6 414 367 0.06428194 1e-6 417 367 0.00051839999 1e-6 419 367 0.00051839999 1e-6 443 367 0.0010368 1e-6 444 367 0.00051839999 1e-6 445 367 0.0031103999 1e-6 447 367 0.013996899 1e-6 450 367 0.0046655983 1e-6 452 367 0.0051839985 1e-6 453 367 0.0025919999 1e-6 454 367 0.0015552 1e-6 455 367 0.033177797 1e-6 456 367 0.00051839999 1e-6 457 367 0.0020736 1e-6 458 367 0.0010368 1e-6 459 367 0.020217698 1e-6 460 367 0.0010368 1e-6 463 367 0.022291299 1e-6 464 367 0.00051839999 1e-6 465 367 0.00051839999 1e-6 467 367 0.0093312971 1e-6 468 367 0.0088128969 1e-6 469 367 0.0057023987 1e-6 470 367 0.0057023987 1e-6 471 367 0.00051839999 1e-6 473 367 0.00051839999 1e-6 478 367 0.0010368 1e-6 483 367 0.0015552 1e-6 490 367 0.0010368 1e-6 491 367 0.0015552 1e-6 13 368 0.00011179999 1e-6 22 368 0.00011179999 1e-6 24 368 0.00011179999 1e-6 25 368 0.0032434999 1e-6 60 368 0.0014539999 1e-6 82 368 0.00011179999 1e-6 108 368 0.00011179999 1e-6 114 368 0.00011179999 1e-6 120 368 0.00022369999 1e-6 126 368 0.00011179999 1e-6 135 368 0.00033549988 1e-6 139 368 0.00011179999 1e-6 142 368 0.00078289979 1e-6 150 368 0.00011179999 1e-6 160 368 0.00022369999 1e-6 165 368 0.00022369999 1e-6 170 368 0.00011179999 1e-6 171 368 0.00011179999 1e-6 187 368 0.00067109987 1e-6 189 368 0.00011179999 1e-6 190 368 0.00011179999 1e-6 191 368 0.00011179999 1e-6 193 368 0.00011179999 1e-6 194 368 0.00022369999 1e-6 198 368 0.010289699 1e-6 206 368 0.00022369999 1e-6 214 368 0.0059276968 1e-6 218 368 0.00011179999 1e-6 223 368 0.00022369999 1e-6 224 368 0.011631798 1e-6 233 368 0.0027961 1e-6 234 368 0.0051447973 1e-6 236 368 0.00033549988 1e-6 237 368 0.00011179999 1e-6 240 368 0.0019013998 1e-6 241 368 0.0161056 1e-6 242 368 0.0095067993 1e-6 252 368 0.00011179999 1e-6 270 368 0.0010066 1e-6 272 368 0.0026842998 1e-6 277 368 0.070461869 1e-6 279 368 0.00055919983 1e-6 282 368 0.0152108 1e-6 283 368 0.00033549988 1e-6 284 368 0.0015657998 1e-6 289 368 0.00011179999 1e-6 292 368 0.0024605999 1e-6 293 368 0.0074935965 1e-6 294 368 0.0049210973 1e-6 295 368 0.00067109987 1e-6 296 368 0.0048092976 1e-6 297 368 0.0035789998 1e-6 298 368 0.0012302999 1e-6 299 368 0.00011179999 1e-6 301 368 0.00011179999 1e-6 307 368 0.018566199 1e-6 312 368 0.0079408996 1e-6 315 368 0.016553 1e-6 317 368 0.00011179999 1e-6 318 368 0.0021249999 1e-6 319 368 0.0036908998 1e-6 320 368 0.0012302999 1e-6 321 368 0.0039145984 1e-6 322 368 0.00022369999 1e-6 324 368 0.017223999 1e-6 326 368 0.00044739991 1e-6 328 368 0.0040263981 1e-6 331 368 0.00011179999 1e-6 332 368 0.00011179999 1e-6 335 368 0.00011179999 1e-6 339 368 0.00044739991 1e-6 340 368 0.0031315999 1e-6 350 368 0.009394899 1e-6 351 368 0.0032434999 1e-6 352 368 0.020131998 1e-6 354 368 0.010513399 1e-6 355 368 0.00011179999 1e-6 356 368 0.0019013998 1e-6 358 368 0.0053684972 1e-6 366 368 0.00033549988 1e-6 368 368 0.013868697 1e-6 369 368 0.00011179999 1e-6 370 368 0.00011179999 1e-6 371 368 0.00033549988 1e-6 372 368 0.034112498 1e-6 373 368 0.00044739991 1e-6 377 368 0.00011179999 1e-6 380 368 0.00022369999 1e-6 386 368 0.014092397 1e-6 387 368 0.00011179999 1e-6 390 368 0.00033549988 1e-6 392 368 0.00033549988 1e-6 393 368 0.00044739991 1e-6 404 368 0.00011179999 1e-6 405 368 0.0014539999 1e-6 414 368 0.0061513968 1e-6 415 368 0.0026842998 1e-6 417 368 0.00044739991 1e-6 419 368 0.009618599 1e-6 421 368 0.00011179999 1e-6 422 368 0.00022369999 1e-6 430 368 0.00011179999 1e-6 438 368 0.0029079998 1e-6 441 368 0.0026842998 1e-6 443 368 0.0034671999 1e-6 444 368 0.0022368999 1e-6 445 368 0.011967298 1e-6 446 368 0.00067109987 1e-6 447 368 0.0055921972 1e-6 450 368 0.0036908998 1e-6 452 368 0.0039145984 1e-6 453 368 0.0017894998 1e-6 454 368 0.00033549988 1e-6 455 368 0.044178497 1e-6 456 368 0.00067109987 1e-6 457 368 0.0021249999 1e-6 458 368 0.00044739991 1e-6 459 368 0.00022369999 1e-6 460 368 0.00089479983 1e-6 463 368 0.013868697 1e-6 464 368 0.0078290999 1e-6 465 368 0.00078289979 1e-6 467 368 0.0090593994 1e-6 468 368 0.012302898 1e-6 469 368 0.006710697 1e-6 470 368 0.0076053999 1e-6 471 368 0.0010066 1e-6 473 368 0.00022369999 1e-6 477 368 0.00011179999 1e-6 478 368 0.0010066 1e-6 483 368 0.0013420999 1e-6 490 368 0.00067109987 1e-6 491 368 0.0019013998 1e-6 9 369 7.0799986e-05 1e-6 18 369 0.00014169999 1e-6 60 369 0.0029044999 1e-6 82 369 7.0799986e-05 1e-6 83 369 7.0799986e-05 1e-6 84 369 7.0799986e-05 1e-6 108 369 7.0799986e-05 1e-6 113 369 0.00014169999 1e-6 114 369 0.00021249999 1e-6 126 369 0.00014169999 1e-6 127 369 7.0799986e-05 1e-6 150 369 0.00070839981 1e-6 165 369 7.0799986e-05 1e-6 189 369 0.00014169999 1e-6 190 369 0.00014169999 1e-6 192 369 7.0799986e-05 1e-6 194 369 0.00021249999 1e-6 198 369 0.0029044999 1e-6 200 369 7.0799986e-05 1e-6 201 369 7.0799986e-05 1e-6 203 369 7.0799986e-05 1e-6 204 369 0.0014167998 1e-6 206 369 0.0003541999 1e-6 207 369 7.0799986e-05 1e-6 214 369 7.0799986e-05 1e-6 223 369 7.0799986e-05 1e-6 224 369 0.0039670989 1e-6 233 369 7.0799986e-05 1e-6 234 369 0.0018418999 1e-6 237 369 7.0799986e-05 1e-6 240 369 7.0799986e-05 1e-6 241 369 0.0043212995 1e-6 248 369 7.0799986e-05 1e-6 250 369 7.0799986e-05 1e-6 252 369 0.003117 1e-6 262 369 0.00014169999 1e-6 277 369 0.010555398 1e-6 282 369 0.0014167998 1e-6 283 369 0.00014169999 1e-6 284 369 0.00049589993 1e-6 285 369 7.0799986e-05 1e-6 286 369 7.0799986e-05 1e-6 290 369 0.0058798976 1e-6 292 369 0.0030461999 1e-6 293 369 0.003117 1e-6 294 369 0.0011334999 1e-6 295 369 0.0167186 1e-6 296 369 0.0045338981 1e-6 297 369 0.00021249999 1e-6 305 369 7.0799986e-05 1e-6 307 369 7.0799986e-05 1e-6 308 369 0.00014169999 1e-6 312 369 0.0053130984 1e-6 313 369 7.0799986e-05 1e-6 315 369 0.011193 1e-6 317 369 7.0799986e-05 1e-6 320 369 0.0019126998 1e-6 321 369 0.00014169999 1e-6 322 369 0.0021251999 1e-6 326 369 0.0015584999 1e-6 340 369 0.0037546 1e-6 351 369 0.00021249999 1e-6 356 369 0.00014169999 1e-6 358 369 0.0057381988 1e-6 359 369 0.010484599 1e-6 369 369 0.0575234 1e-6 370 369 0.0011334999 1e-6 371 369 0.0034711999 1e-6 372 369 0.0037546 1e-6 373 369 0.0016293998 1e-6 376 369 0.00042499998 1e-6 386 369 0.027203199 1e-6 387 369 0.00021249999 1e-6 389 369 0.0023377999 1e-6 390 369 0.0034003998 1e-6 391 369 0.0033296 1e-6 392 369 0.028265797 1e-6 393 369 0.065670192 1e-6 402 369 0.00021249999 1e-6 413 369 0.00014169999 1e-6 414 369 0.0021960998 1e-6 417 369 0.00049589993 1e-6 419 369 0.00092089991 1e-6 420 369 0.00014169999 1e-6 421 369 7.0799986e-05 1e-6 422 369 0.00014169999 1e-6 423 369 7.0799986e-05 1e-6 424 369 0.0026919998 1e-6 425 369 7.0799986e-05 1e-6 430 369 7.0799986e-05 1e-6 431 369 7.0799986e-05 1e-6 433 369 7.0799986e-05 1e-6 434 369 7.0799986e-05 1e-6 443 369 0.00056669977 1e-6 444 369 0.0060923994 1e-6 445 369 0.0022668999 1e-6 446 369 7.0799986e-05 1e-6 447 369 0.0083592981 1e-6 450 369 0.0089259967 1e-6 452 369 0.0043921992 1e-6 453 369 0.0010625999 1e-6 454 369 0.00056669977 1e-6 455 369 0.021039996 1e-6 456 369 0.0007793 1e-6 457 369 0.0049588978 1e-6 458 369 0.00099179987 1e-6 459 369 0.00063759997 1e-6 460 369 0.0012043 1e-6 463 369 0.018418796 1e-6 464 369 0.0092093982 1e-6 465 369 0.010626197 1e-6 467 369 0.016010199 1e-6 468 369 0.0062340982 1e-6 469 369 0.010272 1e-6 470 369 0.011901397 1e-6 471 369 0.0030461999 1e-6 473 369 0.00028339983 1e-6 477 369 0.00021249999 1e-6 478 369 0.0016293998 1e-6 483 369 0.0017001999 1e-6 490 369 0.0087134987 1e-6 491 369 0.0035420998 1e-6 9 370 6.8699999e-05 1e-6 18 370 0.0001375 1e-6 22 370 0.0001375 1e-6 60 370 0.0027494999 1e-6 82 370 6.8699999e-05 1e-6 83 370 6.8699999e-05 1e-6 84 370 6.8699999e-05 1e-6 108 370 6.8699999e-05 1e-6 113 370 0.0001375 1e-6 114 370 0.0002062 1e-6 126 370 6.8699999e-05 1e-6 150 370 0.00061859982 1e-6 160 370 0.0040554963 1e-6 169 370 0.0015121999 1e-6 172 370 0.0026807999 1e-6 187 370 0.010379396 1e-6 189 370 6.8699999e-05 1e-6 190 370 6.8699999e-05 1e-6 192 370 6.8699999e-05 1e-6 194 370 6.8699999e-05 1e-6 198 370 0.0043304972 1e-6 200 370 6.8699999e-05 1e-6 203 370 6.8699999e-05 1e-6 204 370 6.8699999e-05 1e-6 206 370 0.0001375 1e-6 207 370 6.8699999e-05 1e-6 214 370 0.0028869999 1e-6 223 370 6.8699999e-05 1e-6 224 370 0.0001375 1e-6 233 370 0.0068737976 1e-6 234 370 0.013335198 1e-6 237 370 6.8699999e-05 1e-6 241 370 0.0030244999 1e-6 252 370 0.000275 1e-6 262 370 0.015397299 1e-6 272 370 0.0068737976 1e-6 277 370 0.12998348 1e-6 279 370 0.0002062 1e-6 282 370 6.8699999e-05 1e-6 284 370 0.00041239988 1e-6 289 370 0.016359597 1e-6 290 370 6.8699999e-05 1e-6 292 370 0.012097899 1e-6 293 370 0.016772099 1e-6 294 370 0.0001375 1e-6 295 370 0.062620282 1e-6 296 370 0.0001375 1e-6 307 370 0.0052240975 1e-6 308 370 6.8699999e-05 1e-6 312 370 0.0065987967 1e-6 315 370 0.0063238963 1e-6 320 370 0.0001375 1e-6 339 370 0.00048119994 1e-6 340 370 0.0015121999 1e-6 354 370 6.8699999e-05 1e-6 356 370 0.0001375 1e-6 358 370 0.0019246999 1e-6 359 370 0.0001375 1e-6 369 370 0.00068739988 1e-6 370 370 0.00082489988 1e-6 371 370 0.0026119999 1e-6 372 370 6.8699999e-05 1e-6 373 370 0.00048119994 1e-6 375 370 6.8699999e-05 1e-6 376 370 0.044267297 1e-6 384 370 6.8699999e-05 1e-6 385 370 6.8699999e-05 1e-6 386 370 0.019384097 1e-6 387 370 6.8699999e-05 1e-6 391 370 0.0002062 1e-6 392 370 0.00048119994 1e-6 393 370 0.0017183998 1e-6 396 370 6.8699999e-05 1e-6 398 370 6.8699999e-05 1e-6 402 370 6.8699999e-05 1e-6 404 370 0.0002062 1e-6 414 370 0.0056364983 1e-6 417 370 0.00041239988 1e-6 421 370 6.8699999e-05 1e-6 422 370 6.8699999e-05 1e-6 423 370 6.8699999e-05 1e-6 430 370 6.8699999e-05 1e-6 431 370 6.8699999e-05 1e-6 433 370 6.8699999e-05 1e-6 434 370 0.0001375 1e-6 443 370 0.0046053976 1e-6 444 370 0.0002062 1e-6 445 370 0.0077673979 1e-6 446 370 0.00075609982 1e-6 447 370 0.00075609982 1e-6 448 370 0.0002062 1e-6 450 370 0.0043304972 1e-6 452 370 0.0063238963 1e-6 453 370 0.0010998 1e-6 454 370 0.0023371 1e-6 455 370 0.0328568 1e-6 456 370 0.00034369994 1e-6 457 370 0.0030244999 1e-6 458 370 0.00096229999 1e-6 459 370 0.00034369994 1e-6 460 370 0.00096229999 1e-6 463 370 0.0048803985 1e-6 464 370 0.00041239988 1e-6 465 370 0.023302197 1e-6 467 370 0.014297497 1e-6 468 370 0.0011684999 1e-6 469 370 0.0060488991 1e-6 470 370 0.0066675991 1e-6 471 370 0.00054989988 1e-6 473 370 0.0001375 1e-6 477 370 0.0001375 1e-6 478 370 0.0013748 1e-6 483 370 0.0010998 1e-6 490 370 0.0093483999 1e-6 491 370 0.00082489988 1e-6 9 371 4.7399997e-05 1e-6 18 371 9.4799994e-05 1e-6 22 371 4.7399997e-05 1e-6 60 371 0.0020857998 1e-6 82 371 4.7399997e-05 1e-6 83 371 4.7399997e-05 1e-6 84 371 4.7399997e-05 1e-6 108 371 4.7399997e-05 1e-6 113 371 9.4799994e-05 1e-6 114 371 0.00014219999 1e-6 126 371 9.4799994e-05 1e-6 127 371 4.7399997e-05 1e-6 150 371 0.00071109994 1e-6 160 371 0.0011850998 1e-6 169 371 0.0015168998 1e-6 172 371 0.00080589997 1e-6 187 371 0.00023699999 1e-6 189 371 9.4799994e-05 1e-6 190 371 9.4799994e-05 1e-6 194 371 0.00014219999 1e-6 197 371 4.7399997e-05 1e-6 198 371 0.0041715987 1e-6 200 371 9.4799994e-05 1e-6 201 371 9.4799994e-05 1e-6 203 371 9.4799994e-05 1e-6 204 371 0.00014219999 1e-6 206 371 0.00014219999 1e-6 207 371 4.7399997e-05 1e-6 214 371 0.00028439984 1e-6 223 371 0.00018959999 1e-6 224 371 0.008011397 1e-6 233 371 0.0019435999 1e-6 234 371 0.0024175998 1e-6 237 371 9.4799994e-05 1e-6 240 371 0.0018961998 1e-6 241 371 0.017065696 1e-6 248 371 4.7399997e-05 1e-6 250 371 4.7399997e-05 1e-6 252 371 0.00018959999 1e-6 262 371 0.016686399 1e-6 272 371 4.7399997e-05 1e-6 277 371 0.038018499 1e-6 282 371 0.0016117999 1e-6 283 371 0.00018959999 1e-6 284 371 0.00042659999 1e-6 286 371 0.0070632994 1e-6 288 371 0.00014219999 1e-6 289 371 0.0025123998 1e-6 290 371 0.0035078998 1e-6 292 371 0.027067997 1e-6 293 371 0.0102394 1e-6 294 371 0.00085329986 1e-6 295 371 0.011045299 1e-6 296 371 0.0028442999 1e-6 297 371 0.0063047968 1e-6 298 371 0.0035078998 1e-6 299 371 4.7399997e-05 1e-6 305 371 4.7399997e-05 1e-6 307 371 9.4799994e-05 1e-6 308 371 0.0073002987 1e-6 312 371 0.013557699 1e-6 315 371 0.0030812998 1e-6 317 371 9.4799994e-05 1e-6 320 371 0.011282299 1e-6 321 371 0.00042659999 1e-6 322 371 0.0021331999 1e-6 324 371 4.7399997e-05 1e-6 326 371 0.00085329986 1e-6 327 371 0.00018959999 1e-6 328 371 9.4799994e-05 1e-6 338 371 0.00047399988 1e-6 339 371 0.0005214999 1e-6 340 371 0.0037449999 1e-6 341 371 4.7399997e-05 1e-6 351 371 4.7399997e-05 1e-6 354 371 0.0005214999 1e-6 356 371 0.00014219999 1e-6 358 371 0.0044559985 1e-6 359 371 9.4799994e-05 1e-6 369 371 0.0027021 1e-6 370 371 0.0036976 1e-6 371 371 0.010571197 1e-6 372 371 0.0036026998 1e-6 373 371 0.08063519 1e-6 376 371 0.0037923998 1e-6 386 371 0.010191999 1e-6 387 371 9.4799994e-05 1e-6 389 371 0.00014219999 1e-6 390 371 0.00023699999 1e-6 391 371 4.7399997e-05 1e-6 392 371 0.0005214999 1e-6 393 371 0.0085327998 1e-6 398 371 0.00014219999 1e-6 402 371 4.7399997e-05 1e-6 405 371 4.7399997e-05 1e-6 414 371 4.7399997e-05 1e-6 417 371 0.00042659999 1e-6 419 371 0.00037919986 1e-6 421 371 4.7399997e-05 1e-6 422 371 0.00018959999 1e-6 423 371 4.7399997e-05 1e-6 425 371 4.7399997e-05 1e-6 430 371 4.7399997e-05 1e-6 431 371 4.7399997e-05 1e-6 433 371 4.7399997e-05 1e-6 434 371 4.7399997e-05 1e-6 441 371 0.0019909998 1e-6 443 371 0.002228 1e-6 444 371 0.0049300976 1e-6 445 371 0.0066365972 1e-6 446 371 0.00014219999 1e-6 447 371 0.004882697 1e-6 450 371 0.0064469986 1e-6 452 371 0.0054514967 1e-6 453 371 0.00099549978 1e-6 454 371 0.00071109994 1e-6 455 371 0.026830997 1e-6 456 371 0.00056889979 1e-6 457 371 0.004740499 1e-6 458 371 0.00075849984 1e-6 459 371 0.00033179997 1e-6 460 371 0.00094809989 1e-6 463 371 0.024934798 1e-6 464 371 0.0071106963 1e-6 465 371 0.011708897 1e-6 467 371 0.015880499 1e-6 468 371 0.0047878996 1e-6 469 371 0.0079165995 1e-6 470 371 0.0088172965 1e-6 471 371 0.0027494999 1e-6 473 371 0.00018959999 1e-6 477 371 0.00018959999 1e-6 478 371 0.0014694999 1e-6 483 371 0.0012798999 1e-6 489 371 4.7399997e-05 1e-6 490 371 0.00085329986 1e-6 491 371 0.0011850998 1e-6 9 372 3.5699995e-05 1e-6 18 372 0.000143 1e-6 19 372 7.1499991e-05 1e-6 22 372 0.00017869999 1e-6 60 372 0.0025020998 1e-6 79 372 3.5699995e-05 1e-6 82 372 3.5699995e-05 1e-6 83 372 3.5699995e-05 1e-6 84 372 3.5699995e-05 1e-6 108 372 3.5699995e-05 1e-6 113 372 7.1499991e-05 1e-6 114 372 0.000143 1e-6 126 372 7.1499991e-05 1e-6 127 372 3.5699995e-05 1e-6 130 372 7.1499991e-05 1e-6 134 372 7.1499991e-05 1e-6 135 372 0.00071489997 1e-6 139 372 3.5699995e-05 1e-6 150 372 0.00064339978 1e-6 160 372 0.0016084998 1e-6 161 372 3.5699995e-05 1e-6 169 372 0.00085779978 1e-6 172 372 0.00064339978 1e-6 187 372 3.5699995e-05 1e-6 189 372 0.00010719999 1e-6 190 372 0.00010719999 1e-6 191 372 0.00085779978 1e-6 194 372 0.000143 1e-6 197 372 3.5699995e-05 1e-6 198 372 0.0048968978 1e-6 200 372 7.1499991e-05 1e-6 201 372 7.1499991e-05 1e-6 203 372 7.1499991e-05 1e-6 204 372 7.1499991e-05 1e-6 206 372 0.00017869999 1e-6 207 372 3.5699995e-05 1e-6 214 372 0.000143 1e-6 218 372 3.5699995e-05 1e-6 223 372 0.000143 1e-6 224 372 0.0029666999 1e-6 225 372 0.00017869999 1e-6 227 372 3.5699995e-05 1e-6 233 372 0.0028594998 1e-6 234 372 0.0022161 1e-6 237 372 0.000143 1e-6 240 372 0.00053619989 1e-6 241 372 0.0038602999 1e-6 242 372 0.0034671 1e-6 243 372 3.5699995e-05 1e-6 248 372 3.5699995e-05 1e-6 250 372 7.1499991e-05 1e-6 252 372 0.00021449999 1e-6 262 372 0.00010719999 1e-6 270 372 0.00028589997 1e-6 271 372 0.00025019981 1e-6 272 372 0.00028589997 1e-6 276 372 0.0030381999 1e-6 277 372 0.070057452 1e-6 279 372 3.5699995e-05 1e-6 282 372 0.027951498 1e-6 283 372 0.0043964982 1e-6 284 372 0.00053619989 1e-6 285 372 3.5699995e-05 1e-6 286 372 0.0010722999 1e-6 288 372 0.00010719999 1e-6 289 372 0.0033955998 1e-6 290 372 0.0046823993 1e-6 292 372 0.011688199 1e-6 293 372 0.0043606982 1e-6 294 372 0.00096509978 1e-6 295 372 0.052614599 1e-6 296 372 0.0068627968 1e-6 297 372 0.00089359982 1e-6 298 372 0.00035739993 1e-6 299 372 0.00050039985 1e-6 305 372 0.00025019981 1e-6 307 372 0.00050039985 1e-6 308 372 0.00025019981 1e-6 312 372 0.009114597 1e-6 313 372 0.00042889989 1e-6 315 372 0.011008997 1e-6 317 372 0.0021445998 1e-6 319 372 0.00017869999 1e-6 320 372 0.0023232999 1e-6 321 372 0.00021449999 1e-6 322 372 0.00050039985 1e-6 323 372 7.1499991e-05 1e-6 324 372 0.00028589997 1e-6 326 372 0.0028237 1e-6 327 372 0.0011437999 1e-6 328 372 0.012688998 1e-6 330 372 3.5699995e-05 1e-6 331 372 0.00025019981 1e-6 332 372 0.000143 1e-6 338 372 0.00082209986 1e-6 339 372 0.00021449999 1e-6 340 372 0.011259198 1e-6 341 372 0.00010719999 1e-6 350 372 0.00046469993 1e-6 351 372 0.0084354989 1e-6 352 372 0.00010719999 1e-6 354 372 0.0096507967 1e-6 355 372 3.5699995e-05 1e-6 356 372 0.00017869999 1e-6 357 372 0.0010366 1e-6 358 372 0.0090430975 1e-6 366 372 7.1499991e-05 1e-6 369 372 0.000143 1e-6 370 372 0.00010719999 1e-6 371 372 0.0095077977 1e-6 372 372 0.015298299 1e-6 373 372 0.00060759997 1e-6 374 372 3.5699995e-05 1e-6 375 372 0.0033241999 1e-6 376 372 0.0059691966 1e-6 384 372 3.5699995e-05 1e-6 386 372 0.00017869999 1e-6 387 372 7.1499991e-05 1e-6 390 372 0.00028589997 1e-6 391 372 0.0010366 1e-6 392 372 0.0013939999 1e-6 393 372 0.0026807999 1e-6 396 372 0.00010719999 1e-6 397 372 0.002931 1e-6 398 372 0.00017869999 1e-6 402 372 0.0021445998 1e-6 404 372 0.00032169977 1e-6 405 372 0.00028589997 1e-6 408 372 0.0029666999 1e-6 412 372 0.00010719999 1e-6 414 372 7.1499991e-05 1e-6 417 372 0.00042889989 1e-6 419 372 0.0012867998 1e-6 421 372 7.1499991e-05 1e-6 422 372 0.000143 1e-6 423 372 7.1499991e-05 1e-6 424 372 3.5699995e-05 1e-6 425 372 3.5699995e-05 1e-6 426 372 3.5699995e-05 1e-6 430 372 0.000143 1e-6 431 372 3.5699995e-05 1e-6 433 372 3.5699995e-05 1e-6 434 372 3.5699995e-05 1e-6 443 372 0.0030024999 1e-6 444 372 0.0030739999 1e-6 445 372 0.0072201975 1e-6 446 372 0.00039319997 1e-6 447 372 0.0034671 1e-6 450 372 0.0061121993 1e-6 452 372 0.0060406998 1e-6 453 372 0.0021088999 1e-6 454 372 0.00057189981 1e-6 455 372 0.026021399 1e-6 456 372 0.00046469993 1e-6 457 372 0.0028951999 1e-6 458 372 0.00064339978 1e-6 459 372 0.00046469993 1e-6 460 372 0.0010722999 1e-6 463 372 0.0115452 1e-6 464 372 0.0041462965 1e-6 465 372 0.011330698 1e-6 467 372 0.015262499 1e-6 468 372 0.0028237 1e-6 469 372 0.0064695999 1e-6 470 372 0.0073988996 1e-6 471 372 0.0022876 1e-6 473 372 0.000143 1e-6 477 372 0.00025019981 1e-6 478 372 0.0014654999 1e-6 483 372 0.0015727 1e-6 489 372 3.5699995e-05 1e-6 490 372 0.0048968978 1e-6 491 372 0.0024305999 1e-6 9 373 7.6299999e-05 1e-6 18 373 0.0001527 1e-6 60 373 0.0025954 1e-6 82 373 7.6299999e-05 1e-6 83 373 7.6299999e-05 1e-6 84 373 7.6299999e-05 1e-6 108 373 7.6299999e-05 1e-6 113 373 0.0001527 1e-6 114 373 0.000229 1e-6 126 373 0.0001527 1e-6 127 373 7.6299999e-05 1e-6 150 373 0.00061069988 1e-6 160 373 0.0010686999 1e-6 169 373 7.6299999e-05 1e-6 172 373 0.00061069988 1e-6 175 373 7.6299999e-05 1e-6 189 373 7.6299999e-05 1e-6 190 373 0.0001527 1e-6 192 373 7.6299999e-05 1e-6 194 373 0.0001527 1e-6 198 373 0.0060304999 1e-6 200 373 7.6299999e-05 1e-6 201 373 7.6299999e-05 1e-6 203 373 7.6299999e-05 1e-6 204 373 7.6299999e-05 1e-6 206 373 0.000229 1e-6 207 373 7.6299999e-05 1e-6 214 373 7.6299999e-05 1e-6 223 373 0.0001527 1e-6 224 373 0.0070228986 1e-6 233 373 0.0016031 1e-6 234 373 0.0021374 1e-6 237 373 7.6299999e-05 1e-6 240 373 0.0014503999 1e-6 241 373 0.014427498 1e-6 248 373 7.6299999e-05 1e-6 250 373 7.6299999e-05 1e-6 252 373 0.000229 1e-6 262 373 0.0010686999 1e-6 270 373 0.0001527 1e-6 272 373 7.6299999e-05 1e-6 277 373 0.024198499 1e-6 282 373 0.0029771 1e-6 283 373 0.00030529988 1e-6 284 373 0.00053439988 1e-6 286 373 0.0032823998 1e-6 288 373 0.0001527 1e-6 289 373 0.0024426999 1e-6 290 373 0.00068699988 1e-6 292 373 0.0164885 1e-6 293 373 0.0031297999 1e-6 294 373 0.00053439988 1e-6 295 373 0.016793899 1e-6 296 373 0.0024426999 1e-6 297 373 0.0012214 1e-6 298 373 0.00030529988 1e-6 305 373 7.6299999e-05 1e-6 307 373 7.6299999e-05 1e-6 308 373 0.015877899 1e-6 312 373 0.0098472983 1e-6 315 373 0.00091599999 1e-6 317 373 7.6299999e-05 1e-6 319 373 0.0001527 1e-6 320 373 0.0067938976 1e-6 321 373 0.0037405 1e-6 322 373 0.0003817 1e-6 324 373 0.000229 1e-6 326 373 0.0001527 1e-6 327 373 0.0001527 1e-6 328 373 7.6299999e-05 1e-6 340 373 0.006870199 1e-6 351 373 7.6299999e-05 1e-6 352 373 7.6299999e-05 1e-6 354 373 0.0001527 1e-6 356 373 0.0001527 1e-6 358 373 0.0044274963 1e-6 359 373 0.0012977 1e-6 369 373 0.0082442984 1e-6 370 373 0.0022900999 1e-6 371 373 0.0073281974 1e-6 372 373 0.0074045993 1e-6 373 373 0.08763355 1e-6 376 373 0.0042747967 1e-6 386 373 0.011450399 1e-6 387 373 0.000229 1e-6 389 373 0.00091599999 1e-6 390 373 0.00068699988 1e-6 391 373 0.0016031 1e-6 392 373 0.0012977 1e-6 393 373 0.023969498 1e-6 405 373 0.0001527 1e-6 413 373 7.6299999e-05 1e-6 414 373 7.6299999e-05 1e-6 415 373 7.6299999e-05 1e-6 417 373 0.00053439988 1e-6 419 373 0.00061069988 1e-6 421 373 7.6299999e-05 1e-6 422 373 0.0001527 1e-6 423 373 7.6299999e-05 1e-6 424 373 7.6299999e-05 1e-6 425 373 7.6299999e-05 1e-6 430 373 7.6299999e-05 1e-6 431 373 7.6299999e-05 1e-6 433 373 7.6299999e-05 1e-6 434 373 7.6299999e-05 1e-6 441 373 0.0017557 1e-6 442 373 7.6299999e-05 1e-6 443 373 0.001374 1e-6 444 373 0.00083969999 1e-6 445 373 0.0058014989 1e-6 446 373 7.6299999e-05 1e-6 447 373 0.0038168 1e-6 450 373 0.0076335967 1e-6 452 373 0.0067175999 1e-6 453 373 0.0016031 1e-6 454 373 0.00061069988 1e-6 455 373 0.025419798 1e-6 456 373 0.00068699988 1e-6 457 373 0.0031297999 1e-6 458 373 0.00099239987 1e-6 459 373 0.00045799999 1e-6 460 373 0.00099239987 1e-6 463 373 0.011603098 1e-6 464 373 0.0010686999 1e-6 465 373 0.011144999 1e-6 467 373 0.016717598 1e-6 468 373 0.0017557 1e-6 469 373 0.010839697 1e-6 470 373 0.012137398 1e-6 471 373 0.0028243999 1e-6 473 373 0.00030529988 1e-6 477 373 0.0001527 1e-6 478 373 0.0016794 1e-6 483 373 0.0011449999 1e-6 490 373 0.0010686999 1e-6 491 373 0.0012977 1e-6 22 374 0.00016659999 1e-6 60 374 0.0019989999 1e-6 108 374 0.00016659999 1e-6 114 374 0.00016659999 1e-6 126 374 0.00016659999 1e-6 130 374 0.00016659999 1e-6 131 374 0.00016659999 1e-6 160 374 0.0013326998 1e-6 169 374 0.00099949981 1e-6 171 374 0.00016659999 1e-6 172 374 0.00033319998 1e-6 187 374 0.00016659999 1e-6 190 374 0.00016659999 1e-6 198 374 0.0041645989 1e-6 204 374 0.00016659999 1e-6 206 374 0.00049979985 1e-6 214 374 0.0013326998 1e-6 223 374 0.057471298 1e-6 224 374 0.00033319998 1e-6 225 374 0.00016659999 1e-6 233 374 0.0019989999 1e-6 234 374 0.0011660999 1e-6 240 374 0.00099949981 1e-6 241 374 0.0016657999 1e-6 252 374 0.00083289994 1e-6 270 374 0.0028318998 1e-6 272 374 0.00033319998 1e-6 277 374 0.14192897 1e-6 279 374 0.00016659999 1e-6 282 374 0.00049979985 1e-6 283 374 0.00016659999 1e-6 284 374 0.00033319998 1e-6 285 374 0.00016659999 1e-6 287 374 0.0036648 1e-6 290 374 0.008828897 1e-6 292 374 0.012660298 1e-6 293 374 0.0029984999 1e-6 294 374 0.00016659999 1e-6 295 374 0.022155598 1e-6 296 374 0.0043311976 1e-6 297 374 0.0073296987 1e-6 312 374 0.011161096 1e-6 320 374 0.00016659999 1e-6 324 374 0.00016659999 1e-6 328 374 0.010994498 1e-6 338 374 0.00016659999 1e-6 339 374 0.00016659999 1e-6 340 374 0.011993997 1e-6 344 374 0.00016659999 1e-6 356 374 0.00016659999 1e-6 358 374 0.0079959966 1e-6 370 374 0.015991997 1e-6 372 374 0.011827398 1e-6 373 374 0.030651297 1e-6 374 374 0.015325699 1e-6 375 374 0.00049979985 1e-6 387 374 0.00016659999 1e-6 390 374 0.00016659999 1e-6 392 374 0.00033319998 1e-6 393 374 0.0011660999 1e-6 394 374 0.00066629983 1e-6 405 374 0.00016659999 1e-6 408 374 0.00033319998 1e-6 416 374 0.00016659999 1e-6 417 374 0.00049979985 1e-6 430 374 0.00016659999 1e-6 443 374 0.0064967982 1e-6 444 374 0.0036648 1e-6 445 374 0.014159597 1e-6 446 374 0.00033319998 1e-6 447 374 0.0053306967 1e-6 450 374 0.0034983 1e-6 452 374 0.0058303997 1e-6 453 374 0.0028318998 1e-6 454 374 0.00049979985 1e-6 455 374 0.032317199 1e-6 456 374 0.00016659999 1e-6 457 374 0.0031650998 1e-6 458 374 0.00066629983 1e-6 459 374 0.00049979985 1e-6 460 374 0.00083289994 1e-6 463 374 0.010827899 1e-6 464 374 0.00066629983 1e-6 465 374 0.0016657999 1e-6 467 374 0.019157097 1e-6 468 374 0.0084957965 1e-6 469 374 0.0074962974 1e-6 470 374 0.0079959966 1e-6 471 374 0.00049979985 1e-6 473 374 0.00016659999 1e-6 477 374 0.00016659999 1e-6 478 374 0.0011660999 1e-6 483 374 0.00083289994 1e-6 490 374 0.00099949981 1e-6 491 374 0.0019989999 1e-6 22 375 0.0038426998 1e-6 60 375 0.0065030977 1e-6 114 375 0.00029559992 1e-6 126 375 0.00029559992 1e-6 160 375 0.0011823999 1e-6 169 375 0.0011823999 1e-6 172 375 0.0011823999 1e-6 198 375 0.0029559999 1e-6 206 375 0.00059119985 1e-6 214 375 0.029263999 1e-6 223 375 0.00029559992 1e-6 233 375 0.0076854974 1e-6 234 375 0.0331067 1e-6 241 375 0.055867597 1e-6 270 375 0.012710597 1e-6 273 375 0.0091634989 1e-6 277 375 0.0091634989 1e-6 284 375 0.00029559992 1e-6 286 375 0.013892997 1e-6 292 375 0.0026603998 1e-6 295 375 0.0041382983 1e-6 312 375 0.0112326 1e-6 326 375 0.042565797 1e-6 340 375 0.0056162998 1e-6 356 375 0.00029559992 1e-6 358 375 0.015075397 1e-6 372 375 0.008572299 1e-6 373 375 0.00059119985 1e-6 375 375 0.037244998 1e-6 417 375 0.00059119985 1e-6 443 375 0.015962198 1e-6 444 375 0.015075397 1e-6 445 375 0.013597399 1e-6 446 375 0.0011823999 1e-6 447 375 0.013006199 1e-6 450 375 0.0050251 1e-6 452 375 0.034289099 1e-6 453 375 0.015666597 1e-6 454 375 0.0035470999 1e-6 455 375 0.023943197 1e-6 457 375 0.0032515998 1e-6 458 375 0.00088679977 1e-6 459 375 0.00059119985 1e-6 460 375 0.0011823999 1e-6 463 375 0.0032515998 1e-6 464 375 0.00088679977 1e-6 465 375 0.0014779998 1e-6 467 375 0.015962198 1e-6 468 375 0.013301797 1e-6 469 375 0.0065030977 1e-6 470 375 0.0070942976 1e-6 471 375 0.00029559992 1e-6 473 375 0.00029559992 1e-6 477 375 0.00029559992 1e-6 478 375 0.0011823999 1e-6 483 375 0.00088679977 1e-6 490 375 0.00088679977 1e-6 491 375 0.0026603998 1e-6 22 376 0.0012508 1e-6 60 376 0.0022930999 1e-6 108 376 0.00020849999 1e-6 114 376 0.00020849999 1e-6 126 376 0.00020849999 1e-6 150 376 0.00020849999 1e-6 160 376 0.0012508 1e-6 169 376 0.0016676998 1e-6 172 376 0.0012508 1e-6 187 376 0.033562597 1e-6 190 376 0.00020849999 1e-6 194 376 0.00020849999 1e-6 198 376 0.0052115992 1e-6 200 376 0.00020849999 1e-6 206 376 0.0004168998 1e-6 214 376 0.0045861974 1e-6 223 376 0.0010422999 1e-6 224 376 0.00062539987 1e-6 233 376 0.0050030984 1e-6 234 376 0.0027099999 1e-6 237 376 0.00020849999 1e-6 241 376 0.016468599 1e-6 252 376 0.00062539987 1e-6 262 376 0.022305597 1e-6 272 376 0.00020849999 1e-6 276 376 0.00020849999 1e-6 277 376 0.026474897 1e-6 282 376 0.0012508 1e-6 283 376 0.00062539987 1e-6 284 376 0.00062539987 1e-6 285 376 0.00020849999 1e-6 290 376 0.00020849999 1e-6 292 376 0.012507796 1e-6 293 376 0.015426297 1e-6 294 376 0.0035438999 1e-6 295 376 0.052115899 1e-6 296 376 0.0004168998 1e-6 298 376 0.00062539987 1e-6 299 376 0.0022930999 1e-6 307 376 0.00020849999 1e-6 312 376 0.013133198 1e-6 315 376 0.012924697 1e-6 317 376 0.0018761999 1e-6 320 376 0.0012508 1e-6 321 376 0.0062538981 1e-6 326 376 0.014175497 1e-6 328 376 0.0004168998 1e-6 331 376 0.00020849999 1e-6 332 376 0.00020849999 1e-6 335 376 0.00020849999 1e-6 340 376 0.0052115992 1e-6 349 376 0.00020849999 1e-6 351 376 0.00020849999 1e-6 354 376 0.00083389995 1e-6 355 376 0.00020849999 1e-6 356 376 0.00020849999 1e-6 358 376 0.0064623989 1e-6 359 376 0.00020849999 1e-6 369 376 0.0010422999 1e-6 370 376 0.0150094 1e-6 371 376 0.0193871 1e-6 372 376 0.00062539987 1e-6 373 376 0.0014591999 1e-6 374 376 0.00020849999 1e-6 376 376 0.013550099 1e-6 384 376 0.0004168998 1e-6 385 376 0.0004168998 1e-6 386 376 0.0010422999 1e-6 387 376 0.00020849999 1e-6 390 376 0.00020849999 1e-6 392 376 0.0152178 1e-6 393 376 0.024181798 1e-6 397 376 0.0010422999 1e-6 402 376 0.00020849999 1e-6 404 376 0.0025016 1e-6 405 376 0.0012508 1e-6 414 376 0.00020849999 1e-6 417 376 0.00062539987 1e-6 422 376 0.00020849999 1e-6 430 376 0.00020849999 1e-6 443 376 0.0025016 1e-6 444 376 0.0010422999 1e-6 445 376 0.0062538981 1e-6 447 376 0.0075046979 1e-6 450 376 0.0058369972 1e-6 452 376 0.0064623989 1e-6 453 376 0.0018761999 1e-6 454 376 0.00083389995 1e-6 455 376 0.026058 1e-6 456 376 0.0004168998 1e-6 457 376 0.0027099999 1e-6 458 376 0.0014591999 1e-6 459 376 0.0004168998 1e-6 460 376 0.00062539987 1e-6 463 376 0.015843198 1e-6 464 376 0.0018761999 1e-6 465 376 0.011465497 1e-6 467 376 0.0193871 1e-6 468 376 0.0020845998 1e-6 469 376 0.011256997 1e-6 470 376 0.012924697 1e-6 471 376 0.0012508 1e-6 473 376 0.00020849999 1e-6 477 376 0.00020849999 1e-6 478 376 0.0018761999 1e-6 483 376 0.0010422999 1e-6 490 376 0.0014591999 1e-6 491 376 0.0012508 1e-6 22 377 0.00019199999 1e-6 24 377 9.5999989e-05 1e-6 60 377 0.0011520998 1e-6 108 377 9.5999989e-05 1e-6 114 377 0.00019199999 1e-6 126 377 9.5999989e-05 1e-6 130 377 9.5999989e-05 1e-6 131 377 0.0039362982 1e-6 135 377 0.0025921999 1e-6 137 377 9.5999989e-05 1e-6 139 377 0.00019199999 1e-6 150 377 9.5999989e-05 1e-6 160 377 0.00057599996 1e-6 161 377 9.5999989e-05 1e-6 165 377 9.5999989e-05 1e-6 170 377 9.5999989e-05 1e-6 171 377 0.00019199999 1e-6 172 377 0.00067199999 1e-6 187 377 0.00019199999 1e-6 190 377 9.5999989e-05 1e-6 191 377 9.5999989e-05 1e-6 194 377 0.00019199999 1e-6 198 377 0.016609099 1e-6 206 377 0.00067199999 1e-6 214 377 0.00096009998 1e-6 223 377 0.0060484 1e-6 224 377 0.0026882 1e-6 233 377 0.0080644973 1e-6 234 377 0.0014400999 1e-6 236 377 0.00028799986 1e-6 240 377 0.0026882 1e-6 241 377 0.0106567 1e-6 242 377 0.00096009998 1e-6 252 377 0.015648998 1e-6 270 377 0.0003839999 1e-6 272 377 0.0021120999 1e-6 273 377 9.5999989e-05 1e-6 274 377 0.006144397 1e-6 277 377 0.10608679 1e-6 282 377 0.0049922988 1e-6 283 377 0.00019199999 1e-6 284 377 0.00047999993 1e-6 285 377 9.5999989e-05 1e-6 292 377 0.0037441999 1e-6 293 377 0.011616699 1e-6 294 377 0.0012480998 1e-6 295 377 0.014208898 1e-6 296 377 0.0030721999 1e-6 297 377 0.00028799986 1e-6 298 377 0.0040322989 1e-6 304 377 0.00057599996 1e-6 307 377 9.5999989e-05 1e-6 312 377 0.010560699 1e-6 315 377 0.020929299 1e-6 319 377 0.0134409 1e-6 320 377 0.0019200998 1e-6 321 377 0.0049922988 1e-6 322 377 0.012384798 1e-6 324 377 0.0072004981 1e-6 326 377 0.0028801998 1e-6 328 377 0.00028799986 1e-6 339 377 0.00067199999 1e-6 340 377 0.0098885968 1e-6 341 377 0.00019199999 1e-6 350 377 0.00047999993 1e-6 351 377 0.0018240998 1e-6 352 377 0.0010560998 1e-6 354 377 0.0026882 1e-6 355 377 0.00028799986 1e-6 356 377 9.5999989e-05 1e-6 358 377 0.0015360999 1e-6 364 377 0.00028799986 1e-6 366 377 0.0094085969 1e-6 370 377 0.0050882995 1e-6 371 377 0.0076804981 1e-6 372 377 0.020545296 1e-6 373 377 0.0034561998 1e-6 377 377 0.012192797 1e-6 379 377 0.00019199999 1e-6 380 377 0.011808798 1e-6 385 377 0.00019199999 1e-6 386 377 0.016128998 1e-6 387 377 9.5999989e-05 1e-6 393 377 9.5999989e-05 1e-6 398 377 0.0045122989 1e-6 415 377 0.043106798 1e-6 417 377 0.0003839999 1e-6 419 377 0.022465397 1e-6 422 377 0.00019199999 1e-6 441 377 0.0032641999 1e-6 443 377 0.0045122989 1e-6 444 377 0.0018240998 1e-6 445 377 0.0071044974 1e-6 446 377 0.00019199999 1e-6 447 377 0.0038401999 1e-6 450 377 0.0028801998 1e-6 452 377 0.0050882995 1e-6 453 377 0.0034561998 1e-6 454 377 0.00086409994 1e-6 455 377 0.044546898 1e-6 456 377 9.5999989e-05 1e-6 457 377 0.0027841998 1e-6 458 377 0.00096009998 1e-6 459 377 0.00047999993 1e-6 460 377 0.00096009998 1e-6 463 377 0.016513098 1e-6 464 377 0.00057599996 1e-6 465 377 0.0016321 1e-6 467 377 0.0096005984 1e-6 468 377 0.020737298 1e-6 469 377 0.0042242967 1e-6 470 377 0.0045122989 1e-6 471 377 0.00096009998 1e-6 472 377 0.00096009998 1e-6 473 377 9.5999989e-05 1e-6 477 377 9.5999989e-05 1e-6 478 377 0.0010560998 1e-6 483 377 0.0019200998 1e-6 490 377 0.0003839999 1e-6 491 377 0.00086409994 1e-6 22 378 0.00048609986 1e-6 60 378 0.0012500999 1e-6 108 378 6.939999e-05 1e-6 114 378 0.0001389 1e-6 126 378 6.939999e-05 1e-6 131 378 0.0013889999 1e-6 150 378 0.0001389 1e-6 160 378 0.0024307 1e-6 171 378 6.939999e-05 1e-6 172 378 0.0019445999 1e-6 187 378 0.0014583999 1e-6 189 378 6.939999e-05 1e-6 190 378 6.939999e-05 1e-6 191 378 0.0010416999 1e-6 194 378 0.0001389 1e-6 198 378 0.014098197 1e-6 200 378 6.939999e-05 1e-6 203 378 6.939999e-05 1e-6 204 378 6.939999e-05 1e-6 206 378 0.00048609986 1e-6 214 378 0.0069448985 1e-6 219 378 0.0004166998 1e-6 223 378 0.0026391 1e-6 233 378 0.013889898 1e-6 234 378 0.0013194999 1e-6 236 378 0.00062499987 1e-6 237 378 6.939999e-05 1e-6 240 378 0.0092367977 1e-6 241 378 0.053059198 1e-6 242 378 0.0004166998 1e-6 252 378 0.0012500999 1e-6 270 378 0.00034719985 1e-6 272 378 0.0037502998 1e-6 274 378 0.0097922981 1e-6 277 378 0.068685293 1e-6 282 378 0.0038196999 1e-6 283 378 0.00055559981 1e-6 284 378 0.00048609986 1e-6 285 378 0.0001389 1e-6 286 378 6.939999e-05 1e-6 289 378 6.939999e-05 1e-6 292 378 0.012431398 1e-6 293 378 0.012084197 1e-6 294 378 0.00034719985 1e-6 295 378 0.012709197 1e-6 296 378 0.0013889999 1e-6 297 378 0.0004166998 1e-6 298 378 0.00034719985 1e-6 304 378 0.0015278999 1e-6 312 378 0.010278497 1e-6 315 378 0.0117369 1e-6 319 378 0.011875797 1e-6 320 378 0.0001389 1e-6 321 378 0.0068754964 1e-6 322 378 0.014237098 1e-6 324 378 0.0069448985 1e-6 326 378 0.0029862998 1e-6 328 378 0.0004166998 1e-6 338 378 6.939999e-05 1e-6 339 378 0.00055559981 1e-6 340 378 0.0004166998 1e-6 350 378 0.0084033981 1e-6 351 378 0.00083339983 1e-6 352 378 0.0037502998 1e-6 353 378 6.939999e-05 1e-6 354 378 0.0002083 1e-6 356 378 0.0001389 1e-6 358 378 0.0022918 1e-6 366 378 0.049934 1e-6 368 378 6.939999e-05 1e-6 370 378 0.0002083 1e-6 371 378 0.0077782981 1e-6 372 378 0.050628498 1e-6 373 378 0.0087505989 1e-6 376 378 0.0001389 1e-6 386 378 0.010834098 1e-6 387 378 6.939999e-05 1e-6 398 378 0.00055559981 1e-6 415 378 0.015278798 1e-6 417 378 0.00034719985 1e-6 419 378 0.00069449982 1e-6 421 378 6.939999e-05 1e-6 422 378 0.0001389 1e-6 441 378 0.00076389988 1e-6 442 378 6.939999e-05 1e-6 443 378 0.0043058991 1e-6 444 378 0.00034719985 1e-6 445 378 0.0078477971 1e-6 446 378 0.00034719985 1e-6 447 378 0.0026391 1e-6 450 378 0.0025001999 1e-6 452 378 0.0042363964 1e-6 453 378 0.0018751 1e-6 454 378 0.00090279989 1e-6 455 378 0.042364098 1e-6 456 378 0.0002083 1e-6 457 378 0.0027084998 1e-6 458 378 0.00048609986 1e-6 459 378 0.0004166998 1e-6 460 378 0.00090279989 1e-6 463 378 0.0099311993 1e-6 464 378 0.0004166998 1e-6 465 378 0.004166998 1e-6 467 378 0.0075699985 1e-6 468 378 0.015834399 1e-6 469 378 0.0031251998 1e-6 470 378 0.0031947 1e-6 471 378 0.0010416999 1e-6 473 378 6.939999e-05 1e-6 477 378 0.0001389 1e-6 478 378 0.00076389988 1e-6 483 378 0.0018056999 1e-6 490 378 0.00027779979 1e-6 491 378 0.00083339983 1e-6 22 379 0.0001526 1e-6 60 379 0.00091529987 1e-6 108 379 7.6299999e-05 1e-6 114 379 0.0001526 1e-6 126 379 7.6299999e-05 1e-6 150 379 7.6299999e-05 1e-6 160 379 0.00076279999 1e-6 169 379 0.00061019999 1e-6 172 379 0.0045766979 1e-6 187 379 7.6299999e-05 1e-6 190 379 7.6299999e-05 1e-6 194 379 0.0001526 1e-6 198 379 0.015484396 1e-6 206 379 0.00061019999 1e-6 214 379 0.00030509988 1e-6 219 379 0.00030509988 1e-6 223 379 0.00030509988 1e-6 224 379 7.6299999e-05 1e-6 233 379 0.0073988996 1e-6 234 379 0.00099159987 1e-6 236 379 0.0010678999 1e-6 240 379 0.012051899 1e-6 241 379 0.018916897 1e-6 242 379 0.0089244992 1e-6 252 379 7.6299999e-05 1e-6 270 379 0.002746 1e-6 271 379 7.6299999e-05 1e-6 272 379 0.0001526 1e-6 274 379 0.0001526 1e-6 277 379 0.099694848 1e-6 282 379 0.011060297 1e-6 283 379 0.00045769988 1e-6 284 379 0.00038139988 1e-6 285 379 7.6299999e-05 1e-6 292 379 0.002746 1e-6 293 379 0.0049579963 1e-6 294 379 0.0002288 1e-6 295 379 0.0045766979 1e-6 296 379 0.0050342977 1e-6 297 379 0.0002288 1e-6 298 379 0.013424899 1e-6 304 379 0.0002288 1e-6 312 379 0.013882499 1e-6 313 379 0.0001526 1e-6 315 379 0.018230397 1e-6 319 379 0.0021358 1e-6 320 379 0.0022121 1e-6 321 379 0.0028223 1e-6 322 379 0.0035849998 1e-6 324 379 0.0076277964 1e-6 326 379 7.6299999e-05 1e-6 328 379 0.00030509988 1e-6 339 379 0.00030509988 1e-6 340 379 0.0017543999 1e-6 341 379 0.0026697 1e-6 343 379 7.6299999e-05 1e-6 351 379 0.0034324999 1e-6 352 379 0.00061019999 1e-6 354 379 0.0086956993 1e-6 356 379 7.6299999e-05 1e-6 357 379 7.6299999e-05 1e-6 358 379 0.0025171998 1e-6 364 379 0.0042714998 1e-6 365 379 7.6299999e-05 1e-6 366 379 0.011517897 1e-6 371 379 0.00030509988 1e-6 372 379 0.071929753 1e-6 373 379 0.0025934 1e-6 377 379 0.0041189976 1e-6 379 379 0.0019069 1e-6 385 379 0.0019832 1e-6 386 379 0.00091529987 1e-6 387 379 7.6299999e-05 1e-6 397 379 7.6299999e-05 1e-6 398 379 0.0062547997 1e-6 402 379 0.00068649999 1e-6 415 379 0.025858097 1e-6 417 379 0.00030509988 1e-6 419 379 0.028298996 1e-6 421 379 7.6299999e-05 1e-6 422 379 0.0001526 1e-6 438 379 7.6299999e-05 1e-6 441 379 0.0039663985 1e-6 443 379 0.0029747998 1e-6 444 379 0.0028986 1e-6 445 379 0.0063309968 1e-6 446 379 0.00030509988 1e-6 447 379 0.0025171998 1e-6 450 379 0.0017543999 1e-6 452 379 0.004195299 1e-6 453 379 0.0026697 1e-6 454 379 0.00083909999 1e-6 455 379 0.036536999 1e-6 456 379 7.6299999e-05 1e-6 457 379 0.0025171998 1e-6 458 379 0.00030509988 1e-6 459 379 0.00061019999 1e-6 460 379 0.00076279999 1e-6 463 379 0.0092295967 1e-6 464 379 0.00053389999 1e-6 465 379 0.0011441999 1e-6 467 379 0.0064072981 1e-6 468 379 0.023188397 1e-6 469 379 0.0025934 1e-6 470 379 0.002746 1e-6 471 379 0.00099159987 1e-6 473 379 7.6299999e-05 1e-6 477 379 0.0001526 1e-6 478 379 0.00068649999 1e-6 483 379 0.0017543999 1e-6 490 379 0.0002288 1e-6 491 379 0.00083909999 1e-6 9 380 6.7199988e-05 1e-6 60 380 0.0046345964 1e-6 82 380 6.7199988e-05 1e-6 83 380 6.7199988e-05 1e-6 84 380 6.7199988e-05 1e-6 108 380 6.7199988e-05 1e-6 113 380 0.00013429999 1e-6 114 380 0.00013429999 1e-6 126 380 6.7199988e-05 1e-6 130 380 0.011015598 1e-6 131 380 0.0016792 1e-6 133 380 6.7199988e-05 1e-6 137 380 6.7199988e-05 1e-6 139 380 0.0058435984 1e-6 150 380 0.00080599985 1e-6 160 380 6.7199988e-05 1e-6 161 380 0.00013429999 1e-6 165 380 6.7199988e-05 1e-6 170 380 6.7199988e-05 1e-6 171 380 0.0090004988 1e-6 172 380 6.7199988e-05 1e-6 187 380 0.00013429999 1e-6 188 380 0.00013429999 1e-6 189 380 6.7199988e-05 1e-6 190 380 0.00013429999 1e-6 192 380 6.7199988e-05 1e-6 194 380 0.00013429999 1e-6 198 380 0.0190758 1e-6 200 380 6.7199988e-05 1e-6 203 380 6.7199988e-05 1e-6 204 380 0.00073889992 1e-6 206 380 0.00067169988 1e-6 207 380 6.7199988e-05 1e-6 214 380 0.00026869983 1e-6 219 380 6.7199988e-05 1e-6 223 380 0.0024180999 1e-6 224 380 0.019948997 1e-6 233 380 0.0032911999 1e-6 234 380 0.0017463998 1e-6 236 380 0.0003358 1e-6 237 380 6.7199988e-05 1e-6 240 380 0.0023508999 1e-6 241 380 0.036472298 1e-6 252 380 0.0065824986 1e-6 257 380 6.7199988e-05 1e-6 270 380 6.7199988e-05 1e-6 272 380 0.00080599985 1e-6 274 380 0.0021493998 1e-6 275 380 6.7199988e-05 1e-6 277 380 0.052659899 1e-6 279 380 6.7199988e-05 1e-6 282 380 0.0030896999 1e-6 284 380 0.00067169988 1e-6 285 380 0.00053729978 1e-6 286 380 6.7199988e-05 1e-6 292 380 0.0040972978 1e-6 293 380 0.016120397 1e-6 294 380 0.0089333989 1e-6 295 380 0.030359998 1e-6 296 380 0.0074556991 1e-6 298 380 0.0064480975 1e-6 299 380 0.00013429999 1e-6 301 380 6.7199988e-05 1e-6 304 380 6.7199988e-05 1e-6 307 380 0.00020149999 1e-6 312 380 0.011687297 1e-6 315 380 0.011082798 1e-6 319 380 0.005507797 1e-6 320 380 0.00040299981 1e-6 321 380 0.0039628968 1e-6 322 380 0.0028881999 1e-6 324 380 0.00040299981 1e-6 326 380 0.0034926999 1e-6 330 380 0.0010746999 1e-6 339 380 0.0003358 1e-6 340 380 0.0048360974 1e-6 350 380 0.00013429999 1e-6 351 380 0.00013429999 1e-6 352 380 6.7199988e-05 1e-6 353 380 6.7199988e-05 1e-6 354 380 0.00026869983 1e-6 355 380 0.00073889992 1e-6 356 380 0.00013429999 1e-6 358 380 0.0053734966 1e-6 366 380 0.00067169988 1e-6 370 380 0.0038285998 1e-6 371 380 0.0051047988 1e-6 372 380 0.026732899 1e-6 373 380 0.00047019986 1e-6 380 380 0.012627598 1e-6 384 380 6.7199988e-05 1e-6 386 380 0.0168592 1e-6 387 380 6.7199988e-05 1e-6 393 380 0.00020149999 1e-6 395 380 0.00060449983 1e-6 398 380 0.0017463998 1e-6 402 380 0.00020149999 1e-6 414 380 6.7199988e-05 1e-6 415 380 0.0070526972 1e-6 417 380 0.00060449983 1e-6 419 380 0.0029553999 1e-6 421 380 6.7199988e-05 1e-6 422 380 6.7199988e-05 1e-6 423 380 6.7199988e-05 1e-6 430 380 6.7199988e-05 1e-6 433 380 6.7199988e-05 1e-6 434 380 6.7199988e-05 1e-6 441 380 0.0030896999 1e-6 442 380 0.00080599985 1e-6 443 380 0.0031568999 1e-6 444 380 0.0003358 1e-6 445 380 0.0072541982 1e-6 446 380 0.00013429999 1e-6 447 380 0.0023508999 1e-6 450 380 0.0032241 1e-6 452 380 0.0053062998 1e-6 453 380 0.0018806998 1e-6 454 380 0.00060449983 1e-6 455 380 0.040032197 1e-6 456 380 0.00020149999 1e-6 457 380 0.0028210999 1e-6 458 380 0.00060449983 1e-6 459 380 0.00040299981 1e-6 460 380 0.0010746999 1e-6 463 380 0.018941399 1e-6 464 380 0.0003358 1e-6 465 380 0.0016792 1e-6 467 380 0.011149898 1e-6 468 380 0.032442197 1e-6 469 380 0.0051719993 1e-6 470 380 0.005507797 1e-6 471 380 0.0008731999 1e-6 473 380 0.00013429999 1e-6 477 380 0.00013429999 1e-6 478 380 0.0011419 1e-6 479 380 0.0008731999 1e-6 483 380 0.002015 1e-6 490 380 0.00047019986 1e-6 491 380 0.0018806998 1e-6 60 381 0.0037928999 1e-6 114 381 0.0002231 1e-6 126 381 0.0002231 1e-6 130 381 0.00044619991 1e-6 139 381 0.0002231 1e-6 160 381 0.0002231 1e-6 171 381 0.00044619991 1e-6 172 381 0.0002231 1e-6 193 381 0.0017849 1e-6 198 381 0.0182954 1e-6 206 381 0.00089249993 1e-6 214 381 0.0053547993 1e-6 219 381 0.0002231 1e-6 223 381 0.00044619991 1e-6 224 381 0.016287398 1e-6 233 381 0.0071396977 1e-6 234 381 0.00066929986 1e-6 236 381 0.0002231 1e-6 240 381 0.0046853982 1e-6 241 381 0.026550598 1e-6 242 381 0.016733598 1e-6 252 381 0.0002231 1e-6 271 381 0.00044619991 1e-6 272 381 0.0037928999 1e-6 274 381 0.00066929986 1e-6 277 381 0.031905398 1e-6 279 381 0.00089249993 1e-6 282 381 0.010263298 1e-6 283 381 0.0013386998 1e-6 284 381 0.00044619991 1e-6 292 381 0.0037928999 1e-6 293 381 0.0080320984 1e-6 294 381 0.00044619991 1e-6 295 381 0.034359697 1e-6 296 381 0.022757698 1e-6 298 381 0.0002231 1e-6 312 381 0.010040198 1e-6 313 381 0.00066929986 1e-6 315 381 0.025211997 1e-6 319 381 0.0080320984 1e-6 320 381 0.0002231 1e-6 321 381 0.00066929986 1e-6 322 381 0.0078089982 1e-6 324 381 0.0040160976 1e-6 326 381 0.00044619991 1e-6 340 381 0.004462298 1e-6 349 381 0.0031235998 1e-6 350 381 0.00044619991 1e-6 351 381 0.0024542999 1e-6 352 381 0.0002231 1e-6 356 381 0.0037928999 1e-6 357 381 0.00044619991 1e-6 358 381 0.0031235998 1e-6 366 381 0.0026773999 1e-6 370 381 0.004462298 1e-6 371 381 0.0066933967 1e-6 372 381 0.017849199 1e-6 373 381 0.0002231 1e-6 380 381 0.00066929986 1e-6 381 381 0.00044619991 1e-6 386 381 0.010709498 1e-6 390 381 0.00066929986 1e-6 392 381 0.00044619991 1e-6 393 381 0.0011155999 1e-6 397 381 0.0002231 1e-6 398 381 0.0060240999 1e-6 402 381 0.0026773999 1e-6 415 381 0.0011155999 1e-6 417 381 0.00044619991 1e-6 419 381 0.00066929986 1e-6 438 381 0.0095938966 1e-6 441 381 0.0093707964 1e-6 443 381 0.0022310999 1e-6 444 381 0.0020079999 1e-6 445 381 0.007585898 1e-6 447 381 0.010932598 1e-6 450 381 0.0026773999 1e-6 452 381 0.004462298 1e-6 453 381 0.0017849 1e-6 454 381 0.00089249993 1e-6 455 381 0.0305667 1e-6 457 381 0.0026773999 1e-6 459 381 0.00044619991 1e-6 460 381 0.00089249993 1e-6 463 381 0.0122713 1e-6 464 381 0.00044619991 1e-6 465 381 0.0013386998 1e-6 467 381 0.0084783994 1e-6 468 381 0.0276662 1e-6 469 381 0.0051315986 1e-6 470 381 0.0055778995 1e-6 471 381 0.0015617998 1e-6 473 381 0.0002231 1e-6 477 381 0.0002231 1e-6 478 381 0.00066929986 1e-6 479 381 0.0013386998 1e-6 483 381 0.0015617998 1e-6 490 381 0.00066929986 1e-6 491 381 0.0020079999 1e-6 60 382 0.0077120997 1e-6 114 382 0.00064269989 1e-6 172 382 0.0012852999 1e-6 198 382 0.0032133998 1e-6 206 382 0.0012852999 1e-6 234 382 0.0038559998 1e-6 241 382 0.00064269989 1e-6 242 382 0.0102828 1e-6 272 382 0.0044986978 1e-6 277 382 0.023136199 1e-6 282 382 0.014781497 1e-6 284 382 0.00064269989 1e-6 292 382 0.0025706999 1e-6 293 382 0.0032133998 1e-6 295 382 0.034061696 1e-6 296 382 0.00064269989 1e-6 307 382 0.00064269989 1e-6 312 382 0.0044986978 1e-6 315 382 0.0064266995 1e-6 319 382 0.0038559998 1e-6 322 382 0.0032133998 1e-6 340 382 0.0025706999 1e-6 344 382 0.0019279998 1e-6 351 382 0.00064269989 1e-6 354 382 0.00064269989 1e-6 358 382 0.025706898 1e-6 371 382 0.00064269989 1e-6 372 382 0.0025706999 1e-6 373 382 0.00064269989 1e-6 382 382 0.082262158 1e-6 386 382 0.0012852999 1e-6 417 382 0.00064269989 1e-6 441 382 0.0044986978 1e-6 444 382 0.00064269989 1e-6 445 382 0.0012852999 1e-6 447 382 0.012210798 1e-6 450 382 0.0032133998 1e-6 452 382 0.0064266995 1e-6 453 382 0.00064269989 1e-6 454 382 0.0019279998 1e-6 455 382 0.025706898 1e-6 457 382 0.0032133998 1e-6 459 382 0.00064269989 1e-6 460 382 0.00064269989 1e-6 463 382 0.031490996 1e-6 464 382 0.00064269989 1e-6 465 382 0.0019279998 1e-6 467 382 0.014138799 1e-6 468 382 0.084832847 1e-6 469 382 0.0044986978 1e-6 470 382 0.0051413998 1e-6 478 382 0.0012852999 1e-6 483 382 0.0025706999 1e-6 490 382 0.00064269989 1e-6 491 382 0.0070693977 1e-6 22 383 0.00011879999 1e-6 60 383 0.0009500999 1e-6 108 383 0.00011879999 1e-6 114 383 0.00023749999 1e-6 126 383 0.00011879999 1e-6 130 383 0.00011879999 1e-6 131 383 0.00011879999 1e-6 135 383 0.00011879999 1e-6 139 383 0.00011879999 1e-6 160 383 0.00023749999 1e-6 161 383 0.0032066999 1e-6 171 383 0.00011879999 1e-6 172 383 0.0003562998 1e-6 182 383 0.0030878999 1e-6 193 383 0.00011879999 1e-6 194 383 0.00011879999 1e-6 198 383 0.015439399 1e-6 206 383 0.00071259984 1e-6 214 383 0.0040379986 1e-6 223 383 0.0065320991 1e-6 224 383 0.0089073963 1e-6 233 383 0.009263698 1e-6 234 383 0.0009500999 1e-6 236 383 0.0003562998 1e-6 240 383 0.0089073963 1e-6 241 383 0.0108076 1e-6 242 383 0.0045130998 1e-6 252 383 0.0021378 1e-6 270 383 0.0038005 1e-6 272 383 0.0043942966 1e-6 274 383 0.0047505982 1e-6 275 383 0.00011879999 1e-6 277 383 0.10558188 1e-6 282 383 0.0061757974 1e-6 283 383 0.00011879999 1e-6 284 383 0.0003562998 1e-6 292 383 0.0071258992 1e-6 293 383 0.0041567981 1e-6 294 383 0.0016627 1e-6 295 383 0.011045098 1e-6 296 383 0.0046317987 1e-6 297 383 0.00023749999 1e-6 298 383 0.0074821971 1e-6 300 383 0.00011879999 1e-6 304 383 0.00023749999 1e-6 307 383 0.00023749999 1e-6 312 383 0.017695997 1e-6 315 383 0.011757698 1e-6 319 383 0.0097386986 1e-6 320 383 0.0038005 1e-6 321 383 0.0065320991 1e-6 322 383 0.0061757974 1e-6 324 383 0.0081947967 1e-6 326 383 0.0058194995 1e-6 328 383 0.00023749999 1e-6 340 383 0.0059381984 1e-6 341 383 0.00011879999 1e-6 349 383 0.00011879999 1e-6 350 383 0.0003562998 1e-6 351 383 0.0047505982 1e-6 352 383 0.00083139981 1e-6 354 383 0.00071259984 1e-6 355 383 0.0009500999 1e-6 356 383 0.00023749999 1e-6 358 383 0.0019001998 1e-6 364 383 0.00011879999 1e-6 366 383 0.006650798 1e-6 370 383 0.00059379986 1e-6 371 383 0.0072446987 1e-6 372 383 0.040973898 1e-6 373 383 0.0026127999 1e-6 377 383 0.00059379986 1e-6 379 383 0.00011879999 1e-6 380 383 0.0102138 1e-6 383 383 0.00011879999 1e-6 385 383 0.00011879999 1e-6 386 383 0.019477397 1e-6 387 383 0.00011879999 1e-6 393 383 0.00023749999 1e-6 398 383 0.00059379986 1e-6 414 383 0.00011879999 1e-6 415 383 0.032066498 1e-6 417 383 0.00023749999 1e-6 419 383 0.0052256994 1e-6 438 383 0.0032066999 1e-6 441 383 0.0027315998 1e-6 443 383 0.0039191991 1e-6 444 383 0.0046317987 1e-6 445 383 0.0070070997 1e-6 446 383 0.00011879999 1e-6 447 383 0.0053443983 1e-6 450 383 0.0024940998 1e-6 452 383 0.0039191991 1e-6 453 383 0.0028503998 1e-6 454 383 0.0011876 1e-6 455 383 0.040142499 1e-6 457 383 0.0026127999 1e-6 458 383 0.00059379986 1e-6 459 383 0.0003562998 1e-6 460 383 0.00083139981 1e-6 463 383 0.015676998 1e-6 464 383 0.00047509978 1e-6 465 383 0.0010688999 1e-6 467 383 0.0077196993 1e-6 468 383 0.019833699 1e-6 469 383 0.0041567981 1e-6 470 383 0.0043942966 1e-6 471 383 0.00059379986 1e-6 473 383 0.00011879999 1e-6 477 383 0.00011879999 1e-6 478 383 0.00059379986 1e-6 479 383 0.00047509978 1e-6 483 383 0.0021378 1e-6 490 383 0.0003562998 1e-6 491 383 0.0010688999 1e-6 18 384 9.3799987e-05 1e-6 60 384 0.0019689 1e-6 108 384 9.3799987e-05 1e-6 114 384 0.00018749999 1e-6 126 384 9.3799987e-05 1e-6 150 384 9.3799987e-05 1e-6 151 384 9.3799987e-05 1e-6 190 384 9.3799987e-05 1e-6 194 384 0.00018749999 1e-6 198 384 0.0235327 1e-6 200 384 9.3799987e-05 1e-6 203 384 9.3799987e-05 1e-6 204 384 9.3799987e-05 1e-6 206 384 0.00018749999 1e-6 214 384 0.024282798 1e-6 219 384 0.00018749999 1e-6 223 384 9.3799987e-05 1e-6 224 384 0.00018749999 1e-6 233 384 0.00065629999 1e-6 234 384 0.0021563999 1e-6 237 384 9.3799987e-05 1e-6 240 384 9.3799987e-05 1e-6 241 384 0.0012188 1e-6 252 384 0.073504567 1e-6 270 384 9.3799987e-05 1e-6 271 384 0.00018749999 1e-6 277 384 0.0030001998 1e-6 282 384 0.0021563999 1e-6 283 384 0.00084379991 1e-6 284 384 0.00037499983 1e-6 290 384 0.00018749999 1e-6 292 384 0.0050627999 1e-6 293 384 9.3799987e-05 1e-6 294 384 0.019032396 1e-6 295 384 0.00028129993 1e-6 296 384 0.00056249998 1e-6 312 384 0.00046879984 1e-6 313 384 0.00037499983 1e-6 315 384 0.00018749999 1e-6 320 384 0.00018749999 1e-6 340 384 0.0018751 1e-6 351 384 0.00018749999 1e-6 357 384 0.00018749999 1e-6 358 384 0.0013126 1e-6 370 384 0.00037499983 1e-6 384 384 0.00046879984 1e-6 385 384 0.0033751999 1e-6 386 384 0.00028129993 1e-6 387 384 9.3799987e-05 1e-6 389 384 0.00084379991 1e-6 390 384 0.00018749999 1e-6 392 384 0.00037499983 1e-6 393 384 0.0027188999 1e-6 397 384 0.00018749999 1e-6 398 384 0.11110067 1e-6 402 384 0.0016875998 1e-6 417 384 0.00037499983 1e-6 421 384 9.3799987e-05 1e-6 422 384 0.00018749999 1e-6 443 384 0.0015937998 1e-6 444 384 0.0045939982 1e-6 445 384 0.0058128983 1e-6 446 384 0.00084379991 1e-6 447 384 0.0058128983 1e-6 450 384 0.004031498 1e-6 452 384 0.0059065968 1e-6 453 384 0.0029063998 1e-6 454 384 0.00074999989 1e-6 455 384 0.029251799 1e-6 456 384 0.00018749999 1e-6 457 384 0.0029063998 1e-6 458 384 0.00056249998 1e-6 459 384 0.00037499983 1e-6 460 384 0.0010312998 1e-6 463 384 0.0041252971 1e-6 464 384 0.00046879984 1e-6 465 384 0.0015937998 1e-6 467 384 0.011531997 1e-6 468 384 0.010031898 1e-6 469 384 0.0032815 1e-6 470 384 0.0037501999 1e-6 471 384 0.0039376989 1e-6 473 384 9.3799987e-05 1e-6 477 384 0.00018749999 1e-6 478 384 0.0012188 1e-6 483 384 0.00065629999 1e-6 490 384 0.00037499983 1e-6 491 384 0.0012188 1e-6 18 385 0.00012879999 1e-6 21 385 4.2899992e-05 1e-6 22 385 0.00034359982 1e-6 24 385 4.2899992e-05 1e-6 60 385 0.0015031998 1e-6 82 385 4.2899992e-05 1e-6 108 385 0.0001718 1e-6 114 385 0.00034359982 1e-6 126 385 0.0001718 1e-6 130 385 0.0043806992 1e-6 131 385 0.0014173 1e-6 138 385 4.2899992e-05 1e-6 139 385 4.2899992e-05 1e-6 142 385 4.2899992e-05 1e-6 150 385 0.00060129981 1e-6 151 385 4.2899992e-05 1e-6 156 385 0.0013742999 1e-6 160 385 0.0019755999 1e-6 161 385 0.0012883998 1e-6 171 385 0.0026197999 1e-6 187 385 8.5899999e-05 1e-6 188 385 0.00012879999 1e-6 190 385 8.5899999e-05 1e-6 194 385 0.00012879999 1e-6 197 385 4.2899992e-05 1e-6 198 385 0.020314399 1e-6 200 385 8.5899999e-05 1e-6 201 385 4.2899992e-05 1e-6 203 385 8.5899999e-05 1e-6 204 385 0.00012879999 1e-6 206 385 0.0001718 1e-6 207 385 4.2899992e-05 1e-6 214 385 0.0042088963 1e-6 219 385 4.2899992e-05 1e-6 223 385 0.00068719988 1e-6 224 385 0.010693997 1e-6 225 385 4.2899992e-05 1e-6 227 385 4.2899992e-05 1e-6 229 385 4.2899992e-05 1e-6 233 385 0.0054972991 1e-6 234 385 0.0018038 1e-6 237 385 0.00012879999 1e-6 240 385 0.00098779984 1e-6 241 385 0.038008898 1e-6 242 385 4.2899992e-05 1e-6 243 385 4.2899992e-05 1e-6 252 385 0.032597497 1e-6 254 385 0.00012879999 1e-6 262 385 8.5899999e-05 1e-6 263 385 0.00085899979 1e-6 265 385 4.2899992e-05 1e-6 266 385 4.2899992e-05 1e-6 270 385 0.0009019 1e-6 271 385 4.2899992e-05 1e-6 272 385 0.0020615 1e-6 276 385 4.2899992e-05 1e-6 277 385 0.048058797 1e-6 282 385 0.0055402964 1e-6 283 385 0.00012879999 1e-6 284 385 0.00042949989 1e-6 286 385 4.2899992e-05 1e-6 288 385 0.0012454998 1e-6 289 385 0.0014601999 1e-6 290 385 0.00030059996 1e-6 292 385 0.0038653 1e-6 293 385 0.016062498 1e-6 294 385 0.00064419978 1e-6 295 385 0.0085465983 1e-6 296 385 0.01151 1e-6 297 385 0.0011165999 1e-6 298 385 0.0033069998 1e-6 300 385 4.2899992e-05 1e-6 312 385 0.011037599 1e-6 315 385 0.032683399 1e-6 317 385 4.2899992e-05 1e-6 319 385 0.00012879999 1e-6 320 385 0.010865796 1e-6 321 385 0.00025769998 1e-6 322 385 0.0024909999 1e-6 324 385 0.00012879999 1e-6 326 385 0.00060129981 1e-6 328 385 0.00021469999 1e-6 329 385 8.5899999e-05 1e-6 339 385 0.0001718 1e-6 340 385 0.0073440969 1e-6 350 385 4.2899992e-05 1e-6 351 385 0.00012879999 1e-6 352 385 4.2899992e-05 1e-6 354 385 0.00012879999 1e-6 356 385 0.00012879999 1e-6 358 385 0.0018896998 1e-6 366 385 0.00047239987 1e-6 370 385 0.050764497 1e-6 371 385 4.2899992e-05 1e-6 372 385 0.00047239987 1e-6 373 385 0.00034359982 1e-6 375 385 4.2899992e-05 1e-6 376 385 0.0014173 1e-6 384 385 0.017823398 1e-6 385 385 0.015203599 1e-6 386 385 0.023621399 1e-6 387 385 0.0001718 1e-6 392 385 0.0003864998 1e-6 393 385 0.0027486999 1e-6 395 385 0.00012879999 1e-6 397 385 0.00021469999 1e-6 398 385 0.0015890999 1e-6 402 385 0.00012879999 1e-6 415 385 4.2899992e-05 1e-6 416 385 4.2899992e-05 1e-6 417 385 0.00051539997 1e-6 419 385 4.2899992e-05 1e-6 421 385 4.2899992e-05 1e-6 422 385 0.00012879999 1e-6 427 385 4.2899992e-05 1e-6 430 385 0.00021469999 1e-6 433 385 4.2899992e-05 1e-6 434 385 4.2899992e-05 1e-6 442 385 4.2899992e-05 1e-6 443 385 0.0033928999 1e-6 444 385 0.0044235997 1e-6 445 385 0.0068286993 1e-6 446 385 0.00012879999 1e-6 447 385 0.0049389973 1e-6 450 385 0.0042517968 1e-6 452 385 0.0048101991 1e-6 453 385 0.0021902998 1e-6 454 385 0.00064419978 1e-6 455 385 0.043978699 1e-6 456 385 0.00012879999 1e-6 457 385 0.0030922999 1e-6 458 385 0.00081599993 1e-6 459 385 0.0003864998 1e-6 460 385 0.00073009985 1e-6 463 385 0.018038098 1e-6 464 385 0.0056261979 1e-6 465 385 0.0017608998 1e-6 467 385 0.012583699 1e-6 468 385 0.0066998973 1e-6 469 385 0.0054972991 1e-6 470 385 0.0060985982 1e-6 471 385 0.0055831969 1e-6 473 385 0.0001718 1e-6 477 385 0.00030059996 1e-6 478 385 0.0012454998 1e-6 479 385 0.0011596 1e-6 483 385 0.00085899979 1e-6 489 385 4.2899992e-05 1e-6 490 385 0.00060129981 1e-6 491 385 0.00068719988 1e-6 9 386 4.7999987e-05 1e-6 18 386 0.00014389999 1e-6 19 386 0.0003837999 1e-6 21 386 0.00014389999 1e-6 22 386 0.0004317998 1e-6 24 386 0.0003358 1e-6 60 386 0.0022546998 1e-6 82 386 0.00014389999 1e-6 83 386 4.7999987e-05 1e-6 84 386 4.7999987e-05 1e-6 108 386 9.5899988e-05 1e-6 113 386 9.5899988e-05 1e-6 114 386 0.00019189999 1e-6 117 386 4.7999987e-05 1e-6 126 386 9.5899988e-05 1e-6 130 386 0.00023989999 1e-6 131 386 0.00019189999 1e-6 135 386 0.00019189999 1e-6 138 386 0.00014389999 1e-6 139 386 4.7999987e-05 1e-6 142 386 9.5899988e-05 1e-6 150 386 0.00062369998 1e-6 160 386 9.5899988e-05 1e-6 169 386 9.5899988e-05 1e-6 175 386 4.7999987e-05 1e-6 187 386 0.0010074 1e-6 188 386 9.5899988e-05 1e-6 189 386 9.5899988e-05 1e-6 190 386 9.5899988e-05 1e-6 192 386 0.00028779986 1e-6 193 386 9.5899988e-05 1e-6 194 386 0.00023989999 1e-6 197 386 4.7999987e-05 1e-6 198 386 0.0086351968 1e-6 200 386 9.5899988e-05 1e-6 201 386 4.7999987e-05 1e-6 203 386 9.5899988e-05 1e-6 204 386 9.5899988e-05 1e-6 206 386 0.00019189999 1e-6 207 386 4.7999987e-05 1e-6 214 386 0.0031661999 1e-6 219 386 9.5899988e-05 1e-6 223 386 0.0045573972 1e-6 224 386 0.011177696 1e-6 229 386 4.7999987e-05 1e-6 233 386 0.00062369998 1e-6 234 386 0.0025425998 1e-6 237 386 9.5899988e-05 1e-6 240 386 0.0038378998 1e-6 241 386 0.015831098 1e-6 242 386 4.7999987e-05 1e-6 252 386 0.0012472998 1e-6 262 386 0.0047013983 1e-6 270 386 4.7999987e-05 1e-6 271 386 9.5899988e-05 1e-6 273 386 0.00019189999 1e-6 276 386 9.5899988e-05 1e-6 277 386 0.079827249 1e-6 278 386 0.00014389999 1e-6 282 386 0.0047492981 1e-6 283 386 0.0003837999 1e-6 284 386 0.00057569984 1e-6 285 386 0.00019189999 1e-6 286 386 0.0051810965 1e-6 288 386 0.0039817989 1e-6 289 386 0.0030703 1e-6 290 386 0.0010074 1e-6 292 386 0.026720997 1e-6 293 386 0.0096905977 1e-6 294 386 0.017270297 1e-6 295 386 0.014056098 1e-6 296 386 0.0062844977 1e-6 297 386 0.0029742999 1e-6 298 386 0.00028779986 1e-6 300 386 9.5899988e-05 1e-6 308 386 0.00023989999 1e-6 312 386 0.015159499 1e-6 313 386 9.5899988e-05 1e-6 315 386 0.0096425973 1e-6 317 386 0.0023987 1e-6 320 386 0.009018898 1e-6 321 386 0.0060925968 1e-6 322 386 0.0039817989 1e-6 324 386 0.00023989999 1e-6 325 386 4.7999987e-05 1e-6 326 386 0.00057569984 1e-6 328 386 0.00023989999 1e-6 339 386 0.00028779986 1e-6 340 386 0.0066682994 1e-6 343 386 4.7999987e-05 1e-6 349 386 4.7999987e-05 1e-6 350 386 9.5899988e-05 1e-6 351 386 0.00028779986 1e-6 352 386 0.00057569984 1e-6 353 386 4.7999987e-05 1e-6 354 386 0.00062369998 1e-6 355 386 4.7999987e-05 1e-6 356 386 9.5899988e-05 1e-6 357 386 4.7999987e-05 1e-6 358 386 0.004941199 1e-6 359 386 4.7999987e-05 1e-6 369 386 0.0003358 1e-6 370 386 0.0013911999 1e-6 371 386 0.0003837999 1e-6 372 386 0.00086349994 1e-6 373 386 0.0022067998 1e-6 374 386 4.7999987e-05 1e-6 375 386 0.00014389999 1e-6 376 386 0.00023989999 1e-6 384 386 0.00014389999 1e-6 385 386 0.00023989999 1e-6 386 386 0.026049398 1e-6 387 386 9.5899988e-05 1e-6 389 386 0.0016311 1e-6 390 386 0.0004317998 1e-6 391 386 9.5899988e-05 1e-6 392 386 0.0037898999 1e-6 393 386 0.0088749975 1e-6 396 386 4.7999987e-05 1e-6 397 386 9.5899988e-05 1e-6 398 386 0.0013432 1e-6 402 386 0.00052769994 1e-6 414 386 4.7999987e-05 1e-6 416 386 0.00014389999 1e-6 417 386 0.00067159999 1e-6 419 386 9.5899988e-05 1e-6 420 386 0.00019189999 1e-6 421 386 4.7999987e-05 1e-6 422 386 0.00095949997 1e-6 423 386 4.7999987e-05 1e-6 430 386 9.5899988e-05 1e-6 431 386 4.7999987e-05 1e-6 433 386 4.7999987e-05 1e-6 434 386 4.7999987e-05 1e-6 438 386 9.5899988e-05 1e-6 441 386 4.7999987e-05 1e-6 442 386 4.7999987e-05 1e-6 443 386 0.0039337985 1e-6 444 386 0.00067159999 1e-6 445 386 0.0075317994 1e-6 446 386 0.00023989999 1e-6 447 386 0.0032621999 1e-6 450 386 0.0048452988 1e-6 452 386 0.0067161992 1e-6 453 386 0.0017749998 1e-6 454 386 0.00076759979 1e-6 455 386 0.023986597 1e-6 456 386 0.0003358 1e-6 457 386 0.0031182999 1e-6 458 386 0.00081549981 1e-6 459 386 0.00071959989 1e-6 460 386 0.0010553999 1e-6 463 386 0.0118494 1e-6 464 386 0.0010074 1e-6 465 386 0.0024465998 1e-6 467 386 0.014343999 1e-6 468 386 0.0023027 1e-6 469 386 0.0067161992 1e-6 470 386 0.0076276995 1e-6 471 386 0.0019669 1e-6 473 386 0.00014389999 1e-6 477 386 0.00023989999 1e-6 478 386 0.0015350999 1e-6 479 386 9.5899988e-05 1e-6 483 386 0.0012953 1e-6 489 386 4.7999987e-05 1e-6 490 386 0.00071959989 1e-6 491 386 0.0033100999 1e-6 9 387 2.6799986e-05 1e-6 18 387 8.0299986e-05 1e-6 22 387 2.6799986e-05 1e-6 60 387 0.0019816 1e-6 82 387 2.6799986e-05 1e-6 83 387 2.6799986e-05 1e-6 84 387 2.6799986e-05 1e-6 108 387 2.6799986e-05 1e-6 113 387 5.3599986e-05 1e-6 114 387 0.00010709999 1e-6 126 387 5.3599986e-05 1e-6 150 387 0.00037489994 1e-6 151 387 2.6799986e-05 1e-6 160 387 0.0013388998 1e-6 169 387 0.00091049983 1e-6 172 387 0.0014727998 1e-6 174 387 0.016522497 1e-6 175 387 0.061778598 1e-6 177 387 0.0016335 1e-6 187 387 0.0022761999 1e-6 188 387 0.00072299992 1e-6 189 387 5.3599986e-05 1e-6 190 387 8.0299986e-05 1e-6 192 387 0.00010709999 1e-6 194 387 8.0299986e-05 1e-6 197 387 2.6799986e-05 1e-6 198 387 0.0073641986 1e-6 200 387 8.0299986e-05 1e-6 201 387 2.6799986e-05 1e-6 203 387 5.3599986e-05 1e-6 204 387 8.0299986e-05 1e-6 206 387 0.0026510998 1e-6 207 387 5.3599986e-05 1e-6 209 387 2.6799986e-05 1e-6 214 387 5.3599986e-05 1e-6 219 387 5.3599986e-05 1e-6 223 387 2.6799986e-05 1e-6 224 387 0.0023832999 1e-6 234 387 0.00091049983 1e-6 236 387 2.6799986e-05 1e-6 237 387 5.3599986e-05 1e-6 240 387 0.00085689989 1e-6 241 387 0.013309099 1e-6 252 387 0.0077390969 1e-6 262 387 2.6799986e-05 1e-6 276 387 2.6799986e-05 1e-6 277 387 0.0064536966 1e-6 279 387 0.00085689989 1e-6 282 387 5.3599986e-05 1e-6 283 387 2.6799986e-05 1e-6 284 387 0.00013389999 1e-6 285 387 0.00064269989 1e-6 292 387 5.3599986e-05 1e-6 293 387 0.00077659986 1e-6 294 387 8.0299986e-05 1e-6 295 387 0.0080871992 1e-6 296 387 0.00069619995 1e-6 298 387 0.00091049983 1e-6 312 387 0.0068285987 1e-6 315 387 0.020914197 1e-6 318 387 8.0299986e-05 1e-6 319 387 0.0027047 1e-6 320 387 0.0014193 1e-6 321 387 5.3599986e-05 1e-6 326 387 0.0025974999 1e-6 340 387 0.00066949986 1e-6 356 387 0.00013389999 1e-6 358 387 0.00042849989 1e-6 359 387 0.00026779994 1e-6 364 387 0.00061589992 1e-6 369 387 0.00010709999 1e-6 372 387 0.0033741 1e-6 382 387 0.00077659986 1e-6 384 387 2.6799986e-05 1e-6 386 387 0.011113197 1e-6 387 387 0.045898799 1e-6 390 387 0.00024099999 1e-6 391 387 0.14615858 1e-6 392 387 0.020619698 1e-6 393 387 0.13927639 1e-6 396 387 0.00083009992 1e-6 402 387 5.3599986e-05 1e-6 404 387 2.6799986e-05 1e-6 417 387 0.00026779994 1e-6 419 387 0.0017674 1e-6 421 387 2.6799986e-05 1e-6 422 387 0.00013389999 1e-6 423 387 2.6799986e-05 1e-6 425 387 2.6799986e-05 1e-6 430 387 2.6799986e-05 1e-6 431 387 2.6799986e-05 1e-6 432 387 2.6799986e-05 1e-6 433 387 2.6799986e-05 1e-6 434 387 0.00016069999 1e-6 441 387 0.00064269989 1e-6 443 387 0.0016870999 1e-6 444 387 0.0013122 1e-6 445 387 0.0038560999 1e-6 446 387 8.0299986e-05 1e-6 447 387 0.0038293998 1e-6 450 387 0.0050343983 1e-6 452 387 0.0023029998 1e-6 453 387 0.00053559989 1e-6 454 387 0.00080339983 1e-6 455 387 0.0396326 1e-6 456 387 0.00013389999 1e-6 457 387 0.0048736967 1e-6 458 387 0.00056239986 1e-6 459 387 0.0021422999 1e-6 460 387 0.00091049983 1e-6 463 387 0.0103634 1e-6 464 387 0.0026778998 1e-6 465 387 0.028385498 1e-6 467 387 0.0137375 1e-6 468 387 0.027769599 1e-6 469 387 0.0032402 1e-6 470 387 0.0035883998 1e-6 471 387 0.0027313998 1e-6 473 387 8.0299986e-05 1e-6 477 387 0.00058909995 1e-6 478 387 0.0010443998 1e-6 483 387 0.00096399989 1e-6 489 387 2.6799986e-05 1e-6 490 387 0.00032129977 1e-6 491 387 0.0012585998 1e-6 60 388 0.0014654999 1e-6 108 388 0.0001832 1e-6 114 388 0.0003664 1e-6 126 388 0.0001832 1e-6 160 388 0.00073269987 1e-6 187 388 0.012456499 1e-6 190 388 0.0001832 1e-6 194 388 0.0003664 1e-6 198 388 0.0031140998 1e-6 200 388 0.0001832 1e-6 204 388 0.084814072 1e-6 206 388 0.0003664 1e-6 214 388 0.0003664 1e-6 224 388 0.050192297 1e-6 234 388 0.0025646 1e-6 237 388 0.0001832 1e-6 241 388 0.020882897 1e-6 272 388 0.00054959999 1e-6 279 388 0.0001832 1e-6 284 388 0.0001832 1e-6 293 388 0.0047627985 1e-6 317 388 0.0001832 1e-6 356 388 0.0001832 1e-6 387 388 0.0032972998 1e-6 388 388 0.043780897 1e-6 390 388 0.0001832 1e-6 392 388 0.0001832 1e-6 393 388 0.031873997 1e-6 417 388 0.0003664 1e-6 422 388 0.0003664 1e-6 443 388 0.002015 1e-6 444 388 0.0060450993 1e-6 445 388 0.0137388 1e-6 446 388 0.0001832 1e-6 447 388 0.0089759976 1e-6 450 388 0.0065945983 1e-6 452 388 0.0071441978 1e-6 453 388 0.0029308998 1e-6 454 388 0.00054959999 1e-6 455 388 0.040849999 1e-6 457 388 0.0047627985 1e-6 458 388 0.0014654999 1e-6 459 388 0.00054959999 1e-6 460 388 0.00073269987 1e-6 463 388 0.11705434 1e-6 464 388 0.00091589987 1e-6 465 388 0.012456499 1e-6 467 388 0.056970097 1e-6 468 388 0.045429599 1e-6 469 388 0.0056786984 1e-6 470 388 0.0064113997 1e-6 471 388 0.00073269987 1e-6 473 388 0.0038468998 1e-6 477 388 0.0001832 1e-6 478 388 0.0018318 1e-6 483 388 0.00073269987 1e-6 490 388 0.00054959999 1e-6 491 388 0.00091589987 1e-6 9 389 2.3799992e-05 1e-6 16 389 2.3799992e-05 1e-6 18 389 0.00011899999 1e-6 22 389 9.5199997e-05 1e-6 60 389 0.0026900999 1e-6 79 389 2.3799992e-05 1e-6 82 389 2.3799992e-05 1e-6 83 389 2.3799992e-05 1e-6 84 389 2.3799992e-05 1e-6 108 389 4.7599999e-05 1e-6 113 389 7.1399991e-05 1e-6 114 389 0.0001428 1e-6 126 389 7.1399991e-05 1e-6 127 389 2.3799992e-05 1e-6 132 389 2.3799992e-05 1e-6 150 389 0.00049989996 1e-6 160 389 0.00042849989 1e-6 169 389 0.00021429999 1e-6 171 389 4.7599999e-05 1e-6 172 389 0.0015711999 1e-6 189 389 7.1399991e-05 1e-6 190 389 9.5199997e-05 1e-6 192 389 4.7599999e-05 1e-6 194 389 0.0017139998 1e-6 196 389 2.3799992e-05 1e-6 197 389 2.3799992e-05 1e-6 198 389 0.0019520998 1e-6 200 389 9.5199997e-05 1e-6 201 389 4.7599999e-05 1e-6 203 389 7.1399991e-05 1e-6 204 389 0.00011899999 1e-6 206 389 9.5199997e-05 1e-6 207 389 7.1399991e-05 1e-6 209 389 2.3799992e-05 1e-6 214 389 7.1399991e-05 1e-6 219 389 0.0014759998 1e-6 223 389 0.0011188998 1e-6 224 389 0.0049278997 1e-6 225 389 2.3799992e-05 1e-6 233 389 0.0022139999 1e-6 234 389 0.0010950998 1e-6 237 389 9.5199997e-05 1e-6 240 389 0.0010237 1e-6 241 389 0.0034280999 1e-6 248 389 2.3799992e-05 1e-6 250 389 2.3799992e-05 1e-6 252 389 0.0012616999 1e-6 263 389 2.3799992e-05 1e-6 270 389 0.0012379 1e-6 277 389 0.013378996 1e-6 279 389 4.7599999e-05 1e-6 284 389 0.00019039999 1e-6 285 389 0.0020234999 1e-6 286 389 0.00054749986 1e-6 287 389 2.3799992e-05 1e-6 289 389 4.7599999e-05 1e-6 290 389 0.022639599 1e-6 292 389 0.011093698 1e-6 293 389 0.0020234999 1e-6 294 389 0.0103557 1e-6 295 389 0.011450697 1e-6 296 389 0.0024758 1e-6 298 389 0.00052369991 1e-6 312 389 0.0042850971 1e-6 315 389 0.0036185 1e-6 317 389 0.0018092999 1e-6 318 389 2.3799992e-05 1e-6 319 389 0.0015473999 1e-6 320 389 0.0050468966 1e-6 321 389 0.0019997 1e-6 322 389 0.0030947998 1e-6 326 389 0.0036422999 1e-6 338 389 0.00035709981 1e-6 339 389 0.00011899999 1e-6 340 389 0.0029757998 1e-6 341 389 2.3799992e-05 1e-6 343 389 2.3799992e-05 1e-6 351 389 0.00052369991 1e-6 354 389 2.3799992e-05 1e-6 356 389 0.00011899999 1e-6 358 389 0.0041898973 1e-6 359 389 2.3799992e-05 1e-6 369 389 0.00011899999 1e-6 375 389 0.00011899999 1e-6 384 389 4.7599999e-05 1e-6 386 389 0.016640499 1e-6 387 389 7.1399991e-05 1e-6 389 389 0.10936528 1e-6 390 389 0.022092097 1e-6 391 389 0.0041660964 1e-6 392 389 0.049350098 1e-6 393 389 0.059015397 1e-6 396 389 0.0006903999 1e-6 398 389 0.0010237 1e-6 402 389 4.7599999e-05 1e-6 417 389 0.00038089999 1e-6 419 389 2.3799992e-05 1e-6 421 389 4.7599999e-05 1e-6 422 389 9.5199997e-05 1e-6 423 389 2.3799992e-05 1e-6 425 389 2.3799992e-05 1e-6 430 389 4.7599999e-05 1e-6 431 389 4.7599999e-05 1e-6 432 389 2.3799992e-05 1e-6 433 389 4.7599999e-05 1e-6 434 389 4.7599999e-05 1e-6 443 389 0.0014283999 1e-6 444 389 0.0034280999 1e-6 445 389 0.0037613998 1e-6 446 389 7.1399991e-05 1e-6 447 389 0.0054277964 1e-6 449 389 2.3799992e-05 1e-6 450 389 0.0065704994 1e-6 452 389 0.0034995 1e-6 453 389 0.0013807998 1e-6 454 389 0.00047609978 1e-6 455 389 0.017949797 1e-6 456 389 0.00052369991 1e-6 457 389 0.0039041999 1e-6 458 389 0.00083319983 1e-6 459 389 0.0016663999 1e-6 460 389 0.0011188998 1e-6 463 389 0.009760499 1e-6 464 389 0.0086415969 1e-6 465 389 0.0024995999 1e-6 467 389 0.017640296 1e-6 468 389 0.0029281999 1e-6 469 389 0.0063799992 1e-6 470 389 0.0071655996 1e-6 471 389 0.0029519999 1e-6 472 389 0.00047609978 1e-6 473 389 0.00016659999 1e-6 477 389 0.0001428 1e-6 478 389 0.0014521999 1e-6 479 389 0.0010237 1e-6 483 389 0.0010950998 1e-6 489 389 2.3799992e-05 1e-6 490 389 0.00059519988 1e-6 491 389 0.00045229984 1e-6 9 390 6.6099994e-05 1e-6 16 390 3.309999e-05 1e-6 17 390 1.0999999e-05 1e-6 18 390 9.9199999e-05 1e-6 22 390 3.309999e-05 1e-6 60 390 0.0021483998 1e-6 76 390 0.00016529999 1e-6 77 390 0.0004296999 1e-6 79 390 2.1999993e-05 1e-6 81 390 1.0999999e-05 1e-6 82 390 0.0001102 1e-6 83 390 6.6099994e-05 1e-6 84 390 6.6099994e-05 1e-6 108 390 0.00012119999 1e-6 113 390 0.00017629999 1e-6 114 390 0.00044069998 1e-6 126 390 0.00018729999 1e-6 127 390 3.309999e-05 1e-6 130 390 7.709999e-05 1e-6 131 390 3.309999e-05 1e-6 138 390 1.0999999e-05 1e-6 139 390 1.0999999e-05 1e-6 142 390 1.0999999e-05 1e-6 150 390 0.00060599996 1e-6 151 390 1.0999999e-05 1e-6 156 390 1.0999999e-05 1e-6 160 390 0.0005398998 1e-6 161 390 1.0999999e-05 1e-6 165 390 2.1999993e-05 1e-6 169 390 4.4099987e-05 1e-6 171 390 8.8099987e-05 1e-6 172 390 0.00044069998 1e-6 174 390 7.709999e-05 1e-6 175 390 0.00057289982 1e-6 177 390 1.0999999e-05 1e-6 181 390 1.0999999e-05 1e-6 187 390 9.9199999e-05 1e-6 188 390 1.0999999e-05 1e-6 189 390 0.0002424 1e-6 190 390 0.0001102 1e-6 192 390 7.709999e-05 1e-6 193 390 8.8099987e-05 1e-6 194 390 0.0001102 1e-6 196 390 2.1999993e-05 1e-6 197 390 3.309999e-05 1e-6 198 390 0.0016635999 1e-6 200 390 0.00012119999 1e-6 201 390 7.709999e-05 1e-6 203 390 8.8099987e-05 1e-6 204 390 0.00013219999 1e-6 206 390 0.002534 1e-6 207 390 5.5099998e-05 1e-6 209 390 2.1999993e-05 1e-6 214 390 0.00059489999 1e-6 219 390 3.309999e-05 1e-6 220 390 4.4099987e-05 1e-6 223 390 7.709999e-05 1e-6 224 390 0.00091439998 1e-6 225 390 1.0999999e-05 1e-6 229 390 1.0999999e-05 1e-6 233 390 9.9199999e-05 1e-6 234 390 0.0016305998 1e-6 237 390 8.8099987e-05 1e-6 240 390 0.0014322998 1e-6 241 390 0.004561197 1e-6 248 390 7.709999e-05 1e-6 250 390 4.4099987e-05 1e-6 251 390 1.0999999e-05 1e-6 252 390 0.0016415999 1e-6 262 390 5.5099998e-05 1e-6 263 390 1.0999999e-05 1e-6 270 390 0.00064999983 1e-6 272 390 3.309999e-05 1e-6 276 390 0.00012119999 1e-6 277 390 0.0080426969 1e-6 279 390 5.5099998e-05 1e-6 282 390 0.00057289982 1e-6 283 390 0.0001542 1e-6 284 390 0.00022029999 1e-6 285 390 0.00035259989 1e-6 286 390 5.5099998e-05 1e-6 289 390 5.5099998e-05 1e-6 290 390 0.0011788998 1e-6 292 390 0.0013330998 1e-6 293 390 0.0040653981 1e-6 294 390 0.00059489999 1e-6 295 390 0.0043738969 1e-6 296 390 0.0029195999 1e-6 297 390 0.00023139999 1e-6 298 390 0.0007821999 1e-6 299 390 9.9199999e-05 1e-6 300 390 1.0999999e-05 1e-6 305 390 0.00085939979 1e-6 307 390 1.0999999e-05 1e-6 308 390 0.00057289982 1e-6 312 390 0.0066985972 1e-6 313 390 1.0999999e-05 1e-6 315 390 0.008946199 1e-6 317 390 0.00067209988 1e-6 318 390 7.709999e-05 1e-6 319 390 0.00022029999 1e-6 320 390 0.0055307969 1e-6 321 390 0.0014101998 1e-6 322 390 0.0018068999 1e-6 324 390 3.309999e-05 1e-6 325 390 1.0999999e-05 1e-6 326 390 0.0021153998 1e-6 328 390 2.1999993e-05 1e-6 338 390 0.00023139999 1e-6 339 390 6.6099994e-05 1e-6 340 390 0.0052442998 1e-6 341 390 3.309999e-05 1e-6 344 390 1.0999999e-05 1e-6 349 390 0.00052879984 1e-6 350 390 4.4099987e-05 1e-6 351 390 0.00012119999 1e-6 353 390 1.0999999e-05 1e-6 354 390 0.0001432 1e-6 356 390 0.00012119999 1e-6 358 390 0.0034924999 1e-6 359 390 0.001862 1e-6 362 390 1.0999999e-05 1e-6 363 390 1.0999999e-05 1e-6 366 390 1.0999999e-05 1e-6 369 390 0.0072053969 1e-6 370 390 0.0016196 1e-6 371 390 7.709999e-05 1e-6 372 390 0.0024788999 1e-6 373 390 0.0001542 1e-6 375 390 3.309999e-05 1e-6 376 390 2.1999993e-05 1e-6 380 390 5.5099998e-05 1e-6 384 390 0.0002424 1e-6 385 390 0.00064999983 1e-6 386 390 0.0070070997 1e-6 387 390 0.0016525998 1e-6 389 390 0.0012339999 1e-6 390 390 0.060651097 1e-6 391 390 0.0086596981 1e-6 392 390 0.044598699 1e-6 393 390 0.097140968 1e-6 394 390 1.0999999e-05 1e-6 396 390 0.00016529999 1e-6 397 390 0.00017629999 1e-6 398 390 0.00040759984 1e-6 401 390 2.1999993e-05 1e-6 402 390 0.0001102 1e-6 403 390 2.1999993e-05 1e-6 404 390 0.00047379988 1e-6 405 390 0.0017186999 1e-6 413 390 0.00013219999 1e-6 414 390 6.6099994e-05 1e-6 415 390 1.0999999e-05 1e-6 416 390 1.0999999e-05 1e-6 417 390 0.00041869981 1e-6 419 390 0.00090339989 1e-6 420 390 0.00031949999 1e-6 421 390 5.5099998e-05 1e-6 422 390 0.00027539977 1e-6 423 390 4.4099987e-05 1e-6 424 390 1.0999999e-05 1e-6 425 390 3.309999e-05 1e-6 427 390 8.8099987e-05 1e-6 430 390 0.0001102 1e-6 431 390 3.309999e-05 1e-6 432 390 2.1999993e-05 1e-6 433 390 4.4099987e-05 1e-6 434 390 0.0001102 1e-6 438 390 1.0999999e-05 1e-6 441 390 1.0999999e-05 1e-6 442 390 2.1999993e-05 1e-6 443 390 0.00081529981 1e-6 444 390 0.0021153998 1e-6 445 390 0.0025670999 1e-6 446 390 0.00016529999 1e-6 447 390 0.0047044978 1e-6 448 390 1.0999999e-05 1e-6 449 390 3.309999e-05 1e-6 450 390 0.0062027983 1e-6 452 390 0.0053324997 1e-6 453 390 0.00067209988 1e-6 454 390 0.00029749982 1e-6 455 390 0.021197598 1e-6 456 390 0.0015203999 1e-6 457 390 0.0025781 1e-6 458 390 0.00082629989 1e-6 459 390 0.0011127999 1e-6 460 390 0.00095849996 1e-6 463 390 0.013419297 1e-6 464 390 0.0042196997 1e-6 465 390 0.0031399999 1e-6 467 390 0.022078998 1e-6 468 390 0.0022695998 1e-6 469 390 0.012174297 1e-6 470 390 0.020228099 1e-6 471 390 0.0028535 1e-6 472 390 0.0001102 1e-6 473 390 0.00045169983 1e-6 477 390 0.00012119999 1e-6 478 390 0.0020603 1e-6 479 390 3.309999e-05 1e-6 483 390 0.0034043998 1e-6 489 390 3.309999e-05 1e-6 490 390 0.0017296998 1e-6 491 390 0.0001432 1e-6 18 391 0.00016299999 1e-6 22 391 8.1499995e-05 1e-6 60 391 0.0038301998 1e-6 108 391 0.00016299999 1e-6 114 391 0.00032599992 1e-6 126 391 0.00024449988 1e-6 150 391 0.0007334 1e-6 175 391 8.1499995e-05 1e-6 189 391 0.00016299999 1e-6 190 391 0.00016299999 1e-6 192 391 0.00065189996 1e-6 193 391 0.0005704998 1e-6 194 391 0.00016299999 1e-6 198 391 0.0048080981 1e-6 200 391 8.1499995e-05 1e-6 203 391 8.1499995e-05 1e-6 204 391 8.1499995e-05 1e-6 206 391 0.00016299999 1e-6 207 391 8.1499995e-05 1e-6 214 391 0.0082307979 1e-6 223 391 0.00040749996 1e-6 224 391 0.0047265999 1e-6 233 391 8.1499995e-05 1e-6 234 391 0.0022002999 1e-6 237 391 8.1499995e-05 1e-6 240 391 8.1499995e-05 1e-6 241 391 0.013935298 1e-6 252 391 0.12403226 1e-6 262 391 0.00016299999 1e-6 270 391 0.00016299999 1e-6 272 391 0.00065189996 1e-6 276 391 0.0036672 1e-6 277 391 0.013609298 1e-6 282 391 8.1499995e-05 1e-6 284 391 0.000489 1e-6 290 391 0.00032599992 1e-6 292 391 0.0026077998 1e-6 293 391 0.0039931983 1e-6 294 391 0.0047265999 1e-6 295 391 0.0094531998 1e-6 296 391 8.1499995e-05 1e-6 297 391 0.00097789988 1e-6 298 391 8.1499995e-05 1e-6 312 391 0.00016299999 1e-6 315 391 0.00089639984 1e-6 317 391 8.1499995e-05 1e-6 320 391 0.0082307979 1e-6 321 391 0.0024448 1e-6 326 391 0.0052154996 1e-6 339 391 8.1499995e-05 1e-6 340 391 0.0017114 1e-6 351 391 0.000489 1e-6 356 391 8.1499995e-05 1e-6 358 391 0.0086382963 1e-6 369 391 8.1499995e-05 1e-6 372 391 8.1499995e-05 1e-6 375 391 0.00024449988 1e-6 384 391 8.1499995e-05 1e-6 385 391 0.00016299999 1e-6 386 391 0.00016299999 1e-6 387 391 0.00024449988 1e-6 389 391 0.0008148998 1e-6 390 391 0.0008148998 1e-6 391 391 0.0033411998 1e-6 392 391 0.0077417977 1e-6 393 391 0.057778496 1e-6 396 391 0.00089639984 1e-6 417 391 0.000489 1e-6 421 391 8.1499995e-05 1e-6 422 391 8.1499995e-05 1e-6 430 391 8.1499995e-05 1e-6 433 391 8.1499995e-05 1e-6 434 391 8.1499995e-05 1e-6 443 391 0.0022002999 1e-6 444 391 0.0011409 1e-6 445 391 0.0074158981 1e-6 447 391 0.0033411998 1e-6 450 391 0.0048080981 1e-6 452 391 0.0092086978 1e-6 453 391 0.0018743 1e-6 454 391 0.0011409 1e-6 455 391 0.028603997 1e-6 456 391 0.00024449988 1e-6 457 391 0.0053784996 1e-6 458 391 0.0011409 1e-6 459 391 0.0044005997 1e-6 460 391 0.00097789988 1e-6 463 391 0.0125499 1e-6 464 391 0.0066008978 1e-6 465 391 0.0022002999 1e-6 467 391 0.015239198 1e-6 468 391 0.0091271996 1e-6 469 391 0.0084752999 1e-6 470 391 0.0092901997 1e-6 471 391 0.0039931983 1e-6 473 391 0.00024449988 1e-6 477 391 0.00024449988 1e-6 478 391 0.0013853998 1e-6 483 391 0.0016299 1e-6 490 391 0.027055699 1e-6 491 391 0.0015483999 1e-6 9 392 4.2299987e-05 1e-6 16 392 4.2299987e-05 1e-6 18 392 0.00016919999 1e-6 60 392 0.0027917998 1e-6 79 392 4.2299987e-05 1e-6 82 392 4.2299987e-05 1e-6 83 392 4.2299987e-05 1e-6 84 392 4.2299987e-05 1e-6 108 392 8.4599989e-05 1e-6 113 392 0.00016919999 1e-6 114 392 0.00029609981 1e-6 126 392 0.00012689999 1e-6 127 392 4.2299987e-05 1e-6 150 392 0.00080369995 1e-6 175 392 0.00012689999 1e-6 187 392 0.00033839978 1e-6 188 392 8.4599989e-05 1e-6 189 392 8.4599989e-05 1e-6 190 392 0.00012689999 1e-6 192 392 4.2299987e-05 1e-6 193 392 4.2299987e-05 1e-6 194 392 0.00012689999 1e-6 197 392 4.2299987e-05 1e-6 198 392 0.0015650999 1e-6 200 392 8.4599989e-05 1e-6 201 392 8.4599989e-05 1e-6 203 392 8.4599989e-05 1e-6 204 392 0.00012689999 1e-6 206 392 0.0002115 1e-6 207 392 8.4599989e-05 1e-6 209 392 4.2299987e-05 1e-6 214 392 0.022841699 1e-6 219 392 4.2299987e-05 1e-6 223 392 0.0067678988 1e-6 224 392 0.0013112999 1e-6 233 392 0.00012689999 1e-6 234 392 0.0024533998 1e-6 237 392 8.4599989e-05 1e-6 240 392 0.0021572998 1e-6 241 392 0.0057526976 1e-6 242 392 4.2299987e-05 1e-6 248 392 4.2299987e-05 1e-6 250 392 4.2299987e-05 1e-6 252 392 0.0067255981 1e-6 262 392 0.0044413991 1e-6 263 392 4.2299987e-05 1e-6 270 392 0.00029609981 1e-6 276 392 0.0011843999 1e-6 277 392 0.0015650999 1e-6 279 392 4.2299987e-05 1e-6 282 392 0.00029609981 1e-6 284 392 0.00050759991 1e-6 285 392 0.0002115 1e-6 290 392 0.0037222998 1e-6 292 392 0.0015228 1e-6 293 392 0.00059219985 1e-6 294 392 0.025633398 1e-6 295 392 0.0014381998 1e-6 296 392 0.00046529993 1e-6 297 392 0.00033839978 1e-6 298 392 0.00025379984 1e-6 308 392 0.00012689999 1e-6 312 392 0.002961 1e-6 315 392 0.0240261 1e-6 317 392 4.2299987e-05 1e-6 320 392 0.011293899 1e-6 321 392 0.00059219985 1e-6 322 392 0.0006767998 1e-6 325 392 4.2299987e-05 1e-6 326 392 0.00016919999 1e-6 335 392 8.4599989e-05 1e-6 339 392 4.2299987e-05 1e-6 340 392 0.0031724998 1e-6 351 392 8.4599989e-05 1e-6 354 392 8.4599989e-05 1e-6 356 392 0.0002115 1e-6 358 392 0.0012266999 1e-6 359 392 0.0048220977 1e-6 361 392 4.2299987e-05 1e-6 369 392 4.2299987e-05 1e-6 370 392 4.2299987e-05 1e-6 371 392 8.4599989e-05 1e-6 372 392 0.00071909977 1e-6 373 392 0.00033839978 1e-6 375 392 0.0023687999 1e-6 376 392 8.4599989e-05 1e-6 384 392 4.2299987e-05 1e-6 386 392 0.00054989988 1e-6 387 392 0.00016919999 1e-6 389 392 0.00050759991 1e-6 390 392 0.00042299996 1e-6 391 392 0.00054989988 1e-6 392 392 0.018823199 1e-6 393 392 0.11374307 1e-6 396 392 0.0006767998 1e-6 402 392 4.2299987e-05 1e-6 405 392 4.2299987e-05 1e-6 417 392 0.00050759991 1e-6 419 392 0.00012689999 1e-6 421 392 8.4599989e-05 1e-6 422 392 0.00016919999 1e-6 423 392 4.2299987e-05 1e-6 425 392 4.2299987e-05 1e-6 430 392 8.4599989e-05 1e-6 431 392 4.2299987e-05 1e-6 432 392 4.2299987e-05 1e-6 433 392 4.2299987e-05 1e-6 434 392 8.4599989e-05 1e-6 443 392 0.0013112999 1e-6 444 392 0.0032147998 1e-6 445 392 0.0041029975 1e-6 446 392 0.00071909977 1e-6 447 392 0.0063448995 1e-6 449 392 4.2299987e-05 1e-6 450 392 0.0056681 1e-6 452 392 0.0089251995 1e-6 453 392 0.0010574998 1e-6 454 392 0.0010574998 1e-6 455 392 0.022207197 1e-6 456 392 0.0010574998 1e-6 457 392 0.0059218965 1e-6 458 392 0.00093059987 1e-6 459 392 0.0013958998 1e-6 460 392 0.0012266999 1e-6 463 392 0.013831899 1e-6 464 392 0.0071485974 1e-6 465 392 0.0025379998 1e-6 467 392 0.018780898 1e-6 468 392 0.0033417 1e-6 469 392 0.012478299 1e-6 470 392 0.014339499 1e-6 471 392 0.0049912967 1e-6 473 392 0.00029609981 1e-6 477 392 0.00029609981 1e-6 478 392 0.0038068998 1e-6 483 392 0.0013535998 1e-6 489 392 0.00016919999 1e-6 490 392 0.0065140985 1e-6 491 392 0.0038068998 1e-6 9 393 3.9699997e-05 1e-6 18 393 0.00015869999 1e-6 22 393 5.9499987e-05 1e-6 24 393 1.9799991e-05 1e-6 60 393 0.0023800998 1e-6 77 393 3.9699997e-05 1e-6 79 393 1.9799991e-05 1e-6 82 393 3.9699997e-05 1e-6 83 393 3.9699997e-05 1e-6 84 393 3.9699997e-05 1e-6 104 393 7.9299993e-05 1e-6 108 393 9.9199999e-05 1e-6 113 393 7.9299993e-05 1e-6 114 393 0.00023799999 1e-6 126 393 0.00011899999 1e-6 127 393 1.9799991e-05 1e-6 130 393 7.9299993e-05 1e-6 142 393 3.9699997e-05 1e-6 143 393 1.9799991e-05 1e-6 150 393 0.0007536998 1e-6 151 393 5.9499987e-05 1e-6 160 393 0.00015869999 1e-6 169 393 3.9699997e-05 1e-6 171 393 1.9799991e-05 1e-6 172 393 9.9199999e-05 1e-6 174 393 0.00017849999 1e-6 175 393 0.0020428998 1e-6 177 393 1.9799991e-05 1e-6 187 393 0.0029155998 1e-6 188 393 0.0002776999 1e-6 189 393 9.9199999e-05 1e-6 190 393 0.00011899999 1e-6 192 393 0.00011899999 1e-6 193 393 0.0012496 1e-6 194 393 0.00013879999 1e-6 196 393 1.9799991e-05 1e-6 197 393 1.9799991e-05 1e-6 198 393 0.0059105977 1e-6 200 393 9.9199999e-05 1e-6 201 393 3.9699997e-05 1e-6 203 393 0.00013879999 1e-6 204 393 0.00013879999 1e-6 206 393 0.00031729997 1e-6 207 393 5.9499987e-05 1e-6 208 393 1.9799991e-05 1e-6 209 393 1.9799991e-05 1e-6 214 393 0.0016263998 1e-6 219 393 0.0014676999 1e-6 221 393 7.9299993e-05 1e-6 223 393 0.0038279998 1e-6 224 393 0.0069022998 1e-6 225 393 3.9699997e-05 1e-6 233 393 0.0001983 1e-6 234 393 0.0026775999 1e-6 237 393 0.00013879999 1e-6 240 393 0.00089249993 1e-6 241 393 0.030048799 1e-6 242 393 1.9799991e-05 1e-6 248 393 1.9799991e-05 1e-6 250 393 1.9799991e-05 1e-6 252 393 0.0022015998 1e-6 262 393 0.0027965999 1e-6 268 393 1.9799991e-05 1e-6 270 393 0.00011899999 1e-6 271 393 0.00011899999 1e-6 272 393 3.9699997e-05 1e-6 276 393 0.0026180998 1e-6 277 393 0.014260799 1e-6 278 393 1.9799991e-05 1e-6 279 393 7.9299993e-05 1e-6 282 393 0.0024197998 1e-6 283 393 0.00045619998 1e-6 284 393 0.00051569985 1e-6 285 393 0.0022015998 1e-6 286 393 0.00051569985 1e-6 287 393 1.9799991e-05 1e-6 288 393 9.9199999e-05 1e-6 289 393 0.00061489991 1e-6 290 393 0.0021023999 1e-6 291 393 1.9799991e-05 1e-6 292 393 0.0087071992 1e-6 293 393 0.0080327988 1e-6 294 393 0.010274097 1e-6 295 393 0.014022797 1e-6 296 393 0.0019437999 1e-6 297 393 0.00031729997 1e-6 298 393 0.0007536998 1e-6 299 393 5.9499987e-05 1e-6 305 393 3.9699997e-05 1e-6 307 393 3.9699997e-05 1e-6 308 393 0.00051569985 1e-6 312 393 0.0067237988 1e-6 313 393 0.00021819999 1e-6 315 393 0.015371498 1e-6 317 393 0.00021819999 1e-6 319 393 0.00011899999 1e-6 320 393 0.017612796 1e-6 321 393 0.00089249993 1e-6 322 393 0.0017255999 1e-6 325 393 0.0014081998 1e-6 326 393 0.0010908998 1e-6 328 393 3.9699997e-05 1e-6 337 393 9.9199999e-05 1e-6 338 393 3.9699997e-05 1e-6 340 393 0.0047601983 1e-6 341 393 1.9799991e-05 1e-6 347 393 1.9799991e-05 1e-6 349 393 3.9699997e-05 1e-6 350 393 1.9799991e-05 1e-6 351 393 0.00025779987 1e-6 352 393 1.9799991e-05 1e-6 353 393 3.9699997e-05 1e-6 354 393 0.00021819999 1e-6 356 393 0.00017849999 1e-6 357 393 0.00013879999 1e-6 358 393 0.0033320999 1e-6 359 393 0.012297198 1e-6 361 393 5.9499987e-05 1e-6 369 393 0.0010313999 1e-6 370 393 0.0016065999 1e-6 371 393 0.00045619998 1e-6 372 393 0.0011900999 1e-6 373 393 0.0019040999 1e-6 375 393 0.0015470998 1e-6 376 393 0.00057519996 1e-6 384 393 3.9699997e-05 1e-6 385 393 1.9799991e-05 1e-6 386 393 0.0033320999 1e-6 387 393 0.00065449998 1e-6 388 393 1.9799991e-05 1e-6 389 393 0.0016858999 1e-6 390 393 0.0016263998 1e-6 391 393 0.0028164999 1e-6 392 393 0.030941296 1e-6 393 393 0.14048547 1e-6 395 393 1.9799991e-05 1e-6 396 393 0.00081319991 1e-6 397 393 0.00059499987 1e-6 398 393 5.9499987e-05 1e-6 402 393 0.0009519998 1e-6 405 393 1.9799991e-05 1e-6 413 393 1.9799991e-05 1e-6 414 393 5.9499987e-05 1e-6 417 393 0.00051569985 1e-6 419 393 0.0015272 1e-6 420 393 3.9699997e-05 1e-6 421 393 7.9299993e-05 1e-6 422 393 9.9199999e-05 1e-6 423 393 3.9699997e-05 1e-6 424 393 3.9699997e-05 1e-6 425 393 1.9799991e-05 1e-6 427 393 1.9799991e-05 1e-6 430 393 9.9199999e-05 1e-6 431 393 5.9499987e-05 1e-6 432 393 1.9799991e-05 1e-6 433 393 3.9699997e-05 1e-6 434 393 3.9699997e-05 1e-6 441 393 5.9499987e-05 1e-6 442 393 3.9699997e-05 1e-6 443 393 0.0018048999 1e-6 444 393 0.0036692999 1e-6 445 393 0.0047799982 1e-6 446 393 0.00015869999 1e-6 447 393 0.0067039989 1e-6 448 393 1.9799991e-05 1e-6 450 393 0.0058312975 1e-6 452 393 0.0065253973 1e-6 453 393 0.00099169998 1e-6 454 393 0.0010511999 1e-6 455 393 0.026835699 1e-6 456 393 0.00061489991 1e-6 457 393 0.0054345988 1e-6 458 393 0.00079339999 1e-6 459 393 0.0014479 1e-6 460 393 0.00097189983 1e-6 463 393 0.015351698 1e-6 464 393 0.0077947974 1e-6 465 393 0.0031734998 1e-6 467 393 0.016402896 1e-6 468 393 0.0044229999 1e-6 469 393 0.0084889978 1e-6 470 393 0.010353398 1e-6 471 393 0.0024395999 1e-6 472 393 1.9799991e-05 1e-6 473 393 0.00021819999 1e-6 477 393 0.00021819999 1e-6 478 393 0.0018048999 1e-6 479 393 1.9799991e-05 1e-6 483 393 0.0016065999 1e-6 489 393 1.9799991e-05 1e-6 490 393 0.0034510999 1e-6 491 393 0.0022213999 1e-6 21 394 0.00020499999 1e-6 60 394 0.0020501998 1e-6 108 394 0.00010249999 1e-6 114 394 0.00020499999 1e-6 126 394 0.00010249999 1e-6 150 394 0.0035879 1e-6 160 394 0.00040999986 1e-6 171 394 0.0050230995 1e-6 190 394 0.00010249999 1e-6 194 394 0.00020499999 1e-6 198 394 0.009943597 1e-6 200 394 0.00010249999 1e-6 204 394 0.0050230995 1e-6 206 394 0.00020499999 1e-6 214 394 0.06847769 1e-6 224 394 0.0064581968 1e-6 225 394 0.0042029992 1e-6 233 394 0.0010250998 1e-6 234 394 0.0017426999 1e-6 237 394 0.00010249999 1e-6 240 394 0.0512558 1e-6 241 394 0.049205497 1e-6 252 394 0.00010249999 1e-6 272 394 0.00010249999 1e-6 273 394 0.0013325999 1e-6 277 394 0.00040999986 1e-6 284 394 0.0003074999 1e-6 287 394 0.18718606 1e-6 288 394 0.00010249999 1e-6 290 394 0.0048179999 1e-6 294 394 0.0094310977 1e-6 295 394 0.00010249999 1e-6 315 394 0.00010249999 1e-6 326 394 0.00082009984 1e-6 340 394 0.0024603 1e-6 356 394 0.00010249999 1e-6 358 394 0.00092259981 1e-6 370 394 0.00010249999 1e-6 375 394 0.00061509991 1e-6 384 394 0.00010249999 1e-6 386 394 0.00010249999 1e-6 387 394 0.00010249999 1e-6 394 394 0.036904197 1e-6 395 394 0.0003074999 1e-6 397 394 0.00020499999 1e-6 417 394 0.0003074999 1e-6 422 394 0.00020499999 1e-6 443 394 0.0056380965 1e-6 444 394 0.0028702999 1e-6 445 394 0.0093284994 1e-6 446 394 0.00051259995 1e-6 447 394 0.0039978996 1e-6 450 394 0.0032803998 1e-6 452 394 0.0094310977 1e-6 453 394 0.0026652999 1e-6 454 394 0.0012300999 1e-6 455 394 0.022654999 1e-6 456 394 0.00010249999 1e-6 457 394 0.0080983974 1e-6 458 394 0.00082009984 1e-6 459 394 0.00040999986 1e-6 460 394 0.00092259981 1e-6 463 394 0.016094297 1e-6 464 394 0.0017426999 1e-6 465 394 0.0045104995 1e-6 467 394 0.023577698 1e-6 468 394 0.0054330975 1e-6 469 394 0.0034854 1e-6 470 394 0.0039978996 1e-6 471 394 0.0039978996 1e-6 473 394 0.00010249999 1e-6 477 394 0.00071759988 1e-6 478 394 0.0010250998 1e-6 483 394 0.00061509991 1e-6 490 394 0.00040999986 1e-6 491 394 0.0019476998 1e-6 21 395 0.005887799 1e-6 22 395 0.00030989992 1e-6 60 395 0.0024790999 1e-6 114 395 0.00030989992 1e-6 126 395 0.00030989992 1e-6 188 395 0.0021692 1e-6 198 395 0.0034087 1e-6 206 395 0.00061979983 1e-6 214 395 0.044003699 1e-6 234 395 0.0015493999 1e-6 240 395 0.00061979983 1e-6 241 395 0.00061979983 1e-6 272 395 0.013015199 1e-6 279 395 0.00030989992 1e-6 284 395 0.00030989992 1e-6 287 395 0.0024790999 1e-6 288 395 0.0111559 1e-6 290 395 0.057018898 1e-6 294 395 0.029439099 1e-6 326 395 0.10040289 1e-6 340 395 0.0055778995 1e-6 358 395 0.0037185999 1e-6 375 395 0.015494298 1e-6 394 395 0.00061979983 1e-6 395 395 0.034087397 1e-6 405 395 0.00030989992 1e-6 417 395 0.00030989992 1e-6 443 395 0.0061976984 1e-6 445 395 0.0055778995 1e-6 446 395 0.0015493999 1e-6 447 395 0.0086767972 1e-6 450 395 0.0034087 1e-6 452 395 0.0052680969 1e-6 453 395 0.00092969998 1e-6 454 395 0.0012394998 1e-6 455 395 0.0238612 1e-6 457 395 0.026030399 1e-6 458 395 0.00061979983 1e-6 459 395 0.00030989992 1e-6 460 395 0.00061979983 1e-6 463 395 0.035946697 1e-6 464 395 0.0027889998 1e-6 465 395 0.0015493999 1e-6 467 395 0.019832697 1e-6 468 395 0.011465799 1e-6 469 395 0.0040284991 1e-6 470 395 0.0043383986 1e-6 471 395 0.00030989992 1e-6 473 395 0.00030989992 1e-6 477 395 0.00061979983 1e-6 478 395 0.00092969998 1e-6 483 395 0.00092969998 1e-6 490 395 0.00061979983 1e-6 491 395 0.0012394998 1e-6 60 396 0.0016305998 1e-6 108 396 0.0002329 1e-6 114 396 0.00046589994 1e-6 126 396 0.0002329 1e-6 194 396 0.0002329 1e-6 198 396 0.0025622998 1e-6 206 396 0.00046589994 1e-6 214 396 0.00046589994 1e-6 224 396 0.0002329 1e-6 233 396 0.00093169999 1e-6 234 396 0.0011646999 1e-6 241 396 0.0027951999 1e-6 252 396 0.007221099 1e-6 270 396 0.0002329 1e-6 272 396 0.0039598979 1e-6 276 396 0.0002329 1e-6 277 396 0.003727 1e-6 282 396 0.0025622998 1e-6 284 396 0.00046589994 1e-6 290 396 0.004658699 1e-6 292 396 0.0020963999 1e-6 293 396 0.004658699 1e-6 294 396 0.0055904984 1e-6 295 396 0.0041928999 1e-6 312 396 0.0023293998 1e-6 319 396 0.0048916973 1e-6 320 396 0.0002329 1e-6 321 396 0.010948099 1e-6 326 396 0.0002329 1e-6 340 396 0.0051245987 1e-6 350 396 0.00069879997 1e-6 351 396 0.0020963999 1e-6 354 396 0.0358724 1e-6 358 396 0.0044257976 1e-6 369 396 0.0002329 1e-6 372 396 0.0041928999 1e-6 375 396 0.015140899 1e-6 386 396 0.0011646999 1e-6 387 396 0.0002329 1e-6 390 396 0.00046589994 1e-6 391 396 0.042161699 1e-6 392 396 0.00069879997 1e-6 393 396 0.0200326 1e-6 395 396 0.0002329 1e-6 396 396 0.029583 1e-6 398 396 0.0016305998 1e-6 414 396 0.0016305998 1e-6 417 396 0.00046589994 1e-6 422 396 0.0002329 1e-6 441 396 0.00069879997 1e-6 443 396 0.00046589994 1e-6 444 396 0.006988097 1e-6 445 396 0.010715097 1e-6 447 396 0.0090845972 1e-6 450 396 0.0044257976 1e-6 452 396 0.0041928999 1e-6 453 396 0.0016305998 1e-6 454 396 0.0030281998 1e-6 455 396 0.026787799 1e-6 457 396 0.023060799 1e-6 458 396 0.00069879997 1e-6 459 396 0.00069879997 1e-6 460 396 0.00069879997 1e-6 463 396 0.045189798 1e-6 464 396 0.0093174987 1e-6 465 396 0.0090845972 1e-6 467 396 0.023293696 1e-6 468 396 0.0030281998 1e-6 469 396 0.0097833984 1e-6 470 396 0.011180997 1e-6 471 396 0.010249197 1e-6 473 396 0.0002329 1e-6 477 396 0.00069879997 1e-6 478 396 0.0013975999 1e-6 483 396 0.0011646999 1e-6 490 396 0.0018634999 1e-6 491 396 0.0039598979 1e-6 9 397 5.4299991e-05 1e-6 18 397 0.00016289999 1e-6 19 397 0.0011403 1e-6 22 397 0.00038009998 1e-6 60 397 0.0030950999 1e-6 82 397 5.4299991e-05 1e-6 83 397 5.4299991e-05 1e-6 84 397 5.4299991e-05 1e-6 108 397 5.4299991e-05 1e-6 113 397 0.0001086 1e-6 114 397 0.0001086 1e-6 126 397 5.4299991e-05 1e-6 130 397 5.4299991e-05 1e-6 135 397 0.0008144998 1e-6 137 397 5.4299991e-05 1e-6 139 397 5.4299991e-05 1e-6 150 397 0.00059729978 1e-6 160 397 0.00043439982 1e-6 169 397 5.4299991e-05 1e-6 172 397 0.0001086 1e-6 187 397 0.0001086 1e-6 188 397 5.4299991e-05 1e-6 189 397 5.4299991e-05 1e-6 190 397 0.0001086 1e-6 191 397 5.4299991e-05 1e-6 194 397 0.00016289999 1e-6 197 397 5.4299991e-05 1e-6 198 397 0.0054300986 1e-6 200 397 5.4299991e-05 1e-6 203 397 0.0001086 1e-6 204 397 0.0001086 1e-6 206 397 0.0001086 1e-6 207 397 5.4299991e-05 1e-6 214 397 0.0014117998 1e-6 223 397 0.00032579992 1e-6 224 397 0.0073305964 1e-6 225 397 0.0038552999 1e-6 233 397 0.00016289999 1e-6 234 397 0.0023349 1e-6 237 397 0.0001086 1e-6 240 397 0.0073305964 1e-6 241 397 0.0079821981 1e-6 242 397 5.4299991e-05 1e-6 252 397 0.00038009998 1e-6 262 397 0.0018461999 1e-6 270 397 0.0021176999 1e-6 271 397 0.00076019997 1e-6 272 397 0.00021719999 1e-6 277 397 0.051694199 1e-6 282 397 0.0122719 1e-6 283 397 0.0039638989 1e-6 284 397 0.00048869988 1e-6 285 397 5.4299991e-05 1e-6 286 397 5.4299991e-05 1e-6 287 397 0.00027149986 1e-6 288 397 0.0022262998 1e-6 289 397 0.0045069978 1e-6 290 397 5.4299991e-05 1e-6 292 397 0.0098826997 1e-6 293 397 0.0021176999 1e-6 294 397 0.008905299 1e-6 295 397 0.042463098 1e-6 296 397 0.0085251965 1e-6 297 397 0.00038009998 1e-6 298 397 0.0084165968 1e-6 299 397 5.4299991e-05 1e-6 308 397 5.4299991e-05 1e-6 312 397 0.0078735985 1e-6 313 397 0.0013031999 1e-6 315 397 0.0034208999 1e-6 319 397 5.4299991e-05 1e-6 320 397 0.0051585995 1e-6 321 397 0.0037466998 1e-6 322 397 0.0064617991 1e-6 323 397 5.4299991e-05 1e-6 324 397 5.4299991e-05 1e-6 326 397 0.007710699 1e-6 328 397 0.00021719999 1e-6 329 397 5.4299991e-05 1e-6 338 397 5.4299991e-05 1e-6 339 397 0.00027149986 1e-6 340 397 0.0111316 1e-6 351 397 0.008905299 1e-6 352 397 5.4299991e-05 1e-6 354 397 0.0072762966 1e-6 356 397 5.4299991e-05 1e-6 357 397 0.00076019997 1e-6 358 397 0.0023349 1e-6 370 397 0.00038009998 1e-6 371 397 5.4299991e-05 1e-6 372 397 0.0007058999 1e-6 373 397 0.00032579992 1e-6 374 397 5.4299991e-05 1e-6 375 397 0.0037466998 1e-6 376 397 5.4299991e-05 1e-6 384 397 0.00016289999 1e-6 385 397 0.0001086 1e-6 386 397 0.0013031999 1e-6 387 397 5.4299991e-05 1e-6 389 397 5.4299991e-05 1e-6 390 397 5.4299991e-05 1e-6 391 397 5.4299991e-05 1e-6 392 397 0.0079821981 1e-6 393 397 0.0014117998 1e-6 394 397 5.4299991e-05 1e-6 396 397 0.0034751999 1e-6 397 397 0.065920889 1e-6 402 397 0.0060816966 1e-6 404 397 0.0001086 1e-6 412 397 5.4299991e-05 1e-6 414 397 5.4299991e-05 1e-6 417 397 0.00043439982 1e-6 421 397 5.4299991e-05 1e-6 422 397 0.0001086 1e-6 423 397 5.4299991e-05 1e-6 430 397 5.4299991e-05 1e-6 431 397 5.4299991e-05 1e-6 433 397 5.4299991e-05 1e-6 434 397 5.4299991e-05 1e-6 443 397 0.0033665998 1e-6 444 397 0.0015203999 1e-6 445 397 0.0076020993 1e-6 446 397 0.00032579992 1e-6 447 397 0.0019548 1e-6 450 397 0.0038552999 1e-6 452 397 0.0049413964 1e-6 453 397 0.0012488998 1e-6 454 397 0.00086879986 1e-6 455 397 0.029539499 1e-6 456 397 0.00027149986 1e-6 457 397 0.0049413964 1e-6 458 397 0.00048869988 1e-6 459 397 0.00043439982 1e-6 460 397 0.00092309993 1e-6 463 397 0.0078192987 1e-6 464 397 0.0032036998 1e-6 465 397 0.0030950999 1e-6 467 397 0.023240697 1e-6 468 397 0.0029322 1e-6 469 397 0.0041267984 1e-6 470 397 0.0044525973 1e-6 471 397 0.011185899 1e-6 473 397 0.0001086 1e-6 477 397 0.0008144998 1e-6 478 397 0.0010859999 1e-6 483 397 0.0008144998 1e-6 490 397 0.00043439982 1e-6 491 397 0.0033665998 1e-6 22 398 0.00040169992 1e-6 60 398 0.0010042 1e-6 108 398 0.00020079999 1e-6 114 398 0.00040169992 1e-6 126 398 0.00020079999 1e-6 150 398 0.00020079999 1e-6 160 398 0.00080339983 1e-6 171 398 0.0018075998 1e-6 172 398 0.00020079999 1e-6 187 398 0.00020079999 1e-6 188 398 0.00020079999 1e-6 190 398 0.00020079999 1e-6 194 398 0.00020079999 1e-6 198 398 0.010042198 1e-6 200 398 0.00020079999 1e-6 206 398 0.00040169992 1e-6 214 398 0.0056235977 1e-6 223 398 0.00020079999 1e-6 224 398 0.010644697 1e-6 225 398 0.00020079999 1e-6 233 398 0.00040169992 1e-6 234 398 0.0022092999 1e-6 237 398 0.00020079999 1e-6 240 398 0.00020079999 1e-6 241 398 0.0092387982 1e-6 242 398 0.00020079999 1e-6 252 398 0.00040169992 1e-6 262 398 0.00020079999 1e-6 270 398 0.00020079999 1e-6 274 398 0.00040169992 1e-6 277 398 0.024703797 1e-6 278 398 0.00020079999 1e-6 282 398 0.0016066998 1e-6 283 398 0.00020079999 1e-6 284 398 0.00060249981 1e-6 285 398 0.00020079999 1e-6 286 398 0.0040168986 1e-6 287 398 0.00060249981 1e-6 288 398 0.00040169992 1e-6 289 398 0.00020079999 1e-6 290 398 0.0084353983 1e-6 291 398 0.00020079999 1e-6 292 398 0.016067497 1e-6 293 398 0.0098412968 1e-6 294 398 0.031532399 1e-6 295 398 0.089576185 1e-6 296 398 0.00040169992 1e-6 297 398 0.00020079999 1e-6 298 398 0.00020079999 1e-6 299 398 0.00020079999 1e-6 301 398 0.00020079999 1e-6 304 398 0.00020079999 1e-6 307 398 0.00020079999 1e-6 312 398 0.0054227971 1e-6 313 398 0.00020079999 1e-6 315 398 0.013657399 1e-6 319 398 0.00040169992 1e-6 320 398 0.00060249981 1e-6 321 398 0.00020079999 1e-6 322 398 0.00020079999 1e-6 324 398 0.0014058999 1e-6 326 398 0.0012051 1e-6 328 398 0.00020079999 1e-6 340 398 0.0078328997 1e-6 350 398 0.00020079999 1e-6 351 398 0.00060249981 1e-6 352 398 0.00080339983 1e-6 354 398 0.00020079999 1e-6 356 398 0.00020079999 1e-6 358 398 0.0036151998 1e-6 366 398 0.0054227971 1e-6 369 398 0.00040169992 1e-6 370 398 0.00020079999 1e-6 371 398 0.00040169992 1e-6 372 398 0.0068286993 1e-6 373 398 0.0026109999 1e-6 384 398 0.0056235977 1e-6 386 398 0.057642099 1e-6 387 398 0.00020079999 1e-6 389 398 0.00060249981 1e-6 390 398 0.00060249981 1e-6 392 398 0.0048201978 1e-6 393 398 0.0078328997 1e-6 398 398 0.019281 1e-6 402 398 0.00020079999 1e-6 415 398 0.00080339983 1e-6 417 398 0.00040169992 1e-6 419 398 0.00060249981 1e-6 422 398 0.00020079999 1e-6 441 398 0.00020079999 1e-6 442 398 0.00020079999 1e-6 443 398 0.0028118 1e-6 444 398 0.0046193972 1e-6 445 398 0.0098412968 1e-6 447 398 0.0054227971 1e-6 450 398 0.0048201978 1e-6 452 398 0.0052218996 1e-6 453 398 0.0014058999 1e-6 454 398 0.0044185966 1e-6 455 398 0.032134999 1e-6 456 398 0.00020079999 1e-6 457 398 0.0070294999 1e-6 458 398 0.0012051 1e-6 459 398 0.00040169992 1e-6 460 398 0.00080339983 1e-6 463 398 0.025707997 1e-6 464 398 0.0062260963 1e-6 465 398 0.0018075998 1e-6 467 398 0.050813399 1e-6 468 398 0.0028118 1e-6 469 398 0.0070294999 1e-6 470 398 0.0072303973 1e-6 471 398 0.0010042 1e-6 473 398 0.00020079999 1e-6 477 398 0.00060249981 1e-6 478 398 0.0014058999 1e-6 483 398 0.00040169992 1e-6 490 398 0.00060249981 1e-6 491 398 0.0024100998 1e-6 18 399 0.0001181 1e-6 60 399 0.0011808998 1e-6 78 399 0.00047239987 1e-6 113 399 0.0001181 1e-6 114 399 0.0001181 1e-6 130 399 0.0020075999 1e-6 134 399 0.0016532999 1e-6 139 399 0.0044874996 1e-6 149 399 0.0001181 1e-6 150 399 0.00047239987 1e-6 151 399 0.00023619999 1e-6 156 399 0.0022437 1e-6 158 399 0.0001181 1e-6 160 399 0.010510199 1e-6 161 399 0.00070849992 1e-6 163 399 0.00070849992 1e-6 165 399 0.011572998 1e-6 171 399 0.00047239987 1e-6 173 399 0.00035429979 1e-6 176 399 0.00035429979 1e-6 177 399 0.0001181 1e-6 178 399 0.0001181 1e-6 181 399 0.0096834973 1e-6 191 399 0.00023619999 1e-6 194 399 0.0001181 1e-6 198 399 0.00023619999 1e-6 206 399 0.00023619999 1e-6 214 399 0.0001181 1e-6 224 399 0.00094469986 1e-6 233 399 0.0081482977 1e-6 234 399 0.0015351998 1e-6 237 399 0.0057864971 1e-6 240 399 0.005668398 1e-6 241 399 0.0044874996 1e-6 242 399 0.0001181 1e-6 252 399 0.0090930983 1e-6 270 399 0.0001181 1e-6 271 399 0.0001181 1e-6 274 399 0.00082659977 1e-6 277 399 0.079475641 1e-6 282 399 0.0060226992 1e-6 283 399 0.00094469986 1e-6 284 399 0.0010627999 1e-6 289 399 0.00035429979 1e-6 292 399 0.0027160998 1e-6 293 399 0.022909798 1e-6 295 399 0.0018894998 1e-6 296 399 0.00059049996 1e-6 297 399 0.0001181 1e-6 298 399 0.0001181 1e-6 302 399 0.00035429979 1e-6 303 399 0.0033065998 1e-6 304 399 0.0011808998 1e-6 305 399 0.0001181 1e-6 306 399 0.0034246999 1e-6 307 399 0.00023619999 1e-6 308 399 0.0012989999 1e-6 312 399 0.0085025989 1e-6 313 399 0.0093291998 1e-6 315 399 0.0038969999 1e-6 319 399 0.0220831 1e-6 320 399 0.0017714 1e-6 321 399 0.0017714 1e-6 323 399 0.00082659977 1e-6 324 399 0.0018894998 1e-6 326 399 0.0024798999 1e-6 328 399 0.0082663968 1e-6 331 399 0.00082659977 1e-6 332 399 0.0001181 1e-6 337 399 0.0001181 1e-6 338 399 0.0010627999 1e-6 339 399 0.00047239987 1e-6 340 399 0.0016532999 1e-6 350 399 0.0001181 1e-6 351 399 0.00059049996 1e-6 354 399 0.0035426999 1e-6 356 399 0.0001181 1e-6 357 399 0.00023619999 1e-6 358 399 0.0046055987 1e-6 366 399 0.023854498 1e-6 370 399 0.0001181 1e-6 371 399 0.0001181 1e-6 372 399 0.0018894998 1e-6 373 399 0.0001181 1e-6 374 399 0.0001181 1e-6 377 399 0.0022437 1e-6 378 399 0.0030703999 1e-6 383 399 0.0011808998 1e-6 384 399 0.0001181 1e-6 385 399 0.0012989999 1e-6 386 399 0.00023619999 1e-6 387 399 0.0001181 1e-6 394 399 0.00070849992 1e-6 397 399 0.0043693967 1e-6 399 399 0.0090930983 1e-6 400 399 0.0069673993 1e-6 401 399 0.10167688 1e-6 402 399 0.042040598 1e-6 410 399 0.0001181 1e-6 412 399 0.0017714 1e-6 417 399 0.00035429979 1e-6 421 399 0.0001181 1e-6 422 399 0.0001181 1e-6 439 399 0.00023619999 1e-6 441 399 0.0001181 1e-6 443 399 0.0066130981 1e-6 444 399 0.00047239987 1e-6 445 399 0.0067311972 1e-6 446 399 0.00023619999 1e-6 447 399 0.0031884999 1e-6 450 399 0.0020075999 1e-6 452 399 0.0035426999 1e-6 453 399 0.0014171 1e-6 454 399 0.00023619999 1e-6 455 399 0.0422768 1e-6 456 399 0.00023619999 1e-6 457 399 0.0017714 1e-6 458 399 0.00023619999 1e-6 459 399 0.00047239987 1e-6 460 399 0.00082659977 1e-6 463 399 0.011572998 1e-6 464 399 0.0034246999 1e-6 465 399 0.00082659977 1e-6 467 399 0.0085025989 1e-6 468 399 0.016532797 1e-6 469 399 0.0043693967 1e-6 470 399 0.0049597993 1e-6 471 399 0.0016532999 1e-6 473 399 0.0001181 1e-6 477 399 0.0001181 1e-6 478 399 0.00094469986 1e-6 483 399 0.00070849992 1e-6 490 399 0.00035429979 1e-6 491 399 0.00035429979 1e-6 22 400 0.0001643 1e-6 60 400 0.0017255999 1e-6 108 400 8.2199986e-05 1e-6 114 400 0.0001643 1e-6 126 400 8.2199986e-05 1e-6 130 400 0.0017255999 1e-6 139 400 0.00082169985 1e-6 150 400 8.2199986e-05 1e-6 160 400 0.022021398 1e-6 161 400 0.022432197 1e-6 165 400 0.0057517998 1e-6 169 400 0.0001643 1e-6 181 400 0.0001643 1e-6 189 400 8.2199986e-05 1e-6 190 400 8.2199986e-05 1e-6 194 400 8.2199986e-05 1e-6 198 400 8.2199986e-05 1e-6 206 400 0.00032869983 1e-6 214 400 0.0004929998 1e-6 224 400 0.00041079987 1e-6 233 400 0.0046835989 1e-6 234 400 0.00098599982 1e-6 237 400 0.053574398 1e-6 240 400 0.0015611998 1e-6 241 400 0.0016433999 1e-6 242 400 8.2199986e-05 1e-6 252 400 0.0001643 1e-6 270 400 0.0032046 1e-6 271 400 8.2199986e-05 1e-6 274 400 0.0026294 1e-6 277 400 0.077896476 1e-6 282 400 0.010681998 1e-6 283 400 0.0031223998 1e-6 284 400 0.00090389978 1e-6 286 400 8.2199986e-05 1e-6 289 400 8.2199986e-05 1e-6 292 400 0.0015611998 1e-6 293 400 0.067214489 1e-6 294 400 0.0002464999 1e-6 295 400 0.00082169985 1e-6 296 400 0.00041079987 1e-6 303 400 8.2199986e-05 1e-6 307 400 0.00032869983 1e-6 312 400 0.012900598 1e-6 313 400 0.0092029981 1e-6 315 400 0.0077238977 1e-6 319 400 0.0094494969 1e-6 320 400 8.2199986e-05 1e-6 321 400 0.0036153998 1e-6 322 400 8.2199986e-05 1e-6 323 400 0.007477399 1e-6 324 400 0.0073130988 1e-6 326 400 0.0023006999 1e-6 328 400 0.00032869983 1e-6 331 400 0.0001643 1e-6 335 400 8.2199986e-05 1e-6 337 400 0.0055052973 1e-6 338 400 0.0016433999 1e-6 339 400 0.0004929998 1e-6 340 400 0.0017255999 1e-6 349 400 0.0002464999 1e-6 350 400 8.2199986e-05 1e-6 351 400 0.0013968998 1e-6 354 400 0.0029580998 1e-6 356 400 0.0001643 1e-6 357 400 8.2199986e-05 1e-6 358 400 0.0039440989 1e-6 366 400 0.006737899 1e-6 372 400 0.0001643 1e-6 373 400 0.0001643 1e-6 374 400 0.0001643 1e-6 378 400 8.2199986e-05 1e-6 385 400 0.00073949993 1e-6 387 400 8.2199986e-05 1e-6 397 400 0.0001643 1e-6 399 400 0.0001643 1e-6 400 400 0.00082169985 1e-6 401 400 0.0020541998 1e-6 402 400 0.091454387 1e-6 412 400 0.0024650998 1e-6 417 400 0.00032869983 1e-6 421 400 0.0001643 1e-6 422 400 8.2199986e-05 1e-6 443 400 0.0082990974 1e-6 444 400 0.0023828999 1e-6 445 400 0.006819997 1e-6 446 400 0.00032869983 1e-6 447 400 0.0044370964 1e-6 450 400 0.0017255999 1e-6 452 400 0.0028758999 1e-6 453 400 0.0010682 1e-6 454 400 0.0002464999 1e-6 455 400 0.045850497 1e-6 456 400 8.2199986e-05 1e-6 457 400 0.0018076999 1e-6 458 400 0.0004929998 1e-6 459 400 0.00041079987 1e-6 460 400 0.00073949993 1e-6 463 400 0.0061626993 1e-6 464 400 0.0004929998 1e-6 465 400 0.00065739988 1e-6 467 400 0.0077238977 1e-6 468 400 0.0050944984 1e-6 469 400 0.0035332998 1e-6 470 400 0.0038619998 1e-6 471 400 0.0051766969 1e-6 473 400 8.2199986e-05 1e-6 477 400 0.0001643 1e-6 478 400 0.00073949993 1e-6 483 400 0.00090389978 1e-6 490 400 0.00032869983 1e-6 491 400 0.00065739988 1e-6 9 401 7.0999995e-06 1e-6 16 401 2.3999992e-06 1e-6 18 401 2.6099995e-05 1e-6 22 401 0.00035159988 1e-6 60 401 0.0012591998 1e-6 79 401 2.3999992e-06 1e-6 82 401 9.4999996e-06 1e-6 83 401 7.0999995e-06 1e-6 84 401 7.0999995e-06 1e-6 108 401 9.4999996e-06 1e-6 113 401 1.19e-05 1e-6 114 401 2.6099995e-05 1e-6 126 401 1.6599995e-05 1e-6 127 401 2.3999992e-06 1e-6 130 401 0.00014969999 1e-6 134 401 0.0036753998 1e-6 137 401 4.7999993e-06 1e-6 139 401 0.00014259999 1e-6 150 401 0.0001924 1e-6 156 401 0.019572198 1e-6 158 401 0.0052410997 1e-6 160 401 0.00017819999 1e-6 161 401 7.0999995e-06 1e-6 165 401 0.00022099999 1e-6 181 401 0.0041861981 1e-6 189 401 2.6099995e-05 1e-6 190 401 2.8499999e-05 1e-6 192 401 7.0999995e-06 1e-6 194 401 0.00059869979 1e-6 196 401 2.3999992e-06 1e-6 197 401 4.7999993e-06 1e-6 198 401 9.4999996e-06 1e-6 200 401 1.19e-05 1e-6 201 401 4.7999993e-06 1e-6 203 401 1.43e-05 1e-6 204 401 1.6599995e-05 1e-6 206 401 0.00020189999 1e-6 207 401 9.4999996e-06 1e-6 209 401 2.3999992e-06 1e-6 214 401 0.00012119999 1e-6 218 401 7.0999995e-06 1e-6 219 401 0.0013613999 1e-6 223 401 0.00023759999 1e-6 224 401 8.079999e-05 1e-6 233 401 0.0036254998 1e-6 234 401 0.00083869998 1e-6 236 401 0.00052739982 1e-6 237 401 0.019515198 1e-6 240 401 0.0094225965 1e-6 241 401 0.0049725994 1e-6 242 401 0.0021287999 1e-6 248 401 4.7999993e-06 1e-6 250 401 2.3999992e-06 1e-6 251 401 2.3999992e-06 1e-6 252 401 0.0159158 1e-6 263 401 2.3999992e-06 1e-6 270 401 0.00014019999 1e-6 271 401 4.5099994e-05 1e-6 272 401 2.3799992e-05 1e-6 274 401 1.43e-05 1e-6 276 401 8.79e-05 1e-6 277 401 0.0096791983 1e-6 282 401 0.0051579997 1e-6 283 401 0.0011213999 1e-6 284 401 0.00038009998 1e-6 285 401 6.8899986e-05 1e-6 289 401 0.0001164 1e-6 290 401 1.19e-05 1e-6 292 401 0.0002328 1e-6 293 401 0.00096459989 1e-6 295 401 0.0001449 1e-6 296 401 0.0011997998 1e-6 297 401 7.0999995e-06 1e-6 298 401 0.00019009999 1e-6 299 401 0.00020669999 1e-6 303 401 7.129999e-05 1e-6 304 401 1.19e-05 1e-6 306 401 2.6099995e-05 1e-6 307 401 2.3999992e-06 1e-6 312 401 0.0092586987 1e-6 313 401 0.0885216 1e-6 315 401 8.3199993e-05 1e-6 318 401 7.5999997e-05 1e-6 319 401 0.023254797 1e-6 320 401 0.00016159999 1e-6 321 401 0.0012543998 1e-6 322 401 0.0036136999 1e-6 323 401 0.0077238977 1e-6 324 401 3.5599995e-05 1e-6 326 401 0.00048939977 1e-6 328 401 0.011480097 1e-6 331 401 3.0899988e-05 1e-6 338 401 0.00015919999 1e-6 339 401 4.9899987e-05 1e-6 340 401 0.0017295999 1e-6 341 401 1.19e-05 1e-6 350 401 4.7999993e-06 1e-6 351 401 0.0010928998 1e-6 354 401 7.5999997e-05 1e-6 355 401 7.0999995e-06 1e-6 356 401 0.00024469988 1e-6 357 401 0.0060155988 1e-6 358 401 0.00098119979 1e-6 359 401 3.5599995e-05 1e-6 366 401 0.0069041997 1e-6 371 401 2.3999992e-06 1e-6 372 401 0.00058679981 1e-6 374 401 0.00056309998 1e-6 377 401 3.3299992e-05 1e-6 378 401 5.4599994e-05 1e-6 380 401 2.3999992e-06 1e-6 383 401 1.6599995e-05 1e-6 384 401 0.0014848998 1e-6 385 401 0.0053503998 1e-6 386 401 1.19e-05 1e-6 387 401 0.0071084984 1e-6 392 401 0.00088379998 1e-6 393 401 0.00027799979 1e-6 394 401 0.0035993999 1e-6 397 401 0.020527299 1e-6 399 401 0.0018127998 1e-6 400 401 0.00015209999 1e-6 401 401 0.040363196 1e-6 402 401 0.25693089 1e-6 404 401 2.6099995e-05 1e-6 412 401 0.00016159999 1e-6 414 401 0.0013281 1e-6 417 401 0.00013069999 1e-6 419 401 0.00062479987 1e-6 421 401 7.3699994e-05 1e-6 422 401 5.2299991e-05 1e-6 423 401 4.7999993e-06 1e-6 425 401 2.3999992e-06 1e-6 430 401 1.19e-05 1e-6 431 401 4.7999993e-06 1e-6 432 401 2.3999992e-06 1e-6 433 401 4.7999993e-06 1e-6 434 401 2.1399988e-05 1e-6 441 401 0.00031599985 1e-6 443 401 0.0087050982 1e-6 444 401 0.00048229983 1e-6 445 401 0.0074007995 1e-6 446 401 0.00023049999 1e-6 447 401 0.0016963999 1e-6 448 401 1.19e-05 1e-6 449 401 2.3999992e-06 1e-6 450 401 0.00084819994 1e-6 452 401 0.0020051999 1e-6 453 401 0.00076029985 1e-6 454 401 0.00045849988 1e-6 455 401 0.058405399 1e-6 456 401 0.0001354 1e-6 457 401 0.0019220999 1e-6 458 401 0.00010929999 1e-6 459 401 0.00054169982 1e-6 460 401 0.00084579992 1e-6 463 401 0.0010239999 1e-6 464 401 0.0006010998 1e-6 465 401 0.00026609981 1e-6 467 401 0.0040341988 1e-6 468 401 0.013839297 1e-6 469 401 0.0011498998 1e-6 470 401 0.0012852999 1e-6 471 401 0.00020189999 1e-6 472 401 4.5099994e-05 1e-6 473 401 2.8499999e-05 1e-6 477 401 0.00014969999 1e-6 478 401 0.00030169985 1e-6 483 401 0.00050609978 1e-6 489 401 1.6599995e-05 1e-6 490 401 0.00010219999 1e-6 491 401 7.8399986e-05 1e-6 9 402 1.44e-05 1e-6 16 402 4.7999993e-06 1e-6 18 402 5.2699994e-05 1e-6 19 402 9.5999994e-06 1e-6 22 402 0.00061379978 1e-6 24 402 2.3999994e-05 1e-6 60 402 0.0025604998 1e-6 76 402 9.5999994e-06 1e-6 77 402 4.7999993e-06 1e-6 78 402 9.5999994e-06 1e-6 79 402 1.44e-05 1e-6 82 402 2.8799986e-05 1e-6 83 402 9.5999994e-06 1e-6 84 402 9.5999994e-06 1e-6 108 402 1.44e-05 1e-6 113 402 2.8799986e-05 1e-6 114 402 6.2299994e-05 1e-6 117 402 4.7999993e-06 1e-6 126 402 2.3999994e-05 1e-6 127 402 4.7999993e-06 1e-6 130 402 0.00076719979 1e-6 131 402 3.8399987e-05 1e-6 133 402 4.7999993e-06 1e-6 134 402 0.00022059999 1e-6 135 402 1.44e-05 1e-6 137 402 0.00047949981 1e-6 138 402 1.9199986e-05 1e-6 139 402 0.00051789987 1e-6 140 402 7.1899995e-05 1e-6 142 402 0.0001774 1e-6 149 402 4.7999993e-06 1e-6 150 402 0.0004602999 1e-6 156 402 0.0012610999 1e-6 158 402 0.00031169993 1e-6 159 402 4.7999993e-06 1e-6 160 402 0.00012469999 1e-6 161 402 2.8799986e-05 1e-6 165 402 0.0001007 1e-6 169 402 0.00061379978 1e-6 170 402 4.7999993e-06 1e-6 171 402 0.00020139999 1e-6 172 402 0.00088229985 1e-6 174 402 3.8399987e-05 1e-6 175 402 0.00013429999 1e-6 177 402 4.7999993e-06 1e-6 181 402 0.00024929992 1e-6 187 402 0.00055139977 1e-6 188 402 0.00042679999 1e-6 189 402 5.2699994e-05 1e-6 190 402 6.2299994e-05 1e-6 191 402 0.00030209986 1e-6 192 402 9.1099995e-05 1e-6 194 402 8.1499995e-05 1e-6 196 402 4.7999993e-06 1e-6 197 402 9.5999994e-06 1e-6 198 402 0.0043873973 1e-6 200 402 2.3999994e-05 1e-6 201 402 9.5999994e-06 1e-6 203 402 2.8799986e-05 1e-6 204 402 0.00013429999 1e-6 206 402 0.00024929992 1e-6 207 402 2.3999994e-05 1e-6 209 402 4.7999993e-06 1e-6 214 402 0.00031649997 1e-6 218 402 4.7999993e-06 1e-6 219 402 8.6299988e-05 1e-6 220 402 4.7999993e-06 1e-6 221 402 9.5999994e-06 1e-6 222 402 1.9199986e-05 1e-6 223 402 0.0018028999 1e-6 224 402 0.00269 1e-6 225 402 0.0001774 1e-6 229 402 9.5999994e-06 1e-6 230 402 7.6699987e-05 1e-6 233 402 0.0013952998 1e-6 234 402 0.0023015998 1e-6 236 402 4.3199994e-05 1e-6 237 402 0.001707 1e-6 239 402 4.7999993e-06 1e-6 240 402 0.0046942979 1e-6 241 402 0.0042243972 1e-6 242 402 0.00086309994 1e-6 248 402 9.5999994e-06 1e-6 250 402 4.7999993e-06 1e-6 251 402 1.9199986e-05 1e-6 252 402 0.0018700999 1e-6 262 402 1.9199986e-05 1e-6 263 402 9.5999994e-06 1e-6 270 402 0.0016925998 1e-6 271 402 0.0075329989 1e-6 272 402 0.0010932998 1e-6 274 402 3.3599994e-05 1e-6 276 402 0.00019179999 1e-6 277 402 0.084425747 1e-6 278 402 0.0001007 1e-6 279 402 0.00021099999 1e-6 282 402 0.071153164 1e-6 283 402 0.028041199 1e-6 284 402 0.00095419982 1e-6 285 402 0.00064729992 1e-6 286 402 0.00031169993 1e-6 287 402 9.5899988e-05 1e-6 288 402 0.0001199 1e-6 289 402 0.00089669996 1e-6 290 402 0.00011509999 1e-6 292 402 0.010548998 1e-6 293 402 0.0018461 1e-6 294 402 0.00096379989 1e-6 295 402 0.0041092969 1e-6 296 402 0.014207598 1e-6 297 402 0.00028769998 1e-6 298 402 0.0013714 1e-6 299 402 0.00045069982 1e-6 300 402 9.5999994e-06 1e-6 303 402 4.7999993e-06 1e-6 304 402 5.7499987e-05 1e-6 307 402 5.7499987e-05 1e-6 308 402 9.5999994e-06 1e-6 312 402 0.013416398 1e-6 313 402 0.017995697 1e-6 315 402 0.0006616998 1e-6 317 402 1.9199986e-05 1e-6 318 402 0.00024449988 1e-6 319 402 0.0021145998 1e-6 320 402 0.0045408979 1e-6 321 402 0.0014769 1e-6 322 402 0.0016494999 1e-6 323 402 0.00092539983 1e-6 324 402 0.00070009986 1e-6 326 402 0.00094939978 1e-6 327 402 1.44e-05 1e-6 328 402 0.0020234999 1e-6 329 402 3.8399987e-05 1e-6 330 402 0.000187 1e-6 331 402 0.0001966 1e-6 332 402 4.7999993e-06 1e-6 337 402 1.44e-05 1e-6 338 402 0.0007815999 1e-6 339 402 0.00024449988 1e-6 340 402 0.0048668981 1e-6 341 402 0.0001007 1e-6 345 402 1.44e-05 1e-6 349 402 2.8799986e-05 1e-6 350 402 9.5899988e-05 1e-6 351 402 0.0077966973 1e-6 352 402 0.0009015 1e-6 353 402 0.00011509999 1e-6 354 402 0.00052749994 1e-6 355 402 1.44e-05 1e-6 356 402 2.8799986e-05 1e-6 357 402 0.0078445971 1e-6 358 402 0.0079980977 1e-6 359 402 9.5999994e-06 1e-6 361 402 4.7999993e-06 1e-6 363 402 9.5999994e-06 1e-6 366 402 0.0016639 1e-6 367 402 9.5999994e-06 1e-6 368 402 9.5999994e-06 1e-6 369 402 9.5999994e-06 1e-6 370 402 0.00020139999 1e-6 371 402 0.0001103 1e-6 372 402 0.0019850999 1e-6 373 402 0.0006616998 1e-6 374 402 6.2299994e-05 1e-6 375 402 0.00030689989 1e-6 376 402 9.5999994e-06 1e-6 377 402 4.7999993e-06 1e-6 378 402 4.7999993e-06 1e-6 380 402 4.7999993e-06 1e-6 384 402 0.00018219999 1e-6 385 402 0.00041239988 1e-6 386 402 0.00024449988 1e-6 387 402 0.00054659997 1e-6 390 402 3.8399987e-05 1e-6 391 402 0.00032129977 1e-6 392 402 0.00071449997 1e-6 393 402 0.00039319997 1e-6 394 402 0.0002158 1e-6 396 402 3.3599994e-05 1e-6 397 402 0.0064300969 1e-6 398 402 1.9199986e-05 1e-6 399 402 0.00011509999 1e-6 400 402 1.44e-05 1e-6 401 402 0.0024358998 1e-6 402 402 0.070299685 1e-6 404 402 0.00034519983 1e-6 405 402 0.0001582 1e-6 408 402 4.7999993e-06 1e-6 409 402 1.44e-05 1e-6 412 402 0.00061859982 1e-6 413 402 4.7999993e-06 1e-6 414 402 0.0006616998 1e-6 415 402 0.0001007 1e-6 416 402 1.9199986e-05 1e-6 417 402 0.00034999987 1e-6 419 402 0.00023019999 1e-6 421 402 0.00023019999 1e-6 422 402 4.7999987e-05 1e-6 423 402 4.7999993e-06 1e-6 425 402 4.7999993e-06 1e-6 430 402 1.44e-05 1e-6 431 402 9.5999994e-06 1e-6 432 402 4.7999993e-06 1e-6 433 402 1.44e-05 1e-6 434 402 1.9199986e-05 1e-6 438 402 4.7999993e-06 1e-6 441 402 5.7499987e-05 1e-6 442 402 1.44e-05 1e-6 443 402 0.0053224973 1e-6 444 402 0.00089189992 1e-6 445 402 0.0074274987 1e-6 446 402 0.00055619981 1e-6 447 402 0.0015103999 1e-6 448 402 1.44e-05 1e-6 449 402 4.7999993e-06 1e-6 450 402 0.0021386 1e-6 452 402 0.0057875998 1e-6 453 402 0.0017788999 1e-6 454 402 0.00070969993 1e-6 455 402 0.037520997 1e-6 456 402 0.00064729992 1e-6 457 402 0.0019275998 1e-6 458 402 0.0001774 1e-6 459 402 0.00088709989 1e-6 460 402 0.0009782 1e-6 463 402 0.0025988999 1e-6 464 402 0.0015966999 1e-6 465 402 0.0011795999 1e-6 467 402 0.0075760968 1e-6 468 402 0.0033564998 1e-6 469 402 0.0030113 1e-6 470 402 0.0033421 1e-6 471 402 0.023615398 1e-6 472 402 5.7499987e-05 1e-6 473 402 6.2299994e-05 1e-6 477 402 0.00016299999 1e-6 478 402 0.00075759995 1e-6 479 402 9.5999994e-06 1e-6 483 402 0.0018604998 1e-6 489 402 4.3199994e-05 1e-6 490 402 0.00029729982 1e-6 491 402 0.0053703971 1e-6 9 403 7.4699987e-05 1e-6 16 403 2.4899986e-05 1e-6 17 403 1.25e-05 1e-6 18 403 7.4699987e-05 1e-6 22 403 2.4899986e-05 1e-6 60 403 0.0030271998 1e-6 75 403 0.0004608999 1e-6 76 403 0.00022419999 1e-6 79 403 2.4899986e-05 1e-6 81 403 0.00012459999 1e-6 82 403 0.00012459999 1e-6 83 403 9.9699988e-05 1e-6 84 403 9.9699988e-05 1e-6 108 403 0.00014949999 1e-6 113 403 0.0002118 1e-6 114 403 0.00054809987 1e-6 126 403 0.0002367 1e-6 127 403 4.9799986e-05 1e-6 130 403 0.00093429978 1e-6 134 403 0.00057309982 1e-6 150 403 0.00044849981 1e-6 158 403 3.7399994e-05 1e-6 160 403 0.00028649997 1e-6 171 403 1.25e-05 1e-6 172 403 6.2299994e-05 1e-6 181 403 0.0016070998 1e-6 187 403 1.25e-05 1e-6 189 403 0.000137 1e-6 190 403 8.7199995e-05 1e-6 192 403 2.4899986e-05 1e-6 194 403 4.9799986e-05 1e-6 196 403 1.25e-05 1e-6 197 403 3.7399994e-05 1e-6 198 403 2.4899986e-05 1e-6 200 403 8.7199995e-05 1e-6 201 403 7.4699987e-05 1e-6 203 403 3.7399994e-05 1e-6 204 403 0.00089699985 1e-6 206 403 0.0014326 1e-6 207 403 3.7399994e-05 1e-6 209 403 1.25e-05 1e-6 214 403 0.00017439999 1e-6 218 403 1.25e-05 1e-6 219 403 0.0001121 1e-6 224 403 0.0017814999 1e-6 233 403 0.0023047 1e-6 234 403 0.0025787998 1e-6 237 403 0.0004608999 1e-6 240 403 0.00061039999 1e-6 241 403 0.00078479992 1e-6 248 403 6.2299994e-05 1e-6 250 403 4.9799986e-05 1e-6 251 403 2.4899986e-05 1e-6 252 403 9.9699988e-05 1e-6 263 403 1.25e-05 1e-6 270 403 2.4899986e-05 1e-6 272 403 0.0002491998 1e-6 276 403 0.00039859978 1e-6 277 403 0.0020181998 1e-6 282 403 0.00064779981 1e-6 283 403 0.00075989985 1e-6 284 403 0.0011834998 1e-6 292 403 0.00012459999 1e-6 293 403 0.0088823996 1e-6 294 403 0.0020554999 1e-6 295 403 0.0013704 1e-6 296 403 0.0022548998 1e-6 297 403 3.7399994e-05 1e-6 298 403 0.00078479992 1e-6 299 403 0.0042978972 1e-6 308 403 1.25e-05 1e-6 312 403 0.0068641976 1e-6 315 403 0.00097169983 1e-6 317 403 9.9699988e-05 1e-6 318 403 0.0001121 1e-6 319 403 0.004783798 1e-6 320 403 0.0022423998 1e-6 321 403 0.0025787998 1e-6 322 403 0.00064779981 1e-6 324 403 0.0011461 1e-6 326 403 0.0019433999 1e-6 338 403 0.00057309982 1e-6 339 403 0.00017439999 1e-6 340 403 0.0041234978 1e-6 341 403 3.7399994e-05 1e-6 350 403 0.0046467967 1e-6 351 403 0.00062289997 1e-6 354 403 6.2299994e-05 1e-6 356 403 0.00066029979 1e-6 357 403 9.9699988e-05 1e-6 358 403 0.019483998 1e-6 359 403 0.0059547983 1e-6 369 403 0.001769 1e-6 372 403 0.00032389979 1e-6 380 403 2.4899986e-05 1e-6 384 403 4.9799986e-05 1e-6 387 403 0.0002367 1e-6 390 403 0.071071684 1e-6 392 403 0.0098416992 1e-6 393 403 0.020517997 1e-6 394 403 3.7399994e-05 1e-6 396 403 9.9699988e-05 1e-6 397 403 0.0032265999 1e-6 402 403 6.2299994e-05 1e-6 403 403 0.0034133999 1e-6 404 403 0.0446986 1e-6 405 403 0.13625085 1e-6 413 403 0.0062662996 1e-6 414 403 0.0023794 1e-6 417 403 0.00031139981 1e-6 419 403 0.0016943 1e-6 420 403 0.0046467967 1e-6 421 403 9.9699988e-05 1e-6 422 403 0.0018437998 1e-6 423 403 4.9799986e-05 1e-6 425 403 3.7399994e-05 1e-6 430 403 0.000137 1e-6 431 403 4.9799986e-05 1e-6 432 403 1.25e-05 1e-6 433 403 2.4899986e-05 1e-6 434 403 0.0001869 1e-6 442 403 1.25e-05 1e-6 443 403 0.00077239983 1e-6 444 403 0.0036251999 1e-6 445 403 0.0047215 1e-6 446 403 0.00019929999 1e-6 447 403 0.0088326 1e-6 448 403 1.25e-05 1e-6 449 403 4.9799986e-05 1e-6 450 403 0.0047215 1e-6 452 403 0.0039241984 1e-6 453 403 0.00074749999 1e-6 454 403 0.00037369994 1e-6 455 403 0.015958399 1e-6 456 403 0.0020929 1e-6 457 403 0.0026659998 1e-6 458 403 0.00057309982 1e-6 459 403 0.0011461 1e-6 460 403 0.0010090999 1e-6 463 403 0.0061541982 1e-6 464 403 0.0083342977 1e-6 465 403 0.0026659998 1e-6 467 403 0.018686697 1e-6 468 403 0.0021054 1e-6 469 403 0.012121398 1e-6 470 403 0.0270583 1e-6 471 403 0.0022298999 1e-6 473 403 0.00057309982 1e-6 477 403 8.7199995e-05 1e-6 478 403 0.0013952998 1e-6 479 403 0.00072259991 1e-6 483 403 0.0020305999 1e-6 489 403 2.4899986e-05 1e-6 490 403 0.0020554999 1e-6 491 403 6.2299994e-05 1e-6 9 404 7.509999e-05 1e-6 16 404 5.0099989e-05 1e-6 18 404 0.00010009999 1e-6 22 404 0.0002002 1e-6 60 404 0.0038039999 1e-6 76 404 5.0099989e-05 1e-6 77 404 0.00012509999 1e-6 79 404 5.0099989e-05 1e-6 82 404 0.00015019999 1e-6 83 404 0.00012509999 1e-6 84 404 0.00012509999 1e-6 108 404 0.0002002 1e-6 113 404 0.00027529988 1e-6 114 404 0.00067569991 1e-6 126 404 0.00030029984 1e-6 127 404 7.509999e-05 1e-6 130 404 7.509999e-05 1e-6 150 404 0.00057559996 1e-6 169 404 0.00010009999 1e-6 172 404 0.0010760999 1e-6 181 404 5.0099989e-05 1e-6 187 404 2.4999987e-05 1e-6 189 404 0.0002002 1e-6 190 404 0.00010009999 1e-6 192 404 5.0099989e-05 1e-6 194 404 0.00010009999 1e-6 196 404 2.4999987e-05 1e-6 197 404 5.0099989e-05 1e-6 198 404 0.0017267999 1e-6 200 404 0.00010009999 1e-6 201 404 0.00010009999 1e-6 203 404 7.509999e-05 1e-6 204 404 0.00010009999 1e-6 206 404 0.0016017 1e-6 207 404 7.509999e-05 1e-6 209 404 2.4999987e-05 1e-6 214 404 0.0008758998 1e-6 220 404 2.4999987e-05 1e-6 224 404 0.0015766998 1e-6 233 404 0.00027529988 1e-6 234 404 0.0045797974 1e-6 237 404 5.0099989e-05 1e-6 240 404 0.00095099979 1e-6 241 404 0.00015019999 1e-6 248 404 0.00010009999 1e-6 250 404 7.509999e-05 1e-6 251 404 2.4999987e-05 1e-6 252 404 0.0001752 1e-6 263 404 2.4999987e-05 1e-6 271 404 2.4999987e-05 1e-6 272 404 0.00095099979 1e-6 277 404 0.028630096 1e-6 279 404 0.00015019999 1e-6 282 404 0.011612199 1e-6 283 404 0.0192452 1e-6 284 404 0.0013513998 1e-6 285 404 2.4999987e-05 1e-6 286 404 7.509999e-05 1e-6 287 404 2.4999987e-05 1e-6 288 404 2.4999987e-05 1e-6 289 404 2.4999987e-05 1e-6 290 404 0.00080079981 1e-6 291 404 2.4999987e-05 1e-6 292 404 0.0012512999 1e-6 293 404 0.0025527 1e-6 294 404 0.0059812963 1e-6 295 404 0.00037539983 1e-6 296 404 0.008433897 1e-6 297 404 0.00037539983 1e-6 298 404 0.022023097 1e-6 299 404 0.013664298 1e-6 305 404 5.0099989e-05 1e-6 307 404 7.509999e-05 1e-6 308 404 2.4999987e-05 1e-6 312 404 0.0040291995 1e-6 313 404 2.4999987e-05 1e-6 315 404 0.00072579994 1e-6 318 404 0.00067569991 1e-6 319 404 0.0011511999 1e-6 320 404 0.005380597 1e-6 321 404 7.509999e-05 1e-6 322 404 5.0099989e-05 1e-6 324 404 0.0014765998 1e-6 326 404 7.509999e-05 1e-6 327 404 0.0023273998 1e-6 328 404 0.0003252998 1e-6 329 404 2.4999987e-05 1e-6 331 404 2.4999987e-05 1e-6 338 404 0.0014515 1e-6 339 404 0.00012509999 1e-6 340 404 0.013514198 1e-6 341 404 0.00030029984 1e-6 343 404 0.00095099979 1e-6 350 404 0.0012762998 1e-6 351 404 0.0034035998 1e-6 354 404 0.0002002 1e-6 356 404 0.00042539998 1e-6 357 404 0.0021271999 1e-6 358 404 0.021422498 1e-6 359 404 2.4999987e-05 1e-6 366 404 5.0099989e-05 1e-6 369 404 2.4999987e-05 1e-6 371 404 2.4999987e-05 1e-6 372 404 0.00040039979 1e-6 373 404 2.4999987e-05 1e-6 380 404 5.0099989e-05 1e-6 384 404 7.509999e-05 1e-6 386 404 2.4999987e-05 1e-6 387 404 0.00030029984 1e-6 390 404 0.0046798997 1e-6 391 404 5.0099989e-05 1e-6 392 404 0.00095099979 1e-6 393 404 0.0035787998 1e-6 396 404 2.4999987e-05 1e-6 397 404 0.0054306984 1e-6 398 404 2.4999987e-05 1e-6 402 404 0.00015019999 1e-6 403 404 7.509999e-05 1e-6 404 404 0.14269978 1e-6 405 404 0.033885598 1e-6 413 404 0.0011511999 1e-6 414 404 0.0063315965 1e-6 417 404 0.00035039987 1e-6 419 404 7.509999e-05 1e-6 420 404 2.4999987e-05 1e-6 421 404 0.00012509999 1e-6 422 404 0.0001752 1e-6 423 404 0.00010009999 1e-6 425 404 7.509999e-05 1e-6 430 404 0.0002002 1e-6 431 404 7.509999e-05 1e-6 432 404 2.4999987e-05 1e-6 433 404 5.0099989e-05 1e-6 434 404 5.0099989e-05 1e-6 443 404 0.0012013 1e-6 444 404 0.0010511 1e-6 445 404 0.0034285998 1e-6 446 404 0.00025029993 1e-6 447 404 0.0030532 1e-6 448 404 2.4999987e-05 1e-6 449 404 7.509999e-05 1e-6 450 404 0.0052804984 1e-6 452 404 0.0073326975 1e-6 453 404 0.0014515 1e-6 454 404 0.0015766998 1e-6 455 404 0.015816599 1e-6 456 404 0.0022773999 1e-6 457 404 0.0028279999 1e-6 458 404 0.00085089984 1e-6 459 404 0.00067569991 1e-6 460 404 0.00092599983 1e-6 463 404 0.0041793995 1e-6 464 404 0.0014264998 1e-6 465 404 0.0026777999 1e-6 467 404 0.021472499 1e-6 468 404 0.0020271 1e-6 469 404 0.014239997 1e-6 470 404 0.031457998 1e-6 471 404 0.00037539983 1e-6 473 404 0.00067569991 1e-6 477 404 0.00010009999 1e-6 478 404 0.0015515999 1e-6 483 404 0.0027278999 1e-6 489 404 0.00012509999 1e-6 490 404 0.0023774998 1e-6 491 404 0.0024525998 1e-6 9 405 0.00010999999 1e-6 16 405 4.3999986e-05 1e-6 18 405 0.00013199999 1e-6 22 405 0.00015399999 1e-6 24 405 2.1999993e-05 1e-6 60 405 0.0028153998 1e-6 75 405 0.00010999999 1e-6 76 405 0.00048389984 1e-6 77 405 0.00028589997 1e-6 79 405 0.00013199999 1e-6 81 405 2.1999993e-05 1e-6 82 405 0.00017599999 1e-6 83 405 0.00010999999 1e-6 84 405 0.00010999999 1e-6 108 405 0.00015399999 1e-6 113 405 0.0002638998 1e-6 114 405 0.00057189981 1e-6 126 405 0.0002638998 1e-6 127 405 4.3999986e-05 1e-6 130 405 0.0020895 1e-6 131 405 4.3999986e-05 1e-6 132 405 2.1999993e-05 1e-6 134 405 0.00013199999 1e-6 135 405 2.1999993e-05 1e-6 138 405 2.1999993e-05 1e-6 139 405 2.1999993e-05 1e-6 140 405 2.1999993e-05 1e-6 142 405 2.1999993e-05 1e-6 150 405 0.00052789995 1e-6 156 405 2.1999993e-05 1e-6 160 405 8.7999986e-05 1e-6 161 405 2.1999993e-05 1e-6 165 405 2.1999993e-05 1e-6 169 405 0.00015399999 1e-6 171 405 0.00010999999 1e-6 172 405 0.00054989988 1e-6 181 405 0.0018036 1e-6 187 405 0.00068179984 1e-6 189 405 0.00015399999 1e-6 190 405 0.00010999999 1e-6 191 405 6.5999993e-05 1e-6 192 405 6.5999993e-05 1e-6 194 405 0.00013199999 1e-6 196 405 2.1999993e-05 1e-6 197 405 4.3999986e-05 1e-6 198 405 0.0011876998 1e-6 200 405 0.00010999999 1e-6 201 405 8.7999986e-05 1e-6 203 405 6.5999993e-05 1e-6 204 405 0.00028589997 1e-6 206 405 0.0017376 1e-6 207 405 6.5999993e-05 1e-6 209 405 2.1999993e-05 1e-6 214 405 0.0015395998 1e-6 219 405 2.1999993e-05 1e-6 220 405 4.3999986e-05 1e-6 222 405 4.3999986e-05 1e-6 223 405 4.3999986e-05 1e-6 224 405 0.0036511999 1e-6 225 405 0.00032989983 1e-6 233 405 0.0014076999 1e-6 234 405 0.0040470995 1e-6 237 405 0.00017599999 1e-6 240 405 0.0011216998 1e-6 241 405 0.0022214998 1e-6 248 405 8.7999986e-05 1e-6 250 405 4.3999986e-05 1e-6 251 405 2.1999993e-05 1e-6 252 405 0.00021989999 1e-6 262 405 2.1999993e-05 1e-6 263 405 4.3999986e-05 1e-6 272 405 0.00050589978 1e-6 276 405 8.7999986e-05 1e-6 277 405 0.013328899 1e-6 278 405 2.1999993e-05 1e-6 279 405 4.3999986e-05 1e-6 282 405 0.004684899 1e-6 283 405 0.0076981969 1e-6 284 405 0.0013416999 1e-6 285 405 0.00010999999 1e-6 286 405 4.3999986e-05 1e-6 287 405 4.3999986e-05 1e-6 288 405 4.3999986e-05 1e-6 290 405 0.00092379982 1e-6 291 405 2.1999993e-05 1e-6 292 405 0.00070379977 1e-6 293 405 0.015352499 1e-6 294 405 0.0051687993 1e-6 295 405 0.0020234999 1e-6 296 405 0.004970897 1e-6 297 405 0.00013199999 1e-6 298 405 0.0028372998 1e-6 299 405 0.0056086965 1e-6 305 405 6.5999993e-05 1e-6 307 405 8.7999986e-05 1e-6 308 405 6.5999993e-05 1e-6 312 405 0.0089079998 1e-6 313 405 4.3999986e-05 1e-6 315 405 0.0030792998 1e-6 317 405 4.3999986e-05 1e-6 318 405 2.1999993e-05 1e-6 319 405 0.0031893 1e-6 320 405 0.0049268976 1e-6 321 405 0.00096779992 1e-6 322 405 0.0012096998 1e-6 324 405 0.00092379982 1e-6 326 405 0.0020234999 1e-6 327 405 0.00028589997 1e-6 328 405 0.00024189999 1e-6 329 405 4.3999986e-05 1e-6 331 405 2.1999993e-05 1e-6 335 405 2.1999993e-05 1e-6 338 405 0.00087979995 1e-6 339 405 0.0002638998 1e-6 340 405 0.0090838969 1e-6 341 405 0.00019799999 1e-6 343 405 2.1999993e-05 1e-6 350 405 0.0016496 1e-6 351 405 0.0031893 1e-6 352 405 2.1999993e-05 1e-6 354 405 0.0018916 1e-6 356 405 0.00041789981 1e-6 357 405 6.5999993e-05 1e-6 358 405 0.016672198 1e-6 359 405 0.0013636998 1e-6 366 405 6.5999993e-05 1e-6 369 405 0.00052789995 1e-6 371 405 2.1999993e-05 1e-6 372 405 0.0011876998 1e-6 373 405 0.00017599999 1e-6 380 405 2.1999993e-05 1e-6 384 405 6.5999993e-05 1e-6 386 405 8.7999986e-05 1e-6 387 405 0.00024189999 1e-6 390 405 0.0340482 1e-6 391 405 4.3999986e-05 1e-6 392 405 0.019817397 1e-6 393 405 0.017002098 1e-6 396 405 0.00052789995 1e-6 397 405 0.0013196999 1e-6 398 405 4.3999986e-05 1e-6 401 405 2.1999993e-05 1e-6 402 405 0.00021989999 1e-6 403 405 0.0019574999 1e-6 404 405 0.020345297 1e-6 405 405 0.099087179 1e-6 408 405 0.00010999999 1e-6 413 405 0.0025293999 1e-6 414 405 0.00079179998 1e-6 416 405 2.1999993e-05 1e-6 417 405 0.00037389994 1e-6 419 405 0.00043989997 1e-6 420 405 0.0010777998 1e-6 421 405 0.00013199999 1e-6 422 405 0.00063789985 1e-6 423 405 6.5999993e-05 1e-6 425 405 4.3999986e-05 1e-6 430 405 0.00015399999 1e-6 431 405 6.5999993e-05 1e-6 432 405 2.1999993e-05 1e-6 433 405 4.3999986e-05 1e-6 434 405 8.7999986e-05 1e-6 442 405 4.3999986e-05 1e-6 443 405 0.0011437 1e-6 444 405 0.0049928986 1e-6 445 405 0.0036291999 1e-6 446 405 0.00021989999 1e-6 447 405 0.0080940984 1e-6 448 405 2.1999993e-05 1e-6 449 405 4.3999986e-05 1e-6 450 405 0.0053667985 1e-6 452 405 0.0065764971 1e-6 453 405 0.0012316999 1e-6 454 405 0.00039589987 1e-6 455 405 0.017529998 1e-6 456 405 0.0020015 1e-6 457 405 0.0026613998 1e-6 458 405 0.00094579998 1e-6 459 405 0.0015615998 1e-6 460 405 0.00092379982 1e-6 463 405 0.0082700998 1e-6 464 405 0.0095897987 1e-6 465 405 0.0032332998 1e-6 467 405 0.020367298 1e-6 468 405 0.0023094998 1e-6 469 405 0.012405097 1e-6 470 405 0.027471699 1e-6 471 405 0.0023534999 1e-6 473 405 0.00061589992 1e-6 477 405 0.00013199999 1e-6 478 405 0.0015615998 1e-6 479 405 0.00017599999 1e-6 483 405 0.0023094998 1e-6 489 405 2.1999993e-05 1e-6 490 405 0.0021114999 1e-6 491 405 0.00015399999 1e-6 9 406 3.1999996e-05 1e-6 16 406 3.1999996e-05 1e-6 18 406 0.0001602 1e-6 22 406 6.4099993e-05 1e-6 24 406 9.609999e-05 1e-6 60 406 0.0027557998 1e-6 76 406 0.00025639986 1e-6 79 406 3.1999996e-05 1e-6 82 406 3.1999996e-05 1e-6 83 406 3.1999996e-05 1e-6 84 406 3.1999996e-05 1e-6 108 406 6.4099993e-05 1e-6 113 406 9.609999e-05 1e-6 114 406 0.00022429999 1e-6 126 406 9.609999e-05 1e-6 127 406 3.1999996e-05 1e-6 131 406 0.0012496999 1e-6 150 406 0.0010253999 1e-6 154 406 0.00092929997 1e-6 160 406 0.0023071999 1e-6 161 406 0.0014419998 1e-6 163 406 0.00022429999 1e-6 165 406 0.00089719985 1e-6 169 406 9.609999e-05 1e-6 171 406 0.0031402998 1e-6 177 406 0.005543597 1e-6 178 406 0.0015701998 1e-6 180 406 0.0049026981 1e-6 183 406 0.00086519984 1e-6 185 406 0.00064089987 1e-6 189 406 9.609999e-05 1e-6 190 406 0.0001602 1e-6 194 406 0.00012819999 1e-6 200 406 6.4099993e-05 1e-6 201 406 6.4099993e-05 1e-6 203 406 0.00012819999 1e-6 204 406 6.4099993e-05 1e-6 206 406 0.00070499978 1e-6 207 406 6.4099993e-05 1e-6 214 406 0.00035249977 1e-6 218 406 3.1999996e-05 1e-6 219 406 3.1999996e-05 1e-6 223 406 0.00012819999 1e-6 224 406 0.0010894998 1e-6 233 406 0.010926999 1e-6 234 406 0.0058319978 1e-6 237 406 6.4099993e-05 1e-6 240 406 3.1999996e-05 1e-6 241 406 0.0010574998 1e-6 242 406 0.00048069982 1e-6 248 406 3.1999996e-05 1e-6 250 406 3.1999996e-05 1e-6 252 406 0.0011855999 1e-6 254 406 0.00041659991 1e-6 256 406 0.00038449978 1e-6 259 406 0.00019229999 1e-6 263 406 3.1999996e-05 1e-6 270 406 3.1999996e-05 1e-6 271 406 0.00070499978 1e-6 272 406 0.00092929997 1e-6 274 406 0.0015701998 1e-6 276 406 0.00083309994 1e-6 277 406 0.090139985 1e-6 279 406 3.1999996e-05 1e-6 282 406 0.0017623999 1e-6 283 406 0.0014739998 1e-6 284 406 0.00012819999 1e-6 289 406 0.0029801 1e-6 290 406 0.0044220984 1e-6 292 406 0.0045181997 1e-6 293 406 0.0024353999 1e-6 295 406 0.0052231997 1e-6 296 406 6.4099993e-05 1e-6 297 406 3.1999996e-05 1e-6 298 406 3.1999996e-05 1e-6 299 406 3.1999996e-05 1e-6 302 406 0.00048069982 1e-6 303 406 0.00089719985 1e-6 304 406 0.00076909992 1e-6 305 406 0.019130297 1e-6 306 406 0.0049989 1e-6 307 406 0.0083955973 1e-6 308 406 0.0028518999 1e-6 309 406 0.0048065968 1e-6 312 406 0.0049347989 1e-6 315 406 6.4099993e-05 1e-6 319 406 3.1999996e-05 1e-6 321 406 3.1999996e-05 1e-6 322 406 9.609999e-05 1e-6 323 406 0.00028839987 1e-6 324 406 0.010382298 1e-6 326 406 0.0048065968 1e-6 327 406 0.018425398 1e-6 328 406 0.012689497 1e-6 331 406 0.010574598 1e-6 334 406 0.0014419998 1e-6 335 406 0.00044859992 1e-6 336 406 0.0033004999 1e-6 337 406 3.1999996e-05 1e-6 338 406 0.00035249977 1e-6 339 406 0.0014098999 1e-6 340 406 0.0010894998 1e-6 341 406 0.00086519984 1e-6 349 406 0.0022751 1e-6 350 406 0.0056076981 1e-6 351 406 0.0024353999 1e-6 352 406 0.0071778968 1e-6 354 406 0.0092928 1e-6 355 406 6.4099993e-05 1e-6 356 406 0.0027557998 1e-6 358 406 0.0052872971 1e-6 359 406 0.00012819999 1e-6 366 406 0.0046142973 1e-6 368 406 0.0017944998 1e-6 369 406 0.0015381 1e-6 370 406 0.0050308965 1e-6 371 406 0.0010253999 1e-6 372 406 0.0030120998 1e-6 373 406 0.0049026981 1e-6 374 406 0.0094209984 1e-6 384 406 9.609999e-05 1e-6 385 406 0.00038449978 1e-6 386 406 0.00035249977 1e-6 387 406 9.609999e-05 1e-6 389 406 0.0013458999 1e-6 390 406 0.021982197 1e-6 391 406 3.1999996e-05 1e-6 392 406 0.00054469984 1e-6 393 406 0.00054469984 1e-6 394 406 0.00035249977 1e-6 396 406 0.00028839987 1e-6 402 406 9.609999e-05 1e-6 404 406 0.0001602 1e-6 405 406 0.0017623999 1e-6 406 406 0.0042939 1e-6 407 406 9.609999e-05 1e-6 412 406 0.0017623999 1e-6 413 406 0.0037811999 1e-6 414 406 0.0015701998 1e-6 415 406 0.0034607998 1e-6 417 406 0.00070499978 1e-6 419 406 0.0022431 1e-6 421 406 0.00022429999 1e-6 422 406 0.00012819999 1e-6 423 406 3.1999996e-05 1e-6 425 406 3.1999996e-05 1e-6 430 406 6.4099993e-05 1e-6 431 406 3.1999996e-05 1e-6 432 406 3.1999996e-05 1e-6 433 406 6.4099993e-05 1e-6 434 406 9.609999e-05 1e-6 439 406 0.00028839987 1e-6 442 406 0.0012496999 1e-6 443 406 0.0033645998 1e-6 444 406 0.00032039988 1e-6 445 406 0.0059281997 1e-6 446 406 0.00044859992 1e-6 447 406 0.00073699979 1e-6 449 406 3.1999996e-05 1e-6 450 406 0.0044861995 1e-6 452 406 0.0065369979 1e-6 453 406 0.00054469984 1e-6 454 406 0.00076909992 1e-6 455 406 0.032204296 1e-6 456 406 0.0011855999 1e-6 457 406 0.0020828999 1e-6 458 406 0.00048069982 1e-6 459 406 0.0010894998 1e-6 460 406 0.0015381 1e-6 463 406 0.0038772998 1e-6 464 406 0.00038449978 1e-6 465 406 0.0017944998 1e-6 467 406 0.016502697 1e-6 468 406 0.0016982998 1e-6 469 406 0.0095811971 1e-6 470 406 0.010926999 1e-6 471 406 0.00051269983 1e-6 473 406 0.00022429999 1e-6 477 406 0.00019229999 1e-6 478 406 0.0018585999 1e-6 483 406 0.0013138 1e-6 489 406 6.4099993e-05 1e-6 490 406 0.00083309994 1e-6 491 406 0.0010253999 1e-6 9 407 7.9899997e-05 1e-6 18 407 0.00015979999 1e-6 60 407 0.0017579 1e-6 82 407 7.9899997e-05 1e-6 83 407 7.9899997e-05 1e-6 84 407 7.9899997e-05 1e-6 108 407 7.9899997e-05 1e-6 114 407 0.00015979999 1e-6 126 407 7.9899997e-05 1e-6 134 407 0.0022372999 1e-6 137 407 0.0070315972 1e-6 138 407 0.0043946989 1e-6 139 407 0.0073511973 1e-6 141 407 0.0084697977 1e-6 143 407 0.0011985998 1e-6 149 407 7.9899997e-05 1e-6 150 407 0.00071909977 1e-6 151 407 0.00015979999 1e-6 154 407 0.0060726963 1e-6 160 407 0.0095884986 1e-6 161 407 0.00031959987 1e-6 163 407 0.0095884986 1e-6 165 407 0.012624897 1e-6 166 407 0.0061525963 1e-6 171 407 0.010387499 1e-6 173 407 0.00015979999 1e-6 176 407 0.00015979999 1e-6 177 407 0.00015979999 1e-6 178 407 7.9899997e-05 1e-6 180 407 7.9899997e-05 1e-6 182 407 0.0035158 1e-6 189 407 7.9899997e-05 1e-6 190 407 7.9899997e-05 1e-6 191 407 7.9899997e-05 1e-6 194 407 0.00015979999 1e-6 198 407 7.9899997e-05 1e-6 200 407 7.9899997e-05 1e-6 203 407 7.9899997e-05 1e-6 204 407 7.9899997e-05 1e-6 206 407 0.00063919998 1e-6 214 407 0.00023969999 1e-6 219 407 0.00023969999 1e-6 224 407 0.028046299 1e-6 233 407 0.016220499 1e-6 234 407 0.0042348988 1e-6 237 407 7.9899997e-05 1e-6 240 407 0.0023971 1e-6 241 407 0.0065520965 1e-6 242 407 0.0019975998 1e-6 252 407 0.0350779 1e-6 270 407 0.0027965999 1e-6 272 407 0.00063919998 1e-6 274 407 7.9899997e-05 1e-6 277 407 0.0087094977 1e-6 282 407 0.00055929995 1e-6 283 407 0.0021573999 1e-6 284 407 7.9899997e-05 1e-6 289 407 0.0041549988 1e-6 290 407 0.0015980999 1e-6 292 407 0.0003994999 1e-6 293 407 0.018058296 1e-6 295 407 0.00047939993 1e-6 296 407 0.0012784998 1e-6 297 407 0.00055929995 1e-6 302 407 0.00015979999 1e-6 303 407 7.9899997e-05 1e-6 304 407 0.0091889985 1e-6 305 407 0.00023969999 1e-6 306 407 0.0013583999 1e-6 307 407 0.0034359 1e-6 308 407 0.0042348988 1e-6 309 407 7.9899997e-05 1e-6 312 407 0.0075908974 1e-6 315 407 0.0019975998 1e-6 319 407 0.0088693984 1e-6 320 407 0.0029564998 1e-6 321 407 0.0023171999 1e-6 322 407 0.0035158 1e-6 324 407 0.00015979999 1e-6 326 407 0.0119057 1e-6 327 407 0.00023969999 1e-6 328 407 0.1043548 1e-6 331 407 0.00023969999 1e-6 340 407 0.0015181999 1e-6 350 407 0.0076707974 1e-6 351 407 0.0019176998 1e-6 352 407 0.0024769998 1e-6 354 407 0.015741099 1e-6 356 407 0.0023171999 1e-6 357 407 0.0043946989 1e-6 358 407 0.0032760999 1e-6 366 407 0.0036755998 1e-6 370 407 0.00071909977 1e-6 372 407 0.0020774999 1e-6 373 407 7.9899997e-05 1e-6 374 407 7.9899997e-05 1e-6 377 407 0.00031959987 1e-6 378 407 0.0003994999 1e-6 383 407 0.00015979999 1e-6 384 407 7.9899997e-05 1e-6 385 407 7.9899997e-05 1e-6 386 407 7.9899997e-05 1e-6 387 407 7.9899997e-05 1e-6 390 407 0.00023969999 1e-6 394 407 0.00095879985 1e-6 397 407 0.0003994999 1e-6 398 407 0.0034359 1e-6 401 407 7.9899997e-05 1e-6 402 407 0.0012784998 1e-6 406 407 7.9899997e-05 1e-6 407 407 0.0178186 1e-6 410 407 7.9899997e-05 1e-6 412 407 0.0020774999 1e-6 413 407 0.00031959987 1e-6 415 407 7.9899997e-05 1e-6 417 407 0.00047939993 1e-6 419 407 0.0027166998 1e-6 421 407 0.00015979999 1e-6 422 407 0.00015979999 1e-6 423 407 7.9899997e-05 1e-6 430 407 0.00023969999 1e-6 439 407 0.00015979999 1e-6 441 407 7.9899997e-05 1e-6 443 407 0.004794199 1e-6 444 407 0.0043946989 1e-6 445 407 0.0096683986 1e-6 446 407 0.00015979999 1e-6 447 407 0.0033559999 1e-6 450 407 0.0030363998 1e-6 452 407 0.0033559999 1e-6 453 407 0.00087889982 1e-6 454 407 0.00031959987 1e-6 455 407 0.046264499 1e-6 456 407 0.00047939993 1e-6 457 407 0.0015980999 1e-6 458 407 0.00063919998 1e-6 459 407 0.0007989998 1e-6 460 407 0.0015181999 1e-6 463 407 0.012624897 1e-6 464 407 0.00055929995 1e-6 465 407 0.0011985998 1e-6 467 407 0.0097482987 1e-6 468 407 0.0167799 1e-6 469 407 0.0063123964 1e-6 470 407 0.0069516972 1e-6 471 407 0.0039951988 1e-6 473 407 0.00015979999 1e-6 477 407 7.9899997e-05 1e-6 478 407 0.0011985998 1e-6 483 407 0.00071909977 1e-6 490 407 0.00055929995 1e-6 491 407 0.00063919998 1e-6 9 408 4.0399987e-05 1e-6 18 408 0.00012109999 1e-6 22 408 0.00044409977 1e-6 60 408 0.00072669983 1e-6 82 408 4.0399987e-05 1e-6 108 408 4.0399987e-05 1e-6 114 408 8.0699989e-05 1e-6 126 408 4.0399987e-05 1e-6 130 408 4.0399987e-05 1e-6 134 408 0.0025435998 1e-6 137 408 0.00012109999 1e-6 139 408 0.0010093998 1e-6 150 408 0.00048449985 1e-6 160 408 0.0046430975 1e-6 161 408 0.0022205999 1e-6 165 408 0.00044409977 1e-6 169 408 0.00016149999 1e-6 172 408 8.0699989e-05 1e-6 181 408 4.0399987e-05 1e-6 189 408 4.0399987e-05 1e-6 190 408 8.0699989e-05 1e-6 192 408 4.0399987e-05 1e-6 194 408 4.0399987e-05 1e-6 196 408 4.0399987e-05 1e-6 198 408 4.0399987e-05 1e-6 200 408 4.0399987e-05 1e-6 203 408 4.0399987e-05 1e-6 204 408 4.0399987e-05 1e-6 206 408 0.0003229999 1e-6 207 408 4.0399987e-05 1e-6 214 408 0.0019379999 1e-6 224 408 4.0399987e-05 1e-6 233 408 0.0047641993 1e-6 234 408 0.0018975998 1e-6 237 408 4.0399987e-05 1e-6 240 408 0.0056524985 1e-6 241 408 0.00072669983 1e-6 242 408 0.0014534998 1e-6 252 408 0.0039566979 1e-6 270 408 0.00044409977 1e-6 271 408 8.0699989e-05 1e-6 272 408 0.00040369993 1e-6 277 408 0.10352069 1e-6 278 408 4.0399987e-05 1e-6 282 408 0.066779673 1e-6 283 408 0.018895298 1e-6 284 408 0.00028259982 1e-6 286 408 8.0699989e-05 1e-6 289 408 0.0041181967 1e-6 290 408 4.0399987e-05 1e-6 292 408 0.0044815987 1e-6 293 408 0.0016553998 1e-6 294 408 0.00088819978 1e-6 295 408 0.00072669983 1e-6 296 408 0.0020994998 1e-6 298 408 0.0003229999 1e-6 299 408 0.0070655979 1e-6 307 408 0.0002422 1e-6 312 408 0.0058946982 1e-6 313 408 4.0399987e-05 1e-6 315 408 0.00048449985 1e-6 318 408 0.00012109999 1e-6 319 408 0.0061369985 1e-6 320 408 0.00020189999 1e-6 321 408 0.0015341998 1e-6 322 408 0.0028665999 1e-6 323 408 0.0039970987 1e-6 324 408 0.00016149999 1e-6 326 408 0.0073481984 1e-6 327 408 4.0399987e-05 1e-6 328 408 0.022932798 1e-6 331 408 0.00012109999 1e-6 332 408 0.00012109999 1e-6 338 408 0.00048449985 1e-6 339 408 0.0006459998 1e-6 340 408 0.0054101981 1e-6 341 408 8.0699989e-05 1e-6 343 408 4.0399987e-05 1e-6 347 408 4.0399987e-05 1e-6 349 408 0.0002422 1e-6 350 408 0.0035932998 1e-6 351 408 0.015301999 1e-6 352 408 0.0010497 1e-6 353 408 4.0399987e-05 1e-6 354 408 0.011627898 1e-6 355 408 4.0399987e-05 1e-6 356 408 0.00040369993 1e-6 357 408 8.0699989e-05 1e-6 358 408 0.0057331994 1e-6 359 408 4.0399987e-05 1e-6 366 408 0.0034721999 1e-6 371 408 0.014736798 1e-6 372 408 0.0031895998 1e-6 373 408 0.00016149999 1e-6 374 408 0.00016149999 1e-6 375 408 4.0399987e-05 1e-6 386 408 0.00040369993 1e-6 387 408 4.0399987e-05 1e-6 390 408 0.00044409977 1e-6 392 408 0.00028259982 1e-6 393 408 0.00036339997 1e-6 394 408 0.00036339997 1e-6 397 408 8.0699989e-05 1e-6 398 408 4.0399987e-05 1e-6 402 408 0.0002422 1e-6 404 408 0.0020994998 1e-6 405 408 0.0017764999 1e-6 408 408 0.13654715 1e-6 412 408 0.0027858999 1e-6 414 408 8.0699989e-05 1e-6 417 408 0.0003229999 1e-6 421 408 8.0699989e-05 1e-6 422 408 4.0399987e-05 1e-6 430 408 4.0399987e-05 1e-6 433 408 4.0399987e-05 1e-6 434 408 4.0399987e-05 1e-6 443 408 0.0060157999 1e-6 444 408 0.00080749998 1e-6 445 408 0.0055312999 1e-6 446 408 0.00044409977 1e-6 447 408 0.0018571999 1e-6 450 408 0.0020591 1e-6 452 408 0.0039162971 1e-6 453 408 0.0013323999 1e-6 454 408 0.00044409977 1e-6 455 408 0.029231299 1e-6 456 408 0.00020189999 1e-6 457 408 0.0041181967 1e-6 458 408 0.00036339997 1e-6 459 408 0.0026244 1e-6 460 408 0.00084789982 1e-6 463 408 0.005935099 1e-6 464 408 0.00036339997 1e-6 465 408 0.00072669983 1e-6 467 408 0.0075903982 1e-6 468 408 0.0018169 1e-6 469 408 0.0030280999 1e-6 470 408 0.0037145 1e-6 471 408 0.00028259982 1e-6 473 408 8.0699989e-05 1e-6 477 408 8.0699989e-05 1e-6 478 408 0.0007670999 1e-6 483 408 0.0014130999 1e-6 490 408 0.0003229999 1e-6 491 408 0.0015745999 1e-6 60 409 0.0054290965 1e-6 114 409 0.00017509999 1e-6 126 409 0.00017509999 1e-6 139 409 0.0014010998 1e-6 142 409 0.00017509999 1e-6 150 409 0.00017509999 1e-6 160 409 0.00017509999 1e-6 190 409 0.00017509999 1e-6 194 409 0.00017509999 1e-6 198 409 0.0024517998 1e-6 206 409 0.00052539981 1e-6 214 409 0.00017509999 1e-6 224 409 0.00017509999 1e-6 233 409 0.0028020998 1e-6 234 409 0.0019263998 1e-6 237 409 0.035726797 1e-6 240 409 0.0012258999 1e-6 241 409 0.0012258999 1e-6 272 409 0.0010507999 1e-6 277 409 0.062696993 1e-6 279 409 0.00017509999 1e-6 282 409 0.0054290965 1e-6 283 409 0.0099824965 1e-6 284 409 0.00070049986 1e-6 292 409 0.00017509999 1e-6 293 409 0.0017512999 1e-6 296 409 0.0082311966 1e-6 297 409 0.00017509999 1e-6 298 409 0.0010507999 1e-6 308 409 0.00017509999 1e-6 312 409 0.022591896 1e-6 313 409 0.00017509999 1e-6 315 409 0.010507897 1e-6 317 409 0.00017509999 1e-6 320 409 0.026269697 1e-6 321 409 0.0071803965 1e-6 322 409 0.0064798966 1e-6 326 409 0.0052538998 1e-6 328 409 0.0099824965 1e-6 330 409 0.012434296 1e-6 340 409 0.0036777998 1e-6 350 409 0.00017509999 1e-6 351 409 0.0036777998 1e-6 354 409 0.053415097 1e-6 356 409 0.00035029999 1e-6 357 409 0.00070049986 1e-6 358 409 0.0096321963 1e-6 372 409 0.00035029999 1e-6 385 409 0.0010507999 1e-6 386 409 0.00017509999 1e-6 395 409 0.00017509999 1e-6 397 409 0.00052539981 1e-6 398 409 0.0050787963 1e-6 402 409 0.0089316964 1e-6 409 409 0.15621716 1e-6 412 409 0.0085813999 1e-6 417 409 0.00052539981 1e-6 419 409 0.0012258999 1e-6 422 409 0.00017509999 1e-6 430 409 0.00017509999 1e-6 441 409 0.0031523998 1e-6 443 409 0.0024517998 1e-6 444 409 0.0010507999 1e-6 445 409 0.0047284998 1e-6 446 409 0.00017509999 1e-6 447 409 0.0057792999 1e-6 450 409 0.002627 1e-6 452 409 0.0036777998 1e-6 453 409 0.0017512999 1e-6 454 409 0.00052539981 1e-6 455 409 0.057267997 1e-6 456 409 0.00017509999 1e-6 457 409 0.0040279999 1e-6 458 409 0.00052539981 1e-6 459 409 0.00070049986 1e-6 460 409 0.0010507999 1e-6 463 409 0.010682996 1e-6 464 409 0.00035029999 1e-6 465 409 0.00070049986 1e-6 467 409 0.0070052966 1e-6 468 409 0.024693497 1e-6 469 409 0.0028020998 1e-6 470 409 0.0031523998 1e-6 471 409 0.00052539981 1e-6 473 409 0.00017509999 1e-6 477 409 0.00017509999 1e-6 478 409 0.0010507999 1e-6 483 409 0.00052539981 1e-6 490 409 0.00035029999 1e-6 491 409 0.00035029999 1e-6 60 410 0.00053639989 1e-6 114 410 7.6599987e-05 1e-6 130 410 7.6599987e-05 1e-6 134 410 0.0080453977 1e-6 139 410 0.0087349974 1e-6 149 410 0.0028349999 1e-6 150 410 7.6599987e-05 1e-6 151 410 0.0075089969 1e-6 154 410 0.00099609978 1e-6 156 410 0.00015319999 1e-6 160 410 0.045513798 1e-6 161 410 0.00061299978 1e-6 163 410 0.018925797 1e-6 164 410 0.0013025999 1e-6 165 410 0.0311087 1e-6 170 410 0.00061299978 1e-6 171 410 0.012642696 1e-6 173 410 0.0086582974 1e-6 176 410 0.009347897 1e-6 177 410 0.0026051998 1e-6 178 410 0.0033713998 1e-6 181 410 0.00030649989 1e-6 190 410 7.6599987e-05 1e-6 191 410 0.0055933967 1e-6 194 410 0.00015319999 1e-6 198 410 7.6599987e-05 1e-6 206 410 0.00015319999 1e-6 214 410 0.00015319999 1e-6 224 410 0.00045969989 1e-6 233 410 0.0026051998 1e-6 234 410 0.0012259998 1e-6 237 410 0.0064362995 1e-6 240 410 0.0022986999 1e-6 241 410 0.015630998 1e-6 252 410 0.0034479999 1e-6 274 410 0.0051336996 1e-6 277 410 0.029422998 1e-6 282 410 0.0025284998 1e-6 283 410 7.6599987e-05 1e-6 289 410 0.0060531981 1e-6 292 410 0.0016856999 1e-6 293 410 0.027737297 1e-6 295 410 0.0058998987 1e-6 296 410 0.00030649989 1e-6 302 410 0.010880399 1e-6 303 410 0.0036778999 1e-6 304 410 0.017852999 1e-6 305 410 7.6599987e-05 1e-6 306 410 0.061910998 1e-6 307 410 0.0012259998 1e-6 308 410 0.034096997 1e-6 312 410 0.006512899 1e-6 313 410 0.00045969989 1e-6 315 410 0.00030649989 1e-6 319 410 0.0064362995 1e-6 320 410 0.0019155999 1e-6 321 410 0.0033713998 1e-6 322 410 7.6599987e-05 1e-6 324 410 7.6599987e-05 1e-6 326 410 0.0028349999 1e-6 327 410 7.6599987e-05 1e-6 328 410 0.0008427999 1e-6 338 410 7.6599987e-05 1e-6 340 410 7.6599987e-05 1e-6 351 410 7.6599987e-05 1e-6 354 410 7.6599987e-05 1e-6 356 410 7.6599987e-05 1e-6 358 410 0.00015319999 1e-6 366 410 0.0046739988 1e-6 372 410 7.6599987e-05 1e-6 377 410 0.017929699 1e-6 378 410 0.024595797 1e-6 383 410 0.0081219971 1e-6 384 410 0.0036012998 1e-6 385 410 0.0047505982 1e-6 386 410 0.0031414998 1e-6 387 410 0.0009194999 1e-6 390 410 7.6599987e-05 1e-6 397 410 0.00022989999 1e-6 399 410 0.00030649989 1e-6 400 410 0.00022989999 1e-6 401 410 0.0067427978 1e-6 402 410 0.071105659 1e-6 407 410 7.6599987e-05 1e-6 410 410 0.0046739988 1e-6 412 410 0.0023752998 1e-6 417 410 0.00045969989 1e-6 421 410 7.6599987e-05 1e-6 422 410 0.00015319999 1e-6 439 410 0.0078920983 1e-6 441 410 0.0022986999 1e-6 443 410 0.012412798 1e-6 444 410 0.0024518999 1e-6 445 410 0.011110298 1e-6 446 410 0.00038309977 1e-6 447 410 0.0032180999 1e-6 450 410 0.0019155999 1e-6 452 410 0.0024518999 1e-6 453 410 0.0012259998 1e-6 454 410 0.00022989999 1e-6 455 410 0.068883598 1e-6 456 410 0.00015319999 1e-6 457 410 0.0040609986 1e-6 458 410 0.00061299978 1e-6 459 410 0.00061299978 1e-6 460 410 0.00099609978 1e-6 463 410 0.0086582974 1e-6 464 410 0.00076619978 1e-6 465 410 0.0006895999 1e-6 467 410 0.0045972988 1e-6 468 410 0.0037544998 1e-6 469 410 0.0009194999 1e-6 470 410 0.0009194999 1e-6 471 410 0.0013025999 1e-6 477 410 7.6599987e-05 1e-6 478 410 0.0009194999 1e-6 483 410 0.00015319999 1e-6 490 410 0.00015319999 1e-6 491 410 0.00053639989 1e-6 9 411 3.119999e-05 1e-6 18 411 6.2299994e-05 1e-6 60 411 0.00052969996 1e-6 82 411 3.119999e-05 1e-6 83 411 3.119999e-05 1e-6 84 411 3.119999e-05 1e-6 108 411 3.119999e-05 1e-6 113 411 6.2299994e-05 1e-6 114 411 9.3499999e-05 1e-6 126 411 3.119999e-05 1e-6 134 411 0.026487198 1e-6 135 411 0.00037389994 1e-6 139 411 0.008569397 1e-6 149 411 0.0026798998 1e-6 150 411 0.00049859984 1e-6 151 411 0.0019319998 1e-6 159 411 0.00028049992 1e-6 160 411 0.065937459 1e-6 161 411 0.0013398998 1e-6 163 411 0.015829999 1e-6 164 411 0.013087798 1e-6 165 411 0.041787397 1e-6 170 411 0.0044248998 1e-6 171 411 0.0099092983 1e-6 173 411 0.0086004995 1e-6 176 411 0.0064191967 1e-6 177 411 0.0027109999 1e-6 178 411 0.0031784999 1e-6 182 411 0.0029292 1e-6 183 411 0.00012459999 1e-6 184 411 0.0017761998 1e-6 190 411 6.2299994e-05 1e-6 191 411 0.0012775999 1e-6 192 411 0.00040509994 1e-6 194 411 3.119999e-05 1e-6 196 411 3.119999e-05 1e-6 200 411 3.119999e-05 1e-6 203 411 3.119999e-05 1e-6 204 411 3.119999e-05 1e-6 206 411 6.2299994e-05 1e-6 207 411 3.119999e-05 1e-6 214 411 0.00031159981 1e-6 219 411 0.00056089996 1e-6 223 411 0.00024929992 1e-6 229 411 3.119999e-05 1e-6 230 411 0.00071669999 1e-6 233 411 0.0047053993 1e-6 234 411 0.00087249978 1e-6 236 411 0.0025240998 1e-6 237 411 0.0096288994 1e-6 240 411 0.00059209997 1e-6 241 411 0.008507099 1e-6 252 411 0.00049859984 1e-6 259 411 0.0020877998 1e-6 268 411 0.0059517995 1e-6 270 411 9.3499999e-05 1e-6 271 411 0.0023993999 1e-6 272 411 0.00040509994 1e-6 274 411 0.0032718999 1e-6 277 411 0.025832798 1e-6 279 411 0.0020877998 1e-6 282 411 0.0017761998 1e-6 283 411 3.119999e-05 1e-6 285 411 6.2299994e-05 1e-6 287 411 0.00040509994 1e-6 289 411 0.0030226998 1e-6 292 411 0.0025863999 1e-6 293 411 0.034682598 1e-6 294 411 0.00012459999 1e-6 295 411 0.0073229 1e-6 296 411 0.0014334 1e-6 302 411 0.0097534992 1e-6 303 411 0.010220896 1e-6 304 411 9.3499999e-05 1e-6 306 411 0.014116097 1e-6 308 411 0.0037393998 1e-6 312 411 0.0017138999 1e-6 317 411 9.3499999e-05 1e-6 318 411 3.119999e-05 1e-6 319 411 0.0051415972 1e-6 320 411 0.0014646 1e-6 321 411 0.00090369978 1e-6 324 411 0.00084139989 1e-6 326 411 0.0012775999 1e-6 337 411 3.119999e-05 1e-6 339 411 0.00015579999 1e-6 340 411 9.3499999e-05 1e-6 341 411 0.0015892 1e-6 343 411 3.119999e-05 1e-6 346 411 0.00084139989 1e-6 350 411 0.00056089996 1e-6 356 411 9.3499999e-05 1e-6 358 411 0.00015579999 1e-6 366 411 0.085382164 1e-6 369 411 0.0018384999 1e-6 377 411 0.013710998 1e-6 378 411 0.020410698 1e-6 379 411 0.0013398998 1e-6 380 411 0.0017449998 1e-6 383 411 0.0091613978 1e-6 384 411 6.2299994e-05 1e-6 385 411 0.0065438971 1e-6 386 411 0.0032408 1e-6 387 411 3.119999e-05 1e-6 398 411 0.00062319986 1e-6 401 411 9.3499999e-05 1e-6 402 411 0.049079198 1e-6 410 411 3.119999e-05 1e-6 411 411 0.0019942999 1e-6 412 411 0.0017138999 1e-6 415 411 0.00024929992 1e-6 417 411 0.00034279982 1e-6 419 411 0.00084139989 1e-6 421 411 0.00015579999 1e-6 422 411 3.119999e-05 1e-6 423 411 3.119999e-05 1e-6 430 411 3.119999e-05 1e-6 431 411 3.119999e-05 1e-6 433 411 3.119999e-05 1e-6 434 411 3.119999e-05 1e-6 438 411 6.2299994e-05 1e-6 439 411 0.0010282998 1e-6 441 411 0.00099719991 1e-6 443 411 0.014583498 1e-6 444 411 0.0010905999 1e-6 445 411 0.010439098 1e-6 446 411 0.00068559987 1e-6 447 411 0.0015580999 1e-6 450 411 0.0016204 1e-6 452 411 0.0016204 1e-6 453 411 0.00099719991 1e-6 454 411 0.00021809999 1e-6 455 411 0.067994058 1e-6 456 411 0.00024929992 1e-6 457 411 0.0042378977 1e-6 458 411 0.00028049992 1e-6 459 411 0.00059209997 1e-6 460 411 0.00046739983 1e-6 463 411 0.0036146999 1e-6 464 411 0.0019007998 1e-6 465 411 0.00059209997 1e-6 467 411 0.0033030999 1e-6 468 411 0.0029602998 1e-6 469 411 0.0027733999 1e-6 470 411 0.003085 1e-6 471 411 0.00087249978 1e-6 473 411 6.2299994e-05 1e-6 478 411 0.00074789999 1e-6 483 411 0.00021809999 1e-6 489 411 3.119999e-05 1e-6 490 411 0.00024929992 1e-6 491 411 9.3499999e-05 1e-6 60 412 0.0007540998 1e-6 114 412 0.0001257 1e-6 126 412 0.0001257 1e-6 130 412 0.0007540998 1e-6 131 412 0.0001257 1e-6 132 412 0.0001257 1e-6 134 412 0.00037699984 1e-6 137 412 0.0001257 1e-6 138 412 0.0001257 1e-6 139 412 0.0012567998 1e-6 141 412 0.0001257 1e-6 149 412 0.0001257 1e-6 151 412 0.00037699984 1e-6 152 412 0.0027649 1e-6 154 412 0.0001257 1e-6 158 412 0.0001257 1e-6 160 412 0.0080431998 1e-6 161 412 0.0001257 1e-6 163 412 0.0012567998 1e-6 164 412 0.0001257 1e-6 165 412 0.0030161999 1e-6 166 412 0.0001257 1e-6 171 412 0.011562098 1e-6 173 412 0.00050269999 1e-6 176 412 0.00050269999 1e-6 177 412 0.0011310999 1e-6 178 412 0.0018850998 1e-6 182 412 0.0001257 1e-6 188 412 0.0001257 1e-6 190 412 0.0001257 1e-6 191 412 0.0016337999 1e-6 194 412 0.0001257 1e-6 198 412 0.0012567998 1e-6 206 412 0.00037699984 1e-6 214 412 0.0001257 1e-6 224 412 0.0011310999 1e-6 233 412 0.0054039992 1e-6 234 412 0.0018850998 1e-6 237 412 0.033052698 1e-6 240 412 0.0021364999 1e-6 241 412 0.0090485997 1e-6 242 412 0.0007540998 1e-6 252 412 0.00087969983 1e-6 274 412 0.00025139982 1e-6 277 412 0.12379038 1e-6 282 412 0.0026391998 1e-6 283 412 0.0036445998 1e-6 284 412 0.0006283999 1e-6 285 412 0.0001257 1e-6 289 412 0.0012567998 1e-6 292 412 0.0001257 1e-6 293 412 0.035440497 1e-6 295 412 0.00037699984 1e-6 296 412 0.0015081 1e-6 297 412 0.00037699984 1e-6 298 412 0.0023877998 1e-6 299 412 0.0001257 1e-6 302 412 0.0006283999 1e-6 303 412 0.0020107999 1e-6 304 412 0.0036445998 1e-6 306 412 0.0064094998 1e-6 307 412 0.00025139982 1e-6 308 412 0.018599998 1e-6 312 412 0.0086715966 1e-6 313 412 0.0001257 1e-6 315 412 0.013698597 1e-6 317 412 0.00050269999 1e-6 319 412 0.0006283999 1e-6 320 412 0.0042729974 1e-6 321 412 0.0062837973 1e-6 322 412 0.0090485997 1e-6 326 412 0.013949998 1e-6 328 412 0.047756698 1e-6 329 412 0.00087969983 1e-6 330 412 0.0033932 1e-6 337 412 0.00025139982 1e-6 338 412 0.0001257 1e-6 340 412 0.0031418998 1e-6 350 412 0.00087969983 1e-6 351 412 0.0059066974 1e-6 354 412 0.0057810992 1e-6 356 412 0.0001257 1e-6 357 412 0.00037699984 1e-6 358 412 0.0027649 1e-6 366 412 0.00037699984 1e-6 372 412 0.0012567998 1e-6 377 412 0.0035188999 1e-6 378 412 0.0037703 1e-6 383 412 0.00050269999 1e-6 384 412 0.0007540998 1e-6 385 412 0.0011310999 1e-6 386 412 0.0030161999 1e-6 393 412 0.0028904998 1e-6 395 412 0.00025139982 1e-6 397 412 0.00037699984 1e-6 398 412 0.00037699984 1e-6 399 412 0.0001257 1e-6 401 412 0.00050269999 1e-6 402 412 0.068744481 1e-6 407 412 0.00037699984 1e-6 408 412 0.0001257 1e-6 409 412 0.0090485997 1e-6 410 412 0.00025139982 1e-6 412 412 0.030664798 1e-6 417 412 0.00025139982 1e-6 419 412 0.0001257 1e-6 421 412 0.00025139982 1e-6 428 412 0.00037699984 1e-6 430 412 0.00025139982 1e-6 437 412 0.0001257 1e-6 439 412 0.0016337999 1e-6 441 412 0.00037699984 1e-6 442 412 0.0001257 1e-6 443 412 0.0072891973 1e-6 444 412 0.00050269999 1e-6 445 412 0.0082945973 1e-6 446 412 0.0001257 1e-6 447 412 0.0015081 1e-6 450 412 0.0026391998 1e-6 452 412 0.0032676 1e-6 453 412 0.0017594998 1e-6 454 412 0.00025139982 1e-6 455 412 0.06736207 1e-6 457 412 0.004524298 1e-6 458 412 0.0007540998 1e-6 459 412 0.00050269999 1e-6 460 412 0.0007540998 1e-6 463 412 0.0064094998 1e-6 464 412 0.00025139982 1e-6 465 412 0.0006283999 1e-6 467 412 0.0071634986 1e-6 468 412 0.0060323998 1e-6 469 412 0.0031418998 1e-6 470 412 0.0035188999 1e-6 471 412 0.0006283999 1e-6 473 412 0.0001257 1e-6 477 412 0.0001257 1e-6 478 412 0.0007540998 1e-6 483 412 0.00037699984 1e-6 490 412 0.00025139982 1e-6 491 412 0.0016337999 1e-6 9 413 8.6699991e-05 1e-6 18 413 0.0001733 1e-6 60 413 0.0027731999 1e-6 77 413 0.00034669996 1e-6 82 413 8.6699991e-05 1e-6 83 413 8.6699991e-05 1e-6 84 413 8.6699991e-05 1e-6 108 413 8.6699991e-05 1e-6 113 413 0.0001733 1e-6 114 413 0.00025999988 1e-6 126 413 8.6699991e-05 1e-6 130 413 8.6699991e-05 1e-6 150 413 0.0001733 1e-6 156 413 8.6699991e-05 1e-6 160 413 0.0013865998 1e-6 161 413 8.6699991e-05 1e-6 165 413 0.0064996965 1e-6 171 413 0.00069329981 1e-6 172 413 8.6699991e-05 1e-6 181 413 8.6699991e-05 1e-6 189 413 0.0001733 1e-6 190 413 8.6699991e-05 1e-6 192 413 0.0001733 1e-6 194 413 8.6699991e-05 1e-6 196 413 8.6699991e-05 1e-6 198 413 0.0025998999 1e-6 200 413 8.6699991e-05 1e-6 203 413 8.6699991e-05 1e-6 204 413 0.0001733 1e-6 206 413 0.00051999977 1e-6 207 413 8.6699991e-05 1e-6 214 413 0.00077999989 1e-6 223 413 8.6699991e-05 1e-6 224 413 0.0018198998 1e-6 228 413 0.00086659985 1e-6 233 413 0.00077999989 1e-6 234 413 0.0044197999 1e-6 237 413 0.00051999977 1e-6 240 413 0.0042464994 1e-6 241 413 0.012306098 1e-6 252 413 0.0037264999 1e-6 253 413 0.00034669996 1e-6 270 413 8.6699991e-05 1e-6 277 413 0.013952699 1e-6 279 413 8.6699991e-05 1e-6 282 413 0.0050263964 1e-6 283 413 0.00086659985 1e-6 284 413 0.00060659996 1e-6 285 413 8.6699991e-05 1e-6 286 413 0.00025999988 1e-6 290 413 0.00034669996 1e-6 292 413 0.0021666 1e-6 293 413 0.0045930967 1e-6 294 413 0.00069329981 1e-6 295 413 0.0021666 1e-6 296 413 0.0042464994 1e-6 297 413 0.0012132998 1e-6 298 413 0.00060659996 1e-6 299 413 0.00051999977 1e-6 300 413 8.6699991e-05 1e-6 305 413 8.6699991e-05 1e-6 308 413 0.011179499 1e-6 312 413 0.010139499 1e-6 315 413 0.006672997 1e-6 317 413 0.00025999988 1e-6 318 413 0.00060659996 1e-6 319 413 0.00034669996 1e-6 320 413 0.0040730983 1e-6 321 413 0.00025999988 1e-6 322 413 0.0054596998 1e-6 325 413 8.6699991e-05 1e-6 326 413 0.006672997 1e-6 328 413 0.00025999988 1e-6 340 413 0.0099661984 1e-6 341 413 8.6699991e-05 1e-6 349 413 8.6699991e-05 1e-6 350 413 8.6699991e-05 1e-6 351 413 0.0030331998 1e-6 353 413 0.0025998999 1e-6 354 413 0.00025999988 1e-6 358 413 0.011959396 1e-6 359 413 0.00043329992 1e-6 369 413 0.012219399 1e-6 370 413 0.0001733 1e-6 371 413 0.0085795969 1e-6 372 413 0.0061529987 1e-6 385 413 0.00069329981 1e-6 386 413 0.007886298 1e-6 387 413 0.00025999988 1e-6 390 413 0.0077995993 1e-6 391 413 0.0015598999 1e-6 392 413 0.020625699 1e-6 393 413 0.041251399 1e-6 396 413 0.0033797999 1e-6 397 413 0.0001733 1e-6 402 413 0.00025999988 1e-6 403 413 0.0001733 1e-6 404 413 0.0012132998 1e-6 405 413 0.0061529987 1e-6 408 413 0.0011266 1e-6 413 413 0.016119197 1e-6 414 413 0.00025999988 1e-6 417 413 0.00034669996 1e-6 419 413 0.011006199 1e-6 420 413 0.00095329992 1e-6 421 413 8.6699991e-05 1e-6 422 413 0.0032931999 1e-6 423 413 8.6699991e-05 1e-6 424 413 8.6699991e-05 1e-6 430 413 8.6699991e-05 1e-6 431 413 8.6699991e-05 1e-6 433 413 8.6699991e-05 1e-6 434 413 8.6699991e-05 1e-6 435 413 8.6699991e-05 1e-6 438 413 0.0030331998 1e-6 443 413 0.0012998998 1e-6 444 413 0.0019931998 1e-6 445 413 0.0060663968 1e-6 446 413 8.6699991e-05 1e-6 447 413 0.0048530996 1e-6 448 413 8.6699991e-05 1e-6 450 413 0.0065863989 1e-6 452 413 0.0063263997 1e-6 453 413 0.0012998998 1e-6 454 413 0.00043329992 1e-6 455 413 0.025305498 1e-6 456 413 0.0012132998 1e-6 457 413 0.0032064999 1e-6 458 413 0.0011266 1e-6 459 413 0.0036397998 1e-6 460 413 0.0014732999 1e-6 463 413 0.018805798 1e-6 464 413 0.0018198998 1e-6 465 413 0.0025131998 1e-6 467 413 0.017332498 1e-6 468 413 0.0058930963 1e-6 469 413 0.010486197 1e-6 470 413 0.013086099 1e-6 471 413 0.0038131999 1e-6 472 413 0.0016466 1e-6 473 413 0.0001733 1e-6 477 413 8.6699991e-05 1e-6 478 413 0.0017332998 1e-6 483 413 0.0027731999 1e-6 489 413 0.0001733 1e-6 490 413 0.0012998998 1e-6 491 413 0.0025998999 1e-6 9 414 5.6499994e-05 1e-6 18 414 0.00011299999 1e-6 60 414 0.0029368999 1e-6 77 414 0.0003388999 1e-6 82 414 0.00016939999 1e-6 83 414 5.6499994e-05 1e-6 84 414 5.6499994e-05 1e-6 108 414 0.00011299999 1e-6 113 414 0.00011299999 1e-6 114 414 0.00028239982 1e-6 126 414 0.00022589999 1e-6 127 414 5.6499994e-05 1e-6 130 414 0.00011299999 1e-6 131 414 0.00011299999 1e-6 138 414 5.6499994e-05 1e-6 139 414 5.6499994e-05 1e-6 142 414 5.6499994e-05 1e-6 150 414 0.00073419977 1e-6 160 414 0.001186 1e-6 165 414 0.00022589999 1e-6 172 414 5.6499994e-05 1e-6 187 414 0.00011299999 1e-6 189 414 0.00022589999 1e-6 190 414 0.00011299999 1e-6 194 414 0.00022589999 1e-6 197 414 5.6499994e-05 1e-6 198 414 0.0045181997 1e-6 200 414 0.00011299999 1e-6 201 414 5.6499994e-05 1e-6 203 414 0.00011299999 1e-6 204 414 0.0030497999 1e-6 206 414 0.00028239982 1e-6 207 414 5.6499994e-05 1e-6 214 414 0.00045179995 1e-6 220 414 5.6499994e-05 1e-6 223 414 0.00011299999 1e-6 224 414 0.0057607964 1e-6 233 414 0.00011299999 1e-6 234 414 0.0051394999 1e-6 237 414 0.00056479988 1e-6 240 414 0.0028239 1e-6 241 414 0.0076244995 1e-6 242 414 0.00011299999 1e-6 252 414 0.0055347979 1e-6 253 414 5.6499994e-05 1e-6 270 414 0.00011299999 1e-6 271 414 0.00028239982 1e-6 272 414 0.00011299999 1e-6 277 414 0.018637698 1e-6 282 414 0.010787297 1e-6 283 414 0.0012424998 1e-6 284 414 0.0005082998 1e-6 285 414 0.00022589999 1e-6 286 414 0.00056479988 1e-6 289 414 0.00011299999 1e-6 290 414 0.00039529987 1e-6 292 414 0.0085846968 1e-6 293 414 0.0031627999 1e-6 294 414 0.0045181997 1e-6 295 414 0.0027673999 1e-6 296 414 0.012029797 1e-6 297 414 0.011408597 1e-6 298 414 0.0022025998 1e-6 299 414 5.6499994e-05 1e-6 300 414 5.6499994e-05 1e-6 307 414 0.00022589999 1e-6 308 414 0.0016943 1e-6 312 414 0.012820497 1e-6 313 414 0.00039529987 1e-6 315 414 0.0081327967 1e-6 317 414 5.6499994e-05 1e-6 318 414 5.6499994e-05 1e-6 319 414 5.6499994e-05 1e-6 320 414 0.0068337992 1e-6 321 414 0.00016939999 1e-6 322 414 0.0053088963 1e-6 324 414 0.00039529987 1e-6 325 414 0.00011299999 1e-6 326 414 0.0056477971 1e-6 328 414 5.6499994e-05 1e-6 339 414 5.6499994e-05 1e-6 340 414 0.0048570968 1e-6 341 414 5.6499994e-05 1e-6 343 414 0.00016939999 1e-6 344 414 5.6499994e-05 1e-6 348 414 5.6499994e-05 1e-6 349 414 0.00016939999 1e-6 350 414 0.00016939999 1e-6 351 414 0.0011296 1e-6 353 414 0.00011299999 1e-6 354 414 0.00079069985 1e-6 356 414 5.6499994e-05 1e-6 357 414 0.00022589999 1e-6 358 414 0.012538098 1e-6 359 414 0.0019202998 1e-6 369 414 0.025923397 1e-6 370 414 0.002598 1e-6 371 414 0.0059301965 1e-6 372 414 0.0081892982 1e-6 373 414 0.0018072999 1e-6 376 414 0.00067769992 1e-6 384 414 5.6499994e-05 1e-6 386 414 0.0081892982 1e-6 387 414 0.00011299999 1e-6 389 414 0.00011299999 1e-6 390 414 0.0010730999 1e-6 391 414 0.0014119998 1e-6 392 414 0.0075115971 1e-6 393 414 0.030215699 1e-6 394 414 5.6499994e-05 1e-6 395 414 0.00062129996 1e-6 396 414 0.00096009998 1e-6 397 414 0.00022589999 1e-6 402 414 0.0020897 1e-6 404 414 0.00016939999 1e-6 405 414 0.0003388999 1e-6 413 414 0.0027673999 1e-6 414 414 0.0079633966 1e-6 415 414 0.00011299999 1e-6 416 414 5.6499994e-05 1e-6 417 414 0.00056479988 1e-6 419 414 0.0024285999 1e-6 420 414 0.00067769992 1e-6 421 414 5.6499994e-05 1e-6 422 414 0.0022590999 1e-6 423 414 5.6499994e-05 1e-6 424 414 5.6499994e-05 1e-6 425 414 5.6499994e-05 1e-6 430 414 0.00011299999 1e-6 431 414 5.6499994e-05 1e-6 433 414 5.6499994e-05 1e-6 434 414 5.6499994e-05 1e-6 435 414 5.6499994e-05 1e-6 438 414 5.6499994e-05 1e-6 441 414 5.6499994e-05 1e-6 442 414 0.00011299999 1e-6 443 414 0.0012989999 1e-6 444 414 0.00073419977 1e-6 445 414 0.0059301965 1e-6 446 414 0.00011299999 1e-6 447 414 0.0018072999 1e-6 448 414 5.6499994e-05 1e-6 450 414 0.0070032999 1e-6 452 414 0.0058736987 1e-6 453 414 0.0011296 1e-6 454 414 0.0003388999 1e-6 455 414 0.0194849 1e-6 456 414 0.0010165998 1e-6 457 414 0.0032756999 1e-6 458 414 0.0016943 1e-6 459 414 0.0012989999 1e-6 460 414 0.0014683998 1e-6 463 414 0.011126198 1e-6 464 414 0.0009035999 1e-6 465 414 0.0021461998 1e-6 467 414 0.018468298 1e-6 468 414 0.0058736987 1e-6 469 414 0.011747397 1e-6 470 414 0.013215899 1e-6 471 414 0.0049700998 1e-6 472 414 5.6499994e-05 1e-6 473 414 0.0003388999 1e-6 477 414 0.00016939999 1e-6 478 414 0.0018072999 1e-6 483 414 0.0030497999 1e-6 489 414 0.00016939999 1e-6 490 414 0.0012989999 1e-6 491 414 0.0096012987 1e-6 21 415 0.00058899983 1e-6 60 415 0.0026505999 1e-6 108 415 0.00014729999 1e-6 114 415 0.00014729999 1e-6 126 415 0.00014729999 1e-6 150 415 0.00014729999 1e-6 160 415 0.0010307999 1e-6 175 415 0.0002944998 1e-6 189 415 0.0002944998 1e-6 190 415 0.00014729999 1e-6 192 415 0.00014729999 1e-6 193 415 0.0007362999 1e-6 194 415 0.00014729999 1e-6 196 415 0.00014729999 1e-6 198 415 0.0069208965 1e-6 200 415 0.00014729999 1e-6 203 415 0.00014729999 1e-6 204 415 0.0016198 1e-6 206 415 0.00014729999 1e-6 207 415 0.00014729999 1e-6 224 415 0.010013297 1e-6 233 415 0.00014729999 1e-6 234 415 0.0044175982 1e-6 237 415 0.0007362999 1e-6 240 415 0.0044175982 1e-6 241 415 0.019731998 1e-6 252 415 0.0014724999 1e-6 262 415 0.00044179987 1e-6 270 415 0.0002944998 1e-6 271 415 0.00014729999 1e-6 272 415 0.00014729999 1e-6 277 415 0.015608899 1e-6 282 415 0.0054483972 1e-6 283 415 0.0007362999 1e-6 284 415 0.00058899983 1e-6 286 415 0.00058899983 1e-6 290 415 0.00044179987 1e-6 292 415 0.024296898 1e-6 293 415 0.0051538981 1e-6 294 415 0.0016198 1e-6 295 415 0.0076571964 1e-6 296 415 0.0085406974 1e-6 297 415 0.0050065964 1e-6 298 415 0.00044179987 1e-6 308 415 0.0002944998 1e-6 312 415 0.019879296 1e-6 313 415 0.00014729999 1e-6 315 415 0.0098659992 1e-6 317 415 0.00014729999 1e-6 318 415 0.00014729999 1e-6 320 415 0.0067736991 1e-6 322 415 0.012222096 1e-6 324 415 0.0007362999 1e-6 326 415 0.0014724999 1e-6 340 415 0.0070681982 1e-6 351 415 0.0002944998 1e-6 352 415 0.00014729999 1e-6 357 415 0.00014729999 1e-6 358 415 0.0058900975 1e-6 366 415 0.00088349986 1e-6 369 415 0.017375898 1e-6 370 415 0.0016198 1e-6 371 415 0.0044175982 1e-6 372 415 0.0041230991 1e-6 373 415 0.0042703971 1e-6 376 415 0.0007362999 1e-6 386 415 0.016786899 1e-6 387 415 0.0002944998 1e-6 390 415 0.00014729999 1e-6 391 415 0.00088349986 1e-6 392 415 0.0032396 1e-6 393 415 0.010749497 1e-6 402 415 0.0011779999 1e-6 408 415 0.0002944998 1e-6 414 415 0.010896798 1e-6 415 415 0.0060373992 1e-6 417 415 0.00058899983 1e-6 419 415 0.0013253 1e-6 421 415 0.00014729999 1e-6 422 415 0.0033867999 1e-6 430 415 0.00014729999 1e-6 433 415 0.00014729999 1e-6 434 415 0.00014729999 1e-6 441 415 0.0042703971 1e-6 442 415 0.0051538981 1e-6 443 415 0.0016198 1e-6 444 415 0.0025032999 1e-6 445 415 0.010749497 1e-6 446 415 0.0002944998 1e-6 447 415 0.0082461983 1e-6 450 415 0.0073626973 1e-6 452 415 0.0050065964 1e-6 453 415 0.0013253 1e-6 454 415 0.00058899983 1e-6 455 415 0.024885897 1e-6 456 415 0.00088349986 1e-6 457 415 0.0030922999 1e-6 458 415 0.0013253 1e-6 459 415 0.0013253 1e-6 460 415 0.0014724999 1e-6 463 415 0.010749497 1e-6 464 415 0.00088349986 1e-6 465 415 0.0025032999 1e-6 467 415 0.015903398 1e-6 468 415 0.0075098984 1e-6 469 415 0.0070681982 1e-6 470 415 0.0076571964 1e-6 471 415 0.0044175982 1e-6 473 415 0.00014729999 1e-6 478 415 0.0019142998 1e-6 483 415 0.0032396 1e-6 489 415 0.00014729999 1e-6 490 415 0.0007362999 1e-6 491 415 0.0013253 1e-6 6 416 9.8599994e-05 1e-6 9 416 9.8599994e-05 1e-6 60 416 0.0020699999 1e-6 82 416 0.00049289991 1e-6 102 416 0.00019709999 1e-6 104 416 9.8599994e-05 1e-6 107 416 9.8599994e-05 1e-6 108 416 9.8599994e-05 1e-6 114 416 0.00019709999 1e-6 117 416 0.00019709999 1e-6 120 416 9.8599994e-05 1e-6 126 416 9.8599994e-05 1e-6 130 416 0.00098569994 1e-6 131 416 0.00039429986 1e-6 135 416 9.8599994e-05 1e-6 137 416 9.8599994e-05 1e-6 138 416 0.00019709999 1e-6 139 416 0.0013799998 1e-6 142 416 0.00019709999 1e-6 150 416 0.0027599998 1e-6 159 416 0.0020699999 1e-6 160 416 0.0029570998 1e-6 161 416 9.8599994e-05 1e-6 165 416 0.0056184977 1e-6 170 416 0.0030556999 1e-6 171 416 9.8599994e-05 1e-6 178 416 9.8599994e-05 1e-6 184 416 9.8599994e-05 1e-6 187 416 0.00029569981 1e-6 188 416 9.8599994e-05 1e-6 189 416 9.8599994e-05 1e-6 190 416 9.8599994e-05 1e-6 192 416 0.0006899999 1e-6 193 416 0.0030556999 1e-6 194 416 0.00029569981 1e-6 198 416 0.0068013966 1e-6 200 416 9.8599994e-05 1e-6 203 416 9.8599994e-05 1e-6 204 416 0.00019709999 1e-6 206 416 0.00039429986 1e-6 207 416 9.8599994e-05 1e-6 214 416 0.0059141964 1e-6 217 416 0.00019709999 1e-6 223 416 0.00049289991 1e-6 224 416 0.0006899999 1e-6 228 416 0.0048299991 1e-6 229 416 0.00019709999 1e-6 233 416 0.0045342967 1e-6 234 416 0.0041399971 1e-6 237 416 0.00059139985 1e-6 240 416 0.011631299 1e-6 241 416 0.023361299 1e-6 242 416 0.0030556999 1e-6 252 416 0.0067027994 1e-6 253 416 0.0059141964 1e-6 268 416 9.8599994e-05 1e-6 270 416 0.00019709999 1e-6 271 416 9.8599994e-05 1e-6 272 416 0.00078859995 1e-6 277 416 0.019221298 1e-6 279 416 9.8599994e-05 1e-6 282 416 0.0011827999 1e-6 283 416 0.00019709999 1e-6 284 416 9.8599994e-05 1e-6 286 416 0.018629897 1e-6 290 416 0.0189256 1e-6 292 416 0.00019709999 1e-6 293 416 0.0013799998 1e-6 294 416 0.00039429986 1e-6 295 416 0.00019709999 1e-6 296 416 0.00019709999 1e-6 297 416 0.00019709999 1e-6 300 416 0.00049289991 1e-6 307 416 0.00019709999 1e-6 308 416 9.8599994e-05 1e-6 312 416 0.015179899 1e-6 314 416 0.00019709999 1e-6 315 416 0.014588498 1e-6 317 416 0.0029570998 1e-6 319 416 0.0089698993 1e-6 320 416 0.0087727979 1e-6 321 416 0.0094627999 1e-6 322 416 0.00049289991 1e-6 324 416 0.00029569981 1e-6 325 416 0.013405599 1e-6 326 416 0.0045342967 1e-6 328 416 9.8599994e-05 1e-6 340 416 0.006407097 1e-6 345 416 0.00019709999 1e-6 350 416 0.00039429986 1e-6 351 416 0.00019709999 1e-6 352 416 0.00019709999 1e-6 354 416 0.00039429986 1e-6 356 416 9.8599994e-05 1e-6 358 416 0.0028585999 1e-6 368 416 9.8599994e-05 1e-6 369 416 0.00049289991 1e-6 372 416 0.00098569994 1e-6 375 416 9.8599994e-05 1e-6 386 416 0.00039429986 1e-6 387 416 9.8599994e-05 1e-6 391 416 0.00019709999 1e-6 392 416 0.00019709999 1e-6 393 416 0.0010843 1e-6 395 416 9.8599994e-05 1e-6 396 416 0.0027599998 1e-6 397 416 9.8599994e-05 1e-6 398 416 9.8599994e-05 1e-6 402 416 0.00029569981 1e-6 405 416 9.8599994e-05 1e-6 413 416 9.8599994e-05 1e-6 414 416 0.0072941966 1e-6 416 416 0.0042384975 1e-6 417 416 0.0006899999 1e-6 419 416 9.8599994e-05 1e-6 421 416 0.00098569994 1e-6 422 416 0.0027599998 1e-6 430 416 9.8599994e-05 1e-6 433 416 9.8599994e-05 1e-6 434 416 9.8599994e-05 1e-6 441 416 9.8599994e-05 1e-6 442 416 0.00029569981 1e-6 443 416 0.0023657 1e-6 444 416 0.0040413998 1e-6 445 416 0.007589899 1e-6 446 416 0.00019709999 1e-6 447 416 0.0041399971 1e-6 448 416 9.8599994e-05 1e-6 450 416 0.0068013966 1e-6 452 416 0.0052241981 1e-6 453 416 0.0015770998 1e-6 454 416 0.0036470999 1e-6 455 416 0.028191198 1e-6 456 416 0.00088709989 1e-6 457 416 0.0042384975 1e-6 458 416 0.0010843 1e-6 459 416 0.00088709989 1e-6 460 416 0.0014785999 1e-6 463 416 0.015475597 1e-6 464 416 0.0051256977 1e-6 465 416 0.0019713999 1e-6 467 416 0.016362697 1e-6 468 416 0.014391299 1e-6 469 416 0.0088713989 1e-6 470 416 0.0098570995 1e-6 471 416 0.0042384975 1e-6 473 416 0.00019709999 1e-6 477 416 0.00059139985 1e-6 478 416 0.0016756998 1e-6 479 416 0.0012814 1e-6 483 416 0.0010843 1e-6 489 416 0.00019709999 1e-6 490 416 0.0014785999 1e-6 491 416 0.0030556999 1e-6 4 417 0.00068269996 1e-6 9 417 8.5299995e-05 1e-6 60 417 0.0022187999 1e-6 82 417 0.0093872994 1e-6 83 417 8.5299995e-05 1e-6 84 417 8.5299995e-05 1e-6 104 417 0.00034139981 1e-6 108 417 8.5299995e-05 1e-6 113 417 0.00017069999 1e-6 114 417 0.00025599985 1e-6 117 417 0.0026454998 1e-6 120 417 8.5299995e-05 1e-6 126 417 8.5299995e-05 1e-6 130 417 0.023894899 1e-6 131 417 0.0180065 1e-6 132 417 0.00051199994 1e-6 133 417 0.0021334998 1e-6 135 417 0.0028161998 1e-6 137 417 8.5299995e-05 1e-6 138 417 0.011862099 1e-6 139 417 0.0052909963 1e-6 141 417 8.5299995e-05 1e-6 142 417 0.010923397 1e-6 143 417 0.00025599985 1e-6 149 417 0.0021334998 1e-6 150 417 0.00025599985 1e-6 158 417 0.00017069999 1e-6 160 417 0.0016213998 1e-6 169 417 8.5299995e-05 1e-6 187 417 0.021334697 1e-6 188 417 0.0040962994 1e-6 189 417 0.00017069999 1e-6 190 417 8.5299995e-05 1e-6 192 417 0.0034989 1e-6 193 417 8.5299995e-05 1e-6 194 417 0.0039255992 1e-6 197 417 8.5299995e-05 1e-6 198 417 0.012288798 1e-6 200 417 8.5299995e-05 1e-6 203 417 0.00017069999 1e-6 204 417 0.00017069999 1e-6 206 417 0.00017069999 1e-6 207 417 8.5299995e-05 1e-6 208 417 8.5299995e-05 1e-6 214 417 0.0017068 1e-6 219 417 0.00059739989 1e-6 221 417 0.00025599985 1e-6 223 417 0.0029014999 1e-6 224 417 0.016384996 1e-6 226 417 0.00034139981 1e-6 227 417 0.00025599985 1e-6 228 417 0.00025599985 1e-6 229 417 0.0046935976 1e-6 231 417 8.5299995e-05 1e-6 232 417 0.00051199994 1e-6 233 417 8.5299995e-05 1e-6 234 417 0.0040962994 1e-6 237 417 0.00059739989 1e-6 240 417 0.012032799 1e-6 241 417 0.021334697 1e-6 243 417 0.00017069999 1e-6 252 417 0.0084484965 1e-6 253 417 0.00059739989 1e-6 268 417 0.00076799979 1e-6 271 417 0.0052056983 1e-6 277 417 0.016214397 1e-6 282 417 0.0043522976 1e-6 283 417 0.00034139981 1e-6 284 417 0.00017069999 1e-6 286 417 8.5299995e-05 1e-6 287 417 0.00017069999 1e-6 290 417 0.00059739989 1e-6 292 417 0.00017069999 1e-6 293 417 0.0066563971 1e-6 295 417 8.5299995e-05 1e-6 296 417 0.0023894999 1e-6 297 417 0.00042669987 1e-6 300 417 0.0073390976 1e-6 312 417 0.0130568 1e-6 313 417 0.00017069999 1e-6 314 417 8.5299995e-05 1e-6 315 417 0.00017069999 1e-6 320 417 8.5299995e-05 1e-6 325 417 0.00017069999 1e-6 326 417 0.00025599985 1e-6 340 417 8.5299995e-05 1e-6 347 417 8.5299995e-05 1e-6 351 417 8.5299995e-05 1e-6 354 417 8.5299995e-05 1e-6 356 417 8.5299995e-05 1e-6 357 417 8.5299995e-05 1e-6 358 417 0.0023041 1e-6 372 417 0.0019627998 1e-6 387 417 8.5299995e-05 1e-6 391 417 8.5299995e-05 1e-6 393 417 0.0088751987 1e-6 394 417 8.5299995e-05 1e-6 396 417 8.5299995e-05 1e-6 397 417 0.00017069999 1e-6 402 417 0.0010241 1e-6 404 417 8.5299995e-05 1e-6 416 417 0.012374099 1e-6 417 417 0.015787698 1e-6 421 417 0.00076799979 1e-6 422 417 0.00017069999 1e-6 423 417 8.5299995e-05 1e-6 430 417 0.00025599985 1e-6 431 417 8.5299995e-05 1e-6 433 417 8.5299995e-05 1e-6 434 417 8.5299995e-05 1e-6 437 417 8.5299995e-05 1e-6 442 417 0.00025599985 1e-6 443 417 0.0039255992 1e-6 444 417 0.0040108971 1e-6 445 417 0.015275598 1e-6 446 417 0.00025599985 1e-6 447 417 0.0032428999 1e-6 448 417 8.5299995e-05 1e-6 450 417 0.0067417994 1e-6 452 417 0.0048642978 1e-6 453 417 0.0015360999 1e-6 454 417 0.00076799979 1e-6 455 417 0.040109199 1e-6 456 417 0.00093869981 1e-6 457 417 0.0045229979 1e-6 458 417 0.00093869981 1e-6 459 417 0.00068269996 1e-6 460 417 0.0014507999 1e-6 463 417 0.0093872994 1e-6 464 417 0.0042668991 1e-6 465 417 0.0015360999 1e-6 467 417 0.019969299 1e-6 468 417 0.027479097 1e-6 469 417 0.0071684979 1e-6 470 417 0.0076804981 1e-6 471 417 0.0040108971 1e-6 473 417 0.00017069999 1e-6 477 417 0.00051199994 1e-6 478 417 0.0013653999 1e-6 479 417 0.0028161998 1e-6 483 417 0.0017920998 1e-6 489 417 0.00017069999 1e-6 490 417 0.0015360999 1e-6 491 417 0.0018775 1e-6 24 418 0.0016246999 1e-6 60 418 0.0016246999 1e-6 82 418 0.00054159993 1e-6 108 418 0.00027079997 1e-6 114 418 0.00054159993 1e-6 126 418 0.00027079997 1e-6 130 418 0.0010831 1e-6 131 418 0.00081229978 1e-6 138 418 0.00054159993 1e-6 139 418 0.0021662998 1e-6 142 418 0.00054159993 1e-6 160 418 0.00027079997 1e-6 165 418 0.0010831 1e-6 187 418 0.00081229978 1e-6 188 418 0.00027079997 1e-6 192 418 0.00027079997 1e-6 193 418 0.0086649992 1e-6 194 418 0.00054159993 1e-6 198 418 0.0043324977 1e-6 206 418 0.00054159993 1e-6 224 418 0.00054159993 1e-6 229 418 0.00027079997 1e-6 233 418 0.0021662998 1e-6 234 418 0.003791 1e-6 237 418 0.00054159993 1e-6 240 418 0.00054159993 1e-6 241 418 0.0075818971 1e-6 252 418 0.00054159993 1e-6 268 418 0.0059571974 1e-6 270 418 0.010560498 1e-6 271 418 0.00027079997 1e-6 272 418 0.00081229978 1e-6 277 418 0.025995098 1e-6 282 418 0.00027079997 1e-6 290 418 0.13647437 1e-6 293 418 0.0016246999 1e-6 294 418 0.030327599 1e-6 300 418 0.00027079997 1e-6 312 418 0.00054159993 1e-6 320 418 0.00027079997 1e-6 340 418 0.00081229978 1e-6 358 418 0.0024369999 1e-6 387 418 0.00027079997 1e-6 392 418 0.00027079997 1e-6 393 418 0.0016246999 1e-6 395 418 0.010831296 1e-6 396 418 0.0078526996 1e-6 398 418 0.0092065968 1e-6 402 418 0.00027079997 1e-6 416 418 0.00054159993 1e-6 417 418 0.0013538999 1e-6 418 418 0.00027079997 1e-6 422 418 0.00027079997 1e-6 441 418 0.011372898 1e-6 443 418 0.0024369999 1e-6 444 418 0.013809897 1e-6 445 418 0.017600898 1e-6 446 418 0.00027079997 1e-6 447 418 0.012997597 1e-6 450 418 0.0056863986 1e-6 452 418 0.0046032965 1e-6 453 418 0.0010831 1e-6 455 418 0.035472497 1e-6 456 418 0.00027079997 1e-6 457 418 0.0046032965 1e-6 458 418 0.0013538999 1e-6 459 418 0.00081229978 1e-6 460 418 0.0013538999 1e-6 463 418 0.013539098 1e-6 464 418 0.0016246999 1e-6 465 418 0.011102099 1e-6 467 418 0.013809897 1e-6 468 418 0.071757376 1e-6 469 418 0.0070402995 1e-6 470 418 0.0078526996 1e-6 471 418 0.0043324977 1e-6 473 418 0.00027079997 1e-6 477 418 0.00054159993 1e-6 478 418 0.0013538999 1e-6 483 418 0.0013538999 1e-6 489 418 0.00027079997 1e-6 490 418 0.00081229978 1e-6 18 419 0.00021679999 1e-6 22 419 0.00032519992 1e-6 60 419 0.0010841 1e-6 108 419 0.0001084 1e-6 114 419 0.00021679999 1e-6 126 419 0.0001084 1e-6 130 419 0.0001084 1e-6 150 419 0.0001084 1e-6 160 419 0.0014093998 1e-6 171 419 0.0001084 1e-6 187 419 0.0001084 1e-6 189 419 0.0001084 1e-6 190 419 0.0001084 1e-6 194 419 0.00021679999 1e-6 198 419 0.010624498 1e-6 203 419 0.0001084 1e-6 204 419 0.0001084 1e-6 206 419 0.00021679999 1e-6 221 419 0.0001084 1e-6 224 419 0.0092150979 1e-6 234 419 0.0026018999 1e-6 237 419 0.00032519992 1e-6 240 419 0.00043369993 1e-6 241 419 0.018863797 1e-6 250 419 0.0042280965 1e-6 252 419 0.0030355998 1e-6 277 419 0.015828297 1e-6 282 419 0.0001084 1e-6 284 419 0.00065049995 1e-6 290 419 0.00097569986 1e-6 292 419 0.013659999 1e-6 293 419 0.00021679999 1e-6 294 419 0.015828297 1e-6 295 419 0.0017345999 1e-6 296 419 0.0001084 1e-6 297 419 0.0001084 1e-6 298 419 0.0017345999 1e-6 308 419 0.0001084 1e-6 312 419 0.0203816 1e-6 315 419 0.015394598 1e-6 317 419 0.0001084 1e-6 320 419 0.011274897 1e-6 322 419 0.0035775998 1e-6 326 419 0.0039028998 1e-6 340 419 0.0026018999 1e-6 356 419 0.0001084 1e-6 358 419 0.0020597999 1e-6 359 419 0.0001084 1e-6 361 419 0.0001084 1e-6 363 419 0.0001084 1e-6 369 419 0.00021679999 1e-6 370 419 0.00054209982 1e-6 371 419 0.00065049995 1e-6 372 419 0.0076972991 1e-6 373 419 0.0001084 1e-6 380 419 0.0001084 1e-6 385 419 0.00075889984 1e-6 386 419 0.00043369993 1e-6 387 419 0.0001084 1e-6 390 419 0.00032519992 1e-6 392 419 0.00043369993 1e-6 393 419 0.0014093998 1e-6 398 419 0.0033608 1e-6 402 419 0.0001084 1e-6 413 419 0.003144 1e-6 414 419 0.00021679999 1e-6 415 419 0.0001084 1e-6 417 419 0.00054209982 1e-6 419 419 0.22820896 1e-6 421 419 0.0001084 1e-6 422 419 0.00021679999 1e-6 423 419 0.0052037984 1e-6 424 419 0.0070467964 1e-6 426 419 0.0057458989 1e-6 441 419 0.00021679999 1e-6 442 419 0.0028186999 1e-6 443 419 0.0014093998 1e-6 444 419 0.004119698 1e-6 445 419 0.015177798 1e-6 447 419 0.0062878989 1e-6 450 419 0.0058542974 1e-6 452 419 0.0034691999 1e-6 453 419 0.00065049995 1e-6 454 419 0.00032519992 1e-6 455 419 0.048460498 1e-6 456 419 0.00032519992 1e-6 457 419 0.0015177999 1e-6 458 419 0.00097569986 1e-6 459 419 0.00032519992 1e-6 460 419 0.00097569986 1e-6 463 419 0.0091066994 1e-6 464 419 0.0052037984 1e-6 465 419 0.012575898 1e-6 467 419 0.018213399 1e-6 468 419 0.034475297 1e-6 469 419 0.0037943998 1e-6 470 419 0.004119698 1e-6 471 419 0.0021682999 1e-6 473 419 0.0001084 1e-6 477 419 0.00043369993 1e-6 478 419 0.0011924999 1e-6 479 419 0.00043369993 1e-6 483 419 0.0016261998 1e-6 489 419 0.0001084 1e-6 490 419 0.00032519992 1e-6 491 419 0.00065049995 1e-6 60 420 0.0026131 1e-6 82 420 0.00016329999 1e-6 108 420 0.00016329999 1e-6 114 420 0.00016329999 1e-6 126 420 0.00016329999 1e-6 187 420 0.00016329999 1e-6 189 420 0.00016329999 1e-6 190 420 0.00016329999 1e-6 194 420 0.00032659993 1e-6 198 420 0.0019597998 1e-6 203 420 0.00016329999 1e-6 206 420 0.00065329997 1e-6 214 420 0.00048999977 1e-6 224 420 0.0037562998 1e-6 234 420 0.0042462982 1e-6 237 420 0.00048999977 1e-6 240 420 0.00016329999 1e-6 241 420 0.056344897 1e-6 252 420 0.014208697 1e-6 270 420 0.00016329999 1e-6 273 420 0.00048999977 1e-6 276 420 0.00016329999 1e-6 277 420 0.0073492974 1e-6 282 420 0.0037562998 1e-6 283 420 0.00016329999 1e-6 284 420 0.00016329999 1e-6 290 420 0.0011431999 1e-6 292 420 0.00097989989 1e-6 293 420 0.0039195977 1e-6 294 420 0.0055527985 1e-6 295 420 0.00081659993 1e-6 296 420 0.0037562998 1e-6 297 420 0.00016329999 1e-6 298 420 0.017148498 1e-6 299 420 0.00016329999 1e-6 308 420 0.00097989989 1e-6 312 420 0.0029396999 1e-6 315 420 0.011105698 1e-6 320 420 0.00097989989 1e-6 321 420 0.00016329999 1e-6 322 420 0.00032659993 1e-6 324 420 0.00032659993 1e-6 326 420 0.0019597998 1e-6 340 420 0.00065329997 1e-6 351 420 0.00065329997 1e-6 352 420 0.00016329999 1e-6 356 420 0.00016329999 1e-6 358 420 0.0032664 1e-6 359 420 0.00016329999 1e-6 366 420 0.0014698999 1e-6 369 420 0.0019597998 1e-6 370 420 0.00016329999 1e-6 371 420 0.00032659993 1e-6 372 420 0.0024497998 1e-6 373 420 0.00065329997 1e-6 386 420 0.00081659993 1e-6 387 420 0.00032659993 1e-6 390 420 0.0039195977 1e-6 391 420 0.00065329997 1e-6 392 420 0.017148498 1e-6 393 420 0.036746699 1e-6 398 420 0.00016329999 1e-6 402 420 0.00032659993 1e-6 404 420 0.00097989989 1e-6 405 420 0.00048999977 1e-6 413 420 0.00016329999 1e-6 414 420 0.00016329999 1e-6 415 420 0.00016329999 1e-6 417 420 0.00032659993 1e-6 419 420 0.00032659993 1e-6 420 420 0.070880294 1e-6 421 420 0.0017964998 1e-6 422 420 0.00065329997 1e-6 430 420 0.00016329999 1e-6 434 420 0.00016329999 1e-6 435 420 0.005879499 1e-6 442 420 0.00065329997 1e-6 443 420 0.00081659993 1e-6 444 420 0.00081659993 1e-6 445 420 0.010778997 1e-6 447 420 0.0026131 1e-6 450 420 0.0053894967 1e-6 452 420 0.0057161972 1e-6 453 420 0.00048999977 1e-6 454 420 0.00016329999 1e-6 455 420 0.035276797 1e-6 456 420 0.00081659993 1e-6 457 420 0.0037562998 1e-6 458 420 0.0017964998 1e-6 459 420 0.00065329997 1e-6 460 420 0.00097989989 1e-6 463 420 0.0097990967 1e-6 464 420 0.0011431999 1e-6 465 420 0.0011431999 1e-6 467 420 0.017311797 1e-6 468 420 0.0032664 1e-6 469 420 0.010778997 1e-6 470 420 0.0125755 1e-6 471 420 0.0037562998 1e-6 473 420 0.00032659993 1e-6 477 420 0.00032659993 1e-6 478 420 0.0014698999 1e-6 483 420 0.0019597998 1e-6 489 420 0.00016329999 1e-6 490 420 0.0019597998 1e-6 491 420 0.0026131 1e-6 60 421 0.0025086999 1e-6 108 421 0.000193 1e-6 114 421 0.00038599991 1e-6 126 421 0.000193 1e-6 150 421 0.000193 1e-6 187 421 0.00038599991 1e-6 189 421 0.000193 1e-6 190 421 0.000193 1e-6 192 421 0.000193 1e-6 194 421 0.00038599991 1e-6 198 421 0.0019297998 1e-6 200 421 0.000193 1e-6 203 421 0.000193 1e-6 204 421 0.000193 1e-6 206 421 0.00057889987 1e-6 214 421 0.0011578999 1e-6 223 421 0.000193 1e-6 224 421 0.022771098 1e-6 234 421 0.0065611973 1e-6 237 421 0.00077189994 1e-6 240 421 0.000193 1e-6 241 421 0.029718298 1e-6 252 421 0.030490197 1e-6 270 421 0.0034735999 1e-6 277 421 0.00096489978 1e-6 284 421 0.000193 1e-6 290 421 0.041489799 1e-6 294 421 0.00038599991 1e-6 296 421 0.000193 1e-6 312 421 0.000193 1e-6 315 421 0.000193 1e-6 326 421 0.000193 1e-6 356 421 0.000193 1e-6 358 421 0.0032805998 1e-6 387 421 0.000193 1e-6 392 421 0.00057889987 1e-6 393 421 0.00038599991 1e-6 402 421 0.00038599991 1e-6 417 421 0.00057889987 1e-6 420 421 0.00038599991 1e-6 421 421 0.060401399 1e-6 422 421 0.0011578999 1e-6 442 421 0.020262398 1e-6 443 421 0.0021227 1e-6 444 421 0.00057889987 1e-6 445 421 0.0119645 1e-6 446 421 0.00038599991 1e-6 447 421 0.0028945999 1e-6 450 421 0.0071400963 1e-6 452 421 0.0048243999 1e-6 453 421 0.0025086999 1e-6 454 421 0.0011578999 1e-6 455 421 0.07043606 1e-6 456 421 0.00077189994 1e-6 457 421 0.0040524974 1e-6 458 421 0.0017368 1e-6 459 421 0.00057889987 1e-6 460 421 0.0015437999 1e-6 463 421 0.0121575 1e-6 464 421 0.00077189994 1e-6 465 421 0.0017368 1e-6 467 421 0.016595896 1e-6 468 421 0.0144732 1e-6 469 421 0.0073330998 1e-6 470 421 0.0082979985 1e-6 471 421 0.0048243999 1e-6 473 421 0.000193 1e-6 477 421 0.00038599991 1e-6 478 421 0.0023156998 1e-6 483 421 0.0021227 1e-6 489 421 0.000193 1e-6 490 421 0.00077189994 1e-6 491 421 0.00096489978 1e-6 9 422 1.8599996e-05 1e-6 13 422 9.3199997e-05 1e-6 16 422 1.8599996e-05 1e-6 18 422 9.3199997e-05 1e-6 21 422 5.5899989e-05 1e-6 22 422 0.0010809 1e-6 24 422 0.00026089977 1e-6 60 422 0.0057770982 1e-6 79 422 1.8599996e-05 1e-6 82 422 0.00013049999 1e-6 83 422 1.8599996e-05 1e-6 84 422 1.8599996e-05 1e-6 104 422 9.3199997e-05 1e-6 108 422 3.7299993e-05 1e-6 113 422 5.5899989e-05 1e-6 114 422 9.3199997e-05 1e-6 119 422 3.7299993e-05 1e-6 120 422 0.00031679985 1e-6 126 422 5.5899989e-05 1e-6 127 422 1.8599996e-05 1e-6 130 422 7.45e-05 1e-6 131 422 3.7299993e-05 1e-6 132 422 1.8599996e-05 1e-6 135 422 0.00054039992 1e-6 139 422 3.7299993e-05 1e-6 142 422 1.8599996e-05 1e-6 143 422 1.8599996e-05 1e-6 150 422 0.00029819994 1e-6 151 422 1.8599996e-05 1e-6 158 422 1.8599996e-05 1e-6 159 422 0.00014909999 1e-6 160 422 0.00050319987 1e-6 162 422 1.8599996e-05 1e-6 171 422 5.5899989e-05 1e-6 184 422 1.8599996e-05 1e-6 186 422 0.00031679985 1e-6 187 422 0.016548596 1e-6 188 422 0.00013049999 1e-6 189 422 5.5899989e-05 1e-6 190 422 5.5899989e-05 1e-6 192 422 0.0084606968 1e-6 193 422 0.00013049999 1e-6 194 422 9.3199997e-05 1e-6 196 422 1.8599996e-05 1e-6 197 422 1.8599996e-05 1e-6 198 422 0.0081810988 1e-6 200 422 7.45e-05 1e-6 201 422 3.7299993e-05 1e-6 203 422 5.5899989e-05 1e-6 204 422 7.45e-05 1e-6 206 422 0.00011179999 1e-6 207 422 3.7299993e-05 1e-6 208 422 3.7299993e-05 1e-6 209 422 1.8599996e-05 1e-6 214 422 0.043607898 1e-6 218 422 0.00018639999 1e-6 219 422 0.00011179999 1e-6 221 422 9.3199997e-05 1e-6 223 422 0.003950797 1e-6 224 422 0.00040999986 1e-6 225 422 1.8599996e-05 1e-6 230 422 1.8599996e-05 1e-6 231 422 3.7299993e-05 1e-6 233 422 7.45e-05 1e-6 234 422 0.0028512999 1e-6 237 422 0.0002423 1e-6 240 422 0.00089449994 1e-6 241 422 0.012765598 1e-6 248 422 1.8599996e-05 1e-6 250 422 3.7299993e-05 1e-6 252 422 0.0011741 1e-6 254 422 1.8599996e-05 1e-6 270 422 1.8599996e-05 1e-6 277 422 0.0196236 1e-6 279 422 1.8599996e-05 1e-6 284 422 3.7299993e-05 1e-6 290 422 0.0031307999 1e-6 292 422 0.00076409988 1e-6 293 422 0.0010249999 1e-6 294 422 0.014014199 1e-6 295 422 5.5899989e-05 1e-6 296 422 0.0051993988 1e-6 297 422 1.8599996e-05 1e-6 298 422 0.0030375998 1e-6 300 422 1.8599996e-05 1e-6 301 422 0.00013049999 1e-6 308 422 3.7299993e-05 1e-6 312 422 0.0024785998 1e-6 314 422 1.8599996e-05 1e-6 315 422 0.0040066987 1e-6 318 422 7.45e-05 1e-6 320 422 0.00013049999 1e-6 321 422 3.7299993e-05 1e-6 322 422 0.00096909981 1e-6 325 422 0.00050319987 1e-6 326 422 0.0056838989 1e-6 340 422 5.5899989e-05 1e-6 341 422 1.8599996e-05 1e-6 347 422 1.8599996e-05 1e-6 350 422 1.8599996e-05 1e-6 351 422 1.8599996e-05 1e-6 354 422 0.0030003998 1e-6 356 422 0.00022359999 1e-6 358 422 0.0013790999 1e-6 359 422 3.7299993e-05 1e-6 361 422 1.8599996e-05 1e-6 363 422 3.7299993e-05 1e-6 369 422 9.3199997e-05 1e-6 370 422 0.00018639999 1e-6 371 422 1.8599996e-05 1e-6 372 422 0.0031494999 1e-6 384 422 0.0017704 1e-6 386 422 5.5899989e-05 1e-6 387 422 5.5899989e-05 1e-6 390 422 0.00020499999 1e-6 391 422 7.45e-05 1e-6 392 422 0.017554998 1e-6 393 422 0.0056652986 1e-6 394 422 1.8599996e-05 1e-6 396 422 0.00014909999 1e-6 397 422 1.8599996e-05 1e-6 398 422 1.8599996e-05 1e-6 402 422 0.00011179999 1e-6 404 422 5.5899989e-05 1e-6 405 422 1.8599996e-05 1e-6 413 422 3.7299993e-05 1e-6 417 422 0.00018639999 1e-6 419 422 0.0030748998 1e-6 420 422 0.0074542984 1e-6 421 422 1.8599996e-05 1e-6 422 422 0.030245997 1e-6 423 422 5.5899989e-05 1e-6 424 422 3.7299993e-05 1e-6 425 422 1.8599996e-05 1e-6 426 422 3.7299993e-05 1e-6 427 422 1.8599996e-05 1e-6 428 422 1.8599996e-05 1e-6 430 422 5.5899989e-05 1e-6 431 422 1.8599996e-05 1e-6 432 422 1.8599996e-05 1e-6 433 422 3.7299993e-05 1e-6 434 422 5.5899989e-05 1e-6 435 422 0.00050319987 1e-6 438 422 0.00048449985 1e-6 441 422 0.00035409979 1e-6 442 422 0.0022548998 1e-6 443 422 0.0028698999 1e-6 444 422 0.0012299998 1e-6 445 422 0.0047520995 1e-6 446 422 0.00093179988 1e-6 447 422 0.0044166967 1e-6 448 422 1.8599996e-05 1e-6 449 422 1.8599996e-05 1e-6 450 422 0.004304897 1e-6 452 422 0.0029630999 1e-6 453 422 0.00089449994 1e-6 454 422 0.00095039979 1e-6 455 422 0.0232016 1e-6 456 422 0.00061499979 1e-6 457 422 0.0073424987 1e-6 458 422 0.0010809 1e-6 459 422 0.0032984999 1e-6 460 422 0.0012486 1e-6 463 422 0.0079201981 1e-6 464 422 0.0017889999 1e-6 465 422 0.0038949 1e-6 467 422 0.018766299 1e-6 468 422 0.0197354 1e-6 469 422 0.0050502978 1e-6 470 422 0.0056838989 1e-6 471 422 0.0015280999 1e-6 472 422 0.00018639999 1e-6 473 422 0.00011179999 1e-6 477 422 0.00046589994 1e-6 478 422 0.003950797 1e-6 479 422 0.0016027 1e-6 483 422 0.00098769995 1e-6 489 422 9.3199997e-05 1e-6 490 422 0.0004472998 1e-6 491 422 0.00011179999 1e-6 9 423 9.8699995e-05 1e-6 18 423 0.00019729999 1e-6 24 423 9.8699995e-05 1e-6 82 423 9.8699995e-05 1e-6 108 423 9.8699995e-05 1e-6 114 423 0.00019729999 1e-6 126 423 9.8699995e-05 1e-6 150 423 9.8699995e-05 1e-6 171 423 0.00019729999 1e-6 189 423 9.8699995e-05 1e-6 190 423 9.8699995e-05 1e-6 192 423 9.8699995e-05 1e-6 194 423 9.8699995e-05 1e-6 196 423 9.8699995e-05 1e-6 198 423 0.0057226978 1e-6 200 423 9.8699995e-05 1e-6 203 423 9.8699995e-05 1e-6 204 423 9.8699995e-05 1e-6 206 423 9.8699995e-05 1e-6 207 423 9.8699995e-05 1e-6 214 423 9.8699995e-05 1e-6 224 423 9.8699995e-05 1e-6 234 423 0.0022693998 1e-6 237 423 0.00019729999 1e-6 240 423 9.8699995e-05 1e-6 241 423 0.0019733999 1e-6 250 423 0.013418797 1e-6 252 423 0.0010853 1e-6 270 423 0.0031573998 1e-6 276 423 0.0095707998 1e-6 277 423 0.00069069979 1e-6 284 423 9.8699995e-05 1e-6 290 423 0.20404536 1e-6 292 423 0.00049329991 1e-6 294 423 0.057128798 1e-6 298 423 0.0011839999 1e-6 312 423 0.00019729999 1e-6 315 423 0.00019729999 1e-6 317 423 0.00029599993 1e-6 320 423 0.00019729999 1e-6 325 423 0.0070053972 1e-6 326 423 9.8699995e-05 1e-6 356 423 9.8699995e-05 1e-6 358 423 0.0012826999 1e-6 372 423 9.8699995e-05 1e-6 387 423 9.8699995e-05 1e-6 402 423 9.8699995e-05 1e-6 417 423 0.00049329991 1e-6 419 423 0.0054266974 1e-6 421 423 9.8699995e-05 1e-6 422 423 9.8699995e-05 1e-6 423 423 0.0059200972 1e-6 424 423 0.11909229 1e-6 426 423 0.00049329991 1e-6 430 423 9.8699995e-05 1e-6 433 423 9.8699995e-05 1e-6 434 423 9.8699995e-05 1e-6 438 423 0.0019733999 1e-6 441 423 9.8699995e-05 1e-6 442 423 0.0022693998 1e-6 443 423 0.0013813998 1e-6 444 423 0.0039466992 1e-6 445 423 0.0063147992 1e-6 447 423 0.005130697 1e-6 450 423 0.010162797 1e-6 452 423 0.0026639998 1e-6 453 423 0.00019729999 1e-6 454 423 0.0034534 1e-6 455 423 0.051406 1e-6 456 423 0.00039469986 1e-6 457 423 0.0042426996 1e-6 458 423 0.00078929984 1e-6 459 423 0.00039469986 1e-6 460 423 0.00098669995 1e-6 463 423 0.0263444 1e-6 464 423 0.0073013976 1e-6 465 423 0.0012826999 1e-6 467 423 0.014800198 1e-6 468 423 0.026640397 1e-6 469 423 0.0066107996 1e-6 470 423 0.0073013976 1e-6 471 423 0.0018747 1e-6 473 423 0.00019729999 1e-6 477 423 9.8699995e-05 1e-6 478 423 0.0011839999 1e-6 479 423 0.00019729999 1e-6 483 423 0.0021706999 1e-6 489 423 9.8699995e-05 1e-6 490 423 0.0049333982 1e-6 491 423 0.00088799978 1e-6 24 424 0.013278097 1e-6 114 424 0.0001428 1e-6 131 424 0.0001428 1e-6 171 424 0.0001428 1e-6 198 424 0.0041405 1e-6 206 424 0.00028559985 1e-6 214 424 0.011707596 1e-6 234 424 0.0011421998 1e-6 237 424 0.0001428 1e-6 241 424 0.00028559985 1e-6 250 424 0.00085669989 1e-6 270 424 0.0098514967 1e-6 272 424 0.0001428 1e-6 276 424 0.0068531968 1e-6 277 424 0.046402097 1e-6 279 424 0.0001428 1e-6 286 424 0.0001428 1e-6 287 424 0.0001428 1e-6 288 424 0.0001428 1e-6 290 424 0.022130199 1e-6 291 424 0.0001428 1e-6 292 424 0.0068531968 1e-6 294 424 0.0418332 1e-6 295 424 0.0001428 1e-6 298 424 0.00042829989 1e-6 308 424 0.0001428 1e-6 317 424 0.0001428 1e-6 325 424 0.00042829989 1e-6 326 424 0.0001428 1e-6 358 424 0.00042829989 1e-6 373 424 0.00042829989 1e-6 393 424 0.0001428 1e-6 417 424 0.0001428 1e-6 419 424 0.00042829989 1e-6 423 424 0.0025699998 1e-6 424 424 0.022701297 1e-6 426 424 0.0001428 1e-6 438 424 0.0001428 1e-6 441 424 0.0011421998 1e-6 442 424 0.00028559985 1e-6 443 424 0.0044259988 1e-6 444 424 0.00028559985 1e-6 445 424 0.015848096 1e-6 446 424 0.0011421998 1e-6 447 424 0.0052826963 1e-6 450 424 0.0019989 1e-6 452 424 0.0017132999 1e-6 453 424 0.0001428 1e-6 454 424 0.0001428 1e-6 455 424 0.056253597 1e-6 457 424 0.0019989 1e-6 458 424 0.0001428 1e-6 459 424 0.0001428 1e-6 460 424 0.0021415998 1e-6 463 424 0.0042832978 1e-6 464 424 0.00057109981 1e-6 465 424 0.00028559985 1e-6 467 424 0.0032837999 1e-6 468 424 0.0042832978 1e-6 469 424 0.0018560998 1e-6 470 424 0.0019989 1e-6 471 424 0.00071389996 1e-6 478 424 0.00028559985 1e-6 483 424 0.0019989 1e-6 490 424 0.37592798 1e-6 491 424 0.0054254979 1e-6 22 425 0.00091299997 1e-6 60 425 0.0021301999 1e-6 108 425 0.00030429987 1e-6 114 425 0.00060859998 1e-6 126 425 0.00030429987 1e-6 171 425 0.027084596 1e-6 194 425 0.00030429987 1e-6 198 425 0.024649996 1e-6 206 425 0.00060859998 1e-6 214 425 0.028910499 1e-6 234 425 0.0039561987 1e-6 237 425 0.00030429987 1e-6 240 425 0.00030429987 1e-6 241 425 0.0219111 1e-6 250 425 0.00030429987 1e-6 270 425 0.018563598 1e-6 272 425 0.00060859998 1e-6 276 425 0.0097383 1e-6 277 425 0.079123557 1e-6 279 425 0.00060859998 1e-6 284 425 0.00030429987 1e-6 290 425 0.0608643 1e-6 292 425 0.037127197 1e-6 293 425 0.00060859998 1e-6 294 425 0.06299448 1e-6 297 425 0.013390098 1e-6 298 425 0.00060859998 1e-6 312 425 0.00060859998 1e-6 315 425 0.00060859998 1e-6 317 425 0.00030429987 1e-6 319 425 0.00030429987 1e-6 320 425 0.00030429987 1e-6 326 425 0.011259899 1e-6 339 425 0.00030429987 1e-6 340 425 0.00060859998 1e-6 353 425 0.00030429987 1e-6 358 425 0.0015215999 1e-6 387 425 0.00030429987 1e-6 417 425 0.00060859998 1e-6 424 425 0.00091299997 1e-6 425 425 0.0051734969 1e-6 426 425 0.00030429987 1e-6 441 425 0.00030429987 1e-6 443 425 0.0063906983 1e-6 444 425 0.0051734969 1e-6 445 425 0.013998799 1e-6 446 425 0.00060859998 1e-6 447 425 0.0146074 1e-6 450 425 0.0045647994 1e-6 452 425 0.0066950992 1e-6 453 425 0.0015215999 1e-6 454 425 0.00091299997 1e-6 455 425 0.032562397 1e-6 456 425 0.00030429987 1e-6 457 425 0.0045647994 1e-6 458 425 0.00060859998 1e-6 459 425 0.00060859998 1e-6 460 425 0.00091299997 1e-6 463 425 0.0076079965 1e-6 464 425 0.00091299997 1e-6 465 425 0.00060859998 1e-6 467 425 0.0094339997 1e-6 468 425 0.018259298 1e-6 469 425 0.0063906983 1e-6 470 425 0.0073036999 1e-6 471 425 0.0018258998 1e-6 473 425 0.00030429987 1e-6 478 425 0.0012172998 1e-6 483 425 0.0033475 1e-6 490 425 0.00091299997 1e-6 491 425 0.00030429987 1e-6 17 426 0.00044509978 1e-6 60 426 0.001558 1e-6 82 426 0.00022259999 1e-6 108 426 0.00022259999 1e-6 114 426 0.00044509978 1e-6 126 426 0.00022259999 1e-6 131 426 0.00022259999 1e-6 132 426 0.00022259999 1e-6 139 426 0.00022259999 1e-6 150 426 0.00022259999 1e-6 171 426 0.016470097 1e-6 187 426 0.00022259999 1e-6 189 426 0.00022259999 1e-6 190 426 0.00022259999 1e-6 194 426 0.0011127999 1e-6 198 426 0.011796098 1e-6 203 426 0.00022259999 1e-6 206 426 0.00066769985 1e-6 208 426 0.00022259999 1e-6 214 426 0.0022256998 1e-6 223 426 0.00022259999 1e-6 224 426 0.0024482999 1e-6 233 426 0.0024482999 1e-6 234 426 0.0080124997 1e-6 237 426 0.00044509978 1e-6 241 426 0.016024899 1e-6 243 426 0.00044509978 1e-6 250 426 0.020698898 1e-6 252 426 0.0064544976 1e-6 270 426 0.0066770986 1e-6 276 426 0.0060092993 1e-6 277 426 0.00066769985 1e-6 279 426 0.00044509978 1e-6 284 426 0.00022259999 1e-6 290 426 0.064099669 1e-6 292 426 0.015802398 1e-6 293 426 0.00044509978 1e-6 294 426 0.0037836998 1e-6 295 426 0.00022259999 1e-6 298 426 0.079234362 1e-6 312 426 0.00022259999 1e-6 315 426 0.00066769985 1e-6 317 426 0.00022259999 1e-6 320 426 0.0064544976 1e-6 325 426 0.00044509978 1e-6 326 426 0.0057867989 1e-6 340 426 0.00044509978 1e-6 358 426 0.0020030998 1e-6 387 426 0.00022259999 1e-6 392 426 0.00066769985 1e-6 393 426 0.0035611 1e-6 417 426 0.00066769985 1e-6 419 426 0.00066769985 1e-6 422 426 0.00022259999 1e-6 423 426 0.00044509978 1e-6 424 426 0.1112842 1e-6 426 426 0.0244825 1e-6 438 426 0.00022259999 1e-6 441 426 0.0084575973 1e-6 442 426 0.0182506 1e-6 443 426 0.0011127999 1e-6 444 426 0.0084575973 1e-6 445 426 0.012463797 1e-6 446 426 0.00022259999 1e-6 447 426 0.013576698 1e-6 448 426 0.00022259999 1e-6 450 426 0.0064544976 1e-6 452 426 0.0051190965 1e-6 453 426 0.00066769985 1e-6 454 426 0.00089029991 1e-6 455 426 0.0316047 1e-6 456 426 0.00022259999 1e-6 457 426 0.0046738982 1e-6 458 426 0.00044509978 1e-6 459 426 0.00022259999 1e-6 460 426 0.0011127999 1e-6 463 426 0.016470097 1e-6 464 426 0.001558 1e-6 465 426 0.0011127999 1e-6 467 426 0.012018699 1e-6 468 426 0.012241296 1e-6 469 426 0.0075672977 1e-6 470 426 0.0082349963 1e-6 471 426 0.0026707998 1e-6 473 426 0.00022259999 1e-6 478 426 0.0017804999 1e-6 479 426 0.012018699 1e-6 483 426 0.0035611 1e-6 490 426 0.00066769985 1e-6 491 426 0.00044509978 1e-6 22 427 0.00018239999 1e-6 60 427 0.0027357 1e-6 108 427 0.00018239999 1e-6 114 427 0.00036479998 1e-6 126 427 0.00018239999 1e-6 130 427 0.0032829 1e-6 135 427 0.0031005 1e-6 150 427 0.00018239999 1e-6 160 427 0.0492431 1e-6 165 427 0.010395799 1e-6 171 427 0.041035898 1e-6 172 427 0.00091189984 1e-6 188 427 0.0078423992 1e-6 189 427 0.00018239999 1e-6 190 427 0.00018239999 1e-6 194 427 0.00036479998 1e-6 198 427 0.0063833967 1e-6 203 427 0.00018239999 1e-6 206 427 0.00054709986 1e-6 214 427 0.00036479998 1e-6 224 427 0.0142258 1e-6 233 427 0.0041947998 1e-6 234 427 0.0031005 1e-6 237 427 0.00036479998 1e-6 241 427 0.0076599978 1e-6 248 427 0.018602997 1e-6 277 427 0.0116724 1e-6 279 427 0.00036479998 1e-6 282 427 0.0036475998 1e-6 284 427 0.00018239999 1e-6 292 427 0.011854798 1e-6 297 427 0.0069304965 1e-6 298 427 0.0069304965 1e-6 312 427 0.00091189984 1e-6 315 427 0.0010942998 1e-6 321 427 0.00091189984 1e-6 322 427 0.00091189984 1e-6 356 427 0.00018239999 1e-6 358 427 0.0018237999 1e-6 387 427 0.017508697 1e-6 392 427 0.013313897 1e-6 393 427 0.063468874 1e-6 402 427 0.00018239999 1e-6 417 427 0.00072949985 1e-6 421 427 0.00018239999 1e-6 422 427 0.00036479998 1e-6 427 427 0.077329874 1e-6 443 427 0.0067480989 1e-6 444 427 0.00054709986 1e-6 445 427 0.0041947998 1e-6 446 427 0.00036479998 1e-6 447 427 0.0052890964 1e-6 450 427 0.0052890964 1e-6 452 427 0.0049242973 1e-6 453 427 0.0023709999 1e-6 454 427 0.00054709986 1e-6 455 427 0.032463998 1e-6 456 427 0.00018239999 1e-6 457 427 0.0045594983 1e-6 458 427 0.00072949985 1e-6 459 427 0.00054709986 1e-6 460 427 0.0010942998 1e-6 463 427 0.011307698 1e-6 464 427 0.00054709986 1e-6 465 427 0.0012766998 1e-6 467 427 0.010942899 1e-6 468 427 0.0087542981 1e-6 469 427 0.0069304965 1e-6 470 427 0.0076599978 1e-6 471 427 0.0021885999 1e-6 473 427 0.00018239999 1e-6 477 427 0.00018239999 1e-6 478 427 0.0016413999 1e-6 483 427 0.0031005 1e-6 490 427 0.0012766998 1e-6 491 427 0.0018237999 1e-6 9 428 6.5699991e-05 1e-6 18 428 0.0001315 1e-6 22 428 6.5699991e-05 1e-6 60 428 0.0025636 1e-6 82 428 6.5699991e-05 1e-6 83 428 6.5699991e-05 1e-6 84 428 6.5699991e-05 1e-6 108 428 6.5699991e-05 1e-6 113 428 0.0001315 1e-6 114 428 0.00026289979 1e-6 126 428 0.0001315 1e-6 130 428 0.0041411966 1e-6 132 428 0.0026950999 1e-6 135 428 6.5699991e-05 1e-6 137 428 6.5699991e-05 1e-6 138 428 0.00019719999 1e-6 139 428 0.0097942986 1e-6 143 428 6.5699991e-05 1e-6 150 428 0.00085449987 1e-6 154 428 0.0018404999 1e-6 158 428 0.0046012998 1e-6 160 428 0.017222099 1e-6 161 428 0.0021034998 1e-6 165 428 0.0024320998 1e-6 170 428 0.00032869983 1e-6 171 428 0.010517299 1e-6 172 428 0.0037467999 1e-6 175 428 6.5699991e-05 1e-6 187 428 0.0020376998 1e-6 188 428 0.016236097 1e-6 189 428 0.00026289979 1e-6 190 428 0.0001315 1e-6 194 428 0.00039439998 1e-6 197 428 0.0001315 1e-6 198 428 0.044238497 1e-6 200 428 6.5699991e-05 1e-6 202 428 6.5699991e-05 1e-6 203 428 0.0001315 1e-6 204 428 0.00046009989 1e-6 206 428 0.00026289979 1e-6 207 428 6.5699991e-05 1e-6 208 428 0.00046009989 1e-6 214 428 0.00085449987 1e-6 219 428 0.0020376998 1e-6 221 428 0.0007230998 1e-6 224 428 0.042200699 1e-6 225 428 0.00039439998 1e-6 227 428 0.00039439998 1e-6 233 428 0.0043383986 1e-6 234 428 0.0024978998 1e-6 237 428 0.0066390969 1e-6 240 428 0.0010517 1e-6 241 428 0.1003089 1e-6 243 428 0.0015775999 1e-6 252 428 0.00052589993 1e-6 270 428 6.5699991e-05 1e-6 277 428 0.023466799 1e-6 282 428 0.00019719999 1e-6 283 428 0.00019719999 1e-6 284 428 0.00019719999 1e-6 288 428 6.5699991e-05 1e-6 292 428 0.0001315 1e-6 293 428 0.0032867 1e-6 294 428 0.0024320998 1e-6 295 428 0.00019719999 1e-6 296 428 0.0001315 1e-6 299 428 6.5699991e-05 1e-6 300 428 6.5699991e-05 1e-6 312 428 0.010122899 1e-6 315 428 0.0038124998 1e-6 317 428 6.5699991e-05 1e-6 319 428 0.0012488998 1e-6 320 428 0.0006573 1e-6 321 428 0.00059159985 1e-6 322 428 0.0024978998 1e-6 324 428 6.5699991e-05 1e-6 326 428 0.0061131977 1e-6 328 428 0.0006573 1e-6 330 428 0.0001315 1e-6 340 428 0.00032869983 1e-6 349 428 0.0007230998 1e-6 351 428 0.00026289979 1e-6 354 428 0.00052589993 1e-6 356 428 6.5699991e-05 1e-6 358 428 0.0017747998 1e-6 370 428 0.0011831999 1e-6 372 428 0.0046670996 1e-6 377 428 6.5699991e-05 1e-6 380 428 6.5699991e-05 1e-6 384 428 0.0013146999 1e-6 386 428 6.5699991e-05 1e-6 387 428 0.0001315 1e-6 391 428 0.00019719999 1e-6 393 428 0.00019719999 1e-6 398 428 0.0026292999 1e-6 402 428 0.00019719999 1e-6 409 428 0.0040754974 1e-6 412 428 0.0012488998 1e-6 415 428 0.0001315 1e-6 417 428 0.00052589993 1e-6 419 428 0.0001315 1e-6 421 428 6.5699991e-05 1e-6 422 428 0.00026289979 1e-6 423 428 6.5699991e-05 1e-6 425 428 6.5699991e-05 1e-6 428 428 0.036679197 1e-6 429 428 0.00026289979 1e-6 430 428 0.0007230998 1e-6 431 428 6.5699991e-05 1e-6 433 428 6.5699991e-05 1e-6 434 428 6.5699991e-05 1e-6 443 428 0.0069676973 1e-6 444 428 0.00052589993 1e-6 445 428 0.011371899 1e-6 446 428 0.00059159985 1e-6 447 428 0.0039439984 1e-6 450 428 0.0045355968 1e-6 452 428 0.0060474984 1e-6 453 428 0.0015119 1e-6 454 428 0.00039439998 1e-6 455 428 0.050746098 1e-6 456 428 0.00052589993 1e-6 457 428 0.0043383986 1e-6 458 428 0.00078879995 1e-6 459 428 0.0046670996 1e-6 460 428 0.0011831999 1e-6 463 428 0.022875197 1e-6 464 428 0.0042726994 1e-6 465 428 0.004929997 1e-6 467 428 0.016959198 1e-6 468 428 0.06961149 1e-6 469 428 0.0067047998 1e-6 470 428 0.0071648993 1e-6 471 428 0.0020376998 1e-6 473 428 0.00019719999 1e-6 477 428 0.0001315 1e-6 478 428 0.0013803998 1e-6 479 428 0.0059816986 1e-6 483 428 0.0022348999 1e-6 489 428 0.0001315 1e-6 490 428 0.00078879995 1e-6 491 428 0.00078879995 1e-6 60 429 0.0021276998 1e-6 114 429 0.00035459991 1e-6 130 429 0.10496449 1e-6 132 429 0.0039006998 1e-6 137 429 0.0021276998 1e-6 139 429 0.0031915 1e-6 150 429 0.00035459991 1e-6 154 429 0.00070919981 1e-6 158 429 0.0014183999 1e-6 160 429 0.0056737997 1e-6 161 429 0.00070919981 1e-6 162 429 0.00035459991 1e-6 165 429 0.00070919981 1e-6 171 429 0.0035460999 1e-6 172 429 0.0014183999 1e-6 187 429 0.00035459991 1e-6 188 429 0.0049644969 1e-6 194 429 0.00035459991 1e-6 198 429 0.039361697 1e-6 206 429 0.00070919981 1e-6 219 429 0.00070919981 1e-6 224 429 0.027305 1e-6 225 429 0.00035459991 1e-6 233 429 0.0216312 1e-6 234 429 0.0024822999 1e-6 237 429 0.0024822999 1e-6 240 429 0.0092198998 1e-6 241 429 0.11702126 1e-6 243 429 0.00070919981 1e-6 277 429 0.0070921965 1e-6 293 429 0.0010638 1e-6 294 429 0.00070919981 1e-6 312 429 0.0031915 1e-6 315 429 0.0010638 1e-6 317 429 0.00035459991 1e-6 319 429 0.00035459991 1e-6 322 429 0.00070919981 1e-6 326 429 0.001773 1e-6 328 429 0.00035459991 1e-6 349 429 0.00035459991 1e-6 358 429 0.001773 1e-6 370 429 0.00035459991 1e-6 372 429 0.0014183999 1e-6 384 429 0.00035459991 1e-6 398 429 0.00070919981 1e-6 409 429 0.00070919981 1e-6 412 429 0.00035459991 1e-6 417 429 0.00070919981 1e-6 428 429 0.012056697 1e-6 429 429 0.026950397 1e-6 430 429 0.00035459991 1e-6 442 429 0.00070919981 1e-6 443 429 0.0028368998 1e-6 444 429 0.00035459991 1e-6 445 429 0.025886498 1e-6 447 429 0.0046098977 1e-6 450 429 0.0056737997 1e-6 452 429 0.0056737997 1e-6 453 429 0.0014183999 1e-6 455 429 0.039361697 1e-6 456 429 0.00035459991 1e-6 457 429 0.0042552985 1e-6 458 429 0.00070919981 1e-6 459 429 0.022340398 1e-6 460 429 0.0014183999 1e-6 463 429 0.024468098 1e-6 464 429 0.001773 1e-6 465 429 0.0024822999 1e-6 467 429 0.013120599 1e-6 468 429 0.048226997 1e-6 469 429 0.0056737997 1e-6 470 429 0.0060283989 1e-6 471 429 0.0024822999 1e-6 478 429 0.0014183999 1e-6 479 429 0.0163121 1e-6 483 429 0.0042552985 1e-6 490 429 0.0010638 1e-6 491 429 0.00070919981 1e-6 9 430 6.2499996e-05 1e-6 18 430 0.00012489999 1e-6 22 430 6.2499996e-05 1e-6 60 430 0.0034351 1e-6 82 430 0.00012489999 1e-6 83 430 6.2499996e-05 1e-6 84 430 6.2499996e-05 1e-6 108 430 6.2499996e-05 1e-6 113 430 0.00012489999 1e-6 114 430 0.00018739999 1e-6 126 430 6.2499996e-05 1e-6 130 430 0.011991799 1e-6 131 430 0.00024979981 1e-6 132 430 0.00031229993 1e-6 133 430 0.00068699988 1e-6 135 430 0.0033101998 1e-6 138 430 0.00024979981 1e-6 139 430 0.0018736999 1e-6 141 430 0.00081189978 1e-6 142 430 0.00018739999 1e-6 143 430 6.2499996e-05 1e-6 145 430 6.2499996e-05 1e-6 149 430 0.00074949977 1e-6 150 430 0.004371997 1e-6 156 430 0.00012489999 1e-6 158 430 0.0046842992 1e-6 159 430 6.2499996e-05 1e-6 160 430 0.053713098 1e-6 161 430 0.0013740999 1e-6 165 430 0.0039972998 1e-6 169 430 0.0013116 1e-6 170 430 0.0011866998 1e-6 171 430 0.0051838979 1e-6 172 430 6.2499996e-05 1e-6 188 430 0.00018739999 1e-6 189 430 0.00012489999 1e-6 190 430 0.00012489999 1e-6 192 430 6.2499996e-05 1e-6 194 430 0.00018739999 1e-6 197 430 6.2499996e-05 1e-6 198 430 0.015739199 1e-6 200 430 6.2499996e-05 1e-6 203 430 0.00012489999 1e-6 204 430 0.0015613998 1e-6 206 430 0.00024979981 1e-6 207 430 6.2499996e-05 1e-6 214 430 0.00062459987 1e-6 219 430 0.005621098 1e-6 222 430 6.2499996e-05 1e-6 224 430 0.029104996 1e-6 225 430 0.0099306963 1e-6 227 430 0.0092435963 1e-6 230 430 0.00031229993 1e-6 233 430 0.007557299 1e-6 234 430 0.0025606998 1e-6 237 430 0.00037469994 1e-6 240 430 0.011179797 1e-6 241 430 0.020111199 1e-6 242 430 0.0025606998 1e-6 243 430 0.0110549 1e-6 248 430 0.00012489999 1e-6 252 430 0.00087439991 1e-6 269 430 0.0022484998 1e-6 270 430 0.00056209997 1e-6 277 430 0.051464599 1e-6 282 430 0.0081193969 1e-6 283 430 0.0084316991 1e-6 284 430 0.00018739999 1e-6 292 430 0.0021235 1e-6 293 430 0.0074947998 1e-6 294 430 0.0014364999 1e-6 295 430 6.2499996e-05 1e-6 296 430 0.0061207972 1e-6 298 430 0.00062459987 1e-6 312 430 0.011554599 1e-6 315 430 0.00031229993 1e-6 319 430 0.00043719984 1e-6 321 430 0.00049969996 1e-6 322 430 6.2499996e-05 1e-6 324 430 0.0026856998 1e-6 326 430 0.00018739999 1e-6 340 430 6.2499996e-05 1e-6 350 430 6.2499996e-05 1e-6 351 430 0.00018739999 1e-6 354 430 6.2499996e-05 1e-6 355 430 6.2499996e-05 1e-6 356 430 0.0023108998 1e-6 358 430 0.0015613998 1e-6 371 430 0.0016862999 1e-6 372 430 0.0029354999 1e-6 387 430 6.2499996e-05 1e-6 392 430 0.0019361998 1e-6 393 430 0.0021235 1e-6 398 430 6.2499996e-05 1e-6 402 430 0.00012489999 1e-6 409 430 6.2499996e-05 1e-6 417 430 0.00056209997 1e-6 421 430 6.2499996e-05 1e-6 422 430 0.00018739999 1e-6 423 430 6.2499996e-05 1e-6 428 430 0.00049969996 1e-6 430 430 0.052214097 1e-6 431 430 6.2499996e-05 1e-6 433 430 6.2499996e-05 1e-6 434 430 6.2499996e-05 1e-6 437 430 0.00074949977 1e-6 441 430 0.0018736999 1e-6 442 430 0.00012489999 1e-6 443 430 0.0083691999 1e-6 444 430 0.0021235 1e-6 445 430 0.0098681971 1e-6 446 430 0.00099929981 1e-6 447 430 0.0033101998 1e-6 450 430 0.0078695975 1e-6 452 430 0.0053712986 1e-6 453 430 0.0023733999 1e-6 454 430 0.00056209997 1e-6 455 430 0.054462597 1e-6 456 430 0.00049969996 1e-6 457 430 0.0073698983 1e-6 458 430 0.0023733999 1e-6 459 430 0.0038722998 1e-6 460 430 0.0013116 1e-6 463 430 0.017550398 1e-6 464 430 0.0053712986 1e-6 465 430 0.0012490998 1e-6 467 430 0.014802299 1e-6 468 430 0.041408997 1e-6 469 430 0.013053499 1e-6 470 430 0.0066203997 1e-6 471 430 0.0019985999 1e-6 473 430 0.00012489999 1e-6 477 430 0.00018739999 1e-6 478 430 0.0013116 1e-6 479 430 0.0042470992 1e-6 483 430 0.0021235 1e-6 489 430 0.0019361998 1e-6 490 430 0.0023108998 1e-6 491 430 0.0024357999 1e-6 13 431 0.00030889991 1e-6 24 431 0.00092679984 1e-6 60 431 0.0021624998 1e-6 114 431 0.00030889991 1e-6 120 431 0.00030889991 1e-6 126 431 0.00030889991 1e-6 130 431 0.00030889991 1e-6 131 431 0.00061789993 1e-6 135 431 0.021933898 1e-6 160 431 0.00061789993 1e-6 171 431 0.0027804 1e-6 187 431 0.00092679984 1e-6 194 431 0.00061789993 1e-6 198 431 0.030274898 1e-6 206 431 0.00061789993 1e-6 214 431 0.00061789993 1e-6 224 431 0.043558899 1e-6 225 431 0.00030889991 1e-6 233 431 0.00061789993 1e-6 234 431 0.0021624998 1e-6 237 431 0.00030889991 1e-6 240 431 0.00061789993 1e-6 241 431 0.10534447 1e-6 268 431 0.00030889991 1e-6 272 431 0.00061789993 1e-6 273 431 0.00030889991 1e-6 276 431 0.0111214 1e-6 277 431 0.0024714 1e-6 279 431 0.00061789993 1e-6 290 431 0.00030889991 1e-6 292 431 0.063639164 1e-6 293 431 0.00030889991 1e-6 298 431 0.00061789993 1e-6 312 431 0.00030889991 1e-6 315 431 0.00092679984 1e-6 321 431 0.00030889991 1e-6 322 431 0.0027804 1e-6 326 431 0.029039197 1e-6 358 431 0.0012357 1e-6 370 431 0.00030889991 1e-6 372 431 0.00030889991 1e-6 417 431 0.00061789993 1e-6 424 431 0.00061789993 1e-6 431 431 0.050664198 1e-6 432 431 0.00061789993 1e-6 433 431 0.00030889991 1e-6 434 431 0.00061789993 1e-6 442 431 0.0101946 1e-6 443 431 0.0040160976 1e-6 444 431 0.0071052983 1e-6 445 431 0.018226799 1e-6 446 431 0.00030889991 1e-6 447 431 0.0089588985 1e-6 450 431 0.0046338998 1e-6 452 431 0.0058695972 1e-6 453 431 0.00061789993 1e-6 454 431 0.0012357 1e-6 455 431 0.0457213 1e-6 456 431 0.00030889991 1e-6 457 431 0.012665998 1e-6 458 431 0.00061789993 1e-6 459 431 0.00061789993 1e-6 460 431 0.00092679984 1e-6 463 431 0.0176089 1e-6 464 431 0.00092679984 1e-6 465 431 0.011430297 1e-6 467 431 0.0092677996 1e-6 468 431 0.016990997 1e-6 469 431 0.0071052983 1e-6 470 431 0.0071052983 1e-6 471 431 0.0015445999 1e-6 473 431 0.00030889991 1e-6 478 431 0.00092679984 1e-6 479 431 0.0052517988 1e-6 483 431 0.0024714 1e-6 490 431 0.00061789993 1e-6 491 431 0.0024714 1e-6 24 432 0.011454798 1e-6 60 432 0.0028636998 1e-6 114 432 0.00057269982 1e-6 126 432 0.00057269982 1e-6 135 432 0.010309298 1e-6 139 432 0.00057269982 1e-6 156 432 0.00057269982 1e-6 159 432 0.00057269982 1e-6 160 432 0.0148912 1e-6 171 432 0.048682697 1e-6 187 432 0.0017181998 1e-6 188 432 0.00057269982 1e-6 198 432 0.016036697 1e-6 206 432 0.0011455 1e-6 208 432 0.00057269982 1e-6 218 432 0.0011455 1e-6 224 432 0.0028636998 1e-6 225 432 0.010881998 1e-6 233 432 0.012600198 1e-6 234 432 0.0091637969 1e-6 240 432 0.0068728998 1e-6 241 432 0.057273798 1e-6 268 432 0.0040091984 1e-6 272 432 0.00057269982 1e-6 273 432 0.0040091984 1e-6 276 432 0.021191299 1e-6 277 432 0.002291 1e-6 279 432 0.00057269982 1e-6 292 432 0.0028636998 1e-6 294 432 0.0011455 1e-6 312 432 0.0057273991 1e-6 315 432 0.0223368 1e-6 317 432 0.00057269982 1e-6 325 432 0.0017181998 1e-6 326 432 0.018327598 1e-6 358 432 0.0017181998 1e-6 417 432 0.00057269982 1e-6 428 432 0.0011455 1e-6 430 432 0.00057269982 1e-6 431 432 0.002291 1e-6 432 432 0.0011455 1e-6 433 432 0.0051545985 1e-6 434 432 0.010881998 1e-6 442 432 0.044100799 1e-6 443 432 0.0063000992 1e-6 445 432 0.014318399 1e-6 446 432 0.00057269982 1e-6 447 432 0.0011455 1e-6 450 432 0.0045818985 1e-6 452 432 0.0057273991 1e-6 453 432 0.0034363999 1e-6 455 432 0.038946196 1e-6 457 432 0.0045818985 1e-6 458 432 0.00057269982 1e-6 459 432 0.00057269982 1e-6 460 432 0.0011455 1e-6 463 432 0.0154639 1e-6 464 432 0.0017181998 1e-6 465 432 0.0011455 1e-6 467 432 0.010309298 1e-6 468 432 0.053264599 1e-6 469 432 0.0080182999 1e-6 470 432 0.0091637969 1e-6 471 432 0.0017181998 1e-6 473 432 0.00057269982 1e-6 478 432 0.0011455 1e-6 479 432 0.0148912 1e-6 483 432 0.0028636998 1e-6 490 432 0.0011455 1e-6 491 432 0.00057269982 1e-6 24 433 0.00060099992 1e-6 60 433 0.0030047998 1e-6 114 433 0.00060099992 1e-6 126 433 0.00060099992 1e-6 131 433 0.0012019 1e-6 135 433 0.00060099992 1e-6 160 433 0.00060099992 1e-6 171 433 0.058293298 1e-6 187 433 0.0018028999 1e-6 198 433 0.012019198 1e-6 206 433 0.0012019 1e-6 214 433 0.0036058 1e-6 224 433 0.025240399 1e-6 225 433 0.00060099992 1e-6 233 433 0.0012019 1e-6 234 433 0.0036058 1e-6 237 433 0.00060099992 1e-6 240 433 0.025841299 1e-6 241 433 0.050480798 1e-6 272 433 0.00060099992 1e-6 276 433 0.022836499 1e-6 277 433 0.040264398 1e-6 279 433 0.00060099992 1e-6 292 433 0.0012019 1e-6 294 433 0.032451898 1e-6 315 433 0.044471197 1e-6 326 433 0.0096153989 1e-6 358 433 0.0018028999 1e-6 417 433 0.00060099992 1e-6 431 433 0.00060099992 1e-6 433 433 0.0024037999 1e-6 434 433 0.00060099992 1e-6 437 433 0.00060099992 1e-6 442 433 0.0024037999 1e-6 443 433 0.0030047998 1e-6 444 433 0.0012019 1e-6 445 433 0.032451898 1e-6 447 433 0.0042066984 1e-6 450 433 0.0066105984 1e-6 452 433 0.0078125 1e-6 453 433 0.0030047998 1e-6 455 433 0.025240399 1e-6 457 433 0.0048076995 1e-6 458 433 0.00060099992 1e-6 459 433 0.036057699 1e-6 460 433 0.0012019 1e-6 463 433 0.021033697 1e-6 464 433 0.0012019 1e-6 465 433 0.0012019 1e-6 467 433 0.011418298 1e-6 468 433 0.019831698 1e-6 469 433 0.012620199 1e-6 470 433 0.013822097 1e-6 471 433 0.0024037999 1e-6 473 433 0.00060099992 1e-6 478 433 0.0012019 1e-6 479 433 0.0036058 1e-6 483 433 0.0030047998 1e-6 490 433 0.0018028999 1e-6 491 433 0.00060099992 1e-6 60 434 0.015398797 1e-6 114 434 0.00030799978 1e-6 126 434 0.00030799978 1e-6 131 434 0.05328 1e-6 187 434 0.10101628 1e-6 188 434 0.0021557999 1e-6 192 434 0.010163199 1e-6 198 434 0.037265196 1e-6 203 434 0.00030799978 1e-6 206 434 0.0018479 1e-6 211 434 0.0006159998 1e-6 214 434 0.00092389993 1e-6 219 434 0.00030799978 1e-6 221 434 0.0021557999 1e-6 222 434 0.0030797999 1e-6 223 434 0.0043116994 1e-6 224 434 0.0015399 1e-6 233 434 0.0018479 1e-6 234 434 0.0120111 1e-6 240 434 0.00092389993 1e-6 241 434 0.064367056 1e-6 272 434 0.00092389993 1e-6 276 434 0.012626998 1e-6 277 434 0.010779198 1e-6 279 434 0.0006159998 1e-6 282 434 0.00092389993 1e-6 284 434 0.00030799978 1e-6 292 434 0.0015399 1e-6 293 434 0.0018479 1e-6 294 434 0.00092389993 1e-6 295 434 0.00030799978 1e-6 296 434 0.0021557999 1e-6 298 434 0.0012319 1e-6 308 434 0.0015399 1e-6 312 434 0.0027717999 1e-6 315 434 0.0036956999 1e-6 320 434 0.0021557999 1e-6 321 434 0.0033876998 1e-6 322 434 0.0006159998 1e-6 326 434 0.041576799 1e-6 340 434 0.0012319 1e-6 351 434 0.0012319 1e-6 354 434 0.00030799978 1e-6 358 434 0.0021557999 1e-6 359 434 0.0018479 1e-6 361 434 0.0024637999 1e-6 363 434 0.0018479 1e-6 370 434 0.00030799978 1e-6 371 434 0.0006159998 1e-6 372 434 0.0043116994 1e-6 373 434 0.00030799978 1e-6 386 434 0.0018479 1e-6 392 434 0.0018479 1e-6 417 434 0.00030799978 1e-6 419 434 0.0021557999 1e-6 422 434 0.00030799978 1e-6 434 434 0.0024637999 1e-6 441 434 0.0015399 1e-6 443 434 0.005543597 1e-6 444 434 0.0080073997 1e-6 445 434 0.012319099 1e-6 446 434 0.00030799978 1e-6 447 434 0.012319099 1e-6 450 434 0.0040036999 1e-6 452 434 0.0046195984 1e-6 453 434 0.0012319 1e-6 454 434 0.00092389993 1e-6 455 434 0.046196498 1e-6 456 434 0.00030799978 1e-6 457 434 0.0052355975 1e-6 458 434 0.0006159998 1e-6 459 434 0.0012319 1e-6 460 434 0.0018479 1e-6 463 434 0.020942397 1e-6 464 434 0.0024637999 1e-6 465 434 0.00092389993 1e-6 467 434 0.0157068 1e-6 468 434 0.0033876998 1e-6 469 434 0.011087198 1e-6 470 434 0.012626998 1e-6 471 434 0.0012319 1e-6 473 434 0.00030799978 1e-6 478 434 0.011087198 1e-6 483 434 0.0021557999 1e-6 490 434 0.0012319 1e-6 491 434 0.0015399 1e-6 16 435 0.013605397 1e-6 60 435 0.00097179995 1e-6 82 435 0.00097179995 1e-6 84 435 0.038872696 1e-6 114 435 0.00097179995 1e-6 130 435 0.0019435999 1e-6 132 435 0.00097179995 1e-6 149 435 0.00097179995 1e-6 150 435 0.0019435999 1e-6 171 435 0.00097179995 1e-6 187 435 0.0019435999 1e-6 194 435 0.00097179995 1e-6 198 435 0.017492697 1e-6 206 435 0.00097179995 1e-6 214 435 0.00097179995 1e-6 223 435 0.00097179995 1e-6 224 435 0.0019435999 1e-6 233 435 0.00097179995 1e-6 234 435 0.0068026967 1e-6 241 435 0.27016515 1e-6 272 435 0.00097179995 1e-6 277 435 0.00097179995 1e-6 279 435 0.00097179995 1e-6 292 435 0.00097179995 1e-6 293 435 0.00097179995 1e-6 298 435 0.00097179995 1e-6 326 435 0.0019435999 1e-6 358 435 0.0019435999 1e-6 417 435 0.00097179995 1e-6 435 435 0.033041798 1e-6 442 435 0.0029155 1e-6 443 435 0.00097179995 1e-6 444 435 0.00097179995 1e-6 445 435 0.012633599 1e-6 447 435 0.0068026967 1e-6 450 435 0.0058308989 1e-6 452 435 0.0048590973 1e-6 455 435 0.047618996 1e-6 456 435 0.03207 1e-6 457 435 0.0048590973 1e-6 459 435 0.060252696 1e-6 460 435 0.00097179995 1e-6 463 435 0.012633599 1e-6 464 435 0.00097179995 1e-6 465 435 0.00097179995 1e-6 467 435 0.0087463968 1e-6 468 435 0.0029155 1e-6 469 435 0.0048590973 1e-6 470 435 0.0058308989 1e-6 471 435 0.0029155 1e-6 478 435 0.00097179995 1e-6 479 435 0.0019435999 1e-6 483 435 0.0029155 1e-6 490 435 0.00097179995 1e-6 60 436 0.0028652998 1e-6 114 436 0.00095509994 1e-6 131 436 0.0057306997 1e-6 139 436 0.00095509994 1e-6 160 436 0.00095509994 1e-6 188 436 0.0019101999 1e-6 198 436 0.014326598 1e-6 206 436 0.00095509994 1e-6 224 436 0.09551096 1e-6 234 436 0.0047754981 1e-6 241 436 0.0057306997 1e-6 277 436 0.034383997 1e-6 279 436 0.00095509994 1e-6 292 436 0.029608399 1e-6 293 436 0.0085959993 1e-6 295 436 0.00095509994 1e-6 312 436 0.00095509994 1e-6 315 436 0.0038204 1e-6 319 436 0.00095509994 1e-6 320 436 0.00095509994 1e-6 358 436 0.0019101999 1e-6 417 436 0.00095509994 1e-6 428 436 0.00095509994 1e-6 436 436 0.1432665 1e-6 437 436 0.0019101999 1e-6 443 436 0.0028652998 1e-6 444 436 0.0019101999 1e-6 445 436 0.0076408982 1e-6 447 436 0.015281796 1e-6 450 436 0.0047754981 1e-6 452 436 0.0085959993 1e-6 455 436 0.043935098 1e-6 457 436 0.0028652998 1e-6 459 436 0.057306599 1e-6 460 436 0.00095509994 1e-6 463 436 0.0095510967 1e-6 464 436 0.00095509994 1e-6 467 436 0.010506198 1e-6 468 436 0.0047754981 1e-6 469 436 0.0066857971 1e-6 470 436 0.0066857971 1e-6 471 436 0.0019101999 1e-6 478 436 0.00095509994 1e-6 483 436 0.0038204 1e-6 490 436 0.00095509994 1e-6 491 436 0.00095509994 1e-6 4 437 0.0005394998 1e-6 60 437 0.0014385998 1e-6 108 437 0.00017979999 1e-6 114 437 0.00035959994 1e-6 126 437 0.00017979999 1e-6 130 437 0.00017979999 1e-6 131 437 0.078223288 1e-6 132 437 0.00089909998 1e-6 143 437 0.00017979999 1e-6 149 437 0.00017979999 1e-6 150 437 0.00035959994 1e-6 188 437 0.0088113993 1e-6 189 437 0.00017979999 1e-6 190 437 0.00017979999 1e-6 194 437 0.00035959994 1e-6 198 437 0.0115087 1e-6 206 437 0.00035959994 1e-6 214 437 0.00035959994 1e-6 224 437 0.027153399 1e-6 226 437 0.00035959994 1e-6 227 437 0.0028771998 1e-6 233 437 0.0050350986 1e-6 234 437 0.0032368 1e-6 237 437 0.00017979999 1e-6 240 437 0.00017979999 1e-6 241 437 0.013306998 1e-6 277 437 0.043337498 1e-6 282 437 0.00017979999 1e-6 284 437 0.00017979999 1e-6 288 437 0.0046753995 1e-6 290 437 0.0043157972 1e-6 292 437 0.038122598 1e-6 293 437 0.013486799 1e-6 295 437 0.00017979999 1e-6 298 437 0.00017979999 1e-6 312 437 0.0053946972 1e-6 313 437 0.00071929977 1e-6 315 437 0.036504198 1e-6 317 437 0.00017979999 1e-6 319 437 0.0005394998 1e-6 320 437 0.00035959994 1e-6 321 437 0.00017979999 1e-6 322 437 0.0062937997 1e-6 326 437 0.00017979999 1e-6 340 437 0.0005394998 1e-6 356 437 0.00017979999 1e-6 358 437 0.0017982 1e-6 372 437 0.00017979999 1e-6 387 437 0.00017979999 1e-6 417 437 0.0005394998 1e-6 422 437 0.0005394998 1e-6 436 437 0.0016184 1e-6 437 437 0.031109497 1e-6 443 437 0.0035964998 1e-6 444 437 0.0071929991 1e-6 445 437 0.0055744983 1e-6 446 437 0.00017979999 1e-6 447 437 0.009530697 1e-6 450 437 0.0043157972 1e-6 452 437 0.0066534989 1e-6 453 437 0.00071929977 1e-6 454 437 0.00071929977 1e-6 455 437 0.032188497 1e-6 456 437 0.00017979999 1e-6 457 437 0.0041358992 1e-6 458 437 0.00089909998 1e-6 459 437 0.0012587998 1e-6 460 437 0.0010788999 1e-6 463 437 0.0098902993 1e-6 464 437 0.0005394998 1e-6 465 437 0.00089909998 1e-6 467 437 0.0086314976 1e-6 468 437 0.0032368 1e-6 469 437 0.0062937997 1e-6 470 437 0.0064736977 1e-6 471 437 0.0017982 1e-6 473 437 0.00017979999 1e-6 477 437 0.00017979999 1e-6 478 437 0.0014385998 1e-6 479 437 0.0037762998 1e-6 483 437 0.0026973998 1e-6 490 437 0.00071929977 1e-6 13 438 0.041518997 1e-6 60 438 0.0025316 1e-6 108 438 0.00025319983 1e-6 114 438 0.00050629978 1e-6 119 438 0.00025319983 1e-6 120 438 0.00050629978 1e-6 126 438 0.00025319983 1e-6 130 438 0.042278498 1e-6 132 438 0.00025319983 1e-6 135 438 0.00025319983 1e-6 137 438 0.00025319983 1e-6 139 438 0.00025319983 1e-6 142 438 0.00025319983 1e-6 149 438 0.00025319983 1e-6 150 438 0.00025319983 1e-6 152 438 0.00025319983 1e-6 157 438 0.00025319983 1e-6 160 438 0.0098733976 1e-6 161 438 0.0040505975 1e-6 171 438 0.042531598 1e-6 172 438 0.00025319983 1e-6 189 438 0.00025319983 1e-6 190 438 0.00025319983 1e-6 193 438 0.00025319983 1e-6 194 438 0.00050629978 1e-6 198 438 0.0083543994 1e-6 204 438 0.00025319983 1e-6 206 438 0.00050629978 1e-6 214 438 0.0032910998 1e-6 219 438 0.0015189999 1e-6 224 438 0.00075949985 1e-6 227 438 0.0073417984 1e-6 228 438 0.00025319983 1e-6 231 438 0.0010126999 1e-6 232 438 0.00025319983 1e-6 233 438 0.0025316 1e-6 234 438 0.0032910998 1e-6 237 438 0.00025319983 1e-6 240 438 0.0012657999 1e-6 241 438 0.085316479 1e-6 277 438 0.0260759 1e-6 284 438 0.00025319983 1e-6 292 438 0.00075949985 1e-6 293 438 0.0025316 1e-6 295 438 0.0068353973 1e-6 300 438 0.0010126999 1e-6 315 438 0.015949398 1e-6 326 438 0.00025319983 1e-6 358 438 0.0017722 1e-6 387 438 0.00025319983 1e-6 417 438 0.00075949985 1e-6 422 438 0.00050629978 1e-6 431 438 0.00050629978 1e-6 438 438 0.0027847998 1e-6 442 438 0.054177199 1e-6 443 438 0.0065822974 1e-6 444 438 0.00025319983 1e-6 445 438 0.018227797 1e-6 446 438 0.00050629978 1e-6 447 438 0.00075949985 1e-6 450 438 0.0050632991 1e-6 452 438 0.0073417984 1e-6 453 438 0.0015189999 1e-6 454 438 0.00075949985 1e-6 455 438 0.059493698 1e-6 456 438 0.00025319983 1e-6 457 438 0.0043037981 1e-6 458 438 0.00075949985 1e-6 459 438 0.00050629978 1e-6 460 438 0.0027847998 1e-6 463 438 0.0096202977 1e-6 464 438 0.00025319983 1e-6 465 438 0.0012657999 1e-6 467 438 0.010126598 1e-6 468 438 0.06556958 1e-6 469 438 0.0068353973 1e-6 470 438 0.0073417984 1e-6 471 438 0.0020252999 1e-6 473 438 0.00025319983 1e-6 478 438 0.0015189999 1e-6 483 438 0.0035442999 1e-6 490 438 0.00075949985 1e-6 22 439 0.00032639992 1e-6 24 439 0.0022845999 1e-6 60 439 0.013707597 1e-6 114 439 0.00032639992 1e-6 119 439 0.0088119991 1e-6 132 439 0.0026109999 1e-6 134 439 0.00032639992 1e-6 143 439 0.00032639992 1e-6 169 439 0.0065273978 1e-6 171 439 0.0058746971 1e-6 191 439 0.058746699 1e-6 198 439 0.015339397 1e-6 206 439 0.00065269996 1e-6 214 439 0.021866798 1e-6 224 439 0.072780669 1e-6 234 439 0.0048955977 1e-6 240 439 0.00065269996 1e-6 241 439 0.057114899 1e-6 272 439 0.00097909989 1e-6 279 439 0.00032639992 1e-6 317 439 0.0075064972 1e-6 337 439 0.0068537965 1e-6 358 439 0.00065269996 1e-6 417 439 0.00032639992 1e-6 439 439 0.00032639992 1e-6 443 439 0.012728497 1e-6 444 439 0.012402099 1e-6 445 439 0.039164498 1e-6 446 439 0.00065269996 1e-6 447 439 0.0104439 1e-6 450 439 0.0088119991 1e-6 452 439 0.0068537965 1e-6 453 439 0.0022845999 1e-6 454 439 0.013707597 1e-6 455 439 0.038511697 1e-6 457 439 0.030352499 1e-6 458 439 0.013381198 1e-6 459 439 0.014360297 1e-6 460 439 0.00065269996 1e-6 463 439 0.033616196 1e-6 464 439 0.014033899 1e-6 465 439 0.0120757 1e-6 467 439 0.030352499 1e-6 468 439 0.071801543 1e-6 469 439 0.0267624 1e-6 470 439 0.0029372999 1e-6 471 439 0.015665799 1e-6 478 439 0.015013099 1e-6 483 439 0.00097909989 1e-6 490 439 0.00065269996 1e-6 491 439 0.0084855966 1e-6 22 440 0.00025589997 1e-6 60 440 0.0028146999 1e-6 108 440 0.00025589997 1e-6 114 440 0.00051179994 1e-6 126 440 0.00025589997 1e-6 130 440 0.030706197 1e-6 137 440 0.029426798 1e-6 142 440 0.0040941983 1e-6 160 440 0.038126897 1e-6 165 440 0.020726699 1e-6 170 440 0.0079323985 1e-6 172 440 0.0038382998 1e-6 188 440 0.0023029998 1e-6 189 440 0.00025589997 1e-6 194 440 0.00025589997 1e-6 206 440 0.00051179994 1e-6 233 440 0.013817798 1e-6 234 440 0.0023029998 1e-6 237 440 0.00025589997 1e-6 241 440 0.0084441975 1e-6 252 440 0.00025589997 1e-6 272 440 0.0025588998 1e-6 277 440 0.075230241 1e-6 279 440 0.00025589997 1e-6 284 440 0.00025589997 1e-6 289 440 0.00025589997 1e-6 292 440 0.014585499 1e-6 293 440 0.00051179994 1e-6 307 440 0.00025589997 1e-6 319 440 0.057830099 1e-6 324 440 0.00025589997 1e-6 358 440 0.0015352999 1e-6 387 440 0.00025589997 1e-6 417 440 0.00051179994 1e-6 422 440 0.00025589997 1e-6 440 440 0.095701098 1e-6 443 440 0.0071647987 1e-6 444 440 0.00025589997 1e-6 445 440 0.015353099 1e-6 446 440 0.0010235 1e-6 447 440 0.0051176995 1e-6 450 440 0.0043500997 1e-6 452 440 0.0051176995 1e-6 453 440 0.0040941983 1e-6 454 440 0.00051179994 1e-6 455 440 0.061156597 1e-6 456 440 0.00025589997 1e-6 457 440 0.0038382998 1e-6 458 440 0.00076769991 1e-6 459 440 0.00051179994 1e-6 460 440 0.0010235 1e-6 463 440 0.0099794976 1e-6 464 440 0.00051179994 1e-6 465 440 0.0089559965 1e-6 467 440 0.0099794976 1e-6 468 440 0.023285598 1e-6 469 440 0.0066529997 1e-6 470 440 0.0071647987 1e-6 471 440 0.0020470999 1e-6 473 440 0.00025589997 1e-6 478 440 0.0010235 1e-6 483 440 0.0038382998 1e-6 490 440 0.00076769991 1e-6 18 441 0.0001679 1e-6 60 441 0.0018465999 1e-6 113 441 0.0001679 1e-6 114 441 0.0001679 1e-6 130 441 0.0001679 1e-6 150 441 0.00083929999 1e-6 160 441 0.010072198 1e-6 165 441 0.0125902 1e-6 170 441 0.0043645985 1e-6 171 441 0.0090649985 1e-6 172 441 0.0001679 1e-6 187 441 0.00067149987 1e-6 188 441 0.0078898966 1e-6 189 441 0.0001679 1e-6 190 441 0.0001679 1e-6 194 441 0.021487299 1e-6 198 441 0.013933197 1e-6 203 441 0.0001679 1e-6 204 441 0.00067149987 1e-6 206 441 0.0001679 1e-6 214 441 0.00067149987 1e-6 219 441 0.0001679 1e-6 221 441 0.0001679 1e-6 224 441 0.046835698 1e-6 233 441 0.010072198 1e-6 234 441 0.0036930998 1e-6 237 441 0.00033569988 1e-6 240 441 0.0001679 1e-6 241 441 0.026355498 1e-6 252 441 0.00083929999 1e-6 270 441 0.0001679 1e-6 277 441 0.044485498 1e-6 279 441 0.0001679 1e-6 282 441 0.0001679 1e-6 284 441 0.0001679 1e-6 288 441 0.0001679 1e-6 292 441 0.0001679 1e-6 293 441 0.018297799 1e-6 295 441 0.016451199 1e-6 312 441 0.0015107999 1e-6 315 441 0.0001679 1e-6 319 441 0.007554099 1e-6 320 441 0.0001679 1e-6 321 441 0.0047003999 1e-6 326 441 0.0035253 1e-6 340 441 0.0001679 1e-6 358 441 0.0016786999 1e-6 370 441 0.019137099 1e-6 371 441 0.0043645985 1e-6 373 441 0.0025179998 1e-6 376 441 0.0026858998 1e-6 384 441 0.0040288977 1e-6 385 441 0.0001679 1e-6 386 441 0.0063789971 1e-6 398 441 0.0001679 1e-6 402 441 0.00033569988 1e-6 417 441 0.00050359988 1e-6 422 441 0.0001679 1e-6 431 441 0.0001679 1e-6 441 441 0.016115498 1e-6 442 441 0.0028537998 1e-6 443 441 0.0068826973 1e-6 444 441 0.0025179998 1e-6 445 441 0.0095685981 1e-6 446 441 0.00033569988 1e-6 447 441 0.0047003999 1e-6 450 441 0.0048681982 1e-6 452 441 0.0058753975 1e-6 453 441 0.0028537998 1e-6 454 441 0.0001679 1e-6 455 441 0.0256841 1e-6 456 441 0.00067149987 1e-6 457 441 0.0040288977 1e-6 458 441 0.00067149987 1e-6 459 441 0.00033569988 1e-6 460 441 0.001343 1e-6 463 441 0.024508998 1e-6 464 441 0.00050359988 1e-6 465 441 0.001343 1e-6 467 441 0.014772497 1e-6 468 441 0.015276097 1e-6 469 441 0.0083934963 1e-6 470 441 0.0092327967 1e-6 471 441 0.0023502 1e-6 473 441 0.0001679 1e-6 478 441 0.0015107999 1e-6 483 441 0.0025179998 1e-6 490 441 0.00067149987 1e-6 4 442 0.00020639999 1e-6 9 442 6.8799985e-05 1e-6 13 442 0.00013759999 1e-6 17 442 0.0010320998 1e-6 18 442 0.00013759999 1e-6 22 442 0.00020639999 1e-6 60 442 0.0040593967 1e-6 82 442 0.0087380968 1e-6 83 442 6.8799985e-05 1e-6 84 442 6.8799985e-05 1e-6 104 442 6.8799985e-05 1e-6 108 442 6.8799985e-05 1e-6 113 442 0.00013759999 1e-6 114 442 0.00027519977 1e-6 120 442 6.8799985e-05 1e-6 126 442 0.00013759999 1e-6 130 442 0.0037841999 1e-6 131 442 0.0074308999 1e-6 132 442 0.0087380968 1e-6 138 442 0.00013759999 1e-6 139 442 0.0063299984 1e-6 143 442 6.8799985e-05 1e-6 149 442 0.00013759999 1e-6 150 442 0.0011008999 1e-6 151 442 6.8799985e-05 1e-6 158 442 0.0052978992 1e-6 159 442 0.0017888998 1e-6 160 442 0.0048162974 1e-6 161 442 0.00013759999 1e-6 162 442 0.004403498 1e-6 165 442 0.00013759999 1e-6 171 442 0.010664597 1e-6 172 442 6.8799985e-05 1e-6 187 442 0.00061919983 1e-6 188 442 0.005917199 1e-6 189 442 0.00013759999 1e-6 190 442 0.00013759999 1e-6 192 442 0.0053666979 1e-6 193 442 0.0054354966 1e-6 194 442 0.0097701997 1e-6 197 442 6.8799985e-05 1e-6 198 442 0.054492898 1e-6 200 442 6.8799985e-05 1e-6 203 442 0.00013759999 1e-6 204 442 0.00020639999 1e-6 206 442 0.00027519977 1e-6 207 442 6.8799985e-05 1e-6 214 442 0.0088068992 1e-6 218 442 6.8799985e-05 1e-6 219 442 0.00061919983 1e-6 221 442 0.00027519977 1e-6 223 442 0.010733496 1e-6 224 442 0.0013760999 1e-6 225 442 0.0025457998 1e-6 226 442 0.00020639999 1e-6 227 442 0.0012384998 1e-6 228 442 0.00013759999 1e-6 230 442 0.0027521998 1e-6 232 442 6.8799985e-05 1e-6 233 442 0.0083252974 1e-6 234 442 0.023255799 1e-6 237 442 0.00048159994 1e-6 240 442 0.0057106987 1e-6 241 442 0.0191276 1e-6 252 442 0.0013760999 1e-6 253 442 0.00013759999 1e-6 270 442 0.004403498 1e-6 272 442 0.0013760999 1e-6 277 442 0.017889097 1e-6 279 442 0.00048159994 1e-6 282 442 6.8799985e-05 1e-6 283 442 6.8799985e-05 1e-6 284 442 0.00020639999 1e-6 290 442 0.0020640998 1e-6 292 442 0.0087380968 1e-6 293 442 0.0072243996 1e-6 294 442 0.00027519977 1e-6 295 442 0.005917199 1e-6 296 442 0.00013759999 1e-6 297 442 0.0052290969 1e-6 298 442 0.010114197 1e-6 300 442 0.00013759999 1e-6 312 442 0.005917199 1e-6 315 442 0.0065363981 1e-6 317 442 6.8799985e-05 1e-6 319 442 6.8799985e-05 1e-6 320 442 0.0018576998 1e-6 321 442 0.0022704999 1e-6 322 442 0.0031649999 1e-6 326 442 0.028347299 1e-6 339 442 0.00061919983 1e-6 340 442 0.00041279988 1e-6 341 442 0.0030273998 1e-6 351 442 0.0023392998 1e-6 356 442 0.0030961998 1e-6 358 442 0.0048850998 1e-6 364 442 0.0024080998 1e-6 369 442 6.8799985e-05 1e-6 370 442 0.00020639999 1e-6 371 442 6.8799985e-05 1e-6 372 442 0.00027519977 1e-6 380 442 6.8799985e-05 1e-6 384 442 6.8799985e-05 1e-6 385 442 0.0017888998 1e-6 386 442 0.00055039977 1e-6 387 442 6.8799985e-05 1e-6 390 442 0.00020639999 1e-6 392 442 0.00013759999 1e-6 393 442 0.00041279988 1e-6 398 442 0.00013759999 1e-6 402 442 0.00020639999 1e-6 409 442 6.8799985e-05 1e-6 415 442 6.8799985e-05 1e-6 417 442 0.00061919983 1e-6 419 442 0.0018576998 1e-6 421 442 6.8799985e-05 1e-6 422 442 0.00027519977 1e-6 423 442 6.8799985e-05 1e-6 424 442 6.8799985e-05 1e-6 425 442 6.8799985e-05 1e-6 428 442 0.00061919983 1e-6 430 442 6.8799985e-05 1e-6 431 442 0.00013759999 1e-6 433 442 6.8799985e-05 1e-6 434 442 6.8799985e-05 1e-6 437 442 0.00020639999 1e-6 442 442 0.030755498 1e-6 443 442 0.0050226972 1e-6 444 442 0.0028209998 1e-6 445 442 0.013141599 1e-6 446 442 0.0010320998 1e-6 447 442 0.0060547963 1e-6 448 442 6.8799985e-05 1e-6 450 442 0.0053666979 1e-6 452 442 0.0056418963 1e-6 453 442 0.0012384998 1e-6 454 442 0.00055039977 1e-6 455 442 0.0399752 1e-6 456 442 0.00075679994 1e-6 457 442 0.010251798 1e-6 458 442 0.0034401999 1e-6 459 442 0.004403498 1e-6 460 442 0.0012384998 1e-6 463 442 0.023393396 1e-6 464 442 0.0018576998 1e-6 465 442 0.0050914995 1e-6 467 442 0.020916499 1e-6 468 442 0.023118198 1e-6 469 442 0.0074996985 1e-6 470 442 0.0083252974 1e-6 471 442 0.0024769998 1e-6 473 442 0.00020639999 1e-6 477 442 0.00020639999 1e-6 478 442 0.0015824998 1e-6 479 442 6.8799985e-05 1e-6 483 442 0.0022016999 1e-6 489 442 0.0024080998 1e-6 490 442 0.0025457998 1e-6 491 442 6.8799985e-05 1e-6 9 443 1.3299999e-05 1e-6 16 443 0.00017279999 1e-6 60 443 1.9899991e-05 1e-6 64 443 0.12640977 1e-6 79 443 6.5999993e-06 1e-6 82 443 1.9899991e-05 1e-6 83 443 1.3299999e-05 1e-6 84 443 1.3299999e-05 1e-6 108 443 1.9899991e-05 1e-6 113 443 2.6599999e-05 1e-6 114 443 6.6499997e-05 1e-6 123 443 0.00026579993 1e-6 126 443 3.9899998e-05 1e-6 127 443 6.5999993e-06 1e-6 134 443 2.6599999e-05 1e-6 141 443 0.00018609999 1e-6 143 443 1.3299999e-05 1e-6 150 443 0.00045189983 1e-6 154 443 0.00036549987 1e-6 169 443 1.3299999e-05 1e-6 187 443 0.000206 1e-6 189 443 0.0001662 1e-6 190 443 0.00011959999 1e-6 192 443 5.3199998e-05 1e-6 194 443 0.00011299999 1e-6 196 443 1.9899991e-05 1e-6 197 443 2.6599999e-05 1e-6 198 443 0.00023929999 1e-6 200 443 5.979999e-05 1e-6 201 443 2.6599999e-05 1e-6 203 443 9.9699988e-05 1e-6 204 443 0.0011564 1e-6 206 443 0.00072439993 1e-6 207 443 7.9799996e-05 1e-6 209 443 2.6599999e-05 1e-6 214 443 0.0004319998 1e-6 217 443 0.0010633999 1e-6 218 443 2.6599999e-05 1e-6 219 443 6.5999993e-06 1e-6 220 443 1.3299999e-05 1e-6 223 443 0.00043859985 1e-6 229 443 3.9899998e-05 1e-6 230 443 6.5999993e-06 1e-6 233 443 0.00013289999 1e-6 234 443 0.023520697 1e-6 237 443 0.0004319998 1e-6 240 443 0.00036549987 1e-6 241 443 0.0002326 1e-6 242 443 0.00043859985 1e-6 248 443 1.3299999e-05 1e-6 250 443 6.5999993e-06 1e-6 251 443 6.5999993e-06 1e-6 252 443 0.00051839999 1e-6 263 443 6.5999993e-06 1e-6 270 443 7.3099989e-05 1e-6 271 443 0.0001794 1e-6 272 443 6.5999993e-06 1e-6 277 443 0.0019673 1e-6 279 443 6.5999993e-06 1e-6 282 443 0.0062872991 1e-6 283 443 0.0014288998 1e-6 284 443 3.3199991e-05 1e-6 292 443 0.00044529978 1e-6 293 443 0.00026579993 1e-6 294 443 9.9699988e-05 1e-6 295 443 8.6399989e-05 1e-6 296 443 0.00014619999 1e-6 297 443 9.2999995e-05 1e-6 312 443 0.00038549979 1e-6 315 443 6.5999993e-06 1e-6 317 443 0.00053169997 1e-6 318 443 9.2999995e-05 1e-6 319 443 0.00065129995 1e-6 322 443 0.0012494999 1e-6 323 443 1.3299999e-05 1e-6 324 443 0.00010629999 1e-6 326 443 0.0023726998 1e-6 327 443 9.2999995e-05 1e-6 328 443 0.002931 1e-6 340 443 0.00029909983 1e-6 341 443 0.00013289999 1e-6 351 443 0.0057887994 1e-6 356 443 4.649999e-05 1e-6 358 443 0.0002923999 1e-6 363 443 6.5999993e-06 1e-6 370 443 0.00013289999 1e-6 371 443 0.00018609999 1e-6 372 443 0.00087729981 1e-6 374 443 0.00029909983 1e-6 375 443 0.00021269999 1e-6 380 443 6.5999993e-06 1e-6 384 443 0.00035889982 1e-6 385 443 0.00025919988 1e-6 386 443 0.00019939999 1e-6 387 443 3.3199991e-05 1e-6 393 443 5.3199998e-05 1e-6 394 443 3.3199991e-05 1e-6 395 443 2.6599999e-05 1e-6 397 443 3.3199991e-05 1e-6 402 443 0.00041209999 1e-6 408 443 0.020782497 1e-6 412 443 0.00088389986 1e-6 414 443 0.00023929999 1e-6 417 443 6.5999993e-06 1e-6 419 443 6.5999993e-06 1e-6 422 443 0.00011299999 1e-6 423 443 6.5999993e-06 1e-6 425 443 6.5999993e-06 1e-6 430 443 2.6599999e-05 1e-6 431 443 1.9899991e-05 1e-6 432 443 1.9899991e-05 1e-6 433 443 5.979999e-05 1e-6 434 443 0.00015289999 1e-6 439 443 1.3299999e-05 1e-6 442 443 3.3199991e-05 1e-6 443 443 0.054571599 1e-6 444 443 0.00011959999 1e-6 445 443 0.010421198 1e-6 446 443 0.0006446999 1e-6 447 443 0.0021201 1e-6 448 443 0.00050509977 1e-6 449 443 0.013578098 1e-6 450 443 0.0065597966 1e-6 452 443 0.010035697 1e-6 453 443 0.0016681999 1e-6 454 443 0.0025189 1e-6 455 443 0.0096435994 1e-6 456 443 0.0007509999 1e-6 457 443 0.0034693 1e-6 458 443 0.00039209984 1e-6 459 443 0.0013557998 1e-6 460 443 0.0038081999 1e-6 463 443 0.016283099 1e-6 464 443 0.00012629999 1e-6 465 443 0.0014622 1e-6 467 443 0.012335297 1e-6 468 443 0.0014421998 1e-6 469 443 0.0082212985 1e-6 470 443 0.0036553999 1e-6 471 443 0.0026916999 1e-6 472 443 0.00041869981 1e-6 473 443 7.3099989e-05 1e-6 477 443 0.00011299999 1e-6 478 443 0.0015152998 1e-6 483 443 0.00107 1e-6 486 443 6.5999993e-06 1e-6 489 443 0.00049849995 1e-6 490 443 0.0028910998 1e-6 491 443 1.3299999e-05 1e-6 18 444 6.8799985e-05 1e-6 22 444 1.38e-05 1e-6 25 444 1.38e-05 1e-6 60 444 0.0023518999 1e-6 70 444 0.020355999 1e-6 108 444 4.1299994e-05 1e-6 114 444 0.00010999999 1e-6 126 444 4.1299994e-05 1e-6 134 444 0.00045389985 1e-6 135 444 4.1299994e-05 1e-6 150 444 0.0050614998 1e-6 153 444 0.00016499999 1e-6 187 444 0.0001926 1e-6 189 444 0.0001238 1e-6 190 444 0.00016499999 1e-6 192 444 9.6299991e-05 1e-6 194 444 9.6299991e-05 1e-6 196 444 6.8799985e-05 1e-6 197 444 0.00060519995 1e-6 198 444 0.00041259988 1e-6 200 444 1.38e-05 1e-6 201 444 1.38e-05 1e-6 202 444 2.7499991e-05 1e-6 203 444 9.6299991e-05 1e-6 204 444 0.002627 1e-6 206 444 0.00017879999 1e-6 207 444 6.8799985e-05 1e-6 209 444 2.7499991e-05 1e-6 223 444 0.0031633999 1e-6 229 444 0.0011002999 1e-6 230 444 0.00034389994 1e-6 231 444 0.00015129999 1e-6 233 444 6.8799985e-05 1e-6 234 444 0.043380197 1e-6 237 444 0.0079497993 1e-6 240 444 6.8799985e-05 1e-6 241 444 0.0011278 1e-6 242 444 0.0018155 1e-6 252 444 0.0012379 1e-6 272 444 0.00015129999 1e-6 282 444 0.00078399992 1e-6 283 444 0.0014028999 1e-6 307 444 1.38e-05 1e-6 308 444 8.2499988e-05 1e-6 309 444 1.38e-05 1e-6 313 444 0.0038235998 1e-6 317 444 0.00039889989 1e-6 318 444 2.7499991e-05 1e-6 319 444 2.7499991e-05 1e-6 322 444 0.0012516 1e-6 323 444 0.0001238 1e-6 328 444 0.0053640977 1e-6 340 444 0.00048139994 1e-6 341 444 4.1299994e-05 1e-6 350 444 9.6299991e-05 1e-6 351 444 0.0025306998 1e-6 354 444 9.6299991e-05 1e-6 356 444 2.7499991e-05 1e-6 358 444 0.00024759979 1e-6 366 444 6.8799985e-05 1e-6 368 444 2.7499991e-05 1e-6 370 444 0.00017879999 1e-6 371 444 0.0001375 1e-6 372 444 0.0035484999 1e-6 373 444 0.0011965998 1e-6 374 444 0.00038509979 1e-6 375 444 0.00053639989 1e-6 376 444 0.00075649982 1e-6 384 444 0.00042639999 1e-6 385 444 5.4999997e-05 1e-6 387 444 4.1299994e-05 1e-6 390 444 6.8799985e-05 1e-6 391 444 4.1299994e-05 1e-6 392 444 0.00042639999 1e-6 393 444 0.00016499999 1e-6 394 444 0.0037685998 1e-6 395 444 4.1299994e-05 1e-6 397 444 0.0032046998 1e-6 402 444 0.0175776 1e-6 408 444 0.0026544998 1e-6 412 444 0.0017604998 1e-6 422 444 0.0001238 1e-6 431 444 1.38e-05 1e-6 432 444 2.7499991e-05 1e-6 433 444 5.4999997e-05 1e-6 434 444 5.4999997e-05 1e-6 438 444 2.7499991e-05 1e-6 441 444 4.1299994e-05 1e-6 442 444 0.00059139985 1e-6 443 444 0.0017604998 1e-6 444 444 0.0065743998 1e-6 445 444 0.014758099 1e-6 446 444 0.0013478999 1e-6 447 444 0.00023379999 1e-6 448 444 0.00090779993 1e-6 449 444 0.0001926 1e-6 450 444 0.0067119971 1e-6 452 444 0.013753999 1e-6 453 444 0.0022419 1e-6 454 444 0.0040161982 1e-6 455 444 0.027081698 1e-6 456 444 0.0059554987 1e-6 457 444 0.0065606982 1e-6 458 444 0.0019393 1e-6 459 444 0.0001926 1e-6 460 444 0.013987798 1e-6 463 444 0.021538798 1e-6 464 444 5.4999997e-05 1e-6 465 444 0.0011965998 1e-6 467 444 0.016656097 1e-6 468 444 0.0086924993 1e-6 469 444 0.013795298 1e-6 470 444 0.0015816998 1e-6 471 444 0.040161699 1e-6 473 444 4.1299994e-05 1e-6 474 444 4.1299994e-05 1e-6 475 444 4.1299994e-05 1e-6 476 444 2.7499991e-05 1e-6 477 444 0.0007976999 1e-6 478 444 0.0016229998 1e-6 483 444 0.0017879999 1e-6 489 444 0.0070282966 1e-6 490 444 0.00017879999 1e-6 491 444 0.00056389999 1e-6 0 445 1.6499995e-05 1e-6 1 445 3.2999997e-06 1e-6 2 445 8.8899993e-05 1e-6 3 445 1.6499995e-05 1e-6 5 445 4.2799991e-05 1e-6 6 445 5.2699994e-05 1e-6 7 445 9.8999999e-06 1e-6 9 445 9.8999999e-06 1e-6 16 445 3.2999997e-06 1e-6 18 445 5.9299986e-05 1e-6 22 445 3.2999997e-06 1e-6 24 445 1.32e-05 1e-6 25 445 3.2999997e-06 1e-6 60 445 0.0029501999 1e-6 62 445 2.9599993e-05 1e-6 64 445 0.00015149999 1e-6 68 445 9.8799996e-05 1e-6 69 445 4.6099987e-05 1e-6 73 445 9.8999999e-06 1e-6 75 445 6.5999993e-06 1e-6 79 445 3.2999997e-06 1e-6 82 445 1.9799991e-05 1e-6 83 445 1.6499995e-05 1e-6 84 445 1.6499995e-05 1e-6 108 445 2.2999986e-05 1e-6 113 445 3.2899989e-05 1e-6 114 445 8.2299986e-05 1e-6 126 445 3.6199999e-05 1e-6 127 445 9.8999999e-06 1e-6 134 445 3.2999997e-06 1e-6 141 445 9.8999999e-06 1e-6 150 445 0.00020089999 1e-6 154 445 0.00077709998 1e-6 169 445 0.00010209999 1e-6 189 445 1.6499995e-05 1e-6 190 445 0.00011849999 1e-6 192 445 0.00038519991 1e-6 194 445 8.5599997e-05 1e-6 196 445 1.32e-05 1e-6 197 445 0.0001449 1e-6 198 445 0.00070789992 1e-6 200 445 3.6199999e-05 1e-6 201 445 2.2999986e-05 1e-6 203 445 8.2299986e-05 1e-6 204 445 0.0010042998 1e-6 206 445 0.00031279982 1e-6 207 445 5.9299986e-05 1e-6 209 445 1.9799991e-05 1e-6 214 445 0.00037539983 1e-6 215 445 0.000158 1e-6 217 445 4.9399998e-05 1e-6 219 445 3.2999997e-06 1e-6 223 445 0.00022059999 1e-6 229 445 0.00016459999 1e-6 233 445 0.00023049999 1e-6 234 445 0.027138099 1e-6 237 445 0.010543097 1e-6 240 445 3.2999997e-06 1e-6 241 445 3.2999997e-06 1e-6 242 445 0.00017779999 1e-6 248 445 1.32e-05 1e-6 250 445 9.8999999e-06 1e-6 251 445 3.2999997e-06 1e-6 252 445 2.2999986e-05 1e-6 263 445 3.2999997e-06 1e-6 271 445 3.2999997e-06 1e-6 272 445 0.00012839999 1e-6 277 445 3.2999997e-06 1e-6 279 445 3.2999997e-06 1e-6 282 445 6.5999993e-06 1e-6 283 445 9.8999999e-06 1e-6 313 445 1.6499995e-05 1e-6 316 445 0.00010539999 1e-6 317 445 0.0001317 1e-6 322 445 8.8899993e-05 1e-6 323 445 2.9599993e-05 1e-6 326 445 0.00027989992 1e-6 328 445 0.00055319979 1e-6 329 445 2.6299997e-05 1e-6 335 445 4.2799991e-05 1e-6 337 445 4.6099987e-05 1e-6 340 445 0.00014819999 1e-6 343 445 3.9499995e-05 1e-6 351 445 3.6199999e-05 1e-6 356 445 4.2799991e-05 1e-6 358 445 0.00033589988 1e-6 363 445 6.5999993e-06 1e-6 366 445 4.6099987e-05 1e-6 368 445 0.0001449 1e-6 372 445 9.8999999e-06 1e-6 375 445 3.2999997e-06 1e-6 376 445 3.2999997e-06 1e-6 380 445 6.5999993e-06 1e-6 384 445 2.2999986e-05 1e-6 387 445 3.2899989e-05 1e-6 392 445 3.2999997e-06 1e-6 393 445 2.9599993e-05 1e-6 394 445 0.00060909986 1e-6 397 445 0.00038849982 1e-6 401 445 0.0019195999 1e-6 402 445 0.0052385963 1e-6 408 445 2.2999986e-05 1e-6 412 445 0.00010209999 1e-6 419 445 9.8999999e-06 1e-6 422 445 9.55e-05 1e-6 423 445 1.32e-05 1e-6 425 445 9.8999999e-06 1e-6 430 445 2.2999986e-05 1e-6 431 445 1.6499995e-05 1e-6 432 445 1.6499995e-05 1e-6 433 445 4.6099987e-05 1e-6 434 445 5.599999e-05 1e-6 442 445 7.2399998e-05 1e-6 443 445 0.0037141 1e-6 444 445 0.00015479999 1e-6 445 445 0.1266225 1e-6 446 445 0.00071449997 1e-6 447 445 0.00037869997 1e-6 448 445 0.00056959991 1e-6 449 445 0.0031148999 1e-6 450 445 0.016440198 1e-6 452 445 0.00063549983 1e-6 453 445 0.00028649997 1e-6 454 445 0.00025349995 1e-6 455 445 0.025369897 1e-6 456 445 0.010299399 1e-6 457 445 0.0036778999 1e-6 458 445 0.000214 1e-6 459 445 0.00024369999 1e-6 460 445 0.015541296 1e-6 463 445 0.012390297 1e-6 464 445 0.00014159999 1e-6 465 445 0.00090549979 1e-6 467 445 0.023940898 1e-6 468 445 0.0011062999 1e-6 469 445 0.0048961975 1e-6 470 445 0.0040861964 1e-6 471 445 0.0393341 1e-6 473 445 8.5599997e-05 1e-6 476 445 1.6499995e-05 1e-6 477 445 2.9599993e-05 1e-6 478 445 0.0011755 1e-6 483 445 0.001373 1e-6 489 445 0.0014289999 1e-6 490 445 0.00031609996 1e-6 491 445 5.2699994e-05 1e-6 1 446 1.3399999e-05 1e-6 7 446 1.3399999e-05 1e-6 11 446 1.3399999e-05 1e-6 16 446 1.3399999e-05 1e-6 18 446 1.3399999e-05 1e-6 22 446 0.00012069999 1e-6 25 446 1.3399999e-05 1e-6 60 446 0.012515098 1e-6 66 446 8.0499987e-05 1e-6 68 446 0.0080616996 1e-6 69 446 0.0037826998 1e-6 73 446 0.0007511999 1e-6 75 446 0.00052309991 1e-6 82 446 0.00012069999 1e-6 83 446 1.3399999e-05 1e-6 84 446 1.3399999e-05 1e-6 86 446 1.3399999e-05 1e-6 87 446 1.3399999e-05 1e-6 88 446 1.3399999e-05 1e-6 90 446 1.3399999e-05 1e-6 93 446 1.3399999e-05 1e-6 95 446 1.3399999e-05 1e-6 96 446 2.6799986e-05 1e-6 97 446 1.3399999e-05 1e-6 105 446 2.6799986e-05 1e-6 106 446 1.3399999e-05 1e-6 108 446 6.7099987e-05 1e-6 114 446 0.00012069999 1e-6 115 446 1.3399999e-05 1e-6 121 446 1.3399999e-05 1e-6 122 446 1.3399999e-05 1e-6 125 446 1.3399999e-05 1e-6 126 446 4.0199986e-05 1e-6 134 446 0.00037559983 1e-6 141 446 0.0030180998 1e-6 150 446 0.0002950998 1e-6 153 446 1.3399999e-05 1e-6 154 446 0.00037559983 1e-6 187 446 2.6799986e-05 1e-6 189 446 9.3899987e-05 1e-6 190 446 0.00010729999 1e-6 192 446 2.6799986e-05 1e-6 194 446 8.0499987e-05 1e-6 196 446 1.3399999e-05 1e-6 197 446 1.3399999e-05 1e-6 198 446 8.0499987e-05 1e-6 200 446 6.7099987e-05 1e-6 201 446 2.6799986e-05 1e-6 203 446 6.7099987e-05 1e-6 204 446 0.00033529988 1e-6 206 446 0.00017439999 1e-6 207 446 4.0199986e-05 1e-6 209 446 1.3399999e-05 1e-6 214 446 0.0012474998 1e-6 215 446 1.3399999e-05 1e-6 217 446 0.00014759999 1e-6 223 446 9.3899987e-05 1e-6 228 446 1.3399999e-05 1e-6 229 446 6.7099987e-05 1e-6 230 446 2.6799986e-05 1e-6 231 446 4.0199986e-05 1e-6 233 446 0.00071089994 1e-6 234 446 0.036928199 1e-6 237 446 0.00028169993 1e-6 240 446 0.00079139997 1e-6 242 446 1.3399999e-05 1e-6 252 446 1.3399999e-05 1e-6 260 446 1.3399999e-05 1e-6 267 446 2.6799986e-05 1e-6 272 446 1.3399999e-05 1e-6 277 446 1.3399999e-05 1e-6 279 446 2.6799986e-05 1e-6 282 446 0.0015291998 1e-6 283 446 0.005808197 1e-6 295 446 0.001006 1e-6 296 446 0.00025489996 1e-6 316 446 0.0021193998 1e-6 317 446 0.0002950998 1e-6 318 446 2.6799986e-05 1e-6 319 446 0.00028169993 1e-6 322 446 0.0021327999 1e-6 324 446 0.00042919978 1e-6 326 446 0.0006573 1e-6 327 446 6.7099987e-05 1e-6 328 446 0.0019717999 1e-6 330 446 2.6799986e-05 1e-6 331 446 9.3899987e-05 1e-6 340 446 0.00033529988 1e-6 350 446 0.0023741999 1e-6 351 446 0.00081819994 1e-6 356 446 4.0199986e-05 1e-6 358 446 0.0013279999 1e-6 368 446 1.3399999e-05 1e-6 372 446 5.3699987e-05 1e-6 374 446 0.00046949997 1e-6 375 446 2.6799986e-05 1e-6 377 446 1.3399999e-05 1e-6 380 446 1.3399999e-05 1e-6 384 446 8.0499987e-05 1e-6 387 446 4.0199986e-05 1e-6 390 446 0.0011669998 1e-6 394 446 4.0199986e-05 1e-6 397 446 2.6799986e-05 1e-6 400 446 2.6799986e-05 1e-6 402 446 0.00026829983 1e-6 406 446 0.035130799 1e-6 407 446 0.0014754999 1e-6 412 446 0.0017437998 1e-6 413 446 1.3399999e-05 1e-6 414 446 0.0013414 1e-6 419 446 0.0014487 1e-6 422 446 0.00022799999 1e-6 431 446 1.3399999e-05 1e-6 432 446 1.3399999e-05 1e-6 433 446 2.6799986e-05 1e-6 434 446 2.6799986e-05 1e-6 442 446 0.0010998999 1e-6 443 446 0.0007511999 1e-6 444 446 6.7099987e-05 1e-6 445 446 0.0032460999 1e-6 446 446 0.27338696 1e-6 447 446 0.00021459999 1e-6 448 446 0.00013409999 1e-6 449 446 0.0120993 1e-6 450 446 0.0082762986 1e-6 452 446 0.0078067966 1e-6 453 446 0.0022400999 1e-6 454 446 0.0008450998 1e-6 455 446 0.013749197 1e-6 456 446 0.0006438999 1e-6 457 446 0.0035009999 1e-6 458 446 0.016847797 1e-6 459 446 0.0009657999 1e-6 460 446 0.018189099 1e-6 463 446 0.030167699 1e-6 464 446 8.0499987e-05 1e-6 465 446 0.00071089994 1e-6 467 446 0.038323298 1e-6 468 446 0.0040777996 1e-6 469 446 0.0028436999 1e-6 470 446 0.0019987 1e-6 471 446 0.0030314999 1e-6 473 446 5.3699987e-05 1e-6 474 446 1.3399999e-05 1e-6 477 446 4.0199986e-05 1e-6 478 446 0.00093899993 1e-6 483 446 0.00072429981 1e-6 486 446 0.0023339998 1e-6 489 446 0.00021459999 1e-6 490 446 0.042427897 1e-6 1 447 0.00024909992 1e-6 7 447 7.2999992e-06 1e-6 9 447 8.0599988e-05 1e-6 11 447 0.00035169977 1e-6 16 447 1.4699999e-05 1e-6 17 447 0.0001466 1e-6 18 447 7.2999992e-06 1e-6 22 447 7.2999992e-06 1e-6 25 447 7.2999992e-06 1e-6 60 447 0.0017074 1e-6 64 447 0.00087939994 1e-6 66 447 2.929999e-05 1e-6 68 447 0.0028944998 1e-6 69 447 0.0013629999 1e-6 73 447 0.00027109985 1e-6 75 447 0.0014728999 1e-6 79 447 7.2999992e-06 1e-6 82 447 0.0036199999 1e-6 83 447 0.00028579985 1e-6 84 447 0.00043969997 1e-6 86 447 0.00016119999 1e-6 87 447 0.0001832 1e-6 88 447 0.0001905 1e-6 89 447 0.00027109985 1e-6 90 447 0.00041039987 1e-6 91 447 4.3999986e-05 1e-6 92 447 9.5299998e-05 1e-6 93 447 0.00049099978 1e-6 94 447 2.1999993e-05 1e-6 95 447 0.00024909992 1e-6 96 447 0.00079139997 1e-6 97 447 0.00032239989 1e-6 98 447 5.1299998e-05 1e-6 99 447 7.2999992e-06 1e-6 100 447 3.6599988e-05 1e-6 103 447 1.4699999e-05 1e-6 105 447 0.00082069985 1e-6 106 447 3.6599988e-05 1e-6 107 447 7.3299991e-05 1e-6 108 447 0.00081339991 1e-6 109 447 0.00013189999 1e-6 113 447 6.5999993e-05 1e-6 114 447 0.00015389999 1e-6 115 447 0.00026379991 1e-6 116 447 0.00015389999 1e-6 121 447 0.00032239989 1e-6 122 447 0.0002272 1e-6 124 447 2.1999993e-05 1e-6 125 447 0.00016849999 1e-6 126 447 7.3299991e-05 1e-6 127 447 1.4699999e-05 1e-6 130 447 0.00025649997 1e-6 134 447 0.0001466 1e-6 141 447 2.1999993e-05 1e-6 150 447 0.00093799992 1e-6 152 447 5.1299998e-05 1e-6 154 447 0.00034439983 1e-6 169 447 3.6599988e-05 1e-6 187 447 1.4699999e-05 1e-6 189 447 1.4699999e-05 1e-6 190 447 0.00093799992 1e-6 192 447 3.6599988e-05 1e-6 193 447 7.2999992e-06 1e-6 194 447 9.5299998e-05 1e-6 195 447 4.3999986e-05 1e-6 196 447 0.00072549982 1e-6 197 447 2.1999993e-05 1e-6 198 447 0.0002272 1e-6 199 447 1.4699999e-05 1e-6 200 447 0.00011719999 1e-6 201 447 1.4699999e-05 1e-6 203 447 8.0599988e-05 1e-6 204 447 0.0018906 1e-6 206 447 0.00098189991 1e-6 207 447 5.8599995e-05 1e-6 209 447 1.4699999e-05 1e-6 214 447 0.00091599999 1e-6 217 447 3.6599988e-05 1e-6 219 447 8.79e-05 1e-6 223 447 0.00026379991 1e-6 228 447 7.2999992e-06 1e-6 229 447 0.0001466 1e-6 230 447 7.2999992e-06 1e-6 231 447 5.8599995e-05 1e-6 233 447 0.00011719999 1e-6 234 447 0.064676344 1e-6 237 447 0.0013776999 1e-6 240 447 0.00010989999 1e-6 241 447 0.00083539984 1e-6 242 447 0.00035909982 1e-6 248 447 1.4699999e-05 1e-6 250 447 7.2999992e-06 1e-6 251 447 7.2999992e-06 1e-6 252 447 6.5999993e-05 1e-6 263 447 7.2999992e-06 1e-6 267 447 7.2999992e-06 1e-6 272 447 7.2999992e-06 1e-6 277 447 1.4699999e-05 1e-6 282 447 4.3999986e-05 1e-6 283 447 7.2999992e-06 1e-6 284 447 2.1999993e-05 1e-6 317 447 0.0001905 1e-6 318 447 7.2999992e-06 1e-6 319 447 2.929999e-05 1e-6 322 447 0.0001832 1e-6 326 447 1.4699999e-05 1e-6 328 447 2.1999993e-05 1e-6 330 447 7.2999992e-06 1e-6 331 447 3.6599988e-05 1e-6 340 447 0.00015389999 1e-6 341 447 2.1999993e-05 1e-6 351 447 3.6599988e-05 1e-6 356 447 3.6599988e-05 1e-6 358 447 0.00049099978 1e-6 363 447 7.2999992e-06 1e-6 371 447 0.00032239989 1e-6 372 447 7.2999992e-06 1e-6 375 447 0.00024179999 1e-6 380 447 7.2999992e-06 1e-6 384 447 2.929999e-05 1e-6 385 447 0.00030779978 1e-6 387 447 6.5999993e-05 1e-6 388 447 3.6599988e-05 1e-6 390 447 0.00026379991 1e-6 391 447 0.00040299981 1e-6 392 447 0.0008280999 1e-6 393 447 0.0014509 1e-6 394 447 0.00065219984 1e-6 395 447 0.0001832 1e-6 397 447 0.00088669988 1e-6 402 447 0.00012459999 1e-6 403 447 0.0063825995 1e-6 404 447 0.015300699 1e-6 405 447 0.013197597 1e-6 408 447 0.0001466 1e-6 412 447 0.00043969997 1e-6 413 447 7.2999992e-06 1e-6 414 447 0.0001832 1e-6 419 447 1.4699999e-05 1e-6 422 447 0.00010989999 1e-6 423 447 2.1999993e-05 1e-6 425 447 1.4699999e-05 1e-6 430 447 2.929999e-05 1e-6 431 447 2.929999e-05 1e-6 432 447 1.4699999e-05 1e-6 433 447 5.1299998e-05 1e-6 434 447 5.8599995e-05 1e-6 441 447 0.0001905 1e-6 442 447 0.00033709989 1e-6 443 447 0.0014288998 1e-6 444 447 0.00040299981 1e-6 445 447 0.011358298 1e-6 446 447 0.0017146999 1e-6 447 447 0.036822896 1e-6 448 447 0.0013776999 1e-6 449 447 0.023346797 1e-6 450 447 0.011013899 1e-6 452 447 0.0020738 1e-6 453 447 0.0013043999 1e-6 454 447 0.0055984966 1e-6 455 447 0.018781498 1e-6 456 447 0.00065949978 1e-6 457 447 0.0057670996 1e-6 458 447 0.021302298 1e-6 459 447 0.0007693998 1e-6 460 447 0.0047044978 1e-6 463 447 0.012127697 1e-6 464 447 0.00093059987 1e-6 465 447 0.0017952998 1e-6 467 447 0.038434997 1e-6 468 447 0.016165398 1e-6 469 447 0.0032169998 1e-6 470 447 0.020606197 1e-6 471 447 0.0018173 1e-6 472 447 0.0010258998 1e-6 473 447 0.0001466 1e-6 474 447 7.2999992e-06 1e-6 477 447 0.00013189999 1e-6 478 447 0.0011064999 1e-6 483 447 0.00024909992 1e-6 489 447 0.00015389999 1e-6 490 447 0.046129398 1e-6 491 447 7.2999992e-06 1e-6 23 448 0.019549597 1e-6 67 448 0.061680298 1e-6 108 448 6.1899991e-05 1e-6 114 448 0.0001237 1e-6 126 448 6.1899991e-05 1e-6 154 448 0.0069907978 1e-6 187 448 0.00092799985 1e-6 189 448 0.0001237 1e-6 190 448 6.1899991e-05 1e-6 194 448 0.0001237 1e-6 197 448 6.1899991e-05 1e-6 203 448 0.0001237 1e-6 204 448 0.0001237 1e-6 206 448 0.0001237 1e-6 207 448 6.1899991e-05 1e-6 234 448 0.017136797 1e-6 237 448 0.00018559999 1e-6 272 448 0.004083097 1e-6 322 448 0.0045780987 1e-6 328 448 0.0028457998 1e-6 350 448 0.0054441988 1e-6 351 448 0.0051348992 1e-6 356 448 6.1899991e-05 1e-6 358 448 0.00018559999 1e-6 371 448 0.00018559999 1e-6 372 448 0.0016703999 1e-6 373 448 0.00049489993 1e-6 387 448 6.1899991e-05 1e-6 389 448 0.0003711998 1e-6 393 448 0.00061869994 1e-6 402 448 6.1899991e-05 1e-6 414 448 0.0031551998 1e-6 422 448 0.0001237 1e-6 433 448 6.1899991e-05 1e-6 434 448 6.1899991e-05 1e-6 443 448 0.0003711998 1e-6 444 448 6.1899991e-05 1e-6 445 448 0.0065577999 1e-6 446 448 0.00068049994 1e-6 447 448 0.0047636963 1e-6 448 448 0.0013609999 1e-6 450 448 0.0044542998 1e-6 452 448 0.043182399 1e-6 453 448 0.010888398 1e-6 454 448 0.0022272 1e-6 455 448 0.0071145967 1e-6 457 448 0.015590198 1e-6 458 448 0.00068049994 1e-6 459 448 0.00098989997 1e-6 460 448 0.0076713972 1e-6 463 448 0.013486799 1e-6 464 448 0.0001237 1e-6 465 448 0.00068049994 1e-6 467 448 0.013362996 1e-6 468 448 0.00092799985 1e-6 469 448 0.0052585974 1e-6 470 448 0.0025364999 1e-6 471 448 0.0044542998 1e-6 473 448 6.1899991e-05 1e-6 478 448 0.0028457998 1e-6 483 448 0.0001237 1e-6 489 448 6.1899991e-05 1e-6 490 448 0.00024749991 1e-6 9 449 0.00016499999 1e-6 16 449 8.2499988e-05 1e-6 60 449 0.0034641998 1e-6 79 449 8.2499988e-05 1e-6 82 449 0.00016499999 1e-6 83 449 0.00016499999 1e-6 84 449 0.00016499999 1e-6 108 449 0.00024739979 1e-6 113 449 0.00032989983 1e-6 114 449 0.00049489993 1e-6 126 449 0.00024739979 1e-6 127 449 8.2499988e-05 1e-6 169 449 0.0027218999 1e-6 189 449 0.00024739979 1e-6 190 449 0.00024739979 1e-6 192 449 0.00024739979 1e-6 194 449 0.00049489993 1e-6 196 449 0.00016499999 1e-6 197 449 0.00016499999 1e-6 198 449 0.0016496 1e-6 200 449 0.00032989983 1e-6 201 449 0.00016499999 1e-6 203 449 0.00041239988 1e-6 204 449 0.002227 1e-6 206 449 0.00098979985 1e-6 207 449 0.00032989983 1e-6 209 449 0.00016499999 1e-6 223 449 0.00024739979 1e-6 234 449 0.0010722999 1e-6 237 449 0.0032992 1e-6 242 449 0.0026393998 1e-6 248 449 8.2499988e-05 1e-6 250 449 8.2499988e-05 1e-6 252 449 0.00016499999 1e-6 272 449 8.2499988e-05 1e-6 317 449 0.0010722999 1e-6 356 449 8.2499988e-05 1e-6 358 449 0.00032989983 1e-6 363 449 8.2499988e-05 1e-6 384 449 8.2499988e-05 1e-6 387 449 0.00024739979 1e-6 394 449 0.00024739979 1e-6 397 449 0.00032989983 1e-6 402 449 0.0014022 1e-6 412 449 0.0018970999 1e-6 419 449 8.2499988e-05 1e-6 422 449 0.00049489993 1e-6 423 449 0.00016499999 1e-6 425 449 8.2499988e-05 1e-6 430 449 0.00024739979 1e-6 431 449 0.00016499999 1e-6 432 449 0.00016499999 1e-6 433 449 0.00024739979 1e-6 434 449 0.00032989983 1e-6 443 449 0.00024739979 1e-6 444 449 0.0037115999 1e-6 445 449 0.0038765999 1e-6 446 449 8.2499988e-05 1e-6 447 449 0.0037115999 1e-6 449 449 8.2499988e-05 1e-6 450 449 0.024166897 1e-6 452 449 0.0017320998 1e-6 453 449 0.0006597999 1e-6 454 449 0.0032992 1e-6 455 449 0.0044539981 1e-6 456 449 0.0019794998 1e-6 457 449 0.025074199 1e-6 458 449 0.0017320998 1e-6 459 449 0.00041239988 1e-6 460 449 0.029280797 1e-6 463 449 0.055262297 1e-6 464 449 0.0027218999 1e-6 465 449 0.0020619999 1e-6 467 449 0.024744298 1e-6 468 449 0.022352397 1e-6 469 449 0.018888198 1e-6 470 449 0.024661798 1e-6 471 449 0.0013196999 1e-6 473 449 0.00049489993 1e-6 477 449 0.0016496 1e-6 478 449 0.0027218999 1e-6 483 449 0.005773697 1e-6 489 449 0.00098979985 1e-6 490 449 0.0018970999 1e-6 9 450 1.3e-05 1e-6 16 450 6.4999995e-06 1e-6 18 450 0.0027947 1e-6 63 450 0.029890999 1e-6 79 450 3.2999997e-06 1e-6 82 450 2.2799999e-05 1e-6 83 450 1.6299993e-05 1e-6 84 450 1.3e-05 1e-6 108 450 2.929999e-05 1e-6 113 450 3.5899997e-05 1e-6 114 450 8.7999986e-05 1e-6 126 450 4.2399988e-05 1e-6 127 450 6.4999995e-06 1e-6 150 450 0.00044999993 1e-6 187 450 3.2999997e-06 1e-6 189 450 0.00029679993 1e-6 190 450 9.7799988e-05 1e-6 192 450 9.1299997e-05 1e-6 194 450 0.00018589999 1e-6 196 450 3.2599986e-05 1e-6 197 450 5.54e-05 1e-6 200 450 5.54e-05 1e-6 201 450 2.6099995e-05 1e-6 203 450 0.00018259999 1e-6 204 450 0.0015391998 1e-6 206 450 0.0012163999 1e-6 207 450 0.00014349999 1e-6 209 450 0.00016629999 1e-6 219 450 9.7999991e-06 1e-6 223 450 1.6299993e-05 1e-6 234 450 0.00042069983 1e-6 237 450 0.0001141 1e-6 240 450 0.00013039999 1e-6 241 450 6.4999995e-06 1e-6 248 450 1.6299993e-05 1e-6 250 450 9.7999991e-06 1e-6 251 450 3.2999997e-06 1e-6 252 450 1.6299993e-05 1e-6 263 450 3.2999997e-06 1e-6 272 450 3.2999997e-06 1e-6 279 450 6.4999995e-06 1e-6 295 450 0.00059029995 1e-6 322 450 3.2999997e-06 1e-6 359 450 0.0001011 1e-6 363 450 1.3e-05 1e-6 380 450 3.2999997e-06 1e-6 384 450 0.00047609978 1e-6 387 450 3.5899997e-05 1e-6 389 450 0.018637098 1e-6 390 450 0.00059029995 1e-6 392 450 0.0012750998 1e-6 393 450 7.83e-05 1e-6 394 450 9.7999991e-06 1e-6 395 450 0.00010759999 1e-6 397 450 6.4999995e-06 1e-6 402 450 4.5699999e-05 1e-6 412 450 0.00034569995 1e-6 419 450 6.4999995e-06 1e-6 422 450 0.00021849999 1e-6 423 450 1.3e-05 1e-6 425 450 9.7999991e-06 1e-6 430 450 2.6099995e-05 1e-6 431 450 2.6099995e-05 1e-6 432 450 3.9099992e-05 1e-6 433 450 0.00010759999 1e-6 434 450 0.00016629999 1e-6 442 450 7.4999989e-05 1e-6 443 450 5.54e-05 1e-6 444 450 0.00078589981 1e-6 445 450 0.0012945998 1e-6 446 450 2.2799999e-05 1e-6 447 450 0.00086419983 1e-6 448 450 9.7999991e-06 1e-6 449 450 9.7999991e-06 1e-6 450 450 0.0133182 1e-6 452 450 0.0052046999 1e-6 453 450 0.00033919979 1e-6 454 450 0.0010239999 1e-6 455 450 0.0016728998 1e-6 456 450 0.0003847999 1e-6 457 450 0.0035969999 1e-6 458 450 0.00031959987 1e-6 459 450 0.0036231 1e-6 460 450 0.0018000999 1e-6 463 450 0.019996896 1e-6 464 450 0.001187 1e-6 465 450 0.0033490998 1e-6 467 450 0.013367198 1e-6 468 450 0.015812997 1e-6 469 450 0.0013630998 1e-6 470 450 0.0043730997 1e-6 471 450 0.0032414999 1e-6 472 450 0.00020539999 1e-6 473 450 9.1299997e-05 1e-6 477 450 4.8899994e-05 1e-6 478 450 0.0011445999 1e-6 483 450 0.0042947978 1e-6 489 450 0.00049239979 1e-6 490 450 0.012303997 1e-6 450 451 0.023809496 1e-6 463 451 0.071428597 1e-6 467 451 0.023809496 1e-6 468 451 0.023809496 1e-6 469 451 0.023809496 1e-6 472 451 0.14285707 1e-6 473 451 0.071428597 1e-6 9 452 9.4999996e-06 1e-6 16 452 8.849999e-05 1e-6 18 452 0.0029249999 1e-6 22 452 0.082447052 1e-6 25 452 7.5899996e-05 1e-6 65 452 0.043742198 1e-6 72 452 0.0024569998 1e-6 79 452 3.1999998e-06 1e-6 82 452 1.26e-05 1e-6 83 452 9.4999996e-06 1e-6 84 452 9.4999996e-06 1e-6 108 452 1.8999999e-05 1e-6 113 452 2.2099994e-05 1e-6 114 452 6.3199986e-05 1e-6 126 452 3.1599993e-05 1e-6 127 452 3.1999998e-06 1e-6 135 452 2.2099994e-05 1e-6 150 452 0.00039529987 1e-6 187 452 7.5899996e-05 1e-6 188 452 1.5799989e-05 1e-6 189 452 0.00017079999 1e-6 190 452 6.3199986e-05 1e-6 192 452 0.00012649999 1e-6 194 452 0.00027829991 1e-6 195 452 6.2999998e-06 1e-6 196 452 5.0599992e-05 1e-6 197 452 7.5899996e-05 1e-6 200 452 4.4299988e-05 1e-6 201 452 5.6899997e-05 1e-6 203 452 0.00027189986 1e-6 204 452 0.00064819981 1e-6 206 452 0.0010529999 1e-6 207 452 0.00020549999 1e-6 209 452 6.3199986e-05 1e-6 214 452 0.00078419992 1e-6 217 452 6.2999998e-06 1e-6 219 452 1.26e-05 1e-6 223 452 0.0029187 1e-6 228 452 2.8499999e-05 1e-6 229 452 5.6899997e-05 1e-6 230 452 2.8499999e-05 1e-6 231 452 2.8499999e-05 1e-6 234 452 0.044997599 1e-6 237 452 0.00031309994 1e-6 240 452 0.00023719999 1e-6 241 452 6.2999998e-06 1e-6 242 452 0.00077469996 1e-6 248 452 9.4999996e-06 1e-6 250 452 6.2999998e-06 1e-6 251 452 3.1999998e-06 1e-6 252 452 7.5899996e-05 1e-6 254 452 0.0001107 1e-6 263 452 3.1999998e-06 1e-6 272 452 3.1999998e-06 1e-6 277 452 0.0001581 1e-6 279 452 9.4999996e-06 1e-6 295 452 0.00032249978 1e-6 315 452 9.4999996e-06 1e-6 317 452 6.9599992e-05 1e-6 322 452 0.00010439999 1e-6 327 452 0.0027037 1e-6 328 452 0.00056599989 1e-6 351 452 0.00027829991 1e-6 352 452 7.9099991e-05 1e-6 356 452 0.00029409979 1e-6 357 452 9.4999996e-06 1e-6 358 452 3.1599993e-05 1e-6 359 452 0.00016129999 1e-6 363 452 1.5799989e-05 1e-6 369 452 8.849999e-05 1e-6 370 452 0.00058819982 1e-6 371 452 1.5799989e-05 1e-6 375 452 0.0001107 1e-6 380 452 3.1999998e-06 1e-6 384 452 0.0016442998 1e-6 387 452 2.2099994e-05 1e-6 393 452 3.1599993e-05 1e-6 394 452 3.4799988e-05 1e-6 396 452 2.2099994e-05 1e-6 397 452 3.1999998e-06 1e-6 402 452 0.00028459984 1e-6 412 452 7.2699986e-05 1e-6 413 452 9.4999996e-06 1e-6 414 452 4.7399997e-05 1e-6 417 452 2.2099994e-05 1e-6 419 452 3.1999998e-06 1e-6 422 452 0.0003668 1e-6 423 452 6.2999998e-06 1e-6 425 452 3.1999998e-06 1e-6 430 452 1.5799989e-05 1e-6 431 452 3.7899998e-05 1e-6 432 452 5.6899997e-05 1e-6 433 452 0.0001486 1e-6 434 452 0.0001929 1e-6 438 452 6.2999998e-06 1e-6 443 452 0.0075670965 1e-6 444 452 0.00020549999 1e-6 445 452 0.0060207993 1e-6 446 452 0.0020521998 1e-6 447 452 0.00059759989 1e-6 448 452 0.0002024 1e-6 449 452 6.2999998e-06 1e-6 450 452 0.0044997968 1e-6 452 452 0.11142516 1e-6 453 452 0.038730197 1e-6 454 452 0.0012078998 1e-6 455 452 0.012642298 1e-6 456 452 0.00047429977 1e-6 457 452 0.0035700998 1e-6 458 452 0.0002024 1e-6 459 452 0.0063021965 1e-6 460 452 0.0017676998 1e-6 463 452 0.011465997 1e-6 464 452 0.00038259989 1e-6 465 452 0.0057234988 1e-6 467 452 0.012964897 1e-6 468 452 0.0017835 1e-6 469 452 0.0033455999 1e-6 470 452 0.0033233999 1e-6 471 452 0.0028743998 1e-6 472 452 0.00014229999 1e-6 473 452 6.0099992e-05 1e-6 475 452 2.5299989e-05 1e-6 477 452 6.0099992e-05 1e-6 478 452 0.00036359997 1e-6 483 452 0.0032096 1e-6 489 452 0.00018019999 1e-6 490 452 0.00026879995 1e-6 491 452 6.2999998e-06 1e-6 7 453 4.7999993e-06 1e-6 9 453 4.7999993e-06 1e-6 16 453 7.1999995e-05 1e-6 18 453 1.9199986e-05 1e-6 19 453 6.7199988e-05 1e-6 22 453 4.3199994e-05 1e-6 23 453 0.17643529 1e-6 25 453 4.7999993e-06 1e-6 60 453 0.00033609988 1e-6 66 453 0.0191787 1e-6 68 453 0.0037838998 1e-6 69 453 0.0017766999 1e-6 73 453 0.00035049999 1e-6 74 453 0.00052819983 1e-6 75 453 0.00023529999 1e-6 79 453 4.7999993e-06 1e-6 82 453 4.7999993e-06 1e-6 83 453 4.7999993e-06 1e-6 84 453 4.7999993e-06 1e-6 108 453 4.7999993e-06 1e-6 113 453 9.5999994e-06 1e-6 114 453 2.3999994e-05 1e-6 126 453 1.44e-05 1e-6 127 453 4.7999993e-06 1e-6 150 453 0.0001489 1e-6 153 453 4.7999993e-06 1e-6 187 453 9.5999994e-06 1e-6 189 453 8.1599996e-05 1e-6 190 453 3.3599994e-05 1e-6 192 453 1.44e-05 1e-6 194 453 4.7999987e-05 1e-6 196 453 4.7999993e-06 1e-6 197 453 1.44e-05 1e-6 200 453 1.44e-05 1e-6 201 453 9.5999994e-06 1e-6 203 453 3.3599994e-05 1e-6 204 453 8.6399989e-05 1e-6 206 453 0.00032649981 1e-6 207 453 2.8799986e-05 1e-6 209 453 4.7999993e-06 1e-6 214 453 0.00066749984 1e-6 215 453 4.7999993e-06 1e-6 217 453 4.3199994e-05 1e-6 223 453 3.8399987e-05 1e-6 228 453 4.7999993e-06 1e-6 229 453 3.3599994e-05 1e-6 230 453 1.44e-05 1e-6 231 453 1.9199986e-05 1e-6 233 453 4.7999993e-06 1e-6 234 453 0.00079229986 1e-6 237 453 0.00018249999 1e-6 248 453 4.7999993e-06 1e-6 250 453 4.7999993e-06 1e-6 252 453 2.3999994e-05 1e-6 267 453 1.9199986e-05 1e-6 272 453 4.7999993e-06 1e-6 277 453 0.00023529999 1e-6 278 453 2.3999994e-05 1e-6 281 453 4.7999993e-06 1e-6 282 453 1.44e-05 1e-6 288 453 4.7999993e-06 1e-6 290 453 9.5999994e-06 1e-6 307 453 1.44e-05 1e-6 312 453 4.7999993e-06 1e-6 317 453 2.8799986e-05 1e-6 319 453 4.7999993e-06 1e-6 324 453 4.7999987e-05 1e-6 326 453 1.9199986e-05 1e-6 328 453 3.8399987e-05 1e-6 330 453 9.5999994e-06 1e-6 331 453 5.2799995e-05 1e-6 333 453 8.6399989e-05 1e-6 340 453 9.5999994e-06 1e-6 350 453 3.8399987e-05 1e-6 351 453 4.7999993e-06 1e-6 354 453 1.9199986e-05 1e-6 356 453 0.00020169999 1e-6 358 453 5.7599987e-05 1e-6 359 453 5.7599987e-05 1e-6 368 453 4.7999993e-06 1e-6 369 453 4.7999993e-06 1e-6 370 453 4.7999993e-06 1e-6 372 453 7.1999995e-05 1e-6 374 453 1.44e-05 1e-6 375 453 4.7999993e-06 1e-6 384 453 0.00033129985 1e-6 385 453 4.7999993e-06 1e-6 387 453 9.5999994e-06 1e-6 393 453 4.3199994e-05 1e-6 394 453 2.3999994e-05 1e-6 402 453 6.2399995e-05 1e-6 404 453 4.7999993e-06 1e-6 412 453 0.0001008 1e-6 413 453 9.5999994e-06 1e-6 414 453 0.00011519999 1e-6 419 453 4.7999993e-06 1e-6 422 453 5.2799995e-05 1e-6 423 453 4.7999993e-06 1e-6 425 453 4.7999993e-06 1e-6 430 453 4.7999993e-06 1e-6 431 453 9.5999994e-06 1e-6 432 453 4.7999993e-06 1e-6 433 453 1.44e-05 1e-6 434 453 4.3199994e-05 1e-6 438 453 4.7999993e-06 1e-6 442 453 4.7999993e-06 1e-6 443 453 0.00013449999 1e-6 444 453 0.00038409978 1e-6 445 453 0.00035049999 1e-6 446 453 5.2799995e-05 1e-6 447 453 0.0008882999 1e-6 448 453 1.44e-05 1e-6 450 453 0.0022761 1e-6 452 453 0.0028426999 1e-6 453 453 0.35604936 1e-6 454 453 0.00068669999 1e-6 455 453 0.0008882999 1e-6 456 453 0.00034569995 1e-6 457 453 0.0036109998 1e-6 458 453 0.0001585 1e-6 459 453 0.0021559999 1e-6 460 453 0.0012965 1e-6 463 453 0.0092051998 1e-6 464 453 0.00066749984 1e-6 465 453 0.0021849 1e-6 467 453 0.0065641999 1e-6 468 453 0.00093159988 1e-6 469 453 0.0030491999 1e-6 470 453 0.0012772998 1e-6 471 453 0.0010084 1e-6 473 453 2.3999994e-05 1e-6 474 453 4.7999993e-06 1e-6 478 453 0.00052339979 1e-6 483 453 0.0026554 1e-6 489 453 0.00018249999 1e-6 490 453 9.5999989e-05 1e-6 491 453 2.3999994e-05 1e-6 7 454 0.000118 1e-6 9 454 3.3699995e-05 1e-6 16 454 0.00013479999 1e-6 18 454 0.00025279983 1e-6 22 454 0.00067409989 1e-6 25 454 0.000118 1e-6 60 454 0.0063873976 1e-6 65 454 0.00023589999 1e-6 66 454 0.00091009983 1e-6 68 454 0.1192531 1e-6 69 454 0.043632898 1e-6 72 454 1.6899998e-05 1e-6 73 454 0.0083759986 1e-6 75 454 0.0056794994 1e-6 79 454 1.6899998e-05 1e-6 82 454 5.0599992e-05 1e-6 83 454 3.3699995e-05 1e-6 84 454 3.3699995e-05 1e-6 108 454 5.0599992e-05 1e-6 113 454 8.4299987e-05 1e-6 114 454 0.00013479999 1e-6 126 454 6.7399989e-05 1e-6 127 454 1.6899998e-05 1e-6 134 454 5.0599992e-05 1e-6 150 454 0.0010785998 1e-6 152 454 5.0599992e-05 1e-6 153 454 6.7399989e-05 1e-6 187 454 0.00016849999 1e-6 188 454 1.6899998e-05 1e-6 189 454 0.00016849999 1e-6 190 454 0.00026969984 1e-6 192 454 5.0599992e-05 1e-6 194 454 0.00015169999 1e-6 196 454 5.0599992e-05 1e-6 197 454 6.7399989e-05 1e-6 200 454 3.3699995e-05 1e-6 201 454 1.6899998e-05 1e-6 202 454 3.3699995e-05 1e-6 203 454 0.0001011 1e-6 204 454 0.0011292 1e-6 206 454 0.00025279983 1e-6 207 454 8.4299987e-05 1e-6 209 454 3.3699995e-05 1e-6 214 454 0.015386898 1e-6 215 454 0.000118 1e-6 217 454 0.00097749988 1e-6 218 454 5.0599992e-05 1e-6 219 454 1.6899998e-05 1e-6 223 454 0.000118 1e-6 228 454 0.00016849999 1e-6 229 454 0.00074149994 1e-6 230 454 0.00030339998 1e-6 231 454 0.00047189998 1e-6 234 454 0.011207398 1e-6 237 454 0.00094379997 1e-6 240 454 5.0599992e-05 1e-6 248 454 1.6899998e-05 1e-6 250 454 1.6899998e-05 1e-6 252 454 0.00016849999 1e-6 267 454 0.00033709989 1e-6 272 454 6.7399989e-05 1e-6 317 454 0.00074149994 1e-6 327 454 1.6899998e-05 1e-6 329 454 3.3699995e-05 1e-6 330 454 0.00023589999 1e-6 331 454 0.0010617999 1e-6 356 454 0.00030339998 1e-6 358 454 5.0599992e-05 1e-6 359 454 1.6899998e-05 1e-6 363 454 1.6899998e-05 1e-6 368 454 0.000118 1e-6 384 454 0.0041458979 1e-6 387 454 6.7399989e-05 1e-6 393 454 1.6899998e-05 1e-6 394 454 0.00026969984 1e-6 397 454 1.6899998e-05 1e-6 402 454 0.00032019988 1e-6 412 454 0.00018539999 1e-6 413 454 0.0002022 1e-6 414 454 0.00040449994 1e-6 419 454 1.6899998e-05 1e-6 422 454 0.00016849999 1e-6 423 454 3.3699995e-05 1e-6 425 454 1.6899998e-05 1e-6 430 454 5.0599992e-05 1e-6 431 454 5.0599992e-05 1e-6 432 454 1.6899998e-05 1e-6 433 454 6.7399989e-05 1e-6 434 454 8.4299987e-05 1e-6 438 454 6.7399989e-05 1e-6 442 454 1.6899998e-05 1e-6 443 454 0.0020728998 1e-6 444 454 0.00015169999 1e-6 445 454 0.013583697 1e-6 446 454 0.00092689996 1e-6 447 454 0.0012302999 1e-6 448 454 0.00023589999 1e-6 450 454 0.011881497 1e-6 452 454 0.009555798 1e-6 453 454 0.017678998 1e-6 454 454 0.028802097 1e-6 455 454 0.0066401996 1e-6 456 454 0.0029829999 1e-6 457 454 0.0030503999 1e-6 458 454 3.3699995e-05 1e-6 459 454 0.0042469986 1e-6 460 454 0.0039435998 1e-6 463 454 0.017173398 1e-6 464 454 0.0002022 1e-6 465 454 0.0011459999 1e-6 467 454 0.019920498 1e-6 468 454 0.0013987999 1e-6 469 454 0.0089826994 1e-6 470 454 0.0066738985 1e-6 471 454 0.0062524974 1e-6 473 454 0.00013479999 1e-6 474 454 0.000118 1e-6 475 454 3.3699995e-05 1e-6 476 454 1.6899998e-05 1e-6 477 454 3.3699995e-05 1e-6 478 454 0.00021909999 1e-6 483 454 0.0034717999 1e-6 489 454 0.00032019988 1e-6 490 454 0.00050559989 1e-6 491 454 1.6899998e-05 1e-6 9 455 4.7999993e-06 1e-6 16 455 0.0001165 1e-6 17 455 7.6999995e-06 1e-6 18 455 0.00072969985 1e-6 60 455 0.0024815998 1e-6 75 455 0.0002407 1e-6 79 455 1.3499999e-05 1e-6 82 455 3.0799987e-05 1e-6 83 455 3.4699988e-05 1e-6 84 455 0.00014629999 1e-6 97 455 0.0001223 1e-6 101 455 4.6199988e-05 1e-6 105 455 3.9499995e-05 1e-6 108 455 4.1399995e-05 1e-6 113 455 0.0002483998 1e-6 114 455 0.00017809999 1e-6 115 455 4.8099988e-05 1e-6 123 455 3.2699987e-05 1e-6 126 455 9.5299998e-05 1e-6 127 455 2.7899994e-05 1e-6 141 455 4.9099996e-05 1e-6 149 455 3.2699987e-05 1e-6 150 455 0.00020699999 1e-6 153 455 0.00071519986 1e-6 158 455 7.5999997e-05 1e-6 162 455 2.2099994e-05 1e-6 169 455 0.00030129985 1e-6 171 455 1.5399986e-05 1e-6 187 455 0.000978 1e-6 189 455 0.00082399999 1e-6 190 455 0.000128 1e-6 192 455 0.00084039988 1e-6 193 455 0.0015776998 1e-6 194 455 0.00020309999 1e-6 195 455 9.2399991e-05 1e-6 196 455 4.7199996e-05 1e-6 197 455 0.00045049982 1e-6 198 455 0.0022304 1e-6 200 455 4.1399995e-05 1e-6 201 455 4.0399987e-05 1e-6 203 455 0.00023779999 1e-6 204 455 0.0010974 1e-6 206 455 0.0008278999 1e-6 207 455 0.0002387 1e-6 209 455 7.1199989e-05 1e-6 219 455 1.8299994e-05 1e-6 223 455 6.7399989e-05 1e-6 229 455 0.00020309999 1e-6 230 455 0.0002002 1e-6 234 455 0.0086067989 1e-6 237 455 0.0011339998 1e-6 240 455 6.3499989e-05 1e-6 241 455 0.0013341999 1e-6 242 455 4.8099988e-05 1e-6 248 455 3.7499995e-05 1e-6 250 455 8.6999999e-06 1e-6 251 455 1.25e-05 1e-6 252 455 6.8299996e-05 1e-6 253 455 0.00031289994 1e-6 263 455 7.6999995e-06 1e-6 272 455 1.7299986e-05 1e-6 276 455 3.2699987e-05 1e-6 279 455 9.5999994e-06 1e-6 284 455 2.6999987e-05 1e-6 316 455 9.2399991e-05 1e-6 318 455 2.3099987e-05 1e-6 322 455 9.429999e-05 1e-6 323 455 3.8999997e-06 1e-6 326 455 2.4999987e-05 1e-6 330 455 7.2199997e-05 1e-6 335 455 6.6999992e-06 1e-6 337 455 6.1599989e-05 1e-6 340 455 0.00014439999 1e-6 356 455 7.6999995e-06 1e-6 358 455 0.00038219988 1e-6 359 455 6.7399989e-05 1e-6 362 455 1.06e-05 1e-6 363 455 2.0199994e-05 1e-6 366 455 0.00048029982 1e-6 368 455 8.279999e-05 1e-6 380 455 6.2599996e-05 1e-6 384 455 5.5799988e-05 1e-6 387 455 1.5399986e-05 1e-6 393 455 3.1799995e-05 1e-6 394 455 0.00010199999 1e-6 397 455 9.429999e-05 1e-6 402 455 0.00037929998 1e-6 412 455 0.00011359999 1e-6 419 455 3.4699988e-05 1e-6 422 455 0.00030799978 1e-6 423 455 2.7899994e-05 1e-6 425 455 1.25e-05 1e-6 430 455 1.5399986e-05 1e-6 431 455 4.8099988e-05 1e-6 432 455 5.2899995e-05 1e-6 433 455 0.00014539999 1e-6 434 455 0.0001944 1e-6 438 455 8.089999e-05 1e-6 442 455 2.6999987e-05 1e-6 443 455 0.00051309983 1e-6 444 455 0.0022341998 1e-6 445 455 0.015707098 1e-6 446 455 0.00039269985 1e-6 447 455 0.0032046 1e-6 448 455 0.0001848 1e-6 449 455 0.00037639984 1e-6 450 455 0.019686598 1e-6 452 455 0.0056803972 1e-6 453 455 0.0006920998 1e-6 454 455 0.0016643999 1e-6 455 455 0.017598599 1e-6 456 455 0.0033912999 1e-6 457 455 0.0067344978 1e-6 458 455 0.00034939987 1e-6 459 455 0.00043609994 1e-6 460 455 0.0051172972 1e-6 463 455 0.023017198 1e-6 464 455 0.0041546971 1e-6 465 455 0.0031746998 1e-6 467 455 0.018062599 1e-6 468 455 0.029311799 1e-6 469 455 0.0131003 1e-6 470 455 0.0187345 1e-6 471 455 0.020459499 1e-6 473 455 0.00024349999 1e-6 477 455 0.0001107 1e-6 478 455 0.0023930999 1e-6 483 455 0.0033960999 1e-6 489 455 0.00096939993 1e-6 490 455 0.0011935998 1e-6 491 455 3.7499995e-05 1e-6 7 456 8.9999997e-07 1e-6 9 456 1.3999999e-05 1e-6 16 456 6.9999996e-06 1e-6 17 456 8.9999997e-07 1e-6 18 456 0.00025359984 1e-6 22 456 1.6999993e-06 1e-6 25 456 8.9999997e-07 1e-6 59 456 1.1399999e-05 1e-6 60 456 0.0048253983 1e-6 64 456 9.5999994e-06 1e-6 66 456 8.6999999e-06 1e-6 68 456 0.00090249977 1e-6 69 456 0.00042409985 1e-6 73 456 8.3999999e-05 1e-6 75 456 0.00039609987 1e-6 79 456 3.4999994e-06 1e-6 82 456 1.9199986e-05 1e-6 83 456 1.5699989e-05 1e-6 84 456 1.49e-05 1e-6 108 456 2.539999e-05 1e-6 113 456 3.499999e-05 1e-6 114 456 8.659999e-05 1e-6 126 456 4.2e-05 1e-6 127 456 5.1999996e-06 1e-6 134 456 1.6999993e-06 1e-6 135 456 3.3199991e-05 1e-6 141 456 7.8999992e-06 1e-6 142 456 5.9499987e-05 1e-6 150 456 0.00013029999 1e-6 152 456 3.4999994e-06 1e-6 153 456 8.9999997e-07 1e-6 154 456 6.3799991e-05 1e-6 171 456 8.9999997e-07 1e-6 187 456 0.00058769993 1e-6 189 456 0.00022649999 1e-6 190 456 0.00030339998 1e-6 192 456 0.0003209 1e-6 193 456 0.0035722998 1e-6 194 456 4.3999999e-06 1e-6 195 456 0.00021079999 1e-6 196 456 8.9999997e-07 1e-6 197 456 0.0001583 1e-6 198 456 0.0011787999 1e-6 201 456 7.8999992e-06 1e-6 203 456 4.3999999e-06 1e-6 204 456 0.001129 1e-6 206 456 9.36e-05 1e-6 207 456 3.4999994e-06 1e-6 209 456 8.9999997e-07 1e-6 214 456 0.00014339999 1e-6 215 456 1.6999993e-06 1e-6 217 456 9.5999994e-06 1e-6 220 456 8.9999997e-07 1e-6 223 456 4.8099988e-05 1e-6 228 456 1.6999993e-06 1e-6 229 456 7.8699988e-05 1e-6 230 456 0.00055619981 1e-6 231 456 4.3999999e-06 1e-6 233 456 3.4999994e-06 1e-6 234 456 0.0058432966 1e-6 237 456 0.00092429994 1e-6 240 456 5.3299998e-05 1e-6 241 456 0.00083509996 1e-6 242 456 1.49e-05 1e-6 248 456 6.3799991e-05 1e-6 250 456 6.0999992e-06 1e-6 251 456 4.3999999e-06 1e-6 252 456 1.6599995e-05 1e-6 253 456 0.00020899999 1e-6 260 456 8.9999997e-07 1e-6 263 456 2.5999998e-06 1e-6 267 456 3.4999994e-06 1e-6 272 456 1.31e-05 1e-6 275 456 1.6999993e-06 1e-6 282 456 3.4999994e-06 1e-6 283 456 1.31e-05 1e-6 284 456 1.05e-05 1e-6 295 456 2.5999998e-06 1e-6 296 456 6.9999996e-06 1e-6 307 456 8.9999997e-07 1e-6 315 456 3.3199991e-05 1e-6 316 456 7.8999992e-06 1e-6 317 456 7.8999992e-06 1e-6 319 456 2.5999998e-06 1e-6 322 456 0.00032009999 1e-6 323 456 2.5999998e-06 1e-6 324 456 8.9999997e-07 1e-6 326 456 1.6999993e-06 1e-6 328 456 3.4999994e-06 1e-6 330 456 2.5999998e-06 1e-6 331 456 1.2199999e-05 1e-6 335 456 5.1999996e-06 1e-6 340 456 6.9999995e-05 1e-6 346 456 1.05e-05 1e-6 350 456 5.1999996e-06 1e-6 351 456 5.1999996e-06 1e-6 356 456 1.1399999e-05 1e-6 358 456 0.00010059999 1e-6 359 456 2.8899987e-05 1e-6 364 456 0.0001679 1e-6 366 456 6.8199995e-05 1e-6 368 456 3.4999994e-06 1e-6 370 456 8.9999997e-07 1e-6 374 456 8.9999997e-07 1e-6 377 456 6.0999992e-06 1e-6 380 456 1.2199999e-05 1e-6 382 456 1.1399999e-05 1e-6 384 456 0.00015129999 1e-6 387 456 3.5899997e-05 1e-6 389 456 8.9999997e-07 1e-6 390 456 2.5999998e-06 1e-6 393 456 2.4499997e-05 1e-6 394 456 9.0099988e-05 1e-6 397 456 8.0499987e-05 1e-6 402 456 0.00026849983 1e-6 406 456 7.5199991e-05 1e-6 407 456 2.5999998e-06 1e-6 408 456 5.1999996e-06 1e-6 412 456 1.31e-05 1e-6 413 456 1.6999993e-06 1e-6 414 456 2.5999998e-06 1e-6 419 456 7.8999992e-06 1e-6 422 456 0.0001163 1e-6 423 456 8.6999999e-06 1e-6 425 456 1.3999999e-05 1e-6 430 456 2.2699998e-05 1e-6 431 456 4.3999999e-06 1e-6 432 456 8.9999997e-07 1e-6 433 456 3.4999994e-06 1e-6 434 456 1.49e-05 1e-6 435 456 0.0001758 1e-6 438 456 3.4999994e-06 1e-6 442 456 7.5199991e-05 1e-6 443 456 0.0002789998 1e-6 444 456 0.00011889999 1e-6 445 456 0.0026951998 1e-6 446 456 0.00071359985 1e-6 447 456 0.00030779978 1e-6 448 456 0.00012069999 1e-6 449 456 3.1499992e-05 1e-6 450 456 0.0089713968 1e-6 452 456 0.0184194 1e-6 453 456 0.0026033998 1e-6 454 456 0.00090069999 1e-6 455 456 0.0057663992 1e-6 456 456 0.0016273998 1e-6 457 456 0.0090911984 1e-6 458 456 0.00036729989 1e-6 459 456 0.00049059978 1e-6 460 456 0.005153399 1e-6 463 456 0.057630599 1e-6 464 456 0.00014949999 1e-6 465 456 0.0014648 1e-6 467 456 0.012564696 1e-6 468 456 0.034562498 1e-6 469 456 0.0053561963 1e-6 470 456 0.0044021979 1e-6 471 456 0.0065061972 1e-6 472 456 8.9199995e-05 1e-6 473 456 9.1799986e-05 1e-6 474 456 8.9999997e-07 1e-6 477 456 0.00031309994 1e-6 478 456 0.0015679998 1e-6 483 456 0.0057698973 1e-6 486 456 4.3699998e-05 1e-6 489 456 0.00052029989 1e-6 490 456 0.0016230999 1e-6 491 456 2.4499997e-05 1e-6 9 457 2.7499991e-05 1e-6 16 457 1.5699989e-05 1e-6 17 457 3.8999997e-06 1e-6 18 457 2.7499991e-05 1e-6 60 457 0.0075417981 1e-6 68 457 5.4899996e-05 1e-6 69 457 2.7499991e-05 1e-6 73 457 3.8999997e-06 1e-6 75 457 3.8999997e-06 1e-6 79 457 1.18e-05 1e-6 82 457 3.9199993e-05 1e-6 83 457 2.7499991e-05 1e-6 84 457 2.7499991e-05 1e-6 108 457 5.4899996e-05 1e-6 113 457 6.6699999e-05 1e-6 114 457 0.00017269999 1e-6 126 457 7.8499987e-05 1e-6 127 457 1.18e-05 1e-6 150 457 3.8999997e-06 1e-6 153 457 0.0017147998 1e-6 171 457 3.8999997e-06 1e-6 187 457 0.00089469994 1e-6 189 457 0.00087499991 1e-6 190 457 0.0001373 1e-6 192 457 0.00017659999 1e-6 194 457 0.00039629987 1e-6 196 457 7.4599986e-05 1e-6 197 457 0.00011379999 1e-6 199 457 7.4599986e-05 1e-6 200 457 0.0001295 1e-6 201 457 5.4899996e-05 1e-6 203 457 0.00037669996 1e-6 204 457 0.0097470991 1e-6 206 457 0.0035903999 1e-6 207 457 0.0073612966 1e-6 209 457 0.0012987999 1e-6 214 457 7.7999994e-06 1e-6 219 457 1.9599989e-05 1e-6 223 457 1.9599989e-05 1e-6 230 457 0.00014909999 1e-6 234 457 0.0020915 1e-6 237 457 5.4899996e-05 1e-6 240 457 1.9599989e-05 1e-6 241 457 1.18e-05 1e-6 248 457 3.1399992e-05 1e-6 250 457 1.5699989e-05 1e-6 251 457 7.7999994e-06 1e-6 252 457 2.349999e-05 1e-6 263 457 7.7999994e-06 1e-6 279 457 1.18e-05 1e-6 322 457 7.7999994e-06 1e-6 326 457 3.8999997e-06 1e-6 359 457 0.00078089978 1e-6 363 457 2.349999e-05 1e-6 380 457 1.18e-05 1e-6 384 457 0.0001256 1e-6 387 457 7.0599999e-05 1e-6 393 457 0.00029039988 1e-6 394 457 3.8999997e-06 1e-6 397 457 3.8999997e-06 1e-6 402 457 2.349999e-05 1e-6 412 457 7.4599986e-05 1e-6 419 457 1.5699989e-05 1e-6 422 457 0.00043159979 1e-6 423 457 1.5699989e-05 1e-6 425 457 1.5699989e-05 1e-6 430 457 4.7099995e-05 1e-6 431 457 6.2799998e-05 1e-6 432 457 7.8499987e-05 1e-6 433 457 0.000204 1e-6 434 457 0.00040809996 1e-6 442 457 3.8999997e-06 1e-6 443 457 0.0001295 1e-6 444 457 0.0002158 1e-6 445 457 0.0010476999 1e-6 446 457 8.6299988e-05 1e-6 447 457 0.00060819997 1e-6 448 457 3.5299992e-05 1e-6 449 457 1.5699989e-05 1e-6 450 457 0.015079699 1e-6 452 457 0.0082402974 1e-6 453 457 0.00081229978 1e-6 454 457 0.0018324999 1e-6 455 457 0.0029899999 1e-6 456 457 0.00058859983 1e-6 457 457 0.013529699 1e-6 458 457 0.0038257998 1e-6 459 457 0.027820699 1e-6 460 457 0.0026917998 1e-6 463 457 0.022617597 1e-6 464 457 0.00027469988 1e-6 465 457 0.0027780998 1e-6 467 457 0.063218594 1e-6 468 457 0.0166061 1e-6 469 457 0.015166 1e-6 470 457 0.0082794987 1e-6 471 457 0.0012085999 1e-6 472 457 0.0001452 1e-6 473 457 0.00017269999 1e-6 477 457 7.8499987e-05 1e-6 478 457 0.0025622998 1e-6 483 457 0.018540598 1e-6 486 457 0.0086090975 1e-6 489 457 0.00036489987 1e-6 490 457 0.00076119998 1e-6 9 458 7.0599999e-05 1e-6 16 458 3.5299992e-05 1e-6 18 458 7.0599999e-05 1e-6 60 458 0.0077514984 1e-6 79 458 1.7699989e-05 1e-6 82 458 0.0001236 1e-6 83 458 8.8299988e-05 1e-6 84 458 7.0599999e-05 1e-6 108 458 0.00015889999 1e-6 113 458 0.00019419999 1e-6 114 458 0.00047669979 1e-6 126 458 0.00022949999 1e-6 127 458 3.5299992e-05 1e-6 187 458 1.7699989e-05 1e-6 189 458 0.002472 1e-6 190 458 0.00024719979 1e-6 192 458 0.00040609995 1e-6 194 458 0.00091819977 1e-6 196 458 0.00015889999 1e-6 197 458 0.00026489981 1e-6 200 458 0.00031779986 1e-6 201 458 0.0001413 1e-6 203 458 0.00086519984 1e-6 204 458 0.023660697 1e-6 206 458 0.0019952999 1e-6 207 458 0.00065329997 1e-6 209 458 0.00075929984 1e-6 219 458 5.2999996e-05 1e-6 223 458 8.8299988e-05 1e-6 229 458 5.2999996e-05 1e-6 231 458 3.5299992e-05 1e-6 234 458 0.0056149997 1e-6 237 458 0.00086519984 1e-6 240 458 5.2999996e-05 1e-6 241 458 3.5299992e-05 1e-6 242 458 0.00044139987 1e-6 248 458 7.0599999e-05 1e-6 250 458 5.2999996e-05 1e-6 251 458 1.7699989e-05 1e-6 252 458 7.0599999e-05 1e-6 263 458 1.7699989e-05 1e-6 272 458 1.7699989e-05 1e-6 279 458 3.5299992e-05 1e-6 322 458 1.7699989e-05 1e-6 352 458 0.0001236 1e-6 363 458 5.2999996e-05 1e-6 380 458 1.7699989e-05 1e-6 384 458 0.00042379997 1e-6 387 458 0.00019419999 1e-6 394 458 7.0599999e-05 1e-6 397 458 8.8299988e-05 1e-6 402 458 0.0003707998 1e-6 412 458 0.00040609995 1e-6 419 458 3.5299992e-05 1e-6 422 458 0.00097109983 1e-6 423 458 7.0599999e-05 1e-6 425 458 5.2999996e-05 1e-6 430 458 0.0001413 1e-6 431 458 0.0001236 1e-6 432 458 0.00017659999 1e-6 433 458 0.00049439981 1e-6 434 458 0.00061799982 1e-6 442 458 0.0006002998 1e-6 443 458 0.00022949999 1e-6 444 458 0.0022953998 1e-6 445 458 0.0021364999 1e-6 446 458 0.00022949999 1e-6 447 458 0.0034254999 1e-6 448 458 0.0001236 1e-6 449 458 5.2999996e-05 1e-6 450 458 0.037115499 1e-6 452 458 0.020164598 1e-6 453 458 0.0034607998 1e-6 454 458 0.0088462979 1e-6 455 458 0.0061270967 1e-6 456 458 0.0024366998 1e-6 457 458 0.16089267 1e-6 458 458 0.036056098 1e-6 459 458 0.13617259 1e-6 460 458 0.0064271986 1e-6 463 458 0.11118758 1e-6 464 458 0.0035138 1e-6 465 458 0.0018187 1e-6 467 458 0.15382987 1e-6 468 458 0.022512998 1e-6 469 458 0.056891598 1e-6 470 458 0.023837298 1e-6 471 458 0.0099409968 1e-6 473 458 0.00049439981 1e-6 477 458 0.00019419999 1e-6 478 458 0.004537899 1e-6 483 458 0.018416498 1e-6 486 458 0.0380513 1e-6 489 458 0.00061799982 1e-6 490 458 0.0018187 1e-6 9 459 6.11e-05 1e-6 16 459 2.4399997e-05 1e-6 17 459 1.2199999e-05 1e-6 18 459 3.6599988e-05 1e-6 60 459 0.0011967998 1e-6 79 459 1.2199999e-05 1e-6 82 459 9.7699987e-05 1e-6 83 459 7.3299991e-05 1e-6 84 459 6.11e-05 1e-6 108 459 0.00010989999 1e-6 113 459 0.00015879999 1e-6 114 459 0.00039079995 1e-6 126 459 0.00019539999 1e-6 127 459 2.4399997e-05 1e-6 153 459 4.8799993e-05 1e-6 187 459 0.0017708 1e-6 189 459 0.0017463998 1e-6 190 459 7.3299991e-05 1e-6 192 459 0.00013429999 1e-6 194 459 0.00029309979 1e-6 196 459 4.8799993e-05 1e-6 197 459 9.7699987e-05 1e-6 200 459 0.0001465 1e-6 201 459 7.3299991e-05 1e-6 203 459 0.00028089993 1e-6 204 459 0.012065798 1e-6 206 459 0.0015020999 1e-6 207 459 0.0004151999 1e-6 209 459 9.7699987e-05 1e-6 219 459 1.2199999e-05 1e-6 223 459 2.4399997e-05 1e-6 234 459 0.00074499985 1e-6 237 459 0.00015879999 1e-6 240 459 1.2199999e-05 1e-6 241 459 2.4399997e-05 1e-6 248 459 6.11e-05 1e-6 250 459 3.6599988e-05 1e-6 251 459 1.2199999e-05 1e-6 252 459 4.8799993e-05 1e-6 263 459 1.2199999e-05 1e-6 279 459 1.2199999e-05 1e-6 326 459 1.2199999e-05 1e-6 359 459 2.4399997e-05 1e-6 363 459 2.4399997e-05 1e-6 380 459 2.4399997e-05 1e-6 384 459 2.4399997e-05 1e-6 387 459 0.00015879999 1e-6 393 459 1.2199999e-05 1e-6 394 459 1.2199999e-05 1e-6 397 459 1.2199999e-05 1e-6 402 459 3.6599988e-05 1e-6 412 459 0.00040299981 1e-6 419 459 3.6599988e-05 1e-6 422 459 0.00031749997 1e-6 423 459 3.6599988e-05 1e-6 425 459 3.6599988e-05 1e-6 430 459 9.7699987e-05 1e-6 431 459 3.6599988e-05 1e-6 432 459 4.8799993e-05 1e-6 433 459 0.00015879999 1e-6 434 459 0.00019539999 1e-6 442 459 1.2199999e-05 1e-6 443 459 0.00010989999 1e-6 444 459 0.00052509992 1e-6 445 459 0.0011479999 1e-6 446 459 7.3299991e-05 1e-6 447 459 0.0012945 1e-6 448 459 1.2199999e-05 1e-6 449 459 3.6599988e-05 1e-6 450 459 0.032094199 1e-6 452 459 0.0012335 1e-6 453 459 0.00029309979 1e-6 454 459 0.00087929983 1e-6 455 459 0.0025646 1e-6 456 459 0.0015020999 1e-6 457 459 0.018049899 1e-6 458 459 0.00065949978 1e-6 459 459 0.067595541 1e-6 460 459 0.0026011998 1e-6 461 459 0.002992 1e-6 463 459 0.040838297 1e-6 464 459 0.00067169988 1e-6 465 459 0.0015753999 1e-6 467 459 0.042035099 1e-6 468 459 0.0093057975 1e-6 469 459 0.012016997 1e-6 470 459 0.019918397 1e-6 471 459 0.0014898998 1e-6 473 459 0.00040299981 1e-6 474 459 3.6599988e-05 1e-6 477 459 8.5499996e-05 1e-6 478 459 0.0016730998 1e-6 483 459 0.017683599 1e-6 486 459 0.00025649997 1e-6 489 459 9.7699987e-05 1e-6 490 459 0.0015264999 1e-6 9 460 4.3099993e-05 1e-6 16 460 2.5199988e-05 1e-6 17 460 3.5999992e-06 1e-6 18 460 1.44e-05 1e-6 79 460 1.0799999e-05 1e-6 82 460 7.5499993e-05 1e-6 83 460 5.7499987e-05 1e-6 84 460 5.3899988e-05 1e-6 108 460 9.6999996e-05 1e-6 113 460 0.0001294 1e-6 114 460 0.00031979987 1e-6 126 460 0.0001509 1e-6 127 460 2.159999e-05 1e-6 150 460 3.5999992e-06 1e-6 171 460 3.5999992e-06 1e-6 187 460 0.0012612999 1e-6 189 460 0.0010636998 1e-6 190 460 1.44e-05 1e-6 192 460 0.00019759999 1e-6 194 460 0.00043119979 1e-6 196 460 7.9099991e-05 1e-6 197 460 0.0007689998 1e-6 200 460 0.00045639998 1e-6 201 460 0.00054259994 1e-6 203 460 0.00040969998 1e-6 204 460 0.0024614998 1e-6 206 460 0.0019619998 1e-6 207 460 0.00033059996 1e-6 209 460 0.00010419999 1e-6 219 460 2.159999e-05 1e-6 223 460 3.2299999e-05 1e-6 229 460 3.5999992e-06 1e-6 230 460 3.5999992e-06 1e-6 234 460 0.00048149982 1e-6 237 460 0.00024079999 1e-6 240 460 2.159999e-05 1e-6 241 460 2.5199988e-05 1e-6 242 460 0.00017249999 1e-6 248 460 4.6699992e-05 1e-6 250 460 3.2299999e-05 1e-6 251 460 1.0799999e-05 1e-6 252 460 3.9499995e-05 1e-6 263 460 1.0799999e-05 1e-6 272 460 3.5999992e-06 1e-6 279 460 7.1999993e-06 1e-6 315 460 3.5999992e-06 1e-6 322 460 7.1999993e-06 1e-6 326 460 7.1999993e-06 1e-6 359 460 0.0003054 1e-6 363 460 2.8699986e-05 1e-6 380 460 1.7999992e-05 1e-6 384 460 3.9499995e-05 1e-6 387 460 0.0001294 1e-6 393 460 0.00023719999 1e-6 394 460 1.7999992e-05 1e-6 397 460 2.5199988e-05 1e-6 402 460 0.00011499999 1e-6 412 460 6.8299996e-05 1e-6 419 460 2.8699986e-05 1e-6 422 460 0.00048509985 1e-6 423 460 3.5899997e-05 1e-6 425 460 2.8699986e-05 1e-6 430 460 8.2599989e-05 1e-6 431 460 6.4699998e-05 1e-6 432 460 7.9099991e-05 1e-6 433 460 0.00022999999 1e-6 434 460 0.00040609995 1e-6 442 460 7.1999993e-06 1e-6 443 460 0.00013299999 1e-6 444 460 0.00041679991 1e-6 445 460 0.0016385999 1e-6 446 460 6.8299996e-05 1e-6 447 460 0.00086959987 1e-6 448 460 1.0799999e-05 1e-6 449 460 2.8699986e-05 1e-6 450 460 0.011437897 1e-6 452 460 0.0014660999 1e-6 453 460 0.00062529999 1e-6 454 460 0.0012612999 1e-6 455 460 0.0023681 1e-6 456 460 0.0012182 1e-6 457 460 0.017967198 1e-6 458 460 0.0020661999 1e-6 459 460 0.0095082 1e-6 460 460 0.0083259977 1e-6 461 460 0.36792135 1e-6 463 460 0.012663297 1e-6 464 460 0.0005245998 1e-6 465 460 0.00033059996 1e-6 467 460 0.016109399 1e-6 468 460 0.0044594966 1e-6 469 460 0.0043587983 1e-6 470 460 0.015724897 1e-6 471 460 0.0023357 1e-6 472 460 0.00013659999 1e-6 473 460 0.00033419998 1e-6 474 460 0.0051888973 1e-6 477 460 0.00011859999 1e-6 478 460 0.0041036978 1e-6 483 460 0.0041072965 1e-6 486 460 3.5999992e-06 1e-6 489 460 0.00017609999 1e-6 490 460 0.0026375998 1e-6 9 461 0.0001068 1e-6 16 461 3.879999e-05 1e-6 17 461 9.6999993e-06 1e-6 60 461 0.004794199 1e-6 79 461 2.9099989e-05 1e-6 82 461 0.00017469999 1e-6 83 461 0.00013589999 1e-6 84 461 0.00013589999 1e-6 108 461 0.00020379999 1e-6 113 461 0.00029109977 1e-6 114 461 0.00072789984 1e-6 126 461 0.00033969991 1e-6 127 461 4.8499991e-05 1e-6 171 461 9.6999993e-06 1e-6 187 461 0.0043768995 1e-6 189 461 0.0033093998 1e-6 190 461 8.7299995e-05 1e-6 192 461 0.00015529999 1e-6 194 461 0.00033969991 1e-6 196 461 5.8199992e-05 1e-6 197 461 0.00040759984 1e-6 200 461 0.0006114 1e-6 201 461 0.0002135 1e-6 203 461 0.00032999995 1e-6 204 461 0.014780499 1e-6 206 461 0.0042312965 1e-6 207 461 0.00025229994 1e-6 209 461 8.7299995e-05 1e-6 219 461 1.9399988e-05 1e-6 223 461 0.00013589999 1e-6 234 461 0.0050561987 1e-6 237 461 0.0010384 1e-6 240 461 1.9399988e-05 1e-6 241 461 4.8499991e-05 1e-6 242 461 0.00038819993 1e-6 248 461 0.0001068 1e-6 250 461 6.7899993e-05 1e-6 251 461 3.879999e-05 1e-6 252 461 6.7899993e-05 1e-6 263 461 1.9399988e-05 1e-6 272 461 9.6999993e-06 1e-6 279 461 9.6999993e-06 1e-6 322 461 9.6999993e-06 1e-6 326 461 9.6999993e-06 1e-6 363 461 1.9399988e-05 1e-6 380 461 4.8499991e-05 1e-6 384 461 4.8499991e-05 1e-6 387 461 0.00028139981 1e-6 394 461 0.00017469999 1e-6 397 461 0.00020379999 1e-6 402 461 0.00017469999 1e-6 412 461 0.00029109977 1e-6 419 461 5.8199992e-05 1e-6 422 461 0.00042699999 1e-6 423 461 6.7899993e-05 1e-6 425 461 5.8199992e-05 1e-6 430 461 0.00019409999 1e-6 431 461 6.7899993e-05 1e-6 432 461 5.8199992e-05 1e-6 433 461 0.00019409999 1e-6 434 461 0.0002329 1e-6 442 461 1.9399988e-05 1e-6 443 461 0.00035909982 1e-6 444 461 0.0028531998 1e-6 445 461 0.0032607999 1e-6 446 461 0.00030089985 1e-6 447 461 0.0043671988 1e-6 448 461 0.00015529999 1e-6 449 461 0.00080549996 1e-6 450 461 0.059908196 1e-6 452 461 0.0070359968 1e-6 453 461 0.00035909982 1e-6 454 461 0.0015915998 1e-6 455 461 0.0072300993 1e-6 456 461 0.0042215995 1e-6 457 461 0.021515697 1e-6 458 461 0.00066959998 1e-6 459 461 0.0039983988 1e-6 460 461 0.0042506978 1e-6 463 461 0.055492498 1e-6 464 461 0.0048717968 1e-6 465 461 0.0096465982 1e-6 467 461 0.0523481 1e-6 468 461 0.024621297 1e-6 469 461 0.024533898 1e-6 470 461 0.0414689 1e-6 471 461 0.0150523 1e-6 473 461 0.00075699994 1e-6 477 461 9.6999996e-05 1e-6 478 461 0.017332897 1e-6 483 461 0.016721498 1e-6 486 461 0.00046579982 1e-6 489 461 0.0007375998 1e-6 490 461 0.0027561998 1e-6 7 462 0.00021519999 1e-6 18 462 0.0066920966 1e-6 59 462 0.069293857 1e-6 61 462 0.0034294999 1e-6 215 462 0.00046419981 1e-6 217 462 0.0001773 1e-6 241 462 0.0012935998 1e-6 242 462 0.00036509987 1e-6 303 462 0.00011739999 1e-6 330 462 0.00027379999 1e-6 412 462 7.1699993e-05 1e-6 443 462 5.35e-05 1e-6 445 462 0.00042769988 1e-6 446 462 5.1999996e-06 1e-6 447 462 2.5999998e-06 1e-6 455 462 0.000489 1e-6 457 462 0.0045078993 1e-6 458 462 0.0029508998 1e-6 460 462 0.015934698 1e-6 463 462 0.023242299 1e-6 467 462 0.0036289999 1e-6 469 462 0.0064351968 1e-6 486 462 0.0054233 1e-6 7 463 3.5599995e-05 1e-6 9 463 9.1999991e-06 1e-6 11 463 9.9999943e-07 1e-6 13 463 8.8599991e-05 1e-6 16 463 0.00094469986 1e-6 17 463 9.9999943e-07 1e-6 18 463 0.0009680998 1e-6 22 463 1.6299993e-05 1e-6 59 463 0.047734197 1e-6 60 463 0.0039569996 1e-6 61 463 0.00045709987 1e-6 62 463 0.0007685998 1e-6 75 463 0.00017199999 1e-6 79 463 3.1e-06 1e-6 82 463 1.8299994e-05 1e-6 83 463 1.2199999e-05 1e-6 84 463 1.12e-05 1e-6 85 463 1.9999998e-06 1e-6 90 463 1.9999998e-06 1e-6 93 463 9.9999943e-07 1e-6 94 463 9.9999943e-07 1e-6 105 463 9.9999943e-07 1e-6 108 463 1.7299986e-05 1e-6 113 463 2.549999e-05 1e-6 114 463 6.4099993e-05 1e-6 126 463 2.9499992e-05 1e-6 127 463 5.0999997e-06 1e-6 130 463 1.9999998e-06 1e-6 142 463 9.9999943e-07 1e-6 150 463 3.0499999e-05 1e-6 151 463 5.0999997e-06 1e-6 152 463 8.0999998e-06 1e-6 171 463 3.1e-06 1e-6 187 463 4.6799993e-05 1e-6 189 463 4.6799993e-05 1e-6 190 463 3.3599994e-05 1e-6 192 463 4.1699997e-05 1e-6 194 463 9.2599992e-05 1e-6 196 463 2.6499998e-05 1e-6 197 463 2.7499991e-05 1e-6 198 463 9.9999943e-07 1e-6 200 463 5.3999989e-05 1e-6 201 463 2.1399988e-05 1e-6 203 463 9.0599991e-05 1e-6 204 463 0.00012619999 1e-6 206 463 0.00021069999 1e-6 207 463 6.9199989e-05 1e-6 209 463 2.2399996e-05 1e-6 215 463 7.0199996e-05 1e-6 217 463 1.0199999e-05 1e-6 219 463 4.0999994e-06 1e-6 223 463 4.3799999e-05 1e-6 229 463 3.8699989e-05 1e-6 230 463 1.43e-05 1e-6 231 463 1.0199999e-05 1e-6 234 463 0.0045748986 1e-6 237 463 0.00049369992 1e-6 240 463 4.0999994e-06 1e-6 241 463 0.00039799977 1e-6 242 463 0.0001812 1e-6 248 463 1.2199999e-05 1e-6 250 463 6.0999992e-06 1e-6 251 463 3.1e-06 1e-6 252 463 1.12e-05 1e-6 263 463 1.9999998e-06 1e-6 272 463 1.9999998e-06 1e-6 279 463 3.1e-06 1e-6 303 463 4.069999e-05 1e-6 315 463 9.9999943e-07 1e-6 322 463 3.1e-06 1e-6 326 463 9.9999943e-07 1e-6 329 463 2.6499998e-05 1e-6 330 463 4.0999994e-06 1e-6 352 463 2.8499999e-05 1e-6 357 463 3.1e-06 1e-6 358 463 1.0199999e-05 1e-6 363 463 6.0999992e-06 1e-6 380 463 3.1e-06 1e-6 384 463 7.8399986e-05 1e-6 387 463 2.549999e-05 1e-6 394 463 4.6799993e-05 1e-6 397 463 4.8899994e-05 1e-6 402 463 4.069999e-05 1e-6 412 463 9.9999943e-07 1e-6 419 463 4.0999994e-06 1e-6 422 463 0.0001008 1e-6 423 463 6.0999992e-06 1e-6 425 463 4.0999994e-06 1e-6 428 463 9.9999943e-07 1e-6 430 463 1.7299986e-05 1e-6 431 463 1.32e-05 1e-6 432 463 1.8299994e-05 1e-6 433 463 4.8899994e-05 1e-6 434 463 6.0099992e-05 1e-6 435 463 3.1599993e-05 1e-6 438 463 8.0999998e-06 1e-6 441 463 9.9999943e-07 1e-6 442 463 1.43e-05 1e-6 443 463 0.00011299999 1e-6 444 463 8.5499996e-05 1e-6 445 463 0.0014842998 1e-6 446 463 0.0001354 1e-6 447 463 0.00031049992 1e-6 448 463 0.0001008 1e-6 449 463 0.00011299999 1e-6 450 463 0.0030061998 1e-6 452 463 0.0062219985 1e-6 453 463 0.0014648999 1e-6 454 463 0.0016166 1e-6 455 463 0.0029531999 1e-6 456 463 0.0018863999 1e-6 457 463 0.0058534965 1e-6 458 463 0.00089889998 1e-6 459 463 0.00079199998 1e-6 460 463 0.0083455965 1e-6 461 463 0.00041639991 1e-6 463 463 0.10133928 1e-6 464 463 0.0001089 1e-6 465 463 0.0019646999 1e-6 467 463 0.0052253976 1e-6 468 463 0.0086590983 1e-6 469 463 0.0039314963 1e-6 470 463 0.0032127998 1e-6 471 463 0.0034194998 1e-6 473 463 6.7199988e-05 1e-6 474 463 6.0999992e-06 1e-6 476 463 1.7299986e-05 1e-6 477 463 2.9499992e-05 1e-6 478 463 0.00033189985 1e-6 483 463 0.00049069989 1e-6 486 463 0.00063319993 1e-6 489 463 0.00060369982 1e-6 490 463 0.00025039981 1e-6 9 464 2.3999994e-05 1e-6 11 464 0.00065869978 1e-6 16 464 0.0012573998 1e-6 18 464 0.0020597999 1e-6 22 464 0.00052689994 1e-6 60 464 0.023771297 1e-6 64 464 1.2e-05 1e-6 75 464 0.00098199979 1e-6 79 464 2.3999994e-05 1e-6 82 464 0.0011376999 1e-6 83 464 2.3999994e-05 1e-6 84 464 2.3999994e-05 1e-6 85 464 0.0010298998 1e-6 90 464 0.0010658 1e-6 93 464 0.00039519998 1e-6 94 464 0.00038319989 1e-6 105 464 0.00043109991 1e-6 106 464 7.1899995e-05 1e-6 107 464 0.00020359999 1e-6 108 464 2.3999994e-05 1e-6 113 464 4.7899986e-05 1e-6 114 464 9.5799987e-05 1e-6 126 464 4.7899986e-05 1e-6 127 464 2.3999994e-05 1e-6 130 464 0.00082629989 1e-6 142 464 0.00033529988 1e-6 150 464 0.0031015999 1e-6 151 464 0.0021197 1e-6 152 464 0.0037362999 1e-6 171 464 0.0010897999 1e-6 187 464 0.00064669992 1e-6 189 464 0.00034729997 1e-6 190 464 0.0034967999 1e-6 192 464 0.00010779999 1e-6 194 464 0.00022749999 1e-6 196 464 0.00035929983 1e-6 197 464 5.989999e-05 1e-6 198 464 0.00041909982 1e-6 200 464 0.0003711998 1e-6 201 464 7.1899995e-05 1e-6 203 464 0.0012693999 1e-6 204 464 0.0041314997 1e-6 206 464 0.00049099978 1e-6 207 464 0.0001677 1e-6 209 464 0.0002156 1e-6 215 464 0.00056279986 1e-6 217 464 0.00010779999 1e-6 219 464 1.2e-05 1e-6 223 464 0.00014369999 1e-6 229 464 0.0033292 1e-6 230 464 0.0036165998 1e-6 234 464 0.010753997 1e-6 237 464 0.00034729997 1e-6 240 464 1.2e-05 1e-6 241 464 0.0058918968 1e-6 248 464 3.5899997e-05 1e-6 250 464 2.3999994e-05 1e-6 252 464 0.0017603999 1e-6 263 464 0.00046699983 1e-6 279 464 1.2e-05 1e-6 315 464 0.0005987999 1e-6 322 464 0.00035929983 1e-6 356 464 5.989999e-05 1e-6 363 464 1.2e-05 1e-6 384 464 0.00063469983 1e-6 387 464 4.7899986e-05 1e-6 394 464 2.3999994e-05 1e-6 397 464 3.5899997e-05 1e-6 402 464 4.7899986e-05 1e-6 412 464 0.0002156 1e-6 419 464 2.3999994e-05 1e-6 422 464 0.00022749999 1e-6 423 464 2.3999994e-05 1e-6 425 464 2.3999994e-05 1e-6 428 464 0.00043109991 1e-6 430 464 2.3999994e-05 1e-6 431 464 4.7899986e-05 1e-6 432 464 3.5899997e-05 1e-6 433 464 0.0001198 1e-6 434 464 0.00015569999 1e-6 435 464 0.0010058999 1e-6 438 464 8.3799998e-05 1e-6 441 464 0.0004431 1e-6 442 464 0.00094609987 1e-6 443 464 0.00075449981 1e-6 444 464 0.0001317 1e-6 445 464 0.0029099998 1e-6 446 464 0.00051489985 1e-6 447 464 0.00041909982 1e-6 448 464 0.00023949999 1e-6 449 464 0.0014250998 1e-6 450 464 0.0034967999 1e-6 452 464 0.034968399 1e-6 453 464 0.0075804964 1e-6 454 464 0.0075205974 1e-6 455 464 0.0090055987 1e-6 456 464 0.0036165998 1e-6 457 464 0.0091971979 1e-6 458 464 0.0070774965 1e-6 459 464 0.00067059998 1e-6 460 464 0.013388596 1e-6 463 464 0.12847286 1e-6 464 464 0.0001677 1e-6 465 464 0.025807098 1e-6 467 464 0.043039899 1e-6 468 464 0.014238797 1e-6 469 464 0.0053050965 1e-6 470 464 0.0046344995 1e-6 471 464 0.0071612969 1e-6 473 464 9.5799987e-05 1e-6 477 464 0.0001198 1e-6 478 464 0.0016645999 1e-6 483 464 0.0038800999 1e-6 489 464 0.0017962998 1e-6 490 464 0.0003711998 1e-6 9 465 2.2699998e-05 1e-6 16 465 1.13e-05 1e-6 18 465 9.6399992e-05 1e-6 22 465 0.0001872 1e-6 60 465 0.0067609996 1e-6 79 465 5.6999997e-06 1e-6 82 465 3.9699997e-05 1e-6 83 465 2.8399998e-05 1e-6 84 465 2.2699998e-05 1e-6 104 465 0.00016449999 1e-6 108 465 5.0999995e-05 1e-6 113 465 6.2399995e-05 1e-6 114 465 0.00015879999 1e-6 117 465 6.2399995e-05 1e-6 126 465 7.3699994e-05 1e-6 127 465 1.13e-05 1e-6 130 465 0.0043843985 1e-6 133 465 5.6999997e-06 1e-6 137 465 0.00027229986 1e-6 139 465 0.00042539998 1e-6 149 465 3.9699997e-05 1e-6 150 465 0.022103697 1e-6 152 465 0.0065284967 1e-6 153 465 0.00068059983 1e-6 156 465 0.0001928 1e-6 158 465 0.0013612998 1e-6 160 465 0.00076569989 1e-6 161 465 0.0002099 1e-6 169 465 0.0002948998 1e-6 187 465 0.0006295999 1e-6 189 465 8.5099993e-05 1e-6 190 465 0.00014179999 1e-6 192 465 7.3699994e-05 1e-6 193 465 0.0051047988 1e-6 194 465 0.00015309999 1e-6 196 465 2.8399998e-05 1e-6 197 465 0.00093019987 1e-6 198 465 0.0039022998 1e-6 200 465 0.00036299997 1e-6 201 465 4.5399996e-05 1e-6 203 465 0.00036299997 1e-6 204 465 0.00085649989 1e-6 206 465 0.00034599984 1e-6 207 465 0.00011339999 1e-6 209 465 3.3999997e-05 1e-6 214 465 0.0059215985 1e-6 215 465 5.6999997e-06 1e-6 219 465 2.2699998e-05 1e-6 223 465 0.00060119992 1e-6 229 465 0.0049516 1e-6 230 465 0.0013498999 1e-6 231 465 0.00013609999 1e-6 233 465 0.0006465998 1e-6 234 465 0.0118942 1e-6 237 465 0.0026715 1e-6 240 465 0.0050990991 1e-6 241 465 0.0052181967 1e-6 242 465 0.00017019999 1e-6 244 465 0.0072147995 1e-6 248 465 2.8399998e-05 1e-6 250 465 1.6999998e-05 1e-6 251 465 5.6999997e-06 1e-6 252 465 6.2399995e-05 1e-6 263 465 5.6999997e-06 1e-6 265 465 0.0041575991 1e-6 271 465 5.6999997e-06 1e-6 272 465 3.3999997e-05 1e-6 279 465 0.0002948998 1e-6 284 465 2.2699998e-05 1e-6 285 465 2.8399998e-05 1e-6 295 465 0.000397 1e-6 312 465 0.0016675999 1e-6 315 465 0.0010209999 1e-6 316 465 0.00089619984 1e-6 317 465 0.0018887999 1e-6 319 465 0.00030629989 1e-6 322 465 0.0057173967 1e-6 323 465 5.6999997e-06 1e-6 326 465 0.00014179999 1e-6 328 465 0.0026431 1e-6 340 465 9.6399992e-05 1e-6 351 465 0.00036299997 1e-6 356 465 0.00010779999 1e-6 358 465 0.0025354 1e-6 360 465 0.0027111999 1e-6 363 465 0.0029210998 1e-6 364 465 0.00037439982 1e-6 365 465 0.00074299984 1e-6 366 465 0.0023708998 1e-6 368 465 0.0010152999 1e-6 372 465 0.0016845998 1e-6 376 465 0.00095859985 1e-6 377 465 0.00075999997 1e-6 379 465 0.0049686991 1e-6 380 465 0.001038 1e-6 381 465 0.0019340999 1e-6 382 465 3.3999997e-05 1e-6 383 465 5.6699995e-05 1e-6 384 465 0.00014179999 1e-6 387 465 9.0799993e-05 1e-6 391 465 0.0090070963 1e-6 392 465 0.0091148987 1e-6 393 465 0.00031199981 1e-6 394 465 0.0002212 1e-6 397 465 0.00013609999 1e-6 402 465 0.0007487 1e-6 403 465 5.6999997e-06 1e-6 404 465 1.13e-05 1e-6 405 465 1.13e-05 1e-6 409 465 0.0016107999 1e-6 412 465 0.00031199981 1e-6 419 465 0.004089497 1e-6 422 465 0.013164699 1e-6 423 465 2.2699998e-05 1e-6 424 465 0.0029040999 1e-6 425 465 1.6999998e-05 1e-6 430 465 4.5399996e-05 1e-6 431 465 2.2699998e-05 1e-6 432 465 2.8399998e-05 1e-6 433 465 7.9399993e-05 1e-6 434 465 0.00010779999 1e-6 437 465 0.00089049991 1e-6 440 465 0.019591 1e-6 442 465 0.0033634999 1e-6 443 465 0.0016107999 1e-6 444 465 0.00060119992 1e-6 445 465 0.005836498 1e-6 446 465 0.00060689985 1e-6 447 465 0.0013839998 1e-6 448 465 0.0002269 1e-6 449 465 3.3999997e-05 1e-6 450 465 0.021598898 1e-6 452 465 0.0067893974 1e-6 453 465 0.0018717998 1e-6 454 465 0.0011741 1e-6 455 465 0.030180696 1e-6 456 465 0.0026657998 1e-6 457 465 0.0057910979 1e-6 458 465 0.00034599984 1e-6 459 465 0.0012080998 1e-6 460 465 0.0047190972 1e-6 463 465 0.039312597 1e-6 464 465 0.0010265999 1e-6 465 465 0.037849199 1e-6 467 465 0.036969997 1e-6 468 465 0.0083944984 1e-6 469 465 0.0122572 1e-6 470 465 0.0078443997 1e-6 471 465 0.017815698 1e-6 473 465 0.00016449999 1e-6 477 465 5.6699995e-05 1e-6 478 465 0.0020589 1e-6 483 465 0.0019738998 1e-6 489 465 0.0010435998 1e-6 490 465 0.0006295999 1e-6 491 465 1.13e-05 1e-6 9 466 2.3199987e-05 1e-6 60 466 0.0092115998 1e-6 82 466 2.3199987e-05 1e-6 108 466 2.3199987e-05 1e-6 114 466 4.639999e-05 1e-6 126 466 2.3199987e-05 1e-6 149 466 0.0016705999 1e-6 150 466 0.00051049981 1e-6 187 466 2.3199987e-05 1e-6 189 466 9.2799994e-05 1e-6 190 466 0.0004176998 1e-6 192 466 2.3199987e-05 1e-6 194 466 4.639999e-05 1e-6 200 466 4.639999e-05 1e-6 203 466 2.3199987e-05 1e-6 204 466 2.3199987e-05 1e-6 206 466 6.9599992e-05 1e-6 207 466 2.3199987e-05 1e-6 223 466 6.9599992e-05 1e-6 230 466 0.00039439998 1e-6 232 466 0.043366298 1e-6 234 466 0.0054990984 1e-6 237 466 2.3199987e-05 1e-6 240 466 0.00018559999 1e-6 241 466 0.0043156967 1e-6 242 466 0.00034799986 1e-6 316 466 0.0017865999 1e-6 356 466 9.2799994e-05 1e-6 380 466 0.0014385998 1e-6 384 466 0.0001624 1e-6 387 466 2.3199987e-05 1e-6 394 466 0.000116 1e-6 397 466 0.000116 1e-6 402 466 2.3199987e-05 1e-6 422 466 2.3199987e-05 1e-6 430 466 2.3199987e-05 1e-6 433 466 2.3199987e-05 1e-6 434 466 2.3199987e-05 1e-6 435 466 0.00023199999 1e-6 438 466 0.00027839979 1e-6 442 466 0.0090722963 1e-6 443 466 0.0001624 1e-6 444 466 6.9599992e-05 1e-6 445 466 0.0021811 1e-6 446 466 0.0001624 1e-6 447 466 0.0001392 1e-6 448 466 0.000116 1e-6 450 466 0.0073785 1e-6 452 466 0.0069608986 1e-6 453 466 0.00092809997 1e-6 454 466 0.0018097998 1e-6 455 466 0.013666499 1e-6 456 466 0.0009976998 1e-6 457 466 0.0061255991 1e-6 458 466 4.639999e-05 1e-6 459 466 0.0024595 1e-6 460 466 2.3199987e-05 1e-6 463 466 0.078518689 1e-6 464 466 9.2799994e-05 1e-6 465 466 0.016218897 1e-6 467 466 0.0080513991 1e-6 468 466 0.0071000978 1e-6 469 466 0.0052206963 1e-6 470 466 0.0018097998 1e-6 471 466 0.008561898 1e-6 473 466 4.639999e-05 1e-6 478 466 0.0022042999 1e-6 483 466 0.0016241998 1e-6 489 466 0.00076569989 1e-6 490 466 0.0001624 1e-6 6 467 3.2199998e-05 1e-6 9 467 2.9499992e-05 1e-6 16 467 1.3399999e-05 1e-6 17 467 2.6999996e-06 1e-6 18 467 7.509999e-05 1e-6 60 467 0.0067344978 1e-6 75 467 0.0014568998 1e-6 79 467 0.00054199994 1e-6 82 467 4.0199986e-05 1e-6 83 467 2.9499992e-05 1e-6 84 467 2.9499992e-05 1e-6 102 467 4.5599998e-05 1e-6 108 467 5.3699987e-05 1e-6 113 467 6.7099987e-05 1e-6 114 467 0.0001717 1e-6 126 467 8.3199993e-05 1e-6 127 467 1.3399999e-05 1e-6 141 467 0.0002307 1e-6 149 467 0.0001851 1e-6 150 467 0.00056879991 1e-6 152 467 0.00014219999 1e-6 153 467 1.6099992e-05 1e-6 160 467 0.00041319989 1e-6 171 467 0.0002442 1e-6 187 467 0.00028709997 1e-6 189 467 0.0010356999 1e-6 190 467 0.00026559993 1e-6 192 467 0.0017976998 1e-6 194 467 0.0002388 1e-6 196 467 4.0199986e-05 1e-6 197 467 6.7099987e-05 1e-6 198 467 0.0010248998 1e-6 200 467 0.00036489987 1e-6 201 467 0.00043999986 1e-6 202 467 0.00051779998 1e-6 203 467 0.00045609986 1e-6 204 467 0.0014972 1e-6 206 467 0.0036489998 1e-6 207 467 0.00045609986 1e-6 209 467 6.7099987e-05 1e-6 210 467 0.00045879977 1e-6 214 467 0.0027071999 1e-6 217 467 0.0014836998 1e-6 218 467 8.3199993e-05 1e-6 219 467 1.07e-05 1e-6 223 467 0.0010195998 1e-6 228 467 0.00016899999 1e-6 229 467 0.0011670999 1e-6 230 467 0.0018485999 1e-6 231 467 0.00020929999 1e-6 233 467 0.00040779985 1e-6 234 467 0.0080975965 1e-6 237 467 0.0013442 1e-6 238 467 1.3399999e-05 1e-6 240 467 0.00022809999 1e-6 241 467 0.0051058978 1e-6 242 467 0.00054469984 1e-6 247 467 2.9499992e-05 1e-6 248 467 3.4899989e-05 1e-6 250 467 1.6099992e-05 1e-6 251 467 0.0001181 1e-6 252 467 0.00082099997 1e-6 263 467 0.00017439999 1e-6 270 467 0.00034609996 1e-6 271 467 8.0499987e-05 1e-6 272 467 0.00024679978 1e-6 279 467 0.00041319989 1e-6 284 467 3.7599995e-05 1e-6 301 467 0.00023339999 1e-6 312 467 0.00099009997 1e-6 314 467 0.00026559993 1e-6 315 467 0.0019506 1e-6 316 467 0.00016899999 1e-6 317 467 0.00061979983 1e-6 319 467 0.00017439999 1e-6 322 467 0.0012985999 1e-6 323 467 5.3999993e-06 1e-6 324 467 5.3999993e-06 1e-6 326 467 0.0026535999 1e-6 328 467 0.0022779 1e-6 329 467 0.0024952998 1e-6 330 467 0.0019612999 1e-6 340 467 0.00018239999 1e-6 341 467 0.00024149999 1e-6 348 467 0.00025489996 1e-6 351 467 0.0010731998 1e-6 352 467 6.4399996e-05 1e-6 356 467 0.00028439984 1e-6 358 467 0.0032358 1e-6 359 467 0.0016527998 1e-6 361 467 0.00080759986 1e-6 362 467 9.3899987e-05 1e-6 363 467 0.00039439998 1e-6 368 467 0.00066809985 1e-6 370 467 0.00040509994 1e-6 372 467 0.0020472 1e-6 373 467 0.00050979992 1e-6 374 467 0.0011053998 1e-6 375 467 0.0004453999 1e-6 376 467 0.0006438999 1e-6 380 467 8e-06 1e-6 382 467 0.00032729981 1e-6 384 467 4.2899992e-05 1e-6 387 467 6.9799993e-05 1e-6 392 467 0.0044350997 1e-6 393 467 0.00059829978 1e-6 394 467 0.00011539999 1e-6 395 467 8.3199993e-05 1e-6 397 467 6.169999e-05 1e-6 402 467 0.00037289993 1e-6 404 467 2.6999996e-06 1e-6 405 467 2.6999996e-06 1e-6 406 467 5.3999993e-06 1e-6 409 467 0.0018781999 1e-6 412 467 0.0003515 1e-6 413 467 5.6299992e-05 1e-6 414 467 5.8999998e-05 1e-6 419 467 1.6099992e-05 1e-6 422 467 0.010463998 1e-6 423 467 2.1499989e-05 1e-6 425 467 1.6099992e-05 1e-6 427 467 0.00051779998 1e-6 430 467 4.8299989e-05 1e-6 431 467 4.2899992e-05 1e-6 432 467 0.00031929999 1e-6 433 467 0.00012339999 1e-6 434 467 0.00039979978 1e-6 435 467 0.00028169993 1e-6 437 467 8.0499987e-05 1e-6 438 467 0.00032729981 1e-6 441 467 0.0001985 1e-6 442 467 0.0012583998 1e-6 443 467 0.0022296 1e-6 444 467 0.0023261998 1e-6 445 467 0.007056497 1e-6 446 467 0.00055539981 1e-6 447 467 0.0083711967 1e-6 448 467 0.00019319999 1e-6 449 467 1.3399999e-05 1e-6 450 467 0.021086399 1e-6 452 467 0.0052400976 1e-6 453 467 0.0010409998 1e-6 454 467 0.0024630998 1e-6 455 467 0.014257897 1e-6 456 467 0.0014032999 1e-6 457 467 0.0054868981 1e-6 458 467 0.0010007999 1e-6 459 467 0.0021088999 1e-6 460 467 0.0035416998 1e-6 463 467 0.046736699 1e-6 464 467 0.0049797967 1e-6 465 467 0.0034961 1e-6 467 467 0.045102697 1e-6 468 467 0.018735997 1e-6 469 467 0.015781898 1e-6 470 467 0.0093585998 1e-6 471 467 0.013571098 1e-6 473 467 0.00016899999 1e-6 477 467 0.0001449 1e-6 478 467 0.0022242998 1e-6 483 467 0.011212599 1e-6 486 467 7.7799996e-05 1e-6 489 467 0.00046689995 1e-6 490 467 0.00061439979 1e-6 491 467 5.3999993e-06 1e-6 9 468 4.6699992e-05 1e-6 16 468 2.1199987e-05 1e-6 18 468 0.00025459984 1e-6 22 468 8.4999992e-06 1e-6 60 468 0.003756 1e-6 63 468 0.0011415998 1e-6 75 468 8.9099995e-05 1e-6 79 468 5.5199998e-05 1e-6 82 468 6.369999e-05 1e-6 83 468 4.6699992e-05 1e-6 84 468 4.2399988e-05 1e-6 102 468 4.1999992e-06 1e-6 108 468 8.4899992e-05 1e-6 113 468 0.0001103 1e-6 114 468 0.00026309979 1e-6 126 468 0.0001316 1e-6 127 468 2.549999e-05 1e-6 139 468 4.1999992e-06 1e-6 141 468 8.0599988e-05 1e-6 149 468 1.2699999e-05 1e-6 150 468 0.00028429995 1e-6 151 468 6.7899993e-05 1e-6 152 468 8.4999992e-06 1e-6 160 468 0.00028429995 1e-6 165 468 0.00032249978 1e-6 170 468 0.00010609999 1e-6 171 468 0.00025459984 1e-6 172 468 8.4999992e-06 1e-6 187 468 0.080585241 1e-6 188 468 0.0010270998 1e-6 189 468 0.00055169989 1e-6 190 468 0.00015699999 1e-6 192 468 0.0026651998 1e-6 194 468 0.0008403 1e-6 196 468 5.5199998e-05 1e-6 197 468 0.00024189999 1e-6 198 468 0.0011119 1e-6 199 468 8.4999992e-06 1e-6 200 468 0.0010397998 1e-6 201 468 0.00012729999 1e-6 202 468 0.0048805997 1e-6 203 468 0.00060259993 1e-6 204 468 0.022247098 1e-6 205 468 0.0027798 1e-6 206 468 0.0010992 1e-6 207 468 0.00024619978 1e-6 209 468 0.0010354999 1e-6 210 468 0.0023979 1e-6 211 468 0.0043458976 1e-6 212 468 0.0026015998 1e-6 213 468 0.00050499989 1e-6 214 468 0.0020498999 1e-6 217 468 8.9099995e-05 1e-6 218 468 8.4999992e-06 1e-6 219 468 0.00012729999 1e-6 221 468 0.0057972968 1e-6 223 468 9.7599986e-05 1e-6 224 468 0.0011797999 1e-6 228 468 8.4999992e-06 1e-6 229 468 7.2099996e-05 1e-6 230 468 0.0001103 1e-6 231 468 1.2699999e-05 1e-6 233 468 0.0005092998 1e-6 234 468 0.0024487998 1e-6 237 468 0.00047109998 1e-6 240 468 0.00039039995 1e-6 241 468 0.0032382 1e-6 242 468 3.3999997e-05 1e-6 248 468 4.6699992e-05 1e-6 250 468 2.549999e-05 1e-6 251 468 2.549999e-05 1e-6 252 468 0.0001103 1e-6 263 468 2.549999e-05 1e-6 270 468 7.2099996e-05 1e-6 271 468 4.1999992e-06 1e-6 272 468 0.00044989982 1e-6 277 468 0.0011713 1e-6 279 468 7.2099996e-05 1e-6 284 468 8.4999992e-06 1e-6 287 468 0.00016549999 1e-6 292 468 0.0001528 1e-6 293 468 0.00095909997 1e-6 294 468 0.0002249 1e-6 295 468 0.00045409985 1e-6 301 468 1.2699999e-05 1e-6 312 468 0.00010189999 1e-6 314 468 1.6999998e-05 1e-6 315 468 0.00011879999 1e-6 316 468 8.4999992e-06 1e-6 317 468 0.00012309999 1e-6 319 468 0.000208 1e-6 320 468 9.3399998e-05 1e-6 321 468 0.0001146 1e-6 322 468 8.0599988e-05 1e-6 325 468 0.0004584 1e-6 326 468 0.00024619978 1e-6 328 468 0.00013579999 1e-6 329 468 0.0001485 1e-6 330 468 0.00011879999 1e-6 334 468 0.00010609999 1e-6 340 468 0.0001316 1e-6 341 468 1.2699999e-05 1e-6 348 468 0.0017315999 1e-6 351 468 6.369999e-05 1e-6 352 468 4.1999992e-06 1e-6 356 468 7.64e-05 1e-6 358 468 0.00043709995 1e-6 359 468 0.00010609999 1e-6 361 468 5.0899995e-05 1e-6 362 468 4.1999992e-06 1e-6 363 468 4.6699992e-05 1e-6 368 468 3.82e-05 1e-6 370 468 0.00052629993 1e-6 371 468 0.0001103 1e-6 372 468 0.00012309999 1e-6 373 468 9.7599986e-05 1e-6 374 468 6.7899993e-05 1e-6 375 468 2.549999e-05 1e-6 376 468 0.00010609999 1e-6 380 468 1.6999998e-05 1e-6 382 468 2.1199987e-05 1e-6 384 468 0.0001867 1e-6 385 468 4.1999992e-06 1e-6 386 468 0.00016549999 1e-6 387 468 0.0001103 1e-6 388 468 0.0003564998 1e-6 389 468 0.00071299984 1e-6 390 468 8.9099995e-05 1e-6 391 468 0.0015320999 1e-6 392 468 0.00031829998 1e-6 393 468 4.2399988e-05 1e-6 394 468 3.3999997e-05 1e-6 395 468 8.4999992e-06 1e-6 397 468 2.9699993e-05 1e-6 401 468 4.1999992e-06 1e-6 402 468 0.0001316 1e-6 404 468 4.1999992e-06 1e-6 409 468 0.0001146 1e-6 412 468 0.00021639999 1e-6 413 468 4.1999992e-06 1e-6 414 468 4.1999992e-06 1e-6 417 468 1.6999998e-05 1e-6 419 468 2.549999e-05 1e-6 421 468 4.1999992e-06 1e-6 422 468 0.0059840977 1e-6 423 468 3.82e-05 1e-6 425 468 2.549999e-05 1e-6 427 468 2.9699993e-05 1e-6 430 468 7.2099996e-05 1e-6 431 468 0.00011879999 1e-6 432 468 0.00014429999 1e-6 433 468 0.0001485 1e-6 434 468 0.00037349993 1e-6 435 468 1.6999998e-05 1e-6 437 468 4.1999992e-06 1e-6 438 468 2.1199987e-05 1e-6 441 468 0.00043289992 1e-6 442 468 0.0024614998 1e-6 443 468 0.0031235998 1e-6 444 468 0.0051309988 1e-6 445 468 0.0057251975 1e-6 446 468 0.000208 1e-6 447 468 0.0114928 1e-6 448 468 4.6699992e-05 1e-6 449 468 2.549999e-05 1e-6 450 468 0.016933598 1e-6 451 468 0.00017399999 1e-6 452 468 0.0053431988 1e-6 453 468 0.0010439998 1e-6 454 468 0.00089549995 1e-6 455 468 0.017527796 1e-6 456 468 0.0012010999 1e-6 457 468 0.0064466968 1e-6 458 468 0.00062389998 1e-6 459 468 0.0018078999 1e-6 460 468 0.0033951998 1e-6 463 468 0.043382298 1e-6 464 468 0.0079320967 1e-6 465 468 0.0021346998 1e-6 467 468 0.030531399 1e-6 468 468 0.016916599 1e-6 469 468 0.0119766 1e-6 470 468 0.012464698 1e-6 471 468 0.0049017966 1e-6 472 468 0.031647597 1e-6 473 468 0.021988198 1e-6 477 468 0.0001316 1e-6 478 468 0.0036032 1e-6 483 468 0.010113496 1e-6 489 468 0.00038619991 1e-6 490 468 0.0018036999 1e-6 491 468 0.00010609999 1e-6 9 469 3.6599988e-05 1e-6 16 469 1.4599999e-05 1e-6 17 469 3.7e-06 1e-6 18 469 1.4599999e-05 1e-6 60 469 0.00046439981 1e-6 79 469 7.2999992e-06 1e-6 82 469 6.2199993e-05 1e-6 83 469 4.7499998e-05 1e-6 84 469 4.39e-05 1e-6 108 469 7.3099989e-05 1e-6 113 469 0.00010599999 1e-6 114 469 0.00025959988 1e-6 126 469 0.00012069999 1e-6 127 469 2.1899992e-05 1e-6 150 469 9.1399997e-05 1e-6 171 469 3.7e-06 1e-6 187 469 3.7e-06 1e-6 189 469 0.00033279997 1e-6 190 469 0.00011339999 1e-6 192 469 9.5099997e-05 1e-6 194 469 0.0002121 1e-6 196 469 3.2899989e-05 1e-6 197 469 0.00068379985 1e-6 200 469 0.00054849987 1e-6 201 469 0.0051302984 1e-6 203 469 0.00020109999 1e-6 204 469 0.0026437999 1e-6 206 469 0.0011298999 1e-6 207 469 0.00015359999 1e-6 209 469 4.7499998e-05 1e-6 210 469 0.00054849987 1e-6 214 469 3.7e-06 1e-6 219 469 1.0999999e-05 1e-6 223 469 2.5599991e-05 1e-6 230 469 8.4099986e-05 1e-6 233 469 0.00010239999 1e-6 234 469 0.0026217999 1e-6 237 469 0.00033639977 1e-6 240 469 1.8299994e-05 1e-6 241 469 0.00074229995 1e-6 242 469 0.00018649999 1e-6 248 469 5.4899996e-05 1e-6 250 469 2.1899992e-05 1e-6 251 469 1.0999999e-05 1e-6 252 469 0.00036569987 1e-6 263 469 7.6799988e-05 1e-6 279 469 7.2999992e-06 1e-6 322 469 3.7e-06 1e-6 326 469 3.7e-06 1e-6 356 469 3.6599988e-05 1e-6 359 469 0.00011339999 1e-6 363 469 1.0999999e-05 1e-6 380 469 1.0999999e-05 1e-6 384 469 1.0999999e-05 1e-6 387 469 0.00010599999 1e-6 393 469 8.7799999e-05 1e-6 394 469 2.5599991e-05 1e-6 397 469 2.5599991e-05 1e-6 402 469 1.0999999e-05 1e-6 412 469 8.4099986e-05 1e-6 419 469 1.4599999e-05 1e-6 422 469 0.00086299982 1e-6 423 469 2.929999e-05 1e-6 425 469 1.4599999e-05 1e-6 430 469 6.5799992e-05 1e-6 431 469 3.2899989e-05 1e-6 432 469 9.8699995e-05 1e-6 433 469 0.00011339999 1e-6 434 469 0.00019009999 1e-6 438 469 0.00010239999 1e-6 441 469 0.00037659984 1e-6 442 469 0.0011884 1e-6 443 469 0.00018649999 1e-6 444 469 0.0073352978 1e-6 445 469 0.0026071998 1e-6 446 469 0.0001755 1e-6 447 469 0.011339299 1e-6 448 469 7.3099989e-05 1e-6 449 469 2.1899992e-05 1e-6 450 469 0.018243097 1e-6 452 469 0.00046809996 1e-6 453 469 0.000128 1e-6 454 469 0.00086299982 1e-6 455 469 0.0035762 1e-6 456 469 0.0011847999 1e-6 457 469 0.0082237981 1e-6 458 469 0.00072399992 1e-6 459 469 0.00047539989 1e-6 460 469 0.0022012999 1e-6 463 469 0.043547299 1e-6 464 469 0.014926497 1e-6 465 469 0.0007642 1e-6 467 469 0.029885899 1e-6 468 469 0.0067428984 1e-6 469 469 0.040234298 1e-6 470 469 0.015537199 1e-6 471 469 0.011763498 1e-6 473 469 0.00027429988 1e-6 477 469 0.0001755 1e-6 478 469 0.0022817999 1e-6 483 469 0.0051448978 1e-6 489 469 0.00010239999 1e-6 490 469 0.0011664999 1e-6 491 469 3.7e-06 1e-6 1 470 0.0051065981 1e-6 9 470 0.0013710998 1e-6 11 470 0.010274697 1e-6 16 470 2.8699986e-05 1e-6 17 470 0.0064303987 1e-6 59 470 4.0999994e-06 1e-6 60 470 0.0034871998 1e-6 64 470 4.0999994e-06 1e-6 75 470 0.00015189999 1e-6 82 470 0.07518667 1e-6 83 470 0.018761799 1e-6 84 470 0.010701697 1e-6 85 470 0.0014962999 1e-6 86 470 0.0035919 1e-6 87 470 0.0061553977 1e-6 88 470 0.0024013999 1e-6 89 470 0.0083884969 1e-6 90 470 0.013706498 1e-6 91 470 0.001956 1e-6 92 470 0.0013771998 1e-6 93 470 0.0096179992 1e-6 94 470 0.0010817 1e-6 95 470 0.0050757974 1e-6 96 470 0.0096774995 1e-6 97 470 0.0070563965 1e-6 98 470 0.0013730999 1e-6 99 470 0.00027299998 1e-6 100 470 0.0008578999 1e-6 103 470 0.00056649977 1e-6 104 470 3.0799987e-05 1e-6 105 470 0.022238698 1e-6 106 470 0.0015947998 1e-6 107 470 0.0016747999 1e-6 108 470 0.0032676 1e-6 109 470 0.00049879984 1e-6 111 470 0.029477797 1e-6 113 470 0.0066725984 1e-6 114 470 0.0311937 1e-6 115 470 0.0072760992 1e-6 116 470 0.008080598 1e-6 121 470 0.0089980997 1e-6 122 470 0.0052625984 1e-6 123 470 0.00073679979 1e-6 124 470 0.00051309983 1e-6 125 470 0.0093326978 1e-6 152 470 0.00051309983 1e-6 187 470 4.0999994e-06 1e-6 189 470 0.00010059999 1e-6 190 470 0.0012601998 1e-6 192 470 2.8699986e-05 1e-6 193 470 0.0014634 1e-6 194 470 2.0999996e-06 1e-6 195 470 0.00025659986 1e-6 197 470 0.00038789981 1e-6 198 470 0.0062764995 1e-6 203 470 2.0999996e-06 1e-6 204 470 0.00091129984 1e-6 206 470 7.9999998e-05 1e-6 214 470 4.0999992e-05 1e-6 218 470 0.00015189999 1e-6 223 470 0.00017449999 1e-6 229 470 0.0021571999 1e-6 230 470 0.00039819977 1e-6 234 470 0.00023189999 1e-6 237 470 3.689999e-05 1e-6 240 470 2.0999996e-06 1e-6 241 470 0.0031361999 1e-6 252 470 0.0010713998 1e-6 260 470 0.00079839979 1e-6 261 470 1.8499995e-05 1e-6 263 470 2.0999996e-06 1e-6 296 470 0.0002422 1e-6 315 470 0.0010386 1e-6 316 470 7.9999998e-05 1e-6 317 470 1.44e-05 1e-6 322 470 2.0999996e-06 1e-6 344 470 0.0003386999 1e-6 351 470 2.0999996e-06 1e-6 358 470 8.6199987e-05 1e-6 368 470 2.0999996e-06 1e-6 377 470 2.0999996e-06 1e-6 380 470 4.0999994e-06 1e-6 384 470 9.8499993e-05 1e-6 406 470 2.0999996e-06 1e-6 408 470 2.0999996e-06 1e-6 412 470 4.0999994e-06 1e-6 422 470 8.1999997e-06 1e-6 425 470 0.00046799984 1e-6 434 470 2.0999996e-06 1e-6 435 470 0.0002462999 1e-6 442 470 0.00042689987 1e-6 443 470 0.0035281999 1e-6 445 470 0.011432298 1e-6 446 470 0.00046799984 1e-6 447 470 0.00017859999 1e-6 448 470 6.1999999e-06 1e-6 450 470 0.0030828 1e-6 452 470 0.011588298 1e-6 453 470 0.0011041998 1e-6 454 470 0.0032428999 1e-6 455 470 0.061297499 1e-6 456 470 4.5199995e-05 1e-6 457 470 0.0045297965 1e-6 458 470 0.0029719998 1e-6 459 470 0.0002176 1e-6 460 470 0.0030294999 1e-6 463 470 0.041891199 1e-6 465 470 0.011153199 1e-6 467 470 0.011684798 1e-6 468 470 0.010305498 1e-6 469 470 0.0054287985 1e-6 470 470 2.8699986e-05 1e-6 471 470 0.00045149983 1e-6 472 470 3.8999991e-05 1e-6 473 470 0.0086244978 1e-6 477 470 0.00013959999 1e-6 478 470 0.0012848999 1e-6 479 470 0.0019888999 1e-6 483 470 0.0012786998 1e-6 486 470 1.6399994e-05 1e-6 489 470 0.00067939982 1e-6 490 470 0.00066909986 1e-6 9 471 1.2199999e-05 1e-6 16 471 8.0999998e-06 1e-6 18 471 4.0999994e-06 1e-6 22 471 4.0999994e-06 1e-6 60 471 0.0052297972 1e-6 66 471 1.2199999e-05 1e-6 68 471 0.0013929999 1e-6 69 471 0.00065579987 1e-6 73 471 0.00013029999 1e-6 75 471 0.00081869983 1e-6 79 471 4.0999994e-06 1e-6 82 471 1.6299993e-05 1e-6 83 471 1.2199999e-05 1e-6 84 471 1.2199999e-05 1e-6 108 471 1.6299993e-05 1e-6 113 471 2.4399997e-05 1e-6 114 471 5.6999997e-05 1e-6 126 471 2.4399997e-05 1e-6 127 471 4.0999994e-06 1e-6 150 471 0.0022034999 1e-6 187 471 4.0999994e-06 1e-6 189 471 1.6299993e-05 1e-6 190 471 5.6999997e-05 1e-6 192 471 0.0012341 1e-6 194 471 3.6699988e-05 1e-6 196 471 4.0999994e-06 1e-6 197 471 1.2199999e-05 1e-6 200 471 2.0399995e-05 1e-6 201 471 1.2199999e-05 1e-6 203 471 2.4399997e-05 1e-6 204 471 5.2999996e-05 1e-6 206 471 6.5199987e-05 1e-6 207 471 2.0399995e-05 1e-6 209 471 4.0999994e-06 1e-6 214 471 0.00021989999 1e-6 217 471 1.6299993e-05 1e-6 223 471 8.9599998e-05 1e-6 228 471 4.0999994e-06 1e-6 229 471 1.2199999e-05 1e-6 230 471 4.0999994e-06 1e-6 231 471 8.0999998e-06 1e-6 233 471 0.0042481981 1e-6 234 471 0.0074577965 1e-6 237 471 0.010687798 1e-6 240 471 0.0037757999 1e-6 241 471 4.0999994e-06 1e-6 242 471 0.0001222 1e-6 248 471 1.2199999e-05 1e-6 250 471 4.0999994e-06 1e-6 251 471 4.0999994e-06 1e-6 252 471 0.0048550963 1e-6 263 471 4.0999994e-06 1e-6 267 471 4.0999994e-06 1e-6 272 471 0.0069975965 1e-6 312 471 0.00024849991 1e-6 313 471 0.012805797 1e-6 317 471 0.0022320999 1e-6 319 471 0.0045007989 1e-6 323 471 0.0016496 1e-6 328 471 0.0018206998 1e-6 330 471 4.0999994e-06 1e-6 331 471 1.6299993e-05 1e-6 340 471 7.7399993e-05 1e-6 356 471 0.00035839994 1e-6 357 471 0.0062236972 1e-6 358 471 0.00023619999 1e-6 366 471 0.034645699 1e-6 376 471 0.00046429993 1e-6 380 471 4.0999994e-06 1e-6 384 471 9.7799988e-05 1e-6 385 471 0.0040567964 1e-6 387 471 0.0055678971 1e-6 394 471 0.0001222 1e-6 397 471 0.0024601 1e-6 402 471 0.23339194 1e-6 412 471 0.00044799992 1e-6 413 471 4.0999994e-06 1e-6 419 471 4.0999994e-06 1e-6 422 471 4.4799992e-05 1e-6 423 471 8.0999998e-06 1e-6 425 471 4.0999994e-06 1e-6 430 471 1.2199999e-05 1e-6 431 471 8.0999998e-06 1e-6 432 471 4.0999994e-06 1e-6 433 471 1.2199999e-05 1e-6 434 471 1.6299993e-05 1e-6 442 471 9.3699986e-05 1e-6 443 471 0.0064150989 1e-6 444 471 7.3299991e-05 1e-6 445 471 0.0042807981 1e-6 446 471 0.00025659986 1e-6 447 471 0.00086759985 1e-6 448 471 0.00013439999 1e-6 449 471 0.00027699978 1e-6 450 471 0.0062236972 1e-6 452 471 0.0041096993 1e-6 453 471 0.0013685999 1e-6 454 471 0.0010589999 1e-6 455 471 0.047207098 1e-6 456 471 0.012357697 1e-6 457 471 0.0018328999 1e-6 458 471 0.00048059993 1e-6 459 471 0.00031359983 1e-6 460 471 0.0090992972 1e-6 463 471 0.037012096 1e-6 464 471 9.7799988e-05 1e-6 465 471 0.0013440999 1e-6 467 471 0.011502396 1e-6 468 471 0.0053316988 1e-6 469 471 0.0058896989 1e-6 470 471 0.0028837 1e-6 471 471 0.0027655999 1e-6 473 471 5.6999997e-05 1e-6 477 471 1.2199999e-05 1e-6 478 471 0.00060279993 1e-6 483 471 0.00045619998 1e-6 489 471 0.00066389982 1e-6 490 471 0.00021989999 1e-6 491 471 0.0025374999 1e-6 9 472 6.9099988e-05 1e-6 16 472 2.2999986e-05 1e-6 18 472 0.00027639978 1e-6 60 472 0.012623798 1e-6 79 472 2.2999986e-05 1e-6 82 472 9.2099988e-05 1e-6 83 472 6.9099988e-05 1e-6 84 472 6.9099988e-05 1e-6 108 472 9.2099988e-05 1e-6 113 472 0.00013819999 1e-6 114 472 0.00029949984 1e-6 126 472 0.00013819999 1e-6 127 472 2.2999986e-05 1e-6 189 472 0.00011519999 1e-6 190 472 4.6099987e-05 1e-6 197 472 2.2999986e-05 1e-6 200 472 0.00029949984 1e-6 201 472 4.6099987e-05 1e-6 203 472 0.00071409997 1e-6 204 472 2.2999986e-05 1e-6 223 472 2.2999986e-05 1e-6 229 472 4.6099987e-05 1e-6 230 472 2.2999986e-05 1e-6 234 472 0.0014281999 1e-6 237 472 0.00032249978 1e-6 241 472 4.6099987e-05 1e-6 248 472 4.6099987e-05 1e-6 250 472 2.2999986e-05 1e-6 251 472 2.2999986e-05 1e-6 252 472 4.6099987e-05 1e-6 263 472 2.2999986e-05 1e-6 315 472 2.2999986e-05 1e-6 356 472 0.00016129999 1e-6 380 472 2.2999986e-05 1e-6 384 472 0.00016129999 1e-6 387 472 0.00013819999 1e-6 394 472 2.2999986e-05 1e-6 397 472 2.2999986e-05 1e-6 402 472 0.00013819999 1e-6 412 472 0.00069109979 1e-6 419 472 2.2999986e-05 1e-6 422 472 0.0218383 1e-6 423 472 4.6099987e-05 1e-6 425 472 2.2999986e-05 1e-6 430 472 6.9099988e-05 1e-6 431 472 2.2999986e-05 1e-6 443 472 6.9099988e-05 1e-6 444 472 0.00039159996 1e-6 445 472 0.0066343993 1e-6 446 472 9.2099988e-05 1e-6 447 472 0.00089839986 1e-6 448 472 2.2999986e-05 1e-6 449 472 2.2999986e-05 1e-6 450 472 0.0025801 1e-6 452 472 0.0088688992 1e-6 453 472 0.0024648998 1e-6 454 472 0.0016124998 1e-6 455 472 0.0057359971 1e-6 456 472 0.0013130999 1e-6 457 472 0.0077631995 1e-6 458 472 0.00025339983 1e-6 459 472 0.00082929991 1e-6 460 472 0.0027643 1e-6 463 472 0.060124397 1e-6 464 472 0.0005067999 1e-6 465 472 0.00059889979 1e-6 467 472 0.0063809976 1e-6 468 472 0.039506998 1e-6 469 472 0.0066113994 1e-6 470 472 0.015272997 1e-6 471 472 0.0048145987 1e-6 472 472 0.30955994 1e-6 473 472 0.00029949984 1e-6 477 472 4.6099987e-05 1e-6 478 472 0.0017046998 1e-6 483 472 0.0031559998 1e-6 486 472 2.2999986e-05 1e-6 489 472 0.0004606999 1e-6 490 472 0.044137299 1e-6 0 473 2.3899993e-05 1e-6 2 473 0.0013367999 1e-6 3 473 0.0051442981 1e-6 5 473 4.7699999e-05 1e-6 6 473 0.0423957 1e-6 9 473 7.1599992e-05 1e-6 14 473 1.19e-05 1e-6 16 473 7.1599992e-05 1e-6 17 473 1.19e-05 1e-6 18 473 0.0094053969 1e-6 60 473 0.0069226995 1e-6 62 473 2.3899993e-05 1e-6 75 473 0.0089517981 1e-6 79 473 2.3899993e-05 1e-6 82 473 0.00010739999 1e-6 83 473 8.3599996e-05 1e-6 84 473 8.3599996e-05 1e-6 101 473 0.0021125998 1e-6 102 473 0.00039389986 1e-6 105 473 0.000179 1e-6 108 473 0.0001313 1e-6 113 473 0.00021479999 1e-6 114 473 0.00048939977 1e-6 118 473 5.9699989e-05 1e-6 126 473 0.00021479999 1e-6 127 473 3.5799996e-05 1e-6 141 473 0.00096679991 1e-6 150 473 0.0003819 1e-6 154 473 0.0013249 1e-6 171 473 1.19e-05 1e-6 189 473 8.3599996e-05 1e-6 190 473 0.0002387 1e-6 192 473 8.3599996e-05 1e-6 194 473 0.0002268 1e-6 196 473 2.3899993e-05 1e-6 197 473 0.00035809982 1e-6 200 473 0.0002625999 1e-6 201 473 0.00011939999 1e-6 203 473 0.0016828999 1e-6 204 473 0.0030913998 1e-6 206 473 0.00041779992 1e-6 207 473 0.00010739999 1e-6 209 473 2.3899993e-05 1e-6 214 473 3.5799996e-05 1e-6 215 473 0.0016232999 1e-6 217 473 0.00054899999 1e-6 223 473 0.00039389986 1e-6 230 473 0.00040579983 1e-6 234 473 0.0026974999 1e-6 237 473 0.00062069995 1e-6 241 473 4.7699999e-05 1e-6 242 473 0.00033419998 1e-6 244 473 0.0002387 1e-6 245 473 0.0016590999 1e-6 248 473 8.3599996e-05 1e-6 250 473 4.7699999e-05 1e-6 251 473 0.0020528999 1e-6 252 473 7.1599992e-05 1e-6 263 473 1.19e-05 1e-6 283 473 1.19e-05 1e-6 322 473 0.00015519999 1e-6 326 473 1.19e-05 1e-6 329 473 2.3899993e-05 1e-6 356 473 0.00015519999 1e-6 364 473 0.00093099987 1e-6 380 473 3.5799996e-05 1e-6 384 473 0.0002625999 1e-6 387 473 0.00020289999 1e-6 388 473 1.19e-05 1e-6 391 473 5.9699989e-05 1e-6 394 473 4.7699999e-05 1e-6 397 473 4.7699999e-05 1e-6 402 473 5.9699989e-05 1e-6 406 473 5.9699989e-05 1e-6 412 473 0.00065649999 1e-6 419 473 2.3899993e-05 1e-6 422 473 0.00027449988 1e-6 423 473 4.7699999e-05 1e-6 425 473 3.5799996e-05 1e-6 430 473 0.0020291 1e-6 431 473 4.7699999e-05 1e-6 432 473 2.3899993e-05 1e-6 433 473 7.1599992e-05 1e-6 434 473 9.55e-05 1e-6 442 473 0.0014680999 1e-6 443 473 0.0010264998 1e-6 444 473 0.00066839997 1e-6 445 473 0.0024348998 1e-6 446 473 0.00081159989 1e-6 447 473 0.0016709999 1e-6 448 473 5.9699989e-05 1e-6 449 473 7.1599992e-05 1e-6 450 473 0.0087130964 1e-6 451 473 1.19e-05 1e-6 452 473 0.0070181973 1e-6 453 473 0.0019335998 1e-6 454 473 0.001862 1e-6 455 473 0.016483299 1e-6 456 473 0.0022677998 1e-6 457 473 0.0066004992 1e-6 458 473 8.3599996e-05 1e-6 459 473 0.00041779992 1e-6 460 473 0.010467596 1e-6 463 473 0.074001551 1e-6 464 473 0.00085939979 1e-6 465 473 0.0123774 1e-6 467 473 0.037716899 1e-6 468 473 0.016972598 1e-6 469 473 0.0066481978 1e-6 470 473 0.024468299 1e-6 471 473 0.0039745979 1e-6 472 473 0.0010861999 1e-6 473 473 0.069263041 1e-6 476 473 2.3899993e-05 1e-6 477 473 0.00015519999 1e-6 478 473 0.0033180998 1e-6 483 473 0.0013128999 1e-6 489 473 0.00047739991 1e-6 490 473 0.0021841999 1e-6 1 474 4.259999e-05 1e-6 9 474 3.4099998e-05 1e-6 11 474 1.2799999e-05 1e-6 16 474 8.4999992e-06 1e-6 17 474 4.2999991e-06 1e-6 18 474 4.6899993e-05 1e-6 60 474 0.00067789992 1e-6 79 474 8.4999992e-06 1e-6 82 474 0.00014069999 1e-6 83 474 6.8199995e-05 1e-6 84 474 5.9699989e-05 1e-6 86 474 4.2999991e-06 1e-6 87 474 8.4999992e-06 1e-6 88 474 4.2999991e-06 1e-6 89 474 8.4999992e-06 1e-6 90 474 7.6699987e-05 1e-6 91 474 1.7099999e-05 1e-6 92 474 1.2799999e-05 1e-6 93 474 8.0999991e-05 1e-6 94 474 4.2999991e-06 1e-6 95 474 4.2999991e-06 1e-6 96 474 4.2999991e-06 1e-6 97 474 3.8399987e-05 1e-6 98 474 4.2999991e-06 1e-6 99 474 8.4999992e-06 1e-6 100 474 4.2999991e-06 1e-6 101 474 2.1299988e-05 1e-6 105 474 2.5599991e-05 1e-6 106 474 4.2999991e-06 1e-6 107 474 4.2999991e-06 1e-6 108 474 4.6899993e-05 1e-6 113 474 8.0999991e-05 1e-6 114 474 0.0001791 1e-6 115 474 4.2999991e-06 1e-6 121 474 2.9799994e-05 1e-6 122 474 8.4999992e-06 1e-6 125 474 2.5599991e-05 1e-6 126 474 8.0999991e-05 1e-6 127 474 1.2799999e-05 1e-6 150 474 0.00017059999 1e-6 151 474 4.2999991e-06 1e-6 152 474 2.5599991e-05 1e-6 171 474 1.2799999e-05 1e-6 187 474 4.2999991e-06 1e-6 189 474 0.00090819993 1e-6 190 474 0.00069929985 1e-6 192 474 0.00014919999 1e-6 194 474 0.00030269986 1e-6 196 474 5.54e-05 1e-6 197 474 9.3799987e-05 1e-6 198 474 0.0007205999 1e-6 200 474 0.00089969998 1e-6 201 474 0.0024175998 1e-6 203 474 0.00030269986 1e-6 204 474 0.00040929997 1e-6 206 474 0.00072909985 1e-6 207 474 0.00023019999 1e-6 209 474 7.6699987e-05 1e-6 214 474 0.00057129981 1e-6 219 474 1.7099999e-05 1e-6 223 474 0.0001279 1e-6 228 474 0.019135799 1e-6 229 474 1.7099999e-05 1e-6 230 474 0.0001279 1e-6 234 474 0.0019655998 1e-6 237 474 0.00071629998 1e-6 240 474 0.00059689977 1e-6 241 474 0.00057129981 1e-6 242 474 0.00015779999 1e-6 248 474 3.8399987e-05 1e-6 250 474 2.1299988e-05 1e-6 251 474 8.4999992e-06 1e-6 252 474 6.3999993e-05 1e-6 253 474 1.2799999e-05 1e-6 263 474 1.2799999e-05 1e-6 279 474 8.4999992e-06 1e-6 315 474 1.2799999e-05 1e-6 322 474 8.4999992e-06 1e-6 326 474 4.2999991e-06 1e-6 356 474 3.8399987e-05 1e-6 359 474 4.2999991e-06 1e-6 363 474 2.1299988e-05 1e-6 380 474 1.2799999e-05 1e-6 384 474 2.5599991e-05 1e-6 387 474 7.6699987e-05 1e-6 393 474 4.2999991e-06 1e-6 394 474 3.4099998e-05 1e-6 397 474 4.259999e-05 1e-6 412 474 4.2999991e-06 1e-6 416 474 0.0023365 1e-6 417 474 0.0058924966 1e-6 418 474 0.0024089999 1e-6 419 474 8.4999992e-06 1e-6 422 474 0.0017907999 1e-6 423 474 1.7099999e-05 1e-6 424 474 2.1299988e-05 1e-6 425 474 1.2799999e-05 1e-6 430 474 4.259999e-05 1e-6 431 474 4.6899993e-05 1e-6 432 474 5.9699989e-05 1e-6 433 474 0.00017059999 1e-6 434 474 0.00020889999 1e-6 435 474 4.2999991e-06 1e-6 438 474 8.4999992e-06 1e-6 441 474 0.00011509999 1e-6 442 474 0.00011939999 1e-6 443 474 0.0002388 1e-6 444 474 0.00025579985 1e-6 445 474 0.00092519983 1e-6 446 474 9.3799987e-05 1e-6 447 474 0.00055859983 1e-6 448 474 3.8399987e-05 1e-6 449 474 1.7099999e-05 1e-6 450 474 0.0040505975 1e-6 452 474 0.0013857 1e-6 453 474 0.00030269986 1e-6 454 474 0.0018163999 1e-6 455 474 0.010433499 1e-6 456 474 0.0011170998 1e-6 457 474 0.0026733999 1e-6 458 474 0.00019189999 1e-6 459 474 1.7099999e-05 1e-6 460 474 0.015814297 1e-6 463 474 0.042249698 1e-6 464 474 0.00032399991 1e-6 465 474 0.012509897 1e-6 467 474 0.018717997 1e-6 468 474 5.54e-05 1e-6 469 474 0.0092821978 1e-6 470 474 0.0090988986 1e-6 471 474 0.003973797 1e-6 473 474 0.00018759999 1e-6 476 474 0.040394999 1e-6 477 474 0.00014919999 1e-6 478 474 0.0012663 1e-6 483 474 0.0065704994 1e-6 489 474 0.00015349999 1e-6 490 474 0.00069069979 1e-6 1 475 0.0018086999 1e-6 9 475 0.00035729981 1e-6 11 475 0.000795 1e-6 16 475 4.4999997e-06 1e-6 17 475 0.00017419999 1e-6 18 475 0.0008709 1e-6 22 475 0.00030369987 1e-6 60 475 0.025831498 1e-6 79 475 4.4999997e-06 1e-6 82 475 0.0079539977 1e-6 83 475 0.0019649998 1e-6 84 475 0.0015407999 1e-6 86 475 0.0005090998 1e-6 87 475 0.00035729981 1e-6 88 475 9.3799987e-05 1e-6 89 475 0.0013577 1e-6 90 475 0.0040684976 1e-6 91 475 0.0002233 1e-6 92 475 0.00045999978 1e-6 93 475 0.0024964998 1e-6 94 475 0.00026799995 1e-6 95 475 0.00027239998 1e-6 96 475 0.00095129991 1e-6 97 475 0.0010405998 1e-6 98 475 8.9299996e-05 1e-6 99 475 0.00024119999 1e-6 100 475 0.0001027 1e-6 103 475 3.1299991e-05 1e-6 104 475 4.4999997e-06 1e-6 105 475 0.001706 1e-6 106 475 0.0002233 1e-6 107 475 0.00025009993 1e-6 108 475 0.00020099999 1e-6 109 475 4.4699991e-05 1e-6 113 475 2.6799986e-05 1e-6 114 475 6.2499996e-05 1e-6 115 475 0.0005806 1e-6 116 475 0.0001965 1e-6 121 475 0.0021123998 1e-6 122 475 0.00033499999 1e-6 124 475 4.0199986e-05 1e-6 125 475 0.00093339989 1e-6 126 475 2.6799986e-05 1e-6 127 475 4.4999997e-06 1e-6 142 475 8.9299996e-05 1e-6 149 475 0.00037069991 1e-6 150 475 0.0078646988 1e-6 151 475 0.00053149997 1e-6 152 475 0.0072081983 1e-6 153 475 4.4999997e-06 1e-6 189 475 0.00020539999 1e-6 190 475 0.0015719999 1e-6 192 475 8.9299996e-05 1e-6 194 475 0.00020099999 1e-6 196 475 3.5699995e-05 1e-6 197 475 5.8099991e-05 1e-6 198 475 0.00075479993 1e-6 199 475 9.8299992e-05 1e-6 200 475 0.00065649999 1e-6 201 475 0.00010719999 1e-6 203 475 0.00018759999 1e-6 204 475 0.00093339989 1e-6 206 475 0.00077709998 1e-6 207 475 0.00014739999 1e-6 209 475 4.4699991e-05 1e-6 214 475 0.011634 1e-6 215 475 0.00013839999 1e-6 217 475 0.00013839999 1e-6 219 475 1.3399999e-05 1e-6 223 475 1.3399999e-05 1e-6 228 475 0.0246346 1e-6 229 475 0.0016389999 1e-6 230 475 0.0013978998 1e-6 233 475 0.00010719999 1e-6 234 475 0.0067972988 1e-6 237 475 5.8099991e-05 1e-6 240 475 0.0061585978 1e-6 241 475 0.0085345991 1e-6 248 475 1.7899991e-05 1e-6 250 475 4.4999997e-06 1e-6 251 475 4.4999997e-06 1e-6 252 475 0.0015274 1e-6 253 475 0.00044209999 1e-6 261 475 7.1499991e-05 1e-6 263 475 0.00026349979 1e-6 279 475 4.4999997e-06 1e-6 315 475 0.00043319981 1e-6 316 475 0.00024119999 1e-6 322 475 3.1299991e-05 1e-6 356 475 4.0199986e-05 1e-6 363 475 8.8999996e-06 1e-6 366 475 7.1499991e-05 1e-6 380 475 4.4999997e-06 1e-6 384 475 0.000795 1e-6 387 475 2.6799986e-05 1e-6 394 475 4.4999997e-06 1e-6 397 475 4.4999997e-06 1e-6 402 475 2.2299995e-05 1e-6 412 475 0.00060739997 1e-6 414 475 0.00012499999 1e-6 416 475 0.0019695 1e-6 417 475 0.0097269975 1e-6 418 475 6.6999986e-05 1e-6 419 475 4.4999997e-06 1e-6 420 475 8.9299996e-05 1e-6 422 475 0.010798797 1e-6 423 475 8.8999996e-06 1e-6 425 475 0.00035279989 1e-6 430 475 1.3399999e-05 1e-6 431 475 2.6799986e-05 1e-6 432 475 4.0199986e-05 1e-6 433 475 0.00010719999 1e-6 434 475 0.00013399999 1e-6 435 475 0.00012059999 1e-6 438 475 0.0001831 1e-6 442 475 0.0016836999 1e-6 443 475 0.0018846998 1e-6 444 475 0.0020721999 1e-6 445 475 0.0056717992 1e-6 446 475 0.00039299997 1e-6 447 475 0.0076904967 1e-6 448 475 3.5699995e-05 1e-6 449 475 4.4999997e-06 1e-6 450 475 0.008248698 1e-6 452 475 0.010289699 1e-6 453 475 0.0063506998 1e-6 454 475 0.0052564964 1e-6 455 475 0.020950098 1e-6 456 475 0.00026349979 1e-6 457 475 0.0065739974 1e-6 458 475 0.00058949995 1e-6 459 475 1.7899991e-05 1e-6 460 475 0.0047383979 1e-6 463 475 0.042681798 1e-6 464 475 0.0035861998 1e-6 465 475 0.0086684972 1e-6 467 475 0.0309227 1e-6 469 475 0.013197098 1e-6 470 475 0.011781398 1e-6 471 475 0.0024696998 1e-6 472 475 0.00033049984 1e-6 473 475 6.2499996e-05 1e-6 477 475 0.00021879999 1e-6 478 475 0.0015183999 1e-6 483 475 0.0046088994 1e-6 489 475 0.00025899988 1e-6 490 475 0.00033499999 1e-6 1 476 0.0024945999 1e-6 9 476 0.00036999979 1e-6 11 476 0.00081389979 1e-6 16 476 1.06e-05 1e-6 17 476 6.3399988e-05 1e-6 18 476 0.00012679999 1e-6 60 476 0.010115899 1e-6 79 476 1.06e-05 1e-6 82 476 0.0060144998 1e-6 83 476 0.0023995 1e-6 84 476 0.0017123998 1e-6 86 476 0.00034879986 1e-6 87 476 0.00060249981 1e-6 88 476 0.00035939994 1e-6 89 476 0.00060249981 1e-6 90 476 0.0044289976 1e-6 91 476 0.0011204998 1e-6 92 476 0.00086679985 1e-6 93 476 0.0048094988 1e-6 94 476 0.0003382999 1e-6 95 476 0.0002642998 1e-6 96 476 0.00038049999 1e-6 97 476 0.0023148998 1e-6 98 476 0.00020079999 1e-6 99 476 0.00046509993 1e-6 100 476 0.00020079999 1e-6 101 476 0.0012895998 1e-6 103 476 6.3399988e-05 1e-6 104 476 1.06e-05 1e-6 105 476 0.0015009998 1e-6 106 476 0.00028539984 1e-6 107 476 0.00032769982 1e-6 108 476 7.3999996e-05 1e-6 109 476 2.1099986e-05 1e-6 113 476 3.1699994e-05 1e-6 114 476 7.3999996e-05 1e-6 115 476 0.00036999979 1e-6 116 476 2.1099986e-05 1e-6 121 476 0.0016594999 1e-6 122 476 0.00059189997 1e-6 124 476 0.00012679999 1e-6 125 476 0.0014692999 1e-6 126 476 3.1699994e-05 1e-6 127 476 1.06e-05 1e-6 130 476 2.1099986e-05 1e-6 150 476 0.00057079992 1e-6 151 476 1.06e-05 1e-6 152 476 0.0014058999 1e-6 153 476 1.06e-05 1e-6 171 476 0.00048619998 1e-6 187 476 1.06e-05 1e-6 189 476 0.00034879986 1e-6 190 476 0.00022199999 1e-6 192 476 5.2899995e-05 1e-6 194 476 0.00012679999 1e-6 196 476 2.1099986e-05 1e-6 197 476 2.1099986e-05 1e-6 198 476 0.0017123998 1e-6 200 476 0.00099359988 1e-6 201 476 8.4599989e-05 1e-6 203 476 0.00010569999 1e-6 204 476 0.00083509996 1e-6 206 476 0.00048619998 1e-6 207 476 7.3999996e-05 1e-6 209 476 2.1099986e-05 1e-6 214 476 0.0043443963 1e-6 219 476 1.06e-05 1e-6 223 476 0.00060249981 1e-6 228 476 0.022768598 1e-6 229 476 0.00089849997 1e-6 230 476 0.0011415998 1e-6 233 476 3.1699994e-05 1e-6 234 476 0.0012895998 1e-6 237 476 0.00031709997 1e-6 240 476 0.0029491 1e-6 241 476 0.0075471997 1e-6 248 476 3.1699994e-05 1e-6 250 476 0.00017969999 1e-6 252 476 0.0016594999 1e-6 253 476 0.00041219988 1e-6 263 476 0.00052849995 1e-6 315 476 0.00073989993 1e-6 322 476 0.00012679999 1e-6 356 476 4.2299987e-05 1e-6 359 476 0.0001586 1e-6 363 476 1.06e-05 1e-6 384 476 0.00082449988 1e-6 387 476 3.1699994e-05 1e-6 393 476 0.00012679999 1e-6 394 476 3.1699994e-05 1e-6 397 476 2.1099986e-05 1e-6 402 476 4.2299987e-05 1e-6 412 476 0.00019029999 1e-6 416 476 0.00065539987 1e-6 417 476 0.0020083999 1e-6 418 476 0.010781799 1e-6 419 476 1.06e-05 1e-6 422 476 0.0062893964 1e-6 423 476 1.06e-05 1e-6 424 476 0.0013424 1e-6 425 476 1.06e-05 1e-6 430 476 2.1099986e-05 1e-6 431 476 3.1699994e-05 1e-6 432 476 2.1099986e-05 1e-6 433 476 6.3399988e-05 1e-6 434 476 0.0001374 1e-6 435 476 0.00028539984 1e-6 438 476 0.00041219988 1e-6 441 476 0.0002642998 1e-6 442 476 0.001131 1e-6 443 476 0.0011099 1e-6 444 476 0.00091959978 1e-6 445 476 0.0045663975 1e-6 446 476 0.0001586 1e-6 447 476 0.0013740999 1e-6 448 476 3.1699994e-05 1e-6 449 476 1.06e-05 1e-6 450 476 0.0097775981 1e-6 452 476 0.013826098 1e-6 453 476 0.0094710998 1e-6 454 476 0.0048517995 1e-6 455 476 0.016891498 1e-6 456 476 0.00046509993 1e-6 457 476 0.0056551993 1e-6 458 476 0.00012679999 1e-6 459 476 0.00012679999 1e-6 460 476 0.0042175986 1e-6 463 476 0.038169596 1e-6 464 476 0.0013846999 1e-6 465 476 0.014650498 1e-6 467 476 0.020760197 1e-6 468 476 0.0032767998 1e-6 469 476 0.015992999 1e-6 470 476 0.0069129989 1e-6 471 476 0.0032133998 1e-6 473 476 7.3999996e-05 1e-6 476 476 0.0059510991 1e-6 477 476 0.00025369995 1e-6 478 476 0.0015538 1e-6 483 476 0.0065535977 1e-6 489 476 0.00052849995 1e-6 490 476 0.00041219988 1e-6 3 477 0.00081139989 1e-6 9 477 2.4599998e-05 1e-6 16 477 8.1999997e-06 1e-6 18 477 0.0033439 1e-6 22 477 0.0011391998 1e-6 60 477 0.021226898 1e-6 79 477 8.1999997e-06 1e-6 82 477 3.2799988e-05 1e-6 83 477 2.4599998e-05 1e-6 84 477 2.4599998e-05 1e-6 101 477 0.00028679986 1e-6 105 477 0.00024589989 1e-6 108 477 3.2799988e-05 1e-6 113 477 4.9199996e-05 1e-6 114 477 0.00011469999 1e-6 126 477 4.9199996e-05 1e-6 127 477 8.1999997e-06 1e-6 150 477 9.8299992e-05 1e-6 187 477 0.0010326998 1e-6 189 477 0.00022949999 1e-6 190 477 0.00026229979 1e-6 192 477 0.0001065 1e-6 194 477 0.00025409996 1e-6 196 477 4.0999992e-05 1e-6 197 477 0.00076219998 1e-6 198 477 0.00062289997 1e-6 199 477 9.8299992e-05 1e-6 200 477 0.0011391998 1e-6 201 477 0.010260999 1e-6 202 477 0.0012293998 1e-6 203 477 0.00068019982 1e-6 204 477 0.0050321966 1e-6 206 477 0.0012620999 1e-6 207 477 0.00018849999 1e-6 209 477 5.7399986e-05 1e-6 210 477 0.0019506 1e-6 214 477 0.00086869998 1e-6 215 477 0.00027049985 1e-6 217 477 0.00030319998 1e-6 218 477 7.3799994e-05 1e-6 219 477 1.6399994e-05 1e-6 223 477 6.559999e-05 1e-6 228 477 0.0011145999 1e-6 229 477 0.00021309999 1e-6 230 477 0.00024589989 1e-6 234 477 0.010842897 1e-6 237 477 0.00031959987 1e-6 240 477 0.00072939997 1e-6 241 477 8.1999997e-06 1e-6 248 477 2.4599998e-05 1e-6 250 477 8.1999997e-06 1e-6 251 477 8.1999997e-06 1e-6 252 477 0.0019013998 1e-6 253 477 0.000336 1e-6 263 477 8.1999997e-06 1e-6 279 477 8.1999997e-06 1e-6 317 477 1.6399994e-05 1e-6 318 477 4.0999992e-05 1e-6 322 477 8.1999997e-06 1e-6 356 477 4.0999992e-05 1e-6 359 477 0.00059009995 1e-6 363 477 1.6399994e-05 1e-6 366 477 0.00013109999 1e-6 380 477 8.1999997e-06 1e-6 384 477 0.00091789989 1e-6 385 477 0.00036879978 1e-6 387 477 4.9199996e-05 1e-6 388 477 0.00024589989 1e-6 393 477 0.0018685998 1e-6 394 477 4.0999992e-05 1e-6 397 477 1.6399994e-05 1e-6 402 477 4.0999992e-05 1e-6 412 477 0.00018849999 1e-6 417 477 0.00023769999 1e-6 419 477 8.1999997e-06 1e-6 422 477 0.0010326998 1e-6 423 477 1.6399994e-05 1e-6 425 477 8.1999997e-06 1e-6 428 477 0.00030319998 1e-6 430 477 0.000336 1e-6 431 477 4.0999992e-05 1e-6 432 477 4.9199996e-05 1e-6 433 477 0.00013109999 1e-6 434 477 0.0004015998 1e-6 438 477 0.00050809979 1e-6 442 477 0.0017211 1e-6 443 477 0.00082779978 1e-6 444 477 0.0005655 1e-6 445 477 0.0052288994 1e-6 446 477 0.00037699984 1e-6 447 477 0.0045075975 1e-6 448 477 0.0001639 1e-6 449 477 8.1999997e-06 1e-6 450 477 0.010982297 1e-6 452 477 0.013957299 1e-6 453 477 0.0050812997 1e-6 454 477 0.0041305982 1e-6 455 477 0.0067368969 1e-6 456 477 0.0009506999 1e-6 457 477 0.0028766999 1e-6 458 477 0.00074579986 1e-6 459 477 0.0039584972 1e-6 460 477 0.0032782999 1e-6 463 477 0.10760146 1e-6 464 477 0.00018849999 1e-6 465 477 0.0043600984 1e-6 467 477 0.028389998 1e-6 468 477 0.010490499 1e-6 469 477 0.0046305992 1e-6 470 477 0.0067778975 1e-6 471 477 0.0063762963 1e-6 472 477 0.0029177 1e-6 473 477 0.0025406999 1e-6 477 477 0.00036879978 1e-6 478 477 0.0027947 1e-6 483 477 0.004056897 1e-6 489 477 0.00090969983 1e-6 490 477 0.00043439982 1e-6 9 478 0.00012089999 1e-6 16 478 4.6999994e-05 1e-6 18 478 0.00081929984 1e-6 60 478 0.028722197 1e-6 75 478 0.0010072999 1e-6 79 478 4.0299987e-05 1e-6 82 478 0.00020149999 1e-6 83 478 0.000141 1e-6 84 478 0.00013429999 1e-6 101 478 0.00050369999 1e-6 105 478 0.00017459999 1e-6 106 478 3.3599994e-05 1e-6 108 478 0.000235 1e-6 113 478 0.00030889991 1e-6 114 478 0.00075209979 1e-6 126 478 0.00034919987 1e-6 127 478 6.7199988e-05 1e-6 150 478 0.00096699991 1e-6 187 478 6.6999992e-06 1e-6 189 478 0.00049019977 1e-6 190 478 0.00030889991 1e-6 192 478 0.0001545 1e-6 194 478 0.00034249993 1e-6 196 478 6.0399994e-05 1e-6 197 478 0.00012089999 1e-6 200 478 0.0029481 1e-6 201 478 0.0039352998 1e-6 202 478 0.0047679991 1e-6 203 478 0.00032229978 1e-6 204 478 0.012074497 1e-6 206 478 0.00075889984 1e-6 207 478 0.00027529988 1e-6 209 478 8.0599988e-05 1e-6 214 478 6.6999992e-06 1e-6 215 478 0.00013429999 1e-6 217 478 5.3699987e-05 1e-6 219 478 2.0099993e-05 1e-6 223 478 2.0099993e-05 1e-6 229 478 0.00066479994 1e-6 230 478 0.0013094998 1e-6 234 478 0.0050634965 1e-6 237 478 0.00016119999 1e-6 240 478 2.0099993e-05 1e-6 241 478 5.3699987e-05 1e-6 248 478 0.00013429999 1e-6 250 478 7.3899995e-05 1e-6 251 478 4.0299987e-05 1e-6 252 478 0.0001276 1e-6 263 478 4.0299987e-05 1e-6 279 478 1.3399999e-05 1e-6 316 478 0.00026189978 1e-6 322 478 0.0001813 1e-6 356 478 4.0299987e-05 1e-6 363 478 2.0099993e-05 1e-6 366 478 0.00062449998 1e-6 380 478 5.3699987e-05 1e-6 384 478 0.00049019977 1e-6 387 478 0.00031559984 1e-6 394 478 1.3399999e-05 1e-6 397 478 1.3399999e-05 1e-6 402 478 5.3699987e-05 1e-6 412 478 0.00014769999 1e-6 419 478 6.7199988e-05 1e-6 422 478 0.00099389977 1e-6 423 478 0.00010739999 1e-6 425 478 7.3899995e-05 1e-6 428 478 2.6899987e-05 1e-6 430 478 0.0002082 1e-6 431 478 8.7299995e-05 1e-6 432 478 6.7199988e-05 1e-6 433 478 0.00018799999 1e-6 434 478 0.00022829999 1e-6 435 478 0.00082599977 1e-6 441 478 0.00026189978 1e-6 442 478 0.0029346999 1e-6 443 478 0.00032229978 1e-6 444 478 0.0010139998 1e-6 445 478 0.0033106999 1e-6 446 478 0.00024179999 1e-6 447 478 0.0022161 1e-6 448 478 0.00010739999 1e-6 449 478 6.7199988e-05 1e-6 450 478 0.016379099 1e-6 452 478 0.025747299 1e-6 453 478 0.0030622999 1e-6 454 478 0.0048149973 1e-6 455 478 0.0058088973 1e-6 456 478 0.0026055998 1e-6 457 478 0.0005371999 1e-6 459 478 0.00055069989 1e-6 460 478 0.0045732968 1e-6 463 478 0.073460996 1e-6 464 478 0.0012826999 1e-6 465 478 0.0021086999 1e-6 467 478 0.025156297 1e-6 468 478 0.012739297 1e-6 469 478 0.022228297 1e-6 470 478 0.037714299 1e-6 471 478 0.0013833998 1e-6 472 478 0.0019071999 1e-6 473 478 0.0027868999 1e-6 477 478 0.0096098967 1e-6 478 478 0.0049022995 1e-6 483 478 0.0188572 1e-6 489 478 0.0013497998 1e-6 490 478 0.0029010999 1e-6 60 479 0.0089971982 1e-6 114 479 0.00016359999 1e-6 130 479 0.014722697 1e-6 171 479 0.015213497 1e-6 190 479 0.00032719993 1e-6 192 479 0.0107967 1e-6 194 479 0.00049079978 1e-6 196 479 0.00016359999 1e-6 197 479 0.00016359999 1e-6 198 479 0.0042531975 1e-6 200 479 0.00065429998 1e-6 201 479 0.00016359999 1e-6 203 479 0.00049079978 1e-6 204 479 0.00049079978 1e-6 206 479 0.00065429998 1e-6 207 479 0.00032719993 1e-6 209 479 0.00016359999 1e-6 233 479 0.013086896 1e-6 234 479 0.00081789983 1e-6 237 479 0.00016359999 1e-6 241 479 0.016522199 1e-6 279 479 0.013577599 1e-6 312 479 0.014559098 1e-6 315 479 0.014886297 1e-6 316 479 0.015540697 1e-6 317 479 0.0068705976 1e-6 318 479 0.0081792995 1e-6 319 479 0.016849298 1e-6 322 479 0.015213497 1e-6 384 479 0.00016359999 1e-6 422 479 0.00049079978 1e-6 428 479 0.0075248964 1e-6 432 479 0.00016359999 1e-6 433 479 0.00032719993 1e-6 434 479 0.00032719993 1e-6 441 479 0.0063797981 1e-6 442 479 0.0053982995 1e-6 443 479 0.0014722999 1e-6 445 479 0.022247698 1e-6 447 479 0.00016359999 1e-6 452 479 0.056437097 1e-6 453 479 0.010960199 1e-6 454 479 0.0049075969 1e-6 455 479 0.020284597 1e-6 456 479 0.00016359999 1e-6 459 479 0.0055618994 1e-6 460 479 0.00016359999 1e-6 463 479 0.021756899 1e-6 464 479 0.00016359999 1e-6 465 479 0.0016358998 1e-6 467 479 0.014231998 1e-6 468 479 0.0070341974 1e-6 470 479 0.0022902 1e-6 471 479 0.0011451 1e-6 472 479 0.0089971982 1e-6 478 479 0.0026173999 1e-6 483 479 0.017667297 1e-6 489 479 0.0042531975 1e-6 490 479 0.00032719993 1e-6 1 480 0.0012118998 1e-6 9 480 0.00030299998 1e-6 11 480 0.0013633999 1e-6 60 480 0.0089379996 1e-6 82 480 0.011664897 1e-6 83 480 0.0039387979 1e-6 84 480 0.0024238999 1e-6 86 480 0.00060599996 1e-6 87 480 0.00090899994 1e-6 88 480 0.00045449985 1e-6 89 480 0.0022723998 1e-6 90 480 0.007271599 1e-6 91 480 0.00045449985 1e-6 92 480 0.00045449985 1e-6 93 480 0.0031812999 1e-6 94 480 0.00060599996 1e-6 95 480 0.00060599996 1e-6 96 480 0.0015148998 1e-6 97 480 0.0015148998 1e-6 98 480 0.00030299998 1e-6 99 480 0.00045449985 1e-6 100 480 0.00075749983 1e-6 104 480 0.0022723998 1e-6 105 480 0.0031812999 1e-6 106 480 0.00045449985 1e-6 107 480 0.00030299998 1e-6 108 480 0.0019693999 1e-6 114 480 0.00015149999 1e-6 116 480 0.0010603999 1e-6 122 480 0.00075749983 1e-6 149 480 0.00015149999 1e-6 190 480 0.00030299998 1e-6 192 480 0.00030299998 1e-6 194 480 0.00075749983 1e-6 196 480 0.00015149999 1e-6 197 480 0.00015149999 1e-6 200 480 0.00060599996 1e-6 201 480 0.00015149999 1e-6 203 480 0.00045449985 1e-6 204 480 0.00045449985 1e-6 206 480 0.00090899994 1e-6 207 480 0.00030299998 1e-6 209 480 0.00015149999 1e-6 234 480 0.00090899994 1e-6 237 480 0.00015149999 1e-6 356 480 0.00015149999 1e-6 384 480 0.00015149999 1e-6 422 480 0.00045449985 1e-6 428 480 0.00015149999 1e-6 432 480 0.00015149999 1e-6 433 480 0.00030299998 1e-6 434 480 0.00030299998 1e-6 438 480 0.0027268999 1e-6 442 480 0.0054536983 1e-6 443 480 0.00045449985 1e-6 445 480 0.0051506981 1e-6 450 480 0.0019693999 1e-6 452 480 0.0180276 1e-6 453 480 0.0034842999 1e-6 454 480 0.004999198 1e-6 455 480 0.0083320998 1e-6 456 480 0.00015149999 1e-6 457 480 0.00015149999 1e-6 460 480 0.00015149999 1e-6 463 480 0.10013628 1e-6 465 480 0.0016663999 1e-6 467 480 0.012119398 1e-6 470 480 0.0010603999 1e-6 471 480 0.0021209 1e-6 478 480 0.0027268999 1e-6 490 480 0.00015149999 1e-6 1 481 0.008002799 1e-6 9 481 0.0012178 1e-6 11 481 0.0050451979 1e-6 17 481 0.0013917999 1e-6 18 481 0.0029575999 1e-6 60 481 0.015483599 1e-6 82 481 0.041579697 1e-6 83 481 0.017919298 1e-6 84 481 0.0092205964 1e-6 86 481 0.0020876999 1e-6 87 481 0.0026095998 1e-6 88 481 0.0012178 1e-6 89 481 0.0036533999 1e-6 90 481 0.026965898 1e-6 91 481 0.00086989999 1e-6 92 481 0.0033054999 1e-6 93 481 0.012178097 1e-6 94 481 0.0012178 1e-6 95 481 0.0015657998 1e-6 96 481 0.0027835998 1e-6 97 481 0.0033054999 1e-6 98 481 0.0017396999 1e-6 99 481 0.0046972968 1e-6 100 481 0.00034789997 1e-6 103 481 0.00086989999 1e-6 104 481 0.00017399999 1e-6 105 481 0.024530299 1e-6 106 481 0.0052191988 1e-6 107 481 0.0022616999 1e-6 108 481 0.0005218999 1e-6 109 481 0.00017399999 1e-6 114 481 0.00017399999 1e-6 115 481 0.0015657998 1e-6 116 481 0.00034789997 1e-6 121 481 0.0043492988 1e-6 122 481 0.0020876999 1e-6 124 481 0.0005218999 1e-6 125 481 0.006610997 1e-6 152 481 0.016005598 1e-6 190 481 0.00017399999 1e-6 194 481 0.00034789997 1e-6 198 481 0.0064369999 1e-6 200 481 0.00017399999 1e-6 204 481 0.0026095998 1e-6 206 481 0.00034789997 1e-6 223 481 0.00017399999 1e-6 229 481 0.0038273998 1e-6 234 481 0.0109603 1e-6 241 481 0.017571297 1e-6 384 481 0.00034789997 1e-6 422 481 0.00034789997 1e-6 441 481 0.0041753985 1e-6 442 481 0.0064369999 1e-6 443 481 0.0020876999 1e-6 445 481 0.015831597 1e-6 446 481 0.00034789997 1e-6 448 481 0.00017399999 1e-6 450 481 0.013395999 1e-6 452 481 0.032011099 1e-6 453 481 0.006262999 1e-6 454 481 0.008872699 1e-6 455 481 0.030619297 1e-6 457 481 0.0046972968 1e-6 459 481 0.011134297 1e-6 463 481 0.19432849 1e-6 465 481 0.008872699 1e-6 467 481 0.0311413 1e-6 468 481 0.0048712976 1e-6 470 481 0.0012178 1e-6 471 481 0.00017399999 1e-6 478 481 0.00069589983 1e-6 483 481 0.008002799 1e-6 490 481 0.0012178 1e-6 60 482 0.011436399 1e-6 105 482 0.0099115968 1e-6 106 482 0.00091489987 1e-6 114 482 0.0001525 1e-6 190 482 0.00045749987 1e-6 192 482 0.00030499999 1e-6 194 482 0.00060989987 1e-6 196 482 0.0001525 1e-6 197 482 0.0001525 1e-6 200 482 0.00076239998 1e-6 201 482 0.00076239998 1e-6 202 482 0.0056419969 1e-6 203 482 0.00060989987 1e-6 204 482 0.029429697 1e-6 206 482 0.0013724 1e-6 207 482 0.00045749987 1e-6 209 482 0.0001525 1e-6 234 482 0.004879497 1e-6 237 482 0.00030499999 1e-6 384 482 0.0001525 1e-6 422 482 0.00045749987 1e-6 431 482 0.0001525 1e-6 432 482 0.0001525 1e-6 433 482 0.00030499999 1e-6 434 482 0.00030499999 1e-6 441 482 0.0051844977 1e-6 442 482 0.0041170977 1e-6 444 482 0.0073192976 1e-6 445 482 0.011131398 1e-6 446 482 0.0001525 1e-6 447 482 0.0050319992 1e-6 450 482 0.021957897 1e-6 452 482 0.014028698 1e-6 453 482 0.0027446998 1e-6 454 482 0.0094540976 1e-6 455 482 0.0050319992 1e-6 457 482 0.0057943985 1e-6 459 482 0.0096065998 1e-6 460 482 0.00030499999 1e-6 463 482 0.011283897 1e-6 464 482 0.0042695999 1e-6 465 482 0.0019822998 1e-6 467 482 0.037816398 1e-6 468 482 0.019365698 1e-6 469 482 0.012656298 1e-6 470 482 0.0021348 1e-6 471 482 0.0073192976 1e-6 472 482 0.0065568984 1e-6 478 482 0.0035071999 1e-6 483 482 0.020890497 1e-6 490 482 0.00030499999 1e-6 9 483 1.2199999e-05 1e-6 22 483 6.0999999e-05 1e-6 60 483 0.0036364999 1e-6 82 483 1.2199999e-05 1e-6 83 483 1.2199999e-05 1e-6 84 483 1.2199999e-05 1e-6 108 483 2.4399997e-05 1e-6 113 483 2.4399997e-05 1e-6 114 483 4.8799993e-05 1e-6 126 483 2.4399997e-05 1e-6 130 483 0.00029289979 1e-6 139 483 6.0999999e-05 1e-6 141 483 8.5399995e-05 1e-6 150 483 1.2199999e-05 1e-6 153 483 0.0016229998 1e-6 154 483 0.0010738999 1e-6 158 483 7.319999e-05 1e-6 187 483 0.00023189999 1e-6 189 483 0.00014639999 1e-6 190 483 0.0002197 1e-6 192 483 7.319999e-05 1e-6 194 483 4.8799993e-05 1e-6 196 483 1.2199999e-05 1e-6 197 483 3.6599988e-05 1e-6 198 483 0.00034169992 1e-6 200 483 8.5399995e-05 1e-6 201 483 2.4399997e-05 1e-6 202 483 0.00036609988 1e-6 203 483 6.0999999e-05 1e-6 204 483 0.0012690998 1e-6 206 483 4.8799993e-05 1e-6 207 483 3.6599988e-05 1e-6 209 483 0.0033801999 1e-6 223 483 0.0001586 1e-6 228 483 1.2199999e-05 1e-6 229 483 0.00035389978 1e-6 230 483 0.00036609988 1e-6 234 483 0.0045150965 1e-6 237 483 0.00075659994 1e-6 242 483 4.8799993e-05 1e-6 243 483 1.2199999e-05 1e-6 251 483 0.00029289979 1e-6 252 483 1.2199999e-05 1e-6 272 483 1.2199999e-05 1e-6 277 483 2.4399997e-05 1e-6 297 483 1.2199999e-05 1e-6 312 483 3.6599988e-05 1e-6 335 483 3.6599988e-05 1e-6 337 483 4.8799993e-05 1e-6 359 483 6.0999999e-05 1e-6 362 483 3.6599988e-05 1e-6 363 483 0.000183 1e-6 364 483 0.0001586 1e-6 384 483 7.319999e-05 1e-6 387 483 2.4399997e-05 1e-6 390 483 7.319999e-05 1e-6 394 483 4.8799993e-05 1e-6 397 483 0.000183 1e-6 402 483 0.0014155 1e-6 417 483 6.0999999e-05 1e-6 422 483 6.0999999e-05 1e-6 423 483 1.2199999e-05 1e-6 430 483 1.2199999e-05 1e-6 431 483 2.4399997e-05 1e-6 432 483 1.2199999e-05 1e-6 433 483 2.4399997e-05 1e-6 434 483 2.4399997e-05 1e-6 443 483 0.0120808 1e-6 444 483 0.00046369992 1e-6 445 483 0.028920799 1e-6 446 483 0.0022940999 1e-6 447 483 0.036754999 1e-6 448 483 8.5399995e-05 1e-6 450 483 0.0020988998 1e-6 452 483 0.005466897 1e-6 453 483 0.0011958999 1e-6 454 483 0.0011105 1e-6 455 483 0.0020134998 1e-6 456 483 4.8799993e-05 1e-6 457 483 4.8799993e-05 1e-6 460 483 0.00058569992 1e-6 463 483 0.024759598 1e-6 464 483 6.0999999e-05 1e-6 465 483 3.6599988e-05 1e-6 467 483 0.013581797 1e-6 468 483 0.0002441 1e-6 469 483 0.0024527998 1e-6 470 483 0.0016107999 1e-6 471 483 0.0074558966 1e-6 472 483 2.4399997e-05 1e-6 473 483 3.6599988e-05 1e-6 477 483 0.00032949983 1e-6 478 483 0.00013419999 1e-6 489 483 0.00054909987 1e-6 490 483 0.0020134998 1e-6 9 486 0.00014559999 1e-6 59 486 0.0012377 1e-6 64 486 0.0010920998 1e-6 75 486 0.00014559999 1e-6 82 486 7.2799987e-05 1e-6 83 486 7.2799987e-05 1e-6 84 486 7.2799987e-05 1e-6 108 486 0.00014559999 1e-6 113 486 7.2799987e-05 1e-6 114 486 0.00036399998 1e-6 126 486 0.00014559999 1e-6 141 486 0.00021839999 1e-6 152 486 0.00021839999 1e-6 187 486 0.0014560998 1e-6 189 486 0.00043679983 1e-6 190 486 0.00087369978 1e-6 192 486 0.00014559999 1e-6 193 486 7.2799987e-05 1e-6 194 486 0.00043679983 1e-6 195 486 0.00014559999 1e-6 196 486 7.2799987e-05 1e-6 197 486 0.00021839999 1e-6 198 486 0.00021839999 1e-6 200 486 7.2799987e-05 1e-6 201 486 7.2799987e-05 1e-6 202 486 7.2799987e-05 1e-6 203 486 0.00043679983 1e-6 204 486 0.0025481998 1e-6 206 486 0.00072809984 1e-6 207 486 0.00021839999 1e-6 209 486 7.2799987e-05 1e-6 214 486 0.0005824999 1e-6 219 486 7.2799987e-05 1e-6 220 486 0.00014559999 1e-6 223 486 7.2799987e-05 1e-6 229 486 0.0080814995 1e-6 230 486 0.0038587998 1e-6 233 486 0.00014559999 1e-6 234 486 0.0051692985 1e-6 237 486 0.00043679983 1e-6 240 486 0.00065529998 1e-6 241 486 0.0059700981 1e-6 252 486 0.00080089993 1e-6 260 486 7.2799987e-05 1e-6 261 486 7.2799987e-05 1e-6 275 486 0.00014559999 1e-6 282 486 7.2799987e-05 1e-6 283 486 0.00014559999 1e-6 295 486 0.00014559999 1e-6 296 486 0.00072809984 1e-6 307 486 7.2799987e-05 1e-6 308 486 7.2799987e-05 1e-6 315 486 0.0037858998 1e-6 316 486 0.00043679983 1e-6 319 486 0.00014559999 1e-6 322 486 0.00029119989 1e-6 328 486 7.2799987e-05 1e-6 331 486 0.00014559999 1e-6 340 486 7.2799987e-05 1e-6 350 486 7.2799987e-05 1e-6 351 486 0.00043679983 1e-6 368 486 0.00036399998 1e-6 370 486 0.00014559999 1e-6 377 486 0.00072809984 1e-6 380 486 0.00087369978 1e-6 384 486 0.00036399998 1e-6 387 486 0.00014559999 1e-6 389 486 7.2799987e-05 1e-6 390 486 7.2799987e-05 1e-6 393 486 0.00014559999 1e-6 402 486 0.00014559999 1e-6 406 486 0.00065529998 1e-6 408 486 0.0005824999 1e-6 412 486 0.00087369978 1e-6 422 486 0.0023297998 1e-6 423 486 7.2799987e-05 1e-6 425 486 0.00087369978 1e-6 430 486 7.2799987e-05 1e-6 431 486 0.00014559999 1e-6 432 486 7.2799987e-05 1e-6 433 486 0.00021839999 1e-6 434 486 0.00029119989 1e-6 438 486 0.00029119989 1e-6 443 486 0.00094649987 1e-6 444 486 0.00021839999 1e-6 445 486 0.0040043965 1e-6 446 486 0.00029119989 1e-6 447 486 0.0005824999 1e-6 448 486 7.2799987e-05 1e-6 450 486 0.0048779994 1e-6 452 486 0.0144885 1e-6 453 486 0.010411397 1e-6 454 486 0.0034947 1e-6 455 486 0.0061885975 1e-6 456 486 0.00014559999 1e-6 457 486 0.039242797 1e-6 458 486 0.010192897 1e-6 459 486 0.0015288999 1e-6 460 486 0.0018201999 1e-6 463 486 0.018929698 1e-6 464 486 0.00029119989 1e-6 465 486 0.019075397 1e-6 467 486 0.067054987 1e-6 469 486 0.0014560998 1e-6 470 486 0.0082999989 1e-6 471 486 0.00050959992 1e-6 472 486 0.0033490998 1e-6 473 486 0.00021839999 1e-6 477 486 7.2799987e-05 1e-6 483 486 0.0046595968 1e-6 486 486 0.004441198 1e-6 489 486 0.00065529998 1e-6 490 486 0.13673097 1e-6 7 489 0.00021439999 1e-6 9 489 3.5699995e-05 1e-6 16 489 0.00021439999 1e-6 18 489 0.00028589997 1e-6 22 489 0.00039309985 1e-6 25 489 0.00021439999 1e-6 60 489 0.011398599 1e-6 66 489 0.0016078998 1e-6 68 489 0.16208094 1e-6 69 489 0.076145172 1e-6 73 489 0.0150075 1e-6 75 489 0.010147899 1e-6 82 489 3.5699995e-05 1e-6 83 489 3.5699995e-05 1e-6 84 489 3.5699995e-05 1e-6 108 489 7.1499991e-05 1e-6 113 489 7.1499991e-05 1e-6 114 489 0.00017869999 1e-6 126 489 0.00010719999 1e-6 127 489 3.5699995e-05 1e-6 134 489 0.00010719999 1e-6 150 489 0.0019294999 1e-6 152 489 0.00010719999 1e-6 153 489 0.0001429 1e-6 187 489 0.00032159989 1e-6 189 489 0.00010719999 1e-6 190 489 0.00042879977 1e-6 192 489 7.1499991e-05 1e-6 194 489 0.00017869999 1e-6 196 489 7.1499991e-05 1e-6 197 489 0.00010719999 1e-6 201 489 3.5699995e-05 1e-6 202 489 3.5699995e-05 1e-6 203 489 0.0001429 1e-6 204 489 0.0019652999 1e-6 206 489 0.00032159989 1e-6 207 489 0.00010719999 1e-6 209 489 3.5699995e-05 1e-6 214 489 0.024833798 1e-6 215 489 0.00021439999 1e-6 217 489 0.0017508999 1e-6 218 489 7.1499991e-05 1e-6 223 489 0.0001429 1e-6 228 489 0.00028589997 1e-6 229 489 0.0013577999 1e-6 230 489 0.00057169981 1e-6 231 489 0.00085759978 1e-6 234 489 0.0095047988 1e-6 237 489 0.00017869999 1e-6 240 489 7.1499991e-05 1e-6 248 489 3.5699995e-05 1e-6 252 489 0.00021439999 1e-6 267 489 0.00060739997 1e-6 272 489 7.1499991e-05 1e-6 317 489 0.0013220999 1e-6 329 489 3.5699995e-05 1e-6 330 489 0.00039309985 1e-6 331 489 0.0019294999 1e-6 356 489 0.00021439999 1e-6 358 489 7.1499991e-05 1e-6 368 489 0.00017869999 1e-6 384 489 0.00078609982 1e-6 387 489 7.1499991e-05 1e-6 394 489 0.00035729981 1e-6 402 489 0.0001429 1e-6 412 489 0.00032159989 1e-6 413 489 0.00035729981 1e-6 414 489 3.5699995e-05 1e-6 419 489 3.5699995e-05 1e-6 422 489 0.00021439999 1e-6 423 489 3.5699995e-05 1e-6 425 489 3.5699995e-05 1e-6 430 489 3.5699995e-05 1e-6 431 489 7.1499991e-05 1e-6 432 489 3.5699995e-05 1e-6 433 489 7.1499991e-05 1e-6 434 489 0.00010719999 1e-6 438 489 0.00010719999 1e-6 442 489 3.5699995e-05 1e-6 443 489 0.0030014999 1e-6 444 489 0.00017869999 1e-6 445 489 0.0054312982 1e-6 446 489 0.0012863998 1e-6 447 489 0.0017865999 1e-6 448 489 0.00017869999 1e-6 450 489 0.0078967996 1e-6 452 489 0.012899298 1e-6 453 489 0.030658197 1e-6 454 489 0.0060386993 1e-6 455 489 0.0057170987 1e-6 456 489 0.0033230998 1e-6 457 489 0.00085759978 1e-6 459 489 0.0069677979 1e-6 460 489 0.0035017999 1e-6 463 489 0.020760398 1e-6 464 489 0.00025009993 1e-6 465 489 0.0010004998 1e-6 467 489 0.023547497 1e-6 468 489 0.0020366998 1e-6 469 489 0.012113199 1e-6 470 489 0.0085756965 1e-6 471 489 0.0027514 1e-6 473 489 0.0001429 1e-6 474 489 0.00021439999 1e-6 475 489 7.1499991e-05 1e-6 476 489 3.5699995e-05 1e-6 477 489 7.1499991e-05 1e-6 478 489 0.00010719999 1e-6 483 489 0.0012148998 1e-6 489 489 7.1499991e-05 1e-6 490 489 0.00057169981 1e-6 SuiteSparse/CXSparse_newfiles/Matrix/neumann0000644001170100242450000033151010375437450020176 0ustar davisfac0 0 4 4 1 0 -1 -1 40 0 -1 -1 0 1 -2 -2 1 1 4 4 2 1 -1 -1 41 1 -1 -1 1 2 -1 -1 2 2 4 4 3 2 -1 -1 42 2 -1 -1 2 3 -1 -1 3 3 4 4 4 3 -1 -1 43 3 -1 -1 3 4 -1 -1 4 4 4 4 5 4 -1 -1 44 4 -1 -1 4 5 -1 -1 5 5 4 4 6 5 -1 -1 45 5 -1 -1 5 6 -1 -1 6 6 4 4 7 6 -1 -1 46 6 -1 -1 6 7 -1 -1 7 7 4 4 8 7 -1 -1 47 7 -1 -1 7 8 -1 -1 8 8 4 4 9 8 -1 -1 48 8 -1 -1 8 9 -1 -1 9 9 4 4 10 9 -1 -1 49 9 -1 -1 9 10 -1 -1 10 10 4 4 11 10 -1 -1 50 10 -1 -1 10 11 -1 -1 11 11 4 4 12 11 -1 -1 51 11 -1 -1 11 12 -1 -1 12 12 4 4 13 12 -1 -1 52 12 -1 -1 12 13 -1 -1 13 13 4 4 14 13 -1 -1 53 13 -1 -1 13 14 -1 -1 14 14 4 4 15 14 -1 -1 54 14 -1 -1 14 15 -1 -1 15 15 4 4 16 15 -1 -1 55 15 -1 -1 15 16 -1 -1 16 16 4 4 17 16 -1 -1 56 16 -1 -1 16 17 -1 -1 17 17 4 4 18 17 -1 -1 57 17 -1 -1 17 18 -1 -1 18 18 4 4 19 18 -1 -1 58 18 -1 -1 18 19 -1 -1 19 19 4 4 20 19 -1 -1 59 19 -1 -1 19 20 -1 -1 20 20 4 4 21 20 -1 -1 60 20 -1 -1 20 21 -1 -1 21 21 4 4 22 21 -1 -1 61 21 -1 -1 21 22 -1 -1 22 22 4 4 23 22 -1 -1 62 22 -1 -1 22 23 -1 -1 23 23 4 4 24 23 -1 -1 63 23 -1 -1 23 24 -1 -1 24 24 4 4 25 24 -1 -1 64 24 -1 -1 24 25 -1 -1 25 25 4 4 26 25 -1 -1 65 25 -1 -1 25 26 -1 -1 26 26 4 4 27 26 -1 -1 66 26 -1 -1 26 27 -1 -1 27 27 4 4 28 27 -1 -1 67 27 -1 -1 27 28 -1 -1 28 28 4 4 29 28 -1 -1 68 28 -1 -1 28 29 -1 -1 29 29 4 4 30 29 -1 -1 69 29 -1 -1 29 30 -1 -1 30 30 4 4 31 30 -1 -1 70 30 -1 -1 30 31 -1 -1 31 31 4 4 32 31 -1 -1 71 31 -1 -1 31 32 -1 -1 32 32 4 4 33 32 -1 -1 72 32 -1 -1 32 33 -1 -1 33 33 4 4 34 33 -1 -1 73 33 -1 -1 33 34 -1 -1 34 34 4 4 35 34 -1 -1 74 34 -1 -1 34 35 -1 -1 35 35 4 4 36 35 -1 -1 75 35 -1 -1 35 36 -1 -1 36 36 4 4 37 36 -1 -1 76 36 -1 -1 36 37 -1 -1 37 37 4 4 38 37 -1 -1 77 37 -1 -1 37 38 -1 -1 38 38 4 4 39 38 -2 -2 78 38 -1 -1 38 39 -1 -1 39 39 4 4 79 39 -1 -1 0 40 -2 -2 40 40 4 4 41 40 -1 -1 80 40 -1 -1 1 41 -2 -2 40 41 -2 -2 41 41 4 4 42 41 -1 -1 81 41 -1 -1 2 42 -2 -2 41 42 -1 -1 42 42 4 4 43 42 -1 -1 82 42 -1 -1 3 43 -2 -2 42 43 -1 -1 43 43 4 4 44 43 -1 -1 83 43 -1 -1 4 44 -2 -2 43 44 -1 -1 44 44 4 4 45 44 -1 -1 84 44 -1 -1 5 45 -2 -2 44 45 -1 -1 45 45 4 4 46 45 -1 -1 85 45 -1 -1 6 46 -2 -2 45 46 -1 -1 46 46 4 4 47 46 -1 -1 86 46 -1 -1 7 47 -2 -2 46 47 -1 -1 47 47 4 4 48 47 -1 -1 87 47 -1 -1 8 48 -2 -2 47 48 -1 -1 48 48 4 4 49 48 -1 -1 88 48 -1 -1 9 49 -2 -2 48 49 -1 -1 49 49 4 4 50 49 -1 -1 89 49 -1 -1 10 50 -2 -2 49 50 -1 -1 50 50 4 4 51 50 -1 -1 90 50 -1 -1 11 51 -2 -2 50 51 -1 -1 51 51 4 4 52 51 -1 -1 91 51 -1 -1 12 52 -2 -2 51 52 -1 -1 52 52 4 4 53 52 -1 -1 92 52 -1 -1 13 53 -2 -2 52 53 -1 -1 53 53 4 4 54 53 -1 -1 93 53 -1 -1 14 54 -2 -2 53 54 -1 -1 54 54 4 4 55 54 -1 -1 94 54 -1 -1 15 55 -2 -2 54 55 -1 -1 55 55 4 4 56 55 -1 -1 95 55 -1 -1 16 56 -2 -2 55 56 -1 -1 56 56 4 4 57 56 -1 -1 96 56 -1 -1 17 57 -2 -2 56 57 -1 -1 57 57 4 4 58 57 -1 -1 97 57 -1 -1 18 58 -2 -2 57 58 -1 -1 58 58 4 4 59 58 -1 -1 98 58 -1 -1 19 59 -2 -2 58 59 -1 -1 59 59 4 4 60 59 -1 -1 99 59 -1 -1 20 60 -2 -2 59 60 -1 -1 60 60 4 4 61 60 -1 -1 100 60 -1 -1 21 61 -2 -2 60 61 -1 -1 61 61 4 4 62 61 -1 -1 101 61 -1 -1 22 62 -2 -2 61 62 -1 -1 62 62 4 4 63 62 -1 -1 102 62 -1 -1 23 63 -2 -2 62 63 -1 -1 63 63 4 4 64 63 -1 -1 103 63 -1 -1 24 64 -2 -2 63 64 -1 -1 64 64 4 4 65 64 -1 -1 104 64 -1 -1 25 65 -2 -2 64 65 -1 -1 65 65 4 4 66 65 -1 -1 105 65 -1 -1 26 66 -2 -2 65 66 -1 -1 66 66 4 4 67 66 -1 -1 106 66 -1 -1 27 67 -2 -2 66 67 -1 -1 67 67 4 4 68 67 -1 -1 107 67 -1 -1 28 68 -2 -2 67 68 -1 -1 68 68 4 4 69 68 -1 -1 108 68 -1 -1 29 69 -2 -2 68 69 -1 -1 69 69 4 4 70 69 -1 -1 109 69 -1 -1 30 70 -2 -2 69 70 -1 -1 70 70 4 4 71 70 -1 -1 110 70 -1 -1 31 71 -2 -2 70 71 -1 -1 71 71 4 4 72 71 -1 -1 111 71 -1 -1 32 72 -2 -2 71 72 -1 -1 72 72 4 4 73 72 -1 -1 112 72 -1 -1 33 73 -2 -2 72 73 -1 -1 73 73 4 4 74 73 -1 -1 113 73 -1 -1 34 74 -2 -2 73 74 -1 -1 74 74 4 4 75 74 -1 -1 114 74 -1 -1 35 75 -2 -2 74 75 -1 -1 75 75 4 4 76 75 -1 -1 115 75 -1 -1 36 76 -2 -2 75 76 -1 -1 76 76 4 4 77 76 -1 -1 116 76 -1 -1 37 77 -2 -2 76 77 -1 -1 77 77 4 4 78 77 -1 -1 117 77 -1 -1 38 78 -2 -2 77 78 -1 -1 78 78 4 4 79 78 -2 -2 118 78 -1 -1 39 79 -2 -2 78 79 -1 -1 79 79 4 4 119 79 -1 -1 40 80 -1 -1 80 80 4 4 81 80 -1 -1 120 80 -1 -1 41 81 -1 -1 80 81 -2 -2 81 81 4 4 82 81 -1 -1 121 81 -1 -1 42 82 -1 -1 81 82 -1 -1 82 82 4 4 83 82 -1 -1 122 82 -1 -1 43 83 -1 -1 82 83 -1 -1 83 83 4 4 84 83 -1 -1 123 83 -1 -1 44 84 -1 -1 83 84 -1 -1 84 84 4 4 85 84 -1 -1 124 84 -1 -1 45 85 -1 -1 84 85 -1 -1 85 85 4 4 86 85 -1 -1 125 85 -1 -1 46 86 -1 -1 85 86 -1 -1 86 86 4 4 87 86 -1 -1 126 86 -1 -1 47 87 -1 -1 86 87 -1 -1 87 87 4 4 88 87 -1 -1 127 87 -1 -1 48 88 -1 -1 87 88 -1 -1 88 88 4 4 89 88 -1 -1 128 88 -1 -1 49 89 -1 -1 88 89 -1 -1 89 89 4 4 90 89 -1 -1 129 89 -1 -1 50 90 -1 -1 89 90 -1 -1 90 90 4 4 91 90 -1 -1 130 90 -1 -1 51 91 -1 -1 90 91 -1 -1 91 91 4 4 92 91 -1 -1 131 91 -1 -1 52 92 -1 -1 91 92 -1 -1 92 92 4 4 93 92 -1 -1 132 92 -1 -1 53 93 -1 -1 92 93 -1 -1 93 93 4 4 94 93 -1 -1 133 93 -1 -1 54 94 -1 -1 93 94 -1 -1 94 94 4 4 95 94 -1 -1 134 94 -1 -1 55 95 -1 -1 94 95 -1 -1 95 95 4 4 96 95 -1 -1 135 95 -1 -1 56 96 -1 -1 95 96 -1 -1 96 96 4 4 97 96 -1 -1 136 96 -1 -1 57 97 -1 -1 96 97 -1 -1 97 97 4 4 98 97 -1 -1 137 97 -1 -1 58 98 -1 -1 97 98 -1 -1 98 98 4 4 99 98 -1 -1 138 98 -1 -1 59 99 -1 -1 98 99 -1 -1 99 99 4 4 100 99 -1 -1 139 99 -1 -1 60 100 -1 -1 99 100 -1 -1 100 100 4 4 101 100 -1 -1 140 100 -1 -1 61 101 -1 -1 100 101 -1 -1 101 101 4 4 102 101 -1 -1 141 101 -1 -1 62 102 -1 -1 101 102 -1 -1 102 102 4 4 103 102 -1 -1 142 102 -1 -1 63 103 -1 -1 102 103 -1 -1 103 103 4 4 104 103 -1 -1 143 103 -1 -1 64 104 -1 -1 103 104 -1 -1 104 104 4 4 105 104 -1 -1 144 104 -1 -1 65 105 -1 -1 104 105 -1 -1 105 105 4 4 106 105 -1 -1 145 105 -1 -1 66 106 -1 -1 105 106 -1 -1 106 106 4 4 107 106 -1 -1 146 106 -1 -1 67 107 -1 -1 106 107 -1 -1 107 107 4 4 108 107 -1 -1 147 107 -1 -1 68 108 -1 -1 107 108 -1 -1 108 108 4 4 109 108 -1 -1 148 108 -1 -1 69 109 -1 -1 108 109 -1 -1 109 109 4 4 110 109 -1 -1 149 109 -1 -1 70 110 -1 -1 109 110 -1 -1 110 110 4 4 111 110 -1 -1 150 110 -1 -1 71 111 -1 -1 110 111 -1 -1 111 111 4 4 112 111 -1 -1 151 111 -1 -1 72 112 -1 -1 111 112 -1 -1 112 112 4 4 113 112 -1 -1 152 112 -1 -1 73 113 -1 -1 112 113 -1 -1 113 113 4 4 114 113 -1 -1 153 113 -1 -1 74 114 -1 -1 113 114 -1 -1 114 114 4 4 115 114 -1 -1 154 114 -1 -1 75 115 -1 -1 114 115 -1 -1 115 115 4 4 116 115 -1 -1 155 115 -1 -1 76 116 -1 -1 115 116 -1 -1 116 116 4 4 117 116 -1 -1 156 116 -1 -1 77 117 -1 -1 116 117 -1 -1 117 117 4 4 118 117 -1 -1 157 117 -1 -1 78 118 -1 -1 117 118 -1 -1 118 118 4 4 119 118 -2 -2 158 118 -1 -1 79 119 -1 -1 118 119 -1 -1 119 119 4 4 159 119 -1 -1 80 120 -1 -1 120 120 4 4 121 120 -1 -1 160 120 -1 -1 81 121 -1 -1 120 121 -2 -2 121 121 4 4 122 121 -1 -1 161 121 -1 -1 82 122 -1 -1 121 122 -1 -1 122 122 4 4 123 122 -1 -1 162 122 -1 -1 83 123 -1 -1 122 123 -1 -1 123 123 4 4 124 123 -1 -1 163 123 -1 -1 84 124 -1 -1 123 124 -1 -1 124 124 4 4 125 124 -1 -1 164 124 -1 -1 85 125 -1 -1 124 125 -1 -1 125 125 4 4 126 125 -1 -1 165 125 -1 -1 86 126 -1 -1 125 126 -1 -1 126 126 4 4 127 126 -1 -1 166 126 -1 -1 87 127 -1 -1 126 127 -1 -1 127 127 4 4 128 127 -1 -1 167 127 -1 -1 88 128 -1 -1 127 128 -1 -1 128 128 4 4 129 128 -1 -1 168 128 -1 -1 89 129 -1 -1 128 129 -1 -1 129 129 4 4 130 129 -1 -1 169 129 -1 -1 90 130 -1 -1 129 130 -1 -1 130 130 4 4 131 130 -1 -1 170 130 -1 -1 91 131 -1 -1 130 131 -1 -1 131 131 4 4 132 131 -1 -1 171 131 -1 -1 92 132 -1 -1 131 132 -1 -1 132 132 4 4 133 132 -1 -1 172 132 -1 -1 93 133 -1 -1 132 133 -1 -1 133 133 4 4 134 133 -1 -1 173 133 -1 -1 94 134 -1 -1 133 134 -1 -1 134 134 4 4 135 134 -1 -1 174 134 -1 -1 95 135 -1 -1 134 135 -1 -1 135 135 4 4 136 135 -1 -1 175 135 -1 -1 96 136 -1 -1 135 136 -1 -1 136 136 4 4 137 136 -1 -1 176 136 -1 -1 97 137 -1 -1 136 137 -1 -1 137 137 4 4 138 137 -1 -1 177 137 -1 -1 98 138 -1 -1 137 138 -1 -1 138 138 4 4 139 138 -1 -1 178 138 -1 -1 99 139 -1 -1 138 139 -1 -1 139 139 4 4 140 139 -1 -1 179 139 -1 -1 100 140 -1 -1 139 140 -1 -1 140 140 4 4 141 140 -1 -1 180 140 -1 -1 101 141 -1 -1 140 141 -1 -1 141 141 4 4 142 141 -1 -1 181 141 -1 -1 102 142 -1 -1 141 142 -1 -1 142 142 4 4 143 142 -1 -1 182 142 -1 -1 103 143 -1 -1 142 143 -1 -1 143 143 4 4 144 143 -1 -1 183 143 -1 -1 104 144 -1 -1 143 144 -1 -1 144 144 4 4 145 144 -1 -1 184 144 -1 -1 105 145 -1 -1 144 145 -1 -1 145 145 4 4 146 145 -1 -1 185 145 -1 -1 106 146 -1 -1 145 146 -1 -1 146 146 4 4 147 146 -1 -1 186 146 -1 -1 107 147 -1 -1 146 147 -1 -1 147 147 4 4 148 147 -1 -1 187 147 -1 -1 108 148 -1 -1 147 148 -1 -1 148 148 4 4 149 148 -1 -1 188 148 -1 -1 109 149 -1 -1 148 149 -1 -1 149 149 4 4 150 149 -1 -1 189 149 -1 -1 110 150 -1 -1 149 150 -1 -1 150 150 4 4 151 150 -1 -1 190 150 -1 -1 111 151 -1 -1 150 151 -1 -1 151 151 4 4 152 151 -1 -1 191 151 -1 -1 112 152 -1 -1 151 152 -1 -1 152 152 4 4 153 152 -1 -1 192 152 -1 -1 113 153 -1 -1 152 153 -1 -1 153 153 4 4 154 153 -1 -1 193 153 -1 -1 114 154 -1 -1 153 154 -1 -1 154 154 4 4 155 154 -1 -1 194 154 -1 -1 115 155 -1 -1 154 155 -1 -1 155 155 4 4 156 155 -1 -1 195 155 -1 -1 116 156 -1 -1 155 156 -1 -1 156 156 4 4 157 156 -1 -1 196 156 -1 -1 117 157 -1 -1 156 157 -1 -1 157 157 4 4 158 157 -1 -1 197 157 -1 -1 118 158 -1 -1 157 158 -1 -1 158 158 4 4 159 158 -2 -2 198 158 -1 -1 119 159 -1 -1 158 159 -1 -1 159 159 4 4 199 159 -1 -1 120 160 -1 -1 160 160 4 4 161 160 -1 -1 200 160 -1 -1 121 161 -1 -1 160 161 -2 -2 161 161 4 4 162 161 -1 -1 201 161 -1 -1 122 162 -1 -1 161 162 -1 -1 162 162 4 4 163 162 -1 -1 202 162 -1 -1 123 163 -1 -1 162 163 -1 -1 163 163 4 4 164 163 -1 -1 203 163 -1 -1 124 164 -1 -1 163 164 -1 -1 164 164 4 4 165 164 -1 -1 204 164 -1 -1 125 165 -1 -1 164 165 -1 -1 165 165 4 4 166 165 -1 -1 205 165 -1 -1 126 166 -1 -1 165 166 -1 -1 166 166 4 4 167 166 -1 -1 206 166 -1 -1 127 167 -1 -1 166 167 -1 -1 167 167 4 4 168 167 -1 -1 207 167 -1 -1 128 168 -1 -1 167 168 -1 -1 168 168 4 4 169 168 -1 -1 208 168 -1 -1 129 169 -1 -1 168 169 -1 -1 169 169 4 4 170 169 -1 -1 209 169 -1 -1 130 170 -1 -1 169 170 -1 -1 170 170 4 4 171 170 -1 -1 210 170 -1 -1 131 171 -1 -1 170 171 -1 -1 171 171 4 4 172 171 -1 -1 211 171 -1 -1 132 172 -1 -1 171 172 -1 -1 172 172 4 4 173 172 -1 -1 212 172 -1 -1 133 173 -1 -1 172 173 -1 -1 173 173 4 4 174 173 -1 -1 213 173 -1 -1 134 174 -1 -1 173 174 -1 -1 174 174 4 4 175 174 -1 -1 214 174 -1 -1 135 175 -1 -1 174 175 -1 -1 175 175 4 4 176 175 -1 -1 215 175 -1 -1 136 176 -1 -1 175 176 -1 -1 176 176 4 4 177 176 -1 -1 216 176 -1 -1 137 177 -1 -1 176 177 -1 -1 177 177 4 4 178 177 -1 -1 217 177 -1 -1 138 178 -1 -1 177 178 -1 -1 178 178 4 4 179 178 -1 -1 218 178 -1 -1 139 179 -1 -1 178 179 -1 -1 179 179 4 4 180 179 -1 -1 219 179 -1 -1 140 180 -1 -1 179 180 -1 -1 180 180 4 4 181 180 -1 -1 220 180 -1 -1 141 181 -1 -1 180 181 -1 -1 181 181 4 4 182 181 -1 -1 221 181 -1 -1 142 182 -1 -1 181 182 -1 -1 182 182 4 4 183 182 -1 -1 222 182 -1 -1 143 183 -1 -1 182 183 -1 -1 183 183 4 4 184 183 -1 -1 223 183 -1 -1 144 184 -1 -1 183 184 -1 -1 184 184 4 4 185 184 -1 -1 224 184 -1 -1 145 185 -1 -1 184 185 -1 -1 185 185 4 4 186 185 -1 -1 225 185 -1 -1 146 186 -1 -1 185 186 -1 -1 186 186 4 4 187 186 -1 -1 226 186 -1 -1 147 187 -1 -1 186 187 -1 -1 187 187 4 4 188 187 -1 -1 227 187 -1 -1 148 188 -1 -1 187 188 -1 -1 188 188 4 4 189 188 -1 -1 228 188 -1 -1 149 189 -1 -1 188 189 -1 -1 189 189 4 4 190 189 -1 -1 229 189 -1 -1 150 190 -1 -1 189 190 -1 -1 190 190 4 4 191 190 -1 -1 230 190 -1 -1 151 191 -1 -1 190 191 -1 -1 191 191 4 4 192 191 -1 -1 231 191 -1 -1 152 192 -1 -1 191 192 -1 -1 192 192 4 4 193 192 -1 -1 232 192 -1 -1 153 193 -1 -1 192 193 -1 -1 193 193 4 4 194 193 -1 -1 233 193 -1 -1 154 194 -1 -1 193 194 -1 -1 194 194 4 4 195 194 -1 -1 234 194 -1 -1 155 195 -1 -1 194 195 -1 -1 195 195 4 4 196 195 -1 -1 235 195 -1 -1 156 196 -1 -1 195 196 -1 -1 196 196 4 4 197 196 -1 -1 236 196 -1 -1 157 197 -1 -1 196 197 -1 -1 197 197 4 4 198 197 -1 -1 237 197 -1 -1 158 198 -1 -1 197 198 -1 -1 198 198 4 4 199 198 -2 -2 238 198 -1 -1 159 199 -1 -1 198 199 -1 -1 199 199 4 4 239 199 -1 -1 160 200 -1 -1 200 200 4 4 201 200 -1 -1 240 200 -1 -1 161 201 -1 -1 200 201 -2 -2 201 201 4 4 202 201 -1 -1 241 201 -1 -1 162 202 -1 -1 201 202 -1 -1 202 202 4 4 203 202 -1 -1 242 202 -1 -1 163 203 -1 -1 202 203 -1 -1 203 203 4 4 204 203 -1 -1 243 203 -1 -1 164 204 -1 -1 203 204 -1 -1 204 204 4 4 205 204 -1 -1 244 204 -1 -1 165 205 -1 -1 204 205 -1 -1 205 205 4 4 206 205 -1 -1 245 205 -1 -1 166 206 -1 -1 205 206 -1 -1 206 206 4 4 207 206 -1 -1 246 206 -1 -1 167 207 -1 -1 206 207 -1 -1 207 207 4 4 208 207 -1 -1 247 207 -1 -1 168 208 -1 -1 207 208 -1 -1 208 208 4 4 209 208 -1 -1 248 208 -1 -1 169 209 -1 -1 208 209 -1 -1 209 209 4 4 210 209 -1 -1 249 209 -1 -1 170 210 -1 -1 209 210 -1 -1 210 210 4 4 211 210 -1 -1 250 210 -1 -1 171 211 -1 -1 210 211 -1 -1 211 211 4 4 212 211 -1 -1 251 211 -1 -1 172 212 -1 -1 211 212 -1 -1 212 212 4 4 213 212 -1 -1 252 212 -1 -1 173 213 -1 -1 212 213 -1 -1 213 213 4 4 214 213 -1 -1 253 213 -1 -1 174 214 -1 -1 213 214 -1 -1 214 214 4 4 215 214 -1 -1 254 214 -1 -1 175 215 -1 -1 214 215 -1 -1 215 215 4 4 216 215 -1 -1 255 215 -1 -1 176 216 -1 -1 215 216 -1 -1 216 216 4 4 217 216 -1 -1 256 216 -1 -1 177 217 -1 -1 216 217 -1 -1 217 217 4 4 218 217 -1 -1 257 217 -1 -1 178 218 -1 -1 217 218 -1 -1 218 218 4 4 219 218 -1 -1 258 218 -1 -1 179 219 -1 -1 218 219 -1 -1 219 219 4 4 220 219 -1 -1 259 219 -1 -1 180 220 -1 -1 219 220 -1 -1 220 220 4 4 221 220 -1 -1 260 220 -1 -1 181 221 -1 -1 220 221 -1 -1 221 221 4 4 222 221 -1 -1 261 221 -1 -1 182 222 -1 -1 221 222 -1 -1 222 222 4 4 223 222 -1 -1 262 222 -1 -1 183 223 -1 -1 222 223 -1 -1 223 223 4 4 224 223 -1 -1 263 223 -1 -1 184 224 -1 -1 223 224 -1 -1 224 224 4 4 225 224 -1 -1 264 224 -1 -1 185 225 -1 -1 224 225 -1 -1 225 225 4 4 226 225 -1 -1 265 225 -1 -1 186 226 -1 -1 225 226 -1 -1 226 226 4 4 227 226 -1 -1 266 226 -1 -1 187 227 -1 -1 226 227 -1 -1 227 227 4 4 228 227 -1 -1 267 227 -1 -1 188 228 -1 -1 227 228 -1 -1 228 228 4 4 229 228 -1 -1 268 228 -1 -1 189 229 -1 -1 228 229 -1 -1 229 229 4 4 230 229 -1 -1 269 229 -1 -1 190 230 -1 -1 229 230 -1 -1 230 230 4 4 231 230 -1 -1 270 230 -1 -1 191 231 -1 -1 230 231 -1 -1 231 231 4 4 232 231 -1 -1 271 231 -1 -1 192 232 -1 -1 231 232 -1 -1 232 232 4 4 233 232 -1 -1 272 232 -1 -1 193 233 -1 -1 232 233 -1 -1 233 233 4 4 234 233 -1 -1 273 233 -1 -1 194 234 -1 -1 233 234 -1 -1 234 234 4 4 235 234 -1 -1 274 234 -1 -1 195 235 -1 -1 234 235 -1 -1 235 235 4 4 236 235 -1 -1 275 235 -1 -1 196 236 -1 -1 235 236 -1 -1 236 236 4 4 237 236 -1 -1 276 236 -1 -1 197 237 -1 -1 236 237 -1 -1 237 237 4 4 238 237 -1 -1 277 237 -1 -1 198 238 -1 -1 237 238 -1 -1 238 238 4 4 239 238 -2 -2 278 238 -1 -1 199 239 -1 -1 238 239 -1 -1 239 239 4 4 279 239 -1 -1 200 240 -1 -1 240 240 4 4 241 240 -1 -1 280 240 -1 -1 201 241 -1 -1 240 241 -2 -2 241 241 4 4 242 241 -1 -1 281 241 -1 -1 202 242 -1 -1 241 242 -1 -1 242 242 4 4 243 242 -1 -1 282 242 -1 -1 203 243 -1 -1 242 243 -1 -1 243 243 4 4 244 243 -1 -1 283 243 -1 -1 204 244 -1 -1 243 244 -1 -1 244 244 4 4 245 244 -1 -1 284 244 -1 -1 205 245 -1 -1 244 245 -1 -1 245 245 4 4 246 245 -1 -1 285 245 -1 -1 206 246 -1 -1 245 246 -1 -1 246 246 4 4 247 246 -1 -1 286 246 -1 -1 207 247 -1 -1 246 247 -1 -1 247 247 4 4 248 247 -1 -1 287 247 -1 -1 208 248 -1 -1 247 248 -1 -1 248 248 4 4 249 248 -1 -1 288 248 -1 -1 209 249 -1 -1 248 249 -1 -1 249 249 4 4 250 249 -1 -1 289 249 -1 -1 210 250 -1 -1 249 250 -1 -1 250 250 4 4 251 250 -1 -1 290 250 -1 -1 211 251 -1 -1 250 251 -1 -1 251 251 4 4 252 251 -1 -1 291 251 -1 -1 212 252 -1 -1 251 252 -1 -1 252 252 4 4 253 252 -1 -1 292 252 -1 -1 213 253 -1 -1 252 253 -1 -1 253 253 4 4 254 253 -1 -1 293 253 -1 -1 214 254 -1 -1 253 254 -1 -1 254 254 4 4 255 254 -1 -1 294 254 -1 -1 215 255 -1 -1 254 255 -1 -1 255 255 4 4 256 255 -1 -1 295 255 -1 -1 216 256 -1 -1 255 256 -1 -1 256 256 4 4 257 256 -1 -1 296 256 -1 -1 217 257 -1 -1 256 257 -1 -1 257 257 4 4 258 257 -1 -1 297 257 -1 -1 218 258 -1 -1 257 258 -1 -1 258 258 4 4 259 258 -1 -1 298 258 -1 -1 219 259 -1 -1 258 259 -1 -1 259 259 4 4 260 259 -1 -1 299 259 -1 -1 220 260 -1 -1 259 260 -1 -1 260 260 4 4 261 260 -1 -1 300 260 -1 -1 221 261 -1 -1 260 261 -1 -1 261 261 4 4 262 261 -1 -1 301 261 -1 -1 222 262 -1 -1 261 262 -1 -1 262 262 4 4 263 262 -1 -1 302 262 -1 -1 223 263 -1 -1 262 263 -1 -1 263 263 4 4 264 263 -1 -1 303 263 -1 -1 224 264 -1 -1 263 264 -1 -1 264 264 4 4 265 264 -1 -1 304 264 -1 -1 225 265 -1 -1 264 265 -1 -1 265 265 4 4 266 265 -1 -1 305 265 -1 -1 226 266 -1 -1 265 266 -1 -1 266 266 4 4 267 266 -1 -1 306 266 -1 -1 227 267 -1 -1 266 267 -1 -1 267 267 4 4 268 267 -1 -1 307 267 -1 -1 228 268 -1 -1 267 268 -1 -1 268 268 4 4 269 268 -1 -1 308 268 -1 -1 229 269 -1 -1 268 269 -1 -1 269 269 4 4 270 269 -1 -1 309 269 -1 -1 230 270 -1 -1 269 270 -1 -1 270 270 4 4 271 270 -1 -1 310 270 -1 -1 231 271 -1 -1 270 271 -1 -1 271 271 4 4 272 271 -1 -1 311 271 -1 -1 232 272 -1 -1 271 272 -1 -1 272 272 4 4 273 272 -1 -1 312 272 -1 -1 233 273 -1 -1 272 273 -1 -1 273 273 4 4 274 273 -1 -1 313 273 -1 -1 234 274 -1 -1 273 274 -1 -1 274 274 4 4 275 274 -1 -1 314 274 -1 -1 235 275 -1 -1 274 275 -1 -1 275 275 4 4 276 275 -1 -1 315 275 -1 -1 236 276 -1 -1 275 276 -1 -1 276 276 4 4 277 276 -1 -1 316 276 -1 -1 237 277 -1 -1 276 277 -1 -1 277 277 4 4 278 277 -1 -1 317 277 -1 -1 238 278 -1 -1 277 278 -1 -1 278 278 4 4 279 278 -2 -2 318 278 -1 -1 239 279 -1 -1 278 279 -1 -1 279 279 4 4 319 279 -1 -1 240 280 -1 -1 280 280 4 4 281 280 -1 -1 320 280 -1 -1 241 281 -1 -1 280 281 -2 -2 281 281 4 4 282 281 -1 -1 321 281 -1 -1 242 282 -1 -1 281 282 -1 -1 282 282 4 4 283 282 -1 -1 322 282 -1 -1 243 283 -1 -1 282 283 -1 -1 283 283 4 4 284 283 -1 -1 323 283 -1 -1 244 284 -1 -1 283 284 -1 -1 284 284 4 4 285 284 -1 -1 324 284 -1 -1 245 285 -1 -1 284 285 -1 -1 285 285 4 4 286 285 -1 -1 325 285 -1 -1 246 286 -1 -1 285 286 -1 -1 286 286 4 4 287 286 -1 -1 326 286 -1 -1 247 287 -1 -1 286 287 -1 -1 287 287 4 4 288 287 -1 -1 327 287 -1 -1 248 288 -1 -1 287 288 -1 -1 288 288 4 4 289 288 -1 -1 328 288 -1 -1 249 289 -1 -1 288 289 -1 -1 289 289 4 4 290 289 -1 -1 329 289 -1 -1 250 290 -1 -1 289 290 -1 -1 290 290 4 4 291 290 -1 -1 330 290 -1 -1 251 291 -1 -1 290 291 -1 -1 291 291 4 4 292 291 -1 -1 331 291 -1 -1 252 292 -1 -1 291 292 -1 -1 292 292 4 4 293 292 -1 -1 332 292 -1 -1 253 293 -1 -1 292 293 -1 -1 293 293 4 4 294 293 -1 -1 333 293 -1 -1 254 294 -1 -1 293 294 -1 -1 294 294 4 4 295 294 -1 -1 334 294 -1 -1 255 295 -1 -1 294 295 -1 -1 295 295 4 4 296 295 -1 -1 335 295 -1 -1 256 296 -1 -1 295 296 -1 -1 296 296 4 4 297 296 -1 -1 336 296 -1 -1 257 297 -1 -1 296 297 -1 -1 297 297 4 4 298 297 -1 -1 337 297 -1 -1 258 298 -1 -1 297 298 -1 -1 298 298 4 4 299 298 -1 -1 338 298 -1 -1 259 299 -1 -1 298 299 -1 -1 299 299 4 4 300 299 -1 -1 339 299 -1 -1 260 300 -1 -1 299 300 -1 -1 300 300 4 4 301 300 -1 -1 340 300 -1 -1 261 301 -1 -1 300 301 -1 -1 301 301 4 4 302 301 -1 -1 341 301 -1 -1 262 302 -1 -1 301 302 -1 -1 302 302 4 4 303 302 -1 -1 342 302 -1 -1 263 303 -1 -1 302 303 -1 -1 303 303 4 4 304 303 -1 -1 343 303 -1 -1 264 304 -1 -1 303 304 -1 -1 304 304 4 4 305 304 -1 -1 344 304 -1 -1 265 305 -1 -1 304 305 -1 -1 305 305 4 4 306 305 -1 -1 345 305 -1 -1 266 306 -1 -1 305 306 -1 -1 306 306 4 4 307 306 -1 -1 346 306 -1 -1 267 307 -1 -1 306 307 -1 -1 307 307 4 4 308 307 -1 -1 347 307 -1 -1 268 308 -1 -1 307 308 -1 -1 308 308 4 4 309 308 -1 -1 348 308 -1 -1 269 309 -1 -1 308 309 -1 -1 309 309 4 4 310 309 -1 -1 349 309 -1 -1 270 310 -1 -1 309 310 -1 -1 310 310 4 4 311 310 -1 -1 350 310 -1 -1 271 311 -1 -1 310 311 -1 -1 311 311 4 4 312 311 -1 -1 351 311 -1 -1 272 312 -1 -1 311 312 -1 -1 312 312 4 4 313 312 -1 -1 352 312 -1 -1 273 313 -1 -1 312 313 -1 -1 313 313 4 4 314 313 -1 -1 353 313 -1 -1 274 314 -1 -1 313 314 -1 -1 314 314 4 4 315 314 -1 -1 354 314 -1 -1 275 315 -1 -1 314 315 -1 -1 315 315 4 4 316 315 -1 -1 355 315 -1 -1 276 316 -1 -1 315 316 -1 -1 316 316 4 4 317 316 -1 -1 356 316 -1 -1 277 317 -1 -1 316 317 -1 -1 317 317 4 4 318 317 -1 -1 357 317 -1 -1 278 318 -1 -1 317 318 -1 -1 318 318 4 4 319 318 -2 -2 358 318 -1 -1 279 319 -1 -1 318 319 -1 -1 319 319 4 4 359 319 -1 -1 280 320 -1 -1 320 320 4 4 321 320 -1 -1 360 320 -1 -1 281 321 -1 -1 320 321 -2 -2 321 321 4 4 322 321 -1 -1 361 321 -1 -1 282 322 -1 -1 321 322 -1 -1 322 322 4 4 323 322 -1 -1 362 322 -1 -1 283 323 -1 -1 322 323 -1 -1 323 323 4 4 324 323 -1 -1 363 323 -1 -1 284 324 -1 -1 323 324 -1 -1 324 324 4 4 325 324 -1 -1 364 324 -1 -1 285 325 -1 -1 324 325 -1 -1 325 325 4 4 326 325 -1 -1 365 325 -1 -1 286 326 -1 -1 325 326 -1 -1 326 326 4 4 327 326 -1 -1 366 326 -1 -1 287 327 -1 -1 326 327 -1 -1 327 327 4 4 328 327 -1 -1 367 327 -1 -1 288 328 -1 -1 327 328 -1 -1 328 328 4 4 329 328 -1 -1 368 328 -1 -1 289 329 -1 -1 328 329 -1 -1 329 329 4 4 330 329 -1 -1 369 329 -1 -1 290 330 -1 -1 329 330 -1 -1 330 330 4 4 331 330 -1 -1 370 330 -1 -1 291 331 -1 -1 330 331 -1 -1 331 331 4 4 332 331 -1 -1 371 331 -1 -1 292 332 -1 -1 331 332 -1 -1 332 332 4 4 333 332 -1 -1 372 332 -1 -1 293 333 -1 -1 332 333 -1 -1 333 333 4 4 334 333 -1 -1 373 333 -1 -1 294 334 -1 -1 333 334 -1 -1 334 334 4 4 335 334 -1 -1 374 334 -1 -1 295 335 -1 -1 334 335 -1 -1 335 335 4 4 336 335 -1 -1 375 335 -1 -1 296 336 -1 -1 335 336 -1 -1 336 336 4 4 337 336 -1 -1 376 336 -1 -1 297 337 -1 -1 336 337 -1 -1 337 337 4 4 338 337 -1 -1 377 337 -1 -1 298 338 -1 -1 337 338 -1 -1 338 338 4 4 339 338 -1 -1 378 338 -1 -1 299 339 -1 -1 338 339 -1 -1 339 339 4 4 340 339 -1 -1 379 339 -1 -1 300 340 -1 -1 339 340 -1 -1 340 340 4 4 341 340 -1 -1 380 340 -1 -1 301 341 -1 -1 340 341 -1 -1 341 341 4 4 342 341 -1 -1 381 341 -1 -1 302 342 -1 -1 341 342 -1 -1 342 342 4 4 343 342 -1 -1 382 342 -1 -1 303 343 -1 -1 342 343 -1 -1 343 343 4 4 344 343 -1 -1 383 343 -1 -1 304 344 -1 -1 343 344 -1 -1 344 344 4 4 345 344 -1 -1 384 344 -1 -1 305 345 -1 -1 344 345 -1 -1 345 345 4 4 346 345 -1 -1 385 345 -1 -1 306 346 -1 -1 345 346 -1 -1 346 346 4 4 347 346 -1 -1 386 346 -1 -1 307 347 -1 -1 346 347 -1 -1 347 347 4 4 348 347 -1 -1 387 347 -1 -1 308 348 -1 -1 347 348 -1 -1 348 348 4 4 349 348 -1 -1 388 348 -1 -1 309 349 -1 -1 348 349 -1 -1 349 349 4 4 350 349 -1 -1 389 349 -1 -1 310 350 -1 -1 349 350 -1 -1 350 350 4 4 351 350 -1 -1 390 350 -1 -1 311 351 -1 -1 350 351 -1 -1 351 351 4 4 352 351 -1 -1 391 351 -1 -1 312 352 -1 -1 351 352 -1 -1 352 352 4 4 353 352 -1 -1 392 352 -1 -1 313 353 -1 -1 352 353 -1 -1 353 353 4 4 354 353 -1 -1 393 353 -1 -1 314 354 -1 -1 353 354 -1 -1 354 354 4 4 355 354 -1 -1 394 354 -1 -1 315 355 -1 -1 354 355 -1 -1 355 355 4 4 356 355 -1 -1 395 355 -1 -1 316 356 -1 -1 355 356 -1 -1 356 356 4 4 357 356 -1 -1 396 356 -1 -1 317 357 -1 -1 356 357 -1 -1 357 357 4 4 358 357 -1 -1 397 357 -1 -1 318 358 -1 -1 357 358 -1 -1 358 358 4 4 359 358 -2 -2 398 358 -1 -1 319 359 -1 -1 358 359 -1 -1 359 359 4 4 399 359 -1 -1 320 360 -1 -1 360 360 4 4 361 360 -1 -1 400 360 -1 -1 321 361 -1 -1 360 361 -2 -2 361 361 4 4 362 361 -1 -1 401 361 -1 -1 322 362 -1 -1 361 362 -1 -1 362 362 4 4 363 362 -1 -1 402 362 -1 -1 323 363 -1 -1 362 363 -1 -1 363 363 4 4 364 363 -1 -1 403 363 -1 -1 324 364 -1 -1 363 364 -1 -1 364 364 4 4 365 364 -1 -1 404 364 -1 -1 325 365 -1 -1 364 365 -1 -1 365 365 4 4 366 365 -1 -1 405 365 -1 -1 326 366 -1 -1 365 366 -1 -1 366 366 4 4 367 366 -1 -1 406 366 -1 -1 327 367 -1 -1 366 367 -1 -1 367 367 4 4 368 367 -1 -1 407 367 -1 -1 328 368 -1 -1 367 368 -1 -1 368 368 4 4 369 368 -1 -1 408 368 -1 -1 329 369 -1 -1 368 369 -1 -1 369 369 4 4 370 369 -1 -1 409 369 -1 -1 330 370 -1 -1 369 370 -1 -1 370 370 4 4 371 370 -1 -1 410 370 -1 -1 331 371 -1 -1 370 371 -1 -1 371 371 4 4 372 371 -1 -1 411 371 -1 -1 332 372 -1 -1 371 372 -1 -1 372 372 4 4 373 372 -1 -1 412 372 -1 -1 333 373 -1 -1 372 373 -1 -1 373 373 4 4 374 373 -1 -1 413 373 -1 -1 334 374 -1 -1 373 374 -1 -1 374 374 4 4 375 374 -1 -1 414 374 -1 -1 335 375 -1 -1 374 375 -1 -1 375 375 4 4 376 375 -1 -1 415 375 -1 -1 336 376 -1 -1 375 376 -1 -1 376 376 4 4 377 376 -1 -1 416 376 -1 -1 337 377 -1 -1 376 377 -1 -1 377 377 4 4 378 377 -1 -1 417 377 -1 -1 338 378 -1 -1 377 378 -1 -1 378 378 4 4 379 378 -1 -1 418 378 -1 -1 339 379 -1 -1 378 379 -1 -1 379 379 4 4 380 379 -1 -1 419 379 -1 -1 340 380 -1 -1 379 380 -1 -1 380 380 4 4 381 380 -1 -1 420 380 -1 -1 341 381 -1 -1 380 381 -1 -1 381 381 4 4 382 381 -1 -1 421 381 -1 -1 342 382 -1 -1 381 382 -1 -1 382 382 4 4 383 382 -1 -1 422 382 -1 -1 343 383 -1 -1 382 383 -1 -1 383 383 4 4 384 383 -1 -1 423 383 -1 -1 344 384 -1 -1 383 384 -1 -1 384 384 4 4 385 384 -1 -1 424 384 -1 -1 345 385 -1 -1 384 385 -1 -1 385 385 4 4 386 385 -1 -1 425 385 -1 -1 346 386 -1 -1 385 386 -1 -1 386 386 4 4 387 386 -1 -1 426 386 -1 -1 347 387 -1 -1 386 387 -1 -1 387 387 4 4 388 387 -1 -1 427 387 -1 -1 348 388 -1 -1 387 388 -1 -1 388 388 4 4 389 388 -1 -1 428 388 -1 -1 349 389 -1 -1 388 389 -1 -1 389 389 4 4 390 389 -1 -1 429 389 -1 -1 350 390 -1 -1 389 390 -1 -1 390 390 4 4 391 390 -1 -1 430 390 -1 -1 351 391 -1 -1 390 391 -1 -1 391 391 4 4 392 391 -1 -1 431 391 -1 -1 352 392 -1 -1 391 392 -1 -1 392 392 4 4 393 392 -1 -1 432 392 -1 -1 353 393 -1 -1 392 393 -1 -1 393 393 4 4 394 393 -1 -1 433 393 -1 -1 354 394 -1 -1 393 394 -1 -1 394 394 4 4 395 394 -1 -1 434 394 -1 -1 355 395 -1 -1 394 395 -1 -1 395 395 4 4 396 395 -1 -1 435 395 -1 -1 356 396 -1 -1 395 396 -1 -1 396 396 4 4 397 396 -1 -1 436 396 -1 -1 357 397 -1 -1 396 397 -1 -1 397 397 4 4 398 397 -1 -1 437 397 -1 -1 358 398 -1 -1 397 398 -1 -1 398 398 4 4 399 398 -2 -2 438 398 -1 -1 359 399 -1 -1 398 399 -1 -1 399 399 4 4 439 399 -1 -1 360 400 -1 -1 400 400 4 4 401 400 -1 -1 440 400 -1 -1 361 401 -1 -1 400 401 -2 -2 401 401 4 4 402 401 -1 -1 441 401 -1 -1 362 402 -1 -1 401 402 -1 -1 402 402 4 4 403 402 -1 -1 442 402 -1 -1 363 403 -1 -1 402 403 -1 -1 403 403 4 4 404 403 -1 -1 443 403 -1 -1 364 404 -1 -1 403 404 -1 -1 404 404 4 4 405 404 -1 -1 444 404 -1 -1 365 405 -1 -1 404 405 -1 -1 405 405 4 4 406 405 -1 -1 445 405 -1 -1 366 406 -1 -1 405 406 -1 -1 406 406 4 4 407 406 -1 -1 446 406 -1 -1 367 407 -1 -1 406 407 -1 -1 407 407 4 4 408 407 -1 -1 447 407 -1 -1 368 408 -1 -1 407 408 -1 -1 408 408 4 4 409 408 -1 -1 448 408 -1 -1 369 409 -1 -1 408 409 -1 -1 409 409 4 4 410 409 -1 -1 449 409 -1 -1 370 410 -1 -1 409 410 -1 -1 410 410 4 4 411 410 -1 -1 450 410 -1 -1 371 411 -1 -1 410 411 -1 -1 411 411 4 4 412 411 -1 -1 451 411 -1 -1 372 412 -1 -1 411 412 -1 -1 412 412 4 4 413 412 -1 -1 452 412 -1 -1 373 413 -1 -1 412 413 -1 -1 413 413 4 4 414 413 -1 -1 453 413 -1 -1 374 414 -1 -1 413 414 -1 -1 414 414 4 4 415 414 -1 -1 454 414 -1 -1 375 415 -1 -1 414 415 -1 -1 415 415 4 4 416 415 -1 -1 455 415 -1 -1 376 416 -1 -1 415 416 -1 -1 416 416 4 4 417 416 -1 -1 456 416 -1 -1 377 417 -1 -1 416 417 -1 -1 417 417 4 4 418 417 -1 -1 457 417 -1 -1 378 418 -1 -1 417 418 -1 -1 418 418 4 4 419 418 -1 -1 458 418 -1 -1 379 419 -1 -1 418 419 -1 -1 419 419 4 4 420 419 -1 -1 459 419 -1 -1 380 420 -1 -1 419 420 -1 -1 420 420 4 4 421 420 -1 -1 460 420 -1 -1 381 421 -1 -1 420 421 -1 -1 421 421 4 4 422 421 -1 -1 461 421 -1 -1 382 422 -1 -1 421 422 -1 -1 422 422 4 4 423 422 -1 -1 462 422 -1 -1 383 423 -1 -1 422 423 -1 -1 423 423 4 4 424 423 -1 -1 463 423 -1 -1 384 424 -1 -1 423 424 -1 -1 424 424 4 4 425 424 -1 -1 464 424 -1 -1 385 425 -1 -1 424 425 -1 -1 425 425 4 4 426 425 -1 -1 465 425 -1 -1 386 426 -1 -1 425 426 -1 -1 426 426 4 4 427 426 -1 -1 466 426 -1 -1 387 427 -1 -1 426 427 -1 -1 427 427 4 4 428 427 -1 -1 467 427 -1 -1 388 428 -1 -1 427 428 -1 -1 428 428 4 4 429 428 -1 -1 468 428 -1 -1 389 429 -1 -1 428 429 -1 -1 429 429 4 4 430 429 -1 -1 469 429 -1 -1 390 430 -1 -1 429 430 -1 -1 430 430 4 4 431 430 -1 -1 470 430 -1 -1 391 431 -1 -1 430 431 -1 -1 431 431 4 4 432 431 -1 -1 471 431 -1 -1 392 432 -1 -1 431 432 -1 -1 432 432 4 4 433 432 -1 -1 472 432 -1 -1 393 433 -1 -1 432 433 -1 -1 433 433 4 4 434 433 -1 -1 473 433 -1 -1 394 434 -1 -1 433 434 -1 -1 434 434 4 4 435 434 -1 -1 474 434 -1 -1 395 435 -1 -1 434 435 -1 -1 435 435 4 4 436 435 -1 -1 475 435 -1 -1 396 436 -1 -1 435 436 -1 -1 436 436 4 4 437 436 -1 -1 476 436 -1 -1 397 437 -1 -1 436 437 -1 -1 437 437 4 4 438 437 -1 -1 477 437 -1 -1 398 438 -1 -1 437 438 -1 -1 438 438 4 4 439 438 -2 -2 478 438 -1 -1 399 439 -1 -1 438 439 -1 -1 439 439 4 4 479 439 -1 -1 400 440 -1 -1 440 440 4 4 441 440 -1 -1 480 440 -1 -1 401 441 -1 -1 440 441 -2 -2 441 441 4 4 442 441 -1 -1 481 441 -1 -1 402 442 -1 -1 441 442 -1 -1 442 442 4 4 443 442 -1 -1 482 442 -1 -1 403 443 -1 -1 442 443 -1 -1 443 443 4 4 444 443 -1 -1 483 443 -1 -1 404 444 -1 -1 443 444 -1 -1 444 444 4 4 445 444 -1 -1 484 444 -1 -1 405 445 -1 -1 444 445 -1 -1 445 445 4 4 446 445 -1 -1 485 445 -1 -1 406 446 -1 -1 445 446 -1 -1 446 446 4 4 447 446 -1 -1 486 446 -1 -1 407 447 -1 -1 446 447 -1 -1 447 447 4 4 448 447 -1 -1 487 447 -1 -1 408 448 -1 -1 447 448 -1 -1 448 448 4 4 449 448 -1 -1 488 448 -1 -1 409 449 -1 -1 448 449 -1 -1 449 449 4 4 450 449 -1 -1 489 449 -1 -1 410 450 -1 -1 449 450 -1 -1 450 450 4 4 451 450 -1 -1 490 450 -1 -1 411 451 -1 -1 450 451 -1 -1 451 451 4 4 452 451 -1 -1 491 451 -1 -1 412 452 -1 -1 451 452 -1 -1 452 452 4 4 453 452 -1 -1 492 452 -1 -1 413 453 -1 -1 452 453 -1 -1 453 453 4 4 454 453 -1 -1 493 453 -1 -1 414 454 -1 -1 453 454 -1 -1 454 454 4 4 455 454 -1 -1 494 454 -1 -1 415 455 -1 -1 454 455 -1 -1 455 455 4 4 456 455 -1 -1 495 455 -1 -1 416 456 -1 -1 455 456 -1 -1 456 456 4 4 457 456 -1 -1 496 456 -1 -1 417 457 -1 -1 456 457 -1 -1 457 457 4 4 458 457 -1 -1 497 457 -1 -1 418 458 -1 -1 457 458 -1 -1 458 458 4 4 459 458 -1 -1 498 458 -1 -1 419 459 -1 -1 458 459 -1 -1 459 459 4 4 460 459 -1 -1 499 459 -1 -1 420 460 -1 -1 459 460 -1 -1 460 460 4 4 461 460 -1 -1 500 460 -1 -1 421 461 -1 -1 460 461 -1 -1 461 461 4 4 462 461 -1 -1 501 461 -1 -1 422 462 -1 -1 461 462 -1 -1 462 462 4 4 463 462 -1 -1 502 462 -1 -1 423 463 -1 -1 462 463 -1 -1 463 463 4 4 464 463 -1 -1 503 463 -1 -1 424 464 -1 -1 463 464 -1 -1 464 464 4 4 465 464 -1 -1 504 464 -1 -1 425 465 -1 -1 464 465 -1 -1 465 465 4 4 466 465 -1 -1 505 465 -1 -1 426 466 -1 -1 465 466 -1 -1 466 466 4 4 467 466 -1 -1 506 466 -1 -1 427 467 -1 -1 466 467 -1 -1 467 467 4 4 468 467 -1 -1 507 467 -1 -1 428 468 -1 -1 467 468 -1 -1 468 468 4 4 469 468 -1 -1 508 468 -1 -1 429 469 -1 -1 468 469 -1 -1 469 469 4 4 470 469 -1 -1 509 469 -1 -1 430 470 -1 -1 469 470 -1 -1 470 470 4 4 471 470 -1 -1 510 470 -1 -1 431 471 -1 -1 470 471 -1 -1 471 471 4 4 472 471 -1 -1 511 471 -1 -1 432 472 -1 -1 471 472 -1 -1 472 472 4 4 473 472 -1 -1 512 472 -1 -1 433 473 -1 -1 472 473 -1 -1 473 473 4 4 474 473 -1 -1 513 473 -1 -1 434 474 -1 -1 473 474 -1 -1 474 474 4 4 475 474 -1 -1 514 474 -1 -1 435 475 -1 -1 474 475 -1 -1 475 475 4 4 476 475 -1 -1 515 475 -1 -1 436 476 -1 -1 475 476 -1 -1 476 476 4 4 477 476 -1 -1 516 476 -1 -1 437 477 -1 -1 476 477 -1 -1 477 477 4 4 478 477 -1 -1 517 477 -1 -1 438 478 -1 -1 477 478 -1 -1 478 478 4 4 479 478 -2 -2 518 478 -1 -1 439 479 -1 -1 478 479 -1 -1 479 479 4 4 519 479 -1 -1 440 480 -1 -1 480 480 4 4 481 480 -1 -1 520 480 -1 -1 441 481 -1 -1 480 481 -2 -2 481 481 4 4 482 481 -1 -1 521 481 -1 -1 442 482 -1 -1 481 482 -1 -1 482 482 4 4 483 482 -1 -1 522 482 -1 -1 443 483 -1 -1 482 483 -1 -1 483 483 4 4 484 483 -1 -1 523 483 -1 -1 444 484 -1 -1 483 484 -1 -1 484 484 4 4 485 484 -1 -1 524 484 -1 -1 445 485 -1 -1 484 485 -1 -1 485 485 4 4 486 485 -1 -1 525 485 -1 -1 446 486 -1 -1 485 486 -1 -1 486 486 4 4 487 486 -1 -1 526 486 -1 -1 447 487 -1 -1 486 487 -1 -1 487 487 4 4 488 487 -1 -1 527 487 -1 -1 448 488 -1 -1 487 488 -1 -1 488 488 4 4 489 488 -1 -1 528 488 -1 -1 449 489 -1 -1 488 489 -1 -1 489 489 4 4 490 489 -1 -1 529 489 -1 -1 450 490 -1 -1 489 490 -1 -1 490 490 4 4 491 490 -1 -1 530 490 -1 -1 451 491 -1 -1 490 491 -1 -1 491 491 4 4 492 491 -1 -1 531 491 -1 -1 452 492 -1 -1 491 492 -1 -1 492 492 4 4 493 492 -1 -1 532 492 -1 -1 453 493 -1 -1 492 493 -1 -1 493 493 4 4 494 493 -1 -1 533 493 -1 -1 454 494 -1 -1 493 494 -1 -1 494 494 4 4 495 494 -1 -1 534 494 -1 -1 455 495 -1 -1 494 495 -1 -1 495 495 4 4 496 495 -1 -1 535 495 -1 -1 456 496 -1 -1 495 496 -1 -1 496 496 4 4 497 496 -1 -1 536 496 -1 -1 457 497 -1 -1 496 497 -1 -1 497 497 4 4 498 497 -1 -1 537 497 -1 -1 458 498 -1 -1 497 498 -1 -1 498 498 4 4 499 498 -1 -1 538 498 -1 -1 459 499 -1 -1 498 499 -1 -1 499 499 4 4 500 499 -1 -1 539 499 -1 -1 460 500 -1 -1 499 500 -1 -1 500 500 4 4 501 500 -1 -1 540 500 -1 -1 461 501 -1 -1 500 501 -1 -1 501 501 4 4 502 501 -1 -1 541 501 -1 -1 462 502 -1 -1 501 502 -1 -1 502 502 4 4 503 502 -1 -1 542 502 -1 -1 463 503 -1 -1 502 503 -1 -1 503 503 4 4 504 503 -1 -1 543 503 -1 -1 464 504 -1 -1 503 504 -1 -1 504 504 4 4 505 504 -1 -1 544 504 -1 -1 465 505 -1 -1 504 505 -1 -1 505 505 4 4 506 505 -1 -1 545 505 -1 -1 466 506 -1 -1 505 506 -1 -1 506 506 4 4 507 506 -1 -1 546 506 -1 -1 467 507 -1 -1 506 507 -1 -1 507 507 4 4 508 507 -1 -1 547 507 -1 -1 468 508 -1 -1 507 508 -1 -1 508 508 4 4 509 508 -1 -1 548 508 -1 -1 469 509 -1 -1 508 509 -1 -1 509 509 4 4 510 509 -1 -1 549 509 -1 -1 470 510 -1 -1 509 510 -1 -1 510 510 4 4 511 510 -1 -1 550 510 -1 -1 471 511 -1 -1 510 511 -1 -1 511 511 4 4 512 511 -1 -1 551 511 -1 -1 472 512 -1 -1 511 512 -1 -1 512 512 4 4 513 512 -1 -1 552 512 -1 -1 473 513 -1 -1 512 513 -1 -1 513 513 4 4 514 513 -1 -1 553 513 -1 -1 474 514 -1 -1 513 514 -1 -1 514 514 4 4 515 514 -1 -1 554 514 -1 -1 475 515 -1 -1 514 515 -1 -1 515 515 4 4 516 515 -1 -1 555 515 -1 -1 476 516 -1 -1 515 516 -1 -1 516 516 4 4 517 516 -1 -1 556 516 -1 -1 477 517 -1 -1 516 517 -1 -1 517 517 4 4 518 517 -1 -1 557 517 -1 -1 478 518 -1 -1 517 518 -1 -1 518 518 4 4 519 518 -2 -2 558 518 -1 -1 479 519 -1 -1 518 519 -1 -1 519 519 4 4 559 519 -1 -1 480 520 -1 -1 520 520 4 4 521 520 -1 -1 560 520 -1 -1 481 521 -1 -1 520 521 -2 -2 521 521 4 4 522 521 -1 -1 561 521 -1 -1 482 522 -1 -1 521 522 -1 -1 522 522 4 4 523 522 -1 -1 562 522 -1 -1 483 523 -1 -1 522 523 -1 -1 523 523 4 4 524 523 -1 -1 563 523 -1 -1 484 524 -1 -1 523 524 -1 -1 524 524 4 4 525 524 -1 -1 564 524 -1 -1 485 525 -1 -1 524 525 -1 -1 525 525 4 4 526 525 -1 -1 565 525 -1 -1 486 526 -1 -1 525 526 -1 -1 526 526 4 4 527 526 -1 -1 566 526 -1 -1 487 527 -1 -1 526 527 -1 -1 527 527 4 4 528 527 -1 -1 567 527 -1 -1 488 528 -1 -1 527 528 -1 -1 528 528 4 4 529 528 -1 -1 568 528 -1 -1 489 529 -1 -1 528 529 -1 -1 529 529 4 4 530 529 -1 -1 569 529 -1 -1 490 530 -1 -1 529 530 -1 -1 530 530 4 4 531 530 -1 -1 570 530 -1 -1 491 531 -1 -1 530 531 -1 -1 531 531 4 4 532 531 -1 -1 571 531 -1 -1 492 532 -1 -1 531 532 -1 -1 532 532 4 4 533 532 -1 -1 572 532 -1 -1 493 533 -1 -1 532 533 -1 -1 533 533 4 4 534 533 -1 -1 573 533 -1 -1 494 534 -1 -1 533 534 -1 -1 534 534 4 4 535 534 -1 -1 574 534 -1 -1 495 535 -1 -1 534 535 -1 -1 535 535 4 4 536 535 -1 -1 575 535 -1 -1 496 536 -1 -1 535 536 -1 -1 536 536 4 4 537 536 -1 -1 576 536 -1 -1 497 537 -1 -1 536 537 -1 -1 537 537 4 4 538 537 -1 -1 577 537 -1 -1 498 538 -1 -1 537 538 -1 -1 538 538 4 4 539 538 -1 -1 578 538 -1 -1 499 539 -1 -1 538 539 -1 -1 539 539 4 4 540 539 -1 -1 579 539 -1 -1 500 540 -1 -1 539 540 -1 -1 540 540 4 4 541 540 -1 -1 580 540 -1 -1 501 541 -1 -1 540 541 -1 -1 541 541 4 4 542 541 -1 -1 581 541 -1 -1 502 542 -1 -1 541 542 -1 -1 542 542 4 4 543 542 -1 -1 582 542 -1 -1 503 543 -1 -1 542 543 -1 -1 543 543 4 4 544 543 -1 -1 583 543 -1 -1 504 544 -1 -1 543 544 -1 -1 544 544 4 4 545 544 -1 -1 584 544 -1 -1 505 545 -1 -1 544 545 -1 -1 545 545 4 4 546 545 -1 -1 585 545 -1 -1 506 546 -1 -1 545 546 -1 -1 546 546 4 4 547 546 -1 -1 586 546 -1 -1 507 547 -1 -1 546 547 -1 -1 547 547 4 4 548 547 -1 -1 587 547 -1 -1 508 548 -1 -1 547 548 -1 -1 548 548 4 4 549 548 -1 -1 588 548 -1 -1 509 549 -1 -1 548 549 -1 -1 549 549 4 4 550 549 -1 -1 589 549 -1 -1 510 550 -1 -1 549 550 -1 -1 550 550 4 4 551 550 -1 -1 590 550 -1 -1 511 551 -1 -1 550 551 -1 -1 551 551 4 4 552 551 -1 -1 591 551 -1 -1 512 552 -1 -1 551 552 -1 -1 552 552 4 4 553 552 -1 -1 592 552 -1 -1 513 553 -1 -1 552 553 -1 -1 553 553 4 4 554 553 -1 -1 593 553 -1 -1 514 554 -1 -1 553 554 -1 -1 554 554 4 4 555 554 -1 -1 594 554 -1 -1 515 555 -1 -1 554 555 -1 -1 555 555 4 4 556 555 -1 -1 595 555 -1 -1 516 556 -1 -1 555 556 -1 -1 556 556 4 4 557 556 -1 -1 596 556 -1 -1 517 557 -1 -1 556 557 -1 -1 557 557 4 4 558 557 -1 -1 597 557 -1 -1 518 558 -1 -1 557 558 -1 -1 558 558 4 4 559 558 -2 -2 598 558 -1 -1 519 559 -1 -1 558 559 -1 -1 559 559 4 4 599 559 -1 -1 520 560 -1 -1 560 560 4 4 561 560 -1 -1 600 560 -1 -1 521 561 -1 -1 560 561 -2 -2 561 561 4 4 562 561 -1 -1 601 561 -1 -1 522 562 -1 -1 561 562 -1 -1 562 562 4 4 563 562 -1 -1 602 562 -1 -1 523 563 -1 -1 562 563 -1 -1 563 563 4 4 564 563 -1 -1 603 563 -1 -1 524 564 -1 -1 563 564 -1 -1 564 564 4 4 565 564 -1 -1 604 564 -1 -1 525 565 -1 -1 564 565 -1 -1 565 565 4 4 566 565 -1 -1 605 565 -1 -1 526 566 -1 -1 565 566 -1 -1 566 566 4 4 567 566 -1 -1 606 566 -1 -1 527 567 -1 -1 566 567 -1 -1 567 567 4 4 568 567 -1 -1 607 567 -1 -1 528 568 -1 -1 567 568 -1 -1 568 568 4 4 569 568 -1 -1 608 568 -1 -1 529 569 -1 -1 568 569 -1 -1 569 569 4 4 570 569 -1 -1 609 569 -1 -1 530 570 -1 -1 569 570 -1 -1 570 570 4 4 571 570 -1 -1 610 570 -1 -1 531 571 -1 -1 570 571 -1 -1 571 571 4 4 572 571 -1 -1 611 571 -1 -1 532 572 -1 -1 571 572 -1 -1 572 572 4 4 573 572 -1 -1 612 572 -1 -1 533 573 -1 -1 572 573 -1 -1 573 573 4 4 574 573 -1 -1 613 573 -1 -1 534 574 -1 -1 573 574 -1 -1 574 574 4 4 575 574 -1 -1 614 574 -1 -1 535 575 -1 -1 574 575 -1 -1 575 575 4 4 576 575 -1 -1 615 575 -1 -1 536 576 -1 -1 575 576 -1 -1 576 576 4 4 577 576 -1 -1 616 576 -1 -1 537 577 -1 -1 576 577 -1 -1 577 577 4 4 578 577 -1 -1 617 577 -1 -1 538 578 -1 -1 577 578 -1 -1 578 578 4 4 579 578 -1 -1 618 578 -1 -1 539 579 -1 -1 578 579 -1 -1 579 579 4 4 580 579 -1 -1 619 579 -1 -1 540 580 -1 -1 579 580 -1 -1 580 580 4 4 581 580 -1 -1 620 580 -1 -1 541 581 -1 -1 580 581 -1 -1 581 581 4 4 582 581 -1 -1 621 581 -1 -1 542 582 -1 -1 581 582 -1 -1 582 582 4 4 583 582 -1 -1 622 582 -1 -1 543 583 -1 -1 582 583 -1 -1 583 583 4 4 584 583 -1 -1 623 583 -1 -1 544 584 -1 -1 583 584 -1 -1 584 584 4 4 585 584 -1 -1 624 584 -1 -1 545 585 -1 -1 584 585 -1 -1 585 585 4 4 586 585 -1 -1 625 585 -1 -1 546 586 -1 -1 585 586 -1 -1 586 586 4 4 587 586 -1 -1 626 586 -1 -1 547 587 -1 -1 586 587 -1 -1 587 587 4 4 588 587 -1 -1 627 587 -1 -1 548 588 -1 -1 587 588 -1 -1 588 588 4 4 589 588 -1 -1 628 588 -1 -1 549 589 -1 -1 588 589 -1 -1 589 589 4 4 590 589 -1 -1 629 589 -1 -1 550 590 -1 -1 589 590 -1 -1 590 590 4 4 591 590 -1 -1 630 590 -1 -1 551 591 -1 -1 590 591 -1 -1 591 591 4 4 592 591 -1 -1 631 591 -1 -1 552 592 -1 -1 591 592 -1 -1 592 592 4 4 593 592 -1 -1 632 592 -1 -1 553 593 -1 -1 592 593 -1 -1 593 593 4 4 594 593 -1 -1 633 593 -1 -1 554 594 -1 -1 593 594 -1 -1 594 594 4 4 595 594 -1 -1 634 594 -1 -1 555 595 -1 -1 594 595 -1 -1 595 595 4 4 596 595 -1 -1 635 595 -1 -1 556 596 -1 -1 595 596 -1 -1 596 596 4 4 597 596 -1 -1 636 596 -1 -1 557 597 -1 -1 596 597 -1 -1 597 597 4 4 598 597 -1 -1 637 597 -1 -1 558 598 -1 -1 597 598 -1 -1 598 598 4 4 599 598 -2 -2 638 598 -1 -1 559 599 -1 -1 598 599 -1 -1 599 599 4 4 639 599 -1 -1 560 600 -1 -1 600 600 4 4 601 600 -1 -1 640 600 -1 -1 561 601 -1 -1 600 601 -2 -2 601 601 4 4 602 601 -1 -1 641 601 -1 -1 562 602 -1 -1 601 602 -1 -1 602 602 4 4 603 602 -1 -1 642 602 -1 -1 563 603 -1 -1 602 603 -1 -1 603 603 4 4 604 603 -1 -1 643 603 -1 -1 564 604 -1 -1 603 604 -1 -1 604 604 4 4 605 604 -1 -1 644 604 -1 -1 565 605 -1 -1 604 605 -1 -1 605 605 4 4 606 605 -1 -1 645 605 -1 -1 566 606 -1 -1 605 606 -1 -1 606 606 4 4 607 606 -1 -1 646 606 -1 -1 567 607 -1 -1 606 607 -1 -1 607 607 4 4 608 607 -1 -1 647 607 -1 -1 568 608 -1 -1 607 608 -1 -1 608 608 4 4 609 608 -1 -1 648 608 -1 -1 569 609 -1 -1 608 609 -1 -1 609 609 4 4 610 609 -1 -1 649 609 -1 -1 570 610 -1 -1 609 610 -1 -1 610 610 4 4 611 610 -1 -1 650 610 -1 -1 571 611 -1 -1 610 611 -1 -1 611 611 4 4 612 611 -1 -1 651 611 -1 -1 572 612 -1 -1 611 612 -1 -1 612 612 4 4 613 612 -1 -1 652 612 -1 -1 573 613 -1 -1 612 613 -1 -1 613 613 4 4 614 613 -1 -1 653 613 -1 -1 574 614 -1 -1 613 614 -1 -1 614 614 4 4 615 614 -1 -1 654 614 -1 -1 575 615 -1 -1 614 615 -1 -1 615 615 4 4 616 615 -1 -1 655 615 -1 -1 576 616 -1 -1 615 616 -1 -1 616 616 4 4 617 616 -1 -1 656 616 -1 -1 577 617 -1 -1 616 617 -1 -1 617 617 4 4 618 617 -1 -1 657 617 -1 -1 578 618 -1 -1 617 618 -1 -1 618 618 4 4 619 618 -1 -1 658 618 -1 -1 579 619 -1 -1 618 619 -1 -1 619 619 4 4 620 619 -1 -1 659 619 -1 -1 580 620 -1 -1 619 620 -1 -1 620 620 4 4 621 620 -1 -1 660 620 -1 -1 581 621 -1 -1 620 621 -1 -1 621 621 4 4 622 621 -1 -1 661 621 -1 -1 582 622 -1 -1 621 622 -1 -1 622 622 4 4 623 622 -1 -1 662 622 -1 -1 583 623 -1 -1 622 623 -1 -1 623 623 4 4 624 623 -1 -1 663 623 -1 -1 584 624 -1 -1 623 624 -1 -1 624 624 4 4 625 624 -1 -1 664 624 -1 -1 585 625 -1 -1 624 625 -1 -1 625 625 4 4 626 625 -1 -1 665 625 -1 -1 586 626 -1 -1 625 626 -1 -1 626 626 4 4 627 626 -1 -1 666 626 -1 -1 587 627 -1 -1 626 627 -1 -1 627 627 4 4 628 627 -1 -1 667 627 -1 -1 588 628 -1 -1 627 628 -1 -1 628 628 4 4 629 628 -1 -1 668 628 -1 -1 589 629 -1 -1 628 629 -1 -1 629 629 4 4 630 629 -1 -1 669 629 -1 -1 590 630 -1 -1 629 630 -1 -1 630 630 4 4 631 630 -1 -1 670 630 -1 -1 591 631 -1 -1 630 631 -1 -1 631 631 4 4 632 631 -1 -1 671 631 -1 -1 592 632 -1 -1 631 632 -1 -1 632 632 4 4 633 632 -1 -1 672 632 -1 -1 593 633 -1 -1 632 633 -1 -1 633 633 4 4 634 633 -1 -1 673 633 -1 -1 594 634 -1 -1 633 634 -1 -1 634 634 4 4 635 634 -1 -1 674 634 -1 -1 595 635 -1 -1 634 635 -1 -1 635 635 4 4 636 635 -1 -1 675 635 -1 -1 596 636 -1 -1 635 636 -1 -1 636 636 4 4 637 636 -1 -1 676 636 -1 -1 597 637 -1 -1 636 637 -1 -1 637 637 4 4 638 637 -1 -1 677 637 -1 -1 598 638 -1 -1 637 638 -1 -1 638 638 4 4 639 638 -2 -2 678 638 -1 -1 599 639 -1 -1 638 639 -1 -1 639 639 4 4 679 639 -1 -1 600 640 -1 -1 640 640 4 4 641 640 -1 -1 680 640 -1 -1 601 641 -1 -1 640 641 -2 -2 641 641 4 4 642 641 -1 -1 681 641 -1 -1 602 642 -1 -1 641 642 -1 -1 642 642 4 4 643 642 -1 -1 682 642 -1 -1 603 643 -1 -1 642 643 -1 -1 643 643 4 4 644 643 -1 -1 683 643 -1 -1 604 644 -1 -1 643 644 -1 -1 644 644 4 4 645 644 -1 -1 684 644 -1 -1 605 645 -1 -1 644 645 -1 -1 645 645 4 4 646 645 -1 -1 685 645 -1 -1 606 646 -1 -1 645 646 -1 -1 646 646 4 4 647 646 -1 -1 686 646 -1 -1 607 647 -1 -1 646 647 -1 -1 647 647 4 4 648 647 -1 -1 687 647 -1 -1 608 648 -1 -1 647 648 -1 -1 648 648 4 4 649 648 -1 -1 688 648 -1 -1 609 649 -1 -1 648 649 -1 -1 649 649 4 4 650 649 -1 -1 689 649 -1 -1 610 650 -1 -1 649 650 -1 -1 650 650 4 4 651 650 -1 -1 690 650 -1 -1 611 651 -1 -1 650 651 -1 -1 651 651 4 4 652 651 -1 -1 691 651 -1 -1 612 652 -1 -1 651 652 -1 -1 652 652 4 4 653 652 -1 -1 692 652 -1 -1 613 653 -1 -1 652 653 -1 -1 653 653 4 4 654 653 -1 -1 693 653 -1 -1 614 654 -1 -1 653 654 -1 -1 654 654 4 4 655 654 -1 -1 694 654 -1 -1 615 655 -1 -1 654 655 -1 -1 655 655 4 4 656 655 -1 -1 695 655 -1 -1 616 656 -1 -1 655 656 -1 -1 656 656 4 4 657 656 -1 -1 696 656 -1 -1 617 657 -1 -1 656 657 -1 -1 657 657 4 4 658 657 -1 -1 697 657 -1 -1 618 658 -1 -1 657 658 -1 -1 658 658 4 4 659 658 -1 -1 698 658 -1 -1 619 659 -1 -1 658 659 -1 -1 659 659 4 4 660 659 -1 -1 699 659 -1 -1 620 660 -1 -1 659 660 -1 -1 660 660 4 4 661 660 -1 -1 700 660 -1 -1 621 661 -1 -1 660 661 -1 -1 661 661 4 4 662 661 -1 -1 701 661 -1 -1 622 662 -1 -1 661 662 -1 -1 662 662 4 4 663 662 -1 -1 702 662 -1 -1 623 663 -1 -1 662 663 -1 -1 663 663 4 4 664 663 -1 -1 703 663 -1 -1 624 664 -1 -1 663 664 -1 -1 664 664 4 4 665 664 -1 -1 704 664 -1 -1 625 665 -1 -1 664 665 -1 -1 665 665 4 4 666 665 -1 -1 705 665 -1 -1 626 666 -1 -1 665 666 -1 -1 666 666 4 4 667 666 -1 -1 706 666 -1 -1 627 667 -1 -1 666 667 -1 -1 667 667 4 4 668 667 -1 -1 707 667 -1 -1 628 668 -1 -1 667 668 -1 -1 668 668 4 4 669 668 -1 -1 708 668 -1 -1 629 669 -1 -1 668 669 -1 -1 669 669 4 4 670 669 -1 -1 709 669 -1 -1 630 670 -1 -1 669 670 -1 -1 670 670 4 4 671 670 -1 -1 710 670 -1 -1 631 671 -1 -1 670 671 -1 -1 671 671 4 4 672 671 -1 -1 711 671 -1 -1 632 672 -1 -1 671 672 -1 -1 672 672 4 4 673 672 -1 -1 712 672 -1 -1 633 673 -1 -1 672 673 -1 -1 673 673 4 4 674 673 -1 -1 713 673 -1 -1 634 674 -1 -1 673 674 -1 -1 674 674 4 4 675 674 -1 -1 714 674 -1 -1 635 675 -1 -1 674 675 -1 -1 675 675 4 4 676 675 -1 -1 715 675 -1 -1 636 676 -1 -1 675 676 -1 -1 676 676 4 4 677 676 -1 -1 716 676 -1 -1 637 677 -1 -1 676 677 -1 -1 677 677 4 4 678 677 -1 -1 717 677 -1 -1 638 678 -1 -1 677 678 -1 -1 678 678 4 4 679 678 -2 -2 718 678 -1 -1 639 679 -1 -1 678 679 -1 -1 679 679 4 4 719 679 -1 -1 640 680 -1 -1 680 680 4 4 681 680 -1 -1 720 680 -1 -1 641 681 -1 -1 680 681 -2 -2 681 681 4 4 682 681 -1 -1 721 681 -1 -1 642 682 -1 -1 681 682 -1 -1 682 682 4 4 683 682 -1 -1 722 682 -1 -1 643 683 -1 -1 682 683 -1 -1 683 683 4 4 684 683 -1 -1 723 683 -1 -1 644 684 -1 -1 683 684 -1 -1 684 684 4 4 685 684 -1 -1 724 684 -1 -1 645 685 -1 -1 684 685 -1 -1 685 685 4 4 686 685 -1 -1 725 685 -1 -1 646 686 -1 -1 685 686 -1 -1 686 686 4 4 687 686 -1 -1 726 686 -1 -1 647 687 -1 -1 686 687 -1 -1 687 687 4 4 688 687 -1 -1 727 687 -1 -1 648 688 -1 -1 687 688 -1 -1 688 688 4 4 689 688 -1 -1 728 688 -1 -1 649 689 -1 -1 688 689 -1 -1 689 689 4 4 690 689 -1 -1 729 689 -1 -1 650 690 -1 -1 689 690 -1 -1 690 690 4 4 691 690 -1 -1 730 690 -1 -1 651 691 -1 -1 690 691 -1 -1 691 691 4 4 692 691 -1 -1 731 691 -1 -1 652 692 -1 -1 691 692 -1 -1 692 692 4 4 693 692 -1 -1 732 692 -1 -1 653 693 -1 -1 692 693 -1 -1 693 693 4 4 694 693 -1 -1 733 693 -1 -1 654 694 -1 -1 693 694 -1 -1 694 694 4 4 695 694 -1 -1 734 694 -1 -1 655 695 -1 -1 694 695 -1 -1 695 695 4 4 696 695 -1 -1 735 695 -1 -1 656 696 -1 -1 695 696 -1 -1 696 696 4 4 697 696 -1 -1 736 696 -1 -1 657 697 -1 -1 696 697 -1 -1 697 697 4 4 698 697 -1 -1 737 697 -1 -1 658 698 -1 -1 697 698 -1 -1 698 698 4 4 699 698 -1 -1 738 698 -1 -1 659 699 -1 -1 698 699 -1 -1 699 699 4 4 700 699 -1 -1 739 699 -1 -1 660 700 -1 -1 699 700 -1 -1 700 700 4 4 701 700 -1 -1 740 700 -1 -1 661 701 -1 -1 700 701 -1 -1 701 701 4 4 702 701 -1 -1 741 701 -1 -1 662 702 -1 -1 701 702 -1 -1 702 702 4 4 703 702 -1 -1 742 702 -1 -1 663 703 -1 -1 702 703 -1 -1 703 703 4 4 704 703 -1 -1 743 703 -1 -1 664 704 -1 -1 703 704 -1 -1 704 704 4 4 705 704 -1 -1 744 704 -1 -1 665 705 -1 -1 704 705 -1 -1 705 705 4 4 706 705 -1 -1 745 705 -1 -1 666 706 -1 -1 705 706 -1 -1 706 706 4 4 707 706 -1 -1 746 706 -1 -1 667 707 -1 -1 706 707 -1 -1 707 707 4 4 708 707 -1 -1 747 707 -1 -1 668 708 -1 -1 707 708 -1 -1 708 708 4 4 709 708 -1 -1 748 708 -1 -1 669 709 -1 -1 708 709 -1 -1 709 709 4 4 710 709 -1 -1 749 709 -1 -1 670 710 -1 -1 709 710 -1 -1 710 710 4 4 711 710 -1 -1 750 710 -1 -1 671 711 -1 -1 710 711 -1 -1 711 711 4 4 712 711 -1 -1 751 711 -1 -1 672 712 -1 -1 711 712 -1 -1 712 712 4 4 713 712 -1 -1 752 712 -1 -1 673 713 -1 -1 712 713 -1 -1 713 713 4 4 714 713 -1 -1 753 713 -1 -1 674 714 -1 -1 713 714 -1 -1 714 714 4 4 715 714 -1 -1 754 714 -1 -1 675 715 -1 -1 714 715 -1 -1 715 715 4 4 716 715 -1 -1 755 715 -1 -1 676 716 -1 -1 715 716 -1 -1 716 716 4 4 717 716 -1 -1 756 716 -1 -1 677 717 -1 -1 716 717 -1 -1 717 717 4 4 718 717 -1 -1 757 717 -1 -1 678 718 -1 -1 717 718 -1 -1 718 718 4 4 719 718 -2 -2 758 718 -1 -1 679 719 -1 -1 718 719 -1 -1 719 719 4 4 759 719 -1 -1 680 720 -1 -1 720 720 4 4 721 720 -1 -1 760 720 -1 -1 681 721 -1 -1 720 721 -2 -2 721 721 4 4 722 721 -1 -1 761 721 -1 -1 682 722 -1 -1 721 722 -1 -1 722 722 4 4 723 722 -1 -1 762 722 -1 -1 683 723 -1 -1 722 723 -1 -1 723 723 4 4 724 723 -1 -1 763 723 -1 -1 684 724 -1 -1 723 724 -1 -1 724 724 4 4 725 724 -1 -1 764 724 -1 -1 685 725 -1 -1 724 725 -1 -1 725 725 4 4 726 725 -1 -1 765 725 -1 -1 686 726 -1 -1 725 726 -1 -1 726 726 4 4 727 726 -1 -1 766 726 -1 -1 687 727 -1 -1 726 727 -1 -1 727 727 4 4 728 727 -1 -1 767 727 -1 -1 688 728 -1 -1 727 728 -1 -1 728 728 4 4 729 728 -1 -1 768 728 -1 -1 689 729 -1 -1 728 729 -1 -1 729 729 4 4 730 729 -1 -1 769 729 -1 -1 690 730 -1 -1 729 730 -1 -1 730 730 4 4 731 730 -1 -1 770 730 -1 -1 691 731 -1 -1 730 731 -1 -1 731 731 4 4 732 731 -1 -1 771 731 -1 -1 692 732 -1 -1 731 732 -1 -1 732 732 4 4 733 732 -1 -1 772 732 -1 -1 693 733 -1 -1 732 733 -1 -1 733 733 4 4 734 733 -1 -1 773 733 -1 -1 694 734 -1 -1 733 734 -1 -1 734 734 4 4 735 734 -1 -1 774 734 -1 -1 695 735 -1 -1 734 735 -1 -1 735 735 4 4 736 735 -1 -1 775 735 -1 -1 696 736 -1 -1 735 736 -1 -1 736 736 4 4 737 736 -1 -1 776 736 -1 -1 697 737 -1 -1 736 737 -1 -1 737 737 4 4 738 737 -1 -1 777 737 -1 -1 698 738 -1 -1 737 738 -1 -1 738 738 4 4 739 738 -1 -1 778 738 -1 -1 699 739 -1 -1 738 739 -1 -1 739 739 4 4 740 739 -1 -1 779 739 -1 -1 700 740 -1 -1 739 740 -1 -1 740 740 4 4 741 740 -1 -1 780 740 -1 -1 701 741 -1 -1 740 741 -1 -1 741 741 4 4 742 741 -1 -1 781 741 -1 -1 702 742 -1 -1 741 742 -1 -1 742 742 4 4 743 742 -1 -1 782 742 -1 -1 703 743 -1 -1 742 743 -1 -1 743 743 4 4 744 743 -1 -1 783 743 -1 -1 704 744 -1 -1 743 744 -1 -1 744 744 4 4 745 744 -1 -1 784 744 -1 -1 705 745 -1 -1 744 745 -1 -1 745 745 4 4 746 745 -1 -1 785 745 -1 -1 706 746 -1 -1 745 746 -1 -1 746 746 4 4 747 746 -1 -1 786 746 -1 -1 707 747 -1 -1 746 747 -1 -1 747 747 4 4 748 747 -1 -1 787 747 -1 -1 708 748 -1 -1 747 748 -1 -1 748 748 4 4 749 748 -1 -1 788 748 -1 -1 709 749 -1 -1 748 749 -1 -1 749 749 4 4 750 749 -1 -1 789 749 -1 -1 710 750 -1 -1 749 750 -1 -1 750 750 4 4 751 750 -1 -1 790 750 -1 -1 711 751 -1 -1 750 751 -1 -1 751 751 4 4 752 751 -1 -1 791 751 -1 -1 712 752 -1 -1 751 752 -1 -1 752 752 4 4 753 752 -1 -1 792 752 -1 -1 713 753 -1 -1 752 753 -1 -1 753 753 4 4 754 753 -1 -1 793 753 -1 -1 714 754 -1 -1 753 754 -1 -1 754 754 4 4 755 754 -1 -1 794 754 -1 -1 715 755 -1 -1 754 755 -1 -1 755 755 4 4 756 755 -1 -1 795 755 -1 -1 716 756 -1 -1 755 756 -1 -1 756 756 4 4 757 756 -1 -1 796 756 -1 -1 717 757 -1 -1 756 757 -1 -1 757 757 4 4 758 757 -1 -1 797 757 -1 -1 718 758 -1 -1 757 758 -1 -1 758 758 4 4 759 758 -2 -2 798 758 -1 -1 719 759 -1 -1 758 759 -1 -1 759 759 4 4 799 759 -1 -1 720 760 -1 -1 760 760 4 4 761 760 -1 -1 800 760 -1 -1 721 761 -1 -1 760 761 -2 -2 761 761 4 4 762 761 -1 -1 801 761 -1 -1 722 762 -1 -1 761 762 -1 -1 762 762 4 4 763 762 -1 -1 802 762 -1 -1 723 763 -1 -1 762 763 -1 -1 763 763 4 4 764 763 -1 -1 803 763 -1 -1 724 764 -1 -1 763 764 -1 -1 764 764 4 4 765 764 -1 -1 804 764 -1 -1 725 765 -1 -1 764 765 -1 -1 765 765 4 4 766 765 -1 -1 805 765 -1 -1 726 766 -1 -1 765 766 -1 -1 766 766 4 4 767 766 -1 -1 806 766 -1 -1 727 767 -1 -1 766 767 -1 -1 767 767 4 4 768 767 -1 -1 807 767 -1 -1 728 768 -1 -1 767 768 -1 -1 768 768 4 4 769 768 -1 -1 808 768 -1 -1 729 769 -1 -1 768 769 -1 -1 769 769 4 4 770 769 -1 -1 809 769 -1 -1 730 770 -1 -1 769 770 -1 -1 770 770 4 4 771 770 -1 -1 810 770 -1 -1 731 771 -1 -1 770 771 -1 -1 771 771 4 4 772 771 -1 -1 811 771 -1 -1 732 772 -1 -1 771 772 -1 -1 772 772 4 4 773 772 -1 -1 812 772 -1 -1 733 773 -1 -1 772 773 -1 -1 773 773 4 4 774 773 -1 -1 813 773 -1 -1 734 774 -1 -1 773 774 -1 -1 774 774 4 4 775 774 -1 -1 814 774 -1 -1 735 775 -1 -1 774 775 -1 -1 775 775 4 4 776 775 -1 -1 815 775 -1 -1 736 776 -1 -1 775 776 -1 -1 776 776 4 4 777 776 -1 -1 816 776 -1 -1 737 777 -1 -1 776 777 -1 -1 777 777 4 4 778 777 -1 -1 817 777 -1 -1 738 778 -1 -1 777 778 -1 -1 778 778 4 4 779 778 -1 -1 818 778 -1 -1 739 779 -1 -1 778 779 -1 -1 779 779 4 4 780 779 -1 -1 819 779 -1 -1 740 780 -1 -1 779 780 -1 -1 780 780 4 4 781 780 -1 -1 820 780 -1 -1 741 781 -1 -1 780 781 -1 -1 781 781 4 4 782 781 -1 -1 821 781 -1 -1 742 782 -1 -1 781 782 -1 -1 782 782 4 4 783 782 -1 -1 822 782 -1 -1 743 783 -1 -1 782 783 -1 -1 783 783 4 4 784 783 -1 -1 823 783 -1 -1 744 784 -1 -1 783 784 -1 -1 784 784 4 4 785 784 -1 -1 824 784 -1 -1 745 785 -1 -1 784 785 -1 -1 785 785 4 4 786 785 -1 -1 825 785 -1 -1 746 786 -1 -1 785 786 -1 -1 786 786 4 4 787 786 -1 -1 826 786 -1 -1 747 787 -1 -1 786 787 -1 -1 787 787 4 4 788 787 -1 -1 827 787 -1 -1 748 788 -1 -1 787 788 -1 -1 788 788 4 4 789 788 -1 -1 828 788 -1 -1 749 789 -1 -1 788 789 -1 -1 789 789 4 4 790 789 -1 -1 829 789 -1 -1 750 790 -1 -1 789 790 -1 -1 790 790 4 4 791 790 -1 -1 830 790 -1 -1 751 791 -1 -1 790 791 -1 -1 791 791 4 4 792 791 -1 -1 831 791 -1 -1 752 792 -1 -1 791 792 -1 -1 792 792 4 4 793 792 -1 -1 832 792 -1 -1 753 793 -1 -1 792 793 -1 -1 793 793 4 4 794 793 -1 -1 833 793 -1 -1 754 794 -1 -1 793 794 -1 -1 794 794 4 4 795 794 -1 -1 834 794 -1 -1 755 795 -1 -1 794 795 -1 -1 795 795 4 4 796 795 -1 -1 835 795 -1 -1 756 796 -1 -1 795 796 -1 -1 796 796 4 4 797 796 -1 -1 836 796 -1 -1 757 797 -1 -1 796 797 -1 -1 797 797 4 4 798 797 -1 -1 837 797 -1 -1 758 798 -1 -1 797 798 -1 -1 798 798 4 4 799 798 -2 -2 838 798 -1 -1 759 799 -1 -1 798 799 -1 -1 799 799 4 4 839 799 -1 -1 760 800 -1 -1 800 800 4 4 801 800 -1 -1 840 800 -1 -1 761 801 -1 -1 800 801 -2 -2 801 801 4 4 802 801 -1 -1 841 801 -1 -1 762 802 -1 -1 801 802 -1 -1 802 802 4 4 803 802 -1 -1 842 802 -1 -1 763 803 -1 -1 802 803 -1 -1 803 803 4 4 804 803 -1 -1 843 803 -1 -1 764 804 -1 -1 803 804 -1 -1 804 804 4 4 805 804 -1 -1 844 804 -1 -1 765 805 -1 -1 804 805 -1 -1 805 805 4 4 806 805 -1 -1 845 805 -1 -1 766 806 -1 -1 805 806 -1 -1 806 806 4 4 807 806 -1 -1 846 806 -1 -1 767 807 -1 -1 806 807 -1 -1 807 807 4 4 808 807 -1 -1 847 807 -1 -1 768 808 -1 -1 807 808 -1 -1 808 808 4 4 809 808 -1 -1 848 808 -1 -1 769 809 -1 -1 808 809 -1 -1 809 809 4 4 810 809 -1 -1 849 809 -1 -1 770 810 -1 -1 809 810 -1 -1 810 810 4 4 811 810 -1 -1 850 810 -1 -1 771 811 -1 -1 810 811 -1 -1 811 811 4 4 812 811 -1 -1 851 811 -1 -1 772 812 -1 -1 811 812 -1 -1 812 812 4 4 813 812 -1 -1 852 812 -1 -1 773 813 -1 -1 812 813 -1 -1 813 813 4 4 814 813 -1 -1 853 813 -1 -1 774 814 -1 -1 813 814 -1 -1 814 814 4 4 815 814 -1 -1 854 814 -1 -1 775 815 -1 -1 814 815 -1 -1 815 815 4 4 816 815 -1 -1 855 815 -1 -1 776 816 -1 -1 815 816 -1 -1 816 816 4 4 817 816 -1 -1 856 816 -1 -1 777 817 -1 -1 816 817 -1 -1 817 817 4 4 818 817 -1 -1 857 817 -1 -1 778 818 -1 -1 817 818 -1 -1 818 818 4 4 819 818 -1 -1 858 818 -1 -1 779 819 -1 -1 818 819 -1 -1 819 819 4 4 820 819 -1 -1 859 819 -1 -1 780 820 -1 -1 819 820 -1 -1 820 820 4 4 821 820 -1 -1 860 820 -1 -1 781 821 -1 -1 820 821 -1 -1 821 821 4 4 822 821 -1 -1 861 821 -1 -1 782 822 -1 -1 821 822 -1 -1 822 822 4 4 823 822 -1 -1 862 822 -1 -1 783 823 -1 -1 822 823 -1 -1 823 823 4 4 824 823 -1 -1 863 823 -1 -1 784 824 -1 -1 823 824 -1 -1 824 824 4 4 825 824 -1 -1 864 824 -1 -1 785 825 -1 -1 824 825 -1 -1 825 825 4 4 826 825 -1 -1 865 825 -1 -1 786 826 -1 -1 825 826 -1 -1 826 826 4 4 827 826 -1 -1 866 826 -1 -1 787 827 -1 -1 826 827 -1 -1 827 827 4 4 828 827 -1 -1 867 827 -1 -1 788 828 -1 -1 827 828 -1 -1 828 828 4 4 829 828 -1 -1 868 828 -1 -1 789 829 -1 -1 828 829 -1 -1 829 829 4 4 830 829 -1 -1 869 829 -1 -1 790 830 -1 -1 829 830 -1 -1 830 830 4 4 831 830 -1 -1 870 830 -1 -1 791 831 -1 -1 830 831 -1 -1 831 831 4 4 832 831 -1 -1 871 831 -1 -1 792 832 -1 -1 831 832 -1 -1 832 832 4 4 833 832 -1 -1 872 832 -1 -1 793 833 -1 -1 832 833 -1 -1 833 833 4 4 834 833 -1 -1 873 833 -1 -1 794 834 -1 -1 833 834 -1 -1 834 834 4 4 835 834 -1 -1 874 834 -1 -1 795 835 -1 -1 834 835 -1 -1 835 835 4 4 836 835 -1 -1 875 835 -1 -1 796 836 -1 -1 835 836 -1 -1 836 836 4 4 837 836 -1 -1 876 836 -1 -1 797 837 -1 -1 836 837 -1 -1 837 837 4 4 838 837 -1 -1 877 837 -1 -1 798 838 -1 -1 837 838 -1 -1 838 838 4 4 839 838 -2 -2 878 838 -1 -1 799 839 -1 -1 838 839 -1 -1 839 839 4 4 879 839 -1 -1 800 840 -1 -1 840 840 4 4 841 840 -1 -1 880 840 -1 -1 801 841 -1 -1 840 841 -2 -2 841 841 4 4 842 841 -1 -1 881 841 -1 -1 802 842 -1 -1 841 842 -1 -1 842 842 4 4 843 842 -1 -1 882 842 -1 -1 803 843 -1 -1 842 843 -1 -1 843 843 4 4 844 843 -1 -1 883 843 -1 -1 804 844 -1 -1 843 844 -1 -1 844 844 4 4 845 844 -1 -1 884 844 -1 -1 805 845 -1 -1 844 845 -1 -1 845 845 4 4 846 845 -1 -1 885 845 -1 -1 806 846 -1 -1 845 846 -1 -1 846 846 4 4 847 846 -1 -1 886 846 -1 -1 807 847 -1 -1 846 847 -1 -1 847 847 4 4 848 847 -1 -1 887 847 -1 -1 808 848 -1 -1 847 848 -1 -1 848 848 4 4 849 848 -1 -1 888 848 -1 -1 809 849 -1 -1 848 849 -1 -1 849 849 4 4 850 849 -1 -1 889 849 -1 -1 810 850 -1 -1 849 850 -1 -1 850 850 4 4 851 850 -1 -1 890 850 -1 -1 811 851 -1 -1 850 851 -1 -1 851 851 4 4 852 851 -1 -1 891 851 -1 -1 812 852 -1 -1 851 852 -1 -1 852 852 4 4 853 852 -1 -1 892 852 -1 -1 813 853 -1 -1 852 853 -1 -1 853 853 4 4 854 853 -1 -1 893 853 -1 -1 814 854 -1 -1 853 854 -1 -1 854 854 4 4 855 854 -1 -1 894 854 -1 -1 815 855 -1 -1 854 855 -1 -1 855 855 4 4 856 855 -1 -1 895 855 -1 -1 816 856 -1 -1 855 856 -1 -1 856 856 4 4 857 856 -1 -1 896 856 -1 -1 817 857 -1 -1 856 857 -1 -1 857 857 4 4 858 857 -1 -1 897 857 -1 -1 818 858 -1 -1 857 858 -1 -1 858 858 4 4 859 858 -1 -1 898 858 -1 -1 819 859 -1 -1 858 859 -1 -1 859 859 4 4 860 859 -1 -1 899 859 -1 -1 820 860 -1 -1 859 860 -1 -1 860 860 4 4 861 860 -1 -1 900 860 -1 -1 821 861 -1 -1 860 861 -1 -1 861 861 4 4 862 861 -1 -1 901 861 -1 -1 822 862 -1 -1 861 862 -1 -1 862 862 4 4 863 862 -1 -1 902 862 -1 -1 823 863 -1 -1 862 863 -1 -1 863 863 4 4 864 863 -1 -1 903 863 -1 -1 824 864 -1 -1 863 864 -1 -1 864 864 4 4 865 864 -1 -1 904 864 -1 -1 825 865 -1 -1 864 865 -1 -1 865 865 4 4 866 865 -1 -1 905 865 -1 -1 826 866 -1 -1 865 866 -1 -1 866 866 4 4 867 866 -1 -1 906 866 -1 -1 827 867 -1 -1 866 867 -1 -1 867 867 4 4 868 867 -1 -1 907 867 -1 -1 828 868 -1 -1 867 868 -1 -1 868 868 4 4 869 868 -1 -1 908 868 -1 -1 829 869 -1 -1 868 869 -1 -1 869 869 4 4 870 869 -1 -1 909 869 -1 -1 830 870 -1 -1 869 870 -1 -1 870 870 4 4 871 870 -1 -1 910 870 -1 -1 831 871 -1 -1 870 871 -1 -1 871 871 4 4 872 871 -1 -1 911 871 -1 -1 832 872 -1 -1 871 872 -1 -1 872 872 4 4 873 872 -1 -1 912 872 -1 -1 833 873 -1 -1 872 873 -1 -1 873 873 4 4 874 873 -1 -1 913 873 -1 -1 834 874 -1 -1 873 874 -1 -1 874 874 4 4 875 874 -1 -1 914 874 -1 -1 835 875 -1 -1 874 875 -1 -1 875 875 4 4 876 875 -1 -1 915 875 -1 -1 836 876 -1 -1 875 876 -1 -1 876 876 4 4 877 876 -1 -1 916 876 -1 -1 837 877 -1 -1 876 877 -1 -1 877 877 4 4 878 877 -1 -1 917 877 -1 -1 838 878 -1 -1 877 878 -1 -1 878 878 4 4 879 878 -2 -2 918 878 -1 -1 839 879 -1 -1 878 879 -1 -1 879 879 4 4 919 879 -1 -1 840 880 -1 -1 880 880 4 4 881 880 -1 -1 920 880 -1 -1 841 881 -1 -1 880 881 -2 -2 881 881 4 4 882 881 -1 -1 921 881 -1 -1 842 882 -1 -1 881 882 -1 -1 882 882 4 4 883 882 -1 -1 922 882 -1 -1 843 883 -1 -1 882 883 -1 -1 883 883 4 4 884 883 -1 -1 923 883 -1 -1 844 884 -1 -1 883 884 -1 -1 884 884 4 4 885 884 -1 -1 924 884 -1 -1 845 885 -1 -1 884 885 -1 -1 885 885 4 4 886 885 -1 -1 925 885 -1 -1 846 886 -1 -1 885 886 -1 -1 886 886 4 4 887 886 -1 -1 926 886 -1 -1 847 887 -1 -1 886 887 -1 -1 887 887 4 4 888 887 -1 -1 927 887 -1 -1 848 888 -1 -1 887 888 -1 -1 888 888 4 4 889 888 -1 -1 928 888 -1 -1 849 889 -1 -1 888 889 -1 -1 889 889 4 4 890 889 -1 -1 929 889 -1 -1 850 890 -1 -1 889 890 -1 -1 890 890 4 4 891 890 -1 -1 930 890 -1 -1 851 891 -1 -1 890 891 -1 -1 891 891 4 4 892 891 -1 -1 931 891 -1 -1 852 892 -1 -1 891 892 -1 -1 892 892 4 4 893 892 -1 -1 932 892 -1 -1 853 893 -1 -1 892 893 -1 -1 893 893 4 4 894 893 -1 -1 933 893 -1 -1 854 894 -1 -1 893 894 -1 -1 894 894 4 4 895 894 -1 -1 934 894 -1 -1 855 895 -1 -1 894 895 -1 -1 895 895 4 4 896 895 -1 -1 935 895 -1 -1 856 896 -1 -1 895 896 -1 -1 896 896 4 4 897 896 -1 -1 936 896 -1 -1 857 897 -1 -1 896 897 -1 -1 897 897 4 4 898 897 -1 -1 937 897 -1 -1 858 898 -1 -1 897 898 -1 -1 898 898 4 4 899 898 -1 -1 938 898 -1 -1 859 899 -1 -1 898 899 -1 -1 899 899 4 4 900 899 -1 -1 939 899 -1 -1 860 900 -1 -1 899 900 -1 -1 900 900 4 4 901 900 -1 -1 940 900 -1 -1 861 901 -1 -1 900 901 -1 -1 901 901 4 4 902 901 -1 -1 941 901 -1 -1 862 902 -1 -1 901 902 -1 -1 902 902 4 4 903 902 -1 -1 942 902 -1 -1 863 903 -1 -1 902 903 -1 -1 903 903 4 4 904 903 -1 -1 943 903 -1 -1 864 904 -1 -1 903 904 -1 -1 904 904 4 4 905 904 -1 -1 944 904 -1 -1 865 905 -1 -1 904 905 -1 -1 905 905 4 4 906 905 -1 -1 945 905 -1 -1 866 906 -1 -1 905 906 -1 -1 906 906 4 4 907 906 -1 -1 946 906 -1 -1 867 907 -1 -1 906 907 -1 -1 907 907 4 4 908 907 -1 -1 947 907 -1 -1 868 908 -1 -1 907 908 -1 -1 908 908 4 4 909 908 -1 -1 948 908 -1 -1 869 909 -1 -1 908 909 -1 -1 909 909 4 4 910 909 -1 -1 949 909 -1 -1 870 910 -1 -1 909 910 -1 -1 910 910 4 4 911 910 -1 -1 950 910 -1 -1 871 911 -1 -1 910 911 -1 -1 911 911 4 4 912 911 -1 -1 951 911 -1 -1 872 912 -1 -1 911 912 -1 -1 912 912 4 4 913 912 -1 -1 952 912 -1 -1 873 913 -1 -1 912 913 -1 -1 913 913 4 4 914 913 -1 -1 953 913 -1 -1 874 914 -1 -1 913 914 -1 -1 914 914 4 4 915 914 -1 -1 954 914 -1 -1 875 915 -1 -1 914 915 -1 -1 915 915 4 4 916 915 -1 -1 955 915 -1 -1 876 916 -1 -1 915 916 -1 -1 916 916 4 4 917 916 -1 -1 956 916 -1 -1 877 917 -1 -1 916 917 -1 -1 917 917 4 4 918 917 -1 -1 957 917 -1 -1 878 918 -1 -1 917 918 -1 -1 918 918 4 4 919 918 -2 -2 958 918 -1 -1 879 919 -1 -1 918 919 -1 -1 919 919 4 4 959 919 -1 -1 880 920 -1 -1 920 920 4 4 921 920 -1 -1 960 920 -1 -1 881 921 -1 -1 920 921 -2 -2 921 921 4 4 922 921 -1 -1 961 921 -1 -1 882 922 -1 -1 921 922 -1 -1 922 922 4 4 923 922 -1 -1 962 922 -1 -1 883 923 -1 -1 922 923 -1 -1 923 923 4 4 924 923 -1 -1 963 923 -1 -1 884 924 -1 -1 923 924 -1 -1 924 924 4 4 925 924 -1 -1 964 924 -1 -1 885 925 -1 -1 924 925 -1 -1 925 925 4 4 926 925 -1 -1 965 925 -1 -1 886 926 -1 -1 925 926 -1 -1 926 926 4 4 927 926 -1 -1 966 926 -1 -1 887 927 -1 -1 926 927 -1 -1 927 927 4 4 928 927 -1 -1 967 927 -1 -1 888 928 -1 -1 927 928 -1 -1 928 928 4 4 929 928 -1 -1 968 928 -1 -1 889 929 -1 -1 928 929 -1 -1 929 929 4 4 930 929 -1 -1 969 929 -1 -1 890 930 -1 -1 929 930 -1 -1 930 930 4 4 931 930 -1 -1 970 930 -1 -1 891 931 -1 -1 930 931 -1 -1 931 931 4 4 932 931 -1 -1 971 931 -1 -1 892 932 -1 -1 931 932 -1 -1 932 932 4 4 933 932 -1 -1 972 932 -1 -1 893 933 -1 -1 932 933 -1 -1 933 933 4 4 934 933 -1 -1 973 933 -1 -1 894 934 -1 -1 933 934 -1 -1 934 934 4 4 935 934 -1 -1 974 934 -1 -1 895 935 -1 -1 934 935 -1 -1 935 935 4 4 936 935 -1 -1 975 935 -1 -1 896 936 -1 -1 935 936 -1 -1 936 936 4 4 937 936 -1 -1 976 936 -1 -1 897 937 -1 -1 936 937 -1 -1 937 937 4 4 938 937 -1 -1 977 937 -1 -1 898 938 -1 -1 937 938 -1 -1 938 938 4 4 939 938 -1 -1 978 938 -1 -1 899 939 -1 -1 938 939 -1 -1 939 939 4 4 940 939 -1 -1 979 939 -1 -1 900 940 -1 -1 939 940 -1 -1 940 940 4 4 941 940 -1 -1 980 940 -1 -1 901 941 -1 -1 940 941 -1 -1 941 941 4 4 942 941 -1 -1 981 941 -1 -1 902 942 -1 -1 941 942 -1 -1 942 942 4 4 943 942 -1 -1 982 942 -1 -1 903 943 -1 -1 942 943 -1 -1 943 943 4 4 944 943 -1 -1 983 943 -1 -1 904 944 -1 -1 943 944 -1 -1 944 944 4 4 945 944 -1 -1 984 944 -1 -1 905 945 -1 -1 944 945 -1 -1 945 945 4 4 946 945 -1 -1 985 945 -1 -1 906 946 -1 -1 945 946 -1 -1 946 946 4 4 947 946 -1 -1 986 946 -1 -1 907 947 -1 -1 946 947 -1 -1 947 947 4 4 948 947 -1 -1 987 947 -1 -1 908 948 -1 -1 947 948 -1 -1 948 948 4 4 949 948 -1 -1 988 948 -1 -1 909 949 -1 -1 948 949 -1 -1 949 949 4 4 950 949 -1 -1 989 949 -1 -1 910 950 -1 -1 949 950 -1 -1 950 950 4 4 951 950 -1 -1 990 950 -1 -1 911 951 -1 -1 950 951 -1 -1 951 951 4 4 952 951 -1 -1 991 951 -1 -1 912 952 -1 -1 951 952 -1 -1 952 952 4 4 953 952 -1 -1 992 952 -1 -1 913 953 -1 -1 952 953 -1 -1 953 953 4 4 954 953 -1 -1 993 953 -1 -1 914 954 -1 -1 953 954 -1 -1 954 954 4 4 955 954 -1 -1 994 954 -1 -1 915 955 -1 -1 954 955 -1 -1 955 955 4 4 956 955 -1 -1 995 955 -1 -1 916 956 -1 -1 955 956 -1 -1 956 956 4 4 957 956 -1 -1 996 956 -1 -1 917 957 -1 -1 956 957 -1 -1 957 957 4 4 958 957 -1 -1 997 957 -1 -1 918 958 -1 -1 957 958 -1 -1 958 958 4 4 959 958 -2 -2 998 958 -1 -1 919 959 -1 -1 958 959 -1 -1 959 959 4 4 999 959 -1 -1 920 960 -1 -1 960 960 4 4 961 960 -1 -1 1000 960 -1 -1 921 961 -1 -1 960 961 -2 -2 961 961 4 4 962 961 -1 -1 1001 961 -1 -1 922 962 -1 -1 961 962 -1 -1 962 962 4 4 963 962 -1 -1 1002 962 -1 -1 923 963 -1 -1 962 963 -1 -1 963 963 4 4 964 963 -1 -1 1003 963 -1 -1 924 964 -1 -1 963 964 -1 -1 964 964 4 4 965 964 -1 -1 1004 964 -1 -1 925 965 -1 -1 964 965 -1 -1 965 965 4 4 966 965 -1 -1 1005 965 -1 -1 926 966 -1 -1 965 966 -1 -1 966 966 4 4 967 966 -1 -1 1006 966 -1 -1 927 967 -1 -1 966 967 -1 -1 967 967 4 4 968 967 -1 -1 1007 967 -1 -1 928 968 -1 -1 967 968 -1 -1 968 968 4 4 969 968 -1 -1 1008 968 -1 -1 929 969 -1 -1 968 969 -1 -1 969 969 4 4 970 969 -1 -1 1009 969 -1 -1 930 970 -1 -1 969 970 -1 -1 970 970 4 4 971 970 -1 -1 1010 970 -1 -1 931 971 -1 -1 970 971 -1 -1 971 971 4 4 972 971 -1 -1 1011 971 -1 -1 932 972 -1 -1 971 972 -1 -1 972 972 4 4 973 972 -1 -1 1012 972 -1 -1 933 973 -1 -1 972 973 -1 -1 973 973 4 4 974 973 -1 -1 1013 973 -1 -1 934 974 -1 -1 973 974 -1 -1 974 974 4 4 975 974 -1 -1 1014 974 -1 -1 935 975 -1 -1 974 975 -1 -1 975 975 4 4 976 975 -1 -1 1015 975 -1 -1 936 976 -1 -1 975 976 -1 -1 976 976 4 4 977 976 -1 -1 1016 976 -1 -1 937 977 -1 -1 976 977 -1 -1 977 977 4 4 978 977 -1 -1 1017 977 -1 -1 938 978 -1 -1 977 978 -1 -1 978 978 4 4 979 978 -1 -1 1018 978 -1 -1 939 979 -1 -1 978 979 -1 -1 979 979 4 4 980 979 -1 -1 1019 979 -1 -1 940 980 -1 -1 979 980 -1 -1 980 980 4 4 981 980 -1 -1 1020 980 -1 -1 941 981 -1 -1 980 981 -1 -1 981 981 4 4 982 981 -1 -1 1021 981 -1 -1 942 982 -1 -1 981 982 -1 -1 982 982 4 4 983 982 -1 -1 1022 982 -1 -1 943 983 -1 -1 982 983 -1 -1 983 983 4 4 984 983 -1 -1 1023 983 -1 -1 944 984 -1 -1 983 984 -1 -1 984 984 4 4 985 984 -1 -1 1024 984 -1 -1 945 985 -1 -1 984 985 -1 -1 985 985 4 4 986 985 -1 -1 1025 985 -1 -1 946 986 -1 -1 985 986 -1 -1 986 986 4 4 987 986 -1 -1 1026 986 -1 -1 947 987 -1 -1 986 987 -1 -1 987 987 4 4 988 987 -1 -1 1027 987 -1 -1 948 988 -1 -1 987 988 -1 -1 988 988 4 4 989 988 -1 -1 1028 988 -1 -1 949 989 -1 -1 988 989 -1 -1 989 989 4 4 990 989 -1 -1 1029 989 -1 -1 950 990 -1 -1 989 990 -1 -1 990 990 4 4 991 990 -1 -1 1030 990 -1 -1 951 991 -1 -1 990 991 -1 -1 991 991 4 4 992 991 -1 -1 1031 991 -1 -1 952 992 -1 -1 991 992 -1 -1 992 992 4 4 993 992 -1 -1 1032 992 -1 -1 953 993 -1 -1 992 993 -1 -1 993 993 4 4 994 993 -1 -1 1033 993 -1 -1 954 994 -1 -1 993 994 -1 -1 994 994 4 4 995 994 -1 -1 1034 994 -1 -1 955 995 -1 -1 994 995 -1 -1 995 995 4 4 996 995 -1 -1 1035 995 -1 -1 956 996 -1 -1 995 996 -1 -1 996 996 4 4 997 996 -1 -1 1036 996 -1 -1 957 997 -1 -1 996 997 -1 -1 997 997 4 4 998 997 -1 -1 1037 997 -1 -1 958 998 -1 -1 997 998 -1 -1 998 998 4 4 999 998 -2 -2 1038 998 -1 -1 959 999 -1 -1 998 999 -1 -1 999 999 4 4 1039 999 -1 -1 960 1000 -1 -1 1000 1000 4 4 1001 1000 -1 -1 1040 1000 -1 -1 961 1001 -1 -1 1000 1001 -2 -2 1001 1001 4 4 1002 1001 -1 -1 1041 1001 -1 -1 962 1002 -1 -1 1001 1002 -1 -1 1002 1002 4 4 1003 1002 -1 -1 1042 1002 -1 -1 963 1003 -1 -1 1002 1003 -1 -1 1003 1003 4 4 1004 1003 -1 -1 1043 1003 -1 -1 964 1004 -1 -1 1003 1004 -1 -1 1004 1004 4 4 1005 1004 -1 -1 1044 1004 -1 -1 965 1005 -1 -1 1004 1005 -1 -1 1005 1005 4 4 1006 1005 -1 -1 1045 1005 -1 -1 966 1006 -1 -1 1005 1006 -1 -1 1006 1006 4 4 1007 1006 -1 -1 1046 1006 -1 -1 967 1007 -1 -1 1006 1007 -1 -1 1007 1007 4 4 1008 1007 -1 -1 1047 1007 -1 -1 968 1008 -1 -1 1007 1008 -1 -1 1008 1008 4 4 1009 1008 -1 -1 1048 1008 -1 -1 969 1009 -1 -1 1008 1009 -1 -1 1009 1009 4 4 1010 1009 -1 -1 1049 1009 -1 -1 970 1010 -1 -1 1009 1010 -1 -1 1010 1010 4 4 1011 1010 -1 -1 1050 1010 -1 -1 971 1011 -1 -1 1010 1011 -1 -1 1011 1011 4 4 1012 1011 -1 -1 1051 1011 -1 -1 972 1012 -1 -1 1011 1012 -1 -1 1012 1012 4 4 1013 1012 -1 -1 1052 1012 -1 -1 973 1013 -1 -1 1012 1013 -1 -1 1013 1013 4 4 1014 1013 -1 -1 1053 1013 -1 -1 974 1014 -1 -1 1013 1014 -1 -1 1014 1014 4 4 1015 1014 -1 -1 1054 1014 -1 -1 975 1015 -1 -1 1014 1015 -1 -1 1015 1015 4 4 1016 1015 -1 -1 1055 1015 -1 -1 976 1016 -1 -1 1015 1016 -1 -1 1016 1016 4 4 1017 1016 -1 -1 1056 1016 -1 -1 977 1017 -1 -1 1016 1017 -1 -1 1017 1017 4 4 1018 1017 -1 -1 1057 1017 -1 -1 978 1018 -1 -1 1017 1018 -1 -1 1018 1018 4 4 1019 1018 -1 -1 1058 1018 -1 -1 979 1019 -1 -1 1018 1019 -1 -1 1019 1019 4 4 1020 1019 -1 -1 1059 1019 -1 -1 980 1020 -1 -1 1019 1020 -1 -1 1020 1020 4 4 1021 1020 -1 -1 1060 1020 -1 -1 981 1021 -1 -1 1020 1021 -1 -1 1021 1021 4 4 1022 1021 -1 -1 1061 1021 -1 -1 982 1022 -1 -1 1021 1022 -1 -1 1022 1022 4 4 1023 1022 -1 -1 1062 1022 -1 -1 983 1023 -1 -1 1022 1023 -1 -1 1023 1023 4 4 1024 1023 -1 -1 1063 1023 -1 -1 984 1024 -1 -1 1023 1024 -1 -1 1024 1024 4 4 1025 1024 -1 -1 1064 1024 -1 -1 985 1025 -1 -1 1024 1025 -1 -1 1025 1025 4 4 1026 1025 -1 -1 1065 1025 -1 -1 986 1026 -1 -1 1025 1026 -1 -1 1026 1026 4 4 1027 1026 -1 -1 1066 1026 -1 -1 987 1027 -1 -1 1026 1027 -1 -1 1027 1027 4 4 1028 1027 -1 -1 1067 1027 -1 -1 988 1028 -1 -1 1027 1028 -1 -1 1028 1028 4 4 1029 1028 -1 -1 1068 1028 -1 -1 989 1029 -1 -1 1028 1029 -1 -1 1029 1029 4 4 1030 1029 -1 -1 1069 1029 -1 -1 990 1030 -1 -1 1029 1030 -1 -1 1030 1030 4 4 1031 1030 -1 -1 1070 1030 -1 -1 991 1031 -1 -1 1030 1031 -1 -1 1031 1031 4 4 1032 1031 -1 -1 1071 1031 -1 -1 992 1032 -1 -1 1031 1032 -1 -1 1032 1032 4 4 1033 1032 -1 -1 1072 1032 -1 -1 993 1033 -1 -1 1032 1033 -1 -1 1033 1033 4 4 1034 1033 -1 -1 1073 1033 -1 -1 994 1034 -1 -1 1033 1034 -1 -1 1034 1034 4 4 1035 1034 -1 -1 1074 1034 -1 -1 995 1035 -1 -1 1034 1035 -1 -1 1035 1035 4 4 1036 1035 -1 -1 1075 1035 -1 -1 996 1036 -1 -1 1035 1036 -1 -1 1036 1036 4 4 1037 1036 -1 -1 1076 1036 -1 -1 997 1037 -1 -1 1036 1037 -1 -1 1037 1037 4 4 1038 1037 -1 -1 1077 1037 -1 -1 998 1038 -1 -1 1037 1038 -1 -1 1038 1038 4 4 1039 1038 -2 -2 1078 1038 -1 -1 999 1039 -1 -1 1038 1039 -1 -1 1039 1039 4 4 1079 1039 -1 -1 1000 1040 -1 -1 1040 1040 4 4 1041 1040 -1 -1 1080 1040 -1 -1 1001 1041 -1 -1 1040 1041 -2 -2 1041 1041 4 4 1042 1041 -1 -1 1081 1041 -1 -1 1002 1042 -1 -1 1041 1042 -1 -1 1042 1042 4 4 1043 1042 -1 -1 1082 1042 -1 -1 1003 1043 -1 -1 1042 1043 -1 -1 1043 1043 4 4 1044 1043 -1 -1 1083 1043 -1 -1 1004 1044 -1 -1 1043 1044 -1 -1 1044 1044 4 4 1045 1044 -1 -1 1084 1044 -1 -1 1005 1045 -1 -1 1044 1045 -1 -1 1045 1045 4 4 1046 1045 -1 -1 1085 1045 -1 -1 1006 1046 -1 -1 1045 1046 -1 -1 1046 1046 4 4 1047 1046 -1 -1 1086 1046 -1 -1 1007 1047 -1 -1 1046 1047 -1 -1 1047 1047 4 4 1048 1047 -1 -1 1087 1047 -1 -1 1008 1048 -1 -1 1047 1048 -1 -1 1048 1048 4 4 1049 1048 -1 -1 1088 1048 -1 -1 1009 1049 -1 -1 1048 1049 -1 -1 1049 1049 4 4 1050 1049 -1 -1 1089 1049 -1 -1 1010 1050 -1 -1 1049 1050 -1 -1 1050 1050 4 4 1051 1050 -1 -1 1090 1050 -1 -1 1011 1051 -1 -1 1050 1051 -1 -1 1051 1051 4 4 1052 1051 -1 -1 1091 1051 -1 -1 1012 1052 -1 -1 1051 1052 -1 -1 1052 1052 4 4 1053 1052 -1 -1 1092 1052 -1 -1 1013 1053 -1 -1 1052 1053 -1 -1 1053 1053 4 4 1054 1053 -1 -1 1093 1053 -1 -1 1014 1054 -1 -1 1053 1054 -1 -1 1054 1054 4 4 1055 1054 -1 -1 1094 1054 -1 -1 1015 1055 -1 -1 1054 1055 -1 -1 1055 1055 4 4 1056 1055 -1 -1 1095 1055 -1 -1 1016 1056 -1 -1 1055 1056 -1 -1 1056 1056 4 4 1057 1056 -1 -1 1096 1056 -1 -1 1017 1057 -1 -1 1056 1057 -1 -1 1057 1057 4 4 1058 1057 -1 -1 1097 1057 -1 -1 1018 1058 -1 -1 1057 1058 -1 -1 1058 1058 4 4 1059 1058 -1 -1 1098 1058 -1 -1 1019 1059 -1 -1 1058 1059 -1 -1 1059 1059 4 4 1060 1059 -1 -1 1099 1059 -1 -1 1020 1060 -1 -1 1059 1060 -1 -1 1060 1060 4 4 1061 1060 -1 -1 1100 1060 -1 -1 1021 1061 -1 -1 1060 1061 -1 -1 1061 1061 4 4 1062 1061 -1 -1 1101 1061 -1 -1 1022 1062 -1 -1 1061 1062 -1 -1 1062 1062 4 4 1063 1062 -1 -1 1102 1062 -1 -1 1023 1063 -1 -1 1062 1063 -1 -1 1063 1063 4 4 1064 1063 -1 -1 1103 1063 -1 -1 1024 1064 -1 -1 1063 1064 -1 -1 1064 1064 4 4 1065 1064 -1 -1 1104 1064 -1 -1 1025 1065 -1 -1 1064 1065 -1 -1 1065 1065 4 4 1066 1065 -1 -1 1105 1065 -1 -1 1026 1066 -1 -1 1065 1066 -1 -1 1066 1066 4 4 1067 1066 -1 -1 1106 1066 -1 -1 1027 1067 -1 -1 1066 1067 -1 -1 1067 1067 4 4 1068 1067 -1 -1 1107 1067 -1 -1 1028 1068 -1 -1 1067 1068 -1 -1 1068 1068 4 4 1069 1068 -1 -1 1108 1068 -1 -1 1029 1069 -1 -1 1068 1069 -1 -1 1069 1069 4 4 1070 1069 -1 -1 1109 1069 -1 -1 1030 1070 -1 -1 1069 1070 -1 -1 1070 1070 4 4 1071 1070 -1 -1 1110 1070 -1 -1 1031 1071 -1 -1 1070 1071 -1 -1 1071 1071 4 4 1072 1071 -1 -1 1111 1071 -1 -1 1032 1072 -1 -1 1071 1072 -1 -1 1072 1072 4 4 1073 1072 -1 -1 1112 1072 -1 -1 1033 1073 -1 -1 1072 1073 -1 -1 1073 1073 4 4 1074 1073 -1 -1 1113 1073 -1 -1 1034 1074 -1 -1 1073 1074 -1 -1 1074 1074 4 4 1075 1074 -1 -1 1114 1074 -1 -1 1035 1075 -1 -1 1074 1075 -1 -1 1075 1075 4 4 1076 1075 -1 -1 1115 1075 -1 -1 1036 1076 -1 -1 1075 1076 -1 -1 1076 1076 4 4 1077 1076 -1 -1 1116 1076 -1 -1 1037 1077 -1 -1 1076 1077 -1 -1 1077 1077 4 4 1078 1077 -1 -1 1117 1077 -1 -1 1038 1078 -1 -1 1077 1078 -1 -1 1078 1078 4 4 1079 1078 -2 -2 1118 1078 -1 -1 1039 1079 -1 -1 1078 1079 -1 -1 1079 1079 4 4 1119 1079 -1 -1 1040 1080 -1 -1 1080 1080 4 4 1081 1080 -1 -1 1120 1080 -1 -1 1041 1081 -1 -1 1080 1081 -2 -2 1081 1081 4 4 1082 1081 -1 -1 1121 1081 -1 -1 1042 1082 -1 -1 1081 1082 -1 -1 1082 1082 4 4 1083 1082 -1 -1 1122 1082 -1 -1 1043 1083 -1 -1 1082 1083 -1 -1 1083 1083 4 4 1084 1083 -1 -1 1123 1083 -1 -1 1044 1084 -1 -1 1083 1084 -1 -1 1084 1084 4 4 1085 1084 -1 -1 1124 1084 -1 -1 1045 1085 -1 -1 1084 1085 -1 -1 1085 1085 4 4 1086 1085 -1 -1 1125 1085 -1 -1 1046 1086 -1 -1 1085 1086 -1 -1 1086 1086 4 4 1087 1086 -1 -1 1126 1086 -1 -1 1047 1087 -1 -1 1086 1087 -1 -1 1087 1087 4 4 1088 1087 -1 -1 1127 1087 -1 -1 1048 1088 -1 -1 1087 1088 -1 -1 1088 1088 4 4 1089 1088 -1 -1 1128 1088 -1 -1 1049 1089 -1 -1 1088 1089 -1 -1 1089 1089 4 4 1090 1089 -1 -1 1129 1089 -1 -1 1050 1090 -1 -1 1089 1090 -1 -1 1090 1090 4 4 1091 1090 -1 -1 1130 1090 -1 -1 1051 1091 -1 -1 1090 1091 -1 -1 1091 1091 4 4 1092 1091 -1 -1 1131 1091 -1 -1 1052 1092 -1 -1 1091 1092 -1 -1 1092 1092 4 4 1093 1092 -1 -1 1132 1092 -1 -1 1053 1093 -1 -1 1092 1093 -1 -1 1093 1093 4 4 1094 1093 -1 -1 1133 1093 -1 -1 1054 1094 -1 -1 1093 1094 -1 -1 1094 1094 4 4 1095 1094 -1 -1 1134 1094 -1 -1 1055 1095 -1 -1 1094 1095 -1 -1 1095 1095 4 4 1096 1095 -1 -1 1135 1095 -1 -1 1056 1096 -1 -1 1095 1096 -1 -1 1096 1096 4 4 1097 1096 -1 -1 1136 1096 -1 -1 1057 1097 -1 -1 1096 1097 -1 -1 1097 1097 4 4 1098 1097 -1 -1 1137 1097 -1 -1 1058 1098 -1 -1 1097 1098 -1 -1 1098 1098 4 4 1099 1098 -1 -1 1138 1098 -1 -1 1059 1099 -1 -1 1098 1099 -1 -1 1099 1099 4 4 1100 1099 -1 -1 1139 1099 -1 -1 1060 1100 -1 -1 1099 1100 -1 -1 1100 1100 4 4 1101 1100 -1 -1 1140 1100 -1 -1 1061 1101 -1 -1 1100 1101 -1 -1 1101 1101 4 4 1102 1101 -1 -1 1141 1101 -1 -1 1062 1102 -1 -1 1101 1102 -1 -1 1102 1102 4 4 1103 1102 -1 -1 1142 1102 -1 -1 1063 1103 -1 -1 1102 1103 -1 -1 1103 1103 4 4 1104 1103 -1 -1 1143 1103 -1 -1 1064 1104 -1 -1 1103 1104 -1 -1 1104 1104 4 4 1105 1104 -1 -1 1144 1104 -1 -1 1065 1105 -1 -1 1104 1105 -1 -1 1105 1105 4 4 1106 1105 -1 -1 1145 1105 -1 -1 1066 1106 -1 -1 1105 1106 -1 -1 1106 1106 4 4 1107 1106 -1 -1 1146 1106 -1 -1 1067 1107 -1 -1 1106 1107 -1 -1 1107 1107 4 4 1108 1107 -1 -1 1147 1107 -1 -1 1068 1108 -1 -1 1107 1108 -1 -1 1108 1108 4 4 1109 1108 -1 -1 1148 1108 -1 -1 1069 1109 -1 -1 1108 1109 -1 -1 1109 1109 4 4 1110 1109 -1 -1 1149 1109 -1 -1 1070 1110 -1 -1 1109 1110 -1 -1 1110 1110 4 4 1111 1110 -1 -1 1150 1110 -1 -1 1071 1111 -1 -1 1110 1111 -1 -1 1111 1111 4 4 1112 1111 -1 -1 1151 1111 -1 -1 1072 1112 -1 -1 1111 1112 -1 -1 1112 1112 4 4 1113 1112 -1 -1 1152 1112 -1 -1 1073 1113 -1 -1 1112 1113 -1 -1 1113 1113 4 4 1114 1113 -1 -1 1153 1113 -1 -1 1074 1114 -1 -1 1113 1114 -1 -1 1114 1114 4 4 1115 1114 -1 -1 1154 1114 -1 -1 1075 1115 -1 -1 1114 1115 -1 -1 1115 1115 4 4 1116 1115 -1 -1 1155 1115 -1 -1 1076 1116 -1 -1 1115 1116 -1 -1 1116 1116 4 4 1117 1116 -1 -1 1156 1116 -1 -1 1077 1117 -1 -1 1116 1117 -1 -1 1117 1117 4 4 1118 1117 -1 -1 1157 1117 -1 -1 1078 1118 -1 -1 1117 1118 -1 -1 1118 1118 4 4 1119 1118 -2 -2 1158 1118 -1 -1 1079 1119 -1 -1 1118 1119 -1 -1 1119 1119 4 4 1159 1119 -1 -1 1080 1120 -1 -1 1120 1120 4 4 1121 1120 -1 -1 1160 1120 -1 -1 1081 1121 -1 -1 1120 1121 -2 -2 1121 1121 4 4 1122 1121 -1 -1 1161 1121 -1 -1 1082 1122 -1 -1 1121 1122 -1 -1 1122 1122 4 4 1123 1122 -1 -1 1162 1122 -1 -1 1083 1123 -1 -1 1122 1123 -1 -1 1123 1123 4 4 1124 1123 -1 -1 1163 1123 -1 -1 1084 1124 -1 -1 1123 1124 -1 -1 1124 1124 4 4 1125 1124 -1 -1 1164 1124 -1 -1 1085 1125 -1 -1 1124 1125 -1 -1 1125 1125 4 4 1126 1125 -1 -1 1165 1125 -1 -1 1086 1126 -1 -1 1125 1126 -1 -1 1126 1126 4 4 1127 1126 -1 -1 1166 1126 -1 -1 1087 1127 -1 -1 1126 1127 -1 -1 1127 1127 4 4 1128 1127 -1 -1 1167 1127 -1 -1 1088 1128 -1 -1 1127 1128 -1 -1 1128 1128 4 4 1129 1128 -1 -1 1168 1128 -1 -1 1089 1129 -1 -1 1128 1129 -1 -1 1129 1129 4 4 1130 1129 -1 -1 1169 1129 -1 -1 1090 1130 -1 -1 1129 1130 -1 -1 1130 1130 4 4 1131 1130 -1 -1 1170 1130 -1 -1 1091 1131 -1 -1 1130 1131 -1 -1 1131 1131 4 4 1132 1131 -1 -1 1171 1131 -1 -1 1092 1132 -1 -1 1131 1132 -1 -1 1132 1132 4 4 1133 1132 -1 -1 1172 1132 -1 -1 1093 1133 -1 -1 1132 1133 -1 -1 1133 1133 4 4 1134 1133 -1 -1 1173 1133 -1 -1 1094 1134 -1 -1 1133 1134 -1 -1 1134 1134 4 4 1135 1134 -1 -1 1174 1134 -1 -1 1095 1135 -1 -1 1134 1135 -1 -1 1135 1135 4 4 1136 1135 -1 -1 1175 1135 -1 -1 1096 1136 -1 -1 1135 1136 -1 -1 1136 1136 4 4 1137 1136 -1 -1 1176 1136 -1 -1 1097 1137 -1 -1 1136 1137 -1 -1 1137 1137 4 4 1138 1137 -1 -1 1177 1137 -1 -1 1098 1138 -1 -1 1137 1138 -1 -1 1138 1138 4 4 1139 1138 -1 -1 1178 1138 -1 -1 1099 1139 -1 -1 1138 1139 -1 -1 1139 1139 4 4 1140 1139 -1 -1 1179 1139 -1 -1 1100 1140 -1 -1 1139 1140 -1 -1 1140 1140 4 4 1141 1140 -1 -1 1180 1140 -1 -1 1101 1141 -1 -1 1140 1141 -1 -1 1141 1141 4 4 1142 1141 -1 -1 1181 1141 -1 -1 1102 1142 -1 -1 1141 1142 -1 -1 1142 1142 4 4 1143 1142 -1 -1 1182 1142 -1 -1 1103 1143 -1 -1 1142 1143 -1 -1 1143 1143 4 4 1144 1143 -1 -1 1183 1143 -1 -1 1104 1144 -1 -1 1143 1144 -1 -1 1144 1144 4 4 1145 1144 -1 -1 1184 1144 -1 -1 1105 1145 -1 -1 1144 1145 -1 -1 1145 1145 4 4 1146 1145 -1 -1 1185 1145 -1 -1 1106 1146 -1 -1 1145 1146 -1 -1 1146 1146 4 4 1147 1146 -1 -1 1186 1146 -1 -1 1107 1147 -1 -1 1146 1147 -1 -1 1147 1147 4 4 1148 1147 -1 -1 1187 1147 -1 -1 1108 1148 -1 -1 1147 1148 -1 -1 1148 1148 4 4 1149 1148 -1 -1 1188 1148 -1 -1 1109 1149 -1 -1 1148 1149 -1 -1 1149 1149 4 4 1150 1149 -1 -1 1189 1149 -1 -1 1110 1150 -1 -1 1149 1150 -1 -1 1150 1150 4 4 1151 1150 -1 -1 1190 1150 -1 -1 1111 1151 -1 -1 1150 1151 -1 -1 1151 1151 4 4 1152 1151 -1 -1 1191 1151 -1 -1 1112 1152 -1 -1 1151 1152 -1 -1 1152 1152 4 4 1153 1152 -1 -1 1192 1152 -1 -1 1113 1153 -1 -1 1152 1153 -1 -1 1153 1153 4 4 1154 1153 -1 -1 1193 1153 -1 -1 1114 1154 -1 -1 1153 1154 -1 -1 1154 1154 4 4 1155 1154 -1 -1 1194 1154 -1 -1 1115 1155 -1 -1 1154 1155 -1 -1 1155 1155 4 4 1156 1155 -1 -1 1195 1155 -1 -1 1116 1156 -1 -1 1155 1156 -1 -1 1156 1156 4 4 1157 1156 -1 -1 1196 1156 -1 -1 1117 1157 -1 -1 1156 1157 -1 -1 1157 1157 4 4 1158 1157 -1 -1 1197 1157 -1 -1 1118 1158 -1 -1 1157 1158 -1 -1 1158 1158 4 4 1159 1158 -2 -2 1198 1158 -1 -1 1119 1159 -1 -1 1158 1159 -1 -1 1159 1159 4 4 1199 1159 -1 -1 1120 1160 -1 -1 1160 1160 4 4 1161 1160 -1 -1 1200 1160 -1 -1 1121 1161 -1 -1 1160 1161 -2 -2 1161 1161 4 4 1162 1161 -1 -1 1201 1161 -1 -1 1122 1162 -1 -1 1161 1162 -1 -1 1162 1162 4 4 1163 1162 -1 -1 1202 1162 -1 -1 1123 1163 -1 -1 1162 1163 -1 -1 1163 1163 4 4 1164 1163 -1 -1 1203 1163 -1 -1 1124 1164 -1 -1 1163 1164 -1 -1 1164 1164 4 4 1165 1164 -1 -1 1204 1164 -1 -1 1125 1165 -1 -1 1164 1165 -1 -1 1165 1165 4 4 1166 1165 -1 -1 1205 1165 -1 -1 1126 1166 -1 -1 1165 1166 -1 -1 1166 1166 4 4 1167 1166 -1 -1 1206 1166 -1 -1 1127 1167 -1 -1 1166 1167 -1 -1 1167 1167 4 4 1168 1167 -1 -1 1207 1167 -1 -1 1128 1168 -1 -1 1167 1168 -1 -1 1168 1168 4 4 1169 1168 -1 -1 1208 1168 -1 -1 1129 1169 -1 -1 1168 1169 -1 -1 1169 1169 4 4 1170 1169 -1 -1 1209 1169 -1 -1 1130 1170 -1 -1 1169 1170 -1 -1 1170 1170 4 4 1171 1170 -1 -1 1210 1170 -1 -1 1131 1171 -1 -1 1170 1171 -1 -1 1171 1171 4 4 1172 1171 -1 -1 1211 1171 -1 -1 1132 1172 -1 -1 1171 1172 -1 -1 1172 1172 4 4 1173 1172 -1 -1 1212 1172 -1 -1 1133 1173 -1 -1 1172 1173 -1 -1 1173 1173 4 4 1174 1173 -1 -1 1213 1173 -1 -1 1134 1174 -1 -1 1173 1174 -1 -1 1174 1174 4 4 1175 1174 -1 -1 1214 1174 -1 -1 1135 1175 -1 -1 1174 1175 -1 -1 1175 1175 4 4 1176 1175 -1 -1 1215 1175 -1 -1 1136 1176 -1 -1 1175 1176 -1 -1 1176 1176 4 4 1177 1176 -1 -1 1216 1176 -1 -1 1137 1177 -1 -1 1176 1177 -1 -1 1177 1177 4 4 1178 1177 -1 -1 1217 1177 -1 -1 1138 1178 -1 -1 1177 1178 -1 -1 1178 1178 4 4 1179 1178 -1 -1 1218 1178 -1 -1 1139 1179 -1 -1 1178 1179 -1 -1 1179 1179 4 4 1180 1179 -1 -1 1219 1179 -1 -1 1140 1180 -1 -1 1179 1180 -1 -1 1180 1180 4 4 1181 1180 -1 -1 1220 1180 -1 -1 1141 1181 -1 -1 1180 1181 -1 -1 1181 1181 4 4 1182 1181 -1 -1 1221 1181 -1 -1 1142 1182 -1 -1 1181 1182 -1 -1 1182 1182 4 4 1183 1182 -1 -1 1222 1182 -1 -1 1143 1183 -1 -1 1182 1183 -1 -1 1183 1183 4 4 1184 1183 -1 -1 1223 1183 -1 -1 1144 1184 -1 -1 1183 1184 -1 -1 1184 1184 4 4 1185 1184 -1 -1 1224 1184 -1 -1 1145 1185 -1 -1 1184 1185 -1 -1 1185 1185 4 4 1186 1185 -1 -1 1225 1185 -1 -1 1146 1186 -1 -1 1185 1186 -1 -1 1186 1186 4 4 1187 1186 -1 -1 1226 1186 -1 -1 1147 1187 -1 -1 1186 1187 -1 -1 1187 1187 4 4 1188 1187 -1 -1 1227 1187 -1 -1 1148 1188 -1 -1 1187 1188 -1 -1 1188 1188 4 4 1189 1188 -1 -1 1228 1188 -1 -1 1149 1189 -1 -1 1188 1189 -1 -1 1189 1189 4 4 1190 1189 -1 -1 1229 1189 -1 -1 1150 1190 -1 -1 1189 1190 -1 -1 1190 1190 4 4 1191 1190 -1 -1 1230 1190 -1 -1 1151 1191 -1 -1 1190 1191 -1 -1 1191 1191 4 4 1192 1191 -1 -1 1231 1191 -1 -1 1152 1192 -1 -1 1191 1192 -1 -1 1192 1192 4 4 1193 1192 -1 -1 1232 1192 -1 -1 1153 1193 -1 -1 1192 1193 -1 -1 1193 1193 4 4 1194 1193 -1 -1 1233 1193 -1 -1 1154 1194 -1 -1 1193 1194 -1 -1 1194 1194 4 4 1195 1194 -1 -1 1234 1194 -1 -1 1155 1195 -1 -1 1194 1195 -1 -1 1195 1195 4 4 1196 1195 -1 -1 1235 1195 -1 -1 1156 1196 -1 -1 1195 1196 -1 -1 1196 1196 4 4 1197 1196 -1 -1 1236 1196 -1 -1 1157 1197 -1 -1 1196 1197 -1 -1 1197 1197 4 4 1198 1197 -1 -1 1237 1197 -1 -1 1158 1198 -1 -1 1197 1198 -1 -1 1198 1198 4 4 1199 1198 -2 -2 1238 1198 -1 -1 1159 1199 -1 -1 1198 1199 -1 -1 1199 1199 4 4 1239 1199 -1 -1 1160 1200 -1 -1 1200 1200 4 4 1201 1200 -1 -1 1240 1200 -1 -1 1161 1201 -1 -1 1200 1201 -2 -2 1201 1201 4 4 1202 1201 -1 -1 1241 1201 -1 -1 1162 1202 -1 -1 1201 1202 -1 -1 1202 1202 4 4 1203 1202 -1 -1 1242 1202 -1 -1 1163 1203 -1 -1 1202 1203 -1 -1 1203 1203 4 4 1204 1203 -1 -1 1243 1203 -1 -1 1164 1204 -1 -1 1203 1204 -1 -1 1204 1204 4 4 1205 1204 -1 -1 1244 1204 -1 -1 1165 1205 -1 -1 1204 1205 -1 -1 1205 1205 4 4 1206 1205 -1 -1 1245 1205 -1 -1 1166 1206 -1 -1 1205 1206 -1 -1 1206 1206 4 4 1207 1206 -1 -1 1246 1206 -1 -1 1167 1207 -1 -1 1206 1207 -1 -1 1207 1207 4 4 1208 1207 -1 -1 1247 1207 -1 -1 1168 1208 -1 -1 1207 1208 -1 -1 1208 1208 4 4 1209 1208 -1 -1 1248 1208 -1 -1 1169 1209 -1 -1 1208 1209 -1 -1 1209 1209 4 4 1210 1209 -1 -1 1249 1209 -1 -1 1170 1210 -1 -1 1209 1210 -1 -1 1210 1210 4 4 1211 1210 -1 -1 1250 1210 -1 -1 1171 1211 -1 -1 1210 1211 -1 -1 1211 1211 4 4 1212 1211 -1 -1 1251 1211 -1 -1 1172 1212 -1 -1 1211 1212 -1 -1 1212 1212 4 4 1213 1212 -1 -1 1252 1212 -1 -1 1173 1213 -1 -1 1212 1213 -1 -1 1213 1213 4 4 1214 1213 -1 -1 1253 1213 -1 -1 1174 1214 -1 -1 1213 1214 -1 -1 1214 1214 4 4 1215 1214 -1 -1 1254 1214 -1 -1 1175 1215 -1 -1 1214 1215 -1 -1 1215 1215 4 4 1216 1215 -1 -1 1255 1215 -1 -1 1176 1216 -1 -1 1215 1216 -1 -1 1216 1216 4 4 1217 1216 -1 -1 1256 1216 -1 -1 1177 1217 -1 -1 1216 1217 -1 -1 1217 1217 4 4 1218 1217 -1 -1 1257 1217 -1 -1 1178 1218 -1 -1 1217 1218 -1 -1 1218 1218 4 4 1219 1218 -1 -1 1258 1218 -1 -1 1179 1219 -1 -1 1218 1219 -1 -1 1219 1219 4 4 1220 1219 -1 -1 1259 1219 -1 -1 1180 1220 -1 -1 1219 1220 -1 -1 1220 1220 4 4 1221 1220 -1 -1 1260 1220 -1 -1 1181 1221 -1 -1 1220 1221 -1 -1 1221 1221 4 4 1222 1221 -1 -1 1261 1221 -1 -1 1182 1222 -1 -1 1221 1222 -1 -1 1222 1222 4 4 1223 1222 -1 -1 1262 1222 -1 -1 1183 1223 -1 -1 1222 1223 -1 -1 1223 1223 4 4 1224 1223 -1 -1 1263 1223 -1 -1 1184 1224 -1 -1 1223 1224 -1 -1 1224 1224 4 4 1225 1224 -1 -1 1264 1224 -1 -1 1185 1225 -1 -1 1224 1225 -1 -1 1225 1225 4 4 1226 1225 -1 -1 1265 1225 -1 -1 1186 1226 -1 -1 1225 1226 -1 -1 1226 1226 4 4 1227 1226 -1 -1 1266 1226 -1 -1 1187 1227 -1 -1 1226 1227 -1 -1 1227 1227 4 4 1228 1227 -1 -1 1267 1227 -1 -1 1188 1228 -1 -1 1227 1228 -1 -1 1228 1228 4 4 1229 1228 -1 -1 1268 1228 -1 -1 1189 1229 -1 -1 1228 1229 -1 -1 1229 1229 4 4 1230 1229 -1 -1 1269 1229 -1 -1 1190 1230 -1 -1 1229 1230 -1 -1 1230 1230 4 4 1231 1230 -1 -1 1270 1230 -1 -1 1191 1231 -1 -1 1230 1231 -1 -1 1231 1231 4 4 1232 1231 -1 -1 1271 1231 -1 -1 1192 1232 -1 -1 1231 1232 -1 -1 1232 1232 4 4 1233 1232 -1 -1 1272 1232 -1 -1 1193 1233 -1 -1 1232 1233 -1 -1 1233 1233 4 4 1234 1233 -1 -1 1273 1233 -1 -1 1194 1234 -1 -1 1233 1234 -1 -1 1234 1234 4 4 1235 1234 -1 -1 1274 1234 -1 -1 1195 1235 -1 -1 1234 1235 -1 -1 1235 1235 4 4 1236 1235 -1 -1 1275 1235 -1 -1 1196 1236 -1 -1 1235 1236 -1 -1 1236 1236 4 4 1237 1236 -1 -1 1276 1236 -1 -1 1197 1237 -1 -1 1236 1237 -1 -1 1237 1237 4 4 1238 1237 -1 -1 1277 1237 -1 -1 1198 1238 -1 -1 1237 1238 -1 -1 1238 1238 4 4 1239 1238 -2 -2 1278 1238 -1 -1 1199 1239 -1 -1 1238 1239 -1 -1 1239 1239 4 4 1279 1239 -1 -1 1200 1240 -1 -1 1240 1240 4 4 1241 1240 -1 -1 1280 1240 -1 -1 1201 1241 -1 -1 1240 1241 -2 -2 1241 1241 4 4 1242 1241 -1 -1 1281 1241 -1 -1 1202 1242 -1 -1 1241 1242 -1 -1 1242 1242 4 4 1243 1242 -1 -1 1282 1242 -1 -1 1203 1243 -1 -1 1242 1243 -1 -1 1243 1243 4 4 1244 1243 -1 -1 1283 1243 -1 -1 1204 1244 -1 -1 1243 1244 -1 -1 1244 1244 4 4 1245 1244 -1 -1 1284 1244 -1 -1 1205 1245 -1 -1 1244 1245 -1 -1 1245 1245 4 4 1246 1245 -1 -1 1285 1245 -1 -1 1206 1246 -1 -1 1245 1246 -1 -1 1246 1246 4 4 1247 1246 -1 -1 1286 1246 -1 -1 1207 1247 -1 -1 1246 1247 -1 -1 1247 1247 4 4 1248 1247 -1 -1 1287 1247 -1 -1 1208 1248 -1 -1 1247 1248 -1 -1 1248 1248 4 4 1249 1248 -1 -1 1288 1248 -1 -1 1209 1249 -1 -1 1248 1249 -1 -1 1249 1249 4 4 1250 1249 -1 -1 1289 1249 -1 -1 1210 1250 -1 -1 1249 1250 -1 -1 1250 1250 4 4 1251 1250 -1 -1 1290 1250 -1 -1 1211 1251 -1 -1 1250 1251 -1 -1 1251 1251 4 4 1252 1251 -1 -1 1291 1251 -1 -1 1212 1252 -1 -1 1251 1252 -1 -1 1252 1252 4 4 1253 1252 -1 -1 1292 1252 -1 -1 1213 1253 -1 -1 1252 1253 -1 -1 1253 1253 4 4 1254 1253 -1 -1 1293 1253 -1 -1 1214 1254 -1 -1 1253 1254 -1 -1 1254 1254 4 4 1255 1254 -1 -1 1294 1254 -1 -1 1215 1255 -1 -1 1254 1255 -1 -1 1255 1255 4 4 1256 1255 -1 -1 1295 1255 -1 -1 1216 1256 -1 -1 1255 1256 -1 -1 1256 1256 4 4 1257 1256 -1 -1 1296 1256 -1 -1 1217 1257 -1 -1 1256 1257 -1 -1 1257 1257 4 4 1258 1257 -1 -1 1297 1257 -1 -1 1218 1258 -1 -1 1257 1258 -1 -1 1258 1258 4 4 1259 1258 -1 -1 1298 1258 -1 -1 1219 1259 -1 -1 1258 1259 -1 -1 1259 1259 4 4 1260 1259 -1 -1 1299 1259 -1 -1 1220 1260 -1 -1 1259 1260 -1 -1 1260 1260 4 4 1261 1260 -1 -1 1300 1260 -1 -1 1221 1261 -1 -1 1260 1261 -1 -1 1261 1261 4 4 1262 1261 -1 -1 1301 1261 -1 -1 1222 1262 -1 -1 1261 1262 -1 -1 1262 1262 4 4 1263 1262 -1 -1 1302 1262 -1 -1 1223 1263 -1 -1 1262 1263 -1 -1 1263 1263 4 4 1264 1263 -1 -1 1303 1263 -1 -1 1224 1264 -1 -1 1263 1264 -1 -1 1264 1264 4 4 1265 1264 -1 -1 1304 1264 -1 -1 1225 1265 -1 -1 1264 1265 -1 -1 1265 1265 4 4 1266 1265 -1 -1 1305 1265 -1 -1 1226 1266 -1 -1 1265 1266 -1 -1 1266 1266 4 4 1267 1266 -1 -1 1306 1266 -1 -1 1227 1267 -1 -1 1266 1267 -1 -1 1267 1267 4 4 1268 1267 -1 -1 1307 1267 -1 -1 1228 1268 -1 -1 1267 1268 -1 -1 1268 1268 4 4 1269 1268 -1 -1 1308 1268 -1 -1 1229 1269 -1 -1 1268 1269 -1 -1 1269 1269 4 4 1270 1269 -1 -1 1309 1269 -1 -1 1230 1270 -1 -1 1269 1270 -1 -1 1270 1270 4 4 1271 1270 -1 -1 1310 1270 -1 -1 1231 1271 -1 -1 1270 1271 -1 -1 1271 1271 4 4 1272 1271 -1 -1 1311 1271 -1 -1 1232 1272 -1 -1 1271 1272 -1 -1 1272 1272 4 4 1273 1272 -1 -1 1312 1272 -1 -1 1233 1273 -1 -1 1272 1273 -1 -1 1273 1273 4 4 1274 1273 -1 -1 1313 1273 -1 -1 1234 1274 -1 -1 1273 1274 -1 -1 1274 1274 4 4 1275 1274 -1 -1 1314 1274 -1 -1 1235 1275 -1 -1 1274 1275 -1 -1 1275 1275 4 4 1276 1275 -1 -1 1315 1275 -1 -1 1236 1276 -1 -1 1275 1276 -1 -1 1276 1276 4 4 1277 1276 -1 -1 1316 1276 -1 -1 1237 1277 -1 -1 1276 1277 -1 -1 1277 1277 4 4 1278 1277 -1 -1 1317 1277 -1 -1 1238 1278 -1 -1 1277 1278 -1 -1 1278 1278 4 4 1279 1278 -2 -2 1318 1278 -1 -1 1239 1279 -1 -1 1278 1279 -1 -1 1279 1279 4 4 1319 1279 -1 -1 1240 1280 -1 -1 1280 1280 4 4 1281 1280 -1 -1 1320 1280 -1 -1 1241 1281 -1 -1 1280 1281 -2 -2 1281 1281 4 4 1282 1281 -1 -1 1321 1281 -1 -1 1242 1282 -1 -1 1281 1282 -1 -1 1282 1282 4 4 1283 1282 -1 -1 1322 1282 -1 -1 1243 1283 -1 -1 1282 1283 -1 -1 1283 1283 4 4 1284 1283 -1 -1 1323 1283 -1 -1 1244 1284 -1 -1 1283 1284 -1 -1 1284 1284 4 4 1285 1284 -1 -1 1324 1284 -1 -1 1245 1285 -1 -1 1284 1285 -1 -1 1285 1285 4 4 1286 1285 -1 -1 1325 1285 -1 -1 1246 1286 -1 -1 1285 1286 -1 -1 1286 1286 4 4 1287 1286 -1 -1 1326 1286 -1 -1 1247 1287 -1 -1 1286 1287 -1 -1 1287 1287 4 4 1288 1287 -1 -1 1327 1287 -1 -1 1248 1288 -1 -1 1287 1288 -1 -1 1288 1288 4 4 1289 1288 -1 -1 1328 1288 -1 -1 1249 1289 -1 -1 1288 1289 -1 -1 1289 1289 4 4 1290 1289 -1 -1 1329 1289 -1 -1 1250 1290 -1 -1 1289 1290 -1 -1 1290 1290 4 4 1291 1290 -1 -1 1330 1290 -1 -1 1251 1291 -1 -1 1290 1291 -1 -1 1291 1291 4 4 1292 1291 -1 -1 1331 1291 -1 -1 1252 1292 -1 -1 1291 1292 -1 -1 1292 1292 4 4 1293 1292 -1 -1 1332 1292 -1 -1 1253 1293 -1 -1 1292 1293 -1 -1 1293 1293 4 4 1294 1293 -1 -1 1333 1293 -1 -1 1254 1294 -1 -1 1293 1294 -1 -1 1294 1294 4 4 1295 1294 -1 -1 1334 1294 -1 -1 1255 1295 -1 -1 1294 1295 -1 -1 1295 1295 4 4 1296 1295 -1 -1 1335 1295 -1 -1 1256 1296 -1 -1 1295 1296 -1 -1 1296 1296 4 4 1297 1296 -1 -1 1336 1296 -1 -1 1257 1297 -1 -1 1296 1297 -1 -1 1297 1297 4 4 1298 1297 -1 -1 1337 1297 -1 -1 1258 1298 -1 -1 1297 1298 -1 -1 1298 1298 4 4 1299 1298 -1 -1 1338 1298 -1 -1 1259 1299 -1 -1 1298 1299 -1 -1 1299 1299 4 4 1300 1299 -1 -1 1339 1299 -1 -1 1260 1300 -1 -1 1299 1300 -1 -1 1300 1300 4 4 1301 1300 -1 -1 1340 1300 -1 -1 1261 1301 -1 -1 1300 1301 -1 -1 1301 1301 4 4 1302 1301 -1 -1 1341 1301 -1 -1 1262 1302 -1 -1 1301 1302 -1 -1 1302 1302 4 4 1303 1302 -1 -1 1342 1302 -1 -1 1263 1303 -1 -1 1302 1303 -1 -1 1303 1303 4 4 1304 1303 -1 -1 1343 1303 -1 -1 1264 1304 -1 -1 1303 1304 -1 -1 1304 1304 4 4 1305 1304 -1 -1 1344 1304 -1 -1 1265 1305 -1 -1 1304 1305 -1 -1 1305 1305 4 4 1306 1305 -1 -1 1345 1305 -1 -1 1266 1306 -1 -1 1305 1306 -1 -1 1306 1306 4 4 1307 1306 -1 -1 1346 1306 -1 -1 1267 1307 -1 -1 1306 1307 -1 -1 1307 1307 4 4 1308 1307 -1 -1 1347 1307 -1 -1 1268 1308 -1 -1 1307 1308 -1 -1 1308 1308 4 4 1309 1308 -1 -1 1348 1308 -1 -1 1269 1309 -1 -1 1308 1309 -1 -1 1309 1309 4 4 1310 1309 -1 -1 1349 1309 -1 -1 1270 1310 -1 -1 1309 1310 -1 -1 1310 1310 4 4 1311 1310 -1 -1 1350 1310 -1 -1 1271 1311 -1 -1 1310 1311 -1 -1 1311 1311 4 4 1312 1311 -1 -1 1351 1311 -1 -1 1272 1312 -1 -1 1311 1312 -1 -1 1312 1312 4 4 1313 1312 -1 -1 1352 1312 -1 -1 1273 1313 -1 -1 1312 1313 -1 -1 1313 1313 4 4 1314 1313 -1 -1 1353 1313 -1 -1 1274 1314 -1 -1 1313 1314 -1 -1 1314 1314 4 4 1315 1314 -1 -1 1354 1314 -1 -1 1275 1315 -1 -1 1314 1315 -1 -1 1315 1315 4 4 1316 1315 -1 -1 1355 1315 -1 -1 1276 1316 -1 -1 1315 1316 -1 -1 1316 1316 4 4 1317 1316 -1 -1 1356 1316 -1 -1 1277 1317 -1 -1 1316 1317 -1 -1 1317 1317 4 4 1318 1317 -1 -1 1357 1317 -1 -1 1278 1318 -1 -1 1317 1318 -1 -1 1318 1318 4 4 1319 1318 -2 -2 1358 1318 -1 -1 1279 1319 -1 -1 1318 1319 -1 -1 1319 1319 4 4 1359 1319 -1 -1 1280 1320 -1 -1 1320 1320 4 4 1321 1320 -1 -1 1360 1320 -1 -1 1281 1321 -1 -1 1320 1321 -2 -2 1321 1321 4 4 1322 1321 -1 -1 1361 1321 -1 -1 1282 1322 -1 -1 1321 1322 -1 -1 1322 1322 4 4 1323 1322 -1 -1 1362 1322 -1 -1 1283 1323 -1 -1 1322 1323 -1 -1 1323 1323 4 4 1324 1323 -1 -1 1363 1323 -1 -1 1284 1324 -1 -1 1323 1324 -1 -1 1324 1324 4 4 1325 1324 -1 -1 1364 1324 -1 -1 1285 1325 -1 -1 1324 1325 -1 -1 1325 1325 4 4 1326 1325 -1 -1 1365 1325 -1 -1 1286 1326 -1 -1 1325 1326 -1 -1 1326 1326 4 4 1327 1326 -1 -1 1366 1326 -1 -1 1287 1327 -1 -1 1326 1327 -1 -1 1327 1327 4 4 1328 1327 -1 -1 1367 1327 -1 -1 1288 1328 -1 -1 1327 1328 -1 -1 1328 1328 4 4 1329 1328 -1 -1 1368 1328 -1 -1 1289 1329 -1 -1 1328 1329 -1 -1 1329 1329 4 4 1330 1329 -1 -1 1369 1329 -1 -1 1290 1330 -1 -1 1329 1330 -1 -1 1330 1330 4 4 1331 1330 -1 -1 1370 1330 -1 -1 1291 1331 -1 -1 1330 1331 -1 -1 1331 1331 4 4 1332 1331 -1 -1 1371 1331 -1 -1 1292 1332 -1 -1 1331 1332 -1 -1 1332 1332 4 4 1333 1332 -1 -1 1372 1332 -1 -1 1293 1333 -1 -1 1332 1333 -1 -1 1333 1333 4 4 1334 1333 -1 -1 1373 1333 -1 -1 1294 1334 -1 -1 1333 1334 -1 -1 1334 1334 4 4 1335 1334 -1 -1 1374 1334 -1 -1 1295 1335 -1 -1 1334 1335 -1 -1 1335 1335 4 4 1336 1335 -1 -1 1375 1335 -1 -1 1296 1336 -1 -1 1335 1336 -1 -1 1336 1336 4 4 1337 1336 -1 -1 1376 1336 -1 -1 1297 1337 -1 -1 1336 1337 -1 -1 1337 1337 4 4 1338 1337 -1 -1 1377 1337 -1 -1 1298 1338 -1 -1 1337 1338 -1 -1 1338 1338 4 4 1339 1338 -1 -1 1378 1338 -1 -1 1299 1339 -1 -1 1338 1339 -1 -1 1339 1339 4 4 1340 1339 -1 -1 1379 1339 -1 -1 1300 1340 -1 -1 1339 1340 -1 -1 1340 1340 4 4 1341 1340 -1 -1 1380 1340 -1 -1 1301 1341 -1 -1 1340 1341 -1 -1 1341 1341 4 4 1342 1341 -1 -1 1381 1341 -1 -1 1302 1342 -1 -1 1341 1342 -1 -1 1342 1342 4 4 1343 1342 -1 -1 1382 1342 -1 -1 1303 1343 -1 -1 1342 1343 -1 -1 1343 1343 4 4 1344 1343 -1 -1 1383 1343 -1 -1 1304 1344 -1 -1 1343 1344 -1 -1 1344 1344 4 4 1345 1344 -1 -1 1384 1344 -1 -1 1305 1345 -1 -1 1344 1345 -1 -1 1345 1345 4 4 1346 1345 -1 -1 1385 1345 -1 -1 1306 1346 -1 -1 1345 1346 -1 -1 1346 1346 4 4 1347 1346 -1 -1 1386 1346 -1 -1 1307 1347 -1 -1 1346 1347 -1 -1 1347 1347 4 4 1348 1347 -1 -1 1387 1347 -1 -1 1308 1348 -1 -1 1347 1348 -1 -1 1348 1348 4 4 1349 1348 -1 -1 1388 1348 -1 -1 1309 1349 -1 -1 1348 1349 -1 -1 1349 1349 4 4 1350 1349 -1 -1 1389 1349 -1 -1 1310 1350 -1 -1 1349 1350 -1 -1 1350 1350 4 4 1351 1350 -1 -1 1390 1350 -1 -1 1311 1351 -1 -1 1350 1351 -1 -1 1351 1351 4 4 1352 1351 -1 -1 1391 1351 -1 -1 1312 1352 -1 -1 1351 1352 -1 -1 1352 1352 4 4 1353 1352 -1 -1 1392 1352 -1 -1 1313 1353 -1 -1 1352 1353 -1 -1 1353 1353 4 4 1354 1353 -1 -1 1393 1353 -1 -1 1314 1354 -1 -1 1353 1354 -1 -1 1354 1354 4 4 1355 1354 -1 -1 1394 1354 -1 -1 1315 1355 -1 -1 1354 1355 -1 -1 1355 1355 4 4 1356 1355 -1 -1 1395 1355 -1 -1 1316 1356 -1 -1 1355 1356 -1 -1 1356 1356 4 4 1357 1356 -1 -1 1396 1356 -1 -1 1317 1357 -1 -1 1356 1357 -1 -1 1357 1357 4 4 1358 1357 -1 -1 1397 1357 -1 -1 1318 1358 -1 -1 1357 1358 -1 -1 1358 1358 4 4 1359 1358 -2 -2 1398 1358 -1 -1 1319 1359 -1 -1 1358 1359 -1 -1 1359 1359 4 4 1399 1359 -1 -1 1320 1360 -1 -1 1360 1360 4 4 1361 1360 -1 -1 1400 1360 -1 -1 1321 1361 -1 -1 1360 1361 -2 -2 1361 1361 4 4 1362 1361 -1 -1 1401 1361 -1 -1 1322 1362 -1 -1 1361 1362 -1 -1 1362 1362 4 4 1363 1362 -1 -1 1402 1362 -1 -1 1323 1363 -1 -1 1362 1363 -1 -1 1363 1363 4 4 1364 1363 -1 -1 1403 1363 -1 -1 1324 1364 -1 -1 1363 1364 -1 -1 1364 1364 4 4 1365 1364 -1 -1 1404 1364 -1 -1 1325 1365 -1 -1 1364 1365 -1 -1 1365 1365 4 4 1366 1365 -1 -1 1405 1365 -1 -1 1326 1366 -1 -1 1365 1366 -1 -1 1366 1366 4 4 1367 1366 -1 -1 1406 1366 -1 -1 1327 1367 -1 -1 1366 1367 -1 -1 1367 1367 4 4 1368 1367 -1 -1 1407 1367 -1 -1 1328 1368 -1 -1 1367 1368 -1 -1 1368 1368 4 4 1369 1368 -1 -1 1408 1368 -1 -1 1329 1369 -1 -1 1368 1369 -1 -1 1369 1369 4 4 1370 1369 -1 -1 1409 1369 -1 -1 1330 1370 -1 -1 1369 1370 -1 -1 1370 1370 4 4 1371 1370 -1 -1 1410 1370 -1 -1 1331 1371 -1 -1 1370 1371 -1 -1 1371 1371 4 4 1372 1371 -1 -1 1411 1371 -1 -1 1332 1372 -1 -1 1371 1372 -1 -1 1372 1372 4 4 1373 1372 -1 -1 1412 1372 -1 -1 1333 1373 -1 -1 1372 1373 -1 -1 1373 1373 4 4 1374 1373 -1 -1 1413 1373 -1 -1 1334 1374 -1 -1 1373 1374 -1 -1 1374 1374 4 4 1375 1374 -1 -1 1414 1374 -1 -1 1335 1375 -1 -1 1374 1375 -1 -1 1375 1375 4 4 1376 1375 -1 -1 1415 1375 -1 -1 1336 1376 -1 -1 1375 1376 -1 -1 1376 1376 4 4 1377 1376 -1 -1 1416 1376 -1 -1 1337 1377 -1 -1 1376 1377 -1 -1 1377 1377 4 4 1378 1377 -1 -1 1417 1377 -1 -1 1338 1378 -1 -1 1377 1378 -1 -1 1378 1378 4 4 1379 1378 -1 -1 1418 1378 -1 -1 1339 1379 -1 -1 1378 1379 -1 -1 1379 1379 4 4 1380 1379 -1 -1 1419 1379 -1 -1 1340 1380 -1 -1 1379 1380 -1 -1 1380 1380 4 4 1381 1380 -1 -1 1420 1380 -1 -1 1341 1381 -1 -1 1380 1381 -1 -1 1381 1381 4 4 1382 1381 -1 -1 1421 1381 -1 -1 1342 1382 -1 -1 1381 1382 -1 -1 1382 1382 4 4 1383 1382 -1 -1 1422 1382 -1 -1 1343 1383 -1 -1 1382 1383 -1 -1 1383 1383 4 4 1384 1383 -1 -1 1423 1383 -1 -1 1344 1384 -1 -1 1383 1384 -1 -1 1384 1384 4 4 1385 1384 -1 -1 1424 1384 -1 -1 1345 1385 -1 -1 1384 1385 -1 -1 1385 1385 4 4 1386 1385 -1 -1 1425 1385 -1 -1 1346 1386 -1 -1 1385 1386 -1 -1 1386 1386 4 4 1387 1386 -1 -1 1426 1386 -1 -1 1347 1387 -1 -1 1386 1387 -1 -1 1387 1387 4 4 1388 1387 -1 -1 1427 1387 -1 -1 1348 1388 -1 -1 1387 1388 -1 -1 1388 1388 4 4 1389 1388 -1 -1 1428 1388 -1 -1 1349 1389 -1 -1 1388 1389 -1 -1 1389 1389 4 4 1390 1389 -1 -1 1429 1389 -1 -1 1350 1390 -1 -1 1389 1390 -1 -1 1390 1390 4 4 1391 1390 -1 -1 1430 1390 -1 -1 1351 1391 -1 -1 1390 1391 -1 -1 1391 1391 4 4 1392 1391 -1 -1 1431 1391 -1 -1 1352 1392 -1 -1 1391 1392 -1 -1 1392 1392 4 4 1393 1392 -1 -1 1432 1392 -1 -1 1353 1393 -1 -1 1392 1393 -1 -1 1393 1393 4 4 1394 1393 -1 -1 1433 1393 -1 -1 1354 1394 -1 -1 1393 1394 -1 -1 1394 1394 4 4 1395 1394 -1 -1 1434 1394 -1 -1 1355 1395 -1 -1 1394 1395 -1 -1 1395 1395 4 4 1396 1395 -1 -1 1435 1395 -1 -1 1356 1396 -1 -1 1395 1396 -1 -1 1396 1396 4 4 1397 1396 -1 -1 1436 1396 -1 -1 1357 1397 -1 -1 1396 1397 -1 -1 1397 1397 4 4 1398 1397 -1 -1 1437 1397 -1 -1 1358 1398 -1 -1 1397 1398 -1 -1 1398 1398 4 4 1399 1398 -2 -2 1438 1398 -1 -1 1359 1399 -1 -1 1398 1399 -1 -1 1399 1399 4 4 1439 1399 -1 -1 1360 1400 -1 -1 1400 1400 4 4 1401 1400 -1 -1 1440 1400 -1 -1 1361 1401 -1 -1 1400 1401 -2 -2 1401 1401 4 4 1402 1401 -1 -1 1441 1401 -1 -1 1362 1402 -1 -1 1401 1402 -1 -1 1402 1402 4 4 1403 1402 -1 -1 1442 1402 -1 -1 1363 1403 -1 -1 1402 1403 -1 -1 1403 1403 4 4 1404 1403 -1 -1 1443 1403 -1 -1 1364 1404 -1 -1 1403 1404 -1 -1 1404 1404 4 4 1405 1404 -1 -1 1444 1404 -1 -1 1365 1405 -1 -1 1404 1405 -1 -1 1405 1405 4 4 1406 1405 -1 -1 1445 1405 -1 -1 1366 1406 -1 -1 1405 1406 -1 -1 1406 1406 4 4 1407 1406 -1 -1 1446 1406 -1 -1 1367 1407 -1 -1 1406 1407 -1 -1 1407 1407 4 4 1408 1407 -1 -1 1447 1407 -1 -1 1368 1408 -1 -1 1407 1408 -1 -1 1408 1408 4 4 1409 1408 -1 -1 1448 1408 -1 -1 1369 1409 -1 -1 1408 1409 -1 -1 1409 1409 4 4 1410 1409 -1 -1 1449 1409 -1 -1 1370 1410 -1 -1 1409 1410 -1 -1 1410 1410 4 4 1411 1410 -1 -1 1450 1410 -1 -1 1371 1411 -1 -1 1410 1411 -1 -1 1411 1411 4 4 1412 1411 -1 -1 1451 1411 -1 -1 1372 1412 -1 -1 1411 1412 -1 -1 1412 1412 4 4 1413 1412 -1 -1 1452 1412 -1 -1 1373 1413 -1 -1 1412 1413 -1 -1 1413 1413 4 4 1414 1413 -1 -1 1453 1413 -1 -1 1374 1414 -1 -1 1413 1414 -1 -1 1414 1414 4 4 1415 1414 -1 -1 1454 1414 -1 -1 1375 1415 -1 -1 1414 1415 -1 -1 1415 1415 4 4 1416 1415 -1 -1 1455 1415 -1 -1 1376 1416 -1 -1 1415 1416 -1 -1 1416 1416 4 4 1417 1416 -1 -1 1456 1416 -1 -1 1377 1417 -1 -1 1416 1417 -1 -1 1417 1417 4 4 1418 1417 -1 -1 1457 1417 -1 -1 1378 1418 -1 -1 1417 1418 -1 -1 1418 1418 4 4 1419 1418 -1 -1 1458 1418 -1 -1 1379 1419 -1 -1 1418 1419 -1 -1 1419 1419 4 4 1420 1419 -1 -1 1459 1419 -1 -1 1380 1420 -1 -1 1419 1420 -1 -1 1420 1420 4 4 1421 1420 -1 -1 1460 1420 -1 -1 1381 1421 -1 -1 1420 1421 -1 -1 1421 1421 4 4 1422 1421 -1 -1 1461 1421 -1 -1 1382 1422 -1 -1 1421 1422 -1 -1 1422 1422 4 4 1423 1422 -1 -1 1462 1422 -1 -1 1383 1423 -1 -1 1422 1423 -1 -1 1423 1423 4 4 1424 1423 -1 -1 1463 1423 -1 -1 1384 1424 -1 -1 1423 1424 -1 -1 1424 1424 4 4 1425 1424 -1 -1 1464 1424 -1 -1 1385 1425 -1 -1 1424 1425 -1 -1 1425 1425 4 4 1426 1425 -1 -1 1465 1425 -1 -1 1386 1426 -1 -1 1425 1426 -1 -1 1426 1426 4 4 1427 1426 -1 -1 1466 1426 -1 -1 1387 1427 -1 -1 1426 1427 -1 -1 1427 1427 4 4 1428 1427 -1 -1 1467 1427 -1 -1 1388 1428 -1 -1 1427 1428 -1 -1 1428 1428 4 4 1429 1428 -1 -1 1468 1428 -1 -1 1389 1429 -1 -1 1428 1429 -1 -1 1429 1429 4 4 1430 1429 -1 -1 1469 1429 -1 -1 1390 1430 -1 -1 1429 1430 -1 -1 1430 1430 4 4 1431 1430 -1 -1 1470 1430 -1 -1 1391 1431 -1 -1 1430 1431 -1 -1 1431 1431 4 4 1432 1431 -1 -1 1471 1431 -1 -1 1392 1432 -1 -1 1431 1432 -1 -1 1432 1432 4 4 1433 1432 -1 -1 1472 1432 -1 -1 1393 1433 -1 -1 1432 1433 -1 -1 1433 1433 4 4 1434 1433 -1 -1 1473 1433 -1 -1 1394 1434 -1 -1 1433 1434 -1 -1 1434 1434 4 4 1435 1434 -1 -1 1474 1434 -1 -1 1395 1435 -1 -1 1434 1435 -1 -1 1435 1435 4 4 1436 1435 -1 -1 1475 1435 -1 -1 1396 1436 -1 -1 1435 1436 -1 -1 1436 1436 4 4 1437 1436 -1 -1 1476 1436 -1 -1 1397 1437 -1 -1 1436 1437 -1 -1 1437 1437 4 4 1438 1437 -1 -1 1477 1437 -1 -1 1398 1438 -1 -1 1437 1438 -1 -1 1438 1438 4 4 1439 1438 -2 -2 1478 1438 -1 -1 1399 1439 -1 -1 1438 1439 -1 -1 1439 1439 4 4 1479 1439 -1 -1 1400 1440 -1 -1 1440 1440 4 4 1441 1440 -1 -1 1480 1440 -1 -1 1401 1441 -1 -1 1440 1441 -2 -2 1441 1441 4 4 1442 1441 -1 -1 1481 1441 -1 -1 1402 1442 -1 -1 1441 1442 -1 -1 1442 1442 4 4 1443 1442 -1 -1 1482 1442 -1 -1 1403 1443 -1 -1 1442 1443 -1 -1 1443 1443 4 4 1444 1443 -1 -1 1483 1443 -1 -1 1404 1444 -1 -1 1443 1444 -1 -1 1444 1444 4 4 1445 1444 -1 -1 1484 1444 -1 -1 1405 1445 -1 -1 1444 1445 -1 -1 1445 1445 4 4 1446 1445 -1 -1 1485 1445 -1 -1 1406 1446 -1 -1 1445 1446 -1 -1 1446 1446 4 4 1447 1446 -1 -1 1486 1446 -1 -1 1407 1447 -1 -1 1446 1447 -1 -1 1447 1447 4 4 1448 1447 -1 -1 1487 1447 -1 -1 1408 1448 -1 -1 1447 1448 -1 -1 1448 1448 4 4 1449 1448 -1 -1 1488 1448 -1 -1 1409 1449 -1 -1 1448 1449 -1 -1 1449 1449 4 4 1450 1449 -1 -1 1489 1449 -1 -1 1410 1450 -1 -1 1449 1450 -1 -1 1450 1450 4 4 1451 1450 -1 -1 1490 1450 -1 -1 1411 1451 -1 -1 1450 1451 -1 -1 1451 1451 4 4 1452 1451 -1 -1 1491 1451 -1 -1 1412 1452 -1 -1 1451 1452 -1 -1 1452 1452 4 4 1453 1452 -1 -1 1492 1452 -1 -1 1413 1453 -1 -1 1452 1453 -1 -1 1453 1453 4 4 1454 1453 -1 -1 1493 1453 -1 -1 1414 1454 -1 -1 1453 1454 -1 -1 1454 1454 4 4 1455 1454 -1 -1 1494 1454 -1 -1 1415 1455 -1 -1 1454 1455 -1 -1 1455 1455 4 4 1456 1455 -1 -1 1495 1455 -1 -1 1416 1456 -1 -1 1455 1456 -1 -1 1456 1456 4 4 1457 1456 -1 -1 1496 1456 -1 -1 1417 1457 -1 -1 1456 1457 -1 -1 1457 1457 4 4 1458 1457 -1 -1 1497 1457 -1 -1 1418 1458 -1 -1 1457 1458 -1 -1 1458 1458 4 4 1459 1458 -1 -1 1498 1458 -1 -1 1419 1459 -1 -1 1458 1459 -1 -1 1459 1459 4 4 1460 1459 -1 -1 1499 1459 -1 -1 1420 1460 -1 -1 1459 1460 -1 -1 1460 1460 4 4 1461 1460 -1 -1 1500 1460 -1 -1 1421 1461 -1 -1 1460 1461 -1 -1 1461 1461 4 4 1462 1461 -1 -1 1501 1461 -1 -1 1422 1462 -1 -1 1461 1462 -1 -1 1462 1462 4 4 1463 1462 -1 -1 1502 1462 -1 -1 1423 1463 -1 -1 1462 1463 -1 -1 1463 1463 4 4 1464 1463 -1 -1 1503 1463 -1 -1 1424 1464 -1 -1 1463 1464 -1 -1 1464 1464 4 4 1465 1464 -1 -1 1504 1464 -1 -1 1425 1465 -1 -1 1464 1465 -1 -1 1465 1465 4 4 1466 1465 -1 -1 1505 1465 -1 -1 1426 1466 -1 -1 1465 1466 -1 -1 1466 1466 4 4 1467 1466 -1 -1 1506 1466 -1 -1 1427 1467 -1 -1 1466 1467 -1 -1 1467 1467 4 4 1468 1467 -1 -1 1507 1467 -1 -1 1428 1468 -1 -1 1467 1468 -1 -1 1468 1468 4 4 1469 1468 -1 -1 1508 1468 -1 -1 1429 1469 -1 -1 1468 1469 -1 -1 1469 1469 4 4 1470 1469 -1 -1 1509 1469 -1 -1 1430 1470 -1 -1 1469 1470 -1 -1 1470 1470 4 4 1471 1470 -1 -1 1510 1470 -1 -1 1431 1471 -1 -1 1470 1471 -1 -1 1471 1471 4 4 1472 1471 -1 -1 1511 1471 -1 -1 1432 1472 -1 -1 1471 1472 -1 -1 1472 1472 4 4 1473 1472 -1 -1 1512 1472 -1 -1 1433 1473 -1 -1 1472 1473 -1 -1 1473 1473 4 4 1474 1473 -1 -1 1513 1473 -1 -1 1434 1474 -1 -1 1473 1474 -1 -1 1474 1474 4 4 1475 1474 -1 -1 1514 1474 -1 -1 1435 1475 -1 -1 1474 1475 -1 -1 1475 1475 4 4 1476 1475 -1 -1 1515 1475 -1 -1 1436 1476 -1 -1 1475 1476 -1 -1 1476 1476 4 4 1477 1476 -1 -1 1516 1476 -1 -1 1437 1477 -1 -1 1476 1477 -1 -1 1477 1477 4 4 1478 1477 -1 -1 1517 1477 -1 -1 1438 1478 -1 -1 1477 1478 -1 -1 1478 1478 4 4 1479 1478 -2 -2 1518 1478 -1 -1 1439 1479 -1 -1 1478 1479 -1 -1 1479 1479 4 4 1519 1479 -1 -1 1440 1480 -1 -1 1480 1480 4 4 1481 1480 -1 -1 1520 1480 -1 -1 1441 1481 -1 -1 1480 1481 -2 -2 1481 1481 4 4 1482 1481 -1 -1 1521 1481 -1 -1 1442 1482 -1 -1 1481 1482 -1 -1 1482 1482 4 4 1483 1482 -1 -1 1522 1482 -1 -1 1443 1483 -1 -1 1482 1483 -1 -1 1483 1483 4 4 1484 1483 -1 -1 1523 1483 -1 -1 1444 1484 -1 -1 1483 1484 -1 -1 1484 1484 4 4 1485 1484 -1 -1 1524 1484 -1 -1 1445 1485 -1 -1 1484 1485 -1 -1 1485 1485 4 4 1486 1485 -1 -1 1525 1485 -1 -1 1446 1486 -1 -1 1485 1486 -1 -1 1486 1486 4 4 1487 1486 -1 -1 1526 1486 -1 -1 1447 1487 -1 -1 1486 1487 -1 -1 1487 1487 4 4 1488 1487 -1 -1 1527 1487 -1 -1 1448 1488 -1 -1 1487 1488 -1 -1 1488 1488 4 4 1489 1488 -1 -1 1528 1488 -1 -1 1449 1489 -1 -1 1488 1489 -1 -1 1489 1489 4 4 1490 1489 -1 -1 1529 1489 -1 -1 1450 1490 -1 -1 1489 1490 -1 -1 1490 1490 4 4 1491 1490 -1 -1 1530 1490 -1 -1 1451 1491 -1 -1 1490 1491 -1 -1 1491 1491 4 4 1492 1491 -1 -1 1531 1491 -1 -1 1452 1492 -1 -1 1491 1492 -1 -1 1492 1492 4 4 1493 1492 -1 -1 1532 1492 -1 -1 1453 1493 -1 -1 1492 1493 -1 -1 1493 1493 4 4 1494 1493 -1 -1 1533 1493 -1 -1 1454 1494 -1 -1 1493 1494 -1 -1 1494 1494 4 4 1495 1494 -1 -1 1534 1494 -1 -1 1455 1495 -1 -1 1494 1495 -1 -1 1495 1495 4 4 1496 1495 -1 -1 1535 1495 -1 -1 1456 1496 -1 -1 1495 1496 -1 -1 1496 1496 4 4 1497 1496 -1 -1 1536 1496 -1 -1 1457 1497 -1 -1 1496 1497 -1 -1 1497 1497 4 4 1498 1497 -1 -1 1537 1497 -1 -1 1458 1498 -1 -1 1497 1498 -1 -1 1498 1498 4 4 1499 1498 -1 -1 1538 1498 -1 -1 1459 1499 -1 -1 1498 1499 -1 -1 1499 1499 4 4 1500 1499 -1 -1 1539 1499 -1 -1 1460 1500 -1 -1 1499 1500 -1 -1 1500 1500 4 4 1501 1500 -1 -1 1540 1500 -1 -1 1461 1501 -1 -1 1500 1501 -1 -1 1501 1501 4 4 1502 1501 -1 -1 1541 1501 -1 -1 1462 1502 -1 -1 1501 1502 -1 -1 1502 1502 4 4 1503 1502 -1 -1 1542 1502 -1 -1 1463 1503 -1 -1 1502 1503 -1 -1 1503 1503 4 4 1504 1503 -1 -1 1543 1503 -1 -1 1464 1504 -1 -1 1503 1504 -1 -1 1504 1504 4 4 1505 1504 -1 -1 1544 1504 -1 -1 1465 1505 -1 -1 1504 1505 -1 -1 1505 1505 4 4 1506 1505 -1 -1 1545 1505 -1 -1 1466 1506 -1 -1 1505 1506 -1 -1 1506 1506 4 4 1507 1506 -1 -1 1546 1506 -1 -1 1467 1507 -1 -1 1506 1507 -1 -1 1507 1507 4 4 1508 1507 -1 -1 1547 1507 -1 -1 1468 1508 -1 -1 1507 1508 -1 -1 1508 1508 4 4 1509 1508 -1 -1 1548 1508 -1 -1 1469 1509 -1 -1 1508 1509 -1 -1 1509 1509 4 4 1510 1509 -1 -1 1549 1509 -1 -1 1470 1510 -1 -1 1509 1510 -1 -1 1510 1510 4 4 1511 1510 -1 -1 1550 1510 -1 -1 1471 1511 -1 -1 1510 1511 -1 -1 1511 1511 4 4 1512 1511 -1 -1 1551 1511 -1 -1 1472 1512 -1 -1 1511 1512 -1 -1 1512 1512 4 4 1513 1512 -1 -1 1552 1512 -1 -1 1473 1513 -1 -1 1512 1513 -1 -1 1513 1513 4 4 1514 1513 -1 -1 1553 1513 -1 -1 1474 1514 -1 -1 1513 1514 -1 -1 1514 1514 4 4 1515 1514 -1 -1 1554 1514 -1 -1 1475 1515 -1 -1 1514 1515 -1 -1 1515 1515 4 4 1516 1515 -1 -1 1555 1515 -1 -1 1476 1516 -1 -1 1515 1516 -1 -1 1516 1516 4 4 1517 1516 -1 -1 1556 1516 -1 -1 1477 1517 -1 -1 1516 1517 -1 -1 1517 1517 4 4 1518 1517 -1 -1 1557 1517 -1 -1 1478 1518 -1 -1 1517 1518 -1 -1 1518 1518 4 4 1519 1518 -2 -2 1558 1518 -1 -1 1479 1519 -1 -1 1518 1519 -1 -1 1519 1519 4 4 1559 1519 -1 -1 1480 1520 -1 -1 1520 1520 4 4 1521 1520 -1 -1 1560 1520 -2 -2 1481 1521 -1 -1 1520 1521 -2 -2 1521 1521 4 4 1522 1521 -1 -1 1561 1521 -2 -2 1482 1522 -1 -1 1521 1522 -1 -1 1522 1522 4 4 1523 1522 -1 -1 1562 1522 -2 -2 1483 1523 -1 -1 1522 1523 -1 -1 1523 1523 4 4 1524 1523 -1 -1 1563 1523 -2 -2 1484 1524 -1 -1 1523 1524 -1 -1 1524 1524 4 4 1525 1524 -1 -1 1564 1524 -2 -2 1485 1525 -1 -1 1524 1525 -1 -1 1525 1525 4 4 1526 1525 -1 -1 1565 1525 -2 -2 1486 1526 -1 -1 1525 1526 -1 -1 1526 1526 4 4 1527 1526 -1 -1 1566 1526 -2 -2 1487 1527 -1 -1 1526 1527 -1 -1 1527 1527 4 4 1528 1527 -1 -1 1567 1527 -2 -2 1488 1528 -1 -1 1527 1528 -1 -1 1528 1528 4 4 1529 1528 -1 -1 1568 1528 -2 -2 1489 1529 -1 -1 1528 1529 -1 -1 1529 1529 4 4 1530 1529 -1 -1 1569 1529 -2 -2 1490 1530 -1 -1 1529 1530 -1 -1 1530 1530 4 4 1531 1530 -1 -1 1570 1530 -2 -2 1491 1531 -1 -1 1530 1531 -1 -1 1531 1531 4 4 1532 1531 -1 -1 1571 1531 -2 -2 1492 1532 -1 -1 1531 1532 -1 -1 1532 1532 4 4 1533 1532 -1 -1 1572 1532 -2 -2 1493 1533 -1 -1 1532 1533 -1 -1 1533 1533 4 4 1534 1533 -1 -1 1573 1533 -2 -2 1494 1534 -1 -1 1533 1534 -1 -1 1534 1534 4 4 1535 1534 -1 -1 1574 1534 -2 -2 1495 1535 -1 -1 1534 1535 -1 -1 1535 1535 4 4 1536 1535 -1 -1 1575 1535 -2 -2 1496 1536 -1 -1 1535 1536 -1 -1 1536 1536 4 4 1537 1536 -1 -1 1576 1536 -2 -2 1497 1537 -1 -1 1536 1537 -1 -1 1537 1537 4 4 1538 1537 -1 -1 1577 1537 -2 -2 1498 1538 -1 -1 1537 1538 -1 -1 1538 1538 4 4 1539 1538 -1 -1 1578 1538 -2 -2 1499 1539 -1 -1 1538 1539 -1 -1 1539 1539 4 4 1540 1539 -1 -1 1579 1539 -2 -2 1500 1540 -1 -1 1539 1540 -1 -1 1540 1540 4 4 1541 1540 -1 -1 1580 1540 -2 -2 1501 1541 -1 -1 1540 1541 -1 -1 1541 1541 4 4 1542 1541 -1 -1 1581 1541 -2 -2 1502 1542 -1 -1 1541 1542 -1 -1 1542 1542 4 4 1543 1542 -1 -1 1582 1542 -2 -2 1503 1543 -1 -1 1542 1543 -1 -1 1543 1543 4 4 1544 1543 -1 -1 1583 1543 -2 -2 1504 1544 -1 -1 1543 1544 -1 -1 1544 1544 4 4 1545 1544 -1 -1 1584 1544 -2 -2 1505 1545 -1 -1 1544 1545 -1 -1 1545 1545 4 4 1546 1545 -1 -1 1585 1545 -2 -2 1506 1546 -1 -1 1545 1546 -1 -1 1546 1546 4 4 1547 1546 -1 -1 1586 1546 -2 -2 1507 1547 -1 -1 1546 1547 -1 -1 1547 1547 4 4 1548 1547 -1 -1 1587 1547 -2 -2 1508 1548 -1 -1 1547 1548 -1 -1 1548 1548 4 4 1549 1548 -1 -1 1588 1548 -2 -2 1509 1549 -1 -1 1548 1549 -1 -1 1549 1549 4 4 1550 1549 -1 -1 1589 1549 -2 -2 1510 1550 -1 -1 1549 1550 -1 -1 1550 1550 4 4 1551 1550 -1 -1 1590 1550 -2 -2 1511 1551 -1 -1 1550 1551 -1 -1 1551 1551 4 4 1552 1551 -1 -1 1591 1551 -2 -2 1512 1552 -1 -1 1551 1552 -1 -1 1552 1552 4 4 1553 1552 -1 -1 1592 1552 -2 -2 1513 1553 -1 -1 1552 1553 -1 -1 1553 1553 4 4 1554 1553 -1 -1 1593 1553 -2 -2 1514 1554 -1 -1 1553 1554 -1 -1 1554 1554 4 4 1555 1554 -1 -1 1594 1554 -2 -2 1515 1555 -1 -1 1554 1555 -1 -1 1555 1555 4 4 1556 1555 -1 -1 1595 1555 -2 -2 1516 1556 -1 -1 1555 1556 -1 -1 1556 1556 4 4 1557 1556 -1 -1 1596 1556 -2 -2 1517 1557 -1 -1 1556 1557 -1 -1 1557 1557 4 4 1558 1557 -1 -1 1597 1557 -2 -2 1518 1558 -1 -1 1557 1558 -1 -1 1558 1558 4 4 1559 1558 -2 -2 1598 1558 -2 -2 1519 1559 -1 -1 1558 1559 -1 -1 1559 1559 4 4 1599 1559 -2 -2 1520 1560 -1 -1 1560 1560 4 4 1561 1560 -1 -1 1521 1561 -1 -1 1560 1561 -2 -2 1561 1561 4 4 1562 1561 -1 -1 1522 1562 -1 -1 1561 1562 -1 -1 1562 1562 4 4 1563 1562 -1 -1 1523 1563 -1 -1 1562 1563 -1 -1 1563 1563 4 4 1564 1563 -1 -1 1524 1564 -1 -1 1563 1564 -1 -1 1564 1564 4 4 1565 1564 -1 -1 1525 1565 -1 -1 1564 1565 -1 -1 1565 1565 4 4 1566 1565 -1 -1 1526 1566 -1 -1 1565 1566 -1 -1 1566 1566 4 4 1567 1566 -1 -1 1527 1567 -1 -1 1566 1567 -1 -1 1567 1567 4 4 1568 1567 -1 -1 1528 1568 -1 -1 1567 1568 -1 -1 1568 1568 4 4 1569 1568 -1 -1 1529 1569 -1 -1 1568 1569 -1 -1 1569 1569 4 4 1570 1569 -1 -1 1530 1570 -1 -1 1569 1570 -1 -1 1570 1570 4 4 1571 1570 -1 -1 1531 1571 -1 -1 1570 1571 -1 -1 1571 1571 4 4 1572 1571 -1 -1 1532 1572 -1 -1 1571 1572 -1 -1 1572 1572 4 4 1573 1572 -1 -1 1533 1573 -1 -1 1572 1573 -1 -1 1573 1573 4 4 1574 1573 -1 -1 1534 1574 -1 -1 1573 1574 -1 -1 1574 1574 4 4 1575 1574 -1 -1 1535 1575 -1 -1 1574 1575 -1 -1 1575 1575 4 4 1576 1575 -1 -1 1536 1576 -1 -1 1575 1576 -1 -1 1576 1576 4 4 1577 1576 -1 -1 1537 1577 -1 -1 1576 1577 -1 -1 1577 1577 4 4 1578 1577 -1 -1 1538 1578 -1 -1 1577 1578 -1 -1 1578 1578 4 4 1579 1578 -1 -1 1539 1579 -1 -1 1578 1579 -1 -1 1579 1579 4 4 1580 1579 -1 -1 1540 1580 -1 -1 1579 1580 -1 -1 1580 1580 4 4 1581 1580 -1 -1 1541 1581 -1 -1 1580 1581 -1 -1 1581 1581 4 4 1582 1581 -1 -1 1542 1582 -1 -1 1581 1582 -1 -1 1582 1582 4 4 1583 1582 -1 -1 1543 1583 -1 -1 1582 1583 -1 -1 1583 1583 4 4 1584 1583 -1 -1 1544 1584 -1 -1 1583 1584 -1 -1 1584 1584 4 4 1585 1584 -1 -1 1545 1585 -1 -1 1584 1585 -1 -1 1585 1585 4 4 1586 1585 -1 -1 1546 1586 -1 -1 1585 1586 -1 -1 1586 1586 4 4 1587 1586 -1 -1 1547 1587 -1 -1 1586 1587 -1 -1 1587 1587 4 4 1588 1587 -1 -1 1548 1588 -1 -1 1587 1588 -1 -1 1588 1588 4 4 1589 1588 -1 -1 1549 1589 -1 -1 1588 1589 -1 -1 1589 1589 4 4 1590 1589 -1 -1 1550 1590 -1 -1 1589 1590 -1 -1 1590 1590 4 4 1591 1590 -1 -1 1551 1591 -1 -1 1590 1591 -1 -1 1591 1591 4 4 1592 1591 -1 -1 1552 1592 -1 -1 1591 1592 -1 -1 1592 1592 4 4 1593 1592 -1 -1 1553 1593 -1 -1 1592 1593 -1 -1 1593 1593 4 4 1594 1593 -1 -1 1554 1594 -1 -1 1593 1594 -1 -1 1594 1594 4 4 1595 1594 -1 -1 1555 1595 -1 -1 1594 1595 -1 -1 1595 1595 4 4 1596 1595 -1 -1 1556 1596 -1 -1 1595 1596 -1 -1 1596 1596 4 4 1597 1596 -1 -1 1557 1597 -1 -1 1596 1597 -1 -1 1597 1597 4 4 1598 1597 -1 -1 1558 1598 -1 -1 1597 1598 -1 -1 1598 1598 4 4 1599 1598 -2 -2 1559 1599 -1 -1 1598 1599 -1 -1 1599 1599 4 4 SuiteSparse/CXSparse_newfiles/Matrix/c_west00670000644001170100242450000001201110376375002020321 0ustar davisfac44 55 -1.863354 0.1 54 61 -1.863354 0.1 29 37 -1.567398 0.1 44 56 -1.490683 0.1 54 62 -1.490683 0.1 9 12 -1.265823 0.1 29 38 -1.253918 0.1 44 57 -1.118012 0.1 54 63 -1.118012 0.1 15 31 -1.05 0.1 16 32 -1.05 0.1 17 33 -1.05 0.1 18 34 -1.05 0.1 19 35 -1.05 0.1 24 31 -1.05 0.1 25 32 -1.05 0.1 26 33 -1.05 0.1 27 34 -1.05 0.1 28 35 -1.05 0.1 9 13 -1.012658 0.1 10 20 -1 0.1 11 21 -1 0.1 12 22 -1 0.1 13 23 -1 0.1 14 24 -1 0.1 30 49 -0.9722222 0.1 31 50 -0.9722222 0.1 32 51 -0.9722222 0.1 33 52 -0.9722222 0.1 34 53 -0.9722222 0.1 39 49 -0.9722222 0.1 40 50 -0.9722222 0.1 41 51 -0.9722222 0.1 42 52 -0.9722222 0.1 43 53 -0.9722222 0.1 35 25 -0.9583187 0.1 36 26 -0.9583187 0.1 37 27 -0.9583187 0.1 38 28 -0.9583187 0.1 49 55 -0.9444444 0.1 50 56 -0.9444444 0.1 51 57 -0.9444444 0.1 52 58 -0.9444444 0.1 53 59 -0.9444444 0.1 29 39 -0.9404389 0.1 20 1 -0.9159533 0.1 21 2 -0.9159533 0.1 22 3 -0.9159533 0.1 23 4 -0.9159533 0.1 0 7 -0.8341818 0.1 1 8 -0.8341818 0.1 2 9 -0.8341818 0.1 3 10 -0.8341818 0.1 45 43 -0.8242248 0.1 46 44 -0.8242248 0.1 47 45 -0.8242248 0.1 48 46 -0.8242248 0.1 4 1 -0.8 0.1 5 2 -0.8 0.1 6 3 -0.8 0.1 7 4 -0.8 0.1 8 5 -0.8 0.1 9 14 -0.7594937 0.1 44 58 -0.7453416 0.1 54 64 -0.7453416 0.1 29 40 -0.6269592 0.1 9 15 -0.5063291 0.1 44 59 -0.3726708 0.1 54 65 -0.3726708 0.1 0 17 -0.3361556 0.1 29 41 -0.3134796 0.1 1 17 -0.2939196 0.1 20 42 -0.2788416 0.1 4 0 -0.2788416 0.1 21 42 -0.2680186 0.1 5 0 -0.2680186 0.1 52 54 -0.2667757 0.1 53 54 -0.2630706 0.1 48 66 -0.2541193 0.1 9 16 -0.2531646 0.1 37 60 -0.2475675 0.1 47 66 -0.2421498 0.1 33 48 -0.2362845 0.1 42 48 -0.2362845 0.1 36 60 -0.2356469 0.1 22 42 -0.2323717 0.1 6 0 -0.2323717 0.1 32 48 -0.2303917 0.1 41 48 -0.2303917 0.1 17 30 -0.2286264 0.1 26 30 -0.2286264 0.1 16 30 -0.2232997 0.1 25 30 -0.2232997 0.1 2 17 -0.2214815 0.1 12 19 -0.2144206 0.1 11 19 -0.2140392 0.1 51 54 -0.2122056 0.1 38 60 -0.2074873 0.1 10 19 -0.2071759 0.1 15 30 -0.2070986 0.1 24 30 -0.2070986 0.1 35 60 -0.2069954 0.1 18 30 -0.2024528 0.1 27 30 -0.2024528 0.1 13 19 -0.1986768 0.1 31 48 -0.1947711 0.1 40 48 -0.1947711 0.1 46 66 -0.1918557 0.1 34 48 -0.18039 0.1 43 48 -0.18039 0.1 14 19 -0.1656874 0.1 30 48 -0.1581626 0.1 39 48 -0.1581626 0.1 23 42 -0.1575082 0.1 7 0 -0.1575082 0.1 50 54 -0.1514908 0.1 45 66 -0.1443354 0.1 19 30 -0.1385226 0.1 28 30 -0.1385226 0.1 3 17 -0.118986 0.1 49 54 -0.1064573 0.1 8 0 -0.06325978 0.1 8 6 0.01178291 0.1 28 0 0.03162989 0.1 7 6 0.04759439 0.1 39 54 0.05322864 0.1 40 54 0.07574542 0.1 27 0 0.07875411 0.1 24 36 0.08147449 0.1 6 6 0.08859262 0.1 30 36 0.09052721 0.1 28 36 0.09241909 0.1 25 36 0.09789015 0.1 19 19 0.09941246 0.1 34 36 0.1026879 0.1 41 54 0.1061028 0.1 31 36 0.1087668 0.1 26 36 0.1131608 0.1 27 36 0.1150555 0.1 26 0 0.1161859 0.1 5 6 0.1175679 0.1 18 19 0.1192061 0.1 15 19 0.1243055 0.1 32 36 0.1257342 0.1 33 36 0.1278394 0.1 16 19 0.1284235 0.1 17 19 0.1286524 0.1 43 54 0.1315353 0.1 42 54 0.1333878 0.1 25 0 0.1340093 0.1 4 6 0.1344622 0.1 24 0 0.1394208 0.1 30 43 0.25 0.1 31 44 0.25 0.1 32 45 0.25 0.1 33 46 0.25 0.1 34 47 0.25 0.1 10 12 0.3333333 0.1 11 13 0.3333333 0.1 12 14 0.3333333 0.1 13 15 0.3333333 0.1 14 16 0.3333333 0.1 24 1 0.4 0.1 25 2 0.4 0.1 26 3 0.4 0.1 27 4 0.4 0.1 28 5 0.4 0.1 4 12 0.4 0.1 4 7 0.4 0.1 5 13 0.4 0.1 5 8 0.4 0.1 6 14 0.4 0.1 6 9 0.4 0.1 7 10 0.4 0.1 7 15 0.4 0.1 8 11 0.4 0.1 8 16 0.4 0.1 49 61 0.4444444 0.1 50 62 0.4444444 0.1 51 63 0.4444444 0.1 52 64 0.4444444 0.1 53 65 0.4444444 0.1 15 25 0.45 0.1 16 26 0.45 0.1 17 27 0.45 0.1 18 28 0.45 0.1 19 29 0.45 0.1 39 55 0.4722222 0.1 40 56 0.4722222 0.1 41 57 0.4722222 0.1 42 58 0.4722222 0.1 43 59 0.4722222 0.1 39 25 0.5 0.1 40 26 0.5 0.1 41 27 0.5 0.1 42 28 0.5 0.1 43 29 0.5 0.1 49 43 0.5 0.1 50 44 0.5 0.1 51 45 0.5 0.1 52 46 0.5 0.1 53 47 0.5 0.1 3 15 0.5063291 0.1 15 20 0.6 0.1 16 21 0.6 0.1 17 22 0.6 0.1 18 23 0.6 0.1 19 24 0.6 0.1 23 40 0.6269592 0.1 24 37 0.65 0.1 25 38 0.65 0.1 26 39 0.65 0.1 27 40 0.65 0.1 28 41 0.65 0.1 14 18 0.6666667 0.1 30 37 0.7222222 0.1 31 38 0.7222222 0.1 32 39 0.7222222 0.1 33 40 0.7222222 0.1 34 41 0.7222222 0.1 38 58 0.7453416 0.1 48 64 0.7453416 0.1 2 14 0.7594937 0.1 22 39 0.9404389 0.1 59 31 0.5 0.1 59 32 0.5 0.1 59 33 0.5 0.1 59 34 0.5 0.1 59 35 0.5 0.1 29 42 1 0.1 44 60 1 0.1 54 66 1 0.1 55 18 1 0.1 56 10 1 0.1 56 11 1 0.1 56 7 1 0.1 56 8 1 0.1 56 9 1 0.1 57 12 1 0.1 57 13 1 0.1 57 14 1 0.1 57 15 1 0.1 57 16 1 0.1 58 20 1 0.1 58 21 1 0.1 58 22 1 0.1 58 23 1 0.1 58 24 1 0.1 59 31 0.5 0.1 59 32 0.5 0.1 59 33 0.5 0.1 59 34 0.5 0.1 59 35 0.5 0.1 60 1 1 0.1 60 2 1 0.1 60 3 1 0.1 60 4 1 0.1 60 5 1 0.1 61 37 1 0.1 61 38 1 0.1 61 39 1 0.1 61 40 1 0.1 61 41 1 0.1 62 49 1 0.1 62 50 1 0.1 62 51 1 0.1 62 52 1 0.1 62 53 1 0.1 63 25 1 0.1 63 26 1 0.1 63 27 1 0.1 63 28 1 0.1 63 29 1 0.1 64 55 1 0.1 64 56 1 0.1 64 57 1 0.1 64 58 1 0.1 64 59 1 0.1 65 43 1 0.1 65 44 1 0.1 65 45 1 0.1 65 46 1 0.1 65 47 1 0.1 66 61 1 0.1 66 62 1 0.1 66 63 1 0.1 66 64 1 0.1 66 65 1 0.1 9 17 1 0.1 1 13 1.012658 0.1 37 57 1.118012 0.1 47 63 1.118012 0.1 21 38 1.253918 0.1 0 12 1.265823 0.1 36 56 1.490683 0.1 46 62 1.490683 0.1 20 37 1.567398 0.1 35 55 1.863354 0.1 45 61 1.863354 0.1 SuiteSparse/CXSparse_newfiles/Include/0000755001170100242450000000000010711427651016722 5ustar davisfacSuiteSparse/CXSparse_newfiles/Include/cs.h0000644001170100242450000007406010711425530017501 0ustar davisfac#ifndef _CXS_H #define _CXS_H #include #include #include #include #ifdef MATLAB_MEX_FILE #include "mex.h" #endif #ifdef __cplusplus #ifndef NCOMPLEX #include typedef std::complex cs_complex_t ; #endif extern "C" { #else #ifndef NCOMPLEX #include #define cs_complex_t double _Complex #endif #endif #define CS_VER 2 /* CXSparse Version 2.2.1 */ #define CS_SUBVER 2 #define CS_SUBSUB 1 #define CS_DATE "Nov 1, 2007" /* CXSparse release date */ #define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006-2007" #define CXSPARSE /* define UF_long */ #include "UFconfig.h" /* -------------------------------------------------------------------------- */ /* double/int version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_di_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_di ; cs_di *cs_di_add (const cs_di *A, const cs_di *B, double alpha, double beta) ; int cs_di_cholsol (int order, const cs_di *A, double *b) ; int cs_di_dupl (cs_di *A) ; int cs_di_entry (cs_di *T, int i, int j, double x) ; int cs_di_lusol (int order, const cs_di *A, double *b, double tol) ; int cs_di_gaxpy (const cs_di *A, const double *x, double *y) ; cs_di *cs_di_multiply (const cs_di *A, const cs_di *B) ; int cs_di_qrsol (int order, const cs_di *A, double *b) ; cs_di *cs_di_transpose (const cs_di *A, int values) ; cs_di *cs_di_compress (const cs_di *T) ; double cs_di_norm (const cs_di *A) ; int cs_di_print (const cs_di *A, int brief) ; cs_di *cs_di_load (FILE *f) ; /* utilities */ void *cs_di_calloc (int n, size_t size) ; void *cs_di_free (void *p) ; void *cs_di_realloc (void *p, int n, size_t size, int *ok) ; cs_di *cs_di_spalloc (int m, int n, int nzmax, int values, int t) ; cs_di *cs_di_spfree (cs_di *A) ; int cs_di_sprealloc (cs_di *A, int nzmax) ; void *cs_di_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_di_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_dis ; typedef struct cs_di_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_di *L ; /* L for LU and Cholesky, V for QR */ cs_di *U ; /* U for LU, r for QR, not used for Cholesky */ int *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_din ; typedef struct cs_di_dmperm_results /* cs_di_dmperm or cs_di_scc output */ { int *p ; /* size m, row permutation */ int *q ; /* size n, column permutation */ int *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ int *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } cs_did ; int *cs_di_amd (int order, const cs_di *A) ; cs_din *cs_di_chol (const cs_di *A, const cs_dis *S) ; cs_did *cs_di_dmperm (const cs_di *A, int seed) ; int cs_di_droptol (cs_di *A, double tol) ; int cs_di_dropzeros (cs_di *A) ; int cs_di_happly (const cs_di *V, int i, double beta, double *x) ; int cs_di_ipvec (const int *p, const double *b, double *x, int n) ; int cs_di_lsolve (const cs_di *L, double *x) ; int cs_di_ltsolve (const cs_di *L, double *x) ; cs_din *cs_di_lu (const cs_di *A, const cs_dis *S, double tol) ; cs_di *cs_di_permute (const cs_di *A, const int *pinv, const int *q, int values) ; int *cs_di_pinv (const int *p, int n) ; int cs_di_pvec (const int *p, const double *b, double *x, int n) ; cs_din *cs_di_qr (const cs_di *A, const cs_dis *S) ; cs_dis *cs_di_schol (int order, const cs_di *A) ; cs_dis *cs_di_sqr (int order, const cs_di *A, int qr) ; cs_di *cs_di_symperm (const cs_di *A, const int *pinv, int values) ; int cs_di_usolve (const cs_di *U, double *x) ; int cs_di_utsolve (const cs_di *U, double *x) ; int cs_di_updown (cs_di *L, int sigma, const cs_di *C, const int *parent) ; /* utilities */ cs_dis *cs_di_sfree (cs_dis *S) ; cs_din *cs_di_nfree (cs_din *N) ; cs_did *cs_di_dfree (cs_did *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_di_counts (const cs_di *A, const int *parent, const int *post, int ata) ; double cs_di_cumsum (int *p, int *c, int n) ; int cs_di_dfs (int j, cs_di *G, int top, int *xi, int *pstack, const int *pinv) ; int *cs_di_etree (const cs_di *A, int ata) ; int cs_di_fkeep (cs_di *A, int (*fkeep) (int, int, double, void *), void *other) ; double cs_di_house (double *x, double *beta, int n) ; int *cs_di_maxtrans (const cs_di *A, int seed) ; int *cs_di_post (const int *parent, int n) ; cs_did *cs_di_scc (cs_di *A) ; int cs_di_scatter (const cs_di *A, int j, double beta, int *w, double *x, int mark, cs_di *C, int nz) ; int cs_di_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; int cs_di_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) ; int cs_di_reach (cs_di *G, const cs_di *B, int k, int *xi, const int *pinv) ; int cs_di_spsolve (cs_di *L, const cs_di *B, int k, int *xi, double *x, const int *pinv, int lo) ; int cs_di_ereach (const cs_di *A, int k, const int *parent, int *s, int *w) ; int *cs_di_randperm (int n, int seed) ; /* utilities */ cs_did *cs_di_dalloc (int m, int n) ; cs_di *cs_di_done (cs_di *C, void *w, void *x, int ok) ; int *cs_di_idone (int *p, cs_di *C, void *w, int ok) ; cs_din *cs_di_ndone (cs_din *N, cs_di *C, void *w, void *x, int ok) ; cs_did *cs_di_ddone (cs_did *D, cs_di *C, void *w, int ok) ; /* -------------------------------------------------------------------------- */ /* double/UF_long version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_dl_sparse /* matrix in compressed-column or triplet form */ { UF_long nzmax ; /* maximum number of entries */ UF_long m ; /* number of rows */ UF_long n ; /* number of columns */ UF_long *p ; /* column pointers (size n+1) or col indlces (size nzmax) */ UF_long *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ UF_long nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_dl ; cs_dl *cs_dl_add (const cs_dl *A, const cs_dl *B, double alpha, double beta) ; UF_long cs_dl_cholsol (UF_long order, const cs_dl *A, double *b) ; UF_long cs_dl_dupl (cs_dl *A) ; UF_long cs_dl_entry (cs_dl *T, UF_long i, UF_long j, double x) ; UF_long cs_dl_lusol (UF_long order, const cs_dl *A, double *b, double tol) ; UF_long cs_dl_gaxpy (const cs_dl *A, const double *x, double *y) ; cs_dl *cs_dl_multiply (const cs_dl *A, const cs_dl *B) ; UF_long cs_dl_qrsol (UF_long order, const cs_dl *A, double *b) ; cs_dl *cs_dl_transpose (const cs_dl *A, UF_long values) ; cs_dl *cs_dl_compress (const cs_dl *T) ; double cs_dl_norm (const cs_dl *A) ; UF_long cs_dl_print (const cs_dl *A, UF_long brief) ; cs_dl *cs_dl_load (FILE *f) ; /* utilities */ void *cs_dl_calloc (UF_long n, size_t size) ; void *cs_dl_free (void *p) ; void *cs_dl_realloc (void *p, UF_long n, size_t size, UF_long *ok) ; cs_dl *cs_dl_spalloc (UF_long m, UF_long n, UF_long nzmax, UF_long values, UF_long t) ; cs_dl *cs_dl_spfree (cs_dl *A) ; UF_long cs_dl_sprealloc (cs_dl *A, UF_long nzmax) ; void *cs_dl_malloc (UF_long n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_dl_symbolic /* symbolic Cholesky, LU, or QR analysis */ { UF_long *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ UF_long *q ; /* fill-reducing column permutation for LU and QR */ UF_long *parent ; /* elimination tree for Cholesky and QR */ UF_long *cp ; /* column pointers for Cholesky, row counts for QR */ UF_long *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ UF_long m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_dls ; typedef struct cs_dl_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_dl *L ; /* L for LU and Cholesky, V for QR */ cs_dl *U ; /* U for LU, r for QR, not used for Cholesky */ UF_long *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_dln ; typedef struct cs_dl_dmperm_results /* cs_dl_dmperm or cs_dl_scc output */ { UF_long *p ; /* size m, row permutation */ UF_long *q ; /* size n, column permutation */ UF_long *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ UF_long *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ UF_long nb ; /* # of blocks in fine dmperm decomposition */ UF_long rr [5] ; /* coarse row decomposition */ UF_long cc [5] ; /* coarse column decomposition */ } cs_dld ; UF_long *cs_dl_amd (UF_long order, const cs_dl *A) ; cs_dln *cs_dl_chol (const cs_dl *A, const cs_dls *S) ; cs_dld *cs_dl_dmperm (const cs_dl *A, UF_long seed) ; UF_long cs_dl_droptol (cs_dl *A, double tol) ; UF_long cs_dl_dropzeros (cs_dl *A) ; UF_long cs_dl_happly (const cs_dl *V, UF_long i, double beta, double *x) ; UF_long cs_dl_ipvec (const UF_long *p, const double *b, double *x, UF_long n) ; UF_long cs_dl_lsolve (const cs_dl *L, double *x) ; UF_long cs_dl_ltsolve (const cs_dl *L, double *x) ; cs_dln *cs_dl_lu (const cs_dl *A, const cs_dls *S, double tol) ; cs_dl *cs_dl_permute (const cs_dl *A, const UF_long *pinv, const UF_long *q, UF_long values) ; UF_long *cs_dl_pinv (const UF_long *p, UF_long n) ; UF_long cs_dl_pvec (const UF_long *p, const double *b, double *x, UF_long n) ; cs_dln *cs_dl_qr (const cs_dl *A, const cs_dls *S) ; cs_dls *cs_dl_schol (UF_long order, const cs_dl *A) ; cs_dls *cs_dl_sqr (UF_long order, const cs_dl *A, UF_long qr) ; cs_dl *cs_dl_symperm (const cs_dl *A, const UF_long *pinv, UF_long values) ; UF_long cs_dl_usolve (const cs_dl *U, double *x) ; UF_long cs_dl_utsolve (const cs_dl *U, double *x) ; UF_long cs_dl_updown (cs_dl *L, UF_long sigma, const cs_dl *C, const UF_long *parent) ; /* utilities */ cs_dls *cs_dl_sfree (cs_dls *S) ; cs_dln *cs_dl_nfree (cs_dln *N) ; cs_dld *cs_dl_dfree (cs_dld *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ UF_long *cs_dl_counts (const cs_dl *A, const UF_long *parent, const UF_long *post, UF_long ata) ; double cs_dl_cumsum (UF_long *p, UF_long *c, UF_long n) ; UF_long cs_dl_dfs (UF_long j, cs_dl *G, UF_long top, UF_long *xi, UF_long *pstack, const UF_long *pinv) ; UF_long *cs_dl_etree (const cs_dl *A, UF_long ata) ; UF_long cs_dl_fkeep (cs_dl *A, UF_long (*fkeep) (UF_long, UF_long, double, void *), void *other) ; double cs_dl_house (double *x, double *beta, UF_long n) ; UF_long *cs_dl_maxtrans (const cs_dl *A, UF_long seed) ; UF_long *cs_dl_post (const UF_long *parent, UF_long n) ; cs_dld *cs_dl_scc (cs_dl *A) ; UF_long cs_dl_scatter (const cs_dl *A, UF_long j, double beta, UF_long *w, double *x, UF_long mark,cs_dl *C, UF_long nz) ; UF_long cs_dl_tdfs (UF_long j, UF_long k, UF_long *head, const UF_long *next, UF_long *post, UF_long *stack) ; UF_long cs_dl_leaf (UF_long i, UF_long j, const UF_long *first, UF_long *maxfirst, UF_long *prevleaf, UF_long *ancestor, UF_long *jleaf) ; UF_long cs_dl_reach (cs_dl *G, const cs_dl *B, UF_long k, UF_long *xi, const UF_long *pinv) ; UF_long cs_dl_spsolve (cs_dl *L, const cs_dl *B, UF_long k, UF_long *xi, double *x, const UF_long *pinv, UF_long lo) ; UF_long cs_dl_ereach (const cs_dl *A, UF_long k, const UF_long *parent, UF_long *s, UF_long *w) ; UF_long *cs_dl_randperm (UF_long n, UF_long seed) ; /* utilities */ cs_dld *cs_dl_dalloc (UF_long m, UF_long n) ; cs_dl *cs_dl_done (cs_dl *C, void *w, void *x, UF_long ok) ; UF_long *cs_dl_idone (UF_long *p, cs_dl *C, void *w, UF_long ok) ; cs_dln *cs_dl_ndone (cs_dln *N, cs_dl *C, void *w, void *x, UF_long ok) ; cs_dld *cs_dl_ddone (cs_dld *D, cs_dl *C, void *w, UF_long ok) ; /* -------------------------------------------------------------------------- */ /* complex/int version of CXSparse */ /* -------------------------------------------------------------------------- */ #ifndef NCOMPLEX /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_ci_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ cs_complex_t *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_ci ; cs_ci *cs_ci_add (const cs_ci *A, const cs_ci *B, cs_complex_t alpha, cs_complex_t beta) ; int cs_ci_cholsol (int order, const cs_ci *A, cs_complex_t *b) ; int cs_ci_dupl (cs_ci *A) ; int cs_ci_entry (cs_ci *T, int i, int j, cs_complex_t x) ; int cs_ci_lusol (int order, const cs_ci *A, cs_complex_t *b, double tol) ; int cs_ci_gaxpy (const cs_ci *A, const cs_complex_t *x, cs_complex_t *y) ; cs_ci *cs_ci_multiply (const cs_ci *A, const cs_ci *B) ; int cs_ci_qrsol (int order, const cs_ci *A, cs_complex_t *b) ; cs_ci *cs_ci_transpose (const cs_ci *A, int values) ; cs_ci *cs_ci_compress (const cs_ci *T) ; double cs_ci_norm (const cs_ci *A) ; int cs_ci_print (const cs_ci *A, int brief) ; cs_ci *cs_ci_load (FILE *f) ; /* utilities */ void *cs_ci_calloc (int n, size_t size) ; void *cs_ci_free (void *p) ; void *cs_ci_realloc (void *p, int n, size_t size, int *ok) ; cs_ci *cs_ci_spalloc (int m, int n, int nzmax, int values, int t) ; cs_ci *cs_ci_spfree (cs_ci *A) ; int cs_ci_sprealloc (cs_ci *A, int nzmax) ; void *cs_ci_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_ci_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_cis ; typedef struct cs_ci_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_ci *L ; /* L for LU and Cholesky, V for QR */ cs_ci *U ; /* U for LU, r for QR, not used for Cholesky */ int *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_cin ; typedef struct cs_ci_dmperm_results /* cs_ci_dmperm or cs_ci_scc output */ { int *p ; /* size m, row permutation */ int *q ; /* size n, column permutation */ int *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ int *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } cs_cid ; int *cs_ci_amd (int order, const cs_ci *A) ; cs_cin *cs_ci_chol (const cs_ci *A, const cs_cis *S) ; cs_cid *cs_ci_dmperm (const cs_ci *A, int seed) ; int cs_ci_droptol (cs_ci *A, double tol) ; int cs_ci_dropzeros (cs_ci *A) ; int cs_ci_happly (const cs_ci *V, int i, double beta, cs_complex_t *x) ; int cs_ci_ipvec (const int *p, const cs_complex_t *b, cs_complex_t *x, int n) ; int cs_ci_lsolve (const cs_ci *L, cs_complex_t *x) ; int cs_ci_ltsolve (const cs_ci *L, cs_complex_t *x) ; cs_cin *cs_ci_lu (const cs_ci *A, const cs_cis *S, double tol) ; cs_ci *cs_ci_permute (const cs_ci *A, const int *pinv, const int *q, int values) ; int *cs_ci_pinv (const int *p, int n) ; int cs_ci_pvec (const int *p, const cs_complex_t *b, cs_complex_t *x, int n) ; cs_cin *cs_ci_qr (const cs_ci *A, const cs_cis *S) ; cs_cis *cs_ci_schol (int order, const cs_ci *A) ; cs_cis *cs_ci_sqr (int order, const cs_ci *A, int qr) ; cs_ci *cs_ci_symperm (const cs_ci *A, const int *pinv, int values) ; int cs_ci_usolve (const cs_ci *U, cs_complex_t *x) ; int cs_ci_utsolve (const cs_ci *U, cs_complex_t *x) ; int cs_ci_updown (cs_ci *L, int sigma, const cs_ci *C, const int *parent) ; /* utilities */ cs_cis *cs_ci_sfree (cs_cis *S) ; cs_cin *cs_ci_nfree (cs_cin *N) ; cs_cid *cs_ci_dfree (cs_cid *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_ci_counts (const cs_ci *A, const int *parent, const int *post, int ata) ; double cs_ci_cumsum (int *p, int *c, int n) ; int cs_ci_dfs (int j, cs_ci *G, int top, int *xi, int *pstack, const int *pinv) ; int *cs_ci_etree (const cs_ci *A, int ata) ; int cs_ci_fkeep (cs_ci *A, int (*fkeep) (int, int, cs_complex_t, void *), void *other) ; cs_complex_t cs_ci_house (cs_complex_t *x, double *beta, int n) ; int *cs_ci_maxtrans (const cs_ci *A, int seed) ; int *cs_ci_post (const int *parent, int n) ; cs_cid *cs_ci_scc (cs_ci *A) ; int cs_ci_scatter (const cs_ci *A, int j, cs_complex_t beta, int *w, cs_complex_t *x, int mark,cs_ci *C, int nz) ; int cs_ci_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; int cs_ci_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf, int *ancestor, int *jleaf) ; int cs_ci_reach (cs_ci *G, const cs_ci *B, int k, int *xi, const int *pinv) ; int cs_ci_spsolve (cs_ci *L, const cs_ci *B, int k, int *xi, cs_complex_t *x, const int *pinv, int lo) ; int cs_ci_ereach (const cs_ci *A, int k, const int *parent, int *s, int *w) ; int *cs_ci_randperm (int n, int seed) ; /* utilities */ cs_cid *cs_ci_dalloc (int m, int n) ; cs_ci *cs_ci_done (cs_ci *C, void *w, void *x, int ok) ; int *cs_ci_idone (int *p, cs_ci *C, void *w, int ok) ; cs_cin *cs_ci_ndone (cs_cin *N, cs_ci *C, void *w, void *x, int ok) ; cs_cid *cs_ci_ddone (cs_cid *D, cs_ci *C, void *w, int ok) ; /* -------------------------------------------------------------------------- */ /* complex/UF_long version of CXSparse */ /* -------------------------------------------------------------------------- */ /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_cl_sparse /* matrix in compressed-column or triplet form */ { UF_long nzmax ; /* maximum number of entries */ UF_long m ; /* number of rows */ UF_long n ; /* number of columns */ UF_long *p ; /* column pointers (size n+1) or col indlces (size nzmax) */ UF_long *i ; /* row indices, size nzmax */ cs_complex_t *x ; /* numerical values, size nzmax */ UF_long nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs_cl ; cs_cl *cs_cl_add (const cs_cl *A, const cs_cl *B, cs_complex_t alpha, cs_complex_t beta) ; UF_long cs_cl_cholsol (UF_long order, const cs_cl *A, cs_complex_t *b) ; UF_long cs_cl_dupl (cs_cl *A) ; UF_long cs_cl_entry (cs_cl *T, UF_long i, UF_long j, cs_complex_t x) ; UF_long cs_cl_lusol (UF_long order, const cs_cl *A, cs_complex_t *b, double tol) ; UF_long cs_cl_gaxpy (const cs_cl *A, const cs_complex_t *x, cs_complex_t *y) ; cs_cl *cs_cl_multiply (const cs_cl *A, const cs_cl *B) ; UF_long cs_cl_qrsol (UF_long order, const cs_cl *A, cs_complex_t *b) ; cs_cl *cs_cl_transpose (const cs_cl *A, UF_long values) ; cs_cl *cs_cl_compress (const cs_cl *T) ; double cs_cl_norm (const cs_cl *A) ; UF_long cs_cl_print (const cs_cl *A, UF_long brief) ; cs_cl *cs_cl_load (FILE *f) ; /* utilities */ void *cs_cl_calloc (UF_long n, size_t size) ; void *cs_cl_free (void *p) ; void *cs_cl_realloc (void *p, UF_long n, size_t size, UF_long *ok) ; cs_cl *cs_cl_spalloc (UF_long m, UF_long n, UF_long nzmax, UF_long values, UF_long t) ; cs_cl *cs_cl_spfree (cs_cl *A) ; UF_long cs_cl_sprealloc (cs_cl *A, UF_long nzmax) ; void *cs_cl_malloc (UF_long n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_cl_symbolic /* symbolic Cholesky, LU, or QR analysis */ { UF_long *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ UF_long *q ; /* fill-reducing column permutation for LU and QR */ UF_long *parent ; /* elimination tree for Cholesky and QR */ UF_long *cp ; /* column pointers for Cholesky, row counts for QR */ UF_long *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */ UF_long m2 ; /* # of rows for QR, after adding fictitious rows */ double lnz ; /* # entries in L for LU or Cholesky; in V for QR */ double unz ; /* # entries in U for LU; in R for QR */ } cs_cls ; typedef struct cs_cl_numeric /* numeric Cholesky, LU, or QR factorization */ { cs_cl *L ; /* L for LU and Cholesky, V for QR */ cs_cl *U ; /* U for LU, r for QR, not used for Cholesky */ UF_long *pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } cs_cln ; typedef struct cs_cl_dmperm_results /* cs_cl_dmperm or cs_cl_scc output */ { UF_long *p ; /* size m, row permutation */ UF_long *q ; /* size n, column permutation */ UF_long *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */ UF_long *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */ UF_long nb ; /* # of blocks in fine dmperm decomposition */ UF_long rr [5] ; /* coarse row decomposition */ UF_long cc [5] ; /* coarse column decomposition */ } cs_cld ; UF_long *cs_cl_amd (UF_long order, const cs_cl *A) ; cs_cln *cs_cl_chol (const cs_cl *A, const cs_cls *S) ; cs_cld *cs_cl_dmperm (const cs_cl *A, UF_long seed) ; UF_long cs_cl_droptol (cs_cl *A, double tol) ; UF_long cs_cl_dropzeros (cs_cl *A) ; UF_long cs_cl_happly (const cs_cl *V, UF_long i, double beta, cs_complex_t *x) ; UF_long cs_cl_ipvec (const UF_long *p, const cs_complex_t *b, cs_complex_t *x, UF_long n) ; UF_long cs_cl_lsolve (const cs_cl *L, cs_complex_t *x) ; UF_long cs_cl_ltsolve (const cs_cl *L, cs_complex_t *x) ; cs_cln *cs_cl_lu (const cs_cl *A, const cs_cls *S, double tol) ; cs_cl *cs_cl_permute (const cs_cl *A, const UF_long *pinv, const UF_long *q, UF_long values) ; UF_long *cs_cl_pinv (const UF_long *p, UF_long n) ; UF_long cs_cl_pvec (const UF_long *p, const cs_complex_t *b, cs_complex_t *x, UF_long n) ; cs_cln *cs_cl_qr (const cs_cl *A, const cs_cls *S) ; cs_cls *cs_cl_schol (UF_long order, const cs_cl *A) ; cs_cls *cs_cl_sqr (UF_long order, const cs_cl *A, UF_long qr) ; cs_cl *cs_cl_symperm (const cs_cl *A, const UF_long *pinv, UF_long values) ; UF_long cs_cl_usolve (const cs_cl *U, cs_complex_t *x) ; UF_long cs_cl_utsolve (const cs_cl *U, cs_complex_t *x) ; UF_long cs_cl_updown (cs_cl *L, UF_long sigma, const cs_cl *C, const UF_long *parent) ; /* utilities */ cs_cls *cs_cl_sfree (cs_cls *S) ; cs_cln *cs_cl_nfree (cs_cln *N) ; cs_cld *cs_cl_dfree (cs_cld *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ UF_long *cs_cl_counts (const cs_cl *A, const UF_long *parent, const UF_long *post, UF_long ata) ; double cs_cl_cumsum (UF_long *p, UF_long *c, UF_long n) ; UF_long cs_cl_dfs (UF_long j, cs_cl *G, UF_long top, UF_long *xi, UF_long *pstack, const UF_long *pinv) ; UF_long *cs_cl_etree (const cs_cl *A, UF_long ata) ; UF_long cs_cl_fkeep (cs_cl *A, UF_long (*fkeep) (UF_long, UF_long, cs_complex_t, void *), void *other) ; cs_complex_t cs_cl_house (cs_complex_t *x, double *beta, UF_long n) ; UF_long *cs_cl_maxtrans (const cs_cl *A, UF_long seed) ; UF_long *cs_cl_post (const UF_long *parent, UF_long n) ; cs_cld *cs_cl_scc (cs_cl *A) ; UF_long cs_cl_scatter (const cs_cl *A, UF_long j, cs_complex_t beta, UF_long *w, cs_complex_t *x, UF_long mark,cs_cl *C, UF_long nz) ; UF_long cs_cl_tdfs (UF_long j, UF_long k, UF_long *head, const UF_long *next, UF_long *post, UF_long *stack) ; UF_long cs_cl_leaf (UF_long i, UF_long j, const UF_long *first, UF_long *maxfirst, UF_long *prevleaf, UF_long *ancestor, UF_long *jleaf) ; UF_long cs_cl_reach (cs_cl *G, const cs_cl *B, UF_long k, UF_long *xi, const UF_long *pinv) ; UF_long cs_cl_spsolve (cs_cl *L, const cs_cl *B, UF_long k, UF_long *xi, cs_complex_t *x, const UF_long *pinv, UF_long lo) ; UF_long cs_cl_ereach (const cs_cl *A, UF_long k, const UF_long *parent, UF_long *s, UF_long *w) ; UF_long *cs_cl_randperm (UF_long n, UF_long seed) ; /* utilities */ cs_cld *cs_cl_dalloc (UF_long m, UF_long n) ; cs_cl *cs_cl_done (cs_cl *C, void *w, void *x, UF_long ok) ; UF_long *cs_cl_idone (UF_long *p, cs_cl *C, void *w, UF_long ok) ; cs_cln *cs_cl_ndone (cs_cln *N, cs_cl *C, void *w, void *x, UF_long ok) ; cs_cld *cs_cl_ddone (cs_cld *D, cs_cl *C, void *w, UF_long ok) ; #endif /* -------------------------------------------------------------------------- */ /* Macros for constructing each version of CSparse */ /* -------------------------------------------------------------------------- */ #ifdef CS_LONG #define CS_INT UF_long #define CS_INT_MAX UF_long_max #define CS_ID UF_long_id #ifdef CS_COMPLEX #define CS_ENTRY cs_complex_t #define CS_NAME(nm) cs_cl ## nm #define cs cs_cl #else #define CS_ENTRY double #define CS_NAME(nm) cs_dl ## nm #define cs cs_dl #endif #else #define CS_INT int #define CS_INT_MAX INT_MAX #define CS_ID "%d" #ifdef CS_COMPLEX #define CS_ENTRY cs_complex_t #define CS_NAME(nm) cs_ci ## nm #define cs cs_ci #else #define CS_ENTRY double #define CS_NAME(nm) cs_di ## nm #define cs cs_di #endif #endif #ifdef CS_COMPLEX #define CS_REAL(x) creal(x) #define CS_IMAG(x) cimag(x) #define CS_CONJ(x) conj(x) #define CS_ABS(x) cabs(x) #else #define CS_REAL(x) (x) #define CS_IMAG(x) (0.) #define CS_CONJ(x) (x) #define CS_ABS(x) fabs(x) #endif #define CS_MAX(a,b) (((a) > (b)) ? (a) : (b)) #define CS_MIN(a,b) (((a) < (b)) ? (a) : (b)) #define CS_FLIP(i) (-(i)-2) #define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i)) #define CS_MARKED(w,j) (w [j] < 0) #define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; } #define CS_CSC(A) (A && (A->nz == -1)) #define CS_TRIPLET(A) (A && (A->nz >= 0)) /* --- primary CSparse routines and data structures ------------------------- */ #define cs_add CS_NAME (_add) #define cs_cholsol CS_NAME (_cholsol) #define cs_dupl CS_NAME (_dupl) #define cs_entry CS_NAME (_entry) #define cs_lusol CS_NAME (_lusol) #define cs_gaxpy CS_NAME (_gaxpy) #define cs_multiply CS_NAME (_multiply) #define cs_qrsol CS_NAME (_qrsol) #define cs_transpose CS_NAME (_transpose) #define cs_compress CS_NAME (_compress) #define cs_norm CS_NAME (_norm) #define cs_print CS_NAME (_print) #define cs_load CS_NAME (_load) /* utilities */ #define cs_calloc CS_NAME (_calloc) #define cs_free CS_NAME (_free) #define cs_realloc CS_NAME (_realloc) #define cs_spalloc CS_NAME (_spalloc) #define cs_spfree CS_NAME (_spfree) #define cs_sprealloc CS_NAME (_sprealloc) #define cs_malloc CS_NAME (_malloc) /* --- secondary CSparse routines and data structures ----------------------- */ #define css CS_NAME (s) #define csn CS_NAME (n) #define csd CS_NAME (d) #define cs_amd CS_NAME (_amd) #define cs_chol CS_NAME (_chol) #define cs_dmperm CS_NAME (_dmperm) #define cs_droptol CS_NAME (_droptol) #define cs_dropzeros CS_NAME (_dropzeros) #define cs_happly CS_NAME (_happly) #define cs_ipvec CS_NAME (_ipvec) #define cs_lsolve CS_NAME (_lsolve) #define cs_ltsolve CS_NAME (_ltsolve) #define cs_lu CS_NAME (_lu) #define cs_permute CS_NAME (_permute) #define cs_pinv CS_NAME (_pinv) #define cs_pvec CS_NAME (_pvec) #define cs_qr CS_NAME (_qr) #define cs_schol CS_NAME (_schol) #define cs_sqr CS_NAME (_sqr) #define cs_symperm CS_NAME (_symperm) #define cs_usolve CS_NAME (_usolve) #define cs_utsolve CS_NAME (_utsolve) #define cs_updown CS_NAME (_updown) /* utilities */ #define cs_sfree CS_NAME (_sfree) #define cs_nfree CS_NAME (_nfree) #define cs_dfree CS_NAME (_dfree) /* --- tertiary CSparse routines -------------------------------------------- */ #define cs_counts CS_NAME (_counts) #define cs_cumsum CS_NAME (_cumsum) #define cs_dfs CS_NAME (_dfs) #define cs_etree CS_NAME (_etree) #define cs_fkeep CS_NAME (_fkeep) #define cs_house CS_NAME (_house) #define cs_invmatch CS_NAME (_invmatch) #define cs_maxtrans CS_NAME (_maxtrans) #define cs_post CS_NAME (_post) #define cs_scc CS_NAME (_scc) #define cs_scatter CS_NAME (_scatter) #define cs_tdfs CS_NAME (_tdfs) #define cs_reach CS_NAME (_reach) #define cs_spsolve CS_NAME (_spsolve) #define cs_ereach CS_NAME (_ereach) #define cs_randperm CS_NAME (_randperm) #define cs_leaf CS_NAME (_leaf) /* utilities */ #define cs_dalloc CS_NAME (_dalloc) #define cs_done CS_NAME (_done) #define cs_idone CS_NAME (_idone) #define cs_ndone CS_NAME (_ndone) #define cs_ddone CS_NAME (_ddone) /* -------------------------------------------------------------------------- */ /* Conversion routines */ /* -------------------------------------------------------------------------- */ #ifndef NCOMPLEX cs_di *cs_i_real (cs_ci *A, int real) ; cs_ci *cs_i_complex (cs_di *A, int real) ; cs_dl *cs_l_real (cs_cl *A, UF_long real) ; cs_cl *cs_l_complex (cs_dl *A, UF_long real) ; #endif #ifdef __cplusplus } #endif #endif SuiteSparse/CXSparse_newfiles/Source/0000755001170100242450000000000010711425510016567 5ustar davisfacSuiteSparse/CXSparse_newfiles/Source/cs_house.c0000644001170100242450000000143610630067063020554 0ustar davisfac#include "cs.h" /* create a Householder reflection [v,beta,s]=house(x), overwrite x with v, * where (I-beta*v*v')*x = s*e1 and e1 = [1 0 ... 0]'. * Note that this CXSparse version is different than CSparse. See Higham, * Accuracy & Stability of Num Algorithms, 2nd ed, 2002, page 357. */ CS_ENTRY cs_house (CS_ENTRY *x, double *beta, CS_INT n) { CS_ENTRY s = 0 ; CS_INT i ; if (!x || !beta) return (-1) ; /* check inputs */ /* s = norm(x) */ for (i = 0 ; i < n ; i++) s += x [i] * CS_CONJ (x [i]) ; s = sqrt (s) ; if (s == 0) { (*beta) = 0 ; x [0] = 1 ; } else { /* s = sign(x[0]) * norm (x) ; */ if (x [0] != 0) { s *= x [0] / CS_ABS (x [0]) ; } x [0] += s ; (*beta) = 1. / CS_REAL (CS_CONJ (s) * x [0]) ; } return (-s) ; } SuiteSparse/CXSparse_newfiles/Source/cs_updown.c0000644001170100242450000000354610571364723020760 0ustar davisfac#include "cs.h" /* sparse Cholesky update/downdate, L*L' + sigma*w*w' (sigma = +1 or -1) */ CS_INT cs_updown (cs *L, CS_INT sigma, const cs *C, const CS_INT *parent) { CS_INT n, p, f, j, *Lp, *Li, *Cp, *Ci ; CS_ENTRY *Lx, *Cx, alpha, gamma, w1, w2, *w ; double beta = 1, beta2 = 1, delta ; #ifdef CS_COMPLEX cs_complex_t phase ; #endif if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ; /* check inputs */ Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ; Cp = C->p ; Ci = C->i ; Cx = C->x ; if ((p = Cp [0]) >= Cp [1]) return (1) ; /* return if C empty */ w = cs_malloc (n, sizeof (CS_ENTRY)) ; /* get workspace */ if (!w) return (0) ; /* out of memory */ f = Ci [p] ; for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ; /* f = min (find (C)) */ for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ; /* clear workspace w */ for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */ for (j = f ; j != -1 ; j = parent [j]) /* walk path f up to root */ { p = Lp [j] ; alpha = w [j] / Lx [p] ; /* alpha = w(j) / L(j,j) */ beta2 = beta*beta + sigma*alpha*CS_CONJ(alpha) ; if (beta2 <= 0) break ; /* not positive definite */ beta2 = sqrt (beta2) ; delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ; gamma = sigma * CS_CONJ(alpha) / (beta2 * beta) ; Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ; beta = beta2 ; #ifdef CS_COMPLEX phase = CS_ABS (Lx [p]) / Lx [p] ; /* phase = abs(L(j,j))/L(j,j)*/ Lx [p] *= phase ; /* L(j,j) = L(j,j) * phase */ #endif for (p++ ; p < Lp [j+1] ; p++) { w1 = w [Li [p]] ; w [Li [p]] = w2 = w1 - alpha * Lx [p] ; Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ; #ifdef CS_COMPLEX Lx [p] *= phase ; /* L(i,j) = L(i,j) * phase */ #endif } } cs_free (w) ; return (beta2 > 0) ; } SuiteSparse/CXSparse_newfiles/Source/cs_convert.c0000644001170100242450000000662010566670105021116 0ustar davisfac#include "cs.h" /* convert from complex to real (int version) */ /* C = real(A) if real is true, imag(A) otherwise */ cs_di *cs_i_real (cs_ci *A, int real) { cs_di *C ; int n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; cs_complex_t *Ax ; double *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_di_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? creal (Ax [p]) : cimag (Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from real to complex (int version) */ /* C = A if real is true, or C = i*A otherwise */ cs_ci *cs_i_complex (cs_di *A, int real) { cs_ci *C ; int n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; double *Ax ; cs_complex_t *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_ci_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? Ax [p] : (I * Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from complex to real (UF_long version) */ /* C = real(A) if real is true, imag(A) otherwise */ cs_dl *cs_l_real (cs_cl *A, UF_long real) { cs_dl *C ; UF_long n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; cs_complex_t *Ax ; double *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_dl_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? creal (Ax [p]) : cimag (Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } /* convert from real to complex (UF_long version) */ /* C = A if real is true, or C = i*A otherwise */ cs_cl *cs_l_complex (cs_dl *A, UF_long real) { cs_cl *C ; UF_long n, triplet, nn, p, nz, *Ap, *Ai, *Cp, *Ci ; double *Ax ; cs_complex_t *Cx ; if (!A || !A->x) return (NULL) ; /* return if A NULL or pattern-only */ n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ; triplet = (A->nz >= 0) ; /* true if A is a triplet matrix */ nz = triplet ? A->nz : Ap [n] ; C = cs_cl_spalloc (A->m, n, A->nzmax, 1, triplet) ; if (!C) return (NULL) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; nn = triplet ? nz : (n+1) ; for (p = 0 ; p < nz ; p++) Ci [p] = Ai [p] ; for (p = 0 ; p < nn ; p++) Cp [p] = Ap [p] ; for (p = 0 ; p < nz ; p++) Cx [p] = real ? Ax [p] : (I * Ax [p]) ; if (triplet) C->nz = nz ; return (C) ; } SuiteSparse/CXSparse_newfiles/Source/README.txt0000644001170100242450000000023710375603427020302 0ustar davisfacCXSparse/Source directory: primary ANSI C source code files for CXSparse. To compile the libcxsparse.a C-callable library, just type "make" in this directory. SuiteSparse/CXSparse_newfiles/README.txt0000644001170100242450000005751210711425615017045 0ustar davisfacCXSparse: a Concise Sparse Matrix package - Extended. Version 2.2.0, Copyright (c) 2006-2007, Timothy A. Davis. Derived from CSparse. Conversion originally by David Bateman, Motorola, and then modified by Tim Davis. ANSI C99 is required, with support for the _Complex data type. (if you use a C++ compiler, the C++ complex type is used instead). CXSparse is a version of CSparse that operates on both real and complex matrices, using either int or UF_long integers. A UF_long is normally just a long on most platforms, but becomes __int64 on WIN64. It now includes a MATLAB interface, enabling the use of CXSparse functions on both 32-bit and 64-bit platforms. To install for use in MATLAB, simply type "cs_install" in the MATLAB Command Window, while in the CXSparse/MATLAB directory. (NOTE: Windows users cannot use the "lcc" command; run "mex -setup" first, and select a different compiler). If you use the Unix "make" command in that directory instead and are using a 64-bit platform, then you must edit the CXSparse/MATLAB/Makefile first. Refer to the instructions in that file. Refer to "Direct Methods for Sparse Linear Systems," Timothy A. Davis, SIAM, Philadelphia, 2006. No detailed user guide is included in this package; the user guide is the book itself. To compile the C-library (./Source), C demo programs (./Demo) just type "make" in this directory. To run the exhaustive statement coverage tests, type "make" in the Tcov directory; the Tcov tests assume you are using Linux. To remove all files not in the original distribution, type "make distclean". I recommend that you use a different level of optimization than "cc -O", which was chosen so that the Makefile is portable. See Source/Makefile. If your C compiler does not support the ANSI C99 complex type, the #include statement will fail. If this happens, compile the code with the -DNCOMPLEX flag (the MATLAB cs_install will do this for you). This package is backward compatible with CSparse. That is, user code that uses CSparse may switch to using CXSparse without any changes to the user code. Each CXSparse function has a generic version with the same name as the CSparse function, and four type-specific versions. For example: cs_add same as cs_add_di by default, but can be changed to use UF_long integers if user code is compiled with -DCS_LONG, and/or can be changed to operate on complex matrices with -DCS_COMPLEX. cs_di_add double/int version of cs_add cs_dl_add double/UF_long version of cs_add cs_ci_add complex/int version of cs_add cs_cl_add complex/UF_long version of cs_add The sparse matrix data structures are treated in the same way: cs, css, csn, and csd become cs_di, cs_dis, cs_din, and cs_did for the double/int case, cs_cl, cs_cls, cs_cln, and cs_cld for the complex/UF_long case, and so on. See cs_demo.c for a type-generic user program, and cs_cl_demo.c for a type-specific version of the same program (complex/UF_long). Several macros are available in CXSparse (but not in CSparse) to allow user code to be written in a type-generic manner: CS_INT int by default, UF_long if -DCS_LONG compiler flag is used CS_ENTRY double by default, double complex if -DCS_COMPLEX flag is used. CS_ID "%d" or "%ld", for printf and scanf of the CS_INT type. CS_INT_MAX INT_MAX or LONG_MAX, the largest possible value of CS_INT. CS_REAL(x) x or creal(x) CS_IMAG(x) 0 or cimag(x) CS_CONJ(x) x or conj(x) CS_ABS(x) fabs(x) or cabs(x) Even the name of the include file (cs.h) is the same. To use CXSparse instead of CSparse, simply compile with -ICXSparse/Source instead of -ICSparse/Source, and link against libcxsparse.a instead of the CSparse libcsparse.a library. To determine at compile time if CXSparse or CSparse is being used: #ifdef CXSPARSE CXSparse is in use. The generic functions equivalent to CSparse may be used (cs_add, etc). These generic functions can use different types, depending on the -DCS_LONG and -DCS_COMPLEX compile flags, with the default being double/int. The type-specific functions and data types (cs_di_add, cs_di, CS_INT, etc.) can be used. #else CSparse is in use. Only the generic functions "cs_add", etc., are available, and they are of type double/int. #endif See cs.h for the prototypes of each function, and the book "Direct Methods for Sparse Linear Systems" for full documentation of CSparse and CXSparse. Other changes from CSparse: cs_transpose performs the complex conjugate transpose if values>0 (C=A'), the pattern-only transpose if values=0 (C=spones(A') in MATLAB), and the array transpose if values<0 (C=A.' in MATLAB notation). A set of four conversion routines are included in CXSparse, to convert real matrices to/from complex matrices. The Householder reflection constructed by cs_house.c also differs slightly, to accomodate both the real and complex cases properly. CXSparse is generated automatically from CSparse. Refer to http://www.cise.ufl.edu/research/sparse/CSparse for details. -------------------------------------------------------------------------------- Contents: -------------------------------------------------------------------------------- Demo/ demo C programs that use CXSparse Doc/ license and change log Makefile Makefile for the whole package MATLAB/ MATLAB interface, demos, and tests for CXSparse Matrix/ sample matrices (with extra complex matrices for CXSparse) README.txt this file Source/ primary CXSparse source files Tcov/ CXSparse tests -------------------------------------------------------------------------------- ./Doc: license and change log -------------------------------------------------------------------------------- ChangeLog changes in CSparse since first release lesser.txt the GNU LGPL License.txt license (GNU LGPL) -------------------------------------------------------------------------------- ./Source: Primary source code for CXSparse -------------------------------------------------------------------------------- cs_add.c add sparse matrices cs_amd.c approximate minimum degree cs_chol.c sparse Cholesky cs_cholsol.c x=A\b using sparse Cholesky cs_compress.c convert a compress form to compressed-column form cs_counts.c column counts for Cholesky and QR cs_convert.c convert real to complex and complex to real (not in CSparse) cs_cumsum.c cumulative sum cs_dfs.c depth-first-search cs_dmperm.c Dulmage-Mendelsohn permutation cs_droptol.c drop small entries from a sparse matrix cs_dropzeros.c drop zeros from a sparse matrix cs_dupl.c remove (and sum) duplicates cs_entry.c add an entry to a triplet matrix cs_ereach.c nonzero pattern of Cholesky L(k,:) from etree and triu(A(:,k)) cs_etree.c find elimination tree cs_fkeep.c drop entries from a sparse matrix cs_gaxpy.c sparse matrix times dense matrix cs.h include file for CXSparse cs_happly.c apply Householder reflection cs_house.c Householder reflection (*** NOTE: different algo. from CSparse) cs_ipvec.c x(p)=b cs_leaf.c determine if j is a leaf of the skeleton matrix and find lca cs_load.c load a sparse matrix from a file cs_lsolve.c x=L\b cs_ltsolve.c x=L'\b cs_lu.c sparse LU factorization cs_lusol.c x=A\b using sparse LU factorization cs_malloc.c memory manager cs_maxtrans.c maximum transveral (permutation for zero-free diagonal) cs_multiply.c sparse matrix multiply cs_norm.c sparse matrix norm cs_permute.c permute a sparse matrix cs_pinv.c invert a permutation vector cs_post.c postorder an elimination tree cs_print.c print a sparse matrix cs_pvec.c x=b(p) cs_qr.c sparse QR cs_qrsol.c solve a least-squares problem cs_randperm.c random permutation cs_reach.c find nonzero pattern of x=L\b for sparse L and b cs_scatter.c scatter a sparse vector cs_scc.c strongly-connected components cs_schol.c symbolic Cholesky cs_spsolve.c x=Z\b where Z, x, and b are sparse, and Z upper/lower triangular cs_sqr.c symbolic QR (also can be used for LU) cs_symperm.c symmetric permutation of a sparse matrix cs_tdfs.c depth-first-search of a tree cs_transpose.c transpose a sparse matrix cs_updown.c sparse rank-1 Cholesky update/downate cs_usolve.c x=U\b cs_util.c various utilities (allocate/free matrices, workspace, etc) cs_utsolve.c x=U'\b Makefile Makefile for CXSparse README.txt README file for CXSparse -------------------------------------------------------------------------------- ./Demo: C program demos -------------------------------------------------------------------------------- cs_ci_demo1.c complex/int version of cs_demo1.c cs_ci_demo2.c complex/int version of cs_demo2.c cs_ci_demo3.c complex/int version of cs_demo3.c cs_ci_demo.c complex/int version of cs_demo.c cs_ci_demo.h complex/int version of cs_demo.h cs_cl_demo1.c complex/UF_long version of cs_demo1.c cs_cl_demo2.c complex/UF_long version of cs_demo2.c cs_cl_demo3.c complex/UF_long version of cs_demo3.c cs_cl_demo.c complex/UF_long version of cs_demo.c cs_cl_demo.h complex/UF_long version of cs_demo.h cs_demo1.c read a matrix from a file and perform basic matrix operations cs_demo2.c read a matrix from a file and solve a linear system cs_demo3.c read a matrix, solve a linear system, update/downdate cs_demo.c support routines for cs_demo*.c cs_demo.h include file for demo programs cs_demo.out output of "make", which runs the demos on some matrices cs_di_demo1.c double/int version of cs_demo1.c cs_di_demo2.c double/int version of cs_demo2.c cs_di_demo3.c double/int version of cs_demo3.c cs_di_demo.c double/int version of cs_demo.c cs_di_demo.h double/int version of cs_demo.h cs_dl_demo1.c double/UF_long version of cs_demo1.c cs_dl_demo2.c double/UF_long version of cs_demo2.c cs_dl_demo3.c double/UF_long version of cs_demo3.c cs_dl_demo.c double/UF_long version of cs_demo.c cs_dl_demo.h double/UF_long version of cs_demo.h cs_idemo.c convert real matrices to/from complex (int version) cs_ldemo.c convert real matrices to/from complex (UF_long version) Makefile Makefile for Demo programs readhb.f read a Rutherford-Boeing matrix (real matrices only) README.txt Demo README file -------------------------------------------------------------------------------- ./MATLAB: MATLAB interface, demos, and tests -------------------------------------------------------------------------------- cs_install.m MATLAB function for compiling and installing CSparse for MATLAB CSparse/ MATLAB interface for CSparse Demo/ MATLAB demos for CSparse Makefile MATLAB interface Makefile README.txt MATLAB README file Test/ MATLAB test for CSparse, and "textbook" routines UFget/ MATLAB interface to UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./MATLAB/CSparse: MATLAB interface for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB interface to CSparse cs_add.m add two sparse matrices cs_add_mex.c cs_amd.m approximate minimum degree cs_amd_mex.c cs_chol.m sparse Cholesky cs_chol_mex.c cs_cholsol.m x=A\b using a sparse Cholesky cs_cholsol_mex.c cs_counts.m column counts for Cholesky or QR (like "symbfact" in MATLAB) cs_counts_mex.c cs_dmperm.m Dulmage-Mendelsohn permutation cs_dmperm_mex.c cs_dmsol.m x=A\b using dmperm cs_dmspy.m plot a picture of a dmperm-permuted matrix cs_droptol.m drop small entries cs_droptol_mex.c cs_esep.m find edge separator cs_etree.m compute elimination tree cs_etree_mex.c cs_gaxpy.m sparse matrix times dense vector cs_gaxpy_mex.c cs_lsolve.m x=L\b where L is lower triangular cs_lsolve_mex.c cs_ltsolve.m x=L'\b where L is lower triangular cs_ltsolve_mex.c cs_lu.m sparse LU factorization cs_lu_mex.c cs_lusol.m x=A\b using sparse LU factorization cs_lusol_mex.c cs_make.m compiles CSparse for use in MATLAB cs_mex.c support routines for CSparse mexFunctions cs_mex.h cs_multiply.m sparse matrix multiply cs_multiply_mex.c cs_must_compile.m determine if a source file needs to be compiled with mex cs_nd.m nested dissection cs_nsep.m find node separator cs_permute.m permute a sparse matrix cs_permute_mex.c cs_print.m print a sparse matrix cs_print_mex.c cs_qleft.m apply Householder vectors to the left cs_qright.m apply Householder vectors to the right cs_qr.m sparse QR factorization cs_qr_mex.c cs_qrsol.m solve a sparse least squares problem cs_qrsol_mex.c cs_randperm.m randdom permutation cs_randperm_mex.c cs_scc.m strongly-connected components cs_scc_mex.c cs_sep.m convert an edge separator into a node separator cs_sparse.m convert a triplet form matrix to a compress-column form cs_sparse_mex.c cs_symperm.m symmetric permutation of a sparse matrix cs_symperm_mex.c cs_sqr.m symbolic QR ordering and analysis cs_sqr_mex.c cs_thumb_mex.c compute small "thumbnail" of a sparse matrix (for cspy). cs_transpose.m transpose a sparse matrix cs_transpose_mex.c cs_updown.m sparse Cholesky update/downdate cs_updown_mex.c cs_usolve.m x=U\b where U is upper triangular cs_usolve_mex.c cs_utsolve.m x=U'\b where U is upper triangular cs_utsolve_mex.c cspy.m a color "spy" Makefile Makefile for CSparse MATLAB interface README.txt README file for CSparse MATLAB interface -------------------------------------------------------------------------------- ./MATLAB/Demo: MATLAB demos for CSparse -------------------------------------------------------------------------------- Contents.m Contents of MATLAB demo for CSparse cs_demo.m run all MATLAB demos for CSparse cs_demo1.m MATLAB version of Demo/cs_demo1.c cs_demo2.m MATLAB version of Demo/cs_demo2.c cs_demo3.m MATLAB version of Demo/cs_demo3.c private/ private functions for MATLAB demos README.txt README file for CSparse MATLAB demo -------------------------------------------------------------------------------- ./MATLAB/Demo/private: private functions for MATLAB demos -------------------------------------------------------------------------------- demo2.m demo 2 demo3.m demo 3 ex_1.m example 1 ex2.m example 2 ex3.m example 3 frand.m generate a random finite-element matrix get_problem.m get a matrix is_sym.m determine if a matrix is symmetric mesh2d1.m construct a 2D mesh (method 1) mesh2d2.m construct a 2D mesh (method 2) mesh3d1.m construct a 3D mesh (method 1) mesh3d2.m construct a 3D mesh (method 2) print_order.m print the ordering method used resid.m compute residual rhs.m create right-hand-side -------------------------------------------------------------------------------- ./MATLAB/Test: Extensive test of CSparse, in MATLAB -------------------------------------------------------------------------------- Makefile Makefile for MATLAB Test directory README.txt README file for MATLAB/Test Contents.m Contents of MATLAB/Test, "textbook" files only chol_downdate.m downdate a Cholesky factorization. chol_left.m left-looking Cholesky factorization. chol_left2.m left-looking Cholesky factorization, more details. chol_right.m right-looking Cholesky factorization. chol_super.m left-looking "supernodal" Cholesky factorization. chol_up.m up-looking Cholesky factorization. chol_update.m update a Cholesky factorization. chol_updown.m update or downdate a Cholesky factorization. cond1est.m 1-norm condition estimate. cs_fiedler.m the Fiedler vector of a connected graph. givens2.m find a Givens rotation. house.m find a Householder reflection. lu_left.m left-looking LU factorization. lu_right.m right-looking LU factorization. lu_rightp.m right-looking LU factorization, with partial pivoting. lu_rightpr.m recursive right-looking LU, with partial pivoting. lu_rightr.m recursive right-looking LU. norm1est.m 1-norm estimate. qr_givens.m Givens-rotation QR factorization. qr_givens_full.m Givens-rotation QR factorization, for full matrices. qr_left.m left-looking Householder QR factorization. qr_right.m right-looking Householder QR factorization. cs_fiedler.m Fiedler vector cs_frand.m generate a random finite-element matrix cs_frand_mex.c cs_ipvec.m x(p)=b cs_ipvec_mex.c cs_maxtransr.m recursive maximum matching algorithm cs_maxtransr_mex.c cs_pvec.m x=b(p) cs_pvec_mex.c interface for cs_pvec cs_reach.m non-recursive reach (interface to CSparse cs_reach) cs_reach_mex.c non-recursive x=spones(L\sparse(b)) cs_reachr.m recursive reach (interface to CSparse cs_reachr) cs_reachr_mex.c cs_rowcnt.m row counts for sparse Cholesky cs_rowcnt_mex.c row counts for sparse Cholesky cs_sparse2.m same as cs_sparse, to test cs_entry function cs_sparse2_mex.c like cs_sparse, but for testing cs_entry cs_test_make.m compiles MATLAB tests check_if_same.m check if two inputs are identical or not choldn.m Cholesky downdate cholup.m Cholesky update, using Given's rotations cholupdown.m Cholesky update/downdate (Bischof, Pan, and Tang method) cs_q1.m construct Q from Householder vectors cs_test_make.m compiles the CSparse, Demo, and Test mexFunctions. dmperm_test.m test cs_dmperm chol_example.m simple Cholesky factorization example etree_sample.m construct a sample etree and symbolic factorization gqr3.m QR factorization, based on Givens rotations happly.m apply Householder reflection to a vector hmake1.m construct a Householder reflection mynormest1.m estimate norm(A,1), using LU factorization (L*U = P*A*Q). myqr.m QR factorization using Householder reflections another_colormap.m try another color map cspy_test.m test cspy and cs_dmspy qr2.m QR factorization based on Householder reflections sample_colormap.m try a colormap for use in cspy signum.m compute and display the sign of a column vector x sqr_example.m test cs_sqr dmspy_test.m test cspy, cs_dmspy, and cs_dmperm test_qr.m test various QR factorization methods test_randperms.m test random permutations testh.m test Householder reflections test_qr1.m test QR factorizations test_qrsol.m test cs_qrsol test_sep.m test cs_sep, and compare with Gilbert's meshpart vtxsep testall.m test all CSparse functions (run tests 1 to 28 below) test1.m test cs_transpose test2.m test cs_sparse test3.m test cs_lsolve, cs_ltsolve, cs_usolve, cs_chol test4.m test cs_multiply test5.m test cs_add test6.m test cs_reach, cs_reachr, cs_lsolve, cs_usolve test7.m test cs_lu test8.m test cs_cholsol, cs_lusol test9.m test cs_qr test10.m test cs_qr test11.m test cs_rowcnt test12.m test cs_qr and compare with svd test13.m test cs_counts, cs_etree test14.m test cs_droptol test15.m test cs_amd test16.m test cs_amd test17.m test cs_qr, cs_qright, cs_q1, cs_qrleft, cs_qrsol test18.m test iterative refinement after backslash test19.m test cs_dmperm, cs_maxtransr, cs_dmspy, cs_scc test20.m test cholupdown test21.m test cs_updown test22.m test cond1est test23.m test cs_dmspy test24.m test cs_fielder test25.m test cs_nd test26.m test cs_dmsol and cs_dmspy test27.m test cs_qr, cs_utsolve, cs_qrsol test28.m test cs_randperm, cs_dmperm -------------------------------------------------------------------------------- ./MATLAB/UFget: MATLAB interface for the UF Sparse Matrix Collection -------------------------------------------------------------------------------- Contents.m Contents of UFget mat/ default directory where downloaded matrices will be put README.txt README file for UFget UFget_defaults.m default parameter settings UFget_example.m example of use UFget_install.m installs UFget temporarily (for current session) UFget_java.class read a url and load it in into MATLAB (compiled Java code) UFget_java.java read a url and load it in into MATLAB (Java source code) UFget_lookup.m look up a matrix in the index UFget.m UFget itself (primary user interface) UFweb.m open url for a matrix or collection mat/UF_Index.mat index of matrices in UF Sparse Matrix Collection -------------------------------------------------------------------------------- ./Matrix: Sample matrices, most from Rutherford/Boeing collection -------------------------------------------------------------------------------- ash219 overdetermined pattern of Holland survey. Ashkenazi, 1974. bcsstk01 stiffness matrix for small generalized eigenvalue problem bcsstk16 stiffness matrix, Corp of Engineers dam fs_183_1 unsymmetric facsimile convergence matrix lp_afiro NETLIB afiro linear programming problem mbeacxc US economy, 1972. Dan Szyld, while at NYU t1 small example used in Chapter 2 west0067 Cavett problem with 5 components (chemical eng., Westerberg) c_mbeacxc complex version of mbeacxc c_west0067 complex version of west0067 mhd1280b Alfven spectra in magnetohydrodynamics (complex) neumann complex matrix qc324 model of H+ in an electromagnetic field (complex) t2 small complex matrix t3 small complex matrix t4 small complex matrix c4 small complex matrix young1c aeronautical problem (complex matrix) -------------------------------------------------------------------------------- ./Tcov: Exhaustive test coverage of CXSparse -------------------------------------------------------------------------------- covall same as covall.linux covall.linux find coverage (Linux) covall.sol find coverage (Solaris) cov.awk coverage summary cover print uncovered lines covs print uncovered lines cstcov_malloc_test.c malloc test cstcov_malloc_test.h cstcov_test.c main program for Tcov tests gcovs run gcov (Linux) Makefile Makefile for Tcov tests nil an empty matrix zero a 1-by-1 zero matrix czero a 1-by-1 complex zero matrix README.txt README file for Tcov directory -------------------------------------------------------------------------------- Change Log: -------------------------------------------------------------------------------- Refer to CSparse for changes in CSparse, which are immediately propagated into CXSparse (those Change Log entries are not repeated here). Nov 1, 2007. version 2.2.1 CXSparse/MATLAB/Test ported to Windows May 31, 2007. version 2.2.0 * back-port to MATLAB 7.2 and earlier (which does not have mwIndex). * more graceful failure in cs_make when attempting complex matrix support (Windows, in particular) * correction to CXSparse/Demo/Makefile * added sizeof(CS_INT) printout to cs_idemo.c, cs_ldemo.c Mar 14, 2007. Version 2.1.0. * MATLAB interface added for CXSparse. * cs_complex_t type added (a #define for "double _Complex", which is the complex type used in CXSparse 2.0.x). When compiling with a C++ compiler, the std::compex type is used for the complex case. * bug fix in complex sparse Cholesky (cs_chol.c). * bug fix in complex sparse Cholesky update/downdate (cs_updown.c). * bug fix in cs_symperm for the complex case. * "beta" changed from complex to real, in sparse QR (cs_house.c, cs_happly.c, cs_qr.c), (a performance/memory improvement, not a bug fix). Similar change to "nz2" in cs_cumsum.c. May 5, 2006. Version 2.0.1 released. * long changed to UF_long, dependency in ../UFconfig/UFconfig.h added. "UF_long" is a #define'd term in UFconfig.h. It is normally defined as "long", but can be redefined as something else if desired. On Windows-64, it becomes __int64. Mar 6, 2006 "double complex" changed to "double _Complex", to avoid conflicts when CXSparse is compiled with a C++ compiler. Other minor changes to cs.h. SuiteSparse/CCOLAMD/0000755001170100242450000000000010620614432013007 5ustar davisfacSuiteSparse/CCOLAMD/Doc/0000755001170100242450000000000010711427601013515 5ustar davisfacSuiteSparse/CCOLAMD/Doc/ChangeLog0000644001170100242450000000153210711427577015304 0ustar davisfacNov 1, 2007: version 2.7.1 * minor changes to MATLAB test code May 31, 2007: version 2.7.0 * ported to 64-bit MATLAB * subdirectories added (Source/, Include/, Lib/, Doc/, MATLAB/, Demo/) Dec 12, 2006, version 2.5.2 * minor MATLAB clean up Apr 30, 2006: version 2.5 * ccolamd_recommended modified. Now returns size_t; 0 on error, > 0 if successful. Version number updated to synchronize with COLAMD. * long replaced with UF_long integer, which is long except on WIN64 Nov 15, 2005 * ccolamd_global.c added to ccolamd_make.m (version is still 1.0). Oct 10, 2005 * changed definition of ccolamd_printf to "extern" Version 1.0, released (Aug. 30, 2005) * CCOLAMD version 1.0 is derived from COLAMD version 2.4. Refer to the COLAMD ChangeLog file for the changes made to COLAMD since COLAMD Version 1.0. SuiteSparse/CCOLAMD/Doc/lesser.txt0000644001170100242450000006350010254023205015551 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CCOLAMD/Lib/0000755001170100242450000000000010711435724013523 5ustar davisfacSuiteSparse/CCOLAMD/Lib/Makefile0000644001170100242450000000146110617106661015165 0ustar davisfac#------------------------------------------------------------------------------- # CCOLAMD Makefile #------------------------------------------------------------------------------- default: libccolamd.a include ../../UFconfig/UFconfig.mk I = -I../Include -I../../UFconfig INC = ../Include/ccolamd.h ../../UFconfig/UFconfig.h SRC = ../Source/ccolamd.c ../Source/ccolamd_global.c # creates libccolamd.a, a C-callable COLAMD library libccolamd.a: $(SRC) $(INC) $(CC) $(CFLAGS) $(I) -c ../Source/ccolamd_global.c $(CC) $(CFLAGS) $(I) -c ../Source/ccolamd.c $(CC) $(CFLAGS) $(I) -c ../Source/ccolamd.c -DDLONG -o ccolamd_l.o $(AR) libccolamd.a ccolamd.o ccolamd_l.o ccolamd_global.o ccode: libccolamd.a library: libccolamd.a clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) libccolamd.a SuiteSparse/CCOLAMD/Demo/0000755001170100242450000000000010711435724013701 5ustar davisfacSuiteSparse/CCOLAMD/Demo/ccolamd_example.c0000644001170100242450000001430210616375115017163 0ustar davisfac/* ========================================================================== */ /* === ccolamd and csymamd example ========================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * ccolamd example of use, to order the columns of a 5-by-4 matrix with * 11 nonzero entries in the following nonzero pattern, with default knobs * and no ordering constraints. * * x 0 x 0 * x 0 x x * 0 x x 0 * 0 0 x x * x x 0 0 * * csymamd example of use, to order the rows and columns of a 5-by-5 * matrix with 13 nonzero entries in the following nonzero pattern, * with default knobs and no ordering constraints. * * x x 0 0 0 * x x x x 0 * 0 x x 0 0 * 0 x 0 x x * 0 0 0 x x * * (where x denotes a nonzero value). */ /* ========================================================================== */ #include #include "ccolamd.h" #define A_NNZ 11 #define A_NROW 5 #define A_NCOL 4 #define ALEN 150 /* size max (2.2*nnz+17*ncol+7*nrow+6, 23*ncol+7*nrow+6) */ #define B_NNZ 4 #define B_N 5 int main (void) { /* ====================================================================== */ /* input matrix A definition */ /* ====================================================================== */ int A [ALEN] = { 0, 1, 4, /* row indices of nonzeros in column 0 */ 2, 4, /* row indices of nonzeros in column 1 */ 0, 1, 2, 3, /* row indices of nonzeros in column 2 */ 1, 3} ; /* row indices of nonzeros in column 3 */ int p [ ] = { 0, /* column 0 is in A [0..2] */ 3, /* column 1 is in A [3..4] */ 5, /* column 2 is in A [5..8] */ 9, /* column 3 is in A [9..10] */ A_NNZ} ; /* number of nonzeros in A */ /* ====================================================================== */ /* input matrix B definition */ /* ====================================================================== */ int B [ ] = { /* Note: only strictly lower triangular part */ /* is included, since symamd ignores the */ /* diagonal and upper triangular part of B. */ 1, /* row indices of nonzeros in column 0 */ 2, 3, /* row indices of nonzeros in column 1 */ /* row indices of nonzeros in column 2 (none) */ 4 /* row indices of nonzeros in column 3 */ } ; /* row indices of nonzeros in column 4 (none) */ int q [ ] = { 0, /* column 0 is in B [0] */ 1, /* column 1 is in B [1..2] */ 3, /* column 2 is empty */ 3, /* column 3 is in B [3] */ 4, /* column 4 is empty */ B_NNZ} ; /* number of nonzeros in strictly lower B */ /* ====================================================================== */ /* other variable definitions */ /* ====================================================================== */ int perm [B_N+1] ; /* note the size is N+1 */ int stats [CCOLAMD_STATS] ; /* for ccolamd and csymamd output statistics */ int row, col, pp, length, ok ; /* ====================================================================== */ /* dump the input matrix A */ /* ====================================================================== */ printf ("ccolamd %d-by-%d input matrix:\n", A_NROW, A_NCOL) ; for (col = 0 ; col < A_NCOL ; col++) { length = p [col+1] - p [col] ; printf ("Column %d, with %d entries:\n", col, length) ; for (pp = p [col] ; pp < p [col+1] ; pp++) { row = A [pp] ; printf (" row %d\n", row) ; } } /* ====================================================================== */ /* order the matrix. Note that this destroys A and overwrites p */ /* ====================================================================== */ ok = ccolamd (A_NROW, A_NCOL, ALEN, A, p, (double *) NULL, stats, NULL) ; ccolamd_report (stats) ; if (!ok) { printf ("ccolamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the column ordering */ /* ====================================================================== */ printf ("ccolamd column ordering:\n") ; printf ("1st column: %d\n", p [0]) ; printf ("2nd column: %d\n", p [1]) ; printf ("3rd column: %d\n", p [2]) ; printf ("4th column: %d\n", p [3]) ; /* ====================================================================== */ /* dump the strictly lower triangular part of symmetric input matrix B */ /* ====================================================================== */ printf ("\n\ncsymamd %d-by-%d input matrix:\n", B_N, B_N) ; printf ("Entries in strictly lower triangular part:\n") ; for (col = 0 ; col < B_N ; col++) { length = q [col+1] - q [col] ; printf ("Column %d, with %d entries:\n", col, length) ; for (pp = q [col] ; pp < q [col+1] ; pp++) { row = B [pp] ; printf (" row %d\n", row) ; } } /* ====================================================================== */ /* order the matrix B. Note that this does not modify B or q. */ /* ====================================================================== */ ok = csymamd (B_N, B, q, perm, (double *) NULL, stats, &calloc, &free, NULL, -1) ; csymamd_report (stats) ; if (!ok) { printf ("csymamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the symmetric ordering */ /* ====================================================================== */ printf ("csymamd column ordering:\n") ; printf ("1st row/column: %d\n", perm [0]) ; printf ("2nd row/column: %d\n", perm [1]) ; printf ("3rd row/column: %d\n", perm [2]) ; printf ("4th row/column: %d\n", perm [3]) ; printf ("5th row/column: %d\n", perm [4]) ; return (0) ; } SuiteSparse/CCOLAMD/Demo/Makefile0000644001170100242450000000256210617106610015340 0ustar davisfac#----------------------------------------------------------------------------- # compile the CCOLAMD demo #----------------------------------------------------------------------------- default: ccolamd_example ccolamd_l_example include ../../UFconfig/UFconfig.mk I = -I../Include -I../../UFconfig C = $(CC) $(CFLAGS) $(I) library: ( cd ../Lib ; $(MAKE) ) #------------------------------------------------------------------------------ # Create the demo program, run it, and compare the output #------------------------------------------------------------------------------ dist: ccolamd_example: ccolamd_example.c library $(C) -o ccolamd_example ccolamd_example.c ../Lib/libccolamd.a -lm - ./ccolamd_example > my_ccolamd_example.out - diff ccolamd_example.out my_ccolamd_example.out ccolamd_l_example: ccolamd_l_example.c library $(C) -o ccolamd_l_example ccolamd_l_example.c ../Lib/libccolamd.a -lm - ./ccolamd_l_example > my_ccolamd_l_example.out - diff ccolamd_example.out my_ccolamd_example.out #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) ccolamd_example ccolamd_l_example - $(RM) my_ccolamd_example.out my_ccolamd_l_example.out SuiteSparse/CCOLAMD/Demo/ccolamd_l_example.out0000644001170100242450000000210110711431134020043 0ustar davisfacccolamd 5-by-4 input matrix: Column 0, with 3 entries: row 0 row 1 row 4 Column 1, with 2 entries: row 2 row 4 Column 2, with 4 entries: row 0 row 1 row 2 row 3 Column 3, with 2 entries: row 1 row 3 ccolamd version 2.7, Nov 1, 2007: OK. ccolamd: number of dense or empty rows ignored: 0 ccolamd: number of dense or empty columns ignored: 0 ccolamd: number of garbage collections performed: 0 ccolamd_l column ordering: 1st column: 1 2nd column: 0 3rd column: 3 4th column: 2 csymamd_l 5-by-5 input matrix: Entries in strictly lower triangular part: Column 0, with 1 entries: row 1 Column 1, with 2 entries: row 2 row 3 Column 2, with 0 entries: Column 3, with 1 entries: row 4 Column 4, with 0 entries: csymamd version 2.7, Nov 1, 2007: OK. csymamd: number of dense or empty rows ignored: 0 csymamd: number of dense or empty columns ignored: 0 csymamd: number of garbage collections performed: 0 csymamd_l column ordering: 1st row/column: 0 2nd row/column: 2 3rd row/column: 1 4th row/column: 3 5th row/column: 4 SuiteSparse/CCOLAMD/Demo/ccolamd_example.out0000644001170100242450000000207310711431133017537 0ustar davisfacccolamd 5-by-4 input matrix: Column 0, with 3 entries: row 0 row 1 row 4 Column 1, with 2 entries: row 2 row 4 Column 2, with 4 entries: row 0 row 1 row 2 row 3 Column 3, with 2 entries: row 1 row 3 ccolamd version 2.7, Nov 1, 2007: OK. ccolamd: number of dense or empty rows ignored: 0 ccolamd: number of dense or empty columns ignored: 0 ccolamd: number of garbage collections performed: 0 ccolamd column ordering: 1st column: 1 2nd column: 0 3rd column: 3 4th column: 2 csymamd 5-by-5 input matrix: Entries in strictly lower triangular part: Column 0, with 1 entries: row 1 Column 1, with 2 entries: row 2 row 3 Column 2, with 0 entries: Column 3, with 1 entries: row 4 Column 4, with 0 entries: csymamd version 2.7, Nov 1, 2007: OK. csymamd: number of dense or empty rows ignored: 0 csymamd: number of dense or empty columns ignored: 0 csymamd: number of garbage collections performed: 0 csymamd column ordering: 1st row/column: 0 2nd row/column: 2 3rd row/column: 1 4th row/column: 3 5th row/column: 4 SuiteSparse/CCOLAMD/Demo/ccolamd_l_example.c0000644001170100242450000001444510616375173017512 0ustar davisfac/* ========================================================================== */ /* === ccolamd and csymamd example (UF_long integer version) ================ */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * ccolamd example of use, to order the columns of a 5-by-4 matrix with * 11 nonzero entries in the following nonzero pattern, with default knobs * and no ordering constraints. * * x 0 x 0 * x 0 x x * 0 x x 0 * 0 0 x x * x x 0 0 * * csymamd example of use, to order the rows and columns of a 5-by-5 * matrix with 13 nonzero entries in the following nonzero pattern, * with default knobs and no ordering constraints. * * x x 0 0 0 * x x x x 0 * 0 x x 0 0 * 0 x 0 x x * 0 0 0 x x * * (where x denotes a nonzero value). */ /* ========================================================================== */ #include #include "ccolamd.h" #define A_NNZ 11 #define A_NROW 5 #define A_NCOL 4 #define ALEN 150 /* size max (2.2*nnz+17*ncol+7*nrow+6, 23*ncol+7*nrow+6) */ #define B_NNZ 4 #define B_N 5 /* define UF_long */ #include "UFconfig.h" int main (void) { /* ====================================================================== */ /* input matrix A definition */ /* ====================================================================== */ UF_long A [ALEN] = { 0, 1, 4, /* row indices of nonzeros in column 0 */ 2, 4, /* row indices of nonzeros in column 1 */ 0, 1, 2, 3, /* row indices of nonzeros in column 2 */ 1, 3} ; /* row indices of nonzeros in column 3 */ UF_long p [ ] = { 0, /* column 0 is in A [0..2] */ 3, /* column 1 is in A [3..4] */ 5, /* column 2 is in A [5..8] */ 9, /* column 3 is in A [9..10] */ A_NNZ} ; /* number of nonzeros in A */ /* ====================================================================== */ /* input matrix B definition */ /* ====================================================================== */ UF_long B [ ] = { /* Note: only strictly lower triangular part */ /* is included, since symamd ignores the */ /* diagonal and upper triangular part of B. */ 1, /* row indices of nonzeros in column 0 */ 2, 3, /* row indices of nonzeros in column 1 */ /* row indices of nonzeros in column 2 (none) */ 4 /* row indices of nonzeros in column 3 */ } ; /* row indices of nonzeros in column 4 (none) */ UF_long q [ ] = { 0, /* column 0 is in B [0] */ 1, /* column 1 is in B [1..2] */ 3, /* column 2 is empty */ 3, /* column 3 is in B [3] */ 4, /* column 4 is empty */ B_NNZ} ; /* number of nonzeros in strictly lower B */ /* ====================================================================== */ /* other variable definitions */ /* ====================================================================== */ UF_long perm [B_N+1] ; /* note the size is N+1 */ UF_long stats [CCOLAMD_STATS] ; /* for ccolamd and csymamd output stats */ UF_long row, col, pp, length, ok ; /* ====================================================================== */ /* dump the input matrix A */ /* ====================================================================== */ printf ("ccolamd %d-by-%d input matrix:\n", A_NROW, A_NCOL) ; for (col = 0 ; col < A_NCOL ; col++) { length = p [col+1] - p [col] ; printf ("Column %ld, with %ld entries:\n", col, length) ; for (pp = p [col] ; pp < p [col+1] ; pp++) { row = A [pp] ; printf (" row %ld\n", row) ; } } /* ====================================================================== */ /* order the matrix. Note that this destroys A and overwrites p */ /* ====================================================================== */ ok = ccolamd_l (A_NROW, A_NCOL, ALEN, A, p, (double *) NULL, stats, NULL) ; ccolamd_l_report (stats) ; if (!ok) { printf ("ccolamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the column ordering */ /* ====================================================================== */ printf ("ccolamd_l column ordering:\n") ; printf ("1st column: %ld\n", p [0]) ; printf ("2nd column: %ld\n", p [1]) ; printf ("3rd column: %ld\n", p [2]) ; printf ("4th column: %ld\n", p [3]) ; /* ====================================================================== */ /* dump the strictly lower triangular part of symmetric input matrix B */ /* ====================================================================== */ printf ("\n\ncsymamd_l %d-by-%d input matrix:\n", B_N, B_N) ; printf ("Entries in strictly lower triangular part:\n") ; for (col = 0 ; col < B_N ; col++) { length = q [col+1] - q [col] ; printf ("Column %ld, with %ld entries:\n", col, length) ; for (pp = q [col] ; pp < q [col+1] ; pp++) { row = B [pp] ; printf (" row %ld\n", row) ; } } /* ====================================================================== */ /* order the matrix B. Note that this does not modify B or q. */ /* ====================================================================== */ ok = csymamd_l (B_N, B, q, perm, (double *) NULL, stats, &calloc, &free, NULL, -1) ; csymamd_l_report (stats) ; if (!ok) { printf ("csymamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the symmetric ordering */ /* ====================================================================== */ printf ("csymamd_l column ordering:\n") ; printf ("1st row/column: %ld\n", perm [0]) ; printf ("2nd row/column: %ld\n", perm [1]) ; printf ("3rd row/column: %ld\n", perm [2]) ; printf ("4th row/column: %ld\n", perm [3]) ; printf ("5th row/column: %ld\n", perm [4]) ; return (0) ; } SuiteSparse/CCOLAMD/Makefile0000644001170100242450000000223210617106475014457 0ustar davisfac#------------------------------------------------------------------------------ # CCOLAMD Makefile #------------------------------------------------------------------------------ default: demo include ../UFconfig/UFconfig.mk # Compile all C code, including the C-callable routine and the mexFunctions. # Do not the MATLAB interface. demo: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile all C code, including the C-callable routine and the mexFunctions. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # compile just the C-callable libraries (not mexFunctions or Demos) library: ( cd Lib ; $(MAKE) ) # remove object files, but keep the compiled programs and library archives clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) distclean: purge # get ready for distribution dist: purge ( cd Demo ; $(MAKE) dist ) ccode: library lib: library # compile the MATLAB mexFunction mex: ( cd MATLAB ; $(MAKE) ) SuiteSparse/CCOLAMD/MATLAB/0000755001170100242450000000000010711653400013746 5ustar davisfacSuiteSparse/CCOLAMD/MATLAB/ccolamd_demo.m0000644001170100242450000001545510620370041016540 0ustar davisfac%CCOLAMD_DEMO demo for ccolamd and csymamd % minimum degree ordering algorithm. % % Example: % ccolamd_demo % % See also ccolamd % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. %------------------------------------------------------------------------------- % Print the introduction, the help info, and compile the mexFunctions %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'ccolamd/csymamd demo.') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help ccolamd_demo ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'ccolamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help ccolamd ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'csymamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help csymamd ; %------------------------------------------------------------------------------- % Solving Ax=b %------------------------------------------------------------------------------- n = 100 ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Solving Ax=b for a small %d-by-%d random matrix:', n, n) ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, '\nNote: Random sparse matrices are AWFUL test cases.\n') ; fprintf (1, 'They''re just easy to generate in a demo.\n') ; % set up the system rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; A = sprandn (n, n, 2/n) + speye (n) ; b = (1:n)' ; figure (1) clf ; subplot (2,2,1) spy (A) title ('original matrix') fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from ccolamd:\n') ; q = ccolamd (A, 1) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); subplot (2,2,2) ; spy (L|U) ; title ('LU with ccolamd') ; try fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colamd:\n') ; q = colamd (A) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); subplot (2,2,3) ; spy (L|U) ; title ('LU with colamd') ; catch fprintf (1, 'You have a very old version of MATLAB (no colamd) \n') ; end fprintf (1, '\n\nSolving via lu (PA = LU), without regard for sparsity:\n') ; [L,U,P] = lu (A) ; fl = luflops (L, U) ; x = U \ (L \ (P * b)) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); subplot (2,2,4) ; spy (L|U) ; title ('LU with no ordering') ; %------------------------------------------------------------------------------- % Large demo for ccolamd %------------------------------------------------------------------------------- % Since the analysis will be done on the Cholesky factorization of A'A, % set the knob to tell ccolamd to order for Cholesky, not LU. fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for ccolamd (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; n = 1000 ; fprintf (1, 'Generating a random %d-by-%d sparse matrix.\n', n, n) ; A = sprandn (n, n, 2/n) + speye (n) ; figure (2) clf ; subplot (2,2,1) spy (A) title ('original matrix') fprintf (1, '\n\nUnordered matrix:\n') ; [lnz,h,parent,post,R] = symbfact (A, 'col') ; fprintf (1, 'nz in Cholesky factors of A''A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A''A: %d\n', sum (lnz.^2)) ; subplot (2,2,4) ; spy (R) ; title ('Cholesky with no ordering') ; tic ; p = ccolamd (A) ; t = toc ; [lnz,h,parent,post,R] = symbfact (A (:,p), 'col') ; fprintf (1, '\n\nccolamd run time: %f\n', t) ; fprintf (1, 'ccolamd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ; subplot (2,2,2) ; spy (R) ; title ('Cholesky with ccolamd') ; try tic ; p = colamd (A) ; t = toc ; [lnz,h,parent,post,R] = symbfact (A (:,p), 'col') ; fprintf (1, '\n\ncolamd run time: %f\n', t) ; fprintf (1, 'colamd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ; subplot (2,2,3) ; spy (R) ; title ('Cholesky with colamd') ; catch fprintf (1, 'You have a very old version of MATLAB (no colamd) \n') ; end %------------------------------------------------------------------------------- % Large demo for csymamd %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for csymamd (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Generating a random symmetric %d-by-%d sparse matrix.\n', n, n) ; A = A+A' ; figure (3) clf ; subplot (2,2,1) spy (A) title ('original matrix') fprintf (1, '\n\nUnordered matrix:\n') ; [lnz,h,parent,post,R] = symbfact (A, 'sym') ; fprintf (1, 'nz in Cholesky factors of A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A: %d\n', sum (lnz.^2)) ; subplot (2,2,4) ; spy (R) ; title ('Cholesky with no ordering') ; tic ; p = csymamd (A) ; t = toc ; [lnz,h,parent,post,R] = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\ncsymamd run time: %f\n', t) ; fprintf (1, 'csymamd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; subplot (2,2,2) ; spy (R) ; title ('Cholesky with csymamd') ; try tic ; p = symamd (A) ; t = toc ; lnz = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\nsymamd run time: %f\n', t) ; fprintf (1, 'symamd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; subplot (2,2,3) ; spy (R) ; title ('Cholesky with symamd') ; catch fprintf (1, 'You have a very old version of MATLAB (no symamd) \n') ; end drawnow SuiteSparse/CCOLAMD/MATLAB/Makefile0000644001170100242450000000134610617240104015410 0ustar davisfac# CCOLAMD Makefile for MATLAB mexFunctions default: ccolamd2 csymamd2 include ../../UFconfig/UFconfig.mk I = -I../../UFconfig -I../Include INC = ../Include/ccolamd.h ../../UFconfig/UFconfig.h SRC = ../Source/ccolamd.c ../Source/ccolamd_global.c MX = $(MEX) -DDLONG $(I) # Compiles the MATLAB-callable routines mex: ccolamd2 csymamd2 csymamd2: csymamdmex.c $(INC) $(SRC) $(MX) -output csymamd csymamdmex.c $(SRC) ccolamd2: ccolamdmex.c $(INC) $(SRC) $(MX) -output ccolamd ccolamdmex.c $(SRC) # Compiles the extensive test code test: mex ccolamdtestmex.c csymamdtestmex.c $(INC) $(SRC) $(MX) ccolamdtestmex.c $(SRC) $(MX) csymamdtestmex.c $(SRC) clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) *.mex* *.dll SuiteSparse/CCOLAMD/MATLAB/ccolamd_make.m0000644001170100242450000000144710620370175016535 0ustar davisfacfunction ccolamd_make %CCOLAMD_MAKE compiles CCOLAMD and CSYMAMD for MATLAB % % Example: % ccolamd_make % % See also ccolamd, csymamd % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. details = 0 ; % 1 if details of each command are to be printed d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end src = '../Source/ccolamd.c ../Source/ccolamd_global.c' ; cmd = sprintf ('mex -DDLONG -O %s -I../../UFconfig -I../Include -output ', d) ; s = [cmd 'ccolamd ccolamdmex.c ' src] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; s = [cmd 'csymamd csymamdmex.c ' src] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; fprintf ('CCOLAMD and CSYMAMD successfully compiled.\n') ; SuiteSparse/CCOLAMD/MATLAB/ccolamdtestmex.c0000644001170100242450000003350710616375256017154 0ustar davisfac/* ========================================================================== */ /* === ccolamdtest mexFunction ============================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * This MATLAB mexFunction is for testing only. It is not meant for * production use. See ccolamdmex.c and ccolamd.m instead. * * Usage: * * [ P, stats ] = ccolamdtest (A, knobs) ; * * The stats vector is optional. knobs is required: * * knobs (1) order for LU if nonzero, Cholesky otherwise. default 0 * knobs (2) spumoni, default 0. * knobs (3) dense row control. default 10 * knobs (4) dense column control. default 10 * knobs (5) aggresive absorption if nonzero. default: 1 * * knobs (6) for testing only. Controls the workspace used. * knobs (7) for testing only. Controls how the input matrix is * jumbled prior to calling colamd, to test its error * handling capability. * * see ccolamd.c for a description of the stats array. * */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "ccolamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" /* Here only for testing */ #undef MIN #undef MAX #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define CCOLAMD_MIN_MEMORY(nnz,n_row,n_col) \ (MAX (2 * nnz, 4 * n_col) + \ 8*n_col + 6*n_row + n_col + (nnz / 5) \ + ((3 * n_col) + 1) + 5 * (n_col + 1) + n_row) /* ========================================================================== */ /* === dump_matrix ========================================================== */ /* ========================================================================== */ static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) { UF_long col, k, row ; mexPrintf ("dump matrix: nrow %d ncol %d Alen %d\n", n_row, n_col, Alen) ; for (col = 0 ; col < MIN (n_col, limit) ; col++) { mexPrintf ("column %d, p[col] %d, p [col+1] %d, length %d\n", col, p [col], p [col+1], p [col+1] - p [col]) ; for (k = p [col] ; k < p [col+1] ; k++) { row = A [k] ; mexPrintf (" %d", row) ; } mexPrintf ("\n") ; } } /* ========================================================================== */ /* === ccolamd mexFunction ================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nargout, /* number of left-hand sides */ mxArray *pargout [ ], /* left-hand side matrices */ int nargin, /* number of right--hand sides */ const mxArray *pargin [ ] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *A ; /* ccolamd's copy of the matrix and workspace */ UF_long *p ; /* ccolamd's copy of the column pointers */ UF_long Alen ; /* size of A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long nnz ; /* number of entries in A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [CCOLAMD_KNOBS] ; /* ccolamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats2 [CCOLAMD_STATS] ; /* stats for ccolamd */ UF_long *cp, *cp_end, result, col, length, ok ; UF_long *stats ; stats = stats2 ; /* === Check inputs ===================================================== */ if (nargin != 3 || nargout < 0 || nargout > 2) { mexErrMsgTxt ( "ccolamdtest: incorrect number of input and/or output arguments") ; } /* for testing we require all 7 knobs */ if (mxGetNumberOfElements (pargin [1]) != 7) { mexErrMsgTxt ("ccolamdtest: must have all 7 knobs for testing") ; } /* === Get knobs ======================================================== */ ccolamd_l_set_defaults (knobs) ; spumoni = 0 ; in_knobs = mxGetPr (pargin [1]) ; knobs [CCOLAMD_LU] = (in_knobs [0] != 0) ; knobs [CCOLAMD_DENSE_ROW] = in_knobs [1] ; knobs [CCOLAMD_DENSE_COL] = in_knobs [2] ; knobs [CCOLAMD_AGGRESSIVE] = (in_knobs [3] != 0) ; spumoni = (in_knobs [4] != 0) ; /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\nccolamd version %d.%d, %s:\nknobs(1): %g, order for %s\n", CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE, in_knobs [0], (knobs [CCOLAMD_LU] != 0) ? "lu(A)" : "chol(A'*A)") ; if (knobs [CCOLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(2): %g, rows with > max(16,%g*sqrt(size(A,2)))" " entries removed\n", in_knobs [1], knobs [CCOLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(2): %g, no dense rows removed\n", in_knobs [1]) ; } if (knobs [CCOLAMD_DENSE_COL] >= 0) { mexPrintf ("knobs(3): %g, cols with > max(16,%g*sqrt(min(size(A)))" " entries removed\n", in_knobs [2], knobs [CCOLAMD_DENSE_COL]) ; } else { mexPrintf ("knobs(3): no dense columns removed\n", in_knobs [2]) ; } mexPrintf ("knobs(4): %g, aggressive absorption: %s\n", in_knobs [3], (knobs [CCOLAMD_AGGRESSIVE] != 0) ? "yes" : "no") ; mexPrintf ("knobs(5): %g, statistics and knobs printed\n", in_knobs [4]) ; mexPrintf ("Testing: %g %g\n", in_knobs [5], in_knobs[6]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) pargin [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("ccolamd: input matrix must be 2-dimensional") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) pargin, "sparse") ; } /* === Allocate workspace for ccolamd =================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; /* get column pointer vector so we can find nnz */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; Alen = (UF_long) ccolamd_l_recommended (nnz, n_row, n_col) ; if (Alen == 0) { mexErrMsgTxt ("ccolamd: problem too large") ; } /* === Modify size of Alen if testing =================================== */ /* knobs [5] amount of workspace given to colamd. < 0 : TIGHT memory > 0 : MIN + knob [3] - 1 == 0 : RECOMMENDED memory */ /* get knob [5], if negative */ if (in_knobs [5] < 0) { Alen = CCOLAMD_MIN_MEMORY (nnz, n_row, n_col) + n_col ; } else if (in_knobs [5] > 0) { Alen = CCOLAMD_MIN_MEMORY (nnz, n_row, n_col) + in_knobs [5] - 1 ; } /* otherwise, we use the recommended amount set above */ /* === Copy input matrix into workspace ================================= */ A = (UF_long *) mxCalloc (Alen, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; if (full) { mxDestroyArray (Ainput) ; } /* === Jumble matrix ==================================================== */ /* knobs [6] FOR TESTING ONLY: Specifies how to jumble matrix 0 : No jumbling 1 : Make n_row less than zero 2 : Make first pointer non-zero 3 : Make column pointers not non-decreasing 4 : Make a column pointer greater or equal to Alen 5 : Make row indices not strictly increasing 6 : Make a row index greater or equal to n_row 7 : Set A = NULL 8 : Set p = NULL 9 : Repeat row index 10: make row indices not sorted 11: jumble columns massively (note this changes the pattern of the matrix A.) 12: Set stats = NULL 13: Make n_col less than zero */ /* jumble appropriately */ switch ((UF_long) in_knobs [6]) { case 0 : if (spumoni) { mexPrintf ("ccolamdtest: no errors expected\n") ; } result = 1 ; /* no errors */ break ; case 1 : if (spumoni) { mexPrintf ("ccolamdtest: nrow out of range\n") ; } result = 0 ; /* nrow out of range */ n_row = -1 ; break ; case 2 : if (spumoni) { mexPrintf ("ccolamdtest: p [0] nonzero\n") ; } result = 0 ; /* p [0] must be zero */ p [0] = 1 ; break ; case 3 : if (spumoni) { mexPrintf ("colamdtest: negative length last column\n") ; } result = (n_col == 0) ; /* p must be monotonically inc. */ p [n_col] = p [0] ; break ; case 4 : if (spumoni) { mexPrintf ("colamdtest: Alen too small\n") ; } result = 0 ; /* out of memory */ p [n_col] = Alen ; break ; case 5 : if (spumoni) { mexPrintf ("colamdtest: row index out of range (-1)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = -1 ; } else { if (spumoni) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 6 : if (spumoni) { mexPrintf ("ccolamdtest: row index out of range (n_row)\n") ; } if (nnz > 0) /* row index out of range */ { if (spumoni) { mexPrintf ("Changing A[nnz-1] from %d to %d\n", A [nnz-1], n_row) ; } result = 0 ; A [nnz-1] = n_row ; } else { if (spumoni) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 7 : if (spumoni) { mexPrintf ("ccolamdtest: A not present\n") ; } result = 0 ; /* A not present */ A = (UF_long *) NULL ; break ; case 8 : if (spumoni) { mexPrintf ("ccolamdtest: p not present\n") ; } result = 0 ; /* p not present */ p = (UF_long *) NULL ; break ; case 9 : if (spumoni) { mexPrintf ("ccolamdtest: duplicate row index\n") ; } result = 1 ; /* duplicate row index */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { A [p [col]] = A [p [col] + 1] ; if (spumoni) { mexPrintf ("Made duplicate row %d in col %d\n", A [p [col] + 1], col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, col+2) ; } break ; case 10 : if (spumoni) { mexPrintf ("ccolamdtest: unsorted column\n") ; } result = 1 ; /* jumbled columns */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { i = A[p [col]] ; A [p [col]] = A[p [col] + 1] ; A [p [col] + 1] = i ; if (spumoni) { mexPrintf ("Unsorted column %d \n", col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, col+2) ; } break ; case 11 : if (spumoni) { mexPrintf ("ccolamdtest: massive jumbling\n") ; } result = 1 ; /* massive jumbling, but no errors */ srand (1) ; for (i = 0 ; i < n_col ; i++) { cp = &A [p [i]] ; cp_end = &A [p [i+1]] ; while (cp < cp_end) { *cp++ = rand() % n_row ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, n_col) ; } break ; case 12 : if (spumoni) { mexPrintf ("ccolamdtest: stats not present\n") ; } result = 0 ; /* stats not present */ stats = (UF_long *) NULL ; break ; case 13 : if (spumoni) { mexPrintf ("ccolamdtest: ncol out of range\n") ; } result = 0 ; /* ncol out of range */ n_col = -1 ; break ; } /* === Order the columns (destroys A) =================================== */ ok = ccolamd_l (n_row, n_col, Alen, A, p, knobs, stats, NULL) ; if (spumoni) { ccolamd_l_report (stats) ; } /* === Return the stats vector ========================================== */ if (nargout == 2) { pargout [1] = mxCreateDoubleMatrix (1, CCOLAMD_STATS, mxREAL) ; out_stats = mxGetPr (pargout [1]) ; for (i = 0 ; i < CCOLAMD_STATS ; i++) { out_stats [i] = (stats == NULL) ? (-1) : (stats [i]) ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if csymamd returns FALSE */ out_stats [CCOLAMD_INFO1] ++ ; out_stats [CCOLAMD_INFO2] ++ ; } mxFree (A) ; if (ok) { /* === Return the permutation vector ================================ */ pargout [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; for (i = 0 ; i < n_col ; i++) { /* ccolamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = p [i] + 1 ; } if (!result) { ccolamd_l_report (stats) ; mexErrMsgTxt ("ccolamd should have returned TRUE\n") ; } } else { /* return p = -1 if ccolamd failed */ pargout [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; out_perm [0] = -1 ; if (result) { ccolamd_l_report (stats) ; mexErrMsgTxt ("ccolamd should have returned FALSE\n") ; } } mxFree (p) ; } SuiteSparse/CCOLAMD/MATLAB/ccolamdtestmex.m0000644001170100242450000000055410620370214017142 0ustar davisfacfunction [P, stats] = ccolamdtestmex (A, knobs) %#ok % CCOLAMDTESTMEX test function for ccolamd % Example: % [ P, stats ] = ccolamdtest (A, knobs) ; % See also ccolamd % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. error ('ccolamdtestmex mexFunction not found') ; SuiteSparse/CCOLAMD/MATLAB/ccolamd_test.m0000644001170100242450000002703310707726444016610 0ustar davisfacfunction ccolamd_test %CCOLAMD_TEST extensive test of ccolamd and csymamd % % Example: % ccolamd_test % % See also csymamd, ccolamd, ccolamd_make. % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. help ccolamd_test global ccolamd_default_knobs csymamd_default_knobs ccolamd_default_knobs = [0 10 10 1 0] ; csymamd_default_knobs = [10 1 0] ; fprintf ('Compiling ccolamd, csymamd, and test mexFunctions.\n') ; ccolamd_make ; d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end src = '../Source/ccolamd.c ../Source/ccolamd_global.c' ; cmd = sprintf ('mex -DDLONG -O %s -I../../UFconfig -I../Include ', d) ; eval ([cmd 'ccolamdtestmex.c ' src]) ; eval ([cmd 'csymamdtestmex.c ' src]) ; fprintf ('Done compiling.\n') ; fprintf ('\nThe following codes will be tested:\n') ; which ccolamd which csymamd which ccolamdtestmex which csymamdtestmex fprintf ('\nStarting the tests. Please be patient.\n') ; h = waitbar (0, 'COLAMD test') ; rand ('state', 0) ; randn ('state', 0) ; A = sprandn (500,500,0.4) ; p = ccolamd (A, [0 10 10 1 1]) ; check_perm (p, A) ; p = ccolamd (A, [1 2 7 1 1]) ; check_perm (p, A) ; p = ccolamd (A, [1 2 10 0 1]) ; check_perm (p, A) ; p = ccolamd (A, [9 2 3 1 1]) ; check_perm (p, A) ; p = csymamd (A, [10 1 1]) ; check_perm (p, A) ; p = csymamd (A, [4 1 1]) ; check_perm (p, A) ; p = csymamd (A, [9 0 1]) ; check_perm (p, A) ; fprintf ('Null matrices') ; A = zeros (0,0) ; A = sparse (A) ; p = ccolamd (A) ; check_perm (p, A) ; p = csymamd (A) ; check_perm (p, A) ; A = zeros (0, 100) ; A = sparse (A) ; p = ccolamd (A) ; check_perm (p, A) ; A = zeros (100, 0) ; A = sparse (A) ; p = ccolamd (A) ; check_perm (p, A) ; fprintf (' OK\n') ; fprintf ('Matrices with a few dense row/cols\n') ; for trial = 1:20 waitbar (trial/20, h, 'CCOLAMD: dense rows/cols') ; % random square unsymmetric matrix A = rand_matrix (1000, 1000, 1, 10, 20) ; [m n] = size (A) ; cmember = irand (min (trial,n), n) ; for tol = [0:.1:2 3:20 1e6] B = A + A' ; p = ccolamd (A, [ ]) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 1]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1]) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 0]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1]) ; check_perm (p, A) ; p = csymamd (A, [tol 1]) ; check_perm (p, A) ; p = csymamd (A, tol) ; check_perm (p, A) ; p = csymamd (A, [ ]) ; check_perm (p, A) ; p = csymamd (B, [tol 0]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol -1 1]) ; check_perm (p, A) ; p = ccolamd (A, [0 -1 tol 1]) ; check_perm (p, A) ; % check with non-null cmember p = ccolamd (A, [ ], cmember) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 1], cmember) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1], cmember) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 0], cmember) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1], cmember) ; check_perm (p, A) ; p = csymamd (A, [tol 1], cmember) ; check_perm (p, A) ; p = csymamd (A, tol, cmember) ; check_perm (p, A) ; p = csymamd (A, [ ], cmember) ; check_perm (p, A) ; p = csymamd (B, [tol 0], cmember) ; check_perm (p, A) ; p = ccolamd (A, [0 tol -1 1], cmember) ; check_perm (p, A) ; p = ccolamd (A, [0 -1 tol 1], cmember) ; check_perm (p, A) ; p = ccolamd (A, [ ], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 1], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [1 tol tol 0], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol tol 1], [ ]) ; check_perm (p, A) ; p = csymamd (A, [tol 1], [ ]) ; check_perm (p, A) ; p = csymamd (A, tol, [ ]) ; check_perm (p, A) ; p = csymamd (A, [ ], [ ]) ; check_perm (p, A) ; p = csymamd (B, [tol 0], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [0 tol -1 1], [ ]) ; check_perm (p, A) ; p = ccolamd (A, [0 -1 tol 1], [ ]) ; check_perm (p, A) ; end end fprintf (' OK\n') ; fprintf ('General matrices\n') ; for trial = 1:400 waitbar (trial/400, h, 'CCOLAMD: with dense rows/cols') ; % matrix of random mtype mtype = irand (3) ; A = rand_matrix (2000, 2000, mtype, 0, 0) ; p = ccolamd (A) ; check_perm (p, A) ; if (mtype == 3) p = csymamd (A) ; check_perm (p, A) ; end end fprintf (' OK\n') ; fprintf ('Test error handling with invalid inputs\n') ; % Check different erroneous input. for trial = 1:30 waitbar (trial/30, h, 'CCOLAMD: error handling') ; A = rand_matrix (1000, 1000, 2, 0, 0) ; for err = 1:13 p = Tcolamd (A, [ccolamd_default_knobs 1 err], [ ]) ; if (p(1) ~= -1) %#ok check_perm (p, A) ; end if (err == 1) % check different (valid) input args to ccolamd p = Acolamd (A) ; p2 = Acolamd (A, [ccolamd_default_knobs 0 0]) ; if (any (p ~= p2)) error ('ccolamd: mismatch 1!') ; end end B = A'*A ; p = Tsymamd (B, [-1 1 0 err], [ ]) ; if (p(1) ~= -1) %#ok check_perm (p, A) ; end if (err == 1) % check different (valid) input args to csymamd p = Asymamd (B) ; check_perm (p, A) ; p2 = Asymamd (B, [csymamd_default_knobs 0]) ; if (any (p ~= p2)) error ('symamd: mismatch 1!') ; end end end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty columns\n') ; for trial = 1:400 waitbar (trial/400, h, 'CCOLAMD: with empty rows/cols') ; % some are square, some are rectangular n = 0 ; while (n < 5) A = rand_matrix (1000, 1000, irand (2), 0, 0) ; [m n] = size (A) ; end % Add 5 null columns at random locations. null_col = randperm (n) ; A (:, null_col) = 0 ; % Order the matrix and make sure that the null columns are ordered last. p = ccolamd (A, [1 1e6 1e6 0]) ; check_perm (p, A) ; % find all null columns in A null_col = find (sum (spones (A), 1) == 0) ; nnull = length (null_col) ; if (any (null_col ~= p ((n-nnull+1):n))) error ('ccolamd: Null cols are not ordered last in natural order') ; end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty rows and columns\n') ; for trial = 1:400 waitbar (trial/400, h, 'CCOLAMD: with empty rows/cols') ; % symmetric matrices n = 0 ; while (n < 5) A = rand_matrix (1000, 1000, 3, 0, 0) ; [m n] = size (A) ; end % Add 5 null columns and rows at random locations. null_col = randperm (n) ; A (:, null_col) = 0 ; A (null_col, :) = 0 ; % Order the matrix and make sure that the null rows/cols are ordered last. p = csymamd (A, -1) ; check_perm (p, A) ; % find all null rows/columns in A Alo = tril (A, -1) ; null_col = ... find ((sum (spones (Alo), 1) == 0) & (sum (spones (Alo), 2) == 0)') ; nnull = length (null_col) ; if (any (null_col ~= p ((n-nnull+1):n))) error ('csymamd: Null cols are not ordered last in natural order') ; end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty rows\n') ; % Test matrices with null rows inserted. for trial = 1:400 waitbar (trial/400, h, 'CCOLAMD: with null rows') ; m = 0 ; while (m < 5) A = rand_matrix (1000, 1000, 2, 0, 0) ; m = size (A,1) ; end % Add 5 null rows at random locations. null_row = randperm (m) ; null_row = sort (null_row (1:5)) ; A (null_row, :) = 0 ; p = ccolamd (A) ; check_perm (p, A) ; end fprintf (' OK\n') ; fprintf ('\nccolamd and csymamd: all tests passed\n\n') ; close (h) ; %------------------------------------------------------------------------------- function p = Acolamd (S, knobs) % Acolamd: compare ccolamd and Tcolamd results global ccolamd_default_knobs if (nargin < 2) p = ccolamd (S) ; p1 = Tcolamd (S, [ccolamd_default_knobs 0 0], [ ]) ; else p = ccolamd (S, knobs) ; p1 = Tcolamd (S, knobs, [ ]) ; end check_perm (p, S) ; check_perm (p1, S) ; if (any (p1 ~= p)) narg = nargin ; if (nargin == 2) save bad S narg knobs else save bad S narg end error ('Acolamd mismatch!') ; end %------------------------------------------------------------------------------- function p = Asymamd (S, knobs) % Asymamd: compare csymamd and Tsymamd results global csymamd_default_knobs if (nargin < 2) p = csymamd (S) ; p1 = Tsymamd (S, [csymamd_default_knobs 0], [ ]) ; else p = csymamd (S, knobs) ; p1 = Tsymamd (S, knobs, [ ]) ; end if (any (p1 ~= p)) error ('Asymamd mismatch!') ; end %------------------------------------------------------------------------------- function check_perm (p, A, cmember) % check_perm: check for a valid permutation vector if (isempty (A) & isempty (p)) %#ok % empty permutation vectors of empty matrices are OK return end if (isempty (p)) error ('Bad permutation: cannot be empty') ; end [m n] = size (A) ; [p_m p_n] = size (p) ; if (p_n == 1) % force p to be a row vector p = p' ; [p_m p_n] = size (p) ; end if (n ~= p_n) error ('Bad permutation: wrong size') ; end if (p_m ~= 1) ; % p must be a vector error ('Bad permutation: not a vector') ; else if (any (sort (p) - (1:p_n))) error ('Bad permutation') ; end end if (nargin > 2) % check cmember c = cmember (p) ; % c must be monotonically non-decreasing c = diff (c) ; if (any (c < 0)) error ('permutation breaks the cmember constraints') ; end end %------------------------------------------------------------------------------- function i = irand (n,s) % irand: return a random vector of size s, with values between 1 and n if (nargin == 1) s = 1 ; end i = min (n, 1 + floor (rand (1,s) * n)) ; %------------------------------------------------------------------------------- function A = rand_matrix (n_max, m_max, mtype, d_rows, d_cols) % rand_matrix: return a random sparse matrix % % A = rand_matrix (n_max, m_max, mtype, d_rows, d_cols) % % A binary matrix of random size, at most n_max-by-m_max, with d_rows dense rows % and d_cols dense columns. % % mtype 1: square unsymmetric (m_max is ignored) % mtype 2: rectangular % mtype 3: symmetric (m_max is ignored) n = irand (n_max) ; if (mtype ~= 2) % square m = n ; else m = irand (m_max) ; end A = sprand (m, n, 10 / max (m,n)) ; if (d_rows > 0) % add dense rows for k = 1:d_rows i = irand (m) ; nz = irand (n) ; p = randperm (n) ; p = p (1:nz) ; A (i,p) = 1 ; end end if (d_cols > 0) % add dense cols for k = 1:d_cols j = irand (n) ; nz = irand (m) ; p = randperm (m) ; p = p (1:nz) ; A (p,j) = 1 ; end end A = spones (A) ; % ensure that there are no empty columns d = find (full (sum (A,1)) == 0) ; %#ok A (m,d) = 1 ; %#ok % ensure that there are no empty rows d = find (full (sum (A,2)) == 0) ; %#ok A (d,n) = 1 ; %#ok if (mtype == 3) % symmetric A = A + A' + speye (n) ; end A = spones (A) ; %------------------------------------------------------------------------------- % Tcolamd: run ccolamd in a testing mode %------------------------------------------------------------------------------- function p = Tcolamd (S, knobs, cmember) % knobs (5) = 1 ; p = ccolamdtestmex (S, knobs, cmember) ; if (p (1) ~= -1) check_perm (p, S) ; end %------------------------------------------------------------------------------- % Tsymamd: run csymamd in a testing mode %------------------------------------------------------------------------------- function p = Tsymamd (S, knobs, cmember) % knobs (2) = 1 ; p = csymamdtestmex (S, knobs, cmember) ; if (p (1) ~= -1) check_perm (p, S) ; end SuiteSparse/CCOLAMD/MATLAB/ccolamd.m0000644001170100242450000000470010620370165015532 0ustar davisfacfunction [p, stats] = ccolamd (S, knobs, cmember) %#ok %CCOLAMD constrained column approximate minimum degree permutation. % p = CCOLAMD(S) returns the column approximate minimum degree permutation % vector for the sparse matrix S. For a non-symmetric matrix S, S(:,p) % tends to have sparser LU factors than S. chol(S(:,p)'*S(:,p)) also tends % to be sparser than chol(S'*S). p=ccolamd(S,1) optimizes the ordering for % lu(S(:,p)). The ordering is followed by a column elimination tree post- % ordering. % % Example: % p = ccolamd (S) % p = ccolamd (S,knobs,cmember) % % knobs is an optional one- to five-element input vector, with a default % value of [0 10 10 1 0] if not present or empty ([ ]). Entries not present % are set to their defaults. % % knobs(1): if nonzero, the ordering is optimized for lu(S(:,p)). It will % be a poor ordering for chol(S(:,p)'*S(:,p)). This is the most % important knob for ccolamd. % knobs(2): if S is m-by-n, rows with more than max(16,knobs(2)*sqrt(n)) % entries are ignored. % knobs(3): columns with more than max(16,knobs(3)*sqrt(min(m,n))) entries % are ignored and ordered last in the output permutation (subject to the % cmember constraints). % knobs(4): if nonzero, aggressive absorption is performed. % knobs(5): if nonzero, statistics and knobs are printed. % % cmember is an optional vector of length n. It defines the constraints on % the column ordering. If cmember(j)=s, then column j is in constraint set % s (s must be in the range 1 to n). In the output permutation p, all % columns in set 1 appear first, followed by all columns in set 2, and so % on. cmember=ones(1,n) if not present or empty. ccolamd(S,[],1:n) returns % 1:n. % % p = ccolamd(S) is about the same as p = colamd(S). knobs and its default % values differ. colamd always does aggressive absorption, and it finds an % ordering suitable for both lu(S(:,p)) and chol(S(:,p)'*S(:,p)); it cannot % optimize its ordering for lu(S(:,p)) to the extent that ccolamd(S,1) can. % % See also AMD, CSYMAMD, COLAMD, SYMAMD, SYMRCM. % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. % Supported by the National Science Foundation (DMS-9504974, DMS-9803599, % CCR-0203270), and a grant from Sandia National Lab. error ('ccolamd: mexFunction not found') ; SuiteSparse/CCOLAMD/MATLAB/Contents.m0000644001170100242450000000156010620370546015731 0ustar davisfac% CCOLAMD, constrained approximate minimum degree ordering % % Primary functions: % csymamd - constrained symmetric approximate minimum degree permutation % ccolamd - constrained column approximate minimum degree permutation. % % helper and test functions: % ccolamd_demo - demo for ccolamd and csymamd % ccolamd_make - compiles CCOLAMD and CSYMAMD for MATLAB % ccolamd_install - compiles and installs ccolamd and csymamd for MATLAB % ccolamd_test - extensive test of ccolamd and csymamd % luflops - compute the flop count for sparse LU factorization % ccolamdtestmex - test function for ccolamd % csymamdtestmex - test function for csymamd % % Example: % p = ccolamd (S, knobs, cmember) % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. SuiteSparse/CCOLAMD/MATLAB/csymamd.m0000644001170100242450000000457310620370251015571 0ustar davisfacfunction [p, stats] = csymamd (S, knobs, cmember) %#ok %CSYMAMD constrained symmetric approximate minimum degree permutation % P = CSYMAMD(S) for a symmetric positive definite matrix S, returns the % permutation vector p such that S(p,p) tends to have a sparser Cholesky % factor than S. Sometimes CSYMAMD works well for symmetric indefinite % matrices too. The matrix S is assumed to be symmetric; only the % strictly lower triangular part is referenced. S must be square. Note % that p=amd(S) is faster, but does not allow for a constrained ordering. % The ordering is followed by an elimination tree post-ordering. % % See also AMD, CCOLAMD, COLAMD, SYMAMD. % % Example: % p = csymamd (S) % p = csymamd (S,knobs,cmember) % % knobs is an optional one- to three-element input vector, with a default % value of [10 1 0] if present or empty ([ ]). Entries not present are set % to their defaults. % % knobs(1): If S is n-by-n, then rows and columns with more than % max(16,knobs(1)*sqrt(n)) entries are ignored, and ordered last in the % output permutation (subject to the cmember constraints). % knobs(2): if nonzero, aggressive absorption is performed. % knobs(3): if nonzero, statistics and knobs are printed. % % cmember is an optional vector of length n. It defines the constraints on % the ordering. If cmember(j)=s, then row/column j is in constraint set s % (s must be in the range 1 to n). In the output permutation p, % rows/columns in set 1 appear first, followed by all rows/columns in set 2, % and so on. cmember=ones(1,n) if not present or empty. csymamd(S,[],1:n) % returns 1:n. % % p = csymamd(S) is about the same as p = symamd(S). knobs and its default % values differ. % % Authors: S. Larimore, T. Davis (Univ of Florida), and S. Rajamanickam, in % collaboration with J. Gilbert and E. Ng. Supported by the National % Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant % from Sandia National Lab. See http://www.cise.ufl.edu/research/sparse % for ccolamd, csymamd, amd, colamd, symamd, and other related orderings. % % See also AMD, CCOLAMD, COLAMD, SYMAMD, SYMRCM. % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. error ('csymamd: mexFunction not found') ; SuiteSparse/CCOLAMD/MATLAB/csymamdmex.c0000644001170100242450000001466210617107036016276 0ustar davisfac/* ========================================================================== */ /* === csymamd mexFunction ================================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD, Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * Usage: * p = csymamd (A) ; * [p stats] = csymamd (A, knobs, cmember) ; * * See csymamd.m for a description. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "ccolamd.h" #include "mex.h" #include "matrix.h" #include #include "UFconfig.h" /* ========================================================================== */ /* === csymamd mexFunction ================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { /* === Local variables ================================================== */ UF_long *A ; /* row indices of input matrix A */ UF_long *perm ; /* column ordering of M and ordering of A */ UF_long *cmember ; /* csymamd's copy of the constraint set */ double *in_cmember ; /* input constraint set */ UF_long *p ; /* column pointers of input matrix A */ UF_long cslen ; /* size of constraint set */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [CCOLAMD_KNOBS] ; /* csymamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats [CCOLAMD_STATS] ; /* stats for symamd */ /* === Check inputs ===================================================== */ if (nargin < 1 || nargin > 3 || nargout < 0 || nargout > 2) { mexErrMsgTxt ("Usage: [p stats] = csymamd (S, knobs, cmember)") ; } /* === Get cmember ====================================================== */ cmember = NULL ; cslen = 0 ; if (nargin > 2) { in_cmember = mxGetPr (pargin [2]) ; cslen = mxGetNumberOfElements (pargin [2]) ; if (cslen != 0) { cmember = (UF_long *) mxCalloc (cslen, sizeof (UF_long)) ; for (i = 0 ; i < cslen ; i++) { /* convert cmember from 1-based to 0-based */ cmember[i] = ((UF_long) in_cmember [i] - 1) ; } } } /* === Get knobs ======================================================== */ ccolamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ i = 0 ; if (nargin > 1) { in_knobs = mxGetPr (pargin [1]) ; i = mxGetNumberOfElements (pargin [1]) ; if (i > 0) knobs [CCOLAMD_DENSE_ROW] = in_knobs [0] ; if (i > 1) knobs [CCOLAMD_AGGRESSIVE] = in_knobs [1] ; if (i > 2) spumoni = (in_knobs [2] != 0) ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\ncsymamd version %d.%d, %s:\n", CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE) ; if (knobs [CCOLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows/cols with > " "max(16,%g*sqrt(size(A,2))) entries removed\n", in_knobs [0], knobs [CCOLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, no dense rows removed\n", in_knobs [0]) ; } mexPrintf ("knobs(2): %g, aggressive absorption: %s\n", in_knobs [1], (knobs [CCOLAMD_AGGRESSIVE] != 0) ? "yes" : "no") ; mexPrintf ("knobs(3): %g, statistics and knobs printed\n", in_knobs [2]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) pargin [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("csymamd: input matrix must be 2-dimensional.") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) pargin, "sparse") ; } /* === Allocate workspace for csymamd =================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; if (n_col != n_row) { mexErrMsgTxt ("csymamd: matrix must be square.") ; } if (cmember != NULL && cslen != n_col) { mexErrMsgTxt ("csymamd: cmember must be of length equal to #cols of A"); } A = (UF_long *) mxGetIr (Ainput) ; p = (UF_long *) mxGetJc (Ainput) ; perm = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; /* === Order the rows and columns of A (does not destroy A) ============= */ if (!csymamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree, cmember, -1)) { csymamd_l_report (stats) ; mexErrMsgTxt ("csymamd error!") ; } if (full) { mxDestroyArray (Ainput) ; } /* === Return the permutation vector ==================================== */ pargout [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; for (i = 0 ; i < n_col ; i++) { /* symamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = perm [i] + 1 ; } mxFree (perm) ; mxFree (cmember) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni is set */ if (spumoni) { csymamd_l_report (stats) ; } if (nargout == 2) { pargout [1] = mxCreateDoubleMatrix (1, CCOLAMD_STATS, mxREAL) ; out_stats = mxGetPr (pargout [1]) ; for (i = 0 ; i < CCOLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [CCOLAMD_INFO1] ++ ; out_stats [CCOLAMD_INFO2] ++ ; } } SuiteSparse/CCOLAMD/MATLAB/luflops.m0000644001170100242450000000272110620370270015612 0ustar davisfacfunction fl = luflops (L, U) %LUFLOPS compute the flop count for sparse LU factorization % % Example: % fl = luflops (L,U) % % Given a sparse LU factorization (L and U), return the flop count required % by a conventional LU factorization algorithm to compute it. L and U can % be either sparse or full matrices. L must be lower triangular and U must % be upper triangular. Do not attempt to use this on the permuted L from % [L,U] = lu (A). Instead, use [L,U,P] = lu (A) or [L,U,P,Q] = lu (A). % % Note that there is a subtle undercount in this estimate. Suppose A is % completely dense, but during LU factorization exact cancellation occurs, % causing some of the entries in L and U to become identically zero. The % flop count returned by this routine is an undercount. There is a simple % way to fix this (L = spones (L) + spones (tril (A))), but the fix is partial. % It can also occur that some entry in L is a "symbolic" fill-in (zero in % A, but a fill-in entry and thus must be computed), but numerically % zero. The only way to get a reliable LU factorization would be to do a % purely symbolic factorization of A. This cannot be done with % symbfact (A, 'col'). % % See NA Digest, Vol 00, #50, Tuesday, Dec. 5, 2000 % % See also symbfact % Copyright 1998-2007, Timothy A. Davis Lnz = full (sum (spones (L))) - 1 ; % off diagonal nz in cols of L Unz = full (sum (spones (U')))' - 1 ; % off diagonal nz in rows of U fl = 2*Lnz*Unz + sum (Lnz) ; SuiteSparse/CCOLAMD/MATLAB/ccolamd_install.m0000644001170100242450000000110510620370537017257 0ustar davisfacfunction ccolamd_install %CCOLAMD_INSTALL compiles and installs ccolamd and csymamd for MATLAB % Your current directory must be CCOLAMD/MATLAB for this function to work. % % Example: % ccolamd_install % % See also ccolamd, csymamd. % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. ccolamd_make addpath (pwd) fprintf ('\nThe following path has been added. You may wish to add it\n') ; fprintf ('permanently, using the MATLAB pathtool command.\n') ; fprintf ('%s\n\n', pwd) ; ccolamd_demo SuiteSparse/CCOLAMD/MATLAB/csymamdtestmex.c0000644001170100242450000003024210616375416017176 0ustar davisfac/* ========================================================================== */ /* === csymamdtest mexFunction ============================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * This MATLAB mexFunction is for testing only. It is not meant for * production use. See csymamdmex.c and csymamd.m instead. * * Usage: * * [ P, stats ] = csymamdtest (A, knobs, cmember) ; * * The knobs and stats vectors are optional: * * knobs (1) dense row/col control. default 10 * knobs (2) spumoni, default 0. * knobs (3) aggresive absorption if nonzero. default 1 * * knobs (4) for testing only. Controls how the input matrix is * jumbled prior to calling colamd, to test its error * handling capability. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "ccolamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" #ifdef MIN #undef MIN #endif #define MIN(a,b) (((a) < (b)) ? (a) : (b)) static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) { UF_long col, k, row ; mexPrintf ("dump matrix: nrow %d ncol %d Alen %d\n", n_row, n_col, Alen) ; if (!A) { mexPrintf ("A not present\n") ; return ; } if (!p) { mexPrintf ("p not present\n") ; return ; } for (col = 0 ; col < MIN (n_col, limit) ; col++) { mexPrintf ("column %d, p[col] %d, p [col+1] %d, length %d\n", col, p [col], p [col+1], p [col+1] - p [col]) ; for (k = p [col] ; k < p [col+1] ; k++) { row = A [k] ; mexPrintf (" %d", row) ; } mexPrintf ("\n") ; } } /* ========================================================================== */ /* === csymamd mexFunction ================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nargout, /* number of left-hand sides */ mxArray *pargout [ ], /* left-hand side matrices */ int nargin, /* number of right--hand sides */ const mxArray *pargin [ ] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *perm ; /* column ordering of M and ordering of A */ UF_long *A ; /* row indices of input matrix A */ UF_long *p ; /* column pointers of input matrix A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [CCOLAMD_KNOBS] ; /* ccolamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats2 [CCOLAMD_STATS] ;/* stats for csymamd */ UF_long *cp, *cp_end, result, nnz, col, length, ok ; UF_long *stats ; stats = stats2 ; /* === Check inputs ===================================================== */ if (nargin != 3 || nargout > 2) { mexErrMsgTxt ( "csymamdtest: incorrect number of input and/or output arguments.") ; } /* for testing we require all 4 knobs */ if (mxGetNumberOfElements (pargin [1]) != 4) { mexErrMsgTxt ("csymamdtest: must have 4 knobs for testing") ; } /* === Get knobs ======================================================== */ ccolamd_l_set_defaults (knobs) ; spumoni = 0 ; in_knobs = mxGetPr (pargin [1]) ; i = mxGetNumberOfElements (pargin [1]) ; knobs [CCOLAMD_DENSE_ROW] = in_knobs [0] ; knobs [CCOLAMD_DENSE_COL] = in_knobs [0] ; knobs [CCOLAMD_AGGRESSIVE] = (in_knobs [1] != 0) ; spumoni = (in_knobs [2] != 0) ; /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\ncsymamd version %d.%d, %s:\n", CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE) ; if (knobs [CCOLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows/cols with > " "max(16,%g*sqrt(size(A,2))) entries removed\n", in_knobs [0], knobs [CCOLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, no dense rows removed\n", in_knobs [0]) ; } mexPrintf ("knobs(2): %g, aggressive absorption: %s\n", in_knobs [1], (knobs [CCOLAMD_AGGRESSIVE] != 0) ? "yes" : "no") ; mexPrintf ("knobs(3): %g, statistics and knobs printed\n", in_knobs [2]) ; mexPrintf ("Testing: %g\n", in_knobs [3]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) pargin [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("csymamd: input matrix must be 2-dimensional.") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) pargin, "sparse") ; } /* === Allocate workspace for csymamd =================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; if (n_col != n_row) { mexErrMsgTxt ("csymamd: matrix must be square.") ; } /* p = mxGetJc (Ainput) ; */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; if (spumoni) { mexPrintf ("csymamdtest: nnz %d\n", nnz) ; } /* A = mxGetIr (Ainput) ; */ A = (UF_long *) mxCalloc (nnz+1, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; perm = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; /* === Jumble matrix ==================================================== */ /* knobs [4] FOR TESTING ONLY: Specifies how to jumble matrix 0 : No jumbling 1 : (no errors) 2 : Make first pointer non-zero 3 : Make column pointers not non-decreasing 4 : (no errors) 5 : Make row indices not strictly increasing 6 : Make a row index greater or equal to n_row 7 : Set A = NULL 8 : Set p = NULL 9 : Repeat row index 10: make row indices not sorted 11: jumble columns massively (note this changes the pattern of the matrix A.) 12: Set stats = NULL 13: Make n_col less than zero */ /* jumble appropriately */ switch ((UF_long) in_knobs [3]) { case 0 : if (spumoni) { mexPrintf ("csymamdtest: no errors expected\n") ; } result = 1 ; /* no errors */ break ; case 1 : if (spumoni) { mexPrintf ("csymamdtest: no errors expected (1)\n") ; } result = 1 ; break ; case 2 : if (spumoni) { mexPrintf ("csymamdtest: p [0] nonzero\n") ; } result = 0 ; /* p [0] must be zero */ p [0] = 1 ; break ; case 3 : if (spumoni) { mexPrintf ("csymamdtest: negative length last column\n") ; } result = (n_col == 0) ; /* p must be monotonically inc. */ p [n_col] = p [0] ; break ; case 4 : if (spumoni) { mexPrintf ("csymamdtest: no errors expected (4)\n") ; } result = 1 ; break ; case 5 : if (spumoni) { mexPrintf ("csymamdtest: row index out of range (-1)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = -1 ; } else { if (spumoni) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 6 : if (spumoni) { mexPrintf ("csymamdtest: row index out of range (ncol)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = n_col ; } else { if (spumoni) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 7 : if (spumoni) { mexPrintf ("csymamdtest: A not present\n") ; } result = 0 ; /* A not present */ A = (UF_long *) NULL ; break ; case 8 : if (spumoni) { mexPrintf ("csymamdtest: p not present\n") ; } result = 0 ; /* p not present */ p = (UF_long *) NULL ; break ; case 9 : if (spumoni) { mexPrintf ("csymamdtest: duplicate row index\n") ; } result = 1 ; /* duplicate row index */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { A [p [col+1]-2] = A [p [col+1] - 1] ; if (spumoni) { mexPrintf ("Made duplicate row %d in col %d\n", A [p [col+1] - 1], col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, col+2) ; } break ; case 10 : if (spumoni) { mexPrintf ("csymamdtest: unsorted column\n") ; } result = 1 ; /* jumbled columns */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { i = A[p [col]] ; A [p [col]] = A[p [col] + 1] ; A [p [col] + 1] = i ; if (spumoni) { mexPrintf ("Unsorted column %d \n", col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, col+2) ; } break ; case 11 : if (spumoni) { mexPrintf ("csymamdtest: massive jumbling\n") ; } result = 1 ; /* massive jumbling, but no errors */ srand (1) ; for (i = 0 ; i < n_col ; i++) { cp = &A [p [i]] ; cp_end = &A [p [i+1]] ; while (cp < cp_end) { *cp++ = rand() % n_row ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, n_col) ; } break ; case 12 : if (spumoni) { mexPrintf ("csymamdtest: stats not present\n") ; } result = 0 ; /* stats not present */ stats = (UF_long *) NULL ; break ; case 13 : if (spumoni) { mexPrintf ("csymamdtest: ncol out of range\n") ; } result = 0 ; /* ncol out of range */ n_col = -1 ; break ; } /* === Order the rows and columns of A (does not destroy A) ============= */ ok = csymamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree, NULL, -1) ; if (full) { mxDestroyArray (Ainput) ; } if (spumoni) { csymamd_l_report (stats) ; } /* === Return the stats vector ========================================== */ if (nargout == 2) { pargout [1] = mxCreateDoubleMatrix (1, CCOLAMD_STATS, mxREAL) ; out_stats = mxGetPr (pargout [1]) ; for (i = 0 ; i < CCOLAMD_STATS ; i++) { out_stats [i] = (stats == NULL) ? (-1) : (stats [i]) ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if csymamd returns FALSE */ out_stats [CCOLAMD_INFO1] ++ ; out_stats [CCOLAMD_INFO2] ++ ; } mxFree (A) ; if (ok) { /* === Return the permutation vector ================================ */ pargout [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; for (i = 0 ; i < n_col ; i++) { /* csymamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = perm [i] + 1 ; } if (!result) { csymamd_l_report (stats) ; mexErrMsgTxt ("csymamd should have returned TRUE\n") ; } } else { /* return p = -1 if csymamd failed */ pargout [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; out_perm [0] = -1 ; if (result) { csymamd_l_report (stats) ; mexErrMsgTxt ("csymamd should have returned FALSE\n") ; } } mxFree (p) ; mxFree (perm) ; } SuiteSparse/CCOLAMD/MATLAB/csymamdtestmex.m0000644001170100242450000000055410620370256017203 0ustar davisfacfunction [P, stats] = csymamdtestmex (A, knobs) %#ok % CSYMAMDTESTMEX test function for csymamd % Example: % [ P, stats ] = csymamdtest (A, knobs) ; % See also csymamd % Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam % Developed in collaboration with J. Gilbert and E. Ng. error ('csymamdtestmex mexFunction not found') ; SuiteSparse/CCOLAMD/MATLAB/ccolamdmex.c0000644001170100242450000001640510616372162016243 0ustar davisfac/* ========================================================================== */ /* === ccolamd mexFunction ================================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD, Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * Usage: * p = ccolamd (A) ; * [p stats] = ccolamd (A, knobs, cmember) ; * * See ccolamd.m for a description. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "ccolamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" /* ========================================================================== */ /* === ccolamd mexFunction ================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { /* === Local variables ================================================== */ UF_long *A ; /* ccolamd's copy of the matrix and workspace */ UF_long *cmember ; /* ccolamd's copy of the constraint set */ double *in_cmember ; /* input constraint set */ UF_long *p ; /* ccolamd's copy of the column pointers */ UF_long Alen ; /* size of A */ UF_long cslen ; /* size of CS */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long nnz ; /* number of entries in A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [CCOLAMD_KNOBS] ; /* ccolamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats [CCOLAMD_STATS] ; /* stats for ccolamd */ /* === Check inputs ===================================================== */ if (nargin < 1 || nargin > 3 || nargout < 0 || nargout > 2) { mexErrMsgTxt ("Usage: [p stats] = ccolamd (A, knobs, cmember)") ; } /* === Get cmember ====================================================== */ cmember = NULL ; cslen = 0 ; if (nargin > 2) { in_cmember = mxGetPr (pargin [2]) ; cslen = mxGetNumberOfElements (pargin [2]) ; if (cslen != 0) { cmember = (UF_long *) mxCalloc (cslen, sizeof (UF_long)) ; for (i = 0 ; i < cslen ; i++) { /* convert cmember from 1-based to 0-based */ cmember[i] = ((UF_long) in_cmember [i] - 1) ; } } } /* === Get knobs ======================================================== */ ccolamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ if (nargin > 1) { in_knobs = mxGetPr (pargin [1]) ; i = mxGetNumberOfElements (pargin [1]) ; if (i > 0) knobs [CCOLAMD_LU] = (in_knobs [0] != 0) ; if (i > 1) knobs [CCOLAMD_DENSE_ROW] = in_knobs [1] ; if (i > 2) knobs [CCOLAMD_DENSE_COL] = in_knobs [2] ; if (i > 3) knobs [CCOLAMD_AGGRESSIVE] = (in_knobs [3] != 0) ; if (i > 4) spumoni = (in_knobs [4] != 0) ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\nccolamd version %d.%d, %s:\nknobs(1): %g, order for %s\n", CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE, in_knobs [0], (knobs [CCOLAMD_LU] != 0) ? "lu(A)" : "chol(A'*A)") ; if (knobs [CCOLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(2): %g, rows with > max(16,%g*sqrt(size(A,2)))" " entries removed\n", in_knobs [1], knobs [CCOLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(2): %g, no dense rows removed\n", in_knobs [1]) ; } if (knobs [CCOLAMD_DENSE_COL] >= 0) { mexPrintf ("knobs(3): %g, cols with > max(16,%g*sqrt(min(size(A)))" " entries removed\n", in_knobs [2], knobs [CCOLAMD_DENSE_COL]) ; } else { mexPrintf ("knobs(3): no dense columns removed\n", in_knobs [2]) ; } mexPrintf ("knobs(4): %g, aggressive absorption: %s\n", in_knobs [3], (knobs [CCOLAMD_AGGRESSIVE] != 0) ? "yes" : "no") ; mexPrintf ("knobs(5): %g, statistics and knobs printed\n", in_knobs [4]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) pargin [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("ccolamd: input matrix must be 2-dimensional") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) pargin, "sparse") ; } /* === Allocate workspace for ccolamd =================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; /* get column pointer vector */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; Alen = (UF_long) ccolamd_l_recommended (nnz, n_row, n_col) ; if (Alen == 0) { mexErrMsgTxt ("ccolamd: problem too large") ; } /* === Copy input matrix into workspace ================================= */ A = (UF_long *) mxCalloc (Alen, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; if (full) { mxDestroyArray (Ainput) ; } /* Check constraint set size */ if (cmember != NULL && cslen != n_col) { mexErrMsgTxt ("ccolamd: cmember must be of length equal to #cols of A"); } /* === Order the columns (destroys A) =================================== */ if (!ccolamd_l (n_row, n_col, Alen, A, p, knobs, stats, cmember)) { ccolamd_l_report (stats) ; mexErrMsgTxt ("ccolamd error!") ; } mxFree (A) ; mxFree (cmember) ; /* === Return the permutation vector ==================================== */ pargout [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (pargout [0]) ; for (i = 0 ; i < n_col ; i++) { /* ccolamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = p [i] + 1 ; } mxFree (p) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni is set */ if (spumoni) { ccolamd_l_report (stats) ; } if (nargout == 2) { pargout [1] = mxCreateDoubleMatrix (1, CCOLAMD_STATS, mxREAL) ; out_stats = mxGetPr (pargout [1]) ; for (i = 0 ; i < CCOLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [CCOLAMD_INFO1] ++ ; out_stats [CCOLAMD_INFO2] ++ ; } } SuiteSparse/CCOLAMD/Include/0000755001170100242450000000000010617106414014374 5ustar davisfacSuiteSparse/CCOLAMD/Include/ccolamd.h0000644001170100242450000002473010711427073016157 0ustar davisfac/* ========================================================================== */ /* === CCOLAMD/ccolamd.h ==================================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * You must include this file (ccolamd.h) in any routine that uses ccolamd, * csymamd, or the related macros and definitions. */ #ifndef CCOLAMD_H #define CCOLAMD_H /* make it easy for C++ programs to include CCOLAMD */ #ifdef __cplusplus extern "C" { #endif /* for size_t definition: */ #include /* ========================================================================== */ /* === CCOLAMD version ====================================================== */ /* ========================================================================== */ /* All versions of CCOLAMD will include the following definitions. * As an example, to test if the version you are using is 1.3 or later: * * if (CCOLAMD_VERSION >= CCOLAMD_VERSION_CODE (1,3)) ... * * This also works during compile-time: * * #if CCOLAMD_VERSION >= CCOLAMD_VERSION_CODE (1,3) * printf ("This is version 1.3 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif */ #define CCOLAMD_DATE "Nov 1, 2007" #define CCOLAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define CCOLAMD_MAIN_VERSION 2 #define CCOLAMD_SUB_VERSION 7 #define CCOLAMD_SUBSUB_VERSION 1 #define CCOLAMD_VERSION \ CCOLAMD_VERSION_CODE(CCOLAMD_MAIN_VERSION,CCOLAMD_SUB_VERSION) /* ========================================================================== */ /* === Knob and statistics definitions ====================================== */ /* ========================================================================== */ /* size of the knobs [ ] array. Only knobs [0..3] are currently used. */ #define CCOLAMD_KNOBS 20 /* number of output statistics. Only stats [0..10] are currently used. */ #define CCOLAMD_STATS 20 /* knobs [0] and stats [0]: dense row knob and output statistic. */ #define CCOLAMD_DENSE_ROW 0 /* knobs [1] and stats [1]: dense column knob and output statistic. */ #define CCOLAMD_DENSE_COL 1 /* knobs [2]: aggressive absorption option */ #define CCOLAMD_AGGRESSIVE 2 /* knobs [3]: LU or Cholesky factorization option */ #define CCOLAMD_LU 3 /* stats [2]: memory defragmentation count output statistic */ #define CCOLAMD_DEFRAG_COUNT 2 /* stats [3]: ccolamd status: zero OK, > 0 warning or notice, < 0 error */ #define CCOLAMD_STATUS 3 /* stats [4..6]: error info, or info on jumbled columns */ #define CCOLAMD_INFO1 4 #define CCOLAMD_INFO2 5 #define CCOLAMD_INFO3 6 /* stats [7]: number of originally empty rows */ #define CCOLAMD_EMPTY_ROW 7 /* stats [8]: number of originally empty cols */ #define CCOLAMD_EMPTY_COL 8 /* stats [9]: number of rows with entries only in dense cols */ #define CCOLAMD_NEWLY_EMPTY_ROW 9 /* stats [10]: number of cols with entries only in dense rows */ #define CCOLAMD_NEWLY_EMPTY_COL 10 /* error codes returned in stats [3]: */ #define CCOLAMD_OK (0) #define CCOLAMD_OK_BUT_JUMBLED (1) #define CCOLAMD_ERROR_A_not_present (-1) #define CCOLAMD_ERROR_p_not_present (-2) #define CCOLAMD_ERROR_nrow_negative (-3) #define CCOLAMD_ERROR_ncol_negative (-4) #define CCOLAMD_ERROR_nnz_negative (-5) #define CCOLAMD_ERROR_p0_nonzero (-6) #define CCOLAMD_ERROR_A_too_small (-7) #define CCOLAMD_ERROR_col_length_negative (-8) #define CCOLAMD_ERROR_row_index_out_of_bounds (-9) #define CCOLAMD_ERROR_out_of_memory (-10) #define CCOLAMD_ERROR_invalid_cmember (-11) #define CCOLAMD_ERROR_internal_error (-999) /* ========================================================================== */ /* === Prototypes of user-callable routines ================================= */ /* ========================================================================== */ /* define UF_long */ #include "UFconfig.h" size_t ccolamd_recommended /* returns recommended value of Alen, */ /* or 0 if input arguments are erroneous */ ( int nnz, /* nonzeros in A */ int n_row, /* number of rows in A */ int n_col /* number of columns in A */ ) ; size_t ccolamd_l_recommended /* returns recommended value of Alen, */ /* or 0 if input arguments are erroneous */ ( UF_long nnz, /* nonzeros in A */ UF_long n_row, /* number of rows in A */ UF_long n_col /* number of columns in A */ ) ; void ccolamd_set_defaults /* sets default parameters */ ( /* knobs argument is modified on output */ double knobs [CCOLAMD_KNOBS] /* parameter settings for ccolamd */ ) ; void ccolamd_l_set_defaults /* sets default parameters */ ( /* knobs argument is modified on output */ double knobs [CCOLAMD_KNOBS] /* parameter settings for ccolamd */ ) ; int ccolamd /* returns (1) if successful, (0) otherwise*/ ( /* A and p arguments are modified on output */ int n_row, /* number of rows in A */ int n_col, /* number of columns in A */ int Alen, /* size of the array A */ int A [ ], /* row indices of A, of size Alen */ int p [ ], /* column pointers of A, of size n_col+1 */ double knobs [CCOLAMD_KNOBS],/* parameter settings for ccolamd */ int stats [CCOLAMD_STATS], /* ccolamd output statistics and error codes */ int cmember [ ] /* Constraint set of A, of size n_col */ ) ; UF_long ccolamd_l /* same as ccolamd, but with UF_long integers */ ( UF_long n_row, UF_long n_col, UF_long Alen, UF_long A [ ], UF_long p [ ], double knobs [CCOLAMD_KNOBS], UF_long stats [CCOLAMD_STATS], UF_long cmember [ ] ) ; int csymamd /* return (1) if OK, (0) otherwise */ ( int n, /* number of rows and columns of A */ int A [ ], /* row indices of A */ int p [ ], /* column pointers of A */ int perm [ ], /* output permutation, size n_col+1 */ double knobs [CCOLAMD_KNOBS],/* parameters (uses defaults if NULL) */ int stats [CCOLAMD_STATS], /* output statistics and error codes */ void * (*allocate) (size_t, size_t), /* pointer to calloc (ANSI C) or */ /* mxCalloc (for MATLAB mexFunction) */ void (*release) (void *), /* pointer to free (ANSI C) or */ /* mxFree (for MATLAB mexFunction) */ int cmember [ ], /* Constraint set of A */ int stype /* 0: use both parts, >0: upper, <0: lower */ ) ; UF_long csymamd_l /* same as csymamd, but with UF_long integers */ ( UF_long n, UF_long A [ ], UF_long p [ ], UF_long perm [ ], double knobs [CCOLAMD_KNOBS], UF_long stats [CCOLAMD_STATS], void * (*allocate) (size_t, size_t), void (*release) (void *), UF_long cmember [ ], UF_long stype ) ; void ccolamd_report ( int stats [CCOLAMD_STATS] ) ; void ccolamd_l_report ( UF_long stats [CCOLAMD_STATS] ) ; void csymamd_report ( int stats [CCOLAMD_STATS] ) ; void csymamd_l_report ( UF_long stats [CCOLAMD_STATS] ) ; /* ========================================================================== */ /* === Prototypes of "expert" routines ====================================== */ /* ========================================================================== */ /* These routines are meant to be used internally, or in a future version of * UMFPACK. They appear here so that UMFPACK can use them, but they should not * be called directly by the user. */ int ccolamd2 ( /* A and p arguments are modified on output */ int n_row, /* number of rows in A */ int n_col, /* number of columns in A */ int Alen, /* size of the array A */ int A [ ], /* row indices of A, of size Alen */ int p [ ], /* column pointers of A, of size n_col+1 */ double knobs [CCOLAMD_KNOBS],/* parameter settings for ccolamd */ int stats [CCOLAMD_STATS], /* ccolamd output statistics and error codes */ /* each Front_ array is of size n_col+1: */ int Front_npivcol [ ], /* # pivot cols in each front */ int Front_nrows [ ], /* # of rows in each front (incl. pivot rows) */ int Front_ncols [ ], /* # of cols in each front (incl. pivot cols) */ int Front_parent [ ], /* parent of each front */ int Front_cols [ ], /* link list of pivot columns for each front */ int *p_nfr, /* total number of frontal matrices */ int InFront [ ], /* InFront [row] = f if row in front f */ int cmember [ ] /* Constraint set of A */ ) ; UF_long ccolamd2_l /* same as ccolamd2, but with UF_long integers */ ( UF_long n_row, UF_long n_col, UF_long Alen, UF_long A [ ], UF_long p [ ], double knobs [CCOLAMD_KNOBS], UF_long stats [CCOLAMD_STATS], UF_long Front_npivcol [ ], UF_long Front_nrows [ ], UF_long Front_ncols [ ], UF_long Front_parent [ ], UF_long Front_cols [ ], UF_long *p_nfr, UF_long InFront [ ], UF_long cmember [ ] ) ; void ccolamd_apply_order ( int Front [ ], const int Order [ ], int Temp [ ], int nn, int nfr ) ; void ccolamd_l_apply_order ( UF_long Front [ ], const UF_long Order [ ], UF_long Temp [ ], UF_long nn, UF_long nfr ) ; void ccolamd_fsize ( int nn, int MaxFsize [ ], int Fnrows [ ], int Fncols [ ], int Parent [ ], int Npiv [ ] ) ; void ccolamd_l_fsize ( UF_long nn, UF_long MaxFsize [ ], UF_long Fnrows [ ], UF_long Fncols [ ], UF_long Parent [ ], UF_long Npiv [ ] ) ; void ccolamd_postorder ( int nn, int Parent [ ], int Npiv [ ], int Fsize [ ], int Order [ ], int Child [ ], int Sibling [ ], int Stack [ ], int Front_cols [ ], int cmember [ ] ) ; void ccolamd_l_postorder ( UF_long nn, UF_long Parent [ ], UF_long Npiv [ ], UF_long Fsize [ ], UF_long Order [ ], UF_long Child [ ], UF_long Sibling [ ], UF_long Stack [ ], UF_long Front_cols [ ], UF_long cmember [ ] ) ; int ccolamd_post_tree ( int root, int k, int Child [ ], const int Sibling [ ], int Order [ ], int Stack [ ] ) ; UF_long ccolamd_l_post_tree ( UF_long root, UF_long k, UF_long Child [ ], const UF_long Sibling [ ], UF_long Order [ ], UF_long Stack [ ] ) ; #ifndef EXTERN #define EXTERN extern #endif EXTERN int (*ccolamd_printf) (const char *, ...) ; #ifdef __cplusplus } #endif #endif SuiteSparse/CCOLAMD/Source/0000755001170100242450000000000010617106440014250 5ustar davisfacSuiteSparse/CCOLAMD/Source/ccolamd_global.c0000644001170100242450000000167410616375133017354 0ustar davisfac/* ========================================================================== */ /* === ccolamd_global.c ===================================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Global variables for CCOLAMD */ #ifndef NPRINT #ifdef MATLAB_MEX_FILE #include "mex.h" int (*ccolamd_printf) (const char *, ...) = mexPrintf ; #else #include int (*ccolamd_printf) (const char *, ...) = printf ; #endif #else int (*ccolamd_printf) (const char *, ...) = ((void *) 0) ; #endif SuiteSparse/CCOLAMD/Source/ccolamd.c0000644001170100242450000042150310616375043016031 0ustar davisfac/* ========================================================================== */ /* === CCOLAMD/CSYMAMD - a constrained column ordering algorithm ============ */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * CCOLAMD, Copyright (C) Univ. of Florida. Authors: Timothy A. Davis, * Sivasankaran Rajamanickam, and Stefan Larimore * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* * ccolamd: a constrained approximate minimum degree column ordering * algorithm, LU factorization of symmetric or unsymmetric matrices, * QR factorization, least squares, interior point methods for * linear programming problems, and other related problems. * * csymamd: a constrained approximate minimum degree ordering algorithm for * Cholesky factorization of symmetric matrices. * * Purpose: * * CCOLAMD computes a permutation Q such that the Cholesky factorization of * (AQ)'(AQ) has less fill-in and requires fewer floating point operations * than A'A. This also provides a good ordering for sparse partial * pivoting methods, P(AQ) = LU, where Q is computed prior to numerical * factorization, and P is computed during numerical factorization via * conventional partial pivoting with row interchanges. CCOLAMD is an * extension of COLAMD, available as built-in function in MATLAB Version 6, * available from MathWorks, Inc. (http://www.mathworks.com). This * routine can be used in place of COLAMD in MATLAB. * * CSYMAMD computes a permutation P of a symmetric matrix A such that the * Cholesky factorization of PAP' has less fill-in and requires fewer * floating point operations than A. CSYMAMD constructs a matrix M such * that M'M has the same nonzero pattern of A, and then orders the columns * of M using colmmd. The column ordering of M is then returned as the * row and column ordering P of A. CSYMAMD is an extension of SYMAMD. * * Authors: * * Timothy A. Davis and S. Rajamanickam wrote CCOLAMD, based directly on * COLAMD by Stefan I. Larimore and Timothy A. Davis, University of * Florida. The algorithm was developed in collaboration with John * Gilbert, (UCSB, then at Xerox PARC), and Esmond Ng, (Lawrence Berkeley * National Lab, then at Oak Ridge National Laboratory). * * Acknowledgements: * * This work was supported by the National Science Foundation, under * grants DMS-9504974 and DMS-9803599, CCR-0203270, and a grant from the * Sandia National Laboratory (Dept. of Energy). * * Copyright and License: * * Copyright (c) 1998-2005 by the University of Florida. * All Rights Reserved. * COLAMD is also available under alternate licenses, contact T. Davis * for details. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 * USA * * Permission is hereby granted to use or copy this program under the * terms of the GNU LGPL, provided that the Copyright, this License, * and the Availability of the original version is retained on all copies. * User documentation of any code that uses this code or any modified * version of this code must cite the Copyright, this License, the * Availability note, and "Used by permission." Permission to modify * the code and to distribute modified code is granted, provided the * Copyright, this License, and the Availability note are retained, * and a notice that the code was modified is included. * * Availability: * * The CCOLAMD/CSYMAMD library is available at * * http://www.cise.ufl.edu/research/sparse/ccolamd/ * * This is the http://www.cise.ufl.edu/research/sparse/ccolamd/ccolamd.c * file. * * See the ChangeLog file for changes since Version 1.0. */ /* ========================================================================== */ /* === Description of user-callable routines ================================ */ /* ========================================================================== */ /* CCOLAMD includes both int and UF_long versions of all its routines. The * description below is for the int version. For UF_long, all int arguments * become UF_long integers. UF_long is normally defined as long, except for * WIN64 */ /* ---------------------------------------------------------------------------- * ccolamd_recommended: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * size_t ccolamd_recommended (int nnz, int n_row, int n_col) ; * size_t ccolamd_l_recommended (UF_long nnz, UF_long n_row, * UF_long n_col) ; * * Purpose: * * Returns recommended value of Alen for use by ccolamd. Returns 0 * if any input argument is negative. The use of this routine * is optional. Not needed for csymamd, which dynamically allocates * its own memory. * * Arguments (all input arguments): * * int nnz ; Number of nonzeros in the matrix A. This must * be the same value as p [n_col] in the call to * ccolamd - otherwise you will get a wrong value * of the recommended memory to use. * * int n_row ; Number of rows in the matrix A. * * int n_col ; Number of columns in the matrix A. * * ---------------------------------------------------------------------------- * ccolamd_set_defaults: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * ccolamd_set_defaults (double knobs [CCOLAMD_KNOBS]) ; * ccolamd_l_set_defaults (double knobs [CCOLAMD_KNOBS]) ; * * Purpose: * * Sets the default parameters. The use of this routine is optional. * Passing a (double *) NULL pointer for the knobs results in the * default parameter settings. * * Arguments: * * double knobs [CCOLAMD_KNOBS] ; Output only. * * knobs [0] and knobs [1] behave differently than they did in COLAMD. * The other knobs are new to CCOLAMD. * * knobs [0]: dense row control * * For CCOLAMD, rows with more than * max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n_col)) * entries are removed prior to ordering. * * For CSYMAMD, rows and columns with more than * max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n)) * entries are removed prior to ordering, and placed last in the * output ordering (subject to the constraints). * * If negative, only completely dense rows are removed. If you * intend to use CCOLAMD for a Cholesky factorization of A*A', set * knobs [CCOLAMD_DENSE_ROW] to -1, which is more appropriate for * that case. * * Default: 10. * * knobs [1]: dense column control * * For CCOLAMD, columns with more than * max (16, knobs [CCOLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col))) * entries are removed prior to ordering, and placed last in the * output column ordering (subject to the constraints). * Not used by CSYMAMD. If negative, only completely dense * columns are removed. Default: 10. * * knobs [2]: aggressive absorption * * knobs [CCOLAMD_AGGRESSIVE] controls whether or not to do * aggressive absorption during the ordering. Default is TRUE * (nonzero). If zero, no aggressive absorption is performed. * * knobs [3]: optimize ordering for LU or Cholesky * * knobs [CCOLAMD_LU] controls an option that optimizes the * ordering for the LU of A or the Cholesky factorization of A'A. * If TRUE (nonzero), an ordering optimized for LU is performed. * If FALSE (zero), an ordering for Cholesky is performed. * Default is FALSE. CSYMAMD ignores this parameter; it always * orders for Cholesky. * * ---------------------------------------------------------------------------- * ccolamd: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * int ccolamd (int n_row, int n_col, int Alen, int *A, int *p, * double knobs [CCOLAMD_KNOBS], int stats [CCOLAMD_STATS], * int *cmember) ; * * UF_long ccolamd_l (UF_long n_row, UF_long n_col, UF_long Alen, * UF_long *A, UF_long *p, double knobs [CCOLAMD_KNOBS], * UF_long stats [CCOLAMD_STATS], UF_long *cmember) ; * * Purpose: * * Computes a column ordering (Q) of A such that P(AQ)=LU or * (AQ)'AQ=LL' have less fill-in and require fewer floating point * operations than factorizing the unpermuted matrix A or A'A, * respectively. * * Returns: * * TRUE (1) if successful, FALSE (0) otherwise. * * Arguments (for int version): * * int n_row ; Input argument. * * Number of rows in the matrix A. * Restriction: n_row >= 0. * ccolamd returns FALSE if n_row is negative. * * int n_col ; Input argument. * * Number of columns in the matrix A. * Restriction: n_col >= 0. * ccolamd returns FALSE if n_col is negative. * * int Alen ; Input argument. * * Restriction (see note): * Alen >= MAX (2*nnz, 4*n_col) + 17*n_col + 7*n_row + 7, where * nnz = p [n_col]. ccolamd returns FALSE if this condition is * not met. We recommend about nnz/5 more space for better * efficiency. This restriction makes an modest assumption * regarding the size of two typedef'd structures in ccolamd.h. * We do, however, guarantee that * * Alen >= ccolamd_recommended (nnz, n_row, n_col) * * will work efficiently. * * int A [Alen] ; Input argument, undefined on output. * * A is an integer array of size Alen. Alen must be at least as * large as the bare minimum value given above, but this is very * low, and can result in excessive run time. For best * performance, we recommend that Alen be greater than or equal to * ccolamd_recommended (nnz, n_row, n_col), which adds * nnz/5 to the bare minimum value given above. * * On input, the row indices of the entries in column c of the * matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices * in a given column c need not be in ascending order, and * duplicate row indices may be be present. However, ccolamd will * work a little faster if both of these conditions are met * (ccolamd puts the matrix into this format, if it finds that the * the conditions are not met). * * The matrix is 0-based. That is, rows are in the range 0 to * n_row-1, and columns are in the range 0 to n_col-1. ccolamd * returns FALSE if any row index is out of range. * * The contents of A are modified during ordering, and are * undefined on output. * * int p [n_col+1] ; Both input and output argument. * * p is an integer array of size n_col+1. On input, it holds the * "pointers" for the column form of the matrix A. Column c of * the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first * entry, p [0], must be zero, and p [c] <= p [c+1] must hold * for all c in the range 0 to n_col-1. The value nnz = p [n_col] * is thus the total number of entries in the pattern of the * matrix A. ccolamd returns FALSE if these conditions are not * met. * * On output, if ccolamd returns TRUE, the array p holds the column * permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is * the first column index in the new ordering, and p [n_col-1] is * the last. That is, p [k] = j means that column j of A is the * kth pivot column, in AQ, where k is in the range 0 to n_col-1 * (p [0] = j means that column j of A is the first column in AQ). * * If ccolamd returns FALSE, then no permutation is returned, and * p is undefined on output. * * double knobs [CCOLAMD_KNOBS] ; Input argument. * * See ccolamd_set_defaults for a description. * * int stats [CCOLAMD_STATS] ; Output argument. * * Statistics on the ordering, and error status. * See ccolamd.h for related definitions. * ccolamd returns FALSE if stats is not present. * * stats [0]: number of dense or empty rows ignored. * * stats [1]: number of dense or empty columns ignored (and * ordered last in the output permutation p, subject to the * constraints). Note that a row can become "empty" if it * contains only "dense" and/or "empty" columns, and similarly * a column can become "empty" if it only contains "dense" * and/or "empty" rows. * * stats [2]: number of garbage collections performed. This can * be excessively high if Alen is close to the minimum * required value. * * stats [3]: status code. < 0 is an error code. * > 1 is a warning or notice. * * 0 OK. Each column of the input matrix contained row * indices in increasing order, with no duplicates. * * 1 OK, but columns of input matrix were jumbled (unsorted * columns or duplicate entries). CCOLAMD had to do some * extra work to sort the matrix first and remove * duplicate entries, but it still was able to return a * valid permutation (return value of ccolamd was TRUE). * * stats [4]: highest column index of jumbled columns * stats [5]: last seen duplicate or unsorted row index * stats [6]: number of duplicate or unsorted row indices * * -1 A is a null pointer * * -2 p is a null pointer * * -3 n_row is negative. stats [4]: n_row * * -4 n_col is negative. stats [4]: n_col * * -5 number of nonzeros in matrix is negative * * stats [4]: number of nonzeros, p [n_col] * * -6 p [0] is nonzero * * stats [4]: p [0] * * -7 A is too small * * stats [4]: required size * stats [5]: actual size (Alen) * * -8 a column has a negative number of entries * * stats [4]: column with < 0 entries * stats [5]: number of entries in col * * -9 a row index is out of bounds * * stats [4]: column with bad row index * stats [5]: bad row index * stats [6]: n_row, # of rows of matrx * * -10 (unused; see csymamd) * * int cmember [n_col] ; Input argument. * * cmember is new to CCOLAMD. It did not appear in COLAMD. * It places contraints on the output ordering. s = cmember [j] * gives the constraint set s that contains the column j * (Restriction: 0 <= s < n_col). In the output column * permutation, all columns in set 0 appear first, followed by * all columns in set 1, and so on. If NULL, all columns are * treated as if they were in a single constraint set, and you * will obtain the same ordering as COLAMD (with one exception: * the dense row/column threshold and other default knobs in * CCOLAMD and COLAMD are different). * * Example: * * See * http://www.cise.ufl.edu/research/sparse/ccolamd/ccolamd_example.c * for a complete example. * * To order the columns of a 5-by-4 matrix with 11 nonzero entries in * the following nonzero pattern * * x 0 x 0 * x 0 x x * 0 x x 0 * 0 0 x x * x x 0 0 * * with default knobs, no output statistics, and no ordering * constraints, do the following: * * #include "ccolamd.h" * #define ALEN 144 * int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ; * int p [ ] = {0, 3, 5, 9, 11} ; * int stats [CCOLAMD_STATS] ; * ccolamd (5, 4, ALEN, A, p, (double *) NULL, stats, NULL) ; * * The permutation is returned in the array p, and A is destroyed. * * ---------------------------------------------------------------------------- * csymamd: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * * int csymamd (int n, int *A, int *p, int *perm, * double knobs [CCOLAMD_KNOBS], int stats [CCOLAMD_STATS], * void (*allocate) (size_t, size_t), void (*release) (void *), * int *cmember, int stype) ; * * UF_long csymamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm, * double knobs [CCOLAMD_KNOBS], UF_long stats [CCOLAMD_STATS], * void (*allocate) (size_t, size_t), void (*release) (void *), * UF_long *cmember, UF_long stype) ; * * Purpose: * * The csymamd routine computes an ordering P of a symmetric sparse * matrix A such that the Cholesky factorization PAP' = LL' remains * sparse. It is based on a column ordering of a matrix M constructed * so that the nonzero pattern of M'M is the same as A. Either the * lower or upper triangular part of A can be used, or the pattern * A+A' can be used. You must pass your selected memory allocator * (usually calloc/free or mxCalloc/mxFree) to csymamd, for it to * allocate memory for the temporary matrix M. * * Returns: * * TRUE (1) if successful, FALSE (0) otherwise. * * Arguments: * * int n ; Input argument. * * Number of rows and columns in the symmetrix matrix A. * Restriction: n >= 0. * csymamd returns FALSE if n is negative. * * int A [nnz] ; Input argument. * * A is an integer array of size nnz, where nnz = p [n]. * * The row indices of the entries in column c of the matrix are * held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a * given column c need not be in ascending order, and duplicate * row indices may be present. However, csymamd will run faster * if the columns are in sorted order with no duplicate entries. * * The matrix is 0-based. That is, rows are in the range 0 to * n-1, and columns are in the range 0 to n-1. csymamd * returns FALSE if any row index is out of range. * * The contents of A are not modified. * * int p [n+1] ; Input argument. * * p is an integer array of size n+1. On input, it holds the * "pointers" for the column form of the matrix A. Column c of * the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first * entry, p [0], must be zero, and p [c] <= p [c+1] must hold * for all c in the range 0 to n-1. The value p [n] is * thus the total number of entries in the pattern of the matrix A. * csymamd returns FALSE if these conditions are not met. * * The contents of p are not modified. * * int perm [n+1] ; Output argument. * * On output, if csymamd returns TRUE, the array perm holds the * permutation P, where perm [0] is the first index in the new * ordering, and perm [n-1] is the last. That is, perm [k] = j * means that row and column j of A is the kth column in PAP', * where k is in the range 0 to n-1 (perm [0] = j means * that row and column j of A are the first row and column in * PAP'). The array is used as a workspace during the ordering, * which is why it must be of length n+1, not just n. * * double knobs [CCOLAMD_KNOBS] ; Input argument. * * See colamd_set_defaults for a description. * * int stats [CCOLAMD_STATS] ; Output argument. * * Statistics on the ordering, and error status. * See ccolamd.h for related definitions. * csymand returns FALSE if stats is not present. * * stats [0]: number of dense or empty row and columns ignored * (and ordered last in the output permutation perm, subject * to the constraints). Note that a row/column can become * "empty" if it contains only "dense" and/or "empty" * columns/rows. * * stats [1]: (same as stats [0]) * * stats [2]: number of garbage collections performed. * * stats [3]: status code. < 0 is an error code. * > 1 is a warning or notice. * * 0 to -9: same as ccolamd, with n replacing n_col and n_row, * and -3 and -7 are unused. * * -10 out of memory (unable to allocate temporary workspace * for M or count arrays using the "allocate" routine * passed into csymamd). * * void * (*allocate) (size_t, size_t) * * A pointer to a function providing memory allocation. The * allocated memory must be returned initialized to zero. For a * C application, this argument should normally be a pointer to * calloc. For a MATLAB mexFunction, the routine mxCalloc is * passed instead. * * void (*release) (size_t, size_t) * * A pointer to a function that frees memory allocated by the * memory allocation routine above. For a C application, this * argument should normally be a pointer to free. For a MATLAB * mexFunction, the routine mxFree is passed instead. * * int cmember [n] ; Input argument. * * Same as ccolamd, except that cmember is of size n, and it places * contraints symmetrically, on both the row and column ordering. * Entries in cmember must be in the range 0 to n-1. * * int stype ; Input argument. * * If stype < 0, then only the strictly lower triangular part of * A is accessed. The upper triangular part is assumed to be the * transpose of the lower triangular part. This is the same as * SYMAMD, which did not have an stype parameter. * * If stype > 0, only the strictly upper triangular part of A is * accessed. The lower triangular part is assumed to be the * transpose of the upper triangular part. * * If stype == 0, then the nonzero pattern of A+A' is ordered. * * ---------------------------------------------------------------------------- * ccolamd_report: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * ccolamd_report (int stats [CCOLAMD_STATS]) ; * ccolamd_l_report (UF_long stats [CCOLAMD_STATS]) ; * * Purpose: * * Prints the error status and statistics recorded in the stats * array on the standard error output (for a standard C routine) * or on the MATLAB output (for a mexFunction). * * Arguments: * * int stats [CCOLAMD_STATS] ; Input only. Statistics from ccolamd. * * * ---------------------------------------------------------------------------- * csymamd_report: * ---------------------------------------------------------------------------- * * C syntax: * * #include "ccolamd.h" * csymamd_report (int stats [CCOLAMD_STATS]) ; * csymamd_l_report (UF_long stats [CCOLAMD_STATS]) ; * * Purpose: * * Prints the error status and statistics recorded in the stats * array on the standard error output (for a standard C routine) * or on the MATLAB output (for a mexFunction). * * Arguments: * * int stats [CCOLAMD_STATS] ; Input only. Statistics from csymamd. * */ /* ========================================================================== */ /* === Scaffolding code definitions ======================================== */ /* ========================================================================== */ /* Ensure that debugging is turned off: */ #ifndef NDEBUG #define NDEBUG #endif /* turn on debugging by uncommenting the following line #undef NDEBUG */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "ccolamd.h" #include #include #include #ifdef MATLAB_MEX_FILE #include "mex.h" #include "matrix.h" #endif #if !defined (NPRINT) || !defined (NDEBUG) #include #endif #ifndef NULL #define NULL ((void *) 0) #endif /* ========================================================================== */ /* === int or UF_long ======================================================= */ /* ========================================================================== */ /* define UF_long */ #include "UFconfig.h" #ifdef DLONG #define Int UF_long #define ID UF_long_id #define Int_MAX UF_long_max #define CCOLAMD_recommended ccolamd_l_recommended #define CCOLAMD_set_defaults ccolamd_l_set_defaults #define CCOLAMD_2 ccolamd2_l #define CCOLAMD_MAIN ccolamd_l #define CCOLAMD_apply_order ccolamd_l_apply_order #define CCOLAMD_postorder ccolamd_l_postorder #define CCOLAMD_post_tree ccolamd_l_post_tree #define CCOLAMD_fsize ccolamd_l_fsize #define CSYMAMD_MAIN csymamd_l #define CCOLAMD_report ccolamd_l_report #define CSYMAMD_report csymamd_l_report #else #define Int int #define ID "%d" #define Int_MAX INT_MAX #define CCOLAMD_recommended ccolamd_recommended #define CCOLAMD_set_defaults ccolamd_set_defaults #define CCOLAMD_2 ccolamd2 #define CCOLAMD_MAIN ccolamd #define CCOLAMD_apply_order ccolamd_apply_order #define CCOLAMD_postorder ccolamd_postorder #define CCOLAMD_post_tree ccolamd_post_tree #define CCOLAMD_fsize ccolamd_fsize #define CSYMAMD_MAIN csymamd #define CCOLAMD_report ccolamd_report #define CSYMAMD_report csymamd_report #endif /* ========================================================================== */ /* === Row and Column structures ============================================ */ /* ========================================================================== */ typedef struct CColamd_Col_struct { /* size of this struct is 8 integers if no padding occurs */ Int start ; /* index for A of first row in this column, or DEAD */ /* if column is dead */ Int length ; /* number of rows in this column */ union { Int thickness ; /* number of original columns represented by this */ /* col, if the column is alive */ Int parent ; /* parent in parent tree super-column structure, if */ /* the column is dead */ } shared1 ; union { Int score ; Int order ; } shared2 ; union { Int headhash ; /* head of a hash bucket, if col is at the head of */ /* a degree list */ Int hash ; /* hash value, if col is not in a degree list */ Int prev ; /* previous column in degree list, if col is in a */ /* degree list (but not at the head of a degree list) */ } shared3 ; union { Int degree_next ; /* next column, if col is in a degree list */ Int hash_next ; /* next column, if col is in a hash list */ } shared4 ; Int nextcol ; /* next column in this supercolumn */ Int lastcol ; /* last column in this supercolumn */ } CColamd_Col ; typedef struct CColamd_Row_struct { /* size of this struct is 6 integers if no padding occurs */ Int start ; /* index for A of first col in this row */ Int length ; /* number of principal columns in this row */ union { Int degree ; /* number of principal & non-principal columns in row */ Int p ; /* used as a row pointer in init_rows_cols () */ } shared1 ; union { Int mark ; /* for computing set differences and marking dead rows*/ Int first_column ;/* first column in row (used in garbage collection) */ } shared2 ; Int thickness ; /* number of original rows represented by this row */ /* that are not yet pivotal */ Int front ; /* -1 if an original row */ /* k if this row represents the kth frontal matrix */ /* where k goes from 0 to at most n_col-1 */ } CColamd_Row ; /* ========================================================================== */ /* === basic definitions ==================================================== */ /* ========================================================================== */ #define EMPTY (-1) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */ #define GLOBAL #define PUBLIC #define PRIVATE static #define DENSE_DEGREE(alpha,n) \ ((Int) MAX (16.0, (alpha) * sqrt ((double) (n)))) #define CMEMBER(c) ((cmember == (Int *) NULL) ? (0) : (cmember [c])) /* True if x is NaN */ #define SCALAR_IS_NAN(x) ((x) != (x)) /* true if an integer (stored in double x) would overflow (or if x is NaN) */ #define INT_OVERFLOW(x) ((!((x) * (1.0+1e-8) <= (double) Int_MAX)) \ || SCALAR_IS_NAN (x)) #define ONES_COMPLEMENT(r) (-(r)-1) #undef TRUE #undef FALSE #define TRUE (1) #define FALSE (0) /* Row and column status */ #define ALIVE (0) #define DEAD (-1) /* Column status */ #define DEAD_PRINCIPAL (-1) #define DEAD_NON_PRINCIPAL (-2) /* Macros for row and column status update and checking. */ #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) #define COL_IS_DEAD(c) (Col [c].start < ALIVE) #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } /* ========================================================================== */ /* === ccolamd reporting mechanism ========================================== */ /* ========================================================================== */ #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS) /* In MATLAB, matrices are 1-based to the user, but 0-based internally */ #define INDEX(i) ((i)+1) #else /* In C, matrices are 0-based and indices are reported as such in *_report */ #define INDEX(i) (i) #endif /* All output goes through the PRINTF macro. */ #define PRINTF(params) { if (ccolamd_printf != NULL) (void) ccolamd_printf params ; } /* ========================================================================== */ /* === Debugging prototypes and definitions ================================= */ /* ========================================================================== */ #ifndef NDEBUG #include /* debug print level, present only when debugging */ PRIVATE Int ccolamd_debug ; /* debug print statements */ #define DEBUG0(params) { PRINTF (params) ; } #define DEBUG1(params) { if (ccolamd_debug >= 1) PRINTF (params) ; } #define DEBUG2(params) { if (ccolamd_debug >= 2) PRINTF (params) ; } #define DEBUG3(params) { if (ccolamd_debug >= 3) PRINTF (params) ; } #define DEBUG4(params) { if (ccolamd_debug >= 4) PRINTF (params) ; } #ifdef MATLAB_MEX_FILE #define ASSERT(expression) (mxAssert ((expression), "")) #else #define ASSERT(expression) (assert (expression)) #endif PRIVATE void ccolamd_get_debug ( char *method ) ; PRIVATE void debug_mark ( Int n_row, CColamd_Row Row [], Int tag_mark, Int max_mark ) ; PRIVATE void debug_matrix ( Int n_row, Int n_col, CColamd_Row Row [], CColamd_Col Col [], Int A [] ) ; PRIVATE void debug_structures ( Int n_row, Int n_col, CColamd_Row Row [], CColamd_Col Col [], Int A [], Int in_cset [], Int cset_start [] ) ; PRIVATE void dump_super ( Int super_c, CColamd_Col Col [], Int n_col ) ; PRIVATE void debug_deg_lists ( Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int head [ ], Int min_score, Int should, Int max_deg ) ; #else /* === No debugging ========================================================= */ #define DEBUG0(params) ; #define DEBUG1(params) ; #define DEBUG2(params) ; #define DEBUG3(params) ; #define DEBUG4(params) ; #define ASSERT(expression) #endif /* ========================================================================== */ /* === Prototypes of PRIVATE routines ======================================= */ /* ========================================================================== */ PRIVATE Int init_rows_cols ( Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ], Int p [ ], Int stats [CCOLAMD_STATS] ) ; PRIVATE void init_scoring ( Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ], Int head [ ], double knobs [CCOLAMD_KNOBS], Int *p_n_row2, Int *p_n_col2, Int *p_max_deg, Int cmember [ ], Int n_cset, Int cset_start [ ], Int dead_cols [ ], Int *p_ndense_row, /* number of dense rows */ Int *p_nempty_row, /* number of original empty rows */ Int *p_nnewlyempty_row, /* number of newly empty rows */ Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */ Int *p_nempty_col, /* number of original empty cols */ Int *p_nnewlyempty_col /* number of newly empty cols */ ) ; PRIVATE Int find_ordering ( Int n_row, Int n_col, Int Alen, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ], Int head [ ], #ifndef NDEBUG Int n_col2, #endif Int max_deg, Int pfree, Int cset [ ], Int cset_start [ ], #ifndef NDEBUG Int n_cset, #endif Int cmember [ ], Int Front_npivcol [ ], Int Front_nrows [ ], Int Front_ncols [ ], Int Front_parent [ ], Int Front_cols [ ], Int *p_nfr, Int aggressive, Int InFront [ ], Int order_for_lu ) ; PRIVATE void detect_super_cols ( #ifndef NDEBUG Int n_col, CColamd_Row Row [ ], #endif CColamd_Col Col [ ], Int A [ ], Int head [ ], Int row_start, Int row_length, Int in_set [ ] ) ; PRIVATE Int garbage_collection ( Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ], Int *pfree ) ; PRIVATE Int clear_mark ( Int tag_mark, Int max_mark, Int n_row, CColamd_Row Row [ ] ) ; PRIVATE void print_report ( char *method, Int stats [CCOLAMD_STATS] ) ; /* ========================================================================== */ /* === USER-CALLABLE ROUTINES: ============================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === ccolamd_recommended ================================================== */ /* ========================================================================== */ /* * The ccolamd_recommended routine returns the suggested size for Alen. This * value has been determined to provide good balance between the number of * garbage collections and the memory requirements for ccolamd. If any * argument is negative, or if integer overflow occurs, a 0 is returned as * an error condition. * * 2*nnz space is required for the row and column indices of the matrix * (or 4*n_col, which ever is larger). * * CCOLAMD_C (n_col) + CCOLAMD_R (n_row) space is required for the Col and Row * arrays, respectively, which are internal to ccolamd. This is equal to * 8*n_col + 6*n_row if the structures are not padded. * * An additional n_col space is the minimal amount of "elbow room", * and nnz/5 more space is recommended for run time efficiency. * * The remaining (((3 * n_col) + 1) + 5 * (n_col + 1) + n_row) space is * for other workspace used in ccolamd which did not appear in colamd. */ /* add two values of type size_t, and check for integer overflow */ static size_t t_add (size_t a, size_t b, int *ok) { (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ; return ((*ok) ? (a + b) : 0) ; } /* compute a*k where k is a small integer, and check for integer overflow */ static size_t t_mult (size_t a, size_t k, int *ok) { size_t i, s = 0 ; for (i = 0 ; i < k ; i++) { s = t_add (s, a, ok) ; } return (s) ; } /* size of the Col and Row structures */ #define CCOLAMD_C(n_col,ok) \ ((t_mult (t_add (n_col, 1, ok), sizeof (CColamd_Col), ok) / sizeof (Int))) #define CCOLAMD_R(n_row,ok) \ ((t_mult (t_add (n_row, 1, ok), sizeof (CColamd_Row), ok) / sizeof (Int))) /* #define CCOLAMD_RECOMMENDED(nnz, n_row, n_col) \ MAX (2 * nnz, 4 * n_col) + \ CCOLAMD_C (n_col) + CCOLAMD_R (n_row) + n_col + (nnz / 5) \ + ((3 * n_col) + 1) + 5 * (n_col + 1) + n_row */ static size_t ccolamd_need (Int nnz, Int n_row, Int n_col, int *ok) { /* ccolamd_need, compute the following, and check for integer overflow: need = MAX (2*nnz, 4*n_col) + n_col + Col_size + Row_size + (3*n_col+1) + (5*(n_col+1)) + n_row ; */ size_t s, c, r, t ; /* MAX (2*nnz, 4*n_col) */ s = t_mult (nnz, 2, ok) ; /* 2*nnz */ t = t_mult (n_col, 4, ok) ; /* 4*n_col */ s = MAX (s,t) ; s = t_add (s, n_col, ok) ; /* bare minimum elbow room */ /* Col and Row arrays */ c = CCOLAMD_C (n_col, ok) ; /* size of column structures */ r = CCOLAMD_R (n_row, ok) ; /* size of row structures */ s = t_add (s, c, ok) ; s = t_add (s, r, ok) ; c = t_mult (n_col, 3, ok) ; /* 3*n_col + 1 */ c = t_add (c, 1, ok) ; s = t_add (s, c, ok) ; c = t_add (n_col, 1, ok) ; /* 5 * (n_col + 1) */ c = t_mult (c, 5, ok) ; s = t_add (s, c, ok) ; s = t_add (s, n_row, ok) ; /* n_row */ return (ok ? s : 0) ; } PUBLIC size_t CCOLAMD_recommended /* returns recommended value of Alen. */ ( /* === Parameters ======================================================= */ Int nnz, /* number of nonzeros in A */ Int n_row, /* number of rows in A */ Int n_col /* number of columns in A */ ) { size_t s ; int ok = TRUE ; if (nnz < 0 || n_row < 0 || n_col < 0) { return (0) ; } s = ccolamd_need (nnz, n_row, n_col, &ok) ; /* bare minimum needed */ s = t_add (s, nnz/5, &ok) ; /* extra elbow room */ ok = ok && (s < Int_MAX) ; return (ok ? s : 0) ; } /* ========================================================================== */ /* === ccolamd_set_defaults ================================================= */ /* ========================================================================== */ /* * The ccolamd_set_defaults routine sets the default values of the user- * controllable parameters for ccolamd. */ PUBLIC void CCOLAMD_set_defaults ( /* === Parameters ======================================================= */ double knobs [CCOLAMD_KNOBS] /* knob array */ ) { /* === Local variables ================================================== */ Int i ; if (!knobs) { return ; /* no knobs to initialize */ } for (i = 0 ; i < CCOLAMD_KNOBS ; i++) { knobs [i] = 0 ; } knobs [CCOLAMD_DENSE_ROW] = 10 ; knobs [CCOLAMD_DENSE_COL] = 10 ; knobs [CCOLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/ knobs [CCOLAMD_LU] = FALSE ; /* default: order for Cholesky */ } /* ========================================================================== */ /* === symamd =============================================================== */ /* ========================================================================== */ PUBLIC Int CSYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */ ( /* === Parameters ======================================================= */ Int n, /* number of rows and columns of A */ Int A [ ], /* row indices of A */ Int p [ ], /* column pointers of A */ Int perm [ ], /* output permutation, size n+1 */ double knobs [CCOLAMD_KNOBS], /* parameters (uses defaults if NULL) */ Int stats [CCOLAMD_STATS], /* output statistics and error codes */ void * (*allocate) (size_t, size_t),/* pointer to calloc (ANSI C) or */ /* mxCalloc (for MATLAB mexFunction) */ void (*release) (void *), /* pointer to free (ANSI C) or */ /* mxFree (for MATLAB mexFunction) */ Int cmember [ ], /* constraint set */ Int stype /* stype of A */ ) { /* === Local variables ================================================== */ double cknobs [CCOLAMD_KNOBS] ; double default_knobs [CCOLAMD_KNOBS] ; Int *count ; /* length of each column of M, and col pointer*/ Int *mark ; /* mark array for finding duplicate entries */ Int *M ; /* row indices of matrix M */ size_t Mlen ; /* length of M */ Int n_row ; /* number of rows in M */ Int nnz ; /* number of entries in A */ Int i ; /* row index of A */ Int j ; /* column index of A */ Int k ; /* row index of M */ Int mnz ; /* number of nonzeros in M */ Int pp ; /* index into a column of A */ Int last_row ; /* last row seen in the current column */ Int length ; /* number of nonzeros in a column */ Int both ; /* TRUE if ordering A+A' */ Int upper ; /* TRUE if ordering triu(A)+triu(A)' */ Int lower ; /* TRUE if ordering tril(A)+tril(A)' */ #ifndef NDEBUG ccolamd_get_debug ("csymamd") ; #endif both = (stype == 0) ; upper = (stype > 0) ; lower = (stype < 0) ; /* === Check the input arguments ======================================== */ if (!stats) { DEBUG1 (("csymamd: stats not present\n")) ; return (FALSE) ; } for (i = 0 ; i < CCOLAMD_STATS ; i++) { stats [i] = 0 ; } stats [CCOLAMD_STATUS] = CCOLAMD_OK ; stats [CCOLAMD_INFO1] = -1 ; stats [CCOLAMD_INFO2] = -1 ; if (!A) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_not_present ; DEBUG1 (("csymamd: A not present\n")) ; return (FALSE) ; } if (!p) /* p is not present */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p_not_present ; DEBUG1 (("csymamd: p not present\n")) ; return (FALSE) ; } if (n < 0) /* n must be >= 0 */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ; stats [CCOLAMD_INFO1] = n ; DEBUG1 (("csymamd: n negative "ID" \n", n)) ; return (FALSE) ; } nnz = p [n] ; if (nnz < 0) /* nnz must be >= 0 */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ; stats [CCOLAMD_INFO1] = nnz ; DEBUG1 (("csymamd: number of entries negative "ID" \n", nnz)) ; return (FALSE) ; } if (p [0] != 0) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ; stats [CCOLAMD_INFO1] = p [0] ; DEBUG1 (("csymamd: p[0] not zero "ID"\n", p [0])) ; return (FALSE) ; } /* === If no knobs, set default knobs =================================== */ if (!knobs) { CCOLAMD_set_defaults (default_knobs) ; knobs = default_knobs ; } /* === Allocate count and mark ========================================== */ count = (Int *) ((*allocate) (n+1, sizeof (Int))) ; if (!count) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ; DEBUG1 (("csymamd: allocate count (size "ID") failed\n", n+1)) ; return (FALSE) ; } mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ; if (!mark) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ; (*release) ((void *) count) ; DEBUG1 (("csymamd: allocate mark (size "ID") failed\n", n+1)) ; return (FALSE) ; } /* === Compute column counts of M, check if A is valid ================== */ stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ for (i = 0 ; i < n ; i++) { mark [i] = -1 ; } for (j = 0 ; j < n ; j++) { last_row = -1 ; length = p [j+1] - p [j] ; if (length < 0) { /* column pointers must be non-decreasing */ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ; stats [CCOLAMD_INFO1] = j ; stats [CCOLAMD_INFO2] = length ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG1 (("csymamd: col "ID" negative length "ID"\n", j, length)) ; return (FALSE) ; } for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; if (i < 0 || i >= n) { /* row index i, in column j, is out of bounds */ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ; stats [CCOLAMD_INFO1] = j ; stats [CCOLAMD_INFO2] = i ; stats [CCOLAMD_INFO3] = n ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG1 (("csymamd: row "ID" col "ID" out of bounds\n", i, j)) ; return (FALSE) ; } if (i <= last_row || mark [i] == j) { /* row index is unsorted or repeated (or both), thus col */ /* is jumbled. This is a notice, not an error condition. */ stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ; stats [CCOLAMD_INFO1] = j ; stats [CCOLAMD_INFO2] = i ; (stats [CCOLAMD_INFO3]) ++ ; DEBUG1 (("csymamd: row "ID" col "ID" unsorted/dupl.\n", i, j)) ; } if (mark [i] != j) { if ((both && i != j) || (lower && i > j) || (upper && i < j)) { /* row k of M will contain column indices i and j */ count [i]++ ; count [j]++ ; } } /* mark the row as having been seen in this column */ mark [i] = j ; last_row = i ; } } /* === Compute column pointers of M ===================================== */ /* use output permutation, perm, for column pointers of M */ perm [0] = 0 ; for (j = 1 ; j <= n ; j++) { perm [j] = perm [j-1] + count [j-1] ; } for (j = 0 ; j < n ; j++) { count [j] = perm [j] ; } /* === Construct M ====================================================== */ mnz = perm [n] ; n_row = mnz / 2 ; Mlen = CCOLAMD_recommended (mnz, n_row, n) ; M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ; DEBUG1 (("csymamd: M is "ID"-by-"ID" with "ID" entries, Mlen = %g\n", n_row, n, mnz, (double) Mlen)) ; if (!M) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG1 (("csymamd: allocate M (size %g) failed\n", (double) Mlen)) ; return (FALSE) ; } k = 0 ; if (stats [CCOLAMD_STATUS] == CCOLAMD_OK) { /* Matrix is OK */ for (j = 0 ; j < n ; j++) { ASSERT (p [j+1] - p [j] >= 0) ; for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; ASSERT (i >= 0 && i < n) ; if ((both && i != j) || (lower && i > j) || (upper && i < j)) { /* row k of M contains column indices i and j */ M [count [i]++] = k ; M [count [j]++] = k ; k++ ; } } } } else { /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */ DEBUG1 (("csymamd: Duplicates in A.\n")) ; for (i = 0 ; i < n ; i++) { mark [i] = -1 ; } for (j = 0 ; j < n ; j++) { ASSERT (p [j+1] - p [j] >= 0) ; for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; ASSERT (i >= 0 && i < n) ; if (mark [i] != j) { if ((both && i != j) || (lower && i > j) || (upper && i= 0 */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nrow_negative ; stats [CCOLAMD_INFO1] = n_row ; DEBUG1 (("ccolamd: nrow negative "ID"\n", n_row)) ; return (FALSE) ; } if (n_col < 0) /* n_col must be >= 0 */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ; stats [CCOLAMD_INFO1] = n_col ; DEBUG1 (("ccolamd: ncol negative "ID"\n", n_col)) ; return (FALSE) ; } nnz = p [n_col] ; if (nnz < 0) /* nnz must be >= 0 */ { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ; stats [CCOLAMD_INFO1] = nnz ; DEBUG1 (("ccolamd: number of entries negative "ID"\n", nnz)) ; return (FALSE) ; } if (p [0] != 0) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ; stats [CCOLAMD_INFO1] = p [0] ; DEBUG1 (("ccolamd: p[0] not zero "ID"\n", p [0])) ; return (FALSE) ; } /* === If no knobs, set default knobs =================================== */ if (!knobs) { CCOLAMD_set_defaults (default_knobs) ; knobs = default_knobs ; } aggressive = (knobs [CCOLAMD_AGGRESSIVE] != FALSE) ; order_for_lu = (knobs [CCOLAMD_LU] != FALSE) ; /* === Allocate workspace from array A ================================== */ ok = TRUE ; Col_size = CCOLAMD_C (n_col, &ok) ; Row_size = CCOLAMD_R (n_row, &ok) ; /* min size of A is 2nnz+ncol. cset and cset_start are of size 2ncol+1 */ /* Each of the 5 fronts is of size n_col + 1. InFront is of size nrow. */ /* need = MAX (2*nnz, 4*n_col) + n_col + Col_size + Row_size + (3*n_col+1) + (5*(n_col+1)) + n_row ; */ need = ccolamd_need (nnz, n_row, n_col, &ok) ; if (!ok || need > (size_t) Alen || need > Int_MAX) { /* not enough space in array A to perform the ordering */ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_too_small ; stats [CCOLAMD_INFO1] = need ; stats [CCOLAMD_INFO2] = Alen ; DEBUG1 (("ccolamd: Need Alen >= "ID", given "ID"\n", need, Alen)) ; return (FALSE) ; } /* since integer overflow has been check, the following cannot overflow: */ Alen -= Col_size + Row_size + (3*n_col + 1) + 5*(n_col+1) + n_row ; /* Size of A is now Alen >= MAX (2*nnz, 4*n_col) + n_col. The ordering * requires Alen >= 2*nnz + n_col, and the postorder requires * Alen >= 5*n_col. */ ap = Alen ; /* Front array workspace: 5*(n_col+1) + n_row */ if (!Front_npivcol || !Front_nrows || !Front_ncols || !Front_parent || !Front_cols || !Front_cols || !InFront) { Front_npivcol = &A [ap] ; ap += (n_col + 1) ; Front_nrows = &A [ap] ; ap += (n_col + 1) ; Front_ncols = &A [ap] ; ap += (n_col + 1) ; Front_parent = &A [ap] ; ap += (n_col + 1) ; Front_cols = &A [ap] ; ap += (n_col + 1) ; InFront = &A [ap] ; ap += (n_row) ; } else { /* Fronts are present. Leave the additional space as elbow room. */ ap += 5*(n_col+1) + n_row ; ap = Alen ; } /* Workspace for cset management: 3*n_col+1 */ /* cset_start is of size n_col + 1 */ cset_start = &A [ap] ; ap += n_col + 1 ; /* dead_col is of size n_col */ dead_cols = &A [ap] ; ap += n_col ; /* cset is of size n_col */ cset = &A [ap] ; ap += n_col ; /* Col is of size Col_size. The space is shared by temp_cstart and csize */ Col = (CColamd_Col *) &A [ap] ; temp_cstart = (Int *) Col ; /* [ temp_cstart is of size n_col+1 */ csize = temp_cstart + (n_col+1) ; /* csize is of size n_col+1 */ ap += Col_size ; ASSERT (Col_size >= 2*n_col+1) ; /* Row is of size Row_size */ Row = (CColamd_Row *) &A [ap] ; ap += Row_size ; /* Initialize csize & dead_cols to zero */ for (i = 0 ; i < n_col ; i++) { csize [i] = 0 ; dead_cols [i] = 0 ; } /* === Construct the constraint set ===================================== */ if (n_col == 0) { n_cset = 0 ; } else if (cmember == (Int *) NULL) { /* no constraint set; all columns belong to set zero */ n_cset = 1 ; csize [0] = n_col ; DEBUG1 (("no cmember present\n")) ; } else { n_cset = 0 ; for (i = 0 ; i < n_col ; i++) { if (cmember [i] < 0 || cmember [i] > n_col) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_invalid_cmember ; DEBUG1 (("ccolamd: malformed cmember \n")) ; return (FALSE) ; } n_cset = MAX (n_cset, cmember [i]) ; csize [cmember [i]]++ ; } /* cset is zero based */ n_cset++ ; } ASSERT ((n_cset >= 0) && (n_cset <= n_col)) ; cset_start [0] = temp_cstart [0] = 0 ; for (i = 1 ; i <= n_cset ; i++) { cset_start [i] = cset_start [i-1] + csize [i-1] ; DEBUG4 ((" cset_start ["ID"] = "ID" \n", i , cset_start [i])) ; temp_cstart [i] = cset_start [i] ; } /* do in reverse order to encourage natural tie-breaking */ if (cmember == (Int *) NULL) { for (i = n_col-1 ; i >= 0 ; i--) { cset [temp_cstart [0]++] = i ; } } else { for (i = n_col-1 ; i >= 0 ; i--) { cset [temp_cstart [cmember [i]]++] = i ; } } /* ] temp_cstart and csize are no longer used */ /* === Construct the row and column data structures ===================== */ if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) { /* input matrix is invalid */ DEBUG1 (("ccolamd: Matrix invalid\n")) ; return (FALSE) ; } /* === Initialize front info ============================================ */ for (col = 0 ; col < n_col ; col++) { Front_npivcol [col] = 0 ; Front_nrows [col] = 0 ; Front_ncols [col] = 0 ; Front_parent [col] = EMPTY ; Front_cols [col] = EMPTY ; } /* === Initialize scores, kill dense rows/columns ======================= */ init_scoring (n_row, n_col, Row, Col, A, p, knobs, &n_row2, &n_col2, &max_deg, cmember, n_cset, cset_start, dead_cols, &ndense_row, &nempty_row, &nnewlyempty_row, &ndense_col, &nempty_col, &nnewlyempty_col) ; ASSERT (n_row2 == n_row - nempty_row - nnewlyempty_row - ndense_row) ; ASSERT (n_col2 == n_col - nempty_col - nnewlyempty_col - ndense_col) ; DEBUG1 (("# dense rows "ID" cols "ID"\n", ndense_row, ndense_col)) ; /* === Order the supercolumns =========================================== */ ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p, #ifndef NDEBUG n_col2, #endif max_deg, 2*nnz, cset, cset_start, #ifndef NDEBUG n_cset, #endif cmember, Front_npivcol, Front_nrows, Front_ncols, Front_parent, Front_cols, &nfr, aggressive, InFront, order_for_lu) ; ASSERT (Alen >= 5*n_col) ; /* === Postorder ======================================================== */ /* A is no longer needed, so use A [0..5*nfr-1] as workspace [ [ */ /* This step requires Alen >= 5*n_col */ Front_child = A ; Front_sibling = Front_child + nfr ; Front_stack = Front_sibling + nfr ; Front_order = Front_stack + nfr ; Front_size = Front_order + nfr ; CCOLAMD_fsize (nfr, Front_size, Front_nrows, Front_ncols, Front_parent, Front_npivcol) ; CCOLAMD_postorder (nfr, Front_parent, Front_npivcol, Front_size, Front_order, Front_child, Front_sibling, Front_stack, Front_cols, cmember) ; /* Front_size, Front_stack, Front_child, Front_sibling no longer needed ] */ /* use A [0..nfr-1] as workspace */ CCOLAMD_apply_order (Front_npivcol, Front_order, A, nfr, nfr) ; CCOLAMD_apply_order (Front_nrows, Front_order, A, nfr, nfr) ; CCOLAMD_apply_order (Front_ncols, Front_order, A, nfr, nfr) ; CCOLAMD_apply_order (Front_parent, Front_order, A, nfr, nfr) ; CCOLAMD_apply_order (Front_cols, Front_order, A, nfr, nfr) ; /* fix the parent to refer to the new numbering */ for (i = 0 ; i < nfr ; i++) { parent = Front_parent [i] ; if (parent != EMPTY) { Front_parent [i] = Front_order [parent] ; } } /* fix InFront to refer to the new numbering */ for (row = 0 ; row < n_row ; row++) { i = InFront [row] ; ASSERT (i >= EMPTY && i < nfr) ; if (i != EMPTY) { InFront [row] = Front_order [i] ; } } /* Front_order longer needed ] */ /* === Order the columns in the fronts ================================== */ /* use A [0..n_col-1] as inverse permutation */ for (i = 0 ; i < n_col ; i++) { A [i] = EMPTY ; } k = 0 ; set1 = 0 ; for (i = 0 ; i < nfr ; i++) { ASSERT (Front_npivcol [i] > 0) ; set2 = CMEMBER (Front_cols [i]) ; while (set1 < set2) { k += dead_cols [set1] ; DEBUG3 (("Skip null/dense columns of set "ID"\n",set1)) ; set1++ ; } set1 = set2 ; for (col = Front_cols [i] ; col != EMPTY ; col = Col [col].nextcol) { ASSERT (col >= 0 && col < n_col) ; DEBUG1 (("ccolamd output ordering: k "ID" col "ID"\n", k, col)) ; p [k] = col ; ASSERT (A [col] == EMPTY) ; cs = CMEMBER (col) ; ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ; A [col] = k ; k++ ; } } /* === Order the "dense" and null columns =============================== */ if (n_col2 < n_col) { for (col = 0 ; col < n_col ; col++) { if (A [col] == EMPTY) { k = Col [col].shared2.order ; cs = CMEMBER (col) ; #ifndef NDEBUG dead_cols [cs]-- ; #endif ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ; DEBUG1 (("ccolamd output ordering: k "ID" col "ID " (dense or null col)\n", k, col)) ; p [k] = col ; A [col] = k ; } } } #ifndef NDEBUG for (i = 0 ; i < n_cset ; i++) { ASSERT (dead_cols [i] == 0) ; } #endif /* === Return statistics in stats ======================================= */ stats [CCOLAMD_DENSE_ROW] = ndense_row ; stats [CCOLAMD_DENSE_COL] = nempty_row ; stats [CCOLAMD_NEWLY_EMPTY_ROW] = nnewlyempty_row ; stats [CCOLAMD_DENSE_COL] = ndense_col ; stats [CCOLAMD_EMPTY_COL] = nempty_col ; stats [CCOLAMD_NEWLY_EMPTY_COL] = nnewlyempty_col ; ASSERT (ndense_col + nempty_col + nnewlyempty_col == n_col - n_col2) ; if (p_nfr) { *p_nfr = nfr ; } stats [CCOLAMD_DEFRAG_COUNT] = ngarbage ; DEBUG1 (("ccolamd: done.\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === colamd_report ======================================================== */ /* ========================================================================== */ PUBLIC void CCOLAMD_report ( Int stats [CCOLAMD_STATS] ) { print_report ("ccolamd", stats) ; } /* ========================================================================== */ /* === symamd_report ======================================================== */ /* ========================================================================== */ PUBLIC void CSYMAMD_report ( Int stats [CCOLAMD_STATS] ) { print_report ("csymamd", stats) ; } /* ========================================================================== */ /* === NON-USER-CALLABLE ROUTINES: ========================================== */ /* ========================================================================== */ /* There are no user-callable routines beyond this point in the file */ /* ========================================================================== */ /* === init_rows_cols ======================================================= */ /* ========================================================================== */ /* Takes the column form of the matrix in A and creates the row form of the matrix. Also, row and column attributes are stored in the Col and Row structs. If the columns are un-sorted or contain duplicate row indices, this routine will also sort and remove duplicate row indices from the column form of the matrix. Returns FALSE if the matrix is invalid, TRUE otherwise. Not user-callable. */ PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ CColamd_Row Row [ ], /* of size n_row+1 */ CColamd_Col Col [ ], /* of size n_col+1 */ Int A [ ], /* row indices of A, of size Alen */ Int p [ ], /* pointers to columns in A, of size n_col+1 */ Int stats [CCOLAMD_STATS] /* colamd statistics */ ) { /* === Local variables ================================================== */ Int col ; /* a column index */ Int row ; /* a row index */ Int *cp ; /* a column pointer */ Int *cp_end ; /* a pointer to the end of a column */ Int *rp ; /* a row pointer */ Int *rp_end ; /* a pointer to the end of a row */ Int last_row ; /* previous row */ /* === Initialize columns, and check column pointers ==================== */ for (col = 0 ; col < n_col ; col++) { Col [col].start = p [col] ; Col [col].length = p [col+1] - p [col] ; if (Col [col].length < 0) { /* column pointers must be non-decreasing */ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ; stats [CCOLAMD_INFO1] = col ; stats [CCOLAMD_INFO2] = Col [col].length ; DEBUG1 (("ccolamd: col "ID" length "ID" < 0\n", col, Col [col].length)) ; return (FALSE) ; } Col [col].shared1.thickness = 1 ; Col [col].shared2.score = 0 ; Col [col].shared3.prev = EMPTY ; Col [col].shared4.degree_next = EMPTY ; Col [col].nextcol = EMPTY ; Col [col].lastcol = col ; } /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ /* === Scan columns, compute row degrees, and check row indices ========= */ stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ for (row = 0 ; row < n_row ; row++) { Row [row].length = 0 ; Row [row].shared2.mark = -1 ; Row [row].thickness = 1 ; Row [row].front = EMPTY ; } for (col = 0 ; col < n_col ; col++) { DEBUG1 (("\nCcolamd input column "ID":\n", col)) ; last_row = -1 ; cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { row = *cp++ ; DEBUG1 (("row: "ID"\n", row)) ; /* make sure row indices within range */ if (row < 0 || row >= n_row) { stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ; stats [CCOLAMD_INFO1] = col ; stats [CCOLAMD_INFO2] = row ; stats [CCOLAMD_INFO3] = n_row ; DEBUG1 (("row "ID" col "ID" out of bounds\n", row, col)) ; return (FALSE) ; } if (row <= last_row || Row [row].shared2.mark == col) { /* row index are unsorted or repeated (or both), thus col */ /* is jumbled. This is a notice, not an error condition. */ stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ; stats [CCOLAMD_INFO1] = col ; stats [CCOLAMD_INFO2] = row ; (stats [CCOLAMD_INFO3]) ++ ; DEBUG1 (("row "ID" col "ID" unsorted/duplicate\n", row, col)) ; } if (Row [row].shared2.mark != col) { Row [row].length++ ; } else { /* this is a repeated entry in the column, */ /* it will be removed */ Col [col].length-- ; } /* mark the row as having been seen in this column */ Row [row].shared2.mark = col ; last_row = row ; } } /* === Compute row pointers ============================================= */ /* row form of the matrix starts directly after the column */ /* form of matrix in A */ Row [0].start = p [n_col] ; Row [0].shared1.p = Row [0].start ; Row [0].shared2.mark = -1 ; for (row = 1 ; row < n_row ; row++) { Row [row].start = Row [row-1].start + Row [row-1].length ; Row [row].shared1.p = Row [row].start ; Row [row].shared2.mark = -1 ; } /* === Create row form ================================================== */ if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED) { /* if cols jumbled, watch for repeated row indices */ for (col = 0 ; col < n_col ; col++) { cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { row = *cp++ ; if (Row [row].shared2.mark != col) { A [(Row [row].shared1.p)++] = col ; Row [row].shared2.mark = col ; } } } } else { /* if cols not jumbled, we don't need the mark (this is faster) */ for (col = 0 ; col < n_col ; col++) { cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { A [(Row [*cp++].shared1.p)++] = col ; } } } /* === Clear the row marks and set row degrees ========================== */ for (row = 0 ; row < n_row ; row++) { Row [row].shared2.mark = 0 ; Row [row].shared1.degree = Row [row].length ; } /* === See if we need to re-create columns ============================== */ if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED) { DEBUG1 (("ccolamd: reconstructing column form, matrix jumbled\n")) ; #ifndef NDEBUG /* make sure column lengths are correct */ for (col = 0 ; col < n_col ; col++) { p [col] = Col [col].length ; } for (row = 0 ; row < n_row ; row++) { rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { p [*rp++]-- ; } } for (col = 0 ; col < n_col ; col++) { ASSERT (p [col] == 0) ; } /* now p is all zero (different than when debugging is turned off) */ #endif /* === Compute col pointers ========================================= */ /* col form of the matrix starts at A [0]. */ /* Note, we may have a gap between the col form and the row */ /* form if there were duplicate entries, if so, it will be */ /* removed upon the first garbage collection */ Col [0].start = 0 ; p [0] = Col [0].start ; for (col = 1 ; col < n_col ; col++) { /* note that the lengths here are for pruned columns, i.e. */ /* no duplicate row indices will exist for these columns */ Col [col].start = Col [col-1].start + Col [col-1].length ; p [col] = Col [col].start ; } /* === Re-create col form =========================================== */ for (row = 0 ; row < n_row ; row++) { rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { A [(p [*rp++])++] = row ; } } } /* === Done. Matrix is not (or no longer) jumbled ====================== */ return (TRUE) ; } /* ========================================================================== */ /* === init_scoring ========================================================= */ /* ========================================================================== */ /* Kills dense or empty columns and rows, calculates an initial score for each column, and places all columns in the degree lists. Not user-callable. */ PRIVATE void init_scoring ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ CColamd_Row Row [ ], /* of size n_row+1 */ CColamd_Col Col [ ], /* of size n_col+1 */ Int A [ ], /* column form and row form of A */ Int head [ ], /* of size n_col+1 */ double knobs [CCOLAMD_KNOBS],/* parameters */ Int *p_n_row2, /* number of non-dense, non-empty rows */ Int *p_n_col2, /* number of non-dense, non-empty columns */ Int *p_max_deg, /* maximum row degree */ Int cmember [ ], Int n_cset, Int cset_start [ ], Int dead_cols [ ], Int *p_ndense_row, /* number of dense rows */ Int *p_nempty_row, /* number of original empty rows */ Int *p_nnewlyempty_row, /* number of newly empty rows */ Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */ Int *p_nempty_col, /* number of original empty cols */ Int *p_nnewlyempty_col /* number of newly empty cols */ ) { /* === Local variables ================================================== */ Int c ; /* a column index */ Int r, row ; /* a row index */ Int *cp ; /* a column pointer */ Int deg ; /* degree of a row or column */ Int *cp_end ; /* a pointer to the end of a column */ Int *new_cp ; /* new column pointer */ Int col_length ; /* length of pruned column */ Int score ; /* current column score */ Int n_col2 ; /* number of non-dense, non-empty columns */ Int n_row2 ; /* number of non-dense, non-empty rows */ Int dense_row_count ; /* remove rows with more entries than this */ Int dense_col_count ; /* remove cols with more entries than this */ Int max_deg ; /* maximum row degree */ Int s ; /* a cset index */ Int ndense_row ; /* number of dense rows */ Int nempty_row ; /* number of empty rows */ Int nnewlyempty_row ; /* number of newly empty rows */ Int ndense_col ; /* number of dense cols (excl "empty" cols) */ Int nempty_col ; /* number of original empty cols */ Int nnewlyempty_col ; /* number of newly empty cols */ Int ne ; #ifndef NDEBUG Int debug_count ; /* debug only. */ #endif /* === Extract knobs ==================================================== */ /* Note: if knobs contains a NaN, this is undefined: */ if (knobs [CCOLAMD_DENSE_ROW] < 0) { /* only remove completely dense rows */ dense_row_count = n_col-1 ; } else { dense_row_count = DENSE_DEGREE (knobs [CCOLAMD_DENSE_ROW], n_col) ; } if (knobs [CCOLAMD_DENSE_COL] < 0) { /* only remove completely dense columns */ dense_col_count = n_row-1 ; } else { dense_col_count = DENSE_DEGREE (knobs [CCOLAMD_DENSE_COL], MIN (n_row, n_col)) ; } DEBUG1 (("densecount: "ID" "ID"\n", dense_row_count, dense_col_count)) ; max_deg = 0 ; n_col2 = n_col ; n_row2 = n_row ; /* Set the head array for bookkeeping of dense and empty columns. */ /* This will be used as hash buckets later. */ for (s = 0 ; s < n_cset ; s++) { head [s] = cset_start [s+1] ; } ndense_col = 0 ; nempty_col = 0 ; nnewlyempty_col = 0 ; ndense_row = 0 ; nempty_row = 0 ; nnewlyempty_row = 0 ; /* === Kill empty columns =============================================== */ /* Put the empty columns at the end in their natural order, so that LU */ /* factorization can proceed as far as possible. */ for (c = n_col-1 ; c >= 0 ; c--) { deg = Col [c].length ; if (deg == 0) { /* this is a empty column, kill and order it last of its cset */ Col [c].shared2.order = --head [CMEMBER (c)] ; --n_col2 ; dead_cols [CMEMBER (c)] ++ ; nempty_col++ ; KILL_PRINCIPAL_COL (c) ; } } DEBUG1 (("ccolamd: null columns killed: "ID"\n", n_col - n_col2)) ; /* === Kill dense columns =============================================== */ /* Put the dense columns at the end, in their natural order */ for (c = n_col-1 ; c >= 0 ; c--) { /* skip any dead columns */ if (COL_IS_DEAD (c)) { continue ; } deg = Col [c].length ; if (deg > dense_col_count) { /* this is a dense column, kill and order it last of its cset */ Col [c].shared2.order = --head [CMEMBER (c)] ; --n_col2 ; dead_cols [CMEMBER (c)] ++ ; ndense_col++ ; /* decrement the row degrees */ cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { Row [*cp++].shared1.degree-- ; } KILL_PRINCIPAL_COL (c) ; } } DEBUG1 (("Dense and null columns killed: "ID"\n", n_col - n_col2)) ; /* === Kill dense and empty rows ======================================== */ /* Note that there can now be empty rows, since dense columns have * been deleted. These are "newly" empty rows. */ ne = 0 ; for (r = 0 ; r < n_row ; r++) { deg = Row [r].shared1.degree ; ASSERT (deg >= 0 && deg <= n_col) ; if (deg > dense_row_count) { /* There is at least one dense row. Continue ordering, but */ /* symbolic factorization will be redone after ccolamd is done.*/ ndense_row++ ; } if (deg == 0) { /* this is a newly empty row, or original empty row */ ne++ ; } if (deg > dense_row_count || deg == 0) { /* kill a dense or empty row */ KILL_ROW (r) ; Row [r].thickness = 0 ; --n_row2 ; } else { /* keep track of max degree of remaining rows */ max_deg = MAX (max_deg, deg) ; } } nnewlyempty_row = ne - nempty_row ; DEBUG1 (("ccolamd: Dense and null rows killed: "ID"\n", n_row - n_row2)) ; /* === Compute initial column scores ==================================== */ /* At this point the row degrees are accurate. They reflect the number */ /* of "live" (non-dense) columns in each row. No empty rows exist. */ /* Some "live" columns may contain only dead rows, however. These are */ /* pruned in the code below. */ /* now find the initial COLMMD score for each column */ for (c = n_col-1 ; c >= 0 ; c--) { /* skip dead column */ if (COL_IS_DEAD (c)) { continue ; } score = 0 ; cp = &A [Col [c].start] ; new_cp = cp ; cp_end = cp + Col [c].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; /* skip if dead */ if (ROW_IS_DEAD (row)) { continue ; } /* compact the column */ *new_cp++ = row ; /* add row's external degree */ score += Row [row].shared1.degree - 1 ; /* guard against integer overflow */ score = MIN (score, n_col) ; } /* determine pruned column length */ col_length = (Int) (new_cp - &A [Col [c].start]) ; if (col_length == 0) { /* a newly-made null column (all rows in this col are "dense" */ /* and have already been killed) */ DEBUG1 (("Newly null killed: "ID"\n", c)) ; Col [c].shared2.order = -- head [CMEMBER (c)] ; --n_col2 ; dead_cols [CMEMBER (c)] ++ ; nnewlyempty_col++ ; KILL_PRINCIPAL_COL (c) ; } else { /* set column length and set score */ ASSERT (score >= 0) ; ASSERT (score <= n_col) ; Col [c].length = col_length ; Col [c].shared2.score = score ; } } DEBUG1 (("ccolamd: Dense, null, and newly-null columns killed: "ID"\n", n_col-n_col2)) ; /* At this point, all empty rows and columns are dead. All live columns */ /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ /* yet). Rows may contain dead columns, but all live rows contain at */ /* least one live column. */ #ifndef NDEBUG debug_count = 0 ; #endif /* clear the hash buckets */ for (c = 0 ; c <= n_col ; c++) { head [c] = EMPTY ; } #ifndef NDEBUG debug_structures (n_row, n_col, Row, Col, A, cmember, cset_start) ; #endif /* === Return number of remaining columns, and max row degree =========== */ *p_n_col2 = n_col2 ; *p_n_row2 = n_row2 ; *p_max_deg = max_deg ; *p_ndense_row = ndense_row ; *p_nempty_row = nempty_row ; /* original empty rows */ *p_nnewlyempty_row = nnewlyempty_row ; *p_ndense_col = ndense_col ; *p_nempty_col = nempty_col ; /* original empty cols */ *p_nnewlyempty_col = nnewlyempty_col ; } /* ========================================================================== */ /* === find_ordering ======================================================== */ /* ========================================================================== */ /* * Order the principal columns of the supercolumn form of the matrix * (no supercolumns on input). Uses a minimum approximate column minimum * degree ordering method. Not user-callable. */ PRIVATE Int find_ordering /* return the number of garbage collections */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Int Alen, /* size of A, 2*nnz + n_col or larger */ CColamd_Row Row [ ], /* of size n_row+1 */ CColamd_Col Col [ ], /* of size n_col+1 */ Int A [ ], /* column form and row form of A */ Int head [ ], /* of size n_col+1 */ #ifndef NDEBUG Int n_col2, /* Remaining columns to order */ #endif Int max_deg, /* Maximum row degree */ Int pfree, /* index of first free slot (2*nnz on entry) */ Int cset [ ], /* constraint set of A */ Int cset_start [ ], /* pointer to the start of every cset */ #ifndef NDEBUG Int n_cset, /* number of csets */ #endif Int cmember [ ], /* col -> cset mapping */ Int Front_npivcol [ ], Int Front_nrows [ ], Int Front_ncols [ ], Int Front_parent [ ], Int Front_cols [ ], Int *p_nfr, /* number of fronts */ Int aggressive, Int InFront [ ], Int order_for_lu ) { /* === Local variables ================================================== */ Int k ; /* current pivot ordering step */ Int pivot_col ; /* current pivot column */ Int *cp ; /* a column pointer */ Int *rp ; /* a row pointer */ Int pivot_row ; /* current pivot row */ Int *new_cp ; /* modified column pointer */ Int *new_rp ; /* modified row pointer */ Int pivot_row_start ; /* pointer to start of pivot row */ Int pivot_row_degree ; /* number of columns in pivot row */ Int pivot_row_length ; /* number of supercolumns in pivot row */ Int pivot_col_score ; /* score of pivot column */ Int needed_memory ; /* free space needed for pivot row */ Int *cp_end ; /* pointer to the end of a column */ Int *rp_end ; /* pointer to the end of a row */ Int row ; /* a row index */ Int col ; /* a column index */ Int max_score ; /* maximum possible score */ Int cur_score ; /* score of current column */ unsigned Int hash ; /* hash value for supernode detection */ Int head_column ; /* head of hash bucket */ Int first_col ; /* first column in hash bucket */ Int tag_mark ; /* marker value for mark array */ Int row_mark ; /* Row [row].shared2.mark */ Int set_difference ; /* set difference size of row with pivot row */ Int min_score ; /* smallest column score */ Int col_thickness ; /* "thickness" (no. of columns in a supercol) */ Int max_mark ; /* maximum value of tag_mark */ Int pivot_col_thickness ; /* number of columns represented by pivot col */ Int prev_col ; /* Used by Dlist operations. */ Int next_col ; /* Used by Dlist operations. */ Int ngarbage ; /* number of garbage collections performed */ Int current_set ; /* consraint set that is being ordered */ Int score ; /* score of a column */ Int colstart ; /* pointer to first column in current cset */ Int colend ; /* pointer to last column in current cset */ Int deadcol ; /* number of dense & null columns in a cset */ #ifndef NDEBUG Int debug_d ; /* debug loop counter */ Int debug_step = 0 ; /* debug loop counter */ Int cols_thickness = 0 ; /* the thickness of the columns in current */ /* cset degreelist and in pivot row pattern. */ #endif Int pivot_row_thickness ; /* number of rows represented by pivot row */ Int nfr = 0 ; /* number of fronts */ Int child ; /* === Initialization and clear mark ==================================== */ max_mark = Int_MAX - n_col ; /* Int_MAX defined in */ tag_mark = clear_mark (0, max_mark, n_row, Row) ; min_score = 0 ; ngarbage = 0 ; current_set = -1 ; deadcol = 0 ; DEBUG1 (("ccolamd: Ordering, n_col2="ID"\n", n_col2)) ; for (row = 0 ; row < n_row ; row++) { InFront [row] = EMPTY ; } /* === Order the columns ================================================ */ for (k = 0 ; k < n_col ; /* 'k' is incremented below */) { /* make sure degree list isn't empty */ ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (head [min_score] >= EMPTY) ; #ifndef NDEBUG for (debug_d = 0 ; debug_d < min_score ; debug_d++) { ASSERT (head [debug_d] == EMPTY) ; } #endif /* Initialize the degree list with columns from next non-empty cset */ while ((k+deadcol) == cset_start [current_set+1]) { current_set++ ; DEBUG1 (("\n\n\n============ CSET: "ID"\n", current_set)) ; k += deadcol ; /* jump to start of next cset */ deadcol = 0 ; /* reset dead column count */ ASSERT ((current_set == n_cset) == (k == n_col)) ; /* return if all columns are ordered. */ if (k == n_col) { *p_nfr = nfr ; return (ngarbage) ; } #ifndef NDEBUG for (col = 0 ; col <= n_col ; col++) { ASSERT (head [col] == EMPTY) ; } #endif min_score = n_col ; colstart = cset_start [current_set] ; colend = cset_start [current_set+1] ; while (colstart < colend) { col = cset [colstart++] ; if (COL_IS_DEAD(col)) { DEBUG1 (("Column "ID" is dead\n", col)) ; /* count dense and null columns */ if (Col [col].shared2.order != EMPTY) { deadcol++ ; } continue ; } /* only add principal columns in current set to degree lists */ ASSERT (CMEMBER (col) == current_set) ; score = Col [col].shared2.score ; DEBUG1 (("Column "ID" is alive, score "ID"\n", col, score)) ; ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (score >= 0) ; ASSERT (score <= n_col) ; ASSERT (head [score] >= EMPTY) ; /* now add this column to dList at proper score location */ next_col = head [score] ; Col [col].shared3.prev = EMPTY ; Col [col].shared4.degree_next = next_col ; /* if there already was a column with the same score, set its */ /* previous pointer to this new column */ if (next_col != EMPTY) { Col [next_col].shared3.prev = col ; } head [score] = col ; /* see if this score is less than current min */ min_score = MIN (min_score, score) ; } #ifndef NDEBUG DEBUG1 (("degree lists initialized \n")) ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, ((cset_start [current_set+1]-cset_start [current_set])-deadcol), max_deg) ; #endif } #ifndef NDEBUG if (debug_step % 100 == 0) { DEBUG2 (("\n... Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ; } else { DEBUG3 (("\n------Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ; } debug_step++ ; DEBUG1 (("start of step k="ID": ", k)) ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ; debug_matrix (n_row, n_col, Row, Col, A) ; #endif /* === Select pivot column, and order it ============================ */ while (head [min_score] == EMPTY && min_score < n_col) { min_score++ ; } pivot_col = head [min_score] ; ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; next_col = Col [pivot_col].shared4.degree_next ; head [min_score] = next_col ; if (next_col != EMPTY) { Col [next_col].shared3.prev = EMPTY ; } ASSERT (COL_IS_ALIVE (pivot_col)) ; /* remember score for defrag check */ pivot_col_score = Col [pivot_col].shared2.score ; /* the pivot column is the kth column in the pivot order */ Col [pivot_col].shared2.order = k ; /* increment order count by column thickness */ pivot_col_thickness = Col [pivot_col].shared1.thickness ; k += pivot_col_thickness ; ASSERT (pivot_col_thickness > 0) ; DEBUG3 (("Pivot col: "ID" thick "ID"\n", pivot_col, pivot_col_thickness)) ; /* === Garbage_collection, if necessary ============================= */ needed_memory = MIN (pivot_col_score, n_col - k) ; if (pfree + needed_memory >= Alen) { pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; ngarbage++ ; /* after garbage collection we will have enough */ ASSERT (pfree + needed_memory < Alen) ; /* garbage collection has wiped out Row [ ].shared2.mark array */ tag_mark = clear_mark (0, max_mark, n_row, Row) ; #ifndef NDEBUG debug_matrix (n_row, n_col, Row, Col, A) ; #endif } /* === Compute pivot row pattern ==================================== */ /* get starting location for this new merged row */ pivot_row_start = pfree ; /* initialize new row counts to zero */ pivot_row_degree = 0 ; pivot_row_thickness = 0 ; /* tag pivot column as having been visited so it isn't included */ /* in merged pivot row */ Col [pivot_col].shared1.thickness = -pivot_col_thickness ; /* pivot row is the union of all rows in the pivot column pattern */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; ASSERT (row >= 0 && row < n_row) ; DEBUG4 (("Pivcol pattern "ID" "ID"\n", ROW_IS_ALIVE (row), row)) ; /* skip if row is dead */ if (ROW_IS_ALIVE (row)) { /* sum the thicknesses of all the rows */ pivot_row_thickness += Row [row].thickness ; rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; /* add the column, if alive and untagged */ col_thickness = Col [col].shared1.thickness ; if (col_thickness > 0 && COL_IS_ALIVE (col)) { /* tag column in pivot row */ Col [col].shared1.thickness = -col_thickness ; ASSERT (pfree < Alen) ; /* place column in pivot row */ A [pfree++] = col ; pivot_row_degree += col_thickness ; DEBUG4 (("\t\t\tNew live col in pivrow: "ID"\n",col)) ; } #ifndef NDEBUG if (col_thickness < 0 && COL_IS_ALIVE (col)) { DEBUG4 (("\t\t\tOld live col in pivrow: "ID"\n",col)) ; } #endif } } } /* pivot_row_thickness is the number of rows in frontal matrix */ /* including both pivotal rows and nonpivotal rows */ /* clear tag on pivot column */ Col [pivot_col].shared1.thickness = pivot_col_thickness ; max_deg = MAX (max_deg, pivot_row_degree) ; #ifndef NDEBUG DEBUG3 (("check2\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* === Kill all rows used to construct pivot row ==================== */ /* also kill pivot row, temporarily */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* may be killing an already dead row */ row = *cp++ ; DEBUG3 (("Kill row in pivot col: "ID"\n", row)) ; ASSERT (row >= 0 && row < n_row) ; if (ROW_IS_ALIVE (row)) { if (Row [row].front != EMPTY) { /* This row represents a frontal matrix. */ /* Row [row].front is a child of current front */ child = Row [row].front ; Front_parent [child] = nfr ; DEBUG1 (("Front "ID" => front "ID", normal\n", child, nfr)); } else { /* This is an original row. Keep track of which front * is its parent in the row-merge tree. */ InFront [row] = nfr ; DEBUG1 (("Row "ID" => front "ID", normal\n", row, nfr)) ; } } KILL_ROW (row) ; Row [row].thickness = 0 ; } /* === Select a row index to use as the new pivot row =============== */ pivot_row_length = pfree - pivot_row_start ; if (pivot_row_length > 0) { /* pick the "pivot" row arbitrarily (first row in col) */ pivot_row = A [Col [pivot_col].start] ; DEBUG3 (("Pivotal row is "ID"\n", pivot_row)) ; } else { /* there is no pivot row, since it is of zero length */ pivot_row = EMPTY ; ASSERT (pivot_row_length == 0) ; } ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; /* === Approximate degree computation =============================== */ /* Here begins the computation of the approximate degree. The column */ /* score is the sum of the pivot row "length", plus the size of the */ /* set differences of each row in the column minus the pattern of the */ /* pivot row itself. The column ("thickness") itself is also */ /* excluded from the column score (we thus use an approximate */ /* external degree). */ /* The time taken by the following code (compute set differences, and */ /* add them up) is proportional to the size of the data structure */ /* being scanned - that is, the sum of the sizes of each column in */ /* the pivot row. Thus, the amortized time to compute a column score */ /* is proportional to the size of that column (where size, in this */ /* context, is the column "length", or the number of row indices */ /* in that column). The number of row indices in a column is */ /* monotonically non-decreasing, from the length of the original */ /* column on input to colamd. */ /* === Compute set differences ====================================== */ DEBUG3 (("** Computing set differences phase. **\n")) ; /* pivot row is currently dead - it will be revived later. */ DEBUG3 (("Pivot row: ")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; DEBUG3 (("Col: "ID"\n", col)) ; /* clear tags used to construct pivot row pattern */ col_thickness = -Col [col].shared1.thickness ; ASSERT (col_thickness > 0) ; Col [col].shared1.thickness = col_thickness ; /* === Remove column from degree list =========================== */ /* only columns in current_set will be in degree list */ if (CMEMBER (col) == current_set) { #ifndef NDEBUG cols_thickness += col_thickness ; #endif cur_score = Col [col].shared2.score ; prev_col = Col [col].shared3.prev ; next_col = Col [col].shared4.degree_next ; DEBUG3 ((" cur_score "ID" prev_col "ID" next_col "ID"\n", cur_score, prev_col, next_col)) ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (cur_score >= EMPTY) ; if (prev_col == EMPTY) { head [cur_score] = next_col ; } else { Col [prev_col].shared4.degree_next = next_col ; } if (next_col != EMPTY) { Col [next_col].shared3.prev = prev_col ; } } /* === Scan the column ========================================== */ cp = &A [Col [col].start] ; cp_end = cp + Col [col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { continue ; } ASSERT (row != pivot_row) ; set_difference = row_mark - tag_mark ; /* check if the row has been seen yet */ if (set_difference < 0) { ASSERT (Row [row].shared1.degree <= max_deg) ; set_difference = Row [row].shared1.degree ; } /* subtract column thickness from this row's set difference */ set_difference -= col_thickness ; ASSERT (set_difference >= 0) ; /* absorb this row if the set difference becomes zero */ if (set_difference == 0 && aggressive) { DEBUG3 (("aggressive absorption. Row: "ID"\n", row)) ; if (Row [row].front != EMPTY) { /* Row [row].front is a child of current front. */ child = Row [row].front ; Front_parent [child] = nfr ; DEBUG1 (("Front "ID" => front "ID", aggressive\n", child, nfr)) ; } else { /* this is an original row. Keep track of which front * assembles it, for the row-merge tree */ InFront [row] = nfr ; DEBUG1 (("Row "ID" => front "ID", aggressive\n", row, nfr)) ; } KILL_ROW (row) ; /* sum the thicknesses of all the rows */ pivot_row_thickness += Row [row].thickness ; Row [row].thickness = 0 ; } else { /* save the new mark */ Row [row].shared2.mark = set_difference + tag_mark ; } } } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, cset_start [current_set+1]-(k+deadcol)-(cols_thickness), max_deg) ; cols_thickness = 0 ; #endif /* === Add up set differences for each column ======================= */ DEBUG3 (("** Adding set differences phase. **\n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; hash = 0 ; cur_score = 0 ; cp = &A [Col [col].start] ; /* compact the column */ new_cp = cp ; cp_end = cp + Col [col].length ; DEBUG4 (("Adding set diffs for Col: "ID".\n", col)) ; while (cp < cp_end) { /* get a row */ row = *cp++ ; ASSERT (row >= 0 && row < n_row) ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { DEBUG4 ((" Row "ID", dead\n", row)) ; continue ; } DEBUG4 ((" Row "ID", set diff "ID"\n", row, row_mark-tag_mark)); ASSERT (row_mark >= tag_mark) ; /* compact the column */ *new_cp++ = row ; /* compute hash function */ hash += row ; /* add set difference */ cur_score += row_mark - tag_mark ; /* integer overflow... */ cur_score = MIN (cur_score, n_col) ; } /* recompute the column's length */ Col [col].length = (Int) (new_cp - &A [Col [col].start]) ; /* === Further mass elimination ================================= */ if (Col [col].length == 0 && CMEMBER (col) == current_set) { DEBUG4 (("further mass elimination. Col: "ID"\n", col)) ; /* nothing left but the pivot row in this column */ KILL_PRINCIPAL_COL (col) ; pivot_row_degree -= Col [col].shared1.thickness ; ASSERT (pivot_row_degree >= 0) ; /* order it */ Col [col].shared2.order = k ; /* increment order count by column thickness */ k += Col [col].shared1.thickness ; pivot_col_thickness += Col [col].shared1.thickness ; /* add to column list of front */ #ifndef NDEBUG DEBUG1 (("Mass")) ; dump_super (col, Col, n_col) ; #endif Col [Col [col].lastcol].nextcol = Front_cols [nfr] ; Front_cols [nfr] = col ; } else { /* === Prepare for supercolumn detection ==================== */ DEBUG4 (("Preparing supercol detection for Col: "ID".\n", col)); /* save score so far */ Col [col].shared2.score = cur_score ; /* add column to hash table, for supercolumn detection */ hash %= n_col + 1 ; DEBUG4 ((" Hash = "ID", n_col = "ID".\n", hash, n_col)) ; ASSERT (((Int) hash) <= n_col) ; head_column = head [hash] ; if (head_column > EMPTY) { /* degree list "hash" is non-empty, use prev (shared3) of */ /* first column in degree list as head of hash bucket */ first_col = Col [head_column].shared3.headhash ; Col [head_column].shared3.headhash = col ; } else { /* degree list "hash" is empty, use head as hash bucket */ first_col = - (head_column + 2) ; head [hash] = - (col + 2) ; } Col [col].shared4.hash_next = first_col ; /* save hash function in Col [col].shared3.hash */ Col [col].shared3.hash = (Int) hash ; ASSERT (COL_IS_ALIVE (col)) ; } } /* The approximate external column degree is now computed. */ /* === Supercolumn detection ======================================== */ DEBUG3 (("** Supercolumn detection phase. **\n")) ; detect_super_cols ( #ifndef NDEBUG n_col, Row, #endif Col, A, head, pivot_row_start, pivot_row_length, cmember) ; /* === Kill the pivotal column ====================================== */ DEBUG1 ((" KILLING column detect supercols "ID" \n", pivot_col)) ; KILL_PRINCIPAL_COL (pivot_col) ; /* add columns to column list of front */ #ifndef NDEBUG DEBUG1 (("Pivot")) ; dump_super (pivot_col, Col, n_col) ; #endif Col [Col [pivot_col].lastcol].nextcol = Front_cols [nfr] ; Front_cols [nfr] = pivot_col ; /* === Clear mark =================================================== */ tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ; #ifndef NDEBUG DEBUG3 (("check3\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* === Finalize the new pivot row, and column scores ================ */ DEBUG3 (("** Finalize scores phase. **\n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; /* compact the pivot row */ new_rp = rp ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; /* skip dead columns */ if (COL_IS_DEAD (col)) { continue ; } *new_rp++ = col ; /* add new pivot row to column */ A [Col [col].start + (Col [col].length++)] = pivot_row ; /* retrieve score so far and add on pivot row's degree. */ /* (we wait until here for this in case the pivot */ /* row's degree was reduced due to mass elimination). */ cur_score = Col [col].shared2.score + pivot_row_degree ; /* calculate the max possible score as the number of */ /* external columns minus the 'k' value minus the */ /* columns thickness */ max_score = n_col - k - Col [col].shared1.thickness ; /* make the score the external degree of the union-of-rows */ cur_score -= Col [col].shared1.thickness ; /* make sure score is less or equal than the max score */ cur_score = MIN (cur_score, max_score) ; ASSERT (cur_score >= 0) ; /* store updated score */ Col [col].shared2.score = cur_score ; /* === Place column back in degree list ========================= */ if (CMEMBER (col) == current_set) { ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (head [cur_score] >= EMPTY) ; next_col = head [cur_score] ; Col [col].shared4.degree_next = next_col ; Col [col].shared3.prev = EMPTY ; if (next_col != EMPTY) { Col [next_col].shared3.prev = col ; } head [cur_score] = col ; /* see if this score is less than current min */ min_score = MIN (min_score, cur_score) ; } else { Col [col].shared4.degree_next = EMPTY ; Col [col].shared3.prev = EMPTY ; } } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ; #endif /* frontal matrix can have more pivot cols than pivot rows for */ /* singular matrices. */ /* number of candidate pivot columns */ Front_npivcol [nfr] = pivot_col_thickness ; /* all rows (not just size of contrib. block) */ Front_nrows [nfr] = pivot_row_thickness ; /* all cols */ Front_ncols [nfr] = pivot_col_thickness + pivot_row_degree ; Front_parent [nfr] = EMPTY ; pivot_row_thickness -= pivot_col_thickness ; DEBUG1 (("Front "ID" Pivot_row_thickness after pivot cols elim: "ID"\n", nfr, pivot_row_thickness)) ; pivot_row_thickness = MAX (0, pivot_row_thickness) ; /* === Resurrect the new pivot row ================================== */ if ((pivot_row_degree > 0 && pivot_row_thickness > 0 && (order_for_lu)) || (pivot_row_degree > 0 && (!order_for_lu))) { /* update pivot row length to reflect any cols that were killed */ /* during super-col detection and mass elimination */ Row [pivot_row].start = pivot_row_start ; Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ; Row [pivot_row].shared1.degree = pivot_row_degree ; Row [pivot_row].shared2.mark = 0 ; Row [pivot_row].thickness = pivot_row_thickness ; Row [pivot_row].front = nfr ; /* pivot row is no longer dead */ DEBUG1 (("Resurrect Pivot_row "ID" deg: "ID"\n", pivot_row, pivot_row_degree)) ; } #ifndef NDEBUG DEBUG1 (("Front "ID" : "ID" "ID" "ID" ", nfr, Front_npivcol [nfr], Front_nrows [nfr], Front_ncols [nfr])) ; DEBUG1 ((" cols:[ ")) ; debug_d = 0 ; for (col = Front_cols [nfr] ; col != EMPTY ; col = Col [col].nextcol) { DEBUG1 ((" "ID, col)) ; ASSERT (col >= 0 && col < n_col) ; ASSERT (COL_IS_DEAD (col)) ; debug_d++ ; ASSERT (debug_d <= pivot_col_thickness) ; } ASSERT (debug_d == pivot_col_thickness) ; DEBUG1 ((" ]\n ")) ; #endif nfr++ ; /* one more front */ } /* === All principal columns have now been ordered ====================== */ *p_nfr = nfr ; return (ngarbage) ; } /* ========================================================================== */ /* === detect_super_cols ==================================================== */ /* ========================================================================== */ /* * Detects supercolumns by finding matches between columns in the hash buckets. * Check amongst columns in the set A [row_start ... row_start + row_length-1]. * The columns under consideration are currently *not* in the degree lists, * and have already been placed in the hash buckets. * * The hash bucket for columns whose hash function is equal to h is stored * as follows: * * if head [h] is >= 0, then head [h] contains a degree list, so: * * head [h] is the first column in degree bucket h. * Col [head [h]].headhash gives the first column in hash bucket h. * * otherwise, the degree list is empty, and: * * -(head [h] + 2) is the first column in hash bucket h. * * For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous * column" pointer. Col [c].shared3.hash is used instead as the hash number * for that column. The value of Col [c].shared4.hash_next is the next column * in the same hash bucket. * * Assuming no, or "few" hash collisions, the time taken by this routine is * linear in the sum of the sizes (lengths) of each column whose score has * just been computed in the approximate degree computation. * Not user-callable. */ PRIVATE void detect_super_cols ( /* === Parameters ======================================================= */ #ifndef NDEBUG /* these two parameters are only needed when debugging is enabled: */ Int n_col, /* number of columns of A */ CColamd_Row Row [ ], /* of size n_row+1 */ #endif CColamd_Col Col [ ], /* of size n_col+1 */ Int A [ ], /* row indices of A */ Int head [ ], /* head of degree lists and hash buckets */ Int row_start, /* pointer to set of columns to check */ Int row_length, /* number of columns to check */ Int cmember [ ] /* col -> cset mapping */ ) { /* === Local variables ================================================== */ Int hash ; /* hash value for a column */ Int *rp ; /* pointer to a row */ Int c ; /* a column index */ Int super_c ; /* column index of the column to absorb into */ Int *cp1 ; /* column pointer for column super_c */ Int *cp2 ; /* column pointer for column c */ Int length ; /* length of column super_c */ Int prev_c ; /* column preceding c in hash bucket */ Int i ; /* loop counter */ Int *rp_end ; /* pointer to the end of the row */ Int col ; /* a column index in the row to check */ Int head_column ; /* first column in hash bucket or degree list */ Int first_col ; /* first column in hash bucket */ /* === Consider each column in the row ================================== */ rp = &A [row_start] ; rp_end = rp + row_length ; while (rp < rp_end) { col = *rp++ ; if (COL_IS_DEAD (col)) { continue ; } /* get hash number for this column */ hash = Col [col].shared3.hash ; ASSERT (hash <= n_col) ; /* === Get the first column in this hash bucket ===================== */ head_column = head [hash] ; if (head_column > EMPTY) { first_col = Col [head_column].shared3.headhash ; } else { first_col = - (head_column + 2) ; } /* === Consider each column in the hash bucket ====================== */ for (super_c = first_col ; super_c != EMPTY ; super_c = Col [super_c].shared4.hash_next) { ASSERT (COL_IS_ALIVE (super_c)) ; ASSERT (Col [super_c].shared3.hash == hash) ; length = Col [super_c].length ; /* prev_c is the column preceding column c in the hash bucket */ prev_c = super_c ; /* === Compare super_c with all columns after it ================ */ for (c = Col [super_c].shared4.hash_next ; c != EMPTY ; c = Col [c].shared4.hash_next) { ASSERT (c != super_c) ; ASSERT (COL_IS_ALIVE (c)) ; ASSERT (Col [c].shared3.hash == hash) ; /* not identical if lengths or scores are different, */ /* or if in different constraint sets */ if (Col [c].length != length || Col [c].shared2.score != Col [super_c].shared2.score || CMEMBER (c) != CMEMBER (super_c)) { prev_c = c ; continue ; } /* compare the two columns */ cp1 = &A [Col [super_c].start] ; cp2 = &A [Col [c].start] ; for (i = 0 ; i < length ; i++) { /* the columns are "clean" (no dead rows) */ ASSERT (ROW_IS_ALIVE (*cp1)) ; ASSERT (ROW_IS_ALIVE (*cp2)) ; /* row indices will same order for both supercols, */ /* no gather scatter nessasary */ if (*cp1++ != *cp2++) { break ; } } /* the two columns are different if the for-loop "broke" */ /* super columns should belong to the same constraint set */ if (i != length) { prev_c = c ; continue ; } /* === Got it! two columns are identical =================== */ ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; Col [super_c].shared1.thickness += Col [c].shared1.thickness ; Col [c].shared1.parent = super_c ; KILL_NON_PRINCIPAL_COL (c) ; /* order c later, in order_children() */ Col [c].shared2.order = EMPTY ; /* remove c from hash bucket */ Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; /* add c to end of list of super_c */ ASSERT (Col [super_c].lastcol >= 0) ; ASSERT (Col [super_c].lastcol < n_col) ; Col [Col [super_c].lastcol].nextcol = c ; Col [super_c].lastcol = Col [c].lastcol ; #ifndef NDEBUG /* dump the supercolumn */ DEBUG1 (("Super")) ; dump_super (super_c, Col, n_col) ; #endif } } /* === Empty this hash bucket ======================================= */ if (head_column > EMPTY) { /* corresponding degree list "hash" is not empty */ Col [head_column].shared3.headhash = EMPTY ; } else { /* corresponding degree list "hash" is empty */ head [hash] = EMPTY ; } } } /* ========================================================================== */ /* === garbage_collection =================================================== */ /* ========================================================================== */ /* * Defragments and compacts columns and rows in the workspace A. Used when * all avaliable memory has been used while performing row merging. Returns * the index of the first free position in A, after garbage collection. The * time taken by this routine is linear is the size of the array A, which is * itself linear in the number of nonzeros in the input matrix. * Not user-callable. */ PRIVATE Int garbage_collection /* returns the new value of pfree */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows */ Int n_col, /* number of columns */ CColamd_Row Row [ ], /* row info */ CColamd_Col Col [ ], /* column info */ Int A [ ], /* A [0 ... Alen-1] holds the matrix */ Int *pfree /* &A [0] ... pfree is in use */ ) { /* === Local variables ================================================== */ Int *psrc ; /* source pointer */ Int *pdest ; /* destination pointer */ Int j ; /* counter */ Int r ; /* a row index */ Int c ; /* a column index */ Int length ; /* length of a row or column */ #ifndef NDEBUG Int debug_rows ; DEBUG2 (("Defrag..\n")) ; for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ; debug_rows = 0 ; #endif /* === Defragment the columns =========================================== */ pdest = &A[0] ; for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { psrc = &A [Col [c].start] ; /* move and compact the column */ ASSERT (pdest <= psrc) ; Col [c].start = (Int) (pdest - &A [0]) ; length = Col [c].length ; for (j = 0 ; j < length ; j++) { r = *psrc++ ; if (ROW_IS_ALIVE (r)) { *pdest++ = r ; } } Col [c].length = (Int) (pdest - &A [Col [c].start]) ; } } /* === Prepare to defragment the rows =================================== */ for (r = 0 ; r < n_row ; r++) { if (ROW_IS_DEAD (r) || (Row [r].length == 0)) { /* This row is already dead, or is of zero length. Cannot compact * a row of zero length, so kill it. NOTE: in the current version, * there are no zero-length live rows. Kill the row (for the first * time, or again) just to be safe. */ KILL_ROW (r) ; } else { /* save first column index in Row [r].shared2.first_column */ psrc = &A [Row [r].start] ; Row [r].shared2.first_column = *psrc ; ASSERT (ROW_IS_ALIVE (r)) ; /* flag the start of the row with the one's complement of row */ *psrc = ONES_COMPLEMENT (r) ; #ifndef NDEBUG debug_rows++ ; #endif } } /* === Defragment the rows ============================================== */ psrc = pdest ; while (psrc < pfree) { /* find a negative number ... the start of a row */ if (*psrc++ < 0) { psrc-- ; /* get the row index */ r = ONES_COMPLEMENT (*psrc) ; ASSERT (r >= 0 && r < n_row) ; /* restore first column index */ *psrc = Row [r].shared2.first_column ; ASSERT (ROW_IS_ALIVE (r)) ; /* move and compact the row */ ASSERT (pdest <= psrc) ; Row [r].start = (Int) (pdest - &A [0]) ; length = Row [r].length ; for (j = 0 ; j < length ; j++) { c = *psrc++ ; if (COL_IS_ALIVE (c)) { *pdest++ = c ; } } Row [r].length = (Int) (pdest - &A [Row [r].start]) ; #ifndef NDEBUG debug_rows-- ; #endif } } /* ensure we found all the rows */ ASSERT (debug_rows == 0) ; /* === Return the new value of pfree ==================================== */ return ((Int) (pdest - &A [0])) ; } /* ========================================================================== */ /* === clear_mark =========================================================== */ /* ========================================================================== */ /* * Clears the Row [ ].shared2.mark array, and returns the new tag_mark. * Return value is the new tag_mark. Not user-callable. */ PRIVATE Int clear_mark /* return the new value for tag_mark */ ( /* === Parameters ======================================================= */ Int tag_mark, /* new value of tag_mark */ Int max_mark, /* max allowed value of tag_mark */ Int n_row, /* number of rows in A */ CColamd_Row Row [ ] /* Row [0 ... n_row-1].shared2.mark is set to zero */ ) { /* === Local variables ================================================== */ Int r ; if (tag_mark <= 0 || tag_mark >= max_mark) { for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { Row [r].shared2.mark = 0 ; } } tag_mark = 1 ; } return (tag_mark) ; } /* ========================================================================== */ /* === print_report ========================================================= */ /* ========================================================================== */ /* No printing occurs if NPRINT is defined at compile time. */ PRIVATE void print_report ( char *method, Int stats [CCOLAMD_STATS] ) { Int i1, i2, i3 ; PRINTF (("\n%s version %d.%d, %s: ", method, CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE)) ; if (!stats) { PRINTF (("No statistics available.\n")) ; return ; } i1 = stats [CCOLAMD_INFO1] ; i2 = stats [CCOLAMD_INFO2] ; i3 = stats [CCOLAMD_INFO3] ; if (stats [CCOLAMD_STATUS] >= 0) { PRINTF(("OK. ")) ; } else { PRINTF(("ERROR. ")) ; } switch (stats [CCOLAMD_STATUS]) { case CCOLAMD_OK_BUT_JUMBLED: PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ; PRINTF(("%s: duplicate or out-of-order row indices: "ID"\n", method, i3)) ; PRINTF(("%s: last seen duplicate or out-of-order row: "ID"\n", method, INDEX (i2))) ; PRINTF(("%s: last seen in column: "ID"", method, INDEX (i1))) ; /* no break - fall through to next case instead */ case CCOLAMD_OK: PRINTF(("\n")) ; PRINTF(("%s: number of dense or empty rows ignored: "ID"\n", method, stats [CCOLAMD_DENSE_ROW])) ; PRINTF(("%s: number of dense or empty columns ignored: "ID"\n", method, stats [CCOLAMD_DENSE_COL])) ; PRINTF(("%s: number of garbage collections performed: "ID"\n", method, stats [CCOLAMD_DEFRAG_COUNT])) ; break ; case CCOLAMD_ERROR_A_not_present: PRINTF(("Array A (row indices of matrix) not present.\n")) ; break ; case CCOLAMD_ERROR_p_not_present: PRINTF(("Array p (column pointers for matrix) not present.\n")) ; break ; case CCOLAMD_ERROR_nrow_negative: PRINTF(("Invalid number of rows ("ID").\n", i1)) ; break ; case CCOLAMD_ERROR_ncol_negative: PRINTF(("Invalid number of columns ("ID").\n", i1)) ; break ; case CCOLAMD_ERROR_nnz_negative: PRINTF(("Invalid number of nonzero entries ("ID").\n", i1)) ; break ; case CCOLAMD_ERROR_p0_nonzero: PRINTF(("Invalid column pointer, p [0] = "ID", must be 0.\n", i1)) ; break ; case CCOLAMD_ERROR_A_too_small: PRINTF(("Array A too small.\n")) ; PRINTF((" Need Alen >= "ID", but given only Alen = "ID".\n", i1, i2)) ; break ; case CCOLAMD_ERROR_col_length_negative: PRINTF(("Column "ID" has a negative number of entries ("ID").\n", INDEX (i1), i2)) ; break ; case CCOLAMD_ERROR_row_index_out_of_bounds: PRINTF(("Row index (row "ID") out of bounds ("ID" to "ID") in" "column "ID".\n", INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ; break ; case CCOLAMD_ERROR_out_of_memory: PRINTF(("Out of memory.\n")) ; break ; case CCOLAMD_ERROR_invalid_cmember: PRINTF(("cmember invalid\n")) ; break ; } } /* ========================================================================= */ /* === "Expert" routines =================================================== */ /* ========================================================================= */ /* The following routines are visible outside this routine, but are not meant * to be called by the user. They are meant for a future version of UMFPACK, * to replace UMFPACK internal routines with a similar name. */ /* ========================================================================== */ /* === CCOLAMD_apply_order ================================================== */ /* ========================================================================== */ /* * Apply post-ordering of supernodal elimination tree. */ GLOBAL void CCOLAMD_apply_order ( Int Front [ ], /* of size nn on input, size nfr on output */ const Int Order [ ], /* Order [i] = k, i in the range 0..nn-1, * and k in the range 0..nfr-1, means that node * i is the kth node in the postordered tree. */ Int Temp [ ], /* workspace of size nfr */ Int nn, /* nodes are numbered in the range 0..nn-1 */ Int nfr /* the number of nodes actually in use */ ) { Int i, k ; for (i = 0 ; i < nn ; i++) { k = Order [i] ; ASSERT (k >= EMPTY && k < nfr) ; if (k != EMPTY) { Temp [k] = Front [i] ; } } for (k = 0 ; k < nfr ; k++) { Front [k] = Temp [k] ; } } /* ========================================================================== */ /* === CCOLAMD_fsize ======================================================== */ /* ========================================================================== */ /* Determine the largest frontal matrix size for each subtree. * Only required to sort the children of each * node prior to postordering the column elimination tree. */ GLOBAL void CCOLAMD_fsize ( Int nn, Int Fsize [ ], Int Fnrows [ ], Int Fncols [ ], Int Parent [ ], Int Npiv [ ] ) { double dr, dc ; Int j, parent, frsize, r, c ; for (j = 0 ; j < nn ; j++) { Fsize [j] = EMPTY ; } /* ---------------------------------------------------------------------- */ /* find max front size for tree rooted at node j, for each front j */ /* ---------------------------------------------------------------------- */ DEBUG1 (("\n\n========================================FRONTS:\n")) ; for (j = 0 ; j < nn ; j++) { if (Npiv [j] > 0) { /* this is a frontal matrix */ parent = Parent [j] ; r = Fnrows [j] ; c = Fncols [j] ; /* avoid integer overflow */ dr = (double) r ; dc = (double) c ; frsize = (INT_OVERFLOW (dr * dc)) ? Int_MAX : (r * c) ; DEBUG1 ((""ID" : npiv "ID" size "ID" parent "ID" ", j, Npiv [j], frsize, parent)) ; Fsize [j] = MAX (Fsize [j], frsize) ; DEBUG1 (("Fsize [j = "ID"] = "ID"\n", j, Fsize [j])) ; if (parent != EMPTY) { /* find the maximum frontsize of self and children */ ASSERT (Npiv [parent] > 0) ; ASSERT (parent > j) ; Fsize [parent] = MAX (Fsize [parent], Fsize [j]) ; DEBUG1 (("Fsize [parent = "ID"] = "ID"\n", parent, Fsize [parent])); } } } DEBUG1 (("fsize done\n")) ; } /* ========================================================================= */ /* === CCOLAMD_postorder =================================================== */ /* ========================================================================= */ /* Perform a postordering (via depth-first search) of an assembly tree. */ GLOBAL void CCOLAMD_postorder ( /* inputs, not modified on output: */ Int nn, /* nodes are in the range 0..nn-1 */ Int Parent [ ], /* Parent [j] is the parent of j, or EMPTY if root */ Int Nv [ ], /* Nv [j] > 0 number of pivots represented by node j, * or zero if j is not a node. */ Int Fsize [ ], /* Fsize [j]: size of node j */ /* output, not defined on input: */ Int Order [ ], /* output post-order */ /* workspaces of size nn: */ Int Child [ ], Int Sibling [ ], Int Stack [ ], Int Front_cols [ ], /* input, not modified on output: */ Int cmember [ ] ) { Int i, j, k, parent, frsize, f, fprev, maxfrsize, bigfprev, bigf, fnext ; for (j = 0 ; j < nn ; j++) { Child [j] = EMPTY ; Sibling [j] = EMPTY ; } /* --------------------------------------------------------------------- */ /* place the children in link lists - bigger elements tend to be last */ /* --------------------------------------------------------------------- */ for (j = nn-1 ; j >= 0 ; j--) { if (Nv [j] > 0) { /* this is an element */ parent = Parent [j] ; if (parent != EMPTY) { /* place the element in link list of the children its parent */ /* bigger elements will tend to be at the end of the list */ Sibling [j] = Child [parent] ; if (CMEMBER (Front_cols[parent]) == CMEMBER (Front_cols[j])) { Child [parent] = j ; } } } } #ifndef NDEBUG { Int nels, ff, nchild ; DEBUG1 (("\n\n================================ ccolamd_postorder:\n")); nels = 0 ; for (j = 0 ; j < nn ; j++) { if (Nv [j] > 0) { DEBUG1 ((""ID" : nels "ID" npiv "ID" size "ID " parent "ID" maxfr "ID"\n", j, nels, Nv [j], Fsize [j], Parent [j], Fsize [j])) ; /* this is an element */ /* dump the link list of children */ nchild = 0 ; DEBUG1 ((" Children: ")) ; for (ff = Child [j] ; ff != EMPTY ; ff = Sibling [ff]) { DEBUG1 ((ID" ", ff)) ; nchild++ ; ASSERT (nchild < nn) ; } DEBUG1 (("\n")) ; parent = Parent [j] ; nels++ ; } } } #endif /* --------------------------------------------------------------------- */ /* place the largest child last in the list of children for each node */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < nn ; i++) { if (Nv [i] > 0 && Child [i] != EMPTY) { #ifndef NDEBUG Int nchild ; DEBUG1 (("Before partial sort, element "ID"\n", i)) ; nchild = 0 ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { DEBUG1 ((" f: "ID" size: "ID"\n", f, Fsize [f])) ; nchild++ ; } #endif /* find the biggest element in the child list */ fprev = EMPTY ; maxfrsize = EMPTY ; bigfprev = EMPTY ; bigf = EMPTY ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { frsize = Fsize [f] ; if (frsize >= maxfrsize) { /* this is the biggest seen so far */ maxfrsize = frsize ; bigfprev = fprev ; bigf = f ; } fprev = f ; } fnext = Sibling [bigf] ; DEBUG1 (("bigf "ID" maxfrsize "ID" bigfprev "ID" fnext "ID " fprev " ID"\n", bigf, maxfrsize, bigfprev, fnext, fprev)) ; if (fnext != EMPTY) { /* if fnext is EMPTY then bigf is already at the end of list */ if (bigfprev == EMPTY) { /* delete bigf from the element of the list */ Child [i] = fnext ; } else { /* delete bigf from the middle of the list */ Sibling [bigfprev] = fnext ; } /* put bigf at the end of the list */ Sibling [bigf] = EMPTY ; Sibling [fprev] = bigf ; } #ifndef NDEBUG DEBUG1 (("After partial sort, element "ID"\n", i)) ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { DEBUG1 ((" "ID" "ID"\n", f, Fsize [f])) ; nchild-- ; } #endif } } /* --------------------------------------------------------------------- */ /* postorder the assembly tree */ /* --------------------------------------------------------------------- */ for (i = 0 ; i < nn ; i++) { Order [i] = EMPTY ; } k = 0 ; for (i = 0 ; i < nn ; i++) { if ((Parent [i] == EMPTY || (CMEMBER (Front_cols [Parent [i]]) != CMEMBER (Front_cols [i]))) && Nv [i] > 0) { DEBUG1 (("Root of assembly tree "ID"\n", i)) ; k = CCOLAMD_post_tree (i, k, Child, Sibling, Order, Stack) ; } } } /* ========================================================================= */ /* === CCOLAMD_post_tree =================================================== */ /* ========================================================================= */ /* Post-ordering of a supernodal column elimination tree. */ GLOBAL Int CCOLAMD_post_tree ( Int root, /* root of the tree */ Int k, /* start numbering at k */ Int Child [ ], /* input argument of size nn, undefined on * output. Child [i] is the head of a link * list of all nodes that are children of node * i in the tree. */ const Int Sibling [ ], /* input argument of size nn, not modified. * If f is a node in the link list of the * children of node i, then Sibling [f] is the * next child of node i. */ Int Order [ ], /* output order, of size nn. Order [i] = k * if node i is the kth node of the reordered * tree. */ Int Stack [ ] /* workspace of size nn */ ) { Int f, head, h, i ; #if 0 /* --------------------------------------------------------------------- */ /* recursive version (Stack [ ] is not used): */ /* --------------------------------------------------------------------- */ /* this is simple, but can cause stack overflow if nn is large */ i = root ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { k = CCOLAMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ; } Order [i] = k++ ; return (k) ; #endif /* --------------------------------------------------------------------- */ /* non-recursive version, using an explicit stack */ /* --------------------------------------------------------------------- */ /* push root on the stack */ head = 0 ; Stack [0] = root ; while (head >= 0) { /* get head of stack */ i = Stack [head] ; DEBUG1 (("head of stack "ID" \n", i)) ; if (Child [i] != EMPTY) { /* the children of i are not yet ordered */ /* push each child onto the stack in reverse order */ /* so that small ones at the head of the list get popped first */ /* and the biggest one at the end of the list gets popped last */ for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { head++ ; } h = head ; for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) { ASSERT (h > 0) ; Stack [h--] = f ; DEBUG1 (("push "ID" on stack\n", f)) ; } ASSERT (Stack [h] == i) ; /* delete child list so that i gets ordered next time we see it */ Child [i] = EMPTY ; } else { /* the children of i (if there were any) are already ordered */ /* remove i from the stack and order it. Front i is kth front */ head-- ; DEBUG1 (("pop "ID" order "ID"\n", i, k)) ; Order [i] = k++ ; } #ifndef NDEBUG DEBUG1 (("\nStack:")) ; for (h = head ; h >= 0 ; h--) { Int j = Stack [h] ; DEBUG1 ((" "ID, j)) ; } DEBUG1 (("\n\n")) ; #endif } return (k) ; } /* ========================================================================== */ /* === CCOLAMD debugging routines =========================================== */ /* ========================================================================== */ /* When debugging is disabled, the remainder of this file is ignored. */ #ifndef NDEBUG /* ========================================================================== */ /* === debug_structures ===================================================== */ /* ========================================================================== */ /* * At this point, all empty rows and columns are dead. All live columns * are "clean" (containing no dead rows) and simplicial (no supercolumns * yet). Rows may contain dead columns, but all live rows contain at * least one live column. */ PRIVATE void debug_structures ( /* === Parameters ======================================================= */ Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ], Int cmember [ ], Int cset_start [ ] ) { /* === Local variables ================================================== */ Int i ; Int c ; Int *cp ; Int *cp_end ; Int len ; Int score ; Int r ; Int *rp ; Int *rp_end ; Int deg ; Int cs ; /* === Check A, Row, and Col ============================================ */ for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { len = Col [c].length ; score = Col [c].shared2.score ; DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ; ASSERT (len > 0) ; ASSERT (score >= 0) ; ASSERT (Col [c].shared1.thickness == 1) ; cp = &A [Col [c].start] ; cp_end = cp + len ; while (cp < cp_end) { r = *cp++ ; ASSERT (ROW_IS_ALIVE (r)) ; } } else { i = Col [c].shared2.order ; cs = CMEMBER (c) ; ASSERT (i >= cset_start [cs] && i < cset_start [cs+1]) ; } } for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { i = 0 ; len = Row [r].length ; deg = Row [r].shared1.degree ; ASSERT (len > 0) ; ASSERT (deg > 0) ; rp = &A [Row [r].start] ; rp_end = rp + len ; while (rp < rp_end) { c = *rp++ ; if (COL_IS_ALIVE (c)) { i++ ; } } ASSERT (i > 0) ; } } } /* ========================================================================== */ /* === debug_deg_lists ====================================================== */ /* ========================================================================== */ /* * Prints the contents of the degree lists. Counts the number of columns * in the degree list and compares it to the total it should have. Also * checks the row degrees. */ PRIVATE void debug_deg_lists ( /* === Parameters ======================================================= */ Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int head [ ], Int min_score, Int should, Int max_deg ) { /* === Local variables ================================================== */ Int deg ; Int col ; Int have ; Int row ; /* === Check the degree lists =========================================== */ if (n_col > 10000 && ccolamd_debug <= 0) { return ; } have = 0 ; DEBUG4 (("Degree lists: "ID"\n", min_score)) ; for (deg = 0 ; deg <= n_col ; deg++) { col = head [deg] ; if (col == EMPTY) { continue ; } DEBUG4 (("%d:", deg)) ; ASSERT (Col [col].shared3.prev == EMPTY) ; while (col != EMPTY) { DEBUG4 ((" "ID"", col)) ; have += Col [col].shared1.thickness ; ASSERT (COL_IS_ALIVE (col)) ; col = Col [col].shared4.degree_next ; } DEBUG4 (("\n")) ; } DEBUG4 (("should "ID" have "ID"\n", should, have)) ; ASSERT (should == have) ; /* === Check the row degrees ============================================ */ if (n_row > 10000 && ccolamd_debug <= 0) { return ; } for (row = 0 ; row < n_row ; row++) { if (ROW_IS_ALIVE (row)) { ASSERT (Row [row].shared1.degree <= max_deg) ; } } } /* ========================================================================== */ /* === debug_mark =========================================================== */ /* ========================================================================== */ /* * Ensures that the tag_mark is less that the maximum and also ensures that * each entry in the mark array is less than the tag mark. */ PRIVATE void debug_mark ( /* === Parameters ======================================================= */ Int n_row, CColamd_Row Row [ ], Int tag_mark, Int max_mark ) { /* === Local variables ================================================== */ Int r ; /* === Check the Row marks ============================================== */ ASSERT (tag_mark > 0 && tag_mark <= max_mark) ; if (n_row > 10000 && ccolamd_debug <= 0) { return ; } for (r = 0 ; r < n_row ; r++) { ASSERT (Row [r].shared2.mark < tag_mark) ; } } /* ========================================================================== */ /* === debug_matrix ========================================================= */ /* ========================================================================== */ /* Prints out the contents of the columns and the rows. */ PRIVATE void debug_matrix ( /* === Parameters ======================================================= */ Int n_row, Int n_col, CColamd_Row Row [ ], CColamd_Col Col [ ], Int A [ ] ) { /* === Local variables ================================================== */ Int r ; Int c ; Int *rp ; Int *rp_end ; Int *cp ; Int *cp_end ; /* === Dump the rows and columns of the matrix ========================== */ if (ccolamd_debug < 3) { return ; } DEBUG3 (("DUMP MATRIX:\n")) ; for (r = 0 ; r < n_row ; r++) { DEBUG3 (("Row "ID" alive? "ID"\n", r, ROW_IS_ALIVE (r))) ; if (ROW_IS_DEAD (r)) { continue ; } DEBUG3 (("start "ID" length "ID" degree "ID"\nthickness "ID"\n", Row [r].start, Row [r].length, Row [r].shared1.degree, Row [r].thickness)) ; rp = &A [Row [r].start] ; rp_end = rp + Row [r].length ; while (rp < rp_end) { c = *rp++ ; DEBUG4 ((" "ID" col "ID"\n", COL_IS_ALIVE (c), c)) ; } } for (c = 0 ; c < n_col ; c++) { DEBUG3 (("Col "ID" alive? "ID"\n", c, COL_IS_ALIVE (c))) ; if (COL_IS_DEAD (c)) { continue ; } DEBUG3 (("start "ID" length "ID" shared1 "ID" shared2 "ID"\n", Col [c].start, Col [c].length, Col [c].shared1.thickness, Col [c].shared2.score)) ; cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { r = *cp++ ; DEBUG4 ((" "ID" row "ID"\n", ROW_IS_ALIVE (r), r)) ; } } } /* ========================================================================== */ /* === dump_super =========================================================== */ /* ========================================================================== */ PRIVATE void dump_super ( Int super_c, CColamd_Col Col [ ], Int n_col ) { Int col, ncols ; DEBUG1 ((" =[ ")) ; ncols = 0 ; for (col = super_c ; col != EMPTY ; col = Col [col].nextcol) { DEBUG1 ((" "ID, col)) ; ASSERT (col >= 0 && col < n_col) ; if (col != super_c) { ASSERT (COL_IS_DEAD (col)) ; } if (Col [col].nextcol == EMPTY) { ASSERT (col == Col [super_c].lastcol) ; } ncols++ ; ASSERT (ncols <= Col [super_c].shared1.thickness) ; } ASSERT (ncols == Col [super_c].shared1.thickness) ; DEBUG1 (("]\n")) ; } /* ========================================================================== */ /* === ccolamd_get_debug ==================================================== */ /* ========================================================================== */ PRIVATE void ccolamd_get_debug ( char *method ) { FILE *debug_file ; ccolamd_debug = 0 ; /* no debug printing */ /* Read debug info from the debug file. */ debug_file = fopen ("debug", "r") ; if (debug_file) { (void) fscanf (debug_file, ""ID"", &ccolamd_debug) ; (void) fclose (debug_file) ; } DEBUG0 ((":")) ; DEBUG1 (("%s: debug version, D = "ID" (THIS WILL BE SLOW!)\n", method, ccolamd_debug)) ; DEBUG1 ((" Debug printing level: "ID"\n", ccolamd_debug)) ; } #endif SuiteSparse/CCOLAMD/README.txt0000644001170100242450000001430410617111303014502 0ustar davisfacCCOLAMD version 2.7: constrained column approximate minimum degree ordering Copyright (C) 2005-2007, Univ. of Florida. Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore. Closely based on COLAMD by Davis, Stefan Larimore, in collaboration with Esmond Ng, and John Gilbert. http://www.cise.ufl.edu/research/sparse ------------------------------------------------------------------------------- The CCOLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. CSYMAMD is a symmetric minimum degree ordering method based on CCOLAMD, also available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses CCOLAMD to compute a column ordering of M. Requires UFconfig, in the ../UFconfig directory relative to this directory. To compile and install the ccolamd m-files and mexFunctions, just cd to CCOLAMD/MATLAB and type ccolamd_install in the MATLAB command window. A short demo will run. Optionally, type ccolamd_test to run an extensive tests. Type "make" in Unix in the CCOLAMD directory to compile the C-callable library and to run a short demo. If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command (or just use ccolamd_install.m inside MATLAB). Other "make" targets: make mex compiles MATLAB mexFunctions only make libccolamd.a compiles a C-callable library containing ccolamd make clean removes all files not in the distribution, except for libccolamd.a make distclean removes all files not in the distribution To use ccolamd and csymamd within an application written in C, all you need are ccolamd.c and ccolamd.h, which are the C-callable ccolamd/csymamd codes. See ccolamd.c for more information on how to call ccolamd from a C program. It contains a complete description of the C-interface to CCOLAMD and CSYMAMD. Copyright (c) 1998-2007 by the University of Florida. All Rights Reserved. Licensed under the GNU LESSER GENERAL PUBLIC LICENSE. ------------------------------------------------------------------------------- This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ------------------------------------------------------------------------------- Related papers: T. A. Davis and W. W. Hager, Rajamanickam, Multiple-rank updates to a supernodal sparse Cholesky factorization, submitted. T. A. Davis, W. W. Hager, S. Rajamanickam, and Y. Chen, CHOLMOD: a sparse Cholesky update/downdate package, submitted. CHOLMOD's nested dissection ordering relies on CCOLAMD and CSYMAMD to order the matrix after graph partitioning is used to find the ordering constraints. T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 353-376, 2004. T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD, an approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380, 2004. "An approximate minimum degree column ordering algorithm", S. I. Larimore, MS Thesis, Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 1998. CISE Tech Report TR-98-016. Available at ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps via anonymous ftp. Approximate Deficiency for Ordering the Columns of a Matrix, J. L. Kern, Senior Thesis, Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 1999. Available at http://www.cise.ufl.edu/~davis/Kern/kern.ps Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore. Closely based on COLAMD by Stefan I. Larimore and Timothy A. Davis, University of Florida, in collaboration with John Gilbert, Xerox PARC (now at UC Santa Barbara), and Esmong Ng, Lawrence Berkeley National Laboratory (much of this work he did while at Oak Ridge National Laboratory). CCOLAMD files: Demo simple demo Doc additional documentation (see ccolamd.c for more) Include include file Lib compiled C-callable library Makefile primary Unix Makefile MATLAB MATLAB functions README.txt this file Source C source code ./Demo: ccolamd_example.c simple example ccolamd_example.out output of colamd_example.c ccolamd_l_example.c simple example, long integers ccolamd_l_example.out output of colamd_l_example.c Makefile Makefile for C demos ./Doc: ChangeLog change log lesser.txt license ./Include: ccolamd.h include file ./Lib: Makefile Makefile for C-callable library ./MATLAB: ccolamd.m MATLAB interface for ccolamd ccolamd_demo.m simple demo ccolamd_install.m compile and install ccolamd and csymamd ccolamd_make.m compile colamd2 and symamd2 ccolamdmex.c MATLAB mexFunction for ccolamd ccolamd_test.m extensive test ccolamdtestmex.c test function for ccolamd Contents.m contents of the MATLAB directory luflops.m test code Makefile Makefile for MATLAB functions csymamd.m MATLAB interface for csymamd csymamdmex.c MATLAB mexFunction for csymamd symamdtestmex.c test function for csymamd ./Source: ccolamd.c primary source code ccolamd_global.c globally defined function pointers (malloc, free, ...) SuiteSparse/CHOLMOD/0000755001170100242450000000000010711425430013031 5ustar davisfacSuiteSparse/CHOLMOD/Doc/0000755001170100242450000000000010711441430013534 5ustar davisfacSuiteSparse/CHOLMOD/Doc/Makefile0000644001170100242450000004014210616452406015206 0ustar davisfacdefault: all include ../../UFconfig/UFconfig.mk all: UserGuide.pdf I = \ ../Include/cholmod.h \ ../Include/cholmod_blas.h \ ../Include/cholmod_check.h \ ../Include/cholmod_cholesky.h \ ../Include/cholmod_complexity.h \ ../Include/cholmod_config.h \ ../Include/cholmod_core.h \ ../Include/cholmod_internal.h \ ../Include/cholmod_matrixops.h \ ../Include/cholmod_modify.h \ ../Include/cholmod_partition.h \ ../Include/cholmod_supernodal.h \ ../Include/cholmod_template.h C = ../Demo/cholmod_simple.c M = \ ../MATLAB/analyze.m \ ../MATLAB/bisect.m \ ../MATLAB/chol2.m \ ../MATLAB/cholmod2.m \ ../MATLAB/cholmod_demo.m \ ../MATLAB/cholmod_make.m \ ../MATLAB/etree2.m \ ../MATLAB/graph_demo.m \ ../MATLAB/lchol.m \ ../MATLAB/ldlchol.m \ ../MATLAB/ldl_normest.m \ ../MATLAB/ldlsolve.m \ ../MATLAB/ldlsplit.m \ ../MATLAB/ldlupdate.m \ ../MATLAB/metis.m \ ../MATLAB/nesdis.m \ ../MATLAB/resymbol.m \ ../MATLAB/sdmult.m \ ../MATLAB/sparse2.m \ ../MATLAB/spsym.m \ ../MATLAB/mread.m \ ../MATLAB/mwrite.m \ ../MATLAB/symbfact2.m UserGuide.pdf: UserGuide.tex UserGuide.bib $(I) $(C) $(M) Makefile getproto rule.awk header.tex footer.tex getmproto mfooter.tex mheader.tex mfile.awk ./getmproto ../MATLAB/analyze.m > _analyze_m.tex ./getmproto ../MATLAB/bisect.m > _bisect_m.tex ./getmproto ../MATLAB/chol2.m > _chol2_m.tex ./getmproto ../MATLAB/cholmod2.m > _cholmod2_m.tex ./getmproto ../MATLAB/cholmod_demo.m > _cholmod_demo_m.tex ./getmproto ../MATLAB/cholmod_make.m > _cholmod_make_m.tex ./getmproto ../MATLAB/etree2.m > _etree2_m.tex ./getmproto ../MATLAB/graph_demo.m > _graph_demo_m.tex ./getmproto ../MATLAB/lchol.m > _lchol_m.tex ./getmproto ../MATLAB/ldlchol.m > _ldlchol_m.tex ./getmproto ../MATLAB/ldl_normest.m > _ldl_normest_m.tex ./getmproto ../MATLAB/ldlsolve.m > _ldlsolve_m.tex ./getmproto ../MATLAB/ldlsplit.m > _ldlsplit_m.tex ./getmproto ../MATLAB/ldlupdate.m > _ldlupdate_m.tex ./getmproto ../MATLAB/metis.m > _metis_m.tex ./getmproto ../MATLAB/mread.m > _mread_m.tex ./getmproto ../MATLAB/spsym.m > _spsym_m.tex ./getmproto ../MATLAB/mwrite.m > _mwrite_m.tex ./getmproto ../MATLAB/nesdis.m > _nesdis_m.tex ./getmproto ../MATLAB/resymbol.m > _resymbol_m.tex ./getmproto ../MATLAB/sdmult.m > _sdmult_m.tex ./getmproto ../MATLAB/sparse2.m > _sparse2_m.tex ./getmproto ../MATLAB/symbfact2.m > _symbfact2_m.tex ./getproto '/include/, /^}/' ../Demo/cholmod_simple.c > _simple.tex ./getproto '/typedef struct cholmod_common/, /^}/' ../Include/cholmod_core.h > _common.tex ./getproto '/int cholmod_start/, /\*\) ;/' ../Include/cholmod_core.h > _start.tex ./getproto '/int cholmod_finish/, /\*\) ;/' ../Include/cholmod_core.h > _finish.tex ./getproto '/int cholmod_defaults/, /\*\) ;/' ../Include/cholmod_core.h > _defaults.tex ./getproto '/size_t cholmod_maxrank/, /\*\) ;/' ../Include/cholmod_core.h > _maxrank.tex ./getproto '/int cholmod_allocate_work/, /\*\) ;/' ../Include/cholmod_core.h > _allocate_work.tex ./getproto '/int cholmod_free_work/, /\*\) ;/' ../Include/cholmod_core.h > _free_work.tex ./getproto '/long cholmod_clear_flag/, /\*\) ;/' ../Include/cholmod_core.h > _clear_flag.tex ./getproto '/int cholmod_error/, /\*\) ;/' ../Include/cholmod_core.h > _error.tex ./getproto '/double cholmod_dbound/, /\*\) ;/' ../Include/cholmod_core.h > _dbound.tex ./getproto '/double cholmod_hypot/, /double\) ;/' ../Include/cholmod_core.h > _hypot.tex ./getproto '/int cholmod_divcomplex/, /\*\) ;/' ../Include/cholmod_core.h > _divcomplex.tex ./getproto '/typedef struct cholmod_sparse/, /^}/' ../Include/cholmod_core.h > _sparse.tex ./getproto '/cholmod_sparse \*cholmod_allocate_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _allocate_sparse.tex ./getproto '/int cholmod_free_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _free_sparse.tex ./getproto '/int cholmod_reallocate_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _reallocate_sparse.tex ./getproto '/long cholmod_nnz/, /\*\) ;/' ../Include/cholmod_core.h > _nnz.tex ./getproto '/cholmod_sparse \*cholmod_speye/, /\*\) ;/' ../Include/cholmod_core.h > _speye.tex ./getproto '/cholmod_sparse \*cholmod_spzeros/, /\*\) ;/' ../Include/cholmod_core.h > _spzeros.tex ./getproto '/cholmod_sparse \*cholmod_transpose/, /\*\) ;/' ../Include/cholmod_core.h > _transpose.tex ./getproto '/int cholmod_transpose_unsym/, /\*\) ;/' ../Include/cholmod_core.h > _transpose_unsym.tex ./getproto '/int cholmod_transpose_sym/, /\*\) ;/' ../Include/cholmod_core.h > _transpose_sym.tex ./getproto '/cholmod_sparse \*cholmod_ptranspose/, /\*\) ;/' ../Include/cholmod_core.h > _ptranspose.tex ./getproto '/int cholmod_sort/, /\*\) ;/' ../Include/cholmod_core.h > _sort.tex ./getproto '/cholmod_sparse \*cholmod_band/, /\*\) ;/' ../Include/cholmod_core.h > _band.tex ./getproto '/int cholmod_band_inplace/, /\*\) ;/' ../Include/cholmod_core.h > _band_inplace.tex ./getproto '/cholmod_sparse \*cholmod_aat/, /\*\) ;/' ../Include/cholmod_core.h > _aat.tex ./getproto '/cholmod_sparse \*cholmod_copy_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _copy_sparse.tex ./getproto '/cholmod_sparse \*cholmod_copy /, /\*\) ;/' ../Include/cholmod_core.h > _copy.tex ./getproto '/cholmod_sparse \*cholmod_add/, /\*\) ;/' ../Include/cholmod_core.h > _add.tex ./getproto '/int cholmod_sparse_xtype/, /\*\) ;/' ../Include/cholmod_core.h > _sparse_xtype.tex ./getproto '/typedef struct cholmod_factor/, /^}/' ../Include/cholmod_core.h > _factor.tex ./getproto '/cholmod_factor \*cholmod_allocate_factor/, /\*\) ;/' ../Include/cholmod_core.h > _allocate_factor.tex ./getproto '/int cholmod_free_factor/, /\*\) ;/' ../Include/cholmod_core.h > _free_factor.tex ./getproto '/int cholmod_reallocate_factor/, /\*\) ;/' ../Include/cholmod_core.h > _reallocate_factor.tex ./getproto '/int cholmod_change_factor/, /\*\) ;/' ../Include/cholmod_core.h > _change_factor.tex ./getproto '/int cholmod_pack_factor/, /\*\) ;/' ../Include/cholmod_core.h > _pack_factor.tex ./getproto '/int cholmod_reallocate_column/, /\*\) ;/' ../Include/cholmod_core.h > _reallocate_column.tex ./getproto '/cholmod_sparse \*cholmod_factor_to_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _factor_to_sparse.tex ./getproto '/cholmod_factor \*cholmod_copy_factor/, /\*\) ;/' ../Include/cholmod_core.h > _copy_factor.tex ./getproto '/int cholmod_factor_xtype/, /\*\) ;/' ../Include/cholmod_core.h > _factor_xtype.tex ./getproto '/typedef struct cholmod_dense/, /^}/' ../Include/cholmod_core.h > _dense.tex ./getproto '/cholmod_dense \*cholmod_allocate_dense/, /\*\) ;/' ../Include/cholmod_core.h > _allocate_dense.tex ./getproto '/cholmod_dense \*cholmod_zeros/, /\*\) ;/' ../Include/cholmod_core.h > _zeros.tex ./getproto '/cholmod_dense \*cholmod_ones/, /\*\) ;/' ../Include/cholmod_core.h > _ones.tex ./getproto '/cholmod_dense \*cholmod_eye/, /\*\) ;/' ../Include/cholmod_core.h > _eye.tex ./getproto '/int cholmod_free_dense/, /\*\) ;/' ../Include/cholmod_core.h > _free_dense.tex ./getproto '/cholmod_dense \*cholmod_sparse_to_dense/, /\*\) ;/' ../Include/cholmod_core.h > _sparse_to_dense.tex ./getproto '/cholmod_sparse \*cholmod_dense_to_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _dense_to_sparse.tex ./getproto '/cholmod_dense \*cholmod_copy_dense/, /\*\) ;/' ../Include/cholmod_core.h > _copy_dense.tex ./getproto '/int cholmod_copy_dense2/, /\*\) ;/' ../Include/cholmod_core.h > _copy_dense2.tex ./getproto '/int cholmod_dense_xtype/, /\*\) ;/' ../Include/cholmod_core.h > _dense_xtype.tex ./getproto '/typedef struct cholmod_triplet/, /^}/' ../Include/cholmod_core.h > _triplet.tex ./getproto '/cholmod_triplet \*cholmod_allocate_triplet/, /\*\) ;/' ../Include/cholmod_core.h > _allocate_triplet.tex ./getproto '/int cholmod_free_triplet/, /\*\) ;/' ../Include/cholmod_core.h > _free_triplet.tex ./getproto '/int cholmod_reallocate_triplet/, /\*\) ;/' ../Include/cholmod_core.h > _reallocate_triplet.tex ./getproto '/cholmod_triplet \*cholmod_sparse_to_triplet/, /\*\) ;/' ../Include/cholmod_core.h > _sparse_to_triplet.tex ./getproto '/cholmod_sparse \*cholmod_triplet_to_sparse/, /\*\) ;/' ../Include/cholmod_core.h > _triplet_to_sparse.tex ./getproto '/cholmod_triplet \*cholmod_copy_triplet/, /\*\) ;/' ../Include/cholmod_core.h > _copy_triplet.tex ./getproto '/int cholmod_triplet_xtype/, /\*\) ;/' ../Include/cholmod_core.h > _triplet_xtype.tex ./getproto '/void \*cholmod_malloc/, /\*\) ;/' ../Include/cholmod_core.h > _malloc.tex ./getproto '/void \*cholmod_calloc/, /\*\) ;/' ../Include/cholmod_core.h > _calloc.tex ./getproto '/void \*cholmod_free/, /\*\) ;/' ../Include/cholmod_core.h > _free.tex ./getproto '/void \*cholmod_realloc/, /\*\) ;/' ../Include/cholmod_core.h > _realloc.tex ./getproto '/int cholmod_realloc_multiple/, /\*\) ;/' ../Include/cholmod_core.h > _realloc_multiple.tex ./getproto '/itype defines the/, /define CHOLMOD_SUPERNODAL/' ../Include/cholmod_core.h > _defn.tex ./getproto '/int cholmod_check_common/, /\*\) ;/' ../Include/cholmod_check.h > _check_common.tex ./getproto '/int cholmod_print_common/, /\*\) ;/' ../Include/cholmod_check.h > _print_common.tex ./getproto '/int cholmod_check_sparse/, /\*\) ;/' ../Include/cholmod_check.h > _check_sparse.tex ./getproto '/int cholmod_print_sparse/, /\*\) ;/' ../Include/cholmod_check.h > _print_sparse.tex ./getproto '/int cholmod_check_dense/, /\*\) ;/' ../Include/cholmod_check.h > _check_dense.tex ./getproto '/int cholmod_print_dense/, /\*\) ;/' ../Include/cholmod_check.h > _print_dense.tex ./getproto '/int cholmod_check_factor/, /\*\) ;/' ../Include/cholmod_check.h > _check_factor.tex ./getproto '/int cholmod_print_factor/, /\*\) ;/' ../Include/cholmod_check.h > _print_factor.tex ./getproto '/int cholmod_check_triplet/, /\*\) ;/' ../Include/cholmod_check.h > _check_triplet.tex ./getproto '/int cholmod_print_triplet/, /\*\) ;/' ../Include/cholmod_check.h > _print_triplet.tex ./getproto '/int cholmod_check_subset/, /\*\) ;/' ../Include/cholmod_check.h > _check_subset.tex ./getproto '/int cholmod_print_subset/, /\*\) ;/' ../Include/cholmod_check.h > _print_subset.tex ./getproto '/int cholmod_check_perm/, /\*\) ;/' ../Include/cholmod_check.h > _check_perm.tex ./getproto '/int cholmod_print_perm/, /\*\) ;/' ../Include/cholmod_check.h > _print_perm.tex ./getproto '/int cholmod_check_parent/, /\*\) ;/' ../Include/cholmod_check.h > _check_parent.tex ./getproto '/int cholmod_print_parent/, /\*\) ;/' ../Include/cholmod_check.h > _print_parent.tex ./getproto '/cholmod_triplet \*cholmod_read_triplet/, /\*\) ;/' ../Include/cholmod_check.h > _read_triplet.tex ./getproto '/cholmod_sparse \*cholmod_read_sparse/, /\*\) ;/' ../Include/cholmod_check.h > _read_sparse.tex ./getproto '/cholmod_dense \*cholmod_read_dense/, /\*\) ;/' ../Include/cholmod_check.h > _read_dense.tex ./getproto '/void \*cholmod_read_matrix/, /\*\) ;/' ../Include/cholmod_check.h > _read_matrix.tex ./getproto '/int cholmod_write_sparse/, /\*\) ;/' ../Include/cholmod_check.h > _write_sparse.tex ./getproto '/int cholmod_write_dense/, /\*\) ;/' ../Include/cholmod_check.h > _write_dense.tex ./getproto '/cholmod_factor \*cholmod_analyze /, /\*\) ;/' ../Include/cholmod_cholesky.h > _analyze.tex ./getproto '/cholmod_factor \*cholmod_analyze_p/, /\*\) ;/' ../Include/cholmod_cholesky.h > _analyze_p.tex ./getproto '/int cholmod_factorize /, /\*\) ;/' ../Include/cholmod_cholesky.h > _factorize.tex ./getproto '/int cholmod_factorize_p/, /\*\) ;/' ../Include/cholmod_cholesky.h > _factorize_p.tex ./getproto '/cholmod_dense \*cholmod_solve/, /\*\) ;/' ../Include/cholmod_cholesky.h > _solve.tex ./getproto '/cholmod_sparse \*cholmod_spsolve/, /\*\) ;/' ../Include/cholmod_cholesky.h > _spsolve.tex ./getproto '/int cholmod_etree/, /\*\) ;/' ../Include/cholmod_cholesky.h > _etree.tex ./getproto '/int cholmod_rowcolcounts/, /\*\) ;/' ../Include/cholmod_cholesky.h > _rowcolcounts.tex ./getproto '/int cholmod_analyze_ordering/, /\*\) ;/' ../Include/cholmod_cholesky.h > _analyze_ordering.tex ./getproto '/int cholmod_amd/, /\*\) ;/' ../Include/cholmod_cholesky.h > _amd.tex ./getproto '/int cholmod_colamd/, /\*\) ;/' ../Include/cholmod_cholesky.h > _colamd.tex ./getproto '/int cholmod_rowfac/, /\*\) ;/' ../Include/cholmod_cholesky.h > _rowfac.tex ./getproto '/int cholmod_rowfac_mask/, /\*\) ;/' ../Include/cholmod_cholesky.h > _rowfac_mask.tex ./getproto '/int cholmod_row_subtree/, /\*\) ;/' ../Include/cholmod_cholesky.h > _row_subtree.tex ./getproto '/int cholmod_row_lsubtree/, /\*\) ;/' ../Include/cholmod_cholesky.h > _row_lsubtree.tex ./getproto '/int cholmod_resymbol /, /\*\) ;/' ../Include/cholmod_cholesky.h > _resymbol.tex ./getproto '/int cholmod_resymbol_noperm/, /\*\) ;/' ../Include/cholmod_cholesky.h > _resymbol_noperm.tex ./getproto '/double cholmod_rcond/, /\*\) ;/' ../Include/cholmod_cholesky.h > _rcond.tex ./getproto '/long cholmod_postorder/, /\*\) ;/' ../Include/cholmod_cholesky.h > _postorder.tex ./getproto '/int cholmod_updown /, /\*\) ;/' ../Include/cholmod_modify.h > _updown.tex ./getproto '/int cholmod_updown_solve/, /\*\) ;/' ../Include/cholmod_modify.h > _updown_solve.tex ./getproto '/int cholmod_updown_mark/, /\*\) ;/' ../Include/cholmod_modify.h > _updown_mark.tex ./getproto '/int cholmod_updown_mask/, /\*\) ;/' ../Include/cholmod_modify.h > _updown_mask.tex ./getproto '/int cholmod_rowadd /, /\*\) ;/' ../Include/cholmod_modify.h > _rowadd.tex ./getproto '/int cholmod_rowadd_solve/, /\*\) ;/' ../Include/cholmod_modify.h > _rowadd_solve.tex ./getproto '/int cholmod_rowadd_mark/, /\*\) ;/' ../Include/cholmod_modify.h > _rowadd_mark.tex ./getproto '/int cholmod_rowdel /, /\*\) ;/' ../Include/cholmod_modify.h > _rowdel.tex ./getproto '/int cholmod_rowdel_solve/, /\*\) ;/' ../Include/cholmod_modify.h > _rowdel_solve.tex ./getproto '/int cholmod_rowdel_mark/, /\*\) ;/' ../Include/cholmod_modify.h > _rowdel_mark.tex ./getproto '/int cholmod_drop/, /\*\) ;/' ../Include/cholmod_matrixops.h > _drop.tex ./getproto '/double cholmod_norm_dense/, /\*\) ;/' ../Include/cholmod_matrixops.h > _norm_dense.tex ./getproto '/double cholmod_norm_sparse/, /\*\) ;/' ../Include/cholmod_matrixops.h > _norm_sparse.tex ./getproto '/cholmod_sparse \*cholmod_horzcat/, /\*\) ;/' ../Include/cholmod_matrixops.h > _horzcat.tex ./getproto '/define CHOLMOD_SCALAR/, /\*\) ;/' ../Include/cholmod_matrixops.h > _scale.tex ./getproto '/int cholmod_sdmult/, /\*\) ;/' ../Include/cholmod_matrixops.h > _sdmult.tex ./getproto '/cholmod_sparse \*cholmod_ssmult/, /\*\) ;/' ../Include/cholmod_matrixops.h > _ssmult.tex ./getproto '/cholmod_sparse \*cholmod_submatrix/, /\*\) ;/' ../Include/cholmod_matrixops.h > _submatrix.tex ./getproto '/cholmod_sparse \*cholmod_vertcat/, /\*\) ;/' ../Include/cholmod_matrixops.h > _vertcat.tex ./getproto '/int cholmod_symmetry/, /\*\) ;/' ../Include/cholmod_matrixops.h > _symmetry.tex ./getproto '/int cholmod_super_symbolic/, /\*\) ;/' ../Include/cholmod_supernodal.h > _super_symbolic.tex ./getproto '/int cholmod_super_numeric/, /\*\) ;/' ../Include/cholmod_supernodal.h > _super_numeric.tex ./getproto '/int cholmod_super_lsolve/, /\*\) ;/' ../Include/cholmod_supernodal.h > _super_lsolve.tex ./getproto '/int cholmod_super_ltsolve/, /\*\) ;/' ../Include/cholmod_supernodal.h > _super_ltsolve.tex ./getproto '/long cholmod_nested_dissection/, /\*\) ;/' ../Include/cholmod_partition.h > _nested_dissection.tex ./getproto '/int cholmod_metis/, /\*\) ;/' ../Include/cholmod_partition.h > _metis.tex ./getproto '/int cholmod_ccolamd/, /\*\) ;/' ../Include/cholmod_partition.h > _ccolamd.tex ./getproto '/int cholmod_camd/, /\*\) ;/' ../Include/cholmod_partition.h > _camd.tex ./getproto '/int cholmod_csymamd/, /\*\) ;/' ../Include/cholmod_partition.h > _csymamd.tex ./getproto '/int cholmod_csymamd/, /\*\) ;/' ../Include/cholmod_partition.h > _csymamd.tex ./getproto '/long cholmod_bisect/, /\*\) ;/' ../Include/cholmod_partition.h > _bisect.tex ./getproto '/long cholmod_metis_bisector/, /\*\) ;/' ../Include/cholmod_partition.h > _metis_bisector.tex ./getproto '/long cholmod_collapse_septree/, /\*\) ;/' ../Include/cholmod_partition.h > _collapse_septree.tex pdflatex UserGuide bibtex UserGuide pdflatex UserGuide pdflatex UserGuide distclean: purge purge: clean - $(RM) _temp.awk _*.tex *.dvi *.aux *.log *.lof *.lot *.toc *.bak *.bbl *.blg clean: - $(RM) $(CLEAN) SuiteSparse/CHOLMOD/Doc/mfooter.tex0000644001170100242450000000012410304300375015726 0ustar davisfac\end{verbatim} } \noindent\hspace{0.85in}\rule[0.25in]{5.2in}{1pt} \vspace{-0.15in} SuiteSparse/CHOLMOD/Doc/rule.awk0000644001170100242450000000003510304303017015201 0ustar davisfac{ print " ", $0 } SuiteSparse/CHOLMOD/Doc/UserGuide.bib0000644001170100242450000001212110533334034016106 0ustar davisfac@string{SIMAX = "{SIAM} J. Matrix Anal. Applic."} @string{TOMS = "{ACM} Trans. Math. Softw."} @string{SIAMJSC = "{SIAM} J. Sci. Comput."} @article{DavisHager06, author={Davis, T. A. and Hager, W. W.}, title={Dynamic supernodes in sparse {Cholesky} update/downdate and triangular solves}, journal=TOMS, year={submitted in 2006} } @article{ChenDavisHagerRajamanickam06, author={Chen, Y. and Davis, T. A. and Hager, W. W. and Rajamanickam, S.}, title={Algorithm 8xx: {CHOLMOD}, supernodal sparse {Cholesky} factorization and update/downdate}, journal=TOMS, year={submitted in 2006} } @article{DavisHager99, author={Davis, T. A. and Hager, W. W.}, title={Modifying a sparse {C}holesky factorization}, journal=SIMAX, year={1999} ,volume={20} ,number={3} ,pages={606--627} } @article{DavisHager01, author={Davis, T. A. and Hager, W. W.}, title={Multiple-Rank Modifications of a Sparse {C}holesky Factorization}, journal=SIMAX, year={2001} ,volume={22} ,number={4} ,pages={997--1013} } @article{DavisHager05, author={Davis, T. A. and Hager, W. W.}, title={Row modifications of a sparse {Cholesky} factorization}, journal=SIMAX, year={2005} ,volume={26} ,number={3} ,pages={621--639} } @article{AmestoyDavisDuff96, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={An approximate minimum degree ordering algorithm}, journal=SIMAX, year={1996} ,volume={17} ,number={4} ,pages={886--905} } @article{Davis05, author={Davis, T. A.}, title={Algorithm 849: A concise sparse {Cholesky} algorithm}, journal=TOMS, year={2005},volume={31},number={4},pages={587--591}} @article{DavisGilbertLarimoreNg00, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={A column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={353--376}} @article{DavisGilbertLarimoreNg00_algo, author={Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.}, title={Algorithm 836: {COLAMD}, a column approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={377--380}} @article{NgPeyton91b, author={Ng, E. and Peyton, B.}, title={Block sparse {C}holesky algorithms on advanced uniprocessor computers}, journal=SIAMJSC, year={1993} ,volume={14} ,pages={1034--1056} } @article{Liu86c, author={Liu, J. W. H.}, title={A Compact Row Storage Scheme for {C}holesky Factors Using Elimination Trees}, journal=TOMS, year={1986}, volume={12}, number={2}, pages={127--148}, } @article{Liu90a, author={Liu, J. W. H.}, title={The Role of Elimination Trees in Sparse Factorization}, journal=SIMAX, year={1990} ,volume={11} ,number={1} ,pages={134--172} } @article{GilbertNgPeyton94, author={Gilbert, J. R. and Ng, E. G. and Peyton, B. W.}, title={An efficient algorithm to compute row and column counts for sparse {C}holesky factorization}, journal=SIMAX, year={1994} ,volume={15} ,number={4} ,pages={1075--1091} } @article{GilbertLiNgPeyton01, author={Gilbert, J. R. and Li, X. S. and Ng, E. G. and Peyton, B. W.}, title={Computing row and column counts for sparse {QR} and {LU} factorization}, journal={{BIT}}, year={2001} ,volume={41} ,number={4} ,pages={693--710} } @book{LAPACK, author={Anderson, E. and Bai, Z. and Bischof, C. and Blackford, S. and Demmel, J. and Dongarra, J. and {Du Croz}, J. and Greenbaum, A. and Hammarling, S. and McKenny, A. and Sorensen, D.}, title={{LAPACK} Users' Guide, 3rd ed.}, publisher={{SIAM}}, year={1999} } @article{ACM679a, author={Dongarra, J. J. and {Du Croz}, J. and Duff, I. S. and Hammarling, S.}, title={A set of level-3 basic linear algebra subprograms}, journal=TOMS, year={1990} ,volume={16} ,number={1} ,pages={1--17} } @article{KarypisKumar98, author={Karypis, G. and Kumar, V.}, title={A fast and high quality multilevel scheme for partitioning irregular graphs}, journal=SIAMJSC, year=1998 ,volume={20} ,number={1} ,pages={359--392} } @article{GilbertMolerSchreiber, author={Gilbert, J. R. and Moler, C. and Schreiber, R.}, title={Sparse matrices in {MATLAB}: design and implementation}, journal=SIMAX, year={1992} ,volume={13} ,number={1} ,pages={333--356} } @article{AmestoyDavisDuff03, author={Amestoy, P. R. and Davis, T. A. and Duff, I. S.}, title={Algorithm 837: {AMD}, an approximate minimum degree ordering algorithm}, journal=TOMS, year={2004} ,volume={30} ,number={3} ,pages={381-388}} @article{GouldHuScott05, author={Gould, N. I. M. and Hu, Y. and Scott, J. A.}, title={A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations}, journal=TOMS, year={to appear} } @techreport{GouldHuScott05b, author={Gould, N. I. M. and Hu, Y. and Scott, J. A.}, title={Complete results from a numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations}, institution={CCLRC, Rutherford Appleton Laboratory}, number={Internal report 2005-1 (revision 1)}, year={2005}, howpublished={www.numerical.rl.ac.uk/reports/reports.shtml} } SuiteSparse/CHOLMOD/Doc/UserGuide.pdf0000644001170100242450000160123510711441355016141 0ustar davisfac%PDF-1.4 3 0 obj << /Length 2278 /Filter /FlateDecode >> stream xڍXIw6WLHf^^N˴ՓC-R6)Q!)_ZtX BW t\6P` R%&8X߻Le;ő owUQ2j2t?}G2y!~MuI2;Yȹɾ{* ~ k}lM1{[ Qd0SRd2IIu3)Hjܿ{n,z0,Q$X# $3F5.KEnz8U ir.~&4|:Rp&e$lPtrMW]fɌ rQQ-1|ܬk ݲ*7˒c_7xjS*R6J7ճWiG鴪ĭ$=#];>/" 6SZ(MSP ߎ !VxdOžR6Df$K-oe}&m&R3R!Sa 7% Ȓ8-&2OR<@d uXFSH5|fG'" #fJ[ ,`kY}[-yj MW3qdIH +"J^@,YVQPzKF DSI%R)rNej# 9pB S\,Vqh2gaLqҴ!M 6y(/C>|ktv+Ha 煑G98ɹ'95A֥(Z'ݞ5}1|l uR1X2MzwȾ6̌ "6zJA3NAĀ؋3PBځsHƃT1Ȼ6)h *`=aQd8hRo\)>5>Tȃ"uϧ5`%bW(p/ p6⌊igpF.S.?9O& ?U˶UγPs7f;^{^el]Eqa ߡq*m!Eu֥5fel@i8@`68Y3d׌?D2 ?C{ ÿ"XEd|jj?c>PAYy`㌻mTFHùͷGYKsw:Gk%0P9`zާ#V=N 3]7myZOڢCc3Qc&Lw4FXJbWI }׬Kf';e.a :s>/p|y6ToA_#o?rҷl)[D?${ghonhWF[7ѡGGY7$' pyM;%G ^YЋ%Bc-2ԎePIҿtZHhf dC7xx1Z)<YZ?AaGC{=f'bUݵ3~ Hl9e`5gf| .8cl3uP )x.D\ X9C)endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 34 0 R >> endobj 1 0 obj << /Font << /F16 6 0 R /F17 9 0 R /F26 12 0 R /F8 15 0 R /F7 18 0 R /F33 21 0 R /F35 24 0 R /F36 27 0 R /F19 30 0 R /F27 33 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 2391 /Filter /FlateDecode >> stream x[[o~ׯT9Q>mE셦$J9]Ƚ.盙^1gc0t<[) VN:u,5,Ӑ'\ "dt:j&qVZ~[5%)q2Ӧu4[fyM菿bXo%$TÊ#ߗ5 iDmmJE\yѥ [oKuP` o\?WτQwя}3~J[$>&3@x <8jA[}++ '޽1O_ՋoZi:'K-]5!94P("s)^,tR0T<5׫#8mSHG֌{=`DfMoRH ~M0e t3DI}yr`;*ѻwn)Zήb8C54dh Lyd>&XM1D/ˉ32kD"*[8A!hc.l R}*l%7>l4?C):ΪX~L48@|ɪpp)\KJ%9Oc~"c&Cb 1˒̾ПoˬS;3vpMϳ>jκ؂(Jk^̴imnH=-i#O*&Y}}χf~gqIj @Xdu\*5]Ϊ,2/!0wWiey:. 2˭)Ss|(X޻¤ύm4gѤ9իEYk{{i(>)gCj88/:5 3iݴhӖx/xWL5͌>J(ZM|sI:3T= cSE$b]Zh@ 0sKt!jEfb]AjLElJ(:Vti.\- (wt}mq_uߗa\sպkYO@̭ Φ#}dIƂW`eW/g3.}P8G-w1y=.5Xy 6UUtC,lA$jVC޴66v*m&J\t vo)=DcєffVA|$4}sSyYɅx4lYQ nrV_$@l'5LPm\bqb;X7->ώ]v3 ocMrL x6.k _b5 U<:q ?8!@lnlc%_>~,# {`aOiQL|'.sz^2mq{񁟛qZl~5qh EB&)l<wP4挼c>CP ΕCRIĕԧDE(~YuMtq'Эsl$ TXqHDHRZ$JlLI/2R.l.ՅK)PiC%S4/0 xQ(ɕ<5V D@_Doi> endobj 35 0 obj << /Font << /F38 40 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 43 0 obj << /Length 3045 /Filter /FlateDecode >> stream x\Ks6W(e#rKJ%ܒhh# % hPHzd\fhjv@?o޼NHԐۻ LI*qmwLT$xZo#l&Wt?%UvAbI_-GX`[fc l~NE6~$'H1ʼn 1T9[-O%a𿡕,֛.1cXN7x],`v՛98JX*cNeRy31Tn:;&DB4Cj͎>=⧹7.oRzu~@/`:@XiT -|Q9џy/ٶC/NhPuªBs[a?;B[~jk(" Wh$4)psMAM'+O+'cPE;TYTφ̣ -L$f܂fV"''ܒf}M@?$Z(6y5eȲyDDJyeTG;Q3SeNb*\l$?`helUy3_ ke|I*ͦ[[A2j^k{:S:M!a4msr>43gWvL D9'>'Jh^x:nߍK8@@ a_L7 Mie=ʹﲇ+"D# C2}[ PN^ t34B*b=`kvOr2eclѴKqYw.sZڬhU&lnN~5܀E;4V !$jL5C9XZi)MК㐠4AISEIJ\[[8`qTF1t6('iyءrAx<˼\`CL Bt(继C1q*Ѫv;?ӯHxOpI:j ^1:.6d OgϛU;lǮVN9F+>y Ϫիu659>||r& Yu>k:{iO|J'I")Ote̍ݘ\eÁߔu{b۷v8~MG{$B/" hؐeakQuh>v 1_]kbaE^5F /5龞)(d1E kv !pGvWw^>=04U-`NW1h YODH$$59)1I*9oո#rXoq&0b#:&`t(~Сp-nvm8J6t2mVKM+2Zr 4fxŁs9_4#մঞ'vت9>:T]If:Ayc^DZOوjmaDe3`m$,{PS폇ӹ p~ ޏ9A=+=:{srͦ&Z)< m 8ޓ^w>/S=nxKz?e"jڬTDK3 YZٳ螆vq-V,87v;jn}8 %#TAdP/dkO:ޛ7pijIZst@OA駟Ev;Kb՘,UI9*emW*D<,{F,%}X(i7\+'hVjLNu pkӫ㑩cF!^y:6tkU7z<}HOFd*}e+`s1k,xg>u~@B_%[F񰬟*Te4;pP?BʢAAURMW,{l#3;-4ҧ96JKl0s" RyJlYS-mX󣲊%)UZӨ1|k=|x|E>B!_ֺt{Ⱐ׌ǼcE_c5@?j)dϚ.Xmw F}n/G Wt 0^C&'\ј!^x: I(BWHהq(Ps!d Ot 1a('㠘Fb6,b>;#b蚠fի-Tݔ0 2u}m!y,}k:;hfߍ)%4¸/A #=4<ݹ:p *U5AK_[{qJXU˪+öi-epȲתnp2u2$O[B^ި ${Y 0l;Yb֓}PdcI> endobj 41 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F26 12 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 2912 /Filter /FlateDecode >> stream x\Ks7WHU0ޏZR-WbŤPt_<LbToO>|3F>ͬ%B 33g'O|(t.h#tylo?>]͘ .o6W^^/WgmB~}%q.< n\73E4 jXʙ_Kمzowa;$%Ѯ )eŮΛoB|ys`s `9qE%Qx_V+ B%a=[죖("Le*r?0*L SJwaǼkn=w8/~z2)jI,2y˛/E5VAZI e BIޥ$|k/{`疙7|oO1_YX#9ږr* hD$`H(wOFz'w⓷}Dn0!%s/{m,ӆX&2EEx0spDIc "g!zթs?5,o7Go7c? = Cx!Lr{|>@|~d9|~@&ԉB瑆HUҚ\%8`t:U%63gUNh0v3Mhٹ)~߮=sA[PF0]<5?|5:LHe'abL*TX՘JnTR0K~W?Vc 8z$ vzm5.r0mI]=<u 'n@nKG(ٜHk AtAa5,TF-7bJ^9*A!f[dS?;wp:̼ !9 Le bK<*KHrєJ h@4րr @Y1l6$l4R75p>qDb!t&yIă"[&z٭VGm4)ή av.vnϊ 5ur_jM1!Rg"Gj}:e>fwv۬@q@g z[JIKvs3rM~/;톳2m!ǫ\p  ld90 HCɁLeQ\=9f8s>܀&XMfMϙ"\;Zv.5ҁY(A<+Sh^U {8wYBI|x,sBm#ɒ࠱x Zuw_x[}5ɭ? \׷o^ML-"`y L r%'jdJ]k cyN:l \++BHZJ,K(Wg*S+ Ss SofU?TT iY^8d6bLSۗ@ FbU"9\5cDt0{j[ }'xمxR0YʋYJ{!,sek"z[)}v-rka%[ е܁mטʢrE|{)>.v0t3Fzu T07I1`N\*NM=&+@df1UN=w;ΰ|ƫ'!nzRBʹŜUI媝H<(2E9dY#2?ܗ8)4jfh7Ȏ9̙\eI4 4߁z1S5񞓡~>6) HQ$[H(wBGfh`ƎFfѨ@L.΂%j"T8xՄvG~ ˥zWhFE(۳.-Rck89e~p@D4V!2yуztrN􎶐@u*' Ux S\3a8Y4M%^3+UIN2h8f`sS }%ax9r?;^Xdx fgC}>}Fέ?=^ !73WYdF*yoqQ88NOrd19sMrM p`3O ة_s&;x$mRHZI^XHC9_ʊu 2 Y` rja`adVaJ]fp$]6ǡy%n?7< UIvBKKD+H4B^k.WYbdkNc$Lf޷",o3 u1ԧ*4rUÈ2Ѱ10XKlCd prz{%J>+WYdF49894ؗʨqzvd A]"\DLt`Lt1w_蘁<.eq,4M&D D㙏ay9kИLcQj;FNVFJϜ=n9+R\tF3N 題=tendstream endobj 45 0 obj << /Type /Page /Contents 46 0 R /Resources 44 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 34 0 R >> endobj 44 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 49 0 obj << /Length 2853 /Filter /FlateDecode >> stream xMs6>ZU+ > `oک[,щj$+qf~6@M XN.3b?jt7won FkrV) &o%;R g|@VߪͶZ~1-%#(o].7|?`Ĵ#50Yoνy;Y򈐨(ԋO_=@?Od0Qcĩ]qS{ p˱hgs9|[fTgsƘu׌xﶋc6/Cŵ 33 070$8IG"N"VH@rjI$&4zC LA .gT9}?p`.[&IWh8e5ɜ#-i2ƩKf|")ӎ8'LK\7%\LeU|eQg̥DzF=r ~Igsxc\_⸮vp`BbʆPjL -$R.:t& h<~5dLud C&WB2t2,gGҹ3HOfB'3ؗ uhYoZr$ͺYr*rZˋÔHaGdC q1r Ӛ˃x*;8B2ͪeDggt>TOTR]x\"KY_@ۣt-u7-y5&C:}wFT9[eAgf0H`Bg0xΒ'p3;8#1Y, qsK u U0Ý3pkgԷ=Y>}r5KS}6>mc_=׻` Pb4wκ!2qJX83~ѯ3:rq gv TTC +׸&b gHX"M}cfD>,`Ou7v-6ᾍͽ@7#f@O#* IUH.cv/Z!΋:ǔN R ~8"T yowrl*s-KA/;@4:M Ȧ #~(~ήjBrXS=R * \虃5vu57 =EĥP% X!%u \Fsv6.@>6A|5뽪]cϮ?f cvr`ݯ2􈘾oY.D8zpӵ3!!dd;}[ý&2zИdL3mLou_O 9-PwNQWjv R*C;QW:'3!kU]Mp S3R;}ߎG,~:QO6mv>jbr$"Rv 3ؙ%ʜНa0"&lӷHyl>C1%pnPsR&~?>M+Xn"͡U ~)(R,HCQ2YmWr|ݛ >ܯL$óECLs;Fj*(}_?m;bY eS7~dvG),̼nK\I*'L(Xmqe4ήnB?2t29/icS1MXpTp(ήaQ $Ԡ4:IRRȻO'z#,82ڄ ͮDy!Kq8}4 wIEs ]F9tvIil9Lht7ڱQZɡl$/X+pէ(flt^| ob{oCbTu< veŶ&j:r{P&x&{L ]u9 o?  3=ؕTű|>jn0Tt%*L(4jz1F}pJMR%4U=Q0xCǒg*aUJ(Rܐ]Ftvc &0!c.GQ o֪19pjks]8v#8's8$ Ų>( l2۔SR(m4o*vcƬrUn&0-͑ߚh]\Dh\p$c9e4ή\Mf2}. eTbuD>Z% x=peٍYlL 2iG/ P^r=Á_bVb"kB$l2[(2=s> endobj 47 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 52 0 obj << /Length 1776 /Filter /FlateDecode >> stream xZMs6W(&Mfi&ؗN&ZcMEQ%ί$hȢI%D83VO+/g^Q9'lz(Q][|+vdE$b9v6oҺv_5ǀB EegZ,F%Y˄,2lQz˪eB%jA(ktx0$9IWnm^>s2'#(+ WٻxFh17tLr]1 !ۑ7B!)j,=(1XL8`  clQvKSN-/ܘ} h<1Q̉d9HÑQXEC9$+IM\Gt#:9Rc'ٮDkقD9զF;dP;LM"P)1@ ۍ 1wBqbdO^%2n+z,E1 <Iͣ|-2 #OH>]R!(rPѼJòcJ|ђ,>ħFN Nȉ tTA9oT`gNIEI@hc3;@m9mDuq9ȶslWKQZ3G>D>itکBo9Hsڐ@4Uݬ 1Kpk?QЁ+u W?}nT7F0R\!-$7+XScJ.\4';ɍI.qwȳ_q}39s!̓zk5CόxQD'ʛ"4AyqEsSވBUe]'rݦ?X-^F}WwzW` ;A9fja'a;-n뇴Iʶ,VKll`tv'[{+/]Lz xGG L\%81&!PtvnΪ:;uP_D7=⨛F TTUUV#.\m%q&o,l!Jņxw5Q$HM\Q$bkBAy;',7չ;rhJV^79n'n|//hK}ϝcQ rpog=ej]oP%F*SC; ;LCDL.AgwT-9Wc>P>Tzn骫A3>j~t*`CD Ǭ4CAy;gݦDg(%nVپ.A{6=`CJr}LZ}#F{N[!#jO41(=I Fendstream endobj 51 0 obj << /Type /Page /Contents 52 0 R /Resources 50 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 34 0 R >> endobj 50 0 obj << /Font << /F26 12 0 R /F36 27 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 55 0 obj << /Length 2522 /Filter /FlateDecode >> stream x}rH_EUC_V̓$d/S?`@5@v<_ IӧzwwGNnJ%0JXݕXoqyDP} ;ޯ7JA=3LJ321p-l+~ `c 7Y:VxaxFB< ԛFn7pdd2OeqűAQ ҢDF0( D$&hv82Sjga,bڰy{\J A2Q]~=R} Ђ1Lny-b#wl`^G#I(T_TifYԑtDiOfIvL,ˏ$ǽt-Keq"[I#>NC(HTh,C2[:j3ûԦ"efiY $f/i0p?*C!\Ub eD Ѡ @,=8 #Z_>zcH'uHVB[VG7zog򶰌7nܐѹMO>'/i㱌X b/qMfɍYfqpƽ%)*hO $fI1m\o]aw[$|ƙgD`w~ǘƧ*Es2H``T$`eG{$i"(Yv:-*iZ= lxuU>4D"]}m#\# 9~@ ~Xt+`T:-&Q)1:l%Z9TwjGOHAJ<ew"#aMFݶ5.NH5۸޲1t5u?6̵R:xF|?!{oPQ﮷GL''sV4%1 .@\|*ߔ`Fc^n+2|B'T}J+z б ;7qBRl2*uZEo%ξ'zhV%X(Ln)FW]XRL},t+nB*ڂg3}>b7p\1\'Diz]U &3 6-'̽Q4Nm %(Q`W8)qE96s1$Pl@dHURT5U|f4pj' uLsf`Kd6 ƵNs .&Q\an/0H/D }S|}ϥbI>ilܼj]xi03t9fǶ%QG!*# K&+* #|"/@f]mwv1B,ܾ0sݦn!eKx\c@:aWRL@ÜYgFk5&qޏP93hCk#p_1wPB+~hc>xDjxiȍأ{B;Ix_sȓ^gO fCB:L@e]hdG7endstream endobj 54 0 obj << /Type /Page /Contents 55 0 R /Resources 53 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 59 0 R >> endobj 53 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F26 12 0 R /F18 58 0 R /F36 27 0 R /F35 24 0 R /F19 30 0 R /F27 33 0 R >> /ProcSet [ /PDF /Text ] >> endobj 62 0 obj << /Length 3541 /Filter /FlateDecode >> stream x[[o~Rkq9wrpE"~h䁑YI IZ\|s:fB'J[99 d\̮V|!46p168s?_(gM7ŸmbCzvnxo#i,-$tHIxS~.yy6bM㽛/w`E=E?kv~ZAW'ŲH;DB'2ѩѾDLUevyWa\$Kr[QDG롑8uѕM\ەN.2 sԠD((EbȧJF0JUiÙGWdI1ݤye؛ Rk]Uw,q@) Ui`%:|u_=l:c`H줥ěl߬H7zS߮ptL3IjR3Vazog?Y:,MTWI8͙J:ܯޝ+V5.U"&OC=mW4݄eXpBk=Z6Ůp`%dloū|HFnR̻,es)@ʦ ) ?raZDbNN7鼽yqTK.۹Lj3:\_zm-5^g]-@?eT߂ n[ >zUv7/ +`ËD^JR'SkPQxr=;:h0ϻ eI=‹8vl؜B4A'q8с"}; .)n7LEtPo_OZDkyZ^`XJ8Ĝ8^ﭸ8y<5 \5"LYw8*l,R$*' Luo j1q4;r0ARP>#`2C$}i fv $X- = G+ N&~"7y`HG3b2" ٱB5IU* e^2laU"lxoȃg.LSPvD쉅 U @D96ָV9'ɷ2@2bs;)f&m#u{[4)e@؛ ey}ͯ#숼sS{QM5':H|P7wX̿:߲EZR:OL@jx+yBfl}h͙O5(ќӤڮd@l'6ĤZL ܍94r7n8yU -g(PJc A$5<ۮZa3t$2 q 8=̽@t񀋼O?Xy].KG>ڻғ%8!K{q !L+E"U.kSwBH <Xc? Ҟ㒥W;!‚o9xdž]9xKKm-W הH>u!I)dXz4rLˣ/}81V?pGKQȏ6US 4*2ݤ*, qkLLB92&ā08Y&b4 mҘޛ9}⛀y3cz{5m R"EX-|&$)d飅s#?.L(P*p5Q]6U9z`f;5@I֓iDTs۪K/c(ܛD OʂKEPA-={O@GH(w>|l! Z~Ɣ#D8"h2(*v!'Ɉ;znSp 8RCSw-oer~-e&t5u6oZ7dsbѡɫwێͨ#"G0Rc`6y~7QQʫ{:j 0!˪>Nv$TQ>8Sr]gQ0RNP<\*qY_p$qwGQ''uRϮ|_+$ 2ly1a[MmYƻ]];pu %yZ^2l!Hz$8 JuPq)N/}RTycB9JFmS!Q&azӸA?#''b~#kN,nmM ͪo4N&I2Ð)?BMۃ F9[A;KL?9YtuhUTXH6 qtDf߇Z{@ek2-0endstream endobj 61 0 obj << /Type /Page /Contents 62 0 R /Resources 60 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 59 0 R >> endobj 60 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F26 12 0 R /F33 21 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 65 0 obj << /Length 2303 /Filter /FlateDecode >> stream xYKsFWcb=TyTuɊr| HB\e힞CEyJE=O׳~/19"Fڹ"a7w럀ڌÒy#tHK] z\I)=Ò/Tu3Tl+(=.Ia@t)KVOTn?m]g-.{*nw5> +trae-2 ߟpB ӚE6; xNِfHa.H2UQz .-w-_aDGË]eC&Q J|ng'1ʁ;Y7:qp|HL8Z5̪zE~E{}.II'.9q;=|ڑVt W{ -cf[YQ웲RS0p+i \B4:1v>sb6r"w-"դPs%8:dtO,^磃%K}oL3#SqTbxW!}ʉ^r]{-]B(!dC2~5)%g2v~_iÒR2}GܗŔDBe~uPlh 3Ie`ڈ'(M1;d.-g`L; =a/:#I!Yӗoy8+C1rZ5T޻.gE7Dv|RxѡMTE}ao 6z_ΐ(r}8ݿR3i- EwC sIk>suϙ TJx?m:(&>A?c%fR'X-k "ͦZ0a ~LM rh.p)i E@ C=$mWZ^*ή)=^@kC' @&`o$i qx1(x ]T| Pt@IA8dpӂL#8RQ p]YLјa<#Ƒ= j@T-8hq`b$Fv8źVͰiI~4]w#\´+;l0uY@7ĖFCxƟTKdB`˼ @9sB2ױ"LČpXzv 2TbŀR!;Co`a*fqӻ*|BPB-(`4C .OD LV&0HnI6/1!Tn}k Vλibl0EW^fYȰ}qM'$%„ KP.8;endstream endobj 64 0 obj << /Type /Page /Contents 65 0 R /Resources 63 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 59 0 R >> endobj 63 0 obj << /Font << /F35 24 0 R /F36 27 0 R /F8 15 0 R /F40 68 0 R /F21 71 0 R >> /ProcSet [ /PDF /Text ] >> endobj 74 0 obj << /Length 1469 /Filter /FlateDecode >> stream xڭXmo6_!dXaPZmWtEnh- Yaz(9uda\ y|ݑ̳K.{sv"#aL)`.δd3G6tiRboSp5~_I|9xz:~C9!$򝴜;y8 q^O!w>XPhƱFɻ_=cCgh/a装(Gc=*)b ,^ygH("Vyj2+@rS+hm5H'XSFקfx6n*zt]GNҶ6/,XeatՕgun9fԗ:M.!e6iR7 c6uYflnDM{-Q?"g4}ś/1Z,,-jmU^W0Kput|w6Q~8P^g2}79}aW.ܧM{rDs񀌁*4۲̀Tz YvaV?Kʛ"ͲPfV 9wٰXm{>dEFp#aAaŽ 8Vs_b߄ +J,Az!FgvM=`_ u5uq3jjɧCK;Q@-vOǸH+$tbjmyÛU-ڻ&!1CsL HHհAE:jY*a^£ # "ơ3偕ڄ>8vP\;JNGi5l͇Pŏ7g‹b!|A:}ObVn0uL_|wtŠ/dkYY8491"0| {>>0Gt,h@792/>&Q ϨJK'tF|a85z^i>aPaV gMre&5d_QBOuh1ފ^#tH&+fb5d(Eת1UYfTTkY5qRS3cb5ˤ> endobj 72 0 obj << /Font << /F38 40 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 2944 /Filter /FlateDecode >> stream xڭZYs~W *h}0I9dSuOqxmE$g^fFvHQEųOO׫x;y5z$tA,p(&ώ }_YvtPo5qԷK3˜;Gpm-)ijFJߣw@r{  A: ǃaN?oa@zp˹oM5: D|-9sVYS'$Ku)]3gmO9ygVՂ.8?pC>}3tFd^ 0EvG֝;J)ɲnxQJ$mEnfzJnKŏ bЗD[$-_+>^dkj;c/qVE|VЯ$LET M uqwE}nR_1Ȑj>)T-3zbboe?JkPI:ˏΙBu]k'CBHgD֥1ˁ !W԰za.NO(x J#vBMEmlL?ϚB?6)]/{!΍ԼXh^?5z` C!/%'hTXPikfolU/$ 3yо]XBP,31J )a5!e`J5q6pmj#;5E B#UW>Q~z7ba!`qL%FxF!*dNTr 85Aq97eMM?Ȕ @ޖ#C2{(=QC`c`K5r:㒞U?mSA2eO?R`t@ǖ ?KpfZfi55R-qG- =߸nF& rQm $ny6*FU;0s>ɇ"?'pIs} oo^?"̸C(XbO{W|VO\phMOȚGg( A|#Qnp x25} 䪉߁z&*nLe9/`Fc=+y%[ш,pÞimwav|'l^Fix2 eqȧ|۪E)ɘ6T1O°]@Hͧ'חWsl7r[@Ѯh#?qn${%b$ ހ`+)պ!JRa䣴7!dpY[BgrE{r *Hki#z4Wo}ߴbBӺ_-6ߵ޽.=$[,:/T˨,,m[AVڶADO85Ϸjv%`y𹈗MCg@ts}\H(\xhd>υek/ ~>پ)8PWW{!ebׇ%ܸ_5nb|-"Et1YC\ه"zpj]%96ة3*ZW#_L^%xlendstream endobj 79 0 obj << /Type /Page /Contents 80 0 R /Resources 78 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 59 0 R >> endobj 78 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F35 24 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 83 0 obj << /Length 2059 /Filter /FlateDecode >> stream xڽYYsH~W#ZZա#1 67zbfdX1Bb$17!مٽOPTVeߗ~c~ߧv<[>!ٟ_k뿎Rw$ Գ]REYݝA|f13 .ָU.8v([pWV7j]b]%_iOKX;|$m ryA^TE $*m?NN{NOCtg&-"Me|cE xT0 =EzJ #$T{)HyX`p'WQigWҝl⣿rl2|W/Pb,.tx.qMDT0V~<5w_~Pa%߼хO2Pr:?̈j_^EMqY "Ew|etymWRN፫(AHÝKY/8([-.nIG7B7٨FfQ۔ѷze7>n葾K@w4]:uc%±Il\~z*l|HJ \n*E+ (r|s|NBY APuo nl؞^}>ch#qq17?ͦW>7;h5Y /<-9Ouu= HV;Ryq%zjRZ`/|M1'_1/|TetMK? m#TlL߄Ff`8JA@髍\s, Ffbӣ膑*>6dvKO#ȉu* MVJ uuUa}Jb8>iC5Jv8iKC(!T99Ѕϰ] t1,'ڤ^s􌨨r5ЖwN1yxb] M1wAU2E J>"v)s3DjRԝ,~@&|7]9ͳ;4ql_ #Sj>k5wTֹ'vXXLi6;զQ8HkJ|p#J^ʩM# b7 suUe]P5ھ[=ɪ'G]|+|/>_C^ Ǵ@ιUK$PY g0ߟta*G5/²Z!.6bP*R@TA>6 d ަÛr2='q?8&e\d"_q W uaA^Sr.,7~!yDE_X"uBЫH&A2AAi*R!y`4陯z$4E'A"}M$MHG&%RL%iKպoy'f(.x {JUzX~Z._w?b@uip jGN*Q)dɞN=~˙kx$@X,V_&KCYh3trq'Ur+g 2Au^wn>6M̖nʣJ299zXN1D;t\"RdvaGwEwEZDhIнM3?9ʫnhL #JgY媎4 i4=kkt徬ZYەF4fDQȋ@s9b3xP_x5endstream endobj 82 0 obj << /Type /Page /Contents 83 0 R /Resources 81 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 59 0 R >> endobj 81 0 obj << /Font << /F35 24 0 R /F36 27 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 86 0 obj << /Length 1306 /Filter /FlateDecode >> stream xڍWKsFWpAft⸲7NU!Aa,$"Dt>ytnL̄H >&ưBD ϖGX谍T?_2?%4˔7嫧,# *ףeʄԅ'~,5:0]ژG]mCldD,Bytɢp-U4!'| YT6_(Ƌ 4nI%ϨAmwq"l G<# 7vt[|QW[ŞGNVvJ #ˆaJ>O-milp(*^܎1Y*p[ny2Se\,/1)vc>YyI7WOTW 3C)Δ$Z]v("g_CkW}9ˆ)g"!2;pɑw[#޸KH[bv-Mh.خ;_Qc죎X/֣X«30ę6 yL,]!;! 0ɠggbRq7?ooendstream endobj 85 0 obj << /Type /Page /Contents 86 0 R /Resources 84 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 87 0 R >> endobj 84 0 obj << /Font << /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 90 0 obj << /Length 1592 /Filter /FlateDecode >> stream xڵX[OH~ϯ[J汽R`)ڭՊSY)_s撘0!$$o>MD0IT<] ?NX0+>4b}L#Ͽ>_|:qX1L) O_g"u@s mp$M UK\y}L.MqX#my6MejC6S sy5l# TĐU$mC ̌B[ B@.픧]o6/V{uYKN=YM& рiJ2@%Ș`^O|JbBJDe \=DPN?kAFcjLI(%HTΛ|8<MRtmlg4Q= C{ΞС1 "E#W\U}93kiҢ&pw9o+Gk!z$ተ7W gFR˧|x -Q<&b a)S[Q\yDˈPT> F]cw&VPצv`Wss'aj1҅F5^oke"&PQ@ь$ ,BFƐe"#|,ʺOH"K&R`N2\ WVg$GBrm*CϦAyt/nrm6_9te++AW"AЌ\b49'zVaLtKEK]y@U&s,Ce{v0]rgs# ߞ(D&9t|lqW,,W't_(4I_n} T1OLHc } {Y6[Qe*"\f(q[Z _hL#cjxf6qpBfwE*3e@8|g9Om5T/%{;jfbzGB2ypkFBLi>5rQ NK7cakWؾ+ #a*r~v 9̱2Uw1CzW'ن5J-ʏ;-+F FʼktM4^V&7e.r3xۙGwov==^kp@]W jPh-3b@h-0*//g7vl_GLZl?.35q3v%,PWbq[cD7 (ZjڕYnۤ/.נzxezП,|{0fpw[v^ 묗ۑ%vU}޳˰eOolk|˽,ʡypxAWU s -6Wnw} F%,/qnc88CBAzFB;*-(nEOZMy?b$a։񌒘0`'PNoendstream endobj 89 0 obj << /Type /Page /Contents 90 0 R /Resources 88 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 87 0 R >> endobj 88 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 93 0 obj << /Length 1379 /Filter /FlateDecode >> stream xX[oF~e82`+ysQEm܇6b`( 8sb'ݕ"U0|os—r<6eLgj8jK[o>jcنWdl|^;dSlc>Vm8FKXf6vrT!ò4SקLic+xQW|9%6\CGlY_aQ&Ն/enjLKcG~r$L[.<>dΡ:4X"=1DB:Enpa4aHTVq aCIcGoc3=QZR{`ImH[^K3p=HJ:,Tё&ҿ!M9l:o0a `c)Z7'ºc(z~klM[䮆 R g~>bO3JACIsQFU`H.p(ծ4P. \OGv 斀ϵ1/1t!z҇3Bya [>qHAOh%x y839R2#Nr\3Ay>',,o 9]Zq?5UJz|XtH=ugԓaWendstream endobj 92 0 obj << /Type /Page /Contents 93 0 R /Resources 91 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 87 0 R >> endobj 91 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 99 0 obj << /Length 1249 /Filter /FlateDecode >> stream xVKsH+t`[ M Cqm i4oK,'vʇ\ϯ7VMDf'@ ei ֔4YrzV] ,ד:Y7%,FfZx^ZJ#cpƩM;}eKx|<3]ʨ8ޘ\7cHDQT%БbKrޡww%=pat Fe))2/Ao\U6GutŔ`KuCtBlE$IrZuQ#]r?#H nVtds WL=)DPUE2 !iђ5ʊhՌNS?DF!+iWrÉ}R9[~$.̒uc h\B#*"2 P$zEJ%tүXCs&oH#MRdmƲPNʏϯ) )(;M ?J=fɉ&[%Es~e,Y㠅Mh+=dv;Agщc_,#h _4zHL!%nC1_PYO'@QxAva=\?zhUhSn޹ ˳/1q~~3ym?;^ m{}댴4O [Y5B+fgic3R/ND/;yF#jRbGeqjmlH,v(s^i46q \_dbb0s ֍v #IS|}p> endobj 97 0 obj << /Font << /F48 77 0 R /F38 40 0 R /F50 96 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 102 0 obj << /Length 1268 /Filter /FlateDecode >> stream xڭWo8 B/R\u*w/>k8g;qb =$ofh[ZQvo-\F&/؟nͿNwء ˩7Y%qv?]Zd53U9yhL%^0xq ;O""U:Gۑ2 X,y8pvV:V2ro#ǎг~DV>EҬdYry/9Ms7P5՚ `$gdhͭ8Xh[Sa~rb&HFbyQHRΦL K֖M 9~3C4oMBU& ɡ)NQ 36znDos}xjLܬLA4C( wTjrv&-.TfrJ3I.HpRJa`B4d,.l3󋐋vh]<Lx?ײzk/1絡H㽼42L+\D]FUT!RBPROvܜCJKM0@b>Q+$T#j\jL/+,Z-5;g-m=!Xyo8 3,Ll2j>?vLV̆Oܹꦘ\^;ָ8皮`G4P:9v-l;)- ğ[endstream endobj 101 0 obj << /Type /Page /Contents 102 0 R /Resources 100 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 87 0 R >> endobj 100 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 1436 /Filter /FlateDecode >> stream xXKo6W `z[JOvm ڸbD%R&9HXX4(dv熆mc1wDN]Ҵ/gw \6V0N/ OA';&  I}\L|n2~XȍB8(rb"t}>y+4{r}ҁ>(pBݱtP[t<]]e]KӝUJ9!hj[q}Eeyܚ _{E+=$ 員RlB#DQx fG(dazu~ptsz;/G|[Y!0t׵&U]1nu,{!p"o-) 5IYj*yXiF⨤">(7w"`M(yH5Kؙ#iBܶO*8m%5MdkCz6}5z$`8y{>|jr7?,˓9S %5#D\'Dgw |LzrDBKR%d!LeclS3wmp\KO Fp"Gգ0A@*r[ifX)QHeژ9io T + m`T갤Z/1Pa@YυAω`wPxendstream endobj 104 0 obj << /Type /Page /Contents 105 0 R /Resources 103 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 87 0 R >> endobj 103 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 108 0 obj << /Length 526 /Filter /FlateDecode >> stream xڽU;o0+L1`%N!u-cRT")؎x}Ҫ@ g$O[F sJ Bz}yczhZlW")KnҾUoD--N7\@Sٻ`Lnv{>ܵ*`<15eE+'_kqϛώ+{᤬gtrVBjl?]) ,TqTgwZW@\aoqD)a1c10l|9endstream endobj 107 0 obj << /Type /Page /Contents 108 0 R /Resources 106 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 109 0 R >> endobj 106 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 112 0 obj << /Length 1368 /Filter /FlateDecode >> stream xXr6}WrF^Eer$q=$$Ab.7J8zl^Wم=5AZrmZ{1NM2Ooo.\61lxoS2\%mxzvj Դ}wLaOƣr$@60v \#LF[lFx;(< FN0%F2}A0-zh.͖W5gjLQy(HM^H˫‚ f4/ Lr,(eSP!AD,֝JGQ*> sb~hR2Ə5Eslt 8$t#wx" >riՅEJ{8 2]w{R]jc2BR=OU3jZj@U (;hbA7!ˏ;&BӼa2@xOg$'G} _iDOeJIPy M(\W'"@( Zʤ7RHOe1|@GJV LS;o$иۣ(B¡qS*Ok+f Dc7WaKX:c3g*ON6y .JH.*Z5f'@ǻ1HKkpaKaWnR;[Y4m~ YVjZD]UvXq-Q\SY,O MC6``U44s`\hmiG%Y/p$?dV` .fN./_@]crל;q`CxSVrL xr`/f/Lm6fOo?-'MÇu1>g=fȀ3kQ˭:ΑӇhP9ev j#DrV03U])er1FYK,A-#8A~䰁 .ÀA_{/Sy#ԵH$b2By9mrӢ̫,8Ojw1|ݡ*2:D( _u5- {,+ϳذBA@}Tendstream endobj 111 0 obj << /Type /Page /Contents 112 0 R /Resources 110 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 109 0 R >> endobj 110 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 115 0 obj << /Length 125 /Filter /FlateDecode >> stream xM̡1aO1-ݖ9B'NT!}s@FdJ*L31 ֣5bXsT|SnrSå:jh8)"{[]F97y6 endstream endobj 114 0 obj << /Type /Page /Contents 115 0 R /Resources 113 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 109 0 R >> endobj 113 0 obj << /Font << /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 118 0 obj << /Length 1529 /Filter /FlateDecode >> stream xXn8}W-ڌyp½l]X[IT(9;HLIۇb@drxpPk cjg" m;db'o^;zw#r M&qpI}0sO >?8~< >t$U*XtKtpXR ی]-F4L]5O:ZGu-ۑ-<|CKGg#+|&݌~o,NKNk> \׮0#Wn jW}7s\^OG}"2i `mAe=-rbpcԯpQ`dB!f3",Jš+ʁ>7n0$ $ldzL/b\zк5SR—rMbfr`r@)KҍMH\+W_q'\p3\ӤejZS>NJXO#Nʰ6eS9e6Wɸpf%e[Bwk%z3%bO): e;;G hWH+ `$N)LD/mSYMrC0{vD;}-%( [HZD7,Sy}&NB"g{iWI\v%[j d&pyH `P.0* 8ω >]߿E)%q6f3'\KE[jsKHS1C]U30SPy#'z%LZ(ALhN]++5!$ sږ/J Kv{Yv?,+ū]Ab>ʂ$Q6l `Rdnī ^^>0-,q"y "CPY6|j~7L ;i!ڔcdJ:8ϧTyy-- и0۩Heb&b3صPGS'i~g.Tyh* O#k^tjsXeŗ VkrswaQ&+^|MW헆?oc7 q{qz}se?O&2M}]G8 )endstream endobj 117 0 obj << /Type /Page /Contents 118 0 R /Resources 116 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 109 0 R >> endobj 116 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F33 21 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 121 0 obj << /Length 984 /Filter /FlateDecode >> stream xW[o8~W֙h*II[!+<&XbGCd<) Ja]Y3y! Pz!X( էKE,"j(6=J9L>h?Rɨٷe\En# QqEQ*i/S%E"hzKg#L_ qodtvh˶Vj6+5ғ$~w2ĵu?x%*/i}}ZdU 9*y}_v ]W=v/{G#btQhrMռor^Q6mv8&)FzP-=d߶)g t_3#oZJc%vG몍`0*f TZ/m3h\3iSf}ΓsG2=?. 2jJ:G=y޶p8 k2 mu5YZo?"6}{)^̶/ň[3-g/[(W(W>q+ -Obl&ybQ8tUw (R /jehl4!DךO ĹdUN<6ل$s c58Y걇aRC)h$Cff?́ij'Qrѡ禱O2`L > endobj 119 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F33 21 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 124 0 obj << /Length 1528 /Filter /FlateDecode >> stream xX[s8~-Nk00&;ypdێttakQ4tg;]wt.j=_3Ͳ u':Լ M s[:4tsZk6ڞa(8Q?CW{]װ#\i\'p/n1;DIu]-WRylM'?um5LJ>ixS CTcD~E`wMz`n@lۘygLOM-ہi`?x`{aLD?jz-Ro|%̴6uJah;o%|` 蜸88I#3WCyZ()'Ѱ꒥er ğUw%O|EhcX PlyMR'IR]74$YwO+iWM\XX]6._a4^p;Z+yB ښV 3\p  (;\Fh[k ۊby샷TkƐTs1iEFmGݍ<:i3c6'm)u% ͎FV[)E4+Z*sVQ:zӊxo ) 0Yۧ5;!"Y{7_比!"bl|yb&،.G?oY-yΒaImbאL} DCi! j: cҘ УDBsD3׫FQ7l}ãiڡ/`}3Iuѽ$C:4 a>x$9dgFx;+!)FײoE;7I*{ӇA%Z}zn<ެjlz_/h޶d+3]fjMt D#XƝc׌ydr!p'! $c hܛ2|2rBT}?g VA\gB)QljX֥3Ղd}`RfQq`?%ct#l:=c 7rLV-Mu֢ޏQj*DL0K^ԁBU'TN 0EWSf2*<!"t<ܢ4]Tt)m8V+D.H,& LKc^f"SvTy,g]'PetsqݞU QGĝB5rY"is4jzF;4:x5)IsKf.A0>m;Ӌxa##Xl6!~[0MB˯K3A7#m븮Lg9f p(*I5endstream endobj 123 0 obj << /Type /Page /Contents 124 0 R /Resources 122 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 109 0 R >> endobj 122 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F33 21 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 127 0 obj << /Length 1299 /Filter /FlateDecode >> stream xڭXnF}WQB]ANADE9FW6\YV{%P6$3gfgt? uAYG6y;KG ܄ފ$~¹[}_~yܱ'[3v3lM)4Υ.y50g "-z 빉e{4nx_aQ[846GXoQ: C D׮G/7Vݠj~<6!?8ObE2UCSבmϪ`M)L4˗A PuqBϩ*6Mdӥΐ$ 5\oUQCBP#=U9`ΐsʇ47=7:jp.$,[WGL2V|yQ Vd˔0V245U0@aTCBZengZuP9UTغlW S0Ԑ ʼnѪVbڗdH7oc}7}r &+fԷ9E쫗KFd7g]W05QOL~NȦXEESm#|\Ilqa欮`r\A8Z:Nr%2]r%Bg\z%q#]{%AQ:!W#viEHJs=""̸@y~*ےuߗ7I@B!W~}X `;ܽZE )^ r P b)yVtNq&blS#Z^Cz5N5o:fmTt5FyhUs/hԑ[XT }. MC:Os&SpV6rNkS"{4%66%9K@/KjU5lDb7/'0F˪Y*a`€ ڃۺns{=:2p1/1C֙XXQ!5r}keT!(n[>#Лjm,s\v1?R`(*z \)IywQbm_e1tGԡ~`?W8 Cl^ Qtendstream endobj 126 0 obj << /Type /Page /Contents 127 0 R /Resources 125 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 125 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 131 0 obj << /Length 752 /Filter /FlateDecode >> stream xڽU[o0~WRcInzU%Nĭ64˿&"&Eα9;߹gi '!ƶmu?@/Dzy00Z@1]`8u|0a)2j*.|Jy>0Fق ccʴnTܬvwnaU!"q $^Go4_i;  à?ɴh M=miP(v1 mld# $5- /ErJc)tn =m:rQ["{WwPA@$ҩIMWB,hj".aJ7I*$-VfJ+UfIe{e^ŌqQyA. QXB69ۣPY9o^qqLs,̛5a>;>uJl޹JqRT$e6t4Zz&sYp^,ůU;&]?(+whe[f?9nyէC^)y[&o;h yi({LՌM]-@J| W}VBPew0J)EtX5a8!O/ǻ뛻s4=R8_)cIϲ-nWC,wVV{FSUyX|໬SEd<Һn 4 M3U 1Kҙl7}矎!h7PPrd^O`*endstream endobj 130 0 obj << /Type /Page /Contents 131 0 R /Resources 129 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 129 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 134 0 obj << /Length 1680 /Filter /FlateDecode >> stream xڽXm6_7e0|𽤽4L{t:i#lkHpWY/d/p]NxqMYLg8pdz;g.0co<8"{(9{qݗ )9 I%޿i?pf4ҨT>]Ju0?s›#'G_F?N:7#ߋyf2pQya/a'=~'Z'Jzst^<Ϥ [xaXA?mke)h.[vHP{1I` v&S`l2×0E-[he+-$GJ|B2\Ռ*}{ N[ʃa/QǪ$(˞1oUh.GHzpFhs,'&v']䎅q3zWo wY_5&geeH>jkuԭ8K[KR x__[x\QԈmNp3 tT{ͰRSUY+DrЊn97}:*ntQX US)T$)*K] !b-p E@!h*Q14 j!I=% }`Vq+^ ^ j/mOJ OƁ|5ZK⬪0/? g0ڱG^JV{Qh&>eEnI ~L:] ʵ!\X eq1nQ <V):+@{֡\+^={dKoQY3RI4d4ÕHקx\Bzcܛ]:uv4aK(?17O_2+fk/`$3ZGrmuܚڨy0žAVxcme,j_|iFpP6(C4Ba2vf DRӁK?+7li|C%D51W$ReЏe@5DHz C"X'89J Amo,@*T7ORd`vf\R$(\{W7jk [ދ# :e,-UmuSUz渳am3&:xFv h.&@w^kwӛ6XiɊN0Jiϣ񗚰jTW"0| GĄ+`B@ɣ7= /*4`Ş ZE s;[H> ^- {^O66AC|"!BzlUU^^\/!{6pZ_ȢXh_K|"?}ڼ\:/_ohENyo_&OOJendstream endobj 133 0 obj << /Type /Page /Contents 134 0 R /Resources 132 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 132 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 137 0 obj << /Length 1102 /Filter /FlateDecode >> stream xWs6~_[N,KsL{L3йރ)?\s}W aq>3`>}Zdq!Qj[m{XaiJlN$}/):>r(cnQ+&O>}V< FyuF. MEcqA{*n`yTnc.bkbpm ɊPWBj/= VV"vԄ^&*d1/ʉE\Dl¬ @>쐊ChT5wj˩)\k|`oOY-IkgGfcxS"698 K4ǍdvaCC#LȊg EIʚ].5fs*,]M4n*ϰzIw.q:aR\wg9zI\LQggmbMt@cByyZK^"Y{ueTҰ̿RS> 25g%7<[aBK٬~y4owp ~xR&_:[9\| &YQ_Ug7}UnD TR$z"xK)ߩ M|vT&]f#2/uR.i5DB TJf<);m,Iȩl2mc8NRM`E0һPݶQ*ɺ3F߰|{a^q/[u;@Ij|[Ftla/(Ntp&G^?~e$+W ONeA/5anpeݶ|KzFEZgDc%fEe AYV]^ߟ_?;?V?#^Žd۳ |]N^QׇvI̐}6 7bcD]¡Qv`(=aendstream endobj 136 0 obj << /Type /Page /Contents 137 0 R /Resources 135 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 135 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length 1331 /Filter /FlateDecode >> stream xڭX[o6~uV[$떭ΐl)`kRdAXD\>췏HId+$(~;l1:4 }grb.RYd7=zc.>\`(nI9t/E++i,O! VbArMEN/FQ8^>3'E,FF7F4nFsQ M$]4N;Ӂ3,q7Dy)QXt+nr1ī?t+*_UYQ.t1 {Di+9f{)3&iRBTsZa. =J|))G$WHI"m@t8si}MY{wts|>^4sΟaѩM_hKU&NM{7_vj|ѢgRj>nRe7'M{Dԝʚu+B[>MױxKZ2Hu+#56;?یZ^ Ue%gC_6,XhSm<#)wTɔ\cykV9N ߠ >!Tմ <[c3{$lQ74X|&}=LβV|h5,iwYKZK,.nn3OK5?0eD0ɨN5{A/* ePY:$6}[B&j3j^;K(Un^K5%Xma)vU.gU#*a&'HwԸhb|=44# k!oHp î'ޗܒǝ 5C|LOW8FxY˲ uL 9 |-#[Wʋz)ULI)BkľX S)x0GtGVTV"MY eDͮL*B5e#wuMG5+]]h?K)RS )sy1ܽxz?t]%Tz䑽T%eKOOv}+5۰!⼄I鞖!zjmp0pQCݠcAA_ɾ^4O&E'〕[@h_[{+?]/>95:^FYEZK^*CY\U򛙙׻uh3Ge&:"%Z H]z\/NIIݗoTR?Rl!Kt M&ٰ!>@${ 9x$ߏrdE∹@|'D/+OMX!S_}Ӷendstream endobj 139 0 obj << /Type /Page /Contents 140 0 R /Resources 138 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 138 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 143 0 obj << /Length 525 /Filter /FlateDecode >> stream xUK0W6c*V*U݃fk1,Mkb}Zc3}4s %0L"4m# YUX3t6׆e>לX},~n^O| |>?pv^B Hvᷭ{Xu>or\YW4\+~+6+bk7)k}pyZx&{!u]XGC=XpZ&ILy_\4߉&'zPEde:9^Q*'X>zFo;\9ojf9Oy7Nݡ/(kg=*EYjqxa>ХPe@~bwBNiuM2TqVG9S >RZr0 $Zc>`[pua 0 "p)#́}4ImÞ3cJ!jkb,Doendstream endobj 142 0 obj << /Type /Page /Contents 143 0 R /Resources 141 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 128 0 R >> endobj 141 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj << /Length 844 /Filter /FlateDecode >> stream xڭVю8}+xL؀Tj+m;<aIk $k/" >sﵹI"q;Yl~1]`E/&H0!!-2%V\AN]q0 M>[FITBa2a , Q4`6EÏl3 HI*H$n #b4BF3޻4s@6OC mH HB.T~y|/Kg0pjxZB#FpU] h(8!wMTif~Տ^U+o=!P, +尲~dç<Њ}åhGuTo"Zp6\X8vOkNNfph #toN@mylS[R7]n߹>_K)mL.̽ BO&yd{n1!:S\v̥P]JVGVGmz> |yj\)kfN(VӲg/7L; Vb7o})-h+ڕtjrI:ʵb{Yy^ݔAx%fcF-@e5.å |>Z1SzmP׽,on;o8#A,F~1t'-Z{Y=N3g&2̒J6GK[?[Ǧ@_/=Z1ͨ=Ә1<+|@pq1@)l(Pendstream endobj 145 0 obj << /Type /Page /Contents 146 0 R /Resources 144 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 147 0 R >> endobj 144 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 150 0 obj << /Length 1191 /Filter /FlateDecode >> stream xڽXn6}WvjӺ_ I A"MFca%QKJu#%YnM!g̙ )][ cj3<4#??nW+al'l1\\ȴ;\2Ii033tRdp4òr]G ãmi p-mtd%˳?ƩR9m*)}G%r( ?nk<8 œMKO4Fi ϯ,R^;ЧB)S!,m7qd.@NHZn?.xYF?zPm:0`{b f0 E0}1`NZVDUcB4;5Ⱦ]J4k(2DZXb\FjP6yOT^v&n֫1.绿bB'9rM;UԝœHoSl>{Fp*(1"b'89ZmÞa^TZXZY/El5Kבc;N eJmendstream endobj 149 0 obj << /Type /Page /Contents 150 0 R /Resources 148 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 147 0 R >> endobj 148 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 153 0 obj << /Length 4030 /Filter /FlateDecode >> stream xڭZs6_3!M| {sN\ӉĝMF,^(%:I2ӛXXox}qNeBJyyd\\ޯ~]H.=E]ϕXPj*R6] fq{}?WpFO<֗e$a.45tr|%EsSmoPR-nq"O4GMo;hp{JbQ["4T[|B~ Y6k9G|f$U5N@zT 'ZK3OK,t1my"&+(Y*XhLh8oJ&6"usG*5}ƙT5TW!O(b J$A`ؠ4 lAH )hFºѷ8TbfcQpے܃* ?oIzō^#ěY_;6W.:d1`.4:7Nbf,W$Nqu㺎U}}ʢ-LJ#[C8ŐC@,@*bS2%ȼS6IL0Ӟ"xu[Ns$:Rf] %LjV0ǣ0)I#hlQWmrN`# ܠ\~pw"ƁtFʂ[_Wkk Sa)tNyQw 7v~\-FH~#h&eU'6bX+W]B?~2"mfG'+ȲmRvu0Ǻ gzz,x$D;Ӫ#d6b FuY80izAҧ*P&7Hڜq³Ssel-j%ceyg&S_8FC Z#RkAm#xC?C=GynŮJۓ E68 pWeD\7etD`]8 v+o>܆ 9v~sMI9!]orcngblg/5"+tn=~ódy~FUjAU򿬪c4d9)u?WU|C1׹hk ᶬ0Ŕ֑]# -䬵/Q7}.j]脴;1R&(yI3&8FC$bpC#2%/cbayOMGyF#i DF= >*}Zb7,Qd :). sKi! Z3Pr uYpJ1PF1#h8yST52CNci7?ԣ_^ckW3H_bYb =]51 ۝&+].AФp飖0d(^,D4>F~Hs,ĥ =+868 48L2؈3tYvv\[_ YNgL;m,1`ޱ|ϰDYVG-WeF'3I,|.FNc- q1QS6^K[Kt?*N7/|.T' wU5y-.KQ>ߨ~i+-%p6 W Caxscs칃\Jsa8O=4D.۫WMϽݛn2?r_.@̚g ^8b=-t0l_PA(DE*<\|@J_[fOfOȴ^)Evt&="{lIdCw?~y K锩)d 2NEjL ueY>sƈ gؔ!gWD del%tn_$ySRS'k= Ubn%¦^~lv)"z:.;8Gdxi<9@v+s_ʊb̅4p-[*{$;Fy $F}:vdTN֡yjACV:_X9l}b7 DEm#0aOzx̩JG+`!B0XJu`p7>;eTjhq^`. *uNSJ~u Z68B_aeKIpAV AkffxXL9:>|3lmFTCyӶj;i)bjK8Las` iJ<=6IN;̋=3@g8Goⵈhc4d9G2t^{ d_ W9R ;PUkPǰk:zxuR|8E\ "p9'O \}ZG㠗7͋/ʳkɇv9'Qұ7iNyw5{l8p3"{YHj%Wӆa@od8c xTBiA?-G#Z0z1{ǥ'd$C9)RπQjO1cGǰ]D87Yi٤o>BrlBoa5R@#q7 lݑ[֔?H#*>a33 j8dbu|sƿ)͖iVˎಈ)c/4ֿaA!qFtUvĝAνCEI.E|%*AH~% endstream endobj 152 0 obj << /Type /Page /Contents 153 0 R /Resources 151 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 147 0 R >> endobj 151 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F35 24 0 R /F36 27 0 R /F50 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 3980 /Filter /FlateDecode >> stream xZmo_aC!Y,ZE?䂂h,(bw^v|Mŗ3߽QŹЙV_ߞ; 2m)ίgb.4 %f=;]̕3j䋟raZ|S x#f +gm:kfo>X^|q\D4û?ζNe1k;Y߳LeBRNtڬD2 U'$E&Aojw)I63ֺ mv1F493GQ>50z=>E t5~JV _ܷ&s3sqn˜Y~Ԥ3Ξp' Eh=Zňh /iOk?KexR*-窰V%c}'Ss/p栉2RVTp/MT,3۠Y.OϸL:)]cXkl)g\ZZYЖ E~DmZKc@ť.?ڱl f/ p>peC RN#g6 t"m~Znv+.Yyۓ~/ElqXhVR{9]<ɫ lҲ\/({Q-@q-%,T_sS'mZ?!WLaH[v.EC&}|"~ϯtWݬEm4zN#`2~̓'c3`I w<̩2L9%74TkFJlFFD=Е."/G ]B#s&9CeZ6 gðt c"!2֣Kx=< d$a[~ 0 oIx81wO~4)Hk /Tk?&!ҌS%Ar$z۷=\ \2*lV*kvzKs᰽ߑqTUm|ć\=/kU]_/CC)ۇ*?6L4ʏ-Gju'r_^)2K aCo1=JߑZ΃o&P7o.P]UOJcreGT=^V|~5F" UAAәW]Gbghl9ni-39uRN=K?HtY@$NZdFp}:5| 0Ԭ (LjjEWW+oآy5y_MQ5ݪG׈s)bI|@7ԑx|9"?]RXd@Aץ2$nW+sy80F"J0g~* \m[?-j 7ˆ*t8 c9Y OzA;RubH+0?ȹz M&o>~Hi"mYQjuP~X*tL؅`M)!|+RN86qTܠ!`[Z=uBB8 veCmvD%$J亥>WVH)BBcXׇ8-x6Z6S 0YD9Wt $U"3*!AƘ;B釱I67å)A\;Z ae2W솨t{,l2*VTR -2G >䨰r> @%-IxMJ|7? ?Io0B. 2aq9"r\ﮐP}懫W\p$فD(<!]3Nn <@h؂1غCrGG~zY 9q 'BdQSgs@c<`߲*٩[BH!"MK\kF\ݛ]K ,/s3r!lK&Wa0>be(Xq[w!c H}OvzFṉщpbO;ȿșN?s\:2BCxd*l}90z7߸Åw+h7ނaa _ \]o_>do5O@QJCPfą*:/&OOd JbkҢi`c9N dU_~vR94)S裓fL@'2;VvHѾ&g8/)H/Jkf]32mz;NF6nLPJbuvYI7'=(-^ݎĹ>ŐewW"kA;L?{I7tL<_wީMN\qA|QJ+X6Ѥ_'yֱvdǔ?rx=G[ޓF(MY 0OMw+=|UL :v8vA\sB>|@&Ca|/#z_LxV{LSb*>%gk>G LJ$&!2@i-$RG#,#9 RFtޡ#dk+`k.w_aSKE&7 D7tHZS)n?1ԘL{О`̛rhc#^NNSbEbc>Y/!U0=&ϦlX@"!2e#~7Qh3*@JeɼgACʑZxh k߳8@?/BoHt IC2| Ag!7nqC'9BSzF I`{!h{+ء{JnyΕp-G=fJT:k8w6Ӯ}gxb.6Pa#M#S1 ,FFݦט-a(@ہhEWL?mft6{δ0 WaxBԴ7` nE 'n 2L_\ |B|?Kz~> endobj 154 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 159 0 obj << /Length 2181 /Filter /FlateDecode >> stream xڵYKs6WRpUMmRJƕdD9H-EۍDzHɖg/@w7~j(qԱZ"0S9VgRfn~;85u'U\|?F`asN˼gBYSMh~B3v\cSг÷|uWmJhrqm68ۧ~>)5̘}~dLq5qx= v7y>˺Bڼɫͳ[NWe\u8%TB=]h%wm;%کVH˵1 C6"mߗ.o; 6oKPՁ h]UC d`XRY^`TP# h]); H668P5T&;Ae7 n۱(ݑAD:2BSK}aXl5>ҵˣ?8(Iv'#]0^$߀L\i{,B .rL%X~3GMefAzFf jmAJNSd8_,Oێ;x##cts D̫!C޴IMd"(W\)SY=+*GSEMh.SI`.G^)d L&< .y)/d߀ ?>;/TN۔.Ltо |Lďτ4 :<ٯBnA"iUN1[}S~_i wtGR0.?k#mdlc@e#+)G%0yh܆؄;s% V++^ؠ1PHM.Zݣ𶶉B)o‱<,}U)vweB_Ûb'1J,x7nSZߤĿEl:ʠ%pƛ5Xag$lĀv?44]T}-9)P) h]}=qsKoCi6x(s{^KջA;*qi>wJ=XEsX67!Q {~cQ6c2E4 * %K!$ۂH#jBkm.qk2w(,;vrWL)G+0Jm̡o6eР.e; D Xߍ~Ec70,  GbXo !Q'R1R8h-|=TgБR:)rPJjwc'j/~m؝f$;wL 4|f aPyDyo:Mh ݾ:iۢN(+~ ~`Be|6OGC!s/~Tգԝ1Wy1C gugրdCdRLʶGQ8w%sLOXjc:pZ{=.)}n^ l_=AZgv~]xmuСAC¡,@Ug&6-xUY_>Q\=$ 2 W DGA^]PЊhcXVu HIf7NI*Ǐ{ @zVz&vx,8nKRUJTNʶ_yʃ=WpwwRݣH*)bL P gFN>  nنd ǛCQ:ʑ/l)Nr<ʢSB蒋qOg, saD9YzkFsH z 9U)@9w_W(M0xp_7PAN[,('^rErf0c֝rs Հ5ǥ VXR>⧐|?Iӌg%xGԓt_6Cnwhyhj™ W:8PiԳsendstream endobj 158 0 obj << /Type /Page /Contents 159 0 R /Resources 157 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 147 0 R >> endobj 157 0 obj << /Font << /F35 24 0 R /F36 27 0 R /F8 15 0 R /F26 12 0 R /F33 21 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 162 0 obj << /Length 2309 /Filter /FlateDecode >> stream xڥYIsFW(U"ްdNg)i*33dJA"Yn! JTb-o\|Pоҡ<" Dm߼xBomZx᧕>^^}|sW8WXxY_CޞRO׫u(?mOn)2jDjWr $@FvgZFJbOx4p@'޶V2`ɔKK^_!"22f8/b=͑)7u t[^~Lױ.M,~)߯d y 2P> ee*vRrs|lhs7:amg+2`4t^j&}L <݀fJݘUM#jm!ݢ~nmemGt .;0krz^QCD+j +Y&6`?X0@$T+&Q# ƄOr}'W!`)i{g7 <7Cǃw`a7:^?S#S{Z3{@!Is)=̩oI%b>O\n2ZZrϨŲ-Xo9} 4h(@wRbEn@@6$A‰O/1{~fX-F-7+zD8 V/Z]}) R\Ƀ\9wuIlܣ*2Ƃ=i `ޡy?o-h~R2AJ!ȇ#))fDE`N2hM>% 8!BkA~BWtJNk!D,'B 1 Xrʻ\m2|*Sy~X ~\SXw _޷vo nq#Z|3G-|yI?Q4sxZH1 ŽI`O_)x4H8 xb7ǡ*Tq8A漰сM\֍(:Sܒ]ةu\0M`ȘvMaxhaN^sO4,.!pID3Is޻GYPiV*LkFNadc2 d3Ȳ3BG? T$#5?ncK!+r!dHRGn-Sts4)v wxUT7X7C(Xbԉgm* MlDԩj63OsO,npiFX`ն쳹ܡh$3i): Meәj(f?b' $y}ԽY9eP;:K̀T6XX>}Qv6iC`\2) ֈ;|+D̑n:}dl8b2mLSW(3Q>K˓֕{|\=u8X_RPQE@u?+cۥʬ}Ԍ[ R\@T0D _H:KjʪmN\}UBU5*_`t/,{/k P 6 ӵ¡vСM×0M=tZޡuDusz_q J!Q q7cendstream endobj 161 0 obj << /Type /Page /Contents 162 0 R /Resources 160 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 147 0 R >> endobj 160 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 165 0 obj << /Length 2261 /Filter /FlateDecode >> stream xڵZK6W*cuRIy2$DYL(QynEcUFϯnH#ƈUGwp ՖEw,w?hTPbu?TK׹'PKmKKLק2G-Ei|L'2t>v8-lnWS&ES4 % Cae:J8%JϿ|3Kb2)O0Z縛a8Ap,*(0e"N0"wq6M%Ze;87i-7۰O3m݋]tJ7IVBjC8 50P Dr`5&;Ҡ)!)*TѿT5X[Ժ;[r\?_V3ڭv%|,X1$С&A4Ou{{y .ƻSeO5DT^'8Ĕ DFˬ\They='EKb!BǤrwIv3C.[{dC$? 0q95M韚k>N},mKc?9|a(hח\iߗ)錺8ҵ4Ƽ.K)SHIq% 6C)Ys$)<ߘ8H0 De:Ҁ$3!pL,0y9_R oJi X_HyDPI)CuAH;\e*UAPäRM(@s* frL![h>ܩf@~c#Q@A\karf`QrSe7k*M ~so<…˵'\f[^OңׂOa\B NUpjP;0 /2Fxb-]j0E  aZM{'#Alm;;Iwr Zs?<6X /h~M4)_C剔d03 1K筧)-Ϥk>p>Ρ~KFu bUS 7՜Tmg%E@Wrhvf3 s0c9<:Z}[\ʐH%nJAh l:8ұ::2}W!a05_Uu^;_'RKRuvA9pNcg9H%Lkn["/MM[$R0|g9ʹ7٩l3_dZbux:9-㸲YZI([lNeXN*;СchZ*^@ص6Α߇&vuxh:K՜f豜4CsoYV+P彛[tFAǛZIPG(c 0CgC dw2"j:nm!3Ed&sS2sr܁:nhB744mPISCSp Q-[Z*3t唡;:'gy)%1f2p)J)OP7v&w+=([Ba87.XThvrnlv,']&Сy]W+w[+TmϾC»𭯝kܵŇƮ`AgdՇI>Yz,'*NzEܻ> CE}چ?|HZ?Ha) y^(ep#\,9,Xe vf=vt(P5_~GV us-ӷOx;瑝L;-[]ܷ2Q3~b05M245cF8N',>ӈڔ!p6n`1Y<_Ĥ@Cq0A+}?endstream endobj 164 0 obj << /Type /Page /Contents 165 0 R /Resources 163 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 166 0 R >> endobj 163 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F36 27 0 R /F26 12 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 169 0 obj << /Length 3025 /Filter /FlateDecode >> stream x[YoH~eIfg`[DJoU_l-I(`Jźjه_0JJZͤrij#36WU !B6t~׬ vyMb1jz>]N~?DFMV|>D -쏳Eq cJ% 6Ti]*/$ZO3: #Wljh/UfiOr:o۶]p w}Ӵk'Ie1Iɨ8% s?*dݞ]Ys1(չȼ$j ;^-Xo)(C#^3T ZJPA.@E7$8kp]swڝs3}ڞx1OOLHk9<Ջ?8#?ܡ]EsXfdV2" L.Eflxpkȍ<?.]=kڹ ns t{iY\ǵӐZyȸxٵ,ǏR 03CLg+Sa*C Գ}^WPАV޵7ĝH]ʡ|4hwF!-) f1O pC,{ñ A}B !=KÃE66ǟq&Pl/@ƥg\m:+\3j"U`֎]b p|25 3+wJ6hS]UF]FCwWCI^m_]QnuTX:6yrj}9Wxu_$*=0Eo8ۣ&BƢ}} iITx׹wwhZ ݮZ,x^ymI!s Y6(XD~{ I!l mPNZz]ahZw_oheRƺT*DiփPļmtXĸ0v';z,P}K'>6;Xpa:sHQDi[g4%) )]/7*{P]/jDzSuŕ*xQ EkmjEVnVCMޗh>X{ۡTC޵א+!g䚃0)xλ$ MK.. 7 VJSp 0Q`2CwW(LEh}'*0JNo_l,l5v7B^(y_2޷i:%vOnV߱2rȋ_F*J> mѦv9}?RjY6)tIBTm+[?Č|Q3 SR@֯uWͽwוD*,RT ONީT8KYfR\hJ/RCWr-Ci&OY HOR !53P0c&Jf 3Bq +RS'Y4mwC4~C ׺ 'oa:}c峻7+ 2 O"aHiؘ>eyE弎4]TO1y7:]Wa;g6OXyKmF'dF2L#B.7U5I06T_0"fE~yJ&'\jvvR1.)CFEսaQ 9gw/9W*)orM(e'iTn!+A:+g}ڛ 3!#By`_hxמwn;v5[G;|V:8Ɇs<. #m+%9ƻ5~_˛~>GX>/{n\K\TJYt|W]ㅻxuW1* F=Iތ b@1=<@7,1*Q ioJ\j3={22SP YY0Zendstream endobj 168 0 obj << /Type /Page /Contents 169 0 R /Resources 167 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 166 0 R >> endobj 167 0 obj << /Font << /F26 12 0 R /F36 27 0 R /F8 15 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 172 0 obj << /Length 2484 /Filter /FlateDecode >> stream xZK6W(cGn`H_I[Vƶ{gz~VLyd W﹞3Jul878o?0XB,~yEOXX"`sEWOf۬Qp>s6gƨ=]mg gtÌᬚJs| "~3qNӸLU~cJ% O\COBhb/RXQ_.+>^4 oA[mu VAT70M]2cTΗm0n5<+w=ᦨMSDPy߮ mMEz Vz/;a;2Iю>4 0~x0 .XR4+aU}z9.7M%~ޜ5HF⟻  #5+8=GE nqX/v@py?(R{ t?/j.h4"_מ2(+}ZⲿMZ_ Qvw 7"NO1>$!5ǍЄgtB|D  zNQQy VFnڏ>&Lԓc3UlEܵv #3v>vBJ4Ui @]dĠHUlK-k%ӸLU N% .sk.!;Y2*2P;#.V|Wn^ >%O;c2jHQ}h$VdY(ZD t\)y0=76EikKoG/x>v8",-jXBaڽC< 6B+ VpMY{MaPd^/r]1JpM3bg1G\}ELv]&PVh{IpCkB.r :'"Eqr Q;s枀ev%_U_ʮk;"DKE^47Ggi$LڜITR&=s0Qe)1U`Ճ$aLɌIڔbcb*H' QN}}NyUG<}M,*] ɛѼy1Q9J(z^'@vy1y[^wយ!Sd͌Q6Dׄl0anfRO/-B/$Rc7IVsqsqFʱsNq] }|eX?jMme9(IFCrתramNQ$Dǐb[vX}pbЬ)4U9(7iM{Ȍru 5n~44k;keE+6M\ϜGQ"AWSp]Xx9*ÛZH.Fr2벦DCtrˍcjL!f:X/͉&r8}HD~Yᢩ4 endstream endobj 171 0 obj << /Type /Page /Contents 172 0 R /Resources 170 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 166 0 R >> endobj 170 0 obj << /Font << /F26 12 0 R /F36 27 0 R /F8 15 0 R /F33 21 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 175 0 obj << /Length 2120 /Filter /FlateDecode >> stream xڵYKoFW{GndMb|Y$9=$j)yǞ_UH" l>W}sF'TF9ϻ_It%B6^tl ~7e:gsar;?|5_fg PœL)LهٿAېe1%u_X^ꨊ/"Wg"VdeE}(8]jX\SX^Sf0!᫮ >oA+fm=r ka<('WSƚ7Eʈ4R 1oCx"7G7˗X%\>'~r@kj`f,SXzlDVavocp"J/rnF+|%b6l`1*ڢ퀘`R|A.BjG$&,WaU.'8)!ʯ.(ULyKgwMcu _W48e_"6^N+]cZ,{]\滦ƍ]Xڀэf#m |ӣ_ 5Q! D*jmԀ9C8!00T}e܅^qF|.>&!)zmue;YQ1!gNpp!3a_aLj"!Gnr T716J{ 12cBu8bwGWT.)q2SQ;&{ pՇ-),Uʰsn9ƌt!j[|l]gk5P)0>ט AAې=AŁ `NAT\Puc; (Ɖb*VH>hr8p ‘f(6d_#H Fh<7jYZGcvBE⨢p]E{^WJ){A…Ď/`wjO.AOHГSdІm!"4rP˗$ІP݄J&Q% $Ë<)}q TMI ܙu@KNτ85PzgBE爕|J☊ lTIDȖe5}tp6?,`{@VgL,nYy̿O $  笰SR9H$ 5kĄj&Q5sF}IB_*&QЊ:j8?08Z0A %'qWsDj'$}r\/)cJ|ZT2 7,ۥʔ iA2$]SOgSO}yqȮM}A#TT_zjGQV΅#Bh Yb/< ٯs8+>8ղ?r/*xw~L ܿM:8}ۇSR I݌ͱmg. o ))98\6Cq>;nPxS;3e,%B/o6n5GNDό1@Aې=Gw4G[0AsN_lb{,ETqdinž<]:jCFX>+ ؗȽ/xM:o!l 9h$wul7%nSyV5Gb&[?[?vXs*CLɱPbm(ca)i>&endstream endobj 174 0 obj << /Type /Page /Contents 175 0 R /Resources 173 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 166 0 R >> endobj 173 0 obj << /Font << /F26 12 0 R /F36 27 0 R /F8 15 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 178 0 obj << /Length 2262 /Filter /FlateDecode >> stream x[[s~ׯ[ƅem&Գm$Dی%Q!_sp#Hә̚?spD6gR<'4~KŒE|O7?H J!ٜ*5~$<1Kq[O4:X( \?/JG-?X-~o~ݗXDbw|x()6qL$lZ5xo  ܾC-ty_TSUV Q|y}}ŏtW6-ymPUow DK=^!b*S嶪' +>0j\j6h8 A$,\ ׻_~͌Q"L_ ȡ;w3AbĶM?I,a``wĂE, @Y|IJv.~2I x8 2"E"T+ja ffcc[(ήdLxI4~.~tu"ux-5bEw9DVgqm*S1V(''V6RzkO% Mq_DZ~eq<_Rn}}Jy2i| eLfb$rnك>ґGyY2yRObNCf|7f[ vc? ݇? d080ґGyQ?:t->:5yLXB&.5 JG1= ZpM*$2  |TvZeG >)nap,U[$su M#JGeD8+ 긻p?\/ zS+>DKc!rri$PvAᣄ~ f`s*/"(3GXl@kH+G J\8z)nzû.)yb5`@Cl/ ;E<-ݙw>.Oew?FU^]9 M\\ڍI8FP:>(/#[Y{wG${`Yd:,4L9 BJxrHn,Ci#Ng9P:挡KB}dv2eGL=YourvZ DA5C4w9Hk7z&Hwf ty[7rW_pvpA8 c6NP;f #t^v;2ֻEcG8 $gF05F@:n /: O'0DBub3ۃNNgendstream endobj 177 0 obj << /Type /Page /Contents 178 0 R /Resources 176 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 166 0 R >> endobj 176 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 181 0 obj << /Length 2348 /Filter /FlateDecode >> stream xZn+ߏq {d!K(*SͦIE) 5A"bթ'Ž#N)>P~Ē)|mRA'}bb[t+Acq5|حt-,&\xª<%^fUOaKؑGS+ ŔS~'؀k9ٔ k}8bWek|d 볲aZၘTO^ ?+O <`,""^AkX5v2C f ,.樁^P*H  c|}0A5ůTQ0j!i9լ $8On9O"ؒ]㨠] >WH0bTQ/tFDk!ń"Z2zԣ94Jc^AEꑆ\5DT@h. opm=cXzLϋ;LMZϯ(]v#orxNnsJxߥv7 > ,On>i}i3#DAOOq}0meWO9zxo+CQ }-ꈥAJ3ԇA97/ |v[W Dc=(D㏁ D,ߠ! !}ywnw,:[P0)-<,Ke]:zKC2ۨf} t[5^B[b ߴMAR6>5tɿ#kN97$H 7= m3H\YLdV*odwJ;kcn~L*^TGgƗ@ cCV9-813 'e#k:~J!'&1A8:2=y$87 DMBƣbvͲq7Mk }ֲ֟RU"Z5ACX%w؃)0.fbًHr.rynSV> endobj 179 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F26 12 0 R /F33 21 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 184 0 obj << /Length 3121 /Filter /FlateDecode >> stream x[K-\Ea3J]ر`v" $p7*~|3=?PJlrs? 1)K'7ߦ\T\~݋ȬM3~_]鼄?{.cA gME_^dMwk.8ZNs٬z^j6@}~p./]̈PLɌeDZ7EPIN:SQi^F;"Quh"Sl(~;x&\Jxjq)IqFܦx-CҖ*2bLu$\($c`bR:x]VR[%Mqs^k|,* ";DҠ[;ǺB7_6Re|=k~^2m  %)x /a0Pu #U@ҮnhyJw*#*|=uᩏ+DjB5J%P(%$eHfXD.&LkdpQ9¥|yL+t<>BZT1vLP.%(\&dQP~sl'XyєMQ!-PA8D[d FDu?C)j&D5&ߦ€hms&9s8uٴ9Y07x" x80#Ah񮬛W r qAK3oX!˜朷wxZ?j??\c?g~io]qՄ׉K˼%rU Jˎc8A:e­WnY͑78 -#cryEogE6"RG[1ߋ/05gm\yٕO(n=>1.PK,a mi qSwި:xqX8Ph׮?P:;n^[yuI#ŲE뢎&_bFbB`5< ߇dR0VQ P1fه嬫|~jqKG |>ʚ9_YbՑ@avWRiN3fCՂDheG#]ףO&ČI=K>:m ݞ[ HM |Z~iIH,댏 ^FS`8{-SQk|pHY@_R @΀J 쨨lEe SpڣoղoڣpVy&;K@E1g[,{=麞M1|I^|o6 ^#@2ľJYA2j9-PrDصY;vnHO4]ti!!) ej)')q_&iqW,7#Kk'XzAXV~&ulf\O;6s)%uѭ r2~3v5mZǾu-f dSkHkU"Xmpc/0Ɲ?gM*P:ʰMAq& {bٴi#[:0޴t~ҁ-tasԟ_PtD6MOts]C|nT|:a|m&ל﷫~O53ZCJh3jC UL|E:[ ³*Q "dS% UERYgP6D9nr9?G:g"@A1-9.K,g4®ŲvY-'bkxneg~w\C<5y̙´b_)p)Tǜ`R--tMW^%MN%$gŲנtw> &|DZV P޴zh;N܅hG?큼u}ݜt/Eۢ}ձ&%QV PFEVe/")oxoJ-]`!elL89 \:'fao,*怙FW-!@ԌC-)<8Gendstream endobj 183 0 obj << /Type /Page /Contents 184 0 R /Resources 182 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 185 0 R >> endobj 182 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F36 27 0 R /F26 12 0 R /F33 21 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 188 0 obj << /Length 2828 /Filter /FlateDecode >> stream xZYoF~ׯG ta`:kH/lJ3ʯORR,VWUW?^|IgJ9=%qfߢT\U_~?:'5RƩ$›ݥ7ZKıR;rntܕrUT84y m^7*hxY狶©z[6,#E&Q1FeB}R vAٕ@Ghze݁93Q'mPU&>/pjPjCwcxf7UCJUkR$iVmYߖ?_9>ilp6Ӥ٘,vXED _XO(da,xiA "ٯ s8, (y|U#2Th)Azr4tpX'Kyb{[%@ǥ[A@ 1mhwW\6§( IǑNc'nOF ?di| [z6U2`qU`^<`>e$G:o(+I9hY4v&]=,=qxdYO| wɣOSapJ&MuX4Fgb3N7ŢtAy<-E7N0pn03 &Y(HxN)+tx-/~]ΖrӅ3gL&/&ẼwpqY@EP> |8/MۏWR&VTJ820O뻪\-$TjZ>TbfOTO w4 9ACE҄|ٌ9"#YPkB< Lʽ{sݺǽϤv* vU kt?a;pp{kAz,:H;A&r '/e}Xb,FxMA\`"Nw_FVR (jc\/ p77{}4|Z;(?8TO|=G/Н|IwRvחly߉NﯙaD@̥̈)# N{tc MS=y̵3"-zr&4t= (9OM`u? |9qlQ]o⠱V#E{I]rڃGfzujW CwTр*~,f&PGJAq[nT]/d莆YQQmwm:h!Qw6q[ ݝs-dq2lXC v$ ³LOфT?r 3U?뼥 _W l 5E=@̷t8S[,hkJ}q$a~%&aj;C3bkpNZ>X7Nc h5 :on N"+ VNS/ޡY,)xkW~3 HD@EةOP8}hJ}}qUIP=-}:mЍ?=0tTpZ{6`2:>SHE(1Q8F`+RfF G%P&;0T5v р.{ M!Nv |=A$dud?( ^UgxRҁyc5+8\_ AyU.8]n_nvΥXbQ46j]RdPO'fxRT!V \B:/DDarx@p}$5W)u+{R]yI1/lWۖCÿEan`촧_w)8O1p̔ q g4P X,q> endobj 186 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R /F26 12 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 191 0 obj << /Length 3101 /Filter /FlateDecode >> stream xZ[o~/R1s'g do. xч>0H;2CQrh"3g|ﮯ^46NMW\ʄrr}gs)~ӿy=_ \0kcMqfhnvմk~noME+ۅeh)]c3ƪ_^j"&sJ.^Vzڵ8 p ;z,_g*v6W1D߃`~Y{Ҭa 2~Xo*ހvh-[,n]"ՏWDN15JNϳ\:?Yl}b_D}a'Fd{5\hg߇ Ì!R$l,Z{Xvqgfsl<3ݔ#1|X,V)mgR"2>Sڹ ?-C0p!meOsnp=ֻ⛾ MCV9iC OTJL0j~8˰ tIOX&I,37eZy,ZC Z{І?(;P6eY D⳰Gs|tG O df?Cfv.,m Bj\jRk%H՟Se~n1s\j0|v#ӦE$agT;; ;\ag<2r`71.RIh8snxy6`O4/TQ^ǂ<'FS>HGFWCߟ?rT8oLp퉵3:mE7Â?&kg.;Y=7 C'L& є/QS5Z 3 l6/Ʋd!k}X]Ű )RLJ- Lm~WI=`{_>A/xI y9 #!vi5Pi`SؕD6,7R ˓f\CBzP6ҠK8AȣQ-eNc8ʶ:tIh~o2!$k7yG=VXk&wsy>5& aCl\Q#3ٶ`Gp#(Hx ]g)L #N[9+0n[.*. 7{Q&"9K)R=>_+VBq-Lj# 08ڨvcWϭ[g B7P:9y =_ &fLd.D!aab-/dg0ECabd]f#])8~1$GmzxcmVYZhDn6d7%^8>T?8|T o.j2`7n/<ێ/Xh;~B[u1ڞ6Xߨ%fd dg]x9uȤ>eLh/(lK?u nϣ'R`x9+h|-|O 0~̆@_BF/ɂpؙ3'2|-4O1ƥW,z]S7 чzpKY)tX{" O]#S{av :SHաHbG'87BJ"?sDWMm[duhQȂ+ӗ4GӏT Ti^~-Đ E ڸ9]ZnDLB~mIh?4m7&/Lh9B=0<˭_oIь)Cd:H#٨u£6Rgqpxx#^|3Wݕ%#(06?endstream endobj 190 0 obj << /Type /Page /Contents 191 0 R /Resources 189 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 185 0 R >> endobj 189 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F36 27 0 R /F48 77 0 R /F35 24 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 194 0 obj << /Length 1447 /Filter /FlateDecode >> stream xXr8}WP/v&lf&NdR)1@^H2lTF}閬qg*L1TtEػ"0fYٜcCݘLKsu0O=4" =uvlpL4 OȜxlEtaabMG= ;vt׎Vku %Xex:?AUZT&Se4 0aPG\>TC&f2\&j96,m``OC$QD8]/OӪ" ]ghh.:똜B"@H;o*$JjhF5T8 C.r멶awt='#S?"I[S&J3EB|t*xl.Kn7rrP) 1^'bL]]~_BrM;IZG Ic@ 6?3787@h0,x,rYHȥ81IJbhJ ?"ݨ%\BNfZIe>8i>揃Y򹏈rkb>qJāA&䅟{yB!v. $@Z88?`;#{=_}A| iG]"Rmy]"1e G% %|iOEDX;yLO\vjGՏƀv"zQ_r>o9~N]+fN~i96?~RBendstream endobj 193 0 obj << /Type /Page /Contents 194 0 R /Resources 192 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 185 0 R >> endobj 192 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 197 0 obj << /Length 1704 /Filter /FlateDecode >> stream xڭXms8_}Ӊ &37vZ쐋I:m'ClW8鯿H1N}1>x+s TDzL[*:UG3t6 U]ow=HO{i]? O{}ߥIgESz:?\Q=Cw3\%A|# ěOS M,leB?$ڄ>W}6SJ]cclM`}(ֶY7N][t$]_k~ZMJXH_0MXڮbc-{QS兄^Eϣ5OH\&f)I,M0Hr, ,L[({)?P42ŸWX,TAת<홪HvRP#$1ušN( (/I!菀Kx_~r3wt?3{Ѽw=J͑D,ȢLwKYbeD8]'eC10*255~Ͽ _BJyY1A,z[qWk2G~ c0L/Lq^@8,,S YLAޥ?HId6iӘīmZCU*­s'so8Gū ï.*FX$(gI p-ylN)0ԴM+Mal02 Oy9KeH^|$TW,-[j%%'@2C&$R( b\?I\ 7ύ>^J{12 Dy˿tmBD1?rEYCBI3soG[ˎa,BCbV#|8\er!m1Y!ʆmz25uV<~z=8tk LHy..(7|2N.'m`[qcjdQފw[;!gJy 2$uU}yw7kw$}6^s#2SStEGH7U6Leu~vД);`c!e M5Dd*r ;ߥ^)W߷R E7Aa u  9_ :plYf5$w|Ejz7(F[w5ʯrhDu,)M速VDD) ^]byoX[Dj&$xaI{4@ 8?aYٷ5M%~ "0 rBCjj!BB ZGgQq ^3OΕ\(`|s-C endstream endobj 196 0 obj << /Type /Page /Contents 197 0 R /Resources 195 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 185 0 R >> endobj 195 0 obj << /Font << /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 200 0 obj << /Length 1827 /Filter /FlateDecode >> stream xڵYis6_~4"833r6N4IBM J|$aM3ÂzrtS6Cs׫i=?֡aGվ]S3Z4?)?1{br~=:<6=״}ۏɗɧ4XӷtneaLӉkLO~ ih= <'PC4e&< 7C7<4<:ؠR>J\+f;)J>#qeqs=tKk:5.^0]N< lFbԅ8$L-5K`k6;S~ x;,8Z$MDӔf7DN `zAX[>if@ KG }:H[|_ќKoiBJqN"~E%WTTJvPmbT⣘n3vМ@ڋ6X[Z  LJO}<趠I%b%?<1Aw4CI geNprVÁ t⸉,rܰdq"/5Y"5̽!=G?%xH[R7F۱c=!: iYNQU".O9\ P/_qN4 %[Ƶh Y\1H R!5zўax3@N܂L Ss|[X"REHFJIA͔"L+cs;Xguphs$Z})/EiK*`RC.-gxc䂌!L?gx07W^8;Uybf+Dz FBV0ƊX ?@>]%B[1G# `7O$$r ) `^t#cj*y&KAҹ4|hz3vMN[[φaܨgFӣI,~iԣY|T'E0'} HN*흲_A/vx܈ZIg{;QL VX3z\Z^px8/Ngbg'5šܭ&k6ts5="Z9G 4SEQA.pnqh\۝\n>+T4]ufN R!:w-`{  8kR%tA[bR) אE7MfF[>0u.Z@~$t}IyZrQ1fŠm ?DxSj+Ncf8uߛdWb). qr+j[wƂ)[jl?lџXZ}_{ [!,Sj:M@Ih;o#Gendstream endobj 199 0 obj << /Type /Page /Contents 200 0 R /Resources 198 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 185 0 R >> endobj 198 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 203 0 obj << /Length 1580 /Filter /FlateDecode >> stream xYmo6_O]Rز%۱ݵAKz@hRGQqǏyeT*=sy4-Kguv6l78,<ϙ&pt4'b \L]q'q#~G(2O_ȝ8rUG(#WɸhZ:5ڛ: "br>fߜ"9)ܳe_ӌek)ygu|*wy8ɹ>@ρtXߺ·4'29.gtˡKim,sCIsyI\j9l2X2@}}\piiO]\zG`ųE6+jʗhG5K1+[,-3oPfj|.YEZ9"((TNfey"{Ԃ8Eꆒ؛_CMYNǹj _^L-6= Rb]4fZRI&.KrywR>ؕ32&!9+Qgkde\L%Nu7r1"l&CqWDzE3LSsx *gLZVnh!w&ps4/qP.3`6M+ VsGr7Q9JG{:<BC#t_.9I7hΖs%L]3[>zy/zendstream endobj 202 0 obj << /Type /Page /Contents 203 0 R /Resources 201 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 204 0 R >> endobj 201 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 207 0 obj << /Length 1675 /Filter /FlateDecode >> stream xY[o6~00KX|wH4@bmaeI⺿~G"Eɲ ݰ>Twnȼ?x;vl<vI?xЙAo< ;iw$Diyح)7w\~Z'BnIXva,b|e^ SNh£;׈r~}"YHHIVؾ\bgnKT; `5mtq<9HL9lt_T Q5s'?"_y j~ۭPLSlnΖH6a$s k11lDXJ3~ ZPKuӕ u64!YjEs?64$ݑQʫwKI\%Tp@~ɴXqk_܂% . ߟ¸^bck2ELR̳ '@$ٴD@=;LLKbp4 ޤ9T(feIg׷s>l\1Ss qZJ[ QxplTJah /ӒwUŖ#S;F4da˾-{0T4h[FLQ`<et8yVLq &wnJʫH2)i71P!#, ʯI]1 ZѺq%؊e+CeMs/+i.ΠF&ve*;{qPY*EEOdq3ɸJs_FbEQu *HF,RT5s\$&:C5%h2z!c~iZAm V ޒ"s(؋q<(UW[EQYɮSdߖ*&nfnS:l8 qU4<Ɖn#fĢU75\@6 RYqKZU0az;Z7Y:|K5 xԩ}o8ʩ,qr£2?PNbӃߜ>kRoǁe@M¾]v1OI'i8i3azOOx*/endstream endobj 206 0 obj << /Type /Page /Contents 207 0 R /Resources 205 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 204 0 R >> endobj 205 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 210 0 obj << /Length 1482 /Filter /FlateDecode >> stream xX]o6}[V$9J^)haCD$ $(eIs!%~{^Żio"7$ =< z`#r<Ok.0l8{"1#c ]_#?Z4c#(ݾǍHӭz?, h:50o%k^_5߶ShvX\>mh}z{}s{^ DIhia SlGÁ ɜ#3QCP\oBF @jF( [q4`U*0<{z z^7TܼIŜ?XnB&Tdژ r"-K8,,6e0HCf嶺A,c{G=MT42"$t}erFxo%V/(ۤZە[4e|`=2C"QG-m-tZyѹH?umԙ_狟? 놫&7 IHmO^͈uNc-ȯ DXŶT%U:QF_1'#Dkp3m.UIzaI2+!4+`;VCϮ(XKh*v0{f^W:ZB]hX@%^O\ȧPalJOd]߬V2)\sKhBAcÐ_k*88rMUUuXa6E !r[(36;=z2 ZPhU4ϖ:ibwt8ׅtFFYep8kܴLU!gE0ݝFjsw OrP{MR ,IZ[FVQ*: g^VUBMfcgkуq AtBf&6SAjR>l'@esj4zvjhGY岦5Ӫ32*F`έUmNnGы&X#nS'*bʖΩҟMJuqfk׻"ZJϽ?9Ba*5!\tE\}p{;P)\ 5 J+=ɾ>U>GÆ  ba.;wHGU@47_oPU@YRܜmc{U-K\vL? $DzƕݢY~e8ő=V2w[#†Nk;!yI >W a+/D쪪ઋ,_V㧡_2Nk&e(5Wj`YER:t/p\N{jpgj톁7 bo’endstream endobj 209 0 obj << /Type /Page /Contents 210 0 R /Resources 208 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 204 0 R >> endobj 208 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 213 0 obj << /Length 1375 /Filter /FlateDecode >> stream xX[o6~ϯ0İIM6K47l芀hLDJ%;t E>~oި5rך-[ p5}^k~>kw~lɸz@jxS5/ο~ou3_z97bB#eEj| x:"KiOqGM8FZ 8" 4NOh0N0%>d(S#~Iz SK”#q^AJ˴8rE={HRBH|\a>Yk-kN]2yalF mn[k|͙T敏,+꤭cr]tlx2~$3bNJkɚ9F9W ? =h)b"&&ZNbrH~}vzGyfц!/2ȏ`@!(FFMwr:g9nz8`wLxNC<)fd ֦ }Ð}N @fk c "V;\&ԛl!>?c4ږ+*01!bG7[CEdՍ"*q)'Rjh6J-? ?ۻbt7"\%dzmoݸ=>mE*"ɯ0l eZH*:अllKjE3۲ >SQPf:WёSHV:N $x&dww\tiaL$HPVˠn%u e;Zj ?2x$UIW0inn2\'ҫ$;f#_q!禡-܎NWڭTԯg7ٹݐ<^Dgܡђ`mI\s~,MR0r!,A=5CV62 I,ͩl_U9\!] IDvCqf/,h8n8JB[ gc7\0ɀ`4Wn7V7]> endobj 211 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 216 0 obj << /Length 1481 /Filter /FlateDecode >> stream xX[o6~Sxb{hɐ4@.0hI Rqm`}xʲ;l/99˛Ѭ3ɨ;dMag`2;E\]=޿{oGj>]xƠH㧅|^^  `0CROwO&Pm$42 ' =IBvR)BP?*IfZLY[PLDpC蜡`vR3^Pvo9W\oWR%Ym9 rw V^)HrbbC9٧ukS(xROA* qsRщI o;B 14B| Y~SHB8!&iaPH!Ӆs"Kk$nbHw2Mv[n-[ t<Ք7[cbk錒mz3a]e)]!|=܉Fk*41NTT^Is&:c$VDiԶj6)vWz:~>ϟGύЬ/kOE9d[û_';%- &A{SC&% `^kݼ W͓R9&ځAa HO -x_ɫӆR:8!#aT ƽ(4 tnQFG2FB {l Cu1U׾Ͽ AN+i@-Nx5&2zZk;3R^l"q* @YFPPbGY S bKx3-O)l$M";Q]]~Q*s-t2DLB]EEYDu5xh\7\d?4znشrFU~\l4v[ ym0[ T;_ytX>-r=̍8O^#Pg6J]-e ڽ ?[+}A\t8BPz߯}$ _ oi9m=I&Gry3$ko7; `RW嫿6endstream endobj 215 0 obj << /Type /Page /Contents 216 0 R /Resources 214 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 204 0 R >> endobj 214 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 219 0 obj << /Length 1838 /Filter /FlateDecode >> stream xڵY[o6~06ɶm~ۆ(D$#%R%!/"ys΅~}vr=YGj9&UQ$m˫Wt<2B%wX]NIgD ^}+YXY\3GD>'$6zӊnQPg$$7a]id|dZ`1q O-Kz];~j_L'4휨ի%}w.;ۮNUs% cV2o 5(j$.+<_=pR1`)jICݕ|hh|_9,Ihf3J"#$; 9d]D'XX@${<Y̳Q颈O3g;nQzA% I>l?~5`⬦qP$ŠwgH$I- Gj;0`@߾K@m -7"FR!lyuFa3(*KYA9=~N]/ @sTadLn<Q s2Kb lQXU8'MoabC&|6|):th; <3.տ@z&)%n!@Z}wyez/[ #~4(*X1z1c4'N3Gf,RgG4>~RcCs-v*fة ӓV/騄>5EIX^˘ͪ4d6\sc]OkGj:U  6(XqVtTd~†(T߫ 0'';<gu&1 C'Y^S1=` ŵmil'0ô yr6H"hsq9M")LߏgS?= 㴱U,$Dij9儝Aysr>HиʬC`Wc4DiT2QOMLݣ2<s66$1Q5k^k}ʠ:@F)irِh5Qn?&^)UU3!1rbl ;7{MF 45zAs{xy Ucͫ"Qfϼh {rc):.:2l -pUzR8N]o.;(M'4^y:pr}:#!2~Z$:^ 3ۆh#}FMoeZR*80{9@o|CnSn]ͷtpk=ֿ+2h`| (8ZSGX[ \;]ʼ2t1fZ hvjXa'78kfVvx<o_:P&m& ĸ.n{J,D_hH$EN4|Lzg&endstream endobj 218 0 obj << /Type /Page /Contents 219 0 R /Resources 217 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 204 0 R >> endobj 217 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 222 0 obj << /Length 1476 /Filter /FlateDecode >> stream xڵXMs6Wh;%R>3i7ny4I0BM*} Eٞ$#}v_oyo-Iop7 o4]et q5x?%IjDyIDƂU]P>^zAiNV&vި7G"/2$8y.\aD8h2,HpƸA_1"ǹUu{K_o6{l}k9(ऒ|" vq0G:P} н6&9̒ \" *L;{hp_A8Npt.MY$NbJA)y2SwɊ4^2B.~5,us ? 0>^܅qB#p\7y5xqfX_cޥwX6$)" W@ aJep6t{uՁE)V&I`6Mʌ3&Ü 5L;Cz695=Usx IVPr'XRV+rVVx: 4`"En (RۋU 3Y̝y@if|\Ѷ뼺id&cŹa.fwxzkd2*3=\mcd#NxWQV> xDې!Y& 0ԟ궟Eg#BwYqL'X@p{iH,(˪XFI2}O"3t|zz#XSHaTƾiU3%<{w O.4VU|U#$!jy8gA0?ۙ{dW4JBӫۍYgu c Qljp8Nv\'?§<(#̷xy* ў#acY7=q2T~J嬾Ԑ'i\ۓ>˷`2^WɳGTKP KE4 9Sq 5FM/\_v>1@ T]wهrg"hWNWwoZ>?gNÚZMI`уrj+a4/LJ)|=X"(tZТNGɱgg^a: X.y[+hpI;lèeF_sg xP A[e&RprWԑ9U2~7x:Pj\t?^iu3 ?D9Ϟel! &62jZ*V{$fe{6߽+~q}]Zah 9U1#Z,>|n_wO۶kqf,3mu kKz^0{H7N l^fo˻endstream endobj 225 0 obj << /Type /Page /Contents 226 0 R /Resources 224 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 223 0 R >> endobj 224 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 229 0 obj << /Length 754 /Filter /FlateDecode >> stream xڥTKs0WtڦC;@StLiῳy N^Ih|) 2*%P:GTl$gH3m|2J$qل)fմE=o(lSд-~^bot8V1UW,"_u(oGs_N:>=>U 0'TceAulU/Ű`L/I}Wfm Ք/=F=q ծE'y#u Ԑagg۬^. ,QD9njQqln##*@eĵZT4L))x9(I F1ڬF q+) 8}(XztN]h[55M-hca>1Bz{5jpH>-&Ze1L083qӸq"~pȖίhu7&dmlgyƻ8s tջ>8TZ92z$R@\č_./]ynn.ppcC? xն1l`k|_7[2: Rؿ]ER+l-b2<4fD+ڱrE)tfQeV?& ۅ r.GccdBJB`B)+uο)_endstream endobj 228 0 obj << /Type /Page /Contents 229 0 R /Resources 227 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 223 0 R >> endobj 227 0 obj << /Font << /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 232 0 obj << /Length 1261 /Filter /FlateDecode >> stream xWێ6}WQ"WILͶAlm>%B宰{x*nQHÙzz%Ҁ1z$NhY޾]F,$bqfJѱHPZJnn,lJ<Ya`Dz)AX74.hfAЩ B ӚB\[<Fb4|i:UxtκSOJo݋e(5k"H۫* cRc-:eD~#m!5UAJtKk)ĘP%B[݋*pDMY53@i`G ڨI~q'MSUM ](\Ld2KiJ4 Mnu1OT1?c.5Qe'1MckOh.ұJ UϡwyB3ٔ6eƩ}۸ͪbf\2wщc]vŦ5"~AVDE Cş_-y6[}{]"MQ ,8ֺyv1H~rM[MM{ a ׄeM|=c8dVS0H%{R+u '|v12,Z׶yzjX˪ۢ'6FJ%q% ^83\*2;[ho& = g ek"ӕr9/Aϰ:p̹C;ӿN^}9˄ pG0&v)5AJ,Ym}@pys)Q6Fl,qdhԶfLNsbԌ 9Ɛ(`3 ospe;i|ԃ.} p57Tc3 Y(EK_N2`9a :MA?|gsW}o]l=-D4>9'?y<vc]GsK:(ӝS'(37ɬ<Q0y#~@6{ C%Vg˲:4_ve$!Yb虚`G!)b(`U/endstream endobj 231 0 obj << /Type /Page /Contents 232 0 R /Resources 230 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 223 0 R >> endobj 230 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 235 0 obj << /Length 1716 /Filter /FlateDecode >> stream xX[o6~УE ( >mĈl2;dɦ/MaA`$\?÷ c)œ<19ڱd<0dt!1w7v Cr.~aĆE>f:<0%Lo4 hn@pV%A s'ˁ 7[ELoQLib}&(kN'Qes Q.'qxJb(Θ| K)x=JaUL%AT=܌x >ӝ A821 Y quWv0&8wlc Z*P+"_Iݦw`4lx/gX^ p)b\NA_z,6WTb-(ßXon}A!fWMfY +m˔Q=¨_yw&o ߱Gw; 4!l@936`N~ jrGh)/huA}qu(2g}ҁh~{.+%ɞnlw2Zek)Gf8ENYjgcYZ٬jI˄eܺsBdPGf)[lFY`0RźZ \ k-a̲Zy;j*Oa3jK)JmÓㅷ%Z ]lhm7XSn3IW2Ʊ]CH!C|pZfuTag>*4?*?k m6 lŞ192JS 8y~cJXb> endobj 233 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 238 0 obj << /Length 2056 /Filter /FlateDecode >> stream xYm۶_o&wɴ3Ot|d2<:#g} EʔrIio<".ų//dXn8j˖w %/]t7HIْ:vŒf?~ n; [2e1Z'Y?Dł.^P"QB / A@⟃tИU~M eZez_ق-zdF>[R`Tq/3R- & A8:͈Sϭ"x.ay&!ĞSߣtӹ.!,91 ]JbuT5%kvl S(%ʭb8&?ߪǾ;y9z0]xJeoQ7i$pIzٛM+OufT6}}-[e[~bH^mY<˫]UuG;/X66_;<J0E"$.98^Yn&8{ʿx:\z~r؜,39y-H"C ^Ę6k5[iN檻{mo& 0[IFEp >yT3cy@n[ᾒk0 ް%4w;&^%|w|^7}&6LC$eKMLvcqݰC3&"JZO])o-@%hJ=gp%=lr(=c|yDiE,W&sVF@ 3qpXW{"S#jЖ]ցT"(*ABiJf^Pn/?Ѝ}-e<׋ۿ:vLe.vCD(=`S!2"2jEA@ f/kO3Xhіb;*}vUsߏqhkۧX "׮ťj>~nՎsEkMREcYJ)[>=zz?b2CI=] x'繀yNg"?$b+ z~D\&th8i빿ZkwG/'K%pفO.;:AwWJ$Ajkkk̡5 4(k<π l?TÈ``X5_N+[/aZr&9=K5Ɍ)iRƚ Y 5m 1+ > endobj 236 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 241 0 obj << /Length 1216 /Filter /FlateDecode >> stream xڭVm6 _aI֋^{٧pq#E9'pDQ!׫iFMO7NDS,21/׷nPq{~)⮁ǶG;oW -1kz.^|£r Τ:z g¹4.$t7ߏ&#_gSCLgW`CVok*x>Sd`Z8}L4q!0]iL0{.P 3m6Lf>S!fk/ڤo~ኻ}*=PGཀྵ}A++VjU<,S?#ʸŅe!'Ya1A-e(6Wp'g RZ^TrܖV(@iW\(ԁRO<+Zi83ͼLhR[h\F&G+y<;a|_n4 pK1:7v۵Ocx'fV kk^v1v'&GzM П,sWSn1C:iI; Tm1]Kpը$6xR4s|Zw g<]gyf3&1?|;sWf&bJAmh >s) )Cܭ2?5֍Cc"30#)c0T-ۼ zCG+[·vOa> endobj 239 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 245 0 obj << /Length 1626 /Filter /FlateDecode >> stream xڭXYo6~_!/EԽ vhjV*xCk /5|pHbr|jzi9D[5Acm~bIq=_3jwl9mL jL74b:t>fڱqL[X݂iÿ; b-4.2iWn‰}=[a'Z2E|K>Ǔɯʠ,]o9S}C} `9+F |並#c˙otU]+Ǝ # ʜ{v"öaC3KЧ,](k]o| D7aLWd9EACUR:מ`5 j%>\L<7O2MD g<%SdodHwY!q!><|hH9ʼҩǫ[',. Ƃ^Wx1ar B!@z^ {iK`7-m]mqT僞j1=WJ^$شm(X"Jxk*YҼ3M.8tG0-d]!e,JK C%D&~9Yz3w}B@tu4 *Iǀ{:9:~TFъTiaveá-~ҩ)_)KiAhc'6qX':::ޤr Kx9_^Q_ d0 Z]5RS^+H:h(dW/)}.풕2_AAAP~h?߃'؎DB=@A-mdrP,lKaH h7~*rqv~g'st BV-ctv3uxY9A~sѥK8\:yOU-ei\yY膤me4|W##X=c{*-L*pUY& eKқ*nOQ'r% X<-_֪K\dyYvҤ2A7YR)JVkXw5],B@Gh Yכ¨;d߱\]hOvTɰޤ]QqQ?z;XIۚ^C 1F5Ա}њڎD΀`r \R:3GPݯJTCZQ\kT=b.ɽh<}G.?fIqvE~s@ȭZӀn9r KIph[}9>cpilOߜ]Y[>ks~?6ߦeE[S@rW=˅] +v_YlV/`Nh}CCV ?Wyo4fž)n.K~2K7Msk D|O"ߗ/,#՗~Q A/?~u(`κv4M2im#M"i^endstream endobj 244 0 obj << /Type /Page /Contents 245 0 R /Resources 243 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 242 0 R >> endobj 243 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 248 0 obj << /Length 1418 /Filter /FlateDecode >> stream xXmo6_!`_ b*0  d E-e)YvM NNǃsƈQ ƳO!cÈ?ߞ+ڕ ʘ֒! 9, sx-`Jx?] |LـoUp70cx> ~o1BFe*&Zqmu TƜk4Vi">1gH$/@I ?d;x"&?l@^ #E)vF`f$-).&ޖO)AB aL,3 HpnȨY{C@Dz1S[1_kDWQ39 4y 8(m*Z3M4Pm==9Q߭ɣ2{Hl^H-OR+H,gNFgAb_bD YKEŷneQV mIf3i1t[Tiyd&w?hs;|]jA6'_޵ow^_gWWgfw[nO;o {9b(r'ޠx=pYG~g7v$rtN6#;y%3 wA4-?umDb ];H #ݕQOA< H/r8R%/5ĆS;8#- @IDK(P)> [IDRySB J4ltB{*Tj0Ҍ[A \/@2V(3aītc?pGl3F:&8;44/V☇72&2>3="m[#'F;ͨx6?tfyEZ~^G=80a@ڰ^O8 'sUM7w x&mm[q ;>&n:Z`ޖEo$o[<]ڲ~&aMT,mg&~Zendstream endobj 247 0 obj << /Type /Page /Contents 248 0 R /Resources 246 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 242 0 R >> endobj 246 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 251 0 obj << /Length 1239 /Filter /FlateDecode >> stream xXMo6WE^D ?%r{ʦ EIS(]^[iZ+H_rXZA QhH>μ7\1b6H8sBcÂc8b!QO状mEB2&rv7faK^e_&#᳀)AX'|'G4x?D{xÃ|$y1ia]Eu'TL⺻inº 0MR/8RXp8rv/PSFil #Wd<Ҙ/P :8l=G>$j"N%s>h̶IR@[ 8M nl 0> 1Psa#t ~awV_l b w,_efHia_hvU~1 \+JAJ$HH9pcۖWȶ(>T*e+6.辬_Lstga<Ţ<*ݔK zƵ~ h_yK|wRqMu.lZ;5'xDRәOh'%h 2v? 9ޞuܦc<î N+_`ֶ+,cLe?ɞtx1Б/ʪNG\ĶEx#ۀ洭pXRA%g,] hendstream endobj 250 0 obj << /Type /Page /Contents 251 0 R /Resources 249 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 242 0 R >> endobj 249 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 254 0 obj << /Length 1660 /Filter /FlateDecode >> stream xX[o6~ bxbby([ӧ4GNْ'm_sHJ1:@%޾s7kaƈU'7$ Ֆ%7wRKyyqpȉP&͜|Ϣ;\1f`%L 4b{܍hrDF%A ' 0w0!sԶLib7[kPgDW6!Js6y9i4E 3K 3++}3!T&9͉1/jx0%5].3d6tHb,ti+6c=_w>WYٺM@V@;eߨb8řϿͪAf(fٿuxUA|]Wp.-ܷX-x0eRW>r>C04 3_NϢGg(r]p]qޝw+ L5e62uFu$Qt%*͉&. +CaZͷ֍s5RȴEgY#,`0a֍N^,~%:wk }E:džΉ\w= `f> [7`Oax(:tP%YZ\rG{͈bV  V> i,ƂkwVNxѸ9J@/1CM[v聐&\UbFkdl?~~Uv||#SJLWej;iB_e?TzAmbd@~%L{t]~q}{};~xN q[(JU A[J5 \KFnDHN3].,;T0 C ([JIe,Î1ZvA*yɀd<,\RO-|6h׍1yF>H#Rɮ:D 6;( xTp,WN.+HM0QkLe0!<}S1! S:t)#%ix\N%xNe@gy;SIrm7r}=T9i>&0l\W`Pn#QM3Hgg+g-,W380C=tS|B1݃G[85{E9; {W6=f)nG4lW*$)I[9Ec˕F7s_KTu[\WxiL_U6掎ڷ"X!.DHCz\Kh"q4VSG%0&?AYb,py{.A6FXV EߧՄgU*n᧍C%hw2>'=O⸨%Sq8eۍOe_<28h* ޞ A#p#q#XS75*{\qb!>;wk- eC]j@<2j{8 !yn}Fx+l'Z^E܁C0~$9y& 8 g6 -̆݇rw_ n6|~;.O2:>%у ⪂*6Uw\bendstream endobj 253 0 obj << /Type /Page /Contents 254 0 R /Resources 252 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 242 0 R >> endobj 252 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 257 0 obj << /Length 2640 /Filter /FlateDecode >> stream xڽYYoH~Hf_dAPc \y-Q63ίߪDR- 6D5W#JI&%͖F$fL$cv嵌 (:Wg;ξQm#*3T"gƣY<,& d~څS" |Ie7(^3oeٵiDžӧ^9M™4h){[ۧy/|+@WW۶h Eh40%L9hֆ^mJS5=\Zb[h9D~Rr[ ]P/ij^|t%8' NX3$޵]f:صy5wVSbbmk{ zߛ\qo7(ISA}+5琕ןVuuߟB8:\ T@`ҕ$<Τۡ.KF(TJ %DI(a(/֟mqejꮗ))]Xa9,ZI{/|\cn˺|ʹeo6{wSTuvlnV[-h^kQ>ATg2Gn݁{bK# %RKܞ٭!✏$!4H e<7-z;uSـ;JtJkrk6߲rwMbBa1 k"=KF֘o,&ELJ$jOB>C7!CHRAM s &شhPC |acE񤵎3w0sQ3 ;|ch2TwafZxU?0ߚ'8(1}3pXޢGc*pR;nawGGT3 IϨ$3feBm7E@ "#\e΂e ZQsn4JtLխFf1e @K 3/D#b6w[Y)ݚ phj>sGh *^ZoAΑ2%cd K~ dz6ܖ!\9w9QR{| J[!MADi_S}:GW&A`_&uo'D0!^qBuW#FM!e7ʓF_DoӁo MZ2Ɂ5oLS$8!OŽ `;.ol%s.)G`ք Igґ 4E@et_,8WcbHq]qtu>ϏΪּ88V VHgu<.LίHRGz5)8_kF}F+وmkDS1U'VG0 YR,bV?4\Ll <q]}Q!bq^;b;@! @"H󮹺CATX-k@lx*)$&@pHb;GQ~uaThkeԧ j/lݺBLiͿ) C 4z>a q!x HůFo0=ŨKRw $Q@e fSrDz'aQlGJ# ޿XfՉ^o|4azBt/' #Y $2(?T̶Ouq} Z\E]!wEu~'.\;G82Ahva~"o"g\P4R"5I"endstream endobj 256 0 obj << /Type /Page /Contents 257 0 R /Resources 255 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 242 0 R >> endobj 255 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 260 0 obj << /Length 4010 /Filter /FlateDecode >> stream xڭrF]_{UJ6M9v( ׻[Z :z}h +Tf 9es^gQW{ /WR›<>,Mo]x8H7X^EʶD@T\fYPNS*MjJl9efu\\TyӨ# RFdtq6>4 k!Bh¦]ϭVm@"`4_5+; ?%엎uJUR!X&';0Eh43:ܕwv,W,@^oa0?>07B/nmbz/sL4BjR  {iDj dޕIщ߾@02ſ(1'E!mÑ>,6c/ٳ*[ΪA DaՓ!#l0"xF:lc`!m0WZpTpmVOPDam)?,pe20B>x asZ[`&ic5XMQ- J ] X{D, Zgs—$^- 40fvyۼ#sx "4kxmKowp| ͆+O⫹ṬY.ĭa>zeJ:29`K֡,@$"=KWBϖ!V?+><#-`{RаH 1RB鉲_#݂jS0AQԶ{f_N,*S+XtGA)Vm&C zg4鬄)992WѠ%ﴎ2+$/P1 P@~0Ma1|0blٸD~@[(ҤROk+@A?M;>Pw?/eK@qmQ Va~:ހC]~x& D >s_YRLNuݜo9` N%oSr1qI")EQdRc$$jFD$IPN,,$b 8kc`ðW(%'B>,T6@ĔRXSo5B"N޲؍18DRLY, S%#@; ~,]3<œ rEi@(@} ❷tLӟAQP+S՘9V2{YpGwg/r#@ J+ϟ$upӤdPOgP-3H\Uݲ f1ϭOfŘYsM]"b{ ~fnq}("oG#P[WHa:م,H_>EzR%kƚ헵C=dO\sEo%._f" c p1I]?e Xu*](0v \: ^mO5w 3&v#JT=iXխp.l<b`_mww[̠`alPci݁|2ۿ҃m{d~ՆtMkCnZd& q@!uL9dP1"_3F ' buBF\*25\|nK5T/R/ő\!Q5w~+z P]9\rl{lK7r9H;W~XΣI?uѪk|eT%bQ&Ǜh3y4$AEUv]q,ǂZ4wOm8`bvy4(^g;:L3uIq*Uvxѡ]8ǫ}mbyh>U-FiQEHӗTA,%TJK߅#0TJͮCŃY/cbE[C]VDl7D-hł(_Nz*-ϭK&>L]R:LI9JԞ,PO;x5ǟ- s7vn[XJԘT.z-bWAܑ /`PHqq_A$Z>WL)4ϖqDHYa0m}/*4A<`0 RS| י f^N;rxȒI{'2r>_7QeB {jʳtN{@!0At{A+9J[Jj<<&`l YY0<ހ-F\ưH. ]-W+)+&t'J^ |[:*&~LCD_*1Hr6 5v!ŵE]z][*=߆,ķB*0JR F55^2[9 呭Low5zo!fgtMqn"H2߽TȜ 2NN8cE\A9ic140/ax C ϱ$_Cz )@_HxZendstream endobj 259 0 obj << /Type /Page /Contents 260 0 R /Resources 258 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 261 0 R >> endobj 258 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F40 68 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 264 0 obj << /Length 2497 /Filter /FlateDecode >> stream xZ[s۸~ׯУ1aIdיfKn_vw28KJQ_ u;L&I\"2FR|zyr ՆM'lFܿb7 %LM_|Y5oLt?a^2eHi/XO1w:]N %dj 0ct=&p2tecED-Ki,{7O:m}ujB`fggɛmuxt\$ᔂhJV2F !i2f=J}@ș1g=Ә[hb$U>j]/?CWpә : TfKQE}CFOoPLpTV]&&:5D)_p[@_?sSO-VuS*SUǪnNEb_X^/Ex=zeeXWKbi/Y2~Oڭ\k7yM~w/lTu\S 3h璼Yu헽vzM^P|q>If Nnэ^SԮ="\P3ՖZuE IdƄSf=c[CΆ5%\?;m?w7l=ZABtR+ >rՇv^\x4 HNC!eq'P"caO#\0*mi/q4ڦ[նқ;y "JB 1"%@GDe>!F(Fh@?)O96~}!Bsg؁KҎ'ʊ< cB4Q >Ͼ]};gY88(#]DDd&;[8NFR OC^$8X@Jh_R8o3*zwi-߈qNnqشndJUC\ҵ:X·:9NjKXu[^.WahWxq)Ljhm;+gU8\ȫzSx'Z{Y$6E޺x-՛\`ԃ}X< ҍΠn&X8w+!|CX:Fv)HnDrObTx,rG*o^86ؾ)߱:m̻KәMz(znPP d|m{ ؈@Ϛ=.E x)KkZӬӖDЌ(|a~lR}B(f7*}8SQxxQhZKo@.%D63 S^=으w7nRj$Ie ;6%W>V.+<>z[᭭@(5m<,X-?PTn?}<$uѓlKhg4@/5$F1~gv=>(eg˅O_&wFb!d[,N;r[M0E|ǎjDvEV 8v_mAmrd4&4MÕolO{RyY&;\ղDpw^ǵ ftygc)BqPdK  lۮIURWW̽ QT?Ao-Xe^"R!t>>ZeB򀧡B^dȈ>׵uеNm fu AqЉ_ZQ: ű-z$,VЋf@o/ NrNgfU iA`_:7t[K,f$-)BMH3x)-Л('O$x`Ev?:l a1a7~nzDD>IbfIP0X4SD-O"O"vNGzf1 P 񬞆#=cW6@m8#ulck<,f/<|デG1\kx:ǚ?Y, ԃ(t `weQ ?CXb w>Їe^#){Ǫo` 5?.eEǥ*#Tu_pKݛsܲo=gW&ݶ0:P~; caK.g5  4/yhrerK^;Yyp7*\1Q#ԿX};J_xq v;{_ͭ莃M(PBkj]PؠQߓBtendstream endobj 263 0 obj << /Type /Page /Contents 264 0 R /Resources 262 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 261 0 R >> endobj 262 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 267 0 obj << /Length 1879 /Filter /FlateDecode >> stream xXKo6Хֵh"%iFsPP$AjmZiGlw+or5)g 硟nc0F<)NhYp~2XH̯\~ysZ!U" !_-YXg;?,öIMJ^jg YPk%{P´v ~^..~Fh'WuvM)Emڼ;7o'DWժ.a"vJ@[|?:8Od +:b<}Ms}˛ʽ൝ ڎEv<7h0T!oy>ǫG'l̲Ͳ3v]ޣVq`j:v߷nkٵA/5Ō sΉ*7MmgNɱUVKMt?HFJ8V^!ig0{nO  d ÷yYPy!%:Pc+b(ށc4fiA$P[Ee7cH@5(*(@+|Ŕaڹ+-.U2(Ɓ^!YNHىHtQ>6yǴE}'Л*iUO4f h+=Ē vZCiPݦ*!-`< O9:Xz@$b d9Icgr1444j8 Vvz&-LG|3y,b!omWmq(kojK ~YBb&n+!mԎ_wuo mz8*}.K IG!lߜNWx]Ϧ} 0Ϭ֔=9h+ng]>"X8dB UsF<>j '3b 9L#8pX3/BGmܱ]J0^'h!쐹*ጫ'3~=(A(dד(jTPwpϧU=5$Nlm%e>g8`\&zvKh&S fcccҎ$OFpH"xh'8)[Tw~Ǡq:?SK'tѽLtQBm]ڷCa׸òIF|N0Cڇy-Z{|rc8r\'I %Ѹ"@P)ho endstream endobj 266 0 obj << /Type /Page /Contents 267 0 R /Resources 265 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 261 0 R >> endobj 265 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F33 21 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 270 0 obj << /Length 2398 /Filter /FlateDecode >> stream xZmoF_or&}_JW;#16[TH̾P$4n@"ٙgއyusq!I&|) hʌnV?Ec%SH?a(|BQ rHL $;k1 F?~-p?Չd8ѧrNUtgWr k0%e&v"ќkwxK YoᘲR8%ţjvB(h|DQE'ݝewk۶|.C[q p424c&J殰~řJ2іp +f*{Qov="L@ OV!c`_8s gM߀CgzA}g3N]+sPGwpӕU?$۴L&hG:a)#}b+Mg!Rq^:*O14.?}BiudBLz1IS*c&]>4ewL12K;{1ϗ3h><߹jmUdL&. l!&\ɉKy1i, #2n&-ä Vx "i=!bxE9d,2* 0B1Dš\ K"!EYf 癿֑w7q ax*dLFC}8%'zWNgὠ~5áKkkE  Qx}Nhqݼ db)&TN aoY#q쀣lBMqy!HI^$&:=u^,-5Y;hÚFUYM+ xAݤbBgLLgDi)t@-3Hxs%g.(vB#iZl%6+?sͣzjИvyWlN`=BGZm0,AN,8N9bb<$p 6A(40DI!,Pԍ}c8#!Tڧ`FHo\sQ>B77c 1;&o.sn|[gdoo;[V>a]c,n]zkL BY/s GБ^VgDȧ'Qy>؆_> endobj 268 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F36 27 0 R /F8 15 0 R /F35 24 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 273 0 obj << /Length 1281 /Filter /FlateDecode >> stream xX[OF~ϯC0wlJvK-}y8k;]NbTQF(|2򑋫'aƈU'WwI-Kf)c K6㛫gP#Ӈ1K||Ո{80e1ZvB&M>(֨;L(a y/F~N6>Z(ӂ,峨'!R) 0(Jal<JU^7uZmO |4{F A8`4͈jfk6KkڜI5qe9a:I 66faI[IᎪEYn $.>H0K/[ģLGj. As~ enG?n+tN#ϪE kL.UqpV1_vKCRpOu6`~W_GӪ ڇ0Xˢ"}0?h-f86Fri}M`~Y-K?̀a~Cay=8|q]F^L~ųp+{AG9XD0ʎZqUkg4U @Z5_M2l(_\=oC8Tv["$#dHz$d]*\ fL%%H:?1 M"iڧU1-8T& )28L=(i#H @tsdtJlP}cHx ]!k䇼瀛tDR!(]\ @b%7D ͺ[Rh )N-D1rK"%>u#i{`ϸ9!-4_6Oe a>1&5FP@d%qԊd fX]e9 ,QE J2emv;Ce|ȗ.vBL@/z a#G-}DWBh|!1Hs7P&>~utU޶E<{iGc=Y׎O ^@јgͿu͞bHP\>M:DM19LUDdF@eDfzӥ!m:Pdf<֤Ǘ :EeդGo; .sO^Աn,l=K\%sgy95yøC]x[_C9CVIX@uu3c޸32) FI &ڄ_H2GZendstream endobj 272 0 obj << /Type /Page /Contents 273 0 R /Resources 271 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 261 0 R >> endobj 271 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 276 0 obj << /Length 1391 /Filter /FlateDecode >> stream xXn6}W苓h@n]l[jDL$%ݟH"uxm h3s̅#-LO2-hk%OX\-?-l$ Sl3-srd)ՎcR"؀$2VgFӈ"V:g @>♅,[{4}[Po5}+@|) u:E#5^s@݌of>رae!6\`ᎾNtiaD =LΒʖ(L0 |mØSH2מg[fYV7@\X̓5 򤺛@#Lð4#9fS2er!;cN \8VMÕ׎ {Y;,dk𙀳yZT$T-}ciCVoby9xnt_eͯS 5^|#6QP>(,I4*zȚ{;~HTzأh.pX諽.O錹P^$"߰ ~-FѿSxZ ͇dM<$UnA5? bd"I. (Q`?4w_iTK,z|̨&eG3`Al]k [Ƙ)/F`bŘB`!]oiGl@EBR.FH'epWmXh;rYO"B|g6nB-ڒ$ :}>(w|1-e/(sr`ux e@~0tgm&\,.:>m,Vh^rhs, oE #PRKaUU&}3:1q`i)+HkB< U T > endobj 274 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 279 0 obj << /Length 1120 /Filter /FlateDecode >> stream xXMo6WV,S[7Y$ z-Zm)r`חHdf=Q2řy ߢ˻at<z F}z>%__ J>vGEw~yQ3u/A +Huϖ)3rqAϟiͅͻ@!H}ZkmO&L ;QҢ*$54Lt'SYZ @ms؆Џu҄c*Q /uBA +"Sf0i[@%MIVN>Ȥ]͞?of3MhnU13)b.d`k7^1Iי_YuyU`$|wtih؎I8y8`B8: e@Wkh4 4ֲc*F> c' H\I3Sc2s <d7; j _4?,_a7>9=n^\E㽰b$ 817>I(b.kTp?"_SB7&HPfwʚJBЬ25Xfׅ9$`N^>xl*N/jN^M!0yl&rsz`S5V{ ?R)e\1q۬ݬ*I2apJhqzf +TU ݂慫J@7mnmhj,e5N[A2D+mt(6e[|2 ҕ A c׭=GϏR4$ڽ}B&;}ռp[Q5e\S4Whzڲ)۷и5͑(fqUwWu|'iIz|3A=IV[^i+M:oS,@9ٺ&5Yg'$<Nݰ.r\Њqz)S߂u¯\r0KQY u%Bm']ڨAl76őE^'<>U_AxMukְڷ]z$@)2g+ؐ ֑8CQ N>-jrۗw'Gƅ7q8xnALbmtVOendstream endobj 278 0 obj << /Type /Page /Contents 279 0 R /Resources 277 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 280 0 R >> endobj 277 0 obj << /Font << /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 283 0 obj << /Length 835 /Filter /FlateDecode >> stream xڕUMs0WtjEߖSK - tL촞82genPN^Vޮ`<ilh@L㘢1LhބGH2y=x}qjv)>gʝ)dD s\QGӦ^"NjXލ$m҅焎0诏N] (&&.DbbFPofX`rʠ> z8-'] 2c[>V4LkVKh2 -]-QZcFpDLr.va]uiIl7}yKIP2̨Pޱ Vp3Y<~tu^ERExp;q{5 :'WC"k Lh5L P cݔ1>\A0_N4u@υ`d2L2n> endobj 281 0 obj << /Font << /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 286 0 obj << /Length 1027 /Filter /FlateDecode >> stream xWMo8W؋T4E{j͡"2*@"!)EUiuh â! rUJ}~㙅x{L`ZL*kc,K9pŠ$ G!?zǻǯ#Τ5*/">D0!KrjLTƌf413/4 mK=mo̘߆DqN%λDj۶㉷R2ykYSgdp6YbztLĆ,Kh22+c_T- OS]緎+$ 3C?]]y?UT{}j53{˫gAG)Į97V]}{1^xzpz_< cLE9 7DԳ/<*Lz D,pJ5'~ ?w@xMܧ+ȐxK.Kgt gMn aa+g\*!9uK֞8fƸGXnjK}HN+O菞?bQbYLsS554 5ŧ6V$4Z?*rۢ I+ـ'!GG6Eܪyv:ҢEI%bKq\T;h6XMbWKa-ぴɂ(2u3 `vD TT2hh *jLT_-1ZLg,Qo\D?`l?=y-8˂>ϵn9{Yٟe֞j%(sftrf\<,&X1P %Ǘ8ܕI$-89-F564u%׷^}pmPic u6LhP)X8ZDj*KVF~'>Fendstream endobj 285 0 obj << /Type /Page /Contents 286 0 R /Resources 284 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 280 0 R >> endobj 284 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 289 0 obj << /Length 3535 /Filter /FlateDecode >> stream xڭZ[o6~[iFIQR@$X&zf@m5+i;~υ.NA`QEr~2BD8_Fq'kɇ_t"8jkk8zu~$9v,D*qG?ۣף8R_&Dݑ`tG閿 SsBN#F ,'_IAbsйPb7FQ.u6'JuXUa}wg"qgQ,y,In% ܸ%ndO91&4!aD 1Q5!5(wY)?D=@69X4/Ld$`n xT5a9YhkO~n˧ vEoo~{)~|ř٫cOk~1GVTm9Igg?س^8-={ycec饦u]զ*p]l>[$By7m5}i&O$j›mSm`o6v,g|m-zI ]!~N >I;+bEmmNg 0zqF$ IE4nP5z 9+'X̤JGJ0 yv.-)E!r)7P8 W2 8/ϣOC4'/v#gMQ{cgF̪#US4Eul'1$V 4xt8',)QIzI$yɋJ"lq6jـ`ށ;-pYIP?{ZP~#{0͆8΁T aFz]4GR V*U "Y Nj".*O&Ÿ$?O `Z2 ҕc-X oUϧ{:P$ybn ig{az08sȩ|.p*N m$ye숬[^>T |ۢE8ƹb`W ۗS}!SѤl<jQOL/gzgdކ|G k;dg筹c0{JeR{ Bw@..p 6rS ҞPփÆ+ YdSWܹB\}ʯ(5Od,-wVCȢT^E$4)(oUqI^$|E]|\56>E^Ïz J(C$ЯgAB4f f̦= <"RJ@mms?P:q`4ŗqx]Me #bU\P︒V2[zIBeAo\R닝}: a i%FXc|A"{t:;N$b5lDpMHDm&Ȓ ߈JRUd=$rS0eq e4e>K[~WN04K nsZP`Ol!wr ; cxa<\Ϻ֩e%%9:2QFygqI6:˕V8!1z5MAę1et%SXuNd-e0O获<.Bh{ &EϛQ;Y3siUIEH2*U4P`;Ԕ7ãjX*$!W a\}+'Qz5?e0ӟ}ڟxrD(w'a:, Zgc{ $ZHc7y}b؋!R(6G卝+i> j&mE<`)yo`_e.1d!WeW;ǟUm ,`׊囮$+_VjH*)LX[Z8򢟈(zz{pHmG>oO`}^mY&%irӠ&uL4Im)]Z"2ql $: DAf|<rC\&#_@ <?_ʈ&Opݢv{Ga-x5t6k\dvYZ$:^燼cf6pv*_tA6elx@ `|4:HSL{i p:{Iw2$#_n;֊HNLIgCka4h|ޥIsۥT }]W 2zT3 !b#NڨIнbt?wpj"Nx;,u+<ցsݔFgϛ)c,V|NB-@CƟizZ}f~}ƏO-1 7SKPg?*c(lY~??ܨendstream endobj 288 0 obj << /Type /Page /Contents 289 0 R /Resources 287 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 280 0 R >> endobj 287 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 292 0 obj << /Length 2644 /Filter /FlateDecode >> stream xڭYKsFW*ecr*;^:і7eݒ KZ%k 5]_yOO_w^_~_ʹʼzv};>3f1*memw·u7_m˅}.{[Ľ֪6fhɫxrAwꇶkVfi|K=R4 >o5޾; #GnqгT〰r|iRZhk2/@xoHt='}?o*WpmGfRVΞ].lPο;NzWf/G}[Wp 8,k:d5: zNKЬP#SJ_L bp$A8ő6ʙ|5] ^8秗"س8'dcy ׁskIp h@5M o"~ǞltE.ԯ7vVfT<&ϔWeЌYjn%JP?`g)`NWuu8SP8?9pZJq\!-)~ i=_S:Q4-|z[|:Mn `TH;4=AS.Bt#:j^^8(0 S޽|٥nԘ# "]N#TջT7+UgG_:fÎ69GGGIɞKiܘqxQjpI[K"A"1ffLț-bsVD"qI&&J)lS7k\]K站\dŃX.{jP. B~ lB}{◸"._+N4{-!GXz<<aųbE2ư̋ *;kYGFLBUª]KIe$'׏Y7gݥvߣ2:G' 6\XQ(Z-|]xݨ74=W$Aph'B͉;e*"kS*n[8>,}<~l $\'A@`)C:dpm%0BlpUra\0ohm .{CLFvCH|GIVFĦReI7(3a̱os3>z[wMgԊq!N65]VbST 1zrE>5OH.HJf<ɠ'8 c&m6+DA?2T}<װYPK좢+ 4W!EyH^Nhi8KB 5>fʦwD> endobj 290 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F26 12 0 R /F33 21 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 295 0 obj << /Length 1800 /Filter /FlateDecode >> stream xXIoWHvdC3ђק"- C_UfqN#7wB¿dzY E>> KNV~=ۛ}xm)b {_mΗ_Lyga™^. Lv⧁`>P$A@馬=zI͹ L?Ht.$/tZ?=5+t=b ~k ~}}h)[k Γ_wZ<KN̠S)&9݌0w5pW~T*ɴrHC*7ϋ)S~b.18AǪ& ^=;fT)8Xc#@hͱE:LNDY!l]`abXaj"e >»x#,G"@.q*ęK!%]_53rvJn=KI0-JT s#A[B‰x5R`0i);·cT&;BE p/"+XAKZ-]]4A (%iM0X \x@G7e$60'fE̞]Q<Oe36\ZkuŐl*Hay t0@+*8S]nENTwB2M6PI>~,xGhZvYi~F .rq3GFcК)"̆{Rhs!)}cuX{&9vŋQMYeQ .>R 0#V4[7qXA;sHsaSLKMgECH6۶w__6o~:>C9c` %܆}u ^qW_ ^1+KCl@SJ[`f3]!I!ݸ/.k%)`?&R?R剀[ 5OJGx&T=Pl F8d &m.24-BB  ߿l(Eۮ1Z}͡ձ:k>Om̫F -6~_ hR[@S寤 ]%!ͨ{ǹ 椖awg_+Y=\iD翕HӯTp]XsjBJobÎy0tZx0O+CKݷzIbh|I NPWP Fٙs4e4Z襒endstream endobj 294 0 obj << /Type /Page /Contents 295 0 R /Resources 293 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 280 0 R >> endobj 293 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 298 0 obj << /Length 2048 /Filter /FlateDecode >> stream xYY6~lJ$ˇ͏TXF®~~4\ԹeB맕~~68cχq2ًu}rH?,M#9lZ ⿋Qb<uL3aSeOMz@W:#DR MeL١;WQķTTry~,zٗ.3$78M3 0\:ϢW4;حL!Ө`ҶX̙Z$1xKoGJC5IEJ˥6nOpv >{#=+DQyǾ)Ss!>TM1Os5MWPYLM_^B06{<0%>-Yo~xjyKҟḣX{àc FS)_P5|\ԗ:vJlHFmz(*RX:Oa<q7 phK E5G8kTHF3.|z^HR4jD,N|Mg*d91jIÖǐ R}cyMUr7WuL}LgfrH>40 o[HSnZ $rKNaTJOE^#)j VzoiSa-xDs~|H8ES v "a&Hq7"R;Y' ݗ`봖P\=2Ba,u iQVe`Q>{hH> endobj 296 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 302 0 obj << /Length 1304 /Filter /FlateDecode >> stream xX]o6}۰~\mb(2`XW%/$˕5ͰK([HM{HC-SqIPKMÐǻwovE4Påe6"< p#2F>h# QɄ1{,8̌ 4ax,||hwV 8T9<D߅|cJ%A|E1\W/ӄ/xVi!Jc2)8 %ik1DzR<)1=5 ٰJDJPպ˞ .{nX ifjF"7?CcIE&@ZKf9ZAK{Y1}d+O!-%/I;K@R̫xP1\gڳ,IhZ6#8 )DNB)Ze}Z( L]!)ź3Ye/Qӧ4|l"7a"ݤny,Ymd51OCbYz l}6fma#0%"+[XqK520YBX&,=<^E'}:],G'IvF`@n9A-D8ge!3qd_&_7ֱi 5Q5,B8rdǏ1^aƚ: =CJg|%T:GϨs\  Ψs.!kL51B*{ il7" F|L1Ot`ף,`R]faQ|4C%z"\%P- =x\I$`O 2_*çVզ"{P8OQ;Q \Q\Cؙ繑#DRgF<2{:ya/~"G> endobj 300 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 305 0 obj << /Length 912 /Filter /FlateDecode >> stream xKO@zBAUREb_ه)QdggwfwA9a&aI_E P_N8n2:Vst26#~@9 g"GEp\]p{ӊhM"`iݟ?+b4yh\()NզkO,sj:smFa$޻8ḠI&_^aù/g QPb/Z0~1U-ydҰiOU" :Ei]դƃqfG{ ܪlL`¸r`((ޞϵn1.뵙Oa?NRmeU7MIuQ5ye XgK?|yzog__Nݳhpt~vqzwvms5#mR*Gcԓ֭'NsmB^=L ۍηZWl%NiԦ6$f)r E5BD1KK9Ph1--hX;C&c]d;5u@R:#~緮 G1Q+c"/3s_',[ DiZ4̂ GK$ RWcF#[y̰afiatKE8@$5e+MA0c|`!ob_! UAyhxQdҽ*R/`?%endstream endobj 304 0 obj << /Type /Page /Contents 305 0 R /Resources 303 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 299 0 R >> endobj 303 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 308 0 obj << /Length 1011 /Filter /FlateDecode >> stream xWMoFW(z?SRć6QiDUwK2K\w Ao÷͐fͭ9c)]n89ڱ|0abZ 1ӏ77ƱinDu\ţQkx1H\GL*Bp((rj1 )j`.V_:_baYZ@JP֦pT 르>N6j2{/k@JÿA޾ݒ7o*/ڵs:Z:8x>*S%eĠ*$R;] 2^sYٺ,\vk]BTcoq aOBpw6!"OsN٣ĩϜHMtwz/S*_RQޟ"ϖtEQ)0tf5:KԒJ{93"͕,F4 byrendstream endobj 307 0 obj << /Type /Page /Contents 308 0 R /Resources 306 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 299 0 R >> endobj 306 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 311 0 obj << /Length 1090 /Filter /FlateDecode >> stream xWM8+8Q{6Ü#͎Zn$ !dV@ =h"r\am? 3F=1/'Tﲯn>m?J:E(5O7,KxT5<24ICVe{_Q?ɣD-?A 3']z{c8uw6ʔ 2|)l ZÅ!qNpf9sw sT 77l ΛP OMTIəA%Zk%xI}[L)1QJ.Cf}", F=A\6f! Cf@21{*˪Һ9?d9lFV`}c?Ds8s*ͱ|]s= ` g'{%KTz+/ר.%ϯ7RZWU-]ճhmr D(g`q75_Z-sG#S[*\-Lb ^JFTcڮ{,zj/5aZ򛥄yl( {8u&sn}$5ѥ6~]8Ry'uՔn]/׾ko J?fZ?i⌇voӷhًT7-u-.p~*Jx,VFڄBU|Mqdg,ɫ뭬jf^W:}±t?~ɺ"׃ D u9Lpy&Q 6d367%zk5,fL0.Ҥ.%b$mg\$i1\endstream endobj 310 0 obj << /Type /Page /Contents 311 0 R /Resources 309 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 299 0 R >> endobj 309 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 314 0 obj << /Length 1717 /Filter /FlateDecode >> stream xY[o6~:in)]ڢ(5C2dA![tM]]8;x(Qg@%r\x:sr mm&6ن釖6ǖ{r3p3ۣ۰'A՘Kvb3RT9 =59ѭEh3lČD5$\IgNG\"Llob6⑩}Ӱ֒kvzeKz[䯜)[ T ` qG y3^ykeW m701 4f31/ -_Cg1:,>@EJ ga \r.8vMc[g|e983 o@:<]FY(Y VOXs6MW-g- }G8kp0 B+@ ݊6gOAԴ6$& X"+9}d_ڊju z\_U VUrzO iƶs ObIxw7NOUy EIt)eʼ4o̩ |uVBj+?U52AqW"Gט|tTys V3"I/_8!S<dI&:h[^VЕCtNZ7;kWuj$^<~ <(Ee$a}T;$c7[XGiq!ӯ,j]txwS ˸a7T1]]7x> endobj 312 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 317 0 obj << /Length 1176 /Filter /FlateDecode >> stream xXMo6W"D4i& .Ֆ7.dѕ3"%K[E=*&P": o_Ia;k7n%3y2%w|FJg(sF4Tr92ͷ?9tH~atw7ͦǛd_Hڿ+yJ8 ¶jEg綗'q]ϸXt뭸_➚Ӥ,5qZ{+vM0Ӈyqj1 A8 N*7Y}Lizz J( BkUYϽj~o:IJ桇X3(g/dRF%|9UoTsT)+ 1T;C% ` !K09 Y e(<&,rB7Q5 yĂ-%G4sM86,(s;A!v' ?ӝ5$1zwgV P3؁W}n\_`i'jy wgmI_#ٿ^er0p>:L昵jYXڄq]*վ?:=|p}1WwG׿lIï|hf4MyaEvڢU!贩F{4x춻w RwrL@) ;9?pLi~Hjz~_ȯ> endobj 315 0 obj << /Font << /F48 77 0 R /F26 12 0 R /F8 15 0 R /F38 40 0 R /F50 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 321 0 obj << /Length 1705 /Filter /FlateDecode >> stream xXo6~_a`/v1- O귮([i4Vf+Kҿw݌3坙 g{9C޷?[Y1|A c3C;@[.-Lz| aDžnBeC_BXٸ,/|qe,!,)-gi;|)TIi9<̊VŬhf%א+Rp9ˬ3EcZ̄.5ʇ(=6 |:@C 2J|(877< ǜꍞ Vn/\/iٗ7gV yM^?ѣg1}Sy^wD3j$׽Au7sQv=ۺꘉ g*Tv,Ax֟O`0"K*#SnӰc8VP꘷?WQ(%׵7 bY !VLXNZЩZmCiцF}) H \f^/)d@ًŽAI&sU_X%d8"y&t]M4j R.OibkJkv|PtrJ`=pϫX=Z0 b)R\ vzTM_ء_4i<зo =WX/M7h M0cƫmꥸ>5w>h@7[cZ C(oGVU=#isSrt\8U N[ׇ2ʥ&TO;:n;jTzfOr7{{ ǵ-S6;^Ml]{sfp)/G nB. C) D .P:&!^?wEG키iAZYӋѕ6l|xHH iG SpU9,ɣZ2(Xg7oyWZߢ,\V񦼻Zuٿ>e Aw^<{jN/fO]b,fYbl9OsUSh7V˰ F H8vѶ,aUb|{\ϟK]UD{ġ;blڐ՚ȗb2c͹ia`%\q> endobj 319 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 324 0 obj << /Length 1014 /Filter /FlateDecode >> stream xWKo8W(͇Jo v[Ңl%1Wekr$[H @@pqU,LRxkPeY<&,[,!zceYұDHkc,/ 4%<\òIAb~E?hh%DX#㿡C U$_Fߢӣt5 IEfz54v3q?Hb : m =L,`,TE*)ŵ ":Kzn,qB& 4BNikRkpd0Cg5) tᑙT3faHٌXaC5el~ݶEaw~k,<oK7]%{J~P"-w8^2M8l~<~C[~ o]B7N_Ů/6c<_}շm^Tpm?؏] A$]&ryWuFI"/ ,og3#ɕeQF\WNJ\Y!Er(ZpːNP w2d/( *=ApւS5ÜA)] Y4+\x8?V˷I'z( &y!4HbMP4~B'(\ Dfv?|y| 8tyؠ> endobj 322 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 327 0 obj << /Length 1367 /Filter /FlateDecode >> stream xY[oF~_z3TT TPBڲ{9zh#K)Mf  W?&7t?r4i2t > A82ІMVti CckMo| AX䘅%S p|VK0^z]E|[$y83O٬?TuoSz_Z pUv"&+H$/Uԭ3C 8DVͦ_W_ly1TFXnΜnVDPõ],aM^ZEUG>3/k!Yly󎸿崧r%J5X׵Üi[Tyϥmư-D+1JzU*r=Aa= &^\.#FCH]R Hew έ|+umW0LUW0"J-qA7P(pecx FWplƿZmw ޾鋗?<=Y6uZWhTl[nX|di.S\)Xi@Gxdv2]3?Yxc0x\Y(`~+vٕ-H%wCWoRW+;?Gw٘ 5< w$LGQ솄3$@I2rFR^әh endstream endobj 326 0 obj << /Type /Page /Contents 327 0 R /Resources 325 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 318 0 R >> endobj 325 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 330 0 obj << /Length 2402 /Filter /FlateDecode >> stream xnF_!`_. 6Eâ[DD$P4rb7̙s˳#N)>9ڱ炩DⵢcXaPͨ\YѮϦ?+qs6cJ_n~=:[wgg^(aL}}ٿbkdjJ(SX픵-YU$9jPEi0G< A8rf!Zc",eȲ g! b,,s$N8^/\/7zӮ>\o=7LE8+w}۪mOo)`~Yb9kr/_X?̣ߪ9'nsUmúj=#Hqo*αzюx}HI@#ӔMiaݷ8Fen6m!__du_R^ƌ=e{ў:^FNީ4'j9FʆbVIF⟻-:bvW!&1<`!"[ X( ̀b9?6Z6Z|J!Bݼ `On>o7YKׂI-@_RY"(Ap Rܲdښ)AFEˈAbB fJi}|Erh-DI)ںA{VPAݺ#PWOQwM/oī! V9r,l[r#qhMm4 NWX AcM(t[" 'kú)zo߽o˲ K295.P6Sc~zJc(R pnNp1`JHTC1QZ> $Fg^ϣGJW(kuH Ҹ/CCE$x rS?`\Qf/(Ly pJ]b%Zh69 oڭ#-B|f->\*9kтX&J f+P1C_F-!J*f(Y? H84mUغ-7o1{{ Oz.CS] B6!CTpT> ʇW pxc=h 6m)#c petL& .dqa/֐In-#q;gH3NwDPySFR99HAj:VpkrP1n7摐mQY1=Qթ9bMN&[=4GIx:Aw@Muw8Rrr$T7`#cE.`Q5$ꛞ!ԑn\V]wYDt5|܈K }4Fqqq1Sڷ`n<2n;xOc]Kw9n;1@SeXLP!yw7m0I><:HcM 1T睢U)N^F@V}A?|/nNN_<( M(" $4(UubOek8Y"aFf~W]^}%|<~OAL}U8{V983`Sl:fHBi O9[A rBC6@aX9gn3D;(Ynн<k|YzAc8fR |l`j\.CNMQ}xɏ$T}Tܷ OXaY] 3Oe p/!<Nh.Ƅ4jIG$MgĄ$Zm}qNv2`Ƭ FX7I]'jcn32.IlBtHo޹/nlKY GcAzDa#o4%Ec #Pu<ݩh} AFo&'xh]2:endstream endobj 329 0 obj << /Type /Page /Contents 330 0 R /Resources 328 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 318 0 R >> endobj 328 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 333 0 obj << /Length 1041 /Filter /FlateDecode >> stream xڵVYo6~ׯi!qID)qh v-`8 {бq_!Yn4H CK9}sWKk~&6!3;;?@8^9>qs?,g 1 6V;.q >y ԰K:لD$zֻͭY>0 y`D8 l yfe{+Ԙ(aJX]\K™$0F?poxL8o%>^:)R˜Iʉ3J&Qrgn E.x0D1Q p&'D!'dΤ?@;A<l#D\9 0(2ݪr۬OK{̰%e:i>QZf*͏obex\oJ|nE݈;Ԉ0;ϺWS>&c(|# l>[eec|mS'/Ox{zur\\E7>|{u10Zjs3/ zNK8fo{mB7S2Jjb+M&&uXSokapd#4+mJt[ǥܻn,S8\,$cC^.4Z 3bNӼ ӴS΍ bG? ҽQ85*De&TW^{PZ=^)\0/ Ŏ2Zuq!z1P'R%9EByRWP!M Qj)GTZWYS,sBU) nAJ <&hRH貨 x!vV-֕0FEPkFHO$RYM?~* RQ ;?!T83endstream endobj 332 0 obj << /Type /Page /Contents 333 0 R /Resources 331 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 318 0 R >> endobj 331 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 336 0 obj << /Length 2048 /Filter /FlateDecode >> stream xڽYmD_IUoh|&8m.Wf>3ٳWL!5/ׅ+W?͙^rųW'XWP/su`z SQvQ >_65 w0懾]*@%4(CEQrP8Ͼ~%,,@ᡇuy?.A7ۧ0F %(n0uܢȍ";i7v3_!%UhgaOb53Jx0x "y3~4cxN )/y5J)1ڰY9hG)0y# Iap>_Ѓ$SS`> k ˱L) >A6b_g4BwԦ D=T}8gwm,+eY* A4qOM? 'h@֤=VhQɼE.tfp7->n_&~ⵯMmx Bi/ь?Jϫat˝#ԲPu1 4Av7M\a0n6%=^f9n~X?:ʳP yԨ& d4(1:B*e&ZEXK('TTU(*`sXPF`E[WB!;!HexkţPG qҠ*W 4([$i97-G(:gvأ 3U4VݾD#Qr]GU]SkviIx7.npƄ2䇡c:unṦ:QxH@\pbrhlUK&>v V};FI Xzc470e5*NOZ@V6r$Z(f Ķtܵ)-tۄIH8Ѷ%X/"B4`G`Vkak\֤ηTVtEw9 Cz/iEMN0lk4>p<-濥Zc+!i,CT/1.Ie9aBu-O) 2e+$T'u.})9 lgkǧo-{՝2b}1c6nVwhWv#Y_)+!^p747zPv_?𽲄Y1K͔s>CJ7;r*rv$feAMlhl/ȆQ] *bA.ܠ^?Ɇu`s&66XFC(yT&dBǎ[I4vTHjRͤG=CS~q8^3-y`&p=\4x:\mʧ O.yQmcNRoUT,C\pHJ;Jˈ:|X aendstream endobj 335 0 obj << /Type /Page /Contents 336 0 R /Resources 334 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 337 0 R >> endobj 334 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F8 15 0 R /F36 27 0 R /F35 24 0 R /F48 77 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 340 0 obj << /Length 781 /Filter /FlateDecode >> stream xVKO0W #~SAUF "6v m~&u +1CTpL%&]TF]Es 1 5`Ȇ&}1 !mPSGX 9|B#jA_W}5Q3q n;x'9Lgx3Gpb7!1-]tOy:KPEAzQLw{Y^N-Bf,!K@&eؒsB(BJB̀=Vguh/4 Iry\w_cl gf/JM]jO`F:[PE :<ԣuxknѿ:*kJ=]JZ2KHCQNw},@/[-Ta^>^cyS~`2OuwǏparo #q-2"_4Cnua_ƴ+QBz2 [be`63y uX¾d ^ zh_֖endstream endobj 339 0 obj << /Type /Page /Contents 340 0 R /Resources 338 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 337 0 R >> endobj 338 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 343 0 obj << /Length 758 /Filter /FlateDecode >> stream xVR0+ZzLY,:C&cClIh^Iv'2ѹG\̣׈Rl`h?4͋ۘ$1zv%HD\dи]£nQ//<|J*_:TD]Gs 1 2};4Bb-n.sx<pFԄ\{7Ψr-Jl,aa8Je> endobj 341 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 346 0 obj << /Length 722 /Filter /FlateDecode >> stream xVMs0+tLJo4LԷ4a{b8Jlb.xI{g_Oɭ0Z)9Ή) dZ>ĠbVnTHk "^ᥪR7p_#  _##e]ĨF?8`夊@ގWя0#]k'OFrӗ <q51=",W>y46_6D(UJ"/fQf*DbWl!(g,#iǵur`zIDUl}=n3a0` Z݈>>{ҧpW34ZL {cy~Ǝ? :H=1,n|;}.C%3? 4:ຓlC mf/endstream endobj 345 0 obj << /Type /Page /Contents 346 0 R /Resources 344 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 337 0 R >> endobj 344 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 349 0 obj << /Length 808 /Filter /FlateDecode >> stream xVMO0W k@ˁEjHn IIVl/Tgϛ\Nɵ01cxkN,.Ҍ%Ħӛ5оD1%uMUcp+ӈ<.SU;"MDB U$~F?6Ǭ5@ C96;XШ>!A%Ca+l&@{q\PS"v9 օkWe޸AT'BN5D)إZ%ZJ5Q%eM7MJ2Hb4c +81eU/OY> {d Q +~Q~b8`vre bzm&c; tz:,.ډ CطOdw y]U /<eb[Mcڌ_n'̜o]֣W"w_Bb u9 ܾW7y/EGӷCm6^!;)>Hn+oɟT2+@qK8㦯̵tLʥ$H}[b 2NfKy1GGz^y2Z Tk VkveRAf>JVynЪt%rX̆O jC_[}ѿԽ |^AՏr%cxǖ wH DI.N}EDI("q4#I VEz :*HEsL`*'05`|zvendstream endobj 348 0 obj << /Type /Page /Contents 349 0 R /Resources 347 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 337 0 R >> endobj 347 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 352 0 obj << /Length 862 /Filter /FlateDecode >> stream xUn@+tx2GصEYjX*r!I;v^ (q|ν3\!!AC()Ґp<$B>In|=s5W!O=9<%^,0=Fyj] 2c`ݯJG2cb I)#W̍&V]5d¬$sjd$*e4f* YT@|Q&y:}l'bv`qb^V,7!K& 5" -i;vmO#X =@=z̳iImˏP|5-+nXic OIӕgZ%axb7$fJv;Iߩ-(ҋ_<>x"ԠQ˻ c' k`fslk2ܑ9x'RA[Iehmͩ@$AZBNGzWKW0eM\SǑ1eP֮2*q@L =g(ŗ3yNjCf%\ͬGkQq=< ƕBf%?"b'۔aF{#'lCjrC}_> endobj 350 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 355 0 obj << /Length 885 /Filter /FlateDecode >> stream xVMo8W(SuOi`hm%jK-ΐ,Ŋ-|br^ΣacƈSpj.a:XB"QtAJB41˧%M wD#-fk<D_{"(Ϊ|Pœ& y>Dc6t#eZeKh>`uPv_,1Z1m0wqڸ$. i(M`S!3aTbipC) R5DkuJsZ4Hg`$l7e6y6i'fv8|pepWzWS8 cI`*%CNFW+_<]Mn7~L{8Fwz]ToO؇>?4>0'f>PP@Lȋ߲^&_SA1d fw3nOL^PTi)%lv^ yQ.װvb6be>8сNP|h\c)j INЖSBUxE ^u칛_P(GR(N,C*$#Tzxn}˧MYKZWel+Pc᩠Accf@%4ϭ<{Dt`Vfendstream endobj 354 0 obj << /Type /Page /Contents 355 0 R /Resources 353 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 356 0 R >> endobj 353 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 359 0 obj << /Length 832 /Filter /FlateDecode >> stream xVn0+t"n-As)ESB)8HSQ2$goft 7L 9  M>"bvq@ b}.)kh6DqXc!)%g#2?p6i_0hM2`6n^O¸U^%!.:y:Us%gZ!)K&j](ƱciB,G#63!kL(+$/m[kVnCۘICDBcP̃hE (2$t*NJBP` :Ai{9Ⱥ(jO]d$0p+w+ʉBBFύj=S{_w,N^R'u{|Yػ>\yi^6l5W`f͢ՏǎL+0:.$~Rh"txq 闛UQW߼ً盯ڋw`~2ѹbqyL*NEhp3E{~4;Kx[٥}5"ʿfTRg,]o. fdPP r猋(- Ի{1ՈC88@4?#o 4n} \E8=ih#G2vcaqDUI*א筢@Te׀?a0۴UZf&> go6C4J7R{)HJ)EiSԝ@/;)Vr(J(,$bAUeͩX«UV nendstream endobj 358 0 obj << /Type /Page /Contents 359 0 R /Resources 357 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 356 0 R >> endobj 357 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 362 0 obj << /Length 3430 /Filter /FlateDecode >> stream xڭZYo~ׯ%fwX#ckx$֛mJb/2%i^//b% ]pM I)M^?c۫3\*)̛g>|p&*4DUUv~< L\p=S$ƓUNlQ YYIit_ʒ\DW|Nrl@ ~ 8%5)2)3L.vwӶ_s 7^ Wzz~t_467zeAwMK[8= xWh:WtX_ ,'2;E+PϩKY~BI|ɫO$w`V`]cM\WUY?4DT c$F5 vӴ -ȳڎ g8ͻPLUE"z8%BvBވY+UUw}?)8f_&/2pVڢub 3[\4a^^><<$];NM\GL(#Ǣa{1X4;dQUcxw dQIKQh @-oq od*ZzpgEԻ=*hc஺Eă?3Suw[j齫{f5 Aeg;"k P I#Q=EaCCcɕN-qb F7/C30K:Dʰ_ &[hCwwt ^0aT |!^6Сw#ԥF,LXuh (w$6΢+|ghGV1,A٦aC%c3ړo+tnyKsW!ܢY;''9xIF*O2eԼ5cU>#Lů7VU"3*פZt)6ȐkvMQ)Lyblso#S$Ӡnai,&Th܇ q 8fGF8քs]Y{w''6x9q&2Xg2Ra+jmBɵO -sgA(ɋ!,oB6-6 =6CPaWv)ap,Bm NL/AX`Fe 3x-g]ЩT̃J@[%&iWS'0bkS|3L757$E,t+J}7!2ow Ft;;N <{%i$p˴bnJ'ܡP^`Eew>U?)*5nnr~3\?ERZQ*&( 0N%~/OqgS -(tDveH`-| Ac<c@Fns/;+q B8!F?Igk!/2;w4Q|R$݁c,c',F ֫T)H\PPHۋ8W& A H""M`tER yj.xyEm%y$mӢ5i* |7"ohd(o`ڂy-׌[W\MQR.wE˾ ݑrC)E8zHBgE2rVl&&3$ؤȵ]K+2w8fʂ6088Ys<-9=/ Uo?~^ b$rvRxRw䕌du\tbK Xk󈯷goܗ" n9 ")UDZsU3Ex hri QpP|R|(7opbcF[]+[͢<@?I ibD`ŬkG*ѥs;OW]?>ADag'(e{ͪ⏕<^+ >[^-Ơ4Je\z}AbEO5VKʹG۩RVtQe<1Th/'.=n7tw@Չ=B,.ىAՔ^i.ir GRER}w>VCC2I6uވd\]3=ةŧ({os1[|N?܋g9+ơuC.eɊ>V~OKx I&;:+;H+'&J~R REHy̻rW~/]«΢.o-UG9Q-^-3=Wb1.fGv3Xq+v.ʛ`Q '..T+`vaĝ(9/T֛hJ#eSZR|s0Zج[sge !__9 `Ԍy Ѹ5dGbdZhoҟWi-SJB%)]y!xi/J>-ˇ嬂}=dH\?M|yendstream endobj 361 0 obj << /Type /Page /Contents 362 0 R /Resources 360 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 356 0 R >> endobj 360 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F53 365 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 368 0 obj << /Length 3250 /Filter /FlateDecode >> stream xڭnF]_p >xycbx7}X$H9,ɱ,Mr Q]]]wuOWoM|0ruy̲$&LǶD*]yl JJZgA ,x4)~2&3&ѳ!gR3 c)93Csnl$8VU2&!i)(>?ږLόϘElj#$ѫ{L6#uٴajI|c# rM4}gH`Bw<_$@<ʼ:'YqJMo$32*r뛢p4pP sq!PY&!%KG'4a Hw:ԋٖ'yUn/hyG;.A pbwo#;I39fA>)"dFįD8=,Iђ MgzSO2:X\LY"e5{~Fony_tdD4Ҍdoa [㆗.Dp1ቌwt NPU,E"A%ʆ(?[Ķn_qw^CvE]̉e9hT3aYI vY_;do"FwrrɞA mCP*"2+TBʕ}&lJ_2.O ږ]Y~#k2m:C܃KiLf]iyzPt9)kyf,g=Ȧ,k7|פʀ G<Ӗf6$D*e芯O>|5fxK@&3ntk[}̊'.auhgN1p5O"*n8Ji^" hd8g Ipl\U'a!:s%J' f_$H8's=駞HTKBWf&&-S̯NS;!~ޖۈ]U?/\*Gr3=P0Y7)9.%쯘jƫ){gU&QfN|FSsM݁C, eH ]ebb1m! o"GWtRKpX?"J(1)>d[Nk02F,W j1L]]{bn%X)fz@F-Iضr>W?[F-B% uhz~~j &Yt]Nc¿)8bJrc-I}CvA~O:T4&ɀW| 8Gfw rmXJ.#<^\]߇M/\BL[7 +uݡ<5CtF{R3)ay[Iopo/E ]8,ơJ.7^gt.Bg=tPpp$W^ã[{|O6'R%4MܶVQ$fY+n:|ߠ0a {.W.@ /=E&[վ1(wkIi`lYarP{81"4syb/6%Pg<~ra|c[omgWK߾ $DbIc/58X<ֻDSOcJ a&7eƳ2 5~ @bZQ<?rWvr#S5Xe> E1(c|=L剔 >XX=כ` P=D7' GqQ:]\8/3O^!},J+=CFZع;M+ Xn4"`nP.2ʴ9c> endobj 366 0 obj << /Font << /F35 24 0 R /F8 15 0 R /F36 27 0 R /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 371 0 obj << /Length 1554 /Filter /FlateDecode >> stream xXYoF~ׯУd=)$6nDoI0eIw!@ {|s|4arLR|5(S"ӄi@&诚~p>0c}8%|4R]Gؘpas"9#<~;ˆ){`Dtl~}V jA+-YQ"Q$ )%R3)SQ$ sJ$V ]1"^LJK@E(debƕY[K"Ԏ>cn#TCcsJ JTJCX<ɠEӠ1 &@FL "Ŕ3|˯N2N [!஀w\ړ1fH$)(:uU>7wn}u9 ExY-zZJwY;ol6#E''@ؽ?yLDz6m%v^P88g56QcT5 X;\">-2yaVsdg?$匳2:uB^tJfxs`ƌ؞;}7ɥޕvǤPґRn+.yFhvw)ʱZYb$D!LÌx&Q*8}1{ =z^Ui@}RۦBPNkTgqNZPZ=':ӧi |zk Cy-52)̚3I ٍ򼱣Et q=_/Zj ֙;-UR0gve[nmSn's] C + 2t;uM☄`":-bG1X3BY=m{+)Mfl@e@;@n=3Y<Ī}Fy4\?[˗PztCo61nv]ax$$ƷYʺs5zPm(M~EeJ^geyul-[|Ic^:: <$cAsK[ZʋdyaE.Mz&UhP(6.2$t]TcEuqc_ݛُ>|\eKOt@53U2T[1Sg}W2K=jR >㑭^Uj"Ҙ^r`U ueS+=08 HŎޮ A֔ Ͱ&&Z~!as"@SJLr$#Ln Fxv+FU?$mkxS⮇ u&JŘ١5QF!=+d<6IcK$t+5t X.̝<}" $NH EDFgS<)1Dd%NWb{*iYh-Q}c0lXrbB$))"Ap?!dasġ`D(S@ /_nlendstream endobj 370 0 obj << /Type /Page /Contents 371 0 R /Resources 369 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 356 0 R >> endobj 369 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 374 0 obj << /Length 2072 /Filter /FlateDecode >> stream xkOrpIII[ )r@˫٢Et|+ԒIw;Rloؓp8o>[~k)EfZ։?%"]S &P_zDZ(:"Fu W[Ieki2V7֫V?Uj8KY*~`8R $?GJ $v.ߩ6Qb )~,ɜlp_)涋ȤlBE -UM'6e\HTa: Hnϑ{_,"ok͵ʲNe:K%,Ѡ,Ky<dl*4fZdqF:(~UCkb aPS&?G&"LE3~TM1aV c} +z`t8kҠk]A@$9?ӏ#Ml b3: Ah07 7l9@LH_Or@b7`@#PIq#cZglQF?_`7HjMhu|}PQ᛿}¶Z)趤f 4R]oG=I]9NHcp7m8**eӃI0h5yP Ni|"Q2 px.J\kX4Y:YǺf'0}=.6T qrG;sÂcRT."P;4BGt%MjM\z|yPB kLy :<6HS $)^4𩤖筩6E LhP;O_8T*9Y*]q+#Cٺz(qI LKa+E[2!`,#cnJim7Ip q ݮ60 Z7ݘݨHK@ZW  8S"Md )[  ul|W e5DM?2KM%Pndpپ{dnn@B{Ք "fem8?1U}wJnvJ&*(fdC?t, D싆rC) ]4%0%Ȟ fyעbA1o/}0h|6!xǑQ8Qx?t2J (iU jG "=$*_hi;%W"a]\[dD!o^stH:$tKjdPNƲaY7joRݸPX}l.䮅է mw-]3LϨY{e?r޹Uszl{Y ](eD*SL8F|!蕆endstream endobj 373 0 obj << /Type /Page /Contents 374 0 R /Resources 372 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 356 0 R >> endobj 372 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 377 0 obj << /Length 3719 /Filter /FlateDecode >> stream xڭZ[oF~r`M87r& ,:-6"އE[DD%!sE,l#̙seI#If)Dz9Z2oW?&YZ 9?KhݩWkh1|NZWuY:a@wm?ۢIH% L eDf,rٿ3|.;>77N~:^ILe:K='-7'_N~-NO'WI^6'ZT_|>wGpQ\ I~b3*m*U_ηf ?Gb< &~H(ۻ/~ȴ+ 'LHf!+JxLjlK&DH 0WS{;?WF ޥT"4P{(.$'.e*DOϢ~¥$_H(bs1}{BE&Ob"BI 2zOɴ"~lWYyCw6i쐀Zgeb]ns)&Md҈JeìBLj<$BK0l} _i׋X!꒐J '?#0.SYDC#ŀJx*!xĤ̈́+2 c2BkGLNGUItKLϗUxI /0 d#-d74ScT8rSO )'WhpGp*4e)&t_2'3mW|@#;M!YpW*3nf-cַDD['n9]#Maޡ쨴-[-^rC\;7݂Q tO 5fyEjJa>MCfy Kŧؿ>.a?@K؂okcv=c[Xy5͐i}xƬ=A2;Mk No. Dj А||vv$RImᒢ%U.;) I=F| b~3~.(B'JRZ~sXe ]u$.*^(~˔M UWP=RqF7U,hI.Cv~jmEm9b*S1 ; \}<1e!\ 6_,ԙC\a0FQ5*_2(gu VAL Y|-;GP;C=dGLNE(TNFiR#|RxDU=l72Gp,ňt*nrtmiw9H:X]SC daڵkKR޻jL_|e ~ȀvǢW(>',yl:&$ي*U 2rt\O9Մvno;_M/C4 X+pLkA w{HI :jBcنT:tek @AU֕?08|t8 p4) ߔd{k Xb38YEt@f~OyIwԙbHr;p:U$YQA>Uy4*>vhQ%MB>'x~ݛL^Hp C?|ţB?ب],P.`dd9>o9xb+\e@@1&g"K Qj~eo&7,5֔TTzUC\cEO:~̀O]'w [<2^WL W!ҳ;&{5жjnFQ[0fI蘿DwD"XDfz#ZÂԷ]]3-HN*@Mrvl|) HB[Ii=90F *ikֱs $CX2w2e|b z$D=G8 ;Qxn«10>0h.Ưv"0WG@n&4\/R ? |43k3cv?|Ɖ/ !V.G#LYNϚǡ|Sht&N[^rJ2?V2 nÛwFpdݠ&kq븩LX'T]/uu_$a qs( dx)HlTt>P ]q [L,n"ӎas FSPpx.viۛZ^}=}P`Qj熟ŗ]DA,RwQ 8p-Q7eWTbAby&xpfUĪ]Hn\A"vkw͐=Ӯ@3D3Sl:`7=> endobj 375 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 381 0 obj << /Length 4321 /Filter /FlateDecode >> stream xڭ[[s8~ۑ,.Su*dd+xf灑h[!d~F ECr2TM`hn-8<|q}pRb6?/EuҌ-_}7+|wMsS?@oYw\a_FW\m+ 6w%wd34]"ez4qYy 1? m%p4#Ynvnp*./Weh-r~{o8sPX6l-4t]sI` ar$”{XPRJć\-_hf+/Yk+&_^ [l.o#<{/ Y)iTz]|Lp)$x4y%Ը~_vz3jQwWŲKo/[ip$_O2SɁ~N_>,yyz/7Wp= (-:g2Քd@l+ƵoCЂD?0nppJJ:!cm`,j.7 AJ0g""8ȷc WyxWSq`P|yd^p_@j%Kή5 :o.$0hqpK|BkA rCvмm4nlH<װxi oHߠa#8t }54Wߏ.D W|8O*mYe]lD> O{naTK>a {y ɳtUY!`(r۸[67\6GUFt(Ma~9pƻ8ǫ?B˧E\ePp>|U  Xia@|1\kOspaCR&#H!A3?toaz5w$GrsH3Z#>zTv@(..6Jiu߷44nafB/1xa q04" uҠp'4Mc_~àPu3%fN4G]-#: h+crXqQ. \霋UJ=[gK~[ 8[qEaVb$4ׇ'fB:Kៈ#L/:d!UǬx4ѹF[+ab\%čkn)!2:49|%taYKq}7'ioBi ?WSk/H :O*IAsك,~>I #֙-Ja~r}8﷟wq|hO~Q85t_42loS-{wm|Ɓ\:`h[^VҷKyhC>]BZF2t,b7F+dǀ\R@>h PTpWq3H=1 n.w&y Beau|Eu"]b-DQ7mQQ4fc,ڧp= {q SψTY:j}ͮYPol oZBrʱ]cLBSj!kYVh*d='ÇrBT)/1A1M3xe8a'9jsIDq5%Y `+>N;1 busG۲D`&UpG~/qK^s>Jwaj Mxv)hׄ\c-ԏ}Ai;`,-͹Ç=g"I{nTo߳a ? *N3 e{_b#vwLe8YM&vGl :$d1Z A 4ϦZi1"(~"&ה֡6Ww;t?z4aFYLd!WxF }fDStɃmKHXEOAMOUX(7ua$yژE g"n9FtؠP ׯӬ$Z'uQACuJAf``Wgt7KfC >'p6) odw tvS7b\+/fQ*Gz͋pWBJ]YnՔd ǩq}^/B}831D*lQq j2d(UG$qE<<)OXuzxv\'or荤7jJtxLV‚[㧷l -::3J-0a"' u@|̂hTNh`/ƶLI,UJfM9PzvĴ"(Kj9 )I?ҕʳ zSr5KG ͘H94`~~>)3U#63fqt !NL )YaIZY*Е5q,? 167RMȂ ??j4ƜMy HI$3)t sVegfz>v^:́,yAei̞)F)fyݽ0%:D/' Yo3򬢥['v*mi,^ԙ3CǨ\%E@5kL 5;;g"Tk̈3ꊃfSbv_"_bm7Ou /*Ah,^lY!'襲joH,ݪ{/i`Q){DžcW9˚夙{KJ0XYQ˙.!j⸦gA&1I>͗XqUBÞ2&3a靷 ):BC`2㒋6AnQx`۸[Bq_sou l LE$[@ЌUKsšr:YRY䶡`ga"*&OCSՒ0DЍd,b/W\g['~6O!+Rr,y({t!qi\SOJ ^_ų@+"* RP: ؐ:g*T׬8oohD|-qM(ɺ\ϖL]E>~>YíZ5 $"Քd1˥)8.ؑ>mbq/L ?Z!ϳMzva>߈Oj$7_̙̙f]$ hendstream endobj 380 0 obj << /Type /Page /Contents 381 0 R /Resources 379 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 378 0 R >> endobj 379 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F26 12 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 384 0 obj << /Length 3331 /Filter /FlateDecode >> stream xڭks۸UΘ4"in6 #1RtmwDQN.1I`X{r !YX e^X\Y {e.)Tբ XW>0¨\_ms˯b}V,~>+rU9x"U%3 ߛOg1uH0etGՈT!bLJ!;LQ,s%[dM3vu)kjq`hzgqC\^eiQUЕ E #sv'qC˫  +UѹnIR7~d<cqr'A0oUv|{L=#m=##m;yȫ9mCߌm,ЂW6Vv% ǀT ҪmZRN)J`uQIS1V=meE V^1"/gLLz|M-w@󿃃ޏ6 .ƂlY߯%9_d>R!菈 :,c3lSTx(e^#= YrmT|Jk:L7"JVrI}3CJkL. ;整f/F =]=z}|E/zT0Y>ґw5&+L`( ֿkXVI/!gӲ8@=P62tW't"p ]\)ٟFeŸJPo?gl NFd~f]Ol*aU͜u-?wjyyǦ]d(!J\fM)lG~ UMY+mC7k>N{}Jn݊TJxbՄI4;Kؕ,q!ZIغi(.O=R\bXynąBT^4I.5/:ȇ.:XBPK5\oT8sĖq2[%1̦0-n46O<U@s #IZ pLȭTKefc ]c@\Ҭ4C9Aa3`Lt,|89Δ]]8j*T<)3 oPxIfoXÝGxj%Clzxϐ7Iw ߨ}R2/PGL; Xy 8EBEg|9hnA&1- +O{P>m3[PK557Жve $R'8y7KX&k |j<-=#;XaŋEn8W֤^Rk=0?r^?(6~qExDC5(՗ԕ x| 7× x6^_({ 074z~}@lo߳ \},xΉIHҽrG+<`G3( A GWhgGY=5;!ҫrIb,/g<ڍxKaA)K5⁸n0bf>\OG & onXea!ο}>+yd;0H#L#Yç޽OuU@G^J ԫm 9jrrܤ5|ob BQ(|CNfZpnx́p ad\yvtBbށ;y\mB}yT\%/̬r?bǖXw;"ҩܙbF'jzg4%zL/g5VvtB#*q&]&&4Qs?q8yY"ЖJ( m!}]J}ZۊWu^g&wTrgSFǑ̘KP[tVlVdqt 5TorϡđW|L6u:y5!l[M,7''p$7Jn93N3u^3"Ld|S{C5Z*uh@MMBVԲy|aCQ`w]bzI8[ht%8 _ZW,QK_$R_ZAz듅ڌT֘'rr=> endobj 382 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 387 0 obj << /Length 1623 /Filter /FlateDecode >> stream xXnF}W-uN 4E'0hJH*Q}}g"--J6A -Gùٝ9 #V)>5²2czŧBR96bY3y|cŀڐ)AX|':4DXw@ A@_[b|Iue FqM\@%Ӏ9PZ|.`N%RnK_n `Kp6a>,`f5~AU6-ǭ[\Nxվ:-Z^/U+0OM[@+rCM5) Ik!ekMC,qy\5 v @ɺn_e>v֛!hz`rvFsLLs*`n}lÍ[&Ӫ&^Rq3iT{fuE5];KQRl_>\Ϛ׃Bƒ;I2@)F8UAj^ 1tM3%6eyZ|?5~!Rq0(r-B߅;n FD(. )(bt0taTv]cI  LHj(pᡄ/SDks*djQ}^$x=0۝ʝB)%n2錅(M6n%Y:&E`bVD24!ig Nop3:h)&~Y7@C"MXBh96S<'ÛLsa4a@C} 89 J,S7n'Z5B8HOS->OuPU:nC=ї`םѯj T%qfYBCd~M֜<ƚzn"]mHqBZ|.dp|73g8{#o_̑:\d_-\Y*Kt!^u8&6pew]X[OE13?i67qS_]+yxb uO>rxẄcO/)b񴈫ju$qO~wjfs"ǣ=񃧮e0"ڠR7/b fpw+{.gbeЩ]0vmi5&]@yU9AX2hf^:P'i1>)\˄dG0 cejSe!$n9CNSاvlG2SM\'5UVWuq7Hv\/Z }H Rkk:|Cg W#Lg.Q!cRmk)ݵ^.YVX*x)l(XEOF?5{ؿ*< (Nݺ@{//id%z}:gwg04ޟ4C"}5-bOǧ^endstream endobj 386 0 obj << /Type /Page /Contents 387 0 R /Resources 385 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 378 0 R >> endobj 385 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 390 0 obj << /Length 3070 /Filter /FlateDecode >> stream xZmo7_re\ ]@[>I!WN k gW:w'g^(aD Ǔ&UX,ߢR}A*nmP-!(1ʙJQT#_U¨,,Yճ5>n5.l!ʉhMY0 lײoevbZzSsФك0wb׫ H~յmйw&lo'@ymUx)yʃu~_Yb9LmYmˬU$İcX.ఋB0 NnH~Op#,܆Kܱٕhqϳm;Y@s5&`dMӐEѫ@ݺ/s9}@A$(@,PXx(B_&n墍6w-jNG d,ϐVS+xUI +_.D ,qe &.X]gEDQl?IF:<7 ǝX6n;Dv}"YB!t!A6h!@u;Bqr%-NOdJհ D㩛8>dXJ͞Ŝ'UZma eloٟyE⪿/G)c%.D{p /9ҿ`xa 'k$a`ݿ`|p b3Ww*Pr-arn̪1ZAy0LP7w@T#ԈC uH<^9[[56&\ 60o)1 @,f+Ęx|传P`'1l`%ALCЉYw y袧) m{sB O( 5a)$~:4~ gE6kP=xXglBCG=9uW4,8\s>hF*f5qZIÙv>m(|#:4y#>+ }O{]J%*4.mlI7T\~͋+Sf[D gvK\ HY֚z[*:8=p25w6?~ 14t4pP&1|O[tʢo!aZ@V2J0g(EXJ~5x*nyxZ61t̽Q&fjE(Cx*SmތGݪHq.[o07܏uqp株IU8wPi K@DpOX闯i*gY/nhv’;纲@Q^HFxRww6a<ޝНD+ A '_fwqʑ/aLnGs GaEѷ&/9?φor.:"^tq)jΌZx`n8˙/;[C:;P͕/kq[_sGd ]'OO#*X:<(ܜ }T0UNCNvmw:.ZI#6zCu{[oa\1@P%hendstream endobj 389 0 obj << /Type /Page /Contents 390 0 R /Resources 388 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 378 0 R >> endobj 388 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 393 0 obj << /Length 2559 /Filter /FlateDecode >> stream xYo8_a bIa d-p>垲Er֖ri|dNE3|pً7Oz9q 'B\/nʝTw׿xceV;mM$Q?iM? |3ᵉZT;nLN~9BgNF eds&~}w gYOPPeSm⇪-YSvCKh)\J9]*S.gYx ,^~˼kU2A7uQXBkHi&N:Y`yp̓8orI0~E d*4@ *ARXj6H g ı>#ߥ4 f3?ʻm?ybu\WcT۶Щu:e/~l/g,1mV_Z Byʴ<~]u9m~ z,@ /戤}5{O1lDo|6oi&qx@h!1w|몼Nʹ'ƨX`=$CA!Z/붆=M#[' Xm[(yM0QGFH,US405Nr$,w5"ƥ*T(h\bLz;ylH՜gys` I=;EۀE?--\yM`x`r j:b#HT. 0Q mې ڦO.AL dZVaq:J,2vgə~eU$2nHiqȫ76BJ͡hx9CxśOۦѪmx牣M)mbd.-3R0 Q*p&lw8mF1Z!` EFh"{5:;71)HRY)oqc(T?▩i$S%Ӈ7XT Ja" 9_a ۆ3 qP9I]>rʆ{Ā쬨uLnExP򵉁DS4`۪^}e#uf?/l `qSM=y֔yJ6V ʠ VߤXb5ЊybXl+^}2VD]fd2nN-%b72Sa WXvk~wU6Zկ_{V͡u嬚(硔#R~ \EF9[*z2^+ W' rzok3:e.F}GР %IPUp}\o/#zX3Oto+pmjt#wM9_UMNb\bq"WXy|8JQ|ͼ(A$6miK{ڎWF$Gz+>ZR!yT0t lzyN_@$7k rp&a_1;5gKl3Ԩ4I4ih u8M<alߐ|m Fz>3ttD|Lmd@9.Mc %=ݲaM* a/cܡg_88H kGzJVIOGWW?)e5jzdNyFIgB&-}$`;/Ϛ?H<73 <ax#M +~FcqqYS 4 wG?`?ڠGt m T"M18hT* vaLc[8Q%ٍEpvv%*Jh?vS] ̹7Jīk{R'ּ tnN'ѱ߆ĉqXxlIتYGz w =4rfpJwn0;ҿco!Ӿ8"F upA_QM_t-O;˪[;:{մwŠ V]\=ac!+v(!:gA7E3׏h 3+%~ѿ[[R稤u7ԿMN @dtlqom_iv*#2Qjsr}ir/>IpgI6kj+c `" tfZ|&vQtmPQ0$݅Ghmc.ʆRZ=C<~׷™SzĞ!E`o1융sLɸ $/j32|LL0sb/≻ZS.f=duG.U>njXY,/4&x6} XR^7< _dg@~K/y;Ι @i=S%}S pendstream endobj 392 0 obj << /Type /Page /Contents 393 0 R /Resources 391 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 378 0 R >> endobj 391 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 396 0 obj << /Length 1744 /Filter /FlateDecode >> stream xڭXmoF _or(˰"-kˍ0Y4#td+&,D=$HJon&WL#V)>YO5NhlfqLA_?:CoЩL(n-r0s?(=LڝWi8HsyP:2O:dG8RԖfR".P<)CbڌWvGyȗ6gn"$\|^1`j:FmLA?D90+<r$e=Xi-Y,[Gx!w^EnHN1=_O#I4qhZyuν">Bn N4Qb_aIm""%v܄|6p Y.o, hWa^0[|.\ =4; Zh'rekҖ'H;ƥr[jٱ4-9T("Ai8C$|K@nDKzD|IZ \8MY!>g)Iq[Kz،DWp,rAWˮ!oԥ}#ѴИ~-DDq^Ihz*/2n #'515}(bρHEfT8`UulZf0 I/%P % fRGIBn` RhcYC"\I׎e9W'PC 2eU[F~cf$ yUi}(yCb7fjC4Qrendstream endobj 395 0 obj << /Type /Page /Contents 396 0 R /Resources 394 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 397 0 R >> endobj 394 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 400 0 obj << /Length 2481 /Filter /FlateDecode >> stream xZߓ۶~Boݜp/N=#;M/OCKͱD*U뻻(JtھƑ \.v?|Ҏ8gNk1ی17/u>|@)[eF9M~Ye 3| ׎Y["ůoE>"gY=?rƝd0Qߋ^8%"eB2mLo_jz[˱F?4g]@u-~GVKDչaEvh,GW8E2jeG4Mtƴ] jI63^+:R[KI3V+^"A*{5{\n/  e&~Nu+2^O|Zc,Q~ :` # _҄8H$WO)ˤl<ݛ% 46>uwUnGt3Vڂُ 9Gj ~ۅÐt̃48!$ A;G\O8]^!Ÿ}@A8]No\.(:g:!N\ {|ҤBvN9R>$BAlgQvp}EaB E(iidvO6-$Fd"%OVFyt|hW uLMU [ ou&~xIË~0kU3,AUnP;ROs,qpʉ}*ʞG^-R) P  Pd{6~%ʺl6+Gg,nj{2M{ię2n_-W#mإ?]tD xV)q& {vWQX "\T8] B38]dNW\'HCmrd37V#udƀq?i^N7@8l…ؙHm)>7(GBDQ:yXA猊CGµV6Lۥ3D`4~ X^'􆇩2cGd ǓM)s`V;u cDcg=t9򦫧床ޮnlȕRmЏ|rA{a[|̹|:,ۀMgQnx{NE`X_$a*LV*0h &GffYX"ϵy45%*l:rMл&EŏX .n]Ubl[!  hViC8:Z>#.uZ%:P#^dVG ׁp-4]lF2?ncPFc ^jku(2&ZJ Rx6[R \R*a6ϠW݋T 8`ĉA]W-ͬ99A&V="GMZ g2{h-.w|j=HeQnہeb fZۿ`fbÄ6^B@7Onwָ~Ënx^M“t.sexen}D8t#Þ, fhJK9(swxa?<X?\G]x"4)꺔hDxcs?FZ_R}6neQ˨lx#i|=>> lv<8Q$bMR_[ta>!6UאSm*+>$1U<ҿJ$Qendstream endobj 399 0 obj << /Type /Page /Contents 400 0 R /Resources 398 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 397 0 R >> endobj 398 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 403 0 obj << /Length 2807 /Filter /FlateDecode >> stream xZo8_aKlC.vG]m)-7Bm+'M~g8,9L^ؠ)!='/pZr9)ӖO.W ϧ3? 7dYLO[>^Ǻ8{6ʦld>5,NJkXʭLaϫw' z!fr-Sz|ybN!uj9zo3X TNj7QJt8*әU#>(8~VbY̻g ?}כ'I 5ZY-#hyPZfa $gLLj5 2naJ[*C *@j]/73Qƺ0<7 קDg46wnut`M[g!I>o|S=_LbE1;88?=)zzHix]xo@ޜ-۲ҩfޔ]A+q wG\{7caKL[ KcM$/]/(7 `uVűvGe_Ӿ@QW=;gw y^??.E ~ pe<7q]uQ?e"1An}<ޯ p]ulcDZZj?^Uwͼ%u1˦>46C5d6=0Fz3mʿ].on8U0ZM%JCWfC.-z0\$O WTFkܡI|CuWc+!|q15Y]AE `@ü)׮PLI¯qO۵086sLR>ozk9S3Fdiι-ئd/SHa;RfBvCUX!V뻕C^X0Xh]<)Mbcy b*?0'7o"IVB6PW=S!I{B9 `R"ڧ2^JmZ\fe"IlPͽt@sp8y^<RʓE d\sg64%]f7q%(mwC߻p =- `T`O)]1-)혁I~L)jBɃ"\1 9VoQͲ=1i)o?r4yH ˸W;Hg]ҸPtNUB<˩ a a::RɢXQw݋()1>D&[tY'`t QJy!>S]2.V4pā~>D"o\u8Ѽ\E䆒=|NT0j^>Jv0Rr*;|hYp ܇U#H0_#gC|І_o{W6A2.^f<:xb/߾9\%I򹗏+ h{$z5 Cs28<|/m]^H;C|^`.U^yæ" ̇&P TO!$u3)(Zv.dSjIJQW;nq.cùgW XFb2S#!&GD7Ѕj{# .y~ UM%\(,D ͹d`-V5}槩 n݉tM2oǃA1Q=JUy'O$a;[,Gݘă>WC;(H$hP1lg}Suݮؾܲ rj3^Οd?#&.lpj܋PZ̻g6T!0FfdyX=ja~qh o1ʬrWoIFxz&et_Ԉp}S]% ̕eڤF=!6@=I=13W΅k3fq𐜇MSCf䦞%'A*3!QuwIT Ɋp7]KZeq$JnT#D g(CCxƥͮ9b|;0r^Bڥ{IA&d 0._NLM<<]qlgrL]RcrsC'0ؙ)endstream endobj 402 0 obj << /Type /Page /Contents 403 0 R /Resources 401 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 397 0 R >> endobj 401 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 406 0 obj << /Length 1553 /Filter /FlateDecode >> stream xڭXKo8WVٵ$-ZnnwA$$!)Yr4E 3oʻɩ %joI mu~(HeNYu6ߋ,lk KK]f ǓS e3&H3P#uayF5Q4IC1iFfDx3FHQ,,OųHumI\Xk13"b%:CM}+`vU^g1YiWՌL8I[#9dUA@I- Y[1Jj H:!M!l,u [Mpc1b's􏋳3a].':ưj.,Ƨ)Ms]fuQ%RN[[&.W{TTgDr)qpJz't6)S- D{iiC,-P\V`or/%D}Yxzdض~T6^W24تH҃VLW &HX r[*IJP#G業32`s.C)U['/XhL8|c76}1Gg$zŔ)4ƪ)+w_)Bu1;TaXP &}jP )5B&_ʮ2]H+|WoQw]g/g)a/Lbꨪ}ʥdIZ뇽oPvB!6z>IA+Iy]VyoS$G 4CϊFtsdd JB exYw% =9) U}T/1J(Upb`0 $e1wryEՄ' ^9C޷ϓzQ/1|CP@40|hpf~sXNCud,)L[d|w>qYvnxR<)n2de9cM0yǗ[p@ 3ll% QwqΠsxˇA0C )֪ Ȥ `2NnaH s-m%([[pZ]C~u:"̓Z"wgQ8=YaU^1qvY@k֎s ^kNfoO?=oF(ib3,FYw ;K3GXb=zͺ Vf>4PW`g`m}k/fbv^#(l&ǀH>6{|Up wn 2/oB3g wd_>6>ggyywC=@VզWڌ-2I}wR 9awg=G:ܢ³Trcy_wB9Tt*ڎTf||Է7͎= 68V嗱/끣~GxO;&/m4CǤOz%+U3&|RUn7nl4'72aLp~y$h{*Naw 'aendstream endobj 405 0 obj << /Type /Page /Contents 406 0 R /Resources 404 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 397 0 R >> endobj 404 0 obj << /Font << /F8 15 0 R /F36 27 0 R /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 409 0 obj << /Length 1531 /Filter /FlateDecode >> stream xڭWKo8WV;R|tbs(zfl($W7M~!NMHcr8/%Cƈ2Ζ$PepdaKIwAɐZØ<  <1}6`džLK::-OfL<,c~FhWl_Q8IQͧ#5uLwT3H|UMPWـw-< ľ~.'HR:Z-Y'rT%bT#]9 jT-S^[!U}$I<=Lh0%3:DF;2-NB51 \03 ks^2ժutl: vSI:Dഽ3',?Gz.4n2y1Ntumi__~y(|d G-s8J\=G^~ h:Y6Y pJ&n=< $Oҽ{Zge BF'4[E^m^Ct .6OC!ڬ.D'SpXty}pU|)R?wVvbɼ*oG;ޏAh Շ%?V{g^'G\xM;_]U%p`eo&R]ݮP[b5D(ۘ%D 7*4T&vw&Ls XP7 8 /C 햑92۾`dyjis{oةU55tx;+ޕ=UW+waqIDGJ&5&>Flb[O YbУ=p$^b>_2+`w y!|. kc#^]S]La:d>ohUr1QxQH62hslVڌf>aCW3߰8MV@Xf~,6<˷נ@'d?mddY``C;kjz_` S;e(&FHP0@A pHfDH ]g-z.q]5mU/Bց `Hs`Q>;m»ⷬOسCncJ#Fvl8 FhFD,by$1c@BhB9x CX0-?x n`*VuUd>`ڟUY-006<& mǼdzAϴn]x!Y\ytbBf\ Kk]gQZ96ՄF' ޸FRXT^aEzg'R NM.$d7APx7:" ȅj)|YlnK'磭 &i|q_ӛ WS4+ [߻Z#2"Ɓzh*{ |d#ޙeHEbkj|{h]l0u;/P WSqՀU+f"> endobj 407 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 412 0 obj << /Length 1202 /Filter /FlateDecode >> stream xڭWmo6_o- ".bˍKr%9iw'pk$(B1b*8sBe˔eM Q;^} YT/_iaJ`A 'D a9c0sLY~@Ɗ2-2=E5i82_QjMf570- E\13+ft{]_ֳTdjbs9mqzڬQ>.&M (!I3zZx5 q$gM9F*Lx@Ib5q2faK[Ie z* u,zmoA"RJ).M!F'[ nV֛myrcT6y|8=*u~|oE9w~wU`3$n]z } 7~[7'o恉߷e[,v d huޢ z]w^˱pibIFqɇHܡqao˗r/`/y\7Ec 00b.pzͶ? mF%|7?C}d1dezW>߿}M/dTU.Lb )\2O%q2(.Mmsi'ďB,&: ʑLM53!ssHQRڶ=Po:sH_%|mY3n}pM L<(Z}2sPyQݗjR!r\Hd5TH+8TGLuFȕA2T2I4r٘ YdLendstream endobj 411 0 obj << /Type /Page /Contents 412 0 R /Resources 410 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 397 0 R >> endobj 410 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 415 0 obj << /Length 1981 /Filter /FlateDecode >> stream xYo6_9A[R Їn˞ڡP,fK,/MHYr$ÌE~w/?\.T2jK'_">Ă g_tyeOt<|y{&~65L:|6&eIb^r3sw>g|ӌ3&f~/4L1 }=us09FC?fc*f؎k G786Nx_EE&)>Tl=3708zUXeˮƉ߇sϺzd  cfyl4G@&aBe4 yR CHaʦ*uUJ-22 䆻yDVV/ωS4*fN_NMn Ol2{֛k/4Fs3C^ն.xtY+zWjYa("mP|,V2eae>ɖ xLŞ֋M}Щ-{-tzw[H%H]yEZxM܃sPw%2ͪυWR׷GZ@;gwy9 HAz8>qhq"I/g''졔T@kf Üռ ;r >#Q3  ?@@01 rbyAkx+;}Uӳ-ٗ@0h?(߮?gN ro;X:ze:(L8A߸ZN' 5&;p_c6B̑E, FsZک %yMۃl14?_R֯cKOYdB >eb5TdGKi8Z?9$KtbZҘЉkԂ19q+hW Ƭ2=qofn)sNs?#6gZQ9<® lGH2ytbMxӧX|b;z6rJ%C,E̤fB6;4T-2^Y>q4f7KOUS׻w_Ou{%JB&y5d:}%(L̴6EWP 6?UYw103-E:@[1<~kH<2?n&o jקYlqQ|Ѝ?rؘDg8,KKn`~JhT[+lUӳBZVwBp N 3F^+&endstream endobj 414 0 obj << /Type /Page /Contents 415 0 R /Resources 413 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 416 0 R >> endobj 413 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 419 0 obj << /Length 3396 /Filter /FlateDecode >> stream xko7"7izޝ~h`mMd$f8DIc0\{τ`1rvq=s%կsK1gϿ7|8@kƽv3 1o6s GLw6`[/ru{ٯlug?q of™( 9=S ezߜ_݄npoqgcDU8gC4w{ĺE691LY&_,iV ?ʙ<`"ãh c֚CUI4gJ4r0g3 A(YIo66% 067w `gGsMmvFW+x.l"7< ϼގ%Gz{wv槮Oe[m狥 uUDѓkO\zw_ǩS$=%b&؞/U}޿;G!3ٝǥu-7qc4p㐑!AB$w*nݘ7oz_'a9">u_SC\5M\YUTP3yO7,Ĵ&f7>kv748ig-v3 tF^qCx0]?- _,6W ŚzTQU_fw0i-=M}[oK?uM+9iߛ{.uF5"RYi{8@rgTOOZ;{np1yUHWUjs(h@7賔B ܂ H7o9oDj V 56OO8IrJ-hq92CN-S@~is[!^0e}B4ӌ5s0~+tY9tL:)g{i ΍x . 󆾁R  \+X7xP_DPZ$sQh湏h6R0LM/5x̴FBwf#%/x(,[RV~v)rKLN/뤗UyZiKT.P^[$uԫ[XDk^0'm" 8muUT*QcE2$"٨|E&L"d2XKfxg1ŅQn*k-"q57/Hf1YFZK]Ne5.1#Cgc Ɗ`:Nϩ_9r[цqOOqЕOoMlH&& Ќ46T1EB+;r3w Л.qi睫&E&,i`ܞ9H }"fY2ebud+茍*3YpLn, Ր@m'#a +DYb@\'eEyq&3'v\ otc%3M0U>jBMncCVVCۈNa ۰M| XρKN|yl+yȟw!lgjl%H-B]DFZ򼪘2=+p:Í#:W<|5UzD1V`itV.@։[k w-I7$ Ifv6}߶HȠ[2V<抌g@SxoRi9.\."h+؇h/76 AzPBhxIqb49{6*(H#~5'7duDK-=9#0: > 4$ hahŒmAm @BN!fpzں/t3.Sfrhes 4#x4dx{>)Oj!(Z 3_i\!}j D'W!pX 5I>mJR('\4 OyB>- i ϪTU273s[oQWuyϗ(s|~/(` _?ɱfbǃ>{ cT8o@rĔv{$wōw(tÄms~CfI50MЁviKCNMW;׌xDK W(-1iҔ6?)|cd 36|y䐀y;@ N>B hca.q*H=>%9IAœ|]܎R3} sp@p ^HAc;(R1dGpa{+^ 'CbN$I  |1ao gkJ<eW0lU>VW93p~^xO58t)hhWBs6 " 5KJ>cN{eD4uѤ`I>>U r@}gDM }GaDhOiAN+ h[; 3ė%裗AZI~ԧgj̋bzGHۇzi3U x@v42嫮w1=uJn~z.$bEEbI*H;F,?vfp{`GA zh*([&_vGkendstream endobj 418 0 obj << /Type /Page /Contents 419 0 R /Resources 417 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 416 0 R >> endobj 417 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F40 68 0 R /F35 24 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 422 0 obj << /Length 3169 /Filter /FlateDecode >> stream xڽks~?p½qg'&#n|$LR$dwwA<>\xDͷ bR1X烻CF}PR0ad.N噱n+)|  ;Xz?j35^ 3bV610eqLjX?w,Y|꛻+גqxx;5/~z0_LzOpS3,$-t?oa1V}_w0ےF7&,)D9`}9t]Kf=A^q@j)k50N:%(v{VN8>R[cEbd,(9I̖kEhذvh'<9!^ܺ!Γ)*\l޳e]7ܢ4{}#S~^#%֘([Z3+!o: AjW/Cr}xY ) Kj1fAz$\ Y3areN`nS,& B]?JA¶anyjx""+X=/F ̃4Aˑ͂:x6,Ɨ> 0@nDe| , XhV`@hoI /^h}k lrj/IHL>Ƃ%e1#LAT STv,tï84`xL@{&PGC5"z`4Bӵ?!pԵ)7`9n!A+`K40KZ1a 3/ߌ,MݖqT]`"/B/0Bt,sOߔCh ,BPl܌.bRbFE519*#w2n""A϶a AQ ikd#Al~u3Ke$Iۋyo;@5ܛ3Dj L@v*(|jnUtP\j.Xz: nw>\LO@Oīr߈f'ϻA@۰2~48!x}%?!|Rc#jZs<;` ^C y XqoE4ʰ%Yne}xc]!? o|ul (}cGY<6Iwԩjő>Vk45?FN)r~xXVծ :9=Ny˧ cGYWŖ4|B񤻽Xc2O-Qz:Km8l[jiHPƮt=VDz6b B=C4t\߁$+5&~2^mӦ1G(= 7kzpPptu =s|`hkDH&{Dxxwڑ 2fBeRG>ʂ#IjYG(8v H.gJs=0m Ȍͪ])QqO9mkɱ>z\S)lj|ZwD:$ y9-rp[Q3tS .c(Z.us8GO" ?]8_C]|C5 q71 {suW:—.;'ވ1s?&gendstream endobj 421 0 obj << /Type /Page /Contents 422 0 R /Resources 420 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 416 0 R >> endobj 420 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F35 24 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 425 0 obj << /Length 1389 /Filter /FlateDecode >> stream xڭXYoF~ׯ솫)P (F $A E@"]_ߙ].EQ !1;=rx/lqJdyPX>ϙ=Iٜi!B9POޜy][ó)Af;&ٌ&fgUr Js<B٧ٟôYRCLibCޖ:I?l,Xg# |C JruTQ ϳU/ЋeqY Rji,e` gX2JKXⴖ^g Dp^l@ ʾ7;HR6릵7KXCy{Eӡ/3ږ݄`fL$o0hڦSL`)e}FxUݛ߽E:to\BPGG %y߆E0=*/rZc~I cg9 tc"xB#ehp9}S#ݴPJ>)heOAl;ar@5#6kc:)oSI‰d&#Jm?? ~m Bo ב%s9?w9[ilVMXZC^aᇶRa+c 0u%?yu9(Gvv>(euf`ʭ %Bċmu¸ mp|h@qp"1J#_L/z7QU 0eC@㾭Hz 99i4r7Dz*)6T0 pɇ|hɣU"L а@4j 'A{0ދ(R: b+4P|> endobj 423 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 428 0 obj << /Length 1408 /Filter /FlateDecode >> stream xXoF Bm#:[w!]"Pl91fK,ѿ~N%E=؇!F`߃#$dN&ѹ0c*Ž 8qBedg}"?&FiE@֣9vV |Dä`yL 4[U޷ԛGFy0Y˽UO |ٻV1+~ *)M⦩DYgZISXkh AOgɸ$Aaw_Q h=a),J/Z=Z- }5 $`Mָdx Kb@OBV\E\W%U2͒j: L8T|b8 3>n6Y{q8b]"pG_0+yN~I"MFxR]KS`@6*&E|fCN4NN@n:Xi>a2/Z,Ǥ2G eQR3>`iV<fS>gQ\dj&[$q֐|k^|-6o*GpׅBR:rݶ}pU^4(klUc~=>bNlY&=_Apb $3,GYiHs*lP*Ə] `.m 0*1`58% *E8$4rY-%%*k(li1&tS&QW2cL~2l9ϊ"RZK84Gβա&:JF$q@dl=FG3EgBS; #&k7\nQϱI8wH uA݁*ۧqeYx "v&@tW`PMro 2Վ;1 0=%]MmlɸpK:NJnpV.a!l>Qr@]rjR2 -4~\ur+؁ճv[ֆ׆ڝm0mh{qgpC6^eDpЧδ1J:-K!Z\/ Cas| ZRI#_ &Qg%cooendstream endobj 427 0 obj << /Type /Page /Contents 428 0 R /Resources 426 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 416 0 R >> endobj 426 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 431 0 obj << /Length 1456 /Filter /FlateDecode >> stream xXn8}W."K}nAXJl\~gHQ\9uC "G3a^Fӷ&Of׉ Վ%b$ec&wӷvm!B9Po9qUŸerbl`>KiϗK#Q"UPœr$^:L[ik\T(SXmiy!<,O1r*Jئ¨y&\`Ux^l^g$A8218EÁt!F3ƞ}˴ӓ mbZz9N'_b8W\VMu6yogXN_?)b/C}c{{OFh:r}h"19>m6ۢaTbokoYW){MӪ17FX`c̫jH{SxAt0Q!:嘱 YƔlr7vo\#wuw3 X|V|+ \6nSp 67 18Ä .:T lCi5g)S I-ƞ( IKpư'I Ex)p#de>2(L/_Czl(!k" ƚ)C+GC_ *SJkǿe٦kyg؆lS4:"e}bXm A4RgTt!Z} =l慏`` "Ȉ<MD*|1:|OwrW+{nJwڢu:tp9}X~ZsWZPVVxfxBt-at14q!fx `-4\rn>.X QiCU6;śի 'ԴERXlĬkE>;5 acU8zW Ш%[2xa@' S B )_v]$ XXek8w뼺[}.697`F_4l^2pKP`XI,PDžkq1,endstream endobj 430 0 obj << /Type /Page /Contents 431 0 R /Resources 429 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 416 0 R >> endobj 429 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 434 0 obj << /Length 1802 /Filter /FlateDecode >> stream xX[o6~Ĵx';]WEk HBڋm;YrłMч߹;|y6fH)RP3g$Sϊ5Gc:"̺k&\Z;숎|,+(φTrBU;"lvn—Pkp9}1c[+pJwED@THf󶀏r뛂+b)H=;,%c>ZjRqjt22LӦ‰U8',Pg(%ZŃQ5ʚ8o(rܑ"pFe”XnUz2 ެ˪x_W7S#_.齝{9cfOOR%ɴZl((mO@\s!u\;lEAv<==ê[U\aÛi:f"9} ZrcCr }m_m;δZ.`\>NDkB%&nIY{z:y8 M0wWKp6 j CoAYZ|3UHe?jGӫʎbnʭZ~>HQ!îNC-CM"&.^|r*a*9` gI>:T[YJ4Nىh 0Qպo wz{`4P +Rf"ğJZ]40AG,_LpL%*uQZpFs2.Nc(`^+X3o˼q_Uxn4:eZlwPQc'dZ:Q^րc{]on '@n)I1,D0L'FR*ܨ+1nԮKqX 2cO 6J"Xk@FO})-F$&j};:WTEd{Vzjm4HpަGxdQ6FѲ iOΑ?/ccdo |_+6e!v9P!Jw G{~9Wr ź+4MʙpZu()DeMSd;\ ̈`ziE? 8%TKCtI.`NV+ҙq41v {V#٨sdi%fq%Y@*42{X iԘzܥXya$-LSu !ѡ1_DxǿLț Y4>ƜK?Va-("I#RgR. W+#8LDv>%p(/b>Ȗd3Dx]fXyFrmB,~Tcv0~@l9e5狔 nj۲2]o].JzmYb2-Br!IB٪4Jd|4/!1tZN~Cx 򾚰]bujs>y=‰ xJڙ}J mBF;&(0OY´Mø 4r ˨c!U,hj|qTE« "_;hh{EC။K#w1M N7`#׼ީv2TtoAرݫI=ni' ٦ r%gX.vtPsgeഞ_S As]Hbww% R[Lendstream endobj 433 0 obj << /Type /Page /Contents 434 0 R /Resources 432 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 432 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R /F40 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 438 0 obj << /Length 1554 /Filter /FlateDecode >> stream xWmo6_vP;١`+ܵ[S`@[$Fdɓ&ߝHɒ8 (t|ܑ`|M@)R< 㐚QHĎ>˨m5 ,#:SY3/? (gPEt1ksQzn %"Z,!ð]EuRtV k;$`| qW. ݐ1ATQ(#: C8;԰iY w((4QJeZ= hXSlsP [>+ J0L3my8%gygE~fر30I?E2!A<:#,?ךguy4sMNxj <]/,qM1~W˸X%’'?wE\ !y+Rg!eRٕ{~d -,Wk$YYvb~qI3j>Kx4?5cjEoAX5+ψg}tiї4㼕5D[N_o=K&aDײ Y&+ZL}J2~)"YMHmvñhv/DG/ 'ņj ^Mv哮mg>yvt{&֤Xڗ-zkAHiUE"kfuZe ջuăk6@ƈa9(dqWm}IDfh4. CEO4öˊ.>#b]2\ށ$B¬=>SY ]ph}Izb Q\QO:1lar3ūL,1^JO\Aaz^x)s罛:8C:A:9[o5=sF!a?9l3ϜHDhpU]~qh]@͍prӷ Rƛ<%IeYW6[OUDzxmyܥok3J<"o*P%h,~hFe#endstream endobj 437 0 obj << /Type /Page /Contents 438 0 R /Resources 436 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 436 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 441 0 obj << /Length 1601 /Filter /FlateDecode >> stream xXYoF~ׯ[Z}8@ G@DBx]R(n*a\;ߐ/'OM$Bj\K.So/?Q/%8ƺz)K~/w k43b9j:<] ,5kYO#N)bƨ$9̸$FQk[_" ʵ.*%p9a%L 4ӉvY,oiJ> %9A X'&t gY_C P4hZmƂԘt(xT0S2ެ $`Ct A82і$sZDǥ 7]l9t9+KXⴖscX@ ޡuـK\AΪk`6(:0@3 <=/PrkT/{Ohl:V,*+o>@o|D .w:m?fy36lͼm=īS]֚p 5t˭U]wwUQTe|nP|6RH8 [3vpw{XBVφB0<w!R-SRN0,;o܊C q0@fؾrDr&cxf]߀CslBX+Ç_T40A⸶msz0?1lgay &l {-e"*Kk puըG9qDGZwV>DuA\ 5/,@csOt!~|9㠡v2F!E]fäf]6x#5l }r\]/ɛ&(]Uu ֭lK}4}1]|6/[]Oj:3&BB?% ^'.@rUx%"̛&pt =8}?8Ę0)-_\2rZ +=Ĝ["3ǁ87H8|Pn?'}q܅ͅ+b_8:Mn?,aV|u"yz]"פ7@7Hu3`z'6( ,_ng1=@_#+"6t>+3.aendstream endobj 440 0 obj << /Type /Page /Contents 441 0 R /Resources 439 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 439 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 444 0 obj << /Length 2106 /Filter /FlateDecode >> stream xڽXmo_!Jz_I;(\0"m'.IvDJkY95 q9yvv^O =efsfM 3%Dξ\|^!ȉPLX,gO3&0ӦL 2mϗL>rB?O(FPŒD`}1c#0HL"ߢQcEʈV\Mf Wκ1\[f*JaLHqF*rtEHqS*9I} Ʉ@\2F. Ad:iAz2i16fI0֪?MWɻ//>\ջFgى{?wGwOP'e`#0x[\tYRE;a`w.s~2Z軗GcE9 ˵]^Y,+:`SY:DsנV nT.1nyXV[ vM1s/LVVS;zctlnln!Xs]}[?5^css/ȞFd?凋qcNrOwx77ѠflhF2ثӡPOy6E([)VDCn@ 7!҄i"G߂ F+jF(̋8/{,pfE()^,\) i*hpR_@- h+q%ڔ(*iU |<@ cyNGoC> !CU1= =*$3q O٢A #:z>-lC4wr :vpkD0S[Uݹ<$3cu}*7mU\X,ܠ(B Sɓ5GM3l6 R~LV%q2N?E 4]"mZe,JH,!f]%$ys(0Ƣ @߀Qo@z*;xmy6ieSH G]x9qRezvp3lJuY+7haPaanlbG!z+^{N>v A+#$T 8\)c5p$U]8 k#M e>8KjݗZ*t24yxʝk Y[`/j+/͇  n1RG`9Pr_Q&kHZsLJaUYWP@ӻ﵋HNiڧ/M[%@Kd# @poc*fGn,ieUba+ !DaD#oBy SkT[b5nKina[].j}H)nGʕZ& VKs6*M7O66ng* 66yhPӘ`.Qnm.<,)B`AYp>"8늄uGRZOG14b$f-iӟOMRߝ8vd//i`q1}?WRyP˪߸Iz8gS5Wږ 30!{wj?T|*C9Y ur=ѦFpC(\Ԑ=i)s:JOJg.t(ƺ-l!hCÕ텠<4CΥSC'·EQ<ӯ@!D$pMVAQrV. n"]PdDM&䚏 (֟YQ"pG+Y 8J/u@ D"َGy!r ج!z`990>-1O*2EJ` ;e Uk+ *ȥ+ MEf+9yg/c e$SNle3;]XCvxnhhWMq٘+ZK,p.WAiQj m5a̸`\<~{endstream endobj 443 0 obj << /Type /Page /Contents 444 0 R /Resources 442 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 442 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 447 0 obj << /Length 2302 /Filter /FlateDecode >> stream xX[o~ׯ[(7ϝ,Z6hv۸h4(hJVq~}ϙHyL6,rfx.9snWw2FR|zu39jæWO39ˈ}"'B3nƲf 6 Y& )S0b3u3.'tӄa 5J1|yx_OO #y%*5)M ŋjeßuB!41 ;Ҭݖ;D*|w+T|ij%rmΞ^}yS*9͉1h`F."Sc8yECӂ1KHbڭ ج7rw9qT*jYA V잟9:sVv/HGr[AIw`>w_Wo+v۴peX\x5n/}~~߻jwb'.ڟ(ۻ=~QI2)]vٞ\8d.Oֲm~R.u|㱐E9Qf[ɛ?ˋ ^;lW&is^{~= G&)ѳOԆO$ża34_)n# 呢^)Fo!;8y.\^y֭ eH0 ܾ,@:%=; 9,8pHq1+ !ŘC9<ǣT6 FA6d1m}4.DGgPt'ߕmRCTKT D8~S{=s9%>-)3T$5iInP{xݷJBDͨ C`Ag(77\R~Tw~@ѧt!G]D)N4nܤC2h]$ 0bCᏦLvxb`YwwP&! +9r]QcT< $b_E,QG%s/ i6u*G Z>P1ٕ+K%' σ迱< b)ofJf;vC<` G xfvU8ƹs闻]Y[AUȢG v )bLM/C!d~-XbR=1z QFp Uxټ&s=5تh濬Zkd U0VYԜUN6{/rULqߜ%f#:̇UhmRz" 5#`%&#z@Vbψ ΈDC_nF'96#K/<# 3 ȡ.ˎDGfD`;X`$ǸnFD1{T=l+T铟N=o`ёMoTwmA{S#jy,F8@[';}`U_A#' nFo:ܫ8 x{z>Ajrsv1 EV؇Gu)ZH {MF ۸(b(~uUm9,!V#uɝ5qjR@zW h!U`PZ$endstream endobj 446 0 obj << /Type /Page /Contents 447 0 R /Resources 445 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 445 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 450 0 obj << /Length 2528 /Filter /FlateDecode >> stream xڭZ[~_!rMsk#Fu#JD*$=g EjGZCrx߹ pg.v>a1%2>_n~z!OWy& f{3V|l~}@1|JMeJgVq;UہwYVS( mWzJRGOHGyi/[ ]AXe,qj/S`?sexD#]fXU˲n?|uSk dgG_tɽe \?L%J/nSg|1c9%3T1犹,I4Ϯb%MW^SgP݄u?XŰ4"Qy]ns33C'2${HQyeRJfyM᥌+#3iD]֟ Kwsn/i8`XS< ~*FO*pRY8ȔXUӭĀ~FΠb\&yâ^qp*pK(-/܊[)񡄎/9"|)ZтyN7Y כ9a0 %( /(i΍8H:A&KRzQz 2#z0eZ,QΒ BGcbji}x(*UHQ]ي8_gl7aL YEIFa8TBduV Uٝ@r~.EƤQNn5ha0k ,^ba,2T, d) rx̥/Ty'֡|\=#4eCTMaTJdLBBl.>BBqXJF+&X#;cAxd6xqcbH{HתDGx/[Blk05EIp2ݼ ?40)7(hhUszA?;''d/S==7 5*Y҉w{7QG@53w|Bp"FY#&R1k^W&?`+:qC8XᐧIqFr A9=w{p'lD!YӋ5 BLxʭFPhah 1b=.}躐Ev9`JCXݻ?0BX m66|r%[ uHLr:GצA]QB7D, C%[CAF A?Kendstream endobj 449 0 obj << /Type /Page /Contents 450 0 R /Resources 448 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 435 0 R >> endobj 448 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 453 0 obj << /Length 1587 /Filter /FlateDecode >> stream xXM6WhkM&AKF-i+˛ΐ,۴ii1I 7Ἕ/F/(%VJ->E#4Z,ߏL阘ɇū2rM6dqG^c3F/# aZD%'TQן棿F?rGF13tbBeQ>Yߌލ~N;Ӿ9nP*1íioAfO'SSXpd3r-iͬH{?9aq,"k<ZP5A9U9tbr8MRm3.' >MNҔmy2vU_xMSֺǃOC&ͮMXS>5w]]}R㥪ֺht&]E^/~E7i<)^oCf]=%0(%O1BV)sFx.8[PAjNWc5#X*FQQOp_;LEhm9ek)(h]uy6{K '&y &&*3ڥ1f f %dgmaTArYR?C:C.)ofNj׳9!hHR)$4o)lg,ԈF )!5 `BKZҤ-L"?)\Ʊfex8n\3wLkr fE{1q"[_LpkvRϟ~?St0j(q̆;gzJbCuB*As 'M`#5U%~=Ha^;pfG<#x[Vs 1s1z\֫В&&q Bk{g0}-U77hoki~Gf@V7OFz¯R`v0Hˍu͕|n ! (՝jӃ{hKZ 5bΞrF5"V4"Mv CW+o19\Aб:;|&$T:3}FeQ WQU1NaEP=p/Lr*=SC"j+RB"z@I{Uw.K\ 1BҔPzJ\YB~YƬ-uE;Ƅ˨S"EKbv_$вs|YOA1b) ,ҧTF#jJ%ILp`\kK`)X|P5|JyN1mtj%%+ ,W֑ v[K[S^Ű-1ZaPvE쒙Yb>rRY+kA``{Ϯ+A=.̫N./"(١ôW>tOq ޗ1:*3{VucTΨSJkYajw'V3wCvI)rJk.US *s}BN?2V(̭$Tjm7Tlendstream endobj 452 0 obj << /Type /Page /Contents 453 0 R /Resources 451 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 454 0 R >> endobj 451 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 457 0 obj << /Length 3135 /Filter /FlateDecode >> stream xڵn_!I ,˲E 8nDyihD3El45mvvvkcGJyIrk=?JhmT='C!<'r ~%,pѫّu6RaY!_GG#3 G0=$z>2j7^}JzF?ه7g%I>J]'7[C!%]:u~E)AN2 gt9pՁ/x<8{ĻGU84h k foO_C_oI7{p?b$+yyH 2. &yZ܉N: cs9]_0[# لPx#;c d.ȕ Ct_Z {t^9(2L( 6X?Ag½ nIiO(AzVM#4}M w0ZX$:JЫʇ䞗[-N^&ey!>Xjwp̓kkΈM=M_ȼ+eQ .A'Yz[ڸgm0*I%Q9:ĘIaQP1{EM8~0TefżNl/Ϣ!RoոXgڭ2yq>е#HĎYƯ<왌z$6lmҊ_X6L6fkik"e+y"c@7lj~Òu!ßgU;|zǝ ;/; qoN~08~{</WQwh;ɹEt/J1Xv V<) ehrKQ5hOuitDg*G^ <ѻ2{_6'~]2VKb@B/((%"å灬7tQxȳ6\ȷF D4p/k/o<'CT9Պ,ͺ!W8$֞ѱzkAkAmcw7 _wy=' q8Z|e~LOCW[p9;4PoHZ?quMZ݉ DSC:4\/Pl%^꿃jؙLJ`uCo]u](H^C"殇$G 0aس1;*Uܕ{#ox$Z *oRT;^lcOBg콩Kf%yv|?_wq_ɋ*9Ѹzu'úh@˟.s*.RTc"YwhhD`mR C%S1< o v+$!0(F UN| }Ci?`qȿǾ?~ۑ<WP#-8u7endstream endobj 456 0 obj << /Type /Page /Contents 457 0 R /Resources 455 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 454 0 R >> endobj 455 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F40 68 0 R /F21 71 0 R /F35 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 460 0 obj << /Length 1541 /Filter /FlateDecode >> stream xڵKsH:Uh0aS[pJ¶$n͌bBClyF=Ol1y"t%rDWN9>.n !ܛ,Ms7xc~,sh;ҽ_q]'+T~f)x ݐ[ck:DɈ[nPǓnvc} y w6ʼnͰ:voF<#`a/L*c3x :K(Uk^,-+$748U5lؗqwΡO֏1]f\8%n=T} ܘ>U>,@O_jE a,N|ʢjy5;ŕ*1͝>oewIśiPFE1EB$VJ't4Y蛌Wuscr0sPqJP,oO_Pʹ JXֶAL.'ڢ6 CI0fh!*Fh-"*I ^,f^~x;Eۛ(2].7 ( 8cem!7ظqvcûˏD?ڍdܫrLW0ӕ-G]i r4ƕ+ۈv$>T}hB&[̡x]|LNfL=)U!͍(&y4Z&hk1_^gwZ bx۴Lcp+Vf;z_?B D0Z&*Rhk/ߜs]PG!C:" 1K4 =Nc#T?w2#DqF`18b-!D+bRN}8@b<)"AKAG>(ri!B=_Rsj̓LQ~C: b6b*X-'mt&4xNtU wժ`cDt O[(2[HtSB AqNANuki3%jYwʱ3S%$:]قZP5U1#ú]1KK4HwhxW=(:Ygv]?I9⪂9Y{QDձ9.pR9(! vɾ I @āSPjLDkqQSǑ(|DRkq !N$eʰ%J+ހ4ϱ#- AB$%"aV8 D吤 1ADhU]2IA҈oIJ7u& wSWܒ':XEPľH}.M(nⰉ:6xuZ{sHEB'q)`1d[?xQ7;-HoWztD.}E`xd0endstream endobj 459 0 obj << /Type /Page /Contents 460 0 R /Resources 458 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 454 0 R >> endobj 458 0 obj << /Font << /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 463 0 obj << /Length 2156 /Filter /FlateDecode >> stream xڭX]o}0v)lvN(%,7=e١,v)s~\-2 ~s4ӖMoWx6ƫOyn4sk>l- ~W~*މtg}U&׳ltAKRND0ie,v❔="T(.`]Sg㌥7&0H!,7xN#=%Dvymg^|?44y6Ԣ^=QpE3d53vQw_z?[]gr3^r͎ۀy.Ws"fD@nK嘺sBpO(w`sw;?:ܥp#LeGL_ff |ʽȦJdX}J|#(hS7y=(BG\pKs˘ r#C@{.mc1ޤ6&j͂Q8Τϵ*RSRK3R%Ї5<&QۆЭҏ|u~t8"my_wٓ/+.?D!n'Qnѓv˞vD1TS[t{RhHq3 3 1tAzlrqPMv㲩;v/j:|Γ\٧wY;@)w}:=GJ49cO3HL"#0P`޾)IXTbw=2/Z~-@6:hMQя{4v G!& Q3^|b2ί[UNx?A1Ni.m쪧\#R2Zn8X'0wiE\JFfO#UZQ)w3p)#Gl%ngt,WZiXEAyn_(M\Ȣ!K.$6gsٹZ\Mn)}J2z,t 6j(b"0rmnPfWUCY~ڌ`x֎ӝo\!;fsteob`B鱳EӖ BJGH&MBY sJ$ToWQQ t5i.2 :nF}9aTҮFdl8r/~|#+ FW8I 犾[\, !\+lV|/wC{*xڟ"څA]ԫxShnI>PiWV HHU9c.W~H#]]غ@#wU!?a\ M5; zLT`@B[. @>v[+`8R>ħhO^YԻ*}C$&c,anҨAo͡ݏZQ ):R23:`gb1"p~B5(&Ou iK*!-^O.sR|ĸRKAuL'L::QC><ŗ601xYtKv瑕tmd?Tr|vgۢ_&MI.(>w@CvgTjXt=s:VBLp=snz$$S3B ={7ǧ+ٷC'F Vejѣh{ôF{] _H4-&Z58endstream endobj 462 0 obj << /Type /Page /Contents 463 0 R /Resources 461 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 454 0 R >> endobj 461 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F33 21 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 466 0 obj << /Length 3460 /Filter /FlateDecode >> stream xڭZYsF~ׯP%W10p*J)o]++Z`@0:~1R+!g/="ʌ׷穄d'8^~b.fx+4R&cj ? ~Ogg¨H$"/6g}/He֜C,3Dg}?আ DH;nln x_WO$"Z"u? VPuZ|e:^]M&s%f.+xekjfo]H^拦Oh)Ey 0"<(I̡,QN^:jbfXbG$$/&2J2e*ͯJ`HFY7CQQ7M1ﱉi\JLnnUnx閇m^ 7K#ْMz{=^I __[|5_=_]E|}leYEn&#'Eܭ/_q5_.pU*gBO˪Wr3ߎțUU#9,ͦ%p;~0h9 ~HfVo(BO2+E).u;Dȝ gzqE) JB|ρb%G UkPQPCp.goUZRuߣKN< fme~G` D~|$&P MW(БgőNJ>pݷ"<@M<ӳ,Y~ΊI@`S_STs58 {W+R(6zx,H&nXi(S(3!4S%gcYKq'2'Y"4a*1MY0է{gCGBMAniM5Tv)=(,tn5b0W Z$')P?x^ѐb ($C+}w}x(S<ɣJD\ y 7d7&UBtUfUVu:Kܩ^: ҺQ`>&um_g-|㤮9}5/QBl]!v8j@ Hw+秛duGp - 5A vm'J_;86Yx J^|ە r:E>0̕+=yH_?)谙 ~D4簏$z\Ky\6:q tԷY SN |@C1<|B 2\Vi҃nNdL &D6˟u).Ë\t@3cz( DAsoFK TN+3>wd9nW"& .{ku\=nf֭A'>L˲GzAvܯP鐕;:t檟C3:jٚ["1"S9K^ZfcH!T3d rb- 3B Mrendstream endobj 465 0 obj << /Type /Page /Contents 466 0 R /Resources 464 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 454 0 R >> endobj 464 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 469 0 obj << /Length 1564 /Filter /FlateDecode >> stream xXo6_YAS$;ڇ":P-e1jK4iݑ,J Z}~~]&bXx4Բhs'lND~⥢CZPFQ.c6#}81%KY{O|FW3J5* %Zmf!췞asL,RcAJQ܌UknA̛>=Yը>AY-lKfDz`υwm"%%+ĉ.+y[Ubj~{`9b2BN4$MվaMEgi Ch &&L> endobj 467 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R /F33 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 472 0 obj << /Length 2112 /Filter /FlateDecode >> stream xڭXo@Q._|N_\DpHhTIN,23 i9;;΋qxN cDAl~Z*yyӫwQ0J$5^`yn l:(>ΜI"UAgn _taryU B EV/PDBDAl3bdpD'BGY٣y(kB>de46⿋Oo&x4FyB K_@EO Q,Hj4kB4I|X}f/m |tb\]d,EV^_Q`//!";YP\@dm+6ovZ 8UP=ƘX34I%B@:98N?j S/&C M(>ݗC CYo_E.^]_wjOU߳r7lcG8w2 (g]/C5VzA!Yԑ(iԪ'B3oon׿&wb8kghVmiϛ|YIEuJU;^Ө~&?ˢ:r,$*.o^|Qw+ߦUe!NaxB)3{Ime`9,W'TA3Itm>UgdB3[8& R<{Y\ܞmadImcAH8T3F(E9BpCwo4-cvHpo>\H'i0xH/!"-q ·㈏OvuS`/aSD6ߑ08PPaO'vUZy}ufE x`A2p# @bPlQwZMrgDc,^>dM;3oޮ JkFw%C}a|bwHS*Lˀ  yCU]7uK<,2E\[nMXhx \z>QG<Cc#rܸfTgP0d8; 1 eYQh%&nj8~C5mWǃUj(>2F"%' S!\`9OG,+b5|=RndE5 }m qףڠ2U ub U+qcJWa&"-%+Uԩ>+a45N $r; p\NJ5iSqˠ4(w!- FtC >6v1vK;tHlsj3OPs6#S[ۡѳEYsXDF箹ZPBe3 Vw%c3>ԆD_)z€BuiZ.4Q8=Q㟲7Ѳs7$>=pI) pMBO@r~7N?8  4?h$p|6(X @!Y57zlLL `z13^&B2E(vM>nCЧD!u;Kv :VIp½,qv҄mS+,O<1&$p;5aj5+3;l[СP umۈR=Od5W\`7U;!@sA18IJnMRHezh&\xGti'endstream endobj 471 0 obj << /Type /Page /Contents 472 0 R /Resources 470 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 473 0 R >> endobj 470 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 476 0 obj << /Length 1225 /Filter /FlateDecode >> stream xڭW[o6~bx  beu"Pm K$#~}!%E ER΍~^ 0FRjVAlY=d -?Zz^,bPg7-'p!3`m|¦? we8  Zߟ.-heͭMv> endobj 474 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 479 0 obj << /Length 1083 /Filter /FlateDecode >> stream xڭVn6}Wr`1-6h].>e@F%4;CJ/JIFg~]^ 0FFzk0㾗_u&E3^U{%~0q_&9)En!LP5SD}ǚPA Ld ;>SE)$ |`| :hjY|O DLIb}NK,bj꜀0pՌև{H&U2ˉh> 5W,T;wjҥ f|-QFCa":$(<#c&>Qb=)9;dCKC 7T,3cU2=EߺXrLA<;H_lq,񁒋 `>»C~WN%qn9Dy׿q-]O{R臌oWG'BcRgSy]J\PBp5rh"endstream endobj 478 0 obj << /Type /Page /Contents 479 0 R /Resources 477 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 473 0 R >> endobj 477 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 482 0 obj << /Length 1909 /Filter /FlateDecode >> stream xXmo6_a`f1wZMEvha±Fe,#)Yi7+ ELJ\^  3dXjpjˆ#6"rsE"!BY;Nr~=fb ,ِ)Afz ŀ_ (֨ P¬| }9x;U8i5N*2Q67]8y'Q 6SDa 5 |.~9 aBGZ- ($šQ9t0H34j- ,Li+)[p(e^,>r;0@=x?nb8GoW4?VM;y0ٽZ* SlU糺cDEHc\Ui}[f+ɓ`C6a6Ǡ _`!=`Ul>2-D3_{}ý+0Usogẕ`}!bU5=ؼ(lor,uXE+፫1Yp̀ ަ|y :l^Th f{%GPI߈BO5v*Mo .?y ~TY=ɽpGg3cӋ;qz iH_YᗚŽs͑(\(/{KHyT8kWS X;DZb4Grzo݌Rmxֿm2{Ӝn(gkGU̚A1̎v B#\r$@"}w+Ӱ؅"pxmfHۥHµ0-!b#OUKIۀoag;zLơl=(F; $Q8˔eGްo*#ۺf[ G>?m!x}]&TKG,jAAulX %Kѣ!.7hJGq* 1D<-VW"JК.[!>ҒGZ Б (ؑAH e}oq}J O/S/Bے_l>+bX%UL 1uendstream endobj 481 0 obj << /Type /Page /Contents 482 0 R /Resources 480 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 473 0 R >> endobj 480 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 485 0 obj << /Length 1575 /Filter /FlateDecode >> stream xX[oF~W T]%RWj۰OUD`ٴ{\C*RFv|sgތ{\)%FJ Fbeh<0:耨[7iyB4[bH3|w3Q8TrBU;UKsܟ^LѲ PcXYX/{w߷ -Ǩ VJEdmcjV)<3 ݙw5ddF<#B&ӺFsNX~'D)yh1{mNx谳ou`5xZkbf pcx,rA2 +b~,;,zS[bƼ$XI9-/./0j'T 9|7Y[*PB(G{F&u0ygy8Wi=jmWhuK>-0=%ʾ +Ȯ kKoeX˴Yf76‹|rnfeuRa M y~0)Ί4cu9[G7HIotk27P!y)9mEour쳛C>ړSfONAv|E5 i5괣9 2c xVPEƄw? *M|hC=7{"l[4 [PwGKP{tVw _7TN-"J*aSC+t^bRŮf.`܂o<^%:Htgw͖Z8r4! K k..Ml0FsEs\tN$LFtDZ"-ؾȡ&hs[={yA5ƞH!BX4qX *سpUvC !-VrزV.|n)_x{psbK]T [zo`1t),0tR&)D8yEHdy RnPI@W4{=]u5z5m][ m l1o>RS +iDa>D6!6^\UIQRZWLOfAId7UZgo\X轾1S|?cMmp!SugΞg*M,B|,\n|7Qvpנw,jX8K2ВpC6H"Tdc,ۢiTi9G{-FAPWBe:1q'$BtQM=?Q;Ѩ%~#&ݶR s %pPY%mu9Sp%lGbIwgKLjzE:Vv2l,? ^\cܳS 9M&[*+cvKž0_ڛujS|WbC)|d.& -<9m{̵9i- Ӆ#Jv\DSeV@~~@< RPendstream endobj 484 0 obj << /Type /Page /Contents 485 0 R /Resources 483 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 473 0 R >> endobj 483 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 488 0 obj << /Length 873 /Filter /FlateDecode >> stream xڭVK8 W% bEoK}E,6{{:VvPÎ`1A`#EVLń -OqJO댒yBfHͿ1uyNfGeuD`D0D$']}<# FDkWCH2+sLd :5%JDJP5umgipvG[3a)^cJ0:M":x4vVC gD8D`<;4u1OX*f␹ :;1]ΉŘ)N?.d! \+brV{d"U#5A$5GiG* LY|3ebuL%Q-ɉB9MVW ؝ kg "#y &/ނO7nC;SL]]aѥCpr;7Ѫm $,[DssܖaSo̿`XBfhZ`4^PU{ܞ#KOQol+3ʶ[u[|z8~(ᬏ)KSMN]]o}no;mWE-_8T߭-PU'bՓzP e,<;Ltq>))"' /1CN1Ha>o4@j4{ij +BOiOM) GCNpNPJ8s_QIendstream endobj 487 0 obj << /Type /Page /Contents 488 0 R /Resources 486 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 473 0 R >> endobj 486 0 obj << /Font << /F38 40 0 R /F50 96 0 R /F48 77 0 R /F26 12 0 R /F8 15 0 R /F36 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 491 0 obj << /Length 2733 /Filter /FlateDecode >> stream xYKsHϯma?M3=v|y_M8P65˛\ßN3_EuSՃCTqj_aQj:5㴦՟CeAI:84.$2z9!y<eԐD/ӕ5 NDa4PqͧLT  f ,@ax$*?"Xd.J> Kw2Z!>]8M\CHbHmƐ!3Qcdaы \#rCpd֯kY+>x\At9t ^$g0 4qeT!!D`9sizd4M Et,ڋ=aЅbo2&GHtY^: *{tѵj2[/)`{ Γl0zAxNE㸚SV3Y o1)k]^~PDB;A}U+iq&ϫ7%=̼g"|[XH`D(>Ѳj?gs.z6;GaW 6UEW0ukr/2:\3iȂnsڟ]c0]3L5rw'~ry&Fut =A@T @41^.S. "2O[&hx۸4w9\F"6ƹs ot+3%q^1Q۴B vݸ{[w7 xƩ_YnEy$'2t&b='6y-I?lS ]03N8]08#r^2=ej:繮)΄eEY 1sܶ>>;Ln*%J[~[VIy)??2H]w*z3o9 t0v[R1_zzEXk2%(=%(,"#Kr2 uOS5"ź-y4O!c c5X0׺\ v4eH &r~܅#Tfr4N5J||/ 6nUB:. <͕١'}=>lÊ.. uTR KߍMAW[hȎ̰0/P\2bbBLf[qf/'oheƤTômLjUON#L-:qDFaM9Q@щF'& P5ޔ|A9HSP/c~0[LC0sOu-][)^:.'unC]@Q+Z5+{@U ~Ӆ &9X:vTdjND gؚDAz9C^o{#]WM!^] ?WrCcR.$~q_ƹgO*R7PöH=`ԅֶ\_\eOSΠEa7 ]MWh­AgW԰/;f6}lc~?Bm _ n]yB'(vk)RQekSN(=qO+16WS Y/y\*f^sqZuGaG/PHZW(~RT:^-6Ͽ(y6: {{HMZdo (0lBe s9TO7KL-ss>XnfQ+?Dfc`٩(Z-YE~]5 Ĺr9(y VDNWET@0=&jܔ!yoi(mV7˚|:V2 ZjIT'򁿴Tȟ)hVeUU`4,$@| be:5.*~4$ef~:@:Na_s2&P}9d #}fd#w1:TǨuꬼG,k>vZ!+A4 1Jyu0˞kendstream endobj 490 0 obj << /Type /Page /Contents 491 0 R /Resources 489 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 492 0 R >> endobj 489 0 obj << /Font << /F38 40 0 R /F8 15 0 R /F53 365 0 R >> /ProcSet [ /PDF /Text ] >> endobj 495 0 obj << /Length 984 /Filter /FlateDecode >> stream xڵUێ6}߯# "EnnP`Ema%ˑ|Bڮa yΜ0Q2/e&k\8]|MSMuG>w&Sb*ğa͂:m|wcf&A ZM}=o+D쪱{nɱ߂ꇈyX-W|,8IJ:cev7[mdLl kvϙh#&N [RB t 4sԛiv!{Y_s=#m]a&}na=eދ>sHL 9^#edit۵[R'*ːSx?L1eVk};yI̠ükez%:+Mx@*h2;o]=ϖ6jdųm,T0}I؉ @AS偡+ҞR4R"ᙢP(>E)"("K-fȫ=#Ae1'q`@Qx֏;j?p|\=Tkd:ơXTMǘz>kN؜@Ԓ/1b RoQ/Q>)"WAg*6u9x{>$oԁeA 騫4GlW5GT;%IγζE1qHցӞioDr+^1N`' F+VWogWr/endstream endobj 494 0 obj << /Type /Page /Contents 495 0 R /Resources 493 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 492 0 R >> endobj 493 0 obj << /Font << /F8 15 0 R /F53 365 0 R >> /ProcSet [ /PDF /Text ] >> endobj 364 0 obj << /Length1 1308 /Length2 8784 /Length3 532 /Length 9595 /Filter /FlateDecode >> stream xUXqwoܥqwww]];4A$srjZ{W=UTd*LNf )'Gw& 3 ! dYYŐ]A6N > 2|\|@.$*;V_IQ#@07;ۀ}p@ f$ `ac0Y8"&YGK'-<{. @OtpN> % FY).aod/:: 'gw+@ڠ*Nda🣲6梎V 6nR6 wsk8?+:X4e3bj $Wo>+@p"30t4wqqrL]]M}L?  y+favtrO;trE׺X\<%s'?.38!N w"S7E +,l.&Vk!kjۓυ;boE-Bpݠ b=B_v y,! _u !/ ^ }}B?oy11'o?& ;_EqxxLsWW?li@ o99mzkdEd\%,QfYtoDs&?W~%׶Y OL[*  K]VQ1?u51T,u+3#ϣ1m Ww;u @BXՕ@u 4$] si"q<;u-L޸ϊ˙ψtޖ{3Hl;u<^ct2 5%T2! b[XlDs.q݉*f/fй[J>9Hao4 + c"e$ŬfG{R>C(n+kkܻil$yK8T1NӾ\) AHdLf/~ܡÊxu?dQ>᝟wDR.(seNgr?:wGΑ[ "1 Dڸ I?i8y>IJɒURuetɗct憞T8hߵקS4NZz<(NG5az2d[ . eEvd9U5ag<1B lX~.()DT8L}3Y&?Cw:N_ҵg ͪ Y ]t3նȾ"ĿݍiY^1"RbbG!}n4L5P\"9۱!5$3:ѥiT~ m&98Fej#7eRTiz|1Kj(eb9 |%uf5:dL{w/"h[傷z2 ]Lj ճ/s1{}6dhݏ7uy,~"4k'Q |t^׵H(ORqI }Y]bfaHĖ-^2PIA <,gW{mKXip]Jjךʕ-Hуb- fͅ"j>jzT 2B',ԄÞ-(( 6hvbj a+𮇌-:\Ή,{mkOԡެlQ0.0#ZƲ @8ϷGTʷ08ҡHdl=#9g^^"'=cg q8m6pJ1~aGVO)RyHM-o[z? s*w!wRk$4+I;c$*mle=.Z~΀Itܶ϶[[}6{ݽ#,e{Y9}{+#UoZG0-"(㣦āWXGhU /SqEƴ \e8Ic}f a4U~ag9;0K`U>W+#dIٙ)6VVHA9gL[7ʗm18gc/1Swqڠ`ks'`{fpɲITP."XMq0hb*XNC8JHO=HtdLtcŎ3h9+Lݼ|2XX )IBR=KAM˯TϼmBFR_ŨEӺWD/"QoH3Sv">ߵ;u9“VkԺ Q5OƼDr|;sN E.8פ)Zg/D*na҆ >~%LA1 |{UDfǡ CtQ5@=9T:*>ܩd">1zt+&y%lHM0wI򘾌 .MeSZa)Cqg h "`)ϮCCSl&ˍH"M7%oPKnJ$hq&@5c Z8$S _l#dݰuukt*M#z&} gzt6'bn/,~oh-n,mt&[N9!:`jڶk! A ̏apدQëޫIqn=̱ R&BBBv(`ʺ"$;uc U4Ӕ'BEB$?S04kS'o }-9cWʄ4~2IDm$gK2hʉi#j/3EsMb麅zjqRzrbZ DjDPO[.!aηbji+k' cG-F k%Q/"Śp5(DNJ[d-x?|<SĄ}o!JKJe LuOkG;TYλoRM [;ACiQI$_to'^yGt~rmyE 'q9 ӉS"^⧺ $G-#܌aڱ/*4qt5<ׯ87b0:?qԗ+?fFfslAW/n*86T:6 *z4(nz P.Z~ ȩ{ Tok }aUP [WPa$^؊brhni^|7&+g{,,*t>b)n),< xր : xQu$1QFWB-4N>& _>Pp|A"k ilv>-f T*F'YZ$. ڠROVF1K9ɨp$W}#x8U ,XEKkVou>O#K^?>j3۳!%-YmǺ~QUQ(Wj,D<5%mv:4ﴭI*2g<t@!! ^t5-@dڰ⇴u,%`*\.pcB)pkr2VAU(6 p/TQ'c3P؎:S"zme>k+9륑v!qN 0 #x`Sڅw'/b2'%BK>Dž=7f] +jϻI*=x}+ɣywijdfevI5w?0p:# &y304TY|wc =->"R=uМ,ʞƑxֳvp.|vtjz`3 QbΚbOn,xp*Ce|s ui4}w`2iqd`;qnR=mq4]F =hc8ƴFG9DQ;M"X2 H9\Tץx4EnOrڛkmH)/WUeXLù5L# ^^8(T57^N8|oجAfbWVYƄ jJ~KvoCk%VHDx[x4iO W&uEZqB怹5}Ǒ|/7:pVZ[ W4KJU兀,:(V;n6;m艍iaC20 K8w:44,\ [41#) lyD-(~)*sd2wUtą+;N>2咞V4<|?gi.q8VF#~< *%/XQ{RwH (L`VQw=U hxR(%89/&IG>sgAj3%IpkE:dD&fln%*YSq aZ}vDMM֓Ey:hCCL-8 4(A窻 ]fv s"=R&p:C`44E~'WDu.C p0B'q˖7p;\rY2q-ݩja 0;!I(Yz0J0e^vj5[zMϊu,..jWejs 9-w*6-S<v8Ƭ jo}[dM͌8=!U8,YaiDP k<ANX;se9;%|]eF2) e=EijSV qr9CB (%kMp&ϐЯ1'0&QH$ Kp8_զIwQpUgBVKGƅ=PcR㒩=ڕw˽ I݋IJ`4z07 @u]? A,~YSzӫyûW-JɉP{qvb+/딿 #~-P77>| |,^‚ jE ĠjTſJcQQ0(]|" _NeG`+ջogPW6^SeO [jYTeJ}12g&!9tdh2hC&eD瓃/;k%Eua8j+HߋΘ6"}Xu=>*HZUv>1}/r0@_[CNIG"mfٴ&]s uB})=<="SGLқx0Jcns9cYEv;9עm& Քy?TƇdʖYѲY5F ׯ s3$L) ~,;MaAi*XNF Ί)AB22 7sJ^Ć/N=hʜb\ s פa60aJ g֮h 47돰TYJMt,`7kP*n3^񕼼wb/uJ/ N9 })hv<|F%cW_ s𶠠ʳ2K1t|h' ?3'֛bSȪkvTWיĚaoj(iʒK%vյŊsߺE@hߵl `y2P{Aoz#_0k0FPj{%c݈k (vvvt`hd6gG6S7 \˥ߣxBN+ |%7z)Xa ɟL`Ɵ~$pb>:8,fW$uZG\mUiFP˓y|t 6 aN,7&?؅>y.i?<` B?n{wkD!o*2EoYvqa. Q~NBi9NP֙gm WVQdz:A'bpډ o)C4JK%l}Urf: Z8ƝxެwYowhXs0f)$_ `H8 ! zmU̻[ѯ+t?#[R`n DIk+_Y2LzAрF)lyXwL{ɶi$b@Š[x @nxeH} Zzu;+!TڇAu oקGO` 2 ޜjy=Wtҵ9]VIsXX`'gᱠa`4| iKMu;FRy}ttt^ a?Sj8ʜ\0g~&F&K`ޞ94!ͩPNͱIV1y+ߥ_)"QAuu_?˯|IȽS A:07BL 蟓e\{V,e/(JlZȱqm2F`HsRgxquAzőR^ޑ~[% ?!`n2uuwr0uClNendstream endobj 365 0 obj << /Type /Font /Subtype /Type1 /Encoding 496 0 R /FirstChar 39 /LastChar 122 /Widths 497 0 R /BaseFont /FORUMH+CMTI10 /FontDescriptor 363 0 R >> endobj 363 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FORUMH+CMTI10 /ItalicAngle -14.04 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/quoteright/comma/period/three/A/B/C/G/I/J/K/L/M/P/S/T/U/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/w/x/y/z) /FontFile 364 0 R >> endobj 497 0 obj [307 0 0 0 0 307 0 307 0 0 0 0 511 0 0 0 0 0 0 0 0 0 0 0 0 0 743 704 716 0 0 0 774 0 386 525 769 627 897 0 0 678 0 0 562 716 743 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 307 460 511 307 0 0 256 818 562 511 511 0 422 409 332 537 0 664 464 486 409 ] endobj 496 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright 40/.notdef 44/comma 45/.notdef 46/period 47/.notdef 51/three 52/.notdef 65/A/B/C 68/.notdef 71/G 72/.notdef 73/I/J/K/L/M 78/.notdef 80/P 81/.notdef 83/S/T/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef 119/w/x/y/z 123/.notdef] >> endobj 95 0 obj << /Length1 1263 /Length2 6285 /Length3 532 /Length 7068 /Filter /FlateDecode >> stream xgXYר7;!B"U1%!4iAzGt4E{H*Jdfw3s~$r~n{&ªG0M$-  1HDH: deAU/G($%'!)'!E #Q4UE8p_=8@{x vO]-cl蟃 pdɠ/JTDTM~_i H{8{"$)h`I0_+ A )lOH?SBtx0CEA@'pO\W/Ͽؒh,% &i,C$y6dG ob؇؇p 8o( Cop n  b5P!V7jxRX+kb|A V~!?_HId%4̠,}`0_ta whyZQ<^I Ack$([l>̞1F#{!g3Wvُۘ-s ۦh#c82TE_~v=>uoDK7Xy7 v5hg7DUDID.P&/9G . ;hΊ RlGn]thsF(X.uR=HMl!1=.kܬCr(Tg,LgS*pgd#2TV 1wՠO_MLej^SZ}#fW ?Shb$z?NqZxӧOįȀlܼGo??ԝ[1X%1w8bgܞjApnMTͥei pEֺg]lQU]d98m;F. ϢA v.xʬk`-׷_?L3y(B7$!wTfS}.'z.o?VS{ k2j kId  u5lãA󥟏eG6`F6x @J8gBQ_YПe#y~~B-a>VQzզd{pͫΊHጔ#7T^o #]gq/1Ks* tdO!b^UXF_8w6ji +bPНi!V[>}n*ߩbOKC n CҚPK M[E_L}Nx3jK,]jy*ܷ6|J4uDto -Wv8_!Ccw'8G)T(>?鮀"!^) h|]1N<@!R/Q5^⇐\i3v# V>λB"#qcck_k|ZiK:ggZς^g4'Ùn~RqHZR^VzҨ}Zσh|F~:l8S'RnW/U^L bb|Vsi] N/hh/3?؟hw|)S@Pw-Ia{Ey}*mɊCBwVA&i=JHGgD0*oMjq:^hgAهP t?nQ#e)\ä q Gn+bOr tMV_+[aB Ϲ ic #uFVRR*p5OhQ cyĻCKۈqm:N 5YX\ܕamXk'\Y~6sF|~Nlxi1·Flީ@qiYs,>9‘4G*6a[۰s汎 :ޚq孓GIO gI*&2B(. t?+O8yJ4R7%0sbاQw/m I|y zq`i \'h ᚱg)q#fW˪ꩮv85h1zMkX]ZDzHVy(עo}0g M B MgsLNk?}U\coX۽$l)}eV*z(1:I;"eI-lʫېz諭i_\DR$`.?.r-j9E|v? UTI}!xB\kBeTw.Y։:|BL 6J0j%ddw*.d{<ϬTa*Wՠղ0g-W ڐ/o yʽ;mWZZg 2 ǫ=,L$H‹T!A(jn+޴~_$(wz ȬKjq߳$FGǚq]tfk5/48.^v0*`ԬD;L>\2XQ.q?>#5@8.EVr/7oe`"Lh{հ8x טl4k^Qa{ 9h3 S/0[q{]jws@= ܏ †L>$Z鋒"`G,ږ|b|g@XmMr'i^fm!@ Y>ي`O cq&An`e-v??1:{SrJg5+ɥaIz)Hk=UkZgj!ov31RLa%2f ;x ߯tb~*pFdH'iI-/<¿s4YJ@p{%`S( 8„ӟT zG0 ze&Z"^&3s͓ao1Qa&eŜZ fuuUC0$o_JZ'\ _-6`X4mo.]Ѯ{%֝di7gT>;X&fΧͧUE0OOgcǀDžKgV!dQEÆ"B7%\Au1=<#SͿjku$)8!E|zeNepUQH RD2R:nEx[Z?(`(CEcБ[&v/} zW&W凂o[ݷdu,)KrLD:YMu$<+ H{kW@ofKѥM[?XZ -; M!$\C2xc빨H$MDSwFvT>>C53EAM<ݘS?xWju";KIl" }.#]*\Ru}r M 8yzY~IGYzNv͑#{vAZmGFwaP-:Elܯ<f^]+l09̖m:ZڔLLb7~57QeF>H"\7xjSq)AAg2ۭ'+Hbi{Jno6 gV1Qi+7)7~5xŽ1X$^uQLTS lt%ӶL׌'Ɣ~qs7-|ڻid0U?Tq,Y{\mA} M:zξ;Å7[UNU?c]HF! xI Yg-n|{}DgO%rC阆Uk#!s/'p޴U 7}&ƩيhEkko8/0۷M}k;vr-whqvU磰#}_jh6ЌʛO(&P\jbR:|cڐOҴFS EHw?>\nL*'t\ -=$Wmx@ 6*ȍO)<>VA4RYrt2za5 0L4{'' tjc{?3uϻ}7KX:/^Wbk14aدo>+%]00`u4y'@erևS-59 uF~Ԝ !*ʹ>ʦ<7. {W+帉PPVaB뽜Q}nw2`t__]rJNFz.S zW|ㄗJ/մg}} ?XQxGOi}%Yъk !QzGv=)r2fRKz*}8M (?YITnHoɰӀw_"ty8$jIZZ>C*g_΄SUS1ʟ`95enLywI&j[F {XDq=O(:XA4\^5@+bZ<0)҅t653%Ew+|@sŔOUa^dZً` 'YL]U^N ) n1"< hϣ&4aw,.*p#Q-{zrєѶ<|!hZ V&Bic`NvxQZhJF̍K)--}weNG(%&x`NLATRݦK3kNM+0DŽ1eL<Rl}tA )sCLio̜4HUf{W5^.(|7djt3Q 8b #L.2ǥT&6~ΔՇLtCQ S5KvR@&X*ۀY (R8~u0[L[(*Sx-_\qzy:d#/tlp,r׉T9xw$vʎ "Jog72HYJAϱwd^ݘ F6^2qF5xu#xE G7Rg~>> 1vF|:=tͿnHE:d􊭹5et>Wz"+<,?c^na'<#fW{ɘ{4e~|3xr{Ļ'9Q^mF&Pݟ/~֙ro3^2Z8v(ߙp8.q9Ư7wW]e¿R> endobj 94 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /SSKGRN+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/parenleft/parenright/asterisk/plus/two/C/M/O/P/S/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 95 0 R >> endobj 499 0 obj [515 515 515 515 0 0 0 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515 0 0 0 0 0 0 0 0 0 515 0 515 515 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 ] endobj 498 0 obj << /Type /Encoding /Differences [ 0 /.notdef 40/parenleft/parenright/asterisk/plus 44/.notdef 50/two 51/.notdef 67/C 68/.notdef 77/M 78/.notdef 79/O/P 81/.notdef 83/S 84/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 76 0 obj << /Length1 2207 /Length2 13451 /Length3 532 /Length 14640 /Filter /FlateDecode >> stream xUXͶpwI44\CKpww NpkE/Ϲ:inz̚ojTLb@iG3?@BIS̊LE%4suKl||l1wk;+ bkm' t0l>,@ G [73@ +@ tZ2#,m-@k[02?Br`+GϿ–NtqHh!t# Z!(;B!;vIlAt(9Z];U/7%ns3ZA@BҶ^@KU[7 ;@vLHI1զjf vvw$2dr\l̬lD|3_[8Zڂ!끋`b Yl@/ vt<L?jrpX݀Z)55`qXn1^$jGUœ\`(GW2;gp r@rAk"od|/q[WCNX\Af6H|. 3 f+lZzuT uz " ?& [1znl3 ]_'b tv7{47* q{%+A\$^ ""J үy+A*JI{% ɿE .qQz%+A\TMWE .q|%+A\_ JW .q1w1ǞXCD8{bakkab(CW G9Y^7  &6V_ Y!/Xۿ2v!/HB VbBB_r ف!/X+b/Xy+k sSع;?+%wY$%$. `b==i.nwE?le @/¬@熰Re֍uS( Р!gZt]]2G"Om~j#ҧi3ϻ>DJ;N7 ӗG\*åz}_sUi%5ɡ }1B|iQA˃!1*01/{ZM&%`iJT8sw{ B*!Zۏ"`,q&R+%#ҥH΅lYve=1݋?RFh ҧ!Hw-wnʗ;3݊e`4y@Hmz_em{5ʼ&8ETw4E~ D(&X~VOd -nlS"IU(8n ]{fZN>ؘܪ [v } =`tubCh$)}(P֟l&@YF-Gv `Y֔Fi$><Ƿ>:/-C|+UMQx|Ghi ׬j/Ib-LKm^vl? 6Ib!T6w[ D_#kzDKg-:uyFJDb|q97 Oi LI36}m(b3m*/o]S qGW)uUQx?. lO/)ӀeO9g٩Tox96,ldSqXjعQPӖ 0Oq 8G%I ˿4Rk"l$,.8Dz۱D%}s\߬|F |꼪ʠ4?%@Z/9ްӐk!k4+P|K]׬|f -Si}ZWv?h"a'[ȥh9Eӟʷ\1 (闯씋snB<>Et2n.GARd"p/(Q?u()f^Ҥ82xϋ.A0r}EB7UyjtACI2%RKTl5,X+9d;R8k_lKG= .?.s~ Κ!(Vc5M3isu(f| }-{EUoqDފP_:~'x" +UB:=o|r>ARAT;I•z{ pXq$5˧4NtFv8,m_ BR˲E\2 Y ؖ5'Tvlf&8\+ejO]>-Q3_՜]=+xWrm]@향 3BS[8OHFpɈ+dBw k숼l=ryf53f8/ ߤp03uE\>"+vߚ,e->q4h\Z:Zybrnr6#F'ģZ4O0siVʓ`߼;R56jO:=kv*%IT!~[1k#S &=w;X3$cM}M> _wv̻x.w/_f,'ord~t?g~Zw\~?ĩ`/ZNmT%s#Y0\[ lW,1 K9Sjpt3wRkB{{&.LCgT=,7?|;;>Be5")JQaz"we/_0~YY+#7S~+˫@;_OXvYa%cǕ/Nf ?Ke7  ]ϛ7'@W75> I -!f5|a$95\>'/Kp Vp|r[BY*a{/®f֠0f(DTգH@D%\mNc' ^"`cpPI ^X7>NՖ*yJЃ?^ 4']ő:HlHAҰ.R^ ]h-ǯ)3 ̄9uy R ۙxLbEhםM A024I^JU25BЖUTZB!r/u54)Jj+ZX(lXt4"q]V:vf[_7UC=%tsNf 9_}I͛ 7#)Dubd k.|mRe$3 Ub\&:DLyxkJ|XT)eqP<CAH=LIQwFc116y?BqSu'^ň=I"~=qSf\aQR[f9פƪj40U7$noS=.1aEa,r5.L=vm]j?KD ʵ͈{YRz-B5){~^*iǐ" eà$U+2TI]zDMԨV bT2A1H-:n?U āpE5i:x8zxVfh[l Zu?<,<Ќbley'C]g^dr{D⺇7{AfI89HDchHxganUZD=Sԍqv~}lLrUhyf3G}t&1WijSH_Otb/VS7&8ٞ*'4ܧүOŕȒ`% W#Q(½u^nΔ|"*Õ 3I̻޷D{t_>V.EaP%n>A)]bs~7?-@u?Jֈ_W1Ere:">-& 8/Ol%睠piĩEM3 b0ۖZ|{{Nɭ]MR]/7؂cA*ŅJMDZ A-plMc -N2UC2M@v-ڙ/_lpM#cy(;#CTZ+ד#-([n;݈>\`~dVw~<=m&όБI'+)SFGyfi߯ߒ߿& BgF޳R p"~~sE`=RLqGeu v>DhWgLߑjIcdrA5಼SiC Eӣ/5/ i0/s.%aQuI[N> (PF>NSt2fՌa 4** ?ɚ[b2(>(#6Xj'H/_W .jaw$QcR8_0M\bfO?$Z / vH7oTɬ|u> 'ŨZ'FPJ3KoHzOD͡p PwC!P qfĤ?\8Č~D\D-PقNlO75APhzabE8Syu8bM20XaNS^%G*~Z]"ԋUH Vmh)TU?l<| 6?*lX2Y(r=l!'@h(+g e?N*.(##Aԫ0e N{g)kdAx? ځ?RL7l)*j&*DG1)šLYJg[D݄BY6?*II!Qxǒ W6Eo7c D9 ލMS 3+>G>;0eG<ٓzDfx,*Ba1L7;6J#VR)-w.o۽s=USz'm`^E m0[&UנGG~5F,Ofޮ/9[qiBc )` N8M Sz8-HxWn 7wu7i"4<>8k(OMR4fv%+jb/h2P^$إ_~>m\wN\&D.°˜sLo|/z{K,~"ށ2h9QH )za;/W4N AB(2b|-˚ހ0~:lIlndE=}ˀ2o2ygD+޽. qB٧j![ GˆU&* E֖52](5O1~"ړdNJ!+aFzA/nU:sO{vPtm.8W/BEY;(TT "lt#5HQznu_sDZ.~qȖPXBӜ/Lc :O򜙌O`B(\UpʥX(p`t¾}OCSȪS[No;Mz{eKuǀX+GL ݁u9BN?dV4_n7ĦJ/OF/O%̭Gtn~E/aޫIskʔ9jW^ϻyH LbZ""'|]V6MxVnz$ @ua)"c6 ;$w2_O|$oCjd4 oY3z{G;?Mo@Q}?"ߎ4kߵQ_Qd\ºyyķ=_מ^™rQҐ>M`F`q&y?ӚlS*ڔ2}6Yp{>%k HD.O>X(^+m0Ym\7dr7|Js\.(VJ]G&9 !vMg0S,'VRLKvR'6/ m/f{Sy\-4Z7Y >(| EQ<M 3%β-uyʎ󈰴 ; hC#B_}]Í2OJTYq0 $QRAmԦ_b\aJۜY*ʙ\"鄇T2!6{\D|,1~qD 2>NHDBFh2i;[14zpQyt׉A@m3 %T>w,?'vrIt#~<\i`Sr<(~K/j֗:ᒾ=Aۦ鐍_ť8˺?%> gGguئƃ[={V!S[(|}r7[/eʢǃu>4>߰3O# (C.=t1fG\Ic*qOr's].FI4zӤȟigcMDYGR?6"#ީ#45W=42vEMHhH*ᾗ/rxZWSƨR$9s&#f svܸ 0zIڣFbȂ$`~s5AlLG4>&ߪFQe3fX˪]) DJ}fUvml\J|R~)Zɩh?Gq(W0im5 g!lPSXaXvV6[r=q"vܮX޶0Wu5C`ӇA[!@5ᇆ_ZlAU]:y.F5Z>;HN@,XPvلE2J^@}??Q]$ &\{yʁb#~wt ` mʘA8y8:xnsÁuLGW4ݟnߊoedr8')60ziH]QeϏ7@J uv:.X@OmW+E\&xc&Pߍ|нz чdJ="#/ITϭ 4ښTՅZ 'ᩗ2Jq ϸ}`qkICB {Qݙ/@ƻcfqx;Q,ShoPce6HY!N:pYG$oFx_e*S|:qgō-ݩ@z)0[u%K=Rױu ;P'^\tIym7x5ke|#}l!klk+ MgBڝIK}!g2?+3lh Vm4Uqm6fܨqat+6mߣ`R7(x[-u EyiQ=t`zXT0h."oήʛq6VBB%Hol#`ӴT0'F W [0:W(3ac=ƖP8v+Dd?v@)$;YҌX*ER[n$&U7 ʃ`0gUikҌ[>z7&]]#90zк]~=5{>p՛6TdNRmg]8PϹqc>|+녾 6#Ǐ[AUY#EGYT֝^OsJP-;-*frL-xĔAL(LǗ&ÑmJQokFaAYq42s؟!]e9j-6 Փ~%|FT !*^C1$:7uEnieY?W;mg'l^W_zWX@Ar$ўKف0P`6^U| M֨ l Skׂk^*4!Z_<>eAN=rϟ08{4сﰺ80R=9 ZZ$%0 plW.z{Pn ǯAjž8u1oo Z}\@[Tjr0|ۉzu ,βK!tOCCqZq٫4U !-u.o_EPkicN_ 탅2aУ&&XGa+ѦN&NDA+yGc|QlJn+C5GHie7&GXh>}GxuLX/:wFW|8l՞x}tPn6slqWnJmҫh)u *vIδ2[/އO.Dvy_V2g)V= Qr ^~yoIfG3 JFj-WwfG;> X ullG;3g("#y E")pSuB;nq}e)~Ij<^g_ cy,DiTKl"#,lg9uzj霻yZq;COuh#?d`حlh}?blǡ ?:#rrj@]9XK˄roj,1moI ,Bu( >Y"Nuˏ2 @ک읶(p[o\['dMZ'-=I:٤"ܐ5(FZ؍C rmqo ! W xoEZЏji?vaUWw~Kga5ϖKH6~s9(%;pgEmFAYgºkˁwfPG:'n]є17Xz)]4 Z7PT-@ h%Ad- RyHn"^^}W?Z3[@kT|V |Ϸҹ :]aD O7h$8x(ԭ{HRVgY?/=TP6UN) w^x5|ce*YЭ>0ԐnS`)Ad>ʖ0q6Y?l^IUZV.Pcg.A*OUcBGdAV c4 ZqGK PlT/VT=(S~ Z{:Y HJ kcm -oʼyiQ3%97mDZ.QR%'nEF>c4_ɯ[Usg S.LW Pmn0܆ZvM@5js՗v&s烾dU[6o"M)hcZD.`f+!A?kMvoUCkS! .`ZdrvLŬR79]d L8pmj N&jFSlgDxiD92wMhϛctB2Y'knXf.nf.gendstream endobj 77 0 obj << /Type /Font /Subtype /Type1 /Encoding 500 0 R /FirstChar 34 /LastChar 126 /Widths 501 0 R /BaseFont /CPZACA+CMTT9 /FontDescriptor 75 0 R >> endobj 75 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /CPZACA+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde) /FontFile 76 0 R >> endobj 501 0 obj [525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 500 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde 127/.notdef] >> endobj 70 0 obj << /Length1 761 /Length2 1294 /Length3 532 /Length 1852 /Filter /FlateDecode >> stream xR{<,8ZC an C1 ]g̼5vG%erK8܊JH!E+=>9s:<|p4Nj]1, HUL+"Bx Dif+A$2FQv"H@"`. 8,GE0I@8bVn'8h$U_rvFmv A  oDEAXj|"K9yqDZ|ĵD2(>z#vbQ(< 4sxM7iD.WEC9g"8TU +ѷW)'P 6IW.~ڳH/Gs0!Zl0𧡓mH!"Ԫ|nNgYYgԀFCy˳,9:MdJ´_<;:(K<2@?uoE)zsͲO?gql+|GL+;gS$R =T"sY?e$],fucNI>M.Hf,- ALԮ2^qӹ}vdmۏ}ӠJ"Rn="g<Xs( e\„ 2ayl8t? c=lv8s [nܨ oxLX>j߿/+Ba}RgDM3q#(VUδmn_u|RNݿݕ5O^.^R27>fK6> endobj 69 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ASOHKF+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/i/j) /FontFile 70 0 R >> endobj 503 0 obj [362 430 ] endobj 502 0 obj << /Type /Encoding /Differences [ 0 /.notdef 105/i/j 107/.notdef] >> endobj 67 0 obj << /Length1 845 /Length2 2240 /Length3 532 /Length 2840 /Filter /FlateDecode >> stream xRy<VT%[DlhHv5XdKf1c;cשPEY"(CBRIu,N޿?><ߟI׌9Zs|]eXxH$%( 140b Zȣ{ o"d 4%A&1' v<PNG@o: Ϧr4ŏ|E6I ( ㈦"/ [?7c2Ho헓[Ģ3PpX\?> c,u#*Obflo&H<ךR|2 2)?;񋽙 j$:eB$DaVl2Bg{h  x@Ft6 cዮdB*W,@0A_ow =Qz?8! X(3hрe9zh@F 0x<_~`*] ɐ aV WinN|.">H T"!C/I%\EP*7BNg ٩Nk#|a+pϖAnlWcݪkQ9*O'᭯{)C[ w>q/'ӓP`Ƌ)LxWZv㚁q2܌}r +d MqSSM ~h @Su&s2Z-G.PeSY6׳F :c>F_@q{ hJLzϿYQ#CŔKVv]4nA<)hf&^J<`=2% OAC YIY;jAA1[#{w1ч-<^z:wWɵ/T[[jVKr +Ao6(cvpp#vfNVdMX0jKEP5zj* NOubǻ 'QCtEHV8nmB!3J<+Y}j&pm!|JGq9/8ͤcѵ1Fv칼R^n}S!Rp*\İIZUx S^qo_0vmOʵ;ofMuѲT`$ NR*VТ( >4'yQ'قnL5_+znD3 ,o;cvچ['1;<8-sAeɋl9Ws~GG[#RKN ^J4Sho|!;e9M Kz.RڵTFnCL!"LX\3VALDsϖ11(m/;0^^rzߛhx%\PzꖵErr p5O6-m𾖾k]DKCw>_h;\jja8-,VdtVَ|I-=jk|~p*s\z'bŵ}[{nUγ`bE%)wf&dO˸ 4${㢴+Fy Nm-c|Z%O)nY};2B++nO\|o\gJGn?h/ofd6Ctrn/ݑ/:fOg6x9qWurmC 29lDGˊJ<5zdriVs'gnq.SsbC\{ţ^gU;FOdSDXJ]a`U՛܇n,Jf&H:R+cĘSqFvcn Y*#o> endobj 66 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /UOAYJK+CMMI10 /ItalicAngle -14.04 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/less/greater/a/i/j/k/x) /FontFile 67 0 R >> endobj 505 0 obj [778 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 0 0 0 0 345 412 521 0 0 0 0 0 0 0 0 0 0 0 0 572 ] endobj 504 0 obj << /Type /Encoding /Differences [ 0 /.notdef 60/less 61/.notdef 62/greater 63/.notdef 97/a 98/.notdef 105/i/j/k 108/.notdef 120/x 121/.notdef] >> endobj 57 0 obj << /Length1 735 /Length2 1099 /Length3 532 /Length 1645 /Filter /FlateDecode >> stream xRkXW!^U)^8q !!LKDQaH08 $ܞAai<Phryim,O}̟}{{>[h_F ~N9qXO { IP)p6mZ\؀ntI@H($*p JaT50vR,0 9bD q8@J)Qru[VRE (#pL dH,Bw!~j 3tFCai BHLK@^[ FdZ1 ` q9C5LR8 c*dಹ&f-8"F8ξ,$Q *֜_k:ՀH6D{3m8=n<$蹠+7(.C4~Y8AGI*%Hh1J$fA 4N\pr;SCIxSǢtnAН[+=XiۊKF! 7a|aB2UVb(c&qz*JJh ^&D%ծ=\~nF{,i9ˇgDa-dkLj|T gnn]v޻D.V眾YTLc=~&qkI]<?76TRo:ՇnuAfKϧ]oujWB"k`={I+W ,o:[a&eS$&l+NMȪ\X۷=hWGutQ^1!1 i[ӃebٖD$87vt떿\>fP#hH#Sv gnIqaHTYؐZM\PJG~>FZDlRkk>ʄV4O LL\͏<&}&! n{E񂠩rI@}NJS> bdQ9ut]k x2|Տt57`ED2iw-u?j Y\>]R:sc;ϳ5eY8<G70% {Z:b_wRb]_zz;metSY%n<Tq.d-JW}n󏕢TK *3VX򠮋#borK;|RzF.b|1W^k +ۋNv, ž7 TH>˙pqoihNߑn;tk.HdG*' ;sg(Ő0lie_a^ c 7UCo?>zS-U/iuW G!tbnMP`/2_ox$Z$^ 7-Y`gSt ~/octGn{L~:dCeW&i,[{%L~R_;4ݖ\d<0KsU]vn}Jg_B@!0I qendstream endobj 58 0 obj << /Type /Font /Subtype /Type1 /Encoding 506 0 R /FirstChar 50 /LastChar 50 /Widths 507 0 R /BaseFont /JLNRCW+CMR8 /FontDescriptor 56 0 R >> endobj 56 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /JLNRCW+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/two) /FontFile 57 0 R >> endobj 507 0 obj [531 ] endobj 506 0 obj << /Type /Encoding /Differences [ 0 /.notdef 50/two 51/.notdef] >> endobj 39 0 obj << /Length1 1670 /Length2 9827 /Length3 532 /Length 10782 /Filter /FlateDecode >> stream xUXͶp !;\CРkиkpN { +<<1YƬ\I彨 $u|ؘYQ! CG #u2ظ988Q`;7#N$ balh 7t4@kZT G7f5@e 2aFacX;@f(,ؚ<8#g*J&`[k7 E 5CrV0V=7v # 3Uo91FX`wAddhl05v+5 e *Z:?b? ]+@ oc2I[c-@pq !C7ɀ `akr\,̶`GtI`? b1'o䀢bgZLD+Ob 1ٙlcgl'`q6t0 ?> z9y5r4/O,ʀ:@? u9 ]P"Toz -#%tC%C<ډ 3!hM/TCК*4ڑA_i?A3,V&!t@?B}B_5̲B/:YP)je٠V! BB/P ǿB5B,!T/j E#&vx=١oJ4v@Vz@ c`)ޒe bfM u]3qEò +t\mm2GvcR'~s-$ty-;̶C.X镑D͂/Jt;K0<@tkZreTPΐeޖ!H͌N8H9 p&c7nZ785%N9iѕFKdlL:iUvUYZwHo8ˤ>[vVL4-絛h)\xk.+h~# .lB̏ ɧz4R]KP., %2+ #I b}(܂XȒV]ue X ?-OosnƋ hIn5j5ګQ7t@3Y!z;.P#3ւu+໥ALx:{(Tpe7S -\#SJ]lm㍿{$%ۡnYb1Dama%K8 j;aϨ:> Apw+0".}w۪'9c;jq:8rM<$|/ DwX~xiVP97Ɉf~[Y)KAl*vg矧o*ѯ_ &8Ǵoi}ǩ+|$59}UA&\_de 爷 Rrsej0%Y-qTY3 }mcL xlv7hYWP Lvb<9Ga:=sJ!#ѷ'} =Bu˰|<9 ଼aph'ma[e>v:Oksx:c_c~KlFeĩX#ech8D|bٽ7k.e77jBQm3NDÉ'󮦭"[oNKU^ 7@| )i# aY`H/FR lB.5?lk46Bhmz VٗEjmLWj [Cc {W1Dʏ k+CO6G{P; n)0iQ;:.=yptc^eQ&chqI lR[ʩ}ʫ3//5op͍ӞT]rUMKoV\թMY =\zK '|pM5$㴭$|EjTo{XZϙ2~'VHb ao6y]_ri6ޫ_(lpI'2# )$=|Dh5@W.[G#P bKU"7+as8z s2RBU%[q(o.4~Ѹ$voiUNW!WI>3a1"ejVVELëm|HqӠiסKUϚ}}F&leh'sAja$dw;zXSlўq1  Vl/:։T|+^o^_aRF ,}aZHDD_HRn3xӚݺ%:Yiӷ @NJqWVǒ$e#Ͽ-mرU*W֓CON>QSk6 Ú@NްCOS>RTLD1ƄDis_ܘEaC٬/a#Xiz@TOz[; \Q)T$m󴌻/Ҁ{ƈw2\a~Ip^&Haqv6,2IkG)]A^ep~.D-b[XF@SЎ4EǰLniׇcGDqbiB+&'07uOH:܄Bm|=$$L YXX(wKIQҽdnƖ1g,v f)Q߳hIte; $RU #}'!mん;ev3̳c%f젭 ^qT.Aֳ4veg%Iw7|.z;" ݖjPi_ fPs&ۯPHu{s)`'IGaO?7>I3S r~*Ɔ 2FV^;VF}\7g4&j&sKXǛ Lzn ~~ KL?M],c43 3'8aGȫԗl!+êiR9f!muƫw&olJu, uqZjVO͕}Ro\T+K<,L9\k9]gB6 )FT )瑂nb TQϖ{X]!` ΁Nm N "ؚw/4ye_{H}x<8:ָ፡ -82Kp|T +1!e)շ^4QDq<[20vRit\gBs`ͺԫxۅwKpE%܏slkMT3_"eW_ 9%H""w`%.Z3}B[-)ʐ⊎C+WoNv oٯI]e[a-kcaczH \a 5|4%!]tˁP< ] m ƦG[qIRIZG㦝 HoY9a^q|痝x9]gjX,.Kw  =!%~d=AAV-z<}/ np;p_fIw+af^UQLqu`/:ԟŒGtY'3 pɩgDF  "1Dsz'PWmTTLn5 Xt=ƕg 5%!PQ\6Mj^4Qdk/bխb6b+`RdAoR7CY[/."AkLܢs+E vSGaE4mf$XЍ~L<`3kH( >m*(H(+PV:iYnfz-p$Q 3ސ7(&6˒s'ejLmk /H\HՍimc.ಛLFpiM;)?cz%qe~-q#ER 䈪`Pö`"}+rJq=\@/CU-P0qQ<1"-tX{lBNG*eT>8b:nMX<뵭B{:zmF m: ]\ HCH_*v(;^a Io<$mеr@h&#:_r?S)IhP#m5~ Q$C1;"*<Α+FiUÍfyxڱ0TnRz^ϰKL6Ei UbKᚁO" >o!IȜYDcֵ349/aSe18Kw'*~{)bߜ줕K~ [JδZqF׺Y7]y{ЖK |4pLk׍wT$3H+Tη=3v'wsBX"@-q>}r9,cjxӁ^h [w]f1? koRV<f^}gRfTFIu ^1-excQMHӼ3Op\C8"-KР5i'=+|8ZӨ]jߎGKYv v禀yVֹ!c졙AG&{}ϩ\H-Fm\y1Őh0k CVWS쾖xR?;+H{{[`ػ#hWV;VtiiْJ*]2b>4h {<_+O#!7,!~eSYFi=&>yhI,[1ȱT]>&Ps#{_)>II>Nqc; ꗚ!ڠm6s6X|y]I2tlZÀnvrd21 àwNL =F˺r]7tAtĝS9׵IkV؜<uK|B™v2xa[4fŊD#>'Ѯ_:8`ߖW}BUifeq>[gDi:&?V=t ֯:%:1`eP?A l'k>Һ36SX2cfP$QYܭWRQƜpE_'*.q/JǁL;BGAb".vHw4z%%AO.쥮͍jZ@nȮAeCtqݯ u|4N֕[t61a{EPK֪)2݀ؗ3R&SӠP#8!_ C1')3wM0M!^Cq{x! @tjF,|WB:4,hOxbf!9#xJwt n]׃ f.Hb{>鯉BOWAl8BSz&iJ.=V%aGڴCoiOV½jHy`S"tgI__rݞ &Iv"gi _KF-{#ZinQJyp> YcMrɦ#MDnL׍ 4ಅ=6=4't,@AjsL2'=Yd0ڇ\Te# | כ-'LZ~r%^`7W0 [p1<z<83 IIIo6Лe?@G2eko9Wt4Ɯw]ϧ6Xf.Z_tȃh]^콀&ռvBC% bTUV׉̥ב'$BBBH-*a'[2(ح-]~Ɖ3>a}( 1'mz7k3c5IֵJioi/Zg~Ux>N$t0zI:vʏLd滫oL/ac3ygX!aVmگ6r.LȞѝDpOm|k'I_IHpr\<2 jňn.5,fx(z>77zYmc;HAD>q† 9T0OpI>Wl4 GI6Zw;!y}ؒ:5s/yu:2jB>kțptd4L59)9E_emW)eN|fI)sc[I_g}1`EfO7?t1W|/P f<{HI}ۮܸw²MGI;pK3h!G*0QUf+:n4e4`KHt£T 6~ŸA܈!ƻA*8*_Ewv_['T xDpg~&>Zؾup}f3jZ[+)ѝn:]˱l-v˙+,鷀=3aG.%SrU ɏ]pCl?/F1B3DR6B&d+6LZi0 g4P?³|s.ςaJ 7R0sR` kI>֡$A.vr>_YDz-E0CI QՃxܦBFAPVXBI-4ٰGBD83q+(ǏJD~!:8 <0֞ᙃOT+JVySdm`-Ja95R$l+*ɐ~&gS^2pQBk4dOvD#3B=@!q@$cl9%|1B$ܙ8$?%w ADGbmaWH!XO}ܴrGcZGW}./QFח]whU-eL?nM!=5tI;ܫ<ѵJ p35g4JP) ,gɎp;ei kWgH1[](]/˶Y3>MV,yq(Mݍn0)9i/D6<7ߍ4G)$0MG/*%5zaCVBmGŴ e$_V_厊sֺTẅN$V~?.{ "?wyv2>0 Vx,0=R&}_چGsG0jק5O:BO(W$8m*3UShxfX8l\}+:jz{cG6] ˹G}m:8EWm8ʂ#_{E}'`tvM|qh_"0?㓞ӈL/(W*pŚ4;Kj)1ܞFPV}ccuS(s8[m ݘ8u=ÝBHv˄vmT`ψ- &_c %ߺ~m75! "s(^a qI7rƄ_3!Eǟ# epeV{;yEK-t9.H 愎@5fEs"gUm>]쐇1IR-3;4+8dﭵܺ RjaTZsKv<w$?(O0B6+Stendstream endobj 40 0 obj << /Type /Font /Subtype /Type1 /Encoding 508 0 R /FirstChar 12 /LastChar 122 /Widths 509 0 R /BaseFont /LPBZSS+CMBX12 /FontDescriptor 38 0 R >> endobj 38 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /LPBZSS+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fi/fl/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/A/B/C/D/E/F/H/I/L/M/O/P/R/S/T/U/Y/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 39 0 R >> endobj 509 0 obj [625 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 437 437 0 0 312 375 312 562 562 562 562 562 562 562 562 562 562 562 312 0 0 0 0 0 0 850 800 812 862 738 707 0 880 419 0 0 676 1067 0 845 769 0 839 625 782 865 0 0 0 850 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 344 594 312 937 625 562 625 0 459 444 437 625 594 812 594 594 500 ] endobj 508 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi/fl 14/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 65/A/B/C/D/E/F 71/.notdef 72/H/I 74/.notdef 76/L/M 78/.notdef 79/O/P 81/.notdef 82/R/S/T/U 86/.notdef 89/Y 90/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 32 0 obj << /Length1 1248 /Length2 6271 /Length3 532 /Length 7048 /Filter /FlateDecode >> stream xeXmE@D$RRd!TRF@F=ϭ?}k\ֹV&MniK9L' UӆxxYYe0-Q A |@i7k ?/,*eNH+,_E@iT=,@-ju s!a<||@K[ W9%G+8P_aK7a(cHv Z% YY0:h[`k?y+ T[Y45f\Ҏ0 B. 0KM[W wh"ж-m҄:"iW l=Ƽ<|Bo&1Jni^!0@@@Ћhh h ! HB/NzoBxy ?yXhKl@ Z?Dp|h ZDps z6Dp2@W=z}ed^ 7_րB>Wst)l  K*z-CczMx+T,}ggjT uuW?i]Z|c'z6!ל/wH'Nw04 s{3?|,3tؽ3-,ljXHI4ٹ(D0xiBk`#xunvd- `R*TOœ4=Y?""Ca5[VB 6Syq9zA8w}`+:xЁ0}AHͪ5Dg=D@˴0ɏ"2_\qkyHw( G/ˁ^8#ҶYUg=#uCYҿ'ۆ m-Re.wCҺ XPT.t,PpEKnS-\xRCOX!w9jhn;7ɼԽ72gW)T?Sʑ$gBiFĶ*_g~"4"*N孆\Q#Lẅuq~?(C6z1OB^dF7.epI 9`h[uC1'uzPަ% |ܧ, n %pNQy cufGX#[#[zNRa^ApP_ٹB6&IRI@y YԷ7 SF FC`nn{6nɟdm|>;鼷,韕*lmH|i_WcwAUZE5aýn|L7ɝѤ?) +]ncxtr,Ǚ[ljzw(?m7IyԺ^Jl[WJ_[`qCjsLLfS;2.J҉5~.ҙ*,6wz2H%[sQ(f'Ab%Ĕ[TڮWr5Y17E2Rܓ9K$H-Kه FGjr珺vJxyj+0b}b˿ eW~ngX>c8h`nRyN~WISuy{oUŏDYf؛`G'+o %(/  k}Ta+9qkG2~P;uU Q>?\sb~.*VBQ/{罢:byD"P3<^prlO}-2%fc#tnuF\~Lz胈v'&4@d^RDZ43.VXJ5rF}_`b 2xr z[?M-J@y0$>B>땅(5 Ne!eBND>̌@,cFh%N]nmV6ޑ +MtԱcF<iZE1_-UH%i{XQSJwR0'JmG I76¯]cܬ_<|E)`@m^zmF.`+|R^suSy۱.b^hGAIm@x3 c"dEDG^[#M*}38N*T'{M>LR:MV }Tp6"WrQf=*X0n8ͨnV4/!H6|6'cLE02͍sݮ("pu7$У)_(IRUDYvs~M)6lX7It,ujYϏ5Q'aʤIH+ԘhuFb",ϋn;|чO=)j'kT]ᵍMY<GIJ{Hn}k*::3fQ>1t|+\*(ArYߤD0S2c_ObSF!=ݭnXH+{ oGg(z5_v?=" sP|_Qs y%LOo jw0ҙeyy~'Pɘ-ThX;LF|r2he`[E@ujjdCFSWgwYS:' ^eLϰ8pLU(Նa0.Ύku{4t,H}J8;oIp~P/\P-ٳFf?E˳bD_/ kd~..[ԝU=,nM(Ml$27nu(r[cr"Bo&*/퐷4~B`5#SQ 氠1nbEVɽo͚V1\J֧Å_I{"8{;:*N}XN8]:[mpUn]*m&aۺ@"襷eHDRs0G2z.ԂdifW7N_jHԺo,<=xm˗nx)!BEېUsqUGXE!*NTnLd a{}0DL+۰[g5xHY/ !<Qn^=_=lM ?z#1->3D?֔|s0w:ɜ!g.kNHE,+Zje˕TD-tϨF8|Fr|._p/n8i]"dU6Rk {CMq9QR?ʩvrO5ѥ?/b=Sdz[l,ɻ X ,t{|J,]i n([*pC'F,d=N=;Y¥(fc=ޝۯ^gy뒱]\vHEK5eJ:ͭ&൉ͲZXtJ23Ȑ<ځID}9NHfcP&`Buv`t[|XԗZԘ?.[ܢh19o;o ZQ2|V`b}Es_in6ӇRmt_d1WƬ6ּ2c ^ȯtNZ<=}b`܏p|Z⤄x Mx.)I0fܮ/8 tTD֯Bhl%ɓ( {luN +F(RBk"an3N@}l;lRv?AMae438TMx hY*Ek~~E5bh&&H>E'bz户B8QLy1lPEYk=͏xuf%I79'ڹj7J4ŸC`!|r7CT:ܨ2WΟ˧_1^)bb5Ҧ3>ޮ+!0_%}Z,9yЬFE؁]/&޷3JsgyCy1|F$+^ךWx_>!m%B#{9 RdeT|5([O-Kqo-b, ˶0 :lqG,-ͦ:dAcbIr7;-`;{QE ޱҾg_y'#}Uw'[P%r,"t-cyĖݼ<2"Jqz28ܚ4:"EǦD8O9| +-+wBu _I.-; 2fWmz@}\fbk.[99qI4T­^,:KQ+Q_[cF#SǺGd~Ͷ_2b NۼJ9Lvk+]E"WsGpm4"7rUYMz5OsvRbK} ] x2ِj \lOj!4ضkmH 7~ԕY wKIH,Fk93]|BL6ɋP./zҢG4ZJ|w{Oz,;҉nT#hBۺyC?L޶3Bm\ HGQ]kH^A19NjՇ ==S%20OM &NMң}DJսGC?+yR[Z #$ބ'X;q<[ut|}&%g39z_Üh13R~BϿUy17*aЋ'o-O6ɗV6*Q}sW%(I=SІG \2UkQ .j+9BShH*pEH{5VO7vq.|c#gy^#w$zym?= p;@/ ,/endstream endobj 33 0 obj << /Type /Font /Subtype /Type1 /Encoding 510 0 R /FirstChar 12 /LastChar 122 /Widths 511 0 R /BaseFont /OUWQOR+CMR9 /FontDescriptor 31 0 R >> endobj 31 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /OUWQOR+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/fi/comma/hyphen/period/slash/C/D/H/L/M/O/S/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y/z) /FontFile 32 0 R >> endobj 511 0 obj [571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 285 343 285 514 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 742 785 0 0 0 771 0 0 0 642 942 0 799 0 0 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 514 571 457 571 457 314 514 571 285 0 542 285 856 571 514 571 0 402 405 400 571 542 742 0 542 457 ] endobj 510 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 44/comma/hyphen/period/slash 48/.notdef 67/C/D 69/.notdef 72/H 73/.notdef 76/L/M 78/.notdef 79/O 80/.notdef 83/S 84/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y/z 123/.notdef] >> endobj 29 0 obj << /Length1 751 /Length2 1212 /Length3 532 /Length 1770 /Filter /FlateDecode >> stream xR{<_9ig)93nƭaf̼32sy1EWr[b|$BJ[-b[ϱ~|3kAgc;%\h]0G0ԕÎrp= )988RSE `1b`b^|xB` ,ٖdlPdE?(vV$,)a ʗ6![yc]0aj{, |?@ba1~o f#]GXtˇ} #R@pp| TQrDlK2_zͥLOElĈXR(A$ˮrCYAqS,f\ b lX `)p "LL^|L[`bq S) –XgaM!Q)qFdE0/ AaX =)9,hY[Q[9i37ՓOS>m TVq4!jNOr6ַ} љȐzz~$iު\Tܘ?`a?Ə~7/f8vfV1EVfIR|1'meڹW;ʻh֮nL9vé/n)/˭vTA;34F]^ϏL|y0n!MO[_U?l57ߜ|'ceW;dF1 J+z)`Xs_/ɫnS:q2Zt9k kvsQd%7g#Pluv^QjR~bj1ѳS?98}Ԧ7eF. G;5ר`?W>E D: myi<є.֩D~|zSc?PmXY^|=`$+'k{/W#˜tf=r"=dSCin덨hwJ]'~ujf/[.|die|ٱ(ZJ^ʅ.9=4sپVwXՖ0JAks_ N&__8e/LC:4O HÇ7wԵwv?zHV;M_MD zvn#h9,Qa:*DNVh$ ѢN} - O1G*]\eQaAN:6=NH nU2+NWɁBEl!fi}6 wnXgRzk?ofI{TGz_sKO7|i v$3K,>㘀)':endstream endobj 30 0 obj << /Type /Font /Subtype /Type1 /Encoding 512 0 R /FirstChar 49 /LastChar 50 /Widths 513 0 R /BaseFont /XFRLEG+CMR6 /FontDescriptor 28 0 R >> endobj 28 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /XFRLEG+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/one/two) /FontFile 29 0 R >> endobj 513 0 obj [611 611 ] endobj 512 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two 51/.notdef] >> endobj 26 0 obj << /Length1 2036 /Length2 13085 /Length3 532 /Length 14212 /Filter /FlateDecode >> stream xUXͶp www !@pwwww % o<< Ƭ5Gͪ^JRe5FQ;#3#++@\A]"OI)4t0tXyy6.+  O p03wЈ :Z ́69 jv@g&5@_8TN@GW <++`4g飭&.3 ttIhI IZ{L̊vj@Z9?S׸gػ8 v&@GL?G?:Z[ښY,pp([8] mMԹ0K)((kPY߳/f}gP{-:,A535qr  =AD/V t 339~`jώAֆ6+`vpsY9̶.6F켙{lt4:x̆6!5u$'hk 4+HfNVA ] c;H./q wCZ #xE͜ {gqN# {kjWH f/WNdmWX;:o#H;n*(Nƈ'x'俉T\@ TU@Nr.N NJ&PuwS}'P=w[@5 T;kwU7khFV@uyǚ$zPd~?üFoobe _ Af!!!H//9Y )d~}g+ dA(o8f7ʓ/Ni$aIzu\{3?K} b'UEMw(pCMNܘ m_pA,Kzc &*T+'oA2!,l78™JAEiehoDrAMCpR,Mc?6$%zϐe;4_koO`Ц0 z~RqR>cҌsfߑYX"oSCTn0БYdxQ'K3#Wu!Uʲb9?9-ewqs"'{+y&C%*A0tO>##-ؘ^SHҐ\ QC1<-քڟr)oƍ>}X4&++{(i,t?vFT^Y|9FFeĞCpIvuӨm^vAPGsAF0ẼgGv sC3 % I !]VTnl/wRW1U:nS»"yuVKJL"@Q HkU˩.C% ;p)7CX4x^hq]s Z^#/K̈́9c>Dl-t#ׁl_3$XmL~FYH\s7ǣB=_㲒_R^h|ہGQ &ķI=:(q /ҌΥ*yq oOH?.C3C L@vRNhZ"5FP?`XEM'"bH o1?EmoGDkRfL_gɘtsL#fj»KIEwF8TfG~\̄]Q[kYE,+<- ikJPiI^& ]a#qXλ~!yo:Ȓa)" SBqќE:Knot@ui䊓4x-LF^Mc+Sbj*; .[6Up!mlxIWoP?p<, ھ Ry8,)\G[ )83=j3Ir I%e)d,@ȟ}n8: $8|ȦhZYLA-* Zdm1.bYr;?"h;,̒[SGSrjQkWDfi/= r} a*٫3{1)M)K/UBcs[TBvlr2M$t Qw<1S|bC4~m.kG]90mA$ﮓ: PОr8U08txڎ4u+z9!Ӄ"7\vSd\3w`# Q^7[( : 0=y ͥNYS%tؑxRll"Q. 'g&3@UXZ02o8r?υbhǗ'nSFHq4 vm fA*xHD|}lׂ4%0ӎ?` JVc:i m5 :-Z Be<*R=s@w!n6͗mCzJd a Gu$x%um!.1 5P@)wTר;wW7i:?.0 K(Qr_z2Hd6 RmG "ԝXRӂMc7w~Y#jFU!{@E ,?\qi05cFP dEt! էsލxR_OofQ, Ƙ*s7AVdWY !M- tٓKÍFb*?c-oyi|3 r?Z4](kDE+ꑛN/FkNVVM~l!wU&nnHɭ ŤE '%B MZ|E>`g_f,f'P!څ:uDECUnNt~O7Xϲcd]̣Eys1{)GxJʻvWTV>q[YQVü Zt2j\B8h*1Srm'*KF;(֖fꭾop捣+w:9p[$DCT .s5>?6F4g+#Y2\A$T\I]KL^# RW;I6ëޅtp&SH`p֥Q+ly!n{-`ϭ!vO :0BSѠޱ^z,t3=bYQdzQ'WWmn#QclGw?QK6>Zڕ&q(k >;|4u~BOڍB\Zw2~>gG'H [-[6O!P PxOe E~K%ժX`bHo=Cu&-C \XzKu9`V'=zߵZR N:L07G3e&Y A_̉,.lY9#"9o wEPSaF@gsqÈ?Yl`5=]K *&PN?y Su<"_zcmz86;/9UUxڈ|<+7\HϙE&&rBjvZ x' =o9/6YHZ?n$ִ)vgM%O_jDW텝>.35bN@mtA%#) \A|`|6}Bsh@^{M!9AxhA!ؕ)iCv2WVi/HG,{w *XX!j {s (L!x$C+fʵQ>Ny8f9lh>, LCM$ ?q,5kȲ=aj{RАI9Hچg{xғ՚$1 />m)K8^[g<(v%8y,$ԭ}D>NB FӈI0^F]4DT}S\92߫6jỒ6>5>U9l(c!ЗHBOvYt;|%41ӳ3<Vxɇf,*Z,ua.1\x*O+)3O58$DÆm= `#NVٳ3Bh:.CgEnHۉ;?Z/{'Lu:^֭൪u6o^"3vJtTL ǫM#9(\-CF# /\9ԏŸ >GU(Up9"Hu|퀝ηtD0R؇E2DQ´wjplǫ L}Z*Ve\{ݪq۝JԚqcz\ Q>UrO,qRDIu}bmT6ƻE~AQ{I?0zOvʾJ87 sJmj " I3jSV=D#Z%s3 Yg-} O4S0_FҘYء#b_9\c{ KM!( ++q/H<ɨS$^[GL;B50!~4kytOE狗boj$@R[ MK"|~Të8#{ x->|1NJ/*OgH)WYWkX11 KC?O4o$dvg%w(XְjT SrU|9݃Ŕ 0}Mcu0=tuG+M3,`OOh9A sB3U^ZJNjv{,{e}y,_ Vm#-sn|3Y1.9$A.̹~v6Zq-r|A2x"cVSu;BNխF\"6\mYXu*k咟CMn> %)Gwޔe|PpsQF~4ō1Є11zqזs$MVnEoWvX`r 4*8cZV.f H#2=(/+ {.MM ?FqG# 5H?)Q!)tP;2]G!F9Eb桑DV+I)\/ IU}%pؤ_.xM&}top^Tv5ad|0YD%tR|*(o7ƍ&iN.BckO3%Sѱ7H-1lJ0F>w;C&5 JY~ 5&-Dn>~[ t}?|+'nuGm&DTjg}@]rUmxe.U>'N t93='x(i˱Wo gR'yt9wP喑rJ͆`t.$xtHu=fIg h P=mFr륰_j7-d8KfyPKqjP( q|nң*,Z& +î rwzUBI857¨,"suF _\Zō "rn)~vOYE ˖Ko+ƚI>w5~yf2-BFzby/4% IU)b~"XUD}GiD5 ,R*w&Uݪt$pUթq zLMsf?E$0 )KwLz @V}f/lA2%RZCד8c'{zW4KiSf".{paU}w)(R߯S_]'B#p$dQ?~j4&m]ûA*|mCr3\^N4.( ٧2*ԉ][$Şk INX]'Q͓!0H b k!&KVn\:%#0M[wMs85oo ;Ē=o.s{֤J{C+^{fr禈>w,)( Ţk -85ZRz&"BbTȑBHɳųqm Ԛ ~ëHdXyZ{NB$}qC(XS$ %5]ZAܶt5!jwv6)TN3iWwfC*ѭ* Td{nG EҹoF.Ȱ<0?nۑ^&4C<*5xoV_Ӡz hQnIC \RmtoHۙ%H+juPnƆ.Խ6z7"<ZHą-PI N/1I/^`U*9ǻmh&|6L53p&QnwO+<)9[*]-uP^`hbB^6N~470{XfM:*}%4 ؆zF 8 [Bt|t#iX\DzZM*ĥK!?̱i@d2Is&zN9#q!Â!%yۑ--'Ii7 ;6 cboð6&ݜyAo6Dw) RcV耪c)tnuKvj:N+\uiKtop:-,N12vaKhc34 +ݍWKpʜ҆")Gcp~&Rʴ7KUݑ 3 G#oWG?R~Ʈyju}?fP"Lظ&*{YCԕy,L csc%8Ä$9Q,f(nryJUL0B!PY/r8w+ YGA/ha@b$M4j4h]rqglNj L~BZT(:m,|v?]}d9\SK XRgfq,A;q$̪IynM4\9g(l yvJnG]z.0 Yoiu?WU+Ia4u/YQxov`F@oC4J~ϏDe;gAZ/w_T ?rh́ 8/jؼ6Zb+h$t`puYJ?L1sVKѼƇ;gmMjDp|AfRTZ.jU.k,&3b` mGcS(C Qߙ*qFz0mНB=ºq&h@zXRFrHu۲tN57G+$CJ7K'S^H*n™\h2mp-tt/P\mE`=4V\"~xK4+];2i[)CiAW>]ZZhQ46BYU sޣ?FUc/kt/?W'2@,:V%M9foiMdIjmmxU6 n`NΠɎj30N ;'aLOGlM42yNM]W 5B h?Zj` /1Up^-k`" #fC~v/ht^R7t V-[%ۘHZr?IN2*[d *'hbN1U\RRgSƁBS_7x;X\~pՂcW\5gYA,Ҟ'р5 7_F\ ϶A{lD*=(26jSĴ?>{twu{'Ft.k}| 2JpWߓU0o]HO1#_$)Pp ѯ2# F::E{6R޵h.+&!)/ Q@17OСIF"q #.1\QsQ ]އur.\xL)4[z\y$'Y, 197ƂdI"pdqMlO'qo1^\`3Q{VBʵ1<ё H|3u>/ie~W-"?پ*_l8!Q~lr{xA{oˋ֡׊l7AE h$G{AT':wJbS;`w8}x.V1ceO6(Ԉ+R-m}oH-mHD/Kt%9b-T4P\'`[#h1Bw5qc06 lQ=ٌɲBpIz#hQ;>X l"ٷt|EeHiHg |XKXYU[] cw>E +ֽcѾ%hKvejk3x+wwY)~6SUpI!Ęl69 ~viX)1Bd;F!}8PFde< 't8qFS!Ja/*#pYөX[*{<)EydDR!nxAQڱ͞х!)^k1u+zN)njؙw'Cq^hKԚfdc94x(6$6Iή]>z䇷|/Vc$S5;haMMGkE3nidrC/u W~MWW[d༰el8)bͣMK9x3,A h5m1By;Kbb&mFa8*9(4(19jڮA)y=)=s3&d`ΐMlQ Z.JU^e7NҡtoK#1cY:\7l"g-tJ?7Ml UBDWug ׷Gԙ1̀,M}-~4@(FZ ?b斒gn$CT >Uɧ~=YHgYn&N"N8HW6%81R="h!A# 4qIFr:=IhWݘZ|W/qd xC yu&䏋|kHi5e^fpfLiԋ vj.w^(/uݒQzerG6P`\PT'w"2ym*<̃ÏAwr8%?gbK' F*#G}'Z,`ˉ_W {U_R"%蕮nj( dZ}}t-չ{\^9 4`贈~c1oD&7yw0@[bLvg;dHMK@8%M\I%a2)B 2e9icL>>_g-*i@ٴhES!D_'j+n*)I60bAyJ0 >stXZט%≕+b̼ v>?зe_.D,s9lșl#减oKUMiؓMT ?8G+ﻔaEծ,@P.w&U(jt^S׉(BTg/ĨK [c ls-7cq/@])_ mMb@YX|vHFuy>( #TRAMz=V&]A%.lU@)[${ \Dݗى6Naqzi?HDQ߯O!ϲ >ޔ#dFpWY-2aC<XuzP8ÜwRB\iF,`G-hϦrh0^+;qk ou[|oѳ :F=U .FVmo{tj״bַ9:s|ω&#cwe~S95QqOxiKi-!0<).ƈ˖wv4W^'+g`h{ziJ/1> endobj 25 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /FOHMPL+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 26 0 R >> endobj 515 0 obj [525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 514 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven 56/.notdef 58/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 23 0 obj << /Length1 912 /Length2 1472 /Length3 532 /Length 2120 /Filter /FlateDecode >> stream xVk}5 / ! $?H@2cBL!G0%ZX4jfiDt;~D s„T`ÃPDW0 a5XL.g0 p  4 b a80BL)rBB7-NEAc" L"pc6J^!jvq{M_x&E Nsذ7u20p!ƴo,!6€P&WMž-ߴ aN &c" :=316%vPT*%bYͶ",>F8`(3mр} #l(12bGl4@(%Lj P""FD)f FY\5eph2.$@"?QpBg&EcV1?1!gz\ l65J>uԶ}$# da:ffKdPBی=1!(b:d|%q[ JS_u,wfzrY9tbsܼޣߦu@g91Ɏa#ktF꼊'ǭ0b!Ȑ8~wD!6i59p5{$ݙ_kSEXix$h~M9̃PXvp_vvN.pj+jȕJWլ>R7;Wk21d@v<`JE[33o\q1w;lWE2kc}F.Hؾ*vKa\']Os ZT[5/jp86$~eZ6ߖ:v_˸!yjp]%`-94)5>U I;˖/:9>mN|v΋:̃+ץyg'!RUe4cՎzo:,8m? 4ⱈ؆gȞ=2kSzοkd}Vޠ'5LW3M<{׌[ct¬/cIp=]:AQe;9/VUm멱Cmzqɦ?tߢNr:uGI 7AMCfƁ-= ˳Kk=wf֓lsw&H"JV98ge(_ST-#ڞ/<ϝ*;oܟs,ž e1+ե5=XUl>9JPdh7/%y5CiQ7p|E{_[5/xg6'k[HEs-[&wlܵO"Ӻ1}n_tRpۄIHd[埅:Fut2A`(9 ^9ix_Df~Tt{?Z]5A/>ԗx$Ufpݫm^ڢUѦ 2xծ(K+o }-yV{ό\]pya_viaB>ylendstream endobj 24 0 obj << /Type /Font /Subtype /Type1 /Encoding 516 0 R /FirstChar 6 /LastChar 110 /Widths 517 0 R /BaseFont /PWLHNG+CMSY10 /FontDescriptor 22 0 R >> endobj 22 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /PWLHNG+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/plusminus/circlecopyrt/bullet/lessequal/greaterequal/similar/negationslash/backslash) /FontFile 23 0 R >> endobj 517 0 obj [778 0 0 0 0 0 0 1000 0 500 0 0 0 0 778 778 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 ] endobj 516 0 obj << /Type /Encoding /Differences [ 0 /.notdef 6/plusminus 7/.notdef 13/circlecopyrt 14/.notdef 15/bullet 16/.notdef 20/lessequal/greaterequal 22/.notdef 24/similar 25/.notdef 54/negationslash 55/.notdef 110/backslash 111/.notdef] >> endobj 20 0 obj << /Length1 736 /Length2 1025 /Length3 532 /Length 1564 /Filter /FlateDecode >> stream x{XLie2DI413MUBIiL3ԙ35r Q*و%bdɖ[!XD.u%Slk=lC8^2" 8A+ .b0E) xi@Q,CILMϤx!IQT4TRTB))=xT`N 52.A R *0}j˴GPMCN4Uz r/4ɿORjLC@c$A !$W:~b 2L;P&*ZAY0FIUi`oⲾtnysC':Y0T>OqoU鐘D|>B WdRBpr(Iz}3 $"ePqq:d 'HFqN^hO/x{DhO Z8{= >r B2n\#Uʜ5K_*4q0V:t1ӔLcf9) ,57k5i`֬?4߳q[v/n]r:ena۔enw2\SWkv}C ecTsնU΢0\%6sm+X+L0,;A哛^G#:m^eK7EQArMZ"]b.ʳVNִ!-إ&~yz}ώ9T?qAza>k)Ƈ'wwO7X>nKL#kuR̬ҁC_52njdŌ:>Sip}f:Jm5F^JhPqLV%B`λȊ^r(R{3_ai˹-%[^,dqeҠbN.0S;Y|܌Z^UT]Z1'6:ɟw!6Qx`.`|F1_ۙcյiEgz RÃ%=hxzuY\/Lw:݇Qg);^$M11vCaܜ4xJ׾ %_LOf;RX:B"Y4Wx^1x9T@Àw3a+Gb<+B-IDd]EyB kZ -LX/Nzjm3Ev3Wz;fiyR)Q<9wjJryQõI#HIgw, XxcN>I׼/yxg-act!qY:(c#<Ă O9򞽯wOb>XYh\&l/Nh[o=8UO;vPې8jߢn 7Z[?Nv tة`CҼ2 &Vyz ڛY^w?LO{GE~k)BxO;YZTQ"(Dendstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 518 0 R /FirstChar 84 /LastChar 84 /Widths 519 0 R /BaseFont /VJUFPT+CMSS8 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 694 /CapHeight 694 /Descent -194 /FontName /VJUFPT+CMSS8 /ItalicAngle 0 /StemV 87 /XHeight 444 /FontBBox [-65 -250 1062 761] /Flags 4 /CharSet (/T) /FontFile 20 0 R >> endobj 519 0 obj [726 ] endobj 518 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef] >> endobj 17 0 obj << /Length1 735 /Length2 1053 /Length3 532 /Length 1591 /Filter /FlateDecode >> stream xRk\Li.jvrJQ3\4M53(#*BSq:gLjXvʺV$Kl*)ki/<>yKeD"$pr:Ñb 0鐵I=` U!I مd@PhhH( lI\CƁ&C0JC c` !ER$'"@b0  Aqȩߏ'LǶLE"Lʢ1 !"  U뗧2 PLN)T$bB(T_51"CUaQOP)@B#y4X2Gp`Tl<>˄Ba'}4?E5㯚F #ΠirU\JP6J%*6X(.CQS~q* PBrN7͍PL6`2M_7TT"890T` AԈ}j;O$^fr2uQQٵC7eچGMɺŵ᩻nEeDם!.>FdpnQ{`W.|Ut=-`vַzM▢3L!uG@u,9Z`6qB0kUF&Ngrnqn,{Ǚdōɹt}.L춲.>7Ƚsmu>l?N&VzNY7"/_is-? YEjcքOX_ ZLhye^I{HtN9|Q;ɷ+aù Cg tW9WٙRz+t n{]$|[2ń8S^d­oPܺ=Mhdচc1ڕkg_<܊n)LXJTM깍W(={Ue@ gŹ \hV`};s[ғ\Csb2njx5z&7F#],r;Hv-@ (OܼzG}?<7jZ&ikt֝&*kV&yՠ68hê y[gŎ_-_& X$sYdU\+X:E[; ={COS^4/ݯ15K gƃ??-k}m>NK3 Wϕ{\ɼSvTwxU@uza̓ }^W4D7٭h%ݒlspvBհnt kNΩ!#nIjà+G-nl]xq:>$>`}X[g?[5> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /DETVFF+CMR7 /ItalicAngle 0 /StemV 79 /XHeight 431 /FontBBox [-27 -250 1122 750] /Flags 4 /CharSet (/one) /FontFile 17 0 R >> endobj 521 0 obj [569 ] endobj 520 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one 50/.notdef] >> endobj 14 0 obj << /Length1 2150 /Length2 15936 /Length3 532 /Length 17102 /Filter /FlateDecode >> stream xڬeT]Mpww8Xpwwwww;w n!}o'}߿߀8sUsڵ6XQN(ngLD Sfb032 Ò8 -lE &..f8/7+73,9@@)BO@halh 3t6|alh P3:{\P:]&LL cg%)[S;ǿ&.; ttPK !ibgk02}pCN.bm-oh6;{g#@hS5vXQ)gCk c![3k ! 'q w9 8J|T_ rR4)Z:zgL:Ə2}$~/g-1[c; [33; 639\ e0 ;15hY>gcc1kC?;gp쁎@ۿb\ߩ@[k_Q {k?c;?7`07 OCO t>D}(:;v.]:]ri3ۇ"ܳ_q3GwL x\ l5;?;twꇞPCZ"I}8><ci?Q/?Q,?">\dЇpC. !?>\ЇpQC.jE}h?pC.FV@: \>$y00C8㇂_ϣ< %1 ?jW3a(_d~Hj?ljSVᇕ_ae~X9V?/r ?\+׿na~XyV?sch" .;e8~@?f_6xq@cvF"]K`U'م8XWQqlHr r8 h׎IMQyxtN8z31՗ U&f:=f ӫ6L$"*t VS`ǧp2tNFoGoLC=yxe0G V)[!bK'wS39H ^3$FK)GJh~$Ҳ-|ƎcDmBbtkgf 5v+V&)lõ}-QafڱKFV#ި Ap? ۝AiǞڈWOe;翄v}s[p`$XEXHen6pt .w̽$]^u{'}=#G^\I?RdI#05(u+N4[ exwn+r(C(+c蟀3 7'ʫt]a'AAC VElaxJ˵tikhɐ,Pg'M.jm_wOJoCcBlaq/ϩ˞C3ޢ-1_M:"[`YڻC NW)G<&5H9S3 ce  ½xB(%D"=vճnGQFggG\yIwIYob ͭg5+QbނRL~7Fpis~`d(e8xViYHSe:?ؒoHzaLRD$ ä<.VR$oD84Ae^r}՚Q`ũ<]kT#o% i8C&#z ĭʏowY1.0S@\IWQNYӿe2#i4x#?2 c`H R~jiIКԾvV}iv:f(/iug@ٙf `~%.s>jם7gPy갑Gp\FqO-߀NiL6Zt(&87ɱk,(?MS83T}Y>"J5G| E&o@JVe}7B6D N&b61ɣ,\&u =FWWcIIQSH\rZ!Y|y*k_qlgز F ǝ/~gFqIn?ʔ}JȐhr*53 z @qj1ST U.ٜ6TOR'K*hF"`U 8d5o@8uuT5WOceI F|vJZDgRbHZuShX1#ĂT#VPhJʀؼXNׄvJ2 rD&8ȕ%/>ߗ ֒jV̫2Owrl(Gr%g|s;b <;Ic)3Jy.L Ppǜ#G0.Ȇ]lVT;=9O>h &H5V E!jL^ZgĥL 1LYQ`Dp(_kHmNy ^b_@Ib*1aV#uxkd& f/z~MYP*y*JW)'I(*781@ I,V_0fQUuGhiݽ]%ڔ)>JOh/o)͏:{o~7w+g>mq弲W%ۮp}L'Ir6 e4 bɿvu %0hQb-gK_ٙ}#1` \LTAOۦ)6CЫ6D_øN6>҅HhN+he֮ٔ[Ey*N{1?v~^ij"StͻhUv8ԇvZJ!9˷|uAcAܴ“'DD9h_|ōs {~njGbb#QZhrU&)eNae0mXM?64 mkD3sS*^ Q=vizD/@*J4.NLXL>3CȘC@^NmXExc ct"Z=CPŚK«>BS-`Gg|^BY*q,L-i=õ+mRX3jʓծ, %<~sr>688QF5(zj:Ϥ{>Liw2--p2wDEaa_9 L`bnAl-,9䳂~͊- K0]2Pi=pzef_ vڼ2G0J0#|> m e cvպ񯑖|Щ^1SBd &ۀ%F\/@F:Zt_eYǎ(J#iclc{Et7yZ< Hõs a8_ԛOHN~ "އCdg4w_ `Y7yYe3UX "_ ..`T'De[{LWo_2+ 7@xh6);SCA;FʢߴM^el[-u!8~iQ|U?M:QPJHI!6]K~E3m;)1w'c7;V^c_x炥ps8nᴣl$3Onֵ9Th_-F|W]E 4ڝCYv>G\[)ܪ!~#o*J(b͈MC3]'%]D-oq}뀥Uem*v)|45V~N8"zYsT,u\ٶ\ EUA`vL M$T.3\{^֖ k_w&][gb曬4~l\l^cWm xM<l X4B_OSq}6\X 诜BMML g:khG{Qœ[PC Kz&wM $ Q*=֬܌ơ4\5vv07 jNu Uz ĭ;SuzWAj#I>T1t)ԑ,Ia=u,CA*{ӣ(p9w 0?^="گsԸ`]QP0Tj+w'9jo \/rSưICTMmek:xOqsCBXW|[Oy7UW 44Lgn5bcTB`&vݔ%LvaP&!a#57ƶ,Ҧ|[ca CcxMmTt}Lc IC7s(&D3y6Wl~W^4]-ᾴ3c~.y%z3ɭc5PC 3Zntڔ_1sMO'~vF3ƞ=>`٨s8 ORn©-dA @NFrϵfZj̕I_1DϛC4=7w{w۶MBc1{,٢6﯏q2C6"p-?F{nhiz3?<f=,+9H7n65lx c^8k2e)+ O{2"tD>M1t_C̊n!׮=ItX oPpoD9ZAV;:n>!ANs$zo`p3PꌊEICyc܈ՎZhöqX8x;vƇ`B^ +IWq&41zї%wQ~¦@ZnMe8a=cԦ" 4."ؚJ܎^fNvݝ 幍2D 3Pav8kdWɫZz%>bxeFJRǴ+;(j} E/+wDlר:k0x@AIRI䉭a7BHA4h~w[҇ͮhmxv(;-ӛeYbuNNt?Hku"6E͕dc\\mBVn(hOYzub>Dz7.mOj ?oPh(Zd!0V($αٶ#ROop-ig(26B ,z>VKkk%T/ LOYӘ'wQYW[f,{Cl=̒v3,K5#.h9[k:=d";2bXLo[5"Yuܦ 6iohvSܱ{XaQ( r+9ք:i}< )oWfq$ BW X 8|ԥE[ØL E %7FnhxkerݯӱpEk+KK#0]_y]3*Dkɡ5&;` %S}^>oQ v "7dcB%3zx8S}JwYQR.g/38U~si%CTӚXt(u@0:2-xhHZvIw'o)4 \&% yfn%'Rդ|ȕT V;k΂v~SWF"2Sh]i[ ILT.{vW?Pqz0K-EGĭkYuP͓uke1řuU\mȷL^~Y1>u-Ar.>"7P /;SR*5*6C(Mr%EL}^QXMۃb$p>Y#K^#8 +!uJltZ^a%tKʂJZ B)ibpW&1$9$W*WފGKȾWPs繶jI fu 3<Gv|w!vW\ ջ Kخ [NR#V7]^<[5v77dPv۷-^#i*xĭYɏ4C^ \- ;皻xj~NT WUa '41-rQ__U mQN;/!$? S~tJW X"J{8 Y*m;K8. ? &5.#}%}- r*vלhn x={Dbl[2;0kJ֐B18~j ڢe ^9" !s :t؎& $jqu?B/_A 'j.d!rjY Fv)p8Yj DIs|~ V@2s0 ֯$9jXQ\23hLAf=ȯm=h*=!rGbt>I,<2cI{A6Nls N5&!H=*(l7?22 4Y|[Ơ5[|ahF8}e۬)f`ʔl)VSNd&U‡3-AҌX`vL@4qD1yi1&q2{-F)h6:C72Wv>@, unLThqӕ4ipABPZ]_^-%S)zNLڗC7 .. tNqdn\lK̢ k" =HH`U5~MRpFp6#J)~6gXW)V 7[KHzRBȂ+C(~ >Q-(TKt~4H Ĕ@^*`"X{(WoDcMn'SÀO*̞: Eu :"I_x Tjghn\S"̋KF\g/H6ݱmCt2`k]6 K4v0>P"'(5]`3и_^ ַN{jB5R1m4_sΉR,asX[s)rPVD2Fد#A99!4.5(_ww+]uqBCpnsOxNH3%]xC{wE \p2O>ProG#&f;5R>˖k{zjAES NT"0: {. @1d><F xzC{)Pq#^ɂG;,#UkxSufէ'^L8Bq-p 34㈄(O0כt ~ڧ0a6iL)qdnzk8_m {`VF-u >?m~vEw'*gIF+CxSbϒ萊DUrT9%x@} 8N7aaWwtkR4K[n6UNii/Q Hq@OYu/H]P&Ӆc\VXoFd&ly^MD|\%IuKlG!&;X#9&8ʼ.P^fPOBpɊJmgc^E7O-^WrIͮKAd,6bp USdLՑ2&TQkǨtobgY EjK%JЬ]4 XidNzC.w0rWHm|+"/~X*H8?tMbR ˦I=<Vv &kT…8& 9GH(]9N Fmb_HQ1TJ⵮c'ahd |ť'o=c 7s.ހR+‚hLahFqD\^ޢԐtI0 (.\t4켝Gyﳩe$C 堛5gg`DStO֡tJ^lfLnM_tt)vtP^Fy:5luN f#1lʯ`&ŸW7JT~(+BR(/]7KFAma$CϺguaZpu>R҆ =O9Rl CHF G)1`l{FArmW8,:Ȝ9I&;Ek&٣'jOUT6VoZh_@^nr9_֣O +r a5ZU܃Vp_KfѰyȒ x6L/T 퉌~417mP OiK2~?"2QB⌥||dz*,mGͬR_cQ)a~a f{t!_lPTJ Kد.Ł>H``24̎c#gLKWr^ڰX$xnSp|"'8): ~HARpI BPfy=n5]ٴd7Y ½ДHT;\w _pl>`k Olʓ Ag4^ݘ(o23 ^SkͿ}_G 0 G׎e%.Z Xb<_hO0I+>Jiі.zO6MœQڦ_"MFO#93D:OerʇP $]amYNA[$Zh' #ǟ^0< ~[cAfVh(C>!1*,'Pa<+Р-0[PD笀Cb'YhI\ G,o" [U.&;m4v' ~G shҙU{6eQW<`g!ݩdFHܮۺQ a1YS>A/f}fJm>f+<\~tnO5v` wLԦHd _tUoe-/-1j;/?h.zhF;vvR`v_JdGSRJ,]5ͧ෎x$R4!T'R֛ EHPv {a;O3^iqU^=<>η;N/ =YlZn' SG.X@^CX+=)PG  w N\LSĖ+RW+4ؗ/)ip*]TwH?~ývP%'}Mmt-ݼ7%kyd:斶e~STT%AO |!tFXfH ϴKr5;ȟO"_i.+Ea(|C^ xw#yư;୒P,PNh/g.Lk)O(A'UkxB7_:E.Xe֙pu"k=hT:?V \6gg͵k / l/ Zw̢Fxe#bX(fc8HO(<Ҩ6oO}ļg{}_xT7.[<]'a {;BYz$[8?1󳧩Ol,aG*a!҃P%H9siNyEišD<]s$;[|ݮN4;Kga,+ߵ}H\(p J+b-y{Q+IC$:̴TMIVѐp3S_ܞ-]Jqmܵ:@WE:vc=k'ˆI)t>laz\M{p=! z2+.+{`=sF"\"HkdY^cQJݜ5#jLnTh4m뢉Y;*Cj,[vcx8^s_2g%091Wܬ-3 /KqwӠVhXЊPki{jĢ{c$״zl!;=J$˛ !RK䂭fLiT <fw*h=QRN.w*:$Z%EAd*tӪlT<"ZRmʴ?YݻOSƞYYQ*RW V:ymV|  :6f(ld-rŠ2zL@0.LMp#*"8~+,fNӒi8 Gjۍ _ 梈-j0id֧lq:iw) aK(-ΦX րQ’;_<vMPXOfˠPv\fkPP;E0{;MΜ$Gʊ=۠ [UP"&Por/“gW 3MǨ3ācD!ap*vW oAtpV ?0t)ԊEELRwG7guUK1UUknd</hchVI͏+E1Rx7gZpNrɸAnsL 0ɉ c%'[mj8MU]ުC'PǽvC'3Ua2+g,1!JI|ݜOV-tITQ+D,0IŬ~C3EJ2ҔhЮ T 9n+/yn <ʘAR1G}7!ciye?=\k)gsrq&ի}L &kOjn t+eU!i7r qXD )V*ZYO>& }wBIy(1LJ5M^uDyVLT䇤S@Nf)MJ]5y[fO1l90ޓ1ʹr> KMz165q ۭ8+-(1&?%Nmdn nΩ0,"kj96o,FҘ(2ݐHIQa/+zˎ0`腘o=$nfn0cS!ž ݐ-ݵ Qԅ%ySYM8j=dt}~K}k /YN`;"`<"k,zA)ƬZmIO;4ӧUab#H44Q"P`;dYr*?i0+ iͣ*j}nWb35 G\K[v ff`M*X<^TQXxr⯼["k0ʱ2d>Vs"x&ZZ`3S<rvfF/4m/QH綧넑'DQ_2$kDUR<='b^#.H#[,=i#G{䍳>k3W^t"T覙}(lT*qZ)G5xig2'8*nq6}*j?, tyi sp_w=uqBM.Yl)8fkK}sŇH$VZ u[=anށ+,Ddp wذq$u]z&3pᖒoƿ-:~T|IrZ{k^}h,sULRdaW5/vz~~pͬKz6{&t`u=rd&2S/_תYIs O?ڢ}*Rŗڭm1_Q$׏vpԞc.Q ѹ½~(O=P{fkl? ;ro[x07Af':Ed3e{/|HzqJOqgF˶1L  Y7if5tf]SSxQg2[%'+p׼igWm2p0, HIM,*M,8endstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 522 0 R /FirstChar 1 /LastChar 123 /Widths 523 0 R /BaseFont /HBMLIZ+CMR10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HBMLIZ+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/Delta/ff/fi/fl/ffi/exclam/quotedblright/percent/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 14 0 R >> endobj 523 0 obj [833 0 0 0 0 0 0 0 0 0 583 556 556 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 500 0 0 833 0 278 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 278 778 472 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 611 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 522 0 obj << /Type /Encoding /Differences [ 0 /.notdef 1/Delta 2/.notdef 11/ff/fi/fl/ffi 15/.notdef 33/exclam/quotedblright 35/.notdef 37/percent 38/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown 63/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 11 0 obj << /Length1 1592 /Length2 10416 /Length3 532 /Length 11340 /Filter /FlateDecode >> stream xUX\˶qw.Mpwww ָ6ww$wkWry~5j_,J7,V.@Yg0 + @JER.BC#\@A'@h p \\}@v6`_I| ' b:AjX;޸X> GG_3@w hŊ,6v(l9)8[p'HZ8;(l.ՀZY\Qw;9wXA ZFlhg)l+d.k R[݁ǁVilZ:*2L}9|\)W!y !$Bg8[X98yx  `l!l.`%k_`v+7rq<\@+ ݿG!#.NN#<6[W[/r.VC6_ w@ yl`<8x~#"i? Qszaill_;tt=RF7AJH&t+AV7A(&Hi?ioTy MOrEs@;lOl K[C쐵@ș7?"gBoB@rwX+?z$@hx ?9! DhVtcႴC,ܼ#:s!˿r@KyKpȲ@©rxFhI$ՆoaЎ%#Jnz9{{^O$1g!nIYsVY-K/p>xN/J k.OO6QmD=-&V[Y5/ɰ@HL+.8HyL-bc݉'$bm|,<_"?W65MUl2=Jy{Qm7?lK W&-|չ5JRyi5ԉ,Lϩ,įO~TYj `O%6kl1#l~[+ ;vK5ԜDI#")rZtSyOKO,q:!?.ǣ57=ԩF+1"*+&: A9i]*x<vVxolCY##r|A%bQoW[b Gԉq5 RҠJ>xB* HBNd\BË0!!z{@UjƏܹ=~^K}5b?B2 t颵4cG`@y毘}'>yJ+=+)T_eʎI$C ㍮%wA1OK޸0"m*s}qaO !|ӈOtٰH)jCY`3P)gF⡎B}yB'lKq@̼ >{YE:eGHVAGP3u>>U%]st?O6mHbɛT6N[xٷ&u q r٬T( Gþ7Y20KBcZW&ٛwP"!Pr@֡|'׳ȆidL>PZABwrxTM}NT<{a?\C~*Ǔ6!|)S, _}_p!d3V]p;𗲠1 BWer \t. 7O%eE:/M{[u\5Ϣ};^f̐SwT8$UFPlJ1 OKLCg>vU{l:g/+nKcն=qDZC u#l ;ˍ&zLCj:}c hIW'?_.\3m*D Nt3#y{_6ȾӪ 2p-og_G!OL䈟Rb$?nPfAveJiaGjhF8@:u:kWEn`3o;Siq:XoA-+'v*]+J\ ?fGb=zLpR3ȯst:ARiw}CM: -*@8Et'Th4d$"]HfDzv%,+V/-䱅ҭjx7*xx%)کƛY6d+l| 5\/9n/wޟZȒw$N>.$#^^AXxd\puS9}yjrW"Fh00XKC>I`.؍WuX=m g(g2.-ıTrV֟dA]y\Qs4}Ѯ`3 &֌ \ :Ɔ3̝F~mߔ.I $c}ܰfC1\5'$v g!EŦ"< )wzyWI"i5[GuEz|# ТG;5LK+X0Ei-jNz4QF3gb=,uk|/#1y.m+7YT ]ry#,TǞnQxǒv|pagRRbFT+) uV$QYcSSo{Xc=VS:.广Cϛ8j۷ }@;/1Yn-#}|V)aϟ pyYw9ܽ&سYxM)eMb|3Y.T\)H|m Cls ]Ù.rjD~h1#EOxڄ^8&LE1" |SS]"1D{F|)Xpl0g>e /0INTYB3O[XFqS$w"zW.\H $yX{1kɦ%_\CiQHgFv ̳ ,MkO-ަ"e r&$c+%ͦ42t>w[Ut@]A+yT'O.O[hCzKݡI!g \ JAү?q$5FM)=v]ҩ!Cք5Ϟ/8 Ƴ w8u_OYv>T+lP|8 `q˦\]{ ;IywIU&94`Ku|s8x+~Ӵېo Bĩ L0:[6A8y- 8 UNH,"F="/_×fa `ёYǡ9Y>|MfdY16M w9~# |&Ѽļv7Ǒk'66K @.J{Y@cZ_H bM !I+-Ɋ8bV/kG* Rjl-#,ϾY$Kq[͚R9ϗ}Gp܄v5~*qKfItX2#촉?[7-.+6G)WqeYfeGx6)'Tpmҝ+8iIR91 W GT.HVWL*G )pA8sxb?u*Y: ~وxz~cryV[o-s),a'cԩHE<ը=ϋ+eO=MP$VYdnD.t:h Í1K怚~_\bZ7Kʴ§?AND)*^#! WQh02YѠ!҉[U5 dyn^kT`\6=[{-\X"M("؎ل&2"'(t*m۩+ue>p|3*y%񪇅봽]X_W_04[S?LX}q`g 2)ZTyu9⮋s|;8V\h7k>O5qAe }z,쎙YGikg a$ϯ\Yq;UjO6|{ w  Lv9?Rcv5v1u1!כ-Z;ya)*j\kTD?Kj,aScs ';|~𙱴[|_ړ .z[F5{zʏdtҁfsI5kse8WxOX1(hcVW.[[<}rGjy]˝mmaDj&0|Y^mĨO[/Vd_eԻ%Kk[9m'ɫ0avIR(Jj)3Ki4(~6/`#U>H%2}RrSKdtx/P~$?` *S vDj3zSy|%wV9w]\BST,@M,5 Ly0ĴZEMb5g8/[$̜+8%?BGɪ>W>=AgְCeUɩ< Lr+|ǚ6?BȭZ_|T[ӄt UZ tJpeqjzi2 :IVZ'Dl,MWJjs^DA,Qq(k%dYfT贯j؆mOvu$LQ~mJH+I6Nx+#s)h-X<Ͽ"83j7@NoO5";s8J&GMb1˦5=AL muHi(8A3oF,cN[٨YNI:äV!r<߲263rdtKc"^^ ٕ[F5C`w:wkyZ{>D6g"i|{8 SåR@V;RT-'iȨ)ވPtҼ$1r-ƠdYDys~*n{O蜢H22#H f4/lZ YگeX_`wjL6yY iB9U:G6EYЊsgd|;=(b0&[6rSfp?v VKfM+|V$];Mu멳l)]c<^@a5]}_z-&,ch7䵇*wNK6[,Ϡ>~D|O<EK;.?Y$5A%7n; j1rTWW˾uR$;-krhykޯ ؉hSn0*7?<~c>1Q#%fu|8&]l&JU;Ğ@s! 'q z+|hYPp04]{(D1|<4VqvO+xU߆-t[[4UD$0!O(L.pO"+yȷI`ѿsJh6iQQq~sy3MVTAnـF\6ŕׂpZZQsjEujo.uF.NE.Hh$oFo٬x0W'0 =w"Zl~&ʡI:b~ ܀3=8yeҎ{dnr{fDE l o>#,2-nX$('J~>pzm' D Q= 5},a&i “}P(ڙ/e!s2]&řxhNF)MnVL>u-O뗀jWoШǗ:NB֫&vC3# aO(`Y0х~GAwҍϒΔcG )˕`&Sڙ?F9ݎ/lό6Jc^v&/~\OF Qzᧂ:n@Zg(x䥤bc ٱia]AK>6.Lsc? w=ƽp'9+-|kLLn F2ɳ 80p~ AgA_zEI4ZW=av9\`sr\u x:N$g ƥ5t;zؙg'+,< (м>v VJJG73w/'K"޵; u-T7OV[b!^}]Dw0Gv̕vq~&:07gQTӻ5ٕ ӷM%cM_t6K2  Q?IKݳ'(z'%iȷ=drPCB[6]|sblv_ K܂6yR1un3".)/.R&e8ą9l9,b|{_Lf2AzFW`b71IBy'ƛT%l,; fHח,<=TX7PWr^XMMKb(j}EaqSdz_-"}4L=7+T:Cb;XKp*KHQ9+T}s+X殓tȥBE+|u9Faxw|F3@q*"V/Zlv!}VʤxJ$]۬F!1`M/6^?ǫ~ V$Ο-aUYCחIYTۧ().8FcaJ[z3?q9VDI>N\k`EWRS'|eSmߛs =5CMxCޞ}ĭ"<;NUwu~s!.NGo7T")F1D(0ㆲgZeڍ`:awm݄HIbL`(}EtDP3Cd/c&U\ 1nB"/C{MЉwPF2FajӧEŒJ:[?>";>\!'3c"xpZS C݁>5Oz-!jwE(Q_Q!l&.Y.[G_#ٽo(ΤCRV+nDڨ!KǓe VOǯvkc-Eo* ; Sǀyk]@@rԤCfo1BR>XTP19tx[Jk)Kszqh]"XLVy q|f5…Zb+!t͌Έ^t!j~%~4Soĺɛ^'ȇdhT+MJ据BȈWE Ds\$16-N _r yBcy<2>qn}ZH&+a`@jM2mG'CJ #-Kthۗ?JSU#s^.TT/@uX2ao.&;w_ODs@xcMiFt9_4_wGvC3"踺`(qy{USsUlpSVJ\Չ8SК+i+A]iB^:Pw!KuM *+u)$$%0(kV{XHt(,Fb_}h3*CKZM Gn%NJMlOe ~?¦Ef\ĩN\I!ܠb&gLY$ݷR{:>tͦo;Tkv} Xwi[E53Wx%3F7[(&PC8<(7NgoyM&WS=? ]At=kNO-L 2ki \:]ɫW.J7s>g%bdb ˴xM/;8Ѐ;Ċxt>m'E*_cB 0UX+Eq,R}Xsj`8߂rC~rF?\I4\%dʄ p_m=8?@D62:B Dp_Z}ϕ+s]f/lHXpluď;kqV֡`p$G 7rRݏ SeD9rӡ]У܋uZe=8c4{=ͪe#P}ţG} =$\@w4PZI vacc>d}GjycX6={sj4Al=I!TͽttKǬ +<"8h]3Ml,8vINcH\"JRA(`4]A(rendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 524 0 R /FirstChar 13 /LastChar 122 /Widths 525 0 R /BaseFont /TVRMEZ+CMBX10 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /TVRMEZ+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/fl/quotedblright/comma/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/A/B/C/D/H/I/L/M/O/P/S/T/U/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 11 0 R >> endobj 525 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 603 0 0 0 0 0 0 0 0 0 319 383 319 0 575 575 575 575 575 575 575 575 575 575 319 0 0 0 0 0 0 869 818 831 882 0 0 0 900 436 0 0 692 1092 0 864 786 0 0 639 800 885 0 0 0 0 0 0 603 0 0 0 0 559 639 511 639 527 351 575 639 319 351 607 319 958 639 575 639 0 474 454 447 639 607 831 607 607 511 ] endobj 524 0 obj << /Type /Encoding /Differences [ 0 /.notdef 13/fl 14/.notdef 34/quotedblright 35/.notdef 44/comma/hyphen/period 47/.notdef 48/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 65/A/B/C/D 69/.notdef 72/H/I 74/.notdef 76/L/M 78/.notdef 79/O/P 81/.notdef 83/S/T/U 86/.notdef 92/quotedblleft 93/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 8 0 obj << /Length1 1306 /Length2 6861 /Length3 532 /Length 7667 /Filter /FlateDecode >> stream xe\m.A;$daBSB! PA=ϭ?s}ZZqf.vf}#> )H It BJP=VBRRBo' @H\ZDRZP89\JIAP{0@ rGpwA\@0?~; / .0S @/C`G@_aǿSp e 2 @YBn~ ȑ@@0Utjא[@=a (@AYj7?0{7 /sp8ڻy4 , y]0c?U7 ft.+A~AA!T!'v]!&BP'EbB0 !0-L(_)* pWD %wH B~0|~P]P P DQ$PM(9߄R$PJI D ߄I*~ʭoB93M. ʙ?$$Q@0@D9pQ@?eDF!.DB@mZ-D-DـFaO"9(OXL %)  P 7;8@03q {1R8R̓T[6B- ݭO˓g]5WLsAgbn#˿(Ko݃&3Z&.af^!lHY%9C k~8,foB[VٓOCSnq꼢LqȆ뫊l d{qO&ijs!s>osht-gLufD G] 5Oe."Ӕmf24!K>ֱ+3t,^?t{S;ST@r\xT 3G!U4`\rJ h˴M-U_ *;sBF?en:]%&#j#cs҂\p_ۓDJsdCޓ @dUcГ7L!ᦊL"=21|v@4aN̹Dm4-4MyQfQ8;jE1xď* {)[O'+"H?|H7I ڿ&dlLdmvIQQ5ctoWPWW7_7JƒQI1ASkg I[]NQ;-z > ib]T{!q}W87"D,Mo^?1['x*cJOsĢY^>|ޓ::&ilZ9{!+GsB2+Vbm/mJ$ɟ L{.U٬t D{1(mqb_%8]@%:Te~yWdnI*%c/<%`m,XC{3C {jL+/X0|BCf"@ߩZ=;7u'wWViX2p%oLǤEY&@#l#~x(N3KT^Xu~ojzok먅`?FrqwbWdUz!xËX˂dko7oոڂIpw )3,<7P\g84Ɂbϡ!2%戣y!}:*51 ajDOAf3NyyHܕƍf'|pیތ ~0eA&8yUҌBl Bg69TrI+]5>߷(_YlOA㇊ςpݫY_)Y3.h+Z.@mm4azܩ2XjL"<#6Θd {\sݻ08%qŢ/3]W`8w,66B*TcL|\?B YnggɊ zU4q1"`ڋ#}ӚCdPnV-ա4!iafW @Z>/bo{)$vCP^/vɵ|XklǦʧIa&j"lS.avV֏@Be>3G.N_%5KN;/h{G@o~ S,=;YJ[&.vK=w/朜vH&(DMiy4u_ U`zLYԚV݆, ±i*(ERy>Yj' )MKhi|xYSQU̔JyFA |?;Unc!MHʲ/F4 02LY-dXh5/f#b%g5eċ@|J֪0N3%7\4MZ(z{M5ⳣi̝vlj'@vI- Jz(DON04^Q>;{Y\H?9`kDOL{vUw-N[?߽q鷙\NqOx')бŮ\\~fn uZ'7$y&0[YU",ð{t; /ڡmg?{x'H[~CgX|}-^U]3;̠y|h"V7՗>%8Evf`Tվge{nobFVѠ!|v+}Mӯ)nyɽ̯=JJ$aNi|N!J\ƨ{HmNO5JZ6:r92}cl<%Ph]|&d礏wyy-ZV݁,jD*CCʏ> z{Inz5?Ǟ{Đp!+JCs#Tcp@htߕJFN1LEX&O"Cm42|z- q!X'|YڎfyZO3ȓ!ÿ%Kn쫡da?19);M g5"fw`҂ΊH,VTY`[q%9N%I+"SUOe;V:zۤv'PtJ P34={s@.o+՟Y%TဢK|=RiL m$`5'AĜEaAZ+ܷ[N#ƾ}h,mcZőQ!6.ODS6nj>Mõ;i0vIƒ:7R8@mhn1Sktun9ʳH CG`vmv&״=@{{={]a!cghv0BI A)-Kи2w";>/FzISiXL}SNg Kղ#g}Yj3Oh^Tii(4NY>DS&UM6|CMq8d|1,D_Szݧ @K!KDကn3UL&$Pz*h z׾o򲅉4=lYg["tA^tE.j &n.H&z~z @QUpW~OqٳrʅF0t.PĹ0"7Δ:R;֙V= yLC G4ppCaw{+]endstream endobj 9 0 obj << /Type /Font /Subtype /Type1 /Encoding 526 0 R /FirstChar 44 /LastChar 121 /Widths 527 0 R /BaseFont /BTQZQR+CMR12 /FontDescriptor 7 0 R >> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /BTQZQR+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/period/zero/one/two/six/seven/A/C/D/E/F/G/I/L/N/S/T/U/V/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/y) /FontFile 8 0 R >> endobj 527 0 obj [272 0 272 0 490 490 490 0 0 0 490 490 0 0 0 0 0 0 0 0 0 734 0 707 748 666 639 768 0 353 0 0 612 0 734 0 0 0 0 544 707 734 734 0 0 0 0 0 0 0 0 0 0 490 0 435 544 435 299 490 544 272 0 0 272 816 544 490 544 0 381 386 381 544 517 0 0 517 ] endobj 526 0 obj << /Type /Encoding /Differences [ 0 /.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero/one/two 51/.notdef 54/six/seven 56/.notdef 65/A 66/.notdef 67/C/D/E/F/G 72/.notdef 73/I 74/.notdef 76/L 77/.notdef 78/N 79/.notdef 83/S/T/U/V 87/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 121/y 122/.notdef] >> endobj 5 0 obj << /Length1 1164 /Length2 5581 /Length3 532 /Length 6313 /Filter /FlateDecode >> stream xu\T)-Ct0] ( HwwK7Žo>=^UCaE99Ei%unA Q 5u!OM"07 d p"B"<|4 rX*$mH(:ZAmQS@A8I@:tsrs0#`qA -NvN9C(S ceq̡ e?ellMmKlakEJs(R迼)AaN; pK(A 5W9B S_q(&PsH^JJAS_WNwt[W_QA\.N..nT!?z!s)iꆋ  nu( N8 '`@:Nnd a:GoBMoBI&P*JIMBHoB- 7*!72Qoy@TWjkDٰ(?el?DDp<(e?/&%pu8xa>~@OAH(_f jšPW(wb x_T%_x]ʲ:JP[tn{r݋$[t.Wa=zew}FWMV^R$)=<">GW)iOTeyvg99@@PW6F+8^( /xƅ(L`}g'lk;Fd;F0SsysWx"DXݓ@n3'#/3Rdl՝*,*;b:-'9j4s`qpa kd\{Atu#F-!8qNzye  ~%*uv= ɞETߒwE||.Q÷'#2v/ʜ ]*$HF A#` yG B1\4o@,QD*b8h.e*XWycPa`nKJRM-c9<=f>@):{B!(@ dLSsSr[6:J5f7]L XC6CeO=˛5'w0B\(&319&R) fldtv'nEJD6,#cFIىN0mxݸuNF k ltz'Obb?UAxTlr/:snS.ivQ|*BNOW2 a6CVMpfdⱷLzC.@A7*E(y!kt{X/ ɣLks8,Z:la=_Z&u%m%\-9E#nﱻ-wZ HMGXnjx*/:uoD NK fCF]=-4ĤF^JՑ0ulU*ƛpܶAVZWfP}bK+rG{#d#SA?ĬLcWaC ʚ*kqO î% R9m9/"ᶏ1(cd kދR2ٖߕWy8}J,a |zԟ6YŇ)NF%䜯qjfuҺ4s $H3R@!Zhk}0&!N9oK#qU!O#ab"rcq񖡝tHul| ֊^tlHN;9*!DS\\UB Oo䪚QE4M6%vs5ɴ/Z1 y~H?Ѐ<>oK<nZ<'ьXklg½B+7u #n3c\M4^UWlG K*[>D~h~Vr)7>^Tf"sfUn>=FdWrrg ZOTčNz6ϗ# Xj=L>ɥEqt9$yuM/.}N֛8ᚮgF0Jb-͗m0xQ _~rLsP9EYdI'hˇr? %:vHp׷z5 ;㌝X 5Q|sxqWv⨢zg<Ė%_6J'bNZrJ.'Tq6*nT?&5 6nVؿBmpwR{Qe["\ ǎ!$D?WN;V}_~~u|@CIt!s T &^o"ӳ ~n!Skm2ơs{ݡCSsNrltГZtjھ i&$0j܊]Tz,>SLC3;7KN-,9G2WbxO_:,rb1k6{Or oN\к(Q8"D~>L0:rrQI:垟unp#_Ɩpϙqnx~^2n G0蹄( 12&wG^lnr_ʟvg;#j+d}uo@˯-/E0r+gjv )nYMU.`RfHZl~f3_?hhYzڽߑZTĞ@"gu>i~V:$Q#ǃ83YWɇMn\u1i"qggO@uuSqWX@f:χь$_-qɒ=s!} D(Oro3 I7P۱ZGW3~vXb}X-QUYc -uX{ 3Ћf ѣ#ՍttI@dދ U :(b[Y x wrrcuv%ɐEXJH8sGE}򓶤_(Y.+Ouس&&yCtgݼ6^<3m8ec꛼Y{|QE !$?v~+_ ińH{XԄ-_a۠QȚ2)T~Cqx}ߔi;tX?'XO֜x8%1:_R>aS1](mcJI\;9Wg.j{$-~b26YXހ8 kQ˻TY5b$`lXx~0ȬM'nn=ԘS=%]Rq,M66&[uS֓o;,{zy hqS01<ddr gx(mu`\m80Q29y(G|/<}fENҰP%_3rO4' D/#1$<2>mcĞ%鸋T[Uw_hRv;]*:l<@6@V]1yIT8("`nASKV1ECs<guIۣ\@Dt8=n@i@r8ldj^X>(LdpV*dem׾ q{!e_!Bb즧~z$ ,!lv>N 'aOVq=U36+HVg.; _o1tTf?~ xx׻EGV;BS Xz]I`ǖn{m嵂) ŀϏJ ]WEFREV]H&cHkX Z( :|q6V@n#ląPȐ@K|It\y9\mG66.KvXl 3nn%יϕwN'1w[QХ3"{ }Y*/2h0. /[?м݉Qk"ǡ),9XHؒl4; ;+͡n}uuߣ,2ss.E4~+כ+y)>;Y&^|JK=TBϚ<!0"6Rdp3~W-M ml' eMͅ*>!h6i\k<ɼJf0JJ)1m}G8zkS-U^6|+VY¦J %ѧmtmk ])TB|*ΐ}Ww@͗}]r4f3~j.Ri/ 0ahMYg@G)}d}BFsL^ش3jz9vt[ǭX2l,ȻxOrP9t:0[jXتۅ!QIxhI_DLSxJ<ٺq| ]1>xHyM[VH/O-N/^+0I}y%$KWU9yܥSc}wF|p 3"۹gA-h?K^+MzWk!Nۼ=U$tc&[ׅ/a4 ([AFyPP.~Cǃ*` -R!wpaN 1XWwdf==DʰSd$#-c??TxRcHp?>#!O}ۜ_`!N[2%6hK'=ynw4@PV'ݾrX[wm}:?(&kw+3v^[ZBDt`Yoðz3y4џ#ڬ`+^{4'D{eL6 441m Ҡ?*5ciiHDxƌϾ1YΔLmѬ'9g!Ǣrn鉵³Le}'Ns5O;LDcGB#3={Mf9ӧhR([dGvF,֑tc:q猽C%/b0%XI8Ҝ EwRd@` x  鈰5EZxendstream endobj 6 0 obj << /Type /Font /Subtype /Type1 /Encoding 528 0 R /FirstChar 12 /LastChar 122 /Widths 529 0 R /BaseFont /IBBKTU+CMR17 /FontDescriptor 4 0 R >> endobj 4 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /IBBKTU+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/fi/colon/C/D/G/H/L/M/O/U/a/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/y/z) /FontFile 5 0 R >> endobj 529 0 obj [499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 668 707 0 0 726 693 0 0 0 576 850 0 720 0 0 0 0 0 693 0 0 0 0 0 0 0 0 0 0 0 459 0 406 511 406 276 459 511 250 0 485 250 772 511 459 511 0 354 359 354 511 0 0 0 485 406 ] endobj 528 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 58/colon 59/.notdef 67/C/D 69/.notdef 71/G/H 73/.notdef 76/L/M 78/.notdef 79/O 80/.notdef 85/U 86/.notdef 97/a 98/.notdef 99/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef 121/y/z 123/.notdef] >> endobj 34 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [2 0 R 36 0 R 42 0 R 45 0 R 48 0 R 51 0 R] >> endobj 59 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [54 0 R 61 0 R 64 0 R 73 0 R 79 0 R 82 0 R] >> endobj 87 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [85 0 R 89 0 R 92 0 R 98 0 R 101 0 R 104 0 R] >> endobj 109 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [107 0 R 111 0 R 114 0 R 117 0 R 120 0 R 123 0 R] >> endobj 128 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [126 0 R 130 0 R 133 0 R 136 0 R 139 0 R 142 0 R] >> endobj 147 0 obj << /Type /Pages /Count 6 /Parent 530 0 R /Kids [145 0 R 149 0 R 152 0 R 155 0 R 158 0 R 161 0 R] >> endobj 166 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [164 0 R 168 0 R 171 0 R 174 0 R 177 0 R 180 0 R] >> endobj 185 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [183 0 R 187 0 R 190 0 R 193 0 R 196 0 R 199 0 R] >> endobj 204 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [202 0 R 206 0 R 209 0 R 212 0 R 215 0 R 218 0 R] >> endobj 223 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [221 0 R 225 0 R 228 0 R 231 0 R 234 0 R 237 0 R] >> endobj 242 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [240 0 R 244 0 R 247 0 R 250 0 R 253 0 R 256 0 R] >> endobj 261 0 obj << /Type /Pages /Count 6 /Parent 531 0 R /Kids [259 0 R 263 0 R 266 0 R 269 0 R 272 0 R 275 0 R] >> endobj 280 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [278 0 R 282 0 R 285 0 R 288 0 R 291 0 R 294 0 R] >> endobj 299 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [297 0 R 301 0 R 304 0 R 307 0 R 310 0 R 313 0 R] >> endobj 318 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [316 0 R 320 0 R 323 0 R 326 0 R 329 0 R 332 0 R] >> endobj 337 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [335 0 R 339 0 R 342 0 R 345 0 R 348 0 R 351 0 R] >> endobj 356 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [354 0 R 358 0 R 361 0 R 367 0 R 370 0 R 373 0 R] >> endobj 378 0 obj << /Type /Pages /Count 6 /Parent 532 0 R /Kids [376 0 R 380 0 R 383 0 R 386 0 R 389 0 R 392 0 R] >> endobj 397 0 obj << /Type /Pages /Count 6 /Parent 533 0 R /Kids [395 0 R 399 0 R 402 0 R 405 0 R 408 0 R 411 0 R] >> endobj 416 0 obj << /Type /Pages /Count 6 /Parent 533 0 R /Kids [414 0 R 418 0 R 421 0 R 424 0 R 427 0 R 430 0 R] >> endobj 435 0 obj << /Type /Pages /Count 6 /Parent 533 0 R /Kids [433 0 R 437 0 R 440 0 R 443 0 R 446 0 R 449 0 R] >> endobj 454 0 obj << /Type /Pages /Count 6 /Parent 533 0 R /Kids [452 0 R 456 0 R 459 0 R 462 0 R 465 0 R 468 0 R] >> endobj 473 0 obj << /Type /Pages /Count 6 /Parent 533 0 R /Kids [471 0 R 475 0 R 478 0 R 481 0 R 484 0 R 487 0 R] >> endobj 492 0 obj << /Type /Pages /Count 2 /Parent 533 0 R /Kids [490 0 R 494 0 R] >> endobj 530 0 obj << /Type /Pages /Count 36 /Parent 534 0 R /Kids [34 0 R 59 0 R 87 0 R 109 0 R 128 0 R 147 0 R] >> endobj 531 0 obj << /Type /Pages /Count 36 /Parent 534 0 R /Kids [166 0 R 185 0 R 204 0 R 223 0 R 242 0 R 261 0 R] >> endobj 532 0 obj << /Type /Pages /Count 36 /Parent 534 0 R /Kids [280 0 R 299 0 R 318 0 R 337 0 R 356 0 R 378 0 R] >> endobj 533 0 obj << /Type /Pages /Count 32 /Parent 534 0 R /Kids [397 0 R 416 0 R 435 0 R 454 0 R 473 0 R 492 0 R] >> endobj 534 0 obj << /Type /Pages /Count 140 /Kids [530 0 R 531 0 R 532 0 R 533 0 R] >> endobj 535 0 obj << /Type /Catalog /Pages 534 0 R >> endobj 536 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20071029163037-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 537 0000000000 65535 f 0000002480 00000 n 0000002365 00000 n 0000000009 00000 n 0000444087 00000 n 0000437498 00000 n 0000443930 00000 n 0000436571 00000 n 0000428628 00000 n 0000436414 00000 n 0000427480 00000 n 0000415859 00000 n 0000427320 00000 n 0000414335 00000 n 0000396954 00000 n 0000414177 00000 n 0000396650 00000 n 0000394783 00000 n 0000396493 00000 n 0000394482 00000 n 0000392641 00000 n 0000394324 00000 n 0000391862 00000 n 0000389464 00000 n 0000391703 00000 n 0000388065 00000 n 0000373572 00000 n 0000387905 00000 n 0000373256 00000 n 0000371210 00000 n 0000373099 00000 n 0000370301 00000 n 0000362975 00000 n 0000370143 00000 n 0000444950 00000 n 0000005241 00000 n 0000005123 00000 n 0000002653 00000 n 0000361806 00000 n 0000350744 00000 n 0000361646 00000 n 0000008600 00000 n 0000008482 00000 n 0000005358 00000 n 0000011814 00000 n 0000011696 00000 n 0000008705 00000 n 0000014957 00000 n 0000014839 00000 n 0000011907 00000 n 0000017023 00000 n 0000016905 00000 n 0000015050 00000 n 0000019835 00000 n 0000019717 00000 n 0000017116 00000 n 0000350440 00000 n 0000348519 00000 n 0000350283 00000 n 0000445059 00000 n 0000023726 00000 n 0000023608 00000 n 0000019988 00000 n 0000026355 00000 n 0000026237 00000 n 0000023855 00000 n 0000347978 00000 n 0000344859 00000 n 0000347818 00000 n 0000344543 00000 n 0000342412 00000 n 0000344383 00000 n 0000028138 00000 n 0000028020 00000 n 0000026472 00000 n 0000340928 00000 n 0000326008 00000 n 0000340769 00000 n 0000031396 00000 n 0000031278 00000 n 0000028255 00000 n 0000033757 00000 n 0000033639 00000 n 0000031501 00000 n 0000035353 00000 n 0000035235 00000 n 0000033850 00000 n 0000445169 00000 n 0000037223 00000 n 0000037105 00000 n 0000035434 00000 n 0000038904 00000 n 0000038786 00000 n 0000037328 00000 n 0000325181 00000 n 0000317833 00000 n 0000325021 00000 n 0000040455 00000 n 0000040337 00000 n 0000039009 00000 n 0000042029 00000 n 0000041908 00000 n 0000040560 00000 n 0000043772 00000 n 0000043651 00000 n 0000042135 00000 n 0000044606 00000 n 0000044484 00000 n 0000043878 00000 n 0000445281 00000 n 0000046258 00000 n 0000046136 00000 n 0000044688 00000 n 0000046691 00000 n 0000046569 00000 n 0000046364 00000 n 0000048492 00000 n 0000048370 00000 n 0000046761 00000 n 0000049796 00000 n 0000049674 00000 n 0000048610 00000 n 0000051644 00000 n 0000051522 00000 n 0000049914 00000 n 0000053263 00000 n 0000053141 00000 n 0000051762 00000 n 0000445398 00000 n 0000054323 00000 n 0000054201 00000 n 0000053369 00000 n 0000056311 00000 n 0000056189 00000 n 0000054429 00000 n 0000057721 00000 n 0000057599 00000 n 0000056417 00000 n 0000059360 00000 n 0000059238 00000 n 0000057827 00000 n 0000060193 00000 n 0000060071 00000 n 0000059466 00000 n 0000061321 00000 n 0000061199 00000 n 0000060275 00000 n 0000445515 00000 n 0000062820 00000 n 0000062698 00000 n 0000061427 00000 n 0000067158 00000 n 0000067036 00000 n 0000062926 00000 n 0000071458 00000 n 0000071336 00000 n 0000067276 00000 n 0000073947 00000 n 0000073825 00000 n 0000071564 00000 n 0000076588 00000 n 0000076466 00000 n 0000074077 00000 n 0000079145 00000 n 0000079023 00000 n 0000076682 00000 n 0000445632 00000 n 0000082502 00000 n 0000082380 00000 n 0000079275 00000 n 0000085294 00000 n 0000085172 00000 n 0000082608 00000 n 0000087734 00000 n 0000087612 00000 n 0000085412 00000 n 0000090304 00000 n 0000090182 00000 n 0000087840 00000 n 0000092972 00000 n 0000092850 00000 n 0000090422 00000 n 0000096437 00000 n 0000096315 00000 n 0000093114 00000 n 0000445749 00000 n 0000099609 00000 n 0000099487 00000 n 0000096579 00000 n 0000103054 00000 n 0000102932 00000 n 0000099751 00000 n 0000104833 00000 n 0000104711 00000 n 0000103184 00000 n 0000106845 00000 n 0000106723 00000 n 0000104939 00000 n 0000108980 00000 n 0000108858 00000 n 0000106951 00000 n 0000110868 00000 n 0000110746 00000 n 0000109086 00000 n 0000445866 00000 n 0000112827 00000 n 0000112705 00000 n 0000110950 00000 n 0000114593 00000 n 0000114471 00000 n 0000112909 00000 n 0000116252 00000 n 0000116130 00000 n 0000114675 00000 n 0000118017 00000 n 0000117895 00000 n 0000116334 00000 n 0000120139 00000 n 0000120017 00000 n 0000118099 00000 n 0000121899 00000 n 0000121777 00000 n 0000120221 00000 n 0000445983 00000 n 0000123701 00000 n 0000123579 00000 n 0000121981 00000 n 0000124739 00000 n 0000124617 00000 n 0000123783 00000 n 0000126308 00000 n 0000126186 00000 n 0000124845 00000 n 0000128356 00000 n 0000128234 00000 n 0000126438 00000 n 0000130744 00000 n 0000130622 00000 n 0000128486 00000 n 0000132304 00000 n 0000132182 00000 n 0000130886 00000 n 0000446100 00000 n 0000134262 00000 n 0000134140 00000 n 0000132434 00000 n 0000136000 00000 n 0000135878 00000 n 0000134380 00000 n 0000137571 00000 n 0000137449 00000 n 0000136130 00000 n 0000139563 00000 n 0000139441 00000 n 0000137701 00000 n 0000142535 00000 n 0000142413 00000 n 0000139693 00000 n 0000146889 00000 n 0000146767 00000 n 0000142677 00000 n 0000446217 00000 n 0000149742 00000 n 0000149620 00000 n 0000147043 00000 n 0000151977 00000 n 0000151855 00000 n 0000149896 00000 n 0000154731 00000 n 0000154609 00000 n 0000152131 00000 n 0000156368 00000 n 0000156246 00000 n 0000154885 00000 n 0000158091 00000 n 0000157969 00000 n 0000156498 00000 n 0000159519 00000 n 0000159397 00000 n 0000158197 00000 n 0000446334 00000 n 0000160638 00000 n 0000160516 00000 n 0000159601 00000 n 0000161985 00000 n 0000161863 00000 n 0000160756 00000 n 0000165852 00000 n 0000165730 00000 n 0000162115 00000 n 0000168852 00000 n 0000168730 00000 n 0000166006 00000 n 0000170972 00000 n 0000170850 00000 n 0000168970 00000 n 0000173364 00000 n 0000173242 00000 n 0000171114 00000 n 0000446451 00000 n 0000175000 00000 n 0000174878 00000 n 0000173494 00000 n 0000176232 00000 n 0000176110 00000 n 0000175118 00000 n 0000177563 00000 n 0000177441 00000 n 0000176350 00000 n 0000178973 00000 n 0000178851 00000 n 0000177681 00000 n 0000181022 00000 n 0000180900 00000 n 0000179103 00000 n 0000182506 00000 n 0000182384 00000 n 0000181128 00000 n 0000446568 00000 n 0000184531 00000 n 0000184409 00000 n 0000182624 00000 n 0000185889 00000 n 0000185767 00000 n 0000184673 00000 n 0000187588 00000 n 0000187466 00000 n 0000186019 00000 n 0000190322 00000 n 0000190200 00000 n 0000187718 00000 n 0000191695 00000 n 0000191573 00000 n 0000190452 00000 n 0000194063 00000 n 0000193941 00000 n 0000191813 00000 n 0000446685 00000 n 0000195188 00000 n 0000195066 00000 n 0000194205 00000 n 0000196266 00000 n 0000196144 00000 n 0000195306 00000 n 0000197308 00000 n 0000197186 00000 n 0000196384 00000 n 0000198436 00000 n 0000198314 00000 n 0000197426 00000 n 0000199618 00000 n 0000199496 00000 n 0000198554 00000 n 0000200823 00000 n 0000200701 00000 n 0000199736 00000 n 0000446802 00000 n 0000201975 00000 n 0000201853 00000 n 0000200941 00000 n 0000205725 00000 n 0000205603 00000 n 0000202093 00000 n 0000316902 00000 n 0000307024 00000 n 0000316740 00000 n 0000209332 00000 n 0000209210 00000 n 0000205880 00000 n 0000211230 00000 n 0000211108 00000 n 0000209474 00000 n 0000213634 00000 n 0000213512 00000 n 0000211360 00000 n 0000217685 00000 n 0000217563 00000 n 0000213764 00000 n 0000446919 00000 n 0000222338 00000 n 0000222216 00000 n 0000217815 00000 n 0000225977 00000 n 0000225855 00000 n 0000222444 00000 n 0000227944 00000 n 0000227822 00000 n 0000226119 00000 n 0000231346 00000 n 0000231224 00000 n 0000228074 00000 n 0000234249 00000 n 0000234127 00000 n 0000231488 00000 n 0000236337 00000 n 0000236215 00000 n 0000234391 00000 n 0000447036 00000 n 0000239150 00000 n 0000239028 00000 n 0000236467 00000 n 0000242301 00000 n 0000242179 00000 n 0000239292 00000 n 0000244198 00000 n 0000244076 00000 n 0000242443 00000 n 0000246061 00000 n 0000245939 00000 n 0000244328 00000 n 0000247595 00000 n 0000247473 00000 n 0000246191 00000 n 0000249908 00000 n 0000249786 00000 n 0000247725 00000 n 0000447153 00000 n 0000253636 00000 n 0000253514 00000 n 0000250038 00000 n 0000257173 00000 n 0000257051 00000 n 0000253802 00000 n 0000258918 00000 n 0000258796 00000 n 0000257327 00000 n 0000260658 00000 n 0000260536 00000 n 0000259048 00000 n 0000262446 00000 n 0000262324 00000 n 0000260788 00000 n 0000264592 00000 n 0000264470 00000 n 0000262588 00000 n 0000447270 00000 n 0000266502 00000 n 0000266380 00000 n 0000264746 00000 n 0000268435 00000 n 0000268313 00000 n 0000266632 00000 n 0000270873 00000 n 0000270751 00000 n 0000268565 00000 n 0000273507 00000 n 0000273385 00000 n 0000271003 00000 n 0000276367 00000 n 0000276245 00000 n 0000273637 00000 n 0000278286 00000 n 0000278164 00000 n 0000276497 00000 n 0000447387 00000 n 0000281753 00000 n 0000281631 00000 n 0000278416 00000 n 0000283662 00000 n 0000283540 00000 n 0000281919 00000 n 0000286102 00000 n 0000285980 00000 n 0000283744 00000 n 0000289906 00000 n 0000289784 00000 n 0000286244 00000 n 0000291814 00000 n 0000291692 00000 n 0000290048 00000 n 0000294270 00000 n 0000294148 00000 n 0000291956 00000 n 0000447504 00000 n 0000295827 00000 n 0000295705 00000 n 0000294400 00000 n 0000297242 00000 n 0000297120 00000 n 0000295957 00000 n 0000299483 00000 n 0000299361 00000 n 0000297372 00000 n 0000301390 00000 n 0000301268 00000 n 0000299613 00000 n 0000302595 00000 n 0000302473 00000 n 0000301520 00000 n 0000305660 00000 n 0000305538 00000 n 0000302725 00000 n 0000447621 00000 n 0000306941 00000 n 0000306819 00000 n 0000305755 00000 n 0000317466 00000 n 0000317202 00000 n 0000325728 00000 n 0000325472 00000 n 0000341896 00000 n 0000341512 00000 n 0000344773 00000 n 0000344745 00000 n 0000348356 00000 n 0000348200 00000 n 0000350660 00000 n 0000350636 00000 n 0000362559 00000 n 0000362194 00000 n 0000370894 00000 n 0000370582 00000 n 0000373484 00000 n 0000373456 00000 n 0000388944 00000 n 0000388584 00000 n 0000392392 00000 n 0000392147 00000 n 0000394701 00000 n 0000394677 00000 n 0000396870 00000 n 0000396846 00000 n 0000415326 00000 n 0000414885 00000 n 0000428209 00000 n 0000427858 00000 n 0000437115 00000 n 0000436861 00000 n 0000444644 00000 n 0000444342 00000 n 0000447706 00000 n 0000447821 00000 n 0000447939 00000 n 0000448057 00000 n 0000448175 00000 n 0000448262 00000 n 0000448315 00000 n trailer << /Size 537 /Root 535 0 R /Info 536 0 R /ID [<0AF0B355A3F6134800C6E81B7120BC6D> <0AF0B355A3F6134800C6E81B7120BC6D>] >> startxref 448519 %%EOF SuiteSparse/CHOLMOD/Doc/UserGuide.tex0000644001170100242450000047510010711441317016165 0ustar davisfac%------------------------------------------------------------------------------- % The CHOLMOD/Doc/UserGuide.tex file. %------------------------------------------------------------------------------- \documentclass[11pt]{article} \newcommand{\m}[1]{{\bf{#1}}} % for matrices and vectors \newcommand{\tr}{^{\sf T}} % transpose \newcommand{\new}[1]{\overline{#1}} \topmargin 0in \textheight 9in \oddsidemargin 0pt \evensidemargin 0pt \textwidth 6.5in \begin{document} \author{Timothy A. Davis \\ Dept. of Computer and Information Science and Engineering \\ Univ. of Florida, Gainesville, FL} \title{User Guide for CHOLMOD: a sparse Cholesky factorization and modification package} \date{Version 1.6, Nov 1, 2007} \maketitle %------------------------------------------------------------------------------- \begin{abstract} CHOLMOD\footnote{CHOLMOD is short for CHOLesky MODification, since a key feature of the package is its ability to update/downdate a sparse Cholesky factorization} is a set of routines for factorizing sparse symmetric positive definite matrices of the form $\m{A}$ or $\m{AA}\tr$, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system $\m{Lx}=\m{b}$, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft Windows and many versions of Unix and Linux. \end{abstract} %------------------------------------------------------------------------------- CHOLMOD Copyright\copyright 2005-2006 by Timothy A. Davis. Portions are also copyrighted by William W. Hager (the {\tt Modify} Module), and the University of Florida (the {\tt Partition} and {\tt Core} Modules). All Rights Reserved. Some of CHOLMOD's Modules are distributed under the GNU General Public License, and others under the GNU Lesser General Public License. Refer to each Module for details. CHOLMOD is also available under other licenses that permit its use in proprietary applications; contact the authors for details. See http://www.cise.ufl.edu/research/sparse for the code and all documentation, including this User Guide. \newpage \tableofcontents %------------------------------------------------------------------------------- \newpage \section{Overview} %------------------------------------------------------------------------------- CHOLMOD is a set of ANSI C routines for solving systems of linear equations, $\m{Ax}=\m{b}$, when $\m{A}$ is sparse and symmetric positive definite, and $\m{x}$ and $\m{b}$ can be either sparse or dense.\footnote{Some support is provided for symmetric indefinite matrices.} Complex matrices are supported, in two different formats. CHOLMOD includes high-performance left-looking supernodal factorization and solve methods \cite{NgPeyton91b}, based on LAPACK \cite{LAPACK} and the BLAS \cite{ACM679a}. After a matrix is factorized, its factors can be updated or downdated using the techniques described by Davis and Hager in \cite{DavisHager99,DavisHager01,DavisHager05}. Many additional sparse matrix operations are provided, for both symmetric and unsymmetric matrices (square or rectangular), including sparse matrix multiply, add, transpose, permutation, scaling, norm, concatenation, sub-matrix access, and converting to alternate data structures. Interfaces to many ordering methods are provided, including minimum degree (AMD \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}, COLAMD \cite{DavisGilbertLarimoreNg00_algo,DavisGilbertLarimoreNg00}), constrained minimum degree (CSYMAMD, CCOLAMD, CAMD), and graph-partitioning-based nested dissection (METIS \cite{KarypisKumar98}). Most of its operations are available within MATLAB via mexFunction interfaces. A pair of articles on CHOLMOD has been submitted to the ACM Transactions on Mathematical Softare: \cite{ChenDavisHagerRajamanickam06,DavisHager06}. CHOLMOD 1.0 replaces {\tt chol} (the sparse case), {\tt symbfact}, and {\tt etree} in MATLAB 7.2 (R2006a), and is used for {\tt x=A}$\backslash${\tt b} when {\tt A} is symmetric positive definite \cite{GilbertMolerSchreiber}. It will replace {\tt sparse} in a future version of MATLAB. The C-callable CHOLMOD library consists of 133 user-callable routines and one include file. Each routine comes in two versions, one for {\tt int} integers and another for {\tt long}. Many of the routines can support either real or complex matrices, simply by passing a matrix of the appropriate type. Nick Gould, Yifan Hu, and Jennifer Scott have independently tested CHOLMOD's performance, comparing it with nearly a dozen or so other solvers \cite{GouldHuScott05,GouldHuScott05b}. Its performance was quite competitive. %------------------------------------------------------------------------------- \newpage \section{Primary routines and data structures} %------------------------------------------------------------------------------- Five primary CHOLMOD routines are required to factorize $\m{A}$ or $\m{AA}\tr$ and solve the related system $\m{Ax}=\m{b}$ or $\m{AA}\tr\m{x}=\m{b}$, for either the real or complex cases: \begin{enumerate} \item {\tt cholmod\_start}: This must be the first call to CHOLMOD. \item {\tt cholmod\_analyze}: Finds a fill-reducing ordering, and performs the symbolic factorization, either simplicial (non-supernodal) or supernodal. \item {\tt cholmod\_factorize}: Numerical factorization, either simplicial or supernodal, $\m{LL}\tr$ or $\m{LDL}\tr$ using either the symbolic factorization from {\tt cholmod\_analyze} or the numerical factorization from a prior call to {\tt cholmod\_factorize}. \item {\tt cholmod\_solve}: Solves $\m{Ax}=\m{b}$, or many other related systems, where $\m{x}$ and $\m{b}$ are dense matrices. The {\tt cholmod\_spsolve} routine handles the sparse case. Any mixture of real and complex $\m{A}$ and $\m{b}$ are allowed. \item {\tt cholmod\_finish}: This must be the last call to CHOLMOD. \end{enumerate} Additional routines are also required to create and destroy the matrices $\m{A}$, $\m{x}$, $\m{b}$, and the $\m{LL}\tr$ or $\m{LDL}\tr$ factorization. CHOLMOD has five kinds of data structures, referred to as objects and implemented as pointers to {\tt struct}'s: \begin{enumerate} \item {\tt cholmod\_common}: parameter settings, statistics, and workspace used internally by CHOLMOD. See Section~\ref{cholmod_common} for details. \item {\tt cholmod\_sparse}: a sparse matrix in compressed-column form, either pattern-only, real, complex, or ``zomplex.'' In its basic form, the matrix {\tt A} contains: \begin{itemize} \item {\tt A->p}, an integer array of size {\tt A->ncol+1}. \item {\tt A->i}, an integer array of size {\tt A->nzmax}. \item {\tt A->x}, a {\tt double} array of size {\tt A->nzmax} or twice that for the complex case. This is compatible with the Fortran and ANSI C99 complex data type. \item {\tt A->z}, a {\tt double} array of size {\tt A->nzmax} if {\tt A} is zomplex. A zomplex matrix has a {\tt z} array, thus the name. This is compatible with the MATLAB representation of complex matrices. \end{itemize} For all four types of matrices, the row indices of entries of column {\tt j} are located in {\tt A->i [A->p [j] ... A->p [j+1]-1]}. For a real matrix, the corresponding numerical values are in {\tt A->x} at the same location. For a complex matrix, the entry whose row index is {\tt A->i [p]} is contained in {\tt A->x [2*p]} (the real part) and {\tt A->x [2*p+1]} (the imaginary part). For a zomplex matrix, the real part is in {\tt A->x [p]} and imaginary part is in {\tt A->z [p]}. See Section~\ref{cholmod_sparse} for more details. \item {\tt cholmod\_factor}: A symbolic or numeric factorization, either real, complex, or zomplex. It can be either an $\m{LL}\tr$ or $\m{LDL}\tr$ factorization, and either simplicial or supernodal. You will normally not need to examine its contents. See Section~\ref{cholmod_factor} for more details. \item {\tt cholmod\_dense}: A dense matrix, either real, complex or zomplex, in column-major order. This differs from the row-major convention used in C. A dense matrix {\tt X} contains \begin{itemize} \item {\tt X->x}, a double array of size {\tt X->nzmax} or twice that for the complex case. \item {\tt X->z}, a double array of size {\tt X->nzmax} if {\tt X} is zomplex. \end{itemize} For a real dense matrix $x_{ij}$ is {\tt X->x [i+j*d]} where {\tt d = X->d} is the leading dimension of {\tt X}. For a complex dense matrix, the real part of $x_{ij}$ is {\tt X->x [2*(i+j*d)]} and the imaginary part is {\tt X->x [2*(i+j*d)+1]}. For a zomplex dense matrix, the real part of $x_{ij}$ is {\tt X->x [i+j*d]} and the imaginary part is {\tt X->z [i+j*d]}. Real and complex dense matrices can be passed to LAPACK and the BLAS. See Section~\ref{cholmod_dense} for more details. \item {\tt cholmod\_triplet}: CHOLMOD's sparse matrix ({\tt cholmod\_sparse}) is the primary input for nearly all CHOLMOD routines, but it can be difficult for the user to construct. A simpler method of creating a sparse matrix is to first create a {\tt cholmod\_triplet} matrix, and then convert it to a {\tt cholmod\_sparse} matrix via the {\tt cholmod\_triplet\_to\_sparse} routine. In its basic form, the triplet matrix {\tt T} contains \begin{itemize} \item {\tt T->i} and {\tt T->j}, integer arrays of size {\tt T->nzmax}. \item {\tt T->x}, a double array of size {\tt T->nzmax} or twice that for the complex case. \item {\tt T->z}, a double array of size {\tt T->nzmax} if {\tt T} is zomplex. \end{itemize} The {\tt k}th entry in the data structure has row index {\tt T->i [k]} and column index {\tt T->j [k]}. For a real triplet matrix, its numerical value is {\tt T->x [k]}. For a complex triplet matrix, its real part is {\tt T->x [2*k]} and its imaginary part is {\tt T->x [2*k+1]}. For a zomplex matrix, the real part is {\tt T->x [k]} and imaginary part is {\tt T->z [k]}. The entries can be in any order, and duplicates are permitted. See Section~\ref{cholmod_triplet} for more details. \end{enumerate} Each of the five objects has a routine in CHOLMOD to create and destroy it. CHOLMOD provides many other operations on these objects as well. A few of the most important ones are illustrated in the sample program in the next section. %------------------------------------------------------------------------------- \newpage \section{Simple example program} %------------------------------------------------------------------------------- \input{_simple.tex} The {\tt Demo/cholmod\_simple.c} program illustrates the basic usage of CHOLMOD. It reads a triplet matrix from a file (in Matrix Market format), converts it into a sparse matrix, creates a linear system, solves it, and prints the norm of the residual. See the {\tt CHOLMOD/Demo/cholmod\_demo.c} program for a more elaborate example, and \newline {\tt CHOLMOD/Demo/cholmod\_l\_demo.c} for its {\tt long} integer version. %------------------------------------------------------------------------------- \newpage \section{Installation of the C-callable library} \label{Install} %------------------------------------------------------------------------------- CHOLMOD requires a suite of external packages, many of which are distributed along with CHOLMOD, but three of which are not. Those included with CHOLMOD are: \begin{itemize} \item AMD: an approximate minimum degree ordering algorithm, by Tim Davis, Patrick Amestoy, and Iain Duff \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}. \item COLAMD: an approximate column minimum degree ordering algorithm, by Tim Davis, Stefan Larimore, John Gilbert, and Esmond Ng \cite{DavisGilbertLarimoreNg00_algo,DavisGilbertLarimoreNg00}. \item CCOLAMD: a constrained approximate column minimum degree ordering algorithm, by Tim Davis and Siva Rajamanickam, based directly on COLAMD. This package is not required if CHOLMOD is compiled with the {\tt -DNPARTITION} flag. \item CAMD: a constrained approximate minimum degree ordering algorithm, by Tim Davis and Yanqing Chen, based directly on AMD. This package is not required if CHOLMOD is compiled with the {\tt -DNPARTITION} flag. \item {\tt UFconfig}: a single place where all sparse matrix packages authored or co-authored by Davis are configured. Also includes a version of the {\tt xerbla} routine for the BLAS. \end{itemize} Three other packages are required for optimal performance: \begin{itemize} \item {\tt METIS 4.0.1}: a graph partitioning package by George Karypis, Univ. of Minnesota. Not needed if {\tt -DNPARTITION} is used. See http://www-users.cs.umn.edu/$\sim$karypis/metis. \item BLAS: the Basic Linear Algebra Subprograms. Not needed if {\tt -DNSUPERNODAL} is used. See http://www.netlib.org for the reference BLAS (not meant for production use). For Kazushige Goto's optimized BLAS (highly recommended for CHOLMOD) see \newline http://www.tacc.utexas.edu/$\sim$kgoto/ or http://www.cs.utexas.edu/users/flame/goto/. I recommend that you avoid the Intel MKL BLAS; one recent version returns NaN's, where both the Goto BLAS and the standard Fortran reference BLAS return the correct answer. See {\tt CHOLMOD/README} for more information. \item LAPACK: the Basic Linear Algebra Subprograms. Not needed if {\tt -DNSUPERNODAL} is used. See http://www.netlib.org. \end{itemize} You must first obtain and install METIS, LAPACK, and the BLAS. Next edit the system-dependent configurations in the {\tt UFconfig/UFconfig.mk} file. Sample configurations are provided for Linux, Macintosh, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha. The most important configuration is the location of the BLAS, LAPACK, and METIS packages, since in its default configuration CHOLMOD cannot be compiled without them. \noindent Here are the various parameters that you can control in your {\tt UFconfig/UFconfig.mk} file: \begin{itemize} \item {\tt CC = } your C compiler, such as {\tt cc}. \item {\tt CFLAGS = } optimization flags, such as {\tt -O}. \item {\tt RANLIB = } your system's {\tt ranlib} program, if needed. \item {\tt AR =} the command to create a library (such as {\tt ar}). \item {\tt RM =} the command to delete a file. \item {\tt MV =} the command to rename a file. \item {\tt F77 =} the command to compile a Fortran program (optional). \item {\tt F77FLAGS =} the Fortran compiler flags (optional). \item {\tt F77LIB =} the Fortran libraries (optional). \item {\tt LIB = } basic libraries, such as {\tt -lm}. \item {\tt MEX =} the command to compile a MATLAB mexFunction. \item {\tt BLAS =} your BLAS library. \item {\tt LAPACK =} your LAPACK library. \item {\tt XERBLA =} a library containing the BLAS {\tt xerbla} routine, if required. \item {\tt METIS\_PATH =} the path to your copy of the METIS 4.0.1 source code. \item {\tt METIS =} your METIS library. \item {\tt CHOLMOD\_CONFIG = } configuration settings specific to CHOLMOD. \end{itemize} \noindent CHOLMOD's specific settings are given by the {\tt CHOLMOD\_CONFIG} string: \begin{itemize} \item {\tt -DNCHECK}: do not include the Check module. License: GNU LGPL. \item {\tt -DNCHOLESKY}: do not include the Cholesky module. License: GNU LGPL. \item {\tt -DNPARTITION}: do not include the Partition module. License: GNU LGPL. \item {\tt -DNGPL}: do not include any GNU GPL Modules in the CHOLMOD library. \item {\tt -DNMATRIXOPS}: do not include the MatrixOps module. License: GNU GPL. \item {\tt -DNMODIFY}: do not include the Modify module. License: GNU GPL. \item {\tt -DNSUPERNODAL}: do not include the Supernodal module. License: GNU GPL. \item {\tt -DNPRINT}: do not print anything. \item {\tt -D'LONGBLAS=long'} or {\tt -DLONGBLAS='long long'} defines the integers used by LAPACK and the BLAS (defaults to {\tt int}). \item {\tt -DNSUNPERF}: for Solaris only. If defined, do not use the Sun Performance Library. \item {\tt -DNLARGEFILE}: CHOLMOD now assumes support for large files (2GB or larger). If this causes problems, you can compile CHOLMOD with -DNLARGEFILE. To use large files, you should {\tt \#include "cholmod.h"} (or at least {\tt \#include "cholmod\_io64.h"}) before any other {\tt \#include} statements, in your application that uses CHOLMOD. You may need to use {\tt fopen64} to create a file pointer to pass to CHOLMOD, if you are using a non-gcc compiler. \end{itemize} Type {\tt make} in the {\tt CHOLMOD} directory. The AMD, COLAMD, CAMD, CCOLAMD, and {\tt CHOLMOD} libraries will be compiled, as will the C version of the null-output {\tt xerbla} routine in case you need it. No Fortran compiler is required in this case. A short demo program will be compiled and tested on a few matrices. The residuals should all be small. Compare your output with the {\tt CHOLMOD/Demo/make.out} file. CHOLMOD is now ready for use in your own applications. You must link your programs with the {\tt CHOLMOD/Lib/libcholmod.a}, {\tt AMD/Lib/libamd.a}, {\tt COLAMD/libcolamd.a}, {\tt CAMD/libcamd.a}, \newline {\tt CCOLAMD/libccolamd.a}, {\tt metis-4.0/libmetis.a}, LAPACK, and BLAS libraries, as well as the {\tt xerbla} library if you need it ({\tt UFconfig/xerlib/libcerbla.a} for the C version or \newline {\tt UFconfig/xerlib/libxerbla.a} for the Fortran version). Your compiler needs to know the location of the CHOLMOD {\tt Include} directory, so that it can find the {\tt cholmod.h} include file, by adding the {\tt -ICHOLMOD/Include} to your C compiler options (modified appropriately to reflect the location of your copy of CHOLMOD). %------------------------------------------------------------------------------- \newpage \section{Using CHOLMOD in MATLAB} %------------------------------------------------------------------------------- CHOLMOD includes a set of m-files and mexFunctions in the CHOLMOD/MATLAB directory. The following functions are provided: \vspace{0.1in} \begin{tabular}{ll} \hline {\tt analyze} & order and analyze a matrix \\ {\tt bisect} & find a node separator \\ {\tt chol2} & same as {\tt chol} \\ {\tt cholmod2} & same as {\tt x=A}$\backslash${\tt b} if {\tt A} is symmetric positive definite \\ {\tt cholmod\_demo} & a short demo program \\ {\tt cholmod\_make} & compiles CHOLMOD for use in MATLAB \\ {\tt etree2} & same as {\tt etree} \\ {\tt graph\_demo} & graph partitioning demo \\ {\tt lchol} & {\tt L*L'} factorization \\ {\tt ldlchol} & {\tt L*D*L'} factorization \\ {\tt ldl\_normest} & estimate {\tt norm(A-L*D*L')} \\ {\tt ldlsolve} & {\tt x = L'}$\backslash${\tt (D}$\backslash${\tt (L}$\backslash${\tt b))} \\ {\tt ldlsplit} & split the output of {\tt ldlchol} into {\tt L} and {\tt D} \\ {\tt ldlupdate} & update/downdate an {\tt L*D*L'} factorization \\ {\tt metis} & interface to {\tt METIS\_NodeND} ordering \\ {\tt mread} & read a sparse or dense Matrix Market file \\ {\tt mwrite} & write a sparse or dense Matrix Market file \\ {\tt nesdis} & CHOLMOD's nested dissection ordering \\ {\tt resymbol} & recomputes the symbolic factorization \\ {\tt sdmult} & {\tt S*F} where {\tt S} is sparse and {\tt F} is dense \\ {\tt spsym} & determine symmetry \\ {\tt sparse2} & same as {\tt sparse} \\ {\tt symbfact2} & same as {\tt symbfact} \\ \hline \end{tabular} \vspace{0.1in}\noindent Each function is described in the next sections. \newpage \subsection{{\tt analyze}: order and analyze} \input{_analyze_m.tex} \subsection{{\tt bisect}: find a node separator} \input{_bisect_m.tex} \subsection{{\tt chol2}: same as {\tt chol}} \input{_chol2_m.tex} \newpage \subsection{{\tt cholmod2}: supernodal backslash} \input{_cholmod2_m.tex} \newpage \subsection{{\tt cholmod\_demo}: a short demo program} \input{_cholmod_demo_m.tex} \subsection{{\tt cholmod\_make}: compile CHOLMOD in MATLAB} \input{_cholmod_make_m.tex} \newpage \subsection{{\tt etree2}: same as {\tt etree}} \input{_etree2_m.tex} \subsection{{\tt graph\_demo}: graph partitioning demo} \input{_graph_demo_m.tex} \newpage \subsection{{\tt lchol}: $\m{LL}\tr$ factorization} \input{_lchol_m.tex} \subsection{{\tt ldlchol}: $\m{LDL}\tr$ factorization} \input{_ldlchol_m.tex} \newpage \subsection{{\tt ldlsolve}: solve using an $\m{LDL}\tr$ factorization} \input{_ldlsolve_m.tex} \subsection{{\tt ldlsplit}: split an $\m{LDL}\tr$ factorization} \input{_ldlsplit_m.tex} \newpage \subsection{{\tt ldlupdate}: update/downdate an $\m{LDL}\tr$ factorization} \input{_ldlupdate_m.tex} \newpage \subsection{{\tt mread}: read a sparse or dense matrix from a Matrix Market file}\input{_mread_m.tex} \subsection{{\tt mwrite}: write a sparse or densematrix to a Matrix Market file} \input{_mwrite_m.tex} \newpage \subsection{{\tt metis}: order with METIS} \input{_metis_m.tex} \newpage \subsection{{\tt nesdis}: order with CHOLMOD nested dissection} \input{_nesdis_m.tex} \newpage \subsection{{\tt resymbol}: re-do symbolic factorization} \input{_resymbol_m.tex} \subsection{{\tt sdmult}: sparse matrix times dense matrix} \input{_sdmult_m.tex} \newpage \subsection{{\tt spsym}: determine symmetry} \input{_spsym_m.tex} \newpage \subsection{{\tt sparse2}: same as {\tt sparse}} \input{_sparse2_m.tex} \newpage \subsection{{\tt symbfact2}: same as {\tt symbfact}} \input{_symbfact2_m.tex} %------------------------------------------------------------------------------- \newpage \section{Installation for use in MATLAB} %------------------------------------------------------------------------------- If you wish to use METIS within CHOLMOD, you should first obtain a copy of METIS 4.0.1. See http://www-users.cs.umn.edu/$\sim$karypis/metis. Place your copy of the {\tt metis-4.0} directory (folder, for Windows users) in the same directory that contains your copy of the {\tt CHOLMOD} directory. If you do not have METIS, however, you can still use CHOLMOD. Some of the CHOLMOD functions will not be available ({\tt metis}, {\tt bisect}, and {\tt nesdis}), and you may experience higher fill-in for large matrices (particularly those arising in 3D finite-element problems) when using {\tt analyze}, {\tt chol2}, {\tt cholmod2}, {\tt lchol}, and {\tt ldlchol}. There are two methods for compiling CHOLMOD for use in MATLAB; both are described below. %------------------------------------------------------------------------------- \subsection{{\tt cholmod\_make}: compiling CHOLMOD in MATLAB} %------------------------------------------------------------------------------- This is the preferred method, since it allows METIS to be reconfigured to use the MATLAB memory-management functions instead of {\tt malloc} and {\tt free}; this avoids the issue of METIS terminating MATLAB if it runs out of memory. It is also simpler for Windows users, who do not have the {\tt make} command (unless you obtain a copy of {\tt Cygwin}). Start MATLAB, {\tt cd} to the {\tt CHOLMOD/MATLAB} directory, and type {\tt cholmod\_make} in the MATLAB command window. This will compile the MATLAB interfaces for AMD, COLAMD, CAMD, CCOLAMD, METIS, and CHOLMOD. If you do not have METIS, type {\tt cholmod\_make('')}. If your copy of METIS is in another location, type {\tt cholmod\_make ('path')} where {\tt path} is the pathname of your copy of the {\tt metis-4.0} directory. When METIS is compiled {\tt malloc}, {\tt free}, {\tt calloc}, and {\tt realloc} are redefined to the MATLAB-equivalents ({\tt mxMalloc}, ...). These memory-management functions safely terminate a mexFunction if they fail, and will free all memory allocated by the mexFunction. Thus, METIS will safely abort without terminating MATLAB, if it runs out of memory. The {\tt cholmod\_make} handles this redefinition without making any changes to your METIS source code. %------------------------------------------------------------------------------- \subsection{Unix {\tt make} for compiling CHOLMOD} %------------------------------------------------------------------------------- You can also compile the CHOLMOD mexFunctions using the Unix/Linux {\tt make} command. When using the {\tt gcc} compiler, I strongly recommend editing the {\tt metis-4.0/Makefile.in} file and changing {\tt COPTIONS} to \begin{verbatim} COPTIONS = -fexceptions \end{verbatim} Also ensure {\tt -fexceptions} is in the {\tt CFLAGS} option in the {\tt UFconfig/UFconfig.mk} file that comes with CHOLMOD. If you do not make these modifications, the CHOLMOD mexFunctions will terminate MATLAB if they encounter an error. If you have MATLAB 7.2 or earlier and use {\tt make mex} in the {\tt CHOLMOD} directory (equivalently, {\tt make} in {\tt CHOLMOD/MATLAB}), you must first edit {\tt UFconfig/UFconfig.h} to remove the {\tt -largeArrayDims} option from the MEX command (or just use {\tt cholmod\_make.m} inside MATLAB). Next, compile your METIS 4.0.1 library by typing {\tt make} in the {\tt metis-4.0} directory. Then type {\tt make} in the {\tt CHOLMOD/MATLAB} directory. This will compile the C-callable libraries for AMD, COLAMD, CAMD, CCOLAMD, METIS, and CHOLMOD, and then compile the mexFunction interfaces to those libraries. If METIS tries {\tt malloc} and encounters an out-of-memory condition, it calls {\tt abort}, which will terminate MATLAB. This problem does not occur using the method described in the previous section. %------------------------------------------------------------------------------- \newpage \section{Integer and floating-point types, and notation used} %------------------------------------------------------------------------------- CHOLMOD supports both {\tt int} and {\tt long} integers. CHOLMOD routines with the prefix {\tt cholmod\_} use {\tt int} integers, {\tt cholmod\_l\_} routines use {\tt long}. All floating-point values are {\tt double}. The {\tt long} integer is redefinable, via {\tt UFconfig.h}. That file defines a C preprocessor token {\tt UF\_long} which is {\tt long} on all systems except for Windows-64, in which case it is defined as {\tt \_\_int64}. The intent is that with suitable compile-time switches, {\tt int} is a 32-bit integer and {\tt UF\_long} is a 64-bit integer. The term {\tt long} is used to describe the latter integer throughout this document (except in the prototypes). Two kinds of complex matrices are supported: complex and zomplex. A complex matrix is held in a manner that is compatible with the Fortran and ANSI C99 complex data type. A complex array of size {\tt n} is a {\tt double} array {\tt x} of size {\tt 2*n}, with the real and imaginary parts interleaved (the real part comes first, as a {\tt double}, followed the imaginary part, also as a {\tt double}. Thus, the real part of the {\tt k}th entry is {\tt x[2*k]} and the imaginary part is {\tt x[2*k+1]}. A zomplex matrix of size {\tt n} stores its real part in one {\tt double} array of size {\tt n} called {\tt x} and its imaginary part in another {\tt double} array of size {\tt n} called {\tt z} (thus the name ``zomplex''). This also how MATLAB stores its complex matrices. The real part of the {\tt k}th entry is {\tt x[k]} and the imaginary part is {\tt z[k]}. Unlike {\tt UMFPACK}, the same routine name in CHOLMOD is used for pattern-only, real, complex, and zomplex matrices. For example, the statement \begin{verbatim} C = cholmod_copy_sparse (A, &Common) ; \end{verbatim} creates a copy of a pattern, real, complex, or zomplex sparse matrix {\tt A}. The xtype (pattern, real, complex, or zomplex) of the resulting sparse matrix {\tt C} is the same as {\tt A} (a pattern-only sparse matrix contains no floating-point values). In the above case, {\tt C} and {\tt A} use {\tt int} integers. For {\tt long} integers, the statement would become: \begin{verbatim} C = cholmod_l_copy_sparse (A, &Common) ; \end{verbatim} The last parameter of all CHOLMOD routines is always {\tt \&Common}, a pointer to the {\tt cholmod\_common} object, which contains parameters, statistics, and workspace used throughout CHOLMOD. The {\tt xtype} of a CHOLMOD object (sparse matrix, triplet matrix, dense matrix, or factorization) determines whether it is pattern-only, real, complex, or zomplex. The names of the {\tt int} versions are primarily used in this document. To obtain the name of the {\tt long} version of the same routine, simply replace {\tt cholmod\_} with {\tt cholmod\_l\_}. MATLAB matrix notation is used throughout this document and in the comments in the CHOLMOD code itself. If you are not familiar with MATLAB, here is a short introduction to the notation, and a few minor variations used in CHOLMOD: \begin{itemize} \item {\tt C=A+B} and {\tt C=A*B}, respectively are a matrix add and multiply if both {\tt A} and {\tt B} are matrices of appropriate size. If {\tt A} is a scalar, then it is added to or multiplied with every entry in {\tt B}. \item {\tt a:b} where {\tt a} and {\tt b} are integers refers to the sequence {\tt a}, {\tt a+1}, ... {\tt b}. \item {\tt [A B]} and {\tt [A,B]} are the horizontal concatenation of {\tt A} and {\tt B}. \item {\tt [A;B]} is the vertical concatenation of {\tt A} and {\tt B}. \item {\tt A(i,j)} can refer either to a scalar or a submatrix. For example: \newline \vspace{0.05in} \begin{tabular}{ll} \hline {\tt A(1,1)} & a scalar. \\ {\tt A(:,j)} & column {\tt j} of {\tt A}. \\ {\tt A(i,:)} & row {\tt i} of {\tt A}. \\ {\tt A([1 2], [1 2])} & a 2-by-2 matrix containing the 2-by-2 leading minor of {\tt A}. \\ \hline \end{tabular} \newline \vspace{0.1in} If {\tt p} is a permutation of {\tt 1:n}, and {\tt A} is {\tt n}-by-{\tt n}, then {\tt A(p,p)} corresponds to the permuted matrix $\m{PAP}\tr$. \item {\tt tril(A)} is the lower triangular part of {\tt A}, including the diagonal. \item {\tt tril(A,k)} is the lower triangular part of {\tt A}, including entries on and below the $k$th diagonal. \item {\tt triu(A)} is the upper triangular part of {\tt A}, including the diagonal. \item {\tt triu(A,k)} is the upper triangular part of {\tt A}, including entries on and above the $k$th diagonal. \item {\tt size(A)} returns the dimensions of {\tt A}. \item {\tt find(x)} if {\tt x} is a vector returns a list of indices {\tt i} for which {\tt x(i)} is nonzero. \item {\tt A'} is the transpose of {\tt A} if {\tt A} is real, or the complex conjugate transpose if {\tt A} is complex. \item {\tt A.'} is the array transpose of {\tt A}. \item {\tt diag(A)} is the diagonal of {\tt A} if {\tt A} is a matrix. \item {\tt C=diag(s)} is a diagonal matrix if {\tt s} is a vector, with the values of {\tt s} on the diagonal of {\tt C}. \item {\tt S=spones(A)} returns a binary matrix {\tt S} with the same nonzero pattern of {\tt A}. \item {\tt nnz(A)} is the number of nonzero entries in {\tt A}. \end{itemize} \noindent Variations to MATLAB notation used in this document: \begin{itemize} \item CHOLMOD uses 0-based notation (the first entry in the matrix is {\tt A(0,0)}). MATLAB is 1-based. The context is usually clear. \item {\tt I} is the identity matrix. \item {\tt A(:,f)}, where {\tt f} is a set of columns, is interpreted differently in CHOLMOD, but just for the set named {\tt f}. See {\tt cholmod\_transpose\_unsym} for details. \end{itemize} %------------------------------------------------------------------------------- \newpage \section{The CHOLMOD Modules, objects, and functions} \label{Modules} %------------------------------------------------------------------------------- CHOLMOD contains a total of 133 {\tt int}-based routines (and the same number of {\tt long} routines), divided into a set of inter-related Modules. Each Module contains a set of related functions. The functions are divided into two types: Primary and Secondary, to reflect how a user will typically use CHOLMOD. Most users will find the Primary routines to be sufficient to use CHOLMOD in their programs. Each Module exists as a sub-directory (a folder for Windows users) within the CHOLMOD directory (or folder). \vspace{0.1in} \noindent There are seven Modules that provide user-callable routines for CHOLMOD. \begin{enumerate} \item {\tt Core}: basic data structures and definitions \item {\tt Check}: prints/checks each of CHOLMOD's objects \item {\tt Cholesky}: sparse Cholesky factorization \item {\tt Modify}: sparse Cholesky update/downdate and row-add/row-delete \item {\tt MatrixOps}: sparse matrix operators (add, multiply, norm, scale) \item {\tt Supernodal}: supernodal sparse Cholesky factorization \item {\tt Partition}: graph-partitioning-based orderings \end{enumerate} \noindent Two additional Modules are required to compile the CHOLMOD library: \begin{enumerate} \item {\tt Include}: include files for CHOLMOD and programs that use CHOLMOD \item {\tt Lib}: where the CHOLMOD library is built \end{enumerate} \noindent Five additional Modules provide support functions and documentation: \begin{enumerate} \item {\tt Demo}: simple programs that illustrate the use of CHOLMOD \item {\tt Doc}: documentation (including this document) \item {\tt MATLAB}: CHOLMOD's interface to MATLAB \item {\tt Tcov}: an exhaustive test coverage (requires Linux or Solaris) \item {\tt Valgrind}: runs the {\tt Tcov} test under {\tt valgrind} (requires Linux) \end{enumerate} The following Modules are licensed under the GNU Lesser General Public License: {\tt Check}, {\tt Cholesky}, {\tt Core}, and {\tt Partition}. The following Modules are licensed under the GNU General Public License: {\tt Demo}, {\tt Modify}, {\tt MatrixOps}, {\tt Supernodal}, the {\tt MATLAB} Module (not MATLAB itself!), {\tt Tcov}, and {\tt Valgrind}. The files in the {\tt Include} Module are licensed according to their respective Modules. The {\tt Lib} and {\tt Doc} Modules need no license; the compiled binaries are licensed the same as their source code. %------------------------------------------------------------------------------- \newpage \subsection{{\tt Core} Module: basic data structures and definitions} %------------------------------------------------------------------------------- CHOLMOD includes five basic objects, defined in the {\tt Core} Module. The {\tt Core Module} provides basic operations for these objects and is required by all six other CHOLMOD library Modules: \subsubsection{{\tt cholmod\_common}: parameters, statistics, and workspace} You must call {\tt cholmod\_start} before calling any other CHOLMOD routine, and you must call {\tt cholmod\_finish} as your last call to CHOLMOD (with the exception of {\tt cholmod\_print\_common} and {\tt cholmod\_check\_common} in the {\tt Check} Module). Once the {\tt cholmod\_common} object is initialized, the user may modify CHOLMOD's parameters held in this object, and obtain statistics on CHOLMOD's activity. \vspace{0.1in} \noindent Primary routines for the {\tt cholmod\_common} object: % 2 \begin{itemize} \item {\tt cholmod\_start}: the first call to CHOLMOD. \item {\tt cholmod\_finish}: the last call to CHOLMOD (frees workspace in the {\tt cholmod\_common} object). \end{itemize} \noindent Secondary routines for the {\tt cholmod\_common} object: % 9 \begin{itemize} \item {\tt cholmod\_defaults}: restores default parameters \item {\tt cholmod\_maxrank}: determine maximum rank for update/downdate. \item {\tt cholmod\_allocate\_work}: allocate workspace. \item {\tt cholmod\_free\_work}: free workspace. \item {\tt cholmod\_clear\_flag}: clear {\tt Flag} array. \item {\tt cholmod\_error}: called when CHOLMOD encounters and error. \item {\tt cholmod\_dbound}: bounds the diagonal of $\m{L}$ or $\m{D}$. \item {\tt cholmod\_hypot}: compute {\tt sqrt(x*x+y*y)} accurately. \item {\tt cholmod\_divcomplex}: complex divide. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsubsection{{\tt cholmod\_sparse}: a sparse matrix in compressed column form} %------------------------------------------------------------------------------- A sparse matrix {\tt A} is held in compressed column form. In the basic type (``packed,'' which corresponds to how MATLAB stores its sparse matrices), and {\tt nrow}-by-{\tt ncol} matrix with {\tt nzmax} entries is held in three arrays: {\tt p} of size {\tt ncol+1}, {\tt i} of size {\tt nzmax}, and {\tt x} of size {\tt nzmax}. Row indices of nonzero entries in column {\tt j} are held in {\tt i [p[j] ... p[j+1]-1]}, and their corresponding numerical values are held in {\tt x [p[j] ... p[j+1]-1]}. The first column starts at location zero ({\tt p[0]=0}). There may be no duplicate entries. Row indices in each column may be sorted or unsorted (the {\tt A->sorted} flag must be false if the columns are unsorted). The {\tt A->stype} determines the storage mode: 0 if the matrix is unsymmetric, 1 if the matrix is symmetric with just the upper triangular part stored, and -1 if the matrix is symmetric with just the lower triangular part stored. In ``unpacked'' form, an additional array {\tt nz} of size {\tt ncol} is used. The end of column {\tt j} in {\tt i} and {\tt x} is given by {\tt p[j]+nz[j]}. Columns not need be in any particular order ({\tt p[0]} need not be zero), and there may be gaps between the columns. \vspace{0.1in} \noindent Primary routines for the {\tt cholmod\_sparse} object: % 2 \begin{itemize} \item {\tt cholmod\_allocate\_sparse}: allocate a sparse matrix \item {\tt cholmod\_free\_sparse}: free a sparse matrix \end{itemize} \noindent Secondary routines for the {\tt cholmod\_sparse} object: % 16 \begin{itemize} \item {\tt cholmod\_reallocate\_sparse}: change the size (number of entries) of a sparse matrix. \item {\tt cholmod\_nnz}: number of nonzeros in a sparse matrix. \item {\tt cholmod\_speye}: sparse identity matrix. \item {\tt cholmod\_spzeros}: sparse zero matrix. \item {\tt cholmod\_transpose}: transpose a sparse matrix. \item {\tt cholmod\_ptranspose}: transpose/permute a sparse matrix. \item {\tt cholmod\_transpose\_unsym}: transpose/permute an unsymmetric sparse matrix. \item {\tt cholmod\_transpose\_sym}: transpose/permute a symmetric sparse matrix. \item {\tt cholmod\_sort}: sort row indices in each column of a sparse matrix. \item {\tt cholmod\_band}: extract a band of a sparse matrix. \item {\tt cholmod\_band\_inplace}: remove entries not with a band. \item {\tt cholmod\_aat}: {\tt C = A*A'}. \item {\tt cholmod\_copy\_sparse}: {\tt C = A}, create an exact copy of a sparse matrix. \item {\tt cholmod\_copy}: {\tt C = A}, with possible change of {\tt stype}. \item {\tt cholmod\_add}: {\tt C = alpha*A + beta*B}. \item {\tt cholmod\_sparse\_xtype}: change the {\tt xtype} of a sparse matrix. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsubsection{{\tt cholmod\_factor}: a symbolic or numeric factorization} %------------------------------------------------------------------------------- A factor can be in $\m{LL}\tr$ or $\m{LDL}\tr$ form, and either supernodal or simplicial form. In simplicial form, this is very much like a packed or unpacked {\tt cholmod\_sparse} matrix. In supernodal form, adjacent columns with similar nonzero pattern are stored as a single block (a supernode). \vspace{0.1in} \noindent Primary routine for the {\tt cholmod\_factor} object: % 1 \begin{itemize} \item {\tt cholmod\_free\_factor}: free a factor \end{itemize} \noindent Secondary routines for the {\tt cholmod\_factor} object: % 8 \begin{itemize} \item {\tt cholmod\_allocate\_factor}: allocate a factor. You will normally use {\tt cholmod\_analyze} to create a factor. \item {\tt cholmod\_reallocate\_factor}: change the number of entries in a factor. \item {\tt cholmod\_change\_factor}: change the type of a factor ($\m{LDL}\tr$ to $\m{LL}\tr$, supernodal to simplicial, etc.). \item {\tt cholmod\_pack\_factor}: pack the columns of a factor. \item {\tt cholmod\_reallocate\_column}: resize a single column of a factor. \item {\tt cholmod\_factor\_to\_sparse}: create a sparse matrix copy of a factor. \item {\tt cholmod\_copy\_factor}: create a copy of a factor. \item {\tt cholmod\_factor\_xtype}: change the xtype of a factor. \end{itemize} %------------------------------------------------------------------------------- \subsubsection{{\tt cholmod\_dense}: a dense matrix} %------------------------------------------------------------------------------- This consists of a dense array of numerical values and its dimensions. \vspace{0.1in} \noindent Primary routines for the {\tt cholmod\_dense} object: % 2 \begin{itemize} \item {\tt cholmod\_allocate\_dense}: allocate a dense matrix. \item {\tt cholmod\_free\_dense}: free a dense matrix. \end{itemize} \vspace{0.1in} \noindent Secondary routines for the {\tt cholmod\_dense} object: % 8 \begin{itemize} \item {\tt cholmod\_zeros}: allocate a dense matrix of all zeros. \item {\tt cholmod\_ones}: allocate a dense matrix of all ones. \item {\tt cholmod\_eye}: allocate a dense identity matrix . \item {\tt cholmod\_sparse\_to\_dense}: create a dense matrix copy of a sparse matrix. \item {\tt cholmod\_dense\_to\_sparse}: create a sparse matrix copy of a dense matrix. \item {\tt cholmod\_copy\_dense}: create a copy of a dense matrix. \item {\tt cholmod\_copy\_dense2}: copy a dense matrix (pre-allocated). \item {\tt cholmod\_dense\_xtype}: change the {\tt xtype} of a dense matrix. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsubsection{{\tt cholmod\_triplet}: a sparse matrix in ``triplet'' form} %------------------------------------------------------------------------------- The {\tt cholmod\_sparse} matrix is the basic sparse matrix used in CHOLMOD, but it can be difficult for the user to construct. It also does not easily support the inclusion of new entries in the matrix. The {\tt cholmod\_triplet} matrix is provided to address these issues. A sparse matrix in triplet form consists of three arrays of size {\tt nzmax}: {\tt i}, {\tt j}, and {\tt x}, and a {\tt z} array for the zomplex case. \vspace{0.1in} \noindent Primary routines for the {\tt cholmod\_triplet} object: % 3 \begin{itemize} \item {\tt cholmod\_allocate\_triplet}: allocate a triplet matrix. \item {\tt cholmod\_free\_triplet}: free a triplet matrix. \item {\tt cholmod\_triplet\_to\_sparse}: create a sparse matrix copy of a triplet matrix. \end{itemize} \noindent Secondary routines for the {\tt cholmod\_triplet} object: % 4 \begin{itemize} \item {\tt cholmod\_reallocate\_triplet}: change the number of entries in a triplet matrix. \item {\tt cholmod\_sparse\_to\_triplet}: create a triplet matrix copy of a sparse matrix. \item {\tt cholmod\_copy\_triplet}: create a copy of a triplet matrix. \item {\tt cholmod\_triplet\_xtype}: change the {\tt xtype} of a triplet matrix. \end{itemize} %------------------------------------------------------------------------------- \subsubsection{Memory management routines} %------------------------------------------------------------------------------- By default, CHOLMOD uses the ANSI C {\tt malloc}, {\tt free}, {\tt calloc}, and {\tt realloc} routines. You may use different routines by modifying function pointers in the {\tt cholmod\_common} object. \vspace{0.1in} \noindent Primary routines: % 2 \begin{itemize} \item {\tt cholmod\_malloc}: {\tt malloc} wrapper. \item {\tt cholmod\_free}: {\tt free} wrapper. \end{itemize} \noindent Secondary routines: % 3 \begin{itemize} \item {\tt cholmod\_calloc}: {\tt calloc} wrapper. \item {\tt cholmod\_realloc}: {\tt realloc} wrapper. \item {\tt cholmod\_realloc\_multiple}: {\tt realloc} wrapper for multiple objects. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsection{{\tt Check} Module: print/check the CHOLMOD objects} %------------------------------------------------------------------------------- The {\tt Check} Module contains routines that check and print the five basic objects in CHOLMOD, and three kinds of integer vectors (a set, a permutation, and a tree). It also provides a routine to read a sparse matrix from a file in Matrix Market format (http://www.nist.gov/MatrixMarket). Requires the {\tt Core} Module. \vspace{0.1in} \noindent Primary routines: % 4 \begin{itemize} \item {\tt cholmod\_print\_common}: print the {\tt cholmod\_common} object, including statistics on CHOLMOD's behavior (fill-in, flop count, ordering methods used, and so on). \item {\tt cholmod\_write\_sparse}: write a sparse matrix to a file in Matrix Market format. \item {\tt cholmod\_write\_dense}: write a sparse matrix to a file in Matrix Market format. \item {\tt cholmod\_read\_matrix}: read a sparse or dense matrix from a file in Matrix Market format. \end{itemize} \vspace{0.1in} \noindent Secondary routines: % 18 \begin{itemize} \item {\tt cholmod\_check\_common}: check the {\tt cholmod\_common} object \item {\tt cholmod\_check\_sparse}: check a sparse matrix \item {\tt cholmod\_print\_sparse}: print a sparse matrix \item {\tt cholmod\_check\_dense}: check a dense matrix \item {\tt cholmod\_print\_dense}: print a dense matrix \item {\tt cholmod\_check\_factor}: check a Cholesky factorization \item {\tt cholmod\_print\_factor}: print a Cholesky factorization \item {\tt cholmod\_check\_triplet}: check a triplet matrix \item {\tt cholmod\_print\_triplet}: print a triplet matrix \item {\tt cholmod\_check\_subset}: check a subset (integer vector in given range) \item {\tt cholmod\_print\_subset}: print a subset (integer vector in given range) \item {\tt cholmod\_check\_perm}: check a permutation (an integer vector) \item {\tt cholmod\_print\_perm}: print a permutation (an integer vector) \item {\tt cholmod\_check\_parent}: check an elimination tree (an integer vector) \item {\tt cholmod\_print\_parent}: print an elimination tree (an integer vector) \item {\tt cholmod\_read\_triplet}: read a triplet matrix from a file \item {\tt cholmod\_read\_sparse}: read a sparse matrix from a file \item {\tt cholmod\_read\_dense}: read a dense matrix from a file \end{itemize} %------------------------------------------------------------------------------- \newpage \subsection{{\tt Cholesky} Module: sparse Cholesky factorization} %------------------------------------------------------------------------------- The primary routines are all that a user requires to order, analyze, and factorize a sparse symmetric positive definite matrix $\m{A}$ (or $\m{AA}\tr$), and to solve $\m{Ax}=\m{b}$ (or $\m{AA}\tr\m{x}=\m{b}$). The primary routines rely on the secondary routines, the {\tt Core} Module, and the AMD and COLAMD packages. They make optional use of the {\tt Supernodal} and {\tt Partition} Modules, the METIS package, the CAMD package, and the CCOLAMD package. The {\tt Cholesky} Module is required by the {\tt Partition} Module. \vspace{0.1in} \noindent Primary routines: % 4 \begin{itemize} \item {\tt cholmod\_analyze}: order and analyze (simplicial or supernodal). \item {\tt cholmod\_factorize}: simplicial or supernodal Cholesky factorization. \item {\tt cholmod\_solve}: solve a linear system (simplicial or supernodal, dense $\m{x}$ and $\m{b}$). \item {\tt cholmod\_spsolve}: solve a linear system (simplicial or supernodal, sparse $\m{x}$ and $\m{b}$ ). \end{itemize} \noindent Secondary routines: % 15 \begin{itemize} \item {\tt cholmod\_analyze\_p}: analyze, with user-provided permutation or $\m{f}$ set. \item {\tt cholmod\_factorize\_p}: factorize, with user-provided permutation or $\m{f}$. \item {\tt cholmod\_analyze\_ordering}: analyze a permutation \item {\tt cholmod\_etree}: find the elimination tree. \item {\tt cholmod\_rowcolcounts}: compute the row/column counts of $\m{L}$. \item {\tt cholmod\_amd}: order using AMD. \item {\tt cholmod\_colamd}: order using COLAMD. \item {\tt cholmod\_rowfac}: incremental simplicial factorization. \item {\tt cholmod\_row\_subtree}: find the nonzero pattern of a row of $\m{L}$. \item {\tt cholmod\_row\_lsubtree}: find the nonzero pattern of a row of $\m{L}$. \item {\tt cholmod\_resymbol}: recompute the symbolic pattern of $\m{L}$. \item {\tt cholmod\_resymbol\_noperm}: recompute the symbolic pattern of $\m{L}$, no permutation. \item {\tt cholmod\_postorder}: postorder a tree. \item {\tt cholmod\_rcond}: compute the reciprocal condition number estimate. \item {\tt cholmod\_rowfac\_mask}: for use in LPDASA only. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsection{{\tt Modify} Module: update/downdate a sparse Cholesky factorization} %------------------------------------------------------------------------------- The {\tt Modify} Module contains sparse Cholesky modification routines: update, downdate, row-add, and row-delete. It can also modify a corresponding solution to $\m{Lx}=\m{b}$ when L is modified. This module is most useful when applied on a Cholesky factorization computed by the {\tt Cholesky} module, but it does not actually require the {\tt Cholesky} module. The {\tt Core} module can create an identity Cholesky factorization ($\m{LDL}\tr$ where $\m{L}=\m{D}=\m{I}$) that can then be modified by these routines. Requires the {\tt Core} module. Not required by any other CHOLMOD Module. \vspace{0.1in} \noindent Primary routine: % 1 \begin{itemize} \item {\tt cholmod\_updown}: multiple rank update/downdate \end{itemize} \noindent Secondary routines: % 8 \begin{itemize} \item {\tt cholmod\_updown\_solve}: update/downdate, and modify solution to $\m{Lx=b}$ \item {\tt cholmod\_updown\_mark}: update/downdate, and modify solution to partial $\m{Lx=b}$ \item {\tt cholmod\_updown\_mask}: for use in LPDASA only. \item {\tt cholmod\_rowadd}: add a row to an $\m{LDL}\tr$ factorization \item {\tt cholmod\_rowadd\_solve}: add a row, and update solution to $\m{Lx=b}$ \item {\tt cholmod\_rowadd\_mark}: add a row, and update solution to partial $\m{Lx=b}$ \item {\tt cholmod\_rowdel}: delete a row from an $\m{LDL}\tr$ factorization \item {\tt cholmod\_rowdel\_solve}: delete a row, and downdate $\m{Lx=b}$ \item {\tt cholmod\_rowdel\_mark}: delete a row, and downdate solution to partial $\m{Lx=b}$ \end{itemize} %------------------------------------------------------------------------------- \subsection{{\tt MatrixOps} Module: basic sparse matrix operations} %------------------------------------------------------------------------------- The {\tt MatrixOps} Module provides basic operations on sparse and dense matrices. Requires the {\tt Core} module. Not required by any other CHOLMOD module. In the descriptions below, {\tt A}, {\tt B}, and {\tt C:} are sparse matrices ({\tt cholmod\_sparse}), {\tt X} and {\tt Y} are dense matrices ({\tt cholmod\_dense}), {\tt s} is a scalar or vector, and {\tt alpha} {\tt beta} are scalars. % 10 \begin{itemize} \item {\tt cholmod\_drop}: drop entries from A with absolute value $\ge$ a given tolerance. \item {\tt cholmod\_norm\_dense}: {\tt s = norm (X)}, 1-norm, infinity-norm, or 2-norm \item {\tt cholmod\_norm\_sparse}: {\tt s = norm (A)}, 1-norm or infinity-norm \item {\tt cholmod\_horzcat}: {\tt C = [A,B]} \item {\tt cholmod\_scale}: {\tt A = diag(s)*A}, {\tt A*diag(s)}, {\tt s*A} or {\tt diag(s)*A*diag(s)}. \item {\tt cholmod\_sdmult}: {\tt Y = alpha*(A*X) + beta*Y} or {\tt alpha*(A'*X) + beta*Y}. \item {\tt cholmod\_ssmult}: {\tt C = A*B} \item {\tt cholmod\_submatrix}: {\tt C = A (i,j)}, where {\tt i} and {\tt j} are arbitrary integer vectors. \item {\tt cholmod\_vertcat}: {\tt C = [A ; B]}. \item {\tt cholmod\_symmetry}: determine symmetry of a matrix. \end{itemize} %------------------------------------------------------------------------------- \newpage \subsection{{\tt Supernodal} Module: supernodal sparse Cholesky factorization} %------------------------------------------------------------------------------- The {\tt Supernodal} Module performs supernodal analysis, factorization, and solve. The simplest way to use these routines is via the {\tt Cholesky} Module. This Module does not provide any fill-reducing orderings. It normally operates on matrices ordered by the {\tt Cholesky} Module. It does not require the {\tt Cholesky} Module itself, however. Requires the {\tt Core} Module, and two external packages: LAPACK and the BLAS. Optionally used by the {\tt Cholesky} Module. All are secondary routines since these functions are more easily used via the {\tt Cholesky} Module. \vspace{0.1in} \noindent Secondary routines: % 4 \begin{itemize} \item {\tt cholmod\_super\_symbolic}: supernodal symbolic analysis \item {\tt cholmod\_super\_numeric}: supernodal numeric factorization \item {\tt cholmod\_super\_lsolve}: supernodal $\m{Lx}=\m{b}$ solve \item {\tt cholmod\_super\_ltsolve}: supernodal $\m{L}\tr\m{x}=\m{b}$ solve \end{itemize} %------------------------------------------------------------------------------- \subsection{{\tt Partition} Module: graph-partitioning-based orderings} %------------------------------------------------------------------------------- The {\tt Partition} Module provides graph partitioning and graph-partition-based orderings. It includes an interface to CAMD, CCOLAMD, and CSYMAMD, constrained minimum degree ordering methods which order a matrix following constraints determined via nested dissection. Requires the {\tt Core} and {\tt Cholesky} Modules, and two packages: {\tt METIS 4.0.1}, CAMD, and CCOLAMD. Optionally used by the {\tt Cholesky} Module. All are secondary routines since these are more easily used by the {\tt Cholesky} Module. Note that METIS does not have a version that uses {\tt long} integers. If you try to use these routines (except the CAMD, CCOLAMD, and CSYMAMD interfaces) on a matrix that is too large, an error code will be returned. \vspace{0.1in} \noindent Secondary routines: % 8 \begin{itemize} \item {\tt cholmod\_nested\_dissection}: CHOLMOD nested dissection ordering \item {\tt cholmod\_metis}: METIS nested dissection ordering ({\tt METIS\_NodeND}) \item {\tt cholmod\_camd}: interface to CAMD ordering \item {\tt cholmod\_ccolamd}: interface to CCOLAMD ordering \item {\tt cholmod\_csymamd}: interface to CSYMAMD ordering \item {\tt cholmod\_bisect}: graph partitioner (currently based on METIS) \item {\tt cholmod\_metis\_bisector}: direct interface to {\tt METIS\_NodeComputeSeparator}. \item {\tt cholmod\_collapse\_septree}: pruned a separator tree from {\tt cholmod\_nested\_dissection}. \end{itemize} %------------------------------------------------------------------------------- \newpage \section{CHOLMOD naming convention, parameters, and return values} %------------------------------------------------------------------------------- All routine names, data types, and CHOLMOD library files use the {\tt cholmod\_} prefix. All macros and other {\tt \#define} statements visible to the user program use the {\tt CHOLMOD} prefix. The {\tt cholmod.h} file must be included in user programs that use CHOLMOD: {\footnotesize \begin{verbatim} #include "cholmod.h" \end{verbatim} } \noindent All CHOLMOD routines (in all modules) use the following protocol for return values: \begin{itemize} \item {\tt int}: {\tt TRUE} (1) if successful, or {\tt FALSE} (0) otherwise. (exception: {\tt cholmod\_divcomplex}). \item {\tt long}: a value $\ge 0$ if successful, or -1 otherwise. \item {\tt double}: a value $\ge 0$ if successful, or -1 otherwise. \item {\tt size\_t}: a value $>$ 0 if successful, or 0 otherwise. \item {\tt void *}: a non-{\tt NULL} pointer to newly allocated memory if successful, or {\tt NULL} otherwise. \item {\tt cholmod\_sparse *}: a non-{\tt NULL} pointer to a newly allocated sparse matrix if successful, or {\tt NULL} otherwise. \item {\tt cholmod\_factor *}: a non-{\tt NULL} pointer to a newly allocated factor if successful, or {\tt NULL} otherwise. \item {\tt cholmod\_triplet *}: a non-{\tt NULL} pointer to a newly allocated triplet matrix if successful, or {\tt NULL} otherwise. \item {\tt cholmod\_dense *}: a non-{\tt NULL} pointer to a newly allocated dense matrix if successful, or {\tt NULL} otherwise. \end{itemize} {\tt TRUE} and {\tt FALSE} are not defined in {\tt cholmod.h}, since they may conflict with the user program. A routine that described here returning {\tt TRUE} or {\tt FALSE} returns 1 or 0, respectively. Any {\tt TRUE}/{\tt FALSE} parameter is true if nonzero, false if zero. \noindent Input, output, and input/output parameters: \begin{itemize} \item Input parameters appear first in the parameter lists of all CHOLMOD routines. They are not modified by CHOLMOD. \item Input/output parameters (except for {\tt Common}) appear next. They must be defined on input, and are modified on output. \item Output parameters are listed next. If they are pointers, they must point to allocated space on input, but their contents are not defined on input. \item Workspace parameters appear next. They are used in only two routines in the Supernodal module. \item The {\tt cholmod\_common *Common} parameter always appears as the last parameter (with two exceptions: {\tt cholmod\_hypot} and {\tt cholmod\_divcomplex}). It is always an input/output parameter. \end{itemize} A floating-point scalar is passed to CHOLMOD as a pointer to a {\tt double} array of size two. The first entry in this array is the real part of the scalar, and the second entry is the imaginary part. The imaginary part is only accessed if the other inputs are complex or zomplex. In some cases the imaginary part is always ignored ({\tt cholmod\_factor\_p}, for example). %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: {\tt cholmod\_common} object} \label{cholmod_common} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{Constant definitions} %--------------------------------------- \input{_defn.tex} These definitions are used within the {\tt cholmod\_common} object, called {\tt Common} both here and throughout the code. %--------------------------------------- \newpage \subsection{{\tt cholmod\_common}: parameters, statistics, and workspace} %--------------------------------------- \input{_common.tex} The {\tt cholmod\_common Common} object contains parameters, statistics, and workspace used within CHOLMOD. The first call to CHOLMOD must be {\tt cholmod\_start}, which initializes this object. %--------------------------------------- \newpage \subsection{{\tt cholmod\_start}: start CHOLMOD} %--------------------------------------- \input{_start.tex} Sets the default parameters, clears the statistics, and initializes all workspace pointers to {\tt NULL}. The {\tt int}/{\tt long} type is set in {\tt Common->itype}. %--------------------------------------- \subsection{{\tt cholmod\_finish}: finish CHOLMOD} %--------------------------------------- \input{_finish.tex} This must be the last call to CHOLMOD. %--------------------------------------- \subsection{{\tt cholmod\_defaults}: set default parameters} %--------------------------------------- \input{_defaults.tex} Sets the default parameters. %--------------------------------------- \subsection{{\tt cholmod\_maxrank}: maximum update/downdate rank} %--------------------------------------- \input{_maxrank.tex} Returns the maximum rank for an update/downdate. %--------------------------------------- \subsection{{\tt cholmod\_allocate\_work}: allocate workspace} %--------------------------------------- \input{_allocate_work.tex} Allocates workspace in {\tt Common}. The workspace consists of the integer {\tt Head}, {\tt Flag}, and {\tt Iwork} arrays, of size {\tt nrow+1}, {\tt nrow}, and {\tt iworksize}, respectively, and a {\tt double} array {\tt Xwork} of size {\tt xworksize}. The {\tt Head} array is normally equal to -1 when it is cleared. If the {\tt Flag} array is cleared, all entries are less than {\tt Common->mark}. The {\tt Iwork} array is not kept in any particular state. The integer type is {\tt int} or {\tt long}, depending on whether the {\tt cholmod\_} or {\tt cholmod\_l\_} routines are used. %--------------------------------------- \subsection{{\tt cholmod\_free\_work}: free workspace} %--------------------------------------- \input{_free_work.tex} Frees the workspace in {\tt Common}. %--------------------------------------- \subsection{{\tt cholmod\_clear\_flag}: clear Flag array} %--------------------------------------- \input{_clear_flag.tex} Increments {\tt Common->mark} so that the {\tt Flag} array is now cleared. %--------------------------------------- \newpage \subsection{{\tt cholmod\_error}: report error} %--------------------------------------- \input{_error.tex} This routine is called when CHOLMOD encounters an error. It prints a message (if printing is enabled), sets {\tt Common->status}. It then calls the user error handler routine {\tt Common->error\_handler}, if it is not {\tt NULL}. %--------------------------------------- \subsection{{\tt cholmod\_dbound}: bound diagonal of $\m{L}$} %--------------------------------------- \input{_dbound.tex} Ensures that entries on the diagonal of $\m{L}$ for an $\m{LL}\tr$ factorization are greater than or equal to {\tt Common->dbound}. For an $\m{LDL}\tr$ factorization, it ensures that the magnitude of the entries of $\m{D}$ are greater than or equal to {\tt Common->dbound}. %--------------------------------------- \subsection{{\tt cholmod\_hypot}: {\tt sqrt(x*x+y*y)}} %--------------------------------------- \input{_hypot.tex} Computes the magnitude of a complex number. This routine is the default value for the {\tt Common->hypotenuse} function pointer. See also {\tt hypot}, in the standard {\tt math.h} header. If you have the ANSI C99 {\tt hypot}, you can use {\tt Common->hypotenuse = hypot}. The {\tt cholmod\_hypot} routine is provided in case you are using the ANSI C89 standard, which does not have {\tt hypot}. %--------------------------------------- \subsection{{\tt cholmod\_divcomplex}: complex divide} %--------------------------------------- \input{_divcomplex.tex} Divides two complex numbers. It returns 1 if a divide-by-zero occurred, or 0 otherwise. This routine is the default value for the {\tt Common->complex\_divide} function pointer. This return value is the single exception to the CHOLMOD rule that states all {\tt int} return values are {\tt TRUE} if successful or {\tt FALSE} otherwise. The exception is made to match the return value of a different complex divide routine that is not a part of CHOLMOD, but can be used via the function pointer. %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: {\tt cholmod\_sparse} object} \label{cholmod_sparse} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_sparse}: compressed-column sparse matrix} %--------------------------------------- \input{_sparse.tex} Stores a sparse matrix in compressed-column form. %--------------------------------------- \newpage \subsection{{\tt cholmod\_allocate\_sparse}: allocate sparse matrix} %--------------------------------------- \input{_allocate_sparse.tex} Allocates a sparse matrix. {\tt A->i}, {\tt A->x}, and {\tt A->z} are not initialized. The matrix returned is all zero, but it contains space enough for {\tt nzmax} entries. %--------------------------------------- \subsection{{\tt cholmod\_free\_sparse}: free sparse matrix} %--------------------------------------- \input{_free_sparse.tex} Frees a sparse matrix. %--------------------------------------- \subsection{{\tt cholmod\_reallocate\_sparse}: reallocate sparse matrix} %--------------------------------------- \input{_reallocate_sparse.tex} Reallocates a sparse matrix, so that it can contain {\tt nznew} entries. %--------------------------------------- \newpage \subsection{{\tt cholmod\_nnz}: number of entries in sparse matrix} %--------------------------------------- \input{_nnz.tex} Returns the number of entries in a sparse matrix. %--------------------------------------- \subsection{{\tt cholmod\_speye}: sparse identity matrix} %--------------------------------------- \input{_speye.tex} Returns the sparse identity matrix. %--------------------------------------- \subsection{{\tt cholmod\_spzeros}: sparse zero matrix} %--------------------------------------- \input{_spzeros.tex} Returns the sparse zero matrix. This is another name for {\tt cholmod\_allocate\_sparse}, but with fewer parameters (the matrix is packed, sorted, and unsymmetric). %--------------------------------------- \newpage \subsection{{\tt cholmod\_transpose}: transpose sparse matrix} %--------------------------------------- \input{_transpose.tex} Returns the transpose or complex conjugate transpose of a sparse matrix. %--------------------------------------- \subsection{{\tt cholmod\_ptranspose}: transpose/permute sparse matrix} %--------------------------------------- \input{_ptranspose.tex} Returns {\tt A'} or {\tt A(p,p)'} if {\tt A} is symmetric. Returns {\tt A'}, {\tt A(:,f)'}, or {\tt A(p,f)'} if {\tt A} is unsymmetric. See {\tt cholmod\_transpose\_unsym} for a discussion of how {\tt f} is used; this usage deviates from the MATLAB notation. Can also return the array transpose. %--------------------------------------- \subsection{{\tt cholmod\_sort}: sort columns of a sparse matrix} %--------------------------------------- \input{_sort.tex} Sorts the columns of the matrix {\tt A}. Returns {\tt A} in packed form, even if it starts as unpacked. Removes entries in the ignored part of a symmetric matrix. %--------------------------------------- \newpage \subsection{{\tt cholmod\_transpose\_unsym}: transpose/permute unsymmetric sparse matrix} %--------------------------------------- \input{_transpose_unsym.tex} Transposes and optionally permutes an unsymmetric sparse matrix. The output matrix must be preallocated before calling this routine. Computes {\tt F=A'}, {\tt F=A(:,f)'} or {\tt F=A(p,f)'}, except that the indexing by {\tt f} does not work the same as the MATLAB notation (see below). {\tt A->stype} is zero, which denotes that both the upper and lower triangular parts of A are present (and used). The matrix {\tt A} may in fact be symmetric in pattern and/or value; {\tt A->stype} just denotes which part of {\tt A} are stored. {\tt A} may be rectangular. The integer vector {\tt p} is a permutation of {\tt 0:m-1}, and {\tt f} is a subset of {\tt 0:n-1}, where A is {\tt m}-by-{\tt n}. There can be no duplicate entries in {\tt p} or {\tt f}. \noindent Three kinds of transposes are available, depending on the {\tt values} parameter: \begin{itemize} \item 0: do not transpose the numerical values; create a {\tt CHOLMOD\_PATTERN} matrix \item 1: array transpose \item 2: complex conjugate transpose (same as 2 if input is real or pattern) \end{itemize} \noindent The set {\tt f} is held in fset and fsize: \begin{itemize} \item {\tt fset = NULL} means ``{\tt :}'' in MATLAB. {\tt fset} is ignored. \item {\tt fset != NULL} means {\tt f = fset [0..fsize-1]}. \item {\tt fset != NULL} and {\tt fsize = 0} means {\tt f} is the empty set. \end{itemize} Columns not in the set {\tt f} are considered to be zero. That is, if {\tt A} is 5-by-10 then {\tt F=A(:,[3 4])'} is not 2-by-5, but 10-by-5, and rows 3 and 4 of {\tt F} are equal to columns 3 and 4 of {\tt A} (the other rows of {\tt F} are zero). More precisely, in MATLAB notation: \begin{verbatim} [m n] = size (A) F = A notf = ones (1,n) notf (f) = 0 F (:, find (notf)) = 0 F = F' \end{verbatim} If you want the MATLAB equivalent {\tt F=A(p,f)} operation, use {\tt cholmod\_submatrix} instead (which does not compute the transpose). {\tt F->nzmax} must be large enough to hold the matrix {\tt F}. If {\tt F->nz} is present then {\tt F->nz [j]} is equal to the number of entries in column {\tt j} of {\tt F}. {\tt A} can be sorted or unsorted, with packed or unpacked columns. If {\tt f} is present and not sorted in ascending order, then {\tt F} is unsorted (that is, it may contain columns whose row indices do not appear in ascending order). Otherwise, {\tt F} is sorted (the row indices in each column of {\tt F} appear in strictly ascending order). {\tt F} is returned in packed or unpacked form, depending on {\tt F->packed} on input. If {\tt F->packed} is {\tt FALSE}, then {\tt F} is returned in unpacked form ({\tt F->nz} must be present). Each row {\tt i} of {\tt F} is large enough to hold all the entries in row {\tt i} of {\tt A}, even if {\tt f} is provided. That is, {\tt F->i} and {\tt F->x [F->p [i] .. F->p [i] + F->nz [i] - 1]} contain all entries in {\tt A(i,f)}, but {\tt F->p [i+1] - F->p [i]} is equal to the number of nonzeros in {\tt A (i,:)}, not just {\tt A (i,f)}. The {\tt cholmod\_transpose\_unsym} routine is the only operation in CHOLMOD that can produce an unpacked matrix. %--------------------------------------- \subsection{{\tt cholmod\_transpose\_sym}: transpose/permute symmetric sparse matrix} %--------------------------------------- \input{_transpose_sym.tex} Computes {\tt F = A'} or {\tt F = A(p,p)'}, the transpose or permuted transpose, where {\tt A->stype} is nonzero. {\tt A} must be square and symmetric. If {\tt A->stype} $> 0$, then {\tt A} is a symmetric matrix where just the upper part of the matrix is stored. Entries in the lower triangular part may be present, but are ignored. If {\tt A->stype} $< 0$, then {\tt A} is a symmetric matrix where just the lower part of the matrix is stored. Entries in the upper triangular part may be present, but are ignored. If {\tt F=A'}, then {\tt F} is returned sorted; otherwise {\tt F} is unsorted for the {\tt F=A(p,p)'} case. There can be no duplicate entries in {\tt p}. Three kinds of transposes are available, depending on the {\tt values} parameter: \begin{itemize} \item 0: do not transpose the numerical values; create a {\tt CHOLMOD\_PATTERN} matrix \item 1: array transpose \item 2: complex conjugate transpose (same as 2 if input is real or pattern) \end{itemize} For {\tt cholmod\_transpose\_unsym} and {\tt cholmod\_transpose\_sym}, the output matrix {\tt F} must already be pre-allocated by the caller, with the correct dimensions. If {\tt F} is not valid or has the wrong dimensions, it is not modified. Otherwise, if {\tt F} is too small, the transpose is not computed; the contents of {\tt F->p} contain the column pointers of the resulting matrix, where {\tt F->p [F->ncol] > F->nzmax}. In this case, the remaining contents of {\tt F} are not modified. {\tt F} can still be properly freed with {\tt cholmod\_free\_sparse}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_band}: extract band of a sparse matrix} %--------------------------------------- \input{_band.tex} Returns {\tt C = tril (triu (A,k1), k2)}. {\tt C} is a matrix consisting of the diagonals of A from {\tt k1} to {\tt k2}. {\tt k=0} is the main diagonal of {\tt A}, {\tt k=1} is the superdiagonal, {\tt k=-1} is the subdiagonal, and so on. If {\tt A} is {\tt m}-by-{\tt n}, then: \begin{itemize} \item {\tt k1=-m} means {\tt C = tril (A,k2)} \item {\tt k2=n} means {\tt C = triu (A,k1)} \item {\tt k1=0} and {\tt k2=0} means {\tt C = diag(A)}, except {\tt C} is a matrix, not a vector \end{itemize} Values of {\tt k1} and {\tt k2} less than {\tt -m} are treated as {\tt -m}, and values greater than {\tt n} are treated as {\tt n}. {\tt A} can be of any symmetry (upper, lower, or unsymmetric); {\tt C} is returned in the same form, and packed. If {\tt A->stype} $> 0$, entries in the lower triangular part of {\tt A} are ignored, and the opposite is true if {\tt A->stype} $< 0$. If {\tt A} has sorted columns, then so does {\tt C}. {\tt C} has the same size as {\tt A}. {\tt C} can be returned as a numerical valued matrix (if {\tt A} has numerical values and {\tt mode} $> 0$), as a pattern-only ({\tt mode} $=0$), or as a pattern-only but with the diagonal entries removed ({\tt mode} $< 0$). The xtype of {\tt A} can be pattern or real. Complex or zomplex cases are supported only if {\tt mode} is $\le 0$ (in which case the numerical values are ignored). %--------------------------------------- \subsection{{\tt cholmod\_band\_inplace}: extract band, in place} %--------------------------------------- \input{_band_inplace.tex} Same as {\tt cholmod\_band}, except that it always operates in place. Only packed matrices can be converted in place. %--------------------------------------- \newpage \subsection{{\tt cholmod\_aat}: compute $\m{AA}\tr$} %--------------------------------------- \input{_aat.tex} Computes {\tt C = A*A'} or {\tt C = A(:,f)*A(:,f)'}. {\tt A} can be packed or unpacked, sorted or unsorted, but must be stored with both upper and lower parts ({\tt A->stype} of zero). {\tt C} is returned as packed, {\tt C->stype} of zero (both upper and lower parts present), and unsorted. See {\tt cholmod\_ssmult} in the {\tt MatrixOps} Module for a more general matrix-matrix multiply. The xtype of {\tt A} can be pattern or real. Complex or zomplex cases are supported only if {\tt mode} is $\le 0$ (in which case the numerical values are ignored). You can trivially convert {\tt C} to a symmetric upper/lower matrix by changing {\tt C->stype} to 1 or -1, respectively, after calling this routine. %--------------------------------------- \subsection{{\tt cholmod\_copy\_sparse}: copy sparse matrix} %--------------------------------------- \input{_copy_sparse.tex} Returns an exact copy of the input sparse matrix {\tt A}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_copy}: copy (and change) sparse matrix} %--------------------------------------- \input{_copy.tex} {\tt C = A}, which allocates {\tt C} and copies {\tt A} into {\tt C}, with possible change of {\tt stype}. The diagonal can optionally be removed. The numerical entries can optionally be copied. This routine differs from {\tt cholmod\_copy\_sparse}, which makes an exact copy of a sparse matrix. {\tt A} can be of any type (packed/unpacked, upper/lower/unsymmetric). {\tt C} is packed and can be of any stype (upper/lower/unsymmetric), except that if {\tt A} is rectangular {\tt C} can only be unsymmetric. If the stype of A and C differ, then the appropriate conversion is made. \noindent There are three cases for {\tt A->stype}: \begin{itemize} \item $<0$, lower: assume {\tt A} is symmetric with just {\tt tril(A)} stored; the rest of {\tt A} is ignored \item $ 0$, unsymmetric: assume {\tt A} is unsymmetric; consider all entries in A \item $>0$, upper: assume {\tt A} is symmetric with just {\tt triu(A)} stored; the rest of {\tt A} is ignored \end{itemize} \noindent There are three cases for the requested symmetry of {\tt C} ({\tt stype} parameter): \begin{itemize} \item $<0$, lower: return just {\tt tril(C)} \item $0$, unsymmetric: return all of {\tt C} \item $>0$, upper: return just {\tt triu(C)} \end{itemize} \noindent This gives a total of nine combinations: \newline \begin{tabular}{ll} \hline Equivalent MATLAB statements & Using {\tt cholmod\_copy} \\ \hline {\tt C = A ; }& {\tt A} unsymmetric, {\tt C} unsymmetric \\ {\tt C = tril (A) ; }& {\tt A} unsymmetric, {\tt C} lower \\ {\tt C = triu (A) ; }& {\tt A} unsymmetric, {\tt C} upper \\ {\tt U = triu (A) ; L = tril (U',-1) ; C = L+U ; }& {\tt A} upper, {\tt C} unsymmetric \\ {\tt C = triu (A)' ; }& {\tt A} upper, {\tt C} lower \\ {\tt C = triu (A) ; }& {\tt A} upper, {\tt C} upper \\ {\tt L = tril (A) ; U = triu (L',1) ; C = L+U ; }& {\tt A} lower, {\tt C} unsymmetric \\ {\tt C = tril (A) ; }& {\tt A} lower, {\tt C} lower \\ {\tt C = tril (A)' ; }& {\tt A} lower, {\tt C} upper \\ \hline \end{tabular} \vspace{0.1in} The xtype of {\tt A} can be pattern or real. Complex or zomplex cases are supported only if {\tt values} is {\tt FALSE} (in which case the numerical values are ignored). %--------------------------------------- \newpage \subsection{{\tt cholmod\_add}: add sparse matrices} %--------------------------------------- \input{_add.tex} Returns {\tt C = alpha*A + beta*B}. If the {\tt stype} of {\tt A} and {\tt B} match, then {\tt C} has the same {\tt stype}. Otherwise, {\tt C->stype} is zero ({\tt C} is unsymmetric). %--------------------------------------- \subsection{{\tt cholmod\_sparse\_xtype}: change sparse xtype} %--------------------------------------- \input{_sparse_xtype.tex} Changes the {\tt xtype} of a sparse matrix, to pattern, real, complex, or zomplex. Changing from complex or zomplex to real discards the imaginary part. %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: {\tt cholmod\_factor} object} \label{cholmod_factor} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_factor} object: a sparse Cholesky factorization} %--------------------------------------- \input{_factor.tex} An $\m{LL}\tr$ or $\m{LDL}\tr$ factorization in simplicial or supernodal form. A simplicial factor is very similar to a {\tt cholmod\_sparse} matrix. For an $\m{LDL}\tr$ factorization, the diagonal matrix $\m{D}$ is stored as the diagonal of $\m{L}$; the unit-diagonal of $\m{L}$ is not stored. %--------------------------------------- \newpage \subsection{{\tt cholmod\_free\_factor}: free factor} %--------------------------------------- \input{_free_factor.tex} Frees a factor. %--------------------------------------- \subsection{{\tt cholmod\_allocate\_factor}: allocate factor} %--------------------------------------- \input{_allocate_factor.tex} Allocates a factor and sets it to identity. %--------------------------------------- \subsection{{\tt cholmod\_reallocate\_factor}: reallocate factor} %--------------------------------------- \input{_reallocate_factor.tex} Reallocates a simplicial factor so that it can contain {\tt nznew} entries. %--------------------------------------- \newpage \subsection{{\tt cholmod\_change\_factor}: change factor} %--------------------------------------- \input{_change_factor.tex} Change the numeric or symbolic, $\m{LL}\tr$ or $\m{LDL}\tr$, simplicial or super, packed or unpacked, and monotonic or non-monotonic status of a {\tt cholmod\_factor} object. There are four basic classes of factor types: \begin{enumerate} \item simplicial symbolic: Consists of two size-{\tt n} arrays: the fill-reducing permutation ({\tt L->Perm}) and the nonzero count for each column of L ({\tt L->ColCount}). All other factor types also include this information. {\tt L->ColCount} may be exact (obtained from the analysis routines), or it may be a guess. During factorization, and certainly after update/downdate, the columns of {\tt L} can have a different number of nonzeros. {\tt L->ColCount} is used to allocate space. {\tt L->ColCount} is exact for the supernodal factorizations. The nonzero pattern of {\tt L} is not kept. \item simplicial numeric: These represent {\tt L} in a compressed column form. The variants of this type are: \begin{itemize} \item $\m{LDL}\tr$: {\tt L} is unit diagonal. Row indices in column {\tt j} are located in {\tt L->i [L->p [j] ... L->p [j] + L->nz [j]]}, and corresponding numeric values are in the same locations in {\tt L->x}. The total number of entries is the sum of {\tt L->nz [j]}. The unit diagonal is not stored; {\tt D} is stored on the diagonal of {\tt L} instead. {\tt L->p} may or may not be monotonic. The order of storage of the columns in {\tt L->i} and {\tt L->x} is given by a doubly-linked list ({\tt L->prev} and {\tt L->next}). {\tt L->p} is of size {\tt n+1}, but only the first {\tt n} entries are used. For the complex case, {\tt L->x} is stored interleaved with real and imaginary parts, and is of size {\tt 2*lnz*sizeof(double)}. For the zomplex case, {\tt L->x} is of size {\tt lnz*sizeof(double)} and holds the real part; {\tt L->z} is the same size and holds the imaginary part. \item $\m{LL}\tr$: This is identical to the $\m{LDL}\tr$ form, except that the non-unit diagonal of {\tt L} is stored as the first entry in each column of {\tt L}. \end{itemize} \item supernodal symbolic: A representation of the nonzero pattern of the supernodes for a supernodal factorization. There are {\tt L->nsuper} supernodes. Columns {\tt L->super [k]} to {\tt L->super [k+1]-1} are in the {\tt k}th supernode. The row indices for the {\tt k}th supernode are in {\tt L->s [L->pi [k] ... L->pi [k+1]-1]}. The numerical values are not allocated ({\tt L->x}), but when they are they will be located in {\tt L->x [L->px [k] ... L->px [k+1]-1]}, and the {\tt L->px} array is defined in this factor type. For the complex case, {\tt L->x} is stored interleaved with real/imaginary parts, and is of size \newline {\tt 2*L->xsize*sizeof(double)}. The zomplex supernodal case is not supported, since it is not compatible with LAPACK and the BLAS. \item supernodal numeric: Always an $\m{LL}\tr$ factorization. {\tt L} has a non-unit diagonal. {\tt L->x} contains the numerical values of the supernodes, as described above for the supernodal symbolic factor. For the complex case, {\tt L->x} is stored interleaved, and is of size {\tt 2*L->xsize*sizeof(double)}. The zomplex supernodal case is not supported, since it is not compatible with LAPACK and the BLAS. \end{enumerate} In all cases, the row indices in each column ({\tt L->i} for simplicial {\tt L} and {\tt L->s} for supernodal {\tt L}) are kept sorted from low indices to high indices. This means the diagonal of {\tt L} (or {\tt D} for a $\m{LDL}\tr$ factorization) is always kept as the first entry in each column. The elimination tree is not kept. The parent of node {\tt j} can be found as the second row index in the {\tt j}th column. If column {\tt j} has no off-diagonal entries then node {\tt j} is a root of the elimination tree. The {\tt cholmod\_change\_factor} routine can do almost all possible conversions. It cannot do the following conversions: \begin{itemize} \item Simplicial numeric types cannot be converted to a supernodal symbolic type. This would simultaneously deallocate the simplicial pattern and numeric values and reallocate uninitialized space for the supernodal pattern. This isn't useful for the user, and not needed by CHOLMOD's own routines either. \item Only a symbolic factor (simplicial to supernodal) can be converted to a supernodal numeric factor. \end{itemize} Some conversions are meant only to be used internally by other CHOLMOD routines, and should not be performed by the end user. They allocate space whose contents are undefined: \begin{itemize} \item converting from simplicial symbolic to supernodal symbolic. \item converting any factor to supernodal numeric. \end{itemize} Supports all xtypes, except that there is no supernodal zomplex L. The {\tt to\_xtype} parameter is used only when converting from symbolic to numeric or numeric to symbolic. It cannot be used to convert a numeric xtype (real, complex, or zomplex) to a different numeric xtype. For that conversion, use {\tt cholmod\_factor\_xtype} instead. %--------------------------------------- \newpage \subsection{{\tt cholmod\_pack\_factor}: pack the columns of a factor} %--------------------------------------- \input{_pack_factor.tex} Pack the columns of a simplicial $\m{LDL}\tr$ or $\m{LL}\tr$ factorization. This can be followed by a call to {\tt cholmod\_reallocate\_factor} to reduce the size of {\tt L} to the exact size required by the factor, if desired. Alternatively, you can leave the size of {\tt L->i} and {\tt L->x} the same, to allow space for future updates/rowadds. Each column is reduced in size so that it has at most {\tt Common->grow2} free space at the end of the column. Does nothing and returns silently if given any other type of factor. Does not force the columns of {\tt L} to be monotonic. It thus differs from \begin{verbatim} cholmod_change_factor (xtype, L->is_ll, FALSE, TRUE, TRUE, L, Common) \end{verbatim} which packs the columns and ensures that they appear in monotonic order. %--------------------------------------- \subsection{{\tt cholmod\_reallocate\_column}: reallocate one column of a factor} %--------------------------------------- \input{_reallocate_column.tex} Reallocates the space allotted to a single column of $\m{L}$. %--------------------------------------- \newpage \subsection{{\tt cholmod\_factor\_to\_sparse}: sparse matrix copy of a factor} %--------------------------------------- \input{_factor_to_sparse.tex} Returns a column-oriented sparse matrix containing the pattern and values of a simplicial or supernodal numerical factor, and then converts the factor into a simplicial symbolic factor. If {\tt L} is already packed, monotonic, and simplicial (which is the case when {\tt cholmod\_factorize} uses the simplicial Cholesky factorization algorithm) then this routine requires only a small amount of time and memory, independent of {\tt n}. It only operates on numeric factors (real, complex, or zomplex). It does not change {\tt L->xtype} (the resulting sparse matrix has the same {\tt xtype} as {\tt L}). If this routine fails, {\tt L} is left unmodified. %--------------------------------------- \subsection{{\tt cholmod\_copy\_factor}: copy factor} %--------------------------------------- \input{_copy_factor.tex} Returns an exact copy of a factor. %--------------------------------------- \subsection{{\tt cholmod\_factor\_xtype}: change factor xtype} %--------------------------------------- \input{_factor_xtype.tex} Changes the {\tt xtype} of a factor, to pattern, real, complex, or zomplex. Changing from complex or zomplex to real discards the imaginary part. You cannot change a supernodal factor to the zomplex xtype. %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: {\tt cholmod\_dense} object} \label{cholmod_dense} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_dense} object: a dense matrix} %--------------------------------------- \input{_dense.tex} Contains a dense matrix. %--------------------------------------- \subsection{{\tt cholmod\_allocate\_dense}: allocate dense matrix} %--------------------------------------- \input{_allocate_dense.tex} Allocates a dense matrix. %--------------------------------------- \subsection{{\tt cholmod\_free\_dense}: free dense matrix} %--------------------------------------- \input{_free_dense.tex} Frees a dense matrix. %--------------------------------------- \newpage \subsection{{\tt cholmod\_zeros}: dense zero matrix} %--------------------------------------- \input{_zeros.tex} Returns an all-zero dense matrix. %--------------------------------------- \subsection{{\tt cholmod\_ones}: dense matrix, all ones} %--------------------------------------- \input{_ones.tex} Returns a dense matrix with each entry equal to one. %--------------------------------------- \subsection{{\tt cholmod\_eye}: dense identity matrix} %--------------------------------------- \input{_eye.tex} Returns a dense identity matrix. %--------------------------------------- \newpage \subsection{{\tt cholmod\_sparse\_to\_dense}: dense matrix copy of a sparse matrix} %--------------------------------------- \input{_sparse_to_dense.tex} Returns a dense copy of a sparse matrix. %--------------------------------------- \subsection{{\tt cholmod\_dense\_to\_sparse}: sparse matrix copy of a dense matrix} %--------------------------------------- \input{_dense_to_sparse.tex} Returns a sparse copy of a dense matrix. %--------------------------------------- \subsection{{\tt cholmod\_copy\_dense}: copy dense matrix} %--------------------------------------- \input{_copy_dense.tex} Returns a copy of a dense matrix. %--------------------------------------- \newpage \subsection{{\tt cholmod\_copy\_dense2}: copy dense matrix (preallocated)} %--------------------------------------- \input{_copy_dense2.tex} Returns a copy of a dense matrix, placing the result in a preallocated matrix {\tt Y}. %--------------------------------------- \subsection{{\tt cholmod\_dense\_xtype}: change dense matrix xtype} %--------------------------------------- \input{_dense_xtype.tex} Changes the {\tt xtype} of a dense matrix, to real, complex, or zomplex. Changing from complex or zomplex to real discards the imaginary part. %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: {\tt cholmod\_triplet} object} \label{cholmod_triplet} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_triplet} object: sparse matrix in triplet form} %--------------------------------------- \input{_triplet.tex} Contains a sparse matrix in triplet form. %--------------------------------------- \subsection{{\tt cholmod\_allocate\_triplet}: allocate triplet matrix} %--------------------------------------- \input{_allocate_triplet.tex} Allocates a triplet matrix. %--------------------------------------- \subsection{{\tt cholmod\_free\_triplet}: free triplet matrix} %--------------------------------------- \input{_free_triplet.tex} Frees a triplet matrix. %--------------------------------------- \newpage \subsection{{\tt cholmod\_reallocate\_triplet}: reallocate triplet matrix} %--------------------------------------- \input{_reallocate_triplet.tex} Reallocates a triplet matrix so that it can hold {\tt nznew} entries. %--------------------------------------- \subsection{{\tt cholmod\_sparse\_to\_triplet}: triplet matrix copy of a sparse matrix} %--------------------------------------- \input{_sparse_to_triplet.tex} Returns a triplet matrix copy of a sparse matrix. %--------------------------------------- \subsection{{\tt cholmod\_triplet\_to\_sparse}: sparse matrix copy of a triplet matrix} %--------------------------------------- \input{_triplet_to_sparse.tex} Returns a sparse matrix copy of a triplet matrix. If the triplet matrix is symmetric with just the lower part present ({\tt T->stype} $< 0$), then entries in the upper part are transposed and placed in the lower part when converting to a sparse matrix. Similarly, if the triplet matrix is symmetric with just the upper part present ({\tt T->stype} $> 0$), then entries in the lower part are transposed and placed in the upper part when converting to a sparse matrix. Any duplicate entries are summed. %--------------------------------------- \newpage \subsection{{\tt cholmod\_copy\_triplet}: copy triplet matrix} %--------------------------------------- \input{_copy_triplet.tex} Returns an exact copy of a triplet matrix. %--------------------------------------- \subsection{{\tt cholmod\_triplet\_xtype}: change triplet xtype} %--------------------------------------- \input{_triplet_xtype.tex} Changes the {\tt xtype} of a dense matrix, to real, complex, or zomplex. Changing from complex or zomplex to real discards the imaginary part. %------------------------------------------------------------------------------- \newpage \section{{\tt Core} Module: memory management} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_malloc}: allocate memory} %--------------------------------------- \input{_malloc.tex} Allocates a block of memory of size {\tt n*size}, using the {\tt Common->malloc\_memory} function pointer (default is to use the ANSI C {\tt malloc} routine). A value of {\tt n=0} is treated as {\tt n=1}. If not successful, {\tt NULL} is returned and {\tt Common->status} is set to {\tt CHOLMOD\_OUT\_OF\_MEMORY}. %--------------------------------------- \subsection{{\tt cholmod\_calloc}: allocate and clear memory} %--------------------------------------- \input{_calloc.tex} Allocates a block of memory of size {\tt n*size}, using the {\tt Common->calloc\_memory} function pointer (default is to use the ANSI C {\tt calloc} routine). A value of {\tt n=0} is treated as {\tt n=1}. If not successful, {\tt NULL} is returned and {\tt Common->status} is set to {\tt CHOLMOD\_OUT\_OF\_MEMORY}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_free}: free memory} %--------------------------------------- \input{_free.tex} Frees a block of memory of size {\tt n*size}, using the {\tt Common->free\_memory} function pointer (default is to use the ANSI C {\tt free} routine). The size of the block ({\tt n} and {\tt size}) is only required so that CHOLMOD can keep track of its current and peak memory usage. This is a useful statistic, and it can also help in tracking down memory leaks. After the call to {\tt cholmod\_finish}, the count of allocated blocks ({\tt Common->malloc\_count}) should be zero, and the count of bytes in use ({\tt Common->memory\_inuse}) also should be zero. If you allocate a block with one size and free it with another, the {\tt Common->memory\_inuse} count will be wrong, but CHOLMOD will not have a memory leak. %--------------------------------------- \subsection{{\tt cholmod\_realloc}: reallocate memory} %--------------------------------------- \input{_realloc.tex} Reallocates a block of memory whose current size {\tt n*size}, and whose new size will be {\tt nnew*size} if successful, using the {\tt Common->calloc\_memory} function pointer (default is to use the ANSI C {\tt realloc} routine). If the reallocation is not successful, {\tt p} is returned unchanged and {\tt Common->status} is set to {\tt CHOLMOD\_OUT\_OF\_MEMORY}. The value of {\tt n} is set to {\tt nnew} if successful, or left unchanged otherwise. A value of {\tt nnew=0} is treated as {\tt nnew=1}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_realloc\_multiple}: reallocate memory} %--------------------------------------- \input{_realloc_multiple.tex} Reallocates multiple blocks of memory, all with the same number of items (but with different item sizes). Either all reallocations succeed, or all are returned to their original size. %------------------------------------------------------------------------------- \newpage \section{{\tt Check} Module routines} %------------------------------------------------------------------------------- No CHOLMOD routines print anything, except for the {\tt cholmod\_print\_*} routines in the {\tt Check} Module, and the {\tt cholmod\_error} routine. The {\tt Common->print\_function} is a pointer to {\tt printf} by default; you can redirect the output of CHOLMOD by redefining this pointer. If {\tt Common->print\_function} is {\tt NULL}, CHOLMOD does not print anything. The {\tt Common->print} parameter determines how much detail is printed. Each value of {\tt Common->print} listed below also prints the items listed for smaller values of {\tt Common->print}: \begin{itemize} \item 0: print nothing; check the data structures and return {\tt TRUE} or {\tt FALSE}. \item 1: print error messages. \item 2: print warning messages. \item 3: print a one-line summary of the object. \item 4: print a short summary of the object (first and last few entries). \item 5: print the entire contents of the object. \end{itemize} Values less than zero are treated as zero, and values greater than five are treated as five. %--------------------------------------- \subsection{{\tt cholmod\_check\_common}: check Common object} %--------------------------------------- \input{_check_common.tex} Check if the {\tt Common} object is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_common}: print Common object} %--------------------------------------- \input{_print_common.tex} Print the {\tt Common} object and check if it is valid. This prints the CHOLMOD parameters and statistics. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_sparse}: check sparse matrix} %--------------------------------------- \input{_check_sparse.tex} Check if a sparse matrix is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_sparse}: print sparse matrix} %--------------------------------------- \input{_print_sparse.tex} Print a sparse matrix and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_dense}: check dense matrix} %--------------------------------------- \input{_check_dense.tex} Check if a dense matrix is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_dense}: print dense matrix} %--------------------------------------- \input{_print_dense.tex} Print a dense matrix and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_factor}: check factor} %--------------------------------------- \input{_check_factor.tex} Check if a factor is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_factor}: print factor} %--------------------------------------- \input{_print_factor.tex} Print a factor and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_triplet}: check triplet matrix} %--------------------------------------- \input{_check_triplet.tex} Check if a triplet matrix is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_triplet}: print triplet matrix} %--------------------------------------- \input{_print_triplet.tex} Print a triplet matrix and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_subset}: check subset} %--------------------------------------- \input{_check_subset.tex} Check if a subset is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_subset}: print subset} %--------------------------------------- \input{_print_subset.tex} Print a subset and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_perm}: check permutation} %--------------------------------------- \input{_check_perm.tex} Check if a permutation is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_perm}: print permutation} %--------------------------------------- \input{_print_perm.tex} Print a permutation and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_check\_parent}: check elimination tree} %--------------------------------------- \input{_check_parent.tex} Check if an elimination tree is valid. %--------------------------------------- \subsection{{\tt cholmod\_print\_parent}: print elimination tree} %--------------------------------------- \input{_print_parent.tex} Print an elimination tree and check if it is valid. %--------------------------------------- \newpage \subsection{{\tt cholmod\_read\_triplet}: read triplet matrix from file} %--------------------------------------- \input{_read_triplet.tex} Read a sparse matrix in triplet form, using the the {\tt coord} Matrix Market format (http://www.nist.gov/MatrixMarket). Skew-symmetric and complex symmetric matrices are returned with both upper and lower triangular parts present (an stype of zero). Real symmetric and complex Hermitian matrices are returned with just their upper or lower triangular part, depending on their stype. The Matrix Market {\tt array} data type for dense matrices is not supported (use {\tt cholmod\_read\_dense} for that case). If the first line of the file starts with {\tt \%\%MatrixMarket}, then it is interpreted as a file in Matrix Market format. The header line is optional. If present, this line must have the following format: \vspace{0.1in} {\tt \%\%MatrixMarket matrix coord} {\em type storage} \vspace{0.1in} \noindent where {\em type} is one of: {\tt real}, {\tt complex}, {\tt pattern}, or {\tt integer}, and {\em storage} is one of: {\tt general}, {\tt hermitian}, {\tt symmetric}, or {\tt skew-symmetric}. In CHOLMOD, these roughly correspond to the {\tt xtype} (pattern, real, complex, or zomplex) and {\tt stype} (unsymmetric, symmetric/upper, and symmetric/lower). The strings are case-insensitive. Only the first character (or the first two for skew-symmetric) is significant. The {\tt coord} token can be replaced with {\tt array} in the Matrix Market format, but this format not supported by {\tt cholmod\_read\_triplet}. The {\tt integer} type is converted to real. The {\em type} is ignored; the actual type (real, complex, or pattern) is inferred from the number of tokens in each line of the file (2: pattern, 3: real, 4: complex). This is compatible with the Matrix Market format. A storage of {\tt general} implies an stype of zero (see below). A storage of {\tt symmetric} and {\tt hermitian} imply an stype of -1. Skew-symmetric and complex symmetric matrices are returned with an stype of 0. Blank lines, any other lines starting with ``{\tt \%}'' are treated as comments, and are ignored. The first non-comment line contains 3 or 4 integers: \vspace{0.1in} {\em nrow ncol nnz stype} \vspace{0.1in} \noindent where {\em stype} is optional (stype does not appear in the Matrix Market format). The matrix is {\em nrow}-by-{\em ncol}. The following {\em nnz} lines (excluding comments) each contain a single entry. Duplicates are permitted, and are summed in the output matrix. If stype is present, it denotes the storage format for the matrix. \begin{itemize} \item stype = 0 denotes an unsymmetric matrix (same as Matrix Market {\tt general}). \item stype = -1 denotes a symmetric or Hermitian matrix whose lower triangular entries are stored. Entries may be present in the upper triangular part, but these are ignored (same as Matrix Market {\tt symmetric} for the real case, {\tt hermitian} for the complex case). \item stype = 1 denotes a symmetric or Hermitian matrix whose upper triangular entries are stored. Entries may be present in the lower triangular part, but these are ignored. This format is not available in the Matrix Market format. \end{itemize} If neither the stype nor the Matrix Market header are present, then the stype is inferred from the rest of the data. If the matrix is rectangular, or has entries in both the upper and lower triangular parts, then it is assumed to be unsymmetric (stype=0). If only entries in the lower triangular part are present, the matrix is assumed to have stype = -1. If only entries in the upper triangular part are present, the matrix is assumed to have stype = 1. Each nonzero consists of one line with 2, 3, or 4 entries. All lines must have the same number of entries. The first two entries are the row and column indices of the nonzero. If 3 entries are present, the 3rd entry is the numerical value, and the matrix is real. If 4 entries are present, the 3rd and 4th entries in the line are the real and imaginary parts of a complex value. The matrix can be either 0-based or 1-based. It is first assumed to be one-based (compatible with Matrix Market), with row indices in the range 1 to ncol and column indices in the range 1 to nrow. If a row or column index of zero is found, the matrix is assumed to be zero-based (with row indices in the range 0 to ncol-1 and column indices in the range 0 to nrow-1). This test correctly determines that all Matrix Market matrices are in 1-based form. For symmetric pattern-only matrices, the kth diagonal (if present) is set to one plus the degree of the row k or column k (whichever is larger), and the off-diagonals are set to -1. A symmetric pattern-only matrix with a zero-free diagonal is thus converted into a symmetric positive definite matrix. All entries are set to one for an unsymmetric pattern-only matrix. This differs from the MatrixMarket format ({\tt A = mmread ('file')} returns a binary pattern for A for symmetric pattern-only matrices). To return a binary format for all pattern-only matrices, use {\tt A = mread('file',1)}. Example matrices that follow this format can be found in the {\tt CHOLMOD/Demo/Matrix} and \newline {\tt CHOLMOD/Tcov/Matrix} directories. You can also try any of the matrices in the Matrix Market collection at http://www.nist.gov/MatrixMarket. %--------------------------------------- \subsection{{\tt cholmod\_read\_sparse}: read sparse matrix from file} %--------------------------------------- \input{_read_sparse.tex} Read a sparse matrix in triplet form from a file (using {\tt cholmod\_read\_triplet}) and convert to a CHOLMOD sparse matrix. The Matrix Market format is used. If {\tt Common->prefer\_upper} is {\tt TRUE} (the default case), a symmetric matrix is returned stored in upper-triangular form ({\tt A->stype} is 1). Otherwise, it is left in its original form, either upper or lower. %--------------------------------------- \newpage \subsection{{\tt cholmod\_read\_dense}: read dense matrix from file} %--------------------------------------- \input{_read_dense.tex} Read a dense matrix from a file, using the the {\tt array} Matrix Market format \newline (http://www.nist.gov/MatrixMarket). %--------------------------------------- \subsection{{\tt cholmod\_read\_matrix}: read a matrix from file} %--------------------------------------- \input{_read_matrix.tex} Read a sparse or dense matrix from a file, in Matrix Market format. Returns a {\tt void} pointer to either a {\tt cholmod\_triplet}, {\tt cholmod\_sparse}, or {\tt cholmod\_dense} object. %--------------------------------------- \newpage \subsection{{\tt cholmod\_write\_sparse}: write a sparse matrix to a file} %--------------------------------------- \input{_write_sparse.tex} Write a sparse matrix to a file in Matrix Market format. Optionally include comments, and print explicit zero entries given by the pattern of the {\tt Z} matrix. If not NULL, the {\tt Z} matrix must have the same dimensions and stype as {\tt A}. Returns the symmetry in which the matrix was printed (1 to 7) or -1 on failure. See the {\tt cholmod\_symmetry} function for a description of the return codes. If {\tt A} and {\tt Z} are sorted on input, and either unsymmetric (stype = 0) or symmetric-lower (stype < 0), and if {\tt A} and {\tt Z} do not overlap, then the triplets are sorted, first by column and then by row index within each column, with no duplicate entries. If all the above holds except stype > 0, then the triplets are sorted by row first and then column. %--------------------------------------- \subsection{{\tt cholmod\_write\_dense}: write a dense matrix to a file} %--------------------------------------- \input{_write_dense.tex} Write a dense matrix to a file in Matrix Market format. Optionally include comments. Returns > 0 if successful, -1 otherwise (1 if rectangular, 2 if square). A dense matrix is written in "general" format; symmetric formats in the Matrix Market standard are not exploited. %------------------------------------------------------------------------------- \newpage \section{{\tt Cholesky} Module routines} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_analyze}: symbolic factorization} %--------------------------------------- \input{_analyze.tex} Orders and analyzes a matrix (either simplicial or supernodal), in preparation for numerical factorization via {\tt cholmod\_factorize} or via the ``expert'' routines {\tt cholmod\_rowfac} and {\tt cholmod\_super\_numeric}. In the symmetric case, {\tt A} or {\tt A(p,p)} is analyzed, where {\tt p} is the fill-reducing ordering. In the unsymmetric case, {\tt A*A'} or {\tt A(p,:)*A(p,:)'} is analyzed. The {\tt cholmod\_analyze\_p} routine can be given a user-provided permutation {\tt p} (see below). The default ordering strategy is to first try AMD. The ordering quality is analyzed, and if AMD obtains an ordering where {\tt nnz(L)} is greater than or equal to {\tt 5*nnz(tril(A))} (or {\tt 5*nnz(tril(A*A'))} if {\tt A} is unsymmetric) and the floating-point operation count for the subsequent factorization is greater than or equal to {\tt 500*nnz(L)}, then METIS is tried (if installed). For {\tt cholmod\_analyze\_p}, the user-provided ordering is also tried. This default behavior is obtained when {\tt Common->nmethods} is zero. In this case, methods 0, 1, and 2 in {\tt Common->method[...]} are reset to user-provided, AMD, and METIS, respectively. The ordering with the smallest {\tt nnz(L)} is kept. If {\tt Common->default\_nesdis} is true (nonzero), then CHOLMOD's nested dissection (NESDIS) is used for the default strategy described above, in place of METIS. Other ordering options can be requested. These include: \begin{enumerate} \item natural: A is not permuted to reduce fill-in. \item user-provided: a permutation can be provided to {\tt cholmod\_analyze\_p}. \item AMD: approximate minimum degree (AMD for the symmetric case, COLAMD for the {\tt A*A'} case). \item METIS: nested dissection with {\tt METIS\_NodeND} \item {\tt NESDIS}: CHOLMOD's nested dissection using {\tt METIS\_NodeComputeSeparator}, followed by a constrained minimum degree (CAMD or CSYMAMD for the symmetric case, CCOLAMD for the {\tt A*A'} case). This is typically slower than METIS, but typically provides better orderings. \end{enumerate} Multiple ordering options can be tried (up to 9 of them), and the best one is selected (the one that gives the smallest number of nonzeros in the simplicial factor L). If one method fails, {\tt cholmod\_analyze} keeps going, and picks the best among the methods that succeeded. This routine fails (and returns {\tt NULL}) if either the initial memory allocation fails, all ordering methods fail, or the supernodal analysis (if requested) fails. Change {\tt Common->nmethods} to the number of methods you wish to try. By default, the 9 methods available are: \begin{enumerate} \item user-provided permutation (only for {\tt cholmod\_analyze\_p}). \item AMD with default parameters. \item METIS with default parameters. \item {\tt NESDIS} with default parameters: stopping the partitioning when the graph is of size {\tt nd\_small} = 200 or less, remove nodes with more than {\tt max (16, prune\_dense * sqrt (n))} nodes where {\tt prune\_dense} = 10, and follow partitioning with constrained minimum degree ordering (CAMD for the symmetric case, CCOLAMD for the unsymmetric case). \item natural ordering (with weighted postorder). \item NESDIS, {\tt nd\_small} = 20000, {\tt prune\_dense} = 10. \item NESDIS, {\tt nd\_small} = 4, {\tt prune\_dense} = 10, no constrained minimum degree. \item NESDIS, {\tt nd\_small} = 200, {\tt prune\_dense} = 0. \item COLAMD for {\tt A*A'} or AMD for {\tt A} \end{enumerate} You can modify these 9 methods and the number of methods tried by changing parameters in the {\tt Common} argument. If you know the best ordering for your matrix, set {\tt Common->nmethods} to 1 and set {\tt Common->method[0].ordering} to the requested ordering method. Parameters for each method can also be modified (refer to the description of {\tt cholmod\_common} for details). Note that it is possible for METIS to terminate your program if it runs out of memory. This is not the case for any CHOLMOD or minimum degree ordering routine (AMD, COLAMD, CAMD, CCOLAMD, or CSYMAMD). Since {\tt NESDIS} relies on METIS, it too can terminate your program. The selected ordering is followed by a weighted postorder of the elimination tree by default (see {\tt cholmod\_postorder} for details), unless {\tt Common->postorder} is set to {\tt FALSE}. The postorder does not change the number of nonzeros in $\m{L}$ or the floating-point operation count. It does improve performance, particularly for the supernodal factorization. If you truly want the natural ordering with no postordering, you must set {\tt Common->postorder} to {\tt FALSE}. The factor {\tt L} is returned as simplicial symbolic if {\tt Common->supernodal} is {\tt CHOLMOD\_SIMPLICIAL} (zero) or as supernodal symbolic if {\tt Common->supernodal} is {\tt CHOLMOD\_SUPERNODAL} (two). If \newline {\tt Common->supernodal} is {\tt CHOLMOD\_AUTO} (one), then {\tt L} is simplicial if the flop count per nonzero in {\tt L} is less than {\tt Common->supernodal\_switch} (default: 40), and supernodal otherwise. In both cases, {\tt L->xtype} is {\tt CHOLMOD\_PATTERN}. A subsequent call to {\tt cholmod\_factorize} will perform a simplicial or supernodal factorization, depending on the type of {\tt L}. For the simplicial case, {\tt L} contains the fill-reducing permutation ({\tt L->Perm}) and the counts of nonzeros in each column of {\tt L} ({\tt L->ColCount}). For the supernodal case, {\tt L} also contains the nonzero pattern of each supernode. If a simplicial factorization is selected, it will be $\m{LDL}\tr$ by default, since this is the kind required by the {\tt Modify} Module. CHOLMOD does not include a supernodal $\m{LDL}\tr$ factorization, so if a supernodal factorization is selected, it will be in the form $\m{LL}\tr$. The $\m{LDL}\tr$ method can be used to factorize positive definite matrices and indefinite matrices whose leading minors are well-conditioned (2-by-2 pivoting is not supported). The $\m{LL}\tr$ method is restricted to positive definite matrices. To factorize a large indefinite matrix, set {\tt Common->supernodal} to {\tt CHOLMOD\_SIMPLICIAL}, and the simplicial $\m{LDL}\tr$ method will always be used. This will be significantly slower than a supernodal $\m{LL}\tr$ factorization, however. Refer to {\tt cholmod\_transpose\_unsym} for a description of {\tt f}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_factorize}: numeric factorization} %--------------------------------------- \input{_factorize.tex} Computes the numerical factorization of a symmetric matrix. The % primary inputs to this routine are a sparse matrix {\tt A} and the symbolic factor {\tt L} from {\tt cholmod\_analyze} or a prior numerical factor {\tt L}. If {\tt A} is symmetric, this routine factorizes {\tt A(p,p)}. %+beta*I (beta can be zero), where p is the fill-reducing permutation ({\tt L->Perm}). If {\tt A} is unsymmetric, % either {\tt A(p,:)*A(p,:)'} % +beta*I or A(p,f)*A(p,f)'+beta*I is factorized. % The set f and The nonzero pattern of the matrix {\tt A} must be the same as the matrix passed to {\tt cholmod\_analyze} for the supernodal case. For the simplicial case, it can be different, but it should be the same for best performance. % beta is real. A simplicial factorization or supernodal factorization is chosen, based on the type of the factor {\tt L}. If {\tt L->is\_super} is {\tt TRUE}, a supernodal $\m{LL}\tr$ factorization is computed. Otherwise, a simplicial numeric factorization is computed, either $\m{LL}\tr$ or $\m{LDL}\tr$, depending on {\tt Common->final\_ll} (the default for the simplicial case is to compute an $\m{LDL}\tr$ factorization). Once the factorization is complete, it can be left as is or optionally converted into any simplicial numeric type, depending on the {\tt Common->final\_*} parameters. If converted from a supernodal to simplicial type, and {\tt Common->final\_resymbol} is {\tt TRUE}, then numerically zero entries in {\tt L} due to relaxed supernodal amalgamation are removed from the simplicial factor (they are always left in the supernodal form of {\tt L}). Entries that are numerically zero but present in the simplicial symbolic pattern of {\tt L} are left in place (the graph of {\tt L} remains chordal). This is required for the update/downdate/rowadd/rowdel routines to work properly. If the matrix is not positive definite the routine returns {\tt TRUE}, but {\tt Common->status} is set to {\tt CHOLMOD\_NOT\_POSDEF} and {\tt L->minor} is set to the column at which the failure occurred. Columns {\tt L->minor} to {\tt L->n-1} are set to zero. Supports any xtype (pattern, real, complex, or zomplex), except that the input matrix {\tt A} cannot be pattern-only. If {\tt L} is simplicial, its numeric xtype matches {\tt A} on output. If {\tt L} is supernodal, its xtype is real if {\tt A} is real, or complex if {\tt A} is complex or zomplex. CHOLMOD does not provide a supernodal zomplex factor, since it is incompatible with how complex numbers are stored in LAPACK and the BLAS. %--------------------------------------- \newpage \subsection{{\tt cholmod\_analyze\_p}: symbolic factorization, given permutation} %--------------------------------------- \input{_analyze_p.tex} Identical to {\tt cholmod\_analyze}, except that a user-provided permutation {\tt p} can be provided, and the set {\tt f} for the unsymmetric case can be provided. The matrices {\tt A(:,f)*A(:,f)'} or {\tt A(p,f)*A(p,f)'} can be analyzed in the the unsymmetric case. %--------------------------------------- \subsection{{\tt cholmod\_factorize\_p}: numeric factorization, given permutation} %--------------------------------------- \input{_factorize_p.tex} Identical to {\tt cholmod\_factorize}, but with additional options. The set {\tt f} can be provided for the unsymmetric case; {\tt A(p,f)*A(p,f)'} is factorized. The term {\tt beta*I} can be added to the matrix before it is factorized, where {\tt beta} is real. Only the real part, {\tt beta[0]}, is used. %--------------------------------------- \newpage \subsection{{\tt cholmod\_solve}: solve a linear system} %--------------------------------------- \input{_solve.tex} Returns a solution {\tt X} that solves one of the following systems: \begin{tabular}{ll|ll} \hline system & {\tt sys} parameter & system & {\tt sys} parameter \\ $\m{Ax}=\m{b}$ & 0: {\tt CHOLMOD\_A} & & \\ $\m{LDL}\tr\m{x}=\m{b}$ & 1: {\tt CHOLMOD\_LDLt} & $\m{L}\tr\m{x}=\m{b}$ & 5: {\tt CHOLMOD\_Lt} \\ $\m{LDx}=\m{b}$ & 2: {\tt CHOLMOD\_LD} & $\m{Dx}=\m{b}$ & 6: {\tt CHOLMOD\_D} \\ $\m{DL}\tr\m{x}=\m{b}$ & 3: {\tt CHOLMOD\_DLt} & $\m{x}=\m{Pb}$ & 7: {\tt CHOLMOD\_P} \\ $\m{Lx}=\m{b}$ & 4: {\tt CHOLMOD\_L} & $\m{x}=\m{P}\tr\m{b}$ & 8: {\tt CHOLMOD\_Pt} \\ \hline \end{tabular} The factorization can be simplicial $\m{LDL}\tr$, simplicial $\m{LL}\tr$, or supernodal $\m{LL}\tr$. For an $\m{LL}\tr$ factorization, $\m{D}$ is the identity matrix. Thus {\tt CHOLMOD\_LD} and {\tt CHOLMOD\_L} solve the same system if an $\m{LL}\tr$ factorization was performed, for example. This is one of the few routines in CHOLMOD for which the xtype of the input arguments need not match. If both {\tt L} and {\tt B} are real, then {\tt X} is returned real. If either is complex or zomplex, {\tt X} is returned as either complex or zomplex, depending on the {\tt Common->prefer\_zomplex} parameter (default is complex). This routine does not check to see if the diagonal of $\m{L}$ or $\m{D}$ is zero, because sometimes a partial solve can be done with an indefinite or singular matrix. If you wish to check in your own code, test {\tt L->minor}. If {\tt L->minor == L->n}, then the matrix has no zero diagonal entries. If {\tt k = L->minor < L->n}, then {\tt L(k,k)} is zero for an $\m{LL}\tr$ factorization, or {\tt D(k,k)} is zero for an $\m{LDL}\tr$ factorization. Iterative refinement is not performed, but this can be easily done with the {\tt MatrixOps} Module. See {\tt Demo/cholmod\_demo.c} for an example. %--------------------------------------- \subsection{{\tt cholmod\_spsolve}: solve a linear system} %--------------------------------------- \input{_spsolve.tex} Identical to {\tt cholmod\_spsolve}, except that {\tt B} and {\tt X} are sparse. %--------------------------------------- \newpage \subsection{{\tt cholmod\_etree}: find elimination tree} %--------------------------------------- \input{_etree.tex} Computes the elimination tree of {\tt A} or {\tt A'*A}. In the symmetric case, the upper triangular part of {\tt A} is used. Entries not in this part of the matrix are ignored. Computing the etree of a symmetric matrix from just its lower triangular entries is not supported. In the unsymmetric case, all of {\tt A} is used, and the etree of {\tt A'*A} is computed. Refer to \cite{Liu90a} for a discussion of the elimination tree and its use in sparse Cholesky factorization. % J. Liu, "The role of elimination trees in sparse factorization", SIAM J. % Matrix Analysis \& Applic., vol 11, 1990, pp. 134-172. %--------------------------------------- \subsection{{\tt cholmod\_rowcolcounts}: nonzeros counts of a factor} %--------------------------------------- \input{_rowcolcounts.tex} Compute the row and column counts of the Cholesky factor {\tt L} of the matrix {\tt A} or {\tt A*A'}. The etree and its postordering must already be computed (see {\tt cholmod\_etree} and {\tt cholmod\_postorder}) and given as inputs to this routine. For the symmetric case ($\m{LL}\tr=\m{A}$), {\tt A} must be stored in symmetric/lower form ({\tt A->stype = -1}). In the unsymmetric case, {\tt A*A'} or {\tt A(:,f)*A(:,f)'} can be analyzed. The fundamental floating-point operation count is returned in {\tt Common->fl} (this excludes extra flops due to relaxed supernodal amalgamation). Refer to {\tt cholmod\_transpose\_unsym} for a description of {\tt f}. The algorithm is described in \cite{GilbertLiNgPeyton01,GilbertNgPeyton94}. % J. Gilbert, E. Ng, B. Peyton, "An efficient algorithm to compute row and % column counts for sparse Cholesky factorization", SIAM J. Matrix Analysis \& % Applic., vol 15, 1994, pp. 1075-1091. % % J. Gilbert, X. Li, E. Ng, B. Peyton, "Computing row and column counts for % sparse QR and LU factorization", BIT, vol 41, 2001, pp. 693-710. %--------------------------------------- \newpage \subsection{{\tt cholmod\_analyze\_ordering}: analyze a permutation} %--------------------------------------- \input{_analyze_ordering.tex} Given a matrix {\tt A} and its fill-reducing permutation, compute the elimination tree, its (non-weighted) postordering, and the number of nonzeros in each column of {\tt L}. Also computes the flop count, the total nonzeros in {\tt L}, and the nonzeros in {\tt tril(A)} ({\tt Common->fl}, {\tt Common->lnz}, and {\tt Common->anz}). In the unsymmetric case, {\tt A(p,f)*A(p,f)'} is analyzed, and {\tt Common->anz} is the number of nonzero entries in the lower triangular part of the product, not in {\tt A} itself. Refer to {\tt cholmod\_transpose\_unsym} for a description of {\tt f}. The column counts of {\tt L}, flop count, and other statistics from {\tt cholmod\_rowcolcounts} are not computed if {\tt ColCount} is {\tt NULL}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_amd}: interface to AMD} %--------------------------------------- \input{_amd.tex} CHOLMOD interface to the AMD ordering package. Orders {\tt A} if the matrix is symmetric. On output, {\tt Perm [k] = i} if row/column {\tt i} of {\tt A} is the {\tt k}th row/column of {\tt P*A*P'}. This corresponds to {\tt A(p,p)} in MATLAB notation. If A is unsymmetric, {\tt cholmod\_amd} orders {\tt A*A'} or {\tt A(:,f)*A(:,f)'}. On output, {\tt Perm [k] = i} if row/column {\tt i} of {\tt A*A'} is the {\tt k}th row/column of {\tt P*A*A'*P'}. This corresponds to {\tt A(p,:)*A(p,:)'} in MATLAB notation. If {\tt f} is present, {\tt A(p,f)*A(p,f)'} is the permuted matrix. Refer to {\tt cholmod\_transpose\_unsym} for a description of {\tt f}. Computes the flop count for a subsequent $\m{LL}\tr$ factorization, the number of nonzeros in {\tt L}, and the number of nonzeros in the matrix ordered ({\tt A}, {\tt A*A'} or {\tt A(:,f)*A(:,f)'}). These statistics are returned in {\tt Common->fl}, {\tt Common->lnz}, and {\tt Common->anz}, respectively. %--------------------------------------- \subsection{{\tt cholmod\_colamd}: interface to COLAMD} %--------------------------------------- \input{_colamd.tex} CHOLMOD interface to the COLAMD ordering package. Finds a permutation {\tt p} such that the Cholesky factorization of {\tt P*A*A'*P'} is sparser than {\tt A*A'}, using COLAMD. If the {\tt postorder} input parameter is {\tt TRUE}, the column elimination tree is found and postordered, and the COLAMD ordering is then combined with its postordering (COLAMD itself does not perform this postordering). {\tt A} must be unsymmetric ({\tt A->stype = 0}). %--------------------------------------- \newpage \subsection{{\tt cholmod\_rowfac}: row-oriented Cholesky factorization} %--------------------------------------- \input{_rowfac.tex} Full or incremental numerical $\m{LDL}\tr$ or $\m{LL}\tr$ factorization (simplicial, not supernodal). {\tt cholmod\_factorize} is the ``easy'' wrapper for this code, but it does not provide access to incremental factorization. The algorithm is the row-oriented, up-looking method described in \cite{Davis05}. See also \cite{Liu86c}. No 2-by-2 pivoting (or any other pivoting) is performed. {\tt cholmod\_rowfac} computes the full or incremental $\m{LDL}\tr$ or $\m{LL}\tr$ factorization of {\tt A+beta*I} (where {\tt A} is symmetric) or {\tt A*F+beta*I} (where {\tt A} and {\tt F} are unsymmetric and only the upper triangular part of {\tt A*F+beta*I} is used). It computes {\tt L} (and {\tt D}, for $\m{LDL}\tr$) one row at a time. The input scalar {\tt beta} is real; only the real part ({\tt beta[0]}) is used. {\tt L} can be a simplicial symbolic or numeric ({\tt L->is\_super} must be {\tt FALSE}). A symbolic factor is converted immediately into a numeric factor containing the identity matrix. For a full factorization, use {\tt kstart = 0} and {\tt kend = nrow}. The existing nonzero entries (numerical values in {\tt L->x} and {\tt L->z} for the zomplex case, and indices in {\tt L->i}) are overwritten. To compute an incremental factorization, select {\tt kstart} and {\tt kend} as the range of rows of {\tt L} you wish to compute. Rows {\tt kstart} to {\tt kend-1} of {\tt L} will be computed. A correct factorization will be computed only if all descendants of all nodes {\tt kstart} to {\tt kend-1} in the elimination tree have been factorized by a prior call to this routine, and if rows {\tt kstart} to {\tt kend-1} have not been factorized. This condition is {\bf not} checked on input. In the symmetric case, {\tt A} must be stored in upper form ({\tt A->stype} is greater than zero). The matrix {\tt F} is not accessed and may be {\tt NULL}. Only columns {\tt kstart} to {\tt kend-1} of {\tt A} are accessed. In the unsymmetric case, the typical case is {\tt F=A'}. Alternatively, if {\tt F=A(:,f)'}, then this routine factorizes the matrix {\tt S = beta*I + A(:,f)*A(:,f)'}. The product {\tt A*F} is assumed to be symmetric; only the upper triangular part of {\tt A*F} is used. {\tt F} must be of size {\tt A->ncol} by {\tt A->nrow}. % J. Liu, "A compact row storage scheme for Cholesky factors", ACM Trans. % Math. Software, vol 12, 1986, pp. 127-148. %--------------------------------------- \subsection{{\tt cholmod\_rowfac\_mask}: row-oriented Cholesky factorization} %--------------------------------------- \input{_rowfac_mask.tex} For use in LPDASA only. %--------------------------------------- \newpage \subsection{{\tt cholmod\_row\_subtree}: pattern of row of a factor} %--------------------------------------- \input{_row_subtree.tex} Compute the nonzero pattern of the solution to the lower triangular system \begin{verbatim} L(0:k-1,0:k-1) * x = A (0:k-1,k) \end{verbatim} if {\tt A} is symmetric, or \begin{verbatim} L(0:k-1,0:k-1) * x = A (0:k-1,:) * A (:,k)' \end{verbatim} if {\tt A} is unsymmetric. This gives the nonzero pattern of row {\tt k} of {\tt L} (excluding the diagonal). The pattern is returned postordered, according to the subtree of the elimination tree rooted at node {\tt k}. The symmetric case requires {\tt A} to be in symmetric-upper form. The result is returned in {\tt R}, a pre-allocated sparse matrix of size {\tt nrow}-by-1, with {\tt R->nzmax >= nrow}. {\tt R} is assumed to be packed ({\tt Rnz [0]} is not updated); the number of entries in {\tt R} is given by {\tt Rp [0]}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_row\_lsubtree}: pattern of row of a factor} %--------------------------------------- \input{_row_lsubtree.tex} Identical to {\tt cholmod\_row\_subtree}, except the elimination tree is found from {\tt L} itself, not {\tt Parent}. Also, {\tt F=A'} is not provided; the nonzero pattern of the {\tt k}th column of {\tt F} is given by {\tt Fi} and {\tt fnz} instead. %--------------------------------------- \newpage \subsection{{\tt cholmod\_resymbol}: re-do symbolic factorization} %--------------------------------------- \input{_resymbol.tex} Recompute the symbolic pattern of {\tt L}. Entries not in the symbolic pattern of the factorization of {\tt A(p,p)} or {\tt F*F'}, where {\tt F=A(p,f)} or {\tt F=A(:,f)}, are dropped, where {\tt p = L->Perm} is used to permute the input matrix {\tt A}. Refer to {\tt cholmod\_transpose\_unsym} for a description of {\tt f}. If an entry in {\tt L} is kept, its numerical value does not change. This routine is used after a supernodal factorization is converted into a simplicial one, to remove zero entries that were added due to relaxed supernode amalgamation. It can also be used after a series of downdates to remove entries that would no longer be present if the matrix were factorized from scratch. A downdate ({\tt cholmod\_updown}) does not remove any entries from {\tt L}. %--------------------------------------- \subsection{{\tt cholmod\_resymbol\_noperm}: re-do symbolic factorization} %--------------------------------------- \input{_resymbol_noperm.tex} Identical to {\tt cholmod\_resymbol}, except that the fill-reducing ordering {\tt L->Perm} is not used. %--------------------------------------- \newpage \subsection{{\tt cholmod\_postorder}: tree postorder} %--------------------------------------- \input{_postorder.tex} Postorder a tree. The tree is either an elimination tree (the output from {\tt cholmod\_etree}) or a component tree (from {\tt cholmod\_nested\_dissection}). An elimination tree is a complete tree of {\tt n} nodes with {\tt Parent [j] > j} or {\tt Parent [j] = -1} if j is a root. On output {\tt Post [0..n-1]} is a complete permutation vector; {\tt Post [k] = j} if node {\tt j} is the {\tt k}th node in the postordered elimination tree, where {\tt k} is in the range 0 to {\tt n-1}. A component tree is a subset of {\tt 0:n-1}. {\tt Parent [j] = -2} if node {\tt j} is not in the component tree. {\tt Parent [j] = -1} if {\tt j} is a root of the component tree, and {\tt Parent [j]} is in the range 0 to {\tt n-1} if {\tt j} is in the component tree but not a root. On output, {\tt Post [k]} is defined only for nodes in the component tree. {\tt Post [k] = j} if node {\tt j} is the {\tt k}th node in the postordered component tree, where {\tt k} is in the range 0 to the number of components minus 1. Node {\tt j} is ignored and not included in the postorder if {\tt Parent [j] < -1}. As a result, {\tt cholmod\_check\_parent (Parent, ...)} and {\tt cholmod\_check\_perm (Post, ...)} fail if used for a component tree and its postordering. An optional node weight can be given. When starting a postorder at node {\tt j}, the children of {\tt j} are ordered in decreasing order of their weight. If no weights are given ({\tt Weight} is {\tt NULL}) then children are ordered in decreasing order of their node number. The weight of a node must be in the range 0 to {\tt n-1}. Weights outside that range are silently converted to that range (weights $<$ 0 are treated as zero, and weights $\ge$ {\tt n} are treated as {\tt n-1}). %--------------------------------------- \subsection{{\tt cholmod\_rcond}: reciprocal condition number} %--------------------------------------- \input{_rcond.tex} Returns a rough estimate of the reciprocal of the condition number: the minimum entry on the diagonal of {\tt L} (or absolute entry of {\tt D} for an $\m{LDL}\tr$ factorization) divided by the maximum entry. {\tt L} can be real, complex, or zomplex. Returns -1 on error, 0 if the matrix is singular or has a zero or NaN entry on the diagonal of {\tt L}, 1 if the matrix is 0-by-0, or {\tt min(diag(L))/max(diag(L))} otherwise. Never returns NaN; if {\tt L} has a NaN on the diagonal it returns zero instead. %------------------------------------------------------------------------------- \newpage \section{{\tt Modify} Module routines} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_updown}: update/downdate} %--------------------------------------- \input{_updown.tex} Updates/downdates the $\m{LDL}\tr$ factorization (symbolic, then numeric), by computing a new factorization of \[ \new{\m{L}}\new{\m{D}}\new{\m{L}}\tr = \m{LDL}\tr \pm \m{CC}\tr \] where $\new{\m{L}}$ denotes the new factor. {\tt C} must be sorted. It can be either packed or unpacked. As in all CHOLMOD routines, the columns of {\tt L} are sorted on input, and also on output. If {\tt L} does not contain a simplicial numeric $\m{LDL}\tr$ factorization, it is converted into one. Thus, a supernodal $\m{LL}\tr$ factorization can be passed to {\tt cholmod\_updown}. A symbolic {\tt L} is converted into a numeric identity matrix. If the initial conversion fails, the factor is returned unchanged. If memory runs out during the update, the factor is returned as a simplicial symbolic factor. That is, everything is freed except for the fill-reducing ordering and its corresponding column counts (typically computed by {\tt cholmod\_analyze}). Note that the fill-reducing permutation {\tt L->Perm} is not used. The row indices of {\tt C} refer to the rows of {\tt L}, not {\tt A}. If your original system is $\m{LDL}\tr = \m{PAP}\tr$ (where $\m{P} =$ {\tt L->Perm}), and you want to compute the $\m{LDL}\tr$ factorization of $\m{A}+\m{CC}\tr$, then you must permute $\m{C}$ first. That is, if \[ \m{PAP}\tr = \m{LDL}\tr \] is the initial factorization, then \[ \m{P}(\m{A}+\m{CC}\tr)\m{P}\tr = \m{PAP}\tr+\m{PCC}\tr\m{P}\tr = \m{LDL}\tr + (\m{PC})(\m{PC})\tr = \m{LDL}\tr + \new{\m{C}}\new{\m{C}}\tr \] where $\new{\m{C}} = \m{PC}$. You can use the {\tt cholmod\_submatrix} routine in the {\tt MatrixOps} Module to permute {\tt C}, with: \begin{verbatim} Cnew = cholmod_submatrix (C, L->Perm, L->n, NULL, -1, TRUE, TRUE, Common) ; \end{verbatim} Note that the {\tt sorted} input parameter to {\tt cholmod\_submatrix} must be {\tt TRUE}, because {\tt cholmod\_updown} requires {\tt C} with sorted columns. Only real matrices are supported. The algorithms are described in \cite{DavisHager99,DavisHager01}. %--------------------------------------- \subsection{{\tt cholmod\_updown\_solve}: update/downdate} %--------------------------------------- \input{_updown_solve.tex} Identical to {\tt cholmod\_updown}, except the system $\m{Lx}=\m{b}$ is also updated/downdated. The new system is $\new{\m{L}}\new{\m{x}}=\m{b} + \Delta \m{b}$. The old solution $\m{x}$ is overwritten with $\new{\m{x}}$. Note that as in the update/downdate of $\m{L}$ itself, the fill- reducing permutation {\tt L->Perm} is not used. The vectors $\m{x}$ and $\m{b}$ are in the permuted ordering, not your original ordering. This routine does not handle multiple right-hand-sides. %--------------------------------------- \newpage \subsection{{\tt cholmod\_updown\_mark}: update/downdate} %--------------------------------------- \input{_updown_mark.tex} Identical to {\tt cholmod\_updown\_solve}, except that only part of $\m{L}$ is used in the update of the solution to $\m{Lx}=\m{b}$. For more details, see the source code file {\tt CHOLMOD/Modify/cholmod\_updown.c}. This routine is meant for use in the {\tt LPDASA} linear program solver only, by Hager and Davis. %--------------------------------------- \subsection{{\tt cholmod\_updown\_mask}: update/downdate} %--------------------------------------- \input{_updown_mask.tex} For use in LPDASA only. %--------------------------------------- \newpage \subsection{{\tt cholmod\_rowadd}: add row to factor} %--------------------------------------- \input{_rowadd.tex} Adds a row and column to an $\m{LDL}\tr$ factorization. The {\tt k}th row and column of {\tt L} must be equal to the {\tt k}th row and column of the identity matrix on input. Only real matrices are supported. The algorithm is described in \cite{DavisHager05}. %--------------------------------------- \subsection{{\tt cholmod\_rowadd\_solve}: add row to factor} %--------------------------------------- \input{_rowadd_solve.tex} Identical to {\tt cholmod\_rowadd}, except the system $\m{Lx}=\m{b}$ is also updated/downdated, just like {\tt cholmod\_updown\_solve}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_rowdel}: delete row from factor} %--------------------------------------- \input{_rowdel.tex} Deletes a row and column from an $\m{LDL}\tr$ factorization. The {\tt k}th row and column of {\tt L} is equal to the {\tt k}th row and column of the identity matrix on output. Only real matrices are supported. %--------------------------------------- \subsection{{\tt cholmod\_rowdel\_solve}: delete row from factor} %--------------------------------------- \input{_rowdel_solve.tex} Identical to {\tt cholmod\_rowdel}, except the system $\m{Lx}=\m{b}$ is also updated/downdated, just like {\tt cholmod\_updown\_solve}. When row/column $k$ of $\m{A}$ is deleted from the system $\m{Ay}=\m{b}$, this can induce a change to $\m{x}$, in addition to changes arising when $\m{L}$ and $\m{b}$ are modified. If this is the case, the kth entry of $\m{y}$ is required as input ({\tt yk}). The algorithm is described in \cite{DavisHager05}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_rowadd\_mark}: add row to factor} %--------------------------------------- \input{_rowadd_mark.tex} Identical to {\tt cholmod\_rowadd\_solve}, except that only part of $\m{L}$ is used in the update of the solution to $\m{Lx}=\m{b}$. For more details, see the source code file {\tt CHOLMOD/Modify/cholmod\_rowadd.c}. This routine is meant for use in the {\tt LPDASA} linear program solver only. %--------------------------------------- \subsection{{\tt cholmod\_rowdel\_mark}: delete row from factor} %--------------------------------------- \input{_rowdel_mark.tex} Identical to {\tt cholmod\_rowadd\_solve}, except that only part of $\m{L}$ is used in the update of the solution to $\m{Lx}=\m{b}$. For more details, see the source code file {\tt CHOLMOD/Modify/cholmod\_rowdel.c}. This routine is meant for use in the {\tt LPDASA} linear program solver only. %------------------------------------------------------------------------------- \newpage \section{{\tt MatrixOps} Module routines} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_drop}: drop small entries} %--------------------------------------- \input{_drop.tex} Drop small entries from {\tt A}, and entries in the ignored part of {\tt A} if {\tt A} is symmetric. No CHOLMOD routine drops small numerical entries from a matrix, except for this one. NaN's and Inf's are kept. Supports pattern and real matrices; complex and zomplex matrices are not supported. %--------------------------------------- \subsection{{\tt cholmod\_norm\_dense}: dense matrix norm} %--------------------------------------- \input{_norm_dense.tex} Returns the infinity-norm, 1-norm, or 2-norm of a dense matrix. Can compute the 2-norm only for a dense column vector. All xtypes are supported. %--------------------------------------- \subsection{{\tt cholmod\_norm\_sparse}: sparse matrix norm} %--------------------------------------- \input{_norm_sparse.tex} Returns the infinity-norm or 1-norm of a sparse matrix. All xtypes are supported. %--------------------------------------- \newpage \subsection{{\tt cholmod\_scale}: scale sparse matrix} %--------------------------------------- \input{_scale.tex} Scales a matrix: {\tt A = diag(s)*A}, {\tt A*diag(s)}, {\tt s*A}, or {\tt diag(s)*A*diag(s)}. {\tt A} can be of any type (packed/unpacked, upper/lower/unsymmetric). The symmetry of {\tt A} is ignored; all entries in the matrix are modified. If {\tt A} is {\tt m}-by-{\tt n} unsymmetric but scaled symmetrically, the result is \begin{verbatim} A = diag (s (1:m)) * A * diag (s (1:n)) \end{verbatim} Row or column scaling of a symmetric matrix still results in a symmetric matrix, since entries are still ignored by other routines. For example, when row-scaling a symmetric matrix where just the upper triangular part is stored (and lower triangular entries ignored) {\tt A = diag(s)*triu(A)} is performed, where the result {\tt A} is also symmetric-upper. This has the effect of modifying the implicit lower triangular part. In MATLAB notation: \begin{verbatim} U = diag(s)*triu(A) ; L = tril (U',-1) A = L + U ; \end{verbatim} The scale parameter determines the kind of scaling to perform and the size of {\tt S}: \begin{tabular}{lll} \hline {\tt scale} & operation & size of {\tt S} \\ \hline {\tt CHOLMOD\_SCALAR} & {\tt s[0]*A} & 1 \\ {\tt CHOLMOD\_ROW} & {\tt diag(s)*A} & {\tt nrow}-by-1 or 1-by-{\tt nrow} \\ {\tt CHOLMOD\_COL} & {\tt A*diag(s)} & {\tt ncol}-by-1 or 1-by-{\tt ncol} \\ {\tt CHOLMOD\_SYM} & {\tt diag(s)*A*diag(s)} & {\tt max(nrow,ncol)}-by-1, or 1-by-{\tt max(nrow,ncol)} \\ \hline \end{tabular} Only real matrices are supported. %--------------------------------------- \newpage \subsection{{\tt cholmod\_sdmult}: sparse-times-dense matrix} %--------------------------------------- \input{_sdmult.tex} Sparse matrix times dense matrix: {\tt Y = alpha*(A*X) + beta*Y} or {\tt Y = alpha*(A'*X) + beta*Y}, where {\tt A} is sparse and {\tt X} and {\tt Y} are dense. When using {\tt A}, {\tt X} has {\tt A->ncol} columns and {\tt Y} has {\tt A->nrow} rows. When using {\tt A'}, {\tt X} has {\tt A->nrow} columns and {\tt Y} has {\tt A->ncol} rows. If {\tt transpose = 0}, then {\tt A} is used; otherwise, {\tt A'} is used (the complex conjugate transpose). The {\tt transpose} parameter is ignored if the matrix is symmetric or Hermitian. (the array transpose {\tt A.'} is not supported). Supports real, complex, and zomplex matrices, but the xtypes of {\tt A}, {\tt X}, and {\tt Y} must all match. %--------------------------------------- \subsection{{\tt cholmod\_ssmult}: sparse-times-sparse matrix} %--------------------------------------- \input{_ssmult.tex} Computes {\tt C = A*B}; multiplying two sparse matrices. {\tt C} is returned as packed, and either unsorted or sorted, depending on the {\tt sorted} input parameter. If {\tt C} is returned sorted, then either {\tt C = (B'*A')'} or {\tt C = (A*B)''} is computed, depending on the number of nonzeros in {\tt A}, {\tt B}, and {\tt C}. The stype of {\tt C} is determined by the {\tt stype} parameter. Only pattern and real matrices are supported. Complex and zomplex matrices are supported only when the numerical values are not computed ({\tt values} is {\tt FALSE}). %--------------------------------------- \newpage \subsection{{\tt cholmod\_submatrix}: sparse submatrix} %--------------------------------------- \input{_submatrix.tex} Returns {\tt C = A (rset,cset)}, where {\tt C} becomes {\tt length(rset)}-by-{\tt length(cset)} in dimension. {\tt rset} and {\tt cset} can have duplicate entries. {\tt A} must be unsymmetric. {\tt C} unsymmetric and is packed. If {\tt sorted} is {\tt TRUE} on input, or {\tt rset} is sorted and {\tt A} is sorted, then {\tt C} is sorted; otherwise {\tt C} is unsorted. If {\tt rset} is {\tt NULL}, it means ``{\tt [ ]}'' in MATLAB notation, the empty set. The number of rows in the result {\tt C} will be zero if {\tt rset} is {\tt NULL}. Likewise if {\tt cset} means the empty set; the number of columns in the result {\tt C} will be zero if {\tt cset} is {\tt NULL}. If {\tt rsize} or {\tt csize} is negative, it denotes ``{\tt :}'' in MATLAB notation. Thus, if both {\tt rsize} and {\tt csize} are negative {\tt C = A(:,:) = A} is returned. For permuting a matrix, this routine is an alternative to {\tt cholmod\_ptranspose} (which permutes and transposes a matrix and can work on symmetric matrices). The time taken by this routine is O({\tt A->nrow}) if the {\tt Common} workspace needs to be initialized, plus O({\tt C->nrow + C->ncol + nnz (A (:,cset))}). Thus, if {\tt C} is small and the workspace is not initialized, the time can be dominated by the call to {\tt cholmod\_allocate\_work}. However, once the workspace is allocated, subsequent calls take less time. Only pattern and real matrices are supported. Complex and zomplex matrices are supported only when {\tt values} is {\tt FALSE}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_horzcat}: horizontal concatenation} %--------------------------------------- \input{_horzcat.tex} Horizontal concatenation, returns {\tt C = [A,B]} in MATLAB notation. {\tt A} and {\tt B} can have any stype. {\tt C} is returned unsymmetric and packed. {\tt A} and {\tt B} must have the same number of rows. {\tt C} is sorted if both {\tt A} and {\tt B} are sorted. {\tt A} and {\tt B} must have the same numeric xtype, unless {\tt values} is {\tt FALSE}. {\tt A} and {\tt B} cannot be complex or zomplex, unless {\tt values} is {\tt FALSE}. %--------------------------------------- \subsection{{\tt cholmod\_vertcat}: vertical concatenation} %--------------------------------------- \input{_vertcat.tex} Vertical concatenation, returns {\tt C = [A;B]} in MATLAB notation. {\tt A} and {\tt B} can have any stype. {\tt C} is returned unsymmetric and packed. {\tt A} and {\tt B} must have the same number of columns. {\tt C} is sorted if both {\tt A} and {\tt B} are sorted. {\tt A} and {\tt B} must have the same numeric xtype, unless {\tt values} is {\tt FALSE}. {\tt A} and {\tt B} cannot be complex or zomplex, unless {\tt values} is {\tt FALSE}. %--------------------------------------- \newpage \subsection{{\tt cholmod\_symmetry}: compute the symmetry of a matrix} %--------------------------------------- \input{_symmetry.tex} Determines if a sparse matrix is rectangular, unsymmetric, symmetric, skew-symmetric, or Hermitian. It does so by looking at its numerical values of both upper and lower triangular parts of a CHOLMOD "unsymmetric" matrix, where A->stype == 0. The transpose of A is NOT constructed. If not unsymmetric, it also determines if the matrix has a diagonal whose entries are all real and positive (and thus a candidate for sparse Cholesky if A->stype is changed to a nonzero value). Note that a Matrix Market "general" matrix is either rectangular or unsymmetric. The row indices in the column of each matrix MUST be sorted for this function to work properly (A->sorted must be TRUE). This routine returns EMPTY if A->stype is not zero, or if A->sorted is FALSE. The exception to this rule is if A is rectangular. If option == 0, then this routine returns immediately when it finds a non-positive diagonal entry (or one with nonzero imaginary part). If the matrix is not a candidate for sparse Cholesky, it returns the value {\tt CHOLMOD\_MM\_UNSYMMETRIC}, even if the matrix might in fact be symmetric or Hermitian. This routine is useful inside the MATLAB backslash, which must look at an arbitrary matrix (A->stype == 0) and determine if it is a candidate for sparse Cholesky. In that case, option should be 0. This routine is also useful when writing a MATLAB matrix to a file in Rutherford/Boeing or Matrix Market format. Those formats require a determination as to the symmetry of the matrix, and thus this routine should not return upon encountering the first non-positive diagonal. In this case, option should be 1. If option is 2, this function can be used to compute the numerical and pattern symmetry, where 0 is a completely unsymmetric matrix, and 1 is a perfectly symmetric matrix. This option is used when computing the following statistics for the matrices in the UF Sparse Matrix Collection. numerical symmetry: number of matched offdiagonal nonzeros over the total number of offdiagonal entries. A real entry $a_{ij}$, $i \ne j$, is matched if $a_{ji} = a_{ij}$, but this is only counted if both $a_{ji}$ and $a_{ij}$ are nonzero. This does not depend on {\tt Z}. (If A is complex, then the above test is modified; $a_{ij}$ is matched if $\mbox{conj}(a_{ji}) = a_{ij}$. Then numeric symmetry = xmatched / nzoffdiag, or 1 if nzoffdiag = 0. pattern symmetry: number of matched offdiagonal entries over the total number of offdiagonal entries. An entry $a_{ij}$, $i \ne j$, is matched if $a_{ji}$ is also an entry. Then pattern symmetry = pmatched / nzoffdiag, or 1 if nzoffdiag = 0. The symmetry of a matrix with no offdiagonal entries is equal to 1. A workspace of size ncol integers is allocated; EMPTY is returned if this allocation fails. Summary of return values: \begin{tabular}{ll} {\tt EMPTY (-1)} & out of memory, stype not zero, A not sorted \\ {\tt CHOLMOD\_MM\_RECTANGULAR 1} & A is rectangular \\ {\tt CHOLMOD\_MM\_UNSYMMETRIC 2} & A is unsymmetric \\ {\tt CHOLMOD\_MM\_SYMMETRIC 3} & A is symmetric, but with non-pos. diagonal \\ {\tt CHOLMOD\_MM\_HERMITIAN 4} & A is Hermitian, but with non-pos. diagonal \\ {\tt CHOLMOD\_MM\_SKEW\_SYMMETRIC 5} & A is skew symmetric \\ {\tt CHOLMOD\_MM\_SYMMETRIC\_POSDIAG 6} & A is symmetric with positive diagonal \\ {\tt CHOLMOD\_MM\_HERMITIAN\_POSDIAG 7} & A is Hermitian with positive diagonal \\ \end{tabular} See also the {\tt spsym} mexFunction, which is a MATLAB interface for this code. If the matrix is a candidate for sparse Cholesky, it will return a result \newline {\tt CHOLMOD\_MM\_SYMMETRIC\_POSDIAG} if real, or {\tt CHOLMOD\_MM\_HERMITIAN\_POSDIAG} if complex. Otherwise, it will return a value less than this. This is true regardless of the value of the option parameter. %------------------------------------------------------------------------------- \newpage \section{{\tt Supernodal} Module routines} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_super\_symbolic}: supernodal symbolic factorization} %--------------------------------------- \input{_super_symbolic.tex} Supernodal symbolic analysis of the $\m{LL}\tr$ factorization of {\tt A}, {\tt A*A'}, or {\tt A(:,f)*A(:,f)'}. This routine must be preceded by a simplicial symbolic analysis ({\tt cholmod\_rowcolcounts}). See {\tt Cholesky/cholmod\_analyze.c} for an example of how to use this routine. The user need not call this directly; {\tt cholmod\_analyze} is a ``simple'' wrapper for this routine. {\tt A} can be symmetric (upper), or unsymmetric. The symmetric/lower form is not supported. In the unsymmetric case {\tt F} is the normally transpose of {\tt A}. Alternatively, if {\tt F=A(:,f)'} then {\tt F*F'} is analyzed. Requires {\tt Parent} and {\tt L->ColCount} to be defined on input; these are the simplicial {\tt Parent} and {\tt ColCount} arrays as computed by {\tt cholmod\_rowcolcounts}. Does not use {\tt L->Perm}; the input matrices {\tt A} and {\tt F} must already be properly permuted. Allocates and computes the supernodal pattern of {\tt L} ({\tt L->super}, {\tt L->pi}, {\tt L->px}, and {\tt L->s}). Does not allocate the real part ({\tt L->x}). %--------------------------------------- \newpage \subsection{{\tt cholmod\_super\_numeric}: supernodal numeric factorization} %--------------------------------------- \input{_super_numeric.tex} Computes the numerical Cholesky factorization of {\tt A+beta*I} or {\tt A*F+beta*I}. Only the lower triangular part of {\tt A+beta*I} or {\tt A*F+beta*I} is accessed. The matrices {\tt A} and {\tt F} must already be permuted according to the fill-reduction permutation {\tt L->Perm}. {\tt cholmod\_factorize} is an "easy" wrapper for this code which applies that permutation. The input scalar {\tt beta} is real; only the real part ({\tt beta[0]} is used. Symmetric case: {\tt A} is a symmetric (lower) matrix. {\tt F} is not accessed and may be {\tt NULL}. With a fill-reducing permutation, {\tt A(p,p)} should be passed for {\tt A}, where is {\tt p} is {\tt L->Perm}. Unsymmetric case: {\tt A} is unsymmetric, and {\tt F} must be present. Normally, {\tt F=A'}. With a fill-reducing permutation, {\tt A(p,f)} and {\tt A(p,f)'} should be passed as the parameters {\tt A} and {\tt F}, respectively, where {\tt f} is a list of the subset of the columns of {\tt A}. The input factorization {\tt L} must be supernodal ({\tt L->is\_super} is {\tt TRUE}). It can either be symbolic or numeric. In the first case, {\tt L} has been analyzed by {\tt cholmod\_analyze} or {\tt cholmod\_super\_symbolic}, but the matrix has not yet been numerically factorized. The numerical values are allocated here and the factorization is computed. In the second case, a prior matrix has been analyzed and numerically factorized, and a new matrix is being factorized. The numerical values of {\tt L} are replaced with the new numerical factorization. {\tt L->is\_ll} is ignored on input, and set to {\tt TRUE} on output. This routine always computes an $\m{LL}\tr$ factorization. Supernodal $\m{LDL}\tr$ factorization is not supported. If the matrix is not positive definite the routine returns {\tt TRUE}, but sets {\tt Common->status} to {\tt CHOLMOD\_NOT\_POSDEF} and {\tt L->minor} is set to the column at which the failure occurred. Columns {\tt L->minor} to {\tt L->n-1} are set to zero. If {\tt L} is supernodal symbolic on input, it is converted to a supernodal numeric factor on output, with an xtype of real if {\tt A} is real, or complex if {\tt A} is complex or zomplex. If {\tt L} is supernodal numeric on input, its xtype must match {\tt A} (except that {\tt L} can be complex and {\tt A} zomplex). The xtype of {\tt A} and {\tt F} must match. %--------------------------------------- \newpage \subsection{{\tt cholmod\_super\_lsolve}: supernodal forward solve} %--------------------------------------- \input{_super_lsolve.tex} Solve $\m{Lx}=\m{b}$ for a supernodal factorization. This routine does not apply the permutation {\tt L->Perm}. See {\tt cholmod\_solve} for a more general interface that performs that operation. Only real and complex xtypes are supported. {\tt L}, {\tt X}, and {\tt E} must have the same xtype. %--------------------------------------- \subsection{{\tt cholmod\_super\_ltsolve}: supernodal backsolve} %--------------------------------------- \input{_super_ltsolve.tex} Solve $\m{L}\tr\m{x}=\m{b}$ for a supernodal factorization. This routine does not apply the permutation {\tt L->Perm}. See {\tt cholmod\_solve} for a more general interface that performs that operation. Only real and complex xtypes are supported. {\tt L}, {\tt X}, and {\tt E} must have the same xtype. %------------------------------------------------------------------------------- \newpage \section{{\tt Partition} Module routines} %------------------------------------------------------------------------------- %--------------------------------------- \subsection{{\tt cholmod\_nested\_dissection}: nested dissection ordering} %--------------------------------------- \input{_nested_dissection.tex} CHOLMOD's nested dissection algorithm: using its own compression and connected-components algorithms, an external graph partitioner (METIS), and a constrained minimum degree ordering algorithm (CAMD, CCOLAMD, or CSYMAMD). Typically gives better orderings than {\tt METIS\_NodeND} (about 5\% to 10\% fewer nonzeros in {\tt L}). This method uses a node bisector, applied recursively (but using a non-recursive implementation). Once the graph is partitioned, it calls a constrained minimum degree code (CAMD or CSYMAMD for {\tt A+A'}, and CCOLAMD for {\tt A*A'}) to order all the nodes in the graph - but obeying the constraints determined by the separators. This routine is similar to {\tt METIS\_NodeND}, except for how it treats the leaf nodes. {\tt METIS\_NodeND} orders the leaves of the separator tree with {\tt MMD}, ignoring the rest of the matrix when ordering a single leaf. This routine orders the whole matrix with CAMD, CSYMAMD, or CCOLAMD, all at once, when the graph partitioning is done. %--------------------------------------- \newpage \subsection{{\tt cholmod\_metis}: interface to METIS nested dissection} %--------------------------------------- \input{_metis.tex} CHOLMOD wrapper for the {\tt METIS\_NodeND} ordering routine. Creates {\tt A+A'}, {\tt A*A'} or {\tt A(:,f)*A(:,f)'} and then calls {\tt METIS\_NodeND} on the resulting graph. This routine is comparable to {\tt cholmod\_nested\_dissection}, except that it calls {\tt METIS\_NodeND} directly, and it does not return the separator tree. %--------------------------------------- \newpage \subsection{{\tt cholmod\_camd}: interface to CAMD} %--------------------------------------- \input{_camd.tex} CHOLMOD interface to the CAMD ordering routine. Finds a permutation {\tt p} such that the Cholesky factorization of {\tt A(p,p)} is sparser than {\tt A}. If {\tt A} is unsymmetric, {\tt A*A'} is ordered. If {\tt Cmember[i]=c} then node {\tt i} is in set {\tt c}. All nodes in set 0 are ordered first, followed by all nodes in set 1, and so on. %--------------------------------------- \newpage \subsection{{\tt cholmod\_ccolamd}: interface to CCOLAMD} %--------------------------------------- \input{_ccolamd.tex} CHOLMOD interface to the CCOLAMD ordering routine. Finds a permutation {\tt p} such that the Cholesky factorization of {\tt A(p,:)*A(p,:)'} is sparser than {\tt A*A'}. The column elimination is found and postordered, and the CCOLAMD ordering is then combined with its postordering. {\tt A} must be unsymmetric. If {\tt Cmember[i]=c} then node {\tt i} is in set {\tt c}. All nodes in set 0 are ordered first, followed by all nodes in set 1, and so on. %--------------------------------------- \subsection{{\tt cholmod\_csymamd}: interface to CSYMAMD} %--------------------------------------- \input{_csymamd.tex} CHOLMOD interface to the CSYMAMD ordering routine. Finds a permutation {\tt p} such that the Cholesky factorization of {\tt A(p,p)} is sparser than {\tt A}. The elimination tree is found and postordered, and the CSYMAMD ordering is then combined with its postordering. If {\tt A} is unsymmetric, {\tt A+A'} is ordered ({\tt A} must be square). If {\tt Cmember[i]=c} then node {\tt i} is in set {\tt c}. All nodes in set 0 are ordered first, followed by all nodes in set 1, and so on. %--------------------------------------- \newpage \subsection{{\tt cholmod\_bisect}: graph bisector} %--------------------------------------- \input{_bisect.tex} Finds a node bisector of {\tt A}, {\tt A*A'}, {\tt A(:,f)*A(:,f)'}: a set of nodes that partitions the graph into two parts. Compresses the graph first, and then calls METIS. %--------------------------------------- \subsection{{\tt cholmod\_metis\_bisector}: interface to METIS node bisector} %--------------------------------------- \input{_metis_bisector.tex} Finds a set of nodes that bisects the graph of {\tt A} or {\tt A*A'} (a direct interface to \newline {\tt METIS\_NodeComputeSeparator}). The input matrix {\tt A} must be square, symmetric (with both upper and lower parts present) and with no diagonal entries. These conditions are not checked. %--------------------------------------- \newpage \subsection{{\tt cholmod\_collapse\_septree}: prune a separator tree} %--------------------------------------- \input{_collapse_septree.tex} Prunes a separator tree obtained from {\tt cholmod\_nested\_dissection}. \newpage \bibliographystyle{plain} \bibliography{UserGuide} \end{document} SuiteSparse/CHOLMOD/Doc/mheader.tex0000644001170100242450000000014410304303215015656 0ustar davisfac \noindent\hspace{0.85in}\rule[0.05in]{5.2in}{1pt} \vspace{-0.15in} {\footnotesize \begin{verbatim} SuiteSparse/CHOLMOD/Doc/getmproto0000755001170100242450000000011210304300351015466 0ustar davisfac#!/bin/sh cat mheader.tex expand -8 $1 | awk -f mfile.awk cat mfooter.tex SuiteSparse/CHOLMOD/Doc/getproto0000755001170100242450000000017110304102345015321 0ustar davisfac#!/bin/sh echo -n $1 > _temp.awk cat rule.awk >> _temp.awk cat header.tex expand -8 $2 | awk -f _temp.awk cat footer.tex SuiteSparse/CHOLMOD/Doc/footer.tex0000644001170100242450000000015610304131374015557 0ustar davisfac\end{verbatim} } \noindent\hspace{0.85in}\rule[0.25in]{5.2in}{1pt} \vspace{-0.15in} \noindent {\bf Purpose:} SuiteSparse/CHOLMOD/Doc/mfile.awk0000644001170100242450000000005510304303052015327 0ustar davisfac/^%/ { print " ", substr ($0,2) } SuiteSparse/CHOLMOD/Doc/ChangeLog0000644001170100242450000001471210711427606015324 0ustar davisfacNov 1, 2007, version 1.6.0 * minor lint cleanup (no bugs) * new CHOLMOD_CLEAR_FLAG macro, which speeds up the calls to cholmod_clear_flag, avoiding the function call if not needed. Note that this leads to untested lines in the Tcov test, but the lines of the macro are tested in several places, just not everywhere it appers. * port to MATLAB 7.5 (mex -lmwblas option now required for Linux) * minor bug fix to cholmod_add.c to avoid potential Int overflow * extra option added to cholmod2 mexFunction * sparse2 mexFunction modified to ensure nnz(A) == nzmax(A) always holds (It didn't in v1.5.0 if numerically zero entries were dropped in A). * correction to Help comments for spsym function * bug fix to cholmod_symmetry.c: determination of Hermitian vs non-Hermitian matrices was incorrect if the diagonal was imaginary. * performance fix for cholmod_nesdis.c and nesdis mexFunction May 31, 2007, version 1.5.0 * 64-bit MATLAB interface * MATLAB interface back-ported to MATLAB 6.1. * bug fix: solving Dx=b using a supernodal factorization, in cholmod_l_solve, when sizeof(UF_long) > sizeof(BLAS integer) * changes to Makefiles to reflect directory changes in COLAMD and CCOLAMD v2.7.0 directory structure (CHOLMOD v1.5 requires v2.7.0 of those two packages) * update to Modify/cholmod_updown.c, to allow input vector R to be packed or unpacked. * bug fix to Tcov/huge.c test code, for 64-bit case (this has no effect on the CHOLMOD library itself, just the test code) Dec 12, 2006, version 1.4.0 * added support for large files (larger than 2GB) * minor MATLAB cleanup * renamed MATLAB function from cholmod to cholmod2, to avoid filename clash with itself (the built-in version of cholmod). Dec 2, 2006, version 1.3.0 * Major modification to cholmod_read.c; now fully supports all forms of the Matrix Market format. Added cholmod_read_dense and cholmod_read_matrix functions to cholmod_read.c. Major changes to mread MATLAB function. Added Common->prefer_binary option for cholmod_read. * Added cholmod_write.c (cholmod_write_sparse and cholmod_write_dense functions). Added mwrite MATLAB function. * Added 2nd output argument to sparse2 (Z, binary pattern of explicit zero entries). * Added the function cholmod_symmetry to the MatrixOps module. Added spsym MATLAB function. * 2nd argument to cholmod_triplet_to_sparse changed from int to size_t. * minor correction to cholmod_analyze_ordering, cholmod_dense.c * minor change to cholmod_rowfac.c, cholmod_solve.c, ... to allow for easier testing. Sept 28, 2006, version 1.2.1 * bug fix to cholmod_matlab.c, when working with sparse INT64 matrices in the "sparse2" function Aug 31, 2006, version 1.2 * Common->default_nesdis parameter and Common->called_nd statistic added. Otherwise, no change to user interface. v1.2 is fully upward compatible with v1.1 (even binary compatible). * non-supernodal Lx=b and L'x=b solves simplified, slight increase in performance. * update/downdate performance improved. * ordering options and output statistics added to MATLAB/cholmod mexFunction. July 27, 2006, version 1.1.1 * bug fix for cholmod_rowfac_mask, for the complex case. Has no effect on MATLAB. June 27, 2006: * trivial changes to nested dissection code, and cholmod_read.c (for debugging, and to add explicit typecasts so compilers don't complain). May, 2006: * Added new routines for LPDASA: cholmod_rowfac_mask, cholmod_updown_mask. Added cholmod_collapse_septree. Added nd_oksep, nd_components parameters to Common. Apr 30, 2006: version 1.1 * added interface to CAMD. cholmod_nested_dissection can now call CCOLAMD, CSYMAMD, and CAMD. Common->nd_camd usage extended. New argument added to nesdis mexFunction. New cholmod_camd function added. No other changes to CHOLMOD user interface. * more careful integer overflow checks. Added non-user-callable functions to add and multiply size_t integers, with overflow checks. * added Common->no_workspace_reallocate * flop count is now correct for A*A' case (Common->rowfacfl). Jan 18, 2006: version 1.0.2 * bug fix: MATLAB interface incorrect for full logical matrices. * Tcov tests modified to generate fewer intentional nan's, to make it easier to look for errors in BLAS libraries that incorrectly generate nan's. Dec 16, 2005: version 1.0.1 * bug fix: cholmod_amd allocated too small of a workspace when ordering A*A' Dec 8, 2005: version 1.0 * no real changes. Version 1.0 is the same as version 0.8. Version 1.0 is simply the formal stable release. * known issue: the floating point operation count, Common->rowfacfl, is statistic is incorrect when factorizing A*A'. This will be fixed in version 1.1. Nov 15, 2005: version 0.8 * bug fix in t_cholmod_super_numeric, for [R,p]=chol(A) usage. * Common->quick_return_if_not_posdef added. * Added cholmod_row_lsubtree (required for LPDASA) * bug fix: cholmod_rcond returned sqrt(1/cond) for an LL' factorization; 1/cond is required. * new statistics added: flop counts for cholmod_rowfac, # of factor column reallocations, # of factor reallocations due to column reallocations, and # of times the (non-default) bounds on diag(L) are hit. * factor column reallocation skipped if space already big enough. * bug fix: cholmod_copy_factor did not copy L->is_monotonic. * bug fix: cholmod_change_factor (diagonal entry was wrong in one case) * rcond added to cholmod mexFunction ([x,rcond] = cholmod(A,b)). * cholmod_rowadd, cholmod_rowdel modified. rowdel no longer removes entries from the matrix; it sets them to zero instead. Oct 10, 2005: version 0.7 * minor changes: minor change to Check/cholmod_check.c (coerce sizeof(...) to (int) when printing. Less strict check on A->p for unpacked matrices) , removed a few unused variables in Check/cholmod_read.c and Demo/cholmod*demo.c, changed "exit(0)" to "return(0)" in Demo/cholmod_simple.c. Changed Makefile so that "." is not assumed to be on the $path. Added Cygwin to architecture detection in Include/cholmod_blas.h. Added cparent and cmember to nesdis.m. Space for future expansion added to cholmod_common. * removed "rowmark" from the Modify module, which affects how partial updates to Lx=b solves are done during update/downdate. Should only affect LPDASA. * added CHOLMOD_SUBSUB_VERSION Aug 31, 2005: version 0.6 released. SuiteSparse/CHOLMOD/Doc/header.tex0000644001170100242450000000014310304131166015504 0ustar davisfac\noindent\hspace{0.85in}\rule[0.05in]{5.2in}{1pt} \vspace{-0.15in} {\footnotesize \begin{verbatim} SuiteSparse/CHOLMOD/Lib/0000755001170100242450000000000010711435726013550 5ustar davisfacSuiteSparse/CHOLMOD/Lib/Makefile0000644001170100242450000003327710617113210015206 0ustar davisfac#=============================================================================== # CHOLOMD/Lib/Makefile: for compiling the CHOLMOD library #=============================================================================== default: all ccode: all include ../../UFconfig/UFconfig.mk C = $(CC) $(CFLAGS) $(CHOLMOD_CONFIG) all: libcholmod.a library: libcholmod.a purge: distclean distclean: clean - $(RM) libcholmod.a clean: - $(RM) $(CLEAN) #------------------------------------------------------------------------------- # ../Include/ directory contains all include files: #------------------------------------------------------------------------------- INC = ../Include/cholmod.h \ ../Include/cholmod_blas.h \ ../Include/cholmod_check.h \ ../Include/cholmod_cholesky.h \ ../Include/cholmod_complexity.h \ ../Include/cholmod_config.h \ ../Include/cholmod_core.h \ ../Include/cholmod_internal.h \ ../Include/cholmod_matrixops.h \ ../Include/cholmod_modify.h \ ../Include/cholmod_partition.h \ ../Include/cholmod_supernodal.h \ ../Include/cholmod_template.h #------------------------------------------------------------------------------- # The 7 CHOLMOD library modules (int, double) #------------------------------------------------------------------------------- CORE = cholmod_aat.o cholmod_add.o cholmod_band.o \ cholmod_change_factor.o cholmod_common.o cholmod_complex.o \ cholmod_copy.o cholmod_dense.o cholmod_error.o cholmod_factor.o \ cholmod_memory.o cholmod_sparse.o \ cholmod_transpose.o cholmod_triplet.o CHECK = cholmod_check.o cholmod_read.o cholmod_write.o CHOLESKY = cholmod_amd.o cholmod_analyze.o cholmod_colamd.o \ cholmod_etree.o cholmod_factorize.o cholmod_postorder.o \ cholmod_rcond.o cholmod_resymbol.o cholmod_rowcolcounts.o \ cholmod_rowfac.o cholmod_solve.o cholmod_spsolve.o MATRIXOPS = cholmod_drop.o cholmod_horzcat.o cholmod_norm.o \ cholmod_scale.o cholmod_sdmult.o cholmod_ssmult.o \ cholmod_submatrix.o cholmod_vertcat.o cholmod_symmetry.o PARTITION = cholmod_ccolamd.o cholmod_csymamd.o \ cholmod_metis.o cholmod_nesdis.o cholmod_camd.o MODIFY = cholmod_rowadd.o cholmod_rowdel.o cholmod_updown.o SUPERNODAL = cholmod_super_numeric.o cholmod_super_solve.o \ cholmod_super_symbolic.o DI = $(CORE) $(CHECK) $(CHOLESKY) $(MATRIXOPS) $(MODIFY) $(SUPERNODAL) \ $(PARTITION) #------------------------------------------------------------------------------- # CHOLMOD library modules (long, double) #------------------------------------------------------------------------------- LCORE = cholmod_l_aat.o cholmod_l_add.o cholmod_l_band.o \ cholmod_l_change_factor.o cholmod_l_common.o cholmod_l_complex.o \ cholmod_l_copy.o cholmod_l_dense.o cholmod_l_error.o \ cholmod_l_factor.o cholmod_l_memory.o \ cholmod_l_sparse.o cholmod_l_transpose.o cholmod_l_triplet.o LCHECK = cholmod_l_check.o cholmod_l_read.o cholmod_l_write.o LCHOLESKY = cholmod_l_amd.o cholmod_l_analyze.o cholmod_l_colamd.o \ cholmod_l_etree.o cholmod_l_factorize.o cholmod_l_postorder.o \ cholmod_l_rcond.o cholmod_l_resymbol.o cholmod_l_rowcolcounts.o \ cholmod_l_rowfac.o cholmod_l_solve.o cholmod_l_spsolve.o LMATRIXOPS = cholmod_l_drop.o cholmod_l_horzcat.o cholmod_l_norm.o \ cholmod_l_scale.o cholmod_l_sdmult.o cholmod_l_ssmult.o \ cholmod_l_submatrix.o cholmod_l_vertcat.o cholmod_l_symmetry.o LPARTITION = cholmod_l_ccolamd.o cholmod_l_csymamd.o \ cholmod_l_metis.o cholmod_l_nesdis.o cholmod_l_camd.o LMODIFY = cholmod_l_rowadd.o cholmod_l_rowdel.o cholmod_l_updown.o LSUPERNODAL = cholmod_l_super_numeric.o cholmod_l_super_solve.o \ cholmod_l_super_symbolic.o DL = $(LCORE) $(LCHECK) $(LCHOLESKY) $(LMATRIXOPS) $(LMODIFY) $(LSUPERNODAL) \ $(LPARTITION) #------------------------------------------------------------------------------- # to compile just the double/int version, use OBJ = $(DI) OBJ = $(DI) $(DL) libcholmod.a: $(OBJ) $(AR) libcholmod.a $(OBJ) $(RANLIB) libcholmod.a $(OBJ): $(INC) I = -I../../AMD/Include -I../../AMD/Source -I../../COLAMD/Include \ -I$(METIS_PATH)/Lib -I../../CCOLAMD/Include -I../../CAMD/Include \ -I../Include -I../../UFconfig #------------------------------------------------------------------------------- # Check Module: #------------------------------------------------------------------------------- cholmod_check.o: ../Check/cholmod_check.c $(C) -c $(I) $< cholmod_read.o: ../Check/cholmod_read.c $(C) -c $(I) $< cholmod_write.o: ../Check/cholmod_write.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_check.o: ../Check/cholmod_check.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_read.o: ../Check/cholmod_read.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_write.o: ../Check/cholmod_write.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # Core Module: #------------------------------------------------------------------------------- cholmod_common.o: ../Core/cholmod_common.c $(C) -c $(I) $< cholmod_dense.o: ../Core/cholmod_dense.c ../Core/t_cholmod_dense.c $(C) -c $(I) $< cholmod_factor.o: ../Core/cholmod_factor.c $(C) -c $(I) $< cholmod_change_factor.o: ../Core/cholmod_change_factor.c \ ../Core/t_cholmod_change_factor.c $(C) -c $(I) $< cholmod_memory.o: ../Core/cholmod_memory.c $(C) -c $(I) $< cholmod_sparse.o: ../Core/cholmod_sparse.c $(C) -c $(I) $< cholmod_complex.o: ../Core/cholmod_complex.c $(C) -c $(I) $< cholmod_transpose.o: ../Core/cholmod_transpose.c ../Core/t_cholmod_transpose.c $(C) -c $(I) $< cholmod_band.o: ../Core/cholmod_band.c $(C) -c $(I) $< cholmod_copy.o: ../Core/cholmod_copy.c $(C) -c $(I) $< cholmod_triplet.o: ../Core/cholmod_triplet.c ../Core/t_cholmod_triplet.c $(C) -c $(I) $< cholmod_error.o: ../Core/cholmod_error.c $(C) -c $(I) $< cholmod_aat.o: ../Core/cholmod_aat.c $(C) -c $(I) $< cholmod_add.o: ../Core/cholmod_add.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_common.o: ../Core/cholmod_common.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_dense.o: ../Core/cholmod_dense.c ../Core/t_cholmod_dense.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_factor.o: ../Core/cholmod_factor.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_change_factor.o: ../Core/cholmod_change_factor.c \ ../Core/t_cholmod_change_factor.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_memory.o: ../Core/cholmod_memory.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_sparse.o: ../Core/cholmod_sparse.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_complex.o: ../Core/cholmod_complex.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_transpose.o: ../Core/cholmod_transpose.c ../Core/t_cholmod_transpose.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_band.o: ../Core/cholmod_band.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_copy.o: ../Core/cholmod_copy.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_triplet.o: ../Core/cholmod_triplet.c ../Core/t_cholmod_triplet.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_error.o: ../Core/cholmod_error.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_aat.o: ../Core/cholmod_aat.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_add.o: ../Core/cholmod_add.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # Cholesky Module: #------------------------------------------------------------------------------- cholmod_amd.o: ../Cholesky/cholmod_amd.c $(C) -c $(I) $< cholmod_analyze.o: ../Cholesky/cholmod_analyze.c $(C) -c $(I) $< cholmod_colamd.o: ../Cholesky/cholmod_colamd.c $(C) -c $(I) $< cholmod_etree.o: ../Cholesky/cholmod_etree.c $(C) -c $(I) $< cholmod_factorize.o: ../Cholesky/cholmod_factorize.c $(C) -c $(I) $< cholmod_postorder.o: ../Cholesky/cholmod_postorder.c $(C) -c $(I) $< cholmod_rcond.o: ../Cholesky/cholmod_rcond.c $(C) -c $(I) $< cholmod_resymbol.o: ../Cholesky/cholmod_resymbol.c $(C) -c $(I) $< cholmod_rowcolcounts.o: ../Cholesky/cholmod_rowcolcounts.c $(C) -c $(I) $< cholmod_solve.o: ../Cholesky/cholmod_solve.c ../Cholesky/t_cholmod_lsolve.c \ ../Cholesky/t_cholmod_ltsolve.c ../Cholesky/t_cholmod_solve.c $(C) -c $(I) $< cholmod_spsolve.o: ../Cholesky/cholmod_spsolve.c $(C) -c $(I) $< cholmod_rowfac.o: ../Cholesky/cholmod_rowfac.c ../Cholesky/t_cholmod_rowfac.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_amd.o: ../Cholesky/cholmod_amd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_analyze.o: ../Cholesky/cholmod_analyze.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_colamd.o: ../Cholesky/cholmod_colamd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_etree.o: ../Cholesky/cholmod_etree.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_factorize.o: ../Cholesky/cholmod_factorize.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_postorder.o: ../Cholesky/cholmod_postorder.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_rcond.o: ../Cholesky/cholmod_rcond.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_resymbol.o: ../Cholesky/cholmod_resymbol.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_rowcolcounts.o: ../Cholesky/cholmod_rowcolcounts.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_solve.o: ../Cholesky/cholmod_solve.c ../Cholesky/t_cholmod_lsolve.c \ ../Cholesky/t_cholmod_ltsolve.c ../Cholesky/t_cholmod_solve.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_spsolve.o: ../Cholesky/cholmod_spsolve.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_rowfac.o: ../Cholesky/cholmod_rowfac.c ../Cholesky/t_cholmod_rowfac.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # Partition Module: #------------------------------------------------------------------------------- cholmod_ccolamd.o: ../Partition/cholmod_ccolamd.c $(C) -c $(I) $< cholmod_csymamd.o: ../Partition/cholmod_csymamd.c $(C) -c $(I) $< cholmod_camd.o: ../Partition/cholmod_camd.c $(C) -c $(I) $< cholmod_metis.o: ../Partition/cholmod_metis.c $(C) -c $(I) $< cholmod_nesdis.o: ../Partition/cholmod_nesdis.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_ccolamd.o: ../Partition/cholmod_ccolamd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_csymamd.o: ../Partition/cholmod_csymamd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_camd.o: ../Partition/cholmod_camd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_metis.o: ../Partition/cholmod_metis.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_nesdis.o: ../Partition/cholmod_nesdis.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # MatrixOps Module: #------------------------------------------------------------------------------- cholmod_horzcat.o: ../MatrixOps/cholmod_horzcat.c $(C) -c $(I) $< cholmod_norm.o: ../MatrixOps/cholmod_norm.c $(C) -c $(I) $< cholmod_scale.o: ../MatrixOps/cholmod_scale.c $(C) -c $(I) $< cholmod_drop.o: ../MatrixOps/cholmod_drop.c $(C) -c $(I) $< cholmod_sdmult.o: ../MatrixOps/cholmod_sdmult.c \ ../MatrixOps/t_cholmod_sdmult.c $(C) -c $(I) $< cholmod_ssmult.o: ../MatrixOps/cholmod_ssmult.c $(C) -c $(I) $< cholmod_submatrix.o: ../MatrixOps/cholmod_submatrix.c $(C) -c $(I) $< cholmod_vertcat.o: ../MatrixOps/cholmod_vertcat.c $(C) -c $(I) $< cholmod_symmetry.o: ../MatrixOps/cholmod_symmetry.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_horzcat.o: ../MatrixOps/cholmod_horzcat.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_norm.o: ../MatrixOps/cholmod_norm.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_scale.o: ../MatrixOps/cholmod_scale.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_drop.o: ../MatrixOps/cholmod_drop.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_sdmult.o: ../MatrixOps/cholmod_sdmult.c \ ../MatrixOps/t_cholmod_sdmult.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_ssmult.o: ../MatrixOps/cholmod_ssmult.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_submatrix.o: ../MatrixOps/cholmod_submatrix.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_vertcat.o: ../MatrixOps/cholmod_vertcat.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_symmetry.o: ../MatrixOps/cholmod_symmetry.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # Modify Module: #------------------------------------------------------------------------------- cholmod_rowadd.o: ../Modify/cholmod_rowadd.c $(C) -c $(I) $< cholmod_rowdel.o: ../Modify/cholmod_rowdel.c $(C) -c $(I) $< cholmod_updown.o: ../Modify/cholmod_updown.c \ ../Modify/t_cholmod_updown.c ../Modify/t_cholmod_updown_numkr.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_rowadd.o: ../Modify/cholmod_rowadd.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_rowdel.o: ../Modify/cholmod_rowdel.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_updown.o: ../Modify/cholmod_updown.c \ ../Modify/t_cholmod_updown.c ../Modify/t_cholmod_updown_numkr.c $(C) -DDLONG -c $(I) $< -o $@ #------------------------------------------------------------------------------- # Supernodal Module: #------------------------------------------------------------------------------- cholmod_super_numeric.o: ../Supernodal/cholmod_super_numeric.c \ ../Supernodal/t_cholmod_super_numeric.c $(C) -c $(I) $< cholmod_super_symbolic.o: ../Supernodal/cholmod_super_symbolic.c $(C) -c $(I) $< cholmod_super_solve.o: ../Supernodal/cholmod_super_solve.c \ ../Supernodal/t_cholmod_super_solve.c $(C) -c $(I) $< #------------------------------------------------------------------------------- cholmod_l_super_numeric.o: ../Supernodal/cholmod_super_numeric.c \ ../Supernodal/t_cholmod_super_numeric.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_super_symbolic.o: ../Supernodal/cholmod_super_symbolic.c $(C) -DDLONG -c $(I) $< -o $@ cholmod_l_super_solve.o: ../Supernodal/cholmod_super_solve.c \ ../Supernodal/t_cholmod_super_solve.c $(C) -DDLONG -c $(I) $< -o $@ SuiteSparse/CHOLMOD/Core/0000755001170100242450000000000010677524360013736 5ustar davisfacSuiteSparse/CHOLMOD/Core/t_cholmod_triplet.c0000644001170100242450000001115610537777460017627 0ustar davisfac/* ========================================================================== */ /* === Core/t_cholmod_triplet =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_triplet. All xtypes supported */ #include "cholmod_template.h" /* ========================================================================== */ /* === t_cholmod_triplet_to_sparse ========================================== */ /* ========================================================================== */ static size_t TEMPLATE (cholmod_triplet_to_sparse) ( /* ---- input ---- */ cholmod_triplet *T, /* matrix to copy */ /* ---- in/out --- */ cholmod_sparse *R, /* output matrix */ /* --------------- */ cholmod_common *Common ) { double *Rx, *Rz, *Tx, *Tz ; Int *Wj, *Rp, *Ri, *Rnz, *Ti, *Tj ; Int i, j, p, p1, p2, pdest, pj, k, stype, nrow, ncol, nz ; size_t anz ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* Wj contains a copy of Rp on input [ */ Wj = Common->Iwork ; /* size MAX (nrow,ncol). (i/l/l) */ Rp = R->p ; Ri = R->i ; Rnz = R->nz ; Rx = R->x ; Rz = R->z ; Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; nz = T->nnz ; nrow = T->nrow ; ncol = T->ncol ; stype = SIGN (T->stype) ; /* ---------------------------------------------------------------------- */ /* construct the row form */ /* ---------------------------------------------------------------------- */ /* if Ti is jumbled, this part dominates the run time */ if (stype > 0) { for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i < j) { /* place triplet (j,i,x) in column i of R */ p = Wj [i]++ ; Ri [p] = j ; } else { /* place triplet (i,j,x) in column j of R */ p = Wj [j]++ ; Ri [p] = i ; } ASSIGN (Rx, Rz, p, Tx, Tz, k) ; } } else if (stype < 0) { for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i > j) { /* place triplet (j,i,x) in column i of R */ p = Wj [i]++ ; Ri [p] = j ; } else { /* place triplet (i,j,x) in column j of R */ p = Wj [j]++ ; Ri [p] = i ; } ASSIGN (Rx, Rz, p, Tx, Tz, k) ; } } else { for (k = 0 ; k < nz ; k++) { /* place triplet (i,j,x) in column i of R */ p = Wj [Ti [k]]++ ; Ri [p] = Tj [k] ; ASSIGN (Rx, Rz, p, Tx, Tz, k) ; } } /* done using Wj (i/l/l) as temporary row pointers ] */ /* ---------------------------------------------------------------------- */ /* sum up duplicates */ /* ---------------------------------------------------------------------- */ /* use Wj (i/l/l) of size ncol to keep track of duplicates in each row [ */ for (j = 0 ; j < ncol ; j++) { Wj [j] = EMPTY ; } anz = 0 ; for (i = 0 ; i < nrow ; i++) { p1 = Rp [i] ; p2 = Rp [i+1] ; pdest = p1 ; /* at this point Wj [j] < p1 holds true for all columns j, because * Ri/Rx is stored in row oriented manner */ for (p = p1 ; p < p2 ; p++) { j = Ri [p] ; pj = Wj [j] ; if (pj >= p1) { /* this column index j is already in row i at position pj; * sum up the duplicate entry */ /* Rx [pj] += Rx [p] ; */ ASSEMBLE (Rx, Rz, pj, Rx, Rz, p) ; } else { /* keep the entry and keep track in Wj [j] for case above */ Wj [j] = pdest ; if (pdest != p) { Ri [pdest] = j ; ASSIGN (Rx, Rz, pdest, Rx, Rz, p) ; } pdest++ ; } } Rnz [i] = pdest - p1 ; anz += (pdest - p1) ; } /* done using Wj to keep track of duplicate entries in each row ] */ /* ---------------------------------------------------------------------- */ /* return number of entries after summing up duplicates */ /* ---------------------------------------------------------------------- */ return (anz) ; } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Core/cholmod_aat.c0000644001170100242450000002077010635770614016361 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_aat ===================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = A*A' or C = A(:,f)*A(:,f)' * * A can be packed or unpacked, sorted or unsorted, but must be stored with * both upper and lower parts (A->stype of zero). C is returned as packed, * C->stype of zero (both upper and lower parts present), and unsorted. See * cholmod_ssmult in the MatrixOps Module for a more general matrix-matrix * multiply. * * You can trivially convert C into a symmetric upper/lower matrix by * changing C->stype = 1 or -1 after calling this routine. * * workspace: * Flag (A->nrow), * Iwork (max (A->nrow, A->ncol)) if fset present, * Iwork (A->nrow) if no fset, * W (A->nrow) if mode > 0, * allocates temporary copy for A'. * * A can be pattern or real. Complex or zomplex cases are supported only * if the mode is <= 0 (in which case the numerical values are ignored). */ #include "cholmod_internal.h" #include "cholmod_core.h" cholmod_sparse *CHOLMOD(aat) ( /* ---- input ---- */ cholmod_sparse *A, /* input matrix; C=A*A' is constructed */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) * -2: pattern only, no diagonal, add 50% + n extra * space to C */ /* --------------- */ cholmod_common *Common ) { double fjt ; double *Ax, *Fx, *Cx, *W ; Int *Ap, *Anz, *Ai, *Fp, *Fi, *Cp, *Ci, *Flag ; cholmod_sparse *C, *F ; Int packed, j, i, pa, paend, pf, pfend, n, mark, cnz, t, p, values, diag, extra ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; values = (mode > 0) && (A->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->stype) { ERROR (CHOLMOD_INVALID, "matrix cannot be symmetric") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ diag = (mode >= 0) ; n = A->nrow ; CHOLMOD(allocate_work) (n, MAX (A->ncol, A->nrow), values ? n : 0, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n : 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (A, "A", Common) >= 0) ; /* get the A matrix */ Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; packed = A->packed ; /* get workspace */ W = Common->Xwork ; /* size n, unused if values is FALSE */ Flag = Common->Flag ; /* size n, Flag [0..n-1] < mark on input*/ /* ---------------------------------------------------------------------- */ /* F = A' or A(:,f)' */ /* ---------------------------------------------------------------------- */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ F = CHOLMOD(ptranspose) (A, values, NULL, fset, fsize, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Fp = F->p ; Fi = F->i ; Fx = F->x ; /* ---------------------------------------------------------------------- */ /* count the number of entries in the result C */ /* ---------------------------------------------------------------------- */ cnz = 0 ; for (j = 0 ; j < n ; j++) { /* clear the Flag array */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* exclude the diagonal, if requested */ if (!diag) { Flag [j] = mark ; } /* for each nonzero F(t,j) in column j, do: */ pfend = Fp [j+1] ; for (pf = Fp [j] ; pf < pfend ; pf++) { /* F(t,j) is nonzero */ t = Fi [pf] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) */ pa = Ap [t] ; paend = (packed) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; cnz++ ; } } } if (cnz < 0) { break ; /* integer overflow case */ } } extra = (mode == -2) ? (cnz/2 + n) : 0 ; mark = CHOLMOD(clear_flag) (Common) ; /* ---------------------------------------------------------------------- */ /* check for integer overflow */ /* ---------------------------------------------------------------------- */ if (cnz < 0 || (cnz + extra) < 0) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; CHOLMOD(clear_flag) (Common) ; CHOLMOD(free_sparse) (&F, Common) ; return (NULL) ; /* problem too large */ } /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (n, n, cnz + extra, FALSE, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&F, Common) ; return (NULL) ; /* out of memory */ } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* C = A*A' */ /* ---------------------------------------------------------------------- */ cnz = 0 ; if (values) { /* pattern and values */ for (j = 0 ; j < n ; j++) { /* clear the Flag array */ mark = CHOLMOD(clear_flag) (Common) ; /* start column j of C */ Cp [j] = cnz ; /* for each nonzero F(t,j) in column j, do: */ pfend = Fp [j+1] ; for (pf = Fp [j] ; pf < pfend ; pf++) { /* F(t,j) is nonzero */ t = Fi [pf] ; fjt = Fx [pf] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) * and scatter the values into W */ pa = Ap [t] ; paend = (packed) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; Ci [cnz++] = i ; } W [i] += Ax [pa] * fjt ; } } /* gather the values into C(:,j) */ for (p = Cp [j] ; p < cnz ; p++) { i = Ci [p] ; Cx [p] = W [i] ; W [i] = 0 ; } } } else { /* pattern only */ for (j = 0 ; j < n ; j++) { /* clear the Flag array */ mark = CHOLMOD(clear_flag) (Common) ; /* exclude the diagonal, if requested */ if (!diag) { Flag [j] = mark ; } /* start column j of C */ Cp [j] = cnz ; /* for each nonzero F(t,j) in column j, do: */ pfend = Fp [j+1] ; for (pf = Fp [j] ; pf < pfend ; pf++) { /* F(t,j) is nonzero */ t = Fi [pf] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) */ pa = Ap [t] ; paend = (packed) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; Ci [cnz++] = i ; } } } } } Cp [n] = cnz ; ASSERT (IMPLIES (mode != -2, MAX (1,cnz) == C->nzmax)) ; /* ---------------------------------------------------------------------- */ /* clear workspace and free temporary matrices and return result */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&F, Common) ; CHOLMOD(clear_flag) (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n : 0, Common)) ; DEBUG (i = CHOLMOD(dump_sparse) (C, "aat", Common)) ; ASSERT (IMPLIES (mode < 0, i == 0)) ; return (C) ; } SuiteSparse/CHOLMOD/Core/cholmod_add.c0000644001170100242450000002031310677524356016343 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_add ===================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = alpha*A + beta*B, or spones(A+B). Result is packed, with sorted or * unsorted columns. This routine is much faster and takes less memory if C * is allowed to have unsorted columns. * * If A and B are both symmetric (in upper form) then C is the same. Likewise, * if A and B are both symmetric (in lower form) then C is the same. * Otherwise, C is unsymmetric. A and B must have the same dimension. * * workspace: Flag (nrow), W (nrow) if values, Iwork (max (nrow,ncol)). * allocates temporary copies for A and B if they are symmetric. * allocates temporary copy of C if it is to be returned sorted. * * A and B can have an xtype of pattern or real. Complex or zomplex cases * are supported only if the "values" input parameter is FALSE. */ #include "cholmod_internal.h" #include "cholmod_core.h" cholmod_sparse *CHOLMOD(add) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to add */ cholmod_sparse *B, /* matrix to add */ double alpha [2], /* scale factor for A */ double beta [2], /* scale factor for B */ int values, /* if TRUE compute the numerical values of C */ int sorted, /* if TRUE, sort columns of C */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Bx, *Cx, *W ; Int apacked, up, lo, nrow, ncol, bpacked, nzmax, pa, paend, pb, pbend, i, j, p, mark, nz ; Int *Ap, *Ai, *Anz, *Bp, *Bi, *Bnz, *Flag, *Cp, *Ci ; cholmod_sparse *A2, *B2, *C ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_NULL (B, NULL) ; values = values && (A->xtype != CHOLMOD_PATTERN) && (B->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->nrow != B->nrow || A->ncol != B->ncol) { /* A and B must have the same dimensions */ ERROR (CHOLMOD_INVALID, "A and B dimesions do not match") ; return (NULL) ; } /* A and B must have the same numerical type if values is TRUE (both must * be CHOLMOD_REAL, this is implicitly checked above) */ Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; CHOLMOD(allocate_work) (nrow, MAX (nrow,ncol), values ? nrow : 0, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nrow <= 1) { /* C will be implicitly sorted, so no need to sort it here */ sorted = FALSE ; } /* convert A or B to unsymmetric, if necessary */ A2 = NULL ; B2 = NULL ; if (A->stype != B->stype) { if (A->stype) { /* workspace: Iwork (max (nrow,ncol)) */ A2 = CHOLMOD(copy) (A, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } A = A2 ; } if (B->stype) { /* workspace: Iwork (max (nrow,ncol)) */ B2 = CHOLMOD(copy) (B, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&A2, Common) ; return (NULL) ; /* out of memory */ } B = B2 ; } } /* get the A matrix */ ASSERT (A->stype == B->stype) ; up = (A->stype > 0) ; lo = (A->stype < 0) ; Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; apacked = A->packed ; /* get the B matrix */ Bp = B->p ; Bnz = B->nz ; Bi = B->i ; Bx = B->x ; bpacked = B->packed ; /* get workspace */ W = Common->Xwork ; /* size nrow, used if values is TRUE */ Flag = Common->Flag ; /* size nrow, Flag [0..nrow-1] < mark on input */ /* ---------------------------------------------------------------------- */ /* allocate the result C */ /* ---------------------------------------------------------------------- */ /* If integer overflow occurs, nzmax < 0 and the allocate fails properly * (likewise in most other matrix manipulation routines). */ nzmax = CHOLMOD(nnz) (A, Common) + CHOLMOD(nnz) (B, Common) ; C = CHOLMOD(allocate_sparse) (nrow, ncol, nzmax, FALSE, TRUE, SIGN (A->stype), values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; return (NULL) ; /* out of memory */ } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* compute C = alpha*A + beta*B */ /* ---------------------------------------------------------------------- */ nz = 0 ; for (j = 0 ; j < ncol ; j++) { Cp [j] = nz ; /* clear the Flag array */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* scatter B into W */ pb = Bp [j] ; pbend = (bpacked) ? (Bp [j+1]) : (pb + Bnz [j]) ; for (p = pb ; p < pbend ; p++) { i = Bi [p] ; if ((up && i > j) || (lo && i < j)) { continue ; } Flag [i] = mark ; if (values) { W [i] = beta [0] * Bx [p] ; } } /* add A and gather from W into C(:,j) */ pa = Ap [j] ; paend = (apacked) ? (Ap [j+1]) : (pa + Anz [j]) ; for (p = pa ; p < paend ; p++) { i = Ai [p] ; if ((up && i > j) || (lo && i < j)) { continue ; } Flag [i] = EMPTY ; Ci [nz] = i ; if (values) { Cx [nz] = W [i] + alpha [0] * Ax [p] ; W [i] = 0 ; } nz++ ; } /* gather remaining entries into C(:,j), using pattern of B */ for (p = pb ; p < pbend ; p++) { i = Bi [p] ; if ((up && i > j) || (lo && i < j)) { continue ; } if (Flag [i] == mark) { Ci [nz] = i ; if (values) { Cx [nz] = W [i] ; W [i] = 0 ; } nz++ ; } } } Cp [ncol] = nz ; /* ---------------------------------------------------------------------- */ /* reduce C in size and free temporary matrices */ /* ---------------------------------------------------------------------- */ ASSERT (MAX (1,nz) <= C->nzmax) ; CHOLMOD(reallocate_sparse) (nz, C, Common) ; ASSERT (Common->status >= CHOLMOD_OK) ; /* clear the Flag array */ mark = CHOLMOD(clear_flag) (Common) ; CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; /* ---------------------------------------------------------------------- */ /* sort C, if requested */ /* ---------------------------------------------------------------------- */ if (sorted) { /* workspace: Iwork (max (nrow,ncol)) */ if (!CHOLMOD(sort) (C, Common)) { CHOLMOD(free_sparse) (&C, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (C, "add", Common) >= 0) ; return (C) ; } SuiteSparse/CHOLMOD/Core/cholmod_complex.c0000644001170100242450000003757510537777416017306 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_complex ================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* If you convert a matrix that contains uninitialized data, valgrind will * complain. This can occur in a factor L which has gaps (a partial * factorization, or after updates that change the nonzero pattern), an * unpacked sparse matrix, a dense matrix with leading dimension d > # of rows, * or any matrix (dense, sparse, triplet, or factor) with more space allocated * than is used. You can safely ignore any of these complaints by valgrind. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === cholmod_hypot ======================================================== */ /* ========================================================================== */ /* There is an equivalent routine called hypot in , which conforms * to ANSI C99. However, CHOLMOD does not assume that ANSI C99 is available. * You can use the ANSI C99 hypot routine with: * * #include * Common->hypotenuse = hypot ; * * Default value of the Common->hypotenuse pointer is cholmod_hypot. * * s = hypot (x,y) computes s = sqrt (x*x + y*y) but does so more accurately. * The NaN cases for the double relops x >= y and x+y == x are safely ignored. */ double CHOLMOD(hypot) (double x, double y) { double s, r ; x = fabs (x) ; y = fabs (y) ; if (x >= y) { if (x + y == x) { s = x ; } else { r = y / x ; s = x * sqrt (1.0 + r*r) ; } } else { if (y + x == y) { s = y ; } else { r = x / y ; s = y * sqrt (1.0 + r*r) ; } } return (s) ; } /* ========================================================================== */ /* === cholmod_divcomplex =================================================== */ /* ========================================================================== */ /* c = a/b where c, a, and b are complex. The real and imaginary parts are * passed as separate arguments to this routine. The NaN case is ignored * for the double relop br >= bi. Returns 1 if the denominator is zero, * 0 otherwise. Note that this return value is the single exception to the * rule that all CHOLMOD routines that return int return TRUE if successful * or FALSE otherise. * * This uses ACM Algo 116, by R. L. Smith, 1962, which tries to avoid * underflow and overflow. * * c can be the same variable as a or b. * * Default value of the Common->complex_divide pointer is cholmod_divcomplex. */ int CHOLMOD(divcomplex) ( double ar, double ai, /* real and imaginary parts of a */ double br, double bi, /* real and imaginary parts of b */ double *cr, double *ci /* real and imaginary parts of c */ ) { double tr, ti, r, den ; if (fabs (br) >= fabs (bi)) { r = bi / br ; den = br + r * bi ; tr = (ar + ai * r) / den ; ti = (ai - ar * r) / den ; } else { r = br / bi ; den = r * br + bi ; tr = (ar * r + ai) / den ; ti = (ai * r - ar) / den ; } *cr = tr ; *ci = ti ; return (IS_ZERO (den)) ; } /* ========================================================================== */ /* === change_complexity ==================================================== */ /* ========================================================================== */ /* X and Z represent an array of size nz, with numeric xtype given by xtype_in. * * If xtype_in is: * CHOLMOD_PATTERN: X and Z must be NULL. * CHOLMOD_REAL: X is of size nz, Z must be NULL. * CHOLMOD_COMPLEX: X is of size 2*nz, Z must be NULL. * CHOLMOD_ZOMPLEX: X is of size nz, Z is of size nz. * * The array is changed into the numeric xtype given by xtype_out, with the * same definitions of X and Z above. Note that the input conditions, above, * are not checked. These are checked in the caller routine. * * Returns TRUE if successful, FALSE otherwise. X and Z are not modified if * not successful. */ static int change_complexity ( /* ---- input ---- */ Int nz, /* size of X and/or Z */ int xtype_in, /* xtype of X and Z on input */ int xtype_out, /* requested xtype of X and Z on output */ int xtype1, /* xtype_out must be in the range [xtype1 .. xtype2] */ int xtype2, /* ---- in/out --- */ void **XX, /* old X on input, new X on output */ void **ZZ, /* old Z on input, new Z on output */ /* --------------- */ cholmod_common *Common ) { double *Xold, *Zold, *Xnew, *Znew ; Int k ; size_t nz2 ; if (xtype_out < xtype1 || xtype_out > xtype2) { ERROR (CHOLMOD_INVALID, "invalid xtype") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; Xold = *XX ; Zold = *ZZ ; switch (xtype_in) { /* ------------------------------------------------------------------ */ /* converting from pattern */ /* ------------------------------------------------------------------ */ case CHOLMOD_PATTERN: switch (xtype_out) { /* ---------------------------------------------------------- */ /* pattern -> real */ /* ---------------------------------------------------------- */ case CHOLMOD_REAL: /* allocate X and set to all ones */ Xnew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [k] = 1 ; } *XX = Xnew ; break ; /* ---------------------------------------------------------- */ /* pattern -> complex */ /* ---------------------------------------------------------- */ case CHOLMOD_COMPLEX: /* allocate X and set to all ones */ Xnew = CHOLMOD(malloc) (nz, 2*sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [2*k ] = 1 ; Xnew [2*k+1] = 0 ; } *XX = Xnew ; break ; /* ---------------------------------------------------------- */ /* pattern -> zomplex */ /* ---------------------------------------------------------- */ case CHOLMOD_ZOMPLEX: /* allocate X and Z and set to all ones */ Xnew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; Znew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (nz, sizeof (double), Xnew, Common) ; CHOLMOD(free) (nz, sizeof (double), Znew, Common) ; return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [k] = 1 ; Znew [k] = 0 ; } *XX = Xnew ; *ZZ = Znew ; break ; } break ; /* ------------------------------------------------------------------ */ /* converting from real */ /* ------------------------------------------------------------------ */ case CHOLMOD_REAL: switch (xtype_out) { /* ---------------------------------------------------------- */ /* real -> pattern */ /* ---------------------------------------------------------- */ case CHOLMOD_PATTERN: /* free X */ *XX = CHOLMOD(free) (nz, sizeof (double), *XX, Common) ; break ; /* ---------------------------------------------------------- */ /* real -> complex */ /* ---------------------------------------------------------- */ case CHOLMOD_COMPLEX: /* allocate a new X and copy the old X */ Xnew = CHOLMOD(malloc) (nz, 2*sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [2*k ] = Xold [k] ; Xnew [2*k+1] = 0 ; } CHOLMOD(free) (nz, sizeof (double), *XX, Common) ; *XX = Xnew ; break ; /* ---------------------------------------------------------- */ /* real -> zomplex */ /* ---------------------------------------------------------- */ case CHOLMOD_ZOMPLEX: /* allocate a new Z and set it to zero */ Znew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Znew [k] = 0 ; } *ZZ = Znew ; break ; } break ; /* ------------------------------------------------------------------ */ /* converting from complex */ /* ------------------------------------------------------------------ */ case CHOLMOD_COMPLEX: switch (xtype_out) { /* ---------------------------------------------------------- */ /* complex -> pattern */ /* ---------------------------------------------------------- */ case CHOLMOD_PATTERN: /* free X */ *XX = CHOLMOD(free) (nz, 2*sizeof (double), *XX, Common) ; break ; /* ---------------------------------------------------------- */ /* complex -> real */ /* ---------------------------------------------------------- */ case CHOLMOD_REAL: /* pack the real part of X, discarding the imaginary part */ for (k = 0 ; k < nz ; k++) { Xold [k] = Xold [2*k] ; } /* shrink X in half (this cannot fail) */ nz2 = 2*nz ; *XX = CHOLMOD(realloc) (nz, sizeof (double), *XX, &nz2, Common) ; break ; /* ---------------------------------------------------------- */ /* complex -> zomplex */ /* ---------------------------------------------------------- */ case CHOLMOD_ZOMPLEX: /* allocate X and Z and copy the old X into them */ Xnew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; Znew = CHOLMOD(malloc) (nz, sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (nz, sizeof (double), Xnew, Common) ; CHOLMOD(free) (nz, sizeof (double), Znew, Common) ; return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [k] = Xold [2*k ] ; Znew [k] = Xold [2*k+1] ; } CHOLMOD(free) (nz, 2*sizeof (double), *XX, Common) ; *XX = Xnew ; *ZZ = Znew ; break ; } break ; /* ------------------------------------------------------------------ */ /* converting from zomplex */ /* ------------------------------------------------------------------ */ case CHOLMOD_ZOMPLEX: switch (xtype_out) { /* ---------------------------------------------------------- */ /* zomplex -> pattern */ /* ---------------------------------------------------------- */ case CHOLMOD_PATTERN: /* free X and Z */ *XX = CHOLMOD(free) (nz, sizeof (double), *XX, Common) ; *ZZ = CHOLMOD(free) (nz, sizeof (double), *ZZ, Common) ; break ; /* ---------------------------------------------------------- */ /* zomplex -> real */ /* ---------------------------------------------------------- */ case CHOLMOD_REAL: /* free the imaginary part */ *ZZ = CHOLMOD(free) (nz, sizeof (double), *ZZ, Common) ; break ; /* ---------------------------------------------------------- */ /* zomplex -> complex */ /* ---------------------------------------------------------- */ case CHOLMOD_COMPLEX: Xnew = CHOLMOD(malloc) (nz, 2*sizeof (double), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } for (k = 0 ; k < nz ; k++) { Xnew [2*k ] = Xold [k] ; Xnew [2*k+1] = Zold [k] ; } CHOLMOD(free) (nz, sizeof (double), *XX, Common) ; CHOLMOD(free) (nz, sizeof (double), *ZZ, Common) ; *XX = Xnew ; *ZZ = NULL ; break ; } break ; } return (TRUE) ; } /* ========================================================================== */ /* === cholmod_sparse_xtype ================================================= */ /* ========================================================================== */ /* Change the numeric xtype of a sparse matrix. Supports any type on input * and output (pattern, real, complex, or zomplex). */ int CHOLMOD(sparse_xtype) ( /* ---- input ---- */ int to_xtype, /* requested xtype */ /* ---- in/out --- */ cholmod_sparse *A, /* sparse matrix to change */ /* --------------- */ cholmod_common *Common ) { Int ok ; RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; ok = change_complexity (A->nzmax, A->xtype, to_xtype, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, &(A->x), &(A->z), Common) ; if (ok) { A->xtype = to_xtype ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_triplet_xtype ================================================ */ /* ========================================================================== */ /* Change the numeric xtype of a triplet matrix. Supports any type on input * and output (pattern, real, complex, or zomplex). */ int CHOLMOD(triplet_xtype) ( /* ---- input ---- */ int to_xtype, /* requested xtype */ /* ---- in/out --- */ cholmod_triplet *T, /* triplet matrix to change */ /* --------------- */ cholmod_common *Common ) { Int ok ; RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (T, FALSE) ; RETURN_IF_XTYPE_INVALID (T, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; ok = change_complexity (T->nzmax, T->xtype, to_xtype, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, &(T->x), &(T->z), Common) ; if (ok) { T->xtype = to_xtype ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_dense_xtype ================================================= */ /* ========================================================================== */ /* Change the numeric xtype of a dense matrix. Supports real, complex or * zomplex on input and output */ int CHOLMOD(dense_xtype) ( /* ---- input ---- */ int to_xtype, /* requested xtype */ /* ---- in/out --- */ cholmod_dense *X, /* dense matrix to change */ /* --------------- */ cholmod_common *Common ) { Int ok ; RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (X, FALSE) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; ok = change_complexity (X->nzmax, X->xtype, to_xtype, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, &(X->x), &(X->z), Common) ; if (ok) { X->xtype = to_xtype ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_factor_xtype ================================================= */ /* ========================================================================== */ /* Change the numeric xtype of a factor. Supports real, complex or zomplex on * input and output. Supernodal zomplex factors are not supported. */ int CHOLMOD(factor_xtype) ( /* ---- input ---- */ int to_xtype, /* requested xtype */ /* ---- in/out --- */ cholmod_factor *L, /* factor to change */ /* --------------- */ cholmod_common *Common ) { Int ok ; RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; if (L->is_super && (L->xtype == CHOLMOD_ZOMPLEX || to_xtype == CHOLMOD_ZOMPLEX)) { ERROR (CHOLMOD_INVALID, "invalid xtype for supernodal L") ; return (FALSE) ; } ok = change_complexity ((L->is_super ? L->xsize : L->nzmax), L->xtype, to_xtype, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, &(L->x), &(L->z), Common) ; if (ok) { L->xtype = to_xtype ; } return (ok) ; } SuiteSparse/CHOLMOD/Core/cholmod_triplet.c0000644001170100242450000005612410537777446017314 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_triplet ================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_triplet object: * * A sparse matrix held in triplet form is the simplest one for a user to * create. It consists of a list of nz entries in arbitrary order, held in * three arrays: i, j, and x, each of length nk. The kth entry is in row i[k], * column j[k], with value x[k]. There may be duplicate values; if A(i,j) * appears more than once, its value is the sum of the entries with those row * and column indices. * * Primary routines: * ----------------- * cholmod_allocate_triplet allocate a triplet matrix * cholmod_free_triplet free a triplet matrix * * Secondary routines: * ------------------- * cholmod_reallocate_triplet reallocate a triplet matrix * cholmod_sparse_to_triplet create a triplet matrix copy of a sparse matrix * cholmod_triplet_to_sparse create a sparse matrix copy of a triplet matrix * cholmod_copy_triplet create a copy of a triplet matrix * * The relationship between an m-by-n cholmod_sparse matrix A and a * cholmod_triplet matrix (i, j, and x) is identical to how they are used in * the MATLAB "sparse" and "find" functions: * * [i j x] = find (A) * [m n] = size (A) * A = sparse (i,j,x,m,n) * * with the exception that the cholmod_sparse matrix may be "unpacked", may * have either sorted or unsorted columns (depending on the option selected), * and may be symmetric with just the upper or lower triangular part stored. * Likewise, the cholmod_triplet matrix may contain just the entries in the * upper or lower triangular part of a symmetric matrix. * * MATLAB sparse matrices are always "packed", always have sorted columns, * and always store both parts of a symmetric matrix. In some cases, MATLAB * behaves like CHOLMOD by ignoring entries in the upper or lower triangular * part of a matrix that is otherwise assumed to be symmetric (such as the * input to chol). In CHOLMOD, that option is a characteristic of the object. * In MATLAB, that option is based on how a matrix is used as the input to * a function. * * The triplet matrix is provided to give the user a simple way of constructing * a sparse matrix. There are very few operations supported for triplet * matrices. The assumption is that they will be converted to cholmod_sparse * matrix form first. * * Adding two triplet matrices simply involves concatenating the contents of * the three arrays (i, j, and x). To permute a triplet matrix, just replace * the row and column indices with their permuted values. For example, if * P is a permutation vector, then P [k] = j means row/column j is the kth * row/column in C=P*A*P'. In MATLAB notation, C=A(p,p). If Pinv is an array * of size n and T is the triplet form of A, then: * * Ti = T->i ; * Tj = T->j ; * for (k = 0 ; k < n ; k++) Pinv [P [k]] = k ; * for (k = 0 ; k < nz ; k++) Ti [k] = Pinv [Ti [k]] ; * for (k = 0 ; k < nz ; k++) Tj [k] = Pinv [Tj [k]] ; * * overwrites T with the triplet form of C=P*A*P'. The conversion * * C = cholmod_triplet_to_sparse (T, 0, &Common) ; * * will then return the matrix C = P*A*P'. * * Note that T->stype > 0 means that entries in the lower triangular part of * T are transposed into the upper triangular part when T is converted to * sparse matrix (cholmod_sparse) form with cholmod_triplet_to_sparse. The * opposite is true for T->stype < 0. * * Since the triplet matrix T is so simple to generate, it's quite easy * to remove entries that you do not want, prior to converting T to the * cholmod_sparse form. So if you include these entries in T, CHOLMOD * assumes that there must be a reason (such as the one above). Thus, * no entry in a triplet matrix is ever ignored. * * Other operations, such as extacting a submatrix, horizontal and vertical * concatenation, multiply a triplet matrix times a dense matrix, are also * simple. Multiplying two triplet matrices is not trivial; the simplest * method is to convert them to cholmod_sparse matrices first. * * Supports all xtypes (pattern, real, complex, and zomplex). */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define PATTERN #include "t_cholmod_triplet.c" #define REAL #include "t_cholmod_triplet.c" #define COMPLEX #include "t_cholmod_triplet.c" #define ZOMPLEX #include "t_cholmod_triplet.c" /* ========================================================================== */ /* === cholmod_allocate_triplet ============================================= */ /* ========================================================================== */ /* allocate space for a triplet matrix * * workspace: none */ cholmod_triplet *CHOLMOD(allocate_triplet) ( /* ---- input ---- */ size_t nrow, /* # of rows of T */ size_t ncol, /* # of columns of T */ size_t nzmax, /* max # of nonzeros of T */ int stype, /* stype of T */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_triplet *T ; size_t nzmax0 ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; if (xtype < CHOLMOD_PATTERN || xtype > CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "xtype invalid") ; return (NULL) ; } /* ensure the dimensions do not cause integer overflow */ (void) CHOLMOD(add_size_t) (ncol, 2, &ok) ; if (!ok || nrow > Int_max || ncol > Int_max || nzmax > Int_max) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate header */ /* ---------------------------------------------------------------------- */ T = CHOLMOD(malloc) (sizeof (cholmod_triplet), 1, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } PRINT1 (("cholmod_allocate_triplet %d-by-%d nzmax %d xtype %d\n", nrow, ncol, nzmax, xtype)) ; nzmax = MAX (1, nzmax) ; T->nrow = nrow ; T->ncol = ncol ; T->nzmax = nzmax ; T->nnz = 0 ; T->stype = stype ; T->itype = ITYPE ; T->xtype = xtype ; T->dtype = DTYPE ; T->j = NULL ; T->i = NULL ; T->x = NULL ; T->z = NULL ; /* ---------------------------------------------------------------------- */ /* allocate the matrix itself */ /* ---------------------------------------------------------------------- */ nzmax0 = 0 ; CHOLMOD(realloc_multiple) (nzmax, 2, xtype, &(T->i), &(T->j), &(T->x), &(T->z), &nzmax0, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_triplet) (&T, Common) ; return (NULL) ; /* out of memory */ } return (T) ; } /* ========================================================================== */ /* === cholmod_free_triplet ================================================= */ /* ========================================================================== */ /* free a triplet matrix * * workspace: none */ int CHOLMOD(free_triplet) ( /* ---- in/out --- */ cholmod_triplet **THandle, /* matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) { Int nz ; cholmod_triplet *T ; RETURN_IF_NULL_COMMON (FALSE) ; if (THandle == NULL) { /* nothing to do */ return (TRUE) ; } T = *THandle ; if (T == NULL) { /* nothing to do */ return (TRUE) ; } nz = T->nzmax ; T->j = CHOLMOD(free) (nz, sizeof (Int), T->j, Common) ; T->i = CHOLMOD(free) (nz, sizeof (Int), T->i, Common) ; if (T->xtype == CHOLMOD_REAL) { T->x = CHOLMOD(free) (nz, sizeof (double), T->x, Common) ; } else if (T->xtype == CHOLMOD_COMPLEX) { T->x = CHOLMOD(free) (nz, 2*sizeof (double), T->x, Common) ; } else if (T->xtype == CHOLMOD_ZOMPLEX) { T->x = CHOLMOD(free) (nz, sizeof (double), T->x, Common) ; T->z = CHOLMOD(free) (nz, sizeof (double), T->z, Common) ; } *THandle = CHOLMOD(free) (1, sizeof (cholmod_triplet), (*THandle), Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_reallocate_triplet =========================================== */ /* ========================================================================== */ /* Change the size of T->i, T->j, and T->x, or allocate them if their current * size is zero. T->x is not modified if T->xtype is CHOLMOD_PATTERN. * * workspace: none */ int CHOLMOD(reallocate_triplet) ( /* ---- input ---- */ size_t nznew, /* new # of entries in T */ /* ---- in/out --- */ cholmod_triplet *T, /* triplet matrix to modify */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (T, FALSE) ; RETURN_IF_XTYPE_INVALID (T, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; PRINT1 (("realloc triplet %d to %d, xtype: %d\n", T->nzmax, nznew, T->xtype)) ; /* ---------------------------------------------------------------------- */ /* resize the matrix */ /* ---------------------------------------------------------------------- */ CHOLMOD(realloc_multiple) (MAX (1,nznew), 2, T->xtype, &(T->i), &(T->j), &(T->x), &(T->z), &(T->nzmax), Common) ; return (Common->status == CHOLMOD_OK) ; } /* ========================================================================== */ /* === cholmod_triplet_to_sparse ============================================ */ /* ========================================================================== */ /* Convert a set of triplets into a cholmod_sparse matrix. In MATLAB notation, * for unsymmetric matrices: * * A = sparse (Ti, Tj, Tx, nrow, ncol, nzmax) ; * * For the symmetric upper case: * * A = sparse (min(Ti,Tj), max(Ti,Tj), Tx, nrow, ncol, nzmax) ; * * For the symmetric lower case: * * A = sparse (max(Ti,Tj), min(Ti,Tj), Tx, nrow, ncol, nzmax) ; * * If Tx is NULL, then A->x is not allocated, and only the pattern of A is * computed. A is returned in packed form, and can be of any stype * (upper/lower/unsymmetric). It has enough space to hold the values in T, * or nzmax, whichever is larger. * * workspace: Iwork (max (nrow,ncol)) * allocates a temporary copy of its output matrix. * * The resulting sparse matrix has the same xtype as the input triplet matrix. */ cholmod_sparse *CHOLMOD(triplet_to_sparse) ( /* ---- input ---- */ cholmod_triplet *T, /* matrix to copy */ size_t nzmax, /* allocate at least this much space in output matrix */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *R, *A = NULL ; Int *Wj, *Rp, *Ri, *Rnz, *Ti, *Tj ; Int i, j, p, k, stype, nrow, ncol, nz, ok ; size_t anz = 0 ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (T, NULL) ; Ti = T->i ; Tj = T->j ; RETURN_IF_NULL (Ti, NULL) ; RETURN_IF_NULL (Tj, NULL) ; RETURN_IF_XTYPE_INVALID (T, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; stype = SIGN (T->stype) ; if (stype && T->nrow != T->ncol) { /* inputs invalid */ ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (NULL) ; } Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_triplet) (T, "T", Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = T->nrow ; ncol = T->ncol ; nz = T->nnz ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(allocate_work) (0, MAX (nrow, ncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* allocate temporary matrix R */ /* ---------------------------------------------------------------------- */ R = CHOLMOD(allocate_sparse) (ncol, nrow, nz, FALSE, FALSE, -stype, T->xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Rp = R->p ; Ri = R->i ; Rnz = R->nz ; /* ---------------------------------------------------------------------- */ /* count the entries in each row of A (also counting duplicates) */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < nrow ; i++) { Rnz [i] = 0 ; } if (stype > 0) { for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i < 0 || i >= nrow || j < 0 || j >= ncol) { ERROR (CHOLMOD_INVALID, "index out of range") ; break ; } /* A will be symmetric with just the upper triangular part stored. * Create a matrix R that is lower triangular. Entries in the * upper part of R are transposed to the lower part. */ Rnz [MIN (i,j)]++ ; } } else if (stype < 0) { for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i < 0 || i >= nrow || j < 0 || j >= ncol) { ERROR (CHOLMOD_INVALID, "index out of range") ; break ; } /* A will be symmetric with just the lower triangular part stored. * Create a matrix R that is upper triangular. Entries in the * lower part of R are transposed to the upper part. */ Rnz [MAX (i,j)]++ ; } } else { for (k = 0 ; k < nz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i < 0 || i >= nrow || j < 0 || j >= ncol) { ERROR (CHOLMOD_INVALID, "index out of range") ; break ; } /* constructing an unsymmetric matrix */ Rnz [i]++ ; } } if (Common->status < CHOLMOD_OK) { /* triplet matrix is invalid */ CHOLMOD(free_sparse) (&R, Common) ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* construct the row pointers */ /* ---------------------------------------------------------------------- */ p = 0 ; for (i = 0 ; i < nrow ; i++) { Rp [i] = p ; p += Rnz [i] ; } Rp [nrow] = p ; /* use Wj (i/l/l) as temporary row pointers */ Wj = Common->Iwork ; /* size MAX (nrow,ncol) FUTURE WORK: (i/l/l) */ for (i = 0 ; i < nrow ; i++) { Wj [i] = Rp [i] ; } /* ---------------------------------------------------------------------- */ /* construct triplet matrix, using template routine */ /* ---------------------------------------------------------------------- */ switch (T->xtype) { case CHOLMOD_PATTERN: anz = p_cholmod_triplet_to_sparse (T, R, Common) ; break ; case CHOLMOD_REAL: anz = r_cholmod_triplet_to_sparse (T, R, Common) ; break ; case CHOLMOD_COMPLEX: anz = c_cholmod_triplet_to_sparse (T, R, Common) ; break ; case CHOLMOD_ZOMPLEX: anz = z_cholmod_triplet_to_sparse (T, R, Common) ; break ; } /* ---------------------------------------------------------------------- */ /* A = R' (array transpose, not complex conjugate transpose) */ /* ---------------------------------------------------------------------- */ /* workspace: Iwork (R->nrow), which is A->ncol */ ASSERT (CHOLMOD(dump_sparse) (R, "R", Common) >= 0) ; A = CHOLMOD(allocate_sparse) (nrow, ncol, MAX (anz, nzmax), TRUE, TRUE, stype, T->xtype, Common) ; if (stype) { ok = CHOLMOD(transpose_sym) (R, 1, NULL, A, Common) ; } else { ok = CHOLMOD(transpose_unsym) (R, 1, NULL, NULL, 0, A, Common) ; } CHOLMOD(free_sparse) (&R, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&A, Common) ; } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (A, "A = triplet(T) result", Common) >= 0) ; return (A) ; } /* ========================================================================== */ /* === cholmod_sparse_to_triplet ============================================ */ /* ========================================================================== */ /* Converts a sparse column-oriented matrix to triplet form. * The resulting triplet matrix has the same xtype as the sparse matrix. * * workspace: none */ cholmod_triplet *CHOLMOD(sparse_to_triplet) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Az, *Tx, *Tz ; Int *Ap, *Ai, *Ti, *Tj, *Anz ; cholmod_triplet *T ; Int i, xtype, p, pend, k, j, nrow, ncol, nz, stype, packed, up, lo, both ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; stype = SIGN (A->stype) ; nrow = A->nrow ; ncol = A->ncol ; if (stype && nrow != ncol) { /* inputs invalid */ ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (NULL) ; } Ax = A->x ; Az = A->z ; xtype = A->xtype ; Common->status = CHOLMOD_OK ; ASSERT (CHOLMOD(dump_sparse) (A, "A", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* allocate triplet matrix */ /* ---------------------------------------------------------------------- */ nz = CHOLMOD(nnz) (A, Common) ; T = CHOLMOD(allocate_triplet) (nrow, ncol, nz, A->stype, A->xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* convert to a sparse matrix */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; T->stype = A->stype ; both = (A->stype == 0) ; up = (A->stype > 0) ; lo = (A->stype < 0) ; k = 0 ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (both || (up && i <= j) || (lo && i >= j)) { Ti [k] = Ai [p] ; Tj [k] = j ; if (xtype == CHOLMOD_REAL) { Tx [k] = Ax [p] ; } else if (xtype == CHOLMOD_COMPLEX) { Tx [2*k ] = Ax [2*p ] ; Tx [2*k+1] = Ax [2*p+1] ; } else if (xtype == CHOLMOD_ZOMPLEX) { Tx [k] = Ax [p] ; Tz [k] = Az [p] ; } k++ ; ASSERT (k <= nz) ; } } } T->nnz = k ; /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_triplet) (T, "T", Common)) ; return (T) ; } /* ========================================================================== */ /* === cholmod_copy_triplet ================================================= */ /* ========================================================================== */ /* Create an exact copy of a triplet matrix, except that entries in unused * space are not copied (they might not be initialized, and copying them would * cause program checkers such as purify and valgrind to complain). * The output triplet matrix has the same xtype as the input triplet matrix. */ cholmod_triplet *CHOLMOD(copy_triplet) ( /* ---- input ---- */ cholmod_triplet *T, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { double *Tx, *Tz, *Cx, *Cz ; Int *Ci, *Cj, *Ti, *Tj ; cholmod_triplet *C ; Int xtype, k, nz ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (T, NULL) ; RETURN_IF_XTYPE_INVALID (T, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; nz = T->nnz ; Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; xtype = T->xtype ; RETURN_IF_NULL (Ti, NULL) ; RETURN_IF_NULL (Tj, NULL) ; Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_triplet) (T, "T input", Common)) ; /* ---------------------------------------------------------------------- */ /* allocate copy */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_triplet) (T->nrow, T->ncol, T->nzmax, T->stype, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* copy the triplet matrix */ /* ---------------------------------------------------------------------- */ Ci = C->i ; Cj = C->j ; Cx = C->x ; Cz = C->z ; C->nnz = nz ; for (k = 0 ; k < nz ; k++) { Ci [k] = Ti [k] ; } for (k = 0 ; k < nz ; k++) { Cj [k] = Tj [k] ; } if (xtype == CHOLMOD_REAL) { for (k = 0 ; k < nz ; k++) { Cx [k] = Tx [k] ; } } else if (xtype == CHOLMOD_COMPLEX) { for (k = 0 ; k < nz ; k++) { Cx [2*k ] = Tx [2*k ] ; Cx [2*k+1] = Tx [2*k+1] ; } } else if (xtype == CHOLMOD_ZOMPLEX) { for (k = 0 ; k < nz ; k++) { Cx [k] = Tx [k] ; Cz [k] = Tz [k] ; } } /* ---------------------------------------------------------------------- */ /* return the result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_triplet) (C, "C triplet copy", Common)) ; return (C) ; } SuiteSparse/CHOLMOD/Core/cholmod_change_factor.c0000644001170100242450000011343010537777411020376 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_change_factor =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Change the numeric/symbolic, LL/LDL, simplicial/super, packed/unpacked, * monotonic/non-monotonic status of a cholmod_factor object. * * There are four basic classes of factor types: * * (1) simplicial symbolic: Consists of two size-n arrays: the fill-reducing * permutation (L->Perm) and the nonzero count for each column of L * (L->ColCount). All other factor types also include this information. * L->ColCount may be exact (obtained from the analysis routines), or * it may be a guess. During factorization, and certainly after update/ * downdate, the columns of L can have a different number of nonzeros. * L->ColCount is used to allocate space. L->ColCount is exact for the * supernodal factorizations. The nonzero pattern of L is not kept. * * (2) simplicial numeric: These represent L in a compressed column form. The * variants of this type are: * * LDL': L is unit diagonal. Row indices in column j are located in * L->i [L->p [j] ... L->p [j] + L->nz [j]], and corresponding numeric * values are in the same locations in L->x. The total number of * entries is the sum of L->nz [j]. The unit diagonal is not stored; * D is stored on the diagonal of L instead. L->p may or may not be * monotonic. The order of storage of the columns in L->i and L->x is * given by a doubly-linked list (L->prev and L->next). L->p is of * size n+1, but only the first n entries are used (it is used if L * is converted to a sparse matrix via cholmod_factor_to_sparse). * * For the complex case, L->x is stored interleaved with real/imag * parts, and is of size 2*lnz*sizeof(double). For the zomplex case, * L->x is of size lnz*sizeof(double) and holds the real part; L->z * is the same size and holds the imaginary part. * * LL': This is identical to the LDL' form, except that the non-unit * diagonal of L is stored as the first entry in each column of L. * * (3) supernodal symbolic: A representation of the nonzero pattern of the * supernodes for a supernodal factorization. There are L->nsuper * supernodes. Columns L->super [k] to L->super [k+1]-1 are in the kth * supernode. The row indices for the kth supernode are in * L->s [L->pi [k] ... L->pi [k+1]-1]. The numerical values are not * allocated (L->x), but when they are they will be located in * L->x [L->px [k] ... L->px [k+1]-1], and the L->px array is defined * in this factor type. * * For the complex case, L->x is stored interleaved with real/imag parts, * and is of size 2*L->xsize*sizeof(double). The zomplex supernodal case * is not supported, since it is not compatible with LAPACK and the BLAS. * * (4) supernodal numeric: Always an LL' factorization. L is non-unit * diagonal. L->x contains the numerical values of the supernodes, as * described above for the supernodal symbolic factor. * For the complex case, L->x is stored interleaved, and is of size * 2*L->xsize*sizeof(double). The zomplex supernodal case is not * supported, since it is not compatible with LAPACK and the BLAS. * * FUTURE WORK: support a supernodal LDL' factor. * * * In all cases, the row indices in each column (L->i for simplicial L and * L->s for supernodal L) are kept sorted from low indices to high indices. * This means the diagonal of L (or D for LDL' factors) is always kept as the * first entry in each column. * * The cholmod_change_factor routine can do almost all possible conversions. * It cannot do the following conversions: * * (1) Simplicial numeric types cannot be converted to a supernodal * symbolic type. This would simultaneously deallocate the * simplicial pattern and numeric values and reallocate uninitialized * space for the supernodal pattern. This isn't useful for the user, * and not needed by CHOLMOD's own routines either. * * (2) Only a symbolic factor (simplicial to supernodal) can be converted * to a supernodal numeric factor. * * Some conversions are meant only to be used internally by other CHOLMOD * routines, and should not be performed by the end user. They allocate space * whose contents are undefined: * * (1) converting from simplicial symbolic to supernodal symbolic. * (2) converting any factor to supernodal numeric. * * workspace: no conversion routine uses workspace in Common. No temporary * workspace is allocated. * * Supports all xtypes, except that there is no supernodal zomplex L. * * The to_xtype parameter is used only when converting from symbolic to numeric * or numeric to symbolic. It cannot be used to convert a numeric xtype (real, * complex, or zomplex) to a different numeric xtype. For that conversion, * use cholmod_factor_xtype instead. */ #include "cholmod_internal.h" #include "cholmod_core.h" static void natural_list (cholmod_factor *L) ; /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_change_factor.c" #define COMPLEX #include "t_cholmod_change_factor.c" #define ZOMPLEX #include "t_cholmod_change_factor.c" /* ========================================================================== */ /* === L_is_packed ========================================================== */ /* ========================================================================== */ /* Return TRUE if the columns of L are packed, FALSE otherwise. For debugging * only. */ #ifndef NDEBUG static int L_is_packed (cholmod_factor *L, cholmod_common *Common) { Int j ; Int *Lnz = L->nz ; Int *Lp = L->p ; Int n = L->n ; if (L->xtype == CHOLMOD_PATTERN || L->is_super) { return (TRUE) ; } if (Lnz == NULL || Lp == NULL) { return (TRUE) ; } for (j = 0 ; j < n ; j++) { PRINT3 (("j: "ID" Lnz "ID" Lp[j+1] "ID" Lp[j] "ID"\n", j, Lnz [j], Lp [j+1], Lp [j])) ; if (Lnz [j] != (Lp [j+1] - Lp [j])) { PRINT2 (("L is not packed\n")) ; return (FALSE) ; } } return (TRUE) ; } #endif /* ========================================================================== */ /* === natural_list ========================================================= */ /* ========================================================================== */ /* Create a naturally-ordered doubly-linked list of columns. */ static void natural_list (cholmod_factor *L) { Int head, tail, n, j ; Int *Lnext, *Lprev ; Lnext = L->next ; Lprev = L->prev ; ASSERT (Lprev != NULL && Lnext != NULL) ; n = L->n ; head = n+1 ; tail = n ; Lnext [head] = 0 ; Lprev [head] = EMPTY ; Lnext [tail] = EMPTY ; Lprev [tail] = n-1 ; for (j = 0 ; j < n ; j++) { Lnext [j] = j+1 ; Lprev [j] = j-1 ; } Lprev [0] = head ; L->is_monotonic = TRUE ; } /* ========================================================================== */ /* === allocate_simplicial_numeric ========================================== */ /* ========================================================================== */ /* Allocate O(n) arrays for simplicial numeric factorization. Initializes * the link lists only. Does not allocate the L->i, L->x, or L->z arrays. */ static int allocate_simplicial_numeric ( cholmod_factor *L, cholmod_common *Common ) { Int n ; Int *Lp, *Lnz, *Lprev, *Lnext ; size_t n1, n2 ; PRINT1 (("Allocate simplicial\n")) ; ASSERT (L->xtype == CHOLMOD_PATTERN || L->is_super) ; ASSERT (L->p == NULL) ; ASSERT (L->nz == NULL) ; ASSERT (L->prev == NULL) ; ASSERT (L->next == NULL) ; n = L->n ; /* this cannot cause size_t overflow */ n1 = ((size_t) n) + 1 ; n2 = ((size_t) n) + 2 ; Lp = CHOLMOD(malloc) (n1, sizeof (Int), Common) ; Lnz = CHOLMOD(malloc) (n, sizeof (Int), Common) ; Lprev = CHOLMOD(malloc) (n2, sizeof (Int), Common) ; Lnext = CHOLMOD(malloc) (n2, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (n1, sizeof (Int), Lp, Common) ; CHOLMOD(free) (n, sizeof (Int), Lnz, Common) ; CHOLMOD(free) (n2, sizeof (Int), Lprev, Common) ; CHOLMOD(free) (n2, sizeof (Int), Lnext, Common) ; PRINT1 (("Allocate simplicial failed\n")) ; return (FALSE) ; /* out of memory */ } /* ============================================== commit the changes to L */ L->p = Lp ; L->nz = Lnz ; L->prev = Lprev ; L->next = Lnext ; /* initialize a doubly linked list for columns in natural order */ natural_list (L) ; PRINT1 (("Allocate simplicial done\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === simplicial_symbolic_to_super_symbolic ================================ */ /* ========================================================================== */ /* Convert a simplicial symbolic factor supernodal symbolic factor. Does not * initialize the new space. */ static int simplicial_symbolic_to_super_symbolic ( cholmod_factor *L, cholmod_common *Common ) { Int nsuper, xsize, ssize ; Int *Lsuper, *Lpi, *Lpx, *Ls ; size_t nsuper1 ; ASSERT (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) ; xsize = L->xsize ; ssize = L->ssize ; nsuper = L->nsuper ; nsuper1 = ((size_t) nsuper) + 1 ; PRINT1 (("simple sym to super sym: ssize "ID" xsize "ID" nsuper "ID"" " status %d\n", ssize, xsize, nsuper, Common->status)) ; /* O(nsuper) arrays, where nsuper <= n */ Lsuper = CHOLMOD(malloc) (nsuper1, sizeof (Int), Common) ; Lpi = CHOLMOD(malloc) (nsuper1, sizeof (Int), Common) ; Lpx = CHOLMOD(malloc) (nsuper1, sizeof (Int), Common) ; /* O(ssize) array, where ssize <= nnz(L), and usually much smaller */ Ls = CHOLMOD(malloc) (ssize, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (nsuper1, sizeof (Int), Lsuper, Common) ; CHOLMOD(free) (nsuper1, sizeof (Int), Lpi, Common) ; CHOLMOD(free) (nsuper1, sizeof (Int), Lpx, Common) ; CHOLMOD(free) (ssize, sizeof (Int), Ls, Common) ; return (FALSE) ; /* out of memory */ } /* ============================================== commit the changes to L */ ASSERT (Lsuper != NULL && Lpi != NULL && Lpx != NULL && Ls != NULL) ; L->maxcsize = 0 ; L->maxesize = 0 ; L->super = Lsuper ; L->pi = Lpi ; L->px = Lpx ; L->s = Ls ; Ls [0] = EMPTY ; /* supernodal pattern undefined */ L->is_super = TRUE ; L->is_ll = TRUE ; /* supernodal LDL' not supported */ L->xtype = CHOLMOD_PATTERN ; L->dtype = DTYPE ; L->minor = L->n ; return (TRUE) ; } /* ========================================================================== */ /* === any_to_simplicial_symbolic =========================================== */ /* ========================================================================== */ /* Convert any factor L to a simplicial symbolic factor, leaving only L->Perm * and L->ColCount. Cannot fail. Any of the components of L (except Perm and * ColCount) may already be free'd. */ static void any_to_simplicial_symbolic ( cholmod_factor *L, int to_ll, cholmod_common *Common ) { Int n, lnz, xs, ss, s, e ; size_t n1, n2 ; /* ============================================== commit the changes to L */ n = L->n ; lnz = L->nzmax ; s = L->nsuper + 1 ; xs = (L->is_super) ? ((Int) (L->xsize)) : (lnz) ; e = (L->xtype == CHOLMOD_COMPLEX ? 2 : 1) ; ss = L->ssize ; /* this cannot cause size_t overflow */ n1 = ((size_t) n) + 1 ; n2 = ((size_t) n) + 2 ; /* free all but the symbolic analysis (Perm and ColCount) */ L->p = CHOLMOD(free) (n1, sizeof (Int), L->p, Common) ; L->i = CHOLMOD(free) (lnz, sizeof (Int), L->i, Common) ; L->x = CHOLMOD(free) (xs, e*sizeof (double), L->x, Common) ; L->z = CHOLMOD(free) (lnz, sizeof (double), L->z, Common) ; L->nz = CHOLMOD(free) (n, sizeof (Int), L->nz, Common) ; L->next = CHOLMOD(free) (n2, sizeof (Int), L->next, Common) ; L->prev = CHOLMOD(free) (n2, sizeof (Int), L->prev, Common) ; L->super = CHOLMOD(free) (s, sizeof (Int), L->super, Common) ; L->pi = CHOLMOD(free) (s, sizeof (Int), L->pi, Common) ; L->px = CHOLMOD(free) (s, sizeof (Int), L->px, Common) ; L->s = CHOLMOD(free) (ss, sizeof (Int), L->s, Common) ; L->nzmax = 0 ; L->is_super = FALSE ; L->xtype = CHOLMOD_PATTERN ; L->dtype = DTYPE ; L->minor = n ; L->is_ll = to_ll ; } /* ========================================================================== */ /* === ll_super_to_super_symbolic =========================================== */ /* ========================================================================== */ /* Convert a numerical supernodal L to symbolic supernodal. Cannot fail. */ static void ll_super_to_super_symbolic ( cholmod_factor *L, cholmod_common *Common ) { /* ============================================== commit the changes to L */ /* free all but the supernodal numerical factor */ ASSERT (L->xtype != CHOLMOD_PATTERN && L->is_super && L->is_ll) ; DEBUG (CHOLMOD(dump_factor) (L, "start to super symbolic", Common)) ; L->x = CHOLMOD(free) (L->xsize, (L->xtype == CHOLMOD_COMPLEX ? 2 : 1) * sizeof (double), L->x, Common) ; L->xtype = CHOLMOD_PATTERN ; L->dtype = DTYPE ; L->minor = L->n ; L->is_ll = TRUE ; /* supernodal LDL' not supported */ DEBUG (CHOLMOD(dump_factor) (L, "done to super symbolic", Common)) ; } /* ========================================================================== */ /* === simplicial_symbolic_to_simplicial_numeric ============================ */ /* ========================================================================== */ /* Convert a simplicial symbolic L to a simplicial numeric L; allocate space * for L using L->ColCount from symbolic analysis, and set L to identity. * * If packed < 0, then this routine is creating a copy of another factor * (via cholmod_copy_factor). In this case, the space is not initialized. */ static void simplicial_symbolic_to_simplicial_numeric ( cholmod_factor *L, int to_ll, int packed, int to_xtype, cholmod_common *Common ) { double grow0, grow1, xlen, xlnz ; double *Lx, *Lz ; Int *Li, *Lp, *Lnz, *ColCount ; Int n, grow, grow2, p, j, lnz, len, ok, e ; ASSERT (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) ; if (!allocate_simplicial_numeric (L, Common)) { PRINT1 (("out of memory, allocate simplicial numeric\n")) ; return ; /* out of memory */ } ASSERT (L->ColCount != NULL && L->nz != NULL && L->p != NULL) ; ASSERT (L->x == NULL && L->z == NULL && L->i == NULL) ; ColCount = L->ColCount ; Lnz = L->nz ; Lp = L->p ; ok = TRUE ; n = L->n ; if (packed < 0) { /* ------------------------------------------------------------------ */ /* used by cholmod_copy_factor to allocate a copy of a factor object */ /* ------------------------------------------------------------------ */ lnz = L->nzmax ; L->nzmax = 0 ; } else if (packed) { /* ------------------------------------------------------------------ */ /* LDL' or LL' packed */ /* ------------------------------------------------------------------ */ PRINT1 (("convert to packed LL' or LDL'\n")) ; lnz = 0 ; for (j = 0 ; ok && j < n ; j++) { /* ensure len is in the range 1 to n-j */ len = ColCount [j] ; len = MAX (1, len) ; len = MIN (len, n-j) ; lnz += len ; ok = (lnz >= 0) ; } for (j = 0 ; j <= n ; j++) { Lp [j] = j ; } for (j = 0 ; j < n ; j++) { Lnz [j] = 1 ; } } else { /* ------------------------------------------------------------------ */ /* LDL' unpacked */ /* ------------------------------------------------------------------ */ PRINT1 (("convert to unpacked\n")) ; /* compute new lnzmax */ /* if any parameter is NaN, grow is false */ grow0 = Common->grow0 ; grow1 = Common->grow1 ; grow2 = Common->grow2 ; grow0 = IS_NAN (grow0) ? 1 : grow0 ; grow1 = IS_NAN (grow1) ? 1 : grow1 ; /* fl.pt. compare, but no NaN's: */ grow = (grow0 >= 1.0) && (grow1 >= 1.0) && (grow2 > 0) ; PRINT1 (("init, grow1 %g grow2 "ID"\n", grow1, grow2)) ; /* initialize Lp and Lnz for each column */ lnz = 0 ; for (j = 0 ; ok && j < n ; j++) { Lp [j] = lnz ; Lnz [j] = 1 ; /* ensure len is in the range 1 to n-j */ len = ColCount [j] ; len = MAX (1, len) ; len = MIN (len, n-j) ; /* compute len in double to avoid integer overflow */ PRINT1 (("ColCount ["ID"] = "ID"\n", j, len)) ; if (grow) { xlen = (double) len ; xlen = grow1 * xlen + grow2 ; xlen = MIN (xlen, n-j) ; len = (Int) xlen ; } ASSERT (len >= 1 && len <= n-j) ; lnz += len ; ok = (lnz >= 0) ; } if (ok) { Lp [n] = lnz ; if (grow) { /* add extra space */ xlnz = (double) lnz ; xlnz *= grow0 ; xlnz = MIN (xlnz, Size_max) ; xlnz = MIN (xlnz, ((double) n * (double) n + (double) n) / 2) ; lnz = (Int) xlnz ; } } } lnz = MAX (1, lnz) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; } /* allocate L->i, L->x, and L->z */ PRINT1 (("resizing from zero size to lnz "ID"\n", lnz)) ; ASSERT (L->nzmax == 0) ; e = (to_xtype == CHOLMOD_COMPLEX ? 2 : 1) ; if (!ok || !CHOLMOD(realloc_multiple) (lnz, 1, to_xtype, &(L->i), NULL, &(L->x), &(L->z), &(L->nzmax), Common)) { L->p = CHOLMOD(free) (n+1, sizeof (Int), L->p, Common) ; L->nz = CHOLMOD(free) (n, sizeof (Int), L->nz, Common) ; L->prev = CHOLMOD(free) (n+2, sizeof (Int), L->prev, Common) ; L->next = CHOLMOD(free) (n+2, sizeof (Int), L->next, Common) ; L->i = CHOLMOD(free) (lnz, sizeof (Int), L->i, Common) ; L->x = CHOLMOD(free) (lnz, e*sizeof (double), L->x, Common) ; L->z = CHOLMOD(free) (lnz, sizeof (double), L->z, Common) ; PRINT1 (("cannot realloc simplicial numeric\n")) ; return ; /* out of memory */ } /* ============================================== commit the changes to L */ /* initialize L to be the identity matrix */ L->xtype = to_xtype ; L->dtype = DTYPE ; L->minor = n ; Li = L->i ; Lx = L->x ; Lz = L->z ; #if 0 if (lnz == 1) { /* the user won't expect to access this entry, but some CHOLMOD * routines may. Set it to zero so that valgrind doesn't complain. */ switch (to_xtype) { case CHOLMOD_REAL: Lx [0] = 0 ; break ; case CHOLMOD_COMPLEX: Lx [0] = 0 ; Lx [1] = 0 ; break ; case CHOLMOD_ZOMPLEX: Lx [0] = 0 ; Lz [0] = 0 ; break ; } } #endif if (packed >= 0) { /* create the unit diagonal for either the LL' or LDL' case */ switch (L->xtype) { case CHOLMOD_REAL: for (j = 0 ; j < n ; j++) { ASSERT (Lp [j] < Lp [j+1]) ; p = Lp [j] ; Li [p] = j ; Lx [p] = 1 ; } break ; case CHOLMOD_COMPLEX: for (j = 0 ; j < n ; j++) { ASSERT (Lp [j] < Lp [j+1]) ; p = Lp [j] ; Li [p] = j ; Lx [2*p ] = 1 ; Lx [2*p+1] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for (j = 0 ; j < n ; j++) { ASSERT (Lp [j] < Lp [j+1]) ; p = Lp [j] ; Li [p] = j ; Lx [p] = 1 ; Lz [p] = 0 ; } break ; } } L->is_ll = to_ll ; PRINT1 (("done convert simplicial symbolic to numeric\n")) ; } /* ========================================================================== */ /* === change_simplicial_numeric ============================================ */ /* ========================================================================== */ /* Change LL' to LDL', LDL' to LL', or leave as-is. * * If to_packed is TRUE, then the columns of L are packed and made monotonic * (to_monotonic is ignored; it is implicitly TRUE). * * If to_monotonic is TRUE but to_packed is FALSE, the columns of L are made * monotonic but not packed. * * If both to_packed and to_monotonic are FALSE, then the columns of L are * left as-is, and the conversion is done in place. * * If L is already monotonic, or if it is to be left non-monotonic, then this * conversion always succeeds. * * When converting an LDL' to LL' factorization, any column with a negative * or zero diagonal entry is not modified so that conversion back to LDL' will * succeed. This can result in a matrix L with a negative entry on the diagonal * If the kth entry on the diagonal of D is negative, it and the kth column of * L are left unchanged. A subsequent conversion back to an LDL' form will also * leave the column unchanged, so the correct LDL' factorization will be * restored. L->minor is set to the smallest k for which D (k,k) is negative. */ static void change_simplicial_numeric ( cholmod_factor *L, int to_ll, int to_packed, int to_monotonic, cholmod_common *Common ) { double grow0, grow1, xlen, xlnz ; void *newLi, *newLx, *newLz ; double *Lx, *Lz ; Int *Lp, *Li, *Lnz ; Int make_monotonic, grow2, n, j, lnz, len, grow, ok, make_ll, make_ldl ; size_t nzmax0 ; PRINT1 (("\n===Change simplicial numeric: %d %d %d\n", to_ll, to_packed, to_monotonic)) ; DEBUG (CHOLMOD(dump_factor) (L, "change simplicial numeric", Common)) ; ASSERT (L->xtype != CHOLMOD_PATTERN && !(L->is_super)) ; make_monotonic = ((to_packed || to_monotonic) && !(L->is_monotonic)) ; make_ll = (to_ll && !(L->is_ll)) ; make_ldl = (!to_ll && L->is_ll) ; n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lnz = L->nz ; grow = FALSE ; grow0 = Common->grow0 ; grow1 = Common->grow1 ; grow2 = Common->grow2 ; grow0 = IS_NAN (grow0) ? 1 : grow0 ; grow1 = IS_NAN (grow1) ? 1 : grow1 ; ok = TRUE ; newLi = NULL ; newLx = NULL ; newLz = NULL ; lnz = 0 ; if (make_monotonic) { /* ------------------------------------------------------------------ */ /* Columns out of order, but will be reordered and optionally packed. */ /* ------------------------------------------------------------------ */ PRINT1 (("L is non-monotonic\n")) ; /* compute new L->nzmax */ if (!to_packed) { /* if any parameter is NaN, grow is false */ /* fl.pt. comparisons below are false if any parameter is NaN */ grow = (grow0 >= 1.0) && (grow1 >= 1.0) && (grow2 > 0) ; } for (j = 0 ; ok && j < n ; j++) { len = Lnz [j] ; ASSERT (len >= 1 && len <= n-j) ; /* compute len in double to avoid integer overflow */ if (grow) { xlen = (double) len ; xlen = grow1 * xlen + grow2 ; xlen = MIN (xlen, n-j) ; len = (Int) xlen ; } ASSERT (len >= Lnz [j] && len <= n-j) ; PRINT2 (("j: "ID" Lnz[j] "ID" len "ID" p "ID"\n", j, Lnz [j], len, lnz)) ; lnz += len ; ok = (lnz >= 0) ; } if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return ; } if (grow) { xlnz = (double) lnz ; xlnz *= grow0 ; xlnz = MIN (xlnz, Size_max) ; xlnz = MIN (xlnz, ((double) n * (double) n + (double) n) / 2) ; lnz = (Int) xlnz ; } lnz = MAX (1, lnz) ; PRINT1 (("final lnz "ID"\n", lnz)) ; nzmax0 = 0 ; CHOLMOD(realloc_multiple) (lnz, 1, L->xtype, &newLi, NULL, &newLx, &newLz, &nzmax0, Common) ; if (Common->status < CHOLMOD_OK) { return ; /* out of memory */ } } /* ============================================== commit the changes to L */ /* ---------------------------------------------------------------------- */ /* convert the simplicial L, using template routine */ /* ---------------------------------------------------------------------- */ switch (L->xtype) { case CHOLMOD_REAL: r_change_simplicial_numeric (L, to_ll, to_packed, newLi, newLx, newLz, lnz, grow, grow1, grow2, make_ll, make_monotonic, make_ldl, Common) ; break ; case CHOLMOD_COMPLEX: c_change_simplicial_numeric (L, to_ll, to_packed, newLi, newLx, newLz, lnz, grow, grow1, grow2, make_ll, make_monotonic, make_ldl, Common) ; break ; case CHOLMOD_ZOMPLEX: z_change_simplicial_numeric (L, to_ll, to_packed, newLi, newLx, newLz, lnz, grow, grow1, grow2, make_ll, make_monotonic, make_ldl, Common) ; break ; } DEBUG (CHOLMOD(dump_factor) (L, "L simplicial changed", Common)) ; } /* ========================================================================== */ /* === ll_super_to_simplicial_numeric ======================================= */ /* ========================================================================== */ /* Convert a supernodal numeric factorization to any simplicial numeric one. * Leaves L->xtype unchanged (real or complex, not zomplex since there is * no supernodal zomplex L). */ static void ll_super_to_simplicial_numeric ( cholmod_factor *L, int to_packed, int to_ll, cholmod_common *Common ) { Int *Ls, *Lpi, *Lpx, *Super, *Li ; Int n, lnz, s, nsuper, psi, psend, nsrow, nscol, k1, k2, erows ; DEBUG (CHOLMOD(dump_factor) (L, "start LL super to simplicial", Common)) ; PRINT1 (("super -> simplicial (%d %d)\n", to_packed, to_ll)) ; ASSERT (L->xtype != CHOLMOD_PATTERN && L->is_ll && L->is_super) ; ASSERT (L->x != NULL && L->i == NULL) ; n = L->n ; nsuper = L->nsuper ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Super = L->super ; /* Int overflow cannot occur since supernodal L already exists */ if (to_packed) { /* count the number of nonzeros in L. Each supernode is of the form * * l . . . For this example, nscol = 4 (# columns). nsrow = 9. * l l . . The "." entries are allocated in the supernodal * l l l . factor, but not used. They are not copied to the * l l l l simplicial factor. Some "l" and "e" entries may be * e e e e numerically zero and even symbolically zero if a * e e e e tight simplicial factorization or resymbol were * e e e e done, because of numerical cancellation and relaxed * e e e e supernode amalgamation, respectively. * e e e e */ lnz = 0 ; for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; nsrow = psend - psi ; nscol = k2 - k1 ; ASSERT (nsrow >= nscol) ; erows = nsrow - nscol ; /* lower triangular part, including the diagonal, * counting the "l" terms in the figure above. */ lnz += nscol * (nscol+1) / 2 ; /* rectangular part, below the diagonal block (the "e" terms) */ lnz += nscol * erows ; } ASSERT (lnz <= (Int) (L->xsize)) ; } else { /* Li will be the same size as Lx */ lnz = L->xsize ; } ASSERT (lnz >= 0) ; PRINT1 (("simplicial lnz = "ID" to_packed: %d to_ll: %d L->xsize %g\n", lnz, to_ll, to_packed, (double) L->xsize)) ; Li = CHOLMOD(malloc) (lnz, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { return ; /* out of memory */ } if (!allocate_simplicial_numeric (L, Common)) { CHOLMOD(free) (lnz, sizeof (Int), Li, Common) ; return ; /* out of memory */ } /* ============================================== commit the changes to L */ L->i = Li ; L->nzmax = lnz ; /* ---------------------------------------------------------------------- */ /* convert the supernodal L, using template routine */ /* ---------------------------------------------------------------------- */ switch (L->xtype) { case CHOLMOD_REAL: r_ll_super_to_simplicial_numeric (L, to_packed, to_ll, Common) ; break ; case CHOLMOD_COMPLEX: c_ll_super_to_simplicial_numeric (L, to_packed, to_ll, Common) ; break ; } /* ---------------------------------------------------------------------- */ /* free unused parts of L */ /* ---------------------------------------------------------------------- */ L->super = CHOLMOD(free) (nsuper+1, sizeof (Int), L->super, Common) ; L->pi = CHOLMOD(free) (nsuper+1, sizeof (Int), L->pi, Common) ; L->px = CHOLMOD(free) (nsuper+1, sizeof (Int), L->px, Common) ; L->s = CHOLMOD(free) (L->ssize, sizeof (Int), L->s, Common) ; L->ssize = 0 ; L->xsize = 0 ; L->nsuper = 0 ; L->maxesize = 0 ; L->maxcsize = 0 ; L->is_super = FALSE ; DEBUG (CHOLMOD(dump_factor) (L, "done LL super to simplicial", Common)) ; } /* ========================================================================== */ /* === super_symbolic_to_ll_super =========================================== */ /* ========================================================================== */ /* Convert a supernodal symbolic factorization to a supernodal numeric * factorization by allocating L->x. Contents of L->x are undefined. */ static int super_symbolic_to_ll_super ( int to_xtype, cholmod_factor *L, cholmod_common *Common ) { double *Lx ; Int wentry = (to_xtype == CHOLMOD_REAL) ? 1 : 2 ; PRINT1 (("convert super sym to num\n")) ; ASSERT (L->xtype == CHOLMOD_PATTERN && L->is_super) ; Lx = CHOLMOD(malloc) (L->xsize, wentry * sizeof (double), Common) ; PRINT1 (("xsize %g\n", (double) L->xsize)) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } /* ============================================== commit the changes to L */ if (L->xsize == 1) { /* the caller won't expect to access this entry, but some CHOLMOD * routines may. Set it to zero so that valgrind doesn't complain. */ switch (to_xtype) { case CHOLMOD_REAL: Lx [0] = 0 ; break ; case CHOLMOD_COMPLEX: Lx [0] = 0 ; Lx [1] = 0 ; break ; } } L->x = Lx ; L->xtype = to_xtype ; L->dtype = DTYPE ; L->minor = L->n ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_change_factor ================================================ */ /* ========================================================================== */ /* Convert a factor L. Some conversions simply allocate uninitialized space * that meant to be filled later. * * If the conversion fails, the factor is left in its original form, with one * exception. Converting a supernodal symbolic factor to a simplicial numeric * one (with L=D=I) may leave the factor in simplicial symbolic form. * * Memory allocated for each conversion is listed below. */ int CHOLMOD(change_factor) ( /* ---- input ---- */ int to_xtype, /* convert to CHOLMOD_PATTERN, _REAL, _COMPLEX, or * _ZOMPLEX */ int to_ll, /* TRUE: convert to LL', FALSE: LDL' */ int to_super, /* TRUE: convert to supernodal, FALSE: simplicial */ int to_packed, /* TRUE: pack simplicial columns, FALSE: do not pack */ int to_monotonic, /* TRUE: put simplicial columns in order, FALSE: not */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (to_xtype < CHOLMOD_PATTERN || to_xtype > CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "xtype invalid") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; PRINT1 (("-----convert from (%d,%d,%d,%d,%d) to (%d,%d,%d,%d,%d)\n", L->xtype, L->is_ll, L->is_super, L_is_packed (L, Common), L->is_monotonic, to_xtype, to_ll, to_super, to_packed, to_monotonic)) ; /* ensure all parameters are TRUE/FALSE */ to_ll = BOOLEAN (to_ll) ; to_super = BOOLEAN (to_super) ; ASSERT (BOOLEAN (L->is_ll) == L->is_ll) ; ASSERT (BOOLEAN (L->is_super) == L->is_super) ; if (to_super && to_xtype == CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "supernodal zomplex L not supported") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* convert */ /* ---------------------------------------------------------------------- */ if (to_xtype == CHOLMOD_PATTERN) { /* ------------------------------------------------------------------ */ /* convert to symbolic */ /* ------------------------------------------------------------------ */ if (!to_super) { /* -------------------------------------------------------------- */ /* convert any factor into a simplicial symbolic factor */ /* -------------------------------------------------------------- */ any_to_simplicial_symbolic (L, to_ll, Common) ; /* cannot fail */ } else { /* -------------------------------------------------------------- */ /* convert to a supernodal symbolic factor */ /* -------------------------------------------------------------- */ if (L->xtype != CHOLMOD_PATTERN && L->is_super) { /* convert from supernodal numeric to supernodal symbolic. * this preserves symbolic pattern of L, discards numeric * values */ ll_super_to_super_symbolic (L, Common) ; /* cannot fail */ } else if (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) { /* convert from simplicial symbolic to supernodal symbolic. * contents of supernodal pattern are uninitialized. Not meant * for the end user. */ simplicial_symbolic_to_super_symbolic (L, Common) ; } else { /* cannot convert from simplicial numeric to supernodal * symbolic */ ERROR (CHOLMOD_INVALID, "cannot convert L to supernodal symbolic") ; } } } else { /* ------------------------------------------------------------------ */ /* convert to numeric */ /* ------------------------------------------------------------------ */ if (to_super) { /* -------------------------------------------------------------- */ /* convert to supernodal numeric factor */ /* -------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN) { if (L->is_super) { /* Convert supernodal symbolic to supernodal numeric. * Contents of supernodal numeric values are uninitialized. * This is used by cholmod_super_numeric. Not meant for * the end user. */ super_symbolic_to_ll_super (to_xtype, L, Common) ; } else { /* Convert simplicial symbolic to supernodal numeric. * Contents not defined. This is used by * Core/cholmod_copy_factor only. Not meant for the end * user. */ if (!simplicial_symbolic_to_super_symbolic (L, Common)) { /* failure, convert back to simplicial symbolic */ any_to_simplicial_symbolic (L, to_ll, Common) ; } else { /* conversion to super symbolic OK, allocate numeric * part */ super_symbolic_to_ll_super (to_xtype, L, Common) ; } } } else { /* nothing to do if L is already in supernodal numeric form */ if (!(L->is_super)) { ERROR (CHOLMOD_INVALID, "cannot convert simplicial L to supernodal") ; } /* FUTURE WORK: convert to/from supernodal LL' and LDL' */ } } else { /* -------------------------------------------------------------- */ /* convert any factor to simplicial numeric */ /* -------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) { /* ---------------------------------------------------------- */ /* convert simplicial symbolic to simplicial numeric (L=I,D=I)*/ /* ---------------------------------------------------------- */ simplicial_symbolic_to_simplicial_numeric (L, to_ll, to_packed, to_xtype, Common) ; } else if (L->xtype != CHOLMOD_PATTERN && L->is_super) { /* ---------------------------------------------------------- */ /* convert a supernodal LL' to simplicial numeric */ /* ---------------------------------------------------------- */ ll_super_to_simplicial_numeric (L, to_packed, to_ll, Common) ; } else if (L->xtype == CHOLMOD_PATTERN && L->is_super) { /* ---------------------------------------------------------- */ /* convert a supernodal symbolic to simplicial numeric (L=D=I)*/ /* ---------------------------------------------------------- */ any_to_simplicial_symbolic (L, to_ll, Common) ; /* if the following fails, it leaves the factor in simplicial * symbolic form */ simplicial_symbolic_to_simplicial_numeric (L, to_ll, to_packed, to_xtype, Common) ; } else { /* ---------------------------------------------------------- */ /* change a simplicial numeric factor */ /* ---------------------------------------------------------- */ /* change LL' to LDL', LDL' to LL', or leave as-is. pack the * columns of L, or leave as-is. Ensure the columns are * monotonic, or leave as-is. */ change_simplicial_numeric (L, to_ll, to_packed, to_monotonic, Common) ; } } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ return (Common->status >= CHOLMOD_OK) ; } SuiteSparse/CHOLMOD/Core/cholmod_transpose.c0000644001170100242450000007541210616661511017627 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_transpose =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_sparse object to * compute the transpose or permuted transpose of a matrix: * * Primary routines: * ----------------- * cholmod_transpose transpose sparse matrix * cholmod_ptranspose transpose and permute sparse matrix * cholmod_sort sort row indices in each column of sparse matrix * * Secondary routines: * ------------------- * cholmod_transpose_unsym transpose unsymmetric sparse matrix * cholmod_transpose_sym transpose symmetric sparse matrix * * All xtypes (pattern, real, complex, and zomplex) are supported. * * --------------------------------------- * Unsymmetric case: A->stype is zero. * --------------------------------------- * * Computes F = A', F = A (:,f)' or F = A (p,f)', except that the indexing by * f does not work the same as the MATLAB notation (see below). A->stype * is zero, which denotes that both the upper and lower triangular parts of * A are present (and used). A may in fact be symmetric in pattern and/or * value; A->stype just denotes which part of A are stored. A may be * rectangular. * * p is a permutation of 0:m-1, and f is a subset of 0:n-1, where A is m-by-n. * There can be no duplicate entries in p or f. * * The set f is held in fset and fsize. * fset = NULL means ":" in MATLAB. fsize is ignored. * fset != NULL means f = fset [0..fsize-1]. * fset != NULL and fsize = 0 means f is the empty set. * * Columns not in the set f are considered to be zero. That is, * if A is 5-by-10 then F = A (:,[3 4])' is not 2-by-5, but 10-by-5, and rows * 3 and 4 of F are equal to columns 3 and 4 of A (the other rows of F are * zero). More precisely, in MATLAB notation: * * [m n] = size (A) ; * F = A ; * notf = ones (1,n) ; * notf (f) = 0 ; * F (:, find (notf)) = 0 * F = F' * * If you want the MATLAB equivalent F=A(p,f) operation, use cholmod_submatrix * instead (which does not compute the transpose). * * F->nzmax must be large enough to hold the matrix F. It is not modified. * If F->nz is present then F->nz [j] = # of entries in column j of F. * * A can be sorted or unsorted, with packed or unpacked columns. * * If f is present and not sorted in ascending order, then F is unsorted * (that is, it may contain columns whose row indices do not appear in * ascending order). Otherwise, F is sorted (the row indices in each * column of F appear in strictly ascending order). * * F is returned in packed or unpacked form, depending on F->packed on input. * If F->packed is false, then F is returned in unpacked form (F->nz must be * present). Each row i of F is large enough to hold all the entries in row i * of A, even if f is provided. That is, F->i and * F->x [F->p [i] .. F->p [i] + F->nz [i] - 1] contain all entries in A (i,f), * but F->p [i+1] - F->p [i] is equal to the number of nonzeros in A (i,:), * not just A (i,f). * * The cholmod_transpose_unsym routine is the only operation in CHOLMOD that * can produce an unpacked matrix. * * --------------------------------------- * Symmetric case: A->stype is nonzero. * --------------------------------------- * * Computes F = A' or F = A(p,p)', the transpose or permuted transpose, where * A->stype is nonzero. * * If A->stype > 0, then A is a symmetric matrix where just the upper part * of the matrix is stored. Entries in the lower triangular part may be * present, but are ignored. A must be square. If F=A', then F is returned * sorted; otherwise F is unsorted for the F=A(p,p)' case. * * There can be no duplicate entries in p. * The fset and fsize parameters are not used. * * Three kinds of transposes are available, depending on the "values" parameter: * 0: do not transpose the numerical values; create a CHOLMOD_PATTERN matrix * 1: array transpose * 2: complex conjugate transpose (same as 2 if input is real or pattern) * * ----------------------------------------------------------------------------- * * For cholmod_transpose_unsym and cholmod_transpose_sym, the output matrix * F must already be pre-allocated by the caller, with the correct dimensions. * If F is not valid or has the wrong dimensions, it is not modified. * Otherwise, if F is too small, the transpose is not computed; the contents * of F->p contain the column pointers of the resulting matrix, where * F->p [F->ncol] > F->nzmax. In this case, the remaining contents of F are * not modified. F can still be properly free'd with cholmod_free_sparse. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define PATTERN #include "t_cholmod_transpose.c" #define REAL #include "t_cholmod_transpose.c" #define COMPLEX #include "t_cholmod_transpose.c" #define COMPLEX #define NCONJUGATE #include "t_cholmod_transpose.c" #define ZOMPLEX #include "t_cholmod_transpose.c" #define ZOMPLEX #define NCONJUGATE #include "t_cholmod_transpose.c" /* ========================================================================== */ /* === cholmod_transpose_unsym ============================================== */ /* ========================================================================== */ /* Compute F = A', A (:,f)', or A (p,f)', where A is unsymmetric and F is * already allocated. See cholmod_transpose for a simpler routine. * * workspace: * Iwork (MAX (nrow,ncol)) if fset is present * Iwork (nrow) if fset is NULL * * The xtype of A and F must match, unless values is zero or F->xtype is * CHOLMOD_PATTERN (in which case only the pattern of A is transpose into F). */ int CHOLMOD(transpose_unsym) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 2: complex conj. transpose, 1: array transpose, 0: do not transpose the numerical values */ Int *Perm, /* size nrow, if present (can be NULL) */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ cholmod_sparse *F, /* F = A', A(:,f)', or A(p,f)' */ /* --------------- */ cholmod_common *Common ) { Int *Fp, *Fnz, *Ap, *Ai, *Anz, *Wi ; Int nrow, ncol, permute, use_fset, Apacked, Fpacked, p, pend, i, j, k, Fsorted, nf, jj, jlast ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (F, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (F, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (A->nrow != F->ncol || A->ncol != F->nrow) { ERROR (CHOLMOD_INVALID, "F has the wrong dimensions") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nf = fsize ; use_fset = (fset != NULL) ; nrow = A->nrow ; ncol = A->ncol ; Ap = A->p ; /* size A->ncol+1, column pointers of A */ Ai = A->i ; /* size nz = Ap [A->ncol], row indices of A */ Anz = A->nz ; Apacked = A->packed ; ASSERT (IMPLIES (!Apacked, Anz != NULL)) ; permute = (Perm != NULL) ; Fp = F->p ; /* size A->nrow+1, row pointers of F */ Fnz = F->nz ; Fpacked = F->packed ; ASSERT (IMPLIES (!Fpacked, Fnz != NULL)) ; nf = (use_fset) ? nf : ncol ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = nrow + ((fset != NULL) ? ncol : 0) */ s = CHOLMOD(add_size_t) (nrow, ((fset != NULL) ? ncol : 0), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } Wi = Common->Iwork ; /* size nrow (i/l/l) */ /* ---------------------------------------------------------------------- */ /* check Perm and fset */ /* ---------------------------------------------------------------------- */ if (permute) { for (i = 0 ; i < nrow ; i++) { Wi [i] = 1 ; } for (k = 0 ; k < nrow ; k++) { i = Perm [k] ; if (i < 0 || i > nrow || Wi [i] == 0) { ERROR (CHOLMOD_INVALID, "invalid permutation") ; return (FALSE) ; } Wi [i] = 0 ; } } if (use_fset) { for (j = 0 ; j < ncol ; j++) { Wi [j] = 1 ; } for (k = 0 ; k < nf ; k++) { j = fset [k] ; if (j < 0 || j > ncol || Wi [j] == 0) { ERROR (CHOLMOD_INVALID, "invalid fset") ; return (FALSE) ; } Wi [j] = 0 ; } } /* Perm and fset are now valid */ ASSERT (CHOLMOD(dump_perm) (Perm, nrow, nrow, "Perm", Common)) ; ASSERT (CHOLMOD(dump_perm) (fset, nf, ncol, "fset", Common)) ; /* ---------------------------------------------------------------------- */ /* count the entries in each row of A or A(:,f) */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < nrow ; i++) { Wi [i] = 0 ; } jlast = EMPTY ; Fsorted = TRUE ; if (use_fset) { /* count entries in each row of A(:,f) */ for (jj = 0 ; jj < nf ; jj++) { j = fset [jj] ; if (j <= jlast) { Fsorted = FALSE ; } p = Ap [j] ; pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Wi [Ai [p]]++ ; } jlast = j ; } /* save the nz counts if F is unpacked, and recount all of A */ if (!Fpacked) { if (permute) { for (i = 0 ; i < nrow ; i++) { Fnz [i] = Wi [Perm [i]] ; } } else { for (i = 0 ; i < nrow ; i++) { Fnz [i] = Wi [i] ; } } for (i = 0 ; i < nrow ; i++) { Wi [i] = 0 ; } /* count entries in each row of A */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Wi [Ai [p]]++ ; } } } } else { /* count entries in each row of A */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Wi [Ai [p]]++ ; } } /* save the nz counts if F is unpacked */ if (!Fpacked) { if (permute) { for (i = 0 ; i < nrow ; i++) { Fnz [i] = Wi [Perm [i]] ; } } else { for (i = 0 ; i < nrow ; i++) { Fnz [i] = Wi [i] ; } } } } /* ---------------------------------------------------------------------- */ /* compute the row pointers */ /* ---------------------------------------------------------------------- */ p = 0 ; if (permute) { for (i = 0 ; i < nrow ; i++) { Fp [i] = p ; p += Wi [Perm [i]] ; } for (i = 0 ; i < nrow ; i++) { Wi [Perm [i]] = Fp [i] ; } } else { for (i = 0 ; i < nrow ; i++) { Fp [i] = p ; p += Wi [i] ; } for (i = 0 ; i < nrow ; i++) { Wi [i] = Fp [i] ; } } Fp [nrow] = p ; if (p > (Int) (F->nzmax)) { ERROR (CHOLMOD_INVALID, "F is too small") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* transpose matrix, using template routine */ /* ---------------------------------------------------------------------- */ ok = FALSE ; if (values == 0 || F->xtype == CHOLMOD_PATTERN) { ok = p_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } else if (F->xtype == CHOLMOD_REAL) { ok = r_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } else if (F->xtype == CHOLMOD_COMPLEX) { if (values == 1) { /* array transpose */ ok = ct_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } else { /* complex conjugate transpose */ ok = c_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } } else if (F->xtype == CHOLMOD_ZOMPLEX) { if (values == 1) { /* array transpose */ ok = zt_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } else { /* complex conjugate transpose */ ok = z_cholmod_transpose_unsym (A, Perm, fset, nf, F, Common) ; } } /* ---------------------------------------------------------------------- */ /* finalize result F */ /* ---------------------------------------------------------------------- */ if (ok) { F->sorted = Fsorted ; } ASSERT (CHOLMOD(dump_sparse) (F, "output F unsym", Common) >= 0) ; return (ok) ; } /* ========================================================================== */ /* === cholmod_transpose_sym ================================================ */ /* ========================================================================== */ /* Compute F = A' or A (p,p)', where A is symmetric and F is already allocated. * See cholmod_transpose for a simpler routine. * * workspace: Iwork (nrow) if Perm NULL, Iwork (2*nrow) if Perm non-NULL. */ int CHOLMOD(transpose_sym) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 2: complex conj. transpose, 1: array transpose, 0: do not transpose the numerical values */ Int *Perm, /* size nrow, if present (can be NULL) */ /* ---- output --- */ cholmod_sparse *F, /* F = A' or A(p,p)' */ /* --------------- */ cholmod_common *Common ) { Int *Ap, *Anz, *Ai, *Fp, *Wi, *Pinv, *Iwork ; Int p, pend, packed, upper, permute, jold, n, i, j, k, iold ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (F, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (F, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (A->nrow != A->ncol || A->stype == 0) { /* this routine handles square symmetric matrices only */ ERROR (CHOLMOD_INVALID, "matrix must be symmetric") ; return (FALSE) ; } if (A->nrow != F->ncol || A->ncol != F->nrow) { ERROR (CHOLMOD_INVALID, "F has the wrong dimensions") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ permute = (Perm != NULL) ; n = A->nrow ; Ap = A->p ; /* size A->ncol+1, column pointers of A */ Ai = A->i ; /* size nz = Ap [A->ncol], row indices of A */ Anz = A->nz ; packed = A->packed ; ASSERT (IMPLIES (!packed, Anz != NULL)) ; upper = (A->stype > 0) ; Fp = F->p ; /* size A->nrow+1, row pointers of F */ /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = (Perm != NULL) ? 2*n : n */ s = CHOLMOD(add_size_t) (n, ((Perm != NULL) ? n : 0), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Wi = Iwork ; /* size n (i/l/l) */ Pinv = Iwork + n ; /* size n (i/i/l) , unused if Perm NULL */ /* ---------------------------------------------------------------------- */ /* check Perm and construct inverse permutation */ /* ---------------------------------------------------------------------- */ if (permute) { for (i = 0 ; i < n ; i++) { Pinv [i] = EMPTY ; } for (k = 0 ; k < n ; k++) { i = Perm [k] ; if (i < 0 || i > n || Pinv [i] != EMPTY) { ERROR (CHOLMOD_INVALID, "invalid permutation") ; return (FALSE) ; } Pinv [i] = k ; } } /* Perm is now valid */ ASSERT (CHOLMOD(dump_perm) (Perm, n, n, "Perm", Common)) ; /* ---------------------------------------------------------------------- */ /* count the entries in each row of F */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i < n ; i++) { Wi [i] = 0 ; } if (packed) { if (permute) { if (upper) { /* packed, permuted, upper */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; pend = Ap [jold+1] ; for (p = Ap [jold] ; p < pend ; p++) { iold = Ai [p] ; if (iold <= jold) { i = Pinv [iold] ; Wi [MIN (i, j)]++ ; } } } } else { /* packed, permuted, lower */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; pend = Ap [jold+1] ; for (p = Ap [jold] ; p < pend ; p++) { iold = Ai [p] ; if (iold >= jold) { i = Pinv [iold] ; Wi [MAX (i, j)]++ ; } } } } } else { if (upper) { /* packed, unpermuted, upper */ for (j = 0 ; j < n ; j++) { pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { i = Ai [p] ; if (i <= j) { Wi [i]++ ; } } } } else { /* packed, unpermuted, lower */ for (j = 0 ; j < n ; j++) { pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { i = Ai [p] ; if (i >= j) { Wi [i]++ ; } } } } } } else { if (permute) { if (upper) { /* unpacked, permuted, upper */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; p = Ap [jold] ; pend = p + Anz [jold] ; for ( ; p < pend ; p++) { iold = Ai [p] ; if (iold <= jold) { i = Pinv [iold] ; Wi [MIN (i, j)]++ ; } } } } else { /* unpacked, permuted, lower */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; p = Ap [jold] ; pend = p + Anz [jold] ; for ( ; p < pend ; p++) { iold = Ai [p] ; if (iold >= jold) { i = Pinv [iold] ; Wi [MAX (i, j)]++ ; } } } } } else { if (upper) { /* unpacked, unpermuted, upper */ for (j = 0 ; j < n ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i <= j) { Wi [i]++ ; } } } } else { /* unpacked, unpermuted, lower */ for (j = 0 ; j < n ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= j) { Wi [i]++ ; } } } } } } /* ---------------------------------------------------------------------- */ /* compute the row pointers */ /* ---------------------------------------------------------------------- */ p = 0 ; for (i = 0 ; i < n ; i++) { Fp [i] = p ; p += Wi [i] ; } Fp [n] = p ; for (i = 0 ; i < n ; i++) { Wi [i] = Fp [i] ; } if (p > (Int) (F->nzmax)) { ERROR (CHOLMOD_INVALID, "F is too small") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* transpose matrix, using template routine */ /* ---------------------------------------------------------------------- */ ok = FALSE ; if (values == 0 || F->xtype == CHOLMOD_PATTERN) { PRINT2 (("\n:::: p_transpose_sym Perm %p\n", Perm)) ; ok = p_cholmod_transpose_sym (A, Perm, F, Common) ; } else if (F->xtype == CHOLMOD_REAL) { PRINT2 (("\n:::: r_transpose_sym Perm %p\n", Perm)) ; ok = r_cholmod_transpose_sym (A, Perm, F, Common) ; } else if (F->xtype == CHOLMOD_COMPLEX) { if (values == 1) { /* array transpose */ PRINT2 (("\n:::: ct_transpose_sym Perm %p\n", Perm)) ; ok = ct_cholmod_transpose_sym (A, Perm, F, Common) ; } else { /* complex conjugate transpose */ PRINT2 (("\n:::: c_transpose_sym Perm %p\n", Perm)) ; ok = c_cholmod_transpose_sym (A, Perm, F, Common) ; } } else if (F->xtype == CHOLMOD_ZOMPLEX) { if (values == 1) { /* array transpose */ PRINT2 (("\n:::: zt_transpose_sym Perm %p\n", Perm)) ; ok = zt_cholmod_transpose_sym (A, Perm, F, Common) ; } else { /* complex conjugate transpose */ PRINT2 (("\n:::: z_transpose_sym Perm %p\n", Perm)) ; ok = z_cholmod_transpose_sym (A, Perm, F, Common) ; } } /* ---------------------------------------------------------------------- */ /* finalize result F */ /* ---------------------------------------------------------------------- */ /* F is sorted if there is no permutation vector */ if (ok) { F->sorted = !permute ; F->packed = TRUE ; F->stype = - SIGN (A->stype) ; /* flip the stype */ ASSERT (CHOLMOD(dump_sparse) (F, "output F sym", Common) >= 0) ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_transpose ==================================================== */ /* ========================================================================== */ /* Returns A'. See also cholmod_ptranspose below. */ cholmod_sparse *CHOLMOD(transpose) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 2: complex conj. transpose, 1: array transpose, 0: do not transpose the numerical values (returns its result as CHOLMOD_PATTERN) */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(ptranspose) (A, values, NULL, NULL, 0, Common)) ; } /* ========================================================================== */ /* === cholmod_ptranspose =================================================== */ /* ========================================================================== */ /* Return A' or A(p,p)' if A is symmetric. Return A', A(:,f)', or A(p,f)' if * A is unsymmetric. * * workspace: * Iwork (MAX (nrow,ncol)) if unsymmetric and fset is non-NULL * Iwork (nrow) if unsymmetric and fset is NULL * Iwork (2*nrow) if symmetric and Perm is non-NULL. * Iwork (nrow) if symmetric and Perm is NULL. * * A simple worst-case upper bound on the workspace is nrow+ncol. */ cholmod_sparse *CHOLMOD(ptranspose) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 2: complex conj. transpose, 1: array transpose, 0: do not transpose the numerical values */ Int *Perm, /* if non-NULL, F = A(p,f) or A(p,p) */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* --------------- */ cholmod_common *Common ) { Int *Ap, *Anz ; cholmod_sparse *F ; Int nrow, ncol, use_fset, j, jj, fnz, packed, stype, nf, xtype ; size_t ineed ; int ok = TRUE ; nf = fsize ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; stype = A->stype ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; if (stype != 0) { use_fset = FALSE ; if (Perm != NULL) { ineed = CHOLMOD(mult_size_t) (A->nrow, 2, &ok) ; } else { ineed = A->nrow ; } } else { use_fset = (fset != NULL) ; if (use_fset) { ineed = MAX (A->nrow, A->ncol) ; } else { ineed = A->nrow ; } } if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } CHOLMOD(allocate_work) (0, ineed, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Anz = A->nz ; packed = A->packed ; ASSERT (IMPLIES (!packed, Anz != NULL)) ; xtype = values ? A->xtype : CHOLMOD_PATTERN ; /* ---------------------------------------------------------------------- */ /* allocate F */ /* ---------------------------------------------------------------------- */ /* determine # of nonzeros in F */ if (stype != 0) { /* F=A' or F=A(p,p)', fset is ignored */ fnz = CHOLMOD(nnz) (A, Common) ; } else { nf = (use_fset) ? nf : ncol ; if (use_fset) { fnz = 0 ; /* F=A(:,f)' or F=A(p,f)' */ for (jj = 0 ; jj < nf ; jj++) { /* The fset is not yet checked; it will be thoroughly checked * in cholmod_transpose_unsym. For now, just make sure we don't * access Ap and Anz out of bounds. */ j = fset [jj] ; if (j >= 0 && j < ncol) { fnz += packed ? (Ap [j+1] - Ap [j]) : MAX (0, Anz [j]) ; } } } else { /* F=A' or F=A(p,:)' */ fnz = CHOLMOD(nnz) (A, Common) ; } } /* F is ncol-by-nrow, fnz nonzeros, sorted unless f is present and unsorted, * packed, of opposite stype as A, and with/without numerical values */ F = CHOLMOD(allocate_sparse) (ncol, nrow, fnz, TRUE, TRUE, -SIGN(stype), xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* transpose and optionally permute the matrix A */ /* ---------------------------------------------------------------------- */ if (stype != 0) { /* F = A (p,p)', using upper or lower triangular part of A only */ ok = CHOLMOD(transpose_sym) (A, values, Perm, F, Common) ; } else { /* F = A (p,f)' */ ok = CHOLMOD(transpose_unsym) (A, values, Perm, fset, nf, F, Common) ; } /* ---------------------------------------------------------------------- */ /* return the matrix F, or NULL if an error occured */ /* ---------------------------------------------------------------------- */ if (!ok) { CHOLMOD(free_sparse) (&F, Common) ; } return (F) ; } /* ========================================================================== */ /* === cholmod_sort ========================================================= */ /* ========================================================================== */ /* Sort the columns of A, in place. Returns A in packed form, even if it * starts as unpacked. Removes entries in the ignored part of a symmetric * matrix. * * workspace: Iwork (max (nrow,ncol)). Allocates additional workspace for a * temporary copy of A'. */ int CHOLMOD(sort) ( /* ---- in/out --- */ cholmod_sparse *A, /* matrix to sort */ /* --------------- */ cholmod_common *Common ) { Int *Ap ; cholmod_sparse *F ; Int anz, ncol, nrow, stype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; nrow = A->nrow ; if (nrow <= 1) { /* a 1-by-n sparse matrix must be sorted */ A->sorted = TRUE ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ ncol = A->ncol ; CHOLMOD(allocate_work) (0, MAX (nrow, ncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ anz = CHOLMOD(nnz) (A, Common) ; stype = A->stype ; /* ---------------------------------------------------------------------- */ /* sort the columns of the matrix */ /* ---------------------------------------------------------------------- */ /* allocate workspace for transpose: ncol-by-nrow, same # of nonzeros as A, * sorted, packed, same stype as A, and of the same numeric type as A. */ F = CHOLMOD(allocate_sparse) (ncol, nrow, anz, TRUE, TRUE, stype, A->xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } if (stype != 0) { /* F = A', upper or lower triangular part only */ CHOLMOD(transpose_sym) (A, 1, NULL, F, Common) ; A->packed = TRUE ; /* A = F' */ CHOLMOD(transpose_sym) (F, 1, NULL, A, Common) ; } else { /* F = A' */ CHOLMOD(transpose_unsym) (A, 1, NULL, NULL, 0, F, Common) ; A->packed = TRUE ; /* A = F' */ CHOLMOD(transpose_unsym) (F, 1, NULL, NULL, 0, A, Common) ; } ASSERT (A->sorted && A->packed) ; ASSERT (CHOLMOD(dump_sparse) (A, "Asorted", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* reduce A in size, if needed. This must succeed. */ /* ---------------------------------------------------------------------- */ Ap = A->p ; anz = Ap [ncol] ; ASSERT ((size_t) anz <= A->nzmax) ; CHOLMOD(reallocate_sparse) (anz, A, Common) ; ASSERT (Common->status >= CHOLMOD_OK) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&F, Common) ; return (TRUE) ; } SuiteSparse/CHOLMOD/Core/cholmod_memory.c0000644001170100242450000004137710664627223017131 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_memory ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core memory management routines: * * Primary routines: * ----------------- * cholmod_malloc malloc wrapper * cholmod_free free wrapper * * Secondary routines: * ------------------- * cholmod_calloc calloc wrapper * cholmod_realloc realloc wrapper * cholmod_realloc_multiple realloc wrapper for multiple objects * * The user may make use of these, just like malloc and free. You can even * malloc an object and safely free it with cholmod_free, and visa versa * (except that the memory usage statistics will be corrupted). These routines * do differ from malloc and free. If cholmod_free is given a NULL pointer, * for example, it does nothing (unlike the ANSI free). cholmod_realloc does * not return NULL if given a non-NULL pointer and a nonzero size, even if it * fails (it sets an error code in Common->status instead). * * CHOLMOD keeps track of the amount of memory it has allocated, and so the * cholmod_free routine includes as a parameter the size of the object being * freed. This is only used for memory usage statistics, which are very useful * in finding memory leaks in your program. If you, the user of CHOLMOD, pass * the wrong size, the only consequence is that the memory usage statistics * will be invalid. This will causes assertions to fail if CHOLMOD is * compiled with debugging enabled, but otherwise it will cause no errors. * * The cholmod_free_* routines for each CHOLMOD object keep track of the size * of the blocks they free, so they do not require you to pass their sizes * as a parameter. * * If a block of size zero is requested, these routines allocate a block of * size one instead. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === cholmod_add_size_t =================================================== */ /* ========================================================================== */ /* Safely compute a+b, and check for integer overflow. If overflow occurs, * return 0 and set OK to FALSE. Also return 0 if OK is FALSE on input. */ size_t CHOLMOD(add_size_t) (size_t a, size_t b, int *ok) { size_t s = a + b ; (*ok) = (*ok) && (s >= a) ; return ((*ok) ? s : 0) ; } /* ========================================================================== */ /* === cholmod_mult_size_t ================================================== */ /* ========================================================================== */ /* Safely compute a*k, where k should be small, and check for integer overflow. * If overflow occurs, return 0 and set OK to FALSE. Also return 0 if OK is * FALSE on input. */ size_t CHOLMOD(mult_size_t) (size_t a, size_t k, int *ok) { size_t p = 0, s ; while (*ok) { if (k % 2) { p = p + a ; (*ok) = (*ok) && (p >= a) ; } k = k / 2 ; if (!k) return (p) ; s = a + a ; (*ok) = (*ok) && (s >= a) ; a = s ; } return (0) ; } /* ========================================================================== */ /* === cholmod_malloc ======================================================= */ /* ========================================================================== */ /* Wrapper around malloc routine. Allocates space of size MAX(1,n)*size, where * size is normally a sizeof (...). * * This routine, cholmod_calloc, and cholmod_realloc do not set Common->status * to CHOLMOD_OK on success, so that a sequence of cholmod_malloc's, _calloc's, * or _realloc's can be used. If any of them fails, the Common->status will * hold the most recent error status. * * Usage, for a pointer to int: * * p = cholmod_malloc (n, sizeof (int), Common) * * Uses a pointer to the malloc routine (or its equivalent) defined in Common. */ void *CHOLMOD(malloc) /* returns pointer to the newly malloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ cholmod_common *Common ) { void *p ; size_t s ; int ok = TRUE ; RETURN_IF_NULL_COMMON (NULL) ; if (size == 0) { ERROR (CHOLMOD_INVALID, "sizeof(item) must be > 0") ; p = NULL ; } else if (n >= (Size_max / size) || n >= Int_max) { /* object is too big to allocate without causing integer overflow */ ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; p = NULL ; } else { /* call malloc, or its equivalent */ s = CHOLMOD(mult_size_t) (MAX (1,n), size, &ok) ; p = ok ? ((Common->malloc_memory) (s)) : NULL ; if (p == NULL) { /* failure: out of memory */ ERROR (CHOLMOD_OUT_OF_MEMORY, "out of memory") ; } else { /* success: increment the count of objects allocated */ Common->malloc_count++ ; Common->memory_inuse += (n * size) ; Common->memory_usage = MAX (Common->memory_usage, Common->memory_inuse) ; PRINTM (("cholmod_malloc %p %d cnt: %d inuse %d\n", p, n*size, Common->malloc_count, Common->memory_inuse)) ; } } return (p) ; } /* ========================================================================== */ /* === cholmod_free ========================================================= */ /* ========================================================================== */ /* Wrapper around free routine. Returns NULL, which can be assigned to the * pointer being freed, as in: * * p = cholmod_free (n, sizeof (int), p, Common) ; * * In CHOLMOD, the syntax: * * cholmod_free (n, sizeof (int), p, Common) ; * * is used if p is a local pointer and the routine is returning shortly. * Uses a pointer to the free routine (or its equivalent) defined in Common. * Nothing is freed if the pointer is NULL. */ void *CHOLMOD(free) /* always returns NULL */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to free */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (NULL) ; if (p != NULL) { /* only free the object if the pointer is not NULL */ /* call free, or its equivalent */ (Common->free_memory) (p) ; Common->malloc_count-- ; Common->memory_inuse -= (n * size) ; PRINTM (("cholmod_free %p %d cnt: %d inuse %d\n", p, n*size, Common->malloc_count, Common->memory_inuse)) ; /* This assertion will fail if the user calls cholmod_malloc and * cholmod_free with mismatched memory sizes. It shouldn't fail * otherwise. */ ASSERT (IMPLIES (Common->malloc_count == 0, Common->memory_inuse == 0)); } /* return NULL, and the caller should assign this to p. This avoids * freeing the same pointer twice. */ return (NULL) ; } /* ========================================================================== */ /* === cholmod_calloc ======================================================= */ /* ========================================================================== */ /* Wrapper around calloc routine. * * Uses a pointer to the calloc routine (or its equivalent) defined in Common. * This routine is identical to malloc, except that it zeros the newly allocated * block to zero. */ void *CHOLMOD(calloc) /* returns pointer to the newly calloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ cholmod_common *Common ) { void *p ; RETURN_IF_NULL_COMMON (NULL) ; if (size == 0) { ERROR (CHOLMOD_INVALID, "sizeof(item) must be > 0") ; p = NULL ; } else if (n >= (Size_max / size) || n >= Int_max) { /* object is too big to allocate without causing integer overflow */ ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; p = NULL ; } else { /* call calloc, or its equivalent */ p = (Common->calloc_memory) (MAX (1,n), size) ; if (p == NULL) { /* failure: out of memory */ ERROR (CHOLMOD_OUT_OF_MEMORY, "out of memory") ; } else { /* success: increment the count of objects allocated */ Common->malloc_count++ ; Common->memory_inuse += (n * size) ; Common->memory_usage = MAX (Common->memory_usage, Common->memory_inuse) ; PRINTM (("cholmod_calloc %p %d cnt: %d inuse %d\n", p, n*size, Common->malloc_count, Common->memory_inuse)) ; } } return (p) ; } /* ========================================================================== */ /* === cholmod_realloc ====================================================== */ /* ========================================================================== */ /* Wrapper around realloc routine. Given a pointer p to a block of size * (*n)*size memory, it changes the size of the block pointed to by p to be * MAX(1,nnew)*size in size. It may return a pointer different than p. This * should be used as (for a pointer to int): * * p = cholmod_realloc (nnew, sizeof (int), p, *n, Common) ; * * If p is NULL, this is the same as p = cholmod_malloc (...). * A size of nnew=0 is treated as nnew=1. * * If the realloc fails, p is returned unchanged and Common->status is set * to CHOLMOD_OUT_OF_MEMORY. If successful, Common->status is not modified, * and p is returned (possibly changed) and pointing to a large block of memory. * * Uses a pointer to the realloc routine (or its equivalent) defined in Common. */ void *CHOLMOD(realloc) /* returns pointer to reallocated block */ ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated block */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to realloc */ size_t *n, /* current size on input, nnew on output if successful*/ /* --------------- */ cholmod_common *Common ) { size_t nold = (*n) ; void *pnew ; size_t s ; int ok = TRUE ; RETURN_IF_NULL_COMMON (NULL) ; if (size == 0) { ERROR (CHOLMOD_INVALID, "sizeof(item) must be > 0") ; p = NULL ; } else if (p == NULL) { /* A fresh object is being allocated. */ PRINT1 (("realloc fresh: %d %d\n", nnew, size)) ; p = CHOLMOD(malloc) (nnew, size, Common) ; *n = (p == NULL) ? 0 : nnew ; } else if (nold == nnew) { /* Nothing to do. Do not change p or n. */ PRINT1 (("realloc nothing: %d %d\n", nnew, size)) ; } else if (nnew >= (Size_max / size) || nnew >= Int_max) { /* failure: nnew is too big. Do not change p or n. */ ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; } else { /* The object exists, and is changing to some other nonzero size. */ /* call realloc, or its equivalent */ PRINT1 (("realloc : %d to %d, %d\n", nold, nnew, size)) ; pnew = NULL ; s = CHOLMOD(mult_size_t) (MAX (1,nnew), size, &ok) ; pnew = ok ? ((Common->realloc_memory) (p, s)) : NULL ; if (pnew == NULL) { /* Do not change p, since it still points to allocated memory */ if (nnew <= nold) { /* The attempt to reduce the size of the block from n to * nnew has failed. The current block is not modified, so * pretend to succeed, but do not change p. Do change * CHOLMOD's notion of the size of the block, however. */ *n = nnew ; PRINTM (("nnew <= nold failed, pretend to succeed\n")) ; PRINTM (("cholmod_realloc_old: %p %d cnt: %d inuse %d\n" "cholmod_realloc_new: %p %d cnt: %d inuse %d\n", p, nold*size, Common->malloc_count-1, Common->memory_inuse - nold*size, p, nnew*size, Common->malloc_count, Common->memory_inuse + (nnew-nold)*size)) ; Common->memory_inuse += ((nnew-nold) * size) ; } else { /* Increasing the size of the block has failed. * Do not change n. */ ERROR (CHOLMOD_OUT_OF_MEMORY, "out of memory") ; } } else { /* success: return revised p and change the size of the block */ PRINTM (("cholmod_realloc_old: %p %d cnt: %d inuse %d\n" "cholmod_realloc_new: %p %d cnt: %d inuse %d\n", p, nold*size, Common->malloc_count-1, Common->memory_inuse - nold*size, pnew, nnew*size, Common->malloc_count, Common->memory_inuse + (nnew-nold)*size)) ; p = pnew ; *n = nnew ; Common->memory_inuse += ((nnew-nold) * size) ; } Common->memory_usage = MAX (Common->memory_usage, Common->memory_inuse); } return (p) ; } /* ========================================================================== */ /* === cholmod_realloc_multiple ============================================= */ /* ========================================================================== */ /* reallocate multiple blocks of memory, all of the same size (up to two integer * and two real blocks). Either reallocations all succeed, or all are returned * in the original size (they are freed if the original size is zero). The nnew * blocks are of size 1 or more. */ int CHOLMOD(realloc_multiple) ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated blocks */ int nint, /* number of int/UF_long blocks */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* ---- in/out --- */ void **I, /* int or UF_long block */ void **J, /* int or UF_long block */ void **X, /* complex or double block */ void **Z, /* zomplex case only: double block */ size_t *nold_p, /* current size of the I,J,X,Z blocks on input, * nnew on output if successful */ /* --------------- */ cholmod_common *Common ) { double *xx, *zz ; size_t i, j, x, z, nold ; RETURN_IF_NULL_COMMON (FALSE) ; if (xtype < CHOLMOD_PATTERN || xtype > CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "invalid xtype") ; return (FALSE) ; } nold = *nold_p ; if (nint < 1 && xtype == CHOLMOD_PATTERN) { /* nothing to do */ return (TRUE) ; } i = nold ; j = nold ; x = nold ; z = nold ; if (nint > 0) { *I = CHOLMOD(realloc) (nnew, sizeof (Int), *I, &i, Common) ; } if (nint > 1) { *J = CHOLMOD(realloc) (nnew, sizeof (Int), *J, &j, Common) ; } switch (xtype) { case CHOLMOD_REAL: *X = CHOLMOD(realloc) (nnew, sizeof (double), *X, &x, Common) ; break ; case CHOLMOD_COMPLEX: *X = CHOLMOD(realloc) (nnew, 2*sizeof (double), *X, &x, Common) ; break ; case CHOLMOD_ZOMPLEX: *X = CHOLMOD(realloc) (nnew, sizeof (double), *X, &x, Common) ; *Z = CHOLMOD(realloc) (nnew, sizeof (double), *Z, &z, Common) ; break ; } if (Common->status < CHOLMOD_OK) { /* one or more realloc's failed. Resize all back down to nold. */ if (nold == 0) { if (nint > 0) { *I = CHOLMOD(free) (i, sizeof (Int), *I, Common) ; } if (nint > 1) { *J = CHOLMOD(free) (j, sizeof (Int), *J, Common) ; } switch (xtype) { case CHOLMOD_REAL: *X = CHOLMOD(free) (x, sizeof (double), *X, Common) ; break ; case CHOLMOD_COMPLEX: *X = CHOLMOD(free) (x, 2*sizeof (double), *X, Common) ; break ; case CHOLMOD_ZOMPLEX: *X = CHOLMOD(free) (x, sizeof (double), *X, Common) ; *Z = CHOLMOD(free) (x, sizeof (double), *Z, Common) ; break ; } } else { if (nint > 0) { *I = CHOLMOD(realloc) (nold, sizeof (Int), *I, &i, Common) ; } if (nint > 1) { *J = CHOLMOD(realloc) (nold, sizeof (Int), *J, &j, Common) ; } switch (xtype) { case CHOLMOD_REAL: *X = CHOLMOD(realloc) (nold, sizeof (double), *X, &x, Common) ; break ; case CHOLMOD_COMPLEX: *X = CHOLMOD(realloc) (nold, 2*sizeof (double), *X, &x, Common) ; break ; case CHOLMOD_ZOMPLEX: *X = CHOLMOD(realloc) (nold, sizeof (double), *X, &x, Common) ; *Z = CHOLMOD(realloc) (nold, sizeof (double), *Z, &z, Common) ; break ; } } return (FALSE) ; } if (nold == 0) { /* New space was allocated. Clear the first entry so that valgrind * doesn't complain about its access in change_complexity * (Core/cholmod_complex.c). */ xx = *X ; zz = *Z ; switch (xtype) { case CHOLMOD_REAL: xx [0] = 0 ; break ; case CHOLMOD_COMPLEX: xx [0] = 0 ; xx [1] = 0 ; break ; case CHOLMOD_ZOMPLEX: xx [0] = 0 ; zz [0] = 0 ; break ; } } /* all realloc's succeeded, change size to reflect realloc'ed size. */ *nold_p = nnew ; return (TRUE) ; } SuiteSparse/CHOLMOD/Core/t_cholmod_change_factor.c0000644001170100242450000003756610537777450020743 0ustar davisfac/* ========================================================================== */ /* === Core/t_cholmod_change_factor ========================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_change_factor. All xtypes supported. */ #include "cholmod_template.h" /* ========================================================================== */ /* === t_change_simplicial_numeric ========================================== */ /* ========================================================================== */ static void TEMPLATE (change_simplicial_numeric) ( cholmod_factor *L, Int to_ll, Int to_packed, Int *newLi, double *newLx, double *newLz, Int lnz, Int grow, double grow1, Int grow2, Int make_ll, Int make_monotonic, Int make_ldl, cholmod_common *Common ) { double xlen, dj [1], ljj [1], lj2 [1] ; double *Lx, *Lz ; Int *Lp, *Li, *Lnz ; Int n, j, len, pnew, pold, k, p, pend ; n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lnz = L->nz ; if (make_ll) { L->minor = n ; } if (make_monotonic) { /* ------------------------------------------------------------------ */ /* reorder the columns to make them monotonic */ /* ------------------------------------------------------------------ */ pnew = 0 ; for (j = 0 ; j < n ; j++) { /* copy and pack column j */ len = Lnz [j] ; PRINT2 (("j: "ID" Lnz[j] "ID" len "ID" p "ID"\n", j, Lnz [j], len, pnew)) ; pold = Lp [j] ; ASSERT (Li [pold] == j) ; if (make_ll) { /* ---------------------------------------------------------- */ /* copy and convert LDL' to LL' */ /* ---------------------------------------------------------- */ /* dj = Lx [pold] ; */ ASSIGN_REAL (dj,0, Lx,pold) ; if (IS_LE_ZERO (dj [0])) { /* Conversion has failed; matrix is not positive definite. * Do not modify the column so that the LDL' factorization * can be restored if desired, by converting back to LDL'. * Continue the conversion, but flag the error. */ if (L->minor == (size_t) n) { ERROR (CHOLMOD_NOT_POSDEF, "L not positive definite") ; L->minor = j ; } for (k = 0 ; k < len ; k++) { newLi [pnew + k] = Li [pold + k] ; /* newLx [pnew + k] = Lx [pold + k] ; */ ASSIGN (newLx, newLz, pnew+k, Lx, Lz, pold+k) ; } } else { ljj [0] = sqrt (dj [0]) ; newLi [pnew] = j ; /* newLx [pnew] = ljj ; */ ASSIGN_REAL (newLx, pnew, ljj, 0) ; CLEAR_IMAG (newLx, newLz, pnew) ; for (k = 1 ; k < len ; k++) { newLi [pnew + k] = Li [pold + k] ; /* newLx [pnew + k] = Lx [pold + k] * ljj ; */ MULT_REAL (newLx, newLz, pnew+k, Lx, Lz, pold+k, ljj,0); } } } else if (make_ldl) { /* ---------------------------------------------------------- */ /* copy and convert LL' to LDL' */ /* ---------------------------------------------------------- */ /* ljj = Lx [pold] ; */ ASSIGN_REAL (ljj, 0, Lx, pold) ; if (ljj [0] <= 0) { /* matrix is not positive-definite; copy column as-is */ for (k = 0 ; k < len ; k++) { newLi [pnew + k] = Li [pold + k] ; /* newLx [pnew + k] = Lx [pold + k] ; */ ASSIGN (newLx, newLz, pnew+k, Lx, Lz, pold+k) ; } } else { newLi [pnew] = j ; /* newLx [pnew] = ljj*ljj ; */ lj2 [0] = ljj [0] * ljj [0] ; ASSIGN_REAL (newLx, pnew, lj2, 0) ; CLEAR_IMAG (newLx, newLz, pnew) ; for (k = 1 ; k < len ; k++) { newLi [pnew + k] = Li [pold + k] ; /* newLx [pnew + k] = Lx [pold + k] / ljj ; */ DIV_REAL (newLx, newLz, pnew+k, Lx, Lz, pold+k, ljj,0) ; } } } else { /* ---------------------------------------------------------- */ /* copy and leave LL' or LDL' as-is */ /* ---------------------------------------------------------- */ for (k = 0 ; k < len ; k++) { newLi [pnew + k] = Li [pold + k] ; /* newLx [pnew + k] = Lx [pold + k] ; */ ASSIGN (newLx, newLz, pnew+k, Lx, Lz, pold+k) ; } } Lp [j] = pnew ; /* compute len in double to avoid integer overflow */ if (grow) { xlen = (double) len ; xlen = grow1 * xlen + grow2 ; xlen = MIN (xlen, n-j) ; len = (Int) xlen ; } ASSERT (len >= Lnz [j] && len <= n-j) ; pnew += len ; ASSERT (pnew > 0) ; /* integer overflow case already covered */ } Lp [n] = pnew ; PRINT1 (("final pnew = "ID", lnz "ID" lnzmax %g\n", pnew, lnz, (double) L->nzmax)) ; ASSERT (pnew <= lnz) ; /* free the old L->i and L->x and replace with the new ones */ CHOLMOD(free) (L->nzmax, sizeof (Int), L->i, Common) ; #ifdef REAL CHOLMOD(free) (L->nzmax, sizeof (double), L->x, Common) ; #elif defined (COMPLEX) CHOLMOD(free) (L->nzmax, 2*sizeof (double), L->x, Common) ; #else CHOLMOD(free) (L->nzmax, sizeof (double), L->x, Common) ; CHOLMOD(free) (L->nzmax, sizeof (double), L->z, Common) ; #endif L->i = newLi ; L->x = newLx ; L->z = newLz ; L->nzmax = lnz ; /* reconstruct the link list */ natural_list (L) ; } else if (to_packed) { /* ------------------------------------------------------------------ */ /* already monotonic, just pack the columns of L */ /* ------------------------------------------------------------------ */ pnew = 0 ; if (make_ll) { /* -------------------------------------------------------------- */ /* pack and convert LDL' to LL' */ /* -------------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { /* pack column j */ pold = Lp [j] ; len = Lnz [j] ; ASSERT (len > 0) ; ASSERT (Li [pold] == j) ; PRINT2 (("col "ID" pnew "ID" pold "ID"\n", j, pnew, pold)) ; /* dj = Lx [pold] ; */ ASSIGN_REAL (dj,0, Lx,pold) ; if (IS_LE_ZERO (dj [0])) { /* Conversion has failed; matrix is not positive definite. * Do not modify the column so that the LDL' factorization * can be restored if desired, by converting back to LDL'. * Continue the conversion, but flag the error. */ if (L->minor == (size_t) n) { ERROR (CHOLMOD_NOT_POSDEF, "L not positive definite") ; L->minor = j ; } for (k = 0 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; /* Lx [pnew + k] = Lx [pold + k] ; */ ASSIGN (Lx, Lz, pnew+k, Lx, Lz, pold+k) ; } } else { ljj [0] = sqrt (dj [0]) ; Li [pnew] = j ; /* Lx [pnew] = ljj ; */ ASSIGN_REAL (Lx, pnew, ljj, 0) ; CLEAR_IMAG (Lx, Lz, pnew) ; for (k = 1 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; /* Lx [pnew + k] = Lx [pold + k] * ljj ; */ MULT_REAL (Lx, Lz, pnew+k, Lx, Lz, pold+k, ljj,0) ; } } Lp [j] = pnew ; pnew += len ; } } else if (make_ldl) { /* -------------------------------------------------------------- */ /* pack and convert LL' to LDL' */ /* -------------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { /* pack column j */ pold = Lp [j] ; len = Lnz [j] ; /* ljj = Lx [pold] ; */ ASSIGN_REAL (ljj, 0, Lx, pold) ; ASSERT (len > 0) ; PRINT2 (("col "ID" pnew "ID" pold "ID"\n", j, pnew, pold)) ; if (ljj [0] <= 0) { /* matrix is not positive-definite; pack column as-is */ for (k = 0 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; /* Lx [pnew + k] = Lx [pold + k] ; */ ASSIGN (Lx, Lz, pnew+k, Lx, Lz, pold+k) ; } } else { Li [pnew] = Li [pold] ; /* Lx [pnew] = ljj*ljj ; */ lj2 [0] = ljj [0] * ljj [0] ; ASSIGN_REAL (Lx, pnew, lj2, 0) ; CLEAR_IMAG (Lx, Lz, pnew) ; for (k = 1 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; /* Lx [pnew + k] = Lx [pold + k] / ljj ; */ DIV_REAL (Lx, Lz, pnew+k, Lx, Lz, pold+k, ljj,0) ; } } Lp [j] = pnew ; pnew += len ; } } else { /* ---------------------------------------------------------- */ /* pack and leave LL' or LDL' as-is */ /* ---------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { /* pack column j */ pold = Lp [j] ; len = Lnz [j] ; ASSERT (len > 0) ; PRINT2 (("col "ID" pnew "ID" pold "ID"\n", j, pnew, pold)) ; if (pnew < pold) { PRINT2 ((" pack this column\n")) ; for (k = 0 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; /* Lx [pnew + k] = Lx [pold + k] ; */ ASSIGN (Lx, Lz, pnew+k, Lx, Lz, pold+k) ; } Lp [j] = pnew ; } pnew += len ; } } Lp [n] = pnew ; PRINT2 (("Lp [n] = "ID"\n", pnew)) ; } else if (make_ll) { /* ------------------------------------------------------------------ */ /* convert LDL' to LL', but do so in-place */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < n ; j++) { p = Lp [j] ; pend = p + Lnz [j] ; /* dj = Lx [p] ; */ ASSIGN_REAL (dj,0, Lx,p) ; if (IS_LE_ZERO (dj [0])) { /* Conversion has failed; matrix is not positive definite. * Do not modify the column so that the LDL' factorization * can be restored if desired, by converting back to LDL'. * Continue the conversion, but flag the error. */ if (L->minor == (size_t) n) { ERROR (CHOLMOD_NOT_POSDEF, "L not positive definite") ; L->minor = j ; } } else { ljj [0] = sqrt (dj [0]) ; /* Lx [p] = ljj ; */ ASSIGN_REAL (Lx,p, ljj,0) ; CLEAR_IMAG (Lx, Lz, p) ; for (p++ ; p < pend ; p++) { /* Lx [p] *= ljj ; */ MULT_REAL (Lx,Lz,p, Lx,Lz,p, ljj,0) ; } } } } else if (make_ldl) { /* ------------------------------------------------------------------ */ /* convert LL' to LDL', but do so in-place */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < n ; j++) { p = Lp [j] ; pend = p + Lnz [j] ; /* ljj = Lx [p] ; */ ASSIGN_REAL (ljj, 0, Lx, p) ; if (ljj [0] > 0) { /* Lx [p] = ljj*ljj ; */ lj2 [0] = ljj [0] * ljj [0] ; ASSIGN_REAL (Lx, p, lj2, 0) ; CLEAR_IMAG (Lx, Lz, p) ; for (p++ ; p < pend ; p++) { /* Lx [p] /= ljj ; */ DIV_REAL (Lx,Lz,p, Lx,Lz,p, ljj,0) ; } } } } L->is_ll = to_ll ; DEBUG (CHOLMOD(dump_factor) (L, "done change simplicial numeric", Common)) ; } /* ========================================================================== */ /* === t_ll_super_to_simplicial_numeric ===================================== */ /* ========================================================================== */ /* A supernodal L can only be real or complex, not zomplex */ #ifndef ZOMPLEX static void TEMPLATE (ll_super_to_simplicial_numeric) ( cholmod_factor *L, Int to_packed, Int to_ll, cholmod_common *Common ) { double ljj [1], lj2 [1] ; double *Lx ; Int *Ls, *Lpi, *Lpx, *Super, *Lp, *Li, *Lnz ; Int n, lnz, s, nsuper, p, psi, psx, psend, nsrow, nscol, ii, jj, j, k1, k2, q ; L->is_ll = to_ll ; Lp = L->p ; Li = L->i ; Lx = L->x ; Lnz = L->nz ; lnz = L->nzmax ; n = L->n ; nsuper = L->nsuper ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Super = L->super ; p = 0 ; for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; for (jj = 0 ; jj < nscol ; jj++) { /* column j of L starts here */ j = jj + k1 ; if (to_ll) { if (to_packed) { /* ------------------------------------------------------ */ /* convert to LL' packed */ /* ------------------------------------------------------ */ Lp [j] = p ; PRINT2 (("Col j "ID" p "ID"\n", j, p)) ; for (ii = jj ; ii < nsrow ; ii++) { /* get L(i,j) from supernode and store in column j */ ASSERT (p < (Int) (L->xsize) && p <= psx+ii+jj*nsrow) ; Li [p] = Ls [psi + ii] ; /* Lx [p] = Lx [psx + ii + jj*nsrow] ; */ q = psx + ii + jj*nsrow ; ASSIGN (Lx,-,p, Lx,-,q) ; PRINT2 ((" i "ID" ", Li [p])) ; XPRINT2 (Lx,-,q) ; PRINT2 (("\n")) ; p++ ; } Lnz [j] = p - Lp [j] ; } else { /* ------------------------------------------------------ */ /* convert to LL' unpacked */ /* ------------------------------------------------------ */ p = psx + jj + jj*nsrow ; Lp [j] = p ; Li [p] = j ; Lnz [j] = nsrow - jj ; p++ ; for (ii = jj + 1 ; ii < nsrow ; ii++) { /* get L(i,j) from supernode and store in column j */ Li [psx + ii + jj*nsrow] = Ls [psi + ii] ; } } } else { if (to_packed) { /* ------------------------------------------------------ */ /* convert to LDL' packed */ /* ------------------------------------------------------ */ Lp [j] = p ; PRINT2 (("Col j "ID" p "ID"\n", Lp [j], p)) ; /* ljj = Lx [psx + jj + jj*nsrow] ; */ ASSIGN_REAL (ljj, 0, Lx, psx + jj + jj*nsrow) ; if (ljj [0] <= 0) { /* the matrix is not positive definite; do not divide */ /* Lx [p] = ljj ; */ ASSIGN_REAL (Lx, p, ljj, 0) ; CLEAR_IMAG (Lx, Lz, p) ; ljj [0] = 1 ; } else { lj2 [0] = ljj [0] * ljj [0] ; /* Lx [p] = ljj*ljj ; */ ASSIGN_REAL (Lx, p, lj2, 0) ; CLEAR_IMAG (Lx, Lz, p) ; } Li [p] = j ; p++ ; for (ii = jj + 1 ; ii < nsrow ; ii++) { /* get L(i,j) from supernode and store in column j */ ASSERT (p < (Int) (L->xsize) && p <= psx+ii+jj*nsrow) ; Li [p] = Ls [psi + ii] ; /* Lx [p] = Lx [psx + ii + jj*nsrow] / ljj ; */ q = psx + ii + jj*nsrow ; DIV_REAL (Lx, Lz, p, Lx, Lz, q, ljj,0) ; PRINT2 ((" i "ID" %g\n", Li [p], Lx [p])) ; p++ ; } Lnz [j] = p - Lp [j] ; } else { /* ------------------------------------------------------ */ /* convert to LDL' unpacked */ /* ------------------------------------------------------ */ p = psx + jj + jj*nsrow ; Lp [j] = p ; /* ljj = Lx [p] ; */ ASSIGN_REAL (ljj,0, Lx,p) ; if (ljj [0] <= 0) { /* the matrix is not positive definite; do not divide */ /* Lx [p] = ljj ; */ ASSIGN_REAL (Lx, p, ljj, 0) ; CLEAR_IMAG (Lx, Lz, p) ; ljj [0] = 1 ; } else { lj2 [0] = ljj [0] * ljj [0] ; /* Lx [p] = ljj*ljj ; */ ASSIGN_REAL (Lx, p, lj2, 0) ; CLEAR_IMAG (Lx, Lz, p) ; } Li [p] = j ; Lnz [j] = nsrow - jj ; p++ ; for (ii = jj + 1 ; ii < nsrow ; ii++) { /* get L(i,j) from supernode and store in column j */ Li [psx + ii + jj*nsrow] = Ls [psi + ii] ; /* Lx [psx + ii + jj*nsrow] /= ljj ; */ q = psx + ii + jj*nsrow ; DIV_REAL (Lx, Lz, q, Lx, Lz, q, ljj,0) ; } } } } } if (to_packed) { Lp [n] = p ; PRINT1 (("Final Lp "ID" n "ID" lnz "ID"\n", p, n, lnz)) ; ASSERT (Lp [n] == lnz) ; ASSERT (lnz <= (Int) (L->xsize)) ; /* reduce size of L->x to match L->i. This cannot fail. */ L->x = CHOLMOD(realloc) (lnz, #ifdef COMPLEX 2 * #endif sizeof (double), L->x, &(L->xsize), Common) ; ASSERT (lnz == (Int) (L->xsize)) ; Common->status = CHOLMOD_OK ; } else { Lp [n] = Lpx [nsuper] ; ASSERT (MAX (1,Lp [n]) == (Int) (L->xsize)) ; ASSERT (MAX (1,Lp [n]) == (Int) (L->nzmax)) ; } } #endif #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Core/cholmod_band.c0000644001170100242450000002327710537777406016534 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_band ==================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = tril (triu (A,k1), k2) * * C is a matrix consisting of the diagonals of A from k1 to k2. * * k=0 is the main diagonal of A, k=1 is the superdiagonal, k=-1 is the * subdiagonal, and so on. If A is m-by-n, then: * * k1=-m C = tril (A,k2) * k2=n C = triu (A,k1) * k1=0 and k2=0 C = diag(A), except C is a matrix, not a vector * * Values of k1 and k2 less than -m are treated as -m, and values greater * than n are treated as n. * * A can be of any symmetry (upper, lower, or unsymmetric); C is returned in * the same form, and packed. If A->stype > 0, entries in the lower * triangular part of A are ignored, and the opposite is true if * A->stype < 0. If A has sorted columns, then so does C. * C has the same size as A. * * If inplace is TRUE, then the matrix A is modified in place. * Only packed matrices can be converted in place. * * C can be returned as a numerical valued matrix (if A has numerical values * and mode > 0), as a pattern-only (mode == 0), or as a pattern-only but with * the diagonal entries removed (mode < 0). * * workspace: none * * A can have an xtype of pattern or real. Complex and zomplex cases supported * only if mode <= 0 (in which case the numerical values are ignored). */ #include "cholmod_internal.h" #include "cholmod_core.h" static cholmod_sparse *band /* returns C, or NULL if failure */ ( /* ---- input or in/out if inplace is TRUE --- */ cholmod_sparse *A, /* ---- input ---- */ UF_long k1, /* ignore entries below the k1-st diagonal */ UF_long k2, /* ignore entries above the k2-nd diagonal */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diagonal) */ int inplace, /* if TRUE, then convert A in place */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Cx ; Int packed, nz, j, p, pend, i, ncol, nrow, jlo, jhi, ilo, ihi, sorted, values, diag ; Int *Ap, *Anz, *Ai, *Cp, *Ci ; cholmod_sparse *C ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; values = (mode > 0) && (A->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; packed = A->packed ; diag = (mode >= 0) ; if (inplace && !packed) { /* cannot operate on an unpacked matrix in place */ ERROR (CHOLMOD_INVALID, "cannot operate on unpacked matrix in-place") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ PRINT1 (("k1 %ld k2 %ld\n", k1, k2)) ; Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; sorted = A->sorted ; if (A->stype > 0) { /* ignore any entries in strictly lower triangular part of A */ k1 = MAX (k1, 0) ; } if (A->stype < 0) { /* ignore any entries in strictly upper triangular part of A */ k2 = MIN (k2, 0) ; } ncol = A->ncol ; nrow = A->nrow ; /* ensure k1 and k2 are in the range -nrow to +ncol to * avoid possible integer overflow if k1 and k2 are huge */ k1 = MAX (-nrow, k1) ; k1 = MIN (k1, ncol) ; k2 = MAX (-nrow, k2) ; k2 = MIN (k2, ncol) ; /* consider columns jlo to jhi. columns outside this range are empty */ jlo = MAX (k1, 0) ; jhi = MIN (k2+nrow, ncol) ; if (k1 > k2) { /* nothing to do */ jlo = ncol ; jhi = ncol ; } /* ---------------------------------------------------------------------- */ /* allocate C, or operate on A in place */ /* ---------------------------------------------------------------------- */ if (inplace) { /* convert A in place */ C = A ; } else { /* count the number of entries in the result C */ nz = 0 ; if (sorted) { for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i > ihi) { break ; } if (i >= ilo && (diag || i != j)) { nz++ ; } } } } else { for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= ilo && i <= ihi && (diag || i != j)) { nz++ ; } } } } /* allocate C; A will not be modified. C is sorted if A is sorted */ C = CHOLMOD(allocate_sparse) (A->nrow, ncol, nz, sorted, TRUE, A->stype, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* construct C */ /* ---------------------------------------------------------------------- */ /* columns 0 to jlo-1 are empty */ for (j = 0 ; j < jlo ; j++) { Cp [j] = 0 ; } nz = 0 ; if (sorted) { if (values) { /* pattern and values */ ASSERT (diag) ; for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i > ihi) { break ; } if (i >= ilo) { Ci [nz] = i ; Cx [nz] = Ax [p] ; nz++ ; } } } } else { /* pattern only, perhaps with no diagonal */ for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i > ihi) { break ; } if (i >= ilo && (diag || i != j)) { Ci [nz++] = i ; } } } } } else { if (values) { /* pattern and values */ ASSERT (diag) ; for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= ilo && i <= ihi) { Ci [nz] = i ; Cx [nz] = Ax [p] ; nz++ ; } } } } else { /* pattern only, perhaps with no diagonal */ for (j = jlo ; j < jhi ; j++) { ilo = j-k2 ; ihi = j-k1 ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= ilo && i <= ihi && (diag || i != j)) { Ci [nz++] = i ; } } } } } /* columns jhi to ncol-1 are empty */ for (j = jhi ; j <= ncol ; j++) { Cp [j] = nz ; } /* ---------------------------------------------------------------------- */ /* reduce A in size if done in place */ /* ---------------------------------------------------------------------- */ if (inplace) { /* free the unused parts of A, and reduce A->i and A->x in size */ ASSERT (MAX (1,nz) <= A->nzmax) ; CHOLMOD(reallocate_sparse) (nz, A, Common) ; ASSERT (Common->status >= CHOLMOD_OK) ; } /* ---------------------------------------------------------------------- */ /* return the result C */ /* ---------------------------------------------------------------------- */ DEBUG (i = CHOLMOD(dump_sparse) (C, "band", Common)) ; ASSERT (IMPLIES (mode < 0, i == 0)) ; return (C) ; } /* ========================================================================== */ /* === cholmod_band ========================================================= */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(band) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to extract band matrix from */ UF_long k1, /* ignore entries below the k1-st diagonal */ UF_long k2, /* ignore entries above the k2-nd diagonal */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* --------------- */ cholmod_common *Common ) { return (band (A, k1, k2, mode, FALSE, Common)) ; } /* ========================================================================== */ /* === cholmod_band_inplace ================================================= */ /* ========================================================================== */ int CHOLMOD(band_inplace) ( /* ---- input ---- */ UF_long k1, /* ignore entries below the k1-st diagonal */ UF_long k2, /* ignore entries above the k2-nd diagonal */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix from which entries not in band are removed */ /* --------------- */ cholmod_common *Common ) { return (band (A, k1, k2, mode, TRUE, Common) != NULL) ; } SuiteSparse/CHOLMOD/Core/cholmod_copy.c0000644001170100242450000002737010537777421016575 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_copy ==================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = A, which allocates C and copies A into C, with possible change of * stype. The diagonal can optionally be removed. The numerical entries * can optionally be copied. This routine differs from cholmod_copy_sparse, * which makes an exact copy of a sparse matrix. * * A can be of any type (packed/unpacked, upper/lower/unsymmetric). C is * packed and can be of any stype (upper/lower/unsymmetric), except that if * A is rectangular C can only be unsymmetric. If the stype of A and C * differ, then the appropriate conversion is made. * * Symmetry of A (A->stype): * <0: lower: assume A is symmetric with just tril(A); the rest of A is ignored * 0 unsym: assume A is unsymmetric; consider all entries in A * >0 upper: assume A is symmetric with just triu(A); the rest of A is ignored * * Symmetry of C (stype parameter): * <0 lower: return just tril(C) * 0 unsym: return all of C * >0 upper: return just triu(C) * * In MATLAB: Using cholmod_copy: * ---------- ---------------------------- * C = A ; A unsymmetric, C unsymmetric * C = tril (A) ; A unsymmetric, C lower * C = triu (A) ; A unsymmetric, C upper * U = triu (A) ; L = tril (U',-1) ; C = L+U ; A upper, C unsymmetric * C = triu (A)' ; A upper, C lower * C = triu (A) ; A upper, C upper * L = tril (A) ; U = triu (L',1) ; C = L+U ; A lower, C unsymmetric * C = tril (A) ; A lower, C lower * C = tril (A)' ; A lower, C upper * * workspace: Iwork (max (nrow,ncol)) * * A can have an xtype of pattern or real. Complex and zomplex cases only * supported when mode <= 0 (in which case the numerical values are ignored). */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === copy_sym_to_unsym ==================================================== */ /* ========================================================================== */ /* Construct an unsymmetric copy of a symmetric sparse matrix. This does the * work for as C = cholmod_copy (A, 0, mode, Common) when A is symmetric. * In this case, extra space can be added to C. */ static cholmod_sparse *copy_sym_to_unsym ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) * -2: pattern only, no diagonal, add 50% + n extra * space to C */ /* --------------- */ cholmod_common *Common ) { double aij ; double *Ax, *Cx ; Int *Ap, *Ai, *Anz, *Cp, *Ci, *Wj, *Iwork ; cholmod_sparse *C ; Int nrow, ncol, nz, packed, j, p, pend, i, pc, up, lo, values, diag, astype, extra ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; packed = A->packed ; values = (mode > 0) && (A->xtype != CHOLMOD_PATTERN) ; diag = (mode >= 0) ; astype = SIGN (A->stype) ; up = (astype > 0) ; lo = (astype < 0) ; ASSERT (astype != 0) ; /* ---------------------------------------------------------------------- */ /* create an unsymmetric copy of a symmetric matrix */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Wj = Iwork ; /* size ncol (i/i/l) */ /* In MATLAB notation, for converting a symmetric/upper matrix: * U = triu (A) ; * L = tril (U',-1) ; * C = L + U ; * * For converting a symmetric/lower matrix to unsymmetric: * L = tril (A) ; * U = triu (L',1) ; * C = L + U ; */ ASSERT (up || lo) ; PRINT1 (("copy: convert symmetric to unsym\n")) ; /* count the number of entries in each column of C */ for (j = 0 ; j < ncol ; j++) { Wj [j] = 0 ; } for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* the diagonal entry A(i,i) will appear just once * (unless it is excluded with mode < 0) */ if (diag) { Wj [j]++ ; } } else if ((up && i < j) || (lo && i > j)) { /* upper case: A(i,j) is in the strictly upper part; * A(j,i) will be added to the strictly lower part of C. * lower case is the opposite. */ Wj [j]++ ; Wj [i]++ ; } } } nz = 0 ; for (j = 0 ; j < ncol ; j++) { nz += Wj [j] ; } extra = (mode == -2) ? (nz/2 + ncol) : 0 ; /* allocate C. C is sorted if and only if A is sorted */ C = CHOLMOD(allocate_sparse) (nrow, ncol, nz + extra, A->sorted, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* construct the column pointers for C */ p = 0 ; for (j = 0 ; j < ncol ; j++) { Cp [j] = p ; p += Wj [j] ; } Cp [ncol] = p ; for (j = 0 ; j < ncol ; j++) { Wj [j] = Cp [j] ; } /* construct C */ if (values) { /* pattern and values */ ASSERT (diag) ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; aij = Ax [p] ; if (i == j) { /* add diagonal entry A(i,i) to column i */ pc = Wj [i]++ ; Ci [pc] = i ; Cx [pc] = aij ; } else if ((up && i < j) || (lo && i > j)) { /* add A(i,j) to column j */ pc = Wj [j]++ ; Ci [pc] = i ; Cx [pc] = aij ; /* add A(j,i) to column i */ pc = Wj [i]++ ; Ci [pc] = j ; Cx [pc] = aij ; } } } } else { /* pattern only, possibly excluding the diagonal */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* add diagonal entry A(i,i) to column i * (unless it is excluded with mode < 0) */ if (diag) { Ci [Wj [i]++] = i ; } } else if ((up && i < j) || (lo && i > j)) { /* add A(i,j) to column j */ Ci [Wj [j]++] = i ; /* add A(j,i) to column i */ Ci [Wj [i]++] = j ; } } } } /* ---------------------------------------------------------------------- */ /* return the result */ /* ---------------------------------------------------------------------- */ DEBUG (i = CHOLMOD(dump_sparse) (C, "copy_sym_to_unsym", Common)) ; PRINT1 (("mode %d nnzdiag "ID"\n", mode, i)) ; ASSERT (IMPLIES (mode < 0, i == 0)) ; return (C) ; } /* ========================================================================== */ /* === cholmod_copy ========================================================= */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(copy) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ int stype, /* requested stype of C */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *C ; Int nrow, ncol, up, lo, values, diag, astype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; values = (mode > 0) && (A->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; nrow = A->nrow ; ncol = A->ncol ; if ((stype || A->stype) && nrow != ncol) { /* inputs invalid */ ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(allocate_work) (0, MAX (nrow,ncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ diag = (mode >= 0) ; astype = SIGN (A->stype) ; stype = SIGN (stype) ; up = (astype > 0) ; lo = (astype < 0) ; /* ---------------------------------------------------------------------- */ /* copy the matrix */ /* ---------------------------------------------------------------------- */ if (astype == stype) { /* ------------------------------------------------------------------ */ /* symmetry of A and C are the same */ /* ------------------------------------------------------------------ */ /* copy A into C, keeping the same symmetry. If A is symmetric * entries in the ignored part of A are not copied into C */ C = CHOLMOD(band) (A, -nrow, ncol, mode, Common) ; } else if (!astype) { /* ------------------------------------------------------------------ */ /* convert unsymmetric matrix A into a symmetric matrix C */ /* ------------------------------------------------------------------ */ if (stype > 0) { /* C = triu (A) */ C = CHOLMOD(band) (A, 0, ncol, mode, Common) ; } else { /* C = tril (A) */ C = CHOLMOD(band) (A, -nrow, 0, mode, Common) ; } if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } C->stype = stype ; } else if (astype == -stype) { /* ------------------------------------------------------------------ */ /* transpose a symmetric matrix */ /* ------------------------------------------------------------------ */ /* converting upper to lower or lower to upper */ /* workspace: Iwork (nrow) */ C = CHOLMOD(transpose) (A, values, Common) ; if (!diag) { /* remove diagonal, if requested */ CHOLMOD(band_inplace) (-nrow, ncol, -1, C, Common) ; } } else { /* ------------------------------------------------------------------ */ /* create an unsymmetric copy of a symmetric matrix */ /* ------------------------------------------------------------------ */ C = copy_sym_to_unsym (A, mode, Common) ; } /* ---------------------------------------------------------------------- */ /* return if error */ /* ---------------------------------------------------------------------- */ if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } /* ---------------------------------------------------------------------- */ /* return the result */ /* ---------------------------------------------------------------------- */ DEBUG (diag = CHOLMOD(dump_sparse) (C, "copy", Common)) ; PRINT1 (("mode %d nnzdiag "ID"\n", mode, diag)) ; ASSERT (IMPLIES (mode < 0, diag == 0)) ; return (C) ; } SuiteSparse/CHOLMOD/Core/cholmod_factor.c0000644001170100242450000006536210677222357017102 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_factor ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_factor object: * * The data structure for an LL' or LDL' factorization is too complex to * describe in one sentence. This object can hold the symbolic analysis alone, * or in combination with a "simplicial" (similar to a sparse matrix) or * "supernodal" form of the numerical factorization. Only the routine to free * a factor is primary, since a factor object is created by the factorization * routine (cholmod_factorize). It must be freed with cholmod_free_factor. * * Primary routine: * ---------------- * cholmod_free_factor free a factor * * Secondary routines: * ------------------- * cholmod_allocate_factor allocate a symbolic factor (LL' or LDL') * cholmod_reallocate_factor change the # entries in a factor * cholmod_change_factor change the type of factor (e.g., LDL' to LL') * cholmod_pack_factor pack the columns of a factor * cholmod_reallocate_column resize a single column of a factor * cholmod_factor_to_sparse create a sparse matrix copy of a factor * cholmod_copy_factor create a copy of a factor * * Note that there is no cholmod_sparse_to_factor routine to create a factor * as a copy of a sparse matrix. It could be done, after a fashion, but a * lower triangular sparse matrix would not necessarily have a chordal graph, * which would break the many CHOLMOD routines that rely on this property. * * The cholmod_factor_to_sparse routine is provided so that matrix operations * in the MatrixOps module may be applied to L. Those operations operate on * cholmod_sparse objects, and they are not guaranteed to maintain the chordal * property of L. Such a modified L cannot be safely converted back to a * cholmod_factor object. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === cholmod_allocate_factor ============================================== */ /* ========================================================================== */ /* Allocate a simplicial symbolic factor, with L->Perm and L->ColCount allocated * and initialized to "empty" values (Perm [k] = k, and ColCount[k] = 1). * The integer and numerical parts of L are not allocated. L->xtype is returned * as CHOLMOD_PATTERN and L->is_super are returned as FALSE. L->is_ll is also * returned FALSE, but this may be modified when the matrix is factorized. * * This is sufficient (but far from ideal) for input to cholmod_factorize, * since the simplicial LL' or LDL' factorization (cholmod_rowfac) can * reallocate the columns of L as needed. The primary purpose of this routine * is to allocate space for a symbolic factorization, for the "expert" user to * do his or her own symbolic analysis. The typical user should use * cholmod_analyze instead of this routine. * * workspace: none */ cholmod_factor *CHOLMOD(allocate_factor) ( /* ---- input ---- */ size_t n, /* L is n-by-n */ /* --------------- */ cholmod_common *Common ) { Int j ; Int *Perm, *ColCount ; cholmod_factor *L ; int ok = TRUE ; RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; /* ensure the dimension does not cause integer overflow */ (void) CHOLMOD(add_size_t) (n, 2, &ok) ; if (!ok || n > Int_max) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } L = CHOLMOD(malloc) (sizeof (cholmod_factor), 1, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } L->n = n ; L->is_ll = FALSE ; L->is_super = FALSE ; L->is_monotonic = TRUE ; L->itype = ITYPE ; L->xtype = CHOLMOD_PATTERN ; L->dtype = DTYPE ; /* allocate the purely symbolic part of L */ L->ordering = CHOLMOD_NATURAL ; L->Perm = CHOLMOD(malloc) (n, sizeof (Int), Common) ; L->ColCount = CHOLMOD(malloc) (n, sizeof (Int), Common) ; /* simplicial part of L is empty */ L->nzmax = 0 ; L->p = NULL ; L->i = NULL ; L->x = NULL ; L->z = NULL ; L->nz = NULL ; L->next = NULL ; L->prev = NULL ; /* supernodal part of L is also empty */ L->nsuper = 0 ; L->ssize = 0 ; L->xsize = 0 ; L->maxesize = 0 ; L->maxcsize = 0 ; L->super = NULL ; L->pi = NULL ; L->px = NULL ; L->s = NULL ; /* L has not been factorized */ L->minor = n ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_factor) (&L, Common) ; return (NULL) ; /* out of memory */ } /* initialize Perm and ColCount */ Perm = L->Perm ; for (j = 0 ; j < ((Int) n) ; j++) { Perm [j] = j ; } ColCount = L->ColCount ; for (j = 0 ; j < ((Int) n) ; j++) { ColCount [j] = 1 ; } return (L) ; } /* ========================================================================== */ /* === cholmod_free_factor ================================================== */ /* ========================================================================== */ /* Free a factor object. * * workspace: none */ int CHOLMOD(free_factor) ( /* ---- in/out --- */ cholmod_factor **LHandle, /* factor to free, NULL on output */ /* --------------- */ cholmod_common *Common ) { Int n, lnz, xs, ss, s ; cholmod_factor *L ; RETURN_IF_NULL_COMMON (FALSE) ; if (LHandle == NULL) { /* nothing to do */ return (TRUE) ; } L = *LHandle ; if (L == NULL) { /* nothing to do */ return (TRUE) ; } n = L->n ; lnz = L->nzmax ; s = L->nsuper + 1 ; xs = (L->is_super) ? ((Int) (L->xsize)) : (lnz) ; ss = L->ssize ; /* symbolic part of L */ CHOLMOD(free) (n, sizeof (Int), L->Perm, Common) ; CHOLMOD(free) (n, sizeof (Int), L->ColCount, Common) ; /* simplicial form of L */ CHOLMOD(free) (n+1, sizeof (Int), L->p, Common) ; CHOLMOD(free) (lnz, sizeof (Int), L->i, Common) ; CHOLMOD(free) (n, sizeof (Int), L->nz, Common) ; CHOLMOD(free) (n+2, sizeof (Int), L->next, Common) ; CHOLMOD(free) (n+2, sizeof (Int), L->prev, Common) ; /* supernodal form of L */ CHOLMOD(free) (s, sizeof (Int), L->pi, Common) ; CHOLMOD(free) (s, sizeof (Int), L->px, Common) ; CHOLMOD(free) (s, sizeof (Int), L->super, Common) ; CHOLMOD(free) (ss, sizeof (Int), L->s, Common) ; /* numerical values for both simplicial and supernodal L */ if (L->xtype == CHOLMOD_REAL) { CHOLMOD(free) (xs, sizeof (double), L->x, Common) ; } else if (L->xtype == CHOLMOD_COMPLEX) { CHOLMOD(free) (xs, 2*sizeof (double), L->x, Common) ; } else if (L->xtype == CHOLMOD_ZOMPLEX) { CHOLMOD(free) (xs, sizeof (double), L->x, Common) ; CHOLMOD(free) (xs, sizeof (double), L->z, Common) ; } *LHandle = CHOLMOD(free) (1, sizeof (cholmod_factor), (*LHandle), Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_reallocate_factor ============================================ */ /* ========================================================================== */ /* Change the size of L->i and L->x, or allocate them if their current size * is zero. L must be simplicial. * * workspace: none */ int CHOLMOD(reallocate_factor) ( /* ---- input ---- */ size_t nznew, /* new # of entries in L */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; PRINT1 (("realloc factor: xtype %d\n", L->xtype)) ; if (L->is_super) { /* L must be simplicial, and not symbolic */ ERROR (CHOLMOD_INVALID, "L invalid") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; PRINT1 (("realloc factor %g to %g\n", (double) L->nzmax, (double) nznew)) ; /* ---------------------------------------------------------------------- */ /* resize (or allocate) the L->i and L->x components of the factor */ /* ---------------------------------------------------------------------- */ CHOLMOD(realloc_multiple) (nznew, 1, L->xtype, &(L->i), NULL, &(L->x), &(L->z), &(L->nzmax), Common) ; return (Common->status == CHOLMOD_OK) ; } /* ========================================================================== */ /* === cholmod_reallocate_column =========================================== */ /* ========================================================================== */ /* Column j needs more space, reallocate it at the end of L->i and L->x. * If the reallocation fails, the factor is converted to a simplicial * symbolic factor (no pattern, just L->Perm and L->ColCount). * * workspace: none */ int CHOLMOD(reallocate_column) ( /* ---- input ---- */ size_t j, /* the column to reallocate */ size_t need, /* required size of column j */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { double xneed ; double *Lx, *Lz ; Int *Lp, *Lprev, *Lnext, *Li, *Lnz ; Int n, pold, pnew, len, k, tail ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; if (L->is_super) { ERROR (CHOLMOD_INVALID, "L must be simplicial") ; return (FALSE) ; } n = L->n ; if (j >= L->n || need == 0) { ERROR (CHOLMOD_INVALID, "j invalid") ; return (FALSE) ; /* j out of range */ } Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_factor) (L, "start colrealloc", Common)) ; /* ---------------------------------------------------------------------- */ /* increase the size of L if needed */ /* ---------------------------------------------------------------------- */ /* head = n+1 ; */ tail = n ; Lp = L->p ; Lnz = L->nz ; Lprev = L->prev ; Lnext = L->next ; ASSERT (Lnz != NULL) ; ASSERT (Lnext != NULL && Lprev != NULL) ; PRINT1 (("col %g need %g\n", (double) j, (double) need)) ; /* column j cannot have more than n-j entries if all entries are present */ need = MIN (need, n-j) ; /* compute need in double to avoid integer overflow */ if (Common->grow1 >= 1.0) { xneed = (double) need ; xneed = Common->grow1 * xneed + Common->grow2 ; xneed = MIN (xneed, n-j) ; need = (Int) xneed ; } PRINT1 (("really new need %g current %g\n", (double) need, (double) (Lp [Lnext [j]] - Lp [j]))) ; ASSERT (need >= 1 && need <= n-j) ; if (Lp [Lnext [j]] - Lp [j] >= (Int) need) { /* no need to reallocate the column, it's already big enough */ PRINT1 (("colrealloc: quick return %g %g\n", (double) (Lp [Lnext [j]] - Lp [j]), (double) need)) ; return (TRUE) ; } if (Lp [tail] + need > L->nzmax) { /* use double to avoid integer overflow */ xneed = (double) need ; if (Common->grow0 < 1.2) /* fl. pt. compare, false if NaN */ { /* if grow0 is less than 1.2 or NaN, don't use it */ xneed = 1.2 * (((double) L->nzmax) + xneed + 1) ; } else { xneed = Common->grow0 * (((double) L->nzmax) + xneed + 1) ; } if (xneed > Size_max || !CHOLMOD(reallocate_factor) ((Int) xneed, L, Common)) { /* out of memory, convert to simplicial symbolic */ CHOLMOD(change_factor) (CHOLMOD_PATTERN, L->is_ll, FALSE, TRUE, TRUE, L, Common) ; ERROR (CHOLMOD_OUT_OF_MEMORY, "out of memory; L now symbolic") ; return (FALSE) ; /* out of memory */ } PRINT1 (("\n=== GROW L from %g to %g\n", (double) L->nzmax, (double) xneed)) ; /* pack all columns so that each column has at most grow2 free space */ CHOLMOD(pack_factor) (L, Common) ; ASSERT (Common->status == CHOLMOD_OK) ; Common->nrealloc_factor++ ; } /* ---------------------------------------------------------------------- */ /* reallocate the column */ /* ---------------------------------------------------------------------- */ Common->nrealloc_col++ ; Li = L->i ; Lx = L->x ; Lz = L->z ; /* remove j from its current position in the list */ Lnext [Lprev [j]] = Lnext [j] ; Lprev [Lnext [j]] = Lprev [j] ; /* place j at the end of the list */ Lnext [Lprev [tail]] = j ; Lprev [j] = Lprev [tail] ; Lnext [j] = n ; Lprev [tail] = j ; /* L is no longer monotonic; columns are out-of-order */ L->is_monotonic = FALSE ; /* allocate space for column j */ pold = Lp [j] ; pnew = Lp [tail] ; Lp [j] = pnew ; Lp [tail] += need ; /* copy column j to the new space */ len = Lnz [j] ; for (k = 0 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; } if (L->xtype == CHOLMOD_REAL) { for (k = 0 ; k < len ; k++) { Lx [pnew + k] = Lx [pold + k] ; } } else if (L->xtype == CHOLMOD_COMPLEX) { for (k = 0 ; k < len ; k++) { Lx [2*(pnew + k) ] = Lx [2*(pold + k) ] ; Lx [2*(pnew + k)+1] = Lx [2*(pold + k)+1] ; } } else if (L->xtype == CHOLMOD_ZOMPLEX) { for (k = 0 ; k < len ; k++) { Lx [pnew + k] = Lx [pold + k] ; Lz [pnew + k] = Lz [pold + k] ; } } DEBUG (CHOLMOD(dump_factor) (L, "colrealloc done", Common)) ; /* successful reallocation of column j of L */ return (TRUE) ; } /* ========================================================================== */ /* === cholmod_pack_factor ================================================== */ /* ========================================================================== */ /* Pack the columns of a simplicial LDL' or LL' factor. This can be followed * by a call to cholmod_reallocate_factor to reduce the size of L to the exact * size required by the factor, if desired. Alternatively, you can leave the * size of L->i and L->x the same, to allow space for future updates/rowadds. * * Each column is reduced in size so that it has at most Common->grow2 free * space at the end of the column. * * Does nothing and returns silently if given any other type of factor. * * Does NOT force the columns of L to be monotonic. It thus differs from * cholmod_change_factor (xtype, -, FALSE, TRUE, TRUE, L, Common), which * packs the columns and ensures that they appear in monotonic order. */ int CHOLMOD(pack_factor) ( /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { double *Lx, *Lz ; Int *Lp, *Li, *Lnz, *Lnext ; Int pnew, j, k, pold, len, n, head, tail, grow2 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_factor) (L, "start pack", Common)) ; PRINT1 (("PACK factor %d\n", L->is_super)) ; if (L->xtype == CHOLMOD_PATTERN || L->is_super) { /* nothing to do unless L is simplicial numeric */ return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* pack */ /* ---------------------------------------------------------------------- */ grow2 = Common->grow2 ; PRINT1 (("\nPACK grow2 "ID"\n", grow2)) ; pnew = 0 ; n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lnz = L->nz ; Lnext = L->next ; head = n+1 ; tail = n ; for (j = Lnext [head] ; j != tail ; j = Lnext [j]) { /* pack column j */ pold = Lp [j] ; len = Lnz [j] ; ASSERT (len > 0) ; PRINT2 (("col "ID" pnew "ID" pold "ID"\n", j, pnew, pold)) ; if (pnew < pold) { PRINT2 ((" pack this column\n")) ; for (k = 0 ; k < len ; k++) { Li [pnew + k] = Li [pold + k] ; } if (L->xtype == CHOLMOD_REAL) { for (k = 0 ; k < len ; k++) { Lx [pnew + k] = Lx [pold + k] ; } } else if (L->xtype == CHOLMOD_COMPLEX) { for (k = 0 ; k < len ; k++) { Lx [2*(pnew + k) ] = Lx [2*(pold + k) ] ; Lx [2*(pnew + k)+1] = Lx [2*(pold + k)+1] ; } } else if (L->xtype == CHOLMOD_ZOMPLEX) { for (k = 0 ; k < len ; k++) { Lx [pnew + k] = Lx [pold + k] ; Lz [pnew + k] = Lz [pold + k] ; } } Lp [j] = pnew ; } len = MIN (len + grow2, n - j) ; pnew = MIN (Lp [j] + len, Lp [Lnext [j]]) ; } PRINT2 (("final pnew = "ID"\n", pnew)) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_factor_to_sparse ============================================= */ /* ========================================================================== */ /* Constructs a column-oriented sparse matrix containing the pattern and values * of a simplicial or supernodal numerical factor, and then converts the factor * into a simplicial symbolic factor. If L is already packed, monotonic, * and simplicial (which is the case when cholmod_factorize uses the simplicial * Cholesky factorization algorithm) then this routine requires only O(1) * memory and takes O(1) time. * * Only operates on numeric factors (real, complex, or zomplex). Does not * change the numeric L->xtype (the resulting sparse matrix has the same xtype * as L). If this routine fails, L is left unmodified. */ cholmod_sparse *CHOLMOD(factor_to_sparse) ( /* ---- in/out --- */ cholmod_factor *L, /* factor to copy, converted to symbolic on output */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *Lsparse ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (L, NULL) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_factor) (L, "start convert to matrix", Common)) ; /* ---------------------------------------------------------------------- */ /* convert to packed, monotonic, simplicial, numeric */ /* ---------------------------------------------------------------------- */ /* leave as LL or LDL' */ if (!CHOLMOD(change_factor) (L->xtype, L->is_ll, FALSE, TRUE, TRUE, L, Common)) { ERROR (CHOLMOD_INVALID, "cannot convert L") ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* create Lsparse */ /* ---------------------------------------------------------------------- */ /* allocate the header for Lsparse, the sparse matrix version of L */ Lsparse = CHOLMOD(malloc) (sizeof (cholmod_sparse), 1, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } /* transfer the contents from L to Lsparse */ Lsparse->nrow = L->n ; Lsparse->ncol = L->n ; Lsparse->p = L->p ; Lsparse->i = L->i ; Lsparse->x = L->x ; Lsparse->z = L->z ; Lsparse->nz = NULL ; Lsparse->stype = 0 ; Lsparse->itype = L->itype ; Lsparse->xtype = L->xtype ; Lsparse->dtype = L->dtype ; Lsparse->sorted = TRUE ; Lsparse->packed = TRUE ; Lsparse->nzmax = L->nzmax ; ASSERT (CHOLMOD(dump_sparse) (Lsparse, "Lsparse", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* convert L to symbolic, but do not free contents transfered to Lsparse */ /* ---------------------------------------------------------------------- */ L->p = NULL ; L->i = NULL ; L->x = NULL ; L->z = NULL ; L->xtype = CHOLMOD_PATTERN ; CHOLMOD(change_factor) (CHOLMOD_PATTERN, FALSE, FALSE, TRUE, TRUE, L, Common) ; return (Lsparse) ; } /* ========================================================================== */ /* === cholmod_copy_factor ================================================== */ /* ========================================================================== */ /* Create an exact copy of a factor, with one exception: * * Entries in unused space are not copied (they might not be initialized, * and copying them would cause program checkers such as purify and * valgrind to complain). * * Note that a supernodal L cannot be zomplex. */ cholmod_factor *CHOLMOD(copy_factor) ( /* ---- input ---- */ cholmod_factor *L, /* factor to copy */ /* --------------- */ cholmod_common *Common ) { cholmod_factor *L2 ; double *Lx, *L2x, *Lz, *L2z ; Int *Perm, *ColCount, *Lp, *Li, *Lnz, *Lnext, *Lprev, *Lsuper, *Lpi, *Lpx, *Ls, *Perm2, *ColCount2, *L2p, *L2i, *L2nz, *L2next, *L2prev, *L2super, *L2pi, *L2px, *L2s ; Int n, j, p, pend, s, xsize, ssize, nsuper ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (L, NULL) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; Common->status = CHOLMOD_OK ; DEBUG (CHOLMOD(dump_factor) (L, "start copy", Common)) ; n = L->n ; /* ---------------------------------------------------------------------- */ /* allocate a simplicial symbolic factor */ /* ---------------------------------------------------------------------- */ /* allocates L2->Perm and L2->ColCount */ L2 = CHOLMOD(allocate_factor) (n, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } ASSERT (L2->xtype == CHOLMOD_PATTERN && !(L2->is_super)) ; Perm = L->Perm ; ColCount = L->ColCount ; Perm2 = L2->Perm ; ColCount2 = L2->ColCount ; L2->ordering = L->ordering ; for (j = 0 ; j < n ; j++) { Perm2 [j] = Perm [j] ; } for (j = 0 ; j < n ; j++) { ColCount2 [j] = ColCount [j] ; } L2->is_ll = L->is_ll ; /* ---------------------------------------------------------------------- */ /* copy the rest of the factor */ /* ---------------------------------------------------------------------- */ if (L->xtype != CHOLMOD_PATTERN && !(L->super)) { /* ------------------------------------------------------------------ */ /* allocate a simplicial numeric factor */ /* ------------------------------------------------------------------ */ /* allocate L2->p, L2->nz, L2->prev, L2->next, L2->i, and L2->x. * packed = -1 so that cholmod_change_factor allocates space of * size L2->nzmax */ L2->nzmax = L->nzmax ; if (!CHOLMOD(change_factor) (L->xtype, L->is_ll, FALSE, -1, TRUE, L2, Common)) { CHOLMOD(free_factor) (&L2, Common) ; return (NULL) ; /* out of memory */ } ASSERT (MAX (1, L->nzmax) == L2->nzmax) ; /* ------------------------------------------------------------------ */ /* copy the contents of a simplicial numeric factor */ /* ------------------------------------------------------------------ */ Lp = L->p ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lnz = L->nz ; Lnext = L->next ; Lprev = L->prev ; L2p = L2->p ; L2i = L2->i ; L2x = L2->x ; L2z = L2->z ; L2nz = L2->nz ; L2next = L2->next ; L2prev = L2->prev ; L2->xtype = L->xtype ; L2->dtype = L->dtype ; for (j = 0 ; j <= n ; j++) { L2p [j] = Lp [j] ; } for (j = 0 ; j < n+2 ; j++) { L2prev [j] = Lprev [j] ; } for (j = 0 ; j < n+2 ; j++) { L2next [j] = Lnext [j] ; } for (j = 0 ; j < n ; j++) { L2nz [j] = Lnz [j] ; } for (j = 0 ; j < n ; j++) { p = Lp [j] ; pend = p + Lnz [j] ; for ( ; p < pend ; p++) { L2i [p] = Li [p] ; } p = Lp [j] ; if (L->xtype == CHOLMOD_REAL) { for ( ; p < pend ; p++) { L2x [p] = Lx [p] ; } } else if (L->xtype == CHOLMOD_COMPLEX) { for ( ; p < pend ; p++) { L2x [2*p ] = Lx [2*p ] ; L2x [2*p+1] = Lx [2*p+1] ; } } else if (L->xtype == CHOLMOD_ZOMPLEX) { for ( ; p < pend ; p++) { L2x [p] = Lx [p] ; L2z [p] = Lz [p] ; } } } } else if (L->is_super) { /* ------------------------------------------------------------------ */ /* copy a supernodal factor */ /* ------------------------------------------------------------------ */ xsize = L->xsize ; ssize = L->ssize ; nsuper = L->nsuper ; L2->xsize = xsize ; L2->ssize = ssize ; L2->nsuper = nsuper ; /* allocate L2->super, L2->pi, L2->px, and L2->s. Allocate L2->x if * L is numeric */ if (!CHOLMOD(change_factor) (L->xtype, TRUE, TRUE, TRUE, TRUE, L2, Common)) { CHOLMOD(free_factor) (&L2, Common) ; return (NULL) ; /* out of memory */ } ASSERT (L2->s != NULL) ; /* ------------------------------------------------------------------ */ /* copy the contents of a supernodal factor */ /* ------------------------------------------------------------------ */ Lsuper = L->super ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Lx = L->x ; L2super = L2->super ; L2pi = L2->pi ; L2px = L2->px ; L2s = L2->s ; L2x = L2->x ; L2->maxcsize = L->maxcsize ; L2->maxesize = L->maxesize ; for (s = 0 ; s <= nsuper ; s++) { L2super [s] = Lsuper [s] ; } for (s = 0 ; s <= nsuper ; s++) { L2pi [s] = Lpi [s] ; } for (s = 0 ; s <= nsuper ; s++) { L2px [s] = Lpx [s] ; } L2s [0] = 0 ; for (p = 0 ; p < ssize ; p++) { L2s [p] = Ls [p] ; } if (L->xtype == CHOLMOD_REAL) { for (p = 0 ; p < xsize ; p++) { L2x [p] = Lx [p] ; } } else if (L->xtype == CHOLMOD_COMPLEX) { for (p = 0 ; p < 2*xsize ; p++) { L2x [p] = Lx [p] ; } } } L2->minor = L->minor ; L2->is_monotonic = L->is_monotonic ; DEBUG (CHOLMOD(dump_factor) (L2, "L2 got copied", Common)) ; ASSERT (L2->xtype == L->xtype && L2->is_super == L->is_super) ; return (L2) ; } SuiteSparse/CHOLMOD/Core/cholmod_sparse.c0000644001170100242450000004303410665025300017073 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_sparse ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_sparse object: * * A sparse matrix is held in compressed column form. In the basic type * ("packed", which corresponds to a MATLAB sparse matrix), an n-by-n matrix * with nz entries is held in three arrays: p of size n+1, i of size nz, and x * of size nz. Row indices of column j are held in i [p [j] ... p [j+1]-1] and * in the same locations in x. There may be no duplicate entries in a column. * Row indices in each column may be sorted or unsorted (CHOLMOD keeps track). * * Primary routines: * ----------------- * cholmod_allocate_sparse allocate a sparse matrix * cholmod_free_sparse free a sparse matrix * * Secondary routines: * ------------------- * cholmod_reallocate_sparse change the size (# entries) of sparse matrix * cholmod_nnz number of nonzeros in a sparse matrix * cholmod_speye sparse identity matrix * cholmod_spzeros sparse zero matrix * cholmod_copy_sparse create a copy of a sparse matrix * * All xtypes are supported (pattern, real, complex, and zomplex) */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === cholmod_allocate_sparse ============================================== */ /* ========================================================================== */ /* Allocate space for a matrix. A->i and A->x are not initialized. A->p * (and A->nz if A is not packed) are set to zero, so a matrix containing no * entries (all zero) is returned. See also cholmod_spzeros. * * workspace: none */ cholmod_sparse *CHOLMOD(allocate_sparse) ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ size_t nzmax, /* max # of nonzeros of A */ int sorted, /* TRUE if columns of A sorted, FALSE otherwise */ int packed, /* TRUE if A will be packed, FALSE otherwise */ int stype, /* stype of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *A ; Int *Ap, *Anz ; size_t nzmax0 ; Int j ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; if (stype != 0 && nrow != ncol) { ERROR (CHOLMOD_INVALID, "rectangular matrix with stype != 0 invalid") ; return (NULL) ; } if (xtype < CHOLMOD_PATTERN || xtype > CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "xtype invalid") ; return (NULL) ; } /* ensure the dimensions do not cause integer overflow */ (void) CHOLMOD(add_size_t) (ncol, 2, &ok) ; if (!ok || nrow > Int_max || ncol > Int_max || nzmax > Int_max) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate header */ /* ---------------------------------------------------------------------- */ A = CHOLMOD(malloc) (sizeof (cholmod_sparse), 1, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } PRINT1 (("cholmod_allocate_sparse %d-by-%d nzmax %d sorted %d packed %d" " xtype %d\n", nrow, ncol, nzmax, sorted, packed, xtype)) ; nzmax = MAX (1, nzmax) ; A->nrow = nrow ; A->ncol = ncol ; A->nzmax = nzmax ; A->packed = packed ; /* default is packed (A->nz not present) */ A->stype = stype ; A->itype = ITYPE ; A->xtype = xtype ; A->dtype = DTYPE ; A->nz = NULL ; A->p = NULL ; A->i = NULL ; A->x = NULL ; A->z = NULL ; /* A 1-by-m matrix always has sorted columns */ A->sorted = (nrow <= 1) ? TRUE : sorted ; /* ---------------------------------------------------------------------- */ /* allocate the matrix itself */ /* ---------------------------------------------------------------------- */ /* allocate O(ncol) space */ A->p = CHOLMOD(malloc) (((size_t) ncol)+1, sizeof (Int), Common) ; if (!packed) { A->nz = CHOLMOD(malloc) (ncol, sizeof (Int), Common) ; } /* allocate O(nz) space */ nzmax0 = 0 ; CHOLMOD(realloc_multiple) (nzmax, 1, xtype, &(A->i), NULL, &(A->x), &(A->z), &nzmax0, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&A, Common) ; return (NULL) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* initialize A->p and A->nz so that A is an empty matrix */ /* ---------------------------------------------------------------------- */ Ap = A->p ; for (j = 0 ; j <= (Int) ncol ; j++) { Ap [j] = 0 ; } if (!packed) { Anz = A->nz ; for (j = 0 ; j < (Int) ncol ; j++) { Anz [j] = 0 ; } } return (A) ; } /* ========================================================================== */ /* === cholmod_free_sparse ================================================== */ /* ========================================================================== */ /* free a sparse matrix * * workspace: none */ int CHOLMOD(free_sparse) ( /* ---- in/out --- */ cholmod_sparse **AHandle, /* matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) { Int n, nz ; cholmod_sparse *A ; RETURN_IF_NULL_COMMON (FALSE) ; if (AHandle == NULL) { /* nothing to do */ return (TRUE) ; } A = *AHandle ; if (A == NULL) { /* nothing to do */ return (TRUE) ; } n = A->ncol ; nz = A->nzmax ; A->p = CHOLMOD(free) (n+1, sizeof (Int), A->p, Common) ; A->i = CHOLMOD(free) (nz, sizeof (Int), A->i, Common) ; A->nz = CHOLMOD(free) (n, sizeof (Int), A->nz, Common) ; switch (A->xtype) { case CHOLMOD_REAL: A->x = CHOLMOD(free) (nz, sizeof (double), A->x, Common) ; break ; case CHOLMOD_COMPLEX: A->x = CHOLMOD(free) (nz, 2*sizeof (double), A->x, Common) ; break ; case CHOLMOD_ZOMPLEX: A->x = CHOLMOD(free) (nz, sizeof (double), A->x, Common) ; A->z = CHOLMOD(free) (nz, sizeof (double), A->z, Common) ; break ; } *AHandle = CHOLMOD(free) (1, sizeof (cholmod_sparse), (*AHandle), Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_reallocate_sparse ============================================ */ /* ========================================================================== */ /* Change the size of A->i, A->x, and A->z, or allocate them if their current * size is zero. A->x and A->z are not modified if A->xtype is CHOLMOD_PATTERN. * A->z is not modified unless A->xtype is CHOLMOD_ZOMPLEX. * * workspace: none */ int CHOLMOD(reallocate_sparse) ( /* ---- input ---- */ size_t nznew, /* new # of entries in A */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to reallocate */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; PRINT1 (("realloc matrix %d to %d, xtype: %d\n", A->nzmax, nznew, A->xtype)) ; /* ---------------------------------------------------------------------- */ /* resize the matrix */ /* ---------------------------------------------------------------------- */ CHOLMOD(realloc_multiple) (MAX (1,nznew), 1, A->xtype, &(A->i), NULL, &(A->x), &(A->z), &(A->nzmax), Common) ; return (Common->status == CHOLMOD_OK) ; } /* ========================================================================== */ /* === cholmod_speye ======================================================== */ /* ========================================================================== */ /* Return a sparse identity matrix. */ cholmod_sparse *CHOLMOD(speye) ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Az ; cholmod_sparse *A ; Int *Ap, *Ai ; Int j, n ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate the matrix */ /* ---------------------------------------------------------------------- */ n = MIN (nrow, ncol) ; A = CHOLMOD(allocate_sparse) (nrow, ncol, n, TRUE, TRUE, 0, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory or inputs invalid */ } /* ---------------------------------------------------------------------- */ /* create the identity matrix */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; for (j = 0 ; j < n ; j++) { Ap [j] = j ; } for (j = n ; j <= ((Int) ncol) ; j++) { Ap [j] = n ; } for (j = 0 ; j < n ; j++) { Ai [j] = j ; } switch (xtype) { case CHOLMOD_REAL: for (j = 0 ; j < n ; j++) { Ax [j] = 1 ; } break ; case CHOLMOD_COMPLEX: for (j = 0 ; j < n ; j++) { Ax [2*j ] = 1 ; Ax [2*j+1] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for (j = 0 ; j < n ; j++) { Ax [j] = 1 ; } for (j = 0 ; j < n ; j++) { Az [j] = 0 ; } break ; } return (A) ; } /* ========================================================================== */ /* === cholmod_spzeros ====================================================== */ /* ========================================================================== */ /* Return a sparse zero matrix. */ cholmod_sparse *CHOLMOD(spzeros) ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ size_t nzmax, /* max # of nonzeros of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate the matrix */ /* ---------------------------------------------------------------------- */ return (CHOLMOD(allocate_sparse) (nrow, ncol, nzmax, TRUE, TRUE, 0, xtype, Common)) ; } /* ========================================================================== */ /* === cholmod_nnz ========================================================== */ /* ========================================================================== */ /* Return the number of entries in a sparse matrix. * * workspace: none * integer overflow cannot occur, since the matrix is already allocated. */ UF_long CHOLMOD(nnz) ( /* ---- input ---- */ cholmod_sparse *A, /* --------------- */ cholmod_common *Common ) { Int *Ap, *Anz ; size_t nz ; Int j, ncol ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* return nnz (A) */ /* ---------------------------------------------------------------------- */ ncol = A->ncol ; if (A->packed) { Ap = A->p ; RETURN_IF_NULL (Ap, EMPTY) ; nz = Ap [ncol] ; } else { Anz = A->nz ; RETURN_IF_NULL (Anz, EMPTY) ; nz = 0 ; for (j = 0 ; j < ncol ; j++) { nz += MAX (0, Anz [j]) ; } } return (nz) ; } /* ========================================================================== */ /* === cholmod_copy_sparse ================================================== */ /* ========================================================================== */ /* C = A. Create an exact copy of a sparse matrix, with one exception. * Entries in unused space are not copied (they might not be initialized, * and copying them would cause program checkers such as purify and * valgrind to complain). The xtype of the resulting matrix C is the same as * the xtype of the input matrix A. * * See also Core/cholmod_copy, which copies a matrix with possible changes * in stype, presence of diagonal entries, pattern vs. numerical values, * real and/or imaginary parts, and so on. */ cholmod_sparse *CHOLMOD(copy_sparse) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Cx, *Az, *Cz ; Int *Ap, *Ai, *Anz, *Cp, *Ci, *Cnz ; cholmod_sparse *C ; Int p, pend, j, ncol, packed, nzmax, nz, xtype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; if (A->stype != 0 && A->nrow != A->ncol) { ERROR (CHOLMOD_INVALID, "rectangular matrix with stype != 0 invalid") ; return (NULL) ; } Common->status = CHOLMOD_OK ; ASSERT (CHOLMOD(dump_sparse) (A, "A original", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = A->ncol ; nzmax = A->nzmax ; packed = A->packed ; Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; xtype = A->xtype ; /* ---------------------------------------------------------------------- */ /* allocate the copy */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (A->nrow, A->ncol, A->nzmax, A->sorted, A->packed, A->stype, A->xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Cp = C->p ; Ci = C->i ; Cx = C->x ; Cz = C->z ; Cnz = C->nz ; /* ---------------------------------------------------------------------- */ /* copy the matrix */ /* ---------------------------------------------------------------------- */ for (j = 0 ; j <= ncol ; j++) { Cp [j] = Ap [j] ; } if (packed) { nz = Ap [ncol] ; for (p = 0 ; p < nz ; p++) { Ci [p] = Ai [p] ; } switch (xtype) { case CHOLMOD_REAL: for (p = 0 ; p < nz ; p++) { Cx [p] = Ax [p] ; } break ; case CHOLMOD_COMPLEX: for (p = 0 ; p < 2*nz ; p++) { Cx [p] = Ax [p] ; } break ; case CHOLMOD_ZOMPLEX: for (p = 0 ; p < nz ; p++) { Cx [p] = Ax [p] ; Cz [p] = Az [p] ; } break ; } } else { for (j = 0 ; j < ncol ; j++) { Cnz [j] = Anz [j] ; } switch (xtype) { case CHOLMOD_PATTERN: for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { Ci [p] = Ai [p] ; } } break ; case CHOLMOD_REAL: for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { Ci [p] = Ai [p] ; Cx [p] = Ax [p] ; } } break ; case CHOLMOD_COMPLEX: for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { Ci [p] = Ai [p] ; Cx [2*p ] = Ax [2*p ] ; Cx [2*p+1] = Ax [2*p+1] ; } } break ; case CHOLMOD_ZOMPLEX: for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = p + Anz [j] ; for ( ; p < pend ; p++) { Ci [p] = Ai [p] ; Cx [p] = Ax [p] ; Cz [p] = Az [p] ; } } break ; } } /* ---------------------------------------------------------------------- */ /* return the result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (C, "C copy", Common) >= 0) ; return (C) ; } SuiteSparse/CHOLMOD/Core/License.txt0000644001170100242450000000210710540000266016040 0ustar davisfacCHOLMOD/Core Module. Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Core module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CHOLMOD/Core/cholmod_dense.c0000644001170100242450000004440610537777424016723 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_dense =================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_dense object: * * The solve routines and some of the MatrixOps and Modify routines use dense * matrices as inputs. These are held in column-major order. With a leading * dimension of d, the entry in row i and column j is held in x [i+j*d]. * * Primary routines: * ----------------- * cholmod_allocate_dense allocate a dense matrix * cholmod_free_dense free a dense matrix * * Secondary routines: * ------------------- * cholmod_zeros allocate a dense matrix of all zeros * cholmod_ones allocate a dense matrix of all ones * cholmod_eye allocate a dense identity matrix * cholmod_sparse_to_dense create a dense matrix copy of a sparse matrix * cholmod_dense_to_sparse create a sparse matrix copy of a dense matrix * cholmod_copy_dense create a copy of a dense matrix * cholmod_copy_dense2 copy a dense matrix (pre-allocated) * * All routines in this file can handle the real, complex, and zomplex cases. * Pattern-only dense matrices are not supported. cholmod_sparse_to_dense can * take a pattern-only input sparse matrix, however, and cholmod_dense_to_sparse * can generate a pattern-only output sparse matrix. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define PATTERN #include "t_cholmod_dense.c" #define REAL #include "t_cholmod_dense.c" #define COMPLEX #include "t_cholmod_dense.c" #define ZOMPLEX #include "t_cholmod_dense.c" /* ========================================================================== */ /* === cholmod_allocate_dense =============================================== */ /* ========================================================================== */ /* Allocate a dense matrix with leading dimension d. The space is not * initialized. */ cholmod_dense *CHOLMOD(allocate_dense) ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ size_t d, /* leading dimension */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X ; size_t nzmax, nzmax0 ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; if (d < nrow) { ERROR (CHOLMOD_INVALID, "leading dimension invalid") ; return (NULL) ; } if (xtype < CHOLMOD_REAL || xtype > CHOLMOD_ZOMPLEX) { ERROR (CHOLMOD_INVALID, "xtype invalid") ; return (NULL) ; } /* ensure the dimensions do not cause integer overflow */ (void) CHOLMOD(add_size_t) (ncol, 2, &ok) ; /* nzmax = MAX (1, d*ncol) ; */ nzmax = CHOLMOD(mult_size_t) (d, ncol, &ok) ; nzmax = MAX (1, nzmax) ; if (!ok || nrow > Int_max || ncol > Int_max || nzmax > Int_max) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate header */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(malloc) (sizeof (cholmod_dense), 1, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } PRINT1 (("cholmod_allocate_dense %d-by-%d nzmax %d xtype %d\n", nrow, ncol, nzmax, xtype)) ; X->nrow = nrow ; X->ncol = ncol ; X->nzmax = nzmax ; X->xtype = xtype ; X->dtype = DTYPE ; X->x = NULL ; X->z = NULL ; X->d = d ; /* ---------------------------------------------------------------------- */ /* allocate the matrix itself */ /* ---------------------------------------------------------------------- */ nzmax0 = 0 ; CHOLMOD(realloc_multiple) (nzmax, 0, xtype, NULL, NULL, &(X->x), &(X->z), &nzmax0, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_dense) (&X, Common) ; return (NULL) ; /* out of memory */ } return (X) ; } /* ========================================================================== */ /* === cholmod_zeros ======================================================== */ /* ========================================================================== */ /* Allocate a dense matrix and set it to zero */ cholmod_dense *CHOLMOD(zeros) ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X ; double *Xx, *Xz ; Int i, nz ; /* ---------------------------------------------------------------------- */ /* allocate a dense matrix and set it to zero */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; X = CHOLMOD(allocate_dense) (nrow, ncol, nrow, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* NULL Common, out of memory, or inputs invalid */ } Xx = X->x ; Xz = X->z ; nz = MAX (1, X->nzmax) ; switch (xtype) { case CHOLMOD_REAL: for (i = 0 ; i < nz ; i++) { Xx [i] = 0 ; } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < 2*nz ; i++) { Xx [i] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < nz ; i++) { Xx [i] = 0 ; } for (i = 0 ; i < nz ; i++) { Xz [i] = 0 ; } break ; } return (X) ; } /* ========================================================================== */ /* === cholmod_ones ========================================================= */ /* ========================================================================== */ /* Allocate a dense matrix and set it to zero */ cholmod_dense *CHOLMOD(ones) ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X ; double *Xx, *Xz ; Int i, nz ; /* ---------------------------------------------------------------------- */ /* allocate a dense matrix and set it to all ones */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; X = CHOLMOD(allocate_dense) (nrow, ncol, nrow, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* NULL Common, out of memory, or inputs invalid */ } Xx = X->x ; Xz = X->z ; nz = MAX (1, X->nzmax) ; switch (xtype) { case CHOLMOD_REAL: for (i = 0 ; i < nz ; i++) { Xx [i] = 1 ; } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < nz ; i++) { Xx [2*i ] = 1 ; Xx [2*i+1] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < nz ; i++) { Xx [i] = 1 ; } for (i = 0 ; i < nz ; i++) { Xz [i] = 0 ; } break ; } return (X) ; } /* ========================================================================== */ /* === cholmod_eye ========================================================== */ /* ========================================================================== */ /* Allocate a dense matrix and set it to the identity matrix */ cholmod_dense *CHOLMOD(eye) ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X ; double *Xx, *Xz ; Int i, n, nz ; /* ---------------------------------------------------------------------- */ /* allocate a dense matrix and set it to the identity matrix */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; X = CHOLMOD(zeros) (nrow, ncol, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* NULL Common, out of memory, or inputs invalid */ } nz = MAX (1, nrow*ncol) ; Xx = X->x ; Xz = X->z ; n = MIN (nrow, ncol) ; switch (xtype) { case CHOLMOD_REAL: case CHOLMOD_ZOMPLEX: for (i = 0 ; i < n ; i++) { Xx [i + i*nrow] = 1 ; } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < n ; i++) { Xx [2 * (i + i*nrow)] = 1 ; } break ; } return (X) ; } /* ========================================================================== */ /* === cholmod_free_dense =================================================== */ /* ========================================================================== */ /* free a dense matrix * * workspace: none */ int CHOLMOD(free_dense) ( /* ---- in/out --- */ cholmod_dense **XHandle, /* dense matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X ; RETURN_IF_NULL_COMMON (FALSE) ; if (XHandle == NULL) { /* nothing to do */ return (TRUE) ; } X = *XHandle ; if (X == NULL) { /* nothing to do */ return (TRUE) ; } switch (X->xtype) { case CHOLMOD_REAL: X->x = CHOLMOD(free) (X->nzmax, sizeof (double), X->x, Common) ; break ; case CHOLMOD_COMPLEX: X->x = CHOLMOD(free) (X->nzmax, 2*sizeof (double), X->x, Common) ; break ; case CHOLMOD_ZOMPLEX: X->x = CHOLMOD(free) (X->nzmax, sizeof (double), X->x, Common) ; X->z = CHOLMOD(free) (X->nzmax, sizeof (double), X->z, Common) ; break ; } *XHandle = CHOLMOD(free) (1, sizeof (cholmod_dense), (*XHandle), Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_sparse_to_dense ============================================== */ /* ========================================================================== */ /* Convert a sparse matrix to a dense matrix. * The output dense matrix has the same xtype as the input sparse matrix, * except that a pattern-only sparse matrix A is converted into a real dense * matrix X, with 1's and 0's. All xtypes are supported. */ cholmod_dense *CHOLMOD(sparse_to_dense) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *X = NULL ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; if (A->stype && A->nrow != A->ncol) { ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (NULL) ; } Common->status = CHOLMOD_OK ; ASSERT (CHOLMOD(dump_sparse) (A, "A", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* convert the matrix, using template routine */ /* ---------------------------------------------------------------------- */ switch (A->xtype) { case CHOLMOD_PATTERN: X = p_cholmod_sparse_to_dense (A, Common) ; break ; case CHOLMOD_REAL: X = r_cholmod_sparse_to_dense (A, Common) ; break ; case CHOLMOD_COMPLEX: X = c_cholmod_sparse_to_dense (A, Common) ; break ; case CHOLMOD_ZOMPLEX: X = z_cholmod_sparse_to_dense (A, Common) ; break ; } return (X) ; } /* ========================================================================== */ /* === cholmod_dense_to_sparse ============================================== */ /* ========================================================================== */ /* Convert a dense matrix to a sparse matrix, similar to the MATLAB statements: * * C = sparse (X) values = TRUE * C = spones (sparse (X)) values = FALSE * * except that X must be double (it can be of many different types in MATLAB) * * The resulting sparse matrix C has the same numeric xtype as the input dense * matrix X, unless "values" is FALSE (in which case C is real, where C(i,j)=1 * if (i,j) is an entry in X. */ cholmod_sparse *CHOLMOD(dense_to_sparse) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ int values, /* TRUE if values to be copied, FALSE otherwise */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *C = NULL ; DEBUG (CHOLMOD(dump_dense) (X, "X", Common)) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (X, NULL) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; if (X->d < X->nrow) { ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* convert the matrix, using template routine */ /* ---------------------------------------------------------------------- */ switch (X->xtype) { case CHOLMOD_REAL: C = r_cholmod_dense_to_sparse (X, values, Common) ; break ; case CHOLMOD_COMPLEX: C = c_cholmod_dense_to_sparse (X, values, Common) ; break ; case CHOLMOD_ZOMPLEX: C = z_cholmod_dense_to_sparse (X, values, Common) ; break ; } return (C) ; } /* ========================================================================== */ /* === cholmod_copy_dense2 ================================================== */ /* ========================================================================== */ /* Y = X, where X and Y are both already allocated. The leading dimensions of * X and Y may differ, but both must be >= the # of rows in X and Y. * Entries in rows nrow to d-1 are not copied from X, since the space might not * be initialized. Y->nzmax is unchanged. X->nzmax is typically * (X->d)*(X->ncol), but a user might modify that condition outside of any * CHOLMOD routine. * * The two dense matrices X and Y must have the same numeric xtype. */ int CHOLMOD(copy_dense2) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ /* ---- output --- */ cholmod_dense *Y, /* copy of matrix X */ /* --------------- */ cholmod_common *Common ) { /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (X, FALSE) ; RETURN_IF_NULL (Y, FALSE) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (Y, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; if (X->nrow != Y->nrow || X->ncol != Y->ncol || X->xtype != Y->xtype) { ERROR (CHOLMOD_INVALID, "X and Y must have same dimensions and xtype") ; return (FALSE) ; } if (X->d < X->nrow || Y->d < Y->nrow || (X->d * X->ncol) > X->nzmax || (Y->d * Y->ncol) > Y->nzmax) { ERROR (CHOLMOD_INVALID, "X and/or Y invalid") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* copy the matrix, using template routine */ /* ---------------------------------------------------------------------- */ switch (X->xtype) { case CHOLMOD_REAL: r_cholmod_copy_dense2 (X, Y) ; break ; case CHOLMOD_COMPLEX: c_cholmod_copy_dense2 (X, Y) ; break ; case CHOLMOD_ZOMPLEX: z_cholmod_copy_dense2 (X, Y) ; break ; } return (TRUE) ; } /* ========================================================================== */ /* === cholmod_copy_dense =================================================== */ /* ========================================================================== */ /* Y = X, copy a dense matrix */ cholmod_dense *CHOLMOD(copy_dense) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *Y ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (X, NULL) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate result */ /* ---------------------------------------------------------------------- */ Y = CHOLMOD(allocate_dense) (X->nrow, X->ncol, X->d, X->xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory or X invalid */ } /* ---------------------------------------------------------------------- */ /* Y = X */ /* ---------------------------------------------------------------------- */ /* This cannot fail (X and Y are allocated, and have the same nrow, ncol * d, and xtype) */ CHOLMOD(copy_dense2) (X, Y, Common) ; /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ return (Y) ; } SuiteSparse/CHOLMOD/Core/t_cholmod_transpose.c0000644001170100242450000002131710537777456020167 0ustar davisfac/* ========================================================================== */ /* === Core/t_cholmod_transpose ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_transpose. All xtypes are supported. For * complex matrices, either the array tranpose or complex conjugate transpose * can be computed. */ #include "cholmod_template.h" /* ========================================================================== */ /* === t_cholmod_transpose_unsym ============================================ */ /* ========================================================================== */ /* Compute F = A', A (:,f)', or A (p,f)', where A is unsymmetric and F is * already allocated. The complex case performs either the array transpose * or complex conjugate transpose. * * workspace: * Iwork (MAX (nrow,ncol)) if fset is present * Iwork (nrow) if fset is NULL */ static int TEMPLATE (cholmod_transpose_unsym) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ Int *Perm, /* size nrow, if present (can be NULL) */ Int *fset, /* subset of 0:(A->ncol)-1 */ Int nf, /* size of fset */ /* ---- output --- */ cholmod_sparse *F, /* F = A', A(:,f)', or A(p,f)' */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Az, *Fx, *Fz ; Int *Ap, *Anz, *Ai, *Fp, *Fnz, *Fj, *Wi, *Iwork ; Int j, p, pend, nrow, ncol, Apacked, use_fset, fp, Fpacked, jj, permute ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ /* ensure the xtype of A and F match (ignored if this is pattern version) */ if (!XTYPE_OK (A->xtype)) { ERROR (CHOLMOD_INVALID, "real/complex mismatch") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ use_fset = (fset != NULL) ; nrow = A->nrow ; ncol = A->ncol ; Ap = A->p ; /* size A->ncol+1, column pointers of A */ Ai = A->i ; /* size nz = Ap [A->ncol], row indices of A */ Ax = A->x ; /* size nz, real values of A */ Az = A->z ; /* size nz, imag values of A */ Anz = A->nz ; Apacked = A->packed ; ASSERT (IMPLIES (!Apacked, Anz != NULL)) ; permute = (Perm != NULL) ; Fp = F->p ; /* size A->nrow+1, row pointers of F */ Fj = F->i ; /* size nz, column indices of F */ Fx = F->x ; /* size nz, real values of F */ Fz = F->z ; /* size nz, imag values of F */ Fnz = F->nz ; Fpacked = F->packed ; ASSERT (IMPLIES (!Fpacked, Fnz != NULL)) ; nf = (use_fset) ? nf : ncol ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Wi = Iwork ; /* size nrow (i/l/l) */ /* ---------------------------------------------------------------------- */ /* construct the transpose */ /* ---------------------------------------------------------------------- */ for (jj = 0 ; jj < nf ; jj++) { j = (use_fset) ? (fset [jj]) : jj ; p = Ap [j] ; pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { fp = Wi [Ai [p]]++ ; Fj [fp] = j ; #ifdef NCONJUGATE ASSIGN (Fx, Fz, fp, Ax, Az, p) ; #else ASSIGN_CONJ (Fx, Fz, fp, Ax, Az, p) ; #endif } } return (TRUE) ; } /* ========================================================================== */ /* === t_cholmod_transpose_sym ============================================== */ /* ========================================================================== */ /* Compute F = A' or A (p,p)', where A is symmetric and F is already allocated. * The complex case performs either the array transpose or complex conjugate * transpose. * * workspace: Iwork (nrow) if Perm NULL, Iwork (2*nrow) if Perm non-NULL. */ static int TEMPLATE (cholmod_transpose_sym) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ Int *Perm, /* size n, if present (can be NULL) */ /* ---- output --- */ cholmod_sparse *F, /* F = A' or A(p,p)' */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Az, *Fx, *Fz ; Int *Ap, *Anz, *Ai, *Fp, *Fj, *Wi, *Pinv, *Iwork ; Int p, pend, packed, fp, upper, permute, jold, n, i, j, iold ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ /* ensure the xtype of A and F match (ignored if this is pattern version) */ if (!XTYPE_OK (A->xtype)) { ERROR (CHOLMOD_INVALID, "real/complex mismatch") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ permute = (Perm != NULL) ; n = A->nrow ; Ap = A->p ; /* size A->ncol+1, column pointers of A */ Ai = A->i ; /* size nz = Ap [A->ncol], row indices of A */ Ax = A->x ; /* size nz, real values of A */ Az = A->z ; /* size nz, imag values of A */ Anz = A->nz ; packed = A->packed ; ASSERT (IMPLIES (!packed, Anz != NULL)) ; upper = (A->stype > 0) ; Fp = F->p ; /* size A->nrow+1, row pointers of F */ Fj = F->i ; /* size nz, column indices of F */ Fx = F->x ; /* size nz, real values of F */ Fz = F->z ; /* size nz, imag values of F */ /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Wi = Iwork ; /* size n (i/l/l) */ Pinv = Iwork + n ; /* size n (i/i/l) , unused if Perm NULL */ /* ---------------------------------------------------------------------- */ /* construct the transpose */ /* ---------------------------------------------------------------------- */ if (permute) { if (upper) { /* permuted, upper */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; p = Ap [jold] ; pend = (packed) ? Ap [jold+1] : p + Anz [jold] ; for ( ; p < pend ; p++) { iold = Ai [p] ; if (iold <= jold) { i = Pinv [iold] ; if (i < j) { fp = Wi [i]++ ; Fj [fp] = j ; #ifdef NCONJUGATE ASSIGN (Fx, Fz, fp, Ax, Az, p) ; #else ASSIGN_CONJ (Fx, Fz, fp, Ax, Az, p) ; #endif } else { fp = Wi [j]++ ; Fj [fp] = i ; ASSIGN (Fx, Fz, fp, Ax, Az, p) ; } } } } } else { /* permuted, lower */ for (j = 0 ; j < n ; j++) { jold = Perm [j] ; p = Ap [jold] ; pend = (packed) ? Ap [jold+1] : p + Anz [jold] ; for ( ; p < pend ; p++) { iold = Ai [p] ; if (iold >= jold) { i = Pinv [iold] ; if (i > j) { fp = Wi [i]++ ; Fj [fp] = j ; #ifdef NCONJUGATE ASSIGN (Fx, Fz, fp, Ax, Az, p) ; #else ASSIGN_CONJ (Fx, Fz, fp, Ax, Az, p) ; #endif } else { fp = Wi [j]++ ; Fj [fp] = i ; ASSIGN (Fx, Fz, fp, Ax, Az, p) ; } } } } } } else { if (upper) { /* unpermuted, upper */ for (j = 0 ; j < n ; j++) { p = Ap [j] ; pend = (packed) ? Ap [j+1] : p + Anz [j] ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i <= j) { fp = Wi [i]++ ; Fj [fp] = j ; #ifdef NCONJUGATE ASSIGN (Fx, Fz, fp, Ax, Az, p) ; #else ASSIGN_CONJ (Fx, Fz, fp, Ax, Az, p) ; #endif } } } } else { /* unpermuted, lower */ for (j = 0 ; j < n ; j++) { p = Ap [j] ; pend = (packed) ? Ap [j+1] : p + Anz [j] ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= j) { fp = Wi [i]++ ; Fj [fp] = j ; #ifdef NCONJUGATE ASSIGN (Fx, Fz, fp, Ax, Az, p) ; #else ASSIGN_CONJ (Fx, Fz, fp, Ax, Az, p) ; #endif } } } } } return (TRUE) ; } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX #undef NCONJUGATE SuiteSparse/CHOLMOD/Core/t_cholmod_dense.c0000644001170100242450000001626410537777454017252 0ustar davisfac/* ========================================================================== */ /* === Core/t_cholmod_dense ================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_dense. All xtypes supported, except that there * are no dense matrices with an xtype of pattern. */ #include "cholmod_template.h" /* ========================================================================== */ /* === t_cholmod_sparse_to_dense ============================================ */ /* ========================================================================== */ static cholmod_dense *TEMPLATE (cholmod_sparse_to_dense) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Xx, *Az, *Xz ; Int *Ap, *Ai, *Anz ; cholmod_dense *X ; Int i, j, p, pend, nrow, ncol, packed ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; packed = A->packed ; Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; /* ---------------------------------------------------------------------- */ /* allocate result */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(zeros) (nrow, ncol, XTYPE2, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Xx = X->x ; Xz = X->z ; /* ---------------------------------------------------------------------- */ /* copy into dense matrix */ /* ---------------------------------------------------------------------- */ if (A->stype < 0) { /* A is symmetric with lower stored, but both parts of X are present */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= j) { ASSIGN2 (Xx, Xz, i+j*nrow, Ax, Az, p) ; ASSIGN2_CONJ (Xx, Xz, j+i*nrow, Ax, Az, p) ; } } } } else if (A->stype > 0) { /* A is symmetric with upper stored, but both parts of X are present */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i <= j) { ASSIGN2 (Xx, Xz, i+j*nrow, Ax, Az, p) ; ASSIGN2_CONJ (Xx, Xz, j+i*nrow, Ax, Az, p) ; } } } } else { /* both parts of A and X are present */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; ASSIGN2 (Xx, Xz, i+j*nrow, Ax, Az, p) ; } } } return (X) ; } #ifndef PATTERN /* There are no dense matrices of xtype CHOLMOD_PATTERN */ /* ========================================================================== */ /* === t_cholmod_dense_to_sparse ============================================ */ /* ========================================================================== */ static cholmod_sparse *TEMPLATE (cholmod_dense_to_sparse) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ int values, /* TRUE if values to be copied, FALSE otherwise */ /* --------------- */ cholmod_common *Common ) { double *Xx, *Cx, *Xz, *Cz ; Int *Ci, *Cp ; cholmod_sparse *C ; Int i, j, p, d, nrow, ncol, nz ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = X->nrow ; ncol = X->ncol ; d = X->d ; Xx = X->x ; Xz = X->z ; /* ---------------------------------------------------------------------- */ /* count the number of nonzeros in the result */ /* ---------------------------------------------------------------------- */ nz = 0 ; for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { if (ENTRY_IS_NONZERO (Xx, Xz, i+j*d)) { nz++ ; } } } /* ---------------------------------------------------------------------- */ /* allocate the result C */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (nrow, ncol, nz, TRUE, TRUE, 0, values ? XTYPE : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Cp = C->p ; Ci = C->i ; Cx = C->x ; Cz = C->z ; /* ---------------------------------------------------------------------- */ /* copy the dense matrix X into the sparse matrix C */ /* ---------------------------------------------------------------------- */ p = 0 ; for (j = 0 ; j < ncol ; j++) { Cp [j] = p ; for (i = 0 ; i < nrow ; i++) { if (ENTRY_IS_NONZERO (Xx, Xz, i+j*d)) { Ci [p] = i ; if (values) { ASSIGN (Cx, Cz, p, Xx, Xz, i+j*d) ; } p++ ; } } } ASSERT (p == nz) ; Cp [ncol] = nz ; /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (C, "C", Common) >= 0) ; return (C) ; } /* ========================================================================== */ /* === t_cholmod_copy_dense2 ================================================ */ /* ========================================================================== */ /* Y = X, where X and Y are both already allocated. */ static int TEMPLATE (cholmod_copy_dense2) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ /* ---- output --- */ cholmod_dense *Y /* copy of matrix X */ ) { double *Xx, *Xz, *Yx, *Yz ; Int i, j, nrow, ncol, dy, dx ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Xx = X->x ; Xz = X->z ; Yx = Y->x ; Yz = Y->z ; dx = X->d ; dy = Y->d ; nrow = X->nrow ; ncol = X->ncol ; /* ---------------------------------------------------------------------- */ /* copy */ /* ---------------------------------------------------------------------- */ CLEAR (Yx, Yz, 0) ; for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { ASSIGN (Yx, Yz, i+j*dy, Xx, Xz, i+j*dx) ; } } return (TRUE) ; } #endif #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Core/cholmod_error.c0000644001170100242450000000535110537777426016754 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_error =================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD error-handling routine. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* ==== cholmod_error ======================================================= */ /* ========================================================================== */ /* An error has occurred. Set the status, optionally print an error message, * and call the user error-handling routine (if it exists). If * Common->try_catch is TRUE, then CHOLMOD is inside a try/catch block. * The status is set, but no message is printed and the user error handler * is not called. This is not (yet) an error, since CHOLMOD may recover. * * In the current version, this try/catch mechanism is used internally only in * cholmod_analyze, which tries multiple ordering methods and picks the best * one. If one or more ordering method fails, it keeps going. Only one * ordering needs to succeed for cholmod_analyze to succeed. */ int CHOLMOD(error) ( /* ---- input ---- */ int status, /* error status */ char *file, /* name of source code file where error occured */ int line, /* line number in source code file where error occured*/ char *message, /* error message */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = status ; if (!(Common->try_catch)) { #ifndef NPRINT /* print a warning or error message */ if (Common->print_function != NULL) { if (status > 0 && Common->print > 1) { (Common->print_function) ("CHOLMOD warning: %s\n", message) ; fflush (stdout) ; fflush (stderr) ; } else if (Common->print > 0) { (Common->print_function) ("CHOLMOD error: %s\n", message) ; fflush (stdout) ; fflush (stderr) ; } } #endif /* call the user error handler, if it exists */ if (Common->error_handler != NULL) { Common->error_handler (status, file, line, message) ; } } return (TRUE) ; } SuiteSparse/CHOLMOD/Core/cholmod_common.c0000644001170100242450000005114510664623514017102 0ustar davisfac/* ========================================================================== */ /* === Core/cholmod_common ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Core Module. Copyright (C) 2005-2006, * Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Core Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Core utility routines for the cholmod_common object: * * Primary routines: * ----------------- * cholmod_start the first call to CHOLMOD * cholmod_finish the last call to CHOLMOD * * Secondary routines: * ------------------- * cholmod_defaults restore (most) default control parameters * cholmod_allocate_work allocate (or reallocate) workspace in Common * cholmod_free_work free workspace in Common * cholmod_clear_flag clear Common->Flag in workspace * cholmod_maxrank column dimension of Common->Xwork workspace * * The Common object is unique. It cannot be allocated or deallocated by * CHOLMOD, since it contains the definition of the memory management routines * used (pointers to malloc, free, realloc, and calloc, or their equivalent). * The Common object contains workspace that is used between calls to * CHOLMOD routines. This workspace allocated by CHOLMOD as needed, by * cholmod_allocate_work and cholmod_free_work. */ #include "cholmod_internal.h" #include "cholmod_core.h" /* ========================================================================== */ /* === cholmod_start ======================================================== */ /* ========================================================================== */ /* Initialize Common default parameters and statistics. Sets workspace * pointers to NULL. * * This routine must be called just once, prior to calling any other CHOLMOD * routine. Do not call this routine after any other CHOLMOD routine (except * cholmod_finish, to start a new CHOLMOD session), or a memory leak will * occur. * * workspace: none */ int CHOLMOD(start) ( cholmod_common *Common ) { if (Common == NULL) { return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* user error handling routine */ /* ---------------------------------------------------------------------- */ Common->error_handler = NULL ; /* ---------------------------------------------------------------------- */ /* integer and numerical types */ /* ---------------------------------------------------------------------- */ Common->itype = ITYPE ; Common->dtype = DTYPE ; /* ---------------------------------------------------------------------- */ /* default control parameters */ /* ---------------------------------------------------------------------- */ CHOLMOD(defaults) (Common) ; Common->try_catch = FALSE ; /* ---------------------------------------------------------------------- */ /* memory management routines */ /* ---------------------------------------------------------------------- */ /* The user can replace cholmod's memory management routines by redefining * these function pointers. */ #ifndef NMALLOC /* stand-alone ANSI C program */ Common->malloc_memory = malloc ; Common->free_memory = free ; Common->realloc_memory = realloc ; Common->calloc_memory = calloc ; #else /* no memory manager defined at compile-time; MUST define one at run-time */ Common->malloc_memory = NULL ; Common->free_memory = NULL ; Common->realloc_memory = NULL ; Common->calloc_memory = NULL ; #endif /* ---------------------------------------------------------------------- */ /* complex arithmetic routines */ /* ---------------------------------------------------------------------- */ Common->complex_divide = CHOLMOD(divcomplex) ; Common->hypotenuse = CHOLMOD(hypot) ; /* ---------------------------------------------------------------------- */ /* print routine */ /* ---------------------------------------------------------------------- */ #ifndef NPRINT /* stand-alone ANSI C program */ Common->print_function = printf ; #else /* printing disabled */ Common->print_function = NULL ; #endif /* ---------------------------------------------------------------------- */ /* workspace */ /* ---------------------------------------------------------------------- */ /* This code assumes the workspace held in Common is not initialized. If * it is, then a memory leak will occur because the pointers are * overwritten with NULL. */ Common->nrow = 0 ; Common->mark = EMPTY ; Common->xworksize = 0 ; Common->iworksize = 0 ; Common->Flag = NULL ; Common->Head = NULL ; Common->Iwork = NULL ; Common->Xwork = NULL ; Common->no_workspace_reallocate = FALSE ; /* ---------------------------------------------------------------------- */ /* statistics */ /* ---------------------------------------------------------------------- */ /* fl and lnz are computed in cholmod_analyze and cholmod_rowcolcounts */ Common->fl = EMPTY ; Common->lnz = EMPTY ; /* modfl is computed in cholmod_updown, cholmod_rowadd, and cholmod_rowdel*/ Common->modfl = EMPTY ; /* all routines use status as their error-report code */ Common->status = CHOLMOD_OK ; Common->malloc_count = 0 ; /* # calls to malloc minus # calls to free */ Common->memory_usage = 0 ; /* peak memory usage (in bytes) */ Common->memory_inuse = 0 ; /* current memory in use (in bytes) */ Common->nrealloc_col = 0 ; Common->nrealloc_factor = 0 ; Common->ndbounds_hit = 0 ; Common->rowfacfl = 0 ; Common->aatfl = EMPTY ; /* Common->called_nd is TRUE if cholmod_analyze called or NESDIS */ Common->called_nd = FALSE ; DEBUG_INIT ("cholmod start", Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_defaults ===================================================== */ /* ========================================================================== */ /* Set Common default parameters, except for the function pointers. * * workspace: none */ int CHOLMOD(defaults) ( cholmod_common *Common ) { Int i ; RETURN_IF_NULL_COMMON (FALSE) ; /* ---------------------------------------------------------------------- */ /* default control parameters */ /* ---------------------------------------------------------------------- */ Common->dbound = 0.0 ; Common->grow0 = 1.2 ; Common->grow1 = 1.2 ; Common->grow2 = 5 ; Common->maxrank = 8 ; Common->final_asis = TRUE ; Common->final_super = TRUE ; Common->final_ll = FALSE ; Common->final_pack = TRUE ; Common->final_monotonic = TRUE ; Common->final_resymbol = FALSE ; /* use simplicial factorization if flop/nnz(L) < 40, supernodal otherwise */ Common->supernodal = CHOLMOD_AUTO ; Common->supernodal_switch = 40 ; Common->nrelax [0] = 4 ; Common->nrelax [1] = 16 ; Common->nrelax [2] = 48 ; Common->zrelax [0] = 0.8 ; Common->zrelax [1] = 0.1 ; Common->zrelax [2] = 0.05 ; Common->prefer_zomplex = FALSE ; Common->prefer_upper = TRUE ; Common->prefer_binary = FALSE ; Common->quick_return_if_not_posdef = FALSE ; /* METIS workarounds */ Common->metis_memory = 0.0 ; /* > 0 for memory guard (2 is reasonable) */ Common->metis_nswitch = 3000 ; Common->metis_dswitch = 0.66 ; Common->print = 3 ; Common->precise = FALSE ; /* ---------------------------------------------------------------------- */ /* default ordering methods */ /* ---------------------------------------------------------------------- */ /* Note that if the Partition module is not installed, the CHOLMOD_METIS * and CHOLMOD_NESDIS methods will not be available. cholmod_analyze will * report the CHOLMOD_NOT_INSTALLED error, and safely skip over them. */ #if (CHOLMOD_MAXMETHODS < 9) #error "CHOLMOD_MAXMETHODS must be 9 or more (defined in cholmod_core.h)." #endif /* default strategy: try given, AMD, and then METIS if AMD reports high * fill-in. NESDIS can be used instead, if Common->default_nesdis is TRUE. */ Common->nmethods = 0 ; /* use default strategy */ Common->default_nesdis = FALSE ; /* use METIS in default strategy */ Common->current = 0 ; /* current method being tried */ Common->selected = 0 ; /* the best method selected */ /* first, fill each method with default parameters */ for (i = 0 ; i <= CHOLMOD_MAXMETHODS ; i++) { /* CHOLMOD's default method is AMD for A or AA' */ Common->method [i].ordering = CHOLMOD_AMD ; /* CHOLMOD nested dissection and minimum degree parameter */ Common->method [i].prune_dense = 10.0 ; /* dense row/col control */ /* min degree parameters (AMD, COLAMD, SYMAMD, CAMD, CCOLAMD, CSYMAMD)*/ Common->method [i].prune_dense2 = -1 ; /* COLAMD dense row control */ Common->method [i].aggressive = TRUE ; /* aggressive absorption */ Common->method [i].order_for_lu = FALSE ;/* order for Cholesky not LU */ /* CHOLMOD's nested dissection (METIS + constrained AMD) */ Common->method [i].nd_small = 200 ; /* small graphs aren't cut */ Common->method [i].nd_compress = TRUE ; /* compress graph & subgraphs */ Common->method [i].nd_camd = 1 ; /* use CAMD */ Common->method [i].nd_components = FALSE ; /* lump connected comp. */ Common->method [i].nd_oksep = 1.0 ; /* sep ok if < oksep*n */ /* statistics for each method are not yet computed */ Common->method [i].fl = EMPTY ; Common->method [i].lnz = EMPTY ; } Common->postorder = TRUE ; /* follow ordering with weighted postorder */ /* Next, define some methods. The first five use default parameters. */ Common->method [0].ordering = CHOLMOD_GIVEN ; /* skip if UserPerm NULL */ Common->method [1].ordering = CHOLMOD_AMD ; Common->method [2].ordering = CHOLMOD_METIS ; Common->method [3].ordering = CHOLMOD_NESDIS ; Common->method [4].ordering = CHOLMOD_NATURAL ; /* CHOLMOD's nested dissection with large leaves of separator tree */ Common->method [5].ordering = CHOLMOD_NESDIS ; Common->method [5].nd_small = 20000 ; /* CHOLMOD's nested dissection with tiny leaves, and no AMD ordering */ Common->method [6].ordering = CHOLMOD_NESDIS ; Common->method [6].nd_small = 4 ; Common->method [6].nd_camd = 0 ; /* no CSYMAMD or CAMD */ /* CHOLMOD's nested dissection with no dense node removal */ Common->method [7].ordering = CHOLMOD_NESDIS ; Common->method [7].prune_dense = -1. ; /* COLAMD for A*A', AMD for A */ Common->method [8].ordering = CHOLMOD_COLAMD ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_finish ======================================================= */ /* ========================================================================== */ /* The last call to CHOLMOD must be cholmod_finish. You may call this routine * more than once, and can safely call any other CHOLMOD routine after calling * it (including cholmod_start). * * The statistics and parameter settings in Common are preserved. The * workspace in Common is freed. This routine is just another name for * cholmod_free_work. */ int CHOLMOD(finish) ( cholmod_common *Common ) { return (CHOLMOD(free_work) (Common)) ; } /* ========================================================================== */ /* === cholmod_allocate_work ================================================ */ /* ========================================================================== */ /* Allocate and initialize workspace for CHOLMOD routines, or increase the size * of already-allocated workspace. If enough workspace is already allocated, * then nothing happens. * * workspace: Flag (nrow), Head (nrow+1), Iwork (iworksize), Xwork (xworksize) */ int CHOLMOD(allocate_work) ( /* ---- input ---- */ size_t nrow, /* # of rows in the matrix A */ size_t iworksize, /* size of Iwork */ size_t xworksize, /* size of Xwork */ /* --------------- */ cholmod_common *Common ) { double *W ; Int *Head ; Int i ; size_t nrow1 ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* Allocate Flag (nrow) and Head (nrow+1) */ /* ---------------------------------------------------------------------- */ nrow = MAX (1, nrow) ; /* nrow1 = nrow + 1 */ nrow1 = CHOLMOD(add_size_t) (nrow, 1, &ok) ; if (!ok) { /* nrow+1 causes size_t overflow ; problem is too large */ Common->status = CHOLMOD_TOO_LARGE ; CHOLMOD(free_work) (Common) ; return (FALSE) ; } if (nrow > Common->nrow) { if (Common->no_workspace_reallocate) { /* CHOLMOD is not allowed to change the workspace here */ Common->status = CHOLMOD_INVALID ; return (FALSE) ; } /* free the old workspace (if any) and allocate new space */ Common->Flag = CHOLMOD(free) (Common->nrow, sizeof (Int), Common->Flag, Common) ; Common->Head = CHOLMOD(free) (Common->nrow+1,sizeof (Int), Common->Head, Common) ; Common->Flag = CHOLMOD(malloc) (nrow, sizeof (Int), Common) ; Common->Head = CHOLMOD(malloc) (nrow1, sizeof (Int), Common) ; /* record the new size of Flag and Head */ Common->nrow = nrow ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_work) (Common) ; return (FALSE) ; } /* initialize Flag and Head */ Common->mark = EMPTY ; CHOLMOD(clear_flag) (Common) ; Head = Common->Head ; for (i = 0 ; i <= (Int) (nrow) ; i++) { Head [i] = EMPTY ; } } /* ---------------------------------------------------------------------- */ /* Allocate Iwork (iworksize) */ /* ---------------------------------------------------------------------- */ iworksize = MAX (1, iworksize) ; if (iworksize > Common->iworksize) { if (Common->no_workspace_reallocate) { /* CHOLMOD is not allowed to change the workspace here */ Common->status = CHOLMOD_INVALID ; return (FALSE) ; } /* free the old workspace (if any) and allocate new space. * integer overflow safely detected in cholmod_malloc */ CHOLMOD(free) (Common->iworksize, sizeof (Int), Common->Iwork, Common) ; Common->Iwork = CHOLMOD(malloc) (iworksize, sizeof (Int), Common) ; /* record the new size of Iwork */ Common->iworksize = iworksize ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_work) (Common) ; return (FALSE) ; } /* note that Iwork does not need to be initialized */ } /* ---------------------------------------------------------------------- */ /* Allocate Xwork (xworksize) and set it to ((double) 0.) */ /* ---------------------------------------------------------------------- */ /* make sure xworksize is >= 1 */ xworksize = MAX (1, xworksize) ; if (xworksize > Common->xworksize) { if (Common->no_workspace_reallocate) { /* CHOLMOD is not allowed to change the workspace here */ Common->status = CHOLMOD_INVALID ; return (FALSE) ; } /* free the old workspace (if any) and allocate new space */ CHOLMOD(free) (Common->xworksize, sizeof (double), Common->Xwork, Common) ; Common->Xwork = CHOLMOD(malloc) (xworksize, sizeof (double), Common) ; /* record the new size of Xwork */ Common->xworksize = xworksize ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_work) (Common) ; return (FALSE) ; } /* initialize Xwork */ W = Common->Xwork ; for (i = 0 ; i < (Int) xworksize ; i++) { W [i] = 0. ; } } return (TRUE) ; } /* ========================================================================== */ /* === cholmod_free_work ==================================================== */ /* ========================================================================== */ /* Deallocate the CHOLMOD workspace. * * workspace: deallocates all workspace in Common */ int CHOLMOD(free_work) ( cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->Flag = CHOLMOD(free) (Common->nrow, sizeof (Int), Common->Flag, Common) ; Common->Head = CHOLMOD(free) (Common->nrow+1, sizeof (Int), Common->Head, Common) ; Common->Iwork = CHOLMOD(free) (Common->iworksize, sizeof (Int), Common->Iwork, Common) ; Common->Xwork = CHOLMOD(free) (Common->xworksize, sizeof (double), Common->Xwork, Common) ; Common->nrow = 0 ; Common->iworksize = 0 ; Common->xworksize = 0 ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_clear_flag =================================================== */ /* ========================================================================== */ /* Increment mark to ensure Flag [0..nrow-1] < mark. If integer overflow * occurs, or mark was initially negative, reset the entire array. This is * not an error condition, but an intended function of the Flag workspace. * * workspace: Flag (nrow). Does not modify Flag if nrow is zero. */ UF_long CHOLMOD(clear_flag) ( cholmod_common *Common ) { Int i, nrow, *Flag ; RETURN_IF_NULL_COMMON (-1) ; Common->mark++ ; if (Common->mark <= 0) { nrow = Common->nrow ; Flag = Common->Flag ; PRINT2 (("reset Flag: nrow "ID"\n", nrow)) ; PRINT2 (("reset Flag: mark %ld\n", Common->mark)) ; for (i = 0 ; i < nrow ; i++) { Flag [i] = EMPTY ; } Common->mark = 0 ; } return (Common->mark) ; } /* ========================================================================== */ /* ==== cholmod_maxrank ===================================================== */ /* ========================================================================== */ /* Find a valid value of Common->maxrank. Returns 0 if error, or 2, 4, or 8 * if successful. */ size_t CHOLMOD(maxrank) /* returns validated value of Common->maxrank */ ( /* ---- input ---- */ size_t n, /* A and L will have n rows */ /* --------------- */ cholmod_common *Common ) { size_t maxrank ; RETURN_IF_NULL_COMMON (0) ; maxrank = Common->maxrank ; if (n > 0) { /* Ensure maxrank*n*sizeof(double) does not result in integer overflow. * If n is so large that 2*n*sizeof(double) results in integer overflow * (n = 268,435,455 if an Int is 32 bits), then maxrank will be 0 or 1, * but maxrank will be set to 2 below. 2*n will not result in integer * overflow, and CHOLMOD will run out of memory or safely detect integer * overflow elsewhere. */ maxrank = MIN (maxrank, Size_max / (n * sizeof (double))) ; } if (maxrank <= 2) { maxrank = 2 ; } else if (maxrank <= 4) { maxrank = 4 ; } else { maxrank = 8 ; } return (maxrank) ; } /* ========================================================================== */ /* === cholmod_dbound ======================================================= */ /* ========================================================================== */ /* Ensure the absolute value of a diagonal entry, D (j,j), is greater than * Common->dbound. This routine is not meant for the user to call. It is used * by the various LDL' factorization and update/downdate routines. The * default value of Common->dbound is zero, and in that case this routine is not * called at all. No change is made if D (j,j) is NaN. CHOLMOD does not call * this routine if Common->dbound is NaN. */ double CHOLMOD(dbound) /* returns modified diagonal entry of D */ ( /* ---- input ---- */ double dj, /* diagonal entry of D, for LDL' factorization */ /* --------------- */ cholmod_common *Common ) { double dbound ; RETURN_IF_NULL_COMMON (0) ; if (!IS_NAN (dj)) { dbound = Common->dbound ; if (dj < 0) { if (dj > -dbound) { dj = -dbound ; Common->ndbounds_hit++ ; if (Common->status == CHOLMOD_OK) { ERROR (CHOLMOD_DSMALL, "diagonal below threshold") ; } } } else { if (dj < dbound) { dj = dbound ; Common->ndbounds_hit++ ; if (Common->status == CHOLMOD_OK) { ERROR (CHOLMOD_DSMALL, "diagonal below threshold") ; } } } } return (dj) ; } SuiteSparse/CHOLMOD/Core/lesser.txt0000644001170100242450000006350010253404164015765 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CHOLMOD/Demo/0000755001170100242450000000000010711435726013726 5ustar davisfacSuiteSparse/CHOLMOD/Demo/Makefile0000644001170100242450000000527210617113272015366 0ustar davisfac#=============================================================================== # CHOLMOD/Demo/Makefile #=============================================================================== # If you compile CHOLMOD with -DNPARTITION, then you do not need METIS or # CCOLAMD. default: all include ../../UFconfig/UFconfig.mk #------------------------------------------------------------------------------- # With METIS, CCOLAMD, CAMD, and the Partition Module: LIB2 = ../Lib/libcholmod.a ../../AMD/Lib/libamd.a ../../COLAMD/Lib/libcolamd.a \ ../../CCOLAMD/Lib/libccolamd.a ../../CAMD/Lib/libcamd.a \ $(METIS) $(LAPACK) $(BLAS) $(XERBLA) $(LIB) # Use this instead, if you compile with -DNPARTITION: # LIB2 = ../Lib/libcholmod.a ../../AMD/Lib/libamd.a ../../COLAMD/libcolamd.a \ $(LAPACK) $(BLAS) $(XERBLA) $(LIB) #------------------------------------------------------------------------------- C = $(CC) $(CFLAGS) $(CHOLMOD_CONFIG) code: library cholmod_demo cholmod_l_demo cholmod_simple fortran: readhb readhb2 reade all: code ./cholmod_demo < Matrix/bcsstk01.tri ./cholmod_l_demo < Matrix/bcsstk01.tri ./cholmod_demo < Matrix/lp_afiro.tri ./cholmod_l_demo < Matrix/lp_afiro.tri ./cholmod_demo < Matrix/can___24.mtx ./cholmod_l_demo < Matrix/can___24.mtx ./cholmod_demo < Matrix/c.tri ./cholmod_l_demo < Matrix/c.tri ./cholmod_simple < Matrix/c.tri ./cholmod_simple < Matrix/can___24.mtx ./cholmod_simple < Matrix/bcsstk01.tri distclean: purge purge: clean - $(RM) cholmod_demo cholmod_l_demo readhb readhb2 reade - $(RM) cholmod_simple clean: - $(RM) $(CLEAN) #------------------------------------------------------------------------------- # See below if you compile with -DNPARTITION library: ( cd ../../UFconfig/xerbla ; $(MAKE) ) ( cd ../Lib ; $(MAKE) ) ( cd ../../AMD ; $(MAKE) library ) ( cd ../../CAMD ; $(MAKE) library ) ( cd ../../COLAMD ; $(MAKE) library ) ( cd ../../CCOLAMD ; $(MAKE) library ) # use this rule instead, if you compile with -DNPARTITION: # library: # ( cd ../../UFconfig/xerbla ; $(MAKE) ) # ( cd ../Lib ; $(MAKE) ) # ( cd ../../AMD ; $(MAKE) library ) # ( cd ../../COLAMD ; $(MAKE) ) #------------------------------------------------------------------------------- I = -I../Include -I../../UFconfig cholmod_demo: library cholmod_demo.c cholmod_demo.h $(C) -o cholmod_demo $(I) cholmod_demo.c $(LIB2) cholmod_simple: library cholmod_simple.c $(C) -o cholmod_simple $(I) cholmod_simple.c $(LIB2) cholmod_l_demo: library cholmod_l_demo.c cholmod_demo.h $(C) -o cholmod_l_demo $(I) cholmod_l_demo.c $(LIB2) readhb: readhb.f $(F77) $(FFLAGS) -o readhb readhb.f readhb2: readhb2.f $(F77) $(FFLAGS) -O -o readhb2 readhb2.f reade: reade.f $(F77) $(FFLAGS) -O -o reade reade.f SuiteSparse/CHOLMOD/Demo/reade.f0000644001170100242450000001227710277474236015174 0ustar davisfacc----------------------------------------------------------------------- c Read a sparse matrix in the Harwell/Boeing format and output a c matrix in triplet format. c c not for: **A c use for: RSE and PSE c----------------------------------------------------------------------- integer nzmax, nmax parameter (nzmax = 50000000, nmax = 1000000) integer Ptr (nmax), Index (nzmax), n, nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, row, col, p, $ nguess, nexact, nrhsix, nrhsvl character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 logical sym, unsorted double precision Value (nzmax) double precision skew character rhstyp*3 integer nel integer lastrow integer prow, el, pval, hasval integer stype c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix c----------------------------------------------------------------------- nrhs = 0 nrhsix = 0 read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nrhsix endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) skew = 0.0 if (type (2:2) .eq. 'Z' .or. type (2:2) .eq. 'z') then write (0, *) '*ZE not supported!' stop endif if (type (2:2) .eq. 'S' .or. type (2:2) .eq. 's') skew = 1.0 if (type (2:2) .eq. 'H' .or. type (2:2) .eq. 'h') then write (0, *) '*HE not supported!' stop endif sym = skew .ne. 0.0 c write (0, 30) title, key, type, nrow, ncol, nz if (rhscrd .gt. 0) then c new Harwell/Boeing format: c write (0, 40) rhstyp,nrhs,nzrhs endif 30 format ( $ ' title: ', a72 / $ ' key: ', a8 / $ ' type: ', a3, ' nrow: ', i14, ' ncol: ', i14 / $ ' nz: ', i14) 40 format (' rhstyp: ', a3, ' nrhs: ', i14, ' nzrhs: ', i14) n = max (nrow, ncol) if (n .ge. nmax .or. nz .gt. nzmax) then write (0, *) 'Matrix too big!' stop endif if (type (3:3) .ne. 'E' .and. type (3:3) .ne. 'a') then write (0, *) 'Can only handle **E types!' stop endif if (.not. ( $ type (1:1) .eq. 'P' .or. $ type (1:1) .eq. 'p' .or. $ type (1:1) .eq. 'R' .or. $ type (1:1) .eq. 'r')) then write (0, *) 'Can only handle R*E or P*E types!' stop endif c----------------------------------------------------------------------- c read the pattern c----------------------------------------------------------------------- read (5, ptrfmt, err = 998) (Ptr (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Index (p), p = 1, nz) c----------------------------------------------------------------------- c check if the columns are sorted c----------------------------------------------------------------------- unsorted = .false. do 101 col = 1, ncol lastrow = 0 do 91 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) if (row .lt. lastrow) then unsorted = .true. write (0,*) ' ********* Columns are unsorted' goto 102 endif lastrow = row 91 continue 101 continue 102 continue c----------------------------------------------------------------------- c read the values c----------------------------------------------------------------------- if (valcrd .gt. 0) then read (5, valfmt, err = 998) (Value (p), p = 1, nel) endif c----------------------------------------------------------------------- c write the triplet form of the input matrix c----------------------------------------------------------------------- c stype = 0: unsymmetric c stype = -1: symmetric, lower triangular part present stype = -1 nz = 0 do 300 el = 1, ncol do 390 p = Ptr (el), Ptr (el+1) - 1 do 392 prow = p, Ptr (el+1) - 1 nz = nz + 1 392 continue 390 continue 300 continue write (6, 701) title write (6, 702) key 701 format ('% title:', a72) 702 format ('% key: ', a8) write (6, 710) nrow, nrow, nz, stype 710 format (2i8, i12, i3) pval = 0 do 100 el = 1, ncol do 90 p = Ptr (el), Ptr (el+1) - 1 col = Index (p) do 92 prow = p, Ptr (el+1) - 1 row = Index (prow) if (row .lt. col) then write (0, *) 'bad format!' stop endif if (valcrd .gt. 0) then pval = pval + 1 if (pval .gt. nel) then write (0, *) 'bad format!' stop endif write (6, 200) row, col, Value (pval) else write (6, 201) row, col endif 92 continue 90 continue 100 continue 200 format (2i8, e30.18e3) 201 format (2i8) c----------------------------------------------------------------------- stop 998 write (0,*) 'Read error: Harwell/Boeing matrix' stop end SuiteSparse/CHOLMOD/Demo/Matrix/0000755001170100242450000000000010424737163015173 5ustar davisfacSuiteSparse/CHOLMOD/Demo/Matrix/n50000644001170100242450000011122710302115724015430 0ustar davisfac210 210 4060 1 1 1 5 2 1 1 3 1 1 4 1 1 25 1 1 45 1 1 65 1 1 85 1 1 101 1 2 102 1 2 103 1 2 104 1 2 152 1 1 158 1 1 169 1 1 185 1 1 201 1 -1 206 1 -1 1 2 1 2 2 5 3 2 1 4 2 1 29 2 1 49 2 1 69 2 1 89 2 1 101 2 2 102 2 2 103 2 2 104 2 2 153 2 1 160 2 1 172 2 1 189 2 1 201 2 -1 206 2 -1 1 3 1 2 3 1 3 3 5 4 3 1 33 3 1 53 3 1 73 3 1 93 3 1 101 3 2 102 3 2 103 3 2 104 3 2 154 3 1 162 3 1 175 3 1 193 3 1 201 3 -1 206 3 -1 1 4 1 2 4 1 3 4 1 4 4 5 37 4 1 57 4 1 77 4 1 97 4 1 101 4 2 102 4 2 103 4 2 104 4 2 155 4 1 164 4 1 178 4 1 197 4 1 201 4 -1 206 4 -1 5 5 5 6 5 1 7 5 1 8 5 1 21 5 1 41 5 1 61 5 1 81 5 1 105 5 2 106 5 2 107 5 2 108 5 2 151 5 1 156 5 1 166 5 1 181 5 1 202 5 -1 206 5 -1 5 6 1 6 6 5 7 6 1 8 6 1 30 6 1 50 6 1 70 6 1 90 6 1 105 6 2 106 6 2 107 6 2 108 6 2 153 6 1 160 6 1 172 6 1 189 6 1 202 6 -1 206 6 -1 5 7 1 6 7 1 7 7 5 8 7 1 34 7 1 54 7 1 74 7 1 94 7 1 105 7 2 106 7 2 107 7 2 108 7 2 154 7 1 162 7 1 175 7 1 193 7 1 202 7 -1 206 7 -1 5 8 1 6 8 1 7 8 1 8 8 5 38 8 1 58 8 1 78 8 1 98 8 1 105 8 2 106 8 2 107 8 2 108 8 2 155 8 1 164 8 1 178 8 1 197 8 1 202 8 -1 206 8 -1 9 9 5 10 9 1 11 9 1 12 9 1 22 9 1 42 9 1 62 9 1 82 9 1 109 9 2 110 9 2 111 9 2 112 9 2 151 9 1 156 9 1 166 9 1 181 9 1 203 9 -1 206 9 -1 9 10 1 10 10 5 11 10 1 12 10 1 26 10 1 46 10 1 66 10 1 86 10 1 109 10 2 110 10 2 111 10 2 112 10 2 152 10 1 158 10 1 169 10 1 185 10 1 203 10 -1 206 10 -1 9 11 1 10 11 1 11 11 5 12 11 1 35 11 1 55 11 1 75 11 1 95 11 1 109 11 2 110 11 2 111 11 2 112 11 2 154 11 1 162 11 1 175 11 1 193 11 1 203 11 -1 206 11 -1 9 12 1 10 12 1 11 12 1 12 12 5 39 12 1 59 12 1 79 12 1 99 12 1 109 12 2 110 12 2 111 12 2 112 12 2 155 12 1 164 12 1 178 12 1 197 12 1 203 12 -1 206 12 -1 13 13 5 14 13 1 15 13 1 16 13 1 23 13 1 43 13 1 63 13 1 83 13 1 113 13 2 114 13 2 115 13 2 116 13 2 151 13 1 156 13 1 166 13 1 181 13 1 204 13 -1 206 13 -1 13 14 1 14 14 5 15 14 1 16 14 1 27 14 1 47 14 1 67 14 1 87 14 1 113 14 2 114 14 2 115 14 2 116 14 2 152 14 1 158 14 1 169 14 1 185 14 1 204 14 -1 206 14 -1 13 15 1 14 15 1 15 15 5 16 15 1 31 15 1 51 15 1 71 15 1 91 15 1 113 15 2 114 15 2 115 15 2 116 15 2 153 15 1 160 15 1 172 15 1 189 15 1 204 15 -1 206 15 -1 13 16 1 14 16 1 15 16 1 16 16 5 40 16 1 60 16 1 80 16 1 100 16 1 113 16 2 114 16 2 115 16 2 116 16 2 155 16 1 164 16 1 178 16 1 197 16 1 204 16 -1 206 16 -1 17 17 5 18 17 1 19 17 1 20 17 1 24 17 1 44 17 1 64 17 1 84 17 1 117 17 2 118 17 2 119 17 2 120 17 2 151 17 1 156 17 1 166 17 1 181 17 1 205 17 -1 206 17 -1 17 18 1 18 18 5 19 18 1 20 18 1 28 18 1 48 18 1 68 18 1 88 18 1 117 18 2 118 18 2 119 18 2 120 18 2 152 18 1 158 18 1 169 18 1 185 18 1 205 18 -1 206 18 -1 17 19 1 18 19 1 19 19 5 20 19 1 32 19 1 52 19 1 72 19 1 92 19 1 117 19 2 118 19 2 119 19 2 120 19 2 153 19 1 160 19 1 172 19 1 189 19 1 205 19 -1 206 19 -1 17 20 1 18 20 1 19 20 1 20 20 5 36 20 1 56 20 1 76 20 1 96 20 1 117 20 2 118 20 2 119 20 2 120 20 2 154 20 1 162 20 1 175 20 1 193 20 1 205 20 -1 206 20 -1 5 21 1 21 21 5 22 21 1 23 21 1 24 21 1 45 21 1 65 21 1 85 21 1 105 21 1 121 21 2 122 21 2 123 21 2 151 21 2 159 21 1 170 21 1 186 21 1 201 21 -1 207 21 -1 9 22 1 21 22 1 22 22 5 23 22 1 24 22 1 49 22 1 69 22 1 89 22 1 109 22 1 121 22 2 122 22 2 123 22 2 151 22 2 161 22 1 173 22 1 190 22 1 201 22 -1 207 22 -1 13 23 1 21 23 1 22 23 1 23 23 5 24 23 1 53 23 1 73 23 1 93 23 1 113 23 1 121 23 2 122 23 2 123 23 2 151 23 2 163 23 1 176 23 1 194 23 1 201 23 -1 207 23 -1 17 24 1 21 24 1 22 24 1 23 24 1 24 24 5 57 24 1 77 24 1 97 24 1 117 24 1 121 24 2 122 24 2 123 24 2 151 24 2 165 24 1 179 24 1 198 24 1 201 24 -1 207 24 -1 1 25 1 25 25 5 26 25 1 27 25 1 28 25 1 41 25 1 61 25 1 81 25 1 101 25 1 124 25 2 125 25 2 126 25 2 152 25 2 157 25 1 167 25 1 182 25 1 202 25 -1 207 25 -1 10 26 1 25 26 1 26 26 5 27 26 1 28 26 1 50 26 1 70 26 1 90 26 1 109 26 1 124 26 2 125 26 2 126 26 2 152 26 2 161 26 1 173 26 1 190 26 1 202 26 -1 207 26 -1 14 27 1 25 27 1 26 27 1 27 27 5 28 27 1 54 27 1 74 27 1 94 27 1 113 27 1 124 27 2 125 27 2 126 27 2 152 27 2 163 27 1 176 27 1 194 27 1 202 27 -1 207 27 -1 18 28 1 25 28 1 26 28 1 27 28 1 28 28 5 58 28 1 78 28 1 98 28 1 117 28 1 124 28 2 125 28 2 126 28 2 152 28 2 165 28 1 179 28 1 198 28 1 202 28 -1 207 28 -1 2 29 1 29 29 5 30 29 1 31 29 1 32 29 1 42 29 1 62 29 1 82 29 1 101 29 1 127 29 2 128 29 2 129 29 2 153 29 2 157 29 1 167 29 1 182 29 1 203 29 -1 207 29 -1 6 30 1 29 30 1 30 30 5 31 30 1 32 30 1 46 30 1 66 30 1 86 30 1 105 30 1 127 30 2 128 30 2 129 30 2 153 30 2 159 30 1 170 30 1 186 30 1 203 30 -1 207 30 -1 15 31 1 29 31 1 30 31 1 31 31 5 32 31 1 55 31 1 75 31 1 95 31 1 113 31 1 127 31 2 128 31 2 129 31 2 153 31 2 163 31 1 176 31 1 194 31 1 203 31 -1 207 31 -1 19 32 1 29 32 1 30 32 1 31 32 1 32 32 5 59 32 1 79 32 1 99 32 1 117 32 1 127 32 2 128 32 2 129 32 2 153 32 2 165 32 1 179 32 1 198 32 1 203 32 -1 207 32 -1 3 33 1 33 33 5 34 33 1 35 33 1 36 33 1 43 33 1 63 33 1 83 33 1 101 33 1 130 33 2 131 33 2 132 33 2 154 33 2 157 33 1 167 33 1 182 33 1 204 33 -1 207 33 -1 7 34 1 33 34 1 34 34 5 35 34 1 36 34 1 47 34 1 67 34 1 87 34 1 105 34 1 130 34 2 131 34 2 132 34 2 154 34 2 159 34 1 170 34 1 186 34 1 204 34 -1 207 34 -1 11 35 1 33 35 1 34 35 1 35 35 5 36 35 1 51 35 1 71 35 1 91 35 1 109 35 1 130 35 2 131 35 2 132 35 2 154 35 2 161 35 1 173 35 1 190 35 1 204 35 -1 207 35 -1 20 36 1 33 36 1 34 36 1 35 36 1 36 36 5 60 36 1 80 36 1 100 36 1 117 36 1 130 36 2 131 36 2 132 36 2 154 36 2 165 36 1 179 36 1 198 36 1 204 36 -1 207 36 -1 4 37 1 37 37 5 38 37 1 39 37 1 40 37 1 44 37 1 64 37 1 84 37 1 101 37 1 133 37 2 134 37 2 135 37 2 155 37 2 157 37 1 167 37 1 182 37 1 205 37 -1 207 37 -1 8 38 1 37 38 1 38 38 5 39 38 1 40 38 1 48 38 1 68 38 1 88 38 1 105 38 1 133 38 2 134 38 2 135 38 2 155 38 2 159 38 1 170 38 1 186 38 1 205 38 -1 207 38 -1 12 39 1 37 39 1 38 39 1 39 39 5 40 39 1 52 39 1 72 39 1 92 39 1 109 39 1 133 39 2 134 39 2 135 39 2 155 39 2 161 39 1 173 39 1 190 39 1 205 39 -1 207 39 -1 16 40 1 37 40 1 38 40 1 39 40 1 40 40 5 56 40 1 76 40 1 96 40 1 113 40 1 133 40 2 134 40 2 135 40 2 155 40 2 163 40 1 176 40 1 194 40 1 205 40 -1 207 40 -1 5 41 1 25 41 1 41 41 5 42 41 1 43 41 1 44 41 1 65 41 1 85 41 1 106 41 1 124 41 1 136 41 2 137 41 2 156 41 2 157 41 2 171 41 1 187 41 1 201 41 -1 208 41 -1 9 42 1 29 42 1 41 42 1 42 42 5 43 42 1 44 42 1 69 42 1 89 42 1 110 42 1 127 42 1 136 42 2 137 42 2 156 42 2 157 42 2 174 42 1 191 42 1 201 42 -1 208 42 -1 13 43 1 33 43 1 41 43 1 42 43 1 43 43 5 44 43 1 73 43 1 93 43 1 114 43 1 130 43 1 136 43 2 137 43 2 156 43 2 157 43 2 177 43 1 195 43 1 201 43 -1 208 43 -1 17 44 1 37 44 1 41 44 1 42 44 1 43 44 1 44 44 5 77 44 1 97 44 1 118 44 1 133 44 1 136 44 2 137 44 2 156 44 2 157 44 2 180 44 1 199 44 1 201 44 -1 208 44 -1 1 45 1 21 45 1 45 45 5 46 45 1 47 45 1 48 45 1 61 45 1 81 45 1 102 45 1 121 45 1 138 45 2 139 45 2 158 45 2 159 45 2 168 45 1 183 45 1 202 45 -1 208 45 -1 10 46 1 30 46 1 45 46 1 46 46 5 47 46 1 48 46 1 70 46 1 90 46 1 110 46 1 127 46 1 138 46 2 139 46 2 158 46 2 159 46 2 174 46 1 191 46 1 202 46 -1 208 46 -1 14 47 1 34 47 1 45 47 1 46 47 1 47 47 5 48 47 1 74 47 1 94 47 1 114 47 1 130 47 1 138 47 2 139 47 2 158 47 2 159 47 2 177 47 1 195 47 1 202 47 -1 208 47 -1 18 48 1 38 48 1 45 48 1 46 48 1 47 48 1 48 48 5 78 48 1 98 48 1 118 48 1 133 48 1 138 48 2 139 48 2 158 48 2 159 48 2 180 48 1 199 48 1 202 48 -1 208 48 -1 2 49 1 22 49 1 49 49 5 50 49 1 51 49 1 52 49 1 62 49 1 82 49 1 102 49 1 121 49 1 140 49 2 141 49 2 160 49 2 161 49 2 168 49 1 183 49 1 203 49 -1 208 49 -1 6 50 1 26 50 1 49 50 1 50 50 5 51 50 1 52 50 1 66 50 1 86 50 1 106 50 1 124 50 1 140 50 2 141 50 2 160 50 2 161 50 2 171 50 1 187 50 1 203 50 -1 208 50 -1 15 51 1 35 51 1 49 51 1 50 51 1 51 51 5 52 51 1 75 51 1 95 51 1 114 51 1 130 51 1 140 51 2 141 51 2 160 51 2 161 51 2 177 51 1 195 51 1 203 51 -1 208 51 -1 19 52 1 39 52 1 49 52 1 50 52 1 51 52 1 52 52 5 79 52 1 99 52 1 118 52 1 133 52 1 140 52 2 141 52 2 160 52 2 161 52 2 180 52 1 199 52 1 203 52 -1 208 52 -1 3 53 1 23 53 1 53 53 5 54 53 1 55 53 1 56 53 1 63 53 1 83 53 1 102 53 1 121 53 1 142 53 2 143 53 2 162 53 2 163 53 2 168 53 1 183 53 1 204 53 -1 208 53 -1 7 54 1 27 54 1 53 54 1 54 54 5 55 54 1 56 54 1 67 54 1 87 54 1 106 54 1 124 54 1 142 54 2 143 54 2 162 54 2 163 54 2 171 54 1 187 54 1 204 54 -1 208 54 -1 11 55 1 31 55 1 53 55 1 54 55 1 55 55 5 56 55 1 71 55 1 91 55 1 110 55 1 127 55 1 142 55 2 143 55 2 162 55 2 163 55 2 174 55 1 191 55 1 204 55 -1 208 55 -1 20 56 1 40 56 1 53 56 1 54 56 1 55 56 1 56 56 5 80 56 1 100 56 1 118 56 1 133 56 1 142 56 2 143 56 2 162 56 2 163 56 2 180 56 1 199 56 1 204 56 -1 208 56 -1 4 57 1 24 57 1 57 57 5 58 57 1 59 57 1 60 57 1 64 57 1 84 57 1 102 57 1 121 57 1 144 57 2 145 57 2 164 57 2 165 57 2 168 57 1 183 57 1 205 57 -1 208 57 -1 8 58 1 28 58 1 57 58 1 58 58 5 59 58 1 60 58 1 68 58 1 88 58 1 106 58 1 124 58 1 144 58 2 145 58 2 164 58 2 165 58 2 171 58 1 187 58 1 205 58 -1 208 58 -1 12 59 1 32 59 1 57 59 1 58 59 1 59 59 5 60 59 1 72 59 1 92 59 1 110 59 1 127 59 1 144 59 2 145 59 2 164 59 2 165 59 2 174 59 1 191 59 1 205 59 -1 208 59 -1 16 60 1 36 60 1 57 60 1 58 60 1 59 60 1 60 60 5 76 60 1 96 60 1 114 60 1 130 60 1 144 60 2 145 60 2 164 60 2 165 60 2 177 60 1 195 60 1 205 60 -1 208 60 -1 5 61 1 25 61 1 45 61 1 61 61 5 62 61 1 63 61 1 64 61 1 85 61 1 107 61 1 125 61 1 138 61 1 146 61 2 166 61 2 167 61 2 168 61 2 188 61 1 201 61 -1 209 61 -1 9 62 1 29 62 1 49 62 1 61 62 1 62 62 5 63 62 1 64 62 1 89 62 1 111 62 1 128 62 1 140 62 1 146 62 2 166 62 2 167 62 2 168 62 2 192 62 1 201 62 -1 209 62 -1 13 63 1 33 63 1 53 63 1 61 63 1 62 63 1 63 63 5 64 63 1 93 63 1 115 63 1 131 63 1 142 63 1 146 63 2 166 63 2 167 63 2 168 63 2 196 63 1 201 63 -1 209 63 -1 17 64 1 37 64 1 57 64 1 61 64 1 62 64 1 63 64 1 64 64 5 97 64 1 119 64 1 134 64 1 144 64 1 146 64 2 166 64 2 167 64 2 168 64 2 200 64 1 201 64 -1 209 64 -1 1 65 1 21 65 1 41 65 1 65 65 5 66 65 1 67 65 1 68 65 1 81 65 1 103 65 1 122 65 1 136 65 1 147 65 2 169 65 2 170 65 2 171 65 2 184 65 1 202 65 -1 209 65 -1 10 66 1 30 66 1 50 66 1 65 66 1 66 66 5 67 66 1 68 66 1 90 66 1 111 66 1 128 66 1 140 66 1 147 66 2 169 66 2 170 66 2 171 66 2 192 66 1 202 66 -1 209 66 -1 14 67 1 34 67 1 54 67 1 65 67 1 66 67 1 67 67 5 68 67 1 94 67 1 115 67 1 131 67 1 142 67 1 147 67 2 169 67 2 170 67 2 171 67 2 196 67 1 202 67 -1 209 67 -1 18 68 1 38 68 1 58 68 1 65 68 1 66 68 1 67 68 1 68 68 5 98 68 1 119 68 1 134 68 1 144 68 1 147 68 2 169 68 2 170 68 2 171 68 2 200 68 1 202 68 -1 209 68 -1 2 69 1 22 69 1 42 69 1 69 69 5 70 69 1 71 69 1 72 69 1 82 69 1 103 69 1 122 69 1 136 69 1 148 69 2 172 69 2 173 69 2 174 69 2 184 69 1 203 69 -1 209 69 -1 6 70 1 26 70 1 46 70 1 69 70 1 70 70 5 71 70 1 72 70 1 86 70 1 107 70 1 125 70 1 138 70 1 148 70 2 172 70 2 173 70 2 174 70 2 188 70 1 203 70 -1 209 70 -1 15 71 1 35 71 1 55 71 1 69 71 1 70 71 1 71 71 5 72 71 1 95 71 1 115 71 1 131 71 1 142 71 1 148 71 2 172 71 2 173 71 2 174 71 2 196 71 1 203 71 -1 209 71 -1 19 72 1 39 72 1 59 72 1 69 72 1 70 72 1 71 72 1 72 72 5 99 72 1 119 72 1 134 72 1 144 72 1 148 72 2 172 72 2 173 72 2 174 72 2 200 72 1 203 72 -1 209 72 -1 3 73 1 23 73 1 43 73 1 73 73 5 74 73 1 75 73 1 76 73 1 83 73 1 103 73 1 122 73 1 136 73 1 149 73 2 175 73 2 176 73 2 177 73 2 184 73 1 204 73 -1 209 73 -1 7 74 1 27 74 1 47 74 1 73 74 1 74 74 5 75 74 1 76 74 1 87 74 1 107 74 1 125 74 1 138 74 1 149 74 2 175 74 2 176 74 2 177 74 2 188 74 1 204 74 -1 209 74 -1 11 75 1 31 75 1 51 75 1 73 75 1 74 75 1 75 75 5 76 75 1 91 75 1 111 75 1 128 75 1 140 75 1 149 75 2 175 75 2 176 75 2 177 75 2 192 75 1 204 75 -1 209 75 -1 20 76 1 40 76 1 60 76 1 73 76 1 74 76 1 75 76 1 76 76 5 100 76 1 119 76 1 134 76 1 144 76 1 149 76 2 175 76 2 176 76 2 177 76 2 200 76 1 204 76 -1 209 76 -1 4 77 1 24 77 1 44 77 1 77 77 5 78 77 1 79 77 1 80 77 1 84 77 1 103 77 1 122 77 1 136 77 1 150 77 2 178 77 2 179 77 2 180 77 2 184 77 1 205 77 -1 209 77 -1 8 78 1 28 78 1 48 78 1 77 78 1 78 78 5 79 78 1 80 78 1 88 78 1 107 78 1 125 78 1 138 78 1 150 78 2 178 78 2 179 78 2 180 78 2 188 78 1 205 78 -1 209 78 -1 12 79 1 32 79 1 52 79 1 77 79 1 78 79 1 79 79 5 80 79 1 92 79 1 111 79 1 128 79 1 140 79 1 150 79 2 178 79 2 179 79 2 180 79 2 192 79 1 205 79 -1 209 79 -1 16 80 1 36 80 1 56 80 1 77 80 1 78 80 1 79 80 1 80 80 5 96 80 1 115 80 1 131 80 1 142 80 1 150 80 2 178 80 2 179 80 2 180 80 2 196 80 1 205 80 -1 209 80 -1 5 81 1 25 81 1 45 81 1 65 81 1 81 81 5 82 81 1 83 81 1 84 81 1 108 81 1 126 81 1 139 81 1 147 81 1 181 81 2 182 81 2 183 81 2 184 81 2 201 81 -1 210 81 -1 9 82 1 29 82 1 49 82 1 69 82 1 81 82 1 82 82 5 83 82 1 84 82 1 112 82 1 129 82 1 141 82 1 148 82 1 181 82 2 182 82 2 183 82 2 184 82 2 201 82 -1 210 82 -1 13 83 1 33 83 1 53 83 1 73 83 1 81 83 1 82 83 1 83 83 5 84 83 1 116 83 1 132 83 1 143 83 1 149 83 1 181 83 2 182 83 2 183 83 2 184 83 2 201 83 -1 210 83 -1 17 84 1 37 84 1 57 84 1 77 84 1 81 84 1 82 84 1 83 84 1 84 84 5 120 84 1 135 84 1 145 84 1 150 84 1 181 84 2 182 84 2 183 84 2 184 84 2 201 84 -1 210 84 -1 1 85 1 21 85 1 41 85 1 61 85 1 85 85 5 86 85 1 87 85 1 88 85 1 104 85 1 123 85 1 137 85 1 146 85 1 185 85 2 186 85 2 187 85 2 188 85 2 202 85 -1 210 85 -1 10 86 1 30 86 1 50 86 1 70 86 1 85 86 1 86 86 5 87 86 1 88 86 1 112 86 1 129 86 1 141 86 1 148 86 1 185 86 2 186 86 2 187 86 2 188 86 2 202 86 -1 210 86 -1 14 87 1 34 87 1 54 87 1 74 87 1 85 87 1 86 87 1 87 87 5 88 87 1 116 87 1 132 87 1 143 87 1 149 87 1 185 87 2 186 87 2 187 87 2 188 87 2 202 87 -1 210 87 -1 18 88 1 38 88 1 58 88 1 78 88 1 85 88 1 86 88 1 87 88 1 88 88 5 120 88 1 135 88 1 145 88 1 150 88 1 185 88 2 186 88 2 187 88 2 188 88 2 202 88 -1 210 88 -1 2 89 1 22 89 1 42 89 1 62 89 1 89 89 5 90 89 1 91 89 1 92 89 1 104 89 1 123 89 1 137 89 1 146 89 1 189 89 2 190 89 2 191 89 2 192 89 2 203 89 -1 210 89 -1 6 90 1 26 90 1 46 90 1 66 90 1 89 90 1 90 90 5 91 90 1 92 90 1 108 90 1 126 90 1 139 90 1 147 90 1 189 90 2 190 90 2 191 90 2 192 90 2 203 90 -1 210 90 -1 15 91 1 35 91 1 55 91 1 75 91 1 89 91 1 90 91 1 91 91 5 92 91 1 116 91 1 132 91 1 143 91 1 149 91 1 189 91 2 190 91 2 191 91 2 192 91 2 203 91 -1 210 91 -1 19 92 1 39 92 1 59 92 1 79 92 1 89 92 1 90 92 1 91 92 1 92 92 5 120 92 1 135 92 1 145 92 1 150 92 1 189 92 2 190 92 2 191 92 2 192 92 2 203 92 -1 210 92 -1 3 93 1 23 93 1 43 93 1 63 93 1 93 93 5 94 93 1 95 93 1 96 93 1 104 93 1 123 93 1 137 93 1 146 93 1 193 93 2 194 93 2 195 93 2 196 93 2 204 93 -1 210 93 -1 7 94 1 27 94 1 47 94 1 67 94 1 93 94 1 94 94 5 95 94 1 96 94 1 108 94 1 126 94 1 139 94 1 147 94 1 193 94 2 194 94 2 195 94 2 196 94 2 204 94 -1 210 94 -1 11 95 1 31 95 1 51 95 1 71 95 1 93 95 1 94 95 1 95 95 5 96 95 1 112 95 1 129 95 1 141 95 1 148 95 1 193 95 2 194 95 2 195 95 2 196 95 2 204 95 -1 210 95 -1 20 96 1 40 96 1 60 96 1 80 96 1 93 96 1 94 96 1 95 96 1 96 96 5 120 96 1 135 96 1 145 96 1 150 96 1 193 96 2 194 96 2 195 96 2 196 96 2 204 96 -1 210 96 -1 4 97 1 24 97 1 44 97 1 64 97 1 97 97 5 98 97 1 99 97 1 100 97 1 104 97 1 123 97 1 137 97 1 146 97 1 197 97 2 198 97 2 199 97 2 200 97 2 205 97 -1 210 97 -1 8 98 1 28 98 1 48 98 1 68 98 1 97 98 1 98 98 5 99 98 1 100 98 1 108 98 1 126 98 1 139 98 1 147 98 1 197 98 2 198 98 2 199 98 2 200 98 2 205 98 -1 210 98 -1 12 99 1 32 99 1 52 99 1 72 99 1 97 99 1 98 99 1 99 99 5 100 99 1 112 99 1 129 99 1 141 99 1 148 99 1 197 99 2 198 99 2 199 99 2 200 99 2 205 99 -1 210 99 -1 16 100 1 36 100 1 56 100 1 76 100 1 97 100 1 98 100 1 99 100 1 100 100 5 116 100 1 132 100 1 143 100 1 149 100 1 197 100 2 198 100 2 199 100 2 200 100 2 205 100 -1 210 100 -1 1 101 2 2 101 2 3 101 2 4 101 2 25 101 1 29 101 1 33 101 1 37 101 1 101 101 5 102 101 1 103 101 1 104 101 1 152 101 1 153 101 1 154 101 1 155 101 1 201 101 -1 206 101 -1 1 102 2 2 102 2 3 102 2 4 102 2 45 102 1 49 102 1 53 102 1 57 102 1 101 102 1 102 102 5 103 102 1 104 102 1 158 102 1 160 102 1 162 102 1 164 102 1 201 102 -1 206 102 -1 1 103 2 2 103 2 3 103 2 4 103 2 65 103 1 69 103 1 73 103 1 77 103 1 101 103 1 102 103 1 103 103 5 104 103 1 169 103 1 172 103 1 175 103 1 178 103 1 201 103 -1 206 103 -1 1 104 2 2 104 2 3 104 2 4 104 2 85 104 1 89 104 1 93 104 1 97 104 1 101 104 1 102 104 1 103 104 1 104 104 5 185 104 1 189 104 1 193 104 1 197 104 1 201 104 -1 206 104 -1 5 105 2 6 105 2 7 105 2 8 105 2 21 105 1 30 105 1 34 105 1 38 105 1 105 105 5 106 105 1 107 105 1 108 105 1 151 105 1 153 105 1 154 105 1 155 105 1 202 105 -1 206 105 -1 5 106 2 6 106 2 7 106 2 8 106 2 41 106 1 50 106 1 54 106 1 58 106 1 105 106 1 106 106 5 107 106 1 108 106 1 156 106 1 160 106 1 162 106 1 164 106 1 202 106 -1 206 106 -1 5 107 2 6 107 2 7 107 2 8 107 2 61 107 1 70 107 1 74 107 1 78 107 1 105 107 1 106 107 1 107 107 5 108 107 1 166 107 1 172 107 1 175 107 1 178 107 1 202 107 -1 206 107 -1 5 108 2 6 108 2 7 108 2 8 108 2 81 108 1 90 108 1 94 108 1 98 108 1 105 108 1 106 108 1 107 108 1 108 108 5 181 108 1 189 108 1 193 108 1 197 108 1 202 108 -1 206 108 -1 9 109 2 10 109 2 11 109 2 12 109 2 22 109 1 26 109 1 35 109 1 39 109 1 109 109 5 110 109 1 111 109 1 112 109 1 151 109 1 152 109 1 154 109 1 155 109 1 203 109 -1 206 109 -1 9 110 2 10 110 2 11 110 2 12 110 2 42 110 1 46 110 1 55 110 1 59 110 1 109 110 1 110 110 5 111 110 1 112 110 1 156 110 1 158 110 1 162 110 1 164 110 1 203 110 -1 206 110 -1 9 111 2 10 111 2 11 111 2 12 111 2 62 111 1 66 111 1 75 111 1 79 111 1 109 111 1 110 111 1 111 111 5 112 111 1 166 111 1 169 111 1 175 111 1 178 111 1 203 111 -1 206 111 -1 9 112 2 10 112 2 11 112 2 12 112 2 82 112 1 86 112 1 95 112 1 99 112 1 109 112 1 110 112 1 111 112 1 112 112 5 181 112 1 185 112 1 193 112 1 197 112 1 203 112 -1 206 112 -1 13 113 2 14 113 2 15 113 2 16 113 2 23 113 1 27 113 1 31 113 1 40 113 1 113 113 5 114 113 1 115 113 1 116 113 1 151 113 1 152 113 1 153 113 1 155 113 1 204 113 -1 206 113 -1 13 114 2 14 114 2 15 114 2 16 114 2 43 114 1 47 114 1 51 114 1 60 114 1 113 114 1 114 114 5 115 114 1 116 114 1 156 114 1 158 114 1 160 114 1 164 114 1 204 114 -1 206 114 -1 13 115 2 14 115 2 15 115 2 16 115 2 63 115 1 67 115 1 71 115 1 80 115 1 113 115 1 114 115 1 115 115 5 116 115 1 166 115 1 169 115 1 172 115 1 178 115 1 204 115 -1 206 115 -1 13 116 2 14 116 2 15 116 2 16 116 2 83 116 1 87 116 1 91 116 1 100 116 1 113 116 1 114 116 1 115 116 1 116 116 5 181 116 1 185 116 1 189 116 1 197 116 1 204 116 -1 206 116 -1 17 117 2 18 117 2 19 117 2 20 117 2 24 117 1 28 117 1 32 117 1 36 117 1 117 117 5 118 117 1 119 117 1 120 117 1 151 117 1 152 117 1 153 117 1 154 117 1 205 117 -1 206 117 -1 17 118 2 18 118 2 19 118 2 20 118 2 44 118 1 48 118 1 52 118 1 56 118 1 117 118 1 118 118 5 119 118 1 120 118 1 156 118 1 158 118 1 160 118 1 162 118 1 205 118 -1 206 118 -1 17 119 2 18 119 2 19 119 2 20 119 2 64 119 1 68 119 1 72 119 1 76 119 1 117 119 1 118 119 1 119 119 5 120 119 1 166 119 1 169 119 1 172 119 1 175 119 1 205 119 -1 206 119 -1 17 120 2 18 120 2 19 120 2 20 120 2 84 120 1 88 120 1 92 120 1 96 120 1 117 120 1 118 120 1 119 120 1 120 120 5 181 120 1 185 120 1 189 120 1 193 120 1 205 120 -1 206 120 -1 21 121 2 22 121 2 23 121 2 24 121 2 45 121 1 49 121 1 53 121 1 57 121 1 121 121 5 122 121 1 123 121 1 151 121 1 159 121 1 161 121 1 163 121 1 165 121 1 201 121 -1 207 121 -1 21 122 2 22 122 2 23 122 2 24 122 2 65 122 1 69 122 1 73 122 1 77 122 1 121 122 1 122 122 5 123 122 1 151 122 1 170 122 1 173 122 1 176 122 1 179 122 1 201 122 -1 207 122 -1 21 123 2 22 123 2 23 123 2 24 123 2 85 123 1 89 123 1 93 123 1 97 123 1 121 123 1 122 123 1 123 123 5 151 123 1 186 123 1 190 123 1 194 123 1 198 123 1 201 123 -1 207 123 -1 25 124 2 26 124 2 27 124 2 28 124 2 41 124 1 50 124 1 54 124 1 58 124 1 124 124 5 125 124 1 126 124 1 152 124 1 157 124 1 161 124 1 163 124 1 165 124 1 202 124 -1 207 124 -1 25 125 2 26 125 2 27 125 2 28 125 2 61 125 1 70 125 1 74 125 1 78 125 1 124 125 1 125 125 5 126 125 1 152 125 1 167 125 1 173 125 1 176 125 1 179 125 1 202 125 -1 207 125 -1 25 126 2 26 126 2 27 126 2 28 126 2 81 126 1 90 126 1 94 126 1 98 126 1 124 126 1 125 126 1 126 126 5 152 126 1 182 126 1 190 126 1 194 126 1 198 126 1 202 126 -1 207 126 -1 29 127 2 30 127 2 31 127 2 32 127 2 42 127 1 46 127 1 55 127 1 59 127 1 127 127 5 128 127 1 129 127 1 153 127 1 157 127 1 159 127 1 163 127 1 165 127 1 203 127 -1 207 127 -1 29 128 2 30 128 2 31 128 2 32 128 2 62 128 1 66 128 1 75 128 1 79 128 1 127 128 1 128 128 5 129 128 1 153 128 1 167 128 1 170 128 1 176 128 1 179 128 1 203 128 -1 207 128 -1 29 129 2 30 129 2 31 129 2 32 129 2 82 129 1 86 129 1 95 129 1 99 129 1 127 129 1 128 129 1 129 129 5 153 129 1 182 129 1 186 129 1 194 129 1 198 129 1 203 129 -1 207 129 -1 33 130 2 34 130 2 35 130 2 36 130 2 43 130 1 47 130 1 51 130 1 60 130 1 130 130 5 131 130 1 132 130 1 154 130 1 157 130 1 159 130 1 161 130 1 165 130 1 204 130 -1 207 130 -1 33 131 2 34 131 2 35 131 2 36 131 2 63 131 1 67 131 1 71 131 1 80 131 1 130 131 1 131 131 5 132 131 1 154 131 1 167 131 1 170 131 1 173 131 1 179 131 1 204 131 -1 207 131 -1 33 132 2 34 132 2 35 132 2 36 132 2 83 132 1 87 132 1 91 132 1 100 132 1 130 132 1 131 132 1 132 132 5 154 132 1 182 132 1 186 132 1 190 132 1 198 132 1 204 132 -1 207 132 -1 37 133 2 38 133 2 39 133 2 40 133 2 44 133 1 48 133 1 52 133 1 56 133 1 133 133 5 134 133 1 135 133 1 155 133 1 157 133 1 159 133 1 161 133 1 163 133 1 205 133 -1 207 133 -1 37 134 2 38 134 2 39 134 2 40 134 2 64 134 1 68 134 1 72 134 1 76 134 1 133 134 1 134 134 5 135 134 1 155 134 1 167 134 1 170 134 1 173 134 1 176 134 1 205 134 -1 207 134 -1 37 135 2 38 135 2 39 135 2 40 135 2 84 135 1 88 135 1 92 135 1 96 135 1 133 135 1 134 135 1 135 135 5 155 135 1 182 135 1 186 135 1 190 135 1 194 135 1 205 135 -1 207 135 -1 41 136 2 42 136 2 43 136 2 44 136 2 65 136 1 69 136 1 73 136 1 77 136 1 136 136 5 137 136 1 156 136 1 157 136 1 171 136 1 174 136 1 177 136 1 180 136 1 201 136 -1 208 136 -1 41 137 2 42 137 2 43 137 2 44 137 2 85 137 1 89 137 1 93 137 1 97 137 1 136 137 1 137 137 5 156 137 1 157 137 1 187 137 1 191 137 1 195 137 1 199 137 1 201 137 -1 208 137 -1 45 138 2 46 138 2 47 138 2 48 138 2 61 138 1 70 138 1 74 138 1 78 138 1 138 138 5 139 138 1 158 138 1 159 138 1 168 138 1 174 138 1 177 138 1 180 138 1 202 138 -1 208 138 -1 45 139 2 46 139 2 47 139 2 48 139 2 81 139 1 90 139 1 94 139 1 98 139 1 138 139 1 139 139 5 158 139 1 159 139 1 183 139 1 191 139 1 195 139 1 199 139 1 202 139 -1 208 139 -1 49 140 2 50 140 2 51 140 2 52 140 2 62 140 1 66 140 1 75 140 1 79 140 1 140 140 5 141 140 1 160 140 1 161 140 1 168 140 1 171 140 1 177 140 1 180 140 1 203 140 -1 208 140 -1 49 141 2 50 141 2 51 141 2 52 141 2 82 141 1 86 141 1 95 141 1 99 141 1 140 141 1 141 141 5 160 141 1 161 141 1 183 141 1 187 141 1 195 141 1 199 141 1 203 141 -1 208 141 -1 53 142 2 54 142 2 55 142 2 56 142 2 63 142 1 67 142 1 71 142 1 80 142 1 142 142 5 143 142 1 162 142 1 163 142 1 168 142 1 171 142 1 174 142 1 180 142 1 204 142 -1 208 142 -1 53 143 2 54 143 2 55 143 2 56 143 2 83 143 1 87 143 1 91 143 1 100 143 1 142 143 1 143 143 5 162 143 1 163 143 1 183 143 1 187 143 1 191 143 1 199 143 1 204 143 -1 208 143 -1 57 144 2 58 144 2 59 144 2 60 144 2 64 144 1 68 144 1 72 144 1 76 144 1 144 144 5 145 144 1 164 144 1 165 144 1 168 144 1 171 144 1 174 144 1 177 144 1 205 144 -1 208 144 -1 57 145 2 58 145 2 59 145 2 60 145 2 84 145 1 88 145 1 92 145 1 96 145 1 144 145 1 145 145 5 164 145 1 165 145 1 183 145 1 187 145 1 191 145 1 195 145 1 205 145 -1 208 145 -1 61 146 2 62 146 2 63 146 2 64 146 2 85 146 1 89 146 1 93 146 1 97 146 1 146 146 5 166 146 1 167 146 1 168 146 1 188 146 1 192 146 1 196 146 1 200 146 1 201 146 -1 209 146 -1 65 147 2 66 147 2 67 147 2 68 147 2 81 147 1 90 147 1 94 147 1 98 147 1 147 147 5 169 147 1 170 147 1 171 147 1 184 147 1 192 147 1 196 147 1 200 147 1 202 147 -1 209 147 -1 69 148 2 70 148 2 71 148 2 72 148 2 82 148 1 86 148 1 95 148 1 99 148 1 148 148 5 172 148 1 173 148 1 174 148 1 184 148 1 188 148 1 196 148 1 200 148 1 203 148 -1 209 148 -1 73 149 2 74 149 2 75 149 2 76 149 2 83 149 1 87 149 1 91 149 1 100 149 1 149 149 5 175 149 1 176 149 1 177 149 1 184 149 1 188 149 1 192 149 1 200 149 1 204 149 -1 209 149 -1 77 150 2 78 150 2 79 150 2 80 150 2 84 150 1 88 150 1 92 150 1 96 150 1 150 150 5 178 150 1 179 150 1 180 150 1 184 150 1 188 150 1 192 150 1 196 150 1 205 150 -1 209 150 -1 5 151 1 9 151 1 13 151 1 17 151 1 21 151 2 22 151 2 23 151 2 24 151 2 105 151 1 109 151 1 113 151 1 117 151 1 121 151 1 122 151 1 123 151 1 151 151 5 201 151 -1 207 151 -1 1 152 1 10 152 1 14 152 1 18 152 1 25 152 2 26 152 2 27 152 2 28 152 2 101 152 1 109 152 1 113 152 1 117 152 1 124 152 1 125 152 1 126 152 1 152 152 5 202 152 -1 207 152 -1 2 153 1 6 153 1 15 153 1 19 153 1 29 153 2 30 153 2 31 153 2 32 153 2 101 153 1 105 153 1 113 153 1 117 153 1 127 153 1 128 153 1 129 153 1 153 153 5 203 153 -1 207 153 -1 3 154 1 7 154 1 11 154 1 20 154 1 33 154 2 34 154 2 35 154 2 36 154 2 101 154 1 105 154 1 109 154 1 117 154 1 130 154 1 131 154 1 132 154 1 154 154 5 204 154 -1 207 154 -1 4 155 1 8 155 1 12 155 1 16 155 1 37 155 2 38 155 2 39 155 2 40 155 2 101 155 1 105 155 1 109 155 1 113 155 1 133 155 1 134 155 1 135 155 1 155 155 5 205 155 -1 207 155 -1 5 156 1 9 156 1 13 156 1 17 156 1 41 156 2 42 156 2 43 156 2 44 156 2 106 156 1 110 156 1 114 156 1 118 156 1 136 156 1 137 156 1 156 156 5 157 156 1 201 156 -1 208 156 -1 25 157 1 29 157 1 33 157 1 37 157 1 41 157 2 42 157 2 43 157 2 44 157 2 124 157 1 127 157 1 130 157 1 133 157 1 136 157 1 137 157 1 156 157 1 157 157 5 201 157 -1 208 157 -1 1 158 1 10 158 1 14 158 1 18 158 1 45 158 2 46 158 2 47 158 2 48 158 2 102 158 1 110 158 1 114 158 1 118 158 1 138 158 1 139 158 1 158 158 5 159 158 1 202 158 -1 208 158 -1 21 159 1 30 159 1 34 159 1 38 159 1 45 159 2 46 159 2 47 159 2 48 159 2 121 159 1 127 159 1 130 159 1 133 159 1 138 159 1 139 159 1 158 159 1 159 159 5 202 159 -1 208 159 -1 2 160 1 6 160 1 15 160 1 19 160 1 49 160 2 50 160 2 51 160 2 52 160 2 102 160 1 106 160 1 114 160 1 118 160 1 140 160 1 141 160 1 160 160 5 161 160 1 203 160 -1 208 160 -1 22 161 1 26 161 1 35 161 1 39 161 1 49 161 2 50 161 2 51 161 2 52 161 2 121 161 1 124 161 1 130 161 1 133 161 1 140 161 1 141 161 1 160 161 1 161 161 5 203 161 -1 208 161 -1 3 162 1 7 162 1 11 162 1 20 162 1 53 162 2 54 162 2 55 162 2 56 162 2 102 162 1 106 162 1 110 162 1 118 162 1 142 162 1 143 162 1 162 162 5 163 162 1 204 162 -1 208 162 -1 23 163 1 27 163 1 31 163 1 40 163 1 53 163 2 54 163 2 55 163 2 56 163 2 121 163 1 124 163 1 127 163 1 133 163 1 142 163 1 143 163 1 162 163 1 163 163 5 204 163 -1 208 163 -1 4 164 1 8 164 1 12 164 1 16 164 1 57 164 2 58 164 2 59 164 2 60 164 2 102 164 1 106 164 1 110 164 1 114 164 1 144 164 1 145 164 1 164 164 5 165 164 1 205 164 -1 208 164 -1 24 165 1 28 165 1 32 165 1 36 165 1 57 165 2 58 165 2 59 165 2 60 165 2 121 165 1 124 165 1 127 165 1 130 165 1 144 165 1 145 165 1 164 165 1 165 165 5 205 165 -1 208 165 -1 5 166 1 9 166 1 13 166 1 17 166 1 61 166 2 62 166 2 63 166 2 64 166 2 107 166 1 111 166 1 115 166 1 119 166 1 146 166 1 166 166 5 167 166 1 168 166 1 201 166 -1 209 166 -1 25 167 1 29 167 1 33 167 1 37 167 1 61 167 2 62 167 2 63 167 2 64 167 2 125 167 1 128 167 1 131 167 1 134 167 1 146 167 1 166 167 1 167 167 5 168 167 1 201 167 -1 209 167 -1 45 168 1 49 168 1 53 168 1 57 168 1 61 168 2 62 168 2 63 168 2 64 168 2 138 168 1 140 168 1 142 168 1 144 168 1 146 168 1 166 168 1 167 168 1 168 168 5 201 168 -1 209 168 -1 1 169 1 10 169 1 14 169 1 18 169 1 65 169 2 66 169 2 67 169 2 68 169 2 103 169 1 111 169 1 115 169 1 119 169 1 147 169 1 169 169 5 170 169 1 171 169 1 202 169 -1 209 169 -1 21 170 1 30 170 1 34 170 1 38 170 1 65 170 2 66 170 2 67 170 2 68 170 2 122 170 1 128 170 1 131 170 1 134 170 1 147 170 1 169 170 1 170 170 5 171 170 1 202 170 -1 209 170 -1 41 171 1 50 171 1 54 171 1 58 171 1 65 171 2 66 171 2 67 171 2 68 171 2 136 171 1 140 171 1 142 171 1 144 171 1 147 171 1 169 171 1 170 171 1 171 171 5 202 171 -1 209 171 -1 2 172 1 6 172 1 15 172 1 19 172 1 69 172 2 70 172 2 71 172 2 72 172 2 103 172 1 107 172 1 115 172 1 119 172 1 148 172 1 172 172 5 173 172 1 174 172 1 203 172 -1 209 172 -1 22 173 1 26 173 1 35 173 1 39 173 1 69 173 2 70 173 2 71 173 2 72 173 2 122 173 1 125 173 1 131 173 1 134 173 1 148 173 1 172 173 1 173 173 5 174 173 1 203 173 -1 209 173 -1 42 174 1 46 174 1 55 174 1 59 174 1 69 174 2 70 174 2 71 174 2 72 174 2 136 174 1 138 174 1 142 174 1 144 174 1 148 174 1 172 174 1 173 174 1 174 174 5 203 174 -1 209 174 -1 3 175 1 7 175 1 11 175 1 20 175 1 73 175 2 74 175 2 75 175 2 76 175 2 103 175 1 107 175 1 111 175 1 119 175 1 149 175 1 175 175 5 176 175 1 177 175 1 204 175 -1 209 175 -1 23 176 1 27 176 1 31 176 1 40 176 1 73 176 2 74 176 2 75 176 2 76 176 2 122 176 1 125 176 1 128 176 1 134 176 1 149 176 1 175 176 1 176 176 5 177 176 1 204 176 -1 209 176 -1 43 177 1 47 177 1 51 177 1 60 177 1 73 177 2 74 177 2 75 177 2 76 177 2 136 177 1 138 177 1 140 177 1 144 177 1 149 177 1 175 177 1 176 177 1 177 177 5 204 177 -1 209 177 -1 4 178 1 8 178 1 12 178 1 16 178 1 77 178 2 78 178 2 79 178 2 80 178 2 103 178 1 107 178 1 111 178 1 115 178 1 150 178 1 178 178 5 179 178 1 180 178 1 205 178 -1 209 178 -1 24 179 1 28 179 1 32 179 1 36 179 1 77 179 2 78 179 2 79 179 2 80 179 2 122 179 1 125 179 1 128 179 1 131 179 1 150 179 1 178 179 1 179 179 5 180 179 1 205 179 -1 209 179 -1 44 180 1 48 180 1 52 180 1 56 180 1 77 180 2 78 180 2 79 180 2 80 180 2 136 180 1 138 180 1 140 180 1 142 180 1 150 180 1 178 180 1 179 180 1 180 180 5 205 180 -1 209 180 -1 5 181 1 9 181 1 13 181 1 17 181 1 81 181 2 82 181 2 83 181 2 84 181 2 108 181 1 112 181 1 116 181 1 120 181 1 181 181 5 182 181 1 183 181 1 184 181 1 201 181 -1 210 181 -1 25 182 1 29 182 1 33 182 1 37 182 1 81 182 2 82 182 2 83 182 2 84 182 2 126 182 1 129 182 1 132 182 1 135 182 1 181 182 1 182 182 5 183 182 1 184 182 1 201 182 -1 210 182 -1 45 183 1 49 183 1 53 183 1 57 183 1 81 183 2 82 183 2 83 183 2 84 183 2 139 183 1 141 183 1 143 183 1 145 183 1 181 183 1 182 183 1 183 183 5 184 183 1 201 183 -1 210 183 -1 65 184 1 69 184 1 73 184 1 77 184 1 81 184 2 82 184 2 83 184 2 84 184 2 147 184 1 148 184 1 149 184 1 150 184 1 181 184 1 182 184 1 183 184 1 184 184 5 201 184 -1 210 184 -1 1 185 1 10 185 1 14 185 1 18 185 1 85 185 2 86 185 2 87 185 2 88 185 2 104 185 1 112 185 1 116 185 1 120 185 1 185 185 5 186 185 1 187 185 1 188 185 1 202 185 -1 210 185 -1 21 186 1 30 186 1 34 186 1 38 186 1 85 186 2 86 186 2 87 186 2 88 186 2 123 186 1 129 186 1 132 186 1 135 186 1 185 186 1 186 186 5 187 186 1 188 186 1 202 186 -1 210 186 -1 41 187 1 50 187 1 54 187 1 58 187 1 85 187 2 86 187 2 87 187 2 88 187 2 137 187 1 141 187 1 143 187 1 145 187 1 185 187 1 186 187 1 187 187 5 188 187 1 202 187 -1 210 187 -1 61 188 1 70 188 1 74 188 1 78 188 1 85 188 2 86 188 2 87 188 2 88 188 2 146 188 1 148 188 1 149 188 1 150 188 1 185 188 1 186 188 1 187 188 1 188 188 5 202 188 -1 210 188 -1 2 189 1 6 189 1 15 189 1 19 189 1 89 189 2 90 189 2 91 189 2 92 189 2 104 189 1 108 189 1 116 189 1 120 189 1 189 189 5 190 189 1 191 189 1 192 189 1 203 189 -1 210 189 -1 22 190 1 26 190 1 35 190 1 39 190 1 89 190 2 90 190 2 91 190 2 92 190 2 123 190 1 126 190 1 132 190 1 135 190 1 189 190 1 190 190 5 191 190 1 192 190 1 203 190 -1 210 190 -1 42 191 1 46 191 1 55 191 1 59 191 1 89 191 2 90 191 2 91 191 2 92 191 2 137 191 1 139 191 1 143 191 1 145 191 1 189 191 1 190 191 1 191 191 5 192 191 1 203 191 -1 210 191 -1 62 192 1 66 192 1 75 192 1 79 192 1 89 192 2 90 192 2 91 192 2 92 192 2 146 192 1 147 192 1 149 192 1 150 192 1 189 192 1 190 192 1 191 192 1 192 192 5 203 192 -1 210 192 -1 3 193 1 7 193 1 11 193 1 20 193 1 93 193 2 94 193 2 95 193 2 96 193 2 104 193 1 108 193 1 112 193 1 120 193 1 193 193 5 194 193 1 195 193 1 196 193 1 204 193 -1 210 193 -1 23 194 1 27 194 1 31 194 1 40 194 1 93 194 2 94 194 2 95 194 2 96 194 2 123 194 1 126 194 1 129 194 1 135 194 1 193 194 1 194 194 5 195 194 1 196 194 1 204 194 -1 210 194 -1 43 195 1 47 195 1 51 195 1 60 195 1 93 195 2 94 195 2 95 195 2 96 195 2 137 195 1 139 195 1 141 195 1 145 195 1 193 195 1 194 195 1 195 195 5 196 195 1 204 195 -1 210 195 -1 63 196 1 67 196 1 71 196 1 80 196 1 93 196 2 94 196 2 95 196 2 96 196 2 146 196 1 147 196 1 148 196 1 150 196 1 193 196 1 194 196 1 195 196 1 196 196 5 204 196 -1 210 196 -1 4 197 1 8 197 1 12 197 1 16 197 1 97 197 2 98 197 2 99 197 2 100 197 2 104 197 1 108 197 1 112 197 1 116 197 1 197 197 5 198 197 1 199 197 1 200 197 1 205 197 -1 210 197 -1 24 198 1 28 198 1 32 198 1 36 198 1 97 198 2 98 198 2 99 198 2 100 198 2 123 198 1 126 198 1 129 198 1 132 198 1 197 198 1 198 198 5 199 198 1 200 198 1 205 198 -1 210 198 -1 44 199 1 48 199 1 52 199 1 56 199 1 97 199 2 98 199 2 99 199 2 100 199 2 137 199 1 139 199 1 141 199 1 143 199 1 197 199 1 198 199 1 199 199 5 200 199 1 205 199 -1 210 199 -1 64 200 1 68 200 1 72 200 1 76 200 1 97 200 2 98 200 2 99 200 2 100 200 2 146 200 1 147 200 1 148 200 1 149 200 1 197 200 1 198 200 1 199 200 1 200 200 5 205 200 -1 210 200 -1 1 201 -1 2 201 -1 3 201 -1 4 201 -1 21 201 -1 22 201 -1 23 201 -1 24 201 -1 41 201 -1 42 201 -1 43 201 -1 44 201 -1 61 201 -1 62 201 -1 63 201 -1 64 201 -1 81 201 -1 82 201 -1 83 201 -1 84 201 -1 101 201 -1 102 201 -1 103 201 -1 104 201 -1 121 201 -1 122 201 -1 123 201 -1 136 201 -1 137 201 -1 146 201 -1 151 201 -1 156 201 -1 157 201 -1 166 201 -1 167 201 -1 168 201 -1 181 201 -1 182 201 -1 183 201 -1 184 201 -1 201 201 5 206 201 1 207 201 1 208 201 1 209 201 1 210 201 1 5 202 -1 6 202 -1 7 202 -1 8 202 -1 25 202 -1 26 202 -1 27 202 -1 28 202 -1 45 202 -1 46 202 -1 47 202 -1 48 202 -1 65 202 -1 66 202 -1 67 202 -1 68 202 -1 85 202 -1 86 202 -1 87 202 -1 88 202 -1 105 202 -1 106 202 -1 107 202 -1 108 202 -1 124 202 -1 125 202 -1 126 202 -1 138 202 -1 139 202 -1 147 202 -1 152 202 -1 158 202 -1 159 202 -1 169 202 -1 170 202 -1 171 202 -1 185 202 -1 186 202 -1 187 202 -1 188 202 -1 202 202 5 206 202 1 207 202 1 208 202 1 209 202 1 210 202 1 9 203 -1 10 203 -1 11 203 -1 12 203 -1 29 203 -1 30 203 -1 31 203 -1 32 203 -1 49 203 -1 50 203 -1 51 203 -1 52 203 -1 69 203 -1 70 203 -1 71 203 -1 72 203 -1 89 203 -1 90 203 -1 91 203 -1 92 203 -1 109 203 -1 110 203 -1 111 203 -1 112 203 -1 127 203 -1 128 203 -1 129 203 -1 140 203 -1 141 203 -1 148 203 -1 153 203 -1 160 203 -1 161 203 -1 172 203 -1 173 203 -1 174 203 -1 189 203 -1 190 203 -1 191 203 -1 192 203 -1 203 203 5 206 203 1 207 203 1 208 203 1 209 203 1 210 203 1 13 204 -1 14 204 -1 15 204 -1 16 204 -1 33 204 -1 34 204 -1 35 204 -1 36 204 -1 53 204 -1 54 204 -1 55 204 -1 56 204 -1 73 204 -1 74 204 -1 75 204 -1 76 204 -1 93 204 -1 94 204 -1 95 204 -1 96 204 -1 113 204 -1 114 204 -1 115 204 -1 116 204 -1 130 204 -1 131 204 -1 132 204 -1 142 204 -1 143 204 -1 149 204 -1 154 204 -1 162 204 -1 163 204 -1 175 204 -1 176 204 -1 177 204 -1 193 204 -1 194 204 -1 195 204 -1 196 204 -1 204 204 5 206 204 1 207 204 1 208 204 1 209 204 1 210 204 1 17 205 -1 18 205 -1 19 205 -1 20 205 -1 37 205 -1 38 205 -1 39 205 -1 40 205 -1 57 205 -1 58 205 -1 59 205 -1 60 205 -1 77 205 -1 78 205 -1 79 205 -1 80 205 -1 97 205 -1 98 205 -1 99 205 -1 100 205 -1 117 205 -1 118 205 -1 119 205 -1 120 205 -1 133 205 -1 134 205 -1 135 205 -1 144 205 -1 145 205 -1 150 205 -1 155 205 -1 164 205 -1 165 205 -1 178 205 -1 179 205 -1 180 205 -1 197 205 -1 198 205 -1 199 205 -1 200 205 -1 205 205 5 206 205 1 207 205 1 208 205 1 209 205 1 210 205 1 1 206 -1 2 206 -1 3 206 -1 4 206 -1 5 206 -1 6 206 -1 7 206 -1 8 206 -1 9 206 -1 10 206 -1 11 206 -1 12 206 -1 13 206 -1 14 206 -1 15 206 -1 16 206 -1 17 206 -1 18 206 -1 19 206 -1 20 206 -1 101 206 -1 102 206 -1 103 206 -1 104 206 -1 105 206 -1 106 206 -1 107 206 -1 108 206 -1 109 206 -1 110 206 -1 111 206 -1 112 206 -1 113 206 -1 114 206 -1 115 206 -1 116 206 -1 117 206 -1 118 206 -1 119 206 -1 120 206 -1 201 206 1 202 206 1 203 206 1 204 206 1 205 206 1 206 206 5 21 207 -1 22 207 -1 23 207 -1 24 207 -1 25 207 -1 26 207 -1 27 207 -1 28 207 -1 29 207 -1 30 207 -1 31 207 -1 32 207 -1 33 207 -1 34 207 -1 35 207 -1 36 207 -1 37 207 -1 38 207 -1 39 207 -1 40 207 -1 121 207 -1 122 207 -1 123 207 -1 124 207 -1 125 207 -1 126 207 -1 127 207 -1 128 207 -1 129 207 -1 130 207 -1 131 207 -1 132 207 -1 133 207 -1 134 207 -1 135 207 -1 151 207 -1 152 207 -1 153 207 -1 154 207 -1 155 207 -1 201 207 1 202 207 1 203 207 1 204 207 1 205 207 1 207 207 5 41 208 -1 42 208 -1 43 208 -1 44 208 -1 45 208 -1 46 208 -1 47 208 -1 48 208 -1 49 208 -1 50 208 -1 51 208 -1 52 208 -1 53 208 -1 54 208 -1 55 208 -1 56 208 -1 57 208 -1 58 208 -1 59 208 -1 60 208 -1 136 208 -1 137 208 -1 138 208 -1 139 208 -1 140 208 -1 141 208 -1 142 208 -1 143 208 -1 144 208 -1 145 208 -1 156 208 -1 157 208 -1 158 208 -1 159 208 -1 160 208 -1 161 208 -1 162 208 -1 163 208 -1 164 208 -1 165 208 -1 201 208 1 202 208 1 203 208 1 204 208 1 205 208 1 208 208 5 61 209 -1 62 209 -1 63 209 -1 64 209 -1 65 209 -1 66 209 -1 67 209 -1 68 209 -1 69 209 -1 70 209 -1 71 209 -1 72 209 -1 73 209 -1 74 209 -1 75 209 -1 76 209 -1 77 209 -1 78 209 -1 79 209 -1 80 209 -1 146 209 -1 147 209 -1 148 209 -1 149 209 -1 150 209 -1 166 209 -1 167 209 -1 168 209 -1 169 209 -1 170 209 -1 171 209 -1 172 209 -1 173 209 -1 174 209 -1 175 209 -1 176 209 -1 177 209 -1 178 209 -1 179 209 -1 180 209 -1 201 209 1 202 209 1 203 209 1 204 209 1 205 209 1 209 209 5 81 210 -1 82 210 -1 83 210 -1 84 210 -1 85 210 -1 86 210 -1 87 210 -1 88 210 -1 89 210 -1 90 210 -1 91 210 -1 92 210 -1 93 210 -1 94 210 -1 95 210 -1 96 210 -1 97 210 -1 98 210 -1 99 210 -1 100 210 -1 181 210 -1 182 210 -1 183 210 -1 184 210 -1 185 210 -1 186 210 -1 187 210 -1 188 210 -1 189 210 -1 190 210 -1 191 210 -1 192 210 -1 193 210 -1 194 210 -1 195 210 -1 196 210 -1 197 210 -1 198 210 -1 199 210 -1 200 210 -1 201 210 1 202 210 1 203 210 1 204 210 1 205 210 1 210 210 5 SuiteSparse/CHOLMOD/Demo/Matrix/0.tri0000644001170100242450000000001010276441214016033 0ustar davisfac0 0 0 0 SuiteSparse/CHOLMOD/Demo/Matrix/c.mtx0000644001170100242450000000016610276435764016161 0ustar davisfac%%MatrixMarket matrix coordinate complex hermitian 3 3 5 1 1 1. 0. 3 1 2. -1. 2 2 1. 0. 3 2 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Demo/Matrix/c.tri0000644001170100242450000000010610271566637016140 0ustar davisfac3 3 5 -1 1 1 1. 0. 3 1 2. -1. 2 2 1. 0. 3 2 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Demo/Matrix/d.tri0000644001170100242450000000010510276436737016142 0ustar davisfac3 3 5 0 1 1 1. 0. 3 1 2. -1. 2 2 1. 0. 3 2 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Demo/Matrix/pts5ldd03.mtx0000644001170100242450000003446710253621647017464 0ustar davisfac%%MatrixMarket matrix coordinate real general %Laplacian of uniform grid on L-shaped domain of 3 unit squares %(interior points only have non-zero values,) matrix order N=3*n^2+2*n %meshsize h=1/(n+1), count begins from rectangle corner furthest from %attached square, (thus long columns first). Function value %is 1 except over attached square where f=M1, and f=(1+M1)/2 %on boundary between rectangle and square. Here let M1=1 and n=7, %and eigmin = 9.69316221355115459. 161 161 745 1 1 256 2 2 256 3 3 256 4 4 256 5 5 256 6 6 256 7 7 256 8 8 256 9 9 256 10 10 256 11 11 256 12 12 256 13 13 256 14 14 256 15 15 256 16 16 256 17 17 256 18 18 256 19 19 256 20 20 256 21 21 256 22 22 256 23 23 256 24 24 256 25 25 256 26 26 256 27 27 256 28 28 256 29 29 256 30 30 256 31 31 256 32 32 256 33 33 256 34 34 256 35 35 256 36 36 256 37 37 256 38 38 256 39 39 256 40 40 256 41 41 256 42 42 256 43 43 256 44 44 256 45 45 256 46 46 256 47 47 256 48 48 256 49 49 256 50 50 256 51 51 256 52 52 256 53 53 256 54 54 256 55 55 256 56 56 256 57 57 256 58 58 256 59 59 256 60 60 256 61 61 256 62 62 256 63 63 256 64 64 256 65 65 256 66 66 256 67 67 256 68 68 256 69 69 256 70 70 256 71 71 256 72 72 256 73 73 256 74 74 256 75 75 256 76 76 256 77 77 256 78 78 256 79 79 256 80 80 256 81 81 256 82 82 256 83 83 256 84 84 256 85 85 256 86 86 256 87 87 256 88 88 256 89 89 256 90 90 256 91 91 256 92 92 256 93 93 256 94 94 256 95 95 256 96 96 256 97 97 256 98 98 256 99 99 256 100 100 256 101 101 256 102 102 256 103 103 256 104 104 256 105 105 256 106 106 256 107 107 256 108 108 256 109 109 256 110 110 256 111 111 256 112 112 256 113 113 256 114 114 256 115 115 256 116 116 256 117 117 256 118 118 256 119 119 256 120 120 256 121 121 256 122 122 256 123 123 256 124 124 256 125 125 256 126 126 256 127 127 256 128 128 256 129 129 256 130 130 256 131 131 256 132 132 256 133 133 256 134 134 256 135 135 256 136 136 256 137 137 256 138 138 256 139 139 256 140 140 256 141 141 256 142 142 256 143 143 256 144 144 256 145 145 256 146 146 256 147 147 256 148 148 256 149 149 256 150 150 256 151 151 256 152 152 256 153 153 256 154 154 256 155 155 256 156 156 256 157 157 256 158 158 256 159 159 256 160 160 256 161 161 256 1 2 -64 2 3 -64 3 4 -64 4 5 -64 5 6 -64 6 7 -64 7 8 -64 8 9 -64 9 10 -64 10 11 -64 11 12 -64 12 13 -64 13 14 -64 14 15 -64 2 1 -64 3 2 -64 4 3 -64 5 4 -64 6 5 -64 7 6 -64 8 7 -64 9 8 -64 10 9 -64 11 10 -64 12 11 -64 13 12 -64 14 13 -64 15 14 -64 1 16 -64 2 17 -64 3 18 -64 4 19 -64 5 20 -64 6 21 -64 7 22 -64 8 23 -64 9 24 -64 10 25 -64 11 26 -64 12 27 -64 13 28 -64 14 29 -64 15 30 -64 16 1 -64 16 31 -64 17 2 -64 17 32 -64 18 3 -64 18 33 -64 19 4 -64 19 34 -64 20 5 -64 20 35 -64 21 6 -64 21 36 -64 22 7 -64 22 37 -64 23 8 -64 23 38 -64 24 9 -64 24 39 -64 25 10 -64 25 40 -64 26 11 -64 26 41 -64 27 12 -64 27 42 -64 28 13 -64 28 43 -64 29 14 -64 29 44 -64 30 15 -64 30 45 -64 16 17 -64 17 16 -64 17 18 -64 18 17 -64 18 19 -64 19 18 -64 19 20 -64 20 19 -64 20 21 -64 21 20 -64 21 22 -64 22 21 -64 22 23 -64 23 22 -64 23 24 -64 24 23 -64 24 25 -64 25 24 -64 25 26 -64 26 25 -64 26 27 -64 27 26 -64 27 28 -64 28 27 -64 28 29 -64 29 28 -64 29 30 -64 30 29 -64 31 16 -64 31 46 -64 32 17 -64 32 47 -64 33 18 -64 33 48 -64 34 19 -64 34 49 -64 35 20 -64 35 50 -64 36 21 -64 36 51 -64 37 22 -64 37 52 -64 38 23 -64 38 53 -64 39 24 -64 39 54 -64 40 25 -64 40 55 -64 41 26 -64 41 56 -64 42 27 -64 42 57 -64 43 28 -64 43 58 -64 44 29 -64 44 59 -64 45 30 -64 45 60 -64 31 32 -64 32 31 -64 32 33 -64 33 32 -64 33 34 -64 34 33 -64 34 35 -64 35 34 -64 35 36 -64 36 35 -64 36 37 -64 37 36 -64 37 38 -64 38 37 -64 38 39 -64 39 38 -64 39 40 -64 40 39 -64 40 41 -64 41 40 -64 41 42 -64 42 41 -64 42 43 -64 43 42 -64 43 44 -64 44 43 -64 44 45 -64 45 44 -64 46 31 -64 46 61 -64 47 32 -64 47 62 -64 48 33 -64 48 63 -64 49 34 -64 49 64 -64 50 35 -64 50 65 -64 51 36 -64 51 66 -64 52 37 -64 52 67 -64 53 38 -64 53 68 -64 54 39 -64 54 69 -64 55 40 -64 55 70 -64 56 41 -64 56 71 -64 57 42 -64 57 72 -64 58 43 -64 58 73 -64 59 44 -64 59 74 -64 60 45 -64 60 75 -64 46 47 -64 47 46 -64 47 48 -64 48 47 -64 48 49 -64 49 48 -64 49 50 -64 50 49 -64 50 51 -64 51 50 -64 51 52 -64 52 51 -64 52 53 -64 53 52 -64 53 54 -64 54 53 -64 54 55 -64 55 54 -64 55 56 -64 56 55 -64 56 57 -64 57 56 -64 57 58 -64 58 57 -64 58 59 -64 59 58 -64 59 60 -64 60 59 -64 61 46 -64 61 76 -64 62 47 -64 62 77 -64 63 48 -64 63 78 -64 64 49 -64 64 79 -64 65 50 -64 65 80 -64 66 51 -64 66 81 -64 67 52 -64 67 82 -64 68 53 -64 68 83 -64 69 54 -64 69 84 -64 70 55 -64 70 85 -64 71 56 -64 71 86 -64 72 57 -64 72 87 -64 73 58 -64 73 88 -64 74 59 -64 74 89 -64 75 60 -64 75 90 -64 61 62 -64 62 61 -64 62 63 -64 63 62 -64 63 64 -64 64 63 -64 64 65 -64 65 64 -64 65 66 -64 66 65 -64 66 67 -64 67 66 -64 67 68 -64 68 67 -64 68 69 -64 69 68 -64 69 70 -64 70 69 -64 70 71 -64 71 70 -64 71 72 -64 72 71 -64 72 73 -64 73 72 -64 73 74 -64 74 73 -64 74 75 -64 75 74 -64 76 61 -64 76 91 -64 77 62 -64 77 92 -64 78 63 -64 78 93 -64 79 64 -64 79 94 -64 80 65 -64 80 95 -64 81 66 -64 81 96 -64 82 67 -64 82 97 -64 83 68 -64 83 98 -64 84 69 -64 84 99 -64 85 70 -64 85 100 -64 86 71 -64 86 101 -64 87 72 -64 87 102 -64 88 73 -64 88 103 -64 89 74 -64 89 104 -64 90 75 -64 90 105 -64 76 77 -64 77 76 -64 77 78 -64 78 77 -64 78 79 -64 79 78 -64 79 80 -64 80 79 -64 80 81 -64 81 80 -64 81 82 -64 82 81 -64 82 83 -64 83 82 -64 83 84 -64 84 83 -64 84 85 -64 85 84 -64 85 86 -64 86 85 -64 86 87 -64 87 86 -64 87 88 -64 88 87 -64 88 89 -64 89 88 -64 89 90 -64 90 89 -64 91 76 -64 92 77 -64 93 78 -64 94 79 -64 95 80 -64 96 81 -64 97 82 -64 98 83 -64 99 84 -64 100 85 -64 101 86 -64 102 87 -64 103 88 -64 104 89 -64 105 90 -64 91 92 -64 92 91 -64 92 93 -64 93 92 -64 93 94 -64 94 93 -64 94 95 -64 95 94 -64 95 96 -64 96 95 -64 96 97 -64 97 96 -64 97 98 -64 98 97 -64 98 99 -64 99 98 -64 99 100 -64 100 99 -64 100 101 -64 101 100 -64 101 102 -64 102 101 -64 102 103 -64 103 102 -64 103 104 -64 104 103 -64 104 105 -64 105 104 -64 99 106 -64 100 107 -64 101 108 -64 102 109 -64 103 110 -64 104 111 -64 105 112 -64 106 99 -64 106 113 -64 107 100 -64 107 114 -64 108 101 -64 108 115 -64 109 102 -64 109 116 -64 110 103 -64 110 117 -64 111 104 -64 111 118 -64 112 105 -64 112 119 -64 106 107 -64 107 106 -64 107 108 -64 108 107 -64 108 109 -64 109 108 -64 109 110 -64 110 109 -64 110 111 -64 111 110 -64 111 112 -64 112 111 -64 113 106 -64 113 120 -64 114 107 -64 114 121 -64 115 108 -64 115 122 -64 116 109 -64 116 123 -64 117 110 -64 117 124 -64 118 111 -64 118 125 -64 119 112 -64 119 126 -64 113 114 -64 114 113 -64 114 115 -64 115 114 -64 115 116 -64 116 115 -64 116 117 -64 117 116 -64 117 118 -64 118 117 -64 118 119 -64 119 118 -64 120 113 -64 120 127 -64 121 114 -64 121 128 -64 122 115 -64 122 129 -64 123 116 -64 123 130 -64 124 117 -64 124 131 -64 125 118 -64 125 132 -64 126 119 -64 126 133 -64 120 121 -64 121 120 -64 121 122 -64 122 121 -64 122 123 -64 123 122 -64 123 124 -64 124 123 -64 124 125 -64 125 124 -64 125 126 -64 126 125 -64 127 120 -64 127 134 -64 128 121 -64 128 135 -64 129 122 -64 129 136 -64 130 123 -64 130 137 -64 131 124 -64 131 138 -64 132 125 -64 132 139 -64 133 126 -64 133 140 -64 127 128 -64 128 127 -64 128 129 -64 129 128 -64 129 130 -64 130 129 -64 130 131 -64 131 130 -64 131 132 -64 132 131 -64 132 133 -64 133 132 -64 134 127 -64 134 141 -64 135 128 -64 135 142 -64 136 129 -64 136 143 -64 137 130 -64 137 144 -64 138 131 -64 138 145 -64 139 132 -64 139 146 -64 140 133 -64 140 147 -64 134 135 -64 135 134 -64 135 136 -64 136 135 -64 136 137 -64 137 136 -64 137 138 -64 138 137 -64 138 139 -64 139 138 -64 139 140 -64 140 139 -64 141 134 -64 141 148 -64 142 135 -64 142 149 -64 143 136 -64 143 150 -64 144 137 -64 144 151 -64 145 138 -64 145 152 -64 146 139 -64 146 153 -64 147 140 -64 147 154 -64 141 142 -64 142 141 -64 142 143 -64 143 142 -64 143 144 -64 144 143 -64 144 145 -64 145 144 -64 145 146 -64 146 145 -64 146 147 -64 147 146 -64 148 141 -64 148 155 -64 149 142 -64 149 156 -64 150 143 -64 150 157 -64 151 144 -64 151 158 -64 152 145 -64 152 159 -64 153 146 -64 153 160 -64 154 147 -64 154 161 -64 148 149 -64 149 148 -64 149 150 -64 150 149 -64 150 151 -64 151 150 -64 151 152 -64 152 151 -64 152 153 -64 153 152 -64 153 154 -64 154 153 -64 155 148 -64 156 149 -64 157 150 -64 158 151 -64 159 152 -64 160 153 -64 161 154 -64 155 156 -64 156 155 -64 156 157 -64 157 156 -64 157 158 -64 158 157 -64 158 159 -64 159 158 -64 159 160 -64 160 159 -64 160 161 -64 161 160 -64 SuiteSparse/CHOLMOD/Demo/Matrix/bcsstk01.rsa0000444001170100242450000001425610253407232017331 0ustar davisfac1SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM BCSSTK01 74 4 14 56 0 RSA 48 48 224 0 (16I5) (16I5) (4E20.12) 1 9 17 25 31 37 43 49 55 62 66 70 75 85 95 104 112 120 127 132 136 141 144 146 149 154 158 161 164 167 169 173 178 183 185 188 191 196 201 205 208 211 213 216 219 221 222 224 225 1 5 6 7 11 19 25 30 2 4 6 8 10 20 24 26 3 4 5 9 21 23 27 28 4 8 10 22 27 28 5 7 11 21 23 29 6 12 20 24 25 30 7 11 12 13 31 36 8 10 12 14 18 32 9 10 11 15 17 33 34 10 16 33 34 11 15 17 35 12 14 18 31 36 13 17 18 19 23 37 42 43 47 48 14 15 16 18 20 22 38 44 45 46 15 16 17 21 39 40 44 45 46 16 20 22 39 40 44 45 46 17 18 19 23 41 43 47 48 18 24 37 42 43 47 48 19 23 24 43 48 20 22 24 44 21 22 23 45 46 22 45 46 23 47 24 43 48 25 29 30 31 35 26 28 32 34 27 28 33 28 32 34 29 31 35 30 36 31 35 36 37 32 34 36 38 42 33 34 35 39 41 34 40 35 39 41 36 38 42 37 41 42 43 47 38 40 42 44 46 39 40 41 45 40 44 46 41 43 47 42 48 43 47 48 44 45 46 45 46 46 47 48 48 .283226851852E+07 .100000000000E+07 .208333333333E+07 -.333333333333E+04 .100000000000E+07 -.280000000000E+07 -.289351851852E+05 .208333333333E+07 .163544753086E+07 -.200000000000E+07 .555555555555E+07 -.666666666667E+04 -.200000000000E+07 -.308641975309E+05 .555555555555E+07 -.159791666667E+07 .172436728395E+07 -.208333333333E+07 -.277777777778E+07 -.168000000000E+07 -.154320987654E+05 -.277777777778E+07 -.289351851852E+05 -.208333333333E+07 .100333333333E+10 .200000000000E+07 .400000000000E+09 -.333333333333E+07 .208333333333E+07 .100000000000E+09 .106750000000E+10 -.100000000000E+07 .200000000000E+09 .277777777778E+07 .333333333333E+09 -.833333333333E+06 .153533333333E+10 -.200000000000E+07 -.555555555555E+07 .666666666667E+09 -.208333333333E+07 .100000000000E+09 .283226851852E+07 -.100000000000E+07 .208333333333E+07 -.280000000000E+07 -.289351851852E+05 .208333333333E+07 .163544753086E+07 .200000000000E+07 .555555555555E+07 -.308641975309E+05 .555555555555E+07 -.159791666667E+07 .172436728395E+07 -.208333333333E+07 -.277777777778E+07 -.154320987654E+05 -.277777777778E+07 -.289351851852E+05 -.208333333333E+07 .100333333333E+10 -.333333333333E+07 .208333333333E+07 .100000000000E+09 .106750000000E+10 .277777777778E+07 .333333333333E+09 -.833333333333E+06 .153533333333E+10 -.555555555555E+07 .666666666667E+09 -.208333333333E+07 .100000000000E+09 .283609946950E+07 -.214928529451E+07 .235916180402E+07 -.333333333333E+04 -.100000000000E+07 -.289351851852E+05 .208333333333E+07 -.383095098171E+04 -.114928529451E+07 .275828470683E+06 .176741074446E+07 .517922131816E+06 .429857058902E+07 -.555555555555E+07 -.666666666667E+04 .200000000000E+07 -.159791666667E+07 -.131963213599E+06 -.517922131816E+06 .229857058902E+07 .389003806848E+07 -.263499027470E+07 .277777777778E+07 -.168000000000E+07 -.289351851852E+05 -.208333333333E+07 -.517922131816E+06 -.216567078453E+07 -.551656941367E+06 .197572063531E+10 -.200000000000E+07 .400000000000E+09 .208333333333E+07 .100000000000E+09 -.229857058902E+07 .551656941366E+06 .486193650990E+09 .152734651547E+10 -.109779731332E+09 .100000000000E+07 .200000000000E+09 -.833333333333E+06 .114928529451E+07 .229724661236E+09 -.557173510779E+08 .156411143711E+10 -.200000000000E+07 -.208333333333E+07 .100000000000E+09 -.275828470683E+06 -.557173510779E+08 .109411960038E+08 .283226851852E+07 .100000000000E+07 .208333333333E+07 -.289351851852E+05 .208333333333E+07 .163544753086E+07 -.200000000000E+07 -.555555555555E+07 -.159791666667E+07 .172436728395E+07 -.208333333333E+07 .277777777778E+07 -.289351851852E+05 -.208333333333E+07 .100333333333E+10 .208333333333E+07 .100000000000E+09 .106750000000E+10 -.833333333333E+06 .153533333333E+10 -.208333333333E+07 .100000000000E+09 .608796296296E+05 .125000000000E+07 .416666666667E+06 -.416666666667E+04 .125000000000E+07 .337291666667E+07 -.250000000000E+07 -.833333333333E+04 -.250000000000E+07 .241171296296E+07 -.416666666667E+06 -.235500000000E+07 .150000000000E+10 .250000000000E+07 .500000000000E+09 .501833333333E+09 -.125000000000E+07 .250000000000E+09 .502500000000E+09 -.250000000000E+07 .398587962963E+07 -.125000000000E+07 .416666666667E+06 -.392500000000E+07 .341149691358E+07 .250000000000E+07 .694444444444E+07 -.385802469136E+05 .694444444445E+07 .243100308642E+07 -.416666666667E+06 -.347222222222E+07 -.192901234568E+05 -.347222222222E+07 .150416666667E+10 -.416666666667E+07 .133516666667E+10 .347222222222E+07 .416666666667E+09 .216916666667E+10 -.694444444444E+07 .833333333333E+09 .398587962963E+07 -.125000000000E+07 .416666666667E+06 -.416666666667E+04 -.125000000000E+07 .341149691358E+07 .250000000000E+07 -.694444444445E+07 -.833333333333E+04 .250000000000E+07 .243100308642E+07 -.416666666667E+06 .347222222222E+07 -.235500000000E+07 .150416666667E+10 -.250000000000E+07 .500000000000E+09 .133516666667E+10 .125000000000E+07 .250000000000E+09 .216916666667E+10 -.250000000000E+07 .647105806113E+05 .239928529451E+07 .140838195984E+06 .350487988027E+07 .517922131816E+06 -.479857058902E+07 .457738374749E+07 .134990274700E+06 .247238730198E+10 .961679848804E+09 -.109779731332E+09 .531278103775E+09 SuiteSparse/CHOLMOD/Demo/Matrix/bcsstk01.tri0000644001170100242450000002464210253410502017336 0ustar davisfac% title:1SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM % key: BCSSTK01 48 48 224 -1 1 1 0.283226851851999993E+007 5 1 0.100000000000000000E+007 6 1 0.208333333333000005E+007 7 1 -0.333333333333000019E+004 11 1 0.100000000000000000E+007 19 1 -0.280000000000000000E+007 25 1 -0.289351851852000000E+005 30 1 0.208333333333000005E+007 2 2 0.163544753086000006E+007 4 2 -0.200000000000000000E+007 6 2 0.555555555554999970E+007 8 2 -0.666666666667000027E+004 10 2 -0.200000000000000000E+007 20 2 -0.308641975309000009E+005 24 2 0.555555555554999970E+007 26 2 -0.159791666666999995E+007 3 3 0.172436728395000007E+007 4 3 -0.208333333333000005E+007 5 3 -0.277777777778000012E+007 9 3 -0.168000000000000000E+007 21 3 -0.154320987654000000E+005 23 3 -0.277777777778000012E+007 27 3 -0.289351851852000000E+005 28 3 -0.208333333333000005E+007 4 4 0.100333333333000004E+010 8 4 0.200000000000000000E+007 10 4 0.400000000000000000E+009 22 4 -0.333333333332999982E+007 27 4 0.208333333333000005E+007 28 4 0.100000000000000000E+009 5 5 0.106750000000000000E+010 7 5 -0.100000000000000000E+007 11 5 0.200000000000000000E+009 21 5 0.277777777778000012E+007 23 5 0.333333333333000004E+009 29 5 -0.833333333332999959E+006 6 6 0.153533333332999992E+010 12 6 -0.200000000000000000E+007 20 6 -0.555555555554999970E+007 24 6 0.666666666667000055E+009 25 6 -0.208333333333000005E+007 30 6 0.100000000000000000E+009 7 7 0.283226851851999993E+007 11 7 -0.100000000000000000E+007 12 7 0.208333333333000005E+007 13 7 -0.280000000000000000E+007 31 7 -0.289351851852000000E+005 36 7 0.208333333333000005E+007 8 8 0.163544753086000006E+007 10 8 0.200000000000000000E+007 12 8 0.555555555554999970E+007 14 8 -0.308641975309000009E+005 18 8 0.555555555554999970E+007 32 8 -0.159791666666999995E+007 9 9 0.172436728395000007E+007 10 9 -0.208333333333000005E+007 11 9 -0.277777777778000012E+007 15 9 -0.154320987654000000E+005 17 9 -0.277777777778000012E+007 33 9 -0.289351851852000000E+005 34 9 -0.208333333333000005E+007 10 10 0.100333333333000004E+010 16 10 -0.333333333332999982E+007 33 10 0.208333333333000005E+007 34 10 0.100000000000000000E+009 11 11 0.106750000000000000E+010 15 11 0.277777777778000012E+007 17 11 0.333333333333000004E+009 35 11 -0.833333333332999959E+006 12 12 0.153533333332999992E+010 14 12 -0.555555555554999970E+007 18 12 0.666666666667000055E+009 31 12 -0.208333333333000005E+007 36 12 0.100000000000000000E+009 13 13 0.283609946950000012E+007 17 13 -0.214928529450999992E+007 18 13 0.235916180402000016E+007 19 13 -0.333333333333000019E+004 23 13 -0.100000000000000000E+007 37 13 -0.289351851852000000E+005 42 13 0.208333333333000005E+007 43 13 -0.383095098171000018E+004 47 13 -0.114928529450999992E+007 48 13 0.275828470682999992E+006 14 14 0.176741074445999996E+007 15 14 0.517922131815999979E+006 16 14 0.429857058901999984E+007 18 14 -0.555555555554999970E+007 20 14 -0.666666666667000027E+004 22 14 0.200000000000000000E+007 38 14 -0.159791666666999995E+007 44 14 -0.131963213599000010E+006 45 14 -0.517922131815999979E+006 46 14 0.229857058901999984E+007 15 15 0.389003806847999990E+007 16 15 -0.263499027469999995E+007 17 15 0.277777777778000012E+007 21 15 -0.168000000000000000E+007 39 15 -0.289351851852000000E+005 40 15 -0.208333333333000005E+007 44 15 -0.517922131815999979E+006 45 15 -0.216567078452999983E+007 46 15 -0.551656941366999992E+006 16 16 0.197572063530999994E+010 20 16 -0.200000000000000000E+007 22 16 0.400000000000000000E+009 39 16 0.208333333333000005E+007 40 16 0.100000000000000000E+009 44 16 -0.229857058901999984E+007 45 16 0.551656941365999985E+006 46 16 0.486193650990000010E+009 17 17 0.152734651547000003E+010 18 17 -0.109779731332000002E+009 19 17 0.100000000000000000E+007 23 17 0.200000000000000000E+009 41 17 -0.833333333332999959E+006 43 17 0.114928529450999992E+007 47 17 0.229724661236000001E+009 48 17 -0.557173510778999999E+008 18 18 0.156411143710999990E+010 24 18 -0.200000000000000000E+007 37 18 -0.208333333333000005E+007 42 18 0.100000000000000000E+009 43 18 -0.275828470682999992E+006 47 18 -0.557173510778999999E+008 48 18 0.109411960037999991E+008 19 19 0.283226851851999993E+007 23 19 0.100000000000000000E+007 24 19 0.208333333333000005E+007 43 19 -0.289351851852000000E+005 48 19 0.208333333333000005E+007 20 20 0.163544753086000006E+007 22 20 -0.200000000000000000E+007 24 20 -0.555555555554999970E+007 44 20 -0.159791666666999995E+007 21 21 0.172436728395000007E+007 22 21 -0.208333333333000005E+007 23 21 0.277777777778000012E+007 45 21 -0.289351851852000000E+005 46 21 -0.208333333333000005E+007 22 22 0.100333333333000004E+010 45 22 0.208333333333000005E+007 46 22 0.100000000000000000E+009 23 23 0.106750000000000000E+010 47 23 -0.833333333332999959E+006 24 24 0.153533333332999992E+010 43 24 -0.208333333333000005E+007 48 24 0.100000000000000000E+009 25 25 0.608796296296000000E+005 29 25 0.125000000000000000E+007 30 25 0.416666666666999983E+006 31 25 -0.416666666667000027E+004 35 25 0.125000000000000000E+007 26 26 0.337291666667000018E+007 28 26 -0.250000000000000000E+007 32 26 -0.833333333332999973E+004 34 26 -0.250000000000000000E+007 27 27 0.241171296296000015E+007 28 27 -0.416666666666999983E+006 33 27 -0.235500000000000000E+007 28 28 0.150000000000000000E+010 32 28 0.250000000000000000E+007 34 28 0.500000000000000000E+009 29 29 0.501833333333000004E+009 31 29 -0.125000000000000000E+007 35 29 0.250000000000000000E+009 30 30 0.502500000000000000E+009 36 30 -0.250000000000000000E+007 31 31 0.398587962962999986E+007 35 31 -0.125000000000000000E+007 36 31 0.416666666666999983E+006 37 31 -0.392500000000000000E+007 32 32 0.341149691357999993E+007 34 32 0.250000000000000000E+007 36 32 0.694444444443999976E+007 38 32 -0.385802469136000000E+005 42 32 0.694444444445000030E+007 33 33 0.243100308642000007E+007 34 33 -0.416666666666999983E+006 35 33 -0.347222222221999988E+007 39 33 -0.192901234568000000E+005 41 33 -0.347222222221999988E+007 34 34 0.150416666667000008E+010 40 34 -0.416666666667000018E+007 35 35 0.133516666667000008E+010 39 35 0.347222222221999988E+007 41 35 0.416666666666999996E+009 36 36 0.216916666667000008E+010 38 36 -0.694444444443999976E+007 42 36 0.833333333332999945E+009 37 37 0.398587962962999986E+007 41 37 -0.125000000000000000E+007 42 37 0.416666666666999983E+006 43 37 -0.416666666667000027E+004 47 37 -0.125000000000000000E+007 38 38 0.341149691357999993E+007 40 38 0.250000000000000000E+007 42 38 -0.694444444445000030E+007 44 38 -0.833333333332999973E+004 46 38 0.250000000000000000E+007 39 39 0.243100308642000007E+007 40 39 -0.416666666666999983E+006 41 39 0.347222222221999988E+007 45 39 -0.235500000000000000E+007 40 40 0.150416666667000008E+010 44 40 -0.250000000000000000E+007 46 40 0.500000000000000000E+009 41 41 0.133516666667000008E+010 43 41 0.125000000000000000E+007 47 41 0.250000000000000000E+009 42 42 0.216916666667000008E+010 48 42 -0.250000000000000000E+007 43 43 0.647105806112999999E+005 47 43 0.239928529450999992E+007 48 43 0.140838195983999991E+006 44 44 0.350487988027000008E+007 45 44 0.517922131815999979E+006 46 44 -0.479857058901999984E+007 45 45 0.457738374748999998E+007 46 45 0.134990274700000009E+006 46 46 0.247238730198000002E+010 47 47 0.961679848804000020E+009 48 47 -0.109779731332000002E+009 48 48 0.531278103774999976E+009 SuiteSparse/CHOLMOD/Demo/Matrix/bcsstk02.rsa0000444001170100242450000015671510276252335017350 0ustar davisfac1SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED BCSSTK02 697 5 139 553 0 RSA 66 66 2211 0 (16I5) (16I5) (4E20.12) 1 67 132 196 259 321 382 442 501 559 616 672 727 781 834 886 937 987 1036 1084 1131 1177 1222 1266 1309 1351 1392 1432 1471 1509 1546 1582 1617 1651 1684 1716 1747 1777 1806 1834 1861 1887 1912 1936 1959 1981 2002 2022 2041 2059 2076 2092 2107 2121 2134 2146 2157 2167 2176 2184 2191 2197 2202 2206 2209 2211 2212 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 53 54 55 56 57 58 59 60 61 62 63 64 65 66 54 55 56 57 58 59 60 61 62 63 64 65 66 55 56 57 58 59 60 61 62 63 64 65 66 56 57 58 59 60 61 62 63 64 65 66 57 58 59 60 61 62 63 64 65 66 58 59 60 61 62 63 64 65 66 59 60 61 62 63 64 65 66 60 61 62 63 64 65 66 61 62 63 64 65 66 62 63 64 65 66 63 64 65 66 64 65 66 65 66 66 .199033328612E+04 .567912179918E+03 .775783614407E+03 -.138679660288E+04 -.267855231528E+00 -.466904253460E+00 -.113047743071E+01 .392057789929E+00 .262199288535E-01 -.490288435493E+03 -.490205061885E+03 .251002521432E-01 -.594381129068E+02 -.386059428873E+02 -.385480753830E+03 .466086025542E-01 -.746500484851E-01 -.649846203786E+00 .154605192036E+00 .447455376660E-01 .143035540049E-01 -.215970091930E-01 -.136564053577E+00 -.225765832174E+00 .506186064182E+01 -.115020080201E+00 -.606936940259E+00 .421740467944E+00 -.787629069631E-01 -.640284219559E+00 .583362672080E+00 -.146798122914E+00 -.871746664017E-01 -.304465542656E-01 .205194916563E-02 .243121071600E-01 -.120472833015E+01 .507082671607E-01 .179963620797E+00 -.212498956592E+00 -.346642870540E-02 -.526654610775E-01 -.754533265616E-01 -.248232630014E-01 .108515475812E-01 -.125118931756E-01 .729970999190E-01 .242525155573E-01 .162954538440E-01 .161020356063E-01 -.204115183559E-01 .124350728724E+00 .170460112115E-04 -.389694574713E-01 .538813622137E-01 -.468957621810E-02 -.116852063763E-01 .292282258830E-01 -.201849310451E-01 -.931350858770E-02 .108271891898E-01 -.134893178973E-01 -.188099331882E-02 .488975644646E-02 .122115404646E-01 .116594521197E-01 .199033328612E+04 .775783614407E+03 .392057789929E+00 -.113047743071E+01 .262199288535E-01 -.267855231528E+00 -.138679660288E+04 -.466904253460E+00 -.490205061885E+03 -.490288435493E+03 .251002521432E-01 -.386059428873E+02 -.594381129068E+02 -.385480753830E+03 .447455376660E-01 .154605192036E+00 .143035540049E-01 -.746500484851E-01 .466086025542E-01 -.649846203786E+00 -.136564053577E+00 -.215970091930E-01 -.225765832174E+00 -.115020080201E+00 .506186064182E+01 -.606936940259E+00 -.146798122914E+00 .583362672080E+00 -.871746664017E-01 -.787629069631E-01 .421740467944E+00 -.640284219559E+00 .205194916563E-02 -.304465542656E-01 .243121071600E-01 .507082671607E-01 -.120472833015E+01 .179963620797E+00 -.248232630014E-01 -.754533265616E-01 .108515475812E-01 -.346642870540E-02 -.212498956592E+00 -.526654610775E-01 .729970999190E-01 -.125118931756E-01 .242525155573E-01 .161020356063E-01 .162954538439E-01 -.204115183559E-01 .170460112114E-04 .124350728724E+00 -.389694574713E-01 -.201849310451E-01 .292282258830E-01 -.931350858770E-02 -.468957621810E-02 .538813622137E-01 -.116852063763E-01 -.134893178973E-01 .108271891898E-01 -.188099331882E-02 .122115404646E-01 .488975644646E-02 .116594521197E-01 .779706720211E+04 -.531350053921E-01 -.304815582791E-02 -.102514122660E+01 -.304815582791E-02 -.531350053921E-01 -.102514122660E+01 -.251002521432E-01 -.251002521432E-01 -.326660475219E+00 -.388557261792E+03 -.388557261792E+03 -.389753122733E+04 -.553345735537E+00 -.272280415412E-01 -.207460439442E-01 -.272280415412E-01 -.553345735537E+00 -.207460439442E-01 -.237089205144E+00 -.237089205144E+00 -.465557198794E-01 -.337237916819E+00 -.337237916819E+00 .797039821776E-01 .110987283377E+00 -.277103782968E-01 .744259789853E-01 -.277103782968E-01 .110987283377E+00 .744259789853E-01 .372260199967E-01 .372260199967E-01 .552772870229E-02 .764975709273E-01 .764975709273E-01 -.308651363971E-01 -.553495598994E-02 .236738986005E-02 .617619299493E-04 .236738986005E-02 -.553495598994E-02 .617619299494E-04 -.152097225825E-01 -.152097225825E-01 -.637743728028E-02 -.155356112469E-02 -.155356112469E-02 .410435985584E-02 -.778483588072E-02 -.778483588072E-02 .455578911455E-02 .131964562546E-02 -.105151485223E-02 .249639661440E-02 -.105151485223E-02 .131964562546E-02 .249639661440E-02 .126121651998E-02 .126121651998E-02 .995692628652E-03 -.103177119527E-02 -.103177119527E-02 -.220183612319E-02 .306065236876E+04 -.710327114801E+03 -.153301303416E+04 -.490356250558E+03 .490311737127E+03 .504023053961E-01 -.113047743071E+01 -.267855231528E+00 .304815582791E-02 -.106600598283E+04 .714179836927E+02 .710379369313E+03 -.585566581605E+02 .386300510423E+02 .386582196590E+03 -.274214146462E-01 .249666288015E+00 .360423080019E+00 -.537810772604E+01 .705225867677E+02 .471605767175E+02 .248145204774E+00 -.100584581772E+00 -.920349214383E-01 .656900522630E+01 .264895220167E+00 .100507743979E+01 -.738640835819E-01 .306411778813E+00 .114550842162E+00 .411470007538E+00 -.773717958630E-03 .549392153396E-01 -.181381742796E+00 -.548261890874E-02 -.154083378831E+00 -.109650972517E+01 -.469509373020E-01 -.160836422548E+00 -.140005255790E-01 -.455285453152E-01 -.651006846878E-02 -.184546987872E+00 -.828652174830E-01 -.353680584512E-01 -.100962570567E-01 .279679975636E-01 .294306684201E-01 .469961812924E-01 -.341711688384E-02 -.226327177363E-01 .176759074346E+00 .183093875259E-01 .372450942250E-01 .523550343045E-02 .144877708743E-01 .141998602399E-01 .389265774119E-01 -.169268924454E-01 .836760501901E-02 -.188819257888E-01 .186253545948E-01 -.128915968856E-01 .306065236876E+04 .153301303416E+04 .490311737127E+03 -.490356250558E+03 -.504023053961E-01 .392057789929E+00 -.138679660288E+04 .531350053921E-01 .705225867677E+02 -.537810772604E+01 -.471605767175E+02 .386300510423E+02 -.585566581605E+02 -.386582196590E+03 .249666288015E+00 -.274214146462E-01 -.360423080019E+00 .714179836927E+02 -.106600598283E+04 -.710379369313E+03 -.773717958629E-03 .411470007538E+00 -.549392153396E-01 .264895220167E+00 .656900522630E+01 -.100507743979E+01 .306411778813E+00 -.738640835819E-01 -.114550842162E+00 -.100584581772E+00 .248145204774E+00 .920349214383E-01 -.828652174830E-01 -.184546987872E+00 .353680584512E-01 -.469509373020E-01 -.109650972517E+01 .160836422548E+00 -.455285453152E-01 -.140005255790E-01 .651006846878E-02 -.548261890874E-02 -.181381742796E+00 .154083378831E+00 .279679975636E-01 -.100962570567E-01 -.294306684201E-01 -.169268924454E-01 .389265774119E-01 -.836760501901E-02 .183093875259E-01 .176759074346E+00 -.372450942250E-01 .144877708743E-01 .523550343045E-02 -.141998602399E-01 -.341711688384E-02 .469961812924E-01 .226327177363E-01 .186253545948E-01 -.188819257888E-01 .128915968856E-01 .874603353908E+04 -.504023053961E-01 .504023053961E-01 -.234860920887E+00 -.262199288535E-01 .466904253460E+00 -.102514122660E+01 .710389335139E+03 -.474760020004E+02 -.474485382162E+03 .389148183429E+03 -.389148183429E+03 -.389723119884E+04 .164120824334E+00 -.164120824334E+00 -.505008290142E-02 .474760020004E+02 -.710389335139E+03 -.474485382162E+03 .460779130703E+00 -.404939072345E-01 -.532046305311E-01 .380073564210E+00 -.380073564210E+00 -.646569642271E-02 .773420041895E-02 -.773420041895E-02 .105140076630E-01 .404939072345E-01 -.460779130703E+00 -.532046305311E-01 -.117741340199E+00 .161032743626E-01 .676233391862E-02 -.742279746884E-01 .742279746884E-01 -.264453981116E-01 .311766628820E-02 -.311766628820E-02 -.529239616013E-03 -.161032743626E-01 .117741340199E+00 .676233391862E-02 -.185283900707E-02 .185283900707E-02 -.119448580304E-03 .154432749250E-01 -.305094512396E-02 -.441524143329E-02 .136510977670E-01 -.136510977670E-01 .200576758031E-02 .300295481197E-02 -.300295481197E-02 .356930287364E-03 .305094512396E-02 -.154432749250E-01 -.441524143329E-02 -.248794897528E-02 .248794897528E-02 .528505208291E-03 .306065236876E+04 -.710327114801E+03 .153301303416E+04 -.138679660288E+04 .392057789929E+00 .531350053921E-01 -.537810772604E+01 .705225867677E+02 -.471605767175E+02 -.274214146462E-01 .249666288015E+00 -.360423080019E+00 -.585566581605E+02 .386300510423E+02 -.386582196590E+03 -.106600598283E+04 .714179836927E+02 -.710379369313E+03 .411470007538E+00 -.773717958625E-03 -.549392153396E-01 -.738640835819E-01 .306411778813E+00 -.114550842162E+00 .656900522630E+01 .264895220167E+00 -.100507743979E+01 .248145204774E+00 -.100584581772E+00 .920349214383E-01 -.184546987872E+00 -.828652174830E-01 .353680584512E-01 -.140005255790E-01 -.455285453152E-01 .651006846878E-02 -.109650972517E+01 -.469509373020E-01 .160836422548E+00 -.181381742796E+00 -.548261890874E-02 .154083378831E+00 -.100962570567E-01 .279679975636E-01 -.294306684201E-01 .389265774119E-01 -.169268924454E-01 -.836760501901E-02 .523550343045E-02 .144877708743E-01 -.141998602399E-01 .176759074346E+00 .183093875259E-01 -.372450942250E-01 .469961812924E-01 -.341711688384E-02 .226327177363E-01 -.188819257888E-01 .186253545948E-01 .128915968856E-01 .306065236876E+04 -.153301303416E+04 -.267855231528E+00 -.113047743071E+01 .304815582791E-02 .714179836927E+02 -.106600598283E+04 .710379369313E+03 .249666288015E+00 -.274214146462E-01 .360423080019E+00 .386300510423E+02 -.585566581605E+02 .386582196590E+03 .705225867677E+02 -.537810772604E+01 .471605767175E+02 -.100584581772E+00 .248145204774E+00 -.920349214383E-01 .306411778813E+00 -.738640835819E-01 .114550842162E+00 .264895220167E+00 .656900522630E+01 .100507743979E+01 -.773717958628E-03 .411470007538E+00 .549392153396E-01 -.548261890874E-02 -.181381742796E+00 -.154083378831E+00 -.455285453152E-01 -.140005255790E-01 -.651006846878E-02 -.469509373020E-01 -.109650972517E+01 -.160836422548E+00 -.828652174830E-01 -.184546987872E+00 -.353680584512E-01 .279679975636E-01 -.100962570567E-01 .294306684201E-01 -.341711688384E-02 .469961812924E-01 -.226327177363E-01 .144877708743E-01 .523550343045E-02 .141998602399E-01 .183093875259E-01 .176759074346E+00 .372450942250E-01 -.169268924454E-01 .389265774119E-01 .836760501901E-02 .186253545948E-01 -.188819257888E-01 -.128915968856E-01 .874603353908E+04 .466904253460E+00 -.262199288535E-01 -.102514122660E+01 -.474760020004E+02 .710389335139E+03 -.474485382162E+03 -.164120824334E+00 .164120824334E+00 -.505008290142E-02 -.389148183429E+03 .389148183429E+03 -.389723119884E+04 -.710389335139E+03 .474760020004E+02 -.474485382162E+03 -.404939072345E-01 .460779130703E+00 -.532046305311E-01 -.773420041895E-02 .773420041895E-02 .105140076630E-01 -.380073564210E+00 .380073564210E+00 -.646569642271E-02 -.460779130703E+00 .404939072345E-01 -.532046305311E-01 .161032743626E-01 -.117741340199E+00 .676233391862E-02 -.311766628820E-02 .311766628820E-02 -.529239616013E-03 .742279746884E-01 -.742279746884E-01 -.264453981116E-01 .117741340199E+00 -.161032743626E-01 .676233391862E-02 .185283900707E-02 -.185283900707E-02 -.119448580304E-03 -.305094512396E-02 .154432749250E-01 -.441524143329E-02 -.300295481197E-02 .300295481197E-02 .356930287364E-03 -.136510977670E-01 .136510977670E-01 .200576758031E-02 -.154432749250E-01 .305094512396E-02 -.441524143329E-02 .248794897528E-02 -.248794897528E-02 .528505208291E-03 .199033328612E+04 .567912179918E+03 -.775783614407E+03 -.215970091930E-01 -.136564053577E+00 .225765832174E+00 .154605192036E+00 .447455376660E-01 -.143035540049E-01 .466086025542E-01 -.746500484851E-01 .649846203786E+00 -.594381129068E+02 -.386059428873E+02 .385480753830E+03 -.304465542656E-01 .205194916563E-02 -.243121071600E-01 .583362672080E+00 -.146798122914E+00 .871746664017E-01 .421740467944E+00 -.787629069631E-01 .640284219559E+00 .506186064182E+01 -.115020080201E+00 .606936940259E+00 -.125118931756E-01 .729970999190E-01 -.242525155573E-01 -.754533265616E-01 -.248232630014E-01 -.108515475812E-01 -.212498956592E+00 -.346642870540E-02 .526654610775E-01 -.120472833015E+01 .507082671607E-01 -.179963620797E+00 .162954538439E-01 .161020356063E-01 .204115183559E-01 .108271891898E-01 -.134893178973E-01 .188099331882E-02 .292282258830E-01 -.201849310451E-01 .931350858770E-02 .538813622137E-01 -.468957621810E-02 .116852063763E-01 .124350728724E+00 .170460112115E-04 .389694574713E-01 .488975644646E-02 .122115404646E-01 -.116594521196E-01 .199033328612E+04 -.775783614407E+03 -.136564053577E+00 -.215970091930E-01 .225765832174E+00 -.746500484851E-01 .466086025542E-01 .649846203786E+00 .447455376660E-01 .154605192036E+00 -.143035540049E-01 -.386059428873E+02 -.594381129068E+02 .385480753830E+03 .205194916563E-02 -.304465542656E-01 -.243121071600E-01 -.787629069631E-01 .421740467944E+00 .640284219559E+00 -.146798122914E+00 .583362672080E+00 .871746664017E-01 -.115020080201E+00 .506186064182E+01 .606936940259E+00 .729970999190E-01 -.125118931756E-01 -.242525155573E-01 -.346642870540E-02 -.212498956592E+00 .526654610775E-01 -.248232630014E-01 -.754533265616E-01 -.108515475812E-01 .507082671607E-01 -.120472833015E+01 -.179963620797E+00 .161020356063E-01 .162954538439E-01 .204115183559E-01 -.134893178973E-01 .108271891898E-01 .188099331882E-02 -.468957621810E-02 .538813622137E-01 .116852063763E-01 -.201849310451E-01 .292282258830E-01 .931350858770E-02 .170460112111E-04 .124350728724E+00 .389694574713E-01 .122115404646E-01 .488975644646E-02 -.116594521197E-01 .779706720211E+04 .237089205144E+00 .237089205144E+00 -.465557198794E-01 .272280415412E-01 .553345735537E+00 -.207460439442E-01 .553345735537E+00 .272280415412E-01 -.207460439442E-01 .388557261792E+03 .388557261792E+03 -.389753122733E+04 -.372260199967E-01 -.372260199967E-01 .552772870229E-02 .277103782968E-01 -.110987283377E+00 .744259789853E-01 -.110987283377E+00 .277103782968E-01 .744259789853E-01 .337237916819E+00 .337237916819E+00 .797039821776E-01 .152097225825E-01 .152097225825E-01 -.637743728028E-02 -.236738986005E-02 .553495598994E-02 .617619299493E-04 .553495598994E-02 -.236738986005E-02 .617619299493E-04 -.764975709273E-01 -.764975709273E-01 -.308651363971E-01 .155356112469E-02 .155356112469E-02 .410435985584E-02 -.126121651998E-02 -.126121651998E-02 .995692628652E-03 .105151485223E-02 -.131964562546E-02 .249639661440E-02 -.131964562546E-02 .105151485223E-02 .249639661440E-02 .778483588072E-02 .778483588072E-02 .455578911455E-02 .103177119527E-02 .103177119527E-02 -.220183612319E-02 .439202631141E+04 .660492729116E+03 .993175593813E+03 -.158535160717E+04 -.740773231739E+00 -.339265510303E-01 -.178233367210E+01 .475092994191E+00 .547535358152E-01 -.560648709532E+03 -.560721660331E+03 -.747832598980E-01 -.577287954366E+02 -.388699119071E+02 -.387224875883E+03 -.106242726251E+04 -.821391317592E+02 -.816160334876E+03 -.700761026378E+01 -.810473350461E+02 -.626345745042E+02 -.362438128753E-02 -.195685758231E+00 -.196187000405E+00 .665338477995E+01 -.972213137014E-01 -.115425214768E+01 .461213806407E+00 .140633693969E+00 .162896017016E+00 .536530372556E+00 .945192619804E-01 -.839861186181E-01 -.439696991295E-01 -.337221649893E+00 -.177623341572E+00 -.740894096044E-01 -.114822901602E+00 .142988272899E+00 -.713025080434E+00 .244685703281E-01 .209258515226E+00 -.160889154706E+00 .403491628588E-02 .112973374216E+00 -.167946854322E+00 .102899895555E+00 .540286997809E-01 -.387498520835E-01 .475908299023E-01 .812452094782E-02 -.171316493050E-01 -.865194672883E-01 -.779925613117E-01 .439202631141E+04 .993175593813E+03 .475092994191E+00 -.178233367210E+01 .547535358152E-01 -.740773231739E+00 -.158535160717E+04 -.339265510303E-01 -.560721660331E+03 -.560648709532E+03 -.747832598980E-01 -.388699119071E+02 -.577287954366E+02 -.387224875883E+03 -.810473350461E+02 -.700761026378E+01 -.626345745042E+02 -.821391317592E+02 -.106242726251E+04 -.816160334876E+03 -.195685758231E+00 -.362438128753E-02 -.196187000405E+00 -.972213137014E-01 .665338477995E+01 -.115425214768E+01 .945192619804E-01 .536530372556E+00 -.839861186181E-01 .140633693969E+00 .461213806407E+00 .162896017016E+00 -.337221649893E+00 -.439696991295E-01 -.177623341572E+00 -.114822901602E+00 -.740894096044E-01 .142988272899E+00 .244685703281E-01 -.713025080434E+00 .209258515226E+00 .102899895555E+00 -.167946854322E+00 .540286997809E-01 .403491628588E-02 -.160889154706E+00 .112973374216E+00 .475908299023E-01 -.387498520835E-01 .812452094782E-02 -.865194672883E-01 -.171316493050E-01 -.779925613117E-01 .100053777405E+05 -.573311367906E-01 .503288745856E-01 -.153544888123E+01 .503288745856E-01 -.573311367906E-01 -.153544888123E+01 .747832598980E-01 .747832598980E-01 -.268727919901E+00 -.389959101496E+03 -.389959101496E+03 -.389692078678E+04 -.816667495780E+03 -.630733305886E+02 -.629339069782E+03 -.630733305886E+02 -.816667495780E+03 -.629339069782E+03 -.190580721116E+00 -.190580721116E+00 -.335171346580E-01 -.248470674092E+00 -.248470674092E+00 -.727183829809E-01 -.498551433602E+00 -.283691770900E-01 -.763130477700E-01 -.283691770900E-01 -.498551433602E+00 -.763130477700E-01 -.330982419074E-01 -.330982419074E-01 .266287539252E-02 .554188208462E-02 .554188208462E-02 .155028969814E-01 .360688720459E-01 .360688720459E-01 -.302927153659E-01 .844287031863E-01 .146398643442E-01 .165472784700E-01 .146398643442E-01 .844287031863E-01 .165472784700E-01 .139059280132E-02 .139059280132E-02 .205524920906E-02 -.503375903525E-03 -.503375903525E-03 -.568056085662E-02 .225316844516E+04 -.638199164685E+03 -.776517736051E+03 -.560361038100E+03 .560313049416E+03 .158984424773E-01 -.178233367210E+01 -.740773231739E+00 -.503288745856E-01 .254632109960E+00 .301723547646E-01 .269510789482E+00 -.582814458610E+02 .386877556941E+02 .385876794808E+03 -.278594194749E-01 .173958739157E+00 .123827283595E+00 .102476898911E+00 .175985339893E-01 .347590287160E-02 .624486053533E+00 .123809333198E+00 .647462403737E+00 .476759121792E+01 .121185882311E-01 .726096728503E+00 -.139241199357E-02 -.731863221228E-01 .227585232444E-02 .687889989896E+00 .170829881533E+00 .128189804505E+00 .342053056329E-01 -.319406492645E-01 -.122695611269E+00 -.174119729222E+00 -.293025762591E-02 .938044205977E-01 -.808358607823E+00 -.544553916344E-01 -.192593901709E+00 -.388056068068E-01 -.845262240383E-02 -.247343065241E-01 -.101597026513E+00 .421317301656E-01 -.244629395181E-01 .570756354789E-01 -.262495943374E-01 .532158912700E-01 .225316844516E+04 .776517736051E+03 .560313049416E+03 -.560361038100E+03 -.158984424773E-01 .475092994191E+00 -.158535160717E+04 .573311367906E-01 .175985339893E-01 .102476898911E+00 -.347590287160E-02 .386877556941E+02 -.582814458610E+02 -.385876794808E+03 .173958739157E+00 -.278594194750E-01 -.123827283595E+00 .301723547646E-01 .254632109960E+00 -.269510789482E+00 .170829881533E+00 .687889989896E+00 -.128189804505E+00 .121185882311E-01 .476759121792E+01 -.726096728503E+00 -.731863221228E-01 -.139241199356E-02 -.227585232444E-02 .123809333198E+00 .624486053533E+00 -.647462403737E+00 -.319406492645E-01 .342053056329E-01 .122695611269E+00 .421317301656E-01 -.101597026513E+00 .244629395181E-01 -.544553916344E-01 -.808358607823E+00 .192593901709E+00 -.845262240383E-02 -.388056068068E-01 .247343065241E-01 -.293025762591E-02 -.174119729222E+00 -.938044205977E-01 -.262495943374E-01 .570756354789E-01 -.532158912700E-01 .779807349716E+04 -.158984424773E-01 .158984424773E-01 -.437385336977E+00 -.547535358152E-01 .339265510303E-01 -.153544888123E+01 .648808028177E+00 -.270482712633E-01 -.525450103689E-01 .388987123393E+03 -.388987123393E+03 -.389742704892E+04 .329129914224E+00 -.329129914224E+00 -.863818806313E-01 .270482712633E-01 -.648808028177E+00 -.525450103689E-01 -.133462436028E+00 -.231838625570E-01 .788350347189E-01 .261059380347E+00 -.261059380347E+00 .748702987363E-01 -.442692342250E-01 .442692342250E-01 .158796065663E-01 .231838625570E-01 .133462436028E+00 .788350347189E-01 .189812690040E-02 -.189812690040E-02 -.220231042250E-01 .568033337228E-02 .174989588623E-02 -.203279516370E-03 -.387540102171E-01 .387540102171E-01 -.273080237031E-01 .102926619295E-01 -.102926619295E-01 -.798257064311E-02 -.174989588623E-02 -.568033337228E-02 -.203279516370E-03 .215333279699E-02 -.215333279699E-02 .102405017127E-01 .225316844516E+04 -.638199164685E+03 .776517736051E+03 -.158535160717E+04 .475092994191E+00 .573311367906E-01 .102476898911E+00 .175985339893E-01 -.347590287160E-02 -.278594194749E-01 .173958739157E+00 -.123827283595E+00 -.582814458610E+02 .386877556941E+02 -.385876794808E+03 .254632109960E+00 .301723547646E-01 -.269510789482E+00 .687889989896E+00 .170829881533E+00 -.128189804505E+00 -.139241199356E-02 -.731863221228E-01 -.227585232444E-02 .476759121792E+01 .121185882311E-01 -.726096728503E+00 .624486053533E+00 .123809333198E+00 -.647462403737E+00 .342053056329E-01 -.319406492645E-01 .122695611269E+00 -.101597026513E+00 .421317301656E-01 .244629395181E-01 -.388056068068E-01 -.845262240383E-02 .247343065241E-01 -.808358607823E+00 -.544553916344E-01 .192593901709E+00 -.174119729222E+00 -.293025762591E-02 -.938044205977E-01 .570756354789E-01 -.262495943374E-01 -.532158912700E-01 .225316844516E+04 -.776517736051E+03 -.740773231739E+00 -.178233367210E+01 -.503288745856E-01 .301723547646E-01 .254632109960E+00 .269510789482E+00 .173958739157E+00 -.278594194750E-01 .123827283595E+00 .386877556941E+02 -.582814458610E+02 .385876794808E+03 .175985339893E-01 .102476898911E+00 .347590287160E-02 .123809333198E+00 .624486053533E+00 .647462403737E+00 -.731863221228E-01 -.139241199357E-02 .227585232444E-02 .121185882311E-01 .476759121792E+01 .726096728503E+00 .170829881533E+00 .687889989896E+00 .128189804505E+00 -.319406492645E-01 .342053056329E-01 -.122695611269E+00 -.293025762591E-02 -.174119729222E+00 .938044205977E-01 -.845262240383E-02 -.388056068068E-01 -.247343065241E-01 -.544553916344E-01 -.808358607823E+00 -.192593901709E+00 .421317301656E-01 -.101597026513E+00 -.244629395181E-01 -.262495943374E-01 .570756354789E-01 .532158912700E-01 .779807349716E+04 .339265510303E-01 -.547535358152E-01 -.153544888123E+01 -.270482712633E-01 .648808028177E+00 -.525450103689E-01 -.329129914224E+00 .329129914224E+00 -.863818806313E-01 -.388987123393E+03 .388987123393E+03 -.389742704892E+04 -.648808028177E+00 .270482712633E-01 -.525450103689E-01 -.231838625570E-01 -.133462436028E+00 .788350347189E-01 .442692342250E-01 -.442692342250E-01 .158796065663E-01 -.261059380347E+00 .261059380347E+00 .748702987363E-01 .133462436028E+00 .231838625570E-01 .788350347189E-01 -.189812690040E-02 .189812690040E-02 -.220231042250E-01 .174989588623E-02 .568033337228E-02 -.203279516370E-03 -.102926619295E-01 .102926619295E-01 -.798257064311E-02 .387540102171E-01 -.387540102171E-01 -.273080237030E-01 -.568033337228E-02 -.174989588623E-02 -.203279516370E-03 -.215333279699E-02 .215333279699E-02 .102405017127E-01 .439202631141E+04 .660492729116E+03 -.993175593813E+03 -.362438128753E-02 -.195685758231E+00 .196187000405E+00 -.700761026378E+01 -.810473350461E+02 .626345745042E+02 -.106242726251E+04 -.821391317592E+02 .816160334876E+03 -.577287954366E+02 -.388699119071E+02 .387224875883E+03 -.439696991295E-01 -.337221649893E+00 .177623341572E+00 .536530372556E+00 .945192619804E-01 .839861186181E-01 .461213806407E+00 .140633693969E+00 -.162896017016E+00 .665338477995E+01 -.972213137014E-01 .115425214768E+01 -.740894096044E-01 -.114822901602E+00 -.142988272899E+00 -.387498520835E-01 .475908299023E-01 -.812452094782E-02 -.167946854322E+00 .102899895555E+00 -.540286997809E-01 -.160889154706E+00 .403491628587E-02 -.112973374216E+00 -.713025080434E+00 .244685703281E-01 -.209258515226E+00 -.171316493050E-01 -.865194672883E-01 .779925613117E-01 .439202631141E+04 -.993175593813E+03 -.195685758231E+00 -.362438128753E-02 .196187000405E+00 -.821391317592E+02 -.106242726251E+04 .816160334876E+03 -.810473350461E+02 -.700761026378E+01 .626345745042E+02 -.388699119071E+02 -.577287954366E+02 .387224875883E+03 -.337221649893E+00 -.439696991295E-01 .177623341572E+00 .140633693969E+00 .461213806407E+00 -.162896017016E+00 .945192619804E-01 .536530372556E+00 .839861186181E-01 -.972213137014E-01 .665338477995E+01 .115425214768E+01 -.114822901602E+00 -.740894096044E-01 -.142988272899E+00 .475908299023E-01 -.387498520835E-01 -.812452094782E-02 .403491628588E-02 -.160889154706E+00 -.112973374216E+00 .102899895555E+00 -.167946854322E+00 -.540286997809E-01 .244685703281E-01 -.713025080434E+00 -.209258515226E+00 -.865194672883E-01 -.171316493050E-01 .779925613117E-01 .100053777405E+05 .190580721116E+00 .190580721116E+00 -.335171346580E-01 .630733305886E+02 .816667495780E+03 -.629339069782E+03 .816667495780E+03 .630733305886E+02 -.629339069782E+03 .389959101496E+03 .389959101496E+03 -.389692078678E+04 .330982419074E-01 .330982419074E-01 .266287539252E-02 .283691770900E-01 .498551433602E+00 -.763130477700E-01 .498551433602E+00 .283691770900E-01 -.763130477700E-01 .248470674092E+00 .248470674092E+00 -.727183829809E-01 -.554188208462E-02 -.554188208462E-02 .155028969814E-01 -.139059280132E-02 -.139059280132E-02 .205524920906E-02 -.146398643442E-01 -.844287031863E-01 .165472784700E-01 -.844287031863E-01 -.146398643442E-01 .165472784700E-01 -.360688720459E-01 -.360688720459E-01 -.302927153659E-01 .503375903525E-03 .503375903525E-03 -.568056085662E-02 .160740032488E+04 .469247259251E+03 .776403673411E+03 -.110836289233E+04 -.183225334756E+00 -.252203254651E-01 -.170747969780E+01 .566815552809E+00 .121912809292E+00 -.391559218436E+03 -.391499763549E+03 -.866081522643E-02 -.576025371789E+02 -.386618118436E+02 -.385371002781E+03 .451008956860E+00 -.141538568381E-01 -.406432684679E+00 .183140356996E+00 -.667221914876E-01 .421279230206E-01 .214094035697E-01 -.306797475851E-01 .645324103128E-01 .678189394610E-01 -.778238968819E-01 -.574319796570E+00 .289766832800E+01 .234001191348E-01 -.871894362681E+00 .421527037113E+00 -.919602538879E-01 -.462378621512E+00 .685305297495E+00 -.215988933901E+00 -.203989990845E+00 .348205483981E-01 .425194018163E-01 -.164578031580E-01 .839516256845E-01 .944766164702E-01 .314076653350E+00 .160740032488E+04 .776403673411E+03 .566815552809E+00 -.170747969780E+01 .121912809292E+00 -.183225334756E+00 -.110836289233E+04 -.252203254651E-01 -.391499763549E+03 -.391559218436E+03 -.866081522643E-02 -.386618118436E+02 -.576025371789E+02 -.385371002781E+03 -.667221914876E-01 .183140356996E+00 .421279230206E-01 -.141538568381E-01 .451008956860E+00 -.406432684679E+00 -.306797475851E-01 .214094035697E-01 .645324103128E-01 -.778238968819E-01 .678189394610E-01 -.574319796570E+00 .234001191348E-01 .289766832800E+01 -.871894362681E+00 -.215988933901E+00 .685305297495E+00 -.203989990845E+00 -.919602538879E-01 .421527037113E+00 -.462378621512E+00 .425194018163E-01 .348205483981E-01 -.164578031580E-01 .944766164702E-01 .839516256845E-01 .314076653350E+00 .779653736193E+04 .793758339255E-01 .930565013344E-01 -.878157738450E+00 .930565013344E-01 .793758339255E-01 -.878157738450E+00 .866081522643E-02 .866081522643E-02 -.296702689882E+00 -.388459519994E+03 -.388459519994E+03 -.389761891682E+04 -.325255258420E+00 -.227142845980E-01 -.132896513362E-01 -.227142845980E-01 -.325255258420E+00 -.132896513362E-01 -.182640691743E+00 -.182640691743E+00 -.732764246768E-01 .527267615490E-02 .527267615490E-02 .112376443654E+00 -.223008566975E+00 -.223008566975E+00 .128487760690E+00 .352937653743E-01 -.415334468168E-01 .697438081018E-01 -.415334468168E-01 .352937653743E-01 .697438081018E-01 .111964705811E-01 .111964705811E-01 .138804992145E-01 -.136747312299E-01 -.136747312299E-01 -.597698576079E-01 .370486429427E+04 -.492682130318E+03 -.103371810281E+04 -.391910492886E+03 .391884624677E+03 .584442974627E-01 -.170747969780E+01 -.183225334756E+00 -.930565013344E-01 -.102042048081E+04 .931075394686E+02 .926148688275E+03 -.569130087103E+02 .387999949630E+02 .386539471694E+03 -.526067707489E-01 .232665391306E+00 -.277622955698E-01 -.920235315468E+01 .917568203939E+02 .838879750601E+02 -.589175195294E-02 .413314719396E+00 .849592101374E+00 .568140196518E+00 -.137338311492E+00 -.361100977509E+00 .447730405493E+01 .168613142401E+00 .121083254760E+01 .793484598516E-01 .835316829540E-01 .212445821676E+00 .559866444560E+00 -.154137217426E+00 .162958026777E+00 -.271407971854E+00 .221031558290E+00 -.383595516522E+00 .370486429427E+04 .103371810281E+04 .391884624677E+03 -.391910492886E+03 -.584442974627E-01 .566815552809E+00 -.110836289233E+04 -.793758339255E-01 .917568203939E+02 -.920235315468E+01 -.838879750601E+02 .387999949630E+02 -.569130087103E+02 -.386539471694E+03 .232665391306E+00 -.526067707489E-01 .277622955698E-01 .931075394686E+02 -.102042048081E+04 -.926148688275E+03 .413314719396E+00 -.589175195295E-02 -.849592101374E+00 -.154137217426E+00 .559866444560E+00 -.162958026777E+00 .168613142401E+00 .447730405493E+01 -.121083254760E+01 .835316829540E-01 .793484598516E-01 -.212445821676E+00 -.137338311492E+00 .568140196518E+00 .361100977509E+00 .221031558290E+00 -.271407971854E+00 .383595516522E+00 .107431240921E+05 -.584442974627E-01 .584442974627E-01 -.201005676101E+00 -.121912809292E+00 .252203254651E-01 -.878157738450E+00 .926188986068E+03 -.845176724321E+02 -.843804600358E+03 .389811925490E+03 -.389811925490E+03 -.389707535505E+04 .103225179382E+00 -.103225179382E+00 -.115568163674E-01 .845176724321E+02 -.926188986068E+03 -.843804600358E+03 .516548100051E-02 -.516548100051E-02 -.909790767006E-01 .411145301433E+00 -.317089312221E-01 -.125466534538E+00 .216071030769E+00 -.216071030769E+00 -.427843263755E-01 .110541041579E+00 -.110541041579E+00 -.308922661274E-01 .317089312221E-01 -.411145301433E+00 -.125466534538E+00 -.183012436263E-01 .183012436263E-01 .556576902885E-01 .370486429427E+04 -.492682130318E+03 .103371810281E+04 -.110836289233E+04 .566815552809E+00 -.793758339255E-01 -.920235315468E+01 .917568203939E+02 -.838879750601E+02 -.526067707489E-01 .232665391306E+00 .277622955698E-01 -.569130087103E+02 .387999949630E+02 -.386539471694E+03 -.102042048081E+04 .931075394686E+02 -.926148688275E+03 -.589175195294E-02 .413314719396E+00 -.849592101374E+00 .559866444560E+00 -.154137217426E+00 -.162958026777E+00 .793484598516E-01 .835316829540E-01 -.212445821676E+00 .447730405493E+01 .168613142401E+00 -.121083254760E+01 .568140196518E+00 -.137338311492E+00 .361100977509E+00 -.271407971854E+00 .221031558290E+00 .383595516522E+00 .370486429427E+04 -.103371810281E+04 -.183225334756E+00 -.170747969780E+01 -.930565013344E-01 .931075394686E+02 -.102042048081E+04 .926148688275E+03 .232665391306E+00 -.526067707489E-01 -.277622955698E-01 .387999949630E+02 -.569130087103E+02 .386539471694E+03 .917568203939E+02 -.920235315468E+01 .838879750601E+02 .413314719396E+00 -.589175195294E-02 .849592101374E+00 -.137338311492E+00 .568140196518E+00 -.361100977509E+00 .835316829540E-01 .793484598516E-01 .212445821676E+00 .168613142401E+00 .447730405493E+01 .121083254760E+01 -.154137217426E+00 .559866444560E+00 .162958026777E+00 .221031558290E+00 -.271407971854E+00 -.383595516522E+00 .107431240921E+05 .252203254651E-01 -.121912809292E+00 -.878157738450E+00 -.845176724321E+02 .926188986068E+03 -.843804600358E+03 -.103225179382E+00 .103225179382E+00 -.115568163674E-01 -.389811925490E+03 .389811925490E+03 -.389707535505E+04 -.926188986068E+03 .845176724321E+02 -.843804600358E+03 -.516548100051E-02 .516548100051E-02 -.909790767006E-01 -.317089312221E-01 .411145301433E+00 -.125466534538E+00 -.110541041579E+00 .110541041579E+00 -.308922661274E-01 -.216071030769E+00 .216071030769E+00 -.427843263755E-01 -.411145301433E+00 .317089312221E-01 -.125466534538E+00 .183012436263E-01 -.183012436263E-01 .556576902885E-01 .160740032488E+04 .469247259251E+03 -.776403673411E+03 .214094035697E-01 -.306797475851E-01 -.645324103128E-01 .183140356996E+00 -.667221914876E-01 -.421279230206E-01 .451008956860E+00 -.141538568381E-01 .406432684679E+00 -.576025371789E+02 -.386618118436E+02 .385371002781E+03 .678189394610E-01 -.778238968819E-01 .574319796570E+00 .348205483981E-01 .425194018163E-01 .164578031580E-01 .685305297495E+00 -.215988933901E+00 .203989990845E+00 .421527037113E+00 -.919602538879E-01 .462378621512E+00 .289766832800E+01 .234001191348E-01 .871894362681E+00 .839516256845E-01 .944766164702E-01 -.314076653350E+00 .160740032488E+04 -.776403673411E+03 -.306797475851E-01 .214094035697E-01 -.645324103128E-01 -.141538568381E-01 .451008956860E+00 .406432684679E+00 -.667221914876E-01 .183140356996E+00 -.421279230206E-01 -.386618118436E+02 -.576025371789E+02 .385371002781E+03 -.778238968819E-01 .678189394610E-01 .574319796570E+00 .425194018163E-01 .348205483981E-01 .164578031580E-01 -.919602538879E-01 .421527037113E+00 .462378621512E+00 -.215988933901E+00 .685305297495E+00 .203989990845E+00 .234001191348E-01 .289766832800E+01 .871894362681E+00 .944766164702E-01 .839516256845E-01 -.314076653350E+00 .779653736193E+04 .182640691743E+00 .182640691743E+00 -.732764246768E-01 .227142845980E-01 .325255258420E+00 -.132896513362E-01 .325255258420E+00 .227142845980E-01 -.132896513362E-01 .388459519994E+03 .388459519994E+03 -.389761891682E+04 -.527267615490E-02 -.527267615490E-02 .112376443654E+00 -.111964705811E-01 -.111964705811E-01 .138804992145E-01 .415334468168E-01 -.352937653743E-01 .697438081018E-01 -.352937653743E-01 .415334468168E-01 .697438081018E-01 .223008566975E+00 .223008566975E+00 .128487760690E+00 .136747312299E-01 .136747312299E-01 -.597698576079E-01 .433464670496E+04 .103751521888E+04 .106910064811E+04 -.133095772893E+04 -.133530622742E+01 -.481397589349E-01 -.181113816473E+01 .125533592971E+01 .960573911318E-01 -.521198486461E+00 -.154000228341E+01 -.197646475582E+00 -.941583821204E+03 -.938112676027E+03 .375201140882E-01 -.472244399725E+02 -.388124073677E+02 -.385387723769E+03 -.919992581379E+03 -.102357019609E+03 -.102161283274E+04 -.118759241165E+02 -.101138803777E+03 -.112779081877E+03 -.181416120890E+00 .100031039519E-01 .110102497417E+00 .111674596184E-01 -.152880175549E+01 -.230787017889E+01 .433464670496E+04 .106910064811E+04 .125533592971E+01 -.181113816473E+01 .960573911318E-01 -.133530622742E+01 -.133095772893E+04 -.481397589349E-01 -.154000228341E+01 -.521198486461E+00 -.197646475582E+00 -.938112676027E+03 -.941583821204E+03 .375201140882E-01 -.388124073677E+02 -.472244399725E+02 -.385387723769E+03 -.101138803777E+03 -.118759241165E+02 -.112779081877E+03 -.102357019609E+03 -.919992581379E+03 -.102161283274E+04 .100031039519E-01 -.181416120890E+00 .110102497417E+00 -.152880175549E+01 .111674596184E-01 -.230787017889E+01 .117613068234E+05 .530107749843E+00 .177772969249E+00 -.143166441142E+01 .177772969249E+00 .530107749843E+00 -.143166441142E+01 .197646475582E+00 .197646475582E+00 .100606030235E+01 .408509789742E+00 .408509789742E+00 -.419181577513E+01 -.390383098953E+03 -.390383098953E+03 -.389699142423E+04 -.102209752589E+04 -.113893354611E+03 -.113628808937E+04 -.113893354611E+03 -.102209752589E+04 -.113628808937E+04 .372215628675E-01 .372215628675E-01 -.765285554309E-01 -.471713590691E+00 -.471713590691E+00 -.391224497675E+00 .237432917688E+04 -.101659274383E+04 -.776648238226E+03 .159235310971E+00 .613513057280E+00 .593587129307E-01 -.181113816473E+01 -.133530622742E+01 -.177772969249E+00 -.941473432522E+03 .937915535811E+03 -.890922906857E-01 -.403486994089E+00 .781598616070E-01 .108710812344E+01 -.486371618885E+02 .381620662866E+02 .384763890956E+03 -.144843146097E+00 .341796677729E-01 -.171620134463E+00 .143585358717E+00 -.123432600687E+00 -.158027199863E+00 .482600920237E+00 .955785248415E+00 .162893922251E+01 .237432917688E+04 .776648238226E+03 .613513057280E+00 .159235310971E+00 -.593587129307E-01 .125533592971E+01 -.133095772893E+04 -.530107749843E+00 .937915535811E+03 -.941473432522E+03 .890922906857E-01 -.123432600687E+00 .143585358717E+00 .158027199863E+00 .381620662866E+02 -.486371618885E+02 -.384763890956E+03 .341796677729E-01 -.144843146097E+00 .171620134463E+00 .781598616070E-01 -.403486994089E+00 -.108710812344E+01 .955785248415E+00 .482600920237E+00 -.162893922251E+01 .780076687344E+04 -.593587129307E-01 .593587129307E-01 .110347111785E+01 -.960573911318E-01 .481397589349E-01 -.143166441142E+01 -.397308922864E+00 .397308922864E+00 -.455592713406E+01 .260267259172E+00 -.333221981957E-01 -.296088382069E-01 .389721320947E+03 -.389721320947E+03 -.389727024355E+04 .107970316290E-01 -.107970316290E-01 -.142525796422E+00 .333221981957E-01 -.260267259172E+00 -.296088382069E-01 .308417143812E+00 -.308417143812E+00 .217768219268E+00 .237432917688E+04 -.101659274383E+04 .776648238226E+03 -.133095772893E+04 .125533592971E+01 -.530107749843E+00 -.941473432521E+03 .937915535811E+03 .890922906857E-01 .143585358717E+00 -.123432600687E+00 .158027199863E+00 -.144843146097E+00 .341796677729E-01 .171620134463E+00 -.486371618885E+02 .381620662866E+02 -.384763890956E+03 -.403486994089E+00 .781598616070E-01 -.108710812344E+01 .482600920237E+00 .955785248415E+00 -.162893922251E+01 .237432917688E+04 -.776648238226E+03 -.133530622742E+01 -.181113816473E+01 -.177772969249E+00 .937915535811E+03 -.941473432522E+03 -.890922906857E-01 .781598616070E-01 -.403486994089E+00 .108710812344E+01 .341796677729E-01 -.144843146097E+00 -.171620134463E+00 .381620662866E+02 -.486371618885E+02 .384763890956E+03 -.123432600687E+00 .143585358717E+00 -.158027199863E+00 .955785248415E+00 .482600920237E+00 .162893922251E+01 .780076687344E+04 .481397589349E-01 -.960573911318E-01 -.143166441142E+01 .397308922864E+00 -.397308922864E+00 -.455592713406E+01 -.333221981957E-01 .260267259172E+00 -.296088382069E-01 -.107970316290E-01 .107970316290E-01 -.142525796422E+00 -.389721320947E+03 .389721320947E+03 -.389727024355E+04 -.260267259172E+00 .333221981957E-01 -.296088382069E-01 -.308417143812E+00 .308417143812E+00 .217768219268E+00 .433464670496E+04 .103751521888E+04 -.106910064811E+04 -.941583821204E+03 -.938112676027E+03 -.375201140882E-01 -.181416120890E+00 .100031039519E-01 -.110102497417E+00 -.118759241165E+02 -.101138803777E+03 .112779081877E+03 -.919992581379E+03 -.102357019609E+03 .102161283274E+04 -.472244399725E+02 -.388124073677E+02 .385387723769E+03 .111674596184E-01 -.152880175549E+01 .230787017889E+01 .433464670496E+04 -.106910064811E+04 -.938112676027E+03 -.941583821204E+03 -.375201140882E-01 .100031039519E-01 -.181416120890E+00 -.110102497417E+00 -.102357019609E+03 -.919992581379E+03 .102161283274E+04 -.101138803777E+03 -.118759241165E+02 .112779081877E+03 -.388124073677E+02 -.472244399725E+02 .385387723769E+03 -.152880175549E+01 .111674596184E-01 .230787017889E+01 .117613068234E+05 -.408509789742E+00 -.408509789742E+00 -.419181577513E+01 -.372215628675E-01 -.372215628675E-01 -.765285554309E-01 .113893354611E+03 .102209752589E+04 -.113628808937E+04 .102209752589E+04 .113893354611E+03 -.113628808937E+04 .390383098953E+03 .390383098953E+03 -.389699142423E+04 .471713590691E+00 .471713590691E+00 -.391224497675E+00 .376774079053E+04 -.373350110155E+00 .841513613499E-15 .398146644976E-01 -.284579723728E+00 .484503946499E+00 -.133141762649E-01 .446446089157E+00 -.583477037160E+00 -.133141762649E-01 .446446089157E+00 .583477037160E+00 .398146644976E-01 -.284579723728E+00 -.484503946499E+00 -.173200926299E+01 -.154003620171E-02 -.632833301564E-15 .376774079053E+04 .237768516211E-14 -.284579723728E+00 .398146644976E-01 .484503946499E+00 .446446089157E+00 -.133141762649E-01 .583477037160E+00 .446446089157E+00 -.133141762649E-01 -.583477037160E+00 -.284579723728E+00 .398146644976E-01 -.484503946499E+00 -.154003620171E-02 -.173200926299E+01 .202580626125E-14 .134712595803E+04 .346281295032E+00 .346281295032E+00 -.168907881406E+00 -.585218592733E+00 .585218592733E+00 -.518555309749E+00 .585218592733E+00 -.585218592733E+00 -.518555309749E+00 -.346281295032E+00 -.346281295032E+00 -.168907881406E+00 -.890424439155E-16 -.873227796243E-15 -.132828938889E+04 .271438465285E+04 .121108863502E+04 .386240223006E+03 -.149265101474E+04 -.824387674454E+00 .191922017641E+01 -.449152519571E-01 .803842869121E+00 -.243475062280E+00 .466903253623E+00 -.647138692315E+00 -.358846399999E+00 -.117773500149E+04 -.117114929353E+04 .209744094838E+01 .271438465285E+04 .386240223006E+03 .803842869121E+00 -.449152519571E-01 -.243475062280E+00 -.824387674454E+00 -.149265101474E+04 .191922017641E+01 -.647138692315E+00 .466903253623E+00 -.358846399999E+00 -.117114929353E+04 -.117773500149E+04 .209744094838E+01 .390877653011E+04 -.122161571309E+01 -.316825893836E-01 -.240272581560E+01 -.316825893836E-01 -.122161571309E+01 -.240272581560E+01 .358846399999E+00 .358846399999E+00 .218801579638E+01 -.463774472615E+00 -.463774472615E+00 -.872164127777E+01 .364658682098E+04 -.100674575620E+04 .521724247294E+03 .413395018471E+00 .831818839715E+00 .296378290612E+00 -.449152519571E-01 -.824387674454E+00 .316825893836E-01 -.117833958111E+04 .117079264808E+04 -.196467554794E+01 .364658682098E+04 -.521724247294E+03 .831818839715E+00 .413395018471E+00 -.296378290612E+00 .803842869121E+00 -.149265101474E+04 .122161571309E+01 .117079264808E+04 -.117833958111E+04 .196467554794E+01 .618167593291E+04 -.296378290612E+00 .296378290612E+00 .206730281500E+01 .243475062280E+00 -.191922017641E+01 -.240272581560E+01 .242306217035E+00 -.242306217035E+00 -.849838779174E+01 .364658682098E+04 -.100674575620E+04 -.521724247294E+03 -.149265101474E+04 .803842869121E+00 .122161571309E+01 -.117833958111E+04 .117079264808E+04 .196467554794E+01 .364658682098E+04 .521724247294E+03 -.824387674454E+00 -.449152519571E-01 .316825893836E-01 .117079264808E+04 -.117833958111E+04 -.196467554794E+01 .618167593291E+04 -.191922017641E+01 .243475062280E+00 -.240272581560E+01 -.242306217035E+00 .242306217035E+00 -.849838779174E+01 .271438465285E+04 .121108863502E+04 -.386240223006E+03 -.117773500149E+04 -.117114929353E+04 -.209744094838E+01 .271438465285E+04 -.386240223006E+03 -.117114929353E+04 -.117773500149E+04 -.209744094838E+01 .390877653011E+04 .463774472615E+00 .463774472615E+00 -.872164127777E+01 .471321117496E+04 .140760956298E+01 -.145663588380E-14 .471321117496E+04 -.314819010658E-14 .136307691486E+04 SuiteSparse/CHOLMOD/Demo/Matrix/bcsstk02.tri0000644001170100242450000031315710276252463017360 0ustar davisfac% title:1SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED % key: BCSSTK02 66 66 2211 -1 1 1 0.199033328611999991E+004 2 1 0.567912179917999993E+003 3 1 0.775783614406999959E+003 4 1 -0.138679660287999991E+004 5 1 -0.267855231528000004E+000 6 1 -0.466904253459999974E+000 7 1 -0.113047743071000006E+001 8 1 0.392057789928999978E+000 9 1 0.262199288534999998E-001 10 1 -0.490288435493000009E+003 11 1 -0.490205061885000021E+003 12 1 0.251002521432000004E-001 13 1 -0.594381129068000007E+002 14 1 -0.386059428873000030E+002 15 1 -0.385480753830000026E+003 16 1 0.466086025541999974E-001 17 1 -0.746500484850999985E-001 18 1 -0.649846203785999998E+000 19 1 0.154605192036000011E+000 20 1 0.447455376660000001E-001 21 1 0.143035540049000001E-001 22 1 -0.215970091929999983E-001 23 1 -0.136564053576999994E+000 24 1 -0.225765832174000008E+000 25 1 0.506186064182000006E+001 26 1 -0.115020080201000005E+000 27 1 -0.606936940259000024E+000 28 1 0.421740467943999997E+000 29 1 -0.787629069630999962E-001 30 1 -0.640284219558999945E+000 31 1 0.583362672080000033E+000 32 1 -0.146798122913999990E+000 33 1 -0.871746664017000045E-001 34 1 -0.304465542656000010E-001 35 1 0.205194916563000013E-002 36 1 0.243121071599999988E-001 37 1 -0.120472833015000003E+001 38 1 0.507082671607000032E-001 39 1 0.179963620797000012E+000 40 1 -0.212498956591999993E+000 41 1 -0.346642870539999983E-002 42 1 -0.526654610775000032E-001 43 1 -0.754533265616000037E-001 44 1 -0.248232630013999998E-001 45 1 0.108515475811999992E-001 46 1 -0.125118931755999994E-001 47 1 0.729970999189999969E-001 48 1 0.242525155573000001E-001 49 1 0.162954538439999998E-001 50 1 0.161020356063000004E-001 51 1 -0.204115183559000005E-001 52 1 0.124350728724000006E+000 53 1 0.170460112114999994E-004 54 1 -0.389694574712999980E-001 55 1 0.538813622136999973E-001 56 1 -0.468957621809999985E-002 57 1 -0.116852063762999999E-001 58 1 0.292282258829999995E-001 59 1 -0.201849310450999998E-001 60 1 -0.931350858769999963E-002 61 1 0.108271891897999996E-001 62 1 -0.134893178973000006E-001 63 1 -0.188099331881999999E-002 64 1 0.488975644646000036E-002 65 1 0.122115404646000007E-001 66 1 0.116594521197000006E-001 2 2 0.199033328611999991E+004 3 2 0.775783614406999959E+003 4 2 0.392057789928999978E+000 5 2 -0.113047743071000006E+001 6 2 0.262199288534999998E-001 7 2 -0.267855231528000004E+000 8 2 -0.138679660287999991E+004 9 2 -0.466904253459999974E+000 10 2 -0.490205061885000021E+003 11 2 -0.490288435493000009E+003 12 2 0.251002521432000004E-001 13 2 -0.386059428873000030E+002 14 2 -0.594381129068000007E+002 15 2 -0.385480753830000026E+003 16 2 0.447455376660000001E-001 17 2 0.154605192036000011E+000 18 2 0.143035540049000001E-001 19 2 -0.746500484850999985E-001 20 2 0.466086025541999974E-001 21 2 -0.649846203785999998E+000 22 2 -0.136564053576999994E+000 23 2 -0.215970091929999983E-001 24 2 -0.225765832174000008E+000 25 2 -0.115020080201000005E+000 26 2 0.506186064182000006E+001 27 2 -0.606936940259000024E+000 28 2 -0.146798122913999990E+000 29 2 0.583362672080000033E+000 30 2 -0.871746664017000045E-001 31 2 -0.787629069630999962E-001 32 2 0.421740467943999997E+000 33 2 -0.640284219558999945E+000 34 2 0.205194916563000013E-002 35 2 -0.304465542656000010E-001 36 2 0.243121071599999988E-001 37 2 0.507082671607000032E-001 38 2 -0.120472833015000003E+001 39 2 0.179963620797000012E+000 40 2 -0.248232630013999998E-001 41 2 -0.754533265616000037E-001 42 2 0.108515475811999992E-001 43 2 -0.346642870539999983E-002 44 2 -0.212498956591999993E+000 45 2 -0.526654610775000032E-001 46 2 0.729970999189999969E-001 47 2 -0.125118931755999994E-001 48 2 0.242525155573000001E-001 49 2 0.161020356063000004E-001 50 2 0.162954538438999999E-001 51 2 -0.204115183559000005E-001 52 2 0.170460112113999987E-004 53 2 0.124350728724000006E+000 54 2 -0.389694574712999980E-001 55 2 -0.201849310450999998E-001 56 2 0.292282258829999995E-001 57 2 -0.931350858769999963E-002 58 2 -0.468957621809999985E-002 59 2 0.538813622136999973E-001 60 2 -0.116852063762999999E-001 61 2 -0.134893178973000006E-001 62 2 0.108271891897999996E-001 63 2 -0.188099331881999999E-002 64 2 0.122115404646000007E-001 65 2 0.488975644646000036E-002 66 2 0.116594521197000006E-001 3 3 0.779706720210999993E+004 4 3 -0.531350053920999973E-001 5 3 -0.304815582790999998E-002 6 3 -0.102514122659999996E+001 7 3 -0.304815582790999998E-002 8 3 -0.531350053920999973E-001 9 3 -0.102514122659999996E+001 10 3 -0.251002521432000004E-001 11 3 -0.251002521432000004E-001 12 3 -0.326660475218999991E+000 13 3 -0.388557261792000020E+003 14 3 -0.388557261792000020E+003 15 3 -0.389753122733000009E+004 16 3 -0.553345735536999950E+000 17 3 -0.272280415411999994E-001 18 3 -0.207460439442000016E-001 19 3 -0.272280415411999994E-001 20 3 -0.553345735536999950E+000 21 3 -0.207460439442000016E-001 22 3 -0.237089205144000004E+000 23 3 -0.237089205144000004E+000 24 3 -0.465557198793999996E-001 25 3 -0.337237916819000005E+000 26 3 -0.337237916819000005E+000 27 3 0.797039821775999968E-001 28 3 0.110987283377000007E+000 29 3 -0.277103782967999986E-001 30 3 0.744259789852999981E-001 31 3 -0.277103782967999986E-001 32 3 0.110987283377000007E+000 33 3 0.744259789852999981E-001 34 3 0.372260199966999994E-001 35 3 0.372260199966999994E-001 36 3 0.552772870228999957E-002 37 3 0.764975709273000015E-001 38 3 0.764975709273000015E-001 39 3 -0.308651363971000001E-001 40 3 -0.553495598994000002E-002 41 3 0.236738986005000009E-002 42 3 0.617619299493000004E-004 43 3 0.236738986005000009E-002 44 3 -0.553495598994000002E-002 45 3 0.617619299494000045E-004 46 3 -0.152097225824999998E-001 47 3 -0.152097225824999998E-001 48 3 -0.637743728028000029E-002 49 3 -0.155356112469000004E-002 50 3 -0.155356112469000004E-002 51 3 0.410435985583999970E-002 52 3 -0.778483588071999990E-002 53 3 -0.778483588071999990E-002 54 3 0.455578911454999989E-002 55 3 0.131964562545999991E-002 56 3 -0.105151485223000003E-002 57 3 0.249639661440000018E-002 58 3 -0.105151485223000003E-002 59 3 0.131964562545999991E-002 60 3 0.249639661440000018E-002 61 3 0.126121651997999993E-002 62 3 0.126121651997999993E-002 63 3 0.995692628652000093E-003 64 3 -0.103177119526999994E-002 65 3 -0.103177119526999994E-002 66 3 -0.220183612318999985E-002 4 4 0.306065236876000017E+004 5 4 -0.710327114800999993E+003 6 4 -0.153301303415999996E+004 7 4 -0.490356250557999999E+003 8 4 0.490311737127000015E+003 9 4 0.504023053961000014E-001 10 4 -0.113047743071000006E+001 11 4 -0.267855231528000004E+000 12 4 0.304815582790999998E-002 13 4 -0.106600598282999999E+004 14 4 0.714179836927000053E+002 15 4 0.710379369312999984E+003 16 4 -0.585566581604999996E+002 17 4 0.386300510423000034E+002 18 4 0.386582196590000024E+003 19 4 -0.274214146462000014E-001 20 4 0.249666288014999987E+000 21 4 0.360423080018999975E+000 22 4 -0.537810772603999965E+001 23 4 0.705225867677000053E+002 24 4 0.471605767174999997E+002 25 4 0.248145204774000011E+000 26 4 -0.100584581771999998E+000 27 4 -0.920349214382999992E-001 28 4 0.656900522629999983E+001 29 4 0.264895220167000012E+000 30 4 0.100507743978999997E+001 31 4 -0.738640835818999975E-001 32 4 0.306411778813000024E+000 33 4 0.114550842161999997E+000 34 4 0.411470007538000004E+000 35 4 -0.773717958629999971E-003 36 4 0.549392153396000005E-001 37 4 -0.181381742796000001E+000 38 4 -0.548261890873999978E-002 39 4 -0.154083378831000012E+000 40 4 -0.109650972517000000E+001 41 4 -0.469509373019999995E-001 42 4 -0.160836422548000013E+000 43 4 -0.140005255790000005E-001 44 4 -0.455285453152000016E-001 45 4 -0.651006846877999999E-002 46 4 -0.184546987871999996E+000 47 4 -0.828652174830000060E-001 48 4 -0.353680584512000018E-001 49 4 -0.100962570566999997E-001 50 4 0.279679975636000014E-001 51 4 0.294306684201000000E-001 52 4 0.469961812923999980E-001 53 4 -0.341711688383999988E-002 54 4 -0.226327177363000002E-001 55 4 0.176759074345999995E+000 56 4 0.183093875259000005E-001 57 4 0.372450942249999972E-001 58 4 0.523550343045000015E-002 59 4 0.144877708742999992E-001 60 4 0.141998602399000008E-001 61 4 0.389265774118999971E-001 62 4 -0.169268924454000005E-001 63 4 0.836760501901000035E-002 64 4 -0.188819257887999983E-001 65 4 0.186253545948000011E-001 66 4 -0.128915968855999995E-001 5 5 0.306065236876000017E+004 6 5 0.153301303415999996E+004 7 5 0.490311737127000015E+003 8 5 -0.490356250557999999E+003 9 5 -0.504023053961000014E-001 10 5 0.392057789928999978E+000 11 5 -0.138679660287999991E+004 12 5 0.531350053920999973E-001 13 5 0.705225867677000053E+002 14 5 -0.537810772603999965E+001 15 5 -0.471605767174999997E+002 16 5 0.386300510423000034E+002 17 5 -0.585566581604999996E+002 18 5 -0.386582196590000024E+003 19 5 0.249666288014999987E+000 20 5 -0.274214146462000014E-001 21 5 -0.360423080018999975E+000 22 5 0.714179836927000053E+002 23 5 -0.106600598282999999E+004 24 5 -0.710379369312999984E+003 25 5 -0.773717958629000012E-003 26 5 0.411470007538000004E+000 27 5 -0.549392153396000005E-001 28 5 0.264895220167000012E+000 29 5 0.656900522629999983E+001 30 5 -0.100507743978999997E+001 31 5 0.306411778813000024E+000 32 5 -0.738640835818999975E-001 33 5 -0.114550842161999997E+000 34 5 -0.100584581771999998E+000 35 5 0.248145204774000011E+000 36 5 0.920349214382999992E-001 37 5 -0.828652174830000060E-001 38 5 -0.184546987871999996E+000 39 5 0.353680584512000018E-001 40 5 -0.469509373019999995E-001 41 5 -0.109650972517000000E+001 42 5 0.160836422548000013E+000 43 5 -0.455285453152000016E-001 44 5 -0.140005255790000005E-001 45 5 0.651006846877999999E-002 46 5 -0.548261890873999978E-002 47 5 -0.181381742796000001E+000 48 5 0.154083378831000012E+000 49 5 0.279679975636000014E-001 50 5 -0.100962570566999997E-001 51 5 -0.294306684201000000E-001 52 5 -0.169268924454000005E-001 53 5 0.389265774118999971E-001 54 5 -0.836760501901000035E-002 55 5 0.183093875259000005E-001 56 5 0.176759074345999995E+000 57 5 -0.372450942249999972E-001 58 5 0.144877708742999992E-001 59 5 0.523550343045000015E-002 60 5 -0.141998602399000008E-001 61 5 -0.341711688383999988E-002 62 5 0.469961812923999980E-001 63 5 0.226327177363000002E-001 64 5 0.186253545948000011E-001 65 5 -0.188819257887999983E-001 66 5 0.128915968855999995E-001 6 6 0.874603353907999917E+004 7 6 -0.504023053961000014E-001 8 6 0.504023053961000014E-001 9 6 -0.234860920887000002E+000 10 6 -0.262199288534999998E-001 11 6 0.466904253459999974E+000 12 6 -0.102514122659999996E+001 13 6 0.710389335138999968E+003 14 6 -0.474760020004000012E+002 15 6 -0.474485382162000008E+003 16 6 0.389148183429000028E+003 17 6 -0.389148183429000028E+003 18 6 -0.389723119884000016E+004 19 6 0.164120824333999993E+000 20 6 -0.164120824333999993E+000 21 6 -0.505008290142000028E-002 22 6 0.474760020004000012E+002 23 6 -0.710389335138999968E+003 24 6 -0.474485382162000008E+003 25 6 0.460779130702999973E+000 26 6 -0.404939072344999984E-001 27 6 -0.532046305311000001E-001 28 6 0.380073564209999992E+000 29 6 -0.380073564209999992E+000 30 6 -0.646569642270999976E-002 31 6 0.773420041894999979E-002 32 6 -0.773420041894999979E-002 33 6 0.105140076629999992E-001 34 6 0.404939072344999984E-001 35 6 -0.460779130702999973E+000 36 6 -0.532046305311000001E-001 37 6 -0.117741340198999997E+000 38 6 0.161032743625999994E-001 39 6 0.676233391862000009E-002 40 6 -0.742279746884000058E-001 41 6 0.742279746884000058E-001 42 6 -0.264453981115999985E-001 43 6 0.311766628820000016E-002 44 6 -0.311766628820000016E-002 45 6 -0.529239616012999975E-003 46 6 -0.161032743625999994E-001 47 6 0.117741340198999997E+000 48 6 0.676233391862000009E-002 49 6 -0.185283900706999997E-002 50 6 0.185283900706999997E-002 51 6 -0.119448580304000002E-003 52 6 0.154432749250000001E-001 53 6 -0.305094512396000004E-002 54 6 -0.441524143328999967E-002 55 6 0.136510977669999992E-001 56 6 -0.136510977669999992E-001 57 6 0.200576758031000002E-002 58 6 0.300295481196999987E-002 59 6 -0.300295481196999987E-002 60 6 0.356930287363999986E-003 61 6 0.305094512396000004E-002 62 6 -0.154432749250000001E-001 63 6 -0.441524143328999967E-002 64 6 -0.248794897527999980E-002 65 6 0.248794897527999980E-002 66 6 0.528505208290999976E-003 7 7 0.306065236876000017E+004 8 7 -0.710327114800999993E+003 9 7 0.153301303415999996E+004 10 7 -0.138679660287999991E+004 11 7 0.392057789928999978E+000 12 7 0.531350053920999973E-001 13 7 -0.537810772603999965E+001 14 7 0.705225867677000053E+002 15 7 -0.471605767174999997E+002 16 7 -0.274214146462000014E-001 17 7 0.249666288014999987E+000 18 7 -0.360423080018999975E+000 19 7 -0.585566581604999996E+002 20 7 0.386300510423000034E+002 21 7 -0.386582196590000024E+003 22 7 -0.106600598282999999E+004 23 7 0.714179836927000053E+002 24 7 -0.710379369312999984E+003 25 7 0.411470007538000004E+000 26 7 -0.773717958624999956E-003 27 7 -0.549392153396000005E-001 28 7 -0.738640835818999975E-001 29 7 0.306411778813000024E+000 30 7 -0.114550842161999997E+000 31 7 0.656900522629999983E+001 32 7 0.264895220167000012E+000 33 7 -0.100507743978999997E+001 34 7 0.248145204774000011E+000 35 7 -0.100584581771999998E+000 36 7 0.920349214382999992E-001 37 7 -0.184546987871999996E+000 38 7 -0.828652174830000060E-001 39 7 0.353680584512000018E-001 40 7 -0.140005255790000005E-001 41 7 -0.455285453152000016E-001 42 7 0.651006846877999999E-002 43 7 -0.109650972517000000E+001 44 7 -0.469509373019999995E-001 45 7 0.160836422548000013E+000 46 7 -0.181381742796000001E+000 47 7 -0.548261890873999978E-002 48 7 0.154083378831000012E+000 49 7 -0.100962570566999997E-001 50 7 0.279679975636000014E-001 51 7 -0.294306684201000000E-001 52 7 0.389265774118999971E-001 53 7 -0.169268924454000005E-001 54 7 -0.836760501901000035E-002 55 7 0.523550343045000015E-002 56 7 0.144877708742999992E-001 57 7 -0.141998602399000008E-001 58 7 0.176759074345999995E+000 59 7 0.183093875259000005E-001 60 7 -0.372450942249999972E-001 61 7 0.469961812923999980E-001 62 7 -0.341711688383999988E-002 63 7 0.226327177363000002E-001 64 7 -0.188819257887999983E-001 65 7 0.186253545948000011E-001 66 7 0.128915968855999995E-001 8 8 0.306065236876000017E+004 9 8 -0.153301303415999996E+004 10 8 -0.267855231528000004E+000 11 8 -0.113047743071000006E+001 12 8 0.304815582790999998E-002 13 8 0.714179836927000053E+002 14 8 -0.106600598282999999E+004 15 8 0.710379369312999984E+003 16 8 0.249666288014999987E+000 17 8 -0.274214146462000014E-001 18 8 0.360423080018999975E+000 19 8 0.386300510423000034E+002 20 8 -0.585566581604999996E+002 21 8 0.386582196590000024E+003 22 8 0.705225867677000053E+002 23 8 -0.537810772603999965E+001 24 8 0.471605767174999997E+002 25 8 -0.100584581771999998E+000 26 8 0.248145204774000011E+000 27 8 -0.920349214382999992E-001 28 8 0.306411778813000024E+000 29 8 -0.738640835818999975E-001 30 8 0.114550842161999997E+000 31 8 0.264895220167000012E+000 32 8 0.656900522629999983E+001 33 8 0.100507743978999997E+001 34 8 -0.773717958628000052E-003 35 8 0.411470007538000004E+000 36 8 0.549392153396000005E-001 37 8 -0.548261890873999978E-002 38 8 -0.181381742796000001E+000 39 8 -0.154083378831000012E+000 40 8 -0.455285453152000016E-001 41 8 -0.140005255790000005E-001 42 8 -0.651006846877999999E-002 43 8 -0.469509373019999995E-001 44 8 -0.109650972517000000E+001 45 8 -0.160836422548000013E+000 46 8 -0.828652174830000060E-001 47 8 -0.184546987871999996E+000 48 8 -0.353680584512000018E-001 49 8 0.279679975636000014E-001 50 8 -0.100962570566999997E-001 51 8 0.294306684201000000E-001 52 8 -0.341711688383999988E-002 53 8 0.469961812923999980E-001 54 8 -0.226327177363000002E-001 55 8 0.144877708742999992E-001 56 8 0.523550343045000015E-002 57 8 0.141998602399000008E-001 58 8 0.183093875259000005E-001 59 8 0.176759074345999995E+000 60 8 0.372450942249999972E-001 61 8 -0.169268924454000005E-001 62 8 0.389265774118999971E-001 63 8 0.836760501901000035E-002 64 8 0.186253545948000011E-001 65 8 -0.188819257887999983E-001 66 8 -0.128915968855999995E-001 9 9 0.874603353907999917E+004 10 9 0.466904253459999974E+000 11 9 -0.262199288534999998E-001 12 9 -0.102514122659999996E+001 13 9 -0.474760020004000012E+002 14 9 0.710389335138999968E+003 15 9 -0.474485382162000008E+003 16 9 -0.164120824333999993E+000 17 9 0.164120824333999993E+000 18 9 -0.505008290142000028E-002 19 9 -0.389148183429000028E+003 20 9 0.389148183429000028E+003 21 9 -0.389723119884000016E+004 22 9 -0.710389335138999968E+003 23 9 0.474760020004000012E+002 24 9 -0.474485382162000008E+003 25 9 -0.404939072344999984E-001 26 9 0.460779130702999973E+000 27 9 -0.532046305311000001E-001 28 9 -0.773420041894999979E-002 29 9 0.773420041894999979E-002 30 9 0.105140076629999992E-001 31 9 -0.380073564209999992E+000 32 9 0.380073564209999992E+000 33 9 -0.646569642270999976E-002 34 9 -0.460779130702999973E+000 35 9 0.404939072344999984E-001 36 9 -0.532046305311000001E-001 37 9 0.161032743625999994E-001 38 9 -0.117741340198999997E+000 39 9 0.676233391862000009E-002 40 9 -0.311766628820000016E-002 41 9 0.311766628820000016E-002 42 9 -0.529239616012999975E-003 43 9 0.742279746884000058E-001 44 9 -0.742279746884000058E-001 45 9 -0.264453981115999985E-001 46 9 0.117741340198999997E+000 47 9 -0.161032743625999994E-001 48 9 0.676233391862000009E-002 49 9 0.185283900706999997E-002 50 9 -0.185283900706999997E-002 51 9 -0.119448580304000002E-003 52 9 -0.305094512396000004E-002 53 9 0.154432749250000001E-001 54 9 -0.441524143328999967E-002 55 9 -0.300295481196999987E-002 56 9 0.300295481196999987E-002 57 9 0.356930287363999986E-003 58 9 -0.136510977669999992E-001 59 9 0.136510977669999992E-001 60 9 0.200576758031000002E-002 61 9 -0.154432749250000001E-001 62 9 0.305094512396000004E-002 63 9 -0.441524143328999967E-002 64 9 0.248794897527999980E-002 65 9 -0.248794897527999980E-002 66 9 0.528505208290999976E-003 10 10 0.199033328611999991E+004 11 10 0.567912179917999993E+003 12 10 -0.775783614406999959E+003 13 10 -0.215970091929999983E-001 14 10 -0.136564053576999994E+000 15 10 0.225765832174000008E+000 16 10 0.154605192036000011E+000 17 10 0.447455376660000001E-001 18 10 -0.143035540049000001E-001 19 10 0.466086025541999974E-001 20 10 -0.746500484850999985E-001 21 10 0.649846203785999998E+000 22 10 -0.594381129068000007E+002 23 10 -0.386059428873000030E+002 24 10 0.385480753830000026E+003 25 10 -0.304465542656000010E-001 26 10 0.205194916563000013E-002 27 10 -0.243121071599999988E-001 28 10 0.583362672080000033E+000 29 10 -0.146798122913999990E+000 30 10 0.871746664017000045E-001 31 10 0.421740467943999997E+000 32 10 -0.787629069630999962E-001 33 10 0.640284219558999945E+000 34 10 0.506186064182000006E+001 35 10 -0.115020080201000005E+000 36 10 0.606936940259000024E+000 37 10 -0.125118931755999994E-001 38 10 0.729970999189999969E-001 39 10 -0.242525155573000001E-001 40 10 -0.754533265616000037E-001 41 10 -0.248232630013999998E-001 42 10 -0.108515475811999992E-001 43 10 -0.212498956591999993E+000 44 10 -0.346642870539999983E-002 45 10 0.526654610775000032E-001 46 10 -0.120472833015000003E+001 47 10 0.507082671607000032E-001 48 10 -0.179963620797000012E+000 49 10 0.162954538438999999E-001 50 10 0.161020356063000004E-001 51 10 0.204115183559000005E-001 52 10 0.108271891897999996E-001 53 10 -0.134893178973000006E-001 54 10 0.188099331881999999E-002 55 10 0.292282258829999995E-001 56 10 -0.201849310450999998E-001 57 10 0.931350858769999963E-002 58 10 0.538813622136999973E-001 59 10 -0.468957621809999985E-002 60 10 0.116852063762999999E-001 61 10 0.124350728724000006E+000 62 10 0.170460112114999994E-004 63 10 0.389694574712999980E-001 64 10 0.488975644646000036E-002 65 10 0.122115404646000007E-001 66 10 -0.116594521196000007E-001 11 11 0.199033328611999991E+004 12 11 -0.775783614406999959E+003 13 11 -0.136564053576999994E+000 14 11 -0.215970091929999983E-001 15 11 0.225765832174000008E+000 16 11 -0.746500484850999985E-001 17 11 0.466086025541999974E-001 18 11 0.649846203785999998E+000 19 11 0.447455376660000001E-001 20 11 0.154605192036000011E+000 21 11 -0.143035540049000001E-001 22 11 -0.386059428873000030E+002 23 11 -0.594381129068000007E+002 24 11 0.385480753830000026E+003 25 11 0.205194916563000013E-002 26 11 -0.304465542656000010E-001 27 11 -0.243121071599999988E-001 28 11 -0.787629069630999962E-001 29 11 0.421740467943999997E+000 30 11 0.640284219558999945E+000 31 11 -0.146798122913999990E+000 32 11 0.583362672080000033E+000 33 11 0.871746664017000045E-001 34 11 -0.115020080201000005E+000 35 11 0.506186064182000006E+001 36 11 0.606936940259000024E+000 37 11 0.729970999189999969E-001 38 11 -0.125118931755999994E-001 39 11 -0.242525155573000001E-001 40 11 -0.346642870539999983E-002 41 11 -0.212498956591999993E+000 42 11 0.526654610775000032E-001 43 11 -0.248232630013999998E-001 44 11 -0.754533265616000037E-001 45 11 -0.108515475811999992E-001 46 11 0.507082671607000032E-001 47 11 -0.120472833015000003E+001 48 11 -0.179963620797000012E+000 49 11 0.161020356063000004E-001 50 11 0.162954538438999999E-001 51 11 0.204115183559000005E-001 52 11 -0.134893178973000006E-001 53 11 0.108271891897999996E-001 54 11 0.188099331881999999E-002 55 11 -0.468957621809999985E-002 56 11 0.538813622136999973E-001 57 11 0.116852063762999999E-001 58 11 -0.201849310450999998E-001 59 11 0.292282258829999995E-001 60 11 0.931350858769999963E-002 61 11 0.170460112110999999E-004 62 11 0.124350728724000006E+000 63 11 0.389694574712999980E-001 64 11 0.122115404646000007E-001 65 11 0.488975644646000036E-002 66 11 -0.116594521197000006E-001 12 12 0.779706720210999993E+004 13 12 0.237089205144000004E+000 14 12 0.237089205144000004E+000 15 12 -0.465557198793999996E-001 16 12 0.272280415411999994E-001 17 12 0.553345735536999950E+000 18 12 -0.207460439442000016E-001 19 12 0.553345735536999950E+000 20 12 0.272280415411999994E-001 21 12 -0.207460439442000016E-001 22 12 0.388557261792000020E+003 23 12 0.388557261792000020E+003 24 12 -0.389753122733000009E+004 25 12 -0.372260199966999994E-001 26 12 -0.372260199966999994E-001 27 12 0.552772870228999957E-002 28 12 0.277103782967999986E-001 29 12 -0.110987283377000007E+000 30 12 0.744259789852999981E-001 31 12 -0.110987283377000007E+000 32 12 0.277103782967999986E-001 33 12 0.744259789852999981E-001 34 12 0.337237916819000005E+000 35 12 0.337237916819000005E+000 36 12 0.797039821775999968E-001 37 12 0.152097225824999998E-001 38 12 0.152097225824999998E-001 39 12 -0.637743728028000029E-002 40 12 -0.236738986005000009E-002 41 12 0.553495598994000002E-002 42 12 0.617619299493000004E-004 43 12 0.553495598994000002E-002 44 12 -0.236738986005000009E-002 45 12 0.617619299493000004E-004 46 12 -0.764975709273000015E-001 47 12 -0.764975709273000015E-001 48 12 -0.308651363971000001E-001 49 12 0.155356112469000004E-002 50 12 0.155356112469000004E-002 51 12 0.410435985583999970E-002 52 12 -0.126121651997999993E-002 53 12 -0.126121651997999993E-002 54 12 0.995692628652000093E-003 55 12 0.105151485223000003E-002 56 12 -0.131964562545999991E-002 57 12 0.249639661440000018E-002 58 12 -0.131964562545999991E-002 59 12 0.105151485223000003E-002 60 12 0.249639661440000018E-002 61 12 0.778483588071999990E-002 62 12 0.778483588071999990E-002 63 12 0.455578911454999989E-002 64 12 0.103177119526999994E-002 65 12 0.103177119526999994E-002 66 12 -0.220183612318999985E-002 13 13 0.439202631140999983E+004 14 13 0.660492729115999964E+003 15 13 0.993175593812999978E+003 16 13 -0.158535160717000008E+004 17 13 -0.740773231739000004E+000 18 13 -0.339265510302999979E-001 19 13 -0.178233367210000004E+001 20 13 0.475092994190999984E+000 21 13 0.547535358151999968E-001 22 13 -0.560648709531999998E+003 23 13 -0.560721660330999953E+003 24 13 -0.747832598979999985E-001 25 13 -0.577287954366000022E+002 26 13 -0.388699119070999970E+002 27 13 -0.387224875882999982E+003 28 13 -0.106242726250999999E+004 29 13 -0.821391317591999979E+002 30 13 -0.816160334875999979E+003 31 13 -0.700761026378000018E+001 32 13 -0.810473350461000024E+002 33 13 -0.626345745042000033E+002 34 13 -0.362438128753000011E-002 35 13 -0.195685758231000012E+000 36 13 -0.196187000405000006E+000 37 13 0.665338477994999966E+001 38 13 -0.972213137013999973E-001 39 13 -0.115425214768000006E+001 40 13 0.461213806406999993E+000 41 13 0.140633693968999995E+000 42 13 0.162896017016000011E+000 43 13 0.536530372556000001E+000 44 13 0.945192619804000045E-001 45 13 -0.839861186181000002E-001 46 13 -0.439696991295000020E-001 47 13 -0.337221649893000019E+000 48 13 -0.177623341571999993E+000 49 13 -0.740894096043999972E-001 50 13 -0.114822901601999997E+000 51 13 0.142988272899000013E+000 52 13 -0.713025080434000036E+000 53 13 0.244685703281000005E-001 54 13 0.209258515226000003E+000 55 13 -0.160889154705999987E+000 56 13 0.403491628587999973E-002 57 13 0.112973374215999997E+000 58 13 -0.167946854321999989E+000 59 13 0.102899895554999996E+000 60 13 0.540286997808999969E-001 61 13 -0.387498520834999999E-001 62 13 0.475908299022999998E-001 63 13 0.812452094781999923E-002 64 13 -0.171316493049999997E-001 65 13 -0.865194672882999977E-001 66 13 -0.779925613117000011E-001 14 14 0.439202631140999983E+004 15 14 0.993175593812999978E+003 16 14 0.475092994190999984E+000 17 14 -0.178233367210000004E+001 18 14 0.547535358151999968E-001 19 14 -0.740773231739000004E+000 20 14 -0.158535160717000008E+004 21 14 -0.339265510302999979E-001 22 14 -0.560721660330999953E+003 23 14 -0.560648709531999998E+003 24 14 -0.747832598979999985E-001 25 14 -0.388699119070999970E+002 26 14 -0.577287954366000022E+002 27 14 -0.387224875882999982E+003 28 14 -0.810473350461000024E+002 29 14 -0.700761026378000018E+001 30 14 -0.626345745042000033E+002 31 14 -0.821391317591999979E+002 32 14 -0.106242726250999999E+004 33 14 -0.816160334875999979E+003 34 14 -0.195685758231000012E+000 35 14 -0.362438128753000011E-002 36 14 -0.196187000405000006E+000 37 14 -0.972213137013999973E-001 38 14 0.665338477994999966E+001 39 14 -0.115425214768000006E+001 40 14 0.945192619804000045E-001 41 14 0.536530372556000001E+000 42 14 -0.839861186181000002E-001 43 14 0.140633693968999995E+000 44 14 0.461213806406999993E+000 45 14 0.162896017016000011E+000 46 14 -0.337221649893000019E+000 47 14 -0.439696991295000020E-001 48 14 -0.177623341571999993E+000 49 14 -0.114822901601999997E+000 50 14 -0.740894096043999972E-001 51 14 0.142988272899000013E+000 52 14 0.244685703281000005E-001 53 14 -0.713025080434000036E+000 54 14 0.209258515226000003E+000 55 14 0.102899895554999996E+000 56 14 -0.167946854321999989E+000 57 14 0.540286997808999969E-001 58 14 0.403491628587999973E-002 59 14 -0.160889154705999987E+000 60 14 0.112973374215999997E+000 61 14 0.475908299022999998E-001 62 14 -0.387498520834999999E-001 63 14 0.812452094781999923E-002 64 14 -0.865194672882999977E-001 65 14 -0.171316493049999997E-001 66 14 -0.779925613117000011E-001 15 15 0.100053777405000001E+005 16 15 -0.573311367906000000E-001 17 15 0.503288745856000017E-001 18 15 -0.153544888123000001E+001 19 15 0.503288745856000017E-001 20 15 -0.573311367906000000E-001 21 15 -0.153544888123000001E+001 22 15 0.747832598979999985E-001 23 15 0.747832598979999985E-001 24 15 -0.268727919900999979E+000 25 15 -0.389959101496000017E+003 26 15 -0.389959101496000017E+003 27 15 -0.389692078678000007E+004 28 15 -0.816667495779999967E+003 29 15 -0.630733305886000011E+002 30 15 -0.629339069782000024E+003 31 15 -0.630733305886000011E+002 32 15 -0.816667495779999967E+003 33 15 -0.629339069782000024E+003 34 15 -0.190580721115999996E+000 35 15 -0.190580721115999996E+000 36 15 -0.335171346579999987E-001 37 15 -0.248470674091999993E+000 38 15 -0.248470674091999993E+000 39 15 -0.727183829808999982E-001 40 15 -0.498551433601999994E+000 41 15 -0.283691770899999994E-001 42 15 -0.763130477700000032E-001 43 15 -0.283691770899999994E-001 44 15 -0.498551433601999994E+000 45 15 -0.763130477700000032E-001 46 15 -0.330982419074000028E-001 47 15 -0.330982419074000028E-001 48 15 0.266287539251999989E-002 49 15 0.554188208461999995E-002 50 15 0.554188208461999995E-002 51 15 0.155028969813999998E-001 52 15 0.360688720459000009E-001 53 15 0.360688720459000009E-001 54 15 -0.302927153658999991E-001 55 15 0.844287031862999970E-001 56 15 0.146398643442000008E-001 57 15 0.165472784699999993E-001 58 15 0.146398643442000008E-001 59 15 0.844287031862999970E-001 60 15 0.165472784699999993E-001 61 15 0.139059280131999989E-002 62 15 0.139059280131999989E-002 63 15 0.205524920906000009E-002 64 15 -0.503375903524999960E-003 65 15 -0.503375903524999960E-003 66 15 -0.568056085662000006E-002 16 16 0.225316844515999992E+004 17 16 -0.638199164685000028E+003 18 16 -0.776517736051000043E+003 19 16 -0.560361038099999973E+003 20 16 0.560313049416000013E+003 21 16 0.158984424773000003E-001 22 16 -0.178233367210000004E+001 23 16 -0.740773231739000004E+000 24 16 -0.503288745856000017E-001 25 16 0.254632109960000019E+000 26 16 0.301723547645999998E-001 27 16 0.269510789482000024E+000 28 16 -0.582814458610000017E+002 29 16 0.386877556940999980E+002 30 16 0.385876794808000000E+003 31 16 -0.278594194749000011E-001 32 16 0.173958739156999997E+000 33 16 0.123827283595000004E+000 34 16 0.102476898910999994E+000 35 16 0.175985339892999991E-001 36 16 0.347590287159999997E-002 37 16 0.624486053533000018E+000 38 16 0.123809333197999999E+000 39 16 0.647462403737000036E+000 40 16 0.476759121791999974E+001 41 16 0.121185882310999998E-001 42 16 0.726096728503000000E+000 43 16 -0.139241199357000001E-002 44 16 -0.731863221228000044E-001 45 16 0.227585232444000012E-002 46 16 0.687889989896000031E+000 47 16 0.170829881532999994E+000 48 16 0.128189804505000005E+000 49 16 0.342053056329000016E-001 50 16 -0.319406492644999998E-001 51 16 -0.122695611268999999E+000 52 16 -0.174119729222000003E+000 53 16 -0.293025762590999996E-002 54 16 0.938044205977000001E-001 55 16 -0.808358607822999953E+000 56 16 -0.544553916343999966E-001 57 16 -0.192593901709000009E+000 58 16 -0.388056068068000012E-001 59 16 -0.845262240383000060E-002 60 16 -0.247343065241000006E-001 61 16 -0.101597026512999997E+000 62 16 0.421317301655999982E-001 63 16 -0.244629395180999999E-001 64 16 0.570756354789000026E-001 65 16 -0.262495943374000014E-001 66 16 0.532158912700000028E-001 17 17 0.225316844515999992E+004 18 17 0.776517736051000043E+003 19 17 0.560313049416000013E+003 20 17 -0.560361038099999973E+003 21 17 -0.158984424773000003E-001 22 17 0.475092994190999984E+000 23 17 -0.158535160717000008E+004 24 17 0.573311367906000000E-001 25 17 0.175985339892999991E-001 26 17 0.102476898910999994E+000 27 17 -0.347590287159999997E-002 28 17 0.386877556940999980E+002 29 17 -0.582814458610000017E+002 30 17 -0.385876794808000000E+003 31 17 0.173958739156999997E+000 32 17 -0.278594194750000010E-001 33 17 -0.123827283595000004E+000 34 17 0.301723547645999998E-001 35 17 0.254632109960000019E+000 36 17 -0.269510789482000024E+000 37 17 0.170829881532999994E+000 38 17 0.687889989896000031E+000 39 17 -0.128189804505000005E+000 40 17 0.121185882310999998E-001 41 17 0.476759121791999974E+001 42 17 -0.726096728503000000E+000 43 17 -0.731863221228000044E-001 44 17 -0.139241199355999998E-002 45 17 -0.227585232444000012E-002 46 17 0.123809333197999999E+000 47 17 0.624486053533000018E+000 48 17 -0.647462403737000036E+000 49 17 -0.319406492644999998E-001 50 17 0.342053056329000016E-001 51 17 0.122695611268999999E+000 52 17 0.421317301655999982E-001 53 17 -0.101597026512999997E+000 54 17 0.244629395180999999E-001 55 17 -0.544553916343999966E-001 56 17 -0.808358607822999953E+000 57 17 0.192593901709000009E+000 58 17 -0.845262240383000060E-002 59 17 -0.388056068068000012E-001 60 17 0.247343065241000006E-001 61 17 -0.293025762590999996E-002 62 17 -0.174119729222000003E+000 63 17 -0.938044205977000001E-001 64 17 -0.262495943374000014E-001 65 17 0.570756354789000026E-001 66 17 -0.532158912700000028E-001 18 18 0.779807349716000044E+004 19 18 -0.158984424773000003E-001 20 18 0.158984424773000003E-001 21 18 -0.437385336976999994E+000 22 18 -0.547535358151999968E-001 23 18 0.339265510302999979E-001 24 18 -0.153544888123000001E+001 25 18 0.648808028177000007E+000 26 18 -0.270482712632999986E-001 27 18 -0.525450103688999970E-001 28 18 0.388987123392999990E+003 29 18 -0.388987123392999990E+003 30 18 -0.389742704891999983E+004 31 18 0.329129914224000009E+000 32 18 -0.329129914224000009E+000 33 18 -0.863818806313000065E-001 34 18 0.270482712632999986E-001 35 18 -0.648808028177000007E+000 36 18 -0.525450103688999970E-001 37 18 -0.133462436028000009E+000 38 18 -0.231838625570000012E-001 39 18 0.788350347188999934E-001 40 18 0.261059380346999992E+000 41 18 -0.261059380346999992E+000 42 18 0.748702987362999950E-001 43 18 -0.442692342250000023E-001 44 18 0.442692342250000023E-001 45 18 0.158796065663000009E-001 46 18 0.231838625570000012E-001 47 18 0.133462436028000009E+000 48 18 0.788350347188999934E-001 49 18 0.189812690039999998E-002 50 18 -0.189812690039999998E-002 51 18 -0.220231042249999995E-001 52 18 0.568033337228000031E-002 53 18 0.174989588622999999E-002 54 18 -0.203279516370000012E-003 55 18 -0.387540102171000031E-001 56 18 0.387540102171000031E-001 57 18 -0.273080237030999991E-001 58 18 0.102926619294999994E-001 59 18 -0.102926619294999994E-001 60 18 -0.798257064311000061E-002 61 18 -0.174989588622999999E-002 62 18 -0.568033337228000031E-002 63 18 -0.203279516370000012E-003 64 18 0.215333279699000003E-002 65 18 -0.215333279699000003E-002 66 18 0.102405017127000005E-001 19 19 0.225316844515999992E+004 20 19 -0.638199164685000028E+003 21 19 0.776517736051000043E+003 22 19 -0.158535160717000008E+004 23 19 0.475092994190999984E+000 24 19 0.573311367906000000E-001 25 19 0.102476898910999994E+000 26 19 0.175985339892999991E-001 27 19 -0.347590287159999997E-002 28 19 -0.278594194749000011E-001 29 19 0.173958739156999997E+000 30 19 -0.123827283595000004E+000 31 19 -0.582814458610000017E+002 32 19 0.386877556940999980E+002 33 19 -0.385876794808000000E+003 34 19 0.254632109960000019E+000 35 19 0.301723547645999998E-001 36 19 -0.269510789482000024E+000 37 19 0.687889989896000031E+000 38 19 0.170829881532999994E+000 39 19 -0.128189804505000005E+000 40 19 -0.139241199355999998E-002 41 19 -0.731863221228000044E-001 42 19 -0.227585232444000012E-002 43 19 0.476759121791999974E+001 44 19 0.121185882310999998E-001 45 19 -0.726096728503000000E+000 46 19 0.624486053533000018E+000 47 19 0.123809333197999999E+000 48 19 -0.647462403737000036E+000 49 19 0.342053056329000016E-001 50 19 -0.319406492644999998E-001 51 19 0.122695611268999999E+000 52 19 -0.101597026512999997E+000 53 19 0.421317301655999982E-001 54 19 0.244629395180999999E-001 55 19 -0.388056068068000012E-001 56 19 -0.845262240383000060E-002 57 19 0.247343065241000006E-001 58 19 -0.808358607822999953E+000 59 19 -0.544553916343999966E-001 60 19 0.192593901709000009E+000 61 19 -0.174119729222000003E+000 62 19 -0.293025762590999996E-002 63 19 -0.938044205977000001E-001 64 19 0.570756354789000026E-001 65 19 -0.262495943374000014E-001 66 19 -0.532158912700000028E-001 20 20 0.225316844515999992E+004 21 20 -0.776517736051000043E+003 22 20 -0.740773231739000004E+000 23 20 -0.178233367210000004E+001 24 20 -0.503288745856000017E-001 25 20 0.301723547645999998E-001 26 20 0.254632109960000019E+000 27 20 0.269510789482000024E+000 28 20 0.173958739156999997E+000 29 20 -0.278594194750000010E-001 30 20 0.123827283595000004E+000 31 20 0.386877556940999980E+002 32 20 -0.582814458610000017E+002 33 20 0.385876794808000000E+003 34 20 0.175985339892999991E-001 35 20 0.102476898910999994E+000 36 20 0.347590287159999997E-002 37 20 0.123809333197999999E+000 38 20 0.624486053533000018E+000 39 20 0.647462403737000036E+000 40 20 -0.731863221228000044E-001 41 20 -0.139241199357000001E-002 42 20 0.227585232444000012E-002 43 20 0.121185882310999998E-001 44 20 0.476759121791999974E+001 45 20 0.726096728503000000E+000 46 20 0.170829881532999994E+000 47 20 0.687889989896000031E+000 48 20 0.128189804505000005E+000 49 20 -0.319406492644999998E-001 50 20 0.342053056329000016E-001 51 20 -0.122695611268999999E+000 52 20 -0.293025762590999996E-002 53 20 -0.174119729222000003E+000 54 20 0.938044205977000001E-001 55 20 -0.845262240383000060E-002 56 20 -0.388056068068000012E-001 57 20 -0.247343065241000006E-001 58 20 -0.544553916343999966E-001 59 20 -0.808358607822999953E+000 60 20 -0.192593901709000009E+000 61 20 0.421317301655999982E-001 62 20 -0.101597026512999997E+000 63 20 -0.244629395180999999E-001 64 20 -0.262495943374000014E-001 65 20 0.570756354789000026E-001 66 20 0.532158912700000028E-001 21 21 0.779807349716000044E+004 22 21 0.339265510302999979E-001 23 21 -0.547535358151999968E-001 24 21 -0.153544888123000001E+001 25 21 -0.270482712632999986E-001 26 21 0.648808028177000007E+000 27 21 -0.525450103688999970E-001 28 21 -0.329129914224000009E+000 29 21 0.329129914224000009E+000 30 21 -0.863818806313000065E-001 31 21 -0.388987123392999990E+003 32 21 0.388987123392999990E+003 33 21 -0.389742704891999983E+004 34 21 -0.648808028177000007E+000 35 21 0.270482712632999986E-001 36 21 -0.525450103688999970E-001 37 21 -0.231838625570000012E-001 38 21 -0.133462436028000009E+000 39 21 0.788350347188999934E-001 40 21 0.442692342250000023E-001 41 21 -0.442692342250000023E-001 42 21 0.158796065663000009E-001 43 21 -0.261059380346999992E+000 44 21 0.261059380346999992E+000 45 21 0.748702987362999950E-001 46 21 0.133462436028000009E+000 47 21 0.231838625570000012E-001 48 21 0.788350347188999934E-001 49 21 -0.189812690039999998E-002 50 21 0.189812690039999998E-002 51 21 -0.220231042249999995E-001 52 21 0.174989588622999999E-002 53 21 0.568033337228000031E-002 54 21 -0.203279516370000012E-003 55 21 -0.102926619294999994E-001 56 21 0.102926619294999994E-001 57 21 -0.798257064311000061E-002 58 21 0.387540102171000031E-001 59 21 -0.387540102171000031E-001 60 21 -0.273080237029999992E-001 61 21 -0.568033337228000031E-002 62 21 -0.174989588622999999E-002 63 21 -0.203279516370000012E-003 64 21 -0.215333279699000003E-002 65 21 0.215333279699000003E-002 66 21 0.102405017127000005E-001 22 22 0.439202631140999983E+004 23 22 0.660492729115999964E+003 24 22 -0.993175593812999978E+003 25 22 -0.362438128753000011E-002 26 22 -0.195685758231000012E+000 27 22 0.196187000405000006E+000 28 22 -0.700761026378000018E+001 29 22 -0.810473350461000024E+002 30 22 0.626345745042000033E+002 31 22 -0.106242726250999999E+004 32 22 -0.821391317591999979E+002 33 22 0.816160334875999979E+003 34 22 -0.577287954366000022E+002 35 22 -0.388699119070999970E+002 36 22 0.387224875882999982E+003 37 22 -0.439696991295000020E-001 38 22 -0.337221649893000019E+000 39 22 0.177623341571999993E+000 40 22 0.536530372556000001E+000 41 22 0.945192619804000045E-001 42 22 0.839861186181000002E-001 43 22 0.461213806406999993E+000 44 22 0.140633693968999995E+000 45 22 -0.162896017016000011E+000 46 22 0.665338477994999966E+001 47 22 -0.972213137013999973E-001 48 22 0.115425214768000006E+001 49 22 -0.740894096043999972E-001 50 22 -0.114822901601999997E+000 51 22 -0.142988272899000013E+000 52 22 -0.387498520834999999E-001 53 22 0.475908299022999998E-001 54 22 -0.812452094781999923E-002 55 22 -0.167946854321999989E+000 56 22 0.102899895554999996E+000 57 22 -0.540286997808999969E-001 58 22 -0.160889154705999987E+000 59 22 0.403491628586999992E-002 60 22 -0.112973374215999997E+000 61 22 -0.713025080434000036E+000 62 22 0.244685703281000005E-001 63 22 -0.209258515226000003E+000 64 22 -0.171316493049999997E-001 65 22 -0.865194672882999977E-001 66 22 0.779925613117000011E-001 23 23 0.439202631140999983E+004 24 23 -0.993175593812999978E+003 25 23 -0.195685758231000012E+000 26 23 -0.362438128753000011E-002 27 23 0.196187000405000006E+000 28 23 -0.821391317591999979E+002 29 23 -0.106242726250999999E+004 30 23 0.816160334875999979E+003 31 23 -0.810473350461000024E+002 32 23 -0.700761026378000018E+001 33 23 0.626345745042000033E+002 34 23 -0.388699119070999970E+002 35 23 -0.577287954366000022E+002 36 23 0.387224875882999982E+003 37 23 -0.337221649893000019E+000 38 23 -0.439696991295000020E-001 39 23 0.177623341571999993E+000 40 23 0.140633693968999995E+000 41 23 0.461213806406999993E+000 42 23 -0.162896017016000011E+000 43 23 0.945192619804000045E-001 44 23 0.536530372556000001E+000 45 23 0.839861186181000002E-001 46 23 -0.972213137013999973E-001 47 23 0.665338477994999966E+001 48 23 0.115425214768000006E+001 49 23 -0.114822901601999997E+000 50 23 -0.740894096043999972E-001 51 23 -0.142988272899000013E+000 52 23 0.475908299022999998E-001 53 23 -0.387498520834999999E-001 54 23 -0.812452094781999923E-002 55 23 0.403491628587999973E-002 56 23 -0.160889154705999987E+000 57 23 -0.112973374215999997E+000 58 23 0.102899895554999996E+000 59 23 -0.167946854321999989E+000 60 23 -0.540286997808999969E-001 61 23 0.244685703281000005E-001 62 23 -0.713025080434000036E+000 63 23 -0.209258515226000003E+000 64 23 -0.865194672882999977E-001 65 23 -0.171316493049999997E-001 66 23 0.779925613117000011E-001 24 24 0.100053777405000001E+005 25 24 0.190580721115999996E+000 26 24 0.190580721115999996E+000 27 24 -0.335171346579999987E-001 28 24 0.630733305886000011E+002 29 24 0.816667495779999967E+003 30 24 -0.629339069782000024E+003 31 24 0.816667495779999967E+003 32 24 0.630733305886000011E+002 33 24 -0.629339069782000024E+003 34 24 0.389959101496000017E+003 35 24 0.389959101496000017E+003 36 24 -0.389692078678000007E+004 37 24 0.330982419074000028E-001 38 24 0.330982419074000028E-001 39 24 0.266287539251999989E-002 40 24 0.283691770899999994E-001 41 24 0.498551433601999994E+000 42 24 -0.763130477700000032E-001 43 24 0.498551433601999994E+000 44 24 0.283691770899999994E-001 45 24 -0.763130477700000032E-001 46 24 0.248470674091999993E+000 47 24 0.248470674091999993E+000 48 24 -0.727183829808999982E-001 49 24 -0.554188208461999995E-002 50 24 -0.554188208461999995E-002 51 24 0.155028969813999998E-001 52 24 -0.139059280131999989E-002 53 24 -0.139059280131999989E-002 54 24 0.205524920906000009E-002 55 24 -0.146398643442000008E-001 56 24 -0.844287031862999970E-001 57 24 0.165472784699999993E-001 58 24 -0.844287031862999970E-001 59 24 -0.146398643442000008E-001 60 24 0.165472784699999993E-001 61 24 -0.360688720459000009E-001 62 24 -0.360688720459000009E-001 63 24 -0.302927153658999991E-001 64 24 0.503375903524999960E-003 65 24 0.503375903524999960E-003 66 24 -0.568056085662000006E-002 25 25 0.160740032487999997E+004 26 25 0.469247259251000003E+003 27 25 0.776403673411000000E+003 28 25 -0.110836289233000002E+004 29 25 -0.183225334756000002E+000 30 25 -0.252203254650999985E-001 31 25 -0.170747969779999997E+001 32 25 0.566815552808999978E+000 33 25 0.121912809292000004E+000 34 25 -0.391559218435999981E+003 35 25 -0.391499763549000022E+003 36 25 -0.866081522643000028E-002 37 25 -0.576025371789000005E+002 38 25 -0.386618118435999989E+002 39 25 -0.385371002781000016E+003 40 25 0.451008956859999977E+000 41 25 -0.141538568381000002E-001 42 25 -0.406432684679000011E+000 43 25 0.183140356996000009E+000 44 25 -0.667221914876000022E-001 45 25 0.421279230205999985E-001 46 25 0.214094035696999994E-001 47 25 -0.306797475851000000E-001 48 25 0.645324103128000065E-001 49 25 0.678189394609999968E-001 50 25 -0.778238968819000010E-001 51 25 -0.574319796569999985E+000 52 25 0.289766832799999996E+001 53 25 0.234001191348000015E-001 54 25 -0.871894362680999957E+000 55 25 0.421527037112999992E+000 56 25 -0.919602538878999953E-001 57 25 -0.462378621511999988E+000 58 25 0.685305297495000021E+000 59 25 -0.215988933900999991E+000 60 25 -0.203989990844999997E+000 61 25 0.348205483980999972E-001 62 25 0.425194018162999982E-001 63 25 -0.164578031579999985E-001 64 25 0.839516256845000003E-001 65 25 0.944766164702000033E-001 66 25 0.314076653350000012E+000 26 26 0.160740032487999997E+004 27 26 0.776403673411000000E+003 28 26 0.566815552808999978E+000 29 26 -0.170747969779999997E+001 30 26 0.121912809292000004E+000 31 26 -0.183225334756000002E+000 32 26 -0.110836289233000002E+004 33 26 -0.252203254650999985E-001 34 26 -0.391499763549000022E+003 35 26 -0.391559218435999981E+003 36 26 -0.866081522643000028E-002 37 26 -0.386618118435999989E+002 38 26 -0.576025371789000005E+002 39 26 -0.385371002781000016E+003 40 26 -0.667221914876000022E-001 41 26 0.183140356996000009E+000 42 26 0.421279230205999985E-001 43 26 -0.141538568381000002E-001 44 26 0.451008956859999977E+000 45 26 -0.406432684679000011E+000 46 26 -0.306797475851000000E-001 47 26 0.214094035696999994E-001 48 26 0.645324103128000065E-001 49 26 -0.778238968819000010E-001 50 26 0.678189394609999968E-001 51 26 -0.574319796569999985E+000 52 26 0.234001191348000015E-001 53 26 0.289766832799999996E+001 54 26 -0.871894362680999957E+000 55 26 -0.215988933900999991E+000 56 26 0.685305297495000021E+000 57 26 -0.203989990844999997E+000 58 26 -0.919602538878999953E-001 59 26 0.421527037112999992E+000 60 26 -0.462378621511999988E+000 61 26 0.425194018162999982E-001 62 26 0.348205483980999972E-001 63 26 -0.164578031579999985E-001 64 26 0.944766164702000033E-001 65 26 0.839516256845000003E-001 66 26 0.314076653350000012E+000 27 27 0.779653736192999986E+004 28 27 0.793758339255000028E-001 29 27 0.930565013343999936E-001 30 27 -0.878157738450000003E+000 31 27 0.930565013343999936E-001 32 27 0.793758339255000028E-001 33 27 -0.878157738450000003E+000 34 27 0.866081522643000028E-002 35 27 0.866081522643000028E-002 36 27 -0.296702689881999992E+000 37 27 -0.388459519994000004E+003 38 27 -0.388459519994000004E+003 39 27 -0.389761891681999987E+004 40 27 -0.325255258420000026E+000 41 27 -0.227142845980000015E-001 42 27 -0.132896513361999997E-001 43 27 -0.227142845980000015E-001 44 27 -0.325255258420000026E+000 45 27 -0.132896513361999997E-001 46 27 -0.182640691742999989E+000 47 27 -0.182640691742999989E+000 48 27 -0.732764246767999977E-001 49 27 0.527267615490000039E-002 50 27 0.527267615490000039E-002 51 27 0.112376443653999999E+000 52 27 -0.223008566974999989E+000 53 27 -0.223008566974999989E+000 54 27 0.128487760690000008E+000 55 27 0.352937653742999985E-001 56 27 -0.415334468167999973E-001 57 27 0.697438081018000033E-001 58 27 -0.415334468167999973E-001 59 27 0.352937653742999985E-001 60 27 0.697438081018000033E-001 61 27 0.111964705810999997E-001 62 27 0.111964705810999997E-001 63 27 0.138804992145000004E-001 64 27 -0.136747312299000008E-001 65 27 -0.136747312299000008E-001 66 27 -0.597698576078999969E-001 28 28 0.370486429426999985E+004 29 28 -0.492682130318000020E+003 30 28 -0.103371810280999989E+004 31 28 -0.391910492885999986E+003 32 28 0.391884624676999977E+003 33 28 0.584442974627000025E-001 34 28 -0.170747969779999997E+001 35 28 -0.183225334756000002E+000 36 28 -0.930565013343999936E-001 37 28 -0.102042048080999996E+004 38 28 0.931075394685999953E+002 39 28 0.926148688275000040E+003 40 28 -0.569130087102999980E+002 41 28 0.387999949630000032E+002 42 28 0.386539471693999985E+003 43 28 -0.526067707489000017E-001 44 28 0.232665391306000002E+000 45 28 -0.277622955698000017E-001 46 28 -0.920235315468000081E+001 47 28 0.917568203939000000E+002 48 28 0.838879750601000040E+002 49 28 -0.589175195294000011E-002 50 28 0.413314719396000008E+000 51 28 0.849592101373999986E+000 52 28 0.568140196517999962E+000 53 28 -0.137338311491999987E+000 54 28 -0.361100977508999998E+000 55 28 0.447730405493000028E+001 56 28 0.168613142401000005E+000 57 28 0.121083254759999992E+001 58 28 0.793484598515999950E-001 59 28 0.835316829540000000E-001 60 28 0.212445821676000013E+000 61 28 0.559866444560000009E+000 62 28 -0.154137217426000006E+000 63 28 0.162958026776999998E+000 64 28 -0.271407971854000007E+000 65 28 0.221031558290000013E+000 66 28 -0.383595516522000024E+000 29 29 0.370486429426999985E+004 30 29 0.103371810280999989E+004 31 29 0.391884624676999977E+003 32 29 -0.391910492885999986E+003 33 29 -0.584442974627000025E-001 34 29 0.566815552808999978E+000 35 29 -0.110836289233000002E+004 36 29 -0.793758339255000028E-001 37 29 0.917568203939000000E+002 38 29 -0.920235315468000081E+001 39 29 -0.838879750601000040E+002 40 29 0.387999949630000032E+002 41 29 -0.569130087102999980E+002 42 29 -0.386539471693999985E+003 43 29 0.232665391306000002E+000 44 29 -0.526067707489000017E-001 45 29 0.277622955698000017E-001 46 29 0.931075394685999953E+002 47 29 -0.102042048080999996E+004 48 29 -0.926148688275000040E+003 49 29 0.413314719396000008E+000 50 29 -0.589175195294999992E-002 51 29 -0.849592101373999986E+000 52 29 -0.154137217426000006E+000 53 29 0.559866444560000009E+000 54 29 -0.162958026776999998E+000 55 29 0.168613142401000005E+000 56 29 0.447730405493000028E+001 57 29 -0.121083254759999992E+001 58 29 0.835316829540000000E-001 59 29 0.793484598515999950E-001 60 29 -0.212445821676000013E+000 61 29 -0.137338311491999987E+000 62 29 0.568140196517999962E+000 63 29 0.361100977508999998E+000 64 29 0.221031558290000013E+000 65 29 -0.271407971854000007E+000 66 29 0.383595516522000024E+000 30 30 0.107431240921000008E+005 31 30 -0.584442974627000025E-001 32 30 0.584442974627000025E-001 33 30 -0.201005676101000008E+000 34 30 -0.121912809292000004E+000 35 30 0.252203254650999985E-001 36 30 -0.878157738450000003E+000 37 30 0.926188986067999963E+003 38 30 -0.845176724320999995E+002 39 30 -0.843804600358000016E+003 40 30 0.389811925490000021E+003 41 30 -0.389811925490000021E+003 42 30 -0.389707535504999987E+004 43 30 0.103225179382000001E+000 44 30 -0.103225179382000001E+000 45 30 -0.115568163674000003E-001 46 30 0.845176724320999995E+002 47 30 -0.926188986067999963E+003 48 30 -0.843804600358000016E+003 49 30 0.516548100050999957E-002 50 30 -0.516548100050999957E-002 51 30 -0.909790767006000006E-001 52 30 0.411145301432999988E+000 53 30 -0.317089312221000008E-001 54 30 -0.125466534537999996E+000 55 30 0.216071030769000000E+000 56 30 -0.216071030769000000E+000 57 30 -0.427843263754999967E-001 58 30 0.110541041578999993E+000 59 30 -0.110541041578999993E+000 60 30 -0.308922661273999984E-001 61 30 0.317089312221000008E-001 62 30 -0.411145301432999988E+000 63 30 -0.125466534537999996E+000 64 30 -0.183012436262999997E-001 65 30 0.183012436262999997E-001 66 30 0.556576902884999974E-001 31 31 0.370486429426999985E+004 32 31 -0.492682130318000020E+003 33 31 0.103371810280999989E+004 34 31 -0.110836289233000002E+004 35 31 0.566815552808999978E+000 36 31 -0.793758339255000028E-001 37 31 -0.920235315468000081E+001 38 31 0.917568203939000000E+002 39 31 -0.838879750601000040E+002 40 31 -0.526067707489000017E-001 41 31 0.232665391306000002E+000 42 31 0.277622955698000017E-001 43 31 -0.569130087102999980E+002 44 31 0.387999949630000032E+002 45 31 -0.386539471693999985E+003 46 31 -0.102042048080999996E+004 47 31 0.931075394685999953E+002 48 31 -0.926148688275000040E+003 49 31 -0.589175195294000011E-002 50 31 0.413314719396000008E+000 51 31 -0.849592101373999986E+000 52 31 0.559866444560000009E+000 53 31 -0.154137217426000006E+000 54 31 -0.162958026776999998E+000 55 31 0.793484598515999950E-001 56 31 0.835316829540000000E-001 57 31 -0.212445821676000013E+000 58 31 0.447730405493000028E+001 59 31 0.168613142401000005E+000 60 31 -0.121083254759999992E+001 61 31 0.568140196517999962E+000 62 31 -0.137338311491999987E+000 63 31 0.361100977508999998E+000 64 31 -0.271407971854000007E+000 65 31 0.221031558290000013E+000 66 31 0.383595516522000024E+000 32 32 0.370486429426999985E+004 33 32 -0.103371810280999989E+004 34 32 -0.183225334756000002E+000 35 32 -0.170747969779999997E+001 36 32 -0.930565013343999936E-001 37 32 0.931075394685999953E+002 38 32 -0.102042048080999996E+004 39 32 0.926148688275000040E+003 40 32 0.232665391306000002E+000 41 32 -0.526067707489000017E-001 42 32 -0.277622955698000017E-001 43 32 0.387999949630000032E+002 44 32 -0.569130087102999980E+002 45 32 0.386539471693999985E+003 46 32 0.917568203939000000E+002 47 32 -0.920235315468000081E+001 48 32 0.838879750601000040E+002 49 32 0.413314719396000008E+000 50 32 -0.589175195294000011E-002 51 32 0.849592101373999986E+000 52 32 -0.137338311491999987E+000 53 32 0.568140196517999962E+000 54 32 -0.361100977508999998E+000 55 32 0.835316829540000000E-001 56 32 0.793484598515999950E-001 57 32 0.212445821676000013E+000 58 32 0.168613142401000005E+000 59 32 0.447730405493000028E+001 60 32 0.121083254759999992E+001 61 32 -0.154137217426000006E+000 62 32 0.559866444560000009E+000 63 32 0.162958026776999998E+000 64 32 0.221031558290000013E+000 65 32 -0.271407971854000007E+000 66 32 -0.383595516522000024E+000 33 33 0.107431240921000008E+005 34 33 0.252203254650999985E-001 35 33 -0.121912809292000004E+000 36 33 -0.878157738450000003E+000 37 33 -0.845176724320999995E+002 38 33 0.926188986067999963E+003 39 33 -0.843804600358000016E+003 40 33 -0.103225179382000001E+000 41 33 0.103225179382000001E+000 42 33 -0.115568163674000003E-001 43 33 -0.389811925490000021E+003 44 33 0.389811925490000021E+003 45 33 -0.389707535504999987E+004 46 33 -0.926188986067999963E+003 47 33 0.845176724320999995E+002 48 33 -0.843804600358000016E+003 49 33 -0.516548100050999957E-002 50 33 0.516548100050999957E-002 51 33 -0.909790767006000006E-001 52 33 -0.317089312221000008E-001 53 33 0.411145301432999988E+000 54 33 -0.125466534537999996E+000 55 33 -0.110541041578999993E+000 56 33 0.110541041578999993E+000 57 33 -0.308922661273999984E-001 58 33 -0.216071030769000000E+000 59 33 0.216071030769000000E+000 60 33 -0.427843263754999967E-001 61 33 -0.411145301432999988E+000 62 33 0.317089312221000008E-001 63 33 -0.125466534537999996E+000 64 33 0.183012436262999997E-001 65 33 -0.183012436262999997E-001 66 33 0.556576902884999974E-001 34 34 0.160740032487999997E+004 35 34 0.469247259251000003E+003 36 34 -0.776403673411000000E+003 37 34 0.214094035696999994E-001 38 34 -0.306797475851000000E-001 39 34 -0.645324103128000065E-001 40 34 0.183140356996000009E+000 41 34 -0.667221914876000022E-001 42 34 -0.421279230205999985E-001 43 34 0.451008956859999977E+000 44 34 -0.141538568381000002E-001 45 34 0.406432684679000011E+000 46 34 -0.576025371789000005E+002 47 34 -0.386618118435999989E+002 48 34 0.385371002781000016E+003 49 34 0.678189394609999968E-001 50 34 -0.778238968819000010E-001 51 34 0.574319796569999985E+000 52 34 0.348205483980999972E-001 53 34 0.425194018162999982E-001 54 34 0.164578031579999985E-001 55 34 0.685305297495000021E+000 56 34 -0.215988933900999991E+000 57 34 0.203989990844999997E+000 58 34 0.421527037112999992E+000 59 34 -0.919602538878999953E-001 60 34 0.462378621511999988E+000 61 34 0.289766832799999996E+001 62 34 0.234001191348000015E-001 63 34 0.871894362680999957E+000 64 34 0.839516256845000003E-001 65 34 0.944766164702000033E-001 66 34 -0.314076653350000012E+000 35 35 0.160740032487999997E+004 36 35 -0.776403673411000000E+003 37 35 -0.306797475851000000E-001 38 35 0.214094035696999994E-001 39 35 -0.645324103128000065E-001 40 35 -0.141538568381000002E-001 41 35 0.451008956859999977E+000 42 35 0.406432684679000011E+000 43 35 -0.667221914876000022E-001 44 35 0.183140356996000009E+000 45 35 -0.421279230205999985E-001 46 35 -0.386618118435999989E+002 47 35 -0.576025371789000005E+002 48 35 0.385371002781000016E+003 49 35 -0.778238968819000010E-001 50 35 0.678189394609999968E-001 51 35 0.574319796569999985E+000 52 35 0.425194018162999982E-001 53 35 0.348205483980999972E-001 54 35 0.164578031579999985E-001 55 35 -0.919602538878999953E-001 56 35 0.421527037112999992E+000 57 35 0.462378621511999988E+000 58 35 -0.215988933900999991E+000 59 35 0.685305297495000021E+000 60 35 0.203989990844999997E+000 61 35 0.234001191348000015E-001 62 35 0.289766832799999996E+001 63 35 0.871894362680999957E+000 64 35 0.944766164702000033E-001 65 35 0.839516256845000003E-001 66 35 -0.314076653350000012E+000 36 36 0.779653736192999986E+004 37 36 0.182640691742999989E+000 38 36 0.182640691742999989E+000 39 36 -0.732764246767999977E-001 40 36 0.227142845980000015E-001 41 36 0.325255258420000026E+000 42 36 -0.132896513361999997E-001 43 36 0.325255258420000026E+000 44 36 0.227142845980000015E-001 45 36 -0.132896513361999997E-001 46 36 0.388459519994000004E+003 47 36 0.388459519994000004E+003 48 36 -0.389761891681999987E+004 49 36 -0.527267615490000039E-002 50 36 -0.527267615490000039E-002 51 36 0.112376443653999999E+000 52 36 -0.111964705810999997E-001 53 36 -0.111964705810999997E-001 54 36 0.138804992145000004E-001 55 36 0.415334468167999973E-001 56 36 -0.352937653742999985E-001 57 36 0.697438081018000033E-001 58 36 -0.352937653742999985E-001 59 36 0.415334468167999973E-001 60 36 0.697438081018000033E-001 61 36 0.223008566974999989E+000 62 36 0.223008566974999989E+000 63 36 0.128487760690000008E+000 64 36 0.136747312299000008E-001 65 36 0.136747312299000008E-001 66 36 -0.597698576078999969E-001 37 37 0.433464670495999962E+004 38 37 0.103751521888000002E+004 39 37 0.106910064811000007E+004 40 37 -0.133095772893000003E+004 41 37 -0.133530622742000005E+001 42 37 -0.481397589349000024E-001 43 37 -0.181113816473000000E+001 44 37 0.125533592970999996E+001 45 37 0.960573911317999934E-001 46 37 -0.521198486460999977E+000 47 37 -0.154000228341000001E+001 48 37 -0.197646475581999992E+000 49 37 -0.941583821203999946E+003 50 37 -0.938112676027000020E+003 51 37 0.375201140882000031E-001 52 37 -0.472244399725000008E+002 53 37 -0.388124073676999970E+002 54 37 -0.385387723768999990E+003 55 37 -0.919992581378999944E+003 56 37 -0.102357019609000005E+003 57 37 -0.102161283274000004E+004 58 37 -0.118759241165000002E+002 59 37 -0.101138803777000007E+003 60 37 -0.112779081876999996E+003 61 37 -0.181416120890000004E+000 62 37 0.100031039519000008E-001 63 37 0.110102497416999998E+000 64 37 0.111674596184000007E-001 65 37 -0.152880175548999997E+001 66 37 -0.230787017889000001E+001 38 38 0.433464670495999962E+004 39 38 0.106910064811000007E+004 40 38 0.125533592970999996E+001 41 38 -0.181113816473000000E+001 42 38 0.960573911317999934E-001 43 38 -0.133530622742000005E+001 44 38 -0.133095772893000003E+004 45 38 -0.481397589349000024E-001 46 38 -0.154000228341000001E+001 47 38 -0.521198486460999977E+000 48 38 -0.197646475581999992E+000 49 38 -0.938112676027000020E+003 50 38 -0.941583821203999946E+003 51 38 0.375201140882000031E-001 52 38 -0.388124073676999970E+002 53 38 -0.472244399725000008E+002 54 38 -0.385387723768999990E+003 55 38 -0.101138803777000007E+003 56 38 -0.118759241165000002E+002 57 38 -0.112779081876999996E+003 58 38 -0.102357019609000005E+003 59 38 -0.919992581378999944E+003 60 38 -0.102161283274000004E+004 61 38 0.100031039519000008E-001 62 38 -0.181416120890000004E+000 63 38 0.110102497416999998E+000 64 38 -0.152880175548999997E+001 65 38 0.111674596184000007E-001 66 38 -0.230787017889000001E+001 39 39 0.117613068234000002E+005 40 39 0.530107749843000020E+000 41 39 0.177772969248999990E+000 42 39 -0.143166441141999989E+001 43 39 0.177772969248999990E+000 44 39 0.530107749843000020E+000 45 39 -0.143166441141999989E+001 46 39 0.197646475581999992E+000 47 39 0.197646475581999992E+000 48 39 0.100606030235000010E+001 49 39 0.408509789741999974E+000 50 39 0.408509789741999974E+000 51 39 -0.419181577513000025E+001 52 39 -0.390383098953000001E+003 53 39 -0.390383098953000001E+003 54 39 -0.389699142423000012E+004 55 39 -0.102209752589000004E+004 56 39 -0.113893354611000007E+003 57 39 -0.113628808937000008E+004 58 39 -0.113893354611000007E+003 59 39 -0.102209752589000004E+004 60 39 -0.113628808937000008E+004 61 39 0.372215628675000021E-001 62 39 0.372215628675000021E-001 63 39 -0.765285554308999943E-001 64 39 -0.471713590690999995E+000 65 39 -0.471713590690999995E+000 66 39 -0.391224497675000005E+000 40 40 0.237432917687999998E+004 41 40 -0.101659274383000002E+004 42 40 -0.776648238225999989E+003 43 40 0.159235310970999994E+000 44 40 0.613513057280000051E+000 45 40 0.593587129306999972E-001 46 40 -0.181113816473000000E+001 47 40 -0.133530622742000005E+001 48 40 -0.177772969248999990E+000 49 40 -0.941473432522000053E+003 50 40 0.937915535811000041E+003 51 40 -0.890922906857000013E-001 52 40 -0.403486994089000017E+000 53 40 0.781598616070000030E-001 54 40 0.108710812343999996E+001 55 40 -0.486371618885000032E+002 56 40 0.381620662866000018E+002 57 40 0.384763890956000012E+003 58 40 -0.144843146096999997E+000 59 40 0.341796677728999979E-001 60 40 -0.171620134463000007E+000 61 40 0.143585358717000011E+000 62 40 -0.123432600687000002E+000 63 40 -0.158027199863000012E+000 64 40 0.482600920237000020E+000 65 40 0.955785248415000011E+000 66 40 0.162893922250999990E+001 41 41 0.237432917687999998E+004 42 41 0.776648238225999989E+003 43 41 0.613513057280000051E+000 44 41 0.159235310970999994E+000 45 41 -0.593587129306999972E-001 46 41 0.125533592970999996E+001 47 41 -0.133095772893000003E+004 48 41 -0.530107749843000020E+000 49 41 0.937915535811000041E+003 50 41 -0.941473432522000053E+003 51 41 0.890922906857000013E-001 52 41 -0.123432600687000002E+000 53 41 0.143585358717000011E+000 54 41 0.158027199863000012E+000 55 41 0.381620662866000018E+002 56 41 -0.486371618885000032E+002 57 41 -0.384763890956000012E+003 58 41 0.341796677728999979E-001 59 41 -0.144843146096999997E+000 60 41 0.171620134463000007E+000 61 41 0.781598616070000030E-001 62 41 -0.403486994089000017E+000 63 41 -0.108710812343999996E+001 64 41 0.955785248415000011E+000 65 41 0.482600920237000020E+000 66 41 -0.162893922250999990E+001 42 42 0.780076687344000038E+004 43 42 -0.593587129306999972E-001 44 42 0.593587129306999972E-001 45 42 0.110347111785000007E+001 46 42 -0.960573911317999934E-001 47 42 0.481397589349000024E-001 48 42 -0.143166441141999989E+001 49 42 -0.397308922863999991E+000 50 42 0.397308922863999991E+000 51 42 -0.455592713406000005E+001 52 42 0.260267259171999998E+000 53 42 -0.333221981957000021E-001 54 42 -0.296088382068999990E-001 55 42 0.389721320946999981E+003 56 42 -0.389721320946999981E+003 57 42 -0.389727024355000003E+004 58 42 0.107970316290000000E-001 59 42 -0.107970316290000000E-001 60 42 -0.142525796422000001E+000 61 42 0.333221981957000021E-001 62 42 -0.260267259171999998E+000 63 42 -0.296088382068999990E-001 64 42 0.308417143812000027E+000 65 42 -0.308417143812000027E+000 66 42 0.217768219267999996E+000 43 43 0.237432917687999998E+004 44 43 -0.101659274383000002E+004 45 43 0.776648238225999989E+003 46 43 -0.133095772893000003E+004 47 43 0.125533592970999996E+001 48 43 -0.530107749843000020E+000 49 43 -0.941473432520999950E+003 50 43 0.937915535811000041E+003 51 43 0.890922906857000013E-001 52 43 0.143585358717000011E+000 53 43 -0.123432600687000002E+000 54 43 0.158027199863000012E+000 55 43 -0.144843146096999997E+000 56 43 0.341796677728999979E-001 57 43 0.171620134463000007E+000 58 43 -0.486371618885000032E+002 59 43 0.381620662866000018E+002 60 43 -0.384763890956000012E+003 61 43 -0.403486994089000017E+000 62 43 0.781598616070000030E-001 63 43 -0.108710812343999996E+001 64 43 0.482600920237000020E+000 65 43 0.955785248415000011E+000 66 43 -0.162893922250999990E+001 44 44 0.237432917687999998E+004 45 44 -0.776648238225999989E+003 46 44 -0.133530622742000005E+001 47 44 -0.181113816473000000E+001 48 44 -0.177772969248999990E+000 49 44 0.937915535811000041E+003 50 44 -0.941473432522000053E+003 51 44 -0.890922906857000013E-001 52 44 0.781598616070000030E-001 53 44 -0.403486994089000017E+000 54 44 0.108710812343999996E+001 55 44 0.341796677728999979E-001 56 44 -0.144843146096999997E+000 57 44 -0.171620134463000007E+000 58 44 0.381620662866000018E+002 59 44 -0.486371618885000032E+002 60 44 0.384763890956000012E+003 61 44 -0.123432600687000002E+000 62 44 0.143585358717000011E+000 63 44 -0.158027199863000012E+000 64 44 0.955785248415000011E+000 65 44 0.482600920237000020E+000 66 44 0.162893922250999990E+001 45 45 0.780076687344000038E+004 46 45 0.481397589349000024E-001 47 45 -0.960573911317999934E-001 48 45 -0.143166441141999989E+001 49 45 0.397308922863999991E+000 50 45 -0.397308922863999991E+000 51 45 -0.455592713406000005E+001 52 45 -0.333221981957000021E-001 53 45 0.260267259171999998E+000 54 45 -0.296088382068999990E-001 55 45 -0.107970316290000000E-001 56 45 0.107970316290000000E-001 57 45 -0.142525796422000001E+000 58 45 -0.389721320946999981E+003 59 45 0.389721320946999981E+003 60 45 -0.389727024355000003E+004 61 45 -0.260267259171999998E+000 62 45 0.333221981957000021E-001 63 45 -0.296088382068999990E-001 64 45 -0.308417143812000027E+000 65 45 0.308417143812000027E+000 66 45 0.217768219267999996E+000 46 46 0.433464670495999962E+004 47 46 0.103751521888000002E+004 48 46 -0.106910064811000007E+004 49 46 -0.941583821203999946E+003 50 46 -0.938112676027000020E+003 51 46 -0.375201140882000031E-001 52 46 -0.181416120890000004E+000 53 46 0.100031039519000008E-001 54 46 -0.110102497416999998E+000 55 46 -0.118759241165000002E+002 56 46 -0.101138803777000007E+003 57 46 0.112779081876999996E+003 58 46 -0.919992581378999944E+003 59 46 -0.102357019609000005E+003 60 46 0.102161283274000004E+004 61 46 -0.472244399725000008E+002 62 46 -0.388124073676999970E+002 63 46 0.385387723768999990E+003 64 46 0.111674596184000007E-001 65 46 -0.152880175548999997E+001 66 46 0.230787017889000001E+001 47 47 0.433464670495999962E+004 48 47 -0.106910064811000007E+004 49 47 -0.938112676027000020E+003 50 47 -0.941583821203999946E+003 51 47 -0.375201140882000031E-001 52 47 0.100031039519000008E-001 53 47 -0.181416120890000004E+000 54 47 -0.110102497416999998E+000 55 47 -0.102357019609000005E+003 56 47 -0.919992581378999944E+003 57 47 0.102161283274000004E+004 58 47 -0.101138803777000007E+003 59 47 -0.118759241165000002E+002 60 47 0.112779081876999996E+003 61 47 -0.388124073676999970E+002 62 47 -0.472244399725000008E+002 63 47 0.385387723768999990E+003 64 47 -0.152880175548999997E+001 65 47 0.111674596184000007E-001 66 47 0.230787017889000001E+001 48 48 0.117613068234000002E+005 49 48 -0.408509789741999974E+000 50 48 -0.408509789741999974E+000 51 48 -0.419181577513000025E+001 52 48 -0.372215628675000021E-001 53 48 -0.372215628675000021E-001 54 48 -0.765285554308999943E-001 55 48 0.113893354611000007E+003 56 48 0.102209752589000004E+004 57 48 -0.113628808937000008E+004 58 48 0.102209752589000004E+004 59 48 0.113893354611000007E+003 60 48 -0.113628808937000008E+004 61 48 0.390383098953000001E+003 62 48 0.390383098953000001E+003 63 48 -0.389699142423000012E+004 64 48 0.471713590690999995E+000 65 48 0.471713590690999995E+000 66 48 -0.391224497675000005E+000 49 49 0.376774079053000014E+004 50 49 -0.373350110155000026E+000 51 49 0.841513613499000021E-015 52 49 0.398146644976000025E-001 53 49 -0.284579723728000000E+000 54 49 0.484503946499000027E+000 55 49 -0.133141762649000000E-001 56 49 0.446446089157000015E+000 57 49 -0.583477037159999989E+000 58 49 -0.133141762649000000E-001 59 49 0.446446089157000015E+000 60 49 0.583477037159999989E+000 61 49 0.398146644976000025E-001 62 49 -0.284579723728000000E+000 63 49 -0.484503946499000027E+000 64 49 -0.173200926298999991E+001 65 49 -0.154003620171000010E-002 66 49 -0.632833301564000036E-015 50 50 0.376774079053000014E+004 51 50 0.237768516211000006E-014 52 50 -0.284579723728000000E+000 53 50 0.398146644976000025E-001 54 50 0.484503946499000027E+000 55 50 0.446446089157000015E+000 56 50 -0.133141762649000000E-001 57 50 0.583477037159999989E+000 58 50 0.446446089157000015E+000 59 50 -0.133141762649000000E-001 60 50 -0.583477037159999989E+000 61 50 -0.284579723728000000E+000 62 50 0.398146644976000025E-001 63 50 -0.484503946499000027E+000 64 50 -0.154003620171000010E-002 65 50 -0.173200926298999991E+001 66 50 0.202580626125000016E-014 51 51 0.134712595802999999E+004 52 51 0.346281295032000003E+000 53 51 0.346281295032000003E+000 54 51 -0.168907881405999993E+000 55 51 -0.585218592733000031E+000 56 51 0.585218592733000031E+000 57 51 -0.518555309748999993E+000 58 51 0.585218592733000031E+000 59 51 -0.585218592733000031E+000 60 51 -0.518555309748999993E+000 61 51 -0.346281295032000003E+000 62 51 -0.346281295032000003E+000 63 51 -0.168907881405999993E+000 64 51 -0.890424439155000026E-016 65 51 -0.873227796243000037E-015 66 51 -0.132828938889000005E+004 52 52 0.271438465284999984E+004 53 52 0.121108863502000008E+004 54 52 0.386240223006000008E+003 55 52 -0.149265101473999994E+004 56 52 -0.824387674453999963E+000 57 52 0.191922017641000009E+001 58 52 -0.449152519570999997E-001 59 52 0.803842869121000003E+000 60 52 -0.243475062279999988E+000 61 52 0.466903253623000003E+000 62 52 -0.647138692314999986E+000 63 52 -0.358846399998999976E+000 64 52 -0.117773500149000006E+004 65 52 -0.117114929353000002E+004 66 52 0.209744094838000006E+001 53 53 0.271438465284999984E+004 54 53 0.386240223006000008E+003 55 53 0.803842869121000003E+000 56 53 -0.449152519570999997E-001 57 53 -0.243475062279999988E+000 58 53 -0.824387674453999963E+000 59 53 -0.149265101473999994E+004 60 53 0.191922017641000009E+001 61 53 -0.647138692314999986E+000 62 53 0.466903253623000003E+000 63 53 -0.358846399998999976E+000 64 53 -0.117114929353000002E+004 65 53 -0.117773500149000006E+004 66 53 0.209744094838000006E+001 54 54 0.390877653010999984E+004 55 54 -0.122161571309000005E+001 56 54 -0.316825893836000030E-001 57 54 -0.240272581560000020E+001 58 54 -0.316825893836000030E-001 59 54 -0.122161571309000005E+001 60 54 -0.240272581560000020E+001 61 54 0.358846399998999976E+000 62 54 0.358846399998999976E+000 63 54 0.218801579638000021E+001 64 54 -0.463774472614999989E+000 65 54 -0.463774472614999989E+000 66 54 -0.872164127777000076E+001 55 55 0.364658682098000008E+004 56 55 -0.100674575619999996E+004 57 55 0.521724247293999952E+003 58 55 0.413395018471000020E+000 59 55 0.831818839715000036E+000 60 55 0.296378290611999995E+000 61 55 -0.449152519570999997E-001 62 55 -0.824387674453999963E+000 63 55 0.316825893836000030E-001 64 55 -0.117833958110999993E+004 65 55 0.117079264807999994E+004 66 55 -0.196467554793999999E+001 56 56 0.364658682098000008E+004 57 56 -0.521724247293999952E+003 58 56 0.831818839715000036E+000 59 56 0.413395018471000020E+000 60 56 -0.296378290611999995E+000 61 56 0.803842869121000003E+000 62 56 -0.149265101473999994E+004 63 56 0.122161571309000005E+001 64 56 0.117079264807999994E+004 65 56 -0.117833958110999993E+004 66 56 0.196467554793999999E+001 57 57 0.618167593290999957E+004 58 57 -0.296378290611999995E+000 59 57 0.296378290611999995E+000 60 57 0.206730281500000013E+001 61 57 0.243475062279999988E+000 62 57 -0.191922017641000009E+001 63 57 -0.240272581560000020E+001 64 57 0.242306217034999993E+000 65 57 -0.242306217034999993E+000 66 57 -0.849838779174000081E+001 58 58 0.364658682098000008E+004 59 58 -0.100674575619999996E+004 60 58 -0.521724247293999952E+003 61 58 -0.149265101473999994E+004 62 58 0.803842869121000003E+000 63 58 0.122161571309000005E+001 64 58 -0.117833958110999993E+004 65 58 0.117079264807999994E+004 66 58 0.196467554793999999E+001 59 59 0.364658682098000008E+004 60 59 0.521724247293999952E+003 61 59 -0.824387674453999963E+000 62 59 -0.449152519570999997E-001 63 59 0.316825893836000030E-001 64 59 0.117079264807999994E+004 65 59 -0.117833958110999993E+004 66 59 -0.196467554793999999E+001 60 60 0.618167593290999957E+004 61 60 -0.191922017641000009E+001 62 60 0.243475062279999988E+000 63 60 -0.240272581560000020E+001 64 60 -0.242306217034999993E+000 65 60 0.242306217034999993E+000 66 60 -0.849838779174000081E+001 61 61 0.271438465284999984E+004 62 61 0.121108863502000008E+004 63 61 -0.386240223006000008E+003 64 61 -0.117773500149000006E+004 65 61 -0.117114929353000002E+004 66 61 -0.209744094838000006E+001 62 62 0.271438465284999984E+004 63 62 -0.386240223006000008E+003 64 62 -0.117114929353000002E+004 65 62 -0.117773500149000006E+004 66 62 -0.209744094838000006E+001 63 63 0.390877653010999984E+004 64 63 0.463774472614999989E+000 65 63 0.463774472614999989E+000 66 63 -0.872164127777000076E+001 64 64 0.471321117495999988E+004 65 64 0.140760956298000006E+001 66 64 -0.145663588380000007E-014 65 65 0.471321117495999988E+004 66 65 -0.314819010658000001E-014 66 66 0.136307691485999999E+004 SuiteSparse/CHOLMOD/Demo/Matrix/mangle1.mtx0000644001170100242450000000005410276435314017246 0ustar davisfac%%MatrixMarket junk coordinate real general SuiteSparse/CHOLMOD/Demo/Matrix/mangle2.mtx0000644001170100242450000000005010276435345017247 0ustar davisfac%%MatrixMarket matrix junk real general SuiteSparse/CHOLMOD/Demo/Matrix/mangle3.mtx0000644001170100242450000000005610276435407017255 0ustar davisfac%%MatrixMarket matrix coordinate junk general SuiteSparse/CHOLMOD/Demo/Matrix/mangle4.mtx0000644001170100242450000000005310276435423017251 0ustar davisfac%%MatrixMarket matrix coordinate real junk SuiteSparse/CHOLMOD/Demo/Matrix/mangle5.tri0000644001170100242450000000010610276437171017241 0ustar davisfac-3 3 5 1 1 1 1. 0. 1 3 2. -1. 2 2 1. 0. 2 3 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Demo/Matrix/mangle6.tri0000644001170100242450000000001210276441400017224 0ustar davisfac3 3 1 0 5 SuiteSparse/CHOLMOD/Demo/Matrix/mangle7.tri0000644001170100242450000000002510276442051017234 0ustar davisfac3 3 1 0 999 999 3.14 SuiteSparse/CHOLMOD/Demo/Matrix/mangle8.tri0000644001170100242450000000002610276443007017240 0ustar davisfac3 3 1 0 -999 999 3.14 SuiteSparse/CHOLMOD/Demo/Matrix/empty.tri0000644001170100242450000000000010276435100017026 0ustar davisfacSuiteSparse/CHOLMOD/Demo/Matrix/up.tri0000644001170100242450000000010510276437074016336 0ustar davisfac3 3 5 1 1 1 1. 0. 1 3 2. -1. 2 2 1. 0. 2 3 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Demo/Matrix/can___24.mtx0000644001170100242450000000103610253622164017263 0ustar davisfac%%MatrixMarket matrix coordinate pattern symmetric 24 24 92 1 1 6 1 7 1 13 1 14 1 18 1 19 1 20 1 22 1 2 2 9 2 10 2 14 2 15 2 18 2 3 3 7 3 12 3 21 3 22 3 23 3 4 4 8 4 11 4 16 4 19 4 20 4 5 5 8 5 10 5 15 5 16 5 17 5 6 6 7 6 13 6 14 6 18 6 7 7 12 7 13 7 20 7 22 7 24 7 8 8 10 8 15 8 16 8 17 8 18 8 19 8 9 9 10 9 15 9 10 10 14 10 15 10 18 10 19 10 11 11 19 11 20 11 21 11 22 11 12 12 13 12 22 12 24 12 13 13 24 13 14 14 18 14 15 15 16 16 17 16 19 16 17 17 18 18 19 18 20 18 19 19 20 19 20 20 21 20 22 20 21 21 22 21 23 21 22 22 23 22 23 23 24 24 SuiteSparse/CHOLMOD/Demo/Matrix/lp_afiro.rra0000644001170100242450000001023610253407300017461 0ustar davisfacLP problem: min c'*x, where Ax=b, l<=x<=u (c,l,u,z0 in lp_afiro.clu )AFIRO 58 3 4 34 17 RRA 27 51 102 0 (20i4) (26i3) (3e26.18) (3e26.18) F 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 26 28 30 34 38 42 46 48 50 52 54 56 58 60 64 66 68 70 72 76 80 84 88 90 92 94 96 98 100 102 103 3 4 7 8 9 10 13 14 17 18 19 20 21 22 23 24 25 26 27 1 2 3 24 1 4 1 22 2 26 5 6 7 25 5 6 8 25 5 6 9 25 5 6 10 25 7 21 8 21 9 21 10 21 4 5 5 23 6 27 11 12 13 22 11 14 11 24 11 21 12 26 15 16 17 23 15 16 18 23 15 16 19 23 15 16 20 23 17 21 18 21 19 21 20 21 14 16 16 25 15 27 16 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 -0.106000000000000005E+01 0.100000000000000000E+01 0.300999999999999990E+00 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 -0.106000000000000005E+01 0.100000000000000000E+01 0.300999999999999990E+00 -0.100000000000000000E+01 -0.106000000000000005E+01 0.100000000000000000E+01 0.313000000000000000E+00 -0.100000000000000000E+01 -0.959999999999999964E+00 0.100000000000000000E+01 0.313000000000000000E+00 -0.100000000000000000E+01 -0.859999999999999987E+00 0.100000000000000000E+01 0.326000000000000012E+00 -0.100000000000000000E+01 0.236399999999999988E+01 -0.100000000000000000E+01 0.238600000000000012E+01 -0.100000000000000000E+01 0.240799999999999992E+01 -0.100000000000000000E+01 0.242899999999999983E+01 0.139999999999999991E+01 0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 -0.429999999999999993E+00 0.100000000000000000E+01 0.109000000000000000E+00 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 -0.429999999999999993E+00 0.100000000000000000E+01 0.100000000000000000E+01 0.109000000000000000E+00 -0.429999999999999993E+00 0.100000000000000000E+01 0.100000000000000000E+01 0.107999999999999999E+00 -0.390000000000000013E+00 0.100000000000000000E+01 0.100000000000000000E+01 0.107999999999999999E+00 -0.369999999999999996E+00 0.100000000000000000E+01 0.100000000000000000E+01 0.106999999999999998E+00 -0.100000000000000000E+01 0.219099999999999984E+01 -0.100000000000000000E+01 0.221899999999999986E+01 -0.100000000000000000E+01 0.224900000000000011E+01 -0.100000000000000000E+01 0.227899999999999991E+01 0.139999999999999991E+01 -0.100000000000000000E+01 0.100000000000000000E+01 -0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.100000000000000000E+01 0.000000000000000000E+00 0.000000000000000000E+00 0.800000000000000000E+02 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.800000000000000000E+02 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.500000000000000000E+03 0.000000000000000000E+00 0.000000000000000000E+00 0.440000000000000000E+02 0.500000000000000000E+03 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 0.310000000000000000E+03 0.300000000000000000E+03 SuiteSparse/CHOLMOD/Demo/Matrix/lp_afiro.tri0000644001170100242450000001147410253410452017502 0ustar davisfac% title:LP problem: min c'*x, where Ax=b, l<=x<=u (c,l,u,z0 in lp_afiro.clu ) % key: AFIRO 27 51 102 0 3 1 0.100000000000000000E+001 4 2 0.100000000000000000E+001 7 3 0.100000000000000000E+001 8 4 0.100000000000000000E+001 9 5 0.100000000000000000E+001 10 6 0.100000000000000000E+001 13 7 0.100000000000000000E+001 14 8 0.100000000000000000E+001 17 9 0.100000000000000000E+001 18 10 0.100000000000000000E+001 19 11 0.100000000000000000E+001 20 12 0.100000000000000000E+001 21 13 0.100000000000000000E+001 22 14 0.100000000000000000E+001 23 15 0.100000000000000000E+001 24 16 0.100000000000000000E+001 25 17 0.100000000000000000E+001 26 18 0.100000000000000000E+001 27 19 0.100000000000000000E+001 1 20 -0.100000000000000000E+001 2 20 -0.106000000000000005E+001 3 20 0.100000000000000000E+001 24 20 0.300999999999999990E+000 1 21 0.100000000000000000E+001 4 21 -0.100000000000000000E+001 1 22 0.100000000000000000E+001 22 22 -0.100000000000000000E+001 2 23 0.100000000000000000E+001 26 23 0.100000000000000000E+001 5 24 -0.100000000000000000E+001 6 24 -0.106000000000000005E+001 7 24 0.100000000000000000E+001 25 24 0.300999999999999990E+000 5 25 -0.100000000000000000E+001 6 25 -0.106000000000000005E+001 8 25 0.100000000000000000E+001 25 25 0.313000000000000000E+000 5 26 -0.100000000000000000E+001 6 26 -0.959999999999999964E+000 9 26 0.100000000000000000E+001 25 26 0.313000000000000000E+000 5 27 -0.100000000000000000E+001 6 27 -0.859999999999999987E+000 10 27 0.100000000000000000E+001 25 27 0.326000000000000012E+000 7 28 -0.100000000000000000E+001 21 28 0.236399999999999988E+001 8 29 -0.100000000000000000E+001 21 29 0.238600000000000012E+001 9 30 -0.100000000000000000E+001 21 30 0.240799999999999992E+001 10 31 -0.100000000000000000E+001 21 31 0.242899999999999983E+001 4 32 0.139999999999999991E+001 5 32 0.100000000000000000E+001 5 33 0.100000000000000000E+001 23 33 -0.100000000000000000E+001 6 34 0.100000000000000000E+001 27 34 0.100000000000000000E+001 11 35 -0.100000000000000000E+001 12 35 -0.429999999999999993E+000 13 35 0.100000000000000000E+001 22 35 0.109000000000000000E+000 11 36 0.100000000000000000E+001 14 36 -0.100000000000000000E+001 11 37 0.100000000000000000E+001 24 37 -0.100000000000000000E+001 11 38 0.100000000000000000E+001 21 38 -0.100000000000000000E+001 12 39 0.100000000000000000E+001 26 39 0.100000000000000000E+001 15 40 -0.429999999999999993E+000 16 40 0.100000000000000000E+001 17 40 0.100000000000000000E+001 23 40 0.109000000000000000E+000 15 41 -0.429999999999999993E+000 16 41 0.100000000000000000E+001 18 41 0.100000000000000000E+001 23 41 0.107999999999999999E+000 15 42 -0.390000000000000013E+000 16 42 0.100000000000000000E+001 19 42 0.100000000000000000E+001 23 42 0.107999999999999999E+000 15 43 -0.369999999999999996E+000 16 43 0.100000000000000000E+001 20 43 0.100000000000000000E+001 23 43 0.106999999999999998E+000 17 44 -0.100000000000000000E+001 21 44 0.219099999999999984E+001 18 45 -0.100000000000000000E+001 21 45 0.221899999999999986E+001 19 46 -0.100000000000000000E+001 21 46 0.224900000000000011E+001 20 47 -0.100000000000000000E+001 21 47 0.227899999999999991E+001 14 48 0.139999999999999991E+001 16 48 -0.100000000000000000E+001 16 49 0.100000000000000000E+001 25 49 -0.100000000000000000E+001 15 50 0.100000000000000000E+001 27 50 0.100000000000000000E+001 16 51 0.100000000000000000E+001 SuiteSparse/CHOLMOD/Demo/Matrix/one.tri0000644001170100242450000000006610276443271016475 0ustar davisfac%%MatrixMarket matrix coord pattern general 1 1 1 1 1 SuiteSparse/CHOLMOD/Demo/make.out0000644001170100242450000001621510711432450015370 0ustar davisfac./cholmod_demo < Matrix/bcsstk01.tri ---------------------------------- cholmod_demo: norm (A,inf) = 3.57095e+09 norm (A,1) = 3.57095e+09 CHOLMOD sparse: A: 48-by-48, nz 224, upper. OK CHOLMOD dense: B: 48-by-1, OK bnorm 1.97917 Analyze: flop 6009 lnz 489 Factorizing A CHOLMOD factor: L: 48-by-48 simplicial, LDL'. nzmax 489. nz 489 OK Ordering: AMD fl/lnz 12.3 lnz/anz 2.2 ints in L: 782, doubles in L: 489 factor flops 6009 nnz(L) 489 (w/no amalgamation) nnz(A*A'): 224 flops / nnz(L): 12.3 nnz(L) / nnz(A): 2.2 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 2.5e-19 (|Ax-b|/(|A||x|+|b|)) residual 1.3e-19 (|Ax-b|/(|A||x|+|b|)) after iterative refinement rcond 9.5e-06 ./cholmod_l_demo < Matrix/bcsstk01.tri ---------------------------------- cholmod_l_demo: norm (A,inf) = 3.57095e+09 norm (A,1) = 3.57095e+09 CHOLMOD sparse: A: 48-by-48, nz 224, upper. OK CHOLMOD dense: B: 48-by-1, OK bnorm 1.97917 Analyze: flop 6009 lnz 489 Factorizing A CHOLMOD factor: L: 48-by-48 simplicial, LDL'. nzmax 489. nz 489 OK Ordering: AMD fl/lnz 12.3 lnz/anz 2.2 ints in L: 782, doubles in L: 489 factor flops 6009 nnz(L) 489 (w/no amalgamation) nnz(A*A'): 224 flops / nnz(L): 12.3 nnz(L) / nnz(A): 2.2 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 2.5e-19 (|Ax-b|/(|A||x|+|b|)) residual 1.3e-19 (|Ax-b|/(|A||x|+|b|)) after iterative refinement rcond 9.5e-06 ./cholmod_demo < Matrix/lp_afiro.tri ---------------------------------- cholmod_demo: norm (A,inf) = 20.525 norm (A,1) = 3.429 CHOLMOD sparse: A: 27-by-51, nz 102, up/lo. OK CHOLMOD dense: B: 27-by-1, OK bnorm 1.96296 Analyze: flop 529 lnz 113 Factorizing A*A'+beta*I CHOLMOD factor: L: 27-by-27 simplicial, LDL'. nzmax 113. nz 113 OK Ordering: AMD fl/lnz 4.7 lnz/anz 1.3 ints in L: 280, doubles in L: 113 factor flops 529 nnz(L) 113 (w/no amalgamation) nnz(A): 90 flops / nnz(L): 4.7 nnz(L) / nnz(A): 1.3 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 7.4e-17 (|Ax-b|/(|A||x|+|b|)) rcond 3.0e-02 ./cholmod_l_demo < Matrix/lp_afiro.tri ---------------------------------- cholmod_l_demo: norm (A,inf) = 20.525 norm (A,1) = 3.429 CHOLMOD sparse: A: 27-by-51, nz 102, up/lo. OK CHOLMOD dense: B: 27-by-1, OK bnorm 1.96296 Analyze: flop 529 lnz 113 Factorizing A*A'+beta*I CHOLMOD factor: L: 27-by-27 simplicial, LDL'. nzmax 113. nz 113 OK Ordering: AMD fl/lnz 4.7 lnz/anz 1.3 ints in L: 280, doubles in L: 113 factor flops 529 nnz(L) 113 (w/no amalgamation) nnz(A): 90 flops / nnz(L): 4.7 nnz(L) / nnz(A): 1.3 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 7.4e-17 (|Ax-b|/(|A||x|+|b|)) rcond 3.0e-02 ./cholmod_demo < Matrix/can___24.mtx ---------------------------------- cholmod_demo: norm (A,inf) = 17 norm (A,1) = 17 CHOLMOD sparse: A: 24-by-24, nz 92, upper. OK CHOLMOD dense: B: 24-by-1, OK bnorm 1.95833 Analyze: flop 656 lnz 120 Factorizing A CHOLMOD factor: L: 24-by-24 simplicial, LDL'. nzmax 120. nz 120 OK Ordering: AMD fl/lnz 5.5 lnz/anz 1.3 ints in L: 269, doubles in L: 120 factor flops 656 nnz(L) 120 (w/no amalgamation) nnz(A*A'): 92 flops / nnz(L): 5.5 nnz(L) / nnz(A): 1.3 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 1.3e-16 (|Ax-b|/(|A||x|+|b|)) residual 7.5e-17 (|Ax-b|/(|A||x|+|b|)) after iterative refinement rcond 5.0e-01 ./cholmod_l_demo < Matrix/can___24.mtx ---------------------------------- cholmod_l_demo: norm (A,inf) = 17 norm (A,1) = 17 CHOLMOD sparse: A: 24-by-24, nz 92, upper. OK CHOLMOD dense: B: 24-by-1, OK bnorm 1.95833 Analyze: flop 656 lnz 120 Factorizing A CHOLMOD factor: L: 24-by-24 simplicial, LDL'. nzmax 120. nz 120 OK Ordering: AMD fl/lnz 5.5 lnz/anz 1.3 ints in L: 269, doubles in L: 120 factor flops 656 nnz(L) 120 (w/no amalgamation) nnz(A*A'): 92 flops / nnz(L): 5.5 nnz(L) / nnz(A): 1.3 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 1.3e-16 (|Ax-b|/(|A||x|+|b|)) residual 7.5e-17 (|Ax-b|/(|A||x|+|b|)) after iterative refinement rcond 5.0e-01 ./cholmod_demo < Matrix/c.tri ---------------------------------- cholmod_demo: norm (A,inf) = 47.2361 norm (A,1) = 47.2361 CHOLMOD sparse: A: 3-by-3, nz 5, upper. OK CHOLMOD dense: B: 3-by-1, OK bnorm 1.66759 Analyze: flop 9 lnz 5 Factorizing A CHOLMOD factor: L: 3-by-3 simplicial, LDL'. nzmax 5. nz 5 OK Ordering: AMD fl/lnz 1.8 lnz/anz 1.0 ints in L: 28, doubles in L: 5 factor flops 9 nnz(L) 5 (w/no amalgamation) nnz(A*A'): 5 flops / nnz(L): 1.8 nnz(L) / nnz(A): 1.0 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 2.0e-17 (|Ax-b|/(|A||x|+|b|)) rcond 3.6e-02 ./cholmod_l_demo < Matrix/c.tri ---------------------------------- cholmod_l_demo: norm (A,inf) = 47.2361 norm (A,1) = 47.2361 CHOLMOD sparse: A: 3-by-3, nz 5, upper. OK CHOLMOD dense: B: 3-by-1, OK bnorm 1.66759 Analyze: flop 9 lnz 5 Factorizing A CHOLMOD factor: L: 3-by-3 simplicial, LDL'. nzmax 5. nz 5 OK Ordering: AMD fl/lnz 1.8 lnz/anz 1.0 ints in L: 28, doubles in L: 5 factor flops 9 nnz(L) 5 (w/no amalgamation) nnz(A*A'): 5 flops / nnz(L): 1.8 nnz(L) / nnz(A): 1.0 analyze cputime: 0.0000 factor cputime: 0.0000 mflop: 0.0 solve cputime: 0.0000 mflop: 0.0 overall cputime: 0.0000 mflop: 0.0 peak memory usage: 0 (MB) residual 2.0e-17 (|Ax-b|/(|A||x|+|b|)) rcond 3.6e-02 ./cholmod_simple < Matrix/c.tri CHOLMOD sparse: A: 3-by-3, nz 5, upper. OK norm(b-Ax) 5.6e-17 ./cholmod_simple < Matrix/can___24.mtx CHOLMOD sparse: A: 24-by-24, nz 92, upper. OK norm(b-Ax) 2.0e-15 ./cholmod_simple < Matrix/bcsstk01.tri CHOLMOD sparse: A: 48-by-48, nz 224, upper. OK norm(b-Ax) 2.7e-13 SuiteSparse/CHOLMOD/Demo/cholmod_demo.c0000644001170100242450000002777510537777464016563 0ustar davisfac/* ========================================================================== */ /* === Demo/cholmod_demo ==================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Demo Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Demo Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Read in a matrix from a file, and use CHOLMOD to solve Ax=b if A is * symmetric, or (AA'+beta*I)x=b otherwise. The file format is a simple * triplet format, compatible with most files in the Matrix Market format. * See cholmod_read.c for more details. The readhb.f program reads a * Harwell/Boeing matrix (excluding element-types) and converts it into the * form needed by this program. reade.f reads a matrix in Harwell/Boeing * finite-element form. * * Usage: * cholmod_demo matrixfile * cholmod_demo < matrixfile * * The matrix is assumed to be positive definite (a supernodal LL' or simplicial * LDL' factorization is used). * * Requires the Core, Cholesky, MatrixOps, and Check Modules. * Optionally uses the Partition and Supernodal Modules. * Does not use the Modify Module. * * See cholmod_simple.c for a simpler demo program. */ #include "cholmod_demo.h" /* ff is a global variable so that it can be closed by my_handler */ FILE *ff ; /* halt if an error occurs */ static void my_handler (int status, char *file, int line, char *message) { printf ("cholmod error: file: %s line: %d status: %d: %s\n", file, line, status, message) ; if (status < 0) { if (ff != NULL) fclose (ff) ; exit (0) ; } } int main (int argc, char **argv) { double resid, t, ta, tf, ts, tot, bnorm, xnorm, anorm, rnorm, fl, anz, axbnorm, rnorm2, resid2 ; FILE *f ; cholmod_sparse *A ; cholmod_dense *X, *B, *W, *R ; double one [2], zero [2], minusone [2], beta [2], xlnz ; cholmod_common Common, *cm ; cholmod_factor *L ; double *Bx, *Rx, *Xx ; int i, n, isize, xsize, ordering, xtype, s, ss, lnz ; /* ---------------------------------------------------------------------- */ /* get the file containing the input matrix */ /* ---------------------------------------------------------------------- */ ff = NULL ; if (argc > 1) { if ((f = fopen (argv [1], "r")) == NULL) { my_handler (CHOLMOD_INVALID, __FILE__, __LINE__, "unable to open file") ; } ff = f ; } else { f = stdin ; } /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_start (cm) ; /* use default parameter settings, except for the error handler. This * demo program terminates if an error occurs (out of memory, not positive * definite, ...). It makes the demo program simpler (no need to check * CHOLMOD error conditions). This non-default parameter setting has no * effect on performance. */ cm->error_handler = my_handler ; /* Note that CHOLMOD will do a supernodal LL' or a simplicial LDL' by * default, automatically selecting the latter if flop/nnz(L) < 40. */ /* ---------------------------------------------------------------------- */ /* create basic scalars */ /* ---------------------------------------------------------------------- */ zero [0] = 0 ; zero [1] = 0 ; one [0] = 1 ; one [1] = 0 ; minusone [0] = -1 ; minusone [1] = 0 ; beta [0] = 1e-6 ; beta [1] = 0 ; /* ---------------------------------------------------------------------- */ /* read in a matrix */ /* ---------------------------------------------------------------------- */ printf ("\n---------------------------------- cholmod_demo:\n") ; A = cholmod_read_sparse (f, cm) ; if (ff != NULL) fclose (ff) ; anorm = cholmod_norm_sparse (A, 0, cm) ; xtype = A->xtype ; printf ("norm (A,inf) = %g\n", anorm) ; printf ("norm (A,1) = %g\n", cholmod_norm_sparse (A, 1, cm)) ; cholmod_print_sparse (A, "A", cm) ; if (A->nrow > A->ncol) { /* Transpose A so that A'A+beta*I will be factorized instead */ cholmod_sparse *C = cholmod_transpose (A, 2, cm) ; cholmod_free_sparse (&A, cm) ; A = C ; printf ("transposing input matrix\n") ; } /* ---------------------------------------------------------------------- */ /* create an arbitrary right-hand-side */ /* ---------------------------------------------------------------------- */ n = A->nrow ; B = cholmod_zeros (n, 1, xtype, cm) ; Bx = B->x ; #if GHS { /* b = A*ones(n,1), used by Gould, Hu, and Scott in their experiments */ cholmod_dense *X0 ; X0 = cholmod_ones (A->ncol, 1, xtype, cm) ; cholmod_sdmult (A, 0, one, zero, X0, B, cm) ; cholmod_free_dense (&X0, cm) ; } #else if (xtype == CHOLMOD_REAL) { /* real case */ for (i = 0 ; i < n ; i++) { double x = n ; Bx [i] = 1 + i / x ; } } else { /* complex case */ for (i = 0 ; i < n ; i++) { double x = n ; Bx [2*i ] = 1 + i / x ; /* real part of B(i) */ Bx [2*i+1] = (x/2 - i) / (3*x) ; /* imag part of B(i) */ } } #endif cholmod_print_dense (B, "B", cm) ; bnorm = cholmod_norm_dense (B, 0, cm) ; /* max norm */ printf ("bnorm %g\n", bnorm) ; /* ---------------------------------------------------------------------- */ /* analyze, factorize, and solve */ /* ---------------------------------------------------------------------- */ t = CPUTIME ; L = cholmod_analyze (A, cm) ; ta = CPUTIME - t ; ta = MAX (ta, 0) ; printf ("Analyze: flop %g lnz %g\n", cm->fl, cm->lnz) ; if (A->stype == 0) { printf ("Factorizing A*A'+beta*I\n") ; t = CPUTIME ; cholmod_factorize_p (A, beta, NULL, 0, L, cm) ; tf = CPUTIME - t ; tf = MAX (tf, 0) ; } else { printf ("Factorizing A\n") ; t = CPUTIME ; cholmod_factorize (A, L, cm) ; tf = CPUTIME - t ; tf = MAX (tf, 0) ; } t = CPUTIME ; X = cholmod_solve (CHOLMOD_A, L, B, cm) ; ts = CPUTIME - t ; ts = MAX (ts, 0) ; tot = ta + tf + ts ; /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { /* (AA'+beta*I)x=b is the linear system that was solved */ /* W = A'*X */ W = cholmod_allocate_dense (A->ncol, 1, A->ncol, xtype, cm) ; cholmod_sdmult (A, 2, one, zero, X, W, cm) ; /* R = B - beta*X */ R = cholmod_zeros (n, 1, xtype, cm) ; Rx = R->x ; Xx = X->x ; if (xtype == CHOLMOD_REAL) { for (i = 0 ; i < n ; i++) { Rx [i] = Bx [i] - beta [0] * Xx [i] ; } } else { /* complex case */ for (i = 0 ; i < n ; i++) { Rx [2*i ] = Bx [2*i ] - beta [0] * Xx [2*i ] ; Rx [2*i+1] = Bx [2*i+1] - beta [0] * Xx [2*i+1] ; } } /* R = A*W - R */ cholmod_sdmult (A, 0, one, minusone, W, R, cm) ; cholmod_free_dense (&W, cm) ; } else { /* Ax=b was factorized and solved, R = B-A*X */ R = cholmod_copy_dense (B, cm) ; cholmod_sdmult (A, 0, minusone, one, X, R, cm) ; } rnorm = cholmod_norm_dense (R, 0, cm) ; /* max abs. entry */ xnorm = cholmod_norm_dense (X, 0, cm) ; /* max abs. entry */ axbnorm = (anorm * xnorm + bnorm + ((n == 0) ? 1 : 0)) ; resid = rnorm / axbnorm ; /* ---------------------------------------------------------------------- */ /* iterative refinement (real symmetric case only) */ /* ---------------------------------------------------------------------- */ resid2 = -1 ; if (A->stype != 0 && A->xtype == CHOLMOD_REAL) { cholmod_dense *R2 ; /* R2 = A\(B-A*X) */ R2 = cholmod_solve (CHOLMOD_A, L, R, cm) ; /* compute X = X + A\(B-A*X) */ Xx = X->x ; Rx = R2->x ; for (i = 0 ; i < n ; i++) { Xx [i] = Xx [i] + Rx [i] ; } cholmod_free_dense (&R2, cm) ; cholmod_free_dense (&R, cm) ; /* compute the new residual, R = B-A*X */ R = cholmod_copy_dense (B, cm) ; cholmod_sdmult (A, 0, minusone, one, X, R, cm) ; rnorm2 = cholmod_norm_dense (R, 0, cm) ; resid2 = rnorm2 / axbnorm ; } cholmod_free_dense (&R, cm) ; /* ---------------------------------------------------------------------- */ /* print results */ /* ---------------------------------------------------------------------- */ cholmod_print_factor (L, "L", cm) ; /* determine the # of integers's and reals's in L. See cholmod_free */ if (L->is_super) { s = L->nsuper + 1 ; xsize = L->xsize ; ss = L->ssize ; isize = n /* L->Perm */ + n /* L->ColCount, nz in each column of 'pure' L */ + s /* L->pi, column pointers for L->s */ + s /* L->px, column pointers for L->x */ + s /* L->super, starting column index of each supernode */ + ss ; /* L->s, the pattern of the supernodes */ } else { /* this space can increase if you change parameters to their non- * default values (cm->final_pack, for example). */ lnz = L->nzmax ; xsize = lnz ; isize = n /* L->Perm */ + n /* L->ColCount, nz in each column of 'pure' L */ + n+1 /* L->p, column pointers */ + lnz /* L->i, integer row indices */ + n /* L->nz, nz in each column of L */ + n+2 /* L->next, link list */ + n+2 ; /* L->prev, link list */ } anz = cm->anz ; for (i = 0 ; i < CHOLMOD_MAXMETHODS ; i++) { fl = cm->method [i].fl ; xlnz = cm->method [i].lnz ; cm->method [i].fl = -1 ; cm->method [i].lnz = -1 ; ordering = cm->method [i].ordering ; if (fl >= 0) { printf ("Ordering: ") ; if (ordering == CHOLMOD_POSTORDERED) printf ("postordered ") ; if (ordering == CHOLMOD_NATURAL) printf ("natural ") ; if (ordering == CHOLMOD_GIVEN) printf ("user ") ; if (ordering == CHOLMOD_AMD) printf ("AMD ") ; if (ordering == CHOLMOD_METIS) printf ("METIS ") ; if (ordering == CHOLMOD_NESDIS) printf ("NESDIS ") ; if (xlnz > 0) { printf ("fl/lnz %10.1f", fl / xlnz) ; } if (anz > 0) { printf (" lnz/anz %10.1f", xlnz / anz) ; } printf ("\n") ; } } printf ("ints in L: %d, doubles in L: %d\n", isize, xsize) ; printf ("factor flops %g nnz(L) %15.0f (w/no amalgamation)\n", cm->fl, cm->lnz) ; if (A->stype == 0) { printf ("nnz(A): %15.0f\n", cm->anz) ; } else { printf ("nnz(A*A'): %15.0f\n", cm->anz) ; } if (cm->lnz > 0) { printf ("flops / nnz(L): %8.1f\n", cm->fl / cm->lnz) ; } if (anz > 0) { printf ("nnz(L) / nnz(A): %8.1f\n", cm->lnz / cm->anz) ; } printf ("analyze cputime: %12.4f\n", ta) ; printf ("factor cputime: %12.4f mflop: %8.1f\n", tf, (tf == 0) ? 0 : (1e-6*cm->fl / tf)) ; printf ("solve cputime: %12.4f mflop: %8.1f\n", ts, (ts == 0) ? 0 : (1e-6*4*cm->lnz / ts)) ; printf ("overall cputime: %12.4f mflop: %8.1f\n", tot, (tot == 0) ? 0 : (1e-6 * (cm->fl + 4 * cm->lnz) / tot)) ; printf ("peak memory usage: %12.0f (MB)\n", (double) (cm->memory_usage) / 1048576.) ; printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))\n", resid) ; if (resid2 >= 0) { printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))" " after iterative refinement\n", resid2) ; } printf ("rcond %8.1e\n\n", cholmod_rcond (L, cm)) ; cholmod_free_factor (&L, cm) ; cholmod_free_dense (&X, cm) ; /* ---------------------------------------------------------------------- */ /* free matrices and finish CHOLMOD */ /* ---------------------------------------------------------------------- */ cholmod_free_sparse (&A, cm) ; cholmod_free_dense (&B, cm) ; cholmod_finish (cm) ; return (0) ; } SuiteSparse/CHOLMOD/Demo/cholmod_demo.h0000644001170100242450000000172610537777466016556 0ustar davisfac/* ========================================================================== */ /* === Demo/cholmod_demo.h ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Demo Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Demo Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ #include "cholmod.h" #include #include #include #include #include #define TRUE 1 #define FALSE 0 #define CPUTIME ((double) (clock ( )) / CLOCKS_PER_SEC) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) SuiteSparse/CHOLMOD/Demo/License.txt0000644001170100242450000000203310540000270016025 0ustar davisfacCHOLMOD/Demo Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Demo module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/Demo/cholmod_simple.c0000644001170100242450000000423610537777472017112 0ustar davisfac/* ========================================================================== */ /* === Demo/cholmod_simple ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Demo Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Demo Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Read in a real symmetric or complex Hermitian matrix from stdin in * MatrixMarket format, solve Ax=b where b=[1 1 ... 1]', and print the residual. * Usage: cholmod_simple < matrixfile */ #include "cholmod.h" int main (void) { cholmod_sparse *A ; cholmod_dense *x, *b, *r ; cholmod_factor *L ; double one [2] = {1,0}, m1 [2] = {-1,0} ; /* basic scalars */ cholmod_common c ; cholmod_start (&c) ; /* start CHOLMOD */ A = cholmod_read_sparse (stdin, &c) ; /* read in a matrix */ cholmod_print_sparse (A, "A", &c) ; /* print the matrix */ if (A == NULL || A->stype == 0) /* A must be symmetric */ { cholmod_free_sparse (&A, &c) ; cholmod_finish (&c) ; return (0) ; } b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; /* b = ones(n,1) */ L = cholmod_analyze (A, &c) ; /* analyze */ cholmod_factorize (A, L, &c) ; /* factorize */ x = cholmod_solve (CHOLMOD_A, L, b, &c) ; /* solve Ax=b */ r = cholmod_copy_dense (b, &c) ; /* r = b */ cholmod_sdmult (A, 0, m1, one, x, r, &c) ; /* r = r-Ax */ printf ("norm(b-Ax) %8.1e\n", cholmod_norm_dense (r, 0, &c)) ; /* print norm(r) */ cholmod_free_factor (&L, &c) ; /* free matrices */ cholmod_free_sparse (&A, &c) ; cholmod_free_dense (&r, &c) ; cholmod_free_dense (&x, &c) ; cholmod_free_dense (&b, &c) ; cholmod_finish (&c) ; /* finish CHOLMOD */ return (0) ; } SuiteSparse/CHOLMOD/Demo/gpl.txt0000644001170100242450000004313310253411077015247 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/Demo/cholmod_l_demo.c0000644001170100242450000003022510537777470017053 0ustar davisfac/* ========================================================================== */ /* === Demo/cholmod_l_demo ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Demo Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Demo Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Read in a matrix from a file, and use CHOLMOD to solve Ax=b if A is * symmetric, or (AA'+beta*I)x=b otherwise. The file format is a simple * triplet format, compatible with most files in the Matrix Market format. * See cholmod_read.c for more details. The readhb.f format reads a * Harwell/Boeing matrix (excluding element-types) and converts it into the * form needed by this program. reade.f reads a matrix in Harwell/Boeing * finite-element form. * * Usage: * cholmod_l_demo matrixfile * cholmod_l_demo < matrixfile * * The matrix is assumed to be positive definite (a supernodal LL' or simplicial * LDL' factorization is used). * * Requires the Core, Cholesky, MatrixOps, and Check Modules. * Optionally uses the Partition and Supernodal Modules. * Does not use the Modify Module. * * See cholmod_simple.c for a simpler demo program. * * UF_long is normally defined as long, except for WIN64. */ #include "cholmod_demo.h" /* ff is a global variable so that it can be closed by my_handler */ FILE *ff ; /* halt if an error occurs */ static void my_handler (int status, char *file, int line, char *message) { printf ("cholmod error: file: %s line: %d status: %d: %s\n", file, line, status, message) ; if (status < 0) { if (ff != NULL) fclose (ff) ; exit (0) ; } } int main (int argc, char **argv) { double resid, t, ta, tf, ts, tot, bnorm, xnorm, anorm, rnorm, fl, anz, axbnorm, rnorm2, resid2 ; FILE *f ; cholmod_sparse *A ; cholmod_dense *X, *B, *W, *R ; double one [2], zero [2], minusone [2], beta [2], xlnz ; cholmod_common Common, *cm ; cholmod_factor *L ; double *Bx, *Rx, *Xx ; UF_long i, n, isize, xsize, ordering, xtype, s, ss, lnz ; /* ---------------------------------------------------------------------- */ /* get the file containing the input matrix */ /* ---------------------------------------------------------------------- */ ff = NULL ; if (argc > 1) { if ((f = fopen (argv [1], "r")) == NULL) { my_handler (CHOLMOD_INVALID, __FILE__, __LINE__, "unable to open file") ; } ff = f ; } else { f = stdin ; } /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; /* use default parameter settings, except for the error handler. This * demo program terminates if an error occurs (out of memory, not positive * definite, ...). It makes the demo program simpler (no need to check * CHOLMOD error conditions). This non-default parameter setting has no * effect on performance. */ cm->error_handler = my_handler ; /* Note that CHOLMOD will do a supernodal LL' or a simplicial LDL' by * default, automatically selecting the latter if flop/nnz(L) < 40. */ /* ---------------------------------------------------------------------- */ /* create basic scalars */ /* ---------------------------------------------------------------------- */ zero [0] = 0 ; zero [1] = 0 ; one [0] = 1 ; one [1] = 0 ; minusone [0] = -1 ; minusone [1] = 0 ; beta [0] = 1e-6 ; beta [1] = 0 ; /* ---------------------------------------------------------------------- */ /* read in a matrix */ /* ---------------------------------------------------------------------- */ printf ("\n---------------------------------- cholmod_l_demo:\n") ; A = cholmod_l_read_sparse (f, cm) ; if (ff != NULL) fclose (ff) ; anorm = cholmod_l_norm_sparse (A, 0, cm) ; xtype = A->xtype ; printf ("norm (A,inf) = %g\n", anorm) ; printf ("norm (A,1) = %g\n", cholmod_l_norm_sparse (A, 1, cm)) ; cholmod_l_print_sparse (A, "A", cm) ; if (A->nrow > A->ncol) { /* Transpose A so that A'A+beta*I will be factorized instead */ cholmod_sparse *C = cholmod_l_transpose (A, 2, cm) ; cholmod_l_free_sparse (&A, cm) ; A = C ; printf ("transposing input matrix\n") ; } /* ---------------------------------------------------------------------- */ /* create an arbitrary right-hand-side */ /* ---------------------------------------------------------------------- */ n = A->nrow ; B = cholmod_l_zeros (n, 1, xtype, cm) ; Bx = B->x ; #if GHS { /* b = A*ones(n,1), used by Gould, Hu, and Scott in their experiments */ cholmod_dense *X0 ; X0 = cholmod_l_ones (A->ncol, 1, xtype, cm) ; cholmod_l_sdmult (A, 0, one, zero, X0, B, cm) ; cholmod_l_free_dense (&X0, cm) ; } #else if (xtype == CHOLMOD_REAL) { /* real case */ for (i = 0 ; i < n ; i++) { double x = n ; Bx [i] = 1 + i / x ; } } else { /* complex case */ for (i = 0 ; i < n ; i++) { double x = n ; Bx [2*i ] = 1 + i / x ; /* real part of B(i) */ Bx [2*i+1] = (x/2 - i) / (3*x) ; /* imag part of B(i) */ } } #endif cholmod_l_print_dense (B, "B", cm) ; bnorm = cholmod_l_norm_dense (B, 0, cm) ; /* max norm */ printf ("bnorm %g\n", bnorm) ; /* ---------------------------------------------------------------------- */ /* analyze, factorize, and solve */ /* ---------------------------------------------------------------------- */ t = CPUTIME ; L = cholmod_l_analyze (A, cm) ; ta = CPUTIME - t ; ta = MAX (ta, 0) ; printf ("Analyze: flop %g lnz %g\n", cm->fl, cm->lnz) ; if (A->stype == 0) { printf ("Factorizing A*A'+beta*I\n") ; t = CPUTIME ; cholmod_l_factorize_p (A, beta, NULL, 0, L, cm) ; tf = CPUTIME - t ; tf = MAX (tf, 0) ; } else { printf ("Factorizing A\n") ; t = CPUTIME ; cholmod_l_factorize (A, L, cm) ; tf = CPUTIME - t ; tf = MAX (tf, 0) ; } t = CPUTIME ; X = cholmod_l_solve (CHOLMOD_A, L, B, cm) ; ts = CPUTIME - t ; ts = MAX (ts, 0) ; tot = ta + tf + ts ; /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { /* (AA'+beta*I)x=b is the linear system that was solved */ /* W = A'*X */ W = cholmod_l_allocate_dense (A->ncol, 1, A->ncol, xtype, cm) ; cholmod_l_sdmult (A, 2, one, zero, X, W, cm) ; /* R = B - beta*X */ R = cholmod_l_zeros (n, 1, xtype, cm) ; Rx = R->x ; Xx = X->x ; if (xtype == CHOLMOD_REAL) { for (i = 0 ; i < n ; i++) { Rx [i] = Bx [i] - beta [0] * Xx [i] ; } } else { /* complex case */ for (i = 0 ; i < n ; i++) { Rx [2*i ] = Bx [2*i ] - beta [0] * Xx [2*i ] ; Rx [2*i+1] = Bx [2*i+1] - beta [0] * Xx [2*i+1] ; } } /* R = A*W - R */ cholmod_l_sdmult (A, 0, one, minusone, W, R, cm) ; cholmod_l_free_dense (&W, cm) ; } else { /* Ax=b was factorized and solved, R = B-A*X */ R = cholmod_l_copy_dense (B, cm) ; cholmod_l_sdmult (A, 0, minusone, one, X, R, cm) ; } rnorm = cholmod_l_norm_dense (R, 0, cm) ; /* max abs. entry */ xnorm = cholmod_l_norm_dense (X, 0, cm) ; /* max abs. entry */ axbnorm = (anorm * xnorm + bnorm + ((n == 0) ? 1 : 0)) ; resid = rnorm / axbnorm ; /* ---------------------------------------------------------------------- */ /* iterative refinement (real symmetric case only) */ /* ---------------------------------------------------------------------- */ resid2 = -1 ; if (A->stype != 0 && A->xtype == CHOLMOD_REAL) { cholmod_dense *R2 ; /* R2 = A\(B-A*X) */ R2 = cholmod_l_solve (CHOLMOD_A, L, R, cm) ; /* compute X = X + A\(B-A*X) */ Xx = X->x ; Rx = R2->x ; for (i = 0 ; i < n ; i++) { Xx [i] = Xx [i] + Rx [i] ; } cholmod_l_free_dense (&R2, cm) ; cholmod_l_free_dense (&R, cm) ; /* compute the new residual, R = B-A*X */ R = cholmod_l_copy_dense (B, cm) ; cholmod_l_sdmult (A, 0, minusone, one, X, R, cm) ; rnorm2 = cholmod_l_norm_dense (R, 0, cm) ; resid2 = rnorm2 / axbnorm ; } cholmod_l_free_dense (&R, cm) ; /* ---------------------------------------------------------------------- */ /* print results */ /* ---------------------------------------------------------------------- */ cholmod_l_print_factor (L, "L", cm) ; /* determine the # of integers's and reals's in L. See cholmod_free */ if (L->is_super) { s = L->nsuper + 1 ; xsize = L->xsize ; ss = L->ssize ; isize = n /* L->Perm */ + n /* L->ColCount, nz in each column of 'pure' L */ + s /* L->pi, column pointers for L->s */ + s /* L->px, column pointers for L->x */ + s /* L->super, starting column index of each supernode */ + ss ; /* L->s, the pattern of the supernodes */ } else { /* this space can increase if you change parameters to their non- * default values (cm->final_pack, for example). */ lnz = L->nzmax ; xsize = lnz ; isize = n /* L->Perm */ + n /* L->ColCount, nz in each column of 'pure' L */ + n+1 /* L->p, column pointers */ + lnz /* L->i, integer row indices */ + n /* L->nz, nz in each column of L */ + n+2 /* L->next, link list */ + n+2 ; /* L->prev, link list */ } anz = cm->anz ; for (i = 0 ; i < CHOLMOD_MAXMETHODS ; i++) { fl = cm->method [i].fl ; xlnz = cm->method [i].lnz ; cm->method [i].fl = -1 ; cm->method [i].lnz = -1 ; ordering = cm->method [i].ordering ; if (fl >= 0) { printf ("Ordering: ") ; if (ordering == CHOLMOD_POSTORDERED) printf ("postordered ") ; if (ordering == CHOLMOD_NATURAL) printf ("natural ") ; if (ordering == CHOLMOD_GIVEN) printf ("user ") ; if (ordering == CHOLMOD_AMD) printf ("AMD ") ; if (ordering == CHOLMOD_METIS) printf ("METIS ") ; if (ordering == CHOLMOD_NESDIS) printf ("NESDIS ") ; if (xlnz > 0) { printf ("fl/lnz %10.1f", fl / xlnz) ; } if (anz > 0) { printf (" lnz/anz %10.1f", xlnz / anz) ; } printf ("\n") ; } } printf ("ints in L: %ld, doubles in L: %ld\n", isize, xsize) ; printf ("factor flops %g nnz(L) %15.0f (w/no amalgamation)\n", cm->fl, cm->lnz) ; if (A->stype == 0) { printf ("nnz(A): %15.0f\n", cm->anz) ; } else { printf ("nnz(A*A'): %15.0f\n", cm->anz) ; } if (cm->lnz > 0) { printf ("flops / nnz(L): %8.1f\n", cm->fl / cm->lnz) ; } if (anz > 0) { printf ("nnz(L) / nnz(A): %8.1f\n", cm->lnz / cm->anz) ; } printf ("analyze cputime: %12.4f\n", ta) ; printf ("factor cputime: %12.4f mflop: %8.1f\n", tf, (tf == 0) ? 0 : (1e-6*cm->fl / tf)) ; printf ("solve cputime: %12.4f mflop: %8.1f\n", ts, (ts == 0) ? 0 : (1e-6*4*cm->lnz / ts)) ; printf ("overall cputime: %12.4f mflop: %8.1f\n", tot, (tot == 0) ? 0 : (1e-6 * (cm->fl + 4 * cm->lnz) / tot)) ; printf ("peak memory usage: %12.0f (MB)\n", (double) (cm->memory_usage) / 1048576.) ; printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))\n", resid) ; if (resid2 >= 0) { printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))" " after iterative refinement\n", resid2) ; } printf ("rcond %8.1e\n\n", cholmod_l_rcond (L, cm)) ; cholmod_l_free_factor (&L, cm) ; cholmod_l_free_dense (&X, cm) ; /* ---------------------------------------------------------------------- */ /* free matrices and finish CHOLMOD */ /* ---------------------------------------------------------------------- */ cholmod_l_free_sparse (&A, cm) ; cholmod_l_free_dense (&B, cm) ; cholmod_l_finish (cm) ; return (0) ; } SuiteSparse/CHOLMOD/Demo/readhb.f0000644001170100242450000000647310277474252015340 0ustar davisfacc----------------------------------------------------------------------- c Read a sparse matrix in the Harwell/Boeing format and output a c matrix in triplet format. Only the lower triangular part of a c symmetric matrix is provided. Does not handle skew-symmetric c matrices. c----------------------------------------------------------------------- integer nzmax, nmax parameter (nzmax = 100000000, nmax = 1000000) integer Ptr (nmax), Index (nzmax), n, nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, row, col, p character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 logical sym double precision Value (nzmax), skew character rhstyp*3 integer nzrhs, nel, stype c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) skew = 0.0 if (type (2:2) .eq. 'Z' .or. type (2:2) .eq. 'z') skew = -1.0 if (type (2:2) .eq. 'S' .or. type (2:2) .eq. 's') skew = 1.0 sym = skew .ne. 0.0 c write (0, 30) title, key, type, nrow, ncol, nz if (rhscrd .gt. 0) then c new Harwell/Boeing format: c write (0, 40) rhstyp,nrhs,nzrhs endif 30 format ( $ ' title: ', a72 / $ ' key: ', a8 / $ ' type: ', a3, ' nrow: ', i14, ' ncol: ', i14 / $ ' nz: ', i14) 40 format (' rhstyp: ', a3, ' nrhs: ', i14, ' nzrhs: ', i14) * write (0, *) ' sym: ', sym, ' skew: ', skew if (skew .eq. -1) then write (0, *) 'Cannot handle skew-symmetric matrices' stop endif n = max (nrow, ncol) if (ncol .ge. nmax .or. nz .gt. nzmax) then write (0, *) ' Matrix too big!' stop endif read (5, ptrfmt, err = 998) (Ptr (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Index (p), p = 1, nz) c read the values if (valcrd .gt. 0) then read (5, valfmt, err = 998) (Value (p), p = 1, nz) endif c create the triplet form of the input matrix c stype = 0: unsymmetric c stype = -1: symmetric, lower triangular part present stype = -skew write (6, 101) title write (6, 102) key 101 format ('% title:', a72) 102 format ('% key: ', a8) write (6, 110) nrow, ncol, nz, stype 110 format (2i8, i12, i3) do 100 col = 1, ncol do 90 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) if (valcrd .gt. 0) then write (6, 200) row, col, Value (p) c if (sym .and. row .ne. col) then c write (6, 200) col, row, skew * Value (p) c endif else write (6, 201) row, col endif 90 continue 100 continue 200 format (2i8, e30.18e3) 201 format (2i8) stop 998 write (0,*) 'Read error: Harwell/Boeing matrix' stop end SuiteSparse/CHOLMOD/Demo/readhb2.f0000644001170100242450000000725210277474247015422 0ustar davisfacc----------------------------------------------------------------------- c Read a sparse matrix in the Harwell/Boeing format and output a c matrix in triplet format. Only the lower triangular part of a c symmetric matrix is provided. Does not handle skew-symmetric c matrices. c c This version assumes the matrix is symmetric. Only the c lower triangular part is printed. c----------------------------------------------------------------------- integer nzmax, nmax parameter (nzmax = 100000000, nmax = 1000000) integer Ptr (nmax), Index (nzmax), n, nz, totcrd, ptrcrd, $ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, row, col, p character title*72, key*30, type*3, ptrfmt*16, $ indfmt*16, valfmt*20, rhsfmt*20 logical sym double precision Value (nzmax), skew character rhstyp*3 integer nzrhs, nel, stype c----------------------------------------------------------------------- c read header information from Harwell/Boeing matrix read (5, 10, err = 998) $ title, key, $ totcrd, ptrcrd, indcrd, valcrd, rhscrd, $ type, nrow, ncol, nz, nel, $ ptrfmt, indfmt, valfmt, rhsfmt if (rhscrd .gt. 0) then c new Harwell/Boeing format: read (5, 20, err = 998) rhstyp,nrhs,nzrhs endif 10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20) 20 format (a3, 11x, 2i14) skew = 0.0 if (type (2:2) .eq. 'Z' .or. type (2:2) .eq. 'z') skew = -1.0 if (type (2:2) .eq. 'S' .or. type (2:2) .eq. 's') skew = 1.0 sym = skew .ne. 0.0 c write (0, 30) title, key, type, nrow, ncol, nz if (rhscrd .gt. 0) then c new Harwell/Boeing format: c write (0, 40) rhstyp,nrhs,nzrhs endif 30 format ( $ ' title: ', a72 / $ ' key: ', a8 / $ ' type: ', a3, ' nrow: ', i14, ' ncol: ', i14 / $ ' nz: ', i14) 40 format (' rhstyp: ', a3, ' nrhs: ', i14, ' nzrhs: ', i14) * write (0, *) ' sym: ', sym, ' skew: ', skew if (skew .eq. -1) then write (0, *) 'Cannot handle skew-symmetric matrices' stop endif n = max (nrow, ncol) if (ncol .ge. nmax .or. nz .gt. nzmax) then write (0, *) ' Matrix too big!' stop endif read (5, ptrfmt, err = 998) (Ptr (p), p = 1, ncol+1) read (5, indfmt, err = 998) (Index (p), p = 1, nz) c read the values if (valcrd .gt. 0) then read (5, valfmt, err = 998) (Value (p), p = 1, nz) endif c create the triplet form of the input matrix c stype = 0: unsymmetric c stype = -1: symmetric, lower triangular part present c stype = -skew stype = -1 nz = 0 ; do 300 col = 1, ncol do 390 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) if (row .ge. col) then nz = nz + 1 endif 390 continue 300 continue write (6, 101) title write (6, 102) key 101 format ('% title:', a72) 102 format ('% key: ', a8) write (6, 110) nrow, ncol, nz, stype 110 format (2i8, i12, i3) do 100 col = 1, ncol do 90 p = Ptr (col), Ptr (col+1) - 1 row = Index (p) if (row .ge. col) then if (valcrd .gt. 0) then write (6, 200) row, col, Value (p) c if (sym .and. row .ne. col) then c write (6, 200) col, row, skew * Value (p) c endif else write (6, 201) row, col endif endif 90 continue 100 continue 200 format (2i8, e30.18e3) 201 format (2i8) stop 998 write (0,*) 'Read error: Harwell/Boeing matrix' stop end SuiteSparse/CHOLMOD/Tcov/0000755001170100242450000000000010711175717013756 5ustar davisfacSuiteSparse/CHOLMOD/Tcov/tmp/0000755001170100242450000000000010711175716014555 5ustar davisfacSuiteSparse/CHOLMOD/Tcov/cm.c0000644001170100242450000013070210540000037014502 0ustar davisfac/* ========================================================================== */ /* === Tcov/cm ============================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* A program for exhaustive statement-coverage for CHOLMOD, AMD, COLAMD, and * CCOLAMD. It tests every line of code in all three packages. * * For a complete test, all CHOLMOD modules, AMD, COLAMD, CCOLAMD, METIS, * LAPACK, and the BLAS are required. A partial test can be performed without * the Supernodal and/or Partition modules. METIS is not required if the * Partition module is not installed. LAPACK and the BLAS are not required * if the Supernodal module is not installed. * * Usage: * * cm < input > output * * where "input" contains a sparse matrix in triplet form. The first line of * the file contains four or five integers: * * nrow ncol nnz stype complex * * where the matrix is nrow-by-ncol. nnz is the number of (i,j,aij) triplets * in the rest of the file, one triplet per line. stype is -1 (symmetric * with entries in lower triangular part provided), 0 (unsymmetric), or 1 * (symmetric upper). If the 5th entry is missing, or 0, then the matrix is * real; if 1 the matrix is complex, if 2 the matrix is zomplex. Each * subsequent line contains * * i j aij * * for the row index, column index, and value of A(i,j). Duplicate entries * are summed. If stype is 2 or 3, the rest of the file is ignored, and a * special test matrix is constructed (2: arrowhead, 3: tridiagonal plus a * dense row). Test matrices are located in the Matrix/ subdirectory. * * For complex matrices, each line consists of * * i j xij zij * * where xij is the real part of A(i,j) and zij is the imaginary part. * * cm takes one optional parameter. If present (it does not matter what the * argument is, actually) then extension memory-failure tests are performed. */ #include "cm.h" /* ========================================================================== */ /* === global variables ===================================================== */ /* ========================================================================== */ double zero [2], one [2], minusone [2] ; cholmod_common Common, *cm ; cholmod_dense *M1 ; Int dot = 0 ; double Zero [2] ; /* ========================================================================== */ /* === my_rand ============================================================== */ /* ========================================================================== */ /* The POSIX example of rand, duplicated here so that the same sequence will * be generated on different machines. */ static unsigned long next = 1 ; /* RAND_MAX assumed to be 32767 */ Int my_rand (void) { next = next * 1103515245 + 12345 ; return ((unsigned)(next/65536) % /* 32768 */ (MY_RAND_MAX + 1)) ; } void my_srand (unsigned seed) { next = seed ; } unsigned long my_seed (void) { return (next) ; } /* ========================================================================== */ /* === progress ============================================================= */ /* ========================================================================== */ /* print a "." on stderr to indicate progress */ #define LINEWIDTH 70 #define COUNT 100 void progress (Int force, char s) { dot++ ; if (force) { dot += (COUNT - (dot % COUNT)) ; } if (dot % COUNT == 0) { fprintf (stderr, "%c", s) ; } if (dot % (COUNT*LINEWIDTH) == 0) { fprintf (stderr, "\n") ; } fflush (stdout) ; fflush (stderr) ; } /* ========================================================================== */ /* === my_handler =========================================================== */ /* ========================================================================== */ /* An error occurred that should not have occurred */ void my_handler (int status, char *file, int line, char *msg) { printf ("Error handler: file %s line %d status %d: %s\n", file, line, status, msg) ; if (status < CHOLMOD_OK || status > CHOLMOD_DSMALL) { fprintf (stderr, "\n\n************************************************" "********************************\n" "*** Test failure: file: %s line: %d\n" "*** status: %d message: %s\n" "***********************************************************" "*********************\n", file, line, status, msg); fflush (stderr) ; fflush (stdout) ; abort ( ) ; } } /* ========================================================================== */ /* === Assert =============================================================== */ /* ========================================================================== */ void Assert (int truth, char *file, int line) { if (!truth) { my_handler (-1, file, line, "") ; } } /* ========================================================================== */ /* === nrand ================================================================ */ /* ========================================================================== */ /* return a random Int between 0 and n-1 */ Int nrand (Int n) { return ((n <= 0) ? (0) : (rand ( ) % n)) ; } /* ========================================================================== */ /* === xrand ================================================================ */ /* ========================================================================== */ /* return a random double between 0 and x */ double xrand (double range) { return ((range * (double) (my_rand ( ))) / MY_RAND_MAX) ; } /* ========================================================================== */ /* === prand ================================================================ */ /* ========================================================================== */ /* allocate and construct a random permutation of 0:n-1 */ Int *prand (Int n) { Int *P ; Int t, j, k ; P = CHOLMOD(malloc) (n, sizeof (Int), cm) ; if (P == NULL) { ERROR (CHOLMOD_INVALID, "cannot create random perm") ; return (NULL) ; } for (k = 0 ; k < n ; k++) { P [k] = k ; } for (k = 0 ; k < n-1 ; k++) { j = k + nrand (n-k) ; t = P [j] ; P [j] = P [k] ; P [k] = t ; } CHOLMOD(print_perm) (P, n, n, "Prandom", cm) ; return (P) ; } /* ========================================================================== */ /* === rand_set ============================================================= */ /* ========================================================================== */ /* allocate and construct a random set of 0:n-1, possibly with duplicates */ Int *rand_set (Int len, Int n) { Int *cset ; Int k ; cset = CHOLMOD(malloc) (len, sizeof (Int), cm) ; if (cset == NULL) { ERROR (CHOLMOD_INVALID, "cannot create random set") ; return (NULL) ; } for (k = 0 ; k < len ; k++) { cset [k] = nrand (n) ; } CHOLMOD(print_subset) (cset, len, n, "random cset", cm) ; return (cset) ; } /* ========================================================================== */ /* === read_triplet ========================================================= */ /* ========================================================================== */ /* Read a triplet matrix from a file. */ #define MAXLINE 1024 cholmod_triplet *read_triplet ( FILE *f ) { cholmod_triplet *T ; double *Tx, *Tz ; long long x1, x2, x3, x4, x5 ; Int *Ti, *Tj ; Int n, j, k, nrow, ncol, nz, stype, arrowhead, tridiag_plus_denserow, xtype, is_complex ; char s [MAXLINE] ; /* ---------------------------------------------------------------------- */ /* read in a triplet matrix from a file */ /* ---------------------------------------------------------------------- */ dot = 0 ; xtype = 0 ; if (fgets (s, MAXLINE, f) == NULL) { return (NULL) ; } x1 = 0 ; x2 = 0 ; x3 = 0 ; x4 = 0 ; x5 = 0 ; k = sscanf (s, "%lld %lld %lld %lld %lld\n", &x1, &x2, &x3, &x4, &x5) ; nrow = x1 ; ncol = x2 ; nz = x3 ; stype = x4 ; xtype = x5 ; xtype++ ; is_complex = (xtype != CHOLMOD_REAL) ; printf ("read_triplet: nrow "ID" ncol "ID" nz "ID" stype "ID" xtype "ID"\n", nrow, ncol, nz, stype, xtype) ; arrowhead = FALSE ; tridiag_plus_denserow = FALSE ; n = MAX (nrow, ncol) ; if (stype == 2) { /* ignore nz and the rest of the file, and create an arrowhead matrix */ arrowhead = TRUE ; nz = nrow + ncol + 1 ; stype = (nrow == ncol) ? (1) : (0) ; } else if (stype == 3) { tridiag_plus_denserow = TRUE ; nrow = n ; ncol = n ; nz = 4*n + 4 ; stype = 0 ; } T = CHOLMOD(allocate_triplet) (nrow, ncol, nz, stype, is_complex ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL, cm) ; if (T == NULL) { ERROR (CHOLMOD_INVALID, "cannot create triplet matrix") ; return (NULL) ; } Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; if (arrowhead) { for (k = 0 ; k < MIN (nrow,ncol) ; k++) { Ti [k] = k ; Tj [k] = k ; Tx [k] = nrow + xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = nrow + xrand (1) ; /* RAND */ } } for (j = 0 ; j < ncol ; j++) { Ti [k] = 0 ; Tj [k] = j ; Tx [k] = - xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = - xrand (1) ; /* RAND */ } k++ ; } T->nnz = k ; } else if (tridiag_plus_denserow) { /* dense row, except for the last column */ for (k = 0 ; k < n-1 ; k++) { Ti [k] = 0 ; Tj [k] = k ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } } /* diagonal */ for (j = 0 ; j < n ; j++) { Ti [k] = j ; Tj [k] = j ; Tx [k] = nrow + xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = nrow + xrand (1) ; /* RAND */ } k++ ; } /* superdiagonal */ for (j = 1 ; j < n ; j++) { Ti [k] = j-1 ; Tj [k] = j ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } k++ ; } /* subdiagonal */ for (j = 0 ; j < n-1 ; j++) { Ti [k] = j+1 ; Tj [k] = j ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } k++ ; } /* a few extra terms in the last column */ Ti [k] = MAX (0, n-3) ; Tj [k] = n-1 ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } k++ ; Ti [k] = MAX (0, n-4) ; Tj [k] = n-1 ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } k++ ; Ti [k] = MAX (0, n-5) ; Tj [k] = n-1 ; Tx [k] = xrand (1) ; /* RAND */ if (is_complex) { Tz [k] = xrand (1) ; /* RAND */ } k++ ; T->nnz = k ; } else { if (is_complex) { for (k = 0 ; k < nz ; k++) { if (fscanf (f,""ID" "ID" %lg %lg\n", Ti+k, Tj+k, Tx+k, Tz+k) == EOF) { ERROR (CHOLMOD_INVALID, "Error reading triplet matrix\n") ; } } } else { for (k = 0 ; k < nz ; k++) { if (fscanf (f, ""ID" "ID" %lg\n", Ti+k, Tj+k, Tx+k) == EOF) { ERROR (CHOLMOD_INVALID, "Error reading triplet matrix\n") ; } } } T->nnz = nz ; } CHOLMOD(triplet_xtype) (xtype, T, cm) ; /* ---------------------------------------------------------------------- */ /* print the triplet matrix */ /* ---------------------------------------------------------------------- */ cm->print = 4 ; CHOLMOD(print_triplet) (T, "T input", cm) ; cm->print = 1 ; fprintf (stderr, "Test matrix: "ID"-by-"ID" with "ID" entries, stype: "ID "\n", (Int) T->nrow, (Int) T->ncol, (Int) T->nnz, (Int) T->stype) ; printf ("\n\n======================================================\n" "Test matrix: "ID"-by-"ID" with "ID" entries, stype: "ID"\n", (Int) T->nrow, (Int) T->ncol, (Int) T->nnz, (Int) T->stype) ; if (MAX (nrow, ncol) > NLARGE) { fprintf (stderr, "Please wait, this will take a while ...") ; dot = 39*LINEWIDTH ; } return (T) ; } /* ========================================================================== */ /* === zeros ================================================================ */ /* ========================================================================== */ /* Same as cholmod_zeros or cholmod_l_zeros, except it allows for a leading * dimension that is different than nrow */ cholmod_dense *zeros (Int nrow, Int ncol, Int d, Int xtype) { cholmod_dense *X ; double *Xx, *Xz ; Int i, nz ; X = CHOLMOD(allocate_dense) (nrow, ncol, d, xtype, cm) ; if (X == NULL) { return (NULL) ; } Xx = X->x ; Xz = X->z ; nz = MAX (1, X->nzmax) ; switch (X->xtype) { case CHOLMOD_REAL: for (i = 0 ; i < nz ; i++) { Xx [i] = 0 ; } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < 2*nz ; i++) { Xx [i] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < nz ; i++) { Xx [i] = 0 ; } for (i = 0 ; i < nz ; i++) { Xz [i] = 0 ; } break ; } return (X) ; } /* ========================================================================== */ /* === xtrue ================================================================ */ /* ========================================================================== */ /* Allocate and construct a dense matrix, X(i,j) = i+j*d+1 */ cholmod_dense *xtrue (Int nrow, Int ncol, Int d, Int xtype) { double *x, *z ; cholmod_dense *X ; Int j, i ; X = zeros (nrow, ncol, d, xtype) ; if (X == NULL) { ERROR (CHOLMOD_INVALID, "cannot create dense matrix") ; return (NULL) ; } x = X->x ; z = X->z ; if (xtype == CHOLMOD_REAL) { for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { x [i+j*d] = i+j*d + 1 ; } } } else if (xtype == CHOLMOD_COMPLEX) { for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { x [2*(i+j*d) ] = i+j*d + 1 ; x [2*(i+j*d)+1] = ((double) (j+i*d + 1))/10 ; } } } else { for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { x [i+j*d] = i+j*d + 1 ; z [i+j*d] = ((double) (j+i*d + 1))/10 ; } } } return (X) ; } /* ========================================================================== */ /* === rhs ================================================================== */ /* ========================================================================== */ /* Create a right-hand-side, b = A*x, where x is a known solution */ cholmod_dense *rhs (cholmod_sparse *A, Int nrhs, Int d) { Int n ; cholmod_dense *W, *Z, *B ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute rhs") ; return (NULL) ; } n = A->nrow ; /* B = zeros (n,rhs) but with leading dimension d */ B = zeros (n, nrhs, d, A->xtype) ; /* ---------------------------------------------------------------------- */ /* create a known solution */ /* ---------------------------------------------------------------------- */ Z = xtrue (n, nrhs, d, A->xtype) ; /* ---------------------------------------------------------------------- */ /* compute B = A*Z or A*A'*Z */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { /* W = A'*Z */ W = CHOLMOD(zeros) (A->ncol, nrhs, A->xtype, cm) ; CHOLMOD(sdmult) (A, TRUE, one, zero, Z, W, cm) ; /* B = A*W */ CHOLMOD(sdmult) (A, FALSE, one, zero, W, B, cm) ; CHOLMOD(free_dense) (&W, cm) ; } else { /* B = A*Z */ CHOLMOD(sdmult) (A, FALSE, one, zero, Z, B, cm) ; } CHOLMOD(free_dense) (&Z, cm) ; return (B) ; } /* ========================================================================== */ /* === resid ================================================================ */ /* ========================================================================== */ /* compute r = norm (A*x-b)/norm(b) or r = norm (A*A'*x-b)/norm(b) */ double resid (cholmod_sparse *A, cholmod_dense *X, cholmod_dense *B) { double r, bnorm ; cholmod_dense *R, *X2, *B2 ; cholmod_sparse *C, *A2 ; Int d, n, nrhs, xtype ; if (A == NULL || X == NULL || B == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute resid") ; return (1) ; } cm->status = CHOLMOD_OK ; n = B->nrow ; /* ---------------------------------------------------------------------- */ /* convert all inputs to an identical xtype */ /* ---------------------------------------------------------------------- */ xtype = MAX (A->xtype, X->xtype) ; xtype = MAX (xtype, B->xtype) ; A2 = NULL ; B2 = NULL ; X2 = NULL ; if (A->xtype != xtype) { A2 = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sparse_xtype) (xtype, A2, cm) ; A = A2 ; } if (X->xtype != xtype) { X2 = CHOLMOD(copy_dense) (X, cm) ; CHOLMOD(dense_xtype) (xtype, X2, cm) ; X = X2 ; } if (B->xtype != xtype) { B2 = CHOLMOD(copy_dense) (B, cm) ; CHOLMOD(dense_xtype) (xtype, B2, cm) ; B = B2 ; } if (cm->status < CHOLMOD_OK) { ERROR (CHOLMOD_INVALID, "cannot compute resid") ; CHOLMOD(free_sparse) (&A2, cm) ; CHOLMOD(free_dense) (&B2, cm) ; CHOLMOD(free_dense) (&X2, cm) ; return (1) ; } /* ---------------------------------------------------------------------- */ /* get the right-hand-side, B, and its norm */ /* ---------------------------------------------------------------------- */ nrhs = B->ncol ; d = B->d ; if (nrhs == 1) { /* inf-norm, 1-norm, or 2-norm (random choice) */ bnorm = CHOLMOD(norm_dense) (B, nrand (2), cm) ; } else { /* inf-norm or 1-norm (random choice) */ bnorm = CHOLMOD(norm_dense) (B, nrand (1), cm) ; } /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { if (n < 10 && A->xtype == CHOLMOD_REAL) { /* test cholmod_aat, C = A*A' */ C = CHOLMOD(aat) (A, NULL, 0, 1, cm) ; /* R = B */ R = CHOLMOD(copy_dense) (B, cm) ; /* R = C*X - R */ CHOLMOD(sdmult) (C, FALSE, one, minusone, X, R, cm) ; CHOLMOD(free_sparse) (&C, cm) ; } else { /* W = A'*X */ cholmod_dense *W ; W = CHOLMOD(zeros) (A->ncol, nrhs, A->xtype, cm) ; CHOLMOD(sdmult) (A, TRUE, one, zero, X, W, cm) ; /* R = B */ R = CHOLMOD(copy_dense) (B, cm) ; /* R = A*W - R */ CHOLMOD(sdmult) (A, FALSE, one, minusone, W, R, cm) ; CHOLMOD(free_dense) (&W, cm) ; } } else { /* R = B */ R = CHOLMOD(copy_dense) (B, cm) ; /* R = A*X - R */ CHOLMOD(sdmult) (A, FALSE, one, minusone, X, R, cm) ; } /* ---------------------------------------------------------------------- */ /* r = norm (R) / norm (B) */ /* ---------------------------------------------------------------------- */ r = CHOLMOD(norm_dense) (R, 1, cm) ; CHOLMOD(free_dense) (&R, cm) ; CHOLMOD(free_sparse) (&A2, cm) ; CHOLMOD(free_dense) (&B2, cm) ; CHOLMOD(free_dense) (&X2, cm) ; if (bnorm > 0) { r /= bnorm ; } return (r) ; } /* ========================================================================== */ /* === resid_sparse ========================================================= */ /* ========================================================================== */ /* compute r = norm (A*x-b)/norm(b) or r = norm (A*A'*x-b)/norm(b) */ double resid_sparse (cholmod_sparse *A, cholmod_sparse *X, cholmod_sparse *B) { double r, bnorm ; cholmod_sparse *R, *W, *AT, *W2 ; cholmod_dense *X2, *B2 ; Int n, nrhs, xtype ; if (A == NULL || X == NULL || B == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute resid") ; return (1) ; } /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ xtype = MAX (A->xtype, X->xtype) ; xtype = MAX (xtype, B->xtype) ; if (xtype > CHOLMOD_REAL) { /* ------------------------------------------------------------------ */ /* convert X and B to dense if any is complex or zomplex */ /* ------------------------------------------------------------------ */ X2 = CHOLMOD(sparse_to_dense) (X, cm) ; B2 = CHOLMOD(sparse_to_dense) (B, cm) ; r = resid (A, X2, B2) ; CHOLMOD(free_dense) (&X2, cm) ; CHOLMOD(free_dense) (&B2, cm) ; } else { /* ------------------------------------------------------------------ */ /* all inputs are real */ /* ------------------------------------------------------------------ */ n = B->nrow ; nrhs = B->ncol ; /* inf-norm or 1-norm (random choice) */ bnorm = CHOLMOD(norm_sparse) (B, nrand (1), cm) ; if (A->stype == 0) { /* W = A'*X */ AT = CHOLMOD(transpose) (A, 1, cm) ; W = CHOLMOD(ssmult) (AT, X, 0, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; /* W2 = A*W */ W2 = CHOLMOD(ssmult) (A, W, 0, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&W, cm) ; /* R = W2 - B */ R = CHOLMOD(add) (W2, B, one, minusone, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&W2, cm) ; } else { /* W = A*X */ W = CHOLMOD(ssmult) (A, X, 0, TRUE, FALSE, cm) ; /* R = W - B */ R = CHOLMOD(add) (W, B, one, minusone, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&W, cm) ; } r = CHOLMOD(norm_sparse) (R, 1, cm) ; CHOLMOD(free_sparse) (&R, cm) ; if (bnorm > 0) { r /= bnorm ; } } return (r) ; } /* ========================================================================== */ /* === resid3 =============================================================== */ /* ========================================================================== */ /* r = norm (A1*A2*A3*x - b) / norm (b) */ double resid3 (cholmod_sparse *A1, cholmod_sparse *A2, cholmod_sparse *A3, cholmod_dense *X, cholmod_dense *B) { double r, bnorm ; cholmod_dense *R, *W1, *W2, *X2, *B2 ; cholmod_sparse *C1, *C2, *C3 ; Int n, nrhs, d, xtype ; if (A1 == NULL || X == NULL || B == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute resid3") ; return (1) ; } cm->status = CHOLMOD_OK ; n = B->nrow ; /* ---------------------------------------------------------------------- */ /* convert all inputs to an identical xtype */ /* ---------------------------------------------------------------------- */ xtype = MAX (A1->xtype, X->xtype) ; xtype = MAX (xtype, B->xtype) ; if (A2 != NULL) { xtype = MAX (xtype, A2->xtype) ; } if (A3 != NULL) { xtype = MAX (xtype, A3->xtype) ; } C1 = NULL ; C2 = NULL ; C3 = NULL ; B2 = NULL ; X2 = NULL ; if (A1->xtype != xtype) { C1 = CHOLMOD(copy_sparse) (A1, cm) ; CHOLMOD(sparse_xtype) (xtype, C1, cm) ; A1 = C1 ; } if (A2 != NULL && A2->xtype != xtype) { C2 = CHOLMOD(copy_sparse) (A2, cm) ; CHOLMOD(sparse_xtype) (xtype, C2, cm) ; A2 = C2 ; } if (A3 != NULL && A3->xtype != xtype) { C3 = CHOLMOD(copy_sparse) (A3, cm) ; CHOLMOD(sparse_xtype) (xtype, C3, cm) ; A3 = C3 ; } if (X->xtype != xtype) { X2 = CHOLMOD(copy_dense) (X, cm) ; CHOLMOD(dense_xtype) (xtype, X2, cm) ; X = X2 ; } if (B->xtype != xtype) { B2 = CHOLMOD(copy_dense) (B, cm) ; CHOLMOD(dense_xtype) (xtype, B2, cm) ; B = B2 ; } if (cm->status < CHOLMOD_OK) { ERROR (CHOLMOD_INVALID, "cannot compute resid3") ; CHOLMOD(free_sparse) (&C1, cm) ; CHOLMOD(free_sparse) (&C2, cm) ; CHOLMOD(free_sparse) (&C3, cm) ; CHOLMOD(free_dense) (&B2, cm) ; CHOLMOD(free_dense) (&X2, cm) ; return (1) ; } /* ---------------------------------------------------------------------- */ /* get B and its norm */ /* ---------------------------------------------------------------------- */ nrhs = B->ncol ; d = B->d ; bnorm = CHOLMOD(norm_dense) (B, 1, cm) ; /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ if (A3 != NULL) { /* W1 = A3*X */ W1 = CHOLMOD(zeros) (n, nrhs, xtype, cm) ; CHOLMOD(sdmult) (A3, FALSE, one, zero, X, W1, cm) ; } else { W1 = X ; } if (A2 != NULL) { /* W2 = A2*W1 */ W2 = CHOLMOD(eye) (n, nrhs, xtype, cm) ; CHOLMOD(sdmult) (A2, FALSE, one, zero, W1, W2, cm) ; } else { W2 = W1 ; } /* R = B */ R = CHOLMOD(copy_dense) (B, cm) ; /* R = A1*W2 - R */ CHOLMOD(sdmult) (A1, FALSE, one, minusone, W2, R, cm) ; /* ---------------------------------------------------------------------- */ /* r = norm (R) / norm (B) */ /* ---------------------------------------------------------------------- */ r = CHOLMOD(norm_dense) (R, 1, cm) ; CHOLMOD(free_dense) (&R, cm) ; CHOLMOD(free_sparse) (&C1, cm) ; CHOLMOD(free_sparse) (&C2, cm) ; CHOLMOD(free_sparse) (&C3, cm) ; CHOLMOD(free_dense) (&B2, cm) ; CHOLMOD(free_dense) (&X2, cm) ; if (A3 != NULL) { CHOLMOD(free_dense) (&W1, cm) ; } if (A2 != NULL) { CHOLMOD(free_dense) (&W2, cm) ; } if (bnorm > 0) { r /= bnorm ; } return (r) ; } /* ========================================================================== */ /* === pnorm ================================================================ */ /* ========================================================================== */ /* r = norm (x-Pb) or r = norm(x-P'b). This is lengthy because CHOLMOD does * not provide any operations on dense matrices, and because it used to test * the sparse-to-dense conversion routine. Multiple methods are used to compute * the same thing. */ double pnorm (cholmod_dense *X, Int *P, cholmod_dense *B, Int inv) { cholmod_dense *R, *X2, *B2 ; cholmod_factor *L ; double *xx, *xz, *bx, *bz, *rx, *rz ; Int *Pinv, *Perm ; double rnorm, r ; Int i, j, k, n, nrhs, xtype, ok, save, lxtype ; if (X == NULL || P == NULL || B == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute pnorm") ; return (1) ; } save = cm->prefer_zomplex ; n = X->nrow ; nrhs = X->ncol ; rnorm = 0 ; Pinv = CHOLMOD(malloc) (n, sizeof (Int), cm) ; if (Pinv != NULL) { for (k = 0 ; k < n ; k++) { Pinv [P [k]] = k ; } } xtype = MAX (X->xtype, B->xtype) ; R = CHOLMOD(zeros) (n, nrhs, CHOLMOD_ZOMPLEX, cm) ; B2 = CHOLMOD(copy_dense) (B, cm) ; ok = R != NULL && B2 != NULL ; ok = ok && CHOLMOD(dense_xtype) (CHOLMOD_ZOMPLEX, B2, cm) ; for (lxtype = CHOLMOD_REAL ; ok && lxtype <= CHOLMOD_ZOMPLEX ; lxtype++) { /* create a fake factor object */ L = CHOLMOD(allocate_factor) (n, cm) ; CHOLMOD(change_factor) (lxtype, TRUE, FALSE, TRUE, TRUE, L, cm) ; ok = ok && (L != NULL && L->Perm != NULL && Pinv != NULL) ; if (ok) { L->ordering = CHOLMOD_GIVEN ; Perm = L->Perm ; for (k = 0 ; k < n ; k++) { Perm [k] = Pinv [k] ; } } for (k = 0 ; k <= 1 ; k++) { /* solve the inverse permutation system, X2 = P*X or X2 = P'*X */ cm->prefer_zomplex = k ; X2 = CHOLMOD(solve) (inv ? CHOLMOD_Pt : CHOLMOD_P, L, X, cm) ; ok = ok && CHOLMOD(dense_xtype) (CHOLMOD_ZOMPLEX, X2, cm) ; if (ok && X2 != NULL) { rx = R->x ; rz = R->z ; xx = X2->x ; xz = X2->z ; bx = B2->x ; bz = B2->z ; for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < n ; i++) { rx [i+j*n] = xx [i+j*n] - bx [i+j*n] ; rz [i+j*n] = xz [i+j*n] - bz [i+j*n] ; } } } r = CHOLMOD(norm_dense) (R, 0, cm) ; rnorm = MAX (r, rnorm) ; CHOLMOD(free_dense) (&X2, cm) ; } CHOLMOD(free_factor) (&L, cm) ; } CHOLMOD(free_dense) (&B2, cm) ; CHOLMOD(free_dense) (&R, cm) ; if (xtype == CHOLMOD_REAL) { /* X and B are both real */ cholmod_sparse *Bs, *Pb ; Bs = CHOLMOD(dense_to_sparse) (B, TRUE, cm) ; Pb = CHOLMOD(submatrix) (Bs, inv ? Pinv : P, n, NULL, -1, TRUE, TRUE,cm); X2 = CHOLMOD(sparse_to_dense) (Pb, cm) ; R = CHOLMOD(zeros) (n, nrhs, CHOLMOD_REAL, cm) ; if (R != NULL && X != NULL && X2 != NULL) { rx = R->x ; xx = X->x ; bx = X2->x ; for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < n ; i++) { rx [i+j*n] = xx [i+j*n] - bx [i+j*n] ; } } } CHOLMOD(free_sparse) (&Bs, cm) ; CHOLMOD(free_sparse) (&Pb, cm) ; CHOLMOD(free_dense) (&X2, cm) ; r = CHOLMOD(norm_dense) (R, 1, cm) ; rnorm = MAX (rnorm, r) ; CHOLMOD(free_dense) (&R, cm) ; } CHOLMOD(free) (n, sizeof (Int), Pinv, cm) ; cm->prefer_zomplex = save ; return (rnorm) ; } /* ========================================================================== */ /* === prune_row ============================================================ */ /* ========================================================================== */ /* Set row k and column k of a packed matrix A to zero. Set A(k,k) to 1 * if space is available. */ void prune_row (cholmod_sparse *A, Int k) { double *Ax ; Int *Ap, *Ai ; Int ncol, p, i, j, nz ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "nothing to prune") ; return ; } Ap = A->p ; Ai = A->i ; Ax = A->x ; nz = 0 ; ncol = A->ncol ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; Ap [j] = nz ; if (j == k && nz < Ap [j+1]) { Ai [nz] = k ; Ax [nz] = 1 ; nz++ ; } else { for ( ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (i != k) { Ai [nz] = i ; Ax [nz] = Ax [p] ; nz++ ; } } } } Ap [ncol] = nz ; } /* ========================================================================== */ /* === do_matrix =========================================================== */ /* ========================================================================== */ double do_matrix (cholmod_sparse *A) { double err, maxerr = 0 ; Int print, precise, maxprint, minprint, nmethods ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "no matrix") ; return (1) ; } /* ---------------------------------------------------------------------- */ /* determine print level, based on matrix size */ /* ---------------------------------------------------------------------- */ if (A->nrow <= 4) { minprint = 5 ; maxprint = 5 ; } else if (A->nrow <= 8) { minprint = 4 ; maxprint = 4 ; } else { minprint = 1 ; maxprint = 1 ; } /* ---------------------------------------------------------------------- */ /* for all print levels and precisions, do: */ /* ---------------------------------------------------------------------- */ for (print = minprint ; print <= maxprint ; print++) { for (precise = 0 ; precise <= (print >= 4) ? 1 : 0 ; precise++) { Int save1, save2 ; maxerr = 0 ; my_srand (42) ; /* RAND reset */ cm->print = print ; cm->precise = precise ; printf ("\n----------Print level %d precise: %d\n", cm->print, cm->precise) ; save1 = cm->final_asis ; save2 = cm->final_super ; cm->final_asis = FALSE ; cm->final_super = TRUE ; OK (CHOLMOD(print_common) ("cm", cm)) ; cm->final_asis = save1 ; cm->final_super = save2 ; /* -------------------------------------------------------------- */ /* test various matrix operations */ /* -------------------------------------------------------------- */ err = test_ops (A) ; /* RAND */ MAXERR (maxerr, err, 1) ; /* -------------------------------------------------------------- */ /* solve the augmented system */ /* -------------------------------------------------------------- */ err = aug (A) ; /* no random number use */ MAXERR (maxerr, err, 1) ; /* -------------------------------------------------------------- */ /* solve using different methods */ /* -------------------------------------------------------------- */ printf ("test_solver (1)\n") ; cm->nmethods = 9 ; cm->final_asis = TRUE ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (2)\n") ; cm->final_asis = TRUE ; cm->method [0].ordering = CHOLMOD_NATURAL ; for (nmethods = 0 ; nmethods < 7 ; nmethods++) { cm->nmethods = nmethods ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; } printf ("test_solver (3)\n") ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NESDIS ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (3b)\n") ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NESDIS ; cm->method [0].nd_camd = 2 ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (3c)\n") ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (4)\n") ; cm->nmethods = 1 ; cm->method[0].ordering = CHOLMOD_METIS ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (5)\n") ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_AMD ; CHOLMOD(free_work) (cm) ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; printf ("test_solver (6)\n") ; cm->nmethods = 1 ; cm->method[0].ordering = CHOLMOD_COLAMD ; err = test_solver (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; /* -------------------------------------------------------------- */ /* restore default control parameters */ /* -------------------------------------------------------------- */ OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(defaults) (cm) ; } } printf ("do_matrix max error %.1g\n", maxerr) ; return (maxerr) ; } /* ========================================================================== */ /* === main ================================================================= */ /* ========================================================================== */ /* Usage: * cm < matrix do not perform intensive memory-failure tests * cm -m < matrix do perform memory tests * cm -s < matrix matrix is singular, nan error expected * * (The memory tests are performed if any argument is given to cm). */ int main (int argc, char **argv) { cholmod_triplet *T ; cholmod_sparse *A, *C, *AT ; char *s ; double err = 0, maxerr = 0 ; Int n = 0, nmin = 0, nrow = 0, ncol = 0, save ; int singular, do_memory, i, do_nantests ; double v = CHOLMOD_VERSION ; printf ("Testing CHOLMOD (%g)\n", v) ; printf ("%s: argc: %d\n", argv [0], argc) ; my_srand (42) ; /* RAND */ fflush (stdout) ; singular = FALSE ; do_memory = FALSE ; do_nantests = FALSE ; for (i = 1 ; i < argc ; i++) { s = argv [i] ; if (s [0] == '-' && s [1] == 'm') do_memory = TRUE ; if (s [0] == '-' && s [1] == 's') singular = TRUE ; if (s [0] == '-' && s [1] == 'n') do_nantests = TRUE ; } printf ("do_memory: %d singular: %d\n", do_memory, singular) ; /* ---------------------------------------------------------------------- */ /* initialize CHOLMOD */ /* ---------------------------------------------------------------------- */ cm = &Common ; OK (CHOLMOD(start) (cm)) ; /* ---------------------------------------------------------------------- */ /* test all methods with NULL common */ /* ---------------------------------------------------------------------- */ /* no user error handler, since lots of errors will be raised here */ cm->error_handler = NULL ; null_test (NULL) ; save = cm->itype ; cm->itype = -999 ; null_test (cm) ; cm->itype = save ; null_test2 ( ) ; CHOLMOD(finish) (cm) ; OK (cm->malloc_count == 0) ; OK (CHOLMOD(start) (cm)) ; /* ---------------------------------------------------------------------- */ /* create basic scalars */ /* ---------------------------------------------------------------------- */ Zero [0] = 0 ; Zero [1] = 0 ; zero [0] = 0 ; zero [1] = 0 ; one [0] = 1 ; one [1] = 0 ; minusone [0] = -1 ; minusone [1] = 0 ; M1 = CHOLMOD(ones) (1, 1, CHOLMOD_REAL, cm) ; if (M1 != NULL) { ((double *) (M1->x)) [0] = -1 ; } /* ---------------------------------------------------------------------- */ /* read in a triplet matrix and use it to test CHOLMOD */ /* ---------------------------------------------------------------------- */ for ( ; (T = read_triplet (stdin)) != NULL ; ) /* RAND */ { if (T->nrow > 1000000) { /* do huge-problem tests only */ huge ( ) ; CHOLMOD(free_triplet) (&T, cm) ; continue ; } maxerr = 0 ; CHOLMOD(defaults) (cm) ; cm->error_handler = my_handler ; cm->print = 4 ; cm->precise = FALSE ; cm->nmethods = 8 ; /* ------------------------------------------------------------------ */ /* convert triplet to sparse matrix */ /* ------------------------------------------------------------------ */ A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; AT = CHOLMOD(transpose) (A, 0, cm) ; OK (CHOLMOD(print_sparse) (A, "Test matrix, A", cm)) ; C = unpack (A) ; /* RAND */ OK (CHOLMOD(print_sparse) (C, "Unpacked/unsorted version of A", cm)) ; cm->print = 1 ; if (T != NULL) { nrow = T->nrow ; ncol = T->ncol ; n = MAX (nrow, ncol) ; nmin = MIN (nrow, ncol) ; } /* ------------------------------------------------------------------ */ /* basic error tests */ /* ------------------------------------------------------------------ */ null2 (T, do_nantests) ; /* RAND */ printf ("Null2 OK : no error\n") ; if (do_nantests) { maxerr = 0 ; goto done ; /* yes, this is ugly */ } /* ------------------------------------------------------------------ */ /* raw factorization tests */ /* ------------------------------------------------------------------ */ cm->error_handler = NULL ; err = raw_factor (A, 2) ; /* RAND */ cm->error_handler = my_handler ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error %.1g\n", err) ; err = raw_factor2 (A, 0., 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error2 %.1g\n", err) ; err = raw_factor2 (A, 1e-16, 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error3 %.1g\n", err) ; if (n < 1000 && A && T && A->stype == 1) { /* factorize a symmetric matrix (upper part stored), possibly * with ignored entries in lower triangular part. */ cholmod_sparse *F ; int save = T->stype ; T->stype = 0 ; F = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; T->stype = save ; /* ET = CHOLMOD(transpose) (E, 2, cm) ; if (E) E->stype = 0 ; if (ET) ET->stype = 0 ; F = CHOLMOD(add) (E, ET, one, one, 1, 1, cm) ; */ if (F) F->stype = 1 ; err = raw_factor2 (F, 0., 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error4 %.1g\n", err) ; err = raw_factor2 (F, 1e-16, 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error5 %.1g\n", err) ; cm->dbound = 1e-15 ; err = raw_factor2 (F, 0., 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error6 %.1g\n", err) ; err = raw_factor2 (F, 1e-16, 0) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error7 %.1g\n", err) ; err = raw_factor2 (F, 1e-16, 1) ; MAXERR (maxerr, err, 1) ; printf ("raw factorization error8 %.1g\n", err) ; cm->dbound = 0 ; /* CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&ET, cm) ; */ CHOLMOD(free_sparse) (&F, cm) ; } /* ------------------------------------------------------------------ */ /* matrix ops */ /* ------------------------------------------------------------------ */ err = test_ops (A) ; /* RAND */ MAXERR (maxerr, err, 1) ; printf ("initial testops error %.1g\n", err) ; /* ------------------------------------------------------------------ */ /* analyze, factorize, solve */ /* ------------------------------------------------------------------ */ err = solve (A) ; /* RAND */ MAXERR (maxerr, err, 1) ; printf ("initial solve error %.1g\n", err) ; /* ------------------------------------------------------------------ */ /* CCOLAMD tests */ /* ------------------------------------------------------------------ */ cctest (A) ; /* RAND reset */ cctest (AT) ; /* RAND reset */ /* ------------------------------------------------------------------ */ /* COLAMD tests */ /* ------------------------------------------------------------------ */ ctest (A) ; ctest (AT) ; /* ------------------------------------------------------------------ */ /* AMD tests */ /* ------------------------------------------------------------------ */ if (n < NLARGE || A->stype) { /* for unsymmetric matrices, this forms A*A' and A'*A, which can * fail if A has a dense row or column. So it is only done for * modest-sized unsymmetric matrices. */ amdtest (A) ; amdtest (AT) ; camdtest (A) ; /* RAND */ camdtest (AT) ; /* RAND */ } if (n < NSMALL) { /* -------------------------------------------------------------- */ /* do_matrix with an unpacked matrix */ /* -------------------------------------------------------------- */ /* try with an unpacked matrix, and a non-default dbound */ cm->dbound = 1e-15 ; err = do_matrix (C) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; cm->dbound = 0 ; /* -------------------------------------------------------------- */ /* do_matrix: analyze, factorize, and solve, with many options */ /* -------------------------------------------------------------- */ err = do_matrix (A) ; /* RAND reset */ MAXERR (maxerr, err, 1) ; /* -------------------------------------------------------------- */ /* pretend to solve an LP */ /* -------------------------------------------------------------- */ if (nrow != ncol) { cm->print = 2 ; err = lpdemo (T) ; /* RAND */ cm->print = 1 ; MAXERR (maxerr, err, 1) ; cm->print = 5; CHOLMOD(print_common) ("Common", cm);cm->print=1; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_COLAMD ; err = lpdemo (T) ; /* RAND */ MAXERR (maxerr, err, 1) ; printf ("initial lp error %.1g, dbound %g\n", err, cm->dbound) ; cm->nmethods = 0 ; cm->method [0].ordering = CHOLMOD_GIVEN ; } } progress (1, '|') ; if (n < NSMALL && do_memory) { /* -------------------------------------------------------------- */ /* Exhaustive memory-error handling */ /* -------------------------------------------------------------- */ memory_tests (T) ; /* RAND */ } /* ------------------------------------------------------------------ */ /* free matrices and print results */ /* ------------------------------------------------------------------ */ done: /* an ugly "goto" target; added to minimize code changes * when added "do_nantests", for version 1.0.2 */ CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_sparse) (&A, cm) ; CHOLMOD(free_triplet) (&T, cm) ; fprintf (stderr, "\n " " Test OK") ; if (nrow <= ncol && !singular) { /* maxerr should be NaN if nrow > ncol, so don't print it */ fprintf (stderr, ", maxerr %.1g", maxerr) ; } fprintf (stderr, "\n") ; my_srand (42) ; /* RAND reset */ } /* ---------------------------------------------------------------------- */ /* finalize CHOLMOD */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_dense) (&M1, cm) ; CHOLMOD(finish) (cm) ; cm->print = 5 ; OK (CHOLMOD(print_common) ("cm", cm)) ; printf ("malloc count "ID" inuse "ID"\n", (Int) cm->malloc_count, (Int) cm->memory_inuse) ; OK (cm->malloc_count == 0) ; OK (cm->memory_inuse == 0) ; if (nrow > ncol) { /* maxerr should be NaN, so don't print it */ printf ("All tests successful\n") ; } else { printf ("All tests successful: max error %.1g\n", maxerr) ; } return (0) ; } SuiteSparse/CHOLMOD/Tcov/cm.h0000644001170100242450000002040510462167317014527 0ustar davisfac#include "cholmod.h" #include #include #include #include #define Size_max ((size_t) (-1)) /* -------------------------------------------------------------------------- */ /* double, UF_long */ /* -------------------------------------------------------------------------- */ #ifdef DLONG #define Real double #define Int UF_long #define Int_max UF_long_max #define CHOLMOD(name) cholmod_l_ ## name #define LONG #define DOUBLE #define ITYPE CHOLMOD_LONG #define DTYPE CHOLMOD_DOUBLE /* -------------------------------------------------------------------------- */ /* double, int: this is the default */ /* -------------------------------------------------------------------------- */ #else #ifndef DINT #define DINT #endif #define INT #define DOUBLE #define Real double #define Int int #define Int_max INT_MAX #define CHOLMOD(name) cholmod_ ## name #define ITYPE CHOLMOD_INT #define DTYPE CHOLMOD_DOUBLE #endif /* -------------------------------------------------------------------------- */ #include "cholmod_blas.h" #define EMPTY (-1) #define TRUE 1 #define FALSE 0 #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define IMPLIES(p,q) (!(p) || (q)) #if defined(WIN32) || defined(_WIN32) #define ISNAN(x) (((x) != (x)) || (((x) < (x)))) #else #define ISNAN(x) ((x) != (x)) #endif #define MY_RAND_MAX 32767 #define MAXERR(maxerr,err,anorm) \ { \ if (ISNAN (maxerr)) \ { \ /* do nothing */ ; \ } \ else if (ISNAN (err)) \ { \ maxerr = err ; \ } \ else if (anorm > 0) \ { \ if ((err/anorm) > maxerr) maxerr = (err/anorm) ; \ } \ else \ { \ if (err > maxerr) maxerr = err ; \ } \ /* printf ("MAXERR: %7.2e %7.2e %7.2e in %d : %s\n", \ maxerr, err, (double) anorm, __LINE__, __FILE__ ) ; */ \ } #define OKP(p) Assert ((p) != NULL, __FILE__, __LINE__) #define OK(truth) Assert (truth, __FILE__, __LINE__) #define NOT(truth) Assert (!(truth), __FILE__, __LINE__) #define NOP(p) Assert ((p) == NULL, __FILE__, __LINE__) #define NSMALL 200 #define NLARGE 1000 #define ERROR(status,message) \ CHOLMOD(error) (status, __FILE__, __LINE__, message, cm) /* -------------------------------------------------------------------------- */ /* global variables */ /* -------------------------------------------------------------------------- */ #ifndef EXTERN #define EXTERN extern #endif EXTERN double zero [2], one [2], minusone [2] ; EXTERN cholmod_common Common, *cm ; EXTERN cholmod_dense *M1 ; EXTERN Int my_tries ; EXTERN double Zero [2] ; /* -------------------------------------------------------------------------- */ /* prototypes */ /* -------------------------------------------------------------------------- */ void null_test (cholmod_common *) ; void null_test2 (void) ; void Assert (int truth, char *file, int line) ; Int nrand (Int n) ; Int *prand (Int n) ; cholmod_triplet *read_triplet (FILE *f) ; double test_ops (cholmod_sparse *A) ; cholmod_dense *xtrue (Int nrow, Int ncol, Int d, Int xtype) ; double resid (cholmod_sparse *A, cholmod_dense *X, cholmod_dense *B) ; double solve (cholmod_sparse *A) ; double aug (cholmod_sparse *A) ; double do_matrix (cholmod_sparse *A) ; cholmod_dense *rhs (cholmod_sparse *A, Int nrhs, Int d) ; void prune_row (cholmod_sparse *A, Int k) ; double pnorm (cholmod_dense *X, Int *P, cholmod_dense *B, Int inv) ; double test_solver (cholmod_sparse *A) ; Int *rand_set (Int len, Int n) ; void my_handler (int status, char *file, int line, char *msg) ; void my_handler2 (int status, char *file, int line, char *msg) ; double resid3 (cholmod_sparse *A1, cholmod_sparse *A2, cholmod_sparse *A3, cholmod_dense *X, cholmod_dense *B) ; double xrand (double range) ; double lp_resid (cholmod_sparse *A, Int *rflag, Int *fset, Int fsize, double beta [2], cholmod_dense *X, cholmod_dense *B) ; double lpdemo (cholmod_triplet *T) ; cholmod_sparse *lp_prune ( cholmod_sparse *A, Int *rflag, Int *fset, Int fsize); void null2 (cholmod_triplet *Tok, int do_nantests) ; void *my_malloc2 (size_t size) ; void *my_calloc2 (size_t n, size_t size) ; void *my_realloc2 (void *p, size_t size) ; void my_free2 (void *p) ; void memory_tests (cholmod_triplet *T) ; void progress (Int force, char s) ; void test_memory_handler ( void ) ; void normal_memory_handler ( void ) ; cholmod_sparse *unpack (cholmod_sparse *A) ; Int nzdiag (cholmod_sparse *A) ; Int check_partition (cholmod_sparse *A, Int *Part) ; double raw_factor (cholmod_sparse *A, Int errors) ; double raw_factor2 (cholmod_sparse *A, double alpha, int domask) ; cholmod_sparse *get_row (cholmod_sparse *A, Int i, Int *rflag, Int *fset, Int fsize, double beta [2]) ; Int my_rand (void) ; void my_srand (unsigned seed) ; unsigned long my_seed (void) ; void cctest (cholmod_sparse *A) ; Int check_constraints (Int *P, Int *Cmember, Int n) ; void ctest (cholmod_sparse *A) ; void amdtest (cholmod_sparse *A) ; double resid_sparse (cholmod_sparse *A, cholmod_sparse *X, cholmod_sparse *B) ; cholmod_dense *zeros (Int nrow, Int ncol, Int d, Int xtype) ; /* -------------------------------------------------------------------------- */ /* AMD, COLAMD, and CCOLAMD */ /* -------------------------------------------------------------------------- */ #ifdef LONG #define ID "%ld" #define AMD_order amd_l_order #define AMD_defaults amd_l_defaults #define AMD_control amd_l_control #define AMD_info amd_l_info #define AMD_1 amd_l1 #define AMD_2 amd_l2 #define AMD_valid amd_l_valid #define AMD_aat amd_l_aat #define AMD_postorder amd_l_postorder #define AMD_post_tree amd_l_post_tree #define AMD_dump amd_l_dump #define AMD_debug amd_l_debug #define AMD_debug_init amd_l_debug_init #define AMD_preprocess amd_l_preprocess #define CAMD_order camd_l_order #define CAMD_defaults camd_l_defaults #define CAMD_control camd_l_control #define CAMD_info camd_l_info #define CAMD_1 camd_l1 #define CAMD_2 camd_l2 #define CAMD_valid camd_l_valid #define CAMD_cvalid camd_l_cvalid #define CAMD_aat camd_l_aat #define CAMD_postorder camd_l_postorder #define CAMD_dump camd_l_dump #define CAMD_debug camd_l_debug #define CAMD_debug_init camd_l_debug_init #define CAMD_preprocess camd_l_preprocess #define CCOLAMD_recommended ccolamd_l_recommended #define CCOLAMD_set_defaults ccolamd_l_set_defaults #define CCOLAMD_2 ccolamd2_l #define CCOLAMD_MAIN ccolamd_l #define CCOLAMD_apply_order ccolamd_l_apply_order #define CCOLAMD_postorder ccolamd_l_postorder #define CCOLAMD_post_tree ccolamd_l_post_tree #define CCOLAMD_fsize ccolamd_l_fsize #define CSYMAMD_MAIN csymamd_l #define CCOLAMD_report ccolamd_l_report #define CSYMAMD_report csymamd_l_report #define COLAMD_recommended colamd_l_recommended #define COLAMD_set_defaults colamd_l_set_defaults #define COLAMD_MAIN colamd_l #define SYMAMD_MAIN symamd_l #define COLAMD_report colamd_l_report #define SYMAMD_report symamd_l_report #else #define ID "%d" #define AMD_order amd_order #define AMD_defaults amd_defaults #define AMD_control amd_control #define AMD_info amd_info #define AMD_1 amd_1 #define AMD_2 amd_2 #define AMD_valid amd_valid #define AMD_aat amd_aat #define AMD_postorder amd_postorder #define AMD_post_tree amd_post_tree #define AMD_dump amd_dump #define AMD_debug amd_debug #define AMD_debug_init amd_debug_init #define AMD_preprocess amd_preprocess #define CAMD_order camd_order #define CAMD_defaults camd_defaults #define CAMD_control camd_control #define CAMD_info camd_info #define CAMD_1 camd_1 #define CAMD_2 camd_2 #define CAMD_valid camd_valid #define CAMD_cvalid camd_cvalid #define CAMD_aat camd_aat #define CAMD_postorder camd_postorder #define CAMD_dump camd_dump #define CAMD_debug camd_debug #define CAMD_debug_init camd_debug_init #define CAMD_preprocess camd_preprocess #define CCOLAMD_recommended ccolamd_recommended #define CCOLAMD_set_defaults ccolamd_set_defaults #define CCOLAMD_2 ccolamd2 #define CCOLAMD_MAIN ccolamd #define CCOLAMD_apply_order ccolamd_apply_order #define CCOLAMD_postorder ccolamd_postorder #define CCOLAMD_post_tree ccolamd_post_tree #define CCOLAMD_fsize ccolamd_fsize #define CSYMAMD_MAIN csymamd #define CCOLAMD_report ccolamd_report #define CSYMAMD_report csymamd_report #define COLAMD_recommended colamd_recommended #define COLAMD_set_defaults colamd_set_defaults #define COLAMD_MAIN colamd #define SYMAMD_MAIN symamd #define COLAMD_report colamd_report #define SYMAMD_report symamd_report #endif SuiteSparse/CHOLMOD/Tcov/covs0000755001170100242450000000046610533127615014660 0ustar davisfac#!/bin/csh # usage: covs echo '=================================================================' foreach file (*.?cov) echo $file grep "#####" $file | grep -v "__dev" | grep -v "__major" | \ grep -v "#####:[ ]*[0-9]*:[{}]" echo '=================================================================' end SuiteSparse/CHOLMOD/Tcov/cov.awk0000644001170100242450000000026610276530600015245 0ustar davisfac/cannot/ /function/ { f = $8 } /file/ { f = $8 } /lines/ { k = match ($1, "%") ; p = substr ($1, 1, k-1) ; if ((p+0) != 100) { printf "%8s %s\n", p, f } } SuiteSparse/CHOLMOD/Tcov/test_ops.c0000644001170100242450000007156610540000072015756 0ustar davisfac/* ========================================================================== */ /* === Tcov/test_ops ======================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test CHOLMOD matrix operators. */ #include "cm.h" /* ========================================================================== */ /* === nzdiag =============================================================== */ /* ========================================================================== */ /* Count the entries on the diagonal */ Int nzdiag (cholmod_sparse *A) { Int *Ap, *Ai, *Anz ; Int nnzdiag, packed, j, p, i, pend, ncol ; if (A == NULL) { return (EMPTY) ; } nnzdiag = 0 ; ncol = A->ncol ; Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { nnzdiag++ ; } } } return (nnzdiag) ; } /* ========================================================================== */ /* === check_partition ====================================================== */ /* ========================================================================== */ /* Check a node separator, and return the # of nodes in the node separator or * -1 if the separater is invalid. A node j is in the left part if * Part [j] = 0, in the right part if Part [j] = 1, and in the separator if * Part [j] = 2. */ Int check_partition (cholmod_sparse *A, Int *Part) { Int *Ap, *Ai, *Anz ; Int chek [3], which, i, j, p, n, pend, packed ; if (A == NULL || Part == NULL || A->nrow != A->ncol) { return (EMPTY) ; } n = A->nrow ; Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; chek [0] = 0 ; chek [1] = 0 ; chek [2] = 0 ; for (j = 0 ; j < n ; j++) { which = Part [j] ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (which == 0) { if (Part [i] == 1) { return (EMPTY) ; } } else if (which == 1) { if (Part [i] == 0) { return (EMPTY) ; } } } if (which < 0 || which > 2) { return (EMPTY) ; } chek [which]++ ; } return (chek [2]) ; } /* ========================================================================== */ /* === check_equality ======================================================= */ /* ========================================================================== */ /* Ensure two sparse matrices are identical. */ static void check_equality (cholmod_sparse *E, cholmod_sparse *D, Int xtype) { double *Ex, *Ez, *Dx, *Dz ; Int *Ep, *Ei, *Dp, *Di ; Int j, nz, p, ncol ; if (E == NULL || D == NULL || D->xtype != xtype || E->xtype != xtype) { return ; } Ep = E->p ; Ei = E->i ; Ex = E->x ; Ez = E->z ; Dp = D->p ; Di = D->i ; Dx = D->x ; Dz = D->z ; OK (E->ncol == D->ncol) ; OK (E->nrow == D->nrow) ; ncol = E->ncol ; for (j = 0 ; j <= ncol ; j++) { OK (Ep [j] == Dp [j]) ; } nz = Ep [ncol] ; for (p = 0 ; p < nz ; p++) { OK (Ei [p] == Di [p]) ; } if (xtype == CHOLMOD_REAL) { for (p = 0 ; p < nz ; p++) { OK (Ex [p] == Dx [p]) ; } } else if (xtype == CHOLMOD_COMPLEX) { for (p = 0 ; p < 2*nz ; p++) { OK (Ex [p] == Dx [p]) ; } } else if (xtype == CHOLMOD_ZOMPLEX) { for (p = 0 ; p < nz ; p++) { OK (Ex [p] == Dx [p]) ; OK (Ez [p] == Dz [p]) ; } } } /* ========================================================================== */ /* === test_ops ============================================================= */ /* ========================================================================== */ /* Test various matrix operations. */ double test_ops (cholmod_sparse *A) { double maxerr = 0, r, x, anorm, r1, rinf ; double *Sx, *Sz ; Int *Pinv, *P, *Si, *Sj, *Q, *Qinv, *fset, *Partition ; cholmod_triplet *S ; cholmod_sparse *C, *D, *E, *F, *G, *H, *AT, *Zs ; cholmod_dense *X, *Y ; Int n, kk, k, nrow, ncol, len, nz, ok, i, j, stype, nmin, mode, isreal, xtype, xtype2, mtype, asym, xmatched, pmatched, nzoffdiag, nz_diag ; size_t nz1, nz2 ; void (*save) (int, char *, int, char *) ; double alpha [2], beta [2], *Xx ; FILE *f ; int option, save3 ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "nothing for test_ops") ; return (1) ; } nrow = A->nrow ; ncol = A->ncol ; H = NULL ; n = MAX (nrow, ncol) ; nmin = MIN (nrow, ncol) ; xtype = A->xtype ; isreal = (A->xtype == CHOLMOD_REAL) ; /* ---------------------------------------------------------------------- */ /* norm */ /* ---------------------------------------------------------------------- */ CHOLMOD(print_sparse) (A, "A for testops", cm) ; r1 = CHOLMOD(norm_sparse) (A, 1, cm) ; rinf = CHOLMOD(norm_sparse) (A, 0, cm) ; anorm = r1 ; /* E = pattern of A */ E = CHOLMOD(copy) (A, 0, 0, cm) ; CHOLMOD(print_sparse) (E, "E = pattern of A", cm) ; r1 = CHOLMOD(norm_sparse) (E, 1, cm) ; rinf = CHOLMOD(norm_sparse) (E, 0, cm) ; OK (r1 <= nrow) ; OK (rinf <= ncol) ; CHOLMOD(free_sparse) (&E, cm) ; /* E = pattern of A, but exclude the diagonal */ E = CHOLMOD(copy) (A, 0, -1, cm) ; CHOLMOD(print_sparse) (E, "E = spones (A), excl diag", cm) ; r1 = CHOLMOD(norm_sparse) (E, 1, cm) ; rinf = CHOLMOD(norm_sparse) (E, 0, cm) ; if (nrow < ncol) { OK (r1 <= nrow) ; OK (rinf < MAX (1,ncol)) ; } else { OK (r1 < MAX (1,nrow)) ; OK (rinf <= ncol) ; } CHOLMOD(free_sparse) (&E, cm) ; /* ---------------------------------------------------------------------- */ /* copy */ /* ---------------------------------------------------------------------- */ if (A->stype) { /* E = tril (A), no diagonal */ E = CHOLMOD(copy) (A, -1, -1, cm) ; CHOLMOD(print_sparse) (E, "E, lower and no diagonal", cm) ; CHOLMOD(band_inplace) (0, n, 0, E, cm) ; CHOLMOD(print_sparse) (E, "E Empty", cm) ; nz = CHOLMOD(nnz) (E, cm) ; if (E != NULL) { OK (nz == 0) ; } CHOLMOD(free_sparse) (&E, cm) ; } /* ---------------------------------------------------------------------- */ /* read/write */ /* ---------------------------------------------------------------------- */ /* i = cm->print ; cm->print = 4 ; CHOLMOD(print_sparse) (A, "A for read/write", cm) ; cm->print = i ; */ /* delete the contents of the temp1.mtx and temp2.mtx file */ f = fopen ("temp1.mtx", "w") ; fprintf (f, "temp1\n") ; fclose (f) ; f = fopen ("temp3.mtx", "w") ; fprintf (f, "temp3\n") ; fclose (f) ; CHOLMOD(free_work) (cm) ; f = fopen ("temp1.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, NULL, "comments.txt", cm) ; fclose (f) ; printf ("write_sparse, asym: %d\n", asym) ; OK (IMPLIES (A != NULL, asym > EMPTY)) ; f = fopen ("temp1.mtx", "r") ; C = CHOLMOD(read_sparse) (f, cm) ; fclose (f) ; printf ("got_sparse\n") ; CHOLMOD(free_sparse) (&C, cm) ; save3 = A->xtype ; A->xtype = CHOLMOD_PATTERN ; f = fopen ("temp3.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, NULL, "comments.txt", cm) ; A->xtype = save3 ; fclose (f) ; printf ("write_sparse3, asym: %d\n", asym) ; f = fopen ("temp3.mtx", "r") ; C = CHOLMOD(read_sparse) (f, cm) ; fclose (f) ; printf ("got_sparse3\n") ; CHOLMOD(free_sparse) (&C, cm) ; for (i = 0 ; i <= 1 ; i++) { f = fopen ("temp2.mtx", "w") ; fprintf (f, "temp2\n") ; fclose (f) ; X = CHOLMOD(ones) (4, 4, CHOLMOD_REAL, cm) ; if (X != NULL) { Xx = X->x ; Xx [0] = (i == 0) ? 1.1e308 : -1.1e308 ; } f = fopen ("temp2.mtx", "w") ; ok = CHOLMOD(write_dense) (f, X, "comments.txt", cm) ; fclose (f) ; printf ("wrote dense\n") ; f = fopen ("temp2.mtx", "r") ; Y = CHOLMOD(read_dense) (f, cm) ; fclose (f) ; printf ("got dense\n") ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_dense) (&Y, cm) ; } /* ---------------------------------------------------------------------- */ /* symmetry */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_work) (cm) ; xmatched = 0 ; pmatched = 0 ; nzoffdiag = 0 ; nz_diag = 0 ; for (option = 0 ; option <= 2 ; option++) { asym = CHOLMOD(symmetry) (A, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm); printf ("symmetry, asym: %d matched %d %d offdiag %d diag %d\n", asym, xmatched, pmatched, nzoffdiag, nz_diag) ; } /* ---------------------------------------------------------------------- */ /* transpose */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (A->ncol, A->nrow, A->nzmax, TRUE, TRUE, -(A->stype), A->xtype, cm) ; D = CHOLMOD(allocate_sparse) (A->nrow, A->ncol, A->nzmax, TRUE, TRUE, A->stype, A->xtype, cm) ; CHOLMOD(free_work) (cm) ; ok = (C != NULL && D != NULL) ; /* C = A' */ if (ok) { if (A->stype) { ok = CHOLMOD(transpose_sym) (A, 2, NULL, C, cm) ; } else { ok = CHOLMOD(transpose_unsym) (A, 2, NULL, NULL, 0, C, cm) ; } OK (ok || cm->status == CHOLMOD_OUT_OF_MEMORY) ; } /* D = C' */ if (ok) { if (A->stype) { ok = CHOLMOD(transpose_sym) (C, 2, NULL, D, cm) ; } else { ok = CHOLMOD(transpose_unsym) (C, 2, NULL, NULL, 0, D, cm) ; } OK (ok || cm->status == CHOLMOD_OUT_OF_MEMORY) ; } if (ok) { ok = CHOLMOD(check_sparse) (D, cm) ; OK (ok || cm->status == CHOLMOD_OUT_OF_MEMORY) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&D, cm) ; /* ---------------------------------------------------------------------- */ /* C = A with jumbled triplets */ /* ---------------------------------------------------------------------- */ S = CHOLMOD(sparse_to_triplet) (A, cm) ; /* [ */ if (S != NULL && nmin > 0) { /* double the number of entries in S */ nz1 = S->nzmax ; nz2 = 2*nz1 ; ok = CHOLMOD(reallocate_triplet) (nz2, S, cm) ; if (ok) { /* add duplicate entries, but keep the matrix the same */ OK (S->nzmax == nz2) ; Si = S->i ; Sj = S->j ; Sx = S->x ; Sz = S->z ; for (k = nz1 ; k < ((Int) nz2) ; k++) { kk = nrand (k) ; /* RAND */ Si [k] = Si [kk] ; Sj [k] = Sj [kk] ; if (S->xtype == CHOLMOD_REAL) { x = Sx [kk] * (xrand (4.) - 2) ; /* RAND */ Sx [k] = x ; Sx [kk] -= x ; } else if (S->xtype == CHOLMOD_COMPLEX) { x = Sx [2*kk] * (xrand (4.) - 2) ; /* RAND */ Sx [2*k] = x ; Sx [2*kk] -= x ; x = Sx [2*kk+1] * (xrand (4.) - 2) ; /* RAND */ Sx [2*k+1] = x ; Sx [2*kk+1] -= x ; } else { x = Sx [kk] * (xrand (4.) - 2) ; /* RAND */ Sx [k] = x ; Sx [kk] -= x ; x = Sz [kk] * (xrand (4.) - 2) ; /* RAND */ Sz [k] = x ; Sz [kk] -= x ; } } /* randomly jumble the entries */ for (k = 0 ; k < ((Int) (nz2-1)) ; k++) { kk = k + nrand (nz2-k) ; /* RAND */ i = Si [k] ; Si [k] = Si [kk] ; Si [kk] = i ; j = Sj [k] ; Sj [k] = Sj [kk] ; Sj [kk] = j ; if (S->xtype == CHOLMOD_REAL) { x = Sx [k] ; Sx [k] = Sx [kk] ; Sx [kk] = x ; } else if (S->xtype == CHOLMOD_COMPLEX) { x = Sx [2*k] ; Sx [2*k] = Sx [2*kk] ; Sx [2*kk] = x ; x = Sx [2*k+1] ; Sx [2*k+1] = Sx [2*kk+1] ; Sx [2*kk+1] = x ; } else { x = Sx [k] ; Sx [k] = Sx [kk] ; Sx [kk] = x ; x = Sz [k] ; Sz [k] = Sz [kk] ; Sz [kk] = x ; } } S->nnz = nz2 ; } else { OK (S->nzmax == nz1) ; OK (S->nnz == nz1) ; } } CHOLMOD(print_triplet) (S, "S jumbled", cm) ; C = CHOLMOD(triplet_to_sparse) (S, 0, cm) ; /* [ */ CHOLMOD(print_sparse) (A, "A", cm) ; CHOLMOD(print_sparse) (C, "C", cm) ; Zs = CHOLMOD(spzeros) (nrow, ncol, 1, xtype, cm) ; /* [ */ G = NULL ; F = NULL ; if (isreal) { /* G=A+0 */ G = CHOLMOD(add) (A, Zs, one, one, TRUE, TRUE, cm) ; /* [ */ /* F = G-C */ F = CHOLMOD(add) (G, C, one, minusone, TRUE, TRUE, cm) ; /* [ */ CHOLMOD(print_sparse) (F, "F", cm) ; r = CHOLMOD(norm_sparse) (F, 1, cm) ; MAXERR (maxerr, r, anorm) ; r = CHOLMOD(norm_sparse) (F, 0, cm) ; CHOLMOD(drop) (0, F, cm) ; rinf = CHOLMOD(norm_sparse) (F, 0, cm) ; if (F != NULL) { OK (r == rinf) ; } MAXERR (maxerr, r, anorm) ; MAXERR (maxerr, rinf, anorm) ; /* E = F, with change of type and dropping small entries */ for (stype = -1 ; stype <= 1 ; stype++) { if (stype != 0 && (F != NULL && F->nrow != F->ncol)) { continue ; } for (mode = 0 ; mode <= 1 ; mode++) { E = CHOLMOD(copy) (F, stype, mode, cm) ; /* [ */ CHOLMOD(drop) (1e-16, E, cm) ; r1 = CHOLMOD(norm_sparse) (E, 1, cm) ; rinf = CHOLMOD(norm_sparse) (E, 0, cm) ; if (E != NULL) { if (mode == 0) { /* pattern only */ OK (r1 <= nrow) ; OK (rinf <= ncol) ; } else { MAXERR (maxerr, r1, anorm) ; MAXERR (maxerr, rinf, anorm) ; } } CHOLMOD(free_sparse) (&E, cm) ; /* ] */ } } CHOLMOD(free_sparse) (&F, cm) ; /* ] */ CHOLMOD(free_sparse) (&G, cm) ; /* ] */ } Y = CHOLMOD(ones) (nrow, 1, xtype, cm) ; /* [ */ X = CHOLMOD(ones) (ncol, 1, xtype, cm) ; /* [ */ alpha [0] = 0 ; alpha [1] = 0 ; beta [0] = 2 ; beta [1] = 0 ; /* Y = 0*A*X + 2*Y */ CHOLMOD(sdmult) (A, FALSE, alpha, beta, X, Y, cm) ; r = CHOLMOD(norm_dense) (Y, 0, cm) ; if (Y != NULL && X != NULL && A != NULL) { OK ((nrow == 0) ? (r == 0) : (r == 2)) ; } alpha [0] = 1 ; /* Y = 1*(0)*X + 2*Y */ CHOLMOD(sdmult) (Zs, FALSE, alpha, beta, X, Y, cm) ; r = CHOLMOD(norm_dense) (Y, 0, cm) ; if (Y != NULL && X != NULL && A != NULL) { OK ((nrow == 0) ? (r == 0) : (r == 4)) ; } CHOLMOD(free_dense) (&X, cm) ; /* ] */ CHOLMOD(free_dense) (&Y, cm) ; /* ] */ CHOLMOD(free_sparse) (&Zs, cm) ; /* ] */ CHOLMOD(free_sparse) (&C, cm) ; /* ] */ CHOLMOD(free_triplet) (&S, cm) ; /* ] */ /* ---------------------------------------------------------------------- */ /* C = P*A*Q in triplet form */ /* ---------------------------------------------------------------------- */ S = CHOLMOD(sparse_to_triplet) (A, cm) ; P = prand (nrow) ; /* RAND */ if (A->stype == 0) { Q = prand (ncol) ; /* RAND */ } else { /* if A is symmetric, and stored in either upper or lower form, then * the following code only works if P = Q */ Q = P ; } Pinv = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; Qinv = CHOLMOD(malloc) (ncol, sizeof (Int), cm) ; Partition = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; if (Pinv != NULL && Qinv != NULL && P != NULL && Q != NULL && S != NULL) { Si = S->i ; Sj = S->j ; nz = S->nnz ; for (k = 0 ; k < nrow ; k++) { Pinv [P [k]] = k ; } for (k = 0 ; k < ncol ; k++) { Qinv [Q [k]] = k ; } for (k = 0 ; k < nz ; k++) { Si [k] = Pinv [Si [k]] ; } for (k = 0 ; k < nz ; k++) { Sj [k] = Qinv [Sj [k]] ; } } C = CHOLMOD(triplet_to_sparse) (S, 0, cm) ; D = NULL ; E = NULL ; F = NULL ; G = NULL ; if (isreal) { /* ------------------------------------------------------------------ */ /* E = P*A*Q in sparse form */ /* ------------------------------------------------------------------ */ D = CHOLMOD(copy) (A, 0, 1, cm) ; E = CHOLMOD(submatrix) (D, P, nrow, Q, ncol, TRUE, FALSE, cm) ; CHOLMOD(sort) (E, cm) ; /* ------------------------------------------------------------------ */ /* F = E-G */ /* ------------------------------------------------------------------ */ G = CHOLMOD(copy) (C, 0, 1, cm) ; F = CHOLMOD(add) (E, G, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(drop) (0, F, cm) ; nz = CHOLMOD(nnz) (F, cm) ; if (F != NULL) { OK (nz == 0) ; } } CHOLMOD(free_sparse) (&F, cm) ; CHOLMOD(free_sparse) (&G, cm) ; CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&H, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_triplet) (&S, cm) ; /* ---------------------------------------------------------------------- */ /* submatrix */ /* ---------------------------------------------------------------------- */ if (A->stype == 0 && isreal) { /* E = A(:,:) */ E = CHOLMOD(submatrix) (A, NULL, -1, NULL, -1, TRUE, TRUE, cm) ; /* C = A-E */ C = CHOLMOD(add) (A, E, one, minusone, TRUE, TRUE, cm) ; ok = CHOLMOD(drop) (0., C, cm) ; nz = CHOLMOD(nnz) (C, cm) ; if (C != NULL) { OK (nz == 0) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&E, cm) ; } /* ---------------------------------------------------------------------- */ /* test band and add, unsymmetric */ /* ---------------------------------------------------------------------- */ if (isreal) { CHOLMOD(print_sparse) (A, "A for do triplet", cm) ; /* E = A */ E = CHOLMOD(copy) (A, 0, 1, cm) ; CHOLMOD(print_sparse) (E, "E=triu(A)", cm) ; /* E = triu (E) */ CHOLMOD(band_inplace) (0, ncol, 1, E, cm) ; /* F = A */ F = CHOLMOD(copy) (A, 0, 1, cm) ; CHOLMOD(print_sparse) (F, "F=tril(A)", cm) ; /* F = tril(F,-1) */ CHOLMOD(band_inplace) (-nrow, -1, 1, F, cm) ; CHOLMOD(print_sparse) (F, "Ftril", cm) ; /* G = E+F */ G = CHOLMOD(add) (E, F, one, one, TRUE, TRUE, cm) ; CHOLMOD(print_sparse) (G, "G=E+F", cm) ; /* D = A-G, which should be empty */ D = CHOLMOD(add) (G, A, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(print_sparse) (D, "D=A-G", cm) ; CHOLMOD(drop) (0, D, cm) ; CHOLMOD(print_sparse) (D, "D drop", cm) ; nz = CHOLMOD(nnz) (D, cm) ; if (D != NULL) { OK (nz == 0) ; } CHOLMOD(free_sparse) (&F, cm) ; CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&G, cm) ; D = CHOLMOD(band) (A, 1, -1, 0, cm) ; nz = CHOLMOD(nnz) (D, cm) ; if (D != NULL) { OK (nz == 0) ; } CHOLMOD(free_sparse) (&D, cm) ; D = CHOLMOD(band) (A, 0, 0, 0, cm) ; nz = CHOLMOD(nnz) (D, cm) ; if (D != NULL) { OK (nz == nzdiag (D)) ; } CHOLMOD(free_sparse) (&D, cm) ; } /* ---------------------------------------------------------------------- */ /* test band, add and copy_sparse (symmetric) */ /* ---------------------------------------------------------------------- */ if (A->stype && isreal) { /* E = A, in symmetric/upper form */ E = CHOLMOD(copy) (A, 1, 1, cm) ; CHOLMOD(print_sparse) (E, "E=A in sym/upper form", cm) ; /* E = -E */ CHOLMOD(scale) (M1, CHOLMOD_SCALAR, E, cm) ; /* F = A, in symmetric/lower form */ F = CHOLMOD(copy) (A, -1, 1, cm) ; CHOLMOD(print_sparse) (F, "F=A in sym/lower form", cm) ; /* C = F (exact copy) */ C = CHOLMOD(copy_sparse) (F, cm) ; /* G = E+C */ G = CHOLMOD(add) (E, C, one, one, TRUE, FALSE, cm) ; CHOLMOD(print_sparse) (G, "G=E+F", cm) ; CHOLMOD(sort) (G, cm) ; CHOLMOD(drop) (0, G, cm) ; CHOLMOD(print_sparse) (G, "G drop", cm) ; nz = CHOLMOD(nnz) (G, cm) ; if (G != NULL) { OK (nz == 0) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&F, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&G, cm) ; } /* ---------------------------------------------------------------------- */ /* try a dense identity matrix */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(eye) (3, 4, CHOLMOD_REAL, cm) ; CHOLMOD(print_dense) (X, "Dense identity", cm) ; CHOLMOD(free_dense) (&X, cm) ; /* ---------------------------------------------------------------------- */ /* bisector and nested_dissection */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION if (A != NULL && A->nrow == A->ncol) { UF_long nc, nc_new ; Int cnz, csep, save2 ; Int *Cnw, *Cew, *Cmember, *CParent, *Perm ; double save1 ; /* try CHOLMOD's interface to METIS_NodeComputeSeparator */ cm->metis_memory = 2.0 ; CHOLMOD(print_sparse) (A, "A for bisect", cm) ; csep = CHOLMOD(bisect) (A, NULL, 0, TRUE, Partition, cm) ; if (csep != EMPTY) { OK (csep == check_partition (A, Partition)) ; } /* try the raw interface to METIS_NodeComputeSeparator */ CHOLMOD(print_sparse) (A, "A for metis bisect", cm) ; /* C = A+A', remove the diagonal */ AT = CHOLMOD(transpose) (A, 0, cm) ; E = CHOLMOD(add) (A, AT, one, one, FALSE, TRUE, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; C = CHOLMOD(copy) (E, 0, -1, cm) ; CHOLMOD(print_sparse) (C, "C for metis bisect", cm) ; cnz = (C != NULL) ? (C->nzmax) : 0 ; Cew = CHOLMOD(malloc) (cnz, sizeof (Int), cm) ; Cnw = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; if (Cnw != NULL) { for (j = 0 ; j < (Int) (A->nrow) ; j++) { Cnw [j] = 1 ; } } if (Cew != NULL) { for (j = 0 ; j < cnz ; j++) { Cew [j] = 1 ; } } csep = CHOLMOD(metis_bisector) (C, Cnw, Cew, Partition, cm) ; if (csep != EMPTY) { OK (csep == check_partition (C, Partition)) ; } CHOLMOD(free) (nrow, sizeof (Int), Cnw, cm) ; CHOLMOD(free) (cnz, sizeof (Int), Cew, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&E, cm) ; Cmember = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; CParent = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; Perm = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; save1 = cm->method [cm->current].nd_small ; save2 = cm->method [cm->current].nd_oksep ; cm->method [cm->current].nd_small = 1 ; cm->method [cm->current].nd_oksep = 1.0 ; nc = CHOLMOD(nested_dissection) (A, NULL, 0, Perm, CParent, Cmember, cm); if (nc > 0) { OK (CHOLMOD(check_perm) (Perm, n, n, cm)) ; } CHOLMOD(free_work) (cm) ; /* collapse the septree */ if (nc > 0 && n > 0) { nc_new = CHOLMOD(collapse_septree) (n, nc, 0.1, 400, CParent, Cmember, cm) ; /* error checks */ save = cm->error_handler ; cm->error_handler = NULL ; nc_new = CHOLMOD(collapse_septree) (n, nc, 0.1, 400, CParent, Cmember, NULL) ; OK (nc_new == EMPTY) ; nc_new = CHOLMOD(collapse_septree) (n, nc, 0.1, 400, NULL, Cmember, cm) ; OK (nc_new == EMPTY) ; nc_new = CHOLMOD(collapse_septree) (n, nc, 0.1, 400, CParent, NULL, cm) ; OK (nc_new == EMPTY) ; nc_new = CHOLMOD(collapse_septree) (0, 1, 0.1, 400, CParent, Cmember, cm) ; OK (nc_new == EMPTY) ; nc_new = CHOLMOD(collapse_septree) (1, 1, 0.1, 400, CParent, Cmember, cm) ; OK (nc_new == 1 || nc_new == EMPTY) ; nc_new = CHOLMOD(collapse_septree) (Int_max, Int_max, 0.1, 400, CParent, Cmember, cm) ; OK (nc_new == EMPTY) ; cm->error_handler = save ; } CHOLMOD(free) (nrow, sizeof (Int), Cmember, cm) ; CHOLMOD(free) (nrow, sizeof (Int), CParent, cm) ; CHOLMOD(free) (nrow, sizeof (Int), Perm, cm) ; cm->method [cm->current].nd_small = save1 ; cm->method [cm->current].nd_oksep = save2 ; } #endif /* ---------------------------------------------------------------------- */ /* dense to/from sparse conversions */ /* ---------------------------------------------------------------------- */ /* convert A to real, remove zero entries, and then convert to pattern */ if (MAX (nrow, ncol) < 1000) { C = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sparse_xtype) (CHOLMOD_REAL, C, cm) ; CHOLMOD(drop) (0., C, cm) ; D = CHOLMOD(copy) (C, 0, 0, cm) ; CHOLMOD(sort) (D, cm) ; /* X = dense copy of C */ CHOLMOD(sparse_xtype) (CHOLMOD_PATTERN, C, cm) ; X = CHOLMOD(sparse_to_dense) (C, cm) ; CHOLMOD(free_sparse) (&C, cm) ; /* change X to sparse pattern and then real/complex/zomplex, it should * equal D */ for (xtype2 = CHOLMOD_REAL ; xtype2 <= CHOLMOD_ZOMPLEX ; xtype2++) { E = CHOLMOD(dense_to_sparse) (X, FALSE, cm) ; ok = CHOLMOD(sparse_xtype) (xtype2, E, cm) ; ok = CHOLMOD(sparse_xtype) (xtype2, D, cm) ; if (xtype2 == CHOLMOD_REAL) { F = CHOLMOD(add) (E, D, one, minusone, TRUE, TRUE, cm) ; r = CHOLMOD(norm_sparse) (F, 0, cm) ; if (F != NULL) { OK (r == 0) ; } CHOLMOD(free_sparse) (&F, cm) ; } else { check_equality (E, D, xtype2) ; } CHOLMOD(free_sparse) (&E, cm) ; } CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_dense) (&X, cm) ; } /* ---------------------------------------------------------------------- */ /* unsymmetric transpose */ /* ---------------------------------------------------------------------- */ len = ncol/2 ; fset = prand (ncol) ; /* RAND */ CHOLMOD(print_perm) (P, nrow, nrow, "P", cm) ; CHOLMOD(print_subset) (fset, ncol, ncol, "fset", cm) ; if (isreal) { C = CHOLMOD(copy) (A, 0, 1, cm) ; D = CHOLMOD(ptranspose) (C, 1, P, fset, len, cm) ; E = CHOLMOD(transpose) (D, 1, cm) ; F = CHOLMOD(transpose) (E, 1, cm) ; G = CHOLMOD(add) (D, F, one, minusone, TRUE, FALSE, cm) ; r = CHOLMOD(norm_sparse) (G, 0, cm) ; if (G != NULL) { OK (r == 0) ; } CHOLMOD(drop) (0, G, cm) ; r = CHOLMOD(norm_sparse) (G, 0, cm) ; nz = CHOLMOD(nnz) (G, cm) ; if (G != NULL) { OK (r == 0) ; OK (nz == 0) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&F, cm) ; CHOLMOD(free_sparse) (&G, cm) ; } /* ---------------------------------------------------------------------- */ /* symmetric array transpose */ /* ---------------------------------------------------------------------- */ if (A->stype != 0) { /* C = A(p,p).' */ C = CHOLMOD(ptranspose) (A, 1, P, NULL, 0, cm) ; /* D = C(pinv,pinv).' */ D = CHOLMOD(ptranspose) (C, 1, Pinv, NULL, 0, cm) ; CHOLMOD(sort) (D, cm) ; CHOLMOD(free_sparse) (&C, cm) ; /* C = A, sorted */ C = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sort) (C, cm) ; /* C and D should be equal */ check_equality (C, D, xtype) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&D, cm) ; /* C = A.' */ C = CHOLMOD(transpose) (A, 1, cm) ; /* D = C.' */ D = CHOLMOD(transpose) (C, 1, cm) ; CHOLMOD(sort) (D, cm) ; CHOLMOD(free_sparse) (&C, cm) ; /* C = A, sorted */ C = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sort) (C, cm) ; /* C and D should be equal */ check_equality (C, D, xtype) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&D, cm) ; } /* ---------------------------------------------------------------------- */ /* matrix multiply */ /* ---------------------------------------------------------------------- */ if (isreal) { /* this fails for a large arrowhead matrix, so turn off error hanlder */ save = cm->error_handler ; cm->error_handler = NULL ; AT = CHOLMOD(transpose) (A, 1, cm) ; D = CHOLMOD(copy) (A, 0, 1, cm) ; if (n > NLARGE) progress (1, '.') ; C = CHOLMOD(aat) (D, NULL, 0, 1, cm) ; if (n > NLARGE) progress (1, '.') ; CHOLMOD(print_common) ("After A*A'", cm) ; for (stype = -1 ; stype <= 1 ; stype++) { if (n > NLARGE) progress (1, '.') ; E = CHOLMOD(ssmult) (A, AT, stype, TRUE, TRUE, cm) ; if (n > NLARGE) progress (1, '.') ; G = CHOLMOD(add) (C, E, one, minusone, TRUE, FALSE, cm) ; if (n > NLARGE) progress (1, '.') ; r = CHOLMOD(norm_sparse) (G, 0, cm) ; if (G != NULL) { MAXERR (maxerr, r, anorm) ; } CHOLMOD(drop) (0, G, cm) ; r = CHOLMOD(norm_sparse) (G, 0, cm) ; if (G != NULL) { MAXERR (maxerr, r, anorm) ; } CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&G, cm) ; } if (nrow == ncol) { /* E = pattern of A */ E = CHOLMOD(copy) (A, 0, 0, cm) ; /* G = E*E */ if (n > NLARGE) progress (1, '.') ; G = CHOLMOD(ssmult) (E, E, 0, FALSE, FALSE, cm) ; if (n > NLARGE) progress (1, '.') ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&G, cm) ; } cm->error_handler = save ; CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; } /* ---------------------------------------------------------------------- */ /* free P, Q, and their inverses */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (ncol, sizeof (Int), fset, cm) ; CHOLMOD(free) (nrow, sizeof (Int), P, cm) ; CHOLMOD(free) (nrow, sizeof (Int), Pinv, cm) ; if (A->stype == 0) { CHOLMOD(free) (ncol, sizeof (Int), Q, cm) ; } CHOLMOD(free) (ncol, sizeof (Int), Qinv, cm) ; CHOLMOD(free) (nrow, sizeof (Int), Partition, cm) ; progress (0, '.') ; return (maxerr) ; } SuiteSparse/CHOLMOD/Tcov/Make.inc0000644001170100242450000000015710533351163015322 0ustar davisfac# valgrind is not used V = # covall is used COVER = ./covall # with test coverage CFLAGS = -O0 -g --coverage SuiteSparse/CHOLMOD/Tcov/Makefile0000644001170100242450000011426310617135416015422 0ustar davisfac#=============================================================================== # CHOLMOD/Tcov/Makefile #=============================================================================== # If you compile CHOLMOD with -DNPARTITION, then you do not need METIS, # CCOLAMD, or the Partition module. include ../../UFconfig/UFconfig.mk include Make.inc # Tcov requires gcc CC = gcc C = $(CC) $(CFLAGS) $(CHOLMOD_CONFIG) $(NANTESTS) # optimized LAPACK and BLAS # LIB = $(METIS) -lm $(LAPACK) $(BLAS) $(XERBLA) # LAPACK and the Fortran reference BLAS, compiled with gfortran -g -O: # LIB = $(METIS) -lm -llapack_plain -lblas_plain -lg2c LIB = $(METIS) -lm -llapack_plain -lblas_plain -lgfortran -lgfortranbegin LIB = $(METIS) -lm -llapack -lblas -lgfortran -lgfortranbegin # Solaris # LIB = $(METIS) -xlic_lib=sunperf # Use "grep" only, if you do not have "indent" PRETTY = grep -v "^\#" | indent -bl -nce -ss -bli0 -i4 -sob -l120 # PRETTY = grep -v "^\#" | ssh persimmon indent -bl -nce -ss -bli0 -i4 -sob -l120 # PRETTY = grep -v "^\#" I = -I../../AMD/Include -I../../COLAMD/Include \ -I$(METIS_PATH)/Lib -I../../CCOLAMD/Include -I../../CAMD/Include \ -I../Include -I../../UFconfig default: cm cl z_demo l_demo cmread clread TEST = cm.c test_ops.c null.c null2.c lpdemo.c memory.c solve.c aug.c unpack.c \ raw_factor.c cctest.c ctest.c amdtest.c camdtest.c huge.c INC = ../Include/cholmod.h \ ../Include/cholmod_blas.h \ ../Include/cholmod_check.h \ ../Include/cholmod_cholesky.h \ ../Include/cholmod_complexity.h \ ../Include/cholmod_config.h \ ../Include/cholmod_core.h \ ../Include/cholmod_internal.h \ ../Include/cholmod_matrixops.h \ ../Include/cholmod_modify.h \ ../Include/cholmod_partition.h \ ../Include/cholmod_supernodal.h \ ../Include/cholmod_template.h AMDSRC = ../../AMD/Source/amd_1.c \ ../../AMD/Source/amd_2.c \ ../../AMD/Source/amd_aat.c \ ../../AMD/Source/amd_control.c \ ../../AMD/Source/amd_defaults.c \ ../../AMD/Source/amd_global.c \ ../../AMD/Source/amd_info.c \ ../../AMD/Source/amd_order.c \ ../../AMD/Source/amd_postorder.c \ ../../AMD/Source/amd_post_tree.c \ ../../AMD/Source/amd_preprocess.c \ ../../AMD/Source/amd_valid.c \ ../../AMD/Include/amd.h \ ../../AMD/Include/amd_internal.h AMDOBJ = \ zz_amd_1.o \ zz_amd_2.o \ zz_amd_aat.o \ zz_amd_control.o \ zz_amd_defaults.o \ zz_amd_global.o \ zz_amd_info.o \ zz_amd_dump.o \ zz_amd_order.o \ zz_amd_postorder.o \ zz_amd_post_tree.o \ zz_amd_preprocess.o \ zz_amd_valid.o LAMDOBJ = \ zl_amd_1.o \ zl_amd_2.o \ zl_amd_aat.o \ zl_amd_control.o \ zl_amd_defaults.o \ zl_amd_global.o \ zl_amd_info.o \ zl_amd_dump.o \ zl_amd_order.o \ zl_amd_postorder.o \ zl_amd_post_tree.o \ zl_amd_preprocess.o \ zl_amd_valid.o COLAMDSRC = ../../COLAMD/Source/colamd.c ../../COLAMD/Source/colamd_global.c COLAMDOBJ = zz_colamd.o yz_colamd_global.o LCOLAMDOBJ = zl_colamd.o yl_colamd_global.o #------------------------------------------------------------------------------- # When using the Partition Module: CCOLAMDSRC = \ ../../CCOLAMD/Source/ccolamd.c \ ../../CCOLAMD/Source/ccolamd_global.c \ ../../CCOLAMD/Include/ccolamd.h CCOLAMDOBJ = zz_ccolamd.o yz_ccolamd_global.o LCCOLAMDOBJ = zl_ccolamd.o yl_ccolamd_global.o $(CCOLAMDOBJ): $(CCOLAMDSRC) $(LCCOLAMDOBJ): $(CCOLAMDSRC) IPARTITION_OBJ = \ z_ccolamd.o \ z_csymamd.o \ z_camd.o \ z_metis.o \ z_nesdis.o LPARTITION_OBJ = \ l_ccolamd.o \ l_csymamd.o \ l_camd.o \ l_metis.o \ l_nesdis.o CAMDSRC = ../../CAMD/Source/camd_1.c \ ../../CAMD/Source/camd_2.c \ ../../CAMD/Source/camd_aat.c \ ../../CAMD/Source/camd_control.c \ ../../CAMD/Source/camd_defaults.c \ ../../CAMD/Source/camd_global.c \ ../../CAMD/Source/camd_info.c \ ../../CAMD/Source/camd_order.c \ ../../CAMD/Source/camd_postorder.c \ ../../CAMD/Source/camd_preprocess.c \ ../../CAMD/Source/camd_valid.c \ ../../CAMD/Include/camd.h \ ../../CAMD/Include/camd_internal.h CAMDOBJ = \ zz_camd_1.o \ zz_camd_2.o \ zz_camd_aat.o \ zz_camd_control.o \ zz_camd_defaults.o \ zz_camd_global.o \ zz_camd_info.o \ zz_camd_order.o \ zz_camd_postorder.o \ zz_camd_preprocess.o \ zz_camd_valid.o \ zz_camd_dump.o LCAMDOBJ = \ zl_camd_1.o \ zl_camd_2.o \ zl_camd_aat.o \ zl_camd_control.o \ zl_camd_defaults.o \ zl_camd_global.o \ zl_camd_info.o \ zl_camd_order.o \ zl_camd_postorder.o \ zl_camd_preprocess.o \ zl_camd_valid.o \ zl_camd_dump.o $(CAMDOBJ): $(CAMDSRC) $(LCAMDOBJ): $(CAMDSRC) #------------------------------------------------------------------------------- # If you compile with -DNPARTITION, you may replace the above definitions # with empty ones (see immediately below), and then you do not need a copy of # CCOLAMD: # CCOLAMDSRC = # CCOLAMDOBJ = # LCCOLAMDOBJ = # IPARTITION_OBJ = # LPARTITION_OBJ = # CAMDSRC = # CAMDOBJ = # LCAMDOBJ = #------------------------------------------------------------------------------- IOBJ = \ z_common.o \ z_dense.o \ z_factor.o \ z_change_factor.o \ z_memory.o \ z_sparse.o \ z_complex.o \ z_transpose.o \ z_band.o \ z_copy.o \ z_triplet.o \ z_error.o \ z_aat.o \ z_add.o \ z_check.o \ z_read.o \ z_write.o \ z_amd.o \ z_analyze.o \ z_colamd.o \ z_etree.o \ z_factorize.o \ z_postorder.o \ z_rcond.o \ z_resymbol.o \ z_rowcolcounts.o \ z_rowfac.o \ z_solve.o \ z_spsolve.o \ z_drop.o \ z_horzcat.o \ z_norm.o \ z_scale.o \ z_sdmult.o \ z_ssmult.o \ z_submatrix.o \ z_vertcat.o \ z_symmetry.o \ z_rowadd.o \ z_rowdel.o \ z_updown.o \ z_super_numeric.o \ z_super_solve.o \ z_super_symbolic.o \ $(IPARTITION_OBJ) LOBJ = \ l_common.o \ l_dense.o \ l_factor.o \ l_change_factor.o \ l_memory.o \ l_sparse.o \ l_complex.o \ l_transpose.o \ l_band.o \ l_copy.o \ l_triplet.o \ l_error.o \ l_aat.o \ l_add.o \ l_check.o \ l_read.o \ l_write.o \ l_amd.o \ l_analyze.o \ l_colamd.o \ l_etree.o \ l_factorize.o \ l_postorder.o \ l_rcond.o \ l_resymbol.o \ l_rowcolcounts.o \ l_rowfac.o \ l_solve.o \ l_spsolve.o \ l_drop.o \ l_horzcat.o \ l_norm.o \ l_scale.o \ l_sdmult.o \ l_ssmult.o \ l_submatrix.o \ l_vertcat.o \ l_symmetry.o \ l_rowadd.o \ l_rowdel.o \ l_updown.o \ l_super_numeric.o \ l_super_solve.o \ l_super_symbolic.o \ $(LPARTITION_OBJ) IALL = $(IOBJ) $(AMDOBJ) $(COLAMDOBJ) $(CCOLAMDOBJ) $(CAMDOBJ) LALL = $(LOBJ) $(LAMDOBJ) $(LCOLAMDOBJ) $(LCCOLAMDOBJ) $(LCAMDOBJ) cm: $(IALL) $(TEST) cm.h Makefile $(C) $(I) $(TEST) -o cm $(IALL) $(LIB) cl: $(LALL) $(TEST) cm.h Makefile $(C) -DDLONG $(I) $(TEST) -o cl $(LALL) $(LIB) cmread: $(IALL) cmread.c Makefile $(C) $(I) cmread.c -o cmread $(IALL) $(LIB) clread: $(LALL) cmread.c Makefile $(C) -DDLONG $(I) cmread.c -o clread $(LALL) $(LIB) z_demo: $(IALL) ../Demo/cholmod_demo.c cm.h Makefile \ ../Demo/cholmod_demo.h cat ../Demo/cholmod_demo.c > z_demo.c $(C) $(I) -I../Demo z_demo.c -o z_demo $(IALL) $(LIB) l_demo: $(LALL) ../Demo/cholmod_l_demo.c cm.h Makefile \ ../Demo/cholmod_demo.h cat ../Demo/cholmod_l_demo.c > l_demo.c $(C) -DDLONG $(I) -I../Demo l_demo.c -o l_demo $(LALL) $(LIB) go: z_demo l_demo cmread clread cm cl $(V) ./z_demo ../Demo/Matrix/bcsstk01.tri > tmp/demo_k1.out $(V) ./z_demo ../Demo/Matrix/bcsstk02.tri > tmp/demo_k2.out $(V) ./z_demo < ../Demo/Matrix/lp_afiro.tri > tmp/demo_afiro.out $(V) ./z_demo < ../Demo/Matrix/can___24.mtx > tmp/demo_can24.out $(V) ./z_demo < ../Demo/Matrix/c.tri > tmp/demo_c.out $(V) ./z_demo < ../Demo/Matrix/d.tri > tmp/demo_d.out $(V) ./z_demo < ../Demo/Matrix/up.tri > tmp/demo_up.out $(V) ./z_demo < ../Demo/Matrix/c.mtx > tmp/demo_c_mtx.out $(V) ./z_demo < ../Demo/Matrix/0.tri > tmp/demo_0.out $(V) ./z_demo < Matrix/3_2 > tmp/demo_3_2.out $(V) ./z_demo < Matrix/c5lo > tmp/demo_c5lo.out $(V) ./z_demo < Matrix/c10 > tmp/demo_c10.out $(V) ./z_demo no_such_file > tmp/demo_no_such_file.out $(V) ./z_demo ../Demo/Matrix/mangle1.mtx > tmp/demo_mangle1.out $(V) ./z_demo ../Demo/Matrix/mangle2.mtx > tmp/demo_mangle2.out $(V) ./z_demo ../Demo/Matrix/mangle3.mtx > tmp/demo_mangle3.out $(V) ./z_demo ../Demo/Matrix/mangle4.mtx > tmp/demo_mangle4.out $(V) ./z_demo ../Demo/Matrix/pts5ldd03.mtx > tmp/demo_pts5ldd03.out $(V) ./l_demo ../Demo/Matrix/bcsstk01.tri > tmp/ldemo_k1.out $(V) ./l_demo ../Demo/Matrix/bcsstk02.tri > tmp/ldemo_k2.out $(V) ./l_demo < ../Demo/Matrix/lp_afiro.tri > tmp/ldemo_afiro.out $(V) ./l_demo < ../Demo/Matrix/can___24.mtx > tmp/ldemo_can24.out $(V) ./l_demo < ../Demo/Matrix/c.tri > tmp/ldemo_c.out $(V) ./l_demo < ../Demo/Matrix/d.tri > tmp/ldemo_d.out $(V) ./l_demo < ../Demo/Matrix/up.tri > tmp/ldemo_up.out $(V) ./l_demo < ../Demo/Matrix/c.mtx > tmp/ldemo_c_mtx.out $(V) ./l_demo < ../Demo/Matrix/0.tri > tmp/ldemo_0.out $(V) ./l_demo < Matrix/3_2 > tmp/ldemo_3_2.out $(V) ./l_demo < Matrix/c5lo > tmp/ldemo_c5lo.out $(V) ./l_demo < Matrix/c10 > tmp/ldemo_c10.out $(V) ./l_demo no_such_file > tmp/ldemo_no_such_file.out $(V) ./l_demo ../Demo/Matrix/mangle1.mtx > tmp/ldemo_mangle1.out $(V) ./l_demo ../Demo/Matrix/mangle2.mtx > tmp/ldemo_mangle2.out $(V) ./l_demo ../Demo/Matrix/mangle3.mtx > tmp/ldemo_mangle3.out $(V) ./l_demo ../Demo/Matrix/mangle4.mtx > tmp/ldemo_mangle4.out $(V) ./l_demo ../Demo/Matrix/pts5ldd03.mtx > tmp/ldemo_pts5ldd03.out - grep resid tmp/demo* $(V) ./cmread no_such_file > tmp/no_such_file.out $(V) ./cmread Matrix/crud1 > tmp/crud1.out $(V) ./cmread Matrix/crud2 > tmp/crud2.out $(V) ./cmread Matrix/fullcrud.mtx > tmp/fullcrud.out $(V) ./cmread Matrix/fullcrud1.mtx > tmp/fullcrud1.out $(V) ./cmread Matrix/fullcrud2.mtx > tmp/fullcrud2.out $(V) ./cmread Matrix/3by0.mtx > tmp/3by0.out $(V) ./cmread Matrix/fullrza.mtx > tmp/fullrza.out $(V) ./cmread Matrix/fullrsa.mtx > tmp/fullrsa.out $(V) ./cmread Matrix/fullcsa.mtx > tmp/fullcsa.out $(V) ./cmread Matrix/fullcza.mtx > tmp/fullcza.out $(V) ./cmread Matrix/fullcha.mtx > tmp/fullcha.out $(V) ./cmread Matrix/cha.mtx > tmp/cha.out $(V) ./cmread Matrix/cza.mtx > tmp/cza.out $(V) ./cmread Matrix/csa.mtx > tmp/csa.out $(V) ./cmread Matrix/one > tmp/one.out $(V) ./cmread Matrix/rza.mtx > tmp/rza.out $(V) ./cmread ../Demo/Matrix/mangle5.tri > tmp/mangle5.out $(V) ./cmread ../Demo/Matrix/mangle6.tri > tmp/mangle6.out $(V) ./cmread ../Demo/Matrix/mangle7.tri > tmp/mangle6.out $(V) ./cmread ../Demo/Matrix/mangle8.tri > tmp/mangle8.out $(V) ./cmread ../Demo/Matrix/empty.tri > tmp/empty.out $(V) ./cmread ../Demo/Matrix/one.tri > tmp/one.out $(V) ./cmread Matrix/plskz362.mtx > tmp/plskz363.out $(V) ./cmread Matrix/2diag.tri > tmp/2diag.out $(V) ./cmread Matrix/r5lo > tmp/r5lo.out $(V) ./cmread Matrix/r5lo2 > tmp/r5lo2.out - diff tmp/r5lo.out tmp/r5lo2.out $(V) ./cmread Matrix/cs.mtx > tmp/cs.out $(V) ./cmread Matrix/2lo.tri > tmp/2lo.out $(V) ./cmread Matrix/2.tri > tmp/2.out $(V) ./cmread Matrix/2up.tri > tmp/2up.out $(V) ./cmread Matrix/huge.tri > tmp/huge.out $(V) ./cmread Matrix/1e99 > tmp/1e99.out $(V) ./clread no_such_file > tmp/l_no_such_file.out $(V) ./clread Matrix/crud1 > tmp/l_crud1.out $(V) ./clread Matrix/crud2 > tmp/l_crud2.out $(V) ./clread Matrix/fullcrud.mtx > tmp/l_fullcrud.out $(V) ./clread Matrix/fullcrud1.mtx > tmp/l_fullcrud1.out $(V) ./clread Matrix/fullcrud2.mtx > tmp/l_fullcrud2.out $(V) ./clread Matrix/3by0.mtx > tmp/l_3by0.out $(V) ./clread Matrix/fullrza.mtx > tmp/l_fullrza.out $(V) ./clread Matrix/fullrsa.mtx > tmp/l_fullrsa.out $(V) ./clread Matrix/fullcsa.mtx > tmp/l_fullcsa.out $(V) ./clread Matrix/fullcza.mtx > tmp/l_fullcza.out $(V) ./clread Matrix/fullcha.mtx > tmp/l_fullcha.out $(V) ./clread Matrix/cha.mtx > tmp/l_cha.out $(V) ./clread Matrix/cza.mtx > tmp/l_cza.out $(V) ./clread Matrix/csa.mtx > tmp/l_csa.out $(V) ./clread Matrix/one > tmp/l_one.out $(V) ./clread Matrix/rza.mtx > tmp/l_rza.out $(V) ./clread ../Demo/Matrix/mangle5.tri > tmp/l_mangle5.out $(V) ./clread ../Demo/Matrix/mangle6.tri > tmp/l_mangle6.out $(V) ./clread ../Demo/Matrix/mangle7.tri > tmp/l_mangle6.out $(V) ./clread ../Demo/Matrix/mangle8.tri > tmp/l_mangle8.out $(V) ./clread ../Demo/Matrix/empty.tri > tmp/l_empty.out $(V) ./clread ../Demo/Matrix/one.tri > tmp/l_one.out $(V) ./clread Matrix/plskz362.mtx > tmp/l_plskz363.out $(V) ./clread Matrix/2diag.tri > tmp/l_2diag.out $(V) ./clread Matrix/r5lo > tmp/l_r5lo.out $(V) ./clread Matrix/r5lo2 > tmp/l_r5lo2.out - diff tmp/r5lo.out tmp/r5lo2.out $(V) ./clread Matrix/cs.mtx > tmp/l_cs.out $(V) ./clread Matrix/2lo.tri > tmp/l_l_2lo.out $(V) ./clread Matrix/2.tri > tmp/l_2.out $(V) ./clread Matrix/2up.tri > tmp/l_2up.out $(V) ./clread Matrix/huge.tri > tmp/l_huge.out $(V) ./clread Matrix/1e99 > tmp/l_1e99.out $(V) ./cm < Matrix/galenet > tmp/galenet.out $(V) ./cl < Matrix/galenet > tmp/l_galenet.out - $(COVER) $(V) ./cm < Matrix/5by50 > tmp/5by50.out $(V) ./cl < Matrix/5by50 > tmp/l_5by50.out - $(COVER) $(V) ./cm < Matrix/r5lo > tmp/r5lo.out $(V) ./cl < Matrix/r5lo > tmp/l_r5lo.out $(V) ./cm < Matrix/r5up > tmp/r5up.out $(V) ./cl < Matrix/r5up > tmp/l_r5up.out $(V) ./cm < Matrix/r5up2 > tmp/r5up2.out $(V) ./cl < Matrix/r5up2 > tmp/l_r5up2.out $(V) ./cm < Matrix/c5up2 > tmp/c5up2.out $(V) ./cl < Matrix/c5up2 > tmp/l_c5up2.out $(V) ./cm < Matrix/z5up2 > tmp/z5up2.out $(V) ./cl < Matrix/z5up2 > tmp/l_z5up2.out $(V) ./cm -m < Matrix/z5lo > tmp/z5lo.out $(V) ./cl -m < Matrix/z5lo > tmp/l_z5lo.out $(V) ./cm < Matrix/ibm32 > tmp/ibm.out $(V) ./cl < Matrix/ibm32 > tmp/l_ibm.out - $(COVER) $(V) ./cm -m < Matrix/c5lo > tmp/c5lo.out $(V) ./cl -m < Matrix/c5lo > tmp/l_c5lo.out $(V) ./cm -m < Matrix/z10 > tmp/z10.out $(V) ./cl -m < Matrix/z10 > tmp/l_z10.out $(V) ./cm -m < Matrix/z5up > tmp/z5up.out $(V) ./cl -m < Matrix/z5up > tmp/l_z5up.out - $(COVER) $(V) ./cm -s < Matrix/3singular > tmp/3singular.out $(V) ./cl -s < Matrix/3singular > tmp/l_3singular.out $(V) ./cm -s < Matrix/z3singular > tmp/z3singular.out $(V) ./cl -s < Matrix/z3singular > tmp/l_z3singular.out $(V) ./cm -s < Matrix/c3singular > tmp/c3singular.out $(V) ./cl -s < Matrix/c3singular > tmp/l_c3singular.out $(V) ./cm -m < Matrix/0 > tmp/0.out $(V) ./cl -m < Matrix/0 > tmp/l_0.out $(V) ./cm -m < Matrix/afiro > tmp/afiro.out $(V) ./cl -m < Matrix/afiro > tmp/l_afiro.out - $(COVER) $(V) ./cm -m < Matrix/k01up > tmp/k01up.out $(V) ./cl -m < Matrix/k01up > tmp/l_k01up.out - $(COVER) $(V) ./cm < Matrix/diag > tmp/diag.out $(V) ./cl < Matrix/diag > tmp/l_diag.out $(V) ./cm -m < Matrix/ex5lo > tmp/ex5lo.out $(V) ./cl -m < Matrix/ex5lo > tmp/l_ex5lo.out - $(COVER) $(V) ./cm < Matrix/20lo > tmp/20lo.out $(V) ./cl < Matrix/20lo > tmp/l_20lo.out $(V) ./cm < Matrix/z30lo > tmp/z30lo.out $(V) ./cl < Matrix/z30lo > tmp/l_z30lo.out - $(COVER) $(V) ./cm -m < Matrix/z30up > tmp/z30up.out $(V) ./cl -m < Matrix/z30up > tmp/l_z30up.out $(V) ./cm < Matrix/c10 > tmp/c10.out $(V) ./cl < Matrix/c10 > tmp/l_c10.out $(V) ./cm < Matrix/c30lo > tmp/c30lo.out $(V) ./cl < Matrix/c30lo > tmp/l_c30lo.out - $(COVER) $(V) ./cm -m < Matrix/c30up > tmp/c30up.out $(V) ./cl -m < Matrix/c30up > tmp/l_c30up.out $(V) ./cm < Matrix/pi > tmp/pi.out $(V) ./cl < Matrix/pi > tmp/l_pi.out $(V) ./cm < Matrix/cpi > tmp/cpi.out $(V) ./cl < Matrix/cpi > tmp/l_cpi.out $(V) ./cm < Matrix/1_0 > tmp/1_0.out $(V) ./cl < Matrix/1_0 > tmp/l_1_0.out $(V) ./cm -s < Matrix/3b > tmp/3b.out $(V) ./cl -s < Matrix/3b > tmp/l_3b.out $(V) ./cm -s < Matrix/cza > tmp/cza2.out $(V) ./cl -s < Matrix/cza > tmp/l_cza2.out $(V) ./cm < Matrix/0_1 > tmp/0_1.out $(V) ./cl < Matrix/0_1 > tmp/l_0_1.out - $(COVER) $(V) ./cm -n < Matrix/galenet > tmp/galenet_nan.out - $(COVER) $(V) ./cl -n < Matrix/galenet > tmp/l_galenet_nan.out - $(COVER) $(V) ./cm < Matrix/a1 > tmp/a1.out - $(COVER) $(V) ./cl < Matrix/a1 > tmp/l_a1.out - $(COVER) $(V) ./cm < Matrix/zero > tmp/zero.out $(V) ./cl < Matrix/zero > tmp/zero.out - $(COVER) cov: - $(COVER) purge: distclean distclean: clean - $(RM) cm cl cmread clread *.c.gcov *.out tmp/*.out z_demo l_demo - $(RM) leak zz_*.c z_*.c *.a l_*.c zl_*.c cov.sort yl_*.c yz_*.c - $(RM) -r cm.profile cmread.profile z_demo.profile - $(RM) -r cl.profile clread.profile l_demo.profile - $(RM) *.gcda *.gcno - $(RM) temp*.mtx clean: - $(RM) $(CLEAN) $(AMDOBJ): $(AMDSRC) $(LAMDOBJ): $(AMDSRC) $(IOBJ): $(INC) $(LOBJ): $(INC) .c.o: $(C) -c $(I) $*.c #------------------------------------------------------------------------------- # AMD #------------------------------------------------------------------------------- zz_amd_1.o: ../../AMD/Source/amd_1.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_1.c $(C) -c $(I) zz_amd_1.c zz_amd_2.o: ../../AMD/Source/amd_2.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_2.c $(C) -c $(I) zz_amd_2.c zz_amd_aat.o: ../../AMD/Source/amd_aat.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_aat.c $(C) -c $(I) zz_amd_aat.c zz_amd_control.o: ../../AMD/Source/amd_control.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_control.c $(C) -c $(I) zz_amd_control.c zz_amd_defaults.o: ../../AMD/Source/amd_defaults.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_defaults.c $(C) -c $(I) zz_amd_defaults.c zz_amd_global.o: ../../AMD/Source/amd_global.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_global.c $(C) -c $(I) zz_amd_global.c zz_amd_dump.o: ../../AMD/Source/amd_dump.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_dump.c $(C) -c $(I) zz_amd_dump.c zz_amd_info.o: ../../AMD/Source/amd_info.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_info.c $(C) -c $(I) zz_amd_info.c zz_amd_order.o: ../../AMD/Source/amd_order.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_order.c $(C) -c $(I) zz_amd_order.c zz_amd_postorder.o: ../../AMD/Source/amd_postorder.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_postorder.c $(C) -c $(I) zz_amd_postorder.c zz_amd_post_tree.o: ../../AMD/Source/amd_post_tree.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_post_tree.c $(C) -c $(I) zz_amd_post_tree.c zz_amd_preprocess.o: ../../AMD/Source/amd_preprocess.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_preprocess.c $(C) -c $(I) zz_amd_preprocess.c zz_amd_valid.o: ../../AMD/Source/amd_valid.c $(C) -E $(I) $< | $(PRETTY) > zz_amd_valid.c $(C) -c $(I) zz_amd_valid.c #------------------------------------------------------------------------------- zl_amd_1.o: ../../AMD/Source/amd_1.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_1.c $(C) -c $(I) zl_amd_1.c zl_amd_2.o: ../../AMD/Source/amd_2.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_2.c $(C) -c $(I) zl_amd_2.c zl_amd_aat.o: ../../AMD/Source/amd_aat.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_aat.c $(C) -c $(I) zl_amd_aat.c zl_amd_control.o: ../../AMD/Source/amd_control.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_control.c $(C) -c $(I) zl_amd_control.c zl_amd_defaults.o: ../../AMD/Source/amd_defaults.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_defaults.c $(C) -c $(I) zl_amd_defaults.c zl_amd_global.o: ../../AMD/Source/amd_global.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_global.c $(C) -c $(I) zl_amd_global.c zl_amd_dump.o: ../../AMD/Source/amd_dump.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_dump.c $(C) -c $(I) zl_amd_dump.c zl_amd_info.o: ../../AMD/Source/amd_info.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_info.c $(C) -c $(I) zl_amd_info.c zl_amd_order.o: ../../AMD/Source/amd_order.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_order.c $(C) -c $(I) zl_amd_order.c zl_amd_postorder.o: ../../AMD/Source/amd_postorder.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_postorder.c $(C) -c $(I) zl_amd_postorder.c zl_amd_post_tree.o: ../../AMD/Source/amd_post_tree.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_post_tree.c $(C) -c $(I) zl_amd_post_tree.c zl_amd_preprocess.o: ../../AMD/Source/amd_preprocess.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_preprocess.c $(C) -c $(I) zl_amd_preprocess.c zl_amd_valid.o: ../../AMD/Source/amd_valid.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_amd_valid.c $(C) -c $(I) zl_amd_valid.c #------------------------------------------------------------------------------- # CAMD #------------------------------------------------------------------------------- zz_camd_1.o: ../../CAMD/Source/camd_1.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_1.c $(C) -c $(I) zz_camd_1.c zz_camd_2.o: ../../CAMD/Source/camd_2.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_2.c $(C) -c $(I) zz_camd_2.c zz_camd_aat.o: ../../CAMD/Source/camd_aat.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_aat.c $(C) -c $(I) zz_camd_aat.c zz_camd_control.o: ../../CAMD/Source/camd_control.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_control.c $(C) -c $(I) zz_camd_control.c zz_camd_defaults.o: ../../CAMD/Source/camd_defaults.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_defaults.c $(C) -c $(I) zz_camd_defaults.c zz_camd_global.o: ../../CAMD/Source/camd_global.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_global.c $(C) -c $(I) zz_camd_global.c zz_camd_dump.o: ../../CAMD/Source/camd_dump.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_dump.c $(C) -c $(I) zz_camd_dump.c zz_camd_info.o: ../../CAMD/Source/camd_info.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_info.c $(C) -c $(I) zz_camd_info.c zz_camd_order.o: ../../CAMD/Source/camd_order.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_order.c $(C) -c $(I) zz_camd_order.c zz_camd_postorder.o: ../../CAMD/Source/camd_postorder.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_postorder.c $(C) -c $(I) zz_camd_postorder.c zz_camd_preprocess.o: ../../CAMD/Source/camd_preprocess.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_preprocess.c $(C) -c $(I) zz_camd_preprocess.c zz_camd_valid.o: ../../CAMD/Source/camd_valid.c $(C) -E $(I) $< | $(PRETTY) > zz_camd_valid.c $(C) -c $(I) zz_camd_valid.c #------------------------------------------------------------------------------- zl_camd_1.o: ../../CAMD/Source/camd_1.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_1.c $(C) -c $(I) zl_camd_1.c zl_camd_2.o: ../../CAMD/Source/camd_2.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_2.c $(C) -c $(I) zl_camd_2.c zl_camd_aat.o: ../../CAMD/Source/camd_aat.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_aat.c $(C) -c $(I) zl_camd_aat.c zl_camd_control.o: ../../CAMD/Source/camd_control.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_control.c $(C) -c $(I) zl_camd_control.c zl_camd_defaults.o: ../../CAMD/Source/camd_defaults.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_defaults.c $(C) -c $(I) zl_camd_defaults.c zl_camd_global.o: ../../CAMD/Source/camd_global.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_global.c $(C) -c $(I) zl_camd_global.c zl_camd_dump.o: ../../CAMD/Source/camd_dump.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_dump.c $(C) -c $(I) zl_camd_dump.c zl_camd_info.o: ../../CAMD/Source/camd_info.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_info.c $(C) -c $(I) zl_camd_info.c zl_camd_order.o: ../../CAMD/Source/camd_order.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_order.c $(C) -c $(I) zl_camd_order.c zl_camd_postorder.o: ../../CAMD/Source/camd_postorder.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_postorder.c $(C) -c $(I) zl_camd_postorder.c zl_camd_preprocess.o: ../../CAMD/Source/camd_preprocess.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_preprocess.c $(C) -c $(I) zl_camd_preprocess.c zl_camd_valid.o: ../../CAMD/Source/camd_valid.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_camd_valid.c $(C) -c $(I) zl_camd_valid.c #------------------------------------------------------------------------------- zz_colamd.o: ../../COLAMD/Source/colamd.c $(C) -E $(I) $< | $(PRETTY) > zz_colamd.c $(C) -c $(I) zz_colamd.c yz_colamd_global.o: ../../COLAMD/Source/colamd_global.c $(C) -E $(I) $< | $(PRETTY) > yz_colamd_global.c $(C) -c $(I) yz_colamd_global.c zl_colamd.o: ../../COLAMD/Source/colamd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_colamd.c $(C) -c $(I) zl_colamd.c yl_colamd_global.o: ../../COLAMD/Source/colamd_global.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > yl_colamd_global.c $(C) -c $(I) yl_colamd_global.c #------------------------------------------------------------------------------- zz_ccolamd.o: ../../CCOLAMD/Source/ccolamd.c $(C) -E $(I) $< | $(PRETTY) > zz_ccolamd.c $(C) -c $(I) zz_ccolamd.c yz_ccolamd_global.o: ../../CCOLAMD/Source/ccolamd_global.c $(C) -E $(I) $< | $(PRETTY) > yz_ccolamd_global.c $(C) -c $(I) yz_ccolamd_global.c zl_ccolamd.o: ../../CCOLAMD/Source/ccolamd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > zl_ccolamd.c $(C) -c $(I) zl_ccolamd.c yl_ccolamd_global.o: ../../CCOLAMD/Source/ccolamd_global.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > yl_ccolamd_global.c $(C) -c $(I) yl_ccolamd_global.c #------------------------------------------------------------------------------- z_check.o: ../Check/cholmod_check.c $(C) -E $(I) $< | $(PRETTY) > z_check.c $(C) -c $(I) z_check.c z_read.o: ../Check/cholmod_read.c $(C) -E $(I) $< | $(PRETTY) > z_read.c $(C) -c $(I) z_read.c z_write.o: ../Check/cholmod_write.c $(C) -E $(I) $< | $(PRETTY) > z_write.c $(C) -c $(I) z_write.c #------------------------------------------------------------------------------- z_common.o: ../Core/cholmod_common.c $(C) -E $(I) $< | $(PRETTY) > z_common.c $(C) -c $(I) z_common.c z_dense.o: ../Core/cholmod_dense.c ../Core/t_cholmod_dense.c $(C) -E $(I) $< | $(PRETTY) > z_dense.c $(C) -c $(I) z_dense.c z_factor.o: ../Core/cholmod_factor.c $(C) -E $(I) $< | $(PRETTY) > z_factor.c $(C) -c $(I) z_factor.c z_change_factor.o: ../Core/cholmod_change_factor.c \ ../Core/t_cholmod_change_factor.c $(C) -E $(I) $< | $(PRETTY) > z_change_factor.c $(C) -c $(I) z_change_factor.c z_memory.o: ../Core/cholmod_memory.c $(C) -E $(I) $< | $(PRETTY) > z_memory.c $(C) -c $(I) z_memory.c z_sparse.o: ../Core/cholmod_sparse.c $(C) -E $(I) $< | $(PRETTY) > z_sparse.c $(C) -c $(I) z_sparse.c z_complex.o: ../Core/cholmod_complex.c $(C) -E $(I) $< | $(PRETTY) > z_complex.c $(C) -c $(I) z_complex.c z_transpose.o: ../Core/cholmod_transpose.c ../Core/t_cholmod_transpose.c $(C) -E $(I) $< | $(PRETTY) > z_transpose.c $(C) -c $(I) z_transpose.c z_band.o: ../Core/cholmod_band.c $(C) -E $(I) $< | $(PRETTY) > z_band.c $(C) -c $(I) z_band.c z_copy.o: ../Core/cholmod_copy.c $(C) -E $(I) $< | $(PRETTY) > z_copy.c $(C) -c $(I) z_copy.c z_triplet.o: ../Core/cholmod_triplet.c ../Core/t_cholmod_triplet.c $(C) -E $(I) $< | $(PRETTY) > z_triplet.c $(C) -c $(I) z_triplet.c z_error.o: ../Core/cholmod_error.c $(C) -E $(I) $< | $(PRETTY) > z_error.c $(C) -c $(I) z_error.c z_aat.o: ../Core/cholmod_aat.c $(C) -E $(I) $< | $(PRETTY) > z_aat.c $(C) -c $(I) z_aat.c z_add.o: ../Core/cholmod_add.c $(C) -E $(I) $< | $(PRETTY) > z_add.c $(C) -c $(I) z_add.c #------------------------------------------------------------------------------- z_amd.o: ../Cholesky/cholmod_amd.c $(C) -E $(I) $< | $(PRETTY) > z_amd.c $(C) -c $(I) z_amd.c z_analyze.o: ../Cholesky/cholmod_analyze.c $(C) -E $(I) $< | $(PRETTY) > z_analyze.c $(C) -c $(I) z_analyze.c z_colamd.o: ../Cholesky/cholmod_colamd.c $(C) -E $(I) $< | $(PRETTY) > z_colamd.c $(C) -c $(I) z_colamd.c z_etree.o: ../Cholesky/cholmod_etree.c $(C) -E $(I) $< | $(PRETTY) > z_etree.c $(C) -c $(I) z_etree.c z_factorize.o: ../Cholesky/cholmod_factorize.c $(C) -E $(I) $< | $(PRETTY) > z_factorize.c $(C) -c $(I) z_factorize.c z_postorder.o: ../Cholesky/cholmod_postorder.c $(C) -E $(I) $< | $(PRETTY) > z_postorder.c $(C) -c $(I) z_postorder.c z_rcond.o: ../Cholesky/cholmod_rcond.c $(C) -E $(I) $< | $(PRETTY) > z_rcond.c $(C) -c $(I) z_rcond.c z_resymbol.o: ../Cholesky/cholmod_resymbol.c $(C) -E $(I) $< | $(PRETTY) > z_resymbol.c $(C) -c $(I) z_resymbol.c z_rowcolcounts.o: ../Cholesky/cholmod_rowcolcounts.c $(C) -E $(I) $< | $(PRETTY) > z_rowcolcounts.c $(C) -c $(I) z_rowcolcounts.c z_solve.o: ../Cholesky/cholmod_solve.c ../Cholesky/t_cholmod_lsolve.c \ ../Cholesky/t_cholmod_ltsolve.c ../Cholesky/t_cholmod_solve.c $(C) -E $(I) $< | $(PRETTY) > z_solve.c $(C) -c $(I) z_solve.c z_spsolve.o: ../Cholesky/cholmod_spsolve.c $(C) -E $(I) $< | $(PRETTY) > z_spsolve.c $(C) -c $(I) z_spsolve.c z_rowfac.o: ../Cholesky/cholmod_rowfac.c ../Cholesky/t_cholmod_rowfac.c $(C) -E $(I) $< | $(PRETTY) > z_rowfac.c $(C) -c $(I) z_rowfac.c #------------------------------------------------------------------------------- z_ccolamd.o: ../Partition/cholmod_ccolamd.c $(C) -E $(I) $< | $(PRETTY) > z_ccolamd.c $(C) -c $(I) z_ccolamd.c z_csymamd.o: ../Partition/cholmod_csymamd.c $(C) -E $(I) $< | $(PRETTY) > z_csymamd.c $(C) -c $(I) z_csymamd.c z_camd.o: ../Partition/cholmod_camd.c $(C) -E $(I) $< | $(PRETTY) > z_camd.c $(C) -c $(I) z_camd.c z_metis.o: ../Partition/cholmod_metis.c $(C) -E $(I) $< | $(PRETTY) > z_metis.c $(C) -c $(I) z_metis.c z_nesdis.o: ../Partition/cholmod_nesdis.c $(C) -E $(I) $< | $(PRETTY) > z_nesdis.c $(C) -c $(I) z_nesdis.c #------------------------------------------------------------------------------- z_horzcat.o: ../MatrixOps/cholmod_horzcat.c $(C) -E $(I) $< | $(PRETTY) > z_horzcat.c $(C) -c $(I) z_horzcat.c z_norm.o: ../MatrixOps/cholmod_norm.c $(C) -E $(I) $< | $(PRETTY) > z_norm.c $(C) -c $(I) z_norm.c z_scale.o: ../MatrixOps/cholmod_scale.c $(C) -E $(I) $< | $(PRETTY) > z_scale.c $(C) -c $(I) z_scale.c z_drop.o: ../MatrixOps/cholmod_drop.c $(C) -E $(I) $< | $(PRETTY) > z_drop.c $(C) -c $(I) z_drop.c z_sdmult.o: ../MatrixOps/cholmod_sdmult.c ../MatrixOps/t_cholmod_sdmult.c $(C) -E $(I) $< | $(PRETTY) > z_sdmult.c $(C) -c $(I) z_sdmult.c z_ssmult.o: ../MatrixOps/cholmod_ssmult.c $(C) -E $(I) $< | $(PRETTY) > z_ssmult.c $(C) -c $(I) z_ssmult.c z_submatrix.o: ../MatrixOps/cholmod_submatrix.c $(C) -E $(I) $< | $(PRETTY) > z_submatrix.c $(C) -c $(I) z_submatrix.c z_vertcat.o: ../MatrixOps/cholmod_vertcat.c $(C) -E $(I) $< | $(PRETTY) > z_vertcat.c $(C) -c $(I) z_vertcat.c z_symmetry.o: ../MatrixOps/cholmod_symmetry.c $(C) -E $(I) $< | $(PRETTY) > z_symmetry.c $(C) -c $(I) z_symmetry.c #------------------------------------------------------------------------------- z_rowadd.o: ../Modify/cholmod_rowadd.c $(C) -E $(I) $< | $(PRETTY) > z_rowadd.c $(C) -c $(I) z_rowadd.c z_rowdel.o: ../Modify/cholmod_rowdel.c $(C) -E $(I) $< | $(PRETTY) > z_rowdel.c $(C) -c $(I) z_rowdel.c z_updown.o: ../Modify/cholmod_updown.c \ ../Modify/t_cholmod_updown.c ../Modify/t_cholmod_updown_numkr.c $(C) -E $(I) $< | $(PRETTY) > z_updown.c $(C) -c $(I) z_updown.c #------------------------------------------------------------------------------- z_super_numeric.o: ../Supernodal/cholmod_super_numeric.c \ ../Supernodal/t_cholmod_super_numeric.c $(C) -E $(I) $< | $(PRETTY) > z_super_numeric.c $(C) -c $(I) z_super_numeric.c z_super_symbolic.o: ../Supernodal/cholmod_super_symbolic.c $(C) -E $(I) $< | $(PRETTY) > z_super_symbolic.c $(C) -c $(I) z_super_symbolic.c z_super_solve.o: ../Supernodal/cholmod_super_solve.c $(C) -E $(I) $< | $(PRETTY) > z_super_solve.c $(C) -c $(I) z_super_solve.c #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- l_check.o: ../Check/cholmod_check.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_check.c $(C) -c $(I) l_check.c l_read.o: ../Check/cholmod_read.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_read.c $(C) -c $(I) l_read.c l_write.o: ../Check/cholmod_write.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_write.c $(C) -c $(I) l_write.c #------------------------------------------------------------------------------- l_common.o: ../Core/cholmod_common.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_common.c $(C) -c $(I) l_common.c l_dense.o: ../Core/cholmod_dense.c ../Core/t_cholmod_dense.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_dense.c $(C) -c $(I) l_dense.c l_factor.o: ../Core/cholmod_factor.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_factor.c $(C) -c $(I) l_factor.c l_change_factor.o: ../Core/cholmod_change_factor.c \ ../Core/t_cholmod_change_factor.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_change_factor.c $(C) -c $(I) l_change_factor.c l_memory.o: ../Core/cholmod_memory.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_memory.c $(C) -c $(I) l_memory.c l_sparse.o: ../Core/cholmod_sparse.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_sparse.c $(C) -c $(I) l_sparse.c l_complex.o: ../Core/cholmod_complex.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_complex.c $(C) -c $(I) l_complex.c l_transpose.o: ../Core/cholmod_transpose.c ../Core/t_cholmod_transpose.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_transpose.c $(C) -c $(I) l_transpose.c l_band.o: ../Core/cholmod_band.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_band.c $(C) -c $(I) l_band.c l_copy.o: ../Core/cholmod_copy.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_copy.c $(C) -c $(I) l_copy.c l_triplet.o: ../Core/cholmod_triplet.c ../Core/t_cholmod_triplet.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_triplet.c $(C) -c $(I) l_triplet.c l_error.o: ../Core/cholmod_error.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_error.c $(C) -c $(I) l_error.c l_aat.o: ../Core/cholmod_aat.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_aat.c $(C) -c $(I) l_aat.c l_add.o: ../Core/cholmod_add.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_add.c $(C) -c $(I) l_add.c #------------------------------------------------------------------------------- l_amd.o: ../Cholesky/cholmod_amd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_amd.c $(C) -c $(I) l_amd.c l_analyze.o: ../Cholesky/cholmod_analyze.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_analyze.c $(C) -c $(I) l_analyze.c l_colamd.o: ../Cholesky/cholmod_colamd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_colamd.c $(C) -c $(I) l_colamd.c l_etree.o: ../Cholesky/cholmod_etree.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_etree.c $(C) -c $(I) l_etree.c l_factorize.o: ../Cholesky/cholmod_factorize.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_factorize.c $(C) -c $(I) l_factorize.c l_postorder.o: ../Cholesky/cholmod_postorder.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_postorder.c $(C) -c $(I) l_postorder.c l_rcond.o: ../Cholesky/cholmod_rcond.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_rcond.c $(C) -c $(I) l_rcond.c l_resymbol.o: ../Cholesky/cholmod_resymbol.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_resymbol.c $(C) -c $(I) l_resymbol.c l_rowcolcounts.o: ../Cholesky/cholmod_rowcolcounts.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_rowcolcounts.c $(C) -c $(I) l_rowcolcounts.c l_solve.o: ../Cholesky/cholmod_solve.c ../Cholesky/t_cholmod_lsolve.c \ ../Cholesky/t_cholmod_ltsolve.c ../Cholesky/t_cholmod_solve.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_solve.c $(C) -c $(I) l_solve.c l_spsolve.o: ../Cholesky/cholmod_spsolve.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_spsolve.c $(C) -c $(I) l_spsolve.c l_rowfac.o: ../Cholesky/cholmod_rowfac.c ../Cholesky/t_cholmod_rowfac.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_rowfac.c $(C) -c $(I) l_rowfac.c #------------------------------------------------------------------------------- l_ccolamd.o: ../Partition/cholmod_ccolamd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_ccolamd.c $(C) -c $(I) l_ccolamd.c l_csymamd.o: ../Partition/cholmod_csymamd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_csymamd.c $(C) -c $(I) l_csymamd.c l_camd.o: ../Partition/cholmod_camd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_camd.c $(C) -c $(I) l_camd.c l_metis.o: ../Partition/cholmod_metis.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_metis.c $(C) -c $(I) l_metis.c l_nesdis.o: ../Partition/cholmod_nesdis.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_nesdis.c $(C) -c $(I) l_nesdis.c #------------------------------------------------------------------------------- l_horzcat.o: ../MatrixOps/cholmod_horzcat.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_horzcat.c $(C) -c $(I) l_horzcat.c l_norm.o: ../MatrixOps/cholmod_norm.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_norm.c $(C) -c $(I) l_norm.c l_scale.o: ../MatrixOps/cholmod_scale.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_scale.c $(C) -c $(I) l_scale.c l_drop.o: ../MatrixOps/cholmod_drop.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_drop.c $(C) -c $(I) l_drop.c l_sdmult.o: ../MatrixOps/cholmod_sdmult.c ../MatrixOps/t_cholmod_sdmult.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_sdmult.c $(C) -c $(I) l_sdmult.c l_ssmult.o: ../MatrixOps/cholmod_ssmult.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_ssmult.c $(C) -c $(I) l_ssmult.c l_submatrix.o: ../MatrixOps/cholmod_submatrix.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_submatrix.c $(C) -c $(I) l_submatrix.c l_vertcat.o: ../MatrixOps/cholmod_vertcat.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_vertcat.c $(C) -c $(I) l_vertcat.c l_symmetry.o: ../MatrixOps/cholmod_symmetry.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_symmetry.c $(C) -c $(I) l_symmetry.c #------------------------------------------------------------------------------- l_rowadd.o: ../Modify/cholmod_rowadd.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_rowadd.c $(C) -c $(I) l_rowadd.c l_rowdel.o: ../Modify/cholmod_rowdel.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_rowdel.c $(C) -c $(I) l_rowdel.c l_updown.o: ../Modify/cholmod_updown.c \ ../Modify/t_cholmod_updown.c ../Modify/t_cholmod_updown_numkr.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_updown.c $(C) -c $(I) l_updown.c #------------------------------------------------------------------------------- l_super_numeric.o: ../Supernodal/cholmod_super_numeric.c \ ../Supernodal/t_cholmod_super_numeric.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_super_numeric.c $(C) -c $(I) l_super_numeric.c l_super_symbolic.o: ../Supernodal/cholmod_super_symbolic.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_super_symbolic.c $(C) -c $(I) l_super_symbolic.c l_super_solve.o: ../Supernodal/cholmod_super_solve.c $(C) -DDLONG -E $(I) $< | $(PRETTY) > l_super_solve.c $(C) -c $(I) l_super_solve.c #------------------------------------------------------------------------------- SuiteSparse/CHOLMOD/Tcov/ctest.c0000644001170100242450000002304510540000045015225 0ustar davisfac/* ========================================================================== */ /* === Tcov/ctest =========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test for colamd v2.4 */ #include "cm.h" #include "colamd.h" /* ========================================================================== */ /* === ctest ================================================================ */ /* ========================================================================== */ void ctest (cholmod_sparse *A) { double knobs [COLAMD_KNOBS], knobs2 [COLAMD_KNOBS] ; Int *P, *Cp, *Ci, *Si, *Sp ; cholmod_sparse *C, *A2, *B, *S, *BT ; Int nrow, ncol, alen, ok, stats [COLAMD_STATS], i, p, trial ; size_t s ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ printf ("\nCOLAMD test\n") ; if (A == NULL) { return ; } if (A->stype) { A2 = CHOLMOD(copy) (A, 0, 0, cm) ; B = A2 ; } else { A2 = NULL ; B = A ; } nrow = B->nrow ; ncol = B->ncol ; S = NULL ; /* ---------------------------------------------------------------------- */ /* allocate workspace colamd */ /* ---------------------------------------------------------------------- */ P = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; COLAMD_set_defaults (knobs) ; COLAMD_set_defaults (knobs2) ; COLAMD_set_defaults (NULL) ; COLAMD_report (NULL) ; SYMAMD_report (NULL) ; alen = COLAMD_recommended (B->nzmax, ncol, nrow) ; C = CHOLMOD(allocate_sparse) (ncol, nrow, alen, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm) ; Cp = C->p ; Ci = C->i ; /* ---------------------------------------------------------------------- */ /* order with colamd */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; CHOLMOD(print_sparse) (C, "C for colamd", cm) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, NULL, stats) ; COLAMD_report (stats) ; OK (ok) ; ok = stats [COLAMD_STATUS] ; ok = (ok == COLAMD_OK || ok == COLAMD_OK_BUT_JUMBLED) ; OK (ok) ; /* permutation returned in C->p, if the ordering succeeded */ /* make sure P obeys the constraints */ OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "colamd perm", cm)) ; /* ---------------------------------------------------------------------- */ /* with different dense thresholds */ /* ---------------------------------------------------------------------- */ printf ("\nall dense rows:\n") ; knobs2 [COLAMD_DENSE_ROW] = 0 ; knobs2 [COLAMD_DENSE_COL] = 0.5 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats) ; COLAMD_report (stats) ; OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "colamd perm", cm)) ; printf ("\nall dense cols:\n") ; knobs2 [COLAMD_DENSE_ROW] = 0.5 ; knobs2 [COLAMD_DENSE_COL] = 0 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats) ; COLAMD_report (stats) ; OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "colamd perm", cm)) ; printf ("\nno dense rows/cols:\n") ; knobs2 [COLAMD_DENSE_ROW] = -1 ; knobs2 [COLAMD_DENSE_COL] = -1 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats) ; COLAMD_report (stats) ; OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "colamd perm", cm)) ; knobs2 [COLAMD_DENSE_ROW] = 0.5 ; knobs2 [COLAMD_DENSE_COL] = 0.5 ; /* ---------------------------------------------------------------------- */ /* duplicate entries */ /* ---------------------------------------------------------------------- */ if (ncol > 2 && nrow > 2) { ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; if (Cp [1] - Cp [0] > 2) { Ci [0] = Ci [1] ; } ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats) ; COLAMD_report (stats) ; OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "colamd perm", cm)) ; } /* ---------------------------------------------------------------------- */ /* symamd */ /* ---------------------------------------------------------------------- */ if (nrow == ncol) { Int n = nrow ; BT = CHOLMOD(transpose) (B, 0, cm) ; OKP(BT); S = CHOLMOD(add) (B, BT, one, one, FALSE, FALSE, cm) ; CHOLMOD(free_sparse) (&BT, cm) ; Si = S->i ; Sp = S->p ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; OK (ok) ; OK (CHOLMOD(print_perm) (P, n, n, "symamd perm", cm)) ; SYMAMD_report (stats) ; /* ------------------------------------------------------------------ */ /* symamd errors */ /* ------------------------------------------------------------------ */ test_memory_handler ( ) ; for (trial = 0 ; trial < 3 ; trial++) { my_tries = trial ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok) ; } my_tries = 3 ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; OK (ok) ; normal_memory_handler ( ) ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, NULL, cm->calloc_memory, cm->free_memory) ; NOT (ok); ok = SYMAMD_MAIN (n, NULL, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; ok = SYMAMD_MAIN (n, Si, NULL, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; ok = SYMAMD_MAIN (-1, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; p = Sp [n] ; Sp [n] = -1 ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; Sp [n] = p ; Sp [0] = -1 ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; Sp [0] = 0 ; if (n > 2 && Sp [n] > 3) { p = Sp [1] ; Sp [1] = -1 ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; Sp [1] = p ; i = Si [0] ; Si [0] = -1 ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; Si [0] = i ; /* ok, but jumbled */ i = Si [0] ; Si [0] = Si [1] ; Si [1] = i ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; OK (ok); SYMAMD_report (stats) ; OK (CHOLMOD(print_perm) (P, nrow, nrow, "symamd perm", cm)) ; i = Si [0] ; Si [0] = Si [1] ; Si [1] = i ; test_memory_handler ( ) ; ok = SYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory) ; NOT (ok); SYMAMD_report (stats) ; normal_memory_handler ( ) ; } } /* ---------------------------------------------------------------------- */ /* error tests */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = COLAMD_MAIN (ncol, nrow, 0, Ci, Cp, knobs, stats) ; NOT (ok) ; COLAMD_report (stats) ; ok = COLAMD_MAIN (ncol, nrow, alen, NULL, Cp, knobs, stats); NOT (ok) ; COLAMD_report (stats) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, NULL, knobs, stats); NOT (ok) ; COLAMD_report (stats) ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, NULL) ; NOT (ok) ; COLAMD_report (stats) ; ok = COLAMD_MAIN (-1, nrow, alen, Ci, Cp, knobs, stats) ; NOT (ok) ; COLAMD_report (stats) ; ok = COLAMD_MAIN (ncol, -1, alen, Ci, Cp, knobs, stats) ; NOT (ok) ; COLAMD_report (stats) ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; Cp [nrow] = -1 ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats) ; NOT (ok) ; COLAMD_report (stats) ; Cp [0] = 1 ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats) ; NOT (ok) ; COLAMD_report (stats) ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; if (nrow > 0 && alen > 0 && Cp [1] > 0) { p = Cp [1] ; Cp [1] = -1 ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats) ; NOT(ok); COLAMD_report (stats) ; Cp [1] = p ; i = Ci [0] ; Ci [0] = -1 ; ok = COLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats) ; NOT(ok); COLAMD_report (stats) ; Ci [0] = i ; } s = COLAMD_recommended (-1, 0, 0) ; OK (s == 0) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (nrow+1, sizeof (Int), P, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&A2, cm) ; CHOLMOD(free_sparse) (&C, cm) ; } SuiteSparse/CHOLMOD/Tcov/aug.c0000644001170100242450000001650110540000027014656 0ustar davisfac/* ========================================================================== */ /* === Tcov/aug ============================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Create the augmented system S = [-I A' ; A alpha*I], solve Sx=b, and return * the residual. The system solved is (alpha*I + A*A')*x=b. * * r1 = norm (Sx-b) * r2 = norm ((alpha*I+AA')x-b) * alpha = norm(A) */ #include "cm.h" /* ========================================================================== */ /* === aug ================================================================== */ /* ========================================================================== */ double aug (cholmod_sparse *A) { double r, maxerr = 0, bnorm, anorm ; cholmod_sparse *S, *Im, *In, *At, *A1, *A2, *Sup ; cholmod_dense *Alpha, *B, *Baug, *X, *W1, *W2, *R, *X2, X2mat ; cholmod_factor *L ; double *b, *baug, *rx, *w, *x ; Int nrow, ncol, nrhs, i, j, d, d2, save, save2, save3 ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "cm: no A for aug") ; return (1) ; } if (A->xtype != CHOLMOD_REAL) { return (0) ; } /* ---------------------------------------------------------------------- */ /* A is m-by-n, B must be m-by-nrhs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; B = rhs (A, 5, A->nrow + 7) ; /* ---------------------------------------------------------------------- */ /* create scalars */ /* ---------------------------------------------------------------------- */ bnorm = CHOLMOD(norm_dense) (B, 0, cm) ; anorm = CHOLMOD(norm_sparse) (A, 1, cm) ; Alpha = CHOLMOD(eye) (1, 1, CHOLMOD_REAL, cm) ; if (Alpha != NULL) { ((double *) (Alpha->x)) [0] = anorm ; } CHOLMOD(print_dense) (M1, "MinusOne", cm) ; CHOLMOD(print_dense) (Alpha, "Alpha = norm(A)", cm) ; /* ---------------------------------------------------------------------- */ /* create augmented system, S = [-I A' ; A anorm*I] */ /* ---------------------------------------------------------------------- */ Im = CHOLMOD(speye) (nrow, nrow, CHOLMOD_REAL, cm) ; In = CHOLMOD(speye) (ncol, ncol, CHOLMOD_REAL, cm) ; CHOLMOD(scale) (Alpha, CHOLMOD_SCALAR, Im, cm) ; CHOLMOD(scale) (M1, CHOLMOD_SCALAR, In, cm) ; At = CHOLMOD(transpose) (A, 2, cm) ; /* use one of two equivalent methods */ if (nrow % 2) { /* S = [[-In A'] ; [A alpha*Im]] */ A1 = CHOLMOD(horzcat) (In, At, TRUE, cm) ; A2 = CHOLMOD(horzcat) (A, Im, TRUE, cm) ; S = CHOLMOD(vertcat) (A1, A2, TRUE, cm) ; } else { /* S = [[-In ; A] [A' ; alpha*Im]] */ A1 = CHOLMOD(vertcat) (In, A, TRUE, cm) ; A2 = CHOLMOD(vertcat) (At, Im, TRUE, cm) ; S = CHOLMOD(horzcat) (A1, A2, TRUE, cm) ; } CHOLMOD(free_sparse) (&Im, cm) ; CHOLMOD(free_sparse) (&In, cm) ; CHOLMOD(print_sparse) (S, "S, augmented system", cm) ; /* make a symmetric (upper) copy of S */ Sup = CHOLMOD(copy) (S, 1, 1, cm) ; CHOLMOD(print_sparse) (S, "S, augmented system (upper)", cm) ; CHOLMOD(print_sparse) (Sup, "Sup", cm) ; /* ---------------------------------------------------------------------- */ /* create augmented right-hand-side, Baug = [ zeros(ncol,nrhs) ; B ] */ /* ---------------------------------------------------------------------- */ b = NULL ; d = 0 ; nrhs = 0 ; d2 = 0 ; if (B != NULL) { nrhs = B->ncol ; d = B->d ; b = B->x ; Baug = CHOLMOD(zeros) (nrow+ncol, nrhs, CHOLMOD_REAL, cm) ; if (Baug != NULL) { d2 = Baug->d ; baug = Baug->x ; for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < nrow ; i++) { baug [(i+ncol)+j*d2] = b [i+j*d] ; } } } } else { Baug = NULL ; } /* ---------------------------------------------------------------------- */ /* solve Sx=baug */ /* ---------------------------------------------------------------------- */ /* S is symmetric indefinite, so do not use a supernodal LL' */ save = cm->supernodal ; save2 = cm->final_asis ; cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_asis = TRUE ; save3 = cm->metis_memory ; cm->metis_memory = 2.0 ; L = CHOLMOD(analyze) (Sup, cm) ; CHOLMOD(factorize) (Sup, L, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Baug, cm) ; cm->supernodal = save ; cm->final_asis = save2 ; cm->metis_memory = save3 ; /* ---------------------------------------------------------------------- */ /* compute the residual */ /* ---------------------------------------------------------------------- */ r = resid (Sup, X, Baug) ; MAXERR (maxerr, r, 1) ; /* ---------------------------------------------------------------------- */ /* create a shallow submatrix of X, X2 = X (ncol:end, :) */ /* ---------------------------------------------------------------------- */ if (X == NULL) { X2 = NULL ; } else { X2 = &X2mat ; X2->nrow = nrow ; X2->ncol = nrhs ; X2->nzmax = X->nzmax ; X2->d = X->d ; X2->x = ((double *) X->x) + ncol ; X2->z = NULL ; X2->xtype = X->xtype ; X2->dtype = X->dtype ; } CHOLMOD(print_dense) (X, "X", cm) ; CHOLMOD(print_dense) (X2, "X2 = X (ncol:end,:)", cm) ; /* ---------------------------------------------------------------------- */ /* compute norm ((alpha*I + A*A')*x-b) */ /* ---------------------------------------------------------------------- */ /* W1 = A'*X2 */ W1 = CHOLMOD(zeros) (ncol, nrhs, CHOLMOD_REAL, cm) ; CHOLMOD(sdmult) (A, TRUE, one, zero, X2, W1, cm) ; /* W2 = A*W1 */ W2 = CHOLMOD(zeros) (nrow, nrhs, CHOLMOD_REAL, cm) ; CHOLMOD(sdmult) (A, FALSE, one, zero, W1, W2, cm) ; /* R = alpha*x + w2 - b */ R = CHOLMOD(zeros) (nrow, nrhs, CHOLMOD_REAL, cm) ; if (R != NULL && W2 != NULL && X != NULL) { w = W2->x ; rx = R->x ; x = X2->x ; for (j = 0 ; j < nrhs ; j++) { for (i = 0 ; i < nrow ; i++) { rx [i+j*nrow] = anorm * x [i+j*d2] + w [i+j*nrow] - b [i+j*d] ; } } } r = CHOLMOD(norm_dense) (R, 1, cm) ; MAXERR (maxerr, r, bnorm) ; /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&At, cm) ; CHOLMOD(free_sparse) (&A1, cm) ; CHOLMOD(free_sparse) (&A2, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&Sup, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&R, cm) ; CHOLMOD(free_dense) (&W1, cm) ; CHOLMOD(free_dense) (&W2, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free_dense) (&Baug, cm) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_dense) (&Alpha, cm) ; progress (0, '.') ; return (maxerr) ; } SuiteSparse/CHOLMOD/Tcov/cover0000755001170100242450000000050310222045704015005 0ustar davisfac#!/bin/csh # usage: cover files echo '=================================================================' foreach file ($argv[1-]) echo $file echo '=================================================================' grep "#####" -A5 -B5 $file echo '=================================================================' end SuiteSparse/CHOLMOD/Tcov/gcovs0000755001170100242450000000011310533127672015017 0ustar davisfac# usage: gcovs files foreach file ($argv[1-]) gcov $file > /dev/null end SuiteSparse/CHOLMOD/Tcov/Matrix/0000755001170100242450000000000010616503231015210 5ustar davisfacSuiteSparse/CHOLMOD/Tcov/Matrix/00000644001170100242450000000001010223043054015255 0ustar davisfac0 0 0 0 SuiteSparse/CHOLMOD/Tcov/Matrix/40000644001170100242450000000075110217161252015301 0ustar davisfac4 4 16 0 0 0 8.4472150190817474e-01 1 0 3.6775288246828447e-01 2 0 6.2080133182114383e-01 3 0 7.3127726446634478e-01 0 1 1.9389317998466821e-01 1 1 9.0481233416635698e-01 2 1 5.6920574967174709e-01 3 1 6.3178992922175603e-01 0 2 2.3441295540825388e-01 1 2 5.4878212553858818e-01 2 2 9.3158335257969060e-01 3 2 3.3519743020639464e-01 0 3 6.5553105501201447e-01 1 3 3.9190420688900335e-01 2 3 6.2731478808399666e-01 3 3 6.9908013774533750e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/50000644001170100242450000000071310220353342015275 0ustar davisfac5 5 15 1 0 0 2.3128893423956103e+00 0 1 2.0414504875924515e+00 1 1 2.3404148406122136e+00 0 2 1.3087150593318868e+00 1 2 1.0697105858626588e+00 2 2 1.1518495146909449e+00 0 3 1.8412759629133451e+00 1 3 1.6127622826156847e+00 2 3 9.9254946878554184e-01 3 3 1.5263467772586621e+00 0 4 1.1506154116930891e+00 1 4 8.5366433729208291e-01 2 4 5.8985415046641843e-01 3 4 8.4135254506414192e-01 4 4 9.2240833463986371e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/3b0000644001170100242450000000003610533071742015443 0ustar davisfac3 3 4 0 0 1 2 0 1 0 1 1 0 2 1 SuiteSparse/CHOLMOD/Tcov/Matrix/a10000644001170100242450000000002010222746161015430 0ustar davisfac70000 70000 0 2 SuiteSparse/CHOLMOD/Tcov/Matrix/a20000644001170100242450000000001410222741537015436 0ustar davisfac200 200 0 2 SuiteSparse/CHOLMOD/Tcov/Matrix/pi0000644001170100242450000000004610222534234015543 0ustar davisfac1 1 1 0 0 0 3.1415926535897931e+00 SuiteSparse/CHOLMOD/Tcov/Matrix/0_10000644001170100242450000000001010223112143015471 0ustar davisfac0 1 0 0 SuiteSparse/CHOLMOD/Tcov/Matrix/1_00000644001170100242450000000001010223113430015471 0ustar davisfac1 0 0 0 SuiteSparse/CHOLMOD/Tcov/Matrix/2_30000644001170100242450000000027410223241074015517 0ustar davisfac2 3 6 0 0 0 9.4423471389861624e-01 1 0 8.3855545301913648e-01 0 1 2.5842740296885991e-01 1 1 4.2898125196177306e-02 0 2 5.8847897639891693e-03 1 2 5.7441796740690909e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/3_20000644001170100242450000000027410223242504015516 0ustar davisfac3 2 6 0 0 0 9.4423471389861624e-01 1 0 2.5842740296885991e-01 2 0 5.8847897639891693e-03 0 1 8.3855545301913648e-01 1 1 4.2898125196177306e-02 2 1 5.7441796740690909e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/4lo0000644001170100242450000000046610275477334015656 0ustar davisfac4 4 10 -1 0 0 1.0828864476260923e+01 1 0 1.6627011669737349e-01 2 0 3.9390600531964565e-01 3 0 5.2075748437407210e-01 1 1 1.0703683667405754e+01 2 1 5.2206091530257359e-01 3 1 9.3289705665171452e-01 2 2 1.0081073725242863e+01 3 2 8.5112240092385527e-01 3 3 1.0888832610299779e+01 SuiteSparse/CHOLMOD/Tcov/Matrix/c100000644001170100242450000000250610276203344015525 0ustar davisfac10 15 60 0 1 0 0 0.660427 0.980481 2 0 0.673653 0.791832 7 0 0.95733 0.152594 1 1 0.191866 0.833027 3 1 0.111216 0.191863 4 1 0.565054 0.638987 9 1 0.969166 0.669 3 2 0.0237439 0.772088 5 2 0.870216 0.379818 7 2 0.0268766 0.441585 8 2 0.519529 0.48306 5 3 0.192291 0.608106 6 3 0.715689 0.175996 7 3 0.250673 0.00202556 8 3 0.933865 0.790224 9 3 0.137189 0.513609 0 4 0.521622 0.213229 1 4 0.895202 0.10345 2 4 0.942387 0.157337 3 4 0.335083 0.407515 7 4 0.437364 0.407757 6 5 0.471156 0.0526927 8 5 0.14931 0.941815 9 5 0.135864 0.149972 2 6 0.532498 0.384374 4 6 0.725789 0.311059 5 6 0.398703 0.168534 9 6 0.358419 0.896648 0 7 0.285279 0.322724 1 7 0.868635 0.733996 2 7 0.626413 0.410904 5 7 0.241172 0.399794 6 7 0.978082 0.505522 2 8 0.640501 0.169306 8 8 0.229849 0.524745 0 9 0.681335 0.641203 1 9 0.665823 0.0161975 2 9 0.134718 0.836852 4 9 0.0224933 0.803462 5 9 0.262199 0.697785 7 9 0.116515 0.461888 9 9 0.0693182 0.0826126 0 10 0.85293 0.820717 1 10 0.180331 0.19302 8 10 0.0324186 0.445355 9 10 0.733926 0.0129578 0 11 0.536517 0.308742 2 11 0.27603 0.875351 8 11 0.368458 0.835259 1 12 0.0128863 0.333095 2 12 0.889206 0.880705 8 12 0.866021 0.479687 9 12 0.254247 0.560817 0 13 0.569481 0.615909 2 13 0.159265 0.661899 3 13 0.594364 0.616633 7 13 0.3311 0.68514 9 13 0.658613 0.510153 5 14 0.863634 0.713961 8 14 0.567623 0.515208 SuiteSparse/CHOLMOD/Tcov/Matrix/cha0000644001170100242450000000032110533067355015674 0ustar davisfac3 3 6 -1 1 0 0 .3017459522995293 0 1 0 1.5579100867466829 .4760037225690294 2 0 .874925450215774 .12614853881500188 1 1 1.7073102613255353 -1 2 1 1.4933320877092915 -.3859196475147934 2 2 1.6432583214706855 0 SuiteSparse/CHOLMOD/Tcov/Matrix/cpi0000644001170100242450000000005210276434417015716 0ustar davisfac1 1 1 0 1 0 0 3.1415926535897931e+00 0 SuiteSparse/CHOLMOD/Tcov/Matrix/cza0000644001170100242450000000040010533072464015711 0ustar davisfac3 3 6 0 1 1 0 .23113851357428783 .6154323481000947 0 1 -.23113851357428783 -.6154323481000947 2 0 .6068425835417866 .7919370374270354 0 2 -.6068425835417866 -.7919370374270354 2 1 .7620968330273947 .176266144494618 1 2 -.7620968330273947 -.176266144494618 SuiteSparse/CHOLMOD/Tcov/Matrix/one0000644001170100242450000000001210532640361015710 0ustar davisfac1 1 0 0 1 SuiteSparse/CHOLMOD/Tcov/Matrix/z100000644001170100242450000000250610276203361015553 0ustar davisfac10 15 60 0 2 0 0 0.660427 0.980481 2 0 0.673653 0.791832 7 0 0.95733 0.152594 1 1 0.191866 0.833027 3 1 0.111216 0.191863 4 1 0.565054 0.638987 9 1 0.969166 0.669 3 2 0.0237439 0.772088 5 2 0.870216 0.379818 7 2 0.0268766 0.441585 8 2 0.519529 0.48306 5 3 0.192291 0.608106 6 3 0.715689 0.175996 7 3 0.250673 0.00202556 8 3 0.933865 0.790224 9 3 0.137189 0.513609 0 4 0.521622 0.213229 1 4 0.895202 0.10345 2 4 0.942387 0.157337 3 4 0.335083 0.407515 7 4 0.437364 0.407757 6 5 0.471156 0.0526927 8 5 0.14931 0.941815 9 5 0.135864 0.149972 2 6 0.532498 0.384374 4 6 0.725789 0.311059 5 6 0.398703 0.168534 9 6 0.358419 0.896648 0 7 0.285279 0.322724 1 7 0.868635 0.733996 2 7 0.626413 0.410904 5 7 0.241172 0.399794 6 7 0.978082 0.505522 2 8 0.640501 0.169306 8 8 0.229849 0.524745 0 9 0.681335 0.641203 1 9 0.665823 0.0161975 2 9 0.134718 0.836852 4 9 0.0224933 0.803462 5 9 0.262199 0.697785 7 9 0.116515 0.461888 9 9 0.0693182 0.0826126 0 10 0.85293 0.820717 1 10 0.180331 0.19302 8 10 0.0324186 0.445355 9 10 0.733926 0.0129578 0 11 0.536517 0.308742 2 11 0.27603 0.875351 8 11 0.368458 0.835259 1 12 0.0128863 0.333095 2 12 0.889206 0.880705 8 12 0.866021 0.479687 9 12 0.254247 0.560817 0 13 0.569481 0.615909 2 13 0.159265 0.661899 3 13 0.594364 0.616633 7 13 0.3311 0.68514 9 13 0.658613 0.510153 5 14 0.863634 0.713961 8 14 0.567623 0.515208 SuiteSparse/CHOLMOD/Tcov/Matrix/tri0000644001170100242450000000001310226465556015741 0ustar davisfac10 10 44 3 SuiteSparse/CHOLMOD/Tcov/Matrix/20lo0000644001170100242450000001457310222536154015724 0ustar davisfac20 20 210 -1 0 0 1.0828864476260923e+01 1 0 1.6627011669737349e-01 2 0 3.9390600531964565e-01 3 0 5.2075748437407210e-01 4 0 7.1812397228036695e-01 5 0 5.6918951876742652e-01 6 0 4.6080617332598611e-01 7 0 4.4530705340682281e-01 8 0 8.7744606123989974e-02 9 0 4.4348321523342715e-01 10 0 3.6629984599465693e-01 11 0 3.0253381852374750e-01 12 0 8.5184469733234425e-01 13 0 7.5947938787995917e-01 14 0 9.4975928462912151e-01 15 0 5.5793850904665054e-01 16 0 1.4233015923299758e-02 17 0 5.9617708449161588e-01 18 0 8.1620570916196344e-01 19 0 9.7709235484151213e-01 1 1 1.0703683667405754e+01 2 1 5.2206091530257359e-01 3 1 9.3289705665171452e-01 4 1 7.1335444351185007e-01 5 1 2.2803890292789866e-01 6 1 4.4964210466929955e-01 7 1 1.7219969548301112e-01 8 1 9.6882014323575005e-01 9 1 3.5571610445703727e-01 10 1 4.9046828129675493e-02 11 1 7.5533857179174146e-01 12 1 8.9481276347670524e-01 13 1 2.8614965045487595e-01 14 1 2.5120054628267946e-01 15 1 9.3273619135768959e-01 16 1 1.3098246912364711e-01 17 1 9.4081954229381648e-01 18 1 7.0185317357047861e-01 19 1 8.4767646817946229e-01 2 2 1.0081073725242863e+01 3 2 8.5112240092385527e-01 4 2 5.6204867652388890e-01 5 2 3.1929629639523355e-01 6 2 3.7489926144760016e-01 7 2 8.6779569791162192e-01 8 2 3.7217624011919598e-01 9 2 7.3690055674807853e-02 10 2 1.9983799570814031e-01 11 2 4.9493279663685920e-02 12 2 5.6670977912370901e-01 13 2 1.2192474984542775e-01 14 2 5.2211176356215638e-01 15 2 1.1706015233299684e-01 16 2 7.6991847758366450e-01 17 2 3.7505579665969407e-01 18 2 8.2338720365026685e-01 19 2 4.6636145523160005e-02 3 3 1.0888832610299779e+01 4 3 1.0158547811275216e-01 5 3 6.5314506690484261e-02 6 3 2.3429973330715084e-01 7 3 9.3309841844843300e-01 8 3 6.3127895952154789e-02 9 3 2.6421766372715083e-01 10 3 9.9953167426624789e-01 11 3 2.1198796251531971e-01 12 3 4.9840979856342693e-01 13 3 2.9048829522795455e-01 14 3 6.7275441092501320e-01 15 3 9.5799111990519625e-01 16 3 7.6655153443549362e-01 17 3 6.6612373773870170e-01 18 3 1.3094482209900518e-01 19 3 9.5413016476532525e-02 4 4 1.0017362693037738e+01 5 4 8.1939293234216737e-01 6 4 6.2113870578821806e-01 7 4 5.6022204096292716e-01 8 4 2.4403153400252417e-01 9 4 8.2200758848706146e-01 10 4 2.6321192795728909e-01 11 4 7.5363453438567241e-01 12 4 6.5964479880693561e-01 13 4 2.1406285585091356e-01 14 4 6.0211690829173425e-01 15 4 6.0493711005296258e-01 16 4 6.5950154816523943e-01 17 4 1.8336363250440038e-01 18 4 6.3654690532822589e-01 19 4 1.7030911013060870e-01 5 5 1.0012890500224332e+01 6 5 3.1040222606741724e-01 7 5 7.7907924748677093e-01 8 5 3.0729608492168475e-01 9 5 9.2667831063831263e-01 10 5 6.7871987585443028e-01 11 5 7.4321492884507928e-02 12 5 7.0669191350871963e-02 13 5 1.1930466685210063e-02 14 5 2.2715371505134332e-01 15 5 5.1625199691968227e-01 16 5 4.5820421532939815e-01 17 5 7.0320333825398373e-01 18 5 5.8248387501619503e-01 19 5 5.0920600181455999e-01 6 6 1.0638193219108748e+01 7 6 9.8656686410091132e-01 8 6 5.0287580358404493e-01 9 6 9.4770337680214034e-01 10 6 8.2802584180592098e-01 11 6 9.1755720321905709e-01 12 6 1.1307982912594425e-01 13 6 8.1212590605904744e-01 14 6 9.0826256310674558e-01 15 6 1.5637611939242280e-01 16 6 1.2211876667334609e-01 17 6 7.6266646976276631e-01 18 6 7.2180028451675837e-01 19 6 6.5163981658873005e-01 7 7 1.0081163704090784e+01 8 7 8.5056678324538559e-01 9 7 3.4020344729272728e-01 10 7 4.6615497822011931e-01 11 7 9.1376323973697748e-01 12 7 2.2857670585213571e-01 13 7 8.6204490014984103e-01 14 7 6.5661853567588124e-01 15 7 8.9118280244590231e-01 16 7 4.8814351823995339e-01 17 7 9.9264564668050836e-01 18 7 3.7332594054433460e-01 19 7 5.3137831784105283e-01 8 8 1.0565053870854726e+01 9 8 9.6916627244252784e-01 10 8 2.3743870879300584e-02 11 8 8.7021582204421788e-01 12 8 2.6876592776195137e-02 13 8 5.1952868837486621e-01 14 8 1.9229142067788171e-01 15 8 7.1568904675752243e-01 16 8 2.5067278128817672e-01 17 8 9.3386481580036262e-01 18 8 1.3718931253681468e-01 19 8 5.2162233919648715e-01 9 9 1.0398703051314406e+01 10 9 3.5841851601708635e-01 11 9 2.8527941216950670e-01 12 9 8.6863524403497172e-01 13 9 6.2641267463760963e-01 14 9 2.4117230851775071e-01 15 9 9.7808165298099614e-01 16 9 6.4050078004385291e-01 17 9 2.2984864742274147e-01 18 9 6.8133515496333175e-01 19 9 6.6582340850119059e-01 10 10 1.0276029663419571e+01 11 10 3.6845815320189301e-01 12 10 1.2886305580264072e-02 13 10 8.8920608445677685e-01 14 10 8.6602060197295894e-01 15 10 2.5424693462367304e-01 16 10 5.6948059670006301e-01 17 10 1.5926481806619747e-01 18 10 5.9436441620672609e-01 19 10 3.3110008113957534e-01 11 11 1.0379817749631686e+01 12 11 4.4158548534907754e-01 13 11 4.8305999359285262e-01 14 11 6.0810565644665826e-01 15 11 1.7599564133654022e-01 16 11 2.0255609842504785e-03 17 11 7.9022400217775857e-01 18 11 5.1360850166113969e-01 19 11 2.1322937650819915e-01 12 12 1.0733996316816121e+01 13 12 4.1090418242429461e-01 14 12 3.9979384565321358e-01 15 12 5.0552220730513309e-01 16 12 1.6930585909427961e-01 17 12 5.2474549024217632e-01 18 12 6.4120266333361520e-01 19 12 1.6197483974405034e-02 13 13 1.0880705331839906e+01 14 13 4.7968680568841887e-01 15 13 5.6081672777542579e-01 16 13 6.1590865550273199e-01 17 13 6.6189901492686420e-01 18 13 6.1663323497942502e-01 19 13 6.8514000022586508e-01 14 14 1.0454560938047088e+01 15 14 9.0494922003893707e-01 16 14 2.8215885111885747e-01 17 14 6.5034353882859261e-02 18 14 4.7659188533922986e-01 19 14 9.8371191819526205e-01 15 15 1.0907035040900745e+01 16 15 7.5856859902288065e-01 17 15 3.8072993767739627e-01 18 15 3.3111078589843390e-01 19 15 5.0407844366520138e-01 16 16 1.0629085550981520e+01 17 16 7.9261032066378290e-01 18 16 4.4864920509188760e-01 19 16 5.2435710756868714e-01 17 17 1.0298798787847662e+01 18 17 6.7243639077270467e-01 19 17 9.3825747990821540e-01 18 18 1.0813305524704429e+01 19 18 9.2382979384605568e-01 19 19 1.0333312652405771e+01 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcha.mtx0000644001170100242450000000013310532673442017366 0ustar davisfac%%MatrixMarket matrix array complex Hermitian 2 2 1.3 2.3 3.4 1.7 % comment here 7.7 8.0 SuiteSparse/CHOLMOD/Tcov/Matrix/1e990000644001170100242450000000011110533150170015611 0ustar davisfac%%MatrixMarket matrix coordinate real symmetric 2 2 2 1 1 1e99 2 2 1e-99 SuiteSparse/CHOLMOD/Tcov/Matrix/c5lo0000644001170100242450000000032610276203352016001 0ustar davisfac5 5 11 -1 1 0 0 2.43872 0 1 0 0.261819 -0.16627 2 0 0.724062 0.804517 4 0 0.281634 0.828864 1 1 4.21742 0 2 1 1.69463 -0.324218 3 1 1.23492 0.0754504 2 2 4.77818 0 3 2 0.902819 0.460806 3 3 3.51267 0 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/c5up0000644001170100242450000000032710276203355016017 0ustar davisfac5 5 11 1 1 0 0 2.43872 0 0 1 0.261819 0.16627 1 1 4.21742 0 0 2 0.724062 -0.804517 1 2 1.69463 0.324218 2 2 4.77818 0 1 3 1.23492 -0.0754504 2 3 0.902819 -0.460806 3 3 3.51267 0 0 4 0.281634 -0.828864 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/diag0000644001170100242450000000116710222534075016047 0ustar davisfac20 20 20 1 0 0 2.8593923239719854e-01 1 1 3.9412761118583534e-01 2 2 5.0301448551217909e-01 3 3 7.2197984634097134e-01 4 4 3.0620854545698534e-01 5 5 1.1216371189116499e-01 6 6 4.4328995994462900e-01 7 7 4.6676255217035045e-01 8 8 1.4668875279349616e-02 9 9 6.6405186602462118e-01 10 10 7.2406170870986297e-01 11 11 2.8163360301245510e-01 12 12 2.6181867810571452e-01 13 13 7.0847140486544080e-01 14 14 7.8385902280488529e-01 15 15 9.8615780656198115e-01 16 16 4.7334270540113227e-01 17 17 9.0281883426912579e-01 18 18 4.5105876120527100e-01 19 19 8.0451680863960395e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/r5lo0000644001170100242450000000020710276742763016034 0ustar davisfac5 5 10 -1 0 0 0 2.43872 2 0 0.724062 4 0 0.281634 1 1 4.21742 2 1 1.69463 3 1 1.23492 2 2 4.77818 3 2 0.902819 3 3 3.51267 4 4 6.25922 SuiteSparse/CHOLMOD/Tcov/Matrix/r5up0000644001170100242450000000020610276743201016031 0ustar davisfac5 5 10 1 0 0 0 2.43872 1 1 4.21742 0 2 0.724062 1 2 1.69463 2 2 4.77818 1 3 1.23492 2 3 0.902819 3 3 3.51267 0 4 0.281634 4 4 6.25922 SuiteSparse/CHOLMOD/Tcov/Matrix/z5lo0000644001170100242450000000032610276203367016036 0ustar davisfac5 5 11 -1 2 0 0 2.43872 0 1 0 0.261819 -0.16627 2 0 0.724062 0.804517 4 0 0.281634 0.828864 1 1 4.21742 0 2 1 1.69463 -0.324218 3 1 1.23492 0.0754504 2 2 4.77818 0 3 2 0.902819 0.460806 3 3 3.51267 0 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/z5up0000644001170100242450000000032710276203372016045 0ustar davisfac5 5 11 1 2 0 0 2.43872 0 0 1 0.261819 0.16627 1 1 4.21742 0 0 2 0.724062 -0.804517 1 2 1.69463 0.324218 2 2 4.77818 0 1 3 1.23492 -0.0754504 2 3 0.902819 -0.460806 3 3 3.51267 0 0 4 0.281634 -0.828864 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/zero0000644001170100242450000000003210424430515016106 0ustar davisfac1100000000 1100000000 0 0 SuiteSparse/CHOLMOD/Tcov/Matrix/2.tri0000644001170100242450000000003710276443556016110 0ustar davisfac2 2 4 0 0 1 0 1 2 1 0 -2 1 1 3 SuiteSparse/CHOLMOD/Tcov/Matrix/rename.h0000644001170100242450000000037710532641534016645 0ustar davisfac/* do not edit this file; generated by cholmod_make */ #undef log2 #include "../../metis-4.0/Lib/rename.h" #undef log2 #define log2 METIS__log2 #include "mex.h" #define malloc mxMalloc #define free mxFree #define calloc mxCalloc #define realloc mxRealloc SuiteSparse/CHOLMOD/Tcov/Matrix/csa.mtx0000644001170100242450000000046210532653761016525 0ustar davisfac%%MatrixMarket matrix coordinate complex symmetric 3 3 6 1 1 1.692442835648649 1.0056257679925018 2 1 1.1972899647794608 1.0140887595727812 3 1 .8839245189325227 1.1111155889323803 2 2 1.6762368901047735 .37930749509434997 3 2 .39912053189281554 .49619555718182407 3 3 1.663592035219213 1.0833477077961753 SuiteSparse/CHOLMOD/Tcov/Matrix/5by500000644001170100242450000000167510350607104016007 0ustar davisfac5 50 68 0 1 0 0.0157598 4 0 0.314217 3 2 0.804872 4 2 0.365078 0 3 0.451425 2 6 0.153606 2 8 0.675645 2 9 0.699213 1 10 0.0163549 2 10 0.727509 3 10 0.908398 0 11 0.0438953 4 12 0.39324 3 13 0.231894 4 13 0.591525 1 14 0.190075 4 14 0.119747 3 15 0.239313 1 16 0.586918 4 16 0.0381288 2 18 0.478384 4 18 0.458598 2 20 0.554842 0 21 0.0271851 2 21 0.121047 3 21 0.0497545 3 22 0.0783841 3 23 0.640815 4 23 0.869867 0 24 0.312685 3 25 0.190887 0 26 0.0128626 4 26 0.934237 1 27 0.0575811 1 28 0.367568 3 28 0.843869 4 28 0.264449 1 29 0.631451 1 30 0.717634 1 31 0.692669 4 31 0.1603 1 32 0.0840791 2 32 0.450754 0 33 0.383967 1 34 0.454355 2 34 0.715883 3 34 0.1739 4 35 0.872855 0 36 0.683116 2 36 0.892842 4 37 0.23788 0 38 0.0928425 2 38 0.273102 0 39 0.0353383 1 39 0.441828 2 39 0.254769 3 39 0.170793 1 41 0.35325 2 43 0.865603 3 43 0.994295 4 44 0.645831 4 46 0.966887 2 47 0.23235 0 48 0.612395 3 48 0.439791 4 48 0.664931 0 49 0.60854 3 49 0.340048 SuiteSparse/CHOLMOD/Tcov/Matrix/c30lo0000644001170100242450000000464510276203346016072 0ustar davisfac30 30 114 -1 1 0 0 4.98585 0 6 0 0.121047 0.335197 9 0 0.450754 0.655531 12 0 0.23788 -0.548513 14 0 0.734908 -0.634266 19 0 0.0491625 -0.680204 20 0 0.982988 -0.498305 24 0 0.715883 0.391904 25 0 0.892842 0.627315 27 0 0.273102 0.69908 1 1 2.80724 0 5 1 0.254769 0.397184 6 1 0.170793 -0.700635 10 1 0.865603 0.413629 18 1 0.23235 0.655213 21 1 0.804872 0.837585 24 1 0.908398 0.371608 26 1 0.231894 0.425253 2 2 6.14737 0 8 2 0.239313 0.594663 23 2 0.0497545 0.565739 3 3 6.78061 0 4 4 5.13451 0 5 4 0.640815 0.511311 13 4 0.870381 -0.571057 28 4 0.190887 0.776401 5 5 2.14374 0 12 5 0.645831 -0.26177 14 5 0.843869 0.489345 17 5 0.1739 0.185904 20 5 0.552673 -0.434441 23 5 0.919957 -0.273088 28 5 0.569206 -0.474041 6 6 6.06059 0 12 6 0.994295 0.982709 13 6 0.0099273 -0.700857 17 6 0.422452 -0.253561 20 6 0.439791 0.806638 25 6 0.340048 0.703568 7 7 5.05057 0 21 7 0.375885 -0.754551 8 8 5.50746 0 12 8 0.314217 0.484964 13 8 0.365078 0.114613 18 8 0.457354 -0.96137 20 8 0.400074 -0.562458 26 8 0.39324 0.664856 9 9 2.46098 0 13 9 0.13701 -0.962288 19 9 0.591525 0.365374 20 9 0.119747 0.140044 22 9 0.0381288 0.566773 25 9 0.731277 -0.0889618 10 10 4.12445 0 11 10 0.934237 -0.999447 20 10 0.198789 -0.616621 22 10 0.458598 0.823008 26 10 0.869867 0.673949 11 11 3.87788 0 16 11 0.264449 0.961636 17 11 0.855976 -0.873451 18 11 0.450689 -0.0720592 19 11 0.1603 0.0588622 25 11 0.872855 0.360311 28 11 0.63179 -0.908989 12 12 2.83077 0 15 12 1.13292 -0.348118 23 12 0.664931 0.049278 29 12 0.234413 -0.596247 13 13 6.16576 0 14 13 0.818756 0.750518 15 13 0.430166 0.739993 18 13 0.412219 -0.553408 23 13 0.844722 -0.626235 26 13 0.193893 -0.271308 28 13 0.890322 0.431873 29 13 0.548782 -0.328955 14 14 6.1932 0 20 14 0.687324 0.803026 26 14 0.346112 0.083881 15 15 4.25807 0 23 15 0.367753 -0.536852 27 15 0.155613 0.915942 16 16 6.78301 0 18 16 0.90161 -0.291984 22 16 0.191116 0.601987 17 17 3.71627 0 18 17 0.815935 0.732651 28 17 0.46077 0.422227 18 18 6.34966 0 20 18 0.625201 -0.11334 21 18 0.00558394 0.857964 25 18 0.297406 0.335755 26 18 0.904812 -0.409072 19 19 5.84718 0 22 19 0.69318 0.0534444 26 19 0.650106 0.356656 20 20 4.22081 0 21 20 0.00987646 -0.791123 29 20 0.733363 0.898252 21 21 5.1031 0 22 21 0.75367 -0.670004 24 21 0.419858 0.814952 22 22 6.75845 0 27 22 0.793872 0.200876 23 23 5.20005 0 24 23 0.620801 0.0595041 24 24 3.23664 0 25 25 3.76351 0 29 25 0.931583 -0.478194 26 26 2.9393 0 27 27 4.45322 0 28 28 4.04637 0 29 29 4.31763 0 SuiteSparse/CHOLMOD/Tcov/Matrix/c30up0000644001170100242450000000466210276203350016076 0ustar davisfac30 30 114 1 1 0 0 4.98585 0 1 1 2.80724 0 2 2 6.14737 0 3 3 6.78061 0 4 4 5.13451 0 1 5 0.254769 -0.397184 4 5 0.640815 -0.511311 5 5 2.14374 0 0 6 0.121047 -0.335197 1 6 0.170793 0.700635 6 6 6.06059 0 7 7 5.05057 0 2 8 0.239313 -0.594663 8 8 5.50746 0 0 9 0.450754 -0.655531 9 9 2.46098 0 1 10 0.865603 -0.413629 10 10 4.12445 0 10 11 0.934237 0.999447 11 11 3.87788 0 0 12 0.23788 0.548513 5 12 0.645831 0.26177 6 12 0.994295 -0.982709 8 12 0.314217 -0.484964 12 12 2.83077 0 4 13 0.870381 0.571057 6 13 0.0099273 0.700857 8 13 0.365078 -0.114613 9 13 0.13701 0.962288 13 13 6.16576 0 0 14 0.734908 0.634266 5 14 0.843869 -0.489345 13 14 0.818756 -0.750518 14 14 6.1932 0 12 15 1.13292 0.348118 13 15 0.430166 -0.739993 15 15 4.25807 0 11 16 0.264449 -0.961636 16 16 6.78301 0 5 17 0.1739 -0.185904 6 17 0.422452 0.253561 11 17 0.855976 0.873451 17 17 3.71627 0 1 18 0.23235 -0.655213 8 18 0.457354 0.96137 11 18 0.450689 0.0720592 13 18 0.412219 0.553408 16 18 0.90161 0.291984 17 18 0.815935 -0.732651 18 18 6.34966 0 0 19 0.0491625 0.680204 9 19 0.591525 -0.365374 11 19 0.1603 -0.0588622 19 19 5.84718 0 0 20 0.982988 0.498305 5 20 0.552673 0.434441 6 20 0.439791 -0.806638 8 20 0.400074 0.562458 9 20 0.119747 -0.140044 10 20 0.198789 0.616621 14 20 0.687324 -0.803026 18 20 0.625201 0.11334 20 20 4.22081 0 1 21 0.804872 -0.837585 7 21 0.375885 0.754551 18 21 0.00558394 -0.857964 20 21 0.00987646 0.791123 21 21 5.1031 0 9 22 0.0381288 -0.566773 10 22 0.458598 -0.823008 16 22 0.191116 -0.601987 19 22 0.69318 -0.0534444 21 22 0.75367 0.670004 22 22 6.75845 0 2 23 0.0497545 -0.565739 5 23 0.919957 0.273088 12 23 0.664931 -0.049278 13 23 0.844722 0.626235 15 23 0.367753 0.536852 23 23 5.20005 0 0 24 0.715883 -0.391904 1 24 0.908398 -0.371608 21 24 0.419858 -0.814952 23 24 0.620801 -0.0595041 24 24 3.23664 0 0 25 0.892842 -0.627315 6 25 0.340048 -0.703568 9 25 0.731277 0.0889618 11 25 0.872855 -0.360311 18 25 0.297406 -0.335755 25 25 3.76351 0 1 26 0.231894 -0.425253 8 26 0.39324 -0.664856 10 26 0.869867 -0.673949 13 26 0.193893 0.271308 14 26 0.346112 -0.083881 18 26 0.904812 0.409072 19 26 0.650106 -0.356656 26 26 2.9393 0 0 27 0.273102 -0.69908 15 27 0.155613 -0.915942 22 27 0.793872 -0.200876 27 27 4.45322 0 4 28 0.190887 -0.776401 5 28 0.569206 0.474041 11 28 0.63179 0.908989 13 28 0.890322 -0.431873 17 28 0.46077 -0.422227 28 28 4.04637 0 12 29 0.234413 0.596247 13 29 0.548782 0.328955 20 29 0.733363 -0.898252 25 29 0.931583 0.478194 29 29 4.31763 0 SuiteSparse/CHOLMOD/Tcov/Matrix/c5up20000644001170100242450000000032710462165601016077 0ustar davisfac5 5 11 1 1 0 0 2.43872 0 0 1 0.261819 0.16627 1 1 4.21742 0 2 0 0.724062 -0.804517 1 2 1.69463 0.324218 2 2 4.77818 0 1 3 1.23492 -0.0754504 2 3 0.902819 -0.460806 3 3 3.51267 0 0 4 0.281634 -0.828864 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/afiro0000644001170100242450000000624110220606502016232 0ustar davisfac27 51 102 0 2 0 1.0000000000000000e+00 3 1 1.0000000000000000e+00 6 2 1.0000000000000000e+00 7 3 1.0000000000000000e+00 8 4 1.0000000000000000e+00 9 5 1.0000000000000000e+00 12 6 1.0000000000000000e+00 13 7 1.0000000000000000e+00 16 8 1.0000000000000000e+00 17 9 1.0000000000000000e+00 18 10 1.0000000000000000e+00 19 11 1.0000000000000000e+00 20 12 1.0000000000000000e+00 21 13 1.0000000000000000e+00 22 14 1.0000000000000000e+00 23 15 1.0000000000000000e+00 24 16 1.0000000000000000e+00 25 17 1.0000000000000000e+00 26 18 1.0000000000000000e+00 0 19 -1.0000000000000000e+00 1 19 -1.0600000000000001e+00 2 19 1.0000000000000000e+00 23 19 3.0099999999999999e-01 0 20 1.0000000000000000e+00 3 20 -1.0000000000000000e+00 0 21 1.0000000000000000e+00 21 21 -1.0000000000000000e+00 1 22 1.0000000000000000e+00 25 22 1.0000000000000000e+00 4 23 -1.0000000000000000e+00 5 23 -1.0600000000000001e+00 6 23 1.0000000000000000e+00 24 23 3.0099999999999999e-01 4 24 -1.0000000000000000e+00 5 24 -1.0600000000000001e+00 7 24 1.0000000000000000e+00 24 24 3.1300000000000000e-01 4 25 -1.0000000000000000e+00 5 25 -9.5999999999999996e-01 8 25 1.0000000000000000e+00 24 25 3.1300000000000000e-01 4 26 -1.0000000000000000e+00 5 26 -8.5999999999999999e-01 9 26 1.0000000000000000e+00 24 26 3.2600000000000001e-01 6 27 -1.0000000000000000e+00 20 27 2.3639999999999999e+00 7 28 -1.0000000000000000e+00 20 28 2.3860000000000001e+00 8 29 -1.0000000000000000e+00 20 29 2.4079999999999999e+00 9 30 -1.0000000000000000e+00 20 30 2.4289999999999998e+00 3 31 1.3999999999999999e+00 4 31 1.0000000000000000e+00 4 32 1.0000000000000000e+00 22 32 -1.0000000000000000e+00 5 33 1.0000000000000000e+00 26 33 1.0000000000000000e+00 10 34 -1.0000000000000000e+00 11 34 -4.2999999999999999e-01 12 34 1.0000000000000000e+00 21 34 1.0900000000000000e-01 10 35 1.0000000000000000e+00 13 35 -1.0000000000000000e+00 10 36 1.0000000000000000e+00 23 36 -1.0000000000000000e+00 10 37 1.0000000000000000e+00 20 37 -1.0000000000000000e+00 11 38 1.0000000000000000e+00 25 38 1.0000000000000000e+00 14 39 -4.2999999999999999e-01 15 39 1.0000000000000000e+00 16 39 1.0000000000000000e+00 22 39 1.0900000000000000e-01 14 40 -4.2999999999999999e-01 15 40 1.0000000000000000e+00 17 40 1.0000000000000000e+00 22 40 1.0800000000000000e-01 14 41 -3.9000000000000001e-01 15 41 1.0000000000000000e+00 18 41 1.0000000000000000e+00 22 41 1.0800000000000000e-01 14 42 -3.7000000000000000e-01 15 42 1.0000000000000000e+00 19 42 1.0000000000000000e+00 22 42 1.0700000000000000e-01 16 43 -1.0000000000000000e+00 20 43 2.1909999999999998e+00 17 44 -1.0000000000000000e+00 20 44 2.2189999999999999e+00 18 45 -1.0000000000000000e+00 20 45 2.2490000000000001e+00 19 46 -1.0000000000000000e+00 20 46 2.2789999999999999e+00 13 47 1.3999999999999999e+00 15 47 -1.0000000000000000e+00 15 48 1.0000000000000000e+00 24 48 -1.0000000000000000e+00 14 49 1.0000000000000000e+00 26 49 1.0000000000000000e+00 15 50 1.0000000000000000e+00 SuiteSparse/CHOLMOD/Tcov/Matrix/crud10000644001170100242450000000000210532637647016161 0ustar davisfac1 SuiteSparse/CHOLMOD/Tcov/Matrix/crud20000644001170100242450000000002010532640767016157 0ustar davisfac10 10 10 1 1 42 SuiteSparse/CHOLMOD/Tcov/Matrix/k01up0000644001170100242450000001566210220030572016077 0ustar davisfac48 48 224 1 0 0 2.8322685185199999e+06 1 1 1.6354475308600001e+06 2 2 1.7243672839500001e+06 1 3 -2.0000000000000000e+06 2 3 -2.0833333333300001e+06 3 3 1.0033333333300000e+09 0 4 1.0000000000000000e+06 2 4 -2.7777777777800001e+06 4 4 1.0675000000000000e+09 0 5 2.0833333333300001e+06 1 5 5.5555555555499997e+06 5 5 1.5353333333299999e+09 0 6 -3.3333333333300002e+03 4 6 -1.0000000000000000e+06 6 6 2.8322685185199999e+06 1 7 -6.6666666666700003e+03 3 7 2.0000000000000000e+06 7 7 1.6354475308600001e+06 2 8 -1.6800000000000000e+06 8 8 1.7243672839500001e+06 1 9 -2.0000000000000000e+06 3 9 4.0000000000000000e+08 7 9 2.0000000000000000e+06 8 9 -2.0833333333300001e+06 9 9 1.0033333333300000e+09 0 10 1.0000000000000000e+06 4 10 2.0000000000000000e+08 6 10 -1.0000000000000000e+06 8 10 -2.7777777777800001e+06 10 10 1.0675000000000000e+09 5 11 -2.0000000000000000e+06 6 11 2.0833333333300001e+06 7 11 5.5555555555499997e+06 11 11 1.5353333333299999e+09 6 12 -2.8000000000000000e+06 12 12 2.8360994695000001e+06 7 13 -3.0864197530900001e+04 11 13 -5.5555555555499997e+06 13 13 1.7674107444600000e+06 8 14 -1.5432098765400000e+04 10 14 2.7777777777800001e+06 13 14 5.1792213181599998e+05 14 14 3.8900380684799999e+06 9 15 -3.3333333333299998e+06 13 15 4.2985705890199998e+06 14 15 -2.6349902747000000e+06 15 15 1.9757206353099999e+09 8 16 -2.7777777777800001e+06 10 16 3.3333333333300000e+08 12 16 -2.1492852945099999e+06 14 16 2.7777777777800001e+06 16 16 1.5273465154700000e+09 7 17 5.5555555555499997e+06 11 17 6.6666666666700006e+08 12 17 2.3591618040200002e+06 13 17 -5.5555555555499997e+06 16 17 -1.0977973133200000e+08 17 17 1.5641114371099999e+09 0 18 -2.8000000000000000e+06 12 18 -3.3333333333300002e+03 16 18 1.0000000000000000e+06 18 18 2.8322685185199999e+06 1 19 -3.0864197530900001e+04 5 19 -5.5555555555499997e+06 13 19 -6.6666666666700003e+03 15 19 -2.0000000000000000e+06 19 19 1.6354475308600001e+06 2 20 -1.5432098765400000e+04 4 20 2.7777777777800001e+06 14 20 -1.6800000000000000e+06 20 20 1.7243672839500001e+06 3 21 -3.3333333333299998e+06 13 21 2.0000000000000000e+06 15 21 4.0000000000000000e+08 19 21 -2.0000000000000000e+06 20 21 -2.0833333333300001e+06 21 21 1.0033333333300000e+09 2 22 -2.7777777777800001e+06 4 22 3.3333333333300000e+08 12 22 -1.0000000000000000e+06 16 22 2.0000000000000000e+08 18 22 1.0000000000000000e+06 20 22 2.7777777777800001e+06 22 22 1.0675000000000000e+09 1 23 5.5555555555499997e+06 5 23 6.6666666666700006e+08 17 23 -2.0000000000000000e+06 18 23 2.0833333333300001e+06 19 23 -5.5555555555499997e+06 23 23 1.5353333333299999e+09 0 24 -2.8935185185200000e+04 5 24 -2.0833333333300001e+06 24 24 6.0879629629600000e+04 1 25 -1.5979166666699999e+06 25 25 3.3729166666700002e+06 2 26 -2.8935185185200000e+04 3 26 2.0833333333300001e+06 26 26 2.4117129629600001e+06 2 27 -2.0833333333300001e+06 3 27 1.0000000000000000e+08 25 27 -2.5000000000000000e+06 26 27 -4.1666666666699998e+05 27 27 1.5000000000000000e+09 4 28 -8.3333333333299996e+05 24 28 1.2500000000000000e+06 28 28 5.0183333333300000e+08 0 29 2.0833333333300001e+06 5 29 1.0000000000000000e+08 24 29 4.1666666666699998e+05 29 29 5.0250000000000000e+08 6 30 -2.8935185185200000e+04 11 30 -2.0833333333300001e+06 24 30 -4.1666666666700003e+03 28 30 -1.2500000000000000e+06 30 30 3.9858796296299999e+06 7 31 -1.5979166666699999e+06 25 31 -8.3333333333299997e+03 27 31 2.5000000000000000e+06 31 31 3.4114969135799999e+06 8 32 -2.8935185185200000e+04 9 32 2.0833333333300001e+06 26 32 -2.3550000000000000e+06 32 32 2.4310030864200001e+06 8 33 -2.0833333333300001e+06 9 33 1.0000000000000000e+08 25 33 -2.5000000000000000e+06 27 33 5.0000000000000000e+08 31 33 2.5000000000000000e+06 32 33 -4.1666666666699998e+05 33 33 1.5041666666700001e+09 10 34 -8.3333333333299996e+05 24 34 1.2500000000000000e+06 28 34 2.5000000000000000e+08 30 34 -1.2500000000000000e+06 32 34 -3.4722222222199999e+06 34 34 1.3351666666700001e+09 6 35 2.0833333333300001e+06 11 35 1.0000000000000000e+08 29 35 -2.5000000000000000e+06 30 35 4.1666666666699998e+05 31 35 6.9444444444399998e+06 35 35 2.1691666666700001e+09 12 36 -2.8935185185200000e+04 17 36 -2.0833333333300001e+06 30 36 -3.9250000000000000e+06 36 36 3.9858796296299999e+06 13 37 -1.5979166666699999e+06 31 37 -3.8580246913600000e+04 35 37 -6.9444444444399998e+06 37 37 3.4114969135799999e+06 14 38 -2.8935185185200000e+04 15 38 2.0833333333300001e+06 32 38 -1.9290123456800000e+04 34 38 3.4722222222199999e+06 38 38 2.4310030864200001e+06 14 39 -2.0833333333300001e+06 15 39 1.0000000000000000e+08 33 39 -4.1666666666700002e+06 37 39 2.5000000000000000e+06 38 39 -4.1666666666699998e+05 39 39 1.5041666666700001e+09 16 40 -8.3333333333299996e+05 32 40 -3.4722222222199999e+06 34 40 4.1666666666700000e+08 36 40 -1.2500000000000000e+06 38 40 3.4722222222199999e+06 40 40 1.3351666666700001e+09 12 41 2.0833333333300001e+06 17 41 1.0000000000000000e+08 31 41 6.9444444444500003e+06 35 41 8.3333333333299994e+08 36 41 4.1666666666699998e+05 37 41 -6.9444444444500003e+06 41 41 2.1691666666700001e+09 12 42 -3.8309509817100002e+03 16 42 1.1492852945099999e+06 17 42 -2.7582847068299999e+05 18 42 -2.8935185185200000e+04 23 42 -2.0833333333300001e+06 36 42 -4.1666666666700003e+03 40 42 1.2500000000000000e+06 42 42 6.4710580611300000e+04 13 43 -1.3196321359900001e+05 14 43 -5.1792213181599998e+05 15 43 -2.2985705890199998e+06 19 43 -1.5979166666699999e+06 37 43 -8.3333333333299997e+03 39 43 -2.5000000000000000e+06 43 43 3.5048798802700001e+06 13 44 -5.1792213181599998e+05 14 44 -2.1656707845299998e+06 15 44 5.5165694136599998e+05 20 44 -2.8935185185200000e+04 21 44 2.0833333333300001e+06 38 44 -2.3550000000000000e+06 43 44 5.1792213181599998e+05 44 44 4.5773837474900000e+06 13 45 2.2985705890199998e+06 14 45 -5.5165694136699999e+05 15 45 4.8619365099000001e+08 20 45 -2.0833333333300001e+06 21 45 1.0000000000000000e+08 37 45 2.5000000000000000e+06 39 45 5.0000000000000000e+08 43 45 -4.7985705890199998e+06 44 45 1.3499027470000001e+05 45 45 2.4723873019800000e+09 12 46 -1.1492852945099999e+06 16 46 2.2972466123600000e+08 17 46 -5.5717351077900000e+07 22 46 -8.3333333333299996e+05 36 46 -1.2500000000000000e+06 40 46 2.5000000000000000e+08 42 46 2.3992852945099999e+06 46 46 9.6167984880400002e+08 12 47 2.7582847068299999e+05 16 47 -5.5717351077900000e+07 17 47 1.0941196003799999e+07 18 47 2.0833333333300001e+06 23 47 1.0000000000000000e+08 41 47 -2.5000000000000000e+06 42 47 1.4083819598399999e+05 46 47 -1.0977973133200000e+08 47 47 5.3127810377499998e+08 SuiteSparse/CHOLMOD/Tcov/Matrix/ex5lo0000644001170100242450000001130010220026734016161 0ustar davisfac27 27 153 -1 0 0 1.0370389925926500e+06 1 0 2.5925905925926499e+05 9 0 -1.1851862518518700e+06 10 0 -2.9629665185185499e+05 18 0 1.4814814814812300e+05 19 0 3.7037148148147600e+04 1 1 2.9629754074074503e+05 2 1 2.5925905925932599e+05 3 1 -1.8518551851831100e+04 9 1 -2.9629665185184998e+05 10 1 -1.4814854814814799e+05 11 1 -2.9629665185184398e+05 12 1 -7.4073962962957099e+04 18 1 3.7037148148139902e+04 19 1 -1.4814821481482300e+05 20 1 3.7037148148078202e+04 21 1 9.2592570370343994e+04 2 2 1.0370389925928200e+06 3 2 2.5925905925931601e+05 10 2 -2.9629665185186599e+05 11 2 -1.1851862518518299e+06 12 2 -2.9629665185183298e+05 19 2 3.7037148148113898e+04 20 2 1.4814814814795699e+05 21 2 3.7037148148092398e+04 3 3 2.9629754074077500e+05 4 3 2.5925905925924101e+05 5 3 -1.8518551851877401e+04 10 3 -7.4073962962966907e+04 11 3 -2.9629665185185301e+05 12 3 -1.4814854814815300e+05 13 3 -2.9629665185184800e+05 14 3 -7.4073962962958496e+04 19 3 9.2592570370357906e+04 20 3 3.7037148148109904e+04 21 3 -1.4814821481484300e+05 22 3 3.7037148148149303e+04 23 3 9.2592570370391899e+04 4 4 1.0370389925927400e+06 5 4 2.5925905925919901e+05 12 4 -2.9629665185188298e+05 13 4 -1.1851862518518700e+06 14 4 -2.9629665185184800e+05 21 4 3.7037148148192100e+04 22 4 1.4814814814835301e+05 23 4 3.7037148148184897e+04 5 5 2.9629754074076703e+05 6 5 2.5925905925924101e+05 7 5 -1.8518551851888100e+04 12 5 -7.4073962962977603e+04 13 5 -2.9629665185189800e+05 14 5 -1.4814854814817299e+05 15 5 -2.9629665185188898e+05 16 5 -7.4073962962968697e+04 21 5 9.2592570370405898e+04 22 5 3.7037148148241198e+04 23 5 -1.4814821481481599e+05 24 5 3.7037148148192100e+04 25 5 9.2592570370409594e+04 6 6 1.0370389925927999e+06 7 6 2.5925905925936901e+05 14 6 -2.9629665185186599e+05 15 6 -1.1851862518518600e+06 16 6 -2.9629665185184398e+05 23 6 3.7037148148021399e+04 24 6 1.4814814814799401e+05 25 6 3.7037148148163498e+04 7 7 2.9629754074103001e+05 8 7 2.5925905925955300e+05 14 7 -7.4073962962959005e+04 15 7 -2.9629665185183700e+05 16 7 -1.4814854814819200e+05 17 7 -2.9629665185194300e+05 23 7 9.2592570370352798e+04 24 7 3.7037148148109001e+04 25 7 -1.4814821481504699e+05 26 7 3.7037148147993001e+04 8 8 1.0370389925934800e+06 16 8 -2.9629665185192798e+05 17 8 -1.1851862518519501e+06 25 8 3.7037148147950400e+04 26 8 1.4814814814747500e+05 9 9 2.3703760592593001e+06 10 9 5.9259152592593804e+05 18 9 -1.1851862518518700e+06 19 9 -2.9629665185186500e+05 10 10 2.9630020740742201e+05 11 10 5.9259152592594898e+05 12 10 1.4814814814814599e+05 18 10 -2.9629665185185702e+05 19 10 -1.4814854814816199e+05 20 10 -2.9629665185185900e+05 21 10 -7.4073962962961799e+04 11 11 2.3703760592592200e+06 12 11 5.9259152592588600e+05 19 11 -2.9629665185188298e+05 20 11 -1.1851862518518299e+06 21 11 -2.9629665185183298e+05 12 12 2.9630020740741101e+05 13 12 5.9259152592597902e+05 14 12 1.4814814814815301e+05 19 12 -7.4073962962966398e+04 20 12 -2.9629665185182699e+05 21 12 -1.4814854814814701e+05 22 12 -2.9629665185186599e+05 23 12 -7.4073962962963196e+04 13 13 2.3703760592593099e+06 14 13 5.9259152592591196e+05 21 13 -2.9629665185189102e+05 22 13 -1.1851862518518600e+06 23 13 -2.9629665185182501e+05 14 14 2.9630020740740403e+05 15 14 5.9259152592594898e+05 16 14 1.4814814814814701e+05 21 14 -7.4073962962969206e+04 22 14 -2.9629665185183298e+05 23 14 -1.4814854814812000e+05 24 14 -2.9629665185184201e+05 25 14 -7.4073962962983598e+04 15 15 2.3703760592593099e+06 16 15 5.9259152592591895e+05 23 15 -2.9629665185181203e+05 24 15 -1.1851862518518399e+06 25 15 -2.9629665185192600e+05 16 16 2.9630020740744501e+05 17 16 5.9259152592603501e+05 23 16 -7.4073962962951002e+04 24 16 -2.9629665185183502e+05 25 16 -1.4814854814813301e+05 26 16 -2.9629665185189800e+05 17 17 2.3703760592593602e+06 25 17 -2.9629665185175999e+05 26 17 -1.1851862518519100e+06 18 18 1.0370389925926400e+06 19 18 2.5925905925927500e+05 19 19 2.9629754074075801e+05 20 19 2.5925905925932599e+05 21 19 -1.8518551851832999e+04 20 20 1.0370389925927600e+06 21 20 2.5925905925928699e+05 21 21 2.9629754074076202e+05 22 21 2.5925905925925501e+05 23 21 -1.8518551851873901e+04 22 22 1.0370389925923900e+06 23 22 2.5925905925917201e+05 23 23 2.9629754074073199e+05 24 23 2.5925905925932599e+05 25 23 -1.8518551851831100e+04 24 24 1.0370389925926999e+06 25 24 2.5925905925932599e+05 25 25 2.9629754074094398e+05 26 25 2.5925905925936901e+05 26 26 1.0370389925933600e+06 SuiteSparse/CHOLMOD/Tcov/Matrix/ibm320000644001170100242450000000242410230174513016050 0ustar davisfac32 32 126 0 0 0 1 1 0 1 2 0 1 3 0 1 6 0 1 25 0 1 0 1 1 1 1 1 8 1 1 20 1 1 27 1 1 1 2 1 2 2 1 5 2 1 7 2 1 8 2 1 28 2 1 2 3 1 3 3 1 4 3 1 11 3 1 2 4 1 4 4 1 22 4 1 26 4 1 0 5 1 5 5 1 15 5 1 2 6 1 6 6 1 13 6 1 20 6 1 30 6 1 0 7 1 7 7 1 11 7 1 16 7 1 26 7 1 6 8 1 8 8 1 9 8 1 12 8 1 18 8 1 22 8 1 26 8 1 0 9 1 9 9 1 10 9 1 20 9 1 22 9 1 24 9 1 26 9 1 1 10 1 10 10 1 14 10 1 17 10 1 28 10 1 5 11 1 11 11 1 23 11 1 10 12 1 12 12 1 2 13 1 13 13 1 1 14 1 14 14 1 19 14 1 3 15 1 15 15 1 21 15 1 3 16 1 15 16 1 16 16 1 5 17 1 9 17 1 17 17 1 19 17 1 29 17 1 0 18 1 18 18 1 25 18 1 7 19 1 15 19 1 19 19 1 2 20 1 20 20 1 31 20 1 10 21 1 21 21 1 1 22 1 16 22 1 20 22 1 22 22 1 11 23 1 23 23 1 25 23 1 5 24 1 14 24 1 17 24 1 23 24 1 24 24 1 12 25 1 17 25 1 21 25 1 25 25 1 4 26 1 23 26 1 25 26 1 26 26 1 8 27 1 27 27 1 2 28 1 4 28 1 26 28 1 28 28 1 31 28 1 11 29 1 16 29 1 22 29 1 29 29 1 12 30 1 13 30 1 30 30 1 23 31 1 27 31 1 31 31 1 SuiteSparse/CHOLMOD/Tcov/Matrix/r5lo20000644001170100242450000000030010305167613016074 0ustar davisfac% comments like this are ignored 5 5 10 -1 0 0 0 2.43872 2 0 0.724062 4 0 0.281634 1 1 4.21742 % % so are blank lines 2 1 1.69463 3 1 1.23492 2 2 4.77818 3 2 0.902819 3 3 3.51267 4 4 6.25922 SuiteSparse/CHOLMOD/Tcov/Matrix/r5up20000644001170100242450000000020610462162446016116 0ustar davisfac5 5 10 1 0 0 0 2.43872 1 1 4.21742 2 0 0.724062 1 2 1.69463 2 2 4.77818 1 3 1.23492 2 3 0.902819 3 3 3.51267 0 4 0.281634 4 4 6.25922 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcsa.mtx0000644001170100242450000000013310532673027017400 0ustar davisfac%%MatrixMarket matrix array complex symmetric 2 2 1.3 2.3 3.4 1.7 % comment here 7.7 8.0 SuiteSparse/CHOLMOD/Tcov/Matrix/z30lo0000644001170100242450000000464510276203363016120 0ustar davisfac30 30 114 -1 2 0 0 4.98585 0 6 0 0.121047 0.335197 9 0 0.450754 0.655531 12 0 0.23788 -0.548513 14 0 0.734908 -0.634266 19 0 0.0491625 -0.680204 20 0 0.982988 -0.498305 24 0 0.715883 0.391904 25 0 0.892842 0.627315 27 0 0.273102 0.69908 1 1 2.80724 0 5 1 0.254769 0.397184 6 1 0.170793 -0.700635 10 1 0.865603 0.413629 18 1 0.23235 0.655213 21 1 0.804872 0.837585 24 1 0.908398 0.371608 26 1 0.231894 0.425253 2 2 6.14737 0 8 2 0.239313 0.594663 23 2 0.0497545 0.565739 3 3 6.78061 0 4 4 5.13451 0 5 4 0.640815 0.511311 13 4 0.870381 -0.571057 28 4 0.190887 0.776401 5 5 2.14374 0 12 5 0.645831 -0.26177 14 5 0.843869 0.489345 17 5 0.1739 0.185904 20 5 0.552673 -0.434441 23 5 0.919957 -0.273088 28 5 0.569206 -0.474041 6 6 6.06059 0 12 6 0.994295 0.982709 13 6 0.0099273 -0.700857 17 6 0.422452 -0.253561 20 6 0.439791 0.806638 25 6 0.340048 0.703568 7 7 5.05057 0 21 7 0.375885 -0.754551 8 8 5.50746 0 12 8 0.314217 0.484964 13 8 0.365078 0.114613 18 8 0.457354 -0.96137 20 8 0.400074 -0.562458 26 8 0.39324 0.664856 9 9 2.46098 0 13 9 0.13701 -0.962288 19 9 0.591525 0.365374 20 9 0.119747 0.140044 22 9 0.0381288 0.566773 25 9 0.731277 -0.0889618 10 10 4.12445 0 11 10 0.934237 -0.999447 20 10 0.198789 -0.616621 22 10 0.458598 0.823008 26 10 0.869867 0.673949 11 11 3.87788 0 16 11 0.264449 0.961636 17 11 0.855976 -0.873451 18 11 0.450689 -0.0720592 19 11 0.1603 0.0588622 25 11 0.872855 0.360311 28 11 0.63179 -0.908989 12 12 2.83077 0 15 12 1.13292 -0.348118 23 12 0.664931 0.049278 29 12 0.234413 -0.596247 13 13 6.16576 0 14 13 0.818756 0.750518 15 13 0.430166 0.739993 18 13 0.412219 -0.553408 23 13 0.844722 -0.626235 26 13 0.193893 -0.271308 28 13 0.890322 0.431873 29 13 0.548782 -0.328955 14 14 6.1932 0 20 14 0.687324 0.803026 26 14 0.346112 0.083881 15 15 4.25807 0 23 15 0.367753 -0.536852 27 15 0.155613 0.915942 16 16 6.78301 0 18 16 0.90161 -0.291984 22 16 0.191116 0.601987 17 17 3.71627 0 18 17 0.815935 0.732651 28 17 0.46077 0.422227 18 18 6.34966 0 20 18 0.625201 -0.11334 21 18 0.00558394 0.857964 25 18 0.297406 0.335755 26 18 0.904812 -0.409072 19 19 5.84718 0 22 19 0.69318 0.0534444 26 19 0.650106 0.356656 20 20 4.22081 0 21 20 0.00987646 -0.791123 29 20 0.733363 0.898252 21 21 5.1031 0 22 21 0.75367 -0.670004 24 21 0.419858 0.814952 22 22 6.75845 0 27 22 0.793872 0.200876 23 23 5.20005 0 24 23 0.620801 0.0595041 24 24 3.23664 0 25 25 3.76351 0 29 25 0.931583 -0.478194 26 26 2.9393 0 27 27 4.45322 0 28 28 4.04637 0 29 29 4.31763 0 SuiteSparse/CHOLMOD/Tcov/Matrix/z30up0000644001170100242450000000466210276203365016133 0ustar davisfac30 30 114 1 2 0 0 4.98585 0 1 1 2.80724 0 2 2 6.14737 0 3 3 6.78061 0 4 4 5.13451 0 1 5 0.254769 -0.397184 4 5 0.640815 -0.511311 5 5 2.14374 0 0 6 0.121047 -0.335197 1 6 0.170793 0.700635 6 6 6.06059 0 7 7 5.05057 0 2 8 0.239313 -0.594663 8 8 5.50746 0 0 9 0.450754 -0.655531 9 9 2.46098 0 1 10 0.865603 -0.413629 10 10 4.12445 0 10 11 0.934237 0.999447 11 11 3.87788 0 0 12 0.23788 0.548513 5 12 0.645831 0.26177 6 12 0.994295 -0.982709 8 12 0.314217 -0.484964 12 12 2.83077 0 4 13 0.870381 0.571057 6 13 0.0099273 0.700857 8 13 0.365078 -0.114613 9 13 0.13701 0.962288 13 13 6.16576 0 0 14 0.734908 0.634266 5 14 0.843869 -0.489345 13 14 0.818756 -0.750518 14 14 6.1932 0 12 15 1.13292 0.348118 13 15 0.430166 -0.739993 15 15 4.25807 0 11 16 0.264449 -0.961636 16 16 6.78301 0 5 17 0.1739 -0.185904 6 17 0.422452 0.253561 11 17 0.855976 0.873451 17 17 3.71627 0 1 18 0.23235 -0.655213 8 18 0.457354 0.96137 11 18 0.450689 0.0720592 13 18 0.412219 0.553408 16 18 0.90161 0.291984 17 18 0.815935 -0.732651 18 18 6.34966 0 0 19 0.0491625 0.680204 9 19 0.591525 -0.365374 11 19 0.1603 -0.0588622 19 19 5.84718 0 0 20 0.982988 0.498305 5 20 0.552673 0.434441 6 20 0.439791 -0.806638 8 20 0.400074 0.562458 9 20 0.119747 -0.140044 10 20 0.198789 0.616621 14 20 0.687324 -0.803026 18 20 0.625201 0.11334 20 20 4.22081 0 1 21 0.804872 -0.837585 7 21 0.375885 0.754551 18 21 0.00558394 -0.857964 20 21 0.00987646 0.791123 21 21 5.1031 0 9 22 0.0381288 -0.566773 10 22 0.458598 -0.823008 16 22 0.191116 -0.601987 19 22 0.69318 -0.0534444 21 22 0.75367 0.670004 22 22 6.75845 0 2 23 0.0497545 -0.565739 5 23 0.919957 0.273088 12 23 0.664931 -0.049278 13 23 0.844722 0.626235 15 23 0.367753 0.536852 23 23 5.20005 0 0 24 0.715883 -0.391904 1 24 0.908398 -0.371608 21 24 0.419858 -0.814952 23 24 0.620801 -0.0595041 24 24 3.23664 0 0 25 0.892842 -0.627315 6 25 0.340048 -0.703568 9 25 0.731277 0.0889618 11 25 0.872855 -0.360311 18 25 0.297406 -0.335755 25 25 3.76351 0 1 26 0.231894 -0.425253 8 26 0.39324 -0.664856 10 26 0.869867 -0.673949 13 26 0.193893 0.271308 14 26 0.346112 -0.083881 18 26 0.904812 0.409072 19 26 0.650106 -0.356656 26 26 2.9393 0 0 27 0.273102 -0.69908 15 27 0.155613 -0.915942 22 27 0.793872 -0.200876 27 27 4.45322 0 4 28 0.190887 -0.776401 5 28 0.569206 0.474041 11 28 0.63179 0.908989 13 28 0.890322 -0.431873 17 28 0.46077 -0.422227 28 28 4.04637 0 12 29 0.234413 0.596247 13 29 0.548782 0.328955 20 29 0.733363 -0.898252 25 29 0.931583 0.478194 29 29 4.31763 0 SuiteSparse/CHOLMOD/Tcov/Matrix/z5up20000644001170100242450000000032710462165673016137 0ustar davisfac5 5 11 1 2 0 0 2.43872 0 0 1 0.261819 0.16627 1 1 4.21742 0 2 0 0.724062 -0.804517 1 2 1.69463 0.324218 2 2 4.77818 0 1 3 1.23492 -0.0754504 2 3 0.902819 -0.460806 3 3 3.51267 0 0 4 0.281634 -0.828864 4 4 6.25922 0 SuiteSparse/CHOLMOD/Tcov/Matrix/cza.mtx0000644001170100242450000000026610532653436016535 0ustar davisfac%%MatrixMarket matrix coordinate complex skew-symmetric 3 3 3 2 1 .23113851357428783 .6154323481000947 3 1 .6068425835417866 .7919370374270354 3 2 .7620968330273947 .176266144494618 SuiteSparse/CHOLMOD/Tcov/Matrix/huge.tri0000644001170100242450000000002710276444233016667 0ustar davisfac1 1 2147483647 0 1 1 1 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcza.mtx0000644001170100242450000000010010532673120017373 0ustar davisfac%%MatrixMarket matrix array complex skew-symmetric 2 2 3.4 2.99 SuiteSparse/CHOLMOD/Tcov/Matrix/fullrsa.mtx0000644001170100242450000000011410532672635017422 0ustar davisfac%%MatrixMarket matrix array real symmetric 2 2 1.3 3.4 % comment here 7.7 SuiteSparse/CHOLMOD/Tcov/Matrix/rza.mtx0000644001170100242450000000012610533073310016533 0ustar davisfac%%MatrixMarket matrix coordinate integer skew-symmetric 3 3 3 2 1 -13 3 1 -32 3 2 -17 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcrud1.mtx0000644001170100242450000000002710533015473017646 0ustar davisfac2 2 1.3 2.4 3.4 7.7 42 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcrud2.mtx0000644001170100242450000000010710532711515017645 0ustar davisfac%%MatrixMarket matrix array real general 2 2 garbled entry 3.4 7.7 9.9 SuiteSparse/CHOLMOD/Tcov/Matrix/fullrza.mtx0000644001170100242450000000007010532672407017427 0ustar davisfac%%MatrixMarket matrix array real skew-symmetric 2 2 3.4 SuiteSparse/CHOLMOD/Tcov/Matrix/z3singular0000644001170100242450000000022410276425227017244 0ustar davisfac3 3 4 1 2 0 0 9.4423471389861624e-01 0.1 0 1 8.3855545301913648e-01 0.2 1 1 4.2898125196177306e-02 0.03 1 2 5.7441796740690909e-01 0.04 SuiteSparse/CHOLMOD/Tcov/Matrix/galenet0000644001170100242450000000124610301721433016552 0ustar davisfac8 14 22 0 0 0 1.0000000000000000e+00 1 1 1.0000000000000000e+00 2 2 1.0000000000000000e+00 5 3 -1.0000000000000000e+00 6 4 -1.0000000000000000e+00 7 5 -1.0000000000000000e+00 0 6 1.0000000000000000e+00 3 6 1.0000000000000000e+00 1 7 1.0000000000000000e+00 3 7 1.0000000000000000e+00 1 8 1.0000000000000000e+00 4 8 1.0000000000000000e+00 2 9 1.0000000000000000e+00 4 9 1.0000000000000000e+00 3 10 -1.0000000000000000e+00 5 10 1.0000000000000000e+00 3 11 -1.0000000000000000e+00 6 11 1.0000000000000000e+00 4 12 -1.0000000000000000e+00 6 12 1.0000000000000000e+00 4 13 -1.0000000000000000e+00 7 13 1.0000000000000000e+00 SuiteSparse/CHOLMOD/Tcov/Matrix/cs.mtx0000644001170100242450000000016510305170300016341 0ustar davisfac%%MatrixMarket matrix coordinate complex symmetric 3 3 5 1 1 1. 0. 3 1 2. -1. 2 2 1. 0. 3 2 3. 0. 3 3 42. 0. SuiteSparse/CHOLMOD/Tcov/Matrix/3singular0000644001170100242450000000020010247366654017052 0ustar davisfac3 3 4 1 0 0 9.4423471389861624e-01 0 1 8.3855545301913648e-01 1 1 4.2898125196177306e-02 1 2 5.7441796740690909e-01 SuiteSparse/CHOLMOD/Tcov/Matrix/itest20000644001170100242450000000144210226306574016356 0ustar davisfac9 13 26 0 0 0 -1.0000000000000000e+00 1 1 -1.0000000000000000e+00 2 2 1.0000000000000000e+00 3 3 1.0000000000000000e+00 4 4 1.0000000000000000e+00 5 5 -1.0000000000000000e+00 6 6 1.0000000000000000e+00 7 7 1.0000000000000000e+00 8 8 -1.0000000000000000e+00 0 9 -5.0000000000000000e-01 1 9 2.0000000000000000e+00 2 9 3.0000000000000000e+00 6 9 1.0000000000000000e+00 7 9 1.0000000000000000e+00 0 10 1.0000000000000000e+00 1 10 -1.0000000000000000e+00 2 10 1.0000000000000000e+00 7 10 2.0000000000000000e+00 8 10 1.0000000000000000e+00 4 11 3.0000000000000000e+00 5 11 1.0000000000000000e+00 7 11 1.0000000000000000e+00 8 11 1.0000000000000000e+00 3 12 1.0000000000000000e+00 4 12 -1.0000000000000000e+00 6 12 1.0000000000000000e+00 SuiteSparse/CHOLMOD/Tcov/Matrix/itest60000644001170100242450000000160610223332407016353 0ustar davisfac11 17 29 0 0 0 1.0000000000000000e+00 1 1 1.0000000000000000e+00 2 2 1.0000000000000000e+00 3 3 -1.0000000000000000e+00 4 4 -1.0000000000000000e+00 5 5 1.0000000000000000e+00 6 6 -1.0000000000000000e+00 7 7 1.0000000000000000e+00 10 8 -1.0000000000000000e+00 1 9 1.0000000000000000e+00 3 10 -1.0000000000000000e+00 4 10 -1.0000000000000000e+00 8 10 1.0000000000000000e+00 9 10 1.0000000000000000e+00 10 10 1.0000000000000000e+00 0 11 8.0000000000000004e-01 3 11 1.0000000000000000e+00 5 11 1.0000000000000000e+00 8 11 -5.0000000000000003e-02 9 11 -4.0000000000000001e-02 0 12 1.0000000000000000e+00 4 12 1.0000000000000000e+00 9 12 -5.0000000000000003e-02 6 13 -3.0000000000000000e+00 7 13 5.0000000000000000e-01 2 14 2.0000000000000000e+00 7 14 5.9999999999999998e-01 6 15 1.0000000000000000e+00 2 16 -1.0000000000000000e+00 SuiteSparse/CHOLMOD/Tcov/Matrix/c3singular0000644001170100242450000000022410276425215017212 0ustar davisfac3 3 4 1 1 0 0 9.4423471389861624e-01 0.1 0 1 8.3855545301913648e-01 0.2 1 1 4.2898125196177306e-02 0.03 1 2 5.7441796740690909e-01 0.04 SuiteSparse/CHOLMOD/Tcov/Matrix/tribig0000644001170100242450000000002410226475650016421 0ustar davisfac1000000 1000000 0 3 SuiteSparse/CHOLMOD/Tcov/Matrix/3by0.mtx0000644001170100242450000000005510532672276016534 0ustar davisfac%%MatrixMarket matrix array real general 3 0 SuiteSparse/CHOLMOD/Tcov/Matrix/2diag.tri0000644001170100242450000000002210276443527016725 0ustar davisfac2 2 2 0 0 1 1 1 3 SuiteSparse/CHOLMOD/Tcov/Matrix/fullcrud.mtx0000644001170100242450000000011310532711245017560 0ustar davisfac%%MatrixMarket matrix array real general 2 2 1.3 3.4 7.7 % too few entries SuiteSparse/CHOLMOD/Tcov/Matrix/2lo.tri0000644001170100242450000000003010276443470016427 0ustar davisfac2 2 3 0 0 1 1 0 2 1 1 3 SuiteSparse/CHOLMOD/Tcov/Matrix/mega.tri0000644001170100242450000000004310424536301016637 0ustar davisfac4000000000 4000000000 1 0 2 2 2 SuiteSparse/CHOLMOD/Tcov/Matrix/cha.mtx0000644001170100242450000000037710533067016016510 0ustar davisfac%%MatrixMarket matrix coordinate complex Hermitian 3 3 6 1 1 .3017459522995293 0 2 1 1.5579100867466829 .4760037225690294 3 1 .874925450215774 .12614853881500188 2 2 1.7073102613255353 -1 3 2 1.4933320877092915 -.3859196475147934 3 3 1.6432583214706855 0 SuiteSparse/CHOLMOD/Tcov/Matrix/plskz362.mtx0000644001170100242450000006115510305167222017351 0ustar davisfac%%MatrixMarket matrix coordinate real skew-symmetric 362 362 880 131 1 1.7894386746670e-01 247 1 1.8205396002412e-01 131 2 -1.7894386746670e-01 132 2 2.2320075046728e-01 246 2 -2.0996332659141e-01 248 2 2.0653877287252e-01 133 3 2.0234999005106e-01 250 3 2.0270353889326e-01 133 4 -2.0234999005106e-01 134 4 2.0923910092574e-01 247 4 -1.8205396002412e-01 251 4 2.1813885071807e-01 134 5 -2.0923910092574e-01 135 5 2.0470011219100e-01 248 5 -2.0653877287252e-01 252 5 2.1662365901288e-01 135 6 -2.0470011219100e-01 136 6 2.1479132055547e-01 249 6 -2.2150044298031e-01 253 6 2.2479903478463e-01 137 7 1.8400450834498e-01 255 7 1.9485289290002e-01 137 8 -1.8400450834498e-01 138 8 2.1763369147243e-01 256 8 2.2292283278508e-01 138 9 -2.1763369147243e-01 139 9 2.2086479595542e-01 250 9 -2.0492846318567e-01 257 9 2.1757988168264e-01 139 10 -2.2086479595542e-01 140 10 2.2770400624121e-01 251 10 -2.2053319681944e-01 258 10 2.3493007714438e-01 140 11 -2.2770400624121e-01 141 11 2.3829522909032e-01 252 11 -2.1900137399448e-01 259 11 2.4662593281078e-01 141 12 -2.3829522909032e-01 142 12 2.3326694510829e-01 253 12 -2.2726648471735e-01 260 12 2.3698949197964e-01 142 13 -2.3326694510829e-01 143 13 1.8720619834467e-01 254 13 -2.2342127810557e-01 261 13 2.1567450925956e-01 144 14 2.3702256082853e-01 255 14 -1.9910717959662e-01 262 14 2.4866512134844e-01 144 15 -2.3702256082853e-01 145 15 2.2773629988335e-01 256 15 -2.2778997962478e-01 263 15 2.3884672754661e-01 145 16 -2.2773629988335e-01 146 16 2.3690647129761e-01 257 16 -2.2233037413011e-01 264 16 2.1540353103193e-01 146 17 -2.3690647129761e-01 147 17 2.5884346650191e-01 258 17 -2.4005938206231e-01 265 17 2.5325677444290e-01 147 18 -2.5884346650191e-01 148 18 2.5072165633847e-01 259 18 -2.5201059715616e-01 266 18 2.6037405298922e-01 148 19 -2.5072165633847e-01 149 19 2.2449202727592e-01 260 19 -2.4216376077267e-01 267 19 2.3853939729595e-01 149 20 -2.2449202727592e-01 261 20 -2.2038340109012e-01 268 20 2.1065429994046e-01 150 21 2.4284448641010e-01 269 21 2.4528693972316e-01 150 22 -2.4284448641010e-01 151 22 2.6451975735519e-01 270 22 2.6715429823318e-01 151 23 -2.6451975735519e-01 152 23 2.5850333639767e-01 262 23 -2.5670771353918e-01 271 23 2.7301591722063e-01 152 24 -2.5850333639767e-01 153 24 2.3446376549787e-01 263 24 -2.4657176278811e-01 272 24 2.5526977764261e-01 153 25 -2.3446376549787e-01 154 25 2.4081047563398e-01 264 25 -2.2237034144402e-01 273 25 2.2101853352824e-01 154 26 -2.4081047563398e-01 155 26 2.6306260928478e-01 265 26 -2.6144787476827e-01 274 26 2.5677115298498e-01 155 27 -2.6306260928478e-01 156 27 2.5670771353918e-01 266 27 -2.6879534791745e-01 275 27 2.6903761506705e-01 156 28 -2.5670771353918e-01 157 28 2.3286055181749e-01 267 28 -2.4625449253516e-01 276 28 2.5406741794425e-01 157 29 -2.3286055181749e-01 268 29 -2.1746750566251e-01 277 29 2.2525215074905e-01 158 30 2.5501264226593e-01 278 30 2.2806851855898e-01 158 31 -2.5501264226593e-01 159 31 2.8077266529936e-01 269 31 -2.5566405201691e-01 279 31 2.7403681408641e-01 159 32 -2.8077266529936e-01 160 32 2.8722747954845e-01 270 32 -2.7845653126546e-01 280 32 2.7399806910226e-01 160 33 -2.8722747954845e-01 161 33 2.8137701971765e-01 271 33 -2.8456613197800e-01 281 33 2.8569558873488e-01 161 34 -2.8137701971765e-01 162 34 2.5325804310034e-01 272 34 -2.6606922400037e-01 282 34 2.7463021935917e-01 162 35 -2.5325804310034e-01 163 35 2.4839036226323e-01 273 35 -2.3036894633053e-01 283 35 2.3677793275082e-01 163 36 -2.4839036226323e-01 164 36 2.7401098470570e-01 274 36 -2.6763411654647e-01 284 36 2.4364333717513e-01 164 37 -2.7401098470570e-01 165 37 2.7779487160137e-01 275 37 -2.8041952372450e-01 285 37 2.6424073133390e-01 165 38 -2.7779487160137e-01 166 38 2.5756718196542e-01 276 38 -2.6481599725780e-01 286 38 2.6438801152799e-01 166 39 -2.5756718196542e-01 167 39 1.9344427135511e-01 277 39 -2.3478167101365e-01 287 39 2.5194109795446e-01 167 40 -1.9344427135511e-01 288 40 1.7822870108302e-01 168 41 2.6200642447937e-01 278 41 -2.3982889621872e-01 289 41 1.9870919788377e-01 168 42 -2.6200642447937e-01 169 42 2.8086401998800e-01 279 42 -2.8816755184317e-01 290 42 2.7648271076323e-01 169 43 -2.8086401998800e-01 170 43 2.8643770003522e-01 280 43 -2.8812680896974e-01 291 43 2.7720362091861e-01 170 44 -2.8643770003522e-01 171 44 2.9344262924826e-01 281 44 -3.0042751245882e-01 292 44 2.9062860231936e-01 171 45 -2.9344262924826e-01 172 45 2.7289261393843e-01 282 45 -2.8879155612256e-01 293 45 2.8865601776802e-01 172 46 -2.7289261393843e-01 173 46 2.4374565386139e-01 283 46 -2.4898741228897e-01 294 46 2.6642016070429e-01 173 47 -2.4374565386139e-01 174 47 2.4459508403589e-01 284 47 -2.5620683202994e-01 295 47 2.3977993988924e-01 174 48 -2.4459508403589e-01 175 48 2.6300522929833e-01 285 48 -2.7786633303118e-01 296 48 2.3128988726234e-01 175 49 -2.6300522929833e-01 176 49 2.7226091722564e-01 286 49 -2.7802120774429e-01 297 49 2.4717335838910e-01 176 50 -2.7226091722564e-01 177 50 2.5285516717993e-01 287 50 -2.6493246773524e-01 298 50 2.7379455143293e-01 177 51 -2.5285516717993e-01 288 51 -1.8741908320057e-01 299 51 2.4292547350353e-01 178 52 2.3049043348752e-01 289 52 -2.1063428950144e-01 178 53 -2.3049043348752e-01 179 53 2.8913281984800e-01 290 53 -2.9307520719353e-01 300 53 2.2363516846498e-01 179 54 -2.8913281984800e-01 180 54 2.9842753509627e-01 291 54 -2.9383938117234e-01 301 54 2.7396825878091e-01 180 55 -2.9842753509627e-01 181 55 3.0294620888785e-01 292 55 -3.0807003304469e-01 302 55 2.9816220060904e-01 181 56 -3.0294620888785e-01 182 56 2.9950120407591e-01 293 56 -3.0597906820824e-01 303 56 2.9108802959430e-01 182 57 -2.9950120407591e-01 183 57 2.7856800666622e-01 294 57 -2.8240877551945e-01 304 57 2.9031661357366e-01 183 58 -2.7856800666622e-01 184 58 2.3976607247747e-01 295 58 -2.5416980096116e-01 305 58 2.7363100765308e-01 184 59 -2.3976607247747e-01 185 59 2.2590444277820e-01 296 59 -2.4517023666347e-01 306 59 2.2886312904348e-01 185 60 -2.2590444277820e-01 186 60 2.6379652464769e-01 297 60 -2.6200691906786e-01 307 60 2.2422425149919e-01 186 61 -2.6379652464769e-01 187 61 2.8053415290542e-01 298 61 -2.9022572394548e-01 308 61 2.8248661482402e-01 187 62 -2.8053415290542e-01 188 62 2.3521137971195e-01 299 62 -2.5750410679604e-01 309 62 2.8264222912262e-01 188 63 -2.3521137971195e-01 310 63 1.7063891350592e-01 189 64 2.1741547382158e-01 300 64 -2.3875098182565e-01 189 65 -2.1741547382158e-01 190 65 2.9217757197206e-01 301 65 -2.9248615601015e-01 190 66 -2.9217757197206e-01 191 66 3.0544409912131e-01 302 66 -3.1831540015520e-01 311 66 2.4457832102235e-01 191 67 -3.0544409912131e-01 192 67 3.0066491010079e-01 303 67 -3.1076307604193e-01 312 67 2.2209062926350e-01 192 68 -3.0066491010079e-01 193 68 3.0488572995876e-01 304 68 -3.0993951893511e-01 313 68 2.7996705480263e-01 193 69 -3.0488572995876e-01 194 69 2.8198257964140e-01 305 69 -2.9212610960759e-01 314 69 2.9832220480277e-01 194 70 -2.8198257964140e-01 195 70 2.4256190944343e-01 306 70 -2.4433230756091e-01 315 70 2.6189476781938e-01 195 71 -2.4256190944343e-01 196 71 2.6256367224552e-01 307 71 -2.3937988180484e-01 316 71 2.3333690483106e-01 196 72 -2.6256367224552e-01 197 72 3.0381540328037e-01 308 72 -3.0158027963477e-01 317 72 2.8976625627556e-01 197 73 -3.0381540328037e-01 198 73 2.4734937343014e-01 309 73 -3.0174641212114e-01 318 73 3.0998802403762e-01 198 74 -2.4734937343014e-01 310 74 -1.8217263598046e-01 319 74 2.2460375739663e-01 199 75 1.3523538160650e-01 311 75 -2.6274762743727e-01 199 76 -1.3523538160650e-01 200 76 2.0749736227062e-01 312 76 -2.3858936340357e-01 320 76 1.1648591138401e-01 200 77 -2.0749736227062e-01 201 77 2.9307085064937e-01 313 77 -3.0076532990537e-01 321 77 2.6340719075624e-01 201 78 -2.9307085064937e-01 202 78 3.0016859180739e-01 314 78 -3.2048405269991e-01 322 78 3.1268290639157e-01 202 79 -3.0016859180739e-01 203 79 2.7219739396643e-01 315 79 -2.8135048353893e-01 323 79 2.9301163843528e-01 203 80 -2.7219739396643e-01 204 80 2.8315376802648e-01 316 80 -2.5067110560594e-01 324 80 2.6232904628678e-01 204 81 -2.8315376802648e-01 205 81 3.1823831851795e-01 317 81 -3.1129249734618e-01 325 81 3.0772321845276e-01 205 82 -3.1823831851795e-01 206 82 3.1386451818410e-01 318 82 -3.3301650575321e-01 326 82 3.1101366962713e-01 206 83 -3.1386451818410e-01 207 83 2.3647090797091e-01 319 83 -2.4128918754032e-01 327 83 2.3205142437563e-01 207 84 -2.3647090797091e-01 208 85 2.1574760545568e-01 320 85 -1.2581962693410e-01 328 85 1.8900633364513e-01 208 86 -2.1574760545568e-01 209 86 3.0790911918009e-01 321 86 -2.8451332937126e-01 329 86 2.9643073766043e-01 209 87 -3.0790911918009e-01 210 87 3.3032344497883e-01 322 87 -3.3773738097103e-01 330 87 3.1872075468380e-01 210 88 -3.3032344497883e-01 211 88 3.0661339373328e-01 323 88 -3.1648990506450e-01 331 88 3.0195637814043e-01 211 89 -3.0661339373328e-01 212 89 3.1180727165326e-01 324 89 -2.8334879596703e-01 332 89 2.9253528930303e-01 212 90 -3.1180727165326e-01 213 90 3.2430356678224e-01 325 90 -3.3238028603348e-01 333 90 3.1301683612926e-01 213 91 -3.2430356678224e-01 214 91 2.4646422753283e-01 326 91 -3.3593439257121e-01 334 91 2.8062077342597e-01 214 92 -2.4646422753283e-01 327 92 -2.5064510632723e-01 215 93 3.0121251054058e-01 328 93 -2.0510202819789e-01 335 93 2.9194220430986e-01 215 94 -3.0121251054058e-01 216 94 3.3384502123356e-01 329 94 -3.2167464625024e-01 336 94 3.3267668525417e-01 216 95 -3.3384502123356e-01 217 95 3.1384756991614e-01 330 95 -3.4586287112023e-01 337 95 3.1714694492401e-01 217 96 -3.1384756991614e-01 218 96 3.1214662415157e-01 331 96 -3.2767084779377e-01 338 96 2.8689034969695e-01 218 97 -3.1214662415157e-01 219 97 3.1884613706131e-01 332 97 -3.1744746325890e-01 339 97 3.0729769882796e-01 219 98 -3.1884613706131e-01 220 98 2.9027714707103e-01 333 98 -3.3967320942133e-01 340 98 2.8013574456061e-01 220 99 -2.9027714707103e-01 334 99 -3.0451831255663e-01 341 99 2.3452750533748e-01 221 100 3.1104107390269e-01 342 100 2.8975450057068e-01 221 101 -3.1104107390269e-01 222 101 3.5331719555291e-01 335 101 -3.1805724416657e-01 343 101 3.4125946511723e-01 222 102 -3.5331719555291e-01 223 102 3.4417650094110e-01 336 102 -3.6243553740557e-01 344 102 2.8618462812071e-01 223 103 -3.4417650094110e-01 224 103 3.1648173712373e-01 337 103 -3.4551661873224e-01 345 103 3.2608093721956e-01 224 104 -3.1648173712373e-01 225 104 3.0679739376667e-01 338 104 -3.1255348714757e-01 346 104 2.9632018478180e-01 225 105 -3.0679739376667e-01 226 105 2.9079421505946e-01 339 105 -3.3478633025670e-01 347 105 2.9414790747695e-01 226 106 -2.9079421505946e-01 227 106 2.4169740958637e-01 340 106 -3.0519466384836e-01 348 106 2.7323686142172e-01 227 107 -2.4169740958637e-01 228 107 2.0504842010519e-01 341 107 -2.5550664113548e-01 349 107 2.4216521146197e-01 228 108 -2.0504842010519e-01 350 108 1.8886311898917e-01 229 109 2.5697379235389e-01 351 109 1.1364029032608e-01 229 110 -2.5697379235389e-01 230 110 3.5194790601286e-01 342 110 -3.1672607637050e-01 352 110 3.2191373504816e-01 230 111 -3.5194790601286e-01 231 111 2.9639845873140e-01 343 111 -3.7302534110082e-01 353 111 2.6538723791096e-01 231 112 -2.9639845873140e-01 232 112 2.8873350923462e-01 344 112 -3.1282390507723e-01 232 113 -2.8873350923462e-01 233 113 3.3508646443864e-01 345 113 -3.5643393155707e-01 354 113 2.9517933393996e-01 233 114 -3.3508646443864e-01 234 114 3.0956485664500e-01 346 114 -3.2390292226859e-01 355 114 3.2719136111752e-01 234 115 -3.0956485664500e-01 235 115 3.0256938542762e-01 347 115 -3.2152844019429e-01 356 115 2.6724903345295e-01 235 116 -3.0256938542762e-01 236 116 2.9912332311749e-01 348 116 -2.9867090543010e-01 357 116 2.7026794478080e-01 236 117 -2.9912332311749e-01 237 117 2.4990404541487e-01 349 117 -2.6470697472763e-01 358 117 2.6398227434690e-01 237 118 -2.4990404541487e-01 350 118 -2.0644329779424e-01 238 119 2.4634257093659e-01 351 119 -1.2456494835979e-01 359 119 1.1063378194732e-01 238 120 -2.4634257093659e-01 239 120 2.4557188837902e-01 352 120 -3.5286048343876e-01 360 120 2.5609766026744e-01 239 121 -2.4557188837902e-01 353 121 -2.9089988674677e-01 240 122 3.1369746041338e-01 354 122 -3.2355600626858e-01 240 123 -3.1369746041338e-01 241 123 3.1511856950614e-01 355 123 -3.5864546706477e-01 361 123 2.9675210602434e-01 241 124 -3.1511856950614e-01 242 124 2.5215500196100e-01 356 124 -2.9294066352479e-01 362 124 2.2730433925327e-01 242 125 -2.5215500196100e-01 243 125 2.5295915517268e-01 357 125 -2.9624979387439e-01 243 126 -2.5295915517268e-01 358 126 -2.8935985888075e-01 244 127 1.4384379164060e-01 359 127 -1.2155098560242e-01 244 128 -1.4384379164060e-01 360 128 -2.8136905805863e-01 245 129 2.2091193063941e-01 361 129 -3.2603523383146e-01 245 130 -2.2091193063941e-01 362 130 -2.4973444802870e-01 246 131 1.9728317431352e-03 247 131 6.9856107791924e-04 248 131 7.9251199913931e-04 246 132 2.1017546499047e-03 248 132 6.3537045392035e-04 249 132 6.8139669391192e-04 247 133 -6.1775748500427e-04 250 133 -2.0549452401837e-03 251 133 -2.0105852808203e-03 247 134 -5.9741807526187e-04 248 134 -6.7776606529239e-04 251 134 -2.0294652224793e-03 252 134 -2.0336813664884e-03 248 135 -6.9279474555165e-04 249 135 -7.4298080161848e-04 252 135 -2.0207481271866e-03 253 135 -2.0011067655784e-03 249 136 -7.0807448389322e-04 253 136 -2.0271576625603e-03 254 136 -2.0375197646483e-03 255 137 -4.7242030561448e-03 256 137 -4.7139828695702e-03 250 138 -3.3800031123132e-03 256 138 -4.7399008865957e-03 257 138 -4.7546533832281e-03 250 139 -3.3734260283026e-03 251 139 -3.4134682624579e-03 257 139 -4.7649810580514e-03 258 139 -4.7224994539142e-03 251 140 -3.3946100151375e-03 252 140 -3.3907435646859e-03 258 140 -4.7360447039778e-03 259 140 -4.7165409029822e-03 252 141 -3.3695582027725e-03 253 141 -3.3862933516686e-03 259 141 -4.7344563590043e-03 260 141 -4.7582120754946e-03 253 142 -3.3980340354524e-03 254 142 -3.3885167108877e-03 260 142 -4.7445630944389e-03 261 142 -4.8212755553691e-03 254 143 -3.5880918325072e-03 261 143 -4.7078193003237e-03 255 144 -6.0478818296921e-03 256 144 -6.0483232225887e-03 262 144 -7.3309631902234e-03 263 144 -7.3482425540405e-03 256 145 -6.0695313823997e-03 257 145 -6.0555041465254e-03 263 145 -7.3310530027921e-03 264 145 -7.3995490809672e-03 257 146 -6.0402937541300e-03 258 146 -6.0785067754902e-03 264 146 -7.4465295505038e-03 265 146 -7.3269744094594e-03 258 147 -6.0375685298858e-03 259 147 -6.0541496228191e-03 265 147 -7.3684475022482e-03 266 147 -7.3492755672236e-03 259 148 -6.0727925562264e-03 260 148 -6.0504480029790e-03 266 148 -7.3342039251743e-03 267 148 -7.3935535465318e-03 260 149 -6.1361369572858e-03 261 149 -6.0583999007374e-03 267 149 -7.3279754928342e-03 268 149 -7.4080768302097e-03 269 150 -9.7984631450170e-03 270 150 -9.7920509630917e-03 262 151 -8.5848353233091e-03 270 151 -9.7985110246030e-03 271 151 -9.7900948261514e-03 262 152 -8.5952935673211e-03 263 152 -8.5799695578306e-03 271 152 -9.7862087063027e-03 272 152 -9.8121076338584e-03 263 153 -8.6411582301488e-03 264 153 -8.5789260416926e-03 272 153 -9.7890182681274e-03 273 153 -9.8559227427435e-03 264 154 -8.5777503709045e-03 265 154 -8.6789329351710e-03 273 154 -9.8907330047400e-03 274 154 -9.7861172346674e-03 265 155 -8.5957465047369e-03 266 155 -8.6145813607985e-03 274 155 -9.8210739919117e-03 275 155 -9.7930823668607e-03 266 156 -8.6366945612071e-03 267 156 -8.5812872450912e-03 275 156 -9.7869336027116e-03 276 156 -9.8105250364786e-03 267 157 -8.6471297129987e-03 268 157 -8.5775003421375e-03 276 157 -9.7895568156891e-03 277 157 -9.8289418507043e-03 269 158 -1.0963790611681e-02 278 158 -1.2207211150118e-02 279 158 -1.2063499237174e-02 269 159 -1.0957231731269e-02 270 159 -1.0957985505898e-02 279 159 -1.2087967291670e-02 280 159 -1.2088085484709e-02 270 160 -1.0949986475332e-02 271 160 -1.0957502702740e-02 280 160 -1.2110228475686e-02 281 160 -1.2074321656703e-02 271 161 -1.0969396816120e-02 272 161 -1.0947718045680e-02 281 161 -1.2064400645042e-02 282 161 -1.2087956499735e-02 272 162 -1.1003660117185e-02 273 162 -1.0957717461839e-02 282 162 -1.2066952327660e-02 283 162 -1.2135066892666e-02 273 163 -1.0950654823363e-02 274 163 -1.1035205481025e-02 283 163 -1.2111038108518e-02 284 163 -1.2083953417382e-02 274 164 -1.0951989636394e-02 275 164 -1.0978351815563e-02 284 164 -1.2218404280388e-02 285 164 -1.2098882720795e-02 275 165 -1.0968126625110e-02 276 165 -1.0947708732704e-02 285 165 -1.2113467885502e-02 286 165 -1.2112830920185e-02 276 166 -1.0982275174975e-02 277 166 -1.0956753178020e-02 286 166 -1.2061214550631e-02 287 166 -1.2086161381243e-02 277 167 -1.1279069267114e-02 287 167 -1.2350223848775e-02 288 167 -1.2156210430612e-02 278 168 -1.3133909526278e-02 279 168 -1.3236758919715e-02 289 168 -1.4811597986188e-02 290 168 -1.4125406979020e-02 279 169 -1.3145705700350e-02 280 169 -1.3145585306663e-02 290 169 -1.4140636031234e-02 291 169 -1.4138834734089e-02 280 170 -1.3131408954368e-02 281 170 -1.3167657238554e-02 291 170 -1.4154796515141e-02 292 170 -1.4125621940340e-02 281 171 -1.3143905827332e-02 282 171 -1.3121597442955e-02 292 171 -1.4136575727972e-02 293 171 -1.4141153932662e-02 282 172 -1.3178394897771e-02 283 172 -1.3136064651122e-02 293 172 -1.4126093123575e-02 294 172 -1.4147001969150e-02 283 173 -1.3142086866186e-02 284 173 -1.3170171486360e-02 294 173 -1.4143702713512e-02 295 173 -1.4141123166526e-02 284 174 -1.3166178674358e-02 285 174 -1.3300946214953e-02 295 174 -1.4143712736313e-02 296 174 -1.4180631608356e-02 285 175 -1.3176321122221e-02 286 175 -1.3177012954164e-02 296 175 -1.4310920198823e-02 297 175 -1.4188770845907e-02 286 176 -1.3141817034401e-02 287 176 -1.3118981837026e-02 297 176 -1.4244538614832e-02 298 176 -1.4128700559453e-02 287 177 -1.3166490940790e-02 288 177 -1.3564652162220e-02 298 177 -1.4137108348028e-02 299 177 -1.4162111322740e-02 289 178 -1.5099099250674e-02 290 178 -1.5628202493353e-02 300 178 -1.5992634720472e-02 290 179 -1.5087006662633e-02 291 179 -1.5088788317954e-02 300 179 -1.6614491592512e-02 301 179 -1.6018792358445e-02 291 180 -1.5074068313771e-02 292 180 -1.5101654298306e-02 301 180 -1.6067766913482e-02 302 180 -1.5972680464071e-02 292 181 -1.5089230980965e-02 293 181 -1.5084723257567e-02 302 181 -1.5981199469683e-02 303 181 -1.6002302954640e-02 293 182 -1.5092692290745e-02 294 182 -1.5078370001794e-02 303 182 -1.5991101504950e-02 304 182 -1.5993514116271e-02 294 183 -1.5087106695518e-02 295 183 -1.5100531356694e-02 304 183 -1.5968042913548e-02 305 183 -1.5982579483982e-02 295 184 -1.5131925118591e-02 296 184 -1.5093395848797e-02 305 184 -1.6054565687096e-02 306 184 -1.6009731373750e-02 296 185 -1.5167629639734e-02 297 185 -1.5313911467844e-02 306 185 -1.5968012014033e-02 307 185 -1.5975964166117e-02 297 186 -1.5076606200159e-02 298 186 -1.5192192924357e-02 307 186 -1.6254344832012e-02 308 186 -1.5980088003370e-02 298 187 -1.5103723583835e-02 299 187 -1.5095271858238e-02 308 187 -1.5969672914008e-02 309 187 -1.5969498083167e-02 299 188 -1.5182989318407e-02 309 188 -1.6162618332853e-02 310 188 -1.6943180571846e-02 300 189 -1.6921845499249e-02 301 189 -1.7676994043793e-02 301 190 -1.6810585302450e-02 302 190 -1.6906652872301e-02 311 190 -1.7940280714919e-02 302 191 -1.6841201127855e-02 303 191 -1.6819649663111e-02 311 191 -1.8114749744180e-02 312 191 -1.8617336564398e-02 303 192 -1.6832710349928e-02 304 192 -1.6830219819518e-02 312 192 -1.8523449826292e-02 313 192 -1.7665513865540e-02 304 193 -1.6819082332512e-02 305 193 -1.6808182726985e-02 313 193 -1.7690027578274e-02 314 193 -1.7606136273500e-02 305 194 -1.6834970750185e-02 306 194 -1.6924804273294e-02 314 194 -1.7600330845891e-02 315 194 -1.7669788342614e-02 306 195 -1.6813539668740e-02 307 195 -1.6806262490319e-02 315 195 -1.7616449470477e-02 316 195 -1.7621635573690e-02 307 196 -1.6844510892189e-02 308 196 -1.7028055885310e-02 316 196 -1.7761139305214e-02 317 196 -1.7641935225225e-02 308 197 -1.6807614160346e-02 309 197 -1.6807771526530e-02 317 197 -1.7631377929719e-02 318 197 -1.7589683399698e-02 309 198 -1.7224460499764e-02 310 198 -1.7476645915395e-02 318 198 -1.7957751444323e-02 319 198 -1.7712210101373e-02 311 199 -2.2768258591630e-02 312 199 -2.1568400795210e-02 320 199 -1.9264390988390e-02 312 200 -1.8552519339984e-02 313 200 -1.9735126615081e-02 320 200 -2.2458954590065e-02 321 200 -1.9468063694578e-02 313 201 -1.8339558880280e-02 314 201 -1.8429116283725e-02 321 201 -1.9146637880653e-02 322 201 -1.9022070743806e-02 314 202 -1.8386665093694e-02 315 202 -1.8339876932493e-02 322 202 -1.9005877725085e-02 323 202 -1.9016803559754e-02 315 203 -1.8345949954127e-02 316 203 -1.8357450808276e-02 323 203 -1.9030881991553e-02 324 203 -1.9028413763319e-02 316 204 -1.8417455518062e-02 317 204 -1.8439996767919e-02 324 204 -1.9083851702276e-02 325 204 -1.9041973717467e-02 317 205 -1.8320965936641e-02 318 205 -1.8359149298318e-02 325 205 -1.9025094346906e-02 326 205 -1.9015898676243e-02 318 206 -1.8377301800695e-02 319 206 -1.8867819960584e-02 326 206 -1.9007154199139e-02 327 206 -1.9976829385277e-02 319 207 -1.8335108972714e-02 327 207 -1.9012930175404e-02 320 208 -2.2386213143942e-02 321 208 -2.0473993150001e-02 328 208 -2.0429504015305e-02 329 208 -2.1153673098602e-02 321 209 -1.9670349453766e-02 322 209 -1.9744969383580e-02 329 209 -2.0240367118332e-02 330 209 -2.0217544871201e-02 322 210 -1.9644512586596e-02 323 210 -1.9637974303534e-02 330 210 -2.0238076466689e-02 331 210 -2.0321831611897e-02 323 211 -1.9652422244129e-02 324 211 -1.9670205205463e-02 331 211 -2.0221800678159e-02 332 211 -2.0250632088177e-02 324 212 -1.9693931667653e-02 325 212 -1.9692398593922e-02 332 212 -2.0274157092454e-02 333 212 -2.0214223752962e-02 325 213 -1.9646344391630e-02 326 213 -1.9655813365535e-02 333 213 -2.0237742758141e-02 334 213 -2.0467669471536e-02 326 214 -2.0677279736099e-02 327 214 -1.9640826528704e-02 334 214 -2.0349271354998e-02 328 215 -2.2202272439947e-02 329 215 -2.0814066750059e-02 335 215 -2.1264565894731e-02 336 215 -2.1328156283991e-02 329 216 -2.0757028902068e-02 330 216 -2.0774376834719e-02 336 216 -2.1247738392389e-02 337 216 -2.1286914410688e-02 330 217 -2.0875324926931e-02 331 217 -2.0782672090035e-02 337 217 -2.1245461733705e-02 338 217 -2.1353819802451e-02 331 218 -2.0789242592128e-02 332 218 -2.0759566215865e-02 338 218 -2.1342459087916e-02 339 218 -2.1253090275256e-02 332 219 -2.0751353961338e-02 333 219 -2.0810153884880e-02 339 219 -2.1269978759942e-02 340 219 -2.1455750224748e-02 333 220 -2.1049704869965e-02 334 220 -2.0788435042524e-02 340 220 -2.1268639739171e-02 341 220 -2.1782680713500e-02 335 221 -2.1711364740604e-02 342 221 -2.2187537649084e-02 343 221 -2.2194438852950e-02 335 222 -2.1798257126547e-02 336 222 -2.1713701022417e-02 343 222 -2.2138055939386e-02 344 222 -2.2653008672599e-02 336 223 -2.1741359702095e-02 337 223 -2.1702123643759e-02 344 223 -2.2532362445328e-02 345 223 -2.2160833664848e-02 337 224 -2.1803877069219e-02 338 224 -2.1700091531592e-02 345 224 -2.2121721231640e-02 346 224 -2.2178860527325e-02 338 225 -2.1708905979591e-02 339 225 -2.1802879895215e-02 346 225 -2.2138079028525e-02 347 225 -2.2145801080232e-02 339 226 -2.1947547929219e-02 340 226 -2.1736982453316e-02 347 226 -2.2116970578317e-02 348 226 -2.2173122147155e-02 340 227 -2.2345377142270e-02 341 227 -2.1746708086130e-02 348 227 -2.2259876865378e-02 349 227 -2.2117457270514e-02 341 228 -2.2276639032371e-02 349 228 -2.2391319831000e-02 350 228 -2.2209010470150e-02 342 229 -2.3031192948706e-02 351 229 -3.1036565396689e-02 352 229 -2.3392665536114e-02 342 230 -2.2605263599959e-02 343 230 -2.2547996032506e-02 352 230 -2.2953936867909e-02 353 230 -2.3812177616085e-02 343 231 -2.3139034222770e-02 344 231 -2.2541890331203e-02 353 231 -2.3006217004607e-02 344 232 -2.2586225024929e-02 345 232 -2.3039010003142e-02 354 232 -2.2850000465831e-02 345 233 -2.2553508646577e-02 346 233 -2.2506095574222e-02 354 233 -2.3053220078321e-02 355 233 -2.2858573485030e-02 346 234 -2.2530641080911e-02 347 234 -2.2522410465275e-02 355 234 -2.2873925060540e-02 356 234 -2.3119933498266e-02 347 235 -2.2551970235518e-02 348 235 -2.2498848538416e-02 356 235 -2.3045080081472e-02 357 235 -2.3012708559401e-02 348 236 -2.2499070332828e-02 349 236 -2.2645272939780e-02 357 236 -2.2982688222153e-02 358 236 -2.3047630634916e-02 349 237 -2.2547080153426e-02 350 237 -2.2876153721564e-02 358 237 -2.2873299385024e-02 351 238 -2.8652695999957e-02 352 238 -2.4734234858025e-02 359 238 -3.1505406094690e-02 360 238 -2.3469166553793e-02 352 239 -2.4761513636274e-02 353 239 -2.3525533566828e-02 360 239 -2.3471702861440e-02 354 240 -2.3182320124702e-02 355 240 -2.3394935135128e-02 361 240 -2.3500720063575e-02 355 241 -2.3380417879601e-02 356 241 -2.3217150216752e-02 361 241 -2.3507477492065e-02 362 241 -2.4765539927519e-02 356 242 -2.3450242310157e-02 357 242 -2.3492609487996e-02 362 242 -2.3597608323347e-02 357 243 -2.3480299424824e-02 358 243 -2.3396694069705e-02 359 244 -2.4037061235891e-02 360 244 -2.9354762384126e-02 361 245 -2.5591333590874e-02 362 245 -2.3915340143662e-02 SuiteSparse/CHOLMOD/Tcov/Matrix/2up.tri0000644001170100242450000000003010276443433016440 0ustar davisfac2 2 3 0 0 1 0 1 2 1 1 3 SuiteSparse/CHOLMOD/Tcov/unpack.c0000644001170100242450000000754010540000074015370 0ustar davisfac/* ========================================================================== */ /* === Tcov/unpack ========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Create an unpacked, unsorted version of a matrix, with random-sized gaps in * each column. */ #include "cm.h" /* ========================================================================== */ /* === unpack =============================================================== */ /* ========================================================================== */ cholmod_sparse *unpack (cholmod_sparse *A) { double x ; double *Ax, *Cx, *Az, *Cz ; Int *Ap, *Ai, *Anz, *Cp, *Ci, *Cnz ; cholmod_sparse *C ; Int i, j, p, q, pdest, pend, nrow, ncol, nzmax, sorted, packed, stype, extra ; if (A == NULL) { return (NULL) ; } extra = 10 ; nrow = A->nrow ; ncol = A->ncol ; nzmax = A->nzmax ; sorted = A->sorted ; packed = A->packed ; stype = A->stype ; C = CHOLMOD(allocate_sparse) (nrow, ncol, nzmax + extra*ncol, FALSE, FALSE, stype, A->xtype, cm) ; if (C == NULL) { return (NULL) ; } Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; Cp = C->p ; Ci = C->i ; Cx = C->x ; Cz = C->z ; Cnz = C->nz ; nzmax = C->nzmax ; nzmax = MAX (1, nzmax) ; for (p = 0 ; p < nzmax ; p++) { Ci [p] = 0 ; } if (A->xtype == CHOLMOD_REAL) { for (p = 0 ; p < nzmax ; p++) { Cx [p] = 0 ; } } else if (A->xtype == CHOLMOD_COMPLEX) { for (p = 0 ; p < 2*nzmax ; p++) { Cx [p] = 0 ; } } else if (A->xtype == CHOLMOD_ZOMPLEX) { for (p = 0 ; p < nzmax ; p++) { Cx [p] = 0 ; Cz [p] = 0 ; } } pdest = 0 ; for (j = 0 ; j < ncol ; j++) { /* copy the column into C */ p = Ap [j] ; Cp [j] = pdest ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Cnz [j] = pend - p ; for ( ; p < pend ; p++) { Ci [pdest] = Ai [p] ; if (A->xtype == CHOLMOD_REAL) { Cx [pdest] = Ax [p] ; } else if (A->xtype == CHOLMOD_COMPLEX) { Cx [2*pdest ] = Ax [2*p] ; Cx [2*pdest+1] = Ax [2*p+1] ; } else if (A->xtype == CHOLMOD_ZOMPLEX) { Cx [pdest] = Ax [p] ; Cz [pdest] = Az [p] ; } pdest++ ; } /* jumble the column */ p = Cp [j] ; pend = p + Cnz [j] ; for ( ; p < pend-1 ; p++) { q = p + nrand (pend-p) ; /* RAND */ i = Ci [p] ; Ci [p] = Ci [q] ; Ci [q] = i ; if (A->xtype == CHOLMOD_REAL) { x = Cx [p] ; Cx [p] = Cx [q] ; Cx [q] = x ; } else if (A->xtype == CHOLMOD_COMPLEX) { x = Cx [2*p] ; Cx [2*p] = Cx [2*q] ; Cx [2*q] = x ; x = Cx [2*p+1] ; Cx [2*p+1] = Cx [2*q+1] ; Cx [2*q+1] = x ; } else if (A->xtype == CHOLMOD_ZOMPLEX) { x = Cx [p] ; Cx [p] = Cx [q] ; Cx [q] = x ; x = Cz [p] ; Cz [p] = Cz [q] ; Cz [q] = x ; } } /* add some random blank space */ pdest += nrand (extra) ; /* RAND */ for (p = pend ; p < pdest ; p++) { Ci [p] = 0 ; if (A->xtype == CHOLMOD_REAL) { Cx [p] = 0 ; } else if (A->xtype == CHOLMOD_COMPLEX) { Cx [2*p] = 0 ; Cx [2*p+1] = 0 ; } else if (A->xtype == CHOLMOD_ZOMPLEX) { Cx [p] = 0 ; Cz [p] = 0 ; } } } Cp [ncol] = pdest ; return (C) ; } SuiteSparse/CHOLMOD/Tcov/cmread.c0000644001170100242450000000647310540000042015341 0ustar davisfac/* ========================================================================== */ /* === Tcov/cmread ========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Read in a matrix from a file and print it out. * * Usage: * cmread matrixfile * cmread < matrixfile */ #include "cholmod.h" #ifdef DLONG #define CHOLMOD(routine) cholmod_l_ ## routine #define Int UF_long #else #define CHOLMOD(routine) cholmod_ ## routine #define Int int #endif int main (int argc, char **argv) { cholmod_sparse *A, *C, *Z ; cholmod_dense *X ; cholmod_triplet *T ; void *V ; FILE *f, *f2 ; cholmod_common Common, *cm ; int mtype, prefer, option ; /* ---------------------------------------------------------------------- */ /* get the file containing the input matrix */ /* ---------------------------------------------------------------------- */ if (argc > 1) { if ((f = fopen (argv [1], "r")) == NULL) { printf ("cannot open file: %s\n", argv [1]) ; return (0) ; } } else { f = stdin ; } /* ---------------------------------------------------------------------- */ /* start CHOLMOD, read the matrix, print it, and free it */ /* ---------------------------------------------------------------------- */ cm = &Common ; CHOLMOD (start) (cm) ; cm->print = 5 ; A = CHOLMOD (read_sparse) (f, cm) ; if (argc > 1) fclose (f) ; CHOLMOD (print_sparse) (A, "A", cm) ; if (argc > 1) { for (prefer = 0 ; prefer <= 2 ; prefer++) { printf ("\n---------------------- Prefer: %d\n", prefer) ; f = fopen (argv [1], "r") ; V = CHOLMOD (read_matrix) (f, prefer, &mtype, cm) ; if (V != NULL) switch (mtype) { case CHOLMOD_TRIPLET: T = V ; CHOLMOD (print_triplet) (T, "T", cm) ; CHOLMOD (free_triplet) (&T, cm) ; break ; case CHOLMOD_SPARSE: C = V ; CHOLMOD (print_sparse) (C, "C", cm) ; Z = CHOLMOD (speye) (C->nrow, C->ncol, CHOLMOD_PATTERN, cm); for (option = 0 ; option <= 2 ; option++) { int asym ; Int xmatch = 0, pmatch = 0, nzoff = 0, nzd = 0 ; asym = CHOLMOD (symmetry) (C, option, &xmatch, &pmatch, &nzoff, &nzd, cm) ; f2 = fopen ("temp5.mtx", "w") ; CHOLMOD (write_sparse) (f2, C, Z, NULL, cm) ; fclose (f2) ; printf ("asym %d\n", asym) ; } CHOLMOD (free_sparse) (&C, cm) ; CHOLMOD (free_sparse) (&Z, cm) ; break ; case CHOLMOD_DENSE: X = V ; CHOLMOD (print_dense) (X, "X", cm) ; f2 = fopen ("temp5.mtx", "w") ; CHOLMOD (write_dense) (f2, X, NULL, cm) ; fclose (f2) ; CHOLMOD (free_dense) (&X, cm) ; break ; } fclose (f) ; } } CHOLMOD (free_sparse) (&A, cm) ; CHOLMOD (finish) (cm) ; return (0) ; } SuiteSparse/CHOLMOD/Tcov/solve.c0000644001170100242450000011035210616474637015263 0ustar davisfac/* ========================================================================== */ /* === Tcov/solve =========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test CHOLMOD for solving various systems of linear equations. */ #include "cm.h" #define NFTYPES 17 Int ll_types [NFTYPES] = { 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0 } ; Int pk_types [NFTYPES] = { 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 } ; Int mn_types [NFTYPES] = { 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 } ; Int co_types [NFTYPES] = { 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1 } ; #define NRHS 9 #ifndef NDEBUG #ifndef EXTERN #define EXTERN extern #endif EXTERN int cholmod_dump, cholmod_l_dump ; #endif /* ========================================================================== */ /* === test_solver ========================================================== */ /* ========================================================================== */ /* Test solve(A) with various control parameters */ double test_solver (cholmod_sparse *A) { double err, maxerr = 0 ; int save ; for (cm->postorder = 0 ; cm->postorder <= 1 ; cm->postorder++) { my_srand (42) ; /* RAND reset */ /* simplicial, no extra memory */ printf ("test_solver: simplicial, no extra memory\n") ; cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->grow2 = 0 ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* simplicial, extra space in columns of L */ printf ("test_solver: simplicial, extra space in columns of L\n") ; cm->grow2 = 5 ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* supernodal */ printf ("test_solver: supernodal\n") ; cm->supernodal = CHOLMOD_SUPERNODAL ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* supernodal, without final resymbol */ printf ("test_solver: supernodal, without final resymbol\n") ; cm->final_resymbol = FALSE ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* supernodal, with resymbol, final_super false */ printf ("test_solver: supernodal, with resymbol\n") ; cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_asis = FALSE ; cm->final_resymbol = TRUE ; cm->final_super = FALSE ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* supernodal, with resymbol, final_super tree */ printf ("test_solver: supernodal, with resymbol\n") ; cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_asis = FALSE ; cm->final_resymbol = TRUE ; cm->final_super = TRUE ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* simplicial LL' */ printf ("test_solver: simplicial LL', try NESDIS instead of METIS\n") ; cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_ll = TRUE ; cm->default_nesdis = TRUE ; err = solve (A) ; cm->default_nesdis = FALSE ; MAXERR (maxerr, err, 1) ; cm->final_ll = FALSE ; printf ("test_solver err: %6.2e\n", err) ; /* supernodal, without final resymbol, and no relaxed supernodes */ printf ( "test_solver: supernodal, without final resymbol, and no relaxed supernodes\n") ; cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_asis = TRUE ; cm->nrelax [0] = 0 ; cm->nrelax [1] = 0 ; cm->nrelax [2] = 0 ; cm->zrelax [0] = 0 ; cm->zrelax [1] = 0 ; cm->zrelax [2] = 0 ; cm->grow0 = 1 ; cm->grow1 = 1 ; cm->grow2 = 0 ; err = solve (A) ; MAXERR (maxerr, err, 1) ; printf ("test_solver err: %6.2e\n", err) ; /* ------------------------------------------------------------------ */ /* restore defaults */ /* ------------------------------------------------------------------ */ cm->dbound = 0.0 ; cm->grow0 = 1.2 ; cm->grow1 = 1.2 ; cm->grow2 = 5 ; cm->final_asis = TRUE ; cm->final_super = TRUE ; cm->final_ll = FALSE ; cm->final_pack = TRUE ; cm->final_monotonic = TRUE ; cm->final_resymbol = FALSE ; cm->supernodal = CHOLMOD_AUTO ; cm->nrelax [0] = 4 ; cm->nrelax [1] = 16 ; cm->nrelax [2] = 48 ; cm->zrelax [0] = 0.8 ; cm->zrelax [1] = 0.1 ; cm->zrelax [2] = 0.05 ; /* do not restore these defaults: */ /* cm->maxrank = ... cm->metis_memory = 2.0 cm->metis_nswitch = 3000 cm->metis_dswitch = 0.66 cm->print = 3 cm->precise = FALSE */ } progress (1, '.') ; return (maxerr) ; } /* ========================================================================== */ /* === solve ================================================================ */ /* ========================================================================== */ /* solve Ax=b or AA'x=b, systems involving just L, D, or L', and update/downdate * the system. Returns the worst-case residual. This routine keeps going if * it runs out of memory (unless the error handler terminates it), because * it is used both normally and in the memory tests. */ double solve (cholmod_sparse *A) { double r, enorm, snorm, maxerr = 0, gnorm, anorm, bnorm, xnorm, norm, rcond; cholmod_factor *L, *Lcopy, *L2 ; cholmod_sparse *Lmat, *Lo, *D, *Up, *S, *LD, *LDL, *E, *I, *C, *CC, *Ct, *Ssym, *Cperm, *C2, *S2, *H, *F, *Lo1, *Aboth ; cholmod_dense *X, *Cdense, *B, *Bcomplex, *Bzomplex, *Breal, *W, *R, *A3, *C3, *E3 ; cholmod_sparse *AFt, *AF, *G, *RowK, *Bsparse, *Xsparse ; double *Cx ; Int *P, *cset, *fset, *Parent, *Post, *RowCount, *ColCount, *First, *Level, *rcount, *ccount, *Lp, *Li ; Int p, i, j, k, n, nrhs, save, save2, csize, rank, nrow, ncol, is_ll, xtype, isreal, prefer_zomplex, Lxtype, xtype2, save3 ; int blas_ok = TRUE ; if (cm->print > 1) { printf ("============================================== in solve:\n") ; } if (A == NULL) { ERROR (CHOLMOD_INVALID, "nothing to solve") ; return (1) ; } /* ---------------------------------------------------------------------- */ /* construct right-hand-side (Ax=b if symmetric, AA'x=b otherwise) */ /* ---------------------------------------------------------------------- */ n = A->nrow ; nrow = A->nrow ; ncol = A->ncol ; xtype = A->xtype ; isreal = (xtype == CHOLMOD_REAL) ; B = rhs (A, NRHS, n) ; anorm = CHOLMOD(norm_sparse) (A, 1, cm) ; save = cm->final_asis ; cm->final_asis = TRUE ; /* contents of these will be revised later */ Bzomplex = CHOLMOD(copy_dense) (B, cm) ; Bcomplex = CHOLMOD(copy_dense) (Bzomplex, cm) ; Breal = CHOLMOD(copy_dense) (Bzomplex, cm) ; /* ---------------------------------------------------------------------- */ /* analyze */ /* ---------------------------------------------------------------------- */ if (n < 100 && cm->nmethods == 1 && cm->method[0].ordering == CHOLMOD_GIVEN) { Int *UserPerm = prand (nrow) ; /* RAND */ L = CHOLMOD(analyze_p) (A, UserPerm, NULL, 0, cm) ; OK (CHOLMOD(print_common) ("with UserPerm", cm)) ; CHOLMOD(free) (nrow, sizeof (Int), UserPerm, cm) ; } else { L = CHOLMOD(analyze) (A, cm) ; } /* test rowadd on a symbolic factor */ if (isreal) { RowK = CHOLMOD(spzeros) (n, 1, 0, CHOLMOD_REAL, cm) ; Lcopy = CHOLMOD(copy_factor) (L, cm) ; if (n > 0) { CHOLMOD(rowadd) (0, RowK, Lcopy, cm) ; CHOLMOD(check_factor) (Lcopy, cm) ; CHOLMOD(print_factor) (Lcopy, "Lcopy, now numeric", cm) ; } CHOLMOD(free_sparse) (&RowK, cm) ; CHOLMOD(free_factor) (&Lcopy, cm) ; } /* ---------------------------------------------------------------------- */ /* factorize */ /* ---------------------------------------------------------------------- */ CHOLMOD(factorize) (A, L, cm) ; /* ---------------------------------------------------------------------- */ /* various solves */ /* ---------------------------------------------------------------------- */ if (B != NULL) { /* B->ncol = 1 ; */ prefer_zomplex = (B->xtype == CHOLMOD_ZOMPLEX) ; } else { prefer_zomplex = FALSE ; } for (k = 0 ; k <= 1 ; k++) { cm->prefer_zomplex = k ; /* compute the residual, X complex if L or B not real */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* zomplex right-hand-side */ CHOLMOD(dense_xtype) (CHOLMOD_ZOMPLEX, Bzomplex, cm) ; if (Bzomplex != NULL && B != NULL && B->xtype == CHOLMOD_REAL && Bzomplex->xtype == CHOLMOD_ZOMPLEX) { /* add an arbitrary imaginary part */ double *Bz = Bzomplex->z ; for (j = 0 ; j < NRHS ; j++) { for (i = 0 ; i < n ; i++) { Bz [i+j*n] = (double) (i+j*n) ; } } } X = CHOLMOD(solve) (CHOLMOD_A, L, Bzomplex, cm) ; r = resid (A, X, Bzomplex) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* complex right-hand-side */ CHOLMOD(dense_xtype) (CHOLMOD_COMPLEX, Bcomplex, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Bcomplex, cm) ; r = resid (A, X, Bcomplex) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* real right-hand-side */ CHOLMOD(dense_xtype) (CHOLMOD_REAL, Breal, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Breal, cm) ; r = resid (A, X, Breal) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* sparse solve of Ax=b, b real */ Bsparse = CHOLMOD(dense_to_sparse) (Breal, TRUE, cm) ; Xsparse = CHOLMOD(spsolve) (CHOLMOD_A, L, Bsparse, cm) ; r = resid_sparse (A, Xsparse, Bsparse) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_sparse) (&Bsparse, cm) ; CHOLMOD(free_sparse) (&Xsparse, cm) ; /* sparse solve of Ax=b, b complex */ Bsparse = CHOLMOD(dense_to_sparse) (Bcomplex, TRUE, cm) ; Xsparse = CHOLMOD(spsolve) (CHOLMOD_A, L, Bsparse, cm) ; r = resid_sparse (A, Xsparse, Bsparse) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_sparse) (&Bsparse, cm) ; CHOLMOD(free_sparse) (&Xsparse, cm) ; /* sparse solve of Ax=b, b zomplex */ Bsparse = CHOLMOD(dense_to_sparse) (Bzomplex, TRUE, cm) ; Xsparse = CHOLMOD(spsolve) (CHOLMOD_A, L, Bsparse, cm) ; r = resid_sparse (A, Xsparse, Bsparse) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_sparse) (&Bsparse, cm) ; CHOLMOD(free_sparse) (&Xsparse, cm) ; } cm->prefer_zomplex = FALSE ; /* ---------------------------------------------------------------------- */ /* sparse solve to compute inv(A) */ /* ---------------------------------------------------------------------- */ CHOLMOD(print_sparse) (A, "A", cm) ; CHOLMOD(print_factor) (L, "L", cm) ; rcond = CHOLMOD(rcond) (L, cm) ; if (cm->print > 1) { printf ("rcond: %g\n", rcond) ; } if (n < 100 && A->stype != 0) { /* solve A*C=I, so C should equal A inverse */ I = CHOLMOD(speye) (n, n, CHOLMOD_REAL, cm) ; C = CHOLMOD(spsolve) (CHOLMOD_A, L, I, cm) ; /* compute norm of A*C-I */ if (isreal && n > 10) { /* A and C are large and real */ E = CHOLMOD(ssmult) (A, C, 0, TRUE, FALSE, cm) ; F = CHOLMOD(add) (E, I, minusone, one, TRUE, FALSE, cm) ; r = CHOLMOD(norm_sparse) (F, 1, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&F, cm) ; } else { /* There is no complex ssmult or add, so use the BLAS. * Also test sparse_to_dense for small symmetric matrices. */ A3 = CHOLMOD(sparse_to_dense) (A, cm) ; C3 = CHOLMOD(sparse_to_dense) (C, cm) ; xtype2 = isreal ? CHOLMOD_REAL : CHOLMOD_COMPLEX ; CHOLMOD(dense_xtype) (xtype2, A3, cm) ; CHOLMOD(dense_xtype) (xtype2, C3, cm) ; E3 = CHOLMOD(eye) (n, n, xtype2, cm) ; if (A3 != NULL && C3 != NULL && E3 != NULL) { /* E3 = A3*C3-I */ if (isreal) { BLAS_dgemm ("N", "N", n, n, n, one, A3->x, n, C3->x, n, minusone, E3->x, n) ; } else { BLAS_zgemm ("N", "N", n, n, n, one, A3->x, n, C3->x, n, minusone, E3->x, n) ; } OK (blas_ok) ; } r = CHOLMOD(norm_dense) (E3, 1, cm) ; CHOLMOD(free_dense) (&A3, cm) ; CHOLMOD(free_dense) (&C3, cm) ; CHOLMOD(free_dense) (&E3, cm) ; } MAXERR (maxerr, r, 1) ; CHOLMOD(free_sparse) (&I, cm) ; CHOLMOD(free_sparse) (&C, cm) ; } /* ---------------------------------------------------------------------- */ /* change complexity of L and solve again; test copy/change routines */ /* ---------------------------------------------------------------------- */ /* change to complex, otherwise leave as */ Lcopy = CHOLMOD(copy_factor) (L, cm) ; CHOLMOD(factor_xtype) (CHOLMOD_COMPLEX, Lcopy, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, Lcopy, B, cm) ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_factor) (&Lcopy, cm) ; /* change to zomplex LDL' */ Lxtype = (L == NULL) ? CHOLMOD_REAL : (L->xtype) ; Lcopy = CHOLMOD(copy_factor) (L, cm) ; CHOLMOD(check_factor) (L, cm) ; CHOLMOD(print_factor) (Lcopy, "Lcopy", cm) ; CHOLMOD(change_factor) (Lxtype, FALSE, FALSE, TRUE, TRUE, Lcopy, cm) ; CHOLMOD(factor_xtype) (CHOLMOD_ZOMPLEX, Lcopy, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, Lcopy, B, cm) ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_factor) (&Lcopy, cm) ; Lcopy = CHOLMOD(copy_factor) (L, cm) ; CHOLMOD(change_factor) (Lxtype, TRUE, FALSE, FALSE, FALSE, Lcopy, cm) ; CHOLMOD(check_factor) (L, cm) ; CHOLMOD(print_factor) (Lcopy, "Lcopy LL unpacked", cm) ; CHOLMOD(free_factor) (&Lcopy, cm) ; CHOLMOD(free_factor) (&L, cm) ; cm->final_asis = save ; /* ---------------------------------------------------------------------- */ /* solve again, but use cm->final_asis as given */ /* ---------------------------------------------------------------------- */ if (n < 100 && cm->nmethods == 1 && cm->method[0].ordering == CHOLMOD_GIVEN) { Int *UserPerm = prand (nrow) ; /* RAND */ L = CHOLMOD(analyze_p) (A, UserPerm, NULL, 0, cm) ; CHOLMOD(free) (nrow, sizeof (Int), UserPerm, cm) ; } else { L = CHOLMOD(analyze) (A, cm) ; } CHOLMOD(print_factor) (L, "Lsymbolic", cm) ; CHOLMOD(factorize) (A, L, cm) ; /* turn off memory tests [ */ save3 = my_tries ; my_tries = -1 ; CHOLMOD(print_factor) (L, "Lnumeric for solver tests", cm) ; CHOLMOD(print_dense) (B, "B for solver tests", cm) ; CHOLMOD(print_dense) (Breal, "Breal for solver tests", cm) ; CHOLMOD(print_dense) (Bcomplex, "Bcomplex for solver tests", cm) ; CHOLMOD(print_dense) (Bzomplex, "Bzomplex for solver tests", cm) ; if (B != NULL && Breal != NULL && Bcomplex != NULL && Bzomplex != NULL) { for (nrhs = 1 ; nrhs <= NRHS ; nrhs++) { for (cm->prefer_zomplex = 0 ; cm->prefer_zomplex <= 1 ; cm->prefer_zomplex++) { B->ncol = nrhs ; Breal->ncol = nrhs ; Bcomplex->ncol = nrhs ; Bzomplex->ncol = nrhs ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (A, X, B) ; CHOLMOD(free_dense) (&X, cm) ; MAXERR (maxerr, r, 1) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Breal, cm) ; r = resid (A, X, Breal) ; CHOLMOD(free_dense) (&X, cm) ; MAXERR (maxerr, r, 1) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Bcomplex, cm) ; r = resid (A, X, Bcomplex) ; CHOLMOD(free_dense) (&X, cm) ; MAXERR (maxerr, r, 1) ; X = CHOLMOD(solve) (CHOLMOD_A, L, Bzomplex, cm) ; r = resid (A, X, Bzomplex) ; CHOLMOD(free_dense) (&X, cm) ; MAXERR (maxerr, r, 1) ; } } } cm->prefer_zomplex = FALSE ; /* turn memory tests back on, where we left off ] */ my_tries = save3 ; Lcopy = CHOLMOD(copy_factor) (L, cm) ; /* ---------------------------------------------------------------------- */ /* convert L to LDL' packed or LL packed */ /* ---------------------------------------------------------------------- */ printf ("before change factor : %d\n", L ? L->is_super : -1) ; is_ll = (L == NULL) ? FALSE : (L->is_ll) ; Lxtype = (L == NULL) ? CHOLMOD_REAL : (L->xtype) ; CHOLMOD(change_factor) (Lxtype, is_ll, FALSE, TRUE, TRUE, Lcopy, cm) ; printf ("after change factor : %d\n", L ? L->is_super : -1) ; /* ---------------------------------------------------------------------- */ /* extract L, D, and L' as matrices from Lcopy */ /* ---------------------------------------------------------------------- */ CHOLMOD(resymbol) (A, NULL, 0, TRUE, Lcopy, cm) ; Lmat = CHOLMOD(factor_to_sparse) (Lcopy, cm) ; CHOLMOD(check_sparse) (Lmat, cm) ; I = CHOLMOD(speye) (n, n, CHOLMOD_REAL, cm) ; Lo = NULL ; D = NULL ; Lxtype = (Lmat == NULL) ? CHOLMOD_REAL : (Lmat->xtype) ; if (isreal) { /* use band and add */ if (!is_ll) { /* factorization is LDL' = Lo*D*Up */ Lo1 = CHOLMOD(band) (Lmat, -n, -1, 1, cm) ; Lo = CHOLMOD(add) (Lo1, I, one, one, TRUE, TRUE, cm) ; CHOLMOD(free_sparse) (&Lo1, cm) ; D = CHOLMOD(band) (Lmat, 0, 0, 1, cm) ; } else { /* factorization is LL' = Lo*D*Up */ Lo = CHOLMOD(band) (Lmat, -n, 0, 1, cm) ; D = CHOLMOD(speye) (n, n, Lxtype, cm) ; } } else { /* band and add do not work for c/zomplex matrices*/ D = CHOLMOD(speye) (n, n, Lxtype, cm) ; Lo = CHOLMOD(copy_sparse) (Lmat, cm) ; if (!is_ll && D != NULL && Lo != NULL) { /* factorization is LDL' = Lo*D*Up */ double *Dx = D->x ; double *Lx = Lo->x ; Lp = Lo->p ; for (k = 0 ; k < n ; k++) { p = Lp [k] ; if (Lxtype == CHOLMOD_COMPLEX) { Dx [2*k] = Lx [2*p] ; Lx [2*p] = 1 ; } else { Dx [k] = Lx [p] ; Lx [p] = 1 ; } } } } Up = CHOLMOD(transpose) (Lo, 2, cm) ; /* ---------------------------------------------------------------------- */ /* compute 1-norm of (Lo*D*Up - PAP') or (Lo*D*Up - PAA'P') */ /* ---------------------------------------------------------------------- */ P = (L != NULL) ? (L->Perm) : NULL ; S = NULL ; G = NULL ; if (isreal) { if (A->stype == 0) { /* G = A*A', try with fset = prand (ncol) */ fset = prand (ncol) ; /* RAND */ AFt = CHOLMOD(ptranspose) (A, 1, NULL, fset, ncol, cm) ; AF = CHOLMOD(transpose) (AFt, 1, cm) ; CHOLMOD(free) (ncol, sizeof (Int), fset, cm) ; G = CHOLMOD(ssmult) (AF, AFt, 0, TRUE, TRUE, cm) ; /* also try aat */ H = CHOLMOD(aat) (AF, NULL, 0, 1, cm) ; E = CHOLMOD(add) (G, H, one, minusone, TRUE, FALSE, cm) ; enorm = CHOLMOD(norm_sparse) (E, 0, cm) ; gnorm = CHOLMOD(norm_sparse) (G, 0, cm) ; MAXERR (maxerr, enorm, gnorm) ; if (cm->print > 1) { printf ("enorm %g gnorm %g hnorm %g\n", enorm, gnorm, CHOLMOD(norm_sparse) (H, 0, cm)) ; } if (gnorm > 0) { enorm /= gnorm ; } OK (enorm < 1e-8) ; CHOLMOD(free_sparse) (&AFt, cm) ; CHOLMOD(free_sparse) (&AF, cm) ; CHOLMOD(free_sparse) (&E, cm) ; CHOLMOD(free_sparse) (&H, cm) ; } else { /* G = A */ G = CHOLMOD(copy) (A, 0, 1, cm) ; } if (A->stype == 0) { /* S = PAA'P' */ S = CHOLMOD(submatrix) (G, P, n, P, n, TRUE, FALSE, cm) ; } else { /* S = PAP' */ Aboth = CHOLMOD(copy) (A, 0, 1, cm) ; S = CHOLMOD(submatrix) (Aboth, P, n, P, n, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&Aboth, cm) ; } if (n < NSMALL) { /* only do this for small test matrices, since L*D*L' can have many * nonzero entries */ /* E = L*D*L' - S */ LD = CHOLMOD(ssmult) (Lo, D, 0, TRUE, FALSE, cm) ; LDL = CHOLMOD(ssmult) (LD, Up, 0, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&LD, cm) ; E = CHOLMOD(add) (LDL, S, one, minusone, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&LDL, cm) ; /* e = norm (E) / norm (S) */ enorm = CHOLMOD(norm_sparse) (E, 1, cm) ; snorm = CHOLMOD(norm_sparse) (S, 0, cm) ; MAXERR (maxerr, enorm, snorm) ; CHOLMOD(free_sparse) (&E, cm) ; } /* check the row/col counts */ RowCount = CHOLMOD(malloc) (n, sizeof (Int), cm) ; ColCount = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Parent = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Post = CHOLMOD(malloc) (n, sizeof (Int), cm) ; First = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Level = CHOLMOD(malloc) (n, sizeof (Int), cm) ; rcount = CHOLMOD(calloc) (n, sizeof (Int), cm) ; ccount = CHOLMOD(calloc) (n, sizeof (Int), cm) ; if (S != NULL && Lmat != NULL && RowCount != NULL && ColCount != NULL && Parent != NULL && Post != NULL && First != NULL && Level != NULL && rcount != NULL && ccount != NULL) { S->stype = 1 ; CHOLMOD(etree) (S, Parent, cm) ; CHOLMOD(print_parent) (Parent, n, "Parent", cm) ; CHOLMOD(postorder) (Parent, n, NULL, Post, cm) ; CHOLMOD(print_perm) (Post, n, n, "Post", cm) ; S->stype = -1 ; CHOLMOD(rowcolcounts) (S, NULL, 0, Parent, Post, RowCount, ColCount, First, Level, cm) ; Lp = Lmat->p ; Li = Lmat->i ; OK (Lmat->packed) ; for (j = 0 ; j < n ; j++) { for (p = Lp [j] ; p < Lp [j+1] ; p++) { i = Li [p] ; rcount [i]++ ; ccount [j]++ ; } } /* a singular matrix will only be partially factorized */ if (L->minor == (size_t) n) { for (j = 0 ; j < n ; j++) { OK (ccount [j] == ColCount [j]) ; } } for (i = 0 ; i < (Int) (L->minor) ; i++) { OK (rcount [i] == RowCount [i]) ; } } CHOLMOD(free) (n, sizeof (Int), RowCount, cm) ; CHOLMOD(free) (n, sizeof (Int), ColCount, cm) ; CHOLMOD(free) (n, sizeof (Int), Parent, cm) ; CHOLMOD(free) (n, sizeof (Int), Post, cm) ; CHOLMOD(free) (n, sizeof (Int), First, cm) ; CHOLMOD(free) (n, sizeof (Int), Level, cm) ; CHOLMOD(free) (n, sizeof (Int), rcount, cm) ; CHOLMOD(free) (n, sizeof (Int), ccount, cm) ; CHOLMOD(free_sparse) (&S, cm) ; } CHOLMOD(free_factor) (&Lcopy, cm) ; /* ---------------------------------------------------------------------- */ /* solve other systems */ /* ---------------------------------------------------------------------- */ /* turn off memory tests [ */ save3 = my_tries ; my_tries = -1 ; for (nrhs = 1 ; nrhs <= 4 ; nrhs++) /* reduced here (6 to 4) */ { if (B == NULL) { break ; } B->ncol = nrhs ; /* solve LDL'x=b */ X = CHOLMOD(solve) (CHOLMOD_LDLt, L, B, cm) ; /* printf ("LDL'x=b %p %p %p\n", Lo, X, B) ; */ r = resid3 (Lo, D, Up, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* solve LDx=b */ X = CHOLMOD(solve) (CHOLMOD_LD, L, B, cm) ; /* printf ("LDx=b %p %p %p\n", Lo, X, B) ; */ r = resid3 (Lo, D, NULL, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* solve DL'x=b */ X = CHOLMOD(solve) (CHOLMOD_DLt, L, B, cm) ; /* printf ("DL'x=b %p %p %p\n", D, X, B) ; */ r = resid3 (D, Up, NULL, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* solve Lx=b */ X = CHOLMOD(solve) (CHOLMOD_L, L, B, cm) ; /* printf ("Lx=b %p %p %p\n", Lo, X, B) ; */ r = resid3 (Lo, NULL, NULL, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* solve L'x=b */ X = CHOLMOD(solve) (CHOLMOD_Lt, L, B, cm) ; /* printf ("L'x=b %p %p %p\n", Up, X, B) ; */ r = resid3 (Up, NULL, NULL, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* solve Dx=b */ X = CHOLMOD(solve) (CHOLMOD_D, L, B, cm) ; /* printf ("Dx=b %p %p %p\n", D, X, B) ; */ r = resid3 (D, NULL, NULL, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; save2 = cm->prefer_zomplex ; for (k = 0 ; k <= 1 ; k++) { cm->prefer_zomplex = k ; /* x=Pb */ X = CHOLMOD(solve) (CHOLMOD_P, L, B, cm) ; r = pnorm (X, P, B, FALSE) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* x=P'b */ X = CHOLMOD(solve) (CHOLMOD_Pt, L, B, cm) ; r = pnorm (X, P, B, TRUE) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; } cm->prefer_zomplex = save2 ; } /* turn memory tests back on, where we left off ] */ my_tries = save3 ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free_sparse) (&I, cm) ; CHOLMOD(free_sparse) (&D, cm) ; CHOLMOD(free_sparse) (&Lo, cm) ; CHOLMOD(free_sparse) (&Up, cm) ; CHOLMOD(free_sparse) (&Lmat, cm) ; /* ---------------------------------------------------------------------- */ /* update the factorization */ /* ---------------------------------------------------------------------- */ /* turn off memory tests [ */ save3 = my_tries ; my_tries = -1 ; B = rhs (A, 1, n) ; for (rank = 1 ; isreal && rank <= ((n < 100) ? 33 : 2) ; rank++) { /* pick a random C */ Cdense = CHOLMOD(zeros) (n, rank, CHOLMOD_REAL, cm) ; if (Cdense != NULL) { Cx = Cdense->x ; for (k = 0 ; k < 10*rank ; k++) { i = nrand (n) ; /* RAND */ j = nrand (rank) ; /* RAND */ Cx [i+j*n] += xrand (1.) ; /* RAND */ } } C = CHOLMOD(dense_to_sparse) (Cdense, TRUE, cm) ; CHOLMOD(free_dense) (&Cdense, cm) ; /* permute the rows according to L->Perm */ Cperm = CHOLMOD(submatrix) (C, P, n, NULL, -1, TRUE, TRUE, cm) ; /* update */ CHOLMOD(updown) (TRUE, Cperm, L, cm) ; CHOLMOD(free_sparse) (&Cperm, cm) ; /* solve (G+C*C')x=b */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; /* an alternative method would be to compute (G*x + C*(C'*x) - b) */ /* compute S = G+C*C', with no sort */ Ct = CHOLMOD(transpose) (C, 1, cm) ; CC = CHOLMOD(ssmult) (C, Ct, 0, TRUE, FALSE, cm) ; S = CHOLMOD(add) (G, CC, one, one, TRUE, TRUE, cm) ; Ssym = CHOLMOD(copy) (S, 1, 1, cm) ; CHOLMOD(free_sparse) (&CC, cm) ; CHOLMOD(free_sparse) (&Ct, cm) ; /* compute norm (S*x-b) */ r = resid (Ssym, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* ------------------------------------------------------------------ */ /* factor A+CC' from scratch, using same permutation */ /* ------------------------------------------------------------------ */ if (rank == 1) { save = cm->nmethods ; save2 = cm->method [0].ordering ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_GIVEN ; L2 = CHOLMOD(analyze_p) (Ssym, P, NULL, 0, cm) ; cm->nmethods = save ; cm->method [0].ordering = save2 ; CHOLMOD(factorize) (Ssym, L2, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L2, B, cm) ; r = resid (Ssym, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_factor) (&L2, cm) ; } CHOLMOD(free_sparse) (&Ssym, cm) ; /* ------------------------------------------------------------------ */ /* downdate, with just the first half of C */ /* ------------------------------------------------------------------ */ csize = MAX (1, rank / 2) ; cset = CHOLMOD(malloc) (csize, sizeof (Int), cm) ; if (cset != NULL) { for (i = 0 ; i < csize ; i++) { cset [i] = i ; } } C2 = CHOLMOD(submatrix) (C, NULL, -1, cset, csize, TRUE, TRUE, cm) ; Cperm = CHOLMOD(submatrix) (C2, P, n, NULL, -1, TRUE, TRUE, cm) ; CHOLMOD(free) (csize, sizeof (Int), cset, cm) ; CHOLMOD(updown) (FALSE, Cperm, L, cm) ; CHOLMOD(free_sparse) (&Cperm, cm) ; /* solve (G+C*C'-C2*C2')x=b */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; /* This is an expensive way to compute the residual. A better * method would be to compute (G*x + C*(C'*x) - C2*(C2'*x) - b), * using sdmult. It is done just to test the ssmult * routine. */ /* compute S2 = G+C*C'-C2*C2', with no sort */ Ct = CHOLMOD(transpose) (C2, 1, cm) ; CC = CHOLMOD(ssmult) (C2, Ct, 0, TRUE, FALSE, cm) ; S2 = CHOLMOD(add) (S, CC, one, minusone, TRUE, FALSE, cm) ; CHOLMOD(free_sparse) (&CC, cm) ; CHOLMOD(free_sparse) (&Ct, cm) ; CHOLMOD(free_sparse) (&C2, cm) ; /* Ssym is a symmetric/upper copy of S2 */ Ssym = CHOLMOD(copy) (S2, 1, 1, cm) ; CHOLMOD(free_sparse) (&S2, cm) ; /* compute norm (S2*x-b) */ r = resid (Ssym, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* ------------------------------------------------------------------ */ /* factor S2 scratch, using same permutation */ /* ------------------------------------------------------------------ */ if (rank == 1) { save = cm->nmethods ; save2 = cm->method [0].ordering ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_GIVEN ; L2 = CHOLMOD(analyze_p) (Ssym, P, NULL, 0, cm) ; cm->nmethods = save ; cm->method [0].ordering = save2 ; CHOLMOD(factorize) (Ssym, L2, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L2, B, cm) ; r = resid (Ssym, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_factor) (&L2, cm) ; } /* ------------------------------------------------------------------ */ /* re-do the symbolic factorization on L */ /* ------------------------------------------------------------------ */ CHOLMOD(resymbol) (Ssym, NULL, 0, TRUE, L, cm) ; /* solve (G+C*C'-C2*C2')x=b again */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; /* compute norm (S2*x-b) */ r = resid (Ssym, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_sparse) (&Ssym, cm) ; /* ------------------------------------------------------------------ */ /* downdate, with the remaining part of C, to get original L */ /* ------------------------------------------------------------------ */ if (rank > csize) { cset = CHOLMOD(malloc) (rank-csize, sizeof (Int), cm) ; if (cset != NULL) { for (i = csize ; i < rank ; i++) { cset [i-csize] = i ; } } if (rank - csize == 4) { /* test the subset print/check routine */ CHOLMOD(print_subset) (cset, rank-csize, rank, "cset", cm) ; } C2 = CHOLMOD(submatrix) (C, NULL, -1, cset, rank-csize, TRUE, TRUE, cm) ; Cperm = CHOLMOD(submatrix) (C2, P, n, NULL, -1, TRUE, TRUE, cm) ; CHOLMOD(free) (rank-csize, sizeof (Int), cset, cm) ; CHOLMOD(updown) (FALSE, Cperm, L, cm) ; CHOLMOD(free_sparse) (&Cperm, cm) ; CHOLMOD(free_sparse) (&C2, cm) ; /* solve the original system */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; /* compute the residual */ r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&S, cm) ; } /* turn memory tests back on, where we left off ] */ my_tries = save3 ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free_sparse) (&G, cm) ; CHOLMOD(free_factor) (&L, cm) ; /* ---------------------------------------------------------------------- */ /* factor again, then change the factor type many times */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(copy_sparse) (A, cm) ; if (C != NULL) { C->sorted = FALSE ; } L = CHOLMOD(analyze) (C, cm) ; CHOLMOD(factorize) (C, L, cm) ; if (L != NULL && !(L->is_super)) { CHOLMOD(resymbol) (C, NULL, 0, TRUE, L, cm) ; } B = rhs (C, 1, n) ; cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; cm->prefer_zomplex = FALSE ; r = resid (C, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; for (k = 0 ; k < NFTYPES ; k++) { if (co_types [k] && n > 1) { /* reallocate column zero of L, to make it non-monotonic */ CHOLMOD(reallocate_column) (0, n, L, cm) ; } Lxtype = (L == NULL) ? CHOLMOD_REAL : (L->xtype) ; CHOLMOD(change_factor) (Lxtype, ll_types [k], FALSE, pk_types [k], mn_types [k], L, cm) ; cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; cm->prefer_zomplex = FALSE ; r = resid (C, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; } /* reallocate a column and solve again */ if (n > 3) { CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; CHOLMOD(reallocate_column) (0, n, L, cm) ; cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; cm->prefer_zomplex = FALSE ; r = resid (C, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; } CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free_dense) (&Breal, cm) ; CHOLMOD(free_dense) (&Bcomplex, cm) ; CHOLMOD(free_dense) (&Bzomplex, cm) ; /* ---------------------------------------------------------------------- */ /* factorize and solve (A*A'+beta*I)x=b or A'x=b */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { double *Rx, *Rz, *Xx, *Xz ; double beta [2] ; beta [0] = 3.14159 ; beta [1] = 0 ; L = CHOLMOD(analyze) (A, cm) ; CHOLMOD(factorize_p) (A, beta, NULL, 0, L, cm) ; B = rhs (A, 1, n) ; cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; cm->prefer_zomplex = FALSE ; /* compute the residual */ /* W = A'*X */ W = CHOLMOD(zeros) (ncol, 1, xtype, cm) ; CHOLMOD(sdmult) (A, 2, one, zero, X, W, cm) ; /* R = B */ R = CHOLMOD(copy_dense) (B, cm) ; /* R = A*W - R */ CHOLMOD(sdmult) (A, 0, one, minusone, W, R, cm) ; /* R = R + beta*X */ if (R != NULL && X != NULL) { Rx = R->x ; Rz = R->z ; Xx = X->x ; Xz = X->z ; for (i = 0 ; i < nrow ; i++) { switch (xtype) { case CHOLMOD_REAL: Rx [i] += beta [0] * Xx [i] ; break ; case CHOLMOD_COMPLEX: Rx [2*i ] += beta [0] * Xx [2*i ] ; Rx [2*i+1] += beta [0] * Xx [2*i+1] ; break ; case CHOLMOD_ZOMPLEX: Rx [i] += beta [0] * Xx [i] ; Rz [i] += beta [0] * Xz [i] ; break ; } } } r = CHOLMOD(norm_dense) (R, 2, cm) ; bnorm = CHOLMOD(norm_dense) (B, 2, cm) ; xnorm = CHOLMOD(norm_dense) (X, 2, cm) ; norm = MAX (r, xnorm) ; if (norm > 0) { r /= norm ; } MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_dense) (&R, cm) ; CHOLMOD(free_dense) (&W, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&B, cm) ; } /* ---------------------------------------------------------------------- */ /* test rowdel and updown */ /* ---------------------------------------------------------------------- */ if (isreal && A->stype == 1 && n > 0 && n < NLARGE) { Int save4, save5, save6 ; save4 = cm->nmethods ; save5 = cm->method [0].ordering ; save6 = cm->supernodal ; cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->supernodal = CHOLMOD_SUPERNODAL ; B = rhs (A, 1, n) ; L = CHOLMOD(analyze) (A, cm) ; CHOLMOD(factorize) (A, L, cm) ; /* solve Ax=b */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* determine the new system with row/column k missing */ k = n/2 ; S = CHOLMOD(copy) (A, 0, 1, cm) ; RowK = CHOLMOD(submatrix) (S, NULL, -1, &k, 1, TRUE, TRUE, cm) ; CHOLMOD(print_sparse) (S, "S", cm) ; CHOLMOD(print_sparse) (RowK, "RowK of S", cm) ; CHOLMOD(free_sparse) (&RowK, cm) ; prune_row (S, k) ; if (S != NULL) { S->stype = 1 ; } /* delete row k of L (converts to LDL') */ /* printf ("rowdel here:\n") ; */ CHOLMOD(rowdel) (k, NULL, L, cm) ; CHOLMOD(resymbol) (S, NULL, 0, TRUE, L, cm) ; /* solve with row k missing */ X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (S, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_sparse) (&S, cm) ; /* factorize again */ CHOLMOD(free_factor) (&L, cm) ; L = CHOLMOD(analyze) (A, cm) ; CHOLMOD(factorize) (A, L, cm) ; /* rank-3 update (converts to LDL') and solve */ C = CHOLMOD(speye) (n, 3, CHOLMOD_REAL, cm) ; CC = CHOLMOD(aat) (C, NULL, 0, 1, cm) ; S = CHOLMOD(add) (A, CC, one, one, TRUE, TRUE, cm) ; if (S != NULL) { S->stype = 1 ; } CHOLMOD(updown) (TRUE, C, L, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (S, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* free everything */ CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&CC, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&B, cm) ; cm->nmethods = save4 ; cm->method [0].ordering = save5 ; cm->supernodal = save6 ; } /* ---------------------------------------------------------------------- */ /* free remaining workspace */ /* ---------------------------------------------------------------------- */ OK (CHOLMOD(print_common) ("cm", cm)) ; progress (0, '.') ; return (maxerr) ; } SuiteSparse/CHOLMOD/Tcov/covall0000755001170100242450000000015510533542223015155 0ustar davisfac#!/bin/csh ./gcovs z*.c l_*c ./covs > covs.out echo -n "statments not yet tested: " grep -c "#####" covs.out SuiteSparse/CHOLMOD/Tcov/raw_factor.c0000644001170100242450000005607610540000065016246 0ustar davisfac/* ========================================================================== */ /* === Tcov/raw_factor ====================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Factorize A using cholmod_rowfac for the simplicial case, and the * cholmod_super_* routines for the supernodal case, and test the solution to * linear systems. */ #include "cm.h" /* ========================================================================== */ /* === icomp ================================================================ */ /* ========================================================================== */ /* for sorting by qsort */ static int icomp (Int *i, Int *j) { if (*i < *j) { return (-1) ; } else { return (1) ; } } /* ========================================================================== */ /* === add_gunk ============================================================= */ /* ========================================================================== */ static cholmod_sparse *add_gunk (cholmod_sparse *A) { cholmod_sparse *S ; double *Sx, *Sz ; Int *Sp, *Si, nz, p, save3, j, n ; if (A == NULL) return (NULL) ; /* save3 = cm->print ; cm->print = 5 ; */ A->nzmax++ ; S = CHOLMOD(copy_sparse) (A, cm) ; A->nzmax-- ; /* add a S(n,1)=1 entry to the matrix */ if (S != NULL) { S->sorted = FALSE ; Sx = S->x ; Si = S->i ; Sp = S->p ; Sz = S->z ; n = S->ncol ; nz = Sp [n] ; for (j = 1 ; j <= n ; j++) { Sp [j]++ ; } if (S->xtype == CHOLMOD_REAL) { for (p = nz-1 ; p >= 0 ; p--) { Si [p+1] = Si [p] ; Sx [p+1] = Sx [p] ; } Si [0] = n-1 ; Sx [0] = 99999 ; } else if (S->xtype == CHOLMOD_COMPLEX) { for (p = nz-1 ; p >= 0 ; p--) { Si [p+1] = Si [p] ; Sx [2*p+2] = Sx [2*p] ; Sx [2*p+3] = Sx [2*p+1] ; } Si [0] = n-1 ; Sx [0] = 99999 ; Sx [1] = 0 ; } else if (S->xtype == CHOLMOD_ZOMPLEX) { for (p = nz-1 ; p >= 0 ; p--) { Si [p+1] = Si [p] ; Sx [p+1] = Sx [p] ; Sz [p+1] = Sz [p] ; } Si [0] = n-1 ; Sx [0] = 99999 ; Sz [0] = 0 ; } } /* CHOLMOD(print_sparse) (A, "A for gunk", cm) ; */ /* CHOLMOD(print_sparse) (S, "S with gunk", cm) ; */ /* cm->print = save3 ; */ return (S) ; } /* ========================================================================== */ /* === raw_factor =========================================================== */ /* ========================================================================== */ /* Factor A, without using any fill-reducing permutation. This may fail due * to catastrophic fill-in (which is the desired test result for a large * arrowhead matrix). */ double raw_factor (cholmod_sparse *A, Int check_errors) { double maxerr = 0, r, anorm ; cholmod_sparse *AT, *C, *LT, *Lsparse, *S, *ST, *R, *A1 ; cholmod_factor *L, *Lcopy ; cholmod_dense *X, *W, *B, *X2 ; Int i, k, n, ok, ok1, ok2, trial, rnz, lnz, Lxtype, Axtype, posdef, prefer_zomplex, Bxtype ; Int *Parent, *Post, *First, *Level, *Ri, *Rp, *LTp = NULL, *LTi = NULL, *P, *mask, *RLinkUp ; UF_long lr ; double beta [2] ; unsigned UF_long save ; /* ---------------------------------------------------------------------- */ /* create the problem */ /* ---------------------------------------------------------------------- */ if (A == NULL || A->stype != 1) { return (0) ; } W = NULL ; X2 = NULL ; L = NULL ; n = A->nrow ; B = rhs (A, 1, n) ; AT = CHOLMOD(transpose) (A, 2, cm) ; Parent = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Post = CHOLMOD(malloc) (n, sizeof (Int), cm) ; First = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Level = CHOLMOD(malloc) (n, sizeof (Int), cm) ; beta [0] = 0 ; beta [1] = 0 ; anorm = CHOLMOD(norm_sparse) (A, 1, cm) ; prefer_zomplex = (A->xtype == CHOLMOD_ZOMPLEX) ; Bxtype = A->xtype ; /* ---------------------------------------------------------------------- */ /* supernodal factorization */ /* ---------------------------------------------------------------------- */ L = CHOLMOD(allocate_factor) (n, cm) ; ok1 = CHOLMOD(etree) (A, Parent, cm) ; lr = CHOLMOD(postorder) (Parent, n, NULL, Post, cm) ; ok2 = CHOLMOD(rowcolcounts) (AT, NULL, 0, Parent, Post, NULL, (L != NULL) ? (L->ColCount) : NULL, First, Level, cm) ; if (ok2) { printf ("raw_factor: cm->fl %g cm->lnz %g\n", cm->fl, cm->lnz) ; } if (check_errors) { OKP (AT) ; OKP (Parent) ; OKP (Post) ; OKP (First) ; OKP (Level) ; OK (AT->stype == -1) ; OKP (L) ; OK (ok1) ; OK (ok2) ; OK (lr >= 0) ; /* rowcolcounts requires A in symmetric lower form */ ok = CHOLMOD(rowcolcounts) (A, NULL, 0, Parent, Post, NULL, L->ColCount, First, Level, cm) ; NOT (ok) ; } /* super_symbolic needs A in upper form, so this will succeed * unless the problem is huge */ ok = CHOLMOD(super_symbolic) (A, NULL, Parent, L, cm) ; /* super_symbolic should fail if lnz is too large */ if (cm->lnz > Size_max / 2) { printf ("raw_factor: problem is huge\n") ; NOT (ok) ; OK (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) ; /* try changing to LDL packed, which should also fail */ ok = CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; NOT (ok) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free) (n, sizeof (Int), First, cm) ; CHOLMOD(free) (n, sizeof (Int), Level, cm) ; CHOLMOD(free) (n, sizeof (Int), Parent, cm) ; CHOLMOD(free) (n, sizeof (Int), Post, cm) ; return (0) ; } if (check_errors) { if (cm->status == CHOLMOD_OUT_OF_MEMORY || cm->status == CHOLMOD_TOO_LARGE) { /* no test case will reach here, but check just to be safe */ printf ("raw_factor: out of memory for symbolic case %d\n", cm->status) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free) (n, sizeof (Int), First, cm) ; CHOLMOD(free) (n, sizeof (Int), Level, cm) ; CHOLMOD(free) (n, sizeof (Int), Parent, cm) ; CHOLMOD(free) (n, sizeof (Int), Post, cm) ; return (0) ; } OK (ok) ; ok = CHOLMOD(super_symbolic)(A, NULL, Parent, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_symbolic)(AT, NULL, Parent, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_symbolic)(NULL, NULL, Parent, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_symbolic)(A, NULL, NULL, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_symbolic)(A, NULL, Parent, NULL, cm) ; NOT (ok) ; } /* super_numeric needs A in lower form, so this will succeed unless * the problem is huge */ ok = CHOLMOD(super_numeric) (AT, NULL, Zero, L, cm) ; if (check_errors) { if (cm->status == CHOLMOD_OUT_OF_MEMORY) { /* For the 64-bit case, the Matrix/a1 problem will reach here */ printf ("raw_factor: out of memory for numeric case\n") ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free) (n, sizeof (Int), First, cm) ; CHOLMOD(free) (n, sizeof (Int), Level, cm) ; CHOLMOD(free) (n, sizeof (Int), Parent, cm) ; CHOLMOD(free) (n, sizeof (Int), Post, cm) ; return (0) ; } OK (ok) ; ok = CHOLMOD(super_numeric)(A, NULL, Zero, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(NULL, NULL, Zero, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(AT, NULL, Zero, NULL, cm) ; NOT (ok) ; } /* solve */ Lxtype = (L == NULL) ? CHOLMOD_REAL : L->xtype ; W = CHOLMOD(zeros) (n, 1, Lxtype, cm) ; X = CHOLMOD(copy_dense) (B, cm) ; if (Bxtype == CHOLMOD_ZOMPLEX) { CHOLMOD(dense_xtype) (CHOLMOD_COMPLEX, X, cm) ; } CHOLMOD(print_factor) (L, "L for super l/ltsolve", cm) ; CHOLMOD(print_dense) (W, "W", cm) ; CHOLMOD(print_dense) (X, "X", cm) ; ok1 = CHOLMOD(super_lsolve) (L, X, W, cm) ; CHOLMOD(print_dense) (X, "X", cm) ; ok2 = CHOLMOD(super_ltsolve) (L, X, W, cm) ; CHOLMOD(print_dense) (X, "X", cm) ; if (Bxtype == CHOLMOD_ZOMPLEX) { CHOLMOD(dense_xtype) (CHOLMOD_ZOMPLEX, X, cm) ; } r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; if (Bxtype == CHOLMOD_ZOMPLEX) { CHOLMOD(dense_xtype) (CHOLMOD_COMPLEX, X, cm) ; } if (check_errors) { OKP (W) ; OKP (X) ; OK (ok1) ; OK (ok2) ; ok = CHOLMOD(super_lsolve) (NULL, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve) (NULL, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_lsolve) (L, NULL, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve) (L, NULL, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_lsolve) (L, X, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve) (L, X, NULL, cm) ; NOT (ok) ; if (L != NULL && L->maxesize > 1) { /* W is too small */ ok = CHOLMOD(free_dense) (&W, cm) ; OK (ok) ; W = CHOLMOD(zeros) (1, 1, Lxtype, cm) ; OKP (W) ; ok = CHOLMOD(super_lsolve) (L, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve) (L, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(free_dense) (&W, cm) ; OK (ok) ; W = CHOLMOD(zeros) (n, 1, Lxtype, cm) ; OKP (W) ; } /* X2 has the wrong dimensions */ X2 = CHOLMOD(zeros) (n+1, 1, Lxtype, cm) ; OKP (X2) ; ok = CHOLMOD(super_lsolve) (L, X2, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve) (L, X2, W, cm) ; NOT (ok) ; CHOLMOD(free_dense) (&X2, cm) ; } CHOLMOD(free_dense) (&X, cm) ; /* X2 is n-by-0, which is OK */ X2 = CHOLMOD(zeros) (n, 0, Lxtype, cm) ; ok1 = CHOLMOD(super_lsolve) (L, X2, W, cm) ; ok2 = CHOLMOD(super_ltsolve) (L, X2, W, cm) ; CHOLMOD(free_dense) (&W, cm) ; CHOLMOD(free_dense) (&X2, cm) ; if (check_errors) { OK (ok1) ; OK (ok2) ; test_memory_handler ( ) ; my_tries = 0 ; ok = CHOLMOD(super_symbolic) (A, NULL, Parent, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric) (AT, NULL, Zero, L, cm) ; NOT (ok) ; normal_memory_handler ( ) ; cm->error_handler = NULL ; } /* R = space for result of row_subtree and row_lsubtree */ R = CHOLMOD(allocate_sparse)(n, 1, n, FALSE, TRUE, 0, CHOLMOD_PATTERN, cm) ; /* ---------------------------------------------------------------------- */ /* erroneous factorization */ /* ---------------------------------------------------------------------- */ /* cannot use rowfac or row_lsubtree on a supernodal factorization */ if (check_errors && n > 0) { ok = CHOLMOD(rowfac) (A, NULL, beta, 0, 0, L, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree) (A, &i, 0, n-1, L, R, cm) ; NOT (ok) ; } /* ---------------------------------------------------------------------- */ /* convert to simplicial LDL' */ /* ---------------------------------------------------------------------- */ CHOLMOD(change_factor) (Lxtype, FALSE, FALSE, TRUE, TRUE, L, cm) ; /* remove entries due to relaxed supernodal amalgamation */ CHOLMOD(resymbol) (A, NULL, 0, TRUE, L, cm) ; /* refactorize a numeric factor */ posdef = 0 ; /* unknown */ if (A != NULL && A->stype >= 0) { if (A->stype > 0 && A->packed) { S = add_gunk (A) ; CHOLMOD(rowfac) (S, NULL, beta, 0, n, L, cm) ; if (S && S->xtype == CHOLMOD_COMPLEX) { CHOLMOD(sparse_xtype) (CHOLMOD_ZOMPLEX, S, cm) ; } ok = CHOLMOD(free_sparse) (&S, cm) ; OK (ok) ; } else { CHOLMOD(rowfac) (A, NULL, beta, 0, n, L, cm) ; } posdef = (cm->status == CHOLMOD_OK) ; } /* convert to a sparse matrix, and transpose L */ Lcopy = CHOLMOD(copy_factor)(L, cm) ; Lsparse = CHOLMOD(factor_to_sparse) (L, cm) ; LT = CHOLMOD(transpose) (Lsparse, 0, cm) ; CHOLMOD(free_sparse) (&Lsparse, cm) ; if (LT != NULL) { LTp = LT->p ; LTi = LT->i ; OK (LT->packed) ; } /* remove the unit diagonal of LT */ CHOLMOD(band_inplace) (1, n, -1, LT, cm) ; /* ST = pattern of A(p,p)' */ P = (L == NULL) ? NULL : L->Perm ; ST = CHOLMOD(ptranspose) (A, 0, P, NULL, 0, cm) ; /* S = pattern of A(p,p) */ S = CHOLMOD(transpose) (ST, 0, cm) ; ok = CHOLMOD(free_sparse) (&ST, cm) ; if (R != NULL && LT != NULL && posdef && A != NULL && A->stype >= 0 && S != NULL && Lcopy != NULL) { LTp = LT->p ; LTi = LT->i ; Ri = R->i ; Rp = R->p ; save = my_seed ( ) ; /* RAND */ for (trial = 0 ; trial < 30 ; trial++) { /* pick a row at random */ i = nrand (n) ; /* RAND */ /* compute R = pattern of L(i,0:i-1), using row subtrees */ ok = CHOLMOD(row_subtree) (S, NULL, i, Parent, R, cm) ; if (!ok) { break ; } rnz = Rp [1] ; /* sort R */ qsort (Ri, rnz, sizeof (Int), (int (*) (const void *, const void *)) icomp) ; /* compare with ith column of L transpose */ lnz = LTp [i+1] - LTp [i] ; ok = TRUE ; for (k = 0 ; k < MIN (rnz,lnz) ; k++) { /* printf ("%d vs %d\n", Ri [k], LTi [LTp [i] + k]) ; */ ok = ok && (Ri [k] == LTi [LTp [i] + k]) ; } OK (ok) ; OK (rnz == lnz) ; /* compute R = pattern of L(i,0:i-1), using row lsubtrees */ ok = CHOLMOD(row_lsubtree) (S, NULL, 0, i, Lcopy, R, cm) ; if (!ok) { break ; } rnz = Rp [1] ; /* sort R */ qsort (Ri, rnz, sizeof (Int), (int (*) (const void *, const void *)) icomp) ; /* compare with ith column of L transpose */ lnz = LTp [i+1] - LTp [i] ; ok = TRUE ; for (k = 0 ; k < MIN (rnz,lnz) ; k++) { /* printf ("%d vs %d\n", Ri [k], LTi [LTp [i] + k]) ; */ ok = ok && (Ri [k] == LTi [LTp [i] + k]) ; } OK (ok) ; OK (rnz == lnz) ; /* L is symbolic, so cholmod_lsubtree will fail */ if (check_errors) { ok = CHOLMOD(row_lsubtree) (S, NULL, 0, i, L, R, cm) ; NOT (ok) ; } } my_srand (save) ; /* RAND */ } ok = CHOLMOD(free_factor) (&L, cm) ; OK (ok) ; ok = CHOLMOD(free_factor) (&Lcopy, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse) (<, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse) (&R, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse) (&S, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* simplicial LDL' or LL' factorization with no analysis */ /* ---------------------------------------------------------------------- */ for (trial = 0 ; trial <= check_errors ; trial++) { /* create a simplicial symbolic factor */ L = CHOLMOD(allocate_factor) (n, cm) ; ok = TRUE ; Axtype = (A == NULL) ? CHOLMOD_REAL : A->xtype ; if (check_errors) { OKP (L) ; if (trial == 0) { /* convert to packed LDL' first, then unpacked */ ok = CHOLMOD(change_factor) (Axtype, FALSE, FALSE, TRUE, TRUE, L, cm) ; OK (ok); ok = CHOLMOD(change_factor) (Axtype, FALSE, FALSE, FALSE, TRUE, L, cm) ; OK (ok) ; } else if (trial == 1) { ok = CHOLMOD(rowfac)(NULL, NULL, beta, 0, 0, L, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, NULL, beta, 0, 0, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(AT, NULL, beta, 0, 0, L, cm) ; NOT (ok) ; if (n > 1) { A1 = CHOLMOD(allocate_sparse)(1, 1, 1, TRUE, TRUE, 1, CHOLMOD_PATTERN, cm) ; OKP (A1) ; ok = CHOLMOD(rowfac)(A1, NULL, beta, 0, 0, L, cm); NOT (ok); ok = CHOLMOD(free_sparse)(&A1, cm) ; OK (ok); } } else { /* convert to symbolic LL' */ ok = CHOLMOD(change_factor) (CHOLMOD_PATTERN, TRUE, FALSE, TRUE, TRUE, L, cm) ; OK (ok) ; OK (L->is_ll) ; } } /* factor */ CHOLMOD(print_factor) (L, "L for rowfac", cm) ; CHOLMOD(print_sparse) (A, "A for rowfac", cm) ; cm->dbound = 1e-15 ; for (k = 0 ; ok && k < n ; k++) { if (!CHOLMOD(rowfac) (A, NULL, beta, k, k+1, L, cm)) { ok = FALSE ; } if (cm->status == CHOLMOD_NOT_POSDEF) { /* LL' factorization failed; subsequent rowfac's should fail */ k++ ; ok = CHOLMOD(rowfac) (A, NULL, beta, k, k+1, L, cm) ; NOT (ok) ; ok = TRUE ; } } cm->dbound = 0 ; if (check_errors) { OK (ok) ; ok = CHOLMOD(rowfac) (A, NULL, beta, n, n+1, L, cm) ; NOT (ok) ; ok = TRUE ; } /* solve */ if (ok) { /* int saveit = cm->print ; int saveit2 = cm->precise ; cm->print = 5 ; cm->precise = TRUE ; CHOLMOD (print_sparse) (A, "A here", cm) ; CHOLMOD (print_factor) (L, "L here", cm) ; CHOLMOD (print_dense) (B, "B here", cm) ; */ cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; /* CHOLMOD (print_dense) (X, "X here", cm) ; */ cm->prefer_zomplex = FALSE ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_dense) (&X, cm) ; /* cm->print = saveit ; cm->precise = saveit2 ; fprintf (stderr, "solve %8.2e\n", r) ; */ } CHOLMOD(free_factor) (&L, cm) ; } /* ---------------------------------------------------------------------- */ /* factor again with entries in the (ignored) lower part A */ /* ---------------------------------------------------------------------- */ if (A->packed) { L = CHOLMOD(allocate_factor) (n, cm) ; C = add_gunk (A) ; /* C = CHOLMOD(copy) (A, 0, 1, cm) ; if (C != NULL) { C->stype = 1 ; } */ CHOLMOD(rowfac) (C, NULL, beta, 0, n, L, cm) ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; r = resid (A, X, B) ; MAXERR (maxerr, r, 1) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&X, cm) ; } /* ---------------------------------------------------------------------- */ /* factor again using rowfac_mask (for LPDASA only) */ /* ---------------------------------------------------------------------- */ r = raw_factor2 (A, 0., 0) ; MAXERR (maxerr, r, 1) ; r = raw_factor2 (A, 1e-16, 0) ; MAXERR (maxerr, r, 1) ; /* ---------------------------------------------------------------------- */ /* free the problem */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free) (n, sizeof (Int), First, cm) ; CHOLMOD(free) (n, sizeof (Int), Level, cm) ; CHOLMOD(free) (n, sizeof (Int), Parent, cm) ; CHOLMOD(free) (n, sizeof (Int), Post, cm) ; progress (0, '.') ; return (maxerr) ; } /* ========================================================================== */ /* === raw_factor2 ========================================================== */ /* ========================================================================== */ /* A->stype can be 0 (lower), 1 (upper) or 0 (unsymmetric). In the first two * cases, Ax=b is solved. In the third, A*A'x=b is solved. No analysis and no * fill-reducing ordering is used. Both simplicial LL' and LDL' factorizations * are used (testing rowfac_mask, for LPDASA only). */ double raw_factor2 (cholmod_sparse *A, double alpha, int domask) { Int n, i, prefer_zomplex, is_ll, xtype, sorted, axtype, stype ; Int *mask = NULL, *RLinkUp = NULL, nz = 0 ; Int *Cp = NULL, added_gunk ; double maxerr = 0, r = 0 ; cholmod_sparse *AT = NULL, *C = NULL, *CT = NULL, *CC = NULL, *C2 = NULL ; cholmod_factor *L = NULL ; cholmod_dense *B = NULL, *X = NULL ; double beta [2] ; /* int saveit = cm->print ; int saveit2 = cm->precise ; cm->print = 5 ; cm->precise = TRUE ; */ if (A == NULL) { return (0) ; } n = A->nrow ; if (n > 1000) { printf ("\nSkipping rowfac, matrix too large\n") ; return (0) ; } axtype = A->xtype ; beta [0] = alpha ; beta [1] = 0 ; prefer_zomplex = (A->xtype == CHOLMOD_ZOMPLEX) ; AT = CHOLMOD(transpose) (A, 2, cm) ; /* ensure C has stype of 0 or 1. Do not prune any entries */ stype = A->stype ; if (stype >= 0) { A->stype = 0 ; C = CHOLMOD(copy_sparse) (A, cm) ; A->stype = stype ; if (C) C->stype = stype ; /* C = CHOLMOD(copy) (A, 0, 1, cm) ; if (C) C->stype = A->stype ; */ CT = AT ; } else { C = AT ; /* CT = CHOLMOD(copy_sparse) (A, cm) ; */ /* CT = CHOLMOD(copy) (A, 0, 1, cm) ; if (CT) CT->stype = A->stype ; */ A->stype = 0 ; CT = CHOLMOD(copy_sparse) (A, cm) ; A->stype = stype ; if (CT) CT->stype = stype ; /* only domask if C is symmetric and upper part stored */ domask = FALSE ; } mask = CHOLMOD(malloc) (n, sizeof (Int), cm) ; RLinkUp = CHOLMOD(malloc) (n, sizeof (Int), cm) ; if (C && cm->status == CHOLMOD_OK) { for (i = 0 ; i < n ; i++) { mask [i] = -1 ; RLinkUp [i] = i+1 ; } } else { domask = FALSE ; } if (C && !(C->packed) && !(C->sorted)) { /* do not do the unpacked or unsorted cases */ domask = FALSE ; } /* make a copy of C and add some gunk if stype > 0 */ added_gunk = (C && C->stype > 0) ; if (added_gunk) { C2 = add_gunk (C) ; } else { C2 = CHOLMOD(copy_sparse) (C, cm) ; } CC = CHOLMOD(copy_sparse) (C2, cm) ; if (CC && domask) { Int *Cp, *Ci, p ; double *Cx, *Cz ; /* this implicitly sets the first row/col of C to zero, except diag. */ mask [0] = 1 ; /* CC = C2, and then set the first row/col to zero, except diagonal */ Cp = CC->p ; Ci = CC->i ; Cx = CC->x ; Cz = CC->z ; nz = Cp [n] ; switch (C->xtype) { case CHOLMOD_REAL: for (p = 1 ; p < nz ; p++) { if (Ci [p] == 0) Cx [p] = 0 ; } break ; case CHOLMOD_COMPLEX: for (p = 1 ; p < nz ; p++) { if (Ci [p] == 0) { Cx [2*p ] = 0 ; Cx [2*p+1] = 0 ; } } break ; case CHOLMOD_ZOMPLEX: for (p = 1 ; p < nz ; p++) { if (Ci [p] == 0) { Cx [p] = 0 ; Cz [p] = 0 ; } } break ; } } B = rhs (CC, 1, n) ; for (sorted = 1 ; sorted >= 0 ; sorted--) { if (!sorted) { if (C2 && !added_gunk) C2->sorted = FALSE ; if (C) C->sorted = FALSE ; if (CT) CT->sorted = FALSE ; } for (is_ll = 0 ; is_ll <= 1 ; is_ll++) { for (xtype = 0 ; xtype <= 1 ; xtype++) { L = CHOLMOD(allocate_factor) (n, cm) ; if (L) L->is_ll = is_ll ; if (xtype) { CHOLMOD (change_factor) (axtype, is_ll, 0, 0, 1, L, cm) ; } CHOLMOD(rowfac_mask) (sorted ? C : C2, CT, beta, 0, n, mask, RLinkUp, L, cm) ; cm->prefer_zomplex = prefer_zomplex ; X = CHOLMOD(solve) (CHOLMOD_A, L, B, cm) ; cm->prefer_zomplex = FALSE ; r = resid (CC, X, B) ; MAXERR (maxerr, r, 1) ; printf ("rowfac mask: resid is %g\n", r) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_dense) (&X, cm) ; } } } CHOLMOD(free) (n, sizeof (Int), mask, cm) ; CHOLMOD(free) (n, sizeof (Int), RLinkUp, cm) ; CHOLMOD(free_sparse) (&C2, cm) ; CHOLMOD(free_sparse) (&CC, cm) ; CHOLMOD(free_sparse) (&CT, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_dense) (&B, cm) ; return (maxerr) ; } SuiteSparse/CHOLMOD/Tcov/License.txt0000644001170100242450000000203310540000310016047 0ustar davisfacCHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Tcov module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/Tcov/huge.c0000644001170100242450000001562410616503636015061 0ustar davisfac/* ========================================================================== */ /* === Tcov/huge ============================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Tests on huge matrices */ #include "cm.h" #include "amd.h" #ifndef NPARTITION #include "camd.h" #endif /* ========================================================================== */ /* === huge ================================================================= */ /* ========================================================================== */ void huge ( ) { cholmod_sparse *A, *C ; cholmod_triplet *T ; cholmod_factor *L ; cholmod_dense *X ; size_t n, nbig ; int ok = TRUE, save ; Int junk ; FILE *f ; double beta [2] ; n = Size_max ; CHOLMOD (free_work) (cm) ; CHOLMOD (allocate_work) (n, 0, 0, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; n = CHOLMOD(add_size_t) (n, 1, &ok) ; NOT (ok) ; /* create a fake zero sparse matrix, with huge dimensions */ A = CHOLMOD (spzeros) (1, 1, 0, CHOLMOD_REAL, cm) ; A->nrow = Size_max ; A->ncol = Size_max ; A->stype = 0 ; /* create a fake factor, with huge dimensions. */ L = CHOLMOD (allocate_factor) (1, cm) ; OKP (L) ; L->n = Size_max ; CHOLMOD (factorize) (A, L, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; /* free the fake factor */ L->n = 1 ; CHOLMOD (free_factor) (&L, cm) ; /* create a valid factor to test resymbol */ C = CHOLMOD (speye) (1, 1, CHOLMOD_REAL, cm) ; C->stype = 1 ; L = CHOLMOD (analyze) (C, cm) ; OKP (L) ; CHOLMOD (factorize) (C, L, cm) ; ok = CHOLMOD (resymbol) (C, NULL, 0, 0, L, cm) ; OK (ok) ; C->nrow = Size_max ; C->ncol = Size_max ; L->n = Size_max ; ok = CHOLMOD (resymbol) (C, NULL, 0, 0, L, cm) ; NOT (ok) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; printf ("rowfac:\n") ; beta [0] = 1 ; beta [1] = 0 ; C->xtype = CHOLMOD_COMPLEX ; L->xtype = CHOLMOD_COMPLEX ; ok = CHOLMOD (rowfac) (C, NULL, beta, 0, 0, L, cm) ; printf ("rowfac %d\n", cm->status) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C->xtype = CHOLMOD_REAL ; L->xtype = CHOLMOD_REAL ; printf ("rowfac done:\n") ; C->stype = -1 ; ok = CHOLMOD (resymbol_noperm) (C, NULL, 0, 0, L, cm) ; NOT (ok) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C->ncol = 1 ; CHOLMOD (rowadd) (0, C, L, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; CHOLMOD (rowdel) (0, C, L, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C->ncol = 4 ; CHOLMOD (updown) (1, C, L, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C->nrow = 1 ; C->ncol = 1 ; L->n = 1 ; CHOLMOD (free_sparse) (&C, cm) ; CHOLMOD (free_factor) (&L, cm) ; C = CHOLMOD (allocate_sparse) (Size_max, Size_max, Size_max, 0, 0, 0, 0, cm); NOP (C) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; CHOLMOD (rowcolcounts) (A, NULL, 0, &junk, &junk, &junk, &junk, &junk, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C = CHOLMOD (submatrix) (A, &junk, Size_max/2, &junk, Size_max/2, 0, 0, cm) ; NOP (C) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; ok = CHOLMOD (transpose_unsym) (A, 0, &junk, &junk, Size_max, A, cm) ; NOT (ok) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; A->stype = 1 ; ok = CHOLMOD (transpose_sym) (A, 0, &junk, A, cm) ; NOT (ok) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; C = CHOLMOD (ptranspose) (A, 0, &junk, NULL, 0, cm) ; NOP (C) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; A->stype = 0 ; CHOLMOD (amd) (A, NULL, 0, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; L = CHOLMOD (analyze) (A, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; NOP (L) ; #ifndef NPARTITION CHOLMOD (camd) (A, NULL, 0, &junk, NULL, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; #endif printf ("calling colamd\n") ; CHOLMOD (colamd) (A, NULL, 0, 0, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; #ifndef NPARTITION printf ("calling ccolamd\n") ; CHOLMOD (ccolamd) (A, NULL, 0, NULL, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; #endif CHOLMOD (etree) (A, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; L = CHOLMOD (allocate_factor) (Size_max, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; NOP (L) ; #ifndef NPARTITION CHOLMOD (metis) (A, NULL, 0, 0, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; CHOLMOD (bisect) (A, NULL, 0, 0, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; CHOLMOD (nested_dissection) (A, NULL, 0, &junk, &junk, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; #endif CHOLMOD (postorder) (&junk, Size_max, &junk, &junk, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; /* causes overflow in 32-bit version, but not 64-bit */ f = fopen ("../Tcov/Matrix/mega.tri", "r") ; T = CHOLMOD (read_triplet) (f, cm) ; if (sizeof (Int) == sizeof (int)) { NOP (T) ; OK (cm->status != CHOLMOD_OK) ; } CHOLMOD (free_triplet) (&T, cm) ; fclose (f) ; n = Size_max ; X = CHOLMOD (allocate_dense) (n, 1, n, CHOLMOD_REAL, cm) ; NOP (X) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; /* supernodal symbolic test */ C = CHOLMOD (speye) (1, 1, CHOLMOD_REAL, cm) ; C->stype = 1 ; save = cm->supernodal ; cm->supernodal = CHOLMOD_SIMPLICIAL ; L = CHOLMOD (analyze) (C, cm) ; OKP (L) ; junk = 0 ; C->nrow = Size_max ; C->ncol = Size_max ; L->n = Size_max ; CHOLMOD (super_symbolic) (C, C, &junk, L, cm) ; OK (cm->status == CHOLMOD_TOO_LARGE) ; cm->supernodal = save ; C->nrow = 1 ; C->ncol = 1 ; L->n = 1 ; CHOLMOD (free_sparse) (&C, cm) ; CHOLMOD (free_factor) (&L, cm) ; /* supernodal numeric test */ C = CHOLMOD (speye) (1, 1, CHOLMOD_REAL, cm) ; C->stype = -1 ; save = cm->supernodal ; cm->supernodal = CHOLMOD_SUPERNODAL ; L = CHOLMOD (analyze) (C, cm) ; OKP (L) ; OK (cm->status == CHOLMOD_OK) ; C->nrow = Size_max ; C->ncol = Size_max ; L->n = Size_max ; CHOLMOD (super_numeric) (C, C, beta, L, cm) ; cm->supernodal = save ; C->nrow = 1 ; C->ncol = 1 ; L->n = 1 ; CHOLMOD (free_sparse) (&C, cm) ; CHOLMOD (free_factor) (&L, cm) ; /* free the fake matrix */ A->nrow = 1 ; A->ncol = 1 ; CHOLMOD (free_sparse) (&A, cm) ; fprintf (stderr, "\n") ; } SuiteSparse/CHOLMOD/Tcov/leak.c0000644001170100242450000000553710540000052015023 0ustar davisfac/* ========================================================================== */ /* === Tcov/leak ============================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Look for CHOLMOD memory leaks. Run cm with * cholmod_dump >= cholmod_dump_malloc (see Check/cholmod_check.c), * to get output file. Then grep "cnt:" output | leak */ #include #include #include #define LEN 2048 char line [LEN] ; char operation [LEN] ; char s_cnt [LEN] ; char s_inuse [LEN] ; int block [LEN] ; int blocksize [LEN] ; #define FALSE 0 #define TRUE 1 int main (void) { int p, size, cnt2, inuse2, nblocks, found, b, bfound, nlines ; nblocks = 0 ; nlines = 0 ; while (fgets (line, LEN, stdin) != NULL) { sscanf (line, "%s %x %d %s %d %s %d\n", operation, &p, &size, s_cnt, &cnt2, s_inuse, &inuse2) ; nlines++ ; printf ("%d:: %s %x %d %s %d %s %d\n", nlines, operation, p, size, s_cnt, cnt2, s_inuse, inuse2) ; /* determine operation */ if (strcmp (operation, "cholmod_malloc") == 0 || strcmp (operation, "cholmod_realloc_new:") == 0 || strcmp (operation, "cholmod_calloc") == 0) { /* p = malloc (size) */ for (b = 0 ; b < nblocks ; b++) { if (p == block [b]) { printf ("duplicate!\n") ; abort ( ) ; } } if (nblocks >= LEN) { printf ("out of space!\n") ; abort ( ) ; } /* add the new block to the list */ block [nblocks] = p ; blocksize [nblocks] = size ; nblocks++ ; } else if (strcmp (operation, "cholmod_free") == 0 || strcmp (operation, "cholmod_realloc_old:") == 0) { /* p = free (size) */ found = FALSE ; for (b = 0 ; !found && b < nblocks ; b++) { if (p == block [b]) { bfound = b ; found = TRUE ; } } if (!found) { printf ("not found!\n") ; abort ( ) ; } if (size != blocksize [bfound]) { printf ("wrong size! %x : %d vs %d\n", p, size, blocksize[bfound]) ; abort ( ) ; } /* remove the block from the list */ --nblocks ; block [bfound] = block [nblocks] ; blocksize [bfound] = blocksize [nblocks] ; } else { printf ("unrecognized!\n") ; abort ( ) ; } if (cnt2 != nblocks) { printf ("nblocks wrong! %d %d\n", nblocks, cnt2) ; } } return (0) ; } SuiteSparse/CHOLMOD/Tcov/null.c0000644001170100242450000003736210540000063015064 0ustar davisfac/* ========================================================================== */ /* === Tcov/null ============================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test CHOLMOD with NULL pointers, and other error cases. */ #include "cm.h" /* ========================================================================== */ /* === my_hander2 =========================================================== */ /* ========================================================================== */ void my_handler2 (int status, char *file, int line, char *msg) { printf ("This ERROR is expected: file %s line %d\n%d: %s\n", file, line, status, msg) ; } /* ========================================================================== */ /* === null_test ============================================================ */ /* ========================================================================== */ /* This routine is not called during memory testing */ void null_test (cholmod_common *cn) { cholmod_sparse *A = NULL, *F = NULL, *C = NULL, *R = NULL, *B = NULL ; cholmod_factor *L = NULL ; cholmod_triplet *T = NULL ; cholmod_dense *X = NULL, *DeltaB = NULL, *S = NULL, *Y = NULL, *E = NULL ; void *p = NULL, *ii = NULL, *jj = NULL, *xx = NULL, *zz = NULL ; Int *Perm = NULL, *fset = NULL, *Parent = NULL, *Post = NULL, *RowCount = NULL, *ColCount = NULL, *First = NULL, *Level = NULL, *UserPerm = NULL, *colmark = NULL, *Constraints = NULL, *r = NULL, *c = NULL, *Set = NULL ; char *name = NULL ; double alpha [2], beta [2], bk [2], yk [2], rcond ; double dj = 1, nm = 0, tol = 0 ; int ok, stype = 0, xtype = 0, sorted = 0, packed = 0, nint = 0, update = 0, postorder = 0, pack = 0, values = 0, mode = 0, sys = 0, norm = 0, to_xtype = 0, to_ll = 0, to_super = 0, to_packed = 0, to_monotonic = 0, scale = 0, transpose = 0, option = 0, ordering = 0, prefer = 0, mtype = 0, asym = 0 ; UF_long lr = 0, k1 = 0, k2 = 0 ; size_t j = 0, need = 0, n = 0, mr = 0, nrow = 0, ncol = 0, iworksize = 0, newsize = 0, fsize = 0, d = 0, nzmax = 0, nnew = 0, size = 0, nold = 0, xwork = 0, kstart = 0, kend = 0, nr = 0, nc = 0, len = 0, krow = 0, k = 0 ; #ifndef NPARTITION Int *Anw = NULL, *Aew = NULL, *Partition = NULL, *CParent = NULL, *Cmember = NULL ; Int compress = 0 ; #endif /* ---------------------------------------------------------------------- */ /* Core */ /* ---------------------------------------------------------------------- */ if (cn == NULL) { ok = CHOLMOD(start)(cn) ; NOT (ok) ; } ok = CHOLMOD(finish)(cn) ; NOT (ok) ; ok = CHOLMOD(defaults)(cn) ; NOT (ok) ; mr = CHOLMOD(maxrank)(n, cn) ; NOT (mr>0) ; ok = CHOLMOD(allocate_work)(nrow, iworksize, xwork, cn) ; NOT (ok) ; ok = CHOLMOD(free_work)(cn) ; NOT (ok) ; lr = CHOLMOD(clear_flag)(cn) ; NOT (lr>=0) ; dj = CHOLMOD(dbound)(dj, cn) ; OK (dj==0) ; ok = CHOLMOD(error)(CHOLMOD_INVALID, __FILE__, __LINE__, "oops", cn) ; NOT (ok) ; A = CHOLMOD(allocate_sparse)(nrow, ncol, nzmax, sorted, packed, stype, xtype, cn) ; NOP (A) ; ok = CHOLMOD(free_sparse)(&A, cn) ; NOT (ok) ; ok = CHOLMOD(reallocate_sparse)(newsize, A, cn) ; NOT (ok) ; lr = CHOLMOD(nnz)(A, cn) ; NOT (lr>=0) ; A = CHOLMOD(speye)(nrow, ncol, xtype, cn) ; NOP (A) ; A = CHOLMOD(spzeros)(nrow, ncol, 0, xtype, cn) ; NOP (A) ; A = CHOLMOD(ptranspose)(A, values, Perm, fset, fsize, cn); NOP (A) ; A = CHOLMOD(transpose)(A, values, cn) ; NOP (A) ; ok = CHOLMOD(transpose_unsym)(A, values, Perm, fset, fsize, F, cn) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(A, values, Perm, F, cn) ; NOT (ok) ; ok = CHOLMOD(sort)(A, cn) ; NOT (ok) ; A = CHOLMOD(copy_sparse)(A, cn) ; NOP (A) ; C = CHOLMOD(aat)(A, fset, fsize, mode, cn) ; NOP (C) ; L = CHOLMOD(allocate_factor)(n, cn) ; NOP (L) ; ok = CHOLMOD(free_factor)(&L, cn) ; NOT (ok) ; ok = CHOLMOD(reallocate_factor)(newsize, L, cn) ; NOT (ok) ; ok = CHOLMOD(change_factor)(0, 0, 0, 0, 0, L, cn) ; NOT (ok) ; ok = CHOLMOD(pack_factor)(L, cn) ; NOT (ok) ; ok = CHOLMOD(change_factor)(to_xtype, to_ll, to_super, to_packed, to_monotonic, L, cn) ; NOT (ok) ; ok = CHOLMOD(reallocate_column)(j, need, L, cn) ; NOT (ok) ; A = CHOLMOD(factor_to_sparse)(L, cn) ; NOP (A) ; L = CHOLMOD(copy_factor)(L, cn) ; NOP (L) ; X = CHOLMOD(allocate_dense)(nrow, ncol, d, xtype, cn) ; NOP (X) ; X = CHOLMOD(zeros)(nrow, ncol, xtype, cn) ; NOP (X) ; X = CHOLMOD(ones)(nrow, ncol, xtype, cn) ; NOP (X) ; X = CHOLMOD(eye)(nrow, ncol, xtype, cn) ; NOP (X) ; ok = CHOLMOD(free_dense)(&X, cn) ; NOT (ok) ; X = CHOLMOD(sparse_to_dense)(A, cn) ; NOP (X) ; A = CHOLMOD(dense_to_sparse)(X, values, cn) ; NOP (A) ; Y = CHOLMOD(copy_dense)(X, cn) ; NOP (X) ; ok = CHOLMOD(copy_dense2)(X, Y, cn) ; NOT (ok) ; T = CHOLMOD(allocate_triplet)(nrow, ncol, nzmax, stype, xtype, cn) ; NOP (T) ; ok = CHOLMOD(free_triplet)(&T, cn) ; NOT (ok) ; T = CHOLMOD(sparse_to_triplet)(A, cn) ; NOP (T) ; A = CHOLMOD(triplet_to_sparse)(T, 0, cn) ; NOP (A) ; T = CHOLMOD(copy_triplet)(T, cn) ; NOP (T) ; ok = CHOLMOD(reallocate_triplet)(nzmax, T, cn) ; NOT (ok) ; lr = CHOLMOD(postorder)(Parent, nrow, NULL, Post, cn) ; NOT (lr>=0) ; p = CHOLMOD(malloc)(n, size, cn) ; NOP (p) ; p = CHOLMOD(calloc)(n, size, cn) ; NOP (p) ; p = CHOLMOD(free)(n, size, p, cn) ; NOP (p) ; p = CHOLMOD(realloc)(nnew, size, p, &n, cn) ; NOP (p) ; ok = CHOLMOD(realloc_multiple)(nnew, nint, xtype, &ii, &jj, &xx, &zz, &nold, cn) ; NOT (ok) ; C = CHOLMOD(band)(A, k1, k2, mode, cn) ; NOP (C) ; ok = CHOLMOD(band_inplace)(k1, k2, mode, A, cn) ; NOT (ok) ; ok = CHOLMOD(factor_xtype)(CHOLMOD_REAL, L, cn) ; NOT (ok) ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_REAL, A, cn) ; NOT (ok) ; ok = CHOLMOD(dense_xtype)(CHOLMOD_REAL, X, cn) ; NOT (ok) ; ok = CHOLMOD(triplet_xtype)(CHOLMOD_REAL, T, cn) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* Cholesky */ /* ---------------------------------------------------------------------- */ L = CHOLMOD(analyze)(A, cn) ; NOP (L) ; L = CHOLMOD(analyze_p)(A, UserPerm, fset, fsize, cn) ; NOP (L) ; ok = CHOLMOD(factorize)(A, L, cn) ; NOT (ok) ; ok = CHOLMOD(factorize_p)(A, beta, fset, fsize, L, cn) ; NOT (ok) ; rcond = CHOLMOD(rcond)(L, cn) ; NOT (rcond>=0) ; X = CHOLMOD(solve)(sys, L, Y, cn) ; NOP (X) ; C = CHOLMOD(spsolve)(sys, L, B, cn) ; NOP (C) ; ok = CHOLMOD(etree)(A, Parent, cn) ; NOT (ok) ; ok = CHOLMOD(rowcolcounts)(A, fset, fsize, Parent, Post, RowCount, ColCount, First, Level, cn) ; NOT (ok) ; ok = CHOLMOD(amd)(A, fset, fsize, Perm, cn) ; NOT (ok) ; ok = CHOLMOD(camd)(A, fset, fsize, Constraints, Perm, cn) ; NOT (ok) ; ok = CHOLMOD(colamd)(A, fset, fsize, postorder, Perm, cn) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, F, beta, kstart, kend, L, cn) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, F, krow, Parent, R, cn) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, c, 0, krow, L, R, cn) ; NOT (ok) ; ok = CHOLMOD(resymbol)(A, fset, fsize, pack, L, cn) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(A, fset, fsize, pack, L, cn) ;NOT (ok) ; ok = CHOLMOD(analyze_ordering)(A, ordering, Perm, fset, fsize, Parent, Post, ColCount, First, Level, cn) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* Modify */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(updown)(update, C, L, cn) ; NOT (ok) ; ok = CHOLMOD(updown_solve)(update, C, L, X, DeltaB, cn) ; NOT (ok) ; ok = CHOLMOD(updown_mark)(update, C, colmark, L, X, DeltaB, cn) ; NOT (ok) ; ok = CHOLMOD(rowadd)(k, R, L, cn) ; NOT (ok) ; ok = CHOLMOD(rowadd_solve)(k, R, bk, L, X, DeltaB, cn) ; NOT (ok) ; ok = CHOLMOD(rowadd_mark)(k, R, bk, colmark, L, X, DeltaB, cn) ; NOT (ok) ; ok = CHOLMOD(rowdel)(k, R, L, cn) ; NOT (ok) ; ok = CHOLMOD(rowdel_solve)(k, R, yk, L, X, DeltaB, cn) ; NOT (ok) ; ok = CHOLMOD(rowdel_mark)(k, R, yk, colmark, L, X, DeltaB, cn) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* MatrixOps */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(add)(A, B, alpha, beta, values, sorted, cn) ; NOP (C) ; C = CHOLMOD(copy)(A, stype, mode, cn) ; NOP (C) ; ok = CHOLMOD(drop)(tol, A, cn) ; NOT (ok) ; nm = CHOLMOD(norm_dense)(X, norm, cn) ; NOT (nm>=0) ; nm = CHOLMOD(norm_sparse)(A, norm, cn) ; NOT (nm>=0) ; C = CHOLMOD(horzcat)(A, B, values, cn) ; NOP (C) ; ok = CHOLMOD(scale)(S, scale, A, cn) ; NOT (ok) ; ok = CHOLMOD(sdmult)(A, transpose, alpha, beta, X, Y, cn) ; NOT (ok) ; C = CHOLMOD(ssmult)(A, B, stype, values, sorted, cn) ; NOP (C) ; C = CHOLMOD(submatrix)(A, r, nr, c, nc, values, sorted, cn) ; NOP (C) ; C = CHOLMOD(vertcat)(A, B, values, cn) ; NOP (C) ; asym = CHOLMOD(symmetry)(A, option, NULL, NULL, NULL, NULL, cn) ; NOT(asym>=0) ; /* ---------------------------------------------------------------------- */ /* Supernodal */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(super_symbolic)(A, F, Parent, L, cn) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(A, F, beta, L, cn) ; NOT (ok) ; ok = CHOLMOD(super_lsolve)(L, X, E, cn) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, E, cn) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* Check */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(check_common)(cn) ; NOT (ok) ; ok = CHOLMOD(print_common)(name, cn) ; NOT (ok) ; ok = CHOLMOD(check_sparse)(A, cn) ; NOT (ok) ; ok = CHOLMOD(print_sparse)(A, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_dense)(X, cn) ; NOT (ok) ; ok = CHOLMOD(print_dense)(X, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_factor)(L, cn) ; NOT (ok) ; ok = CHOLMOD(print_factor)(L, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_triplet)(T, cn) ; NOT (ok) ; ok = CHOLMOD(print_triplet)(T, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_subset)(Set, len, n, cn) ; NOT (ok) ; ok = CHOLMOD(print_subset)(Set, len, n, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_perm)(Perm, n, n, cn) ; NOT (ok) ; ok = CHOLMOD(print_perm)(Perm, n, n, name, cn) ; NOT (ok) ; ok = CHOLMOD(check_parent)(Parent, n, cn) ; NOT (ok) ; ok = CHOLMOD(print_parent)(Parent, n, name, cn) ; NOT (ok) ; A = CHOLMOD(read_sparse)(NULL, cn) ; NOP (A) ; p = CHOLMOD(read_matrix)(NULL, prefer, &mtype, cn) ; NOP (p) ; X = CHOLMOD(read_dense)(NULL, cn) ; NOP (X) ; T = CHOLMOD(read_triplet)(NULL, cn) ; NOP (T) ; asym = CHOLMOD(write_dense) (NULL, NULL, NULL, cn) ; NOT (asym>=0) ; asym = CHOLMOD(write_dense) ((FILE *) 1, NULL, NULL, cn) ; NOT (asym>=0) ; asym = CHOLMOD(write_sparse)(NULL, NULL, NULL, NULL, cn) ; NOT (asym>=0) ; asym = CHOLMOD(write_sparse)((FILE *) 1, NULL, NULL, NULL, cn) ; NOT (asym>=0) ; /* ---------------------------------------------------------------------- */ /* Partition */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION lr = CHOLMOD(nested_dissection)(A, fset, fsize, Perm, CParent, Cmember, cn) ; NOT (lr >= 0) ; lr = CHOLMOD(collapse_septree) (n, n, 1., 4, CParent, Cmember, cn) ; NOT (lr >= 0) ; ok = CHOLMOD(metis)(A, fset, fsize, postorder, Perm, cn) ; NOT (ok) ; ok = CHOLMOD(ccolamd)(A, fset, fsize, Cmember, Perm, cn) ; NOT (ok) ; ok = CHOLMOD(csymamd)(A, Cmember, Perm, cn) ; NOT (ok) ; lr = CHOLMOD(bisect)(A, fset, fsize, compress, Partition, cn) ; NOT (lr >= 0) ; lr = CHOLMOD(metis_bisector)(A, Anw, Aew, Partition, cn) ; NOT (lr >= 0) ; #endif } /* ========================================================================== */ /* === null_test2 =========================================================== */ /* ========================================================================== */ void null_test2 (void) { cholmod_dense *X, *Xbad = NULL ; cholmod_sparse *Sbad = NULL, *A ; int ok ; /* ---------------------------------------------------------------------- */ /* Test Core Common */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(allocate_work)(Size_max, 1, 1, cm) ; NOT (ok) ; ok = CHOLMOD(allocate_work)(1, Size_max, 1, cm) ; NOT (ok) ; ok = CHOLMOD(allocate_work)(1, 1, Size_max, cm) ; NOT (ok) ; /* free a NULL pointer */ CHOLMOD(free)(42, sizeof (char), NULL, cm) ; cm->print = 5 ; CHOLMOD(print_common)("cm", cm) ; cm->print = 3 ; cm->maxrank = 3 ; cm->maxrank = CHOLMOD(maxrank)(5, cm) ; OK (cm->maxrank == 4) ; cm->maxrank = 1 ; cm->maxrank = CHOLMOD(maxrank)(5, cm) ; OK (cm->maxrank == 2) ; cm->maxrank = 8 ; /* test the error handler */ cm->error_handler = my_handler2 ; CHOLMOD(drop)(0., NULL, cm) ; cm->error_handler = NULL ; /* ---------------------------------------------------------------------- */ /* dense */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(allocate_dense)(5, 4, 1, CHOLMOD_REAL, cm) ; NOP (X) ; X = CHOLMOD(allocate_dense)(1, Int_max, 1, CHOLMOD_REAL, cm) ; NOP (X) ; X = CHOLMOD(allocate_dense)(1, 1, 1, -1, cm) ; NOP (X) ; CHOLMOD(free_dense)(&X, cm) ; /* free a NULL dense matrix */ ok = CHOLMOD(free_dense)(&X, cm) ; OK (ok) ; ok = CHOLMOD(free_dense)(NULL, cm) ; OK (ok) ; /* make an invalid sparse matrix */ Sbad = CHOLMOD(speye)(2, 3, CHOLMOD_REAL, cm) ; OKP (Sbad) ; Sbad->stype = 1 ; ok = CHOLMOD(check_sparse)(Sbad, cm) ; NOT (ok) ; X = CHOLMOD(sparse_to_dense)(Sbad, cm) ; NOP (X) ; ok = CHOLMOD(free_sparse)(&Sbad, cm) ; OK (ok) ; /* make an invalid dense matrix */ Xbad = CHOLMOD(eye)(4, 4, CHOLMOD_REAL, cm) ; OKP (Xbad) ; Xbad->d = 1 ; ok = CHOLMOD(check_dense)(Xbad, cm) ; NOT (ok) ; A = CHOLMOD(dense_to_sparse)(Xbad, TRUE, cm) ; ok = CHOLMOD(free_dense)(&Xbad, cm) ; OK (ok) ; CHOLMOD(print_common)("cm", cm) ; cm->print = 5 ; CHOLMOD(print_sparse)(A, "Bad A", cm) ; cm->print = 3 ; NOP (A) ; /* ---------------------------------------------------------------------- */ /* sparse */ /* ---------------------------------------------------------------------- */ /* free a NULL sparse matrix */ ok = CHOLMOD(free_sparse)(&A, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(NULL, cm) ; OK (ok) ; A = CHOLMOD(copy_sparse)(NULL, cm) ; NOP (A) ; /* ---------------------------------------------------------------------- */ /* error tests done */ /* ---------------------------------------------------------------------- */ printf ("------------------ null tests done\n") ; } SuiteSparse/CHOLMOD/Tcov/covall.sol0000755001170100242450000000020610533351347015753 0ustar davisfac#!/bin/csh tcov -x cm.profile z*.c >& /dev/null echo -n "statments not yet tested: " ./covs > covs.out grep "#####" *tcov | wc -l SuiteSparse/CHOLMOD/Tcov/README.txt0000644001170100242450000000453110540513363015450 0ustar davisfacTcov directory: Torture test for CHOLMOD, with statement coverage. -------------------------------------------------------------------------------- This test suite is not required to compile and use CHOLMOD. It is thus not ported to all architectures. Linux is assumed; see the Makefile for running on Solaris. Use tcov instead of gcov in the "covall" script. Edit the Makefile and change the definition of CC. You may need to change PRETTY as well. You will need to edit LIB to reflect the proper LAPACK and BLAS libraries. Requires all CHOLMOD modules except the Partition Module, which it can optionally use (and test). Also acts as a statement coverage test for AMD, COLAMD, and CCOLAMD. Type "make" in this directory to compile CHOLMOMD with statement coverage testing. Then type "make go" to run the tests. Note that about 500MB of disk space is required, mostly in the tmp/ directory. Every line of AMD, CAMD, COLAMD, CCOLAMD, and CHOLMOD will be exercised, and their results checked. The line "All tests passed" should be printed for each test on stderr. Some matrices will report NaN as their maximum error; these are the four singular test matrices (Matrix/1_0, Matrix/3singular, Matrix/c3singluar, and Matrix/z3singular). These test results are expected. Nan's will also appear in tmp/galenet_nan.out and tmp/l_galenet_nan.out; these are generated intentionally, to test the code's NaN-handling features. The source code files are first preprocessed with cc -E, and the resulting file (z_*.c, zz_*.c, l_*.c, or zl_*.c) is then compiled. This is to ensure that all lines within macros and included *.c files are tested (take a look at z_updown.c and z_solve.c if you'd like to see how loop-unrolling and real/complex templates are done in CHOLMOD, and compare those files with their source files in ../Modify and ../Cholesky). Note that many, many error messages will appear in the test output itself (tmp/*.out), because all of CHOLMOD's error handling is checked as well. These errors are expected. Any unexpected error will cause the test to fail. The last line of each output file should be "All tests successful". To remove all but the original source files and output files from this directory, type "make clean". To remove all but the files in the original distribution, type "make distclean". The output of "make go" is in the "make_go.output" file. SuiteSparse/CHOLMOD/Tcov/amdtest.c0000644001170100242450000002612010540000024015536 0ustar davisfac/* ========================================================================== */ /* === Tcov/amdtest ========================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test for amd v2.0 */ #include "cm.h" #include "amd.h" /* ========================================================================== */ /* === amdtest ============================================================== */ /* ========================================================================== */ void amdtest (cholmod_sparse *A) { double Control [AMD_CONTROL], Info [AMD_INFO], alpha ; Int *P, *Cp, *Ci, *Sp, *Si, *Bp, *Bi, *Ep, *Ei, *Fp, *Fi, *Len, *Nv, *Next, *Head, *Elen, *Deg, *Wi, *W, *Flag ; cholmod_sparse *C, *B, *S, *E, *F ; Int i, j, n, nrow, ncol, ok, cnz, bnz, p, trial, sorted ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ printf ("\nAMD test\n") ; if (A == NULL) { return ; } if (A->stype) { B = CHOLMOD(copy) (A, 0, 0, cm) ; } else { B = CHOLMOD(aat) (A, NULL, 0, 0, cm) ; } if (A->nrow != A->ncol) { F = CHOLMOD(copy_sparse) (B, cm) ; OK (F->nrow == F->ncol) ; CHOLMOD(sort) (F, cm) ; } else { /* A is square and unsymmetric, and may have entries in A+A' that * are not in A */ F = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sort) (F, cm) ; } C = CHOLMOD(copy_sparse) (B, cm) ; nrow = C->nrow ; ncol = C->ncol ; n = nrow ; OK (nrow == ncol) ; Cp = C->p ; Ci = C->i ; Bp = B->p ; Bi = B->i ; /* ---------------------------------------------------------------------- */ /* S = sorted form of B, using AMD_preprocess */ /* ---------------------------------------------------------------------- */ cnz = CHOLMOD(nnz) (C, cm) ; S = CHOLMOD(allocate_sparse) (n, n, cnz, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm); Sp = S->p ; Si = S->i ; W = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Flag = CHOLMOD(malloc) (n, sizeof (Int), cm) ; AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; /* ---------------------------------------------------------------------- */ /* allocate workspace for amd */ /* ---------------------------------------------------------------------- */ P = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Len = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Nv = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Next = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Head = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Elen = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Deg = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Wi = CHOLMOD(malloc) (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ for (sorted = 0 ; sorted <= 1 ; sorted++) { if (sorted) CHOLMOD(sort) (C, cm) ; Cp = C->p ; Ci = C->i ; /* ------------------------------------------------------------------ */ /* order C with AMD_order */ /* ------------------------------------------------------------------ */ AMD_defaults (Control) ; AMD_defaults (NULL) ; AMD_control (Control) ; AMD_control (NULL) ; AMD_info (NULL) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation", cm)) ; /* no dense rows/cols */ alpha = Control [AMD_DENSE] ; Control [AMD_DENSE] = -1 ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (alpha=-1)", cm)) ; /* many dense rows/cols */ Control [AMD_DENSE] = 0 ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (alpha=0)", cm)) ; Control [AMD_DENSE] = alpha ; /* no aggressive absorption */ Control [AMD_AGGRESSIVE] = FALSE ; AMD_control (Control) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation (no agg) ", cm)) ; Control [AMD_AGGRESSIVE] = TRUE ; /* ------------------------------------------------------------------ */ /* order F with AMD_order */ /* ------------------------------------------------------------------ */ Fp = F->p ; Fi = F->i ; ok = AMD_order (n, Fp, Fi, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "F: AMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order S with AMD_order */ /* ------------------------------------------------------------------ */ ok = AMD_order (n, Sp, Si, P, Control, Info) ; printf ("amd return value: "ID"\n", ok) ; AMD_info (Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order E with AMD_2, which destroys its contents */ /* ------------------------------------------------------------------ */ E = CHOLMOD(copy) (B, 0, -1, cm) ; /* remove diagonal entries */ bnz = CHOLMOD(nnz) (E, cm) ; /* add the bare minimum extra space to E */ ok = CHOLMOD(reallocate_sparse) (bnz + n, E, cm) ; OK (ok) ; Ep = E->p ; Ei = E->i ; for (j = 0 ; j < n ; j++) { Len [j] = Ep [j+1] - Ep [j] ; } printf ("calling AMD_2:\n") ; if (n > 0) { AMD_2 (n, Ep, Ei, Len, E->nzmax, Ep [n], Nv, Next, P, Head, Elen, Deg, Wi, Control, Info) ; AMD_info (Info) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD2 permutation", cm)) ; } /* ------------------------------------------------------------------ */ /* error tests */ /* ------------------------------------------------------------------ */ ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_order (-1, Cp, Ci, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (0, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_order (n, NULL, Ci, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (n, Cp, NULL, P, Control, Info) ; OK (ok == AMD_INVALID); ok = AMD_order (n, Cp, Ci, NULL, Control, Info) ; OK (ok == AMD_INVALID); if (n > 0) { printf ("AMD error tests:\n") ; p = Cp [n] ; Cp [n] = -1 ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (ok == AMD_INVALID) ; if (Size_max/2 == Int_max) { Cp [n] = Int_max ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; printf ("AMD status is %d\n", ok) ; OK (ok == AMD_OUT_OF_MEMORY) ; } Cp [n] = p ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; if (Cp [n] > 0) { printf ("Mangle column zero:\n") ; i = Ci [0] ; Ci [0] = -1 ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; AMD_info (Info) ; OK (ok == AMD_INVALID) ; Ci [0] = i ; } } ok = AMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; ok = AMD_valid (-1, n, Sp, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, -1, Sp, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, n, NULL, Si) ; OK (ok == AMD_INVALID) ; ok = AMD_valid (n, n, Sp, NULL) ; OK (ok == AMD_INVALID) ; if (n > 0 && Sp [n] > 0) { p = Sp [n] ; Sp [n] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [n] = p ; p = Sp [0] ; Sp [0] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [0] = p ; p = Sp [1] ; Sp [1] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Sp [1] = p ; i = Si [0] ; Si [0] = -1 ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_INVALID) ; Si [0] = i ; } ok = AMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; ok = AMD_valid (n, n, Sp, Si) ; OK (ok == AMD_OK) ; if (n > 0 && Bp [n] > 0) { p = Bp [n] ; Bp [n] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bp [n] = p ; p = Bp [1] ; Bp [1] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bp [1] = p ; i = Bi [0] ; Bi [0] = -1 ; ok = AMD_valid (n, n, Bp, Bi) ; OK (ok == AMD_INVALID) ; Bi [0] = i ; } AMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; Info [AMD_STATUS] = 777 ; AMD_info (Info) ; /* ------------------------------------------------------------------ */ /* memory tests */ /* ------------------------------------------------------------------ */ if (n > 0) { amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; OK (sorted ? (ok == AMD_OK) : (ok >= AMD_OK)) ; test_memory_handler ( ) ; amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; for (trial = 0 ; trial < 6 ; trial++) { my_tries = trial ; printf ("AMD memory trial "ID"\n", trial) ; ok = AMD_order (n, Cp, Ci, P, Control, Info) ; AMD_info (Info) ; OK (ok == AMD_OUT_OF_MEMORY || (sorted ? (ok == AMD_OK) : (ok >= AMD_OK))) ; } normal_memory_handler ( ) ; OK (CHOLMOD(print_perm) (P, n, n, "AMD2 permutation", cm)) ; amd_malloc = cm->malloc_memory ; amd_free = cm->free_memory ; } CHOLMOD(free_sparse) (&E, cm) ; } /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (n, sizeof (Int), Len, cm) ; CHOLMOD(free) (n, sizeof (Int), Nv, cm) ; CHOLMOD(free) (n, sizeof (Int), Next, cm) ; CHOLMOD(free) (n+1, sizeof (Int), Head, cm) ; CHOLMOD(free) (n, sizeof (Int), Elen, cm) ; CHOLMOD(free) (n, sizeof (Int), Deg, cm) ; CHOLMOD(free) (n, sizeof (Int), Wi, cm) ; CHOLMOD(free) (n+1, sizeof (Int), P, cm) ; CHOLMOD(free) (n, sizeof (Int), W, cm) ; CHOLMOD(free) (n, sizeof (Int), Flag, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&B, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&F, cm) ; } SuiteSparse/CHOLMOD/Tcov/gpl.txt0000644001170100242450000004313310253411071015270 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/Tcov/comments.txt0000644001170100242450000000006410532617404016337 0ustar davisfac Comments for testing cholmod_read/write functions. SuiteSparse/CHOLMOD/Tcov/null2.c0000644001170100242450000032626410540000061015146 0ustar davisfac/* ========================================================================== */ /* === Tcov/null2 =========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Null and error tests, continued. */ #include "cm.h" #include "amd.h" #ifndef NPARTITION #include "camd.h" #endif #define CSETSIZE 5 /* ========================================================================== */ /* === null2 ================================================================ */ /* ========================================================================== */ void null2 (cholmod_triplet *Tok, int do_nantests) { double nm, gsave0, gsave1, r, anorm, beta [2], maxerr, xnan, rcond, ax, az, bx, bz, cx, cz, dx, dz, ex, ez ; cholmod_sparse *A, *C, *AT, *E, *F, *G, *Sok, *R0, *R1, *Aboth, *Axbad, *I1, *Abad, *R, *Acopy, *R3, *Abad2, *I, *I3, *Abad3, *AA, *Rt, *AF, *AFT, *I7, *C2, *R2, *Z ; cholmod_dense *Xok, *Bok, *Two, *X, *W, *XX, *YY, *Xbad2, *B, *Scale, *Y, *X1, *B1, *B2, *X7, *B7 ; cholmod_factor *L, *L2, *L3, *L4, *L5, *L6, *Lcopy, *Lbad, *L7 ; cholmod_triplet *T, *T2, *Tz, *T3 ; Int *fsetok, *Pok, *Flag, *Head, *Cp, *Ci, *P2, *Parent, *Lperm, *Lp, *Li, *Lnz, *Lprev, *Lnext, *Ls, *Lpi, *Lpx, *Super, *Tj, *Ti, *Enz, *Ep, *Post, *Cmember, *CParent, *Partition, *Pinv, *ATi, *ATp, *LColCount, *ColCount, *First, *Level, *fsetbad, *Pbad, *Lz, *R2p, *R2i ; double *Xwork, *Cx, *x, *Lx, *Tx, *Az, *R2x ; size_t size, nznew, gsave2 ; UF_long lr ; void *pp, *ii, *jj, *xx ; Int p, i, j, d, nrhs, nrow, ncol, stype, fsizeok, nz, ok, n2, trial, anz, nzmax, cset [CSETSIZE], Axbad_type, isreal, xtype, enz, Lxtype, Cxtype, Xxtype, Txtype, Abad2xtype, k, xtype2, Abad3xtype, save1, save2, save3, save4, ok1, fnz ; int option, asym ; FILE *f ; beta [0] = 1e-6 ; beta [1] = 0 ; xnan = 0 ; xtype = Tok->xtype ; isreal = (xtype == CHOLMOD_REAL) ; /* ---------------------------------------------------------------------- */ /* hypot and divcomplex */ /* ---------------------------------------------------------------------- */ maxerr = 0 ; ax = 4.3 ; az = 9.2 ; for (i = 0 ; i <= 1 ; i++) { if (i == 0) { bx = 3.14159 ; bz = -1.2 ; } else { bx = 0.9 ; bz = -1.2 ; } /* c = a/b */ CHOLMOD(divcomplex)(ax, az, bx, bz, &cx, &cz) ; /* d = c*b */ dx = cx * bx - cz * bz ; dz = cz * bx + cx * bz ; /* e = d-a, which should be zero */ ex = dx - ax ; ez = dz - az ; r = CHOLMOD(hypot)(ex, ez) ; MAXERR (maxerr, r, 1) ; OK (r < 1e-14) ; } /* ---------------------------------------------------------------------- */ /* create objects to test */ /* ---------------------------------------------------------------------- */ printf ("\n------------------------null2 tests:\n") ; cm->error_handler = my_handler ; CHOLMOD(check_triplet)(Tok, cm) ; nrhs = 5 ; nrow = Tok->nrow ; ncol = Tok->ncol ; d = nrow + 2 ; A = CHOLMOD(triplet_to_sparse)(Tok, 0, cm) ; /* [ */ anorm = CHOLMOD(norm_sparse)(A, 1, cm) ; anz = A->nzmax ; AT = CHOLMOD(transpose)(A, 2, cm) ; /* [ */ printf ("xtrue:\n") ; Xok = xtrue (nrow, nrhs, d, xtype) ; /* [ */ printf ("rhs:\n") ; Bok = rhs (A, nrhs, d) ; /* [ */ printf ("fset:\n") ; fsetok = prand (ncol) ; /* [ */ /* RAND */ fsetbad = prand (ncol) ; /* [ */ /* RAND */ if (ncol > 0) { fsetbad [0] = -1 ; } Pbad = prand (nrow) ; /* [ */ /* RAND */ if (nrow > 0) { Pbad [0] = -1 ; } I1 = CHOLMOD(speye)(nrow+1, nrow+1, xtype, cm) ; /* [ */ fsizeok = (ncol < 2) ? ncol : (ncol/2) ; Pok = prand (nrow) ; /* [ */ /* RAND */ R2 = CHOLMOD(allocate_sparse)(nrow, 1, nrow, FALSE, TRUE, 0, /* [ */ CHOLMOD_REAL, cm) ; OKP (R2) ; R2p = R2->p ; R2i = R2->i ; R2x = R2->x ; for (i = 0 ; i < nrow ; i++) { R2i [i] = Pok [i] ; R2x [i] = 1 ; } R2p [0] = 0 ; R2p [1] = nrow ; stype = A->stype ; Two = CHOLMOD(zeros)(1, 1, xtype, cm) ; /* [ */ *((double *)(Two->x)) = 2 ; Pinv = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; /* [ */ Parent = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; Post = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; Cmember = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; CParent = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; Partition = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; ColCount = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; First = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; Level = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; printf ("etree:\n") ; if (AT->stype >= 0) { /* AT is unsymmetric, or symmetric/upper */ CHOLMOD(etree)(AT, Parent, cm) ; } else { /* A is symmetric/upper */ CHOLMOD(etree)(A, Parent, cm) ; } CHOLMOD(check_parent)(Parent, nrow, cm) ; for (cm->print = 0 ; cm->print <= ((nrow <= 30) ? 5 : 4) ; cm->print++) { CHOLMOD(print_parent)(Parent, nrow, "Parent", cm) ; } cm->print = 1 ; /* get row 0 and row 1 of A */ R0 = NULL ; R1 = NULL ; Aboth = NULL ; Sok = NULL ; if (isreal) { Aboth = CHOLMOD(copy)(A, 0, 1, cm) ; /* [ */ Sok = CHOLMOD(copy)(A, 0, 0, cm) ; Aboth->sorted = FALSE ; } if (isreal) /* [ */ { if (nrow > 1) { cm->print = 4 ; if (nrow < 10) { ok = CHOLMOD(print_sparse)(Aboth, "Aboth", cm) ; OK (ok) ; } i = 0 ; R0 = CHOLMOD(submatrix)(Aboth, &i, 1, NULL, -1, TRUE, TRUE, cm) ; ok = CHOLMOD(print_sparse)(R0, "Row zero", cm) ; OK (ok) ; i = 1 ; R1 = CHOLMOD(submatrix)(Aboth, &i, 1, NULL, -1, TRUE, TRUE, cm) ; ok = CHOLMOD(print_sparse)(R1, "Row one", cm) ; OK (ok) ; Rt = CHOLMOD(transpose)(R1, 1, cm) ; C = CHOLMOD(ssmult)(R0, Rt, 0, TRUE, TRUE, cm) ; OKP (C) ; ok = CHOLMOD(print_sparse)(C, "(Row zero)*(Row one)'", cm) ;OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&Rt, cm) ; OK (ok) ; cm->print = 1 ; } } /* Abad: symmetric but not square, or null if A is square */ if (A->nrow != A->ncol) { Abad = CHOLMOD(copy_sparse)(A, cm) ; /* [ */ Abad->stype = 1 ; } else { Abad = NULL ; } /* Abad2: sparse matrix with invalid xtype */ printf ("allocate Abad2:\n") ; Abad2 = CHOLMOD(copy_sparse)(A, cm) ; /* [ */ cm->print = 4 ; CHOLMOD(print_sparse)(Abad2, "Abad2", cm) ; cm->print = 1 ; Abad2xtype = Abad2->xtype ; Abad2->xtype = -999 ; /* Xbad2: dense matrix with invalid xtype */ printf ("allocate Xbad2:\n") ; Xbad2 = CHOLMOD(zeros)(2, 2, CHOLMOD_REAL, cm) ; /* [ */ Xbad2->xtype = -911 ; /* ---------------------------------------------------------------------- */ /* expect lots of errors */ /* ---------------------------------------------------------------------- */ printf ("\n------------------------null2 tests: ERRORs will occur\n") ; cm->error_handler = NULL ; /* ---------------------------------------------------------------------- */ /* transpose */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(transpose)(Abad2, 1, cm) ; NOP (C) ; ok = CHOLMOD(sort)(Abad2, cm) ; NOT (ok) ; ok = CHOLMOD(sort)(NULL, cm) ; NOT (ok) ; if (nrow > 0) { C = CHOLMOD(ptranspose)(A, 1, Pbad, NULL, 0, cm) ; NOP (C) ; } C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, TRUE, -(A->stype), xtype, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, NULL, NULL, 0, C, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, FALSE, -(A->stype), xtype, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, NULL, NULL, 0, C, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, FALSE, -(A->stype), xtype, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, Pok, NULL, 0, C, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, FALSE, -(A->stype), xtype, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, Pok, fsetok, fsizeok, C, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, FALSE, -(A->stype), xtype, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, NULL, fsetok, fsizeok, C, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(allocate_sparse)(ncol, nrow, anz, TRUE, FALSE, -(A->stype), CHOLMOD_PATTERN, cm) ; OKP (C) ; ok = CHOLMOD(transpose_unsym)(A, 1, NULL, fsetok, fsizeok, C, cm) ; OK (ok); E = CHOLMOD(allocate_sparse)(nrow, ncol, anz, TRUE, FALSE, (A->stype), CHOLMOD_PATTERN, cm) ; OKP (C) ; enz = CHOLMOD(nnz)(E, cm) ; OK (enz == 0) ; ok = CHOLMOD(transpose_unsym)(C, 1, NULL, Pok, nrow, E, cm) ; OK (ok); ok = CHOLMOD(free_sparse)(&E, cm) ; OK (ok) ; if (A->nrow != A->ncol) { ok = CHOLMOD(transpose_sym)(A, 1, NULL, C, cm) ; NOT (ok) ; } ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; /* Abad3: sparse matrix with invalid xtype [ */ printf ("allocate Abad3:\n") ; C = CHOLMOD(copy_sparse)(A, cm) ; Abad3 = CHOLMOD(transpose)(A, 1, cm) ; OKP (Abad3) ; E = CHOLMOD(transpose)(A, 1, cm) ; OKP (E) ; Abad3xtype = Abad3->xtype ; Abad3->xtype = -999 ; ok = CHOLMOD(transpose_sym)(C, 1, NULL, Abad3, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(Abad3, 1, NULL, C, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_unsym)(C, 1, NULL, NULL, 0, Abad3, cm) ;NOT (ok); ok = CHOLMOD(transpose_unsym)(Abad3, 1, NULL, NULL, 0, C, cm) ;NOT (ok); switch (xtype) { case CHOLMOD_REAL: CHOLMOD(sparse_xtype)(CHOLMOD_COMPLEX, E, cm) ; break ; case CHOLMOD_COMPLEX: CHOLMOD(sparse_xtype)(CHOLMOD_ZOMPLEX, E, cm) ; break ; case CHOLMOD_ZOMPLEX: CHOLMOD(sparse_xtype)(CHOLMOD_COMPLEX, E, cm) ; break ; } printf ("mismatch start [:\n") ; ok = CHOLMOD(transpose_sym)(C, 1, NULL, E, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(E, 1, NULL, C, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(C, 2, NULL, E, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(E, 2, NULL, C, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_unsym)(C, 1, NULL, NULL, 0, E, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(E, 1, NULL, NULL, 0, C, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(C, 2, NULL, NULL, 0, E, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(E, 2, NULL, NULL, 0, C, cm) ; NOT (ok); printf ("mismatch done ]\n") ; printf ("wrong dim [:\n") ; ok = CHOLMOD(transpose_sym)(C, 1, NULL, I1, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(I1, 1, NULL, C, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_unsym)(C, 1, NULL, NULL, 0, I1, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(I1, 1, NULL, NULL, 0, C, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(C, 2, NULL, NULL, 0, I1, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(I1, 2, NULL, NULL, 0, C, cm) ; NOT (ok); printf ("wrong dim ]\n") ; nz = CHOLMOD(nnz)(C, cm) ; if (nz > 10) { printf ("F too small [:\n") ; F = CHOLMOD(allocate_sparse)(C->ncol, C->nrow, C->nzmax-5, TRUE, TRUE, -(C->stype), C->xtype, cm) ; OKP (F) ; ok = CHOLMOD(transpose_sym)(C, 1, NULL, F, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_unsym)(C, 1, NULL, NULL, 0, F, cm) ; NOT (ok); CHOLMOD(free_sparse)(&F, cm) ; printf ("F too small ]\n") ; } ok = CHOLMOD(transpose_unsym)(C, 1, NULL, NULL, 0, NULL, cm) ; NOT (ok); ok = CHOLMOD(transpose_unsym)(NULL, 1, NULL, NULL, 0, C, cm) ; NOT (ok); ok = CHOLMOD(transpose_sym)(C, 1, NULL, NULL, cm) ; NOT (ok); ok = CHOLMOD(transpose_sym)(NULL, 1, NULL, C, cm) ; NOT (ok); CHOLMOD(free_sparse)(&C, cm) ; CHOLMOD(free_sparse)(&E, cm) ; Abad3->xtype = Abad3xtype ; CHOLMOD(free_sparse)(&Abad3, cm) ; /* ] */ cm->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* aat */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(aat)(NULL, NULL, 0, 0, cm) ; NOP (C) ; if (stype) { C = CHOLMOD(aat)(A, fsetok, fsizeok, 0, cm) ; NOP (C) ; } else { C = CHOLMOD(aat)(A, fsetok, fsizeok, 0, cm) ; OKP (C) ; CHOLMOD(free_sparse)(&C, cm) ; C = CHOLMOD(aat)(Abad2, fsetok, fsizeok, 0, cm) ; NOP (C) ; } /* ---------------------------------------------------------------------- */ /* add */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(add)(A, NULL, one, one, TRUE, TRUE, cm) ; NOP (C) ; C = CHOLMOD(add)(NULL, AT, one, one, TRUE, TRUE, cm) ; NOP (C) ; C = CHOLMOD(add)(A, AT, one, one, TRUE, TRUE, cm) ; if (A->nrow == A->ncol && isreal) { OKP (C) ; /* C should equal 2*A if A=A' */ if (stype) { double *s ; E = CHOLMOD(copy_sparse)(A, cm) ; CHOLMOD(scale)(Two, CHOLMOD_SCALAR, E, cm) ; F = CHOLMOD(add)(C, E, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(drop)(0., F, cm) ; nz = CHOLMOD(nnz)(F, cm) ; OK (nz == 0) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&F, cm) ; Scale = CHOLMOD(zeros)(nrow, 1, CHOLMOD_REAL, cm) ; s = Scale->x ; for (i = 0 ; i < nrow ; i++) { s [i] = 2 ; } E = CHOLMOD(copy_sparse)(A, cm) ; CHOLMOD(scale)(Scale, CHOLMOD_ROW, E, cm) ; F = CHOLMOD(add)(C, E, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(drop)(0., F, cm) ; nz = CHOLMOD(nnz)(F, cm) ; r = CHOLMOD(norm_sparse)(F, 0, cm) ; OK (nz == 0) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&F, cm) ; E = CHOLMOD(copy_sparse)(A, cm) ; CHOLMOD(scale)(Scale, CHOLMOD_COL, E, cm) ; F = CHOLMOD(add)(C, E, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(drop)(0., F, cm) ; nz = CHOLMOD(nnz)(F, cm) ; r = CHOLMOD(norm_sparse)(F, 0, cm) ; OK (nz == 0) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&F, cm) ; for (i = 0 ; i < nrow ; i++) { s [i] = sqrt (2) ; } E = CHOLMOD(copy_sparse)(A, cm) ; CHOLMOD(scale)(Scale, CHOLMOD_SYM, E, cm) ; F = CHOLMOD(add)(C, E, one, minusone, TRUE, TRUE, cm) ; CHOLMOD(drop)(0., F, cm) ; nz = CHOLMOD(nnz)(F, cm) ; r = CHOLMOD(norm_sparse)(F, 0, cm) ; OK (r < 1e-12*anorm) ; Scale->x = NULL ; CHOLMOD(scale)(Scale, CHOLMOD_SYM, E, cm) ; Scale->x = s ; OKP (E) ; OKP (cm) ; ok = CHOLMOD(scale)(NULL, CHOLMOD_ROW, E, cm) ; NOT (ok) ; ok = CHOLMOD(scale)(Scale, CHOLMOD_SYM, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(scale)(NULL, CHOLMOD_SYM, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(scale)(Scale, -1, E, cm) ; NOT (ok) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&F, cm) ; CHOLMOD(free_dense)(&Scale, cm) ; } CHOLMOD(free_sparse)(&C, cm) ; } else { NOP (C) ; } Axbad = CHOLMOD(copy_sparse)(A, cm) ; /* [ */ Axbad_type = Axbad->xtype ; Axbad->xtype = CHOLMOD_COMPLEX ; C = CHOLMOD(add)(A, Axbad, one, one, TRUE, TRUE, cm) ; NOP (C) ; if (nrow > 1 && xtype == CHOLMOD_REAL) { /* C = A (0,:) + A (1,:) */ C = CHOLMOD(add)(R0, R1, one, one, TRUE, TRUE, cm) ; OKP (C) ; OK (CHOLMOD(check_sparse)(C, cm)) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(NULL, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* sparse */ /* ---------------------------------------------------------------------- */ cm->print = 4 ; ok = CHOLMOD(reallocate_sparse)(10, NULL, cm) ; NOT (ok) ; C = CHOLMOD(allocate_sparse)(10, 10, 10, TRUE, TRUE, 0, -1, cm) ; NOP (C) ; ok = CHOLMOD(reallocate_sparse)(Abad2->nzmax, Abad2, cm) ; NOT (ok) ; C = CHOLMOD(copy_sparse)(Abad2, cm) ; NOP (C) ; C = CHOLMOD(allocate_sparse)(2, 3, 6, TRUE, TRUE, 1, 0, cm) ; NOP (C) ; C = CHOLMOD(copy)(A, 0, -1, cm) ; OKP (C) ; E = unpack (C) ; OKP (E) ; F = CHOLMOD(copy_sparse)(E, cm) ; OKP (F) ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_REAL, C, cm) ; OK (ok) ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_REAL, F, cm) ; OK (ok) ; /* G = C-F */ G = CHOLMOD(add)(C, F, one, minusone, TRUE, FALSE, cm) ; OKP (G) ; ok = CHOLMOD(drop)(0., G, cm) ; OK (ok) ; nz = CHOLMOD(nnz)(G, cm) ; CHOLMOD(print_sparse)(C, "C", cm) ; CHOLMOD(print_sparse)(E, "E", cm) ; CHOLMOD(print_sparse)(F, "F", cm) ; CHOLMOD(print_sparse)(G, "G", cm) ; OK (nz == 0) ; CHOLMOD(free_sparse)(&C, cm) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&F, cm) ; CHOLMOD(free_sparse)(&G, cm) ; cm->print = 1 ; /* ---------------------------------------------------------------------- */ /* scale */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(scale)(Two, -1, C, cm) ; NOT (ok) ; if (nrow > 1) { E = CHOLMOD(copy_sparse)(A, cm) ; OKP (E) ; CHOLMOD(scale)(Two, CHOLMOD_ROW, E, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&E, cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* amd */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(amd)(NULL, NULL, 0, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(amd)(A, NULL, 0, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(amd)(NULL, NULL, 0, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(amd)(A, NULL, 0, Pok, cm) ; OK (ok) ; cm->current = -1 ; ok = CHOLMOD(amd)(A, NULL, 0, Pok, cm) ; OK (ok) ; cm->current = 0 ; ok = CHOLMOD(print_perm)(Pok, nrow, nrow, "AMD perm", cm) ; OK (ok) ; i = cm->print ; cm->print = 4 ; if (A->nrow < 1000 && isreal) { CHOLMOD(print_sparse)(Aboth, "Aboth", cm) ; ok = CHOLMOD(amd)(Aboth, NULL, 0, Pok, cm) ; OK (ok) ; } cm->print = i ; ok = CHOLMOD(amd)(Abad2, NULL, 0, Pok, cm) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* camd */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION ok = CHOLMOD(camd)(NULL, NULL, 0, NULL, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(camd)(A, NULL, 0, NULL, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(camd)(NULL, NULL, 0, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(camd)(A, NULL, 0, NULL, Pok, cm) ; OK (ok) ; cm->current = -1 ; ok = CHOLMOD(camd)(A, NULL, 0, NULL, Pok, cm) ; OK (ok) ; cm->current = 0 ; ok = CHOLMOD(print_perm)(Pok, nrow, nrow, "CAMD perm", cm) ; OK (ok) ; i = cm->print ; cm->print = 4 ; if (A->nrow < 1000 && isreal) { CHOLMOD(print_sparse)(Aboth, "Aboth", cm) ; ok = CHOLMOD(camd)(Aboth, NULL, 0, NULL, Pok, cm) ; OK (ok) ; } cm->print = i ; ok = CHOLMOD(camd)(Abad2, NULL, 0, NULL, Pok, cm) ; NOT (ok) ; #endif /* ---------------------------------------------------------------------- */ /* analyze */ /* ---------------------------------------------------------------------- */ cm->nmethods = 1 ; cm->method [0].ordering = -1 ; ok = CHOLMOD(print_common)("Bad cm", cm) ; NOT (ok) ; ok = CHOLMOD(analyze_ordering)(NULL, 0, NULL, NULL, 0, NULL, NULL, NULL, NULL, NULL, cm) ; NOT (ok) ; L = CHOLMOD(analyze)(NULL, cm) ; NOP (L) ; L = CHOLMOD(analyze)(Abad2, cm) ; NOP (L) ; L = CHOLMOD(analyze)(A, cm) ; OKP (L) ; cm->nmethods = 0 ; /* restore defaults */ cm->method [0].ordering = CHOLMOD_GIVEN ; cm->print = 4 ; ok = CHOLMOD(print_common)("OKcm", cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L, "L symbolic", cm) ; OK (ok) ; cm->print = 1 ; ok = CHOLMOD(free_factor)(&L, cm) ; OK (ok) ; ok = CHOLMOD(free_factor)(&L, cm) ; OK (ok) ; ok = CHOLMOD(free_factor)(NULL, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* band */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(band)(NULL, 0, 0, 0, cm) ; NOP (C) ; C = CHOLMOD(band)(Abad2, 0, 0, 0, cm) ; NOP (C) ; /* ---------------------------------------------------------------------- */ /* ccolamd */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION ok = CHOLMOD(ccolamd)(NULL, fsetok, fsizeok, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, Pok, cm) ; if (stype) { NOT (ok) ; } else { OK (ok) ; } cm->current = -1 ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, Pok, cm) ; cm->current = 0 ; if (stype) { NOT (ok) ; } else { OK (ok) ; } #endif /* ---------------------------------------------------------------------- */ /* copy */ /* ---------------------------------------------------------------------- */ CHOLMOD(print_sparse)(Abad, "Abad", cm) ; C = CHOLMOD(copy)(Abad, 0, 1, cm) ; CHOLMOD(print_sparse)(C, "copy of Abad", cm) ; NOP (C) ; C = CHOLMOD(copy_sparse)(Abad, cm) ; CHOLMOD(print_sparse)(C, "another copy of Abad", cm) ; NOP (C) ; C = CHOLMOD(copy)(A, 0, -1, cm) ; OKP (C) ; OK (nzdiag (C) == 0) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* submatrix */ /* ---------------------------------------------------------------------- */ if (A->nrow == A->ncol) { /* submatrix cannot operation on symmetric matrices */ C = CHOLMOD(copy)(A, 1, 0, cm) ; OKP (C) ; E = CHOLMOD(submatrix)(C, NULL, -1, NULL, -1, TRUE, TRUE, cm); NOP (E) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } E = CHOLMOD(submatrix)(Abad2, NULL, -1, NULL, -1, TRUE, TRUE, cm) ; NOP(E) ; if (A->stype == 0 && isreal) { /* E = A(:,:) */ E = CHOLMOD(submatrix)(NULL, NULL,-1, NULL,-1, TRUE, TRUE, cm) ; NOP(E); E = CHOLMOD(submatrix)(A, NULL, -1, NULL, -1, TRUE, TRUE, cm) ; OKP(E) ; /* C = A-E */ C = CHOLMOD(add)(A, E, one, minusone, TRUE, TRUE, cm) ; OKP (C) ; ok = CHOLMOD(drop)(0., C, cm) ; OK (ok) ; ok = CHOLMOD(drop)(0., Abad2, cm) ; NOT(ok) ; nz = CHOLMOD(nnz)(C, cm) ; OK (nz == 0) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&E, cm) ; OK (ok) ; i = -1 ; E = CHOLMOD(submatrix)(A, &i, 1, NULL, -1, TRUE, TRUE, cm) ; NOP(E) ; E = CHOLMOD(submatrix)(A, NULL, -1, &i, 1, TRUE, TRUE, cm) ; NOP(E) ; E = CHOLMOD(submatrix)(A, &i, 1, &i, 1, TRUE, TRUE, cm) ; NOP(E) ; i = 0 ; j = -1 ; E = CHOLMOD(submatrix)(A, &i, 1, &j, 1, TRUE, TRUE, cm) ; NOP(E) ; } /* ---------------------------------------------------------------------- */ /* read */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(read_sparse)(NULL, cm) ; NOP (C) ; X = CHOLMOD(read_dense)(NULL, cm) ; NOP (X) ; pp = CHOLMOD(read_matrix)(NULL, 1, NULL, cm) ; NOP (pp) ; pp = CHOLMOD(read_matrix)((FILE *) 1, 1, NULL, cm) ; NOP (pp) ; T3 = CHOLMOD(read_triplet)(NULL, cm) ; NOP (T3) ; /* ---------------------------------------------------------------------- */ /* write */ /* ---------------------------------------------------------------------- */ asym = CHOLMOD(write_sparse) (NULL, NULL, NULL, NULL, cm) ; NOT (asym>=0); asym = CHOLMOD(write_sparse) ((FILE *) 1, NULL, NULL, NULL, cm) ; NOT (asym>=0); asym = CHOLMOD(write_dense) (NULL, NULL, NULL, cm) ; NOT (asym>=0); asym = CHOLMOD(write_dense) ((FILE *) 1, NULL, NULL, cm) ; NOT (asym>=0); f = fopen ("temp4.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, NULL, "garbage.txt", cm) ; fclose (f) ; printf ("write_sparse, asym: %d\n", asym) ; OK (asym == EMPTY) ; if (A != NULL) { save1 = A->xtype ; A->xtype = 999 ; f = fopen ("temp4.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, NULL, NULL, cm) ; fclose (f) ; printf ("write_sparse, asym: %d\n", asym) ; OK (asym == EMPTY) ; A->xtype = save1 ; } Z = CHOLMOD(speye) (nrow+1, ncol+1, CHOLMOD_PATTERN, cm) ; f = fopen ("temp4.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, Z, NULL, cm) ; fclose (f) ; printf ("write_sparse, asym: %d with Z\n", asym) ; OK (asym == EMPTY) ; Z->xtype = 999 ; f = fopen ("temp4.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, Z, NULL, cm) ; fclose (f) ; printf ("write_sparse, asym: %d with Z2\n", asym) ; OK (asym == EMPTY) ; Z->xtype = CHOLMOD_PATTERN ; CHOLMOD(free_sparse) (&Z, cm) ; Z = CHOLMOD(speye) (0, ncol+1, CHOLMOD_PATTERN, cm) ; f = fopen ("temp4.mtx", "w") ; asym = CHOLMOD(write_sparse) (f, A, Z, NULL, cm) ; fclose (f) ; printf ("write_sparse, asym: %d with Z\n", asym) ; if (A == NULL) { OK (asym == EMPTY) ; } else { OK (asym > EMPTY) ; } CHOLMOD(free_sparse) (&Z, cm) ; X = CHOLMOD(ones) (4, 4, CHOLMOD_REAL, cm) ; f = fopen ("temp6.mtx", "w") ; asym = CHOLMOD(write_dense) (f, X, "garbage.txt", cm) ; fclose (f) ; OK (asym == EMPTY) ; X->xtype = 999 ; f = fopen ("temp6.mtx", "w") ; asym = CHOLMOD(write_dense) (f, X, NULL, cm) ; fclose (f) ; OK (asym == EMPTY) ; X->xtype = CHOLMOD_REAL ; CHOLMOD(free_dense) (&X, cm) ; /* ---------------------------------------------------------------------- */ /* print_common */ /* ---------------------------------------------------------------------- */ cm->print = 4 ; ok = CHOLMOD(print_common)("Null", NULL) ; NOT (ok) ; for (cm->status = CHOLMOD_INVALID ; cm->status <= CHOLMOD_DSMALL ; cm->status++) { ok = CHOLMOD(print_common)("status", cm) ; OK (ok) ; } cm->status = 999 ; ok = CHOLMOD(print_common)("bad status", cm) ; NOT (ok) ; cm->status = CHOLMOD_OK ; Flag = cm->Flag ; cm->Flag = NULL ; ok = CHOLMOD(print_common)("bad Flag", cm) ; NOT (ok) ; cm->Flag = Flag ; ok = CHOLMOD(print_common)("ok Flag", cm) ; OK (ok) ; Flag [0] = Int_max ; ok = CHOLMOD(print_common)("bad Flag", cm) ; NOT (ok) ; Flag [0] = -1 ; ok = CHOLMOD(print_common)("ok Flag", cm) ; OK (ok) ; Head = cm->Head ; cm->Head = NULL ; ok = CHOLMOD(print_common)("bad Head", cm) ; NOT (ok) ; cm->Head = Head ; ok = CHOLMOD(print_common)("ok Head", cm) ; OK (ok) ; Head [0] = Int_max ; ok = CHOLMOD(print_common)("bad Head", cm) ; NOT (ok) ; Head [0] = -1 ; ok = CHOLMOD(print_common)("ok Head", cm) ; OK (ok) ; Xwork = cm->Xwork ; cm->Xwork = NULL ; ok = CHOLMOD(print_common)("bad Xwork", cm) ; NOT (ok) ; cm->Xwork = Xwork ; ok = CHOLMOD(print_common)("ok Xwork", cm) ; OK (ok) ; Xwork [0] = 1 ; ok = CHOLMOD(print_common)("bad Xwork", cm) ; NOT (ok) ; Xwork [0] = 0 ; ok = CHOLMOD(print_common)("ok Xwork", cm) ; OK (ok) ; p = cm->nmethods ; i = cm->method [0].ordering ; cm->nmethods = 1 ; cm->method [0].ordering = 999 ; ok = CHOLMOD(print_common)("bad method", cm) ; NOT (ok) ; cm->nmethods = p ; cm->method [0].ordering = i ; /* ---------------------------------------------------------------------- */ /* print_sparse */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(copy_sparse)(A, cm) ; OKP (C) ; cm->print = 3 ; C->itype = EMPTY ; ok = CHOLMOD(print_sparse)(C, "CIbad", cm) ; NOT (ok) ; C->itype = CHOLMOD_INTLONG ; ok = CHOLMOD(print_sparse)(C, "Cibad", cm) ; NOT (ok) ; C->itype = cm->itype ; cm->print = 1 ; cm->print = 4 ; #ifdef LONG C->itype = CHOLMOD_INT ; #else C->itype = CHOLMOD_LONG ; #endif ok = CHOLMOD(print_sparse)(C, "Cibad2", cm) ; NOT (ok) ; C->itype = cm->itype ; cm->print = 1 ; C->dtype = CHOLMOD_SINGLE ; ok = CHOLMOD(print_sparse)(C, "Cdbad", cm) ; NOT (ok) ; C->dtype = EMPTY ; ok = CHOLMOD(print_sparse)(C, "CDbad", cm) ; NOT (ok) ; C->dtype = CHOLMOD_DOUBLE ; Cxtype = C->xtype ; C->xtype = EMPTY ; ok = CHOLMOD(print_sparse)(C, "CXbad", cm) ; NOT (ok) ; C->xtype = Cxtype ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; Cp = C->p ; Ci = C->i ; Cx = C->x ; C->p = NULL ; ok = CHOLMOD(print_sparse)(C, "Cp bad", cm) ; NOT (ok) ; C->p = Cp ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; C->i = NULL ; ok = CHOLMOD(print_sparse)(C, "Ci bad", cm) ; NOT (ok) ; C->i = Ci ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; C->x = NULL ; ok = CHOLMOD(print_sparse)(C, "Cx bad", cm) ; NOT (ok) ; C->x = Cx ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; Cp [0] = 42 ; ok = CHOLMOD(print_sparse)(C, "Cp [0] bad", cm) ; NOT (ok) ; Cp [0] = 0 ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; p = Cp [ncol] ; Cp [ncol] = C->nzmax + 10 ; ok = CHOLMOD(print_sparse)(C, "Cp [ncol] bad", cm) ; NOT (ok) ; Cp [ncol] = p ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; p = Cp [ncol] ; Cp [ncol] = -1 ; ok = CHOLMOD(print_sparse)(C, "Cp [ncol] neg", cm) ; NOT (ok) ; Cp [ncol] = p ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; if (ncol > 0) { p = Cp [1] ; Cp [1] = 2*nrow + 1 ; ok = CHOLMOD(print_sparse)(C, "Cp [1] bad", cm) ; NOT (ok) ; Cp [1] = p ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; } if (ncol > 2) { p = Cp [2] ; Cp [2] = Cp [1] - 1 ; ok = CHOLMOD(print_sparse)(C, "Cp [2] bad", cm) ; NOT (ok) ; Cp [2] = p ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; } if (Cp [ncol] > 0) { i = Ci [0] ; Ci [0] = -1 ; ok = CHOLMOD(print_sparse)(C, "Ci [0] neg", cm) ; NOT (ok) ; Ci [0] = i ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; } if (ncol > 0 && C->sorted && Cp [1] - Cp [0] > 2) { i = Ci [0] ; Ci [0] = nrow-1 ; ok = CHOLMOD(print_sparse)(C, "Ci [0] unsorted", cm) ; NOT (ok) ; Ci [0] = i ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; } if (ncol > 0 && C->sorted && ncol > 2 && Cp [1] - Cp [0] > 2) { /* swap the first two entries */ p = Ci [0] ; Ci [0] = Ci [1] ; Ci [1] = p ; ok = CHOLMOD(print_sparse)(C, "Ci [0] unsorted", cm) ; NOT (ok) ; C->sorted = FALSE ; ok = CHOLMOD(print_sparse)(C, "Ci [0] unsorted", cm) ; OK (ok) ; Ci [1] = Ci [0] ; ok = CHOLMOD(print_sparse)(C, "Ci [0] duplicate", cm) ; NOT (ok) ; Ci [1] = p ; ok = CHOLMOD(print_sparse)(C, "Ci [0] unsorted", cm) ; OK (ok) ; p = Ci [0] ; Ci [0] = Ci [1] ; Ci [1] = p ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; C->sorted = TRUE ; ok = CHOLMOD(print_sparse)(C, "C ok", cm) ; OK (ok) ; } E = CHOLMOD(copy_sparse)(C, cm) ; OKP (E) ; Enz = CHOLMOD(malloc)(ncol, sizeof (Int), cm) ; OKP (Enz) ; E->nz = Enz ; Ep = E->p ; for (j = 0 ; j < ncol ; j++) { Enz [j] = Ep [j+1] - Ep [j] ; } E->packed = FALSE ; ok = CHOLMOD(print_sparse)(E, "E unpacked ok", cm) ; OK (ok) ; ok = CHOLMOD(band_inplace)(0, 0, 0, E, cm) ; NOT (ok) ; E->nz = NULL ; ok = CHOLMOD(print_sparse)(E, "E unpacked bad", cm) ; NOT (ok) ; E->nz = Enz ; ok = CHOLMOD(print_sparse)(E, "E unpacked ok", cm) ; OK (ok) ; F = CHOLMOD(copy)(E, 0, 0, cm) ; cm->print = 4 ; ok = CHOLMOD(print_sparse)(F, "F pattern ok", cm) ; OK (ok) ; cm->print = 1 ; CHOLMOD(free_sparse)(&F, cm) ; CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(free_sparse)(&C, cm) ; /* ---------------------------------------------------------------------- */ /* print_dense */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(sparse_to_dense)(NULL, cm) ; NOP (X) ; X = CHOLMOD(sparse_to_dense)(Abad2, cm) ; NOP (X) ; C = CHOLMOD(dense_to_sparse)(NULL, TRUE, cm) ; NOP (C) ; X = CHOLMOD(copy_dense)(Xok, cm) ; ok = CHOLMOD(print_dense)(NULL, "null", cm) ; NOT (ok) ; x = X->x ; X->x = NULL ; ok = CHOLMOD(print_dense)(X, "Xnull", cm) ; NOT (ok) ; X->x = x ; ok = CHOLMOD(print_dense)(X, "X OK", cm) ; OK (ok) ; X->nzmax = 1 ; ok = CHOLMOD(print_dense)(X, "X nzmax too small", cm) ; NOT (ok) ; X->nzmax = Xok->nzmax ; ok = CHOLMOD(print_dense)(X, "X OK", cm) ; OK (ok) ; X->d = -1 ; ok = CHOLMOD(print_dense)(X, "X d too small", cm) ; NOT (ok) ; X->d = Xok->d ; ok = CHOLMOD(print_dense)(X, "X OK", cm) ; OK (ok) ; Xxtype = X->xtype ; X->xtype = CHOLMOD_PATTERN ; ok = CHOLMOD(print_dense)(X, "X pattern", cm) ; NOT (ok) ; X->xtype = -1 ; ok = CHOLMOD(print_dense)(X, "X unknown", cm) ; NOT (ok) ; X->xtype = Xxtype ; ok = CHOLMOD(print_dense)(X, "X OK", cm) ; OK (ok) ; X->dtype = CHOLMOD_SINGLE ; ok = CHOLMOD(print_dense)(X, "X float", cm) ; NOT (ok) ; X->dtype = -1 ; ok = CHOLMOD(print_dense)(X, "X unknown", cm) ; NOT (ok) ; X->dtype = CHOLMOD_DOUBLE ; ok = CHOLMOD(print_dense)(X, "X OK", cm) ; OK (ok) ; CHOLMOD(free_dense)(&X, cm) ; /* ---------------------------------------------------------------------- */ /* print_subset */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(check_subset)(NULL, 0, 0, cm) ; OK (ok) ; ok = CHOLMOD(print_subset)(NULL, 0, 0, "null", cm) ; OK (ok) ; for (i = 0 ; i < CSETSIZE ; i++) { cset [i] = i ; } for (cm->print = 0 ; cm->print <= 5 ; cm->print++) { ok = CHOLMOD(print_subset)(NULL, -1, 10, "[0:9]", cm) ; OK (ok) ; ok = CHOLMOD(print_subset)(cset, CSETSIZE, CSETSIZE, "cset OK", cm) ; OK (ok) ; cset [0] = -1 ; ok = CHOLMOD(print_subset)(cset, CSETSIZE, CSETSIZE, "cset bad", cm) ; NOT (ok) ; cset [0] = CSETSIZE-1 ; ok = CHOLMOD(print_subset)(cset, CSETSIZE, CSETSIZE, "cset OK", cm) ; OK (ok) ; } cm->print = 1 ; /* ---------------------------------------------------------------------- */ /* print_perm */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(check_perm)(NULL, 0, 0, cm) ; OK (ok) ; for (cm->print = 3 ; cm->print <= 4 ; cm->print++) { ok = CHOLMOD(print_perm)(Pok, nrow, nrow, "P OK", cm) ; OK (ok) ; if (nrow > 0) { p = Pok [0] ; Pok [0] = 2*ncol + 1 ; ok = CHOLMOD(print_perm)(Pok, nrow, nrow, "P bad", cm) ; NOT (ok) ; Pok [0] = p ; ok = CHOLMOD(print_perm)(Pok, nrow, nrow, "P OK", cm) ; } OK (ok) ; } cm->print = 1 ; n2 = 2 * cm->nrow ; P2 = prand (n2) ; /* RAND */ for (cm->print = 3 ; cm->print <= 4 ; cm->print++) { ok = CHOLMOD(print_perm)(P2, n2, n2, "P2 OK", cm) ; OK (ok) ; p = P2 [0] ; P2 [0] = -1 ; ok = CHOLMOD(print_perm)(P2, n2, n2, "P2 bad", cm) ; NOT (ok) ; P2 [0] = p ; ok = CHOLMOD(print_perm)(P2, n2, n2, "P2 OK", cm) ; OK (ok) ; } cm->print = 1 ; CHOLMOD(free)(2 * (cm->nrow), sizeof (Int), P2, cm) ; /* ---------------------------------------------------------------------- */ /* print_parent */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(print_parent)(NULL, 0, "null", cm) ; NOT (ok) ; if (nrow > 0) { i = Parent [0] ; Parent [0] = -2 ; ok = CHOLMOD(print_parent)(Parent, nrow, "bad Parent", cm) ; NOT (ok) ; Parent [0] = i ; ok = CHOLMOD(print_parent)(Parent, nrow, "OK Parent", cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* print_factor */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { L = CHOLMOD(allocate_factor)(nrow, cm) ; OKP (L) ; ok = CHOLMOD(super_symbolic)(A, NULL, Parent, L, cm) ; NOT (ok) ; CHOLMOD(free_factor)(&L, cm) ; } ok = CHOLMOD(print_factor)(NULL, "L null", cm) ; NOT (ok) ; /* create a valid symbolic supernodal L */ cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_asis = TRUE ; L = CHOLMOD(analyze)(A, cm) ; /* [ */ OKP (L) ; ok = CHOLMOD(print_factor)(L, "L ok", cm) ; OK (ok) ; ok = CHOLMOD(change_factor)(CHOLMOD_ZOMPLEX, TRUE, TRUE, TRUE, TRUE, L, cm); NOT (ok) ; OK (L->xtype == CHOLMOD_PATTERN) ; OK (L->is_super) ; L->itype = CHOLMOD_INTLONG ; ok = CHOLMOD(print_factor)(L, "L int/UF_long", cm) ; NOT (ok) ; L->itype = -1 ; ok = CHOLMOD(print_factor)(L, "L int unknown", cm) ; NOT (ok) ; L->itype = cm->itype ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; cm->print = 4 ; #ifdef LONG L->itype = CHOLMOD_INT ; #else L->itype = CHOLMOD_LONG ; #endif ok = CHOLMOD(print_factor)(L, "L bad itype", cm) ; NOT (ok) ; L->itype = cm->itype ; cm->print = 1 ; cm->print = 4 ; i = L->ordering ; L->ordering = -1 ; ok = CHOLMOD(print_factor)(L, "L bad ordering", cm) ; NOT (ok) ; L->ordering = CHOLMOD_GIVEN ; ok = CHOLMOD(print_factor)(L, "L given ordering", cm) ; OK (ok) ; L->ordering = i ; Lxtype = L->xtype ; L->xtype = CHOLMOD_REAL ; ok = CHOLMOD(print_factor)(L, "L real", cm) ; NOT (ok) ; L->xtype = CHOLMOD_COMPLEX ; ok = CHOLMOD(print_factor)(L, "L complex", cm) ; NOT (ok) ; L->xtype = CHOLMOD_ZOMPLEX ; ok = CHOLMOD(print_factor)(L, "L zomplex", cm) ; NOT (ok) ; L->xtype = -1 ; ok = CHOLMOD(print_factor)(L, "L unknown", cm) ; NOT (ok) ; L->xtype = CHOLMOD_PATTERN ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->xtype = Lxtype ; /* ---------------------------------------------------------------------- */ /* supernodal factor */ /* ---------------------------------------------------------------------- */ /* create a valid supernodal numeric L (simplicial if Supernodal * module not installed) */ ok = CHOLMOD(factorize)(A, L, cm) ; OK (ok || cm->status == CHOLMOD_NOT_POSDEF) ; if (L->is_super) { /* there is no supernodal zomplex L */ ok = CHOLMOD(factor_xtype)(CHOLMOD_ZOMPLEX, L, cm) ; NOT (ok) ; } /* pack the simplicial factor, or return silently if supernodal */ ok = CHOLMOD(pack_factor)(L, cm) ; OK (ok) ; Lbad = CHOLMOD(copy_factor)(L, cm) ; /* [ */ Lxtype = L->xtype ; Lbad->xtype = -1 ; OK (L->is_super && L->xtype != CHOLMOD_PATTERN && L->is_ll) ; if (A->stype == 0) { ok = CHOLMOD(super_symbolic)(A, NULL, Parent, L, cm) ; NOT (ok) ; } ok = CHOLMOD(super_symbolic)(A, Abad2, Parent, L, cm) ; NOT (ok) ; ok = CHOLMOD(super_symbolic)(Abad2, A, Parent, L, cm) ; NOT (ok) ; W = CHOLMOD(zeros)(nrow, 1, L->xtype, cm) ; OKP (W) ; X = CHOLMOD(ones)(nrow, 1, L->xtype, cm) ; OKP (X) ; ok = CHOLMOD(super_lsolve)(L, X, W, cm) ; OK (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, W, cm) ; OK (ok) ; ok = CHOLMOD(super_lsolve)(Lbad, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(Lbad, X, W, cm) ; NOT (ok) ; XX = CHOLMOD(zeros)(nrow, 1, L->xtype == CHOLMOD_REAL ? CHOLMOD_COMPLEX : CHOLMOD_REAL, cm) ; ok = CHOLMOD(super_lsolve)(L, X, XX, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, XX, cm) ; NOT (ok) ; CHOLMOD(free_dense)(&XX, cm) ; ok = CHOLMOD(super_lsolve)(L, X, W, cm) ; OK (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, W, cm) ; OK (ok) ; x = X->x ; X->x = NULL ; ok = CHOLMOD(super_lsolve)(L, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, W, cm) ; NOT (ok) ; X->x = x ; x = W->x ; W->x = NULL ; ok = CHOLMOD(super_lsolve)(L, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(L, X, W, cm) ; NOT (ok) ; W->x = x ; CHOLMOD(free_dense)(&X, cm) ; CHOLMOD(free_dense)(&W, cm) ; cm->precise = TRUE ; ok = CHOLMOD(print_factor)(L, "L supernodal (precise)", cm) ; OK (ok) ; cm->precise = FALSE ; ok = CHOLMOD(print_factor)(L, "L supernodal", cm) ; OK (ok) ; cm->print = 1 ; /* cannot realloc a supernodal L */ ok = CHOLMOD(reallocate_factor)(10000, L, cm) ; NOT (ok) ; ok = CHOLMOD(reallocate_factor)(10000, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(pack_factor)(NULL, cm) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* print factor */ /* ---------------------------------------------------------------------- */ Lxtype = L->xtype ; i = cm->print ; cm->print = 4 ; L->xtype = CHOLMOD_PATTERN ; ok = CHOLMOD(print_factor)(L, "L pattern", cm) ; OK (ok) ; C = CHOLMOD(factor_to_sparse)(L, cm) ; NOP (C) ; L->xtype = Lxtype ; cm->print = i ; /* check with bad L factor */ ok = CHOLMOD(print_factor)(Lbad, "L unknown", cm) ; NOT (ok) ; ok = CHOLMOD(reallocate_factor)(999, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(pack_factor)(Lbad, cm) ; NOT (ok) ; C = CHOLMOD(factor_to_sparse)(Lbad, cm) ; NOP (C) ; L2 = CHOLMOD(copy_factor)(Lbad, cm) ; NOP (L2) ; ok = CHOLMOD(factorize)(A, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol)(A, NULL, 0, TRUE, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(A, NULL, 0, TRUE, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow-2, A, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel)(nrow-2, NULL, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, AT, beta, 1, 2, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(updown)(+1, A, Lbad, cm) ; NOT (ok) ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->dtype = CHOLMOD_SINGLE ; ok = CHOLMOD(print_factor)(L, "L float", cm) ; NOT (ok) ; L->dtype = -1 ; ok = CHOLMOD(print_factor)(L, "L unknown", cm) ; NOT (ok) ; L->dtype = CHOLMOD_DOUBLE ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; if (nrow > 0) { Lperm = L->Perm ; p = Lperm [0] ; Lperm [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L perm invalid", cm) ; NOT (ok) ; Lperm [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; } LColCount = L->ColCount ; L->ColCount = NULL ; ok = CHOLMOD(print_factor)(L, "L no colcount", cm) ; NOT (ok) ; L->ColCount = LColCount ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; if (nrow > 0) { LColCount = L->ColCount ; p = LColCount [0] ; LColCount [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L colcount vad", cm) ; NOT (ok) ; LColCount [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* print simplicial factor */ /* ---------------------------------------------------------------------- */ /* check LDL' unpacked */ ok = CHOLMOD(print_factor)(L, "L OK for L2 copy", cm) ; OK (ok) ; L2 = CHOLMOD(copy_factor)(L, cm) ; /* [ */ OKP (L2) ; ok = CHOLMOD(change_factor)(L->xtype, FALSE, FALSE, FALSE, TRUE, L2, cm) ; /* check LDL' packed */ L3 = CHOLMOD(copy_factor)(L, cm) ; OKP (L3) ; ok = CHOLMOD(change_factor)(L->xtype, FALSE, FALSE, TRUE, TRUE, L3, cm) ; ok = CHOLMOD(print_factor)(L3, "L3 OK", cm) ; OK (ok) ; CHOLMOD(free_factor)(&L3, cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L2, "L2 OK", cm) ; OK (ok) ; ok = CHOLMOD(pack_factor)(L2, cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L2, "L2 OK packed", cm) ; OK (ok) ; /* create a simplicial factor from scratch */ cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_asis = TRUE ; L6 = CHOLMOD(analyze)(A, cm) ; /* [ */ OKP (L6) ; ok = CHOLMOD(factorize)(A, L6, cm) ; OK (cm->status >= CHOLMOD_OK) ; cm->supernodal = CHOLMOD_AUTO ; ok = CHOLMOD(print_sparse)(A, "A OK", cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L6, "L6 OK", cm) ; OK (ok) ; Lz = L6->z ; L6->z = NULL ; ok = CHOLMOD(print_factor)(L6, "L6 no z", cm) ; if (L6->xtype == CHOLMOD_ZOMPLEX) { NOT (ok) ; } else { OK (ok) ; } L6->z = Lz ; CHOLMOD(free_factor)(&L6, cm) ; /* ] */ Az = A->z ; A->z = NULL ; ok = CHOLMOD(print_sparse)(A, "A no z", cm) ; if (A->xtype == CHOLMOD_ZOMPLEX) { NOT (ok) ; } else { OK (ok) ; } A->z = Az ; Lp = L2->p ; Li = L2->i ; Lx = L2->x ; Lnz = L2->nz ; Lnext = L2->next ; Lprev = L2->prev ; OK (Lp [0] == 0) ; L2->p = NULL ; ok = CHOLMOD(print_factor)(L2, "L no p", cm) ; NOT (ok) ; L2->p = Lp ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; L2->i = NULL ; ok = CHOLMOD(print_factor)(L2, "L no i", cm) ; NOT (ok) ; L2->i = Li ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; L2->x = NULL ; ok = CHOLMOD(print_factor)(L2, "L no x", cm) ; NOT (ok) ; L2->x = Lx ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; L2->nz = NULL ; ok = CHOLMOD(print_factor)(L2, "L no nz", cm) ; NOT (ok) ; L2->nz = Lnz ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; L2->next = NULL ; ok = CHOLMOD(print_factor)(L2, "L no next", cm) ; NOT (ok) ; L2->next = Lnext ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; L2->prev = NULL ; ok = CHOLMOD(print_factor)(L2, "L no prev", cm) ; NOT (ok) ; L2->prev = Lprev ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; if (nrow > 0) { p = Lp [0] ; Lp [0] = -1 ; ok = CHOLMOD(print_factor)(L2, "Lp bad", cm) ; NOT (ok) ; Lp [0] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Li [0] ; Li [0] = -1 ; ok = CHOLMOD(print_factor)(L2, "Li bad", cm) ; NOT (ok) ; Li [0] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Lnz [0] ; Lnz [0] = -1 ; ok = CHOLMOD(print_factor)(L2, "Lnz bad", cm) ; NOT (ok) ; Lnz [0] = p ; } ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; OK (Lnz != NULL) ; if (nrow > 0 && Lnz [0] > 3) { ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Li [1] ; Li [1] = nrow ; ok = CHOLMOD(print_factor)(L2, "Li bad", cm) ; NOT (ok) ; Li [1] = p ; ok = CHOLMOD(print_factor)(L2, "L OK again", cm) ; OK (ok) ; p = Li [2] ; Li [2] = Li [1] ; ok = CHOLMOD(print_factor)(L2, "Li bad", cm) ; NOT (ok) ; Li [2] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; } /* check LDL' dynamic link list */ ok = CHOLMOD(change_factor)(L->xtype, FALSE, FALSE, FALSE, FALSE, L2, cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L2, "L2 OK", cm) ; OK (ok) ; OK (L2->xtype != CHOLMOD_PATTERN && !(L2->is_ll) && !(L2->is_super)) ; /* cannot do a supernodal factorization on a dynamic LDL' factor */ ok = CHOLMOD(super_numeric)(AT, NULL, Zero, L2, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(I1, NULL, Zero, L2, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(I1, I1, Zero, L2, cm) ; NOT (ok) ; G = CHOLMOD(copy)(I1, 1, 0, cm) ; OKP (G) ; ok = CHOLMOD(super_numeric)(G, NULL, Zero, L2, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&G, cm) ; OK (ok) ; G = CHOLMOD(copy)(I1, -1, 0, cm) ; OKP (G) ; ok = CHOLMOD(super_numeric)(G, NULL, Zero, L2, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&G, cm) ; OK (ok) ; ok = CHOLMOD(super_numeric)(AT, I1, Zero, L2, cm) ; NOT (ok) ; W = CHOLMOD(zeros)(nrow, 1, CHOLMOD_REAL, cm) ; OKP (W) ; X = CHOLMOD(ones)(nrow, 1, CHOLMOD_REAL, cm) ; OKP (X) ; ok = CHOLMOD(super_lsolve)(L2, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(super_ltsolve)(L2, X, W, cm) ; NOT (ok) ; ok = CHOLMOD(free_dense)(&W, cm) ; OK (ok) ; ok = CHOLMOD(free_dense)(&X, cm) ; OK (ok) ; Lnext = L2->next ; Lprev = L2->prev ; if (nrow > 3) { p = Lnext [nrow+1] ; Lnext [nrow+1] = -1 ; ok = CHOLMOD(print_factor)(L2, "Lnext bad", cm) ; NOT (ok) ; Lnext [nrow+1] = -p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Lnext [2] ; Lnext [2] = 2 ; ok = CHOLMOD(print_factor)(L2, "Lnext bad", cm) ; NOT (ok) ; Lnext [2] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Lnext [2] ; Lnext [2] = -1 ; ok = CHOLMOD(print_factor)(L2, "Lnext bad", cm) ; NOT (ok) ; Lnext [2] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Lprev [2] ; Lprev [2] = -9 ; ok = CHOLMOD(print_factor)(L2, "Lprev bad", cm) ; NOT (ok) ; Lprev [2] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; p = Lnext [nrow] ; Lnext [nrow] = 0 ; ok = CHOLMOD(print_factor)(L2, "Lnext/prev bad", cm) ; NOT (ok) ; Lnext [nrow] = p ; ok = CHOLMOD(print_factor)(L2, "L OK", cm) ; OK (ok) ; /* make a non-monotonic copy of L2 and then mangle it */ L6 = CHOLMOD(copy_factor)(L2, cm) ; ok = CHOLMOD(reallocate_column)(0, nrow, L6, cm) ; if (ok && !(L6->is_monotonic)) { ok = CHOLMOD(print_factor)(L6, "L6 monotonic OK ", cm) ; OK (ok) ; L6->is_monotonic = TRUE ; ok = CHOLMOD(print_factor)(L6, "L6 monotonic bad", cm) ; NOT (ok) ; } CHOLMOD(free_factor)(&L6, cm) ; } L6 = CHOLMOD(copy_factor)(L, cm) ; OKP (L6) ; I = CHOLMOD(speye)(nrow, nrow, L->xtype, cm) ; OKP (I) ; I3 = CHOLMOD(speye)(nrow, nrow, L->xtype-1, cm) ; OKP (I3) ; ok = CHOLMOD(super_numeric)(I, I, beta, L6, cm) ; OK (ok) ; ok = CHOLMOD(super_numeric)(I, I3, beta, L6, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(I, Abad2, beta, L6, cm) ; NOT (ok) ; ok = CHOLMOD(super_numeric)(I, I, beta, Lbad, cm) ; NOT (ok) ; I->stype = -1 ; ok = CHOLMOD(super_numeric)(I, I, beta, L6, cm) ; OK (ok) ; ok = CHOLMOD(super_numeric)(I, NULL, beta, L6, cm) ; OK (ok) ; I3->stype = -1 ; cm->print = 4 ; CHOLMOD(print_sparse)(I3, "I3", cm) ; CHOLMOD(print_factor)(L6, "L6", cm) ; cm->print = 1 ; ok = CHOLMOD(super_numeric)(I3, NULL, beta, L6, cm) ; NOT (ok) ; CHOLMOD(free_sparse)(&I, cm) ; I = CHOLMOD(speye)(nrow+1, nrow+1, L->xtype, cm) ; OKP (I) ; I->stype = -1 ; ok = CHOLMOD(super_numeric)(I, I, beta, L6, cm) ; NOT (ok) ; CHOLMOD(free_sparse)(&I, cm) ; CHOLMOD(free_sparse)(&I3, cm) ; ok = CHOLMOD(free_factor)(&L6, cm) ; OK (ok) ; /* check the supernodal L */ Ls = L->s ; Lpi = L->pi ; Lpx = L->px ; Super = L->super ; Lx = L->x ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->s = NULL ; ok = CHOLMOD(print_factor)(L, "L no s", cm) ; NOT (ok) ; L->s = Ls ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->pi = NULL ; ok = CHOLMOD(print_factor)(L, "L no pi", cm) ; NOT (ok) ; L->pi = Lpi ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->px = NULL ; ok = CHOLMOD(print_factor)(L, "L no px", cm) ; NOT (ok) ; L->px = Lpx ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->super = NULL ; ok = CHOLMOD(print_factor)(L, "L no super", cm) ; NOT (ok) ; L->super = Super ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; L->x = NULL ; ok = CHOLMOD(print_factor)(L, "L no x", cm) ; NOT (ok) ; L->x = Lx ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; p = Ls [0] ; Ls [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L bad s", cm) ; NOT (ok) ; Ls [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; p = Lpi [0] ; Lpi [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L bad pi", cm) ; NOT (ok) ; Lpi [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; p = Lpx [0] ; Lpx [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L bad px", cm) ; NOT (ok) ; Lpx [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; if (nrow > 0) { p = Super [0] ; Super [0] = -1 ; ok = CHOLMOD(print_factor)(L, "L bad super", cm) ; NOT (ok) ; Super [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; p = Ls [0] ; Ls [0] = 42 ; ok = CHOLMOD(print_factor)(L, "L bad s", cm) ; NOT (ok) ; Ls [0] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; } if (nrow > 0 && Lpi [1] - Lpi [0] > 3) { p = Ls [2] ; Ls [2] = Ls [1] ; ok = CHOLMOD(print_factor)(L, "L unsorted s", cm) ; NOT (ok) ; Ls [2] = p ; ok = CHOLMOD(print_factor)(L, "L OK", cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* Cholesky */ /* ---------------------------------------------------------------------- */ /* test the supernodal symbolic L */ L3 = CHOLMOD(copy_factor)(L, cm) ; OKP (L3) ; ok = CHOLMOD(change_factor)(CHOLMOD_PATTERN, TRUE, TRUE, TRUE, TRUE, L3, cm) ; OK (ok) ; Ls = L3->s ; Lpi = L3->pi ; Super = L3->super ; if (nrow > 0) { p = Ls [0] ; Ls [0] = 42 ; ok = CHOLMOD(print_factor)(L3, "Lsym bad s", cm) ; NOT (ok) ; Ls [0] = p ; ok = CHOLMOD(print_factor)(L3, "Lsym OK", cm) ; OK (ok) ; } if (nrow > 0 && Lpi [1] - Lpi [0] > 3) { p = Ls [2] ; Ls [2] = Ls [1] ; ok = CHOLMOD(print_factor)(L3, "Lsym unsorted s", cm) ; NOT (ok) ; Ls [2] = p ; ok = CHOLMOD(print_factor)(L3, "Lsym OK", cm) ; OK (ok) ; } if (nrow > 0 && L->nsuper > 0) { Int nscol = Super [1] ; Int nsrow = Lpi [1] - Lpi [0] ; if (nsrow > nscol + 1) { p = Ls [nscol] ; Ls [nscol] = Ls [nscol+1] ; ok = CHOLMOD(print_factor)(L3, "Lsym unsorted s2", cm) ; NOT (ok) ; Ls [nscol] = p ; ok = CHOLMOD(print_factor)(L3, "Lsym OK", cm) ; OK (ok) ; } } CHOLMOD(free_factor)(&L3, cm) ; /* (re)factorize as LL' */ L5 = CHOLMOD(copy_factor)(L, cm) ; /* [ */ OKP (L5) ; ok = CHOLMOD(factor_xtype)(-1, L, cm) ; NOT (ok) ; ok = CHOLMOD(factor_xtype)(CHOLMOD_REAL, NULL, cm) ; NOT (ok) ; L3 = CHOLMOD(copy_factor)(L, cm) ; OKP (L3) ; CHOLMOD(print_factor)(L3, "L3 before factorize", cm) ; ok = CHOLMOD(change_factor)(L3->xtype, TRUE, FALSE, TRUE, TRUE, L3, cm) ; OK (ok) ; Acopy = CHOLMOD(copy_sparse)(A, cm) ; /* [ */ CHOLMOD(sparse_xtype)(L3->xtype, Acopy, cm) ; CHOLMOD(print_sparse)(Acopy, "Acopy for factorize", cm) ; ok = CHOLMOD(factorize)(Acopy, L3, cm) ; OK (ok || cm->status >= CHOLMOD_OK) ; ok = CHOLMOD(free_factor)(&L3, cm) ; OK (ok) ; CHOLMOD(print_sparse)(A, "A for factorize", cm) ; CHOLMOD(print_factor)(L3, "L3 for factorize", cm) ; /* refactor, but with wrong-sized A */ ok = CHOLMOD(print_sparse)(I1, "I1", cm) ; OK (ok) ; ok = CHOLMOD(factorize)(I1, L, cm) ; NOT (ok) ; ok = CHOLMOD(factorize)(Abad2, L, cm) ; NOT (ok) ; C = CHOLMOD(transpose)(I1, 0, cm) ; OKP (C) ; ok = CHOLMOD(print_sparse)(C, "C = I1'", cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L, "L OK ", cm) ; OK (ok) ; /* refactor, with invalid A (NULL, or symmetric but not square) */ ok = CHOLMOD(print_sparse)(Abad, "Abad", cm) ; NOT (ok) ; ok = CHOLMOD(factorize)(Abad, L, cm) ; NOT (ok) ; /* refactorize supernodal LL' */ printf ("refactorize here\n") ; ok = CHOLMOD(print_sparse)(Acopy, "Acopy refactorize", cm) ; OK (ok) ; ok = CHOLMOD(print_factor)(L, "L for refactorize", cm) ; OK (ok) ; printf ("L->xtype for refactorize %d\n", L->xtype) ; ok = CHOLMOD(factorize)(Acopy, L, cm) ; OK (ok || cm->status == CHOLMOD_NOT_POSDEF) ; ok = CHOLMOD(print_factor)(L, "L ok, here", cm) ; OK (ok) ; ok = CHOLMOD(factorize)(Acopy, L, cm) ; OK (ok || cm->status == CHOLMOD_NOT_POSDEF) ; ok = CHOLMOD(print_factor)(L, "L ok, here2", cm) ; OK (ok) ; /* solve */ B = CHOLMOD(ones)(nrow, 0, CHOLMOD_REAL, cm) ; OKP (B) ; X = CHOLMOD(solve)(CHOLMOD_A, L, B, cm) ; OKP (X) ; ok = CHOLMOD(free_dense)(&X, cm) ; OK (ok) ; X = CHOLMOD(solve)(-1, L, B, cm) ; NOP (X) ; ok = CHOLMOD(free_dense)(&B, cm) ; OK (ok) ; B = CHOLMOD(zeros)(nrow+1, 0, CHOLMOD_REAL, cm) ; OKP (B) ; X = CHOLMOD(solve)(CHOLMOD_A, L, B, cm) ; NOP (X) ; B->xtype = 0 ; X = CHOLMOD(solve)(CHOLMOD_A, L, B, cm) ; NOP (X) ; B->xtype = CHOLMOD_REAL ; ok = CHOLMOD(free_dense)(&B, cm) ; OK (ok) ; /* sparse solve */ if (nrow < 100 && A->stype != 0) { /* solve A*C=I, so C should equal A inverse */ I = CHOLMOD(speye)(nrow, nrow, CHOLMOD_REAL, cm) ; OKP (I) ; C = CHOLMOD(spsolve)(CHOLMOD_A, L, I, cm) ; OKP (C) ; /* compute norm of A*C-I */ if (xtype == CHOLMOD_REAL) { E = CHOLMOD(ssmult)(A, C, 0, TRUE, FALSE, cm) ; OKP (E) ; F = CHOLMOD(add)(E, I, minusone, one, TRUE, FALSE, cm) ;OKP (F) ; cm->print = 4 ; ok = CHOLMOD(print_sparse)(F, "A*inv(A)-I", cm) ; OK (ok) ; cm->print = 1 ; r = CHOLMOD(norm_sparse)(F, 1, cm) ; OK (! (r < 0)) ; MAXERR (maxerr, r, 1) ; ok = CHOLMOD(free_sparse)(&E, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&F, cm) ; OK (ok) ; } CHOLMOD(free_sparse)(&C, cm) ; /* check error cases for sparse solve */ C = CHOLMOD(spsolve)(CHOLMOD_A, NULL, I, cm) ; NOP (C) ; C = CHOLMOD(spsolve)(CHOLMOD_A, Lbad, I, cm) ; NOP (C) ; C = CHOLMOD(spsolve)(CHOLMOD_A, L, NULL, cm) ; NOP (C) ; I->xtype = 0 ; C = CHOLMOD(spsolve)(CHOLMOD_A, L, I, cm) ; NOP (C) ; I->xtype = CHOLMOD_REAL ; I->stype = -1 ; C = CHOLMOD(spsolve)(CHOLMOD_A, L, I, cm) ; NOP (C) ; ok = CHOLMOD(free_sparse)(&I, cm) ; OK (ok) ; I = CHOLMOD(speye)(nrow+1, nrow+1, CHOLMOD_REAL, cm) ; OKP (I) ; C = CHOLMOD(spsolve)(CHOLMOD_A, L, I, cm) ; NOP (C) ; ok = CHOLMOD(free_sparse)(&I, cm) ; OK (ok) ; } /* resymbol */ ok = CHOLMOD(resymbol)(I1, NULL, 0, TRUE, L, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(I1, NULL, 0, TRUE, L, cm) ; NOT (ok) ; ok = CHOLMOD(change_factor)(L->xtype, FALSE, FALSE, FALSE, FALSE, L, cm) ; OK (ok) ; ok = CHOLMOD(resymbol)(I1, NULL, 0, TRUE, L, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(I1, NULL, 0, TRUE, L, cm) ; NOT (ok) ; ok = CHOLMOD(change_factor)(-1, FALSE, FALSE, FALSE, FALSE, L, cm) ; NOT (ok) ; ok = CHOLMOD(change_factor)(L->xtype, FALSE, FALSE, FALSE, FALSE, Lbad, cm); NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(Acopy, NULL, 0, TRUE, L2, cm) ; if (Acopy->stype <= 0) { OK (ok) ; } else { NOT (ok) ; } ok = CHOLMOD(resymbol_noperm)(Abad2, NULL, 0, TRUE, L2, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol)(Abad2, NULL, 0, TRUE, L2, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(Acopy, NULL, 0, TRUE, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol)(Acopy, NULL, 0, TRUE, L2, cm) ; OK (ok) ; if (ncol > 0) { ok = CHOLMOD(print_perm)(fsetbad, ncol, ncol, "bad fset", cm) ; NOT (ok) ; } if (ncol > 1) { ok = CHOLMOD(resymbol)(Acopy, fsetok, ncol/2, TRUE, L2, cm) ; OK (ok) ; ok = CHOLMOD(resymbol)(Acopy, fsetbad, ncol/2, TRUE, L2, cm) ; if (Acopy->stype) { /* fset is ignored */ OK (ok) ; } else { NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(Acopy, fsetbad, ncol/2, TRUE, L2, cm); NOT (ok) ; } Acopy->sorted = FALSE ; ok = CHOLMOD(resymbol)(Acopy, fsetok, ncol/2, TRUE, L2, cm) ; OK (ok) ; Acopy->sorted = TRUE ; } cm->print = 4 ; gsave0 = cm->grow0 ; gsave1 = cm->grow1 ; gsave2 = cm->grow2 ; /* reallocate column */ L4 = NULL ; if (nrow > 0) { ok = CHOLMOD(print_factor)(L, "L ok, for colrealloc", cm) ; OK (ok) ; L4 = CHOLMOD(copy_factor)(L, cm) ; ok = CHOLMOD(print_factor)(L4, "L4 ok, for colrealloc", cm) ; OK (ok) ; OK (nrow == (Int)(L->n)) ; ok = CHOLMOD(reallocate_column)(nrow, 1, L4, cm) ; NOT (ok) ; ok = CHOLMOD(reallocate_column)(nrow-1, 0, L4, cm) ; NOT (ok) ; ok = CHOLMOD(reallocate_column)(nrow-1, 10, L4, cm) ; OK (ok) ; cm->grow0 = 2e10 ; cm->grow1 = 2 ; /* this may or may not fail */ ok = CHOLMOD(reallocate_column)(0, 10, L4, cm) ; CHOLMOD(print_common)("OK or too large", cm) ; ok = CHOLMOD(free_factor)(&L4, cm) ; OK (ok) ; } cm->grow0 = gsave0 ; cm->grow1 = gsave1 ; cm->grow2 = gsave2 ; if (ok && nrow > 2) { L4 = CHOLMOD(copy_factor)(L, cm) ; ok = CHOLMOD(resymbol)(A, NULL, 0, TRUE, L4, cm) ; OK (ok) ; /* make it non-monotonic and then monotonic (LDL' unpacked) */ ok = CHOLMOD(reallocate_column)(0, nrow-1, L4, cm) ; OK (ok) ; /* this should be OK for small matrices, but fail for large ones */ cm->grow0 = nrow ; cm->grow1 = nrow ; cm->grow2 = nrow ; ok = CHOLMOD(change_factor)(CHOLMOD_REAL, FALSE, FALSE, FALSE, TRUE, L4, cm) ; ok = CHOLMOD(free_factor)(&L4, cm) ; OK (ok) ; L4 = CHOLMOD(copy_factor)(L, cm) ; ok = CHOLMOD(resymbol)(A, NULL, 0, TRUE, L4, cm) ; OK (ok) ; ok = CHOLMOD(pack_factor)(L4, cm) ; OK (ok) ; /* now try to make L4 really huge */ /* cm->print = 5 ; CHOLMOD(print_sparse) (A, "A for huge", cm) ; CHOLMOD(print_factor) (L4, "L4 for huge", cm) ; */ if (ok && !(L->is_super) && L->xtype != CHOLMOD_PATTERN) { cm->grow0 = gsave0 ; cm->grow1 = gsave1 ; cm->grow2 = gsave2 ; ok = CHOLMOD(reallocate_column)(0, nrow-1, L4, cm) ; OK (ok) ; cm->grow0 = nrow ; cm->grow1 = nrow ; cm->grow2 = nrow ; /* CHOLMOD(print_factor) (L4, "L4 for huge, realloced", cm) ; printf ("L4 for huge is monotonic: %d\n", L4->is_monotonic) ; */ if (!(L4->is_monotonic)) { /* printf ("Make L4 really huge: ") ; */ ok = CHOLMOD(change_factor)(CHOLMOD_REAL, TRUE, FALSE, FALSE, TRUE, L4, cm) ; printf ("L4 huge ok: "ID"\n", ok) ; } } ok = CHOLMOD(free_factor)(&L4, cm) ; OK (ok) ; } cm->grow0 = gsave0 ; cm->grow1 = gsave1 ; cm->grow2 = gsave2 ; cm->print = 1 ; /* ---------------------------------------------------------------------- */ /* more error tests */ /* ---------------------------------------------------------------------- */ cm->error_handler = NULL ; /* ---------------------------------------------------------------------- */ /* modify */ /* ---------------------------------------------------------------------- */ X = CHOLMOD(ones)(nrow, 1, CHOLMOD_REAL, cm) ; OKP (X) ; R = CHOLMOD(dense_to_sparse)(X, TRUE, cm) ; /* [ */ OKP (R) ; if (isreal) { C = CHOLMOD(speye)(nrow, 1, CHOLMOD_REAL, cm) ; OKP (C) ; ok = CHOLMOD(updown)(+1, C, L, cm) ; OK (ok) ; X1 = CHOLMOD(ones)(nrow, 1, CHOLMOD_REAL, cm) ; B1 = CHOLMOD(eye)(nrow, 1, CHOLMOD_REAL, cm) ; ok = CHOLMOD(updown_solve)(+1, C, L, X1, B1, cm) ; OK (ok) ; B1->xtype = -999 ; ok = CHOLMOD(updown_solve)(+1, C, L, X1, B1, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd_solve)(0, R, beta, L, X1, B1, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel_solve)(0, R, beta, L, X1, B1, cm) ; NOT (ok) ; B1->xtype = CHOLMOD_REAL ; CHOLMOD(free_dense)(&B1, cm) ; B2 = CHOLMOD(ones)(nrow, 2, CHOLMOD_REAL, cm) ; ok = CHOLMOD(updown_solve)(+1, C, L, X1, B2, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd_solve)(0, R, beta, L, X1, B2, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel_solve)(0, R, beta, L, X1, B2, cm) ; NOT (ok) ; CHOLMOD(free_dense)(&B2, cm) ; CHOLMOD(free_dense)(&X1, cm) ; ok = CHOLMOD(updown)(+1, Abad2, L, cm) ; NOT (ok) ; ok = CHOLMOD(updown)(+1, C, NULL, cm) ; NOT (ok) ; C->sorted = FALSE ; ok = CHOLMOD(updown)(+1, C, L, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(updown)(+1, NULL, L, cm) ; NOT (ok) ; if (nrow > 0) { C = CHOLMOD(speye)(nrow-1, 1, CHOLMOD_REAL, cm) ; OKP (C) ; ok = CHOLMOD(updown)(+1, C, L, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } C = CHOLMOD(speye)(nrow, 0, CHOLMOD_REAL, cm) ; OKP (C) ; ok = CHOLMOD(updown)(+1, C, L, cm) ; OK (ok) ; ok = CHOLMOD(rowdel)(0, C, L, cm) ; NOT (ok) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* rowfac, rcond */ /* ---------------------------------------------------------------------- */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = FALSE ; cm->print = 5 ; cm->final_ll = TRUE ; for (xtype2 = CHOLMOD_REAL ; xtype2 <= CHOLMOD_ZOMPLEX ; xtype2++) { cm->supernodal = CHOLMOD_SIMPLICIAL ; /* factor a singular matrix (C=LL') */ printf ("start singular LL'\n") ; XX = CHOLMOD(ones)(4, 4, xtype2, cm) ; OKP (X) ; C = CHOLMOD(dense_to_sparse)(XX, TRUE, cm) ; OKP (C) ; CHOLMOD(free_dense)(&XX, cm) ; C->stype = 1 ; CHOLMOD(print_sparse)(C, "C ones", cm) ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; printf ("status %d\n", cm->status) ; ok1 = (cm->status == CHOLMOD_NOT_POSDEF) ; ok = CHOLMOD(print_factor)(L6, "L6 singular", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; /* now make C positive definite */ CHOLMOD(free_sparse)(&C, cm) ; XX = CHOLMOD(ones)(4, 4, xtype2, cm) ; OKP (X) ; x = XX->x ; for (i = 0 ; i < 4 ; i++) { if (xtype2 == CHOLMOD_REAL || xtype2 == CHOLMOD_ZOMPLEX) { x [i + 4*i] = 42 ; } else /* complex */ { x [2*(i + 4*i)] = 42 ; } } C = CHOLMOD(dense_to_sparse)(XX, TRUE, cm) ; OKP (C) ; CHOLMOD(free_dense)(&XX, cm) ; C->stype = 1 ; CHOLMOD(print_sparse)(C, "C ok", cm) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "L6 ok", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond > 0) ; /* generate intentional nan's, to test the nan-handling of cholmod_rcond */ if (do_nantests) { xnan = xnan/xnan ; /* C(2,2) = nan */ x = C->x ; i = 2 ; if (xtype2 == CHOLMOD_REAL || xtype2 == CHOLMOD_ZOMPLEX) { x [i + 4*i] = xnan ; } else /* complex */ { x [2*(i + 4*i)] = xnan ; } ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "L6 nan2", cm) ; OK (ok) ; printf ("rcond %g\n", rcond) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; CHOLMOD(free_factor)(&L6, cm) ; /* C(2,2) = nan, LDL' */ cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_ll = TRUE ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "LDL6 nan2", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; CHOLMOD(free_factor)(&L6, cm) ; /* C(2,2) = nan, supernodal */ cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_ll = FALSE ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "L6 supernan2", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; CHOLMOD(free_factor)(&L6, cm) ; /* C(0,0) = nan */ cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_ll = FALSE ; x [0] = xnan ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "L6 nan0", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; CHOLMOD(free_factor)(&L6, cm) ; /* C(0,0) = nan, LDL' */ cm->supernodal = CHOLMOD_SIMPLICIAL ; cm->final_ll = TRUE ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "LDL6 nan0", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; CHOLMOD(free_factor)(&L6, cm) ; /* C(0,0) = nan, supernodal */ cm->supernodal = CHOLMOD_SUPERNODAL ; cm->final_ll = FALSE ; L6 = CHOLMOD(analyze)(C, cm) ; OKP (L6) ; ok = CHOLMOD(factorize)(C, L6, cm) ; OK (ok) ; ok1 = (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(print_factor)(L6, "L6 supernan0", cm) ; OK (ok) ; OK (ok1) ; rcond = CHOLMOD(rcond) (L6, cm) ; OK (rcond == 0) ; } CHOLMOD(free_factor)(&L6, cm) ; CHOLMOD(free_sparse)(&C, cm) ; } cm->supernodal = CHOLMOD_AUTO ; cm->final_ll = FALSE ; cm->print = 1 ; /* ---------------------------------------------------------------------- */ /* refactorize simplicial LDL' */ /* ---------------------------------------------------------------------- */ if (nrow < NLARGE) { L7 = CHOLMOD(analyze) (A, cm) ; OKP (L7) ; ok = CHOLMOD(factorize) (A, L7, cm) ; OK (ok) ; ok = CHOLMOD(factorize) (A, L7, cm) ; OK (ok) ; B7 = CHOLMOD(ones) (nrow, 1, xtype, cm) ; OKP (B7) ; X7 = CHOLMOD(solve) (CHOLMOD_A, L7, B7, cm) ; OKP (X7) ; ok = CHOLMOD(free_dense) (&X7, cm) ; OK (ok) ; ok = CHOLMOD(free_dense) (&B7, cm) ; OK (ok) ; if (A->stype > 0) { ok = CHOLMOD(rowfac) (A, NULL, zero, 0, nrow, L7, cm) ; OK (ok) ; ok = CHOLMOD(rowfac) (A, NULL, zero, 0, nrow, L7, cm) ; OK (ok) ; printf ("I7 :::\n") ; I7 = CHOLMOD(speye) (nrow+1, 1, xtype, cm) ; OKP (I7) ; I7->stype = 1 ; ok = CHOLMOD(rowfac) (I7,NULL, zero, 0, nrow, L7, cm) ; NOT(ok) ; printf ("I7 ::: done\n") ; CHOLMOD(free_sparse) (&I7, cm) ; } ok = CHOLMOD(free_factor) (&L7, cm) ; OK (ok) ; } cm->nmethods = 0 ; /* restore defaults */ cm->method [0].ordering = CHOLMOD_GIVEN ; cm->postorder = TRUE ; /* ---------------------------------------------------------------------- */ /* row subtree */ /* ---------------------------------------------------------------------- */ i = nrow / 2 ; C = CHOLMOD(allocate_sparse)(nrow, 1, nrow, TRUE, TRUE, 0, CHOLMOD_REAL, cm) ; OKP (C) ; C2 = CHOLMOD(allocate_sparse)(nrow, 1, nrow, TRUE, TRUE, 0, CHOLMOD_REAL, cm) ; OKP (C) ; ok = CHOLMOD(row_subtree)(NULL, NULL, i, Parent, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(NULL, NULL, 0, i, L, C2, cm) ; NOT (ok) ; if (A->stype == 0 && nrow > 0 && AT != NULL) { ok = CHOLMOD(row_subtree)(A, AT, i, Parent, C, cm) ; OK (ok) ; ATp = AT->p ; ATi = AT->i ; fnz = ATp [i+1] - ATp [i] ; ok = CHOLMOD(row_lsubtree)(A, ATi, fnz, i, L, C2, cm) ; OK (ok) ; ok = CHOLMOD(row_lsubtree)(Abad2, ATi, fnz, i, L, C2, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, NULL, fnz, i, L, C2, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, ATi, fnz, i, L, Abad2, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, ATi, fnz, i, NULL, C2, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, ATi, fnz, nrow+1, L, C2, cm) ;NOT (ok) ; ok = CHOLMOD(row_subtree)(Abad2, AT, i, Parent, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, Abad2, i, Parent, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, AT, i, Parent, Abad2, cm) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, NULL, i, Parent, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, AT, nrow+1, Parent, C, cm) ; NOT (ok) ; } else if (A->stype == 1 && nrow > 0) { ok = CHOLMOD(row_subtree)(A, NULL, i, Parent, C, cm) ; OK (ok) ; ok = CHOLMOD(row_lsubtree)(A, NULL, 0, i, L, C2, cm) ; OK (ok) ; } else { ok = CHOLMOD(row_subtree)(A, NULL, i, Parent, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, NULL, 0, i, L, C2, cm) ; NOT (ok) ; } ok = CHOLMOD(row_subtree)(A, NULL, i, Parent, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(row_subtree)(A, NULL, i, NULL, C, cm) ; NOT (ok) ; ok = CHOLMOD(row_lsubtree)(A, NULL, 0, i, L, NULL, cm) ; NOT (ok) ; if (A->stype == 1 && nrow > 0) { /* add extra entries in the (ignored) lower triangular part to AA */ if (!(A->sorted)) { ok = CHOLMOD(sort)(A, cm) ; OK (ok) ; } AA = CHOLMOD(copy)(A, 0, 0, cm) ; OK (AA->sorted) ; AA->stype = 1 ; ok = CHOLMOD(row_subtree)(AA, NULL, i, Parent, C, cm) ; OK (ok) ; ok = CHOLMOD(row_lsubtree)(AA, NULL, 0, i, L, C2, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&AA, cm) ; OK (ok) ; } ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&C2, cm) ; OK (ok) ; C = CHOLMOD(speye)(nrow, 0, CHOLMOD_REAL, cm) ; OKP (C) ; if (A->stype == 0 && AT != NULL && nrow > 0) { ok = CHOLMOD(row_subtree)(A, AT, i, Parent, C, cm) ; NOT (ok) ; ATp = AT->p ; ATi = AT->i ; fnz = ATp [i+1] - ATp [i] ; ok = CHOLMOD(row_lsubtree)(A, ATi, fnz, i, L, C, cm) ; NOT (ok) ; } ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; L6 = CHOLMOD(allocate_factor)(nrow, cm) ; OKP (L6) ; if (A->stype == 0 && nrow > 2) { ok = CHOLMOD(rowfac)(A, AT, beta, 0, 1, L6, cm) ; OK (ok) ; OK (cm->status == CHOLMOD_OK) ; ok = CHOLMOD(rowfac)(A, NULL, beta, 1, 2, L6, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, AT, beta, 1, 2, L6, cm) ; OK (ok) ; ok = CHOLMOD(rowfac)(Abad2, AT, beta, 1, 2, L6, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, Abad2, beta, 1, 2, L6, cm) ; NOT (ok) ; } ok = CHOLMOD(free_factor)(&L6, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* horzcat, vertcat */ /* ---------------------------------------------------------------------- */ if (A->nrow != A->ncol) { C = CHOLMOD(horzcat)(A, AT, TRUE, cm) ; NOP (C) ; C = CHOLMOD(vertcat)(A, AT, TRUE, cm) ; NOP (C) ; } C = CHOLMOD(horzcat)(A, Axbad, TRUE, cm) ; NOP (C) ; C = CHOLMOD(vertcat)(A, Axbad, TRUE, cm) ; NOP (C) ; C = CHOLMOD(vertcat)(A, NULL, TRUE, cm) ; NOP (C) ; C = CHOLMOD(vertcat)(NULL, AT, TRUE, cm) ; NOP (C) ; C = CHOLMOD(horzcat)(A, NULL, TRUE, cm) ; NOP (C) ; C = CHOLMOD(horzcat)(NULL, AT, TRUE, cm) ; NOP (C) ; /* ---------------------------------------------------------------------- */ /* print_triplet */ /* ---------------------------------------------------------------------- */ cm->print = 4 ; ok = CHOLMOD(print_triplet)(Tok, "T ok", cm) ; OK (ok) ; T = CHOLMOD(copy_triplet)(Tok, cm) ; /* [ */ OKP (T) ; Tz = T->z ; T->z = NULL ; ok = CHOLMOD(print_triplet)(T, "T no z", cm) ; if (T->xtype == CHOLMOD_ZOMPLEX) { NOT (ok) ; } else { OK (ok) ; } T->z = Tz ; cm->print = 1 ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; ok = CHOLMOD(print_triplet)(NULL, "null", cm) ; NOT (ok) ; p = T->nzmax ; T->nzmax = T->nnz - 1 ; ok = CHOLMOD(print_triplet)(T, "T nzmax too small", cm) ; NOT (ok) ; T->nzmax = p ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; T->itype = -1 ; ok = CHOLMOD(print_triplet)(T, "T itype bad", cm) ; NOT (ok) ; T->itype = CHOLMOD_INTLONG ; ok = CHOLMOD(print_triplet)(T, "T itype bad", cm) ; NOT (ok) ; T->itype = cm->itype ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; cm->print = 4 ; #ifdef LONG T->itype = CHOLMOD_INT ; #else T->itype = CHOLMOD_LONG ; #endif ok = CHOLMOD(print_triplet)(T, "T bad itype", cm) ; NOT (ok) ; T->itype = cm->itype ; cm->print = 1 ; Txtype = T->xtype ; T->xtype = -1 ; ok = CHOLMOD(print_triplet)(T, "T xtype bad", cm) ; NOT (ok) ; T->xtype = Txtype ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; T->dtype = -1 ; ok = CHOLMOD(print_triplet)(T, "T dtype bad", cm) ; NOT (ok) ; T->dtype = CHOLMOD_SINGLE ; ok = CHOLMOD(print_triplet)(T, "T dtype bad", cm) ; NOT (ok) ; T->dtype = CHOLMOD_DOUBLE ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; Tj = T->j ; Ti = T->i ; Tx = T->x ; T->j = NULL ; ok = CHOLMOD(print_triplet)(T, "Tj null", cm) ; NOT (ok) ; T->j = Tj ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; T->i = NULL ; ok = CHOLMOD(print_triplet)(T, "Ti null", cm) ; NOT (ok) ; T->i = Ti ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; T->x = NULL ; ok = CHOLMOD(print_triplet)(T, "Tx null", cm) ; NOT (ok) ; T->x = Tx ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; if (T->nnz > 0) { p = Ti [0] ; Ti [0] = -1 ; ok = CHOLMOD(print_triplet)(T, "Ti bad", cm) ; NOT (ok) ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; NOP (C) ; Ti [0] = p ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; p = Tj [0] ; Tj [0] = -1 ; ok = CHOLMOD(print_triplet)(T, "Tj bad", cm) ; NOT (ok) ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; NOP (C) ; Tj [0] = p ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; } cm->print = 4 ; CHOLMOD(triplet_xtype)(CHOLMOD_PATTERN, T, cm) ; ok = CHOLMOD(print_triplet)(T, "T pattern ok", cm) ; OK (ok) ; cm->print = 1 ; /* ---------------------------------------------------------------------- */ /* triplet, realloc_multiple */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; OK (cm->status == CHOLMOD_OK) ; cm->print = 4 ; if (T->nrow != T->ncol) { OK (T->stype == 0) ; CHOLMOD(print_triplet)(T, "T ok", cm) ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; CHOLMOD(print_sparse)(C, "C ok", cm) ; OKP (C) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; Ti = T->i ; T->i = NULL ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; NOP (C) ; T->i = Ti ; Tj = T->j ; T->j = NULL ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; NOP (C) ; T->j = Tj ; T->stype = 1 ; ok = CHOLMOD(print_triplet)(T, "T bad", cm) ; NOT (ok) ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; NOP (C) ; T->stype = 0 ; ok = CHOLMOD(print_triplet)(T, "T pattern ok", cm) ; OK (ok) ; } OK (cm->status == CHOLMOD_OK) ; cm->print = 1 ; ok = CHOLMOD(reallocate_triplet)(1, NULL, cm) ; NOT (ok) ; CHOLMOD(print_triplet)(T, "T before realloc", cm) ; ok = CHOLMOD(reallocate_triplet)(1+(T->nzmax), T, cm) ; OK (ok) ; CHOLMOD(print_triplet)(T, "T after realloc", cm) ; nznew = 10 + T->nzmax ; pp = NULL ; ok = CHOLMOD(realloc_multiple)(Size_max/2, 2, T->xtype, &(T->i), &(T->j), &(T->x), &(T->z), &(T->nzmax), cm) ; NOT (ok) ; size = 0 ; ii = NULL ; jj = NULL ; xx = NULL ; ok = CHOLMOD(realloc_multiple)(Size_max, 2, CHOLMOD_REAL, &ii, &jj, &xx, NULL, &size, cm) ; NOT (ok) ; ok = CHOLMOD(realloc_multiple)(0, 0, CHOLMOD_PATTERN, &ii, &jj, &xx, NULL, &size, cm) ; OK (ok) ; ok = CHOLMOD(realloc_multiple)(0, 0, -1, &ii, &jj, &xx, NULL, &size, cm) ; NOT (ok) ; /* change to pattern-only */ CHOLMOD(triplet_xtype)(CHOLMOD_PATTERN, T, cm) ; ok = CHOLMOD(reallocate_triplet)(1+(T->nzmax), T, cm) ; OK (ok) ; ok = CHOLMOD(free_triplet)(&T, cm) ; /* ] */ OK (ok) ; T = CHOLMOD(allocate_triplet)(nrow, ncol, Size_max, 0, CHOLMOD_REAL, cm); NOP (T) ; T2 = CHOLMOD(allocate_triplet)(4, 4, 8, 0, CHOLMOD_REAL, cm); OKP (T2) ; ok = CHOLMOD(reallocate_triplet)(12, T2, cm) ; OK (ok) ; T = CHOLMOD(copy_triplet)(T2, cm) ; OKP (T) ; CHOLMOD(free_triplet)(&T, cm) ; T = CHOLMOD(sparse_to_triplet)(A, cm) ; OKP (T) ; C = CHOLMOD(triplet_to_sparse)(T, 100, cm) ; OKP (C) ; CHOLMOD(free_sparse)(&C, cm) ; CHOLMOD(free_triplet)(&T, cm) ; T2->xtype = -1 ; ok = CHOLMOD(reallocate_triplet)(16, T2, cm) ; NOT (ok) ; T = CHOLMOD(copy_triplet)(T2, cm) ; NOP (T) ; C = CHOLMOD(triplet_to_sparse)(T2, 100, cm) ; NOP (C) ; T2->xtype = CHOLMOD_REAL ; CHOLMOD(free_triplet)(&T2, cm) ; T = CHOLMOD(allocate_triplet)(4, 4, 16, 0, -1, cm); NOP (T) ; T = CHOLMOD(sparse_to_triplet)(Abad2, cm) ; NOP (T) ; for (stype = -1 ; stype <= 1 ; stype++) { T = CHOLMOD(allocate_triplet)(4, 4, 16, stype, CHOLMOD_PATTERN, cm) ; OKP (T) ; Ti = T->i ; Tj = T->j ; k = 0 ; for (i = 0 ; i < 4 ; i++) { for (j = 0 ; j < 4 ; j++) { Ti [k] = i ; Tj [k] = j ; k++ ; } } T->nnz = k ; C = CHOLMOD(triplet_to_sparse)(T, 0, cm) ; cm->print = 4 ; printf ("stype "ID"\n", stype) ; CHOLMOD(print_triplet)(T, "T from triplet", cm) ; CHOLMOD(print_sparse)(C, "C from triplet", cm) ; cm->print = 1 ; OKP (C) ; CHOLMOD(free_sparse)(&C, cm) ; CHOLMOD(free_triplet)(&T, cm) ; } /* ---------------------------------------------------------------------- */ /* sparse_to_triplet */ /* ---------------------------------------------------------------------- */ if (A->nrow != A->ncol) { OK (A->stype == 0) ; T = CHOLMOD(sparse_to_triplet)(A, cm) ; OKP (T) ; ok = CHOLMOD(print_triplet)(T, "T ok", cm) ; OK (ok) ; T2 = CHOLMOD(copy_triplet)(NULL, cm) ; NOP (T2) ; Ti = T->i ; T->i = NULL ; T2 = CHOLMOD(copy_triplet)(T, cm) ; NOP (T2) ; T->i = Ti ; Tj = T->j ; T->j = NULL ; T2 = CHOLMOD(copy_triplet)(T, cm) ; NOP (T2) ; T->j = Tj ; ok = CHOLMOD(free_triplet)(&T, cm) ; OK (ok) ; A->stype = 1 ; T = CHOLMOD(sparse_to_triplet)(A, cm) ; NOP (T) ; A->stype = 0 ; T = CHOLMOD(sparse_to_triplet)(NULL, cm) ; NOP (T) ; } /* ---------------------------------------------------------------------- */ /* colamd */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(colamd)(A, fsetok, fsizeok, TRUE, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(colamd)(NULL, fsetok, fsizeok, TRUE, Pok, cm) ; NOT (ok) ; cm->current = 0 ; save1 = cm->method [0].prune_dense2 ; save2 = cm->method [0].ordering ; save4 = cm->nmethods ; cm->method [0].prune_dense2 = 0.5 ; cm->method [0].ordering = CHOLMOD_COLAMD ; cm->nmethods = 1 ; ok = CHOLMOD(colamd)(A, fsetok, fsizeok, TRUE, Pok, cm) ; if (A->stype == 0) { save3 = cm->print ; cm->print = 5 ; ok = CHOLMOD(print_common) ("colamd dense2", cm) ; OK (ok) ; cm->print = save3 ; OK (ok) ; } else { NOT (ok) ; } cm->method [0].prune_dense2 = save1 ; cm->method [0].ordering = save2 ; cm->nmethods = save4 ; cm->current = -1 ; ok = CHOLMOD(colamd)(A, fsetok, fsizeok, TRUE, Pok, cm) ; if (A->stype == 0) { OK (ok) ; } else { NOT (ok) ; } cm->current = 0 ; ok = CHOLMOD(colamd)(Abad2, NULL, 0, TRUE, Pok, cm) ; NOT (ok) ; if (ncol > 0) { ok = CHOLMOD(colamd)(A, fsetbad, ncol, TRUE, Pok, cm) ; NOT (ok) ; } /* mangle the matrix to test integer overflow in colamd */ if (A->stype == 0) { nzmax = A->nzmax ; A->nzmax = Size_max/2 ; ok = CHOLMOD(colamd)(A, fsetok, fsizeok, TRUE, Pok, cm) ; NOT (ok) ; A->nzmax = nzmax ; } /* ---------------------------------------------------------------------- */ /* ccolamd/csymamd */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, Pok, cm) ; if (A->stype == 0) { OK (ok) ; } else { NOT (ok) ; } ok = CHOLMOD(ccolamd)(Abad2, NULL, 0, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(csymamd)(A, NULL, Pok, cm) ; if (A->nrow == A->ncol) { OK (ok) ; } else { NOT (ok) ; } ok = CHOLMOD(csymamd)(Abad2, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(csymamd)(NULL, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(csymamd)(A, NULL, NULL, cm) ; NOT (ok) ; /* mangle the matrix to test integer overflow in colamd */ if (A->stype == 0) { nzmax = A->nzmax ; A->nzmax = Size_max/2 ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, Pok, cm) ; NOT (ok) ; A->nzmax = nzmax ; } #endif /* ---------------------------------------------------------------------- */ /* amd */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(amd)(A, NULL, 0, Pok, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* metis */ /* ---------------------------------------------------------------------- */ #ifndef NPARTITION /* no METIS memory guard */ cm->metis_memory = 0 ; if (A->stype) { E = CHOLMOD(copy)(A, 0, -1, cm) ; } else { E = CHOLMOD(aat)(A, NULL, 0, -1, cm) ; } enz = CHOLMOD(nnz)(E, cm) ; CHOLMOD(print_sparse)(A, "A for metis", cm) ; if (A != NULL && Pok != NULL) { ok = CHOLMOD(metis)(A, NULL, 0, TRUE, Pok, cm) ; /* memory guard triggered */ if (nrow > 0) { double density ; cm->metis_memory = Size_max ; ok = CHOLMOD(metis)(A, NULL, 0, FALSE, Pok, cm) ; OK (ok) ; /* Pok should be identity */ for (j = 0 ; j < nrow ; j++) { OK (Pok [j] == j) ; } /* memory guard triggered */ cm->metis_memory = 2 ; cm->metis_nswitch = 10 ; ok = CHOLMOD(metis)(A, NULL, 0, FALSE, Pok, cm) ; OK (ok) ; /* Pok should be identity if the matrix is dense */ density = ((double) enz) / (((double) nrow) * ((double) nrow)) ; if (nrow > 10 && density > cm->metis_dswitch) { for (j = 0 ; j < nrow ; j++) { OK (Pok [j] == j) ; } } } } /* restore METIS default memory guard */ cm->metis_memory = 2 ; cm->metis_nswitch = 3000 ; /* check metis bisector error handling */ if (E != NULL && enz > 0) { Int *Anw, *Aew ; Anw = CHOLMOD(malloc)(nrow, sizeof (Int), cm) ; Aew = CHOLMOD(malloc)(MAX (anz,enz), sizeof (Int), cm) ; for (j = 0 ; j < nrow ; j++) { Anw [j] = 1 ; } for (j = 0 ; j < enz ; j++) { Aew [j] = 1 ; } lr = CHOLMOD(metis_bisector)(E, Anw, Aew, Pok, cm) ; if (E->stype || E->nrow != E->ncol) { NOT (lr >= 0) ; } else { OK (lr >= 0) ; } lr = CHOLMOD(metis_bisector)(Abad2, Anw, Aew, Pok, cm) ;NOT (lr >= 0); lr = CHOLMOD(metis_bisector)(NULL, Anw, Aew, Pok, cm) ; NOT (lr >= 0); lr = CHOLMOD(metis_bisector)(A, NULL, Aew, Pok, cm) ; NOT (lr >= 0); lr = CHOLMOD(metis_bisector)(A, Anw, NULL, Pok, cm) ; NOT (lr >= 0); lr = CHOLMOD(metis_bisector)(A, Anw, Aew, NULL, cm) ; NOT (lr >= 0); if (A->stype) { lr = CHOLMOD(metis_bisector)(A, Anw, Aew, Pok, cm) ; NOT (lr>=0) ; } CHOLMOD(free)(nrow, sizeof (Int), Anw, cm) ; CHOLMOD(free)(MAX (anz,enz), sizeof (Int), Aew, cm) ; } CHOLMOD(free_sparse)(&E, cm) ; CHOLMOD(print_sparse)(Abad, "Abad", cm) ; lr = CHOLMOD(bisect)(Abad, NULL, 0, TRUE, Partition, cm) ; if (Abad != NULL && Abad->nrow == 0) { OK (lr == 0) ; } else { NOT (lr >= 0) ; } lr = CHOLMOD(bisect)(A, NULL, 0, TRUE, NULL, cm) ; NOT (lr >= 0); lr = CHOLMOD(bisect)(NULL, NULL, 0, TRUE, Partition, cm) ; NOT (lr >= 0); lr = CHOLMOD(nested_dissection)(NULL, NULL, 0, Pok, CParent, Cmember, cm) ; NOT (lr>=0) ; lr = CHOLMOD(nested_dissection)(A, NULL, 0, NULL, CParent, Cmember, cm) ; NOT (lr>=0) ; lr = CHOLMOD(nested_dissection)(A, NULL, 0, Pok, NULL, Cmember, cm) ; NOT (lr>=0) ; lr = CHOLMOD(nested_dissection)(A, NULL, 0, Pok, CParent, NULL, cm) ; NOT (lr>=0) ; ok = CHOLMOD(metis)(NULL, NULL, 0, TRUE, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(metis)(A, NULL, 0, TRUE, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(metis)(Abad2, NULL, 0, FALSE, Pok, cm) ; NOT (ok) ; lr = CHOLMOD(bisect)(Abad2, NULL, 0, TRUE, Partition, cm) ; NOT (lr >= 0); #endif /* ---------------------------------------------------------------------- */ /* etree */ /* ---------------------------------------------------------------------- */ if (A->stype < 0) { ok = CHOLMOD(etree)(A, Parent, cm) ; NOT (ok) ; } ok = CHOLMOD(etree)(Abad2, Parent, cm) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* etree, postorder, rowcolcount */ /* ---------------------------------------------------------------------- */ if (A->stype == 0 && ncol > 0) { AFT = CHOLMOD(ptranspose)(A, 1, NULL, fsetok, fsizeok, cm) ; OKP(AFT); AF = CHOLMOD(transpose)(AFT, 1, cm) ; OKP(AF); ok = CHOLMOD(etree)(NULL, Parent, cm) ; NOT(ok); ok = CHOLMOD(etree)(AFT, NULL, cm) ; NOT(ok); ok = CHOLMOD(etree)(AFT, Parent, cm) ; OK (ok); lr = CHOLMOD(postorder)(Parent, nrow, NULL, Post, cm) ; OK (lr>=0) ; lr = CHOLMOD(postorder)(NULL, nrow, NULL, Post, cm) ; NOT (lr>=0) ; lr = CHOLMOD(postorder)(Parent, nrow, NULL, NULL, cm) ; NOT (lr>=0) ; ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, Post, NULL, ColCount, First, Level, cm) ; OK (ok); ok = CHOLMOD(rowcolcounts)(Abad2, fsetok, fsizeok, Parent, Post, NULL, ColCount, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(NULL, fsetok, fsizeok, Parent, Post, NULL, ColCount, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, NULL, Post, NULL, ColCount, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, NULL, NULL, ColCount, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, Post, NULL, NULL, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, Post, NULL, ColCount, NULL, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, Post, NULL, ColCount, First, NULL, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetbad, ncol, Parent, Post, NULL, ColCount, First, Level, cm) ; NOT(ok); ok = CHOLMOD(rowcolcounts)(A, fsetok, fsizeok, Parent, Post, NULL, ColCount, First, NULL, cm) ; NOT(ok); CHOLMOD(free_sparse)(&AF, cm) ; CHOLMOD(free_sparse)(&AFT, cm) ; } /* ---------------------------------------------------------------------- */ /* norm */ /* ---------------------------------------------------------------------- */ nm = CHOLMOD(norm_sparse)(A, 2, cm) ; NOT (nm>=0) ; nm = CHOLMOD(norm_sparse)(Abad, 0, cm) ; NOT (nm>=0) ; nm = CHOLMOD(norm_sparse)(Abad2, 2, cm) ; NOT (nm>=0) ; nm = CHOLMOD(norm_dense)(Bok, 3, cm) ; NOT (nm>=0) ; nm = CHOLMOD(norm_dense)(Bok, 2, cm) ; NOT (nm>=0) ; nm = CHOLMOD(norm_dense)(Xbad2, 1, cm) ; NOT (nm>=0) ; /* ---------------------------------------------------------------------- */ /* copy dense */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(copy_dense2)(NULL, Bok, cm) ; NOT (ok) ; ok = CHOLMOD(copy_dense2)(Bok, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(copy_dense2)(Bok, Xbad2, cm) ; NOT (ok) ; ok = CHOLMOD(copy_dense2)(Xbad2, Xbad2, cm) ; NOT (ok) ; if (nrow > 1) { /* wrong dimensions */ ok = CHOLMOD(copy_dense2)(Two, Bok, cm) ; NOT (ok) ; /* mangled matrix */ Y = CHOLMOD(copy_dense)(Bok, cm) ; OKP (Y) ; Y->d = 0 ; ok = CHOLMOD(copy_dense2)(Bok, Y, cm) ; NOT (ok) ; CHOLMOD(free_dense)(&Y, cm) ; Y = CHOLMOD(copy_dense)(Xbad2, cm) ; NOP (Y) ; Y = CHOLMOD(copy_dense)(NULL, cm) ; NOP (Y) ; } /* ---------------------------------------------------------------------- */ /* complex */ /* ---------------------------------------------------------------------- */ W = CHOLMOD(eye)(4, 4, CHOLMOD_COMPLEX, cm) ; OKP (W) ; ok = CHOLMOD(dense_xtype)(0, W, cm) ; NOT (ok) ; ok = CHOLMOD(dense_xtype)(CHOLMOD_REAL, W, cm) ; OK (ok) ; ok = CHOLMOD(dense_xtype)(CHOLMOD_REAL, NULL, cm) ; NOT (ok) ; k = W->xtype ; W->xtype = -1 ; ok = CHOLMOD(dense_xtype)(CHOLMOD_REAL, W, cm) ; NOT (ok) ; W->xtype = k ; ok = CHOLMOD(free_dense)(&W, cm) ; OK (ok) ; C = CHOLMOD(speye)(4, 4, CHOLMOD_COMPLEX, cm) ; OKP (C) ; ok = CHOLMOD(sparse_xtype)(-1, C, cm) ; NOT (ok) ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_ZOMPLEX, C, cm) ; OK (ok) ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_ZOMPLEX, NULL, cm) ; NOT (ok) ; T = CHOLMOD(sparse_to_triplet)(C, cm) ; OKP (T) ; ok = CHOLMOD(triplet_xtype)(-1, T, cm) ; NOT (ok) ; ok = CHOLMOD(triplet_xtype)(CHOLMOD_ZOMPLEX, T, cm) ; OK (ok) ; ok = CHOLMOD(triplet_xtype)(CHOLMOD_ZOMPLEX, NULL, cm) ; NOT (ok) ; k = T->xtype ; T->xtype = -1 ; ok = CHOLMOD(triplet_xtype)(CHOLMOD_REAL, T, cm) ; NOT (ok) ; T->xtype = k ; k = C->xtype ; C->xtype = -1 ; ok = CHOLMOD(sparse_xtype)(CHOLMOD_REAL, C, cm) ; NOT (ok) ; C->xtype = k ; ok = CHOLMOD(free_triplet)(&T, cm) ; OK (ok) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; ok = CHOLMOD(factor_xtype)(CHOLMOD_REAL, Lbad, cm) ; NOT (ok) ; /* ---------------------------------------------------------------------- */ /* rowadd */ /* ---------------------------------------------------------------------- */ x = X->x ; X->x = NULL ; C = CHOLMOD(dense_to_sparse)(X, TRUE, cm) ; NOP (C) ; if (nrow > 3 && isreal) { ok = CHOLMOD(rowadd)(1, I1, L, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow+1, R, L, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow+1, R, L, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel)(nrow+1, NULL, L5, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel)(nrow-2, NULL, L5, cm) ; OK (ok) ; ok = CHOLMOD(rowdel)(nrow-2, NULL, L5, cm) ; OK (ok) ; ok = CHOLMOD(rowdel)(nrow-2, Abad2, L5, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel)(nrow-1, R, L5, cm) ; NOT (ok) ; ok = CHOLMOD(change_factor)(CHOLMOD_REAL, TRUE, FALSE, TRUE, TRUE, L5, cm) ; OK (ok) ; ok = CHOLMOD(rowadd)(nrow-2, NULL, L5, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow-2, R, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow-2, R, L5, cm) ; OK (ok) ; ok = CHOLMOD(rowadd)(nrow-2, Abad2, L5, cm) ; NOT (ok) ; /* ok = CHOLMOD(rowadd)(nrow-2, R, L5, cm) ; NOT (ok) ; */ ok = CHOLMOD(rowdel)(nrow-2, NULL, L5, cm) ; OK (ok) ; ok = CHOLMOD(change_factor)(CHOLMOD_PATTERN, TRUE, TRUE, TRUE, TRUE, L5, cm) ; NOT (ok) ; ok = CHOLMOD(change_factor)(CHOLMOD_REAL, TRUE, TRUE, TRUE, TRUE, L5, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd_solve)(nrow-2, R, beta, L5, X, X, cm) ; NOT (ok) ; ok = CHOLMOD(rowdel_solve)(nrow-2, R, beta, L5, X, X, cm) ; NOT (ok) ; ok = CHOLMOD(updown_solve)(TRUE, R, L5, X, X, cm) ; NOT (ok) ; if (nrow < 200 && L5 != NULL && R2 != NULL) { cholmod_factor *L8 ; Int *L8p, *L8i, *L8nz, rnz ; double *L8x ; L8 = CHOLMOD(copy_factor) (L5, cm) ; ok = TRUE ; for (k = nrow-1 ; ok && L8 != NULL && L8->xtype == CHOLMOD_REAL && k >= 0 ; k--) { for (rnz = 0 ; rnz < nrow ; rnz++) { /* first, ensure row i is zero */ for (j = 0 ; j < nrow ; j++) { L8p = L8->p ; L8i = L8->i ; L8nz = L8->nz ; L8x = L8->x ; for (p = L8p [j] ; p < L8p [j] + L8nz [j] ; p++) { i = L8i [p] ; if (i == k) L8x [p] = 0 ; } } R2p [1] = rnz ; ok = CHOLMOD(rowadd)(k, R2, L8, cm) ; OK (ok) ; ok = CHOLMOD(rowdel)(k, NULL, L8, cm) ; OK (ok) ; ok = CHOLMOD(rowadd)(k, R2, L8, cm) ; OK (ok) ; } } CHOLMOD(free_factor) (&L8, cm) ; } } X->x = x ; ok = CHOLMOD(free_dense)(&X, cm) ; OK (ok) ; /* ---------------------------------------------------------------------- */ /* ssmult */ /* ---------------------------------------------------------------------- */ if (nrow < 100) { C = CHOLMOD(ssmult)(A, A, 0, TRUE, TRUE, cm) ; if (A->nrow != A->ncol || !isreal) { NOP (C) ; } else { OKP (C) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } C = CHOLMOD(ssmult)(NULL, A, 0, TRUE, TRUE, cm) ; NOP (C) ; C = CHOLMOD(ssmult)(A, NULL, 0, TRUE, TRUE, cm) ; NOP (C) ; C = CHOLMOD(ssmult)(A, Axbad, 0, TRUE, TRUE, cm) ; NOP (C) ; } /* ---------------------------------------------------------------------- */ /* sdmult */ /* ---------------------------------------------------------------------- */ if (nrow > 1) { ok = CHOLMOD(sdmult)(A, FALSE, one, one, Two, Two, cm) ; NOT (ok) ; } YY = CHOLMOD(ones)(A->nrow, 1, xtype, cm) ; OKP (YY) ; XX = CHOLMOD(ones)(A->ncol, 1, xtype, cm) ; OKP (XX) ; cm->print = 4 ; ok = CHOLMOD(print_dense)(XX, "XX", cm) ; OK (ok) ; cm->print = 1 ; ok = CHOLMOD(sdmult)(A, FALSE, one, one, XX, YY, cm) ; OK (ok) ; ok = CHOLMOD(sdmult)(NULL, FALSE, one, one, XX, YY, cm) ; NOT (ok) ; ok = CHOLMOD(sdmult)(A, FALSE, one, one, NULL, YY, cm) ; NOT (ok) ; ok = CHOLMOD(sdmult)(A, FALSE, one, one, XX, NULL, cm) ; NOT (ok) ; ok = CHOLMOD(sdmult)(Abad2, FALSE, one, one, XX, YY, cm) ; NOT (ok) ; XX->xtype++ ; ok = CHOLMOD(sdmult)(A, FALSE, one, one, XX, YY, cm) ; NOT (ok) ; XX->xtype-- ; YY->xtype++ ; ok = CHOLMOD(sdmult)(A, FALSE, one, one, XX, YY, cm) ; NOT (ok) ; YY->xtype-- ; CHOLMOD(free_dense)(&YY, cm) ; CHOLMOD(free_dense)(&XX, cm) ; /* ---------------------------------------------------------------------- */ /* symmetry */ /* ---------------------------------------------------------------------- */ for (option = 0 ; option <= 2 ; option++) { Int xmatched = 0, pmatched = 0, nzoffdiag = 0, nz_diag = 0 ; int asym ; printf ("test symmetry: option %d\n", option) ; save1 = cm->print ; cm->print = 5 ; CHOLMOD(print_sparse) (A, "A", cm) ; cm->print = save1 ; asym = CHOLMOD(symmetry) (A, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; printf ("asym: %d\n", asym) ; OK (A->stype != 0 || asym >= 0) ; save1 = A->xtype ; A->xtype = CHOLMOD_PATTERN ; asym = CHOLMOD(symmetry) (A, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; printf ("asym: %d pattern\n", asym) ; OK (A->stype != 0 || asym >= 0) ; A->xtype = save1 ; C = CHOLMOD(copy_sparse) (A, cm) ; OKP (C) ; ok = CHOLMOD(sparse_xtype) (CHOLMOD_ZOMPLEX, C, cm) ; OK (ok) ; asym = CHOLMOD(symmetry) (C, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; OK (A->stype != 0 || asym >= 0) ; printf ("asym: %d zomplex\n", asym) ; asym = CHOLMOD(symmetry) (NULL, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; NOT (asym >= 0) ; C->xtype = 999 ; asym = CHOLMOD(symmetry) (C, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; NOT (asym >= 0) ; C->xtype = CHOLMOD_ZOMPLEX ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; C = CHOLMOD(copy) (A, 0, (A->xtype == CHOLMOD_REAL), cm) ; OKP (C) ; asym = CHOLMOD(symmetry) (C, option, &xmatched, &pmatched, &nzoffdiag, &nz_diag, cm) ; OK (asym >= 0) ; ok = CHOLMOD(free_sparse)(&C, cm) ; OK (ok) ; } /* ---------------------------------------------------------------------- */ /* memory tests */ /* ---------------------------------------------------------------------- */ R3 = CHOLMOD(speye)(nrow, 1, CHOLMOD_PATTERN, cm) ; /* [ */ OKP (R3) ; test_memory_handler ( ) ; ok = CHOLMOD(amd)(A, NULL, 0, Pok, cm) ; if (A->nrow == 0) { OK (ok) ; } else { NOT (ok) ; } #ifndef NPARTITION ok = CHOLMOD(camd)(A, NULL, 0, NULL, Pok, cm) ; if (A->nrow == 0) { OK (ok) ; } else { NOT (ok) ; } #endif C = CHOLMOD(aat)(A, NULL, 0, 0, cm) ; NOP (C) ; A->sorted = FALSE ; ok = CHOLMOD(check_sparse)(A, cm) ; NOT (ok) ; A->sorted = TRUE ; CHOLMOD(free_work)(cm) ; if (A->stype == 0) { for (trial = 0 ; !ok && trial < 20 ; trial++) { my_tries = trial ; printf ("--------------------- trial "ID"\n", my_tries) ; ok = CHOLMOD(colamd)(A, NULL, 0, TRUE, Pok, cm) ; } OK (ok) ; } #ifndef NPARTITION test_memory_handler ( ) ; ok = CHOLMOD(ccolamd)(A, fsetok, fsizeok, NULL, Pok, cm) ; NOT (ok) ; ok = CHOLMOD(csymamd)(A, NULL, Pok, cm) ; NOT (ok) ; for (trial = 0 ; trial < 7 ; trial++) { test_memory_handler ( ) ; my_tries = trial ; ok = CHOLMOD(csymamd)(A, NULL, Pok, cm) ; NOT (ok) ; } if (A->nrow == A->ncol && A->packed) { test_memory_handler ( ) ; my_tries = 8 ; ok = CHOLMOD(csymamd)(A, NULL, Pok, cm) ; OK (ok) ; test_memory_handler ( ) ; ok = CHOLMOD(csymamd)(A, NULL, Pok, cm) ; NOT (ok) ; OK (cm->status == CHOLMOD_OUT_OF_MEMORY) ; } for (trial = 0 ; trial < 5 ; trial++) { test_memory_handler ( ) ; my_tries = trial ; ok = CHOLMOD(camd)(A, NULL, 0, NULL, Pok, cm) ; if (A->nrow == 0) { OK (ok) ; } else { NOT (ok) ; } } #endif test_memory_handler ( ) ; ok = CHOLMOD(etree)(A, Parent, cm) ; NOT (ok) ; ok = CHOLMOD(factorize)(A, L, cm) ; NOT (ok) ; pp = CHOLMOD(malloc)(4, 0, cm) ; NOP (pp) ; pp = CHOLMOD(calloc)(4, 0, cm) ; NOP (pp) ; pp = CHOLMOD(calloc)(Size_max, 1, cm) ; NOP (pp) ; pp = NULL ; size = 0 ; pp = CHOLMOD(realloc)(4, 0, pp, &size, cm) ; NOP (pp) ; pp = CHOLMOD(realloc)(Size_max, 1, pp, &size, cm) ; NOP (pp) ; normal_memory_handler ( ) ; OK (CHOLMOD(print_sparse)(A, "A ok", cm)) ; OK (CHOLMOD(print_factor)(L, "L ok", cm)) ; /* test no_workspace_reallocate flag */ CHOLMOD (free_work) (cm) ; CHOLMOD (allocate_work) (1, 1, 1, cm) ; OK (cm->status == CHOLMOD_OK) ; cm->no_workspace_reallocate = TRUE ; ok = CHOLMOD (allocate_work) (2, 1, 1, cm) ; NOT (ok) ; ok = CHOLMOD (allocate_work) (1, 2, 1, cm) ; NOT (ok) ; ok = CHOLMOD (allocate_work) (1, 1, 2, cm) ; NOT (ok) ; cm->no_workspace_reallocate = FALSE ; ok = CHOLMOD (allocate_work) (1, 1, 2, cm) ; OK (ok) ; cm->print = 4 ; ok = CHOLMOD(print_factor)(L, "L for copy", cm) ; OK (ok) ; ok = FALSE ; test_memory_handler ( ) ; for (trial = 0 ; !ok && trial < 100 ; trial++) { my_tries = trial ; Lcopy = CHOLMOD(copy_factor)(L, cm) ; ok = (Lcopy != NULL) ; } normal_memory_handler ( ) ; ok = CHOLMOD(print_factor)(Lcopy, "Lcopy", cm) ; OK (ok) ; CHOLMOD(free_factor)(&Lcopy, cm) ; cm->print = 1 ; test_memory_handler ( ) ; ok = CHOLMOD(resymbol)(A, NULL, 0, TRUE, L, cm) ; NOT (ok) ; ok = CHOLMOD(resymbol_noperm)(A, NULL, 0, TRUE, L, cm) ; NOT (ok) ; lr = CHOLMOD(postorder)(Parent, nrow, NULL, Post, cm) ; NOT (lr>=0) ; T = CHOLMOD(copy_triplet)(Tok, cm) ; NOT (ok) ; #ifndef NPARTITION lr = CHOLMOD(nested_dissection)(A, NULL, 0, Pok, CParent, Cmember, cm) ; if (nrow == 0) { OK (lr >= 0) ; } else { NOT (lr >= 0) ; } lr = CHOLMOD(nested_dissection)(Abad2, NULL, 0, Pok, CParent, Cmember, cm) ; NOT (lr >= 0) ; ok = CHOLMOD(metis)(A, NULL, 0, TRUE, Pok, cm) ; if (nrow == 0) { OK (ok) ; } else { NOT (ok) ; } lr = CHOLMOD(bisect)(A, NULL, 0, TRUE, Partition, cm) ; if (nrow == 0) { OK (lr == 0) ; } else { NOT (lr >= 0) ; } lr = CHOLMOD(bisect)(Abad2, NULL, 0, TRUE, Partition, cm) ; NOT (lr >= 0) ; #endif if (nrow > 3) { ok = CHOLMOD(rowdel)(nrow-2, NULL, L5, cm) ; NOT (ok) ; ok = CHOLMOD(rowadd)(nrow-2, R, L5, cm) ; NOT (ok) ; ok = CHOLMOD(updown)(+1, A, L, cm) ; NOT (ok) ; } C = CHOLMOD(add)(A, A, one, one, TRUE, TRUE, cm) ; NOP (C) ; C = CHOLMOD(ssmult)(A, A, 0, TRUE, TRUE, cm) ; NOP (C) ; ok = CHOLMOD(rowcolcounts)(A, NULL, 0, Parent, Post, NULL, ColCount, First, Level, cm) ; NOT (ok) ; ok = CHOLMOD(rowfac)(A, NULL, beta, 0, 0, L, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_unsym)(A, 1, Pok, NULL, 0, R, cm) ; NOT (ok) ; ok = CHOLMOD(transpose_sym)(A, 1, Pok, R, cm) ; NOT (ok) ; if (nrow > 1) { ok = CHOLMOD(sort)(A, cm) ; NOT (ok) ; } ok = CHOLMOD(row_subtree)(A, AT, 0, Parent, R3, cm) ; NOT (ok) ; ATi = (AT == NULL) ? NULL : AT->i ; ok = CHOLMOD(row_lsubtree)(A, ATi, 0, 0, L, R3, cm) ; NOT (ok) ; normal_memory_handler ( ) ; /* ---------------------------------------------------------------------- */ /* free the valid objects */ /* ---------------------------------------------------------------------- */ cm->status = CHOLMOD_OK ; CHOLMOD(free_triplet)(NULL, cm) ; CHOLMOD(free_sparse)(&R3, cm) ; /* ] */ CHOLMOD(free_sparse)(&R, cm) ; /* ] */ CHOLMOD(free_sparse)(&Acopy, cm) ; /* ] */ CHOLMOD(free_factor)(&L5, cm) ; /* ] */ CHOLMOD(free_factor)(&L2, cm) ; /* ] */ Lbad->xtype = Lxtype ; CHOLMOD(free_factor)(&Lbad, cm) ; /* ] */ CHOLMOD(free_factor)(&L, cm) ; /* ] */ CHOLMOD(free_triplet)(&T, cm) ; Axbad->xtype = Axbad_type ; CHOLMOD(free_sparse)(&Axbad, cm) ; /* ] */ cm->error_handler = my_handler ; Xbad2->xtype = CHOLMOD_REAL ; CHOLMOD(free_dense)(&Xbad2, cm) ; /* ] */ Abad2->xtype = Abad2xtype ; CHOLMOD(free_sparse)(&Abad2, cm) ; /* ] */ CHOLMOD(free_sparse)(&Abad, cm) ; /* ] */ CHOLMOD(free_sparse)(&R0, cm) ; CHOLMOD(free_sparse)(&R1, cm) ; /* ] */ CHOLMOD(free_sparse)(&Aboth, cm) ; /* ] */ CHOLMOD(free_sparse)(&Sok, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Pinv, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Parent, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Post, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Cmember, cm) ; CHOLMOD(free)(nrow, sizeof (Int), CParent, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Partition, cm) ; CHOLMOD(free)(nrow, sizeof (Int), ColCount, cm) ; CHOLMOD(free)(nrow, sizeof (Int), First, cm) ; CHOLMOD(free)(nrow, sizeof (Int), Level, cm) ; /* ] */ CHOLMOD(free_dense)(&Two, cm) ; /* ] */ CHOLMOD(free_sparse)(&R2, cm) ; /* ] */ CHOLMOD(free)(nrow, sizeof (Int), Pok, cm) ; /* ] */ CHOLMOD(free_sparse)(&I1, cm) ; /* ] */ CHOLMOD(free)(nrow, sizeof (Int), Pbad, cm) ; /* ] */ CHOLMOD(free)(ncol, sizeof (Int), fsetbad, cm) ; /* ] */ CHOLMOD(free)(ncol, sizeof (Int), fsetok, cm) ; /* ] */ CHOLMOD(free_dense)(&Bok, cm) ; /* ] */ CHOLMOD(free_dense)(&Xok, cm) ; /* ] */ CHOLMOD(free_sparse)(&AT, cm) ; /* ] */ CHOLMOD(free_sparse)(&A, cm) ; /* ] */ OK (cm->status == CHOLMOD_OK) ; printf ("\n------------------------null2 tests: All OK\n") ; } SuiteSparse/CHOLMOD/Tcov/camdtest.c0000644001170100242450000003044110540000032015701 0ustar davisfac/* ========================================================================== */ /* === Tcov/camdtest ======================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test for camd v2.0 */ #include "cm.h" #ifndef NPARTITION #include "camd.h" /* ========================================================================== */ /* === camdtest ============================================================= */ /* ========================================================================== */ void camdtest (cholmod_sparse *A) { double Control [CAMD_CONTROL], Info [CAMD_INFO], alpha ; Int *P, *Cp, *Ci, *Sp, *Si, *Bp, *Bi, *Ep, *Ei, *Fp, *Fi, *Len, *Nv, *Next, *Head, *Elen, *Deg, *Wi, *W, *Flag, *BucketSet, *Constraint ; cholmod_sparse *C, *B, *S, *E, *F ; Int i, j, n, nrow, ncol, ok, cnz, bnz, p, trial, sorted ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ printf ("\nCAMD test\n") ; if (A == NULL) { return ; } if (A->stype) { B = CHOLMOD(copy) (A, 0, 0, cm) ; } else { B = CHOLMOD(aat) (A, NULL, 0, 0, cm) ; } if (A->nrow != A->ncol) { F = CHOLMOD(copy_sparse) (B, cm) ; OK (F->nrow == F->ncol) ; CHOLMOD(sort) (F, cm) ; } else { /* A is square and unsymmetric, and may have entries in A+A' that * are not in A */ F = CHOLMOD(copy_sparse) (A, cm) ; CHOLMOD(sort) (F, cm) ; } C = CHOLMOD(copy_sparse) (B, cm) ; nrow = C->nrow ; ncol = C->ncol ; n = nrow ; OK (nrow == ncol) ; Cp = C->p ; Ci = C->i ; Bp = B->p ; Bi = B->i ; /* ---------------------------------------------------------------------- */ /* S = sorted form of B, using CAMD_preprocess */ /* ---------------------------------------------------------------------- */ cnz = CHOLMOD(nnz) (C, cm) ; S = CHOLMOD(allocate_sparse) (n, n, cnz, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm); Sp = S->p ; Si = S->i ; W = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Flag = CHOLMOD(malloc) (n, sizeof (Int), cm) ; CAMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; /* ---------------------------------------------------------------------- */ /* allocate workspace for camd */ /* ---------------------------------------------------------------------- */ P = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Constraint = CHOLMOD(malloc) (n, sizeof (Int), cm) ; for (i = 0 ; i < n ; i++) { Constraint [i] = my_rand () % (MIN (n,6)) ; } ok = CAMD_cvalid (n, Constraint) ; OK (ok) ; if (n > 0) { Constraint [0] = -1 ; ok = CAMD_cvalid (n, Constraint) ; OK (!ok) ; Constraint [0] = 0 ; } ok = CAMD_cvalid (n, Constraint) ; OK (ok) ; ok = CAMD_cvalid (n, NULL) ; OK (ok) ; Len = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Nv = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Next = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Head = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; Elen = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Deg = CHOLMOD(malloc) (n, sizeof (Int), cm) ; Wi = CHOLMOD(malloc) (n+1, sizeof (Int), cm) ; BucketSet = CHOLMOD(malloc) (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ for (sorted = 0 ; sorted <= 1 ; sorted++) { if (sorted) CHOLMOD(sort) (C, cm) ; Cp = C->p ; Ci = C->i ; /* ------------------------------------------------------------------ */ /* order C with CAMD_order */ /* ------------------------------------------------------------------ */ CAMD_defaults (Control) ; CAMD_defaults (NULL) ; CAMD_control (Control) ; CAMD_control (NULL) ; CAMD_info (NULL) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, Constraint) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation", cm)) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation", cm)) ; /* no dense rows/cols */ alpha = Control [CAMD_DENSE] ; Control [CAMD_DENSE] = -1 ; CAMD_control (Control) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation (alpha=-1)", cm)) ; /* many dense rows/cols */ Control [CAMD_DENSE] = 0 ; CAMD_control (Control) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation (alpha=0)", cm)) ; Control [CAMD_DENSE] = alpha ; /* no aggressive absorption */ Control [CAMD_AGGRESSIVE] = FALSE ; CAMD_control (Control) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation (no agg) ", cm)) ; Control [CAMD_AGGRESSIVE] = TRUE ; /* ------------------------------------------------------------------ */ /* order F with CAMD_order */ /* ------------------------------------------------------------------ */ Fp = F->p ; Fi = F->i ; ok = CAMD_order (n, Fp, Fi, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "F: CAMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order S with CAMD_order */ /* ------------------------------------------------------------------ */ ok = CAMD_order (n, Sp, Si, P, Control, Info, NULL) ; printf ("camd return value: "ID"\n", ok) ; CAMD_info (Info) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD permutation", cm)) ; /* ------------------------------------------------------------------ */ /* order E with CAMD_2, which destroys its contents */ /* ------------------------------------------------------------------ */ E = CHOLMOD(copy) (B, 0, -1, cm) ; /* remove diagonal entries */ bnz = CHOLMOD(nnz) (E, cm) ; /* add the bare minimum extra space to E */ ok = CHOLMOD(reallocate_sparse) (bnz + n, E, cm) ; OK (ok) ; Ep = E->p ; Ei = E->i ; for (j = 0 ; j < n ; j++) { Len [j] = Ep [j+1] - Ep [j] ; } printf ("calling CAMD_2:\n") ; if (n > 0) { CAMD_2 (n, Ep, Ei, Len, E->nzmax, Ep [n], Nv, Next, P, Head, Elen, Deg, Wi, NULL, Info, NULL, BucketSet) ; CAMD_info (Info) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD2 permutation", cm)) ; } /* ------------------------------------------------------------------ */ /* error tests */ /* ------------------------------------------------------------------ */ ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; ok = CAMD_order (-1, Cp, Ci, P, Control, Info, NULL) ; OK (ok == CAMD_INVALID); ok = CAMD_order (0, Cp, Ci, P, Control, Info, NULL) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; ok = CAMD_order (n, NULL, Ci, P, Control, Info, NULL) ; OK (ok == CAMD_INVALID); ok = CAMD_order (n, Cp, NULL, P, Control, Info, NULL) ; OK (ok == CAMD_INVALID); ok = CAMD_order (n, Cp, Ci, NULL, Control, Info, NULL) ; OK (ok == CAMD_INVALID); if (n > 0) { printf ("CAMD error tests:\n") ; p = Cp [n] ; Cp [n] = -1 ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; OK (ok == CAMD_INVALID) ; if (Size_max/2 == Int_max) { Cp [n] = Int_max ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; printf ("CAMD status is %d\n", ok) ; OK (ok == CAMD_OUT_OF_MEMORY) ; } Cp [n] = p ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; if (Cp [n] > 0) { printf ("Mangle column zero:\n") ; i = Ci [0] ; Ci [0] = -1 ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; CAMD_info (Info) ; OK (ok == CAMD_INVALID) ; Ci [0] = i ; } } ok = CAMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; ok = CAMD_valid (-1, n, Sp, Si) ; OK (ok == CAMD_INVALID) ; ok = CAMD_valid (n, -1, Sp, Si) ; OK (ok == CAMD_INVALID) ; ok = CAMD_valid (n, n, NULL, Si) ; OK (ok == CAMD_INVALID) ; ok = CAMD_valid (n, n, Sp, NULL) ; OK (ok == CAMD_INVALID) ; if (n > 0 && Sp [n] > 0) { p = Sp [n] ; Sp [n] = -1 ; ok = CAMD_valid (n, n, Sp, Si) ; OK (ok == CAMD_INVALID) ; Sp [n] = p ; p = Sp [0] ; Sp [0] = -1 ; ok = CAMD_valid (n, n, Sp, Si) ; OK (ok == CAMD_INVALID) ; Sp [0] = p ; p = Sp [1] ; Sp [1] = -1 ; ok = CAMD_valid (n, n, Sp, Si) ; OK (ok == CAMD_INVALID) ; Sp [1] = p ; i = Si [0] ; Si [0] = -1 ; ok = CAMD_valid (n, n, Sp, Si) ; OK (ok == CAMD_INVALID) ; Si [0] = i ; } ok = CAMD_valid (n, n, Sp, Si) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; CAMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; ok = CAMD_valid (n, n, Sp, Si) ; OK (ok == CAMD_OK) ; if (n > 0 && Bp [n] > 0) { p = Bp [n] ; Bp [n] = -1 ; ok = CAMD_valid (n, n, Bp, Bi) ; OK (ok == CAMD_INVALID) ; Bp [n] = p ; p = Bp [1] ; Bp [1] = -1 ; ok = CAMD_valid (n, n, Bp, Bi) ; OK (ok == CAMD_INVALID) ; Bp [1] = p ; i = Bi [0] ; Bi [0] = -1 ; ok = CAMD_valid (n, n, Bp, Bi) ; OK (ok == CAMD_INVALID) ; Bi [0] = i ; } CAMD_preprocess (n, Bp, Bi, Sp, Si, W, Flag) ; Info [CAMD_STATUS] = 777 ; CAMD_info (Info) ; /* ------------------------------------------------------------------ */ /* memory tests */ /* ------------------------------------------------------------------ */ if (n > 0) { camd_malloc = cm->malloc_memory ; camd_free = cm->free_memory ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; OK (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK)) ; test_memory_handler ( ) ; camd_malloc = cm->malloc_memory ; camd_free = cm->free_memory ; for (trial = 0 ; trial < 6 ; trial++) { my_tries = trial ; printf ("CAMD memory trial "ID"\n", trial) ; ok = CAMD_order (n, Cp, Ci, P, Control, Info, NULL) ; CAMD_info (Info) ; OK (ok == CAMD_OUT_OF_MEMORY || (sorted ? (ok == CAMD_OK) : (ok >= CAMD_OK))) ; } normal_memory_handler ( ) ; OK (CHOLMOD(print_perm) (P, n, n, "CAMD2 permutation", cm)) ; camd_malloc = cm->malloc_memory ; camd_free = cm->free_memory ; } CHOLMOD(free_sparse) (&E, cm) ; } /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (n, sizeof (Int), Len, cm) ; CHOLMOD(free) (n, sizeof (Int), Nv, cm) ; CHOLMOD(free) (n, sizeof (Int), Next, cm) ; CHOLMOD(free) (n+1, sizeof (Int), Head, cm) ; CHOLMOD(free) (n, sizeof (Int), Elen, cm) ; CHOLMOD(free) (n, sizeof (Int), Deg, cm) ; CHOLMOD(free) (n+1, sizeof (Int), Wi, cm) ; CHOLMOD(free) (n, sizeof (Int), BucketSet, cm) ; CHOLMOD(free) (n+1, sizeof (Int), P, cm) ; CHOLMOD(free) (n, sizeof (Int), Constraint, cm) ; CHOLMOD(free) (n, sizeof (Int), W, cm) ; CHOLMOD(free) (n, sizeof (Int), Flag, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&B, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&F, cm) ; } #else void camdtest (cholmod_sparse *A) { if (A == NULL) { return ; } cm->print = 1 ; } #endif SuiteSparse/CHOLMOD/Tcov/cctest.c0000644001170100242450000002736110540000034015373 0ustar davisfac/* ========================================================================== */ /* === Tcov/cctest ========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Test for ccolamd v1.0. Not used if NPARTITION defined at compile time. */ #include "cm.h" #ifndef NPARTITION #include "ccolamd.h" /* ========================================================================== */ /* === check_constraints ==================================================== */ /* ========================================================================== */ /* Check to see if P obeys the constraints */ Int check_constraints (Int *P, Int *Cmember, Int n) { Int c, clast, k, i ; if ((P == NULL) || !CHOLMOD(print_perm) (P, n, n, "ccolamd perm", cm)) { printf ("cctest: Perm is bad\n") ; return (FALSE) ; } clast = EMPTY ; for (k = 0 ; k < n ; k++) { i = P [k] ; c = Cmember [i] ; if (c < clast) { printf ("cctest: constraints are incorrect\n") ; return (FALSE) ; } clast = c ; } return (TRUE) ; } /* ========================================================================== */ /* === cctest =============================================================== */ /* ========================================================================== */ void cctest (cholmod_sparse *A) { double knobs [CCOLAMD_KNOBS], knobs2 [CCOLAMD_KNOBS] ; Int *P, *Cmember, *Cp, *Ci, *Front_npivcol, *Front_nrows, *Front_ncols, *Front_parent, *Front_cols, *InFront, *Si, *Sp ; cholmod_sparse *C, *A2, *B, *S ; Int nrow, ncol, alen, ok, stats [CCOLAMD_STATS], csets, i, nfr, c, p ; size_t s ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ my_srand (42) ; /* RAND reset */ printf ("\nCCOLAMD test\n") ; if (A == NULL) { return ; } if (A->stype) { A2 = CHOLMOD(copy) (A, 0, 0, cm) ; B = A2 ; } else { A2 = NULL ; B = A ; } S = CHOLMOD(copy_sparse) (A, cm) ; nrow = B->nrow ; ncol = B->ncol ; Si = S->i ; Sp = S->p ; /* ---------------------------------------------------------------------- */ /* allocate workspace and Cmember for ccolamd */ /* ---------------------------------------------------------------------- */ P = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; Cmember = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; Front_npivcol = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; Front_nrows = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; Front_ncols = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; Front_parent = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; Front_cols = CHOLMOD(malloc) (nrow+1, sizeof (Int), cm) ; InFront = CHOLMOD(malloc) (ncol, sizeof (Int), cm) ; csets = MIN (6, nrow) ; for (i = 0 ; i < nrow ; i++) { Cmember [i] = nrand (csets) ; } CCOLAMD_set_defaults (knobs) ; CCOLAMD_set_defaults (knobs2) ; CCOLAMD_set_defaults (NULL) ; CCOLAMD_report (NULL) ; CSYMAMD_report (NULL) ; alen = CCOLAMD_recommended (B->nzmax, ncol, nrow) ; C = CHOLMOD(allocate_sparse) (ncol, nrow, alen, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm) ; Cp = C->p ; Ci = C->i ; /* ---------------------------------------------------------------------- */ /* order with ccolamd */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; CHOLMOD(print_sparse) (C, "C for ccolamd", cm) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, NULL, stats, Cmember) ; CCOLAMD_report (stats) ; OK (ok) ; ok = stats [CCOLAMD_STATUS] ; ok = (ok == CCOLAMD_OK || ok == CCOLAMD_OK_BUT_JUMBLED) ; OK (ok) ; /* permutation returned in C->p, if the ordering succeeded */ /* make sure P obeys the constraints */ OK (check_constraints (Cp, Cmember, nrow)) ; /* ---------------------------------------------------------------------- */ /* order with ccolamd2 */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = CCOLAMD_2 (ncol, nrow, alen, Ci, Cp, NULL, stats, Front_npivcol, Front_nrows, Front_ncols, Front_parent, Front_cols, &nfr, InFront, Cmember) ; CCOLAMD_report (stats) ; OK (check_constraints (Cp, Cmember, nrow)) ; /* ---------------------------------------------------------------------- */ /* with a small dense-row threshold */ /* ---------------------------------------------------------------------- */ knobs2 [CCOLAMD_DENSE_ROW] = 0 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats, Cmember) ; CCOLAMD_report (stats) ; knobs2 [CCOLAMD_DENSE_ROW] = 0.625 ; knobs2 [CCOLAMD_DENSE_COL] = 0 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats, Cmember) ; CCOLAMD_report (stats) ; knobs2 [CCOLAMD_DENSE_ROW] = 0.625 ; knobs2 [CCOLAMD_DENSE_COL] = -1 ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats, Cmember) ; CCOLAMD_report (stats) ; knobs2 [CCOLAMD_DENSE_COL] = 0 ; /* ---------------------------------------------------------------------- */ /* duplicate entries */ /* ---------------------------------------------------------------------- */ if (ncol > 2 && nrow > 2) { ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; if (Cp [1] - Cp [0] > 2) { Ci [0] = Ci [1] ; } ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs2, stats, Cmember) ; CCOLAMD_report (stats) ; OK (CHOLMOD(print_perm) (Cp, nrow, nrow, "ccolamd perm", cm)) ; } /* ---------------------------------------------------------------------- */ /* csymamd */ /* ---------------------------------------------------------------------- */ if (nrow == ncol) { Int n = nrow ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; OK (ok) ; OK (check_constraints (P, Cmember, n)) ; CSYMAMD_report (stats) ; /* ------------------------------------------------------------------ */ /* csymamd errors */ /* ------------------------------------------------------------------ */ ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, NULL, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); ok = CSYMAMD_MAIN (n, NULL, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; ok = CSYMAMD_MAIN (n, Si, NULL, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; ok = CSYMAMD_MAIN (-1, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; p = Sp [n] ; Sp [n] = -1 ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; Sp [n] = p ; Sp [0] = -1 ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; Sp [0] = 0 ; if (n > 2 && Sp [n] > 3) { p = Sp [1] ; Sp [1] = -1 ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; Sp [1] = p ; i = Si [0] ; Si [0] = -1 ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT (ok); CSYMAMD_report (stats) ; Si [0] = i ; /* ok, but jumbled */ i = Si [0] ; Si [0] = Si [1] ; Si [1] = i ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; OK (ok); CSYMAMD_report (stats) ; i = Si [0] ; Si [0] = Si [1] ; Si [1] = i ; test_memory_handler ( ) ; ok = CSYMAMD_MAIN (n, Si, Sp, P, NULL, stats, cm->calloc_memory, cm->free_memory, Cmember, A->stype) ; NOT(ok); CSYMAMD_report (stats) ; normal_memory_handler ( ) ; } } /* ---------------------------------------------------------------------- */ /* error tests */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; ok = CCOLAMD_MAIN (ncol, nrow, 0, Ci, Cp, knobs, stats, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, NULL, Cp, knobs, stats, Cmember); NOT (ok) ; CCOLAMD_report (stats) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, NULL, knobs, stats, Cmember); NOT (ok) ; CCOLAMD_report (stats) ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, NULL, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; ok = CCOLAMD_MAIN (-1, nrow, alen, Ci, Cp, knobs, stats, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; ok = CCOLAMD_MAIN (ncol, -1, alen, Ci, Cp, knobs, stats, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; Cp [nrow] = -1 ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; Cp [0] = 1 ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats, Cmember) ; NOT (ok) ; CCOLAMD_report (stats) ; ok = CHOLMOD(transpose_unsym) (B, 0, NULL, NULL, 0, C, cm) ; OK (ok) ; if (nrow > 0 && alen > 0 && Cp [1] > 0) { c = Cmember [0] ; Cmember [0] = -1 ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats, Cmember) ;NOT(ok); CCOLAMD_report (stats) ; Cmember [0] = c ; p = Cp [1] ; Cp [1] = -1 ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats, Cmember) ;NOT(ok); CCOLAMD_report (stats) ; Cp [1] = p ; i = Ci [0] ; Ci [0] = -1 ; ok = CCOLAMD_MAIN (ncol, nrow, alen, Ci, Cp, knobs, stats, Cmember) ;NOT(ok); CCOLAMD_report (stats) ; Ci [0] = i ; } s = CCOLAMD_recommended (-1, 0, 0) ; OK (s == 0) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (nrow+1, sizeof (Int), Front_npivcol, cm) ; CHOLMOD(free) (nrow+1, sizeof (Int), Front_nrows, cm) ; CHOLMOD(free) (nrow+1, sizeof (Int), Front_ncols, cm) ; CHOLMOD(free) (nrow+1, sizeof (Int), Front_parent, cm) ; CHOLMOD(free) (nrow+1, sizeof (Int), Front_cols, cm) ; CHOLMOD(free) (nrow+1, sizeof (Int), P, cm) ; CHOLMOD(free) (nrow, sizeof (Int), Cmember, cm) ; CHOLMOD(free) (ncol, sizeof (Int), InFront, cm) ; CHOLMOD(free_sparse) (&S, cm) ; CHOLMOD(free_sparse) (&A2, cm) ; CHOLMOD(free_sparse) (&C, cm) ; cm->print = 1 ; } #else void cctest (cholmod_sparse *A) { if (A == NULL) { return ; } cm->print = 1 ; } #endif SuiteSparse/CHOLMOD/Tcov/lpdemo.c0000644001170100242450000006310310540000054015362 0ustar davisfac/* ========================================================================== */ /* === Tcov/lpdemo ========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* A rectangular matrix is being tested (# nrows < # cols). This is a * linear programming problem. Process the system using the same kind of * operations that occur in an LP solver (the LP Dual Active Set Algorithm). * This routine does not actually solve the LP. It simply mimics the kind * of matrix operations that occur in LPDASA. * * The active set f is held in fset [0..fsize-1]. It is a subset of the columns * of A. Columns not in the fset are in the list fnot [0..ncol-fsize-1]. * * Rows can be added and deleted from A as well. A "dead" row is one that has * been (temporarily) set to zero in A. If row i is dead, rflag [i] is 0, * and 1 otherwise. * * The list r of "live" rows is kept in rset [0..rsize-1]. The list of "dead" * rows is kept in rnot [0..nrow-rsize-1]. * * The system to solve as r and/or f change is (beta*I + A(r,f)*A(r,f)') x = b. * If a row i is deleted from A, it is set to zero. Row i of L and D are set * to the ith row of the identity matrix. */ #include "cm.h" #define MAXCOLS 8 /* ========================================================================== */ /* === Lcheck =============================================================== */ /* ========================================================================== */ /* Testing only: make sure there are no dead rows in L (excluding diagonal) */ static void Lcheck (cholmod_factor *L, Int *rflag) { Int *Lp, *Li, *Lnz ; Int i, n, j, p, pend ; double *Lx ; if (L == NULL) { return ; } Lp = L->p ; Li = L->i ; Lx = L->x ; Lnz = L->nz ; n = L->n ; for (j = 0 ; j < n ; j++) { p = Lp [j] ; pend = p + Lnz [j] ; for (p++ ; p < pend ; p++) { i = Li [p] ; OK (IMPLIES (!rflag [i], Lx [p] == 0)) ; } } } /* ========================================================================== */ /* === lp_prune ============================================================= */ /* ========================================================================== */ /* C = A (r,f), except that C and A have the same row dimension. Row i of C * and A(:,f) are equal if row i is in the rset. Row i of C is zero * otherwise. C has as many columns as the size of f. */ cholmod_sparse *lp_prune ( cholmod_sparse *A, Int *rflag, Int *fset, Int fsize ) { cholmod_sparse *C ; double *Ax, *Cx ; Int *Ai, *Ap, *Ci, *Cp ; Int i, kk, j, p, nz, nf, ncol ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "nothing to prune") ; return (NULL) ; } Ap = A->p ; Ai = A->i ; Ax = A->x ; ncol = A->ncol ; nf = (fset == NULL) ? ncol : fsize ; OK (fsize >= 0) ; C = CHOLMOD(allocate_sparse) (A->nrow, nf, A->nzmax, A->sorted, TRUE, 0, CHOLMOD_REAL, cm) ; if (C == NULL) { ERROR (CHOLMOD_INVALID, "cannot create pruned C") ; return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; nz = 0 ; for (kk = 0 ; kk < nf ; kk++) { j = (fset == NULL) ? (kk) : (fset [kk]) ; Cp [kk] = nz ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (rflag [i]) { Ci [nz] = i ; Cx [nz] = Ax [p] ; nz++ ; } } } Cp [nf] = nz ; return (C) ; } /* ========================================================================== */ /* === lp_resid ============================================================= */ /* ========================================================================== */ /* Compute the 2-norm of the residual. * norm ((beta*I + C*C')y(r) - b(r)), where C = A (r,f). */ double lp_resid ( cholmod_sparse *A, Int *rflag, Int *fset, Int fsize, double beta [2], cholmod_dense *Y, cholmod_dense *B ) { cholmod_dense *R ; double *Rx, *Yx ; double rnorm, bnorm, ynorm, norm ; cholmod_sparse *C ; cholmod_dense *W ; Int i, nrow ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "cannot compute LP resid") ; return (1) ; } nrow = A->nrow ; R = CHOLMOD(zeros) (nrow, 1, CHOLMOD_REAL, cm) ; /* C = A(r,f). In LPDASA, we do this in place, without making a copy. */ C = lp_prune (A, rflag, fset, fsize) ; /* W = C'*Y */ OK (fsize >= 0) ; W = CHOLMOD(zeros) (fsize, 1, CHOLMOD_REAL, cm) ; CHOLMOD(sdmult) (C, TRUE, one, zero, Y, W, cm) ; /* R = B */ CHOLMOD(copy_dense2) (B, R, cm) ; /* R = C*W - R */ CHOLMOD(sdmult) (C, FALSE, one, minusone, W, R, cm) ; /* R = R + beta*Y, (beta = 1 for dropped rows) */ if (R != NULL && Y != NULL) { Rx = R->x ; Yx = Y->x ; for (i = 0 ; i < nrow ; i++) { if (rflag [i]) { Rx [i] += beta [0] * Yx [i] ; } else { Rx [i] += Yx [i] ; } } } /* rnorm = norm (R) */ rnorm = CHOLMOD(norm_dense) (R, 2, cm) ; bnorm = CHOLMOD(norm_dense) (B, 2, cm) ; ynorm = CHOLMOD(norm_dense) (Y, 2, cm) ; norm = MAX (bnorm, ynorm) ; if (norm > 0) { rnorm /= norm ; } CHOLMOD(print_dense) (R, "R, resid", cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_dense) (&W, cm) ; CHOLMOD(free_dense) (&R, cm) ; return (rnorm) ; } /* ========================================================================== */ /* === get_row ============================================================== */ /* ========================================================================== */ /* S = column i of beta*I + A(r,f)*A(r,f)' */ cholmod_sparse *get_row ( cholmod_sparse *A, Int i, Int *rflag, Int *fset, Int fsize, double beta [2] ) { cholmod_sparse *Ri, *R, *C, *S ; double *Sx ; Int *Sp, *Si ; Int p, ii, found ; if (rflag [i] == 0) { S = CHOLMOD(speye) (A->nrow, A->nrow, CHOLMOD_REAL, cm) ; CHOLMOD(print_sparse) (S, "S identity", cm) ; return (S) ; } OK (fsize >= 0) ; /* Getting row i of A is expensive. In LPDASA, we maintain * a copy of A(r,f)', and extact row i as column i of that * matrix. We compute S = A(r,f)*A(i,f)' and S(i) += beta * in a single pass. This is a simpler but slower method. */ /* R = A (i,f)' */ Ri = CHOLMOD(submatrix) (A, &i, 1, fset, fsize, TRUE, FALSE, cm) ; R = CHOLMOD(transpose) (Ri, 1, cm) ; CHOLMOD(free_sparse) (&Ri, cm) ; /* C = A (r,f) */ C = lp_prune (A, rflag, fset, fsize) ; /* S = C*R */ S = CHOLMOD(ssmult) (C, R, 0, TRUE, TRUE, cm) ; CHOLMOD(free_sparse) (&C, cm) ; CHOLMOD(free_sparse) (&R, cm) ; if (S == NULL) { return (NULL) ; } /* S (i) += beta */ found = FALSE ; Sp = S->p ; Si = S->i ; Sx = S->x ; for (p = Sp [0] ; p < Sp [1] ; p++) { ii = Si [p] ; if (ii == i) { found = TRUE ; Sx [p] += beta [0] ; break ; } } if (!found) { /* oops, row index i is not present in S. Add it. */ CHOLMOD(reallocate_sparse) (S->nzmax+1, S, cm) ; OK (Sp [1] < (Int) (S->nzmax)) ; Si = S->i ; Sx = S->x ; Si [Sp [1]] = i ; Sx [Sp [1]] = beta [0] ; Sp [1]++ ; S->sorted = FALSE ; } CHOLMOD(print_sparse) (S, "S", cm) ; return (S) ; } /* ========================================================================== */ /* === lpdemo =============================================================== */ /* ========================================================================== */ double lpdemo (cholmod_triplet *T) { double r, maxerr = 0, anorm, bnorm, norm, xnorm, ynorm ; double *b = NULL, *Yx = NULL, *Xx = NULL, *Sx ; cholmod_sparse *A, *AT, *Apermuted, *C, *S, *Row ; cholmod_dense *X, *B, *Y, *DeltaB, *R ; cholmod_factor *L ; Int *init, *rset, *rnot, *fset, *fnot, *rflag, *P, *Pinv, *Lperm, *fflag, *Sp, *Si, *StaticParent ; Int i, j, k, nrow, ncol, fsize, cols [MAXCOLS+1], trial, rank, kk, rsize, p, op, ok ; double beta [2], bk [2], yk [2] ; /* ---------------------------------------------------------------------- */ /* convert T into a sparse matrix A */ /* ---------------------------------------------------------------------- */ if (T == NULL || T->ncol == 0) { /* nothing to do */ return (0) ; } if (T->xtype != CHOLMOD_REAL) { return (0) ; } A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; if (A == NULL) { ERROR (CHOLMOD_INVALID, "cannot continue LP demo") ; return (1) ; } nrow = A->nrow ; ncol = A->ncol ; anorm = CHOLMOD(norm_sparse) (A, 1, cm) ; /* switch for afiro, but not galenet */ cm->supernodal_switch = 5 ; /* ---------------------------------------------------------------------- */ /* select a random initial row and column basis */ /* ---------------------------------------------------------------------- */ /* select an initial fset of size nrow */ init = prand (ncol) ; /* RAND */ fset = CHOLMOD(malloc) (ncol, sizeof (Int), cm) ; fnot = CHOLMOD(malloc) (ncol, sizeof (Int), cm) ; fflag = CHOLMOD(malloc) (ncol, sizeof (Int), cm) ; fsize = MIN (nrow, ncol) ; if (init != NULL && fset != NULL && fflag != NULL) { for (k = 0 ; k < fsize ; k++) { j = init [k] ; fset [k] = j ; fflag [j] = 1 ; } for ( ; k < ncol ; k++) { j = init [k] ; fnot [k-fsize] = j ; fflag [j] = 0 ; } } CHOLMOD(free) (ncol, sizeof (Int), init, cm) ; /* all rows are live */ rsize = nrow ; rflag = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; rset = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; rnot = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; if (rset != NULL && rflag != NULL) { for (i = 0 ; i < nrow ; i++) { rflag [i] = 1 ; rset [i] = i ; } } /* ---------------------------------------------------------------------- */ /* factorize the first matrix, beta*I + A(p,f)*A(p,f)' */ /* ---------------------------------------------------------------------- */ beta [0] = 1e-6 ; beta [1] = 0 ; /* Need to prune entries due to relaxed amalgamation, or else * cholmod_row_subtree will not be able to find all the entries in row * k of L. */ cm->final_resymbol = TRUE ; cm->final_asis = FALSE ; cm->final_super = FALSE ; cm->final_ll = FALSE ; cm->final_pack = FALSE ; cm->final_monotonic = FALSE ; L = CHOLMOD(analyze_p) (A, NULL, fset, fsize, cm) ; CHOLMOD(factorize_p) (A, beta, fset, fsize, L, cm) ; /* get a copy of the fill-reducing permutation P and compute its inverse */ Lperm = (L != NULL) ? (L->Perm) : NULL ; P = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; Pinv = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; if (P != NULL && Pinv != NULL && Lperm != NULL) { for (k = 0 ; k < nrow ; k++) { P [k] = Lperm [k] ; Pinv [P [k]] = k ; } } else { P = CHOLMOD(free) (nrow, sizeof (Int), P, cm) ; Pinv = CHOLMOD(free) (nrow, sizeof (Int), Pinv, cm) ; } if (cm->print > 1) { k = cm->print ; cm->print = 5 ; CHOLMOD(print_common) ("cm for lpdemo", cm) ; cm->print = k ; } /* ---------------------------------------------------------------------- */ /* A=P*A: permute the rows of A according to P */ /* ---------------------------------------------------------------------- */ /* This is done just once, since the system will be solved and modified * many times. It's faster, and easier, to work in the permuted ordering * rather than the original ordering. */ /* A will become unsorted later on; don't bother to sort it here */ Apermuted = CHOLMOD(submatrix) (A, P, nrow, NULL, -1, TRUE, TRUE, cm) ; CHOLMOD(free_sparse) (&A, cm) ; A = Apermuted ; /* ---------------------------------------------------------------------- */ /* find the etree of A*A' */ /* ---------------------------------------------------------------------- */ /* Since the fset is a subset of 0:ncol-1, and rset is a subset of 0:nrow-1, * the nonzero pattern of the Cholesky factorization of A(r,f)*A(r,f)' is a * subset of the Cholesky factorization of A*A'. After many updates/ * downdates/rowadds/rowdels, any given row i of L may have entries that * are not in the factorization of A (r,f)*A(r,f)'. To drop a row using * cholmod_rowdel, we either need to know the pattern of the ith row of L, * we can pass NULL and have cholmod_rowdel look at each column 0 to i-1. * The StaticParent array is the etree of A*A', and it suffices to compute * the pattern of the ith row of L based on that etree, and A and A' * (ignoring the fset and rset). This gives us an upper bound on the * nonzero pattern of the ith row of the current L (the factorization * of A(r,f)*A(r,f)'. */ /* AT = nonzero pattern of A', used for row-subtree computations */ AT = CHOLMOD(transpose) (A, 0, cm) ; /* Row = cholmod_row_subtree workspace (unsorted, packed, unsym, pattern) */ Row = CHOLMOD(allocate_sparse) (nrow, 1, nrow, FALSE, TRUE, 0, CHOLMOD_PATTERN, cm) ; /* Compute the "static" etree; the etree of A*A' */ StaticParent = CHOLMOD(malloc) (nrow, sizeof (Int), cm) ; CHOLMOD(etree) (AT, StaticParent, cm) ; /* ---------------------------------------------------------------------- */ /* compute initial right-hand-side */ /* ---------------------------------------------------------------------- */ /* If row i of the original A and B is row k of the permuted P*A and P*B, * then P [k] = i and Pinv [i] = k. Row indices of A now refer to the * permuted form of A, not the original A. Likewise, row k of B will * refer to the permuted row k = Pinv [i], not the original row i. In a * real program, this would affect how B is computed. This program just * creates a random B anyway, so the order of B does not matter. It does * use Pinv [i], just to show you how you would do it. */ B = CHOLMOD(zeros) (nrow, 1, CHOLMOD_REAL, cm) ; if (B != NULL && Pinv != NULL) { b = B->x ; for (i = 0 ; i < nrow ; i++) { /* row i of the original B is row k of the permuted B */ k = Pinv [i] ; b [k] = xrand (1.) ; /* RAND */ } } /* ---------------------------------------------------------------------- */ /* solve the system */ /* ---------------------------------------------------------------------- */ /* Solve the system (beta*I + A(:,f)*A(:,f)')y=b without using L->Perm, * since A and B have already been permuted according to L->Perm. */ DeltaB = CHOLMOD(zeros) (nrow, 1, CHOLMOD_REAL, cm) ; /* solve Lx=b */ X = CHOLMOD(solve) (CHOLMOD_L, L, B, cm) ; /* solve DL'y=x */ Y = CHOLMOD(solve) (CHOLMOD_DLt, L, X, cm) ; r = lp_resid (A, rflag, fset, fsize, beta, Y, B) ; MAXERR (maxerr, r, 1) ; bk [0] = 0 ; bk [1] = 0 ; yk [0] = 0 ; yk [1] = 0 ; bnorm = CHOLMOD(norm_dense) (B, 1, cm) ; /* ---------------------------------------------------------------------- */ /* modify the system */ /* ---------------------------------------------------------------------- */ ok = (fset != NULL && fnot != NULL && fflag != NULL && rset != NULL && rnot != NULL && rflag != NULL && B != NULL && Y != NULL && X != NULL && Row != NULL && A != NULL && AT != NULL && StaticParent != NULL && DeltaB != NULL && L != NULL && L->xtype != CHOLMOD_PATTERN && !(L->is_ll) && !(L->is_super)) ; for (trial = 1 ; ok && trial < MAX (64, 2*ncol) ; trial++) { /* select an operation at random */ op = nrand (6) ; /* RAND */ Xx = X->x ; Yx = Y->x ; switch (op) { /* -------------------------------------------------------------- */ case 0: /* update */ /* -------------------------------------------------------------- */ /* pick some columns at random, but not all columns */ rank = 1 + nrand (MAXCOLS+4) ; /* RAND */ rank = MIN (rank, MAXCOLS) ; rank = MIN (rank, ncol-fsize-1) ; if (rank <= 0) { continue ; } /* remove the columns from fnot and add them to fset */ for (k = 0 ; k < rank ; k++) { kk = nrand (ncol-fsize) ; /* RAND */ j = fnot [kk] ; fnot [kk] = fnot [ncol-fsize-1] ; fset [fsize++] = j ; OK (fsize < ncol) ; cols [k] = j ; fflag [j] = 1 ; } /* update L, and the solution to Lx=b+deltaB */ C = lp_prune (A, rflag, cols, rank) ; ok = CHOLMOD(updown_solve) (TRUE, C, L, X, DeltaB, cm) ; CHOLMOD(free_sparse) (&C, cm) ; break ; /* -------------------------------------------------------------- */ case 1: /* downdate */ /* -------------------------------------------------------------- */ /* pick some columns at random, but not all columns */ rank = 1 + nrand (MAXCOLS+4) ; /* RAND */ rank = MIN (rank, MAXCOLS) ; rank = MIN (rank, fsize-1) ; if (rank <= 0) { continue ; } /* remove the columns from fset and add them to fnot */ for (k = 0 ; k < rank ; k++) { kk = nrand (fsize) ; /* RAND */ j = fset [kk] ; fset [kk] = fset [fsize-1] ; fnot [ncol-fsize] = j ; fsize-- ; OK (fsize > 0) ; cols [k] = j ; fflag [j] = 0 ; } /* downdate L, and the solution to Lx=b+deltaB */ C = lp_prune (A, rflag, cols, rank) ; ok = CHOLMOD(updown_solve) (FALSE, C, L, X, DeltaB, cm) ; CHOLMOD(free_sparse) (&C, cm) ; break ; /* -------------------------------------------------------------- */ case 2: /* resymbol (no change to numerical values) */ /* -------------------------------------------------------------- */ /* let resymbol handle the fset */ C = lp_prune (A, rflag, NULL, 0) ; ok = CHOLMOD(resymbol_noperm) (C, fset, fsize, TRUE, L, cm) ; CHOLMOD(free_sparse) (&C, cm) ; break; /* -------------------------------------------------------------- */ case 3: /* add row */ /* -------------------------------------------------------------- */ /* remove a row from rnot and add to rset */ if (nrow == rsize) { continue ; } kk = nrand (nrow-rsize) ; /* RAND */ i = rnot [kk] ; OK (rflag [i] == 0) ; rnot [kk] = rnot [nrow-rsize-1] ; rset [rsize++] = i ; rflag [i] = 1 ; /* S = column i of beta*I + A(r,f)*A(r,f)' */ S = get_row (A, i, rflag, fset, fsize, beta) ; ok = (S != NULL) ; if (ok) { /* pick a random right-hand-side for this new row */ b [i] = 1 ; /* xrand (1) */ /* was RAND */ bk [0] = b [i] ; bk [1] = 0 ; ok = CHOLMOD(rowadd_solve) (i, S, bk, L, X, DeltaB, cm) ; } CHOLMOD(free_sparse) (&S, cm) ; break ; /* -------------------------------------------------------------- */ case 4: /* delete row */ /* -------------------------------------------------------------- */ /* remove a row from rset and add to rnot */ if (rsize == 0) { continue ; } kk = nrand (rsize) ; /* RAND */ i = rset [kk] ; OK (rflag [i] == 1) ; rset [kk] = rset [rsize-1] ; rnot [nrow-rsize] = i ; rsize-- ; /* S = column i of beta*I + A(r,f)*A(r,f)' */ S = get_row (A, i, rflag, fset, fsize, beta) ; ok = (S != NULL) ; if (ok) { /* B = B - S * y(i) */ Sp = S->p ; Si = S->i ; Sx = S->x ; for (p = 0 ; p < Sp [1] ; p++) { b [Si [p]] -= Sx [p] * Yx [i] ; } /* B(i) = y(i) */ b [i] = Yx [i] ; yk [0] = Yx [i] ; yk [1] = 0 ; /* pick a method arbitrarily */ if (trial % 2) { /* get upper bound nonzero pattern of L(i,0:i-1) */ CHOLMOD(row_subtree) (A, AT, i, StaticParent, Row, cm) ; ok = CHOLMOD(rowdel_solve) (i, Row, yk, L, X, DeltaB, cm) ; } else { /* Look in all cols 0 to i-1 for entries in L(i,0:i-1). * This is more costly, but requires no knowledge of * an upper bound on the pattern of L. */ ok = CHOLMOD(rowdel_solve) (i, NULL, yk, L, X, DeltaB, cm) ; } /* for testing only, to ensure cholmod_row_subtree worked */ if (ok) { rflag [i] = 0 ; Lcheck (L, rflag) ; } } if (ok) { /* let resymbol handle the fset */ C = lp_prune (A, rflag, NULL, 0) ; ok = CHOLMOD(resymbol_noperm) (C, fset, fsize, TRUE, L, cm) ; CHOLMOD(free_sparse) (&C, cm) ; } CHOLMOD(free_sparse) (&S, cm) ; break ; /* -------------------------------------------------------------- */ case 5: /* convert, just for testing */ /* -------------------------------------------------------------- */ /* convert to LDL', optionally packed */ if (trial % 2) { ok = CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; } else { ok = CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, FALSE, TRUE, L, cm) ; } break ; } if (ok) { /* scale B and X if their norm is getting large */ ynorm = CHOLMOD(norm_dense) (Y, 1, cm) ; bnorm = CHOLMOD(norm_dense) (B, 1, cm) ; xnorm = CHOLMOD(norm_dense) (X, 1, cm) ; norm = MAX (bnorm, xnorm) ; norm = MAX (norm, ynorm) ; if (norm > 1e10) { for (i = 0 ; i < nrow ; i++) { Xx [i] /= norm ; b [i] /= norm ; } } CHOLMOD(free_dense) (&Y, cm) ; Y = CHOLMOD(solve) (CHOLMOD_DLt, L, X, cm) ; r = lp_resid (A, rflag, fset, fsize, beta, Y, B) ; OK (!ISNAN (r)) ; MAXERR (maxerr, r, 1) ; if (r > 1e-6 && cm->print > 1) { printf ("lp err %.1g operation: "ID" ok "ID"\n", r, op, ok) ; } ok = (Y != NULL) ; } } CHOLMOD(free_dense) (&Y, cm) ; OK (CHOLMOD(print_common) ("cm in lpdemo", cm)) ; /* ---------------------------------------------------------------------- */ /* convert to LDL packed, LDL unpacked or LL packed and solve again */ /* ---------------------------------------------------------------------- */ /* solve the new system and check the residual */ CHOLMOD(print_factor) (L, "L final, for convert", cm) ; if (ok) { switch (nrand (3)) /* RAND */ { /* pick one at random */ case 0: { ok = CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; Y = CHOLMOD(solve) (CHOLMOD_DLt, L, X, cm) ; break ; } case 1: { ok = CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, FALSE, TRUE, L, cm) ; Y = CHOLMOD(solve) (CHOLMOD_DLt, L, X, cm) ; break ; } case 2: { ok = CHOLMOD(change_factor) (CHOLMOD_REAL, TRUE, FALSE, TRUE, TRUE, L, cm) ; Y = CHOLMOD(solve) (CHOLMOD_LDLt, L, B, cm) ; break ; } } r = lp_resid (A, rflag, fset, fsize, beta, Y, B) ; OK (!ISNAN (r)) ; MAXERR (maxerr, r, 1) ; CHOLMOD(print_factor) (L, "L after convert", cm) ; } /* ---------------------------------------------------------------------- */ /* rank-1 update, but only partial Lx=b update */ /* ---------------------------------------------------------------------- */ if (ok && fsize < ncol && nrow > 3) { Int colmark [1] ; j = fnot [0] ; fnot [0] = fnot [ncol-fsize-1] ; fset [fsize++] = j ; OK (fsize <= ncol) ; cols [0] = j ; fflag [j] = 1 ; for (colmark [0] = 0 ; colmark [0] <= nrow ; colmark [0]++) { cholmod_factor *L2 ; cholmod_dense *X2 ; double *X2x ; L2 = CHOLMOD(copy_factor) (L, cm) ; X2 = CHOLMOD(copy_dense) (X, cm) ; X2x = (X2 == NULL) ? NULL : X2->x ; /* fprintf (stderr, "check colmark "ID"\n", colmark [0]) ; */ printf ("check cholmark "ID"\n", colmark [0]) ; /* colmark [0] = 3 ; */ /* update L, and the solution to Lx=b+deltaB, * but only update solution in rows 0 to colmark[0] */ C = lp_prune (A, rflag, cols, 1) ; ok = CHOLMOD(updown_mark) (TRUE, C, colmark, L2, X2, DeltaB, cm) ; CHOLMOD(free_sparse) (&C, cm) ; /* compare with Lr=b+deltaB */ R = CHOLMOD(solve) (CHOLMOD_L, L2, B, cm) ; r = -1 ; if (ok && R != NULL) { double *Rx ; Rx = R->x ; r = 0 ; for (i = 0 ; i < colmark [0] ; i++) { r = MAX (r, fabs (X2x [i] - Rx [i])) ; } MAXERR (maxerr, r, 1) ; } printf ("check cholmark resid %6.2e\n", r) ; CHOLMOD(free_dense) (&R, cm) ; CHOLMOD(free_dense) (&X2, cm) ; CHOLMOD(free_factor) (&L2, cm) ; } } /* ---------------------------------------------------------------------- */ /* free everything */ /* ---------------------------------------------------------------------- */ /* restore defaults */ cm->final_resymbol = FALSE ; cm->final_asis = TRUE ; cm->supernodal_switch = 40 ; CHOLMOD(free) (nrow, sizeof (Int), StaticParent, cm) ; CHOLMOD(free) (nrow, sizeof (Int), Pinv, cm) ; CHOLMOD(free) (nrow, sizeof (Int), P, cm) ; CHOLMOD(free) (nrow, sizeof (Int), rflag, cm) ; CHOLMOD(free) (nrow, sizeof (Int), rset, cm) ; CHOLMOD(free) (nrow, sizeof (Int), rnot, cm) ; CHOLMOD(free) (ncol, sizeof (Int), fset, cm) ; CHOLMOD(free) (ncol, sizeof (Int), fnot, cm) ; CHOLMOD(free) (ncol, sizeof (Int), fflag, cm) ; CHOLMOD(free_factor) (&L, cm) ; CHOLMOD(free_sparse) (&Row, cm) ; CHOLMOD(free_sparse) (&AT, cm) ; CHOLMOD(free_sparse) (&A, cm) ; CHOLMOD(free_dense) (&B, cm) ; CHOLMOD(free_dense) (&X, cm) ; CHOLMOD(free_dense) (&Y, cm) ; CHOLMOD(free_dense) (&DeltaB, cm) ; progress (0, '.') ; return (maxerr) ; } SuiteSparse/CHOLMOD/Tcov/make_go.output0000644001170100242450000004644310474145232016650 0ustar davisfac./z_demo ../Demo/Matrix/bcsstk01.tri > tmp/demo_k1.out ./z_demo ../Demo/Matrix/bcsstk02.tri > tmp/demo_k2.out ./z_demo < ../Demo/Matrix/lp_afiro.tri > tmp/demo_afiro.out ./z_demo < ../Demo/Matrix/can___24.mtx > tmp/demo_can24.out ./z_demo < ../Demo/Matrix/c.tri > tmp/demo_c.out ./z_demo < ../Demo/Matrix/d.tri > tmp/demo_d.out ./z_demo < ../Demo/Matrix/up.tri > tmp/demo_up.out ./z_demo < ../Demo/Matrix/c.mtx > tmp/demo_c_mtx.out ./z_demo < ../Demo/Matrix/0.tri > tmp/demo_0.out ./z_demo < Matrix/3_2 > tmp/demo_3_2.out ./z_demo < Matrix/c5lo > tmp/demo_c5lo.out ./z_demo < Matrix/c10 > tmp/demo_c10.out ./z_demo no_such_file > tmp/demo_no_such_file.out ./z_demo ../Demo/Matrix/mangle1.mtx > tmp/demo_mangle1.out ./z_demo ../Demo/Matrix/mangle2.mtx > tmp/demo_mangle2.out ./z_demo ../Demo/Matrix/mangle3.mtx > tmp/demo_mangle3.out ./z_demo ../Demo/Matrix/mangle4.mtx > tmp/demo_mangle4.out ./z_demo ../Demo/Matrix/pts5ldd03.mtx > tmp/demo_pts5ldd03.out ./l_demo ../Demo/Matrix/bcsstk01.tri > tmp/ldemo_k1.out ./l_demo ../Demo/Matrix/bcsstk02.tri > tmp/ldemo_k2.out ./l_demo < ../Demo/Matrix/lp_afiro.tri > tmp/ldemo_afiro.out ./l_demo < ../Demo/Matrix/can___24.mtx > tmp/ldemo_can24.out ./l_demo < ../Demo/Matrix/c.tri > tmp/ldemo_c.out ./l_demo < ../Demo/Matrix/d.tri > tmp/ldemo_d.out ./l_demo < ../Demo/Matrix/up.tri > tmp/ldemo_up.out ./l_demo < ../Demo/Matrix/c.mtx > tmp/ldemo_c_mtx.out ./l_demo < ../Demo/Matrix/0.tri > tmp/ldemo_0.out ./l_demo < Matrix/3_2 > tmp/ldemo_3_2.out ./l_demo < Matrix/c5lo > tmp/ldemo_c5lo.out ./l_demo < Matrix/c10 > tmp/ldemo_c10.out ./l_demo no_such_file > tmp/ldemo_no_such_file.out ./l_demo ../Demo/Matrix/mangle1.mtx > tmp/ldemo_mangle1.out ./l_demo ../Demo/Matrix/mangle2.mtx > tmp/ldemo_mangle2.out ./l_demo ../Demo/Matrix/mangle3.mtx > tmp/ldemo_mangle3.out ./l_demo ../Demo/Matrix/mangle4.mtx > tmp/ldemo_mangle4.out ./l_demo ../Demo/Matrix/pts5ldd03.mtx > tmp/ldemo_pts5ldd03.out grep resid tmp/demo* tmp/demo_0.out:residual 0.0e+00 (|Ax-b|/(|A||x|+|b|)) tmp/demo_3_2.out:residual 9.4e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_afiro.out:residual 6.5e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_c10.out:residual 5.6e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_c5lo.out:residual 6.3e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_can24.out:residual 8.2e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_can24.out:residual 1.0e-16 (|Ax-b|/(|A||x|+|b|)) after iterative refinement tmp/demo_c_mtx.out:residual 2.0e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_c.out:residual 2.0e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_d.out:residual 8.5e-18 (|Ax-b|/(|A||x|+|b|)) tmp/demo_k1.out:residual 1.5e-19 (|Ax-b|/(|A||x|+|b|)) tmp/demo_k1.out:residual 1.2e-19 (|Ax-b|/(|A||x|+|b|)) after iterative refinement tmp/demo_k2.out:residual 7.4e-17 (|Ax-b|/(|A||x|+|b|)) tmp/demo_k2.out:residual 4.0e-17 (|Ax-b|/(|A||x|+|b|)) after iterative refinement tmp/demo_pts5ldd03.out:residual 6.1e-14 (|Ax-b|/(|A||x|+|b|)) tmp/demo_up.out:residual 1.1e-17 (|Ax-b|/(|A||x|+|b|)) ./cmread no_such_file > tmp/no_such_file.out ./cmread ../Demo/Matrix/mangle5.tri > tmp/mangle5.out ./cmread ../Demo/Matrix/mangle6.tri > tmp/mangle6.out ./cmread ../Demo/Matrix/mangle7.tri > tmp/mangle6.out ./cmread ../Demo/Matrix/mangle8.tri > tmp/mangle8.out ./cmread ../Demo/Matrix/empty.tri > tmp/empty.out ./cmread ../Demo/Matrix/one.tri > tmp/one.out ./cmread Matrix/plskz362.mtx > tmp/plskz363.out ./cmread Matrix/2diag.tri > tmp/2diag.out ./cmread Matrix/r5lo > tmp/r5lo.out ./cmread Matrix/r5lo2 > tmp/r5lo2.out diff tmp/r5lo.out tmp/r5lo2.out ./cmread Matrix/cs.mtx > tmp/cs.out ./cmread Matrix/2lo.tri > tmp/2lo.out ./cmread Matrix/2.tri > tmp/2.out ./cmread Matrix/2up.tri > tmp/2up.out ./cmread Matrix/huge.tri > tmp/huge.out ./clread no_such_file > tmp/l_no_such_file.out ./clread ../Demo/Matrix/mangle5.tri > tmp/l_mangle5.out ./clread ../Demo/Matrix/mangle6.tri > tmp/l_mangle6.out ./clread ../Demo/Matrix/mangle7.tri > tmp/l_mangle6.out ./clread ../Demo/Matrix/mangle8.tri > tmp/l_mangle8.out ./clread ../Demo/Matrix/empty.tri > tmp/l_empty.out ./clread ../Demo/Matrix/one.tri > tmp/l_one.out ./clread Matrix/plskz362.mtx > tmp/l_plskz363.out ./clread Matrix/2diag.tri > tmp/l_2diag.out ./clread Matrix/r5lo > tmp/l_r5lo.out ./clread Matrix/r5lo2 > tmp/l_r5lo2.out diff tmp/r5lo.out tmp/r5lo2.out ./clread Matrix/cs.mtx > tmp/l_cs.out ./clread Matrix/2lo.tri > tmp/l_l_2lo.out ./clread Matrix/2.tri > tmp/l_2.out ./clread Matrix/2up.tri > tmp/l_2up.out ./clread Matrix/huge.tri > tmp/l_huge.out ./cm < Matrix/galenet > tmp/galenet.out Test matrix: 8-by-14 with 22 entries, stype: 0 ........................................................| Test OK, maxerr 1e-11 ./cl < Matrix/galenet > tmp/l_galenet.out ; ./covall Test matrix: 8-by-14 with 22 entries, stype: 0 ........................................................| Test OK, maxerr 1e-11 statments not yet tested: 10734 ./cm < Matrix/5by50 > tmp/5by50.out Test matrix: 5-by-50 with 68 entries, stype: 0 ........................................................| Test OK, maxerr 4e-12 ./cl < Matrix/5by50 > tmp/l_5by50.out ; ./covall Test matrix: 5-by-50 with 68 entries, stype: 0 ........................................................| Test OK, maxerr 4e-12 statments not yet tested: 10358 ./cm < Matrix/r5lo > tmp/r5lo.out Test matrix: 5-by-5 with 10 entries, stype: -1 ........................................................| Test OK, maxerr 2e-13 ./cl < Matrix/r5lo > tmp/l_r5lo.out Test matrix: 5-by-5 with 10 entries, stype: -1 ........................................................| Test OK, maxerr 2e-13 ./cm < Matrix/r5up > tmp/r5up.out Test matrix: 5-by-5 with 10 entries, stype: 1 ........................................................| Test OK, maxerr 2e-13 ./cl < Matrix/r5up > tmp/l_r5up.out Test matrix: 5-by-5 with 10 entries, stype: 1 ........................................................| Test OK, maxerr 2e-13 ./cm < Matrix/r5up2 > tmp/r5up2.out Test matrix: 5-by-5 with 10 entries, stype: 1 ........................................................| Test OK, maxerr 2e-13 ./cl < Matrix/r5up2 > tmp/l_r5up2.out Test matrix: 5-by-5 with 10 entries, stype: 1 ........................................................| Test OK, maxerr 2e-13 ./cm < Matrix/c5up2 > tmp/c5up2.out Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................| Test OK, maxerr 6e-16 ./cl < Matrix/c5up2 > tmp/l_c5up2.out Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................| Test OK, maxerr 6e-16 ./cm < Matrix/z5up2 > tmp/z5up2.out Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................| Test OK, maxerr 6e-16 ./cl < Matrix/z5up2 > tmp/l_z5up2.out Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................| Test OK, maxerr 6e-16 ./cm -m < Matrix/z5lo > tmp/z5lo.out Test matrix: 5-by-5 with 11 entries, stype: -1 ........................................................|...........| Test OK, maxerr 6e-16 ./cl -m < Matrix/z5lo > tmp/l_z5lo.out Test matrix: 5-by-5 with 11 entries, stype: -1 ........................................................|...........| Test OK, maxerr 6e-16 ./cm < Matrix/ibm32 > tmp/ibm.out Test matrix: 32-by-32 with 126 entries, stype: 0 ............................| Test OK, maxerr 9e-13 ./cl < Matrix/ibm32 > tmp/l_ibm.out ; ./covall Test matrix: 32-by-32 with 126 entries, stype: 0 ............................| Test OK, maxerr 9e-13 statments not yet tested: 1238 ./cm -m < Matrix/c5lo > tmp/c5lo.out Test matrix: 5-by-5 with 11 entries, stype: -1 ........................................................|...........| Test OK, maxerr 6e-16 ./cl -m < Matrix/c5lo > tmp/l_c5lo.out Test matrix: 5-by-5 with 11 entries, stype: -1 ........................................................|...........| Test OK, maxerr 6e-16 ./cm -m < Matrix/z10 > tmp/z10.out Test matrix: 10-by-15 with 60 entries, stype: 0 ............................|............| Test OK, maxerr 3e-15 ./cl -m < Matrix/z10 > tmp/l_z10.out Test matrix: 10-by-15 with 60 entries, stype: 0 ............................|............| Test OK, maxerr 3e-15 ./cm -m < Matrix/z5up > tmp/z5up.out Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................|............. ...| Test OK, maxerr 6e-16 ./cl -m < Matrix/z5up > tmp/l_z5up.out ; ./covall Test matrix: 5-by-5 with 11 entries, stype: 1 ........................................................|............. ...| Test OK, maxerr 6e-16 statments not yet tested: 968 ./cm -s < Matrix/3singular > tmp/3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cl -s < Matrix/3singular > tmp/l_3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cm -s < Matrix/z3singular > tmp/z3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cl -s < Matrix/z3singular > tmp/l_z3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cm -s < Matrix/c3singular > tmp/c3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cl -s < Matrix/c3singular > tmp/l_c3singular.out Test matrix: 3-by-3 with 4 entries, stype: 1 ........................................................| Test OK ./cm -m < Matrix/0 > tmp/0.out Test matrix: 0-by-0 with 0 entries, stype: 0 ........................................................|............. .| Test OK, maxerr 0 ./cl -m < Matrix/0 > tmp/l_0.out Test matrix: 0-by-0 with 0 entries, stype: 0 ........................................................|............. .| Test OK, maxerr 0 ./cm -m < Matrix/afiro > tmp/afiro.out Test matrix: 27-by-51 with 102 entries, stype: 0 ............................|......................................... ...| Test OK, maxerr 2e-10 ./cl -m < Matrix/afiro > tmp/l_afiro.out ; ./covall Test matrix: 27-by-51 with 102 entries, stype: 0 ............................|......................................... ...| Test OK, maxerr 2e-10 statments not yet tested: 412 ./cm -m < Matrix/k01up > tmp/k01up.out Test matrix: 48-by-48 with 224 entries, stype: 1 ............................|........................| Test OK, maxerr 8e-07 ./cl -m < Matrix/k01up > tmp/l_k01up.out ; ./covall Test matrix: 48-by-48 with 224 entries, stype: 1 ............................|........................| Test OK, maxerr 8e-07 statments not yet tested: 346 ./cm < Matrix/diag > tmp/diag.out Test matrix: 20-by-20 with 20 entries, stype: 1 ............................| Test OK, maxerr 7e-13 ./cl < Matrix/diag > tmp/l_diag.out Test matrix: 20-by-20 with 20 entries, stype: 1 ............................| Test OK, maxerr 7e-13 ./cm -m < Matrix/ex5lo > tmp/ex5lo.out Test matrix: 27-by-27 with 153 entries, stype: -1 ............................|.................| Test OK, maxerr 4e-09 ./cl -m < Matrix/ex5lo > tmp/l_ex5lo.out ; ./covall Test matrix: 27-by-27 with 153 entries, stype: -1 ............................|.................| Test OK, maxerr 4e-09 statments not yet tested: 332 ./cm < Matrix/20lo > tmp/20lo.out Test matrix: 20-by-20 with 210 entries, stype: -1 ............................| Test OK, maxerr 6e-14 ./cl < Matrix/20lo > tmp/l_20lo.out Test matrix: 20-by-20 with 210 entries, stype: -1 ............................| Test OK, maxerr 6e-14 ./cm < Matrix/z30lo > tmp/z30lo.out Test matrix: 30-by-30 with 114 entries, stype: -1 ............................| Test OK, maxerr 6e-15 ./cl < Matrix/z30lo > tmp/l_z30lo.out ; ./covall Test matrix: 30-by-30 with 114 entries, stype: -1 ............................| Test OK, maxerr 6e-15 statments not yet tested: 298 ./cm -m < Matrix/z30up > tmp/z30up.out Test matrix: 30-by-30 with 114 entries, stype: 1 ............................|..................| Test OK, maxerr 6e-15 ./cl -m < Matrix/z30up > tmp/l_z30up.out Test matrix: 30-by-30 with 114 entries, stype: 1 ............................|..................| Test OK, maxerr 6e-15 ./cm < Matrix/c10 > tmp/c10.out Test matrix: 10-by-15 with 60 entries, stype: 0 ............................| Test OK, maxerr 3e-15 ./cl < Matrix/c10 > tmp/l_c10.out Test matrix: 10-by-15 with 60 entries, stype: 0 ............................| Test OK, maxerr 3e-15 ./cm < Matrix/c30lo > tmp/c30lo.out Test matrix: 30-by-30 with 114 entries, stype: -1 ............................| Test OK, maxerr 6e-15 ./cl < Matrix/c30lo > tmp/l_c30lo.out ; ./covall Test matrix: 30-by-30 with 114 entries, stype: -1 ............................| Test OK, maxerr 6e-15 statments not yet tested: 192 ./cm -m < Matrix/c30up > tmp/c30up.out Test matrix: 30-by-30 with 114 entries, stype: 1 ............................|................| Test OK, maxerr 6e-15 ./cl -m < Matrix/c30up > tmp/l_c30up.out Test matrix: 30-by-30 with 114 entries, stype: 1 ............................|................| Test OK, maxerr 6e-15 ./cm < Matrix/pi > tmp/pi.out Test matrix: 1-by-1 with 1 entries, stype: 0 ........................................................| Test OK, maxerr 3e-13 ./cl < Matrix/pi > tmp/l_pi.out Test matrix: 1-by-1 with 1 entries, stype: 0 ........................................................| Test OK, maxerr 3e-13 ./cm < Matrix/cpi > tmp/cpi.out Test matrix: 1-by-1 with 1 entries, stype: 0 ........................................................| Test OK, maxerr 2e-15 ./cl < Matrix/cpi > tmp/l_cpi.out Test matrix: 1-by-1 with 1 entries, stype: 0 ........................................................| Test OK, maxerr 2e-15 ./cm < Matrix/1_0 > tmp/1_0.out Test matrix: 1-by-0 with 0 entries, stype: 0 ........................................................| Test OK ./cl < Matrix/1_0 > tmp/l_1_0.out Test matrix: 1-by-0 with 0 entries, stype: 0 ........................................................| Test OK ./cm < Matrix/0_1 > tmp/0_1.out Test matrix: 0-by-1 with 0 entries, stype: 0 ........................................................| Test OK, maxerr 0 ./cl < Matrix/0_1 > tmp/l_0_1.out ; ./covall Test matrix: 0-by-1 with 0 entries, stype: 0 ........................................................| Test OK, maxerr 0 statments not yet tested: 154 ./cm -n < Matrix/galenet > tmp/galenet_nan.out ; ./covall Test matrix: 8-by-14 with 22 entries, stype: 0 Test OK, maxerr 0 statments not yet tested: 148 ./cl -n < Matrix/galenet > tmp/l_galenet_nan.out ; ./covall Test matrix: 8-by-14 with 22 entries, stype: 0 Test OK, maxerr 0 statments not yet tested: 142 ./cm < Matrix/a1 > tmp/a1.out ; ./covall Test matrix: 70000-by-70000 with 140000 entries, stype: 1 Please wait, this will take a while ................| Test OK, maxerr 5e-12 statments not yet tested: 124 ./cl < Matrix/a1 > tmp/l_a1.out ; ./covall Test matrix: 70000-by-70000 with 140000 entries, stype: 1 Please wait, this will take a while ................| Test OK, maxerr 5e-12 statments not yet tested: 106 ./cm < Matrix/zero > tmp/zero.out Test matrix: 1100000000-by-1100000000 with 0 entries, stype: 0 Please wait, this will take a while ... ./cl < Matrix/zero > tmp/zero.out ; ./covall Test matrix: 1100000000-by-1100000000 with 0 entries, stype: 0 Please wait, this will take a while ... statments not yet tested: 0 SuiteSparse/CHOLMOD/Tcov/memory.c0000644001170100242450000002721210540000056015415 0ustar davisfac/* ========================================================================== */ /* === Tcov/memory ========================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Tcov Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Tcov Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Extensive memory-failure testing for CHOLMOD. * * my_malloc2, my_calloc2, and my_realloc2 pretend to fail if my_tries goes to * zero, to test CHOLMOD's memory error handling. No failure occurs if * my_tries is negative. */ #include "cm.h" /* ========================================================================== */ /* === my_tries ============================================================= */ /* ========================================================================== */ Int my_tries = -1 ; /* a global variable */ /* ========================================================================== */ /* === my_malloc2 =========================================================== */ /* ========================================================================== */ void *my_malloc2 (size_t size) { void *p ; if (my_tries == 0) { /* pretend to fail */ /* printf ("p 0 (pretend to fail)\n") ; */ return (NULL) ; } if (my_tries > 0) { my_tries-- ; } p = malloc (size) ; /* printf ("p %p\n", p) ; */ return (p) ; } /* ========================================================================== */ /* === my_calloc2 =========================================================== */ /* ========================================================================== */ void *my_calloc2 (size_t n, size_t size) { void *p ; if (my_tries == 0) { /* pretend to fail */ /* printf ("p 0 (pretend to fail)\n") ; */ return (NULL) ; } if (my_tries > 0) { my_tries-- ; } p = calloc (n, size) ; /* printf ("p %p\n", p) ; */ return (p) ; } /* ========================================================================== */ /* === my_realloc2 ========================================================== */ /* ========================================================================== */ void *my_realloc2 (void *p, size_t size) { void *p2 ; if (my_tries == 0) { /* pretend to fail */ /* printf ("p2 0 (pretend to fail)\n") ; */ return (NULL) ; } if (my_tries > 0) { my_tries-- ; } p2 = realloc (p, size) ; /* printf ("p2 %p\n", p2) ; */ return (p2) ; } /* ========================================================================== */ /* === my_free2 ============================================================= */ /* ========================================================================== */ void my_free2 (void *p) { free (p) ; } /* ========================================================================== */ /* === normal_memory_handler ================================================ */ /* ========================================================================== */ void normal_memory_handler ( void ) { cm->malloc_memory = malloc ; cm->calloc_memory = calloc ; cm->realloc_memory = realloc ; cm->free_memory = free ; cm->error_handler = my_handler ; CHOLMOD(free_work) (cm) ; } /* ========================================================================== */ /* === test_memory_handler ================================================== */ /* ========================================================================== */ void test_memory_handler ( void ) { cm->malloc_memory = my_malloc2 ; cm->calloc_memory = my_calloc2 ; cm->realloc_memory = my_realloc2 ; cm->free_memory = my_free2 ; cm->error_handler = NULL ; CHOLMOD(free_work) (cm) ; my_tries = 0 ; } /* ========================================================================== */ /* === memory tests ========================================================= */ /* ========================================================================== */ void memory_tests (cholmod_triplet *T) { double err ; cholmod_sparse *A ; Int trial ; size_t count, inuse ; test_memory_handler ( ) ; inuse = cm->memory_inuse ; cm->nmethods = 8 ; cm->print = 0 ; cm->final_resymbol = TRUE ; cm->final_asis = FALSE ; cm->final_super = FALSE ; cm->final_ll = FALSE ; cm->final_pack = FALSE ; cm->final_monotonic = FALSE ; /* ---------------------------------------------------------------------- */ /* test raw factorizations */ /* ---------------------------------------------------------------------- */ printf ("==================================== fac memory test\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { cm->print = 0 ; fflush (stdout) ; my_tries = trial ; A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; my_srand (trial+1) ; /* RAND reset */ err = raw_factor (A, FALSE) ; /* RAND */ CHOLMOD(free_sparse) (&A, cm) ; OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } CHOLMOD(free_work) (cm) ; printf ("memory test: fac error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; /* ---------------------------------------------------------------------- */ /* test raw factorizations (rowfac_mask) */ /* ---------------------------------------------------------------------- */ printf ("==================================== fac memory test2\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { cm->print = 0 ; fflush (stdout) ; my_tries = trial ; A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; my_srand (trial+1) ; /* RAND reset */ err = raw_factor2 (A, 0., 0) ; /* RAND */ CHOLMOD(free_sparse) (&A, cm) ; OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } CHOLMOD(free_work) (cm) ; printf ("memory test: fac error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; /* ---------------------------------------------------------------------- */ /* test augmented system solver */ /* ---------------------------------------------------------------------- */ printf ("==================================== aug memory test\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { cm->print = 0 ; fflush (stdout) ; my_tries = trial ; A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; err = aug (A) ; /* no random number use */ CHOLMOD(free_sparse) (&A, cm) ; OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } CHOLMOD(free_work) (cm) ; printf ("memory test: aug error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; /* ---------------------------------------------------------------------- */ /* test ops */ /* ---------------------------------------------------------------------- */ printf ("==================================== test_ops memory test\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { cm->print = 0 ; fflush (stdout) ; my_tries = trial ; A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; my_srand (trial+1) ; /* RAND reset */ err = test_ops (A) ; /* RAND */ CHOLMOD(free_sparse) (&A, cm) ; OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; printf ("inuse "ID" "ID"\n", inuse, cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } printf ("memory test: testops error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; /* ---------------------------------------------------------------------- */ /* test lpdemo */ /* ---------------------------------------------------------------------- */ if (T == NULL || T->nrow != T->ncol) { printf ("==================================== lpdemo memory test\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { cm->print = 0 ; fflush (stdout) ; my_tries = trial ; my_srand (trial+1) ; /* RAND reset */ err = lpdemo (T) ; /* RAND */ OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } CHOLMOD(free_work) (cm) ; printf ("memory test: lpdemo error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } /* ---------------------------------------------------------------------- */ /* test solver */ /* ---------------------------------------------------------------------- */ printf ("==================================== solve memory test\n") ; count = cm->malloc_count ; my_tries = -1 ; for (trial = 0 ; my_tries <= 0 ; trial++) { CHOLMOD(defaults) (cm) ; cm->supernodal = CHOLMOD_SUPERNODAL ; cm->metis_memory = 2.0 ; cm->nmethods = 4 ; cm->print = 0 ; fflush (stdout) ; my_tries = trial ; A = CHOLMOD(triplet_to_sparse) (T, 0, cm) ; my_srand (trial+1) ; /* RAND reset */ err = solve (A) ; /* RAND */ CHOLMOD(free_sparse) (&A, cm) ; OK (CHOLMOD(print_common) ("cm", cm)) ; CHOLMOD(free_work) (cm) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; } CHOLMOD(free_work) (cm) ; printf ("memory test: solve error %.1g trials "ID"\n", err, trial) ; printf ("initial count: "ID" final count "ID"\n", (Int) count, (Int) cm->malloc_count) ; printf ("initial inuse: "ID" final inuse "ID"\n", (Int) inuse, (Int) cm->memory_inuse) ; OK (count == cm->malloc_count) ; OK (inuse == cm->memory_inuse) ; cm->supernodal = CHOLMOD_AUTO ; progress (1, '|') ; /* ---------------------------------------------------------------------- */ /* restore original memory handler */ /* ---------------------------------------------------------------------- */ normal_memory_handler ( ) ; cm->print = 1 ; printf ("All memory tests OK, no error\n") ; } SuiteSparse/CHOLMOD/Makefile0000644001170100242450000000300310533604550014471 0ustar davisfac#------------------------------------------------------------------------------- # CHOLMOD Makefile #------------------------------------------------------------------------------- # Note: If you do not have METIS, or do not wish to use it in CHOLMOD, you must # compile CHOLMOD with the -DNPARTITION flag. See ../UFconfig/UFconfig.mk. default: all include ../UFconfig/UFconfig.mk # Compile the C-callable libraries and the Demo programs. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile the C-callable libraries only. library: ( cd Lib ; $(MAKE) ) # Remove all files not in the original distribution purge: ( cd MATLAB ; $(MAKE) purge ) ( cd Tcov ; $(MAKE) purge ) ( cd Lib ; $(MAKE) purge ) # ( cd Valgrind ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd Doc ; $(MAKE) purge ) # Remove all files not in the original distribution, except keep the # compiled libraries. clean: ( cd MATLAB ; $(MAKE) clean ) ( cd Tcov ; $(MAKE) clean ) ( cd Lib ; $(MAKE) clean ) ( cd Valgrind ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) distclean: purge ccode: all # Compile the MATLAB mexFunctions (you can also use cholmod_make.m in MATLAB) mex: ( cd MATLAB ; $(MAKE) ) # Run the test coverage suite. Takes about 40 minutes on a 3.2GHz Pentium. # Requires Linux (gcc, gcov). cov: ( cd Tcov ; $(MAKE) go ) # Run the test coverage suite using Valgrind. This takes a *** long *** time. valgrind: ( cd Valgrind ; $(MAKE) ) # Compile the C-callable libraries and the Demo programs. demo: ( cd Demo ; $(MAKE) ) SuiteSparse/CHOLMOD/Check/0000755001170100242450000000000010677523707014067 5ustar davisfacSuiteSparse/CHOLMOD/Check/cholmod_check.c0000644001170100242450000017365310616661402017020 0ustar davisfac/* ========================================================================== */ /* === Check/cholmod_check ================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Check Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Check Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Routines to check and print the contents of the 5 CHOLMOD objects: * * No CHOLMOD routine calls the check or print routines. If a user wants to * check CHOLMOD's input parameters, a separate call to the appropriate check * routine should be used before calling other CHOLMOD routines. * * cholmod_check_common check statistics and workspace in Common * cholmod_check_sparse check sparse matrix in compressed column form * cholmod_check_dense check dense matrix * cholmod_check_factor check factorization * cholmod_check_triplet check sparse matrix in triplet form * * cholmod_print_common print statistics in Common * cholmod_print_sparse print sparse matrix in compressed column form * cholmod_print_dense print dense matrix * cholmod_print_factor print factorization * cholmod_print_triplet print sparse matrix in triplet form * * In addition, this file contains routines to check and print three types of * integer vectors: * * cholmod_check_perm check a permutation of 0:n-1 (no duplicates) * cholmod_check_subset check a subset of 0:n-1 (duplicates OK) * cholmod_check_parent check an elimination tree * * cholmod_print_perm print a permutation * cholmod_print_subset print a subset * cholmod_print_parent print an elimination tree * * Each Common->print level prints the items at or below the given level: * * 0: print nothing; just check the data structures and return TRUE/FALSE * 1: error messages * 2: warning messages * 3: one-line summary of each object printed * 4: short summary of each object (first and last few entries) * 5: entire contents of the object * * No CHOLMOD routine calls these routines, so no printing occurs unless * the user specifically calls a cholmod_print_* routine. Thus, the default * print level is 3. * * Common->precise controls the # of digits printed for numerical entries * (5 if FALSE, 15 if TRUE). * * If Common->print_function is NULL, then no printing occurs. The * cholmod_check_* and cholmod_print_* routines still check their inputs and * return TRUE/FALSE if the object is valid or not. * * This file also includes debugging routines that are enabled only when * NDEBUG is defined in cholmod_internal.h (cholmod_dump_*). */ #ifndef NCHECK #include "cholmod_internal.h" #include "cholmod_check.h" /* ========================================================================== */ /* === printing definitions ================================================= */ /* ========================================================================== */ #ifdef LONG #define I8 "%8ld" #define I_8 "%-8ld" #else #define I8 "%8d" #define I_8 "%-8d" #endif #define PR(i,format,arg) \ { \ if (print >= i && Common->print_function != NULL) \ { \ (Common->print_function) (format, arg) ; \ } \ } #define P1(format,arg) PR(1,format,arg) #define P2(format,arg) PR(2,format,arg) #define P3(format,arg) PR(3,format,arg) #define P4(format,arg) PR(4,format,arg) #define ERR(msg) \ { \ P1 ("\nCHOLMOD ERROR: %s: ", type) ; \ if (name != NULL) \ { \ P1 ("%s", name) ; \ } \ P1 (": %s\n", msg) ; \ ERROR (CHOLMOD_INVALID, "invalid") ; \ return (FALSE) ; \ } /* print a numerical value */ #define PRINTVALUE(value) \ { \ if (Common->precise) \ { \ P4 (" %23.15e", value) ; \ } \ else \ { \ P4 (" %.5g", value) ; \ } \ } /* start printing */ #define ETC_START(count,limit) \ { \ count = (init_print == 4) ? (limit) : (-1) ; \ } /* re-enable printing if condition is met */ #define ETC_ENABLE(condition,count,limit) \ { \ if ((condition) && init_print == 4) \ { \ count = limit ; \ print = 4 ; \ } \ } /* turn off printing if limit is reached */ #define ETC_DISABLE(count) \ { \ if ((count >= 0) && (count-- == 0) && print == 4) \ { \ P4 ("%s", " ...\n") ; \ print = 3 ; \ } \ } /* re-enable printing, or turn if off after limit is reached */ #define ETC(condition,count,limit) \ { \ ETC_ENABLE (condition, count, limit) ; \ ETC_DISABLE (count) ; \ } #define BOOLSTR(x) ((x) ? "true " : "false") /* ========================================================================== */ /* === print_value ========================================================== */ /* ========================================================================== */ static void print_value ( Int print, Int xtype, double *Xx, double *Xz, Int p, cholmod_common *Common) { if (xtype == CHOLMOD_REAL) { PRINTVALUE (Xx [p]) ; } else if (xtype == CHOLMOD_COMPLEX) { P4 ("%s", "(") ; PRINTVALUE (Xx [2*p ]) ; P4 ("%s", " , ") ; PRINTVALUE (Xx [2*p+1]) ; P4 ("%s", ")") ; } else if (xtype == CHOLMOD_ZOMPLEX) { P4 ("%s", "(") ; PRINTVALUE (Xx [p]) ; P4 ("%s", " , ") ; PRINTVALUE (Xz [p]) ; P4 ("%s", ")") ; } } /* ========================================================================== */ /* === cholmod_check_common ================================================= */ /* ========================================================================== */ /* Print and verify the contents of Common */ static int check_common ( Int print, char *name, cholmod_common *Common ) { double fl, lnz ; double *Xwork ; Int *Flag, *Head ; UF_long mark ; Int i, nrow, nmethods, ordering, xworksize, amd_printed, init_print ; char *type = "common" ; /* ---------------------------------------------------------------------- */ /* print control parameters and statistics */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; init_print = print ; P2 ("%s", "\n") ; P1 ("CHOLMOD version %d", CHOLMOD_MAIN_VERSION) ; P1 (".%d", CHOLMOD_SUB_VERSION) ; P1 (".%d", CHOLMOD_SUBSUB_VERSION) ; P1 (", %s: ", CHOLMOD_DATE) ; if (name != NULL) { P1 ("%s: ", name) ; } switch (Common->status) { case CHOLMOD_OK: P1 ("%s", "status: OK\n") ; break ; case CHOLMOD_OUT_OF_MEMORY: P1 ("%s", "status: ERROR, out of memory\n") ; break ; case CHOLMOD_INVALID: P1 ("%s", "status: ERROR, invalid parameter\n") ; break ; case CHOLMOD_TOO_LARGE: P1 ("%s", "status: ERROR, problem too large\n") ; break ; case CHOLMOD_NOT_INSTALLED: P1 ("%s", "status: ERROR, method not installed\n") ; break ; case CHOLMOD_NOT_POSDEF: P1 ("%s", "status: warning, matrix not positive definite\n") ; break ; case CHOLMOD_DSMALL: P1 ("%s", "status: warning, diagonal entry has tiny abs. value\n") ; break ; default: ERR ("unknown status") ; } P2 (" Architecture: %s\n", CHOLMOD_ARCHITECTURE) ; P3 (" sizeof(int): %d\n", (int) sizeof (int)) ; P3 (" sizeof(UF_long): %d\n", (int) sizeof (UF_long)) ; P3 (" sizeof(void *): %d\n", (int) sizeof (void *)) ; P3 (" sizeof(double): %d\n", (int) sizeof (double)) ; P3 (" sizeof(Int): %d (CHOLMOD's basic integer)\n", (int) sizeof (Int)) ; P3 (" sizeof(BLAS_INT): %d (integer used in the BLAS)\n", (int) sizeof (BLAS_INT)) ; if (Common->fl != EMPTY) { P2 ("%s", " Results from most recent analysis:\n") ; P2 (" Cholesky flop count: %.5g\n", Common->fl) ; P2 (" Nonzeros in L: %.5g\n", Common->lnz) ; } if (Common->modfl != EMPTY) { P2 (" Update/downdate flop count: %.5g\n", Common->modfl) ; } P2 (" memory blocks in use: %8.0f\n", (double) (Common->malloc_count)) ; P2 (" memory in use (MB): %8.1f\n", (double) (Common->memory_inuse) / 1048576.) ; P2 (" peak memory usage (MB): %8.1f\n", (double) (Common->memory_usage) / 1048576.) ; /* ---------------------------------------------------------------------- */ /* primary control parameters and related ordering statistics */ /* ---------------------------------------------------------------------- */ P3 (" maxrank: update/downdate rank: "ID"\n", (Int) CHOLMOD(maxrank) (0, Common)) ; P3 (" supernodal control: %d", Common->supernodal) ; P3 (" %g ", Common->supernodal_switch) ; if (Common->supernodal <= CHOLMOD_SIMPLICIAL) { P3 ("%s", "(always do simplicial)\n") ; } else if (Common->supernodal == CHOLMOD_AUTO) { P3 ("(supernodal if flops/lnz >= %g)\n", Common->supernodal_switch) ; } else { P3 ("%s", "(always do supernodal)\n") ; } nmethods = MIN (Common->nmethods, CHOLMOD_MAXMETHODS) ; nmethods = MAX (0, nmethods) ; if (nmethods > 0) { P3 ("%s", " nmethods: number of ordering methods to try: ") ; P3 (""ID"\n", nmethods) ; } else { P3 ("%s", " nmethods=0: default strategy: Try user permutation if " "given. Try AMD.\n") ; #ifndef NPARTITION if (Common->default_nesdis) { P3 ("%s", " Try NESDIS if AMD reports flops/nnz(L) >= 500 and " "nnz(L)/nnz(A) >= 5.\n") ; } else { P3 ("%s", " Try METIS if AMD reports flops/nnz(L) >= 500 and " "nnz(L)/nnz(A) >= 5.\n") ; } #endif P3 ("%s", " Select best ordering tried.\n") ; Common->method [0].ordering = CHOLMOD_GIVEN ; Common->method [1].ordering = CHOLMOD_AMD ; Common->method [2].ordering = CHOLMOD_METIS ; #ifndef NPARTITION nmethods = 3 ; #else nmethods = 2 ; #endif } amd_printed = FALSE ; for (i = 0 ; i < nmethods ; i++) { P3 (" method "ID": ", i) ; ordering = Common->method [i].ordering ; fl = Common->method [i].fl ; lnz = Common->method [i].lnz ; switch (ordering) { case CHOLMOD_NATURAL: P3 ("%s", "natural\n") ; break ; case CHOLMOD_GIVEN: P3 ("%s", "user permutation (if given)\n") ; break ; case CHOLMOD_AMD: P3 ("%s", "AMD (or COLAMD if factorizing AA')\n") ; amd_printed = TRUE ; break ; case CHOLMOD_COLAMD: P3 ("%s", "AMD if factorizing A, COLAMD if factorizing AA')\n"); amd_printed = TRUE ; break ; case CHOLMOD_METIS: P3 ("%s", "METIS_NodeND nested dissection\n") ; break ; case CHOLMOD_NESDIS: P3 ("%s", "CHOLMOD nested dissection\n") ; P3 (" nd_small: # nodes in uncut subgraph: "ID"\n", (Int) (Common->method [i].nd_small)) ; P3 (" nd_compress: compress the graph: %s\n", BOOLSTR (Common->method [i].nd_compress)) ; P3 (" nd_camd: use constrained min degree: %s\n", BOOLSTR (Common->method [i].nd_camd)) ; break ; default: P3 (ID, ordering) ; ERR ("unknown ordering method") ; break ; } if (!(ordering == CHOLMOD_NATURAL || ordering == CHOLMOD_GIVEN)) { if (Common->method [i].prune_dense < 0) { P3 (" prune_dense: for pruning dense nodes: %s\n", " none pruned") ; } else { P3 (" prune_dense: for pruning dense nodes: " "%.5g\n", Common->method [i].prune_dense) ; P3 (" a dense node has degree " ">= max(16,(%.5g)*sqrt(n))\n", Common->method [i].prune_dense) ; } } if (ordering == CHOLMOD_COLAMD || ordering == CHOLMOD_NESDIS) { if (Common->method [i].prune_dense2 < 0) { P3 (" prune_dense2: for pruning dense rows for AA':" " %s\n", " none pruned") ; } else { P3 (" prune_dense2: for pruning dense rows for AA':" " %.5g\n", Common->method [i].prune_dense2) ; P3 (" a dense row has degree " ">= max(16,(%.5g)*sqrt(ncol))\n", Common->method [i].prune_dense2) ; } } if (fl != EMPTY) P3 (" flop count: %.5g\n", fl) ; if (lnz != EMPTY) P3 (" nnz(L): %.5g\n", lnz) ; } /* backup AMD results, if any */ if (!amd_printed) { P3 ("%s", " backup method: ") ; P3 ("%s", "AMD (or COLAMD if factorizing AA')\n") ; fl = Common->method [nmethods].fl ; lnz = Common->method [nmethods].lnz ; if (fl != EMPTY) P3 (" AMD flop count: %.5g\n", fl) ; if (lnz != EMPTY) P3 (" AMD nnz(L): %.5g\n", lnz) ; } /* ---------------------------------------------------------------------- */ /* arcane control parameters */ /* ---------------------------------------------------------------------- */ if (Common->final_asis) { P4 ("%s", " final_asis: TRUE, leave as is\n") ; } else { P4 ("%s", " final_asis: FALSE, convert when done\n") ; if (Common->final_super) { P4 ("%s", " final_super: TRUE, leave in supernodal form\n") ; } else { P4 ("%s", " final_super: FALSE, convert to simplicial form\n") ; } if (Common->final_ll) { P4 ("%s", " final_ll: TRUE, convert to LL' form\n") ; } else { P4 ("%s", " final_ll: FALSE, convert to LDL' form\n") ; } if (Common->final_pack) { P4 ("%s", " final_pack: TRUE, pack when done\n") ; } else { P4 ("%s", " final_pack: FALSE, do not pack when done\n") ; } if (Common->final_monotonic) { P4 ("%s", " final_monotonic: TRUE, ensure L is monotonic\n") ; } else { P4 ("%s", " final_monotonic: FALSE, do not ensure L is monotonic\n") ; } P4 (" final_resymbol: remove zeros from amalgamation: %s\n", BOOLSTR (Common->final_resymbol)) ; } P4 (" dbound: LDL' diagonal threshold: % .5g\n Entries with abs. value" " less than dbound are replaced with +/- dbound.\n", Common->dbound) ; P4 (" grow0: memory reallocation: % .5g\n", Common->grow0) ; P4 (" grow1: memory reallocation: % .5g\n", Common->grow1) ; P4 (" grow2: memory reallocation: %g\n", (double) (Common->grow2)) ; P4 ("%s", " nrelax, zrelax: supernodal amalgamation rule:\n") ; P4 ("%s", " s = # columns in two adjacent supernodes\n") ; P4 ("%s", " z = % of zeros in new supernode if they are merged.\n") ; P4 ("%s", " Two supernodes are merged if") ; P4 (" (s <= %g) or (no new zero entries) or\n", (double) (Common->nrelax [0])) ; P4 (" (s <= %g and ", (double) (Common->nrelax [1])) ; P4 ("z < %.5g%%) or", Common->zrelax [0] * 100) ; P4 (" (s <= %g and ", (double) (Common->nrelax [2])) ; P4 ("z < %.5g%%) or", Common->zrelax [1] * 100) ; P4 (" (z < %.5g%%)\n", Common->zrelax [2] * 100) ; /* ---------------------------------------------------------------------- */ /* check workspace */ /* ---------------------------------------------------------------------- */ mark = Common->mark ; nrow = Common->nrow ; Flag = Common->Flag ; Head = Common->Head ; if (nrow > 0) { if (mark < 0 || Flag == NULL || Head == NULL) { ERR ("workspace corrupted (Flag and/or Head missing)") ; } for (i = 0 ; i < nrow ; i++) { if (Flag [i] >= mark) { PRINT0 (("Flag ["ID"]="ID", mark = %ld\n", i, Flag [i], mark)) ; ERR ("workspace corrupted (Flag)") ; } } for (i = 0 ; i <= nrow ; i++) { if (Head [i] != EMPTY) { PRINT0 (("Head ["ID"] = "ID",\n", i, Head [i])) ; ERR ("workspace corrupted (Head)") ; } } } xworksize = Common->xworksize ; Xwork = Common->Xwork ; if (xworksize > 0) { if (Xwork == NULL) { ERR ("workspace corrupted (Xwork missing)") ; } for (i = 0 ; i < xworksize ; i++) { if (Xwork [i] != 0.) { PRINT0 (("Xwork ["ID"] = %g\n", i, Xwork [i])) ; ERR ("workspace corrupted (Xwork)") ; } } } /* workspace and parameters are valid */ P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_common) ( cholmod_common *Common ) { return (check_common (0, NULL, Common)) ; } int CHOLMOD(print_common) ( /* ---- input ---- */ char *name, /* printed name of Common object */ /* --------------- */ cholmod_common *Common ) { Int print = (Common == NULL) ? 3 : (Common->print) ; return (check_common (print, name, Common)) ; } /* ========================================================================== */ /* === cholmod_check_sparse ================================================= */ /* ========================================================================== */ /* Ensure that a sparse matrix in column-oriented form is valid, and optionally * print it. Returns the number of entries on the diagonal or -1 if error. * * workspace: Iwork (nrow) */ static UF_long check_sparse ( Int *Wi, Int print, char *name, cholmod_sparse *A, UF_long *nnzdiag, cholmod_common *Common ) { double *Ax, *Az ; Int *Ap, *Ai, *Anz ; Int nrow, ncol, nzmax, sorted, packed, j, p, pend, i, nz, ilast, space, init_print, dnz, count, xtype ; char *type = "sparse" ; /* ---------------------------------------------------------------------- */ /* print header information */ /* ---------------------------------------------------------------------- */ P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD sparse: ") ; if (name != NULL) { P3 ("%s: ", name) ; } if (A == NULL) { ERR ("null") ; } nrow = A->nrow ; ncol = A->ncol ; nzmax = A->nzmax ; sorted = A->sorted ; packed = A->packed ; xtype = A->xtype ; Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; nz = CHOLMOD(nnz) (A, Common) ; P3 (" "ID"", nrow) ; P3 ("-by-"ID", ", ncol) ; P3 ("nz "ID",", nz) ; if (A->stype > 0) { P3 ("%s", " upper.") ; } else if (A->stype < 0) { P3 ("%s", " lower.") ; } else { P3 ("%s", " up/lo.") ; } P4 ("\n nzmax "ID", ", nzmax) ; if (nz > nzmax) { ERR ("nzmax too small") ; } if (!sorted) { P4 ("%s", "un") ; } P4 ("%s", "sorted, ") ; if (!packed) { P4 ("%s", "un") ; } P4 ("%s", "packed, ") ; switch (A->itype) { case CHOLMOD_INT: P4 ("%s", "\n scalar types: int, ") ; break ; case CHOLMOD_INTLONG: ERR ("mixed int/UF_long type unsupported") ; case CHOLMOD_LONG: P4 ("%s", "\n scalar types: UF_long, ") ; break ; default: ERR ("unknown itype") ; } switch (A->xtype) { case CHOLMOD_PATTERN: P4 ("%s", "pattern") ; break ; case CHOLMOD_REAL: P4 ("%s", "real") ; break ; case CHOLMOD_COMPLEX: P4 ("%s", "complex") ; break ; case CHOLMOD_ZOMPLEX: P4 ("%s", "zomplex") ; break ; default: ERR ("unknown xtype") ; } switch (A->dtype) { case CHOLMOD_DOUBLE: P4 ("%s", ", double\n") ; break ; case CHOLMOD_SINGLE: ERR ("float unsupported") ; default: ERR ("unknown dtype") ; } if (A->itype != ITYPE || A->dtype != DTYPE) { ERR ("integer and real type must match routine") ; } if (A->stype && nrow != ncol) { ERR ("symmetric but not square") ; } /* check for existence of Ap, Ai, Anz, Ax, and Az arrays */ if (Ap == NULL) { ERR ("p array not present") ; } if (Ai == NULL) { ERR ("i array not present") ; } if (!packed && Anz == NULL) { ERR ("nz array not present") ; } if (xtype != CHOLMOD_PATTERN && Ax == NULL) { ERR ("x array not present") ; } if (xtype == CHOLMOD_ZOMPLEX && Az == NULL) { ERR ("z array not present") ; } /* packed matrices must start at Ap [0] = 0 */ if (packed && Ap [0] != 0) { ERR ("p [0] must be zero") ; } if (packed && (Ap [ncol] < Ap [0] || Ap [ncol] > nzmax)) { ERR ("p [ncol] invalid") ; } /* ---------------------------------------------------------------------- */ /* allocate workspace if needed */ /* ---------------------------------------------------------------------- */ if (!sorted) { if (Wi == NULL) { CHOLMOD(allocate_work) (0, nrow, 0, Common) ; Wi = Common->Iwork ; /* size nrow, (i/i/l) */ } if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } for (i = 0 ; i < nrow ; i++) { Wi [i] = EMPTY ; } } /* ---------------------------------------------------------------------- */ /* check and print each column */ /* ---------------------------------------------------------------------- */ init_print = print ; dnz = 0 ; ETC_START (count, 8) ; for (j = 0 ; j < ncol ; j++) { ETC (j == ncol-1, count, 4) ; p = Ap [j] ; if (packed) { pend = Ap [j+1] ; nz = pend - p ; } else { /* Note that Anz [j] < 0 is treated as zero */ nz = MAX (0, Anz [j]) ; pend = p + nz ; } /* Note that space can be negative if the matrix is non-monotonic */ space = Ap [j+1] - p ; P4 (" col "ID":", j) ; P4 (" nz "ID"", nz) ; P4 (" start "ID"", p) ; P4 (" end "ID"", pend) ; if (!packed) { P4 (" space "ID"", space) ; } P4 ("%s", ":\n") ; if (p < 0 || pend > nzmax) { ERR ("pointer invalid") ; } if (nz < 0 || nz > nrow) { ERR ("nz invalid") ; } ilast = EMPTY ; for ( ; p < pend ; p++) { ETC (j == ncol-1 && p >= pend-4, count, -1) ; i = Ai [p] ; P4 (" "I8":", i) ; print_value (print, xtype, Ax, Az, p, Common) ; if (i == j) { dnz++ ; } if (i < 0 || i >= nrow) { ERR ("row index out of range") ; } if (sorted && i <= ilast) { ERR ("row indices out of order") ; } if (!sorted && Wi [i] == j) { ERR ("duplicate row index") ; } P4 ("%s", "\n") ; ilast = i ; if (!sorted) { Wi [i] = j ; } } } /* matrix is valid */ P4 (" nnz on diagonal: "ID"\n", dnz) ; P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; *nnzdiag = dnz ; return (TRUE) ; } int CHOLMOD(check_sparse) ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to check */ /* --------------- */ cholmod_common *Common ) { UF_long nnzdiag ; RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_sparse (NULL, 0, NULL, A, &nnzdiag, Common)) ; } int CHOLMOD(print_sparse) ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to print */ char *name, /* printed name of sparse matrix */ /* --------------- */ cholmod_common *Common ) { UF_long nnzdiag ; RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_sparse (NULL, Common->print, name, A, &nnzdiag, Common)) ; } /* ========================================================================== */ /* === cholmod_check_dense ================================================== */ /* ========================================================================== */ /* Ensure a dense matrix is valid, and optionally print it. */ static int check_dense ( Int print, char *name, cholmod_dense *X, cholmod_common *Common ) { double *Xx, *Xz ; Int i, j, d, nrow, ncol, nzmax, nz, init_print, count, xtype ; char *type = "dense" ; /* ---------------------------------------------------------------------- */ /* print header information */ /* ---------------------------------------------------------------------- */ P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD dense: ") ; if (name != NULL) { P3 ("%s: ", name) ; } if (X == NULL) { ERR ("null") ; } nrow = X->nrow ; ncol = X->ncol ; nzmax = X->nzmax ; d = X->d ; Xx = X->x ; Xz = X->z ; xtype = X->xtype ; P3 (" "ID"", nrow) ; P3 ("-by-"ID", ", ncol) ; P4 ("\n leading dimension "ID", ", d) ; P4 ("nzmax "ID", ", nzmax) ; if (d * ncol > nzmax) { ERR ("nzmax too small") ; } if (d < nrow) { ERR ("leading dimension must be >= # of rows") ; } if (Xx == NULL) { ERR ("null") ; } switch (X->xtype) { case CHOLMOD_PATTERN: ERR ("pattern unsupported") ; break ; case CHOLMOD_REAL: P4 ("%s", "real") ; break ; case CHOLMOD_COMPLEX: P4 ("%s", "complex") ; break ; case CHOLMOD_ZOMPLEX: P4 ("%s", "zomplex") ; break ; default: ERR ("unknown xtype") ; } switch (X->dtype) { case CHOLMOD_DOUBLE: P4 ("%s", ", double\n") ; break ; case CHOLMOD_SINGLE: ERR ("single unsupported") ; default: ERR ("unknown dtype") ; } /* ---------------------------------------------------------------------- */ /* check and print each entry */ /* ---------------------------------------------------------------------- */ if (print >= 4) { init_print = print ; ETC_START (count, 9) ; nz = nrow * ncol ; for (j = 0 ; j < ncol ; j++) { ETC (j == ncol-1, count, 5) ; P4 (" col "ID":\n", j) ; for (i = 0 ; i < nrow ; i++) { ETC (j == ncol-1 && i >= nrow-4, count, -1) ; P4 (" "I8":", i) ; print_value (print, xtype, Xx, Xz, i+j*d, Common) ; P4 ("%s", "\n") ; } } } /* dense is valid */ P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_dense) ( /* ---- input ---- */ cholmod_dense *X, /* dense matrix to check */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_dense (0, NULL, X, Common)) ; } int CHOLMOD(print_dense) ( /* ---- input ---- */ cholmod_dense *X, /* dense matrix to print */ char *name, /* printed name of dense matrix */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_dense (Common->print, name, X, Common)) ; } /* ========================================================================== */ /* === cholmod_check_subset ================================================= */ /* ========================================================================== */ /* Ensure S (0:len-1) is a subset of 0:n-1. Duplicates are allowed. S may be * NULL. A negative len denotes the set 0:n-1. * * To check the rset and cset for A(rset,cset), where nc and nr are the length * of cset and rset respectively: * * cholmod_check_subset (cset, nc, A->ncol, Common) ; * cholmod_check_subset (rset, nr, A->nrow, Common) ; * * workspace: none */ static int check_subset ( Int *S, UF_long len, size_t n, Int print, char *name, cholmod_common *Common ) { Int i, k, init_print, count ; char *type = "subset" ; init_print = print ; if (S == NULL) { /* zero len denotes S = [ ], negative len denotes S = 0:n-1 */ len = (len < 0) ? (-1) : 0 ; } P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD subset: ") ; if (name != NULL) { P3 ("%s: ", name) ; } P3 (" len: %ld ", len) ; if (len < 0) { P3 ("%s", "(denotes 0:n-1) ") ; } P3 ("n: "ID"", (Int) n) ; P4 ("%s", "\n") ; if (len <= 0 || S == NULL) { P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } if (print >= 4) { ETC_START (count, 8) ; for (k = 0 ; k < ((Int) len) ; k++) { ETC (k == ((Int) len) - 4, count, -1) ; i = S [k] ; P4 (" "I8":", k) ; P4 (" "ID"\n", i) ; if (i < 0 || i >= ((Int) n)) { ERR ("entry out range") ; } } } else { for (k = 0 ; k < ((Int) len) ; k++) { i = S [k] ; if (i < 0 || i >= ((Int) n)) { ERR ("entry out range") ; } } } P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_subset) ( /* ---- input ---- */ Int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */ UF_long len, /* size of Set (an integer array), or < 0 if 0:n-1 */ size_t n, /* 0:n-1 is valid range */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_subset (Set, len, n, 0, NULL, Common)) ; } int CHOLMOD(print_subset) ( /* ---- input ---- */ Int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */ UF_long len, /* size of Set (an integer array), or < 0 if 0:n-1 */ size_t n, /* 0:n-1 is valid range */ char *name, /* printed name of Set */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_subset (Set, len, n, Common->print, name, Common)) ; } /* ========================================================================== */ /* === cholmod_check_perm =================================================== */ /* ========================================================================== */ /* Ensure that Perm [0..len-1] is a permutation of a subset of 0:n-1. Perm * may be NULL, which is interpreted as the identity permutation. There can * be no duplicate entries (len must be <= n). * * If n <= Common->nrow, then this routine takes O(len) time and does not * allocate any memory, by using Common->Flag. Otherwise, it takes O(n) time * and ensures that Common->Iwork is at least n*sizeof(Int) in size. * * To check the fset: cholmod_check_perm (fset, fsize, ncol, Common) ; * To check a permutation: cholmod_check_perm (Perm, n, n, Common) ; * * workspace: Flag (n) if n <= Common->nrow, Iwork (n) otherwise. */ static int check_perm ( Int *Wi, Int print, char *name, Int *Perm, size_t len, size_t n, cholmod_common *Common ) { Int *Flag ; Int i, k, mark, init_print, count ; char *type = "perm" ; /* ---------------------------------------------------------------------- */ /* checks that take O(1) time */ /* ---------------------------------------------------------------------- */ if (Perm == NULL || n == 0) { /* Perm is valid implicit identity, or empty */ return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* checks that take O(n) time or require memory allocation */ /* ---------------------------------------------------------------------- */ init_print = print ; ETC_START (count, 8) ; if (Wi == NULL && n <= Common->nrow) { /* use the Common->Flag array if it's big enough */ mark = CHOLMOD(clear_flag) (Common) ; Flag = Common->Flag ; ASSERT (CHOLMOD(dump_work) (TRUE, FALSE, 0, Common)) ; if (print >= 4) { for (k = 0 ; k < ((Int) len) ; k++) { ETC (k >= ((Int) len) - 4, count, -1) ; i = Perm [k] ; P4 (" "I8":", k) ; P4 (""ID"\n", i) ; if (i < 0 || i >= ((Int) n) || Flag [i] == mark) { CHOLMOD(clear_flag) (Common) ; ERR ("invalid permutation") ; } Flag [i] = mark ; } } else { for (k = 0 ; k < ((Int) len) ; k++) { i = Perm [k] ; if (i < 0 || i >= ((Int) n) || Flag [i] == mark) { CHOLMOD(clear_flag) (Common) ; ERR ("invalid permutation") ; } Flag [i] = mark ; } } CHOLMOD(clear_flag) (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, FALSE, 0, Common)) ; } else { if (Wi == NULL) { /* use Common->Iwork instead, but initialize it first */ CHOLMOD(allocate_work) (0, n, 0, Common) ; Wi = Common->Iwork ; /* size n, (i/i/i) is OK */ } if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } for (i = 0 ; i < ((Int) n) ; i++) { Wi [i] = FALSE ; } if (print >= 4) { for (k = 0 ; k < ((Int) len) ; k++) { ETC (k >= ((Int) len) - 4, count, -1) ; i = Perm [k] ; P4 (" "I8":", k) ; P4 (""ID"\n", i) ; if (i < 0 || i >= ((Int) n) || Wi [i]) { ERR ("invalid permutation") ; } Wi [i] = TRUE ; } } else { for (k = 0 ; k < ((Int) len) ; k++) { i = Perm [k] ; if (i < 0 || i >= ((Int) n) || Wi [i]) { ERR ("invalid permutation") ; } Wi [i] = TRUE ; } } } /* perm is valid */ return (TRUE) ; } int CHOLMOD(check_perm) ( /* ---- input ---- */ Int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */ size_t len, /* size of Perm (an integer array) */ size_t n, /* 0:n-1 is valid range */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_perm (NULL, 0, NULL, Perm, len, n, Common)) ; } int CHOLMOD(print_perm) ( /* ---- input ---- */ Int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */ size_t len, /* size of Perm (an integer array) */ size_t n, /* 0:n-1 is valid range */ char *name, /* printed name of Perm */ /* --------------- */ cholmod_common *Common ) { Int ok, print ; RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; print = Common->print ; P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD perm: ") ; if (name != NULL) { P3 ("%s: ", name) ; } P3 (" len: "ID"", (Int) len) ; P3 (" n: "ID"", (Int) n) ; P4 ("%s", "\n") ; ok = check_perm (NULL, print, name, Perm, len, n, Common) ; if (ok) { P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_check_parent ================================================= */ /* ========================================================================== */ /* Ensure that Parent is a valid elimination tree of nodes 0 to n-1. * If j is a root of the tree then Parent [j] is EMPTY (-1). * * NOTE: this check will fail if applied to the component tree (CParent) in * cholmod_nested_dissection, unless it has been postordered and renumbered. * * workspace: none */ static int check_parent ( Int *Parent, size_t n, Int print, char *name, cholmod_common *Common ) { Int j, p, init_print, count ; char *type = "parent" ; init_print = print ; P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD parent: ") ; if (name != NULL) { P3 ("%s: ", name) ; } P3 (" n: "ID"", (Int) n) ; P4 ("%s", "\n") ; if (Parent == NULL) { ERR ("null") ; } /* ---------------------------------------------------------------------- */ /* checks that take O(n) time */ /* ---------------------------------------------------------------------- */ ETC_START (count, 8) ; for (j = 0 ; j < ((Int) n) ; j++) { ETC (j == ((Int) n) - 4, count, -1) ; p = Parent [j] ; P4 (" "I8":", j) ; P4 (" "ID"\n", p) ; if (!(p == EMPTY || p > j)) { ERR ("invalid") ; } } P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_parent) ( /* ---- input ---- */ Int *Parent, /* Parent [0:n-1] is an elimination tree */ size_t n, /* size of Parent */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_parent (Parent, n, 0, NULL, Common)) ; } int CHOLMOD(print_parent) ( /* ---- input ---- */ Int *Parent, /* Parent [0:n-1] is an elimination tree */ size_t n, /* size of Parent */ char *name, /* printed name of Parent */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_parent (Parent, n, Common->print, name, Common)) ; } /* ========================================================================== */ /* === cholmod_check_factor ================================================= */ /* ========================================================================== */ static int check_factor ( Int *Wi, Int print, char *name, cholmod_factor *L, cholmod_common *Common ) { double *Lx, *Lz ; Int *Lp, *Li, *Lnz, *Lnext, *Lprev, *Perm, *ColCount, *Lpi, *Lpx, *Super, *Ls ; Int n, nzmax, j, p, pend, i, nz, ordering, space, is_monotonic, minor, count, precise, init_print, ilast, lnz, head, tail, jprev, plast, jnext, examine_super, nsuper, s, k1, k2, psi, psend, psx, nsrow, nscol, ps2, psxend, ssize, xsize, maxcsize, maxesize, nsrow2, jj, ii, xtype ; char *type = "factor" ; /* ---------------------------------------------------------------------- */ /* print header information */ /* ---------------------------------------------------------------------- */ P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD factor: ") ; if (name != NULL) { P3 ("%s: ", name) ; } if (L == NULL) { ERR ("null") ; } n = L->n ; minor = L->minor ; ordering = L->ordering ; xtype = L->xtype ; Perm = L->Perm ; ColCount = L->ColCount ; lnz = 0 ; precise = Common->precise ; P3 (" "ID"", n) ; P3 ("-by-"ID"", n) ; if (minor < n) { P3 (" not positive definite (column "ID")", minor) ; } switch (L->itype) { case CHOLMOD_INT: P4 ("%s", "\n scalar types: int, ") ; break ; case CHOLMOD_INTLONG: ERR ("mixed int/UF_long type unsupported") ; case CHOLMOD_LONG: P4 ("%s", "\n scalar types: UF_long, ") ; break ; default: ERR ("unknown itype") ; } switch (L->xtype) { case CHOLMOD_PATTERN: P4 ("%s", "pattern") ; break ; case CHOLMOD_REAL: P4 ("%s", "real") ; break ; case CHOLMOD_COMPLEX: P4 ("%s", "complex") ; break ; case CHOLMOD_ZOMPLEX: P4 ("%s", "zomplex") ; break ; default: ERR ("unknown xtype") ; } switch (L->dtype) { case CHOLMOD_DOUBLE: P4 ("%s", ", double\n") ; break ; case CHOLMOD_SINGLE: ERR ("single unsupported") ; default: ERR ("unknown dtype") ; } if (L->itype != ITYPE || L->dtype != DTYPE) { ERR ("integer and real type must match routine") ; } if (L->is_super) { P3 ("%s", " supernodal") ; } else { P3 ("%s", " simplicial") ; } if (L->is_ll) { P3 ("%s", ", LL'.") ; } else { P3 ("%s", ", LDL'.") ; } P4 ("%s", "\n ordering method used: ") ; switch (L->ordering) { case CHOLMOD_POSTORDERED:P4 ("%s", "natural (postordered)") ; break ; case CHOLMOD_NATURAL: P4 ("%s", "natural") ; break ; case CHOLMOD_GIVEN: P4 ("%s", "user-provided") ; break ; case CHOLMOD_AMD: P4 ("%s", "AMD") ; break ; case CHOLMOD_COLAMD: P4 ("%s", "AMD for A, COLAMD for A*A'") ;break ; #ifndef NPARTITION case CHOLMOD_METIS: P4 ("%s", "METIS NodeND") ; break ; case CHOLMOD_NESDIS: P4 ("%s", "CHOLMOD nested dissection") ; break ; #endif default: ERR ("unknown ordering") ; } P4 ("%s", "\n") ; init_print = print ; if (L->is_super && L->xtype == CHOLMOD_ZOMPLEX) { ERR ("Supernodal zomplex L not supported") ; } /* ---------------------------------------------------------------------- */ /* check L->Perm */ /* ---------------------------------------------------------------------- */ if (!check_perm (Wi, print, name, Perm, n, n, Common)) { return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* check L->ColCount */ /* ---------------------------------------------------------------------- */ if (ColCount == NULL) { ERR ("ColCount vector invalid") ; } ETC_START (count, 8) ; for (j = 0 ; j < n ; j++) { ETC (j >= n-4, count, -1) ; P4 (" col: "ID" ", j) ; nz = ColCount [j] ; P4 ("colcount: "ID"\n", nz) ; if (nz < 0 || nz > n-j) { ERR ("ColCount out of range") ; } } /* ---------------------------------------------------------------------- */ /* check factor */ /* ---------------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN && !(L->is_super)) { /* ------------------------------------------------------------------ */ /* check simplicial symbolic factor */ /* ------------------------------------------------------------------ */ /* nothing else to do */ ; } else if (L->xtype != CHOLMOD_PATTERN && !(L->is_super)) { /* ------------------------------------------------------------------ */ /* check simplicial numerical factor */ /* ------------------------------------------------------------------ */ P4 ("monotonic: %d\n", L->is_monotonic) ; nzmax = L->nzmax ; P3 (" nzmax "ID".", nzmax) ; P4 ("%s", "\n") ; Lp = L->p ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lnz = L->nz ; Lnext = L->next ; Lprev = L->prev ; /* check for existence of Lp, Li, Lnz, Lnext, Lprev, and Lx arrays */ if (Lp == NULL) { ERR ("p array not present") ; } if (Li == NULL) { ERR ("i array not present") ; } if (Lnz == NULL) { ERR ("nz array not present") ; } if (Lx == NULL) { ERR ("x array not present") ; } if (xtype == CHOLMOD_ZOMPLEX && Lz == NULL) { ERR ("z array not present") ; } if (Lnext == NULL) { ERR ("next array not present") ; } if (Lprev == NULL) { ERR ("prev array not present") ; } ETC_START (count, 8) ; /* check each column of L */ plast = 0 ; is_monotonic = TRUE ; for (j = 0 ; j < n ; j++) { ETC (j >= n-3, count, -1) ; p = Lp [j] ; nz = Lnz [j] ; pend = p + nz ; lnz += nz ; P4 (" col "ID":", j) ; P4 (" nz "ID"", nz) ; P4 (" start "ID"", p) ; P4 (" end "ID"", pend) ; if (Lnext [j] < 0 || Lnext [j] > n) { ERR ("invalid link list") ; } space = Lp [Lnext [j]] - p ; P4 (" space "ID"", space) ; P4 (" free "ID":\n", space - nz) ; if (p < 0 || pend > nzmax || space < 1) { ERR ("pointer invalid") ; } if (nz < 1 || nz > (n-j) || nz > space) { ERR ("nz invalid") ; } ilast = j-1 ; if (p < plast) { is_monotonic = FALSE ; } plast = p ; i = Li [p] ; P4 (" "I8":", i) ; if (i != j) { ERR ("diagonal missing") ; } print_value (print, xtype, Lx, Lz, p, Common) ; P4 ("%s", "\n") ; ilast = j ; for (p++ ; p < pend ; p++) { ETC_DISABLE (count) ; i = Li [p] ; P4 (" "I8":", i) ; if (i < j || i >= n) { ERR ("row index out of range") ; } if (i <= ilast) { ERR ("row indices out of order") ; } print_value (print, xtype, Lx, Lz, p, Common) ; P4 ("%s", "\n") ; ilast = i ; } } if (L->is_monotonic && !is_monotonic) { ERR ("columns not monotonic") ; } /* check the link list */ head = n+1 ; tail = n ; j = head ; jprev = EMPTY ; count = 0 ; for ( ; ; ) { if (j < 0 || j > n+1 || count > n+2) { ERR ("invalid link list") ; } jnext = Lnext [j] ; if (j >= 0 && j < n) { if (jprev != Lprev [j]) { ERR ("invalid link list") ; } } count++ ; if (j == tail) { break ; } jprev = j ; j = jnext ; } if (Lnext [tail] != EMPTY || count != n+2) { ERR ("invalid link list") ; } } else { /* ------------------------------------------------------------------ */ /* check supernodal numeric or symbolic factor */ /* ------------------------------------------------------------------ */ nsuper = L->nsuper ; ssize = L->ssize ; xsize = L->xsize ; maxcsize = L->maxcsize ; maxesize = L->maxesize ; Ls = L->s ; Lpi = L->pi ; Lpx = L->px ; Super = L->super ; Lx = L->x ; ETC_START (count, 8) ; P4 (" ssize "ID" ", ssize) ; P4 ("xsize "ID" ", xsize) ; P4 ("maxcsize "ID" ", maxcsize) ; P4 ("maxesize "ID"\n", maxesize) ; if (Ls == NULL) { ERR ("invalid: L->s missing") ; } if (Lpi == NULL) { ERR ("invalid: L->pi missing") ; } if (Lpx == NULL) { ERR ("invalid: L->px missing") ; } if (Super == NULL) { ERR ("invalid: L->super missing") ; } if (L->xtype != CHOLMOD_PATTERN) { /* numerical supernodal factor */ if (Lx == NULL) { ERR ("invalid: L->x missing") ; } if (Ls [0] == EMPTY) { ERR ("invalid: L->s not defined") ; } examine_super = TRUE ; } else { /* symbolic supernodal factor, but only if it has been computed */ examine_super = (Ls [0] != EMPTY) ; } if (examine_super) { if (Lpi [0] != 0 || MAX (1, Lpi [nsuper]) != ssize) { PRINT0 (("Lpi [0] "ID", Lpi [nsuper = "ID"] = "ID"\n", Lpi [0], nsuper, Lpi [nsuper])) ; ERR ("invalid: L->pi invalid") ; } if (Lpx [0] != 0 || MAX (1, Lpx [nsuper]) != xsize) { ERR ("invalid: L->px invalid") ; } /* check and print each supernode */ for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; nsrow2 = nsrow - nscol ; ps2 = psi + nscol ; psxend = Lpx [s+1] ; ETC (s == nsuper-1, count, 4) ; P4 (" supernode "ID", ", s) ; P4 ("col "ID" ", k1) ; P4 ("to "ID". ", k2-1) ; P4 ("nz in first col: "ID".\n", nsrow) ; P4 (" values start "ID", ", psx) ; P4 ("end "ID"\n", psxend) ; if (k1 > k2 || k1 < 0 || k2 > n || nsrow < nscol || nsrow2 < 0 || psxend - psx != nsrow * nscol) { ERR ("invalid supernode") ; } lnz += nscol * nsrow - (nscol*nscol - nscol)/2 ; if (L->xtype != CHOLMOD_PATTERN) { /* print each column of the supernode */ for (jj = 0 ; jj < nscol ; jj++) { ETC_ENABLE (s == nsuper-1 && jj >= nscol-3, count, -1) ; j = k1 + jj ; P4 (" col "ID"\n", j) ; ilast = j ; i = Ls [psi + jj] ; P4 (" "I8":", i) ; if (i != j) { ERR ("row index invalid") ; } /* PRINTVALUE (Lx [psx + jj + jj*nsrow]) ; */ print_value (print, xtype, Lx, NULL, psx + jj + jj*nsrow, Common) ; P4 ("%s", "\n") ; for (ii = jj + 1 ; ii < nsrow ; ii++) { ETC_DISABLE (count) ; i = Ls [psi + ii] ; P4 (" "I8":", i) ; if (i <= ilast || i > n) { ERR ("row index out of range") ; } /* PRINTVALUE (Lx [psx + ii + jj*nsrow]) ; */ print_value (print, xtype, Lx, NULL, psx + ii + jj*nsrow, Common) ; P4 ("%s", "\n") ; ilast = i ; } } } else { /* just print the leading column of the supernode */ P4 (" col "ID"\n", k1) ; for (jj = 0 ; jj < nscol ; jj++) { ETC (s == nsuper-1 && jj >= nscol-3, count, -1) ; j = k1 + jj ; i = Ls [psi + jj] ; P4 (" "I8"", i) ; if (i != j) { ERR ("row index invalid") ; } P4 ("%s", "\n") ; } ilast = j ; for (ii = nscol ; ii < nsrow ; ii++) { ETC_DISABLE (count) ; i = Ls [psi + ii] ; P4 (" "I8"", i) ; if (i <= ilast || i > n) { ERR ("row index out of range") ; } P4 ("%s", "\n") ; ilast = i ; } } } } } /* factor is valid */ P3 (" nz "ID"", lnz) ; P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_factor) ( /* ---- input ---- */ cholmod_factor *L, /* factor to check */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_factor (NULL, 0, NULL, L, Common)) ; } int CHOLMOD(print_factor) ( /* ---- input ---- */ cholmod_factor *L, /* factor to print */ char *name, /* printed name of factor */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_factor (NULL, Common->print, name, L, Common)) ; } /* ========================================================================== */ /* === cholmod_check_triplet ================================================ */ /* ========================================================================== */ /* Ensure a triplet matrix is valid, and optionally print it. */ static int check_triplet ( Int print, char *name, cholmod_triplet *T, cholmod_common *Common ) { double *Tx, *Tz ; Int *Ti, *Tj ; Int i, j, p, nrow, ncol, nzmax, nz, xtype, init_print, count ; char *type = "triplet" ; /* ---------------------------------------------------------------------- */ /* print header information */ /* ---------------------------------------------------------------------- */ P4 ("%s", "\n") ; P3 ("%s", "CHOLMOD triplet: ") ; if (name != NULL) { P3 ("%s: ", name) ; } if (T == NULL) { ERR ("null") ; } nrow = T->nrow ; ncol = T->ncol ; nzmax = T->nzmax ; nz = T->nnz ; Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; xtype = T->xtype ; P3 (" "ID"", nrow) ; P3 ("-by-"ID", ", ncol) ; P3 ("nz "ID",", nz) ; if (T->stype > 0) { P3 ("%s", " upper.") ; } else if (T->stype < 0) { P3 ("%s", " lower.") ; } else { P3 ("%s", " up/lo.") ; } P4 ("\n nzmax "ID", ", nzmax) ; if (nz > nzmax) { ERR ("nzmax too small") ; } switch (T->itype) { case CHOLMOD_INT: P4 ("%s", "\n scalar types: int, ") ; break ; case CHOLMOD_INTLONG: ERR ("mixed int/UF_long type unsupported") ; case CHOLMOD_LONG: P4 ("%s", "\n scalar types: UF_long, ") ; break ; default: ERR ("unknown itype") ; } switch (T->xtype) { case CHOLMOD_PATTERN: P4 ("%s", "pattern") ; break ; case CHOLMOD_REAL: P4 ("%s", "real") ; break ; case CHOLMOD_COMPLEX: P4 ("%s", "complex") ; break ; case CHOLMOD_ZOMPLEX: P4 ("%s", "zomplex") ; break ; default: ERR ("unknown xtype") ; } switch (T->dtype) { case CHOLMOD_DOUBLE: P4 ("%s", ", double\n") ; break ; case CHOLMOD_SINGLE: ERR ("single unsupported") ; default: ERR ("unknown dtype") ; } if (T->itype != ITYPE || T->dtype != DTYPE) { ERR ("integer and real type must match routine") ; } if (T->stype && nrow != ncol) { ERR ("symmetric but not square") ; } /* check for existence of Ti, Tj, Tx arrays */ if (Tj == NULL) { ERR ("j array not present") ; } if (Ti == NULL) { ERR ("i array not present") ; } if (xtype != CHOLMOD_PATTERN && Tx == NULL) { ERR ("x array not present") ; } if (xtype == CHOLMOD_ZOMPLEX && Tz == NULL) { ERR ("z array not present") ; } /* ---------------------------------------------------------------------- */ /* check and print each entry */ /* ---------------------------------------------------------------------- */ init_print = print ; ETC_START (count, 8) ; for (p = 0 ; p < nz ; p++) { ETC (p >= nz-4, count, -1) ; i = Ti [p] ; P4 (" "I8":", p) ; P4 (" "I_8"", i) ; if (i < 0 || i >= nrow) { ERR ("row index out of range") ; } j = Tj [p] ; P4 (" "I_8"", j) ; if (j < 0 || j >= ncol) { ERR ("column index out of range") ; } print_value (print, xtype, Tx, Tz, p, Common) ; P4 ("%s", "\n") ; } /* triplet matrix is valid */ P3 ("%s", " OK\n") ; P4 ("%s", "\n") ; return (TRUE) ; } int CHOLMOD(check_triplet) ( /* ---- input ---- */ cholmod_triplet *T, /* triplet matrix to check */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_triplet (0, NULL, T, Common)) ; } int CHOLMOD(print_triplet) ( /* ---- input ---- */ cholmod_triplet *T, /* triplet matrix to print */ char *name, /* printed name of triplet matrix */ /* --------------- */ cholmod_common *Common ) { RETURN_IF_NULL_COMMON (FALSE) ; Common->status = CHOLMOD_OK ; return (check_triplet (Common->print, name, T, Common)) ; } /* ========================================================================== */ /* === CHOLMOD debugging routines =========================================== */ /* ========================================================================== */ #ifndef NDEBUG /* The global variables present only when debugging enabled. */ int CHOLMOD(dump) = 0 ; int CHOLMOD(dump_malloc) = -1 ; /* workspace: no debug routines use workspace in Common */ /* ========================================================================== */ /* === cholmod_dump_init ==================================================== */ /* ========================================================================== */ void CHOLMOD(dump_init) (char *s, cholmod_common *Common) { FILE *f ; f = fopen ("debug", "r") ; if (f == NULL) { CHOLMOD(dump) = 0 ; } else { fscanf (f, "%d", &CHOLMOD(dump)) ; fclose (f) ; } PRINT1 (("%s: cholmod_dump_init, D = %d\n", s, CHOLMOD(dump))) ; } /* ========================================================================== */ /* === cholmod_dump_sparse ================================================== */ /* ========================================================================== */ UF_long CHOLMOD(dump_sparse) /* returns nnz (diag (A)) or EMPTY if error */ ( cholmod_sparse *A, char *name, cholmod_common *Common ) { Int *Wi ; UF_long nnzdiag ; Int ok ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (0) ; } RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; Wi = malloc (MAX (1, A->nrow) * sizeof (Int)) ; ok = check_sparse (Wi, CHOLMOD(dump), name, A, &nnzdiag, Common) ; if (Wi != NULL) free (Wi) ; return (ok ? nnzdiag : EMPTY) ; } /* ========================================================================== */ /* === cholmod_dump_factor ================================================== */ /* ========================================================================== */ int CHOLMOD(dump_factor) ( cholmod_factor *L, char *name, cholmod_common *Common ) { Int *Wi ; int ok ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; Wi = malloc (MAX (1, L->n) * sizeof (Int)) ; ok = check_factor (Wi, CHOLMOD(dump), name, L, Common) ; if (Wi != NULL) free (Wi) ; return (ok) ; } /* ========================================================================== */ /* === cholmod_dump_perm ==================================================== */ /* ========================================================================== */ int CHOLMOD(dump_perm) ( Int *Perm, size_t len, size_t n, char *name, cholmod_common *Common ) { Int *Wi ; int ok ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; Wi = malloc (MAX (1, n) * sizeof (Int)) ; ok = check_perm (Wi, CHOLMOD(dump), name, Perm, len, n,Common) ; if (Wi != NULL) free (Wi) ; return (ok) ; } /* ========================================================================== */ /* === cholmod_dump_dense =================================================== */ /* ========================================================================== */ int CHOLMOD(dump_dense) ( cholmod_dense *X, char *name, cholmod_common *Common ) { if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; return (check_dense (CHOLMOD(dump), name, X, Common)) ; } /* ========================================================================== */ /* === cholmod_dump_triplet ================================================= */ /* ========================================================================== */ int CHOLMOD(dump_triplet) ( cholmod_triplet *T, char *name, cholmod_common *Common ) { if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; return (check_triplet (CHOLMOD(dump), name, T, Common)) ; } /* ========================================================================== */ /* === cholmod_dump_subset ================================================== */ /* ========================================================================== */ int CHOLMOD(dump_subset) ( Int *S, size_t len, size_t n, char *name, cholmod_common *Common ) { if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; return (check_subset (S, len, n, CHOLMOD(dump), name, Common)) ; } /* ========================================================================== */ /* === cholmod_dump_parent ================================================== */ /* ========================================================================== */ int CHOLMOD(dump_parent) ( Int *Parent, size_t n, char *name, cholmod_common *Common ) { if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; return (check_parent (Parent, n, CHOLMOD(dump), name, Common)) ; } /* ========================================================================== */ /* === cholmod_dump_real ==================================================== */ /* ========================================================================== */ void CHOLMOD(dump_real) ( char *name, Real *X, UF_long nrow, UF_long ncol, int lower, int xentry, cholmod_common *Common ) { /* dump an nrow-by-ncol real dense matrix */ UF_long i, j ; double x, z ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return ; } PRINT1 (("%s: dump_real, nrow: %ld ncol: %ld lower: %d\n", name, nrow, ncol, lower)) ; for (j = 0 ; j < ncol ; j++) { PRINT2 ((" col %ld\n", j)) ; for (i = 0 ; i < nrow ; i++) { /* X is stored in column-major form */ if (lower && i < j) { PRINT2 ((" %5ld: -", i)) ; } else { x = *X ; PRINT2 ((" %5ld: %e", i, x)) ; if (xentry == 2) { z = *(X+1) ; PRINT2 ((", %e", z)) ; } } PRINT2 (("\n")) ; X += xentry ; } } } /* ========================================================================== */ /* === cholmod_dump_super =================================================== */ /* ========================================================================== */ void CHOLMOD(dump_super) ( UF_long s, Int *Super, Int *Lpi, Int *Ls, Int *Lpx, double *Lx, int xentry, cholmod_common *Common ) { Int k1, k2, do_values, psi, psx, nsrow, nscol, psend, ilast, p, i ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return ; } k1 = Super [s] ; k2 = Super [s+1] ; nscol = k2 - k1 ; do_values = (Lpx != NULL) && (Lx != NULL) ; psi = Lpi [s] ; psend = Lpi [s+1] ; nsrow = psend - psi ; PRINT1 (("\nSuper %ld, columns "ID" to "ID", "ID" rows "ID" cols\n", s, k1, k2-1, nsrow, nscol)) ; ilast = -1 ; for (p = psi ; p < psend ; p++) { i = Ls [p] ; PRINT2 ((" "ID" : p-psi "ID"\n", i, p-psi)) ; ASSERT (IMPLIES (p-psi < nscol, i == k1 + (p-psi))) ; if (p-psi == nscol-1) PRINT2 (("------\n")) ; ASSERT (i > ilast) ; ilast = i ; } if (do_values) { psx = Lpx [s] ; CHOLMOD(dump_real) ("Supernode", Lx + xentry*psx, nsrow, nscol, TRUE, xentry, Common) ; } } /* ========================================================================== */ /* === cholmod_dump_mem ===================================================== */ /* ========================================================================== */ int CHOLMOD(dump_mem) (char *where, UF_long should, cholmod_common *Common) { UF_long diff = should - Common->memory_inuse ; if (diff != 0) { PRINT0 (("mem: %-15s peak %10g inuse %10g should %10g\n", where, (double) Common->memory_usage, (double) Common->memory_inuse, (double) should)) ; PRINT0 (("mem: %s diff %ld !\n", where, diff)) ; } return (diff == 0) ; } /* ========================================================================== */ /* === cholmod_dump_partition =============================================== */ /* ========================================================================== */ /* make sure we have a proper separator (for debugging only) * * workspace: none */ int CHOLMOD(dump_partition) ( UF_long n, Int *Cp, Int *Ci, Int *Cnw, Int *Part, UF_long sepsize, cholmod_common *Common ) { Int chek [3], which, ok, i, j, p ; PRINT1 (("bisect sepsize %ld\n", sepsize)) ; ok = TRUE ; chek [0] = 0 ; chek [1] = 0 ; chek [2] = 0 ; for (j = 0 ; j < n ; j++) { PRINT2 (("--------j "ID" in part "ID" nw "ID"\n", j, Part [j], Cnw[j])); which = Part [j] ; for (p = Cp [j] ; p < Cp [j+1] ; p++) { i = Ci [p] ; PRINT3 (("i "ID", part "ID"\n", i, Part [i])) ; if (which == 0) { if (Part [i] == 1) { PRINT0 (("Error! "ID" "ID"\n", i, j)) ; ok = FALSE ; } } else if (which == 1) { if (Part [i] == 0) { PRINT0 (("Error! "ID" "ID"\n", i, j)) ; ok = FALSE ; } } } if (which < 0 || which > 2) { PRINT0 (("Part out of range\n")) ; ok = FALSE ; } chek [which] += Cnw [j] ; } PRINT1 (("sepsize %ld check "ID" "ID" "ID"\n", sepsize, chek[0], chek[1],chek[2])); if (sepsize != chek[2]) { PRINT0 (("mismatch!\n")) ; ok = FALSE ; } return (ok) ; } /* ========================================================================== */ /* === cholmod_dump_work ==================================================== */ /* ========================================================================== */ int CHOLMOD(dump_work) (int flag, int head, UF_long wsize, cholmod_common *Common) { double *W ; Int *Flag, *Head ; Int k, nrow, mark ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return (TRUE) ; } RETURN_IF_NULL_COMMON (FALSE) ; nrow = Common->nrow ; Flag = Common->Flag ; Head = Common->Head ; W = Common->Xwork ; mark = Common->mark ; if (wsize < 0) { /* check all of Xwork */ wsize = Common->xworksize ; } else { /* check on the first wsize doubles in Xwork */ wsize = MIN (wsize, (Int) (Common->xworksize)) ; } if (flag) { for (k = 0 ; k < nrow ; k++) { if (Flag [k] >= mark) { PRINT0 (("Flag invalid, Flag ["ID"] = "ID", mark = "ID"\n", k, Flag [k], mark)) ; ASSERT (0) ; return (FALSE) ; } } } if (head) { for (k = 0 ; k < nrow ; k++) { if (Head [k] != EMPTY) { PRINT0 (("Head invalid, Head ["ID"] = "ID"\n", k, Head [k])) ; ASSERT (0) ; return (FALSE) ; } } } for (k = 0 ; k < wsize ; k++) { if (W [k] != 0.) { PRINT0 (("W invalid, W ["ID"] = %g\n", k, W [k])) ; ASSERT (0) ; return (FALSE) ; } } return (TRUE) ; } #endif #endif SuiteSparse/CHOLMOD/Check/cholmod_write.c0000644001170100242450000005122210634317313017057 0ustar davisfac/* ========================================================================== */ /* === Check/cholmod_write ================================================== */ /* ========================================================================== */ /* Write a matrix to a file in Matrix Market form. * * A can be sparse or full. * * If present and non-empty, A and Z must have the same dimension. Z contains * the explicit zero entries in the matrix (which MATLAB drops). The entries * of Z appear as explicit zeros in the output file. Z is optional. If it is * an empty matrix it is ignored. Z must be sparse or empty, if present. * It is ignored if A is full. * * filename is the name of the output file. comments is file whose * contents are include after the Matrix Market header and before the first * data line. Ignored if an empty string or not present. * * Except for the workspace used by cholmod_symmetry (ncol integers) for * the sparse case, these routines use no workspace at all. */ #ifndef NCHECK #include "cholmod_internal.h" #include "cholmod_check.h" #include "cholmod_matrixops.h" #include #include #define MMLEN 1024 #define MAXLINE MMLEN+6 /* ========================================================================== */ /* === include_comments ===================================================== */ /* ========================================================================== */ /* Read in the comments file, if it exists, and copy it to the Matrix Market * file. A "%" is prepended to each line. Returns TRUE if successful, FALSE * otherwise. */ static int include_comments (FILE *f, char *comments) { FILE *cf = NULL ; char buffer [MAXLINE] ; int ok = TRUE ; if (comments != NULL && comments [0] != '\0') { cf = fopen (comments, "r") ; if (cf == NULL) { return (FALSE) ; } while (ok && fgets (buffer, MAXLINE, cf) != NULL) { /* ensure the line is not too long */ buffer [MMLEN-1] = '\0' ; buffer [MMLEN-2] = '\n' ; ok = ok && (fprintf (f, "%%%s", buffer) > 0) ; } fclose (cf) ; } return (ok) ; } /* ========================================================================== */ /* === get_value ============================================================ */ /* ========================================================================== */ /* Get the pth value in the matrix. */ static void get_value ( double *Ax, /* real values, or real/imag. for CHOLMOD_COMPLEX type */ double *Az, /* imaginary values for CHOLMOD_ZOMPLEX type */ Int p, /* get the pth entry */ Int xtype, /* A->xtype: pattern, real, complex, or zomplex */ double *x, /* the real part */ double *z /* the imaginary part */ ) { switch (xtype) { case CHOLMOD_PATTERN: *x = 1 ; *z = 0 ; break ; case CHOLMOD_REAL: *x = Ax [p] ; *z = 0 ; break ; case CHOLMOD_COMPLEX: *x = Ax [2*p] ; *z = Ax [2*p+1] ; break ; case CHOLMOD_ZOMPLEX: *x = Ax [p] ; *z = Az [p] ; break ; } } /* ========================================================================== */ /* === print_value ========================================================== */ /* ========================================================================== */ /* Print a numeric value to the file, using the shortest format that ensures * the value is written precisely. Returns TRUE if successful, FALSE otherwise. */ static int print_value ( FILE *f, /* file to print to */ double x, /* value to print */ Int is_integer /* TRUE if printing as an integer */ ) { double y ; char s [MAXLINE], *p ; Int i, dest = 0, src = 0 ; int width, ok ; if (is_integer) { i = (Int) x ; ok = (fprintf (f, ID, i) > 0) ; return (ok) ; } /* ---------------------------------------------------------------------- */ /* handle Inf and NaN */ /* ---------------------------------------------------------------------- */ /* change -inf to -HUGE_DOUBLE, and change +inf and nan to +HUGE_DOUBLE */ if (CHOLMOD_IS_NAN (x) || x >= HUGE_DOUBLE) { x = HUGE_DOUBLE ; } else if (x <= -HUGE_DOUBLE) { x = -HUGE_DOUBLE ; } /* ---------------------------------------------------------------------- */ /* find the smallest acceptable precision */ /* ---------------------------------------------------------------------- */ for (width = 6 ; width < 20 ; width++) { sprintf (s, "%.*g", width, x) ; sscanf (s, "%lg", &y) ; if (x == y) break ; } /* ---------------------------------------------------------------------- */ /* shorten the string */ /* ---------------------------------------------------------------------- */ /* change "e+0" to "e", change "e+" to "e", and change "e-0" to "e-" */ for (i = 0 ; i < MAXLINE && s [i] != '\0' ; i++) { if (s [i] == 'e') { if (s [i+1] == '+') { dest = i+1 ; if (s [i+2] == '0') { /* delete characters s[i+1] and s[i+2] */ src = i+3 ; } else { /* delete characters s[i+1] */ src = i+2 ; } } else if (s [i+1] == '-') { dest = i+2 ; if (s [i+2] == '0') { /* delete character s[i+2] */ src = i+3 ; } else { /* no change */ break ; } } while (s [src] != '\0') { s [dest++] = s [src++] ; } s [dest] = '\0' ; break ; } } /* delete the leading "0" if present and not necessary */ p = s ; s [MAXLINE-1] = '\0' ; i = strlen (s) ; if (i > 2 && s [0] == '0' && s [1] == '.') { /* change "0.x" to ".x" */ p = s + 1 ; } else if (i > 3 && s [0] == '-' && s [1] == '0' && s [2] == '.') { /* change "-0.x" to "-.x" */ s [1] = '-' ; p = s + 1 ; } #if 0 /* double-check */ i = sscanf (p, "%lg", &z) ; if (i != 1 || y != z) { /* oops! something went wrong in the "e+0" edit, above. */ /* this "cannot" happen */ sprintf (s, "%.*g", width, x) ; p = s ; } #endif /* ---------------------------------------------------------------------- */ /* print the value to the file */ /* ---------------------------------------------------------------------- */ ok = (fprintf (f, "%s", p) > 0) ; return (ok) ; } /* ========================================================================== */ /* === print_triplet ======================================================== */ /* ========================================================================== */ /* Print a triplet, converting it to one-based. Returns TRUE if successful, * FALSE otherwise. */ static int print_triplet ( FILE *f, /* file to print to */ Int is_binary, /* TRUE if file is "pattern" */ Int is_complex, /* TRUE if file is "complex" */ Int is_integer, /* TRUE if file is "integer" */ Int i, /* row index (zero-based) */ Int j, /* column index (zero-based) */ double x, /* real part */ double z /* imaginary part */ ) { int ok ; ok = (fprintf (f, ID " " ID, 1+i, 1+j) > 0) ; if (!is_binary) { fprintf (f, " ") ; ok = ok && print_value (f, x, is_integer) ; if (is_complex) { fprintf (f, " ") ; ok = ok && print_value (f, z, is_integer) ; } } ok = ok && (fprintf (f, "\n") > 0) ; return (ok) ; } /* ========================================================================== */ /* === ntriplets ============================================================ */ /* ========================================================================== */ /* Compute the number of triplets that will be printed to the file * from the matrix A. */ static Int ntriplets ( cholmod_sparse *A, /* matrix that will be printed */ Int is_sym /* TRUE if the file is symmetric (lower part only)*/ ) { Int *Ap, *Ai, *Anz, packed, i, j, p, pend, ncol, stype, nz = 0 ; if (A == NULL) { /* the Z matrix is NULL */ return (0) ; } stype = A->stype ; Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; ncol = A->ncol ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? Ap [j+1] : p + Anz [j] ; for ( ; p < pend ; p++) { i = Ai [p] ; if ((stype < 0 && i >= j) || (stype == 0 && (i >= j || !is_sym))) { /* CHOLMOD matrix is symmetric-lower (and so is the file); * or CHOLMOD matrix is unsymmetric and either A(i,j) is in * the lower part or the file is unsymmetric. */ nz++ ; } else if (stype > 0 && i <= j) { /* CHOLMOD matrix is symmetric-upper, but the file is * symmetric-lower. Need to transpose the entry. */ nz++ ; } } } return (nz) ; } /* ========================================================================== */ /* === cholmod_write_sparse ================================================= */ /* ========================================================================== */ /* Write a sparse matrix to a file in Matrix Market format. Optionally include * comments, and print explicit zero entries given by the pattern of the Z * matrix. If not NULL, the Z matrix must have the same dimensions and stype * as A. * * Returns the symmetry in which the matrix was printed (1 to 7, see the * CHOLMOD_MM_* codes in CHOLMOD/Include/cholmod_core.h), or -1 on failure. * * If A and Z are sorted on input, and either unsymmetric (stype = 0) or * symmetric-lower (stype < 0), and if A and Z do not overlap, then the triplets * are sorted, first by column and then by row index within each column, with * no duplicate entries. If all the above holds except stype > 0, then the * triplets are sorted by row first and then column. */ int CHOLMOD(write_sparse) ( /* ---- input ---- */ FILE *f, /* file to write to, must already be open */ cholmod_sparse *A, /* matrix to print */ cholmod_sparse *Z, /* optional matrix with pattern of explicit zeros */ char *comments, /* optional filename of comments to include */ /* --------------- */ cholmod_common *Common ) { double x = 0, z = 0 ; double *Ax, *Az ; Int *Ap, *Ai, *Anz, *Zp, *Zi, *Znz ; Int nrow, ncol, is_complex, symmetry, i, j, q, iz, p, nz, is_binary, stype, is_integer, asym, is_sym, xtype, apacked, zpacked, pend, qend, zsym ; int ok ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (f, EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; if (Z != NULL && (Z->nrow == 0 || Z->ncol == 0)) { /* Z is non-NULL but empty, so treat it as a NULL matrix */ Z = NULL ; } if (Z != NULL) { RETURN_IF_XTYPE_INVALID (Z, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; if (Z->nrow != A->nrow || Z->ncol != A->ncol || Z->stype != A->stype) { ERROR (CHOLMOD_INVALID, "dimension or type of A and Z mismatch") ; return (EMPTY) ; } } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get the A matrix */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; nrow = A->nrow ; ncol = A->ncol ; xtype = A->xtype ; apacked = A->packed ; if (xtype == CHOLMOD_PATTERN) { /* a CHOLMOD pattern matrix is printed as "pattern" in the file */ is_binary = TRUE ; is_integer = FALSE ; is_complex = FALSE ; } else if (xtype == CHOLMOD_REAL) { /* determine if a real matrix is in fact binary or integer */ is_binary = TRUE ; is_integer = TRUE ; is_complex = FALSE ; for (j = 0 ; (is_binary || is_integer) && j < ncol ; j++) { p = Ap [j] ; pend = (apacked) ? Ap [j+1] : p + Anz [j] ; for ( ; (is_binary || is_integer) && p < pend ; p++) { x = Ax [p] ; if (x != 1) { is_binary = FALSE ; } /* convert to Int and then back to double */ i = (Int) x ; z = (double) i ; if (z != x) { is_integer = FALSE ; } } } } else { /* a CHOLMOD complex matrix is printed as "complex" in the file */ is_binary = FALSE ; is_integer = FALSE ; is_complex = TRUE ; } /* ---------------------------------------------------------------------- */ /* get the Z matrix (only consider the pattern) */ /* ---------------------------------------------------------------------- */ Zp = NULL ; Zi = NULL ; Znz = NULL ; zpacked = TRUE ; if (Z != NULL) { Zp = Z->p ; Zi = Z->i ; Znz = Z->nz ; zpacked = Z->packed ; } /* ---------------------------------------------------------------------- */ /* determine the symmetry of A and Z */ /* ---------------------------------------------------------------------- */ stype = A->stype ; if (A->nrow != A->ncol) { asym = CHOLMOD_MM_RECTANGULAR ; } else if (stype != 0) { /* CHOLMOD's A and Z matrices have a symmetric (and matching) stype. * Note that the diagonal is not checked. */ asym = is_complex ? CHOLMOD_MM_HERMITIAN : CHOLMOD_MM_SYMMETRIC ; } else if (!A->sorted) { /* A is in unsymmetric storage, but unsorted */ asym = CHOLMOD_MM_UNSYMMETRIC ; } else { /* CHOLMOD's stype is zero (stored in unsymmetric form) */ asym = EMPTY ; zsym = EMPTY ; #ifndef NMATRIXOPS /* determine if the matrices are in fact symmetric or Hermitian */ asym = CHOLMOD(symmetry) (A, 1, NULL, NULL, NULL, NULL, Common) ; zsym = (Z == NULL) ? 999 : CHOLMOD(symmetry) (Z, 1, NULL, NULL, NULL, NULL, Common) ; #endif if (asym == EMPTY || zsym <= CHOLMOD_MM_UNSYMMETRIC) { /* not computed, out of memory, or Z is unsymmetric */ asym = CHOLMOD_MM_UNSYMMETRIC ; } } /* ---------------------------------------------------------------------- */ /* write the Matrix Market header */ /* ---------------------------------------------------------------------- */ ok = fprintf (f, "%%%%MatrixMarket matrix coordinate") > 0 ; if (is_complex) { ok = ok && (fprintf (f, " complex") > 0) ; } else if (is_binary) { ok = ok && (fprintf (f, " pattern") > 0) ; } else if (is_integer) { ok = ok && (fprintf (f, " integer") > 0) ; } else { ok = ok && (fprintf (f, " real") > 0) ; } is_sym = FALSE ; switch (asym) { case CHOLMOD_MM_RECTANGULAR: case CHOLMOD_MM_UNSYMMETRIC: /* A is rectangular or unsymmetric */ ok = ok && (fprintf (f, " general\n") > 0) ; is_sym = FALSE ; symmetry = CHOLMOD_MM_UNSYMMETRIC ; break ; case CHOLMOD_MM_SYMMETRIC: case CHOLMOD_MM_SYMMETRIC_POSDIAG: /* A is symmetric */ ok = ok && (fprintf (f, " symmetric\n") > 0) ; is_sym = TRUE ; symmetry = CHOLMOD_MM_SYMMETRIC ; break ; case CHOLMOD_MM_HERMITIAN: case CHOLMOD_MM_HERMITIAN_POSDIAG: /* A is Hermitian */ ok = ok && (fprintf (f, " Hermitian\n") > 0) ; is_sym = TRUE ; symmetry = CHOLMOD_MM_HERMITIAN ; break ; case CHOLMOD_MM_SKEW_SYMMETRIC: /* A is skew symmetric */ ok = ok && (fprintf (f, " skew-symmetric\n") > 0) ; is_sym = TRUE ; symmetry = CHOLMOD_MM_SKEW_SYMMETRIC ; break ; } /* ---------------------------------------------------------------------- */ /* include the comments if present */ /* ---------------------------------------------------------------------- */ ok = ok && include_comments (f, comments) ; /* ---------------------------------------------------------------------- */ /* write a sparse matrix (A and Z) */ /* ---------------------------------------------------------------------- */ nz = ntriplets (A, is_sym) + ntriplets (Z, is_sym) ; /* write the first data line, with nrow, ncol, and # of triplets */ ok = ok && (fprintf (f, ID " " ID " " ID "\n", nrow, ncol, nz) > 0) ; for (j = 0 ; ok && j < ncol ; j++) { /* merge column of A and Z */ p = Ap [j] ; pend = (apacked) ? Ap [j+1] : p + Anz [j] ; q = (Z == NULL) ? 0 : Zp [j] ; qend = (Z == NULL) ? 0 : ((zpacked) ? Zp [j+1] : q + Znz [j]) ; while (ok) { /* get the next row index from A and Z */ i = (p < pend) ? Ai [p] : (nrow+1) ; iz = (q < qend) ? Zi [q] : (nrow+2) ; if (i <= iz) { /* get A(i,j), or quit if both A and Z are exhausted */ if (i == nrow+1) break ; get_value (Ax, Az, p, xtype, &x, &z) ; p++ ; } else { /* get Z(i,j) */ i = iz ; x = 0 ; z = 0 ; q++ ; } if ((stype < 0 && i >= j) || (stype == 0 && (i >= j || !is_sym))) { /* CHOLMOD matrix is symmetric-lower (and so is the file); * or CHOLMOD matrix is unsymmetric and either A(i,j) is in * the lower part or the file is unsymmetric. */ ok = ok && print_triplet (f, is_binary, is_complex, is_integer, i,j, x,z) ; } else if (stype > 0 && i <= j) { /* CHOLMOD matrix is symmetric-upper, but the file is * symmetric-lower. Need to transpose the entry. If the * matrix is real, the complex part is ignored. If the matrix * is complex, it Hermitian. */ ASSERT (IMPLIES (is_complex, asym == CHOLMOD_MM_HERMITIAN)) ; if (z != 0) { z = -z ; } ok = ok && print_triplet (f, is_binary, is_complex, is_integer, j,i, x,z) ; } } } if (!ok) { ERROR (CHOLMOD_INVALID, "error reading/writing file") ; return (EMPTY) ; } return (asym) ; } /* ========================================================================== */ /* === cholmod_write_dense ================================================== */ /* ========================================================================== */ /* Write a dense matrix to a file in Matrix Market format. Optionally include * comments. Returns > 0 if successful, -1 otherwise (1 if rectangular, 2 if * square). Future versions may return 1 to 7 on success (a CHOLMOD_MM_* code, * just as cholmod_write_sparse does). * * A dense matrix is written in "general" format; symmetric formats in the * Matrix Market standard are not exploited. */ int CHOLMOD(write_dense) ( /* ---- input ---- */ FILE *f, /* file to write to, must already be open */ cholmod_dense *X, /* matrix to print */ char *comments, /* optional filename of comments to include */ /* --------------- */ cholmod_common *Common ) { double x = 0, z = 0 ; double *Xx, *Xz ; Int nrow, ncol, is_complex, i, j, xtype, p ; int ok ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (f, EMPTY) ; RETURN_IF_NULL (X, EMPTY) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get the X matrix */ /* ---------------------------------------------------------------------- */ Xx = X->x ; Xz = X->z ; nrow = X->nrow ; ncol = X->ncol ; xtype = X->xtype ; is_complex = (xtype == CHOLMOD_COMPLEX) || (xtype == CHOLMOD_ZOMPLEX) ; /* ---------------------------------------------------------------------- */ /* write the Matrix Market header */ /* ---------------------------------------------------------------------- */ ok = (fprintf (f, "%%%%MatrixMarket matrix array") > 0) ; if (is_complex) { ok = ok && (fprintf (f, " complex general\n") > 0) ; } else { ok = ok && (fprintf (f, " real general\n") > 0) ; } /* ---------------------------------------------------------------------- */ /* include the comments if present */ /* ---------------------------------------------------------------------- */ ok = ok && include_comments (f, comments) ; /* ---------------------------------------------------------------------- */ /* write a dense matrix */ /* ---------------------------------------------------------------------- */ /* write the first data line, with nrow and ncol */ ok = ok && (fprintf (f, ID " " ID "\n", nrow, ncol) > 0) ; Xx = X->x ; Xz = X->z ; for (j = 0 ; ok && j < ncol ; j++) { for (i = 0 ; ok && i < nrow ; i++) { p = i + j*nrow ; get_value (Xx, Xz, p, xtype, &x, &z) ; ok = ok && print_value (f, x, FALSE) ; if (is_complex) { ok = ok && (fprintf (f, " ") > 0) ; ok = ok && print_value (f, z, FALSE) ; } ok = ok && (fprintf (f, "\n") > 0) ; } } if (!ok) { ERROR (CHOLMOD_INVALID, "error reading/writing file") ; return (EMPTY) ; } return ((nrow == ncol) ? CHOLMOD_MM_UNSYMMETRIC : CHOLMOD_MM_RECTANGULAR) ; } #endif SuiteSparse/CHOLMOD/Check/License.txt0000644001170100242450000000205710540000255016167 0ustar davisfacCHOLMOD/Check Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Check module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CHOLMOD/Check/cholmod_read.c0000644001170100242450000011745410564125252016653 0ustar davisfac/* ========================================================================== */ /* === Check/cholmod_read =================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Check Module. Copyright (C) 2005-2006, Timothy A. Davis. * The CHOLMOD/Check Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Read a sparse matrix in triplet or dense form. A triplet matrix can be * returned as compressed-column sparse matrix. The file format is compatible * with all variations of the Matrix Market "coordinate" and "array" format * (http://www.nist.gov/MatrixMarket). The format supported by these routines * also allow other formats, where the Matrix Market header is optional. * * Although the Matrix Market header is optional, I recommend that users stick * with the strict Matrix Market format. The optional format appears here to * support the reading of symmetric matrices stored with just their upper * triangular parts present, for testing and development of the A->stype > 0 * format in CHOLMOD. That format is not included in the Matrix Market format. * * If the first line of the file starts with %%MatrixMarket, then it is * interpretted as a file in Matrix Market format. This line must have * the following format: * * %%MatrixMarket matrix * * is one of: coordinate or array. The former is a sparse matrix in * triplet form. The latter is a dense matrix in column-major form. * * is one of: real, complex, pattern, or integer. * The functions here convert the "integer" and "pattern" types to real. * * is one of: general, hermitian, symmetric, or skew-symmetric * * The strings are case-insensitive. Only the first character is * significant (or the first two for skew-symmetric). * * is ignored for all matrices; the actual type (real, complex, * or pattern) is inferred from the number of tokens in each line of the * file. For a "coordinate" matrix: 2: pattern, 3: real, 4: complex; for * a dense "array" matrix: 1: real, 2: complex. This is compatible with * the Matrix Market format, since pattern matrices must have two tokens * per line, real matrices must have 3, and complex matrices must have 4. * A storage of "general" implies an stype of zero (see below). * "symmetric" and "hermitian" imply an stype of -1. Skew-symmetric and * complex symmetric matrices are always returned with both upper and lower * triangular parts present, with an stype of zero, since CHOLMOD does not * have a method for representing skew-symmetric and complex symmetric * matrices. Real symmetric and complex Hermitian matrices may optionally * be returned with both parts present. * * Any other lines starting with "%" are treated as comments, and are ignored. * Blank lines are ignored. The Matrix Market header is optional in this * routine (it is not optional in the Matrix Market format). * * Note that complex matrices are always returned in CHOLMOD_COMPLEX format, * not CHOLMOD_ZOMPLEX. * * ----------------------------------------------------------------------------- * Triplet matrices: * ----------------------------------------------------------------------------- * * The first data line of a triplet matrix contains 3 or 4 integers: * * nrow ncol nnz stype * * where stype is optional (stype does not appear in the Matrix Market format). * The matrix is nrow-by-ncol. The following nnz lines (excluding comments * and blank lines) each contain a single entry. Duplicates are permitted, * and are summed in the output matrix. * * The stype is first derived from the Matrix Market header. If the stype * appears as the fourth integer in the first data line, it is determined from * that line. * * If stype is present, it denotes the storage format for the matrix. * stype = 0 denotes an unsymmetric matrix (same as Matrix Market "general"). * stype = -1 denotes a real symmetric or complex Hermitian matrix whose lower * triangular entries are stored. Entries may be present in the upper * triangular part, but these are ignored (same as Matrix Market * "real symmetric" and "complex Hermitian"). * stype = 1 denotes a real symmetric or complex Hermitian matrix whose upper * triangular entries are stored. Entries may be present in the lower * triangular part, but these are ignored. This option is not present * in the Matrix Market format. * * If stype is not present (no Matrix Market header and not in the first data * line) it is inferred from the rest of the data. If the matrix is * rectangular, or has entries in both the upper and lower triangular parts, * then it is assumed to be unsymmetric (stype=0). If only entries in the * lower triangular part are present, the matrix is assumed to have stype = -1. * If only entries in the upper triangular part are present, the matrix is * assumed to have stype = 1. * * After the first data line (with nrow, ncol, nnz, and optionally stype), * each nonzero consists of one line with 2, 3, or 4 entries. All lines must * have the same number of entries. The first two entries are the row and * column indices of the nonzero. If 3 entries are present, the 3rd entry is * the numerical value, and the matrix is real. If 4 entries are present, * the 3rd and 4th entries in the line are the real and imaginary parts of * a complex value. * * The matrix can be either 0-based or 1-based. It is first assumed to be * one-based (all matrices in the Matrix Market are one-based), with row indices * in the range 1 to ncol and column indices in the range 1 to nrow. If a row * or column index of zero is found, the matrix is assumed to be zero-based * (with row indices in the range 0 to ncol-1 and column indices in the range 0 * to nrow-1). * * If Common->prefer_binary is set to its default value of FALSE, then * for symmetric pattern-only matrices, the kth diagonal (if present) is set to * one plus the degree of the row/column k, and the off-diagonal entries are set * to -1. A symmetric pattern-only matrix with a zero-free diagonal is thus * converted into a symmetric positive definite matrix. All entries are set to * one for an unsymmetric pattern-only matrix. This differs from the * Matrix Market format (A = mmread ('file') returns a binary pattern for A for * symmetric pattern-only matrices). If Common->prefer_binary is TRUE, then * this function returns a binary matrix (just like mmread('file')). * * ----------------------------------------------------------------------------- * Dense matrices: * ----------------------------------------------------------------------------- * * A dense matrix is specified by the Matrix Market "array" format. The * Matrix Market header is optional; if not present, the matrix is assumed to * be in the Matrix Market "general" format. The first data line contains just * two integers: * * nrow ncol * * The can be real, integer, or complex (not pattern). These functions * convert an integer type to real. The entries in the matrix are stored in * column-major format, with one line per entry. Two entries are present in * each line for complex matrices, one for real and integer matrices. In * rectangular and unsymmetric matrices, all entries are present. For real * symmetric or complex Hermitian matrices, only entries in the lower triangular * part appear. For skew-symmetric matrices, only entries in the strictly * lower triangular part appear. * * Since CHOLMOD does not have a data structure for presenting dense symmetric/ * Hermitian matrices, these functions always return a dense matrix in its * general form, with both upper and lower parts present. */ #ifndef NCHECK #include "cholmod_internal.h" #include "cholmod_check.h" #include #include /* The MatrixMarket format specificies a maximum line length of 1024 */ #define MAXLINE 1030 /* ========================================================================== */ /* === get_line ============================================================= */ /* ========================================================================== */ /* Read one line of the file, return TRUE if successful, FALSE if EOF. */ static int get_line (FILE *f, char *buf) { buf [0] = '\0' ; buf [1] = '\0' ; buf [MAXLINE] = '\0' ; return (fgets (buf, MAXLINE, f) != NULL) ; } /* ========================================================================== */ /* === fix_inf ============================================================== */ /* ========================================================================== */ /* Replace huge values with +/- Inf's, since scanf and printf don't deal * with Inf's properly. */ static double fix_inf (double x) { if ((x >= HUGE_DOUBLE) || (x <= -HUGE_DOUBLE)) { /* treat this as +/- Inf (assume 2*x leads to overflow) */ x = 2*x ; } return (x) ; } /* ========================================================================== */ /* === is_blank_line ======================================================== */ /* ========================================================================== */ /* TRUE if s is a blank line or comment, FALSE otherwise */ static int is_blank_line ( char *s ) { int c, k ; if (s [0] == '%') { /* a comment line */ return (TRUE) ; } for (k = 0 ; k <= MAXLINE ; k++) { c = s [k] ; if (c == '\0') { /* end of line */ break ; } if (!isspace (c)) { /* non-space character */ return (FALSE) ; } } return (TRUE) ; } /* ========================================================================== */ /* === read_header ========================================================== */ /* ========================================================================== */ /* Read the header. This consists of zero or more comment lines (blank, or * starting with a "%" in the first column), followed by a single data line * containing up to four numerical values. * * The first line may optionally be a Matrix Market header line, of the form * * %%MatrixMarket matrix * * The first data line of a sparse matrix in triplet form consists of 3 or 4 * numerical values: * * nrow ncol nnz stype * * where stype is optional (it does not appear in the Matrix Market file * format). The first line of a dense matrix in column-major form consists of * two numerical values: * * nrow ncol * * The stype of the matrix is determine either from the Matrix Market header, * or (optionally) from the first data line. stypes of 0 to -3 directly * correlate with the Matrix Market format; stype = 1 is an extension to that * format. * * 999: unknown (will be inferred from the data) * 1: real symmetric or complex Hermitian with upper part stored * (not in the Matrix Market format) * 0: unsymmetric (same as Matrix Market "general") * -1: real symmetric or complex Hermitian, with lower part stored * (Matrix Market "real symmetric" or "complex hermitian") * -2: real or complex skew symmetric (lower part stored, can only be * specified by Matrix Market header) * -3: complex symmetric (lower part stored) * specified by Matrix Market header) * * The Matrix Market header is optional. If stype appears in the first data * line, it is determine by that data line. Otherwise, if the Matrix Market * header appears, stype is determined from that header. If stype does not * appear, it is set to "unknown" (999). */ #define STYPE_UNKNOWN 999 #define STYPE_SYMMETRIC_UPPER 1 #define STYPE_UNSYMMETRIC 0 #define STYPE_SYMMETRIC_LOWER -1 #define STYPE_SKEW_SYMMETRIC -2 #define STYPE_COMPLEX_SYMMETRIC_LOWER -3 static int read_header /* returns TRUE if successful, FALSE on error */ ( /* ---- input ---- */ FILE *f, /* file to read from */ /* ---- output --- */ char *buf, /* a character array of size MAXLINE+1 */ int *mtype, /* CHOLMOD_TRIPLET or CHOLMOD_DENSE */ size_t *nrow, /* number of rows in the matrix */ size_t *ncol, /* number of columns in the matrix */ size_t *nnz, /* number of entries in a triplet matrix (0 for dense)*/ int *stype /* stype (see above) */ ) { char *p ; int first = TRUE, got_mm_header = FALSE, c, c2, is_complex, nitems ; double l1, l2, l3, l4 ; *mtype = CHOLMOD_TRIPLET ; *nrow = 0 ; *ncol = 0 ; *nnz = 0 ; *stype = STYPE_UNKNOWN ; for ( ; ; ) { /* ------------------------------------------------------------------ */ /* get the next line */ /* ------------------------------------------------------------------ */ if (!get_line (f, buf)) { /* premature end of file */ return (FALSE) ; } if (first && (strncmp (buf, "%%MatrixMarket", 14) == 0)) { /* -------------------------------------------------------------- */ /* read a Matrix Market header */ /* -------------------------------------------------------------- */ got_mm_header = TRUE ; p = buf ; /* -------------------------------------------------------------- */ /* get "matrix" token */ /* -------------------------------------------------------------- */ while (*p && !isspace (*p)) p++ ; while (*p && isspace (*p)) p++ ; c = tolower (*p) ; if (c != 'm') { /* bad format */ return (FALSE) ; } /* -------------------------------------------------------------- */ /* get the fmt token ("coord" or "array") */ /* -------------------------------------------------------------- */ while (*p && !isspace (*p)) p++ ; while (*p && isspace (*p)) p++ ; c = tolower (*p) ; if (c == 'c') { *mtype = CHOLMOD_TRIPLET ; } else if (c == 'a') { *mtype = CHOLMOD_DENSE ; } else { /* bad format, neither "coordinate" nor "array" */ return (FALSE) ; } /* -------------------------------------------------------------- */ /* get type token (real, pattern, complex, integer) */ /* -------------------------------------------------------------- */ while (*p && !isspace (*p)) p++ ; while (*p && isspace (*p)) p++ ; c = tolower (*p) ; if (!(c == 'r' || c == 'p' || c == 'c' || c == 'i')) { /* bad format */ return (FALSE) ; } is_complex = (c == 'c') ; /* -------------------------------------------------------------- */ /* get storage token (general, hermitian, symmetric, skew) */ /* -------------------------------------------------------------- */ while (*p && !isspace (*p)) p++ ; while (*p && isspace (*p)) p++ ; c = tolower (*p) ; c2 = tolower (*(p+1)) ; if (c == 'g') { /* "general" storage (unsymmetric matrix), both parts present */ *stype = STYPE_UNSYMMETRIC ; } else if (c == 's' && c2 == 'y') { /* "symmetric" */ if (is_complex) { /* complex symmetric, lower triangular part present */ *stype = STYPE_COMPLEX_SYMMETRIC_LOWER ; } else { /* real symmetric, lower triangular part present */ *stype = STYPE_SYMMETRIC_LOWER ; } } else if (c == 'h') { /* "hermitian" matrix, lower triangular part present */ *stype = STYPE_SYMMETRIC_LOWER ; } else if (c == 's' && c2 == 'k') { /* "skew-symmetric" (real or complex), lower part present */ *stype = STYPE_SKEW_SYMMETRIC ; } else { /* bad format */ return (FALSE) ; } } else if (is_blank_line (buf)) { /* -------------------------------------------------------------- */ /* blank line or comment line */ /* -------------------------------------------------------------- */ continue ; } else { /* -------------------------------------------------------------- */ /* read the first data line and return */ /* -------------------------------------------------------------- */ /* format: nrow ncol nnz stype */ l1 = EMPTY ; l2 = EMPTY ; l3 = 0 ; l4 = 0 ; nitems = sscanf (buf, "%lg %lg %lg %lg\n", &l1, &l2, &l3, &l4) ; if (nitems < 2 || nitems > 4 || l1 > Int_max || l2 > Int_max) { /* invalid matrix */ return (FALSE) ; } *nrow = l1 ; *ncol = l2 ; if (nitems == 2) { /* a dense matrix */ if (!got_mm_header) { *mtype = CHOLMOD_DENSE ; *stype = STYPE_UNSYMMETRIC ; } } if (nitems == 3 || nitems == 4) { /* a sparse triplet matrix */ *nnz = l3 ; if (!got_mm_header) { *mtype = CHOLMOD_TRIPLET ; } } if (nitems == 4) { /* an stype specified here can only be 1, 0, or -1 */ if (l4 < 0) { *stype = STYPE_SYMMETRIC_LOWER ; } else if (l4 > 0) { *stype = STYPE_SYMMETRIC_UPPER ; } else { *stype = STYPE_UNSYMMETRIC ; } } if (*nrow != *ncol) { /* a rectangular matrix must be unsymmetric */ *stype = STYPE_UNSYMMETRIC ; } return (TRUE) ; } first = FALSE ; } } /* ========================================================================== */ /* === read_triplet ========================================================= */ /* ========================================================================== */ /* Header has already been read in, including first line (nrow ncol nnz stype). * Read the triplets. */ static cholmod_triplet *read_triplet ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ size_t nrow, /* number of rows */ size_t ncol, /* number of columns */ size_t nnz, /* number of triplets in file to read */ int stype, /* stype from header, or "unknown" */ int prefer_unsym, /* if TRUE, always return T->stype of zero */ /* ---- workspace */ char *buf, /* of size MAXLINE+1 */ /* --------------- */ cholmod_common *Common ) { double x, z ; double *Tx ; Int *Ti, *Tj, *Rdeg, *Cdeg ; cholmod_triplet *T ; double l1, l2 ; Int nitems, xtype, unknown, k, nshould, is_lower, is_upper, one_based, i, j, imax, jmax, skew_symmetric, p, complex_symmetric ; size_t s, nnz2, extra ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* quick return for empty matrix */ /* ---------------------------------------------------------------------- */ if (nrow == 0 || ncol == 0 || nnz == 0) { /* return an empty matrix */ return (CHOLMOD(allocate_triplet) (nrow, ncol, 0, 0, CHOLMOD_REAL, Common)) ; } /* ---------------------------------------------------------------------- */ /* special stype cases: unknown, skew symmetric, and complex symmetric */ /* ---------------------------------------------------------------------- */ unknown = (stype == STYPE_UNKNOWN) ; skew_symmetric = (stype == STYPE_SKEW_SYMMETRIC) ; complex_symmetric = (stype == STYPE_COMPLEX_SYMMETRIC_LOWER) ; extra = 0 ; if (stype < STYPE_SYMMETRIC_LOWER || (prefer_unsym && stype != STYPE_UNSYMMETRIC)) { /* 999: unknown might be converted to unsymmetric */ /* 1: symmetric upper converted to unsym. if prefer_unsym is TRUE */ /* -1: symmetric lower converted to unsym. if prefer_unsym is TRUE */ /* -2: real or complex skew symmetric converted to unsymmetric */ /* -3: complex symmetric converted to unsymmetric */ stype = STYPE_UNSYMMETRIC ; extra = nnz ; } nnz2 = CHOLMOD(add_size_t) (nnz, extra, &ok) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = nrow + ncol */ s = CHOLMOD(add_size_t) (nrow, ncol, &ok) ; if (!ok || nrow > Int_max || ncol > Int_max || nnz > Int_max) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; Rdeg = Common->Iwork ; /* size nrow */ Cdeg = Rdeg + nrow ; /* size ncol */ /* ---------------------------------------------------------------------- */ /* read the triplets */ /* ---------------------------------------------------------------------- */ is_lower = TRUE ; is_upper = TRUE ; one_based = TRUE ; imax = 0 ; jmax = 0 ; Tx = NULL ; Ti = NULL ; Tj = NULL ; xtype = 999 ; nshould = 0 ; for (k = 0 ; k < (Int) nnz ; k++) { /* ------------------------------------------------------------------ */ /* get the next triplet, skipping blank lines and comment lines */ /* ------------------------------------------------------------------ */ l1 = EMPTY ; l2 = EMPTY ; x = 0 ; z = 0 ; for ( ; ; ) { if (!get_line (f, buf)) { /* premature end of file - not enough triplets read in */ ERROR (CHOLMOD_INVALID, "premature EOF") ; return (NULL) ; } if (is_blank_line (buf)) { /* blank line or comment */ continue ; } nitems = sscanf (buf, "%lg %lg %lg %lg\n", &l1, &l2, &x, &z) ; x = fix_inf (x) ; z = fix_inf (z) ; break ; } nitems = (nitems == EOF) ? 0 : nitems ; i = l1 ; j = l2 ; /* ------------------------------------------------------------------ */ /* for first triplet: determine type and allocate triplet matrix */ /* ------------------------------------------------------------------ */ if (k == 0) { if (nitems < 2 || nitems > 4) { /* invalid matrix */ ERROR (CHOLMOD_INVALID, "invalid format") ; return (NULL) ; } else if (nitems == 2) { /* this will be converted into a real matrix later */ xtype = CHOLMOD_PATTERN ; } else if (nitems == 3) { xtype = CHOLMOD_REAL ; } else if (nitems == 4) { xtype = CHOLMOD_COMPLEX ; } /* the rest of the lines should have the same number of entries */ nshould = nitems ; /* allocate triplet matrix */ T = CHOLMOD(allocate_triplet) (nrow, ncol, nnz2, stype, (xtype == CHOLMOD_PATTERN ? CHOLMOD_REAL : xtype), Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } Ti = T->i ; Tj = T->j ; Tx = T->x ; T->nnz = nnz ; } /* ------------------------------------------------------------------ */ /* save the entry in the triplet matrix */ /* ------------------------------------------------------------------ */ if (nitems != nshould || i < 0 || j < 0) { /* wrong format, premature end-of-file, or negative indices */ CHOLMOD(free_triplet) (&T, Common) ; ERROR (CHOLMOD_INVALID, "invalid matrix file") ; return (NULL) ; } Ti [k] = i ; Tj [k] = j ; if (i < j) { /* this entry is in the upper triangular part */ is_lower = FALSE ; } if (i > j) { /* this entry is in the lower triangular part */ is_upper = FALSE ; } if (xtype == CHOLMOD_REAL) { Tx [k] = x ; } else if (xtype == CHOLMOD_COMPLEX) { Tx [2*k ] = x ; /* real part */ Tx [2*k+1] = z ; /* imaginary part */ } if (i == 0 || j == 0) { one_based = FALSE ; } imax = MAX (i, imax) ; jmax = MAX (j, jmax) ; } /* ---------------------------------------------------------------------- */ /* convert to zero-based */ /* ---------------------------------------------------------------------- */ if (one_based) { /* input matrix is one-based; convert matrix to zero-based */ for (k = 0 ; k < (Int) nnz ; k++) { Ti [k]-- ; Tj [k]-- ; } } if (one_based ? (imax > (Int) nrow || jmax > (Int) ncol) : (imax >= (Int) nrow || jmax >= (Int) ncol)) { /* indices out of range */ CHOLMOD(free_triplet) (&T, Common) ; ERROR (CHOLMOD_INVALID, "indices out of range") ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* determine the stype, if not yet known */ /* ---------------------------------------------------------------------- */ if (unknown) { if (is_lower && is_upper) { /* diagonal matrix, symmetric with upper part present */ stype = STYPE_SYMMETRIC_UPPER ; } else if (is_lower && !is_upper) { /* symmetric, lower triangular part present */ stype = STYPE_SYMMETRIC_LOWER ; } else if (!is_lower && is_upper) { /* symmetric, upper triangular part present */ stype = STYPE_SYMMETRIC_UPPER ; } else { /* unsymmetric */ stype = STYPE_UNSYMMETRIC ; extra = 0 ; } } /* ---------------------------------------------------------------------- */ /* add the remainder of symmetric, skew-symmetric or Hermitian matrices */ /* ---------------------------------------------------------------------- */ /* note that this step is not done for real symmetric or complex Hermitian * matrices, unless prefer_unsym is TRUE */ if (extra > 0) { p = nnz ; for (k = 0 ; k < (Int) nnz ; k++) { i = Ti [k] ; j = Tj [k] ; if (i != j) { Ti [p] = j ; Tj [p] = i ; if (xtype == CHOLMOD_REAL) { if (skew_symmetric) { Tx [p] = -Tx [k] ; } else { Tx [p] = Tx [k] ; } } else if (xtype == CHOLMOD_COMPLEX) { if (skew_symmetric) { Tx [2*p ] = -Tx [2*k ] ; Tx [2*p+1] = -Tx [2*k+1] ; } else if (complex_symmetric) { Tx [2*p ] = Tx [2*k ] ; Tx [2*p+1] = Tx [2*k+1] ; } else /* Hermitian */ { Tx [2*p ] = Tx [2*k ] ; Tx [2*p+1] = -Tx [2*k+1] ; } } p++ ; } } T->nnz = p ; nnz = p ; } T->stype = stype ; /* ---------------------------------------------------------------------- */ /* create values for a pattern-only matrix */ /* ---------------------------------------------------------------------- */ if (xtype == CHOLMOD_PATTERN) { if (stype == STYPE_UNSYMMETRIC || Common->prefer_binary) { /* unsymmetric case, or binary case */ for (k = 0 ; k < (Int) nnz ; k++) { Tx [k] = 1 ; } } else { /* compute the row and columm degrees (excluding the diagonal) */ for (i = 0 ; i < (Int) nrow ; i++) { Rdeg [i] = 0 ; } for (j = 0 ; j < (Int) ncol ; j++) { Cdeg [j] = 0 ; } for (k = 0 ; k < (Int) nnz ; k++) { i = Ti [k] ; j = Tj [k] ; if ((stype < 0 && i > j) || (stype > 0 && i < j)) { /* both a(i,j) and a(j,i) appear in the matrix */ Rdeg [i]++ ; Cdeg [j]++ ; Rdeg [j]++ ; Cdeg [i]++ ; } } /* assign the numerical values */ for (k = 0 ; k < (Int) nnz ; k++) { i = Ti [k] ; j = Tj [k] ; Tx [k] = (i == j) ? (1 + MAX (Rdeg [i], Cdeg [j])) : (-1) ; } } } /* ---------------------------------------------------------------------- */ /* return the new triplet matrix */ /* ---------------------------------------------------------------------- */ return (T) ; } /* ========================================================================== */ /* === read_dense =========================================================== */ /* ========================================================================== */ /* Header has already been read in, including first line (nrow ncol). * Read a dense matrix. */ static cholmod_dense *read_dense ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ size_t nrow, /* number of rows */ size_t ncol, /* number of columns */ int stype, /* stype from header */ /* ---- workspace */ char *buf, /* of size MAXLINE+1 */ /* --------------- */ cholmod_common *Common ) { double x, z ; double *Xx = NULL ; cholmod_dense *X ; Int nitems, xtype = -1, nshould = 0, i, j, k, kup, first ; /* ---------------------------------------------------------------------- */ /* quick return for empty matrix */ /* ---------------------------------------------------------------------- */ if (nrow == 0 || ncol == 0) { /* return an empty dense matrix */ return (CHOLMOD(zeros) (nrow, ncol, CHOLMOD_REAL, Common)) ; } /* ---------------------------------------------------------------------- */ /* read the entries */ /* ---------------------------------------------------------------------- */ first = TRUE ; for (j = 0 ; j < (Int) ncol ; j++) { /* ------------------------------------------------------------------ */ /* get the row index of the first entry in the file for column j */ /* ------------------------------------------------------------------ */ if (stype == STYPE_UNSYMMETRIC) { i = 0 ; } else if (stype == STYPE_SKEW_SYMMETRIC) { i = j+1 ; } else /* real symmetric or complex Hermitian lower */ { i = j ; } /* ------------------------------------------------------------------ */ /* get column j */ /* ------------------------------------------------------------------ */ for ( ; i < (Int) nrow ; i++) { /* -------------------------------------------------------------- */ /* get the next entry, skipping blank lines and comment lines */ /* -------------------------------------------------------------- */ x = 0 ; z = 0 ; for ( ; ; ) { if (!get_line (f, buf)) { /* premature end of file - not enough entries read in */ ERROR (CHOLMOD_INVALID, "premature EOF") ; return (NULL) ; } if (is_blank_line (buf)) { /* blank line or comment */ continue ; } nitems = sscanf (buf, "%lg %lg\n", &x, &z) ; x = fix_inf (x) ; z = fix_inf (z) ; break ; } nitems = (nitems == EOF) ? 0 : nitems ; /* -------------------------------------------------------------- */ /* for first entry: determine type and allocate dense matrix */ /* -------------------------------------------------------------- */ if (first) { first = FALSE ; if (nitems < 1 || nitems > 2) { /* invalid matrix */ ERROR (CHOLMOD_INVALID, "invalid format") ; return (NULL) ; } else if (nitems == 1) { /* a real matrix */ xtype = CHOLMOD_REAL ; } else if (nitems == 2) { /* a complex matrix */ xtype = CHOLMOD_COMPLEX ; } /* the rest of the lines should have same number of entries */ nshould = nitems ; /* allocate the result */ X = CHOLMOD(zeros) (nrow, ncol, xtype, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } Xx = X->x ; } /* -------------------------------------------------------------- */ /* save the entry in the dense matrix */ /* -------------------------------------------------------------- */ if (nitems != nshould) { /* wrong format or premature end-of-file */ CHOLMOD(free_dense) (&X, Common) ; ERROR (CHOLMOD_INVALID, "invalid matrix file") ; return (NULL) ; } k = i + j*nrow ; kup = j + i*nrow ; if (xtype == CHOLMOD_REAL) { /* real matrix */ Xx [k] = x ; if (k != kup) { if (stype == STYPE_SYMMETRIC_LOWER) { /* real symmetric matrix */ Xx [kup] = x ; } else if (stype == STYPE_SKEW_SYMMETRIC) { /* real skew symmetric matrix */ Xx [kup] = -x ; } } } else if (xtype == CHOLMOD_COMPLEX) { Xx [2*k ] = x ; /* real part */ Xx [2*k+1] = z ; /* imaginary part */ if (k != kup) { if (stype == STYPE_SYMMETRIC_LOWER) { /* complex Hermitian */ Xx [2*kup ] = x ; /* real part */ Xx [2*kup+1] = -z ; /* imaginary part */ } else if (stype == STYPE_SKEW_SYMMETRIC) { /* complex skew symmetric */ Xx [2*kup ] = -x ; /* real part */ Xx [2*kup+1] = -z ; /* imaginary part */ } if (stype == STYPE_COMPLEX_SYMMETRIC_LOWER) { /* complex symmetric */ Xx [2*kup ] = x ; /* real part */ Xx [2*kup+1] = z ; /* imaginary part */ } } } } } /* ---------------------------------------------------------------------- */ /* return the new dense matrix */ /* ---------------------------------------------------------------------- */ return (X) ; } /* ========================================================================== */ /* === cholmod_read_triplet ================================================= */ /* ========================================================================== */ /* Read in a triplet matrix from a file. */ cholmod_triplet *CHOLMOD(read_triplet) ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) { char buf [MAXLINE+1] ; size_t nrow, ncol, nnz ; int stype, mtype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (f, NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* read the header and first data line */ /* ---------------------------------------------------------------------- */ if (!read_header (f, buf, &mtype, &nrow, &ncol, &nnz, &stype) || mtype != CHOLMOD_TRIPLET) { /* invalid matrix - this function can only read in a triplet matrix */ ERROR (CHOLMOD_INVALID, "invalid format") ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* read the triplet matrix */ /* ---------------------------------------------------------------------- */ return (read_triplet (f, nrow, ncol, nnz, stype, FALSE, buf, Common)) ; } /* ========================================================================== */ /* === cholmod_read_sparse ================================================== */ /* ========================================================================== */ /* Read a sparse matrix from a file. See cholmod_read_triplet for a discussion * of the file format. * * If Common->prefer_upper is TRUE (the default case), a symmetric matrix is * returned stored in upper-triangular form (A->stype == 1). */ cholmod_sparse *CHOLMOD(read_sparse) ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *A, *A2 ; cholmod_triplet *T ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (f, NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* convert to a sparse matrix in compressed-column form */ /* ---------------------------------------------------------------------- */ T = CHOLMOD(read_triplet) (f, Common) ; A = CHOLMOD(triplet_to_sparse) (T, 0, Common) ; CHOLMOD(free_triplet) (&T, Common) ; if (Common->prefer_upper && A != NULL && A->stype == -1) { /* A=A' */ A2 = CHOLMOD(transpose) (A, 2, Common) ; CHOLMOD(free_sparse) (&A, Common) ; A = A2 ; } return (A) ; } /* ========================================================================== */ /* === cholmod_read_dense =================================================== */ /* ========================================================================== */ /* Read a dense matrix from a file. */ cholmod_dense *CHOLMOD(read_dense) ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) { char buf [MAXLINE+1] ; size_t nrow, ncol, nnz ; int stype, mtype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (f, NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* read the header and first data line */ /* ---------------------------------------------------------------------- */ if (!read_header (f, buf, &mtype, &nrow, &ncol, &nnz, &stype) || mtype != CHOLMOD_DENSE) { /* invalid matrix - this function can only read in a dense matrix */ ERROR (CHOLMOD_INVALID, "invalid format") ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* read the dense matrix */ /* ---------------------------------------------------------------------- */ return (read_dense (f, nrow, ncol, stype, buf, Common)) ; } /* ========================================================================== */ /* === cholmod_read_matrix ================================================== */ /* ========================================================================== */ /* Read a triplet matrix, sparse matrix or a dense matrix from a file. Returns * a void pointer to either a cholmod_triplet, cholmod_sparse, or cholmod_dense * object. The type of object is passed back to the caller as the mtype * argument. */ void *CHOLMOD(read_matrix) ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ int prefer, /* If 0, a sparse matrix is always return as a * cholmod_triplet form. It can have any stype * (symmetric-lower, unsymmetric, or * symmetric-upper). * If 1, a sparse matrix is returned as an unsymmetric * cholmod_sparse form (A->stype == 0), with both * upper and lower triangular parts present. * This is what the MATLAB mread mexFunction does, * since MATLAB does not have an stype. * If 2, a sparse matrix is returned with an stype of 0 * or 1 (unsymmetric, or symmetric with upper part * stored). * This argument has no effect for dense matrices. */ /* ---- output---- */ int *mtype, /* CHOLMOD_TRIPLET, CHOLMOD_SPARSE or CHOLMOD_DENSE */ /* --------------- */ cholmod_common *Common ) { void *G = NULL ; cholmod_sparse *A, *A2 ; cholmod_triplet *T ; char buf [MAXLINE+1] ; size_t nrow, ncol, nnz ; int stype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (f, NULL) ; RETURN_IF_NULL (mtype, NULL) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* read the header to determine the mtype */ /* ---------------------------------------------------------------------- */ if (!read_header (f, buf, mtype, &nrow, &ncol, &nnz, &stype)) { /* invalid matrix */ ERROR (CHOLMOD_INVALID, "invalid format") ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* read a matrix */ /* ---------------------------------------------------------------------- */ if (*mtype == CHOLMOD_TRIPLET) { /* read in the triplet matrix, converting to unsymmetric format if * prefer == 1 */ T = read_triplet (f, nrow, ncol, nnz, stype, prefer == 1, buf, Common) ; if (prefer == 0) { /* return matrix in its original triplet form */ G = T ; } else { /* return matrix in a compressed-column form */ A = CHOLMOD(triplet_to_sparse) (T, 0, Common) ; CHOLMOD(free_triplet) (&T, Common) ; if (A != NULL && prefer == 2 && A->stype == -1) { /* convert A from symmetric-lower to symmetric-upper */ A2 = CHOLMOD(transpose) (A, 2, Common) ; CHOLMOD(free_sparse) (&A, Common) ; A = A2 ; } *mtype = CHOLMOD_SPARSE ; G = A ; } } else if (*mtype == CHOLMOD_DENSE) { /* return a dense matrix */ G = read_dense (f, nrow, ncol, stype, buf, Common) ; } return (G) ; } #endif SuiteSparse/CHOLMOD/Check/lesser.txt0000644001170100242450000006350010253404155016112 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CHOLMOD/MATLAB/0000755001170100242450000000000010712370267014001 5ustar davisfacSuiteSparse/CHOLMOD/MATLAB/Test/0000755001170100242450000000000010712150660014711 5ustar davisfacSuiteSparse/CHOLMOD/MATLAB/Test/dg.m0000644001170100242450000000311210710406255015460 0ustar davisfacfunction dg(A) %DG order and plot A*A', using CHOLMOD's nested dissection % used by test27.m % Example: % dg(A) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida A = spones (A) ; [p cp cm] = nesdis (A, 'row') ; % get the corresponding column ordering. Order the columns % in increasing order of min(find(A(:,j))) [m n] = size (A) ; C = A (p,:) ; qmin = zeros (1,n) ; for j = 1:n qmin (j) = min (find (C (:,j))) ; %#ok end [ignore q] = sort (qmin) ; C = C (:,q) ; % figure (1) clf subplot (2,3,1) ; treeplot (cp) drawnow subplot (2,3,2) ; spy (C) drawnow % axis off subplot (2,3,3) ; spy (C*C') drawnow % axis off ncomp = max(cm) ; fprintf ('# of components: %d\n', ncomp) % cs = [cm(p) n+1] ; % cboundaries = find (diff (cs)) ; fprintf ('size of root %d out of %d rows\n', length (find (cm == ncomp)), m); [cnt h pa po R] = symbfact2 (A (p,:), 'row') ; % rc = full (sum (R)) ; for k = 1:ncomp fprintf ('node %4d : parent %4d size %6d work %g\n', ... k, cp (k), length (find (cm == k)), sum (cnt (find (cm == k)).^2) ) ; %#ok end subplot (2,3,4) ; spy (A*A') ; drawnow subplot (2,3,5) ; spy (R+R') ; drawnow pamd = amd2 (A*A') ; % use AMD from SuiteSparse, not built-in [cnt h pa po R] = symbfact2 (A (pamd,:), 'row') ; subplot (2,3,6) ; spy (R+R') ; drawnow % s = bisect (A, 'row') ; % [ignore pp] = sort (s) ; % E = A(pp,:) ; % subplot (2,3,4) ; spy (E*E') % fprintf ('bisect: %d\n', length (find (s == 2))) ; % figure (2) % spy (C*C') % hold on % for j = cboundaries % plot ([1 n], [j j], 'r', [j j], [1 n], 'r') ; % end SuiteSparse/CHOLMOD/MATLAB/Test/n2.m0000644001170100242450000000260210620371276015414 0ustar davisfac%N2 script to test CHOLMOD septree function % Example: % n2 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida index = UFget ; f = find ((index.amd_lnz > 0) & (index.nrows > 200)) ; [ignore i] = sort (index.amd_lnz (f)) ; f = f (i) ; nmat = length (f) ; for i = f Prob = UFget (i, index) ; disp (Prob) ; A = spones (Prob.A) ; [m n] = size (A) ; name = Prob.name ; clear Prob if (m == n) mode = 'sym' ; A = A + A' ; len = n ; elseif (m < n) mode = 'row' ; len = m ; else mode = 'col' ; len = n ; end [p cp cmem] = nesdis (A, mode) ; subplot (2,4,1) ; treeplot (cp) ; [cp2 cmem2] = septree (cp, cmem, 0.5, 200) ; %#ok subplot (2,4,2) ; treeplot (cp2) ; [cp3 cmem3] = septree (cp, cmem, 0.2, 300) ; %#ok subplot (2,4,3) ; treeplot (cp3) ; [cp4 cmem4] = septree (cp, cmem, 0.12, 500) ; %#ok subplot (2,4,4) ; treeplot (cp4) ; [p cp cmem] = nesdis (A, mode, [200 1]) ; subplot (2,4,5) ; treeplot (cp) ; [cp2 cmem2] = septree (cp, cmem, 0.5, 200) ; %#ok subplot (2,4,6) ; treeplot (cp2) ; [cp3 cmem3] = septree (cp, cmem, 0.2, 300) ; %#ok subplot (2,4,7) ; treeplot (cp3) ; [cp4 cmem4] = septree (cp, cmem, 0.12, 500) ; %#ok subplot (2,4,8) ; treeplot (cp4) ; drawnow % pause end SuiteSparse/CHOLMOD/MATLAB/Test/nn.m0000644001170100242450000000764310620371300015506 0ustar davisfac%NN Compare nesdis with metis, in both quality and run time % % Example: % nn % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida index = UFget ; f = find (index.amd_lnz > 0) ; [ignore i] = sort (index.amd_lnz (f)) ; f = f (i) ; nmat = length (f) ; T1 = zeros (1,nmat) ; T2 = zeros (1,nmat) ; TM = zeros (1,nmat) ; Lnz1 = zeros (1,nmat) ; Lnz2 = zeros (1,nmat) ; LnzM = zeros (1,nmat) ; Fl1 = zeros (1,nmat) ; Fl2 = zeros (1,nmat) ; FlM = zeros (1,nmat) ; for k = 1:nmat i = f (k) ; Prob = UFget (i,index) ; A = Prob.A ; [m n] = size (A) ; if (m ~= n) continue ; end fprintf ('%35s: ', Prob.name) ; if (m == n) mode = 'sym' ; A = A + A' ; len = n ; elseif (m < n) mode = 'row' ; len = m ; else mode = 'col' ; len = n ; end fprintf (' %s ', mode) ; % try nesdis using camd, and splitting connected components tic [p2 cparent2 cmember2] = nesdis (A, mode, [200 1]) ; t2 = toc ; % subplot (3,3,7) ; treeplot (cparent2) ; % try nesdis using camd tic [p1 cparent1 cmember1] = nesdis (A, mode) ; t1 = toc ; % subplot (3,3,8) ; treeplot (cparent1) ; % try metis tic pm = metis (A, mode) ; tm = toc ; if (any (sort (p1) ~= 1:len)) error ('p1!') ; end if (any (sort (p2) ~= 1:len)) error ('p2!') ; end % compare ordering quality if (m == n) c2 = symbfact2 (A (p2,p2), mode) ; fl2 = sum (c2.^2) ; c2 = sum (c2) ; c1 = symbfact2 (A (p1,p1), mode) ; fl1 = sum (c1.^2) ; c1 = sum (c1) ; cm = symbfact2 (A (pm,pm), mode) ; flm = sum (cm.^2) ; cm = sum (cm) ; elseif (m < n) c2 = symbfact2 (A (p2, :), mode) ; fl2 = sum (c2.^2) ; c2 = sum (c2) ; c1 = symbfact2 (A (p1, :), mode) ; fl1 = sum (c1.^2) ; c1 = sum (c1) ; cm = symbfact2 (A (pm, :), mode) ; flm = sum (cm.^2) ; cm = sum (cm) ; else c2 = symbfact2 (A ( :,p2), mode) ; fl2 = sum (c2.^2) ; c2 = sum (c2) ; c1 = symbfact2 (A ( :,p1), mode) ; fl1 = sum (c1.^2) ; c1 = sum (c1) ; cm = symbfact2 (A ( :,pm), mode) ; flm = sum (cm.^2) ; cm = sum (cm) ; end T1 (k) = t1 ; T2 (k) = t2 ; TM (k) = tm ; Lnz1 (k) = c1 ; Lnz2 (k) = c2 ; LnzM (k) = cm ; Fl1 (k) = fl1 ; Fl2 (k) = fl2 ; FlM (k) = flm ; tmax = max ([max(T1 (1:k)) max(T2 (1:k)) max(TM (1:k))]) ; tmin = min ([min(T1 (1:k)) min(T2 (1:k)) min(TM (1:k))]) ; cmax = max ([max(Lnz1 (1:k)) max(Lnz2 (1:k)) max(LnzM (1:k))]) ; flmax =max ([max(Fl1 (1:k)) max(Fl2 (1:k)) max(FlM (1:k))]) ; fprintf (... 'time %8.2f %8.2f %8.2f speedup %8.2f flop %8.2e %8.2e %8.2e ratio %8.2f\n', ... t2, t1, tm, tm/t1, fl2, fl1, flm, flm/fl1) ; if (mod (k, 20) ~= 0) continue end subplot (3,3,1) ; x = T1 (1:k) ./ T2 (1:k) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/(with split) time, median: %g', ... median (x))) ; subplot (3,3,2) ; x = (Lnz1 (1:k) ./ Lnz2 (1:k)) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/(with split) lnz, median: %g', ... median (x))) ; subplot (3,3,3) ; x = (Fl1 (1:k) ./ Fl2 (1:k)) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/(with split) flops, median: %g', ... median (x))) ; subplot (3,3,4) ; x = T1 (1:k) ./ TM (1:k) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/metis time, median %g', median (x))) ; subplot (3,3,5) ; x = (Lnz1 (1:k) ./ LnzM (1:k)) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/metis lnz, median: %g', median (x))) ; subplot (3,3,6) ; x = (Fl1 (1:k) ./ FlM (1:k)) ; semilogy (1:k, x, 'o', [1 k], [1 1], 'r-') ; axis tight title (sprintf ('(nesdis default)/metis flops, median: %g', median (x))) ; drawnow % pause end SuiteSparse/CHOLMOD/MATLAB/Test/Contents.m0000644001170100242450000000426410620371266016677 0ustar davisfac% CHOLMOD TEST functions % % cholmod_test - test the CHOLMOD mexFunctions % dg - order and plot A*A', using CHOLMOD's nested dissection % n2 - script to test CHOLMOD septree function % nn - Compare nesdis with metis, in both quality and run time % test0 - test most CHOLMOD functions % test1 - test sparse2 % test2 - test sparse2 % test3 - test sparse on int8, int16, and logical % test4 - test cholmod2 with multiple and sparse right-hand-sides % test5 - test sparse2 % test6 - test sparse with large matrix, both real and complex % test7 - test sparse2 % test8 - order a large range of sparse matrices, test symbfact2 % test9 - test metis, etree, bisect, nesdis % test10 - test cholmod2's backslash on real and complex matrices % test11 - compare CHOLMOD and MATLAB, save results in Results.mat % test11results - analyze results from test11.m % test12 - test etree2 and compare with etree % test13 - test cholmod2 and MATLAB on large tridiagonal matrices % test14 - test metis, symbfact2, and etree2 % test15 - test symbfact2 vs MATLAB % test16 - test cholmod2 on a large matrix % test17 - test lchol on a few large matrices % test18 - test cholmod2 on a few large matrices % test19 - look for NaN's from lchol (caused by Intel MKL 7.x bug) % test20 - test symbfact2, cholmod2, and lu on a few large matrices % test21 - test cholmod2 on diagonal or ill-conditioned matrices % test22 - test pos.def and indef. matrices % test23 - test chol and cholmod2 on the sparse matrix used in "bench" % test24 - test sdmult % test25 - test sdmult on a large matrix % test26 - test logical full and sparse matrices % test27 - test nesdis with one matrix (HB/west0479) % test28 - test nesdis % testmm - compare mread and mmread for entire Matrix Market collection % testsolve - test CHOLMOD and compare with x=A\b % % Example: % cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida SuiteSparse/CHOLMOD/MATLAB/Test/test10.m0000644001170100242450000000431110620371303016203 0ustar davisfacfunction test10 (nmat) %TEST10 test cholmod2's backslash on real and complex matrices % Example: % test10(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test10: test cholmod2''s backslash\n') ; rand ('state',0) ; randn ('state',0) ; index = UFget ; f = find (index.posdef) ; [ignore i] = sort (index.nrows (f)) ; f = f (i) ; % start after nd6k % f = f ((find (f == 937) + 1):end) ; skip = [937:939 1202:1211] ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end fprintf ('test matrices sorted by dimension:\n') ; for i = f if (any (i == skip)) continue end fprintf ('%4d: %-20s %-20s %12d %d\n', i, ... index.Group {i}, index.Name {i}, index.nrows (i), index.posdef (i)) ; end for nn = f % for nn = 23 if (any (nn == skip)) continue end % try for complexity = 0:1 if nn < 0 n = -nn ; A = rand (n) + (complexity * rand(n) * 1i) ; A=A*A' ; full (A) A = sparse (A) ; elseif (nn == 0) i = 1i ; A = [ 11 4-i 1+i 2+2*i 4+i 22 0 0 1-i 0 33 0 2-2*i 0 0 44 ] ; A = sparse (A) ; p = [4 3 2 1] ; %#ok full (A) A = sparse (A) ; else if (~complexity) nn %#ok Prob = UFget (nn) %#ok end A = Prob.A ; if (complexity) A = A / norm(A,1) ; Z = .1 * sprandn (A) * 1i ; Z = Z+Z' ; A = A + Z ; A = A + norm(A,1) * speye (size(A,1)) ; end n = size (A,1) ; end for sparsity = 0:1 if (sparsity) b = sprandn (n,4,0.1) ; else b = rand (n,4) ; end b1 = b (:,1) ; [x1,x2,e1,e2] = testsolve (A,b1) ; %#ok [x1,x2,e1,e2] = testsolve (A,b) ; %#ok if (sparsity) b = sprandn (n,9,0.1) ; else b = rand (n,9) ; end [x1,x2,e1,e2] = testsolve (A,b) ; %#ok if (sparsity) b = sprandn (n,9,0.1) + sprandn (n,9,0.1)*1i ; else b = rand (n,9) + rand(n,9)*1i ; end b1 = b (:,1) ; [x1,x2,e1,e2] = testsolve (A,b1) ; %#ok [x1,x2,e1,e2] = testsolve (A,b) ; %#ok end end % catch % fprintf (' failed\n') ; % end end SuiteSparse/CHOLMOD/MATLAB/Test/test11.m0000644001170100242450000000521710710415764016224 0ustar davisfacfunction test11 (nmat) %TEST11 compare CHOLMOD and MATLAB, save results in Results.mat % also tests analyze % Example: % test11(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test11 : compare CHOLMOD and MATLAB, save results in Results.mat\n'); rand ('state',0) ; randn ('state',0) ; index = UFget ; f = find (index.posdef) ; [ignore i] = sort (index.nrows (f)) ; f = f (i) ; clear ignore % start after nd6k % f = f ((find (f == 937) + 1):end) ; skip = [937:939 1202:1211] ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end fprintf ('test matrices sorted by dimension:\n') ; for i = f if (any (i == skip)) continue end fprintf ('%4d: %-20s %-20s %12d %d\n', i, ... index.Group {i}, index.Name {i}, index.nrows (i), index.posdef (i)) ; end kk = 0 ; nmat = length (f) ; T1 = zeros (1,nmat) ; % matlab time T2 = zeros (1,nmat) ; % cholmod2 time E1 = zeros (1,nmat) ; % matlab residual E2 = zeros (1,nmat) ; % cholmod2 residual FL = zeros (1,nmat) ; % cholmod2 flop count LNZ = zeros (1,nmat) ; % cholmod2 lnz for kkk = 1:length(f) nn = f (kkk) ; if (any (nn == skip)) continue end % try fprintf ('\n%3d: %s/%s\n', nn, index.Group {nn}, index.Name {nn}) ; Prob = UFget (nn) ; A = Prob.A ; clear Prob n = size (A,1) ; b = rand (n,1) ; % analyze [p count] = analyze (A) ; % LDL' flop count % fl = sum ((count-1).*(count-1) + 2*(count-1)) ; % LL' flop count fl = sum (count.^2) ; lnz = sum (count) ; fprintf ('n %d lnz %g fl %g\n', n, lnz, fl) ; clear p count % try k2 = 0 ; t2 = 0 ; while (t2 < 1) tic x = cholmod2 (A,b) ; t = toc ; t2 = t2 + t ; k2 = k2 + 1 ; end t2 = t2 / k2 ; e2 = norm (A*x-b,1) ; % catch % e2 = Inf ; % k2 = Inf ; % t2 = Inf ; % end fprintf ('cholmod2: t: %10.5f e: %6.1e mflop %6.0f\n', ... t2, e2, 1e-6 * fl / t2) ; % try k1 = 0 ; t1 = 0 ; while (t1 < 1) tic x = A\b ; t = toc ; t1 = t1 + t ; k1 = k1 + 1 ; end t1 = t1 / k1 ; e1 = norm (A*x-b,1) ; % catch % e1 = Inf ; % k1 = Inf ; % t1 = Inf ; % end fprintf ('matlab: t: %10.5f e: %6.1e mflop %6.0f', ... t1, e1, 1e-6 * fl / t1) ; fprintf (' cholmod2 speedup: %5.1f\n', t1/t2) ; kk = kk + 1 ; T1 (kk) = t1 ; T2 (kk) = t2 ; E1 (kk) = e1 ; E2 (kk) = e2 ; FL (kk) = fl ; LNZ (kk) = lnz ; save Results T1 T2 E1 E2 FL LNZ f kkk % catch % fprintf (' failed\n') ; % end clear A x b end % test11results fprintf ('test11 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test12.m0000644001170100242450000001116710710406332016215 0ustar davisfacfunction test12 (nmat) %TEST12 test etree2 and compare with etree % Example: % test12(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test12: test etree2 and compare with etree\n') ; index = UFget ; % only test matrices with nrows = 109000 or less. large ones nearly always % cause a MATLAB segfault. % f = find (index.nrows < 109000) ; f = 1:length (index.nrows) ; % sort by row dimension [ignore i] = sort (index.nrows (f)) ; f = f (i) ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end % MATLAB 7.0 (R14, sp2, linux) etree gives a segfault for these matrices: s_skip = [ 803 374 1287 1311 1308 957 958 1257 955 761 1282 1230 1256 ... 924 1302 537 820 821 822 1258 ... 844 845 1238 804 939 1270 1305 1208 1209 290 879 928 1307 1244 ... 1275 1276 1296 885 1269 959 542 1290 ] ; sym_skip = s_skip ; p_sym_skip = 1296 ; p_symt_skip = 1296 ; symt_skip= [ s_skip 592 593 809 ] ; rowcol_skip = [ 646 ... 1224 803 588 589 374 1287 562 563 801 1311 1246 951 1308 950 ... 957 958 800 1257 564 565 955 761 1282 590 591 1230 1256 952 566 ... 567 924 1302 1293 1294 537 820 821 822 1306 849 1258 592 593 ... 1225 844 845 1226 1238 1227 804 939 1270 752 753 1305 809 1228 ... 1208 1209 1291 1292 1300 856 1229 290 879 928 1307 857 1244 ... 1275 1276 1296 885 858 859 1269 1263 959 542 1290 ] ; col_skip = [ rowcol_skip 647 612 610 648 799 651 652 750 751 640 ] ; row_skip= [ rowcol_skip 903 373 ] ; % f = f (find (f == 1290) : end) ; fprintf ('Matrices to test: %d\n', length (f)) ; for i = f % try Problem = UFget (i) ; A = spones (Problem.A) ; [m n] = size (A) ; fprintf ('\n%4d: %-20s nrow: %6d ncol: %6d nnz: %10d\n', ... i, Problem.name, m, n, nnz(A)) ; % if (max (m,n) < 500) % A = full (A) ; % end % warmup, for accurate timing etree (sparse (1)) ; etree2 (sparse (1)) ; amd2 (sparse (1)) ; % test column etree skip = any (i == col_skip) | m > 109000 ; %#ok if (~skip) tic ; [parent post] = etree (A, 'col') ; t1 = toc ; else t1 = Inf ; end tic ; [my_parent my_post] = etree2 (A, 'col') ; t2 = toc ; if (~skip) if (any (parent ~= my_parent)) error ('parent invalid!') ; end end fprintf ('etree(A,''col''): %8.4f %8.4f speedup %8.2f ',... t1, t2, t1/t2); if (~skip) if (any (post ~= my_post)) fprintf ('postorder differs') ; end end fprintf ('\n') ; % test row etree skip = any (i == row_skip) | m > 109000 ; %#ok if (~skip) tic ; [parent post] = etree (A', 'col') ; t1 = toc ; else t1 = Inf ; end tic ; [my_parent my_post] = etree2 (A, 'row') ; t2 = toc ; if (~skip) if (any (parent ~= my_parent)) error ('parent invalid!') ; end end fprintf ('etree(A,''row''): %8.4f %8.4f speedup %8.2f ',... t1, t2, t1/t2); if (~skip) if (any (post ~= my_post)) fprintf ('postorder differs') ; end end fprintf ('\n') ; if (m == n) for trial = 1:2 if (trial == 1) skip1 = any (i == sym_skip) | m > 109000 ; %#ok skip2 = any (i == symt_skip) | m > 109000 ; %#ok else skip1 = any (i == p_sym_skip) | m > 109000 ; %#ok skip2 = any (i == p_symt_skip) | m > 109000 ; %#ok fprintf ('after amd:\n') ; p = amd2 (A) ; % use AMD from SuiteSparse A = A (p,p) ; end % test symmetric etree, using triu(A) if (~skip1) tic ; [parent post] = etree (A) ; t1 = toc ; else t1 = Inf ; end tic ; [my_parent my_post] = etree2 (A) ; t2 = toc ; if (~skip1) if (any (parent ~= my_parent)) error ('parent invalid!') ; end end fprintf ('etree(A): %8.4f %8.4f speedup %8.2f ',... t1, t2, t1/t2); if (~skip1) if (any (post ~= my_post)) fprintf ('postorder differs') ; end end fprintf ('\n') ; % test symmetric etree, using tril(A) if (~skip2) tic ; [parent post] = etree (A') ; t1 = toc ; else t1 = Inf ; end tic ; [my_parent my_post] = etree2 (A, 'lo') ; t2 = toc ; if (~skip2) if (any (parent ~= my_parent)) error ('parent invalid!') ; end end fprintf('etree(A''): %8.4f %8.4f speedup %8.2f ',... t1, t2, t1/t2); if (~skip2) if (any (post ~= my_post)) fprintf ('postorder differs') ; end end fprintf ('\n') ; end end % catch % fprintf ('%d: failed\n', i) ; % end end fprintf ('test12 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test13.m0000644001170100242450000000137610620371311016215 0ustar davisfacfunction test13 %TEST13 test cholmod2 and MATLAB on large tridiagonal matrices % Example: % test13 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test13: test cholmod2 and MATLAB on large tridiagonal matrices\n') ; for n = [10000 1e4 1e5 1e6] e = ones (n,1) ; A = spdiags ([e 4*e e], -1:1, n, n) ; clear e b = rand (n,1) ; tic ; x = cholmod2 (A,b) ; t2 = toc ; e = norm (A*x-b,1) ; fprintf ('n %9d cholmod2 %8.2f err %6.1e\n', n, t2, e) ; tic ; x = A\b ; t1 = toc ; e = norm (A*x-b,1) ; fprintf ('n %9d matlab %8.2f err %6.1e\n', n, t1, e) ; clear A b end SuiteSparse/CHOLMOD/MATLAB/Test/test14.m0000644001170100242450000000531210620371312016211 0ustar davisfacfunction test14 (nmat) %TEST14 test metis, symbfact2, and etree2 % Example: % test14(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test14: test metis, symbfact2, and etree2\n') ; index = UFget ; [ignore f] = sort (max (index.nrows, index.ncols)) ; % f1 = find (max (index.nrows (f), index.ncols (f)) > 55500) ; % f1 = f1 (1) ; % f = f (f1:end) ; % These bugs show up when Common->metis_memory is set to zero: % skip = [ 1298 ] ; % runs out of memory in metis(A,'row') skip = 1257 ; %#ok % GHS_psdef/crankseg_1: segfault in metis(A,'row') ; skip = 850 ; %#ok % Chen/pkustk04: segfault in metis(A,'row') ; skip = [ ] ; %#ok if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end for i = f fprintf ('%d:\n', i) ; if (any (skip == i)) fprintf ('skip %s / %s\n', index.Group {i}, index.Name {i}) ; continue end % try Prob = UFget (i) %#ok A = Prob.A ; [m n] = size (A) ; if (m == n) S = spones (A) ; else n = min (m,n) ; S = spones (A (1:n,1:n)) ; end try % compute nnz(S*S') nzaat = nnz (S*S') ; catch nzaat = -1 ; end try % compute nnz(S'*S) nzata = nnz (S'*S) ; catch nzata = -1 ; end S = S | S' ; fprintf ('nnz(A) %d\n', nnz (A)) ; fprintf ('nnz(S) %d\n', nnz (S)) ; fprintf ('nnz(A*A'') %d\n', nzaat) ; fprintf ('nnz(A''*A) %d\n', nzata) ; fprintf ('metis (S):\n') ; p1 = metis (S) ; fprintf ('metis (A,row):\n') ; p2 = metis (A, 'row') ; fprintf ('metis (A,col):\n') ; p3 = metis (A, 'col') ; fprintf ('turning off postorder:\n') ; fprintf ('metis (S):\n') ; n1 = metis (S, 'sym', 'no postorder') ; fprintf ('metis (A,row):\n') ; n2 = metis (A, 'row', 'no postorder') ; fprintf ('metis (A,col):\n') ; n3 = metis (A, 'col', 'no postorder') ; fprintf ('analyzing results:\n') ; [pa1 po1] = etree2 (S (n1,n1)) ; [pa2 po2] = etree2 (A (n2,:), 'row') ; [pa3 po3] = etree2 (A (:,n3), 'col') ; q1 = n1 (po1) ; q2 = n2 (po2) ; q3 = n3 (po3) ; if (any (p1 ~= q1)) error ('1!') ; end if (any (p2 ~= q2)) error ('2!') ; end if (any (p3 ~= q3)) error ('3!') ; end s1 = symbfact2 (S (p1,p1)) ; s2 = symbfact2 (A (p2,:), 'row') ; s3 = symbfact2 (A (:,p3), 'col') ; t1 = symbfact2 (S (n1,n1)) ; t2 = symbfact2 (A (n2,:), 'row') ; t3 = symbfact2 (A (:,n3), 'col') ; if (any (s1 ~= t1 (po1))) error ('s1!') ; end if (any (s2 ~= t2 (po2))) error ('s2!') ; end if (any (s3 ~= t3 (po3))) error ('s3!') ; end % catch % fprintf ('%d failed\n') ; % end end fprintf ('test14 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test15.m0000644001170100242450000000723610710406337016227 0ustar davisfacfunction test15 (nmat) %TEST15 test symbfact2 vs MATLAB % Example: % test15(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); index = UFget ; % only test matrices with nrows = 109000 or less. large ones nearly always % cause a MATLAB segfault. f = find (index.nrows < 109000 & index.ncols < 109000) ; % sort by row /col dimension s = max (index.nrows, index.ncols) ; [ignore i] = sort (s (f)) ; f = f (i) ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end fprintf ('Matrices to test: %d\n', length (f)) ; for i = f % try Problem = UFget (i) ; A = spones (Problem.A) ; [m n] = size (A) ; fprintf ('\n%4d: %-20s nrow: %6d ncol: %6d nnz: %10d\n', ... i, Problem.name, m, n, nnz(A)) ; % warmup, for accurate timing etree (sparse (1)) ; etree2 (sparse (1)) ; amd2 (sparse (1)) ; symbfact (sparse (1)) ; symbfact2 (sparse (1)) ; % test symmetric case if (m == n) % permute the matrix first p = amd2 (A) ; A = A (p,p) ; % test with triu(A) tic co = symbfact (A) ; t1 = toc ; tic co2 = symbfact2 (A) ; t2 = toc ; fprintf ('c=symbfact(A): %10.4f %10.4f speedup %8.2f lnz %d\n', ... t1, t2, t1/t2, sum (co)) ; if (any (co ~= co2)) error ('!') ; end tic [co h parent post R] = symbfact (A) ; t1 = toc ; tic [co2 h2 parent2 post2 R2] = symbfact2 (A) ; t2 = toc ; fprintf ('R=symbfact(A): %10.4f %10.4f speedup %8.2f\n',... t1, t2, t1/t2) ; checkem(co,co2,parent,parent2,post,post2,R,R2,h,h2) ; % test with tril(A) tic co = symbfact (A') ; t1 = toc ; tic co2 = symbfact2 (A,'lo') ; t2 = toc ; fprintf (... 'c=symbfact(A''): %10.4f %10.4f speedup %8.2f lnz %d\n',... t1, t2, t1/t2, sum (co)) ; if (any (co ~= co2)) error ('!') ; end tic [co h parent post R] = symbfact (A') ; t1 = toc ; tic [co2 h2 parent2 post2 R2] = symbfact2 (A,'lo') ; t2 = toc ; fprintf (... 'R=symbfact(A''): %10.4f %10.4f speedup %8.2f\n',... t1, t2, t1/t2) ; checkem(co,co2,parent,parent2,post,post2,R,R2,h,h2) ; end % permute the matrix first p = colamd (A) ; [parent post] = etree2 (A (:,p), 'col') ; p = p (post) ; A = A (:,p) ; % test column case tic co = symbfact (A,'col') ; t1 = toc ; tic co2 = symbfact2 (A,'col') ; t2 = toc ; fprintf ('c=symbfact(A,''col''): %10.4f %10.4f speedup %8.2f lnz %d\n', ... t1, t2, t1/t2, sum (co)) ; if (any (co ~= co2)) error ('!') ; end tic [co h parent post R] = symbfact (A,'col') ; t1 = toc ; tic [co2 h2 parent2 post2 R2] = symbfact2 (A,'col') ; t2 = toc ; fprintf ('R=symbfact(A,''col''): %10.4f %10.4f speedup %8.2f\n', ... t1, t2, t1/t2) ; checkem(co,co2,parent,parent2,post,post2,R,R2,h,h2) ; % catch % fprintf ('%d failed\n', i) ; % end end fprintf ('test15 passed\n') ; %------------------------------------------------------------------------------- function checkem(co,co2,parent,parent2,post,post2,R,R2,h,h2) % checkem compare results from symbfact and symbfact2 if (any (co ~= co2)) error ('count!') ; end if (any (parent ~= parent2)) error ('parent!') ; end if (any (post ~= post2)) error ('post!') ; end if (nnz (R2) ~= nnz (R)) error ('lnz!') ; end if (h ~= h2) error ('h!') ; end % this may run out of memory try % compute nnz(R-R2) err = nnz (R-R2) ; catch err = -1 ; fprintf ('nnz(R-R2) not computed\n') ; end if (err > 0) error ('R!') ; end SuiteSparse/CHOLMOD/MATLAB/Test/test16.m0000644001170100242450000000116510620371316016221 0ustar davisfacfunction test16 %TEST16 test cholmod2 on a large matrix % Example: % test16 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test16: test cholmod2 on a large matrix\n') ; rand ('state',1) ; randn ('state',1) ; Prob = UFget (936) %#ok A = Prob.A ; % tic % [L,s,p] = lchol (A) ; % toc % norm (L,1) n = size (A,1) ; b = rand (n,1) ; tic x = cholmod2(A,b) ; t = toc ; fprintf ('time %g\n', t) ; err = norm (A*x-b) ; if (err > 1e-5) error ('!') ; end fprintf ('test16 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test17.m0000644001170100242450000000122410620371320016211 0ustar davisfacfunction test17 %TEST17 test lchol on a few large matrices % Example: % test17 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test17: test lchol on a few large matrices\n') ; rand ('state',1) ; randn ('state',1) ; Prob = UFget (887) %#ok A = Prob.A ; [L,s,p] = lchol (A) ; %#ok norm (L,1) clear all Prob = UFget (936) %#ok A = Prob.A ; [L,s,p] = lchol (A) ; %#ok norm (L,1) %#ok clear all Prob = UFget (887) %#ok A = Prob.A ; [L,s,p] = lchol (A) ; %#ok norm (L,1) %#ok SuiteSparse/CHOLMOD/MATLAB/Test/test18.m0000644001170100242450000000137310620371322016221 0ustar davisfacfunction test18 %TEST18 test cholmod2 on a few large matrices % Example: % test18 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test18: test cholmod2 on a few large matrices\n') ; rand ('state',1) ; randn ('state',1) ; Prob = UFget (887) %#ok A = Prob.A ; n = size (A,1) ; b = rand (n,1) ; x = cholmod2 (A,b) ; norm (A*x-b,1) clear all Prob = UFget (936) %#ok A = Prob.A ; n = size (A,1) ; b = rand (n,1) ; x = cholmod2 (A,b) ; norm (A*x-b,1) clear all Prob = UFget (887) %#ok A = Prob.A ; n = size (A,1) ; b = rand (n,1) ; x = cholmod2 (A,b) ; norm (A*x-b,1) fprintf ('test18 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test19.m0000644001170100242450000000132610620371323016221 0ustar davisfacfunction test19 %TEST19 look for NaN's from lchol (caused by Intel MKL 7.x bug) % Example: % test19 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test19: look for NaN''s from lchol (caused by Intel MKL 7.x bug)\n') ; Prob = UFget (936) %#ok A = Prob.A ; [p count] = analyze (A) ; A = A (p,p) ; tic L = lchol (A) ; t = toc ; fl = sum (count.^2) ; fprintf ('mflop rate: %8.2f\n', 1e-6*fl/t) ; n = size (L,1) ; for k = 1:n if (any (isnan (L (:,k)))) k %#ok error ('!') ; end end fprintf ('test19 passed; you have a NaN-free BLAS (must not be MKL 7.x...)\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test20.m0000644001170100242450000000243610710406342016214 0ustar davisfacfunction test20 %TEST20 test symbfact2, cholmod2, and lu on a few large matrices % Example: % test20 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test20: test symbfact2, cholmod2, and lu on a few large matrices\n') ; unsym = [409 899 901 291 827] ; %#ok spd = [813 817] ; % f = [ unsym spd ] ; f = spd ; spparms ('spumoni',0) ; for i = f Prob = UFget (i) %#ok A = Prob.A ; clear Prob ; n = size (A,1) ; b = A*ones (n,1) ; if (any (i == spd)) p = amd2 (A) ; count = symbfact2 (A (p,p)) ; count2 = symbfact (A (p,p)) ; if (any (count ~= count2)) error ('!') ; end fl = sum (count.^2) ; lnz = sum (count) ; unz = lnz ; tic x = cholmod2 (A,b) ; t = toc ; else % spparms ('spumoni',2) ; [L, U, P, Q] = lu (A) ; %#ok % fl = luflop (L,U) ; Lnz = full (sum (spones (L))) - 1 ; Unz = full (sum (spones (U')))' - 1 ; fl = 2*Lnz*Unz + sum (Lnz) ; lnz = nnz(L) ; unz = nnz(U) ; tic x=A\b ; t = toc ; end err = norm (A*x-b,1) ; clear L U P Q A x b fprintf ('lnz %d unz %d nnz(L+U) %d fl %g gflop %g\n t %g err %e\n', ... lnz, unz, lnz+unz-n, fl, 1e-9*fl/t, t, err) ; % pause end SuiteSparse/CHOLMOD/MATLAB/Test/test21.m0000644001170100242450000000205410620371330016207 0ustar davisfacfunction test21 %TEST21 test cholmod2 on diagonal or ill-conditioned matrices % Example: % test21 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test21: test cholmod2 on diagonal or ill-conditioned matrices\n') ; f = [ 72 % HB/bcsstm22 315 % Bai/mhdb416 64 % HB/bcsstm09 71 % HB/bcsstm21 1207 % Oberwolfach/t2dal_e 354 % Boeing/crystm02 1211 % Oberwolfach/t3dl_e ]' ; for i = f Prob = UFget (i) %#ok A = Prob.A ; n = size (A,1) ; x = ones (n,2) ; b = A*x ; fprintf ('nnz: %d\n', nnz (A)) ; x1 = A\b ; x2 = cholmod2 (A,b) ; s = norm (A,1) * norm (x,1) + norm (b,1) ; resid1 = norm (A*x1-b,1) / s ; resid2 = norm (A*x2-b,1) / s ; err1 = norm (x-x1,1) ; err2 = norm (x-x2,1) ; fprintf ('MATLAB resid %6.1e err %6.1e\n', resid1, err1) ; fprintf ('CHOLMOD resid %6.1e err %6.1e\n', resid2, err2) ; fprintf ('condest %6.1e\n', condest (A)) ; end SuiteSparse/CHOLMOD/MATLAB/Test/test22.m0000644001170100242450000001101510710406346016213 0ustar davisfacfunction test22(nmat) %TEST22 test pos.def and indef. matrices % Example: % test22(nmat) % % if nmat <= 0, just test problematic matrices % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test22: test pos.def and indef. matrices\n') ; index = UFget ; [ignore f] = sort (index.nrows) ; if (nargin > 0) problematic = (nmat <= 0) ; if (problematic) % Matrices for which MATLAB and CHOLMOD differ, for which the error % is high, or other issues arose during debugging fprintf ('testing matrices for which MATLAB and CHOLMOD differ\n') ; f = [ 186 % HB/jgl011 109 % HB/curtis54 793 % Qaplib/lp_nug05 607 % LPnetlib/lp_brandy 707 % LPnetlib/lp_bore3d 231 % HB/plskz362 794 % Qaplib/lp_nug06 673 % LPnetlib/lp_scorpion 1156 % Sandia/oscil_dcop_45 (also 1157:1168) 795 % Qaplib/lp_nug07 796 % Qaplib/lp_nug08 260 % HB/well1033 261 % HB/well1850 230 % HB/plsk1919 649 % LPnetlib/lp_pds_02 660 % LPnetlib/lp_qap12 609 % LPnetlib/lp_cre_a 619 % LPnetlib/lp_dfl001 661 % LPnetlib/lp_qap15 650 % LPnetlib/lp_pds_06 379 % Cote/vibrobox 638 % LPnetlib/lp_ken_11 799 % Qaplib/lp_nug20 ]' ; else nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end end skip = [ 811, ... % Simon/appu, which is a random matrix 937:939, ... % large ND/ problems 1157:1168 ... % duplicates 799 % rather large: Qaplib/lp_nug20 ] ; tlimit = 0.1 ; fprintf ('test22: chol and chol2 are repeated so each take >= %g sec\n',tlimit); klimit = 1 ; % warmup, for more accurate timing [R,p] = chol (sparse (1)) ; %#ok [R,p] = chol2 (sparse (1)) ; %#ok clear R p for i = f if (any (i == skip)) continue ; end Problem = UFget (i) ; A = Problem.A ; [m n] = size (A) ; fprintf ('\n================== %4d: Problem: %s m: %d n: %d nnz: %d', ... i, Problem.name, m, n, nnz (A)) ; clear Problem ; try % create a symmetric version of the matrix if (m == n) if (nnz (A-A') > 0) A = A+A' ; end else A = A*A' ; end catch fprintf ('skip\n') ; continue end fprintf (' %d\n', nnz (A)) ; p = amd2 (A) ; A = A (p,p) ; anorm = norm (A,1) ; % Run each code for at least 'tlimit' seconds % MATLAB k = 0 ; t1 = 0 ; while (t1 < tlimit & k < klimit) %#ok tic ; [R1,p1] = chol (A) ; t = toc ; t1 = t1 + t ; k = k + 1 ; end t1 = t1 / k ; % CHOLMOD k = 0 ; t2 = 0 ; while (t2 < tlimit & k < klimit) %#ok tic ; [R2,p2] = chol2 (A) ; t = toc ; t2 = t2 + t ; k = k + 1 ; end t2 = t2 / k ; if (klimit == 1) rmin = full (min (abs (diag (R2)))) ; rmax = full (max (abs (diag (R2)))) ; if (p2 ~= 0 | isnan (rmin) | isnan (rmax) | rmax == 0) %#ok rcond = 0 ; else rcond = rmin / rmax ; end fprintf ('rcond: %30.20e\n', rcond) ; end if (p1 == 1) % MATLAB does not follow its own definitions. If p is 1, then R is % supposed to be 0-by-n, not 0-by-0. CHOLMOD fixes this bug. % Here, A is m-by-m R1 = sparse (0,m) ; end kerr = 0 ; if (p1 ~= p2) % MATLAB and CHOLMOD don't agree. See if both are correct, % because differences in roundoff errors can make one go % a little farther than the other. % if p1 is zero, it means MATLAB was fully successful k1 = p1 ; if (k1 == 0) k1 = n ; end % if p2 is zero, it means CHOLMOD was fully successful k2 = p2 ; if (k2 == 0) k2 = n ; end if (k1 > k2) % MATLAB went further than CHOLMOD. This is OK if MATLAB found % a small entry where CHOLMOD stopped. k = k2 ; kerr = R1 (k,k) ; % now reduce R1 in size, to compare with R2 R1 = R1 (1:k2-1,:) ; else % CHOLMOD went further than MATLAB. This is OK if CHOLMOD found % a small entry where MATLAB stopped. k = k1 ; kerr = R2 (k,k) ; % now reduce R2 in size, to compare with R1 R2 = R2 (1:k1-1,:) ; end end err = norm (R1-R2,1) / max (anorm,1) ; fprintf ('p: %6d %6d MATLAB: %10.4f CHOLMOD: %10.4f speedup %6.2f err:', ... p1, p2, t1, t2, t1/t2) ; if (err == 0) fprintf (' 0') ; else fprintf (' %6.0e', err) ; end if (kerr == 0) fprintf (' 0\n') ; else fprintf (' %6.0e\n', kerr) ; end % if (err > 1e-6) % error ('!') ; % end % pause clear R1 R2 p1 p2 p A end fprintf ('test22: all tests passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test23.m0000644001170100242450000000557210710406363016226 0ustar davisfacfunction test23 %TEST23 test chol and cholmod2 on the sparse matrix used in "bench" % Example: % test23 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test23: test chol & cholmod2 on the sparse matrix used in "bench"\n'); n = 120 ; A = delsq (numgrid ('L', n)) ; b = sum (A)' ; fprintf ('Using each method''s internal fill-reducing ordering:\n') ; tic ; x = A\b ; t1 = toc ; e1 = norm (A*x-b) ; tic ; x = cholmod2 (A,b) ; t2 = toc ; e2 = norm (A*x-b) ; fprintf ('MATLAB x=A\\b time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD x=A\\b time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; % get CHOLMOD's ordering (best of AMD and METIS) p = analyze (A) ; S = A (p,p) ; tic ; R = chol (S) ; t1 = toc ; x = R \ (R' \ b (p)) ; x (p) = x ; e1 = norm (A*x-b) ; tic ; L = lchol (S) ; t2 = toc ; x = L' \ (L \ b (p)) ; x (p) = x ; e2 = norm (A*x-b) ; fprintf ('\nS = A(p,p) where p is CHOLMOD''s ordering:\n') ; fprintf ('MATLAB R=chol(S) time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD L=lchol(S) time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; % get MATLABS's ordering (symmmd in v7.0.4). If that fails then use amd. % A future version of MATLAB will remove symmmd, since it is declared % "deprecated" in v7.0.4. try % symmmd, use amd if it fails method = 'symmmd' ; p = symmmd (A) ; catch % use AMD from SuiteSparse method = 'amd' ; fprintf ('\nsymmmd not available, using amd instead.\n') ; p = amd2 (A) ; end S = A (p,p) ; tic ; R = chol (S) ; t1 = toc ; x = R \ (R' \ b (p)) ; x (p) = x ; e1 = norm (A*x-b) ; tic ; L = lchol (S) ; t2 = toc ; x = L' \ (L \ b (p)) ; x (p) = x ; e2 = norm (A*x-b) ; fprintf ('\nS = A(p,p) where p is MATLAB''s ordering in x=A\\b (%s):\n',method); fprintf ('MATLAB R=chol(S) time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD L=lchol(S) time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; fprintf ('\n\nWith no fill-reducing orderings:\n') ; tic ; R = chol (A) ; t1 = toc ; x = R \ (R' \ b) ; e1 = norm (A*x-b) ; tic ; L = lchol (A) ; t2 = toc ; x = L' \ (L \ b) ; e2 = norm (A*x-b) ; fprintf ('MATLAB R=chol(A) time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD L=lchol(A) time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; fprintf ('\n\nWith no fill-reducing orderings (as used in "bench"):\n') ; spparms ('autommd',0) ; tic ; x = A\b ; t1 = toc ; e1 = norm (A*x-b) ; tic ; x = cholmod2 (A,b,0) ; t2 = toc ; e2 = norm (A*x-b) ; fprintf ('MATLAB x=A\\b time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD x=A\\b time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; spparms ('default') ; SuiteSparse/CHOLMOD/MATLAB/Test/test24.m0000644001170100242450000000213610620665327016227 0ustar davisfacfunction test24 %TEST24 test sdmult % Example: % test24 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test24: test sdmult\n') ; rand ('state', 0) ; randn ('state', 0) ; maxerr = 0 ; for trials = 1:1000 sm = fix (20 * rand (1)) ; sn = fix (20 * rand (1)) ; fn = fix (20 * rand (1)) ; for complexity = 0:1 for transpose = 0:1 if (transpose) fm = sm ; else fm = sn ; end S = sprand (sm,sn,0.5) ; F = rand (fm,fn) ; if (complexity) S = S + 1i * sprand (S) ; F = F + 1i * rand (fm,fn) ; end % MATLAB does not support empty complex matrices if (isempty (S) | isempty (F)) %#ok S = sparse (real (S)) ; F = real (F) ; end C = sdmult (S,F,transpose) ; if (transpose) D = S'*F ; else D = S*F ; end err = norm (C-D,1) ; maxerr = max (err, maxerr) ; if (err > 1e-13) error ('!') ; end end end end fprintf ('test 24 passed, maxerr %g\n', maxerr) ; SuiteSparse/CHOLMOD/MATLAB/Test/test25.m0000644001170100242450000000256510620371336016230 0ustar davisfacfunction test25 %TEST25 test sdmult on a large matrix % Example: % test25 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test25: test sdmult on a large matrix\n') ; Prob = UFget (936) ; A = Prob.A ; n = size (A,1) ; nz = nnz (A) ; fprintf ('\nTest matrix: %d-by-%d, nnz %d\n', n, n, nz) ; Z = rand (n, 500) ; fprintf ('\nA*X where X is %d-by-k\n', n) ; for k = [0:10 10:10:50 100:100:500] X = Z (:, 1:k) ; tic ; D = A*X ; t1 = toc ; tic ; C = sdmult (A,X) ; t2 = toc ; err = norm (C-D,1) ; fprintf (... 'k: %3d time: MATLAB %8.2f CHOLMOD %8.2f speedup %8.2f err %6.0e',... k, t1, t2, t1/t2, err) ; fl = 2*nz*k ; fprintf (' mflop: MATLAB %8.1f CHOLMOD %8.1f\n', 1e-6*fl/t1, 1e-6*fl/t2) ; clear C D X end fprintf ('\nFor comparison, here is CHOLMOD''s x=A\\b time:\n') ; for k = [1 100:100:500] B = Z (:, 1:k) ; tic x = cholmod2 (A,B) ; t2 = toc ; err2 = norm (sdmult(A,x)-B,1) ; fprintf (... 'CHOLMOD x=A\\b time: %8.2f (b is n-by-%d) resid %6.0e\n', t2, k, err2) ; clear x B end b = Z (:,1) ; clear Z tic x = A\b ; t1 = toc ; err1 = norm (A*x-b,1) ; fprintf ('\nMATLAB x=A\\b time: %8.2f (b is n-by-1) resid %6.0e\n', t1, err1) ; fprintf ('test25 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test26.m0000644001170100242450000000357710710406367016240 0ustar davisfacfunction test26 (do_metis) %TEST26 test logical full and sparse matrices % Example: % test26 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test26: test logical full and sparse matrices\n') ; if (nargin < 1) do_metis = 1 ; end Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; p = amd2 (A) ; n = size (A,1) ; A = A (p,p) + 10*speye (n) ; C = logical (A ~= 0) ; test26b (A,C,do_metis) ; test26b (full (A),C,do_metis) ; test26b (full (A), full (C),do_metis) ; test26b (A, full(C),do_metis) ; A = A + 0.001 * (spones (tril (A,-1) + triu (A,1))) * 1i ; test26b (A,C,do_metis) ; test26b (full (A),C,do_metis) ; test26b (full (A), full (C),do_metis) ; test26b (A, full(C),do_metis) ; fprintf ('test26 passed\n') ; %------------------------------------------------------------------------------- function test26b (A,C,do_metis) % test26b test bisect, analyze, etree2, metis, nesdis, symbfact2, and resymbol p1 = analyze (A) ; p2 = analyze (C) ; if (any (p1 ~= p2)) error ('test 26 failed (analyze)!') ; end p1 = etree2 (A) ; p2 = etree2 (C) ; if (any (p1 ~= p2)) error ('test 26 failed (etree2)!') ; end if (do_metis) s1 = bisect (A) ; s2 = bisect (C) ; if (any (s1 ~= s2)) error ('test 26 failed (bisect)!') ; end p1 = metis (A) ; p2 = metis (C) ; if (any (p1 ~= p2)) error ('test 26 failed (metis)!') ; end p1 = nesdis (A) ; p2 = nesdis (C) ; if (any (p1 ~= p2)) error ('test 26 failed (nesdis)!') ; end end c1 = symbfact2 (A) ; c2 = symbfact2 (C) ; if (any (c1 ~= c2)) error ('test 26 failed (symbfact2)!') ; end A (1,2) = 0 ; A (2,1) = 0 ; C = logical (A ~= 0) ; L = chol (sparse (A))' ; L1 = resymbol (L, A) ; L2 = resymbol (L, C) ; if (norm (L1 - L2, 1) ~= 0) error ('test 26 failed (resymbol)!') ; end SuiteSparse/CHOLMOD/MATLAB/Test/test27.m0000644001170100242450000000056310620371342016223 0ustar davisfacfunction test27 %TEST27 test nesdis with one matrix (HB/west0479) % Example: % test27 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test27: test nesdis\n') ; Prob = UFget ('HB/west0479') ; dg (Prob.A) ; fprintf ('test27 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test28.m0000644001170100242450000000221410620665342016225 0ustar davisfacfunction test28 %TEST28 test nesdis % Example: % test28 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida index = UFget ; [ignore f] = sort (index.nnz) ; % f = find (index.nrows < index.ncols) ; % [ignore i] = sort (index.nnz (f)) ; % f = f (i) ; f = f (1:100) ; for i = f try Prob = UFget (i, index) ; A = spones (Prob.A) ; [m n] = size (A) ; if (m < n) A = A*A' ; elseif (m > n) ; A = A'*A ; else A = A+A' ; end % default: do not split connected components [p1 cp1 cmem1] = nesdis (A) ; %#ok % order connected components separately [p2 cp2 cmem2] = nesdis (A, 'sym', [200 1]) ; %#ok c1 = symbfact (A (p1,p1)) ; c2 = symbfact (A (p2,p2)) ; lnz1 = sum (c1) ; lnz2 = sum (c2) ; fprintf ('%35s %8d %8d ', Prob.name, lnz1, lnz2) if (lnz1 == lnz2) fprintf (' 1\n') ; else fprintf (' %8.3f\n', lnz1/lnz2) ; end subplot (2,3,1) ; spy (A) ; subplot (2,3,2) ; spy (A (p1,p1)) ; subplot (2,3,3) ; treeplot (cp1) ; subplot (2,3,5) ; spy (A (p2,p2)) ; subplot (2,3,6) ; treeplot (cp2) ; drawnow catch fprintf ('%4d failed\n', i) ; end end SuiteSparse/CHOLMOD/MATLAB/Test/testmm.m0000644001170100242450000005562510620371363016420 0ustar davisfac%TESTMM compare mread and mmread for entire Matrix Market collection % Example: % testmm % See also mread. % Requires the mmread MATLAB m-file from http://www.nist.gov % Copyright 2006-2007, Timothy A. Davis, University of Florida matrices = { 'M/Harwell-Boeing/acoust/young1c.mtx', ... 'M/Harwell-Boeing/acoust/young2c.mtx', ... 'M/Harwell-Boeing/acoust/young3c.mtx', ... 'M/Harwell-Boeing/acoust/young4c.mtx', ... 'M/Harwell-Boeing/airtfc/zenios.mtx', ... 'M/Harwell-Boeing/astroph/mcca.mtx', ... 'M/Harwell-Boeing/astroph/mcfe.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr01.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr02.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr03.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr04.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr05.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr06.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr07.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr08.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr09.mtx', ... 'M/Harwell-Boeing/bcspwr/bcspwr10.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk01.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk02.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk03.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk04.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk05.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk06.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk07.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk08.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk09.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk10.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk11.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk12.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstk13.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm01.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm02.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm03.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm04.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm05.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm06.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm07.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm08.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm09.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm10.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm11.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm12.mtx', ... 'M/Harwell-Boeing/bcsstruc1/bcsstm13.mtx', ... 'M/Harwell-Boeing/bcsstruc2/bcsstk14.mtx', ... 'M/Harwell-Boeing/bcsstruc2/bcsstk15.mtx', ... 'M/Harwell-Boeing/bcsstruc2/bcsstk16.mtx', ... 'M/Harwell-Boeing/bcsstruc2/bcsstk17.mtx', ... 'M/Harwell-Boeing/bcsstruc2/bcsstk18.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk19.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk20.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk21.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk22.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk23.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk24.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstk25.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm19.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm20.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm21.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm22.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm23.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm24.mtx', ... 'M/Harwell-Boeing/bcsstruc3/bcsstm25.mtx', ... 'M/Harwell-Boeing/bcsstruc4/bcsstk26.mtx', ... 'M/Harwell-Boeing/bcsstruc4/bcsstk27.mtx', ... 'M/Harwell-Boeing/bcsstruc4/bcsstk28.mtx', ... 'M/Harwell-Boeing/bcsstruc4/bcsstm26.mtx', ... 'M/Harwell-Boeing/bcsstruc4/bcsstm27.mtx', ... 'M/Harwell-Boeing/bcsstruc5/bcsstk29.mtx', ... 'M/Harwell-Boeing/bcsstruc5/bcsstk30.mtx', ... 'M/Harwell-Boeing/bcsstruc5/bcsstk31.mtx', ... 'M/Harwell-Boeing/bcsstruc5/bcsstk32.mtx', ... 'M/Harwell-Boeing/bcsstruc5/bcsstk33.mtx', ... 'M/Harwell-Boeing/bcsstruc6/blckhole.mtx', ... 'M/Harwell-Boeing/bcsstruc6/sstmodel.mtx', ... 'M/Harwell-Boeing/cannes/can_1054.mtx', ... 'M/Harwell-Boeing/cannes/can_1072.mtx', ... 'M/Harwell-Boeing/cannes/can__144.mtx', ... 'M/Harwell-Boeing/cannes/can__161.mtx', ... 'M/Harwell-Boeing/cannes/can__187.mtx', ... 'M/Harwell-Boeing/cannes/can__229.mtx', ... 'M/Harwell-Boeing/cannes/can___24.mtx', ... 'M/Harwell-Boeing/cannes/can__256.mtx', ... 'M/Harwell-Boeing/cannes/can__268.mtx', ... 'M/Harwell-Boeing/cannes/can__292.mtx', ... 'M/Harwell-Boeing/cannes/can__445.mtx', ... 'M/Harwell-Boeing/cannes/can___61.mtx', ... 'M/Harwell-Boeing/cannes/can___62.mtx', ... 'M/Harwell-Boeing/cannes/can__634.mtx', ... 'M/Harwell-Boeing/cannes/can__715.mtx', ... 'M/Harwell-Boeing/cannes/can___73.mtx', ... 'M/Harwell-Boeing/cannes/can__838.mtx', ... 'M/Harwell-Boeing/cannes/can___96.mtx', ... 'M/Harwell-Boeing/chemimp/impcol_a.mtx', ... 'M/Harwell-Boeing/chemimp/impcol_b.mtx', ... 'M/Harwell-Boeing/chemimp/impcol_c.mtx', ... 'M/Harwell-Boeing/chemimp/impcol_d.mtx', ... 'M/Harwell-Boeing/chemimp/impcol_e.mtx', ... 'M/Harwell-Boeing/chemwest/west0067.mtx', ... 'M/Harwell-Boeing/chemwest/west0132.mtx', ... 'M/Harwell-Boeing/chemwest/west0156.mtx', ... 'M/Harwell-Boeing/chemwest/west0167.mtx', ... 'M/Harwell-Boeing/chemwest/west0381.mtx', ... 'M/Harwell-Boeing/chemwest/west0479.mtx', ... 'M/Harwell-Boeing/chemwest/west0497.mtx', ... 'M/Harwell-Boeing/chemwest/west0655.mtx', ... 'M/Harwell-Boeing/chemwest/west0989.mtx', ... 'M/Harwell-Boeing/chemwest/west1505.mtx', ... 'M/Harwell-Boeing/chemwest/west2021.mtx', ... 'M/Harwell-Boeing/cirphys/jpwh_991.mtx', ... 'M/Harwell-Boeing/counterx/jgl009.mtx', ... 'M/Harwell-Boeing/counterx/jgl011.mtx', ... 'M/Harwell-Boeing/counterx/rgg010.mtx', ... 'M/Harwell-Boeing/dwt/dwt_1005.mtx', ... 'M/Harwell-Boeing/dwt/dwt_1007.mtx', ... 'M/Harwell-Boeing/dwt/dwt_1242.mtx', ... 'M/Harwell-Boeing/dwt/dwt__162.mtx', ... 'M/Harwell-Boeing/dwt/dwt__193.mtx', ... 'M/Harwell-Boeing/dwt/dwt__198.mtx', ... 'M/Harwell-Boeing/dwt/dwt__209.mtx', ... 'M/Harwell-Boeing/dwt/dwt__221.mtx', ... 'M/Harwell-Boeing/dwt/dwt__234.mtx', ... 'M/Harwell-Boeing/dwt/dwt__245.mtx', ... 'M/Harwell-Boeing/dwt/dwt_2680.mtx', ... 'M/Harwell-Boeing/dwt/dwt__307.mtx', ... 'M/Harwell-Boeing/dwt/dwt__310.mtx', ... 'M/Harwell-Boeing/dwt/dwt__346.mtx', ... 'M/Harwell-Boeing/dwt/dwt__361.mtx', ... 'M/Harwell-Boeing/dwt/dwt__419.mtx', ... 'M/Harwell-Boeing/dwt/dwt__492.mtx', ... 'M/Harwell-Boeing/dwt/dwt__503.mtx', ... 'M/Harwell-Boeing/dwt/dwt__512.mtx', ... 'M/Harwell-Boeing/dwt/dwt__592.mtx', ... 'M/Harwell-Boeing/dwt/dwt___59.mtx', ... 'M/Harwell-Boeing/dwt/dwt__607.mtx', ... 'M/Harwell-Boeing/dwt/dwt___66.mtx', ... 'M/Harwell-Boeing/dwt/dwt___72.mtx', ... 'M/Harwell-Boeing/dwt/dwt__758.mtx', ... 'M/Harwell-Boeing/dwt/dwt__869.mtx', ... 'M/Harwell-Boeing/dwt/dwt__878.mtx', ... 'M/Harwell-Boeing/dwt/dwt___87.mtx', ... 'M/Harwell-Boeing/dwt/dwt__918.mtx', ... 'M/Harwell-Boeing/dwt/dwt__992.mtx', ... 'M/Harwell-Boeing/econaus/mahindas.mtx', ... 'M/Harwell-Boeing/econaus/orani678.mtx', ... 'M/Harwell-Boeing/econiea/beacxc.mtx', ... 'M/Harwell-Boeing/econiea/beaflw.mtx', ... 'M/Harwell-Boeing/econiea/beause.mtx', ... 'M/Harwell-Boeing/econiea/mbeacxc.mtx', ... 'M/Harwell-Boeing/econiea/mbeaflw.mtx', ... 'M/Harwell-Boeing/econiea/mbeause.mtx', ... 'M/Harwell-Boeing/econiea/wm1.mtx', ... 'M/Harwell-Boeing/econiea/wm2.mtx', ... 'M/Harwell-Boeing/econiea/wm3.mtx', ... 'M/Harwell-Boeing/facsimile/fs_183_1.mtx', ... 'M/Harwell-Boeing/facsimile/fs_183_3.mtx', ... 'M/Harwell-Boeing/facsimile/fs_183_4.mtx', ... 'M/Harwell-Boeing/facsimile/fs_183_6.mtx', ... 'M/Harwell-Boeing/facsimile/fs_680_1.mtx', ... 'M/Harwell-Boeing/facsimile/fs_680_2.mtx', ... 'M/Harwell-Boeing/facsimile/fs_680_3.mtx', ... 'M/Harwell-Boeing/facsimile/fs_760_1.mtx', ... 'M/Harwell-Boeing/facsimile/fs_760_2.mtx', ... 'M/Harwell-Boeing/facsimile/fs_760_3.mtx', ... 'M/Harwell-Boeing/gemat/gemat11.mtx', ... 'M/Harwell-Boeing/gemat/gemat12.mtx', ... 'M/Harwell-Boeing/gemat/gemat1.mtx', ... 'M/Harwell-Boeing/grenoble/gre_1107.mtx', ... 'M/Harwell-Boeing/grenoble/gre__115.mtx', ... 'M/Harwell-Boeing/grenoble/gre__185.mtx', ... 'M/Harwell-Boeing/grenoble/gre_216a.mtx', ... 'M/Harwell-Boeing/grenoble/gre_216b.mtx', ... 'M/Harwell-Boeing/grenoble/gre__343.mtx', ... 'M/Harwell-Boeing/grenoble/gre__512.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh1.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh2.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh3.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh4.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh5.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh6.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh7.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh8.mtx', ... 'M/Harwell-Boeing/jagmesh/jagmesh9.mtx', ... 'M/Harwell-Boeing/lanpro/nos1.mtx', ... 'M/Harwell-Boeing/lanpro/nos2.mtx', ... 'M/Harwell-Boeing/lanpro/nos3.mtx', ... 'M/Harwell-Boeing/lanpro/nos4.mtx', ... 'M/Harwell-Boeing/lanpro/nos5.mtx', ... 'M/Harwell-Boeing/lanpro/nos6.mtx', ... 'M/Harwell-Boeing/lanpro/nos7.mtx', ... 'M/Harwell-Boeing/laplace/gr_30_30.mtx', ... 'M/Harwell-Boeing/lns/lns__131.mtx', ... 'M/Harwell-Boeing/lns/lns_3937.mtx', ... 'M/Harwell-Boeing/lns/lns__511.mtx', ... 'M/Harwell-Boeing/lns/lnsp_131.mtx', ... 'M/Harwell-Boeing/lns/lnsp3937.mtx', ... 'M/Harwell-Boeing/lns/lnsp_511.mtx', ... 'M/Harwell-Boeing/lshape/lshp1009.mtx', ... 'M/Harwell-Boeing/lshape/lshp1270.mtx', ... 'M/Harwell-Boeing/lshape/lshp1561.mtx', ... 'M/Harwell-Boeing/lshape/lshp1882.mtx', ... 'M/Harwell-Boeing/lshape/lshp2233.mtx', ... 'M/Harwell-Boeing/lshape/lshp2614.mtx', ... 'M/Harwell-Boeing/lshape/lshp_265.mtx', ... 'M/Harwell-Boeing/lshape/lshp3025.mtx', ... 'M/Harwell-Boeing/lshape/lshp3466.mtx', ... 'M/Harwell-Boeing/lshape/lshp_406.mtx', ... 'M/Harwell-Boeing/lshape/lshp_577.mtx', ... 'M/Harwell-Boeing/lshape/lshp_778.mtx', ... 'M/Harwell-Boeing/lsq/illc1033.mtx', ... 'M/Harwell-Boeing/lsq/illc1850.mtx', ... 'M/Harwell-Boeing/lsq/well1033.mtx', ... 'M/Harwell-Boeing/lsq/well1850.mtx', ... 'M/Harwell-Boeing/nnceng/hor__131.mtx', ... 'M/Harwell-Boeing/nucl/nnc1374.mtx', ... 'M/Harwell-Boeing/nucl/nnc261.mtx', ... 'M/Harwell-Boeing/nucl/nnc666.mtx', ... 'M/Harwell-Boeing/oilgen/orsirr_1.mtx', ... 'M/Harwell-Boeing/oilgen/orsirr_2.mtx', ... 'M/Harwell-Boeing/oilgen/orsreg_1.mtx', ... 'M/Harwell-Boeing/platz/plat1919.mtx', ... 'M/Harwell-Boeing/platz/plat362.mtx', ... 'M/Harwell-Boeing/platz/plsk1919.mtx', ... 'M/Harwell-Boeing/platz/plskz362.mtx', ... 'M/Harwell-Boeing/pores/pores_1.mtx', ... 'M/Harwell-Boeing/pores/pores_2.mtx', ... 'M/Harwell-Boeing/pores/pores_3.mtx', ... 'M/Harwell-Boeing/psadmit/1138_bus.mtx', ... 'M/Harwell-Boeing/psadmit/494_bus.mtx', ... 'M/Harwell-Boeing/psadmit/662_bus.mtx', ... 'M/Harwell-Boeing/psadmit/685_bus.mtx', ... 'M/Harwell-Boeing/psmigr/psmigr_1.mtx', ... 'M/Harwell-Boeing/psmigr/psmigr_2.mtx', ... 'M/Harwell-Boeing/psmigr/psmigr_3.mtx', ... 'M/Harwell-Boeing/saylor/saylr1.mtx', ... 'M/Harwell-Boeing/saylor/saylr3.mtx', ... 'M/Harwell-Boeing/saylor/saylr4.mtx', ... 'M/Harwell-Boeing/sherman/sherman1.mtx', ... 'M/Harwell-Boeing/sherman/sherman2.mtx', ... 'M/Harwell-Boeing/sherman/sherman3.mtx', ... 'M/Harwell-Boeing/sherman/sherman4.mtx', ... 'M/Harwell-Boeing/sherman/sherman5.mtx', ... 'M/Harwell-Boeing/smtape/abb313.mtx', ... 'M/Harwell-Boeing/smtape/arc130.mtx', ... 'M/Harwell-Boeing/smtape/ash219.mtx', ... 'M/Harwell-Boeing/smtape/ash292.mtx', ... 'M/Harwell-Boeing/smtape/ash331.mtx', ... 'M/Harwell-Boeing/smtape/ash608.mtx', ... 'M/Harwell-Boeing/smtape/ash85.mtx', ... 'M/Harwell-Boeing/smtape/bp_____0.mtx', ... 'M/Harwell-Boeing/smtape/bp__1000.mtx', ... 'M/Harwell-Boeing/smtape/bp__1200.mtx', ... 'M/Harwell-Boeing/smtape/bp__1400.mtx', ... 'M/Harwell-Boeing/smtape/bp__1600.mtx', ... 'M/Harwell-Boeing/smtape/bp___200.mtx', ... 'M/Harwell-Boeing/smtape/bp___400.mtx', ... 'M/Harwell-Boeing/smtape/bp___600.mtx', ... 'M/Harwell-Boeing/smtape/bp___800.mtx', ... 'M/Harwell-Boeing/smtape/curtis54.mtx', ... 'M/Harwell-Boeing/smtape/eris1176.mtx', ... 'M/Harwell-Boeing/smtape/fs_541_1.mtx', ... 'M/Harwell-Boeing/smtape/fs_541_2.mtx', ... 'M/Harwell-Boeing/smtape/fs_541_3.mtx', ... 'M/Harwell-Boeing/smtape/fs_541_4.mtx', ... 'M/Harwell-Boeing/smtape/gent113.mtx', ... 'M/Harwell-Boeing/smtape/ibm32.mtx', ... 'M/Harwell-Boeing/smtape/lund_a.mtx', ... 'M/Harwell-Boeing/smtape/lund_b.mtx', ... 'M/Harwell-Boeing/smtape/shl____0.mtx', ... 'M/Harwell-Boeing/smtape/shl__200.mtx', ... 'M/Harwell-Boeing/smtape/shl__400.mtx', ... 'M/Harwell-Boeing/smtape/str____0.mtx', ... 'M/Harwell-Boeing/smtape/str__200.mtx', ... 'M/Harwell-Boeing/smtape/str__400.mtx', ... 'M/Harwell-Boeing/smtape/str__600.mtx', ... 'M/Harwell-Boeing/smtape/will199.mtx', ... 'M/Harwell-Boeing/smtape/will57.mtx', ... 'M/Harwell-Boeing/steam/steam1.mtx', ... 'M/Harwell-Boeing/steam/steam2.mtx', ... 'M/Harwell-Boeing/steam/steam3.mtx', ... 'M/Harwell-Boeing/watt/watt__1.mtx', ... 'M/Harwell-Boeing/watt/watt__2.mtx', ... 'M/misc/cylshell/s1rmq4m1.mtx', ... 'M/misc/cylshell/s1rmt3m1.mtx', ... 'M/misc/cylshell/s2rmq4m1.mtx', ... 'M/misc/cylshell/s3dkq4m2.mtx', ... 'M/misc/cylshell/s3dkt3m2.mtx', ... 'M/misc/cylshell/s3rmq4m1.mtx', ... 'M/misc/cylshell/s3rmt3m1.mtx', ... 'M/misc/cylshell/s3rmt3m3.mtx', ... 'M/misc/hamm/add20.mtx', ... 'M/misc/hamm/add32.mtx', ... 'M/misc/hamm/memplus.mtx', ... 'M/misc/pts5ldd0/pts5ldd03.mtx', ... 'M/misc/pts5ldd0/pts5ldd04.mtx', ... 'M/misc/pts5ldd0/pts5ldd05.mtx', ... 'M/misc/pts5ldd0/pts5ldd06.mtx', ... 'M/misc/pts5ldd0/pts5ldd07.mtx', ... 'M/misc/pts5ldd1/pts5ldd13.mtx', ... 'M/misc/pts5ldd1/pts5ldd14.mtx', ... 'M/misc/pts5ldd1/pts5ldd15.mtx', ... 'M/misc/pts5ldd1/pts5ldd16.mtx', ... 'M/misc/pts5ldd1/pts5ldd17.mtx', ... 'M/misc/pts5ldd2/pts5ldd23.mtx', ... 'M/misc/pts5ldd2/pts5ldd24.mtx', ... 'M/misc/pts5ldd2/pts5ldd25.mtx', ... 'M/misc/pts5ldd2/pts5ldd26.mtx', ... 'M/misc/pts5ldd2/pts5ldd27.mtx', ... 'M/misc/qcd/conf5.0-00l4x4-1000.mtx', ... 'M/misc/qcd/conf5.0-00l4x4-1400.mtx', ... 'M/misc/qcd/conf5.0-00l4x4-1800.mtx', ... 'M/misc/qcd/conf5.0-00l4x4-2200.mtx', ... 'M/misc/qcd/conf5.0-00l4x4-2600.mtx', ... 'M/misc/qcd/conf5.4-00l8x8-0500.mtx', ... 'M/misc/qcd/conf5.4-00l8x8-1000.mtx', ... 'M/misc/qcd/conf5.4-00l8x8-1500.mtx', ... 'M/misc/qcd/conf5.4-00l8x8-2000.mtx', ... 'M/misc/qcd/conf6.0-00l4x4-2000.mtx', ... 'M/misc/qcd/conf6.0-00l4x4-3000.mtx', ... 'M/misc/qcd/conf6.0-00l8x8-2000.mtx', ... 'M/misc/qcd/conf6.0-00l8x8-3000.mtx', ... 'M/misc/qcd/conf6.0-00l8x8-8000.mtx', ... 'M/NEP/airfoil/af23560.mtx', ... 'M/NEP/bfwave/bfw398a.mtx', ... 'M/NEP/bfwave/bfw398b.mtx', ... 'M/NEP/bfwave/bfw62a.mtx', ... 'M/NEP/bfwave/bfw62b.mtx', ... 'M/NEP/bfwave/bfw782a.mtx', ... 'M/NEP/bfwave/bfw782b.mtx', ... 'M/NEP/brussel/rdb1250l.mtx', ... 'M/NEP/brussel/rdb1250.mtx', ... 'M/NEP/brussel/rdb200l.mtx', ... 'M/NEP/brussel/rdb200.mtx', ... 'M/NEP/brussel/rdb2048l.mtx', ... 'M/NEP/brussel/rdb2048.mtx', ... 'M/NEP/brussel/rdb3200l.mtx', ... 'M/NEP/brussel/rdb450l.mtx', ... 'M/NEP/brussel/rdb450.mtx', ... 'M/NEP/brussel/rdb800l.mtx', ... 'M/NEP/brussel/rdb968.mtx', ... 'M/NEP/chuck/ck104.mtx', ... 'M/NEP/chuck/ck400.mtx', ... 'M/NEP/chuck/ck656.mtx', ... 'M/NEP/crystal/cry10000.mtx', ... 'M/NEP/crystal/cry2500.mtx', ... 'M/NEP/dwave/dw2048.mtx', ... 'M/NEP/dwave/dw8192.mtx', ... 'M/NEP/dwave/dwa512.mtx', ... 'M/NEP/dwave/dwb512.mtx', ... 'M/NEP/gedney/dwg961a.mtx', ... 'M/NEP/gedney/dwg961b.mtx', ... 'M/NEP/h2plus/qc2534.mtx', ... 'M/NEP/h2plus/qc324.mtx', ... 'M/NEP/matpde/pde225.mtx', ... 'M/NEP/matpde/pde2961.mtx', ... 'M/NEP/matpde/pde900.mtx', ... 'M/NEP/mhd/mhd1280a.mtx', ... 'M/NEP/mhd/mhd1280b.mtx', ... 'M/NEP/mhd/mhd3200a.mtx', ... 'M/NEP/mhd/mhd3200b.mtx', ... 'M/NEP/mhd/mhd416a.mtx', ... 'M/NEP/mhd/mhd416b.mtx', ... 'M/NEP/mhd/mhd4800a.mtx', ... 'M/NEP/mhd/mhd4800b.mtx', ... 'M/NEP/mvmbwm/bwm2000.mtx', ... 'M/NEP/mvmbwm/bwm200.mtx', ... 'M/NEP/mvmmcd/cdde1.mtx', ... 'M/NEP/mvmmcd/cdde2.mtx', ... 'M/NEP/mvmmcd/cdde3.mtx', ... 'M/NEP/mvmmcd/cdde4.mtx', ... 'M/NEP/mvmmcd/cdde5.mtx', ... 'M/NEP/mvmmcd/cdde6.mtx', ... 'M/NEP/mvmode/odep400a.mtx', ... 'M/NEP/mvmode/odep400b.mtx', ... 'M/NEP/mvmrwk/rw136.mtx', ... 'M/NEP/mvmrwk/rw496.mtx', ... 'M/NEP/mvmrwk/rw5151.mtx', ... 'M/NEP/mvmtls/tols1090.mtx', ... 'M/NEP/mvmtls/tols2000.mtx', ... 'M/NEP/mvmtls/tols340.mtx', ... 'M/NEP/mvmtls/tols4000.mtx', ... 'M/NEP/mvmtls/tols90.mtx', ... 'M/NEP/olmstead/olm1000.mtx', ... 'M/NEP/olmstead/olm100.mtx', ... 'M/NEP/olmstead/olm2000.mtx', ... 'M/NEP/olmstead/olm5000.mtx', ... 'M/NEP/olmstead/olm500.mtx', ... 'M/NEP/quebec/qh1484.mtx', ... 'M/NEP/quebec/qh768.mtx', ... 'M/NEP/quebec/qh882.mtx', ... 'M/NEP/robotics/rbs480a.mtx', ... 'M/NEP/robotics/rbs480b.mtx', ... 'M/NEP/stoch/lop163.mtx', ... 'M/NEP/tubular/tub1000.mtx', ... 'M/NEP/tubular/tub100.mtx', ... 'M/SPARSKIT/drivcav/e05r0000.mtx', ... 'M/SPARSKIT/drivcav/e05r0100.mtx', ... 'M/SPARSKIT/drivcav/e05r0200.mtx', ... 'M/SPARSKIT/drivcav/e05r0300.mtx', ... 'M/SPARSKIT/drivcav/e05r0400.mtx', ... 'M/SPARSKIT/drivcav/e05r0500.mtx', ... 'M/SPARSKIT/drivcav/e20r0000.mtx', ... 'M/SPARSKIT/drivcav/e20r0100.mtx', ... 'M/SPARSKIT/drivcav/e20r0500.mtx', ... 'M/SPARSKIT/drivcav/e20r1000.mtx', ... 'M/SPARSKIT/drivcav/e20r2000.mtx', ... 'M/SPARSKIT/drivcav/e20r3000.mtx', ... 'M/SPARSKIT/drivcav/e20r4000.mtx', ... 'M/SPARSKIT/drivcav/e20r5000.mtx', ... 'M/SPARSKIT/drivcav/e30r0000.mtx', ... 'M/SPARSKIT/drivcav/e30r0100.mtx', ... 'M/SPARSKIT/drivcav/e30r0500.mtx', ... 'M/SPARSKIT/drivcav/e30r1000.mtx', ... 'M/SPARSKIT/drivcav/e30r2000.mtx', ... 'M/SPARSKIT/drivcav/e30r3000.mtx', ... 'M/SPARSKIT/drivcav/e30r4000.mtx', ... 'M/SPARSKIT/drivcav/e30r5000.mtx', ... 'M/SPARSKIT/drivcav/e40r0000.mtx', ... 'M/SPARSKIT/drivcav/e40r0100.mtx', ... 'M/SPARSKIT/drivcav/e40r0500.mtx', ... 'M/SPARSKIT/drivcav/e40r1000.mtx', ... 'M/SPARSKIT/drivcav/e40r2000.mtx', ... 'M/SPARSKIT/drivcav/e40r3000.mtx', ... 'M/SPARSKIT/drivcav/e40r4000.mtx', ... 'M/SPARSKIT/drivcav/e40r5000.mtx', ... 'M/SPARSKIT/drivcav_old/cavity01.mtx', ... 'M/SPARSKIT/drivcav_old/cavity02.mtx', ... 'M/SPARSKIT/drivcav_old/cavity03.mtx', ... 'M/SPARSKIT/drivcav_old/cavity04.mtx', ... 'M/SPARSKIT/drivcav_old/cavity05.mtx', ... 'M/SPARSKIT/drivcav_old/cavity06.mtx', ... 'M/SPARSKIT/drivcav_old/cavity07.mtx', ... 'M/SPARSKIT/drivcav_old/cavity08.mtx', ... 'M/SPARSKIT/drivcav_old/cavity09.mtx', ... 'M/SPARSKIT/drivcav_old/cavity10.mtx', ... 'M/SPARSKIT/drivcav_old/cavity11.mtx', ... 'M/SPARSKIT/drivcav_old/cavity12.mtx', ... 'M/SPARSKIT/drivcav_old/cavity13.mtx', ... 'M/SPARSKIT/drivcav_old/cavity14.mtx', ... 'M/SPARSKIT/drivcav_old/cavity15.mtx', ... 'M/SPARSKIT/drivcav_old/cavity16.mtx', ... 'M/SPARSKIT/drivcav_old/cavity17.mtx', ... 'M/SPARSKIT/drivcav_old/cavity18.mtx', ... 'M/SPARSKIT/drivcav_old/cavity19.mtx', ... 'M/SPARSKIT/drivcav_old/cavity20.mtx', ... 'M/SPARSKIT/drivcav_old/cavity21.mtx', ... 'M/SPARSKIT/drivcav_old/cavity22.mtx', ... 'M/SPARSKIT/drivcav_old/cavity23.mtx', ... 'M/SPARSKIT/drivcav_old/cavity24.mtx', ... 'M/SPARSKIT/drivcav_old/cavity25.mtx', ... 'M/SPARSKIT/drivcav_old/cavity26.mtx', ... 'M/SPARSKIT/fidap/fidap001.mtx', ... 'M/SPARSKIT/fidap/fidap002.mtx', ... 'M/SPARSKIT/fidap/fidap003.mtx', ... 'M/SPARSKIT/fidap/fidap004.mtx', ... 'M/SPARSKIT/fidap/fidap005.mtx', ... 'M/SPARSKIT/fidap/fidap006.mtx', ... 'M/SPARSKIT/fidap/fidap007.mtx', ... 'M/SPARSKIT/fidap/fidap008.mtx', ... 'M/SPARSKIT/fidap/fidap009.mtx', ... 'M/SPARSKIT/fidap/fidap010.mtx', ... 'M/SPARSKIT/fidap/fidap011.mtx', ... 'M/SPARSKIT/fidap/fidap012.mtx', ... 'M/SPARSKIT/fidap/fidap013.mtx', ... 'M/SPARSKIT/fidap/fidap014.mtx', ... 'M/SPARSKIT/fidap/fidap015.mtx', ... 'M/SPARSKIT/fidap/fidap018.mtx', ... 'M/SPARSKIT/fidap/fidap019.mtx', ... 'M/SPARSKIT/fidap/fidap020.mtx', ... 'M/SPARSKIT/fidap/fidap021.mtx', ... 'M/SPARSKIT/fidap/fidap022.mtx', ... 'M/SPARSKIT/fidap/fidap023.mtx', ... 'M/SPARSKIT/fidap/fidap024.mtx', ... 'M/SPARSKIT/fidap/fidap025.mtx', ... 'M/SPARSKIT/fidap/fidap026.mtx', ... 'M/SPARSKIT/fidap/fidap027.mtx', ... 'M/SPARSKIT/fidap/fidap028.mtx', ... 'M/SPARSKIT/fidap/fidap029.mtx', ... 'M/SPARSKIT/fidap/fidap031.mtx', ... 'M/SPARSKIT/fidap/fidap032.mtx', ... 'M/SPARSKIT/fidap/fidap033.mtx', ... 'M/SPARSKIT/fidap/fidap035.mtx', ... 'M/SPARSKIT/fidap/fidap036.mtx', ... 'M/SPARSKIT/fidap/fidap037.mtx', ... 'M/SPARSKIT/fidap/fidapm02.mtx', ... 'M/SPARSKIT/fidap/fidapm03.mtx', ... 'M/SPARSKIT/fidap/fidapm05.mtx', ... 'M/SPARSKIT/fidap/fidapm07.mtx', ... 'M/SPARSKIT/fidap/fidapm08.mtx', ... 'M/SPARSKIT/fidap/fidapm09.mtx', ... 'M/SPARSKIT/fidap/fidapm10.mtx', ... 'M/SPARSKIT/fidap/fidapm11.mtx', ... 'M/SPARSKIT/fidap/fidapm13.mtx', ... 'M/SPARSKIT/fidap/fidapm15.mtx', ... 'M/SPARSKIT/fidap/fidapm29.mtx', ... 'M/SPARSKIT/fidap/fidapm33.mtx', ... 'M/SPARSKIT/fidap/fidapm37.mtx', ... 'M/SPARSKIT/tokamak/utm1700a.mtx', ... 'M/SPARSKIT/tokamak/utm1700b.mtx', ... 'M/SPARSKIT/tokamak/utm300.mtx', ... 'M/SPARSKIT/tokamak/utm3060.mtx', ... 'M/SPARSKIT/tokamak/utm5940.mtx', ... } ; for i = 1:length(matrices) filename = matrices {i} ; fprintf ('\nfile: %s\n', filename) ; tic [A,rows,cols,entries,rep,field,symm] = mmread(filename) ; t1 = toc ; fprintf (' %d by %d, nz %d %s %s %s\n', ... rows, cols, entries, rep, field, symm) ; % try tic B = mread (filename) ; t2 = toc ; % catch % B = [ ] ; % end fprintf ('speedup %6.2f nnz %d\n', t1/t2, nnz(A)) ; % mread add values to a pattern-only matrix. Remove them if (strcmp (field, 'pattern')) B = spones (B) ; end if (isempty (B)) fprintf ('============================ could not read with CHOLMOD\n') ; error ('!') ; else err = norm (A-B,1) ; if (err ~= 0) fprintf ('=================================== %8.1e\n', err) ; error ('!') ; end end end SuiteSparse/CHOLMOD/MATLAB/Test/Results.mat0000644001170100242450000000456310711454700017066 0ustar davisfacMATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Mon Oct 29 18:08:00 2007 IMx-9 `@7Xٺ:bN\+q9CkwccaJL1\ 5o$eX+tyPjtqB>WӵnKO40I)9梼b(o|&$ܸLjkJxc``89 4B@)#0b dO lx >&|,;d}]duXUGI_,JQW4T:h\a`_O'v+St+ސlj0}3?{F@?~7؊^6]sQs\W~w׮yC>#b77Pυ[edlIfoY65~vO𤒿}ԬRIIAG^δ׷0,f?~|t{˝;Jd:yKZMj槝AEek=}b{Dm`nK_*2I1Ҟ_软}[ǝ˞bˆnwcKB$9|͍smT,n/>`yG{}1yVgv:ʵO$y. _Q+foG}r ~~Ǿ{'K{֨^t߲ij܎H;}B~J_S셵^+>)wm }]~}Hkn5vI_h?Qm3ųyxc``89 4B@)#0j dO 2ih؂K3@9IvG)Xa'0B<k֛ wdR^nwA! @; 024cd [f jufrځ3TA-k K[[^1wm9Y?jF=N^ff4%ļl@a/SԖi֔`Z~:Tm'ؖaƧ=vb?c3_b#vzni k-6nw%픬nfz-SO@3(lxxc``89 4B@)#0 dpdlAw=;'?(3d~Bg6_3"^ѽw_XlJWaXQoÆaL@ńr[f ,ﰄ_)?CUdڲ u9玶m~9'_`GiK[̌K:) ;uKmjjM6ߡFh_Gԡ"n;AŶ, 3>˘p/ߌlk-WDЯ;1 ֦?m hUk-6nw%픬~fz-SO%Уo>Éfpxc``l@Agb#0?@| 230T30q!:F'\ CPã K@|nL Тܰ D33 30ʱCΤ2 0hX3t`f# ]FCT )30h23ϖf0ba`Z` )xM? Aa"72*IEPe$ddX`XFPFk}K租yCdjRYD^CE?6j,)8`"_ ; eٌ#ҲFf9U3wQn2&\BsS 7v&xc``0b6 313Cvv6e!SuiteSparse/CHOLMOD/MATLAB/Test/test0.m0000644001170100242450000001454010710415761016136 0ustar davisfacfunction test0 (nmat) %TEST0 test most CHOLMOD functions % Example: % test0(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test0: test most CHOLMOD functions\n') ; % This test requires UFget, the MATLAB interface to the UF sparse matrix % collection. You can obtain UFget from % http://www.cise.ufl.edu/research/sparse/matrices. try % load UF index index = UFget ; catch error ('Test aborted. UF sparse matrix collection not available.\n') ; end f = find (index.posdef) ; [ignore i] = sort (index.nrows (f)) ; f = f (i) ; rand ('state', 0) ; randn ('state', 0) ; doplots = 0 ; if (doplots) clf end % skip = [937:939 1202:1211] ; skip = 937:939 ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end % f= 229 fprintf ('test matrices sorted by dimension:\n') ; for i = f if (any (i == skip)) continue end fprintf ('%4d: %-20s %-20s %12d %d\n', i, ... index.Group {i}, index.Name {i}, index.nrows (i), index.posdef (i)) ; end % pause for i = f if (any (i == skip)) continue end % try Problem = UFget (i) ; A = Problem.A ; fprintf ('\n================== Problem: %d: %s n: %d nnz: %d\n', ... i, Problem.name, size (A,1), nnz (A)) ; fprintf ('title: %s\n', Problem.title) ; clear Problem n = size (A,1) ; % use AMD from SuiteSparse tic p = amd2 (A) ; t0 = toc ; fprintf ('time: amd %10.4f\n', t0) ; S = A (p,p) ; if (doplots) subplot (3,2,1) ; spy (A) ; title ('A original') ; subplot (3,2,2) ; spy (S) ; title ('A permuted') ; drawnow ; end % ensure chol, chol2, and lchol are loaded, for more accurate timing R = chol2 (sparse (1)) ; %#ok R = chol (sparse (1)) ; %#ok R = lchol (sparse (1)) ; %#ok R = ldlchol (sparse (1)) ; %#ok R = ldlupdate (sparse (1), sparse (1)) ; %#ok c = symbfact (sparse (1)) ; %#ok tic ; L = lchol (S) ; t3 = toc ; if (doplots) subplot (3,2,5) ; spy (L) ; title ('L=lchol') ; drawnow ; end fprintf ('CHOLMOD time: L=lchol %10.4f nnz(L): %d\n', t3, nnz (L)) ; lnorm = norm (L, 1) ; err = ldl_normest (S, L) / lnorm ; if (err > 1e-6) error ('!') ; end clear L tic ; R = chol2 (S) ; t2 = toc ; if (doplots) subplot (3,2,3) ; spy (R) ; title ('R=chol2') ; drawnow ; end fprintf ('CHOLMOD time: R=chol2 %10.4f nnz(R): %d\n', t2, nnz (R)) ; err = ldl_normest (S, R') / lnorm ; if (err > 1e-6) error ('!') ; end clear R tic ; R = chol (S) ; t1 = toc ; fprintf ('MATLAB time: R=chol %10.4f nnz(R): %d\n', t1, nnz (R)) ; if (doplots) subplot (3,2,4) ; spy (R) ; title ('chol') ; drawnow ; end err = ldl_normest (S, R') / lnorm ; if (err > 1e-6) error ('!') ; end clear R tic ; [count,h,parent,post,R] = symbfact (S) ; t7 = toc ; fprintf ('MATLAB [..,R]=symbfact %10.4f nnz(R): %d\n', t7, nnz (R)) ; fprintf ('\nCHOLMOD speedup vs MATLAB chol: R: %8.2f L: %8.2f\n\n', ... t1/t2, t1/t3) ; fprintf ('\nCHOLMOD numeric lchol vs MATLAB symbfact: %8.2f\n', t7/t3) ; clear R S % use AMD or METIS, doing the ordering in CHOLMOD tic [L,p,q] = lchol (A) ; t4 = toc ; fprintf ('CHOLMOD time: [L,,q]=lchol %10.4f nnz(L): %d\n', ... t4, nnz (L)) ; if (doplots) subplot (3,2,6) ; spy (L) ; title ('[L,p,q]=lchol') ; drawnow ; end err = ldl_normest (A (q,q), L) / lnorm ; if (err > 1e-6) error ('!') ; end clear L % try an LDL' factorization, LD has LDL' factorization of S = A(q,q) tic [LD,p,q] = ldlchol (A) ; t5 = toc ; fprintf ('CHOLMOD time: [L,,q]=ldlchol %10.4f nnz(L): %d\n', ... t5, nnz (LD)) ; [L,D] = ldlsplit (LD) ; S = A (q,q) ; err = ldl_normest (S, L, D) / lnorm ; if (err > 1e-6) error ('!') ; end clear L D A % update the LDL' factorization (rank 1 to 8). Pick a C that has % the same pattern as a random set of columns of L, so no fill-in % occurs. Then add one arbitrary entry, to add some fill-in to L. k = 1 + floor (rand (1) * 8) ; cols = randperm (n) ; cols = cols (1:k) ; C = sprandn (LD (:,cols)) ; row = 1 + floor (rand (1) * n) ; C (row,1) = 1 ; if (~isreal (C) | ~isreal (LD)) %#ok fprintf ('skip update/downdate of complex matrix ...\n') ; continue ; end tic LD2 = ldlupdate (LD, C) ; t = toc ; fprintf ('\nCHOLMOD time: rank-%d ldlupdate %10.4f nnz(L) %d', ... k, t, nnz (LD2)) ; if (nnz (LD2) > nnz (LD)) fprintf (' with fill-in\n') ; else fprintf (' no fill-in\n') ; end clear LD % check the factorization, LD2 has LDL' factorization of S+C*C' [L,D] = ldlsplit (LD2) ; err = ldl_normest (S + C*C', L, D) / lnorm ; if (err > 1e-6) error ('!') ; end clear L D % downate the LDL' factorization, with just part of C % no change to the pattern occurs. k = max (1, floor (k/2)) ; C1 = C (:, 1:k) ; C2 = C (:, k+1:end) ; %#ok tic LD3 = ldlupdate (LD2, C1, '-') ; t = toc ; clear LD2 fprintf ('CHOLMOD time: rank-%d ldldowndate %10.4f nnz(L) %d', ... k, t, nnz (LD3)) ; fprintf (' no fill-in\n') ; % check the factorization, LD3 has LDL' factorization of A(q,q)+C2*C2' [L,D] = ldlsplit (LD3) ; S2 = S + C*C' - C1*C1' ; err = ldl_normest (S2, L, D) / lnorm ; if (err > 1e-6) error ('!') ; end % now test resymbol LD4 = resymbol (LD3, S2) ; [L,D] = ldlsplit (LD4) ; err = ldl_normest (S2, L, D) / lnorm ; if (err > 1e-6) error ('!') ; end fprintf ('after resymbol: %d\n', nnz (LD4)) ; % compare resymbol with ldlchol LD5 = ldlchol (S2) ; if (nnz (LD5) ~= nnz (LD4)) error ('!') ; end if (nnz (spones (LD5) - spones (LD4)) ~= 0) error ('!') ; end b = rand (n,2) ; x = ldlsolve (LD4, b) ; err1 = norm (S2*x-b,1) / norm (S,1) ; fprintf ('CHOLMOD residual: %6.1e\n', err1) ; x = S2\b ; err2 = norm (S2*x-b,1) / norm (S,1) ; fprintf ('MATLAB residual: %6.1e\n', err2) ; b = sprandn (n,3,0.4) ; x = ldlsolve (LD4, b) ; err1 = norm (S2*x-b,1) / norm (S,1) ; fprintf ('CHOLMOD residual: %6.1e (sparse b)\n', err1) ; x = S2\b ; err2 = norm (S2*x-b,1) / norm (S,1) ; fprintf ('MATLAB residual: %6.1e (sparse b)\n', err2) ; % catch % fprintf ('failed\n') ; % end clear A S C L R LD LD2 LD3 D p q C1 C2 LD3 S2 LD4 b x LD5 end fprintf ('test0 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test1.m0000644001170100242450000000420210620665232016131 0ustar davisfacfunction test1 (wait) %TEST1 test sparse2 % Example: % test1 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test1: test sparse2\n') ; if (nargin == 0) wait = 0 ; end m = 3 ; n = 4 ; ii = { 1, [2 3]', 2, [ ] } ; jj = { 1, [2 3]', 3, [ ] } ; ss = { 1, [2 3]', pi, [ ] } ; for ki = 1:length (ii) for kj = 1:length (jj) for ks = 1:length (ss) fprintf ('\n-----------------------------------------------\n') ; i = ii {ki} %#ok j = jj {kj} %#ok s = ss {ks} %#ok m %#ok n %#ok clear A1 A2 B1 B2 fprintf ('\nA1 = sparse (i,j,s,m,n)\n') ; try % sparse, possibly with invalid inputs A1 = sparse (i,j,s,m,n) %#ok fprintf ('size A1: %d %d\n', size (A1)) ; catch A1 = 'A failed' ; fprintf ('sparse failed\n') ; end fprintf ('\nA2 = sparse2 (i,j,s,m,n)\n') ; try % sparse2, possibly with invalid inputs A2 = sparse2 (i,j,s,m,n) %#ok fprintf ('size A2: %d %d\n', size (A2)) ; catch A2 = 'A failed' ; fprintf ('sparse2 failed\n') ; end fprintf ('\nB1 = sparse (i,j,s)\n') ; try % sparse, possibly with invalid inputs B1 = sparse (i,j,s) %#ok fprintf ('size B1: %d %d\n', size (B1)) ; catch B1 = 'B failed' ; fprintf ('sparse failed\n') ; end fprintf ('\nB2 = sparse2 (i,j,s)\n') ; try % sparse2, possibly with invalid inputs B2 = sparse2 (i,j,s) %#ok fprintf ('size B2: %d %d\n', size (B2)) ; catch B2 = 'B failed' ; fprintf ('sparse2 failed\n') ; end if (wait) pause end if (~isequal (A1,A2) | ~isequal (B1,B2)) %#ok fprintf (... '========================== SPARSE AND SPARSE2 DIFFER\n') ; end end end end fprintf ('test1 passed (review the above results)\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test2.m0000644001170100242450000000152610620371346016140 0ustar davisfacfunction test2 %TEST2 test sparse2 % Example: % test2 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test2: test sparse2\n') ; i = [ 2 3 ] %#ok j = [ 3 4 ] %#ok s = [11.4 9.2] + 1i * [3.4 1.2] %#ok sparse (i,j,s) %#ok sparse2 (i,j,s) %#ok n = 100 ; nz = 4000 ; i = fix (n * rand (nz,1)) + 1 ; j = fix (n * rand (nz,1)) + 1 ; s = rand (nz,1) + 1i * rand (nz,1) ; A = sparse (i,j,s,n,n) ; B = sparse2 (i,j,s,n,n) ; nnz(A) if (norm (A-B,1) > 1e-14) A_minus_B = A-B %#ok error ('!') ; end C = sparse (A) ; D = sparse2 (B) ; if (norm (C-D,1) > 1e-14) C_minus_D = C-D %#ok error ('!') ; end % spy(C) fprintf ('test2 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test3.m0000644001170100242450000000141410620371347016136 0ustar davisfacfunction test3 %TEST3 test sparse on int8, int16, and logical % Example: % test3 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test3: test sparse on int8, int16, and logical\n') ; clear all c = ['a' 'b' 0 'd'] %#ok sparse(c) sparse2(c) sparse(c') sparse2(c') whos nzmax(ans) %#ok try % this will fail sparse(int8(c)) catch fprintf ('sparse(int8(c)) fails in MATLAB\n') ; end sparse2(int8(c)) sparse2 (int16(c)) whos s = logical(rand(4) > .5) %#ok sparse (s) whos sparse2(s) whos x = rand(4) %#ok sparse (x > .5) %#ok whos sparse2 (x > .5) %#ok whos fprintf ('test3 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test4.m0000644001170100242450000000223610620665354016146 0ustar davisfacfunction test4 %TEST4 test cholmod2 with multiple and sparse right-hand-sides % Example: % test4 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test4: test cholmod2 with multiple and sparse right-hand-sides\n') ; Prob = UFget ('HB/bcsstk01') ; A = Prob.A ; n = size (A,1) ; b = rand (n,1) ; x = cholmod2 (A,b) ; m2 = norm (A*x-b,1) ; b = sparse (b) ; x = cholmod2 (A,b) ; m2 = max (m2, norm (A*x-b,1)) ; m1 = 0 ; for nrhs = 1:80 b = sparse (rand (n,nrhs)) ; x = A\b ; e1 = norm (A*x-b,1) ; x = cholmod2 (A,b) ; e2 = norm (A*x-b,1) ; if (e2 > 1e-11) error ('!') ; end m1 = max (m1, e1) ; m2 = max (m2, e2) ; end for nrhs = 1:80 b = sprandn (n, nrhs, 0.01) ; x = A\b ; % nnz (x) / (n*nrhs) e1 = norm (A*x-b,1) ; x = cholmod2 (A,b) ; e2 = norm (A*x-b,1) ; if (e2 > 1e-11) error ('!') ; end m1 = max (m1, e1) ; m2 = max (m2, e2) ; end fprintf ('maxerr %e %e\n', m1, m2) ; if (m1 > 1e-11 | m2 > 1e-11) %#ok error ('!') ; end fprintf ('test4 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test5.m0000644001170100242450000000330610620371352016136 0ustar davisfacfunction test5 %TEST5 test sparse2 % Example: % test5 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test5: test sparse2\n') ; randn ('state', 0) ; rand ('state', 0) ; A = sprandn (10,20,0.2) ; [m n ] = size (A) ; [i j x] = find (A) ; % [i2 j2 x2] = cholmod_find (A) ; % if (any (i ~= i2)) % error ('i!') ; %end %if (any (j ~= j2)) % error ('j!') ; %end %if (any (x ~= x2)) % error ('x!') ; %end % full (sum (spones (A'))) C = sparse (i,j,x,m,n) ; B = sparse2 (i,j,x,m,n) ; err = norm(A-B,1) ; if (err > 0) error ('dtri 1') ; end err = norm(C-B,1) ; if (err > 0) error ('dtri 1b') ; end nz = length (x) ; p = randperm (nz) ; i2 = i(p) ; j2 = j(p) ; x2 = x(p) ; %#ok B = sparse2 (i,j,x,m,n) ; err = norm(A-B,1) ; if (err > 0) error ('dtri 2') ; end ii = [i2 ; i2] ; jj = [j2 ; j2] ; xx = rand (2*nz,1) ; C = sparse (ii,jj,xx,m,n) ; D = sparse2 (ii,jj,xx,m,n) ; err = norm (C-D,1) ; if (err > 0) error ('dtri 3') ; end % E = sparse2 (ii,jj,xx,n,n,+1) ; E = sparse (min(ii,jj), max(ii,jj), xx, n, n) ; F = sparse (min(ii,jj), max(ii,jj), xx, n, n) ; err = norm (E-F,1) ; if (err > 0) error ('dtri 4') ; end % E = sparse2 (ii,jj,xx,n,n,-1) ; E = sparse (max(ii,jj), min(ii,jj), xx, n, n) ; F = sparse (max(ii,jj), min(ii,jj), xx, n, n) ; err = norm (E-F,1) ; if (err > 0) error ('dtri 5') ; end [i1 j1 x1] = find (F) ; %#ok % [i2 j2 x2] = cholmod_find (F) ; % if (any (i1 ~= i2)) % error ('i!') ; % end % if (any (j1 ~= j2)) % error ('j!') ; % end % if (any (x1 ~= x2)) % error ('x!') ; % end fprintf ('test5 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test6.m0000644001170100242450000000656010710152476016150 0ustar davisfacfunction test6 %TEST6 test sparse with large matrix, both real and complex % compare times with MATLAB % Example: % test6 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test6: test sparse with large matrix, both real and complex\n') ; for do_complex = 0:1 fprintf ('do_complex = %d\n', do_complex) ; randn ('state', 0) ; rand ('state', 0) ; % Prob = UFget (437) Prob = UFget (749) %#ok A = Prob.A ; [m n] = size (A) ; %#ok if (do_complex) % A = A + 1i*sprand(A) ; % patch for MATLAB 7.2 A = A + sparse(1:m,1:m,1i)*sprand(A) ; end tic [i j x] = find (A) ; t = toc ; fprintf ('find time %8.4f\n', t) ; % tic % [i1 j1 x1] = cholmod_find (A) ; % t = toc ; % fprintf ('cholmod_find time %8.4f (for testing only, it should be slow)\n', t) ; % if (any (i ~= i1)) % error ('i!') ; % end % if (any (j ~= j1)) % error ('j!') ; % end % if (any (x ~= x1)) % error ('x!') ; % end [m n ] = size (A) ; tic ; B = sparse2 (i,j,x,m,n) ; t1 = toc ; tic ; C = sparse (i,j,x,m,n) ; t2 = toc ; fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f\n', t1, t2) ; err = norm(A-B,1) ; if (err > 0) error ('dtri2 1') ; end err = norm(A-C,1) ; if (err > 0) error ('dtri2 1') ; end nz = length (x) ; p = randperm (nz) ; i2 = i(p) ; j2 = j(p) ; x2 = x(p) ; %#ok tic ; B = sparse2 (i,j,x,m,n) ; t1 = toc ; tic ; C = sparse (i,j,x,m,n) ; t2 = toc ; fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f (jumbled)\n', t1, t2) ; err = norm(A-B,1) ; if (err > 0) error ('dtri2 2') ; end err = norm(A-C,1) ; if (err > 0) error ('dtri2 1') ; end ii = [i2 ; i2] ; jj = [j2 ; j2] ; xx = rand (2*nz,1) ; if (do_complex) xx = xx + 1i* rand (2*nz,1) ; end tic ; D = sparse2 (ii,jj,xx,m,n) ; t1 = toc ; tic ; C = sparse (ii,jj,xx,m,n) ; t2 = toc ; err = norm (C-D,1) ; if (err > 0) error ('dtri2 3') ; end fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f (duplicates)\n', t1, t2) ; fprintf ('length %d nz %d\n', length (xx), nnz(D)) ; i2 = min (ii,jj) ; j2 = max (ii,jj) ; tic ; E = sparse2 (i2,j2,xx,n,n) ; t1 = toc ; tic ; F = sparse (i2, j2, xx, n, n) ; t2 = toc ; err = norm (E-F,1) %#ok if (err > 1e-13) error ('dtri2 4') ; end fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f (upper)\n', t1, t2) ; i2 = max (ii,jj) ; j2 = min (ii,jj) ; tic ; E = sparse2 (i2,j2,xx,n,n) ; t1 = toc ; tic ; F = sparse (i2, j2, xx, n, n) ; t2 = toc ; err = norm (E-F,1) %#ok if (err > 1e-13) error ('dtri2 5') ; end fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f (lower)\n', t1, t2) ; [ignore, i] = sort (ii) ; ii = ii (i) ; jj = jj (i) ; xx = xx (i) ; tic ; D = sparse2 (ii,jj,xx,m,n) ; t1 = toc ; tic ; C = sparse (ii,jj,xx,m,n) ; t2 = toc ; err = norm (C-D,1) ; if (err > 0) error ('dtri2 6') ; end fprintf ('dtri time: cholmod2 %8.6f matlab %8.6f (sorted, dupl)\n', t1, t2) ; end fprintf ('test6 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test7.m0000644001170100242450000000214710620371356016146 0ustar davisfacfunction test7 %TEST7 test sparse2 % Example: % test7 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test7: test sparse2\n') ; randn ('state', 0) ; rand ('state', 0) ; % Prob = UFget (437) Prob = UFget (750) %#ok A = Prob.A ; [m n] = size (A) ; tic [i j x] = find (A) ; t = toc ; fprintf ('find time %8.4f\n', t) ; tic ; B = sparse2 (i,j,x,m,n) ; %#ok t1 = toc ; fprintf ('tot: %8.6f\n', t1) tic ; B = sparse2 (i,j,x,m,n) ; %#ok t1 = toc ; fprintf ('tot: %8.6f again \n', t1) ; tic ; B1 = sparse2 (i,j,x) ; %#ok t1 = toc ; fprintf ('tot: %8.6f (i,j,x)\n', t1) ; nz = length (x) ; p = randperm (nz) ; i2 = i(p) ; j2 = j(p) ; x2 = x(p) ; %#ok tic ; B = sparse2 (i,j,x,m,n) ; %#ok t1 = toc ; fprintf ('tot: %8.6f (jumbled)\n', t1) ; ii = [i2 ; i2] ; jj = [j2 ; j2] ; xx = rand (2*nz,1) ; tic ; D = sparse2 (ii,jj,xx,m,n) ; %#ok t1 = toc ; fprintf ('tot %8.6f (duplicates)\n', t1) ; fprintf ('test7 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test8.m0000644001170100242450000000601310710406406016136 0ustar davisfacfunction test8 (nmat) %TEST8 order a large range of sparse matrices, test symbfact2 % compare AMD and METIS % Example: % test8(nmat) % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test8: factorize a large range of sparse matrices\n') ; % get list of test matrices index = UFget ; % GHS posdef test set (more or less) f = find (... ((index.numerical_symmetry == 1 & index.isBinary) | (index.posdef)) ... & (index.nnzdiag == index.nrows) ... & (index.nrows > 10000 | index.nrows == 9000) ... & (index.nrows < 600000) & (index.nnz > index.nrows)) ; %#ok % include small matrices f = find (... ((index.numerical_symmetry == 1 & index.isBinary) | (index.posdef)) ... & (index.nnzdiag == index.nrows) ... & (index.nrows < 600000) & (index.nnz > index.nrows)) ; for k = 1:length (f) names {k} = index.Name {f(k)} ; %#ok end [ignore i] = sort (names) ; f = f (i) ; % fprintf ('test matrices sorted by name:\n') ; % for i = f % fprintf ('%4d: %-20s %-20s %12d %d\n', i, ... % index.Group {i}, index.Name {i}, index.nrows (i), index.posdef (i)) ; % end [ignore i] = sort (index.nrows (f)) ; f = f (i) ; if (nargin > 0) nmat = max (0,nmat) ; nmat = min (nmat, length (f)) ; f = f (1:nmat) ; end fprintf ('test matrices sorted by dimension:\n') ; for i = f fprintf ('%4d: %-20s %-20s %12d %d\n', i, ... index.Group {i}, index.Name {i}, index.nrows (i), index.posdef (i)) ; end junk = sparse (1) ; % input ('hit enter to continue: ') ; for k = 1:length (f) Problem = UFget (f(k)) ; A = Problem.A ; fprintf ('\n================== Problem: %s n: %d nnz: %d\n', ... Problem.name, size (A,1), nnz (A)) ; fprintf ('title: %s\n\n', Problem.title) ; clear Problem n = size (A,1) ; %#ok amd2 (junk) ; metis (junk) ; tic ; [p1,info] = amd2 (A) ; %#ok t1 = toc ; S1 = A (p1,p1) ; tic ; c1 = symbfact (S1) ; ts1 = toc ; tic ; d1 = symbfact (S1) ; ts2 = toc ; if (any (c1 ~= d1)) error ('!') end fprintf ('symbfact time: MATLAB %9.4f CHOLMOD %9.4f speedup %8.2f\n', ... ts1, ts2, ts1/ts2) ; lnz1 = sum (c1) ; fl1 = sum (c1.^2) ; fprintf ('time: amd %10.4f mnnz(L) %8.1f mfl %8.0f fl/nnz(L) %8.1f\n', ... t1, lnz1/1e6, fl1 /1e6, fl1/lnz1) ; tic ; p2 = metis (A) ; t2 = toc ; S2 = A (p2,p2) ; c2 = symbfact (S2) ; lnz2 = sum (c2) ; fl2 = sum (c2.^2) ; fprintf ('time: metis %10.4f mnnz(L) %8.1f mfl %8.0f fl/nnz(L) %8.1f\n', ... t2, lnz2/1e6, fl2/1e6, fl2/lnz2) ; r = lnz2 / lnz1 ; %#ok fprintf ('\nmetis/amd time: %8.4f nnz(L): %8.4f\n', t2/t1, lnz2/lnz1) ; % save results lnz (k,1) = lnz1 ; %#ok lnz (k,2) = lnz2 ; %#ok fl1 (k,1) = fl1 ; %#ok fl2 (k,2) = fl2 ; %#ok t (k,1) = t1 ; %#ok t (k,2) = t2 ; %#ok end fprintf ('test8 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/test9.m0000644001170100242450000000431410710406412016136 0ustar davisfacfunction test9 %TEST9 test metis, etree, bisect, nesdis % Example: % test9 % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('=================================================================\n'); fprintf ('test9: test metis, etree, bisect, nesdis\n') ; % Prob = UFget ('LPnetlib/lp_qap15') ; Prob = UFget ('HB/bcsstk15') %#ok A = Prob.A ; C = A'*A ; R = A*A' ; fprintf ('\nmetis:\n') ; tic ; p0 = metis (R) ; toc %#ok % [pa po] = etree2 (R (p0,p0)) ; sparse (po - (1:size(R,1))) tic ; p1 = metis (C) ; toc %#ok % [pa po] = etree2 (C (p1,p1)) ; sparse (po - (1:size(C,1))) tic ; p2 = metis (C, 'sym') ; toc %#ok % [pa po] = etree2 (C (p1,p1)) ; sparse (po - (1:size(C,1))) tic ; p3 = metis (A, 'row') ; toc %#ok % [pa po] = etree2 (A (p1,:), 'row') ; sparse (po - (1:size(A,1))) tic ; p4 = metis (A, 'col') ; toc %#ok % [pa po] = etree2 (A (:,p1), 'col') ; sparse (po - (1:size(A,2))) fprintf ('\nmetis(A):\n') ; [m n] = size(A) ; if (m == n) if (nnz (A-A') == 0) tic ; p5 = metis (A) ; toc % figure (1) % spy (A (p5,p5)) ; [ignore q] = etree (A(p5,p5)) ; p5post = p5 (q) ; %#ok % figure (2) % spy (A (p5post,p5post)) ; lnz0 = sum (symbfact (A (p5,p5))) %#ok end end fprintf ('\namd:\n') ; if (m == n) if (nnz (A-A') == 0) tic ; z0 = amd2 (A) ; toc %#ok lnz = sum (symbfact (A (z0,z0))) %#ok end end fprintf ('\nbisect:\n') ; tic ; s0 = bisect (R) ; toc %#ok tic ; s1 = bisect (C) ; toc %#ok tic ; s2 = bisect (C, 'sym') ; toc %#ok tic ; s3 = bisect (A, 'row') ; toc %#ok tic ; s4 = bisect (A, 'col') ; toc %#ok fprintf ('\nnested dissection:\n') ; tic ; [c0 cp0 cmem0] = nesdis (R) ; toc %#ok tic ; [c1 cp1 cmem1] = nesdis (C) ; toc %#ok tic ; [c2 cp2 cmem2] = nesdis (C, 'sym') ; toc %#ok tic ; [c3 cp3 cmem3] = nesdis (A, 'row') ; toc %#ok tic ; [c4 cp4 cmem4] = nesdis (A, 'col') ; toc %#ok fprintf ('\nnested_dissection(A):\n') ; if (m == n) if (nnz (A-A') == 0) tic ; c5 = nesdis (A) ; toc %#ok lnz1 = sum (symbfact (A (c5,c5))) %#ok end end fprintf ('test9 passed\n') ; SuiteSparse/CHOLMOD/MATLAB/Test/testsolve.m0000644001170100242450000000174610620665473017142 0ustar davisfacfunction [x1,x2,e1,e2] = testsolve (A,b) %TESTSOLVE test CHOLMOD and compare with x=A\b % [x1,x2,e1,e2] = testsolve (A,b) ; % Compare CHOLMOD and MATLAB's x=A\b % x1 = A\b, x2 = cholmod2(A,b), e1 = norm(A*x1-b), e2 = norm(A*x2-b) % Example: % [x1,x2,e1,e2] = testsolve (A,b) ; % See also cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida fprintf ('A: [n %6d real %d] B: [sp:%d nrhs %d real %d] ', ... size(A,1), isreal(A), issparse(b), size(b,2), isreal(b)) ; tic x1 = A\b ; t1 = toc ; tic x2 = cholmod2(A,b) ; t2 = toc ; tic e1 = norm (A*x1-b,1) ; t3 = toc ; e2 = norm (A*x2-b,1) ; if (e2 == 0 | e1 == 0) %#ok e12 = 0 ; else e12 = log2 (e1/e2) ; end if (t2 == 0) t12 = 1 ; else t12 = t1 / t2 ; end if (t2 == 0) t32 = 1 ; %#ok else t32 = t3 / t2 ; %#ok end fprintf (' [e1: %5.0e : %5.1f] [t1: %8.2f t2 %8.2f : %5.1f]\n', ... e1, e12, t1, t2, t12) ; if (e2 > max (1e-8, 1e3*e1)) error ('!') ; end SuiteSparse/CHOLMOD/MATLAB/Test/cholmod_test.m0000644001170100242450000001414410712150653017561 0ustar davisfacfunction cholmod_test (nmat, do_diary) %CHOLMOD_TEST test the CHOLMOD mexFunctions % % Example: % cholmod_test(nmat,do_diary) % % The UFget interface to the UF sparse matrix collection is required. % % nmat is optional. If present, it is the # of matrices used in % tests 0, 8, 10, 11, 12, and 12. tests 14 and 15 use 2*nmat matrices. % default nmat is 50. % % do_diary: 1 to save results in a diary, 0 otherwise. Default 0. % % cholmod_demo: run tests on a few random matrices % graph_demo: graph partitioning demo % test0: test most CHOLMOD functions % test1: test sparse2 % test2: test sparse2 % test3: test sparse on int8, int16, and logical % test4: test cholmod2 with multiple and sparse right-hand-sides % test5: test sparse2 % test6: test sparse with large matrix, both real and complex, compare w/MATLAB % test7: test sparse2 % test8: order many sparse matrices, test symbfact2, compare amd and metis % test9: test metis, etree, bisect, nesdis % test10: test cholmod2's backslash on real and complex matrices % test11: test analyze, compare CHOLMOD and MATLAB, save results in Results.mat % test12: test etree2 and compare with etree % test13: test cholmod2 and MATLAB on large tridiagonal matrices % test14: test metis, symbfact2, and etree2 % test15: test symbfact2 vs MATLAB % test16: test cholmod2 on a large matrix % test17: test lchol on a few large matrices % test18: test cholmod2 on a few large matrices % test19: look for NaN's from lchol (caused by Intel MKL 7.x bug) % test20: test symbfact2, cholmod2, and lu on a few large matrices % test21: test cholmod2 on diagonal or ill-conditioned matrices % test22: test chol and chol2 and singular and indefinite matrices % test23: test chol and cholmod2 on the sparse matrix used in "bench" % test24: test sdmult % test25: test sdmult on a large matrix % test26: test logical full and sparse matrices % test27: test nesdis % % See also test0, test1, ... test28. % This extensive test is not included: % test28: test nesdis % Copyright 2006-2007, Timothy A. Davis, University of Florida if (nargin < 2) do_diary = 0 ; end if (do_diary) diary off s = date ; t = clock ; s = sprintf ('diary cholmod_test_%s_%d-%d-%d.txt\n', s, t (4), t(5), fix(t(6))); eval (s) ; end fprintf ('Running CHOLMOD tests.\n') ; help cholmod_test test_path = pwd ; % addpath (test_path) ; cd ('..') ; cholmod_path = pwd ; addpath (cholmod_path) cd ('../../AMD/MATLAB') ; amd_path = pwd ; addpath (amd_path) cd ('../../COLAMD') ; colamd_path = pwd ; addpath (colamd_path) cd ('../CCOLAMD') ; ccolamd_path = pwd ; addpath (ccolamd_path) cd ('../CAMD/MATLAB') ; camd_path = pwd ; addpath (camd_path) cd (test_path) fprintf ('Added the following paths. You may wish to add them\n') ; fprintf ('permanently using the MATLAB pathtool command.\n') ; fprintf ('%s\n', cholmod_path) ; fprintf ('%s\n', amd_path) ; fprintf ('%s\n', colamd_path) ; fprintf ('%s\n', ccolamd_path) ; fprintf ('%s\n', camd_path) ; if (nargin < 1) nmat = 50 ; end try s = metis (sparse (1)) ; do_metis = 1 ; catch fprintf ('METIS not installed\n') ; do_metis = 0 ; end h = waitbar (0.5/32, 'CHOLMOD demo:') ; try cholmod_demo ; waitbar ( 1/32, h, 'CHOLMOD graph demo'); if (do_metis) graph_demo ; end waitbar ( 2/32, h, 'CHOLMOD test0') ; test0 (nmat) ; waitbar ( 3/32, h, 'CHOLMOD test1') ; test1 ; waitbar ( 4/32, h, 'CHOLMOD test2') ; test2 ; waitbar ( 5/32, h, 'CHOLMOD test3') ; test3 ; waitbar ( 6/32, h, 'CHOLMOD test4') ; test4 ; waitbar ( 7/32, h, 'CHOLMOD test5') ; test5 ; waitbar ( 8/32, h, 'CHOLMOD test6') ; test6 ; waitbar ( 9/32, h, 'CHOLMOD test7') ; test7 ; waitbar (10/32, h, 'CHOLMOD test8') ; if (do_metis) % these tests require METIS test8 (nmat) ; waitbar (11/32, h, 'CHOLMOD test9') ; test9 ; end waitbar (12/32, h, 'CHOLMOD test10') ; test10 (nmat) ; waitbar (13/32, h, 'CHOLMOD test11') ; test11 (nmat) ; waitbar (14/32, h, 'CHOLMOD test12') ; test12 (nmat) ; waitbar (15/32, h, 'CHOLMOD test13') ; test13 ; waitbar (16/32, h, 'CHOLMOD test14') ; if (do_metis) % this test requires METIS test14 (2*nmat) ; end waitbar (17/32, h, 'CHOLMOD test15') ; test15 (2*nmat) ; waitbar (18/32, h, 'CHOLMOD test16') ; test16 ; waitbar (19/32, h, 'CHOLMOD test17') ; test17 ; waitbar (20/32, h, 'CHOLMOD test18') ; test18 ; waitbar (21/32, h, 'CHOLMOD test19') ; test19 ; waitbar (22/32, h, 'CHOLMOD test20') ; test20 ; waitbar (23/32, h, 'CHOLMOD test21') ; test21 ; waitbar (24/32, h, 'CHOLMOD test22a') ; test22 (nmat) ; waitbar (25/32, h, 'CHOLMOD test22b') ; test22 (0) ; waitbar (26/32, h, 'CHOLMOD test23') ; test23 ; waitbar (27/32, h, 'CHOLMOD test24') ; test24 ; waitbar (28/32, h, 'CHOLMOD test25') ; test25 ; waitbar (29/32, h, 'CHOLMOD test26') ; test26 (do_metis) ; waitbar (31/32, h, 'CHOLMOD test27') ; if (do_metis) test27 ; end % this test requires METIS % test28 ; % (disabled) waitbar (32/32, h, 'CHOLMOD test done') ; fprintf ('=============================================================\n'); fprintf ('all tests passed\n') ; catch % out-of-memory is OK, other errors are not disp (lasterr) ; if (isempty (strfind (lasterr, 'Out of memory'))) error (lasterr) ; %#ok else fprintf ('test terminated early, but otherwise OK\n') ; end end close (h) ; if (do_diary) diary off end SuiteSparse/CHOLMOD/MATLAB/Test/test11results.m0000644001170100242450000000245410620371306017637 0ustar davisfacfunction test11results %TEST11RESULTS analyze results from test11.m % Example: % test11results % See also test11, cholmod_test % Copyright 2006-2007, Timothy A. Davis, University of Florida load Results index = UFget ; c = E1(1:kkk) < 1 & T1(1:kkk) > 0 ; m = E2(1:kkk) < 1 & T2(1:kkk) > 0 ; cgood = find (c) ; %#ok mgood = find (m) ; %#ok good = find (c | m) ; bad = find (~(c|m)) ; fl_per_lnz = FL(1:kkk) ./ LNZ(1:kkk) ; speedup = T1(1:kkk) ./ T2(1:kkk) ; [ignore ii] = sort (fl_per_lnz (good)) ; good = good (ii) ; fprintf ('MATLABtime CHOLMOD(time,flop,nnz(L)) speedup problem\n') ; for k = good i = f (k) ; % fprintf ('%4d: t1 %10.2f t2 %10.2f fl %6.1e lnz %6.1e %s/%s\n', ... % i, T1(k), T2(k), FL(k), LNZ(k), index.Group{i}, index.Name{i}) ; fprintf ('%10.4f %10.4f %6.1e %6.1e %5.2f %s/%s\n', ... T1(k), T2(k), FL(k), LNZ(k), speedup(k), ... index.Group{i}, index.Name{i}) ; end fprintf ('\nfailed in both:\n') ; for k = bad i = f (k) ; fprintf ('%10.4f %10.4f %6.1e %6.1e %5.2f %s/%s\n', ... T1(k), T2(k), FL(k), LNZ(k), speedup(k), ... index.Group{i}, index.Name{i}) ; end % figure (3) clf loglog (fl_per_lnz (good), speedup (good), 'x') ; axis ([1 4000 .1 50]) ; xlabel ('Cholesky flop count / nnz(L)') ; ylabel ('(MATLAB x=A\\b time) / (CHOLMOD time)') ; drawnow SuiteSparse/CHOLMOD/MATLAB/Test/cholmod_test_11-May-2007_13-29-15.txt0000644001170100242450000134544310621125342022543 0ustar davisfacRunning CHOLMOD tests. diary cholmod_test_11-May-2007_13-29-15.txt CHOLMOD_TEST test the CHOLMOD mexFunctions Example: cholmod_test(nmat) The UFget interface to the UF sparse matrix collection is required. nmat is optional. If present, it is the # of matrices used in tests 0, 8, 10, 11, 12, and 12. tests 14 and 15 use 2*nmat matrices. default nmat is 50. cholmod_demo: run tests on a few random matrices graph_demo: graph partitioning demo test0: test most CHOLMOD functions test1: test sparse2 test2: test sparse2 test3: test sparse on int8, int16, and logical test4: test cholmod2 with multiple and sparse right-hand-sides test5: test sparse2 test6: test sparse with large matrix, both real and complex, compare w/MATLAB test7: test sparse2 test8: order many sparse matrices, test symbfact2, compare amd and metis test9: test metis, etree, bisect, nesdis test10: test cholmod2's backslash on real and complex matrices test11: test analyze, compare CHOLMOD and MATLAB, save results in Results.mat test12: test etree2 and compare with etree test13: test cholmod2 and MATLAB on large tridiagonal matrices test14: test metis, symbfact2, and etree2 test15: test symbfact2 vs MATLAB test16: test cholmod2 on a large matrix test17: test lchol on a few large matrices test18: test cholmod2 on a few large matrices test19: look for NaN's from lchol (caused by Intel MKL 7.x bug) test20: test symbfact2, cholmod2, and lu on a few large matrices test21: test cholmod2 on diagonal or ill-conditioned matrices test22: test chol and chol2 and singular and indefinite matrices test23: test chol and cholmod2 on the sparse matrix used in "bench" test24: test sdmult test25: test sdmult on a large matrix test26: test logical full and sparse matrices test27: test nesdis See also test0, test1, ... test28. Added the following paths. You may wish to add them permanently using the MATLAB pathtool command. /amd/birch/export/research07/sparse/SuiteSparse/CHOLMOD/MATLAB /amd/birch/export/research07/sparse/SuiteSparse/AMD/MATLAB /amd/birch/export/research07/sparse/SuiteSparse/COLAMD /amd/birch/export/research07/sparse/SuiteSparse/CCOLAMD /amd/birch/export/research07/sparse/SuiteSparse/CAMD/MATLAB --------- Hit enter to contine: CHOLMOD_DEMO a demo for CHOLMOD Tests CHOLMOD with various randomly-generated matrices, and the west0479 matrix distributed with MATLAB. Random matrices are not good test cases, but they are easily generated. It also compares CHOLMOD and MATLAB on the sparse matrix problem used in the MATLAB BENCH command. See CHOLMOD/MATLAB/Test/test_all.m for a lengthy test using matrices from the UF sparse matrix collection. Example: cholmod_demo See also BENCH -------------------------------------------------------------- cholmod_demo: sparse matrix, n 479 nnz 7551 CHOLMOD lchol(sparse(A)) time: 0.00 mflop 83.4 CHOLMOD ldlchol(sparse(A)) time: 0.00 mflop 78.5 CHOLMOD ldlupdate(sparse(A),C) time: 0.01 (rank-1, C dense) err: 8.87659e-16 MATLAB chol(sparse(A)) time: 0.00 mflop 133.1 MATLAB chol(full(A)) time: 0.02 mflop 16.0 MATLAB cholupdate(full(A),C) time: 0.00 (rank-1) err: 2.78134e-16 CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): 0.6 CHOLMOD sparse update speedup vs MATLAB DENSE update: 0.3 -------------------------------------------------------------- cholmod_demo: sparse matrix, n 2000 nnz 17946 CHOLMOD lchol(sparse(A)) time: 0.13 mflop 1720.7 CHOLMOD ldlchol(sparse(A)) time: 0.13 mflop 1697.2 CHOLMOD ldlupdate(sparse(A),C) time: 0.16 (rank-1, C dense) err: 1.10497e-14 MATLAB chol(sparse(A)) time: 0.43 mflop 518.5 MATLAB chol(full(A)) time: 1.61 mflop 138.4 MATLAB cholupdate(full(A),C) time: 0.16 (rank-1) err: 2.58727e-14 CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): 3.3 CHOLMOD sparse update speedup vs MATLAB DENSE update: 1.0 -------------------------------------------------------------- cholmod_demo: dense matrix, n 100 CHOLMOD lchol(sparse(A)) time: 0.00 mflop 419.8 CHOLMOD ldlchol(sparse(A)) time: 0.00 mflop 373.9 CHOLMOD ldlupdate(sparse(A),C) time: 0.00 (rank-1, C dense) err: 2.67101e-16 MATLAB chol(sparse(A)) time: 0.00 mflop 313.0 MATLAB chol(full(A)) time: 0.00 mflop 735.5 MATLAB cholupdate(full(A),C) time: 0.00 (rank-1) err: 2.63339e-16 CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): 1.3 CHOLMOD sparse update speedup vs MATLAB DENSE update: 1.0 -------------------------------------------------------------- cholmod_demo: dense matrix, n 2000 CHOLMOD lchol(sparse(A)) time: 2.21 mflop 1208.8 CHOLMOD ldlchol(sparse(A)) time: 2.24 mflop 1192.4 CHOLMOD ldlupdate(sparse(A),C) time: 0.15 (rank-1, C dense) err: 1.45631e-15 MATLAB chol(sparse(A)) time: 2.66 mflop 1004.9 MATLAB chol(full(A)) time: 1.60 mflop 1672.4 MATLAB cholupdate(full(A),C) time: 0.16 (rank-1) err: 1.42948e-15 CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): 1.2 CHOLMOD sparse update speedup vs MATLAB DENSE update: 1.1 -------------------------------------------------------------- With the matrix used in the MATLAB 7.2 "bench" program. No fill-reducing orderings are used; type "help bench" for more information. MATLAB x=A\b time: 4.4297 resid: 2e-13 CHOLMOD x=A\b time: 2.3991 resid: 2e-13 CHOLMOD speedup: 1.85 cholmod_demo finished: all tests passed For more accurate timings, run this test again. ================================================================= test0: test most CHOLMOD functions Testing CHOLMOD with AMD and the UF sparse matrix collection test matrices sorted by dimension: 1440: Oberwolfach LFAT5 14 1 1438: Oberwolfach LF10 18 1 436: FIDAP ex5 27 1 23: HB bcsstk01 48 1 872: Pothen mesh1e1 48 1 873: Pothen mesh1em1 48 1 874: Pothen mesh1em6 48 1 24: HB bcsstk02 66 1 57: HB bcsstm02 66 1 220: HB nos4 100 1 25: HB bcsstk03 112 1 1506: Pajek Journals 124 1 26: HB bcsstk04 132 1 44: HB bcsstk22 138 1 72: HB bcsstm22 138 1 206: HB lund_a 147 1 207: HB lund_b 147 1 27: HB bcsstk05 153 1 60: HB bcsstm05 153 1 217: HB nos1 237 1 877: Pothen mesh3e1 289 1 878: Pothen mesh3em5 289 1 875: Pothen mesh2e1 306 1 876: Pothen mesh2em5 306 1 229: HB plat362 362 1 315: Bai mhdb416 416 1 28: HB bcsstk06 420 1 29: HB bcsstk07 420 1 61: HB bcsstm06 420 1 62: HB bcsstm07 420 1 221: HB nos5 468 1 42: HB bcsstk20 485 1 70: HB bcsstm20 485 1 2: HB 494_bus 494 1 339: Boeing bcsstk34 588 1 3: HB 662_bus 662 1 222: HB nos6 675 1 4: HB 685_bus 685 1 357: Boeing msc00726 726 1 223: HB nos7 729 1 41: HB bcsstk19 817 1 69: HB bcsstm19 817 1 159: HB gr_30_30 900 1 218: HB nos2 957 1 219: HB nos3 960 1 358: Boeing msc01050 1050 1 30: HB bcsstk08 1074 1 63: HB bcsstm08 1074 1 31: HB bcsstk09 1083 1 64: HB bcsstm09 1083 1 ================== Problem: 1440: Oberwolfach/LFAT5 n: 14 nnz: 46 title: Oberwolfach: linear 1D beam time: amd 0.0002 CHOLMOD time: L=lchol 0.0002 nnz(L): 33 CHOLMOD time: R=chol2 0.0002 nnz(R): 33 MATLAB time: R=chol 0.0002 nnz(R): 33 MATLAB [..,R]=symbfact 0.0004 nnz(R): 33 CHOLMOD speedup vs MATLAB chol: R: 0.88 L: 0.91 CHOLMOD numeric lchol vs MATLAB symbfact: 1.79 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 33 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 33 CHOLMOD time: rank-8 ldlupdate 0.0002 nnz(L) 33 no fill-in CHOLMOD time: rank-4 ldldowndate 0.0002 nnz(L) 33 no fill-in after resymbol: 33 CHOLMOD residual: 2.3e-21 MATLAB residual: 6.0e-21 CHOLMOD residual: 6.7e-21 (sparse b) MATLAB residual: 1.1e-20 (sparse b) ================== Problem: 1438: Oberwolfach/LF10 n: 18 nnz: 82 title: Oberwolfach: linear 1D beam time: amd 0.0000 CHOLMOD time: L=lchol 0.0000 nnz(L): 58 CHOLMOD time: R=chol2 0.0000 nnz(R): 58 MATLAB time: R=chol 0.0000 nnz(R): 58 MATLAB [..,R]=symbfact 0.0002 nnz(R): 58 CHOLMOD speedup vs MATLAB chol: R: 0.84 L: 1.09 CHOLMOD numeric lchol vs MATLAB symbfact: 4.67 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 58 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 58 CHOLMOD time: rank-6 ldlupdate 0.0001 nnz(L) 65 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0000 nnz(L) 65 no fill-in after resymbol: 58 CHOLMOD residual: 5.8e-18 MATLAB residual: 3.3e-18 CHOLMOD residual: 8.9e-18 (sparse b) MATLAB residual: 3.0e-18 (sparse b) ================== Problem: 436: FIDAP/ex5 n: 27 nnz: 279 title: TEST MATRIX FROM FIDAP: EX5.MAT time: amd 0.0000 CHOLMOD time: L=lchol 0.0000 nnz(L): 153 CHOLMOD time: R=chol2 0.0001 nnz(R): 153 MATLAB time: R=chol 0.0001 nnz(R): 153 MATLAB [..,R]=symbfact 0.0002 nnz(R): 153 CHOLMOD speedup vs MATLAB chol: R: 0.91 L: 1.11 CHOLMOD numeric lchol vs MATLAB symbfact: 3.83 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 153 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 153 CHOLMOD time: rank-4 ldlupdate 0.0001 nnz(L) 213 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0000 nnz(L) 213 no fill-in after resymbol: 153 CHOLMOD residual: 2.0e-15 MATLAB residual: 2.0e-15 CHOLMOD residual: 1.5e-15 (sparse b) MATLAB residual: 1.2e-15 (sparse b) ================== Problem: 23: HB/bcsstk01 n: 48 nnz: 400 title: SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 489 CHOLMOD time: R=chol2 0.0001 nnz(R): 489 MATLAB time: R=chol 0.0001 nnz(R): 489 MATLAB [..,R]=symbfact 0.0002 nnz(R): 489 CHOLMOD speedup vs MATLAB chol: R: 0.93 L: 1.04 CHOLMOD numeric lchol vs MATLAB symbfact: 2.45 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 489 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 489 CHOLMOD time: rank-3 ldlupdate 0.0001 nnz(L) 518 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0000 nnz(L) 518 no fill-in after resymbol: 489 CHOLMOD residual: 4.9e-22 MATLAB residual: 3.8e-22 CHOLMOD residual: 2.8e-22 (sparse b) MATLAB residual: 3.7e-22 (sparse b) ================== Problem: 872: Pothen/mesh1e1 n: 48 nnz: 306 title: mesh1e1, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 336 CHOLMOD time: R=chol2 0.0001 nnz(R): 336 MATLAB time: R=chol 0.0001 nnz(R): 336 MATLAB [..,R]=symbfact 0.0002 nnz(R): 336 CHOLMOD speedup vs MATLAB chol: R: 0.87 L: 1.02 CHOLMOD numeric lchol vs MATLAB symbfact: 2.80 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 336 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 336 CHOLMOD time: rank-1 ldlupdate 0.0001 nnz(L) 337 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0000 nnz(L) 337 no fill-in after resymbol: 336 CHOLMOD residual: 3.1e-16 MATLAB residual: 4.4e-16 CHOLMOD residual: 3.9e-16 (sparse b) MATLAB residual: 4.1e-16 (sparse b) ================== Problem: 873: Pothen/mesh1em1 n: 48 nnz: 306 title: mesh1em1, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 336 CHOLMOD time: R=chol2 0.0001 nnz(R): 336 MATLAB time: R=chol 0.0001 nnz(R): 336 MATLAB [..,R]=symbfact 0.0002 nnz(R): 336 CHOLMOD speedup vs MATLAB chol: R: 0.87 L: 0.99 CHOLMOD numeric lchol vs MATLAB symbfact: 2.82 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 336 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 336 CHOLMOD time: rank-2 ldlupdate 0.0001 nnz(L) 370 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0000 nnz(L) 370 no fill-in after resymbol: 336 CHOLMOD residual: 1.7e-16 MATLAB residual: 1.4e-16 CHOLMOD residual: 1.5e-16 (sparse b) MATLAB residual: 1.9e-16 (sparse b) ================== Problem: 874: Pothen/mesh1em6 n: 48 nnz: 306 title: mesh1em6, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 336 CHOLMOD time: R=chol2 0.0001 nnz(R): 336 MATLAB time: R=chol 0.0001 nnz(R): 336 MATLAB [..,R]=symbfact 0.0002 nnz(R): 336 CHOLMOD speedup vs MATLAB chol: R: 0.87 L: 0.68 CHOLMOD numeric lchol vs MATLAB symbfact: 1.89 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 336 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 336 CHOLMOD time: rank-4 ldlupdate 0.0001 nnz(L) 371 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0000 nnz(L) 371 no fill-in after resymbol: 336 CHOLMOD residual: 4.8e-16 MATLAB residual: 4.8e-16 CHOLMOD residual: 5.3e-16 (sparse b) MATLAB residual: 4.4e-16 (sparse b) ================== Problem: 24: HB/bcsstk02 n: 66 nnz: 4356 title: SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED time: amd 0.0001 CHOLMOD time: L=lchol 0.0003 nnz(L): 2211 CHOLMOD time: R=chol2 0.0004 nnz(R): 2211 MATLAB time: R=chol 0.0004 nnz(R): 2211 MATLAB [..,R]=symbfact 0.0004 nnz(R): 2211 CHOLMOD speedup vs MATLAB chol: R: 0.93 L: 1.12 CHOLMOD numeric lchol vs MATLAB symbfact: 1.16 CHOLMOD time: [L,,q]=lchol 0.0005 nnz(L): 2211 CHOLMOD time: [L,,q]=ldlchol 0.0005 nnz(L): 2211 CHOLMOD time: rank-4 ldlupdate 0.0001 nnz(L) 2211 no fill-in CHOLMOD time: rank-2 ldldowndate 0.0001 nnz(L) 2211 no fill-in after resymbol: 2211 CHOLMOD residual: 9.8e-17 MATLAB residual: 1.0e-16 CHOLMOD residual: 4.3e-17 (sparse b) MATLAB residual: 3.8e-17 (sparse b) ================== Problem: 57: HB/bcsstm02 n: 66 nnz: 66 title: SYMMETRIC MASS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED time: amd 0.0000 CHOLMOD time: L=lchol 0.0000 nnz(L): 66 CHOLMOD time: R=chol2 0.0000 nnz(R): 66 MATLAB time: R=chol 0.0000 nnz(R): 66 MATLAB [..,R]=symbfact 0.0002 nnz(R): 66 CHOLMOD speedup vs MATLAB chol: R: 0.84 L: 1.06 CHOLMOD numeric lchol vs MATLAB symbfact: 5.44 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 66 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 66 CHOLMOD time: rank-7 ldlupdate 0.0001 nnz(L) 67 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0000 nnz(L) 67 no fill-in after resymbol: 66 CHOLMOD residual: 2.4e-14 MATLAB residual: 3.2e-15 CHOLMOD residual: 1.0e-14 (sparse b) MATLAB residual: 6.4e-16 (sparse b) ================== Problem: 220: HB/nos4 n: 100 nnz: 594 title: SYMMETRIC MATRIX OF BEAM STRUCTURE, NOVEMBER 1982. time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 630 CHOLMOD time: R=chol2 0.0001 nnz(R): 630 MATLAB time: R=chol 0.0001 nnz(R): 630 MATLAB [..,R]=symbfact 0.0002 nnz(R): 632 CHOLMOD speedup vs MATLAB chol: R: 0.89 L: 0.99 CHOLMOD numeric lchol vs MATLAB symbfact: 2.13 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 632 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 632 CHOLMOD time: rank-3 ldlupdate 0.0001 nnz(L) 654 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0000 nnz(L) 654 no fill-in after resymbol: 632 CHOLMOD residual: 9.2e-13 MATLAB residual: 8.5e-13 CHOLMOD residual: 3.2e-13 (sparse b) MATLAB residual: 2.4e-13 (sparse b) ================== Problem: 25: HB/bcsstk03 n: 112 nnz: 640 title: SYMMETRIC STIFFNESS MATRIX, SMALL TEST STRUCTURE time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 380 CHOLMOD time: R=chol2 0.0001 nnz(R): 380 MATLAB time: R=chol 0.0001 nnz(R): 380 MATLAB [..,R]=symbfact 0.0002 nnz(R): 384 CHOLMOD speedup vs MATLAB chol: R: 0.88 L: 0.96 CHOLMOD numeric lchol vs MATLAB symbfact: 2.86 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 380 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 384 CHOLMOD time: rank-6 ldlupdate 0.0001 nnz(L) 445 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0000 nnz(L) 445 no fill-in after resymbol: 384 CHOLMOD residual: 1.4e-22 MATLAB residual: 2.2e-22 CHOLMOD residual: 9.8e-23 (sparse b) MATLAB residual: 2.2e-22 (sparse b) ================== Problem: 1506: Pajek/Journals n: 124 nnz: 12068 title: Pajek network: Slovenian journals 1999-2000 time: amd 0.0003 CHOLMOD time: L=lchol 0.0010 nnz(L): 6990 CHOLMOD time: R=chol2 0.0013 nnz(R): 6990 MATLAB time: R=chol 0.0013 nnz(R): 6990 MATLAB [..,R]=symbfact 0.0009 nnz(R): 6990 CHOLMOD speedup vs MATLAB chol: R: 1.04 L: 1.25 CHOLMOD numeric lchol vs MATLAB symbfact: 0.84 CHOLMOD time: [L,,q]=lchol 0.0017 nnz(L): 6990 CHOLMOD time: [L,,q]=ldlchol 0.0017 nnz(L): 6990 CHOLMOD time: rank-8 ldlupdate 0.0002 nnz(L) 6990 no fill-in CHOLMOD time: rank-4 ldldowndate 0.0002 nnz(L) 6990 no fill-in after resymbol: 6990 CHOLMOD residual: 5.1e-19 MATLAB residual: 5.3e-19 CHOLMOD residual: 2.5e-19 (sparse b) MATLAB residual: 2.7e-19 (sparse b) ================== Problem: 26: HB/bcsstk04 n: 132 nnz: 3648 title: SYMMETRIC STIFFNESS MATRIX, OIL RIG, NOT CONDENSED (SAME MODEL AS X02) time: amd 0.0002 CHOLMOD time: L=lchol 0.0005 nnz(L): 3291 CHOLMOD time: R=chol2 0.0005 nnz(R): 3291 MATLAB time: R=chol 0.0005 nnz(R): 3291 MATLAB [..,R]=symbfact 0.0004 nnz(R): 3293 CHOLMOD speedup vs MATLAB chol: R: 1.02 L: 1.01 CHOLMOD numeric lchol vs MATLAB symbfact: 0.85 CHOLMOD time: [L,,q]=lchol 0.0007 nnz(L): 3291 CHOLMOD time: [L,,q]=ldlchol 0.0007 nnz(L): 3293 CHOLMOD time: rank-1 ldlupdate 0.0002 nnz(L) 3570 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0001 nnz(L) 3570 no fill-in after resymbol: 3293 CHOLMOD residual: 1.4e-18 MATLAB residual: 1.6e-18 CHOLMOD residual: 4.2e-19 (sparse b) MATLAB residual: 3.5e-19 (sparse b) ================== Problem: 44: HB/bcsstk22 n: 138 nnz: 696 title: SYMMETRIC STIFFNESS MATRIX - TEXTILE LOOM FRAME time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 680 CHOLMOD time: R=chol2 0.0001 nnz(R): 680 MATLAB time: R=chol 0.0001 nnz(R): 680 MATLAB [..,R]=symbfact 0.0002 nnz(R): 680 CHOLMOD speedup vs MATLAB chol: R: 0.91 L: 0.99 CHOLMOD numeric lchol vs MATLAB symbfact: 2.08 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 680 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 680 CHOLMOD time: rank-6 ldlupdate 0.0001 nnz(L) 685 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 685 no fill-in after resymbol: 680 CHOLMOD residual: 1.3e-18 MATLAB residual: 1.2e-18 CHOLMOD residual: 2.3e-19 (sparse b) MATLAB residual: 2.2e-19 (sparse b) ================== Problem: 72: HB/bcsstm22 n: 138 nnz: 138 title: SYMMETRIC MASS MATRIX - TEXTILE LOOM FRAME time: amd 0.0000 CHOLMOD time: L=lchol 0.0000 nnz(L): 138 CHOLMOD time: R=chol2 0.0001 nnz(R): 138 MATLAB time: R=chol 0.0001 nnz(R): 138 MATLAB [..,R]=symbfact 0.0002 nnz(R): 138 CHOLMOD speedup vs MATLAB chol: R: 0.90 L: 1.08 CHOLMOD numeric lchol vs MATLAB symbfact: 3.65 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 138 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 138 CHOLMOD time: rank-5 ldlupdate 0.0001 nnz(L) 139 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0000 nnz(L) 139 no fill-in after resymbol: 138 CHOLMOD residual: 5.7e-10 MATLAB residual: 1.2e-13 CHOLMOD residual: 1.5e-11 (sparse b) MATLAB residual: 6.7e-14 (sparse b) ================== Problem: 206: HB/lund_a n: 147 nnz: 2449 title: SYMMETRIC MATRIX A OF LUND EIGENVALUE PROBLEM, MAY 1974 time: amd 0.0002 CHOLMOD time: L=lchol 0.0003 nnz(L): 2339 CHOLMOD time: R=chol2 0.0003 nnz(R): 2339 MATLAB time: R=chol 0.0003 nnz(R): 2339 MATLAB [..,R]=symbfact 0.0003 nnz(R): 2339 CHOLMOD speedup vs MATLAB chol: R: 0.99 L: 0.96 CHOLMOD numeric lchol vs MATLAB symbfact: 1.09 CHOLMOD time: [L,,q]=lchol 0.0004 nnz(L): 2339 CHOLMOD time: [L,,q]=ldlchol 0.0004 nnz(L): 2339 CHOLMOD time: rank-5 ldlupdate 0.0001 nnz(L) 2354 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0001 nnz(L) 2354 no fill-in after resymbol: 2339 CHOLMOD residual: 1.1e-18 MATLAB residual: 8.2e-19 CHOLMOD residual: 5.8e-20 (sparse b) MATLAB residual: 6.4e-20 (sparse b) ================== Problem: 207: HB/lund_b n: 147 nnz: 2441 title: SYMMETRIC MATRIX B OF LUND EIGENVALUE PROBLEM, MAY 1974 time: amd 0.0001 CHOLMOD time: L=lchol 0.0003 nnz(L): 2340 CHOLMOD time: R=chol2 0.0003 nnz(R): 2340 MATLAB time: R=chol 0.0003 nnz(R): 2340 MATLAB [..,R]=symbfact 0.0003 nnz(R): 2340 CHOLMOD speedup vs MATLAB chol: R: 1.07 L: 1.07 CHOLMOD numeric lchol vs MATLAB symbfact: 1.12 CHOLMOD time: [L,,q]=lchol 0.0004 nnz(L): 2340 CHOLMOD time: [L,,q]=ldlchol 0.0004 nnz(L): 2340 CHOLMOD time: rank-6 ldlupdate 0.0001 nnz(L) 2481 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 2481 no fill-in after resymbol: 2340 CHOLMOD residual: 1.2e-16 MATLAB residual: 1.2e-16 CHOLMOD residual: 8.7e-17 (sparse b) MATLAB residual: 8.7e-17 (sparse b) ================== Problem: 27: HB/bcsstk05 n: 153 nnz: 2423 title: SYMMETRIC STIFFNESS MATRIX, TRANSMISSION TOWER, LUMPED MASSES time: amd 0.0002 CHOLMOD time: L=lchol 0.0003 nnz(L): 2326 CHOLMOD time: R=chol2 0.0003 nnz(R): 2326 MATLAB time: R=chol 0.0003 nnz(R): 2326 MATLAB [..,R]=symbfact 0.0003 nnz(R): 2326 CHOLMOD speedup vs MATLAB chol: R: 0.97 L: 0.90 CHOLMOD numeric lchol vs MATLAB symbfact: 1.05 CHOLMOD time: [L,,q]=lchol 0.0005 nnz(L): 2326 CHOLMOD time: [L,,q]=ldlchol 0.0005 nnz(L): 2326 CHOLMOD time: rank-4 ldlupdate 0.0002 nnz(L) 2572 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0001 nnz(L) 2572 no fill-in after resymbol: 2326 CHOLMOD residual: 1.5e-18 MATLAB residual: 1.2e-18 CHOLMOD residual: 3.8e-19 (sparse b) MATLAB residual: 3.3e-19 (sparse b) ================== Problem: 60: HB/bcsstm05 n: 153 nnz: 153 title: SYMMETRIC MASS MATRIX, TRANSMISSION TOWER, LUMPED MASSES time: amd 0.0000 CHOLMOD time: L=lchol 0.0001 nnz(L): 153 CHOLMOD time: R=chol2 0.0001 nnz(R): 153 MATLAB time: R=chol 0.0001 nnz(R): 153 MATLAB [..,R]=symbfact 0.0002 nnz(R): 153 CHOLMOD speedup vs MATLAB chol: R: 0.81 L: 0.94 CHOLMOD numeric lchol vs MATLAB symbfact: 3.33 CHOLMOD time: [L,,q]=lchol 0.0001 nnz(L): 153 CHOLMOD time: [L,,q]=ldlchol 0.0001 nnz(L): 153 CHOLMOD time: rank-1 ldlupdate 0.0001 nnz(L) 154 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0000 nnz(L) 154 no fill-in after resymbol: 153 CHOLMOD residual: 1.8e-15 MATLAB residual: 1.7e-15 CHOLMOD residual: 8.8e-16 (sparse b) MATLAB residual: 8.8e-16 (sparse b) ================== Problem: 217: HB/nos1 n: 237 nnz: 1017 title: SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON BEAM. time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 704 CHOLMOD time: R=chol2 0.0001 nnz(R): 704 MATLAB time: R=chol 0.0001 nnz(R): 704 MATLAB [..,R]=symbfact 0.0002 nnz(R): 704 CHOLMOD speedup vs MATLAB chol: R: 0.88 L: 0.92 CHOLMOD numeric lchol vs MATLAB symbfact: 2.11 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 704 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 704 CHOLMOD time: rank-3 ldlupdate 0.0001 nnz(L) 896 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0001 nnz(L) 896 no fill-in after resymbol: 704 CHOLMOD residual: 2.1e-18 MATLAB residual: 2.2e-18 CHOLMOD residual: 2.5e-19 (sparse b) MATLAB residual: 2.7e-19 (sparse b) ================== Problem: 877: Pothen/mesh3e1 n: 289 nnz: 1377 title: mesh3e1, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0002 CHOLMOD time: L=lchol 0.0003 nnz(L): 2433 CHOLMOD time: R=chol2 0.0003 nnz(R): 2433 MATLAB time: R=chol 0.0003 nnz(R): 2433 MATLAB [..,R]=symbfact 0.0003 nnz(R): 2433 CHOLMOD speedup vs MATLAB chol: R: 0.92 L: 0.94 CHOLMOD numeric lchol vs MATLAB symbfact: 1.18 CHOLMOD time: [L,,q]=lchol 0.0006 nnz(L): 2433 CHOLMOD time: [L,,q]=ldlchol 0.0005 nnz(L): 2433 CHOLMOD time: rank-4 ldlupdate 0.0001 nnz(L) 2433 no fill-in CHOLMOD time: rank-2 ldldowndate 0.0001 nnz(L) 2433 no fill-in after resymbol: 2433 CHOLMOD residual: 2.8e-15 MATLAB residual: 2.9e-15 CHOLMOD residual: 3.9e-15 (sparse b) MATLAB residual: 3.8e-15 (sparse b) ================== Problem: 878: Pothen/mesh3em5 n: 289 nnz: 1377 title: mesh3em5, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0002 CHOLMOD time: L=lchol 0.0003 nnz(L): 2433 CHOLMOD time: R=chol2 0.0003 nnz(R): 2433 MATLAB time: R=chol 0.0003 nnz(R): 2433 MATLAB [..,R]=symbfact 0.0003 nnz(R): 2433 CHOLMOD speedup vs MATLAB chol: R: 0.92 L: 0.93 CHOLMOD numeric lchol vs MATLAB symbfact: 1.17 CHOLMOD time: [L,,q]=lchol 0.0006 nnz(L): 2433 CHOLMOD time: [L,,q]=ldlchol 0.0006 nnz(L): 2433 CHOLMOD time: rank-7 ldlupdate 0.0002 nnz(L) 2538 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 2538 no fill-in after resymbol: 2433 CHOLMOD residual: 4.7e-15 MATLAB residual: 4.9e-15 CHOLMOD residual: 5.3e-15 (sparse b) MATLAB residual: 5.1e-15 (sparse b) ================== Problem: 875: Pothen/mesh2e1 n: 306 nnz: 2018 title: mesh2e1, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0003 CHOLMOD time: L=lchol 0.0004 nnz(L): 3224 CHOLMOD time: R=chol2 0.0004 nnz(R): 3224 MATLAB time: R=chol 0.0004 nnz(R): 3224 MATLAB [..,R]=symbfact 0.0004 nnz(R): 3224 CHOLMOD speedup vs MATLAB chol: R: 0.96 L: 0.96 CHOLMOD numeric lchol vs MATLAB symbfact: 1.06 CHOLMOD time: [L,,q]=lchol 0.0007 nnz(L): 3224 CHOLMOD time: [L,,q]=ldlchol 0.0007 nnz(L): 3224 CHOLMOD time: rank-7 ldlupdate 0.0002 nnz(L) 3508 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 3508 no fill-in after resymbol: 3224 CHOLMOD residual: 1.8e-16 MATLAB residual: 2.2e-16 CHOLMOD residual: 4.0e-16 (sparse b) MATLAB residual: 3.9e-16 (sparse b) ================== Problem: 876: Pothen/mesh2em5 n: 306 nnz: 2018 title: mesh2em5, with coordinates. From NASA, collected by Alex Pothen time: amd 0.0003 CHOLMOD time: L=lchol 0.0004 nnz(L): 3224 CHOLMOD time: R=chol2 0.0004 nnz(R): 3224 MATLAB time: R=chol 0.0004 nnz(R): 3224 MATLAB [..,R]=symbfact 0.0004 nnz(R): 3224 CHOLMOD speedup vs MATLAB chol: R: 1.03 L: 1.04 CHOLMOD numeric lchol vs MATLAB symbfact: 1.01 CHOLMOD time: [L,,q]=lchol 0.0007 nnz(L): 3224 CHOLMOD time: [L,,q]=ldlchol 0.0007 nnz(L): 3224 CHOLMOD time: rank-7 ldlupdate 0.0001 nnz(L) 3224 no fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 3224 no fill-in after resymbol: 3224 CHOLMOD residual: 1.7e-16 MATLAB residual: 2.2e-16 CHOLMOD residual: 2.2e-16 (sparse b) MATLAB residual: 3.0e-16 (sparse b) ================== Problem: 229: HB/plat362 n: 362 nnz: 5786 title: SPLATZMAN FINITE DIFFERENCE MODEL OF ATLANTICOCEAN time: amd 0.0004 CHOLMOD time: L=lchol 0.0010 nnz(L): 8060 CHOLMOD time: R=chol2 0.0010 nnz(R): 8060 MATLAB time: R=chol 0.0011 nnz(R): 8060 MATLAB [..,R]=symbfact 0.0007 nnz(R): 8060 CHOLMOD speedup vs MATLAB chol: R: 1.07 L: 1.12 CHOLMOD numeric lchol vs MATLAB symbfact: 0.70 CHOLMOD time: [L,,q]=lchol 0.0015 nnz(L): 8060 CHOLMOD time: [L,,q]=ldlchol 0.0015 nnz(L): 8060 CHOLMOD time: rank-5 ldlupdate 0.0007 nnz(L) 9872 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0002 nnz(L) 9872 no fill-in after resymbol: 8060 CHOLMOD residual: 3.5e-05 MATLAB residual: 1.4e-05 CHOLMOD residual: 2.6e-05 (sparse b) MATLAB residual: 1.0e-05 (sparse b) ================== Problem: 315: Bai/mhdb416 n: 416 nnz: 2312 title: MAGNETO-HYDRO-DYNAMICS ALFVEN SPECTRAL PROBLEM time: amd 0.0001 CHOLMOD time: L=lchol 0.0002 nnz(L): 1364 CHOLMOD time: R=chol2 0.0002 nnz(R): 1364 MATLAB time: R=chol 0.0002 nnz(R): 1364 MATLAB [..,R]=symbfact 0.0003 nnz(R): 1364 CHOLMOD speedup vs MATLAB chol: R: 0.87 L: 0.85 CHOLMOD numeric lchol vs MATLAB symbfact: 1.53 CHOLMOD time: [L,,q]=lchol 0.0004 nnz(L): 1364 CHOLMOD time: [L,,q]=ldlchol 0.0004 nnz(L): 1364 CHOLMOD time: rank-5 ldlupdate 0.0001 nnz(L) 1369 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0001 nnz(L) 1369 no fill-in after resymbol: 1364 CHOLMOD residual: 6.7e-11 MATLAB residual: 7.0e-11 CHOLMOD residual: 3.4e-11 (sparse b) MATLAB residual: 1.6e-11 (sparse b) ================== Problem: 28: HB/bcsstk06 n: 420 nnz: 7860 title: SYMMETRIC STIFFNESS MATRIX, MEDIUM TEST PROBLEM, LUMPED MASSES time: amd 0.0004 CHOLMOD time: L=lchol 0.0015 nnz(L): 11345 CHOLMOD time: R=chol2 0.0016 nnz(R): 11345 MATLAB time: R=chol 0.0017 nnz(R): 11345 MATLAB [..,R]=symbfact 0.0009 nnz(R): 11345 CHOLMOD speedup vs MATLAB chol: R: 1.06 L: 1.10 CHOLMOD numeric lchol vs MATLAB symbfact: 0.58 CHOLMOD time: [L,,q]=lchol 0.0021 nnz(L): 11345 CHOLMOD time: [L,,q]=ldlchol 0.0020 nnz(L): 11345 CHOLMOD time: rank-5 ldlupdate 0.0008 nnz(L) 12897 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0003 nnz(L) 12897 no fill-in after resymbol: 11345 CHOLMOD residual: 4.8e-20 MATLAB residual: 4.8e-20 CHOLMOD residual: 2.4e-20 (sparse b) MATLAB residual: 2.6e-20 (sparse b) ================== Problem: 29: HB/bcsstk07 n: 420 nnz: 7860 title: SYMMETRIC STIFFNESS MATRIX, MEDIUM TEST PROBLEM, CONSISTENT MASSES time: amd 0.0004 CHOLMOD time: L=lchol 0.0015 nnz(L): 11345 CHOLMOD time: R=chol2 0.0016 nnz(R): 11345 MATLAB time: R=chol 0.0017 nnz(R): 11345 MATLAB [..,R]=symbfact 0.0009 nnz(R): 11345 CHOLMOD speedup vs MATLAB chol: R: 1.11 L: 1.17 CHOLMOD numeric lchol vs MATLAB symbfact: 0.60 CHOLMOD time: [L,,q]=lchol 0.0021 nnz(L): 11345 CHOLMOD time: [L,,q]=ldlchol 0.0020 nnz(L): 11345 CHOLMOD time: rank-1 ldlupdate 0.0006 nnz(L) 11385 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0002 nnz(L) 11385 no fill-in after resymbol: 11345 CHOLMOD residual: 3.9e-20 MATLAB residual: 4.1e-20 CHOLMOD residual: 1.5e-20 (sparse b) MATLAB residual: 1.4e-20 (sparse b) ================== Problem: 61: HB/bcsstm06 n: 420 nnz: 420 title: SYMMETRIC MASS MATRIX, MEDIUM TEST PROBLEM, LUMPED MASSES time: amd 0.0001 CHOLMOD time: L=lchol 0.0001 nnz(L): 420 CHOLMOD time: R=chol2 0.0001 nnz(R): 420 MATLAB time: R=chol 0.0001 nnz(R): 420 MATLAB [..,R]=symbfact 0.0003 nnz(R): 420 CHOLMOD speedup vs MATLAB chol: R: 0.83 L: 0.90 CHOLMOD numeric lchol vs MATLAB symbfact: 2.86 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 420 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 420 CHOLMOD time: rank-5 ldlupdate 0.0001 nnz(L) 421 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0000 nnz(L) 421 no fill-in after resymbol: 420 CHOLMOD residual: 4.2e-19 MATLAB residual: 4.0e-19 CHOLMOD residual: 2.0e-19 (sparse b) MATLAB residual: 2.0e-19 (sparse b) ================== Problem: 62: HB/bcsstm07 n: 420 nnz: 7252 title: SYMMETRIC MASS MATRIX, MEDIUM TEST PROBLEM, CONSISTENT MASSES time: amd 0.0004 CHOLMOD time: L=lchol 0.0014 nnz(L): 10654 CHOLMOD time: R=chol2 0.0015 nnz(R): 10654 MATLAB time: R=chol 0.0015 nnz(R): 10654 MATLAB [..,R]=symbfact 0.0009 nnz(R): 10654 CHOLMOD speedup vs MATLAB chol: R: 1.03 L: 1.08 CHOLMOD numeric lchol vs MATLAB symbfact: 0.61 CHOLMOD time: [L,,q]=lchol 0.0020 nnz(L): 10654 CHOLMOD time: [L,,q]=ldlchol 0.0019 nnz(L): 10654 CHOLMOD time: rank-6 ldlupdate 0.0005 nnz(L) 10730 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0003 nnz(L) 10730 no fill-in after resymbol: 10654 CHOLMOD residual: 2.0e-16 MATLAB residual: 1.8e-16 CHOLMOD residual: 1.7e-16 (sparse b) MATLAB residual: 1.4e-16 (sparse b) ================== Problem: 221: HB/nos5 n: 468 nnz: 5172 title: SYMMETRIC MATRIX, FE APPROXIMATION OF BUILDING. time: amd 0.0008 CHOLMOD time: L=lchol 0.0024 nnz(L): 18436 CHOLMOD time: R=chol2 0.0028 nnz(R): 18436 MATLAB time: R=chol 0.0028 nnz(R): 18436 MATLAB [..,R]=symbfact 0.0012 nnz(R): 18437 CHOLMOD speedup vs MATLAB chol: R: 1.00 L: 1.20 CHOLMOD numeric lchol vs MATLAB symbfact: 0.53 CHOLMOD time: [L,,q]=lchol 0.0036 nnz(L): 18436 CHOLMOD time: [L,,q]=ldlchol 0.0038 nnz(L): 18437 CHOLMOD time: rank-7 ldlupdate 0.0016 nnz(L) 19563 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0004 nnz(L) 19563 no fill-in after resymbol: 18437 CHOLMOD residual: 2.0e-17 MATLAB residual: 1.8e-17 CHOLMOD residual: 3.2e-18 (sparse b) MATLAB residual: 3.8e-18 (sparse b) ================== Problem: 42: HB/bcsstk20 n: 485 nnz: 3135 title: SYMMETRIC STIFFNESS MATRIX - FRAME WITHIN A SUSPENSION BRIDGE time: amd 0.0002 CHOLMOD time: L=lchol 0.0003 nnz(L): 2310 CHOLMOD time: R=chol2 0.0003 nnz(R): 2310 MATLAB time: R=chol 0.0003 nnz(R): 2310 MATLAB [..,R]=symbfact 0.0004 nnz(R): 2336 CHOLMOD speedup vs MATLAB chol: R: 0.91 L: 0.90 CHOLMOD numeric lchol vs MATLAB symbfact: 1.31 CHOLMOD time: [L,,q]=lchol 0.0006 nnz(L): 2310 CHOLMOD time: [L,,q]=ldlchol 0.0006 nnz(L): 2336 CHOLMOD time: rank-7 ldlupdate 0.0002 nnz(L) 2548 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 2548 no fill-in after resymbol: 2336 CHOLMOD residual: 7.4e-22 MATLAB residual: 7.1e-22 CHOLMOD residual: 5.6e-23 (sparse b) MATLAB residual: 9.0e-23 (sparse b) ================== Problem: 70: HB/bcsstm20 n: 485 nnz: 485 title: SYMMETRIC MASS MATRIX - FRAME WITHIN A SUSPENSION BRIDGE time: amd 0.0004 CHOLMOD time: L=lchol 0.0001 nnz(L): 485 CHOLMOD time: R=chol2 0.0001 nnz(R): 485 MATLAB time: R=chol 0.0001 nnz(R): 485 MATLAB [..,R]=symbfact 0.0002 nnz(R): 485 CHOLMOD speedup vs MATLAB chol: R: 0.83 L: 0.81 CHOLMOD numeric lchol vs MATLAB symbfact: 2.04 CHOLMOD time: [L,,q]=lchol 0.0002 nnz(L): 485 CHOLMOD time: [L,,q]=ldlchol 0.0002 nnz(L): 485 CHOLMOD time: rank-8 ldlupdate 0.0001 nnz(L) 486 with fill-in CHOLMOD time: rank-4 ldldowndate 0.0000 nnz(L) 486 no fill-in after resymbol: 485 CHOLMOD residual: 1.0e-22 MATLAB residual: 9.8e-23 CHOLMOD residual: 5.0e-23 (sparse b) MATLAB residual: 4.5e-23 (sparse b) ================== Problem: 2: HB/494_bus n: 494 nnz: 1666 title: S ADMITTANCE MATRIX 494 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985. time: amd 0.0002 CHOLMOD time: L=lchol 0.0002 nnz(L): 1414 CHOLMOD time: R=chol2 0.0002 nnz(R): 1414 MATLAB time: R=chol 0.0002 nnz(R): 1414 MATLAB [..,R]=symbfact 0.0004 nnz(R): 1414 CHOLMOD speedup vs MATLAB chol: R: 0.88 L: 0.87 CHOLMOD numeric lchol vs MATLAB symbfact: 1.46 CHOLMOD time: [L,,q]=lchol 0.0006 nnz(L): 1414 CHOLMOD time: [L,,q]=ldlchol 0.0005 nnz(L): 1414 CHOLMOD time: rank-6 ldlupdate 0.0001 nnz(L) 1499 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 1499 no fill-in after resymbol: 1414 CHOLMOD residual: 2.5e-14 MATLAB residual: 2.0e-14 CHOLMOD residual: 1.4e-15 (sparse b) MATLAB residual: 1.8e-15 (sparse b) ================== Problem: 339: Boeing/bcsstk34 n: 588 nnz: 21418 title: NASTRAN BUCKLING PROBLEM STIFFNESS MATRIX time: amd 0.0010 CHOLMOD time: L=lchol 0.0055 nnz(L): 43351 CHOLMOD time: R=chol2 0.0069 nnz(R): 43351 MATLAB time: R=chol 0.0070 nnz(R): 43351 MATLAB [..,R]=symbfact 0.0036 nnz(R): 43366 CHOLMOD speedup vs MATLAB chol: R: 1.02 L: 1.28 CHOLMOD numeric lchol vs MATLAB symbfact: 0.65 CHOLMOD time: [L,,q]=lchol 0.0073 nnz(L): 43351 CHOLMOD time: [L,,q]=ldlchol 0.0076 nnz(L): 43366 CHOLMOD time: rank-4 ldlupdate 0.0036 nnz(L) 48749 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0012 nnz(L) 48749 no fill-in after resymbol: 43366 CHOLMOD residual: 2.9e-20 MATLAB residual: 3.0e-20 CHOLMOD residual: 2.6e-20 (sparse b) MATLAB residual: 2.6e-20 (sparse b) ================== Problem: 3: HB/662_bus n: 662 nnz: 2474 title: S ADMITTANCE MATRIX 662 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985. time: amd 0.0004 CHOLMOD time: L=lchol 0.0004 nnz(L): 2549 CHOLMOD time: R=chol2 0.0004 nnz(R): 2549 MATLAB time: R=chol 0.0003 nnz(R): 2549 MATLAB [..,R]=symbfact 0.0005 nnz(R): 2549 CHOLMOD speedup vs MATLAB chol: R: 0.89 L: 0.88 CHOLMOD numeric lchol vs MATLAB symbfact: 1.20 CHOLMOD time: [L,,q]=lchol 0.0009 nnz(L): 2549 CHOLMOD time: [L,,q]=ldlchol 0.0008 nnz(L): 2549 CHOLMOD time: rank-6 ldlupdate 0.0002 nnz(L) 2589 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 2589 no fill-in after resymbol: 2549 CHOLMOD residual: 1.4e-13 MATLAB residual: 2.0e-13 CHOLMOD residual: 7.1e-15 (sparse b) MATLAB residual: 8.7e-15 (sparse b) ================== Problem: 222: HB/nos6 n: 675 nnz: 3255 title: SYMMETRIC MATRIX, POISSON'S EQUATION IN L SHAPE, MIXED BC. time: amd 0.0005 CHOLMOD time: L=lchol 0.0007 nnz(L): 6453 CHOLMOD time: R=chol2 0.0007 nnz(R): 6453 MATLAB time: R=chol 0.0007 nnz(R): 6453 MATLAB [..,R]=symbfact 0.0006 nnz(R): 6453 CHOLMOD speedup vs MATLAB chol: R: 1.01 L: 1.00 CHOLMOD numeric lchol vs MATLAB symbfact: 0.85 CHOLMOD time: [L,,q]=lchol 0.0013 nnz(L): 6453 CHOLMOD time: [L,,q]=ldlchol 0.0013 nnz(L): 6453 CHOLMOD time: rank-2 ldlupdate 0.0004 nnz(L) 6600 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0001 nnz(L) 6600 no fill-in after resymbol: 6453 CHOLMOD residual: 3.3e-15 MATLAB residual: 3.6e-15 CHOLMOD residual: 2.1e-16 (sparse b) MATLAB residual: 2.1e-16 (sparse b) ================== Problem: 4: HB/685_bus n: 685 nnz: 3249 title: S ADMITTANCE MATRIX 685 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985. time: amd 0.0005 CHOLMOD time: L=lchol 0.0005 nnz(L): 3650 CHOLMOD time: R=chol2 0.0005 nnz(R): 3650 MATLAB time: R=chol 0.0005 nnz(R): 3650 MATLAB [..,R]=symbfact 0.0005 nnz(R): 3650 CHOLMOD speedup vs MATLAB chol: R: 0.98 L: 0.98 CHOLMOD numeric lchol vs MATLAB symbfact: 1.07 CHOLMOD time: [L,,q]=lchol 0.0011 nnz(L): 3650 CHOLMOD time: [L,,q]=ldlchol 0.0011 nnz(L): 3650 CHOLMOD time: rank-1 ldlupdate 0.0002 nnz(L) 3717 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0001 nnz(L) 3717 no fill-in after resymbol: 3650 CHOLMOD residual: 4.5e-15 MATLAB residual: 6.8e-15 CHOLMOD residual: 2.4e-16 (sparse b) MATLAB residual: 3.3e-16 (sparse b) ================== Problem: 357: Boeing/msc00726 n: 726 nnz: 34518 title: SYMMETRIC TEST MATRIX FROM MSC/NASTRAN BC4F8.OUT2 time: amd 0.0021 CHOLMOD time: L=lchol 0.0173 nnz(L): 110707 CHOLMOD time: R=chol2 0.0214 nnz(R): 110707 MATLAB time: R=chol 0.0218 nnz(R): 110707 MATLAB [..,R]=symbfact 0.0085 nnz(R): 110707 CHOLMOD speedup vs MATLAB chol: R: 1.02 L: 1.26 CHOLMOD numeric lchol vs MATLAB symbfact: 0.49 CHOLMOD time: [L,,q]=lchol 0.0213 nnz(L): 110707 CHOLMOD time: [L,,q]=ldlchol 0.1228 nnz(L): 110707 CHOLMOD time: rank-6 ldlupdate 0.0058 nnz(L) 110715 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0028 nnz(L) 110715 no fill-in after resymbol: 110707 CHOLMOD residual: 2.7e-21 MATLAB residual: 2.8e-21 CHOLMOD residual: 3.9e-22 (sparse b) MATLAB residual: 3.9e-22 (sparse b) ================== Problem: 223: HB/nos7 n: 729 nnz: 4617 title: SYMMETRIC MATRIX, POISSON'S EQUATION IN UNIT CUBE. time: amd 0.0008 CHOLMOD time: L=lchol 0.0027 nnz(L): 18945 CHOLMOD time: R=chol2 0.0035 nnz(R): 18945 MATLAB time: R=chol 0.0034 nnz(R): 18945 MATLAB [..,R]=symbfact 0.0013 nnz(R): 18945 CHOLMOD speedup vs MATLAB chol: R: 0.99 L: 1.24 CHOLMOD numeric lchol vs MATLAB symbfact: 0.48 CHOLMOD time: [L,,q]=lchol 0.0042 nnz(L): 18945 CHOLMOD time: [L,,q]=ldlchol 0.0044 nnz(L): 18945 CHOLMOD time: rank-3 ldlupdate 0.0012 nnz(L) 19170 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0005 nnz(L) 19170 no fill-in after resymbol: 18945 CHOLMOD residual: 2.2e-13 MATLAB residual: 2.6e-13 CHOLMOD residual: 9.3e-15 (sparse b) MATLAB residual: 9.4e-15 (sparse b) ================== Problem: 41: HB/bcsstk19 n: 817 nnz: 6853 title: SYMMETRIC STIFFNESS MATRIX - PART OF A SUSPENSION BRIDGE time: amd 0.0005 CHOLMOD time: L=lchol 0.0009 nnz(L): 7528 CHOLMOD time: R=chol2 0.0009 nnz(R): 7528 MATLAB time: R=chol 0.0009 nnz(R): 7528 MATLAB [..,R]=symbfact 0.0008 nnz(R): 7528 CHOLMOD speedup vs MATLAB chol: R: 0.98 L: 0.95 CHOLMOD numeric lchol vs MATLAB symbfact: 0.90 CHOLMOD time: [L,,q]=lchol 0.0016 nnz(L): 7528 CHOLMOD time: [L,,q]=ldlchol 0.0016 nnz(L): 7528 CHOLMOD time: rank-6 ldlupdate 0.0006 nnz(L) 7558 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0002 nnz(L) 7558 no fill-in after resymbol: 7528 CHOLMOD residual: 2.8e-20 MATLAB residual: 3.2e-20 CHOLMOD residual: 7.6e-21 (sparse b) MATLAB residual: 5.7e-21 (sparse b) ================== Problem: 69: HB/bcsstm19 n: 817 nnz: 817 title: SYMMETRIC MASS MATRIX - PART OF A SUSPENSION BRIDGE time: amd 0.0001 CHOLMOD time: L=lchol 0.0002 nnz(L): 817 CHOLMOD time: R=chol2 0.0002 nnz(R): 817 MATLAB time: R=chol 0.0002 nnz(R): 817 MATLAB [..,R]=symbfact 0.0003 nnz(R): 817 CHOLMOD speedup vs MATLAB chol: R: 0.81 L: 0.79 CHOLMOD numeric lchol vs MATLAB symbfact: 1.67 CHOLMOD time: [L,,q]=lchol 0.0003 nnz(L): 817 CHOLMOD time: [L,,q]=ldlchol 0.0003 nnz(L): 817 CHOLMOD time: rank-2 ldlupdate 0.0001 nnz(L) 818 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0001 nnz(L) 818 no fill-in after resymbol: 817 CHOLMOD residual: 2.0e-22 MATLAB residual: 2.0e-22 CHOLMOD residual: 1.0e-22 (sparse b) MATLAB residual: 1.0e-22 (sparse b) ================== Problem: 159: HB/gr_30_30 n: 900 nnz: 7744 title: SYMMETRIC MATRIX FROM NINE POINT START ON A 30 X 30 GRID. time: amd 0.0007 CHOLMOD time: L=lchol 0.0020 nnz(L): 16348 CHOLMOD time: R=chol2 0.0021 nnz(R): 16348 MATLAB time: R=chol 0.0022 nnz(R): 16348 MATLAB [..,R]=symbfact 0.0012 nnz(R): 16348 CHOLMOD speedup vs MATLAB chol: R: 1.02 L: 1.10 CHOLMOD numeric lchol vs MATLAB symbfact: 0.61 CHOLMOD time: [L,,q]=lchol 0.0030 nnz(L): 16348 CHOLMOD time: [L,,q]=ldlchol 0.0029 nnz(L): 16348 CHOLMOD time: rank-8 ldlupdate 0.0013 nnz(L) 17998 with fill-in CHOLMOD time: rank-4 ldldowndate 0.0004 nnz(L) 17998 no fill-in after resymbol: 16348 CHOLMOD residual: 4.1e-13 MATLAB residual: 4.4e-13 CHOLMOD residual: 2.4e-14 (sparse b) MATLAB residual: 2.7e-14 (sparse b) ================== Problem: 218: HB/nos2 n: 957 nnz: 4137 title: SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON BEAM. time: amd 0.0003 CHOLMOD time: L=lchol 0.0004 nnz(L): 2864 CHOLMOD time: R=chol2 0.0004 nnz(R): 2864 MATLAB time: R=chol 0.0003 nnz(R): 2864 MATLAB [..,R]=symbfact 0.0005 nnz(R): 2864 CHOLMOD speedup vs MATLAB chol: R: 0.88 L: 0.83 CHOLMOD numeric lchol vs MATLAB symbfact: 1.25 CHOLMOD time: [L,,q]=lchol 0.0008 nnz(L): 2864 CHOLMOD time: [L,,q]=ldlchol 0.0008 nnz(L): 2864 CHOLMOD time: rank-8 ldlupdate 0.0003 nnz(L) 3124 with fill-in CHOLMOD time: rank-4 ldldowndate 0.0002 nnz(L) 3124 no fill-in after resymbol: 2864 CHOLMOD residual: 3.5e-17 MATLAB residual: 3.8e-17 CHOLMOD residual: 4.8e-18 (sparse b) MATLAB residual: 4.6e-18 (sparse b) ================== Problem: 219: HB/nos3 n: 960 nnz: 15844 title: SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON PLATE time: amd 0.0009 CHOLMOD time: L=lchol 0.0039 nnz(L): 31309 CHOLMOD time: R=chol2 0.0049 nnz(R): 31309 MATLAB time: R=chol 0.0049 nnz(R): 31309 MATLAB [..,R]=symbfact 0.0027 nnz(R): 31314 CHOLMOD speedup vs MATLAB chol: R: 0.99 L: 1.24 CHOLMOD numeric lchol vs MATLAB symbfact: 0.70 CHOLMOD time: [L,,q]=lchol 0.0055 nnz(L): 31311 CHOLMOD time: [L,,q]=ldlchol 0.0057 nnz(L): 31314 CHOLMOD time: rank-7 ldlupdate 0.0026 nnz(L) 36618 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0010 nnz(L) 36618 no fill-in after resymbol: 31314 CHOLMOD residual: 1.9e-13 MATLAB residual: 1.9e-13 CHOLMOD residual: 7.0e-15 (sparse b) MATLAB residual: 7.0e-15 (sparse b) ================== Problem: 358: Boeing/msc01050 n: 1050 nnz: 26198 title: SYMMETRIC TEST MATRIX FROM MSC/NASTRAN STARF8.OUT2 time: amd 0.0019 CHOLMOD time: L=lchol 0.0051 nnz(L): 28305 CHOLMOD time: R=chol2 0.0054 nnz(R): 28305 MATLAB time: R=chol 0.0057 nnz(R): 28305 MATLAB [..,R]=symbfact 0.0032 nnz(R): 28305 CHOLMOD speedup vs MATLAB chol: R: 1.06 L: 1.13 CHOLMOD numeric lchol vs MATLAB symbfact: 0.64 CHOLMOD time: [L,,q]=lchol 0.0074 nnz(L): 28305 CHOLMOD time: [L,,q]=ldlchol 0.0072 nnz(L): 28305 CHOLMOD time: rank-5 ldlupdate 0.0016 nnz(L) 28411 with fill-in CHOLMOD time: rank-2 ldldowndate 0.0007 nnz(L) 28411 no fill-in after resymbol: 28305 CHOLMOD residual: 5.3e-14 MATLAB residual: 5.1e-14 CHOLMOD residual: 4.3e-15 (sparse b) MATLAB residual: 4.3e-15 (sparse b) ================== Problem: 30: HB/bcsstk08 n: 1074 nnz: 12960 title: SYMMETRIC STIFFNESS MATRIX, FRAME BUILDING (TV STUDIO) time: amd 0.0024 CHOLMOD time: L=lchol 0.0056 nnz(L): 31150 CHOLMOD time: R=chol2 0.0068 nnz(R): 31150 MATLAB time: R=chol 0.0070 nnz(R): 31150 MATLAB [..,R]=symbfact 0.0027 nnz(R): 31153 CHOLMOD speedup vs MATLAB chol: R: 1.04 L: 1.25 CHOLMOD numeric lchol vs MATLAB symbfact: 0.48 CHOLMOD time: [L,,q]=lchol 0.0089 nnz(L): 31150 CHOLMOD time: [L,,q]=ldlchol 0.0092 nnz(L): 31153 CHOLMOD time: rank-8 ldlupdate 0.0021 nnz(L) 31639 with fill-in CHOLMOD time: rank-4 ldldowndate 0.0009 nnz(L) 31639 no fill-in after resymbol: 31153 CHOLMOD residual: 4.0e-22 MATLAB residual: 3.0e-22 CHOLMOD residual: 4.3e-22 (sparse b) MATLAB residual: 2.7e-22 (sparse b) ================== Problem: 63: HB/bcsstm08 n: 1074 nnz: 1074 title: SYMMETRIC MASS MATRIX, FRAME BUILDING (TV STUDIO) time: amd 0.0001 CHOLMOD time: L=lchol 0.0002 nnz(L): 1074 CHOLMOD time: R=chol2 0.0002 nnz(R): 1074 MATLAB time: R=chol 0.0002 nnz(R): 1074 MATLAB [..,R]=symbfact 0.0004 nnz(R): 1074 CHOLMOD speedup vs MATLAB chol: R: 0.83 L: 0.81 CHOLMOD numeric lchol vs MATLAB symbfact: 1.81 CHOLMOD time: [L,,q]=lchol 0.0004 nnz(L): 1074 CHOLMOD time: [L,,q]=ldlchol 0.0004 nnz(L): 1074 CHOLMOD time: rank-8 ldlupdate 0.0001 nnz(L) 1075 with fill-in CHOLMOD time: rank-4 ldldowndate 0.0001 nnz(L) 1075 no fill-in after resymbol: 1074 CHOLMOD residual: 3.2e-21 MATLAB residual: 3.0e-21 CHOLMOD residual: 1.4e-21 (sparse b) MATLAB residual: 1.2e-21 (sparse b) ================== Problem: 31: HB/bcsstk09 n: 1083 nnz: 18437 title: SYMMETRIC STIFFNESS MATRIX, SQUARE PLATE CLAMPED time: amd 0.0018 CHOLMOD time: L=lchol 0.0076 nnz(L): 58341 CHOLMOD time: R=chol2 0.0095 nnz(R): 58341 MATLAB time: R=chol 0.0095 nnz(R): 58341 MATLAB [..,R]=symbfact 0.0045 nnz(R): 58416 CHOLMOD speedup vs MATLAB chol: R: 1.01 L: 1.26 CHOLMOD numeric lchol vs MATLAB symbfact: 0.60 CHOLMOD time: [L,,q]=lchol 0.0103 nnz(L): 58339 CHOLMOD time: [L,,q]=ldlchol 0.0107 nnz(L): 58416 CHOLMOD time: rank-1 ldlupdate 0.0040 nnz(L) 64019 with fill-in CHOLMOD time: rank-1 ldldowndate 0.0015 nnz(L) 64019 no fill-in after resymbol: 58416 CHOLMOD residual: 1.7e-18 MATLAB residual: 1.3e-18 CHOLMOD residual: 1.1e-19 (sparse b) MATLAB residual: 8.9e-20 (sparse b) ================== Problem: 64: HB/bcsstm09 n: 1083 nnz: 1083 title: SYMMETRIC MASS MATRIX, SQUARE PLATE CLAMPED time: amd 0.0001 CHOLMOD time: L=lchol 0.0002 nnz(L): 1083 CHOLMOD time: R=chol2 0.0002 nnz(R): 1083 MATLAB time: R=chol 0.0002 nnz(R): 1083 MATLAB [..,R]=symbfact 0.0004 nnz(R): 1083 CHOLMOD speedup vs MATLAB chol: R: 0.86 L: 0.84 CHOLMOD numeric lchol vs MATLAB symbfact: 1.61 CHOLMOD time: [L,,q]=lchol 0.0004 nnz(L): 1083 CHOLMOD time: [L,,q]=ldlchol 0.0004 nnz(L): 1083 CHOLMOD time: rank-7 ldlupdate 0.0001 nnz(L) 1084 with fill-in CHOLMOD time: rank-3 ldldowndate 0.0001 nnz(L) 1084 no fill-in after resymbol: 1083 CHOLMOD residual: 1.5e-05 MATLAB residual: 3.4e-11 CHOLMOD residual: 1.2e-06 (sparse b) MATLAB residual: 1.8e-11 (sparse b) test0 passed ================================================================= test1: test sparse2 ----------------------------------------------- i = 1 j = 1 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,1) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,1) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,1) 1 size B1: 1 1 B2 = sparse2 (i,j,s) B2 = (1,1) 1 size B2: 1 1 ----------------------------------------------- i = 1 j = 1 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = (1,1) 5 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = (1,1) 5 size B2: 1 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = 1 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,1) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,1) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,1) 3.1416 size B1: 1 1 B2 = sparse2 (i,j,s) B2 = (1,1) 3.1416 size B2: 1 1 ----------------------------------------------- i = 1 j = 1 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = All zero sparse: 1-by-1 size B2: 1 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = 2 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,2) 1 (1,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,2) 1 (1,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,2) 1 (1,3) 1 size B1: 1 3 B2 = sparse2 (i,j,s) B2 = (1,2) 1 (1,3) 1 size B2: 1 3 ----------------------------------------------- i = 1 j = 2 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,2) 2 (1,3) 3 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,2) 2 (1,3) 3 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,2) 2 (1,3) 3 size B1: 1 3 B2 = sparse2 (i,j,s) B2 = (1,2) 2 (1,3) 3 size B2: 1 3 ----------------------------------------------- i = 1 j = 2 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,2) 3.1416 (1,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,2) 3.1416 (1,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,2) 3.1416 (1,3) 3.1416 size B1: 1 3 B2 = sparse2 (i,j,s) B2 = (1,2) 3.1416 (1,3) 3.1416 size B2: 1 3 ----------------------------------------------- i = 1 j = 2 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 1 j = 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,3) 1 size B1: 1 3 B2 = sparse2 (i,j,s) B2 = (1,3) 1 size B2: 1 3 ----------------------------------------------- i = 1 j = 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = (1,3) 5 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = (1,3) 5 size B2: 1 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (1,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (1,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (1,3) 3.1416 size B1: 1 3 B2 = sparse2 (i,j,s) B2 = (1,3) 3.1416 size B2: 1 3 ----------------------------------------------- i = 1 j = 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = All zero sparse: 1-by-3 size B2: 1 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = [] s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 1-by-0 size B2: 1 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = [] s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 1 j = [] s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 1-by-0 size B2: 1 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 1 j = [] s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 1-by-0 size B2: 1 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 3 j = 1 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,1) 1 (3,1) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 1 (3,1) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,1) 1 (3,1) 1 size B1: 3 1 B2 = sparse2 (i,j,s) B2 = (2,1) 1 (3,1) 1 size B2: 3 1 ----------------------------------------------- i = 2 3 j = 1 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,1) 2 (3,1) 3 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 2 (3,1) 3 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,1) 2 (3,1) 3 size B1: 3 1 B2 = sparse2 (i,j,s) B2 = (2,1) 2 (3,1) 3 size B2: 3 1 ----------------------------------------------- i = 2 3 j = 1 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,1) 3.1416 (3,1) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 3.1416 (3,1) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,1) 3.1416 (3,1) 3.1416 size B1: 3 1 B2 = sparse2 (i,j,s) B2 = (2,1) 3.1416 (3,1) 3.1416 size B2: 3 1 ----------------------------------------------- i = 2 3 j = 1 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = 2 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 1 (3,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 1 (3,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 1 (3,3) 1 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,2) 1 (3,3) 1 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 2 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 2 (3,3) 3 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 2 (3,3) 3 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 2 (3,3) 3 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,2) 2 (3,3) 3 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 2 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 3.1416 (3,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 3.1416 (3,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 3.1416 (3,3) 3.1416 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,2) 3.1416 (3,3) 3.1416 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 2 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,3) 1 (3,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 1 (3,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,3) 1 (3,3) 1 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,3) 1 (3,3) 1 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,3) 2 (3,3) 3 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 2 (3,3) 3 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,3) 2 (3,3) 3 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,3) 2 (3,3) 3 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,3) 3.1416 (3,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 3.1416 (3,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,3) 3.1416 (3,3) 3.1416 size B1: 3 3 B2 = sparse2 (i,j,s) B2 = (2,3) 3.1416 (3,3) 3.1416 size B2: 3 3 ----------------------------------------------- i = 2 3 j = 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = [] s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = [] s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = [] s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 3 j = [] s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 j = 1 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,1) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,1) 1 size B1: 2 1 B2 = sparse2 (i,j,s) B2 = (2,1) 1 size B2: 2 1 ----------------------------------------------- i = 2 j = 1 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 5 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = (2,1) 5 size B2: 2 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = 1 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,1) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,1) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,1) 3.1416 size B1: 2 1 B2 = sparse2 (i,j,s) B2 = (2,1) 3.1416 size B2: 2 1 ----------------------------------------------- i = 2 j = 1 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = All zero sparse: 2-by-1 size B2: 2 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = 2 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 1 (2,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 1 (2,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 1 (2,3) 1 size B1: 2 3 B2 = sparse2 (i,j,s) B2 = (2,2) 1 (2,3) 1 size B2: 2 3 ----------------------------------------------- i = 2 j = 2 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 2 (2,3) 3 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 2 (2,3) 3 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 2 (2,3) 3 size B1: 2 3 B2 = sparse2 (i,j,s) B2 = (2,2) 2 (2,3) 3 size B2: 2 3 ----------------------------------------------- i = 2 j = 2 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,2) 3.1416 (2,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,2) 3.1416 (2,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,2) 3.1416 (2,3) 3.1416 size B1: 2 3 B2 = sparse2 (i,j,s) B2 = (2,2) 3.1416 (2,3) 3.1416 size B2: 2 3 ----------------------------------------------- i = 2 j = 2 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 j = 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,3) 1 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 1 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,3) 1 size B1: 2 3 B2 = sparse2 (i,j,s) B2 = (2,3) 1 size B2: 2 3 ----------------------------------------------- i = 2 j = 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 5 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = (2,3) 5 size B2: 2 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = (2,3) 3.1416 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = (2,3) 3.1416 size A2: 3 4 B1 = sparse (i,j,s) B1 = (2,3) 3.1416 size B1: 2 3 B2 = sparse2 (i,j,s) B2 = (2,3) 3.1416 size B2: 2 3 ----------------------------------------------- i = 2 j = 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) B2 = All zero sparse: 2-by-3 size B2: 2 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = [] s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 2-by-0 size B2: 2 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = [] s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = 2 j = [] s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 2-by-0 size B2: 2 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = 2 j = [] s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 2-by-0 size B2: 2 0 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 1 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-1 size B2: 0 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 1 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 1 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-1 size B2: 0 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 1 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-1 size B2: 0 1 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 2 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 2 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 2 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 2 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 3 s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-3 size B2: 0 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 3 s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = 3 s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-3 size B2: 0 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = 3 s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-3 size B2: 0 3 ========================== SPARSE AND SPARSE2 DIFFER ----------------------------------------------- i = [] j = [] s = 1 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-0 size B2: 0 0 ----------------------------------------------- i = [] j = [] s = 2 3 m = 3 n = 4 A1 = sparse (i,j,s,m,n) sparse failed A2 = sparse2 (i,j,s,m,n) sparse2 failed B1 = sparse (i,j,s) sparse failed B2 = sparse2 (i,j,s) sparse2 failed ----------------------------------------------- i = [] j = [] s = 3.1416 m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-0 size B2: 0 0 ----------------------------------------------- i = [] j = [] s = [] m = 3 n = 4 A1 = sparse (i,j,s,m,n) A1 = All zero sparse: 3-by-4 size A1: 3 4 A2 = sparse2 (i,j,s,m,n) A2 = All zero sparse: 3-by-4 size A2: 3 4 B1 = sparse (i,j,s) B1 = All zero sparse: 0-by-0 size B1: 0 0 B2 = sparse2 (i,j,s) B2 = All zero sparse: 0-by-0 size B2: 0 0 test1 passed (review the above results) ================================================================= test2: test sparse2 i = 2 3 j = 3 4 s = 11.4000 + 3.4000i 9.2000 + 1.2000i ans = (2,3) 11.4000 + 3.4000i (3,4) 9.2000 + 1.2000i ans = (2,3) 11.4000 + 3.4000i (3,4) 9.2000 + 1.2000i ans = 3290 test2 passed ================================================================= test3: test sparse on int8, int16, and logical c = ab d Warning: SPARSE with a character array input returns a sparse double result. This behavior will change in a future release. > In test3 at 14 In cholmod_test at 100 ans = (1,1) 97 (1,2) 98 (1,4) 100 ans = (1,1) 97 (1,2) 98 (1,4) 100 Warning: SPARSE with a character array input returns a sparse double result. This behavior will change in a future release. > In test3 at 16 In cholmod_test at 100 ans = (1,1) 97 (2,1) 98 (4,1) 100 ans = (1,1) 97 (2,1) 98 (4,1) 100 Name Size Bytes Class Attributes ans 4x1 64 double sparse c 1x4 8 char ans = 3 sparse(int8(c)) fails in MATLAB ans = (1,1) 97 (1,2) 98 (1,4) 100 ans = (1,1) 97 (1,2) 98 (1,4) 100 Name Size Bytes Class Attributes ans 1x4 88 double sparse c 1x4 8 char s = 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 ans = (1,1) 1 (4,1) 1 (3,2) 1 (1,3) 1 (3,3) 1 (1,4) 1 (2,4) 1 (3,4) 1 Name Size Bytes Class Attributes ans 4x4 112 logical sparse c 1x4 8 char s 4x4 16 logical ans = (1,1) 1 (4,1) 1 (3,2) 1 (1,3) 1 (3,3) 1 (1,4) 1 (2,4) 1 (3,4) 1 Name Size Bytes Class Attributes ans 4x4 112 logical sparse c 1x4 8 char s 4x4 16 logical x = 0.1013 0.2280 0.1095 0.9468 0.2648 0.0281 0.8211 0.8138 0.2595 0.6996 0.4195 0.7779 0.5345 0.8071 0.8422 0.8768 ans = (4,1) 1 (3,2) 1 (4,2) 1 (2,3) 1 (4,3) 1 (1,4) 1 (2,4) 1 (3,4) 1 (4,4) 1 Name Size Bytes Class Attributes ans 4x4 121 logical sparse c 1x4 8 char s 4x4 16 logical x 4x4 128 double ans = (4,1) 1 (3,2) 1 (4,2) 1 (2,3) 1 (4,3) 1 (1,4) 1 (2,4) 1 (3,4) 1 (4,4) 1 Name Size Bytes Class Attributes ans 4x4 121 logical sparse c 1x4 8 char s 4x4 16 logical x 4x4 128 double test3 passed ================================================================= test4: test cholmod2 with multiple and sparse right-hand-sides maxerr 2.363058e-12 2.350665e-12 test4 passed ================================================================= test5: test sparse2 test5 passed ================================================================= test6: test sparse with large matrix, both real and complex do_complex = 0 Prob = title: 'Light hydrocarbon recovery. OK if illconditioned,from a nonlinear solvr' A: [70304x70304 double] Zeros: [70304x70304 double] b: [70304x1 double] name: 'Mallya/lhr71' id: 750 date: '1994' author: 'J. Mallya' ed: 'T. Davis' kind: 'chemical process simulation problem' find time 0.0573 dtri time: cholmod2 0.154045 matlab 0.143959 dtri time: cholmod2 0.155702 matlab 0.144404 (jumbled) dtri time: cholmod2 0.740039 matlab 3.960841 (duplicates) length 2988012 nz 1494006 err = 0 dtri time: cholmod2 1.054730 matlab 3.971992 (upper) err = 0 dtri time: cholmod2 1.170586 matlab 3.867817 (lower) dtri time: cholmod2 0.564294 matlab 3.392247 (sorted, dupl) do_complex = 1 Prob = title: 'Light hydrocarbon recovery. OK if illconditioned,from a nonlinear solvr' A: [70304x70304 double] Zeros: [70304x70304 double] b: [70304x1 double] name: 'Mallya/lhr71' id: 750 date: '1994' author: 'J. Mallya' ed: 'T. Davis' kind: 'chemical process simulation problem' find time 0.0776 dtri time: cholmod2 0.205535 matlab 0.171580 dtri time: cholmod2 0.396889 matlab 0.269580 (jumbled) dtri time: cholmod2 1.634356 matlab 4.170549 (duplicates) length 2988012 nz 1494006 err = 0 dtri time: cholmod2 1.754138 matlab 4.164494 (upper) err = 0 dtri time: cholmod2 1.633999 matlab 4.168737 (lower) dtri time: cholmod2 0.635309 matlab 3.554928 (sorted, dupl) test6 passed ================================================================= test7: test sparse2 Prob = title: 'Light hydrocarbon recovery. OK if illconditioned,from a nonlinear solvr' A: [70304x70304 double] Zeros: [70304x70304 double] b: [70304x1 double] name: 'Mallya/lhr71' id: 750 date: '1994' author: 'J. Mallya' ed: 'T. Davis' kind: 'chemical process simulation problem' find time 0.0574 tot: 0.154660 tot: 0.156477 again tot: 0.153834 (i,j,x) tot: 0.156731 (jumbled) tot 0.634492 (duplicates) test7 passed ================================================================= test8: factorize a large range of sparse matrices test matrices sorted by dimension: 1440: Oberwolfach LFAT5 14 1 1438: Oberwolfach LF10 18 1 97: HB can_24 24 0 1177: HB lap_25 25 0 436: FIDAP ex5 27 1 13: HB bcspwr01 39 0 23: HB bcsstk01 48 1 872: Pothen mesh1e1 48 1 873: Pothen mesh1em1 48 1 874: Pothen mesh1em6 48 1 14: HB bcspwr02 49 0 129: HB dwt_59 59 0 102: HB can_61 61 0 103: HB can_62 62 0 24: HB bcsstk02 66 1 132: HB dwt_66 66 0 883: Pothen sphere2 66 0 133: HB dwt_72 72 0 106: HB can_73 73 0 11: HB ash85 85 0 136: HB dwt_87 87 0 108: HB can_96 96 0 220: HB nos4 100 1 25: HB bcsstk03 112 1 15: HB bcspwr03 118 0 1506: Pajek Journals 124 1 26: HB bcsstk04 132 1 44: HB bcsstk22 138 1 93: HB can_144 144 0 206: HB lund_a 147 1 207: HB lund_b 147 1 27: HB bcsstk05 153 1 94: HB can_161 161 0 113: HB dwt_162 162 0 95: HB can_187 187 0 114: HB dwt_193 193 0 115: HB dwt_198 198 0 116: HB dwt_209 209 0 117: HB dwt_221 221 0 96: HB can_229 229 0 118: HB dwt_234 234 0 217: HB nos1 237 1 119: HB dwt_245 245 0 98: HB can_256 256 0 884: Pothen sphere3 258 0 202: HB lshp_265 265 0 99: HB can_268 268 0 16: HB bcspwr04 274 0 877: Pothen mesh3e1 289 1 878: Pothen mesh3em5 289 1 ================== Problem: Oberwolfach/LFAT5 n: 14 nnz: 46 title: Oberwolfach: linear 1D beam symbfact time: MATLAB 0.0133 CHOLMOD 0.0005 speedup 27.72 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.8 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.8 metis/amd time: 1.5023 nnz(L): 1.0000 ================== Problem: Oberwolfach/LF10 n: 18 nnz: 82 title: Oberwolfach: linear 1D beam symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.64 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.4 time: metis 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.4 metis/amd time: 4.7692 nnz(L): 1.2414 ================== Problem: HB/can_24 n: 24 nnz: 160 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.66 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 5.5 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 5.8 metis/amd time: 5.4865 nnz(L): 1.0417 ================== Problem: HB/lap_25 n: 25 nnz: 169 title: FINITE ELEMENT PROBLEM. LAPLACIAN ON A 5 BY 5 GRID. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.86 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.3 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 5.7 metis/amd time: 4.8421 nnz(L): 0.9493 ================== Problem: FIDAP/ex5 n: 27 nnz: 279 title: TEST MATRIX FROM FIDAP: EX5.MAT symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.73 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.4 time: metis 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.4 metis/amd time: 3.0526 nnz(L): 1.0000 ================== Problem: HB/bcspwr01 n: 39 nnz: 131 title: SYMMETRIC STRUCTURE (STANDARD TEST POWER SYSTEM - NEW ENGLAND) symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.65 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.8 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.0 metis/amd time: 3.8750 nnz(L): 1.0385 ================== Problem: HB/bcsstk01 n: 48 nnz: 400 title: SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.84 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.3 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.0 metis/amd time: 6.5909 nnz(L): 0.9898 ================== Problem: Pothen/mesh1e1 n: 48 nnz: 306 title: mesh1e1, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.65 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.0 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.3 metis/amd time: 5.4697 nnz(L): 1.0357 ================== Problem: Pothen/mesh1em1 n: 48 nnz: 306 title: mesh1em1, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.53 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.0 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.3 metis/amd time: 5.9667 nnz(L): 1.0357 ================== Problem: Pothen/mesh1em6 n: 48 nnz: 306 title: mesh1em6, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.56 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.0 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 8.3 metis/amd time: 5.8361 nnz(L): 1.0357 ================== Problem: HB/bcspwr02 n: 49 nnz: 167 title: SYMMETRIC STRUCTURE OF A SMALL TEST POWER SYSTEM symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.59 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.8 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.2 metis/amd time: 5.7907 nnz(L): 1.0775 ================== Problem: HB/dwt_59 n: 59 nnz: 267 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.59 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.5 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.7 metis/amd time: 3.8286 nnz(L): 1.0492 ================== Problem: HB/can_61 n: 61 nnz: 557 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.83 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.2 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.0 metis/amd time: 6.6721 nnz(L): 1.0997 ================== Problem: HB/can_62 n: 62 nnz: 218 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.57 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.2 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.5 metis/amd time: 5.4118 nnz(L): 1.0870 ================== Problem: HB/bcsstk02 n: 66 nnz: 4356 title: SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 1.89 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 44.3 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 44.3 metis/amd time: 2.6044 nnz(L): 1.0000 ================== Problem: HB/dwt_66 n: 66 nnz: 320 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.58 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.0 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.6 metis/amd time: 4.5455 nnz(L): 1.4767 ================== Problem: Pothen/sphere2 n: 66 nnz: 450 title: sphere2, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0004 CHOLMOD 0.0001 speedup 3.69 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.6 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 11.8 metis/amd time: 5.2329 nnz(L): 0.9736 ================== Problem: HB/dwt_72 n: 72 nnz: 222 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.69 time: amd 0.0000 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.7 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 2.9 metis/amd time: 5.6383 nnz(L): 1.0924 ================== Problem: HB/can_73 n: 73 nnz: 377 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.59 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.9 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.4 metis/amd time: 5.5857 nnz(L): 1.0434 ================== Problem: HB/ash85 n: 85 nnz: 523 title: SYMMETRIC PATTERN OF NORMAL MATRIX OF HOLLAND SURVEY. ASHKENAZI, 1974 symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.45 time: amd 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.6 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.6 metis/amd time: 1.4360 nnz(L): 1.1089 ================== Problem: HB/dwt_87 n: 87 nnz: 541 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.19 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 5.3 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.8 metis/amd time: 3.2791 nnz(L): 1.1739 ================== Problem: HB/can_96 n: 96 nnz: 768 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.36 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 11.6 time: metis 0.0005 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.3 metis/amd time: 4.6700 nnz(L): 1.0467 ================== Problem: HB/nos4 n: 100 nnz: 594 title: SYMMETRIC MATRIX OF BEAM STRUCTURE, NOVEMBER 1982. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.40 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.0 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 9.7 metis/amd time: 3.6610 nnz(L): 1.2168 ================== Problem: HB/bcsstk03 n: 112 nnz: 640 title: SYMMETRIC STIFFNESS MATRIX, SMALL TEST STRUCTURE symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.44 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.5 time: metis 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.9 metis/amd time: 2.9107 nnz(L): 1.3385 ================== Problem: HB/bcspwr03 n: 118 nnz: 476 title: SYMMETRIC STRUCTURE OF 118 BUS IEEE STANDARD TEST CASE POWER NETWORK symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.40 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.4 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.9 metis/amd time: 4.0326 nnz(L): 1.0862 ================== Problem: Pajek/Journals n: 124 nnz: 12068 title: Pajek network: Slovenian journals 1999-2000 symbfact time: MATLAB 0.0006 CHOLMOD 0.0004 speedup 1.71 time: amd 0.0003 mnnz(L) 0.0 mfl 1 fl/nnz(L) 72.3 time: metis 0.0020 mnnz(L) 0.0 mfl 0 fl/nnz(L) 70.1 metis/amd time: 5.8776 nnz(L): 0.9744 ================== Problem: HB/bcsstk04 n: 132 nnz: 3648 title: SYMMETRIC STIFFNESS MATRIX, OIL RIG, NOT CONDENSED (SAME MODEL AS X02) symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 2.05 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 27.5 time: metis 0.0008 mnnz(L) 0.0 mfl 0 fl/nnz(L) 32.2 metis/amd time: 3.8689 nnz(L): 1.1072 ================== Problem: HB/bcsstk22 n: 138 nnz: 696 title: SYMMETRIC STIFFNESS MATRIX - TEXTILE LOOM FRAME symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.34 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.2 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.7 metis/amd time: 2.3333 nnz(L): 1.0632 ================== Problem: HB/can_144 n: 144 nnz: 1296 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.27 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.6 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.2 metis/amd time: 3.3840 nnz(L): 1.0706 ================== Problem: HB/lund_a n: 147 nnz: 2449 title: SYMMETRIC MATRIX A OF LUND EIGENVALUE PROBLEM, MAY 1974 symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.12 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 18.1 time: metis 0.0005 mnnz(L) 0.0 mfl 0 fl/nnz(L) 21.2 metis/amd time: 4.4622 nnz(L): 1.1475 ================== Problem: HB/lund_b n: 147 nnz: 2441 title: SYMMETRIC MATRIX B OF LUND EIGENVALUE PROBLEM, MAY 1974 symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.11 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 18.1 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 22.1 metis/amd time: 4.4160 nnz(L): 1.1833 ================== Problem: HB/bcsstk05 n: 153 nnz: 2423 title: SYMMETRIC STIFFNESS MATRIX, TRANSMISSION TOWER, LUMPED MASSES symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.02 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 16.8 time: metis 0.0007 mnnz(L) 0.0 mfl 0 fl/nnz(L) 21.7 metis/amd time: 4.0545 nnz(L): 1.2055 ================== Problem: HB/can_161 n: 161 nnz: 1377 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0003 speedup 0.93 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 19.1 time: metis 0.0005 mnnz(L) 0.0 mfl 0 fl/nnz(L) 15.9 metis/amd time: 2.7914 nnz(L): 0.8795 ================== Problem: HB/dwt_162 n: 162 nnz: 1182 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.17 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 9.2 time: metis 0.0004 mnnz(L) 0.0 mfl 0 fl/nnz(L) 9.5 metis/amd time: 2.6013 nnz(L): 1.0291 ================== Problem: HB/can_187 n: 187 nnz: 1491 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.16 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 13.8 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.8 metis/amd time: 3.7267 nnz(L): 0.9683 ================== Problem: HB/dwt_193 n: 193 nnz: 3493 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 2.01 time: amd 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 28.3 time: metis 0.0011 mnnz(L) 0.0 mfl 0 fl/nnz(L) 29.6 metis/amd time: 4.1051 nnz(L): 1.0422 ================== Problem: HB/dwt_198 n: 198 nnz: 1392 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.11 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.4 time: metis 0.0005 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.1 metis/amd time: 2.9815 nnz(L): 0.9694 ================== Problem: HB/dwt_209 n: 209 nnz: 1743 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.09 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 11.0 time: metis 0.0008 mnnz(L) 0.0 mfl 0 fl/nnz(L) 13.6 metis/amd time: 3.5598 nnz(L): 1.1378 ================== Problem: HB/dwt_221 n: 221 nnz: 1629 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.11 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 9.1 time: metis 0.0007 mnnz(L) 0.0 mfl 0 fl/nnz(L) 10.7 metis/amd time: 2.7893 nnz(L): 1.1089 ================== Problem: HB/can_229 n: 229 nnz: 1777 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.08 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 17.2 time: metis 0.0008 mnnz(L) 0.0 mfl 0 fl/nnz(L) 18.8 metis/amd time: 3.7621 nnz(L): 1.0619 ================== Problem: HB/dwt_234 n: 234 nnz: 834 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.26 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.5 time: metis 0.0005 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.9 metis/amd time: 3.5515 nnz(L): 1.0641 ================== Problem: HB/nos1 n: 237 nnz: 1017 title: SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON BEAM. symbfact time: MATLAB 0.0003 CHOLMOD 0.0001 speedup 2.22 time: amd 0.0001 mnnz(L) 0.0 mfl 0 fl/nnz(L) 3.2 time: metis 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 4.4 metis/amd time: 3.7444 nnz(L): 1.3537 ================== Problem: HB/dwt_245 n: 245 nnz: 1461 title: SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.14 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.3 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 9.0 metis/amd time: 2.7129 nnz(L): 1.1176 ================== Problem: HB/can_256 n: 256 nnz: 2916 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 1.94 time: amd 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 17.7 time: metis 0.0008 mnnz(L) 0.0 mfl 0 fl/nnz(L) 20.2 metis/amd time: 2.9789 nnz(L): 1.0937 ================== Problem: Pothen/sphere3 n: 258 nnz: 1794 title: sphere3, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 1.97 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 24.5 time: metis 0.0007 mnnz(L) 0.0 mfl 0 fl/nnz(L) 21.5 metis/amd time: 2.8970 nnz(L): 0.9353 ================== Problem: HB/lshp_265 n: 265 nnz: 1753 title: SYMMETRIC MATRIX FROM ALAN GEORGE'S L-SHAPE PROBLEMS, 1978. symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 2.02 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 14.4 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 17.5 metis/amd time: 2.8216 nnz(L): 1.1213 ================== Problem: HB/can_268 n: 268 nnz: 3082 title: SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981. symbfact time: MATLAB 0.0004 CHOLMOD 0.0002 speedup 1.96 time: amd 0.0003 mnnz(L) 0.0 mfl 0 fl/nnz(L) 18.1 time: metis 0.0009 mnnz(L) 0.0 mfl 0 fl/nnz(L) 21.3 metis/amd time: 3.2102 nnz(L): 1.0960 ================== Problem: HB/bcspwr04 n: 274 nnz: 1612 title: SYMMETRIC STRUCTURE EQUIVALENCED REPRESENTATION OF U.S. POWER NETWORK symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 1.99 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 6.2 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 7.1 metis/amd time: 3.2887 nnz(L): 1.0819 ================== Problem: Pothen/mesh3e1 n: 289 nnz: 1377 title: mesh3e1, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 2.11 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 11.3 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.7 metis/amd time: 2.3906 nnz(L): 1.0908 ================== Problem: Pothen/mesh3em5 n: 289 nnz: 1377 title: mesh3em5, with coordinates. From NASA, collected by Alex Pothen symbfact time: MATLAB 0.0003 CHOLMOD 0.0002 speedup 1.71 time: amd 0.0002 mnnz(L) 0.0 mfl 0 fl/nnz(L) 11.3 time: metis 0.0006 mnnz(L) 0.0 mfl 0 fl/nnz(L) 12.7 metis/amd time: 2.4410 nnz(L): 1.0908 test8 passed ================================================================= test9: test metis, etree, bisect, nesdis Prob = title: 'S STIFFNESS MATRIX - MODULE OF AN OFFSHORE PLATFORM' A: [3948x3948 double] name: 'HB/bcsstk15' id: 37 date: '1985' author: 'M. Will' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' metis: Elapsed time is 0.100277 seconds. Elapsed time is 0.100283 seconds. Elapsed time is 0.101989 seconds. Elapsed time is 0.113528 seconds. Elapsed time is 0.115154 seconds. metis(A): Elapsed time is 0.058451 seconds. lnz0 = 492391 amd: Elapsed time is 0.009234 seconds. lnz = 614590 bisect: Elapsed time is 0.040865 seconds. Elapsed time is 0.039559 seconds. Elapsed time is 0.040628 seconds. Elapsed time is 0.061155 seconds. Elapsed time is 0.063285 seconds. nested dissection: Elapsed time is 0.137077 seconds. Elapsed time is 0.135862 seconds. Elapsed time is 0.136597 seconds. Elapsed time is 0.174602 seconds. Elapsed time is 0.175804 seconds. nested_dissection(A): Elapsed time is 0.078392 seconds. lnz1 = 485679 test9 passed ================================================================= test10: test cholmod2's backslash test matrices sorted by dimension: 1440: Oberwolfach LFAT5 14 1 1438: Oberwolfach LF10 18 1 436: FIDAP ex5 27 1 23: HB bcsstk01 48 1 872: Pothen mesh1e1 48 1 873: Pothen mesh1em1 48 1 874: Pothen mesh1em6 48 1 24: HB bcsstk02 66 1 57: HB bcsstm02 66 1 220: HB nos4 100 1 25: HB bcsstk03 112 1 1506: Pajek Journals 124 1 26: HB bcsstk04 132 1 44: HB bcsstk22 138 1 72: HB bcsstm22 138 1 206: HB lund_a 147 1 207: HB lund_b 147 1 27: HB bcsstk05 153 1 60: HB bcsstm05 153 1 217: HB nos1 237 1 877: Pothen mesh3e1 289 1 878: Pothen mesh3em5 289 1 875: Pothen mesh2e1 306 1 876: Pothen mesh2em5 306 1 229: HB plat362 362 1 315: Bai mhdb416 416 1 28: HB bcsstk06 420 1 29: HB bcsstk07 420 1 61: HB bcsstm06 420 1 62: HB bcsstm07 420 1 221: HB nos5 468 1 42: HB bcsstk20 485 1 70: HB bcsstm20 485 1 2: HB 494_bus 494 1 339: Boeing bcsstk34 588 1 3: HB 662_bus 662 1 222: HB nos6 675 1 4: HB 685_bus 685 1 357: Boeing msc00726 726 1 223: HB nos7 729 1 41: HB bcsstk19 817 1 69: HB bcsstm19 817 1 159: HB gr_30_30 900 1 218: HB nos2 957 1 219: HB nos3 960 1 358: Boeing msc01050 1050 1 30: HB bcsstk08 1074 1 63: HB bcsstm08 1074 1 31: HB bcsstk09 1083 1 64: HB bcsstm09 1083 1 nn = 1440 Prob = name: 'Oberwolfach/LFAT5' title: 'Oberwolfach: linear 1D beam' A: [14x14 double] id: 1440 notes: 'Primary matrix in this model reduction problem is the Oberwolfach K matrix' aux: [1x1 struct] date: '2004' author: 'J. Lienemann, A. Greiner, J. Korvink' ed: 'E. Rudnyi' kind: 'model reduction problem' A: [n 14 real 1] B: [sp:0 nrhs 1 real 1] [e1: 4e-14 : -0.6] [t1: 0.00 t2 0.00 : 0.8] A: [n 14 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-14 : -1.2] [t1: 0.00 t2 0.00 : 1.1] A: [n 14 real 1] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : -0.3] [t1: 0.00 t2 0.00 : 1.1] A: [n 14 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 14 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-14 : 0.5] [t1: 0.00 t2 0.00 : 1.1] A: [n 14 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 14 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 14 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 14 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 14 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 14 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 14 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-18 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-16 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 14 real 0] B: [sp:1 nrhs 9 real 1] [e1: 7e-16 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 14 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 14 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 2.4] nn = 1438 Prob = name: 'Oberwolfach/LF10' title: 'Oberwolfach: linear 1D beam' A: [18x18 double] id: 1438 notes: 'Primary matrix in this model reduction problem is the Oberwolfach K matrix' aux: [1x1 struct] date: '2004' author: 'J. Lienemann, A. Greiner, J. Korvink' ed: 'E. Rudnyi' kind: 'model reduction problem' A: [n 18 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-13 : -2.6] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-12 : -1.0] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-12 : -1.3] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-12 : -0.6] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-12 : -1.2] [t1: 0.00 t2 0.00 : 0.7] A: [n 18 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-12 : -0.7] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-12 : -0.7] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-12 : 0.1] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-12 : -1.3] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 1] B: [sp:1 nrhs 9 real 0] [e1: 5e-12 : -0.8] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 0] B: [sp:0 nrhs 1 real 1] [e1: 9e-16 : -0.2] [t1: 0.00 t2 0.00 : 0.6] A: [n 18 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-15 : -0.5] [t1: 0.00 t2 0.00 : 0.7] A: [n 18 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -0.3] [t1: 0.00 t2 0.00 : 0.6] A: [n 18 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-15 : 0.1] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 0] B: [sp:0 nrhs 9 real 0] [e1: 3e-15 : -0.2] [t1: 0.00 t2 0.00 : 0.8] A: [n 18 real 0] B: [sp:1 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 0] B: [sp:1 nrhs 4 real 1] [e1: 6e-16 : 0.3] [t1: 0.00 t2 0.00 : 0.6] A: [n 18 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-16 : 0.1] [t1: 0.00 t2 0.00 : 0.6] A: [n 18 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-16 : 0.8] [t1: 0.00 t2 0.00 : 0.5] A: [n 18 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-15 : 0.1] [t1: 0.00 t2 0.00 : 0.8] nn = 436 Prob = title: ' TEST MATRIX FROM FIDAP: EX5.MAT' A: [27x27 double] name: 'FIDAP/ex5' id: 436 date: '1994' author: 'A. Baggag, Y. Saad' ed: 'A. Baggag, Y. Saad' kind: 'computational fluid dynamics problem' A: [n 27 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 27 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-08 : -0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 27 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-08 : 0.3] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 1] B: [sp:0 nrhs 1 real 0] [e1: 5e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 1] B: [sp:0 nrhs 9 real 0] [e1: 5e-08 : -0.0] [t1: 0.00 t2 0.00 : 0.6] A: [n 27 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-09 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-09 : -0.7] [t1: 0.00 t2 0.00 : 0.9] A: [n 27 real 1] B: [sp:1 nrhs 9 real 1] [e1: 7e-09 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 27 real 1] B: [sp:1 nrhs 9 real 0] [e1: 8e-09 : -0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 27 real 0] B: [sp:0 nrhs 1 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 27 real 0] B: [sp:0 nrhs 1 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:0 nrhs 9 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 27 real 0] B: [sp:1 nrhs 1 real 0] [e1: 6e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 27 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 23 Prob = title: 'SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM' A: [48x48 double] name: 'HB/bcsstk01' id: 23 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 48 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-12 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 0.7] A: [n 48 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 1 real 0] [e1: 8e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 1] B: [sp:1 nrhs 9 real 0] [e1: 8e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 4 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 9 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 1 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 0] B: [sp:1 nrhs 9 real 0] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 872 Prob = A: [48x48 double] title: 'mesh1e1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1e1' id: 872 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 48 real 1] B: [sp:0 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:0 nrhs 1 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 9 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 48 real 0] B: [sp:0 nrhs 4 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 1 real 0] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 1 real 1] [e1: 7e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 873 Prob = A: [48x48 double] title: 'mesh1em1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1em1' id: 873 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 48 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 4 real 1] [e1: 7e-15 : 0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:0 nrhs 9 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:0 nrhs 1 real 0] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 48 real 1] B: [sp:1 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 4 real 1] [e1: 4e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 1 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 48 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 4 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 9 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 1 real 0] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 874 Prob = A: [48x48 double] title: 'mesh1em6, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1em6' id: 874 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 48 real 1] B: [sp:0 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 1] B: [sp:0 nrhs 1 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:0 nrhs 9 real 0] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 48 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:0 nrhs 4 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 1 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:0 nrhs 9 real 0] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 48 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 48 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 24 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED' A: [66x66 double] name: 'HB/bcsstk02' id: 24 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 66 real 1] B: [sp:0 nrhs 1 real 1] [e1: 4e-12 : -0.3] [t1: 0.00 t2 0.00 : 0.6] A: [n 66 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-12 : -0.2] [t1: 0.00 t2 0.00 : 0.5] A: [n 66 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-12 : -0.1] [t1: 0.00 t2 0.00 : 0.5] A: [n 66 real 1] B: [sp:0 nrhs 1 real 0] [e1: 7e-12 : -0.1] [t1: 0.00 t2 0.00 : 0.5] A: [n 66 real 1] B: [sp:0 nrhs 9 real 0] [e1: 7e-12 : -0.1] [t1: 0.00 t2 0.00 : 0.7] A: [n 66 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-13 : 0.2] [t1: 0.00 t2 0.00 : 0.6] A: [n 66 real 1] B: [sp:1 nrhs 4 real 1] [e1: 7e-13 : -0.1] [t1: 0.00 t2 0.00 : 0.5] A: [n 66 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-12 : -0.3] [t1: 0.00 t2 0.00 : 0.5] A: [n 66 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-12 : -0.0] [t1: 0.00 t2 0.00 : 0.6] A: [n 66 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-12 : -0.2] [t1: 0.00 t2 0.00 : 0.6] A: [n 66 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.3] [t1: 0.00 t2 0.00 : 1.2] A: [n 66 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.2] [t1: 0.00 t2 0.00 : 0.8] A: [n 66 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 66 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-14 : 0.2] [t1: 0.00 t2 0.00 : 1.1] A: [n 66 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 66 real 0] B: [sp:1 nrhs 1 real 1] [e1: 9e-16 : -0.1] [t1: 0.00 t2 0.00 : 1.2] A: [n 66 real 0] B: [sp:1 nrhs 4 real 1] [e1: 3e-15 : 0.2] [t1: 0.00 t2 0.00 : 0.8] A: [n 66 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-15 : 0.2] [t1: 0.00 t2 0.00 : 0.8] A: [n 66 real 0] B: [sp:1 nrhs 1 real 0] [e1: 4e-15 : 0.1] [t1: 0.00 t2 0.00 : 1.2] A: [n 66 real 0] B: [sp:1 nrhs 9 real 0] [e1: 7e-15 : 0.2] [t1: 0.00 t2 0.00 : 0.8] nn = 57 Prob = title: 'SYMMETRIC MASS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED' A: [66x66 double] name: 'HB/bcsstm02' id: 57 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 66 real 1] B: [sp:0 nrhs 1 real 1] [e1: 6e-16 : -2.2] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-15 : -1.8] [t1: 0.00 t2 0.00 : 0.3] A: [n 66 real 1] B: [sp:0 nrhs 9 real 1] [e1: 6e-16 : -2.5] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-15 : -2.5] [t1: 0.00 t2 0.00 : 0.3] A: [n 66 real 1] B: [sp:1 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-17 : -5.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 66 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-16 : -1.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 66 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-16 : -2.2] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-16 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 1 real 1] [e1: 7e-16 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 4 real 1] [e1: 7e-16 : -2.4] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 9 real 1] [e1: 8e-16 : -2.3] [t1: 0.00 t2 0.00 : 0.3] A: [n 66 real 1] B: [sp:0 nrhs 1 real 0] [e1: 6e-16 : -3.3] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-15 : -2.4] [t1: 0.00 t2 0.00 : 0.4] A: [n 66 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-16 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-16 : -2.3] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-16 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-16 : -1.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 66 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-16 : -1.9] [t1: 0.00 t2 0.00 : 0.3] nn = 220 Prob = title: 'SYMMETRIC MATRIX OF BEAM STRUCTURE, NOVEMBER 1982.' A: [100x100 double] name: 'HB/nos4' id: 220 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 100 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-12 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 100 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 1] B: [sp:1 nrhs 1 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-14 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-13 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 0] B: [sp:0 nrhs 1 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 0] B: [sp:1 nrhs 1 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 0] B: [sp:1 nrhs 4 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 100 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 100 real 0] B: [sp:1 nrhs 9 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 25 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, SMALL TEST STRUCTURE' A: [112x112 double] name: 'HB/bcsstk03' id: 25 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 112 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 112 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-11 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 112 real 1] B: [sp:0 nrhs 9 real 0] [e1: 6e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:1 nrhs 1 real 1] [e1: 9e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:1 nrhs 4 real 1] [e1: 9e-12 : 0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 112 real 1] B: [sp:1 nrhs 9 real 1] [e1: 8e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-12 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 0] B: [sp:0 nrhs 1 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 112 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 112 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 112 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 112 real 0] B: [sp:1 nrhs 4 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 112 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 0] B: [sp:1 nrhs 1 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 112 real 0] B: [sp:1 nrhs 9 real 0] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 1506 Prob = name: 'Pajek/Journals' title: 'Pajek network: Slovenian journals 1999-2000' A: [124x124 double] id: 1506 kind: 'undirected weighted graph' notes: [14x78 char] aux: [1x1 struct] date: '2000' author: 'CATI Center Ljubljana' ed: 'V. Batagelj' A: [n 124 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-14 : -0.2] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-14 : -0.2] [t1: 0.10 t2 0.00 : 57.8] A: [n 124 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-14 : -0.2] [t1: 0.00 t2 0.00 : 0.8] A: [n 124 real 1] B: [sp:0 nrhs 1 real 0] [e1: 8e-14 : 0.2] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 1] B: [sp:0 nrhs 9 real 0] [e1: 8e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 124 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.5] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.6] A: [n 124 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.7] A: [n 124 real 0] B: [sp:0 nrhs 1 real 1] [e1: 3e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 124 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : 0.1] [t1: 0.00 t2 0.00 : 0.8] A: [n 124 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 124 real 0] B: [sp:0 nrhs 1 real 0] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 124 real 0] B: [sp:0 nrhs 9 real 0] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 124 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-15 : -0.4] [t1: 0.00 t2 0.00 : 1.0] A: [n 124 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.3] [t1: 0.00 t2 0.10 : 0.0] A: [n 124 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : -0.2] [t1: 0.00 t2 0.01 : 0.7] A: [n 124 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 124 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.2] [t1: 0.00 t2 0.01 : 0.7] nn = 26 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, OIL RIG, NOT CONDENSED (SAME MODEL AS X02)' A: [132x132 double] name: 'HB/bcsstk04' id: 26 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 132 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 132 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-11 : -0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-11 : 0.4] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 132 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:1 nrhs 4 real 1] [e1: 4e-12 : 0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 132 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-12 : -0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-12 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 132 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 132 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 132 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 132 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 132 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 0] B: [sp:1 nrhs 4 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 132 real 0] B: [sp:1 nrhs 9 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 132 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 132 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 44 Prob = title: 'SYMMETRIC STIFFNESS MATRIX - TEXTILE LOOM FRAME' A: [138x138 double] name: 'HB/bcsstk22' id: 44 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 138 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.3] A: [n 138 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-11 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-11 : 0.2] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:1 nrhs 1 real 0] [e1: 8e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 138 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 138 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 138 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-16 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:1 nrhs 4 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:1 nrhs 1 real 0] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 138 real 0] B: [sp:1 nrhs 9 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 72 Prob = title: 'SYMMETRIC MASS MATRIX - TEXTILE LOOM FRAME' A: [138x138 double] name: 'HB/bcsstm22' id: 72 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 138 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-15 : -1.8] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-15 : -1.9] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-15 : -1.9] [t1: 0.00 t2 0.00 : 0.3] A: [n 138 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-16 : -1.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-16 : -1.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-16 : -1.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-16 : -3.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 9 real 0] [e1: 9e-16 : -1.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:0 nrhs 1 real 1] [e1: 7e-16 : -3.5] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 4 real 1] [e1: 7e-16 : -3.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-15 : -3.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-15 : -3.7] [t1: 0.00 t2 0.00 : 0.2] A: [n 138 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-15 : -2.9] [t1: 0.00 t2 0.00 : 0.3] A: [n 138 real 1] B: [sp:1 nrhs 1 real 1] [e1: 7e-16 : -1.4] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 4 real 1] [e1: 7e-16 : -1.4] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-16 : -2.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 1 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 138 real 1] B: [sp:1 nrhs 9 real 0] [e1: 5e-16 : -2.3] [t1: 0.00 t2 0.00 : 0.1] nn = 206 Prob = title: 'SYMMETRIC MATRIX A OF LUND EIGENVALUE PROBLEM, MAY 1974' A: [147x147 double] name: 'HB/lund_a' id: 206 date: '1974' author: 'T. Johansson' ed: 'A. Curtis, I. Duff, J. Reid' kind: 'structural problem' A: [n 147 real 1] B: [sp:0 nrhs 1 real 1] [e1: 3e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-10 : -0.1] [t1: 0.00 t2 0.00 : 1.4] A: [n 147 real 1] B: [sp:0 nrhs 9 real 1] [e1: 3e-10 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:0 nrhs 9 real 0] [e1: 5e-10 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 4 real 1] [e1: 5e-11 : 0.1] [t1: 0.00 t2 0.00 : 1.3] A: [n 147 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-11 : 0.2] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 147 real 0] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 147 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 147 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:1 nrhs 4 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:1 nrhs 9 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 207 Prob = title: 'SYMMETRIC MATRIX B OF LUND EIGENVALUE PROBLEM, MAY 1974' A: [147x147 double] name: 'HB/lund_b' id: 207 date: '1974' author: 'T. Johansson' ed: 'A. Curtis, I. Duff, J. Reid' kind: 'structural problem' A: [n 147 real 1] B: [sp:0 nrhs 1 real 1] [e1: 8e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 147 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-12 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 1] B: [sp:1 nrhs 9 real 0] [e1: 5e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 147 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 147 real 0] B: [sp:1 nrhs 1 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:1 nrhs 4 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 147 real 0] B: [sp:1 nrhs 9 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 147 real 0] B: [sp:1 nrhs 1 real 0] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 147 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 27 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, TRANSMISSION TOWER, LUMPED MASSES' A: [153x153 double] name: 'HB/bcsstk05' id: 27 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 153 real 1] B: [sp:0 nrhs 1 real 1] [e1: 9e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 153 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 1] B: [sp:1 nrhs 1 real 1] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-12 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 153 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 153 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 153 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 153 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 0] B: [sp:1 nrhs 4 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 153 real 0] B: [sp:1 nrhs 1 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 153 real 0] B: [sp:1 nrhs 9 real 0] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 60 Prob = title: 'SYMMETRIC MASS MATRIX, TRANSMISSION TOWER, LUMPED MASSES' A: [153x153 double] name: 'HB/bcsstm05' id: 60 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 153 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-15 : -2.8] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-15 : -2.5] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-15 : -2.3] [t1: 0.00 t2 0.00 : 0.5] A: [n 153 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-15 : -2.2] [t1: 0.00 t2 0.00 : 0.3] A: [n 153 real 1] B: [sp:1 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 4 real 1] [e1: 4e-16 : -2.3] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 9 real 1] [e1: 9e-16 : -1.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-17 : -8.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 9 real 0] [e1: 5e-16 : -2.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -2.6] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 153 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.3] A: [n 153 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-16 : -3.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-16 : -2.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-16 : -3.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 1 real 0] [e1: 5e-16 : -2.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 153 real 1] B: [sp:1 nrhs 9 real 0] [e1: 9e-16 : -1.6] [t1: 0.00 t2 0.00 : 0.1] nn = 217 Prob = title: 'SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON BEAM.' A: [237x237 double] name: 'HB/nos1' id: 217 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 237 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:0 nrhs 1 real 0] [e1: 8e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:0 nrhs 9 real 0] [e1: 8e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 237 real 1] B: [sp:1 nrhs 4 real 1] [e1: 9e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 1] B: [sp:1 nrhs 9 real 1] [e1: 7e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 237 real 1] B: [sp:1 nrhs 1 real 0] [e1: 7e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 237 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-10 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 237 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 237 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 0] B: [sp:0 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 237 real 0] B: [sp:1 nrhs 4 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 237 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 237 real 0] B: [sp:1 nrhs 1 real 0] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 237 real 0] B: [sp:1 nrhs 9 real 0] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 877 Prob = A: [289x289 double] title: 'mesh3e1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh3e1' Zeros: [289x289 double] id: 877 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 289 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 289 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 289 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:0 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 1 real 1] [e1: 3e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 4 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 9 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.10 t2 0.00 : 96.1] nn = 878 Prob = A: [289x289 double] title: 'mesh3em5, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh3em5' Zeros: [289x289 double] id: 878 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 289 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 1 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.10 : 0.0] A: [n 289 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] A: [n 289 real 0] B: [sp:0 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 1 real 1] [e1: 4e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 289 real 0] B: [sp:1 nrhs 4 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 9 real 1] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 289 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 875 Prob = A: [306x306 double] title: 'mesh2e1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh2e1' id: 875 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 306 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.10 : 0.0] A: [n 306 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-13 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-13 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 1 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-13 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 1 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:0 nrhs 1 real 0] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 9 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:1 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:1 nrhs 4 real 1] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 876 Prob = A: [306x306 double] title: 'mesh2em5, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh2em5' id: 876 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' A: [n 306 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 306 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-14 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:0 nrhs 1 real 0] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:0 nrhs 9 real 0] [e1: 9e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-14 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 1] B: [sp:1 nrhs 9 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 1 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:0 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.5] A: [n 306 real 0] B: [sp:0 nrhs 1 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:0 nrhs 9 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:1 nrhs 1 real 1] [e1: 5e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:1 nrhs 4 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 306 real 0] B: [sp:1 nrhs 1 real 0] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 306 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 229 Prob = title: 'SPLATZMAN FINITE DIFFERENCE MODEL OF ATLANTICOCEAN' A: [362x362 double] name: 'HB/plat362' id: 229 date: '1975' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: '2D/3D problem' A: [n 362 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 362 real 1] B: [sp:0 nrhs 4 real 1] [e1: 8e-05 : -0.2] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 1] B: [sp:0 nrhs 9 real 1] [e1: 8e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 1] B: [sp:0 nrhs 1 real 0] [e1: 9e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-04 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 362 real 1] B: [sp:1 nrhs 1 real 1] [e1: 4e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 362 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-04 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-04 : -0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 362 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-04 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 362 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-04 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:0 nrhs 4 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 362 real 0] B: [sp:0 nrhs 9 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 362 real 0] B: [sp:0 nrhs 1 real 0] [e1: 9e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:0 nrhs 9 real 0] [e1: 9e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 362 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 362 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 315 Prob = title: 'MAGNETO-HYDRO-DYNAMICS ALFVEN SPECTRAL PROBLEM' A: [416x416 double] name: 'Bai/mhdb416' id: 315 date: '1994' author: 'A. Booten, M. Kooper, H. van der Vorst, S. Poedts, J. Goedbloed' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'electromagnetics problem' A: [n 416 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-12 : -0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-12 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 1] B: [sp:1 nrhs 4 real 1] [e1: 5e-13 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 0] B: [sp:0 nrhs 1 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 0] B: [sp:0 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 0] B: [sp:0 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 0] B: [sp:0 nrhs 1 real 0] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 0] B: [sp:0 nrhs 9 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 0] B: [sp:1 nrhs 1 real 1] [e1: 6e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 416 real 0] B: [sp:1 nrhs 4 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.3] A: [n 416 real 0] B: [sp:1 nrhs 9 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 416 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.10 t2 0.00 : 206.5] A: [n 416 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 28 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, MEDIUM TEST PROBLEM, LUMPED MASSES' A: [420x420 double] name: 'HB/bcsstk06' id: 28 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 420 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-10 : 0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 1] B: [sp:1 nrhs 1 real 1] [e1: 8e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-11 : -0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 1] [e1: 5e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 0] [e1: 8e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 0] B: [sp:0 nrhs 1 real 1] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 4 real 1] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.10 : 0.0] A: [n 420 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 0] B: [sp:1 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 29 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, MEDIUM TEST PROBLEM, CONSISTENT MASSES' A: [420x420 double] name: 'HB/bcsstk07' id: 29 kind: 'duplicate structural problem' notes: 'duplicate of HB/bcsstk06' date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' A: [n 420 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-10 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-10 : -0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 1] B: [sp:1 nrhs 1 real 1] [e1: 4e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-11 : 0.1] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 0] [e1: 8e-11 : -0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 0] B: [sp:0 nrhs 1 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 4 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.10 : 0.0] A: [n 420 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 61 Prob = title: 'SYMMETRIC MASS MATRIX, MEDIUM TEST PROBLEM, LUMPED MASSES' A: [420x420 double] name: 'HB/bcsstm06' id: 61 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 420 real 1] B: [sp:0 nrhs 1 real 1] [e1: 3e-15 : -2.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-15 : -2.7] [t1: 0.00 t2 0.00 : 0.2] A: [n 420 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-15 : -2.6] [t1: 0.00 t2 0.00 : 0.2] A: [n 420 real 1] B: [sp:0 nrhs 1 real 0] [e1: 6e-15 : -2.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:0 nrhs 9 real 0] [e1: 6e-15 : -2.5] [t1: 0.00 t2 0.00 : 0.3] A: [n 420 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-16 : -3.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-16 : -3.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 1] [e1: 9e-16 : -2.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-16 : -4.4] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-15 : -2.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-15 : -3.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-15 : -3.8] [t1: 0.00 t2 0.00 : 0.2] A: [n 420 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -3.7] [t1: 0.00 t2 0.00 : 0.2] A: [n 420 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-15 : -3.5] [t1: 0.00 t2 0.00 : 0.3] A: [n 420 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-15 : -3.3] [t1: 0.00 t2 0.00 : 0.3] A: [n 420 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-16 : -4.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-16 : -3.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-16 : -4.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-16 : -4.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 420 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-16 : -4.0] [t1: 0.00 t2 0.00 : 0.1] nn = 62 Prob = title: 'SYMMETRIC MASS MATRIX, MEDIUM TEST PROBLEM, CONSISTENT MASSES' A: [420x420 double] name: 'HB/bcsstm07' id: 62 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 420 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:0 nrhs 4 real 1] [e1: 6e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:0 nrhs 9 real 1] [e1: 6e-13 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 1] B: [sp:0 nrhs 1 real 0] [e1: 7e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:0 nrhs 9 real 0] [e1: 9e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-13 : -0.1] [t1: 0.00 t2 0.00 : 1.2] A: [n 420 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 420 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 1 real 1] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 4 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 420 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 420 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 221 Prob = title: 'SYMMETRIC MATRIX, FE APPROXIMATION OF BUILDING.' A: [468x468 double] name: 'HB/nos5' id: 221 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 468 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 468 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:1 nrhs 1 real 1] [e1: 5e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.01 : 1.0] A: [n 468 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 468 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:0 nrhs 1 real 1] [e1: 6e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:0 nrhs 4 real 1] [e1: 9e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 468 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:1 nrhs 9 real 1] Warning: Matrix is indefinite or singular to working precision [e1: 2e-14 : NaN] [t1: 0.02 t2 0.02 : 1.0] A: [n 468 real 0] B: [sp:1 nrhs 1 real 0] Warning: Matrix is singular to working precision. > In testsolve at 15 In test10 at 116 In cholmod_test at 112 Warning: Matrix is indefinite or singular to working precision [e1: NaN : NaN] [t1: 0.01 t2 0.01 : 1.0] A: [n 468 real 0] B: [sp:1 nrhs 9 real 0] Warning: Matrix is singular to working precision. > In testsolve at 15 In test10 at 117 In cholmod_test at 112 Warning: Matrix is indefinite or singular to working precision [e1: NaN : NaN] [t1: 0.02 t2 0.02 : 1.0] nn = 42 Prob = title: 'SYMMETRIC STIFFNESS MATRIX - FRAME WITHIN A SUSPENSION BRIDGE' A: [485x485 double] name: 'HB/bcsstk20' id: 42 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 485 real 1] B: [sp:0 nrhs 1 real 1] [e1: 9e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-05 : 0.4] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:0 nrhs 9 real 1] [e1: 9e-06 : -0.3] [t1: 0.00 t2 0.00 : 1.3] A: [n 485 real 1] B: [sp:0 nrhs 1 real 0] [e1: 9e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.2] A: [n 485 real 1] B: [sp:1 nrhs 4 real 1] [e1: 8e-07 : 0.4] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:1 nrhs 9 real 1] [e1: 7e-07 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 485 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-06 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 485 real 0] B: [sp:0 nrhs 1 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 485 real 0] B: [sp:0 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 485 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 0] B: [sp:0 nrhs 1 real 0] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 0] B: [sp:0 nrhs 9 real 0] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 0] B: [sp:1 nrhs 1 real 1] [e1: 7e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 485 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 485 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 485 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 70 Prob = title: 'SYMMETRIC MASS MATRIX - FRAME WITHIN A SUSPENSION BRIDGE' A: [485x485 double] name: 'HB/bcsstm20' id: 70 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 485 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-15 : -2.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:0 nrhs 4 real 1] [e1: 6e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 485 real 1] B: [sp:0 nrhs 9 real 1] [e1: 6e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 485 real 1] B: [sp:0 nrhs 1 real 0] [e1: 9e-15 : -2.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-14 : -1.8] [t1: 0.00 t2 0.00 : 0.3] A: [n 485 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-16 : -3.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 4 real 1] [e1: 8e-16 : -2.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 9 real 1] [e1: 9e-16 : -2.3] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-16 : -7.4] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-16 : -6.3] [t1: 0.00 t2 0.00 : 0.2] A: [n 485 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-16 : -6.2] [t1: 0.00 t2 0.00 : 0.2] A: [n 485 real 1] B: [sp:0 nrhs 1 real 0] [e1: 6e-16 : -6.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:0 nrhs 9 real 0] [e1: 7e-16 : -6.2] [t1: 0.00 t2 0.00 : 0.3] A: [n 485 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-16 : -5.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-16 : -5.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-17 : -8.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 1 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 485 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-16 : -4.1] [t1: 0.00 t2 0.00 : 0.1] nn = 2 Prob = title: 'S ADMITTANCE MATRIX 494 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985.' A: [494x494 double] name: 'HB/494_bus' id: 2 date: '1985' author: 'D. Tylavsky' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'power network problem' A: [n 494 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-09 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:1 nrhs 1 real 1] [e1: 6e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-11 : -0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 494 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 494 real 1] B: [sp:1 nrhs 9 real 0] [e1: 7e-11 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 494 real 0] B: [sp:0 nrhs 1 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:0 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:0 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:0 nrhs 1 real 0] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:0 nrhs 9 real 0] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:1 nrhs 1 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 494 real 0] B: [sp:1 nrhs 4 real 1] [e1: 8e-15 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 494 real 0] B: [sp:1 nrhs 9 real 1] [e1: 9e-15 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 494 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 494 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] nn = 339 Prob = title: 'NASTRAN BUCKLING PROBLEM STIFFNESS MATRIX' A: [588x588 double] name: 'Boeing/bcsstk34' id: 339 date: '1995' author: 'R. Grimes' ed: 'T. Davis' kind: 'structural problem' A: [n 588 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:1 nrhs 4 real 1] [e1: 4e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:1 nrhs 9 real 1] [e1: 6e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 588 real 1] B: [sp:1 nrhs 9 real 0] [e1: 9e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 588 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 588 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 588 real 0] B: [sp:1 nrhs 1 real 1] [e1: 3e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:1 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:1 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 588 real 0] B: [sp:1 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 588 real 0] B: [sp:1 nrhs 9 real 0] [e1: 7e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] nn = 3 Prob = title: 'S ADMITTANCE MATRIX 662 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985.' A: [662x662 double] name: 'HB/662_bus' id: 3 date: '1985' author: 'D. Tylavsky' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'power network problem' A: [n 662 real 1] B: [sp:0 nrhs 1 real 1] [e1: 9e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:0 nrhs 4 real 1] [e1: 9e-10 : -0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-09 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-09 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-09 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-11 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 1] B: [sp:1 nrhs 9 real 0] [e1: 5e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:0 nrhs 1 real 1] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:0 nrhs 4 real 1] [e1: 5e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 0] B: [sp:0 nrhs 9 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 0] B: [sp:0 nrhs 1 real 0] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:0 nrhs 9 real 0] [e1: 9e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 662 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 662 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 222 Prob = title: 'SYMMETRIC MATRIX, POISSON'S EQUATION IN L SHAPE, MIXED BC.' A: [675x675 double] name: 'HB/nos6' id: 222 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: '2D/3D problem' A: [n 675 real 1] B: [sp:0 nrhs 1 real 1] [e1: 3e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-08 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:0 nrhs 9 real 1] [e1: 3e-08 : -0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:1 nrhs 1 real 1] [e1: 9e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-09 : 0.1] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 0] B: [sp:0 nrhs 1 real 1] [e1: 7e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 0] B: [sp:0 nrhs 4 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 675 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 675 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 4 Prob = title: 'S ADMITTANCE MATRIX 685 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985.' A: [685x685 double] name: 'HB/685_bus' id: 4 date: '1985' author: 'D. Tylavsky' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'power network problem' A: [n 685 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-10 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-10 : -0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-10 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 1] B: [sp:1 nrhs 9 real 1] [e1: 5e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 1] B: [sp:1 nrhs 9 real 0] [e1: 9e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 0] B: [sp:0 nrhs 1 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 0] B: [sp:0 nrhs 4 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 0] B: [sp:0 nrhs 9 real 1] [e1: 6e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 0] B: [sp:0 nrhs 1 real 0] [e1: 9e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 685 real 0] B: [sp:1 nrhs 9 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 0] B: [sp:1 nrhs 1 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 685 real 0] B: [sp:1 nrhs 9 real 0] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 357 Prob = title: 'SYMMETRIC TEST MATRIX FROM MSC/NASTRAN BC4F8.OUT2' A: [726x726 double] name: 'Boeing/msc00726' id: 357 date: '1995' author: 'R. Grimes' ed: 'T. Davis' kind: 'structural problem' A: [n 726 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.1] A: [n 726 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:1 nrhs 1 real 1] [e1: 5e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-12 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 726 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-12 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 726 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-12 : 0.0] [t1: 0.12 t2 0.02 : 5.4] A: [n 726 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-12 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 726 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-13 : 0.0] [t1: 0.06 t2 0.16 : 0.4] A: [n 726 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.17 t2 0.07 : 2.3] A: [n 726 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.18 t2 0.18 : 1.0] A: [n 726 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.16 t2 0.06 : 2.6] A: [n 726 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-13 : 0.0] [t1: 0.18 t2 0.18 : 1.0] A: [n 726 real 0] B: [sp:1 nrhs 1 real 1] [e1: 5e-14 : 0.0] [t1: 0.16 t2 0.06 : 2.6] A: [n 726 real 0] B: [sp:1 nrhs 4 real 1] [e1: 6e-14 : 0.0] [t1: 0.18 t2 0.17 : 1.0] A: [n 726 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-14 : 0.0] [t1: 0.19 t2 0.09 : 2.2] A: [n 726 real 0] B: [sp:1 nrhs 1 real 0] [e1: 7e-14 : 0.0] [t1: 0.06 t2 0.16 : 0.4] A: [n 726 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.19 t2 0.19 : 1.0] nn = 223 Prob = title: 'SYMMETRIC MATRIX, POISSON'S EQUATION IN UNIT CUBE.' A: [729x729 double] name: 'HB/nos7' id: 223 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: '2D/3D problem' A: [n 729 real 1] B: [sp:0 nrhs 1 real 1] [e1: 2e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 729 real 1] B: [sp:0 nrhs 4 real 1] [e1: 3e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 729 real 1] B: [sp:0 nrhs 9 real 1] [e1: 3e-06 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 1] B: [sp:0 nrhs 1 real 0] [e1: 4e-06 : 0.0] [t1: 0.00 t2 0.01 : 0.9] A: [n 729 real 1] B: [sp:0 nrhs 9 real 0] [e1: 4e-06 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-09 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 729 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 729 real 1] B: [sp:1 nrhs 9 real 1] [e1: 9e-08 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-07 : 0.0] [t1: 0.10 t2 0.01 : 18.0] A: [n 729 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-07 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 0] B: [sp:0 nrhs 1 real 1] [e1: 9e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-13 : 0.0] [t1: 0.02 t2 0.12 : 0.2] A: [n 729 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 729 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.13 t2 0.03 : 5.0] A: [n 729 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 729 real 0] B: [sp:1 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.02 t2 0.12 : 0.2] A: [n 729 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.04 t2 0.04 : 1.0] A: [n 729 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.11 t2 0.01 : 8.6] A: [n 729 real 0] B: [sp:1 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.04 t2 0.04 : 1.0] nn = 41 Prob = title: 'SYMMETRIC STIFFNESS MATRIX - PART OF A SUSPENSION BRIDGE' A: [817x817 double] name: 'HB/bcsstk19' id: 41 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 817 real 1] B: [sp:0 nrhs 1 real 1] [e1: 7e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:0 nrhs 4 real 1] [e1: 7e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:0 nrhs 9 real 1] [e1: 7e-06 : -0.2] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-05 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:1 nrhs 1 real 1] [e1: 4e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:1 nrhs 4 real 1] [e1: 5e-07 : -0.1] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-06 : -0.2] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:1 nrhs 1 real 0] [e1: 1e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-06 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 817 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 817 real 0] B: [sp:1 nrhs 9 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.8] nn = 69 Prob = title: 'SYMMETRIC MASS MATRIX - PART OF A SUSPENSION BRIDGE' A: [817x817 double] name: 'HB/bcsstm19' id: 69 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 817 real 1] B: [sp:0 nrhs 1 real 1] [e1: 8e-15 : -2.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 4 real 1] [e1: 8e-15 : -2.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 9 real 1] [e1: 9e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 817 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-14 : -2.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : -1.9] [t1: 0.00 t2 0.00 : 0.3] A: [n 817 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-15 : -2.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-15 : -2.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : -2.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-15 : -1.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-15 : -1.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 1 real 1] [e1: 9e-16 : -5.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 4 real 1] [e1: 9e-16 : -5.8] [t1: 0.00 t2 0.00 : 0.2] A: [n 817 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-15 : -4.9] [t1: 0.00 t2 0.00 : 0.2] A: [n 817 real 1] B: [sp:0 nrhs 1 real 0] [e1: 3e-15 : -4.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:0 nrhs 9 real 0] [e1: 3e-15 : -5.0] [t1: 0.00 t2 0.00 : 0.3] A: [n 817 real 1] B: [sp:1 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 4 real 1] [e1: 2e-16 : -5.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-16 : -4.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-16 : -6.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 817 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-16 : -6.3] [t1: 0.00 t2 0.00 : 0.1] nn = 159 Prob = title: 'SYMMETRIC MATRIX FROM NINE POINT START ON A 30 X 30 GRID.' A: [900x900 double] name: 'HB/gr_30_30' id: 159 date: '1983' author: 'R. Grimes' ed: 'I. Duff, R. Grimes, J. Lewis' kind: '2D/3D problem' A: [n 900 real 1] B: [sp:0 nrhs 1 real 1] [e1: 9e-12 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 900 real 1] B: [sp:0 nrhs 4 real 1] [e1: 9e-12 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:0 nrhs 9 real 1] [e1: 9e-12 : -0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 900 real 1] B: [sp:1 nrhs 4 real 1] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:1 nrhs 9 real 1] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:1 nrhs 1 real 0] [e1: 4e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 1] B: [sp:1 nrhs 9 real 0] [e1: 6e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 900 real 0] B: [sp:0 nrhs 9 real 1] [e1: 1e-13 : 0.0] [t1: 0.01 t2 0.01 : 0.7] A: [n 900 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 900 real 0] B: [sp:0 nrhs 9 real 0] [e1: 2e-13 : 0.0] [t1: 0.01 t2 0.01 : 0.9] A: [n 900 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 900 real 0] B: [sp:1 nrhs 4 real 1] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 900 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.01 t2 0.01 : 0.9] A: [n 900 real 0] B: [sp:1 nrhs 1 real 0] [e1: 4e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 900 real 0] B: [sp:1 nrhs 9 real 0] [e1: 5e-14 : 0.0] [t1: 0.01 t2 0.01 : 0.9] nn = 218 Prob = title: 'SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON BEAM.' A: [957x957 double] name: 'HB/nos2' id: 218 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 957 real 1] B: [sp:0 nrhs 1 real 1] [e1: 5e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 1] B: [sp:0 nrhs 1 real 0] [e1: 7e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 1] B: [sp:0 nrhs 9 real 0] [e1: 8e-06 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 1] B: [sp:1 nrhs 1 real 0] [e1: 9e-08 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 1] B: [sp:1 nrhs 9 real 0] [e1: 6e-07 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 0] B: [sp:0 nrhs 1 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 0] B: [sp:0 nrhs 4 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.0] A: [n 957 real 0] B: [sp:0 nrhs 9 real 1] [e1: 8e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 957 real 0] B: [sp:0 nrhs 1 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 0] B: [sp:0 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 957 real 0] B: [sp:1 nrhs 1 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 0] B: [sp:1 nrhs 4 real 1] [e1: 1e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 957 real 0] B: [sp:1 nrhs 9 real 1] [e1: 2e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] A: [n 957 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 1.1] A: [n 957 real 0] B: [sp:1 nrhs 9 real 0] [e1: 3e-14 : 0.0] [t1: 0.00 t2 0.00 : 0.9] nn = 219 Prob = title: 'SYMMETRIC MATRIX, FE APPROXIMATION TO BIHARMONIC OPERATOR ON PLATE' A: [960x960 double] name: 'HB/nos3' id: 219 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 960 real 1] B: [sp:0 nrhs 1 real 1] [e1: 4e-10 : 0.0] [t1: 0.01 t2 0.00 : 1.0] A: [n 960 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:0 nrhs 1 real 0] [e1: 6e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:0 nrhs 9 real 0] [e1: 7e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:1 nrhs 1 real 1] [e1: 1e-11 : 0.0] [t1: 0.00 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:1 nrhs 4 real 1] [e1: 3e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:1 nrhs 9 real 1] [e1: 3e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:1 nrhs 1 real 0] [e1: 2e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 960 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 960 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 0] B: [sp:0 nrhs 9 real 0] [e1: 3e-13 : 0.0] [t1: 0.03 t2 0.02 : 1.0] A: [n 960 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 0] B: [sp:1 nrhs 4 real 1] [e1: 4e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 960 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 960 real 0] B: [sp:1 nrhs 1 real 0] [e1: 5e-14 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 960 real 0] B: [sp:1 nrhs 9 real 0] [e1: 7e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] nn = 358 Prob = title: 'SYMMETRIC TEST MATRIX FROM MSC/NASTRAN STARF8.OUT2' A: [1050x1050 double] Zeros: [1050x1050 double] name: 'Boeing/msc01050' id: 358 date: '1995' author: 'R. Grimes' ed: 'T. Davis' kind: 'structural problem' A: [n 1050 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-00 : 0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 1050 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e+00 : -0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1050 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e+00 : -0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 1050 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e+00 : -0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 1050 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e+00 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1050 real 1] B: [sp:1 nrhs 1 real 1] [e1: 3e-02 : 0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 1050 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-01 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1050 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-01 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1050 real 1] B: [sp:1 nrhs 1 real 0] [e1: 3e-02 : 0.0] [t1: 0.01 t2 0.01 : 1.1] A: [n 1050 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-01 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1050 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 1050 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:0 nrhs 9 real 0] [e1: 3e-13 : 0.0] [t1: 0.03 t2 0.12 : 0.2] A: [n 1050 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:1 nrhs 4 real 1] [e1: 5e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:1 nrhs 9 real 1] [e1: 4e-14 : 0.0] [t1: 0.03 t2 0.03 : 0.9] A: [n 1050 real 0] B: [sp:1 nrhs 1 real 0] [e1: 5e-14 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1050 real 0] B: [sp:1 nrhs 9 real 0] [e1: 6e-14 : 0.0] [t1: 0.03 t2 0.03 : 0.9] nn = 30 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, FRAME BUILDING (TV STUDIO)' A: [1074x1074 double] name: 'HB/bcsstk08' id: 30 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 1074 real 1] B: [sp:0 nrhs 1 real 1] [e1: 3e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:0 nrhs 4 real 1] [e1: 4e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 1] [e1: 4e-11 : 0.0] [t1: 0.01 t2 0.11 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 1 real 0] [e1: 5e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 0] [e1: 7e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 1] [e1: 2e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-11 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-11 : 0.0] [t1: 0.11 t2 0.01 : 8.7] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 0] [e1: 8e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1074 real 0] B: [sp:0 nrhs 1 real 1] [e1: 1e-13 : 0.0] [t1: 0.13 t2 0.03 : 4.9] A: [n 1074 real 0] B: [sp:0 nrhs 4 real 1] [e1: 1e-13 : 0.0] [t1: 0.04 t2 0.14 : 0.3] A: [n 1074 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.05 t2 0.15 : 0.3] A: [n 1074 real 0] B: [sp:0 nrhs 1 real 0] [e1: 2e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 1074 real 0] B: [sp:0 nrhs 9 real 0] [e1: 3e-13 : 0.0] [t1: 0.15 t2 0.05 : 3.2] A: [n 1074 real 0] B: [sp:1 nrhs 1 real 1] [e1: 2e-14 : 0.0] [t1: 0.13 t2 0.03 : 4.9] A: [n 1074 real 0] B: [sp:1 nrhs 4 real 1] [e1: 2e-14 : 0.0] [t1: 0.04 t2 0.14 : 0.3] A: [n 1074 real 0] B: [sp:1 nrhs 9 real 1] [e1: 3e-14 : 0.0] [t1: 0.06 t2 0.16 : 0.4] A: [n 1074 real 0] B: [sp:1 nrhs 1 real 0] [e1: 3e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 1074 real 0] B: [sp:1 nrhs 9 real 0] [e1: 5e-14 : 0.0] [t1: 0.06 t2 0.16 : 0.4] nn = 63 Prob = title: 'SYMMETRIC MASS MATRIX, FRAME BUILDING (TV STUDIO)' A: [1074x1074 double] name: 'HB/bcsstm08' id: 63 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 1074 real 1] B: [sp:0 nrhs 1 real 1] [e1: 3e-15 : -3.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 4 real 1] [e1: 5e-15 : -2.8] [t1: 0.00 t2 0.00 : 0.2] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 1] [e1: 5e-15 : -3.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 1074 real 1] B: [sp:0 nrhs 1 real 0] [e1: 8e-15 : -2.9] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-14 : -2.7] [t1: 0.00 t2 0.00 : 0.3] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 1] [e1: 5e-16 : -3.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 4 real 1] [e1: 5e-16 : -3.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-15 : -2.5] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 0] [e1: 7e-16 : -3.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 0] [e1: 1e-15 : -3.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 1 real 1] [e1: 6e-17 : -9.2] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 4 real 1] [e1: 2e-16 : -7.3] [t1: 0.00 t2 0.00 : 0.2] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 1] [e1: 2e-16 : -7.7] [t1: 0.00 t2 0.00 : 0.2] A: [n 1074 real 1] B: [sp:0 nrhs 1 real 0] [e1: 7e-18 : -13.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:0 nrhs 9 real 0] [e1: 6e-16 : -6.8] [t1: 0.00 t2 0.00 : 0.4] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 1] [e1: 6e-17 : -6.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 4 real 1] [e1: 6e-17 : -6.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-16 : -6.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 1 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1074 real 1] B: [sp:1 nrhs 9 real 0] [e1: 4e-16 : -4.6] [t1: 0.00 t2 0.00 : 0.1] nn = 31 Prob = title: 'SYMMETRIC STIFFNESS MATRIX, SQUARE PLATE CLAMPED' A: [1083x1083 double] name: 'HB/bcsstk09' id: 31 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 1083 real 1] B: [sp:0 nrhs 1 real 1] [e1: 1e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:0 nrhs 4 real 1] [e1: 1e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 1] [e1: 1e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:0 nrhs 1 real 0] [e1: 2e-10 : 0.0] [t1: 0.01 t2 0.11 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-10 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 1] [e1: 5e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:1 nrhs 4 real 1] [e1: 5e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 1] [e1: 1e-11 : 0.0] [t1: 0.01 t2 0.11 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 0] [e1: 9e-12 : 0.0] [t1: 0.01 t2 0.01 : 1.0] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 0] [e1: 2e-11 : 0.0] [t1: 0.02 t2 0.02 : 1.0] A: [n 1083 real 0] B: [sp:0 nrhs 1 real 1] [e1: 2e-13 : 0.0] [t1: 0.13 t2 0.03 : 4.6] A: [n 1083 real 0] B: [sp:0 nrhs 4 real 1] [e1: 2e-13 : 0.0] [t1: 0.04 t2 0.14 : 0.3] A: [n 1083 real 0] B: [sp:0 nrhs 9 real 1] [e1: 2e-13 : 0.0] [t1: 0.04 t2 0.14 : 0.3] A: [n 1083 real 0] B: [sp:0 nrhs 1 real 0] [e1: 3e-13 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 1083 real 0] B: [sp:0 nrhs 9 real 0] [e1: 4e-13 : 0.0] [t1: 0.14 t2 0.04 : 3.3] A: [n 1083 real 0] B: [sp:1 nrhs 1 real 1] [e1: 3e-14 : 0.0] [t1: 0.03 t2 0.13 : 0.2] A: [n 1083 real 0] B: [sp:1 nrhs 4 real 1] [e1: 5e-14 : 0.0] [t1: 0.04 t2 0.14 : 0.3] A: [n 1083 real 0] B: [sp:1 nrhs 9 real 1] [e1: 5e-14 : 0.0] [t1: 0.05 t2 0.15 : 0.4] A: [n 1083 real 0] B: [sp:1 nrhs 1 real 0] [e1: 8e-14 : 0.0] [t1: 0.03 t2 0.03 : 1.0] A: [n 1083 real 0] B: [sp:1 nrhs 9 real 0] [e1: 1e-13 : 0.0] [t1: 0.16 t2 0.05 : 2.9] nn = 64 Prob = title: 'SYMMETRIC MASS MATRIX, SQUARE PLATE CLAMPED' A: [1083x1083 double] name: 'HB/bcsstm09' id: 64 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' A: [n 1083 real 1] B: [sp:0 nrhs 1 real 1] [e1: 7e-15 : -3.4] [t1: 0.00 t2 0.00 : 0.2] A: [n 1083 real 1] B: [sp:0 nrhs 4 real 1] [e1: 8e-15 : -3.2] [t1: 0.00 t2 0.00 : 0.2] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 1] [e1: 9e-15 : -3.1] [t1: 0.00 t2 0.00 : 0.2] A: [n 1083 real 1] B: [sp:0 nrhs 1 real 0] [e1: 1e-14 : -3.1] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 0] [e1: 2e-14 : -2.9] [t1: 0.00 t2 0.00 : 0.3] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 1] [e1: 7e-16 : -4.3] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 4 real 1] [e1: 1e-15 : -3.7] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 1] [e1: 2e-15 : -3.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 0] [e1: 8e-16 : -4.8] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 0] [e1: 3e-15 : -3.6] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 4 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.2] A: [n 1083 real 1] B: [sp:0 nrhs 1 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:0 nrhs 9 real 0] [e1: 1e-16 : -10.4] [t1: 0.00 t2 0.00 : 0.3] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 4 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 1] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 1 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] A: [n 1083 real 1] B: [sp:1 nrhs 9 real 0] [e1: 0e+00 : 0.0] [t1: 0.00 t2 0.00 : 0.1] ================================================================= test11 : compare CHOLMOD and MATLAB, save results in Results.mat test matrices sorted by dimension: 1440: Oberwolfach LFAT5 14 1 1438: Oberwolfach LF10 18 1 436: FIDAP ex5 27 1 23: HB bcsstk01 48 1 872: Pothen mesh1e1 48 1 873: Pothen mesh1em1 48 1 874: Pothen mesh1em6 48 1 24: HB bcsstk02 66 1 57: HB bcsstm02 66 1 220: HB nos4 100 1 25: HB bcsstk03 112 1 1506: Pajek Journals 124 1 26: HB bcsstk04 132 1 44: HB bcsstk22 138 1 72: HB bcsstm22 138 1 206: HB lund_a 147 1 207: HB lund_b 147 1 27: HB bcsstk05 153 1 60: HB bcsstm05 153 1 217: HB nos1 237 1 877: Pothen mesh3e1 289 1 878: Pothen mesh3em5 289 1 875: Pothen mesh2e1 306 1 876: Pothen mesh2em5 306 1 229: HB plat362 362 1 315: Bai mhdb416 416 1 28: HB bcsstk06 420 1 29: HB bcsstk07 420 1 61: HB bcsstm06 420 1 62: HB bcsstm07 420 1 221: HB nos5 468 1 42: HB bcsstk20 485 1 70: HB bcsstm20 485 1 2: HB 494_bus 494 1 339: Boeing bcsstk34 588 1 3: HB 662_bus 662 1 222: HB nos6 675 1 4: HB 685_bus 685 1 357: Boeing msc00726 726 1 223: HB nos7 729 1 41: HB bcsstk19 817 1 69: HB bcsstm19 817 1 159: HB gr_30_30 900 1 218: HB nos2 957 1 219: HB nos3 960 1 358: Boeing msc01050 1050 1 30: HB bcsstk08 1074 1 63: HB bcsstm08 1074 1 31: HB bcsstk09 1083 1 64: HB bcsstm09 1083 1 1440: Oberwolfach/LFAT5 n 14 lnz 33 fl 91 cholmod2: t: 0.00003 e: 6.4e-14 mflop 3 matlab: t: 0.00003 e: 4.3e-14 mflop 3 cholmod2 speedup: 1.1 1438: Oberwolfach/LF10 n 18 lnz 58 fl 198 cholmod2: t: 0.00003 e: 1.8e-12 mflop 6 matlab: t: 0.00002 e: 1.1e-12 mflop 9 cholmod2 speedup: 0.6 436: FIDAP/ex5 n 27 lnz 153 fl 981 cholmod2: t: 0.00009 e: 3.5e-08 mflop 11 matlab: t: 0.00012 e: 3.5e-08 mflop 8 cholmod2 speedup: 1.3 23: HB/bcsstk01 n 48 lnz 489 fl 6009 cholmod2: t: 0.00027 e: 1.2e-12 mflop 22 matlab: t: 0.00023 e: 1.2e-12 mflop 26 cholmod2 speedup: 0.8 872: Pothen/mesh1e1 n 48 lnz 336 fl 2678 cholmod2: t: 0.00011 e: 4.1e-15 mflop 25 matlab: t: 0.00009 e: 4.1e-15 mflop 28 cholmod2 speedup: 0.9 873: Pothen/mesh1em1 n 48 lnz 336 fl 2678 cholmod2: t: 0.00021 e: 5.7e-15 mflop 13 matlab: t: 0.00018 e: 5.7e-15 mflop 15 cholmod2 speedup: 0.8 874: Pothen/mesh1em6 n 48 lnz 336 fl 2678 cholmod2: t: 0.00023 e: 2.5e-15 mflop 12 matlab: t: 0.00019 e: 2.5e-15 mflop 14 cholmod2 speedup: 0.8 24: HB/bcsstk02 n 66 lnz 2211 fl 98021 cholmod2: t: 0.00071 e: 5.7e-12 mflop 138 matlab: t: 0.00032 e: 5.7e-12 mflop 302 cholmod2 speedup: 0.5 57: HB/bcsstm02 n 66 lnz 66 fl 66 cholmod2: t: 0.00004 e: 3.3e-15 mflop 2 matlab: t: 0.00001 e: 2.5e-16 mflop 7 cholmod2 speedup: 0.2 220: HB/nos4 n 100 lnz 632 fl 4438 cholmod2: t: 0.00040 e: 1.3e-12 mflop 11 matlab: t: 0.00037 e: 1.3e-12 mflop 12 cholmod2 speedup: 0.9 25: HB/bcsstk03 n 112 lnz 384 fl 1360 cholmod2: t: 0.00027 e: 2.4e-11 mflop 5 matlab: t: 0.00021 e: 2.4e-11 mflop 7 cholmod2 speedup: 0.8 1506: Pajek/Journals n 124 lnz 6990 fl 505314 cholmod2: t: 0.00131 e: 4.2e-14 mflop 386 matlab: t: 0.00087 e: 4.1e-14 mflop 580 cholmod2 speedup: 0.7 26: HB/bcsstk04 n 132 lnz 3293 fl 90567 cholmod2: t: 0.00092 e: 1.5e-11 mflop 98 matlab: t: 0.00132 e: 1.5e-11 mflop 68 cholmod2 speedup: 1.4 44: HB/bcsstk22 n 138 lnz 680 fl 4224 cholmod2: t: 0.00040 e: 8.2e-12 mflop 10 matlab: t: 0.00037 e: 8.2e-12 mflop 11 cholmod2 speedup: 0.9 72: HB/bcsstm22 n 138 lnz 138 fl 138 cholmod2: t: 0.00013 e: 5.4e-15 mflop 1 matlab: t: 0.00002 e: 1.1e-15 mflop 7 cholmod2 speedup: 0.1 206: HB/lund_a n 147 lnz 2339 fl 42287 cholmod2: t: 0.00040 e: 3.4e-10 mflop 105 matlab: t: 0.00041 e: 3.4e-10 mflop 104 cholmod2 speedup: 1.0 207: HB/lund_b n 147 lnz 2340 fl 42320 cholmod2: t: 0.00066 e: 1.4e-12 mflop 65 matlab: t: 0.00076 e: 1.4e-12 mflop 56 cholmod2 speedup: 1.2 27: HB/bcsstk05 n 153 lnz 2326 fl 39118 cholmod2: t: 0.00091 e: 9.7e-12 mflop 43 matlab: t: 0.00090 e: 9.7e-12 mflop 44 cholmod2 speedup: 1.0 60: HB/bcsstm05 n 153 lnz 153 fl 153 cholmod2: t: 0.00015 e: 7.8e-15 mflop 1 matlab: t: 0.00002 e: 1.3e-15 mflop 7 cholmod2 speedup: 0.1 217: HB/nos1 n 237 lnz 704 fl 2254 cholmod2: t: 0.00020 e: 4.0e-09 mflop 11 matlab: t: 0.00018 e: 4.0e-09 mflop 12 cholmod2 speedup: 0.9 877: Pothen/mesh3e1 n 289 lnz 2433 fl 27549 cholmod2: t: 0.00077 e: 2.8e-14 mflop 36 matlab: t: 0.00096 e: 2.8e-14 mflop 29 cholmod2 speedup: 1.3 878: Pothen/mesh3em5 n 289 lnz 2433 fl 27549 cholmod2: t: 0.00108 e: 2.6e-14 mflop 25 matlab: t: 0.00096 e: 2.6e-14 mflop 29 cholmod2 speedup: 0.9 875: Pothen/mesh2e1 n 306 lnz 3224 fl 43648 cholmod2: t: 0.00148 e: 1.5e-13 mflop 29 matlab: t: 0.00124 e: 1.5e-13 mflop 35 cholmod2 speedup: 0.8 876: Pothen/mesh2em5 n 306 lnz 3224 fl 43648 cholmod2: t: 0.00068 e: 4.9e-14 mflop 65 matlab: t: 0.00062 e: 4.9e-14 mflop 70 cholmod2 speedup: 0.9 229: HB/plat362 n 362 lnz 8060 fl 220156 cholmod2: t: 0.00242 e: 2.1e-05 mflop 91 matlab: t: 0.00298 e: 2.1e-05 mflop 74 cholmod2 speedup: 1.2 315: Bai/mhdb416 n 416 lnz 1364 fl 4998 cholmod2: t: 0.00076 e: 2.0e-12 mflop 7 matlab: t: 0.00081 e: 2.0e-12 mflop 6 cholmod2 speedup: 1.1 28: HB/bcsstk06 n 420 lnz 11345 fl 400973 cholmod2: t: 0.00396 e: 1.9e-10 mflop 101 matlab: t: 0.00423 e: 1.9e-10 mflop 95 cholmod2 speedup: 1.1 29: HB/bcsstk07 n 420 lnz 11345 fl 400973 cholmod2: t: 0.00200 e: 1.9e-10 mflop 201 matlab: t: 0.00211 e: 1.9e-10 mflop 190 cholmod2 speedup: 1.1 61: HB/bcsstm06 n 420 lnz 420 fl 420 cholmod2: t: 0.00027 e: 2.1e-14 mflop 2 matlab: t: 0.00003 e: 3.0e-15 mflop 14 cholmod2 speedup: 0.1 62: HB/bcsstm07 n 420 lnz 10654 fl 353996 cholmod2: t: 0.00375 e: 5.7e-13 mflop 94 matlab: t: 0.00392 e: 5.7e-13 mflop 90 cholmod2 speedup: 1.0 221: HB/nos5 n 468 lnz 18437 fl 1.07298e+06 cholmod2: t: 0.00672 e: 9.8e-12 mflop 160 matlab: t: 0.00647 e: 9.8e-12 mflop 166 cholmod2 speedup: 1.0 42: HB/bcsstk20 n 485 lnz 2336 fl 13864 cholmod2: t: 0.00056 e: 5.6e-06 mflop 25 matlab: t: 0.00053 e: 5.6e-06 mflop 26 cholmod2 speedup: 0.9 70: HB/bcsstm20 n 485 lnz 485 fl 485 cholmod2: t: 0.00034 e: 2.7e-14 mflop 1 matlab: t: 0.00004 e: 5.7e-15 mflop 13 cholmod2 speedup: 0.1 2: HB/494_bus n 494 lnz 1414 fl 4812 cholmod2: t: 0.00105 e: 8.0e-10 mflop 5 matlab: t: 0.00098 e: 8.0e-10 mflop 5 cholmod2 speedup: 0.9 339: Boeing/bcsstk34 n 588 lnz 43366 fl 3.91893e+06 cholmod2: t: 0.01322 e: 1.1e-12 mflop 296 matlab: t: 0.01341 e: 1.1e-12 mflop 292 cholmod2 speedup: 1.0 3: HB/662_bus n 662 lnz 2549 fl 12937 cholmod2: t: 0.00185 e: 9.6e-10 mflop 7 matlab: t: 0.00156 e: 9.6e-10 mflop 8 cholmod2 speedup: 0.8 222: HB/nos6 n 675 lnz 6453 fl 85577 cholmod2: t: 0.00129 e: 2.7e-08 mflop 66 matlab: t: 0.00117 e: 2.7e-08 mflop 73 cholmod2 speedup: 0.9 4: HB/685_bus n 685 lnz 3650 fl 25150 cholmod2: t: 0.00158 e: 1.6e-10 mflop 16 matlab: t: 0.00200 e: 1.6e-10 mflop 13 cholmod2 speedup: 1.3 357: Boeing/msc00726 n 726 lnz 110707 fl 2.31244e+07 cholmod2: t: 0.02436 e: 1.8e-11 mflop 949 matlab: t: 0.03762 e: 1.8e-11 mflop 615 cholmod2 speedup: 1.5 223: HB/nos7 n 729 lnz 18945 fl 1.0875e+06 cholmod2: t: 0.00748 e: 2.5e-06 mflop 145 matlab: t: 0.00720 e: 2.5e-06 mflop 151 cholmod2 speedup: 1.0 41: HB/bcsstk19 n 817 lnz 7528 fl 77096 cholmod2: t: 0.00342 e: 6.7e-06 mflop 23 matlab: t: 0.00297 e: 6.7e-06 mflop 26 cholmod2 speedup: 0.9 69: HB/bcsstm19 n 817 lnz 817 fl 817 cholmod2: t: 0.00030 e: 3.8e-14 mflop 3 matlab: t: 0.00003 e: 6.0e-15 mflop 31 cholmod2 speedup: 0.1 159: HB/gr_30_30 n 900 lnz 16348 fl 405796 cholmod2: t: 0.00557 e: 8.7e-12 mflop 73 matlab: t: 0.00560 e: 8.7e-12 mflop 73 cholmod2 speedup: 1.0 218: HB/nos2 n 957 lnz 2864 fl 9214 cholmod2: t: 0.00152 e: 4.4e-06 mflop 6 matlab: t: 0.00144 e: 4.4e-06 mflop 6 cholmod2 speedup: 0.9 219: HB/nos3 n 960 lnz 31314 fl 1.38676e+06 cholmod2: t: 0.00953 e: 4.3e-10 mflop 145 matlab: t: 0.00984 e: 4.3e-10 mflop 141 cholmod2 speedup: 1.0 358: Boeing/msc01050 n 1050 lnz 28305 fl 1.01711e+06 cholmod2: t: 0.00768 e: 1.1e+00 mflop 133 matlab: t: 0.00809 e: 1.1e+00 mflop 126 cholmod2 speedup: 1.1 30: HB/bcsstk08 n 1074 lnz 31153 fl 1.80924e+06 cholmod2: t: 0.01337 e: 4.5e-11 mflop 135 matlab: t: 0.01572 e: 4.5e-11 mflop 115 cholmod2 speedup: 1.2 63: HB/bcsstm08 n 1074 lnz 1074 fl 1074 cholmod2: t: 0.00086 e: 3.6e-14 mflop 1 matlab: t: 0.00005 e: 4.4e-15 mflop 22 cholmod2 speedup: 0.1 31: HB/bcsstk09 n 1083 lnz 58416 fl 4.50027e+06 cholmod2: t: 0.01767 e: 1.3e-10 mflop 255 matlab: t: 0.01763 e: 1.3e-10 mflop 255 cholmod2 speedup: 1.0 64: HB/bcsstm09 n 1083 lnz 1083 fl 1083 cholmod2: t: 0.00040 e: 8.1e-14 mflop 3 matlab: t: 0.00003 e: 8.2e-15 mflop 34 cholmod2 speedup: 0.1 test11 passed ================================================================= test12: test etree2 and compare with etree Matrices to test: 50 904: vanHeukelum/cage3 nrow: 5 ncol: 5 nnz: 19 etree(A,'col'): 0.0004 0.0003 speedup 1.36 etree(A,'row'): 0.0003 0.0003 speedup 1.12 etree(A): 0.0003 0.0003 speedup 1.24 etree(A'): 0.0003 0.0003 speedup 0.96 after amd: etree(A): 0.0002 0.0000 speedup 10.05 etree(A'): 0.0001 0.0000 speedup 5.48 449: Grund/b1_ss nrow: 7 ncol: 7 nnz: 15 etree(A,'col'): 0.0001 0.0000 speedup 7.28 etree(A,'row'): 0.0001 0.0000 speedup 3.83 etree(A): 0.0001 0.0000 speedup 8.14 etree(A'): 0.0001 0.0000 speedup 5.74 after amd: etree(A): 0.0001 0.0000 speedup 7.71 etree(A'): 0.0001 0.0000 speedup 6.41 1710: Meszaros/farm nrow: 7 ncol: 17 nnz: 41 etree(A,'col'): 0.0002 0.0000 speedup 7.70 etree(A,'row'): 0.0001 0.0000 speedup 3.93 715: LPnetlib/lpi_galenet nrow: 8 ncol: 14 nnz: 22 etree(A,'col'): 0.0001 0.0000 speedup 6.39 etree(A,'row'): 0.0001 0.0000 speedup 5.57 1817: Meszaros/kleemin nrow: 8 ncol: 16 nnz: 44 etree(A,'col'): 0.0001 0.0000 speedup 5.80 etree(A,'row'): 0.0001 0.0000 speedup 5.45 185: HB/jgl009 nrow: 9 ncol: 9 nnz: 50 etree(A,'col'): 0.0001 0.0000 speedup 6.39 etree(A,'row'): 0.0001 0.0000 speedup 4.07 etree(A): 0.0001 0.0000 speedup 7.47 etree(A'): 0.0001 0.0000 speedup 5.45 after amd: etree(A): 0.0001 0.0000 speedup 7.93 etree(A'): 0.0001 0.0000 speedup 6.06 719: LPnetlib/lpi_itest2 nrow: 9 ncol: 13 nnz: 26 etree(A,'col'): 0.0001 0.0000 speedup 6.05 etree(A,'row'): 0.0001 0.0000 speedup 5.60 905: vanHeukelum/cage4 nrow: 9 ncol: 9 nnz: 49 etree(A,'col'): 0.0001 0.0000 speedup 6.11 etree(A,'row'): 0.0001 0.0000 speedup 5.36 etree(A): 0.0001 0.0000 speedup 7.79 etree(A'): 0.0001 0.0000 speedup 5.50 after amd: etree(A): 0.0001 0.0000 speedup 7.79 etree(A'): 0.0001 0.0000 speedup 8.11 238: HB/rgg010 nrow: 10 ncol: 10 nnz: 76 etree(A,'col'): 0.0001 0.0000 speedup 6.37 etree(A,'row'): 0.0001 0.0000 speedup 5.55 etree(A): 0.0001 0.0000 speedup 5.10 etree(A'): 0.0001 0.0000 speedup 5.14 after amd: etree(A): 0.0001 0.0000 speedup 7.79 etree(A'): 0.0001 0.0000 speedup 5.63 1524: Pajek/Stranke94 nrow: 10 ncol: 10 nnz: 90 etree(A,'col'): 0.0001 0.0000 speedup 6.21 etree(A,'row'): 0.0001 0.0000 speedup 3.97 etree(A): 0.0001 0.0000 speedup 7.53 etree(A'): 0.0001 0.0000 speedup 5.43 after amd: etree(A): 0.0001 0.0000 speedup 7.36 etree(A'): 0.0001 0.0000 speedup 5.58 186: HB/jgl011 nrow: 11 ncol: 11 nnz: 76 etree(A,'col'): 0.0001 0.0000 speedup 6.21 etree(A,'row'): 0.0001 0.0000 speedup 5.55 etree(A): 0.0001 0.0000 speedup 7.40 etree(A'): 0.0001 0.0000 speedup 4.00 after amd: etree(A): 0.0001 0.0000 speedup 7.64 etree(A'): 0.0001 0.0000 speedup 4.42 720: LPnetlib/lpi_itest6 nrow: 11 ncol: 17 nnz: 29 etree(A,'col'): 0.0001 0.0000 speedup 6.11 etree(A,'row'): 0.0001 0.0000 speedup 5.48 1525: Pajek/Tina_AskCal nrow: 11 ncol: 11 nnz: 29 etree(A,'col'): 0.0001 0.0000 speedup 6.11 etree(A,'row'): 0.0001 0.0000 speedup 5.62 etree(A): 0.0001 0.0000 speedup 7.33 etree(A'): 0.0001 0.0000 speedup 5.53 after amd: etree(A): 0.0001 0.0000 speedup 7.79 etree(A'): 0.0001 0.0000 speedup 5.72 1526: Pajek/Tina_AskCog nrow: 11 ncol: 11 nnz: 36 etree(A,'col'): 0.0001 0.0000 speedup 6.60 etree(A,'row'): 0.0001 0.0000 speedup 5.27 etree(A): 0.0001 0.0000 speedup 7.67 etree(A'): 0.0001 0.0000 speedup 5.70 after amd: etree(A): 0.0001 0.0000 speedup 7.64 etree(A'): 0.0001 0.0000 speedup 5.79 1527: Pajek/Tina_DisCal nrow: 11 ncol: 11 nnz: 41 etree(A,'col'): 0.0001 0.0000 speedup 6.50 etree(A,'row'): 0.0001 0.0000 speedup 5.62 etree(A): 0.0001 0.0000 speedup 7.00 etree(A'): 0.0001 0.0000 speedup 4.28 after amd: etree(A): 0.0001 0.0000 speedup 7.86 etree(A'): 0.0001 0.0000 speedup 4.42 1528: Pajek/Tina_DisCog nrow: 11 ncol: 11 nnz: 48 etree(A,'col'): 0.0001 0.0000 speedup 6.11 etree(A,'row'): 0.0001 0.0000 speedup 4.91 etree(A): 0.0001 0.0000 speedup 9.87 etree(A'): 0.0001 0.0000 speedup 5.00 after amd: etree(A): 0.0001 0.0000 speedup 8.31 etree(A'): 0.0001 0.0000 speedup 5.67 1755: Meszaros/problem nrow: 12 ncol: 46 nnz: 86 etree(A,'col'): 0.0001 0.0000 speedup 5.30 etree(A,'row'): 0.0001 0.0000 speedup 5.17 1440: Oberwolfach/LFAT5 nrow: 14 ncol: 14 nnz: 46 etree(A,'col'): 0.0001 0.0000 speedup 6.39 etree(A,'row'): 0.0001 0.0000 speedup 5.29 etree(A): 0.0002 0.0000 speedup 15.20 etree(A'): 0.0001 0.0000 speedup 5.48 after amd: etree(A): 0.0001 0.0000 speedup 5.10 etree(A'): 0.0001 0.0000 speedup 6.11 1741: Meszaros/p0033 nrow: 15 ncol: 48 nnz: 113 etree(A,'col'): 0.0001 0.0000 speedup 5.43 etree(A,'row'): 0.0001 0.0000 speedup 3.87 1438: Oberwolfach/LF10 nrow: 18 ncol: 18 nnz: 82 etree(A,'col'): 0.0001 0.0000 speedup 6.00 etree(A,'row'): 0.0001 0.0000 speedup 4.88 etree(A): 0.0001 0.0000 speedup 7.73 etree(A'): 0.0001 0.0000 speedup 4.95 after amd: etree(A): 0.0001 0.0000 speedup 5.75 etree(A'): 0.0001 0.0000 speedup 5.14 1479: Pajek/GD01_b nrow: 18 ncol: 18 nnz: 37 etree(A,'col'): 0.0001 0.0000 speedup 5.80 etree(A,'row'): 0.0001 0.0000 speedup 5.18 etree(A): 0.0001 0.0000 speedup 7.47 etree(A'): 0.0001 0.0000 speedup 5.33 after amd: etree(A): 0.0001 0.0000 speedup 7.27 etree(A'): 0.0002 0.0000 speedup 9.05 706: LPnetlib/lpi_bgprtr nrow: 20 ncol: 40 nnz: 70 etree(A,'col'): 0.0001 0.0000 speedup 5.48 etree(A,'row'): 0.0001 0.0000 speedup 5.21 1481: Pajek/GD02_a nrow: 23 ncol: 23 nnz: 87 etree(A,'col'): 0.0001 0.0000 speedup 5.71 etree(A,'row'): 0.0001 0.0000 speedup 5.12 etree(A): 0.0001 0.0000 speedup 7.56 etree(A'): 0.0001 0.0000 speedup 5.23 after amd: etree(A): 0.0001 0.0000 speedup 7.47 etree(A'): 0.0001 0.0000 speedup 5.70 1516: Pajek/Ragusa18 nrow: 23 ncol: 23 nnz: 64 etree(A,'col'): 0.0001 0.0000 speedup 6.00 etree(A,'row'): 0.0001 0.0000 speedup 5.12 etree(A): 0.0001 0.0000 speedup 4.70 etree(A'): 0.0001 0.0000 speedup 5.27 after amd: etree(A): 0.0001 0.0000 speedup 7.27 etree(A'): 0.0001 0.0000 speedup 5.60 1742: Meszaros/p0040 nrow: 23 ncol: 63 nnz: 133 etree(A,'col'): 0.0001 0.0000 speedup 5.39 etree(A,'row'): 0.0001 0.0000 speedup 3.94 97: HB/can_24 nrow: 24 ncol: 24 nnz: 160 etree(A,'col'): 0.0001 0.0000 speedup 6.10 etree(A,'row'): 0.0001 0.0000 speedup 3.72 etree(A): 0.0001 0.0000 speedup 6.88 etree(A'): 0.0001 0.0000 speedup 5.13 after amd: etree(A): 0.0001 0.0000 speedup 7.06 etree(A'): 0.0001 0.0000 speedup 5.24 624: LPnetlib/lp_fit1d nrow: 24 ncol: 1049 nnz: 13427 etree(A,'col'): 0.0004 0.0002 speedup 2.25 etree(A,'row'): 0.0008 0.0002 speedup 3.34 1515: Pajek/Ragusa16 nrow: 24 ncol: 24 nnz: 81 etree(A,'col'): 0.0001 0.0000 speedup 5.71 etree(A,'row'): 0.0001 0.0000 speedup 5.08 etree(A): 0.0001 0.0000 speedup 4.95 etree(A'): 0.0001 0.0000 speedup 4.96 after amd: etree(A): 0.0001 0.0000 speedup 7.60 etree(A'): 0.0001 0.0000 speedup 5.60 626: LPnetlib/lp_fit2d nrow: 25 ncol: 10524 nnz: 129042 etree(A,'col'): 0.0056 0.0020 speedup 2.74 etree(A,'row'): 0.0107 0.0032 speedup 3.33 1177: HB/lap_25 nrow: 25 ncol: 25 nnz: 169 etree(A,'col'): 0.0001 0.0000 speedup 5.76 etree(A,'row'): 0.0001 0.0000 speedup 3.53 etree(A): 0.0001 0.0000 speedup 7.44 etree(A'): 0.0001 0.0000 speedup 5.18 after amd: etree(A): 0.0001 0.0000 speedup 7.93 etree(A'): 0.0001 0.0000 speedup 5.19 436: FIDAP/ex5 nrow: 27 ncol: 27 nnz: 279 etree(A,'col'): 0.0001 0.0000 speedup 5.59 etree(A,'row'): 0.0001 0.0000 speedup 5.04 etree(A): 0.0001 0.0000 speedup 6.59 etree(A'): 0.0001 0.0000 speedup 4.88 after amd: etree(A): 0.0001 0.0000 speedup 6.59 etree(A'): 0.0001 0.0000 speedup 5.45 597: LPnetlib/lp_afiro nrow: 27 ncol: 51 nnz: 102 etree(A,'col'): 0.0001 0.0000 speedup 5.21 etree(A,'row'): 0.0002 0.0000 speedup 6.27 1759: Meszaros/refine nrow: 29 ncol: 62 nnz: 153 etree(A,'col'): 0.0001 0.0000 speedup 4.96 etree(A,'row'): 0.0001 0.0000 speedup 5.08 232: HB/pores_1 nrow: 30 ncol: 30 nnz: 180 etree(A,'col'): 0.0001 0.0000 speedup 5.76 etree(A,'row'): 0.0001 0.0000 speedup 5.04 etree(A): 0.0001 0.0000 speedup 6.82 etree(A'): 0.0001 0.0000 speedup 5.35 after amd: etree(A): 0.0001 0.0000 speedup 7.06 etree(A'): 0.0001 0.0000 speedup 4.11 168: HB/ibm32 nrow: 32 ncol: 32 nnz: 126 etree(A,'col'): 0.0001 0.0000 speedup 5.76 etree(A,'row'): 0.0001 0.0000 speedup 4.58 etree(A): 0.0001 0.0000 speedup 6.82 etree(A'): 0.0001 0.0000 speedup 5.23 after amd: etree(A): 0.0001 0.0000 speedup 7.33 etree(A'): 0.0001 0.0000 speedup 5.29 1199: Hamrle/Hamrle1 nrow: 32 ncol: 32 nnz: 98 etree(A,'col'): 0.0001 0.0000 speedup 5.71 etree(A,'row'): 0.0001 0.0000 speedup 5.17 etree(A): 0.0001 0.0000 speedup 6.88 etree(A'): 0.0001 0.0000 speedup 5.00 after amd: etree(A): 0.0001 0.0000 speedup 6.41 etree(A'): 0.0001 0.0000 speedup 5.65 1480: Pajek/GD01_c nrow: 33 ncol: 33 nnz: 135 etree(A,'col'): 0.0001 0.0000 speedup 5.81 etree(A,'row'): 0.0001 0.0000 speedup 4.70 etree(A): 0.0001 0.0000 speedup 6.44 etree(A'): 0.0001 0.0000 speedup 5.05 after amd: etree(A): 0.0001 0.0000 speedup 7.06 etree(A'): 0.0001 0.0000 speedup 3.93 731: LPnetlib/lpi_woodinfe nrow: 35 ncol: 89 nnz: 140 etree(A,'col'): 0.0001 0.0000 speedup 5.00 etree(A,'row'): 0.0001 0.0000 speedup 5.12 1474: Pajek/football nrow: 35 ncol: 35 nnz: 118 etree(A,'col'): 0.0001 0.0000 speedup 5.68 etree(A,'row'): 0.0001 0.0000 speedup 4.74 etree(A): 0.0001 0.0000 speedup 6.21 etree(A'): 0.0001 0.0000 speedup 5.16 after amd: etree(A): 0.0001 0.0000 speedup 6.33 etree(A'): 0.0001 0.0000 speedup 4.15 1485: Pajek/GD95_a nrow: 36 ncol: 36 nnz: 57 etree(A,'col'): 0.0001 0.0000 speedup 5.50 etree(A,'row'): 0.0001 0.0000 speedup 5.00 etree(A): 0.0001 0.0000 speedup 6.33 etree(A'): 0.0001 0.0000 speedup 4.83 after amd: etree(A): 0.0001 0.0000 speedup 6.53 etree(A'): 0.0001 0.0000 speedup 4.04 906: vanHeukelum/cage5 nrow: 37 ncol: 37 nnz: 233 etree(A,'col'): 0.0001 0.0000 speedup 5.25 etree(A,'row'): 0.0001 0.0000 speedup 4.78 etree(A): 0.0001 0.0000 speedup 6.00 etree(A'): 0.0001 0.0000 speedup 4.73 after amd: etree(A): 0.0001 0.0000 speedup 6.65 etree(A'): 0.0001 0.0000 speedup 5.00 1495: Pajek/GD98_a nrow: 38 ncol: 38 nnz: 50 etree(A,'col'): 0.0001 0.0000 speedup 5.45 etree(A,'row'): 0.0001 0.0000 speedup 4.88 etree(A): 0.0001 0.0000 speedup 6.44 etree(A'): 0.0001 0.0000 speedup 5.04 after amd: etree(A): 0.0001 0.0000 speedup 6.71 etree(A'): 0.0001 0.0000 speedup 5.48 13: HB/bcspwr01 nrow: 39 ncol: 39 nnz: 131 etree(A,'col'): 0.0001 0.0000 speedup 5.25 etree(A,'row'): 0.0001 0.0000 speedup 4.89 etree(A): 0.0001 0.0000 speedup 6.26 etree(A'): 0.0001 0.0000 speedup 3.80 after amd: etree(A): 0.0001 0.0000 speedup 6.53 etree(A'): 0.0001 0.0000 speedup 5.17 636: LPnetlib/lp_kb2 nrow: 43 ncol: 68 nnz: 313 etree(A,'col'): 0.0001 0.0000 speedup 4.67 etree(A,'row'): 0.0001 0.0000 speedup 3.39 1493: Pajek/GD97_b nrow: 47 ncol: 47 nnz: 264 etree(A,'col'): 0.0001 0.0000 speedup 5.08 etree(A,'row'): 0.0001 0.0000 speedup 4.13 etree(A): 0.0001 0.0000 speedup 6.32 etree(A'): 0.0001 0.0000 speedup 4.58 after amd: etree(A): 0.0001 0.0000 speedup 6.11 etree(A'): 0.0002 0.0000 speedup 6.08 23: HB/bcsstk01 nrow: 48 ncol: 48 nnz: 400 etree(A,'col'): 0.0001 0.0000 speedup 4.92 etree(A,'row'): 0.0001 0.0000 speedup 4.28 etree(A): 0.0001 0.0000 speedup 5.86 etree(A'): 0.0001 0.0000 speedup 4.54 after amd: etree(A): 0.0001 0.0000 speedup 5.33 etree(A'): 0.0001 0.0000 speedup 4.70 56: HB/bcsstm01 nrow: 48 ncol: 48 nnz: 24 etree(A,'col'): 0.0001 0.0000 speedup 5.86 etree(A,'row'): 0.0001 0.0000 speedup 5.17 etree(A): 0.0001 0.0000 speedup 4.58 etree(A'): 0.0001 0.0000 speedup 5.32 after amd: etree(A): 0.0001 0.0000 speedup 5.15 etree(A'): 0.0001 0.0000 speedup 5.48 872: Pothen/mesh1e1 nrow: 48 ncol: 48 nnz: 306 etree(A,'col'): 0.0001 0.0000 speedup 5.12 etree(A,'row'): 0.0001 0.0000 speedup 3.51 etree(A): 0.0001 0.0000 speedup 5.81 etree(A'): 0.0002 0.0000 speedup 5.67 after amd: etree(A): 0.0001 0.0000 speedup 5.95 etree(A'): 0.0001 0.0000 speedup 5.04 873: Pothen/mesh1em1 nrow: 48 ncol: 48 nnz: 306 etree(A,'col'): 0.0001 0.0000 speedup 4.88 etree(A,'row'): 0.0001 0.0000 speedup 4.63 etree(A): 0.0001 0.0000 speedup 6.00 etree(A'): 0.0001 0.0000 speedup 3.67 after amd: etree(A): 0.0001 0.0000 speedup 6.53 etree(A'): 0.0001 0.0000 speedup 5.12 874: Pothen/mesh1em6 nrow: 48 ncol: 48 nnz: 306 etree(A,'col'): 0.0001 0.0000 speedup 5.16 etree(A,'row'): 0.0001 0.0000 speedup 4.53 etree(A): 0.0001 0.0000 speedup 6.00 etree(A'): 0.0001 0.0000 speedup 4.25 after amd: etree(A): 0.0001 0.0000 speedup 6.26 etree(A'): 0.0001 0.0000 speedup 5.00 test12 passed ================================================================= test13: test cholmod2 and MATLAB on large tridiagonal matrices n 10000 cholmod2 0.01 err 3.5e-13 n 10000 matlab 0.00 err 2.6e-13 n 10000 cholmod2 0.01 err 3.6e-13 n 10000 matlab 0.00 err 2.6e-13 n 100000 cholmod2 0.14 err 3.6e-12 n 100000 matlab 0.01 err 2.6e-12 n 1000000 cholmod2 2.84 err 3.6e-11 n 1000000 matlab 0.18 err 2.6e-11 ================================================================= test14: test metis, symbfact2, and etree2 904: Prob = title: 'DNA electrophoresis, 3 monomers in polymer. A. van Heukelum, Utrecht U.' A: [5x5 double] name: 'vanHeukelum/cage3' id: 904 date: '2003' author: 'A. van Heukelum' ed: 'T. Davis' kind: 'directed weighted graph' nnz(A) 19 nnz(S) 19 nnz(A*A') 25 nnz(A'*A) 25 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 449: Prob = title: 'Unsymmetric Matrix b1_ss, F. Grund, Dec 1994.' A: [7x7 double] b: [7x1 double] name: 'Grund/b1_ss' id: 449 date: '1997' author: 'F. Grund' ed: 'F. Grund' kind: 'chemical process simulation problem' nnz(A) 15 nnz(S) 24 nnz(A*A') 25 nnz(A'*A) 25 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 185: Prob = title: 'U JOHN G. LEWIS P4 COUNTEREXAMPLE WHICH REQUIRES FILL IN SPIKES' A: [9x9 double] name: 'HB/jgl009' id: 185 date: '1983' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'counter-example problem' nnz(A) 50 nnz(S) 72 nnz(A*A') 81 nnz(A'*A) 81 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 905: Prob = title: 'DNA electrophoresis, 4 monomers in polymer. A. van Heukelum, Utrecht U.' A: [9x9 double] name: 'vanHeukelum/cage4' id: 905 date: '2003' author: 'A. van Heukelum' ed: 'T. Davis' kind: 'directed weighted graph' nnz(A) 49 nnz(S) 49 nnz(A*A') 81 nnz(A'*A) 81 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 238: Prob = title: 'S EXAMPLE TO DEMONSTRATE THE CHIMNEY EFFECT IN P4 - BY R.G. GRIMES' A: [10x10 double] name: 'HB/rgg010' id: 238 date: '1983' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'counter-example problem' nnz(A) 76 nnz(S) 100 nnz(A*A') 100 nnz(A'*A) 100 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1524: Prob = name: 'Pajek/Stranke94' title: 'Pajek network: Slovene Parliamentary Parties 1994' A: [10x10 double] id: 1524 kind: 'undirected weighted graph' notes: [22x78 char] aux: [1x1 struct] date: '1994' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 90 nnz(S) 90 nnz(A*A') 100 nnz(A'*A) 100 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 186: Prob = title: 'U JOHN G. LEWIS P4 COUNTEREXAMPLE WHICH REQUIRES FILL IN SPIKES' A: [11x11 double] name: 'HB/jgl011' id: 186 date: '1983' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'counter-example problem' nnz(A) 76 nnz(S) 108 nnz(A*A') 115 nnz(A'*A) 121 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1525: Prob = name: 'Pajek/Tina_AskCal' title: 'Pajek network: student govt, Univ. Ljubljana, 1992 (ask opin., recall)' A: [11x11 double] id: 1525 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1992' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 29 nnz(S) 50 nnz(A*A') 85 nnz(A'*A) 58 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1526: Prob = name: 'Pajek/Tina_AskCog' title: 'Pajek network: student govt, Univ. Ljubljana, 1992 (ask, recognized)' A: [11x11 double] id: 1526 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1992' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 36 nnz(S) 54 nnz(A*A') 95 nnz(A'*A) 75 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1527: Prob = name: 'Pajek/Tina_DisCal' title: 'Pajek network: student govt, Univ. Ljubljana, 1992 (discuss, recall)' A: [11x11 double] id: 1527 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1992' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 41 nnz(S) 64 nnz(A*A') 103 nnz(A'*A) 76 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1528: Prob = name: 'Pajek/Tina_DisCog' title: 'Pajek network: student govt, Univ. Ljubljana, 1992 (discuss, recog.)' A: [11x11 double] id: 1528 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1992' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 48 nnz(S) 72 nnz(A*A') 109 nnz(A'*A) 97 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 719: Prob = title: 'Netlib LP problem itest2: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_itest2' A: [9x13 double] b: [9x1 double] id: 719 aux: [1x1 struct] kind: 'linear programming problem' date: '1991' author: 'J. Chinneck, E. Dravnieks' ed: 'J. Chinneck' notes: [33x76 char] nnz(A) 26 nnz(S) 9 nnz(A*A') 9 nnz(A'*A) 9 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 715: Prob = title: 'Netlib LP problem galenet: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_galenet' A: [8x14 double] b: [8x1 double] id: 715 aux: [1x1 struct] kind: 'linear programming problem' date: '' author: 'H. Greenberg' ed: 'J. Chinneck' notes: [19x76 char] nnz(A) 22 nnz(S) 17 nnz(A*A') 11 nnz(A'*A) 14 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1440: Prob = name: 'Oberwolfach/LFAT5' title: 'Oberwolfach: linear 1D beam' A: [14x14 double] id: 1440 notes: 'Primary matrix in this model reduction problem is the Oberwolfach K matrix' aux: [1x1 struct] date: '2004' author: 'J. Lienemann, A. Greiner, J. Korvink' ed: 'E. Rudnyi' kind: 'model reduction problem' nnz(A) 46 nnz(S) 46 nnz(A*A') 72 nnz(A'*A) 72 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1817: Prob = name: 'Meszaros/kleemin' title: 'LP sequence: kleemin3, 4, 5, 6, 7, 8' id: 1817 kind: 'linear programming problem sequence' date: '2004' author: '' ed: 'C. Meszaros' A: [8x16 double] notes: [3x57 char] aux: [1x1 struct] nnz(A) 44 nnz(S) 8 nnz(A*A') 8 nnz(A'*A) 8 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 720: Prob = title: 'Netlib LP problem itest6: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_itest6' A: [11x17 double] b: [11x1 double] id: 720 aux: [1x1 struct] kind: 'linear programming problem' date: '1991' author: 'J. Chinneck, E. Dravnieks' ed: 'J. Chinneck' notes: [33x76 char] nnz(A) 29 nnz(S) 19 nnz(A*A') 31 nnz(A'*A) 19 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1710: Prob = name: 'Meszaros/farm' title: 'linear programming problem, C. Meszaros test set' id: 1710 kind: 'linear programming problem' date: '2004' author: '' ed: 'C. Meszaros' A: [7x17 double] b: [7x1 double] aux: [1x1 struct] notes: [3x57 char] nnz(A) 41 nnz(S) 21 nnz(A*A') 18 nnz(A'*A) 21 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1438: Prob = name: 'Oberwolfach/LF10' title: 'Oberwolfach: linear 1D beam' A: [18x18 double] id: 1438 notes: 'Primary matrix in this model reduction problem is the Oberwolfach K matrix' aux: [1x1 struct] date: '2004' author: 'J. Lienemann, A. Greiner, J. Korvink' ed: 'E. Rudnyi' kind: 'model reduction problem' nnz(A) 82 nnz(S) 82 nnz(A*A') 154 nnz(A'*A) 154 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1479: Prob = name: 'Pajek/GD01_b' title: 'Pajek network: Graph Drawing contest 2001' A: [18x18 double] id: 1479 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '2001' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 37 nnz(S) 54 nnz(A*A') 62 nnz(A'*A) 56 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1481: Prob = name: 'Pajek/GD02_a' title: 'Pajek network: Graph Drawing contest 2002' A: [23x23 double] id: 1481 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '2002' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 87 nnz(S) 118 nnz(A*A') 272 nnz(A'*A) 376 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1516: Prob = name: 'Pajek/Ragusa18' title: 'Pajek network: Ragusa set' A: [23x23 double] id: 1516 kind: 'directed weighted graph' notes: [5x78 char] aux: [1x1 struct] date: '2006' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 64 nnz(S) 105 nnz(A*A') 263 nnz(A'*A) 158 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 97: Prob = title: 'SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981.' A: [24x24 double] name: 'HB/can_24' id: 97 date: '1981' author: 'L. Marro' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 160 nnz(S) 160 nnz(A*A') 336 nnz(A'*A) 336 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1515: Prob = name: 'Pajek/Ragusa16' title: 'Pajek network: Ragusa set' A: [24x24 double] id: 1515 kind: 'directed weighted graph' notes: [5x78 char] aux: [1x1 struct] date: '2006' author: 'V. Batagelj' ed: 'V. Batagelj' nnz(A) 81 nnz(S) 126 nnz(A*A') 271 nnz(A'*A) 250 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1177: Prob = title: 'FINITE ELEMENT PROBLEM. LAPLACIAN ON A 5 BY 5 GRID.' A: [25x25 double] name: 'HB/lap_25' id: 1177 date: '1980' author: 'I. Duff' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 169 nnz(S) 169 nnz(A*A') 361 nnz(A'*A) 361 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 436: Prob = title: ' TEST MATRIX FROM FIDAP: EX5.MAT' A: [27x27 double] name: 'FIDAP/ex5' id: 436 date: '1994' author: 'A. Baggag, Y. Saad' ed: 'A. Baggag, Y. Saad' kind: 'computational fluid dynamics problem' nnz(A) 279 nnz(S) 279 nnz(A*A') 495 nnz(A'*A) 495 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 232: Prob = title: 'UNSYMMETRIC MATRIX FROM PORES' A: [30x30 double] name: 'HB/pores_1' id: 232 date: '1980' author: 'J. Appleyard' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'computational fluid dynamics problem' nnz(A) 180 nnz(S) 236 nnz(A*A') 476 nnz(A'*A) 388 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 168: Prob = title: 'UNSYMMETRIC PATTERN ON LEAFLET ADVERTISING IBM 1971 CONFERENCE' A: [32x32 double] name: 'HB/ibm32' id: 168 date: '1971' author: 'IBM' ed: 'A. Curtis, I. Duff, J. Reid' kind: 'directed graph' nnz(A) 126 nnz(S) 212 nnz(A*A') 392 nnz(A'*A) 390 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1199: Prob = name: 'Hamrle/Hamrle1' title: 'Hamrle/Hamrle1 circuit simulation matrix' A: [32x32 double] b: [32x1 double] id: 1199 date: '2004' author: 'J. Hamrle' ed: 'T. Davis' kind: 'circuit simulation problem' nnz(A) 98 nnz(S) 185 nnz(A*A') 222 nnz(A'*A) 220 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1480: Prob = name: 'Pajek/GD01_c' title: 'Pajek network: Graph Drawing contest 2001' A: [33x33 double] id: 1480 kind: 'directed multigraph' notes: [7x78 char] aux: [1x1 struct] date: '2001' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 135 nnz(S) 270 nnz(A*A') 312 nnz(A'*A) 374 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1474: Prob = name: 'Pajek/football' title: 'Pajek network: World Soccer, Paris 1998' A: [35x35 double] id: 1474 kind: 'directed weighted graph' notes: [7x78 char] aux: [1x1 struct] date: '1998' author: 'L. Krempel' ed: 'V. Batagelj' nnz(A) 118 nnz(S) 236 nnz(A*A') 568 nnz(A'*A) 234 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1485: Prob = name: 'Pajek/GD95_a' title: 'Pajek network: Graph Drawing contest 1995' A: [36x36 double] id: 1485 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1995' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 57 nnz(S) 112 nnz(A*A') 80 nnz(A'*A) 101 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 906: Prob = title: 'DNA electrophoresis, 5 monomers in polymer. A. van Heukelum, Utrecht U.' A: [37x37 double] name: 'vanHeukelum/cage5' id: 906 date: '2003' author: 'A. van Heukelum' ed: 'T. Davis' kind: 'directed weighted graph' nnz(A) 233 nnz(S) 233 nnz(A*A') 653 nnz(A'*A) 653 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1495: Prob = name: 'Pajek/GD98_a' title: 'Pajek network: Graph Drawing contest 1998' A: [38x38 double] id: 1495 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1998' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 50 nnz(S) 92 nnz(A*A') 78 nnz(A'*A) 241 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 13: Prob = title: 'SYMMETRIC STRUCTURE (STANDARD TEST POWER SYSTEM - NEW ENGLAND)' A: [39x39 double] name: 'HB/bcspwr01' id: 13 date: '1981' author: 'B. Dembart, J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'power network problem' nnz(A) 131 nnz(S) 131 nnz(A*A') 275 nnz(A'*A) 275 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 706: Prob = title: 'Netlib LP problem bgprtr: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_bgprtr' A: [20x40 double] b: [20x1 double] id: 706 aux: [1x1 struct] kind: 'linear programming problem' date: '1993' author: 'L. Schrage' ed: 'J. Chinneck' notes: [23x76 char] nnz(A) 70 nnz(S) 52 nnz(A*A') 37 nnz(A'*A) 44 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1755: Prob = name: 'Meszaros/problem' title: 'linear programming problem, C. Meszaros test set' id: 1755 kind: 'linear programming problem' date: '2004' author: '' ed: 'C. Meszaros' A: [12x46 double] b: [12x1 double] aux: [1x1 struct] notes: [3x57 char] nnz(A) 86 nnz(S) 44 nnz(A*A') 14 nnz(A'*A) 80 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1493: Prob = name: 'Pajek/GD97_b' title: 'Pajek network: Graph Drawing contest 1997' A: [47x47 double] id: 1493 kind: 'undirected weighted graph' notes: [12x78 char] aux: [1x1 struct] date: '1997' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 264 nnz(S) 264 nnz(A*A') 1274 nnz(A'*A) 1274 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 23: Prob = title: 'SYMMETRIC STIFFNESS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM' A: [48x48 double] name: 'HB/bcsstk01' id: 23 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 400 nnz(S) 400 nnz(A*A') 1292 nnz(A'*A) 1292 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 56: Prob = title: 'SYMMETRIC MASS MATRIX SMALL GENERALIZED EIGENVALUE PROBLEM, B MATRIX' A: [48x48 double] Zeros: [48x48 double] name: 'HB/bcsstm01' id: 56 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 24 nnz(S) 24 nnz(A*A') 24 nnz(A'*A) 24 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 872: Prob = A: [48x48 double] title: 'mesh1e1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1e1' id: 872 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' nnz(A) 306 nnz(S) 306 nnz(A*A') 772 nnz(A'*A) 772 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 873: Prob = A: [48x48 double] title: 'mesh1em1, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1em1' id: 873 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' nnz(A) 306 nnz(S) 306 nnz(A*A') 772 nnz(A'*A) 772 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 874: Prob = A: [48x48 double] title: 'mesh1em6, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/mesh1em6' id: 874 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' nnz(A) 306 nnz(S) 306 nnz(A*A') 772 nnz(A'*A) 772 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1741: Prob = name: 'Meszaros/p0033' title: 'linear programming problem, C. Meszaros test set' id: 1741 kind: 'linear programming problem' date: '2004' author: '' ed: 'C. Meszaros' A: [15x48 double] b: [15x1 double] aux: [1x1 struct] notes: [3x57 char] nnz(A) 113 nnz(S) 15 nnz(A*A') 15 nnz(A'*A) 15 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 14: Prob = title: 'SYMMETRIC STRUCTURE OF A SMALL TEST POWER SYSTEM' A: [49x49 double] name: 'HB/bcspwr02' id: 14 date: '1981' author: 'B. Dembart, J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'power network problem' nnz(A) 167 nnz(S) 167 nnz(A*A') 403 nnz(A'*A) 403 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1460: Prob = name: 'Pajek/divorce' title: 'Pajek network: divorce laws in the 50 US states' A: [50x9 double] id: 1460 kind: 'bipartite graph' notes: [6x78 char] aux: [1x1 struct] date: '2006' author: '' ed: 'V. Batagelj' nnz(A) 225 nnz(S) 57 nnz(A*A') 77 nnz(A'*A) 81 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 597: Prob = title: 'Netlib LP problem afiro: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lp_afiro' A: [27x51 double] b: [27x1 double] id: 597 aux: [1x1 struct] kind: 'linear programming problem' date: '' author: 'M. Saunders' ed: 'D. Gay' notes: [48x78 char] nnz(A) 102 nnz(S) 88 nnz(A*A') 71 nnz(A'*A) 73 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 464: Prob = title: 'Unsymmetric Matrix d_ss, F. Grund, Dec 1994.' A: [53x53 double] Zeros: [53x53 double] b: [53x1 double] name: 'Grund/d_ss' id: 464 date: '1997' author: 'F. Grund' ed: 'F. Grund' kind: 'chemical process simulation problem' nnz(A) 144 nnz(S) 278 nnz(A*A') 311 nnz(A'*A) 315 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 109: Prob = title: 'UNSYMMETRIC PATTERN OF CURTIS, 1971' A: [54x54 double] name: 'HB/curtis54' id: 109 date: '1971' author: 'A. Curtis' ed: 'A. Curtis, I. Duff, J. Reid' kind: '2D/3D problem' nnz(A) 291 nnz(S) 302 nnz(A*A') 794 nnz(A'*A) 728 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1457: Prob = name: 'Pajek/Cities' title: 'Pajek network: www.lboro.ac.uk/gawc, data set 6' A: [55x46 double] id: 1457 kind: 'weighted bipartite graph' notes: [10x78 char] aux: [1x1 struct] date: '2001' author: 'P. Taylor, D. Walker' ed: 'V. Batagelj' nnz(A) 1342 nnz(S) 1626 nnz(A*A') 2116 nnz(A'*A) 2114 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 274: Prob = title: 'UNSYMMETRIC PATTERN OF ORDER 57 GIVEN BY WILLOUGHBY IN REID, 1970' A: [57x57 double] name: 'HB/will57' id: 274 date: '1970' author: 'R. Willoughby' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'semiconductor device problem' nnz(A) 281 nnz(S) 311 nnz(A*A') 647 nnz(A'*A) 665 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 129: Prob = title: 'SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON' A: [59x59 double] name: 'HB/dwt_59' id: 129 date: '1980' author: 'G. Everstine, D. Taylor' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 267 nnz(S) 267 nnz(A*A') 571 nnz(A'*A) 571 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 172: Prob = title: 'UNSYMMETRIC MATRIX - CAVETT'S PROCESS (CHEM ENG),1982' A: [59x59 double] Zeros: [59x59 double] name: 'HB/impcol_b' id: 172 date: '1982' author: 'D. Bogle' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'chemical process simulation problem' nnz(A) 271 nnz(S) 497 nnz(A*A') 783 nnz(A'*A) 627 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 102: Prob = title: 'SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981.' A: [61x61 double] name: 'HB/can_61' id: 102 date: '1981' author: 'L. Marro' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 557 nnz(S) 557 nnz(A*A') 1793 nnz(A'*A) 1793 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 103: Prob = title: 'SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981.' A: [62x62 double] name: 'HB/can_62' id: 103 date: '1981' author: 'L. Marro' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 218 nnz(S) 218 nnz(A*A') 482 nnz(A'*A) 482 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 293: Prob = title: 'BOUNDED FINLINE WAVEGUIDE EIGENMODES B SHULTZ AND S GEDNEY' A: [62x62 double] name: 'Bai/bfwa62' id: 293 date: '1994' author: 'B. Schultz, S. Gedney' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'electromagnetics problem' nnz(A) 450 nnz(S) 462 nnz(A*A') 1306 nnz(A'*A) 1340 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 296: Prob = title: 'BOUNDED FINLINE WAVEGUIDE EIGENMODES B SHULTZ AND S GEDNEY' A: [62x62 double] name: 'Bai/bfwb62' id: 296 date: '1994' author: 'B. Schultz, S. Gedney' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'electromagnetics problem' nnz(A) 342 nnz(S) 342 nnz(A*A') 992 nnz(A'*A) 992 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1487: Prob = name: 'Pajek/GD95_c' title: 'Pajek network: Graph Drawing contest 1995' A: [62x62 double] id: 1487 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1995' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 287 nnz(S) 288 nnz(A*A') 998 nnz(A'*A) 996 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1759: Prob = name: 'Meszaros/refine' title: 'linear programming problem, C. Meszaros test set' id: 1759 kind: 'linear programming problem' date: '2004' author: '' ed: 'C. Meszaros' A: [29x62 double] b: [29x1 double] aux: [1x1 struct] notes: [3x57 char] nnz(A) 153 nnz(S) 29 nnz(A*A') 29 nnz(A'*A) 29 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1742: Prob = name: 'Meszaros/p0040' title: 'linear programming problem, C. Meszaros test set' id: 1742 kind: 'linear programming problem' date: '2004' author: '' ed: 'C. Meszaros' A: [23x63 double] b: [23x1 double] aux: [1x1 struct] notes: [3x57 char] nnz(A) 133 nnz(S) 23 nnz(A*A') 23 nnz(A'*A) 23 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1498: Prob = name: 'Pajek/GD99_b' title: 'Pajek network: Graph Drawing contest 1999' A: [64x64 double] id: 1498 kind: 'undirected multigraph' notes: [5x78 char] aux: [1x1 struct] date: '1999' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 252 nnz(S) 252 nnz(A*A') 668 nnz(A'*A) 668 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1490: Prob = name: 'Pajek/GD96_c' title: 'Pajek network: Graph Drawing contest 1996' A: [65x65 double] id: 1490 kind: 'undirected graph' notes: [7x78 char] aux: [1x1 struct] date: '1996' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 250 nnz(S) 250 nnz(A*A') 695 nnz(A'*A) 695 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 24: Prob = title: 'SYMMETRIC STIFFNESS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED' A: [66x66 double] name: 'HB/bcsstk02' id: 24 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 4356 nnz(S) 4356 nnz(A*A') 4356 nnz(A'*A) 4356 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 57: Prob = title: 'SYMMETRIC MASS MATRIX, SMALL OIL RIG, STATICALLY CONDENSED' A: [66x66 double] name: 'HB/bcsstm02' id: 57 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 66 nnz(S) 66 nnz(A*A') 66 nnz(A'*A) 66 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 132: Prob = title: 'SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON' A: [66x66 double] name: 'HB/dwt_66' id: 132 date: '1980' author: 'G. Everstine, D. Taylor' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 320 nnz(S) 320 nnz(A*A') 576 nnz(A'*A) 576 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 883: Prob = A: [66x66 double] title: 'sphere2, with coordinates. From NASA, collected by Alex Pothen' name: 'Pothen/sphere2' id: 883 aux: [1x1 struct] date: '2003' author: 'NASA' ed: 'G. Kumfert, A. Pothen' kind: 'structural problem' nnz(A) 450 nnz(S) 450 nnz(A*A') 1170 nnz(A'*A) 1170 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 262: Prob = title: 'U CAVETT PROBLEM WITH 5 COMPONENTS ( CHEM. ENG. FROM WESTERBERG )' A: [67x67 double] name: 'HB/west0067' id: 262 date: '1983' author: 'A. Westerberg' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'chemical process simulation problem' nnz(A) 294 nnz(S) 576 nnz(A*A') 1041 nnz(A'*A) 889 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 636: Prob = title: 'Netlib LP problem kb2: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lp_kb2' A: [43x68 double] b: [43x1 double] id: 636 aux: [1x1 struct] kind: 'linear programming problem' date: '1989' author: 'J. Tomlin' ed: 'D. Gay' notes: [39x74 char] nnz(A) 313 nnz(S) 318 nnz(A*A') 513 nnz(A'*A) 355 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 133: Prob = title: 'SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON' A: [72x72 double] name: 'HB/dwt_72' id: 133 date: '1980' author: 'G. Everstine, D. Taylor' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 222 nnz(S) 222 nnz(A*A') 412 nnz(A'*A) 412 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1501: Prob = name: 'Pajek/GlossGT' title: 'Pajek network: graph and digraph glossary' A: [72x72 double] id: 1501 kind: 'directed graph' notes: [10x78 char] aux: [1x1 struct] date: '2001' author: 'W. Cherowitzo' ed: 'V. Batagelj' nnz(A) 122 nnz(S) 236 nnz(A*A') 798 nnz(A'*A) 161 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 106: Prob = title: 'SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981.' A: [73x73 double] name: 'HB/can_73' id: 106 date: '1981' author: 'L. Marro' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 377 nnz(S) 377 nnz(A*A') 1377 nnz(A'*A) 1377 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1486: Prob = name: 'Pajek/GD95_b' title: 'Pajek network: Graph Drawing contest 1995' A: [73x73 double] id: 1486 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1995' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 96 nnz(S) 191 nnz(A*A') 148 nnz(A'*A) 875 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 666: Prob = title: 'Netlib LP problem sc50a: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lp_sc50a' A: [50x78 double] b: [50x1 double] id: 666 aux: [1x1 struct] kind: 'linear programming problem' date: '1989' author: 'N. Gould' ed: 'D. Gay' notes: [30x74 char] nnz(A) 160 nnz(S) 163 nnz(A*A') 136 nnz(A'*A) 174 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 667: Prob = title: 'Netlib LP problem sc50b: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lp_sc50b' A: [50x78 double] b: [50x1 double] id: 667 aux: [1x1 struct] kind: 'linear programming problem' date: '1989' author: 'N. Gould' ed: 'D. Gay' notes: [30x74 char] nnz(A) 148 nnz(S) 155 nnz(A*A') 132 nnz(A'*A) 162 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 253: Prob = title: 'UNSYMMETRIC - 1D STEAM MODEL OF OIL RES. - 20 POINTS - 4 DOF MAY 1983' A: [80x80 double] Zeros: [80x80 double] name: 'HB/steam3' id: 253 date: '1983' author: 'R. Grimes' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'computational fluid dynamics problem' nnz(A) 314 nnz(S) 392 nnz(A*A') 688 nnz(A'*A) 768 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1482: Prob = name: 'Pajek/GD02_b' title: 'Pajek network: Graph Drawing contest 2002' A: [80x80 double] id: 1482 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '2002' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 232 nnz(S) 464 nnz(A*A') 570 nnz(A'*A) 630 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1492: Prob = name: 'Pajek/GD97_a' title: 'Pajek network: Graph Drawing contest 1997' A: [84x84 double] id: 1492 kind: 'directed graph' notes: [5x78 char] aux: [1x1 struct] date: '1997' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 332 nnz(S) 332 nnz(A*A') 860 nnz(A'*A) 860 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 11: Prob = title: 'SYMMETRIC PATTERN OF NORMAL MATRIX OF HOLLAND SURVEY. ASHKENAZI, 1974' A: [85x85 double] name: 'HB/ash85' id: 11 date: '1974' author: 'V. Askenazi' ed: 'A. Curtis, I. Duff, J. Reid' kind: 'least squares problem' nnz(A) 523 nnz(S) 523 nnz(A*A') 1317 nnz(A'*A) 1317 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1519: Prob = name: 'Pajek/Sandi_authors' title: 'Pajek network: Klavzar bibliography' A: [86x86 double] id: 1519 kind: 'undirected weighted graph' notes: [7x78 char] aux: [1x1 struct] date: '1999' author: 'I. Klavzar' ed: 'V. Batagelj' nnz(A) 248 nnz(S) 248 nnz(A*A') 908 nnz(A'*A) 908 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 136: Prob = title: 'SYMMETRIC CONNECTION TABLE FROM DTNSRDC, WASHINGTON' A: [87x87 double] name: 'HB/dwt_87' id: 136 date: '1980' author: 'G. Everstine, D. Taylor' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 541 nnz(S) 541 nnz(A*A') 1539 nnz(A'*A) 1539 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 462: Prob = title: 'Unsymmetric Matrix d_dyn, F. Grund, Dec 1994.' A: [87x87 double] Zeros: [87x87 double] b: [87x1 double] name: 'Grund/d_dyn' id: 462 date: '1997' author: 'F. Grund' ed: 'F. Grund' kind: 'chemical process simulation problem' nnz(A) 230 nnz(S) 438 nnz(A*A') 497 nnz(A'*A) 525 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 463: Prob = title: 'Unsymmetric Matrix d_dyn1, F. Grund, Oct 1995.' A: [87x87 double] Zeros: [87x87 double] name: 'Grund/d_dyn1' id: 463 date: '1997' author: 'F. Grund' ed: 'F. Grund' kind: 'chemical process simulation problem' nnz(A) 232 nnz(S) 442 nnz(A*A') 503 nnz(A'*A) 535 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 731: Prob = title: 'Netlib LP problem woodinfe: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_woodinfe' A: [35x89 double] b: [35x1 double] id: 731 aux: [1x1 struct] kind: 'linear programming problem' date: '1989' author: 'H. Greenberg' ed: 'J. Chinneck' notes: [35x76 char] nnz(A) 140 nnz(S) 67 nnz(A*A') 32 nnz(A'*A) 41 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1641: Prob = name: 'Bai/tols90' title: 'TOLOSA MATRIX' A: [90x90 double] id: 1641 date: '1991' author: 'S. Godet-Thobie' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'computational fluid dynamics problem' nnz(A) 1746 nnz(S) 2970 nnz(A*A') 3204 nnz(A'*A) 8100 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 907: Prob = title: 'DNA electrophoresis, 6 monomers in polymer. A. van Heukelum, Utrecht U.' A: [93x93 double] name: 'vanHeukelum/cage6' id: 907 date: '2003' author: 'A. van Heukelum' ed: 'T. Davis' kind: 'directed weighted graph' nnz(A) 785 nnz(S) 785 nnz(A*A') 2849 nnz(A'*A) 2849 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 108: Prob = title: 'SYMMETRIC PATTERN FROM CANNES,LUCIEN MARRO,JUNE 1981.' A: [96x96 double] name: 'HB/can_96' id: 108 date: '1981' author: 'L. Marro' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 768 nnz(S) 768 nnz(A*A') 1920 nnz(A'*A) 1920 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 220: Prob = title: 'SYMMETRIC MATRIX OF BEAM STRUCTURE, NOVEMBER 1982.' A: [100x100 double] name: 'HB/nos4' id: 220 date: '1982' author: 'H. Simon' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 594 nnz(S) 594 nnz(A*A') 1802 nnz(A'*A) 1802 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 318: Prob = title: 'OLMSTEAD FLOW MODEL' A: [100x100 double] name: 'Bai/olm100' id: 318 date: '1994' author: 'K. Meerbergen' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'computational fluid dynamics problem' nnz(A) 396 nnz(S) 494 nnz(A*A') 590 nnz(A'*A) 976 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 337: Prob = title: 'TUBULAR REACTOR MODEL' A: [100x100 double] name: 'Bai/tub100' id: 337 date: '1994' author: 'K. Meerbergen, D. Roose' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'computational fluid dynamics problem' nnz(A) 396 nnz(S) 396 nnz(A*A') 784 nnz(A'*A) 784 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1326: Prob = name: 'Morandini/rotor1' title: 'Marco Morandini, small helicoptor rotor model' A: [100x100 double] id: 1326 date: '2006' author: 'M. Morandini' ed: 'T. Davis' kind: 'structural problem' nnz(A) 708 nnz(S) 1020 nnz(A*A') 3346 nnz(A'*A) 3634 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1484: Prob = name: 'Pajek/GD06_theory' title: 'Pajek network: Graph Drawing contest 2006' A: [101x101 double] id: 1484 kind: 'undirected graph' notes: [9x78 char] date: '2006' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 380 nnz(S) 380 nnz(A*A') 3341 nnz(A'*A) 3341 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 861: Prob = A: [102x102 double] b: [102x3 double] title: 'Spline toolbox. Pivot tol 0.1 fails, needs >= 0.26. MathWorks,Inc' name: 'MathWorks/pivtol' id: 861 date: '2002' author: 'B. Cheng' ed: 'T. Davis' kind: 'statistical/mathematical problem' nnz(A) 306 nnz(S) 308 nnz(A*A') 510 nnz(A'*A) 512 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 306: Prob = title: 'CHUCK MATRIX (MULTIPLE EIGENVALUES) J. CULLUM' A: [104x104 double] name: 'Bai/ck104' id: 306 date: '1986' author: 'J. Cullum' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: '2D/3D problem' nnz(A) 992 nnz(S) 992 nnz(A*A') 1712 nnz(A'*A) 1712 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1499: Prob = name: 'Pajek/GD99_c' title: 'Pajek network: Graph Drawing contest 1999' A: [105x105 double] id: 1499 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1999' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 149 nnz(S) 240 nnz(A*A') 177 nnz(A'*A) 352 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 721: Prob = title: 'Netlib LP problem klein1: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lpi_klein1' A: [54x108 double] b: [54x1 double] id: 721 aux: [1x1 struct] kind: 'linear programming problem' date: '' author: 'E. Klotz' ed: 'J. Chinneck' notes: [19x76 char] nnz(A) 750 nnz(S) 54 nnz(A*A') 54 nnz(A'*A) 54 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1489: Prob = name: 'Pajek/GD96_b' title: 'Pajek network: Graph Drawing contest 1996' A: [111x111 double] id: 1489 kind: 'directed graph' notes: [7x78 char] aux: [1x1 struct] date: '1996' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 193 nnz(S) 386 nnz(A*A') 3021 nnz(A'*A) 100 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 25: Prob = title: 'SYMMETRIC STIFFNESS MATRIX, SMALL TEST STRUCTURE' A: [112x112 double] name: 'HB/bcsstk03' id: 25 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 640 nnz(S) 640 nnz(A*A') 1072 nnz(A'*A) 1072 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 58: Prob = title: 'SYMMETRIC MASS MATRIX, SMALL TEST STRUCTURE' A: [112x112 double] Zeros: [112x112 double] name: 'HB/bcsstm03' id: 58 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz(A) 72 nnz(S) 72 nnz(A*A') 72 nnz(A'*A) 72 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 1497: Prob = name: 'Pajek/GD98_c' title: 'Pajek network: Graph Drawing contest 1998' A: [112x112 double] id: 1497 kind: 'undirected graph' notes: [7x78 char] aux: [1x1 struct] date: '1998' author: 'Graph Drawing Contest' ed: 'V. Batagelj' nnz(A) 336 nnz(S) 336 nnz(A*A') 784 nnz(A'*A) 784 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 158: Prob = title: 'UNSYMMETRIC PATTERN SUPPLIED BY MORVEN GENTLEMAN, SUMMER 1973' A: [113x113 double] name: 'HB/gent113' id: 158 date: '1973' author: 'W. Gentleman' ed: 'A. Curtis, I. Duff, J. Reid' kind: 'statistical/mathematical problem' nnz(A) 655 nnz(S) 1188 nnz(A*A') 2683 nnz(A'*A) 2351 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: 603: Prob = title: 'Netlib LP problem blend: minimize c'*x, where Ax=b, lo<=x<=hi' name: 'LPnetlib/lp_blend' A: [74x114 double] b: [74x1 double] id: 603 aux: [1x1 struct] kind: 'linear programming problem' date: '1989' author: 'N. Gould' ed: 'D. Gay' notes: [36x76 char] nnz(A) 522 nnz(S) 749 nnz(A*A') 1319 nnz(A'*A) 1062 metis (S): metis (A,row): metis (A,col): turning off postorder: metis (S): metis (A,row): metis (A,col): analyzing results: test14 passed ================================================================= Matrices to test: 100 904: vanHeukelum/cage3 nrow: 5 ncol: 5 nnz: 19 c=symbfact(A): 0.0003 0.0001 speedup 2.57 lnz 12 R=symbfact(A): 0.0004 0.0002 speedup 2.66 c=symbfact(A'): 0.0004 0.0001 speedup 2.89 lnz 12 R=symbfact(A'): 0.0004 0.0002 speedup 2.77 c=symbfact(A,'col'): 0.0004 0.0002 speedup 2.38 lnz 15 R=symbfact(A,'col'): 0.0004 0.0002 speedup 2.86 449: Grund/b1_ss nrow: 7 ncol: 7 nnz: 15 c=symbfact(A): 0.0001 0.0000 speedup 6.25 lnz 13 R=symbfact(A): 0.0001 0.0000 speedup 4.36 c=symbfact(A'): 0.0001 0.0000 speedup 5.84 lnz 10 R=symbfact(A'): 0.0001 0.0000 speedup 5.04 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.80 lnz 19 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.77 185: HB/jgl009 nrow: 9 ncol: 9 nnz: 50 c=symbfact(A): 0.0001 0.0000 speedup 5.61 lnz 23 R=symbfact(A): 0.0001 0.0000 speedup 3.74 c=symbfact(A'): 0.0001 0.0000 speedup 5.52 lnz 39 R=symbfact(A'): 0.0003 0.0000 speedup 8.63 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.90 lnz 45 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.07 905: vanHeukelum/cage4 nrow: 9 ncol: 9 nnz: 49 c=symbfact(A): 0.0001 0.0000 speedup 5.94 lnz 36 R=symbfact(A): 0.0001 0.0000 speedup 3.50 c=symbfact(A'): 0.0001 0.0000 speedup 5.52 lnz 36 R=symbfact(A'): 0.0001 0.0000 speedup 4.57 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.67 lnz 45 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.55 238: HB/rgg010 nrow: 10 ncol: 10 nnz: 76 c=symbfact(A): 0.0001 0.0000 speedup 5.37 lnz 31 R=symbfact(A): 0.0001 0.0000 speedup 4.55 c=symbfact(A'): 0.0001 0.0000 speedup 3.93 lnz 55 R=symbfact(A'): 0.0001 0.0000 speedup 3.57 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.62 lnz 55 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.37 1524: Pajek/Stranke94 nrow: 10 ncol: 10 nnz: 90 c=symbfact(A): 0.0001 0.0000 speedup 5.37 lnz 55 R=symbfact(A): 0.0001 0.0000 speedup 4.65 c=symbfact(A'): 0.0002 0.0000 speedup 6.65 lnz 55 R=symbfact(A'): 0.0001 0.0000 speedup 4.69 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.76 lnz 55 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.22 186: HB/jgl011 nrow: 11 ncol: 11 nnz: 76 c=symbfact(A): 0.0001 0.0000 speedup 5.72 lnz 31 R=symbfact(A): 0.0001 0.0000 speedup 4.47 c=symbfact(A'): 0.0001 0.0000 speedup 3.96 lnz 59 R=symbfact(A'): 0.0001 0.0000 speedup 3.57 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.45 lnz 66 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.32 1525: Pajek/Tina_AskCal nrow: 11 ncol: 11 nnz: 29 c=symbfact(A): 0.0001 0.0000 speedup 5.44 lnz 33 R=symbfact(A): 0.0001 0.0000 speedup 4.48 c=symbfact(A'): 0.0001 0.0000 speedup 5.65 lnz 25 R=symbfact(A'): 0.0001 0.0000 speedup 5.04 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.62 lnz 35 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.21 1526: Pajek/Tina_AskCog nrow: 11 ncol: 11 nnz: 36 c=symbfact(A): 0.0001 0.0000 speedup 5.61 lnz 36 R=symbfact(A): 0.0001 0.0000 speedup 3.69 c=symbfact(A'): 0.0001 0.0000 speedup 5.36 lnz 35 R=symbfact(A'): 0.0001 0.0000 speedup 4.36 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.50 lnz 44 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.23 1527: Pajek/Tina_DisCal nrow: 11 ncol: 11 nnz: 41 c=symbfact(A): 0.0001 0.0000 speedup 5.61 lnz 47 R=symbfact(A): 0.0001 0.0000 speedup 4.32 c=symbfact(A'): 0.0001 0.0000 speedup 5.36 lnz 34 R=symbfact(A'): 0.0001 0.0000 speedup 4.54 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.71 lnz 46 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.33 1528: Pajek/Tina_DisCog nrow: 11 ncol: 11 nnz: 48 c=symbfact(A): 0.0001 0.0000 speedup 5.61 lnz 45 R=symbfact(A): 0.0001 0.0000 speedup 4.55 c=symbfact(A'): 0.0001 0.0000 speedup 5.14 lnz 39 R=symbfact(A'): 0.0001 0.0000 speedup 4.43 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.45 lnz 55 R=symbfact(A,'col'): 0.0002 0.0000 speedup 4.78 719: LPnetlib/lpi_itest2 nrow: 9 ncol: 13 nnz: 26 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.64 lnz 35 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.09 715: LPnetlib/lpi_galenet nrow: 8 ncol: 14 nnz: 22 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.64 lnz 37 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.09 1440: Oberwolfach/LFAT5 nrow: 14 ncol: 14 nnz: 46 c=symbfact(A): 0.0001 0.0000 speedup 5.61 lnz 33 R=symbfact(A): 0.0001 0.0000 speedup 3.57 c=symbfact(A'): 0.0001 0.0000 speedup 5.52 lnz 33 R=symbfact(A'): 0.0001 0.0000 speedup 4.61 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.50 lnz 43 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.26 1817: Meszaros/kleemin nrow: 8 ncol: 16 nnz: 44 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.77 lnz 86 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.03 720: LPnetlib/lpi_itest6 nrow: 11 ncol: 17 nnz: 29 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.48 lnz 38 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.12 1710: Meszaros/farm nrow: 7 ncol: 17 nnz: 41 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.61 lnz 101 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.89 1438: Oberwolfach/LF10 nrow: 18 ncol: 18 nnz: 82 c=symbfact(A): 0.0001 0.0000 speedup 5.00 lnz 58 R=symbfact(A): 0.0001 0.0000 speedup 4.24 c=symbfact(A'): 0.0001 0.0000 speedup 5.32 lnz 58 R=symbfact(A'): 0.0001 0.0000 speedup 4.03 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.17 lnz 86 R=symbfact(A,'col'): 0.0002 0.0000 speedup 4.78 1479: Pajek/GD01_b nrow: 18 ncol: 18 nnz: 37 c=symbfact(A): 0.0001 0.0000 speedup 5.47 lnz 43 R=symbfact(A): 0.0001 0.0001 speedup 0.92 c=symbfact(A'): 0.0001 0.0000 speedup 4.03 lnz 37 R=symbfact(A'): 0.0001 0.0000 speedup 3.50 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.43 lnz 43 R=symbfact(A,'col'): 0.0001 0.0000 speedup 4.06 1481: Pajek/GD02_a nrow: 23 ncol: 23 nnz: 87 c=symbfact(A): 0.0001 0.0000 speedup 5.05 lnz 83 R=symbfact(A): 0.0001 0.0000 speedup 4.14 c=symbfact(A'): 0.0001 0.0000 speedup 3.65 lnz 83 R=symbfact(A'): 0.0001 0.0000 speedup 3.25 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.92 lnz 208 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.38 1516: Pajek/Ragusa18 nrow: 23 ncol: 23 nnz: 64 c=symbfact(A): 0.0001 0.0000 speedup 5.05 lnz 69 R=symbfact(A): 0.0001 0.0001 speedup 2.10 c=symbfact(A'): 0.0001 0.0000 speedup 3.74 lnz 61 R=symbfact(A'): 0.0001 0.0000 speedup 3.28 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.25 lnz 96 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.83 97: HB/can_24 nrow: 24 ncol: 24 nnz: 160 c=symbfact(A): 0.0001 0.0000 speedup 4.65 lnz 120 R=symbfact(A): 0.0001 0.0000 speedup 3.09 c=symbfact(A'): 0.0001 0.0000 speedup 4.73 lnz 120 R=symbfact(A'): 0.0001 0.0001 speedup 1.96 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.93 lnz 196 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.36 1515: Pajek/Ragusa16 nrow: 24 ncol: 24 nnz: 81 c=symbfact(A): 0.0001 0.0000 speedup 5.05 lnz 71 R=symbfact(A): 0.0001 0.0000 speedup 3.36 c=symbfact(A'): 0.0001 0.0000 speedup 5.04 lnz 70 R=symbfact(A'): 0.0001 0.0000 speedup 4.00 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.12 lnz 144 R=symbfact(A,'col'): 0.0002 0.0000 speedup 5.54 1177: HB/lap_25 nrow: 25 ncol: 25 nnz: 169 c=symbfact(A): 0.0001 0.0000 speedup 4.65 lnz 138 R=symbfact(A): 0.0002 0.0000 speedup 3.87 c=symbfact(A'): 0.0001 0.0000 speedup 3.62 lnz 138 R=symbfact(A'): 0.0001 0.0000 speedup 3.86 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.44 lnz 235 R=symbfact(A,'col'): 0.0002 0.0000 speedup 3.21 436: FIDAP/ex5 nrow: 27 ncol: 27 nnz: 279 c=symbfact(A): 0.0001 0.0000 speedup 4.58 lnz 153 R=symbfact(A): 0.0002 0.0000 speedup 3.80 c=symbfact(A'): 0.0001 0.0000 speedup 4.64 lnz 153 R=symbfact(A'): 0.0001 0.0000 speedup 3.92 c=symbfact(A,'col'): 0.0002 0.0000 speedup 6.69 lnz 261 R=symbfact(A,'col'): 0.0002 0.0001 speedup 3.21 232: HB/pores_1 nrow: 30 ncol: 30 nnz: 180 c=symbfact(A): 0.0005 0.0000 speedup 20.28 lnz 133 R=symbfact(A): 0.0002 0.0001 speedup 3.04 c=symbfact(A'): 0.0001 0.0000 speedup 5.04 lnz 183 R=symbfact(A'): 0.0001 0.0000 speedup 3.16 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.82 lnz 253 R=symbfact(A,'col'): 0.0001 0.0001 speedup 2.65 168: HB/ibm32 nrow: 32 ncol: 32 nnz: 126 c=symbfact(A): 0.0001 0.0000 speedup 4.70 lnz 155 R=symbfact(A): 0.0001 0.0000 speedup 3.00 c=symbfact(A'): 0.0001 0.0000 speedup 5.00 lnz 135 R=symbfact(A'): 0.0001 0.0000 speedup 3.75 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.66 lnz 325 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.08 1199: Hamrle/Hamrle1 nrow: 32 ncol: 32 nnz: 98 c=symbfact(A): 0.0001 0.0000 speedup 4.86 lnz 173 R=symbfact(A): 0.0001 0.0002 speedup 0.88 c=symbfact(A'): 0.0001 0.0000 speedup 4.96 lnz 112 R=symbfact(A'): 0.0001 0.0000 speedup 3.12 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.93 lnz 176 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.34 1480: Pajek/GD01_c nrow: 33 ncol: 33 nnz: 135 c=symbfact(A): 0.0001 0.0000 speedup 4.50 lnz 139 R=symbfact(A): 0.0962 0.0000 speedup 1963.43 c=symbfact(A'): 0.0002 0.0000 speedup 6.00 lnz 144 R=symbfact(A'): 0.0001 0.0000 speedup 3.87 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.82 lnz 214 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.04 1474: Pajek/football nrow: 35 ncol: 35 nnz: 118 c=symbfact(A): 0.0001 0.0000 speedup 4.40 lnz 144 R=symbfact(A): 0.0002 0.0000 speedup 3.49 c=symbfact(A'): 0.0002 0.0000 speedup 5.72 lnz 97 R=symbfact(A'): 0.0001 0.0000 speedup 3.09 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.63 lnz 146 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.13 1485: Pajek/GD95_a nrow: 36 ncol: 36 nnz: 57 c=symbfact(A): 0.0001 0.0000 speedup 4.42 lnz 69 R=symbfact(A): 0.0001 0.0000 speedup 2.96 c=symbfact(A'): 0.0001 0.0000 speedup 4.73 lnz 71 R=symbfact(A'): 0.0001 0.0011 speedup 0.12 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.07 lnz 69 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.72 906: vanHeukelum/cage5 nrow: 37 ncol: 37 nnz: 233 c=symbfact(A): 0.0001 0.0000 speedup 4.19 lnz 198 R=symbfact(A): 0.0002 0.0001 speedup 2.00 c=symbfact(A'): 0.0001 0.0000 speedup 4.67 lnz 198 R=symbfact(A'): 0.0001 0.0000 speedup 3.36 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.38 lnz 472 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.37 1495: Pajek/GD98_a nrow: 38 ncol: 38 nnz: 50 c=symbfact(A): 0.0001 0.0000 speedup 4.65 lnz 59 R=symbfact(A): 0.0001 0.0000 speedup 3.69 c=symbfact(A'): 0.0001 0.0000 speedup 5.19 lnz 74 R=symbfact(A'): 0.0001 0.0000 speedup 3.16 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.04 lnz 144 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.49 13: HB/bcspwr01 nrow: 39 ncol: 39 nnz: 131 c=symbfact(A): 0.0001 0.0000 speedup 4.40 lnz 104 R=symbfact(A): 0.0001 0.0001 speedup 2.92 c=symbfact(A'): 0.0001 0.0000 speedup 4.70 lnz 104 R=symbfact(A'): 0.0001 0.0000 speedup 3.54 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.47 lnz 190 R=symbfact(A,'col'): 0.0001 0.0001 speedup 2.65 706: LPnetlib/lpi_bgprtr nrow: 20 ncol: 40 nnz: 70 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.96 lnz 155 R=symbfact(A,'col'): 0.0001 0.0001 speedup 2.72 1755: Meszaros/problem nrow: 12 ncol: 46 nnz: 86 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.93 lnz 377 R=symbfact(A,'col'): 0.0002 0.0001 speedup 3.04 1493: Pajek/GD97_b nrow: 47 ncol: 47 nnz: 264 c=symbfact(A): 0.0001 0.0000 speedup 3.87 lnz 211 R=symbfact(A): 0.0002 0.0001 speedup 2.71 c=symbfact(A'): 0.0001 0.0000 speedup 4.25 lnz 211 R=symbfact(A'): 0.0002 0.0001 speedup 2.75 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.19 lnz 713 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.17 23: HB/bcsstk01 nrow: 48 ncol: 48 nnz: 400 c=symbfact(A): 0.0001 0.0000 speedup 3.75 lnz 489 R=symbfact(A): 0.0002 0.0001 speedup 2.56 c=symbfact(A'): 0.0001 0.0000 speedup 4.45 lnz 489 R=symbfact(A'): 0.0002 0.0001 speedup 2.98 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.98 lnz 944 R=symbfact(A,'col'): 0.0002 0.0001 speedup 1.97 56: HB/bcsstm01 nrow: 48 ncol: 48 nnz: 24 c=symbfact(A): 0.0001 0.0000 speedup 4.73 lnz 48 R=symbfact(A): 0.0001 0.0000 speedup 4.00 c=symbfact(A'): 0.0001 0.0000 speedup 4.96 lnz 48 R=symbfact(A'): 0.0002 0.0001 speedup 3.67 c=symbfact(A,'col'): 0.0001 0.0000 speedup 4.33 lnz 48 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.74 872: Pothen/mesh1e1 nrow: 48 ncol: 48 nnz: 306 c=symbfact(A): 0.0001 0.0000 speedup 4.30 lnz 336 R=symbfact(A): 0.0002 0.0001 speedup 3.04 c=symbfact(A'): 0.0001 0.0000 speedup 4.34 lnz 336 R=symbfact(A'): 0.0002 0.0001 speedup 2.72 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.11 lnz 769 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.40 873: Pothen/mesh1em1 nrow: 48 ncol: 48 nnz: 306 c=symbfact(A): 0.0001 0.0000 speedup 3.90 lnz 336 R=symbfact(A): 0.0002 0.0001 speedup 3.13 c=symbfact(A'): 0.0001 0.0000 speedup 4.27 lnz 336 R=symbfact(A'): 0.0002 0.0001 speedup 2.70 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.19 lnz 769 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.45 874: Pothen/mesh1em6 nrow: 48 ncol: 48 nnz: 306 c=symbfact(A): 0.0001 0.0000 speedup 3.90 lnz 336 R=symbfact(A): 0.0002 0.0001 speedup 3.17 c=symbfact(A'): 0.0002 0.0000 speedup 5.35 lnz 336 R=symbfact(A'): 0.0002 0.0001 speedup 3.04 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.08 lnz 769 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.30 1741: Meszaros/p0033 nrow: 15 ncol: 48 nnz: 113 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.61 lnz 364 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.91 14: HB/bcspwr02 nrow: 49 ncol: 49 nnz: 167 c=symbfact(A): 0.0001 0.0000 speedup 4.04 lnz 129 R=symbfact(A): 0.0002 0.0001 speedup 3.06 c=symbfact(A'): 0.0001 0.0000 speedup 4.59 lnz 129 R=symbfact(A'): 0.0001 0.0000 speedup 2.92 c=symbfact(A,'col'): 0.0002 0.0000 speedup 4.97 lnz 275 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.50 1460: Pajek/divorce nrow: 50 ncol: 9 nnz: 225 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.96 lnz 45 R=symbfact(A,'col'): 0.0001 0.0001 speedup 2.71 597: LPnetlib/lp_afiro nrow: 27 ncol: 51 nnz: 102 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.68 lnz 293 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.52 464: Grund/d_ss nrow: 53 ncol: 53 nnz: 144 c=symbfact(A): 0.0001 0.0000 speedup 4.15 lnz 238 R=symbfact(A): 0.0002 0.0001 speedup 2.74 c=symbfact(A'): 0.0001 0.0000 speedup 4.29 lnz 243 R=symbfact(A'): 0.0003 0.0000 speedup 5.36 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.39 lnz 259 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.96 109: HB/curtis54 nrow: 54 ncol: 54 nnz: 291 c=symbfact(A): 0.0001 0.0000 speedup 3.81 lnz 222 R=symbfact(A): 0.0002 0.0001 speedup 3.11 c=symbfact(A'): 0.0001 0.0001 speedup 2.09 lnz 208 R=symbfact(A'): 0.0002 0.0001 speedup 3.34 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.13 lnz 556 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.22 1457: Pajek/Cities nrow: 55 ncol: 46 nnz: 1342 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.76 lnz 1081 R=symbfact(A,'col'): 0.0003 0.0002 speedup 1.78 274: HB/will57 nrow: 57 ncol: 57 nnz: 281 c=symbfact(A): 0.0001 0.0000 speedup 4.03 lnz 179 R=symbfact(A): 0.0002 0.0001 speedup 3.30 c=symbfact(A'): 0.0001 0.0000 speedup 4.15 lnz 178 R=symbfact(A'): 0.0002 0.0000 speedup 4.41 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.11 lnz 450 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.17 129: HB/dwt_59 nrow: 59 ncol: 59 nnz: 267 c=symbfact(A): 0.0001 0.0000 speedup 3.77 lnz 244 R=symbfact(A): 0.0002 0.0001 speedup 3.13 c=symbfact(A'): 0.0001 0.0001 speedup 2.22 lnz 244 R=symbfact(A'): 0.0002 0.0001 speedup 3.30 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.03 lnz 492 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.25 172: HB/impcol_b nrow: 59 ncol: 59 nnz: 271 c=symbfact(A): 0.0001 0.0000 speedup 3.75 lnz 394 R=symbfact(A): 0.0002 0.0001 speedup 2.52 c=symbfact(A'): 0.0002 0.0000 speedup 6.14 lnz 269 R=symbfact(A'): 0.0002 0.0001 speedup 2.78 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.19 lnz 468 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.25 102: HB/can_61 nrow: 61 ncol: 61 nnz: 557 c=symbfact(A): 0.0001 0.0000 speedup 3.50 lnz 361 R=symbfact(A): 0.0002 0.0001 speedup 2.07 c=symbfact(A'): 0.0002 0.0000 speedup 3.92 lnz 361 R=symbfact(A'): 0.0002 0.0001 speedup 2.54 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.84 lnz 966 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.09 103: HB/can_62 nrow: 62 ncol: 62 nnz: 218 c=symbfact(A): 0.0001 0.0000 speedup 3.87 lnz 184 R=symbfact(A): 0.0002 0.0001 speedup 2.64 c=symbfact(A'): 0.0001 0.0000 speedup 4.13 lnz 184 R=symbfact(A'): 0.0001 0.0000 speedup 3.19 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.19 lnz 358 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.74 293: Bai/bfwa62 nrow: 62 ncol: 62 nnz: 450 c=symbfact(A): 0.0001 0.0000 speedup 3.43 lnz 317 R=symbfact(A): 0.0002 0.0001 speedup 3.02 c=symbfact(A'): 0.0001 0.0000 speedup 3.97 lnz 327 R=symbfact(A'): 0.0002 0.0001 speedup 3.00 c=symbfact(A,'col'): 0.0002 0.0000 speedup 3.57 lnz 743 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.24 296: Bai/bfwb62 nrow: 62 ncol: 62 nnz: 342 c=symbfact(A): 0.0001 0.0000 speedup 3.64 lnz 288 R=symbfact(A): 0.0002 0.0001 speedup 2.98 c=symbfact(A'): 0.0001 0.0000 speedup 4.00 lnz 288 R=symbfact(A'): 0.0002 0.0001 speedup 2.62 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.72 lnz 589 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.64 1487: Pajek/GD95_c nrow: 62 ncol: 62 nnz: 287 c=symbfact(A): 0.0002 0.0000 speedup 4.67 lnz 234 R=symbfact(A): 0.0002 0.0001 speedup 3.27 c=symbfact(A'): 0.0001 0.0000 speedup 4.03 lnz 234 R=symbfact(A'): 0.0002 0.0001 speedup 3.13 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.05 lnz 598 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.49 1759: Meszaros/refine nrow: 29 ncol: 62 nnz: 153 c=symbfact(A,'col'): 0.0002 0.0000 speedup 6.03 lnz 628 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.74 1742: Meszaros/p0040 nrow: 23 ncol: 63 nnz: 133 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.71 lnz 515 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.71 1498: Pajek/GD99_b nrow: 64 ncol: 64 nnz: 252 c=symbfact(A): 0.0001 0.0000 speedup 3.75 lnz 461 R=symbfact(A): 0.0002 0.0001 speedup 2.82 c=symbfact(A'): 0.0002 0.0000 speedup 4.46 lnz 461 R=symbfact(A'): 0.0002 0.0001 speedup 2.98 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.95 lnz 1001 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.81 1490: Pajek/GD96_c nrow: 65 ncol: 65 nnz: 250 c=symbfact(A): 0.0001 0.0000 speedup 3.69 lnz 341 R=symbfact(A): 0.0002 0.0001 speedup 3.00 c=symbfact(A'): 0.0001 0.0000 speedup 4.06 lnz 341 R=symbfact(A'): 0.0002 0.0001 speedup 3.00 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.00 lnz 626 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.16 24: HB/bcsstk02 nrow: 66 ncol: 66 nnz: 4356 c=symbfact(A): 0.0002 0.0001 speedup 2.47 lnz 2211 R=symbfact(A): 0.0934 0.0002 speedup 411.51 c=symbfact(A'): 0.0004 0.0001 speedup 4.48 lnz 2211 R=symbfact(A'): 0.0004 0.0002 speedup 2.47 c=symbfact(A,'col'): 0.0002 0.0001 speedup 2.09 lnz 2211 R=symbfact(A,'col'): 0.0010 0.0008 speedup 1.27 57: HB/bcsstm02 nrow: 66 ncol: 66 nnz: 66 c=symbfact(A): 0.0001 0.0000 speedup 4.82 lnz 66 R=symbfact(A): 0.0001 0.0000 speedup 3.57 c=symbfact(A'): 0.0001 0.0000 speedup 4.92 lnz 66 R=symbfact(A'): 0.0001 0.0001 speedup 1.07 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.96 lnz 66 R=symbfact(A,'col'): 0.0001 0.0000 speedup 3.60 132: HB/dwt_66 nrow: 66 ncol: 66 nnz: 320 c=symbfact(A): 0.0001 0.0000 speedup 4.11 lnz 193 R=symbfact(A): 0.0002 0.0000 speedup 3.59 c=symbfact(A'): 0.0001 0.0000 speedup 4.77 lnz 193 R=symbfact(A'): 0.0002 0.0001 speedup 2.96 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.17 lnz 321 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.89 883: Pothen/sphere2 nrow: 66 ncol: 66 nnz: 450 c=symbfact(A): 0.0001 0.0000 speedup 3.44 lnz 682 R=symbfact(A): 0.0002 0.0001 speedup 2.76 c=symbfact(A'): 0.0002 0.0000 speedup 4.63 lnz 682 R=symbfact(A'): 0.0002 0.0001 speedup 2.82 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.91 lnz 1368 R=symbfact(A,'col'): 0.0002 0.0001 speedup 1.89 262: HB/west0067 nrow: 67 ncol: 67 nnz: 294 c=symbfact(A): 0.0001 0.0000 speedup 3.56 lnz 701 R=symbfact(A): 0.0002 0.0001 speedup 2.56 c=symbfact(A'): 0.0001 0.0000 speedup 4.11 lnz 569 R=symbfact(A'): 0.0002 0.0001 speedup 2.80 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.83 lnz 872 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.36 636: LPnetlib/lp_kb2 nrow: 43 ncol: 68 nnz: 313 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.00 lnz 589 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.39 133: HB/dwt_72 nrow: 72 ncol: 72 nnz: 222 c=symbfact(A): 0.0001 0.0000 speedup 4.00 lnz 184 R=symbfact(A): 0.0002 0.0001 speedup 2.78 c=symbfact(A'): 0.0001 0.0000 speedup 4.35 lnz 184 R=symbfact(A'): 0.0002 0.0001 speedup 3.12 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.14 lnz 329 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.76 1501: Pajek/GlossGT nrow: 72 ncol: 72 nnz: 122 c=symbfact(A): 0.0001 0.0000 speedup 3.66 lnz 219 R=symbfact(A): 0.0002 0.0001 speedup 3.09 c=symbfact(A'): 0.0001 0.0000 speedup 3.32 lnz 96 R=symbfact(A'): 0.0001 0.0000 speedup 3.44 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.36 lnz 147 R=symbfact(A,'col'): 0.0002 0.0001 speedup 3.06 106: HB/can_73 nrow: 73 ncol: 73 nnz: 377 c=symbfact(A): 0.0001 0.0000 speedup 3.62 lnz 392 R=symbfact(A): 0.0002 0.0001 speedup 2.60 c=symbfact(A'): 0.0002 0.0000 speedup 4.21 lnz 392 R=symbfact(A'): 0.0002 0.0001 speedup 2.73 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.90 lnz 1438 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.05 1486: Pajek/GD95_b nrow: 73 ncol: 73 nnz: 96 c=symbfact(A): 0.0001 0.0000 speedup 4.04 lnz 105 R=symbfact(A): 0.0002 0.0000 speedup 3.29 c=symbfact(A'): 0.0001 0.0000 speedup 4.00 lnz 147 R=symbfact(A'): 0.0002 0.0000 speedup 3.30 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.41 lnz 476 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.76 666: LPnetlib/lp_sc50a nrow: 50 ncol: 78 nnz: 160 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.08 lnz 332 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.62 667: LPnetlib/lp_sc50b nrow: 50 ncol: 78 nnz: 148 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.59 lnz 316 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.70 253: HB/steam3 nrow: 80 ncol: 80 nnz: 314 c=symbfact(A): 0.0001 0.0000 speedup 4.00 lnz 208 R=symbfact(A): 0.0002 0.0001 speedup 3.20 c=symbfact(A'): 0.0001 0.0000 speedup 4.09 lnz 205 R=symbfact(A'): 0.0002 0.0001 speedup 3.20 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.11 lnz 424 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.49 1482: Pajek/GD02_b nrow: 80 ncol: 80 nnz: 232 c=symbfact(A): 0.0001 0.0000 speedup 3.56 lnz 326 R=symbfact(A): 0.0002 0.0001 speedup 2.88 c=symbfact(A'): 0.0002 0.0000 speedup 4.31 lnz 317 R=symbfact(A'): 0.0002 0.0001 speedup 2.93 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.88 lnz 497 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.53 1492: Pajek/GD97_a nrow: 84 ncol: 84 nnz: 332 c=symbfact(A): 0.0001 0.0000 speedup 3.41 lnz 677 R=symbfact(A): 0.0002 0.0001 speedup 2.60 c=symbfact(A'): 0.0002 0.0000 speedup 3.87 lnz 677 R=symbfact(A'): 0.0002 0.0001 speedup 2.75 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.71 lnz 1608 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.29 11: HB/ash85 nrow: 85 ncol: 85 nnz: 523 c=symbfact(A): 0.0001 0.0000 speedup 3.26 lnz 505 R=symbfact(A): 0.0002 0.0001 speedup 2.73 c=symbfact(A'): 0.0002 0.0000 speedup 3.74 lnz 505 R=symbfact(A'): 0.0002 0.0001 speedup 2.71 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.59 lnz 1109 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.13 1519: Pajek/Sandi_authors nrow: 86 ncol: 86 nnz: 248 c=symbfact(A): 0.0001 0.0000 speedup 3.46 lnz 221 R=symbfact(A): 0.0002 0.0001 speedup 2.37 c=symbfact(A'): 0.0001 0.0000 speedup 3.94 lnz 221 R=symbfact(A'): 0.0002 0.0001 speedup 2.52 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.95 lnz 533 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.43 136: HB/dwt_87 nrow: 87 ncol: 87 nnz: 541 c=symbfact(A): 0.0001 0.0000 speedup 3.37 lnz 414 R=symbfact(A): 0.0002 0.0001 speedup 2.64 c=symbfact(A'): 0.0002 0.0000 speedup 4.42 lnz 414 R=symbfact(A'): 0.0002 0.0001 speedup 2.46 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.65 lnz 921 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.08 462: Grund/d_dyn nrow: 87 ncol: 87 nnz: 230 c=symbfact(A): 0.0001 0.0000 speedup 3.33 lnz 442 R=symbfact(A): 0.0002 0.0001 speedup 2.74 c=symbfact(A'): 0.0001 0.0000 speedup 3.84 lnz 450 R=symbfact(A'): 0.0002 0.0001 speedup 2.85 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.81 lnz 432 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.01 463: Grund/d_dyn1 nrow: 87 ncol: 87 nnz: 232 c=symbfact(A): 0.0001 0.0000 speedup 3.43 lnz 476 R=symbfact(A): 0.0002 0.0001 speedup 2.64 c=symbfact(A'): 0.0001 0.0000 speedup 3.74 lnz 441 R=symbfact(A'): 0.0002 0.0001 speedup 2.38 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.74 lnz 439 R=symbfact(A,'col'): 0.0002 0.0001 speedup 1.80 731: LPnetlib/lpi_woodinfe nrow: 35 ncol: 89 nnz: 140 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.11 lnz 402 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.58 1641: Bai/tols90 nrow: 90 ncol: 90 nnz: 1746 c=symbfact(A): 0.0001 0.0000 speedup 3.33 lnz 315 R=symbfact(A): 0.0002 0.0001 speedup 2.75 c=symbfact(A'): 0.0002 0.0001 speedup 2.96 lnz 1539 R=symbfact(A'): 0.0003 0.0001 speedup 2.25 c=symbfact(A,'col'): 0.0002 0.0001 speedup 2.33 lnz 4095 R=symbfact(A,'col'): 0.0007 0.0005 speedup 1.46 907: vanHeukelum/cage6 nrow: 93 ncol: 93 nnz: 785 c=symbfact(A): 0.0001 0.0000 speedup 3.07 lnz 1170 R=symbfact(A): 0.0002 0.0001 speedup 2.27 c=symbfact(A'): 0.0002 0.0000 speedup 3.65 lnz 1170 R=symbfact(A'): 0.0002 0.0001 speedup 2.42 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.34 lnz 2665 R=symbfact(A,'col'): 0.0003 0.0002 speedup 1.82 108: HB/can_96 nrow: 96 ncol: 96 nnz: 768 c=symbfact(A): 0.0002 0.0000 speedup 3.42 lnz 984 R=symbfact(A): 0.0002 0.0001 speedup 2.26 c=symbfact(A'): 0.0002 0.0001 speedup 1.20 lnz 984 R=symbfact(A'): 0.0002 0.0001 speedup 2.57 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.46 lnz 2620 R=symbfact(A,'col'): 0.0003 0.0002 speedup 1.78 220: HB/nos4 nrow: 100 ncol: 100 nnz: 594 c=symbfact(A): 0.0001 0.0000 speedup 3.02 lnz 632 R=symbfact(A): 0.0002 0.0001 speedup 2.39 c=symbfact(A'): 0.0002 0.0000 speedup 3.50 lnz 632 R=symbfact(A'): 0.0002 0.0001 speedup 2.59 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.53 lnz 1414 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.05 318: Bai/olm100 nrow: 100 ncol: 100 nnz: 396 c=symbfact(A): 0.0001 0.0000 speedup 3.67 lnz 247 R=symbfact(A): 0.0002 0.0001 speedup 3.04 c=symbfact(A'): 0.0001 0.0000 speedup 4.15 lnz 249 R=symbfact(A'): 0.0002 0.0001 speedup 3.18 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.95 lnz 538 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.10 337: Bai/tub100 nrow: 100 ncol: 100 nnz: 396 c=symbfact(A): 0.0001 0.0000 speedup 3.73 lnz 297 R=symbfact(A): 0.0002 0.0001 speedup 2.55 c=symbfact(A'): 0.0001 0.0000 speedup 4.11 lnz 297 R=symbfact(A'): 0.0002 0.0001 speedup 3.05 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.93 lnz 490 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.55 1326: Morandini/rotor1 nrow: 100 ncol: 100 nnz: 708 c=symbfact(A): 0.0001 0.0000 speedup 3.02 lnz 551 R=symbfact(A): 0.0002 0.0001 speedup 2.44 c=symbfact(A'): 0.0002 0.0000 speedup 4.18 lnz 714 R=symbfact(A'): 0.0002 0.0001 speedup 2.52 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.41 lnz 2049 R=symbfact(A,'col'): 0.0003 0.0002 speedup 1.76 1484: Pajek/GD06_theory nrow: 101 ncol: 101 nnz: 380 c=symbfact(A): 0.0001 0.0000 speedup 3.61 lnz 336 R=symbfact(A): 0.0002 0.0001 speedup 2.89 c=symbfact(A'): 0.0001 0.0000 speedup 3.94 lnz 336 R=symbfact(A'): 0.0002 0.0001 speedup 2.56 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.75 lnz 3401 R=symbfact(A,'col'): 0.0003 0.0001 speedup 1.99 861: MathWorks/pivtol nrow: 102 ncol: 102 nnz: 306 c=symbfact(A): 0.0001 0.0000 speedup 3.93 lnz 302 R=symbfact(A): 0.0002 0.0001 speedup 2.57 c=symbfact(A'): 0.0001 0.0000 speedup 4.12 lnz 303 R=symbfact(A'): 0.0002 0.0001 speedup 3.00 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.03 lnz 500 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.62 306: Bai/ck104 nrow: 104 ncol: 104 nnz: 992 c=symbfact(A): 0.0001 0.0000 speedup 3.11 lnz 548 R=symbfact(A): 0.0002 0.0001 speedup 2.61 c=symbfact(A'): 0.0002 0.0000 speedup 3.71 lnz 548 R=symbfact(A'): 0.0002 0.0001 speedup 3.12 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.48 lnz 912 R=symbfact(A,'col'): 0.0002 0.0001 speedup 1.89 1499: Pajek/GD99_c nrow: 105 ncol: 105 nnz: 149 c=symbfact(A): 0.0002 0.0000 speedup 5.75 lnz 166 R=symbfact(A): 0.0002 0.0001 speedup 3.15 c=symbfact(A'): 0.0001 0.0000 speedup 3.76 lnz 221 R=symbfact(A'): 0.0002 0.0001 speedup 2.61 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.08 lnz 231 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.83 721: LPnetlib/lpi_klein1 nrow: 54 ncol: 108 nnz: 750 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.35 lnz 2132 R=symbfact(A,'col'): 0.0003 0.0002 speedup 1.82 1489: Pajek/GD96_b nrow: 111 ncol: 111 nnz: 193 c=symbfact(A): 0.0001 0.0000 speedup 3.49 lnz 303 R=symbfact(A): 0.0003 0.0001 speedup 4.68 c=symbfact(A'): 0.0001 0.0000 speedup 4.45 lnz 132 R=symbfact(A'): 0.0001 0.0001 speedup 2.68 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.14 lnz 168 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.83 25: HB/bcsstk03 nrow: 112 ncol: 112 nnz: 640 c=symbfact(A): 0.0002 0.0000 speedup 4.18 lnz 384 R=symbfact(A): 0.0002 0.0001 speedup 2.46 c=symbfact(A'): 0.0002 0.0000 speedup 3.72 lnz 384 R=symbfact(A'): 0.0002 0.0001 speedup 2.88 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.65 lnz 592 R=symbfact(A,'col'): 0.0002 0.0001 speedup 2.13 58: HB/bcsstm03 nrow: 112 ncol: 112 nnz: 72 c=symbfact(A): 0.0001 0.0000 speedup 4.19 lnz 112 R=symbfact(A): 0.0002 0.0000 speedup 3.40 c=symbfact(A'): 0.0001 0.0000 speedup 4.86 lnz 112 R=symbfact(A'): 0.0001 0.0000 speedup 3.31 c=symbfact(A,'col'): 0.0001 0.0000 speedup 3.52 lnz 112 R=symbfact(A,'col'): 0.0002 0.0000 speedup 3.23 1497: Pajek/GD98_c nrow: 112 ncol: 112 nnz: 336 c=symbfact(A): 0.0001 0.0000 speedup 3.12 lnz 967 R=symbfact(A): 0.0002 0.0001 speedup 2.43 c=symbfact(A'): 0.0002 0.0000 speedup 3.58 lnz 967 R=symbfact(A'): 0.0002 0.0001 speedup 2.43 c=symbfact(A,'col'): 0.0001 0.0000 speedup 2.63 lnz 2064 R=symbfact(A,'col'): 0.0003 0.0001 speedup 2.16 158: HB/gent113 nrow: 113 ncol: 113 nnz: 655 c=symbfact(A): 0.0001 0.0000 speedup 2.94 lnz 791 R=symbfact(A): 0.0002 0.0001 speedup 2.33 c=symbfact(A'): 0.0002 0.0000 speedup 3.73 lnz 643 R=symbfact(A'): 0.0002 0.0001 speedup 2.56 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.36 lnz 1433 R=symbfact(A,'col'): 0.0003 0.0001 speedup 2.06 603: LPnetlib/lp_blend nrow: 74 ncol: 114 nnz: 522 c=symbfact(A,'col'): 0.0001 0.0001 speedup 2.57 lnz 1459 R=symbfact(A,'col'): 0.0002 0.0002 speedup 1.14 test15 passed ================================================================= test16: test cholmod2 on a large matrix Prob = A: [9000x9000 double] name: 'ND/nd3k' title: 'ND problem set, matrix nd3k' id: 936 date: '2003' author: 'author unknown' ed: 'T. Davis' kind: '2D/3D problem' time 17.5518 test16 passed ================================================================= test17: test lchol on a few large matrices Prob = title: 'S.Norris, Univ. Auckland. FEM, Laplace eqn 2D 100x100 mesh' A: [9604x9604 double] name: 'Norris/fv1' id: 887 date: '2003' author: 'S. Norris' ed: 'T. Davis' kind: '2D/3D problem' ans = 3.4748 Prob = A: [9000x9000 double] name: 'ND/nd3k' title: 'ND problem set, matrix nd3k' id: 936 date: '2003' author: 'author unknown' ed: 'T. Davis' kind: '2D/3D problem' ans = 30.1030 Prob = title: 'S.Norris, Univ. Auckland. FEM, Laplace eqn 2D 100x100 mesh' A: [9604x9604 double] name: 'Norris/fv1' id: 887 date: '2003' author: 'S. Norris' ed: 'T. Davis' kind: '2D/3D problem' ans = 3.4748 ================================================================= test18: test cholmod2 on a few large matrices Prob = title: 'S.Norris, Univ. Auckland. FEM, Laplace eqn 2D 100x100 mesh' A: [9604x9604 double] name: 'Norris/fv1' id: 887 date: '2003' author: 'S. Norris' ed: 'T. Davis' kind: '2D/3D problem' ans = 4.9310e-12 Prob = A: [9000x9000 double] name: 'ND/nd3k' title: 'ND problem set, matrix nd3k' id: 936 date: '2003' author: 'author unknown' ed: 'T. Davis' kind: '2D/3D problem' ans = 1.6330e-05 Prob = title: 'S.Norris, Univ. Auckland. FEM, Laplace eqn 2D 100x100 mesh' A: [9604x9604 double] name: 'Norris/fv1' id: 887 date: '2003' author: 'S. Norris' ed: 'T. Davis' kind: '2D/3D problem' ans = 4.9453e-12 test18 passed ================================================================= test19: look for NaN's from lchol (caused by Intel MKL 7.x bug) Prob = A: [9000x9000 double] name: 'ND/nd3k' title: 'ND problem set, matrix nd3k' id: 936 date: '2003' author: 'author unknown' ed: 'T. Davis' kind: '2D/3D problem' mflop rate: 1287.30 test19 passed; you have a NaN-free BLAS (must not be MKL 7.x...) ================================================================= test20: test symbfact2, cholmod2, and lu on a few large matrices Prob = title: 'STRUCTURE FROM NASA LANGLEY, ACCURACY PROBLEM ON Y-MP' A: [16146x16146 double] b: [16146x1 double] name: 'Simon/olafu' id: 813 date: '1993' author: 'H. Simon' ed: 'H. Simon' kind: 'structural problem' lnz 3095636 unz 3095636 nnz(L+U) 6175126 fl 1.13063e+09 gflop 1.84307 t 0.613446 err 5.225120e-04 Prob = title: 'BUCKLING PROBLEM FOR CONTAINER MODEL, ARTHUR RAEFSKY, CENTRIC ENG.' A: [19779x19779 double] Zeros: [19779x19779 double] b: [19779x1 double] name: 'Simon/raefsky4' id: 817 date: '1993' author: 'A. Raefsky' ed: 'H. Simon' kind: 'structural problem' lnz 7304797 unz 7304797 nnz(L+U) 14589815 fl 5.30769e+09 gflop 4.02389 t 1.31904 err 6.031010e-03 ================================================================= test21: test cholmod2 on diagonal or ill-conditioned matrices Prob = title: 'SYMMETRIC MASS MATRIX - TEXTILE LOOM FRAME' A: [138x138 double] name: 'HB/bcsstm22' id: 72 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz: 138 MATLAB resid 0.0e+00 err 0.0e+00 CHOLMOD resid 1.1e-17 err 1.3e-14 condest 9.4e+02 Prob = title: 'MAGNETO-HYDRO-DYNAMICS ALFVEN SPECTRAL PROBLEM' A: [416x416 double] name: 'Bai/mhdb416' id: 315 date: '1994' author: 'A. Booten, M. Kooper, H. van der Vorst, S. Poedts, J. Goedbloed' ed: 'Z. Bai, D. Day, J. Demmel, J. Dongarra' kind: 'electromagnetics problem' nnz: 2312 MATLAB resid 2.3e-18 err 2.8e-12 CHOLMOD resid 2.3e-18 err 2.8e-12 condest 5.1e+09 Prob = title: 'SYMMETRIC MASS MATRIX, SQUARE PLATE CLAMPED' A: [1083x1083 double] name: 'HB/bcsstm09' id: 64 date: '1982' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz: 1083 MATLAB resid 0.0e+00 err 0.0e+00 CHOLMOD resid 5.2e-17 err 2.4e-13 condest 1.0e+04 Prob = title: 'SYMMETRIC MASS MATRIX - CLAMPED SQUARE PLATE' A: [3600x3600 double] name: 'HB/bcsstm21' id: 71 date: '1984' author: 'J. Lewis' ed: 'I. Duff, R. Grimes, J. Lewis' kind: 'structural problem' nnz: 3600 MATLAB resid 0.0e+00 err 0.0e+00 CHOLMOD resid 2.5e-18 err 2.7e-13 condest 2.4e+01 Prob = name: 'Oberwolfach/t2dal_e' title: 'Oberwolfach: micropyros thruster, E matrix' A: [4257x4257 double] id: 1207 kind: 'duplicate model reduction problem' date: '2004' author: 'E. Rudnyi' ed: 'E. Rudnyi' nnz: 4257 MATLAB resid 0.0e+00 err 0.0e+00 CHOLMOD resid 1.3e-17 err 3.9e-13 condest 3.8e+07 Prob = title: 'FEM CRYSTAL FREE VIBRATION MASS MATRIX' A: [13965x13965 double] name: 'Boeing/crystm02' id: 354 date: '1995' author: 'R. Grimes' ed: 'T. Davis' kind: 'materials problem' nnz: 322905 MATLAB resid 9.5e-17 err 2.3e-11 CHOLMOD resid 9.5e-17 err 2.3e-11 condest 4.5e+02 Prob = name: 'Oberwolfach/t3dl_e' title: 'Oberwolfach: micropyros thruster, E matrix' A: [20360x20360 double] id: 1211 kind: 'duplicate model reduction problem' date: '2004' author: 'E. Rudnyi' ed: 'E. Rudnyi' nnz: 20360 MATLAB resid 0.0e+00 err 0.0e+00 CHOLMOD resid 3.2e-17 err 2.0e-12 condest 6.0e+03 ================================================================= test22: test pos.def and indef. matrices test22: chol and chol2 are repeated so each take >= 0.1 sec ================== 904: Problem: vanHeukelum/cage3 m: 5 n: 5 nnz: 19 19 rcond: 4.25263103233630423983e-01 p: 0 0 MATLAB: 0.0003 CHOLMOD: 0.0003 speedup 1.08 err: 0 0 ================== 449: Problem: Grund/b1_ss m: 7 n: 7 nnz: 15 24 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.76 err: 0 0 ================== 1710: Problem: Meszaros/farm m: 7 n: 17 nnz: 41 39 rcond: 2.52948218857096309570e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.88 err: 0 0 ================== 715: Problem: LPnetlib/lpi_galenet m: 8 n: 14 nnz: 22 24 rcond: 8.16496580927726145482e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.75 err: 0 0 ================== 1817: Problem: Meszaros/kleemin m: 8 n: 16 nnz: 44 64 rcond: 9.94982371447397095920e-02 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 185: Problem: HB/jgl009 m: 9 n: 9 nnz: 50 72 rcond: 0.00000000000000000000e+00 p: 3 3 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.78 err: 0 0 ================== 719: Problem: LPnetlib/lpi_itest2 m: 9 n: 13 nnz: 26 51 rcond: 4.47109297966382157608e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.73 err: 0 0 ================== 905: Problem: vanHeukelum/cage4 m: 9 n: 9 nnz: 49 49 rcond: 4.78114120908413264832e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.92 err: 0 0 ================== 238: Problem: HB/rgg010 m: 10 n: 10 nnz: 76 100 rcond: 0.00000000000000000000e+00 p: 3 3 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.90 err: 0 0 ================== 1524: Problem: Pajek/Stranke94 m: 10 n: 10 nnz: 90 90 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.76 err: 0 0 ================== 186: Problem: HB/jgl011 m: 11 n: 11 nnz: 76 108 rcond: 0.00000000000000000000e+00 p: 6 6 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.80 err: 0 0 ================== 720: Problem: LPnetlib/lpi_itest6 m: 11 n: 17 nnz: 29 51 rcond: 9.45751723210471600956e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.87 err: 0 0 ================== 1525: Problem: Pajek/Tina_AskCal m: 11 n: 11 nnz: 29 50 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 1526: Problem: Pajek/Tina_AskCog m: 11 n: 11 nnz: 36 54 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.79 err: 0 0 ================== 1527: Problem: Pajek/Tina_DisCal m: 11 n: 11 nnz: 41 64 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.84 err: 0 0 ================== 1528: Problem: Pajek/Tina_DisCog m: 11 n: 11 nnz: 48 72 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.85 err: 0 0 ================== 1755: Problem: Meszaros/problem m: 12 n: 46 nnz: 86 42 rcond: 5.37847998878130950651e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 1.08 err: 0 0 ================== 1440: Problem: Oberwolfach/LFAT5 m: 14 n: 14 nnz: 46 46 rcond: 1.55639238128393175712e-04 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.76 err: 0 0 ================== 1741: Problem: Meszaros/p0033 m: 15 n: 48 nnz: 113 95 rcond: 1.48172008456599587148e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.78 err: 0 0 ================== 1438: Problem: Oberwolfach/LF10 m: 18 n: 18 nnz: 82 82 rcond: 5.27046276694730000262e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 1479: Problem: Pajek/GD01_b m: 18 n: 18 nnz: 37 54 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.92 err: 0 0 ================== 706: Problem: LPnetlib/lpi_bgprtr m: 20 n: 40 nnz: 70 96 rcond: 1.25918385245936273811e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.76 err: 0 0 ================== 1481: Problem: Pajek/GD02_a m: 23 n: 23 nnz: 87 118 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.78 err: 0 0 ================== 1516: Problem: Pajek/Ragusa18 m: 23 n: 23 nnz: 64 105 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.93 err: 0 0 ================== 1742: Problem: Meszaros/p0040 m: 23 n: 63 nnz: 133 163 rcond: 2.52390925692451309308e-04 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 97: Problem: HB/can_24 m: 24 n: 24 nnz: 160 160 rcond: 0.00000000000000000000e+00 p: 2 2 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.82 err: 0 0 ================== 624: Problem: LPnetlib/lp_fit1d m: 24 n: 1049 nnz: 13427 558 rcond: 7.36202451773845909129e-04 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.98 err: 0 0 ================== 1515: Problem: Pajek/Ragusa16 m: 24 n: 24 nnz: 81 126 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.92 err: 0 0 ================== 626: Problem: LPnetlib/lp_fit2d m: 25 n: 10524 nnz: 129042 617 rcond: 2.18529247214663312551e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.95 err: 0 0 ================== 1177: Problem: HB/lap_25 m: 25 n: 25 nnz: 169 169 rcond: 0.00000000000000000000e+00 p: 2 2 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.80 err: 0 0 ================== 436: Problem: FIDAP/ex5 m: 27 n: 27 nnz: 279 279 rcond: 8.27464239340425602477e-04 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.86 err: 0 0 ================== 597: Problem: LPnetlib/lp_afiro m: 27 n: 51 nnz: 102 153 rcond: 1.72386001683099310267e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.83 err: 0 0 ================== 1759: Problem: Meszaros/refine m: 29 n: 62 nnz: 153 217 rcond: 1.81514831282913007005e-02 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 232: Problem: HB/pores_1 m: 30 n: 30 nnz: 180 236 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 168: Problem: HB/ibm32 m: 32 n: 32 nnz: 126 212 rcond: 0.00000000000000000000e+00 p: 18 18 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.84 err: 0 0 ================== 1199: Problem: Hamrle/Hamrle1 m: 32 n: 32 nnz: 98 181 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.79 err: 0 0 ================== 1480: Problem: Pajek/GD01_c m: 33 n: 33 nnz: 135 270 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.92 err: 0 0 ================== 731: Problem: LPnetlib/lpi_woodinfe m: 35 n: 89 nnz: 140 137 rcond: 4.26401432711220829130e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.86 err: 0 0 ================== 1474: Problem: Pajek/football m: 35 n: 35 nnz: 118 236 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.84 err: 0 0 ================== 1485: Problem: Pajek/GD95_a m: 36 n: 36 nnz: 57 112 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.80 err: 0 0 ================== 906: Problem: vanHeukelum/cage5 m: 37 n: 37 nnz: 233 233 rcond: 2.54392381006308010427e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.82 err: 0 0 ================== 1495: Problem: Pajek/GD98_a m: 38 n: 38 nnz: 50 92 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.91 err: 0 0 ================== 13: Problem: HB/bcspwr01 m: 39 n: 39 nnz: 131 131 rcond: 0.00000000000000000000e+00 p: 2 2 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.83 err: 0 0 ================== 636: Problem: LPnetlib/lp_kb2 m: 43 n: 68 nnz: 313 847 rcond: 4.57208742551626703965e-04 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.93 err: 0 0 ================== 1493: Problem: Pajek/GD97_b m: 47 n: 47 nnz: 264 264 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.99 err: 0 0 ================== 23: Problem: HB/bcsstk01 m: 48 n: 48 nnz: 400 400 rcond: 3.07546526042088742836e-03 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.88 err: 0 0 ================== 56: Problem: HB/bcsstm01 m: 48 n: 48 nnz: 24 24 rcond: 0.00000000000000000000e+00 p: 4 4 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.79 err: 0 0 ================== 872: Problem: Pothen/mesh1e1 m: 48 n: 48 nnz: 306 306 rcond: 5.92447279051849906573e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 1.07 err: 0 0 ================== 873: Problem: Pothen/mesh1em1 m: 48 n: 48 nnz: 306 306 rcond: 2.99182771005118530727e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.88 err: 0 0 ================== 874: Problem: Pothen/mesh1em6 m: 48 n: 48 nnz: 306 306 rcond: 5.98061003584390182830e-01 p: 0 0 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.88 err: 0 0 test22: all tests passed ================================================================= test22: test pos.def and indef. matrices testing matrices for which MATLAB and CHOLMOD differ test22: chol and chol2 are repeated so each take >= 0.1 sec ================== 186: Problem: HB/jgl011 m: 11 n: 11 nnz: 76 108 rcond: 0.00000000000000000000e+00 p: 6 6 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.78 err: 0 0 ================== 109: Problem: HB/curtis54 m: 54 n: 54 nnz: 291 302 rcond: 0.00000000000000000000e+00 p: 4 4 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.96 err: 0 0 ================== 793: Problem: Qaplib/lp_nug05 m: 210 n: 225 nnz: 1050 4060 rcond: 0.00000000000000000000e+00 p: 75 75 MATLAB: 0.0015 CHOLMOD: 0.0014 speedup 1.12 err: 0 0 ================== 607: Problem: LPnetlib/lp_brandy m: 220 n: 303 nnz: 2202 5275 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0004 CHOLMOD: 0.0003 speedup 1.18 err: 0 0 ================== 707: Problem: LPnetlib/lpi_box1 m: 231 n: 261 nnz: 651 1401 rcond: 0.00000000000000000000e+00 p: 22 22 MATLAB: 0.0003 CHOLMOD: 0.0002 speedup 1.80 err: 0 0 ================== 231: Problem: HB/plskz362 m: 362 n: 362 nnz: 1760 0 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0001 CHOLMOD: 0.0001 speedup 0.87 err: 0 0 ================== 794: Problem: Qaplib/lp_nug06 m: 372 n: 486 nnz: 2232 8724 rcond: 0.00000000000000000000e+00 p: 260 260 MATLAB: 0.0089 CHOLMOD: 0.1089 speedup 0.08 err: 0 0 ================== 673: Problem: LPnetlib/lp_scorpion m: 388 n: 466 nnz: 1534 3814 rcond: 0.00000000000000000000e+00 p: 35 35 MATLAB: 0.0003 CHOLMOD: 0.0004 speedup 0.79 err: 0 0 ================== 1156: Problem: Sandia/oscil_dcop_45 m: 430 n: 430 nnz: 1544 1572 rcond: 0.00000000000000000000e+00 p: 31 31 MATLAB: 0.0002 CHOLMOD: 0.0002 speedup 0.90 err: 0 0 ================== 795: Problem: Qaplib/lp_nug07 m: 602 n: 931 nnz: 4214 16576 rcond: 0.00000000000000000000e+00 p: 218 218 MATLAB: 0.0171 CHOLMOD: 0.0170 speedup 1.01 err: 0 0 ================== 796: Problem: Qaplib/lp_nug08 m: 912 n: 1632 nnz: 7296 28816 rcond: 0.00000000000000000000e+00 p: 388 388 MATLAB: 0.1514 CHOLMOD: 0.0512 speedup 2.96 err: 0 0 ================== 260: Problem: HB/well1033 m: 1033 n: 320 nnz: 4732 182679 rcond: 0.00000000000000000000e+00 p: 15 15 MATLAB: 0.0148 CHOLMOD: 0.0149 speedup 0.99 err: 0 0 ================== 261: Problem: HB/well1850 m: 1850 n: 712 nnz: 8755 522902 rcond: 0.00000000000000000000e+00 p: 6 6 MATLAB: 0.0454 CHOLMOD: 0.0440 speedup 1.03 err: 0 0 ================== 230: Problem: HB/plsk1919 m: 1919 n: 1919 nnz: 9662 0 rcond: 0.00000000000000000000e+00 p: 1 1 MATLAB: 0.0003 CHOLMOD: 0.0003 speedup 0.92 err: 0 0 ================== 649: Problem: LPnetlib/lp_pds_02 m: 2953 n: 7716 nnz: 16571 23281 rcond: 2.12687604726321055632e-08 p: 0 0 MATLAB: 0.0140 CHOLMOD: 0.0144 speedup 0.97 err: 0 0 ================== 660: Problem: LPnetlib/lp_qap12 m: 3192 n: 8856 nnz: 38304 152376 rcond: 0.00000000000000000000e+00 p: 1424 1424 MATLAB: 0.9041 CHOLMOD: 1.2285 speedup 0.74 err: 0 0 ================== 609: Problem: LPnetlib/lp_cre_a m: 3516 n: 7248 nnz: 18168 44866 rcond: 0.00000000000000000000e+00 p: 3407 3407 MATLAB: 0.0077 CHOLMOD: 0.0069 speedup 1.11 err: 0 0 ================== 619: Problem: LPnetlib/lp_dfl001 m: 6071 n: 12230 nnz: 35632 81917 rcond: 0.00000000000000000000e+00 p: 5652 5652 MATLAB: 1.0070 CHOLMOD: 1.3922 speedup 0.72 err: 0 0 ================== 661: Problem: LPnetlib/lp_qap15 m: 6330 n: 22275 nnz: 94950 378480 rcond: 0.00000000000000000000e+00 p: 617 617 MATLAB: 0.3764 CHOLMOD: 0.7196 speedup 0.52 err: 0 0 ================== 650: Problem: LPnetlib/lp_pds_06 m: 9881 n: 29351 nnz: 63220 88003 rcond: 0.00000000000000000000e+00 p: 9316 9316 MATLAB: 0.1965 CHOLMOD: 0.1951 speedup 1.01 err: 0 0 ================== 379: Problem: Cote/vibrobox m: 12328 n: 12328 nnz: 301700 301700 rcond: 0.00000000000000000000e+00 p: 11561 11561 MATLAB: 0.6442 CHOLMOD: 0.6420 speedup 1.00 err: 0 0 ================== 638: Problem: LPnetlib/lp_ken_11 m: 14694 n: 21349 nnz: 49058 82454 rcond: 0.00000000000000000000e+00 p: 14626 14626 MATLAB: 0.0411 CHOLMOD: 0.0413 speedup 0.99 err: 0 0 test22: all tests passed ================================================================= test23: test chol & cholmod2 on the sparse matrix used in "bench" Using each method's internal fill-reducing ordering: MATLAB x=A\b time: 0.0467 resid: 6e-14 CHOLMOD x=A\b time: 0.0472 resid: 6e-14 CHOLMOD speedup: 0.99 S = A(p,p) where p is CHOLMOD's ordering: MATLAB R=chol(S) time: 0.0434 resid: 5e-14 CHOLMOD L=lchol(S) time: 0.0363 resid: 5e-14 CHOLMOD speedup: 1.20 Warning: SYMMMD is obsolete and will be removed in a future version. Use SYMAMD instead. > In symmmd at 16 In test23 at 60 In cholmod_test at 131 S = A(p,p) where p is MATLAB's ordering in x=A\b (symmmd): MATLAB R=chol(S) time: 0.0449 resid: 5e-14 CHOLMOD L=lchol(S) time: 0.0369 resid: 5e-14 CHOLMOD speedup: 1.22 With no fill-reducing orderings: MATLAB R=chol(A) time: 0.1380 resid: 1e-13 CHOLMOD L=lchol(A) time: 0.1098 resid: 1e-13 CHOLMOD speedup: 1.26 With no fill-reducing orderings (as used in "bench"): MATLAB x=A\b time: 0.0822 resid: 6e-14 CHOLMOD x=A\b time: 0.0899 resid: 8e-14 CHOLMOD speedup: 0.91 ================================================================= test24: test sdmult test 24 passed, maxerr 0 ================================================================= test25: test sdmult on a large matrix Test matrix: 9000-by-9000, nnz 3279690 A*X where X is 9000-by-k k: 0 time: MATLAB 0.00 CHOLMOD 0.00 speedup 0.90 err 0e+00 mflop: MATLAB 0.0 CHOLMOD 0.0 k: 1 time: MATLAB 0.02 CHOLMOD 0.02 speedup 1.00 err 0e+00 mflop: MATLAB 402.6 CHOLMOD 403.3 k: 2 time: MATLAB 0.02 CHOLMOD 0.02 speedup 0.72 err 0e+00 mflop: MATLAB 740.2 CHOLMOD 535.8 k: 3 time: MATLAB 0.12 CHOLMOD 0.03 speedup 4.51 err 0e+00 mflop: MATLAB 163.9 CHOLMOD 739.9 k: 4 time: MATLAB 0.02 CHOLMOD 0.16 speedup 0.15 err 0e+00 mflop: MATLAB 1132.3 CHOLMOD 165.1 k: 5 time: MATLAB 0.04 CHOLMOD 0.18 speedup 0.23 err 0e+00 mflop: MATLAB 828.0 CHOLMOD 187.1 k: 6 time: MATLAB 0.04 CHOLMOD 0.18 speedup 0.22 err 0e+00 mflop: MATLAB 960.9 CHOLMOD 213.6 k: 7 time: MATLAB 0.14 CHOLMOD 0.09 speedup 1.68 err 0e+00 mflop: MATLAB 320.6 CHOLMOD 537.6 k: 8 time: MATLAB 0.05 CHOLMOD 0.22 speedup 0.21 err 0e+00 mflop: MATLAB 1127.1 CHOLMOD 240.8 k: 9 time: MATLAB 0.16 CHOLMOD 0.23 speedup 0.69 err 0e+00 mflop: MATLAB 363.5 CHOLMOD 251.4 k: 10 time: MATLAB 0.16 CHOLMOD 0.24 speedup 0.68 err 0e+00 mflop: MATLAB 398.6 CHOLMOD 271.1 k: 10 time: MATLAB 0.16 CHOLMOD 0.24 speedup 0.68 err 0e+00 mflop: MATLAB 398.1 CHOLMOD 270.3 k: 20 time: MATLAB 0.32 CHOLMOD 0.59 speedup 0.53 err 0e+00 mflop: MATLAB 412.6 CHOLMOD 220.7 k: 30 time: MATLAB 0.28 CHOLMOD 0.94 speedup 0.30 err 0e+00 mflop: MATLAB 696.3 CHOLMOD 210.1 k: 40 time: MATLAB 0.43 CHOLMOD 1.19 speedup 0.37 err 0e+00 mflop: MATLAB 604.7 CHOLMOD 220.8 k: 50 time: MATLAB 0.60 CHOLMOD 1.43 speedup 0.42 err 0e+00 mflop: MATLAB 549.5 CHOLMOD 229.5 k: 100 time: MATLAB 1.08 CHOLMOD 2.97 speedup 0.36 err 0e+00 mflop: MATLAB 606.6 CHOLMOD 221.0 k: 200 time: MATLAB 2.26 CHOLMOD 5.95 speedup 0.38 err 0e+00 mflop: MATLAB 579.4 CHOLMOD 220.6 k: 300 time: MATLAB 3.55 CHOLMOD 8.80 speedup 0.40 err 0e+00 mflop: MATLAB 554.7 CHOLMOD 223.5 k: 400 time: MATLAB 4.65 CHOLMOD 12.36 speedup 0.38 err 0e+00 mflop: MATLAB 564.5 CHOLMOD 212.3 k: 500 time: MATLAB 5.81 CHOLMOD 14.75 speedup 0.39 err 0e+00 mflop: MATLAB 564.7 CHOLMOD 222.3 For comparison, here is CHOLMOD's x=A\b time: CHOLMOD x=A\b time: 18.82 (b is n-by-1) resid 2e-05 CHOLMOD x=A\b time: 22.40 (b is n-by-100) resid 2e-05 CHOLMOD x=A\b time: 26.86 (b is n-by-200) resid 2e-05 CHOLMOD x=A\b time: 29.62 (b is n-by-300) resid 2e-05 CHOLMOD x=A\b time: 33.93 (b is n-by-400) resid 2e-05 CHOLMOD x=A\b time: 38.16 (b is n-by-500) resid 2e-05 MATLAB x=A\b time: 24.45 (b is n-by-1) resid 1e-05 test25 passed ================================================================= test26: test logical full and sparse matrices test26 passed ================================================================= test27: test nesdis # of components: 7 size of root 32 out of 479 rows node 1 : parent 3 size 105 work 40598 node 2 : parent 3 size 99 work 32753 node 3 : parent 7 size 11 work 2584 node 4 : parent 6 size 108 work 99359 node 5 : parent 6 size 105 work 54811 node 6 : parent 7 size 19 work 8846 node 7 : parent 0 size 32 work 15983 test27 passed ================================================================= all tests passed SuiteSparse/CHOLMOD/MATLAB/Makefile0000644001170100242450000003712510617134775015457 0ustar davisfac#=============================================================================== # CHOLMOD/MATLAB/Makefile #=============================================================================== default: all include ../../UFconfig/UFconfig.mk I = -I. -I../../AMD/Include -I../../COLAMD/Include -I../../CCOLAMD/Include \ -I../../CAMD/Include -I../Include -I../../UFconfig -I$(METIS_PATH)/Lib all: mread sdmult ldlsolve resymbol symbfact2 chol2 lchol \ ldlchol cholmod2 ldlupdate metis bisect nesdis etree2 sparse2 analyze \ septree spsym mwrite other MX = $(MEX) $(CHOLMOD_CONFIG) -DDLONG -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE $(I) distclean: purge purge: clean - $(RM) *.mex* *.dll clean: - $(RM) $(CLEAN) #=============================================================================== AMD_INC = ../../AMD/Include/amd.h ../../AMD/Include/amd_internal.h AMD = \ amd_1.o \ amd_2.o \ amd_aat.o \ amd_control.o \ amd_defaults.o \ amd_dump.o \ amd_global.o \ amd_info.o \ amd_order.o \ amd_postorder.o \ amd_post_tree.o \ amd_preprocess.o \ amd_valid.o amd_1.o: ../../AMD/Source/amd_1.c $(AMD_INC) $(MX) -c $< amd_2.o: ../../AMD/Source/amd_2.c $(AMD_INC) $(MX) -c $< amd_aat.o: ../../AMD/Source/amd_aat.c $(AMD_INC) $(MX) -c $< amd_control.o: ../../AMD/Source/amd_control.c $(AMD_INC) $(MX) -c $< amd_defaults.o: ../../AMD/Source/amd_defaults.c $(AMD_INC) $(MX) -c $< amd_dump.o: ../../AMD/Source/amd_dump.c $(AMD_INC) $(MX) -c $< amd_global.o: ../../AMD/Source/amd_global.c $(AMD_INC) $(MX) -c $< amd_info.o: ../../AMD/Source/amd_info.c $(AMD_INC) $(MX) -c $< amd_order.o: ../../AMD/Source/amd_order.c $(AMD_INC) $(MX) -c $< amd_postorder.o: ../../AMD/Source/amd_postorder.c $(AMD_INC) $(MX) -c $< amd_post_tree.o: ../../AMD/Source/amd_post_tree.c $(AMD_INC) $(MX) -c $< amd_preprocess.o: ../../AMD/Source/amd_preprocess.c $(AMD_INC) $(MX) -c $< amd_valid.o: ../../AMD/Source/amd_valid.c $(AMD_INC) $(MX) -c $< #=============================================================================== CAMD_INC = ../../CAMD/Include/camd.h ../../CAMD/Include/camd_internal.h CAMD = \ camd_1.o \ camd_2.o \ camd_aat.o \ camd_control.o \ camd_defaults.o \ camd_dump.o \ camd_global.o \ camd_info.o \ camd_order.o \ camd_postorder.o \ camd_preprocess.o \ camd_valid.o camd_1.o: ../../CAMD/Source/camd_1.c $(CAMD_INC) $(MX) -c $< camd_2.o: ../../CAMD/Source/camd_2.c $(CAMD_INC) $(MX) -c $< camd_aat.o: ../../CAMD/Source/camd_aat.c $(CAMD_INC) $(MX) -c $< camd_control.o: ../../CAMD/Source/camd_control.c $(CAMD_INC) $(MX) -c $< camd_defaults.o: ../../CAMD/Source/camd_defaults.c $(CAMD_INC) $(MX) -c $< camd_dump.o: ../../CAMD/Source/camd_dump.c $(CAMD_INC) $(MX) -c $< camd_global.o: ../../CAMD/Source/camd_global.c $(CAMD_INC) $(MX) -c $< camd_info.o: ../../CAMD/Source/camd_info.c $(CAMD_INC) $(MX) -c $< camd_order.o: ../../CAMD/Source/camd_order.c $(CAMD_INC) $(MX) -c $< camd_postorder.o: ../../CAMD/Source/camd_postorder.c $(CAMD_INC) $(MX) -c $< camd_post_tree.o: ../../CAMD/Source/camd_post_tree.c $(CAMD_INC) $(MX) -c $< camd_preprocess.o: ../../CAMD/Source/camd_preprocess.c $(CAMD_INC) $(MX) -c $< camd_valid.o: ../../CAMD/Source/camd_valid.c $(CAMD_INC) $(MX) -c $< #=============================================================================== COLAMD_INC = ../../COLAMD/Include/colamd.h COLAMD = colamd.o colamd_global.o colamd.o: ../../COLAMD/Source/colamd.c $(COLAMD_INC) $(MX) -c $< colamd_global.o: ../../COLAMD/Source/colamd_global.c $(COLAMD_INC) $(MX) -c $< #=============================================================================== CCOLAMD_INC = ../../CCOLAMD/Include/ccolamd.h CCOLAMD = ccolamd.o ccolamd_global.o ccolamd.o: ../../CCOLAMD/Source/ccolamd.c $(CCOLAMD_INC) $(MX) -c $< ccolamd_global.o: ../../CCOLAMD/Source/ccolamd_global.c $(CCOLAMD_INC) $(MX) -c $< #=============================================================================== # patch METIS 4.0.1 rename.h: Makefile $(METIS_PATH)/Lib/rename.h echo '/* do not edit this file; generated by CHOLMOD/MATLAB/Makefile */' > rename.h echo '#undef log2' >> rename.h echo '#include "$(METIS_PATH)/Lib/rename.h"' >> rename.h echo '#undef log2' >> rename.h echo '#define log2 METIS__log2' >> rename.h echo '#include "mex.h"' >> rename.h echo '#define malloc mxMalloc' >> rename.h echo '#define free mxFree' >> rename.h echo '#define calloc mxCalloc' >> rename.h echo '#define realloc mxRealloc' >> rename.h METIS_INC = rename.h \ $(METIS_PATH)/Lib/defs.h \ $(METIS_PATH)/Lib/macros.h \ $(METIS_PATH)/Lib/metis.h \ $(METIS_PATH)/Lib/proto.h \ $(METIS_PATH)/Lib/rename.h \ $(METIS_PATH)/Lib/struct.h METIS = \ balance.o \ bucketsort.o \ ccgraph.o \ coarsen.o \ compress.o \ debug.o \ estmem.o \ fm.o \ fortran.o \ frename.o \ graph.o \ initpart.o \ kmetis.o \ kvmetis.o \ kwayfm.o \ kwayrefine.o \ kwayvolfm.o \ kwayvolrefine.o \ match.o \ mbalance2.o \ mbalance.o \ mcoarsen.o \ memory.o \ mesh.o \ meshpart.o \ mfm2.o \ mfm.o \ mincover.o \ minitpart2.o \ minitpart.o \ mkmetis.o \ mkwayfmh.o \ mkwayrefine.o \ mmatch.o \ mmd.o \ mpmetis.o \ mrefine2.o \ mrefine.o \ mutil.o \ myqsort.o \ ometis.o \ parmetis.o \ pmetis.o \ pqueue.o \ refine.o \ separator.o \ sfm.o \ srefine.o \ stat.o \ subdomains.o \ timing.o \ util.o balance.o: $(METIS_PATH)/Lib/balance.c $(METIS_INC) $(MX) -c $< bucketsort.o: $(METIS_PATH)/Lib/bucketsort.c $(METIS_INC) $(MX) -c $< ccgraph.o: $(METIS_PATH)/Lib/ccgraph.c $(METIS_INC) $(MX) -c $< coarsen.o: $(METIS_PATH)/Lib/coarsen.c $(METIS_INC) $(MX) -c $< compress.o: $(METIS_PATH)/Lib/compress.c $(METIS_INC) $(MX) -c $< debug.o: $(METIS_PATH)/Lib/debug.c $(METIS_INC) $(MX) -c $< estmem.o: $(METIS_PATH)/Lib/estmem.c $(METIS_INC) $(MX) -c $< fm.o: $(METIS_PATH)/Lib/fm.c $(METIS_INC) $(MX) -c $< fortran.o: $(METIS_PATH)/Lib/fortran.c $(METIS_INC) $(MX) -c $< frename.o: $(METIS_PATH)/Lib/frename.c $(METIS_INC) $(MX) -c $< graph.o: $(METIS_PATH)/Lib/graph.c $(METIS_INC) $(MX) -c $< initpart.o: $(METIS_PATH)/Lib/initpart.c $(METIS_INC) $(MX) -c $< kmetis.o: $(METIS_PATH)/Lib/kmetis.c $(METIS_INC) $(MX) -c $< kvmetis.o: $(METIS_PATH)/Lib/kvmetis.c $(METIS_INC) $(MX) -c $< kwayfm.o: $(METIS_PATH)/Lib/kwayfm.c $(METIS_INC) $(MX) -c $< kwayrefine.o: $(METIS_PATH)/Lib/kwayrefine.c $(METIS_INC) $(MX) -c $< kwayvolfm.o: $(METIS_PATH)/Lib/kwayvolfm.c $(METIS_INC) $(MX) -c $< kwayvolrefine.o: $(METIS_PATH)/Lib/kwayvolrefine.c $(METIS_INC) $(MX) -c $< match.o: $(METIS_PATH)/Lib/match.c $(METIS_INC) $(MX) -c $< mbalance2.o: $(METIS_PATH)/Lib/mbalance2.c $(METIS_INC) $(MX) -c $< mbalance.o: $(METIS_PATH)/Lib/mbalance.c $(METIS_INC) $(MX) -c $< mcoarsen.o: $(METIS_PATH)/Lib/mcoarsen.c $(METIS_INC) $(MX) -c $< memory.o: $(METIS_PATH)/Lib/memory.c $(METIS_INC) $(MX) -c $< mesh.o: $(METIS_PATH)/Lib/mesh.c $(METIS_INC) $(MX) -c $< meshpart.o: $(METIS_PATH)/Lib/meshpart.c $(METIS_INC) $(MX) -c $< mfm2.o: $(METIS_PATH)/Lib/mfm2.c $(METIS_INC) $(MX) -c $< mfm.o: $(METIS_PATH)/Lib/mfm.c $(METIS_INC) $(MX) -c $< mincover.o: $(METIS_PATH)/Lib/mincover.c $(METIS_INC) $(MX) -c $< minitpart2.o: $(METIS_PATH)/Lib/minitpart2.c $(METIS_INC) $(MX) -c $< minitpart.o: $(METIS_PATH)/Lib/minitpart.c $(METIS_INC) $(MX) -c $< mkmetis.o: $(METIS_PATH)/Lib/mkmetis.c $(METIS_INC) $(MX) -c $< mkwayfmh.o: $(METIS_PATH)/Lib/mkwayfmh.c $(METIS_INC) $(MX) -c $< mkwayrefine.o: $(METIS_PATH)/Lib/mkwayrefine.c $(METIS_INC) $(MX) -c $< mmatch.o: $(METIS_PATH)/Lib/mmatch.c $(METIS_INC) $(MX) -c $< mmd.o: $(METIS_PATH)/Lib/mmd.c $(METIS_INC) $(MX) -c $< mpmetis.o: $(METIS_PATH)/Lib/mpmetis.c $(METIS_INC) $(MX) -c $< mrefine2.o: $(METIS_PATH)/Lib/mrefine2.c $(METIS_INC) $(MX) -c $< mrefine.o: $(METIS_PATH)/Lib/mrefine.c $(METIS_INC) $(MX) -c $< mutil.o: $(METIS_PATH)/Lib/mutil.c $(METIS_INC) $(MX) -c $< myqsort.o: $(METIS_PATH)/Lib/myqsort.c $(METIS_INC) $(MX) -c $< ometis.o: $(METIS_PATH)/Lib/ometis.c $(METIS_INC) $(MX) -c $< parmetis.o: $(METIS_PATH)/Lib/parmetis.c $(METIS_INC) $(MX) -c $< pmetis.o: $(METIS_PATH)/Lib/pmetis.c $(METIS_INC) $(MX) -c $< pqueue.o: $(METIS_PATH)/Lib/pqueue.c $(METIS_INC) $(MX) -c $< refine.o: $(METIS_PATH)/Lib/refine.c $(METIS_INC) $(MX) -c $< separator.o: $(METIS_PATH)/Lib/separator.c $(METIS_INC) $(MX) -c $< sfm.o: $(METIS_PATH)/Lib/sfm.c $(METIS_INC) $(MX) -c $< srefine.o: $(METIS_PATH)/Lib/srefine.c $(METIS_INC) $(MX) -c $< stat.o: $(METIS_PATH)/Lib/stat.c $(METIS_INC) $(MX) -c $< subdomains.o: $(METIS_PATH)/Lib/subdomains.c $(METIS_INC) $(MX) -c $< timing.o: $(METIS_PATH)/Lib/timing.c $(METIS_INC) $(MX) -c $< util.o: $(METIS_PATH)/Lib/util.c $(METIS_INC) $(MX) -c $< #=============================================================================== CHOLMOD_INC = \ cholmod_matlab.h \ ../Include/cholmod_blas.h \ ../Include/cholmod_check.h \ ../Include/cholmod_cholesky.h \ ../Include/cholmod_complexity.h \ ../Include/cholmod_config.h \ ../Include/cholmod_core.h \ ../Include/cholmod.h \ ../Include/cholmod_internal.h \ ../Include/cholmod_io64.h \ ../Include/cholmod_matrixops.h \ ../Include/cholmod_modify.h \ ../Include/cholmod_partition.h \ ../Include/cholmod_supernodal.h \ ../Include/cholmod_template.h CHOLMOD = \ cholmod_matlab.o \ cholmod_check.o \ cholmod_read.o \ cholmod_write.o \ cholmod_amd.o \ cholmod_analyze.o \ cholmod_colamd.o \ cholmod_etree.o \ cholmod_factorize.o \ cholmod_postorder.o \ cholmod_rcond.o \ cholmod_resymbol.o \ cholmod_rowcolcounts.o \ cholmod_rowfac.o \ cholmod_solve.o \ cholmod_spsolve.o \ cholmod_aat.o \ cholmod_add.o \ cholmod_band.o \ cholmod_change_factor.o \ cholmod_common.o \ cholmod_complex.o \ cholmod_copy.o \ cholmod_dense.o \ cholmod_error.o \ cholmod_factor.o \ cholmod_memory.o \ cholmod_sparse.o \ cholmod_transpose.o \ cholmod_triplet.o \ cholmod_drop.o \ cholmod_horzcat.o \ cholmod_norm.o \ cholmod_scale.o \ cholmod_sdmult.o \ cholmod_ssmult.o \ cholmod_submatrix.o \ cholmod_symmetry.o \ cholmod_vertcat.o \ cholmod_rowadd.o \ cholmod_rowdel.o \ cholmod_updown.o \ cholmod_camd.o \ cholmod_ccolamd.o \ cholmod_csymamd.o \ cholmod_metis.o \ cholmod_nesdis.o \ cholmod_super_numeric.o \ cholmod_super_solve.o \ cholmod_super_symbolic.o cholmod_matlab.o: cholmod_matlab.c $(CHOLMOD_INC) $(MX) -c $< cholmod_check.o: ../Check/cholmod_check.c $(CHOLMOD_INC) $(MX) -c $< cholmod_read.o: ../Check/cholmod_read.c $(CHOLMOD_INC) $(MX) -c $< cholmod_write.o: ../Check/cholmod_write.c $(CHOLMOD_INC) $(MX) -c $< cholmod_amd.o: ../Cholesky/cholmod_amd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_analyze.o: ../Cholesky/cholmod_analyze.c $(CHOLMOD_INC) $(MX) -c $< cholmod_colamd.o: ../Cholesky/cholmod_colamd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_etree.o: ../Cholesky/cholmod_etree.c $(CHOLMOD_INC) $(MX) -c $< cholmod_factorize.o: ../Cholesky/cholmod_factorize.c $(CHOLMOD_INC) $(MX) -c $< cholmod_postorder.o: ../Cholesky/cholmod_postorder.c $(CHOLMOD_INC) $(MX) -c $< cholmod_rcond.o: ../Cholesky/cholmod_rcond.c $(CHOLMOD_INC) $(MX) -c $< cholmod_resymbol.o: ../Cholesky/cholmod_resymbol.c $(CHOLMOD_INC) $(MX) -c $< cholmod_rowcolcounts.o: ../Cholesky/cholmod_rowcolcounts.c $(CHOLMOD_INC) $(MX) -c $< cholmod_rowfac.o: ../Cholesky/cholmod_rowfac.c \ ../Cholesky/t_cholmod_rowfac.c $(CHOLMOD_INC) $(MX) -c $< cholmod_solve.o: ../Cholesky/cholmod_solve.c \ ../Cholesky/t_cholmod_lsolve.c \ ../Cholesky/t_cholmod_ltsolve.c \ ../Cholesky/t_cholmod_solve.c $(CHOLMOD_INC) $(MX) -c $< cholmod_spsolve.o: ../Cholesky/cholmod_spsolve.c $(CHOLMOD_INC) $(MX) -c $< cholmod_aat.o: ../Core/cholmod_aat.c $(CHOLMOD_INC) $(MX) -c $< cholmod_add.o: ../Core/cholmod_add.c $(CHOLMOD_INC) $(MX) -c $< cholmod_band.o: ../Core/cholmod_band.c $(CHOLMOD_INC) $(MX) -c $< cholmod_change_factor.o: ../Core/cholmod_change_factor.c \ ../Core/t_cholmod_change_factor.c $(CHOLMOD_INC) $(MX) -c $< cholmod_common.o: ../Core/cholmod_common.c $(CHOLMOD_INC) $(MX) -c $< cholmod_complex.o: ../Core/cholmod_complex.c $(CHOLMOD_INC) $(MX) -c $< cholmod_copy.o: ../Core/cholmod_copy.c $(CHOLMOD_INC) $(MX) -c $< cholmod_dense.o: ../Core/cholmod_dense.c \ ../Core/t_cholmod_dense.c $(CHOLMOD_INC) $(MX) -c $< cholmod_error.o: ../Core/cholmod_error.c $(CHOLMOD_INC) $(MX) -c $< cholmod_factor.o: ../Core/cholmod_factor.c $(CHOLMOD_INC) $(MX) -c $< cholmod_memory.o: ../Core/cholmod_memory.c $(CHOLMOD_INC) $(MX) -c $< cholmod_sparse.o: ../Core/cholmod_sparse.c $(CHOLMOD_INC) $(MX) -c $< cholmod_transpose.o: ../Core/cholmod_transpose.c \ ../Core/t_cholmod_transpose.c $(CHOLMOD_INC) $(MX) -c $< cholmod_triplet.o: ../Core/cholmod_triplet.c \ ../Core/t_cholmod_triplet.c $(CHOLMOD_INC) $(MX) -c $< cholmod_drop.o: ../MatrixOps/cholmod_drop.c $(CHOLMOD_INC) $(MX) -c $< cholmod_horzcat.o: ../MatrixOps/cholmod_horzcat.c $(CHOLMOD_INC) $(MX) -c $< cholmod_norm.o: ../MatrixOps/cholmod_norm.c $(CHOLMOD_INC) $(MX) -c $< cholmod_scale.o: ../MatrixOps/cholmod_scale.c $(CHOLMOD_INC) $(MX) -c $< cholmod_sdmult.o: ../MatrixOps/cholmod_sdmult.c \ ../MatrixOps/t_cholmod_sdmult.c $(CHOLMOD_INC) $(MX) -c $< cholmod_ssmult.o: ../MatrixOps/cholmod_ssmult.c $(CHOLMOD_INC) $(MX) -c $< cholmod_submatrix.o: ../MatrixOps/cholmod_submatrix.c $(CHOLMOD_INC) $(MX) -c $< cholmod_symmetry.o: ../MatrixOps/cholmod_symmetry.c $(CHOLMOD_INC) $(MX) -c $< cholmod_vertcat.o: ../MatrixOps/cholmod_vertcat.c $(CHOLMOD_INC) $(MX) -c $< cholmod_rowadd.o: ../Modify/cholmod_rowadd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_rowdel.o: ../Modify/cholmod_rowdel.c $(CHOLMOD_INC) $(MX) -c $< cholmod_updown.o: ../Modify/cholmod_updown.c \ ../Modify/t_cholmod_updown.c \ ../Modify/t_cholmod_updown_numkr.c $(CHOLMOD_INC) $(MX) -c $< cholmod_camd.o: ../Partition/cholmod_camd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_ccolamd.o: ../Partition/cholmod_ccolamd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_csymamd.o: ../Partition/cholmod_csymamd.c $(CHOLMOD_INC) $(MX) -c $< cholmod_metis.o: ../Partition/cholmod_metis.c $(CHOLMOD_INC) $(MX) -c $< cholmod_nesdis.o: ../Partition/cholmod_nesdis.c $(CHOLMOD_INC) $(MX) -c $< cholmod_super_numeric.o: ../Supernodal/cholmod_super_numeric.c \ ../Supernodal/t_cholmod_super_numeric.c $(CHOLMOD_INC) $(MX) -c $< cholmod_super_solve.o: ../Supernodal/cholmod_super_solve.c \ ../Supernodal/t_cholmod_super_solve.c $(CHOLMOD_INC) $(MX) -c $< cholmod_super_symbolic.o: ../Supernodal/cholmod_super_symbolic.c $(CHOLMOD_INC) $(MX) -c $< #=============================================================================== OBJ = $(AMD) $(CAMD) $(COLAMD) $(CCOLAMD) $(METIS) $(CHOLMOD) analyze: analyze.c $(OBJ) $(MX) analyze.c $(OBJ) mread: mread.c $(OBJ) $(MX) mread.c $(OBJ) mwrite: mwrite.c $(OBJ) $(MX) mwrite.c $(OBJ) spsym: spsym.c $(OBJ) $(MX) spsym.c $(OBJ) chol2: chol2.c $(OBJ) $(MX) chol2.c $(OBJ) lchol: lchol.c $(OBJ) $(MX) lchol.c $(OBJ) ldlchol: ldlchol.c $(OBJ) $(MX) ldlchol.c $(OBJ) ldlupdate: ldlupdate.c $(OBJ) $(MX) ldlupdate.c $(OBJ) ldlsolve: ldlsolve.c $(OBJ) $(MX) ldlsolve.c $(OBJ) sdmult: sdmult.c $(OBJ) $(MX) sdmult.c $(OBJ) resymbol: resymbol.c $(OBJ) $(MX) resymbol.c $(OBJ) cholmod2: cholmod2.c $(OBJ) $(MX) cholmod2.c $(OBJ) nesdis: nesdis.c $(OBJ) $(MX) nesdis.c $(OBJ) septree: septree.c $(OBJ) $(MX) septree.c $(OBJ) metis: metis.c $(OBJ) $(MX) metis.c $(OBJ) etree2: etree2.c $(OBJ) $(MX) etree2.c $(OBJ) bisect: bisect.c $(OBJ) $(MX) bisect.c $(OBJ) symbfact2: symbfact2.c $(OBJ) $(MX) symbfact2.c $(OBJ) sparse2: sparse2.c $(OBJ) $(MX) sparse2.c $(OBJ) #------------------------------------------------------------------------------- other: ( cd ../../AMD ; $(MAKE) mex ) ( cd ../../CAMD ; $(MAKE) mex ) ( cd ../../COLAMD ; $(MAKE) mex ) ( cd ../../CCOLAMD ; $(MAKE) mex ) SuiteSparse/CHOLMOD/MATLAB/bisect.c0000644001170100242450000001174010616446175015426 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/bisect mexFunction ==================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * METIS (Copyright 1998, G. Karypis) is not distributed with CHOLMOD. * -------------------------------------------------------------------------- */ /* Find an node separator of an undirected graph, using * METIS_NodeComputeSeparator. * * Usage: * * s = bisect (A) bisects A, uses tril(A) * s = bisect (A, 'sym') bisects A, uses tril(A) * s = bisect (A, 'row') bisects A*A' * s = bisect (A, 'col') bisects A'*A * * Node i of the graph is in the left graph if s(i)=0, the right graph if * s(i)=1, and in the separator if s(i)=2. * * Requirse METIS and the CHOLMOD Partition Module. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { #ifndef NPARTITION double dummy = 0 ; Int *Partition ; cholmod_sparse *A, Amatrix, *C, *S ; cholmod_common Common, *cm ; Int n, transpose, c ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: p = bisect (A, mode)") ; } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use tril(A) */ /* ---------------------------------------------------------------------- */ A->stype = -1 ; transpose = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0]; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ transpose = FALSE ; A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ transpose = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric case (A) if string starts with 's' */ transpose = FALSE ; A->stype = -1 ; } else { mexErrMsgTxt ("bisect: p=bisect(A,mode) ; unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("bisect: A must be square") ; } C = NULL ; if (transpose) { /* C = A', and then bisect C*C' */ C = cholmod_l_transpose (A, 0, cm) ; if (C == NULL) { mexErrMsgTxt ("bisect failed") ; } A = C ; } n = A->nrow ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Partition = cholmod_l_malloc (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ /* order the matrix with CHOLMOD's interface to METIS_NodeND */ /* ---------------------------------------------------------------------- */ if (cholmod_l_bisect (A, NULL, 0, TRUE, Partition, cm) < 0) { mexErrMsgTxt ("bisect failed") ; } /* ---------------------------------------------------------------------- */ /* return Partition */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (Partition, n, 0) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (n, sizeof (Int), Partition, cm) ; cholmod_l_free_sparse (&C, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ #else mexErrMsgTxt ("METIS and the CHOLMOD Partition Module not installed\n") ; #endif } SuiteSparse/CHOLMOD/MATLAB/bisect.m0000644001170100242450000000163610620370721015427 0ustar davisfacfunction p = bisect (A, mode) %#ok %BISECT computes a node separator based on METIS_NodeComputeSeparator. % % Example: % s = bisect(A) bisects A. Uses tril(A) and assumes A is symmetric. % s = bisect(A,'sym') the same as p=bisect(A). % s = bisect(A,'col') bisects A'*A. % s = bisect(A,'row') bisects A*A'. % % A must be square for p=bisect(A) and bisect(A,'sym'). % % s is a vector of length equal to the dimension of A, A'*A, or A*A', % depending on the matrix bisected. s(i)=0 if node i is in the left subgraph, % s(i)=1 if it is in the right subgraph, and s(i)=2 if node i is in the node % separator. % % Requires METIS, authored by George Karypis, Univ. of Minnesota. This % MATLAB interface, via CHOLMOD, is by Tim Davis. % % See also METIS, NESDIS % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('bisect mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/rename.h0000644001170100242450000000037710711436461015426 0ustar davisfac/* do not edit this file; generated by cholmod_make */ #undef log2 #include "../../metis-4.0/Lib/rename.h" #undef log2 #define log2 METIS__log2 #include "mex.h" #define malloc mxMalloc #define free mxFree #define calloc mxCalloc #define realloc mxRealloc SuiteSparse/CHOLMOD/MATLAB/lcc_lib/0000755001170100242450000000000010006260712015355 5ustar davisfacSuiteSparse/CHOLMOD/MATLAB/lcc_lib/lapacksyms.def0000644001170100242450000001145310006260712020210 0ustar davisfacLIBRARY liblapack.dll EXPORTS dasum daxpy dbdsdc dbdsqr dcopy ddisna ddot dgbbrd dgbcon dgbequ dgbmv dgbrfs dgbsv dgbsvx dgbtf2 dgbtrf dgbtrs dgebak dgebal dgebd2 dgebrd dgecon dgeequ dgees dgeesx dgeev dgeevx dgegs dgegv dgehd2 dgehrd dgelq2 dgelqf dgels dgelsd dgelss dgelsx dgelsy dgemm dgemv dgeql2 dgeqlf dgeqp3 dgeqpf dgeqr2 dgeqrf dger dgerfs dgerq2 dgerqf dgesc2 dgesdd dgesv dgesvd dgesvx dgetc2 dgetf2 dgetrf dgetri dgetrs dggbak dggbal dgges dggesx dggev dggevx dggglm dgghrd dgglse dggqrf dggrqf dggsvd dggsvp dgtcon dgtrfs dgtsv dgtsvx dgttrf dgttrs dgtts2 dhgeqz dhsein dhseqr dlabad dlabrd dlacon dlacpy dladiv dlae2 dlaebz dlaed0 dlaed1 dlaed2 dlaed3 dlaed4 dlaed5 dlaed6 dlaed7 dlaed8 dlaed9 dlaeda dlaein dlaev2 dlaexc dlag2 dlags2 dlagtf dlagtm dlagts dlagv2 dlahqr dlahrd dlaic1 dlaln2 dlals0 dlalsa dlalsd dlamch dlamrg dlangb dlange dlangt dlanhs dlansb dlansp dlanst dlansy dlantb dlantp dlantr dlanv2 dlapll dlapmt dlapy2 dlapy3 dlaqgb dlaqge dlaqp2 dlaqps dlaqsb dlaqsp dlaqsy dlaqtr dlar1v dlar2v dlarf dlarfb dlarfg dlarft dlarfx dlargv dlarnv dlarrb dlarre dlarrf dlarrv dlartg dlartv dlaruv dlarz dlarzb dlarzt dlas2 dlascl dlasd0 dlasd1 dlasd2 dlasd3 dlasd4 dlasd5 dlasd6 dlasd7 dlasd8 dlasd9 dlasda dlasdq dlasdt dlaset dlasq1 dlasq2 dlasq3 dlasq4 dlasq5 dlasq6 dlasr dlasrt dlassq dlasv2 dlaswp dlasy2 dlasyf dlatbs dlatdf dlatps dlatrd dlatrs dlatrz dlatzm dlauu2 dlauum dnrm2 dopgtr dopmtr dorg2l dorg2r dorgbr dorghr dorgl2 dorglq dorgql dorgqr dorgr2 dorgrq dorgtr dorm2l dorm2r dormbr dormhr dorml2 dormlq dormql dormqr dormr2 dormr3 dormrq dormrz dormtr dpbcon dpbequ dpbrfs dpbstf dpbsv dpbsvx dpbtf2 dpbtrf dpbtrs dpocon dpoequ dporfs dposv dposvx dpotf2 dpotrf dpotri dpotrs dppcon dppequ dpprfs dppsv dppsvx dpptrf dpptri dpptrs dptcon dpteqr dptrfs dptsv dptsvx dpttrf dpttrs dptts2 drot drotg drscl dsbev dsbevd dsbevx dsbgst dsbgv dsbgvd dsbgvx dsbmv dsbtrd dscal dspcon dspev dspevd dspevx dspgst dspgv dspgvd dspgvx dspmv dspr dspr2 dsprfs dspsv dspsvx dsptrd dsptrf dsptri dsptrs dstebz dstedc dstegr dstein dsteqr dsterf dstev dstevd dstevr dstevx dswap dsycon dsyev dsyevd dsyevr dsyevx dsygs2 dsygst dsygv dsygvd dsygvx dsymm dsymv dsyr dsyr2 dsyr2k dsyrfs dsyrk dsysv dsysvx dsytd2 dsytf2 dsytrd dsytrf dsytri dsytrs dtbcon dtbmv dtbrfs dtbsv dtbtrs dtgevc dtgex2 dtgexc dtgsen dtgsja dtgsna dtgsy2 dtgsyl dtpcon dtpmv dtprfs dtpsv dtptri dtptrs dtrcon dtrevc dtrexc dtrmm dtrmv dtrrfs dtrsen dtrsm dtrsna dtrsv dtrsyl dtrti2 dtrtri dtrtrs dtzrqf dtzrzf dzasum dznrm2 dzsum1 idamax ieeeck ilaenv izamax izmax1 lsame lsamen xerbla zaxpy zbdsqr zcopy zdotc zdotu zdrot zdrscl zdscal zgbbrd zgbcon zgbequ zgbmv zgbrfs zgbsv zgbsvx zgbtf2 zgbtrf zgbtrs zgebak zgebal zgebd2 zgebrd zgecon zgeequ zgees zgeesx zgeev zgeevx zgegs zgegv zgehd2 zgehrd zgelq2 zgelqf zgels zgelsd zgelss zgelsx zgelsy zgemm zgemv zgeql2 zgeqlf zgeqp3 zgeqpf zgeqr2 zgeqrf zgerc zgerfs zgerq2 zgerqf zgeru zgesc2 zgesdd zgesv zgesvd zgesvx zgetc2 zgetf2 zgetrf zgetri zgetrs zggbak zggbal zgges zggesx zggev zggevx zggglm zgghrd zgglse zggqrf zggrqf zggsvd zggsvp zgtcon zgtrfs zgtsv zgtsvx zgttrf zgttrs zgtts2 zhbev zhbevd zhbevx zhbgst zhbgv zhbgvd zhbgvx zhbmv zhbtrd zhecon zheev zheevd zheevr zheevx zhegs2 zhegst zhegv zhegvd zhegvx zhemm zhemv zher zher2 zher2k zherfs zherk zhesv zhesvx zhetd2 zhetf2 zhetrd zhetrf zhetri zhetrs zhgeqz zhpcon zhpev zhpevd zhpevx zhpgst zhpgv zhpgvd zhpgvx zhpmv zhpr zhpr2 zhprfs zhpsv zhpsvx zhptrd zhptrf zhptri zhptrs zhsein zhseqr zlabrd zlacgv zlacon zlacp2 zlacpy zlacrm zlacrt zladiv zlaed0 zlaed7 zlaed8 zlaein zlaesy zlaev2 zlags2 zlagtm zlahef zlahqr zlahrd zlaic1 zlals0 zlalsa zlalsd zlangb zlange zlangt zlanhb zlanhe zlanhp zlanhs zlanht zlansb zlansp zlansy zlantb zlantp zlantr zlapll zlapmt zlaqgb zlaqge zlaqhb zlaqhe zlaqhp zlaqp2 zlaqps zlaqsb zlaqsp zlaqsy zlar1v zlar2v zlarcm zlarf zlarfb zlarfg zlarft zlarfx zlargv zlarnv zlarrv zlartg zlartv zlarz zlarzb zlarzt zlascl zlaset zlasr zlassq zlaswp zlasyf zlatbs zlatdf zlatps zlatrd zlatrs zlatrz zlatzm zlauu2 zlauum zpbcon zpbequ zpbrfs zpbstf zpbsv zpbsvx zpbtf2 zpbtrf zpbtrs zpocon zpoequ zporfs zposv zposvx zpotf2 zpotrf zpotri zpotrs zppcon zppequ zpprfs zppsv zppsvx zpptrf zpptri zpptrs zptcon zpteqr zptrfs zptsv zptsvx zpttrf zpttrs zptts2 zrot zrotg zscal zspcon zspmv zspr zsprfs zspsv zspsvx zsptrf zsptri zsptrs zstedc zstegr zstein zsteqr zswap zsycon zsymm zsymv zsyr zsyr2k zsyrfs zsyrk zsysv zsysvx zsytf2 zsytrf zsytri zsytrs ztbcon ztbmv ztbrfs ztbsv ztbtrs ztgevc ztgex2 ztgexc ztgsen ztgsja ztgsna ztgsy2 ztgsyl ztpcon ztpmv ztprfs ztpsv ztptri ztptrs ztrcon ztrevc ztrexc ztrmm ztrmv ztrrfs ztrsen ztrsm ztrsna ztrsv ztrsyl ztrti2 ztrtri ztrtrs ztzrqf ztzrzf zung2l zung2r zungbr zunghr zungl2 zunglq zungql zungqr zungr2 zungrq zungtr zunm2l zunm2r zunmbr zunmhr zunml2 zunmlq zunmql zunmqr zunmr2 zunmr3 zunmrq zunmrz zunmtr zupgtr zupmtr SuiteSparse/CHOLMOD/MATLAB/lcc_lib/libmwlapack.lib0000644001170100242450000161736610006260715020362 0ustar davisfac! / 1013176938 0 0 0 21266 ` SVUXXZZ]V]V__b.b.ddggijijkknBnBppssuuwwzVzV||..rrJJ""^^22rrJJbb22 vvNNǺǺ""̎̎ff>>ئئ~~VV..rrFF^^66   z z  NN&&jj!B!B##&&((**-^-^//2222447 7 9v9v;;>N>N@@C&C&EEGGJjJjLLOBOBQQTTVVXX[Z[Z]]`2`2bbe e gvgviilNlNnnq&q&ssuuxjxjzz}B}B^^66zzRR**nnFFbb66zzRRʾʾ**ϖϖnnFFۮۮZZ22  vvNN&&jjBB    ^^22  vv!!$N$N&&)&)&++--0j0j225B5B77::<<>>AZAZCCF2F2HHK K MvMvOORNRNTTW&W&YY[[^j^j``cBcBeehhjjllo^o^qqt6t6vvyy{z{z}}RR**jjBBZZ22  vvNN""ff>>~~VV..ҖҖff::ަަzzRR&&bb::zzNN    ^^66zz"R"R$$'*'*))++.j.j003B3B5588:~:~<<?V?VAAD.D.FFIIKnKnMMPBPBRRUUWzWzYY\R\R^^a"a"cceehfhfjjm>m>oorrttvvyVyV{{~*~*nnFF^^22  vvNN^^22  vvNNƺƺ&&˒˒jjBB׮׮܂܂ZZ..ff::~~RR&& j j  BB^^ 2 2""%%'n'n)),B,B..1133558Z8Z::=2=2??BBDnDnFFIFIFKKNNPPRRU^U^WWZ6Z6\\_ _ avavccfJfJhhk"k"mmoorfrfttw>w>yy||~~~~RR**nnFF^^66  vvNN""bb66ĢĢzzRRкк&&ՒՒbb22  rrFFbb::zzRR   & &bb66   v v""%N%N''*&*&,,..1j1j336B6B88;;==??B^B^DDG6G6IILLNzNzPPSRSRUUX*X*ZZ]]_n_naadFdFffiikkmmpbpbrru:u:wwzz|~|~~~VV..rrJJ""ff>>VV..rrJJ¶¶NJNJbb66ӢӢzzRR߾߾**nnFF^^66zz R R  &&jjBB!!##%%(Z(Z**-2-2//2 2 4v4v669J9J;;>">"@@BBE^E^GGJ2J2LLOOQnQnSSVBVBXX[[]]__b^b^ddg6g6iil l nrnrppsBsBuuxxzz||VV..rrFF^^66zzNN""ff>>zzNN̺̺""ююff>>ݪݪZZ22  vvNN&&jj B B  ^^66$tlapacksyms$hlapacksyms_dasum__imp__dasum_daxpy__imp__daxpy_dbdsdc__imp__dbdsdc_dbdsqr__imp__dbdsqr_dcopy__imp__dcopy_ddisna__imp__ddisna_ddot__imp__ddot_dgbbrd__imp__dgbbrd_dgbcon__imp__dgbcon_dgbequ__imp__dgbequ_dgbmv__imp__dgbmv_dgbrfs__imp__dgbrfs_dgbsv__imp__dgbsv_dgbsvx__imp__dgbsvx_dgbtf2__imp__dgbtf2_dgbtrf__imp__dgbtrf_dgbtrs__imp__dgbtrs_dgebak__imp__dgebak_dgebal__imp__dgebal_dgebd2__imp__dgebd2_dgebrd__imp__dgebrd_dgecon__imp__dgecon_dgeequ__imp__dgeequ_dgees__imp__dgees_dgeesx__imp__dgeesx_dgeev__imp__dgeev_dgeevx__imp__dgeevx_dgegs__imp__dgegs_dgegv__imp__dgegv_dgehd2__imp__dgehd2_dgehrd__imp__dgehrd_dgelq2__imp__dgelq2_dgelqf__imp__dgelqf_dgels__imp__dgels_dgelsd__imp__dgelsd_dgelss__imp__dgelss_dgelsx__imp__dgelsx_dgelsy__imp__dgelsy_dgemm__imp__dgemm_dgemv__imp__dgemv_dgeql2__imp__dgeql2_dgeqlf__imp__dgeqlf_dgeqp3__imp__dgeqp3_dgeqpf__imp__dgeqpf_dgeqr2__imp__dgeqr2_dgeqrf__imp__dgeqrf_dger__imp__dger_dgerfs__imp__dgerfs_dgerq2__imp__dgerq2_dgerqf__imp__dgerqf_dgesc2__imp__dgesc2_dgesdd__imp__dgesdd_dgesv__imp__dgesv_dgesvd__imp__dgesvd_dgesvx__imp__dgesvx_dgetc2__imp__dgetc2_dgetf2__imp__dgetf2_dgetrf__imp__dgetrf_dgetri__imp__dgetri_dgetrs__imp__dgetrs_dggbak__imp__dggbak_dggbal__imp__dggbal_dgges__imp__dgges_dggesx__imp__dggesx_dggev__imp__dggev_dggevx__imp__dggevx_dggglm__imp__dggglm_dgghrd__imp__dgghrd_dgglse__imp__dgglse_dggqrf__imp__dggqrf_dggrqf__imp__dggrqf_dggsvd__imp__dggsvd_dggsvp__imp__dggsvp_dgtcon__imp__dgtcon_dgtrfs__imp__dgtrfs_dgtsv__imp__dgtsv_dgtsvx__imp__dgtsvx_dgttrf__imp__dgttrf_dgttrs__imp__dgttrs_dgtts2__imp__dgtts2_dhgeqz__imp__dhgeqz_dhsein__imp__dhsein_dhseqr__imp__dhseqr_dlabad__imp__dlabad_dlabrd__imp__dlabrd_dlacon__imp__dlacon_dlacpy__imp__dlacpy_dladiv__imp__dladiv_dlae2__imp__dlae2_dlaebz__imp__dlaebz_dlaed0__imp__dlaed0_dlaed1__imp__dlaed1_dlaed2__imp__dlaed2_dlaed3__imp__dlaed3_dlaed4__imp__dlaed4_dlaed5__imp__dlaed5_dlaed6__imp__dlaed6_dlaed7__imp__dlaed7_dlaed8__imp__dlaed8_dlaed9__imp__dlaed9_dlaeda__imp__dlaeda_dlaein__imp__dlaein_dlaev2__imp__dlaev2_dlaexc__imp__dlaexc_dlag2__imp__dlag2_dlags2__imp__dlags2_dlagtf__imp__dlagtf_dlagtm__imp__dlagtm_dlagts__imp__dlagts_dlagv2__imp__dlagv2_dlahqr__imp__dlahqr_dlahrd__imp__dlahrd_dlaic1__imp__dlaic1_dlaln2__imp__dlaln2_dlals0__imp__dlals0_dlalsa__imp__dlalsa_dlalsd__imp__dlalsd_dlamch__imp__dlamch_dlamrg__imp__dlamrg_dlangb__imp__dlangb_dlange__imp__dlange_dlangt__imp__dlangt_dlanhs__imp__dlanhs_dlansb__imp__dlansb_dlansp__imp__dlansp_dlanst__imp__dlanst_dlansy__imp__dlansy_dlantb__imp__dlantb_dlantp__imp__dlantp_dlantr__imp__dlantr_dlanv2__imp__dlanv2_dlapll__imp__dlapll_dlapmt__imp__dlapmt_dlapy2__imp__dlapy2_dlapy3__imp__dlapy3_dlaqgb__imp__dlaqgb_dlaqge__imp__dlaqge_dlaqp2__imp__dlaqp2_dlaqps__imp__dlaqps_dlaqsb__imp__dlaqsb_dlaqsp__imp__dlaqsp_dlaqsy__imp__dlaqsy_dlaqtr__imp__dlaqtr_dlar1v__imp__dlar1v_dlar2v__imp__dlar2v_dlarf__imp__dlarf_dlarfb__imp__dlarfb_dlarfg__imp__dlarfg_dlarft__imp__dlarft_dlarfx__imp__dlarfx_dlargv__imp__dlargv_dlarnv__imp__dlarnv_dlarrb__imp__dlarrb_dlarre__imp__dlarre_dlarrf__imp__dlarrf_dlarrv__imp__dlarrv_dlartg__imp__dlartg_dlartv__imp__dlartv_dlaruv__imp__dlaruv_dlarz__imp__dlarz_dlarzb__imp__dlarzb_dlarzt__imp__dlarzt_dlas2__imp__dlas2_dlascl__imp__dlascl_dlasd0__imp__dlasd0_dlasd1__imp__dlasd1_dlasd2__imp__dlasd2_dlasd3__imp__dlasd3_dlasd4__imp__dlasd4_dlasd5__imp__dlasd5_dlasd6__imp__dlasd6_dlasd7__imp__dlasd7_dlasd8__imp__dlasd8_dlasd9__imp__dlasd9_dlasda__imp__dlasda_dlasdq__imp__dlasdq_dlasdt__imp__dlasdt_dlaset__imp__dlaset_dlasq1__imp__dlasq1_dlasq2__imp__dlasq2_dlasq3__imp__dlasq3_dlasq4__imp__dlasq4_dlasq5__imp__dlasq5_dlasq6__imp__dlasq6_dlasr__imp__dlasr_dlasrt__imp__dlasrt_dlassq__imp__dlassq_dlasv2__imp__dlasv2_dlaswp__imp__dlaswp_dlasy2__imp__dlasy2_dlasyf__imp__dlasyf_dlatbs__imp__dlatbs_dlatdf__imp__dlatdf_dlatps__imp__dlatps_dlatrd__imp__dlatrd_dlatrs__imp__dlatrs_dlatrz__imp__dlatrz_dlatzm__imp__dlatzm_dlauu2__imp__dlauu2_dlauum__imp__dlauum_dnrm2__imp__dnrm2_dopgtr__imp__dopgtr_dopmtr__imp__dopmtr_dorg2l__imp__dorg2l_dorg2r__imp__dorg2r_dorgbr__imp__dorgbr_dorghr__imp__dorghr_dorgl2__imp__dorgl2_dorglq__imp__dorglq_dorgql__imp__dorgql_dorgqr__imp__dorgqr_dorgr2__imp__dorgr2_dorgrq__imp__dorgrq_dorgtr__imp__dorgtr_dorm2l__imp__dorm2l_dorm2r__imp__dorm2r_dormbr__imp__dormbr_dormhr__imp__dormhr_dorml2__imp__dorml2_dormlq__imp__dormlq_dormql__imp__dormql_dormqr__imp__dormqr_dormr2__imp__dormr2_dormr3__imp__dormr3_dormrq__imp__dormrq_dormrz__imp__dormrz_dormtr__imp__dormtr_dpbcon__imp__dpbcon_dpbequ__imp__dpbequ_dpbrfs__imp__dpbrfs_dpbstf__imp__dpbstf_dpbsv__imp__dpbsv_dpbsvx__imp__dpbsvx_dpbtf2__imp__dpbtf2_dpbtrf__imp__dpbtrf_dpbtrs__imp__dpbtrs_dpocon__imp__dpocon_dpoequ__imp__dpoequ_dporfs__imp__dporfs_dposv__imp__dposv_dposvx__imp__dposvx_dpotf2__imp__dpotf2_dpotrf__imp__dpotrf_dpotri__imp__dpotri_dpotrs__imp__dpotrs_dppcon__imp__dppcon_dppequ__imp__dppequ_dpprfs__imp__dpprfs_dppsv__imp__dppsv_dppsvx__imp__dppsvx_dpptrf__imp__dpptrf_dpptri__imp__dpptri_dpptrs__imp__dpptrs_dptcon__imp__dptcon_dpteqr__imp__dpteqr_dptrfs__imp__dptrfs_dptsv__imp__dptsv_dptsvx__imp__dptsvx_dpttrf__imp__dpttrf_dpttrs__imp__dpttrs_dptts2__imp__dptts2_drot__imp__drot_drotg__imp__drotg_drscl__imp__drscl_dsbev__imp__dsbev_dsbevd__imp__dsbevd_dsbevx__imp__dsbevx_dsbgst__imp__dsbgst_dsbgv__imp__dsbgv_dsbgvd__imp__dsbgvd_dsbgvx__imp__dsbgvx_dsbmv__imp__dsbmv_dsbtrd__imp__dsbtrd_dscal__imp__dscal_dspcon__imp__dspcon_dspev__imp__dspev_dspevd__imp__dspevd_dspevx__imp__dspevx_dspgst__imp__dspgst_dspgv__imp__dspgv_dspgvd__imp__dspgvd_dspgvx__imp__dspgvx_dspmv__imp__dspmv_dspr__imp__dspr_dspr2__imp__dspr2_dsprfs__imp__dsprfs_dspsv__imp__dspsv_dspsvx__imp__dspsvx_dsptrd__imp__dsptrd_dsptrf__imp__dsptrf_dsptri__imp__dsptri_dsptrs__imp__dsptrs_dstebz__imp__dstebz_dstedc__imp__dstedc_dstegr__imp__dstegr_dstein__imp__dstein_dsteqr__imp__dsteqr_dsterf__imp__dsterf_dstev__imp__dstev_dstevd__imp__dstevd_dstevr__imp__dstevr_dstevx__imp__dstevx_dswap__imp__dswap_dsycon__imp__dsycon_dsyev__imp__dsyev_dsyevd__imp__dsyevd_dsyevr__imp__dsyevr_dsyevx__imp__dsyevx_dsygs2__imp__dsygs2_dsygst__imp__dsygst_dsygv__imp__dsygv_dsygvd__imp__dsygvd_dsygvx__imp__dsygvx_dsymm__imp__dsymm_dsymv__imp__dsymv_dsyr__imp__dsyr_dsyr2__imp__dsyr2_dsyr2k__imp__dsyr2k_dsyrfs__imp__dsyrfs_dsyrk__imp__dsyrk_dsysv__imp__dsysv_dsysvx__imp__dsysvx_dsytd2__imp__dsytd2_dsytf2__imp__dsytf2_dsytrd__imp__dsytrd_dsytrf__imp__dsytrf_dsytri__imp__dsytri_dsytrs__imp__dsytrs_dtbcon__imp__dtbcon_dtbmv__imp__dtbmv_dtbrfs__imp__dtbrfs_dtbsv__imp__dtbsv_dtbtrs__imp__dtbtrs_dtgevc__imp__dtgevc_dtgex2__imp__dtgex2_dtgexc__imp__dtgexc_dtgsen__imp__dtgsen_dtgsja__imp__dtgsja_dtgsna__imp__dtgsna_dtgsy2__imp__dtgsy2_dtgsyl__imp__dtgsyl_dtpcon__imp__dtpcon_dtpmv__imp__dtpmv_dtprfs__imp__dtprfs_dtpsv__imp__dtpsv_dtptri__imp__dtptri_dtptrs__imp__dtptrs_dtrcon__imp__dtrcon_dtrevc__imp__dtrevc_dtrexc__imp__dtrexc_dtrmm__imp__dtrmm_dtrmv__imp__dtrmv_dtrrfs__imp__dtrrfs_dtrsen__imp__dtrsen_dtrsm__imp__dtrsm_dtrsna__imp__dtrsna_dtrsv__imp__dtrsv_dtrsyl__imp__dtrsyl_dtrti2__imp__dtrti2_dtrtri__imp__dtrtri_dtrtrs__imp__dtrtrs_dtzrqf__imp__dtzrqf_dtzrzf__imp__dtzrzf_dzasum__imp__dzasum_dznrm2__imp__dznrm2_dzsum1__imp__dzsum1_idamax__imp__idamax_ieeeck__imp__ieeeck_ilaenv__imp__ilaenv_izamax__imp__izamax_izmax1__imp__izmax1_lsame__imp__lsame_lsamen__imp__lsamen_xerbla__imp__xerbla_zaxpy__imp__zaxpy_zbdsqr__imp__zbdsqr_zcopy__imp__zcopy_zdotc__imp__zdotc_zdotu__imp__zdotu_zdrot__imp__zdrot_zdrscl__imp__zdrscl_zdscal__imp__zdscal_zgbbrd__imp__zgbbrd_zgbcon__imp__zgbcon_zgbequ__imp__zgbequ_zgbmv__imp__zgbmv_zgbrfs__imp__zgbrfs_zgbsv__imp__zgbsv_zgbsvx__imp__zgbsvx_zgbtf2__imp__zgbtf2_zgbtrf__imp__zgbtrf_zgbtrs__imp__zgbtrs_zgebak__imp__zgebak_zgebal__imp__zgebal_zgebd2__imp__zgebd2_zgebrd__imp__zgebrd_zgecon__imp__zgecon_zgeequ__imp__zgeequ_zgees__imp__zgees_zgeesx__imp__zgeesx_zgeev__imp__zgeev_zgeevx__imp__zgeevx_zgegs__imp__zgegs_zgegv__imp__zgegv_zgehd2__imp__zgehd2_zgehrd__imp__zgehrd_zgelq2__imp__zgelq2_zgelqf__imp__zgelqf_zgels__imp__zgels_zgelsd__imp__zgelsd_zgelss__imp__zgelss_zgelsx__imp__zgelsx_zgelsy__imp__zgelsy_zgemm__imp__zgemm_zgemv__imp__zgemv_zgeql2__imp__zgeql2_zgeqlf__imp__zgeqlf_zgeqp3__imp__zgeqp3_zgeqpf__imp__zgeqpf_zgeqr2__imp__zgeqr2_zgeqrf__imp__zgeqrf_zgerc__imp__zgerc_zgerfs__imp__zgerfs_zgerq2__imp__zgerq2_zgerqf__imp__zgerqf_zgeru__imp__zgeru_zgesc2__imp__zgesc2_zgesdd__imp__zgesdd_zgesv__imp__zgesv_zgesvd__imp__zgesvd_zgesvx__imp__zgesvx_zgetc2__imp__zgetc2_zgetf2__imp__zgetf2_zgetrf__imp__zgetrf_zgetri__imp__zgetri_zgetrs__imp__zgetrs_zggbak__imp__zggbak_zggbal__imp__zggbal_zgges__imp__zgges_zggesx__imp__zggesx_zggev__imp__zggev_zggevx__imp__zggevx_zggglm__imp__zggglm_zgghrd__imp__zgghrd_zgglse__imp__zgglse_zggqrf__imp__zggqrf_zggrqf__imp__zggrqf_zggsvd__imp__zggsvd_zggsvp__imp__zggsvp_zgtcon__imp__zgtcon_zgtrfs__imp__zgtrfs_zgtsv__imp__zgtsv_zgtsvx__imp__zgtsvx_zgttrf__imp__zgttrf_zgttrs__imp__zgttrs_zgtts2__imp__zgtts2_zhbev__imp__zhbev_zhbevd__imp__zhbevd_zhbevx__imp__zhbevx_zhbgst__imp__zhbgst_zhbgv__imp__zhbgv_zhbgvd__imp__zhbgvd_zhbgvx__imp__zhbgvx_zhbmv__imp__zhbmv_zhbtrd__imp__zhbtrd_zhecon__imp__zhecon_zheev__imp__zheev_zheevd__imp__zheevd_zheevr__imp__zheevr_zheevx__imp__zheevx_zhegs2__imp__zhegs2_zhegst__imp__zhegst_zhegv__imp__zhegv_zhegvd__imp__zhegvd_zhegvx__imp__zhegvx_zhemm__imp__zhemm_zhemv__imp__zhemv_zher__imp__zher_zher2__imp__zher2_zher2k__imp__zher2k_zherfs__imp__zherfs_zherk__imp__zherk_zhesv__imp__zhesv_zhesvx__imp__zhesvx_zhetd2__imp__zhetd2_zhetf2__imp__zhetf2_zhetrd__imp__zhetrd_zhetrf__imp__zhetrf_zhetri__imp__zhetri_zhetrs__imp__zhetrs_zhgeqz__imp__zhgeqz_zhpcon__imp__zhpcon_zhpev__imp__zhpev_zhpevd__imp__zhpevd_zhpevx__imp__zhpevx_zhpgst__imp__zhpgst_zhpgv__imp__zhpgv_zhpgvd__imp__zhpgvd_zhpgvx__imp__zhpgvx_zhpmv__imp__zhpmv_zhpr__imp__zhpr_zhpr2__imp__zhpr2_zhprfs__imp__zhprfs_zhpsv__imp__zhpsv_zhpsvx__imp__zhpsvx_zhptrd__imp__zhptrd_zhptrf__imp__zhptrf_zhptri__imp__zhptri_zhptrs__imp__zhptrs_zhsein__imp__zhsein_zhseqr__imp__zhseqr_zlabrd__imp__zlabrd_zlacgv__imp__zlacgv_zlacon__imp__zlacon_zlacp2__imp__zlacp2_zlacpy__imp__zlacpy_zlacrm__imp__zlacrm_zlacrt__imp__zlacrt_zladiv__imp__zladiv_zlaed0__imp__zlaed0_zlaed7__imp__zlaed7_zlaed8__imp__zlaed8_zlaein__imp__zlaein_zlaesy__imp__zlaesy_zlaev2__imp__zlaev2_zlags2__imp__zlags2_zlagtm__imp__zlagtm_zlahef__imp__zlahef_zlahqr__imp__zlahqr_zlahrd__imp__zlahrd_zlaic1__imp__zlaic1_zlals0__imp__zlals0_zlalsa__imp__zlalsa_zlalsd__imp__zlalsd_zlangb__imp__zlangb_zlange__imp__zlange_zlangt__imp__zlangt_zlanhb__imp__zlanhb_zlanhe__imp__zlanhe_zlanhp__imp__zlanhp_zlanhs__imp__zlanhs_zlanht__imp__zlanht_zlansb__imp__zlansb_zlansp__imp__zlansp_zlansy__imp__zlansy_zlantb__imp__zlantb_zlantp__imp__zlantp_zlantr__imp__zlantr_zlapll__imp__zlapll_zlapmt__imp__zlapmt_zlaqgb__imp__zlaqgb_zlaqge__imp__zlaqge_zlaqhb__imp__zlaqhb_zlaqhe__imp__zlaqhe_zlaqhp__imp__zlaqhp_zlaqp2__imp__zlaqp2_zlaqps__imp__zlaqps_zlaqsb__imp__zlaqsb_zlaqsp__imp__zlaqsp_zlaqsy__imp__zlaqsy_zlar1v__imp__zlar1v_zlar2v__imp__zlar2v_zlarcm__imp__zlarcm_zlarf__imp__zlarf_zlarfb__imp__zlarfb_zlarfg__imp__zlarfg_zlarft__imp__zlarft_zlarfx__imp__zlarfx_zlargv__imp__zlargv_zlarnv__imp__zlarnv_zlarrv__imp__zlarrv_zlartg__imp__zlartg_zlartv__imp__zlartv_zlarz__imp__zlarz_zlarzb__imp__zlarzb_zlarzt__imp__zlarzt_zlascl__imp__zlascl_zlaset__imp__zlaset_zlasr__imp__zlasr_zlassq__imp__zlassq_zlaswp__imp__zlaswp_zlasyf__imp__zlasyf_zlatbs__imp__zlatbs_zlatdf__imp__zlatdf_zlatps__imp__zlatps_zlatrd__imp__zlatrd_zlatrs__imp__zlatrs_zlatrz__imp__zlatrz_zlatzm__imp__zlatzm_zlauu2__imp__zlauu2_zlauum__imp__zlauum_zpbcon__imp__zpbcon_zpbequ__imp__zpbequ_zpbrfs__imp__zpbrfs_zpbstf__imp__zpbstf_zpbsv__imp__zpbsv_zpbsvx__imp__zpbsvx_zpbtf2__imp__zpbtf2_zpbtrf__imp__zpbtrf_zpbtrs__imp__zpbtrs_zpocon__imp__zpocon_zpoequ__imp__zpoequ_zporfs__imp__zporfs_zposv__imp__zposv_zposvx__imp__zposvx_zpotf2__imp__zpotf2_zpotrf__imp__zpotrf_zpotri__imp__zpotri_zpotrs__imp__zpotrs_zppcon__imp__zppcon_zppequ__imp__zppequ_zpprfs__imp__zpprfs_zppsv__imp__zppsv_zppsvx__imp__zppsvx_zpptrf__imp__zpptrf_zpptri__imp__zpptri_zpptrs__imp__zpptrs_zptcon__imp__zptcon_zpteqr__imp__zpteqr_zptrfs__imp__zptrfs_zptsv__imp__zptsv_zptsvx__imp__zptsvx_zpttrf__imp__zpttrf_zpttrs__imp__zpttrs_zptts2__imp__zptts2_zrot__imp__zrot_zrotg__imp__zrotg_zscal__imp__zscal_zspcon__imp__zspcon_zspmv__imp__zspmv_zspr__imp__zspr_zsprfs__imp__zsprfs_zspsv__imp__zspsv_zspsvx__imp__zspsvx_zsptrf__imp__zsptrf_zsptri__imp__zsptri_zsptrs__imp__zsptrs_zstedc__imp__zstedc_zstegr__imp__zstegr_zstein__imp__zstein_zsteqr__imp__zsteqr_zswap__imp__zswap_zsycon__imp__zsycon_zsymm__imp__zsymm_zsymv__imp__zsymv_zsyr__imp__zsyr_zsyr2k__imp__zsyr2k_zsyrfs__imp__zsyrfs_zsyrk__imp__zsyrk_zsysv__imp__zsysv_zsysvx__imp__zsysvx_zsytf2__imp__zsytf2_zsytrf__imp__zsytrf_zsytri__imp__zsytri_zsytrs__imp__zsytrs_ztbcon__imp__ztbcon_ztbmv__imp__ztbmv_ztbrfs__imp__ztbrfs_ztbsv__imp__ztbsv_ztbtrs__imp__ztbtrs_ztgevc__imp__ztgevc_ztgex2__imp__ztgex2_ztgexc__imp__ztgexc_ztgsen__imp__ztgsen_ztgsja__imp__ztgsja_ztgsna__imp__ztgsna_ztgsy2__imp__ztgsy2_ztgsyl__imp__ztgsyl_ztpcon__imp__ztpcon_ztpmv__imp__ztpmv_ztprfs__imp__ztprfs_ztpsv__imp__ztpsv_ztptri__imp__ztptri_ztptrs__imp__ztptrs_ztrcon__imp__ztrcon_ztrevc__imp__ztrevc_ztrexc__imp__ztrexc_ztrmm__imp__ztrmm_ztrmv__imp__ztrmv_ztrrfs__imp__ztrrfs_ztrsen__imp__ztrsen_ztrsm__imp__ztrsm_ztrsna__imp__ztrsna_ztrsv__imp__ztrsv_ztrsyl__imp__ztrsyl_ztrti2__imp__ztrti2_ztrtri__imp__ztrtri_ztrtrs__imp__ztrtrs_ztzrqf__imp__ztzrqf_ztzrzf__imp__ztzrzf_zung2l__imp__zung2l_zung2r__imp__zung2r_zungbr__imp__zungbr_zunghr__imp__zunghr_zungl2__imp__zungl2_zunglq__imp__zunglq_zungql__imp__zungql_zungqr__imp__zungqr_zungr2__imp__zungr2_zungrq__imp__zungrq_zungtr__imp__zungtr_zunm2l__imp__zunm2l_zunm2r__imp__zunm2r_zunmbr__imp__zunmbr_zunmhr__imp__zunmhr_zunml2__imp__zunml2_zunmlq__imp__zunmlq_zunmql__imp__zunmql_zunmqr__imp__zunmqr_zunmr2__imp__zunmr2_zunmr3__imp__zunmr3_zunmrq__imp__zunmrq_zunmrz__imp__zunmrz_zunmtr__imp__zunmtr_zupgtr__imp__zupgtr_zupmtr__imp__zupmtr$tlapacksyms0.obj/ 1013176938 0 0 0 536 ` Lhc< .text `.data@.bss.idata$7 .idata$4.idata$5libmwlapack.dll.text.data.bss.idata$7.idata$4.idata$5$tlapacksyms1.obj/ 1013176938 0 0 0 672 ` Lhc<>.text `.data@.bss.idata$2.idata$56.idata$4:  .fileg1.objhnamefthunk.text.data.bss.idata$2.idata$5.idata$4$hlapacksyms$tlapacksyms2.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dasum.text .idata$7.idata$5.idata$4.idata$6_dasum__imp__dasum$hlapacksyms3.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% daxpy.text .idata$7.idata$5.idata$4.idata$6_daxpy__imp__daxpy$hlapacksyms4.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dbdsdc.text .idata$7.idata$5.idata$4.idata$6 _dbdsdc__imp__dbdsdc$hlapacksyms5.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dbdsqr.text .idata$7.idata$5.idata$4.idata$6 _dbdsqr__imp__dbdsqr$hlapacksyms6.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dcopy.text .idata$7.idata$5.idata$4.idata$6_dcopy__imp__dcopy$hlapacksyms7.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddisna.text .idata$7.idata$5.idata$4.idata$6 _ddisna__imp__ddisna$hlapacksyms8.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ddot.text .idata$7.idata$5.idata$4.idata$6_ddot__imp__ddot$hlapacksyms9.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbbrd.text .idata$7.idata$5.idata$4.idata$6 _dgbbrd__imp__dgbbrd$hlapacksyms10.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbcon.text .idata$7.idata$5.idata$4.idata$6 _dgbcon__imp__dgbcon$hlapacksyms11.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbequ.text .idata$7.idata$5.idata$4.idata$6 _dgbequ__imp__dgbequ$hlapacksyms12.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dgbmv.text .idata$7.idata$5.idata$4.idata$6_dgbmv__imp__dgbmv$hlapacksyms13.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgbrfs.text .idata$7.idata$5.idata$4.idata$6 _dgbrfs__imp__dgbrfs$hlapacksyms14.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dgbsv.text .idata$7.idata$5.idata$4.idata$6_dgbsv__imp__dgbsv$hlapacksyms15.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbsvx.text .idata$7.idata$5.idata$4.idata$6 _dgbsvx__imp__dgbsvx$hlapacksyms16.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtf2.text .idata$7.idata$5.idata$4.idata$6 _dgbtf2__imp__dgbtf2$hlapacksyms17.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtrf.text .idata$7.idata$5.idata$4.idata$6 _dgbtrf__imp__dgbtrf$hlapacksyms18.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgbtrs.text .idata$7.idata$5.idata$4.idata$6 _dgbtrs__imp__dgbtrs$hlapacksyms19.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebak.text .idata$7.idata$5.idata$4.idata$6 _dgebak__imp__dgebak$hlapacksyms20.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebal.text .idata$7.idata$5.idata$4.idata$6 _dgebal__imp__dgebal$hlapacksyms21.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebd2.text .idata$7.idata$5.idata$4.idata$6 _dgebd2__imp__dgebd2$hlapacksyms22.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgebrd.text .idata$7.idata$5.idata$4.idata$6 _dgebrd__imp__dgebrd$hlapacksyms23.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgecon.text .idata$7.idata$5.idata$4.idata$6 _dgecon__imp__dgecon$hlapacksyms24.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeequ.text .idata$7.idata$5.idata$4.idata$6 _dgeequ__imp__dgeequ$hlapacksyms25.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgees.text .idata$7.idata$5.idata$4.idata$6_dgees__imp__dgees$hlapacksyms26.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeesx.text .idata$7.idata$5.idata$4.idata$6 _dgeesx__imp__dgeesx$hlapacksyms27.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgeev.text .idata$7.idata$5.idata$4.idata$6_dgeev__imp__dgeev$hlapacksyms28.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgeevx.text .idata$7.idata$5.idata$4.idata$6 _dgeevx__imp__dgeevx$hlapacksyms29.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgegs.text .idata$7.idata$5.idata$4.idata$6_dgegs__imp__dgegs$hlapacksyms30.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dgegv.text .idata$7.idata$5.idata$4.idata$6_dgegv__imp__dgegv$hlapacksyms31.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgehd2.text .idata$7.idata$5.idata$4.idata$6 _dgehd2__imp__dgehd2$hlapacksyms32.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dgehrd.text .idata$7.idata$5.idata$4.idata$6 _dgehrd__imp__dgehrd$hlapacksyms33.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dgelq2.text .idata$7.idata$5.idata$4.idata$6 _dgelq2__imp__dgelq2$hlapacksyms34.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % !dgelqf.text .idata$7.idata$5.idata$4.idata$6 _dgelqf__imp__dgelqf$hlapacksyms35.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% "dgels.text .idata$7.idata$5.idata$4.idata$6_dgels__imp__dgels$hlapacksyms36.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % #dgelsd.text .idata$7.idata$5.idata$4.idata$6 _dgelsd__imp__dgelsd$hlapacksyms37.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % $dgelss.text .idata$7.idata$5.idata$4.idata$6 _dgelss__imp__dgelss$hlapacksyms38.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % %dgelsx.text .idata$7.idata$5.idata$4.idata$6 _dgelsx__imp__dgelsx$hlapacksyms39.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % &dgelsy.text .idata$7.idata$5.idata$4.idata$6 _dgelsy__imp__dgelsy$hlapacksyms40.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% 'dgemm.text .idata$7.idata$5.idata$4.idata$6_dgemm__imp__dgemm$hlapacksyms41.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% (dgemv.text .idata$7.idata$5.idata$4.idata$6_dgemv__imp__dgemv$hlapacksyms42.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % )dgeql2.text .idata$7.idata$5.idata$4.idata$6 _dgeql2__imp__dgeql2$hlapacksyms43.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % *dgeqlf.text .idata$7.idata$5.idata$4.idata$6 _dgeqlf__imp__dgeqlf$hlapacksyms44.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % +dgeqp3.text .idata$7.idata$5.idata$4.idata$6 _dgeqp3__imp__dgeqp3$hlapacksyms45.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,dgeqpf.text .idata$7.idata$5.idata$4.idata$6 _dgeqpf__imp__dgeqpf$hlapacksyms46.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % -dgeqr2.text .idata$7.idata$5.idata$4.idata$6 _dgeqr2__imp__dgeqr2$hlapacksyms47.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % .dgeqrf.text .idata$7.idata$5.idata$4.idata$6 _dgeqrf__imp__dgeqrf$hlapacksyms48.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% /dger.text .idata$7.idata$5.idata$4.idata$6_dger__imp__dger$hlapacksyms49.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0dgerfs.text .idata$7.idata$5.idata$4.idata$6 _dgerfs__imp__dgerfs$hlapacksyms50.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 1dgerq2.text .idata$7.idata$5.idata$4.idata$6 _dgerq2__imp__dgerq2$hlapacksyms51.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2dgerqf.text .idata$7.idata$5.idata$4.idata$6 _dgerqf__imp__dgerqf$hlapacksyms52.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3dgesc2.text .idata$7.idata$5.idata$4.idata$6 _dgesc2__imp__dgesc2$hlapacksyms53.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 4dgesdd.text .idata$7.idata$5.idata$4.idata$6 _dgesdd__imp__dgesdd$hlapacksyms54.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% 5dgesv.text .idata$7.idata$5.idata$4.idata$6_dgesv__imp__dgesv$hlapacksyms55.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6dgesvd.text .idata$7.idata$5.idata$4.idata$6 _dgesvd__imp__dgesvd$hlapacksyms56.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 7dgesvx.text .idata$7.idata$5.idata$4.idata$6 _dgesvx__imp__dgesvx$hlapacksyms57.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8dgetc2.text .idata$7.idata$5.idata$4.idata$6 _dgetc2__imp__dgetc2$hlapacksyms58.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9dgetf2.text .idata$7.idata$5.idata$4.idata$6 _dgetf2__imp__dgetf2$hlapacksyms59.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % :dgetrf.text .idata$7.idata$5.idata$4.idata$6 _dgetrf__imp__dgetrf$hlapacksyms60.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ;dgetri.text .idata$7.idata$5.idata$4.idata$6 _dgetri__imp__dgetri$hlapacksyms61.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % <dgetrs.text .idata$7.idata$5.idata$4.idata$6 _dgetrs__imp__dgetrs$hlapacksyms62.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % =dggbak.text .idata$7.idata$5.idata$4.idata$6 _dggbak__imp__dggbak$hlapacksyms63.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % >dggbal.text .idata$7.idata$5.idata$4.idata$6 _dggbal__imp__dggbal$hlapacksyms64.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ?dgges.text .idata$7.idata$5.idata$4.idata$6_dgges__imp__dgges$hlapacksyms65.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % @dggesx.text .idata$7.idata$5.idata$4.idata$6 _dggesx__imp__dggesx$hlapacksyms66.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Adggev.text .idata$7.idata$5.idata$4.idata$6_dggev__imp__dggev$hlapacksyms67.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bdggevx.text .idata$7.idata$5.idata$4.idata$6 _dggevx__imp__dggevx$hlapacksyms68.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Cdggglm.text .idata$7.idata$5.idata$4.idata$6 _dggglm__imp__dggglm$hlapacksyms69.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ddgghrd.text .idata$7.idata$5.idata$4.idata$6 _dgghrd__imp__dgghrd$hlapacksyms70.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Edgglse.text .idata$7.idata$5.idata$4.idata$6 _dgglse__imp__dgglse$hlapacksyms71.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fdggqrf.text .idata$7.idata$5.idata$4.idata$6 _dggqrf__imp__dggqrf$hlapacksyms72.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gdggrqf.text .idata$7.idata$5.idata$4.idata$6 _dggrqf__imp__dggrqf$hlapacksyms73.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hdggsvd.text .idata$7.idata$5.idata$4.idata$6 _dggsvd__imp__dggsvd$hlapacksyms74.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Idggsvp.text .idata$7.idata$5.idata$4.idata$6 _dggsvp__imp__dggsvp$hlapacksyms75.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Jdgtcon.text .idata$7.idata$5.idata$4.idata$6 _dgtcon__imp__dgtcon$hlapacksyms76.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kdgtrfs.text .idata$7.idata$5.idata$4.idata$6 _dgtrfs__imp__dgtrfs$hlapacksyms77.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ldgtsv.text .idata$7.idata$5.idata$4.idata$6_dgtsv__imp__dgtsv$hlapacksyms78.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mdgtsvx.text .idata$7.idata$5.idata$4.idata$6 _dgtsvx__imp__dgtsvx$hlapacksyms79.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ndgttrf.text .idata$7.idata$5.idata$4.idata$6 _dgttrf__imp__dgttrf$hlapacksyms80.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Odgttrs.text .idata$7.idata$5.idata$4.idata$6 _dgttrs__imp__dgttrs$hlapacksyms81.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pdgtts2.text .idata$7.idata$5.idata$4.idata$6 _dgtts2__imp__dgtts2$hlapacksyms82.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qdhgeqz.text .idata$7.idata$5.idata$4.idata$6 _dhgeqz__imp__dhgeqz$hlapacksyms83.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rdhsein.text .idata$7.idata$5.idata$4.idata$6 _dhsein__imp__dhsein$hlapacksyms84.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Sdhseqr.text .idata$7.idata$5.idata$4.idata$6 _dhseqr__imp__dhseqr$hlapacksyms85.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Tdlabad.text .idata$7.idata$5.idata$4.idata$6 _dlabad__imp__dlabad$hlapacksyms86.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Udlabrd.text .idata$7.idata$5.idata$4.idata$6 _dlabrd__imp__dlabrd$hlapacksyms87.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vdlacon.text .idata$7.idata$5.idata$4.idata$6 _dlacon__imp__dlacon$hlapacksyms88.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Wdlacpy.text .idata$7.idata$5.idata$4.idata$6 _dlacpy__imp__dlacpy$hlapacksyms89.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xdladiv.text .idata$7.idata$5.idata$4.idata$6 _dladiv__imp__dladiv$hlapacksyms90.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ydlae2.text .idata$7.idata$5.idata$4.idata$6_dlae2__imp__dlae2$hlapacksyms91.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zdlaebz.text .idata$7.idata$5.idata$4.idata$6 _dlaebz__imp__dlaebz$hlapacksyms92.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % [dlaed0.text .idata$7.idata$5.idata$4.idata$6 _dlaed0__imp__dlaed0$hlapacksyms93.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % \dlaed1.text .idata$7.idata$5.idata$4.idata$6 _dlaed1__imp__dlaed1$hlapacksyms94.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]dlaed2.text .idata$7.idata$5.idata$4.idata$6 _dlaed2__imp__dlaed2$hlapacksyms95.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^dlaed3.text .idata$7.idata$5.idata$4.idata$6 _dlaed3__imp__dlaed3$hlapacksyms96.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % _dlaed4.text .idata$7.idata$5.idata$4.idata$6 _dlaed4__imp__dlaed4$hlapacksyms97.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % `dlaed5.text .idata$7.idata$5.idata$4.idata$6 _dlaed5__imp__dlaed5$hlapacksyms98.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % adlaed6.text .idata$7.idata$5.idata$4.idata$6 _dlaed6__imp__dlaed6$hlapacksyms99.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % bdlaed7.text .idata$7.idata$5.idata$4.idata$6 _dlaed7__imp__dlaed7$hlapacksyms100.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % cdlaed8.text .idata$7.idata$5.idata$4.idata$6 _dlaed8__imp__dlaed8$hlapacksyms101.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddlaed9.text .idata$7.idata$5.idata$4.idata$6 _dlaed9__imp__dlaed9$hlapacksyms102.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % edlaeda.text .idata$7.idata$5.idata$4.idata$6 _dlaeda__imp__dlaeda$hlapacksyms103.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % fdlaein.text .idata$7.idata$5.idata$4.idata$6 _dlaein__imp__dlaein$hlapacksyms104.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % gdlaev2.text .idata$7.idata$5.idata$4.idata$6 _dlaev2__imp__dlaev2$hlapacksyms105.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % hdlaexc.text .idata$7.idata$5.idata$4.idata$6 _dlaexc__imp__dlaexc$hlapacksyms106.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% idlag2.text .idata$7.idata$5.idata$4.idata$6_dlag2__imp__dlag2$hlapacksyms107.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % jdlags2.text .idata$7.idata$5.idata$4.idata$6 _dlags2__imp__dlags2$hlapacksyms108.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % kdlagtf.text .idata$7.idata$5.idata$4.idata$6 _dlagtf__imp__dlagtf$hlapacksyms109.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ldlagtm.text .idata$7.idata$5.idata$4.idata$6 _dlagtm__imp__dlagtm$hlapacksyms110.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % mdlagts.text .idata$7.idata$5.idata$4.idata$6 _dlagts__imp__dlagts$hlapacksyms111.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ndlagv2.text .idata$7.idata$5.idata$4.idata$6 _dlagv2__imp__dlagv2$hlapacksyms112.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % odlahqr.text .idata$7.idata$5.idata$4.idata$6 _dlahqr__imp__dlahqr$hlapacksyms113.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % pdlahrd.text .idata$7.idata$5.idata$4.idata$6 _dlahrd__imp__dlahrd$hlapacksyms114.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % qdlaic1.text .idata$7.idata$5.idata$4.idata$6 _dlaic1__imp__dlaic1$hlapacksyms115.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % rdlaln2.text .idata$7.idata$5.idata$4.idata$6 _dlaln2__imp__dlaln2$hlapacksyms116.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % sdlals0.text .idata$7.idata$5.idata$4.idata$6 _dlals0__imp__dlals0$hlapacksyms117.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % tdlalsa.text .idata$7.idata$5.idata$4.idata$6 _dlalsa__imp__dlalsa$hlapacksyms118.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % udlalsd.text .idata$7.idata$5.idata$4.idata$6 _dlalsd__imp__dlalsd$hlapacksyms119.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % vdlamch.text .idata$7.idata$5.idata$4.idata$6 _dlamch__imp__dlamch$hlapacksyms120.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % wdlamrg.text .idata$7.idata$5.idata$4.idata$6 _dlamrg__imp__dlamrg$hlapacksyms121.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % xdlangb.text .idata$7.idata$5.idata$4.idata$6 _dlangb__imp__dlangb$hlapacksyms122.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ydlange.text .idata$7.idata$5.idata$4.idata$6 _dlange__imp__dlange$hlapacksyms123.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zdlangt.text .idata$7.idata$5.idata$4.idata$6 _dlangt__imp__dlangt$hlapacksyms124.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % {dlanhs.text .idata$7.idata$5.idata$4.idata$6 _dlanhs__imp__dlanhs$hlapacksyms125.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % |dlansb.text .idata$7.idata$5.idata$4.idata$6 _dlansb__imp__dlansb$hlapacksyms126.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % }dlansp.text .idata$7.idata$5.idata$4.idata$6 _dlansp__imp__dlansp$hlapacksyms127.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~dlanst.text .idata$7.idata$5.idata$4.idata$6 _dlanst__imp__dlanst$hlapacksyms128.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlansy.text .idata$7.idata$5.idata$4.idata$6 _dlansy__imp__dlansy$hlapacksyms129.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantb.text .idata$7.idata$5.idata$4.idata$6 _dlantb__imp__dlantb$hlapacksyms130.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantp.text .idata$7.idata$5.idata$4.idata$6 _dlantp__imp__dlantp$hlapacksyms131.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlantr.text .idata$7.idata$5.idata$4.idata$6 _dlantr__imp__dlantr$hlapacksyms132.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlanv2.text .idata$7.idata$5.idata$4.idata$6 _dlanv2__imp__dlanv2$hlapacksyms133.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapll.text .idata$7.idata$5.idata$4.idata$6 _dlapll__imp__dlapll$hlapacksyms134.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapmt.text .idata$7.idata$5.idata$4.idata$6 _dlapmt__imp__dlapmt$hlapacksyms135.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapy2.text .idata$7.idata$5.idata$4.idata$6 _dlapy2__imp__dlapy2$hlapacksyms136.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlapy3.text .idata$7.idata$5.idata$4.idata$6 _dlapy3__imp__dlapy3$hlapacksyms137.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqgb.text .idata$7.idata$5.idata$4.idata$6 _dlaqgb__imp__dlaqgb$hlapacksyms138.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqge.text .idata$7.idata$5.idata$4.idata$6 _dlaqge__imp__dlaqge$hlapacksyms139.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqp2.text .idata$7.idata$5.idata$4.idata$6 _dlaqp2__imp__dlaqp2$hlapacksyms140.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqps.text .idata$7.idata$5.idata$4.idata$6 _dlaqps__imp__dlaqps$hlapacksyms141.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsb.text .idata$7.idata$5.idata$4.idata$6 _dlaqsb__imp__dlaqsb$hlapacksyms142.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsp.text .idata$7.idata$5.idata$4.idata$6 _dlaqsp__imp__dlaqsp$hlapacksyms143.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqsy.text .idata$7.idata$5.idata$4.idata$6 _dlaqsy__imp__dlaqsy$hlapacksyms144.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaqtr.text .idata$7.idata$5.idata$4.idata$6 _dlaqtr__imp__dlaqtr$hlapacksyms145.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlar1v.text .idata$7.idata$5.idata$4.idata$6 _dlar1v__imp__dlar1v$hlapacksyms146.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlar2v.text .idata$7.idata$5.idata$4.idata$6 _dlar2v__imp__dlar2v$hlapacksyms147.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlarf.text .idata$7.idata$5.idata$4.idata$6_dlarf__imp__dlarf$hlapacksyms148.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfb.text .idata$7.idata$5.idata$4.idata$6 _dlarfb__imp__dlarfb$hlapacksyms149.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfg.text .idata$7.idata$5.idata$4.idata$6 _dlarfg__imp__dlarfg$hlapacksyms150.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarft.text .idata$7.idata$5.idata$4.idata$6 _dlarft__imp__dlarft$hlapacksyms151.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarfx.text .idata$7.idata$5.idata$4.idata$6 _dlarfx__imp__dlarfx$hlapacksyms152.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlargv.text .idata$7.idata$5.idata$4.idata$6 _dlargv__imp__dlargv$hlapacksyms153.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarnv.text .idata$7.idata$5.idata$4.idata$6 _dlarnv__imp__dlarnv$hlapacksyms154.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrb.text .idata$7.idata$5.idata$4.idata$6 _dlarrb__imp__dlarrb$hlapacksyms155.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarre.text .idata$7.idata$5.idata$4.idata$6 _dlarre__imp__dlarre$hlapacksyms156.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrf.text .idata$7.idata$5.idata$4.idata$6 _dlarrf__imp__dlarrf$hlapacksyms157.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarrv.text .idata$7.idata$5.idata$4.idata$6 _dlarrv__imp__dlarrv$hlapacksyms158.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlartg.text .idata$7.idata$5.idata$4.idata$6 _dlartg__imp__dlartg$hlapacksyms159.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlartv.text .idata$7.idata$5.idata$4.idata$6 _dlartv__imp__dlartv$hlapacksyms160.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaruv.text .idata$7.idata$5.idata$4.idata$6 _dlaruv__imp__dlaruv$hlapacksyms161.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlarz.text .idata$7.idata$5.idata$4.idata$6_dlarz__imp__dlarz$hlapacksyms162.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarzb.text .idata$7.idata$5.idata$4.idata$6 _dlarzb__imp__dlarzb$hlapacksyms163.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlarzt.text .idata$7.idata$5.idata$4.idata$6 _dlarzt__imp__dlarzt$hlapacksyms164.obj/ 1013176938 0 0 0 556 ` Lhc<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlas2.text .idata$7.idata$5.idata$4.idata$6_dlas2__imp__dlas2$hlapacksyms165.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlascl.text .idata$7.idata$5.idata$4.idata$6 _dlascl__imp__dlascl$hlapacksyms166.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd0.text .idata$7.idata$5.idata$4.idata$6 _dlasd0__imp__dlasd0$hlapacksyms167.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd1.text .idata$7.idata$5.idata$4.idata$6 _dlasd1__imp__dlasd1$hlapacksyms168.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd2.text .idata$7.idata$5.idata$4.idata$6 _dlasd2__imp__dlasd2$hlapacksyms169.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd3.text .idata$7.idata$5.idata$4.idata$6 _dlasd3__imp__dlasd3$hlapacksyms170.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd4.text .idata$7.idata$5.idata$4.idata$6 _dlasd4__imp__dlasd4$hlapacksyms171.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd5.text .idata$7.idata$5.idata$4.idata$6 _dlasd5__imp__dlasd5$hlapacksyms172.obj/ 1013176938 0 0 0 560 ` Lhc<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd6.text .idata$7.idata$5.idata$4.idata$6 _dlasd6__imp__dlasd6$hlapacksyms173.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd7.text .idata$7.idata$5.idata$4.idata$6 _dlasd7__imp__dlasd7$hlapacksyms174.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd8.text .idata$7.idata$5.idata$4.idata$6 _dlasd8__imp__dlasd8$hlapacksyms175.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasd9.text .idata$7.idata$5.idata$4.idata$6 _dlasd9__imp__dlasd9$hlapacksyms176.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasda.text .idata$7.idata$5.idata$4.idata$6 _dlasda__imp__dlasda$hlapacksyms177.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasdq.text .idata$7.idata$5.idata$4.idata$6 _dlasdq__imp__dlasdq$hlapacksyms178.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasdt.text .idata$7.idata$5.idata$4.idata$6 _dlasdt__imp__dlasdt$hlapacksyms179.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaset.text .idata$7.idata$5.idata$4.idata$6 _dlaset__imp__dlaset$hlapacksyms180.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq1.text .idata$7.idata$5.idata$4.idata$6 _dlasq1__imp__dlasq1$hlapacksyms181.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq2.text .idata$7.idata$5.idata$4.idata$6 _dlasq2__imp__dlasq2$hlapacksyms182.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq3.text .idata$7.idata$5.idata$4.idata$6 _dlasq3__imp__dlasq3$hlapacksyms183.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq4.text .idata$7.idata$5.idata$4.idata$6 _dlasq4__imp__dlasq4$hlapacksyms184.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq5.text .idata$7.idata$5.idata$4.idata$6 _dlasq5__imp__dlasq5$hlapacksyms185.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasq6.text .idata$7.idata$5.idata$4.idata$6 _dlasq6__imp__dlasq6$hlapacksyms186.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dlasr.text .idata$7.idata$5.idata$4.idata$6_dlasr__imp__dlasr$hlapacksyms187.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasrt.text .idata$7.idata$5.idata$4.idata$6 _dlasrt__imp__dlasrt$hlapacksyms188.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlassq.text .idata$7.idata$5.idata$4.idata$6 _dlassq__imp__dlassq$hlapacksyms189.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasv2.text .idata$7.idata$5.idata$4.idata$6 _dlasv2__imp__dlasv2$hlapacksyms190.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlaswp.text .idata$7.idata$5.idata$4.idata$6 _dlaswp__imp__dlaswp$hlapacksyms191.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasy2.text .idata$7.idata$5.idata$4.idata$6 _dlasy2__imp__dlasy2$hlapacksyms192.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlasyf.text .idata$7.idata$5.idata$4.idata$6 _dlasyf__imp__dlasyf$hlapacksyms193.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatbs.text .idata$7.idata$5.idata$4.idata$6 _dlatbs__imp__dlatbs$hlapacksyms194.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatdf.text .idata$7.idata$5.idata$4.idata$6 _dlatdf__imp__dlatdf$hlapacksyms195.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatps.text .idata$7.idata$5.idata$4.idata$6 _dlatps__imp__dlatps$hlapacksyms196.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrd.text .idata$7.idata$5.idata$4.idata$6 _dlatrd__imp__dlatrd$hlapacksyms197.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrs.text .idata$7.idata$5.idata$4.idata$6 _dlatrs__imp__dlatrs$hlapacksyms198.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatrz.text .idata$7.idata$5.idata$4.idata$6 _dlatrz__imp__dlatrz$hlapacksyms199.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlatzm.text .idata$7.idata$5.idata$4.idata$6 _dlatzm__imp__dlatzm$hlapacksyms200.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlauu2.text .idata$7.idata$5.idata$4.idata$6 _dlauu2__imp__dlauu2$hlapacksyms201.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dlauum.text .idata$7.idata$5.idata$4.idata$6 _dlauum__imp__dlauum$hlapacksyms202.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dnrm2.text .idata$7.idata$5.idata$4.idata$6_dnrm2__imp__dnrm2$hlapacksyms203.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dopgtr.text .idata$7.idata$5.idata$4.idata$6 _dopgtr__imp__dopgtr$hlapacksyms204.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dopmtr.text .idata$7.idata$5.idata$4.idata$6 _dopmtr__imp__dopmtr$hlapacksyms205.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorg2l.text .idata$7.idata$5.idata$4.idata$6 _dorg2l__imp__dorg2l$hlapacksyms206.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorg2r.text .idata$7.idata$5.idata$4.idata$6 _dorg2r__imp__dorg2r$hlapacksyms207.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgbr.text .idata$7.idata$5.idata$4.idata$6 _dorgbr__imp__dorgbr$hlapacksyms208.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorghr.text .idata$7.idata$5.idata$4.idata$6 _dorghr__imp__dorghr$hlapacksyms209.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgl2.text .idata$7.idata$5.idata$4.idata$6 _dorgl2__imp__dorgl2$hlapacksyms210.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorglq.text .idata$7.idata$5.idata$4.idata$6 _dorglq__imp__dorglq$hlapacksyms211.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgql.text .idata$7.idata$5.idata$4.idata$6 _dorgql__imp__dorgql$hlapacksyms212.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgqr.text .idata$7.idata$5.idata$4.idata$6 _dorgqr__imp__dorgqr$hlapacksyms213.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgr2.text .idata$7.idata$5.idata$4.idata$6 _dorgr2__imp__dorgr2$hlapacksyms214.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgrq.text .idata$7.idata$5.idata$4.idata$6 _dorgrq__imp__dorgrq$hlapacksyms215.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorgtr.text .idata$7.idata$5.idata$4.idata$6 _dorgtr__imp__dorgtr$hlapacksyms216.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorm2l.text .idata$7.idata$5.idata$4.idata$6 _dorm2l__imp__dorm2l$hlapacksyms217.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorm2r.text .idata$7.idata$5.idata$4.idata$6 _dorm2r__imp__dorm2r$hlapacksyms218.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormbr.text .idata$7.idata$5.idata$4.idata$6 _dormbr__imp__dormbr$hlapacksyms219.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormhr.text .idata$7.idata$5.idata$4.idata$6 _dormhr__imp__dormhr$hlapacksyms220.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dorml2.text .idata$7.idata$5.idata$4.idata$6 _dorml2__imp__dorml2$hlapacksyms221.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormlq.text .idata$7.idata$5.idata$4.idata$6 _dormlq__imp__dormlq$hlapacksyms222.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormql.text .idata$7.idata$5.idata$4.idata$6 _dormql__imp__dormql$hlapacksyms223.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormqr.text .idata$7.idata$5.idata$4.idata$6 _dormqr__imp__dormqr$hlapacksyms224.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormr2.text .idata$7.idata$5.idata$4.idata$6 _dormr2__imp__dormr2$hlapacksyms225.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormr3.text .idata$7.idata$5.idata$4.idata$6 _dormr3__imp__dormr3$hlapacksyms226.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormrq.text .idata$7.idata$5.idata$4.idata$6 _dormrq__imp__dormrq$hlapacksyms227.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormrz.text .idata$7.idata$5.idata$4.idata$6 _dormrz__imp__dormrz$hlapacksyms228.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dormtr.text .idata$7.idata$5.idata$4.idata$6 _dormtr__imp__dormtr$hlapacksyms229.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbcon.text .idata$7.idata$5.idata$4.idata$6 _dpbcon__imp__dpbcon$hlapacksyms230.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbequ.text .idata$7.idata$5.idata$4.idata$6 _dpbequ__imp__dpbequ$hlapacksyms231.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbrfs.text .idata$7.idata$5.idata$4.idata$6 _dpbrfs__imp__dpbrfs$hlapacksyms232.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbstf.text .idata$7.idata$5.idata$4.idata$6 _dpbstf__imp__dpbstf$hlapacksyms233.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dpbsv.text .idata$7.idata$5.idata$4.idata$6_dpbsv__imp__dpbsv$hlapacksyms234.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbsvx.text .idata$7.idata$5.idata$4.idata$6 _dpbsvx__imp__dpbsvx$hlapacksyms235.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtf2.text .idata$7.idata$5.idata$4.idata$6 _dpbtf2__imp__dpbtf2$hlapacksyms236.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtrf.text .idata$7.idata$5.idata$4.idata$6 _dpbtrf__imp__dpbtrf$hlapacksyms237.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpbtrs.text .idata$7.idata$5.idata$4.idata$6 _dpbtrs__imp__dpbtrs$hlapacksyms238.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpocon.text .idata$7.idata$5.idata$4.idata$6 _dpocon__imp__dpocon$hlapacksyms239.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpoequ.text .idata$7.idata$5.idata$4.idata$6 _dpoequ__imp__dpoequ$hlapacksyms240.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dporfs.text .idata$7.idata$5.idata$4.idata$6 _dporfs__imp__dporfs$hlapacksyms241.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dposv.text .idata$7.idata$5.idata$4.idata$6_dposv__imp__dposv$hlapacksyms242.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dposvx.text .idata$7.idata$5.idata$4.idata$6 _dposvx__imp__dposvx$hlapacksyms243.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotf2.text .idata$7.idata$5.idata$4.idata$6 _dpotf2__imp__dpotf2$hlapacksyms244.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotrf.text .idata$7.idata$5.idata$4.idata$6 _dpotrf__imp__dpotrf$hlapacksyms245.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotri.text .idata$7.idata$5.idata$4.idata$6 _dpotri__imp__dpotri$hlapacksyms246.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpotrs.text .idata$7.idata$5.idata$4.idata$6 _dpotrs__imp__dpotrs$hlapacksyms247.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppcon.text .idata$7.idata$5.idata$4.idata$6 _dppcon__imp__dppcon$hlapacksyms248.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppequ.text .idata$7.idata$5.idata$4.idata$6 _dppequ__imp__dppequ$hlapacksyms249.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpprfs.text .idata$7.idata$5.idata$4.idata$6 _dpprfs__imp__dpprfs$hlapacksyms250.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dppsv.text .idata$7.idata$5.idata$4.idata$6_dppsv__imp__dppsv$hlapacksyms251.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dppsvx.text .idata$7.idata$5.idata$4.idata$6 _dppsvx__imp__dppsvx$hlapacksyms252.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptrf.text .idata$7.idata$5.idata$4.idata$6 _dpptrf__imp__dpptrf$hlapacksyms253.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptri.text .idata$7.idata$5.idata$4.idata$6 _dpptri__imp__dpptri$hlapacksyms254.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpptrs.text .idata$7.idata$5.idata$4.idata$6 _dpptrs__imp__dpptrs$hlapacksyms255.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptcon.text .idata$7.idata$5.idata$4.idata$6 _dptcon__imp__dptcon$hlapacksyms256.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpteqr.text .idata$7.idata$5.idata$4.idata$6 _dpteqr__imp__dpteqr$hlapacksyms257.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptrfs.text .idata$7.idata$5.idata$4.idata$6 _dptrfs__imp__dptrfs$hlapacksyms258.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dptsv.text .idata$7.idata$5.idata$4.idata$6_dptsv__imp__dptsv$hlapacksyms259.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptsvx.text .idata$7.idata$5.idata$4.idata$6 _dptsvx__imp__dptsvx$hlapacksyms260.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpttrf.text .idata$7.idata$5.idata$4.idata$6 _dpttrf__imp__dpttrf$hlapacksyms261.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dpttrs.text .idata$7.idata$5.idata$4.idata$6 _dpttrs__imp__dpttrs$hlapacksyms262.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dptts2.text .idata$7.idata$5.idata$4.idata$6 _dptts2__imp__dptts2$hlapacksyms263.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drot.text .idata$7.idata$5.idata$4.idata$6_drot__imp__drot$hlapacksyms264.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drotg.text .idata$7.idata$5.idata$4.idata$6_drotg__imp__drotg$hlapacksyms265.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% drscl.text .idata$7.idata$5.idata$4.idata$6_drscl__imp__drscl$hlapacksyms266.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dsbev.text .idata$7.idata$5.idata$4.idata$6_dsbev__imp__dsbev$hlapacksyms267.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbevd.text .idata$7.idata$5.idata$4.idata$6 _dsbevd__imp__dsbevd$hlapacksyms268.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbevx.text .idata$7.idata$5.idata$4.idata$6 _dsbevx__imp__dsbevx$hlapacksyms269.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dsbgst.text .idata$7.idata$5.idata$4.idata$6 _dsbgst__imp__dsbgst$hlapacksyms270.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6%  dsbgv.text .idata$7.idata$5.idata$4.idata$6_dsbgv__imp__dsbgv$hlapacksyms271.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbgvd.text .idata$7.idata$5.idata$4.idata$6 _dsbgvd__imp__dsbgvd$hlapacksyms272.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbgvx.text .idata$7.idata$5.idata$4.idata$6 _dsbgvx__imp__dsbgvx$hlapacksyms273.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dsbmv.text .idata$7.idata$5.idata$4.idata$6_dsbmv__imp__dsbmv$hlapacksyms274.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsbtrd.text .idata$7.idata$5.idata$4.idata$6 _dsbtrd__imp__dsbtrd$hlapacksyms275.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dscal.text .idata$7.idata$5.idata$4.idata$6_dscal__imp__dscal$hlapacksyms276.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspcon.text .idata$7.idata$5.idata$4.idata$6 _dspcon__imp__dspcon$hlapacksyms277.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspev.text .idata$7.idata$5.idata$4.idata$6_dspev__imp__dspev$hlapacksyms278.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspevd.text .idata$7.idata$5.idata$4.idata$6 _dspevd__imp__dspevd$hlapacksyms279.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspevx.text .idata$7.idata$5.idata$4.idata$6 _dspevx__imp__dspevx$hlapacksyms280.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgst.text .idata$7.idata$5.idata$4.idata$6 _dspgst__imp__dspgst$hlapacksyms281.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspgv.text .idata$7.idata$5.idata$4.idata$6_dspgv__imp__dspgv$hlapacksyms282.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgvd.text .idata$7.idata$5.idata$4.idata$6 _dspgvd__imp__dspgvd$hlapacksyms283.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dspgvx.text .idata$7.idata$5.idata$4.idata$6 _dspgvx__imp__dspgvx$hlapacksyms284.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspmv.text .idata$7.idata$5.idata$4.idata$6_dspmv__imp__dspmv$hlapacksyms285.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspr.text .idata$7.idata$5.idata$4.idata$6_dspr__imp__dspr$hlapacksyms286.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspr2.text .idata$7.idata$5.idata$4.idata$6_dspr2__imp__dspr2$hlapacksyms287.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dsprfs.text .idata$7.idata$5.idata$4.idata$6 _dsprfs__imp__dsprfs$hlapacksyms288.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% dspsv.text .idata$7.idata$5.idata$4.idata$6_dspsv__imp__dspsv$hlapacksyms289.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  dspsvx.text .idata$7.idata$5.idata$4.idata$6 _dspsvx__imp__dspsvx$hlapacksyms290.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % !dsptrd.text .idata$7.idata$5.idata$4.idata$6 _dsptrd__imp__dsptrd$hlapacksyms291.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % "dsptrf.text .idata$7.idata$5.idata$4.idata$6 _dsptrf__imp__dsptrf$hlapacksyms292.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % #dsptri.text .idata$7.idata$5.idata$4.idata$6 _dsptri__imp__dsptri$hlapacksyms293.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % $dsptrs.text .idata$7.idata$5.idata$4.idata$6 _dsptrs__imp__dsptrs$hlapacksyms294.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % %dstebz.text .idata$7.idata$5.idata$4.idata$6 _dstebz__imp__dstebz$hlapacksyms295.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % &dstedc.text .idata$7.idata$5.idata$4.idata$6 _dstedc__imp__dstedc$hlapacksyms296.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 'dstegr.text .idata$7.idata$5.idata$4.idata$6 _dstegr__imp__dstegr$hlapacksyms297.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % (dstein.text .idata$7.idata$5.idata$4.idata$6 _dstein__imp__dstein$hlapacksyms298.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % )dsteqr.text .idata$7.idata$5.idata$4.idata$6 _dsteqr__imp__dsteqr$hlapacksyms299.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % *dsterf.text .idata$7.idata$5.idata$4.idata$6 _dsterf__imp__dsterf$hlapacksyms300.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% +dstev.text .idata$7.idata$5.idata$4.idata$6_dstev__imp__dstev$hlapacksyms301.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,dstevd.text .idata$7.idata$5.idata$4.idata$6 _dstevd__imp__dstevd$hlapacksyms302.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % -dstevr.text .idata$7.idata$5.idata$4.idata$6 _dstevr__imp__dstevr$hlapacksyms303.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % .dstevx.text .idata$7.idata$5.idata$4.idata$6 _dstevx__imp__dstevx$hlapacksyms304.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% /dswap.text .idata$7.idata$5.idata$4.idata$6_dswap__imp__dswap$hlapacksyms305.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0dsycon.text .idata$7.idata$5.idata$4.idata$6 _dsycon__imp__dsycon$hlapacksyms306.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 1dsyev.text .idata$7.idata$5.idata$4.idata$6_dsyev__imp__dsyev$hlapacksyms307.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2dsyevd.text .idata$7.idata$5.idata$4.idata$6 _dsyevd__imp__dsyevd$hlapacksyms308.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3dsyevr.text .idata$7.idata$5.idata$4.idata$6 _dsyevr__imp__dsyevr$hlapacksyms309.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 4dsyevx.text .idata$7.idata$5.idata$4.idata$6 _dsyevx__imp__dsyevx$hlapacksyms310.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 5dsygs2.text .idata$7.idata$5.idata$4.idata$6 _dsygs2__imp__dsygs2$hlapacksyms311.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6dsygst.text .idata$7.idata$5.idata$4.idata$6 _dsygst__imp__dsygst$hlapacksyms312.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 7dsygv.text .idata$7.idata$5.idata$4.idata$6_dsygv__imp__dsygv$hlapacksyms313.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8dsygvd.text .idata$7.idata$5.idata$4.idata$6 _dsygvd__imp__dsygvd$hlapacksyms314.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9dsygvx.text .idata$7.idata$5.idata$4.idata$6 _dsygvx__imp__dsygvx$hlapacksyms315.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% :dsymm.text .idata$7.idata$5.idata$4.idata$6_dsymm__imp__dsymm$hlapacksyms316.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% ;dsymv.text .idata$7.idata$5.idata$4.idata$6_dsymv__imp__dsymv$hlapacksyms317.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% <dsyr.text .idata$7.idata$5.idata$4.idata$6_dsyr__imp__dsyr$hlapacksyms318.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% =dsyr2.text .idata$7.idata$5.idata$4.idata$6_dsyr2__imp__dsyr2$hlapacksyms319.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % >dsyr2k.text .idata$7.idata$5.idata$4.idata$6 _dsyr2k__imp__dsyr2k$hlapacksyms320.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ?dsyrfs.text .idata$7.idata$5.idata$4.idata$6 _dsyrfs__imp__dsyrfs$hlapacksyms321.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% @dsyrk.text .idata$7.idata$5.idata$4.idata$6_dsyrk__imp__dsyrk$hlapacksyms322.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Adsysv.text .idata$7.idata$5.idata$4.idata$6_dsysv__imp__dsysv$hlapacksyms323.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bdsysvx.text .idata$7.idata$5.idata$4.idata$6 _dsysvx__imp__dsysvx$hlapacksyms324.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Cdsytd2.text .idata$7.idata$5.idata$4.idata$6 _dsytd2__imp__dsytd2$hlapacksyms325.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ddsytf2.text .idata$7.idata$5.idata$4.idata$6 _dsytf2__imp__dsytf2$hlapacksyms326.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Edsytrd.text .idata$7.idata$5.idata$4.idata$6 _dsytrd__imp__dsytrd$hlapacksyms327.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fdsytrf.text .idata$7.idata$5.idata$4.idata$6 _dsytrf__imp__dsytrf$hlapacksyms328.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gdsytri.text .idata$7.idata$5.idata$4.idata$6 _dsytri__imp__dsytri$hlapacksyms329.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hdsytrs.text .idata$7.idata$5.idata$4.idata$6 _dsytrs__imp__dsytrs$hlapacksyms330.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Idtbcon.text .idata$7.idata$5.idata$4.idata$6 _dtbcon__imp__dtbcon$hlapacksyms331.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Jdtbmv.text .idata$7.idata$5.idata$4.idata$6_dtbmv__imp__dtbmv$hlapacksyms332.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kdtbrfs.text .idata$7.idata$5.idata$4.idata$6 _dtbrfs__imp__dtbrfs$hlapacksyms333.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ldtbsv.text .idata$7.idata$5.idata$4.idata$6_dtbsv__imp__dtbsv$hlapacksyms334.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mdtbtrs.text .idata$7.idata$5.idata$4.idata$6 _dtbtrs__imp__dtbtrs$hlapacksyms335.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ndtgevc.text .idata$7.idata$5.idata$4.idata$6 _dtgevc__imp__dtgevc$hlapacksyms336.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Odtgex2.text .idata$7.idata$5.idata$4.idata$6 _dtgex2__imp__dtgex2$hlapacksyms337.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pdtgexc.text .idata$7.idata$5.idata$4.idata$6 _dtgexc__imp__dtgexc$hlapacksyms338.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qdtgsen.text .idata$7.idata$5.idata$4.idata$6 _dtgsen__imp__dtgsen$hlapacksyms339.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rdtgsja.text .idata$7.idata$5.idata$4.idata$6 _dtgsja__imp__dtgsja$hlapacksyms340.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Sdtgsna.text .idata$7.idata$5.idata$4.idata$6 _dtgsna__imp__dtgsna$hlapacksyms341.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Tdtgsy2.text .idata$7.idata$5.idata$4.idata$6 _dtgsy2__imp__dtgsy2$hlapacksyms342.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Udtgsyl.text .idata$7.idata$5.idata$4.idata$6 _dtgsyl__imp__dtgsyl$hlapacksyms343.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vdtpcon.text .idata$7.idata$5.idata$4.idata$6 _dtpcon__imp__dtpcon$hlapacksyms344.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Wdtpmv.text .idata$7.idata$5.idata$4.idata$6_dtpmv__imp__dtpmv$hlapacksyms345.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xdtprfs.text .idata$7.idata$5.idata$4.idata$6 _dtprfs__imp__dtprfs$hlapacksyms346.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Ydtpsv.text .idata$7.idata$5.idata$4.idata$6_dtpsv__imp__dtpsv$hlapacksyms347.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zdtptri.text .idata$7.idata$5.idata$4.idata$6 _dtptri__imp__dtptri$hlapacksyms348.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % [dtptrs.text .idata$7.idata$5.idata$4.idata$6 _dtptrs__imp__dtptrs$hlapacksyms349.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % \dtrcon.text .idata$7.idata$5.idata$4.idata$6 _dtrcon__imp__dtrcon$hlapacksyms350.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]dtrevc.text .idata$7.idata$5.idata$4.idata$6 _dtrevc__imp__dtrevc$hlapacksyms351.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^dtrexc.text .idata$7.idata$5.idata$4.idata$6 _dtrexc__imp__dtrexc$hlapacksyms352.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% _dtrmm.text .idata$7.idata$5.idata$4.idata$6_dtrmm__imp__dtrmm$hlapacksyms353.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% `dtrmv.text .idata$7.idata$5.idata$4.idata$6_dtrmv__imp__dtrmv$hlapacksyms354.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % adtrrfs.text .idata$7.idata$5.idata$4.idata$6 _dtrrfs__imp__dtrrfs$hlapacksyms355.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % bdtrsen.text .idata$7.idata$5.idata$4.idata$6 _dtrsen__imp__dtrsen$hlapacksyms356.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% cdtrsm.text .idata$7.idata$5.idata$4.idata$6_dtrsm__imp__dtrsm$hlapacksyms357.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ddtrsna.text .idata$7.idata$5.idata$4.idata$6 _dtrsna__imp__dtrsna$hlapacksyms358.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% edtrsv.text .idata$7.idata$5.idata$4.idata$6_dtrsv__imp__dtrsv$hlapacksyms359.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % fdtrsyl.text .idata$7.idata$5.idata$4.idata$6 _dtrsyl__imp__dtrsyl$hlapacksyms360.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % gdtrti2.text .idata$7.idata$5.idata$4.idata$6 _dtrti2__imp__dtrti2$hlapacksyms361.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % hdtrtri.text .idata$7.idata$5.idata$4.idata$6 _dtrtri__imp__dtrtri$hlapacksyms362.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % idtrtrs.text .idata$7.idata$5.idata$4.idata$6 _dtrtrs__imp__dtrtrs$hlapacksyms363.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % jdtzrqf.text .idata$7.idata$5.idata$4.idata$6 _dtzrqf__imp__dtzrqf$hlapacksyms364.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % kdtzrzf.text .idata$7.idata$5.idata$4.idata$6 _dtzrzf__imp__dtzrzf$hlapacksyms365.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ldzasum.text .idata$7.idata$5.idata$4.idata$6 _dzasum__imp__dzasum$hlapacksyms366.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % mdznrm2.text .idata$7.idata$5.idata$4.idata$6 _dznrm2__imp__dznrm2$hlapacksyms367.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ndzsum1.text .idata$7.idata$5.idata$4.idata$6 _dzsum1__imp__dzsum1$hlapacksyms368.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % oidamax.text .idata$7.idata$5.idata$4.idata$6 _idamax__imp__idamax$hlapacksyms369.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % pieeeck.text .idata$7.idata$5.idata$4.idata$6 _ieeeck__imp__ieeeck$hlapacksyms370.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % qilaenv.text .idata$7.idata$5.idata$4.idata$6 _ilaenv__imp__ilaenv$hlapacksyms371.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % rizamax.text .idata$7.idata$5.idata$4.idata$6 _izamax__imp__izamax$hlapacksyms372.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % sizmax1.text .idata$7.idata$5.idata$4.idata$6 _izmax1__imp__izmax1$hlapacksyms373.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% tlsame.text .idata$7.idata$5.idata$4.idata$6_lsame__imp__lsame$hlapacksyms374.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ulsamen.text .idata$7.idata$5.idata$4.idata$6 _lsamen__imp__lsamen$hlapacksyms375.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % vxerbla.text .idata$7.idata$5.idata$4.idata$6 _xerbla__imp__xerbla$hlapacksyms376.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% wzaxpy.text .idata$7.idata$5.idata$4.idata$6_zaxpy__imp__zaxpy$hlapacksyms377.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % xzbdsqr.text .idata$7.idata$5.idata$4.idata$6 _zbdsqr__imp__zbdsqr$hlapacksyms378.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% yzcopy.text .idata$7.idata$5.idata$4.idata$6_zcopy__imp__zcopy$hlapacksyms379.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zzdotc.text .idata$7.idata$5.idata$4.idata$6_zdotc__imp__zdotc$hlapacksyms380.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% {zdotu.text .idata$7.idata$5.idata$4.idata$6_zdotu__imp__zdotu$hlapacksyms381.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% |zdrot.text .idata$7.idata$5.idata$4.idata$6_zdrot__imp__zdrot$hlapacksyms382.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % }zdrscl.text .idata$7.idata$5.idata$4.idata$6 _zdrscl__imp__zdrscl$hlapacksyms383.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~zdscal.text .idata$7.idata$5.idata$4.idata$6 _zdscal__imp__zdscal$hlapacksyms384.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbbrd.text .idata$7.idata$5.idata$4.idata$6 _zgbbrd__imp__zgbbrd$hlapacksyms385.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbcon.text .idata$7.idata$5.idata$4.idata$6 _zgbcon__imp__zgbcon$hlapacksyms386.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbequ.text .idata$7.idata$5.idata$4.idata$6 _zgbequ__imp__zgbequ$hlapacksyms387.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgbmv.text .idata$7.idata$5.idata$4.idata$6_zgbmv__imp__zgbmv$hlapacksyms388.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbrfs.text .idata$7.idata$5.idata$4.idata$6 _zgbrfs__imp__zgbrfs$hlapacksyms389.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgbsv.text .idata$7.idata$5.idata$4.idata$6_zgbsv__imp__zgbsv$hlapacksyms390.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbsvx.text .idata$7.idata$5.idata$4.idata$6 _zgbsvx__imp__zgbsvx$hlapacksyms391.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtf2.text .idata$7.idata$5.idata$4.idata$6 _zgbtf2__imp__zgbtf2$hlapacksyms392.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtrf.text .idata$7.idata$5.idata$4.idata$6 _zgbtrf__imp__zgbtrf$hlapacksyms393.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgbtrs.text .idata$7.idata$5.idata$4.idata$6 _zgbtrs__imp__zgbtrs$hlapacksyms394.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebak.text .idata$7.idata$5.idata$4.idata$6 _zgebak__imp__zgebak$hlapacksyms395.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebal.text .idata$7.idata$5.idata$4.idata$6 _zgebal__imp__zgebal$hlapacksyms396.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebd2.text .idata$7.idata$5.idata$4.idata$6 _zgebd2__imp__zgebd2$hlapacksyms397.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgebrd.text .idata$7.idata$5.idata$4.idata$6 _zgebrd__imp__zgebrd$hlapacksyms398.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgecon.text .idata$7.idata$5.idata$4.idata$6 _zgecon__imp__zgecon$hlapacksyms399.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeequ.text .idata$7.idata$5.idata$4.idata$6 _zgeequ__imp__zgeequ$hlapacksyms400.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgees.text .idata$7.idata$5.idata$4.idata$6_zgees__imp__zgees$hlapacksyms401.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeesx.text .idata$7.idata$5.idata$4.idata$6 _zgeesx__imp__zgeesx$hlapacksyms402.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgeev.text .idata$7.idata$5.idata$4.idata$6_zgeev__imp__zgeev$hlapacksyms403.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeevx.text .idata$7.idata$5.idata$4.idata$6 _zgeevx__imp__zgeevx$hlapacksyms404.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgegs.text .idata$7.idata$5.idata$4.idata$6_zgegs__imp__zgegs$hlapacksyms405.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgegv.text .idata$7.idata$5.idata$4.idata$6_zgegv__imp__zgegv$hlapacksyms406.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgehd2.text .idata$7.idata$5.idata$4.idata$6 _zgehd2__imp__zgehd2$hlapacksyms407.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgehrd.text .idata$7.idata$5.idata$4.idata$6 _zgehrd__imp__zgehrd$hlapacksyms408.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelq2.text .idata$7.idata$5.idata$4.idata$6 _zgelq2__imp__zgelq2$hlapacksyms409.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelqf.text .idata$7.idata$5.idata$4.idata$6 _zgelqf__imp__zgelqf$hlapacksyms410.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgels.text .idata$7.idata$5.idata$4.idata$6_zgels__imp__zgels$hlapacksyms411.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsd.text .idata$7.idata$5.idata$4.idata$6 _zgelsd__imp__zgelsd$hlapacksyms412.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelss.text .idata$7.idata$5.idata$4.idata$6 _zgelss__imp__zgelss$hlapacksyms413.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsx.text .idata$7.idata$5.idata$4.idata$6 _zgelsx__imp__zgelsx$hlapacksyms414.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgelsy.text .idata$7.idata$5.idata$4.idata$6 _zgelsy__imp__zgelsy$hlapacksyms415.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgemm.text .idata$7.idata$5.idata$4.idata$6_zgemm__imp__zgemm$hlapacksyms416.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgemv.text .idata$7.idata$5.idata$4.idata$6_zgemv__imp__zgemv$hlapacksyms417.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeql2.text .idata$7.idata$5.idata$4.idata$6 _zgeql2__imp__zgeql2$hlapacksyms418.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqlf.text .idata$7.idata$5.idata$4.idata$6 _zgeqlf__imp__zgeqlf$hlapacksyms419.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqp3.text .idata$7.idata$5.idata$4.idata$6 _zgeqp3__imp__zgeqp3$hlapacksyms420.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqpf.text .idata$7.idata$5.idata$4.idata$6 _zgeqpf__imp__zgeqpf$hlapacksyms421.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqr2.text .idata$7.idata$5.idata$4.idata$6 _zgeqr2__imp__zgeqr2$hlapacksyms422.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgeqrf.text .idata$7.idata$5.idata$4.idata$6 _zgeqrf__imp__zgeqrf$hlapacksyms423.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgerc.text .idata$7.idata$5.idata$4.idata$6_zgerc__imp__zgerc$hlapacksyms424.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerfs.text .idata$7.idata$5.idata$4.idata$6 _zgerfs__imp__zgerfs$hlapacksyms425.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerq2.text .idata$7.idata$5.idata$4.idata$6 _zgerq2__imp__zgerq2$hlapacksyms426.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgerqf.text .idata$7.idata$5.idata$4.idata$6 _zgerqf__imp__zgerqf$hlapacksyms427.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgeru.text .idata$7.idata$5.idata$4.idata$6_zgeru__imp__zgeru$hlapacksyms428.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesc2.text .idata$7.idata$5.idata$4.idata$6 _zgesc2__imp__zgesc2$hlapacksyms429.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesdd.text .idata$7.idata$5.idata$4.idata$6 _zgesdd__imp__zgesdd$hlapacksyms430.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgesv.text .idata$7.idata$5.idata$4.idata$6_zgesv__imp__zgesv$hlapacksyms431.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesvd.text .idata$7.idata$5.idata$4.idata$6 _zgesvd__imp__zgesvd$hlapacksyms432.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgesvx.text .idata$7.idata$5.idata$4.idata$6 _zgesvx__imp__zgesvx$hlapacksyms433.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetc2.text .idata$7.idata$5.idata$4.idata$6 _zgetc2__imp__zgetc2$hlapacksyms434.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetf2.text .idata$7.idata$5.idata$4.idata$6 _zgetf2__imp__zgetf2$hlapacksyms435.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetrf.text .idata$7.idata$5.idata$4.idata$6 _zgetrf__imp__zgetrf$hlapacksyms436.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetri.text .idata$7.idata$5.idata$4.idata$6 _zgetri__imp__zgetri$hlapacksyms437.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgetrs.text .idata$7.idata$5.idata$4.idata$6 _zgetrs__imp__zgetrs$hlapacksyms438.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggbak.text .idata$7.idata$5.idata$4.idata$6 _zggbak__imp__zggbak$hlapacksyms439.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggbal.text .idata$7.idata$5.idata$4.idata$6 _zggbal__imp__zggbal$hlapacksyms440.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgges.text .idata$7.idata$5.idata$4.idata$6_zgges__imp__zgges$hlapacksyms441.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggesx.text .idata$7.idata$5.idata$4.idata$6 _zggesx__imp__zggesx$hlapacksyms442.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zggev.text .idata$7.idata$5.idata$4.idata$6_zggev__imp__zggev$hlapacksyms443.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggevx.text .idata$7.idata$5.idata$4.idata$6 _zggevx__imp__zggevx$hlapacksyms444.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggglm.text .idata$7.idata$5.idata$4.idata$6 _zggglm__imp__zggglm$hlapacksyms445.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgghrd.text .idata$7.idata$5.idata$4.idata$6 _zgghrd__imp__zgghrd$hlapacksyms446.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgglse.text .idata$7.idata$5.idata$4.idata$6 _zgglse__imp__zgglse$hlapacksyms447.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggqrf.text .idata$7.idata$5.idata$4.idata$6 _zggqrf__imp__zggqrf$hlapacksyms448.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggrqf.text .idata$7.idata$5.idata$4.idata$6 _zggrqf__imp__zggrqf$hlapacksyms449.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggsvd.text .idata$7.idata$5.idata$4.idata$6 _zggsvd__imp__zggsvd$hlapacksyms450.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zggsvp.text .idata$7.idata$5.idata$4.idata$6 _zggsvp__imp__zggsvp$hlapacksyms451.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtcon.text .idata$7.idata$5.idata$4.idata$6 _zgtcon__imp__zgtcon$hlapacksyms452.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtrfs.text .idata$7.idata$5.idata$4.idata$6 _zgtrfs__imp__zgtrfs$hlapacksyms453.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zgtsv.text .idata$7.idata$5.idata$4.idata$6_zgtsv__imp__zgtsv$hlapacksyms454.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtsvx.text .idata$7.idata$5.idata$4.idata$6 _zgtsvx__imp__zgtsvx$hlapacksyms455.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgttrf.text .idata$7.idata$5.idata$4.idata$6 _zgttrf__imp__zgttrf$hlapacksyms456.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgttrs.text .idata$7.idata$5.idata$4.idata$6 _zgttrs__imp__zgttrs$hlapacksyms457.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zgtts2.text .idata$7.idata$5.idata$4.idata$6 _zgtts2__imp__zgtts2$hlapacksyms458.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbev.text .idata$7.idata$5.idata$4.idata$6_zhbev__imp__zhbev$hlapacksyms459.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbevd.text .idata$7.idata$5.idata$4.idata$6 _zhbevd__imp__zhbevd$hlapacksyms460.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbevx.text .idata$7.idata$5.idata$4.idata$6 _zhbevx__imp__zhbevx$hlapacksyms461.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgst.text .idata$7.idata$5.idata$4.idata$6 _zhbgst__imp__zhbgst$hlapacksyms462.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbgv.text .idata$7.idata$5.idata$4.idata$6_zhbgv__imp__zhbgv$hlapacksyms463.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgvd.text .idata$7.idata$5.idata$4.idata$6 _zhbgvd__imp__zhbgvd$hlapacksyms464.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbgvx.text .idata$7.idata$5.idata$4.idata$6 _zhbgvx__imp__zhbgvx$hlapacksyms465.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhbmv.text .idata$7.idata$5.idata$4.idata$6_zhbmv__imp__zhbmv$hlapacksyms466.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhbtrd.text .idata$7.idata$5.idata$4.idata$6 _zhbtrd__imp__zhbtrd$hlapacksyms467.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhecon.text .idata$7.idata$5.idata$4.idata$6 _zhecon__imp__zhecon$hlapacksyms468.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zheev.text .idata$7.idata$5.idata$4.idata$6_zheev__imp__zheev$hlapacksyms469.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevd.text .idata$7.idata$5.idata$4.idata$6 _zheevd__imp__zheevd$hlapacksyms470.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevr.text .idata$7.idata$5.idata$4.idata$6 _zheevr__imp__zheevr$hlapacksyms471.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zheevx.text .idata$7.idata$5.idata$4.idata$6 _zheevx__imp__zheevx$hlapacksyms472.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegs2.text .idata$7.idata$5.idata$4.idata$6 _zhegs2__imp__zhegs2$hlapacksyms473.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegst.text .idata$7.idata$5.idata$4.idata$6 _zhegst__imp__zhegst$hlapacksyms474.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhegv.text .idata$7.idata$5.idata$4.idata$6_zhegv__imp__zhegv$hlapacksyms475.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegvd.text .idata$7.idata$5.idata$4.idata$6 _zhegvd__imp__zhegvd$hlapacksyms476.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhegvx.text .idata$7.idata$5.idata$4.idata$6 _zhegvx__imp__zhegvx$hlapacksyms477.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhemm.text .idata$7.idata$5.idata$4.idata$6_zhemm__imp__zhemm$hlapacksyms478.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhemv.text .idata$7.idata$5.idata$4.idata$6_zhemv__imp__zhemv$hlapacksyms479.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zher.text .idata$7.idata$5.idata$4.idata$6_zher__imp__zher$hlapacksyms480.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zher2.text .idata$7.idata$5.idata$4.idata$6_zher2__imp__zher2$hlapacksyms481.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zher2k.text .idata$7.idata$5.idata$4.idata$6 _zher2k__imp__zher2k$hlapacksyms482.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zherfs.text .idata$7.idata$5.idata$4.idata$6 _zherfs__imp__zherfs$hlapacksyms483.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zherk.text .idata$7.idata$5.idata$4.idata$6_zherk__imp__zherk$hlapacksyms484.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhesv.text .idata$7.idata$5.idata$4.idata$6_zhesv__imp__zhesv$hlapacksyms485.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhesvx.text .idata$7.idata$5.idata$4.idata$6 _zhesvx__imp__zhesvx$hlapacksyms486.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetd2.text .idata$7.idata$5.idata$4.idata$6 _zhetd2__imp__zhetd2$hlapacksyms487.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetf2.text .idata$7.idata$5.idata$4.idata$6 _zhetf2__imp__zhetf2$hlapacksyms488.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrd.text .idata$7.idata$5.idata$4.idata$6 _zhetrd__imp__zhetrd$hlapacksyms489.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrf.text .idata$7.idata$5.idata$4.idata$6 _zhetrf__imp__zhetrf$hlapacksyms490.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetri.text .idata$7.idata$5.idata$4.idata$6 _zhetri__imp__zhetri$hlapacksyms491.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhetrs.text .idata$7.idata$5.idata$4.idata$6 _zhetrs__imp__zhetrs$hlapacksyms492.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhgeqz.text .idata$7.idata$5.idata$4.idata$6 _zhgeqz__imp__zhgeqz$hlapacksyms493.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpcon.text .idata$7.idata$5.idata$4.idata$6 _zhpcon__imp__zhpcon$hlapacksyms494.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpev.text .idata$7.idata$5.idata$4.idata$6_zhpev__imp__zhpev$hlapacksyms495.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpevd.text .idata$7.idata$5.idata$4.idata$6 _zhpevd__imp__zhpevd$hlapacksyms496.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpevx.text .idata$7.idata$5.idata$4.idata$6 _zhpevx__imp__zhpevx$hlapacksyms497.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgst.text .idata$7.idata$5.idata$4.idata$6 _zhpgst__imp__zhpgst$hlapacksyms498.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpgv.text .idata$7.idata$5.idata$4.idata$6_zhpgv__imp__zhpgv$hlapacksyms499.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgvd.text .idata$7.idata$5.idata$4.idata$6 _zhpgvd__imp__zhpgvd$hlapacksyms500.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpgvx.text .idata$7.idata$5.idata$4.idata$6 _zhpgvx__imp__zhpgvx$hlapacksyms501.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpmv.text .idata$7.idata$5.idata$4.idata$6_zhpmv__imp__zhpmv$hlapacksyms502.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpr.text .idata$7.idata$5.idata$4.idata$6_zhpr__imp__zhpr$hlapacksyms503.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpr2.text .idata$7.idata$5.idata$4.idata$6_zhpr2__imp__zhpr2$hlapacksyms504.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhprfs.text .idata$7.idata$5.idata$4.idata$6 _zhprfs__imp__zhprfs$hlapacksyms505.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% zhpsv.text .idata$7.idata$5.idata$4.idata$6_zhpsv__imp__zhpsv$hlapacksyms506.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhpsvx.text .idata$7.idata$5.idata$4.idata$6 _zhpsvx__imp__zhpsvx$hlapacksyms507.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrd.text .idata$7.idata$5.idata$4.idata$6 _zhptrd__imp__zhptrd$hlapacksyms508.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrf.text .idata$7.idata$5.idata$4.idata$6 _zhptrf__imp__zhptrf$hlapacksyms509.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptri.text .idata$7.idata$5.idata$4.idata$6 _zhptri__imp__zhptri$hlapacksyms510.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhptrs.text .idata$7.idata$5.idata$4.idata$6 _zhptrs__imp__zhptrs$hlapacksyms511.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhsein.text .idata$7.idata$5.idata$4.idata$6 _zhsein__imp__zhsein$hlapacksyms512.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zhseqr.text .idata$7.idata$5.idata$4.idata$6 _zhseqr__imp__zhseqr$hlapacksyms513.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlabrd.text .idata$7.idata$5.idata$4.idata$6 _zlabrd__imp__zlabrd$hlapacksyms514.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacgv.text .idata$7.idata$5.idata$4.idata$6 _zlacgv__imp__zlacgv$hlapacksyms515.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacon.text .idata$7.idata$5.idata$4.idata$6 _zlacon__imp__zlacon$hlapacksyms516.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacp2.text .idata$7.idata$5.idata$4.idata$6 _zlacp2__imp__zlacp2$hlapacksyms517.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacpy.text .idata$7.idata$5.idata$4.idata$6 _zlacpy__imp__zlacpy$hlapacksyms518.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacrm.text .idata$7.idata$5.idata$4.idata$6 _zlacrm__imp__zlacrm$hlapacksyms519.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlacrt.text .idata$7.idata$5.idata$4.idata$6 _zlacrt__imp__zlacrt$hlapacksyms520.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zladiv.text .idata$7.idata$5.idata$4.idata$6 _zladiv__imp__zladiv$hlapacksyms521.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlaed0.text .idata$7.idata$5.idata$4.idata$6 _zlaed0__imp__zlaed0$hlapacksyms522.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaed7.text .idata$7.idata$5.idata$4.idata$6 _zlaed7__imp__zlaed7$hlapacksyms523.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaed8.text .idata$7.idata$5.idata$4.idata$6 _zlaed8__imp__zlaed8$hlapacksyms524.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaein.text .idata$7.idata$5.idata$4.idata$6 _zlaein__imp__zlaein$hlapacksyms525.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaesy.text .idata$7.idata$5.idata$4.idata$6 _zlaesy__imp__zlaesy$hlapacksyms526.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlaev2.text .idata$7.idata$5.idata$4.idata$6 _zlaev2__imp__zlaev2$hlapacksyms527.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlags2.text .idata$7.idata$5.idata$4.idata$6 _zlags2__imp__zlags2$hlapacksyms528.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlagtm.text .idata$7.idata$5.idata$4.idata$6 _zlagtm__imp__zlagtm$hlapacksyms529.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahef.text .idata$7.idata$5.idata$4.idata$6 _zlahef__imp__zlahef$hlapacksyms530.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahqr.text .idata$7.idata$5.idata$4.idata$6 _zlahqr__imp__zlahqr$hlapacksyms531.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlahrd.text .idata$7.idata$5.idata$4.idata$6 _zlahrd__imp__zlahrd$hlapacksyms532.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlaic1.text .idata$7.idata$5.idata$4.idata$6 _zlaic1__imp__zlaic1$hlapacksyms533.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlals0.text .idata$7.idata$5.idata$4.idata$6 _zlals0__imp__zlals0$hlapacksyms534.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlalsa.text .idata$7.idata$5.idata$4.idata$6 _zlalsa__imp__zlalsa$hlapacksyms535.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlalsd.text .idata$7.idata$5.idata$4.idata$6 _zlalsd__imp__zlalsd$hlapacksyms536.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlangb.text .idata$7.idata$5.idata$4.idata$6 _zlangb__imp__zlangb$hlapacksyms537.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlange.text .idata$7.idata$5.idata$4.idata$6 _zlange__imp__zlange$hlapacksyms538.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlangt.text .idata$7.idata$5.idata$4.idata$6 _zlangt__imp__zlangt$hlapacksyms539.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhb.text .idata$7.idata$5.idata$4.idata$6 _zlanhb__imp__zlanhb$hlapacksyms540.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhe.text .idata$7.idata$5.idata$4.idata$6 _zlanhe__imp__zlanhe$hlapacksyms541.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhp.text .idata$7.idata$5.idata$4.idata$6 _zlanhp__imp__zlanhp$hlapacksyms542.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanhs.text .idata$7.idata$5.idata$4.idata$6 _zlanhs__imp__zlanhs$hlapacksyms543.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlanht.text .idata$7.idata$5.idata$4.idata$6 _zlanht__imp__zlanht$hlapacksyms544.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zlansb.text .idata$7.idata$5.idata$4.idata$6 _zlansb__imp__zlansb$hlapacksyms545.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 %  zlansp.text .idata$7.idata$5.idata$4.idata$6 _zlansp__imp__zlansp$hlapacksyms546.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % !zlansy.text .idata$7.idata$5.idata$4.idata$6 _zlansy__imp__zlansy$hlapacksyms547.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % "zlantb.text .idata$7.idata$5.idata$4.idata$6 _zlantb__imp__zlantb$hlapacksyms548.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % #zlantp.text .idata$7.idata$5.idata$4.idata$6 _zlantp__imp__zlantp$hlapacksyms549.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % $zlantr.text .idata$7.idata$5.idata$4.idata$6 _zlantr__imp__zlantr$hlapacksyms550.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % %zlapll.text .idata$7.idata$5.idata$4.idata$6 _zlapll__imp__zlapll$hlapacksyms551.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % &zlapmt.text .idata$7.idata$5.idata$4.idata$6 _zlapmt__imp__zlapmt$hlapacksyms552.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 'zlaqgb.text .idata$7.idata$5.idata$4.idata$6 _zlaqgb__imp__zlaqgb$hlapacksyms553.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % (zlaqge.text .idata$7.idata$5.idata$4.idata$6 _zlaqge__imp__zlaqge$hlapacksyms554.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % )zlaqhb.text .idata$7.idata$5.idata$4.idata$6 _zlaqhb__imp__zlaqhb$hlapacksyms555.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % *zlaqhe.text .idata$7.idata$5.idata$4.idata$6 _zlaqhe__imp__zlaqhe$hlapacksyms556.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % +zlaqhp.text .idata$7.idata$5.idata$4.idata$6 _zlaqhp__imp__zlaqhp$hlapacksyms557.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ,zlaqp2.text .idata$7.idata$5.idata$4.idata$6 _zlaqp2__imp__zlaqp2$hlapacksyms558.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % -zlaqps.text .idata$7.idata$5.idata$4.idata$6 _zlaqps__imp__zlaqps$hlapacksyms559.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % .zlaqsb.text .idata$7.idata$5.idata$4.idata$6 _zlaqsb__imp__zlaqsb$hlapacksyms560.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % /zlaqsp.text .idata$7.idata$5.idata$4.idata$6 _zlaqsp__imp__zlaqsp$hlapacksyms561.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 0zlaqsy.text .idata$7.idata$5.idata$4.idata$6 _zlaqsy__imp__zlaqsy$hlapacksyms562.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 1zlar1v.text .idata$7.idata$5.idata$4.idata$6 _zlar1v__imp__zlar1v$hlapacksyms563.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 2zlar2v.text .idata$7.idata$5.idata$4.idata$6 _zlar2v__imp__zlar2v$hlapacksyms564.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 3zlarcm.text .idata$7.idata$5.idata$4.idata$6 _zlarcm__imp__zlarcm$hlapacksyms565.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% 4zlarf.text .idata$7.idata$5.idata$4.idata$6_zlarf__imp__zlarf$hlapacksyms566.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 5zlarfb.text .idata$7.idata$5.idata$4.idata$6 _zlarfb__imp__zlarfb$hlapacksyms567.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 6zlarfg.text .idata$7.idata$5.idata$4.idata$6 _zlarfg__imp__zlarfg$hlapacksyms568.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 7zlarft.text .idata$7.idata$5.idata$4.idata$6 _zlarft__imp__zlarft$hlapacksyms569.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 8zlarfx.text .idata$7.idata$5.idata$4.idata$6 _zlarfx__imp__zlarfx$hlapacksyms570.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % 9zlargv.text .idata$7.idata$5.idata$4.idata$6 _zlargv__imp__zlargv$hlapacksyms571.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % :zlarnv.text .idata$7.idata$5.idata$4.idata$6 _zlarnv__imp__zlarnv$hlapacksyms572.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ;zlarrv.text .idata$7.idata$5.idata$4.idata$6 _zlarrv__imp__zlarrv$hlapacksyms573.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % <zlartg.text .idata$7.idata$5.idata$4.idata$6 _zlartg__imp__zlartg$hlapacksyms574.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % =zlartv.text .idata$7.idata$5.idata$4.idata$6 _zlartv__imp__zlartv$hlapacksyms575.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% >zlarz.text .idata$7.idata$5.idata$4.idata$6_zlarz__imp__zlarz$hlapacksyms576.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ?zlarzb.text .idata$7.idata$5.idata$4.idata$6 _zlarzb__imp__zlarzb$hlapacksyms577.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % @zlarzt.text .idata$7.idata$5.idata$4.idata$6 _zlarzt__imp__zlarzt$hlapacksyms578.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Azlascl.text .idata$7.idata$5.idata$4.idata$6 _zlascl__imp__zlascl$hlapacksyms579.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Bzlaset.text .idata$7.idata$5.idata$4.idata$6 _zlaset__imp__zlaset$hlapacksyms580.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Czlasr.text .idata$7.idata$5.idata$4.idata$6_zlasr__imp__zlasr$hlapacksyms581.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Dzlassq.text .idata$7.idata$5.idata$4.idata$6 _zlassq__imp__zlassq$hlapacksyms582.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ezlaswp.text .idata$7.idata$5.idata$4.idata$6 _zlaswp__imp__zlaswp$hlapacksyms583.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Fzlasyf.text .idata$7.idata$5.idata$4.idata$6 _zlasyf__imp__zlasyf$hlapacksyms584.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Gzlatbs.text .idata$7.idata$5.idata$4.idata$6 _zlatbs__imp__zlatbs$hlapacksyms585.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Hzlatdf.text .idata$7.idata$5.idata$4.idata$6 _zlatdf__imp__zlatdf$hlapacksyms586.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Izlatps.text .idata$7.idata$5.idata$4.idata$6 _zlatps__imp__zlatps$hlapacksyms587.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Jzlatrd.text .idata$7.idata$5.idata$4.idata$6 _zlatrd__imp__zlatrd$hlapacksyms588.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Kzlatrs.text .idata$7.idata$5.idata$4.idata$6 _zlatrs__imp__zlatrs$hlapacksyms589.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Lzlatrz.text .idata$7.idata$5.idata$4.idata$6 _zlatrz__imp__zlatrz$hlapacksyms590.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Mzlatzm.text .idata$7.idata$5.idata$4.idata$6 _zlatzm__imp__zlatzm$hlapacksyms591.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Nzlauu2.text .idata$7.idata$5.idata$4.idata$6 _zlauu2__imp__zlauu2$hlapacksyms592.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Ozlauum.text .idata$7.idata$5.idata$4.idata$6 _zlauum__imp__zlauum$hlapacksyms593.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Pzpbcon.text .idata$7.idata$5.idata$4.idata$6 _zpbcon__imp__zpbcon$hlapacksyms594.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Qzpbequ.text .idata$7.idata$5.idata$4.idata$6 _zpbequ__imp__zpbequ$hlapacksyms595.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Rzpbrfs.text .idata$7.idata$5.idata$4.idata$6 _zpbrfs__imp__zpbrfs$hlapacksyms596.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Szpbstf.text .idata$7.idata$5.idata$4.idata$6 _zpbstf__imp__zpbstf$hlapacksyms597.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% Tzpbsv.text .idata$7.idata$5.idata$4.idata$6_zpbsv__imp__zpbsv$hlapacksyms598.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Uzpbsvx.text .idata$7.idata$5.idata$4.idata$6 _zpbsvx__imp__zpbsvx$hlapacksyms599.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Vzpbtf2.text .idata$7.idata$5.idata$4.idata$6 _zpbtf2__imp__zpbtf2$hlapacksyms600.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Wzpbtrf.text .idata$7.idata$5.idata$4.idata$6 _zpbtrf__imp__zpbtrf$hlapacksyms601.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Xzpbtrs.text .idata$7.idata$5.idata$4.idata$6 _zpbtrs__imp__zpbtrs$hlapacksyms602.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Yzpocon.text .idata$7.idata$5.idata$4.idata$6 _zpocon__imp__zpocon$hlapacksyms603.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % Zzpoequ.text .idata$7.idata$5.idata$4.idata$6 _zpoequ__imp__zpoequ$hlapacksyms604.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % [zporfs.text .idata$7.idata$5.idata$4.idata$6 _zporfs__imp__zporfs$hlapacksyms605.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% \zposv.text .idata$7.idata$5.idata$4.idata$6_zposv__imp__zposv$hlapacksyms606.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ]zposvx.text .idata$7.idata$5.idata$4.idata$6 _zposvx__imp__zposvx$hlapacksyms607.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ^zpotf2.text .idata$7.idata$5.idata$4.idata$6 _zpotf2__imp__zpotf2$hlapacksyms608.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % _zpotrf.text .idata$7.idata$5.idata$4.idata$6 _zpotrf__imp__zpotrf$hlapacksyms609.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % `zpotri.text .idata$7.idata$5.idata$4.idata$6 _zpotri__imp__zpotri$hlapacksyms610.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % azpotrs.text .idata$7.idata$5.idata$4.idata$6 _zpotrs__imp__zpotrs$hlapacksyms611.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % bzppcon.text .idata$7.idata$5.idata$4.idata$6 _zppcon__imp__zppcon$hlapacksyms612.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % czppequ.text .idata$7.idata$5.idata$4.idata$6 _zppequ__imp__zppequ$hlapacksyms613.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % dzpprfs.text .idata$7.idata$5.idata$4.idata$6 _zpprfs__imp__zpprfs$hlapacksyms614.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% ezppsv.text .idata$7.idata$5.idata$4.idata$6_zppsv__imp__zppsv$hlapacksyms615.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % fzppsvx.text .idata$7.idata$5.idata$4.idata$6 _zppsvx__imp__zppsvx$hlapacksyms616.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % gzpptrf.text .idata$7.idata$5.idata$4.idata$6 _zpptrf__imp__zpptrf$hlapacksyms617.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % hzpptri.text .idata$7.idata$5.idata$4.idata$6 _zpptri__imp__zpptri$hlapacksyms618.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % izpptrs.text .idata$7.idata$5.idata$4.idata$6 _zpptrs__imp__zpptrs$hlapacksyms619.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % jzptcon.text .idata$7.idata$5.idata$4.idata$6 _zptcon__imp__zptcon$hlapacksyms620.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % kzpteqr.text .idata$7.idata$5.idata$4.idata$6 _zpteqr__imp__zpteqr$hlapacksyms621.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % lzptrfs.text .idata$7.idata$5.idata$4.idata$6 _zptrfs__imp__zptrfs$hlapacksyms622.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% mzptsv.text .idata$7.idata$5.idata$4.idata$6_zptsv__imp__zptsv$hlapacksyms623.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % nzptsvx.text .idata$7.idata$5.idata$4.idata$6 _zptsvx__imp__zptsvx$hlapacksyms624.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ozpttrf.text .idata$7.idata$5.idata$4.idata$6 _zpttrf__imp__zpttrf$hlapacksyms625.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % pzpttrs.text .idata$7.idata$5.idata$4.idata$6 _zpttrs__imp__zpttrs$hlapacksyms626.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % qzptts2.text .idata$7.idata$5.idata$4.idata$6 _zptts2__imp__zptts2$hlapacksyms627.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% rzrot.text .idata$7.idata$5.idata$4.idata$6_zrot__imp__zrot$hlapacksyms628.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% szrotg.text .idata$7.idata$5.idata$4.idata$6_zrotg__imp__zrotg$hlapacksyms629.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% tzscal.text .idata$7.idata$5.idata$4.idata$6_zscal__imp__zscal$hlapacksyms630.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % uzspcon.text .idata$7.idata$5.idata$4.idata$6 _zspcon__imp__zspcon$hlapacksyms631.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% vzspmv.text .idata$7.idata$5.idata$4.idata$6_zspmv__imp__zspmv$hlapacksyms632.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% wzspr.text .idata$7.idata$5.idata$4.idata$6_zspr__imp__zspr$hlapacksyms633.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % xzsprfs.text .idata$7.idata$5.idata$4.idata$6 _zsprfs__imp__zsprfs$hlapacksyms634.obj/ 1013176938 0 0 0 556 ` Lic<$ .text  `.idata$7.idata$5.idata$4.idata$6% yzspsv.text .idata$7.idata$5.idata$4.idata$6_zspsv__imp__zspsv$hlapacksyms635.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zzspsvx.text .idata$7.idata$5.idata$4.idata$6 _zspsvx__imp__zspsvx$hlapacksyms636.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % {zsptrf.text .idata$7.idata$5.idata$4.idata$6 _zsptrf__imp__zsptrf$hlapacksyms637.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % |zsptri.text .idata$7.idata$5.idata$4.idata$6 _zsptri__imp__zsptri$hlapacksyms638.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % }zsptrs.text .idata$7.idata$5.idata$4.idata$6 _zsptrs__imp__zsptrs$hlapacksyms639.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % ~zstedc.text .idata$7.idata$5.idata$4.idata$6 _zstedc__imp__zstedc$hlapacksyms640.obj/ 1013176938 0 0 0 560 ` Lic<& .text  `.idata$7.idata$5.idata$4.idata$6 % zstegr.text .idata$7.idata$5.idata$4.idata$6 _zstegr__imp__zstegr$hlapacksyms641.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zstein.text .idata$7.idata$5.idata$4.idata$6 _zstein__imp__zstein$hlapacksyms642.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsteqr.text .idata$7.idata$5.idata$4.idata$6 _zsteqr__imp__zsteqr$hlapacksyms643.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zswap.text .idata$7.idata$5.idata$4.idata$6_zswap__imp__zswap$hlapacksyms644.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsycon.text .idata$7.idata$5.idata$4.idata$6 _zsycon__imp__zsycon$hlapacksyms645.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsymm.text .idata$7.idata$5.idata$4.idata$6_zsymm__imp__zsymm$hlapacksyms646.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsymv.text .idata$7.idata$5.idata$4.idata$6_zsymv__imp__zsymv$hlapacksyms647.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsyr.text .idata$7.idata$5.idata$4.idata$6_zsyr__imp__zsyr$hlapacksyms648.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsyr2k.text .idata$7.idata$5.idata$4.idata$6 _zsyr2k__imp__zsyr2k$hlapacksyms649.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsyrfs.text .idata$7.idata$5.idata$4.idata$6 _zsyrfs__imp__zsyrfs$hlapacksyms650.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsyrk.text .idata$7.idata$5.idata$4.idata$6_zsyrk__imp__zsyrk$hlapacksyms651.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% zsysv.text .idata$7.idata$5.idata$4.idata$6_zsysv__imp__zsysv$hlapacksyms652.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsysvx.text .idata$7.idata$5.idata$4.idata$6 _zsysvx__imp__zsysvx$hlapacksyms653.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytf2.text .idata$7.idata$5.idata$4.idata$6 _zsytf2__imp__zsytf2$hlapacksyms654.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytrf.text .idata$7.idata$5.idata$4.idata$6 _zsytrf__imp__zsytrf$hlapacksyms655.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytri.text .idata$7.idata$5.idata$4.idata$6 _zsytri__imp__zsytri$hlapacksyms656.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zsytrs.text .idata$7.idata$5.idata$4.idata$6 _zsytrs__imp__zsytrs$hlapacksyms657.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbcon.text .idata$7.idata$5.idata$4.idata$6 _ztbcon__imp__ztbcon$hlapacksyms658.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztbmv.text .idata$7.idata$5.idata$4.idata$6_ztbmv__imp__ztbmv$hlapacksyms659.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbrfs.text .idata$7.idata$5.idata$4.idata$6 _ztbrfs__imp__ztbrfs$hlapacksyms660.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztbsv.text .idata$7.idata$5.idata$4.idata$6_ztbsv__imp__ztbsv$hlapacksyms661.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztbtrs.text .idata$7.idata$5.idata$4.idata$6 _ztbtrs__imp__ztbtrs$hlapacksyms662.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgevc.text .idata$7.idata$5.idata$4.idata$6 _ztgevc__imp__ztgevc$hlapacksyms663.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgex2.text .idata$7.idata$5.idata$4.idata$6 _ztgex2__imp__ztgex2$hlapacksyms664.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgexc.text .idata$7.idata$5.idata$4.idata$6 _ztgexc__imp__ztgexc$hlapacksyms665.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsen.text .idata$7.idata$5.idata$4.idata$6 _ztgsen__imp__ztgsen$hlapacksyms666.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsja.text .idata$7.idata$5.idata$4.idata$6 _ztgsja__imp__ztgsja$hlapacksyms667.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsna.text .idata$7.idata$5.idata$4.idata$6 _ztgsna__imp__ztgsna$hlapacksyms668.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsy2.text .idata$7.idata$5.idata$4.idata$6 _ztgsy2__imp__ztgsy2$hlapacksyms669.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztgsyl.text .idata$7.idata$5.idata$4.idata$6 _ztgsyl__imp__ztgsyl$hlapacksyms670.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztpcon.text .idata$7.idata$5.idata$4.idata$6 _ztpcon__imp__ztpcon$hlapacksyms671.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztpmv.text .idata$7.idata$5.idata$4.idata$6_ztpmv__imp__ztpmv$hlapacksyms672.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztprfs.text .idata$7.idata$5.idata$4.idata$6 _ztprfs__imp__ztprfs$hlapacksyms673.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztpsv.text .idata$7.idata$5.idata$4.idata$6_ztpsv__imp__ztpsv$hlapacksyms674.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztptri.text .idata$7.idata$5.idata$4.idata$6 _ztptri__imp__ztptri$hlapacksyms675.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztptrs.text .idata$7.idata$5.idata$4.idata$6 _ztptrs__imp__ztptrs$hlapacksyms676.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrcon.text .idata$7.idata$5.idata$4.idata$6 _ztrcon__imp__ztrcon$hlapacksyms677.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrevc.text .idata$7.idata$5.idata$4.idata$6 _ztrevc__imp__ztrevc$hlapacksyms678.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrexc.text .idata$7.idata$5.idata$4.idata$6 _ztrexc__imp__ztrexc$hlapacksyms679.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrmm.text .idata$7.idata$5.idata$4.idata$6_ztrmm__imp__ztrmm$hlapacksyms680.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrmv.text .idata$7.idata$5.idata$4.idata$6_ztrmv__imp__ztrmv$hlapacksyms681.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrrfs.text .idata$7.idata$5.idata$4.idata$6 _ztrrfs__imp__ztrrfs$hlapacksyms682.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsen.text .idata$7.idata$5.idata$4.idata$6 _ztrsen__imp__ztrsen$hlapacksyms683.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrsm.text .idata$7.idata$5.idata$4.idata$6_ztrsm__imp__ztrsm$hlapacksyms684.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsna.text .idata$7.idata$5.idata$4.idata$6 _ztrsna__imp__ztrsna$hlapacksyms685.obj/ 1013176938 0 0 0 556 ` Ljc<$ .text  `.idata$7.idata$5.idata$4.idata$6% ztrsv.text .idata$7.idata$5.idata$4.idata$6_ztrsv__imp__ztrsv$hlapacksyms686.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrsyl.text .idata$7.idata$5.idata$4.idata$6 _ztrsyl__imp__ztrsyl$hlapacksyms687.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrti2.text .idata$7.idata$5.idata$4.idata$6 _ztrti2__imp__ztrti2$hlapacksyms688.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrtri.text .idata$7.idata$5.idata$4.idata$6 _ztrtri__imp__ztrtri$hlapacksyms689.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztrtrs.text .idata$7.idata$5.idata$4.idata$6 _ztrtrs__imp__ztrtrs$hlapacksyms690.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztzrqf.text .idata$7.idata$5.idata$4.idata$6 _ztzrqf__imp__ztzrqf$hlapacksyms691.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % ztzrzf.text .idata$7.idata$5.idata$4.idata$6 _ztzrzf__imp__ztzrzf$hlapacksyms692.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zung2l.text .idata$7.idata$5.idata$4.idata$6 _zung2l__imp__zung2l$hlapacksyms693.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zung2r.text .idata$7.idata$5.idata$4.idata$6 _zung2r__imp__zung2r$hlapacksyms694.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungbr.text .idata$7.idata$5.idata$4.idata$6 _zungbr__imp__zungbr$hlapacksyms695.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunghr.text .idata$7.idata$5.idata$4.idata$6 _zunghr__imp__zunghr$hlapacksyms696.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungl2.text .idata$7.idata$5.idata$4.idata$6 _zungl2__imp__zungl2$hlapacksyms697.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunglq.text .idata$7.idata$5.idata$4.idata$6 _zunglq__imp__zunglq$hlapacksyms698.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungql.text .idata$7.idata$5.idata$4.idata$6 _zungql__imp__zungql$hlapacksyms699.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungqr.text .idata$7.idata$5.idata$4.idata$6 _zungqr__imp__zungqr$hlapacksyms700.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungr2.text .idata$7.idata$5.idata$4.idata$6 _zungr2__imp__zungr2$hlapacksyms701.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungrq.text .idata$7.idata$5.idata$4.idata$6 _zungrq__imp__zungrq$hlapacksyms702.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zungtr.text .idata$7.idata$5.idata$4.idata$6 _zungtr__imp__zungtr$hlapacksyms703.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunm2l.text .idata$7.idata$5.idata$4.idata$6 _zunm2l__imp__zunm2l$hlapacksyms704.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunm2r.text .idata$7.idata$5.idata$4.idata$6 _zunm2r__imp__zunm2r$hlapacksyms705.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmbr.text .idata$7.idata$5.idata$4.idata$6 _zunmbr__imp__zunmbr$hlapacksyms706.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmhr.text .idata$7.idata$5.idata$4.idata$6 _zunmhr__imp__zunmhr$hlapacksyms707.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunml2.text .idata$7.idata$5.idata$4.idata$6 _zunml2__imp__zunml2$hlapacksyms708.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmlq.text .idata$7.idata$5.idata$4.idata$6 _zunmlq__imp__zunmlq$hlapacksyms709.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmql.text .idata$7.idata$5.idata$4.idata$6 _zunmql__imp__zunmql$hlapacksyms710.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmqr.text .idata$7.idata$5.idata$4.idata$6 _zunmqr__imp__zunmqr$hlapacksyms711.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmr2.text .idata$7.idata$5.idata$4.idata$6 _zunmr2__imp__zunmr2$hlapacksyms712.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmr3.text .idata$7.idata$5.idata$4.idata$6 _zunmr3__imp__zunmr3$hlapacksyms713.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmrq.text .idata$7.idata$5.idata$4.idata$6 _zunmrq__imp__zunmrq$hlapacksyms714.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmrz.text .idata$7.idata$5.idata$4.idata$6 _zunmrz__imp__zunmrz$hlapacksyms715.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zunmtr.text .idata$7.idata$5.idata$4.idata$6 _zunmtr__imp__zunmtr$hlapacksyms716.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zupgtr.text .idata$7.idata$5.idata$4.idata$6 _zupgtr__imp__zupgtr$hlapacksyms717.obj/ 1013176938 0 0 0 560 ` Ljc<& .text  `.idata$7.idata$5.idata$4.idata$6 % zupmtr.text .idata$7.idata$5.idata$4.idata$6 _zupmtr__imp__zupmtr$hlapacksyms718.obj/ 1013176938 0 0 0 536 ` Ljc< .text `.data@.bss.idata$7 .idata$4.idata$5libmwlapack.dll.text.data.bss.idata$7.idata$4.idata$5$tlapacksymsSuiteSparse/CHOLMOD/MATLAB/lchol.c0000644001170100242450000001233110624337020015236 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/lchol mexFunction ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Numeric LL' factorization. Note that LL' and LDL' are faster than R'R * and use less memory. The LL' factorization methods use tril(A). * * L = lchol (A) same as L = chol (A)', just faster * [L,p] = lchol (A) save as [R,p] = chol(A) ; L=R', just faster * [L,p,q] = lchol (A) factorizes A(q,q) into L*L' * * A must be sparse. It can be complex or real. * * L is returned with no explicit zero entries. This means it might not be * chordal, and L cannot be passed back to CHOLMOD for an update/downdate or * for a fast simplicial solve. spones (L) will be equal to the L returned * by symbfact2 if no numerically zero entries are dropped, or a subset * otherwise. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, *px ; cholmod_sparse Amatrix, *A, *Lsparse ; cholmod_factor *L ; cholmod_common Common, *cm ; Int n, minor ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* convert to packed LL' when done */ cm->final_asis = FALSE ; cm->final_super = FALSE ; cm->final_ll = TRUE ; cm->final_pack = TRUE ; cm->final_monotonic = TRUE ; /* no need to prune entries due to relaxed supernodal amalgamation, since * zeros are dropped with sputil_drop_zeros instead */ cm->final_resymbol = FALSE ; cm->quick_return_if_not_posdef = (nargout < 2) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin != 1 || nargout > 3) { mexErrMsgTxt ("usage: [L,p,q] = lchol (A)") ; } n = mxGetN (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetM (pargin [0])) { mexErrMsgTxt ("A must be square and sparse") ; } /* get sparse matrix A, use tril(A) */ A = sputil_get_sparse (pargin [0], &Amatrix, &dummy, -1) ; /* use natural ordering if no q output parameter */ if (nargout < 3) { cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = FALSE ; } /* ---------------------------------------------------------------------- */ /* analyze and factorize */ /* ---------------------------------------------------------------------- */ L = cholmod_l_analyze (A, cm) ; cholmod_l_factorize (A, L, cm) ; if (nargout < 2 && cm->status != CHOLMOD_OK) { mexErrMsgTxt ("matrix is not positive definite") ; } /* ---------------------------------------------------------------------- */ /* convert L to a sparse matrix */ /* ---------------------------------------------------------------------- */ /* the conversion sets L->minor back to n, so get a copy of it first */ minor = L->minor ; Lsparse = cholmod_l_factor_to_sparse (L, cm) ; if (Lsparse->xtype == CHOLMOD_COMPLEX) { /* convert Lsparse from complex to zomplex */ cholmod_l_sparse_xtype (CHOLMOD_ZOMPLEX, Lsparse, cm) ; } if (minor < n) { /* remove columns minor to n-1 from Lsparse */ sputil_trim (Lsparse, minor, cm) ; } /* drop zeros from Lsparse */ sputil_drop_zeros (Lsparse) ; /* ---------------------------------------------------------------------- */ /* return results to MATLAB */ /* ---------------------------------------------------------------------- */ /* return L as a sparse matrix */ pargout [0] = sputil_put_sparse (&Lsparse, cm) ; /* return minor (translate to MATLAB convention) */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; px = mxGetPr (pargout [1]) ; px [0] = ((minor == n) ? 0 : (minor+1)) ; } /* return permutation */ if (nargout > 2) { pargout [2] = sputil_put_int (L->Perm, n, 1) ; } /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 3 + mxIsComplex (pargout[0])) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/lchol.m0000644001170100242450000000134710620370761015262 0ustar davisfacfunction [L,p,q] = lchol (A) %#ok %LCHOL sparse A=L*L' factorization. % Note that L*L' (LCHOL) and L*D*L' (LDLCHOL) factorizations are faster than % R'*R (CHOL2 and CHOL) and use less memory. The LL' and LDL' factorization % methods use tril(A). A must be sparse. % % Example: % L = lchol (A) same as L = chol (A')', just faster % [L,p] = lchol (A) save as [R,p] = chol(A') ; L=R', just faster % [L,p,q] = lchol (A) factorizes A(q,q) into L*L', where q is a % fill-reducing ordering % % See also CHOL2, LDLCHOL, CHOL. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('lchol mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/ldlsolve.c0000644001170100242450000001252010621027712015762 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/ldlsolve mexFunction ================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Solve LDL'x=b given an LDL' factorization computed by ldlchol. * * Usage: * * x = ldlsolve (LD,b) * * b can be dense or sparse. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, rcond ; Int *Lp, *Lnz, *Lprev, *Lnext ; cholmod_sparse *Bs, Bspmatrix, *Xs ; cholmod_dense *B, Bmatrix, *X ; cholmod_factor *L ; cholmod_common Common, *cm ; Int j, k, n, B_is_sparse, head, tail ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("Usage: x = ldlsolve (LD, b)") ; } n = mxGetN (pargin [0]) ; k = mxGetN (pargin [1]) ; if (!mxIsSparse (pargin [0]) || n != mxGetM (pargin [0])) { mexErrMsgTxt ("ldlsolve: LD must be sparse and square") ; } if (n != mxGetM (pargin [1])) { mexErrMsgTxt ("ldlsolve: b wrong dimension") ; } /* ---------------------------------------------------------------------- */ /* get b */ /* ---------------------------------------------------------------------- */ /* get sparse or dense matrix B */ B = NULL ; Bs = NULL ; B_is_sparse = mxIsSparse (pargin [1]) ; if (B_is_sparse) { /* get sparse matrix B (unsymmetric) */ Bs = sputil_get_sparse (pargin [1], &Bspmatrix, &dummy, 0) ; } else { /* get dense matrix B */ B = sputil_get_dense (pargin [1], &Bmatrix, &dummy) ; } /* ---------------------------------------------------------------------- */ /* construct a shallow copy of the input sparse matrix L */ /* ---------------------------------------------------------------------- */ /* the construction of the CHOLMOD takes O(n) time and memory */ /* allocate the CHOLMOD symbolic L */ L = cholmod_l_allocate_factor (n, cm) ; L->ordering = CHOLMOD_NATURAL ; /* get the MATLAB L */ L->p = mxGetJc (pargin [0]) ; L->i = mxGetIr (pargin [0]) ; L->x = mxGetPr (pargin [0]) ; L->z = mxGetPi (pargin [0]) ; /* allocate and initialize the rest of L */ L->nz = cholmod_l_malloc (n, sizeof (Int), cm) ; Lp = L->p ; Lnz = L->nz ; for (j = 0 ; j < n ; j++) { Lnz [j] = Lp [j+1] - Lp [j] ; } L->prev = cholmod_l_malloc (n+2, sizeof (Int), cm) ; L->next = cholmod_l_malloc (n+2, sizeof (Int), cm) ; Lprev = L->prev ; Lnext = L->next ; head = n+1 ; tail = n ; Lnext [head] = 0 ; Lprev [head] = -1 ; Lnext [tail] = -1 ; Lprev [tail] = n-1 ; for (j = 0 ; j < n ; j++) { Lnext [j] = j+1 ; Lprev [j] = j-1 ; } Lprev [0] = head ; L->xtype = (mxIsComplex (pargin [0])) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; L->nzmax = Lp [n] ; /* ---------------------------------------------------------------------- */ /* solve and return solution to MATLAB */ /* ---------------------------------------------------------------------- */ if (B_is_sparse) { /* solve LDL'X=B with sparse X and B; return sparse X to MATLAB */ Xs = cholmod_l_spsolve (CHOLMOD_LDLt, L, Bs, cm) ; pargout [0] = sputil_put_sparse (&Xs, cm) ; } else { /* solve AX=B with dense X and B; return dense X to MATLAB */ X = cholmod_l_solve (CHOLMOD_LDLt, L, B, cm) ; pargout [0] = sputil_put_dense (&X, cm) ; } rcond = cholmod_l_rcond (L, cm) ; if (rcond == 0) { mexWarnMsgTxt ("Matrix is indefinite or singular to working precision"); } else if (rcond < DBL_EPSILON) { mexWarnMsgTxt ("Matrix is close to singular or badly scaled.") ; mexPrintf (" Results may be inaccurate. RCOND = %g.\n", rcond) ; } /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ L->p = NULL ; L->i = NULL ; L->x = NULL ; L->z = NULL ; cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != (mxIsComplex (pargout [0]) + (mxIsSparse (pargout[0]) ? 3:1))) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/ldlsolve.m0000644001170100242450000000117110620370773016003 0ustar davisfacfunction x = ldlsolve (LD,b) %#ok %LDLSOLVE solve LDL'x=b using a sparse LDL' factorization % % Example: % x = ldlsolve (LD,b) % % solves the system L*D*L'*x=b for x. This is equivalent to % % [L,D] = ldlsplit (LD) ; % x = L' \ (D \ (L \ b)) ; % % LD is from ldlchol, or as updated by ldlupdate. You must not modify LD as % obtained from ldlchol or ldlupdate prior to passing it to this function. % See ldlupdate for more details. % % See also LDLCHOL, LDLUPDATE, LDLSPLIT % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('ldlsolve mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/Windows/0000755001170100242450000000000010462205215015423 5ustar davisfacSuiteSparse/CHOLMOD/MATLAB/Windows/strings.h0000644001170100242450000000074010301373206017264 0ustar davisfac/* ========================================================================== */ /* === MATLAB/strings.h ===================================================== */ /* ========================================================================== */ /* This is an empty strings.h file, for compiling METIS 4.0.1 properly. METIS * does not need the Unix , but includes it in metis.h anyway. * This empty file is needed to successfully compile METIS using cholmod_make. */ SuiteSparse/CHOLMOD/MATLAB/Windows/rand48.c0000644001170100242450000000146410301415547016677 0ustar davisfac/* ========================================================================== */ /* === MATLAB/rand48.c ====================================================== */ /* ========================================================================== */ /* METIS uses drand48 and srand48, which conform to the SVID standard. The * lcc compiler for Windows shipped with MATLAB does not include the drand48 * and srand48 routines. This file is a cheap replacement using the * more-common rand and srand instead (which lcc does have). * * This file is only used when compiling CHOLMOD with the cholmod_make.m, * on the PC, with the lcc compiler. */ #include double drand48 (void) { return (((double) (rand ( ))) / ((double) RAND_MAX)) ; } void srand48 (long int seed) { srand ((unsigned int) seed) ; } SuiteSparse/CHOLMOD/MATLAB/Windows/README.txt0000644001170100242450000000006210301415444017116 0ustar davisfacThese files are need to compile METIS on Windows. SuiteSparse/CHOLMOD/MATLAB/ldlsplit.m0000644001170100242450000000115710620370775016014 0ustar davisfacfunction [L,D] = ldlsplit (LD) %#ok %LDLSPLIT split an LDL' factorization into L and D. % % Example: % [L,D] = ldlsplit (LD) % % LD contains an LDL' factorization, computed with LD = ldlchol(A), % for example. The diagonal of LD contains D, and the entries below % the diagonal contain L (which has a unit diagonal). This function % splits LD into its two components L and D so that L*D*L' = A. % % See also LDLCHOL, LDLSOLVE, LDLUPDATE. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse n = size (LD,1) ; D = diag (diag (LD)) ; L = tril (LD,-1) + speye (n) ; SuiteSparse/CHOLMOD/MATLAB/ldl_normest.m0000644001170100242450000000501110620664112016467 0ustar davisfacfunction rho = ldl_normest (A, L, D) %LDL_NORMEST estimate the 1-norm of A-L*D*L' without computing L*D*L' % % Example: % % rho = ldl_normest (A, L, D) % % which estimates the computation of the 1-norm: % % rho = norm (A-L*D*L', 1) % % Authors: William W. Hager, Math Dept., Univ. of Florida % Timothy A. Davis, CISE Dept., Univ. of Florida % Gainesville, FL, 32611, USA. % based on normest1, contributed on November, 1997 % % See also condest, normest % Copyright 2006-2007, William W. Hager and Timothy A. Davis % http://www.cise.ufl.edu/research/sparse [m n] = size (A) ; if (m ~= n) error ('A must be square') ; end if (nnz (A-A') ~= 0) error ('A must be symmetric') ; end if (nargin < 3) D = speye (n) ; end notvisited = ones (m, 1) ; % nonvisited(j) is zero if j is visited, 1 otherwise rho = 0 ; % the global rho for trial = 1:3 % { x = notvisited ./ sum (notvisited) ; rho1 = 0 ; % the current rho for this trial %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE Ex1 = E*x EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Ex1 = (A*x) - L*(U*x) ; Ex1 = (A*x) - L*(D*(L'*x)) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rho2 = norm (Ex1, 1) ; while rho2 > rho1 % { rho1 = rho2 ; y = 2*(Ex1 >= 0) - 1 ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE z = E'*y EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % z = (A'*y) - U'*(L'*y) ; z = (A*y) - L*(D*(L'*x)) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [zj, j] = max (abs (z .* notvisited)) ; j = j (1) ; if (abs (z (j)) > z'*x) % { x = zeros (m, 1) ; x (j) = 1 ; notvisited (j) = 0 ; else % } { break ; end % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% COMPUTE Ex1 = E*x EFFICIENTLY: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ex1 = (A*x) - L*(D*(L'*x)) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rho2 = norm (Ex1, 1) ; end % } rho = max (rho, rho1) ; end % } SuiteSparse/CHOLMOD/MATLAB/Contents.m0000644001170100242450000000363610620371147015760 0ustar davisfac% CHOLMOD: a sparse supernodal Cholesky update/downdate package % % cholmod2 - supernodal sparse Cholesky backslash, x = A\b % chol2 - sparse Cholesky factorization, A=R'R. % lchol - sparse A=L*L' factorization. % ldlchol - sparse A=LDL' factorization % ldlupdate - multiple-rank update or downdate of a sparse LDL' factorization. % resymbol - recomputes the symbolic Cholesky factorization of the matrix A. % ldlsolve - solve LDL'x=b using a sparse LDL' factorization % ldlsplit - split an LDL' factorization into L and D. % metis - nested dissection ordering via METIS_NodeND. % nesdis - nested dissection ordering via CHOLMOD's nested dissection. % septree - prune a separator tree. % bisect - computes a node separator based on METIS_NodeComputeSeparator. % analyze - order and analyze a matrix using CHOLMOD's best-effort ordering. % etree2 - sparse elimination tree. % sparse2 - replacement for SPARSE % symbfact2 - symbolic factorization % sdmult - sparse matrix times dense matrix % mread - read a sparse matrix from a file in Matrix Market format. % mwrite - write a matrix to a file in Matrix Market form. % spsym - determine if a sparse matrix is symmetric, Hermitian, or skew-symmetric. % ldl_normest - estimate the 1-norm of A-L*D*L' without computing L*D*L' % cholmod_demo - a demo for CHOLMOD % cholmod_install - compile and install CHOLMOD, AMD, COLAMD, CCOLAMD, CAMD % cholmod_make - compiles the CHOLMOD mexFunctions % graph_demo - graph partitioning demo % % % Example: % x = cholmod2(A,b) % Note: cholmod has been renamed cholmod2, so as not to conflict with itself % (the MATLAB built-in cholmod function). % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse SuiteSparse/CHOLMOD/MATLAB/metis.c0000644001170100242450000001166410616447253015301 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/metis mexFunction ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * METIS (Copyright 1998, G. Karypis) is not distributed with CHOLMOD. * -------------------------------------------------------------------------- */ /* Nested dissection using METIS_NodeND * * Usage: * * p = metis (A) orders A, using just tril(A) * p = metis (A,'sym') orders A, using just tril(A) * p = metis (A,'row') orders A*A' * p = metis (A,'col') orders A'*A * * METIS_NodeND's ordering is followed by CHOLMOD's etree or column etree * postordering. Requires METIS and the CHOLMOD Partition Module. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { #ifndef NPARTITION double dummy = 0 ; Int *Perm ; cholmod_sparse *A, Amatrix, *C, *S ; cholmod_common Common, *cm ; Int n, transpose, c, postorder ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin < 1 || nargin > 3) { mexErrMsgTxt ("Usage: p = metis (A, mode)") ; } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use tril(A) */ /* ---------------------------------------------------------------------- */ A->stype = -1 ; transpose = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0] ; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ transpose = FALSE ; A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ transpose = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric case (A) if string starts with 's' */ transpose = FALSE ; A->stype = -1 ; } else { mexErrMsgTxt ("metis: p=metis(A,mode) ; unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("metis: A must be square") ; } C = NULL ; if (transpose) { /* C = A', and then order C*C' with METIS */ C = cholmod_l_transpose (A, 0, cm) ; if (C == NULL) { mexErrMsgTxt ("metis failed") ; } A = C ; } n = A->nrow ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Perm = cholmod_l_malloc (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ /* order the matrix with CHOLMOD's interface to METIS_NodeND */ /* ---------------------------------------------------------------------- */ postorder = (nargin < 3) ; if (!cholmod_l_metis (A, NULL, 0, postorder, Perm, cm)) { mexErrMsgTxt ("metis failed") ; return ; } /* ---------------------------------------------------------------------- */ /* return Perm */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (Perm, n, 1) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (n, sizeof (Int), Perm, cm) ; cholmod_l_free_sparse (&C, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ #else mexErrMsgTxt ("METIS and the CHOLMOD Partition Module not installed\n") ; #endif } SuiteSparse/CHOLMOD/MATLAB/metis.m0000644001170100242450000000160710620371016015273 0ustar davisfacfunction p = metis (A, mode) %#ok %METIS nested dissection ordering via METIS_NodeND. % % Example: % p = metis(A) returns p such chol(A(p,p)) is typically sparser than % chol(A). Uses tril(A) and assumes A is symmetric. % p = metis(A,'sym') the same as p=metis(A). % p = metis(A,'col') returns p so that chol(A(:,p)'*A(:,p)) is typically % sparser than chol(A'*A). % p = metis(A,'row') returns p so that chol(A(p,:)*A(p,:)') is typically % sparser than chol(A'*A). % % A must be square for p=metis(A) or metis(A,'sym') % % Requires METIS, authored by George Karypis, Univ. of Minnesota. This % MATLAB interface, via CHOLMOD, is by Tim Davis. % % See also NESDIS, BISECT % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('metis mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/graph_demo.m0000644001170100242450000000465410620640443016267 0ustar davisfacfunction graph_demo (n) %GRAPH_DEMO graph partitioning demo % graph_demo(n) constructs an set of n-by-n 2D grids, partitions them, and % plots them in one-second intervals. n is optional; it defaults to 60. % % Example: % graph_demo % % See also DELSQ, NUMGRID, GPLOT, TREEPLOT % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse if (nargin < 1) % construct a 60-by-60 grid n = 60 ; end figure (1) clf for regions = {'Square', 'C' 'Disc', 'Annulus', 'Heart', 'Butterfly', 'L'} % construct the grid region = regions {1} ; g = numgrid (region (1), n) ; x = repmat (0:n-1, n, 1) ; y = repmat (((n-1):-1:0)', 1, n) ; A = delsq (g) ; x = x (find (g)) ; %#ok y = y (find (g)) ; %#ok % plot the original grid clf subplot (2,2,1) my_gplot (A, x, y) title (sprintf ('%s-shaped 2D grid', region)) ; axis equal axis off % bisect the graph s = bisect (A) ; [i j] = find (A) ; subplot (2,2,2) my_gplot (sparse (i, j, s(i) == s(j)), x, y) ; title ('node bisection') ; axis equal axis off % nested dissection nsmall = floor (size (A,1) / 2) ; defaults = 0 ; while (1) if (defaults) % use defaults [p cp cmember] = nesdis (A) ; else [p cp cmember] = nesdis (A, 'sym', nsmall) ; end % plot the components subplot (2,2,3) my_gplot (sparse (i, j, cmember(i) == cmember (j)), x, y) ; if (defaults) title ('nested dissection (defaults)') ; else title (sprintf ('nested dissection, nsmall %d', nsmall)) ; end axis equal axis off % plot the separator tree subplot (2,2,4) treeplot (cp, 'ko') title ('separator tree') ; axis equal axis off drawnow pause (0.1) if (defaults) break ; end nsmall = floor (nsmall / 2) ; if (nsmall < 20) defaults = 1 ; pause (0.2) end end end %------------------------------------------------------------------------------- function my_gplot (A, x, y) % my_gplot : like gplot, just a lot faster [i, j] = find (A) ; [ignore, p] = sort (max(i, j)) ; i = i (p) ; j = j (p) ; nans = repmat (NaN, size (i)) ; x = [ x(i) x(j) nans ]' ; y = [ y(i) y(j) nans ]' ; plot (x (:), y (:)) ; SuiteSparse/CHOLMOD/MATLAB/sparse2.c0000644001170100242450000000077510301355376015533 0ustar davisfac/* ========================================================================== */ /* === MATLAB/sparse2 mexFunction =========================================== */ /* ========================================================================== */ /* Identical to the "sparse" function in MATLAB, just faster. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { sputil_sparse (nargout, pargout, nargin, pargin) ; } SuiteSparse/CHOLMOD/MATLAB/sparse2.m0000644001170100242450000000175510620371040015532 0ustar davisfacfunction S = sparse2 (i,j,s,m,n,nzmax) %#ok %SPARSE2 replacement for SPARSE % % Example: % S = sparse2 (i,j,s,m,n,nzmax) % % Identical to the MATLAB sparse function (just faster). % An additional feature is added that is not part of the MATLAB sparse % function, the Z matrix. With an extra output, % % [S Z] = sparse2 (i,j,s,m,n,nzmax) % % the matrix Z is a binary real matrix whose nonzero pattern contains the % explicit zero entries that were dropped from S. Z only contains entries % for the sparse2(i,j,s,...) usage. [S Z]=sparse2(X) where X is full always % returns Z with nnz(Z) = 0, as does [S Z]=sparse2(m,n). More precisely, % Z is the following matrix (where ... means the optional m, n, and nzmax % parameters). % % S = sparse (i,j,s, ...) % Z = spones (sparse (i,j,1, ...)) - spones (S) % % See also sparse. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('sparse2 mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/spsym.c0000644001170100242450000000652010621030000015274 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/spsym mexFunction ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* [result xmatched pmatched nzoffdiag nzdiag] = spsym (A, quick). * See the spsym.m file for a description of what it computes. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; cholmod_sparse Amatrix, *A ; cholmod_common Common, *cm ; Int result, quick, option, xmatched, pmatched, nzoffdiag, nzdiag ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin > 2 || nargin < 1 || nargout > 5) { mexErrMsgTxt ("usage: [s xmatch pmatch nzoff nzd] = spsym (A,quick)") ; } if (!mxIsSparse (pargin [0])) { mexErrMsgTxt ("A must be sparse and double") ; } /* get sparse matrix A */ A = sputil_get_sparse (pargin [0], &Amatrix, &dummy, 0) ; /* get the "quick" parameter */ quick = (nargin > 1) ? (mxGetScalar (pargin [1]) != 0) : FALSE ; if (nargout > 1) { option = 2 ; } else if (quick) { option = 0 ; } else { option = 1 ; } /* ---------------------------------------------------------------------- */ /* determine symmetry */ /* ---------------------------------------------------------------------- */ xmatched = 0 ; pmatched = 0 ; nzoffdiag = 0 ; nzdiag = 0 ; result = cholmod_l_symmetry (A, option, &xmatched, &pmatched, &nzoffdiag, &nzdiag, cm) ; /* ---------------------------------------------------------------------- */ /* return results to MATLAB */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (&result, 1, 0) ; if (nargout > 1) pargout [1] = sputil_put_int (&xmatched, 1, 0) ; if (nargout > 2) pargout [2] = sputil_put_int (&pmatched, 1, 0) ; if (nargout > 3) pargout [3] = sputil_put_int (&nzoffdiag, 1, 0) ; if (nargout > 4) pargout [4] = sputil_put_int (&nzdiag, 1, 0) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; } SuiteSparse/CHOLMOD/MATLAB/spsym.m0000644001170100242450000000611010635513364015331 0ustar davisfacfunction result = spsym (A, quick) %#ok %SPSYM determine if a sparse matrix is symmetric, Hermitian, or skew-symmetric. % If so, also determine if its diagonal has all positive real entries. % A must be sparse. % % Example: % result = spsym (A) ; % result = spsym (A,quick) ; % % If quick = 0, or is not present, then this routine returns: % % 1: if A is rectangular % 2: if A is unsymmetric % 3: if A is symmetric, but with one or more A(j,j) <= 0 % 4: if A is Hermitian, but with one or more A(j,j) <= 0 or with % nonzero imaginary part % 5: if A is skew symmetric (and thus the diagonal is all zero as well) % 6: if A is symmetric with real positive diagonal % 7: if A is Hermitian with real positive diagonal % % If quick is nonzero, then the function can return more quickly, as soon as % it finds a diagonal entry that is <= 0 or with a nonzero imaginary part. In % this case, it returns 1, even if the matrix might otherwise be symmetric or % Hermitian. % % Regardless of the value of "quick", this function returns 6 or 7 if A is % a candidate for sparse Cholesky. % % For an MATLAB M-file function that computes the same thing as this % mexFunction (but much slower), see the get_symmetry function by typing % "type spsym". % % This spsym function does not compute the transpose of A, nor does it need % to examine the entire matrix if it is unsymmetric. It uses very little % memory as well (just size-n workspace, where n = size (A,1)). % % Examples: % load west0479 % A = west0479 ; % spsym (A) % spsym (A+A') % spsym (A-A') % spsym (A+A'+3*speye(size(A,1))) % % See also mldivide. % function result = get_symmetry (A,quick) % %GET_SYMMETRY: does the same thing as the spsym mexFunction. % % It's just a lot slower and uses much more memory. This function % % is meant for testing and documentation only. % [m n] = size (A) ; % if (m ~= n) % result = 1 ; % rectangular % return % end % if (nargin < 2) % quick = 0 ; % end % d = diag (A) ; % posdiag = all (real (d) > 0) & all (imag (d) == 0) ; % if (quick & ~posdiag) % result = 2 ; % Not a candidate for sparse Cholesky. % elseif (~isreal (A) & nnz (A-A') == 0) % if (posdiag) % result = 7 ; % complex Hermitian, with positive diagonal % else % result = 4 ; % complex Hermitian, nonpositive diagonal % end % elseif (nnz (A-A.') == 0) % if (posdiag) % result = 6 ; % symmetric with positive diagonal % else % result = 3 ; % symmetric, nonpositive diagonal % end % elseif (nnz (A+A.') == 0) % result = 5 ; % skew symmetric % else % result = 2 ; % unsymmetric % end % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('spsym mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/symbfact2.c0000644001170100242450000002257010621027116016034 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/symbfact2 mexFunction ================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Usage: * * count = symbfact2 (A) returns row counts of R=chol(A) * count = symbfact2 (A,'col') returns row counts of R=chol(A'*A) * count = symbfact2 (A,'sym') same as symbfact2(A) * count = symbfact2 (A,'lo') same as symbfact2(A'), uses tril(A) * count = symbfact2 (A,'row') returns row counts of R=chol(A*A') * * [count, h, parent, post, R] = symbfact2 (...) * * h: height of the elimination tree * parent: the elimination tree itself * post: postordering of the elimination tree * R: a 0-1 matrix whose structure is that of chol(A) or chol(A'*A) * for the 'col' case * * symbfact2(A) and symbfact2(A,'sym') uses triu(A). * symbfact2(A,'lo') uses tril(A). * * These forms return L = R' instead of R. They are faster and take less * memory. They return the same count, h, parent, and post outputs. * * [count, h, parent, post, L] = symbfact2 (A,'col','L') * [count, h, parent, post, L] = symbfact2 (A,'sym','L') * [count, h, parent, post, L] = symbfact2 (A,'lo', 'L') * [count, h, parent, post, L] = symbfact2 (A,'row','L') */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; double *Lx, *px ; Int *Parent, *Post, *ColCount, *First, *Level, *Rp, *Ri, *Lp, *Li, *W ; cholmod_sparse *A, Amatrix, *F, *Aup, *Alo, *R, *A1, *A2, *L, *S ; cholmod_common Common, *cm ; Int n, i, coletree, j, lnz, p, k, height, c ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 5 || nargin < 1 || nargin > 3) { mexErrMsgTxt ( "Usage: [count h parent post R] = symbfact2 (A, mode, Lmode)") ; } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use triu(A) */ /* ---------------------------------------------------------------------- */ A->stype = 1 ; n = A->nrow ; coletree = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0] ; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ n = A->ncol ; coletree = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric upper case (A) if string starts with 's' */ A->stype = 1 ; } else if (tolower (c) == 'l') { /* symmetric lower case (A) if string starts with 'l' */ A->stype = -1 ; } else { mexErrMsgTxt ("symbfact2: unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("symbfact2: A must be square") ; } /* ---------------------------------------------------------------------- */ /* compute the etree, its postorder, and the row/column counts */ /* ---------------------------------------------------------------------- */ Parent = cholmod_l_malloc (n, sizeof (Int), cm) ; Post = cholmod_l_malloc (n, sizeof (Int), cm) ; ColCount = cholmod_l_malloc (n, sizeof (Int), cm) ; First = cholmod_l_malloc (n, sizeof (Int), cm) ; Level = cholmod_l_malloc (n, sizeof (Int), cm) ; /* F = A' */ F = cholmod_l_transpose (A, 0, cm) ; if (A->stype == 1 || coletree) { /* symmetric upper case: find etree of A, using triu(A) */ /* column case: find column etree of A, which is etree of A'*A */ Aup = A ; Alo = F ; } else { /* symmetric lower case: find etree of A, using tril(A) */ /* row case: find row etree of A, which is etree of A*A' */ Aup = F ; Alo = A ; } cholmod_l_etree (Aup, Parent, cm) ; if (cm->status < CHOLMOD_OK) { /* out of memory or matrix invalid */ mexErrMsgTxt ("symbfact2 failed: matrix corrupted!") ; } if (cholmod_l_postorder (Parent, n, NULL, Post, cm) != n) { /* out of memory or Parent invalid */ mexErrMsgTxt ("symbfact2 postorder failed!") ; } /* symmetric upper case: analyze tril(F), which is triu(A) */ /* column case: analyze F*F', which is A'*A */ /* symmetric lower case: analyze tril(A) */ /* row case: analyze A*A' */ cholmod_l_rowcolcounts (Alo, NULL, 0, Parent, Post, NULL, ColCount, First, Level, cm) ; if (cm->status < CHOLMOD_OK) { /* out of memory or matrix invalid */ mexErrMsgTxt ("symbfact2 failed: matrix corrupted!") ; } /* ---------------------------------------------------------------------- */ /* return results to MATLAB: count, h, parent, and post */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (ColCount, n, 0) ; if (nargout > 1) { /* compute the elimination tree height */ height = 0 ; for (i = 0 ; i < n ; i++) { height = MAX (height, Level [i]) ; } height++ ; pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; px = mxGetPr (pargout [1]) ; px [0] = height ; } if (nargout > 2) { pargout [2] = sputil_put_int (Parent, n, 1) ; } if (nargout > 3) { pargout [3] = sputil_put_int (Post, n, 1) ; } /* ---------------------------------------------------------------------- */ /* construct L, if requested */ /* ---------------------------------------------------------------------- */ if (nargout > 4) { if (A->stype == 1) { /* symmetric upper case: use triu(A) only, A2 not needed */ A1 = A ; A2 = NULL ; } else if (A->stype == -1) { /* symmetric lower case: use tril(A) only, A2 not needed */ A1 = F ; A2 = NULL ; } else if (coletree) { /* column case: analyze F*F' */ A1 = F ; A2 = A ; } else { /* row case: analyze A*A' */ A1 = A ; A2 = F ; } /* count the total number of entries in L */ lnz = 0 ; for (j = 0 ; j < n ; j++) { lnz += ColCount [j] ; } /* allocate the output matrix L (pattern-only) */ L = cholmod_l_allocate_sparse (n, n, lnz, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm) ; Lp = L->p ; Li = L->i ; /* initialize column pointers */ lnz = 0 ; for (j = 0 ; j < n ; j++) { Lp [j] = lnz ; lnz += ColCount [j] ; } Lp [j] = lnz ; /* create a copy of the column pointers */ W = First ; for (j = 0 ; j < n ; j++) { W [j] = Lp [j] ; } /* get workspace for computing one row of L */ R = cholmod_l_allocate_sparse (n, 1, n, FALSE, TRUE, 0, CHOLMOD_PATTERN, cm) ; Rp = R->p ; Ri = R->i ; /* compute L one row at a time */ for (k = 0 ; k < n ; k++) { /* get the kth row of L and store in the columns of L */ cholmod_l_row_subtree (A1, A2, k, Parent, R, cm) ; for (p = 0 ; p < Rp [1] ; p++) { Li [W [Ri [p]]++] = k ; } /* add the diagonal entry */ Li [W [k]++] = k ; } /* free workspace */ cholmod_l_free_sparse (&R, cm) ; /* transpose L to get R, or leave as is */ if (nargin < 3) { /* R = L' */ R = cholmod_l_transpose (L, 0, cm) ; cholmod_l_free_sparse (&L, cm) ; L = R ; } /* fill numerical values of L with one's (only MATLAB needs this...) */ L->x = cholmod_l_malloc (lnz, sizeof (double), cm) ; Lx = L->x ; for (p = 0 ; p < lnz ; p++) { Lx [p] = 1 ; } L->xtype = CHOLMOD_REAL ; /* return L (or R) to MATLAB */ pargout [4] = sputil_put_sparse (&L, cm) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (n, sizeof (Int), Parent, cm) ; cholmod_l_free (n, sizeof (Int), Post, cm) ; cholmod_l_free (n, sizeof (Int), ColCount, cm) ; cholmod_l_free (n, sizeof (Int), First, cm) ; cholmod_l_free (n, sizeof (Int), Level, cm) ; cholmod_l_free_sparse (&F, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != ((nargout == 5) ? 3:0)) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/symbfact2.m0000644001170100242450000000410710620371044016043 0ustar davisfacfunction [count, h, parent, post, L] = symbfact2 (A, mode, Lmode) %#ok %SYMBFACT2 symbolic factorization % % Analyzes the Cholesky factorization of A, A'*A, or A*A'. % % Example: % count = symbfact2 (A) returns row counts of R=chol(A) % count = symbfact2 (A,'col') returns row counts of R=chol(A'*A) % count = symbfact2 (A,'sym') same as symbfact2(A) % count = symbfact2 (A,'lo') same as symbfact2(A'), uses tril(A) % count = symbfact2 (A,'row') returns row counts of R=chol(A*A') % % The flop count for a subsequent LL' factorization is sum(count.^2) % % [count, h, parent, post, R] = symbfact2 (...) returns: % % h: height of the elimination tree % parent: the elimination tree itself % post: postordering of the elimination tree % R: a 0-1 matrix whose structure is that of chol(A) for the symmetric % case, chol(A'*A) for the 'col' case, or chol(A*A') for the % 'row' case. % % symbfact2(A) and symbfact2(A,'sym') uses the upper triangular part of A % (triu(A)) and assumes the lower triangular part is the transpose of % the upper triangular part. symbfact2(A,'lo') uses tril(A) instead. % % With one to four output arguments, symbfact2 takes time almost proportional % to nnz(A)+n where n is the dimension of R, and memory proportional to % nnz(A). Computing the 5th argument takes more time and memory, both % O(nnz(L)). Internally, the pattern of L is computed and R=L' is returned. % % The following forms return L = R' instead of R. They are faster and take % less memory than the forms above. They return the same count, h, parent, % and post outputs. % % [count, h, parent, post, L] = symbfact2 (A,'col','L') % [count, h, parent, post, L] = symbfact2 (A,'sym','L') % [count, h, parent, post, L] = symbfact2 (A,'lo', 'L') % [count, h, parent, post, L] = symbfact2 (A,'row','L') % % See also CHOL, ETREE, TREELAYOUT, SYMBFACT % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('symbfact2 mexFunction not found!') ; SuiteSparse/CHOLMOD/MATLAB/cholmod_demo.m0000644001170100242450000000714410712143743016613 0ustar davisfacfunction cholmod_demo %CHOLMOD_DEMO a demo for CHOLMOD % % Tests CHOLMOD with various randomly-generated matrices, and the west0479 % matrix distributed with MATLAB. Random matrices are not good test cases, % but they are easily generated. It also compares CHOLMOD and MATLAB on the % sparse matrix problem used in the MATLAB BENCH command. % % See CHOLMOD/MATLAB/Test/cholmod_test.m for a lengthy test using matrices from % the UF sparse matrix collection. % % Example: % cholmod_demo % % See also BENCH % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse help cholmod_demo rand ('state', 0) ; randn ('state', 0) ; load west0479 A = west0479 ; n = size (A,1) ; A = A*A'+100*speye (n) ; try_matrix (A) ; clear A n = 2000 ; A = sprandn (n, n, 0.002) ; A = A+A'+100*speye (n) ; try_matrix (A) ; clear A for n = [100 2000] A = rand (n) ; A = A*A' + 10 * eye (n) ; try_matrix (A) ; clear A end fprintf ('\n--------------------------------------------------------------\n') ; fprintf ('\nWith the matrix used in the MATLAB 7.2 "bench" program.\n') ; fprintf ('No fill-reducing orderings are used; type "help bench" for more') ; fprintf (' information.\n') ; n = 300 ; A = delsq (numgrid ('L', n)) ; b = sum (A)' ; spparms ('default') ; spparms ('autommd',0) ; spparms ('autoamd',0) ; tic ; x = A\b ; t1 = toc ; e1 = norm (A*x-b) ; tic ; x = cholmod2 (A,b,0) ; t2 = toc ; e2 = norm (A*x-b) ; fprintf ('MATLAB x=A\\b time: %8.4f resid: %8.0e\n', t1, e1) ; fprintf ('CHOLMOD x=A\\b time: %8.4f resid: %8.0e\n', t2, e2) ; fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ; spparms ('default') ; fprintf ('\ncholmod_demo finished: all tests passed\n') ; fprintf ('\nFor more accurate timings, run this test again.\n') ; function try_matrix (A) % try_matrix: try a matrix with CHOLMOD n = size (A,1) ; S = sparse (A) ; fprintf ('\n--------------------------------------------------------------\n') ; if (issparse (A)) fprintf ('cholmod_demo: sparse matrix, n %d nnz %d\n', n, nnz (A)) ; else fprintf ('cholmod_demo: dense matrix, n %d\n', n) ; end X = rand (n,1) ; C = sparse (X) ; try % use built-in AMD p = amd (S) ; catch try % use AMD from SuiteSparse (../../AMD) p = amd2 (S) ; catch % use SYMAMD p = symamd (S) ; end end S = S (p,p) ; lnz = symbfact2 (S) ; fl = sum (lnz.^2) ; tic L = lchol (S) ; %#ok t1 = toc ; fprintf ('CHOLMOD lchol(sparse(A)) time: %6.2f mflop %8.1f\n', ... t1, 1e-6 * fl / t1) ; tic LD = ldlchol (S) ; %#ok t2 = toc ; fprintf ('CHOLMOD ldlchol(sparse(A)) time: %6.2f mflop %8.1f\n', ... t2, 1e-6 * fl / t2) ; tic LD = ldlupdate (LD,C) ; t3 = toc ; fprintf ('CHOLMOD ldlupdate(sparse(A),C) time: %6.2f (rank-1, C dense)\n', t3) ; [L,D] = ldlsplit (LD) ; L = full (L) ; err = norm ((S+C*C') - L*D*L', 1) / norm (S,1) ; fprintf ('err: %g\n', err) ; tic R = chol (S) ; %#ok s1 = toc ; fprintf ('MATLAB chol(sparse(A)) time: %6.2f mflop %8.1f\n', ... s1, 1e-6 * fl / s1) ; E = full (A) ; tic R = chol (E) ; s2 = toc ; fprintf ('MATLAB chol(full(A)) time: %6.2f mflop %8.1f\n', ... s2, 1e-6 * fl / s2) ; Z = full (R) ; tic Z = cholupdate (Z,X) ; s3 = toc ; fprintf ('MATLAB cholupdate(full(A),C) time: %6.2f (rank-1)\n', s3) ; err = norm ((E+X*X') - Z'*Z, 1) / norm (E,1) ; fprintf ('err: %g\n', err) ; fprintf ('CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): %6.1f\n', ... s1 / t1) ; fprintf ('CHOLMOD sparse update speedup vs MATLAB DENSE update: %6.1f\n', ... s3 / t3) ; clear E S L R LD X C D Z clear err s1 s2 s3 t1 t2 t3 n SuiteSparse/CHOLMOD/MATLAB/ldlchol.c0000644001170100242450000001565010621027704015567 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/ldlchol mexFunction =================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Numeric LDL' factorization. Note that LL' and LDL' are faster than R'R * and use less memory. The LDL' factorization methods use tril(A). * The unit diagonal L can be obtained with tril(LD,-1)+speye(n) and the * diagonal D can be obtained with D = diag(diag(LD)) ; * * LD = ldlchol (A) return the LDL' factorization of A * [LD,p] = ldlchol (A) like [R,p] = chol(A), except LD is always square * [LD,p,q] = ldlchol (A) factorizes A(q,q) into L*D*L' * * LD = ldlchol (A,beta) return the LDL' factorization of A*A'+beta*I * [LD,p] = ldlchol (A,beta) like [R,p] = chol(A*A'+beta+I) * [LD,p,q] = ldlchol (A,beta) factorizes A(q,:)*A(q,:)'+beta*I into L*D*L' * * Explicit zeros may appear in the LD matrix. The pattern of LD matches the * pattern of L as computed by symbfact2, even if some entries in LD are * explicitly zero. This is to ensure that ldlupdate works properly. You must * NOT modify LD in MATLAB itself and then use ldlupdate if LD contains * explicit zero entries; ldlupdate will fail catastrophically in this case. * * You MAY modify LD in MATLAB if you do not pass it back to ldlupdate. Just be * aware that LD contains explicit zero entries, contrary to the standard * practice in MATLAB of removing those entries from all sparse matrices. * * Note that CHOLMOD uses a supernodal LL' factorization and then converts it * to LDL' for large matrices, and a simplicial LDL' factorization otherwise. * Two-by-two block pivoting is not performed, in any case. Thus, ldlchol * will not be able to perform an LDL' factorization of an arbitrary indefinite * matrix. The matrix * * 0 1 * 1 0 * * will fail, for example. You can tell CHOLMOD to always use its simplicial * LDL' factorization by adding the statement * * cm->supernodal = CHOLMOD_SIMPLICIAL ; * * but ldlchol will be much slower for large matrices. It still will not be * able to handle the above matrix, but it can then handle matrices such as * * -2 1 * 1 -2 * * or any other symmetric matrix for which all leading minors are * well-conditioned. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, beta [2], *px ; cholmod_sparse Amatrix, *A, *Lsparse ; cholmod_factor *L ; cholmod_common Common, *cm ; Int n, minor ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* convert to packed LDL' when done */ cm->final_asis = FALSE ; cm->final_super = FALSE ; cm->final_ll = FALSE ; cm->final_pack = TRUE ; cm->final_monotonic = TRUE ; /* since numerically zero entries are NOT dropped from the symbolic * pattern, we DO need to drop entries that result from supernodal * amalgamation. */ cm->final_resymbol = TRUE ; cm->quick_return_if_not_posdef = (nargout < 2) ; /* This will disable the supernodal LL', which will be slow. */ /* cm->supernodal = CHOLMOD_SIMPLICIAL ; */ /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin > 2 || nargout > 3) { mexErrMsgTxt ("usage: [L,p,q] = ldlchol (A,beta)") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0])) { mexErrMsgTxt ("A must be sparse") ; } if (nargin == 1 && n != mxGetN (pargin [0])) { mexErrMsgTxt ("A must be square") ; } /* get sparse matrix A, use tril(A) */ A = sputil_get_sparse (pargin [0], &Amatrix, &dummy, -1) ; if (nargin == 1) { A->stype = -1 ; /* use lower part of A */ beta [0] = 0 ; beta [1] = 0 ; } else { A->stype = 0 ; /* use all of A, factorizing A*A' */ beta [0] = mxGetScalar (pargin [1]) ; beta [1] = 0 ; } /* use natural ordering if no q output parameter */ if (nargout < 3) { cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = FALSE ; } /* ---------------------------------------------------------------------- */ /* analyze and factorize */ /* ---------------------------------------------------------------------- */ L = cholmod_l_analyze (A, cm) ; cholmod_l_factorize_p (A, beta, NULL, 0, L, cm) ; if (nargout < 2 && cm->status != CHOLMOD_OK) { mexErrMsgTxt ("matrix is not positive definite") ; } /* ---------------------------------------------------------------------- */ /* convert L to a sparse matrix */ /* ---------------------------------------------------------------------- */ /* the conversion sets L->minor back to n, so get a copy of it first */ minor = L->minor ; Lsparse = cholmod_l_factor_to_sparse (L, cm) ; if (Lsparse->xtype == CHOLMOD_COMPLEX) { /* convert Lsparse from complex to zomplex */ cholmod_l_sparse_xtype (CHOLMOD_ZOMPLEX, Lsparse, cm) ; } /* ---------------------------------------------------------------------- */ /* return results to MATLAB */ /* ---------------------------------------------------------------------- */ /* return L as a sparse matrix (it may contain numerically zero entries) */ pargout [0] = sputil_put_sparse (&Lsparse, cm) ; /* return minor (translate to MATLAB convention) */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; px = mxGetPr (pargout [1]) ; px [0] = ((minor == n) ? 0 : (minor+1)) ; } /* return permutation */ if (nargout > 2) { pargout [2] = sputil_put_int (L->Perm, n, 1) ; } /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 3 + mxIsComplex (pargout[0])) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/ldlchol.m0000644001170100242450000000375610620370767015616 0ustar davisfacfunction [LD,p,q] = ldlchol (A,beta) %#ok %LDLCHOL sparse A=LDL' factorization % Note that L*L' (LCHOL) and L*D*L' (LDLCHOL) factorizations are faster than % R'*R (CHOL2 and CHOL) and use less memory. The LL' and LDL' factorization % methods use tril(A). A must be sparse. % % Example: % LD = ldlchol (A) return the LDL' factorization of A % [LD,p] = ldlchol (A) similar [R,p] = chol(A), but for L*D*L' % [LD,p,q] = ldlchol (A) factorizes A(q,q) into L*D*L', where q is a % fill-reducing ordering % % LD = ldlchol (A,beta) return the LDL' factorization of A*A'+beta*I % [LD,p] = ldlchol (A,beta) like [R,p] = chol(A*A'+beta+I) % [LD,p,q] = ldlchol (A,beta) factorizes A(q,:)*A(q,:)'+beta*I into L*D*L' % % The output matrix LD contains both L and D. D is on the diagonal of LD, and % L is contained in the strictly lower triangular part of LD. The unit- % diagonal of L is not stored. You can obtain the L and D matrices with % [L,D] = ldlsplit (LD). LD is in the form needed by ldlupdate. % % Explicit zeros may appear in the LD matrix. The pattern of LD matches the % pattern of L as computed by symbfact2, even if some entries in LD are % explicitly zero. This is to ensure that ldlupdate and ldlsolve work % properly. You must NOT modify LD in MATLAB itself and then use ldlupdate % or ldlsolve if LD contains explicit zero entries; ldlupdate and ldlsolve % will fail catastrophically in this case. % % You MAY modify LD in MATLAB if you do not pass it back to ldlupdate or % ldlsolve. Just be aware that LD contains explicit zero entries, contrary % to the standard practice in MATLAB of removing those entries from all % sparse matrices. LD = sparse2 (LD) will remove any zero entries in LD. % % See also LDLUPDATE, LDLSOLVE, LDLSPLIT, CHOL2, LCHOL, CHOL, SPARSE2 % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('ldlchol mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/ldlupdate.c0000644001170100242450000001322410617610225016120 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/ldlupdate mexFunction ================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Multiple-rank update or downdate of a sparse LDL' factorization. * * Usage: * * LD = ldlupdate (LD,C) update an LDL' factorization * LD = ldlupdate (LD,C,'+') update an LDL' factorization * LD = ldlupdate (LD,C,'-') downdate an LDL' factorization * * See ldlupdate.m for details. LD and C must be real and sparse. * * The bulk of the time is spent copying the input LD to the output LD. This * mexFunction could be much faster if it could safely modify its input LD. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; double *Lx, *Lx2 ; Int *Li, *Lp, *Li2, *Lp2, *Lnz2, *ColCount ; cholmod_sparse Cmatrix, *C, *Lsparse ; cholmod_factor *L ; cholmod_common Common, *cm ; Int j, k, s, update, n, lnz ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: L = ldlupdate (L, C, '+')") ; } n = mxGetN (pargin [0]) ; k = mxGetN (pargin [1]) ; if (!mxIsSparse (pargin [0]) || !mxIsSparse (pargin [1]) || n != mxGetM (pargin [0]) || n != mxGetM (pargin [1]) || mxIsComplex (pargin [0]) || mxIsComplex (pargin [1])) { mexErrMsgTxt ("ldlupdate: C and/or L not sparse, complex, or wrong" " dimensions") ; } /* ---------------------------------------------------------------------- */ /* determine if we're doing an update or downdate */ /* ---------------------------------------------------------------------- */ update = TRUE ; if (nargin > 2 && mxIsChar (pargin [2])) { mxGetString (pargin [2], buf, LEN) ; if (buf [0] == '-') { update = FALSE ; } else if (buf [0] != '+') { mexErrMsgTxt ("ldlupdate: update string must be '+' or '-'") ; } } /* ---------------------------------------------------------------------- */ /* get C: sparse matrix of incoming/outgoing columns */ /* ---------------------------------------------------------------------- */ C = sputil_get_sparse (pargin [1], &Cmatrix, &dummy, 0) ; /* ---------------------------------------------------------------------- */ /* construct a copy of the input sparse matrix L */ /* ---------------------------------------------------------------------- */ /* get the MATLAB L */ Lp = (Int *) mxGetJc (pargin [0]) ; Li = (Int *) mxGetIr (pargin [0]) ; Lx = mxGetPr (pargin [0]) ; /* allocate the CHOLMOD symbolic L */ L = cholmod_l_allocate_factor (n, cm) ; L->ordering = CHOLMOD_NATURAL ; ColCount = L->ColCount ; for (j = 0 ; j < n ; j++) { ColCount [j] = Lp [j+1] - Lp [j] ; } /* allocate space for a CHOLMOD LDL' packed factor */ cholmod_l_change_factor (CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; /* copy MATLAB L into CHOLMOD L */ Lp2 = L->p ; Li2 = L->i ; Lx2 = L->x ; Lnz2 = L->nz ; lnz = L->nzmax ; for (j = 0 ; j <= n ; j++) { Lp2 [j] = Lp [j] ; } for (j = 0 ; j < n ; j++) { Lnz2 [j] = Lp [j+1] - Lp [j] ; } for (s = 0 ; s < lnz ; s++) { Li2 [s] = Li [s] ; } for (s = 0 ; s < lnz ; s++) { Lx2 [s] = Lx [s] ; } /* ---------------------------------------------------------------------- */ /* update/downdate the LDL' factorization */ /* ---------------------------------------------------------------------- */ if (!cholmod_l_updown (update, C, L, cm)) { mexErrMsgTxt ("ldlupdate failed\n") ; } /* ---------------------------------------------------------------------- */ /* copy the results back to MATLAB */ /* ---------------------------------------------------------------------- */ /* change L back to packed LDL' (it may have become unpacked if the * sparsity pattern changed). This change takes O(n) time if the pattern * of L wasn't updated. */ Lsparse = cholmod_l_factor_to_sparse (L, cm) ; /* return L as a sparse matrix */ pargout [0] = sputil_put_sparse (&Lsparse, cm) ; /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 3 + mxIsComplex (pargout[0])) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/ldlupdate.m0000644001170100242450000000475310620371011016130 0ustar davisfacfunction LD = ldlupdate (LD,C,updown) %#ok %LDLUPDATE multiple-rank update or downdate of a sparse LDL' factorization. % % On input, LD contains the LDL' factorization of A (L*D*L'=A or A(q,q)). % The unit-diagonal of L is not stored. In its place is the diagonal matrix % D. LD can be computed using the CHOLMOD mexFunctions: % % LD = ldlchol (A) ; % or % [LD,p,q] = ldlchol (A) ; % % With this LD, either of the following MATLAB statements, % % Example: % LD = ldlupdate (LD,C) % LD = ldlupdate (LD,C,'+') % % return the LDL' factorization of A+C*C' or A(q,q)-C*C' if LD holds the LDL' % factorization of A(q,q) on input. For a downdate: % % LD = ldlupdate (LD,C,'-') % % returns the LDL' factorization of A-C*C' or A(q,q)-C*C'. % % LD and C must be sparse and real. LD must be square, and C must have the % same number of rows as LD. You must not modify LD in MATLAB (see the % WARNING below). % % Note that if C is sparse with few columns, most of the time spent in this % routine is taken by copying the input LD to the output LD. If MATLAB % allowed mexFunctions to safely modify its inputs, this mexFunction would % be much faster, since not all of LD changes. % % See also LDLCHOL, LDLSPLIT, LDLSOLVE, CHOLUPDATE % % =========================================================================== % =============================== WARNING =================================== % =========================================================================== % MATLAB drops zero entries from its sparse matrices. LD can contain % numerically zero entries that are symbolically present in the sparse matrix % data structure. These are essential for ldlupdate and ldlsolve to work % properly, since they exploit the graph-theoretic structure of a sparse % Cholesky factorization. If you modify LD in MATLAB, those zero entries may % get dropped and the required graph property will be destroyed. In this % case, ldlupdate and ldlsolve will fail catastrophically (possibly with a % segmentation fault, terminating MATLAB). It takes much more time to ensure % this property holds than the time it takes to do the update/downdate or the % solve, so ldlupdate and ldlsolve simply assume the propertly holds. % =========================================================================== % Copyright 2006-2007, Timothy A. Davis, William W. Hager % http://www.cise.ufl.edu/research/sparse error ('ldlupdate mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/resymbol.c0000644001170100242450000001236110621027746016004 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/resymbol mexFunction ================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Usage: * L = resymbol (L, A) * * Recompute the symbolic Cholesky factorization of the matrix A. A must be * symmetric. Only tril(A) is used. Entries in L that are not in the Cholesky * factorization of A are removed from L. L can be from an LL' or LDL' * factorization. The numerical values of A are ignored; only its nonzero * pattern is used. */ /* ========================================================================== */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; double *Lx, *Lx2, *Lz, *Lz2 ; Int *Li, *Lp, *Lnz2, *Li2, *Lp2, *ColCount ; cholmod_sparse *A, Amatrix, *Lsparse, *S ; cholmod_factor *L ; cholmod_common Common, *cm ; Int j, s, n, lnz, is_complex ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin != 2) { mexErrMsgTxt ("usage: L = resymbol (L, A)\n") ; } n = mxGetN (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetM (pargin [0])) { mexErrMsgTxt ("resymbol: L must be sparse and square") ; } if (n != mxGetM (pargin [1]) || n != mxGetN (pargin [1])) { mexErrMsgTxt ("resymbol: A and L must have same dimensions") ; } /* ---------------------------------------------------------------------- */ /* get the sparse matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [1], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; A->stype = -1 ; /* A = sputil_get_sparse (pargin [1], &Amatrix, &dummy, -1) ; */ /* ---------------------------------------------------------------------- */ /* construct a copy of the input sparse matrix L */ /* ---------------------------------------------------------------------- */ /* get the MATLAB L */ Lp = (Int *) mxGetJc (pargin [0]) ; Li = (Int *) mxGetIr (pargin [0]) ; Lx = mxGetPr (pargin [0]) ; Lz = mxGetPi (pargin [0]) ; is_complex = mxIsComplex (pargin [0]) ; /* allocate the CHOLMOD symbolic L */ L = cholmod_l_allocate_factor (n, cm) ; L->ordering = CHOLMOD_NATURAL ; ColCount = L->ColCount ; for (j = 0 ; j < n ; j++) { ColCount [j] = Lp [j+1] - Lp [j] ; } /* allocate space for a CHOLMOD LDL' packed factor */ /* (LL' and LDL' are treated identically) */ cholmod_l_change_factor (is_complex ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL, FALSE, FALSE, TRUE, TRUE, L, cm) ; /* copy MATLAB L into CHOLMOD L */ Lp2 = L->p ; Li2 = L->i ; Lx2 = L->x ; Lz2 = L->z ; Lnz2 = L->nz ; lnz = L->nzmax ; for (j = 0 ; j <= n ; j++) { Lp2 [j] = Lp [j] ; } for (j = 0 ; j < n ; j++) { Lnz2 [j] = Lp [j+1] - Lp [j] ; } for (s = 0 ; s < lnz ; s++) { Li2 [s] = Li [s] ; } for (s = 0 ; s < lnz ; s++) { Lx2 [s] = Lx [s] ; } if (is_complex) { for (s = 0 ; s < lnz ; s++) { Lz2 [s] = Lz [s] ; } } /* ---------------------------------------------------------------------- */ /* resymbolic factorization */ /* ---------------------------------------------------------------------- */ cholmod_l_resymbol (A, NULL, 0, TRUE, L, cm) ; /* ---------------------------------------------------------------------- */ /* copy the results back to MATLAB */ /* ---------------------------------------------------------------------- */ Lsparse = cholmod_l_factor_to_sparse (L, cm) ; /* return L as a sparse matrix */ pargout [0] = sputil_put_sparse (&Lsparse, cm) ; /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 3 + mxIsComplex (pargout[0])) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/resymbol.m0000644001170100242450000000140110620371033015775 0ustar davisfacfunction L = resymbol (L, A) %#ok %RESYMBOL recomputes the symbolic Cholesky factorization of the matrix A. % % Example: % L = resymbol (L, A) % % Recompute the symbolic Cholesky factorization of the matrix A. A must be % symmetric. Only tril(A) is used. Entries in L that are not in the Cholesky % factorization of A are removed from L. L can be from an LL' or LDL' % factorization (lchol or ldlchol). resymbol is useful after a series of % downdates via ldlupdate, since downdates do not remove any entries in L. % The numerical values of A are ignored; only its nonzero pattern is used. % % See also LCHOL, LDLUPDATE % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('resymbol not found') ; SuiteSparse/CHOLMOD/MATLAB/etree2.c0000644001170100242450000001316410616450160015332 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/etree2 mexFunction ==================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Usage: * * parent = etree2 (A) returns etree of A, uses triu(A) * parent = etree2 (A, 'col') returns etree of A'*A * parent = etree2 (A, 'sym') same as etree2 (A) * parent = etree2 (A, 'row') same as etree2 (A', 'col') * parent = etree2 (A, 'lo') returns etree of A, uses tril(A) * * [parent post] = etree2(...) also returns a postorder of the tree * * etree2 (A, 'col') does not form A'*A and is thus faster than etree2 (A'*A) * and takes less memory. Likewise, etree (A, 'row') does not * form A*A', and is thus faster than etree2 (A*A') and takes less memory. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; Int *Parent ; cholmod_sparse *A, Amatrix, *S ; cholmod_common Common, *cm ; Int n, coletree, c ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 2 || nargin < 1 || nargin > 2) { mexErrMsgTxt ("Usage: [parent post] = etree2 (A, mode)") ; } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use triu(A) */ /* ---------------------------------------------------------------------- */ A->stype = 1 ; n = A->nrow ; coletree = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0] ; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ n = A->ncol ; coletree = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric upper case (A) if string starts with 's' */ A->stype = 1 ; } else if (tolower (c) == 'l') { /* symmetric lower case (A) if string starts with 'l' */ A->stype = -1 ; } else { mexErrMsgTxt ("etree2: unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("etree2: A must be square") ; } /* ---------------------------------------------------------------------- */ /* compute the etree */ /* ---------------------------------------------------------------------- */ Parent = cholmod_l_malloc (n, sizeof (Int), cm) ; if (A->stype == 1 || coletree) { /* symmetric case: find etree of A, using triu(A) */ /* column case: find column etree of A, which is etree of A'*A */ cholmod_l_etree (A, Parent, cm) ; } else { /* symmetric case: find etree of A, using tril(A) */ /* row case: find row etree of A, which is etree of A*A' */ /* R = A' */ cholmod_sparse *R ; R = cholmod_l_transpose (A, 0, cm) ; cholmod_l_etree (R, Parent, cm) ; cholmod_l_free_sparse (&R, cm) ; } if (cm->status < CHOLMOD_OK) { /* out of memory or matrix invalid */ mexErrMsgTxt ("etree2 failed: matrix corrupted!") ; } /* ---------------------------------------------------------------------- */ /* return Parent to MATLAB */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (Parent, n, 1) ; /* ---------------------------------------------------------------------- */ /* postorder the tree and return results to MATLAB */ /* ---------------------------------------------------------------------- */ if (nargout > 1) { Int *Post ; Post = cholmod_l_malloc (n, sizeof (Int), cm) ; if (cholmod_l_postorder (Parent, n, NULL, Post, cm) != n) { /* out of memory or Parent invalid */ mexErrMsgTxt ("etree2 postorder failed!") ; } pargout [1] = sputil_put_int (Post, n, 1) ; cholmod_l_free (n, sizeof (Int), Post, cm) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (n, sizeof (Int), Parent, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/etree2.m0000644001170100242450000000324710711661233015346 0ustar davisfacfunction [parent, post] = etree2 (A, mode) %#ok %ETREE2 sparse elimination tree. % Finds the elimination tree of A, A'*A, or A*A', and optionaly postorders % the tree. parent(j) is the parent of node j in the tree, or 0 if j is a % root. The symmetric case uses only the upper or lower triangular part of % A (etree2(A) uses the upper part, and etree2(A,'lo') uses the lower part). % % Example: % parent = etree2 (A) finds the elimination tree of A, using triu(A) % parent = etree2 (A,'sym') same as etree2(A) % parent = etree2 (A,'col') finds the elimination tree of A'*A % parent = etree2 (A,'row') finds the elimination tree of A*A' % parent = etree2 (A,'lo') finds the elimination tree of A, using tril(A) % % [parent,post] = etree2 (...) also returns a post-ordering of the tree. % % If you have a fill-reducing permutation p, you can combine it with an % elimination tree post-ordering using the following code. Post-ordering has % no effect on fill-in (except for lu), but it does improve the performance % of the subsequent factorization. % % For the symmetric case, suitable for chol(A(p,p)): % % [parent post] = etree2 (A (p,p)) ; % p = p (post) ; % % For the column case, suitable for qr(A(:,p)) or lu(A(:,p)): % % [parent post] = etree2 (A (:,p), 'col') ; % p = p (post) ; % % For the row case, suitable for qr(A(p,:)') or chol(A(p,:)*A(p,:)'): % % [parent post] = etree2 (A (p,:), 'row') ; % p = p (post) ; % % See also TREELAYOUT, TREEPLOT, ETREEPLOT, ETREE % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('etree2 mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/License.txt0000644001170100242450000000213210540000244016102 0ustar davisfacCHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. MATLAB(tm) is a Registered Trademark of The MathWorks, Inc. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/MATLAB module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/MATLAB/mread.c0000644001170100242450000001423110634320673015235 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/mread mexFunction ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* [A Z] = mread (filename, prefer_binary) * * Read a sparse or dense matrix from a file in Matrix Market format. * * All MatrixMarket formats are supported. * The Matrix Market "integer" format is converted into real, but the values * are preserved. The "pattern" format is converted into real. If a pattern * matrix is unsymmetric, all of its values are equal to one. If a pattern is * symmetric, the kth diagonal entry is set to one plus the number of * off-diagonal nonzeros in row/column k, and off-diagonal entries are set to * -1. * * Explicit zero entries are returned as the binary pattern of the matrix Z. */ #include "cholmod_matlab.h" /* maximum file length */ #define MAXLEN 1030 void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { void *G ; cholmod_dense *X = NULL ; cholmod_sparse *A = NULL, *Z = NULL ; cholmod_common Common, *cm ; Int *Ap = NULL, *Ai ; double *Ax, *Az = NULL ; char filename [MAXLEN] ; Int nz, k, is_complex = FALSE, nrow = 0, ncol = 0, allzero ; int mtype ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin > 2 || nargout > 2) { mexErrMsgTxt ("usage: [A Z] = mread (filename, prefer_binary)") ; } if (!mxIsChar (pargin [0])) { mexErrMsgTxt ("mread requires a filename") ; } mxGetString (pargin [0], filename, MAXLEN) ; sputil_file = fopen (filename, "r") ; if (sputil_file == NULL) { mexErrMsgTxt ("cannot open file") ; } if (nargin > 1) { cm->prefer_binary = (mxGetScalar (pargin [1]) != 0) ; } /* ---------------------------------------------------------------------- */ /* read the matrix, as either a dense or sparse matrix */ /* ---------------------------------------------------------------------- */ G = cholmod_l_read_matrix (sputil_file, 1, &mtype, cm) ; fclose (sputil_file) ; sputil_file = NULL ; if (G == NULL) { mexErrMsgTxt ("could not read file") ; } /* get the specific matrix (A or X), and change to ZOMPLEX if needed */ if (mtype == CHOLMOD_SPARSE) { A = (cholmod_sparse *) G ; nrow = A->nrow ; ncol = A->ncol ; is_complex = (A->xtype == CHOLMOD_COMPLEX) ; Ap = A->p ; Ai = A->i ; if (is_complex) { /* if complex, ensure A is ZOMPLEX */ cholmod_l_sparse_xtype (CHOLMOD_ZOMPLEX, A, cm) ; } Ax = A->x ; Az = A->z ; } else if (mtype == CHOLMOD_DENSE) { X = (cholmod_dense *) G ; nrow = X->nrow ; ncol = X->ncol ; is_complex = (X->xtype == CHOLMOD_COMPLEX) ; if (is_complex) { /* if complex, ensure X is ZOMPLEX */ cholmod_l_dense_xtype (CHOLMOD_ZOMPLEX, X, cm) ; } Ax = X->x ; Az = X->z ; } else { mexErrMsgTxt ("invalid file") ; } /* ---------------------------------------------------------------------- */ /* if requested, extract the zero entries and place them in Z */ /* ---------------------------------------------------------------------- */ if (nargout > 1) { if (mtype == CHOLMOD_SPARSE) { /* A is a sparse real/zomplex double matrix */ Z = sputil_extract_zeros (A, cm) ; } else { /* input is full; just return an empty Z matrix */ Z = cholmod_l_spzeros (nrow, ncol, 0, CHOLMOD_REAL, cm) ; } } /* ---------------------------------------------------------------------- */ /* prune the zero entries from A and set nzmax(A) to nnz(A) */ /* ---------------------------------------------------------------------- */ if (mtype == CHOLMOD_SPARSE) { sputil_drop_zeros (A) ; cholmod_l_reallocate_sparse (cholmod_l_nnz (A, cm), A, cm) ; } /* ---------------------------------------------------------------------- */ /* change a complex matrix to real if its imaginary part is all zero */ /* ---------------------------------------------------------------------- */ if (is_complex) { if (mtype == CHOLMOD_SPARSE) { nz = Ap [ncol] ; } else { nz = nrow * ncol ; } allzero = TRUE ; for (k = 0 ; k < nz ; k++) { if (Az [k] != 0) { allzero = FALSE ; break ; } } if (allzero) { /* discard the all-zero imaginary part */ if (mtype == CHOLMOD_SPARSE) { cholmod_l_sparse_xtype (CHOLMOD_REAL, A, cm) ; } else { cholmod_l_dense_xtype (CHOLMOD_REAL, X, cm) ; } } } /* ---------------------------------------------------------------------- */ /* return results to MATLAB */ /* ---------------------------------------------------------------------- */ if (mtype == CHOLMOD_SPARSE) { pargout [0] = sputil_put_sparse (&A, cm) ; } else { pargout [0] = sputil_put_dense (&X, cm) ; } if (nargout > 1) { pargout [1] = sputil_put_sparse (&Z, cm) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; } SuiteSparse/CHOLMOD/MATLAB/mread.m0000644001170100242450000000170610711661246015252 0ustar davisfacfunction [A, Z] = mread (filename,prefer_binary) %#ok %MREAD read a sparse matrix from a file in Matrix Market format. % % Example: % A = mread (filename) % [A Z] = mread (filename, prefer_binary) % % Unlike MMREAD, only the matrix is returned; the file format is not % returned. Explicit zero entries can be present in the file; these are not % included in A. They appear as the nonzero pattern of the binary matrix Z. % % If prefer_binary is not present, or zero, a symmetric pattern-only matrix % is returned with A(i,i) = 1+length(find(A(:,i))) if it is present in the % pattern, and A(i,j) = -1 for off-diagonal entries. If you want the original % Matrix Market matrix in this case, simply use A = mread (filename,1). % % Compare with mmread.m at http://math.nist.gov/MatrixMarket % % See also load % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('mread mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/cholmod_make.m0000644001170100242450000002446710712370265016614 0ustar davisfacfunction cholmod_make (metis_path) %CHOLMOD_MAKE compiles the CHOLMOD mexFunctions % % Example: % cholmod_make % % CHOLMOD relies on AMD and COLAMD, and optionally CCOLAMD, CAMD, and METIS. % All but METIS are distributed with CHOLMOD. To compile CHOLMOD to use METIS % you must first place a copy of the metis-4.0 directory (METIS version 4.0.1) % in same directory that contains the AMD, COLAMD, CCOLAMD, and CHOLMOD % directories. Next, type % % cholmod_make % % in the MATLAB command window. Alternatively, use this command: % % cholmod_make ('path to your copy of metis-4.0 here') ; % % See http://www-users.cs.umn.edu/~karypis/metis for a copy of % METIS 4.0.1. If you do not have METIS, use either of the following: % % cholmod_make ('') % cholmod_make ('no metis') % % You must type the cholmod_make command while in the CHOLMOD/MATLAB directory. % % See also analyze, bisect, chol2, cholmod2, etree2, lchol, ldlchol, ldlsolve, % ldlupdate, metis, spsym, nesdis, septree, resymbol, sdmult, sparse2, % symbfact2, mread, mwrite % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse details = 0 ; % 1 if details of each command are to be printed v = getversion ; try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end d = '' ; if (~isempty (strfind (computer, '64'))) % 64-bit MATLAB d = '-largeArrayDims' ; end include = '-I. -I../../AMD/Include -I../../COLAMD/Include -I../../CCOLAMD/Include -I../../CAMD/Include -I../Include -I../../UFconfig' ; if (v < 7.0) % do not attempt to compile CHOLMOD with large file support include = [include ' -DNLARGEFILE'] ; elseif (~pc) % Linux/Unix require these flags for large file support include = [include ' -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE'] ; end if (v < 6.5) % logical class does not exist in MATLAB 6.1 or earlie include = [include ' -DMATLAB6p1_OR_EARLIER'] ; end % Determine the METIS path, and whether or not METIS is available if (nargin == 0) metis_path = '../../metis-4.0' ; end if (strcmp (metis_path, 'no metis')) metis_path = '' ; end have_metis = (~isempty (metis_path)) ; % fix the METIS 4.0.1 rename.h file if (have_metis) fprintf ('Compiling CHOLMOD with METIS on MATLAB Version %g\n', v) ; f = fopen ('rename.h', 'w') ; if (f == -1) error ('unable to create rename.h in current directory') ; end fprintf (f, '/* do not edit this file; generated by cholmod_make */\n') ; fprintf (f, '#undef log2\n') ; fprintf (f, '#include "%s/Lib/rename.h"\n', metis_path) ; fprintf (f, '#undef log2\n') ; fprintf (f, '#define log2 METIS__log2\n') ; fprintf (f, '#include "mex.h"\n') ; fprintf (f, '#define malloc mxMalloc\n') ; fprintf (f, '#define free mxFree\n') ; fprintf (f, '#define calloc mxCalloc\n') ; fprintf (f, '#define realloc mxRealloc\n') ; fclose (f) ; include = [include ' -I' metis_path '/Lib'] ; else fprintf ('Compiling CHOLMOD without METIS on MATLAB Version %g\n', v) ; include = ['-DNPARTITION ' include] ; end %------------------------------------------------------------------------------- % BLAS option %------------------------------------------------------------------------------- % This is exceedingly ugly. The MATLAB mex command needs to be told where to % fine the LAPACK and BLAS libraries, which is a real portability nightmare. if (pc) if (v < 6.5) % MATLAB 6.1 and earlier: use the version supplied here lapack = 'lcc_lib/libmwlapack.lib' ; elseif (v < 7.5) lapack = 'libmwlapack.lib' ; else lapack = 'libmwlapack.lib libmwblas.lib' ; end else if (v < 7.5) lapack = '-lmwlapack' ; else lapack = '-lmwlapack -lmwblas' ; end end %------------------------------------------------------------------------------- include = strrep (include, '/', filesep) ; amd_src = { ... '../../AMD/Source/amd_1', ... '../../AMD/Source/amd_2', ... '../../AMD/Source/amd_aat', ... '../../AMD/Source/amd_control', ... '../../AMD/Source/amd_defaults', ... '../../AMD/Source/amd_dump', ... '../../AMD/Source/amd_global', ... '../../AMD/Source/amd_info', ... '../../AMD/Source/amd_order', ... '../../AMD/Source/amd_postorder', ... '../../AMD/Source/amd_post_tree', ... '../../AMD/Source/amd_preprocess', ... '../../AMD/Source/amd_valid' } ; camd_src = { ... '../../CAMD/Source/camd_1', ... '../../CAMD/Source/camd_2', ... '../../CAMD/Source/camd_aat', ... '../../CAMD/Source/camd_control', ... '../../CAMD/Source/camd_defaults', ... '../../CAMD/Source/camd_dump', ... '../../CAMD/Source/camd_global', ... '../../CAMD/Source/camd_info', ... '../../CAMD/Source/camd_order', ... '../../CAMD/Source/camd_postorder', ... '../../CAMD/Source/camd_preprocess', ... '../../CAMD/Source/camd_valid' } ; colamd_src = { '../../COLAMD/Source/colamd', ... '../../COLAMD/Source/colamd_global' } ; ccolamd_src = { '../../CCOLAMD/Source/ccolamd', ... '../../CCOLAMD/Source/ccolamd_global' } ; metis_src = { 'Lib/balance', ... 'Lib/bucketsort', ... 'Lib/ccgraph', ... 'Lib/coarsen', ... 'Lib/compress', ... 'Lib/debug', ... 'Lib/estmem', ... 'Lib/fm', ... 'Lib/fortran', ... 'Lib/frename', ... 'Lib/graph', ... 'Lib/initpart', ... 'Lib/kmetis', ... 'Lib/kvmetis', ... 'Lib/kwayfm', ... 'Lib/kwayrefine', ... 'Lib/kwayvolfm', ... 'Lib/kwayvolrefine', ... 'Lib/match', ... 'Lib/mbalance2', ... 'Lib/mbalance', ... 'Lib/mcoarsen', ... 'Lib/memory', ... 'Lib/mesh', ... 'Lib/meshpart', ... 'Lib/mfm2', ... 'Lib/mfm', ... 'Lib/mincover', ... 'Lib/minitpart2', ... 'Lib/minitpart', ... 'Lib/mkmetis', ... 'Lib/mkwayfmh', ... 'Lib/mkwayrefine', ... 'Lib/mmatch', ... 'Lib/mmd', ... 'Lib/mpmetis', ... 'Lib/mrefine2', ... 'Lib/mrefine', ... 'Lib/mutil', ... 'Lib/myqsort', ... 'Lib/ometis', ... 'Lib/parmetis', ... 'Lib/pmetis', ... 'Lib/pqueue', ... 'Lib/refine', ... 'Lib/separator', ... 'Lib/sfm', ... 'Lib/srefine', ... 'Lib/stat', ... 'Lib/subdomains', ... 'Lib/timing', ... 'Lib/util' } ; for i = 1:length (metis_src) metis_src {i} = [metis_path '/' metis_src{i}] ; end cholmod_matlab = { 'cholmod_matlab' } ; cholmod_src = { '../Core/cholmod_aat', ... '../Core/cholmod_add', ... '../Core/cholmod_band', ... '../Core/cholmod_change_factor', ... '../Core/cholmod_common', ... '../Core/cholmod_complex', ... '../Core/cholmod_copy', ... '../Core/cholmod_dense', ... '../Core/cholmod_error', ... '../Core/cholmod_factor', ... '../Core/cholmod_memory', ... '../Core/cholmod_sparse', ... '../Core/cholmod_transpose', ... '../Core/cholmod_triplet', ... '../Check/cholmod_check', ... '../Check/cholmod_read', ... '../Check/cholmod_write', ... '../Cholesky/cholmod_amd', ... '../Cholesky/cholmod_analyze', ... '../Cholesky/cholmod_colamd', ... '../Cholesky/cholmod_etree', ... '../Cholesky/cholmod_factorize', ... '../Cholesky/cholmod_postorder', ... '../Cholesky/cholmod_rcond', ... '../Cholesky/cholmod_resymbol', ... '../Cholesky/cholmod_rowcolcounts', ... '../Cholesky/cholmod_rowfac', ... '../Cholesky/cholmod_solve', ... '../Cholesky/cholmod_spsolve', ... '../MatrixOps/cholmod_drop', ... '../MatrixOps/cholmod_horzcat', ... '../MatrixOps/cholmod_norm', ... '../MatrixOps/cholmod_scale', ... '../MatrixOps/cholmod_sdmult', ... '../MatrixOps/cholmod_ssmult', ... '../MatrixOps/cholmod_submatrix', ... '../MatrixOps/cholmod_vertcat', ... '../MatrixOps/cholmod_symmetry', ... '../Modify/cholmod_rowadd', ... '../Modify/cholmod_rowdel', ... '../Modify/cholmod_updown', ... '../Supernodal/cholmod_super_numeric', ... '../Supernodal/cholmod_super_solve', ... '../Supernodal/cholmod_super_symbolic', ... '../Partition/cholmod_ccolamd', ... '../Partition/cholmod_csymamd', ... '../Partition/cholmod_camd', ... '../Partition/cholmod_metis', ... '../Partition/cholmod_nesdis' } ; cholmod_mex_src = { ... 'analyze', ... 'bisect', ... 'chol2', ... 'cholmod2', ... 'etree2', ... 'lchol', ... 'ldlchol', ... 'ldlsolve', ... 'ldlupdate', ... 'metis', ... 'spsym', ... 'nesdis', ... 'septree', ... 'resymbol', ... 'sdmult', ... 'sparse2', ... 'symbfact2', ... 'mread', ... 'mwrite' } ; if (pc) % Windows does not have drand48 and srand48, required by METIS. Use % drand48 and srand48 in CHOLMOD/MATLAB/Windows/rand48.c instead. obj_extension = '.obj' ; cholmod_matlab = [cholmod_matlab {'Windows/rand48'}] ; include = [include ' -IWindows'] ; else obj_extension = '.o' ; end % compile each library source file obj = '' ; source = [amd_src colamd_src ccolamd_src camd_src cholmod_src cholmod_matlab] ; if (have_metis) source = [metis_src source] ; end kk = 0 ; for f = source ff = strrep (f {1}, '/', filesep) ; slash = strfind (ff, filesep) ; if (isempty (slash)) slash = 1 ; else slash = slash (end) + 1 ; end o = ff (slash:end) ; obj = [obj ' ' o obj_extension] ; %#ok s = sprintf ('mex %s -DDLONG -O %s -c %s.c', d, include, ff) ; kk = do_cmd (s, kk, details) ; end % compile each mexFunction for f = cholmod_mex_src s = sprintf ('mex %s -DDLONG -O %s %s.c', d, include, f{1}) ; s = [s obj ' ' lapack] ; %#ok kk = do_cmd (s, kk, details) ; end % clean up s = ['delete ' obj] ; do_cmd (s, kk, details) ; fprintf ('\nCHOLMOD successfully compiled\n') ; %------------------------------------------------------------------------------- function kk = do_cmd (s, kk, details) %DO_CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s\n', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/CHOLMOD/MATLAB/sdmult.c0000644001170100242450000000672310634230157015461 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/sdmult mexFunction ==================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Compute C = S*F or S'*F where S is sparse and F is full (C is also sparse). * S and F must both be real or both be complex. * * Usage: * * C = sdmult (S,F) ; C = S*F * C = sdmult (S,F,0) ; C = S*F * C = sdmult (S,F,1) ; C = S'*F */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, one [2] = {1,0}, zero [2] = {0,0} ; cholmod_sparse *S, Smatrix ; cholmod_dense *F, Fmatrix, *C ; cholmod_common Common, *cm ; Int srow, scol, frow, fcol, crow, transpose ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 1 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("Usage: C = sdmult (S,F,transpose)") ; } srow = mxGetM (pargin [0]) ; scol = mxGetN (pargin [0]) ; frow = mxGetM (pargin [1]) ; fcol = mxGetN (pargin [1]) ; transpose = !((nargin == 2) || (mxGetScalar (pargin [2]) == 0)) ; if (frow != (transpose ? srow : scol)) { mexErrMsgTxt ("invalid inner dimensions") ; } if (!mxIsSparse (pargin [0]) || mxIsSparse (pargin [1])) { mexErrMsgTxt ("sdmult (S,F): S must be sparse, F must be full") ; } /* ---------------------------------------------------------------------- */ /* get S and F */ /* ---------------------------------------------------------------------- */ S = sputil_get_sparse (pargin [0], &Smatrix, &dummy, 0) ; F = sputil_get_dense (pargin [1], &Fmatrix, &dummy) ; /* ---------------------------------------------------------------------- */ /* C = S*F or S'*F */ /* ---------------------------------------------------------------------- */ crow = transpose ? scol : srow ; C = cholmod_l_allocate_dense (crow, fcol, crow, F->xtype, cm) ; cholmod_l_sdmult (S, transpose, one, zero, F, C, cm) ; pargout [0] = sputil_put_dense (&C, cm) ; /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != (mxIsComplex (pargout [0]) + 1)) mexErrMsgTxt ("!"); */ } SuiteSparse/CHOLMOD/MATLAB/sdmult.m0000644001170100242450000000115110620371034015454 0ustar davisfacfunction C = sdmult (S,F,transpose) %#ok %SDMULT sparse matrix times dense matrix % Compute C = S*F or S'*F where S is sparse and F is full (C is also sparse). % S and F must both be real or both be complex. This function is % substantially faster than the MATLAB expression C=S*F when F has many % columns. % % Example: % C = sdmult (S,F) ; C = S*F % C = sdmult (S,F,0) ; C = S*F % C = sdmult (S,F,1) ; C = S'*F % % See also MTIMES % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('sdmult mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/README.txt0000644001170100242450000000614610533335376015511 0ustar davisfac----------------------- Using CHOLMOD in MATLAB ----------------------- See Contents.m for a description of each CHOLMOD function. To compile CHOLMOD for use in MATLAB, you may optionally use METIS. If you do not use METIS, compile CHOLMOD with the -DNPARTITION flag. There are two ways of compiling the CHOLMOD mexFunctions. The 2nd one is best. (1) Using the Unix "make" command. This will compile the AMD, COLAMD, CCOLAMD, and CHOLMOD libraries (*.a). You must first add -fexceptions to the CFLAGS definition in UFconfig/UFconfig.mk first (for Linux). Otherwise, MATLAB will not be able to handle exceptions properly (CHOLMOD may terminate MATLAB if it encounters an error). The METIS library must also be compiled with -fexceptions (see metis-4.0/Makefile.in). For other operating systems, see your default MATLAB mexopts.sh file (type "mex -v"). Next, simply type "make" in the operating system command window in this directory. On Linux (with gcc), you must compile all codes with the -fexceptions flag. See option (2) if you have problems compiling METIS. (2) using the "cholmod_make" m-file in MATLAB. First, place a copy of METIS 4.0.1 in the ../../metis-4.0 directory (the same directory that contains AMD, COLAMD, CCOLAMD, and CHOLMOD). Then, type "cholmod_make" in the MATLAB command window. All source files (including METIS) will be compiled with the MATLAB mex commnand. This works on all operating systems, including Windows. You can use an alternate location for METIS, if you pass the pathname as the first argument to cholmod_make, as in cholmod_make ('path to your copy of metis-4.0 goes here') ; Option (2) is better because it allows for several workarounds for METIS. With Option (1), METIS terminates MATLAB if it runs out of memory. That does not happen with Option (2). You should also add CHOLMOD/MATLAB to your MATLAB path. cholmod_demo is a short demo program for CHOLMOD. Type "cholmod_demo" in your MATLAB command window to test your newly compiling CHOLMOD functions. Test/cholmod_test.m runs the test suite for the MATLAB interface to CHOLMOD. It requires the "UFget" interface to the UF sparse matrix collection, but provides a more extensive test for CHOLMOD. To obtain a copy of UFget, see http://www.cise.ufl.edu/research/sparse . ---------------------------------------- Using AMD, CCOLAMD, and COLAMD in MATLAB ---------------------------------------- The following steps are not required to use CHOLMOD in MATLAB. To use AMD in MATLAB, go to the AMD/MATLAB directory and either type "amd_make" in the MATLAB command window, or type "make" in the Unix shell. Add AMD/MATLAB to your MATLAB path. To use CCOLAMD in MATLAB, go to the CCOLAMD directory and either type "ccolamd_demo" in the MATLAB command window, or type "make" in the Unix shell. Add CCOLAMD to your MATLAB path. COLAMD is already an integral part of MATLAB, but you can upgrade to the most recent version. Go to the COLAMD directory and either type "colamd_demo" in the MATLAB command window, or type "make" in the Unix shell. Add COLAMD to your MATLAB path. SuiteSparse/CHOLMOD/MATLAB/gpl.txt0000644001170100242450000004313310253404115015316 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/MATLAB/nesdis.c0000644001170100242450000001577110665074061015445 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/nesdis mexFunction ==================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * METIS (Copyright 1998, G. Karypis) is not distributed with CHOLMOD. * -------------------------------------------------------------------------- */ /* CHOLMOD's nested dissection, based on METIS_NodeComputerSeparator, CAMD, and * CCOLAMD. * * Usage: * * [p, cp, cmember] = nesdis (A) orders A, using tril(A) * [p, cp, cmember] = nesdis (A,'sym') orders A, using tril(A) * [p, cp, cmember] = nesdis (A,'row') orders A*A' * [p, cp, cmember] = nesdis (A,'col') orders A'*A * * Nested dissection ordering. Returns a permutation p such that the Cholesky * factorization of A(p,p), A(p,:)*A(p,:)', or A(:,p)'*A(:,p) is sparser than * the unpermuted system. 'mode' defaults to 'sym'. * * An optional 3rd input argument: * * nesdis (A,mode,opts) * * specifies control parameters. opts(1) is the smallest subgraph that should * not be partitioned (default is 200), opts(2) is 1 if connected components are * to be split independently (default is 0). opts(3) controls when a separator * is kept; it is kept if nsep < opts(3)*n, where nsep is the number of nodes in * the separator and n is the number of nodes in the graph being cut (default is * 1). * * opts(4) is 0 if the smallest subgraphs are not to be ordered. For the 'sym' * case, or if mode is not present: 1 if to be ordered by CAMD, or 2 if to be * ordered with CSYMAMD (default is 1). For the other cases: 0 for natural * ordering, 1 if to be ordered by CCOLAMD. * * cp and cmember are optional. cmember(i)=c means that node i is in component * c, where c is in the range of 1 to the number of components. length(cp) is * the number of components found. cp is the separator tree; cp(c) is the * parent of component c, or 0 if c is a root. There can be anywhere from * 1 to n components, where n is the number of rows of A, A*A', or A'*A. * * Requires METIS and the CHOLMOD Partition Module. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { #ifndef NPARTITION double dummy = 0 ; Int *Perm, *Cmember, *CParent ; cholmod_sparse *A, Amatrix, *C, *S ; cholmod_common Common, *cm ; Int n, transpose, c, ncomp ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 3 || nargin < 1 || nargin > 3) { mexErrMsgTxt ("Usage: [p cp cmember] = nesdis (A, mode, opts)") ; } if (nargin > 2) { double *x = mxGetPr (pargin [2]) ; n = mxGetNumberOfElements (pargin [2]) ; if (n > 0) cm->method [0].nd_small = x [0] ; if (n > 1) cm->method [0].nd_components = x [1] ; if (n > 2) cm->method [0].nd_oksep = x [2] ; if (n > 3) cm->method [0].nd_camd = x [3] ; } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use tril(A) */ /* ---------------------------------------------------------------------- */ A->stype = -1 ; transpose = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0] ; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ transpose = FALSE ; A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ transpose = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric case (A) if string starts with 's' */ transpose = FALSE ; A->stype = -1 ; } else { mexErrMsgTxt ("nesdis: unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("nesdis: A must be square") ; } C = NULL ; if (transpose) { /* C = A', and then order C*C' with cholmod_l_nested_dissection */ C = cholmod_l_transpose (A, 0, cm) ; if (C == NULL) { mexErrMsgTxt ("nesdis failed") ; } A = C ; } n = A->nrow ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ CParent = cholmod_l_malloc (n, sizeof (Int), cm) ; Cmember = cholmod_l_malloc (n, sizeof (Int), cm) ; Perm = cholmod_l_malloc (n, sizeof (Int), cm) ; /* ---------------------------------------------------------------------- */ /* order the matrix with CHOLMOD's nested dissection */ /* ---------------------------------------------------------------------- */ ncomp = cholmod_l_nested_dissection (A, NULL, 0, Perm, CParent, Cmember,cm); if (ncomp < 0) { mexErrMsgTxt ("nesdis failed") ; return ; } /* ---------------------------------------------------------------------- */ /* return Perm, CParent, and Cmember */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (Perm, n, 1) ; if (nargout > 1) { pargout [1] = sputil_put_int (CParent, ncomp, 1) ; } if (nargout > 2) { pargout [2] = sputil_put_int (Cmember, n, 1) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (n, sizeof (Int), Perm, cm) ; cholmod_l_free (n, sizeof (Int), CParent, cm) ; cholmod_l_free (n, sizeof (Int), Cmember, cm) ; cholmod_l_free_sparse (&C, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ #else mexErrMsgTxt ("METIS and the CHOLMOD Partition Module not installed\n") ; #endif } SuiteSparse/CHOLMOD/MATLAB/nesdis.m0000644001170100242450000000537210711661262015450 0ustar davisfacfunction [p, cparent, cmember] = nesdis (A, mode, opts) %#ok %NESDIS nested dissection ordering via CHOLMOD's nested dissection. % % Example: % p = nesdis(A) returns p such chol(A(p,p)) is typically sparser than % chol(A). Uses tril(A) and assumes A is symmetric. % p = nesdis(A,'sym') the same as p=nesdis(A). % p = nesdis(A,'col') returns p so that chol(A(:,p)'*A(:,p)) is typically % sparser than chol(A'*A). % p = nesdis(A,'row') returns p so that chol(A(p,:)*A(p,:)') is typically % sparser than chol(A'*A). % % A must be square for p=nesdis(A) or nesdis(A,'sym'). % % With three output arguments, [p cp cmember] = nesdis(...), the separator % tree and node-to-component mapping is returned. cmember(i)=c means that % node i is in component c, where c is in the range of 1 to the number of % components. length(cp) is the number of components found. cp is the % separator tree; cp(c) is the parent of component c, or 0 if c is a root. % There can be anywhere from 1 to n components, where n is dimension of A, % A*A', or A'*A. cmember is a vector of length n. % % An optional 3rd input argument, nesdis (A,mode,opts), modifies the default % parameters. opts(1) specifies the smallest subgraph that should not be % partitioned (default is 200). opts(2) is 0 by default; if nonzero, % connected components (formed after the node separator is removed) are % partitioned independently. The default value tends to lead to a more % balanced separator tree, cp. opts(3) defines when a separator is kept; it % is kept if the separator size is < opts(3) times the number of nodes in the % graph being cut (valid range is 0 to 1, default is 1). % % opts(4) specifies graph is to be ordered after it is dissected. For the % 'sym' case: 0: natural ordering, 1: CAMD, 2: CSYMAMD. For other cases: % 0: natural ordering, nonzero: CCOLAMD. The default is 1, to use CAMD for % the symmetric case and CCOLAMD for the other cases. % % If opts is shorter than length 4, defaults are used for entries % that are not present. % % NESDIS uses METIS' node separator algorithm to recursively partition the % graph. This gives a set of constraints (cmember) that is then passed to % CCOLAMD, CSYMAMD, or CAMD, constrained minimum degree ordering algorithms. % NESDIS typically takes slightly more time than METIS (METIS_NodeND), but % tends to produce better orderings. % % Requires METIS, authored by George Karypis, Univ. of Minnesota. This % MATLAB interface, via CHOLMOD, is by Tim Davis. % % See also METIS, BISECT, AMD % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('nesdis mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/mwrite.c0000644001170100242450000001264710621027740015460 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/mwrite mexFunction ==================================== */ /* ========================================================================== */ /* Write a matrix to a file in Matrix Market form. * * symmetry = mwrite (filename, A, Z, comments_filename) * * A can be sparse or full. * * If present and non-empty, A and Z must have the same dimension. Z contains * the explicit zero entries in the matrix (which MATLAB drops). The entries * of Z appear as explicit zeros in the output file. Z is optional. If it is * an empty matrix it is ignored. Z must be sparse or empty, if present. * It is ignored if A is full. * * filename is the name of the output file. comments_file is file whose * contents are include after the Matrix Market header and before the first * data line. Ignored if an empty string or not present. */ #include "cholmod_matlab.h" #define MAXLEN 1030 /* -------------------------------------------------------------------------- */ /* mwrite mexFunction */ /* -------------------------------------------------------------------------- */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; cholmod_sparse Amatrix, Zmatrix, *A, *Z ; cholmod_dense Xmatrix, *X ; cholmod_common Common, *cm ; Int arg_z, arg_comments, sym ; char filename [MAXLEN], comments [MAXLEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargin < 2 || nargin > 4 || nargout > 1) { mexErrMsgTxt ("Usage: mwrite (filename, A, Z, comments_filename)") ; } /* ---------------------------------------------------------------------- */ /* get the output filename */ /* ---------------------------------------------------------------------- */ if (!mxIsChar (pargin [0])) { mexErrMsgTxt ("first parameter must be a filename") ; } mxGetString (pargin [0], filename, MAXLEN) ; /* ---------------------------------------------------------------------- */ /* get the A matrix (sparse or dense) */ /* ---------------------------------------------------------------------- */ if (mxIsSparse (pargin [1])) { A = sputil_get_sparse (pargin [1], &Amatrix, &dummy, 0) ; X = NULL ; } else { X = sputil_get_dense (pargin [1], &Xmatrix, &dummy) ; A = NULL ; } /* ---------------------------------------------------------------------- */ /* determine if the Z matrix and comments_file are present */ /* ---------------------------------------------------------------------- */ if (nargin == 3) { if (mxIsChar (pargin [2])) { /* mwrite (file, A, comments) */ arg_z = -1 ; arg_comments = 2 ; } else { /* mwrite (file, A, Z). Ignore Z if A is full */ arg_z = (A == NULL) ? -1 : 2 ; arg_comments = -1 ; } } else if (nargin == 4) { /* mwrite (file, A, Z, comments). Ignore Z is A is full */ arg_z = (A == NULL) ? -1 : 2 ; arg_comments = 3 ; } else { arg_z = -1 ; arg_comments = -1 ; } /* ---------------------------------------------------------------------- */ /* get the Z matrix */ /* ---------------------------------------------------------------------- */ if (arg_z == -1 || mxGetM (pargin [arg_z]) == 0 || mxGetN (pargin [arg_z]) == 0) { /* A is dense, Z is not present, or Z is empty. Ignore Z. */ Z = NULL ; } else { /* A is sparse and Z is present and not empty */ if (!mxIsSparse (pargin [arg_z])) { mexErrMsgTxt ("Z must be sparse") ; } Z = sputil_get_sparse (pargin [arg_z], &Zmatrix, &dummy, 0) ; } /* ---------------------------------------------------------------------- */ /* get the comments filename */ /* ---------------------------------------------------------------------- */ comments [0] = '\0' ; if (arg_comments != -1) { if (!mxIsChar (pargin [arg_comments])) { mexErrMsgTxt ("comments filename must be a string") ; } mxGetString (pargin [arg_comments], comments, MAXLEN) ; } /* ---------------------------------------------------------------------- */ /* write the matrix to the file */ /* ---------------------------------------------------------------------- */ sputil_file = fopen (filename, "w") ; if (sputil_file == NULL) { mexErrMsgTxt ("error opening file") ; } if (A != NULL) { sym = cholmod_l_write_sparse (sputil_file, A, Z, comments, cm) ; } else { sym = cholmod_l_write_dense (sputil_file, X, comments, cm) ; } fclose (sputil_file) ; sputil_file = NULL ; if (sym < 0) { mexErrMsgTxt ("mwrite failed") ; } /* ---------------------------------------------------------------------- */ /* free workspace and return symmetry */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (&sym, 1, 0) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; } SuiteSparse/CHOLMOD/MATLAB/mwrite.m0000644001170100242450000000156510622674124015474 0ustar davisfacfunction mtype = mwrite (filename, A, Z, comments_filename) %#ok %MWRITE write a matrix to a file in Matrix Market form. % % Example: % mtype = mwrite (filename, A, Z, comments_filename) % % A can be sparse or full. % % If present and non-empty, A and Z must have the same dimension. Z contains % the explicit zero entries in the matrix (which MATLAB drops). The entries % of Z appear as explicit zeros in the output file. Z is optional. If it is % an empty matrix it is ignored. Z must be sparse or empty, if present. % It is ignored if A is full. % % filename is the name of the output file. comments_filename is the file % whose contents are include after the Matrix Market header and before the % first data line. Ignored if an empty string or not present. % % See also mread. % Copyright 2006-2007, Timothy A. Davis error ('mwrite mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/analyze.c0000644001170100242450000001263210616446163015616 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/analyze mexFunction =================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Order a matrix and then analyze it, using CHOLMOD's best-effort ordering. * Returns the count of the number of nonzeros in each column of L for the * permuted matrix A. * * Usage: * * [p count] = analyze (A) orders A, using just tril(A) * [p count] = analyze (A,'sym') orders A, using just tril(A) * [p count] = analyze (A,'row') orders A*A' * [p count] = analyze (A,'col') orders A'*A * * with an optional 3rd parameter: * * [p count] = analyze (A,'sym',k) orders A, using just tril(A) * [p count] = analyze (A,'row',k) orders A*A' * [p count] = analyze (A,'col',k) orders A'*A * * k=0 is the default. k != 0 selects the ordering strategy. * * See analyze.m for more details. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0 ; cholmod_factor *L ; cholmod_sparse *A, Amatrix, *C, *S ; cholmod_common Common, *cm ; Int n, transpose, c ; char buf [LEN] ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* only do the simplicial analysis (L->Perm and L->ColCount) */ cm->supernodal = CHOLMOD_SIMPLICIAL ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 2 || nargin < 1 || nargin > 3) { mexErrMsgTxt ("Usage: [p count] = analyze (A, mode)") ; } if (nargin == 3) { cm->nmethods = mxGetScalar (pargin [2]) ; if (cm->nmethods == -1) { /* use AMD only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_AMD ; cm->postorder = TRUE ; } else if (cm->nmethods == -2) { /* use METIS only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_METIS ; cm->postorder = TRUE ; } else if (cm->nmethods == -3) { /* use NESDIS only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NESDIS ; cm->postorder = TRUE ; } } /* ---------------------------------------------------------------------- */ /* get input matrix A */ /* ---------------------------------------------------------------------- */ A = sputil_get_sparse_pattern (pargin [0], &Amatrix, &dummy, cm) ; S = (A == &Amatrix) ? NULL : A ; /* ---------------------------------------------------------------------- */ /* get A->stype, default is to use tril(A) */ /* ---------------------------------------------------------------------- */ A->stype = -1 ; transpose = FALSE ; if (nargin > 1) { buf [0] = '\0' ; if (mxIsChar (pargin [1])) { mxGetString (pargin [1], buf, LEN) ; } c = buf [0] ; if (tolower (c) == 'r') { /* unsymmetric case (A*A') if string starts with 'r' */ transpose = FALSE ; A->stype = 0 ; } else if (tolower (c) == 'c') { /* unsymmetric case (A'*A) if string starts with 'c' */ transpose = TRUE ; A->stype = 0 ; } else if (tolower (c) == 's') { /* symmetric case (A) if string starts with 's' */ transpose = FALSE ; A->stype = -1 ; } else { mexErrMsgTxt ("analyze: unrecognized mode") ; } } if (A->stype && A->nrow != A->ncol) { mexErrMsgTxt ("analyze: A must be square") ; } C = NULL ; if (transpose) { /* C = A', and then order C*C' */ C = cholmod_l_transpose (A, 0, cm) ; if (C == NULL) { mexErrMsgTxt ("analyze failed") ; } A = C ; } n = A->nrow ; /* ---------------------------------------------------------------------- */ /* analyze and order the matrix */ /* ---------------------------------------------------------------------- */ L = cholmod_l_analyze (A, cm) ; /* ---------------------------------------------------------------------- */ /* return Perm */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (L->Perm, n, 1) ; if (nargout > 1) { pargout [1] = sputil_put_int (L->ColCount, n, 0) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_free_sparse (&C, cm) ; cholmod_l_free_sparse (&S, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/analyze.m0000644001170100242450000000534110711661214015617 0ustar davisfacfunction [p, count] = analyze (A, mode, k) %#ok %ANALYZE order and analyze a matrix using CHOLMOD's best-effort ordering. % % Example: % [p count] = analyze (A) orders A, using just tril(A) % [p count] = analyze (A,'sym') orders A, using just tril(A) % [p count] = analyze (A,'row') orders A*A' % [p count] = analyze (A,'col') orders A'*A % % an optional 3rd parameter modifies the ordering strategy: % % [p count] = analyze (A,'sym',k) orders A, using just tril(A) % [p count] = analyze (A,'row',k) orders A*A' % [p count] = analyze (A,'col',k) orders A'*A % % Returns a permutation and the count of the number of nonzeros in each % column of L for the permuted matrix A. That is, count is returned as: % % count = symbfact2 (A (p,p)) if ordering A % count = symbfact2 (A (p,:),'row') if ordering A*A' % count = symbfact2 (A (:,p),'col') if ordering A'*A % % CHOLMOD uses the following ordering strategy: % % k = 0: Try AMD. If that ordering gives a flop count >= 500 * nnz(L) % and a fill-in of nnz(L) >= 5*nnz(C), then try METIS_NodeND (where % C = A, A*A', or A'*A is the matrix being ordered. Selects the best % ordering tried. This is the default. % % if k > 0, then multiple orderings are attempted. % % k = 1 or 2: just try AMD % k = 3: also try METIS_NodeND % k = 4: also try NESDIS, CHOLMOD's nested dissection (NESDIS), with % default parameters. Uses METIS's node bisector and CCOLAMD. % k = 5: also try the natural ordering (p = 1:n) % k = 6: also try NESDIS with large leaves of the separator tree % k = 7: also try NESDIS with tiny leaves and no CCOLAMD ordering % k = 8: also try NESDIS with no dense-node removal % k = 9: also try COLAMD if ordering A'*A or A*A', (AMD if ordering A). % k > 9 is treated as k = 9 % % k = -1: just use AMD % k = -2: just use METIS % k = -3: just use NESDIS % % The method returning the smallest nnz(L) is used for p and count. % k = 4 takes much longer than (say) k = 0, but it can reduce nnz(L) by % a typical 5% to 10%. k = 5 to 9 is getting extreme, but if you have % lots of time and want to find the best ordering possible, set k = 9. % % If METIS is not installed for use in CHOLMOD, then the strategy is % different: % % k = 1 to 4: just try AMD % k = 5 to 8: also try the natural ordering (p = 1:n) % k = 9: also try COLAMD if ordering A'*A or A*A', (AMD if ordering A). % k > 9 is treated as k = 9 % % See also METIS, NESDIS, BISECT, SYMBFACT, AMD % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('analyze mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/cholmod_matlab.c0000644001170100242450000015161410634324646017125 0ustar davisfac/* ========================================================================== */ /* === MATLAB/cholmod_matlab ================================================ */ /* ========================================================================== */ /* Utility routines for the CHOLMOD MATLAB mexFunctions. * * If CHOLMOD runs out of memory, MATLAB will terminate the mexFunction * immediately since it uses mxMalloc (see sputil_config, below). Likewise, * if mxCreate* or mxMalloc (as called in this file) fails, MATLAB will also * terminate the mexFunction. When this occurs, MATLAB frees all allocated * memory, so we don't have to worry about memory leaks. If this were not the * case, the routines in this file would suffer from memory leaks whenever an * error occurred. */ #include "cholmod_matlab.h" #ifndef INT64_T #define INT64_T long long #endif /* This file pointer is used for the mread and mwrite mexFunctions. It must * be a global variable, because the file pointer is not passed to the * sputil_error_handler function when an error occurs. */ FILE *sputil_file = NULL ; /* ========================================================================== */ /* === sputil_config ======================================================== */ /* ========================================================================== */ /* Define function pointers and other parameters for a mexFunction */ void sputil_config (Int spumoni, cholmod_common *cm) { /* cholmod_l_solve must return a real or zomplex X for MATLAB */ cm->prefer_zomplex = TRUE ; /* use mxMalloc and related memory management routines */ cm->malloc_memory = mxMalloc ; cm->free_memory = mxFree ; cm->realloc_memory = mxRealloc ; cm->calloc_memory = mxCalloc ; /* printing and error handling */ if (spumoni == 0) { /* do not print anything from within CHOLMOD */ cm->print = -1 ; cm->print_function = NULL ; } else { /* spumoni = 1: print warning and error messages. cholmod_l_print_* * routines will print a one-line summary of each object printed. * spumoni = 2: also print a short summary of each object. */ cm->print = spumoni + 2 ; cm->print_function = mexPrintf ; } /* error handler */ cm->error_handler = sputil_error_handler ; /* complex arithmetic */ cm->complex_divide = cholmod_l_divcomplex ; cm->hypotenuse = cholmod_l_hypot ; #ifndef NPARTITION #if defined(METIS_VERSION) #if (METIS_VERSION >= METIS_VER(4,0,2)) /* METIS 4.0.2 uses function pointers for malloc and free */ METIS_malloc = cm->malloc_memory ; METIS_free = cm->free_memory ; #endif #endif #endif /* Turn off METIS memory guard. It is not needed, because mxMalloc will * safely terminate the mexFunction and free any workspace without killing * all of MATLAB. This assumes cholmod_make was used to compile CHOLMOD * for MATLAB. */ cm->metis_memory = 0.0 ; } /* ========================================================================== */ /* === sputil_error_handler ================================================= */ /* ========================================================================== */ void sputil_error_handler (int status, char *file, int line, char *message) { if (status < CHOLMOD_OK) { /* mexPrintf ("ERROR: file %s line %d, status %d\n", file, line, status) ; */ if (sputil_file != NULL) { fclose (sputil_file) ; sputil_file = NULL ; } mexErrMsgTxt (message) ; } /* else { mexPrintf ("Warning: file %s line %d, status %d\n", file, line, status); } */ } /* ========================================================================== */ /* === sputil_get_sparse ==================================================== */ /* ========================================================================== */ /* Create a shallow CHOLMOD copy of a MATLAB sparse matrix. No memory is * allocated. The resulting matrix A must not be modified. */ cholmod_sparse *sputil_get_sparse ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_sparse *A, /* CHOLMOD version of the matrix */ double *dummy, /* a pointer to a valid scalar double */ Int stype /* -1: lower, 0: unsymmetric, 1: upper */ ) { Int *Ap ; A->nrow = mxGetM (Amatlab) ; A->ncol = mxGetN (Amatlab) ; A->p = (Int *) mxGetJc (Amatlab) ; A->i = (Int *) mxGetIr (Amatlab) ; Ap = A->p ; A->nzmax = Ap [A->ncol] ; A->packed = TRUE ; A->sorted = TRUE ; A->nz = NULL ; A->itype = CHOLMOD_INT ; A->dtype = CHOLMOD_DOUBLE ; A->stype = stype ; #ifndef MATLAB6p1_OR_EARLIER if (mxIsLogical (Amatlab)) { A->x = NULL ; A->z = NULL ; A->xtype = CHOLMOD_PATTERN ; } else if (mxIsEmpty (Amatlab)) { /* this is not dereferenced, but the existence (non-NULL) of these * pointers is checked in CHOLMOD */ A->x = dummy ; A->z = dummy ; A->xtype = mxIsComplex (Amatlab) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; } else if (mxIsDouble (Amatlab)) { A->x = mxGetPr (Amatlab) ; A->z = mxGetPi (Amatlab) ; A->xtype = mxIsComplex (Amatlab) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; } else { /* only logical and complex/real double matrices supported */ sputil_error (ERROR_INVALID_TYPE, 0) ; } #else if (mxIsEmpty (Amatlab)) { /* this is not dereferenced, but the existence (non-NULL) of these * pointers is checked in CHOLMOD */ A->x = dummy ; A->z = dummy ; A->xtype = mxIsComplex (Amatlab) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; } else { /* in MATLAB 6.1, the matrix is sparse, so it must be double */ A->x = mxGetPr (Amatlab) ; A->z = mxGetPi (Amatlab) ; A->xtype = mxIsComplex (Amatlab) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; } #endif return (A) ; } /* ========================================================================== */ /* === sputil_get_dense ===================================================== */ /* ========================================================================== */ /* Create a shallow CHOLMOD copy of a MATLAB dense matrix. No memory is * allocated. Only double (real and zomplex) matrices are supported. The * resulting matrix B must not be modified. */ cholmod_dense *sputil_get_dense ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_dense *A, /* CHOLMOD version of the matrix */ double *dummy /* a pointer to a valid scalar double */ ) { A->nrow = mxGetM (Amatlab) ; A->ncol = mxGetN (Amatlab) ; A->d = A->nrow ; A->nzmax = A->nrow * A->ncol ; A->dtype = CHOLMOD_DOUBLE ; if (mxIsEmpty (Amatlab)) { A->x = dummy ; A->z = dummy ; } else if (mxIsDouble (Amatlab)) { A->x = mxGetPr (Amatlab) ; A->z = mxGetPi (Amatlab) ; } else { /* only full double matrices supported by sputil_get_dense */ sputil_error (ERROR_INVALID_TYPE, 0) ; } A->xtype = mxIsComplex (Amatlab) ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL ; return (A) ; } /* ========================================================================== */ /* === sputil_get_sparse_pattern ============================================ */ /* ========================================================================== */ /* Create a CHOLMOD_PATTERN sparse matrix for a MATLAB matrix, depending on the * type: * * (1) MATLAB full real double: duplicate CHOLMOD_REAL sparse matrix. * (2) MATLAB full complex double: duplicate CHOLMOD_ZOMPLEX sparse matrix. * (3) MATLAB full logical: duplicate CHOLMOD_PATTERN sparse matrix. * (4) MATLAB sparse real double: shallow CHOLMOD_REAL copy. * (5) MATLAB sparse complex double: shallow CHOLMOD_ZOMPLEX copy. * (6) MATLAB sparse logical: shallow CHOLMOD_PATTERN copy. * * A shallow copy or duplicate is returned; the shallow copy must not be freed. * For a shallow copy, the return value A is the same as Ashallow. For a * complete duplicate, A and Ashallow will differ. */ cholmod_sparse *sputil_get_sparse_pattern ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_sparse *Ashallow, /* shallow CHOLMOD version of the matrix */ double *dummy, /* a pointer to a valid scalar double */ cholmod_common *cm ) { cholmod_sparse *A = NULL ; if (!mxIsSparse (Amatlab)) { /* ------------------------------------------------------------------ */ /* A = sparse (X) where X is full */ /* ------------------------------------------------------------------ */ if (mxIsDouble (Amatlab)) { /* -------------------------------------------------------------- */ /* convert full double X into sparse matrix A (pattern only) */ /* -------------------------------------------------------------- */ cholmod_dense Xmatrix, *X ; X = sputil_get_dense (Amatlab, &Xmatrix, dummy) ; A = cholmod_l_dense_to_sparse (X, FALSE, cm) ; } #ifndef MATLAB6p1_OR_EARLIER else if (mxIsLogical (Amatlab)) { /* -------------------------------------------------------------- */ /* convert full logical MATLAB matrix into CHOLMOD_PATTERN */ /* -------------------------------------------------------------- */ /* (this is copied and modified from t_cholmod_dense.c) */ char *x ; Int *Ap, *Ai ; Int nrow, ncol, i, j, nz, nzmax, p ; /* -------------------------------------------------------------- */ /* count the number of nonzeros in the result */ /* -------------------------------------------------------------- */ nrow = mxGetM (Amatlab) ; ncol = mxGetN (Amatlab) ; x = (char *) mxGetData (Amatlab) ; nzmax = nrow * ncol ; for (nz = 0, j = 0 ; j < nzmax ; j++) { if (x [j]) { nz++ ; } } /* -------------------------------------------------------------- */ /* allocate the result A */ /* -------------------------------------------------------------- */ A = cholmod_l_allocate_sparse (nrow, ncol, nz, TRUE, TRUE, 0, CHOLMOD_PATTERN, cm) ; if (cm->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } Ap = A->p ; Ai = A->i ; /* -------------------------------------------------------------- */ /* copy the full logical matrix into the sparse matrix A */ /* -------------------------------------------------------------- */ p = 0 ; for (j = 0 ; j < ncol ; j++) { Ap [j] = p ; for (i = 0 ; i < nrow ; i++) { if (x [i+j*nrow]) { Ai [p++] = i ; } } } /* ASSERT (p == nz) ; */ Ap [ncol] = nz ; } #endif else { /* only double and logical matrices supported */ sputil_error (ERROR_INVALID_TYPE, 0) ; } } else { /* ------------------------------------------------------------------ */ /* create a shallow copy of sparse matrix A (default stype is zero) */ /* ------------------------------------------------------------------ */ A = sputil_get_sparse (Amatlab, Ashallow, dummy, 0) ; A->x = NULL ; A->z = NULL ; A->xtype = CHOLMOD_PATTERN ; } return (A) ; } /* ========================================================================== */ /* === sputil_put_sparse ==================================================== */ /* ========================================================================== */ /* Creates a true MATLAB version of a CHOLMOD sparse matrix. The CHOLMOD sparse * matrix is destroyed. Both real and zomplex matrices are supported. */ mxArray *sputil_put_sparse ( cholmod_sparse **Ahandle, /* CHOLMOD version of the matrix */ cholmod_common *cm ) { mxArray *Amatlab ; cholmod_sparse *A ; A = *Ahandle ; Amatlab = mxCreateSparse (0, 0, 0, (A->xtype != CHOLMOD_REAL) ? mxCOMPLEX: mxREAL) ; mxSetM (Amatlab, A->nrow) ; mxSetN (Amatlab, A->ncol) ; mxSetNzmax (Amatlab, A->nzmax) ; mxFree (mxGetJc (Amatlab)) ; mxFree (mxGetIr (Amatlab)) ; mxFree (mxGetPr (Amatlab)) ; mxSetJc (Amatlab, A->p) ; mxSetIr (Amatlab, A->i) ; mxSetPr (Amatlab, A->x) ; mexMakeMemoryPersistent (A->p) ; mexMakeMemoryPersistent (A->i) ; mexMakeMemoryPersistent (A->x) ; if (A->xtype != CHOLMOD_REAL) { mxFree (mxGetPi (Amatlab)) ; mxSetPi (Amatlab, A->z) ; mexMakeMemoryPersistent (A->z) ; } A->p = NULL ; A->i = NULL ; A->x = NULL ; A->z = NULL ; cholmod_l_free_sparse (Ahandle, cm) ; return (Amatlab) ; } /* ========================================================================== */ /* === sputil_put_dense ===================================================== */ /* ========================================================================== */ /* Creates a true MATLAB version of a CHOLMOD dense matrix. The CHOLMOD dense * matrix is destroyed. Both real and zomplex matrices are supported. */ mxArray *sputil_put_dense ( cholmod_dense **Ahandle, /* CHOLMOD version of the matrix */ cholmod_common *cm ) { mxArray *Amatlab ; cholmod_dense *A ; A = *Ahandle ; Amatlab = mxCreateDoubleMatrix (0, 0, (A->xtype != CHOLMOD_REAL) ? mxCOMPLEX: mxREAL) ; mxSetM (Amatlab, A->nrow) ; mxSetN (Amatlab, A->ncol) ; mxFree (mxGetPr (Amatlab)) ; mxSetPr (Amatlab, A->x) ; mexMakeMemoryPersistent (A->x) ; if (A->xtype != CHOLMOD_REAL) { mxFree (mxGetPi (Amatlab)) ; mxSetPi (Amatlab, A->z) ; mexMakeMemoryPersistent (A->z) ; } A->x = NULL ; A->z = NULL ; cholmod_l_free_dense (Ahandle, cm) ; return (Amatlab) ; } /* ========================================================================== */ /* === sputil_put_int ======================================================= */ /* ========================================================================== */ /* Convert an Int vector into a double mxArray */ mxArray *sputil_put_int ( Int *P, /* vector to convert */ Int n, /* length of P */ Int one_based /* 1 if convert from 0-based to 1-based, 0 otherwise */ ) { double *p ; mxArray *Q ; Int i ; Q = mxCreateDoubleMatrix (1, n, mxREAL) ; p = mxGetPr (Q) ; for (i = 0 ; i < n ; i++) { p [i] = (double) (P [i] + one_based) ; } return (Q) ; } /* ========================================================================== */ /* === sputil_error ========================================================= */ /* ========================================================================== */ /* An integer is out of range, or other error has occurred. */ void sputil_error ( Int error, /* kind of error */ Int is_index /* TRUE if a matrix index, FALSE if a matrix dimension */ ) { if (error == ERROR_TOO_SMALL) { mexErrMsgTxt (is_index ? "sparse: index into matrix must be positive" : "sparse: sparse matrix sizes must be non-negative integers") ; } else if (error == ERROR_HUGE) { mexErrMsgTxt (is_index ? "sparse: index into matrix is too large" : "sparse: sparse matrix size is too large") ; } else if (error == ERROR_NOT_INTEGER) { mexErrMsgTxt (is_index ? "sparse: index into matrix must be an integer" : "sparse: sparse matrix size must be an integer") ; } else if (error == ERROR_TOO_LARGE) { mexErrMsgTxt ("sparse: index exceeds matrix dimensions") ; } else if (error == ERROR_USAGE) { mexErrMsgTxt ( "Usage:\n" "A = sparse (S)\n" "A = sparse (i,j,s,m,n,nzmax)\n" "A = sparse (i,j,s,m,n)\n" "A = sparse (i,j,s)\n" "A = sparse (m,n)\n") ; } else if (error == ERROR_LENGTH) { mexErrMsgTxt ("sparse: vectors must be the same lengths") ; } else if (error == ERROR_INVALID_TYPE) { mexErrMsgTxt ("matrix class not supported") ; } } /* ========================================================================== */ /* === sputil_double_to_int ================================================= */ /* ========================================================================== */ /* convert a double into an integer */ Int sputil_double_to_int /* returns integer value of x */ ( double x, /* double value to convert */ Int is_index, /* TRUE if a matrix index, FALSE if a matrix dimension */ Int n /* if a matrix index, x cannot exceed this dimension, * except that -1 is treated as infinity */ ) { Int i ; if (x > INT_MAX) { /* x is way too big for an integer */ sputil_error (ERROR_HUGE, is_index) ; } else if (x < 0) { /* x must be non-negative */ sputil_error (ERROR_TOO_SMALL, is_index) ; } i = (Int) x ; if (x != (double) i) { /* x must be an integer */ sputil_error (ERROR_NOT_INTEGER, is_index) ; } if (is_index) { if (i < 1) { sputil_error (ERROR_TOO_SMALL, is_index) ; } else if (i > n && n != EMPTY) { sputil_error (ERROR_TOO_LARGE, is_index) ; } } return (i) ; } /* ========================================================================== */ /* === sputil_nelements ===================================================== */ /* ========================================================================== */ /* return the number of elements in an mxArray. Trigger an error on integer * overflow (in case the argument is sparse) */ Int sputil_nelements (const mxArray *arg) { double size ; const Int *dims ; Int k, ndims ; ndims = mxGetNumberOfDimensions (arg) ; dims = (Int *) mxGetDimensions (arg) ; size = 1 ; for (k = 0 ; k < ndims ; k++) { size *= dims [k] ; } return (sputil_double_to_int (size, FALSE, 0)) ; } /* ========================================================================== */ /* === sputil_get_double ==================================================== */ /* ========================================================================== */ double sputil_get_double (const mxArray *arg) { if (sputil_nelements (arg) < 1) { /* [] is not a scalar, but its value is zero so that * sparse ([],[],[]) is a 0-by-0 matrix */ return (0) ; } return (mxGetScalar (arg)) ; } /* ========================================================================== */ /* === sputil_get_integer =================================================== */ /* ========================================================================== */ /* return an argument as a non-negative integer scalar, or -1 if error */ Int sputil_get_integer ( const mxArray *arg, /* MATLAB argument to convert */ Int is_index, /* TRUE if an index, FALSE if a matrix dimension */ Int n /* maximum value, if an index */ ) { double x = sputil_get_double (arg) ; if (mxIsInf (x) || mxIsNaN (x)) { /* arg is Inf or NaN, return -1 */ return (EMPTY) ; } return (sputil_double_to_int (x, is_index, n)) ; } /* ========================================================================== */ /* === sputil_trim ========================================================== */ /* ========================================================================== */ /* Remove columns k to n-1 from a sparse matrix S, leaving columns 0 to k-1. * S must be packed (there can be no S->nz array). This condition is not * checked, since only packed matrices are passed to this routine. */ void sputil_trim ( cholmod_sparse *S, Int k, cholmod_common *cm ) { Int *Sp ; Int ncol ; size_t n1, nznew ; if (S == NULL) { return ; } ncol = S->ncol ; if (k < 0 || k >= ncol) { /* do not modify S */ return ; } /* reduce S->p in size. This cannot fail. */ n1 = ncol + 1 ; S->p = cholmod_l_realloc (k+1, sizeof (Int), S->p, &n1, cm) ; /* get the new number of entries in S */ Sp = S->p ; nznew = Sp [k] ; /* reduce S->i, S->x, and S->z (if present) to size nznew */ cholmod_l_reallocate_sparse (nznew, S, cm) ; /* S now has only k columns */ S->ncol = k ; } /* ========================================================================== */ /* === sputil_extract_zeros ================================================= */ /* ========================================================================== */ /* Create a sparse binary (real double) matrix Z that contains the pattern * of explicit zeros in the sparse real/zomplex double matrix A. */ cholmod_sparse *sputil_extract_zeros ( cholmod_sparse *A, cholmod_common *cm ) { Int *Ap, *Ai, *Zp, *Zi ; double *Ax, *Az, *Zx ; Int j, p, nzeros = 0, is_complex, pz, nrow, ncol ; cholmod_sparse *Z ; if (A == NULL || A->xtype == CHOLMOD_PATTERN || A->xtype == CHOLMOD_COMPLEX) { /* only sparse real/zomplex double matrices supported */ sputil_error (ERROR_INVALID_TYPE, 0) ; } Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; ncol = A->ncol ; nrow = A->nrow ; is_complex = (A->xtype == CHOLMOD_ZOMPLEX) ; /* count the number of zeros in a sparse matrix A */ for (j = 0 ; j < ncol ; j++) { for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (CHOLMOD_IS_ZERO (Ax [p]) && ((is_complex) ? CHOLMOD_IS_ZERO (Az [p]) : TRUE)) { nzeros++ ; } } } /* allocate the Z matrix with space for all the zero entries */ Z = cholmod_l_spzeros (nrow, ncol, nzeros, CHOLMOD_REAL, cm) ; /* extract the zeros from A and store them in Z as binary values */ if (nzeros > 0) { Zp = Z->p ; Zi = Z->i ; Zx = Z->x ; pz = 0 ; for (j = 0 ; j < ncol ; j++) { Zp [j] = pz ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { if (CHOLMOD_IS_ZERO (Ax [p]) && ((is_complex) ? CHOLMOD_IS_ZERO (Az [p]) : TRUE)) { Zi [pz] = Ai [p] ; Zx [pz] = 1 ; pz++ ; } } } Zp [ncol] = pz ; } return (Z) ; } /* ========================================================================== */ /* === sputil_drop_zeros ==================================================== */ /* ========================================================================== */ /* Drop zeros from a packed CHOLMOD sparse matrix (zomplex or real). This is * very similar to CHOLMOD/MatrixOps/cholmod_drop, except that this routine has * no tolerance parameter and it can handle zomplex matrices. NaN's are left * in the matrix. If this is used on the sparse matrix version of the factor * L, then the update/downdate methods cannot be applied to L (ldlupdate). * Returns the number of entries dropped. */ Int sputil_drop_zeros ( cholmod_sparse *S ) { double sik, zik ; Int *Sp, *Si ; double *Sx, *Sz ; Int pdest, k, ncol, p, pend, nz ; if (S == NULL) { return (0) ; } Sp = S->p ; Si = S->i ; Sx = S->x ; Sz = S->z ; pdest = 0 ; ncol = S->ncol ; nz = Sp [ncol] ; if (S->xtype == CHOLMOD_ZOMPLEX) { for (k = 0 ; k < ncol ; k++) { p = Sp [k] ; pend = Sp [k+1] ; Sp [k] = pdest ; for ( ; p < pend ; p++) { sik = Sx [p] ; zik = Sz [p] ; if (CHOLMOD_IS_NONZERO (sik) || CHOLMOD_IS_NONZERO (zik)) { if (p != pdest) { Si [pdest] = Si [p] ; Sx [pdest] = sik ; Sz [pdest] = zik ; } pdest++ ; } } } } else { for (k = 0 ; k < ncol ; k++) { p = Sp [k] ; pend = Sp [k+1] ; Sp [k] = pdest ; for ( ; p < pend ; p++) { sik = Sx [p] ; if (CHOLMOD_IS_NONZERO (sik)) { if (p != pdest) { Si [pdest] = Si [p] ; Sx [pdest] = sik ; } pdest++ ; } } } } Sp [ncol] = pdest ; return (nz - pdest) ; } /* ========================================================================== */ /* === sputil_copy_ij ======================================================= */ /* ========================================================================== */ /* copy i or j arguments into an Int vector. For small integer types, i and * and j can be returned with negative entries; this error condition is caught * later, in cholmod_triplet_to_sparse. * * TODO: if the mxClassID matches the default Int integer (INT32 for 32-bit * MATLAB and INT64 for 64-bit), then it would save memory to patch in the * vector with a pointer copy, rather than making a copy of the whole vector. * This would require that the 1-based i and j vectors be converted on the fly * to 0-based vectors in cholmod_triplet_to_sparse. */ Int sputil_copy_ij /* returns the dimension, n */ ( Int is_scalar, /* TRUE if argument is a scalar, FALSE otherwise */ Int scalar, /* scalar value of the argument */ void *vector, /* vector value of the argument */ mxClassID category, /* type of vector */ Int nz, /* length of output vector I */ Int n, /* maximum dimension, EMPTY if not yet known */ Int *I /* vector of length nz to copy into */ ) { Int i, k, ok, ok2, ok3, n2 ; if (is_scalar) { n2 = scalar ; if (n == EMPTY) { n = scalar ; } i = scalar - 1 ; for (k = 0 ; k < nz ; k++) { I [k] = i ; } } else { /* copy double input into Int vector (convert to 0-based) */ ok = TRUE ; ok2 = TRUE ; ok3 = TRUE ; n2 = 0 ; switch (category) { #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ case mxLOGICAL_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((mxLogical *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; #endif case mxCHAR_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((mxChar *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxINT8_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((INT8_T *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxUINT8_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((UINT8_T *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxINT16_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((INT16_T *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxUINT16_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((UINT16_T *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxINT32_CLASS: for (k = 0 ; k < nz ; k++) { i = (Int) (((INT32_T *) vector) [k]) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxUINT32_CLASS: for (k = 0 ; ok3 && k < nz ; k++) { double y = (((UINT32_T *) vector) [k]) ; i = (Int) y ; ok3 = (y < Int_max) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxINT64_CLASS: for (k = 0 ; ok2 && ok3 && k < nz ; k++) { INT64_T y = ((INT64_T *) vector) [k] ; i = (Int) y ; ok2 = (y > 0) ; ok3 = (y < Int_max) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxUINT64_CLASS: for (k = 0 ; ok2 && ok3 && k < nz ; k++) { unsigned INT64_T y = ((unsigned INT64_T *) vector) [k] ; i = (Int) y ; ok2 = (y > 0) ; ok3 = (y < Int_max) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxSINGLE_CLASS: for (k = 0 ; ok && ok2 && ok3 && k < nz ; k++) { float y = ((float *) vector) [k] ; i = (Int) y ; ok = (y == (float) i) ; ok2 = (y > 0) ; ok3 = (y < Int_max) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; case mxDOUBLE_CLASS: for (k = 0 ; ok && ok2 && ok3 && k < nz ; k++) { double y = ((double *) vector) [k] ; i = (Int) y ; ok = (y == (double) i) ; ok2 = (y > 0) ; ok3 = (y < Int_max) ; I [k] = i - 1 ; n2 = MAX (n2, i) ; } break ; default: sputil_error (ERROR_INVALID_TYPE, FALSE) ; break ; } if (!ok) { sputil_error (ERROR_NOT_INTEGER, TRUE) ; } if (!ok2) { sputil_error (ERROR_TOO_SMALL, TRUE) ; } if (!ok3) { sputil_error (ERROR_HUGE, TRUE) ; } } return ((n == EMPTY) ? n2 : n) ; } /* ========================================================================== */ /* === sputil_dense_to_sparse =============================================== */ /* ========================================================================== */ /* Convert a dense matrix of any numeric type into a * sparse double or sparse logical matrix. */ #define COUNT_NZ \ { \ for (j = 0 ; j < ncol ; j++) \ { \ for (i = 0 ; i < nrow ; i++) \ { \ xij = X [i + j*nrow] ; \ if (CHOLMOD_IS_NONZERO (xij)) \ { \ nz++ ; \ } \ } \ } \ } #define COPY_DENSE_TO_SPARSE(stype) \ { \ stype *Sx ; \ Sp = (Int *) mxGetJc (S) ; \ Si = (Int *) mxGetIr (S) ; \ Sx = (stype *) mxGetData (S) ; \ nz = 0 ; \ for (j = 0 ; j < ncol ; j++) \ { \ Sp [j] = nz ; \ for (i = 0 ; i < nrow ; i++) \ { \ xij = X [i + j*nrow] ; \ if (CHOLMOD_IS_NONZERO (xij)) \ { \ Si [nz] = i ; \ Sx [nz] = (stype) xij ; \ nz++ ; \ } \ } \ } \ Sp [ncol] = nz ; \ } #define DENSE_TO_SPARSE(type) \ { \ type *X, xij ; \ X = (type *) mxGetData (arg) ; \ COUNT_NZ ; \ S = mxCreateSparse (nrow, ncol, nz, mxREAL) ; \ COPY_DENSE_TO_SPARSE (double) ; \ } mxArray *sputil_dense_to_sparse (const mxArray *arg) { mxArray *S = NULL ; Int *Sp, *Si ; Int nrow, ncol, nz, i, j ; nrow = mxGetM (arg) ; ncol = mxGetN (arg) ; nz = 0 ; if (mxIsComplex (arg)) { /* ------------------------------------------------------------------ */ /* convert a complex dense matrix into a complex sparse matrix */ /* ------------------------------------------------------------------ */ double xij, zij ; double *X, *Z, *Sx, *Sz ; if (mxGetClassID (arg) != mxDOUBLE_CLASS) { /* A complex matrix can have any class (int8, int16, single, etc), * but this function only supports complex double. This condition * is not checked in the caller. */ sputil_error (ERROR_INVALID_TYPE, FALSE) ; } X = mxGetPr (arg) ; Z = mxGetPi (arg) ; for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { xij = X [i + j*nrow] ; zij = Z [i + j*nrow] ; if (CHOLMOD_IS_NONZERO (xij) || CHOLMOD_IS_NONZERO (zij)) { nz++ ; } } } S = mxCreateSparse (nrow, ncol, nz, mxCOMPLEX) ; Sp = (Int *) mxGetJc (S) ; Si = (Int *) mxGetIr (S) ; Sx = mxGetPr (S) ; Sz = mxGetPi (S) ; nz = 0 ; for (j = 0 ; j < ncol ; j++) { Sp [j] = nz ; for (i = 0 ; i < nrow ; i++) { xij = X [i + j*nrow] ; zij = Z [i + j*nrow] ; if (CHOLMOD_IS_NONZERO (xij) || CHOLMOD_IS_NONZERO (zij)) { Si [nz] = i ; Sx [nz] = xij ; Sz [nz] = zij ; nz++ ; } } } Sp [ncol] = nz ; } else { /* ------------------------------------------------------------------ */ /* convert real matrix (any class) to sparse double or logical */ /* ------------------------------------------------------------------ */ switch (mxGetClassID (arg)) { #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ case mxLOGICAL_CLASS: { mxLogical *X, xij ; X = (mxLogical *) mxGetData (arg) ; COUNT_NZ ; S = mxCreateSparseLogicalMatrix (nrow, ncol, nz) ; COPY_DENSE_TO_SPARSE (mxLogical) ; } break ; #endif case mxCHAR_CLASS: DENSE_TO_SPARSE (mxChar) ; break ; case mxINT8_CLASS: DENSE_TO_SPARSE (char) ; break ; case mxUINT8_CLASS: DENSE_TO_SPARSE (unsigned char) ; break ; case mxINT16_CLASS: DENSE_TO_SPARSE (short) ; break ; case mxUINT16_CLASS: DENSE_TO_SPARSE (unsigned short) ; break ; case mxINT32_CLASS: DENSE_TO_SPARSE (INT32_T) ; break ; case mxUINT32_CLASS: DENSE_TO_SPARSE (unsigned INT32_T) ; break ; case mxINT64_CLASS: DENSE_TO_SPARSE (INT64_T) ; break ; case mxUINT64_CLASS: DENSE_TO_SPARSE (unsigned INT64_T) ; break ; case mxSINGLE_CLASS: DENSE_TO_SPARSE (float) ; break ; case mxDOUBLE_CLASS: DENSE_TO_SPARSE (double) ; break ; default: sputil_error (ERROR_INVALID_TYPE, FALSE) ; break ; } } return (S) ; } /* ========================================================================== */ /* === sputil_triplet_to_sparse ============================================= */ /* ========================================================================== */ /* Convert a triplet form into a sparse matrix. If complex, s must be double. * If real, s can be of any class. */ cholmod_sparse *sputil_triplet_to_sparse ( Int nrow, Int ncol, Int nz, Int nzmax, Int i_is_scalar, Int i, void *i_vector, mxClassID i_class, Int j_is_scalar, Int j, void *j_vector, mxClassID j_class, Int s_is_scalar, double x, double z, void *x_vector, double *z_vector, mxClassID s_class, Int s_complex, cholmod_common *cm ) { double dummy = 0 ; cholmod_triplet *T ; cholmod_sparse *S ; double *Tx, *Tz ; Int *Ti, *Tj ; Int k, x_patch ; /* ---------------------------------------------------------------------- */ /* allocate the triplet form */ /* ---------------------------------------------------------------------- */ /* Note that nrow and ncol may be EMPTY; this is not an error condition. * Allocate the numerical part of T only if s is a scalar. */ x_patch = (!s_is_scalar && (s_class == mxDOUBLE_CLASS || s_complex)) ; T = cholmod_l_allocate_triplet (MAX (0,nrow), MAX (0,ncol), nz, 0, x_patch ? CHOLMOD_PATTERN : (s_complex ? CHOLMOD_ZOMPLEX : CHOLMOD_REAL), cm) ; Ti = T->i ; Tj = T->j ; Tx = T->x ; Tz = T->z ; /* ---------------------------------------------------------------------- */ /* fill the triplet form */ /* ---------------------------------------------------------------------- */ if (s_is_scalar) { /* ------------------------------------------------------------------ */ /* fill T->x and T->z with a scalar value */ /* ------------------------------------------------------------------ */ for (k = 0 ; k < nz ; k++) { Tx [k] = x ; } if (s_complex) { for (k = 0 ; k < nz ; k++) { Tz [k] = z ; } } } else { /* ------------------------------------------------------------------ */ /* copy x/z_vector into T->x and T->z, and convert to double */ /* ------------------------------------------------------------------ */ if (s_complex) { /* Patch in s as the numerical values of the triplet matrix. * Note that T->x and T->z must not be free'd when done. */ T->x = (x_vector == NULL) ? &dummy : x_vector ; T->z = (z_vector == NULL) ? &dummy : z_vector ; T->xtype = CHOLMOD_ZOMPLEX ; } else switch (s_class) { #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ case mxLOGICAL_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((mxLogical *) x_vector) [k]) ; } break ; #endif case mxCHAR_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((mxChar *) x_vector) [k]) ; } break ; case mxINT8_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((INT8_T *) x_vector) [k]) ; } break ; case mxUINT8_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((UINT8_T *) x_vector) [k]) ; } break ; case mxINT16_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((INT16_T *) x_vector) [k]) ; } break ; case mxUINT16_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((UINT16_T *) x_vector) [k]) ; } break ; case mxINT32_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((INT32_T *) x_vector) [k]) ; } break ; case mxUINT32_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((UINT32_T *) x_vector) [k]) ; } break ; case mxINT64_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((INT64_T *) x_vector) [k]) ; } break ; case mxUINT64_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((unsigned INT64_T *) x_vector) [k]) ; } break ; case mxSINGLE_CLASS: for (k = 0 ; k < nz ; k++) { Tx [k] = (double) (((float *) x_vector) [k]) ; } break ; case mxDOUBLE_CLASS: /* Patch in s as the numerical values of the triplet matrix. * Note that T->x must not be free'd when done. */ T->x = (x_vector == NULL) ? &dummy : x_vector ; T->xtype = CHOLMOD_REAL ; break ; default: sputil_error (ERROR_INVALID_TYPE, FALSE) ; break ; } } /* copy i in to the integer vector T->i */ nrow = sputil_copy_ij (i_is_scalar, i, i_vector, i_class, nz, nrow, Ti) ; /* copy j in to the integer vector T->j */ ncol = sputil_copy_ij (j_is_scalar, j, j_vector, j_class, nz, ncol, Tj) ; /* nrow and ncol are known */ T->nrow = nrow ; T->ncol = ncol ; T->nnz = nz ; /* ---------------------------------------------------------------------- */ /* convert triplet to sparse matrix */ /* ---------------------------------------------------------------------- */ /* If the triplet matrix T is invalid, or if CHOLMOD runs out of memory, * then S is NULL. */ S = cholmod_l_triplet_to_sparse (T, nzmax, cm) ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ /* do not free T->x or T->z if it points to input x_vector */ if (x_patch) { T->x = NULL ; T->z = NULL ; T->xtype = CHOLMOD_PATTERN ; } cholmod_l_free_triplet (&T, cm) ; return (S) ; } /* ========================================================================== */ /* === sputil_copy_sparse =================================================== */ /* ========================================================================== */ /* copy a sparse matrix, S = sparse(A), dropping any zero entries and ensuring * the nzmax(S) == nnz(S). Explicit zero entries in A "cannot" occur, in * the current version of MATLAB ... but a user mexFunction might generate a * matrix with explicit zeros. This function ensures S=sparse(A) drops those * explicit zeros. */ mxArray *sputil_copy_sparse (const mxArray *A) { double aij, zij ; mxArray *S ; double *Ax, *Az, *Sx, *Sz ; Int *Ap, *Ai, *Sp, *Si ; Int anz, snz, p, j, nrow, ncol, pend ; #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier : all sparse matrices are OK */ if (! (mxGetClassID (A) == mxLOGICAL_CLASS || mxGetClassID (A) == mxDOUBLE_CLASS)) { /* Only sparse logical and real/complex double matrices supported. * This condition is not checked in the caller. */ sputil_error (ERROR_INVALID_TYPE, 0) ; } #endif nrow = mxGetM (A) ; ncol = mxGetN (A) ; Ap = (Int *) mxGetJc (A) ; Ai = (Int *) mxGetIr (A) ; anz = Ap [ncol] ; snz = 0 ; #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ if (mxIsLogical (A)) { /* ------------------------------------------------------------------ */ /* copy a sparse logical matrix */ /* ------------------------------------------------------------------ */ /* count the number of nonzeros in A */ mxLogical *Al, *Sl ; Al = mxGetLogicals (A) ; for (p = 0 ; p < anz ; p++) { if (Al [p]) { snz++ ; } } /* allocate S */ S = mxCreateSparseLogicalMatrix (nrow, ncol, snz) ; Sp = (Int *) mxGetJc (S) ; Si = (Int *) mxGetIr (S) ; Sl = mxGetLogicals (S) ; /* copy A into S, dropping zero entries */ snz = 0 ; for (j = 0 ; j < ncol ; j++) { Sp [j] = snz ; pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { if (Al [p]) { Si [snz] = Ai [p] ; Sl [snz] = 1 ; snz++ ; } } } } else #endif if (mxIsComplex (A)) { /* ------------------------------------------------------------------ */ /* copy a sparse complex double matrix */ /* ------------------------------------------------------------------ */ /* count the number of nonzeros in A */ Ax = mxGetPr (A) ; Az = mxGetPi (A) ; for (p = 0 ; p < anz ; p++) { aij = Ax [p] ; zij = Az [p] ; if (CHOLMOD_IS_NONZERO (aij) || CHOLMOD_IS_NONZERO (zij)) { snz++ ; } } /* allocate S */ S = mxCreateSparse (nrow, ncol, snz, mxCOMPLEX) ; Sp = (Int *) mxGetJc (S) ; Si = (Int *) mxGetIr (S) ; Sx = mxGetPr (S) ; Sz = mxGetPi (S) ; /* copy A into S, dropping zero entries */ snz = 0 ; for (j = 0 ; j < ncol ; j++) { Sp [j] = snz ; pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { aij = Ax [p] ; zij = Az [p] ; if (CHOLMOD_IS_NONZERO (aij) || CHOLMOD_IS_NONZERO (zij)) { Si [snz] = Ai [p] ; Sx [snz] = aij ; Sz [snz] = zij ; snz++ ; } } } } else { /* ------------------------------------------------------------------ */ /* copy a sparse real double matrix */ /* ------------------------------------------------------------------ */ /* count the number of nonzeros in A */ Ax = mxGetPr (A) ; for (p = 0 ; p < anz ; p++) { aij = Ax [p] ; if (CHOLMOD_IS_NONZERO (aij)) { snz++ ; } } /* allocate S */ S = mxCreateSparse (nrow, ncol, snz, mxREAL) ; Sp = (Int *) mxGetJc (S) ; Si = (Int *) mxGetIr (S) ; Sx = mxGetPr (S) ; /* copy A into S, dropping zero entries */ snz = 0 ; for (j = 0 ; j < ncol ; j++) { Sp [j] = snz ; pend = Ap [j+1] ; for (p = Ap [j] ; p < pend ; p++) { aij = Ax [p] ; if (CHOLMOD_IS_NONZERO (aij)) { Si [snz] = Ai [p] ; Sx [snz] = aij ; snz++ ; } } } } Sp [ncol] = snz ; return (S) ; } /* ========================================================================== */ /* === sputil_sparse_to_dense =============================================== */ /* ========================================================================== */ /* convert a sparse double or logical array to a dense double array */ mxArray *sputil_sparse_to_dense (const mxArray *S) { mxArray *X ; double *Sx, *Sz, *Xx, *Xz ; Int *Sp, *Si ; Int nrow, ncol, i, j, p, pend, j2 ; #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier : all sparse matrices are OK */ if (! (mxGetClassID (S) == mxLOGICAL_CLASS || mxGetClassID (S) == mxDOUBLE_CLASS)) { /* only sparse logical and real/complex double matrices supported */ sputil_error (ERROR_INVALID_TYPE, 0) ; } #endif nrow = mxGetM (S) ; ncol = mxGetN (S) ; Sp = (Int *) mxGetJc (S) ; Si = (Int *) mxGetIr (S) ; #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ if (mxIsLogical (S)) { /* logical */ mxLogical *Sl ; Sl = (mxLogical *) mxGetData (S) ; X = mxCreateDoubleMatrix (nrow, ncol, mxREAL) ; Xx = mxGetPr (X) ; for (j = 0 ; j < ncol ; j++) { pend = Sp [j+1] ; j2 = j*nrow ; for (p = Sp [j] ; p < pend ; p++) { Xx [Si [p] + j2] = (double) (Sl [p]) ; } } } else #endif if (mxIsComplex (S)) { /* complex */ Sx = mxGetPr (S) ; Sz = mxGetPi (S) ; X = mxCreateDoubleMatrix (nrow, ncol, mxCOMPLEX) ; Xx = mxGetPr (X) ; Xz = mxGetPi (X) ; for (j = 0 ; j < ncol ; j++) { pend = Sp [j+1] ; j2 = j*nrow ; for (p = Sp [j] ; p < pend ; p++) { i = Si [p] ; Xx [i + j2] = Sx [p] ; Xz [i + j2] = Sz [p] ; } } } else { /* real */ Sx = mxGetPr (S) ; X = mxCreateDoubleMatrix (nrow, ncol, mxREAL) ; Xx = mxGetPr (X) ; for (j = 0 ; j < ncol ; j++) { pend = Sp [j+1] ; j2 = j*nrow ; for (p = Sp [j] ; p < pend ; p++) { Xx [Si [p] + j2] = Sx [p] ; } } } return (X) ; } /* ========================================================================== */ /* === sputil_check_ijvector ================================================ */ /* ========================================================================== */ /* Check a sparse i or j input argument */ void sputil_check_ijvector (const mxArray *arg) { if (mxIsComplex (arg)) { /* i and j cannot be complex */ sputil_error (ERROR_NOT_INTEGER, TRUE) ; } if (mxIsSparse (arg)) { /* the i and j arguments for sparse(i,j,s,...) can be sparse, but if so * they must have no zero entries. */ double mn, m, nz ; Int *p, n ; m = (double) mxGetM (arg) ; n = mxGetN (arg) ; mn = m*n ; p = (Int *) mxGetJc (arg) ; nz = p [n] ; if (mn != nz) { /* i or j contains at least one zero, which is invalid */ sputil_error (ERROR_TOO_SMALL, TRUE) ; } } } /* ========================================================================== */ /* === sputil_sparse ======================================================== */ /* ========================================================================== */ /* Implements the sparse2 mexFunction */ void sputil_sparse ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double x, z ; double *z_vector ; void *i_vector, *j_vector, *x_vector ; mxArray *s_array ; cholmod_sparse *S, *Z ; cholmod_common Common, *cm ; Int nrow, ncol, k, nz, i_is_scalar, j_is_scalar, s_is_sparse, s_is_scalar, ilen, jlen, slen, nzmax, i, j, s_complex, ndropped ; mxClassID i_class, j_class, s_class ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 2 || nargin > 6 || nargin == 4 || nargin == 0) { sputil_error (ERROR_USAGE, FALSE) ; } /* ---------------------------------------------------------------------- */ /* convert inputs into a sparse matrix S */ /* ---------------------------------------------------------------------- */ S = NULL ; Z = NULL ; if (nargin == 1) { /* ------------------------------------------------------------------ */ /* S = sparse (A) where A is sparse or full */ /* ------------------------------------------------------------------ */ nrow = mxGetM (pargin [0]) ; ncol = mxGetN (pargin [0]) ; if (mxIsSparse (pargin [0])) { /* -------------------------------------------------------------- */ /* S = sparse (A) where A is sparse (double, complex, or logical) */ /* -------------------------------------------------------------- */ pargout [0] = sputil_copy_sparse (pargin [0]) ; } else { /* -------------------------------------------------------------- */ /* S = sparse (A) where A is full (real or complex) */ /* -------------------------------------------------------------- */ /* A can be of any numeric type (mxLogical, int8, ..., double), * except that if A is complex, it must also be double. */ pargout [0] = sputil_dense_to_sparse (pargin [0]) ; } } else if (nargin == 2) { /* ------------------------------------------------------------------ */ /* S = sparse (m,n) */ /* ------------------------------------------------------------------ */ Int *Sp ; nrow = sputil_get_integer (pargin [0], FALSE, 0) ; ncol = sputil_get_integer (pargin [1], FALSE, 0) ; pargout [0] = mxCreateSparse (nrow, ncol, 1, mxREAL) ; Sp = (Int *) mxGetJc (pargout [0]) ; Sp [0] = 0 ; } else { /* ------------------------------------------------------------------ */ /* S = sparse (i,j,s), sparse (i,j,s,m,n) or sparse (i,j,s,m,n,nzmax) */ /* ------------------------------------------------------------------ */ /* i, j, and s can be of any numeric type */ /* ensure i and j are valid (i and j cannot be complex) */ sputil_check_ijvector (pargin [0]) ; sputil_check_ijvector (pargin [1]) ; /* convert s from sparse to dense (double), if necessary */ s_is_sparse = mxIsSparse (pargin [2]) ; if (s_is_sparse) { /* s must be double (real/complex) or logical */ s_array = sputil_sparse_to_dense (pargin [2]) ; } else { s_array = (mxArray *) pargin [2] ; } /* s is now full. It can be any class, except if complex it must also * be double */ s_class = mxGetClassID (s_array) ; s_complex = mxIsComplex (s_array) ; if (s_complex && s_class != mxDOUBLE_CLASS) { /* for complex case, only double class is supported */ sputil_error (ERROR_INVALID_TYPE, 0) ; } /* get sizes of inputs */ ilen = sputil_nelements (pargin [0]) ; jlen = sputil_nelements (pargin [1]) ; slen = sputil_nelements (s_array) ; /* if i, j, s are scalars, they "float" to sizes of non-scalar args */ i_is_scalar = (ilen == 1) ; j_is_scalar = (jlen == 1) ; s_is_scalar = (slen == 1) ; /* find the length */ if (!i_is_scalar) { /* if i is not a scalar, let it determine the length */ nz = ilen ; } else if (!j_is_scalar) { /* otherwise, if j is not a scalar, let it determine the length */ nz = jlen ; } else { /* finally, i and j are both scalars, so let s determine length */ nz = slen ; } /* make sure the sizes are compatible */ if (!((i_is_scalar || ilen == nz) && (j_is_scalar || jlen == nz) && (s_is_scalar || slen == nz))) { sputil_error (ERROR_LENGTH, FALSE) ; } if (nargin > 4) { nrow = sputil_get_integer (pargin [3], FALSE, 0) ; ncol = sputil_get_integer (pargin [4], FALSE, 0) ; } else { /* nrow and ncol will be discovered by scanning i and j */ nrow = EMPTY ; ncol = EMPTY ; } if (nargin > 5) { nzmax = sputil_get_integer (pargin [5], FALSE, 0) ; nzmax = MAX (nzmax, nz) ; } else { nzmax = nz ; } /* ------------------------------------------------------------------ */ /* convert triplet form to sparse form */ /* ------------------------------------------------------------------ */ i = i_is_scalar ? sputil_get_integer (pargin [0], TRUE, nrow) : 0 ; i_vector = mxGetData (pargin [0]) ; i_class = mxGetClassID (pargin [0]) ; j = j_is_scalar ? sputil_get_integer (pargin [1], TRUE, ncol) : 0 ; j_vector = mxGetData (pargin [1]) ; j_class = mxGetClassID (pargin [1]) ; x_vector = mxGetData (s_array) ; z_vector = mxGetPi (s_array) ; x = sputil_get_double (s_array) ; z = (s_complex && z_vector != NULL) ? (z_vector [0]) : 0 ; S = sputil_triplet_to_sparse (nrow, ncol, nz, nzmax, i_is_scalar, i, i_vector, i_class, j_is_scalar, j, j_vector, j_class, s_is_scalar, x, z, x_vector, z_vector, s_class, s_complex, cm) ; /* set nzmax(S) to nnz(S), unless nzmax is specified on input */ if (nargin <= 5 && S != NULL) { cholmod_l_reallocate_sparse (cholmod_l_nnz (S, cm), S, cm) ; } if (nargout > 1) { /* return a binary pattern of the explicit zero entries, for the * [S Z] = sparse(i,j,x, ...) form. */ Z = sputil_extract_zeros (S, cm) ; } /* drop explicit zeros from S */ ndropped = sputil_drop_zeros (S) ; /* if entries dropped, set nzmax(S) to nnz(S), unless nzmax specified */ if (ndropped > 0 && nargin <= 5 && S != NULL) { cholmod_l_reallocate_sparse (cholmod_l_nnz (S, cm), S, cm) ; } if (s_is_sparse) { mxDestroyArray (s_array) ; } } /* ---------------------------------------------------------------------- */ /* convert S into a MATLAB sparse matrix */ /* ---------------------------------------------------------------------- */ k = 0 ; if (S != NULL) { #ifndef MATLAB6p1_OR_EARLIER /* MATLAB 6.1 or earlier do not have mxLOGICAL_CLASS */ if (mxIsLogical (pargin [2])) { /* copy S into a MATLAB sparse logical matrix */ mxLogical *s_logical ; pargout [0] = mxCreateSparseLogicalMatrix (0, 0, 0) ; s_logical = cholmod_l_malloc (S->nzmax, sizeof (mxLogical), cm) ; for (k = 0 ; k < (Int) (S->nzmax) ; k++) { s_logical [k] = 1 ; } mxFree (mxGetData (pargout [0])) ; mxSetData (pargout [0], s_logical) ; mexMakeMemoryPersistent (s_logical) ; k++ ; } else #endif if (mxIsComplex (pargin [2])) { /* copy S into a MATLAB sparse complex double matrix */ pargout [0] = mxCreateSparse (0, 0, 0, mxCOMPLEX) ; mxFree (mxGetPr (pargout [0])) ; mxFree (mxGetPi (pargout [0])) ; mxSetPr (pargout [0], S->x) ; mxSetPi (pargout [0], S->z) ; mexMakeMemoryPersistent (S->x) ; mexMakeMemoryPersistent (S->z) ; k += 2 ; S->x = NULL ; S->z = NULL ; } else { /* copy S into a MATLAB sparse real double matrix */ pargout [0] = mxCreateSparse (0, 0, 0, mxREAL) ; mxSetPr (pargout [0], S->x) ; mexMakeMemoryPersistent (S->x) ; k++ ; S->x = NULL ; } mxSetM (pargout [0], S->nrow) ; mxSetN (pargout [0], S->ncol) ; mxSetNzmax (pargout [0], S->nzmax) ; mxFree (mxGetJc (pargout [0])) ; mxFree (mxGetIr (pargout [0])) ; mxSetJc (pargout [0], S->p) ; mxSetIr (pargout [0], S->i) ; mexMakeMemoryPersistent (S->p) ; mexMakeMemoryPersistent (S->i) ; k += 2 ; /* free cholmod_sparse S, except for what has been given to MATLAB */ S->p = NULL ; S->i = NULL ; cholmod_l_free_sparse (&S, cm) ; } /* ---------------------------------------------------------------------- */ /* return Z to MATLAB, if requested */ /* ---------------------------------------------------------------------- */ if (nargout > 1) { if (Z == NULL) { /* Z not computed; return an empty matrix */ Z = cholmod_l_spzeros (nrow, ncol, 0, CHOLMOD_REAL, cm) ; } pargout [1] = sputil_put_sparse (&Z, cm) ; } cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != k) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/cholmod_matlab.h0000644001170100242450000001177010634300157017117 0ustar davisfac/* ========================================================================== */ /* === MATLAB/cholmod_matlab.h ============================================== */ /* ========================================================================== */ /* Shared prototypes and definitions for CHOLMOD mexFunctions */ #include "UFconfig.h" #ifndef DLONG #define DLONG #endif #define Int UF_long #define Int_max UF_long_max /* Ensure cholmod_read_* and cholmod_write_* work for large files. This * requires MATLAB 7.0 or later. If you are using MATLAB 6.5 or earlier, * you must delete the following line, or compile CHOLMOD with -DNLARGEFILE */ #include "cholmod_io64.h" #ifndef NPARTITION #include "metis.h" #endif #undef ASSERT #include "cholmod.h" #include #include #include #include #include "mex.h" #define EMPTY (-1) #define TRUE 1 #define FALSE 0 #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define LEN 16 #define ERROR_TOO_SMALL 0 #define ERROR_HUGE 1 #define ERROR_NOT_INTEGER 2 #define ERROR_TOO_LARGE 3 #define ERROR_USAGE 4 #define ERROR_LENGTH 5 #define ERROR_INVALID_TYPE 6 #define ERROR_OUT_OF_MEMORY 7 /* getting spumoni at run-time takes way too much time */ #ifndef SPUMONI #define SPUMONI 0 #endif /* closed by sputil_error_handler if not NULL */ extern FILE *sputil_file ; void sputil_error /* reports an error */ ( Int error, /* kind of error */ Int is_index /* TRUE if a matrix index, FALSE if a matrix dimension */ ) ; Int sputil_double_to_int /* returns integer value of x */ ( double x, /* double value to convert */ Int is_index, /* TRUE if a matrix index, FALSE if a matrix dimension */ Int n /* if a matrix index, x cannot exceed this dimension */ ) ; double sputil_get_double (const mxArray *arg) ; /* like mxGetScalar */ Int sputil_get_integer /* returns the integer value of a MATLAB argument */ ( const mxArray *arg, /* MATLAB argument to convert */ Int is_index, /* TRUE if an index, FALSE if a matrix dimension */ Int n /* maximum value, if an index */ ) ; Int sputil_copy_ij /* returns the dimension, n */ ( Int is_scalar, /* TRUE if argument is a scalar, FALSE otherwise */ Int scalar, /* scalar value of the argument */ void *vector, /* vector value of the argument */ mxClassID category, /* type of vector */ Int nz, /* length of output vector I */ Int n, /* maximum dimension, EMPTY if not yet known */ Int *I /* vector of length nz to copy into */ ) ; /* converts a triplet matrix to a compressed-column matrix */ cholmod_sparse *sputil_triplet_to_sparse ( Int nrow, Int ncol, Int nz, Int nzmax, Int i_is_scalar, Int i, void *i_vector, mxClassID i_class, Int j_is_scalar, Int j, void *j_vector, mxClassID j_class, Int s_is_scalar, double x, double z, void *x_vector, double *z_vector, mxClassID s_class, Int s_complex, cholmod_common *cm ) ; mxArray *sputil_copy_sparse (const mxArray *A) ; /* copy a sparse matrix */ Int sputil_nelements (const mxArray *arg) ; /* like mxGetNumberOfElements */ void sputil_sparse /* top-level wrapper for "sparse" function */ ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) ; void sputil_error_handler (int status, char *file, int line, char *message) ; void sputil_config (Int spumoni, cholmod_common *cm) ; mxArray *sputil_sparse_to_dense (const mxArray *S) ; cholmod_sparse *sputil_get_sparse ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_sparse *A, /* CHOLMOD version of the matrix */ double *dummy, /* a pointer to a valid scalar double */ Int stype /* -1: lower, 0: unsymmetric, 1: upper */ ) ; cholmod_dense *sputil_get_dense ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_dense *A, /* CHOLMOD version of the matrix */ double *dummy /* a pointer to a valid scalar double */ ) ; mxArray *sputil_put_dense /* returns the MATLAB version */ ( cholmod_dense **Ahandle, /* CHOLMOD version of the matrix */ cholmod_common *cm ) ; mxArray *sputil_put_sparse ( cholmod_sparse **Ahandle, /* CHOLMOD version of the matrix */ cholmod_common *cm ) ; Int sputil_drop_zeros /* drop numerical zeros from a CHOLMOD matrix */ ( cholmod_sparse *S ) ; mxArray *sputil_put_int /* copy Int vector to mxArray */ ( Int *P, /* vector to convert */ Int n, /* length of P */ Int one_based /* 1 if convert from 0-based to 1-based, 0 otherwise */ ) ; mxArray *sputil_dense_to_sparse (const mxArray *arg) ; void sputil_check_ijvector (const mxArray *arg) ; void sputil_trim ( cholmod_sparse *S, Int k, cholmod_common *cm ) ; cholmod_sparse *sputil_get_sparse_pattern ( const mxArray *Amatlab, /* MATLAB version of the matrix */ cholmod_sparse *Ashallow, /* shallow CHOLMOD version of the matrix */ double *dummy, /* a pointer to a valid scalar double */ cholmod_common *cm ) ; cholmod_sparse *sputil_extract_zeros ( cholmod_sparse *A, cholmod_common *cm ) ; SuiteSparse/CHOLMOD/MATLAB/septree.c0000644001170100242450000001072710616447344015627 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/septree mexFunction =================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * METIS (Copyright 1998, G. Karypis) is not distributed with CHOLMOD. * -------------------------------------------------------------------------- */ /* Prune a separator tree. * * Usage: * * [cp_new, cmember_new] = septree (cp, cmember, nd_oksep, nd_small) ; * * cp and cmember are outputs of the nesdis mexFunction. * * cmember(i)=c means that node i is in component * c, where c is in the range of 1 to the number of components. length(cp) is * the number of components found. cp is the separator tree; cp(c) is the * parent of component c, or 0 if c is a root. There can be anywhere from * 1 to n components, where n is the number of rows of A, A*A', or A'*A. * * On output, cp_new and cmember_new are the new tree and graph-to-tree mapping. * A subtree is collapsed into a single node if the number of nodes in the * separator is > nd_oksep times the total size of the subtree, or if the * subtree has fewer than nd_small nodes. * * Requires the CHOLMOD Partition Module. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { #ifndef NPARTITION double *p ; Int *Cmember, *CParent ; cholmod_common Common, *cm ; double nd_oksep ; Int nd_small, nc, n, c, j, nc_new ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set defaults */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 2 || nargin != 4) { mexErrMsgTxt ("Usage: [cp_new, cmember_new] = " "septree (cp, cmember, nd_oksep, nd_small)") ; } nc = mxGetNumberOfElements (pargin [0]) ; n = mxGetNumberOfElements (pargin [1]) ; nd_oksep = mxGetScalar (pargin [2]) ; nd_small = mxGetScalar (pargin [3]) ; if (n < nc) { mexErrMsgTxt ("invalid inputs") ; } CParent = cholmod_l_malloc (nc, sizeof (Int), cm) ; Cmember = cholmod_l_malloc (n, sizeof (Int), cm) ; p = mxGetPr (pargin [0]) ; for (c = 0 ; c < nc ; c++) { CParent [c] = p [c] - 1 ; if (CParent [c] < EMPTY || CParent [c] > nc) { mexErrMsgTxt ("cp invalid") ; } } p = mxGetPr (pargin [1]) ; for (j = 0 ; j < n ; j++) { Cmember [j] = p [j] - 1 ; if (Cmember [j] < 0 || Cmember [j] > nc) { mexErrMsgTxt ("cmember invalid") ; } } /* ---------------------------------------------------------------------- */ /* collapse the tree */ /* ---------------------------------------------------------------------- */ nc_new = cholmod_l_collapse_septree (n, nc, nd_oksep, nd_small, CParent, Cmember, cm) ; if (nc_new < 0) { mexErrMsgTxt ("septree failed") ; return ; } /* ---------------------------------------------------------------------- */ /* return CParent and Cmember */ /* ---------------------------------------------------------------------- */ pargout [0] = sputil_put_int (CParent, nc_new, 1) ; if (nargout > 1) { pargout [1] = sputil_put_int (Cmember, n, 1) ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ cholmod_l_free (nc, sizeof (Int), CParent, cm) ; cholmod_l_free (n, sizeof (Int), Cmember, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != 0) mexErrMsgTxt ("!") ; */ #else mexErrMsgTxt ("CHOLMOD Partition Module not installed\n") ; #endif } SuiteSparse/CHOLMOD/MATLAB/septree.m0000644001170100242450000000206710620371036015624 0ustar davisfacfunction [cp_new, cmember_new] = septree (cp, cmember, nd_oksep, nd_small) %#ok %SEPTREE prune a separator tree. % % Example: % [cp_new, cmember_new] = septree (cp, cmember, nd_oksep, nd_small) ; % % cp and cmember are outputs of nesdis. cmember(i)=c means that node i is in % component c, where c is in the range of 1 to the number of components. % length(cp) is the number of components found. cp is the separator tree; % cp(c) is the parent of component c, or 0 if c is a root. There can be % anywhere from 1 to n components, where n is the number of rows of A, A*A', % or A'*A. % % On output, cp_new and cmember_new are the new tree and graph-to-tree % mapping. A subtree is collapsed into a single node if the number of nodes % in the separator is > nd_oksep times the total size of the subtree, or if % the subtree has fewer than nd_small nodes. % % Requires the CHOLMOD Partition Module. % % See also NESDIS. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('septree mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/chol2.c0000644001170100242450000001261210621027617015153 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/chol2 mexFunction ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Numeric R'R factorization. Note that LL' and LDL' are faster than R'R * and use less memory. The R'R factorization methods use triu(A), just like * MATLAB's built-in chol. * * R = chol2 (A) same as R = chol (A), just faster * [R,p] = chol2 (A) save as [R,p] = chol(A), just faster * [R,p,q] = chol2 (A) factorizes A(q,q) into R'*R * * A must be sparse. It can be complex or real. * * R is returned with no explicit zero entries. This means it might not be * chordal, and R cannot be passed back to CHOLMOD for an update/downdate or * for a fast simplicial solve. spones (R) will be equal to the R returned * by symbfact2 if no numerically zero entries are dropped, or a subset * otherwise. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, *px ; cholmod_sparse Amatrix, *A, *Lsparse, *R ; cholmod_factor *L ; cholmod_common Common, *cm ; Int n, minor ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* convert to packed LL' when done */ cm->final_asis = FALSE ; cm->final_super = FALSE ; cm->final_ll = TRUE ; cm->final_pack = TRUE ; cm->final_monotonic = TRUE ; /* no need to prune entries due to relaxed supernodal amalgamation, since * zeros are dropped with sputil_drop_zeros instead */ cm->final_resymbol = FALSE ; cm->quick_return_if_not_posdef = (nargout < 2) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargin != 1 || nargout > 3) { mexErrMsgTxt ("usage: [R,p,q] = chol2 (A)") ; } n = mxGetN (pargin [0]) ; if (!mxIsSparse (pargin [0]) || n != mxGetM (pargin [0])) { mexErrMsgTxt ("A must be square and sparse") ; } /* get input sparse matrix A. Use triu(A) only */ A = sputil_get_sparse (pargin [0], &Amatrix, &dummy, 1) ; /* use natural ordering if no q output parameter */ if (nargout < 3) { cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = FALSE ; } /* ---------------------------------------------------------------------- */ /* analyze and factorize */ /* ---------------------------------------------------------------------- */ L = cholmod_l_analyze (A, cm) ; cholmod_l_factorize (A, L, cm) ; if (nargout < 2 && cm->status != CHOLMOD_OK) { mexErrMsgTxt ("matrix is not positive definite") ; } /* ---------------------------------------------------------------------- */ /* convert L to a sparse matrix */ /* ---------------------------------------------------------------------- */ /* the conversion sets L->minor back to n, so get a copy of it first */ minor = L->minor ; Lsparse = cholmod_l_factor_to_sparse (L, cm) ; if (Lsparse->xtype == CHOLMOD_COMPLEX) { /* convert Lsparse from complex to zomplex */ cholmod_l_sparse_xtype (CHOLMOD_ZOMPLEX, Lsparse, cm) ; } if (minor < n) { /* remove columns minor to n-1 from Lsparse */ sputil_trim (Lsparse, minor, cm) ; } /* drop zeros from Lsparse */ sputil_drop_zeros (Lsparse) ; /* Lsparse is lower triangular; conjugate transpose to get R */ R = cholmod_l_transpose (Lsparse, 2, cm) ; cholmod_l_free_sparse (&Lsparse, cm) ; /* ---------------------------------------------------------------------- */ /* return results to MATLAB */ /* ---------------------------------------------------------------------- */ /* return R */ pargout [0] = sputil_put_sparse (&R, cm) ; /* return minor (translate to MATLAB convention) */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, 1, mxREAL) ; px = mxGetPr (pargout [1]) ; px [0] = ((minor == n) ? 0 : (minor+1)) ; } /* return permutation */ if (nargout > 2) { pargout [2] = sputil_put_int (L->Perm, n, 1) ; } /* ---------------------------------------------------------------------- */ /* free workspace and the CHOLMOD L, except for what is copied to MATLAB */ /* ---------------------------------------------------------------------- */ cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != (3 + mxIsComplex (pargout[0]))) mexErrMsgTxt ("!") ; */ } SuiteSparse/CHOLMOD/MATLAB/chol2.m0000644001170100242450000000146610620370724015171 0ustar davisfacfunction [R,p,q] = chol2 (A) %#ok %CHOL2 sparse Cholesky factorization, A=R'R. % Note that A=L*L' (LCHOL) and A=L*D*L' (LDLCHOL) factorizations are faster % than R'*R (CHOL2 and CHOL) and use less memory. The LL' and LDL' % factorization methods use tril(A). This method uses triu(A), just like % the built-in CHOL. % % Example: % R = chol2 (A) same as R = chol (A), just faster % [R,p] = chol2 (A) save as [R,p] = chol(A), just faster % [R,p,q] = chol2 (A) factorizes A(q,q) into R'*R, where q is % a fill-reducing ordering % % A must be sparse. % % See also LCHOL, LDLCHOL, CHOL, LDLUPDATE. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('chol2 mexFunction not found') ; SuiteSparse/CHOLMOD/MATLAB/cholmod_install.m0000644001170100242450000000414210620371142017322 0ustar davisfacfunction cholmod_install (metis_path) %CHOLMOD_INSTALL compile and install CHOLMOD, AMD, COLAMD, CCOLAMD, CAMD % % Example: % cholmod_install % compiles using ../../metis-4.0 % cholmod_install ('/my/metis') % using non-default path to METIS % cholmod_install ('no metis') % do not use METIS at all % % CHOLMOD relies on AMD and COLAMD, for its ordering options, and can % optionally use CCOLAMD, CAMD, and METIS as well. By default, CCOLAMD, CAMD, % and METIS are used. METIS is assumed to be in the ../../metis-4.0 directory. % % See http://www-users.cs.umn.edu/~karypis/metis for a copy of METIS 4.0.1. % % You can only use cholmod_install while in the CHOLMOD/MATLAB directory. % % See also analyze, bisect, chol2, cholmod2, etree2, lchol, ldlchol, ldlsolve, % ldlupdate, metis, spsym, nesdis, septree, resymbol, sdmult, sparse2, % symbfact2, mread, mwrite, amd2, colamd2, camd, ccolamd % Copyright 2006-2007, Timothy A. Davis if (nargin < 1) metis_path = '../../metis-4.0' ; end % compile CHOLMOD and add to the path cholmod_make (metis_path) ; cholmod_path = pwd ; addpath (cholmod_path) fprintf ('\nNow compiling the AMD, COLAMD, CCOLAMD, and CAMD mexFunctions:\n') ; % compile AMD and add to the path cd ../../AMD/MATLAB amd_make amd_path = pwd ; addpath (amd_path) % compile COLAMD and add to the path cd ../../COLAMD/MATLAB colamd_make colamd_path = pwd ; addpath (colamd_path) % compile CCOLAMD and add to the path cd ../../CCOLAMD/MATLAB ccolamd_make ccolamd_path = pwd ; addpath (ccolamd_path) % compile CAMD and add to the path cd ../../CAMD/MATLAB camd_make camd_path = pwd ; addpath (camd_path) cd (cholmod_path) fprintf ('\nThe following paths have been added. You may wish to add them\n') ; fprintf ('permanently, using the MATLAB pathtool command.\n') ; fprintf ('%s\n', cholmod_path) ; fprintf ('%s\n', amd_path) ; fprintf ('%s\n', colamd_path) ; fprintf ('%s\n', ccolamd_path) ; fprintf ('%s\n', camd_path) ; fprintf ('\nTo try your new mexFunctions, cut-and-paste this command:\n') ; fprintf ('amd_demo, colamd_demo, ccolamd_demo, camd_demo, graph_demo, cholmod_demo\n') ; SuiteSparse/CHOLMOD/MATLAB/cholmod2.c0000644001170100242450000002014510674023661015656 0ustar davisfac/* ========================================================================== */ /* === CHOLMOD/MATLAB/cholmod mexFunction =================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MATLAB Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MATLAB Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * MATLAB(tm) is a Trademark of The MathWorks, Inc. * -------------------------------------------------------------------------- */ /* Supernodal sparse Cholesky backslash, x = A\b. Factorizes PAP' in LL' then * solves a sparse linear system. Uses the diagonal and upper triangular part * of A only. A must be sparse. b can be sparse or dense. * * Usage: * * x = cholmod2 (A, b) * [x stats] = cholmod2 (A, b, ordering) % a scalar: 0,-1,-2, or -3 * [x stats] = cholmod2 (A, b, p) % a permutation vector * * The 3rd argument select the ordering method to use. If not present or -1, * the default ordering strategy is used (AMD, and then try METIS if AMD finds * an ordering with high fill-in, and use the best method tried). * * Other options for the ordering parameter: * * 0 natural (no etree postordering) * -1 use CHOLMOD's default ordering strategy (AMD, then try METIS) * -2 AMD, and then try NESDIS (not METIS) if AMD has high fill-in * -3 use AMD only * -4 use METIS only * -5 use NESDIS only * -6 natural, but with etree postordering * p user permutation (vector of size n, with a permutation of 1:n) * * stats(1) estimate of the reciprocal of the condition number * stats(2) ordering used: * 0: natural, 1: given, 2:amd, 3:metis, 4:nesdis, 5:colamd, * 6: natural but postordered. * stats(3) nnz(L) * stats(4) flop count in Cholesky factorization. Excludes solution * of upper/lower triangular systems, which can be easily * computed from stats(3) (roughly 4*nnz(L)*size(b,2)). * stats(5) memory usage in MB. */ #include "cholmod_matlab.h" void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double dummy = 0, rcond, *p ; cholmod_sparse Amatrix, Bspmatrix, *A, *Bs, *Xs ; cholmod_dense Bmatrix, *X, *B ; cholmod_factor *L ; cholmod_common Common, *cm ; Int n, B_is_sparse, ordering, k, *Perm ; /* ---------------------------------------------------------------------- */ /* start CHOLMOD and set parameters */ /* ---------------------------------------------------------------------- */ cm = &Common ; cholmod_l_start (cm) ; sputil_config (SPUMONI, cm) ; /* There is no supernodal LDL'. If cm->final_ll = FALSE (the default), then * this mexFunction will use a simplicial LDL' when flops/lnz < 40, and a * supernodal LL' otherwise. This may give suprising results to the MATLAB * user, so always perform an LL' factorization by setting cm->final_ll * to TRUE. */ cm->final_ll = TRUE ; cm->quick_return_if_not_posdef = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 2 || nargin < 2 || nargin > 3) { mexErrMsgTxt ("usage: [x,rcond] = cholmod2 (A,b,ordering)") ; } n = mxGetM (pargin [0]) ; if (!mxIsSparse (pargin [0]) || (n != mxGetN (pargin [0]))) { mexErrMsgTxt ("A must be square and sparse") ; } if (n != mxGetM (pargin [1])) { mexErrMsgTxt ("# of rows of A and B must match") ; } /* get sparse matrix A. Use triu(A) only. */ A = sputil_get_sparse (pargin [0], &Amatrix, &dummy, 1) ; /* get sparse or dense matrix B */ B = NULL ; Bs = NULL ; B_is_sparse = mxIsSparse (pargin [1]) ; if (B_is_sparse) { /* get sparse matrix B (unsymmetric) */ Bs = sputil_get_sparse (pargin [1], &Bspmatrix, &dummy, 0) ; } else { /* get dense matrix B */ B = sputil_get_dense (pargin [1], &Bmatrix, &dummy) ; } /* get the ordering option */ if (nargin < 3) { /* use default ordering */ ordering = -1 ; } else { /* use a non-default option */ ordering = mxGetScalar (pargin [2]) ; } p = NULL ; Perm = NULL ; if (ordering == 0) { /* natural ordering */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = FALSE ; } else if (ordering == -1) { /* default strategy ... nothing to change */ } else if (ordering == -2) { /* default strategy, but with NESDIS in place of METIS */ cm->default_nesdis = TRUE ; } else if (ordering == -3) { /* use AMD only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_AMD ; cm->postorder = TRUE ; } else if (ordering == -4) { /* use METIS only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_METIS ; cm->postorder = TRUE ; } else if (ordering == -5) { /* use NESDIS only */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NESDIS ; cm->postorder = TRUE ; } else if (ordering == -6) { /* natural ordering, but with etree postordering */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_NATURAL ; cm->postorder = TRUE ; } else if (ordering == -7) { /* always try both AMD and METIS, and pick the best */ cm->nmethods = 2 ; cm->method [0].ordering = CHOLMOD_AMD ; cm->method [1].ordering = CHOLMOD_METIS ; cm->postorder = TRUE ; } else if (ordering >= 1) { /* assume the 3rd argument is a user-provided permutation of 1:n */ if (mxGetNumberOfElements (pargin [2]) != n) { mexErrMsgTxt ("invalid input permutation") ; } /* copy from double to integer, and convert to 0-based */ p = mxGetPr (pargin [2]) ; Perm = cholmod_l_malloc (n, sizeof (Int), cm) ; for (k = 0 ; k < n ; k++) { Perm [k] = p [k] - 1 ; } /* check the permutation */ if (!cholmod_l_check_perm (Perm, n, n, cm)) { mexErrMsgTxt ("invalid input permutation") ; } /* use only the given permutation */ cm->nmethods = 1 ; cm->method [0].ordering = CHOLMOD_GIVEN ; cm->postorder = FALSE ; } else { mexErrMsgTxt ("invalid ordering option") ; } /* ---------------------------------------------------------------------- */ /* analyze and factorize */ /* ---------------------------------------------------------------------- */ L = cholmod_l_analyze_p (A, Perm, NULL, 0, cm) ; cholmod_l_free (n, sizeof (Int), Perm, cm) ; cholmod_l_factorize (A, L, cm) ; rcond = cholmod_l_rcond (L, cm) ; if (rcond == 0) { mexWarnMsgTxt ("Matrix is indefinite or singular to working precision"); } else if (rcond < DBL_EPSILON) { mexWarnMsgTxt ("Matrix is close to singular or badly scaled.") ; mexPrintf (" Results may be inaccurate. RCOND = %g.\n", rcond) ; } /* ---------------------------------------------------------------------- */ /* solve and return solution to MATLAB */ /* ---------------------------------------------------------------------- */ if (B_is_sparse) { /* solve AX=B with sparse X and B; return sparse X to MATLAB */ Xs = cholmod_l_spsolve (CHOLMOD_A, L, Bs, cm) ; pargout [0] = sputil_put_sparse (&Xs, cm) ; } else { /* solve AX=B with dense X and B; return dense X to MATLAB */ X = cholmod_l_solve (CHOLMOD_A, L, B, cm) ; pargout [0] = sputil_put_dense (&X, cm) ; } /* return statistics, if requested */ if (nargout > 1) { pargout [1] = mxCreateDoubleMatrix (1, 5, mxREAL) ; p = mxGetPr (pargout [1]) ; p [0] = rcond ; p [1] = L->ordering ; p [2] = cm->lnz ; p [3] = cm->fl ; p [4] = cm->memory_usage / 1048576. ; } cholmod_l_free_factor (&L, cm) ; cholmod_l_finish (cm) ; cholmod_l_print_common (" ", cm) ; /* if (cm->malloc_count != (mxIsComplex (pargout [0]) + (mxIsSparse (pargout[0]) ? 3:1))) mexErrMsgTxt ("memory leak!") ; */ } SuiteSparse/CHOLMOD/MATLAB/cholmod2.m0000644001170100242450000000342510620370733015666 0ustar davisfacfunction [x,stats] = cholmod2 (A, b, ordering) %#ok %CHOLMOD2 supernodal sparse Cholesky backslash, x = A\b % % Example: % x = cholmod2 (A,b) % % Computes the LL' factorization of A(p,p), where p is a fill-reducing % ordering, then solves a sparse linear system Ax=b. A must be sparse, % symmetric, and positive definite). Uses only the upper triangular part % of A. A second output, [x,stats]=cholmod2(A,b), returns statistics: % % stats(1) estimate of the reciprocal of the condition number % stats(2) ordering used: % 0: natural, 1: given, 2:amd, 3:metis, 4:nesdis, % 5:colamd, 6: natural but postordered. % stats(3) nnz(L) % stats(4) flop count in Cholesky factorization. Excludes solution % of upper/lower triangular systems, which can be easily % computed from stats(3) (roughly 4*nnz(L)*size(b,2)). % stats(5) memory usage in MB. % % The 3rd argument select the ordering method to use. If not present or -1, % the default ordering strategy is used (AMD, and then try METIS if AMD finds % an ordering with high fill-in, and use the best method tried). % % Other options for the ordering parameter: % % 0 natural (no etree postordering) % -1 use CHOLMOD's default ordering strategy (AMD, then try METIS) % -2 AMD, and then try NESDIS (not METIS) if AMD has high fill-in % -3 use AMD only % -4 use METIS only % -5 use NESDIS only % -6 natural, but with etree postordering % p user permutation (vector of size n, with a permutation of 1:n) % % See also CHOL, MLDIVIDE. % Copyright 2006-2007, Timothy A. Davis % http://www.cise.ufl.edu/research/sparse error ('cholmod2 mexFunction not found\n') ; SuiteSparse/CHOLMOD/Supernodal/0000755001170100242450000000000010677540316015161 5ustar davisfacSuiteSparse/CHOLMOD/Supernodal/cholmod_super_solve.c0000644001170100242450000001601410616475366021407 0ustar davisfac/* ========================================================================== */ /* === Supernodal/cholmod_super_solve ======================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Solve Lx=b or L'x=b for a supernodal factorization. These routines do not * apply the permutation L->Perm. See cholmod_solve for a more general * interface that performs that operation. */ #ifndef NSUPERNODAL #include "cholmod_internal.h" #include "cholmod_supernodal.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_super_solve.c" #define COMPLEX #include "t_cholmod_super_solve.c" /* ========================================================================== */ /* === cholmod_super_lsolve ================================================= */ /* ========================================================================== */ /* Solve Lx=b where x and b are of size n-by-nrhs. b is overwritten by the * solution x. On input, b is stored in col-major order with leading dimension * of d, and on output x is stored in the same manner. * * The contents of the workspace E are undefined on both input and output. * * workspace: none */ int CHOLMOD(super_lsolve) /* TRUE if OK, FALSE if BLAS overflow occured */ ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the forward solve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to Lx=b on output */ /* ---- workspace ---- */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) { int blas_ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_NULL (X, FALSE) ; RETURN_IF_NULL (E, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (E, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; if (L->xtype != X->xtype) { ERROR (CHOLMOD_INVALID, "L and X must have the same xtype") ; return (FALSE) ; } if (L->xtype != E->xtype) { ERROR (CHOLMOD_INVALID, "L and E must have the same xtype") ; return (FALSE) ; } if (X->d < X->nrow || L->n != X->nrow) { ERROR (CHOLMOD_INVALID, "X and L dimensions must match") ; return (FALSE) ; } if (E->nzmax < X->ncol * (L->maxesize)) { ERROR (CHOLMOD_INVALID, "workspace E not large enough") ; return (FALSE) ; } if (!(L->is_ll) || !(L->is_super)) { ERROR (CHOLMOD_INVALID, "L not supernodal") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; ASSERT (IMPLIES (L->n == 0, L->nsuper == 0)) ; if (L->n == 0 || X->ncol == 0) { /* nothing to do */ return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* solve Lx=b using template routine */ /* ---------------------------------------------------------------------- */ switch (L->xtype) { case CHOLMOD_REAL: blas_ok = r_cholmod_super_lsolve (L, X, E, Common) ; break ; case CHOLMOD_COMPLEX: blas_ok = c_cholmod_super_lsolve (L, X, E, Common) ; break ; } if (CHECK_BLAS_INT && !blas_ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ; } return (blas_ok) ; } /* ========================================================================== */ /* === cholmod_super_ltsolve ================================================ */ /* ========================================================================== */ /* Solve L'x=b where x and b are of size n-by-nrhs. b is overwritten by the * solution x. On input, b is stored in col-major order with leading dimension * of d, and on output x is stored in the same manner. * * The contents of the workspace E are undefined on both input and output. * * workspace: none */ int CHOLMOD(super_ltsolve) /* TRUE if OK, FALSE if BLAS overflow occured */ ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the backsolve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to L'x=b on output */ /* ---- workspace ---- */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) { int blas_ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_NULL (X, FALSE) ; RETURN_IF_NULL (E, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (E, CHOLMOD_REAL, CHOLMOD_COMPLEX, FALSE) ; if (L->xtype != X->xtype) { ERROR (CHOLMOD_INVALID, "L and X must have the same xtype") ; return (FALSE) ; } if (L->xtype != E->xtype) { ERROR (CHOLMOD_INVALID, "L and E must have the same xtype") ; return (FALSE) ; } if (X->d < X->nrow || L->n != X->nrow) { ERROR (CHOLMOD_INVALID, "X and L dimensions must match") ; return (FALSE) ; } if (E->nzmax < X->ncol * (L->maxesize)) { ERROR (CHOLMOD_INVALID, "workspace E not large enough") ; return (FALSE) ; } if (!(L->is_ll) || !(L->is_super)) { ERROR (CHOLMOD_INVALID, "L not supernodal") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; ASSERT (IMPLIES (L->n == 0, L->nsuper == 0)) ; if (L->n == 0 || X->ncol == 0) { /* nothing to do */ return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* solve Lx=b using template routine */ /* ---------------------------------------------------------------------- */ switch (L->xtype) { case CHOLMOD_REAL: blas_ok = r_cholmod_super_ltsolve (L, X, E, Common) ; break ; case CHOLMOD_COMPLEX: blas_ok = c_cholmod_super_ltsolve (L, X, E, Common) ; break ; } if (CHECK_BLAS_INT && !blas_ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ; } return (blas_ok) ; } #endif SuiteSparse/CHOLMOD/Supernodal/t_cholmod_super_solve.c0000644001170100242450000002627710540000020021705 0ustar davisfac/* ========================================================================== */ /* === Supernodal/t_cholmod_super_solve ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_super_solve. Supports real or complex L. */ #include "cholmod_template.h" static int TEMPLATE (cholmod_super_lsolve) ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the forward solve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to Lx=b on output */ /* ---- workspace ---- */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) { double *Lx, *Xx, *Ex ; double minus_one [2], one [2] ; Int *Lpi, *Lpx, *Ls, *Super ; Int nsuper, k1, k2, psi, psend, psx, nsrow, nscol, ii, s, nsrow2, n, ps2, j, i, d, nrhs ; /* If integer overflow occurs in the BLAS, Common->status is set to * CHOLMOD_TOO_LARGE in the caller, and the contents of X are undefined. */ int blas_ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrhs = X->ncol ; Ex = E->x ; Xx = X->x ; n = L->n ; d = X->d ; nsuper = L->nsuper ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Super = L->super ; Lx = L->x ; minus_one [0] = -1.0 ; minus_one [1] = 0 ; one [0] = 1.0 ; one [1] = 0 ; /* ---------------------------------------------------------------------- */ /* solve Lx=b */ /* ---------------------------------------------------------------------- */ if (nrhs == 1) { for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; nsrow2 = nsrow - nscol ; ps2 = psi + nscol ; ASSERT ((size_t) nsrow2 <= L->maxesize) ; /* L1 is nscol-by-nscol, lower triangular with non-unit diagonal. * L2 is nsrow2-by-nscol. L1 and L2 have leading dimension of * nsrow. x1 is nscol-by-nsrow, with leading dimension n. * E is nsrow2-by-1, with leading dimension nsrow2. */ /* gather X into E */ for (ii = 0 ; ii < nsrow2 ; ii++) { /* Ex [ii] = Xx [Ls [ps2 + ii]] ; */ ASSIGN (Ex,-,ii, Xx,-,Ls [ps2 + ii]) ; } #ifdef REAL /* solve L1*x1 (that is, x1 = L1\x1) */ BLAS_dtrsv ("L", "N", "N", nscol, /* N: L1 is nscol-by-nscol */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, 1) ; /* X, INCX: x1 */ /* E = E - L2*x1 */ BLAS_dgemv ("N", nsrow2, nscol, /* M, N: L2 is nsrow2-by-nscol */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Xx + ENTRY_SIZE*k1, 1, /* X, INCX: x1 */ one, /* BETA: 1 */ Ex, 1) ; /* Y, INCY: E */ #else /* solve L1*x1 (that is, x1 = L1\x1) */ BLAS_ztrsv ("L", "N", "N", nscol, /* N: L1 is nscol-by-nscol */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, 1) ; /* X, INCX: x1 */ /* E = E - L2*x1 */ BLAS_zgemv ("N", nsrow2, nscol, /* M, N: L2 is nsrow2-by-nscol */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Xx + ENTRY_SIZE*k1, 1, /* X, INCX: x1 */ one, /* BETA: 1 */ Ex, 1) ; /* Y, INCY: E */ #endif /* scatter E back into X */ for (ii = 0 ; ii < nsrow2 ; ii++) { /* Xx [Ls [ps2 + ii]] = Ex [ii] ; */ ASSIGN (Xx,-,Ls [ps2 + ii], Ex,-,ii) ; } } } else { for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; nsrow2 = nsrow - nscol ; ps2 = psi + nscol ; ASSERT ((size_t) nsrow2 <= L->maxesize) ; /* E is nsrow2-by-nrhs, with leading dimension nsrow2. */ /* gather X into E */ for (ii = 0 ; ii < nsrow2 ; ii++) { i = Ls [ps2 + ii] ; for (j = 0 ; j < nrhs ; j++) { /* Ex [ii + j*nsrow2] = Xx [i + j*d] ; */ ASSIGN (Ex,-,ii+j*nsrow2, Xx,-,i+j*d) ; } } #ifdef REAL /* solve L1*x1 */ BLAS_dtrsm ("L", "L", "N", "N", nscol, nrhs, /* M, N: x1 is nscol-by-nrhs */ one, /* ALPHA: 1 */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, d) ; /* B, LDB: x1 */ /* E = E - L2*x1 */ if (nsrow2 > 0) { BLAS_dgemm ("N", "N", nsrow2, nrhs, nscol, /* M, N, K */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Xx + ENTRY_SIZE*k1, d, /* B, LDB: X1 */ one, /* BETA: 1 */ Ex, nsrow2) ; /* C, LDC: E */ } #else /* solve L1*x1 */ BLAS_ztrsm ("L", "L", "N", "N", nscol, nrhs, /* M, N: x1 is nscol-by-nrhs */ one, /* ALPHA: 1 */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, d) ; /* B, LDB: x1 */ /* E = E - L2*x1 */ if (nsrow2 > 0) { BLAS_zgemm ("N", "N", nsrow2, nrhs, nscol, /* M, N, K */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Xx + ENTRY_SIZE*k1, d, /* B, LDB: X1 */ one, /* BETA: 1 */ Ex, nsrow2) ; /* C, LDC: E */ } #endif /* scatter E back into X */ for (ii = 0 ; ii < nsrow2 ; ii++) { i = Ls [ps2 + ii] ; for (j = 0 ; j < nrhs ; j++) { /* Xx [i + j*d] = Ex [ii + j*nsrow2] ; */ ASSIGN (Xx,-,i+j*d, Ex,-,ii+j*nsrow2) ; } } } } Common->status = CHOLMOD_OK ; return (blas_ok) ; } static int TEMPLATE (cholmod_super_ltsolve) ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the forward solve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to Lx=b on output */ /* ---- workspace ---- */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) { double *Lx, *Xx, *Ex ; double minus_one [2], one [2] ; Int *Lpi, *Lpx, *Ls, *Super ; Int nsuper, k1, k2, psi, psend, psx, nsrow, nscol, ii, s, nsrow2, n, ps2, j, i, d, nrhs ; int blas_ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrhs = X->ncol ; Ex = E->x ; Xx = X->x ; n = L->n ; d = X->d ; nsuper = L->nsuper ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Super = L->super ; Lx = L->x ; minus_one [0] = -1.0 ; minus_one [1] = 0 ; one [0] = 1.0 ; one [1] = 0 ; /* ---------------------------------------------------------------------- */ /* solve L'x=b */ /* ---------------------------------------------------------------------- */ if (nrhs == 1) { for (s = nsuper-1 ; s >= 0 ; s--) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; nsrow2 = nsrow - nscol ; ps2 = psi + nscol ; ASSERT ((size_t) nsrow2 <= L->maxesize) ; /* L1 is nscol-by-nscol, lower triangular with non-unit diagonal. * L2 is nsrow2-by-nscol. L1 and L2 have leading dimension of * nsrow. x1 is nscol-by-nsrow, with leading dimension n. * E is nsrow2-by-1, with leading dimension nsrow2. */ /* gather X into E */ for (ii = 0 ; ii < nsrow2 ; ii++) { /* Ex [ii] = Xx [Ls [ps2 + ii]] ; */ ASSIGN (Ex,-,ii, Xx,-,Ls [ps2 + ii]) ; } #ifdef REAL /* x1 = x1 - L2'*E */ BLAS_dgemv ("C", nsrow2, nscol, /* M, N: L2 is nsrow2-by-nscol */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Ex, 1, /* X, INCX: Ex */ one, /* BETA: 1 */ Xx + ENTRY_SIZE*k1, 1) ; /* Y, INCY: x1 */ /* solve L1'*x1 */ BLAS_dtrsv ("L", "C", "N", nscol, /* N: L1 is nscol-by-nscol */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, 1) ; /* X, INCX: x1 */ #else /* x1 = x1 - L2'*E */ BLAS_zgemv ("C", nsrow2, nscol, /* M, N: L2 is nsrow2-by-nscol */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Ex, 1, /* X, INCX: Ex */ one, /* BETA: 1 */ Xx + ENTRY_SIZE*k1, 1) ; /* Y, INCY: x1 */ /* solve L1'*x1 */ BLAS_ztrsv ("L", "C", "N", nscol, /* N: L1 is nscol-by-nscol */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, 1) ; /* X, INCX: x1 */ #endif } } else { for (s = nsuper-1 ; s >= 0 ; s--) { k1 = Super [s] ; k2 = Super [s+1] ; psi = Lpi [s] ; psend = Lpi [s+1] ; psx = Lpx [s] ; nsrow = psend - psi ; nscol = k2 - k1 ; nsrow2 = nsrow - nscol ; ps2 = psi + nscol ; ASSERT ((size_t) nsrow2 <= L->maxesize) ; /* E is nsrow2-by-nrhs, with leading dimension nsrow2. */ /* gather X into E */ for (ii = 0 ; ii < nsrow2 ; ii++) { i = Ls [ps2 + ii] ; for (j = 0 ; j < nrhs ; j++) { /* Ex [ii + j*nsrow2] = Xx [i + j*d] ; */ ASSIGN (Ex,-,ii+j*nsrow2, Xx,-,i+j*d) ; } } #ifdef REAL /* x1 = x1 - L2'*E */ if (nsrow2 > 0) { BLAS_dgemm ("C", "N", nscol, nrhs, nsrow2, /* M, N, K */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Ex, nsrow2, /* B, LDB: E */ one, /* BETA: 1 */ Xx + ENTRY_SIZE*k1, d) ; /* C, LDC: x1 */ } /* solve L1'*x1 */ BLAS_dtrsm ("L", "L", "C", "N", nscol, nrhs, /* M, N: x1 is nscol-by-nrhs */ one, /* ALPHA: 1 */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, d) ; /* B, LDB: x1 */ #else /* x1 = x1 - L2'*E */ if (nsrow2 > 0) { BLAS_zgemm ("C", "N", nscol, nrhs, nsrow2, /* M, N, K */ minus_one, /* ALPHA: -1 */ Lx + ENTRY_SIZE*(psx + nscol), /* A, LDA: L2 */ nsrow, Ex, nsrow2, /* B, LDB: E */ one, /* BETA: 1 */ Xx + ENTRY_SIZE*k1, d) ; /* C, LDC: x1 */ } /* solve L1'*x1 */ BLAS_ztrsm ("L", "L", "C", "N", nscol, nrhs, /* M, N: x1 is nscol-by-nrhs */ one, /* ALPHA: 1 */ Lx + ENTRY_SIZE*psx, nsrow, /* A, LDA: L1 */ Xx + ENTRY_SIZE*k1, d) ; /* B, LDB: x1 */ #endif } } Common->status = CHOLMOD_OK ; return (blas_ok) ; } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Supernodal/License.txt0000644001170100242450000000204610540000306017261 0ustar davisfacCHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Supernodal module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/Supernodal/cholmod_super_numeric.c0000644001170100242450000002516610635771110021714 0ustar davisfac/* ========================================================================== */ /* === Supernodal/cholmod_super_numeric ===================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Computes the Cholesky factorization of A+beta*I or A*F+beta*I. Only the * the lower triangular part of A+beta*I or A*F+beta*I is accessed. The * matrices A and F must already be permuted according to the fill-reduction * permutation L->Perm. cholmod_factorize is an "easy" wrapper for this code * which applies that permutation. beta is real. * * Symmetric case: A is a symmetric (lower) matrix. F is not accessed. * With a fill-reducing permutation, A(p,p) should be passed instead, where is * p is L->Perm. * * Unsymmetric case: A is unsymmetric, and F must be present. Normally, F=A'. * With a fill-reducing permutation, A(p,f) and A(p,f)' should be passed as A * and F, respectively, where f is a list of the subset of the columns of A. * * The input factorization L must be supernodal (L->is_super is TRUE). It can * either be symbolic or numeric. In the first case, L has been analyzed by * cholmod_analyze or cholmod_super_symbolic, but the matrix has not yet been * numerically factorized. The numerical values are allocated here and the * factorization is computed. In the second case, a prior matrix has been * analyzed and numerically factorized, and a new matrix is being factorized. * The numerical values of L are replaced with the new numerical factorization. * * L->is_ll is ignored, and set to TRUE. This routine always computes an LL' * factorization. Supernodal LDL' factorization is not (yet) supported. * FUTURE WORK: perform a supernodal LDL' factorization if L->is_ll is FALSE. * * Uses BLAS routines dsyrk, dgemm, dtrsm, and the LAPACK routine dpotrf. * The supernodal solver uses BLAS routines dtrsv, dgemv, dtrsm, and dgemm. * * If the matrix is not positive definite the routine returns TRUE, but sets * Common->status to CHOLMOD_NOT_POSDEF and L->minor is set to the column at * which the failure occurred. The supernode containing the non-positive * diagonal entry is set to zero (this includes columns to the left of L->minor * in the same supernode), as are all subsequent supernodes. * * workspace: Flag (nrow), Head (nrow+1), Iwork (2*nrow + 4*nsuper). * Allocates temporary space of size L->maxcsize * sizeof(double) * (twice that for the complex/zomplex case). * * If L is supernodal symbolic on input, it is converted to a supernodal numeric * factor on output, with an xtype of real if A is real, or complex if A is * complex or zomplex. If L is supernodal numeric on input, its xtype must * match A (except that L can be complex and A zomplex). The xtype of A and F * must match. */ #ifndef NSUPERNODAL #include "cholmod_internal.h" #include "cholmod_supernodal.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_super_numeric.c" #define COMPLEX #include "t_cholmod_super_numeric.c" #define ZOMPLEX #include "t_cholmod_super_numeric.c" /* ========================================================================== */ /* === cholmod_super_numeric ================================================ */ /* ========================================================================== */ /* Returns TRUE if successful, or if the matrix is not positive definite. * Returns FALSE if out of memory, inputs are invalid, or other fatal error * occurs. */ int CHOLMOD(super_numeric) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* F = A' or A(:,f)' */ double beta [2], /* beta*I is added to diagonal of matrix to factorize */ /* ---- in/out --- */ cholmod_factor *L, /* factorization */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *C ; Int *Super, *Map, *SuperMap ; size_t maxcsize ; Int nsuper, n, i, k, s, stype, nrow ; int ok = TRUE, symbolic ; size_t t, w ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_COMPLEX, FALSE) ; stype = A->stype ; if (stype < 0) { if (A->nrow != A->ncol || A->nrow != L->n) { ERROR (CHOLMOD_INVALID, "invalid dimensions") ; return (FALSE) ; } } else if (stype == 0) { if (A->nrow != L->n) { ERROR (CHOLMOD_INVALID, "invalid dimensions") ; return (FALSE) ; } RETURN_IF_NULL (F, FALSE) ; RETURN_IF_XTYPE_INVALID (F, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; if (A->nrow != F->ncol || A->ncol != F->nrow || F->stype != 0) { ERROR (CHOLMOD_INVALID, "F invalid") ; return (FALSE) ; } if (A->xtype != F->xtype) { ERROR (CHOLMOD_INVALID, "A and F must have same xtype") ; return (FALSE) ; } } else { /* symmetric upper case not suppored */ ERROR (CHOLMOD_INVALID, "symmetric upper case not supported") ; return (FALSE) ; } if (!(L->is_super)) { ERROR (CHOLMOD_INVALID, "L not supernodal") ; return (FALSE) ; } if (L->xtype != CHOLMOD_PATTERN) { if (! ((A->xtype == CHOLMOD_REAL && L->xtype == CHOLMOD_REAL) || (A->xtype == CHOLMOD_COMPLEX && L->xtype == CHOLMOD_COMPLEX) || (A->xtype == CHOLMOD_ZOMPLEX && L->xtype == CHOLMOD_COMPLEX))) { ERROR (CHOLMOD_INVALID, "complex type mismatch") ; return (FALSE) ; } } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace in Common */ /* ---------------------------------------------------------------------- */ nsuper = L->nsuper ; maxcsize = L->maxcsize ; nrow = A->nrow ; n = nrow ; PRINT1 (("nsuper "ID" maxcsize %g\n", nsuper, (double) maxcsize)) ; ASSERT (nsuper >= 0 && maxcsize > 0) ; /* w = 2*n + 4*nsuper */ w = CHOLMOD(mult_size_t) (n, 2, &ok) ; t = CHOLMOD(mult_size_t) (nsuper, 4, &ok) ; w = CHOLMOD(add_size_t) (w, t, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, w, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get the current factor L and allocate numerical part, if needed */ /* ---------------------------------------------------------------------- */ Super = L->super ; symbolic = (L->xtype == CHOLMOD_PATTERN) ; if (symbolic) { /* convert to supernodal numeric by allocating L->x */ CHOLMOD(change_factor) ( (A->xtype == CHOLMOD_REAL) ? CHOLMOD_REAL : CHOLMOD_COMPLEX, TRUE, TRUE, TRUE, TRUE, L, Common) ; if (Common->status < CHOLMOD_OK) { /* the factor L remains in symbolic supernodal form */ return (FALSE) ; } } ASSERT (L->dtype == DTYPE) ; ASSERT (L->xtype == CHOLMOD_REAL || L->xtype == CHOLMOD_COMPLEX) ; /* supernodal LDL' is not supported */ L->is_ll = TRUE ; /* ---------------------------------------------------------------------- */ /* get more workspace */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_dense) (maxcsize, 1, maxcsize, L->xtype, Common) ; if (Common->status < CHOLMOD_OK) { int status = Common->status ; if (symbolic) { /* Change L back to symbolic, since the numeric values are not * initialized. This cannot fail. */ CHOLMOD(change_factor) (CHOLMOD_PATTERN, TRUE, TRUE, TRUE, TRUE, L, Common) ; } /* the factor L is now back to the form it had on input */ Common->status = status ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ SuperMap = Common->Iwork ; /* size n (i/i/l) */ Map = Common->Flag ; /* size n, use Flag as workspace for Map array */ for (i = 0 ; i < n ; i++) { Map [i] = EMPTY ; } /* ---------------------------------------------------------------------- */ /* find the mapping of nodes to relaxed supernodes */ /* ---------------------------------------------------------------------- */ /* SuperMap [k] = s if column k is contained in supernode s */ for (s = 0 ; s < nsuper ; s++) { PRINT1 (("Super ["ID"] "ID" ncols "ID"\n", s, Super[s], Super[s+1]-Super[s])); for (k = Super [s] ; k < Super [s+1] ; k++) { SuperMap [k] = s ; PRINT2 (("relaxed SuperMap ["ID"] = "ID"\n", k, SuperMap [k])) ; } } /* ---------------------------------------------------------------------- */ /* supernodal numerical factorization, using template routine */ /* ---------------------------------------------------------------------- */ switch (A->xtype) { case CHOLMOD_REAL: ok = r_cholmod_super_numeric (A, F, beta, L, C, Common) ; break ; case CHOLMOD_COMPLEX: ok = c_cholmod_super_numeric (A, F, beta, L, C, Common) ; break ; case CHOLMOD_ZOMPLEX: /* This operates on complex L, not zomplex */ ok = z_cholmod_super_numeric (A, F, beta, L, C, Common) ; break ; } /* ---------------------------------------------------------------------- */ /* clear Common workspace, free temp workspace C, and return */ /* ---------------------------------------------------------------------- */ /* Flag array was used as workspace, clear it */ Common->mark = EMPTY ; /* CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; CHOLMOD(free_dense) (&C, Common) ; return (ok) ; } #endif SuiteSparse/CHOLMOD/Supernodal/t_cholmod_super_numeric.c0000644001170100242450000006104610540000015022214 0ustar davisfac/* ========================================================================== */ /* === Supernodal/t_cholmod_super_numeric =================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_super_numeric. All xtypes supported, except * that a zomplex A and F result in a complex L (there is no supernodal * zomplex L). */ /* ========================================================================== */ /* === complex arithmetic =================================================== */ /* ========================================================================== */ #include "cholmod_template.h" #undef L_ENTRY #undef L_CLEAR #undef L_ASSIGN #undef L_MULTADD #undef L_ASSEMBLE #undef L_ASSEMBLESUB #ifdef REAL /* -------------------------------------------------------------------------- */ /* A, F, and L are all real */ /* -------------------------------------------------------------------------- */ #define L_ENTRY 1 #define L_CLEAR(Lx,p) Lx [p] = 0 #define L_ASSIGN(Lx,q, Ax,Az,p) Lx [q] = Ax [p] #define L_MULTADD(Lx,q, Ax,Az,p, f) Lx [q] += Ax [p] * f [0] #define L_ASSEMBLE(Lx,q,b) Lx [q] += b [0] #define L_ASSEMBLESUB(Lx,q,C,p) Lx [q] -= C [p] #else /* -------------------------------------------------------------------------- */ /* A and F are complex or zomplex, L and C are complex */ /* -------------------------------------------------------------------------- */ #define L_ENTRY 2 #define L_CLEAR(Lx,p) Lx [2*(p)] = 0 ; Lx [2*(p)+1] = 0 #define L_ASSEMBLE(Lx,q,b) Lx [2*(q)] += b [0] ; #define L_ASSEMBLESUB(Lx,q,C,p) \ Lx [2*(q) ] -= C [2*(p) ] ; \ Lx [2*(q)+1] -= C [2*(p)+1] ; #ifdef COMPLEX /* -------------------------------------------------------------------------- */ /* A, F, L, and C are all complex */ /* -------------------------------------------------------------------------- */ #define L_ASSIGN(Lx,q, Ax,Az,p) \ Lx [2*(q) ] = Ax [2*(p) ] ; \ Lx [2*(q)+1] = Ax [2*(p)+1] #define L_MULTADD(Lx,q, Ax,Az,p, f) \ Lx [2*(q) ] += Ax [2*(p) ] * f [0] - Ax [2*(p)+1] * f [1] ; \ Lx [2*(q)+1] += Ax [2*(p)+1] * f [0] + Ax [2*(p) ] * f [1] #else /* -------------------------------------------------------------------------- */ /* A and F are zomplex, L and C is complex */ /* -------------------------------------------------------------------------- */ #define L_ASSIGN(Lx,q, Ax,Az,p) \ Lx [2*(q) ] = Ax [p] ; \ Lx [2*(q)+1] = Az [p] ; #define L_MULTADD(Lx,q, Ax,Az,p, f) \ Lx [2*(q) ] += Ax [p] * f [0] - Az [p] * f [1] ; \ Lx [2*(q)+1] += Az [p] * f [0] + Ax [p] * f [1] #endif #endif /* ========================================================================== */ /* === t_cholmod_super_numeric ============================================== */ /* ========================================================================== */ /* This function returns FALSE only if integer overflow occurs in the BLAS. * It returns TRUE otherwise whether or not the matrix is positive definite. */ static int TEMPLATE (cholmod_super_numeric) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* F = A' or A(:,f)' */ double beta [2], /* beta*I is added to diagonal of matrix to factorize */ /* ---- in/out --- */ cholmod_factor *L, /* factorization */ /* -- workspace -- */ cholmod_dense *Cwork, /* size (L->maxcsize)-by-1 */ /* --------------- */ cholmod_common *Common ) { double one [2], zero [2], fjk [2] ; double *Lx, *Ax, *Fx, *Az, *Fz, *C ; Int *Super, *Head, *Ls, *Lpi, *Lpx, *Map, *SuperMap, *RelativeMap, *Next, *Lpos, *Fp, *Fi, *Fnz, *Ap, *Ai, *Anz, *Iwork, *Next_save, *Lpos_save ; Int nsuper, n, j, i, k, s, p, pend, k1, k2, nscol, psi, psx, psend, nsrow, pj, d, kd1, kd2, info, ndcol, ndrow, pdi, pdx, pdend, pdi1, pdi2, pdx1, ndrow1, ndrow2, px, dancestor, sparent, dnext, nsrow2, ndrow3, pk, pf, pfend, stype, Apacked, Fpacked, q, imap, repeat_supernode, nscol2, ss, nscol_new = 0 ; /* If integer overflow occurs in the BLAS, Common->status is set to * CHOLMOD_TOO_LARGE, and the contents of Lx are undefined. */ int blas_ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nsuper = L->nsuper ; n = L->n ; C = Cwork->x ; /* workspace of size L->maxcsize */ one [0] = 1.0 ; /* ALPHA for *syrk, *herk, *gemm, and *trsm */ one [1] = 0. ; zero [0] = 0. ; /* BETA for *syrk, *herk, and *gemm */ zero [1] = 0. ; Iwork = Common->Iwork ; SuperMap = Iwork ; /* size n (i/i/l) */ RelativeMap = Iwork + n ; /* size n (i/i/l) */ Next = Iwork + 2*((size_t) n) ; /* size nsuper*/ Lpos = Iwork + 2*((size_t) n) + nsuper ; /* size nsuper*/ Next_save = Iwork + 2*((size_t) n) + 2*((size_t) nsuper) ;/* size nsuper*/ Lpos_save = Iwork + 2*((size_t) n) + 3*((size_t) nsuper) ;/* size nsuper*/ Map = Common->Flag ; /* size n, use Flag as workspace for Map array */ Head = Common->Head ; /* size n+1, only Head [0..nsuper-1] used */ Ls = L->s ; Lpi = L->pi ; Lpx = L->px ; Super = L->super ; Lx = L->x ; stype = A->stype ; if (stype != 0) { /* F not accessed */ Fp = NULL ; Fi = NULL ; Fx = NULL ; Fz = NULL ; Fnz = NULL ; Fpacked = TRUE ; } else { Fp = F->p ; Fi = F->i ; Fx = F->x ; Fz = F->z ; Fnz = F->nz ; Fpacked = F->packed ; } Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; Apacked = A->packed ; /* clear the Map so that changes in the pattern of A can be detected */ for (i = 0 ; i < n ; i++) { Map [i] = EMPTY ; } /* If the matrix is not positive definite, the supernode s containing the * first zero or negative diagonal entry of L is repeated (but factorized * only up to just before the problematic diagonal entry). The purpose is * to provide MATLAB with [R,p]=chol(A); columns 1 to p-1 of L=R' are * required, where L(p,p) is the problematic diagonal entry. The * repeat_supernode flag tells us whether this is the repeated supernode. * Once supernode s is repeated, the factorization is terminated. */ repeat_supernode = FALSE ; /* ---------------------------------------------------------------------- */ /* supernodal numerical factorization */ /* ---------------------------------------------------------------------- */ for (s = 0 ; s < nsuper ; s++) { /* ------------------------------------------------------------------ */ /* get the size of supernode s */ /* ------------------------------------------------------------------ */ k1 = Super [s] ; /* s contains columns k1 to k2-1 of L */ k2 = Super [s+1] ; nscol = k2 - k1 ; /* # of columns in all of s */ psi = Lpi [s] ; /* pointer to first row of s in Ls */ psx = Lpx [s] ; /* pointer to first row of s in Lx */ psend = Lpi [s+1] ; /* pointer just past last row of s in Ls */ nsrow = psend - psi ; /* # of rows in all of s */ PRINT1 (("====================================================\n" "S "ID" k1 "ID" k2 "ID" nsrow "ID" nscol "ID" psi "ID" psend " ""ID" psx "ID"\n", s, k1, k2, nsrow, nscol, psi, psend, psx)) ; /* ------------------------------------------------------------------ */ /* zero the supernode s */ /* ------------------------------------------------------------------ */ ASSERT ((size_t) (psx + nsrow*nscol) <= L->xsize) ; pend = psx + nsrow * nscol ; /* s is nsrow-by-nscol */ for (p = psx ; p < pend ; p++) { /* Lx [p] = 0 ; */ L_CLEAR (Lx,p) ; } /* ------------------------------------------------------------------ */ /* construct the scattered Map for supernode s */ /* ------------------------------------------------------------------ */ /* If row i is the kth row in s, then Map [i] = k. Similarly, if * column j is the kth column in s, then Map [j] = k. */ for (k = 0 ; k < nsrow ; k++) { PRINT1 ((" "ID" map "ID"\n", Ls [psi+k], k)) ; Map [Ls [psi + k]] = k ; } /* ------------------------------------------------------------------ */ /* copy matrix into supernode s (lower triangular part only) */ /* ------------------------------------------------------------------ */ pk = psx ; for (k = k1 ; k < k2 ; k++) { if (stype != 0) { /* copy the kth column of A into the supernode */ p = Ap [k] ; pend = (Apacked) ? (Ap [k+1]) : (p + Anz [k]) ; for ( ; p < pend ; p++) { /* row i of L is located in row Map [i] of s */ i = Ai [p] ; if (i >= k) { /* This test is here simply to avoid a segfault. If * the test is false, the numeric factorization of A * is undefined. It does not detect all invalid * entries, only some of them (when debugging is * enabled, and Map is cleared after each step, then * all entries not in the pattern of L are detected). */ imap = Map [i] ; if (imap >= 0 && imap < nsrow) { /* Lx [Map [i] + pk] = Ax [p] ; */ L_ASSIGN (Lx,(imap+pk), Ax,Az,p) ; } } } } else { /* copy the kth column of A*F into the supernode */ pf = Fp [k] ; pfend = (Fpacked) ? (Fp [k+1]) : (p + Fnz [k]) ; for ( ; pf < pfend ; pf++) { j = Fi [pf] ; /* fjk = Fx [pf] ; */ L_ASSIGN (fjk,0, Fx,Fz,pf) ; p = Ap [j] ; pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i >= k) { /* See the discussion of imap above. */ imap = Map [i] ; if (imap >= 0 && imap < nsrow) { /* Lx [Map [i] + pk] += Ax [p] * fjk ; */ L_MULTADD (Lx,(imap+pk), Ax,Az,p, fjk) ; } } } } } pk += nsrow ; /* advance to the next column of the supernode */ } /* add beta to the diagonal of the supernode, if nonzero */ if (beta [0] != 0.0) { /* note that only the real part of beta is used */ pk = psx ; for (k = k1 ; k < k2 ; k++) { /* Lx [pk] += beta [0] ; */ L_ASSEMBLE (Lx,pk, beta) ; pk += nsrow + 1 ; /* advance to the next diagonal entry */ } } PRINT1 (("Supernode with just A: repeat: "ID"\n", repeat_supernode)) ; DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY, Common)) ; PRINT1 (("\n\n")) ; /* ------------------------------------------------------------------ */ /* save/restore the list of supernodes */ /* ------------------------------------------------------------------ */ if (!repeat_supernode) { /* Save the list of pending descendants in case s is not positive * definite. Also save Lpos for each descendant d, so that we can * find which part of d is used to update s. */ for (d = Head [s] ; d != EMPTY ; d = Next [d]) { Lpos_save [d] = Lpos [d] ; Next_save [d] = Next [d] ; } } else { /* s is not positive definite, and is being repeated. Restore * the list of supernodes. This can be done with pointer assignment * because all 4 arrays are held within Common->Iwork. */ Lpos = Lpos_save ; Next = Next_save ; } /* ------------------------------------------------------------------ */ /* update supernode s with each pending descendant d */ /* ------------------------------------------------------------------ */ #ifndef NDEBUG for (d = Head [s] ; d != EMPTY ; d = Next [d]) { PRINT1 (("\nWill update "ID" with Child: "ID"\n", s, d)) ; DEBUG (CHOLMOD(dump_super) (d, Super, Lpi, Ls, Lpx, Lx, L_ENTRY, Common)) ; } PRINT1 (("\nNow factorizing supernode "ID":\n", s)) ; #endif for (d = Head [s] ; d != EMPTY ; d = dnext) { /* -------------------------------------------------------------- */ /* get the size of supernode d */ /* -------------------------------------------------------------- */ kd1 = Super [d] ; /* d contains cols kd1 to kd2-1 of L */ kd2 = Super [d+1] ; ndcol = kd2 - kd1 ; /* # of columns in all of d */ pdi = Lpi [d] ; /* pointer to first row of d in Ls */ pdx = Lpx [d] ; /* pointer to first row of d in Lx */ pdend = Lpi [d+1] ; /* pointer just past last row of d in Ls */ ndrow = pdend - pdi ; /* # rows in all of d */ PRINT1 (("Child: ")) ; DEBUG (CHOLMOD(dump_super) (d, Super, Lpi, Ls, Lpx, Lx, L_ENTRY, Common)) ; /* -------------------------------------------------------------- */ /* find the range of rows of d that affect rows k1 to k2-1 of s */ /* -------------------------------------------------------------- */ p = Lpos [d] ; /* offset of 1st row of d affecting s */ pdi1 = pdi + p ; /* ptr to 1st row of d affecting s in Ls */ pdx1 = pdx + p ; /* ptr to 1st row of d affecting s in Lx */ /* there must be at least one row remaining in d to update s */ ASSERT (pdi1 < pdend) ; PRINT1 (("Lpos[d] "ID" pdi1 "ID" Ls[pdi1] "ID"\n", Lpos[d], pdi1, Ls [pdi1])) ; ASSERT (Ls [pdi1] >= k1 && Ls [pdi1] < k2) ; for (pdi2 = pdi1 ; pdi2 < pdend && Ls [pdi2] < k2 ; pdi2++) ; ndrow1 = pdi2 - pdi1 ; /* # rows in first part of d */ ndrow2 = pdend - pdi1 ; /* # rows in remaining d */ /* rows Ls [pdi1 ... pdi2-1] are in the range k1 to k2-1. Since d * affects s, this set cannot be empty. */ ASSERT (pdi1 < pdi2 && pdi2 <= pdend) ; PRINT1 (("ndrow1 "ID" ndrow2 "ID"\n", ndrow1, ndrow2)) ; DEBUG (for (p = pdi1 ; p < pdi2 ; p++) PRINT1 (("Ls["ID"] "ID"\n", p, Ls[p]))) ; /* -------------------------------------------------------------- */ /* construct the update matrix C for this supernode d */ /* -------------------------------------------------------------- */ /* C = L (k1:n-1, kd1:kd2-1) * L (k1:k2-1, kd1:kd2-1)', except * that k1:n-1 refers to all of the rows in L, but many of the * rows are all zero. Supernode d holds columns kd1 to kd2-1 of L. * Nonzero rows in the range k1:k2-1 are in the list * Ls [pdi1 ... pdi2-1], of size ndrow1. Nonzero rows in the range * k2:n-1 are in the list Ls [pdi2 ... pdend], of size ndrow2. Let * L1 = L (Ls [pdi1 ... pdi2-1], kd1:kd2-1), and let * L2 = L (Ls [pdi2 ... pdend], kd1:kd2-1). C is ndrow2-by-ndcol. * Let C1 be the first ndrow1 rows of C and let C2 be the last * ndrow2-ndrow1 rows of C. Only the lower triangular part of C1 * needs to be computed since C1 is symmetric. */ /* maxcsize is the largest size of C for all pairs (d,s) */ ASSERT (ndrow2 * ndrow1 <= ((Int) L->maxcsize)) ; /* compute leading ndrow1-by-ndrow1 lower triangular block of C, * C1 = L1*L1' */ #ifdef REAL BLAS_dsyrk ("L", "N", ndrow1, ndcol, /* N, K: L1 is ndrow1-by-ndcol*/ one, /* ALPHA: 1 */ Lx + L_ENTRY*pdx1, ndrow, /* A, LDA: L1, ndrow */ zero, /* BETA: 0 */ C, ndrow2) ; /* C, LDC: C1 */ #else BLAS_zherk ("L", "N", ndrow1, ndcol, /* N, K: L1 is ndrow1-by-ndcol*/ one, /* ALPHA: 1 */ Lx + L_ENTRY*pdx1, ndrow, /* A, LDA: L1, ndrow */ zero, /* BETA: 0 */ C, ndrow2) ; /* C, LDC: C1 */ #endif /* compute remaining (ndrow3-ndrow1)-by-ndrow1 block of C, * C2 = L2*L1' */ ndrow3 = ndrow2 - ndrow1 ; if (ndrow3 > 0) { #ifdef REAL BLAS_dgemm ("N", "C", ndrow3, ndrow1, ndcol, /* M, N, K */ one, /* ALPHA: 1 */ Lx + L_ENTRY*(pdx1 + ndrow1),/* A, LDA: L2, ndrow */ ndrow, Lx + L_ENTRY*pdx1, /* B, LDB: L1, ndrow */ ndrow, zero, /* BETA: 0 */ C + L_ENTRY*ndrow1, /* C, LDC: C2 */ ndrow2) ; #else BLAS_zgemm ("N", "C", ndrow3, ndrow1, ndcol, /* M, N, K */ one, /* ALPHA: 1 */ Lx + L_ENTRY*(pdx1 + ndrow1),/* A, LDA: L2, ndrow */ ndrow, Lx + L_ENTRY*pdx1, /* B, LDB: L1, ndrow */ ndrow, zero, /* BETA: 0 */ C + L_ENTRY*ndrow1, /* C, LDC: C2 */ ndrow2) ; #endif } DEBUG (CHOLMOD(dump_real) ("C", C, ndrow2, ndrow1, TRUE, L_ENTRY, Common)) ; /* -------------------------------------------------------------- */ /* construct relative map to assemble d into s */ /* -------------------------------------------------------------- */ for (i = 0 ; i < ndrow2 ; i++) { RelativeMap [i] = Map [Ls [pdi1 + i]] ; ASSERT (RelativeMap [i] >= 0 && RelativeMap [i] < nsrow) ; } /* -------------------------------------------------------------- */ /* assemble C into supernode s using the relative map */ /* -------------------------------------------------------------- */ pj = 0 ; for (j = 0 ; j < ndrow1 ; j++) /* cols k1:k2-1 */ { ASSERT (RelativeMap [j] == Map [Ls [pdi1 + j]]) ; ASSERT (RelativeMap [j] >= 0 && RelativeMap [j] < nscol) ; px = psx + RelativeMap [j] * nsrow ; for (i = j ; i < ndrow2 ; i++) /* rows k1:n-1 */ { ASSERT (RelativeMap [i] == Map [Ls [pdi1 + i]]) ; ASSERT (RelativeMap [i] >= j && RelativeMap [i] < nsrow) ; /* Lx [px + RelativeMap [i]] -= C [i + pj] ; */ q = px + RelativeMap [i] ; L_ASSEMBLESUB (Lx,q, C, i+pj) ; } pj += ndrow2 ; } /* -------------------------------------------------------------- */ /* prepare this supernode d for its next ancestor */ /* -------------------------------------------------------------- */ dnext = Next [d] ; if (!repeat_supernode) { /* If node s is being repeated, Head [dancestor] has already * been cleared (set to EMPTY). It must remain EMPTY. The * dancestor will not be factorized since the factorization * terminates at node s. */ Lpos [d] = pdi2 - pdi ; if (Lpos [d] < ndrow) { dancestor = SuperMap [Ls [pdi2]] ; ASSERT (dancestor > s && dancestor < nsuper) ; /* place d in the link list of its next ancestor */ Next [d] = Head [dancestor] ; Head [dancestor] = d ; } } } PRINT1 (("\nSupernode with contributions A: repeat: "ID"\n", repeat_supernode)) ; DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY, Common)) ; PRINT1 (("\n\n")) ; /* ------------------------------------------------------------------ */ /* factorize diagonal block of supernode s in LL' */ /* ------------------------------------------------------------------ */ /* The current supernode s is ready to factorize. It has been updated * by all descendant supernodes. Let S = the current supernode, which * holds rows k1:n-1 and columns k1:k2-1 of the updated matrix. It * splits into two parts: the square diagonal block S1, and the * rectangular part S2. Here, S1 is factorized into L1*L1' and * overwritten by S1. * * If supernode s is being repeated, only factorize it up to but not * including the column containing the problematic entry. */ nscol2 = (repeat_supernode) ? (nscol_new) : (nscol) ; #ifdef REAL LAPACK_dpotrf ("L", nscol2, /* N: nscol2 */ Lx + L_ENTRY*psx, nsrow, /* A, LDA: S1, nsrow */ info) ; /* INFO */ #else LAPACK_zpotrf ("L", nscol2, /* N: nscol2 */ Lx + L_ENTRY*psx, nsrow, /* A, LDA: S1, nsrow */ info) ; /* INFO */ #endif /* ------------------------------------------------------------------ */ /* check if the matrix is not positive definite */ /* ------------------------------------------------------------------ */ if (repeat_supernode) { /* the leading part has been refactorized; it must have succeeded */ info = 0 ; /* zero out the rest of this supernode */ p = psx + nsrow * nscol_new ; pend = psx + nsrow * nscol ; /* s is nsrow-by-nscol */ for ( ; p < pend ; p++) { /* Lx [p] = 0 ; */ L_CLEAR (Lx,p) ; } } /* info is set to one in LAPACK_*potrf if blas_ok is FALSE. It is * set to zero in dpotrf/zpotrf if the factorization was successful. */ if (CHECK_BLAS_INT && !blas_ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ; } if (info != 0) { /* Matrix is not positive definite. dpotrf/zpotrf do NOT report an * error if the diagonal of L has NaN's, only if it has a zero. */ if (Common->status == CHOLMOD_OK) { ERROR (CHOLMOD_NOT_POSDEF, "matrix not positive definite") ; } /* L->minor is the column of L that contains a zero or negative * diagonal term. */ L->minor = k1 + info - 1 ; /* clear the link lists of all subsequent supernodes */ for (ss = s+1 ; ss < nsuper ; ss++) { Head [ss] = EMPTY ; } /* zero this supernode, and all remaining supernodes */ pend = L->xsize ; for (p = psx ; p < pend ; p++) { /* Lx [p] = 0. ; */ L_CLEAR (Lx,p) ; } /* If L is indefinite, it still contains useful information. * Supernodes 0 to s-1 are valid, similar to MATLAB [R,p]=chol(A), * where the 1-based p is identical to the 0-based L->minor. Since * L->minor is in the current supernode s, it and any columns to the * left of it in supernode s are also all zero. This differs from * [R,p]=chol(A), which contains nonzero rows 1 to p-1. Fix this * by setting repeat_supernode to TRUE, and repeating supernode s. * * If Common->quick_return_if_not_posdef is true, then the entire * supernode s is not factorized; it is left as all zero. */ if (info == 1 || Common->quick_return_if_not_posdef) { /* If the first column of supernode s contains a zero or * negative diagonal entry, then it is already properly set to * zero. Also, info will be 1 if integer overflow occured in * the BLAS. */ Head [s] = EMPTY ; return (Common->status >= CHOLMOD_OK) ; } else { /* Repeat supernode s, but only factorize it up to but not * including the column containing the problematic diagonal * entry. */ repeat_supernode = TRUE ; s-- ; nscol_new = info - 1 ; continue ; } } /* ------------------------------------------------------------------ */ /* compute the subdiagonal block and prepare supernode for its parent */ /* ------------------------------------------------------------------ */ nsrow2 = nsrow - nscol2 ; if (nsrow2 > 0) { /* The current supernode is columns k1 to k2-1 of L. Let L1 be the * diagonal block (factorized by dpotrf/zpotrf above; rows/cols * k1:k2-1), and L2 be rows k2:n-1 and columns k1:k2-1 of L. The * triangular system to solve is L2*L1' = S2, where S2 is * overwritten with L2. More precisely, L2 = S2 / L1' in MATLAB * notation. */ #ifdef REAL BLAS_dtrsm ("R", "L", "C", "N", nsrow2, nscol2, /* M, N */ one, /* ALPHA: 1 */ Lx + L_ENTRY*psx, nsrow, /* A, LDA: L1, nsrow */ Lx + L_ENTRY*(psx + nscol2), /* B, LDB, L2, nsrow */ nsrow) ; #else BLAS_ztrsm ("R", "L", "C", "N", nsrow2, nscol2, /* M, N */ one, /* ALPHA: 1 */ Lx + L_ENTRY*psx, nsrow, /* A, LDA: L1, nsrow */ Lx + L_ENTRY*(psx + nscol2), /* B, LDB, L2, nsrow */ nsrow) ; #endif if (CHECK_BLAS_INT && !blas_ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ; } if (!repeat_supernode) { /* Lpos [s] is offset of first row of s affecting its parent */ Lpos [s] = nscol ; sparent = SuperMap [Ls [psi + nscol]] ; ASSERT (sparent != EMPTY) ; ASSERT (Ls [psi + nscol] >= Super [sparent]) ; ASSERT (Ls [psi + nscol] < Super [sparent+1]) ; ASSERT (SuperMap [Ls [psi + nscol]] == sparent) ; ASSERT (sparent > s && sparent < nsuper) ; /* place s in link list of its parent */ Next [s] = Head [sparent] ; Head [sparent] = s ; } } Head [s] = EMPTY ; /* link list for supernode s no longer needed */ /* clear the Map (debugging only, to detect changes in pattern of A) */ DEBUG (for (k = 0 ; k < nsrow ; k++) Map [Ls [psi + k]] = EMPTY) ; DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY, Common)) ; if (repeat_supernode) { /* matrix is not positive definite; finished clean-up for supernode * containing negative diagonal */ return (Common->status >= CHOLMOD_OK) ; } } /* success; matrix is positive definite */ L->minor = n ; return (Common->status >= CHOLMOD_OK) ; } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Supernodal/gpl.txt0000644001170100242450000004313310471712206016477 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/Supernodal/cholmod_super_symbolic.c0000644001170100242450000006333410677243407022103 0ustar davisfac/* ========================================================================== */ /* === Supernodal/cholmod_super_symbolic ==================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Supernodal symbolic analysis of the LL' factorization of A, A*A', * A(:,f)*A(:,f)'. * * This routine must be preceded by a simplicial symbolic analysis * (cholmod_rowcolcounts). See cholmod_analyze.c for an example of how to use * this routine. * * The user need not call this directly; cholmod_analyze is a "simple" wrapper * for this routine. * * Symmetric case: * * A is stored in column form, with entries stored in the upper triangular * part. Entries in the lower triangular part are ignored. * * Unsymmetric case: * * A is stored in column form. If F is equal to the transpose of A, then * A*A' is analyzed. F can include a subset of the columns of A * (F=A(:,f)'), in which case F*F' is analyzed. * * Requires Parent and L->ColCount to be defined on input; these are the * simplicial Parent and ColCount arrays as computed by cholmod_rowcolcounts. * Does not use L->Perm; the input matrices A and F must already be properly * permuted. Allocates and computes the supernodal pattern of L (L->super, * L->pi, L->px, and L->s). Does not allocate the real part (L->x). * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NSUPERNODAL #include "cholmod_internal.h" #include "cholmod_supernodal.h" /* ========================================================================== */ /* === subtree ============================================================== */ /* ========================================================================== */ /* In the symmetric case, traverse the kth row subtree from the nonzeros in * A (0:k,k) and add the new entries found to the pattern of the kth row of L. * * In the unsymmetric case, the nonzero pattern of A*F is computed one column at * one column at a time. The kth column is A*F(:,k), or the set union of all * columns A(:,j) for which F(j,k) is nonzero. This routine is called once * for each entry j. Only the upper triangular part is needed, so only * A (0:k,j) is accessed. * * Only adds column indices corresponding to the leading columns of each * relaxed supernode. */ static void subtree ( /* inputs, not modified: */ Int j, /* j = k for symmetric case */ Int k, Int Ap [ ], Int Ai [ ], Int Anz [ ], Int SuperMap [ ], Int Sparent [ ], Int mark, /* input/output: */ Int Flag [ ], Int Ls [ ], Int Lpi2 [ ] ) { Int p, pend, i, si ; p = Ap [j] ; pend = (Anz == NULL) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i < k) { /* (i,k) is an entry in the upper triangular part of A or A*F'. * symmetric case: A(i,k) is nonzero (j=k). * unsymmetric case: A(i,j) and F(j,k) are both nonzero. * * Column i is in supernode si = SuperMap [i]. Follow path from si * to root of supernodal etree, stopping at the first flagged * supernode. The root of the row subtree is supernode SuperMap[k], * which is flagged already. This traversal will stop there, or it * might stop earlier if supernodes have been flagged by previous * calls to this routine for the same k. */ for (si = SuperMap [i] ; Flag [si] < mark ; si = Sparent [si]) { ASSERT (si <= SuperMap [k]) ; Ls [Lpi2 [si]++] = k ; Flag [si] = mark ; } } } } /* clear workspace used by cholmod_super_symbolic */ #define FREE_WORKSPACE \ { \ /* CHOLMOD(clear_flag) (Common) ; */ \ CHOLMOD_CLEAR_FLAG (Common) ; \ for (k = 0 ; k <= nfsuper ; k++) \ { \ Head [k] = EMPTY ; \ } \ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; \ } \ /* ========================================================================== */ /* === cholmod_super_symbolic =============================================== */ /* ========================================================================== */ /* Analyzes A, AA', or A(:,f)*A(:,f)' in preparation for a supernodal numeric * factorization. The user need not call this directly; cholmod_analyze is * a "simple" wrapper for this routine. * * workspace: Flag (nrow), Head (nrow), Iwork (2*nrow), * and temporary space of size 3*nfsuper*sizeof(Int), where nfsuper <= n * is the number of fundamental supernodes. */ int CHOLMOD(super_symbolic) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ cholmod_sparse *F, /* F = A' or A(:,f)' */ Int *Parent, /* elimination tree */ /* ---- in/out --- */ cholmod_factor *L, /* simplicial symbolic on input, * supernodal symbolic on output */ /* --------------- */ cholmod_common *Common ) { double zrelax0, zrelax1, zrelax2, xxsize ; Int *Wi, *Wj, *Super, *Snz, *Ap, *Ai, *Flag, *Head, *Ls, *Lpi, *Lpx, *Fnz, *Sparent, *Anz, *SuperMap, *Merged, *Nscol, *Zeros, *Fp, *Fj, *ColCount, *Lpi2, *Lsuper, *Iwork ; Int nsuper, d, n, j, k, s, mark, parent, p, pend, k1, k2, packed, nscol, nsrow, ndrow1, ndrow2, stype, ssize, xsize, sparent, plast, slast, csize, maxcsize, ss, nscol0, nscol1, ns, nfsuper, newzeros, totzeros, merge, snext, esize, maxesize, nrelax0, nrelax1, nrelax2 ; size_t w ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_NULL (Parent, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_PATTERN, FALSE) ; stype = A->stype ; if (stype < 0) { /* invalid symmetry; symmetric lower form not supported */ ERROR (CHOLMOD_INVALID, "symmetric lower not supported") ; return (FALSE) ; } if (stype == 0) { /* F must be present in the unsymmetric case */ RETURN_IF_NULL (F, FALSE) ; } if (L->is_super) { /* L must be a simplicial symbolic factor */ ERROR (CHOLMOD_INVALID, "L must be symbolic on input") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ n = A->nrow ; /* w = 5*n */ w = CHOLMOD(mult_size_t) (n, 5, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, w, 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* A is now either A or triu(A(p,p)) for the symmetric case. It is either * A or A(p,f) for the unsymmetric case (both in column form). It can be * either packed or unpacked, and either sorted or unsorted. Entries in * the lower triangular part may be present if A is symmetric, but these * are ignored. */ Ap = A->p ; Ai = A->i ; Anz = A->nz ; if (stype != 0) { /* F not accessed */ Fp = NULL ; Fj = NULL ; Fnz = NULL ; packed = TRUE ; } else { /* F = A(:,f) or A(p,f) in packed row form, either sorted or unsorted */ Fp = F->p ; Fj = F->i ; Fnz = F->nz ; packed = F->packed ; } ColCount = L->ColCount ; nrelax0 = Common->nrelax [0] ; nrelax1 = Common->nrelax [1] ; nrelax2 = Common->nrelax [2] ; zrelax0 = Common->zrelax [0] ; zrelax1 = Common->zrelax [1] ; zrelax2 = Common->zrelax [2] ; zrelax0 = IS_NAN (zrelax0) ? 0 : zrelax0 ; zrelax1 = IS_NAN (zrelax1) ? 0 : zrelax1 ; zrelax2 = IS_NAN (zrelax2) ? 0 : zrelax2 ; ASSERT (CHOLMOD(dump_parent) (Parent, n, "Parent", Common)) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ /* Sparent, Snz, and Merged could be allocated later, of size nfsuper */ Iwork = Common->Iwork ; Wi = Iwork ; /* size n (i/l/l). Lpi2 is i/l/l */ Wj = Iwork + n ; /* size n (i/l/l). Zeros is i/l/l */ Sparent = Iwork + 2*((size_t) n) ; /* size nfsuper <= n [ */ Snz = Iwork + 3*((size_t) n) ; /* size nfsuper <= n [ */ Merged = Iwork + 4*((size_t) n) ; /* size nfsuper <= n [ */ Flag = Common->Flag ; /* size n */ Head = Common->Head ; /* size n+1 */ /* ---------------------------------------------------------------------- */ /* find the fundamental supernodes */ /* ---------------------------------------------------------------------- */ /* count the number of children of each node, using Wi [ */ for (j = 0 ; j < n ; j++) { Wi [j] = 0 ; } for (j = 0 ; j < n ; j++) { parent = Parent [j] ; if (parent != EMPTY) { Wi [parent]++ ; } } Super = Head ; /* use Head [0..nfsuper] as workspace for Super list ( */ /* column 0 always starts a new supernode */ nfsuper = (n == 0) ? 0 : 1 ; /* number of fundamental supernodes */ Super [0] = 0 ; for (j = 1 ; j < n ; j++) { /* check if j starts new supernode, or in the same supernode as j-1 */ if (Parent [j-1] != j /* parent of j-1 is not j */ || (ColCount [j-1] != ColCount [j] + 1) /* j-1 not subset of j*/ || Wi [j] > 1) /* j has more than one child */ { /* j is the leading node of a supernode */ Super [nfsuper++] = j ; } } Super [nfsuper] = n ; /* contents of Wi no longer needed for child count ] */ Nscol = Wi ; /* use Wi as size-nfsuper workspace for Nscol [ */ /* ---------------------------------------------------------------------- */ /* find the mapping of fundamental nodes to supernodes */ /* ---------------------------------------------------------------------- */ SuperMap = Wj ; /* use Wj as workspace for SuperMap [ */ /* SuperMap [k] = s if column k is contained in supernode s */ for (s = 0 ; s < nfsuper ; s++) { for (k = Super [s] ; k < Super [s+1] ; k++) { SuperMap [k] = s ; } } /* ---------------------------------------------------------------------- */ /* construct the fundamental supernodal etree */ /* ---------------------------------------------------------------------- */ for (s = 0 ; s < nfsuper ; s++) { j = Super [s+1] - 1 ; /* last node in supernode s */ parent = Parent [j] ; /* parent of last node */ Sparent [s] = (parent == EMPTY) ? EMPTY : SuperMap [parent] ; PRINT1 (("Sparent ["ID"] = "ID"\n", s, Sparent [s])) ; } /* contents of Wj no longer needed as workspace for SuperMap ] * SuperMap will be recomputed below, for the relaxed supernodes. */ Zeros = Wj ; /* use Wj for Zeros, workspace of size nfsuper [ */ /* ---------------------------------------------------------------------- */ /* relaxed amalgamation */ /* ---------------------------------------------------------------------- */ for (s = 0 ; s < nfsuper ; s++) { Merged [s] = EMPTY ; /* s not merged into another */ Nscol [s] = Super [s+1] - Super [s] ; /* # of columns in s */ Zeros [s] = 0 ; /* # of zero entries in s */ ASSERT (s <= Super [s]) ; Snz [s] = ColCount [Super [s]] ; /* # of entries in leading col of s */ PRINT2 (("lnz ["ID"] "ID"\n", s, Snz [s])) ; } for (s = nfsuper-2 ; s >= 0 ; s--) { /* should supernodes s and s+1 merge into a new node s? */ PRINT1 (("\n========= Check relax of s "ID" and s+1 "ID"\n", s, s+1)) ; ss = Sparent [s] ; if (ss == EMPTY) { PRINT1 (("s "ID" is a root, no merge with s+1 = "ID"\n", s, s+1)) ; continue ; } /* find the current parent of s (perform path compression as needed) */ for (ss = Sparent [s] ; Merged [ss] != EMPTY ; ss = Merged [ss]) ; sparent = ss ; PRINT2 (("Current sparent of s "ID" is "ID"\n", s, sparent)) ; /* ss is the current parent of s */ for (ss = Sparent [s] ; Merged [ss] != EMPTY ; ss = snext) { snext = Merged [ss] ; PRINT2 (("ss "ID" is dead, merged into snext "ID"\n", ss, snext)) ; Merged [ss] = sparent ; } /* if s+1 is not the current parent of s, do not merge */ if (sparent != s+1) { continue ; } nscol0 = Nscol [s] ; /* # of columns in s */ nscol1 = Nscol [s+1] ; /* # of columns in s+1 */ ns = nscol0 + nscol1 ; PRINT2 (("ns "ID" nscol0 "ID" nscol1 "ID"\n", ns, nscol0, nscol1)) ; totzeros = Zeros [s+1] ; /* current # of zeros in s+1 */ /* determine if supernodes s and s+1 should merge */ if (ns <= nrelax0) { PRINT2 (("ns is tiny ("ID"), so go ahead and merge\n", ns)) ; merge = TRUE ; } else { /* use double to avoid integer overflow */ double lnz0 = Snz [s] ; /* # entries in leading column of s */ double lnz1 = Snz [s+1] ; /* # entries in leading column of s+1 */ double xnewzeros = nscol0 * (lnz1 + nscol0 - lnz0) ; /* use Int for the final update of Zeros [s] below */ newzeros = nscol0 * (Snz [s+1] + nscol0 - Snz [s]) ; ASSERT (newzeros == xnewzeros) ; PRINT2 (("lnz0 %g lnz1 %g xnewzeros %g\n", lnz0, lnz1, xnewzeros)) ; if (xnewzeros == 0) { /* no new zeros, so go ahead and merge */ PRINT2 (("no new fillin, so go ahead and merge\n")) ; merge = TRUE ; } else { /* # of zeros if merged */ double xtotzeros = ((double) totzeros) + xnewzeros ; /* xtotsize: total size of merged supernode, if merged: */ double xns = (double) ns ; double xtotsize = (xns * (xns+1) / 2) + xns * (lnz1 - nscol1) ; double z = xtotzeros / xtotsize ; Int totsize ; totsize = (ns * (ns+1) / 2) + ns * (Snz [s+1] - nscol1) ; PRINT2 (("oldzeros "ID" newzeros "ID" xtotsize %g z %g\n", Zeros [s+1], newzeros, xtotsize, z)) ; /* use Int for the final update of Zeros [s] below */ totzeros += newzeros ; /* do not merge if supernode would become too big * (Int overflow). Continue computing; not (yet) an error. */ /* fl.pt. compare, but no NaN's can occur here */ merge = ((ns <= nrelax1 && z < zrelax0) || (ns <= nrelax2 && z < zrelax1) || (z < zrelax2)) && (xtotsize < Int_max / sizeof (double)) ; } } if (merge) { PRINT1 (("Merge node s ("ID") and s+1 ("ID")\n", s, s+1)) ; Zeros [s] = totzeros ; Merged [s+1] = s ; Snz [s] = nscol0 + Snz [s+1] ; Nscol [s] += Nscol [s+1] ; } } /* contents of Wj no longer needed for Zeros ] */ /* contents of Wi no longer needed for Nscol ] */ /* contents of Sparent no longer needed (recomputed below) */ /* ---------------------------------------------------------------------- */ /* construct the relaxed supernode list */ /* ---------------------------------------------------------------------- */ nsuper = 0 ; for (s = 0 ; s < nfsuper ; s++) { if (Merged [s] == EMPTY) { PRINT1 (("live supernode: "ID" snz "ID"\n", s, Snz [s])) ; Super [nsuper] = Super [s] ; Snz [nsuper] = Snz [s] ; nsuper++ ; } } Super [nsuper] = n ; PRINT1 (("Fundamental supernodes: "ID" relaxed "ID"\n", nfsuper, nsuper)) ; /* Merged no longer needed ] */ /* ---------------------------------------------------------------------- */ /* find the mapping of relaxed nodes to supernodes */ /* ---------------------------------------------------------------------- */ /* use Wj as workspace for SuperMap { */ /* SuperMap [k] = s if column k is contained in supernode s */ for (s = 0 ; s < nsuper ; s++) { for (k = Super [s] ; k < Super [s+1] ; k++) { SuperMap [k] = s ; } } /* ---------------------------------------------------------------------- */ /* construct the relaxed supernodal etree */ /* ---------------------------------------------------------------------- */ for (s = 0 ; s < nsuper ; s++) { j = Super [s+1] - 1 ; /* last node in supernode s */ parent = Parent [j] ; /* parent of last node */ Sparent [s] = (parent == EMPTY) ? EMPTY : SuperMap [parent] ; PRINT1 (("new Sparent ["ID"] = "ID"\n", s, Sparent [s])) ; } /* ---------------------------------------------------------------------- */ /* determine the size of L->s and L->x */ /* ---------------------------------------------------------------------- */ ssize = 0 ; xsize = 0 ; xxsize = 0 ; for (s = 0 ; s < nsuper ; s++) { nscol = Super [s+1] - Super [s] ; nsrow = Snz [s] ; ASSERT (nscol > 0) ; ssize += nsrow ; xsize += nscol * nsrow ; /* also compute xsize in double to guard against Int overflow */ xxsize += ((double) nscol) * ((double) nsrow) ; if (xxsize > Int_max) { /* Int overflow, clear workspace and return */ ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; FREE_WORKSPACE ; return (FALSE) ; } ASSERT (ssize > 0 && xsize > 0) ; } xsize = MAX (1, xsize) ; ssize = MAX (1, ssize) ; PRINT1 (("ix sizes: "ID" "ID" nsuper "ID"\n", ssize, xsize, nsuper)) ; /* ---------------------------------------------------------------------- */ /* allocate L (all except real part L->x) */ /* ---------------------------------------------------------------------- */ L->ssize = ssize ; L->xsize = xsize ; L->nsuper = nsuper ; CHOLMOD(change_factor) (CHOLMOD_PATTERN, TRUE, TRUE, TRUE, TRUE, L, Common); if (Common->status < CHOLMOD_OK) { /* out of memory; L is still a valid simplicial symbolic factor */ FREE_WORKSPACE ; return (FALSE) ; } DEBUG (CHOLMOD(dump_factor) (L, "L to symbolic super", Common)) ; ASSERT (L->is_ll && L->xtype == CHOLMOD_PATTERN && L->is_super) ; Lpi = L->pi ; Lpx = L->px ; Ls = L->s ; Ls [0] = 0 ; /* flag for cholmod_check_factor; supernodes are defined */ Lsuper = L->super ; /* copy the list of relaxed supernodes into the final list in L */ for (s = 0 ; s <= nsuper ; s++) { Lsuper [s] = Super [s] ; } /* Head no longer needed as workspace for fundamental Super list ) */ Super = Lsuper ; /* Super is now the list of relaxed supernodes */ /* ---------------------------------------------------------------------- */ /* construct column pointers of relaxed supernodal pattern (L->pi) */ /* ---------------------------------------------------------------------- */ p = 0 ; for (s = 0 ; s < nsuper ; s++) { Lpi [s] = p ; p += Snz [s] ; PRINT1 (("Snz ["ID"] = "ID", Super ["ID"] = "ID"\n", s, Snz [s], s, Super[s])) ; } Lpi [nsuper] = p ; ASSERT ((Int) (L->ssize) == MAX (1,p)) ; /* ---------------------------------------------------------------------- */ /* construct pointers for supernodal values (L->px) */ /* ---------------------------------------------------------------------- */ p = 0 ; for (s = 0 ; s < nsuper ; s++) { nscol = Super [s+1] - Super [s] ; /* number of columns in s */ nsrow = Snz [s] ; /* # of rows, incl triangular part*/ Lpx [s] = p ; /* pointer to numerical part of s */ p += nscol * nsrow ; } Lpx [s] = p ; ASSERT ((Int) (L->xsize) == MAX (1,p)) ; /* Snz no longer needed ] */ /* ---------------------------------------------------------------------- */ /* symbolic analysis to construct the relaxed supernodal pattern (L->s) */ /* ---------------------------------------------------------------------- */ Lpi2 = Wi ; /* copy Lpi into Lpi2, using Wi as workspace for Lpi2 [ */ for (s = 0 ; s < nsuper ; s++) { Lpi2 [s] = Lpi [s] ; } for (s = 0 ; s < nsuper ; s++) { /* sth supernode is in columns k1 to k2-1. * compute nonzero pattern of L (k1:k2-1,:). */ /* place rows k1 to k2-1 in leading column of supernode s */ k1 = Super [s] ; k2 = Super [s+1] ; PRINT1 (("=========>>> Supernode "ID" k1 "ID" k2-1 "ID"\n", s, k1, k2-1)) ; for (k = k1 ; k < k2 ; k++) { Ls [Lpi2 [s]++] = k ; } /* compute nonzero pattern each row k1 to k2-1 */ for (k = k1 ; k < k2 ; k++) { /* compute row k of L. In the symmetric case, the pattern of L(k,:) * is the set of nodes reachable in the supernodal etree from any * row i in the nonzero pattern of A(0:k,k). In the unsymmetric * case, the pattern of the kth column of A*A' is the set union * of all columns A(0:k,j) for each nonzero F(j,k). */ /* clear the Flag array and mark the current supernode */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; Flag [s] = mark ; ASSERT (s == SuperMap [k]) ; /* traverse the row subtree for each nonzero in A or AA' */ if (stype != 0) { subtree (k, k, Ap, Ai, Anz, SuperMap, Sparent, mark, Flag, Ls, Lpi2) ; } else { /* for each nonzero in F (k,:) do */ p = Fp [k] ; pend = (packed) ? (Fp [k+1]) : (p + Fnz [k]) ; for ( ; p < pend ; p++) { subtree (Fj [p], k, Ap, Ai, Anz, SuperMap, Sparent, mark, Flag, Ls, Lpi2) ; } } } } #ifndef NDEBUG for (s = 0 ; s < nsuper ; s++) { PRINT1 (("Lpi2[s] "ID" Lpi[s+1] "ID"\n", Lpi2 [s], Lpi [s+1])) ; ASSERT (Lpi2 [s] == Lpi [s+1]) ; CHOLMOD(dump_super) (s, Super, Lpi, Ls, NULL, NULL, 0, Common) ; } #endif /* contents of Wi no longer needed for Lpi2 ] */ /* Sparent no longer needed ] */ /* ---------------------------------------------------------------------- */ /* determine the largest update matrix (L->maxcsize) */ /* ---------------------------------------------------------------------- */ /* maxcsize could be determined before L->s is allocated and defined, which * would mean that all memory requirements for both the symbolic and numeric * factorizations could be computed using O(nnz(A)+O(n)) space. However, it * would require a lot of extra work. The analysis phase, above, would need * to be duplicated, but with Ls not kept; instead, the algorithm would keep * track of the current s and slast for each supernode d, and update them * when a new row index appears in supernode d. An alternative would be to * do this computation only if the allocation of L->s failed, in which case * the following code would be skipped. * * The csize for a supernode is the size of its largest contribution to * a subsequent ancestor supernode. For example, suppose the rows of #'s * in the figure below correspond to the columns of a subsequent supernode, * and the dots are the entries in that ancestore. * * c * c c * c c c * x x x * x x x * # # # . * # # # . . * * * * . . * * * * . . * * * * . . * . . * * Then for this update, the csize is 3-by-2, or 6, because there are 3 * rows of *'s which is the number of rows in the update, and there are * 2 rows of #'s, which is the number columns in the update. The csize * of a supernode is the largest such contribution for any ancestor * supernode. maxcsize, for the whole matrix, has a rough upper bound of * the maximum size of any supernode. This bound is loose, because the * the contribution must be less than the size of the ancestor supernodal * that it's updating. maxcsize of a completely dense matrix, with one * supernode, is zero. * * maxesize is the column dimension for the workspace E needed for the * solve. E is of size nrhs-by-maxesize, where the nrhs is the number of * columns in the right-hand-side. The maxesize is the largest esize of * any supernode. The esize of a supernode is the number of row indices * it contains, excluding the column indices of the supernode itself. * For the following example, esize is 4: * * c * c c * c c c * x x x * x x x * x x x * x x x * * maxesize can be no bigger than n. */ maxcsize = 1 ; maxesize = 1 ; /* do not need to guard csize against Int overflow if xsize is OK */ for (d = 0 ; d < nsuper ; d++) { nscol = Super [d+1] - Super [d] ; p = Lpi [d] + nscol ; plast = p ; pend = Lpi [d+1] ; esize = pend - p ; maxesize = MAX (maxesize, esize) ; slast = (p == pend) ? (EMPTY) : (SuperMap [Ls [p]]) ; for ( ; p <= pend ; p++) { s = (p == pend) ? (EMPTY) : (SuperMap [Ls [p]]) ; if (s != slast) { /* row i is the start of a new supernode */ ndrow1 = p - plast ; ndrow2 = pend - plast ; csize = ndrow2 * ndrow1 ; PRINT1 (("Supernode "ID" ancestor "ID" C: "ID"-by-"ID" csize " ""ID"\n", d, slast, ndrow1, ndrow2, csize)) ; maxcsize = MAX (maxcsize, csize) ; plast = p ; slast = s ; } } } PRINT1 (("max csize "ID"\n", maxcsize)) ; /* Wj no longer needed for SuperMap } */ L->maxcsize = maxcsize ; L->maxesize = maxesize ; L->is_super = TRUE ; ASSERT (L->xtype == CHOLMOD_PATTERN && L->is_ll) ; /* ---------------------------------------------------------------------- */ /* supernodal symbolic factorization is complete */ /* ---------------------------------------------------------------------- */ FREE_WORKSPACE ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Modify/0000755001170100242450000000000010671565460014275 5ustar davisfacSuiteSparse/CHOLMOD/Modify/cholmod_rowadd.c0000644001170100242450000004644510635770727017447 0ustar davisfac/* ========================================================================== */ /* === Modify/cholmod_rowadd ================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Modify Module. * Copyright (C) 2005-2006, Timothy A. Davis and William W. Hager. * The CHOLMOD/Modify Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Adds a row and column to an LDL' factorization, and optionally updates the * solution to Lx=b. * * workspace: Flag (nrow), Head (nrow+1), W (2*nrow), Iwork (2*nrow) * * Only real matrices are supported. A symbolic L is converted into a * numeric identity matrix before the row is added. */ #ifndef NMODIFY #include "cholmod_internal.h" #include "cholmod_modify.h" /* ========================================================================== */ /* === cholmod_rowadd ======================================================= */ /* ========================================================================== */ /* cholmod_rowadd adds a row to the LDL' factorization. It computes the kth * row and kth column of L, and then updates the submatrix L (k+1:n,k+1:n) * accordingly. The kth row and column of L should originally be equal to the * kth row and column of the identity matrix (they are treated as such, if they * are not). The kth row/column of L is computed as the factorization of the * kth row/column of the matrix to factorize, which is provided as a single * n-by-1 sparse matrix R. The sparse vector R need not be sorted. */ int CHOLMOD(rowadd) ( /* ---- input ---- */ size_t k, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { double bk [2] ; bk [0] = 0. ; bk [1] = 0. ; return (CHOLMOD(rowadd_mark) (k, R, bk, NULL, L, NULL, NULL, Common)) ; } /* ========================================================================== */ /* === cholmod_rowadd_solve ================================================= */ /* ========================================================================== */ /* Does the same as cholmod_rowadd, and also updates the solution to Lx=b * See cholmod_updown for a description of how Lx=b is updated. There is on * additional parameter: bk specifies the new kth entry of b. */ int CHOLMOD(rowadd_solve) ( /* ---- input ---- */ size_t k, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ double bk [2], /* kth entry of the right-hand-side b */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(rowadd_mark) (k, R, bk, NULL, L, X, DeltaB, Common)) ; } /* ========================================================================== */ /* === icomp ================================================================ */ /* ========================================================================== */ /* for sorting by qsort */ static int icomp (Int *i, Int *j) { if (*i < *j) { return (-1) ; } else { return (1) ; } } /* ========================================================================== */ /* === cholmod_rowadd_mark ================================================== */ /* ========================================================================== */ /* Does the same as cholmod_rowadd_solve, except only part of L is used in * the update/downdate of the solution to Lx=b. This routine is an "expert" * routine. It is meant for use in LPDASA only. */ int CHOLMOD(rowadd_mark) ( /* ---- input ---- */ size_t kadd, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ double bk [2], /* kth entry of the right hand side, b */ Int *colmark, /* Int array of size 1. See cholmod_updown.c */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { double dk, yj, l_kj, lx, l_ij, sqrt_dk, dj, xk, rnz, fl ; double *Lx, *W, *Cx, *Rx, *Xx, *Nx ; Int *Li, *Lp, *Lnz, *Flag, *Stack, *Ci, *Rj, *Rp, *Lnext, *Iwork, *Rnz ; cholmod_sparse *C, Cmatrix ; Int i, j, p, pend, top, len, kk, li, lnz, mark, k, n, parent, Cp [2], do_solve, do_update ; size_t s ; int ok = TRUE ; DEBUG (Int lastrow) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_NULL (R, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (R, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; n = L->n ; k = kadd ; if (kadd >= L->n || k < 0) { ERROR (CHOLMOD_INVALID, "k invalid") ; return (FALSE) ; } if (R->ncol != 1 || R->nrow != L->n) { ERROR (CHOLMOD_INVALID, "R invalid") ; return (FALSE) ; } Rj = R->i ; Rx = R->x ; Rp = R->p ; Rnz = R->nz ; rnz = (R->packed) ? (Rp [1]) : (Rnz [0]) ; do_solve = (X != NULL) && (DeltaB != NULL) ; if (do_solve) { RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (DeltaB, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; Xx = X->x ; Nx = DeltaB->x ; if (X->nrow != L->n || X->ncol != 1 || DeltaB->nrow != L->n || DeltaB->ncol != 1 || Xx == NULL || Nx == NULL) { ERROR (CHOLMOD_INVALID, "X and/or DeltaB invalid") ; return (FALSE) ; } } else { Xx = NULL ; Nx = NULL ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 2*n */ s = CHOLMOD(mult_size_t) (n, 2, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, s, s, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, s, Common)) ; /* ---------------------------------------------------------------------- */ /* convert to simplicial numeric LDL' factor, if not already */ /* ---------------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN || L->is_super || L->is_ll) { /* can only update/downdate a simplicial LDL' factorization */ CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, FALSE, FALSE, L, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory, L is returned unchanged */ return (FALSE) ; } } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* inputs, not modified on output: */ Lp = L->p ; /* size n+1. input, not modified on output */ /* outputs, contents defined on input for incremental case only: */ Lnz = L->nz ; /* size n */ Li = L->i ; /* size L->nzmax. Can change in size. */ Lx = L->x ; /* size L->nzmax. Can change in size. */ Lnext = L->next ; /* size n+2 */ ASSERT (L->nz != NULL) ; PRINT1 (("rowadd:\n")) ; fl = 0 ; #if 0 #ifndef NDEBUG /* column k of L should be zero, except for the diagonal. This test is * overly cautious. */ for (p = Lp [k] + 1 ; p < Lp [k] + Lnz [k] ; p++) ASSERT (Lx [p] == 0) ; #endif #endif /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size n */ W = Common->Xwork ; /* size n */ Cx = W + n ; /* size n (use 2nd column of Xwork for C) */ Iwork = Common->Iwork ; Stack = Iwork ; /* size n (i/i/l), also in cholmod_updown */ Ci = Iwork + n ; /* size n (i/i/l) */ /* NOTE: cholmod_updown uses Iwork [0..n-1] (i/i/l) as Stack as well */ mark = Common->mark ; /* copy Rj/Rx into W/Ci */ for (p = 0 ; p < rnz ; p++) { i = Rj [p] ; ASSERT (i >= 0 && i < n) ; W [i] = Rx [p] ; Ci [p] = i ; } /* At this point, W [Ci [0..rnz-1]] holds the sparse vector to add */ /* The nonzero pattern of column W is held in Ci (it may be unsorted). */ /* ---------------------------------------------------------------------- */ /* symbolic factorization to get pattern of kth row of L */ /* ---------------------------------------------------------------------- */ DEBUG (for (p = 0 ; p < rnz ; p++) PRINT1 (("C ("ID",%g)\n", Ci [p], W [Ci [p]]))) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* flag the diagonal */ Flag [k] = mark ; /* find the union of all the paths */ top = n ; lnz = 0 ; /* # of nonzeros in column k of L, excluding diagonal */ for (p = 0 ; p < rnz ; p++) { i = Ci [p] ; if (i < k) { /* walk from i = entry in Ci to root (and stop if i marked)*/ PRINT2 (("\nwalk from i = "ID" towards k = "ID"\n", i, k)) ; len = 0 ; /* walk up tree, but stop if we go below the diagonal */ while (i < k && i != EMPTY && Flag [i] < mark) { PRINT2 ((" Add "ID" to path\n", i)) ; ASSERT (i >= 0 && i < k) ; Stack [len++] = i ; /* place i on the stack */ Flag [i] = mark ; /* mark i as visited */ /* parent is the first entry in the column after the diagonal */ ASSERT (Lnz [i] > 0) ; parent = (Lnz [i] > 1) ? (Li [Lp [i] + 1]) : EMPTY ; PRINT2 ((" parent: "ID"\n", parent)) ; i = parent ; /* go up the tree */ } ASSERT (len <= top) ; /* move the path down to the bottom of the stack */ /* this shifts Stack [0..len-1] down to [ ... oldtop-1] */ while (len > 0) { Stack [--top] = Stack [--len] ; } } else if (i > k) { /* prune the diagonal and upper triangular entries from Ci */ Ci [lnz++] = i ; Flag [i] = mark ; } } #ifndef NDEBUG PRINT1 (("length of S after prune: "ID"\n", lnz)) ; for (p = 0 ; p < lnz ; p++) { PRINT1 (("After prune Ci ["ID"] = "ID"\n", p, Ci [p])) ; ASSERT (Ci [p] > k) ; } #endif /* ---------------------------------------------------------------------- */ /* ensure each column of L has enough space to grow */ /* ---------------------------------------------------------------------- */ for (kk = top ; kk < n ; kk++) { /* could skip this if we knew column j already included row k */ j = Stack [kk] ; if (Lp [j] + Lnz [j] >= Lp [Lnext [j]]) { PRINT1 (("Col "ID" realloc, old Lnz "ID"\n", j, Lnz [j])) ; if (!CHOLMOD(reallocate_column) (j, Lnz [j] + 1, L, Common)) { /* out of memory, L is now simplicial symbolic */ /* CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; for (i = 0 ; i < n ; i++) { W [i] = 0 ; } return (FALSE) ; } /* L->i and L->x may have moved */ Li = L->i ; Lx = L->x ; } ASSERT (Lp [j] + Lnz [j] < Lp [Lnext [j]] || (Lp [Lnext [j]] - Lp [j] == n-j)) ; } /* ---------------------------------------------------------------------- */ /* compute kth row of L and store in column form */ /* ---------------------------------------------------------------------- */ /* solve L (1:k-1, 1:k-1) * y (1:k-1) = b (1:k-1) */ /* where b (1:k) is in W and Ci */ /* L (k, 1:k-1) = y (1:k-1) ./ D (1:k-1) */ /* D (k) = B (k,k) - L (k, 1:k-1) * y (1:k-1) */ PRINT2 (("\nForward solve: "ID" to "ID"\n", top, n)) ; ASSERT (Lnz [k] >= 1 && Li [Lp [k]] == k) ; DEBUG (for (i = top ; i < n ; i++) PRINT2 ((" Path: "ID"\n", Stack [i]))) ; dk = W [k] ; W [k] = 0.0 ; /* if do_solve: compute x (k) = b (k) - L (k, 1:k-1) * x (1:k-1) */ xk = bk [0] ; PRINT2 (("B [k] = %g\n", xk)) ; for (kk = top ; kk < n ; kk++) { j = Stack [kk] ; i = j ; PRINT2 (("Forward solve col j = "ID":\n", j)) ; ASSERT (j >= 0 && j < k) ; /* forward solve using L (j+1:k-1,j) */ yj = W [j] ; W [j] = 0.0 ; p = Lp [j] ; pend = p + Lnz [j] ; ASSERT (Lnz [j] > 0) ; dj = Lx [p++] ; for ( ; p < pend ; p++) { i = Li [p] ; PRINT2 ((" row "ID"\n", i)) ; ASSERT (i > j) ; ASSERT (i < n) ; /* stop at row k */ if (i >= k) { break ; } W [i] -= Lx [p] * yj ; } /* each iteration of the above for loop did 2 flops, and 3 flops * are done below. so: fl += 2 * (Lp [j] - p - 1) + 3 becomes: */ fl += 2 * (Lp [j] - p) + 1 ; /* scale L (k,1:k-1) and compute dot product for D (k,k) */ l_kj = yj / dj ; dk -= l_kj * yj ; /* compute dot product for X(k) */ if (do_solve) { xk -= l_kj * Xx [j] ; } /* store l_kj in the jth column of L */ /* and shift the rest of the column down */ li = k ; lx = l_kj ; if (i == k) { /* no need to modify the nonzero pattern of L, since it already * contains row index k. */ ASSERT (Li [p] == k) ; Lx [p] = l_kj ; for (p++ ; p < pend ; p++) { i = Li [p] ; l_ij = Lx [p] ; ASSERT (i > k && i < n) ; PRINT2 ((" apply to row "ID" of column k of L\n", i)) ; /* add to the pattern of the kth column of L */ if (Flag [i] < mark) { PRINT2 ((" add Ci["ID"] = "ID"\n", lnz, i)) ; ASSERT (i > k) ; Ci [lnz++] = i ; Flag [i] = mark ; } /* apply the update to the kth column of L */ /* yj is equal to l_kj * d_j */ W [i] -= l_ij * yj ; } } else { PRINT2 (("Shift col j = "ID", apply saxpy to col k of L\n", j)) ; for ( ; p < pend ; p++) { /* swap (Li [p],Lx [p]) with (li,lx) */ i = Li [p] ; l_ij = Lx [p] ; Li [p] = li ; Lx [p] = lx ; li = i ; lx = l_ij ; ASSERT (i > k && i < n) ; PRINT2 ((" apply to row "ID" of column k of L\n", i)) ; /* add to the pattern of the kth column of L */ if (Flag [i] < mark) { PRINT2 ((" add Ci["ID"] = "ID"\n", lnz, i)) ; ASSERT (i > k) ; Ci [lnz++] = i ; Flag [i] = mark ; } /* apply the update to the kth column of L */ /* yj is equal to l_kj * d_j */ W [i] -= l_ij * yj ; } /* store the last value in the jth column of L */ Li [p] = li ; Lx [p] = lx ; Lnz [j]++ ; } } /* ---------------------------------------------------------------------- */ /* merge C with the pattern of the existing column of L */ /* ---------------------------------------------------------------------- */ /* This column should be zero, but it may contain explicit zero entries. * These entries should be kept, not dropped. */ p = Lp [k] ; pend = p + Lnz [k] ; for (p++ ; p < pend ; p++) { i = Li [p] ; /* add to the pattern of the kth column of L */ if (Flag [i] < mark) { PRINT2 ((" add Ci["ID"] = "ID" from existing col k\n", lnz, i)) ; ASSERT (i > k) ; Ci [lnz++] = i ; Flag [i] = mark ; } } /* ---------------------------------------------------------------------- */ if (do_solve) { Xx [k] = xk ; PRINT2 (("Xx [k] = %g\n", Xx [k])) ; } /* ---------------------------------------------------------------------- */ /* ensure abs (dk) >= dbound, if dbound is given */ /* ---------------------------------------------------------------------- */ dk = (IS_GT_ZERO (Common->dbound)) ? (CHOLMOD(dbound) (dk, Common)) : dk ; PRINT2 (("D [k = "ID"] = %g\n", k, dk)) ; /* ---------------------------------------------------------------------- */ /* store the kth column of L */ /* ---------------------------------------------------------------------- */ /* ensure the new column of L has enough space */ if (Lp [k] + lnz + 1 > Lp [Lnext [k]]) { PRINT1 (("New Col "ID" realloc, old Lnz "ID"\n", k, Lnz [k])) ; if (!CHOLMOD(reallocate_column) (k, lnz + 1, L, Common)) { /* out of memory, L is now simplicial symbolic */ CHOLMOD(clear_flag) (Common) ; for (i = 0 ; i < n ; i++) { W [i] = 0 ; } return (FALSE) ; } /* L->i and L->x may have moved */ Li = L->i ; Lx = L->x ; } ASSERT (Lp [k] + lnz + 1 <= Lp [Lnext [k]]) ; #ifndef NDEBUG PRINT2 (("\nPrior to sort: lnz "ID" (excluding diagonal)\n", lnz)) ; for (kk = 0 ; kk < lnz ; kk++) { i = Ci [kk] ; PRINT2 (("L ["ID"] kept: "ID" %e\n", kk, i, W [i] / dk)) ; } #endif /* sort Ci */ qsort (Ci, lnz, sizeof (Int), (int (*) (const void *, const void *)) icomp); /* store the kth column of L */ DEBUG (lastrow = k) ; p = Lp [k] ; Lx [p++] = dk ; Lnz [k] = lnz + 1 ; fl += lnz ; for (kk = 0 ; kk < lnz ; kk++, p++) { i = Ci [kk] ; PRINT2 (("L ["ID"] after sort: "ID", %e\n", kk, i, W [i] / dk)) ; ASSERT (i > lastrow) ; Li [p] = i ; Lx [p] = W [i] / dk ; W [i] = 0.0 ; DEBUG (lastrow = i) ; } /* compute DeltaB for updown (in DeltaB) */ if (do_solve) { p = Lp [k] ; pend = p + Lnz [k] ; for (p++ ; p < pend ; p++) { ASSERT (Li [p] > k) ; Nx [Li [p]] -= Lx [p] * xk ; } } /* clear the flag for the update */ mark = CHOLMOD(clear_flag) (Common) ; /* workspaces are now cleared */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 2*n, Common)) ; /* ---------------------------------------------------------------------- */ /* update/downdate */ /* ---------------------------------------------------------------------- */ /* update or downdate L (k+1:n, k+1:n) with the vector * C = L (:,k) * sqrt (abs (D [k])). * Do a numeric update if D[k] < 0, numeric downdate otherwise. */ ok = TRUE ; Common->modfl = 0 ; PRINT1 (("rowadd update lnz = "ID"\n", lnz)) ; if (lnz > 0) { do_update = IS_LT_ZERO (dk) ; if (do_update) { dk = -dk ; } sqrt_dk = sqrt (dk) ; p = Lp [k] + 1 ; for (kk = 0 ; kk < lnz ; kk++, p++) { Cx [kk] = Lx [p] * sqrt_dk ; } fl += lnz + 1 ; /* create a n-by-1 sparse matrix to hold the single column */ C = &Cmatrix ; C->nrow = n ; C->ncol = 1 ; C->nzmax = lnz ; C->sorted = TRUE ; C->packed = TRUE ; C->p = Cp ; C->i = Ci ; C->x = Cx ; C->nz = NULL ; C->itype = L->itype ; C->xtype = L->xtype ; C->dtype = L->dtype ; C->z = NULL ; C->stype = 0 ; Cp [0] = 0 ; Cp [1] = lnz ; /* numeric downdate if dk > 0, and optional Lx=b change */ /* workspace: Flag (nrow), Head (nrow+1), W (nrow), Iwork (2*nrow) */ ok = CHOLMOD(updown_mark) (do_update ? (1) : (0), C, colmark, L, X, DeltaB, Common) ; /* clear workspace */ for (kk = 0 ; kk < lnz ; kk++) { Cx [kk] = 0 ; } } Common->modfl += fl ; DEBUG (CHOLMOD(dump_factor) (L, "LDL factorization, L:", Common)) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 2*n, Common)) ; return (ok) ; } #endif SuiteSparse/CHOLMOD/Modify/cholmod_rowdel.c0000644001170100242450000003174510537777751017465 0ustar davisfac/* ========================================================================== */ /* === Modify/cholmod_rowdel ================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Modify Module. * Copyright (C) 2005-2006, Timothy A. Davis and William W. Hager. * The CHOLMOD/Modify Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Deletes a row and column from an LDL' factorization. The row and column k * is set to the kth row and column of the identity matrix. Optionally * downdates the solution to Lx=b. * * workspace: Flag (nrow), Head (nrow+1), W (nrow*2), Iwork (2*nrow) * * Only real matrices are supported (exception: since only the pattern of R * is used, it can have any valid xtype). */ #ifndef NMODIFY #include "cholmod_internal.h" #include "cholmod_modify.h" /* ========================================================================== */ /* === cholmod_rowdel ======================================================= */ /* ========================================================================== */ /* Sets the kth row and column of L to be the kth row and column of the identity * matrix, and updates L(k+1:n,k+1:n) accordingly. To reduce the running time, * the caller can optionally provide the nonzero pattern (or an upper bound) of * kth row of L, as the sparse n-by-1 vector R. Provide R as NULL if you want * CHOLMOD to determine this itself, which is easier for the caller, but takes * a little more time. */ int CHOLMOD(rowdel) ( /* ---- input ---- */ size_t k, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { double yk [2] ; yk [0] = 0. ; yk [1] = 0. ; return (CHOLMOD(rowdel_mark) (k, R, yk, NULL, L, NULL, NULL, Common)) ; } /* ========================================================================== */ /* === cholmod_rowdel_solve ================================================= */ /* ========================================================================== */ /* Does the same as cholmod_rowdel, but also downdates the solution to Lx=b. * When row/column k of A is "deleted" from the system A*y=b, this can induce * a change to x, in addition to changes arising when L and b are modified. * If this is the case, the kth entry of y is required as input (yk) */ int CHOLMOD(rowdel_solve) ( /* ---- input ---- */ size_t k, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ double yk [2], /* kth entry in the solution to A*y=b */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(rowdel_mark) (k, R, yk, NULL, L, X, DeltaB, Common)) ; } /* ========================================================================== */ /* === cholmod_rowdel_mark ================================================== */ /* ========================================================================== */ /* Does the same as cholmod_rowdel_solve, except only part of L is used in * the update/downdate of the solution to Lx=b. This routine is an "expert" * routine. It is meant for use in LPDASA only. * * if R == NULL then columns 0:k-1 of L are searched for row k. Otherwise, it * searches columns in the set defined by the pattern of the first column of R. * This is meant to be the pattern of row k of L (a superset of that pattern is * OK too). R must be a permutation of a subset of 0:k-1. */ int CHOLMOD(rowdel_mark) ( /* ---- input ---- */ size_t kdel, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ double yk [2], /* kth entry in the solution to A*y=b */ Int *colmark, /* Int array of size 1. See cholmod_updown.c */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { double dk, sqrt_dk, xk, dj, fl ; double *Lx, *Cx, *W, *Xx, *Nx ; Int *Li, *Lp, *Lnz, *Ci, *Rj, *Rp, *Iwork ; cholmod_sparse *C, Cmatrix ; Int j, p, pend, kk, lnz, n, Cp [2], do_solve, do_update, left, k, right, middle, i, klast, given_row, rnz ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_REAL, FALSE) ; n = L->n ; k = kdel ; if (kdel >= L->n || k < 0) { ERROR (CHOLMOD_INVALID, "k invalid") ; return (FALSE) ; } if (R == NULL) { Rj = NULL ; rnz = EMPTY ; } else { RETURN_IF_XTYPE_INVALID (R, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (R->ncol != 1 || R->nrow != L->n) { ERROR (CHOLMOD_INVALID, "R invalid") ; return (FALSE) ; } Rj = R->i ; Rp = R->p ; rnz = Rp [1] ; } do_solve = (X != NULL) && (DeltaB != NULL) ; if (do_solve) { RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (DeltaB, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; Xx = X->x ; Nx = DeltaB->x ; if (X->nrow != L->n || X->ncol != 1 || DeltaB->nrow != L->n || DeltaB->ncol != 1 || Xx == NULL || Nx == NULL) { ERROR (CHOLMOD_INVALID, "X and/or DeltaB invalid") ; return (FALSE) ; } } else { Xx = NULL ; Nx = NULL ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 2*n */ s = CHOLMOD(mult_size_t) (n, 2, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, s, s, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 2*n, Common)) ; /* ---------------------------------------------------------------------- */ /* convert to simplicial numeric LDL' factor, if not already */ /* ---------------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN || L->is_super || L->is_ll) { /* can only update/downdate a simplicial LDL' factorization */ CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, FALSE, FALSE, L, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory, L is returned unchanged */ return (FALSE) ; } } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* inputs, not modified on output: */ Lp = L->p ; /* size n+1 */ /* outputs, contents defined on input for incremental case only: */ Lnz = L->nz ; /* size n */ Li = L->i ; /* size L->nzmax. Can change in size. */ Lx = L->x ; /* size L->nzmax. Can change in size. */ ASSERT (L->nz != NULL) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ W = Common->Xwork ; /* size n, used only in cholmod_updown */ Cx = W + n ; /* use 2nd column of Xwork for C (size n) */ Iwork = Common->Iwork ; Ci = Iwork + n ; /* size n (i/i/l) */ /* NOTE: cholmod_updown uses Iwork [0..n-1] (i/i/l) as Stack */ /* ---------------------------------------------------------------------- */ /* prune row k from all columns of L */ /* ---------------------------------------------------------------------- */ given_row = (rnz >= 0) ; klast = given_row ? rnz : k ; PRINT2 (("given_row "ID"\n", given_row)) ; for (kk = 0 ; kk < klast ; kk++) { /* either search j = 0:k-1 or j = Rj [0:rnz-1] */ j = given_row ? (Rj [kk]) : (kk) ; if (j < 0 || j >= k) { ERROR (CHOLMOD_INVALID, "R invalid") ; return (FALSE) ; } PRINT2 (("Prune col j = "ID":\n", j)) ; lnz = Lnz [j] ; dj = Lx [Lp [j]] ; ASSERT (Lnz [j] > 0 && Li [Lp [j]] == j) ; if (lnz > 1) { left = Lp [j] ; pend = left + lnz ; right = pend - 1 ; i = Li [right] ; if (i < k) { /* row k is not in column j */ continue ; } else if (i == k) { /* k is the last row index in this column (quick delete) */ if (do_solve) { Xx [j] -= yk [0] * dj * Lx [right] ; } Lx [right] = 0 ; } else { /* binary search for row k in column j */ PRINT2 (("\nBinary search: lnz "ID" k = "ID"\n", lnz, k)) ; while (left < right) { middle = (left + right) / 2 ; PRINT2 (("left "ID" right "ID" middle "ID": ["ID" "ID"" ""ID"]\n", left, right, middle, Li [left], Li [middle], Li [right])) ; if (k > Li [middle]) { left = middle + 1 ; } else { right = middle ; } } ASSERT (left >= Lp [j] && left < pend) ; #ifndef NDEBUG /* brute force, linear-time search */ { Int p3 = Lp [j] ; i = EMPTY ; PRINT2 (("Brute force:\n")) ; for ( ; p3 < pend ; p3++) { i = Li [p3] ; PRINT2 (("p "ID" ["ID"]\n", p3, i)) ; if (i >= k) { break ; } } if (i == k) { ASSERT (k == Li [p3]) ; ASSERT (p3 == left) ; } } #endif if (k == Li [left]) { if (do_solve) { Xx [j] -= yk [0] * dj * Lx [left] ; } /* found row k in column j. Prune it from the column.*/ Lx [left] = 0 ; } } } } #ifndef NDEBUG /* ensure that row k has been deleted from the matrix L */ for (j = 0 ; j < k ; j++) { Int lasti ; lasti = EMPTY ; p = Lp [j] ; pend = p + Lnz [j] ; /* look for row k in column j */ PRINT1 (("Pruned column "ID"\n", j)) ; for ( ; p < pend ; p++) { i = Li [p] ; PRINT2 ((" "ID"", i)) ; PRINT2 ((" %g\n", Lx [p])) ; ASSERT (IMPLIES (i == k, Lx [p] == 0)) ; ASSERT (i > lasti) ; lasti = i ; } PRINT1 (("\n")) ; } #endif /* ---------------------------------------------------------------------- */ /* set diagonal and clear column k of L */ /* ---------------------------------------------------------------------- */ lnz = Lnz [k] - 1 ; ASSERT (Lnz [k] > 0) ; /* ---------------------------------------------------------------------- */ /* update/downdate */ /* ---------------------------------------------------------------------- */ /* update or downdate L (k+1:n, k+1:n) with the vector * C = L (:,k) * sqrt (abs (D [k])) * Do a numeric update if D[k] > 0, numeric downdate otherwise. */ PRINT1 (("rowdel downdate lnz = "ID"\n", lnz)) ; /* store the new unit diagonal */ p = Lp [k] ; pend = p + lnz + 1 ; dk = Lx [p] ; Lx [p++] = 1 ; PRINT2 (("D [k = "ID"] = %g\n", k, dk)) ; ok = TRUE ; fl = 0 ; if (lnz > 0) { /* compute DeltaB for updown (in DeltaB) */ if (do_solve) { xk = Xx [k] - yk [0] * dk ; for ( ; p < pend ; p++) { Nx [Li [p]] += Lx [p] * xk ; } } do_update = IS_GT_ZERO (dk) ; if (!do_update) { dk = -dk ; } sqrt_dk = sqrt (dk) ; p = Lp [k] + 1 ; for (kk = 0 ; kk < lnz ; kk++, p++) { Ci [kk] = Li [p] ; Cx [kk] = Lx [p] * sqrt_dk ; Lx [p] = 0 ; /* clear column k */ } fl = lnz + 1 ; /* create a n-by-1 sparse matrix to hold the single column */ C = &Cmatrix ; C->nrow = n ; C->ncol = 1 ; C->nzmax = lnz ; C->sorted = TRUE ; C->packed = TRUE ; C->p = Cp ; C->i = Ci ; C->x = Cx ; C->nz = NULL ; C->itype = L->itype ; C->xtype = L->xtype ; C->dtype = L->dtype ; C->z = NULL ; C->stype = 0 ; Cp [0] = 0 ; Cp [1] = lnz ; /* numeric update if dk > 0, and with Lx=b change */ /* workspace: Flag (nrow), Head (nrow+1), W (nrow), Iwork (2*nrow) */ ok = CHOLMOD(updown_mark) (do_update ? (1) : (0), C, colmark, L, X, DeltaB, Common) ; /* clear workspace */ for (kk = 0 ; kk < lnz ; kk++) { Cx [kk] = 0 ; } } Common->modfl += fl ; if (do_solve) { /* kth equation becomes identity, so X(k) is now Y(k) */ Xx [k] = yk [0] ; } DEBUG (CHOLMOD(dump_factor) (L, "LDL factorization, L:", Common)) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 2*n, Common)) ; return (ok) ; } #endif SuiteSparse/CHOLMOD/Modify/t_cholmod_updown_numkr.c0000644001170100242450000005166710537777761021252 0ustar davisfac/* ========================================================================== */ /* === Modify/t_cholmod_updown_numkr ======================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Modify Module. Copyright (C) 2005-2006, * Timothy A. Davis and William W. Hager. * The CHOLMOD/Modify Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Supernodal numerical update/downdate of rank K = RANK, along a single path. * This routine operates on a simplicial factor, but operates on adjacent * columns of L that would fit within a single supernode. "Adjacent" means * along a single path in the elimination tree; they may or may not be * adjacent in the matrix L. * * external defines: NUMERIC, WDIM, RANK. * * WDIM is 1, 2, 4, or 8. RANK can be 1 to WDIM. * * A simple method is included (#define SIMPLE). The code works, but is slow. * It is meant only to illustrate what this routine is doing. * * A rank-K update proceeds along a single path, using single-column, dual- * column, or quad-column updates of L. If a column j and the next column * in the path (its parent) do not have the same nonzero pattern, a single- * column update is used. If they do, but the 3rd and 4th column from j do * not have the same pattern, a dual-column update is used, in which the two * columns are treated as if they were a single supernode of two columns. If * there are 4 columns in the path that all have the same nonzero pattern, then * a quad-column update is used. All three kinds of updates can be used along * a single path, in a single call to this function. * * Single-column update: * * When updating a single column of L, each iteration of the for loop, * below, processes four rows of W (all columns involved) and one column * of L. Suppose we have a rank-5 update, and columns 2 through 6 of W * are involved. In this case, W in this routine is a pointer to column * 2 of the matrix W in the caller. W (in the caller, shown as 'W') is * held in row-major order, and is 8-by-n (a dense matrix storage format), * but shown below in column form to match the column of L. Suppose there * are 13 nonzero entries in column 27 of L, with row indices 27 (the * diagonal, D), 28, 30, 31, 42, 43, 44, 50, 51, 67, 81, 83, and 84. This * pattern is held in Li [Lp [27] ... Lp [27 + Lnz [27] - 1], where * Lnz [27] = 13. The modification of the current column j of L is done * in the following order. A dot (.) means the entry of W is not accessed. * * W0 points to row 27 of W, and G is a 1-by-8 temporary vector. * * G[0] G[4] * G x x x x x . . . * * W0 * | * v * 27 . . x x x x x . W0 points to W (27,2) * * * row 'W' W column j = 27 * | | | of L * v v v | * first iteration of for loop: v * * 28 . . 1 5 9 13 17 . x * 30 . . 2 6 10 14 18 . x * 31 . . 3 7 11 15 19 . x * 42 . . 4 8 12 16 20 . x * * second iteration of for loop: * * 43 . . 1 5 9 13 17 . x * 44 . . 2 6 10 14 18 . x * 50 . . 3 7 11 15 19 . x * 51 . . 4 8 12 16 20 . x * * third iteration of for loop: * * 67 . . 1 5 9 13 17 . x * 81 . . 2 6 10 14 18 . x * 83 . . 3 7 11 15 19 . x * 84 . . 4 8 12 16 20 . x * * If the number of offdiagonal nonzeros in column j of L is not divisible * by 4, then the switch-statement does the work for the first nz % 4 rows. * * Dual-column update: * * In this case, two columns of L that are adjacent in the path are being * updated, by 1 to 8 columns of W. Suppose columns j=27 and j=28 are * adjacent columns in the path (they need not be j and j+1). Two rows * of G and W are used as coefficients during the update: (G0, G1) and * (W0, W1). * * G0 x x x x x . . . * G1 x x x x x . . . * * 27 . . x x x x x . W0 points to W (27,2) * 28 . . x x x x x . W1 points to W (28,2) * * * row 'W' W0,W1 column j = 27 * | | | of L * v v v | * | |-- column j = 28 of L * v v * update L (j1,j): * * 28 . . 1 2 3 4 5 . x - ("-" is not stored in L) * * cleanup iteration since length is odd: * * 30 . . 1 2 3 4 5 . x x * * then each iteration does two rows of both columns of L: * * 31 . . 1 3 5 7 9 . x x * 42 . . 2 4 6 8 10 . x x * * 43 . . 1 3 5 7 9 . x x * 44 . . 2 4 6 8 10 . x x * * 50 . . 1 3 5 7 9 . x x * 51 . . 2 4 6 8 10 . x x * * 67 . . 1 3 5 7 9 . x x * 81 . . 2 4 6 8 10 . x x * * 83 . . 1 3 5 7 9 . x x * 84 . . 2 4 6 8 10 . x x * * If the number of offdiagonal nonzeros in column j of L is not even, * then the cleanup iteration does the work for the first row. * * Quad-column update: * * In this case, four columns of L that are adjacent in the path are being * updated, by 1 to 8 columns of W. Suppose columns j=27, 28, 30, and 31 * are adjacent columns in the path (they need not be j, j+1, ...). Four * rows of G and W are used as coefficients during the update: (G0 through * G3) and (W0 through W3). j=27, j1=28, j2=30, and j3=31. * * G0 x x x x x . . . * G1 x x x x x . . . * G3 x x x x x . . . * G4 x x x x x . . . * * 27 . . x x x x x . W0 points to W (27,2) * 28 . . x x x x x . W1 points to W (28,2) * 30 . . x x x x x . W2 points to W (30,2) * 31 . . x x x x x . W3 points to W (31,2) * * * row 'W' W0,W1,.. column j = 27 * | | | of L * v v v | * | |-- column j = 28 of L * | | |-- column j = 30 of L * | | | |-- column j = 31 of L * v v v v * update L (j1,j): * 28 . . 1 2 3 4 5 . x - - - * * update L (j2,j): * 30 . . 1 2 3 4 5 . # x - - (# denotes modified) * * update L (j2,j1) * 30 . . 1 2 3 4 5 . x # - - * * update L (j3,j) * 31 . . 1 2 3 4 5 . # x x - * * update L (j3,j1) * 31 . . 1 2 3 4 5 . x # x - * * update L (j3,j2) * 31 . . 1 2 3 4 5 . x x # - * * cleanup iteration since length is odd: * 42 . . 1 2 3 4 5 . x x x x * * * ----- CHOLMOD v1.1.1 did the following -------------------------------------- * then each iteration does two rows of all four colummns of L: * * 43 . . 1 3 5 7 9 . x x x x * 44 . . 2 4 6 8 10 . x x x x * * 50 . . 1 3 5 7 9 . x x x x * 51 . . 2 4 6 8 10 . x x x x * * 67 . . 1 3 5 7 9 . x x x x * 81 . . 2 4 6 8 10 . x x x x * * 83 . . 1 3 5 7 9 . x x x x * 84 . . 2 4 6 8 10 . x x x x * * ----- CHOLMOD v1.2.0 does the following ------------------------------------- * then each iteration does one rows of all four colummns of L: * * 43 . . 1 2 3 4 5 . x x x x * 44 . . 1 2 3 4 5 . x x x x * 50 . . 1 3 5 4 5 . x x x x * 51 . . 1 2 3 4 5 . x x x x * 67 . . 1 3 5 4 5 . x x x x * 81 . . 1 2 3 4 5 . x x x x * 83 . . 1 3 5 4 5 . x x x x * 84 . . 1 2 3 4 5 . x x x x * * This file is included in t_cholmod_updown.c, only. * It is not compiled separately. It contains no user-callable routines. * * workspace: Xwork (WDIM*nrow) */ /* ========================================================================== */ /* === loop unrolling macros ================================================ */ /* ========================================================================== */ #undef RANK1 #undef RANK2 #undef RANK3 #undef RANK4 #undef RANK5 #undef RANK6 #undef RANK7 #undef RANK8 #define RANK1(statement) statement #if RANK < 2 #define RANK2(statement) #else #define RANK2(statement) statement #endif #if RANK < 3 #define RANK3(statement) #else #define RANK3(statement) statement #endif #if RANK < 4 #define RANK4(statement) #else #define RANK4(statement) statement #endif #if RANK < 5 #define RANK5(statement) #else #define RANK5(statement) statement #endif #if RANK < 6 #define RANK6(statement) #else #define RANK6(statement) statement #endif #if RANK < 7 #define RANK7(statement) #else #define RANK7(statement) statement #endif #if RANK < 8 #define RANK8(statement) #else #define RANK8(statement) statement #endif #define FOR_ALL_K \ RANK1 (DO (0)) \ RANK2 (DO (1)) \ RANK3 (DO (2)) \ RANK4 (DO (3)) \ RANK5 (DO (4)) \ RANK6 (DO (5)) \ RANK7 (DO (6)) \ RANK8 (DO (7)) /* ========================================================================== */ /* === alpha/gamma ========================================================== */ /* ========================================================================== */ #undef ALPHA_GAMMA #define ALPHA_GAMMA(Dj,Alpha,Gamma,W) \ { \ double dj = Dj ; \ if (update) \ { \ for (k = 0 ; k < RANK ; k++) \ { \ double w = W [k] ; \ double alpha = Alpha [k] ; \ double a = alpha + (w * w) / dj ; \ dj *= a ; \ Alpha [k] = a ; \ Gamma [k] = (- w / dj) ; \ dj /= alpha ; \ } \ } \ else \ { \ for (k = 0 ; k < RANK ; k++) \ { \ double w = W [k] ; \ double alpha = Alpha [k] ; \ double a = alpha - (w * w) / dj ; \ dj *= a ; \ Alpha [k] = a ; \ Gamma [k] = w / dj ; \ dj /= alpha ; \ } \ } \ Dj = ((use_dbound) ? (CHOLMOD(dbound) (dj, Common)) : (dj)) ; \ } /* ========================================================================== */ /* === numeric update/downdate along one path =============================== */ /* ========================================================================== */ static void NUMERIC (WDIM, RANK) ( int update, /* TRUE for update, FALSE for downdate */ Int j, /* first column in the path */ Int e, /* last column in the path */ double Alpha [ ], /* alpha, for each column of W */ double W [ ], /* W is an n-by-WDIM array, stored in row-major order */ cholmod_factor *L, /* with unit diagonal (diagonal not stored) */ cholmod_common *Common ) { #ifdef SIMPLE #define w(row,col) W [WDIM*(row) + (col)] /* ---------------------------------------------------------------------- */ /* concise but slow version for illustration only */ /* ---------------------------------------------------------------------- */ double Gamma [WDIM] ; double *Lx ; Int *Li, *Lp, *Lnz ; Int p, k ; Int use_dbound = IS_GT_ZERO (Common->dbound) ; Li = L->i ; Lx = L->x ; Lp = L->p ; Lnz = L->nz ; /* walk up the etree from node j to its ancestor e */ for ( ; j <= e ; j = (Lnz [j] > 1) ? (Li [Lp [j] + 1]) : Int_max) { /* update the diagonal entry D (j,j) with each column of W */ ALPHA_GAMMA (Lx [Lp [j]], Alpha, Gamma, (&(w (j,0)))) ; /* update column j of L */ for (p = Lp [j] + 1 ; p < Lp [j] + Lnz [j] ; p++) { /* update row Li [p] of column j of L with each column of W */ Int i = Li [p] ; for (k = 0 ; k < RANK ; k++) { w (i,k) -= w (j,k) * Lx [p] ; Lx [p] -= Gamma [k] * w (i,k) ; } } /* clear workspace W */ for (k = 0 ; k < RANK ; k++) { w (j,k) = 0 ; } } #else /* ---------------------------------------------------------------------- */ /* dynamic supernodal version: supernodes detected dynamically */ /* ---------------------------------------------------------------------- */ double G0 [RANK], G1 [RANK], G2 [RANK], G3 [RANK] ; double Z0 [RANK], Z1 [RANK], Z2 [RANK], Z3 [RANK] ; double *W0, *W1, *W2, *W3, *Lx ; Int *Li, *Lp, *Lnz ; Int j1, j2, j3, p0, p1, p2, p3, parent, lnz, pend, k ; Int use_dbound = IS_GT_ZERO (Common->dbound) ; Li = L->i ; Lx = L->x ; Lp = L->p ; Lnz = L->nz ; /* walk up the etree from node j to its ancestor e */ for ( ; j <= e ; j = parent) { p0 = Lp [j] ; /* col j is Li,Lx [p0 ... p0+lnz-1] */ lnz = Lnz [j] ; W0 = W + WDIM * j ; /* pointer to row j of W */ pend = p0 + lnz ; /* for k = 0 to RANK-1 do: */ #define DO(k) Z0 [k] = W0 [k] ; FOR_ALL_K #undef DO /* for k = 0 to RANK-1 do: */ #define DO(k) W0 [k] = 0 ; FOR_ALL_K #undef DO /* update D (j,j) */ ALPHA_GAMMA (Lx [p0], Alpha, G0, Z0) ; p0++ ; /* determine how many columns of L to update at the same time */ parent = (lnz > 1) ? (Li [p0]) : Int_max ; if (parent <= e && lnz == Lnz [parent] + 1) { /* -------------------------------------------------------------- */ /* node j and its parent j1 can be updated at the same time */ /* -------------------------------------------------------------- */ j1 = parent ; j2 = (lnz > 2) ? (Li [p0+1]) : Int_max ; j3 = (lnz > 3) ? (Li [p0+2]) : Int_max ; W1 = W + WDIM * j1 ; /* pointer to row j1 of W */ p1 = Lp [j1] ; /* for k = 0 to RANK-1 do: */ #define DO(k) Z1 [k] = W1 [k] ; FOR_ALL_K #undef DO /* for k = 0 to RANK-1 do: */ #define DO(k) W1 [k] = 0 ; FOR_ALL_K #undef DO /* update L (j1,j) */ { double lx = Lx [p0] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ Z1 [k] -= Z0 [k] * lx ; \ lx -= G0 [k] * Z1 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx ; } /* update D (j1,j1) */ ALPHA_GAMMA (Lx [p1], Alpha, G1, Z1) ; p1++ ; /* -------------------------------------------------------------- */ /* update 2 or 4 columns of L */ /* -------------------------------------------------------------- */ if ((j2 <= e) && /* j2 in the current path */ (j3 <= e) && /* j3 in the current path */ (lnz == Lnz [j2] + 2) && /* column j2 matches */ (lnz == Lnz [j3] + 3)) /* column j3 matches */ { /* ---------------------------------------------------------- */ /* update 4 columns of L */ /* ---------------------------------------------------------- */ /* p0 and p1 currently point to row j2 in cols j and j1 of L */ parent = (lnz > 4) ? (Li [p0+2]) : Int_max ; W2 = W + WDIM * j2 ; /* pointer to row j2 of W */ W3 = W + WDIM * j3 ; /* pointer to row j3 of W */ p2 = Lp [j2] ; p3 = Lp [j3] ; /* for k = 0 to RANK-1 do: */ #define DO(k) Z2 [k] = W2 [k] ; FOR_ALL_K #undef DO /* for k = 0 to RANK-1 do: */ #define DO(k) Z3 [k] = W3 [k] ; FOR_ALL_K #undef DO /* for k = 0 to RANK-1 do: */ #define DO(k) W2 [k] = 0 ; FOR_ALL_K #undef DO /* for k = 0 to RANK-1 do: */ #define DO(k) W3 [k] = 0 ; FOR_ALL_K #undef DO /* update L (j2,j) and update L (j2,j1) */ { double lx [2] ; lx [0] = Lx [p0] ; lx [1] = Lx [p1] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ Z2 [k] -= Z0 [k] * lx [0] ; lx [0] -= G0 [k] * Z2 [k] ; \ Z2 [k] -= Z1 [k] * lx [1] ; lx [1] -= G1 [k] * Z2 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx [0] ; Lx [p1++] = lx [1] ; } /* update D (j2,j2) */ ALPHA_GAMMA (Lx [p2], Alpha, G2, Z2) ; p2++ ; /* update L (j3,j), L (j3,j1), and L (j3,j2) */ { double lx [3] ; lx [0] = Lx [p0] ; lx [1] = Lx [p1] ; lx [2] = Lx [p2] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ Z3 [k] -= Z0 [k] * lx [0] ; lx [0] -= G0 [k] * Z3 [k] ; \ Z3 [k] -= Z1 [k] * lx [1] ; lx [1] -= G1 [k] * Z3 [k] ; \ Z3 [k] -= Z2 [k] * lx [2] ; lx [2] -= G2 [k] * Z3 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx [0] ; Lx [p1++] = lx [1] ; Lx [p2++] = lx [2] ; } /* update D (j3,j3) */ ALPHA_GAMMA (Lx [p3], Alpha, G3, Z3) ; p3++ ; /* each iteration updates L (i, [j j1 j2 j3]) */ for ( ; p0 < pend ; p0++, p1++, p2++, p3++) { double lx [4], *w0 ; lx [0] = Lx [p0] ; lx [1] = Lx [p1] ; lx [2] = Lx [p2] ; lx [3] = Lx [p3] ; w0 = W + WDIM * Li [p0] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx [0] ; lx [0] -= G0 [k] * w0 [k] ; \ w0 [k] -= Z1 [k] * lx [1] ; lx [1] -= G1 [k] * w0 [k] ; \ w0 [k] -= Z2 [k] * lx [2] ; lx [2] -= G2 [k] * w0 [k] ; \ w0 [k] -= Z3 [k] * lx [3] ; lx [3] -= G3 [k] * w0 [k] ; FOR_ALL_K #undef DO Lx [p0] = lx [0] ; Lx [p1] = lx [1] ; Lx [p2] = lx [2] ; Lx [p3] = lx [3] ; } } else { /* ---------------------------------------------------------- */ /* update 2 columns of L */ /* ---------------------------------------------------------- */ parent = j2 ; /* cleanup iteration if length is odd */ if ((lnz - 2) % 2) { double lx [2] , *w0 ; lx [0] = Lx [p0] ; lx [1] = Lx [p1] ; w0 = W + WDIM * Li [p0] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx [0] ; lx [0] -= G0 [k] * w0 [k] ; \ w0 [k] -= Z1 [k] * lx [1] ; lx [1] -= G1 [k] * w0 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx [0] ; Lx [p1++] = lx [1] ; } for ( ; p0 < pend ; p0 += 2, p1 += 2) { double lx [2][2], w [2], *w0, *w1 ; lx [0][0] = Lx [p0 ] ; lx [1][0] = Lx [p0+1] ; lx [0][1] = Lx [p1 ] ; lx [1][1] = Lx [p1+1] ; w0 = W + WDIM * Li [p0 ] ; w1 = W + WDIM * Li [p0+1] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w [0] = w0 [k] - Z0 [k] * lx [0][0] ; \ w [1] = w1 [k] - Z0 [k] * lx [1][0] ; \ lx [0][0] -= G0 [k] * w [0] ; \ lx [1][0] -= G0 [k] * w [1] ; \ w0 [k] = w [0] -= Z1 [k] * lx [0][1] ; \ w1 [k] = w [1] -= Z1 [k] * lx [1][1] ; \ lx [0][1] -= G1 [k] * w [0] ; \ lx [1][1] -= G1 [k] * w [1] ; FOR_ALL_K #undef DO Lx [p0 ] = lx [0][0] ; Lx [p0+1] = lx [1][0] ; Lx [p1 ] = lx [0][1] ; Lx [p1+1] = lx [1][1] ; } } } else { /* -------------------------------------------------------------- */ /* update one column of L */ /* -------------------------------------------------------------- */ /* cleanup iteration if length is not a multiple of 4 */ switch ((lnz - 1) % 4) { case 1: { double lx , *w0 ; lx = Lx [p0] ; w0 = W + WDIM * Li [p0] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx ; lx -= G0 [k] * w0 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx ; } break ; case 2: { double lx [2], *w0, *w1 ; lx [0] = Lx [p0 ] ; lx [1] = Lx [p0+1] ; w0 = W + WDIM * Li [p0 ] ; w1 = W + WDIM * Li [p0+1] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx [0] ; \ w1 [k] -= Z0 [k] * lx [1] ; \ lx [0] -= G0 [k] * w0 [k] ; \ lx [1] -= G0 [k] * w1 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx [0] ; Lx [p0++] = lx [1] ; } break ; case 3: { double lx [3], *w0, *w1, *w2 ; lx [0] = Lx [p0 ] ; lx [1] = Lx [p0+1] ; lx [2] = Lx [p0+2] ; w0 = W + WDIM * Li [p0 ] ; w1 = W + WDIM * Li [p0+1] ; w2 = W + WDIM * Li [p0+2] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx [0] ; \ w1 [k] -= Z0 [k] * lx [1] ; \ w2 [k] -= Z0 [k] * lx [2] ; \ lx [0] -= G0 [k] * w0 [k] ; \ lx [1] -= G0 [k] * w1 [k] ; \ lx [2] -= G0 [k] * w2 [k] ; FOR_ALL_K #undef DO Lx [p0++] = lx [0] ; Lx [p0++] = lx [1] ; Lx [p0++] = lx [2] ; } } for ( ; p0 < pend ; p0 += 4) { double lx [4], *w0, *w1, *w2, *w3 ; lx [0] = Lx [p0 ] ; lx [1] = Lx [p0+1] ; lx [2] = Lx [p0+2] ; lx [3] = Lx [p0+3] ; w0 = W + WDIM * Li [p0 ] ; w1 = W + WDIM * Li [p0+1] ; w2 = W + WDIM * Li [p0+2] ; w3 = W + WDIM * Li [p0+3] ; /* for k = 0 to RANK-1 do: */ #define DO(k) \ w0 [k] -= Z0 [k] * lx [0] ; \ w1 [k] -= Z0 [k] * lx [1] ; \ w2 [k] -= Z0 [k] * lx [2] ; \ w3 [k] -= Z0 [k] * lx [3] ; \ lx [0] -= G0 [k] * w0 [k] ; \ lx [1] -= G0 [k] * w1 [k] ; \ lx [2] -= G0 [k] * w2 [k] ; \ lx [3] -= G0 [k] * w3 [k] ; FOR_ALL_K #undef DO Lx [p0 ] = lx [0] ; Lx [p0+1] = lx [1] ; Lx [p0+2] = lx [2] ; Lx [p0+3] = lx [3] ; } } } #endif } /* prepare this file for another inclusion in t_cholmod_updown.c: */ #undef RANK SuiteSparse/CHOLMOD/Modify/License.txt0000644001170100242450000000206310540000301016366 0ustar davisfacCHOLMOD/Modify Module. Copyright (C) 2005-2006, Timothy A. Davis and William W. Hager CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Modify module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/Modify/gpl.txt0000644001170100242450000004313310253404132015604 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/Modify/t_cholmod_updown.c0000644001170100242450000001506210537777757020030 0ustar davisfac/* ========================================================================== */ /* === Modify/t_cholmod_updown ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Modify Module. Copyright (C) 2005-2006, * Timothy A. Davis and William W. Hager. * The CHOLMOD/Modify Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Updates/downdates the LDL' factorization, by computing a new factorization of * * Lnew * Dnew * Lnew' = Lold * Dold * Lold' +/- C*C' * * This file is not compiled separately. It is included into * cholmod_updown.c. There are no user-callable routines in this file. * * The next include statements, below, create the numerical update/downdate * kernels from t_cholmod_updown_numkr.c. There are 4 compiled versions of this * file, one for each value of WDIM in the set 1, 2, 4, and 8. Each calls * multiple versions of t_cholmod_updown_numkr; the number of versions of each * is equal to WDIM. Each t_cholmod_updown_numkr version is included as a * static function within its t_cholmod_updown.c caller routine. Thus: * * t*_updown.c creates these versions of t_cholmod_updown_numkr.c: * --------- --------------------------------------------------- * * updown_1_r updown_1_1 * * updown_2_r updown_2_1 updown_2_2 * * updown_4_r updown_4_1 updown_4_2 updown_4_3 updown_4_4 * * updown_8_r updown_8_1 updown_8_2 updown_8_3 updown_8_4 * updown_8_5 updown_8_6 updown_8_7 updown_8_8 * * workspace: Xwork (nrow*wdim) */ /* ========================================================================== */ /* === routines for numeric update/downdate along one path ================== */ /* ========================================================================== */ #undef FORM_NAME #undef NUMERIC #define FORM_NAME(k,rank) updown_ ## k ## _ ## rank #define NUMERIC(k,rank) FORM_NAME(k,rank) #define RANK 1 #include "t_cholmod_updown_numkr.c" #if WDIM >= 2 #define RANK 2 #include "t_cholmod_updown_numkr.c" #endif #if WDIM >= 4 #define RANK 3 #include "t_cholmod_updown_numkr.c" #define RANK 4 #include "t_cholmod_updown_numkr.c" #endif #if WDIM == 8 #define RANK 5 #include "t_cholmod_updown_numkr.c" #define RANK 6 #include "t_cholmod_updown_numkr.c" #define RANK 7 #include "t_cholmod_updown_numkr.c" #define RANK 8 #include "t_cholmod_updown_numkr.c" #endif /* ========================================================================== */ /* === numeric update/downdate for all paths ================================ */ /* ========================================================================== */ static void NUMERIC (WDIM, r) ( int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* in packed or unpacked, and sorted form */ /* no empty columns */ Int rank, /* rank of the update/downdate */ cholmod_factor *L, /* with unit diagonal (diagonal not stored) */ /* temporary workspaces: */ double W [ ], /* n-by-WDIM dense matrix, initially zero */ Path_type Path [ ], Int npaths, Int mask [ ], /* size n */ cholmod_common *Common ) { double Alpha [8] ; double *Cx, *Wpath, *W1, *a ; Int i, j, p, ccol, pend, wfirst, e, path, packed ; Int *Ci, *Cp, *Cnz ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ci = C->i ; Cx = C->x ; Cp = C->p ; Cnz = C->nz ; packed = C->packed ; ASSERT (IMPLIES (!packed, Cnz != NULL)) ; ASSERT (L->n == C->nrow) ; DEBUG (CHOLMOD(dump_real) ("num_d: in W:", W, WDIM, L->n, FALSE, 1,Common)); /* ---------------------------------------------------------------------- */ /* scatter C into W */ /* ---------------------------------------------------------------------- */ for (path = 0 ; path < rank ; path++) { /* W (:, path) = C (:, Path [path].col) */ ccol = Path [path].ccol ; Wpath = W + path ; PRINT1 (("Ordered Columns [path = "ID"] = "ID"\n", path, ccol)) ; p = Cp [ccol] ; pend = (packed) ? (Cp [ccol+1]) : (p + Cnz [ccol]) ; /* column C can be empty */ for ( ; p < pend ; p++) { i = Ci [p] ; ASSERT (i >= 0 && i < (Int) (C->nrow)) ; if (mask == NULL || mask [i] < 0) { Wpath [WDIM * i] = Cx [p] ; } PRINT1 ((" row "ID" : %g mask "ID"\n", i, Cx [p], (mask) ? mask [i] : 0)) ; } Alpha [path] = 1.0 ; } DEBUG (CHOLMOD(dump_real) ("num_d: W:", W, WDIM, L->n, FALSE, 1,Common)) ; /* ---------------------------------------------------------------------- */ /* numeric update/downdate of the paths */ /* ---------------------------------------------------------------------- */ /* for each disjoint subpath in Tbar in DFS order do */ for (path = rank ; path < npaths ; path++) { /* determine which columns of W to use */ wfirst = Path [path].wfirst ; e = Path [path].end ; j = Path [path].start ; ASSERT (e >= 0 && e < (Int) (L->n)) ; ASSERT (j >= 0 && j < (Int) (L->n)) ; W1 = W + wfirst ; /* pointer to row 0, column wfirst of W */ a = Alpha + wfirst ; /* pointer to Alpha [wfirst] */ PRINT1 (("Numerical update/downdate of path "ID"\n", path)) ; PRINT1 (("start "ID" end "ID" wfirst "ID" rank "ID" ccol "ID"\n", j, e, wfirst, Path [path].rank, Path [path].ccol)) ; #if WDIM == 1 NUMERIC (WDIM,1) (update, j, e, a, W1, L, Common) ; #else switch (Path [path].rank) { case 1: NUMERIC (WDIM,1) (update, j, e, a, W1, L, Common) ; break ; #if WDIM >= 2 case 2: NUMERIC (WDIM,2) (update, j, e, a, W1, L, Common) ; break ; #endif #if WDIM >= 4 case 3: NUMERIC (WDIM,3) (update, j, e, a, W1, L, Common) ; break ; case 4: NUMERIC (WDIM,4) (update, j, e, a, W1, L, Common) ; break ; #endif #if WDIM == 8 case 5: NUMERIC (WDIM,5) (update, j, e, a, W1, L, Common) ; break ; case 6: NUMERIC (WDIM,6) (update, j, e, a, W1, L, Common) ; break ; case 7: NUMERIC (WDIM,7) (update, j, e, a, W1, L, Common) ; break ; case 8: NUMERIC (WDIM,8) (update, j, e, a, W1, L, Common) ; break ; #endif } #endif } } /* prepare for the next inclusion of this file in cholmod_updown.c */ #undef WDIM SuiteSparse/CHOLMOD/Modify/cholmod_updown.c0000644001170100242450000014337610635770737017505 0ustar davisfac/* ========================================================================== */ /* === Modify/cholmod_updown ================================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Modify Module. * Copyright (C) 2005-2006, Timothy A. Davis and William W. Hager. * The CHOLMOD/Modify Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Updates/downdates the LDL' factorization (symbolic, then numeric), by * computing a new factorization of * * Lnew * Dnew * Lnew' = Lold * Dold * Lold' +/- C*C' * * C must be sorted. It can be either packed or unpacked. As in all CHOLMOD * routines, the columns of L are sorted on input, and also on output. * * If the factor is not an unpacked LDL' or dynamic LDL', it is converted * to an LDL' dynamic factor. An unpacked LDL' factor may be updated, but if * any one column runs out of space, the factor is converted to an LDL' * dynamic one. If the initial conversion fails, the factor is returned * unchanged. * * If memory runs out during the update, the factor is returned as a simplicial * symbolic factor. That is, everything is freed except for the fill-reducing * ordering and its corresponding column counts (typically computed by * cholmod_analyze). * * Note that the fill-reducing permutation L->Perm is NOT used. The row * indices of C refer to the rows of L, not A. If your original system is * LDL' = PAP' (where P = L->Perm), and you want to compute the LDL' * factorization of A+CC', then you must permute C first. That is: * * PAP' = LDL' * P(A+CC')P' = PAP'+PCC'P' = LDL' + (PC)(PC)' = LDL' + Cnew*Cnew' * where Cnew = P*C. * * You can use the cholmod_submatrix routine in the MatrixOps module * to permute C, with: * * Cnew = cholmod_submatrix (C, L->Perm, L->n, NULL, -1, TRUE, TRUE, Common) ; * * Note that the sorted input parameter to cholmod_submatrix must be TRUE, * because cholmod_updown requires C with sorted columns. * * The system Lx=b can also be updated/downdated. The old system was Lold*x=b. * The new system is Lnew*xnew = b + deltab. The old solution x is overwritten * with xnew. Note that as in the update/downdate of L itself, the fill- * reducing permutation L->Perm is not used. x and b are in the permuted * ordering, not your original ordering. x and b are n-by-1; this routine * does not handle multiple right-hand-sides. * * workspace: Flag (nrow), Head (nrow+1), W (maxrank*nrow), Iwork (nrow), * where maxrank is 2, 4, or 8. * * Only real matrices are supported. A symbolic L is converted into a * numeric identity matrix. */ #ifndef NMODIFY #include "cholmod_internal.h" #include "cholmod_modify.h" /* ========================================================================== */ /* === cholmod_updown ======================================================= */ /* ========================================================================== */ /* Compute the new LDL' factorization of LDL'+CC' (an update) or LDL'-CC' * (a downdate). The factor object L need not be an LDL' factorization; it * is converted to one if it isn't. */ int CHOLMOD(updown) ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(updown_mask) (update, C, NULL, NULL, L, NULL, NULL, Common)) ; } /* ========================================================================== */ /* === cholmod_updown_solve ================================================= */ /* ========================================================================== */ /* Does the same as cholmod_updown, except that it also updates/downdates the * solution to Lx=b+DeltaB. x and b must be n-by-1 dense matrices. b is not * need as input to this routine, but a sparse change to b is (DeltaB). Only * entries in DeltaB corresponding to columns modified in L are accessed; the * rest are ignored. */ int CHOLMOD(updown_solve) ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(updown_mask) (update, C, NULL, NULL, L, X, DeltaB, Common)) ; } /* ========================================================================== */ /* === Power2 =============================================================== */ /* ========================================================================== */ /* Power2 [i] is smallest power of 2 that is >= i (for i in range 0 to 8) */ static Int Power2 [ ] = { /* 0 1 2 3 4 5 6 7 8 */ 0, 1, 2, 4, 4, 8, 8, 8, 8 } ; /* ========================================================================== */ /* === debug routines ======================================================= */ /* ========================================================================== */ #ifndef NDEBUG static void dump_set (Int s, Int **Set_ps1, Int **Set_ps2, Int j, Int n, cholmod_common *Common) { Int *p, len, i, ilast ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return ; } len = Set_ps2 [s] - Set_ps1 [s] ; PRINT2 (("Set s: "ID" len: "ID":", s, len)) ; ASSERT (len > 0) ; ilast = j ; for (p = Set_ps1 [s] ; p < Set_ps2 [s] ; p++) { i = *p ; PRINT3 ((" "ID"", i)) ; ASSERT (i > ilast && i < n) ; ilast = i ; } PRINT3 (("\n")) ; } static void dump_col ( char *w, Int j, Int p1, Int p2, Int *Li, double *Lx, Int n, cholmod_common *Common ) { Int p, row, lastrow ; if (CHOLMOD(dump) < -1) { /* no checks if debug level is -2 or less */ return ; } PRINT3 (("\n\nDUMP COL==== j = "ID" %s: p1="ID" p2="ID" \n", j, w, p1,p2)); lastrow = -1 ; for (p = p1 ; p < p2 ; p++) { PRINT3 ((" "ID": ", p)) ; row = Li [p] ; PRINT3 ((""ID" ", Li [p])) ; PRINT3 (("%g ", Lx [p])) ; PRINT3 (("\n")) ; ASSERT (row > lastrow && row < n) ; lastrow = row ; } ASSERT (p1 < p2) ; ASSERT (Li [p1] == j) ; PRINT3 (("\n")) ; } #endif /* ========================================================================== */ /* === a path =============================================================== */ /* ========================================================================== */ /* A path is a set of nodes of the etree which are all affected by the same * columns of C. */ typedef struct Path_struct { Int start ; /* column at which to start, or EMPTY if initial */ Int end ; /* column at which to end, or EMPTY if initial */ Int ccol ; /* column of C to which path refers */ Int parent ; /* parent path */ Int c ; /* child of j along this path */ Int next ; /* next path in link list */ Int rank ; /* number of rank-1 paths merged onto this path */ Int order ; /* dfs order of this path */ Int wfirst ; /* first column of W to affect this path */ Int pending ; /* column at which the path is pending */ Int botrow ; /* for partial update/downdate of solution to Lx=b */ } Path_type ; /* ========================================================================== */ /* === dfs ================================================================== */ /* ========================================================================== */ /* Compute the DFS order of the set of paths. This can be recursive because * there are at most 23 paths to sort: one for each column of C (8 at most), * and one for each node in a balanced binary tree with 8 leaves (15). * Stack overflow is thus not a problem. */ static void dfs ( Path_type *Path, /* the set of Paths */ Int k, /* the rank of the update/downdate */ Int path, /* which path to work on */ Int *path_order, /* the current path order */ Int *w_order, /* the current order of the columns of W */ Int depth, Int npaths /* total number of paths */ ) { Int c ; /* child path */ ASSERT (path >= 0 && path < npaths) ; if (path < k) { /* this is a leaf node, corresponding to column W (:,path) */ /* and column C (:, Path [path].ccol) */ ASSERT (Path [path].ccol >= 0) ; Path [path].wfirst = *w_order ; Path [path].order = *w_order ; (*w_order)++ ; } else { /* this is a non-leaf path, within the tree */ ASSERT (Path [path].c != EMPTY) ; ASSERT (Path [path].ccol == EMPTY) ; /* order each child path */ for (c = Path [path].c ; c != EMPTY ; c = Path [c].next) { dfs (Path, k, c, path_order, w_order, depth+1, npaths) ; if (Path [path].wfirst == EMPTY) { Path [path].wfirst = Path [c].wfirst ; } } /* order this path next */ Path [path].order = (*path_order)++ ; } } /* ========================================================================== */ /* === numeric update/downdate routines ===================================== */ /* ========================================================================== */ #define WDIM 1 #include "t_cholmod_updown.c" #define WDIM 2 #include "t_cholmod_updown.c" #define WDIM 4 #include "t_cholmod_updown.c" #define WDIM 8 #include "t_cholmod_updown.c" /* ========================================================================== */ /* === cholmod_updown_mark ================================================== */ /* ========================================================================== */ /* Update/downdate LDL' +/- C*C', and update/downdate selected portions of the * solution to Lx=b. * * The original system is L*x = b. The new system is Lnew*xnew = b + deltab. * deltab(i) can be nonzero only if column i of L is modified by the update/ * downdate. If column i is not modified, the deltab(i) is not accessed. * * The solution to Lx=b is not modified if either X or DeltaB are NULL. * * Rowmark and colmark: * -------------------- * * rowmark and colmark affect which portions of L take part in the update/ * downdate of the solution to Lx=b. They do not affect how L itself is * updated/downdated. They are both ignored if X or DeltaB are NULL. * * If not NULL, rowmark is an integer array of size n where L is n-by-n. * rowmark [j] defines the part of column j of L that takes part in the update/ * downdate of the forward solve, Lx=b. Specifically, if i = rowmark [j], * then L(j:i-1,j) is used, and L(i:end,j) is ignored. * * If not NULL, colmark is an integer array of size C->ncol. colmark [ccol] * for a column C(:,ccol) redefines those parts of L that take part in the * update/downdate of Lx=b. Each column of C affects a set of columns of L. * If column ccol of C affects column j of L, then the new rowmark [j] of * column j of L is defined as colmark [ccol]. In a multiple-rank update/ * downdate, if two or more columns of C affect column j, its new rowmark [j] * is the colmark of the least-numbered column of C. colmark is ignored if * it is NULL, in which case rowmark is not modified. If colmark [ccol] is * EMPTY (-1), then rowmark is not modified for that particular column of C. * colmark is ignored if it is NULL, or rowmark, X, or DeltaB are NULL. * * The algorithm for modifying the solution to Lx=b when rowmark and colmark * are NULL is as follows: * * for each column j of L that is modified: * deltab (j:end) += L (j:end,j) * x(j) * modify L * for each column j of L that is modified: * x (j) = deltab (j) * deltab (j) = 0 * deltab (j+1:end) -= L (j+1:end,j) * x(j) * * If rowmark is non-NULL but colmark is NULL: * * for each column j of L that is modified: * deltab (j:rowmark(j)-1) += L (j:rowmark(j)-1,j) * x(j) * modify L * for each column j of L that is modified: * x (j) = deltab (j) * deltab (j) = 0 * deltab (j+1:rowmark(j)-1) -= L (j+1:rowmark(j)-1,j) * x(j) * * If both rowmark and colmark are non-NULL: * * for each column j of L that is modified: * deltab (j:rowmark(j)-1) += L (j:rowmark(j)-1,j) * x(j) * modify L * for each column j of L that is modified: * modify rowmark (j) according to colmark * for each column j of L that is modified: * x (j) = deltab (j) * deltab (j) = 0 * deltab (j+1:rowmark(j)-1) -= L (j+1:rowmark(j)-1,j) * x(j) * * Note that if the rank of C exceeds k = Common->maxrank (which is 2, 4, or 8), * then the update/downdate is done as a series of rank-k updates. In this * case, the above algorithm is repeated for each block of k columns of C. * * Unless it leads to no changes in rowmark, colmark should be used only if * C->ncol <= Common->maxrank, because the update/downdate is done with maxrank * columns at a time. Otherwise, the results are undefined. * * This routine is an "expert" routine. It is meant for use in LPDASA only. */ int CHOLMOD(updown_mark) ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ Int *colmark, /* Int array of size n. */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(updown_mask) (update, C, colmark, NULL, L, X, DeltaB, Common)) ; } /* ========================================================================== */ /* === cholmod_updown_mask ================================================== */ /* ========================================================================== */ int CHOLMOD(updown_mask) ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ Int *colmark, /* Int array of size n. See cholmod_updown.c */ Int *mask, /* size n */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) { double xj, fl ; double *Lx, *W, *Xx, *Nx ; Int *Li, *Lp, *Lnz, *Cp, *Ci, *Cnz, *Head, *Flag, *Stack, *Lnext, *Iwork, *Set_ps1 [32], *Set_ps2 [32], *ps1, *ps2 ; size_t maxrank ; Path_type OrderedPath [32], Path [32] ; Int n, wdim, k1, k2, npaths, i, j, row, packed, ccol, p, cncol, do_solve, mark, jj, j2, kk, nextj, p1, p2, c, use_colmark, newlnz, k, newpath, path_order, w_order, scattered, path, newparent, pp1, pp2, smax, maxrow, row1, nsets, s, p3, newlnz1, Set [32], top, len, lnz, m, botrow ; size_t w ; int ok = TRUE ; DEBUG (Int oldparent) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (C, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (C, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; n = L->n ; cncol = C->ncol ; if (!(C->sorted)) { ERROR (CHOLMOD_INVALID, "C must have sorted columns") ; return (FALSE) ; } if (n != (Int) (C->nrow)) { ERROR (CHOLMOD_INVALID, "C and L dimensions do not match") ; return (FALSE) ; } do_solve = (X != NULL) && (DeltaB != NULL) ; if (do_solve) { RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (DeltaB, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; Xx = X->x ; Nx = DeltaB->x ; if (X->nrow != L->n || X->ncol != 1 || DeltaB->nrow != L->n || DeltaB->ncol != 1 || Xx == NULL || Nx == NULL) { ERROR (CHOLMOD_INVALID, "X and/or DeltaB invalid") ; return (FALSE) ; } } else { Xx = NULL ; Nx = NULL ; } Common->status = CHOLMOD_OK ; Common->modfl = 0 ; fl = 0 ; use_colmark = (colmark != NULL) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* Note: cholmod_rowadd and cholmod_rowdel use the second n doubles in * Common->Xwork for Cx, and then perform a rank-1 update here, which uses * the first n doubles in Common->Xwork. Both the rowadd and rowdel * routines allocate enough workspace so that Common->Xwork isn't destroyed * below. Also, both cholmod_rowadd and cholmod_rowdel use the second n * ints in Common->Iwork for Ci. */ /* make sure maxrank is in the proper range */ maxrank = CHOLMOD(maxrank) (n, Common) ; k = MIN (cncol, (Int) maxrank) ; /* maximum k is wdim */ wdim = Power2 [k] ; /* number of columns needed in W */ ASSERT (wdim <= (Int) maxrank) ; PRINT1 (("updown wdim final "ID" k "ID"\n", wdim, k)) ; /* w = wdim * n */ w = CHOLMOD(mult_size_t) (n, wdim, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, n, w, Common) ; if (Common->status < CHOLMOD_OK || maxrank == 0) { /* out of memory, L is returned unchanged */ return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* convert to simplicial numeric LDL' factor, if not already */ /* ---------------------------------------------------------------------- */ if (L->xtype == CHOLMOD_PATTERN || L->is_super || L->is_ll) { /* can only update/downdate a simplicial LDL' factorization */ CHOLMOD(change_factor) (CHOLMOD_REAL, FALSE, FALSE, FALSE, FALSE, L, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory, L is returned unchanged */ return (FALSE) ; } } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; PRINT1 (("updown, rank %g update %d\n", (double) C->ncol, update)) ; DEBUG (CHOLMOD(dump_factor) (L, "input L for updown", Common)) ; ASSERT (CHOLMOD(dump_sparse) (C, "input C for updown", Common) >= 0) ; Ci = C->i ; Cp = C->p ; Cnz = C->nz ; packed = C->packed ; ASSERT (IMPLIES (!packed, Cnz != NULL)) ; /* ---------------------------------------------------------------------- */ /* quick return */ /* ---------------------------------------------------------------------- */ if (cncol <= 0 || n == 0) { /* nothing to do */ return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* get L */ /* ---------------------------------------------------------------------- */ Li = L->i ; Lx = L->x ; Lp = L->p ; Lnz = L->nz ; Lnext = L->next ; ASSERT (Lnz != NULL) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size n, Flag [i] <= mark must hold */ Head = Common->Head ; /* size n, Head [i] == EMPTY must hold */ W = Common->Xwork ; /* size n-by-wdim, zero on input and output*/ /* note that Iwork [n .. 2*n-1] (i/i/l) may be in use in rowadd/rowdel: */ Iwork = Common->Iwork ; Stack = Iwork ; /* size n, uninitialized (i/i/l) */ /* ---------------------------------------------------------------------- */ /* entire rank-cncol update, done as a sequence of rank-k updates */ /* ---------------------------------------------------------------------- */ ps1 = NULL ; ps2 = NULL ; for (k1 = 0 ; k1 < cncol ; k1 += k) { /* ------------------------------------------------------------------ */ /* get the next k columns of C for the update/downdate */ /* ------------------------------------------------------------------ */ /* the last update/downdate might be less than rank-k */ if (k > cncol - k1) { k = cncol - k1 ; wdim = Power2 [k] ; } k2 = k1 + k - 1 ; /* workspaces are in the following state, on input and output */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, wdim, Common)) ; /* ------------------------------------------------------------------ */ /* create a zero-length path for each column of W */ /* ------------------------------------------------------------------ */ nextj = n ; path = 0 ; for (ccol = k1 ; ccol <= k2 ; ccol++) { PRINT1 (("Column ["ID"]: "ID"\n", path, ccol)) ; ASSERT (ccol >= 0 && ccol <= cncol) ; pp1 = Cp [ccol] ; pp2 = (packed) ? (Cp [ccol+1]) : (pp1 + Cnz [ccol]) ; /* get the row index j of the first entry in C (:,ccol) */ if (pp2 > pp1) { /* Column ccol of C has at least one entry. */ j = Ci [pp1] ; } else { /* Column ccol of C is empty. Pretend it has one entry in * the last column with numerical value of zero. */ j = n-1 ; } ASSERT (j >= 0 && j < n) ; /* find first column to work on */ nextj = MIN (nextj, j) ; Path [path].ccol = ccol ; /* which column of C this path is for */ Path [path].start = EMPTY ; /* paths for C have zero length */ Path [path].end = EMPTY ; Path [path].parent = EMPTY ; /* no parent yet */ Path [path].rank = 1 ; /* one column of W */ Path [path].c = EMPTY ; /* no child of this path (case A) */ Path [path].next = Head [j] ; /* this path is pending at col j */ Path [path].pending = j ; /* this path is pending at col j */ Head [j] = path ; /* this path is pending at col j */ PRINT1(("Path "ID" starts: start "ID" end "ID" parent "ID" c "ID"" "j "ID" ccol "ID"\n", path, Path [path].start, Path [path].end, Path [path].parent, Path [path].c, j, ccol)) ; /* initialize botrow for this path */ Path [path].botrow = (use_colmark) ? colmark [ccol] : n ; path++ ; } /* we start with paths 0 to k-1. Next one (now unused) is npaths */ npaths = k ; j = nextj ; ASSERT (j < n) ; scattered = FALSE ; /* ------------------------------------------------------------------ */ /* symbolic update of columns of L */ /* ------------------------------------------------------------------ */ while (j < n) { ASSERT (j >= 0 && j < n && Lnz [j] > 0) ; /* the old column, Li [p1..p2-1]. D (j,j) is stored in Lx [p1] */ p1 = Lp [j] ; newlnz = Lnz [j] ; p2 = p1 + newlnz ; #ifndef NDEBUG PRINT1 (("\n=========Column j="ID" p1 "ID" p2 "ID" lnz "ID" \n", j, p1, p2, newlnz)) ; dump_col ("Old", j, p1, p2, Li, Lx, n, Common) ; oldparent = (Lnz [j] > 1) ? (Li [p1 + 1]) : EMPTY ; ASSERT (CHOLMOD(dump_work) (TRUE, FALSE, 0, Common)) ; ASSERT (!scattered) ; PRINT1 (("Col "ID": Checking paths, npaths: "ID"\n", j, npaths)) ; for (kk = 0 ; kk < npaths ; kk++) { Int kk2, found, j3 = Path [kk].pending ; PRINT2 (("Path "ID" pending at "ID".\n", kk, j3)) ; if (j3 != EMPTY) { /* Path kk must be somewhere in link list for column j3 */ ASSERT (Head [j3] != EMPTY) ; PRINT3 ((" List at "ID": ", j3)) ; found = FALSE ; for (kk2 = Head [j3] ; kk2 != EMPTY ; kk2 = Path [kk2].next) { PRINT3 ((""ID" ", kk2)) ; ASSERT (Path [kk2].pending == j3) ; found = found || (kk2 == kk) ; } PRINT3 (("\n")) ; ASSERT (found) ; } } PRINT1 (("\nCol "ID": Paths at this column, head "ID"\n", j, Head [j])); ASSERT (Head [j] != EMPTY) ; for (kk = Head [j] ; kk != EMPTY ; kk = Path [kk].next) { PRINT1 (("path "ID": (c="ID" j="ID") npaths "ID"\n", kk, Path[kk].c, j, npaths)) ; ASSERT (kk >= 0 && kk < npaths) ; ASSERT (Path [kk].pending == j) ; } #endif /* -------------------------------------------------------------- */ /* determine the path we're on */ /* -------------------------------------------------------------- */ /* get the first old path at column j */ path = Head [j] ; /* -------------------------------------------------------------- */ /* update/downdate of forward solve, Lx=b */ /* -------------------------------------------------------------- */ if (do_solve) { xj = Xx [j] ; if (IS_NONZERO (xj)) { xj = Xx [j] ; /* This is first time column j has been seen for entire */ /* rank-k update/downdate. */ /* DeltaB += Lold (j:botrow-1,j) * X (j) */ Nx [j] += xj ; /* diagonal of L */ /* find the botrow for this column */ botrow = (use_colmark) ? Path [path].botrow : n ; for (p = p1 + 1 ; p < p2 ; p++) { i = Li [p] ; if (i >= botrow) { break ; } Nx [i] += Lx [p] * xj ; } /* clear X[j] to flag col j of Lold as having been seen. If * X (j) was initially zero, then the above code is never * executed for column j. This is safe, since if xj=0 the * code above does not do anything anyway. */ Xx [j] = 0.0 ; } } /* -------------------------------------------------------------- */ /* start a new path at this column if two or more paths merge */ /* -------------------------------------------------------------- */ newpath = /* start a new path if paths have merged */ (Path [path].next != EMPTY) /* or if j is the first node on a path (case A). */ || (Path [path].c == EMPTY) ; if (newpath) { /* get the botrow of the first path at column j */ botrow = (use_colmark) ? Path [path].botrow : n ; path = npaths++ ; ASSERT (npaths <= 3*k) ; Path [path].ccol = EMPTY ; /* no single col of C for this path*/ Path [path].start = j ; /* path starts at this column j */ Path [path].end = EMPTY ; /* don't know yet where it ends */ Path [path].parent = EMPTY ;/* don't know parent path yet */ Path [path].rank = 0 ; /* rank is sum of child path ranks */ PRINT1 (("Path "ID" starts: start "ID" end "ID" parent "ID"\n", path, Path [path].start, Path [path].end, Path [path].parent)) ; /* set the botrow of the new path */ Path [path].botrow = (use_colmark) ? botrow : n ; } /* -------------------------------------------------------------- */ /* for each path kk pending at column j */ /* -------------------------------------------------------------- */ /* make a list of the sets that need to be merged into column j */ nsets = 0 ; for (kk = Head [j] ; kk != EMPTY ; kk = Path [kk].next) { /* ---------------------------------------------------------- */ /* path kk is at (c,j) */ /* ---------------------------------------------------------- */ c = Path [kk].c ; ASSERT (c < j) ; PRINT1 (("TUPLE on path "ID" (c="ID" j="ID")\n", kk, c, j)) ; ASSERT (Path [kk].pending == j) ; if (newpath) { /* finalize path kk and find rank of this path */ Path [kk].end = c ; /* end of old path is previous node c */ Path [kk].parent = path ; /* parent is this path */ Path [path].rank += Path [kk].rank ; /* sum up ranks */ Path [kk].pending = EMPTY ; PRINT1 (("Path "ID" done:start "ID" end "ID" parent "ID"\n", kk, Path [kk].start, Path [kk].end, Path [kk].parent)) ; } if (c == EMPTY) { /* ------------------------------------------------------ */ /* CASE A: first node in path */ /* ------------------------------------------------------ */ /* update: add pattern of incoming column */ /* Column ccol of C is in Ci [pp1 ... pp2-1] */ ccol = Path [kk].ccol ; pp1 = Cp [ccol] ; pp2 = (packed) ? (Cp [ccol+1]) : (pp1 + Cnz [ccol]) ; PRINT1 (("Case A, ccol = "ID" len "ID"\n", ccol, pp2-pp1)) ; ASSERT (IMPLIES (pp2 > pp1, Ci [pp1] == j)) ; if (!scattered) { /* scatter the original pattern of column j of L */ for (p = p1 ; p < p2 ; p++) { Flag [Li [p]] = mark ; } scattered = TRUE ; } /* scatter column ccol of C (skip first entry, j) */ newlnz1 = newlnz ; for (p = pp1 + 1 ; p < pp2 ; p++) { row = Ci [p] ; if (Flag [row] < mark) { /* this is a new entry in Lj' */ Flag [row] = mark ; newlnz++ ; } } if (newlnz1 != newlnz) { /* column ccol of C adds something to column j of L */ Set [nsets++] = FLIP (ccol) ; } } else if (Head [c] == 1) { /* ------------------------------------------------------ */ /* CASE B: c is old, but changed, child of j */ /* CASE C: new child of j */ /* ------------------------------------------------------ */ /* Head [c] is 1 if col c of L has new entries, * EMPTY otherwise */ Flag [c] = 0 ; Head [c] = EMPTY ; /* update: add Lc' */ /* column c of L is in Li [pp1 .. pp2-1] */ pp1 = Lp [c] ; pp2 = pp1 + Lnz [c] ; PRINT1 (("Case B/C: c = "ID"\n", c)) ; DEBUG (dump_col ("Child", c, pp1, pp2, Li, Lx, n, Common)) ; ASSERT (j == Li [pp1 + 1]) ; /* j is new parent of c */ if (!scattered) { /* scatter the original pattern of column j of L */ for (p = p1 ; p < p2 ; p++) { Flag [Li [p]] = mark ; } scattered = TRUE ; } /* scatter column c of L (skip first two entries, c and j)*/ newlnz1 = newlnz ; for (p = pp1 + 2 ; p < pp2 ; p++) { row = Li [p] ; if (Flag [row] < mark) { /* this is a new entry in Lj' */ Flag [row] = mark ; newlnz++ ; } } PRINT2 (("\n")) ; if (newlnz1 != newlnz) { /* column c of L adds something to column j of L */ Set [nsets++] = c ; } } } /* -------------------------------------------------------------- */ /* update the pattern of column j of L */ /* -------------------------------------------------------------- */ /* Column j of L will be in Li/Lx [p1 .. p3-1] */ p3 = p1 + newlnz ; ASSERT (IMPLIES (nsets == 0, newlnz == Lnz [j])) ; PRINT1 (("p1 "ID" p2 "ID" p3 "ID" nsets "ID"\n", p1, p2, p3,nsets)); /* -------------------------------------------------------------- */ /* ensure we have enough space for the longer column */ /* -------------------------------------------------------------- */ if (nsets > 0 && p3 > Lp [Lnext [j]]) { PRINT1 (("Col realloc: j "ID" newlnz "ID"\n", j, newlnz)) ; if (!CHOLMOD(reallocate_column) (j, newlnz, L, Common)) { /* out of memory, L is now simplicial symbolic */ CHOLMOD(clear_flag) (Common) ; for (j = 0 ; j <= n ; j++) { Head [j] = EMPTY ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, wdim, Common)) ; return (FALSE) ; } /* L->i and L->x may have moved. Column j has moved too */ Li = L->i ; Lx = L->x ; p1 = Lp [j] ; p2 = p1 + Lnz [j] ; p3 = p1 + newlnz ; } /* -------------------------------------------------------------- */ /* create set pointers */ /* -------------------------------------------------------------- */ for (s = 0 ; s < nsets ; s++) { /* Pattern of Set s is *(Set_ps1 [s] ... Set_ps2 [s]-1) */ c = Set [s] ; if (c < EMPTY) { /* column ccol of C, skip first entry (j) */ ccol = FLIP (c) ; pp1 = Cp [ccol] ; pp2 = (packed) ? (Cp [ccol+1]) : (pp1 + Cnz [ccol]) ; ASSERT (pp2 - pp1 > 1) ; Set_ps1 [s] = &(Ci [pp1 + 1]) ; Set_ps2 [s] = &(Ci [pp2]) ; PRINT1 (("set "ID" is ccol "ID"\n", s, ccol)) ; } else { /* column c of L, skip first two entries (c and j) */ pp1 = Lp [c] ; pp2 = pp1 + Lnz [c] ; ASSERT (Lnz [c] > 2) ; Set_ps1 [s] = &(Li [pp1 + 2]) ; Set_ps2 [s] = &(Li [pp2]) ; PRINT1 (("set "ID" is L "ID"\n", s, c)) ; } DEBUG (dump_set (s, Set_ps1, Set_ps2, j, n, Common)) ; } /* -------------------------------------------------------------- */ /* multiset merge */ /* -------------------------------------------------------------- */ /* Merge the sets into a single sorted set, Lj'. Before the merge * starts, column j is located in Li/Lx [p1 ... p2-1] and the * space Li/Lx [p2 ... p3-1] is empty. p1 is Lp [j], p2 is * Lp [j] + Lnz [j] (the old length of the column), and p3 is * Lp [j] + newlnz (the new and longer length of the column). * * The sets 0 to nsets-1 are defined by the Set_ps1 and Set_ps2 * pointers. Set s is located in *(Set_ps1 [s] ... Set_ps2 [s]-1). * It may be a column of C, or a column of L. All row indices i in * the sets are in the range i > j and i < n. All sets are sorted. * * The merge into column j of L is done in place. * * During the merge, p2 and p3 are updated. Li/Lx [p1..p2-1] * reflects the indices of the old column j of L that are yet to * be merged into the new column. Entries in their proper place in * the new column j of L are located in Li/Lx [p3 ... p1+newlnz-1]. * The merge finishes when p2 == p3. * * During the merge, set s consumed as it is merged into column j of * L. Its unconsumed contents are *(Set_ps1 [s] ... Set_ps2 [s]-1). * When a set is completely consumed, it is removed from the set of * sets, and nsets is decremented. * * The multiset merge and 2-set merge finishes when p2 == p3. */ PRINT1 (("Multiset merge p3 "ID" p2 "ID" nsets "ID"\n", p3, p2, nsets)) ; while (p3 > p2 && nsets > 1) { #ifndef NDEBUG PRINT2 (("\nMultiset merge. nsets = "ID"\n", nsets)) ; PRINT2 (("Source col p1 = "ID", p2 = "ID", p3= "ID"\n", p1, p2, p3)) ; for (p = p1 + 1 ; p < p2 ; p++) { PRINT2 ((" p: "ID" source row "ID" %g\n", p, Li[p], Lx[p])) ; ASSERT (Li [p] > j && Li [p] < n) ; } PRINT2 (("---\n")) ; for (p = p3 ; p < p1 + newlnz ; p++) { PRINT2 ((" p: "ID" target row "ID" %g\n", p, Li[p], Lx[p])) ; ASSERT (Li [p] > j && Li [p] < n) ; } for (s = 0 ; s < nsets ; s++) { dump_set (s, Set_ps1, Set_ps2, j, n, Common) ; } #endif /* get the entry at the tail end of source column Lj */ row1 = Li [p2 - 1] ; ASSERT (row1 >= j && p2 >= p1) ; /* find the largest row in all the sets */ maxrow = row1 ; smax = EMPTY ; for (s = nsets-1 ; s >= 0 ; s--) { ASSERT (Set_ps1 [s] < Set_ps2 [s]) ; row = *(Set_ps2 [s] - 1) ; if (row == maxrow) { /* skip past this entry in set s (it is a duplicate) */ Set_ps2 [s]-- ; if (Set_ps1 [s] == Set_ps2 [s]) { /* nothing more in this set */ nsets-- ; Set_ps1 [s] = Set_ps1 [nsets] ; Set_ps2 [s] = Set_ps2 [nsets] ; if (smax == nsets) { /* Set smax redefined; it is now this set */ smax = s ; } } } else if (row > maxrow) { maxrow = row ; smax = s ; } } ASSERT (maxrow > j) ; /* move the row onto the stack of the target column */ if (maxrow == row1) { /* next entry is in Lj, move to the bottom of Lj' */ ASSERT (smax == EMPTY) ; p2-- ; p3-- ; Li [p3] = maxrow ; Lx [p3] = Lx [p2] ; } else { /* new entry in Lj' */ ASSERT (smax >= 0 && smax < nsets) ; Set_ps2 [smax]-- ; p3-- ; Li [p3] = maxrow ; Lx [p3] = 0.0 ; if (Set_ps1 [smax] == Set_ps2 [smax]) { /* nothing more in this set */ nsets-- ; Set_ps1 [smax] = Set_ps1 [nsets] ; Set_ps2 [smax] = Set_ps2 [nsets] ; PRINT1 (("Set "ID" now empty\n", smax)) ; } } } /* -------------------------------------------------------------- */ /* 2-set merge: */ /* -------------------------------------------------------------- */ /* This the same as the multi-set merge, except there is only one * set s = 0 left. The source column j and the set 0 are being * merged into the target column j. */ if (nsets > 0) { ps1 = Set_ps1 [0] ; ps2 = Set_ps2 [0] ; } while (p3 > p2) { #ifndef NDEBUG PRINT2 (("\n2-set merge.\n")) ; ASSERT (nsets == 1) ; PRINT2 (("Source col p1 = "ID", p2 = "ID", p3= "ID"\n", p1, p2, p3)) ; for (p = p1 + 1 ; p < p2 ; p++) { PRINT2 ((" p: "ID" source row "ID" %g\n", p, Li[p], Lx[p])) ; ASSERT (Li [p] > j && Li [p] < n) ; } PRINT2 (("---\n")) ; for (p = p3 ; p < p1 + newlnz ; p++) { PRINT2 ((" p: "ID" target row "ID" %g\n", p, Li[p], Lx[p])) ; ASSERT (Li [p] > j && Li [p] < n) ; } dump_set (0, Set_ps1, Set_ps2, j, n, Common) ; #endif if (p2 == p1 + 1) { /* the top of Lj is empty; copy the set and quit */ while (p3 > p2) { /* new entry in Lj' */ row = *(--ps2) ; p3-- ; Li [p3] = row ; Lx [p3] = 0.0 ; } } else { /* get the entry at the tail end of Lj */ row1 = Li [p2 - 1] ; ASSERT (row1 > j && row1 < n) ; /* get the entry at the tail end of the incoming set */ ASSERT (ps1 < ps2) ; row = *(ps2-1) ; ASSERT (row > j && row1 < n) ; /* move the larger of the two entries to the target set */ if (row1 >= row) { /* next entry is in Lj, move to the bottom */ if (row1 == row) { /* skip past this entry in the set */ ps2-- ; } p2-- ; p3-- ; Li [p3] = row1 ; Lx [p3] = Lx [p2] ; } else { /* new entry in Lj' */ ps2-- ; p3-- ; Li [p3] = row ; Lx [p3] = 0.0 ; } } } /* -------------------------------------------------------------- */ /* The new column j of L is now in Li/Lx [p1 ... p2-1] */ /* -------------------------------------------------------------- */ p2 = p1 + newlnz ; DEBUG (dump_col ("After merge: ", j, p1, p2, Li, Lx, n, Common)) ; fl += Path [path].rank * (6 + 4 * (double) newlnz) ; /* -------------------------------------------------------------- */ /* clear Flag; original pattern of column j L no longer marked */ /* -------------------------------------------------------------- */ mark = CHOLMOD(clear_flag) (Common) ; scattered = FALSE ; /* -------------------------------------------------------------- */ /* find the new parent */ /* -------------------------------------------------------------- */ newparent = (newlnz > 1) ? (Li [p1 + 1]) : EMPTY ; PRINT1 (("\nNew parent, Lnz: "ID": "ID" "ID"\n", j, newparent,newlnz)); ASSERT (oldparent == EMPTY || newparent <= oldparent) ; /* -------------------------------------------------------------- */ /* go to the next node in the path */ /* -------------------------------------------------------------- */ /* path moves to (j,nextj) unless j is a root */ nextj = (newparent == EMPTY) ? n : newparent ; /* place path at head of list for nextj, or terminate the path */ PRINT1 (("\n j = "ID" nextj = "ID"\n\n", j, nextj)) ; Path [path].c = j ; if (nextj < n) { /* put path on link list of pending paths at column nextj */ Path [path].next = Head [nextj] ; Path [path].pending = nextj ; Head [nextj] = path ; PRINT1 (("Path "ID" continues to ("ID","ID"). Rank "ID"\n", path, Path [path].c, nextj, Path [path].rank)) ; } else { /* path has ended here, at a root */ Path [path].next = EMPTY ; Path [path].pending = EMPTY ; Path [path].end = j ; PRINT1 (("Path "ID" ends at root ("ID"). Rank "ID"\n", path, Path [path].end, Path [path].rank)) ; } /* The link list Head [j] can now be emptied. Set Head [j] to 1 * if column j has changed (it is no longer used as a link list). */ PRINT1 (("column "ID", oldlnz = "ID"\n", j, Lnz [j])) ; Head [j] = (Lnz [j] != newlnz) ? 1 : EMPTY ; Lnz [j] = newlnz ; PRINT1 (("column "ID", newlnz = "ID"\n", j, newlnz)) ; DEBUG (dump_col ("New", j, p1, p2, Li, Lx, n, Common)) ; /* move to the next column */ if (k == Path [path].rank) { /* only one path left */ j = nextj ; } else { /* The current path is moving from column j to column nextj * (nextj is n if the path has ended). However, there may be * other paths pending in columns j+1 to nextj-1. There are * two methods for looking for the next column with a pending * update. The first one looks at all columns j+1 to nextj-1 * for a non-empty link list. This can be costly if j and * nextj differ by a large amount (it can be O(n), but this * entire routine may take Omega(1) time). The second method * looks at all paths and finds the smallest column at which any * path is pending. It takes O(# of paths), which is bounded * by 23: one for each column of C (up to 8), and then 15 for a * balanced binary tree with 8 leaves. However, if j and * nextj differ by a tiny amount (nextj is often j+1 near * the end of the matrix), looking at columns j+1 to nextj * would be faster. Both methods give the same answer. */ if (nextj - j < npaths) { /* there are fewer columns to search than paths */ PRINT1 (("check j="ID" to nextj="ID"\n", j, nextj)) ; for (j2 = j + 1 ; j2 < nextj ; j2++) { PRINT1 (("check j="ID" "ID"\n", j2, Head [j2])) ; if (Head [j2] != EMPTY) { PRINT1 (("found, j="ID"\n", j2)) ; ASSERT (Path [Head [j2]].pending == j2) ; break ; } } } else { /* there are fewer paths than columns to search */ j2 = nextj ; for (kk = 0 ; kk < npaths ; kk++) { jj = Path [kk].pending ; PRINT2 (("Path "ID" pending at "ID"\n", kk, jj)) ; if (jj != EMPTY) j2 = MIN (j2, jj) ; } } j = j2 ; } } /* ensure workspaces are back to the values required on input */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, TRUE, Common)) ; /* ------------------------------------------------------------------ */ /* depth-first-search of tree to order the paths */ /* ------------------------------------------------------------------ */ /* create lists of child paths */ PRINT1 (("\n\nDFS search:\n\n")) ; for (path = 0 ; path < npaths ; path++) { Path [path].c = EMPTY ; /* first child of path */ Path [path].next = EMPTY ; /* next sibling of path */ Path [path].order = EMPTY ; /* path is not ordered yet */ Path [path].wfirst = EMPTY ; /* 1st column of W not found yet */ #ifndef NDEBUG j = Path [path].start ; PRINT1 (("Path "ID" : start "ID" end "ID" parent "ID" ccol "ID"\n", path, j, Path [path].end, Path [path].parent, Path [path].ccol)) ; for ( ; ; ) { PRINT1 ((" column "ID"\n", j)) ; ASSERT (j == EMPTY || (j >= 0 && j < n)) ; if (j == Path [path].end) { break ; } ASSERT (j >= 0 && j < n) ; j = (Lnz [j] > 1) ? (Li [Lp [j] + 1]) : EMPTY ; } #endif } for (path = 0 ; path < npaths ; path++) { p = Path [path].parent ; /* add path to child list of parent */ if (p != EMPTY) { ASSERT (p < npaths) ; Path [path].next = Path [p].c ; Path [p].c = path ; } } path_order = k ; w_order = 0 ; for (path = npaths-1 ; path >= 0 ; path--) { if (Path [path].order == EMPTY) { /* this path is the root of a subtree of Tbar */ PRINT1 (("Root path "ID"\n", path)) ; ASSERT (path >= k) ; dfs (Path, k, path, &path_order, &w_order, 0, npaths) ; } } ASSERT (path_order == npaths) ; ASSERT (w_order == k) ; /* reorder the paths */ for (path = 0 ; path < npaths ; path++) { /* old order is path, new order is Path [path].order */ OrderedPath [Path [path].order] = Path [path] ; } #ifndef NDEBUG for (path = 0 ; path < npaths ; path++) { PRINT1 (("Ordered Path "ID": start "ID" end "ID" wfirst "ID" rank " ""ID" ccol "ID"\n", path, OrderedPath [path].start, OrderedPath [path].end, OrderedPath [path].wfirst, OrderedPath [path].rank, OrderedPath [path].ccol)) ; if (path < k) { ASSERT (OrderedPath [path].ccol >= 0) ; } else { ASSERT (OrderedPath [path].ccol == EMPTY) ; } } #endif /* ------------------------------------------------------------------ */ /* numeric update/downdate for all paths */ /* ------------------------------------------------------------------ */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, wdim, Common)) ; switch (wdim) { case 1: updown_1_r (update, C, k, L, W, OrderedPath, npaths, mask, Common) ; break ; case 2: updown_2_r (update, C, k, L, W, OrderedPath, npaths, mask, Common) ; break ; case 4: updown_4_r (update, C, k, L, W, OrderedPath, npaths, mask, Common) ; break ; case 8: updown_8_r (update, C, k, L, W, OrderedPath, npaths, mask, Common) ; break ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, wdim, Common)) ; } /* ---------------------------------------------------------------------- */ /* update/downdate the forward solve */ /* ---------------------------------------------------------------------- */ if (do_solve) { /* We now have DeltaB += Lold (:,j) * X (j) for all columns j in union * of all paths seen during the entire rank-cncol update/downdate. For * each j in path, do DeltaB -= Lnew (:,j)*DeltaB(j) * in topological order. */ #ifndef NDEBUG PRINT1 (("\ndo_solve, DeltaB + Lold(:,Path)*X(Path):\n")) ; for (i = 0 ; i < n ; i++) { PRINT1 (("do_solve: "ID" %30.20e\n", i, Nx [i])) ; } #endif /* Note that the downdate, if it deleted entries, would need to compute * the Stack prior to doing any downdates. */ /* find the union of all the paths in the new L */ top = n ; /* "top" is stack pointer, not a row or column index */ for (ccol = 0 ; ccol < cncol ; ccol++) { /* -------------------------------------------------------------- */ /* j = first row index of C (:,ccol) */ /* -------------------------------------------------------------- */ pp1 = Cp [ccol] ; pp2 = (packed) ? (Cp [ccol+1]) : (pp1 + Cnz [ccol]) ; if (pp2 > pp1) { /* Column ccol of C has at least one entry. */ j = Ci [pp1] ; } else { /* Column ccol of C is empty */ j = n-1 ; } PRINT1 (("\ndo_solve: ccol= "ID"\n", ccol)) ; ASSERT (j >= 0 && j < n) ; len = 0 ; /* -------------------------------------------------------------- */ /* find the new rowmark */ /* -------------------------------------------------------------- */ /* Each column of C can redefine the region of L that takes part in * the update/downdate of the triangular solve Lx=b. If * i = colmark [ccol] for column C(:,ccol), then i = rowmark [j] is * redefined for all columns along the path modified by C(:,ccol). * If more than one column modifies any given column j of L, then * the rowmark of j is determined by the colmark of the least- * numbered column that affects column j. That is, if both * C(:,ccol1) and C(:,ccol2) affect column j of L, then * rowmark [j] = colmark [MIN (ccol1, ccol2)]. * * rowmark [j] is not modified if rowmark or colmark are NULL, * or if colmark [ccol] is EMPTY. */ botrow = (use_colmark) ? (colmark [ccol]) : EMPTY ; /* -------------------------------------------------------------- */ /* traverse from j towards root, stopping if node already visited */ /* -------------------------------------------------------------- */ while (j != EMPTY && Flag [j] < mark) { PRINT1 (("do_solve: subpath j= "ID"\n", j)) ; ASSERT (j >= 0 && j < n) ; Stack [len++] = j ; /* place j on the stack */ Flag [j] = mark ; /* flag j as visited */ /* if using colmark, mark column j with botrow */ ASSERT (Li [Lp [j]] == j) ; /* diagonal is always present */ if (use_colmark) { Li [Lp [j]] = botrow ; /* use the space for botrow */ } /* go up the tree, to the parent of j */ j = (Lnz [j] > 1) ? (Li [Lp [j] + 1]) : EMPTY ; } /* -------------------------------------------------------------- */ /* move the path down to the bottom of the stack */ /* -------------------------------------------------------------- */ ASSERT (len <= top) ; while (len > 0) { Stack [--top] = Stack [--len] ; } } #ifndef NDEBUG /* Union of paths now in Stack [top..n-1] in topological order */ PRINT1 (("\nTopological order:\n")) ; for (i = top ; i < n ; i++) { PRINT1 (("column "ID" in full path\n", Stack [i])) ; } #endif /* Do the forward solve for the full path part of L */ for (m = top ; m < n ; m++) { j = Stack [m] ; ASSERT (j >= 0 && j < n) ; PRINT1 (("do_solve: path j= "ID"\n", j)) ; p1 = Lp [j] ; lnz = Lnz [j] ; p2 = p1 + lnz ; xj = Nx [j] ; /* copy new solution onto old one, for all cols in full path */ Xx [j] = xj ; Nx [j] = 0. ; /* DeltaB -= Lnew (j+1:botrow-1,j) * deltab(j) */ if (use_colmark) { botrow = Li [p1] ; /* get botrow */ Li [p1] = j ; /* restore diagonal entry */ for (p = p1 + 1 ; p < p2 ; p++) { i = Li [p] ; if (i >= botrow) break ; Nx [i] -= Lx [p] * xj ; } } else { for (p = p1 + 1 ; p < p2 ; p++) { Nx [Li [p]] -= Lx [p] * xj ; } } } /* clear the Flag */ mark = CHOLMOD(clear_flag) (Common) ; } /* ---------------------------------------------------------------------- */ /* successful update/downdate */ /* ---------------------------------------------------------------------- */ Common->modfl = fl ; DEBUG (for (j = 0 ; j < n ; j++) ASSERT (IMPLIES (do_solve, Nx[j] == 0.))) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, TRUE, Common)) ; DEBUG (CHOLMOD(dump_factor) (L, "output L for updown", Common)) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Cholesky/0000755001170100242450000000000010674020565014622 5ustar davisfacSuiteSparse/CHOLMOD/Cholesky/cholmod_rowfac.c0000644001170100242450000005243710635770574020000 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_rowfac ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Full or incremental numerical LDL' or LL' factorization (simplicial, not * supernodal) cholmod_factorize is the "easy" wrapper for this code, but it * does not provide access to incremental factorization. * * cholmod_rowfac computes the full or incremental LDL' or LL' factorization of * A+beta*I (where A is symmetric) or A*F+beta*I (where A and F are unsymmetric * and only the upper triangular part of A*F+beta*I is used). It computes * L (and D, for LDL') one row at a time. beta is real. * * A is nrow-by-ncol or nrow-by-nrow. In "packed" form it is a conventional * column-oriented sparse matrix. Row indices of column j are in * Ai [Ap [j] ... Ap [j+1]-1] and values in the same locations of Ax. * will be faster if A has sorted columns. In "unpacked" form the column * of A ends at Ap [j] + Anz [j] - 1 instead of Ap [j+1] - 1. * * Row indices in each column of A can be sorted or unsorted, but the routine * routine works fastest if A is sorted, or if only triu(A) is provided * for the symmetric case. * * The unit-diagonal nrow-by-nrow output matrix L is returned in "unpacked" * column form, with row indices of column j in Li [Lp [j] ... * Lp [j] + Lnz [j] - 1] and values in the same location in Lx. The row * indices in each column of L are in sorted order. The unit diagonal of L * is not stored. * * L can be a simplicial symbolic or numeric (L->is_super must be FALSE). * A symbolic factor is converted immediately into a numeric factor containing * the identity matrix. * * For a full factorization, kstart = 0 and kend = nrow. The existing nonzero * entries (numerical values in L->x and L->z for the zomplex case, and indices * in L->i), if any, are overwritten. * * To compute an incremental factorization, select kstart and kend as the range * of rows of L you wish to compute. A correct factorization will be computed * only if all descendants of all nodes k = kstart to kend-1 in the etree have * been factorized by a prior call to this routine, and if rows kstart to kend-1 * have not been factorized. This condition is NOT checked on input. * * --------------- * Symmetric case: * --------------- * * The factorization (in MATLAB notation) is: * * S = beta*I + A * S = triu (S) + triu (S,1)' * L*D*L' = S, or L*L' = S * * A is a conventional sparse matrix in compressed column form. Only the * diagonal and upper triangular part of A is accessed; the lower * triangular part is ignored and assumed to be equal to the upper * triangular part. For an incremental factorization, only columns kstart * to kend-1 of A are accessed. F is not used. * * --------------- * Unsymmetric case: * --------------- * * The factorization (in MATLAB notation) is: * * S = beta*I + A*F * S = triu (S) + triu (S,1)' * L*D*L' = S, or L*L' = S * * The typical case is F=A'. Alternatively, if F=A(:,f)', then this * routine factorizes S = beta*I + A(:,f)*A(:,f)'. * * All of A and F are accessed, but only the upper triangular part of A*F * is used. F must be of size A->ncol by A->nrow. F is used for the * unsymmetric case only. F can be packed or unpacked and it need not be * sorted. * * For a complete factorization of beta*I + A*A', * this routine performs a number of flops exactly equal to: * * sum (for each column j of A) of (Anz (j)^2 + Anz (j)), to form S * + * sum (for each column j of L) of (Lnz (j)^2 + 3*Lnz (j)), to factorize S * * where Anz (j) is the number of nonzeros in column j of A, and Lnz (j) * is the number of nonzero in column j of L below the diagonal. * * * workspace: Flag (nrow), W (nrow if real, 2*nrow if complex/zomplex), * Iwork (nrow) * * Supports any xtype, except a pattern-only input matrix A cannot be * factorized. */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === subtree ============================================================== */ /* ========================================================================== */ /* Compute the nonzero pattern of the sparse triangular solve Lx=b, where L in * this case is L(0:k-1,0:k-1), and b is a column of A. This is done by * traversing the kth row-subtree of the elimination tree of L, starting from * each nonzero entry in b. The pattern is returned postordered, and is valid * for a subsequent numerical triangular solve of Lx=b. The elimination tree * can be provided in a Parent array, or extracted from the pattern of L itself. * * The pattern of x = inv(L)*b is returned in Stack [top...]. * Also scatters b, or a multiple of b, into the work vector W. * * The SCATTER macro is defines how the numerical values of A or A*A' are to be * scattered. * * PARENT(i) is a macro the defines how the etree is accessed. It is either: * #define PARENT(i) Parent [i] * #define PARENT(i) (Lnz [i] > 1) ? (Li [Lp [i] + 1]) : EMPTY */ #define SUBTREE \ for ( ; p < pend ; p++) \ { \ i = Ai [p] ; \ if (i <= k) \ { \ /* scatter the column of A, or A*A' into Wx and Wz */ \ SCATTER ; \ /* start at node i and traverse up the subtree, stop at node k */ \ for (len = 0 ; i < k && i != EMPTY && Flag [i] < mark ; i = parent) \ { \ /* L(k,i) is nonzero, and seen for the first time */ \ Stack [len++] = i ; /* place i on the stack */ \ Flag [i] = mark ; /* mark i as visited */ \ parent = PARENT (i) ; /* traverse up the etree to the parent */ \ } \ /* move the path down to the bottom of the stack */ \ while (len > 0) \ { \ Stack [--top] = Stack [--len] ; \ } \ } \ else if (sorted) \ { \ break ; \ } \ } /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_rowfac.c" #define COMPLEX #include "t_cholmod_rowfac.c" #define ZOMPLEX #include "t_cholmod_rowfac.c" #define MASK #define REAL #include "t_cholmod_rowfac.c" #define COMPLEX #include "t_cholmod_rowfac.c" #define ZOMPLEX #include "t_cholmod_rowfac.c" #undef MASK /* ========================================================================== */ /* === cholmod_row_subtree ================================================== */ /* ========================================================================== */ /* Compute the nonzero pattern of the solution to the lower triangular system * L(0:k-1,0:k-1) * x = A (0:k-1,k) if A is symmetric, or * L(0:k-1,0:k-1) * x = A (0:k-1,:) * A (:,k)' if A is unsymmetric. * This gives the nonzero pattern of row k of L (excluding the diagonal). * The pattern is returned postordered. * * The symmetric case requires A to be in symmetric-upper form. * * The result is returned in R, a pre-allocated sparse matrix of size nrow-by-1, * with R->nzmax >= nrow. R is assumed to be packed (Rnz [0] is not updated); * the number of entries in R is given by Rp [0]. * * FUTURE WORK: a very minor change to this routine could allow it to compute * the nonzero pattern of x for any system Lx=b. The SUBTREE macro would need * to change, to eliminate its dependence on k. * * workspace: Flag (nrow) */ int CHOLMOD(row_subtree) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,f)' */ size_t krow, /* row k of L */ Int *Parent, /* elimination tree */ /* ---- output --- */ cholmod_sparse *R, /* pattern of L(k,:), 1-by-n with R->nzmax >= n */ /* --------------- */ cholmod_common *Common ) { Int *Rp, *Stack, *Flag, *Ap, *Ai, *Anz, *Fp, *Fi, *Fnz ; Int p, pend, parent, t, stype, nrow, k, pf, pfend, Fpacked, packed, sorted, top, len, i, mark ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (R, FALSE) ; RETURN_IF_NULL (Parent, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (R, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; stype = A->stype ; if (stype == 0) { RETURN_IF_NULL (F, FALSE) ; RETURN_IF_XTYPE_INVALID (F, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; } if (krow >= A->nrow) { ERROR (CHOLMOD_INVALID, "subtree: k invalid") ; return (FALSE) ; } if (R->ncol != 1 || A->nrow != R->nrow || A->nrow > R->nzmax) { ERROR (CHOLMOD_INVALID, "subtree: R invalid") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; CHOLMOD(allocate_work) (nrow, 0, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (stype > 0) { /* symmetric upper case: F is not needed. It may be NULL */ Fp = NULL ; Fi = NULL ; Fnz = NULL ; Fpacked = TRUE ; } else if (stype == 0) { /* unsymmetric case: F is required. */ Fp = F->p ; Fi = F->i ; Fnz = F->nz ; Fpacked = F->packed ; } else { /* symmetric lower triangular form not supported */ ERROR (CHOLMOD_INVALID, "symmetric lower not supported") ; return (FALSE) ; } Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; sorted = A->sorted ; k = krow ; Stack = R->i ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size nrow, Flag [i] < mark must hold */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* ---------------------------------------------------------------------- */ /* compute the pattern of L(k,:) */ /* ---------------------------------------------------------------------- */ top = nrow ; /* Stack is empty */ Flag [k] = mark ; /* do not include diagonal entry in Stack */ #define SCATTER /* do not scatter numerical values */ #define PARENT(i) Parent [i] /* use Parent for etree */ if (stype != 0) { /* scatter kth col of triu (A), get pattern L(k,:) */ p = Ap [k] ; pend = (packed) ? (Ap [k+1]) : (p + Anz [k]) ; SUBTREE ; } else { /* scatter kth col of triu (beta*I+AA'), get pattern L(k,:) */ pf = Fp [k] ; pfend = (Fpacked) ? (Fp [k+1]) : (pf + Fnz [k]) ; for ( ; pf < pfend ; pf++) { /* get nonzero entry F (t,k) */ t = Fi [pf] ; p = Ap [t] ; pend = (packed) ? (Ap [t+1]) : (p + Anz [t]) ; SUBTREE ; } } #undef SCATTER #undef PARENT /* shift the stack upwards, to the first part of R */ len = nrow - top ; for (i = 0 ; i < len ; i++) { Stack [i] = Stack [top + i] ; } Rp = R->p ; Rp [0] = 0 ; Rp [1] = len ; R->sorted = FALSE ; CHOLMOD(clear_flag) (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_row_lsubtree ================================================= */ /* ========================================================================== */ /* Identical to cholmod_row_subtree, except that the elimination tree is * obtained from L itself, as the first off-diagonal entry in each column. * L must be simplicial, not supernodal */ int CHOLMOD(row_lsubtree) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ Int *Fi, size_t fnz, /* nonzero pattern of kth row of A', not required * for the symmetric case. Need not be sorted. */ size_t krow, /* row k of L */ cholmod_factor *L, /* the factor L from which parent(i) is derived */ /* ---- output --- */ cholmod_sparse *R, /* pattern of L(k,:), 1-by-n with R->nzmax >= n */ /* --------------- */ cholmod_common *Common ) { Int *Rp, *Stack, *Flag, *Ap, *Ai, *Anz, *Lp, *Li, *Lnz ; Int p, pend, parent, t, stype, nrow, k, pf, packed, sorted, top, len, i, mark ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (R, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (R, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; stype = A->stype ; if (stype == 0) { RETURN_IF_NULL (Fi, FALSE) ; } if (krow >= A->nrow) { ERROR (CHOLMOD_INVALID, "lsubtree: k invalid") ; return (FALSE) ; } if (R->ncol != 1 || A->nrow != R->nrow || A->nrow > R->nzmax) { ERROR (CHOLMOD_INVALID, "lsubtree: R invalid") ; return (FALSE) ; } if (L->is_super) { ERROR (CHOLMOD_INVALID, "lsubtree: L invalid (cannot be supernodal)") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; CHOLMOD(allocate_work) (nrow, 0, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if (stype < 0) { /* symmetric lower triangular form not supported */ ERROR (CHOLMOD_INVALID, "symmetric lower not supported") ; return (FALSE) ; } Ap = A->p ; Ai = A->i ; Anz = A->nz ; packed = A->packed ; sorted = A->sorted ; k = krow ; Stack = R->i ; Lp = L->p ; Li = L->i ; Lnz = L->nz ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size nrow, Flag [i] < mark must hold */ mark = CHOLMOD(clear_flag) (Common) ; /* ---------------------------------------------------------------------- */ /* compute the pattern of L(k,:) */ /* ---------------------------------------------------------------------- */ top = nrow ; /* Stack is empty */ Flag [k] = mark ; /* do not include diagonal entry in Stack */ #define SCATTER /* do not scatter numerical values */ #define PARENT(i) (Lnz [i] > 1) ? (Li [Lp [i] + 1]) : EMPTY if (stype != 0) { /* scatter kth col of triu (A), get pattern L(k,:) */ p = Ap [k] ; pend = (packed) ? (Ap [k+1]) : (p + Anz [k]) ; SUBTREE ; } else { /* scatter kth col of triu (beta*I+AA'), get pattern L(k,:) */ for (pf = 0 ; pf < (Int) fnz ; pf++) { /* get nonzero entry F (t,k) */ t = Fi [pf] ; p = Ap [t] ; pend = (packed) ? (Ap [t+1]) : (p + Anz [t]) ; SUBTREE ; } } #undef SCATTER #undef PARENT /* shift the stack upwards, to the first part of R */ len = nrow - top ; for (i = 0 ; i < len ; i++) { Stack [i] = Stack [top + i] ; } Rp = R->p ; Rp [0] = 0 ; Rp [1] = len ; R->sorted = FALSE ; CHOLMOD(clear_flag) (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_rowfac ======================================================= */ /* ========================================================================== */ /* This is the incremental factorization for general purpose usage. */ int CHOLMOD(rowfac) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,f)' */ double beta [2], /* factorize beta*I+A or beta*I+AA' */ size_t kstart, /* first row to factorize */ size_t kend, /* last row to factorize is kend-1 */ /* ---- in/out --- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(rowfac_mask) (A, F, beta, kstart, kend, NULL, NULL, L, Common)) ; } /* ========================================================================== */ /* === cholmod_rowfac_mask ================================================== */ /* ========================================================================== */ /* This is meant for use in LPDASA only. */ int CHOLMOD(rowfac_mask) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,f)' */ double beta [2], /* factorize beta*I+A or beta*I+AA' */ size_t kstart, /* first row to factorize */ size_t kend, /* last row to factorize is kend-1 */ Int *mask, /* size A->nrow. if mask[i] >= 0 row i is set to zero */ Int *RLinkUp, /* size A->nrow. link list of rows to compute */ /* ---- in/out --- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) { Int n ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (L->xtype != CHOLMOD_PATTERN && A->xtype != L->xtype) { ERROR (CHOLMOD_INVALID, "xtype of A and L do not match") ; return (FALSE) ; } if (L->is_super) { ERROR (CHOLMOD_INVALID, "can only do simplicial factorization"); return (FALSE) ; } if (A->stype == 0) { RETURN_IF_NULL (F, FALSE) ; if (A->xtype != F->xtype) { ERROR (CHOLMOD_INVALID, "xtype of A and F do not match") ; return (FALSE) ; } } if (A->stype < 0) { /* symmetric lower triangular form not supported */ ERROR (CHOLMOD_INVALID, "symmetric lower not supported") ; return (FALSE) ; } if (kend > L->n) { ERROR (CHOLMOD_INVALID, "kend invalid") ; return (FALSE) ; } if (A->nrow != L->n) { ERROR (CHOLMOD_INVALID, "dimensions of A and L do not match") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; Common->rowfacfl = 0 ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* Xwork is of size n for the real case, 2*n for complex/zomplex */ n = L->n ; /* s = ((A->xtype != CHOLMOD_REAL) ? 2:1)*n */ s = CHOLMOD(mult_size_t) (n, ((A->xtype != CHOLMOD_REAL) ? 2:1), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, n, s, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, A->nrow, Common)) ; /* ---------------------------------------------------------------------- */ /* factorize the matrix, using template routine */ /* ---------------------------------------------------------------------- */ if (RLinkUp == NULL) { switch (A->xtype) { case CHOLMOD_REAL: ok = r_cholmod_rowfac (A, F, beta, kstart, kend, L, Common) ; break ; case CHOLMOD_COMPLEX: ok = c_cholmod_rowfac (A, F, beta, kstart, kend, L, Common) ; break ; case CHOLMOD_ZOMPLEX: ok = z_cholmod_rowfac (A, F, beta, kstart, kend, L, Common) ; break ; } } else { switch (A->xtype) { case CHOLMOD_REAL: ok = r_cholmod_rowfac_mask (A, F, beta, kstart, kend, mask, RLinkUp, L, Common) ; break ; case CHOLMOD_COMPLEX: ok = c_cholmod_rowfac_mask (A, F, beta, kstart, kend, mask, RLinkUp, L, Common) ; break ; case CHOLMOD_ZOMPLEX: ok = z_cholmod_rowfac_mask (A, F, beta, kstart, kend, mask, RLinkUp, L, Common) ; break ; } } return (ok) ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_rowcolcounts.c0000644001170100242450000004373110635770550021247 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_rowcolcounts ======================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Compute the row and column counts of the Cholesky factor L of the matrix * A or A*A'. The etree and its postordering must already be computed (see * cholmod_etree and cholmod_postorder) and given as inputs to this routine. * * For the symmetric case (LL'=A), A is accessed by column. Only the lower * triangular part of A is used. Entries not in this part of the matrix are * ignored. This is the same as storing the upper triangular part of A by * rows, with entries in the lower triangular part being ignored. NOTE: this * representation is the TRANSPOSE of the input to cholmod_etree. * * For the unsymmetric case (LL'=AA'), A is accessed by column. Equivalently, * if A is viewed as a matrix in compressed-row form, this routine computes * the row and column counts for L where LL'=A'A. If the input vector f is * present, then F*F' is analyzed instead, where F = A(:,f). * * The set f is held in fset and fsize. * fset = NULL means ":" in MATLAB. fset is ignored. * fset != NULL means f = fset [0..fset-1]. * fset != NULL and fsize = 0 means f is the empty set. * Common->status is set to CHOLMOD_INVALID if fset is invalid. * * In both cases, the columns of A need not be sorted. * A can be packed or unpacked. * * References: * J. Gilbert, E. Ng, B. Peyton, "An efficient algorithm to compute row and * column counts for sparse Cholesky factorization", SIAM J. Matrix Analysis & * Applic., vol 15, 1994, pp. 1075-1091. * * J. Gilbert, X. Li, E. Ng, B. Peyton, "Computing row and column counts for * sparse QR and LU factorization", BIT, vol 41, 2001, pp. 693-710. * * workspace: * if symmetric: Flag (nrow), Iwork (2*nrow) * if unsymmetric: Flag (nrow), Iwork (2*nrow+ncol), Head (nrow+1) * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === initialize_node ====================================================== */ /* ========================================================================== */ static int initialize_node /* initial work for kth node in postordered etree */ ( Int k, /* at the kth step of the algorithm (and kth node) */ Int Post [ ], /* Post [k] = i, the kth node in postordered etree */ Int Parent [ ], /* Parent [i] is the parent of i in the etree */ Int ColCount [ ], /* ColCount [c] is the current weight of node c */ Int PrevNbr [ ] /* PrevNbr [u] = k if u was last considered at step k */ ) { Int p, parent ; /* determine p, the kth node in the postordered etree */ p = Post [k] ; /* adjust the weight if p is not a root of the etree */ parent = Parent [p] ; if (parent != EMPTY) { ColCount [parent]-- ; } /* flag node p to exclude self edges (p,p) */ PrevNbr [p] = k ; return (p) ; } /* ========================================================================== */ /* === process_edge ========================================================= */ /* ========================================================================== */ /* edge (p,u) is being processed. p < u is a descendant of its ancestor u in * the etree. node p is the kth node in the postordered etree. */ static void process_edge ( Int p, /* process edge (p,u) of the matrix */ Int u, Int k, /* we are at the kth node in the postordered etree */ Int First [ ], /* First [i] = k if the postordering of first * descendent of node i is k */ Int PrevNbr [ ], /* u was last considered at step k = PrevNbr [u] */ Int ColCount [ ], /* ColCount [c] is the current weight of node c */ Int PrevLeaf [ ], /* s = PrevLeaf [u] means that s was the last leaf * seen in the subtree rooted at u. */ Int RowCount [ ], /* RowCount [i] is # of nonzeros in row i of L, * including the diagonal. Not computed if NULL. */ Int SetParent [ ], /* the FIND/UNION data structure, which forms a set * of trees. A root i has i = SetParent [i]. Following * a path from i to the root q of the subtree containing * i means that q is the SetParent representative of i. * All nodes in the tree could have their SetParent * equal to the root q; the tree representation is used * to save time. When a path is traced from i to its * root q, the path is re-traversed to set the SetParent * of the whole path to be the root q. */ Int Level [ ] /* Level [i] = length of path from node i to root */ ) { Int prevleaf, q, s, sparent ; if (First [p] > PrevNbr [u]) { /* p is a leaf of the subtree of u */ ColCount [p]++ ; prevleaf = PrevLeaf [u] ; if (prevleaf == EMPTY) { /* p is the first leaf of subtree of u; RowCount will be incremented * by the length of the path in the etree from p up to u. */ q = u ; } else { /* q = FIND (prevleaf): find the root q of the * SetParent tree containing prevleaf */ for (q = prevleaf ; q != SetParent [q] ; q = SetParent [q]) { ; } /* the root q has been found; re-traverse the path and * perform path compression */ s = prevleaf ; for (s = prevleaf ; s != q ; s = sparent) { sparent = SetParent [s] ; SetParent [s] = q ; } /* adjust the RowCount and ColCount; RowCount will be incremented by * the length of the path from p to the SetParent root q, and * decrement the ColCount of q by one. */ ColCount [q]-- ; } if (RowCount != NULL) { /* if RowCount is being computed, increment it by the length of * the path from p to q */ RowCount [u] += (Level [p] - Level [q]) ; } /* p is a leaf of the subtree of u, so mark PrevLeaf [u] to be p */ PrevLeaf [u] = p ; } /* flag u has having been processed at step k */ PrevNbr [u] = k ; } /* ========================================================================== */ /* === finalize_node ======================================================== */ /* ========================================================================== */ static void finalize_node /* compute UNION (p, Parent [p]) */ ( Int p, Int Parent [ ], /* Parent [p] is the parent of p in the etree */ Int SetParent [ ] /* see process_edge, above */ ) { /* all nodes in the SetParent tree rooted at p now have as their final * root the node Parent [p]. This computes UNION (p, Parent [p]) */ if (Parent [p] != EMPTY) { SetParent [p] = Parent [p] ; } } /* ========================================================================== */ /* === cholmod_rowcolcounts ================================================= */ /* ========================================================================== */ int CHOLMOD(rowcolcounts) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ Int *Parent, /* size nrow. Parent [i] = p if p is the parent of i */ Int *Post, /* size nrow. Post [k] = i if i is the kth node in * the postordered etree. */ /* ---- output --- */ Int *RowCount, /* size nrow. RowCount [i] = # entries in the ith row of * L, including the diagonal. */ Int *ColCount, /* size nrow. ColCount [i] = # entries in the ith * column of L, including the diagonal. */ Int *First, /* size nrow. First [i] = k is the least postordering * of any descendant of i. */ Int *Level, /* size nrow. Level [i] is the length of the path from * i to the root, with Level [root] = 0. */ /* --------------- */ cholmod_common *Common ) { double fl, ff ; Int *Ap, *Ai, *Anz, *PrevNbr, *SetParent, *Head, *PrevLeaf, *Anext, *Ipost, *Iwork ; Int i, j, r, k, len, s, p, pend, inew, stype, nf, anz, inode, parent, nrow, ncol, packed, use_fset, jj ; size_t w ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Parent, FALSE) ; RETURN_IF_NULL (Post, FALSE) ; RETURN_IF_NULL (ColCount, FALSE) ; RETURN_IF_NULL (First, FALSE) ; RETURN_IF_NULL (Level, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; stype = A->stype ; if (stype > 0) { /* symmetric with upper triangular part not supported */ ERROR (CHOLMOD_INVALID, "symmetric upper not supported") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; /* the number of rows of A */ ncol = A->ncol ; /* the number of columns of A */ /* w = 2*nrow + (stype ? 0 : ncol) */ w = CHOLMOD(mult_size_t) (nrow, 2, &ok) ; w = CHOLMOD(add_size_t) (w, (stype ? 0 : ncol), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (nrow, w, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_perm) (Post, nrow, nrow, "Post", Common)) ; ASSERT (CHOLMOD(dump_parent) (Parent, nrow, "Parent", Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; /* size ncol+1, column pointers for A */ Ai = A->i ; /* the row indices of A, of size nz=Ap[ncol+1] */ Anz = A->nz ; packed = A->packed ; ASSERT (IMPLIES (!packed, Anz != NULL)) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; SetParent = Iwork ; /* size nrow (i/i/l) */ PrevNbr = Iwork + nrow ; /* size nrow (i/i/l) */ Anext = Iwork + 2*((size_t) nrow) ; /* size ncol (i/i/l) (unsym only) */ PrevLeaf = Common->Flag ; /* size nrow */ Head = Common->Head ; /* size nrow+1 (unsym only)*/ /* ---------------------------------------------------------------------- */ /* find the first descendant and level of each node in the tree */ /* ---------------------------------------------------------------------- */ /* First [i] = k if the postordering of first descendent of node i is k */ /* Level [i] = length of path from node i to the root (Level [root] = 0) */ for (i = 0 ; i < nrow ; i++) { First [i] = EMPTY ; } /* postorder traversal of the etree */ for (k = 0 ; k < nrow ; k++) { /* node i of the etree is the kth node in the postordered etree */ i = Post [k] ; /* i is a leaf if First [i] is still EMPTY */ /* ColCount [i] starts at 1 if i is a leaf, zero otherwise */ ColCount [i] = (First [i] == EMPTY) ? 1 : 0 ; /* traverse the path from node i to the root, stopping if we find a * node r whose First [r] is already defined. */ len = 0 ; for (r = i ; (r != EMPTY) && (First [r] == EMPTY) ; r = Parent [r]) { First [r] = k ; len++ ; } if (r == EMPTY) { /* we hit a root node, the level of which is zero */ len-- ; } else { /* we stopped at node r, where Level [r] is already defined */ len += Level [r] ; } /* re-traverse the path from node i to r; set the level of each node */ for (s = i ; s != r ; s = Parent [s]) { Level [s] = len-- ; } } /* ---------------------------------------------------------------------- */ /* AA' case: sort columns of A according to first postordered row index */ /* ---------------------------------------------------------------------- */ fl = 0.0 ; if (stype == 0) { /* [ use PrevNbr [0..nrow-1] as workspace for Ipost */ Ipost = PrevNbr ; /* Ipost [i] = k if i is the kth node in the postordered etree. */ for (k = 0 ; k < nrow ; k++) { Ipost [Post [k]] = k ; } use_fset = (fset != NULL) ; if (use_fset) { nf = fsize ; /* clear Anext to check fset */ for (j = 0 ; j < ncol ; j++) { Anext [j] = -2 ; } /* find the first postordered row in each column of A (post,f) * and place the column in the corresponding link list */ for (jj = 0 ; jj < nf ; jj++) { j = fset [jj] ; if (j < 0 || j > ncol || Anext [j] != -2) { /* out-of-range or duplicate entry in fset */ ERROR (CHOLMOD_INVALID, "fset invalid") ; return (FALSE) ; } /* flag column j as having been seen */ Anext [j] = EMPTY ; } /* fset is now valid */ ASSERT (CHOLMOD(dump_perm) (fset, nf, ncol, "fset", Common)) ; } else { nf = ncol ; } for (jj = 0 ; jj < nf ; jj++) { j = (use_fset) ? (fset [jj]) : jj ; /* column j is in the fset; find the smallest row (if any) */ p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; ff = (double) MAX (0, pend - p) ; fl += ff*ff + ff ; if (pend > p) { k = Ipost [Ai [p]] ; for ( ; p < pend ; p++) { inew = Ipost [Ai [p]] ; k = MIN (k, inew) ; } /* place column j in link list k */ ASSERT (k >= 0 && k < nrow) ; Anext [j] = Head [k] ; Head [k] = j ; } } /* Ipost no longer needed for inverse postordering ] * Head [k] contains a link list of all columns whose first * postordered row index is equal to k, for k = 0 to nrow-1. */ } /* ---------------------------------------------------------------------- */ /* compute the row counts and node weights */ /* ---------------------------------------------------------------------- */ if (RowCount != NULL) { for (i = 0 ; i < nrow ; i++) { RowCount [i] = 1 ; } } for (i = 0 ; i < nrow ; i++) { PrevLeaf [i] = EMPTY ; PrevNbr [i] = EMPTY ; SetParent [i] = i ; /* every node is in its own set, by itself */ } if (stype != 0) { /* ------------------------------------------------------------------ */ /* symmetric case: LL' = A */ /* ------------------------------------------------------------------ */ /* also determine the number of entries in triu(A) */ anz = nrow ; for (k = 0 ; k < nrow ; k++) { /* j is the kth node in the postordered etree */ j = initialize_node (k, Post, Parent, ColCount, PrevNbr) ; /* for all nonzeros A(i,j) below the diagonal, in column j of A */ p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i > j) { /* j is a descendant of i in etree(A) */ anz++ ; process_edge (j, i, k, First, PrevNbr, ColCount, PrevLeaf, RowCount, SetParent, Level) ; } } /* update SetParent: UNION (j, Parent [j]) */ finalize_node (j, Parent, SetParent) ; } Common->anz = anz ; } else { /* ------------------------------------------------------------------ */ /* unsymmetric case: LL' = AA' */ /* ------------------------------------------------------------------ */ for (k = 0 ; k < nrow ; k++) { /* inode is the kth node in the postordered etree */ inode = initialize_node (k, Post, Parent, ColCount, PrevNbr) ; /* for all cols j whose first postordered row is k: */ for (j = Head [k] ; j != EMPTY ; j = Anext [j]) { /* k is the first postordered row in column j of A */ /* for all rows i in column j: */ p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* has i already been considered at this step k */ if (PrevNbr [i] < k) { /* inode is a descendant of i in etree(AA') */ /* process edge (inode,i) and set PrevNbr[i] to k */ process_edge (inode, i, k, First, PrevNbr, ColCount, PrevLeaf, RowCount, SetParent, Level) ; } } } /* clear link list k */ Head [k] = EMPTY ; /* update SetParent: UNION (inode, Parent [inode]) */ finalize_node (inode, Parent, SetParent) ; } } /* ---------------------------------------------------------------------- */ /* finish computing the column counts */ /* ---------------------------------------------------------------------- */ for (j = 0 ; j < nrow ; j++) { parent = Parent [j] ; if (parent != EMPTY) { /* add the ColCount of j to its parent */ ColCount [parent] += ColCount [j] ; } } /* ---------------------------------------------------------------------- */ /* clear workspace */ /* ---------------------------------------------------------------------- */ Common->mark = EMPTY ; /* CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* flop count and nnz(L) for subsequent LL' numerical factorization */ /* ---------------------------------------------------------------------- */ /* use double to avoid integer overflow. lnz cannot be NaN. */ Common->aatfl = fl ; Common->lnz = 0. ; fl = 0 ; for (j = 0 ; j < nrow ; j++) { ff = (double) (ColCount [j]) ; Common->lnz += ff ; fl += ff*ff ; } Common->fl = fl ; PRINT1 (("rowcol fl %g lnz %g\n", Common->fl, Common->lnz)) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Cholesky/t_cholmod_solve.c0000644001170100242450000001120210537777374020161 0ustar davisfac/* ========================================================================== */ /* === Cholesky/t_cholmod_solve ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_solve. Supports any numeric xtype (real, * complex, or zomplex). The xtypes of all matrices (L and Y) must match. */ #include "cholmod_template.h" /* ========================================================================== */ /* === simplicial template solvers ========================================== */ /* ========================================================================== */ /* LL': solve Lx=b with non-unit diagonal */ #define LL #include "t_cholmod_lsolve.c" /* LDL': solve LDx=b */ #define LD #include "t_cholmod_lsolve.c" /* LDL': solve Lx=b with unit diagonal */ #include "t_cholmod_lsolve.c" /* LL': solve L'x=b with non-unit diagonal */ #define LL #include "t_cholmod_ltsolve.c" /* LDL': solve DL'x=b */ #define LD #include "t_cholmod_ltsolve.c" /* LDL': solve L'x=b with unit diagonal */ #include "t_cholmod_ltsolve.c" /* ========================================================================== */ /* === t_ldl_dsolve ========================================================= */ /* ========================================================================== */ /* Solve Dx=b for an LDL' factorization, where Y holds b' on input and x' on * output. */ static void TEMPLATE (ldl_dsolve) ( cholmod_factor *L, cholmod_dense *Y /* nr-by-n with leading dimension nr */ ) { double d [1] ; double *Lx, *Yx, *Yz ; Int *Lp ; Int n, nrhs, k, p, k1, k2 ; ASSERT (L->xtype == Y->xtype) ; /* L and Y must have the same xtype */ ASSERT (L->n == Y->ncol) ; /* dimensions must match */ ASSERT (Y->nrow == Y->d) ; /* leading dimension of Y = # rows of Y */ ASSERT (L->xtype != CHOLMOD_PATTERN) ; /* L is not symbolic */ ASSERT (!(L->is_super) && !(L->is_ll)) ; /* L is simplicial LDL' */ nrhs = Y->nrow ; n = L->n ; Lp = L->p ; Lx = L->x ; Yx = Y->x ; Yz = Y->z ; for (k = 0 ; k < n ; k++) { k1 = k*nrhs ; k2 = (k+1)*nrhs ; ASSIGN_REAL (d,0, Lx,Lp[k]) ; for (p = k1 ; p < k2 ; p++) { DIV_REAL (Yx,Yz,p, Yx,Yz,p, d,0) ; } } } /* ========================================================================== */ /* === t_simplicial_solver ================================================== */ /* ========================================================================== */ /* Solve a linear system, where Y' contains the (array-transposed) right-hand * side on input, and the solution on output. No permutations are applied; * these must have already been applied to Y on input. */ static void TEMPLATE (simplicial_solver) ( int sys, /* system to solve */ cholmod_factor *L, /* factor to use, a simplicial LL' or LDL' */ cholmod_dense *Y /* right-hand-side on input, solution on output */ ) { if (L->is_ll) { /* The factorization is LL' */ if (sys == CHOLMOD_A || sys == CHOLMOD_LDLt) { /* Solve Ax=b or LL'x=b */ TEMPLATE (ll_lsolve_k) (L, Y) ; TEMPLATE (ll_ltsolve_k) (L, Y) ; } else if (sys == CHOLMOD_L || sys == CHOLMOD_LD) { /* Solve Lx=b */ TEMPLATE (ll_lsolve_k) (L, Y) ; } else if (sys == CHOLMOD_Lt || sys == CHOLMOD_DLt) { /* Solve L'x=b */ TEMPLATE (ll_ltsolve_k) (L, Y) ; } } else { /* The factorization is LDL' */ if (sys == CHOLMOD_A || sys == CHOLMOD_LDLt) { /* Solve Ax=b or LDL'x=b */ TEMPLATE (ldl_lsolve_k) (L, Y) ; TEMPLATE (ldl_dltsolve_k) (L, Y) ; } else if (sys == CHOLMOD_LD) { /* Solve LDx=b */ TEMPLATE (ldl_ldsolve_k) (L, Y) ; } else if (sys == CHOLMOD_L) { /* Solve Lx=b */ TEMPLATE (ldl_lsolve_k) (L, Y) ; } else if (sys == CHOLMOD_Lt) { /* Solve L'x=b */ TEMPLATE (ldl_ltsolve_k) (L, Y) ; } else if (sys == CHOLMOD_DLt) { /* Solve DL'x=b */ TEMPLATE (ldl_dltsolve_k) (L, Y) ; } else if (sys == CHOLMOD_D) { /* Solve Dx=b */ TEMPLATE (ldl_dsolve) (L, Y) ; } } } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/Cholesky/cholmod_factorize.c0000644001170100242450000003435410537777320020500 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_factorize =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Computes the numerical factorization of a symmetric matrix. The primary * inputs to this routine are a sparse matrix A and the symbolic factor L from * cholmod_analyze or a prior numerical factor L. If A is symmetric, this * routine factorizes A(p,p)+beta*I (beta can be zero), where p is the * fill-reducing permutation (L->Perm). If A is unsymmetric, either * A(p,:)*A(p,:)'+beta*I or A(p,f)*A(p,f)'+beta*I is factorized. The set f and * the nonzero pattern of the matrix A must be the same as the matrix passed to * cholmod_analyze for the supernodal case. For the simplicial case, it can * be different, but it should be the same for best performance. beta is real. * * A simplicial factorization or supernodal factorization is chosen, based on * the type of the factor L. If L->is_super is TRUE, a supernodal LL' * factorization is computed. Otherwise, a simplicial numeric factorization * is computed, either LL' or LDL', depending on Common->final_ll. * * Once the factorization is complete, it can be left as is or optionally * converted into any simplicial numeric type, depending on the * Common->final_* parameters. If converted from a supernodal to simplicial * type, and the Common->final_resymbol parameter is true, then numerically * zero entries in L due to relaxed supernodal amalgamation are removed from * the simplicial factor (they are always left in the supernodal form of L). * Entries that are numerically zero but present in the simplicial symbolic * pattern of L are left in place (that is, the graph of L remains chordal). * This is required for the update/downdate/rowadd/rowdel routines to work * properly. * * workspace: Flag (nrow), Head (nrow+1), * if symmetric: Iwork (2*nrow+2*nsuper) * if unsymmetric: Iwork (2*nrow+MAX(2*nsuper,ncol)) * where nsuper is 0 if simplicial, or the # of relaxed supernodes in * L otherwise (nsuper <= nrow). * if simplicial: W (nrow). * Allocates up to two temporary copies of its input matrix (including * both pattern and numerical values). * * If the matrix is not positive definite the routine returns TRUE, but * sets Common->status to CHOLMOD_NOT_POSDEF and L->minor is set to the * column at which the failure occurred. Columns L->minor to L->n-1 are * set to zero. * * Supports any xtype (pattern, real, complex, or zomplex), except that the * input matrix A cannot be pattern-only. If L is simplicial, its numeric * xtype matches A on output. If L is supernodal, its xtype is real if A is * real, or complex if A is complex or zomplex. */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" #ifndef NSUPERNODAL #include "cholmod_supernodal.h" #endif /* ========================================================================== */ /* === cholmod_factorize ==================================================== */ /* ========================================================================== */ /* Factorizes PAP' (or PAA'P' if A->stype is 0), using a factor obtained * from cholmod_analyze. The analysis can be re-used simply by calling this * routine a second time with another matrix. A must have the same nonzero * pattern as that passed to cholmod_analyze. */ int CHOLMOD(factorize) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ /* ---- in/out --- */ cholmod_factor *L, /* resulting factorization */ /* --------------- */ cholmod_common *Common ) { double zero [2] ; zero [0] = 0 ; zero [1] = 0 ; return (CHOLMOD(factorize_p) (A, zero, NULL, 0, L, Common)) ; } /* ========================================================================== */ /* === cholmod_factorize_p ================================================== */ /* ========================================================================== */ /* Same as cholmod_factorize, but with more options. */ int CHOLMOD(factorize_p) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ double beta [2], /* factorize beta*I+A or beta*I+A'*A */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- in/out --- */ cholmod_factor *L, /* resulting factorization */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *S, *F, *A1, *A2 ; Int nrow, ncol, stype, convert, n, nsuper, grow2, status ; size_t s, t, uncol ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; nrow = A->nrow ; ncol = A->ncol ; n = L->n ; stype = A->stype ; if (L->n != A->nrow) { ERROR (CHOLMOD_INVALID, "A and L dimensions do not match") ; return (FALSE) ; } if (stype != 0 && nrow != ncol) { ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (FALSE) ; } DEBUG (CHOLMOD(dump_sparse) (A, "A for cholmod_factorize", Common)) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ nsuper = (L->is_super ? L->nsuper : 0) ; uncol = ((stype != 0) ? 0 : ncol) ; /* s = 2*nrow + MAX (uncol, 2*nsuper) */ s = CHOLMOD(mult_size_t) (nsuper, 2, &ok) ; s = MAX (uncol, s) ; t = CHOLMOD(mult_size_t) (nrow, 2, &ok) ; s = CHOLMOD(add_size_t) (s, t, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (nrow, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } S = NULL ; F = NULL ; A1 = NULL ; A2 = NULL ; /* convert to another form when done, if requested */ convert = !(Common->final_asis) ; /* ---------------------------------------------------------------------- */ /* perform supernodal LL' or simplicial LDL' factorization */ /* ---------------------------------------------------------------------- */ if (L->is_super) { #ifndef NSUPERNODAL /* ------------------------------------------------------------------ */ /* supernodal factorization */ /* ------------------------------------------------------------------ */ if (L->ordering == CHOLMOD_NATURAL) { /* -------------------------------------------------------------- */ /* natural ordering */ /* -------------------------------------------------------------- */ if (stype > 0) { /* S = tril (A'), F not needed */ /* workspace: Iwork (nrow) */ A1 = CHOLMOD(ptranspose) (A, 2, NULL, NULL, 0, Common) ; S = A1 ; } else if (stype < 0) { /* This is the fastest option for the natural ordering */ /* S = A; F not needed */ S = A ; } else { /* F = A(:,f)' */ /* workspace: Iwork (nrow) */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ A1 = CHOLMOD(ptranspose) (A, 2, NULL, fset, fsize, Common) ; F = A1 ; /* S = A */ S = A ; } } else { /* -------------------------------------------------------------- */ /* permute the input matrix before factorization */ /* -------------------------------------------------------------- */ if (stype > 0) { /* This is the fastest option for factoring a permuted matrix */ /* S = tril (PAP'); F not needed */ /* workspace: Iwork (2*nrow) */ A1 = CHOLMOD(ptranspose) (A, 2, L->Perm, NULL, 0, Common) ; S = A1 ; } else if (stype < 0) { /* A2 = triu (PAP') */ /* workspace: Iwork (2*nrow) */ A2 = CHOLMOD(ptranspose) (A, 2, L->Perm, NULL, 0, Common) ; /* S = tril (A2'); F not needed */ /* workspace: Iwork (nrow) */ A1 = CHOLMOD(ptranspose) (A2, 2, NULL, NULL, 0, Common) ; S = A1 ; CHOLMOD(free_sparse) (&A2, Common) ; ASSERT (A2 == NULL) ; } else { /* F = A(p,f)' */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ A1 = CHOLMOD(ptranspose) (A, 2, L->Perm, fset, fsize, Common) ; F = A1 ; /* S = F' */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (F, 2, NULL, NULL, 0, Common) ; S = A2 ; } } /* ------------------------------------------------------------------ */ /* supernodal factorization */ /* ------------------------------------------------------------------ */ /* workspace: Flag (nrow), Head (nrow+1), Iwork (2*nrow+2*nsuper) */ if (Common->status == CHOLMOD_OK) { CHOLMOD(super_numeric) (S, F, beta, L, Common) ; } status = Common->status ; ASSERT (IMPLIES (status >= CHOLMOD_OK, L->xtype != CHOLMOD_PATTERN)) ; /* ------------------------------------------------------------------ */ /* convert to final form, if requested */ /* ------------------------------------------------------------------ */ if (Common->status >= CHOLMOD_OK && convert) { /* workspace: none */ ok = CHOLMOD(change_factor) (L->xtype, Common->final_ll, Common->final_super, Common->final_pack, Common->final_monotonic, L, Common) ; if (ok && Common->final_resymbol && !(L->is_super)) { /* workspace: Flag (nrow), Head (nrow+1), * if symmetric: Iwork (2*nrow) * if unsymmetric: Iwork (2*nrow+ncol) */ CHOLMOD(resymbol_noperm) (S, fset, fsize, Common->final_pack, L, Common) ; } } #else /* ------------------------------------------------------------------ */ /* CHOLMOD Supernodal module not installed */ /* ------------------------------------------------------------------ */ status = CHOLMOD_NOT_INSTALLED ; ERROR (CHOLMOD_NOT_INSTALLED,"Supernodal module not installed") ; #endif } else { /* ------------------------------------------------------------------ */ /* simplicial LDL' factorization */ /* ------------------------------------------------------------------ */ /* Permute the input matrix A if necessary. cholmod_rowfac requires * triu(A) in column form for the symmetric case, and A in column form * for the unsymmetric case (the matrix S). The unsymmetric case * requires A in row form, or equivalently A' in column form (the * matrix F). */ if (L->ordering == CHOLMOD_NATURAL) { /* -------------------------------------------------------------- */ /* natural ordering */ /* -------------------------------------------------------------- */ if (stype > 0) { /* F is not needed, S = A */ S = A ; } else if (stype < 0) { /* F is not needed, S = A' */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (A, 2, NULL, NULL, 0, Common) ; S = A2 ; } else { /* F = A (:,f)' */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ A1 = CHOLMOD(ptranspose) (A, 2, NULL, fset, fsize, Common) ; F = A1 ; S = A ; } } else { /* -------------------------------------------------------------- */ /* permute the input matrix before factorization */ /* -------------------------------------------------------------- */ if (stype > 0) { /* F = tril (A (p,p)') */ /* workspace: Iwork (2*nrow) */ A1 = CHOLMOD(ptranspose) (A, 2, L->Perm, NULL, 0, Common) ; /* A2 = triu (F') */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (A1, 2, NULL, NULL, 0, Common) ; /* the symmetric case does not need F, free it and set to NULL*/ CHOLMOD(free_sparse) (&A1, Common) ; } else if (stype < 0) { /* A2 = triu (A (p,p)'), F not needed. This is the fastest * way to factorize a matrix using the simplicial routine * (cholmod_rowfac). */ /* workspace: Iwork (2*nrow) */ A2 = CHOLMOD(ptranspose) (A, 2, L->Perm, NULL, 0, Common) ; } else { /* F = A (p,f)' */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ A1 = CHOLMOD(ptranspose) (A, 2, L->Perm, fset, fsize, Common) ; F = A1 ; /* A2 = F' */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (F, 2, NULL, NULL, 0, Common) ; } S = A2 ; } /* ------------------------------------------------------------------ */ /* simplicial LDL' or LL' factorization */ /* ------------------------------------------------------------------ */ /* factorize beta*I+S (symmetric) or beta*I+F*F' (unsymmetric) */ /* workspace: Flag (nrow), W (nrow), Iwork (2*nrow) */ if (Common->status == CHOLMOD_OK) { grow2 = Common->grow2 ; L->is_ll = BOOLEAN (Common->final_ll) ; if (L->xtype == CHOLMOD_PATTERN && Common->final_pack) { /* allocate a factor with exactly the space required */ Common->grow2 = 0 ; } CHOLMOD(rowfac) (S, F, beta, 0, nrow, L, Common) ; Common->grow2 = grow2 ; } status = Common->status ; /* ------------------------------------------------------------------ */ /* convert to final form, if requested */ /* ------------------------------------------------------------------ */ if (Common->status >= CHOLMOD_OK && convert) { /* workspace: none */ CHOLMOD(change_factor) (L->xtype, L->is_ll, FALSE, Common->final_pack, Common->final_monotonic, L, Common) ; } } /* ---------------------------------------------------------------------- */ /* free A1 and A2 if they exist */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&A1, Common) ; CHOLMOD(free_sparse) (&A2, Common) ; Common->status = MAX (Common->status, status) ; return (Common->status >= CHOLMOD_OK) ; } #endif SuiteSparse/CHOLMOD/Cholesky/t_cholmod_ltsolve.c0000644001170100242450000005375610537777364020544 0ustar davisfac/* ========================================================================== */ /* === Cholesky/t_cholmod_ltsolve =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine to solve L'x=b with unit or non-unit diagonal, or * solve DL'x=b. * * The numeric xtype of L and Y must match. Y contains b on input and x on * output, stored in row-form. Y is nrow-by-n, where nrow must equal 1 for the * complex or zomplex cases, and nrow <= 4 for the real case. * * This file is not compiled separately. It is included in t_cholmod_solve.c * instead. It contains no user-callable routines. * * workspace: none * * Supports real, complex, and zomplex factors. */ /* undefine all prior definitions */ #undef FORM_NAME #undef LSOLVE #undef DIAG /* -------------------------------------------------------------------------- */ /* define the method */ /* -------------------------------------------------------------------------- */ #ifdef LL /* LL': solve Lx=b with non-unit diagonal */ #define FORM_NAME(prefix,rank) prefix ## ll_ltsolve_ ## rank #define DIAG #elif defined (LD) /* LDL': solve LDx=b */ #define FORM_NAME(prefix,rank) prefix ## ldl_dltsolve_ ## rank #define DIAG #else /* LDL': solve Lx=b with unit diagonal */ #define FORM_NAME(prefix,rank) prefix ## ldl_ltsolve_ ## rank #endif /* LSOLVE(k) defines the name of a routine for an n-by-k right-hand-side. */ #define LSOLVE(prefix,rank) FORM_NAME(prefix,rank) #ifdef REAL /* ========================================================================== */ /* === LSOLVE (1) =========================================================== */ /* ========================================================================== */ /* Solve L'x=b, where b has 1 column */ static void LSOLVE (PREFIX,1) ( cholmod_factor *L, double X [ ] /* n-by-1 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = n-1 ; j >= 0 ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j-1, and j-2) */ if (j < 4 || lnz != Lnz [j-1] - 1 || Li [Lp [j-1]+1] != j) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y = X [j] ; #ifdef DIAG double d = Lx [p] ; #endif #ifdef LD y /= d ; #endif for (p++ ; p < pend ; p++) { y -= Lx [p] * X [Li [p]] ; } #ifdef LL X [j] = y / d ; #else X [j] = y ; #endif j-- ; /* advance to the next column of L */ } else if (lnz != Lnz [j-2]-2 || Li [Lp [j-2]+2] != j) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2], t ; Int q = Lp [j-1] ; #ifdef DIAG double d [2] ; d [0] = Lx [p] ; d [1] = Lx [q] ; #endif t = Lx [q+1] ; #ifdef LD y [0] = X [j ] / d [0] ; y [1] = X [j-1] / d [1] ; #else y [0] = X [j ] ; y [1] = X [j-1] ; #endif for (p++, q += 2 ; p < pend ; p++, q++) { Int i = Li [p] ; y [0] -= Lx [p] * X [i] ; y [1] -= Lx [q] * X [i] ; } #ifdef LL y [0] /= d [0] ; y [1] = (y [1] - t * y [0]) / d [1] ; #else y [1] -= t * y [0] ; #endif X [j ] = y [0] ; X [j-1] = y [1] ; j -= 2 ; /* advance to the next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3], t [3] ; Int q = Lp [j-1] ; Int r = Lp [j-2] ; #ifdef DIAG double d [3] ; d [0] = Lx [p] ; d [1] = Lx [q] ; d [2] = Lx [r] ; #endif t [0] = Lx [q+1] ; t [1] = Lx [r+1] ; t [2] = Lx [r+2] ; #ifdef LD y [0] = X [j] / d [0] ; y [1] = X [j-1] / d [1] ; y [2] = X [j-2] / d [2] ; #else y [0] = X [j] ; y [1] = X [j-1] ; y [2] = X [j-2] ; #endif for (p++, q += 2, r += 3 ; p < pend ; p++, q++, r++) { Int i = Li [p] ; y [0] -= Lx [p] * X [i] ; y [1] -= Lx [q] * X [i] ; y [2] -= Lx [r] * X [i] ; } #ifdef LL y [0] /= d [0] ; y [1] = (y [1] - t [0] * y [0]) / d [1] ; y [2] = (y [2] - t [2] * y [0] - t [1] * y [1]) / d [2] ; #else y [1] -= t [0] * y [0] ; y [2] -= t [2] * y [0] + t [1] * y [1] ; #endif X [j-2] = y [2] ; X [j-1] = y [1] ; X [j ] = y [0] ; j -= 3 ; /* advance to the next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (2) =========================================================== */ /* ========================================================================== */ /* Solve L'x=b, where b has 2 columns */ static void LSOLVE (PREFIX,2) ( cholmod_factor *L, double X [ ][2] /* n-by-2 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = n-1 ; j >= 0 ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j-1, and j-2) */ if (j < 4 || lnz != Lnz [j-1] - 1 || Li [Lp [j-1]+1] != j) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [2] ; #ifdef DIAG double d = Lx [p] ; #endif #ifdef LD y [0] = X [j][0] / d ; y [1] = X [j][1] / d ; #else y [0] = X [j][0] ; y [1] = X [j][1] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; y [0] -= Lx [p] * X [i][0] ; y [1] -= Lx [p] * X [i][1] ; } #ifdef LL X [j][0] = y [0] / d ; X [j][1] = y [1] / d ; #else X [j][0] = y [0] ; X [j][1] = y [1] ; #endif j-- ; /* advance to the next column of L */ } else if (lnz != Lnz [j-2]-2 || Li [Lp [j-2]+2] != j) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][2], t ; Int q = Lp [j-1] ; #ifdef DIAG double d [2] ; d [0] = Lx [p] ; d [1] = Lx [q] ; #endif t = Lx [q+1] ; #ifdef LD y [0][0] = X [j ][0] / d [0] ; y [0][1] = X [j ][1] / d [0] ; y [1][0] = X [j-1][0] / d [1] ; y [1][1] = X [j-1][1] / d [1] ; #else y [0][0] = X [j ][0] ; y [0][1] = X [j ][1] ; y [1][0] = X [j-1][0] ; y [1][1] = X [j-1][1] ; #endif for (p++, q += 2 ; p < pend ; p++, q++) { Int i = Li [p] ; y [0][0] -= Lx [p] * X [i][0] ; y [0][1] -= Lx [p] * X [i][1] ; y [1][0] -= Lx [q] * X [i][0] ; y [1][1] -= Lx [q] * X [i][1] ; } #ifdef LL y [0][0] /= d [0] ; y [0][1] /= d [0] ; y [1][0] = (y [1][0] - t * y [0][0]) / d [1] ; y [1][1] = (y [1][1] - t * y [0][1]) / d [1] ; #else y [1][0] -= t * y [0][0] ; y [1][1] -= t * y [0][1] ; #endif X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j-1][0] = y [1][0] ; X [j-1][1] = y [1][1] ; j -= 2 ; /* advance to the next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3][2], t [3] ; Int q = Lp [j-1] ; Int r = Lp [j-2] ; #ifdef DIAG double d [3] ; d [0] = Lx [p] ; d [1] = Lx [q] ; d [2] = Lx [r] ; #endif t [0] = Lx [q+1] ; t [1] = Lx [r+1] ; t [2] = Lx [r+2] ; #ifdef LD y [0][0] = X [j ][0] / d [0] ; y [0][1] = X [j ][1] / d [0] ; y [1][0] = X [j-1][0] / d [1] ; y [1][1] = X [j-1][1] / d [1] ; y [2][0] = X [j-2][0] / d [2] ; y [2][1] = X [j-2][1] / d [2] ; #else y [0][0] = X [j ][0] ; y [0][1] = X [j ][1] ; y [1][0] = X [j-1][0] ; y [1][1] = X [j-1][1] ; y [2][0] = X [j-2][0] ; y [2][1] = X [j-2][1] ; #endif for (p++, q += 2, r += 3 ; p < pend ; p++, q++, r++) { Int i = Li [p] ; y [0][0] -= Lx [p] * X [i][0] ; y [0][1] -= Lx [p] * X [i][1] ; y [1][0] -= Lx [q] * X [i][0] ; y [1][1] -= Lx [q] * X [i][1] ; y [2][0] -= Lx [r] * X [i][0] ; y [2][1] -= Lx [r] * X [i][1] ; } #ifdef LL y [0][0] /= d [0] ; y [0][1] /= d [0] ; y [1][0] = (y [1][0] - t [0] * y [0][0]) / d [1] ; y [1][1] = (y [1][1] - t [0] * y [0][1]) / d [1] ; y [2][0] = (y [2][0] - t [2] * y [0][0] - t [1] * y [1][0]) / d [2]; y [2][1] = (y [2][1] - t [2] * y [0][1] - t [1] * y [1][1]) / d [2]; #else y [1][0] -= t [0] * y [0][0] ; y [1][1] -= t [0] * y [0][1] ; y [2][0] -= t [2] * y [0][0] + t [1] * y [1][0] ; y [2][1] -= t [2] * y [0][1] + t [1] * y [1][1] ; #endif X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j-1][0] = y [1][0] ; X [j-1][1] = y [1][1] ; X [j-2][0] = y [2][0] ; X [j-2][1] = y [2][1] ; j -= 3 ; /* advance to the next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (3) =========================================================== */ /* ========================================================================== */ /* Solve L'x=b, where b has 3 columns */ static void LSOLVE (PREFIX,3) ( cholmod_factor *L, double X [ ][3] /* n-by-3 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = n-1 ; j >= 0 ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j-1, and j-2) */ if (j < 4 || lnz != Lnz [j-1] - 1 || Li [Lp [j-1]+1] != j) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [3] ; #ifdef DIAG double d = Lx [p] ; #endif #ifdef LD y [0] = X [j][0] / d ; y [1] = X [j][1] / d ; y [2] = X [j][2] / d ; #else y [0] = X [j][0] ; y [1] = X [j][1] ; y [2] = X [j][2] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; y [0] -= Lx [p] * X [i][0] ; y [1] -= Lx [p] * X [i][1] ; y [2] -= Lx [p] * X [i][2] ; } #ifdef LL X [j][0] = y [0] / d ; X [j][1] = y [1] / d ; X [j][2] = y [2] / d ; #else X [j][0] = y [0] ; X [j][1] = y [1] ; X [j][2] = y [2] ; #endif j-- ; /* advance to the next column of L */ } else if (lnz != Lnz [j-2]-2 || Li [Lp [j-2]+2] != j) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][3], t ; Int q = Lp [j-1] ; #ifdef DIAG double d [2] ; d [0] = Lx [p] ; d [1] = Lx [q] ; #endif t = Lx [q+1] ; #ifdef LD y [0][0] = X [j ][0] / d [0] ; y [0][1] = X [j ][1] / d [0] ; y [0][2] = X [j ][2] / d [0] ; y [1][0] = X [j-1][0] / d [1] ; y [1][1] = X [j-1][1] / d [1] ; y [1][2] = X [j-1][2] / d [1] ; #else y [0][0] = X [j ][0] ; y [0][1] = X [j ][1] ; y [0][2] = X [j ][2] ; y [1][0] = X [j-1][0] ; y [1][1] = X [j-1][1] ; y [1][2] = X [j-1][2] ; #endif for (p++, q += 2 ; p < pend ; p++, q++) { Int i = Li [p] ; y [0][0] -= Lx [p] * X [i][0] ; y [0][1] -= Lx [p] * X [i][1] ; y [0][2] -= Lx [p] * X [i][2] ; y [1][0] -= Lx [q] * X [i][0] ; y [1][1] -= Lx [q] * X [i][1] ; y [1][2] -= Lx [q] * X [i][2] ; } #ifdef LL y [0][0] /= d [0] ; y [0][1] /= d [0] ; y [0][2] /= d [0] ; y [1][0] = (y [1][0] - t * y [0][0]) / d [1] ; y [1][1] = (y [1][1] - t * y [0][1]) / d [1] ; y [1][2] = (y [1][2] - t * y [0][2]) / d [1] ; #else y [1][0] -= t * y [0][0] ; y [1][1] -= t * y [0][1] ; y [1][2] -= t * y [0][2] ; #endif X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j-1][0] = y [1][0] ; X [j-1][1] = y [1][1] ; X [j-1][2] = y [1][2] ; j -= 2 ; /* advance to the next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3][3], t [3] ; Int q = Lp [j-1] ; Int r = Lp [j-2] ; #ifdef DIAG double d [3] ; d [0] = Lx [p] ; d [1] = Lx [q] ; d [2] = Lx [r] ; #endif t [0] = Lx [q+1] ; t [1] = Lx [r+1] ; t [2] = Lx [r+2] ; #ifdef LD y [0][0] = X [j ][0] / d [0] ; y [0][1] = X [j ][1] / d [0] ; y [0][2] = X [j ][2] / d [0] ; y [1][0] = X [j-1][0] / d [1] ; y [1][1] = X [j-1][1] / d [1] ; y [1][2] = X [j-1][2] / d [1] ; y [2][0] = X [j-2][0] / d [2] ; y [2][1] = X [j-2][1] / d [2] ; y [2][2] = X [j-2][2] / d [2] ; #else y [0][0] = X [j ][0] ; y [0][1] = X [j ][1] ; y [0][2] = X [j ][2] ; y [1][0] = X [j-1][0] ; y [1][1] = X [j-1][1] ; y [1][2] = X [j-1][2] ; y [2][0] = X [j-2][0] ; y [2][1] = X [j-2][1] ; y [2][2] = X [j-2][2] ; #endif for (p++, q += 2, r += 3 ; p < pend ; p++, q++, r++) { Int i = Li [p] ; y [0][0] -= Lx [p] * X [i][0] ; y [0][1] -= Lx [p] * X [i][1] ; y [0][2] -= Lx [p] * X [i][2] ; y [1][0] -= Lx [q] * X [i][0] ; y [1][1] -= Lx [q] * X [i][1] ; y [1][2] -= Lx [q] * X [i][2] ; y [2][0] -= Lx [r] * X [i][0] ; y [2][1] -= Lx [r] * X [i][1] ; y [2][2] -= Lx [r] * X [i][2] ; } #ifdef LL y [0][0] /= d [0] ; y [0][1] /= d [0] ; y [0][2] /= d [0] ; y [1][0] = (y [1][0] - t [0] * y [0][0]) / d [1] ; y [1][1] = (y [1][1] - t [0] * y [0][1]) / d [1] ; y [1][2] = (y [1][2] - t [0] * y [0][2]) / d [1] ; y [2][0] = (y [2][0] - t [2] * y [0][0] - t [1] * y [1][0]) / d [2]; y [2][1] = (y [2][1] - t [2] * y [0][1] - t [1] * y [1][1]) / d [2]; y [2][2] = (y [2][2] - t [2] * y [0][2] - t [1] * y [1][2]) / d [2]; #else y [1][0] -= t [0] * y [0][0] ; y [1][1] -= t [0] * y [0][1] ; y [1][2] -= t [0] * y [0][2] ; y [2][0] -= t [2] * y [0][0] + t [1] * y [1][0] ; y [2][1] -= t [2] * y [0][1] + t [1] * y [1][1] ; y [2][2] -= t [2] * y [0][2] + t [1] * y [1][2] ; #endif X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j-1][0] = y [1][0] ; X [j-1][1] = y [1][1] ; X [j-1][2] = y [1][2] ; X [j-2][0] = y [2][0] ; X [j-2][1] = y [2][1] ; X [j-2][2] = y [2][2] ; j -= 3 ; /* advance to the next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (4) =========================================================== */ /* ========================================================================== */ /* Solve L'x=b, where b has 4 columns */ static void LSOLVE (PREFIX,4) ( cholmod_factor *L, double X [ ][4] /* n-by-4 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = n-1 ; j >= 0 ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j-1, and j-2) */ if (j < 4 || lnz != Lnz [j-1] - 1 || Li [Lp [j-1]+1] != j) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [4] ; #ifdef DIAG double d = Lx [p] ; #endif #ifdef LD y [0] = X [j][0] / d ; y [1] = X [j][1] / d ; y [2] = X [j][2] / d ; y [3] = X [j][3] / d ; #else y [0] = X [j][0] ; y [1] = X [j][1] ; y [2] = X [j][2] ; y [3] = X [j][3] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; y [0] -= Lx [p] * X [i][0] ; y [1] -= Lx [p] * X [i][1] ; y [2] -= Lx [p] * X [i][2] ; y [3] -= Lx [p] * X [i][3] ; } #ifdef LL X [j][0] = y [0] / d ; X [j][1] = y [1] / d ; X [j][2] = y [2] / d ; X [j][3] = y [3] / d ; #else X [j][0] = y [0] ; X [j][1] = y [1] ; X [j][2] = y [2] ; X [j][3] = y [3] ; #endif j-- ; /* advance to the next column of L */ } else /* if (j == 1 || lnz != Lnz [j-2]-2 || Li [Lp [j-2]+2] != j) */ { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][4], t ; Int q = Lp [j-1] ; #ifdef DIAG double d [2] ; d [0] = Lx [p] ; d [1] = Lx [q] ; #endif t = Lx [q+1] ; #ifdef LD y [0][0] = X [j ][0] / d [0] ; y [0][1] = X [j ][1] / d [0] ; y [0][2] = X [j ][2] / d [0] ; y [0][3] = X [j ][3] / d [0] ; y [1][0] = X [j-1][0] / d [1] ; y [1][1] = X [j-1][1] / d [1] ; y [1][2] = X [j-1][2] / d [1] ; y [1][3] = X [j-1][3] / d [1] ; #else y [0][0] = X [j ][0] ; y [0][1] = X [j ][1] ; y [0][2] = X [j ][2] ; y [0][3] = X [j ][3] ; y [1][0] = X [j-1][0] ; y [1][1] = X [j-1][1] ; y [1][2] = X [j-1][2] ; y [1][3] = X [j-1][3] ; #endif for (p++, q += 2 ; p < pend ; p++, q++) { Int i = Li [p] ; y [0][0] -= Lx [p] * X [i][0] ; y [0][1] -= Lx [p] * X [i][1] ; y [0][2] -= Lx [p] * X [i][2] ; y [0][3] -= Lx [p] * X [i][3] ; y [1][0] -= Lx [q] * X [i][0] ; y [1][1] -= Lx [q] * X [i][1] ; y [1][2] -= Lx [q] * X [i][2] ; y [1][3] -= Lx [q] * X [i][3] ; } #ifdef LL y [0][0] /= d [0] ; y [0][1] /= d [0] ; y [0][2] /= d [0] ; y [0][3] /= d [0] ; y [1][0] = (y [1][0] - t * y [0][0]) / d [1] ; y [1][1] = (y [1][1] - t * y [0][1]) / d [1] ; y [1][2] = (y [1][2] - t * y [0][2]) / d [1] ; y [1][3] = (y [1][3] - t * y [0][3]) / d [1] ; #else y [1][0] -= t * y [0][0] ; y [1][1] -= t * y [0][1] ; y [1][2] -= t * y [0][2] ; y [1][3] -= t * y [0][3] ; #endif X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j ][3] = y [0][3] ; X [j-1][0] = y [1][0] ; X [j-1][1] = y [1][1] ; X [j-1][2] = y [1][2] ; X [j-1][3] = y [1][3] ; j -= 2 ; /* advance to the next column of L */ } /* NOTE: with 4 right-hand-sides, it suffices to exploit dynamic * supernodes of just size 1 and 2. 3-column supernodes are not * needed. */ } } #endif /* ========================================================================== */ /* === LSOLVE (k) =========================================================== */ /* ========================================================================== */ static void LSOLVE (PREFIX,k) ( cholmod_factor *L, cholmod_dense *Y /* nr-by-n where nr is 1 to 4 */ ) { #ifndef REAL #ifdef DIAG double d [1] ; #endif double yx [2] ; #ifdef ZOMPLEX double yz [1] ; double *Lz = L->z ; double *Xz = Y->z ; #endif double *Lx = L->x ; double *Xx = Y->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int i, j, n = L->n ; #endif ASSERT (L->xtype == Y->xtype) ; /* L and Y must have the same xtype */ ASSERT (L->n == Y->ncol) ; /* dimensions must match */ ASSERT (Y->nrow == Y->d) ; /* leading dimension of Y = # rows of Y */ ASSERT (L->xtype != CHOLMOD_PATTERN) ; /* L is not symbolic */ ASSERT (!(L->is_super)) ; /* L is simplicial LL' or LDL' */ #ifdef REAL /* ---------------------------------------------------------------------- */ /* solve a real linear system, with 1 to 4 RHS's and dynamic supernodes */ /* ---------------------------------------------------------------------- */ ASSERT (Y->nrow <= 4) ; switch (Y->nrow) { case 1: LSOLVE (PREFIX,1) (L, Y->x) ; break ; case 2: LSOLVE (PREFIX,2) (L, Y->x) ; break ; case 3: LSOLVE (PREFIX,3) (L, Y->x) ; break ; case 4: LSOLVE (PREFIX,4) (L, Y->x) ; break ; } #else /* ---------------------------------------------------------------------- */ /* solve a complex linear system, with just one right-hand-side */ /* ---------------------------------------------------------------------- */ ASSERT (Y->nrow == 1) ; for (j = n-1 ; j >= 0 ; j--) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* y = X [j] ; */ ASSIGN (yx,yz,0, Xx,Xz,j) ; #ifdef DIAG /* d = Lx [p] ; */ ASSIGN_REAL (d,0, Lx,p) ; #endif #ifdef LD /* y /= d ; */ DIV_REAL (yx,yz,0, yx,yz,0, d,0) ; #endif for (p++ ; p < pend ; p++) { /* y -= conj (Lx [p]) * X [Li [p]] ; */ i = Li [p] ; MULTSUBCONJ (yx,yz,0, Lx,Lz,p, Xx,Xz,i) ; } #ifdef LL /* X [j] = y / d ; */ DIV_REAL (Xx,Xz,j, yx,yz,0, d,0) ; #else /* X [j] = y ; */ ASSIGN (Xx,Xz,j, yx,yz,0) ; #endif } #endif } /* prepare for the next inclusion of this file in cholmod_solve.c */ #undef LL #undef LD SuiteSparse/CHOLMOD/Cholesky/cholmod_amd.c0000644001170100242450000001613510616661406017243 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_amd ================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the AMD ordering routine. Orders A if the matrix is * symmetric. On output, Perm [k] = i if row/column i of A is the kth * row/column of P*A*P'. This corresponds to A(p,p) in MATLAB notation. * * If A is unsymmetric, cholmod_amd orders A*A'. On output, Perm [k] = i if * row/column i of A*A' is the kth row/column of P*A*A'*P'. This corresponds to * A(p,:)*A(p,:)' in MATLAB notation. If f is present, A(p,f)*A(p,f)' is * ordered. * * Computes the flop count for a subsequent LL' factorization, the number * of nonzeros in L, and the number of nonzeros in the matrix ordered (A, * A*A' or A(:,f)*A(:,f)'). * * workspace: Iwork (6*nrow). Head (nrow). * * Allocates a temporary copy of A+A' or A*A' (with * both upper and lower triangular parts) as input to AMD. * * Supports any xtype (pattern, real, complex, or zomplex) */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "amd.h" #include "cholmod_cholesky.h" #if (!defined (AMD_VERSION) || (AMD_VERSION < AMD_VERSION_CODE (2,0))) #error "AMD v2.0 or later is required" #endif /* ========================================================================== */ /* === cholmod_amd ========================================================== */ /* ========================================================================== */ int CHOLMOD(amd) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { double Info [AMD_INFO], Control2 [AMD_CONTROL], *Control ; Int *Cp, *Len, *Nv, *Head, *Elen, *Degree, *Wi, *Iwork, *Next ; cholmod_sparse *C ; Int j, n, cnz ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; n = A->nrow ; RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; if (n == 0) { /* nothing to do */ Common->fl = 0 ; Common->lnz = 0 ; Common->anz = 0 ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ /* Note: this is less than the space used in cholmod_analyze, so if * cholmod_amd is being called by that routine, no space will be * allocated. */ /* s = MAX (6*n, A->ncol) */ s = CHOLMOD(mult_size_t) (n, 6, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } s = MAX (s, A->ncol) ; CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } Iwork = Common->Iwork ; Degree = Iwork ; /* size n */ Wi = Iwork + n ; /* size n */ Len = Iwork + 2*((size_t) n) ; /* size n */ Nv = Iwork + 3*((size_t) n) ; /* size n */ Next = Iwork + 4*((size_t) n) ; /* size n */ Elen = Iwork + 5*((size_t) n) ; /* size n */ Head = Common->Head ; /* size n+1, but only n is used */ /* ---------------------------------------------------------------------- */ /* construct the input matrix for AMD */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { /* C = A*A' or A(:,f)*A(:,f)', add extra space of nnz(C)/2+n to C */ C = CHOLMOD(aat) (A, fset, fsize, -2, Common) ; } else { /* C = A+A', but use only the upper triangular part of A if A->stype = 1 * and only the lower part of A if A->stype = -1. Add extra space of * nnz(C)/2+n to C. */ C = CHOLMOD(copy) (A, 0, -2, Common) ; } if (Common->status < CHOLMOD_OK) { /* out of memory, fset invalid, or other error */ return (FALSE) ; } Cp = C->p ; for (j = 0 ; j < n ; j++) { Len [j] = Cp [j+1] - Cp [j] ; } /* C does not include the diagonal, and both upper and lower parts. * Common->anz includes the diagonal, and just the lower part of C */ cnz = Cp [n] ; Common->anz = cnz / 2 + n ; /* ---------------------------------------------------------------------- */ /* order C using AMD */ /* ---------------------------------------------------------------------- */ /* get parameters */ if (Common->current < 0 || Common->current >= CHOLMOD_MAXMETHODS) { /* use AMD defaults */ Control = NULL ; } else { Control = Control2 ; Control [AMD_DENSE] = Common->method [Common->current].prune_dense ; Control [AMD_AGGRESSIVE] = Common->method [Common->current].aggressive ; } /* AMD_2 does not use amd_malloc and amd_free, but set these pointers just * be safe. */ amd_malloc = Common->malloc_memory ; amd_free = Common->free_memory ; amd_calloc = Common->calloc_memory ; amd_realloc = Common->realloc_memory ; /* AMD_2 doesn't print anything either, but future versions might, * so set the amd_printf pointer too. */ amd_printf = Common->print_function ; #ifdef LONG amd_l2 (n, C->p, C->i, Len, C->nzmax, cnz, Nv, Next, Perm, Head, Elen, Degree, Wi, Control, Info) ; #else amd_2 (n, C->p, C->i, Len, C->nzmax, cnz, Nv, Next, Perm, Head, Elen, Degree, Wi, Control, Info) ; #endif /* LL' flop count. Need to subtract n for LL' flop count. Note that this * is a slight upper bound which is often exact (see AMD/Source/amd_2.c for * details). cholmod_analyze computes an exact flop count and fill-in. */ Common->fl = Info [AMD_NDIV] + 2 * Info [AMD_NMULTSUBS_LDL] + n ; /* Info [AMD_LNZ] excludes the diagonal */ Common->lnz = n + Info [AMD_LNZ] ; /* ---------------------------------------------------------------------- */ /* free the AMD workspace and clear the persistent workspace in Common */ /* ---------------------------------------------------------------------- */ ASSERT (IMPLIES (Common->status == CHOLMOD_OK, CHOLMOD(dump_perm) (Perm, n, n, "AMD2 perm", Common))) ; CHOLMOD(free_sparse) (&C, Common) ; for (j = 0 ; j <= n ; j++) { Head [j] = EMPTY ; } return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Cholesky/License.txt0000644001170100242450000000206410540000262016727 0ustar davisfacCHOLMOD/Cholesky module, Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Cholesky module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CHOLMOD/Cholesky/cholmod_rcond.c0000644001170100242450000001151510537777331017613 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_rcond =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Return a rough estimate of the reciprocal of the condition number: * the minimum entry on the diagonal of L (or absolute entry of D for an LDL' * factorization) divided by the maximum entry (squared for LL'). L can be * real, complex, or zomplex. Returns -1 on error, 0 if the matrix is singular * or has a zero entry on the diagonal of L, 1 if the matrix is 0-by-0, or * min(diag(L))/max(diag(L)) otherwise. Never returns NaN; if L has a NaN on * the diagonal it returns zero instead. * * For an LL' factorization, (min(diag(L))/max(diag(L)))^2 is returned. * For an LDL' factorization, (min(diag(D))/max(diag(D))) is returned. */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === LMINMAX ============================================================== */ /* ========================================================================== */ /* Update lmin and lmax for one entry L(j,j) */ #define FIRST_LMINMAX(Ljj,lmin,lmax) \ { \ double ljj = Ljj ; \ if (IS_NAN (ljj)) \ { \ return (0) ; \ } \ lmin = ljj ; \ lmax = ljj ; \ } #define LMINMAX(Ljj,lmin,lmax) \ { \ double ljj = Ljj ; \ if (IS_NAN (ljj)) \ { \ return (0) ; \ } \ if (ljj < lmin) \ { \ lmin = ljj ; \ } \ else if (ljj > lmax) \ { \ lmax = ljj ; \ } \ } /* ========================================================================== */ /* === cholmod_rcond ======================================================== */ /* ========================================================================== */ double CHOLMOD(rcond) /* return min(diag(L)) / max(diag(L)) */ ( /* ---- input ---- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) { double lmin, lmax, rcond ; double *Lx ; Int *Lpi, *Lpx, *Super, *Lp ; Int n, e, nsuper, s, k1, k2, psi, psend, psx, nsrow, nscol, jj, j ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (L, EMPTY) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ n = L->n ; if (n == 0) { return (1) ; } if (L->minor < L->n) { return (0) ; } e = (L->xtype == CHOLMOD_COMPLEX) ? 2 : 1 ; if (L->is_super) { /* L is supernodal */ nsuper = L->nsuper ; /* number of supernodes in L */ Lpi = L->pi ; /* column pointers for integer pattern */ Lpx = L->px ; /* column pointers for numeric values */ Super = L->super ; /* supernode sizes */ Lx = L->x ; /* numeric values */ FIRST_LMINMAX (Lx [0], lmin, lmax) ; /* first diagonal entry of L */ for (s = 0 ; s < nsuper ; s++) { k1 = Super [s] ; /* first column in supernode s */ k2 = Super [s+1] ; /* last column in supernode is k2-1 */ psi = Lpi [s] ; /* first row index is L->s [psi] */ psend = Lpi [s+1] ; /* last row index is L->s [psend-1] */ psx = Lpx [s] ; /* first numeric entry is Lx [psx] */ nsrow = psend - psi ; /* supernode is nsrow-by-nscol */ nscol = k2 - k1 ; for (jj = 0 ; jj < nscol ; jj++) { LMINMAX (Lx [e * (psx + jj + jj*nsrow)], lmin, lmax) ; } } } else { /* L is simplicial */ Lp = L->p ; Lx = L->x ; if (L->is_ll) { /* LL' factorization */ FIRST_LMINMAX (Lx [Lp [0]], lmin, lmax) ; for (j = 1 ; j < n ; j++) { LMINMAX (Lx [e * Lp [j]], lmin, lmax) ; } } else { /* LDL' factorization, the diagonal might be negative */ FIRST_LMINMAX (fabs (Lx [Lp [0]]), lmin, lmax) ; for (j = 1 ; j < n ; j++) { LMINMAX (fabs (Lx [e * Lp [j]]), lmin, lmax) ; } } } rcond = lmin / lmax ; if (L->is_ll) { rcond = rcond*rcond ; } return (rcond) ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_resymbol.c0000644001170100242450000004446710635770507020353 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_resymbol ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Recompute the symbolic pattern of L. Entries not in the symbolic pattern * are dropped. L->Perm can be used (or not) to permute the input matrix A. * * These routines are used after a supernodal factorization is converted into * a simplicial one, to remove zero entries that were added due to relaxed * supernode amalgamation. They can also be used after a series of downdates * to remove entries that would no longer be present if the matrix were * factorized from scratch. A downdate (cholmod_updown) does not remove any * entries from L. * * workspace: Flag (nrow), Head (nrow+1), * if symmetric: Iwork (2*nrow) * if unsymmetric: Iwork (2*nrow+ncol). * Allocates up to 2 copies of its input matrix A (pattern only). */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === cholmod_resymbol ===================================================== */ /* ========================================================================== */ /* Remove entries from L that are not in the factorization of P*A*P', P*A*A'*P', * or P*F*F'*P' (depending on A->stype and whether fset is NULL or not). * * cholmod_resymbol is the same as cholmod_resymbol_noperm, except that it * first permutes A according to L->Perm. A can be upper/lower/unsymmetric, * in contrast to cholmod_resymbol_noperm (which can be lower or unsym). */ int CHOLMOD(resymbol) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int pack, /* if TRUE, pack the columns of L */ /* ---- in/out --- */ cholmod_factor *L, /* factorization, entries pruned on output */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *H, *F, *G ; Int stype, nrow, ncol ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; if (L->is_super) { /* cannot operate on a supernodal factorization */ ERROR (CHOLMOD_INVALID, "cannot operate on supernodal L") ; return (FALSE) ; } if (L->n != A->nrow) { /* dimensions must agree */ ERROR (CHOLMOD_INVALID, "A and L dimensions do not match") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ stype = A->stype ; nrow = A->nrow ; ncol = A->ncol ; /* s = 2*nrow + (stype ? 0 : ncol) */ s = CHOLMOD(mult_size_t) (nrow, 2, &ok) ; s = CHOLMOD(add_size_t) (s, (stype ? 0 : ncol), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (nrow, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* permute the input matrix if necessary */ /* ---------------------------------------------------------------------- */ H = NULL ; G = NULL ; if (stype > 0) { if (L->ordering == CHOLMOD_NATURAL) { /* F = triu(A)' */ /* workspace: Iwork (nrow) */ G = CHOLMOD(ptranspose) (A, 0, NULL, NULL, 0, Common) ; } else { /* F = triu(A(p,p))' */ /* workspace: Iwork (2*nrow) */ G = CHOLMOD(ptranspose) (A, 0, L->Perm, NULL, 0, Common) ; } F = G ; } else if (stype < 0) { if (L->ordering == CHOLMOD_NATURAL) { F = A ; } else { /* G = triu(A(p,p))' */ /* workspace: Iwork (2*nrow) */ G = CHOLMOD(ptranspose) (A, 0, L->Perm, NULL, 0, Common) ; /* H = G' */ /* workspace: Iwork (nrow) */ H = CHOLMOD(ptranspose) (G, 0, NULL, NULL, 0, Common) ; F = H ; } } else { if (L->ordering == CHOLMOD_NATURAL) { F = A ; } else { /* G = A(p,f)' */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset)*/ G = CHOLMOD(ptranspose) (A, 0, L->Perm, fset, fsize, Common) ; /* H = G' */ /* workspace: Iwork (ncol) */ H = CHOLMOD(ptranspose) (G, 0, NULL, NULL, 0, Common) ; F = H ; } } /* No need to check for failure here. cholmod_resymbol_noperm will return * FALSE if F is NULL. */ /* ---------------------------------------------------------------------- */ /* resymbol */ /* ---------------------------------------------------------------------- */ ok = CHOLMOD(resymbol_noperm) (F, fset, fsize, pack, L, Common) ; /* ---------------------------------------------------------------------- */ /* free the temporary matrices, if they exist */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&H, Common) ; CHOLMOD(free_sparse) (&G, Common) ; return (ok) ; } /* ========================================================================== */ /* === cholmod_resymbol_noperm ============================================== */ /* ========================================================================== */ /* Redo symbolic LDL' or LL' factorization of I + F*F' or I+A, where F=A(:,f). * * L already exists, but is a superset of the true dynamic pattern (simple * column downdates and row deletions haven't pruned anything). Just redo the * symbolic factorization and drop entries that are no longer there. The * diagonal is not modified. The number of nonzeros in column j of L * (L->nz[j]) can decrease. The column pointers (L->p[j]) remain unchanged if * pack is FALSE or if L is not monotonic. Otherwise, the columns of L are * packed in place. * * For the symmetric case, the columns of the lower triangular part of A * are accessed by column. NOTE that this the transpose of the general case. * * For the unsymmetric case, F=A(:,f) is accessed by column. * * A need not be sorted, and can be packed or unpacked. If L->Perm is not * identity, then A must already be permuted according to the permutation used * to factorize L. The advantage of using this routine is that it does not * need to create permuted copies of A first. * * This routine can be called if L is only partially factored via cholmod_rowfac * since all it does is prune. If an entry is in F*F' or A, but not in L, it * isn't added to L. * * L must be simplicial LDL' or LL'; it cannot be supernodal or symbolic. * * The set f is held in fset and fsize. * fset = NULL means ":" in MATLAB. fset is ignored. * fset != NULL means f = fset [0..fset-1]. * fset != NULL and fsize = 0 means f is the empty set. * There can be no duplicates in fset. * Common->status is set to CHOLMOD_INVALID if fset is invalid. * * workspace: Flag (nrow), Head (nrow+1), * if symmetric: Iwork (2*nrow) * if unsymmetric: Iwork (2*nrow+ncol). * Unlike cholmod_resymbol, this routine does not allocate any temporary * copies of its input matrix. */ int CHOLMOD(resymbol_noperm) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int pack, /* if TRUE, pack the columns of L */ /* ---- in/out --- */ cholmod_factor *L, /* factorization, entries pruned on output */ /* --------------- */ cholmod_common *Common ) { double *Lx, *Lz ; Int i, j, k, row, parent, p, pend, pdest, ncol, apacked, sorted, nrow, nf, use_fset, mark, jj, stype, xtype ; Int *Ap, *Ai, *Anz, *Li, *Lp, *Lnz, *Flag, *Head, *Link, *Anext, *Iwork ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (L, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; ncol = A->ncol ; nrow = A->nrow ; stype = A->stype ; ASSERT (IMPLIES (stype != 0, nrow == ncol)) ; if (stype > 0) { /* symmetric, with upper triangular part, not supported */ ERROR (CHOLMOD_INVALID, "symmetric upper not supported ") ; return (FALSE) ; } if (L->is_super) { /* cannot operate on a supernodal or symbolic factorization */ ERROR (CHOLMOD_INVALID, "cannot operate on supernodal L") ; return (FALSE) ; } if (L->n != A->nrow) { /* dimensions must agree */ ERROR (CHOLMOD_INVALID, "A and L dimensions do not match") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 2*nrow + (stype ? 0 : ncol) */ s = CHOLMOD(mult_size_t) (nrow, 2, &ok) ; if (stype != 0) { s = CHOLMOD(add_size_t) (s, ncol, &ok) ; } if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (nrow, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ai = A->i ; Ap = A->p ; Anz = A->nz ; apacked = A->packed ; sorted = A->sorted ; Li = L->i ; Lx = L->x ; Lz = L->z ; Lp = L->p ; Lnz = L->nz ; xtype = L->xtype ; /* If L is monotonic on input, then it can be packed or * unpacked on output, depending on the pack input parameter. */ /* cannot pack a non-monotonic matrix */ if (!(L->is_monotonic)) { pack = FALSE ; } ASSERT (L->nzmax >= (size_t) (Lp [L->n])) ; pdest = 0 ; PRINT1 (("\n\n===================== Resymbol pack %d Apacked %d\n", pack, A->packed)) ; ASSERT (CHOLMOD(dump_sparse) (A, "ReSymbol A:", Common) >= 0) ; DEBUG (CHOLMOD(dump_factor) (L, "ReSymbol initial L (i, x):", Common)) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size nrow */ Head = Common->Head ; /* size nrow+1 */ Iwork = Common->Iwork ; Link = Iwork ; /* size nrow (i/i/l) [ */ Lnz = Iwork + nrow ; /* size nrow (i/i/l), if L not packed */ Anext = Iwork + 2*((size_t) nrow) ; /* size ncol (i/i/l), unsym. only */ for (j = 0 ; j < nrow ; j++) { Link [j] = EMPTY ; } /* use Lnz in L itself */ Lnz = L->nz ; ASSERT (Lnz != NULL) ; /* ---------------------------------------------------------------------- */ /* for the unsymmetric case, queue each column of A (:,f) */ /* ---------------------------------------------------------------------- */ /* place each column of the basis set on the link list corresponding to */ /* the smallest row index in that column */ if (stype == 0) { use_fset = (fset != NULL) ; if (use_fset) { nf = fsize ; /* This is the only O(ncol) loop in cholmod_resymbol. * It is required only to check the fset. */ for (j = 0 ; j < ncol ; j++) { Anext [j] = -2 ; } for (jj = 0 ; jj < nf ; jj++) { j = fset [jj] ; if (j < 0 || j > ncol || Anext [j] != -2) { /* out-of-range or duplicate entry in fset */ ERROR (CHOLMOD_INVALID, "fset invalid") ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (FALSE) ; } /* flag column j as having been seen */ Anext [j] = EMPTY ; } /* the fset is now valid */ ASSERT (CHOLMOD(dump_perm) (fset, nf, ncol, "fset", Common)) ; } else { nf = ncol ; } for (jj = 0 ; jj < nf ; jj++) { j = (use_fset) ? (fset [jj]) : jj ; /* column j is the fset; find the smallest row (if any) */ p = Ap [j] ; pend = (apacked) ? (Ap [j+1]) : (p + Anz [j]) ; if (pend > p) { k = Ai [p] ; if (!sorted) { for ( ; p < pend ; p++) { k = MIN (k, Ai [p]) ; } } /* place column j on link list k */ ASSERT (k >= 0 && k < nrow) ; Anext [j] = Head [k] ; Head [k] = j ; } } } /* ---------------------------------------------------------------------- */ /* recompute symbolic LDL' factorization */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < nrow ; k++) { #ifndef NDEBUG PRINT1 (("\n\n================== Initial column k = "ID"\n", k)) ; for (p = Lp [k] ; p < Lp [k] + Lnz [k] ; p++) { PRINT1 ((" row: "ID" value: ", Li [p])) ; PRINT1 (("\n")) ; } PRINT1 (("Recomputing LDL, column k = "ID"\n", k)) ; #endif /* ------------------------------------------------------------------ */ /* compute column k of I+F*F' or I+A */ /* ------------------------------------------------------------------ */ /* flag the diagonal entry */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; Flag [k] = mark ; PRINT1 ((" row: "ID" (diagonal)\n", k)) ; if (stype != 0) { /* merge column k of A into Flag (lower triangular part only) */ p = Ap [k] ; pend = (apacked) ? (Ap [k+1]) : (p + Anz [k]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i > k) { Flag [i] = mark ; } } } else { /* for each column j whos first row index is in row k */ for (j = Head [k] ; j != EMPTY ; j = Anext [j]) { /* merge column j of A into Flag */ PRINT1 ((" ---- A column "ID"\n", j)) ; p = Ap [j] ; pend = (apacked) ? (Ap [j+1]) : (p + Anz [j]) ; PRINT1 ((" length "ID" adding\n", pend-p)) ; for ( ; p < pend ; p++) { #ifndef NDEBUG ASSERT (Ai [p] >= k && Ai [p] < nrow) ; if (Flag [Ai [p]] < mark) PRINT1 ((" row "ID"\n", Ai [p])) ; #endif Flag [Ai [p]] = mark ; } } /* clear the kth link list */ Head [k] = EMPTY ; } /* ------------------------------------------------------------------ */ /* compute pruned pattern of kth column of L = union of children */ /* ------------------------------------------------------------------ */ /* for each column j of L whose parent is k */ for (j = Link [k] ; j != EMPTY ; j = Link [j]) { /* merge column j of L into Flag */ PRINT1 ((" ---- L column "ID"\n", k)) ; ASSERT (j < k) ; ASSERT (Lnz [j] > 0) ; p = Lp [j] ; pend = p + Lnz [j] ; ASSERT (Li [p] == j && Li [p+1] == k) ; p++ ; /* skip past the diagonal entry */ for ( ; p < pend ; p++) { /* add to pattern */ ASSERT (Li [p] >= k && Li [p] < nrow) ; Flag [Li [p]] = mark ; } } /* ------------------------------------------------------------------ */ /* prune the kth column of L */ /* ------------------------------------------------------------------ */ PRINT1 (("Final column of L:\n")) ; p = Lp [k] ; pend = p + Lnz [k] ; if (pack) { /* shift column k upwards */ Lp [k] = pdest ; } else { /* leave column k in place, just reduce Lnz [k] */ pdest = p ; } for ( ; p < pend ; p++) { ASSERT (pdest < pend) ; ASSERT (pdest <= p) ; row = Li [p] ; ASSERT (row >= k && row < nrow) ; if (Flag [row] == mark) { /* keep this entry */ Li [pdest] = row ; if (xtype == CHOLMOD_REAL) { Lx [pdest] = Lx [p] ; } else if (xtype == CHOLMOD_COMPLEX) { Lx [2*pdest ] = Lx [2*p ] ; Lx [2*pdest+1] = Lx [2*p+1] ; } else if (xtype == CHOLMOD_ZOMPLEX) { Lx [pdest] = Lx [p] ; Lz [pdest] = Lz [p] ; } pdest++ ; } } /* ------------------------------------------------------------------ */ /* prepare this column for its parent */ /* ------------------------------------------------------------------ */ Lnz [k] = pdest - Lp [k] ; PRINT1 ((" L("ID") length "ID"\n", k, Lnz [k])) ; ASSERT (Lnz [k] > 0) ; /* parent is the first entry in the column after the diagonal */ parent = (Lnz [k] > 1) ? (Li [Lp [k] + 1]) : EMPTY ; PRINT1 (("parent ("ID") = "ID"\n", k, parent)) ; ASSERT ((parent > k && parent < nrow) || (parent == EMPTY)) ; if (parent != EMPTY) { Link [k] = Link [parent] ; Link [parent] = k ; } } /* done using Iwork for Link, Lnz (if needed), and Anext ] */ /* ---------------------------------------------------------------------- */ /* convert L to packed, if requested */ /* ---------------------------------------------------------------------- */ if (pack) { /* finalize Lp */ Lp [nrow] = pdest ; /* Shrink L to be just large enough. It cannot fail. */ /* workspace: none */ ASSERT ((size_t) (Lp [nrow]) <= L->nzmax) ; CHOLMOD(reallocate_factor) (Lp [nrow], L, Common) ; ASSERT (Common->status >= CHOLMOD_OK) ; } /* ---------------------------------------------------------------------- */ /* clear workspace */ /* ---------------------------------------------------------------------- */ /* CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; DEBUG (CHOLMOD(dump_factor) (L, "ReSymbol final L (i, x):", Common)) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_analyze.c0000644001170100242450000007477710616661432020164 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_analyze ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Order and analyze a matrix (either simplicial or supernodal), in prepartion * for numerical factorization via cholmod_factorize or via the "expert" * routines cholmod_rowfac and cholmod_super_numeric. * * symmetric case: A or A(p,p) * unsymmetric case: AA', A(p,:)*A(p,:)', A(:,f)*A(:,f)', or A(p,f)*A(p,f)' * * For the symmetric case, only the upper or lower triangular part of A is * accessed (depending on the type of A). LL'=A (or permuted A) is analzed. * For the unsymmetric case (LL'=AA' or permuted A). * * There can be no duplicate entries in p or f. p is of length m if A is * m-by-n. f can be length 0 to n. * * In both cases, the columns of A need not be sorted. A can be in packed * or unpacked form. * * Ordering options include: * * natural: A is not permuted to reduce fill-in * given: a permutation can be provided to this routine (UserPerm) * AMD: approximate minumum degree (AMD for the symmetric case, * COLAMD for the AA' case). * METIS: nested dissection with METIS_NodeND * NESDIS: nested dissection using METIS_NodeComputeSeparator, * typically followed by a constrained minimum degree * (CAMD for the symmetric case, CCOLAMD for the AA' case). * * Multiple ordering options can be tried (up to 9 of them), and the best one * is selected (the one that gives the smallest number of nonzeros in the * simplicial factor L). If one method fails, cholmod_analyze keeps going, and * picks the best among the methods that succeeded. This routine fails (and * returns NULL) if either initial memory allocation fails, all ordering methods * fail, or the supernodal analysis (if requested) fails. By default, the 9 * methods available are: * * 1) given permutation (skipped if UserPerm is NULL) * 2) AMD (symmetric case) or COLAMD (unsymmetric case) * 3) METIS with default parameters * 4) NESDIS with default parameters (stopping the partitioning when * the graph is of size nd_small = 200 or less, remove nodes with * more than max (16, prune_dense * sqrt (n)) nodes where * prune_dense = 10, and follow partitioning with CCOLAMD, a * constrained minimum degree ordering). * 5) natural * 6) NESDIS, nd_small = 20000, prune_dense = 10 * 7) NESDIS, nd_small = 4, prune_dense = 10, no min degree * 8) NESDIS, nd_small = 200, prune_dense = 0 * 9) COLAMD for A*A' or AMD for A * * By default, the first two are tried, and METIS is tried if AMD reports a high * flop count and fill-in. Let fl denote the flop count for the AMD, ordering, * nnz(L) the # of nonzeros in L, and nnz(tril(A)) (or A*A'). If * fl/nnz(L) >= 500 and nnz(L)/nnz(tril(A)) >= 5, then METIS is attempted. The * best ordering is used (UserPerm if given, AMD, and METIS if attempted). If * you do not have METIS, only the first two will be tried (user permutation, * if provided, and AMD/COLAMD). This default behavior is obtained when * Common->nmethods is zero. In this case, methods 0, 1, and 2 in * Common->method [..] are reset to User-provided, AMD, and METIS (or NESDIS * if Common->default_nesdis is set to the non-default value of TRUE), * respectively. * * You can modify these 9 methods and the number of methods tried by changing * parameters in the Common argument. If you know the best ordering for your * matrix, set Common->nmethods to 1 and set Common->method[0].ordering to the * requested ordering method. Parameters for each method can also be modified * (refer to cholmod.h for details). * * Note that it is possible for METIS to terminate your program if it runs out * of memory. This is not the case for any CHOLMOD or minimum degree ordering * routine (AMD, COLAMD, CAMD, CCOLAMD, or CSYMAMD). Since NESDIS relies on * METIS, it too can terminate your program. * * The factor L is returned as simplicial symbolic (L->is_super FALSE) if * Common->supernodal <= CHOLMOD_SIMPLICIAL (0) or as supernodal symbolic if * Common->supernodal >= CHOLMOD_SUPERNODAL (2). If Common->supernodal is * equal to CHOLMOD_AUTO (1), then L is simplicial if the flop count per * nonzero in L is less than Common->supernodal_switch (default: 40), and * is returned as a supernodal factor otherwise. * * In both cases, L->xtype is CHOLMOD_PATTERN. * A subsequent call to cholmod_factorize will perform a * simplicial or supernodal factorization, depending on the type of L. * * For the simplicial case, L contains the fill-reducing permutation (L->Perm) * and the counts of nonzeros in each column of L (L->ColCount). For the * supernodal case, L also contains the nonzero pattern of each supernode. * * workspace: Flag (nrow), Head (nrow+1) * if symmetric: Iwork (6*nrow) * if unsymmetric: Iwork (6*nrow+ncol). * calls various ordering routines, which typically allocate O(nnz(A)) * temporary workspace ((2 to 3)*nnz(A) * sizeof (Int) is typical, but it * can be much higher if A*A' must be explicitly formed for METIS). Also * allocates up to 2 temporary (permuted/transpose) copies of the nonzero * pattern of A, and up to 3*n*sizeof(Int) additional workspace. * * Supports any xtype (pattern, real, complex, or zomplex) */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" #ifndef NSUPERNODAL #include "cholmod_supernodal.h" #endif #ifndef NPARTITION #include "cholmod_partition.h" #endif /* ========================================================================== */ /* === cholmod_analyze ====================================================== */ /* ========================================================================== */ /* Orders and analyzes A, AA', PAP', or PAA'P' and returns a symbolic factor * that can later be passed to cholmod_factorize. */ cholmod_factor *CHOLMOD(analyze) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order and analyze */ /* --------------- */ cholmod_common *Common ) { return (CHOLMOD(analyze_p) (A, NULL, NULL, 0, Common)) ; } /* ========================================================================== */ /* === permute_matrices ===================================================== */ /* ========================================================================== */ /* Permute and transpose a matrix. Allocates the A1 and A2 matrices, if needed, * or returns them as NULL if not needed. */ static int permute_matrices ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to permute */ Int ordering, /* ordering method used */ Int *Perm, /* fill-reducing permutation */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ Int do_rowcolcounts,/* if TRUE, compute both S and F. If FALSE, only * S is needed for the symmetric case, and only F for * the unsymmetric case */ /* ---- output --- */ cholmod_sparse **A1_handle, /* see comments below for A1, A2, S, F */ cholmod_sparse **A2_handle, cholmod_sparse **S_handle, cholmod_sparse **F_handle, /* --------------- */ cholmod_common *Common ) { cholmod_sparse *A1, *A2, *S, *F ; *A1_handle = NULL ; *A2_handle = NULL ; *S_handle = NULL ; *F_handle = NULL ; A1 = NULL ; A2 = NULL ; if (ordering == CHOLMOD_NATURAL) { /* ------------------------------------------------------------------ */ /* natural ordering of A */ /* ------------------------------------------------------------------ */ if (A->stype < 0) { /* symmetric lower case: A already in lower form, so S=A' */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (A, 0, NULL, NULL, 0, Common) ; F = A ; S = A2 ; } else if (A->stype > 0) { /* symmetric upper case: F = pattern of triu (A)', S = A */ /* workspace: Iwork (nrow) */ if (do_rowcolcounts) { /* F not needed for symmetric case if do_rowcolcounts FALSE */ A1 = CHOLMOD(ptranspose) (A, 0, NULL, fset, fsize, Common) ; } F = A1 ; S = A ; } else { /* unsymmetric case: F = pattern of A (:,f)', S = A */ /* workspace: Iwork (nrow if no fset, MAX(nrow,ncol) if fset) */ A1 = CHOLMOD(ptranspose) (A, 0, NULL, fset, fsize, Common) ; F = A1 ; S = A ; } } else { /* ------------------------------------------------------------------ */ /* A is permuted */ /* ------------------------------------------------------------------ */ if (A->stype < 0) { /* symmetric lower case: S = tril (A (p,p))' and F = S' */ /* workspace: Iwork (2*nrow) */ A2 = CHOLMOD(ptranspose) (A, 0, Perm, NULL, 0, Common) ; S = A2 ; /* workspace: Iwork (nrow) */ if (do_rowcolcounts) { /* F not needed for symmetric case if do_rowcolcounts FALSE */ A1 = CHOLMOD(ptranspose) (A2, 0, NULL, NULL, 0, Common) ; } F = A1 ; } else if (A->stype > 0) { /* symmetric upper case: F = triu (A (p,p))' and S = F' */ /* workspace: Iwork (2*nrow) */ A1 = CHOLMOD(ptranspose) (A, 0, Perm, NULL, 0, Common) ; F = A1 ; /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (A1, 0, NULL, NULL, 0, Common) ; S = A2 ; } else { /* unsymmetric case: F = A (p,f)' and S = F' */ /* workspace: Iwork (nrow if no fset, MAX(nrow,ncol) if fset) */ A1 = CHOLMOD(ptranspose) (A, 0, Perm, fset, fsize, Common) ; F = A1 ; if (do_rowcolcounts) { /* S not needed for unsymmetric case if do_rowcolcounts FALSE */ /* workspace: Iwork (nrow) */ A2 = CHOLMOD(ptranspose) (A1, 0, NULL, NULL, 0, Common) ; } S = A2 ; } } /* If any cholmod_*transpose fails, one or more matrices will be NULL */ *A1_handle = A1 ; *A2_handle = A2 ; *S_handle = S ; *F_handle = F ; return (Common->status == CHOLMOD_OK) ; } /* ========================================================================== */ /* === cholmod_analyze_ordering ============================================= */ /* ========================================================================== */ /* Given a matrix A and its fill-reducing permutation, compute the elimination * tree, its (non-weighted) postordering, and the number of nonzeros in each * column of L. Also computes the flop count, the total nonzeros in L, and * the nonzeros in A (Common->fl, Common->lnz, and Common->anz). * * The column counts of L, flop count, and other statistics from * cholmod_rowcolcounts are not computed if ColCount is NULL. * * workspace: Iwork (2*nrow if symmetric, 2*nrow+ncol if unsymmetric), * Flag (nrow), Head (nrow+1) */ int CHOLMOD(analyze_ordering) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int ordering, /* ordering method used */ Int *Perm, /* size n, fill-reducing permutation to analyze */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ Int *Parent, /* size n, elimination tree */ Int *Post, /* size n, postordering of elimination tree */ Int *ColCount, /* size n, nnz in each column of L */ /* ---- workspace */ Int *First, /* size nworkspace for cholmod_postorder */ Int *Level, /* size n workspace for cholmod_postorder */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *A1, *A2, *S, *F ; Int n, ok, do_rowcolcounts ; /* check inputs */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; n = A->nrow ; do_rowcolcounts = (ColCount != NULL) ; /* permute A according to Perm and fset */ ok = permute_matrices (A, ordering, Perm, fset, fsize, do_rowcolcounts, &A1, &A2, &S, &F, Common) ; /* find etree of S (symmetric upper/lower case) or F (unsym case) */ /* workspace: symmmetric: Iwork (nrow), unsym: Iwork (nrow+ncol) */ ok = ok && CHOLMOD(etree) (A->stype ? S:F, Parent, Common) ; /* postorder the etree (required by cholmod_rowcolcounts) */ /* workspace: Iwork (2*nrow) */ ok = ok && (CHOLMOD(postorder) (Parent, n, NULL, Post, Common) == n) ; /* cholmod_postorder doesn't set Common->status if it returns < n */ Common->status = (!ok && Common->status == CHOLMOD_OK) ? CHOLMOD_INVALID : Common->status ; /* analyze LL'=S or SS' or S(:,f)*S(:,f)' */ /* workspace: * if symmetric: Flag (nrow), Iwork (2*nrow) * if unsymmetric: Flag (nrow), Iwork (2*nrow+ncol), Head (nrow+1) */ if (do_rowcolcounts) { ok = ok && CHOLMOD(rowcolcounts) (A->stype ? F:S, fset, fsize, Parent, Post, NULL, ColCount, First, Level, Common) ; } /* free temporary matrices and return result */ CHOLMOD(free_sparse) (&A1, Common) ; CHOLMOD(free_sparse) (&A2, Common) ; return (ok) ; } /* ========================================================================== */ /* === Free workspace and return L ========================================== */ /* ========================================================================== */ #define FREE_WORKSPACE_AND_RETURN \ { \ Common->no_workspace_reallocate = FALSE ; \ CHOLMOD(free) (n, sizeof (Int), Lparent, Common) ; \ CHOLMOD(free) (n, sizeof (Int), Perm, Common) ; \ CHOLMOD(free) (n, sizeof (Int), ColCount, Common) ; \ if (Common->status < CHOLMOD_OK) \ { \ CHOLMOD(free_factor) (&L, Common) ; \ } \ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; \ return (L) ; \ } /* ========================================================================== */ /* === cholmod_analyze_p ==================================================== */ /* ========================================================================== */ /* Orders and analyzes A, AA', PAP', PAA'P', FF', or PFF'P and returns a * symbolic factor that can later be passed to cholmod_factorize, where * F = A(:,fset) if fset is not NULL and A->stype is zero. * UserPerm is tried if non-NULL. */ cholmod_factor *CHOLMOD(analyze_p) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order and analyze */ Int *UserPerm, /* user-provided permutation, size A->nrow */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* --------------- */ cholmod_common *Common ) { double lnz_best ; Int *First, *Level, *Work4n, *Cmember, *CParent, *ColCount, *Lperm, *Parent, *Post, *Perm, *Lparent, *Lcolcount ; cholmod_factor *L ; Int k, n, ordering, method, nmethods, status, default_strategy, ncol, uncol, skip_analysis, skip_best ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, NULL) ; Common->status = CHOLMOD_OK ; status = CHOLMOD_OK ; Common->selected = EMPTY ; Common->called_nd = FALSE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ n = A->nrow ; ncol = A->ncol ; uncol = (A->stype == 0) ? (A->ncol) : 0 ; /* ---------------------------------------------------------------------- */ /* set the default strategy */ /* ---------------------------------------------------------------------- */ lnz_best = (double) EMPTY ; skip_best = FALSE ; nmethods = MIN (Common->nmethods, CHOLMOD_MAXMETHODS) ; nmethods = MAX (0, nmethods) ; PRINT1 (("nmethods "ID"\n", nmethods)) ; default_strategy = (nmethods == 0) ; if (default_strategy) { /* default strategy: try UserPerm, if given. Try AMD for A, or COLAMD * to order A*A'. Try METIS for the symmetric case only if AMD reports * a high degree of fill-in and flop count. Always try METIS for the * unsymmetric case. METIS is not tried if the Partition Module * isn't installed. If Common->default_nesdis is TRUE, then NESDIS * is used as the 3rd ordering instead. */ Common->method [0].ordering = CHOLMOD_GIVEN ;/* skip if UserPerm NULL */ Common->method [1].ordering = CHOLMOD_AMD ; Common->method [2].ordering = (Common->default_nesdis ? CHOLMOD_NESDIS : CHOLMOD_METIS) ; #ifndef NPARTITION nmethods = 3 ; #else nmethods = 2 ; #endif } #ifdef NSUPERNODAL /* CHOLMOD Supernodal module not installed, just do simplicial analysis */ Common->supernodal = CHOLMOD_SIMPLICIAL ; #endif /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* Note: enough space needs to be allocated here so that routines called by * cholmod_analyze do not reallocate the space. */ /* s = 6*n + uncol */ s = CHOLMOD(mult_size_t) (n, 6, &ok) ; s = CHOLMOD(add_size_t) (s, uncol, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; /* out of memory */ } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ensure that subsequent routines, called by cholmod_analyze, do not * reallocate any workspace. This is set back to FALSE in the * FREE_WORKSPACE_AND_RETURN macro, which is the only way this function * returns to its caller. */ Common->no_workspace_reallocate = TRUE ; /* Use the last 4*n Int's in Iwork for Parent, First, Level, and Post, since * other CHOLMOD routines will use the first 2n+uncol space. The ordering * routines (cholmod_amd, cholmod_colamd, cholmod_ccolamd, cholmod_metis) * are an exception. They can use all 6n + ncol space, since the contents * of Parent, First, Level, and Post are not needed across calls to those * routines. */ Work4n = Common->Iwork ; Work4n += 2*((size_t) n) + uncol ; Parent = Work4n ; First = Work4n + n ; Level = Work4n + 2*((size_t) n) ; Post = Work4n + 3*((size_t) n) ; /* note that this assignment means that cholmod_nested_dissection, * cholmod_ccolamd, and cholmod_camd can use only the first 4n+uncol * space in Common->Iwork */ Cmember = Post ; CParent = Level ; /* ---------------------------------------------------------------------- */ /* allocate more workspace, and an empty simplicial symbolic factor */ /* ---------------------------------------------------------------------- */ L = CHOLMOD(allocate_factor) (n, Common) ; Lparent = CHOLMOD(malloc) (n, sizeof (Int), Common) ; Perm = CHOLMOD(malloc) (n, sizeof (Int), Common) ; ColCount = CHOLMOD(malloc) (n, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ FREE_WORKSPACE_AND_RETURN ; } Lperm = L->Perm ; Lcolcount = L->ColCount ; Common->anz = EMPTY ; /* ---------------------------------------------------------------------- */ /* try all the requested ordering options and backup to AMD if needed */ /* ---------------------------------------------------------------------- */ /* turn off error handling [ */ Common->try_catch = TRUE ; for (method = 0 ; method <= nmethods ; method++) { /* ------------------------------------------------------------------ */ /* determine the method to try */ /* ------------------------------------------------------------------ */ Common->fl = EMPTY ; Common->lnz = EMPTY ; skip_analysis = FALSE ; if (method == nmethods) { /* All methods failed: backup to AMD */ if (Common->selected == EMPTY && !default_strategy) { PRINT1 (("All methods requested failed: backup to AMD\n")) ; ordering = CHOLMOD_AMD ; } else { break ; } } else { ordering = Common->method [method].ordering ; } Common->current = method ; PRINT1 (("method "ID": Try method: "ID"\n", method, ordering)) ; /* ------------------------------------------------------------------ */ /* find the fill-reducing permutation */ /* ------------------------------------------------------------------ */ if (ordering == CHOLMOD_NATURAL) { /* -------------------------------------------------------------- */ /* natural ordering */ /* -------------------------------------------------------------- */ for (k = 0 ; k < n ; k++) { Perm [k] = k ; } } else if (ordering == CHOLMOD_GIVEN) { /* -------------------------------------------------------------- */ /* use given ordering of A, if provided */ /* -------------------------------------------------------------- */ if (UserPerm == NULL) { /* this is not an error condition */ PRINT1 (("skip, no user perm given\n")) ; continue ; } for (k = 0 ; k < n ; k++) { /* UserPerm is checked in cholmod_ptranspose */ Perm [k] = UserPerm [k] ; } } else if (ordering == CHOLMOD_AMD) { /* -------------------------------------------------------------- */ /* AMD ordering of A, A*A', or A(:,f)*A(:,f)' */ /* -------------------------------------------------------------- */ CHOLMOD(amd) (A, fset, fsize, Perm, Common) ; skip_analysis = TRUE ; } else if (ordering == CHOLMOD_COLAMD) { /* -------------------------------------------------------------- */ /* AMD for symmetric case, COLAMD for A*A' or A(:,f)*A(:,f)' */ /* -------------------------------------------------------------- */ if (A->stype) { CHOLMOD(amd) (A, fset, fsize, Perm, Common) ; skip_analysis = TRUE ; } else { /* Alternative: CHOLMOD(ccolamd) (A, fset, fsize, NULL, Perm, Common) ; */ /* do not postorder, it is done later, below */ /* workspace: Iwork (4*nrow+uncol), Flag (nrow), Head (nrow+1)*/ CHOLMOD(colamd) (A, fset, fsize, FALSE, Perm, Common) ; } } else if (ordering == CHOLMOD_METIS) { /* -------------------------------------------------------------- */ /* use METIS_NodeND directly (via a CHOLMOD wrapper) */ /* -------------------------------------------------------------- */ #ifndef NPARTITION /* postorder parameter is false, because it will be later, below */ /* workspace: Iwork (4*nrow+uncol), Flag (nrow), Head (nrow+1) */ Common->called_nd = TRUE ; CHOLMOD(metis) (A, fset, fsize, FALSE, Perm, Common) ; #else Common->status = CHOLMOD_NOT_INSTALLED ; #endif } else if (ordering == CHOLMOD_NESDIS) { /* -------------------------------------------------------------- */ /* use CHOLMOD's nested dissection */ /* -------------------------------------------------------------- */ /* this method is based on METIS' node bissection routine * (METIS_NodeComputeSeparator). In contrast to METIS_NodeND, * it calls CAMD or CCOLAMD on the whole graph, instead of MMD * on just the leaves. */ #ifndef NPARTITION /* workspace: Flag (nrow), Head (nrow+1), Iwork (2*nrow) */ Common->called_nd = TRUE ; CHOLMOD(nested_dissection) (A, fset, fsize, Perm, CParent, Cmember, Common) ; #else Common->status = CHOLMOD_NOT_INSTALLED ; #endif } else { /* -------------------------------------------------------------- */ /* invalid ordering method */ /* -------------------------------------------------------------- */ Common->status = CHOLMOD_INVALID ; PRINT1 (("No such ordering: "ID"\n", ordering)) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; if (Common->status < CHOLMOD_OK) { /* out of memory, or method failed */ status = MIN (status, Common->status) ; Common->status = CHOLMOD_OK ; continue ; } /* ------------------------------------------------------------------ */ /* analyze the ordering */ /* ------------------------------------------------------------------ */ if (!skip_analysis) { if (!CHOLMOD(analyze_ordering) (A, ordering, Perm, fset, fsize, Parent, Post, ColCount, First, Level, Common)) { /* ordering method failed; clear status and try next method */ status = MIN (status, Common->status) ; Common->status = CHOLMOD_OK ; continue ; } } ASSERT (Common->fl >= 0 && Common->lnz >= 0) ; Common->method [method].fl = Common->fl ; Common->method [method].lnz = Common->lnz ; PRINT1 (("lnz %g fl %g\n", Common->lnz, Common->fl)) ; /* ------------------------------------------------------------------ */ /* pick the best method */ /* ------------------------------------------------------------------ */ /* fl.pt. compare, but lnz can never be NaN */ if (Common->selected == EMPTY || Common->lnz < lnz_best) { Common->selected = method ; PRINT1 (("this is best so far, method "ID"\n", method)) ; L->ordering = ordering ; lnz_best = Common->lnz ; for (k = 0 ; k < n ; k++) { Lperm [k] = Perm [k] ; } /* save the results of cholmod_analyze_ordering, if it was called */ skip_best = skip_analysis ; if (!skip_analysis) { /* save the column count; becomes permanent part of L */ for (k = 0 ; k < n ; k++) { Lcolcount [k] = ColCount [k] ; } /* Parent is needed for weighted postordering and for supernodal * analysis. Does not become a permanent part of L */ for (k = 0 ; k < n ; k++) { Lparent [k] = Parent [k] ; } } } /* ------------------------------------------------------------------ */ /* determine if METIS is to be skipped */ /* ------------------------------------------------------------------ */ if (default_strategy && ordering == CHOLMOD_AMD) { if ((Common->fl < 500 * Common->lnz) || (Common->lnz < 5 * Common->anz)) { /* AMD found an ordering with less than 500 flops per nonzero in * L, or one with a fill-in ratio (nnz(L)/nnz(A)) of less than * 5. This is pretty good, and it's unlikely that METIS will do * better (this heuristic is based on tests on all symmetric * positive definite matrices in the UF sparse matrix * collection, and it works well across a wide range of * problems). METIS can take much more time and AMD. */ break ; } } } /* turn error printing back on ] */ Common->try_catch = FALSE ; /* ---------------------------------------------------------------------- */ /* return if no ordering method succeeded */ /* ---------------------------------------------------------------------- */ if (Common->selected == EMPTY) { /* All methods failed. * If two or more methods failed, they may have failed for different * reasons. Both would clear Common->status and skip to the next * method. Common->status needs to be restored here to the worst error * obtained in any of the methods. CHOLMOD_INVALID is worse * than CHOLMOD_OUT_OF_MEMORY, since the former implies something may * be wrong with the user's input. CHOLMOD_OUT_OF_MEMORY is simply an * indication of lack of resources. */ ASSERT (status < CHOLMOD_OK) ; ERROR (status, "all methods failed") ; FREE_WORKSPACE_AND_RETURN ; } /* ---------------------------------------------------------------------- */ /* do the analysis for AMD, if skipped */ /* ---------------------------------------------------------------------- */ Common->fl = Common->method [Common->selected].fl ; Common->lnz = Common->method [Common->selected].lnz ; ASSERT (Common->lnz >= 0) ; if (skip_best) { if (!CHOLMOD(analyze_ordering) (A, L->ordering, Lperm, fset, fsize, Lparent, Post, Lcolcount, First, Level, Common)) { /* out of memory, or method failed */ FREE_WORKSPACE_AND_RETURN ; } } /* ---------------------------------------------------------------------- */ /* postorder the etree, weighted by the column counts */ /* ---------------------------------------------------------------------- */ if (Common->postorder) { /* combine the fill-reducing ordering with the weighted postorder */ /* workspace: Iwork (2*nrow) */ if (CHOLMOD(postorder) (Lparent, n, Lcolcount, Post, Common) == n) { /* use First and Level as workspace [ */ Int *Wi = First, *InvPost = Level ; Int newchild, oldchild, newparent, oldparent ; for (k = 0 ; k < n ; k++) { Wi [k] = Lperm [Post [k]] ; } for (k = 0 ; k < n ; k++) { Lperm [k] = Wi [k] ; } for (k = 0 ; k < n ; k++) { Wi [k] = Lcolcount [Post [k]] ; } for (k = 0 ; k < n ; k++) { Lcolcount [k] = Wi [k] ; } for (k = 0 ; k < n ; k++) { InvPost [Post [k]] = k ; } /* updated Lparent needed only for supernodal case */ for (newchild = 0 ; newchild < n ; newchild++) { oldchild = Post [newchild] ; oldparent = Lparent [oldchild] ; newparent = (oldparent == EMPTY) ? EMPTY : InvPost [oldparent] ; Wi [newchild] = newparent ; } for (k = 0 ; k < n ; k++) { Lparent [k] = Wi [k] ; } /* done using Iwork as workspace ] */ /* L is now postordered, no longer in natural ordering */ if (L->ordering == CHOLMOD_NATURAL) { L->ordering = CHOLMOD_POSTORDERED ; } } } /* ---------------------------------------------------------------------- */ /* supernodal analysis, if requested or if selected automatically */ /* ---------------------------------------------------------------------- */ #ifndef NSUPERNODAL if (Common->supernodal > CHOLMOD_AUTO || (Common->supernodal == CHOLMOD_AUTO && Common->lnz > 0 && (Common->fl / Common->lnz) >= Common->supernodal_switch)) { cholmod_sparse *S, *F, *A2, *A1 ; permute_matrices (A, L->ordering, Lperm, fset, fsize, TRUE, &A1, &A2, &S, &F, Common) ; /* workspace: Flag (nrow), Head (nrow), Iwork (5*nrow) */ CHOLMOD(super_symbolic) (S, F, Lparent, L, Common) ; PRINT1 (("status %d\n", Common->status)) ; CHOLMOD(free_sparse) (&A1, Common) ; CHOLMOD(free_sparse) (&A2, Common) ; } #endif /* ---------------------------------------------------------------------- */ /* free temporary matrices and workspace, and return result L */ /* ---------------------------------------------------------------------- */ FREE_WORKSPACE_AND_RETURN ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_colamd.c0000644001170100242450000001566210537777310017751 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_colamd ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the COLAMD ordering routine (version 2.4 or later). * Finds a permutation p such that the Cholesky factorization of PAA'P' is * sparser than AA' using colamd. If the postorder input parameter is TRUE, * the column etree is found and postordered, and the colamd ordering is then * combined with its postordering. A must be unsymmetric. * * There can be no duplicate entries in f. * f can be length 0 to n if A is m-by-n. * * workspace: Iwork (4*nrow+ncol), Head (nrow+1), Flag (nrow) * Allocates a copy of its input matrix, which * is then used as CCOLAMD's workspace. * * Supports any xtype (pattern, real, complex, or zomplex) */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "colamd.h" #include "cholmod_cholesky.h" #if (!defined (COLAMD_VERSION) || (COLAMD_VERSION < COLAMD_VERSION_CODE (2,5))) #error "COLAMD v2.5 or later is required" #endif /* ========================================================================== */ /* === cholmod_colamd ======================================================= */ /* ========================================================================== */ int CHOLMOD(colamd) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int postorder, /* if TRUE, follow with a coletree postorder */ /* ---- output --- */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { double knobs [COLAMD_KNOBS] ; cholmod_sparse *C ; Int *NewPerm, *Parent, *Post, *Work2n ; Int k, nrow, ncol ; size_t s, alen ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (A->stype != 0) { ERROR (CHOLMOD_INVALID, "matrix must be unsymmetric") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* Note: this is less than the space used in cholmod_analyze, so if * cholmod_colamd is being called by that routine, no space will be * allocated. */ /* s = 4*nrow + ncol */ s = CHOLMOD(mult_size_t) (nrow, 4, &ok) ; s = CHOLMOD(add_size_t) (s, ncol, &ok) ; #ifdef LONG alen = colamd_l_recommended (A->nzmax, ncol, nrow) ; colamd_l_set_defaults (knobs) ; #else alen = colamd_recommended (A->nzmax, ncol, nrow) ; colamd_set_defaults (knobs) ; #endif if (!ok || alen == 0) { ERROR (CHOLMOD_TOO_LARGE, "matrix invalid or too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* allocate COLAMD workspace */ /* ---------------------------------------------------------------------- */ /* colamd_printf is only available in colamd v2.4 or later */ colamd_printf = Common->print_function ; C = CHOLMOD(allocate_sparse) (ncol, nrow, alen, TRUE, TRUE, 0, CHOLMOD_PATTERN, Common) ; /* ---------------------------------------------------------------------- */ /* copy (and transpose) the input matrix A into the colamd workspace */ /* ---------------------------------------------------------------------- */ /* C = A (:,f)', which also packs A if needed. */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset) */ ok = CHOLMOD(transpose_unsym) (A, 0, NULL, fset, fsize, C, Common) ; /* ---------------------------------------------------------------------- */ /* order the matrix (destroys the contents of C->i and C->p) */ /* ---------------------------------------------------------------------- */ /* get parameters */ if (Common->current < 0 || Common->current >= CHOLMOD_MAXMETHODS) { /* this is the CHOLMOD default, not the COLAMD default */ knobs [COLAMD_DENSE_ROW] = -1 ; } else { /* get the knobs from the Common parameters */ knobs [COLAMD_DENSE_COL] = Common->method[Common->current].prune_dense ; knobs [COLAMD_DENSE_ROW] = Common->method[Common->current].prune_dense2; knobs [COLAMD_AGGRESSIVE] = Common->method[Common->current].aggressive ; } if (ok) { Int *Cp ; Int stats [COLAMD_STATS] ; Cp = C->p ; #ifdef LONG colamd_l (ncol, nrow, alen, C->i, Cp, knobs, stats) ; #else colamd (ncol, nrow, alen, C->i, Cp, knobs, stats) ; #endif ok = stats [COLAMD_STATUS] ; ok = (ok == COLAMD_OK || ok == COLAMD_OK_BUT_JUMBLED) ; /* permutation returned in C->p, if the ordering succeeded */ for (k = 0 ; k < nrow ; k++) { Perm [k] = Cp [k] ; } } CHOLMOD(free_sparse) (&C, Common) ; /* ---------------------------------------------------------------------- */ /* column etree postordering */ /* ---------------------------------------------------------------------- */ if (postorder) { /* use the last 2*n space in Iwork for Parent and Post */ Work2n = Common->Iwork ; Work2n += 2*((size_t) nrow) + ncol ; Parent = Work2n ; /* size nrow (i/i/l) */ Post = Work2n + nrow ; /* size nrow (i/i/l) */ /* workspace: Iwork (2*nrow+ncol), Flag (nrow), Head (nrow+1) */ ok = ok && CHOLMOD(analyze_ordering) (A, CHOLMOD_COLAMD, Perm, fset, fsize, Parent, Post, NULL, NULL, NULL, Common) ; /* combine the colamd permutation with its postordering */ if (ok) { NewPerm = Common->Iwork ; /* size nrow (i/i/l) */ for (k = 0 ; k < nrow ; k++) { NewPerm [k] = Perm [Post [k]] ; } for (k = 0 ; k < nrow ; k++) { Perm [k] = NewPerm [k] ; } } } return (ok) ; } #endif SuiteSparse/CHOLMOD/Cholesky/t_cholmod_lsolve.c0000644001170100242450000006306110537777360020342 0ustar davisfac/* ========================================================================== */ /* === Cholesky/t_cholmod_lsolve ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine to solve Lx=b with unit or non-unit diagonal, or * solve LDx=b. * * The numeric xtype of L and Y must match. Y contains b on input and x on * output, stored in row-form. Y is nrow-by-n, where nrow must equal 1 for the * complex or zomplex cases, and nrow <= 4 for the real case. * * This file is not compiled separately. It is included in t_cholmod_solve.c * instead. It contains no user-callable routines. * * workspace: none * * Supports real, complex, and zomplex factors. */ /* undefine all prior definitions */ #undef FORM_NAME #undef LSOLVE /* -------------------------------------------------------------------------- */ /* define the method */ /* -------------------------------------------------------------------------- */ #ifdef LL /* LL': solve Lx=b with non-unit diagonal */ #define FORM_NAME(prefix,rank) prefix ## ll_lsolve_ ## rank #elif defined (LD) /* LDL': solve LDx=b */ #define FORM_NAME(prefix,rank) prefix ## ldl_ldsolve_ ## rank #else /* LDL': solve Lx=b with unit diagonal */ #define FORM_NAME(prefix,rank) prefix ## ldl_lsolve_ ## rank #endif /* LSOLVE(k) defines the name of a routine for an n-by-k right-hand-side. */ #define LSOLVE(prefix,rank) FORM_NAME(prefix,rank) #ifdef REAL /* ========================================================================== */ /* === LSOLVE (1) =========================================================== */ /* ========================================================================== */ /* Solve Lx=b, where b has 1 column */ static void LSOLVE (PREFIX,1) ( cholmod_factor *L, double X [ ] /* n-by-1 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = 0 ; j < n ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j+1, and j+2) */ if (lnz < 4 || lnz != Lnz [j+1] + 1 || Li [p+1] != j+1) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y = X [j] ; #ifdef LL y /= Lx [p] ; X [j] = y ; #elif defined (LD) X [j] = y / Lx [p] ; #endif for (p++ ; p < pend ; p++) { X [Li [p]] -= Lx [p] * y ; } j++ ; /* advance to next column of L */ } else if (lnz != Lnz [j+2] + 2 || Li [p+2] != j+2) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2] ; Int q = Lp [j+1] ; #ifdef LL y [0] = X [j] / Lx [p] ; y [1] = (X [j+1] - Lx [p+1] * y [0]) / Lx [q] ; X [j ] = y [0] ; X [j+1] = y [1] ; #elif defined (LD) y [0] = X [j] ; y [1] = X [j+1] - Lx [p+1] * y [0] ; X [j ] = y [0] / Lx [p] ; X [j+1] = y [1] / Lx [q] ; #else y [0] = X [j] ; y [1] = X [j+1] - Lx [p+1] * y [0] ; X [j+1] = y [1] ; #endif for (p += 2, q++ ; p < pend ; p++, q++) { X [Li [p]] -= Lx [p] * y [0] + Lx [q] * y [1] ; } j += 2 ; /* advance to next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3] ; Int q = Lp [j+1] ; Int r = Lp [j+2] ; #ifdef LL y [0] = X [j] / Lx [p] ; y [1] = (X [j+1] - Lx [p+1] * y [0]) / Lx [q] ; y [2] = (X [j+2] - Lx [p+2] * y [0] - Lx [q+1] * y [1]) / Lx [r] ; X [j ] = y [0] ; X [j+1] = y [1] ; X [j+2] = y [2] ; #elif defined (LD) y [0] = X [j] ; y [1] = X [j+1] - Lx [p+1] * y [0] ; y [2] = X [j+2] - Lx [p+2] * y [0] - Lx [q+1] * y [1] ; X [j ] = y [0] / Lx [p] ; X [j+1] = y [1] / Lx [q] ; X [j+2] = y [2] / Lx [r] ; #else y [0] = X [j] ; y [1] = X [j+1] - Lx [p+1] * y [0] ; y [2] = X [j+2] - Lx [p+2] * y [0] - Lx [q+1] * y [1] ; X [j+1] = y [1] ; X [j+2] = y [2] ; #endif for (p += 3, q += 2, r++ ; p < pend ; p++, q++, r++) { X [Li [p]] -= Lx [p] * y [0] + Lx [q] * y [1] + Lx [r] * y [2] ; } j += 3 ; /* advance to next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (2) =========================================================== */ /* ========================================================================== */ /* Solve Lx=b, where b has 2 columns */ static void LSOLVE (PREFIX,2) ( cholmod_factor *L, double X [ ][2] /* n-by-2 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = 0 ; j < n ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j+1, and j+2) */ if (lnz < 4 || lnz != Lnz [j+1] + 1 || Li [p+1] != j+1) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [2] ; y [0] = X [j][0] ; y [1] = X [j][1] ; #ifdef LL y [0] /= Lx [p] ; y [1] /= Lx [p] ; X [j][0] = y [0] ; X [j][1] = y [1] ; #elif defined (LD) X [j][0] = y [0] / Lx [p] ; X [j][1] = y [1] / Lx [p] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; X [i][0] -= Lx [p] * y [0] ; X [i][1] -= Lx [p] * y [1] ; } j++ ; /* advance to next column of L */ } else if (lnz != Lnz [j+2] + 2 || Li [p+2] != j+2) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][2] ; Int q = Lp [j+1] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx [p+1] * y [0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx [p+1] * y [0][1]) / Lx [q] ; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; #endif for (p += 2, q++ ; p < pend ; p++, q++) { Int i = Li [p] ; X [i][0] -= Lx [p] * y [0][0] + Lx [q] * y [1][0] ; X [i][1] -= Lx [p] * y [0][1] + Lx [q] * y [1][1] ; } j += 2 ; /* advance to next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3][2] ; Int q = Lp [j+1] ; Int r = Lp [j+2] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx[p+1] * y[0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx[p+1] * y[0][1]) / Lx [q] ; y [2][0] = (X [j+2][0] - Lx[p+2] * y[0][0] - Lx[q+1]*y[1][0])/Lx[r]; y [2][1] = (X [j+2][1] - Lx[p+2] * y[0][1] - Lx[q+1]*y[1][1])/Lx[r]; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; X [j+2][0] = y [2][0] / Lx [r] ; X [j+2][1] = y [2][1] / Lx [r] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; #endif for (p += 3, q += 2, r++ ; p < pend ; p++, q++, r++) { Int i = Li [p] ; X[i][0] -= Lx[p] * y[0][0] + Lx[q] * y[1][0] + Lx[r] * y[2][0] ; X[i][1] -= Lx[p] * y[0][1] + Lx[q] * y[1][1] + Lx[r] * y[2][1] ; } j += 3 ; /* advance to next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (3) =========================================================== */ /* ========================================================================== */ /* Solve Lx=b, where b has 3 columns */ static void LSOLVE (PREFIX,3) ( cholmod_factor *L, double X [ ][3] /* n-by-3 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = 0 ; j < n ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j+1, and j+2) */ if (lnz < 4 || lnz != Lnz [j+1] + 1 || Li [p+1] != j+1) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [3] ; y [0] = X [j][0] ; y [1] = X [j][1] ; y [2] = X [j][2] ; #ifdef LL y [0] /= Lx [p] ; y [1] /= Lx [p] ; y [2] /= Lx [p] ; X [j][0] = y [0] ; X [j][1] = y [1] ; X [j][2] = y [2] ; #elif defined (LD) X [j][0] = y [0] / Lx [p] ; X [j][1] = y [1] / Lx [p] ; X [j][2] = y [2] / Lx [p] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; double lx = Lx [p] ; X [i][0] -= lx * y [0] ; X [i][1] -= lx * y [1] ; X [i][2] -= lx * y [2] ; } j++ ; /* advance to next column of L */ } else if (lnz != Lnz [j+2] + 2 || Li [p+2] != j+2) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][3] ; Int q = Lp [j+1] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; y [0][2] = X [j][2] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [0][2] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx [p+1] * y [0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx [p+1] * y [0][1]) / Lx [q] ; y [1][2] = (X [j+1][2] - Lx [p+1] * y [0][2]) / Lx [q] ; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j ][2] = y [0][2] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; X [j+1][2] = y [1][2] / Lx [q] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; #endif for (p += 2, q++ ; p < pend ; p++, q++) { Int i = Li [p] ; double lx [2] ; lx [0] = Lx [p] ; lx [1] = Lx [q] ; X [i][0] -= lx [0] * y [0][0] + lx [1] * y [1][0] ; X [i][1] -= lx [0] * y [0][1] + lx [1] * y [1][1] ; X [i][2] -= lx [0] * y [0][2] + lx [1] * y [1][2] ; } j += 2 ; /* advance to next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3][3] ; Int q = Lp [j+1] ; Int r = Lp [j+2] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; y [0][2] = X [j][2] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [0][2] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx[p+1] * y[0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx[p+1] * y[0][1]) / Lx [q] ; y [1][2] = (X [j+1][2] - Lx[p+1] * y[0][2]) / Lx [q] ; y [2][0] = (X [j+2][0] - Lx[p+2] * y[0][0] - Lx[q+1]*y[1][0])/Lx[r]; y [2][1] = (X [j+2][1] - Lx[p+2] * y[0][1] - Lx[q+1]*y[1][1])/Lx[r]; y [2][2] = (X [j+2][2] - Lx[p+2] * y[0][2] - Lx[q+1]*y[1][2])/Lx[r]; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; X [j+2][2] = y [2][2] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; y [2][2] = X [j+2][2] - Lx [p+2] * y [0][2] - Lx [q+1] * y [1][2] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j ][2] = y [0][2] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; X [j+1][2] = y [1][2] / Lx [q] ; X [j+2][0] = y [2][0] / Lx [r] ; X [j+2][1] = y [2][1] / Lx [r] ; X [j+2][2] = y [2][2] / Lx [r] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; y [2][2] = X [j+2][2] - Lx [p+2] * y [0][2] - Lx [q+1] * y [1][2] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; X [j+2][2] = y [2][2] ; #endif for (p += 3, q += 2, r++ ; p < pend ; p++, q++, r++) { Int i = Li [p] ; double lx [3] ; lx [0] = Lx [p] ; lx [1] = Lx [q] ; lx [2] = Lx [r] ; X [i][0] -= lx[0] * y[0][0] + lx[1] * y[1][0] + lx[2] * y[2][0]; X [i][1] -= lx[0] * y[0][1] + lx[1] * y[1][1] + lx[2] * y[2][1]; X [i][2] -= lx[0] * y[0][2] + lx[1] * y[1][2] + lx[2] * y[2][2]; } j += 3 ; /* advance to next column of L */ } } } /* ========================================================================== */ /* === LSOLVE (4) =========================================================== */ /* ========================================================================== */ /* Solve Lx=b, where b has 4 columns */ static void LSOLVE (PREFIX,4) ( cholmod_factor *L, double X [ ][4] /* n-by-4 in row form */ ) { double *Lx = L->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int j, n = L->n ; for (j = 0 ; j < n ; ) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* find a chain of supernodes (up to j, j+1, and j+2) */ if (lnz < 4 || lnz != Lnz [j+1] + 1 || Li [p+1] != j+1) { /* -------------------------------------------------------------- */ /* solve with a single column of L */ /* -------------------------------------------------------------- */ double y [4] ; y [0] = X [j][0] ; y [1] = X [j][1] ; y [2] = X [j][2] ; y [3] = X [j][3] ; #ifdef LL y [0] /= Lx [p] ; y [1] /= Lx [p] ; y [2] /= Lx [p] ; y [3] /= Lx [p] ; X [j][0] = y [0] ; X [j][1] = y [1] ; X [j][2] = y [2] ; X [j][3] = y [3] ; #elif defined (LD) X [j][0] = y [0] / Lx [p] ; X [j][1] = y [1] / Lx [p] ; X [j][2] = y [2] / Lx [p] ; X [j][3] = y [3] / Lx [p] ; #endif for (p++ ; p < pend ; p++) { Int i = Li [p] ; double lx = Lx [p] ; X [i][0] -= lx * y [0] ; X [i][1] -= lx * y [1] ; X [i][2] -= lx * y [2] ; X [i][3] -= lx * y [3] ; } j++ ; /* advance to next column of L */ } else if (lnz != Lnz [j+2] + 2 || Li [p+2] != j+2) { /* -------------------------------------------------------------- */ /* solve with a supernode of two columns of L */ /* -------------------------------------------------------------- */ double y [2][4] ; Int q = Lp [j+1] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; y [0][2] = X [j][2] ; y [0][3] = X [j][3] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [0][2] /= Lx [p] ; y [0][3] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx [p+1] * y [0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx [p+1] * y [0][1]) / Lx [q] ; y [1][2] = (X [j+1][2] - Lx [p+1] * y [0][2]) / Lx [q] ; y [1][3] = (X [j+1][3] - Lx [p+1] * y [0][3]) / Lx [q] ; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j ][3] = y [0][3] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+1][3] = y [1][3] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [1][3] = X [j+1][3] - Lx [p+1] * y [0][3] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j ][2] = y [0][2] / Lx [p] ; X [j ][3] = y [0][3] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; X [j+1][2] = y [1][2] / Lx [q] ; X [j+1][3] = y [1][3] / Lx [q] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [1][3] = X [j+1][3] - Lx [p+1] * y [0][3] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+1][3] = y [1][3] ; #endif for (p += 2, q++ ; p < pend ; p++, q++) { Int i = Li [p] ; double lx [2] ; lx [0] = Lx [p] ; lx [1] = Lx [q] ; X [i][0] -= lx [0] * y [0][0] + lx [1] * y [1][0] ; X [i][1] -= lx [0] * y [0][1] + lx [1] * y [1][1] ; X [i][2] -= lx [0] * y [0][2] + lx [1] * y [1][2] ; X [i][3] -= lx [0] * y [0][3] + lx [1] * y [1][3] ; } j += 2 ; /* advance to next column of L */ } else { /* -------------------------------------------------------------- */ /* solve with a supernode of three columns of L */ /* -------------------------------------------------------------- */ double y [3][4] ; Int q = Lp [j+1] ; Int r = Lp [j+2] ; y [0][0] = X [j][0] ; y [0][1] = X [j][1] ; y [0][2] = X [j][2] ; y [0][3] = X [j][3] ; #ifdef LL y [0][0] /= Lx [p] ; y [0][1] /= Lx [p] ; y [0][2] /= Lx [p] ; y [0][3] /= Lx [p] ; y [1][0] = (X [j+1][0] - Lx[p+1] * y[0][0]) / Lx [q] ; y [1][1] = (X [j+1][1] - Lx[p+1] * y[0][1]) / Lx [q] ; y [1][2] = (X [j+1][2] - Lx[p+1] * y[0][2]) / Lx [q] ; y [1][3] = (X [j+1][3] - Lx[p+1] * y[0][3]) / Lx [q] ; y [2][0] = (X [j+2][0] - Lx[p+2] * y[0][0] - Lx[q+1]*y[1][0])/Lx[r]; y [2][1] = (X [j+2][1] - Lx[p+2] * y[0][1] - Lx[q+1]*y[1][1])/Lx[r]; y [2][2] = (X [j+2][2] - Lx[p+2] * y[0][2] - Lx[q+1]*y[1][2])/Lx[r]; y [2][3] = (X [j+2][3] - Lx[p+2] * y[0][3] - Lx[q+1]*y[1][3])/Lx[r]; X [j ][0] = y [0][0] ; X [j ][1] = y [0][1] ; X [j ][2] = y [0][2] ; X [j ][3] = y [0][3] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+1][3] = y [1][3] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; X [j+2][2] = y [2][2] ; X [j+2][3] = y [2][3] ; #elif defined (LD) y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [1][3] = X [j+1][3] - Lx [p+1] * y [0][3] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; y [2][2] = X [j+2][2] - Lx [p+2] * y [0][2] - Lx [q+1] * y [1][2] ; y [2][3] = X [j+2][3] - Lx [p+2] * y [0][3] - Lx [q+1] * y [1][3] ; X [j ][0] = y [0][0] / Lx [p] ; X [j ][1] = y [0][1] / Lx [p] ; X [j ][2] = y [0][2] / Lx [p] ; X [j ][3] = y [0][3] / Lx [p] ; X [j+1][0] = y [1][0] / Lx [q] ; X [j+1][1] = y [1][1] / Lx [q] ; X [j+1][2] = y [1][2] / Lx [q] ; X [j+1][3] = y [1][3] / Lx [q] ; X [j+2][0] = y [2][0] / Lx [r] ; X [j+2][1] = y [2][1] / Lx [r] ; X [j+2][2] = y [2][2] / Lx [r] ; X [j+2][3] = y [2][3] / Lx [r] ; #else y [1][0] = X [j+1][0] - Lx [p+1] * y [0][0] ; y [1][1] = X [j+1][1] - Lx [p+1] * y [0][1] ; y [1][2] = X [j+1][2] - Lx [p+1] * y [0][2] ; y [1][3] = X [j+1][3] - Lx [p+1] * y [0][3] ; y [2][0] = X [j+2][0] - Lx [p+2] * y [0][0] - Lx [q+1] * y [1][0] ; y [2][1] = X [j+2][1] - Lx [p+2] * y [0][1] - Lx [q+1] * y [1][1] ; y [2][2] = X [j+2][2] - Lx [p+2] * y [0][2] - Lx [q+1] * y [1][2] ; y [2][3] = X [j+2][3] - Lx [p+2] * y [0][3] - Lx [q+1] * y [1][3] ; X [j+1][0] = y [1][0] ; X [j+1][1] = y [1][1] ; X [j+1][2] = y [1][2] ; X [j+1][3] = y [1][3] ; X [j+2][0] = y [2][0] ; X [j+2][1] = y [2][1] ; X [j+2][2] = y [2][2] ; X [j+2][3] = y [2][3] ; #endif for (p += 3, q += 2, r++ ; p < pend ; p++, q++, r++) { Int i = Li [p] ; double lx [3] ; lx [0] = Lx [p] ; lx [1] = Lx [q] ; lx [2] = Lx [r] ; X [i][0] -= lx[0] * y[0][0] + lx[1] * y[1][0] + lx[2] * y[2][0]; X [i][1] -= lx[0] * y[0][1] + lx[1] * y[1][1] + lx[2] * y[2][1]; X [i][2] -= lx[0] * y[0][2] + lx[1] * y[1][2] + lx[2] * y[2][2]; X [i][3] -= lx[0] * y[0][3] + lx[1] * y[1][3] + lx[2] * y[2][3]; } j += 3 ; /* advance to next column of L */ } } } #endif /* ========================================================================== */ /* === LSOLVE (k) =========================================================== */ /* ========================================================================== */ static void LSOLVE (PREFIX,k) ( cholmod_factor *L, cholmod_dense *Y /* nr-by-n where nr is 1 to 4 */ ) { #ifndef REAL double yx [2] ; #ifdef ZOMPLEX double yz [1] ; double *Lz = L->z ; double *Xz = Y->z ; #endif double *Lx = L->x ; double *Xx = Y->x ; Int *Li = L->i ; Int *Lp = L->p ; Int *Lnz = L->nz ; Int i, j, n = L->n ; #endif ASSERT (L->xtype == Y->xtype) ; /* L and Y must have the same xtype */ ASSERT (L->n == Y->ncol) ; /* dimensions must match */ ASSERT (Y->nrow == Y->d) ; /* leading dimension of Y = # rows of Y */ ASSERT (L->xtype != CHOLMOD_PATTERN) ; /* L is not symbolic */ ASSERT (!(L->is_super)) ; /* L is simplicial LL' or LDL' */ #ifdef REAL /* ---------------------------------------------------------------------- */ /* solve a real linear system, with 1 to 4 RHS's and dynamic supernodes */ /* ---------------------------------------------------------------------- */ ASSERT (Y->nrow <= 4) ; switch (Y->nrow) { case 1: LSOLVE (PREFIX,1) (L, Y->x) ; break ; case 2: LSOLVE (PREFIX,2) (L, Y->x) ; break ; case 3: LSOLVE (PREFIX,3) (L, Y->x) ; break ; case 4: LSOLVE (PREFIX,4) (L, Y->x) ; break ; } #else /* ---------------------------------------------------------------------- */ /* solve a complex linear system, with just one right-hand-side */ /* ---------------------------------------------------------------------- */ ASSERT (Y->nrow == 1) ; for (j = 0 ; j < n ; j++) { /* get the start, end, and length of column j */ Int p = Lp [j] ; Int lnz = Lnz [j] ; Int pend = p + lnz ; /* y = X [j] ; */ ASSIGN (yx,yz,0, Xx,Xz,j) ; #ifdef LL /* y /= Lx [p] ; */ /* X [j] = y ; */ DIV_REAL (yx,yz,0, yx,yz,0, Lx,p) ; ASSIGN (Xx,Xz,j, yx,yz,0) ; #elif defined (LD) /* X [j] = y / Lx [p] ; */ DIV_REAL (Xx,Xz,j, yx,yz,0, Lx,p) ; #endif for (p++ ; p < pend ; p++) { /* X [Li [p]] -= Lx [p] * y ; */ i = Li [p] ; MULTSUB (Xx,Xz,i, Lx,Lz,p, yx,yz,0) ; } } #endif } /* prepare for the next inclusion of this file in cholmod_solve.c */ #undef LL #undef LD SuiteSparse/CHOLMOD/Cholesky/cholmod_solve.c0000644001170100242450000007610610616607410017631 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_solve =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Solve one of the following systems: * * Ax=b 0: CHOLMOD_A also applies the permutation L->Perm * LDL'x=b 1: CHOLMOD_LDLt does not apply L->Perm * LDx=b 2: CHOLMOD_LD * DL'x=b 3: CHOLMOD_DLt * Lx=b 4: CHOLMOD_L * L'x=b 5: CHOLMOD_Lt * Dx=b 6: CHOLMOD_D * x=Pb 7: CHOLMOD_P apply a permutation (P is L->Perm) * x=P'b 8: CHOLMOD_Pt apply an inverse permutation * * The factorization can be simplicial LDL', simplicial LL', or supernodal LL'. * For an LL' factorization, D is the identity matrix. Thus CHOLMOD_LD and * CHOLMOD_L solve the same system if an LL' factorization was performed, * for example. * * The supernodal solver uses BLAS routines dtrsv, dgemv, dtrsm, and dgemm, * or their complex counterparts ztrsv, zgemv, ztrsm, and zgemm. * * If both L and B are real, then X is returned real. If either is complex * or zomplex, X is returned as either complex or zomplex, depending on the * Common->prefer_zomplex parameter. * * Supports any numeric xtype (pattern-only matrices not supported). * * This routine does not check to see if the diagonal of L or D is zero, * because sometimes a partial solve can be done with indefinite or singular * matrix. If you wish to check in your own code, test L->minor. If * L->minor == L->n, then the matrix has no zero diagonal entries. * If k = L->minor < L->n, then L(k,k) is zero for an LL' factorization, or * D(k,k) is zero for an LDL' factorization. * * This routine returns X as NULL only if it runs out of memory. If L is * indefinite or singular, then X may contain Inf's or NaN's, but it will * exist on output. */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" #ifndef NSUPERNODAL #include "cholmod_supernodal.h" #endif /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_solve.c" #define COMPLEX #include "t_cholmod_solve.c" #define ZOMPLEX #include "t_cholmod_solve.c" /* ========================================================================== */ /* === Permutation macro ==================================================== */ /* ========================================================================== */ /* If Perm is NULL, it is interpretted as the identity permutation */ #define P(k) ((Perm == NULL) ? (k) : Perm [k]) /* ========================================================================== */ /* === perm ================================================================= */ /* ========================================================================== */ /* Y = B (P (1:nrow), k1 : min (k1+ncols,ncol)-1) where B is nrow-by-ncol. * * Creates a permuted copy of a contiguous set of columns of B. * Y is already allocated on input. Y must be of sufficient size. Let nk be * the number of columns accessed in B. Y->xtype determines the complexity of * the result. * * If B is real and Y is complex (or zomplex), only the real part of B is * copied into Y. The imaginary part of Y is set to zero. * * If B is complex (or zomplex) and Y is real, both the real and imaginary and * parts of B are returned in Y. Y is returned as nrow-by-2*nk. The even * columns of Y contain the real part of B and the odd columns contain the * imaginary part of B. Y->nzmax must be >= 2*nrow*nk. Otherise, Y is * returned as nrow-by-nk with leading dimension nrow. Y->nzmax must be >= * nrow*nk. * * The case where the input (B) is real and the output (Y) is zomplex is * not used. */ static void perm ( /* ---- input ---- */ cholmod_dense *B, /* input matrix B */ Int *Perm, /* optional input permutation (can be NULL) */ Int k1, /* first column of B to copy */ Int ncols, /* last column to copy is min(k1+ncols,B->ncol)-1 */ /* ---- in/out --- */ cholmod_dense *Y /* output matrix Y, already allocated */ ) { double *Yx, *Yz, *Bx, *Bz ; Int k2, nk, p, k, j, nrow, ncol, d, dual, dj, j2 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = B->ncol ; nrow = B->nrow ; k2 = MIN (k1+ncols, ncol) ; nk = MAX (k2 - k1, 0) ; dual = (Y->xtype == CHOLMOD_REAL && B->xtype != CHOLMOD_REAL) ? 2 : 1 ; d = B->d ; Bx = B->x ; Bz = B->z ; Yx = Y->x ; Yz = Y->z ; Y->nrow = nrow ; Y->ncol = dual*nk ; Y->d = nrow ; ASSERT (((Int) Y->nzmax) >= nrow*nk*dual) ; /* ---------------------------------------------------------------------- */ /* Y = B (P (1:nrow), k1:k2-1) */ /* ---------------------------------------------------------------------- */ switch (Y->xtype) { case CHOLMOD_REAL: switch (B->xtype) { case CHOLMOD_REAL: /* Y real, B real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [k + j2] = Bx [p] ; /* real */ } } break ; case CHOLMOD_COMPLEX: /* Y real, B complex. Y is nrow-by-2*nk */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [k + j2 ] = Bx [2*p ] ; /* real */ Yx [k + j2 + nrow] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y real, B zomplex. Y is nrow-by-2*nk */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [k + j2 ] = Bx [p] ; /* real */ Yx [k + j2 + nrow] = Bz [p] ; /* imag */ } } break ; } break ; case CHOLMOD_COMPLEX: switch (B->xtype) { case CHOLMOD_REAL: /* Y complex, B real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [2*k + j2] = Bx [p] ; /* real */ Yx [2*k+1 + j2] = 0 ; /* imag */ } } break ; case CHOLMOD_COMPLEX: /* Y complex, B complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [2*k + j2] = Bx [2*p ] ; /* real */ Yx [2*k+1 + j2] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y complex, B zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [2*k + j2] = Bx [p] ; /* real */ Yx [2*k+1 + j2] = Bz [p] ; /* imag */ } } break ; } break ; case CHOLMOD_ZOMPLEX: switch (B->xtype) { #if 0 case CHOLMOD_REAL: /* this case is not used */ break ; #endif case CHOLMOD_COMPLEX: /* Y zomplex, B complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [k + j2] = Bx [2*p ] ; /* real */ Yz [k + j2] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y zomplex, B zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [k + j2] = Bx [p] ; /* real */ Yz [k + j2] = Bz [p] ; /* imag */ } } break ; } break ; } } /* ========================================================================== */ /* === iperm ================================================================ */ /* ========================================================================== */ /* X (P (1:nrow), k1 : min (k1+ncols,ncol)-1) = Y where X is nrow-by-ncol. * * Copies and permutes Y into a contiguous set of columns of X. X is already * allocated on input. Y must be of sufficient size. Let nk be the number * of columns accessed in X. X->xtype determines the complexity of the result. * * If X is real and Y is complex (or zomplex), only the real part of B is * copied into X. The imaginary part of Y is ignored. * * If X is complex (or zomplex) and Y is real, both the real and imaginary and * parts of Y are returned in X. Y is nrow-by-2*nk. The even * columns of Y contain the real part of B and the odd columns contain the * imaginary part of B. Y->nzmax must be >= 2*nrow*nk. Otherise, Y is * nrow-by-nk with leading dimension nrow. Y->nzmax must be >= nrow*nk. * * The case where the input (Y) is complex and the output (X) is real, * and the case where the input (Y) is zomplex and the output (X) is real, * are not used. */ static void iperm ( /* ---- input ---- */ cholmod_dense *Y, /* input matrix Y */ Int *Perm, /* optional input permutation (can be NULL) */ Int k1, /* first column of B to copy */ Int ncols, /* last column to copy is min(k1+ncols,B->ncol)-1 */ /* ---- in/out --- */ cholmod_dense *X /* output matrix X, already allocated */ ) { double *Yx, *Yz, *Xx, *Xz ; Int k2, nk, p, k, j, nrow, ncol, d, dj, j2 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = X->ncol ; nrow = X->nrow ; k2 = MIN (k1+ncols, ncol) ; nk = MAX (k2 - k1, 0) ; d = X->d ; Xx = X->x ; Xz = X->z ; Yx = Y->x ; Yz = Y->z ; ASSERT (((Int) Y->nzmax) >= nrow*nk* ((X->xtype != CHOLMOD_REAL && Y->xtype == CHOLMOD_REAL) ? 2:1)) ; /* ---------------------------------------------------------------------- */ /* X (P (1:nrow), k1:k2-1) = Y */ /* ---------------------------------------------------------------------- */ switch (Y->xtype) { case CHOLMOD_REAL: switch (X->xtype) { case CHOLMOD_REAL: /* Y real, X real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [k + j2] ; /* real */ } } break ; case CHOLMOD_COMPLEX: /* Y real, X complex. Y is nrow-by-2*nk */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [k + j2 ] ; /* real */ Xx [2*p+1] = Yx [k + j2 + nrow] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y real, X zomplex. Y is nrow-by-2*nk */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [k + j2 ] ; /* real */ Xz [p] = Yx [k + j2 + nrow] ; /* imag */ } } break ; } break ; case CHOLMOD_COMPLEX: switch (X->xtype) { #if 0 case CHOLMOD_REAL: /* this case is not used */ break ; #endif case CHOLMOD_COMPLEX: /* Y complex, X complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [2*k + j2] ; /* real */ Xx [2*p+1] = Yx [2*k+1 + j2] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y complex, X zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * 2 * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [2*k + j2] ; /* real */ Xz [p] = Yx [2*k+1 + j2] ; /* imag */ } } break ; } break ; case CHOLMOD_ZOMPLEX: switch (X->xtype) { #if 0 case CHOLMOD_REAL: /* this case is not used */ break ; #endif case CHOLMOD_COMPLEX: /* Y zomplex, X complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [k + j2] ; /* real */ Xx [2*p+1] = Yz [k + j2] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y zomplex, X zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = nrow * (j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [k + j2] ; /* real */ Xz [p] = Yz [k + j2] ; /* imag */ } } break ; } break ; } } /* ========================================================================== */ /* === ptrans =============================================================== */ /* ========================================================================== */ /* Y = B (P (1:nrow), k1 : min (k1+ncols,ncol)-1)' where B is nrow-by-ncol. * * Creates a permuted and transposed copy of a contiguous set of columns of B. * Y is already allocated on input. Y must be of sufficient size. Let nk be * the number of columns accessed in B. Y->xtype determines the complexity of * the result. * * If B is real and Y is complex (or zomplex), only the real part of B is * copied into Y. The imaginary part of Y is set to zero. * * If B is complex (or zomplex) and Y is real, both the real and imaginary and * parts of B are returned in Y. Y is returned as 2*nk-by-nrow. The even * rows of Y contain the real part of B and the odd rows contain the * imaginary part of B. Y->nzmax must be >= 2*nrow*nk. Otherise, Y is * returned as nk-by-nrow with leading dimension nk. Y->nzmax must be >= * nrow*nk. * * The array transpose is performed, not the complex conjugate transpose. */ static void ptrans ( /* ---- input ---- */ cholmod_dense *B, /* input matrix B */ Int *Perm, /* optional input permutation (can be NULL) */ Int k1, /* first column of B to copy */ Int ncols, /* last column to copy is min(k1+ncols,B->ncol)-1 */ /* ---- in/out --- */ cholmod_dense *Y /* output matrix Y, already allocated */ ) { double *Yx, *Yz, *Bx, *Bz ; Int k2, nk, p, k, j, nrow, ncol, d, dual, dj, j2 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = B->ncol ; nrow = B->nrow ; k2 = MIN (k1+ncols, ncol) ; nk = MAX (k2 - k1, 0) ; dual = (Y->xtype == CHOLMOD_REAL && B->xtype != CHOLMOD_REAL) ? 2 : 1 ; d = B->d ; Bx = B->x ; Bz = B->z ; Yx = Y->x ; Yz = Y->z ; Y->nrow = dual*nk ; Y->ncol = nrow ; Y->d = dual*nk ; ASSERT (((Int) Y->nzmax) >= nrow*nk*dual) ; /* ---------------------------------------------------------------------- */ /* Y = B (P (1:nrow), k1:k2-1)' */ /* ---------------------------------------------------------------------- */ switch (Y->xtype) { case CHOLMOD_REAL: switch (B->xtype) { case CHOLMOD_REAL: /* Y real, B real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*nk] = Bx [p] ; /* real */ } } break ; case CHOLMOD_COMPLEX: /* Y real, B complex. Y is 2*nk-by-nrow */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*2*nk] = Bx [2*p ] ; /* real */ Yx [j2+1 + k*2*nk] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y real, B zomplex. Y is 2*nk-by-nrow */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*2*nk] = Bx [p] ; /* real */ Yx [j2+1 + k*2*nk] = Bz [p] ; /* imag */ } } break ; } break ; case CHOLMOD_COMPLEX: switch (B->xtype) { case CHOLMOD_REAL: /* Y complex, B real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*2*nk] = Bx [p] ; /* real */ Yx [j2+1 + k*2*nk] = 0 ; /* imag */ } } break ; case CHOLMOD_COMPLEX: /* Y complex, B complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*2*nk] = Bx [2*p ] ; /* real */ Yx [j2+1 + k*2*nk] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y complex, B zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*2*nk] = Bx [p] ; /* real */ Yx [j2+1 + k*2*nk] = Bz [p] ; /* imag */ } } break ; } break ; case CHOLMOD_ZOMPLEX: switch (B->xtype) { case CHOLMOD_REAL: /* Y zomplex, B real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*nk] = Bx [p] ; /* real */ Yz [j2 + k*nk] = 0 ; /* imag */ } } break ; case CHOLMOD_COMPLEX: /* Y zomplex, B complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*nk] = Bx [2*p ] ; /* real */ Yz [j2 + k*nk] = Bx [2*p+1] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y zomplex, B zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Yx [j2 + k*nk] = Bx [p] ; /* real */ Yz [j2 + k*nk] = Bz [p] ; /* imag */ } } break ; } break ; } } /* ========================================================================== */ /* === iptrans ============================================================== */ /* ========================================================================== */ /* X (P (1:nrow), k1 : min (k1+ncols,ncol)-1) = Y' where X is nrow-by-ncol. * * Copies into a permuted and transposed contiguous set of columns of X. * X is already allocated on input. Y must be of sufficient size. Let nk be * the number of columns accessed in X. X->xtype determines the complexity of * the result. * * If X is real and Y is complex (or zomplex), only the real part of Y is * copied into X. The imaginary part of Y is ignored. * * If X is complex (or zomplex) and Y is real, both the real and imaginary and * parts of X are returned in Y. Y is 2*nk-by-nrow. The even * rows of Y contain the real part of X and the odd rows contain the * imaginary part of X. Y->nzmax must be >= 2*nrow*nk. Otherise, Y is * nk-by-nrow with leading dimension nk. Y->nzmax must be >= nrow*nk. * * The case where Y is complex or zomplex, and X is real, is not used. * * The array transpose is performed, not the complex conjugate transpose. */ static void iptrans ( /* ---- input ---- */ cholmod_dense *Y, /* input matrix Y */ Int *Perm, /* optional input permutation (can be NULL) */ Int k1, /* first column of X to copy into */ Int ncols, /* last column to copy is min(k1+ncols,X->ncol)-1 */ /* ---- in/out --- */ cholmod_dense *X /* output matrix X, already allocated */ ) { double *Yx, *Yz, *Xx, *Xz ; Int k2, nk, p, k, j, nrow, ncol, d, dj, j2 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = X->ncol ; nrow = X->nrow ; k2 = MIN (k1+ncols, ncol) ; nk = MAX (k2 - k1, 0) ; d = X->d ; Xx = X->x ; Xz = X->z ; Yx = Y->x ; Yz = Y->z ; ASSERT (((Int) Y->nzmax) >= nrow*nk* ((X->xtype != CHOLMOD_REAL && Y->xtype == CHOLMOD_REAL) ? 2:1)) ; /* ---------------------------------------------------------------------- */ /* X (P (1:nrow), k1:k2-1) = Y' */ /* ---------------------------------------------------------------------- */ switch (Y->xtype) { case CHOLMOD_REAL: switch (X->xtype) { case CHOLMOD_REAL: /* Y real, X real */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [j2 + k*nk] ; /* real */ } } break ; case CHOLMOD_COMPLEX: /* Y real, X complex. Y is 2*nk-by-nrow */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [j2 + k*2*nk] ; /* real */ Xx [2*p+1] = Yx [j2+1 + k*2*nk] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y real, X zomplex. Y is 2*nk-by-nrow */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [j2 + k*2*nk] ; /* real */ Xz [p] = Yx [j2+1 + k*2*nk] ; /* imag */ } } break ; } break ; case CHOLMOD_COMPLEX: switch (X->xtype) { #if 0 case CHOLMOD_REAL: /* this case is not used */ break ; #endif case CHOLMOD_COMPLEX: /* Y complex, X complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [j2 + k*2*nk] ; /* real */ Xx [2*p+1] = Yx [j2+1 + k*2*nk] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y complex, X zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = 2*(j-k1) ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [j2 + k*2*nk] ; /* real */ Xz [p] = Yx [j2+1 + k*2*nk] ; /* imag */ } } break ; } break ; case CHOLMOD_ZOMPLEX: switch (X->xtype) { #if 0 case CHOLMOD_REAL: /* this case is not used */ break ; #endif case CHOLMOD_COMPLEX: /* Y zomplex, X complex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [2*p ] = Yx [j2 + k*nk] ; /* real */ Xx [2*p+1] = Yz [j2 + k*nk] ; /* imag */ } } break ; case CHOLMOD_ZOMPLEX: /* Y zomplex, X zomplex */ for (j = k1 ; j < k2 ; j++) { dj = d*j ; j2 = j-k1 ; for (k = 0 ; k < nrow ; k++) { p = P(k) + dj ; Xx [p] = Yx [j2 + k*nk] ; /* real */ Xz [p] = Yz [j2 + k*nk] ; /* imag */ } } break ; } break ; } } /* ========================================================================== */ /* === cholmod_solve ======================================================== */ /* ========================================================================== */ /* Solve a linear system. * * The factorization can be simplicial LDL', simplicial LL', or supernodal LL'. * The Dx=b solve returns silently for the LL' factorizations (it is implicitly * identity). */ cholmod_dense *CHOLMOD(solve) ( /* ---- input ---- */ int sys, /* system to solve */ cholmod_factor *L, /* factorization to use */ cholmod_dense *B, /* right-hand-side */ /* --------------- */ cholmod_common *Common ) { cholmod_dense *Y = NULL, *X = NULL ; Int *Perm ; Int n, nrhs, ncols, ctype, xtype, k1, nr, ytype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (L, NULL) ; RETURN_IF_NULL (B, NULL) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; if (sys < CHOLMOD_A || sys > CHOLMOD_Pt) { ERROR (CHOLMOD_INVALID, "invalid system") ; return (NULL) ; } if (B->d < L->n || B->nrow != L->n) { ERROR (CHOLMOD_INVALID, "dimensions of L and B do not match") ; return (NULL) ; } DEBUG (CHOLMOD(dump_factor) (L, "L", Common)) ; DEBUG (CHOLMOD(dump_dense) (B, "B", Common)) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ if ((sys == CHOLMOD_P || sys == CHOLMOD_Pt || sys == CHOLMOD_A) && L->ordering != CHOLMOD_NATURAL) { Perm = L->Perm ; } else { /* do not use L->Perm; use the identity permutation instead */ Perm = NULL ; } nrhs = B->ncol ; n = L->n ; /* ---------------------------------------------------------------------- */ /* allocate the result X */ /* ---------------------------------------------------------------------- */ ctype = (Common->prefer_zomplex) ? CHOLMOD_ZOMPLEX : CHOLMOD_COMPLEX ; if (sys == CHOLMOD_P || sys == CHOLMOD_Pt) { /* x=Pb and x=P'b return X real if B is real; X is the preferred * complex/zcomplex type if B is complex or zomplex */ xtype = (B->xtype == CHOLMOD_REAL) ? CHOLMOD_REAL : ctype ; } else if (L->xtype == CHOLMOD_REAL && B->xtype == CHOLMOD_REAL) { /* X is real if both L and B are real */ xtype = CHOLMOD_REAL ; } else { /* X is complex, use the preferred complex/zomplex type */ xtype = ctype ; } X = CHOLMOD(allocate_dense) (n, nrhs, n, xtype, Common) ; if (Common->status < CHOLMOD_OK) { return (NULL) ; } /* ---------------------------------------------------------------------- */ /* solve using L, D, L', P, or some combination */ /* ---------------------------------------------------------------------- */ if (sys == CHOLMOD_P) { /* ------------------------------------------------------------------ */ /* x = P*b */ /* ------------------------------------------------------------------ */ perm (B, Perm, 0, nrhs, X) ; } else if (sys == CHOLMOD_Pt) { /* ------------------------------------------------------------------ */ /* x = P'*b */ /* ------------------------------------------------------------------ */ iperm (B, Perm, 0, nrhs, X) ; } else if (L->is_super) { /* ------------------------------------------------------------------ */ /* solve using a supernodal LL' factorization */ /* ------------------------------------------------------------------ */ #ifndef NSUPERNODAL Int blas_ok = TRUE ; /* allocate workspace */ cholmod_dense *E ; Int dual ; dual = (L->xtype == CHOLMOD_REAL && B->xtype != CHOLMOD_REAL) ? 2 : 1 ; Y = CHOLMOD(allocate_dense) (n, dual*nrhs, n, L->xtype, Common) ; E = CHOLMOD(allocate_dense) (dual*nrhs, L->maxesize, dual*nrhs, L->xtype, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_dense) (&X, Common) ; CHOLMOD(free_dense) (&Y, Common) ; CHOLMOD(free_dense) (&E, Common) ; return (NULL) ; } perm (B, Perm, 0, nrhs, Y) ; /* Y = P*B */ if (sys == CHOLMOD_A || sys == CHOLMOD_LDLt) { blas_ok = CHOLMOD(super_lsolve) (L, Y, E, Common) ; /* Y = L\Y */ blas_ok = blas_ok && CHOLMOD(super_ltsolve) (L, Y, E, Common) ; /* Y = L'\Y*/ } else if (sys == CHOLMOD_L || sys == CHOLMOD_LD) { blas_ok = CHOLMOD(super_lsolve) (L, Y, E, Common) ; /* Y = L\Y */ } else if (sys == CHOLMOD_Lt || sys == CHOLMOD_DLt) { blas_ok = CHOLMOD(super_ltsolve) (L, Y, E, Common) ; /* Y = L'\Y*/ } CHOLMOD(free_dense) (&E, Common) ; iperm (Y, Perm, 0, nrhs, X) ; /* X = P'*Y */ if (CHECK_BLAS_INT && !blas_ok) { /* Integer overflow in the BLAS. This is probably impossible, * since the BLAS were used to create the supernodal factorization. * It might be possible for the calls to the BLAS to differ between * factorization and forward/backsolves, however. This statement * is untested; it does not appear in the compiled code if * CHECK_BLAS_INT is true (when the same integer is used in CHOLMOD * and the BLAS. */ CHOLMOD(free_dense) (&X, Common) ; } #else /* CHOLMOD Supernodal module not installed */ ERROR (CHOLMOD_NOT_INSTALLED,"Supernodal module not installed") ; #endif } else { /* ------------------------------------------------------------------ */ /* solve using a simplicial LL' or LDL' factorization */ /* ------------------------------------------------------------------ */ if (L->xtype == CHOLMOD_REAL && B->xtype == CHOLMOD_REAL) { /* L, B, and Y are all real */ /* solve with up to 4 columns of B at a time */ ncols = 4 ; nr = MAX (4, nrhs) ; ytype = CHOLMOD_REAL ; } else if (L->xtype == CHOLMOD_REAL) { /* solve with one column of B (real/imag), at a time */ ncols = 1 ; nr = 2 ; ytype = CHOLMOD_REAL ; } else { /* L is complex or zomplex, B is real/complex/zomplex, Y has the * same complexity as L. Solve with one column of B at a time. */ ncols = 1 ; nr = 1 ; ytype = L->xtype ; } Y = CHOLMOD(allocate_dense) (nr, n, nr, ytype, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_dense) (&X, Common) ; CHOLMOD(free_dense) (&Y, Common) ; return (NULL) ; } for (k1 = 0 ; k1 < nrhs ; k1 += ncols) { /* -------------------------------------------------------------- */ /* Y = B (P, k1:k1+ncols-1)' = (P * B (:,...))' */ /* -------------------------------------------------------------- */ ptrans (B, Perm, k1, ncols, Y) ; /* -------------------------------------------------------------- */ /* solve Y = (L' \ (L \ Y'))', or other system, with template */ /* -------------------------------------------------------------- */ switch (L->xtype) { case CHOLMOD_REAL: r_simplicial_solver (sys, L, Y) ; break ; case CHOLMOD_COMPLEX: c_simplicial_solver (sys, L, Y) ; break ; case CHOLMOD_ZOMPLEX: z_simplicial_solver (sys, L, Y) ; break ; } /* -------------------------------------------------------------- */ /* X (P, k1:k2+ncols-1) = Y' */ /* -------------------------------------------------------------- */ iptrans (Y, Perm, k1, ncols, X) ; } } CHOLMOD(free_dense) (&Y, Common) ; DEBUG (CHOLMOD(dump_dense) (X, "X result", Common)) ; return (X) ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_etree.c0000644001170100242450000001604310537777315017615 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_etree =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Compute the elimination tree of A or A'*A * * In the symmetric case, the upper triangular part of A is used. Entries not * in this part of the matrix are ignored. Computing the etree of a symmetric * matrix from just its lower triangular entries is not supported. * * In the unsymmetric case, all of A is used, and the etree of A'*A is computed. * * References: * * J. Liu, "A compact row storage scheme for Cholesky factors", ACM Trans. * Math. Software, vol 12, 1986, pp. 127-148. * * J. Liu, "The role of elimination trees in sparse factorization", SIAM J. * Matrix Analysis & Applic., vol 11, 1990, pp. 134-172. * * J. Gilbert, X. Li, E. Ng, B. Peyton, "Computing row and column counts for * sparse QR and LU factorization", BIT, vol 41, 2001, pp. 693-710. * * workspace: symmetric: Iwork (nrow), unsymmetric: Iwork (nrow+ncol) * * Supports any xtype (pattern, real, complex, or zomplex) */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === update_etree ========================================================= */ /* ========================================================================== */ static void update_etree ( /* inputs, not modified */ Int k, /* process the edge (k,i) in the input graph */ Int i, /* inputs, modified on output */ Int Parent [ ], /* Parent [t] = p if p is the parent of t */ Int Ancestor [ ] /* Ancestor [t] is the ancestor of node t in the partially-constructed etree */ ) { Int a ; for ( ; ; ) /* traverse the path from k to the root of the tree */ { a = Ancestor [k] ; if (a == i) { /* final ancestor reached; no change to tree */ return ; } /* perform path compression */ Ancestor [k] = i ; if (a == EMPTY) { /* final ancestor undefined; this is a new edge in the tree */ Parent [k] = i ; return ; } /* traverse up to the ancestor of k */ k = a ; } } /* ========================================================================== */ /* === cholmod_etree ======================================================== */ /* ========================================================================== */ /* Find the elimination tree of A or A'*A */ int CHOLMOD(etree) ( /* ---- input ---- */ cholmod_sparse *A, /* ---- output --- */ Int *Parent, /* size ncol. Parent [j] = p if p is the parent of j */ /* --------------- */ cholmod_common *Common ) { Int *Ap, *Ai, *Anz, *Ancestor, *Prev, *Iwork ; Int i, j, jprev, p, pend, nrow, ncol, packed, stype ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Parent, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ stype = A->stype ; /* s = A->nrow + (stype ? 0 : A->ncol) */ s = CHOLMOD(add_size_t) (A->nrow, (stype ? 0 : A->ncol), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } ASSERT (CHOLMOD(dump_sparse) (A, "etree", Common) >= 0) ; Iwork = Common->Iwork ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ ncol = A->ncol ; /* the number of columns of A */ nrow = A->nrow ; /* the number of rows of A */ Ap = A->p ; /* size ncol+1, column pointers for A */ Ai = A->i ; /* the row indices of A */ Anz = A->nz ; /* number of nonzeros in each column of A */ packed = A->packed ; Ancestor = Iwork ; /* size ncol (i/i/l) */ for (j = 0 ; j < ncol ; j++) { Parent [j] = EMPTY ; Ancestor [j] = EMPTY ; } /* ---------------------------------------------------------------------- */ /* compute the etree */ /* ---------------------------------------------------------------------- */ if (stype > 0) { /* ------------------------------------------------------------------ */ /* symmetric (upper) case: compute etree (A) */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < ncol ; j++) { /* for each row i in column j of triu(A), excluding the diagonal */ p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i < j) { update_etree (i, j, Parent, Ancestor) ; } } } } else if (stype == 0) { /* ------------------------------------------------------------------ */ /* unsymmetric case: compute etree (A'*A) */ /* ------------------------------------------------------------------ */ Prev = Iwork + ncol ; /* size nrow (i/i/l) */ for (i = 0 ; i < nrow ; i++) { Prev [i] = EMPTY ; } for (j = 0 ; j < ncol ; j++) { /* for each row i in column j of A */ p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { /* a graph is constructed dynamically with one path per row * of A. If the ith row of A contains column indices * (j1,j2,j3,j4) then the new graph has edges (j1,j2), (j2,j3), * and (j3,j4). When at node i of this path-graph, all edges * (jprev,j) are considered, where jprev Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/CHOLMOD/Cholesky/cholmod_spsolve.c0000644001170100242450000002371610634317702020175 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_spsolve ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Given an LL' or LDL' factorization of A, solve one of the following systems: * * Ax=b 0: CHOLMOD_A also applies the permutation L->Perm * LDL'x=b 1: CHOLMOD_LDLt does not apply L->Perm * LDx=b 2: CHOLMOD_LD * DL'x=b 3: CHOLMOD_DLt * Lx=b 4: CHOLMOD_L * L'x=b 5: CHOLMOD_Lt * Dx=b 6: CHOLMOD_D * x=Pb 7: CHOLMOD_P apply a permutation (P is L->Perm) * x=P'b 8: CHOLMOD_Pt apply an inverse permutation * * where b and x are sparse. If L and b are real, then x is real. Otherwise, * x is complex or zomplex, depending on the Common->prefer_zomplex parameter. * All xtypes of x and b are supported (real, complex, and zomplex). */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === EXPAND_AS_NEEDED ===================================================== */ /* ========================================================================== */ /* Double the size of the sparse matrix X, if we have run out of space. */ #define EXPAND_AS_NEEDED \ if (xnz >= nzmax) \ { \ nzmax *= 2 ; \ CHOLMOD(reallocate_sparse) (nzmax, X, Common) ; \ if (Common->status < CHOLMOD_OK) \ { \ CHOLMOD(free_sparse) (&X, Common) ; \ CHOLMOD(free_dense) (&X4, Common) ; \ CHOLMOD(free_dense) (&B4, Common) ; \ return (NULL) ; \ } \ Xi = X->i ; \ Xx = X->x ; \ Xz = X->z ; \ } /* ========================================================================== */ /* === cholmod_spolve ======================================================= */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(spsolve) /* returns the sparse solution X */ ( /* ---- input ---- */ int sys, /* system to solve */ cholmod_factor *L, /* factorization to use */ cholmod_sparse *B, /* right-hand-side */ /* --------------- */ cholmod_common *Common ) { double x, z ; cholmod_dense *X4, *B4 ; cholmod_sparse *X ; double *Bx, *Bz, *Xx, *Xz, *B4x, *B4z, *X4x, *X4z ; Int *Bi, *Bp, *Xp, *Xi, *Bnz ; Int n, nrhs, q, p, i, j, jfirst, jlast, packed, block, pend, j_n, xtype ; size_t xnz, nzmax ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (L, NULL) ; RETURN_IF_NULL (B, NULL) ; RETURN_IF_XTYPE_INVALID (L, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, NULL) ; if (L->n != B->nrow) { ERROR (CHOLMOD_INVALID, "dimensions of L and B do not match") ; return (NULL) ; } if (B->stype) { ERROR (CHOLMOD_INVALID, "B cannot be stored in symmetric mode") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace B4 and initial result X */ /* ---------------------------------------------------------------------- */ n = L->n ; nrhs = B->ncol ; /* X is real if both L and B are real, complex/zomplex otherwise */ xtype = (L->xtype == CHOLMOD_REAL && B->xtype == CHOLMOD_REAL) ? CHOLMOD_REAL : (Common->prefer_zomplex ? CHOLMOD_ZOMPLEX : CHOLMOD_COMPLEX) ; /* solve up to 4 columns at a time */ block = MIN (nrhs, 4) ; /* initial size of X is at most 4*n */ nzmax = n*block ; X = CHOLMOD(spzeros) (n, nrhs, nzmax, xtype, Common) ; B4 = CHOLMOD(zeros) (n, block, B->xtype, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&X, Common) ; CHOLMOD(free_dense) (&B4, Common) ; return (NULL) ; } Bp = B->p ; Bi = B->i ; Bx = B->x ; Bz = B->z ; Bnz = B->nz ; packed = B->packed ; Xp = X->p ; Xi = X->i ; Xx = X->x ; Xz = X->z ; xnz = 0 ; B4x = B4->x ; B4z = B4->z ; /* ---------------------------------------------------------------------- */ /* solve in chunks of 4 columns at a time */ /* ---------------------------------------------------------------------- */ for (jfirst = 0 ; jfirst < nrhs ; jfirst += block) { /* ------------------------------------------------------------------ */ /* adjust the number of columns of B4 */ /* ------------------------------------------------------------------ */ jlast = MIN (nrhs, jfirst + block) ; B4->ncol = jlast - jfirst ; /* ------------------------------------------------------------------ */ /* scatter B(jfirst:jlast-1) into B4 */ /* ------------------------------------------------------------------ */ for (j = jfirst ; j < jlast ; j++) { p = Bp [j] ; pend = (packed) ? (Bp [j+1]) : (p + Bnz [j]) ; j_n = (j-jfirst)*n ; switch (B->xtype) { case CHOLMOD_REAL: for ( ; p < pend ; p++) { B4x [Bi [p] + j_n] = Bx [p] ; } break ; case CHOLMOD_COMPLEX: for ( ; p < pend ; p++) { q = Bi [p] + j_n ; B4x [2*q ] = Bx [2*p ] ; B4x [2*q+1] = Bx [2*p+1] ; } break ; case CHOLMOD_ZOMPLEX: for ( ; p < pend ; p++) { q = Bi [p] + j_n ; B4x [q] = Bx [p] ; B4z [q] = Bz [p] ; } break ; } } /* ------------------------------------------------------------------ */ /* solve the system (X4 = A\B4 or other system) */ /* ------------------------------------------------------------------ */ X4 = CHOLMOD(solve) (sys, L, B4, Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free_sparse) (&X, Common) ; CHOLMOD(free_dense) (&B4, Common) ; CHOLMOD(free_dense) (&X4, Common) ; return (NULL) ; } ASSERT (X4->xtype == xtype) ; X4x = X4->x ; X4z = X4->z ; /* ------------------------------------------------------------------ */ /* append the solution onto X */ /* ------------------------------------------------------------------ */ for (j = jfirst ; j < jlast ; j++) { Xp [j] = xnz ; j_n = (j-jfirst)*n ; if ( xnz + n <= nzmax) { /* ---------------------------------------------------------- */ /* X is guaranteed to be large enough */ /* ---------------------------------------------------------- */ switch (xtype) { case CHOLMOD_REAL: for (i = 0 ; i < n ; i++) { x = X4x [i + j_n] ; if (IS_NONZERO (x)) { Xi [xnz] = i ; Xx [xnz] = x ; xnz++ ; } } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < n ; i++) { x = X4x [2*(i + j_n) ] ; z = X4x [2*(i + j_n)+1] ; if (IS_NONZERO (x) || IS_NONZERO (z)) { Xi [xnz] = i ; Xx [2*xnz ] = x ; Xx [2*xnz+1] = z ; xnz++ ; } } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < n ; i++) { x = X4x [i + j_n] ; z = X4z [i + j_n] ; if (IS_NONZERO (x) || IS_NONZERO (z)) { Xi [xnz] = i ; Xx [xnz] = x ; Xz [xnz] = z ; xnz++ ; } } break ; } } else { /* ---------------------------------------------------------- */ /* X may need to increase in size */ /* ---------------------------------------------------------- */ switch (xtype) { case CHOLMOD_REAL: for (i = 0 ; i < n ; i++) { x = X4x [i + j_n] ; if (IS_NONZERO (x)) { EXPAND_AS_NEEDED ; Xi [xnz] = i ; Xx [xnz] = x ; xnz++ ; } } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < n ; i++) { x = X4x [2*(i + j_n) ] ; z = X4x [2*(i + j_n)+1] ; if (IS_NONZERO (x) || IS_NONZERO (z)) { EXPAND_AS_NEEDED ; Xi [xnz] = i ; Xx [2*xnz ] = x ; Xx [2*xnz+1] = z ; xnz++ ; } } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < n ; i++) { x = X4x [i + j_n] ; z = X4z [i + j_n] ; if (IS_NONZERO (x) || IS_NONZERO (z)) { EXPAND_AS_NEEDED ; Xi [xnz] = i ; Xx [xnz] = x ; Xz [xnz] = z ; xnz++ ; } } break ; } } } CHOLMOD(free_dense) (&X4, Common) ; /* ------------------------------------------------------------------ */ /* clear B4 for next iteration */ /* ------------------------------------------------------------------ */ if (jlast < nrhs) { for (j = jfirst ; j < jlast ; j++) { p = Bp [j] ; pend = (packed) ? (Bp [j+1]) : (p + Bnz [j]) ; j_n = (j-jfirst)*n ; switch (B->xtype) { case CHOLMOD_REAL: for ( ; p < pend ; p++) { B4x [Bi [p] + j_n] = 0 ; } break ; case CHOLMOD_COMPLEX: for ( ; p < pend ; p++) { q = Bi [p] + j_n ; B4x [2*q ] = 0 ; B4x [2*q+1] = 0 ; } break ; case CHOLMOD_ZOMPLEX: for ( ; p < pend ; p++) { q = Bi [p] + j_n ; B4x [q] = 0 ; B4z [q] = 0 ; } break ; } } } } Xp [nrhs] = xnz ; /* ---------------------------------------------------------------------- */ /* reduce X in size, free workspace, and return result */ /* ---------------------------------------------------------------------- */ ASSERT (xnz <= X->nzmax) ; CHOLMOD(reallocate_sparse) (xnz, X, Common) ; ASSERT (Common->status == CHOLMOD_OK) ; CHOLMOD(free_dense) (&B4, Common) ; return (X) ; } #endif SuiteSparse/CHOLMOD/Cholesky/cholmod_postorder.c0000644001170100242450000002301210537777324020524 0ustar davisfac/* ========================================================================== */ /* === Cholesky/cholmod_postorder =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Compute the postorder of a tree. */ #ifndef NCHOLESKY #include "cholmod_internal.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === dfs ================================================================== */ /* ========================================================================== */ /* The code below includes both a recursive and non-recursive depth-first-search * of a tree. The recursive code is simpler, but can lead to stack overflow. * It is left here for reference, to understand what the non-recursive code * is computing. To try the recursive version, uncomment the following * #define, or compile the code with -DRECURSIVE. Be aware that stack * overflow may occur. #define RECURSIVE */ #ifdef RECURSIVE /* recursive version: a working code for reference only, not actual use */ static Int dfs /* return the new value of k */ ( Int p, /* start a DFS at node p */ Int k, /* start the node numbering at k */ Int Post [ ], /* Post ordering, modified on output */ Int Head [ ], /* Head [p] = youngest child of p; EMPTY on output */ Int Next [ ], /* Next [j] = sibling of j; unmodified */ Int Pstack [ ] /* unused */ ) { Int j ; /* start a DFS at each child of node p */ for (j = Head [p] ; j != EMPTY ; j = Next [j]) { /* start a DFS at child node j */ k = dfs (j, k, Post, Head, Next, Pstack) ; } Post [k++] = p ; /* order node p as the kth node */ Head [p] = EMPTY ; /* link list p no longer needed */ return (k) ; /* the next node will be numbered k */ } #else /* non-recursive version for actual use */ static Int dfs /* return the new value of k */ ( Int p, /* start the DFS at a root node p */ Int k, /* start the node numbering at k */ Int Post [ ], /* Post ordering, modified on output */ Int Head [ ], /* Head [p] = youngest child of p; EMPTY on output */ Int Next [ ], /* Next [j] = sibling of j; unmodified */ Int Pstack [ ] /* workspace of size n, undefined on input or output */ ) { Int j, phead ; /* put the root node on the stack */ Pstack [0] = p ; phead = 0 ; /* while the stack is not empty, do: */ while (phead >= 0) { /* grab the node p from top of the stack and get its youngest child j */ p = Pstack [phead] ; j = Head [p] ; if (j == EMPTY) { /* all children of p ordered. remove p from stack and order it */ phead-- ; Post [k++] = p ; /* order node p as the kth node */ } else { /* leave p on the stack. Start a DFS at child node j by putting * j on the stack and removing j from the list of children of p. */ Head [p] = Next [j] ; Pstack [++phead] = j ; } } return (k) ; /* the next node will be numbered k */ } #endif /* ========================================================================== */ /* === cholmod_postorder ==================================================== */ /* ========================================================================== */ /* Postorder a tree. The tree is either an elimination tree (the output from * from cholmod_etree) or a component tree (from cholmod_nested_dissection). * * An elimination tree is a complete tree of n nodes with Parent [j] > j or * Parent [j] = EMPTY if j is a root. On output Post [0..n-1] is a complete * permutation vector. * * A component tree is a subset of 0..n-1. Parent [j] = -2 if node j is not * in the component tree. Parent [j] = EMPTY if j is a root of the component * tree, and Parent [j] is in the range 0 to n-1 if j is in the component * tree but not a root. On output, Post [k] is defined only for nodes in * the component tree. Post [k] = j if node j is the kth node in the * postordered component tree, where k is in the range 0 to the number of * components minus 1. * * Node j is ignored and not included in the postorder if Parent [j] < EMPTY. * * As a result, check_parent (Parent, n,...) may fail on input, since * cholmod_check_parent assumes Parent is an elimination tree. Similarly, * cholmod_check_perm (Post, ...) may fail on output, since Post is a partial * permutation if Parent is a component tree. * * An optional node weight can be given. When starting a postorder at node j, * the children of j are ordered in decreasing order of their weight. * If no weights are given (Weight is NULL) then children are ordered in * decreasing order of their node number. The weight of a node must be in the * range 0 to n-1. Weights outside that range are silently converted to that * range (weights < 0 are treated as zero, and weights >= n are treated as n-1). * * * workspace: Head (n), Iwork (2*n) */ UF_long CHOLMOD(postorder) /* return # of nodes postordered */ ( /* ---- input ---- */ Int *Parent, /* size n. Parent [j] = p if p is the parent of j */ size_t n, Int *Weight, /* size n, optional. Weight [j] is weight of node j */ /* ---- output --- */ Int *Post, /* size n. Post [k] = j is kth in postordered tree */ /* --------------- */ cholmod_common *Common ) { Int *Head, *Next, *Pstack, *Iwork ; Int j, p, k, w, nextj ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (Parent, EMPTY) ; RETURN_IF_NULL (Post, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 2*n */ s = CHOLMOD(mult_size_t) (n, 2, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (EMPTY) ; } CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Head = Common->Head ; /* size n+1, initially all EMPTY */ Iwork = Common->Iwork ; Next = Iwork ; /* size n (i/i/l) */ Pstack = Iwork + n ; /* size n (i/i/l) */ /* ---------------------------------------------------------------------- */ /* construct a link list of children for each node */ /* ---------------------------------------------------------------------- */ if (Weight == NULL) { /* in reverse order so children are in ascending order in each list */ for (j = n-1 ; j >= 0 ; j--) { p = Parent [j] ; if (p >= 0 && p < ((Int) n)) { /* add j to the list of children for node p */ Next [j] = Head [p] ; Head [p] = j ; } } /* Head [p] = j if j is the youngest (least-numbered) child of p */ /* Next [j1] = j2 if j2 is the next-oldest sibling of j1 */ } else { /* First, construct a set of link lists according to Weight. * * Whead [w] = j if node j is the first node in bucket w. * Next [j1] = j2 if node j2 follows j1 in a link list. */ Int *Whead = Pstack ; /* use Pstack as workspace for Whead [ */ for (w = 0 ; w < ((Int) n) ; w++) { Whead [w] = EMPTY ; } /* do in forward order, so nodes that ties are ordered by node index */ for (j = 0 ; j < ((Int) n) ; j++) { p = Parent [j] ; if (p >= 0 && p < ((Int) n)) { w = Weight [j] ; w = MAX (0, w) ; w = MIN (w, ((Int) n) - 1) ; /* place node j at the head of link list for weight w */ Next [j] = Whead [w] ; Whead [w] = j ; } } /* traverse weight buckets, placing each node in its parent's list */ for (w = n-1 ; w >= 0 ; w--) { for (j = Whead [w] ; j != EMPTY ; j = nextj) { nextj = Next [j] ; /* put node j in the link list of its parent */ p = Parent [j] ; ASSERT (p >= 0 && p < ((Int) n)) ; Next [j] = Head [p] ; Head [p] = j ; } } /* Whead no longer needed ] */ /* Head [p] = j if j is the lightest child of p */ /* Next [j1] = j2 if j2 is the next-heaviest sibling of j1 */ } /* ---------------------------------------------------------------------- */ /* start a DFS at each root node of the etree */ /* ---------------------------------------------------------------------- */ k = 0 ; for (j = 0 ; j < ((Int) n) ; j++) { if (Parent [j] == EMPTY) { /* j is the root of a tree; start a DFS here */ k = dfs (j, k, Post, Head, Next, Pstack) ; } } /* this would normally be EMPTY already, unless Parent is invalid */ for (j = 0 ; j < ((Int) n) ; j++) { Head [j] = EMPTY ; } PRINT1 (("postordered "ID" nodes\n", k)) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (k) ; } #endif SuiteSparse/CHOLMOD/Cholesky/t_cholmod_rowfac.c0000644001170100242450000003234310635770603020306 0ustar davisfac/* ========================================================================== */ /* === Cholesky/t_cholmod_rowfac ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Cholesky Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Cholesky Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_rowfac. Supports any numeric xtype * (real, complex, or zomplex). * * workspace: Iwork (n), Flag (n), Xwork (n if real, 2*n if complex) */ #include "cholmod_template.h" #ifdef MASK static int TEMPLATE (cholmod_rowfac_mask) #else static int TEMPLATE (cholmod_rowfac) #endif ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,f)' */ double beta [2], /* factorize beta*I+A or beta*I+AA' (beta [0] only) */ size_t kstart, /* first row to factorize */ size_t kend, /* last row to factorize is kend-1 */ #ifdef MASK /* These inputs are used for cholmod_rowfac_mask only */ Int *mask, /* size A->nrow. if mask[i] then W(i) is set to zero */ Int *RLinkUp, /* size A->nrow. link list of rows to compute */ #endif /* ---- in/out --- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) { double yx [2], lx [2], fx [2], dk [1], di [1], fl = 0 ; #ifdef ZOMPLEX double yz [1], lz [1], fz [1] ; #endif double *Ax, *Az, *Lx, *Lz, *Wx, *Wz, *Fx, *Fz ; Int *Ap, *Anz, *Ai, *Lp, *Lnz, *Li, *Lnext, *Flag, *Stack, *Fp, *Fi, *Fnz, *Iwork ; Int i, p, k, t, pf, pfend, top, s, mark, pend, n, lnz, is_ll, multadds, use_dbound, packed, stype, Fpacked, sorted, nzmax, len, parent ; #ifndef REAL Int dk_imaginary ; #endif /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ PRINT1 (("\nin cholmod_rowfac, kstart %d kend %d stype %d\n", kstart, kend, A->stype)) ; DEBUG (CHOLMOD(dump_factor) (L, "Initial L", Common)) ; n = A->nrow ; stype = A->stype ; if (stype > 0) { /* symmetric upper case: F is not needed. It may be NULL */ Fp = NULL ; Fi = NULL ; Fx = NULL ; Fz = NULL ; Fnz = NULL ; Fpacked = TRUE ; } else { /* unsymmetric case: F is required. */ Fp = F->p ; Fi = F->i ; Fx = F->x ; Fz = F->z ; Fnz = F->nz ; Fpacked = F->packed ; } Ap = A->p ; /* size A->ncol+1, column pointers of A */ Ai = A->i ; /* size nz = Ap [A->ncol], row indices of A */ Ax = A->x ; /* size nz, numeric values of A */ Az = A->z ; Anz = A->nz ; packed = A->packed ; sorted = A->sorted ; use_dbound = IS_GT_ZERO (Common->dbound) ; /* get the current factors L (and D for LDL'); allocate space if needed */ is_ll = L->is_ll ; if (L->xtype == CHOLMOD_PATTERN) { /* ------------------------------------------------------------------ */ /* L is symbolic only; allocate and initialize L (and D for LDL') */ /* ------------------------------------------------------------------ */ /* workspace: none */ CHOLMOD(change_factor) (A->xtype, is_ll, FALSE, FALSE, TRUE, L, Common); if (Common->status < CHOLMOD_OK) { /* out of memory */ return (FALSE) ; } ASSERT (L->minor == (size_t) n) ; } else if (kstart == 0 && kend == (size_t) n) { /* ------------------------------------------------------------------ */ /* refactorization; reset L->nz and L->minor to restart factorization */ /* ------------------------------------------------------------------ */ L->minor = n ; Lnz = L->nz ; for (k = 0 ; k < n ; k++) { Lnz [k] = 1 ; } } ASSERT (is_ll == L->is_ll) ; ASSERT (L->xtype != CHOLMOD_PATTERN) ; DEBUG (CHOLMOD(dump_factor) (L, "L ready", Common)) ; DEBUG (CHOLMOD(dump_sparse) (A, "A ready", Common)) ; DEBUG (if (stype == 0) CHOLMOD(dump_sparse) (F, "F ready", Common)) ; /* inputs, can be modified on output: */ Lp = L->p ; /* size n+1 */ ASSERT (Lp != NULL) ; /* outputs, contents defined on input for incremental case only: */ Lnz = L->nz ; /* size n */ Lnext = L->next ; /* size n+2 */ Li = L->i ; /* size L->nzmax, can change in size */ Lx = L->x ; /* size L->nzmax or 2*L->nzmax, can change in size */ Lz = L->z ; /* size L->nzmax for zomplex case, can change in size */ nzmax = L->nzmax ; ASSERT (Lnz != NULL && Li != NULL && Lx != NULL) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Stack = Iwork ; /* size n (i/i/l) */ Flag = Common->Flag ; /* size n, Flag [i] < mark must hold */ Wx = Common->Xwork ; /* size n if real, 2*n if complex or * zomplex. Xwork [i] == 0 must hold. */ Wz = Wx + n ; /* size n for zomplex case only */ mark = Common->mark ; ASSERT ((Int) Common->xworksize >= (L->xtype == CHOLMOD_REAL ? 1:2)*n) ; /* ---------------------------------------------------------------------- */ /* compute LDL' or LL' factorization by rows */ /* ---------------------------------------------------------------------- */ #ifdef MASK #define NEXT(k) k = RLinkUp [k] #else #define NEXT(k) k++ #endif for (k = kstart ; k < ((Int) kend) ; NEXT(k)) { PRINT1 (("\n===============K "ID" Lnz [k] "ID"\n", k, Lnz [k])) ; /* ------------------------------------------------------------------ */ /* compute pattern of kth row of L and scatter kth input column */ /* ------------------------------------------------------------------ */ /* column k of L is currently empty */ ASSERT (Lnz [k] == 1) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 2*n, Common)) ; top = n ; /* Stack is empty */ Flag [k] = mark ; /* do not include diagonal entry in Stack */ /* use Li [Lp [i]+1] for etree */ #define PARENT(i) (Lnz [i] > 1) ? (Li [Lp [i] + 1]) : EMPTY if (stype > 0) { /* scatter kth col of triu (beta*I+AA'), get pattern L(k,:) */ p = Ap [k] ; pend = (packed) ? (Ap [k+1]) : (p + Anz [k]) ; /* W [i] = Ax [i] ; scatter column of A */ #define SCATTER ASSIGN(Wx,Wz,i, Ax,Az,p) SUBTREE ; #undef SCATTER } else { /* scatter kth col of triu (beta*I+AA'), get pattern L(k,:) */ pf = Fp [k] ; pfend = (Fpacked) ? (Fp [k+1]) : (pf + Fnz [k]) ; for ( ; pf < pfend ; pf++) { /* get nonzero entry F (t,k) */ t = Fi [pf] ; /* fk = Fx [pf] */ ASSIGN (fx, fz, 0, Fx, Fz, pf) ; p = Ap [t] ; pend = (packed) ? (Ap [t+1]) : (p + Anz [t]) ; multadds = 0 ; /* W [i] += Ax [p] * fx ; scatter column of A*A' */ #define SCATTER MULTADD (Wx,Wz,i, Ax,Az,p, fx,fz,0) ; multadds++ ; SUBTREE ; #undef SCATTER #ifdef REAL fl += 2 * ((double) multadds) ; #else fl += 8 * ((double) multadds) ; #endif } } #undef PARENT /* ------------------------------------------------------------------ */ /* if mask is present, set the corresponding entries in W to zero */ /* ------------------------------------------------------------------ */ #ifdef MASK /* remove the dead element of Wx */ if (mask != NULL) { #if 0 /* older version */ for (p = n; p > top;) { i = Stack [--p] ; if ( mask [i] >= 0 ) { CLEAR (Wx,Wz,i) ; /* set W(i) to zero */ } } #endif for (s = top ; s < n ; s++) { i = Stack [s] ; if (mask [i] >= 0) { CLEAR (Wx,Wz,i) ; /* set W(i) to zero */ } } } #endif /* nonzero pattern of kth row of L is now in Stack [top..n-1]. * Flag [Stack [top..n-1]] is equal to mark, but no longer needed */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* ------------------------------------------------------------------ */ /* compute kth row of L and store in column form */ /* ------------------------------------------------------------------ */ /* Solve L (0:k-1, 0:k-1) * y (0:k-1) = b (0:k-1) where * b (0:k) = A (0:k,k) or A(0:k,:) * F(:,k) is in W and Stack. * * For LDL' factorization: * L (k, 0:k-1) = y (0:k-1) ./ D (0:k-1) * D (k) = b (k) - L (k, 0:k-1) * y (0:k-1) * * For LL' factorization: * L (k, 0:k-1) = y (0:k-1) * L (k,k) = sqrt (b (k) - L (k, 0:k-1) * L (0:k-1, k)) */ /* dk = W [k] + beta */ ADD_REAL (dk,0, Wx,k, beta,0) ; #ifndef REAL /* In the unsymmetric case, the imaginary part of W[k] must be real, * since F is assumed to be the complex conjugate transpose of A. In * the symmetric case, W[k] is the diagonal of A. If the imaginary part * of W[k] is nonzero, then the Cholesky factorization cannot be * computed; A is not positive definite */ dk_imaginary = (stype > 0) ? (IMAG_IS_NONZERO (Wx,Wz,k)) : FALSE ; #endif /* W [k] = 0.0 ; */ CLEAR (Wx,Wz,k) ; for (s = top ; s < n ; s++) { /* get i for each nonzero entry L(k,i) */ i = Stack [s] ; /* y = W [i] ; */ ASSIGN (yx,yz,0, Wx,Wz,i) ; /* W [i] = 0.0 ; */ CLEAR (Wx,Wz,i) ; lnz = Lnz [i] ; p = Lp [i] ; ASSERT (lnz > 0 && Li [p] == i) ; pend = p + lnz ; /* di = Lx [p] ; the diagonal entry L or D(i,i), which is real */ ASSIGN_REAL (di,0, Lx,p) ; if (i >= (Int) L->minor || IS_ZERO (di [0])) { /* For the LL' factorization, L(i,i) is zero. For the LDL', * D(i,i) is zero. Skip column i of L, and set L(k,i) = 0. */ CLEAR (lx,lz,0) ; p = pend ; } else if (is_ll) { #ifdef REAL fl += 2 * ((double) (pend - p - 1)) + 3 ; #else fl += 8 * ((double) (pend - p - 1)) + 6 ; #endif /* forward solve using L (i:(k-1),i) */ /* divide by L(i,i), which must be real and nonzero */ /* y /= di [0] */ DIV_REAL (yx,yz,0, yx,yz,0, di,0) ; for (p++ ; p < pend ; p++) { /* W [Li [p]] -= Lx [p] * y ; */ MULTSUB (Wx,Wz,Li[p], Lx,Lz,p, yx,yz,0) ; } /* do not scale L; compute dot product for L(k,k) */ /* L(k,i) = conj(y) ; */ ASSIGN_CONJ (lx,lz,0, yx,yz,0) ; /* d -= conj(y) * y ; */ LLDOT (dk,0, yx,yz,0) ; } else { #ifdef REAL fl += 2 * ((double) (pend - p - 1)) + 3 ; #else fl += 8 * ((double) (pend - p - 1)) + 6 ; #endif /* forward solve using D (i,i) and L ((i+1):(k-1),i) */ for (p++ ; p < pend ; p++) { /* W [Li [p]] -= Lx [p] * y ; */ MULTSUB (Wx,Wz,Li[p], Lx,Lz,p, yx,yz,0) ; } /* Scale L (k,0:k-1) for LDL' factorization, compute D (k,k)*/ #ifdef REAL /* L(k,i) = y/d */ lx [0] = yx [0] / di [0] ; /* d -= L(k,i) * y */ dk [0] -= lx [0] * yx [0] ; #else /* L(k,i) = conj(y) ; */ ASSIGN_CONJ (lx,lz,0, yx,yz,0) ; /* L(k,i) /= di ; */ DIV_REAL (lx,lz,0, lx,lz,0, di,0) ; /* d -= conj(y) * y / di */ LDLDOT (dk,0, yx,yz,0, di,0) ; #endif } /* determine if column i of L can hold the new L(k,i) entry */ if (p >= Lp [Lnext [i]]) { /* column i needs to grow */ PRINT1 (("Factor Colrealloc "ID", old Lnz "ID"\n", i, Lnz [i])); if (!CHOLMOD(reallocate_column) (i, lnz + 1, L, Common)) { /* out of memory, L is now simplicial symbolic */ for (i = 0 ; i < n ; i++) { /* W [i] = 0 ; */ CLEAR (Wx,Wz,i) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, n, Common)) ; return (FALSE) ; } Li = L->i ; /* L->i, L->x, L->z may have moved */ Lx = L->x ; Lz = L->z ; p = Lp [i] + lnz ; /* contents of L->p changed */ ASSERT (p < Lp [Lnext [i]]) ; } /* store L (k,i) in the column form matrix of L */ Li [p] = k ; /* Lx [p] = L(k,i) ; */ ASSIGN (Lx,Lz,p, lx,lz,0) ; Lnz [i]++ ; } /* ------------------------------------------------------------------ */ /* ensure abs (d) >= dbound if dbound is given, and store it in L */ /* ------------------------------------------------------------------ */ p = Lp [k] ; Li [p] = k ; if (k >= (Int) L->minor) { /* the matrix is already not positive definite */ dk [0] = 0 ; } else if (use_dbound) { /* modify the diagonal to force LL' or LDL' to exist */ dk [0] = CHOLMOD(dbound) (is_ll ? fabs (dk [0]) : dk [0], Common) ; } else if ((is_ll ? (IS_LE_ZERO (dk [0])) : (IS_ZERO (dk [0]))) #ifndef REAL || dk_imaginary #endif ) { /* the matrix has just been found to be not positive definite */ dk [0] = 0 ; L->minor = k ; ERROR (CHOLMOD_NOT_POSDEF, "not positive definite") ; } if (is_ll) { /* this is counted as one flop, below */ dk [0] = sqrt (dk [0]) ; } /* Lx [p] = D(k,k) = d ; real part only */ ASSIGN_REAL (Lx,p, dk,0) ; CLEAR_IMAG (Lx,Lz,p) ; } #undef NEXT if (is_ll) fl += MAX ((Int) kend - (Int) kstart, 0) ; /* count sqrt's */ Common->rowfacfl = fl ; DEBUG (CHOLMOD(dump_factor) (L, "final cholmod_rowfac", Common)) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, n, Common)) ; return (TRUE) ; } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/MatrixOps/0000755001170100242450000000000010677243320014766 5ustar davisfacSuiteSparse/CHOLMOD/MatrixOps/cholmod_ssmult.c0000644001170100242450000003401510660074474020175 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_ssmult ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = A*B. Multiply two sparse matrices. * * A and B can be packed or unpacked, sorted or unsorted, and of any stype. * If A or B are symmetric, an internal unsymmetric copy is made first, however. * C is computed as if A and B are unsymmetric, and then if the stype input * parameter requests a symmetric form (upper or lower) the matrix is converted * into that form. * * C is returned as packed, and either unsorted or sorted, depending on the * "sorted" input parameter. If C is returned sorted, then either C = (B'*A')' * or C = (A*B)'' is computed, depending on the number of nonzeros in A, B, and * C. * * workspace: * if C unsorted: Flag (A->nrow), W (A->nrow) if values * if C sorted: Flag (B->ncol), W (B->ncol) if values * Iwork (max (A->ncol, A->nrow, B->nrow, B->ncol)) * allocates temporary copies for A, B, and C, if required. * * Only pattern and real matrices are supported. Complex and zomplex matrices * are supported only when the numerical values are not computed ("values" * is FALSE). */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === cholmod_ssmult ======================================================= */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(ssmult) ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to multiply */ cholmod_sparse *B, /* right matrix to multiply */ int stype, /* requested stype of C */ int values, /* TRUE: do numerical values, FALSE: pattern only */ int sorted, /* if TRUE then return C with sorted columns */ /* --------------- */ cholmod_common *Common ) { double bjt ; double *Ax, *Bx, *Cx, *W ; Int *Ap, *Anz, *Ai, *Bp, *Bnz, *Bi, *Cp, *Ci, *Flag ; cholmod_sparse *C, *A2, *B2, *A3, *B3, *C2 ; Int apacked, bpacked, j, i, pa, paend, pb, pbend, ncol, mark, cnz, t, p, nrow, anz, bnz, do_swap_and_transpose, n1, n2 ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_NULL (B, NULL) ; values = values && (A->xtype != CHOLMOD_PATTERN) && (B->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->ncol != B->nrow) { /* inner dimensions must agree */ ERROR (CHOLMOD_INVALID, "A and B inner dimensions must match") ; return (NULL) ; } /* A and B must have the same numerical type if values is TRUE (both must * be CHOLMOD_REAL, this is implicitly checked above) */ Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ if (A->nrow <= 1) { /* C will be implicitly sorted, so no need to sort it here */ sorted = FALSE ; } if (sorted) { n1 = MAX (A->nrow, B->ncol) ; } else { n1 = A->nrow ; } n2 = MAX4 (A->ncol, A->nrow, B->nrow, B->ncol) ; CHOLMOD(allocate_work) (n1, n2, values ? n1 : 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1 : 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* convert A to unsymmetric, if necessary */ A2 = NULL ; B2 = NULL ; if (A->stype) { /* workspace: Iwork (max (A->nrow,A->ncol)) */ A2 = CHOLMOD(copy) (A, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; return (NULL) ; } A = A2 ; } /* convert B to unsymmetric, if necessary */ if (B->stype) { /* workspace: Iwork (max (B->nrow,B->ncol)) */ B2 = CHOLMOD(copy) (B, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; return (NULL) ; } B = B2 ; } ASSERT (CHOLMOD(dump_sparse) (A, "A", Common) >= 0) ; ASSERT (CHOLMOD(dump_sparse) (B, "B", Common) >= 0) ; /* get the A matrix */ Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; apacked = A->packed ; /* get the B matrix */ Bp = B->p ; Bnz = B->nz ; Bi = B->i ; Bx = B->x ; bpacked = B->packed ; /* get the size of C */ nrow = A->nrow ; ncol = B->ncol ; /* get workspace */ W = Common->Xwork ; /* size nrow, unused if values is FALSE */ Flag = Common->Flag ; /* size nrow, Flag [0..nrow-1] < mark on input*/ /* ---------------------------------------------------------------------- */ /* count the number of entries in the result C */ /* ---------------------------------------------------------------------- */ cnz = 0 ; for (j = 0 ; j < ncol ; j++) { /* clear the Flag array */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* for each nonzero B(t,j) in column j, do: */ pb = Bp [j] ; pbend = (bpacked) ? (Bp [j+1]) : (pb + Bnz [j]) ; for ( ; pb < pbend ; pb++) { /* B(t,j) is nonzero */ t = Bi [pb] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) */ pa = Ap [t] ; paend = (apacked) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; cnz++ ; } } } if (cnz < 0) { break ; /* integer overflow case */ } } /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* ---------------------------------------------------------------------- */ /* check for integer overflow */ /* ---------------------------------------------------------------------- */ if (cnz < 0) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; return (NULL) ; } /* ---------------------------------------------------------------------- */ /* Determine how to return C sorted (if requested) */ /* ---------------------------------------------------------------------- */ do_swap_and_transpose = FALSE ; if (sorted) { /* Determine the best way to return C with sorted columns. Computing * C = (B'*A')' takes cnz + anz + bnz time (ignoring O(n) terms). * Sorting C when done, C = (A*B)'', takes 2*cnz time. Pick the one * with the least amount of work. */ anz = CHOLMOD(nnz) (A, Common) ; bnz = CHOLMOD(nnz) (B, Common) ; do_swap_and_transpose = (anz + bnz < cnz) ; if (do_swap_and_transpose) { /* -------------------------------------------------------------- */ /* C = (B'*A')' */ /* -------------------------------------------------------------- */ /* workspace: Iwork (A->nrow) */ A3 = CHOLMOD(ptranspose) (A, values, NULL, NULL, 0, Common) ; CHOLMOD(free_sparse) (&A2, Common) ; A2 = A3 ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)); return (NULL) ; } /* workspace: Iwork (B->nrow) */ B3 = CHOLMOD(ptranspose) (B, values, NULL, NULL, 0, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; B2 = B3 ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)); return (NULL) ; } A = B2 ; B = A2 ; /* get the new A matrix */ Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; apacked = A->packed ; /* get the new B matrix */ Bp = B->p ; Bnz = B->nz ; Bi = B->i ; Bx = B->x ; bpacked = B->packed ; /* get the size of C' */ nrow = A->nrow ; ncol = B->ncol ; } } /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (nrow, ncol, cnz, FALSE, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* C = A*B */ /* ---------------------------------------------------------------------- */ cnz = 0 ; if (values) { /* pattern and values */ for (j = 0 ; j < ncol ; j++) { /* clear the Flag array */ /* mark = CHOLMOD(clear_flag (Common)) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* start column j of C */ Cp [j] = cnz ; /* for each nonzero B(t,j) in column j, do: */ pb = Bp [j] ; pbend = (bpacked) ? (Bp [j+1]) : (pb + Bnz [j]) ; for ( ; pb < pbend ; pb++) { /* B(t,j) is nonzero */ t = Bi [pb] ; bjt = Bx [pb] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) * and scatter the values into W */ pa = Ap [t] ; paend = (apacked) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; Ci [cnz++] = i ; } W [i] += Ax [pa] * bjt ; } } /* gather the values into C(:,j) */ for (p = Cp [j] ; p < cnz ; p++) { i = Ci [p] ; Cx [p] = W [i] ; W [i] = 0 ; } } } else { /* pattern only */ for (j = 0 ; j < ncol ; j++) { /* clear the Flag array */ /* mark = CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; mark = Common->mark ; /* start column j of C */ Cp [j] = cnz ; /* for each nonzero B(t,j) in column j, do: */ pb = Bp [j] ; pbend = (bpacked) ? (Bp [j+1]) : (pb + Bnz [j]) ; for ( ; pb < pbend ; pb++) { /* B(t,j) is nonzero */ t = Bi [pb] ; /* add the nonzero pattern of A(:,t) to the pattern of C(:,j) */ pa = Ap [t] ; paend = (apacked) ? (Ap [t+1]) : (pa + Anz [t]) ; for ( ; pa < paend ; pa++) { i = Ai [pa] ; if (Flag [i] != mark) { Flag [i] = mark ; Ci [cnz++] = i ; } } } } } Cp [ncol] = cnz ; ASSERT (MAX (1,cnz) == C->nzmax) ; /* ---------------------------------------------------------------------- */ /* clear workspace and free temporary matrices */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; /* CHOLMOD(clear_flag) (Common) ; */ CHOLMOD_CLEAR_FLAG (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; /* ---------------------------------------------------------------------- */ /* convert C to a symmetric upper/lower matrix if requested */ /* ---------------------------------------------------------------------- */ /* convert C in place, which cannot fail since no memory is allocated */ if (stype > 0) { /* C = triu (C), in place */ (void) CHOLMOD(band_inplace) (0, ncol, values, C, Common) ; C->stype = 1 ; } else if (stype < 0) { /* C = tril (C), in place */ (void) CHOLMOD(band_inplace) (-nrow, 0, values, C, Common) ; C->stype = -1 ; } ASSERT (Common->status >= CHOLMOD_OK) ; /* ---------------------------------------------------------------------- */ /* sort C, if requested */ /* ---------------------------------------------------------------------- */ if (sorted) { if (do_swap_and_transpose) { /* workspace: Iwork (C->ncol), which is A->nrow since C=(B'*A') */ C2 = CHOLMOD(ptranspose) (C, values, NULL, NULL, 0, Common) ; CHOLMOD(free_sparse) (&C, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)); return (NULL) ; } C = C2 ; } else { /* workspace: Iwork (max (C->nrow,C->ncol)) */ if (!CHOLMOD(sort) (C, Common)) { /* out of memory */ CHOLMOD(free_sparse) (&C, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)); return (NULL) ; } } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ DEBUG (CHOLMOD(dump_sparse) (C, "ssmult", Common) >= 0) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, values ? n1:0, Common)) ; return (C) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/cholmod_drop.c0000644001170100242450000001207210537777671017625 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_drop =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Drop small entries from A, and entries in the ignored part of A if A * is symmetric. None of the matrix operations drop small numerical entries * from a matrix, except for this one. NaN's and Inf's are kept. * * workspace: none * * Supports pattern and real matrices, complex and zomplex not supported. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === cholmod_drop ========================================================= */ /* ========================================================================== */ int CHOLMOD(drop) ( /* ---- input ---- */ double tol, /* keep entries with absolute value > tol */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to drop entries from */ /* --------------- */ cholmod_common *Common ) { double aij ; double *Ax ; Int *Ap, *Ai, *Anz ; Int packed, i, j, nrow, ncol, p, pend, nz, values ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_REAL, FALSE) ; Common->status = CHOLMOD_OK ; ASSERT (CHOLMOD(dump_sparse) (A, "A predrop", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Anz = A->nz ; packed = A->packed ; ncol = A->ncol ; nrow = A->nrow ; values = (A->xtype != CHOLMOD_PATTERN) ; nz = 0 ; if (values) { /* ------------------------------------------------------------------ */ /* drop small numerical entries from A, and entries in ignored part */ /* ------------------------------------------------------------------ */ if (A->stype > 0) { /* -------------------------------------------------------------- */ /* A is symmetric, with just upper triangular part stored */ /* -------------------------------------------------------------- */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Ap [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; aij = Ax [p] ; if (i <= j && (fabs (aij) > tol || IS_NAN (aij))) { Ai [nz] = i ; Ax [nz] = aij ; nz++ ; } } } } else if (A->stype < 0) { /* -------------------------------------------------------------- */ /* A is symmetric, with just lower triangular part stored */ /* -------------------------------------------------------------- */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Ap [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; aij = Ax [p] ; if (i >= j && (fabs (aij) > tol || IS_NAN (aij))) { Ai [nz] = i ; Ax [nz] = aij ; nz++ ; } } } } else { /* -------------------------------------------------------------- */ /* both parts of A present, just drop small entries */ /* -------------------------------------------------------------- */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; Ap [j] = nz ; for ( ; p < pend ; p++) { i = Ai [p] ; aij = Ax [p] ; if (fabs (aij) > tol || IS_NAN (aij)) { Ai [nz] = i ; Ax [nz] = aij ; nz++ ; } } } } Ap [ncol] = nz ; /* reduce A->i and A->x in size */ ASSERT (MAX (1,nz) <= A->nzmax) ; CHOLMOD(reallocate_sparse) (nz, A, Common) ; ASSERT (Common->status >= CHOLMOD_OK) ; } else { /* ------------------------------------------------------------------ */ /* consider only the pattern of A */ /* ------------------------------------------------------------------ */ /* Note that cholmod_band_inplace calls cholmod_reallocate_sparse */ if (A->stype > 0) { CHOLMOD(band_inplace) (0, ncol, 0, A, Common) ; } else if (A->stype < 0) { CHOLMOD(band_inplace) (-nrow, 0, 0, A, Common) ; } } ASSERT (CHOLMOD(dump_sparse) (A, "A dropped", Common) >= 0) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/License.txt0000644001170100242450000000204510540000276017100 0ustar davisfacCHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/MatrixOps module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/MatrixOps/cholmod_norm.c0000644001170100242450000002641210537777677017645 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_norm =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* r = norm (A), compute the infinity-norm, 1-norm, or 2-norm of a sparse or * dense matrix. Can compute the 2-norm only for a dense column vector. * Returns -1 if an error occurs. * * Pattern, real, complex, and zomplex sparse matrices are supported. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === abs_value ============================================================ */ /* ========================================================================== */ /* Compute the absolute value of a real, complex, or zomplex value */ static double abs_value ( int xtype, double *Ax, double *Az, Int p, cholmod_common *Common ) { double s = 0 ; switch (xtype) { case CHOLMOD_PATTERN: s = 1 ; break ; case CHOLMOD_REAL: s = fabs (Ax [p]) ; break ; case CHOLMOD_COMPLEX: s = Common->hypotenuse (Ax [2*p], Ax [2*p+1]) ; break ; case CHOLMOD_ZOMPLEX: s = Common->hypotenuse (Ax [p], Az [p]) ; break ; } return (s) ; } /* ========================================================================== */ /* === cholmod_norm_dense =================================================== */ /* ========================================================================== */ double CHOLMOD(norm_dense) ( /* ---- input ---- */ cholmod_dense *X, /* matrix to compute the norm of */ int norm, /* type of norm: 0: inf. norm, 1: 1-norm, 2: 2-norm */ /* --------------- */ cholmod_common *Common ) { double xnorm, s, x, z ; double *Xx, *Xz, *W ; Int nrow, ncol, d, i, j, use_workspace, xtype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (X, EMPTY) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; ncol = X->ncol ; if (norm < 0 || norm > 2 || (norm == 2 && ncol > 1)) { ERROR (CHOLMOD_INVALID, "invalid norm") ; return (EMPTY) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = X->nrow ; d = X->d ; Xx = X->x ; Xz = X->z ; xtype = X->xtype ; /* ---------------------------------------------------------------------- */ /* allocate workspace, if needed */ /* ---------------------------------------------------------------------- */ W = NULL ; use_workspace = (norm == 0 && ncol > 4) ; if (use_workspace) { CHOLMOD(allocate_work) (0, 0, nrow, Common) ; W = Common->Xwork ; if (Common->status < CHOLMOD_OK) { /* oops, no workspace */ use_workspace = FALSE ; } } /* ---------------------------------------------------------------------- */ /* compute the norm */ /* ---------------------------------------------------------------------- */ xnorm = 0 ; if (use_workspace) { /* ------------------------------------------------------------------ */ /* infinity-norm = max row sum, using stride-1 access of X */ /* ------------------------------------------------------------------ */ DEBUG (for (i = 0 ; i < nrow ; i++) ASSERT (W [i] == 0)) ; /* this is faster than stride-d, but requires O(nrow) workspace */ for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { W [i] += abs_value (xtype, Xx, Xz, i+j*d, Common) ; } } for (i = 0 ; i < nrow ; i++) { s = W [i] ; if ((IS_NAN (s) || s > xnorm) && !IS_NAN (xnorm)) { xnorm = s ; } W [i] = 0 ; } } else if (norm == 0) { /* ------------------------------------------------------------------ */ /* infinity-norm = max row sum, using stride-d access of X */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < nrow ; i++) { s = 0 ; for (j = 0 ; j < ncol ; j++) { s += abs_value (xtype, Xx, Xz, i+j*d, Common) ; } if ((IS_NAN (s) || s > xnorm) && !IS_NAN (xnorm)) { xnorm = s ; } } } else if (norm == 1) { /* ------------------------------------------------------------------ */ /* 1-norm = max column sum */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < ncol ; j++) { s = 0 ; for (i = 0 ; i < nrow ; i++) { s += abs_value (xtype, Xx, Xz, i+j*d, Common) ; } if ((IS_NAN (s) || s > xnorm) && !IS_NAN (xnorm)) { xnorm = s ; } } } else { /* ------------------------------------------------------------------ */ /* 2-norm = sqrt (sum (X.^2)) */ /* ------------------------------------------------------------------ */ switch (xtype) { case CHOLMOD_REAL: for (i = 0 ; i < nrow ; i++) { x = Xx [i] ; xnorm += x*x ; } break ; case CHOLMOD_COMPLEX: for (i = 0 ; i < nrow ; i++) { x = Xx [2*i ] ; z = Xx [2*i+1] ; xnorm += x*x + z*z ; } break ; case CHOLMOD_ZOMPLEX: for (i = 0 ; i < nrow ; i++) { x = Xx [i] ; z = Xz [i] ; xnorm += x*x + z*z ; } break ; } xnorm = sqrt (xnorm) ; } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ return (xnorm) ; } /* ========================================================================== */ /* === cholmod_norm_sparse ================================================== */ /* ========================================================================== */ double CHOLMOD(norm_sparse) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to compute the norm of */ int norm, /* type of norm: 0: inf. norm, 1: 1-norm */ /* --------------- */ cholmod_common *Common ) { double anorm, s ; double *Ax, *Az, *W ; Int *Ap, *Ai, *Anz ; Int i, j, p, pend, nrow, ncol, packed, xtype ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; ncol = A->ncol ; nrow = A->nrow ; if (norm < 0 || norm > 1) { ERROR (CHOLMOD_INVALID, "invalid norm") ; return (EMPTY) ; } if (A->stype && nrow != ncol) { ERROR (CHOLMOD_INVALID, "matrix invalid") ; return (EMPTY) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; packed = A->packed ; xtype = A->xtype ; /* ---------------------------------------------------------------------- */ /* allocate workspace, if needed */ /* ---------------------------------------------------------------------- */ W = NULL ; if (A->stype || norm == 0) { CHOLMOD(allocate_work) (0, 0, nrow, Common) ; W = Common->Xwork ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (EMPTY) ; } DEBUG (for (i = 0 ; i < nrow ; i++) ASSERT (W [i] == 0)) ; } /* ---------------------------------------------------------------------- */ /* compute the norm */ /* ---------------------------------------------------------------------- */ anorm = 0 ; if (A->stype > 0) { /* ------------------------------------------------------------------ */ /* A is symmetric with upper triangular part stored */ /* ------------------------------------------------------------------ */ /* infinity-norm = 1-norm = max row/col sum */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; s = abs_value (xtype, Ax, Az, p, Common) ; if (i == j) { W [i] += s ; } else if (i < j) { W [i] += s ; W [j] += s ; } } } } else if (A->stype < 0) { /* ------------------------------------------------------------------ */ /* A is symmetric with lower triangular part stored */ /* ------------------------------------------------------------------ */ /* infinity-norm = 1-norm = max row/col sum */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; s = abs_value (xtype, Ax, Az, p, Common) ; if (i == j) { W [i] += s ; } else if (i > j) { W [i] += s ; W [j] += s ; } } } } else if (norm == 0) { /* ------------------------------------------------------------------ */ /* A is unsymmetric, compute the infinity-norm */ /* ------------------------------------------------------------------ */ /* infinity-norm = max row sum */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { W [Ai [p]] += abs_value (xtype, Ax, Az, p, Common) ; } } } else { /* ------------------------------------------------------------------ */ /* A is unsymmetric, compute the 1-norm */ /* ------------------------------------------------------------------ */ /* 1-norm = max column sum */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; if (xtype == CHOLMOD_PATTERN) { s = pend - p ; } else { s = 0 ; for ( ; p < pend ; p++) { s += abs_value (xtype, Ax, Az, p, Common) ; } } if ((IS_NAN (s) || s > anorm) && !IS_NAN (anorm)) { anorm = s ; } } } /* ---------------------------------------------------------------------- */ /* compute the max row sum */ /* ---------------------------------------------------------------------- */ if (A->stype || norm == 0) { for (i = 0 ; i < nrow ; i++) { s = W [i] ; if ((IS_NAN (s) || s > anorm) && !IS_NAN (anorm)) { anorm = s ; } W [i] = 0 ; } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ return (anorm) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/gpl.txt0000644001170100242450000004313310253404124016304 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/MatrixOps/cholmod_scale.c0000644001170100242450000001441210537777717017751 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_scale ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* scale a matrix: A = diag(s)*A, A*diag(s), s*A, or diag(s)*A*diag(s) * * A can be of any type (packed/unpacked, upper/lower/unsymmetric). * The symmetry of A is ignored; all entries in the matrix are modified. * * If A is m-by-n unsymmetric but scaled symmtrically, the result is * A = diag (s (1:m)) * A * diag (s (1:n)). * * Note: diag(s) should be interpretted as spdiags(s,0,n,n) where n=length(s). * * Row or column scaling of a symmetric matrix still results in a symmetric * matrix, since entries are still ignored by other routines. * For example, when row-scaling a symmetric matrix where just the upper * triangular part is stored (and lower triangular entries ignored) * A = diag(s)*triu(A) is performed, where the result A is also * symmetric-upper. This has the effect of modifying the implicit lower * triangular part. In MATLAB notation: * * U = diag(s)*triu(A) ; * L = tril (U',-1) * A = L + U ; * * The scale parameter determines the kind of scaling to perform: * * CHOLMOD_SCALAR: s[0]*A * CHOLMOD_ROW: diag(s)*A * CHOLMOD_COL: A*diag(s) * CHOLMOD_SYM: diag(s)*A*diag(s) * * The size of S depends on the scale parameter: * * CHOLMOD_SCALAR: size 1 * CHOLMOD_ROW: size nrow-by-1 or 1-by-nrow * CHOLMOD_COL: size ncol-by-1 or 1-by-ncol * CHOLMOD_SYM: size max(nrow,ncol)-by-1, or 1-by-max(nrow,ncol) * * workspace: none * * Only real matrices are supported. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === cholmod_scale ======================================================== */ /* ========================================================================== */ int CHOLMOD(scale) ( /* ---- input ---- */ cholmod_dense *S, /* scale factors (scalar or vector) */ int scale, /* type of scaling to compute */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to scale */ /* --------------- */ cholmod_common *Common ) { double t ; double *Ax, *s ; Int *Ap, *Anz, *Ai ; Int packed, j, ncol, nrow, p, pend, sncol, snrow, nn, ok ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (S, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; RETURN_IF_XTYPE_INVALID (S, CHOLMOD_REAL, CHOLMOD_REAL, FALSE) ; ncol = A->ncol ; nrow = A->nrow ; sncol = S->ncol ; snrow = S->nrow ; if (scale == CHOLMOD_SCALAR) { ok = (snrow == 1 && sncol == 1) ; } else if (scale == CHOLMOD_ROW) { ok = (snrow == nrow && sncol == 1) || (snrow == 1 && sncol == nrow) ; } else if (scale == CHOLMOD_COL) { ok = (snrow == ncol && sncol == 1) || (snrow == 1 && sncol == ncol) ; } else if (scale == CHOLMOD_SYM) { nn = MAX (nrow, ncol) ; ok = (snrow == nn && sncol == 1) || (snrow == 1 && sncol == nn) ; } else { /* scale invalid */ ERROR (CHOLMOD_INVALID, "invalid scaling option") ; return (FALSE) ; } if (!ok) { /* S is wrong size */ ERROR (CHOLMOD_INVALID, "invalid scale factors") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; packed = A->packed ; s = S->x ; /* ---------------------------------------------------------------------- */ /* scale the matrix */ /* ---------------------------------------------------------------------- */ if (scale == CHOLMOD_ROW) { /* ------------------------------------------------------------------ */ /* A = diag(s)*A, row scaling */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Ax [p] *= s [Ai [p]] ; } } } else if (scale == CHOLMOD_COL) { /* ------------------------------------------------------------------ */ /* A = A*diag(s), column scaling */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < ncol ; j++) { t = s [j] ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Ax [p] *= t ; } } } else if (scale == CHOLMOD_SYM) { /* ------------------------------------------------------------------ */ /* A = diag(s)*A*diag(s), symmetric scaling */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < ncol ; j++) { t = s [j] ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Ax [p] *= t * s [Ai [p]] ; } } } else if (scale == CHOLMOD_SCALAR) { /* ------------------------------------------------------------------ */ /* A = s[0] * A, scalar scaling */ /* ------------------------------------------------------------------ */ t = s [0] ; for (j = 0 ; j < ncol ; j++) { p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Ax [p] *= t ; } } } ASSERT (CHOLMOD(dump_sparse) (A, "A scaled", Common) >= 0) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/cholmod_submatrix.c0000644001170100242450000003163710677243305020672 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_submatrix ========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* C = A (rset,cset), where C becomes length(rset)-by-length(cset) in dimension. * rset and cset can have duplicate entries. A and C must be unsymmetric. C * is packed. If the sorted flag is TRUE on input, or rset is sorted and A is * sorted, then C is sorted; otherwise C is unsorted. * * A NULL rset or cset means "[ ]" in MATLAB notation. * If the length of rset or cset is negative, it denotes ":" in MATLAB notation. * * For permuting a matrix, this routine is an alternative to cholmod_ptranspose * (which permutes and transposes a matrix and can work on symmetric matrices). * * The time taken by this routine is O(A->nrow) if the Common workspace needs * to be initialized, plus O(C->nrow + C->ncol + nnz (A (:,cset))). Thus, if C * is small and the workspace is not initialized, the time can be dominated by * the call to cholmod_allocate_work. However, once the workspace is * allocated, subsequent calls take less time. * * workspace: Iwork (max (A->nrow + length (rset), length (cset))). * allocates temporary copy of C if it is to be returned sorted. * * Future work: A common case occurs where A has sorted columns, and rset is in * the form lo:hi in MATLAB notation. This routine could exploit that case * to run even faster when the matrix is sorted, particularly when lo is small. * * Only pattern and real matrices are supported. Complex and zomplex matrices * are supported only when "values" is FALSE. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === check_subset ========================================================= */ /* ========================================================================== */ /* Check the rset or cset, and return TRUE if valid, FALSE if invalid */ static int check_subset (Int *set, Int len, Int n) { Int k ; if (set == NULL) { return (TRUE) ; } for (k = 0 ; k < len ; k++) { if (set [k] < 0 || set [k] >= n) { return (FALSE) ; } } return (TRUE) ; } /* ========================================================================== */ /* === cholmod_submatrix ==================================================== */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(submatrix) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to subreference */ Int *rset, /* set of row indices, duplicates OK */ UF_long rsize, /* size of rset, or -1 for ":" */ Int *cset, /* set of column indices, duplicates OK */ UF_long csize, /* size of cset, or -1 for ":" */ int values, /* if TRUE compute the numerical values of C */ int sorted, /* if TRUE then return C with sorted columns */ /* --------------- */ cholmod_common *Common ) { double aij = 0 ; double *Ax, *Cx ; Int *Ap, *Ai, *Anz, *Ci, *Cp, *Head, *Rlen, *Rnext, *Iwork ; cholmod_sparse *C ; Int packed, ancol, anrow, cnrow, cncol, nnz, i, j, csorted, ilast, p, pend, pdest, ci, cj, head, nr, nc ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; values = (values && (A->xtype != CHOLMOD_PATTERN)) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->stype != 0) { /* A must be unsymmetric */ ERROR (CHOLMOD_INVALID, "symmetric upper or lower case not supported") ; return (NULL) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ ancol = A->ncol ; anrow = A->nrow ; nr = rsize ; nc = csize ; if (rset == NULL) { /* nr = 0 denotes rset = [ ], nr < 0 denotes rset = 0:anrow-1 */ nr = (nr < 0) ? (-1) : 0 ; } if (cset == NULL) { /* nr = 0 denotes cset = [ ], nr < 0 denotes cset = 0:ancol-1 */ nc = (nc < 0) ? (-1) : 0 ; } cnrow = (nr < 0) ? anrow : nr ; /* negative rset means rset = 0:anrow-1 */ cncol = (nc < 0) ? ancol : nc ; /* negative cset means cset = 0:ancol-1 */ if (nr < 0 && nc < 0) { /* ------------------------------------------------------------------ */ /* C = A (:,:), use cholmod_copy instead */ /* ------------------------------------------------------------------ */ /* workspace: Iwork (max (C->nrow,C->ncol)) */ PRINT1 (("submatrix C = A (:,:)\n")) ; C = CHOLMOD(copy) (A, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } return (C) ; } PRINT1 (("submatrix nr "ID" nc "ID" Cnrow "ID" Cncol "ID"" " Anrow "ID" Ancol "ID"\n", nr, nc, cnrow, cncol, anrow, ancol)) ; /* s = MAX3 (anrow+MAX(0,nr), cncol, cnrow) ; */ s = CHOLMOD(add_size_t) (anrow, MAX (0,nr), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (NULL) ; } s = MAX3 (s, ((size_t) cncol), ((size_t) cnrow)) ; CHOLMOD(allocate_work) (anrow, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; packed = A->packed ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Head = Common->Head ; /* size anrow */ Iwork = Common->Iwork ; Rlen = Iwork ; /* size anrow (i/i/l) */ Rnext = Iwork + anrow ; /* size nr (i/i/l), not used if nr < 0 */ /* ---------------------------------------------------------------------- */ /* construct inverse of rset and compute nnz (C) */ /* ---------------------------------------------------------------------- */ PRINT1 (("nr "ID" nc "ID"\n", nr, nc)) ; PRINT1 (("anrow "ID" ancol "ID"\n", anrow, ancol)) ; PRINT1 (("cnrow "ID" cncol "ID"\n", cnrow, cncol)) ; DEBUG (for (i = 0 ; i < nr ; i++) PRINT2 (("rset ["ID"] = "ID"\n", i, rset [i]))); DEBUG (for (i = 0 ; i < nc ; i++) PRINT2 (("cset ["ID"] = "ID"\n", i, cset [i]))); /* C is sorted if A and rset are sorted, or if C has one row or less */ csorted = A->sorted || (cnrow <= 1) ; if (!check_subset (rset, nr, anrow)) { ERROR (CHOLMOD_INVALID, "invalid rset") ; return (NULL) ; } if (!check_subset (cset, nc, ancol)) { ERROR (CHOLMOD_INVALID, "invalid cset") ; return (NULL) ; } nnz = 0 ; if (nr < 0) { /* C = A (:,cset) where cset = [ ] or cset is not empty */ ASSERT (IMPLIES (cncol > 0, cset != NULL)) ; for (cj = 0 ; cj < cncol ; cj++) { /* construct column cj of C, which is column j of A */ j = cset [cj] ; nnz += (packed) ? (Ap [j+1] - Ap [j]) : MAX (0, Anz [j]) ; } } else { /* C = A (rset,cset), where rset is not empty but cset might be empty */ /* create link lists in reverse order to preserve natural order */ ilast = anrow ; for (ci = nr-1 ; ci >= 0 ; ci--) { /* row i of A becomes row ci of C; add ci to ith link list */ i = rset [ci] ; head = Head [i] ; Rlen [i] = (head == EMPTY) ? 1 : (Rlen [i] + 1) ; Rnext [ci] = head ; Head [i] = ci ; if (i > ilast) { /* row indices in columns of C will not be sorted */ csorted = FALSE ; } ilast = i ; } #ifndef NDEBUG for (i = 0 ; i < anrow ; i++) { Int k = 0 ; Int rlen = (Head [i] != EMPTY) ? Rlen [i] : -1 ; PRINT1 (("Row "ID" Rlen "ID": ", i, rlen)) ; for (ci = Head [i] ; ci != EMPTY ; ci = Rnext [ci]) { k++ ; PRINT2 ((""ID" ", ci)) ; } PRINT1 (("\n")) ; ASSERT (IMPLIES (Head [i] != EMPTY, k == Rlen [i])) ; } #endif /* count nonzeros in C */ for (cj = 0 ; cj < cncol ; cj++) { /* count rows in column cj of C, which is column j of A */ j = (nc < 0) ? cj : (cset [cj]) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { /* row i of A becomes multiple rows (ci) of C */ i = Ai [p] ; ASSERT (i >= 0 && i < anrow) ; if (Head [i] != EMPTY) { nnz += Rlen [i] ; } } } } PRINT1 (("nnz (C) "ID"\n", nnz)) ; /* rset and cset are now valid */ DEBUG (CHOLMOD(dump_subset) (rset, rsize, anrow, "rset", Common)) ; DEBUG (CHOLMOD(dump_subset) (cset, csize, ancol, "cset", Common)) ; /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ C = CHOLMOD(allocate_sparse) (cnrow, cncol, nnz, csorted, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ for (i = 0 ; i < anrow ; i++) { Head [i] = EMPTY ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* C = A (rset,cset) */ /* ---------------------------------------------------------------------- */ pdest = 0 ; if (nnz == 0) { /* C has no nonzeros */ for (cj = 0 ; cj <= cncol ; cj++) { Cp [cj] = 0 ; } } else if (nr < 0) { /* C = A (:,cset), where cset is not empty */ for (cj = 0 ; cj < cncol ; cj++) { /* construct column cj of C, which is column j of A */ PRINT1 (("construct cj = j = "ID"\n", cj)) ; j = cset [cj] ; Cp [cj] = pdest ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { Ci [pdest] = Ai [p] ; if (values) { Cx [pdest] = Ax [p] ; } pdest++ ; ASSERT (pdest <= nnz) ; } } } else { /* C = A (rset,cset), where rset is not empty but cset might be empty */ for (cj = 0 ; cj < cncol ; cj++) { /* construct column cj of C, which is column j of A */ PRINT1 (("construct cj = "ID"\n", cj)) ; j = (nc < 0) ? cj : (cset [cj]) ; PRINT1 (("cj = "ID"\n", j)) ; Cp [cj] = pdest ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { /* row (Ai [p]) of A becomes multiple rows (ci) of C */ PRINT2 (("i: "ID" becomes: ", Ai [p])) ; if (values) { aij = Ax [p] ; } for (ci = Head [Ai [p]] ; ci != EMPTY ; ci = Rnext [ci]) { PRINT3 ((""ID" ", ci)) ; Ci [pdest] = ci ; if (values) { Cx [pdest] = aij ; } pdest++ ; ASSERT (pdest <= nnz) ; } PRINT2 (("\n")) ; } } } Cp [cncol] = pdest ; ASSERT (nnz == pdest) ; /* ---------------------------------------------------------------------- */ /* clear workspace */ /* ---------------------------------------------------------------------- */ for (ci = 0 ; ci < nr ; ci++) { Head [rset [ci]] = EMPTY ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* sort C, if requested */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (C , "C before sort", Common) >= 0) ; if (sorted && !csorted) { /* workspace: Iwork (max (C->nrow,C->ncol)) */ if (!CHOLMOD(sort) (C, Common)) { /* out of memory */ CHOLMOD(free_sparse) (&C, Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (NULL) ; } } /* ---------------------------------------------------------------------- */ /* return result */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (C , "Final C", Common) >= 0) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (C) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/cholmod_symmetry.c0000644001170100242450000004004010660074506020526 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_symmetry =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Determines if a sparse matrix is rectangular, unsymmetric, symmetric, * skew-symmetric, or Hermitian. It does so by looking at its numerical values * of both upper and lower triangular parts of a CHOLMOD "unsymmetric" * matrix, where A->stype == 0. The transpose of A is NOT constructed. * * If not unsymmetric, it also determines if the matrix has a diagonal whose * entries are all real and positive (and thus a candidate for sparse Cholesky * if A->stype is changed to a nonzero value). * * Note that a Matrix Market "general" matrix is either rectangular or * unsymmetric. * * The row indices in the column of each matrix MUST be sorted for this function * to work properly (A->sorted must be TRUE). This routine returns EMPTY if * A->stype is not zero, or if A->sorted is FALSE. The exception to this rule * is if A is rectangular. * * If option == 0, then this routine returns immediately when it finds a * non-positive diagonal entry (or one with nonzero imaginary part). If the * matrix is not a candidate for sparse Cholesky, it returns the value * CHOLMOD_MM_UNSYMMETRIC, even if the matrix might in fact be symmetric or * Hermitian. * * This routine is useful inside the MATLAB backslash, which must look at an * arbitrary matrix (A->stype == 0) and determine if it is a candidate for * sparse Cholesky. In that case, option should be 0. * * This routine is also useful when writing a MATLAB matrix to a file in * Rutherford/Boeing or Matrix Market format. Those formats require a * determination as to the symmetry of the matrix, and thus this routine should * not return upon encountering the first non-positive diagonal. In this case, * option should be 1. * * If option is 2, this function can be used to compute the numerical and * pattern symmetry, where 0 is a completely unsymmetric matrix, and 1 is a * perfectly symmetric matrix. This option is used when computing the following * statistics for the matrices in the UF Sparse Matrix Collection. * * numerical symmetry: number of matched offdiagonal nonzeros over * the total number of offdiagonal entries. A real entry A(i,j), i ~= j, * is matched if A (j,i) == A (i,j), but this is only counted if both * A(j,i) and A(i,j) are nonzero. This does not depend on Z. * (If A is complex, then the above test is modified; A (i,j) is matched * if conj (A (j,i)) == A (i,j)). * * Then numeric symmetry = xmatched / nzoffdiag, or 1 if nzoffdiag = 0. * * pattern symmetry: number of matched offdiagonal entries over the * total number of offdiagonal entries. An entry A(i,j), i ~= j, is * matched if A (j,i) is also an entry. * * Then pattern symmetry = pmatched / nzoffdiag, or 1 if nzoffdiag = 0. * * The symmetry of a matrix with no offdiagonal entries is equal to 1. * * A workspace of size ncol integers is allocated; EMPTY is returned if this * allocation fails. * * Summary of return values: * * EMPTY (-1) out of memory, stype not zero, A not sorted * CHOLMOD_MM_RECTANGULAR 1 A is rectangular * CHOLMOD_MM_UNSYMMETRIC 2 A is unsymmetric * CHOLMOD_MM_SYMMETRIC 3 A is symmetric, but with non-pos. diagonal * CHOLMOD_MM_HERMITIAN 4 A is Hermitian, but with non-pos. diagonal * CHOLMOD_MM_SKEW_SYMMETRIC 5 A is skew symmetric * CHOLMOD_MM_SYMMETRIC_POSDIAG 6 A is symmetric with positive diagonal * CHOLMOD_MM_HERMITIAN_POSDIAG 7 A is Hermitian with positive diagonal * * See also the spsym mexFunction, which is a MATLAB interface for this code. * * If the matrix is a candidate for sparse Cholesky, it will return a result * CHOLMOD_MM_SYMMETRIC_POSDIAG if real, or CHOLMOD_MM_HERMITIAN_POSDIAG if * complex. Otherwise, it will return a value less than this. This is true * regardless of the value of the option parameter. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === get_value ============================================================ */ /* ========================================================================== */ /* Get the pth value in the matrix. */ static void get_value ( double *Ax, /* real values, or real/imag. for CHOLMOD_COMPLEX type */ double *Az, /* imaginary values for CHOLMOD_ZOMPLEX type */ Int p, /* get the pth entry */ Int xtype, /* A->xtype: pattern, real, complex, or zomplex */ double *x, /* the real part */ double *z /* the imaginary part */ ) { switch (xtype) { case CHOLMOD_PATTERN: *x = 1 ; *z = 0 ; break ; case CHOLMOD_REAL: *x = Ax [p] ; *z = 0 ; break ; case CHOLMOD_COMPLEX: *x = Ax [2*p] ; *z = Ax [2*p+1] ; break ; case CHOLMOD_ZOMPLEX: *x = Ax [p] ; *z = Az [p] ; break ; } } /* ========================================================================== */ /* === cholmod_symmetry ===================================================== */ /* ========================================================================== */ /* Determine the symmetry of a matrix, and check its diagonal. * * option 0: Do not count # of matched pairs. Quick return if the * the matrix has a zero, negative, or imaginary diagonal entry. * * option 1: Do not count # of matched pairs. Do not return quickly if * the matrix has a zero, negative, or imaginary diagonal entry. * The result 1 to 7 is accurately computed: * * EMPTY (-1) out of memory, stype not zero, A not sorted * CHOLMOD_MM_RECTANGULAR 1 A is rectangular * CHOLMOD_MM_UNSYMMETRIC 2 A is unsymmetric * CHOLMOD_MM_SYMMETRIC 3 A is symmetric, with non-pos. diagonal * CHOLMOD_MM_HERMITIAN 4 A is Hermitian, with non-pos. diagonal * CHOLMOD_MM_SKEW_SYMMETRIC 5 A is skew symmetric * CHOLMOD_MM_SYMMETRIC_POSDIAG 6 is symmetric with positive diagonal * CHOLMOD_MM_HERMITIAN_POSDIAG 7 A is Hermitian with positive diagonal * * The routine returns as soon as the above is determined (that is, it * can return as soon as it determines the matrix is unsymmetric). * * option 2: All of the above, but also compute the number of matched off- * diagonal entries (of two types). xmatched is the number of * nonzero entries for which A(i,j) = conj(A(j,i)). pmatched is * the number of entries (i,j) for which A(i,j) and A(j,i) are both in * the pattern of A (the value doesn't matter). nzoffdiag is the total * number of off-diagonal entries in the pattern. nzdiag is the number of * diagonal entries in the pattern. * * With option 0 or 1, or if the matrix is rectangular, xmatched, pmatched, * nzoffdiag, and nzdiag are not computed. * * Note that a matched pair, A(i,j) and A(j,i) for i != j, is counted twice * (once per entry). */ int CHOLMOD(symmetry) ( /* ---- input ---- */ cholmod_sparse *A, int option, /* option 0, 1, or 2 (see above) */ /* ---- output --- */ /* outputs ignored if any are NULL */ Int *p_xmatched, /* # of matched numerical entries */ Int *p_pmatched, /* # of matched entries in pattern */ Int *p_nzoffdiag, /* # of off diagonal entries */ Int *p_nzdiag, /* # of diagonal entries */ /* --------------- */ cholmod_common *Common ) { double aij_real = 0, aij_imag = 0, aji_real = 0, aji_imag = 0 ; double *Ax, *Az ; Int *Ap, *Ai, *Anz, *munch ; Int packed, nrow, ncol, xtype, is_symmetric, is_skew, is_hermitian, posdiag, j, p, pend, i, piend, result, xmatched, pmatched, nzdiag, i2, found ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; ASSERT (CHOLMOD(dump_sparse) (A, "cholmod_symmetry", Common) >= 0) ; if (p_xmatched == NULL || p_pmatched == NULL || p_nzoffdiag == NULL || p_nzdiag == NULL) { /* option 2 is not performed if any output parameter is NULL */ option = MAX (option, 1) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; Ax = A->x ; Az = A->z ; Anz = A->nz ; packed = A->packed ; ncol = A->ncol ; nrow = A->nrow ; xtype = A->xtype ; /* ---------------------------------------------------------------------- */ /* check if rectangular, unsorted, or stype is not zero */ /* ---------------------------------------------------------------------- */ if (nrow != ncol) { /* matrix is rectangular */ return (CHOLMOD_MM_RECTANGULAR) ; } if (!(A->sorted) || A->stype != 0) { /* this function cannot determine the type or symmetry */ return (EMPTY) ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* this function requires uninitialized Int workspace of size ncol */ CHOLMOD(allocate_work) (0, ncol, 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (EMPTY) ; } munch = Common->Iwork ; /* the munch array is size ncol */ /* ---------------------------------------------------------------------- */ /* determine symmetry of a square matrix */ /* ---------------------------------------------------------------------- */ /* a complex or zomplex matrix is Hermitian until proven otherwise */ is_hermitian = (xtype >= CHOLMOD_COMPLEX) ; /* any matrix is symmetric until proven otherwise */ is_symmetric = TRUE ; /* a non-pattern matrix is skew-symmetric until proven otherwise */ is_skew = (xtype != CHOLMOD_PATTERN) ; /* a matrix has positive diagonal entries until proven otherwise */ posdiag = TRUE ; /* munch pointers start at the top of each column */ for (j = 0 ; j < ncol ; j++) { munch [j] = Ap [j] ; } xmatched = 0 ; pmatched = 0 ; nzdiag = 0 ; for (j = 0 ; j < ncol ; j++) /* examine each column of A */ { /* ------------------------------------------------------------------ */ /* look at the entire munch column j */ /* ------------------------------------------------------------------ */ /* start at the munch point of column j, and go to end of the column */ p = munch [j] ; pend = (packed) ? (Ap [j+1]) : (Ap [j] + Anz [j]) ; for ( ; p < pend ; p++) { /* get the row index of A(i,j) */ i = Ai [p] ; if (i < j) { /* ---------------------------------------------------------- */ /* A(i,j) in triu(A), but matching A(j,i) not in tril(A) */ /* ---------------------------------------------------------- */ /* entry A(i,j) is unmatched; it appears in the upper triangular * part, but not the lower triangular part. The matrix is * unsymmetric. */ is_hermitian = FALSE ; is_symmetric = FALSE ; is_skew = FALSE ; } else if (i == j) { /* ---------------------------------------------------------- */ /* the diagonal A(j,j) is present; check its value */ /* ---------------------------------------------------------- */ get_value (Ax, Az, p, xtype, &aij_real, &aij_imag) ; if (aij_real != 0. || aij_imag != 0.) { /* diagonal is nonzero; matrix is not skew-symmetric */ nzdiag++ ; is_skew = FALSE ; } if (aij_real <= 0. || aij_imag != 0.) { /* diagonal negative or imaginary; not chol candidate */ posdiag = FALSE ; } if (aij_imag != 0.) { /* imaginary part is present; not Hermitian */ is_hermitian = FALSE ; } } else /* i > j */ { /* ---------------------------------------------------------- */ /* consider column i, up to and including row j */ /* ---------------------------------------------------------- */ /* munch the entry at top of column i up to and incl row j */ piend = (packed) ? (Ap [i+1]) : (Ap [i] + Anz [i]) ; found = FALSE ; for ( ; munch [i] < piend ; munch [i]++) { i2 = Ai [munch [i]] ; if (i2 < j) { /* -------------------------------------------------- */ /* A(i2,i) in triu(A) but A(i,i2) not in tril(A) */ /* -------------------------------------------------- */ /* The matrix is unsymmetric. */ is_hermitian = FALSE ; is_symmetric = FALSE ; is_skew = FALSE ; } else if (i2 == j) { /* -------------------------------------------------- */ /* both A(i,j) and A(j,i) exist in the matrix */ /* -------------------------------------------------- */ /* this is one more matching entry in the pattern */ pmatched += 2 ; found = TRUE ; /* get the value of A(i,j) */ get_value (Ax, Az, p, xtype, &aij_real, &aij_imag) ; /* get the value of A(j,i) */ get_value (Ax, Az, munch [i], xtype, &aji_real, &aji_imag) ; /* compare A(i,j) with A(j,i) */ if (aij_real != aji_real || aij_imag != aji_imag) { /* the matrix cannot be symmetric */ is_symmetric = FALSE ; } if (aij_real != -aji_real || aij_imag != aji_imag) { /* the matrix cannot be skew-symmetric */ is_skew = FALSE ; } if (aij_real != aji_real || aij_imag != -aji_imag) { /* the matrix cannot be Hermitian */ is_hermitian = FALSE ; } else { /* A(i,j) and A(j,i) are numerically matched */ xmatched += 2 ; } } else /* i2 > j */ { /* -------------------------------------------------- */ /* entry A(i2,i) is not munched; consider it later */ /* -------------------------------------------------- */ break ; } } if (!found) { /* A(i,j) in tril(A) but A(j,i) not in triu(A). * The matrix is unsymmetric. */ is_hermitian = FALSE ; is_symmetric = FALSE ; is_skew = FALSE ; } } if (option < 2 && !(is_symmetric || is_skew || is_hermitian)) { /* matrix is unsymmetric; terminate the test */ return (CHOLMOD_MM_UNSYMMETRIC) ; } } /* ------------------------------------------------------------------ */ /* quick return if not Cholesky candidate */ /* ------------------------------------------------------------------ */ if (option < 1 && (!posdiag || nzdiag < ncol)) { /* Diagonal entry not present, or present but negative or with * nonzero imaginary part. Quick return for option 0. */ return (CHOLMOD_MM_UNSYMMETRIC) ; } } /* ---------------------------------------------------------------------- */ /* return the results */ /* ---------------------------------------------------------------------- */ if (option >= 2) { *p_xmatched = xmatched ; *p_pmatched = pmatched ; *p_nzoffdiag = CHOLMOD(nnz) (A, Common) - nzdiag ; *p_nzdiag = nzdiag ; } result = CHOLMOD_MM_UNSYMMETRIC ; if (is_hermitian) { /* complex Hermitian matrix, with either pos. or non-pos. diagonal */ result = posdiag ? CHOLMOD_MM_HERMITIAN_POSDIAG : CHOLMOD_MM_HERMITIAN ; } else if (is_symmetric) { /* real or complex symmetric matrix, with pos. or non-pos. diagonal */ result = posdiag ? CHOLMOD_MM_SYMMETRIC_POSDIAG : CHOLMOD_MM_SYMMETRIC ; } else if (is_skew) { /* real or complex skew-symmetric matrix */ result = CHOLMOD_MM_SKEW_SYMMETRIC ; } return (result) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/t_cholmod_sdmult.c0000644001170100242450000004460010537777741020514 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/t_cholmod_sdmult =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Template routine for cholmod_sdmult */ #include "cholmod_template.h" #undef ADVANCE #ifdef REAL #define ADVANCE(x,z,d) x += d #elif defined (COMPLEX) #define ADVANCE(x,z,d) x += 2*d #else #define ADVANCE(x,z,d) x += d ; z += d #endif /* ========================================================================== */ /* === t_cholmod_sdmult ===================================================== */ /* ========================================================================== */ static void TEMPLATE (cholmod_sdmult) ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to multiply */ int transpose, /* use A if 0, or A' otherwise */ double alpha [2], /* scale factor for A */ double beta [2], /* scale factor for Y */ cholmod_dense *X, /* dense matrix to multiply */ /* ---- in/out --- */ cholmod_dense *Y, /* resulting dense matrix */ /* -- workspace -- */ double *W /* size 4*nx if needed, twice that for c/zomplex case */ ) { double yx [8], xx [8], ax [2] ; #ifdef ZOMPLEX double yz [4], xz [4], az [1] ; double betaz [1], alphaz [1] ; #endif double *Ax, *Az, *Xx, *Xz, *Yx, *Yz, *w, *Wz ; Int *Ap, *Ai, *Anz ; size_t nx, ny, dx, dy ; Int packed, nrow, ncol, j, k, p, pend, kcol, i ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ #ifdef ZOMPLEX betaz [0] = beta [1] ; alphaz [0] = alpha [1] ; #endif ny = transpose ? A->ncol : A->nrow ; /* required length of Y */ nx = transpose ? A->nrow : A->ncol ; /* required length of X */ nrow = A->nrow ; ncol = A->ncol ; Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; Az = A->z ; packed = A->packed ; Xx = X->x ; Xz = X->z ; Yx = Y->x ; Yz = Y->z ; kcol = X->ncol ; dy = Y->d ; dx = X->d ; w = W ; Wz = W + 4*nx ; /* ---------------------------------------------------------------------- */ /* Y = beta * Y */ /* ---------------------------------------------------------------------- */ if (ENTRY_IS_ZERO (beta, betaz, 0)) { for (k = 0 ; k < kcol ; k++) { for (i = 0 ; i < ((Int) ny) ; i++) { /* y [i] = 0. ; */ CLEAR (Yx, Yz, i) ; } /* y += dy ; */ ADVANCE (Yx,Yz,dy) ; } } else if (!ENTRY_IS_ONE (beta, betaz, 0)) { for (k = 0 ; k < kcol ; k++) { for (i = 0 ; i < ((Int) ny) ; i++) { /* y [i] *= beta [0] ; */ MULT (Yx,Yz,i, Yx,Yz,i, beta,betaz, 0) ; } /* y += dy ; */ ADVANCE (Yx,Yz,dy) ; } } if (ENTRY_IS_ZERO (alpha, alphaz, 0)) { /* nothing else to do */ return ; } /* ---------------------------------------------------------------------- */ /* Y += alpha * op(A) * X, where op(A)=A or A' */ /* ---------------------------------------------------------------------- */ Yx = Y->x ; Yz = Y->z ; k = 0 ; if (A->stype == 0) { if (transpose) { /* -------------------------------------------------------------- */ /* Y += alpha * A' * x, unsymmetric case */ /* -------------------------------------------------------------- */ if (kcol % 4 == 1) { for (j = 0 ; j < ncol ; j++) { /* yj = 0. ; */ CLEAR (yx, yz, 0) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { /* yj += conj(Ax [p]) * x [Ai [p]] ; */ i = Ai [p] ; ASSIGN_CONJ (ax,az,0, Ax,Az,p) ; MULTADD (yx,yz,0, ax,az,0, Xx,Xz,i) ; } /* y [j] += alpha [0] * yj ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; } /* y += dy ; */ /* x += dx ; */ ADVANCE (Yx,Yz,dy) ; ADVANCE (Xx,Xz,dx) ; k++ ; } else if (kcol % 4 == 2) { for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = conj (Ax [p]) ; */ ASSIGN_CONJ (ax,az,0, Ax,Az,p) ; /* yj0 += aij * x [i ] ; */ /* yj1 += aij * x [i+dx] ; */ MULTADD (yx,yz,0, ax,az,0, Xx,Xz,i) ; MULTADD (yx,yz,1, ax,az,0, Xx,Xz,i+dx) ; } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+dy] += alpha [0] * yj1 ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy, alpha,alphaz,0, yx,yz,1) ; } /* y += 2*dy ; */ /* x += 2*dx ; */ ADVANCE (Yx,Yz,2*dy) ; ADVANCE (Xx,Xz,2*dx) ; k += 2 ; } else if (kcol % 4 == 3) { for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ /* yj2 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; CLEAR (yx,yz,2) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = conj (Ax [p]) ; */ ASSIGN_CONJ (ax,az,0, Ax,Az,p) ; /* yj0 += aij * x [i ] ; */ /* yj1 += aij * x [i+ dx] ; */ /* yj2 += aij * x [i+2*dx] ; */ MULTADD (yx,yz,0, ax,az,0, Xx,Xz,i) ; MULTADD (yx,yz,1, ax,az,0, Xx,Xz,i+dx) ; MULTADD (yx,yz,2, ax,az,0, Xx,Xz,i+2*dx) ; } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+ dy] += alpha [0] * yj1 ; */ /* y [j+2*dy] += alpha [0] * yj2 ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy, alpha,alphaz,0, yx,yz,1) ; MULTADD (Yx,Yz,j+2*dy, alpha,alphaz,0, yx,yz,2) ; } /* y += 3*dy ; */ /* x += 3*dx ; */ ADVANCE (Yx,Yz,3*dy) ; ADVANCE (Xx,Xz,3*dx) ; k += 3 ; } for ( ; k < kcol ; k += 4) { for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ /* yj2 = 0. ; */ /* yj3 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; CLEAR (yx,yz,2) ; CLEAR (yx,yz,3) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = conj(Ax [p]) ; */ ASSIGN_CONJ (ax,az,0, Ax,Az,p) ; /* yj0 += aij * x [i ] ; */ /* yj1 += aij * x [i+ dx] ; */ /* yj2 += aij * x [i+2*dx] ; */ /* yj3 += aij * x [i+3*dx] ; */ MULTADD (yx,yz,0, ax,az,0, Xx,Xz,i) ; MULTADD (yx,yz,1, ax,az,0, Xx,Xz,i+dx) ; MULTADD (yx,yz,2, ax,az,0, Xx,Xz,i+2*dx) ; MULTADD (yx,yz,3, ax,az,0, Xx,Xz,i+3*dx) ; } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+ dy] += alpha [0] * yj1 ; */ /* y [j+2*dy] += alpha [0] * yj2 ; */ /* y [j+3*dy] += alpha [0] * yj3 ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy, alpha,alphaz,0, yx,yz,1) ; MULTADD (Yx,Yz,j+2*dy, alpha,alphaz,0, yx,yz,2) ; MULTADD (Yx,Yz,j+3*dy, alpha,alphaz,0, yx,yz,3) ; } /* y += 4*dy ; */ /* x += 4*dx ; */ ADVANCE (Yx,Yz,4*dy) ; ADVANCE (Xx,Xz,4*dx) ; } } else { /* -------------------------------------------------------------- */ /* Y += alpha * A * x, unsymmetric case */ /* -------------------------------------------------------------- */ if (kcol % 4 == 1) { for (j = 0 ; j < ncol ; j++) { /* xj = alpha [0] * x [j] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { /* y [Ai [p]] += Ax [p] * xj ; */ i = Ai [p] ; MULTADD (Yx,Yz,i, Ax,Az,p, xx,xz,0) ; } } /* y += dy ; */ /* x += dx ; */ ADVANCE (Yx,Yz,dy) ; ADVANCE (Xx,Xz,dx) ; k++ ; } else if (kcol % 4 == 2) { for (j = 0 ; j < ncol ; j++) { /* xj0 = alpha [0] * x [j ] ; */ /* xj1 = alpha [0] * x [j+dx] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; MULT (xx,xz,1, alpha,alphaz,0, Xx,Xz,j+dx) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+dy] += aij * xj1 ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; } } /* y += 2*dy ; */ /* x += 2*dx ; */ ADVANCE (Yx,Yz,2*dy) ; ADVANCE (Xx,Xz,2*dx) ; k += 2 ; } else if (kcol % 4 == 3) { for (j = 0 ; j < ncol ; j++) { /* xj0 = alpha [0] * x [j ] ; */ /* xj1 = alpha [0] * x [j+ dx] ; */ /* xj2 = alpha [0] * x [j+2*dx] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; MULT (xx,xz,1, alpha,alphaz,0, Xx,Xz,j+dx) ; MULT (xx,xz,2, alpha,alphaz,0, Xx,Xz,j+2*dx) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; } } /* y += 3*dy ; */ /* x += 3*dx ; */ ADVANCE (Yx,Yz,3*dy) ; ADVANCE (Xx,Xz,3*dx) ; k += 3 ; } for ( ; k < kcol ; k += 4) { for (j = 0 ; j < ncol ; j++) { /* xj0 = alpha [0] * x [j ] ; */ /* xj1 = alpha [0] * x [j+ dx] ; */ /* xj2 = alpha [0] * x [j+2*dx] ; */ /* xj3 = alpha [0] * x [j+3*dx] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; MULT (xx,xz,1, alpha,alphaz,0, Xx,Xz,j+dx) ; MULT (xx,xz,2, alpha,alphaz,0, Xx,Xz,j+2*dx) ; MULT (xx,xz,3, alpha,alphaz,0, Xx,Xz,j+3*dx) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ /* y [i+3*dy] += aij * xj3 ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; MULTADD (Yx,Yz,i+3*dy, ax,az,0, xx,xz,3) ; } } /* y += 4*dy ; */ /* x += 4*dx ; */ ADVANCE (Yx,Yz,4*dy) ; ADVANCE (Xx,Xz,4*dx) ; } } } else { /* ------------------------------------------------------------------ */ /* Y += alpha * (A or A') * x, symmetric case (upper/lower) */ /* ------------------------------------------------------------------ */ /* Only the upper/lower triangular part and the diagonal of A is used. * Since both x and y are written to in the innermost loop, this * code can experience cache bank conflicts if x is used directly. * Thus, a copy is made of x, four columns at a time, if x has * four or more columns. */ if (kcol % 4 == 1) { for (j = 0 ; j < ncol ; j++) { /* yj = 0. ; */ CLEAR (yx,yz,0) ; /* xj = alpha [0] * x [j] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* y [i] += Ax [p] * xj ; */ MULTADD (Yx,Yz,i, Ax,Az,p, xx,xz,0) ; } else if ((A->stype > 0 && i < j) || (A->stype < 0 && i > j)) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i] += aij * xj ; */ /* yj += aij * x [i] ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADDCONJ (yx,yz,0, ax,az,0, Xx,Xz,i) ; } } /* y [j] += alpha [0] * yj ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; } /* y += dy ; */ /* x += dx ; */ ADVANCE (Yx,Yz,dy) ; ADVANCE (Xx,Xz,dx) ; k++ ; } else if (kcol % 4 == 2) { for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; /* xj0 = alpha [0] * x [j ] ; */ /* xj1 = alpha [0] * x [j+dx] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; MULT (xx,xz,1, alpha,alphaz,0, Xx,Xz,j+dx) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+dy] += aij * xj1 ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; } else if ((A->stype > 0 && i < j) || (A->stype < 0 && i > j)) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+dy] += aij * xj1 ; */ /* yj0 += aij * x [i ] ; */ /* yj1 += aij * x [i+dx] ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADDCONJ (yx,yz,0, ax,az,0, Xx,Xz,i) ; MULTADDCONJ (yx,yz,1, ax,az,0, Xx,Xz,i+dx) ; } } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+dy] += alpha [0] * yj1 ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy, alpha,alphaz,0, yx,yz,1) ; } /* y += 2*dy ; */ /* x += 2*dx ; */ ADVANCE (Yx,Yz,2*dy) ; ADVANCE (Xx,Xz,2*dx) ; k += 2 ; } else if (kcol % 4 == 3) { for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ /* yj2 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; CLEAR (yx,yz,2) ; /* xj0 = alpha [0] * x [j ] ; */ /* xj1 = alpha [0] * x [j+ dx] ; */ /* xj2 = alpha [0] * x [j+2*dx] ; */ MULT (xx,xz,0, alpha,alphaz,0, Xx,Xz,j) ; MULT (xx,xz,1, alpha,alphaz,0, Xx,Xz,j+dx) ; MULT (xx,xz,2, alpha,alphaz,0, Xx,Xz,j+2*dx) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; } else if ((A->stype > 0 && i < j) || (A->stype < 0 && i > j)) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ /* yj0 += aij * x [i ] ; */ /* yj1 += aij * x [i+ dx] ; */ /* yj2 += aij * x [i+2*dx] ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; MULTADDCONJ (yx,yz,0, ax,az,0, Xx,Xz,i) ; MULTADDCONJ (yx,yz,1, ax,az,0, Xx,Xz,i+dx) ; MULTADDCONJ (yx,yz,2, ax,az,0, Xx,Xz,i+2*dx) ; } } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+ dy] += alpha [0] * yj1 ; */ /* y [j+2*dy] += alpha [0] * yj2 ; */ MULTADD (Yx,Yz,j, alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy, alpha,alphaz,0, yx,yz,1) ; MULTADD (Yx,Yz,j+2*dy, alpha,alphaz,0, yx,yz,2) ; } /* y += 3*dy ; */ /* x += 3*dx ; */ ADVANCE (Yx,Yz,3*dy) ; ADVANCE (Xx,Xz,3*dx) ; k += 3 ; } /* copy four columns of X into W, and put in row form */ for ( ; k < kcol ; k += 4) { for (j = 0 ; j < ncol ; j++) { /* w [4*j ] = x [j ] ; */ /* w [4*j+1] = x [j+ dx] ; */ /* w [4*j+2] = x [j+2*dx] ; */ /* w [4*j+3] = x [j+3*dx] ; */ ASSIGN (w,Wz,4*j , Xx,Xz,j ) ; ASSIGN (w,Wz,4*j+1, Xx,Xz,j+dx ) ; ASSIGN (w,Wz,4*j+2, Xx,Xz,j+2*dx) ; ASSIGN (w,Wz,4*j+3, Xx,Xz,j+3*dx) ; } for (j = 0 ; j < ncol ; j++) { /* yj0 = 0. ; */ /* yj1 = 0. ; */ /* yj2 = 0. ; */ /* yj3 = 0. ; */ CLEAR (yx,yz,0) ; CLEAR (yx,yz,1) ; CLEAR (yx,yz,2) ; CLEAR (yx,yz,3) ; /* xj0 = alpha [0] * w [4*j ] ; */ /* xj1 = alpha [0] * w [4*j+1] ; */ /* xj2 = alpha [0] * w [4*j+2] ; */ /* xj3 = alpha [0] * w [4*j+3] ; */ MULT (xx,xz,0, alpha,alphaz,0, w,Wz,4*j) ; MULT (xx,xz,1, alpha,alphaz,0, w,Wz,4*j+1) ; MULT (xx,xz,2, alpha,alphaz,0, w,Wz,4*j+2) ; MULT (xx,xz,3, alpha,alphaz,0, w,Wz,4*j+3) ; p = Ap [j] ; pend = (packed) ? (Ap [j+1]) : (p + Anz [j]) ; for ( ; p < pend ; p++) { i = Ai [p] ; if (i == j) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ /* y [i+3*dy] += aij * xj3 ; */ MULTADD (Yx,Yz,i , ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy , ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; MULTADD (Yx,Yz,i+3*dy, ax,az,0, xx,xz,3) ; } else if ((A->stype > 0 && i < j) || (A->stype < 0 && i > j)) { /* aij = Ax [p] ; */ ASSIGN (ax,az,0, Ax,Az,p) ; /* y [i ] += aij * xj0 ; */ /* y [i+ dy] += aij * xj1 ; */ /* y [i+2*dy] += aij * xj2 ; */ /* y [i+3*dy] += aij * xj3 ; */ /* yj0 += aij * w [4*i ] ; */ /* yj1 += aij * w [4*i+1] ; */ /* yj2 += aij * w [4*i+2] ; */ /* yj3 += aij * w [4*i+3] ; */ MULTADD (Yx,Yz,i, ax,az,0, xx,xz,0) ; MULTADD (Yx,Yz,i+dy, ax,az,0, xx,xz,1) ; MULTADD (Yx,Yz,i+2*dy, ax,az,0, xx,xz,2) ; MULTADD (Yx,Yz,i+3*dy, ax,az,0, xx,xz,3) ; MULTADDCONJ (yx,yz,0, ax,az,0, w,Wz,4*i) ; MULTADDCONJ (yx,yz,1, ax,az,0, w,Wz,4*i+1) ; MULTADDCONJ (yx,yz,2, ax,az,0, w,Wz,4*i+2) ; MULTADDCONJ (yx,yz,3, ax,az,0, w,Wz,4*i+3) ; } } /* y [j ] += alpha [0] * yj0 ; */ /* y [j+ dy] += alpha [0] * yj1 ; */ /* y [j+2*dy] += alpha [0] * yj2 ; */ /* y [j+3*dy] += alpha [0] * yj3 ; */ MULTADD (Yx,Yz,j , alpha,alphaz,0, yx,yz,0) ; MULTADD (Yx,Yz,j+dy , alpha,alphaz,0, yx,yz,1) ; MULTADD (Yx,Yz,j+2*dy, alpha,alphaz,0, yx,yz,2) ; MULTADD (Yx,Yz,j+3*dy, alpha,alphaz,0, yx,yz,3) ; } /* y += 4*dy ; */ /* x += 4*dx ; */ ADVANCE (Yx,Yz,4*dy) ; ADVANCE (Xx,Xz,4*dx) ; } } } #undef PATTERN #undef REAL #undef COMPLEX #undef ZOMPLEX SuiteSparse/CHOLMOD/MatrixOps/cholmod_sdmult.c0000644001170100242450000001241710537777723020172 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_sdmult ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Sparse matrix times dense matrix: * Y = alpha*(A*X) + beta*Y or Y = alpha*(A'*X) + beta*Y, * where A is sparse and X and Y are dense. * * when using A, X has A->ncol columns and Y has A->nrow rows * when using A', X has A->nrow columns and Y has A->ncol rows * * workspace: none in Common. Temporary workspace of size 4*(X->nrow) is used * if A is stored in symmetric form and X has four columns or more. If the * workspace is not available, a slower method is used instead that requires * no workspace. * * transpose = 0: use A * otherwise, use A' (complex conjugate transpose) * * transpose is ignored if the matrix is symmetric or Hermitian. * (the array transpose A.' is not supported). * * Supports real, complex, and zomplex matrices, but the xtypes of A, X, and Y * must all match. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === TEMPLATE ============================================================= */ /* ========================================================================== */ #define REAL #include "t_cholmod_sdmult.c" #define COMPLEX #include "t_cholmod_sdmult.c" #define ZOMPLEX #include "t_cholmod_sdmult.c" /* ========================================================================== */ /* === cholmod_sdmult ======================================================= */ /* ========================================================================== */ int CHOLMOD(sdmult) ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to multiply */ int transpose, /* use A if 0, otherwise use A' */ double alpha [2], /* scale factor for A */ double beta [2], /* scale factor for Y */ cholmod_dense *X, /* dense matrix to multiply */ /* ---- in/out --- */ cholmod_dense *Y, /* resulting dense matrix */ /* --------------- */ cholmod_common *Common ) { double *w ; size_t nx, ny ; Int e ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (X, FALSE) ; RETURN_IF_NULL (Y, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (X, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; RETURN_IF_XTYPE_INVALID (Y, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; ny = transpose ? A->ncol : A->nrow ; /* required length of Y */ nx = transpose ? A->nrow : A->ncol ; /* required length of X */ if (X->nrow != nx || X->ncol != Y->ncol || Y->nrow != ny) { /* X and/or Y have the wrong dimension */ ERROR (CHOLMOD_INVALID, "X and/or Y have wrong dimensions") ; return (FALSE) ; } if (A->xtype != X->xtype || A->xtype != Y->xtype) { ERROR (CHOLMOD_INVALID, "A, X, and Y must have same xtype") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace, if required */ /* ---------------------------------------------------------------------- */ w = NULL ; e = (A->xtype == CHOLMOD_REAL ? 1:2) ; if (A->stype && X->ncol >= 4) { w = CHOLMOD(malloc) (nx, 4*e*sizeof (double), Common) ; } if (Common->status < CHOLMOD_OK) { return (FALSE) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* Y = alpha*op(A)*X + beta*Y via template routine */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_sparse) (A, "A", Common) >= 0) ; DEBUG (CHOLMOD(dump_dense) (X, "X", Common)) ; DEBUG (if (IS_NONZERO (beta [0]) || (IS_NONZERO (beta [1]) && A->xtype != CHOLMOD_REAL)) CHOLMOD(dump_dense) (Y, "Y", Common)) ; switch (A->xtype) { case CHOLMOD_REAL: r_cholmod_sdmult (A, transpose, alpha, beta, X, Y, w) ; break ; case CHOLMOD_COMPLEX: c_cholmod_sdmult (A, transpose, alpha, beta, X, Y, w) ; break ; case CHOLMOD_ZOMPLEX: z_cholmod_sdmult (A, transpose, alpha, beta, X, Y, w) ; break ; } /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(free) (4*nx, e*sizeof (double), w, Common) ; DEBUG (CHOLMOD(dump_dense) (Y, "Y", Common)) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/cholmod_horzcat.c0000644001170100242450000001423710537777674020343 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_horzcat ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Horizontal concatenation, C = [A , B] in MATLAB notation. * * A and B can be up/lo/unsym; C is unsymmetric and packed. * A and B must have the same number of rows. * C is sorted if both A and B are sorted. * * workspace: Iwork (max (A->nrow, A->ncol, B->nrow, B->ncol)). * allocates temporary copies of A and B if they are symmetric. * * A and B must have the same numeric xtype, unless values is FALSE. * A and B cannot be complex or zomplex, unless values is FALSE. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === cholmod_horzcat ====================================================== */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(horzcat) ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to concatenate */ cholmod_sparse *B, /* right matrix to concatenate */ int values, /* if TRUE compute the numerical values of C */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Bx, *Cx ; Int *Ap, *Ai, *Anz, *Bp, *Bi, *Bnz, *Cp, *Ci ; cholmod_sparse *C, *A2, *B2 ; Int apacked, bpacked, ancol, bncol, ncol, nrow, anz, bnz, nz, j, p, pend, pdest ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_NULL (B, NULL) ; values = values && (A->xtype != CHOLMOD_PATTERN) && (B->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->nrow != B->nrow) { /* A and B must have the same number of rows */ ERROR (CHOLMOD_INVALID, "A and B must have same # rows") ; return (NULL) ; } /* A and B must have the same numerical type if values is TRUE (both must * be CHOLMOD_REAL, this is implicitly checked above) */ Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ ancol = A->ncol ; bncol = B->ncol ; nrow = A->nrow ; CHOLMOD(allocate_work) (0, MAX3 (nrow, ancol, bncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* convert A to unsymmetric, if necessary */ A2 = NULL ; if (A->stype != 0) { /* workspace: Iwork (max (A->nrow,A->ncol)) */ A2 = CHOLMOD(copy) (A, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } A = A2 ; } /* convert B to unsymmetric, if necessary */ B2 = NULL ; if (B->stype != 0) { /* workspace: Iwork (max (B->nrow,B->ncol)) */ B2 = CHOLMOD(copy) (B, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; return (NULL) ; } B = B2 ; } Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; apacked = A->packed ; Bp = B->p ; Bnz = B->nz ; Bi = B->i ; Bx = B->x ; bpacked = B->packed ; /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ anz = CHOLMOD(nnz) (A, Common) ; bnz = CHOLMOD(nnz) (B, Common) ; ncol = ancol + bncol ; nz = anz + bnz ; C = CHOLMOD(allocate_sparse) (nrow, ncol, nz, A->sorted && B->sorted, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* C = [A , B] */ /* ---------------------------------------------------------------------- */ pdest = 0 ; /* copy A as the first A->ncol columns of C */ for (j = 0 ; j < ancol ; j++) { /* A(:,j) is the jth column of C */ p = Ap [j] ; pend = (apacked) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = pdest ; for ( ; p < pend ; p++) { Ci [pdest] = Ai [p] ; if (values) Cx [pdest] = Ax [p] ; pdest++ ; } } /* copy B as the next B->ncol columns of C */ for (j = 0 ; j < bncol ; j++) { /* B(:,j) is the (ancol+j)th column of C */ p = Bp [j] ; pend = (bpacked) ? (Bp [j+1]) : (p + Bnz [j]) ; Cp [ancol + j] = pdest ; for ( ; p < pend ; p++) { Ci [pdest] = Bi [p] ; if (values) Cx [pdest] = Bx [p] ; pdest++ ; } } Cp [ncol] = pdest ; ASSERT (pdest == anz + bnz) ; /* ---------------------------------------------------------------------- */ /* free the unsymmetric copies of A and B, and return C */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; return (C) ; } #endif SuiteSparse/CHOLMOD/MatrixOps/cholmod_vertcat.c0000644001170100242450000001404010537777736020330 0ustar davisfac/* ========================================================================== */ /* === MatrixOps/cholmod_vertcat ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/MatrixOps Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/MatrixOps Module is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Vertical concatenation, C = [A ; B] in MATLAB notation. * * A and B can be up/lo/unsym; C is unsymmetric and packed. * A and B must have the same number of columns. * C is sorted if both A and B are sorted. * * workspace: Iwork (max (A->nrow, A->ncol, B->nrow, B->ncol)). * allocates temporary copies of A and B if they are symmetric. * * Only pattern and real matrices are supported. Complex and zomplex matrices * are supported only if "values" is FALSE. */ #ifndef NMATRIXOPS #include "cholmod_internal.h" #include "cholmod_matrixops.h" /* ========================================================================== */ /* === cholmod_vertcat ====================================================== */ /* ========================================================================== */ cholmod_sparse *CHOLMOD(vertcat) ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to concatenate */ cholmod_sparse *B, /* right matrix to concatenate */ int values, /* if TRUE compute the numerical values of C */ /* --------------- */ cholmod_common *Common ) { double *Ax, *Bx, *Cx ; Int *Ap, *Ai, *Anz, *Bp, *Bi, *Bnz, *Cp, *Ci ; cholmod_sparse *C, *A2, *B2 ; Int apacked, bpacked, anrow, bnrow, ncol, nrow, anz, bnz, nz, j, p, pend, pdest ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (NULL) ; RETURN_IF_NULL (A, NULL) ; RETURN_IF_NULL (B, NULL) ; values = values && (A->xtype != CHOLMOD_PATTERN) && (B->xtype != CHOLMOD_PATTERN) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; RETURN_IF_XTYPE_INVALID (B, CHOLMOD_PATTERN, values ? CHOLMOD_REAL : CHOLMOD_ZOMPLEX, NULL) ; if (A->ncol != B->ncol) { /* A and B must have the same number of columns */ ERROR (CHOLMOD_INVALID, "A and B must have same # of columns") ; return (NULL) ; } /* A and B must have the same numerical type if values is TRUE (both must * be CHOLMOD_REAL, this is implicitly checked above) */ Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ anrow = A->nrow ; bnrow = B->nrow ; ncol = A->ncol ; CHOLMOD(allocate_work) (0, MAX3 (anrow, bnrow, ncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* convert A to unsymmetric, if necessary */ A2 = NULL ; if (A->stype != 0) { /* workspace: Iwork (max (A->nrow,A->ncol)) */ A2 = CHOLMOD(copy) (A, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ return (NULL) ; } A = A2 ; } /* convert B to unsymmetric, if necessary */ B2 = NULL ; if (B->stype != 0) { /* workspace: Iwork (max (B->nrow,B->ncol)) */ B2 = CHOLMOD(copy) (B, 0, values, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; return (NULL) ; } B = B2 ; } Ap = A->p ; Anz = A->nz ; Ai = A->i ; Ax = A->x ; apacked = A->packed ; Bp = B->p ; Bnz = B->nz ; Bi = B->i ; Bx = B->x ; bpacked = B->packed ; /* ---------------------------------------------------------------------- */ /* allocate C */ /* ---------------------------------------------------------------------- */ anz = CHOLMOD(nnz) (A, Common) ; bnz = CHOLMOD(nnz) (B, Common) ; nrow = anrow + bnrow ; nz = anz + bnz ; C = CHOLMOD(allocate_sparse) (nrow, ncol, nz, A->sorted && B->sorted, TRUE, 0, values ? A->xtype : CHOLMOD_PATTERN, Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; return (NULL) ; } Cp = C->p ; Ci = C->i ; Cx = C->x ; /* ---------------------------------------------------------------------- */ /* C = [A ; B] */ /* ---------------------------------------------------------------------- */ pdest = 0 ; for (j = 0 ; j < ncol ; j++) { /* attach A(:,j) as the first part of C(:,j) */ p = Ap [j] ; pend = (apacked) ? (Ap [j+1]) : (p + Anz [j]) ; Cp [j] = pdest ; for ( ; p < pend ; p++) { Ci [pdest] = Ai [p] ; if (values) { Cx [pdest] = Ax [p] ; } pdest++ ; } /* attach B(:,j) as the second part of C(:,j) */ p = Bp [j] ; pend = (bpacked) ? (Bp [j+1]) : (p + Bnz [j]) ; for ( ; p < pend ; p++) { Ci [pdest] = Bi [p] + anrow ; if (values) { Cx [pdest] = Bx [p] ; } pdest++ ; } } Cp [ncol] = pdest ; ASSERT (pdest == nz) ; /* ---------------------------------------------------------------------- */ /* free the unsymmetric copies of A and B, and return C */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&A2, Common) ; CHOLMOD(free_sparse) (&B2, Common) ; return (C) ; } #endif SuiteSparse/CHOLMOD/Include/0000755001170100242450000000000010711427613014421 5ustar davisfacSuiteSparse/CHOLMOD/Include/cholmod_cholesky.h0000644001170100242450000004561410537777516020152 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_cholesky.h =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_cholesky.h. Copyright (C) 2005-2006, Timothy A. Davis * CHOLMOD/Include/cholmod_cholesky.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Cholesky module. * * Sparse Cholesky routines: analysis, factorization, and solve. * * The primary routines are all that a user requires to order, analyze, and * factorize a sparse symmetric positive definite matrix A (or A*A'), and * to solve Ax=b (or A*A'x=b). The primary routines rely on the secondary * routines, the CHOLMOD Core module, and the AMD and COLAMD packages. They * make optional use of the CHOLMOD Supernodal and Partition modules, the * METIS package, and the CCOLAMD package. * * Primary routines: * ----------------- * * cholmod_analyze order and analyze (simplicial or supernodal) * cholmod_factorize simplicial or supernodal Cholesky factorization * cholmod_solve solve a linear system (simplicial or supernodal) * cholmod_spsolve solve a linear system (sparse x and b) * * Secondary routines: * ------------------ * * cholmod_analyze_p analyze, with user-provided permutation or f set * cholmod_factorize_p factorize, with user-provided permutation or f * cholmod_analyze_ordering analyze a fill-reducing ordering * cholmod_etree find the elimination tree * cholmod_rowcolcounts compute the row/column counts of L * cholmod_amd order using AMD * cholmod_colamd order using COLAMD * cholmod_rowfac incremental simplicial factorization * cholmod_rowfac_mask rowfac, specific to LPDASA * cholmod_row_subtree find the nonzero pattern of a row of L * cholmod_resymbol recompute the symbolic pattern of L * cholmod_resymbol_noperm recompute the symbolic pattern of L, no L->Perm * cholmod_postorder postorder a tree * * Requires the Core module, and two packages: AMD and COLAMD. * Optionally uses the Supernodal and Partition modules. * Required by the Partition module. */ #ifndef CHOLMOD_CHOLESKY_H #define CHOLMOD_CHOLESKY_H #include "cholmod_config.h" #include "cholmod_core.h" #ifndef NPARTITION #include "cholmod_partition.h" #endif #ifndef NSUPERNODAL #include "cholmod_supernodal.h" #endif /* -------------------------------------------------------------------------- */ /* cholmod_analyze: order and analyze (simplicial or supernodal) */ /* -------------------------------------------------------------------------- */ /* Orders and analyzes A, AA', PAP', or PAA'P' and returns a symbolic factor * that can later be passed to cholmod_factorize. */ cholmod_factor *cholmod_analyze ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order and analyze */ /* --------------- */ cholmod_common *Common ) ; cholmod_factor *cholmod_l_analyze (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_analyze_p: analyze, with user-provided permutation or f set */ /* -------------------------------------------------------------------------- */ /* Orders and analyzes A, AA', PAP', PAA'P', FF', or PFF'P and returns a * symbolic factor that can later be passed to cholmod_factorize, where * F = A(:,fset) if fset is not NULL and A->stype is zero. * UserPerm is tried if non-NULL. */ cholmod_factor *cholmod_analyze_p ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order and analyze */ int *UserPerm, /* user-provided permutation, size A->nrow */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* --------------- */ cholmod_common *Common ) ; cholmod_factor *cholmod_l_analyze_p (cholmod_sparse *, UF_long *, UF_long *, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_factorize: simplicial or supernodal Cholesky factorization */ /* -------------------------------------------------------------------------- */ /* Factorizes PAP' (or PAA'P' if A->stype is 0), using a factor obtained * from cholmod_analyze. The analysis can be re-used simply by calling this * routine a second time with another matrix. A must have the same nonzero * pattern as that passed to cholmod_analyze. */ int cholmod_factorize ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ /* ---- in/out --- */ cholmod_factor *L, /* resulting factorization */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_factorize (cholmod_sparse *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_factorize_p: factorize, with user-provided permutation or fset */ /* -------------------------------------------------------------------------- */ /* Same as cholmod_factorize, but with more options. */ int cholmod_factorize_p ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ double beta [2], /* factorize beta*I+A or beta*I+A'*A */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- in/out --- */ cholmod_factor *L, /* resulting factorization */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_factorize_p (cholmod_sparse *, double *, UF_long *, size_t, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_solve: solve a linear system (simplicial or supernodal) */ /* -------------------------------------------------------------------------- */ /* Solves one of many linear systems with a dense right-hand-side, using the * factorization from cholmod_factorize (or as modified by any other CHOLMOD * routine). D is identity for LL' factorizations. */ #define CHOLMOD_A 0 /* solve Ax=b */ #define CHOLMOD_LDLt 1 /* solve LDL'x=b */ #define CHOLMOD_LD 2 /* solve LDx=b */ #define CHOLMOD_DLt 3 /* solve DL'x=b */ #define CHOLMOD_L 4 /* solve Lx=b */ #define CHOLMOD_Lt 5 /* solve L'x=b */ #define CHOLMOD_D 6 /* solve Dx=b */ #define CHOLMOD_P 7 /* permute x=Px */ #define CHOLMOD_Pt 8 /* permute x=P'x */ cholmod_dense *cholmod_solve /* returns the solution X */ ( /* ---- input ---- */ int sys, /* system to solve */ cholmod_factor *L, /* factorization to use */ cholmod_dense *B, /* right-hand-side */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_solve (int, cholmod_factor *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_spsolve: solve a linear system with a sparse right-hand-side */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_spsolve ( /* ---- input ---- */ int sys, /* system to solve */ cholmod_factor *L, /* factorization to use */ cholmod_sparse *B, /* right-hand-side */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_spsolve (int, cholmod_factor *, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_etree: find the elimination tree of A or A'*A */ /* -------------------------------------------------------------------------- */ int cholmod_etree ( /* ---- input ---- */ cholmod_sparse *A, /* ---- output --- */ int *Parent, /* size ncol. Parent [j] = p if p is the parent of j */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_etree (cholmod_sparse *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowcolcounts: compute the row/column counts of L */ /* -------------------------------------------------------------------------- */ int cholmod_rowcolcounts ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int *Parent, /* size nrow. Parent [i] = p if p is the parent of i */ int *Post, /* size nrow. Post [k] = i if i is the kth node in * the postordered etree. */ /* ---- output --- */ int *RowCount, /* size nrow. RowCount [i] = # entries in the ith row of * L, including the diagonal. */ int *ColCount, /* size nrow. ColCount [i] = # entries in the ith * column of L, including the diagonal. */ int *First, /* size nrow. First [i] = k is the least postordering * of any descendant of i. */ int *Level, /* size nrow. Level [i] is the length of the path from * i to the root, with Level [root] = 0. */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowcolcounts (cholmod_sparse *, UF_long *, size_t, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_analyze_ordering: analyze a fill-reducing ordering */ /* -------------------------------------------------------------------------- */ int cholmod_analyze_ordering ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int ordering, /* ordering method used */ int *Perm, /* size n, fill-reducing permutation to analyze */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ int *Parent, /* size n, elimination tree */ int *Post, /* size n, postordering of elimination tree */ int *ColCount, /* size n, nnz in each column of L */ /* ---- workspace */ int *First, /* size nworkspace for cholmod_postorder */ int *Level, /* size n workspace for cholmod_postorder */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_analyze_ordering (cholmod_sparse *, int, UF_long *, UF_long *, size_t, UF_long *, UF_long *, UF_long *, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_amd: order using AMD */ /* -------------------------------------------------------------------------- */ /* Finds a permutation P to reduce fill-in in the factorization of P*A*P' * or P*A*A'P' */ int cholmod_amd ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_amd (cholmod_sparse *, UF_long *, size_t, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_colamd: order using COLAMD */ /* -------------------------------------------------------------------------- */ /* Finds a permutation P to reduce fill-in in the factorization of P*A*A'*P'. * Orders F*F' where F = A (:,fset) if fset is not NULL */ int cholmod_colamd ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int postorder, /* if TRUE, follow with a coletree postorder */ /* ---- output --- */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_colamd (cholmod_sparse *, UF_long *, size_t, int, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowfac: incremental simplicial factorization */ /* -------------------------------------------------------------------------- */ /* Partial or complete simplicial factorization. Rows and columns kstart:kend-1 * of L and D must be initially equal to rows/columns kstart:kend-1 of the * identity matrix. Row k can only be factorized if all descendants of node * k in the elimination tree have been factorized. */ int cholmod_rowfac ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */ double beta [2], /* factorize beta*I+A or beta*I+A'*A */ size_t kstart, /* first row to factorize */ size_t kend, /* last row to factorize is kend-1 */ /* ---- in/out --- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowfac (cholmod_sparse *, cholmod_sparse *, double *, size_t, size_t, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowfac_mask: incremental simplicial factorization */ /* -------------------------------------------------------------------------- */ /* cholmod_rowfac_mask is a version of cholmod_rowfac that is specific to * LPDASA. It is unlikely to be needed by any other application. */ int cholmod_rowfac_mask ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */ double beta [2], /* factorize beta*I+A or beta*I+A'*A */ size_t kstart, /* first row to factorize */ size_t kend, /* last row to factorize is kend-1 */ int *mask, /* if mask[i] >= 0, then set row i to zero */ int *RLinkUp, /* link list of rows to compute */ /* ---- in/out --- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t, size_t, UF_long *, UF_long *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_row_subtree: find the nonzero pattern of a row of L */ /* -------------------------------------------------------------------------- */ /* Find the nonzero pattern of x for the system Lx=b where L = (0:k-1,0:k-1) * and b = kth column of A or A*A' (rows 0 to k-1 only) */ int cholmod_row_subtree ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ cholmod_sparse *F, /* used for A*A' case only. F=A' or A(:,fset)' */ size_t k, /* row k of L */ int *Parent, /* elimination tree */ /* ---- output --- */ cholmod_sparse *R, /* pattern of L(k,:), 1-by-n with R->nzmax >= n */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_row_subtree (cholmod_sparse *, cholmod_sparse *, size_t, UF_long *, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_row_lsubtree: find the nonzero pattern of a row of L */ /* -------------------------------------------------------------------------- */ /* Identical to cholmod_row_subtree, except that it finds the elimination tree * from L itself. */ int cholmod_row_lsubtree ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int *Fi, size_t fnz, /* nonzero pattern of kth row of A', not required * for the symmetric case. Need not be sorted. */ size_t k, /* row k of L */ cholmod_factor *L, /* the factor L from which parent(i) is derived */ /* ---- output --- */ cholmod_sparse *R, /* pattern of L(k,:), 1-by-n with R->nzmax >= n */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_row_lsubtree (cholmod_sparse *, UF_long *, size_t, size_t, cholmod_factor *, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_resymbol: recompute the symbolic pattern of L */ /* -------------------------------------------------------------------------- */ /* Remove entries from L that are not in the factorization of P*A*P', P*A*A'*P', * or P*F*F'*P' (depending on A->stype and whether fset is NULL or not). * * cholmod_resymbol is the same as cholmod_resymbol_noperm, except that it * first permutes A according to L->Perm. A can be upper/lower/unsymmetric, * in contrast to cholmod_resymbol_noperm (which can be lower or unsym). */ int cholmod_resymbol ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int pack, /* if TRUE, pack the columns of L */ /* ---- in/out --- */ cholmod_factor *L, /* factorization, entries pruned on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_resymbol (cholmod_sparse *, UF_long *, size_t, int, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_resymbol_noperm: recompute the symbolic pattern of L, no L->Perm */ /* -------------------------------------------------------------------------- */ /* Remove entries from L that are not in the factorization of A, A*A', * or F*F' (depending on A->stype and whether fset is NULL or not). */ int cholmod_resymbol_noperm ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int pack, /* if TRUE, pack the columns of L */ /* ---- in/out --- */ cholmod_factor *L, /* factorization, entries pruned on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_resymbol_noperm (cholmod_sparse *, UF_long *, size_t, int, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rcond: compute rough estimate of reciprocal of condition number */ /* -------------------------------------------------------------------------- */ double cholmod_rcond /* return min(diag(L)) / max(diag(L)) */ ( /* ---- input ---- */ cholmod_factor *L, /* --------------- */ cholmod_common *Common ) ; double cholmod_l_rcond (cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_postorder: Compute the postorder of a tree */ /* -------------------------------------------------------------------------- */ UF_long cholmod_postorder /* return # of nodes postordered */ ( /* ---- input ---- */ int *Parent, /* size n. Parent [j] = p if p is the parent of j */ size_t n, int *Weight_p, /* size n, optional. Weight [j] is weight of node j */ /* ---- output --- */ int *Post, /* size n. Post [k] = j is kth in postordered tree */ /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_postorder (UF_long *, size_t, UF_long *, UF_long *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/cholmod_matrixops.h0000644001170100242450000002063610614157460020336 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_matrixops.h ========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_matrixops.h. * Copyright (C) 2005-2006, Timothy A. Davis * CHOLMOD/Include/cholmod_matrixops.h is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD MatrixOps module. * * Basic operations on sparse and dense matrices. * * cholmod_drop A = entries in A with abs. value >= tol * cholmod_norm_dense s = norm (X), 1-norm, inf-norm, or 2-norm * cholmod_norm_sparse s = norm (A), 1-norm or inf-norm * cholmod_horzcat C = [A,B] * cholmod_scale A = diag(s)*A, A*diag(s), s*A or diag(s)*A*diag(s) * cholmod_sdmult Y = alpha*(A*X) + beta*Y or alpha*(A'*X) + beta*Y * cholmod_ssmult C = A*B * cholmod_submatrix C = A (i,j), where i and j are arbitrary vectors * cholmod_vertcat C = [A ; B] * * A, B, C: sparse matrices (cholmod_sparse) * X, Y: dense matrices (cholmod_dense) * s: scalar or vector * * Requires the Core module. Not required by any other CHOLMOD module. */ #ifndef CHOLMOD_MATRIXOPS_H #define CHOLMOD_MATRIXOPS_H #include "cholmod_core.h" /* -------------------------------------------------------------------------- */ /* cholmod_drop: drop entries with small absolute value */ /* -------------------------------------------------------------------------- */ int cholmod_drop ( /* ---- input ---- */ double tol, /* keep entries with absolute value > tol */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to drop entries from */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_drop (double, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_norm_dense: s = norm (X), 1-norm, inf-norm, or 2-norm */ /* -------------------------------------------------------------------------- */ double cholmod_norm_dense ( /* ---- input ---- */ cholmod_dense *X, /* matrix to compute the norm of */ int norm, /* type of norm: 0: inf. norm, 1: 1-norm, 2: 2-norm */ /* --------------- */ cholmod_common *Common ) ; double cholmod_l_norm_dense (cholmod_dense *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_norm_sparse: s = norm (A), 1-norm or inf-norm */ /* -------------------------------------------------------------------------- */ double cholmod_norm_sparse ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to compute the norm of */ int norm, /* type of norm: 0: inf. norm, 1: 1-norm */ /* --------------- */ cholmod_common *Common ) ; double cholmod_l_norm_sparse (cholmod_sparse *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_horzcat: C = [A,B] */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_horzcat ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to concatenate */ cholmod_sparse *B, /* right matrix to concatenate */ int values, /* if TRUE compute the numerical values of C */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_horzcat (cholmod_sparse *, cholmod_sparse *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_scale: A = diag(s)*A, A*diag(s), s*A or diag(s)*A*diag(s) */ /* -------------------------------------------------------------------------- */ /* scaling modes, selected by the scale input parameter: */ #define CHOLMOD_SCALAR 0 /* A = s*A */ #define CHOLMOD_ROW 1 /* A = diag(s)*A */ #define CHOLMOD_COL 2 /* A = A*diag(s) */ #define CHOLMOD_SYM 3 /* A = diag(s)*A*diag(s) */ int cholmod_scale ( /* ---- input ---- */ cholmod_dense *S, /* scale factors (scalar or vector) */ int scale, /* type of scaling to compute */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to scale */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_scale (cholmod_dense *, int, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_sdmult: Y = alpha*(A*X) + beta*Y or alpha*(A'*X) + beta*Y */ /* -------------------------------------------------------------------------- */ /* Sparse matrix times dense matrix */ int cholmod_sdmult ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to multiply */ int transpose, /* use A if 0, or A' otherwise */ double alpha [2], /* scale factor for A */ double beta [2], /* scale factor for Y */ cholmod_dense *X, /* dense matrix to multiply */ /* ---- in/out --- */ cholmod_dense *Y, /* resulting dense matrix */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_sdmult (cholmod_sparse *, int, double *, double *, cholmod_dense *, cholmod_dense *Y, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_ssmult: C = A*B */ /* -------------------------------------------------------------------------- */ /* Sparse matrix times sparse matrix */ cholmod_sparse *cholmod_ssmult ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to multiply */ cholmod_sparse *B, /* right matrix to multiply */ int stype, /* requested stype of C */ int values, /* TRUE: do numerical values, FALSE: pattern only */ int sorted, /* if TRUE then return C with sorted columns */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_ssmult (cholmod_sparse *, cholmod_sparse *, int, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_submatrix: C = A (r,c), where i and j are arbitrary vectors */ /* -------------------------------------------------------------------------- */ /* rsize < 0 denotes ":" in MATLAB notation, or more precisely 0:(A->nrow)-1. * In this case, r can be NULL. An rsize of zero, or r = NULL and rsize >= 0, * denotes "[ ]" in MATLAB notation (the empty set). * Similar rules hold for csize. */ cholmod_sparse *cholmod_submatrix ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to subreference */ int *rset, /* set of row indices, duplicates OK */ UF_long rsize, /* size of r; rsize < 0 denotes ":" */ int *cset, /* set of column indices, duplicates OK */ UF_long csize, /* size of c; csize < 0 denotes ":" */ int values, /* if TRUE compute the numerical values of C */ int sorted, /* if TRUE then return C with sorted columns */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_submatrix (cholmod_sparse *, UF_long *, UF_long, UF_long *, UF_long, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_vertcat: C = [A ; B] */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_vertcat ( /* ---- input ---- */ cholmod_sparse *A, /* left matrix to concatenate */ cholmod_sparse *B, /* right matrix to concatenate */ int values, /* if TRUE compute the numerical values of C */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_vertcat (cholmod_sparse *, cholmod_sparse *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_symmetry: determine if a sparse matrix is symmetric */ /* -------------------------------------------------------------------------- */ int cholmod_symmetry ( /* ---- input ---- */ cholmod_sparse *A, int option, /* ---- output ---- */ int *xmatched, int *pmatched, int *nzoffdiag, int *nzdiag, /* --------------- */ cholmod_common *Common ) ; int cholmod_l_symmetry (cholmod_sparse *, int, UF_long *, UF_long *, UF_long *, UF_long *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/cholmod_template.h0000644001170100242450000002200110301202262020067 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_template.h =========================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* undefine current xtype macros, and then define macros for current type */ /* -------------------------------------------------------------------------- */ #undef TEMPLATE #undef XTYPE #undef XTYPE2 #undef XTYPE_OK #undef ENTRY_IS_NONZERO #undef ENTRY_IS_ZERO #undef ENTRY_IS_ONE #undef IMAG_IS_NONZERO #undef ASSEMBLE #undef ASSIGN #undef ASSIGN_CONJ #undef ASSIGN2 #undef ASSIGN2_CONJ #undef ASSIGN_REAL #undef MULT #undef MULTADD #undef ADD #undef ADD_REAL #undef MULTSUB #undef MULTADDCONJ #undef MULTSUBCONJ #undef LLDOT #undef CLEAR #undef DIV #undef DIV_REAL #undef MULT_REAL #undef CLEAR_IMAG #undef LDLDOT #undef PREFIX #undef ENTRY_SIZE #undef XPRINT0 #undef XPRINT1 #undef XPRINT2 #undef XPRINT3 /* -------------------------------------------------------------------------- */ /* pattern */ /* -------------------------------------------------------------------------- */ #ifdef PATTERN #define PREFIX p_ #define TEMPLATE(name) P_TEMPLATE(name) #define XTYPE CHOLMOD_PATTERN #define XTYPE2 CHOLMOD_REAL #define XTYPE_OK(type) (TRUE) #define ENTRY_IS_NONZERO(ax,az,q) (TRUE) #define ENTRY_IS_ZERO(ax,az,q) (FALSE) #define ENTRY_IS_ONE(ax,az,q) (TRUE) #define IMAG_IS_NONZERO(ax,az,q) (FALSE) #define ENTRY_SIZE 0 #define ASSEMBLE(x,z,p,ax,az,q) #define ASSIGN(x,z,p,ax,az,q) #define ASSIGN_CONJ(x,z,p,ax,az,q) #define ASSIGN2(x,z,p,ax,az,q) P_ASSIGN2(x,z,p,ax,az,q) #define ASSIGN2_CONJ(x,z,p,ax,az,q) P_ASSIGN2(x,z,p,ax,az,q) #define ASSIGN_REAL(x,p,ax,q) #define MULT(x,z,p,ax,az,q,bx,bz,pb) #define MULTADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD_REAL(x,p, ax,q, bx,r) #define MULTSUB(x,z,p,ax,az,q,bx,bz,pb) #define MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) #define MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) #define LLDOT(x,p,ax,az,q) #define CLEAR(x,z,p) #define CLEAR_IMAG(x,z,p) #define DIV(x,z,p,ax,az,q) #define DIV_REAL(x,z,p, ax,az,q, bx,r) #define MULT_REAL(x,z,p, ax,az,q, bx,r) #define LDLDOT(x,p, ax,az,q, bx,r) #define XPRINT0(x,z,p) P_PRINT(0,x,z,p) #define XPRINT1(x,z,p) P_PRINT(1,x,z,p) #define XPRINT2(x,z,p) P_PRINT(2,x,z,p) #define XPRINT3(x,z,p) P_PRINT(3,x,z,p) /* -------------------------------------------------------------------------- */ /* real */ /* -------------------------------------------------------------------------- */ #elif defined (REAL) #define PREFIX r_ #define TEMPLATE(name) R_TEMPLATE(name) #define XTYPE CHOLMOD_REAL #define XTYPE2 CHOLMOD_REAL #define XTYPE_OK(type) R_XTYPE_OK(type) #define ENTRY_IS_NONZERO(ax,az,q) R_IS_NONZERO(ax,az,q) #define ENTRY_IS_ZERO(ax,az,q) R_IS_ZERO(ax,az,q) #define ENTRY_IS_ONE(ax,az,q) R_IS_ONE(ax,az,q) #define IMAG_IS_NONZERO(ax,az,q) (FALSE) #define ENTRY_SIZE 1 #define ASSEMBLE(x,z,p,ax,az,q) R_ASSEMBLE(x,z,p,ax,az,q) #define ASSIGN(x,z,p,ax,az,q) R_ASSIGN(x,z,p,ax,az,q) #define ASSIGN_CONJ(x,z,p,ax,az,q) R_ASSIGN(x,z,p,ax,az,q) #define ASSIGN2(x,z,p,ax,az,q) R_ASSIGN(x,z,p,ax,az,q) #define ASSIGN2_CONJ(x,z,p,ax,az,q) R_ASSIGN(x,z,p,ax,az,q) #define ASSIGN_REAL(x,p,ax,q) R_ASSIGN_REAL(x,p,ax,q) #define MULT(x,z,p,ax,az,q,bx,bz,pb) R_MULT(x,z,p,ax,az,q,bx,bz,pb) #define MULTADD(x,z,p,ax,az,q,bx,bz,pb) R_MULTADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD(x,z,p,ax,az,q,bx,bz,pb) R_ADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD_REAL(x,p, ax,q, bx,r) R_ADD_REAL(x,p, ax,q, bx,r) #define MULTSUB(x,z,p,ax,az,q,bx,bz,pb) R_MULTSUB(x,z,p,ax,az,q,bx,bz,pb) #define MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) \ R_MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) #define MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) \ R_MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) #define LLDOT(x,p,ax,az,q) R_LLDOT(x,p,ax,az,q) #define CLEAR(x,z,p) R_CLEAR(x,z,p) #define CLEAR_IMAG(x,z,p) R_CLEAR_IMAG(x,z,p) #define DIV(x,z,p,ax,az,q) R_DIV(x,z,p,ax,az,q) #define DIV_REAL(x,z,p, ax,az,q, bx,r) R_DIV_REAL(x,z,p, ax,az,q, bx,r) #define MULT_REAL(x,z,p, ax,az,q, bx,r) R_MULT_REAL(x,z,p, ax,az,q, bx,r) #define LDLDOT(x,p, ax,az,q, bx,r) R_LDLDOT(x,p, ax,az,q, bx,r) #define XPRINT0(x,z,p) R_PRINT(0,x,z,p) #define XPRINT1(x,z,p) R_PRINT(1,x,z,p) #define XPRINT2(x,z,p) R_PRINT(2,x,z,p) #define XPRINT3(x,z,p) R_PRINT(3,x,z,p) /* -------------------------------------------------------------------------- */ /* complex */ /* -------------------------------------------------------------------------- */ #elif defined (COMPLEX) #define PREFIX c_ #ifdef NCONJUGATE #define TEMPLATE(name) CT_TEMPLATE(name) #else #define TEMPLATE(name) C_TEMPLATE(name) #endif #define ASSEMBLE(x,z,p,ax,az,q) C_ASSEMBLE(x,z,p,ax,az,q) #define ASSIGN(x,z,p,ax,az,q) C_ASSIGN(x,z,p,ax,az,q) #define ASSIGN_CONJ(x,z,p,ax,az,q) C_ASSIGN_CONJ(x,z,p,ax,az,q) #define ASSIGN2(x,z,p,ax,az,q) C_ASSIGN(x,z,p,ax,az,q) #define ASSIGN2_CONJ(x,z,p,ax,az,q) C_ASSIGN_CONJ(x,z,p,ax,az,q) #define ASSIGN_REAL(x,p,ax,q) C_ASSIGN_REAL(x,p,ax,q) #define XTYPE CHOLMOD_COMPLEX #define XTYPE2 CHOLMOD_COMPLEX #define XTYPE_OK(type) C_XTYPE_OK(type) #define ENTRY_IS_NONZERO(ax,az,q) C_IS_NONZERO(ax,az,q) #define ENTRY_IS_ZERO(ax,az,q) C_IS_ZERO(ax,az,q) #define ENTRY_IS_ONE(ax,az,q) C_IS_ONE(ax,az,q) #define IMAG_IS_NONZERO(ax,az,q) C_IMAG_IS_NONZERO(ax,az,q) #define ENTRY_SIZE 2 #define MULTADD(x,z,p,ax,az,q,bx,bz,pb) C_MULTADD(x,z,p,ax,az,q,bx,bz,pb) #define MULT(x,z,p,ax,az,q,bx,bz,pb) C_MULT(x,z,p,ax,az,q,bx,bz,pb) #define ADD(x,z,p,ax,az,q,bx,bz,pb) C_ADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD_REAL(x,p, ax,q, bx,r) C_ADD_REAL(x,p, ax,q, bx,r) #define MULTSUB(x,z,p,ax,az,q,bx,bz,pb) C_MULTSUB(x,z,p,ax,az,q,bx,bz,pb) #define MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) \ C_MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) #define MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) \ C_MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) #define LLDOT(x,p,ax,az,q) C_LLDOT(x,p,ax,az,q) #define CLEAR(x,z,p) C_CLEAR(x,z,p) #define CLEAR_IMAG(x,z,p) C_CLEAR_IMAG(x,z,p) #define DIV(x,z,p,ax,az,q) C_DIV(x,z,p,ax,az,q) #define DIV_REAL(x,z,p, ax,az,q, bx,r) C_DIV_REAL(x,z,p, ax,az,q, bx,r) #define MULT_REAL(x,z,p, ax,az,q, bx,r) C_MULT_REAL(x,z,p, ax,az,q, bx,r) #define LDLDOT(x,p, ax,az,q, bx,r) C_LDLDOT(x,p, ax,az,q, bx,r) #define XPRINT0(x,z,p) C_PRINT(0,x,z,p) #define XPRINT1(x,z,p) C_PRINT(1,x,z,p) #define XPRINT2(x,z,p) C_PRINT(2,x,z,p) #define XPRINT3(x,z,p) C_PRINT(3,x,z,p) /* -------------------------------------------------------------------------- */ /* zomplex */ /* -------------------------------------------------------------------------- */ #elif defined (ZOMPLEX) #define PREFIX z_ #ifdef NCONJUGATE #define TEMPLATE(name) ZT_TEMPLATE(name) #else #define TEMPLATE(name) Z_TEMPLATE(name) #endif #define ASSEMBLE(x,z,p,ax,az,q) Z_ASSEMBLE(x,z,p,ax,az,q) #define ASSIGN(x,z,p,ax,az,q) Z_ASSIGN(x,z,p,ax,az,q) #define ASSIGN_CONJ(x,z,p,ax,az,q) Z_ASSIGN_CONJ(x,z,p,ax,az,q) #define ASSIGN2(x,z,p,ax,az,q) Z_ASSIGN(x,z,p,ax,az,q) #define ASSIGN2_CONJ(x,z,p,ax,az,q) Z_ASSIGN_CONJ(x,z,p,ax,az,q) #define ASSIGN_REAL(x,p,ax,q) Z_ASSIGN_REAL(x,p,ax,q) #define XTYPE CHOLMOD_ZOMPLEX #define XTYPE2 CHOLMOD_ZOMPLEX #define XTYPE_OK(type) Z_XTYPE_OK(type) #define ENTRY_IS_NONZERO(ax,az,q) Z_IS_NONZERO(ax,az,q) #define ENTRY_IS_ZERO(ax,az,q) Z_IS_ZERO(ax,az,q) #define ENTRY_IS_ONE(ax,az,q) Z_IS_ONE(ax,az,q) #define IMAG_IS_NONZERO(ax,az,q) Z_IMAG_IS_NONZERO(ax,az,q) #define ENTRY_SIZE 1 #define MULTADD(x,z,p,ax,az,q,bx,bz,pb) Z_MULTADD(x,z,p,ax,az,q,bx,bz,pb) #define MULT(x,z,p,ax,az,q,bx,bz,pb) Z_MULT(x,z,p,ax,az,q,bx,bz,pb) #define ADD(x,z,p,ax,az,q,bx,bz,pb) Z_ADD(x,z,p,ax,az,q,bx,bz,pb) #define ADD_REAL(x,p, ax,q, bx,r) Z_ADD_REAL(x,p, ax,q, bx,r) #define MULTSUB(x,z,p,ax,az,q,bx,bz,pb) Z_MULTSUB(x,z,p,ax,az,q,bx,bz,pb) #define MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) \ Z_MULTADDCONJ(x,z,p,ax,az,q,bx,bz,pb) #define MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) \ Z_MULTSUBCONJ(x,z,p,ax,az,q,bx,bz,pb) #define LLDOT(x,p,ax,az,q) Z_LLDOT(x,p,ax,az,q) #define CLEAR(x,z,p) Z_CLEAR(x,z,p) #define CLEAR_IMAG(x,z,p) Z_CLEAR_IMAG(x,z,p) #define DIV(x,z,p,ax,az,q) Z_DIV(x,z,p,ax,az,q) #define DIV_REAL(x,z,p, ax,az,q, bx,r) Z_DIV_REAL(x,z,p, ax,az,q, bx,r) #define MULT_REAL(x,z,p, ax,az,q, bx,r) Z_MULT_REAL(x,z,p, ax,az,q, bx,r) #define LDLDOT(x,p, ax,az,q, bx,r) Z_LDLDOT(x,p, ax,az,q, bx,r) #define XPRINT0(x,z,p) Z_PRINT(0,x,z,p) #define XPRINT1(x,z,p) Z_PRINT(1,x,z,p) #define XPRINT2(x,z,p) Z_PRINT(2,x,z,p) #define XPRINT3(x,z,p) Z_PRINT(3,x,z,p) #endif SuiteSparse/CHOLMOD/Include/cholmod_partition.h0000644001170100242450000002122210537777552020327 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_partition.h ========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_partition.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_partition.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Partition module. * * Graph partitioning and graph-partition-based orderings. Includes an * interface to CCOLAMD and CSYMAMD, constrained minimum degree ordering * methods which order a matrix following constraints determined via nested * dissection. * * cholmod_nested_dissection CHOLMOD nested dissection ordering * cholmod_metis METIS nested dissection ordering (METIS_NodeND) * cholmod_ccolamd interface to CCOLAMD ordering * cholmod_csymamd interface to CSYMAMD ordering * cholmod_camd interface to CAMD ordering * cholmod_bisect graph partitioner (currently based on METIS) * cholmod_metis_bisector direct interface to METIS_NodeComputeSeparator * * Requires the Core and Cholesky modules, and three packages: METIS, CAMD, * and CCOLAMD. Optionally used by the Cholesky module. * * Note that METIS does not have a version that uses UF_long integers. If you * try to use cholmod_nested_dissection, cholmod_metis, cholmod_bisect, or * cholmod_metis_bisector on a matrix that is too large, an error code will be * returned. METIS does have an "idxtype", which could be redefined as UF_long, * if you wish to edit METIS or use compile-time flags to redefine idxtype. */ #ifndef CHOLMOD_PARTITION_H #define CHOLMOD_PARTITION_H #include "cholmod_core.h" /* -------------------------------------------------------------------------- */ /* cholmod_nested_dissection */ /* -------------------------------------------------------------------------- */ /* Order A, AA', or A(:,f)*A(:,f)' using CHOLMOD's nested dissection method * (METIS's node bisector applied recursively to compute the separator tree * and constraint sets, followed by CCOLAMD using the constraints). Usually * finds better orderings than METIS_NodeND, but takes longer. */ UF_long cholmod_nested_dissection /* returns # of components */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ int *Perm, /* size A->nrow, output permutation */ int *CParent, /* size A->nrow. On output, CParent [c] is the parent * of component c, or EMPTY if c is a root, and where * c is in the range 0 to # of components minus 1 */ int *Cmember, /* size A->nrow. Cmember [j] = c if node j of A is * in component c */ /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_nested_dissection (cholmod_sparse *, UF_long *, size_t, UF_long *, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_metis */ /* -------------------------------------------------------------------------- */ /* Order A, AA', or A(:,f)*A(:,f)' using METIS_NodeND. */ int cholmod_metis ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int postorder, /* if TRUE, follow with etree or coletree postorder */ /* ---- output --- */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_metis (cholmod_sparse *, UF_long *, size_t, int, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_ccolamd */ /* -------------------------------------------------------------------------- */ /* Order AA' or A(:,f)*A(:,f)' using CCOLAMD. */ int cholmod_ccolamd ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int *Cmember, /* size A->nrow. Cmember [i] = c if row i is in the * constraint set c. c must be >= 0. The # of * constraint sets is max (Cmember) + 1. If Cmember is * NULL, then it is interpretted as Cmember [i] = 0 for * all i */ /* ---- output --- */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_ccolamd (cholmod_sparse *, UF_long *, size_t, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_csymamd */ /* -------------------------------------------------------------------------- */ /* Order A using CSYMAMD. */ int cholmod_csymamd ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ /* ---- output --- */ int *Cmember, /* size nrow. see cholmod_ccolamd above */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_csymamd (cholmod_sparse *, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_camd */ /* -------------------------------------------------------------------------- */ /* Order A using CAMD. */ int cholmod_camd ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ int *Cmember, /* size nrow. see cholmod_ccolamd above */ int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_camd (cholmod_sparse *, UF_long *, size_t, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_bisect */ /* -------------------------------------------------------------------------- */ /* Finds a node bisector of A, A*A', A(:,f)*A(:,f)'. */ UF_long cholmod_bisect /* returns # of nodes in separator */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to bisect */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int compress, /* if TRUE, compress the graph first */ /* ---- output --- */ int *Partition, /* size A->nrow. Node i is in the left graph if * Partition [i] = 0, the right graph if 1, and in the * separator if 2. */ /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_bisect (cholmod_sparse *, UF_long *, size_t, int, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_metis_bisector */ /* -------------------------------------------------------------------------- */ /* Find a set of nodes that bisects the graph of A or AA' (direct interface * to METIS_NodeComputeSeparator). */ UF_long cholmod_metis_bisector /* returns separator size */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to bisect */ int *Anw, /* size A->nrow, node weights */ int *Aew, /* size nz, edge weights */ /* ---- output --- */ int *Partition, /* size A->nrow. see cholmod_bisect above. */ /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_metis_bisector (cholmod_sparse *, UF_long *, UF_long *, UF_long *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_collapse_septree */ /* -------------------------------------------------------------------------- */ /* Collapse nodes in a separator tree. */ UF_long cholmod_collapse_septree ( /* ---- input ---- */ size_t n, /* # of nodes in the graph */ size_t ncomponents, /* # of nodes in the separator tree (must be <= n) */ double nd_oksep, /* collapse if #sep >= nd_oksep * #nodes in subtree */ size_t nd_small, /* collapse if #nodes in subtree < nd_small */ /* ---- in/out --- */ int *CParent, /* size ncomponents; from cholmod_nested_dissection */ int *Cmember, /* size n; from cholmod_nested_dissection */ /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_collapse_septree (size_t, size_t, double, size_t, UF_long *, UF_long *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/cholmod_internal.h0000644001170100242450000003426310677244150020127 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_internal.h =========================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_internal.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_internal.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD internal include file. * * This file contains internal definitions for CHOLMOD, not meant to be included * in user code. They define macros that are not prefixed with CHOLMOD_. This * file can safely #include'd in user code if you want to make use of the * macros defined here, and don't mind the possible name conflicts with your * code, however. * * Required by all CHOLMOD routines. Not required by any user routine that * uses CHOLMOMD. Unless debugging is enabled, this file does not require any * CHOLMOD module (not even the Core module). * * If debugging is enabled, all CHOLMOD modules require the Check module. * Enabling debugging requires that this file be editted. Debugging cannot be * enabled with a compiler flag. This is because CHOLMOD is exceedingly slow * when debugging is enabled. Debugging is meant for development of CHOLMOD * itself, not by users of CHOLMOD. */ #ifndef CHOLMOD_INTERNAL_H #define CHOLMOD_INTERNAL_H /* ========================================================================== */ /* === large file I/O ======================================================= */ /* ========================================================================== */ /* Definitions for large file I/O must come before any other #includes. If * this causes problems (may not be portable to all platforms), then compile * CHOLMOD with -DNLARGEFILE. You must do this for MATLAB 6.5 and earlier, * for example. */ #include "cholmod_io64.h" /* ========================================================================== */ /* === debugging and basic includes ========================================= */ /* ========================================================================== */ /* turn off debugging */ #ifndef NDEBUG #define NDEBUG #endif /* Uncomment this line to enable debugging. CHOLMOD will be very slow. #undef NDEBUG */ #ifdef MATLAB_MEX_FILE #include "mex.h" #endif #if !defined(NPRINT) || !defined(NDEBUG) #include #endif #include #include #include #include #include /* ========================================================================== */ /* === basic definitions ==================================================== */ /* ========================================================================== */ /* Some non-conforming compilers insist on defining TRUE and FALSE. */ #undef TRUE #undef FALSE #define TRUE 1 #define FALSE 0 #define BOOLEAN(x) ((x) ? TRUE : FALSE) /* NULL should already be defined, but ensure it is here. */ #ifndef NULL #define NULL ((void *) 0) #endif /* FLIP is a "negation about -1", and is used to mark an integer i that is * normally non-negative. FLIP (EMPTY) is EMPTY. FLIP of a number > EMPTY * is negative, and FLIP of a number < EMTPY is positive. FLIP (FLIP (i)) = i * for all integers i. UNFLIP (i) is >= EMPTY. */ #define EMPTY (-1) #define FLIP(i) (-(i)-2) #define UNFLIP(i) (((i) < EMPTY) ? FLIP (i) : (i)) /* MAX and MIN are not safe to use for NaN's */ #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MAX3(a,b,c) (((a) > (b)) ? (MAX (a,c)) : (MAX (b,c))) #define MAX4(a,b,c,d) (((a) > (b)) ? (MAX3 (a,c,d)) : (MAX3 (b,c,d))) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define IMPLIES(p,q) (!(p) || (q)) /* find the sign: -1 if x < 0, 1 if x > 0, zero otherwise. * Not safe for NaN's */ #define SIGN(x) (((x) < 0) ? (-1) : (((x) > 0) ? 1 : 0)) /* round up an integer x to a multiple of s */ #define ROUNDUP(x,s) ((s) * (((x) + ((s) - 1)) / (s))) #define ERROR(status,msg) \ CHOLMOD(error) (status, __FILE__, __LINE__, msg, Common) /* Check a pointer and return if null. Set status to invalid, unless the * status is already "out of memory" */ #define RETURN_IF_NULL(A,result) \ { \ if ((A) == NULL) \ { \ if (Common->status != CHOLMOD_OUT_OF_MEMORY) \ { \ ERROR (CHOLMOD_INVALID, "argument missing") ; \ } \ return (result) ; \ } \ } /* Return if Common is NULL or invalid */ #define RETURN_IF_NULL_COMMON(result) \ { \ if (Common == NULL) \ { \ return (result) ; \ } \ if (Common->itype != ITYPE || Common->dtype != DTYPE) \ { \ Common->status = CHOLMOD_INVALID ; \ return (result) ; \ } \ } #define IS_NAN(x) CHOLMOD_IS_NAN(x) #define IS_ZERO(x) CHOLMOD_IS_ZERO(x) #define IS_NONZERO(x) CHOLMOD_IS_NONZERO(x) #define IS_LT_ZERO(x) CHOLMOD_IS_LT_ZERO(x) #define IS_GT_ZERO(x) CHOLMOD_IS_GT_ZERO(x) #define IS_LE_ZERO(x) CHOLMOD_IS_LE_ZERO(x) /* 1e308 is a huge number that doesn't take many characters to print in a * file, in CHOLMOD/Check/cholmod_read and _write. Numbers larger than this * are interpretted as Inf, since sscanf doesn't read in Inf's properly. * This assumes IEEE double precision arithmetic. DBL_MAX would be a little * better, except that it takes too many digits to print in a file. */ #define HUGE_DOUBLE 1e308 /* ========================================================================== */ /* === int/UF_long and double/float definitions ============================= */ /* ========================================================================== */ /* CHOLMOD is designed for 3 types of integer variables: * * (1) all integers are int * (2) most integers are int, some are UF_long * (3) all integers are UF_long * * and two kinds of floating-point values: * * (1) double * (2) float * * the complex types (ANSI-compatible complex, and MATLAB-compatable zomplex) * are based on the double or float type, and are not selected here. They * are typically selected via template routines. * * This gives 6 different modes in which CHOLMOD can be compiled (only the * first two are currently supported): * * DINT double, int prefix: cholmod_ * DLONG double, UF_long prefix: cholmod_l_ * DMIX double, mixed int/UF_long prefix: cholmod_m_ * SINT float, int prefix: cholmod_si_ * SLONG float, UF_long prefix: cholmod_sl_ * SMIX float, mixed int/log prefix: cholmod_sm_ * * These are selected with compile time flags (-DDLONG, for example). If no * flag is selected, the default is DINT. * * All six versions use the same include files. The user-visible include files * are completely independent of which int/UF_long/double/float version is being * used. The integer / real types in all data structures (sparse, triplet, * dense, common, and triplet) are defined at run-time, not compile-time, so * there is only one "cholmod_sparse" data type. Void pointers are used inside * that data structure to point to arrays of the proper type. Each data * structure has an itype and dtype field which determines the kind of basic * types used. These are defined in Include/cholmod_core.h. * * FUTURE WORK: support all six types (float, and mixed int/UF_long) * * UF_long is normally defined as long. However, for WIN64 it is __int64. * It can also be redefined for other platforms, by modifying UFconfig.h. */ #include "UFconfig.h" /* -------------------------------------------------------------------------- */ /* Size_max: the largest value of size_t */ /* -------------------------------------------------------------------------- */ #define Size_max ((size_t) (-1)) /* routines for doing arithmetic on size_t, and checking for overflow */ size_t cholmod_add_size_t (size_t a, size_t b, int *ok) ; size_t cholmod_mult_size_t (size_t a, size_t k, int *ok) ; size_t cholmod_l_add_size_t (size_t a, size_t b, int *ok) ; size_t cholmod_l_mult_size_t (size_t a, size_t k, int *ok) ; /* -------------------------------------------------------------------------- */ /* double (also complex double), UF_long */ /* -------------------------------------------------------------------------- */ #ifdef DLONG #define Real double #define Int UF_long #define Int_max UF_long_max #define CHOLMOD(name) cholmod_l_ ## name #define LONG #define DOUBLE #define ITYPE CHOLMOD_LONG #define DTYPE CHOLMOD_DOUBLE #define ID UF_long_id /* -------------------------------------------------------------------------- */ /* double, int/UF_long */ /* -------------------------------------------------------------------------- */ #elif defined (DMIX) #error "mixed int/UF_long not yet supported" /* -------------------------------------------------------------------------- */ /* single, int */ /* -------------------------------------------------------------------------- */ #elif defined (SINT) #error "single-precision not yet supported" /* -------------------------------------------------------------------------- */ /* single, UF_long */ /* -------------------------------------------------------------------------- */ #elif defined (SLONG) #error "single-precision not yet supported" /* -------------------------------------------------------------------------- */ /* single, int/UF_long */ /* -------------------------------------------------------------------------- */ #elif defined (SMIX) #error "single-precision not yet supported" /* -------------------------------------------------------------------------- */ /* double (also complex double), int: this is the default */ /* -------------------------------------------------------------------------- */ #else #ifndef DINT #define DINT #endif #define INT #define DOUBLE #define Real double #define Int int #define Int_max INT_MAX #define CHOLMOD(name) cholmod_ ## name #define ITYPE CHOLMOD_INT #define DTYPE CHOLMOD_DOUBLE #define ID "%d" #endif /* ========================================================================== */ /* === real/complex arithmetic ============================================== */ /* ========================================================================== */ #include "cholmod_complexity.h" /* ========================================================================== */ /* === Architecture and BLAS ================================================ */ /* ========================================================================== */ #include "cholmod_blas.h" /* ========================================================================== */ /* === debugging definitions ================================================ */ /* ========================================================================== */ #ifndef NDEBUG #include #include "cholmod.h" /* The cholmod_dump routines are in the Check module. No CHOLMOD routine * calls the cholmod_check_* or cholmod_print_* routines in the Check module, * since they use Common workspace that may already be in use. Instead, they * use the cholmod_dump_* routines defined there, which allocate their own * workspace if they need it. */ #ifndef EXTERN #define EXTERN extern #endif /* double, int */ EXTERN int cholmod_dump ; EXTERN int cholmod_dump_malloc ; UF_long cholmod_dump_sparse (cholmod_sparse *, char *, cholmod_common *) ; int cholmod_dump_factor (cholmod_factor *, char *, cholmod_common *) ; int cholmod_dump_triplet (cholmod_triplet *, char *, cholmod_common *) ; int cholmod_dump_dense (cholmod_dense *, char *, cholmod_common *) ; int cholmod_dump_subset (int *, size_t, size_t, char *, cholmod_common *) ; int cholmod_dump_perm (int *, size_t, size_t, char *, cholmod_common *) ; int cholmod_dump_parent (int *, size_t, char *, cholmod_common *) ; void cholmod_dump_init (char *, cholmod_common *) ; int cholmod_dump_mem (char *, UF_long, cholmod_common *) ; void cholmod_dump_real (char *, Real *, UF_long, UF_long, int, int, cholmod_common *) ; void cholmod_dump_super (UF_long, int *, int *, int *, int *, double *, int, cholmod_common *) ; int cholmod_dump_partition (UF_long, int *, int *, int *, int *, UF_long, cholmod_common *) ; int cholmod_dump_work(int, int, UF_long, cholmod_common *) ; /* double, UF_long */ EXTERN int cholmod_l_dump ; EXTERN int cholmod_l_dump_malloc ; UF_long cholmod_l_dump_sparse (cholmod_sparse *, char *, cholmod_common *) ; int cholmod_l_dump_factor (cholmod_factor *, char *, cholmod_common *) ; int cholmod_l_dump_triplet (cholmod_triplet *, char *, cholmod_common *) ; int cholmod_l_dump_dense (cholmod_dense *, char *, cholmod_common *) ; int cholmod_l_dump_subset (UF_long *, size_t, size_t, char *, cholmod_common *) ; int cholmod_l_dump_perm (UF_long *, size_t, size_t, char *, cholmod_common *) ; int cholmod_l_dump_parent (UF_long *, size_t, char *, cholmod_common *) ; void cholmod_l_dump_init (char *, cholmod_common *) ; int cholmod_l_dump_mem (char *, UF_long, cholmod_common *) ; void cholmod_l_dump_real (char *, Real *, UF_long, UF_long, int, int, cholmod_common *) ; void cholmod_l_dump_super (UF_long, UF_long *, UF_long *, UF_long *, UF_long *, double *, int, cholmod_common *) ; int cholmod_l_dump_partition (UF_long, UF_long *, UF_long *, UF_long *, UF_long *, UF_long, cholmod_common *) ; int cholmod_l_dump_work(int, int, UF_long, cholmod_common *) ; #define DEBUG_INIT(s,Common) { CHOLMOD(dump_init)(s, Common) ; } #define ASSERT(expression) (assert (expression)) #define PRK(k,params) \ { \ if (CHOLMOD(dump) >= (k) && Common->print_function != NULL) \ { \ (Common->print_function) params ; \ } \ } #define PRINT0(params) PRK (0, params) #define PRINT1(params) PRK (1, params) #define PRINT2(params) PRK (2, params) #define PRINT3(params) PRK (3, params) #define PRINTM(params) \ { \ if (CHOLMOD(dump_malloc) > 0) \ { \ printf params ; \ } \ } #define DEBUG(statement) statement #else /* Debugging disabled (the normal case) */ #define PRK(k,params) #define DEBUG_INIT(s,Common) #define PRINT0(params) #define PRINT1(params) #define PRINT2(params) #define PRINT3(params) #define PRINTM(params) #define ASSERT(expression) #define DEBUG(statement) #endif #endif SuiteSparse/CHOLMOD/Include/cholmod.h0000644001170100242450000000742210540000233016205 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod.h ==================================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * * Portions of CHOLMOD (the Core and Partition Modules) are copyrighted by the * University of Florida. The Modify Module is co-authored by William W. * Hager, Univ. of Florida. * * Acknowledgements: this work was supported in part by the National Science * Foundation (NFS CCR-0203270 and DMS-9803599), and a grant from Sandia * National Laboratories (Dept. of Energy) which supported the development of * CHOLMOD's Partition Module. * -------------------------------------------------------------------------- */ /* CHOLMOD include file, for inclusion user programs. * * The include files listed below include a short description of each user- * callable routine. Each routine in CHOLMOD has a consistent interface. * More details about the CHOLMOD data types is in the cholmod_core.h file. * * Naming convention: * ------------------ * * All routine names, data types, and CHOLMOD library files use the * cholmod_ prefix. All macros and other #define's use the CHOLMOD * prefix. * * Return value: * ------------- * * Most CHOLMOD routines return an int (TRUE (1) if successful, or FALSE * (0) otherwise. A UF_long or double return value is >= 0 if successful, * or -1 otherwise. A size_t return value is > 0 if successful, or 0 * otherwise. * * If a routine returns a pointer, it is a pointer to a newly allocated * object or NULL if a failure occured, with one exception. cholmod_free * always returns NULL. * * "Common" parameter: * ------------------ * * The last parameter in all CHOLMOD routines is a pointer to the CHOLMOD * "Common" object. This contains control parameters, statistics, and * workspace used between calls to CHOLMOD. It is always an input/output * parameter. * * Input, Output, and Input/Output parameters: * ------------------------------------------- * * Input parameters are listed first. They are not modified by CHOLMOD. * * Input/output are listed next. They must be defined on input, and * are modified on output. * * Output parameters are listed next. If they are pointers, they must * point to allocated space on input, but their contents are not defined * on input. * * Workspace parameters appear next. They are used in only two routines * in the Supernodal module. * * The cholmod_common *Common parameter always appears as the last * parameter. It is always an input/output parameter. */ #ifndef CHOLMOD_H #define CHOLMOD_H /* make it easy for C++ programs to include CHOLMOD */ #ifdef __cplusplus extern "C" { #endif /* assume large file support. If problems occur, compile with -DNLARGEFILE */ #include "cholmod_io64.h" /* define UF_long */ #include "UFconfig.h" #include "cholmod_config.h" /* CHOLMOD always includes the Core module. */ #include "cholmod_core.h" #ifndef NCHECK #include "cholmod_check.h" #endif #ifndef NCHOLESKY #include "cholmod_cholesky.h" #endif #ifndef NMATRIXOPS #include "cholmod_matrixops.h" #endif #ifndef NMODIFY #include "cholmod_modify.h" #endif #ifndef NPARTITION #include "cholmod_partition.h" #endif #ifndef NSUPERNODAL #include "cholmod_supernodal.h" #endif #ifdef __cplusplus } #endif #endif SuiteSparse/CHOLMOD/Include/cholmod_blas.h0000644001170100242450000003223710677545130017235 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_blas.h =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_blas.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_blas.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* This does not need to be included in the user's program. */ #ifndef CHOLMOD_BLAS_H #define CHOLMOD_BLAS_H /* ========================================================================== */ /* === Architecture ========================================================= */ /* ========================================================================== */ #if defined (__sun) || defined (MSOL2) || defined (ARCH_SOL2) #define CHOLMOD_SOL2 #define CHOLMOD_ARCHITECTURE "Sun Solaris" #elif defined (__sgi) || defined (MSGI) || defined (ARCH_SGI) #define CHOLMOD_SGI #define CHOLMOD_ARCHITECTURE "SGI Irix" #elif defined (__linux) || defined (MGLNX86) || defined (ARCH_GLNX86) #define CHOLMOD_LINUX #define CHOLMOD_ARCHITECTURE "Linux" #elif defined (_AIX) || defined (MIBM_RS) || defined (ARCH_IBM_RS) #define CHOLMOD_AIX #define CHOLMOD_ARCHITECTURE "IBM AIX" #define BLAS_NO_UNDERSCORE #elif defined (__alpha) || defined (MALPHA) || defined (ARCH_ALPHA) #define CHOLMOD_ALPHA #define CHOLMOD_ARCHITECTURE "Compaq Alpha" #elif defined (_WIN32) || defined (WIN32) || defined (_WIN64) || defined (WIN64) #if defined (__MINGW32__) || defined (__MINGW32__) #define CHOLMOD_MINGW #elif defined (__CYGWIN32__) || defined (__CYGWIN32__) #define CHOLMOD_CYGWIN #else #define CHOLMOD_WINDOWS #define BLAS_NO_UNDERSCORE #endif #define CHOLMOD_ARCHITECTURE "Microsoft Windows" #elif defined (__hppa) || defined (__hpux) || defined (MHPUX) || defined (ARCH_HPUX) #define CHOLMOD_HP #define CHOLMOD_ARCHITECTURE "HP Unix" #define BLAS_NO_UNDERSCORE #elif defined (__hp700) || defined (MHP700) || defined (ARCH_HP700) #define CHOLMOD_HP #define CHOLMOD_ARCHITECTURE "HP 700 Unix" #define BLAS_NO_UNDERSCORE #else /* If the architecture is unknown, and you call the BLAS, you may need to */ /* define BLAS_BY_VALUE, BLAS_NO_UNDERSCORE, and/or BLAS_CHAR_ARG yourself. */ #define CHOLMOD_ARCHITECTURE "unknown" #endif /* ========================================================================== */ /* === BLAS and LAPACK names ================================================ */ /* ========================================================================== */ /* Prototypes for the various versions of the BLAS. */ /* Determine if the 64-bit Sun Performance BLAS is to be used */ #if defined(CHOLMOD_SOL2) && !defined(NSUNPERF) && defined(LONG) && defined(LONGBLAS) #define SUN64 #endif #ifdef SUN64 #define BLAS_DTRSV dtrsv_64_ #define BLAS_DGEMV dgemv_64_ #define BLAS_DTRSM dtrsm_64_ #define BLAS_DGEMM dgemm_64_ #define BLAS_DSYRK dsyrk_64_ #define BLAS_DGER dger_64_ #define BLAS_DSCAL dscal_64_ #define LAPACK_DPOTRF dpotrf_64_ #define BLAS_ZTRSV ztrsv_64_ #define BLAS_ZGEMV zgemv_64_ #define BLAS_ZTRSM ztrsm_64_ #define BLAS_ZGEMM zgemm_64_ #define BLAS_ZHERK zherk_64_ #define BLAS_ZGER zgeru_64_ #define BLAS_ZSCAL zscal_64_ #define LAPACK_ZPOTRF zpotrf_64_ #elif defined (BLAS_NO_UNDERSCORE) #define BLAS_DTRSV dtrsv #define BLAS_DGEMV dgemv #define BLAS_DTRSM dtrsm #define BLAS_DGEMM dgemm #define BLAS_DSYRK dsyrk #define BLAS_DGER dger #define BLAS_DSCAL dscal #define LAPACK_DPOTRF dpotrf #define BLAS_ZTRSV ztrsv #define BLAS_ZGEMV zgemv #define BLAS_ZTRSM ztrsm #define BLAS_ZGEMM zgemm #define BLAS_ZHERK zherk #define BLAS_ZGER zgeru #define BLAS_ZSCAL zscal #define LAPACK_ZPOTRF zpotrf #else #define BLAS_DTRSV dtrsv_ #define BLAS_DGEMV dgemv_ #define BLAS_DTRSM dtrsm_ #define BLAS_DGEMM dgemm_ #define BLAS_DSYRK dsyrk_ #define BLAS_DGER dger_ #define BLAS_DSCAL dscal_ #define LAPACK_DPOTRF dpotrf_ #define BLAS_ZTRSV ztrsv_ #define BLAS_ZGEMV zgemv_ #define BLAS_ZTRSM ztrsm_ #define BLAS_ZGEMM zgemm_ #define BLAS_ZHERK zherk_ #define BLAS_ZGER zgeru_ #define BLAS_ZSCAL zscal_ #define LAPACK_ZPOTRF zpotrf_ #endif /* ========================================================================== */ /* === BLAS and LAPACK integer arguments ==================================== */ /* ========================================================================== */ /* CHOLMOD can be compiled with -D'LONGBLAS=long' for the Sun Performance * Library, or -D'LONGBLAS=long long' for SGI's SCSL BLAS. This defines the * integer used in the BLAS for the cholmod_l_* routines. * * The "int" version of CHOLMOD always uses the "int" version of the BLAS. */ #if defined (LONGBLAS) && defined (LONG) #define BLAS_INT LONGBLAS #else #define BLAS_INT int #endif /* If the BLAS integer is smaller than the basic CHOLMOD integer, then we need * to check for integer overflow when converting from one to the other. If * any integer overflows, the externally-defined blas_ok variable is set to * FALSE. blas_ok should be set to TRUE before calling any BLAS_* macro. */ #define CHECK_BLAS_INT (sizeof (BLAS_INT) < sizeof (Int)) #define EQ(K,k) (((BLAS_INT) K) == ((Int) k)) /* ========================================================================== */ /* === BLAS and LAPACK prototypes and macros ================================ */ /* ========================================================================== */ void BLAS_DGEMV (char *trans, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx, double *beta, double *Y, BLAS_INT *incy) ; #define BLAS_dgemv(trans,m,n,alpha,A,lda,X,incx,beta,Y,incy) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DGEMV (trans, &M, &N, alpha, A, &LDA, X, &INCX, beta, Y, &INCY) ; \ } \ } void BLAS_ZGEMV (char *trans, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx, double *beta, double *Y, BLAS_INT *incy) ; #define BLAS_zgemv(trans,m,n,alpha,A,lda,X,incx,beta,Y,incy) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZGEMV (trans, &M, &N, alpha, A, &LDA, X, &INCX, beta, Y, &INCY) ; \ } \ } void BLAS_DTRSV (char *uplo, char *trans, char *diag, BLAS_INT *n, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx) ; #define BLAS_dtrsv(uplo,trans,diag,n,A,lda,X,incx) \ { \ BLAS_INT N = n, LDA = lda, INCX = incx ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) ; \ } \ if (blas_ok) \ { \ BLAS_DTRSV (uplo, trans, diag, &N, A, &LDA, X, &INCX) ; \ } \ } void BLAS_ZTRSV (char *uplo, char *trans, char *diag, BLAS_INT *n, double *A, BLAS_INT *lda, double *X, BLAS_INT *incx) ; #define BLAS_ztrsv(uplo,trans,diag,n,A,lda,X,incx) \ { \ BLAS_INT N = n, LDA = lda, INCX = incx ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) ; \ } \ if (blas_ok) \ { \ BLAS_ZTRSV (uplo, trans, diag, &N, A, &LDA, X, &INCX) ; \ } \ } void BLAS_DTRSM (char *side, char *uplo, char *transa, char *diag, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb) ; #define BLAS_dtrsm(side,uplo,transa,diag,m,n,alpha,A,lda,B,ldb) \ { \ BLAS_INT M = m, N = n, LDA = lda, LDB = ldb ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (LDB,ldb) ; \ } \ if (blas_ok) \ { \ BLAS_DTRSM (side, uplo, transa, diag, &M, &N, alpha, A, &LDA, B, &LDB);\ } \ } void BLAS_ZTRSM (char *side, char *uplo, char *transa, char *diag, BLAS_INT *m, BLAS_INT *n, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb) ; #define BLAS_ztrsm(side,uplo,transa,diag,m,n,alpha,A,lda,B,ldb) \ { \ BLAS_INT M = m, N = n, LDA = lda, LDB = ldb ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (LDB,ldb) ; \ } \ if (blas_ok) \ { \ BLAS_ZTRSM (side, uplo, transa, diag, &M, &N, alpha, A, &LDA, B, &LDB);\ } \ } void BLAS_DGEMM (char *transa, char *transb, BLAS_INT *m, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_dgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc) \ { \ BLAS_INT M = m, N = n, K = k, LDA = lda, LDB = ldb, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (K,k) && EQ (LDA,lda) \ && EQ (LDB,ldb) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_DGEMM (transa, transb, &M, &N, &K, alpha, A, &LDA, B, &LDB, beta, \ C, &LDC) ; \ } \ } void BLAS_ZGEMM (char *transa, char *transb, BLAS_INT *m, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *B, BLAS_INT *ldb, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_zgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc) \ { \ BLAS_INT M = m, N = n, K = k, LDA = lda, LDB = ldb, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (K,k) && EQ (LDA,lda) \ && EQ (LDB,ldb) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_ZGEMM (transa, transb, &M, &N, &K, alpha, A, &LDA, B, &LDB, beta, \ C, &LDC) ; \ } \ } void BLAS_DSYRK (char *uplo, char *trans, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_dsyrk(uplo,trans,n,k,alpha,A,lda,beta,C,ldc) \ { \ BLAS_INT N = n, K = k, LDA = lda, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (K,k) && EQ (LDA,lda) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_DSYRK (uplo, trans, &N, &K, alpha, A, &LDA, beta, C, &LDC) ; \ } \ } \ void BLAS_ZHERK (char *uplo, char *trans, BLAS_INT *n, BLAS_INT *k, double *alpha, double *A, BLAS_INT *lda, double *beta, double *C, BLAS_INT *ldc) ; #define BLAS_zherk(uplo,trans,n,k,alpha,A,lda,beta,C,ldc) \ { \ BLAS_INT N = n, K = k, LDA = lda, LDC = ldc ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (K,k) && EQ (LDA,lda) && EQ (LDC,ldc) ; \ } \ if (blas_ok) \ { \ BLAS_ZHERK (uplo, trans, &N, &K, alpha, A, &LDA, beta, C, &LDC) ; \ } \ } \ void LAPACK_DPOTRF (char *uplo, BLAS_INT *n, double *A, BLAS_INT *lda, BLAS_INT *info) ; #define LAPACK_dpotrf(uplo,n,A,lda,info) \ { \ BLAS_INT N = n, LDA = lda, INFO = 1 ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) ; \ } \ if (blas_ok) \ { \ LAPACK_DPOTRF (uplo, &N, A, &LDA, &INFO) ; \ } \ info = INFO ; \ } void LAPACK_ZPOTRF (char *uplo, BLAS_INT *n, double *A, BLAS_INT *lda, BLAS_INT *info) ; #define LAPACK_zpotrf(uplo,n,A,lda,info) \ { \ BLAS_INT N = n, LDA = lda, INFO = 1 ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (LDA,lda) ; \ } \ if (blas_ok) \ { \ LAPACK_ZPOTRF (uplo, &N, A, &LDA, &INFO) ; \ } \ info = INFO ; \ } /* ========================================================================== */ void BLAS_DSCAL (BLAS_INT *n, double *alpha, double *Y, BLAS_INT *incy) ; #define BLAS_dscal(n,alpha,Y,incy) \ { \ BLAS_INT N = n, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DSCAL (&N, alpha, Y, &INCY) ; \ } \ } void BLAS_ZSCAL (BLAS_INT *n, double *alpha, double *Y, BLAS_INT *incy) ; #define BLAS_zscal(n,alpha,Y,incy) \ { \ BLAS_INT N = n, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (N,n) && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZSCAL (&N, alpha, Y, &INCY) ; \ } \ } void BLAS_DGER (BLAS_INT *m, BLAS_INT *n, double *alpha, double *X, BLAS_INT *incx, double *Y, BLAS_INT *incy, double *A, BLAS_INT *lda) ; #define BLAS_dger(m,n,alpha,X,incx,Y,incy,A,lda) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_DGER (&M, &N, alpha, X, &INCX, Y, &INCY, A, &LDA) ; \ } \ } void BLAS_ZGER (BLAS_INT *m, BLAS_INT *n, double *alpha, double *X, BLAS_INT *incx, double *Y, BLAS_INT *incy, double *A, BLAS_INT *lda) ; #define BLAS_zgeru(m,n,alpha,X,incx,Y,incy,A,lda) \ { \ BLAS_INT M = m, N = n, LDA = lda, INCX = incx, INCY = incy ; \ if (CHECK_BLAS_INT) \ { \ blas_ok &= EQ (M,m) && EQ (N,n) && EQ (LDA,lda) && EQ (INCX,incx) \ && EQ (INCY,incy) ; \ } \ if (blas_ok) \ { \ BLAS_ZGER (&M, &N, alpha, X, &INCX, Y, &INCY, A, &LDA) ; \ } \ } #endif SuiteSparse/CHOLMOD/Include/cholmod_core.h0000644001170100242450000027241410711425463017242 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_core.h =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_core.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_core.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Core module: basic CHOLMOD objects and routines. * Required by all CHOLMOD modules. Requires no other module or package. * * The CHOLMOD modules are: * * Core basic data structures and definitions * Check check/print the 5 CHOLMOD objects, & 3 types of integer vectors * Cholesky sparse Cholesky factorization * Modify sparse Cholesky update/downdate/row-add/row-delete * MatrixOps sparse matrix functions (add, multiply, norm, ...) * Supernodal supernodal sparse Cholesky factorization * Partition graph-partitioning based orderings * * The CHOLMOD objects: * -------------------- * * cholmod_common parameters, statistics, and workspace * cholmod_sparse a sparse matrix in compressed column form * cholmod_factor an LL' or LDL' factorization * cholmod_dense a dense matrix * cholmod_triplet a sparse matrix in "triplet" form * * The Core module described here defines the CHOLMOD data structures, and * basic operations on them. To create and solve a sparse linear system Ax=b, * the user must create A and b, populate them with values, and then pass them * to the routines in the CHOLMOD Cholesky module. There are two primary * methods for creating A: (1) allocate space for a column-oriented sparse * matrix and fill it with pattern and values, or (2) create a triplet form * matrix and convert it to a sparse matrix. The latter option is simpler. * * The matrices b and x are typically dense matrices, but can also be sparse. * You can allocate and free them as dense matrices with the * cholmod_allocate_dense and cholmod_free_dense routines. * * The cholmod_factor object contains the symbolic and numeric LL' or LDL' * factorization of sparse symmetric matrix. The matrix must be positive * definite for an LL' factorization. It need only be symmetric and have well- * conditioned leading submatrices for it to have an LDL' factorization * (CHOLMOD does not pivot for numerical stability). It is typically created * with the cholmod_factorize routine in the Cholesky module, but can also * be initialized to L=D=I in the Core module and then modified by the Modify * module. It must be freed with cholmod_free_factor, defined below. * * The Core routines for each object are described below. Each list is split * into two parts: the primary routines and secondary routines. * * ============================================================================ * === cholmod_common ========================================================= * ============================================================================ * * The Common object contains control parameters, statistics, and * You must call cholmod_start before calling any other CHOLMOD routine, and * must call cholmod_finish as your last call to CHOLMOD, with two exceptions: * you may call cholmod_print_common and cholmod_check_common in the Check * module after calling cholmod_finish. * * cholmod_start first call to CHOLMOD * cholmod_finish last call to CHOLMOD * ----------------------------- * cholmod_defaults restore default parameters * cholmod_maxrank maximum rank for update/downdate * cholmod_allocate_work allocate workspace in Common * cholmod_free_work free workspace in Common * cholmod_clear_flag clear Flag workspace in Common * cholmod_error called when CHOLMOD encounters an error * cholmod_dbound for internal use in CHOLMOD only * cholmod_hypot compute sqrt (x*x + y*y) accurately * cholmod_divcomplex complex division, c = a/b * * ============================================================================ * === cholmod_sparse ========================================================= * ============================================================================ * * A sparse matrix is held in compressed column form. In the basic type * ("packed", which corresponds to a MATLAB sparse matrix), an n-by-n matrix * with nz entries is held in three arrays: p of size n+1, i of size nz, and x * of size nz. Row indices of column j are held in i [p [j] ... p [j+1]-1] and * in the same locations in x. There may be no duplicate entries in a column. * Row indices in each column may be sorted or unsorted (CHOLMOD keeps track). * A->stype determines the storage mode: 0 if both upper/lower parts are stored, * -1 if A is symmetric and just tril(A) is stored, +1 if symmetric and triu(A) * is stored. * * cholmod_allocate_sparse allocate a sparse matrix * cholmod_free_sparse free a sparse matrix * ----------------------------- * cholmod_reallocate_sparse change the size (# entries) of sparse matrix * cholmod_nnz number of nonzeros in a sparse matrix * cholmod_speye sparse identity matrix * cholmod_spzeros sparse zero matrix * cholmod_transpose transpose a sparse matrix * cholmod_ptranspose transpose/permute a sparse matrix * cholmod_transpose_unsym transpose/permute an unsymmetric sparse matrix * cholmod_transpose_sym transpose/permute a symmetric sparse matrix * cholmod_sort sort row indices in each column of sparse matrix * cholmod_band C = tril (triu (A,k1), k2) * cholmod_band_inplace A = tril (triu (A,k1), k2) * cholmod_aat C = A*A' * cholmod_copy_sparse C = A, create an exact copy of a sparse matrix * cholmod_copy C = A, with possible change of stype * cholmod_add C = alpha*A + beta*B * cholmod_sparse_xtype change the xtype of a sparse matrix * * ============================================================================ * === cholmod_factor ========================================================= * ============================================================================ * * The data structure for an LL' or LDL' factorization is too complex to * describe in one sentence. This object can hold the symbolic analysis alone, * or in combination with a "simplicial" (similar to a sparse matrix) or * "supernodal" form of the numerical factorization. Only the routine to free * a factor is primary, since a factor object is created by the factorization * routine (cholmod_factorize). It must be freed with cholmod_free_factor. * * cholmod_free_factor free a factor * ----------------------------- * cholmod_allocate_factor allocate a factor (LL' or LDL') * cholmod_reallocate_factor change the # entries in a factor * cholmod_change_factor change the type of factor (e.g., LDL' to LL') * cholmod_pack_factor pack the columns of a factor * cholmod_reallocate_column resize a single column of a factor * cholmod_factor_to_sparse create a sparse matrix copy of a factor * cholmod_copy_factor create a copy of a factor * cholmod_factor_xtype change the xtype of a factor * * Note that there is no cholmod_sparse_to_factor routine to create a factor * as a copy of a sparse matrix. It could be done, after a fashion, but a * lower triangular sparse matrix would not necessarily have a chordal graph, * which would break the many CHOLMOD routines that rely on this property. * * ============================================================================ * === cholmod_dense ========================================================== * ============================================================================ * * The solve routines and some of the MatrixOps and Modify routines use dense * matrices as inputs. These are held in column-major order. With a leading * dimension of d, the entry in row i and column j is held in x [i+j*d]. * * cholmod_allocate_dense allocate a dense matrix * cholmod_free_dense free a dense matrix * ----------------------------- * cholmod_zeros allocate a dense matrix of all zeros * cholmod_ones allocate a dense matrix of all ones * cholmod_eye allocate a dense identity matrix * cholmod_sparse_to_dense create a dense matrix copy of a sparse matrix * cholmod_dense_to_sparse create a sparse matrix copy of a dense matrix * cholmod_copy_dense create a copy of a dense matrix * cholmod_copy_dense2 copy a dense matrix (pre-allocated) * cholmod_dense_xtype change the xtype of a dense matrix * * ============================================================================ * === cholmod_triplet ======================================================== * ============================================================================ * * A sparse matrix held in triplet form is the simplest one for a user to * create. It consists of a list of nz entries in arbitrary order, held in * three arrays: i, j, and x, each of length nk. The kth entry is in row i[k], * column j[k], with value x[k]. There may be duplicate values; if A(i,j) * appears more than once, its value is the sum of the entries with those row * and column indices. * * cholmod_allocate_triplet allocate a triplet matrix * cholmod_triplet_to_sparse create a sparse matrix copy of a triplet matrix * cholmod_free_triplet free a triplet matrix * ----------------------------- * cholmod_reallocate_triplet change the # of entries in a triplet matrix * cholmod_sparse_to_triplet create a triplet matrix copy of a sparse matrix * cholmod_copy_triplet create a copy of a triplet matrix * cholmod_triplet_xtype change the xtype of a triplet matrix * * ============================================================================ * === memory management ====================================================== * ============================================================================ * * cholmod_malloc malloc wrapper * cholmod_calloc calloc wrapper * cholmod_free free wrapper * cholmod_realloc realloc wrapper * cholmod_realloc_multiple realloc wrapper for multiple objects * * ============================================================================ * === Core CHOLMOD prototypes ================================================ * ============================================================================ * * All CHOLMOD routines (in all modules) use the following protocol for return * values, with one exception: * * int TRUE (1) if successful, or FALSE (0) otherwise. * (exception: cholmod_divcomplex) * UF_long a value >= 0 if successful, or -1 otherwise. * double a value >= 0 if successful, or -1 otherwise. * size_t a value > 0 if successful, or 0 otherwise. * void * a non-NULL pointer to newly allocated memory if * successful, or NULL otherwise. * cholmod_sparse * a non-NULL pointer to a newly allocated matrix * if successful, or NULL otherwise. * cholmod_factor * a non-NULL pointer to a newly allocated factor * if successful, or NULL otherwise. * cholmod_triplet * a non-NULL pointer to a newly allocated triplet * matrix if successful, or NULL otherwise. * cholmod_dense * a non-NULL pointer to a newly allocated triplet * matrix if successful, or NULL otherwise. * * The last parameter to all routines is always a pointer to the CHOLMOD * Common object. * * TRUE and FALSE are not defined here, since they may conflict with the user * program. A routine that described here returning TRUE or FALSE returns 1 * or 0, respectively. Any TRUE/FALSE parameter is true if nonzero, false if * zero. */ #ifndef CHOLMOD_CORE_H #define CHOLMOD_CORE_H /* ========================================================================== */ /* === CHOLMOD version ====================================================== */ /* ========================================================================== */ /* All versions of CHOLMOD will include the following definitions. * As an example, to test if the version you are using is 1.3 or later: * * if (CHOLMOD_VERSION >= CHOLMOD_VER_CODE (1,3)) ... * * This also works during compile-time: * * #if CHOLMOD_VERSION >= CHOLMOD_VER_CODE (1,3) * printf ("This is version 1.3 or later\n") ; * #else * printf ("This is version is earlier than 1.3\n") ; * #endif */ #define CHOLMOD_DATE "Nov 1, 2007" #define CHOLMOD_VER_CODE(main,sub) ((main) * 1000 + (sub)) #define CHOLMOD_MAIN_VERSION 1 #define CHOLMOD_SUB_VERSION 6 #define CHOLMOD_SUBSUB_VERSION 0 #define CHOLMOD_VERSION \ CHOLMOD_VER_CODE(CHOLMOD_MAIN_VERSION,CHOLMOD_SUB_VERSION) /* ========================================================================== */ /* === non-CHOLMOD include files ============================================ */ /* ========================================================================== */ /* This is the only non-CHOLMOD include file imposed on the user program. * It required for size_t definition used here. CHOLMOD itself includes other * ANSI C89 standard #include files, but does not expose them to the user. * * CHOLMOD assumes that your C compiler is ANSI C89 compliant. It does not make * use of ANSI C99 features. */ #include #include /* ========================================================================== */ /* === CHOLMOD objects ====================================================== */ /* ========================================================================== */ /* Each CHOLMOD object has its own type code. */ #define CHOLMOD_COMMON 0 #define CHOLMOD_SPARSE 1 #define CHOLMOD_FACTOR 2 #define CHOLMOD_DENSE 3 #define CHOLMOD_TRIPLET 4 /* ========================================================================== */ /* === CHOLMOD Common ======================================================= */ /* ========================================================================== */ /* itype defines the types of integer used: */ #define CHOLMOD_INT 0 /* all integer arrays are int */ #define CHOLMOD_INTLONG 1 /* most are int, some are UF_long */ #define CHOLMOD_LONG 2 /* all integer arrays are UF_long */ /* The itype of all parameters for all CHOLMOD routines must match. * FUTURE WORK: CHOLMOD_INTLONG is not yet supported. */ /* dtype defines what the numerical type is (double or float): */ #define CHOLMOD_DOUBLE 0 /* all numerical values are double */ #define CHOLMOD_SINGLE 1 /* all numerical values are float */ /* The dtype of all parameters for all CHOLMOD routines must match. * * Scalar floating-point values are always passed as double arrays of size 2 * (for the real and imaginary parts). They are typecast to float as needed. * FUTURE WORK: the float case is not supported yet. */ /* xtype defines the kind of numerical values used: */ #define CHOLMOD_PATTERN 0 /* pattern only, no numerical values */ #define CHOLMOD_REAL 1 /* a real matrix */ #define CHOLMOD_COMPLEX 2 /* a complex matrix (ANSI C99 compatible) */ #define CHOLMOD_ZOMPLEX 3 /* a complex matrix (MATLAB compatible) */ /* The xtype of all parameters for all CHOLMOD routines must match. * * CHOLMOD_PATTERN: x and z are ignored. * CHOLMOD_DOUBLE: x is non-null of size nzmax, z is ignored. * CHOLMOD_COMPLEX: x is non-null of size 2*nzmax doubles, z is ignored. * CHOLMOD_ZOMPLEX: x and z are non-null of size nzmax * * In the real case, z is ignored. The kth entry in the matrix is x [k]. * There are two methods for the complex case. In the ANSI C99-compatible * CHOLMOD_COMPLEX case, the real and imaginary parts of the kth entry * are in x [2*k] and x [2*k+1], respectively. z is ignored. In the * MATLAB-compatible CHOLMOD_ZOMPLEX case, the real and imaginary * parts of the kth entry are in x [k] and z [k]. * * Scalar floating-point values are always passed as double arrays of size 2 * (real and imaginary parts). The imaginary part of a scalar is ignored if * the routine operates on a real matrix. * * These Modules support complex and zomplex matrices, with a few exceptions: * * Check all routines * Cholesky all routines * Core all except cholmod_aat, add, band, copy * Demo all routines * Partition all routines * Supernodal all routines support any real, complex, or zomplex input. * There will never be a supernodal zomplex L; a complex * supernodal L is created if A is zomplex. * Tcov all routines * Valgrind all routines * * These Modules provide partial support for complex and zomplex matrices: * * MATLAB all routines support real and zomplex only, not complex, * with the exception of ldlupdate, which supports * real matrices only. This is a minor constraint since * MATLAB's matrices are all real or zomplex. * MatrixOps only norm_dense, norm_sparse, and sdmult support complex * and zomplex * * These Modules do not support complex and zomplex matrices at all: * * Modify all routines support real matrices only */ /* Definitions for cholmod_common: */ #define CHOLMOD_MAXMETHODS 9 /* maximum number of different methods that * cholmod_analyze can try. Must be >= 9. */ /* Common->status values. zero means success, negative means a fatal error, * positive is a warning. */ #define CHOLMOD_OK 0 /* success */ #define CHOLMOD_NOT_INSTALLED (-1) /* failure: method not installed */ #define CHOLMOD_OUT_OF_MEMORY (-2) /* failure: out of memory */ #define CHOLMOD_TOO_LARGE (-3) /* failure: integer overflow occured */ #define CHOLMOD_INVALID (-4) /* failure: invalid input */ #define CHOLMOD_NOT_POSDEF (1) /* warning: matrix not pos. def. */ #define CHOLMOD_DSMALL (2) /* warning: D for LDL' or diag(L) or * LL' has tiny absolute value */ /* ordering method (also used for L->ordering) */ #define CHOLMOD_NATURAL 0 /* use natural ordering */ #define CHOLMOD_GIVEN 1 /* use given permutation */ #define CHOLMOD_AMD 2 /* use minimum degree (AMD) */ #define CHOLMOD_METIS 3 /* use METIS' nested dissection */ #define CHOLMOD_NESDIS 4 /* use CHOLMOD's version of nested dissection: * node bisector applied recursively, followed * by constrained minimum degree (CSYMAMD or * CCOLAMD) */ #define CHOLMOD_COLAMD 5 /* use AMD for A, COLAMD for A*A' */ /* POSTORDERED is not a method, but a result of natural ordering followed by a * weighted postorder. It is used for L->ordering, not method [ ].ordering. */ #define CHOLMOD_POSTORDERED 6 /* natural ordering, postordered. */ /* supernodal strategy (for Common->supernodal) */ #define CHOLMOD_SIMPLICIAL 0 /* always do simplicial */ #define CHOLMOD_AUTO 1 /* select simpl/super depending on matrix */ #define CHOLMOD_SUPERNODAL 2 /* always do supernodal */ typedef struct cholmod_common_struct { /* ---------------------------------------------------------------------- */ /* parameters for symbolic/numeric factorization and update/downdate */ /* ---------------------------------------------------------------------- */ double dbound ; /* Smallest absolute value of diagonal entries of D * for LDL' factorization and update/downdate/rowadd/ * rowdel, or the diagonal of L for an LL' factorization. * Entries in the range 0 to dbound are replaced with dbound. * Entries in the range -dbound to 0 are replaced with -dbound. No * changes are made to the diagonal if dbound <= 0. Default: zero */ double grow0 ; /* For a simplicial factorization, L->i and L->x can * grow if necessary. grow0 is the factor by which * it grows. For the initial space, L is of size MAX (1,grow0) times * the required space. If L runs out of space, the new size of L is * MAX(1.2,grow0) times the new required space. If you do not plan on * modifying the LDL' factorization in the Modify module, set grow0 to * zero (or set grow2 to 0, see below). Default: 1.2 */ double grow1 ; size_t grow2 ; /* For a simplicial factorization, each column j of L * is initialized with space equal to * grow1*L->ColCount[j] + grow2. If grow0 < 1, grow1 < 1, or grow2 == 0, * then the space allocated is exactly equal to L->ColCount[j]. If the * column j runs out of space, it increases to grow1*need + grow2 in * size, where need is the total # of nonzeros in that column. If you do * not plan on modifying the factorization in the Modify module, set * grow2 to zero. Default: grow1 = 1.2, grow2 = 5. */ size_t maxrank ; /* rank of maximum update/downdate. Valid values: * 2, 4, or 8. A value < 2 is set to 2, and a * value > 8 is set to 8. It is then rounded up to the next highest * power of 2, if not already a power of 2. Workspace (Xwork, below) of * size nrow-by-maxrank double's is allocated for the update/downdate. * If an update/downdate of rank-k is requested, with k > maxrank, * it is done in steps of maxrank. Default: 8, which is fastest. * Memory usage can be reduced by setting maxrank to 2 or 4. */ double supernodal_switch ; /* supernodal vs simplicial factorization */ int supernodal ; /* If Common->supernodal <= CHOLMOD_SIMPLICIAL * (0) then cholmod_analyze performs a * simplicial analysis. If >= CHOLMOD_SUPERNODAL (2), then a supernodal * analysis is performed. If == CHOLMOD_AUTO (1) and * flop/nnz(L) < Common->supernodal_switch, then a simplicial analysis * is done. A supernodal analysis done otherwise. * Default: CHOLMOD_AUTO. Default supernodal_switch = 40 */ int final_asis ; /* If TRUE, then ignore the other final_* parameters * (except for final_pack). * The factor is left as-is when done. Default: TRUE.*/ int final_super ; /* If TRUE, leave a factor in supernodal form when * supernodal factorization is finished. If FALSE, * then convert to a simplicial factor when done. * Default: TRUE */ int final_ll ; /* If TRUE, leave factor in LL' form when done. * Otherwise, leave in LDL' form. Default: FALSE */ int final_pack ; /* If TRUE, pack the columns when done. If TRUE, and * cholmod_factorize is called with a symbolic L, L is * allocated with exactly the space required, using L->ColCount. If you * plan on modifying the factorization, set Common->final_pack to FALSE, * and each column will be given a little extra slack space for future * growth in fill-in due to updates. Default: TRUE */ int final_monotonic ; /* If TRUE, ensure columns are monotonic when done. * Default: TRUE */ int final_resymbol ;/* if cholmod_factorize performed a supernodal * factorization, final_resymbol is true, and * final_super is FALSE (convert a simplicial numeric factorization), * then numerically zero entries that resulted from relaxed supernodal * amalgamation are removed. This does not remove entries that are zero * due to exact numeric cancellation, since doing so would break the * update/downdate rowadd/rowdel routines. Default: FALSE. */ /* supernodal relaxed amalgamation parameters: */ double zrelax [3] ; size_t nrelax [3] ; /* Let ns be the total number of columns in two adjacent supernodes. * Let z be the fraction of zero entries in the two supernodes if they * are merged (z includes zero entries from prior amalgamations). The * two supernodes are merged if: * (ns <= nrelax [0]) || (no new zero entries added) || * (ns <= nrelax [1] && z < zrelax [0]) || * (ns <= nrelax [2] && z < zrelax [1]) || (z < zrelax [2]) * * Default parameters result in the following rule: * (ns <= 4) || (no new zero entries added) || * (ns <= 16 && z < 0.8) || (ns <= 48 && z < 0.1) || (z < 0.05) */ int prefer_zomplex ; /* X = cholmod_solve (sys, L, B, Common) computes * x=A\b or solves a related system. If L and B are * both real, then X is real. Otherwise, X is returned as * CHOLMOD_COMPLEX if Common->prefer_zomplex is FALSE, or * CHOLMOD_ZOMPLEX if Common->prefer_zomplex is TRUE. This parameter * is needed because there is no supernodal zomplex L. Suppose the * caller wants all complex matrices to be stored in zomplex form * (MATLAB, for example). A supernodal L is returned in complex form * if A is zomplex. B can be real, and thus X = cholmod_solve (L,B) * should return X as zomplex. This cannot be inferred from the input * arguments L and B. Default: FALSE, since all data types are * supported in CHOLMOD_COMPLEX form and since this is the native type * of LAPACK and the BLAS. Note that the MATLAB/cholmod.c mexFunction * sets this parameter to TRUE, since MATLAB matrices are in * CHOLMOD_ZOMPLEX form. */ int prefer_upper ; /* cholmod_analyze and cholmod_factorize work * fastest when a symmetric matrix is stored in * upper triangular form when a fill-reducing ordering is used. In * MATLAB, this corresponds to how x=A\b works. When the matrix is * ordered as-is, they work fastest when a symmetric matrix is in lower * triangular form. In MATLAB, R=chol(A) does the opposite. This * parameter affects only how cholmod_read returns a symmetric matrix. * If TRUE (the default case), a symmetric matrix is always returned in * upper-triangular form (A->stype = 1). */ int quick_return_if_not_posdef ; /* if TRUE, the supernodal numeric * factorization will return quickly if * the matrix is not positive definite. Default: FALSE. */ /* ---------------------------------------------------------------------- */ /* printing and error handling options */ /* ---------------------------------------------------------------------- */ int print ; /* print level. Default: 3 */ int precise ; /* if TRUE, print 16 digits. Otherwise print 5 */ int (*print_function) (const char *, ...) ; /* pointer to printf */ int try_catch ; /* if TRUE, then ignore errors; CHOLMOD is in the middle * of a try/catch block. No error message is printed * and the Common->error_handler function is not called. */ void (*error_handler) (int status, char *file, int line, char *message) ; /* Common->error_handler is the user's error handling routine. If not * NULL, this routine is called if an error occurs in CHOLMOD. status * can be CHOLMOD_OK (0), negative for a fatal error, and positive for * a warning. file is a string containing the name of the source code * file where the error occured, and line is the line number in that * file. message is a string describing the error in more detail. */ /* ---------------------------------------------------------------------- */ /* ordering options */ /* ---------------------------------------------------------------------- */ /* The cholmod_analyze routine can try many different orderings and select * the best one. It can also try one ordering method multiple times, with * different parameter settings. The default is to use three orderings, * the user's permutation (if provided), AMD which is the fastest ordering * and generally gives good fill-in, and METIS. CHOLMOD's nested dissection * (METIS with a constrained AMD) usually gives a better ordering than METIS * alone (by about 5% to 10%) but it takes more time. * * If you know the method that is best for your matrix, set Common->nmethods * to 1 and set Common->method [0] to the set of parameters for that method. * If you set it to 1 and do not provide a permutation, then only AMD will * be called. * * If METIS is not available, the default # of methods tried is 2 (the user * permutation, if any, and AMD). * * To try other methods, set Common->nmethods to the number of methods you * want to try. The suite of default methods and their parameters is * described in the cholmod_defaults routine, and summarized here: * * Common->method [i]: * i = 0: user-provided ordering (cholmod_analyze_p only) * i = 1: AMD (for both A and A*A') * i = 2: METIS * i = 3: CHOLMOD's nested dissection (NESDIS), default parameters * i = 4: natural * i = 5: NESDIS with nd_small = 20000 * i = 6: NESDIS with nd_small = 4, no constrained minimum degree * i = 7: NESDIS with no dense node removal * i = 8: AMD for A, COLAMD for A*A' * * You can modify the suite of methods you wish to try by modifying * Common.method [...] after calling cholmod_start or cholmod_defaults. * * For example, to use AMD, followed by a weighted postordering: * * Common->nmethods = 1 ; * Common->method [0].ordering = CHOLMOD_AMD ; * Common->postorder = TRUE ; * * To use the natural ordering (with no postordering): * * Common->nmethods = 1 ; * Common->method [0].ordering = CHOLMOD_NATURAL ; * Common->postorder = FALSE ; * * If you are going to factorize hundreds or more matrices with the same * nonzero pattern, you may wish to spend a great deal of time finding a * good permutation. In this case, try setting Common->nmethods to 9. * The time spent in cholmod_analysis will be very high, but you need to * call it only once. * * cholmod_analyze sets Common->current to a value between 0 and nmethods-1. * Each ordering method uses the set of options defined by this parameter. */ int nmethods ; /* The number of ordering methods to try. Default: 0. * nmethods = 0 is a special case. cholmod_analyze * will try the user-provided ordering (if given) and AMD. Let fl and * lnz be the flop count and nonzeros in L from AMD's ordering. Let * anz be the number of nonzeros in the upper or lower triangular part * of the symmetric matrix A. If fl/lnz < 500 or lnz/anz < 5, then this * is a good ordering, and METIS is not attempted. Otherwise, METIS is * tried. The best ordering found is used. If nmethods > 0, the * methods used are given in the method[ ] array, below. The first * three methods in the default suite of orderings is (1) use the given * permutation (if provided), (2) use AMD, and (3) use METIS. Maximum * allowed value is CHOLMOD_MAXMETHODS. */ int current ; /* The current method being tried. Default: 0. Valid * range is 0 to nmethods-1. */ int selected ; /* The best method found. */ /* The suite of ordering methods and parameters: */ struct cholmod_method_struct { /* statistics for this method */ double lnz ; /* nnz(L) excl. zeros from supernodal amalgamation, * for a "pure" L */ double fl ; /* flop count for a "pure", real simplicial LL' * factorization, with no extra work due to * amalgamation. Subtract n to get the LDL' flop count. Multiply * by about 4 if the matrix is complex or zomplex. */ /* ordering method parameters */ double prune_dense ;/* dense row/col control for AMD, SYMAMD, CSYMAMD, * and NESDIS (cholmod_nested_dissection). For a * symmetric n-by-n matrix, rows/columns with more than * MAX (16, prune_dense * sqrt (n)) entries are removed prior to * ordering. They appear at the end of the re-ordered matrix. * * If prune_dense < 0, only completely dense rows/cols are removed. * * This paramater is also the dense column control for COLAMD and * CCOLAMD. For an m-by-n matrix, columns with more than * MAX (16, prune_dense * sqrt (MIN (m,n))) entries are removed prior * to ordering. They appear at the end of the re-ordered matrix. * CHOLMOD factorizes A*A', so it calls COLAMD and CCOLAMD with A', * not A. Thus, this parameter affects the dense *row* control for * CHOLMOD's matrix, and the dense *column* control for COLAMD and * CCOLAMD. * * Removing dense rows and columns improves the run-time of the * ordering methods. It has some impact on ordering quality * (usually minimal, sometimes good, sometimes bad). * * Default: 10. */ double prune_dense2 ;/* dense row control for COLAMD and CCOLAMD. * Rows with more than MAX (16, dense2 * sqrt (n)) * for an m-by-n matrix are removed prior to ordering. CHOLMOD's * matrix is transposed before ordering it with COLAMD or CCOLAMD, * so this controls the dense *columns* of CHOLMOD's matrix, and * the dense *rows* of COLAMD's or CCOLAMD's matrix. * * If prune_dense2 < 0, only completely dense rows/cols are removed. * * Default: -1. Note that this is not the default for COLAMD and * CCOLAMD. -1 is best for Cholesky. 10 is best for LU. */ double nd_oksep ; /* in NESDIS, when a node separator is computed, it * discarded if nsep >= nd_oksep*n, where nsep is * the number of nodes in the separator, and n is the size of the * graph being cut. Valid range is 0 to 1. If 1 or greater, the * separator is discarded if it consists of the entire graph. * Default: 1 */ double other1 [4] ; /* future expansion */ size_t nd_small ; /* do not partition graphs with fewer nodes than * nd_small, in NESDIS. Default: 200 (same as * METIS) */ size_t other2 [4] ; /* future expansion */ int aggressive ; /* Aggresive absorption in AMD, COLAMD, SYMAMD, * CCOLAMD, and CSYMAMD. Default: TRUE */ int order_for_lu ; /* CCOLAMD can be optimized to produce an ordering * for LU or Cholesky factorization. CHOLMOD only * performs a Cholesky factorization. However, you may wish to use * CHOLMOD as an interface for CCOLAMD but use it for your own LU * factorization. In this case, order_for_lu should be set to FALSE. * When factorizing in CHOLMOD itself, you should *** NEVER *** set * this parameter FALSE. Default: TRUE. */ int nd_compress ; /* If TRUE, compress the graph and subgraphs before * partitioning them in NESDIS. Default: TRUE */ int nd_camd ; /* If 1, follow the nested dissection ordering * with a constrained minimum degree ordering that * respects the partitioning just found (using CAMD). If 2, use * CSYMAMD instead. If you set nd_small very small, you may not need * this ordering, and can save time by setting it to zero (no * constrained minimum degree ordering). Default: 1. */ int nd_components ; /* The nested dissection ordering finds a node * separator that splits the graph into two parts, * which may be unconnected. If nd_components is TRUE, each of * these connected components is split independently. If FALSE, * each part is split as a whole, even if it consists of more than * one connected component. Default: FALSE */ /* fill-reducing ordering to use */ int ordering ; size_t other3 [4] ; /* future expansion */ } method [CHOLMOD_MAXMETHODS + 1] ; int postorder ; /* If TRUE, cholmod_analyze follows the ordering with a * weighted postorder of the elimination tree. Improves * supernode amalgamation. Does not affect fundamental nnz(L) and * flop count. Default: TRUE. */ /* ---------------------------------------------------------------------- */ /* memory management routines */ /* ---------------------------------------------------------------------- */ void *(*malloc_memory) (size_t) ; /* pointer to malloc */ void *(*realloc_memory) (void *, size_t) ; /* pointer to realloc */ void (*free_memory) (void *) ; /* pointer to free */ void *(*calloc_memory) (size_t, size_t) ; /* pointer to calloc */ /* ---------------------------------------------------------------------- */ /* routines for complex arithmetic */ /* ---------------------------------------------------------------------- */ int (*complex_divide) (double ax, double az, double bx, double bz, double *cx, double *cz) ; /* flag = complex_divide (ax, az, bx, bz, &cx, &cz) computes the complex * division c = a/b, where ax and az hold the real and imaginary part * of a, and b and c are stored similarly. flag is returned as 1 if * a divide-by-zero occurs, or 0 otherwise. By default, the function * pointer Common->complex_divide is set equal to cholmod_divcomplex. */ double (*hypotenuse) (double x, double y) ; /* s = hypotenuse (x,y) computes s = sqrt (x*x + y*y), but does so more * accurately. By default, the function pointer Common->hypotenuse is * set equal to cholmod_hypot. See also the hypot function in the C99 * standard, which has an identical syntax and function. If you have * a C99-compliant compiler, you can set Common->hypotenuse = hypot. */ /* ---------------------------------------------------------------------- */ /* METIS workarounds */ /* ---------------------------------------------------------------------- */ double metis_memory ; /* This is a parameter for CHOLMOD's interface to * METIS, not a parameter to METIS itself. METIS * uses an amount of memory that is difficult to estimate precisely * beforehand. If it runs out of memory, it terminates your program. * All routines in CHOLMOD except for CHOLMOD's interface to METIS * return an error status and safely return to your program if they run * out of memory. To mitigate this problem, the CHOLMOD interface * can allocate a single block of memory equal in size to an empirical * upper bound of METIS's memory usage times the Common->metis_memory * parameter, and then immediately free it. It then calls METIS. If * this pre-allocation fails, it is possible that METIS will fail as * well, and so CHOLMOD returns with an out-of-memory condition without * calling METIS. * * METIS_NodeND (used in the CHOLMOD_METIS ordering option) with its * default parameter settings typically uses about (4*nz+40n+4096) * times sizeof(int) memory, where nz is equal to the number of entries * in A for the symmetric case or AA' if an unsymmetric matrix is * being ordered (where nz includes both the upper and lower parts * of A or AA'). The observed "upper bound" (with 2 exceptions), * measured in an instrumented copy of METIS 4.0.1 on thousands of * matrices, is (10*nz+50*n+4096) * sizeof(int). Two large matrices * exceeded this bound, one by almost a factor of 2 (Gupta/gupta2). * * If your program is terminated by METIS, try setting metis_memory to * 2.0, or even higher if needed. By default, CHOLMOD assumes that METIS * does not have this problem (so that CHOLMOD will work correctly when * this issue is fixed in METIS). Thus, the default value is zero. * This work-around is not guaranteed anyway. * * If a matrix exceeds this predicted memory usage, AMD is attempted * instead. It, too, may run out of memory, but if it does so it will * not terminate your program. */ double metis_dswitch ; /* METIS_NodeND in METIS 4.0.1 gives a seg */ size_t metis_nswitch ; /* fault with one matrix of order n = 3005 and * nz = 6,036,025. This is a very dense graph. * The workaround is to use AMD instead of METIS for matrices of dimension * greater than Common->metis_nswitch (default 3000) or more and with * density of Common->metis_dswitch (default 0.66) or more. * cholmod_nested_dissection has no problems with the same matrix, even * though it uses METIS_NodeComputeSeparator on this matrix. If this * seg fault does not affect you, set metis_nswitch to zero or less, * and CHOLMOD will not switch to AMD based just on the density of the * matrix (it will still switch to AMD if the metis_memory parameter * causes the switch). */ /* ---------------------------------------------------------------------- */ /* workspace */ /* ---------------------------------------------------------------------- */ /* CHOLMOD has several routines that take less time than the size of * workspace they require. Allocating and initializing the workspace would * dominate the run time, unless workspace is allocated and initialized * just once. CHOLMOD allocates this space when needed, and holds it here * between calls to CHOLMOD. cholmod_start sets these pointers to NULL * (which is why it must be the first routine called in CHOLMOD). * cholmod_finish frees the workspace (which is why it must be the last * call to CHOLMOD). */ size_t nrow ; /* size of Flag and Head */ UF_long mark ; /* mark value for Flag array */ size_t iworksize ; /* size of Iwork. Upper bound: 6*nrow+ncol */ size_t xworksize ; /* size of Xwork, in bytes. * maxrank*nrow*sizeof(double) for update/downdate. * 2*nrow*sizeof(double) otherwise */ /* initialized workspace: contents needed between calls to CHOLMOD */ void *Flag ; /* size nrow, an integer array. Kept cleared between * calls to cholmod rouines (Flag [i] < mark) */ void *Head ; /* size nrow+1, an integer array. Kept cleared between * calls to cholmod routines (Head [i] = EMPTY) */ void *Xwork ; /* a double array. Its size varies. It is nrow for * most routines (cholmod_rowfac, cholmod_add, * cholmod_aat, cholmod_norm, cholmod_ssmult) for the real case, twice * that when the input matrices are complex or zomplex. It is of size * 2*nrow for cholmod_rowadd and cholmod_rowdel. For cholmod_updown, * its size is maxrank*nrow where maxrank is 2, 4, or 8. Kept cleared * between calls to cholmod (set to zero). */ /* uninitialized workspace, contents not needed between calls to CHOLMOD */ void *Iwork ; /* size iworksize, 2*nrow+ncol for most routines, * up to 6*nrow+ncol for cholmod_analyze. */ int itype ; /* If CHOLMOD_LONG, Flag, Head, and Iwork are UF_long. * Otherwise all three arrays are int. */ int dtype ; /* double or float */ /* Common->itype and Common->dtype are used to define the types of all * sparse matrices, triplet matrices, dense matrices, and factors * created using this Common struct. The itypes and dtypes of all * parameters to all CHOLMOD routines must match. */ int no_workspace_reallocate ; /* this is an internal flag, used as a * precaution by cholmod_analyze. It is normally false. If true, * cholmod_allocate_work is not allowed to reallocate any workspace; * they must use the existing workspace in Common (Iwork, Flag, Head, * and Xwork). Added for CHOLMOD v1.1 */ /* ---------------------------------------------------------------------- */ /* statistics */ /* ---------------------------------------------------------------------- */ /* fl and lnz are set only in cholmod_analyze and cholmod_rowcolcounts, * in the Cholesky modudle. modfl is set only in the Modify module. */ int status ; /* error code */ double fl ; /* LL' flop count from most recent analysis */ double lnz ; /* fundamental nz in L */ double anz ; /* nonzeros in tril(A) if A is symmetric/lower, * triu(A) if symmetric/upper, or tril(A*A') if * unsymmetric, in last call to cholmod_analyze. */ double modfl ; /* flop count from most recent update/downdate/ * rowadd/rowdel (excluding flops to modify the * solution to Lx=b, if computed) */ size_t malloc_count ; /* # of objects malloc'ed minus the # free'd*/ size_t memory_usage ; /* peak memory usage in bytes */ size_t memory_inuse ; /* current memory usage in bytes */ double nrealloc_col ; /* # of column reallocations */ double nrealloc_factor ;/* # of factor reallocations due to col. reallocs */ double ndbounds_hit ; /* # of times diagonal modified by dbound */ double rowfacfl ; /* # of flops in last call to cholmod_rowfac */ double aatfl ; /* # of flops to compute A(:,f)*A(:,f)' */ /* ---------------------------------------------------------------------- */ /* future expansion */ /* ---------------------------------------------------------------------- */ /* To allow CHOLMOD to be updated without recompiling the user application, * additional space is set aside here for future statistics, parameters, * and workspace. Note: additional entries were added in v1.1 to the * method array, above, and thus v1.0 and v1.1 are not binary compatible. * * v1.1 to the current version are binary compatible. */ double other1 [16] ; UF_long other2 [16] ; int other3 [13] ; /* reduced from size 16 in v1.1. */ int prefer_binary ; /* cholmod_read_triplet converts a symmetric * pattern-only matrix into a real matrix. If * prefer_binary is FALSE, the diagonal entries are set to 1 + the degree * of the row/column, and off-diagonal entries are set to -1 (resulting * in a positive definite matrix if the diagonal is zero-free). Most * symmetric patterns are the pattern a positive definite matrix. If * this parameter is TRUE, then the matrix is returned with a 1 in each * entry, instead. Default: FALSE. Added in v1.3. */ /* control parameter (added for v1.2): */ int default_nesdis ; /* Default: FALSE. If FALSE, then the default * ordering strategy (when Common->nmethods == 0) * is to try the given ordering (if present), AMD, and then METIS if AMD * reports high fill-in. If Common->default_nesdis is TRUE then NESDIS * is used instead in the default strategy. */ /* statistic (added for v1.2): */ int called_nd ; /* TRUE if the last call to * cholmod_analyze called NESDIS or METIS. */ size_t other4 [16] ; void *other5 [16] ; } cholmod_common ; /* -------------------------------------------------------------------------- */ /* cholmod_start: first call to CHOLMOD */ /* -------------------------------------------------------------------------- */ int cholmod_start ( cholmod_common *Common ) ; int cholmod_l_start (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_finish: last call to CHOLMOD */ /* -------------------------------------------------------------------------- */ int cholmod_finish ( cholmod_common *Common ) ; int cholmod_l_finish (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_defaults: restore default parameters */ /* -------------------------------------------------------------------------- */ int cholmod_defaults ( cholmod_common *Common ) ; int cholmod_l_defaults (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_maxrank: return valid maximum rank for update/downdate */ /* -------------------------------------------------------------------------- */ size_t cholmod_maxrank /* returns validated value of Common->maxrank */ ( /* ---- input ---- */ size_t n, /* A and L will have n rows */ /* --------------- */ cholmod_common *Common ) ; size_t cholmod_l_maxrank (size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_allocate_work: allocate workspace in Common */ /* -------------------------------------------------------------------------- */ int cholmod_allocate_work ( /* ---- input ---- */ size_t nrow, /* size: Common->Flag (nrow), Common->Head (nrow+1) */ size_t iworksize, /* size of Common->Iwork */ size_t xworksize, /* size of Common->Xwork */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_allocate_work (size_t, size_t, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_free_work: free workspace in Common */ /* -------------------------------------------------------------------------- */ int cholmod_free_work ( cholmod_common *Common ) ; int cholmod_l_free_work (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_clear_flag: clear Flag workspace in Common */ /* -------------------------------------------------------------------------- */ /* use a macro for speed */ #define CHOLMOD_CLEAR_FLAG(Common) \ { \ Common->mark++ ; \ if (Common->mark <= 0) \ { \ Common->mark = EMPTY ; \ CHOLMOD (clear_flag) (Common) ; \ } \ } UF_long cholmod_clear_flag ( cholmod_common *Common ) ; UF_long cholmod_l_clear_flag (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_error: called when CHOLMOD encounters an error */ /* -------------------------------------------------------------------------- */ int cholmod_error ( /* ---- input ---- */ int status, /* error status */ char *file, /* name of source code file where error occured */ int line, /* line number in source code file where error occured*/ char *message, /* error message */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_error (int, char *, int, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_dbound: for internal use in CHOLMOD only */ /* -------------------------------------------------------------------------- */ double cholmod_dbound /* returns modified diagonal entry of D or L */ ( /* ---- input ---- */ double dj, /* diagonal entry of D for LDL' or L for LL' */ /* --------------- */ cholmod_common *Common ) ; double cholmod_l_dbound (double, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_hypot: compute sqrt (x*x + y*y) accurately */ /* -------------------------------------------------------------------------- */ double cholmod_hypot ( /* ---- input ---- */ double x, double y ) ; double cholmod_l_hypot (double, double) ; /* -------------------------------------------------------------------------- */ /* cholmod_divcomplex: complex division, c = a/b */ /* -------------------------------------------------------------------------- */ int cholmod_divcomplex /* return 1 if divide-by-zero, 0 otherise */ ( /* ---- input ---- */ double ar, double ai, /* real and imaginary parts of a */ double br, double bi, /* real and imaginary parts of b */ /* ---- output --- */ double *cr, double *ci /* real and imaginary parts of c */ ) ; int cholmod_l_divcomplex (double, double, double, double, double *, double *) ; /* ========================================================================== */ /* === Core/cholmod_sparse ================================================== */ /* ========================================================================== */ /* A sparse matrix stored in compressed-column form. */ typedef struct cholmod_sparse_struct { size_t nrow ; /* the matrix is nrow-by-ncol */ size_t ncol ; size_t nzmax ; /* maximum number of entries in the matrix */ /* pointers to int or UF_long: */ void *p ; /* p [0..ncol], the column pointers */ void *i ; /* i [0..nzmax-1], the row indices */ /* for unpacked matrices only: */ void *nz ; /* nz [0..ncol-1], the # of nonzeros in each col. In * packed form, the nonzero pattern of column j is in * A->i [A->p [j] ... A->p [j+1]-1]. In unpacked form, column j is in * A->i [A->p [j] ... A->p [j]+A->nz[j]-1] instead. In both cases, the * numerical values (if present) are in the corresponding locations in * the array x (or z if A->xtype is CHOLMOD_ZOMPLEX). */ /* pointers to double or float: */ void *x ; /* size nzmax or 2*nzmax, if present */ void *z ; /* size nzmax, if present */ int stype ; /* Describes what parts of the matrix are considered: * * 0: matrix is "unsymmetric": use both upper and lower triangular parts * (the matrix may actually be symmetric in pattern and value, but * both parts are explicitly stored and used). May be square or * rectangular. * >0: matrix is square and symmetric, use upper triangular part. * Entries in the lower triangular part are ignored. * <0: matrix is square and symmetric, use lower triangular part. * Entries in the upper triangular part are ignored. * * Note that stype>0 and stype<0 are different for cholmod_sparse and * cholmod_triplet. See the cholmod_triplet data structure for more * details. */ int itype ; /* CHOLMOD_INT: p, i, and nz are int. * CHOLMOD_INTLONG: p is UF_long, i and nz are int. * CHOLMOD_LONG: p, i, and nz are UF_long. */ int xtype ; /* pattern, real, complex, or zomplex */ int dtype ; /* x and z are double or float */ int sorted ; /* TRUE if columns are sorted, FALSE otherwise */ int packed ; /* TRUE if packed (nz ignored), FALSE if unpacked * (nz is required) */ } cholmod_sparse ; /* -------------------------------------------------------------------------- */ /* cholmod_allocate_sparse: allocate a sparse matrix */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_allocate_sparse ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ size_t nzmax, /* max # of nonzeros of A */ int sorted, /* TRUE if columns of A sorted, FALSE otherwise */ int packed, /* TRUE if A will be packed, FALSE otherwise */ int stype, /* stype of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_allocate_sparse (size_t, size_t, size_t, int, int, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_free_sparse: free a sparse matrix */ /* -------------------------------------------------------------------------- */ int cholmod_free_sparse ( /* ---- in/out --- */ cholmod_sparse **A, /* matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_free_sparse (cholmod_sparse **, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_reallocate_sparse: change the size (# entries) of sparse matrix */ /* -------------------------------------------------------------------------- */ int cholmod_reallocate_sparse ( /* ---- input ---- */ size_t nznew, /* new # of entries in A */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix to reallocate */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_reallocate_sparse ( size_t, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_nnz: return number of nonzeros in a sparse matrix */ /* -------------------------------------------------------------------------- */ UF_long cholmod_nnz ( /* ---- input ---- */ cholmod_sparse *A, /* --------------- */ cholmod_common *Common ) ; UF_long cholmod_l_nnz (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_speye: sparse identity matrix */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_speye ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_speye (size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_spzeros: sparse zero matrix */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_spzeros ( /* ---- input ---- */ size_t nrow, /* # of rows of A */ size_t ncol, /* # of columns of A */ size_t nzmax, /* max # of nonzeros of A */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_spzeros (size_t, size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_transpose: transpose a sparse matrix */ /* -------------------------------------------------------------------------- */ /* Return A' or A.' The "values" parameter is 0, 1, or 2 to denote the pattern * transpose, the array transpose (A.'), and the complex conjugate transpose * (A'). */ cholmod_sparse *cholmod_transpose ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_transpose (cholmod_sparse *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_transpose_unsym: transpose an unsymmetric sparse matrix */ /* -------------------------------------------------------------------------- */ /* Compute F = A', A (:,f)', or A (p,f)', where A is unsymmetric and F is * already allocated. See cholmod_transpose for a simpler routine. */ int cholmod_transpose_unsym ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */ int *Perm, /* size nrow, if present (can be NULL) */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ cholmod_sparse *F, /* F = A', A(:,f)', or A(p,f)' */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_transpose_unsym (cholmod_sparse *, int, UF_long *, UF_long *, size_t, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_transpose_sym: transpose a symmetric sparse matrix */ /* -------------------------------------------------------------------------- */ /* Compute F = A' or A (p,p)', where A is symmetric and F is already allocated. * See cholmod_transpose for a simpler routine. */ int cholmod_transpose_sym ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */ int *Perm, /* size nrow, if present (can be NULL) */ /* ---- output --- */ cholmod_sparse *F, /* F = A' or A(p,p)' */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_transpose_sym (cholmod_sparse *, int, UF_long *, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_ptranspose: transpose a sparse matrix */ /* -------------------------------------------------------------------------- */ /* Return A' or A(p,p)' if A is symmetric. Return A', A(:,f)', or A(p,f)' if * A is unsymmetric. */ cholmod_sparse *cholmod_ptranspose ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to transpose */ int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */ int *Perm, /* if non-NULL, F = A(p,f) or A(p,p) */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_ptranspose (cholmod_sparse *, int, UF_long *, UF_long *, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_sort: sort row indices in each column of sparse matrix */ /* -------------------------------------------------------------------------- */ int cholmod_sort ( /* ---- in/out --- */ cholmod_sparse *A, /* matrix to sort */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_sort (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_band: C = tril (triu (A,k1), k2) */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_band ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to extract band matrix from */ UF_long k1, /* ignore entries below the k1-st diagonal */ UF_long k2, /* ignore entries above the k2-nd diagonal */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_band (cholmod_sparse *, UF_long, UF_long, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_band_inplace: A = tril (triu (A,k1), k2) */ /* -------------------------------------------------------------------------- */ int cholmod_band_inplace ( /* ---- input ---- */ UF_long k1, /* ignore entries below the k1-st diagonal */ UF_long k2, /* ignore entries above the k2-nd diagonal */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* ---- in/out --- */ cholmod_sparse *A, /* matrix from which entries not in band are removed */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_band_inplace (UF_long, UF_long, int, cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_aat: C = A*A' or A(:,f)*A(:,f)' */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_aat ( /* ---- input ---- */ cholmod_sparse *A, /* input matrix; C=A*A' is constructed */ int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag), * -2: pattern only, no diagonal, add 50%+n extra * space to C */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_aat (cholmod_sparse *, UF_long *, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy_sparse: C = A, create an exact copy of a sparse matrix */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_copy_sparse ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_copy_sparse (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy: C = A, with possible change of stype */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_copy ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ int stype, /* requested stype of C */ int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_copy (cholmod_sparse *, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_add: C = alpha*A + beta*B */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_add ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to add */ cholmod_sparse *B, /* matrix to add */ double alpha [2], /* scale factor for A */ double beta [2], /* scale factor for B */ int values, /* if TRUE compute the numerical values of C */ int sorted, /* if TRUE, sort columns of C */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_add (cholmod_sparse *, cholmod_sparse *, double *, double *, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_sparse_xtype: change the xtype of a sparse matrix */ /* -------------------------------------------------------------------------- */ int cholmod_sparse_xtype ( /* ---- input ---- */ int to_xtype, /* requested xtype (pattern, real, complex, zomplex) */ /* ---- in/out --- */ cholmod_sparse *A, /* sparse matrix to change */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_sparse_xtype (int, cholmod_sparse *, cholmod_common *) ; /* ========================================================================== */ /* === Core/cholmod_factor ================================================== */ /* ========================================================================== */ /* A symbolic and numeric factorization, either simplicial or supernodal. * In all cases, the row indices in the columns of L are kept sorted. */ typedef struct cholmod_factor_struct { /* ---------------------------------------------------------------------- */ /* for both simplicial and supernodal factorizations */ /* ---------------------------------------------------------------------- */ size_t n ; /* L is n-by-n */ size_t minor ; /* If the factorization failed, L->minor is the column * at which it failed (in the range 0 to n-1). A value * of n means the factorization was successful or * the matrix has not yet been factorized. */ /* ---------------------------------------------------------------------- */ /* symbolic ordering and analysis */ /* ---------------------------------------------------------------------- */ void *Perm ; /* size n, permutation used */ void *ColCount ; /* size n, column counts for simplicial L */ /* ---------------------------------------------------------------------- */ /* simplicial factorization */ /* ---------------------------------------------------------------------- */ size_t nzmax ; /* size of i and x */ void *p ; /* p [0..ncol], the column pointers */ void *i ; /* i [0..nzmax-1], the row indices */ void *x ; /* x [0..nzmax-1], the numerical values */ void *z ; void *nz ; /* nz [0..ncol-1], the # of nonzeros in each column. * i [p [j] ... p [j]+nz[j]-1] contains the row indices, * and the numerical values are in the same locatins * in x. The value of i [p [k]] is always k. */ void *next ; /* size ncol+2. next [j] is the next column in i/x */ void *prev ; /* size ncol+2. prev [j] is the prior column in i/x. * head of the list is ncol+1, and the tail is ncol. */ /* ---------------------------------------------------------------------- */ /* supernodal factorization */ /* ---------------------------------------------------------------------- */ /* Note that L->x is shared with the simplicial data structure. L->x has * size L->nzmax for a simplicial factor, and size L->xsize for a supernodal * factor. */ size_t nsuper ; /* number of supernodes */ size_t ssize ; /* size of s, integer part of supernodes */ size_t xsize ; /* size of x, real part of supernodes */ size_t maxcsize ; /* size of largest update matrix */ size_t maxesize ; /* max # of rows in supernodes, excl. triangular part */ void *super ; /* size nsuper+1, first col in each supernode */ void *pi ; /* size nsuper+1, pointers to integer patterns */ void *px ; /* size nsuper+1, pointers to real parts */ void *s ; /* size ssize, integer part of supernodes */ /* ---------------------------------------------------------------------- */ /* factorization type */ /* ---------------------------------------------------------------------- */ int ordering ; /* ordering method used */ int is_ll ; /* TRUE if LL', FALSE if LDL' */ int is_super ; /* TRUE if supernodal, FALSE if simplicial */ int is_monotonic ; /* TRUE if columns of L appear in order 0..n-1. * Only applicable to simplicial numeric types. */ /* There are 8 types of factor objects that cholmod_factor can represent * (only 6 are used): * * Numeric types (xtype is not CHOLMOD_PATTERN) * -------------------------------------------- * * simplicial LDL': (is_ll FALSE, is_super FALSE). Stored in compressed * column form, using the simplicial components above (nzmax, p, i, * x, z, nz, next, and prev). The unit diagonal of L is not stored, * and D is stored in its place. There are no supernodes. * * simplicial LL': (is_ll TRUE, is_super FALSE). Uses the same storage * scheme as the simplicial LDL', except that D does not appear. * The first entry of each column of L is the diagonal entry of * that column of L. * * supernodal LDL': (is_ll FALSE, is_super TRUE). Not used. * FUTURE WORK: add support for supernodal LDL' * * supernodal LL': (is_ll TRUE, is_super TRUE). A supernodal factor, * using the supernodal components described above (nsuper, ssize, * xsize, maxcsize, maxesize, super, pi, px, s, x, and z). * * * Symbolic types (xtype is CHOLMOD_PATTERN) * ----------------------------------------- * * simplicial LDL': (is_ll FALSE, is_super FALSE). Nothing is present * except Perm and ColCount. * * simplicial LL': (is_ll TRUE, is_super FALSE). Identical to the * simplicial LDL', except for the is_ll flag. * * supernodal LDL': (is_ll FALSE, is_super TRUE). Not used. * FUTURE WORK: add support for supernodal LDL' * * supernodal LL': (is_ll TRUE, is_super TRUE). A supernodal symbolic * factorization. The simplicial symbolic information is present * (Perm and ColCount), as is all of the supernodal factorization * except for the numerical values (x and z). */ int itype ; /* The integer arrays are Perm, ColCount, p, i, nz, * next, prev, super, pi, px, and s. If itype is * CHOLMOD_INT, all of these are int arrays. * CHOLMOD_INTLONG: p, pi, px are UF_long, others int. * CHOLMOD_LONG: all integer arrays are UF_long. */ int xtype ; /* pattern, real, complex, or zomplex */ int dtype ; /* x and z double or float */ } cholmod_factor ; /* -------------------------------------------------------------------------- */ /* cholmod_allocate_factor: allocate a factor (symbolic LL' or LDL') */ /* -------------------------------------------------------------------------- */ cholmod_factor *cholmod_allocate_factor ( /* ---- input ---- */ size_t n, /* L is n-by-n */ /* --------------- */ cholmod_common *Common ) ; cholmod_factor *cholmod_l_allocate_factor (size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_free_factor: free a factor */ /* -------------------------------------------------------------------------- */ int cholmod_free_factor ( /* ---- in/out --- */ cholmod_factor **L, /* factor to free, NULL on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_free_factor (cholmod_factor **, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_reallocate_factor: change the # entries in a factor */ /* -------------------------------------------------------------------------- */ int cholmod_reallocate_factor ( /* ---- input ---- */ size_t nznew, /* new # of entries in L */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_reallocate_factor (size_t, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_change_factor: change the type of factor (e.g., LDL' to LL') */ /* -------------------------------------------------------------------------- */ int cholmod_change_factor ( /* ---- input ---- */ int to_xtype, /* to CHOLMOD_PATTERN, _REAL, _COMPLEX, _ZOMPLEX */ int to_ll, /* TRUE: convert to LL', FALSE: LDL' */ int to_super, /* TRUE: convert to supernodal, FALSE: simplicial */ int to_packed, /* TRUE: pack simplicial columns, FALSE: do not pack */ int to_monotonic, /* TRUE: put simplicial columns in order, FALSE: not */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_change_factor ( int, int, int, int, int, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_pack_factor: pack the columns of a factor */ /* -------------------------------------------------------------------------- */ /* Pack the columns of a simplicial factor. Unlike cholmod_change_factor, * it can pack the columns of a factor even if they are not stored in their * natural order (non-monotonic). */ int cholmod_pack_factor ( /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_pack_factor (cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_reallocate_column: resize a single column of a factor */ /* -------------------------------------------------------------------------- */ int cholmod_reallocate_column ( /* ---- input ---- */ size_t j, /* the column to reallocate */ size_t need, /* required size of column j */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_reallocate_column (size_t, size_t, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_factor_to_sparse: create a sparse matrix copy of a factor */ /* -------------------------------------------------------------------------- */ /* Only operates on numeric factors, not symbolic ones */ cholmod_sparse *cholmod_factor_to_sparse ( /* ---- in/out --- */ cholmod_factor *L, /* factor to copy, converted to symbolic on output */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_factor_to_sparse (cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy_factor: create a copy of a factor */ /* -------------------------------------------------------------------------- */ cholmod_factor *cholmod_copy_factor ( /* ---- input ---- */ cholmod_factor *L, /* factor to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_factor *cholmod_l_copy_factor (cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_factor_xtype: change the xtype of a factor */ /* -------------------------------------------------------------------------- */ int cholmod_factor_xtype ( /* ---- input ---- */ int to_xtype, /* requested xtype (real, complex, or zomplex) */ /* ---- in/out --- */ cholmod_factor *L, /* factor to change */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_factor_xtype (int, cholmod_factor *, cholmod_common *) ; /* ========================================================================== */ /* === Core/cholmod_dense =================================================== */ /* ========================================================================== */ /* A dense matrix in column-oriented form. It has no itype since it contains * no integers. Entry in row i and column j is located in x [i+j*d]. */ typedef struct cholmod_dense_struct { size_t nrow ; /* the matrix is nrow-by-ncol */ size_t ncol ; size_t nzmax ; /* maximum number of entries in the matrix */ size_t d ; /* leading dimension (d >= nrow must hold) */ void *x ; /* size nzmax or 2*nzmax, if present */ void *z ; /* size nzmax, if present */ int xtype ; /* pattern, real, complex, or zomplex */ int dtype ; /* x and z double or float */ } cholmod_dense ; /* -------------------------------------------------------------------------- */ /* cholmod_allocate_dense: allocate a dense matrix (contents uninitialized) */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_allocate_dense ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ size_t d, /* leading dimension */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_allocate_dense (size_t, size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_zeros: allocate a dense matrix and set it to zero */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_zeros ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_zeros (size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_ones: allocate a dense matrix and set it to all ones */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_ones ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_ones (size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_eye: allocate a dense matrix and set it to the identity matrix */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_eye ( /* ---- input ---- */ size_t nrow, /* # of rows of matrix */ size_t ncol, /* # of columns of matrix */ int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_eye (size_t, size_t, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_free_dense: free a dense matrix */ /* -------------------------------------------------------------------------- */ int cholmod_free_dense ( /* ---- in/out --- */ cholmod_dense **X, /* dense matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_free_dense (cholmod_dense **, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_sparse_to_dense: create a dense matrix copy of a sparse matrix */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_sparse_to_dense ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_sparse_to_dense (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_dense_to_sparse: create a sparse matrix copy of a dense matrix */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_dense_to_sparse ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ int values, /* TRUE if values to be copied, FALSE otherwise */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_dense_to_sparse (cholmod_dense *, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy_dense: create a copy of a dense matrix */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_copy_dense ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_copy_dense (cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy_dense2: copy a dense matrix (pre-allocated) */ /* -------------------------------------------------------------------------- */ int cholmod_copy_dense2 ( /* ---- input ---- */ cholmod_dense *X, /* matrix to copy */ /* ---- output --- */ cholmod_dense *Y, /* copy of matrix X */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_copy_dense2 (cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_dense_xtype: change the xtype of a dense matrix */ /* -------------------------------------------------------------------------- */ int cholmod_dense_xtype ( /* ---- input ---- */ int to_xtype, /* requested xtype (real, complex,or zomplex) */ /* ---- in/out --- */ cholmod_dense *X, /* dense matrix to change */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_dense_xtype (int, cholmod_dense *, cholmod_common *) ; /* ========================================================================== */ /* === Core/cholmod_triplet ================================================= */ /* ========================================================================== */ /* A sparse matrix stored in triplet form. */ typedef struct cholmod_triplet_struct { size_t nrow ; /* the matrix is nrow-by-ncol */ size_t ncol ; size_t nzmax ; /* maximum number of entries in the matrix */ size_t nnz ; /* number of nonzeros in the matrix */ void *i ; /* i [0..nzmax-1], the row indices */ void *j ; /* j [0..nzmax-1], the column indices */ void *x ; /* size nzmax or 2*nzmax, if present */ void *z ; /* size nzmax, if present */ int stype ; /* Describes what parts of the matrix are considered: * * 0: matrix is "unsymmetric": use both upper and lower triangular parts * (the matrix may actually be symmetric in pattern and value, but * both parts are explicitly stored and used). May be square or * rectangular. * >0: matrix is square and symmetric. Entries in the lower triangular * part are transposed and added to the upper triangular part when * the matrix is converted to cholmod_sparse form. * <0: matrix is square and symmetric. Entries in the upper triangular * part are transposed and added to the lower triangular part when * the matrix is converted to cholmod_sparse form. * * Note that stype>0 and stype<0 are different for cholmod_sparse and * cholmod_triplet. The reason is simple. You can permute a symmetric * triplet matrix by simply replacing a row and column index with their * new row and column indices, via an inverse permutation. Suppose * P = L->Perm is your permutation, and Pinv is an array of size n. * Suppose a symmetric matrix A is represent by a triplet matrix T, with * entries only in the upper triangular part. Then the following code: * * Ti = T->i ; * Tj = T->j ; * for (k = 0 ; k < n ; k++) Pinv [P [k]] = k ; * for (k = 0 ; k < nz ; k++) Ti [k] = Pinv [Ti [k]] ; * for (k = 0 ; k < nz ; k++) Tj [k] = Pinv [Tj [k]] ; * * creates the triplet form of C=P*A*P'. However, if T initially * contains just the upper triangular entries (T->stype = 1), after * permutation it has entries in both the upper and lower triangular * parts. These entries should be transposed when constructing the * cholmod_sparse form of A, which is what cholmod_triplet_to_sparse * does. Thus: * * C = cholmod_triplet_to_sparse (T, 0, &Common) ; * * will return the matrix C = P*A*P'. * * Since the triplet matrix T is so simple to generate, it's quite easy * to remove entries that you do not want, prior to converting T to the * cholmod_sparse form. So if you include these entries in T, CHOLMOD * assumes that there must be a reason (such as the one above). Thus, * no entry in a triplet matrix is ever ignored. */ int itype ; /* CHOLMOD_LONG: i and j are UF_long. Otherwise int. */ int xtype ; /* pattern, real, complex, or zomplex */ int dtype ; /* x and z are double or float */ } cholmod_triplet ; /* -------------------------------------------------------------------------- */ /* cholmod_allocate_triplet: allocate a triplet matrix */ /* -------------------------------------------------------------------------- */ cholmod_triplet *cholmod_allocate_triplet ( /* ---- input ---- */ size_t nrow, /* # of rows of T */ size_t ncol, /* # of columns of T */ size_t nzmax, /* max # of nonzeros of T */ int stype, /* stype of T */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* --------------- */ cholmod_common *Common ) ; cholmod_triplet *cholmod_l_allocate_triplet (size_t, size_t, size_t, int, int, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_free_triplet: free a triplet matrix */ /* -------------------------------------------------------------------------- */ int cholmod_free_triplet ( /* ---- in/out --- */ cholmod_triplet **T, /* triplet matrix to deallocate, NULL on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_free_triplet (cholmod_triplet **, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_reallocate_triplet: change the # of entries in a triplet matrix */ /* -------------------------------------------------------------------------- */ int cholmod_reallocate_triplet ( /* ---- input ---- */ size_t nznew, /* new # of entries in T */ /* ---- in/out --- */ cholmod_triplet *T, /* triplet matrix to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_reallocate_triplet (size_t, cholmod_triplet *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_sparse_to_triplet: create a triplet matrix copy of a sparse matrix*/ /* -------------------------------------------------------------------------- */ cholmod_triplet *cholmod_sparse_to_triplet ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_triplet *cholmod_l_sparse_to_triplet (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_triplet_to_sparse: create a sparse matrix copy of a triplet matrix*/ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_triplet_to_sparse ( /* ---- input ---- */ cholmod_triplet *T, /* matrix to copy */ size_t nzmax, /* allocate at least this much space in output matrix */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_triplet_to_sparse (cholmod_triplet *, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_copy_triplet: create a copy of a triplet matrix */ /* -------------------------------------------------------------------------- */ cholmod_triplet *cholmod_copy_triplet ( /* ---- input ---- */ cholmod_triplet *T, /* matrix to copy */ /* --------------- */ cholmod_common *Common ) ; cholmod_triplet *cholmod_l_copy_triplet (cholmod_triplet *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_triplet_xtype: change the xtype of a triplet matrix */ /* -------------------------------------------------------------------------- */ int cholmod_triplet_xtype ( /* ---- input ---- */ int to_xtype, /* requested xtype (pattern, real, complex,or zomplex)*/ /* ---- in/out --- */ cholmod_triplet *T, /* triplet matrix to change */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_triplet_xtype (int, cholmod_triplet *, cholmod_common *) ; /* ========================================================================== */ /* === Core/cholmod_memory ================================================== */ /* ========================================================================== */ /* The user may make use of these, just like malloc and free. You can even * malloc an object and safely free it with cholmod_free, and visa versa * (except that the memory usage statistics will be corrupted). These routines * do differ from malloc and free. If cholmod_free is given a NULL pointer, * for example, it does nothing (unlike the ANSI free). cholmod_realloc does * not return NULL if given a non-NULL pointer and a nonzero size, even if it * fails (it returns the original pointer and sets an error code in * Common->status instead). * * CHOLMOD keeps track of the amount of memory it has allocated, and so the * cholmod_free routine also takes the size of the object being freed. This * is only used for statistics. If you, the user of CHOLMOD, pass the wrong * size, the only consequence is that the memory usage statistics will be * corrupted. */ void *cholmod_malloc /* returns pointer to the newly malloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ cholmod_common *Common ) ; void *cholmod_l_malloc (size_t, size_t, cholmod_common *) ; void *cholmod_calloc /* returns pointer to the newly calloc'd block */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* --------------- */ cholmod_common *Common ) ; void *cholmod_l_calloc (size_t, size_t, cholmod_common *) ; void *cholmod_free /* always returns NULL */ ( /* ---- input ---- */ size_t n, /* number of items */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to free */ /* --------------- */ cholmod_common *Common ) ; void *cholmod_l_free (size_t, size_t, void *, cholmod_common *) ; void *cholmod_realloc /* returns pointer to reallocated block */ ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated block */ size_t size, /* size of each item */ /* ---- in/out --- */ void *p, /* block of memory to realloc */ size_t *n, /* current size on input, nnew on output if successful*/ /* --------------- */ cholmod_common *Common ) ; void *cholmod_l_realloc (size_t, size_t, void *, size_t *, cholmod_common *) ; int cholmod_realloc_multiple ( /* ---- input ---- */ size_t nnew, /* requested # of items in reallocated blocks */ int nint, /* number of int/UF_long blocks */ int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */ /* ---- in/out --- */ void **I, /* int or UF_long block */ void **J, /* int or UF_long block */ void **X, /* complex, double, or float block */ void **Z, /* zomplex case only: double or float block */ size_t *n, /* current size of the I,J,X,Z blocks on input, * nnew on output if successful */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_realloc_multiple (size_t, int, int, void **, void **, void **, void **, size_t *, cholmod_common *) ; /* ========================================================================== */ /* === symmetry types ======================================================= */ /* ========================================================================== */ #define CHOLMOD_MM_RECTANGULAR 1 #define CHOLMOD_MM_UNSYMMETRIC 2 #define CHOLMOD_MM_SYMMETRIC 3 #define CHOLMOD_MM_HERMITIAN 4 #define CHOLMOD_MM_SKEW_SYMMETRIC 5 #define CHOLMOD_MM_SYMMETRIC_POSDIAG 6 #define CHOLMOD_MM_HERMITIAN_POSDIAG 7 /* ========================================================================== */ /* === Numerical relop macros =============================================== */ /* ========================================================================== */ /* These macros correctly handle the NaN case. * * CHOLMOD_IS_NAN(x): * True if x is NaN. False otherwise. The commonly-existing isnan(x) * function could be used, but it's not in Kernighan & Ritchie 2nd edition * (ANSI C89). It may appear in , but I'm not certain about * portability. The expression x != x is true if and only if x is NaN, * according to the IEEE 754 floating-point standard. * * CHOLMOD_IS_ZERO(x): * True if x is zero. False if x is nonzero, NaN, or +/- Inf. * This is (x == 0) if the compiler is IEEE 754 compliant. * * CHOLMOD_IS_NONZERO(x): * True if x is nonzero, NaN, or +/- Inf. False if x zero. * This is (x != 0) if the compiler is IEEE 754 compliant. * * CHOLMOD_IS_LT_ZERO(x): * True if x is < zero or -Inf. False if x is >= 0, NaN, or +Inf. * This is (x < 0) if the compiler is IEEE 754 compliant. * * CHOLMOD_IS_GT_ZERO(x): * True if x is > zero or +Inf. False if x is <= 0, NaN, or -Inf. * This is (x > 0) if the compiler is IEEE 754 compliant. * * CHOLMOD_IS_LE_ZERO(x): * True if x is <= zero or -Inf. False if x is > 0, NaN, or +Inf. * This is (x <= 0) if the compiler is IEEE 754 compliant. */ #ifdef CHOLMOD_WINDOWS /* Yes, this is exceedingly ugly. Blame Microsoft, which hopelessly */ /* violates the IEEE 754 floating-point standard in a bizarre way. */ /* If you're using an IEEE 754-compliant compiler, then x != x is true */ /* iff x is NaN. For Microsoft, (x < x) is true iff x is NaN. */ /* So either way, this macro safely detects a NaN. */ #define CHOLMOD_IS_NAN(x) (((x) != (x)) || (((x) < (x)))) #define CHOLMOD_IS_ZERO(x) (((x) == 0.) && !CHOLMOD_IS_NAN(x)) #define CHOLMOD_IS_NONZERO(x) (((x) != 0.) || CHOLMOD_IS_NAN(x)) #define CHOLMOD_IS_LT_ZERO(x) (((x) < 0.) && !CHOLMOD_IS_NAN(x)) #define CHOLMOD_IS_GT_ZERO(x) (((x) > 0.) && !CHOLMOD_IS_NAN(x)) #define CHOLMOD_IS_LE_ZERO(x) (((x) <= 0.) && !CHOLMOD_IS_NAN(x)) #else /* These all work properly, according to the IEEE 754 standard ... except on */ /* a PC with windows. Works fine in Linux on the same PC... */ #define CHOLMOD_IS_NAN(x) ((x) != (x)) #define CHOLMOD_IS_ZERO(x) ((x) == 0.) #define CHOLMOD_IS_NONZERO(x) ((x) != 0.) #define CHOLMOD_IS_LT_ZERO(x) ((x) < 0.) #define CHOLMOD_IS_GT_ZERO(x) ((x) > 0.) #define CHOLMOD_IS_LE_ZERO(x) ((x) <= 0.) #endif #endif SuiteSparse/CHOLMOD/Include/cholmod_check.h0000644001170100242450000003435110537777506017401 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_check.h ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_check.h. Copyright (C) 2005-2006, Timothy A. Davis * CHOLMOD/Include/cholmod_check.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Check module. * * Routines that check and print the 5 basic data types in CHOLMOD, and 3 kinds * of integer vectors (subset, perm, and parent), and read in matrices from a * file: * * cholmod_check_common check/print the Common object * cholmod_print_common * * cholmod_check_sparse check/print a sparse matrix in column-oriented form * cholmod_print_sparse * * cholmod_check_dense check/print a dense matrix * cholmod_print_dense * * cholmod_check_factor check/print a Cholesky factorization * cholmod_print_factor * * cholmod_check_triplet check/print a sparse matrix in triplet form * cholmod_print_triplet * * cholmod_check_subset check/print a subset (integer vector in given range) * cholmod_print_subset * * cholmod_check_perm check/print a permutation (an integer vector) * cholmod_print_perm * * cholmod_check_parent check/print an elimination tree (an integer vector) * cholmod_print_parent * * cholmod_read_triplet read a matrix in triplet form (any Matrix Market * "coordinate" format, or a generic triplet format). * * cholmod_read_sparse read a matrix in sparse form (same file format as * cholmod_read_triplet). * * cholmod_read_dense read a dense matrix (any Matrix Market "array" * format, or a generic dense format). * * cholmod_write_sparse write a sparse matrix to a Matrix Market file. * * cholmod_write_dense write a dense matrix to a Matrix Market file. * * cholmod_print_common and cholmod_check_common are the only two routines that * you may call after calling cholmod_finish. * * Requires the Core module. Not required by any CHOLMOD module, except when * debugging is enabled (in which case all modules require the Check module). * * See cholmod_read.c for a description of the file formats supported by the * cholmod_read_* routines. */ #ifndef CHOLMOD_CHECK_H #define CHOLMOD_CHECK_H #include "cholmod_core.h" #include /* -------------------------------------------------------------------------- */ /* cholmod_check_common: check the Common object */ /* -------------------------------------------------------------------------- */ int cholmod_check_common ( cholmod_common *Common ) ; int cholmod_l_check_common (cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_common: print the Common object */ /* -------------------------------------------------------------------------- */ int cholmod_print_common ( /* ---- input ---- */ char *name, /* printed name of Common object */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_common (char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_sparse: check a sparse matrix */ /* -------------------------------------------------------------------------- */ int cholmod_check_sparse ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to check */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_sparse (cholmod_sparse *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_sparse */ /* -------------------------------------------------------------------------- */ int cholmod_print_sparse ( /* ---- input ---- */ cholmod_sparse *A, /* sparse matrix to print */ char *name, /* printed name of sparse matrix */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_sparse (cholmod_sparse *, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_dense: check a dense matrix */ /* -------------------------------------------------------------------------- */ int cholmod_check_dense ( /* ---- input ---- */ cholmod_dense *X, /* dense matrix to check */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_dense (cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_dense: print a dense matrix */ /* -------------------------------------------------------------------------- */ int cholmod_print_dense ( /* ---- input ---- */ cholmod_dense *X, /* dense matrix to print */ char *name, /* printed name of dense matrix */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_dense (cholmod_dense *, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_factor: check a factor */ /* -------------------------------------------------------------------------- */ int cholmod_check_factor ( /* ---- input ---- */ cholmod_factor *L, /* factor to check */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_factor (cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_factor: print a factor */ /* -------------------------------------------------------------------------- */ int cholmod_print_factor ( /* ---- input ---- */ cholmod_factor *L, /* factor to print */ char *name, /* printed name of factor */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_factor (cholmod_factor *, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_triplet: check a sparse matrix in triplet form */ /* -------------------------------------------------------------------------- */ int cholmod_check_triplet ( /* ---- input ---- */ cholmod_triplet *T, /* triplet matrix to check */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_triplet (cholmod_triplet *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_triplet: print a triplet matrix */ /* -------------------------------------------------------------------------- */ int cholmod_print_triplet ( /* ---- input ---- */ cholmod_triplet *T, /* triplet matrix to print */ char *name, /* printed name of triplet matrix */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_triplet (cholmod_triplet *, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_subset: check a subset */ /* -------------------------------------------------------------------------- */ int cholmod_check_subset ( /* ---- input ---- */ int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */ UF_long len, /* size of Set (an integer array) */ size_t n, /* 0:n-1 is valid range */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_subset (UF_long *, UF_long, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_subset: print a subset */ /* -------------------------------------------------------------------------- */ int cholmod_print_subset ( /* ---- input ---- */ int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */ UF_long len, /* size of Set (an integer array) */ size_t n, /* 0:n-1 is valid range */ char *name, /* printed name of Set */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_subset (UF_long *, UF_long, size_t, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_perm: check a permutation */ /* -------------------------------------------------------------------------- */ int cholmod_check_perm ( /* ---- input ---- */ int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */ size_t len, /* size of Perm (an integer array) */ size_t n, /* 0:n-1 is valid range */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_perm (UF_long *, size_t, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_perm: print a permutation vector */ /* -------------------------------------------------------------------------- */ int cholmod_print_perm ( /* ---- input ---- */ int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */ size_t len, /* size of Perm (an integer array) */ size_t n, /* 0:n-1 is valid range */ char *name, /* printed name of Perm */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_perm (UF_long *, size_t, size_t, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_check_parent: check an elimination tree */ /* -------------------------------------------------------------------------- */ int cholmod_check_parent ( /* ---- input ---- */ int *Parent, /* Parent [0:n-1] is an elimination tree */ size_t n, /* size of Parent */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_check_parent (UF_long *, size_t, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_print_parent */ /* -------------------------------------------------------------------------- */ int cholmod_print_parent ( /* ---- input ---- */ int *Parent, /* Parent [0:n-1] is an elimination tree */ size_t n, /* size of Parent */ char *name, /* printed name of Parent */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_print_parent (UF_long *, size_t, char *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_read_sparse: read a sparse matrix from a file */ /* -------------------------------------------------------------------------- */ cholmod_sparse *cholmod_read_sparse ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) ; cholmod_sparse *cholmod_l_read_sparse (FILE *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_read_triplet: read a triplet matrix from a file */ /* -------------------------------------------------------------------------- */ cholmod_triplet *cholmod_read_triplet ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) ; cholmod_triplet *cholmod_l_read_triplet (FILE *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_read_dense: read a dense matrix from a file */ /* -------------------------------------------------------------------------- */ cholmod_dense *cholmod_read_dense ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ /* --------------- */ cholmod_common *Common ) ; cholmod_dense *cholmod_l_read_dense (FILE *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_read_matrix: read a sparse or dense matrix from a file */ /* -------------------------------------------------------------------------- */ void *cholmod_read_matrix ( /* ---- input ---- */ FILE *f, /* file to read from, must already be open */ int prefer, /* If 0, a sparse matrix is always return as a * cholmod_triplet form. It can have any stype * (symmetric-lower, unsymmetric, or * symmetric-upper). * If 1, a sparse matrix is returned as an unsymmetric * cholmod_sparse form (A->stype == 0), with both * upper and lower triangular parts present. * This is what the MATLAB mread mexFunction does, * since MATLAB does not have an stype. * If 2, a sparse matrix is returned with an stype of 0 * or 1 (unsymmetric, or symmetric with upper part * stored). * This argument has no effect for dense matrices. */ /* ---- output---- */ int *mtype, /* CHOLMOD_TRIPLET, CHOLMOD_SPARSE or CHOLMOD_DENSE */ /* --------------- */ cholmod_common *Common ) ; void *cholmod_l_read_matrix (FILE *, int, int *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_write_sparse: write a sparse matrix to a file */ /* -------------------------------------------------------------------------- */ int cholmod_write_sparse ( /* ---- input ---- */ FILE *f, /* file to write to, must already be open */ cholmod_sparse *A, /* matrix to print */ cholmod_sparse *Z, /* optional matrix with pattern of explicit zeros */ char *comments, /* optional filename of comments to include */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_write_sparse (FILE *, cholmod_sparse *, cholmod_sparse *, char *c, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_write_dense: write a dense matrix to a file */ /* -------------------------------------------------------------------------- */ int cholmod_write_dense ( /* ---- input ---- */ FILE *f, /* file to write to, must already be open */ cholmod_dense *X, /* matrix to print */ char *comments, /* optional filename of comments to include */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_write_dense (FILE *, cholmod_dense *, char *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/cholmod_io64.h0000644001170100242450000000325610540000236017052 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_io64 ================================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_io64.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_io64.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Definitions required for large file I/O, which must come before any other * #includes. These are not used if -DNLARGEFILE is defined at compile time. * Large file support may not be portable across all platforms and compilers; * if you encounter an error here, compile your code with -DNLARGEFILE. In * particular, you must use -DNLARGEFILE for MATLAB 6.5 or earlier (which does * not have the io64.h include file). */ #ifndef CHOLMOD_IO_H #define CHOLMOD_IO_H /* skip all of this if NLARGEFILE is defined at the compiler command line */ #ifndef NLARGEFILE #if defined(MATLAB_MEX_FILE) || defined(MATHWORKS) /* CHOLMOD is being compiled as a MATLAB MEX file, or for use inside MATLAB */ #include "io64.h" #else /* CHOLMOD is being compiled in a stand-alone library */ #undef _LARGEFILE64_SOURCE #define _LARGEFILE64_SOURCE #undef _FILE_OFFSET_BITS #define _FILE_OFFSET_BITS 64 #endif #endif #endif SuiteSparse/CHOLMOD/Include/License.txt0000644001170100242450000000046210540000242016527 0ustar davisfacCHOLMOD/Include/* files. Copyright (C) 2005-2006, either Univ. of Florida or T. Davis, depending on the file. http://www.cise.ufl.edu/research/sparse Refer to each include file in this directory; each file is licensed separately, according to the Module for which it contains definitions and prototypes. SuiteSparse/CHOLMOD/Include/cholmod_supernodal.h0000644001170100242450000001253710537777554020505 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_supernodal.h ========================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_supernodal.h. * Copyright (C) 2005-2006, Timothy A. Davis * CHOLMOD/Include/cholmod_supernodal.h is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Supernodal module. * * Supernodal analysis, factorization, and solve. The simplest way to use * these routines is via the Cholesky module. It does not provide any * fill-reducing orderings, but does accept the orderings computed by the * Cholesky module. It does not require the Cholesky module itself, however. * * Primary routines: * ----------------- * cholmod_super_symbolic supernodal symbolic analysis * cholmod_super_numeric supernodal numeric factorization * cholmod_super_lsolve supernodal Lx=b solve * cholmod_super_ltsolve supernodal L'x=b solve * * Prototypes for the BLAS and LAPACK routines that CHOLMOD uses are listed * below, including how they are used in CHOLMOD. * * BLAS routines: * -------------- * dtrsv solve Lx=b or L'x=b, L non-unit diagonal, x and b stride-1 * dtrsm solve LX=B or L'X=b, L non-unit diagonal * dgemv y=y-A*x or y=y-A'*x (x and y stride-1) * dgemm C=A*B', C=C-A*B, or C=C-A'*B * dsyrk C=tril(A*A') * * LAPACK routines: * ---------------- * dpotrf LAPACK: A=chol(tril(A)) * * Requires the Core module, and two external packages: LAPACK and the BLAS. * Optionally used by the Cholesky module. */ #ifndef CHOLMOD_SUPERNODAL_H #define CHOLMOD_SUPERNODAL_H #include "cholmod_core.h" /* -------------------------------------------------------------------------- */ /* cholmod_super_symbolic */ /* -------------------------------------------------------------------------- */ /* Analyzes A, AA', or A(:,f)*A(:,f)' in preparation for a supernodal numeric * factorization. The user need not call this directly; cholmod_analyze is * a "simple" wrapper for this routine. */ int cholmod_super_symbolic ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to analyze */ cholmod_sparse *F, /* F = A' or A(:,f)' */ int *Parent, /* elimination tree */ /* ---- in/out --- */ cholmod_factor *L, /* simplicial symbolic on input, * supernodal symbolic on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_super_symbolic (cholmod_sparse *, cholmod_sparse *, UF_long *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_super_numeric */ /* -------------------------------------------------------------------------- */ /* Computes the numeric LL' factorization of A, AA', or A(:,f)*A(:,f)' using * a BLAS-based supernodal method. The user need not call this directly; * cholmod_factorize is a "simple" wrapper for this routine. */ int cholmod_super_numeric ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to factorize */ cholmod_sparse *F, /* F = A' or A(:,f)' */ double beta [2], /* beta*I is added to diagonal of matrix to factorize */ /* ---- in/out --- */ cholmod_factor *L, /* factorization */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_super_numeric (cholmod_sparse *, cholmod_sparse *, double *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_super_lsolve */ /* -------------------------------------------------------------------------- */ /* Solve Lx=b where L is from a supernodal numeric factorization. The user * need not call this routine directly. cholmod_solve is a "simple" wrapper * for this routine. */ int cholmod_super_lsolve ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the forward solve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to Lx=b on output */ /* ---- workspace */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_super_lsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_super_ltsolve */ /* -------------------------------------------------------------------------- */ /* Solve L'x=b where L is from a supernodal numeric factorization. The user * need not call this routine directly. cholmod_solve is a "simple" wrapper * for this routine. */ int cholmod_super_ltsolve ( /* ---- input ---- */ cholmod_factor *L, /* factor to use for the backsolve */ /* ---- output ---- */ cholmod_dense *X, /* b on input, solution to L'x=b on output */ /* ---- workspace */ cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_super_ltsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/README.txt0000644001170100242450000000235110540000142016100 0ustar davisfacCHOLMOD: a sparse Cholesky factorization package. The Include/*.h files in this directory provide a basic documentation of all user-callable routines and user-visible data structures in the CHOLMOD package. Start with cholmod.h, which describes the general structure of the parameter lists of CHOLMOD routines. cholmod_core.h describes the data structures and basic operations on them (creating and deleting them). cholmod.h single include file for all user programs cholmod_config.h CHOLMOD compile-time configuration cholmod_core.h Core module: data structures and basic support routines cholmod_check.h Check module: check/print CHOLMOD data structures cholmod_cholesky.h Cholesky module: LL' and LDL' factorization cholmod_matrixops.h MatrixOps module: sparse matrix operators (add, mult,..) cholmod_modify.h Modify module: update/downdate/... cholmod_partition.h Partition module: nested dissection ordering cholmod_supernodal.h Supernodal module: supernodal Cholesky These include files are not used in user programs, but in CHOLMOD only: cholmod_blas.h BLAS definitions cholmod_complexity.h complex arithmetic cholmod_template.h complex arithmetic for template routines cholmod_internal.h internal definitions, not visible to user program SuiteSparse/CHOLMOD/Include/cholmod_modify.h0000644001170100242450000003125110537777547017614 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_modify.h ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_modify.h. * Copyright (C) 2005-2006, Timothy A. Davis and William W. Hager * CHOLMOD/Include/cholmod_modify.h is licensed under Version 2.0 of the GNU * General Public License. See gpl.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD Modify module. * * Sparse Cholesky modification routines: update / downdate / rowadd / rowdel. * Can also modify a corresponding solution to Lx=b when L is modified. This * module is most useful when applied on a Cholesky factorization computed by * the Cholesky module, but it does not actually require the Cholesky module. * The Core module can create an identity Cholesky factorization (LDL' where * L=D=I) that can then by modified by these routines. * * Primary routines: * ----------------- * * cholmod_updown multiple rank update/downdate * cholmod_rowadd add a row to an LDL' factorization * cholmod_rowdel delete a row from an LDL' factorization * * Secondary routines: * ------------------- * * cholmod_updown_solve update/downdate, and modify solution to Lx=b * cholmod_updown_mark update/downdate, and modify solution to partial Lx=b * cholmod_updown_mask update/downdate for LPDASA * cholmod_rowadd_solve add a row, and update solution to Lx=b * cholmod_rowadd_mark add a row, and update solution to partial Lx=b * cholmod_rowdel_solve delete a row, and downdate Lx=b * cholmod_rowdel_mark delete a row, and downdate solution to partial Lx=b * * Requires the Core module. Not required by any other CHOLMOD module. */ #ifndef CHOLMOD_MODIFY_H #define CHOLMOD_MODIFY_H #include "cholmod_core.h" /* -------------------------------------------------------------------------- */ /* cholmod_updown: multiple rank update/downdate */ /* -------------------------------------------------------------------------- */ /* Compute the new LDL' factorization of LDL'+CC' (an update) or LDL'-CC' * (a downdate). The factor object L need not be an LDL' factorization; it * is converted to one if it isn't. */ int cholmod_updown ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_updown (int, cholmod_sparse *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_updown_solve: update/downdate, and modify solution to Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_updown, except that it also updates/downdates the * solution to Lx=b+DeltaB. x and b must be n-by-1 dense matrices. b is not * need as input to this routine, but a sparse change to b is (DeltaB). Only * entries in DeltaB corresponding to columns modified in L are accessed; the * rest must be zero. */ int cholmod_updown_solve ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_updown_solve (int, cholmod_sparse *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_updown_mark: update/downdate, and modify solution to partial Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_updown_solve, except only part of L is used in * the update/downdate of the solution to Lx=b. This routine is an "expert" * routine. It is meant for use in LPDASA only. See cholmod_updown.c for * a description of colmark. */ int cholmod_updown_mark ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ int *colmark, /* int array of size n. See cholmod_updown.c */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_updown_mark (int, cholmod_sparse *, UF_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_updown_mask: update/downdate, for LPDASA */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_updown_mark, except has an additional "mask" * argument. This routine is an "expert" routine. It is meant for use in * LPDASA only. See cholmod_updown.c for a description of mask. */ int cholmod_updown_mask ( /* ---- input ---- */ int update, /* TRUE for update, FALSE for downdate */ cholmod_sparse *C, /* the incoming sparse update */ int *colmark, /* int array of size n. See cholmod_updown.c */ int *mask, /* size n */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_updown_mask (int, cholmod_sparse *, UF_long *, UF_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowadd: add a row to an LDL' factorization (a rank-2 update) */ /* -------------------------------------------------------------------------- */ /* cholmod_rowadd adds a row to the LDL' factorization. It computes the kth * row and kth column of L, and then updates the submatrix L (k+1:n,k+1:n) * accordingly. The kth row and column of L must originally be equal to the * kth row and column of the identity matrix. The kth row/column of L is * computed as the factorization of the kth row/column of the matrix to * factorize, which is provided as a single n-by-1 sparse matrix R. */ int cholmod_rowadd ( /* ---- input ---- */ size_t k, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowadd (size_t, cholmod_sparse *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowadd_solve: add a row, and update solution to Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_rowadd, and also updates the solution to Lx=b * See cholmod_updown for a description of how Lx=b is updated. There is on * additional parameter: bk specifies the new kth entry of b. */ int cholmod_rowadd_solve ( /* ---- input ---- */ size_t k, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ double bk [2], /* kth entry of the right-hand-side b */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowadd_solve (size_t, cholmod_sparse *, double *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowadd_mark: add a row, and update solution to partial Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_rowadd_solve, except only part of L is used in * the update/downdate of the solution to Lx=b. This routine is an "expert" * routine. It is meant for use in LPDASA only. */ int cholmod_rowadd_mark ( /* ---- input ---- */ size_t k, /* row/column index to add */ cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */ double bk [2], /* kth entry of the right hand side, b */ int *colmark, /* int array of size n. See cholmod_updown.c */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowadd_mark (size_t, cholmod_sparse *, double *, UF_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowdel: delete a row from an LDL' factorization (a rank-2 update) */ /* -------------------------------------------------------------------------- */ /* Sets the kth row and column of L to be the kth row and column of the identity * matrix, and updates L(k+1:n,k+1:n) accordingly. To reduce the running time, * the caller can optionally provide the nonzero pattern (or an upper bound) of * kth row of L, as the sparse n-by-1 vector R. Provide R as NULL if you want * CHOLMOD to determine this itself, which is easier for the caller, but takes * a little more time. */ int cholmod_rowdel ( /* ---- input ---- */ size_t k, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowdel (size_t, cholmod_sparse *, cholmod_factor *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowdel_solve: delete a row, and downdate Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_rowdel, but also downdates the solution to Lx=b. * When row/column k of A is "deleted" from the system A*y=b, this can induce * a change to x, in addition to changes arising when L and b are modified. * If this is the case, the kth entry of y is required as input (yk) */ int cholmod_rowdel_solve ( /* ---- input ---- */ size_t k, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ double yk [2], /* kth entry in the solution to A*y=b */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowdel_solve (size_t, cholmod_sparse *, double *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; /* -------------------------------------------------------------------------- */ /* cholmod_rowdel_mark: delete a row, and downdate solution to partial Lx=b */ /* -------------------------------------------------------------------------- */ /* Does the same as cholmod_rowdel_solve, except only part of L is used in * the update/downdate of the solution to Lx=b. This routine is an "expert" * routine. It is meant for use in LPDASA only. */ int cholmod_rowdel_mark ( /* ---- input ---- */ size_t k, /* row/column index to delete */ cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */ double yk [2], /* kth entry in the solution to A*y=b */ int *colmark, /* int array of size n. See cholmod_updown.c */ /* ---- in/out --- */ cholmod_factor *L, /* factor to modify */ cholmod_dense *X, /* solution to Lx=b (size n-by-1) */ cholmod_dense *DeltaB, /* change in b, zero on output */ /* --------------- */ cholmod_common *Common ) ; int cholmod_l_rowdel_mark (size_t, cholmod_sparse *, double *, UF_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ; #endif SuiteSparse/CHOLMOD/Include/cholmod_complexity.h0000644001170100242450000002224410301235304020465 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_complexity.h ========================================= */ /* ========================================================================== */ /* Define operations on pattern, real, complex, and zomplex objects. * * The xtype of an object defines it numerical type. A qttern object has no * numerical values (A->x and A->z are NULL). A real object has no imaginary * qrt (A->x is used, A->z is NULL). A complex object has an imaginary qrt * that is stored interleaved with its real qrt (A->x is of size 2*nz, A->z * is NULL). A zomplex object has both real and imaginary qrts, which are * stored seqrately, as in MATLAB (A->x and A->z are both used). * * XTYPE is CHOLMOD_PATTERN, _REAL, _COMPLEX or _ZOMPLEX, and is the xtype of * the template routine under construction. XTYPE2 is equal to XTYPE, except * if XTYPE is CHOLMOD_PATTERN, in which case XTYPE is CHOLMOD_REAL. * XTYPE and XTYPE2 are defined in cholmod_template.h. */ /* -------------------------------------------------------------------------- */ /* pattern */ /* -------------------------------------------------------------------------- */ #define P_TEMPLATE(name) p_ ## name #define P_ASSIGN2(x,z,p,ax,az,q) x [p] = 1 #define P_PRINT(k,x,z,p) PRK(k, ("1")) /* -------------------------------------------------------------------------- */ /* real */ /* -------------------------------------------------------------------------- */ #define R_TEMPLATE(name) r_ ## name #define R_ASSEMBLE(x,z,p,ax,az,q) x [p] += ax [q] #define R_ASSIGN(x,z,p,ax,az,q) x [p] = ax [q] #define R_ASSIGN_CONJ(x,z,p,ax,az,q) x [p] = ax [q] #define R_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q] #define R_XTYPE_OK(type) ((type) == CHOLMOD_REAL) #define R_IS_NONZERO(ax,az,q) IS_NONZERO (ax [q]) #define R_IS_ZERO(ax,az,q) IS_ZERO (ax [q]) #define R_IS_ONE(ax,az,q) (ax [q] == 1) #define R_MULT(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] * bx [r] #define R_MULTADD(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r] #define R_MULTSUB(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r] #define R_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r] #define R_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r] #define R_ADD(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] + bx [r] #define R_ADD_REAL(x,p, ax,q, bx,r) x [p] = ax [q] + bx [r] #define R_CLEAR(x,z,p) x [p] = 0 #define R_CLEAR_IMAG(x,z,p) #define R_DIV(x,z,p,ax,az,q) x [p] /= ax [q] #define R_LLDOT(x,p, ax,az,q) x [p] -= ax [q] * ax [q] #define R_PRINT(k,x,z,p) PRK(k, ("%24.16e", x [p])) #define R_DIV_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] / bx [r] #define R_MULT_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] * bx [r] #define R_LDLDOT(x,p, ax,az,q, bx,r) x [p] -=(ax[q] * ax[q])/ bx[r] /* -------------------------------------------------------------------------- */ /* complex */ /* -------------------------------------------------------------------------- */ #define C_TEMPLATE(name) c_ ## name #define CT_TEMPLATE(name) ct_ ## name #define C_ASSEMBLE(x,z,p,ax,az,q) \ x [2*(p) ] += ax [2*(q) ] ; \ x [2*(p)+1] += ax [2*(q)+1] #define C_ASSIGN(x,z,p,ax,az,q) \ x [2*(p) ] = ax [2*(q) ] ; \ x [2*(p)+1] = ax [2*(q)+1] #define C_ASSIGN_REAL(x,p,ax,q) x [2*(p)] = ax [2*(q)] #define C_ASSIGN_CONJ(x,z,p,ax,az,q) \ x [2*(p) ] = ax [2*(q) ] ; \ x [2*(p)+1] = -ax [2*(q)+1] #define C_XTYPE_OK(type) ((type) == CHOLMOD_COMPLEX) #define C_IS_NONZERO(ax,az,q) \ (IS_NONZERO (ax [2*(q)]) || IS_NONZERO (ax [2*(q)+1])) #define C_IS_ZERO(ax,az,q) \ (IS_ZERO (ax [2*(q)]) && IS_ZERO (ax [2*(q)+1])) #define C_IS_ONE(ax,az,q) \ ((ax [2*(q)] == 1) && IS_ZERO (ax [2*(q)+1])) #define C_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (ax [2*(q)+1])) #define C_MULT(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] #define C_MULTADD(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ x [2*(p)+1] += ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] #define C_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ x [2*(p)+1] -= ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] /* s += conj(a)*b */ #define C_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \ x [2*(p)+1] += (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] /* s -= conj(a)*b */ #define C_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \ x [2*(p)+1] -= (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] #define C_ADD(x,z,p, ax,az,q, bx,bz,r) \ x [2*(p) ] = ax [2*(q) ] + bx [2*(r) ] ; \ x [2*(p)+1] = ax [2*(q)+1] + bx [2*(r)+1] #define C_ADD_REAL(x,p, ax,q, bx,r) \ x [2*(p)] = ax [2*(q)] + bx [2*(r)] #define C_CLEAR(x,z,p) \ x [2*(p) ] = 0 ; \ x [2*(p)+1] = 0 #define C_CLEAR_IMAG(x,z,p) \ x [2*(p)+1] = 0 /* s = s / a */ #define C_DIV(x,z,p,ax,az,q) \ Common->complex_divide ( \ x [2*(p)], x [2*(p)+1], \ ax [2*(q)], ax [2*(q)+1], \ &x [2*(p)], &x [2*(p)+1]) /* s -= conj(a)*a ; note that the result of conj(a)*a is real */ #define C_LLDOT(x,p, ax,az,q) \ x [2*(p)] -= ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1] #define C_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [2*(p)], x [2*(p)+1])) #define C_DIV_REAL(x,z,p, ax,az,q, bx,r) \ x [2*(p) ] = ax [2*(q) ] / bx [2*(r)] ; \ x [2*(p)+1] = ax [2*(q)+1] / bx [2*(r)] #define C_MULT_REAL(x,z,p, ax,az,q, bx,r) \ x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] ; \ x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)] /* s -= conj(a)*a/t */ #define C_LDLDOT(x,p, ax,az,q, bx,r) \ x [2*(p)] -= (ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]) / bx[r] /* -------------------------------------------------------------------------- */ /* zomplex */ /* -------------------------------------------------------------------------- */ #define Z_TEMPLATE(name) z_ ## name #define ZT_TEMPLATE(name) zt_ ## name #define Z_ASSEMBLE(x,z,p,ax,az,q) \ x [p] += ax [q] ; \ z [p] += az [q] #define Z_ASSIGN(x,z,p,ax,az,q) \ x [p] = ax [q] ; \ z [p] = az [q] #define Z_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q] #define Z_ASSIGN_CONJ(x,z,p,ax,az,q) \ x [p] = ax [q] ; \ z [p] = -az [q] #define Z_XTYPE_OK(type) ((type) == CHOLMOD_ZOMPLEX) #define Z_IS_NONZERO(ax,az,q) \ (IS_NONZERO (ax [q]) || IS_NONZERO (az [q])) #define Z_IS_ZERO(ax,az,q) \ (IS_ZERO (ax [q]) && IS_ZERO (az [q])) #define Z_IS_ONE(ax,az,q) \ ((ax [q] == 1) && IS_ZERO (az [q])) #define Z_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (az [q])) #define Z_MULT(x,z,p, ax,az,q, bx,bz,r) \ x [p] = ax [q] * bx [r] - az [q] * bz [r] ; \ z [p] = az [q] * bx [r] + ax [q] * bz [r] #define Z_MULTADD(x,z,p, ax,az,q, bx,bz,r) \ x [p] += ax [q] * bx [r] - az [q] * bz [r] ; \ z [p] += az [q] * bx [r] + ax [q] * bz [r] #define Z_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \ x [p] -= ax [q] * bx [r] - az [q] * bz [r] ; \ z [p] -= az [q] * bx [r] + ax [q] * bz [r] #define Z_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \ x [p] += ax [q] * bx [r] + az [q] * bz [r] ; \ z [p] += (-az [q]) * bx [r] + ax [q] * bz [r] #define Z_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \ x [p] -= ax [q] * bx [r] + az [q] * bz [r] ; \ z [p] -= (-az [q]) * bx [r] + ax [q] * bz [r] #define Z_ADD(x,z,p, ax,az,q, bx,bz,r) \ x [p] = ax [q] + bx [r] ; \ z [p] = az [q] + bz [r] #define Z_ADD_REAL(x,p, ax,q, bx,r) \ x [p] = ax [q] + bx [r] #define Z_CLEAR(x,z,p) \ x [p] = 0 ; \ z [p] = 0 #define Z_CLEAR_IMAG(x,z,p) \ z [p] = 0 /* s = s/a */ #define Z_DIV(x,z,p,ax,az,q) \ Common->complex_divide (x [p], z [p], ax [q], az [q], &x [p], &z [p]) /* s -= conj(a)*a ; note that the result of conj(a)*a is real */ #define Z_LLDOT(x,p, ax,az,q) \ x [p] -= ax [q] * ax [q] + az [q] * az [q] #define Z_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [p], z [p])) #define Z_DIV_REAL(x,z,p, ax,az,q, bx,r) \ x [p] = ax [q] / bx [r] ; \ z [p] = az [q] / bx [r] #define Z_MULT_REAL(x,z,p, ax,az,q, bx,r) \ x [p] = ax [q] * bx [r] ; \ z [p] = az [q] * bx [r] /* s -= conj(a)*a/t */ #define Z_LDLDOT(x,p, ax,az,q, bx,r) \ x [p] -= (ax [q] * ax [q] + az [q] * az [q]) / bx[r] /* -------------------------------------------------------------------------- */ /* all classes */ /* -------------------------------------------------------------------------- */ /* Check if A->xtype and the two arrays A->x and A->z are valid. Set status to * invalid, unless status is already "out of memory". A can be a sparse matrix, * dense matrix, factor, or triplet. */ #define RETURN_IF_XTYPE_INVALID(A,xtype1,xtype2,result) \ { \ if ((A)->xtype < (xtype1) || (A)->xtype > (xtype2) || \ ((A)->xtype != CHOLMOD_PATTERN && ((A)->x) == NULL) || \ ((A)->xtype == CHOLMOD_ZOMPLEX && ((A)->z) == NULL)) \ { \ if (Common->status != CHOLMOD_OUT_OF_MEMORY) \ { \ ERROR (CHOLMOD_INVALID, "invalid xtype") ; \ } \ return (result) ; \ } \ } SuiteSparse/CHOLMOD/Include/cholmod_config.h0000644001170100242450000000613210537777527017570 0ustar davisfac/* ========================================================================== */ /* === Include/cholmod_config.h ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Include/cholmod_config.h. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * CHOLMOD/Include/cholmod_config.h is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD configuration file, for inclusion in user programs. * * You do not have to edit any CHOLMOD files to compile and install CHOLMOD. * However, if you do not use all of CHOLMOD's modules, you need to compile * with the appropriate flag, or edit this file to add the appropriate #define. * * If you wish to use CHOLMOD under the GNU LGPL license only, then you must * compile CHOLMOD with -DNMATRIXOPS -DNSUPERNODAL and -DNMODIFY. This can * be done using just -DNGPL. * * Compiler flags for CHOLMOD: * * -DNCHECK do not include the Check module. License: GNU LGPL * -DNCHOLESKY do not include the Cholesky module. License: GNU LGPL * -DNPARTITION do not include the Partition module. License: GNU LGPL * * -DNGPL do not include any GNU GPL Modules in the CHOLMOD library. * -DNMATRIXOPS do not include the MatrixOps module. License: GNU GPL * -DNMODIFY do not include the Modify module. License: GNU GPL * -DNSUPERNODAL do not include the Supernodal module. License: GNU GPL * * -DNPRINT do not print anything * * -D'LONGBLAS=long' or -DLONGBLAS='long long' defines the integers used by * LAPACK and the BLAS. Use LONGBLAS=long on Solaris to use * the 64-bit Sun Performance BLAS in cholmod_l_* routines. * You may need to use -D'LONGBLAS=long long' on the SGI * (this is not tested). * * -DNSUNPERF for Solaris only. If defined, do not use the Sun * Performance Library. The default is to use SunPerf. * You must compile CHOLMOD with -xlic_lib=sunperf. * * The Core Module (License GNU LGPL) is always included in the CHOLMOD library. */ #ifndef CHOLMOD_CONFIG_H #define CHOLMOD_CONFIG_H /* Use the compiler flag, or uncomment the definition(s), if you want to use * one or more non-default installation options: */ /* #define NCHECK #define NCHOLESKY #define NPARTITION #define NGPL #define NMATRIXOPS #define NMODIFY #define NSUPERNODAL #define NPRINT #define LONGBLAS long #define LONGBLAS long long #define NSUNPERF */ /* -------------------------------------------------------------------------- */ /* if NGPL is defined, disable all GNU GPL Modules */ /* -------------------------------------------------------------------------- */ #ifdef NGPL #define NMATRIXOPS #define NMODIFY #define NSUPERNODAL #endif #endif SuiteSparse/CHOLMOD/Valgrind/0000755001170100242450000000000010620203650014574 5ustar davisfacSuiteSparse/CHOLMOD/Valgrind/tmp/0000755001170100242450000000000010533706431015404 5ustar davisfacSuiteSparse/CHOLMOD/Valgrind/suppress0000644001170100242450000000007610301462236016411 0ustar davisfac{ complexity Memcheck:Value8 fun:change_complexity } SuiteSparse/CHOLMOD/Valgrind/Make.inc0000644001170100242450000000021110533351143016142 0ustar davisfac# valgrind options V = valgrind --suppressions=suppress --quiet # covall is not used COVER = # no test coverage needed CFLAGS = -O0 -g SuiteSparse/CHOLMOD/Valgrind/Makefile0000644001170100242450000000137310533351241016243 0ustar davisfac doall: links go links: touch links ln -s ../Tcov/amdtest.c ln -s ../Tcov/aug.c ln -s ../Tcov/camdtest.c ln -s ../Tcov/cctest.c ln -s ../Tcov/cm.c ln -s ../Tcov/cm.h ln -s ../Tcov/cmread.c ln -s ../Tcov/ctest.c ln -s ../Tcov/huge.c ln -s ../Tcov/leak.c ln -s ../Tcov/lpdemo.c ln -s ../Tcov/memory.c ln -s ../Tcov/null2.c ln -s ../Tcov/null.c ln -s ../Tcov/raw_factor.c ln -s ../Tcov/solve.c ln -s ../Tcov/test_ops.c ln -s ../Tcov/unpack.c ln -s ../Tcov/comments.txt ln -s ../Tcov/Matrix include ../Tcov/Makefile dopurge: distclean - $(RM) amdtest.c aug.c camdtest.c cctest.c cm.c cm.h cmread.c \ ctest.c huge.c leak.c lpdemo.c memory.c null2.c null.c \ raw_factor.c solve.c test_ops.c unpack.c comments.txt \ links Matrix SuiteSparse/CHOLMOD/Valgrind/License.txt0000644001170100242450000000204410540000314016710 0ustar davisfacCHOLMOD/Valgrind Module. Copyright (C) 2005-2006, Timothy A. Davis. CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Valgrind module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/CHOLMOD/Valgrind/README.txt0000644001170100242450000000143110533346161016301 0ustar davisfacTorture test for CHOLMOD, using valgrind. Requires Linux. Type "make" to compile and run CHOLMOMD with valgrind. Every line of CHOLMOD will be exercised, and its results checked. The line "All tests passed" should appear in each output file (*.grind). Valgrind should report no errors, and no malloc'd blocks should be in use at exit. Note that many, many error messages will appear in the test output itself (tmp/*.out), because all of CHOLMOD's error handling is checked as well. These errors are expected. To remove all but the source files and output files from this directory, type "make clean". To remove all but the files in the original distribution and the symbolic links, type "make distclean". To remove all but the files in the original distribution, type "make dopurge". SuiteSparse/CHOLMOD/Valgrind/gpl.txt0000644001170100242450000004313310253411166016130 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/CHOLMOD/README.txt0000644001170100242450000001024610711425410014530 0ustar davisfacCHOLMOD: a sparse CHOLesky MODification package Version 1.6, Nov 1, 2007. Copyright (c) 2005-2007. ----------------------------------------------- CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or AA', updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx=b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft Windows and many versions of Unix and Linux. Some Modules of CHOLMOD are copyrighted by the University of Florida (the Core and Partition Modules). The rest are copyrighted by the authors: Timothy A. Davis (all of them), and William W. Hager (the Modify Module). CHOLMOD relies on several other packages: AMD, CAMD, COLAMD, CCOLAMD, UFconfig, METIS, the BLAS, and LAPACK. All but METIS, the BLAS, and LAPACK are part of SuiteSparse. AMD is authored by T. Davis, Iain Duff, and Patrick Amestoy. COLAMD is authored by T. Davis and Stefan Larimore, with algorithmic design in collaboration with John Gilbert and Esmond Ng. CCOLAMD is authored by T. Davis and Siva Rajamanickam. CAMD is authored by T. Davis and Y. Chen. LAPACK and the BLAS are authored by Jack Dongarra and many others. LAPACK is available at http://www.netlib.org/lapack METIS is authored by George Karypis, Univ. of Minnesota. Its use in CHOLMOD is optional. See http://www-users.cs.umn.edu/~karypis/metis. Place a copy of the metis-4.0 directory in the same directory that contains the CHOLMOD, AMD, COLAMD, and CCOLAMD directories prior to compiling with "make". If you do not wish to use METIS, you must edit UFconfig and change the line: CHOLMOD_CONFIG = to CHOLMOD_CONFIG = -DNPARTITION The CHOLMOD, AMD, COLAMD, CCOLAMD, and UFconfig directories must all reside in a common parent directory. To compile all these libraries, edit UFconfig/UFconfig.mk to reflect your environment (C compiler, location of the BLAS, and so on) and then type "make" in either the CHOLMOD directory or in the parent directory of CHOLMOD. See each package for more details on how to compile them. For use in MATLAB (on any system, including Windows): start MATLAB, cd to the CHOLMOD/MATLAB directory, and type cholmod_make in the MATLAB Command Window. This is the best way to compile CHOLMOD for MATLAB; it provides a workaround for a METIS design feature, in which METIS terminates your program (and thus MATLAB) if it runs out of memory. Using cholmod_make also ensures your mexFunctions are compiled with -fexceptions, so that exceptions are handled properly (when hitting control-C in the MATLAB command window, for example). If you have MATLAB 7.2 or earlier and use "make mex", you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command (or just use cholmod_make.m inside MATLAB). On the Pentium, do NOT use the Intel MKL BLAS prior to MKL Version 8.0 with CHOLMOD. Older versions (prior to 8.0) have a bug in dgemm when computing A*B'. The bug generates a NaN result, when the inputs are well-defined. Use the Goto BLAS or the MKL v8.0 BLAS instead. The Goto BLAS is faster and more reliable. See http://www.tacc.utexas.edu/~kgoto/ or http://www.cs.utexas.edu/users/flame/goto/. Sadly, the Intel MKL BLAS 7.x is the default for MATLAB 7.0.4. See http://www.mathworks.com/support/bugreports/details.html?rp=252103 for more details. To workaround this problem on Linux, set environment variable BLAS_VERSION to libmkl_p3.so:libguide.so. On Windows, set environment variable BLAS_VERSION to mkl_p3.dll. Better yet, get MATLAB 7sp3 (MATLAB 7.1) or later. Acknowledgements: this work was supported in part by the National Science Foundation (NFS CCR-0203270 and DMS-9803599), and a grant from Sandia National Laboratories (Dept. of Energy) which supported the development of CHOLMOD's Partition Module. SuiteSparse/CHOLMOD/Partition/0000755001170100242450000000000010677243363015020 5ustar davisfacSuiteSparse/CHOLMOD/Partition/cholmod_nesdis.c0000644001170100242450000020702110677243325020156 0ustar davisfac/* ========================================================================== */ /* === Partition/cholmod_nesdis ============================================= */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Partition Module. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Partition Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD nested dissection and graph partitioning. * * cholmod_bisect: * * Finds a set of nodes that partitions the graph into two parts. * Compresses the graph first. Requires METIS. * * cholmod_nested_dissection: * * Nested dissection, using its own compression and connected-commponents * algorithms, an external graph partitioner (METIS), and a constrained * minimum degree ordering algorithm (CCOLAMD or CSYMAMD). Typically * gives better orderings than METIS_NodeND (about 5% to 10% fewer * nonzeros in L). * * cholmod_collapse_septree: * * Prune the separator tree returned by cholmod_nested_dissection. * * This file contains several routines private to this file: * * partition compress and partition a graph * clear_flag clear Common->Flag, but do not modify negative entries * find_components find the connected components of a graph * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NPARTITION #include "cholmod_internal.h" #include "cholmod_partition.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === partition ============================================================ */ /* ========================================================================== */ /* Find a set of nodes that partition a graph. The graph must be symmetric * with no diagonal entries. To compress the graph first, compress is TRUE * and on input Hash [j] holds the hash key for node j, which must be in the * range 0 to csize-1. The input graph (Cp, Ci) is destroyed. Cew is all 1's * on input and output. Cnw [j] > 0 is the initial weight of node j. On * output, Cnw [i] = 0 if node i is absorbed into j and the original weight * Cnw [i] is added to Cnw [j]. If compress is FALSE, the graph is not * compressed and Cnw and Hash are unmodified. The partition itself is held in * the output array Part of size n. Part [j] is 0, 1, or 2, depending on * whether node j is in the left part of the graph, the right part, or the * separator, respectively. Note that the input graph need not be connected, * and the output subgraphs (the three parts) may also be unconnected. * * Returns the size of the separator, in terms of the sum of the weights of * the nodes. It is guaranteed to be between 1 and the total weight of all * the nodes. If it is of size less than the total weight, then both the left * and right parts are guaranteed to be non-empty (this guarantee depends on * cholmod_metis_bisector). */ static UF_long partition /* size of separator or -1 if failure */ ( /* inputs, not modified on output */ #ifndef NDEBUG Int csize, /* upper bound on # of edges in the graph; * csize >= MAX (n, nnz(C)) must hold. */ #endif int compress, /* if TRUE the compress the graph first */ /* input/output */ Int Hash [ ], /* Hash [i] = hash >= 0 is the hash function for node * i on input. On output, Hash [i] = FLIP (j) if node * i is absorbed into j. Hash [i] >= 0 if i has not * been absorbed. */ /* input graph, compressed graph of cn nodes on output */ cholmod_sparse *C, /* input/output */ Int Cnw [ ], /* size n. Cnw [j] > 0 is the weight of node j on * input. On output, if node i is absorbed into * node j, then Cnw [i] = 0 and the original weight of * node i is added to Cnw [j]. The sum of Cnw [0..n-1] * is not modified. */ /* workspace */ Int Cew [ ], /* size csize, all 1's on input and output */ /* more workspace, undefined on input and output */ Int Cmap [ ], /* size n (i/i/l) */ /* output */ Int Part [ ], /* size n, Part [j] = 0, 1, or 2. */ cholmod_common *Common ) { Int n, hash, head, i, j, k, p, pend, ilen, ilast, pi, piend, jlen, ok, cn, csep, pdest, nodes_pruned, nz, total_weight, jscattered ; Int *Cp, *Ci, *Next, *Hhead ; #ifndef NDEBUG Int cnt, pruned ; double work = 0, goodwork = 0 ; #endif /* ---------------------------------------------------------------------- */ /* quick return for small or empty graphs */ /* ---------------------------------------------------------------------- */ n = C->nrow ; Cp = C->p ; Ci = C->i ; nz = Cp [n] ; PRINT2 (("Partition start, n "ID" nz "ID"\n", n, nz)) ; total_weight = 0 ; for (j = 0 ; j < n ; j++) { ASSERT (Cnw [j] > 0) ; total_weight += Cnw [j] ; } if (n <= 2) { /* very small graph */ for (j = 0 ; j < n ; j++) { Part [j] = 2 ; } return (total_weight) ; } else if (nz <= 0) { /* no edges, this is easy */ PRINT2 (("diagonal matrix\n")) ; k = n/2 ; for (j = 0 ; j < k ; j++) { Part [j] = 0 ; } for ( ; j < n ; j++) { Part [j] = 1 ; } /* ensure the separator is not empty (required by nested dissection) */ Part [n-1] = 2 ; return (Cnw [n-1]) ; } #ifndef NDEBUG ASSERT (n > 1 && nz > 0) ; PRINT2 (("original graph:\n")) ; for (j = 0 ; j < n ; j++) { PRINT2 ((""ID": ", j)) ; for (p = Cp [j] ; p < Cp [j+1] ; p++) { i = Ci [p] ; PRINT3 ((""ID" ", i)) ; ASSERT (i >= 0 && i < n && i != j) ; } PRINT2 (("hash: "ID"\n", Hash [j])) ; } DEBUG (for (p = 0 ; p < csize ; p++) ASSERT (Cew [p] == 1)) ; #endif nodes_pruned = 0 ; if (compress) { /* ------------------------------------------------------------------ */ /* get workspace */ /* ------------------------------------------------------------------ */ Next = Part ; /* use Part as workspace for Next [ */ Hhead = Cew ; /* use Cew as workspace for Hhead [ */ /* ------------------------------------------------------------------ */ /* create the hash buckets */ /* ------------------------------------------------------------------ */ for (j = 0 ; j < n ; j++) { /* get the hash key for node j */ hash = Hash [j] ; ASSERT (hash >= 0 && hash < csize) ; head = Hhead [hash] ; if (head > EMPTY) { /* hash bucket for this hash key is empty. */ head = EMPTY ; } else { /* hash bucket for this hash key is not empty. get old head */ head = FLIP (head) ; ASSERT (head >= 0 && head < n) ; } /* node j becomes the new head of the hash bucket. FLIP it so that * we can tell the difference between an empty or non-empty hash * bucket. */ Hhead [hash] = FLIP (j) ; Next [j] = head ; ASSERT (head >= EMPTY && head < n) ; } #ifndef NDEBUG for (cnt = 0, k = 0 ; k < n ; k++) { ASSERT (Hash [k] >= 0 && Hash [k] < csize) ; /* k is alive */ hash = Hash [k] ; ASSERT (hash >= 0 && hash < csize) ; head = Hhead [hash] ; ASSERT (head < EMPTY) ; /* hash bucket not empty */ j = FLIP (head) ; ASSERT (j >= 0 && j < n) ; if (j == k) { PRINT2 (("hash "ID": ", hash)) ; for ( ; j != EMPTY ; j = Next [j]) { PRINT3 ((" "ID"", j)) ; ASSERT (j >= 0 && j < n) ; ASSERT (Hash [j] == hash) ; cnt++ ; ASSERT (cnt <= n) ; } PRINT2 (("\n")) ; } } ASSERT (cnt == n) ; #endif /* ------------------------------------------------------------------ */ /* scan the non-empty hash buckets for indistinguishable nodes */ /* ------------------------------------------------------------------ */ /* If there are no hash collisions and no compression occurs, this takes * O(n) time. If no hash collisions, but some nodes are removed, this * takes time O(n+e) where e is the sum of the degress of the nodes * that are removed. Even with many hash collisions (a rare case), * this algorithm has never been observed to perform more than nnz(A) * useless work. * * Cmap is used as workspace to mark nodes of the graph, [ * for comparing the nonzero patterns of two nodes i and j. */ #define Cmap_MARK(i) Cmap [i] = j #define Cmap_MARKED(i) (Cmap [i] == j) for (i = 0 ; i < n ; i++) { Cmap [i] = EMPTY ; } for (k = 0 ; k < n ; k++) { hash = Hash [k] ; ASSERT (hash >= FLIP (n-1) && hash < csize) ; if (hash < 0) { /* node k has already been absorbed into some other node */ ASSERT (FLIP (Hash [k]) >= 0 && FLIP (Hash [k] < n)) ; continue ; } head = Hhead [hash] ; ASSERT (head < EMPTY || head == 1) ; if (head == 1) { /* hash bucket is already empty */ continue ; } PRINT2 (("\n--------------------hash "ID":\n", hash)) ; for (j = FLIP (head) ; j != EMPTY && Next[j] > EMPTY ; j = Next [j]) { /* compare j with all nodes i following it in hash bucket */ ASSERT (j >= 0 && j < n && Hash [j] == hash) ; p = Cp [j] ; pend = Cp [j+1] ; jlen = pend - p ; jscattered = FALSE ; DEBUG (for (i = 0 ; i < n ; i++) ASSERT (!Cmap_MARKED (i))) ; DEBUG (pruned = FALSE) ; ilast = j ; for (i = Next [j] ; i != EMPTY ; i = Next [i]) { ASSERT (i >= 0 && i < n && Hash [i] == hash && i != j) ; pi = Cp [i] ; piend = Cp [i+1] ; ilen = piend - pi ; DEBUG (work++) ; if (ilen != jlen) { /* i and j have different degrees */ ilast = i ; continue ; } /* scatter the pattern of node j, if not already */ if (!jscattered) { Cmap_MARK (j) ; for ( ; p < pend ; p++) { Cmap_MARK (Ci [p]) ; } jscattered = TRUE ; DEBUG (work += jlen) ; } for (ok = Cmap_MARKED (i) ; ok && pi < piend ; pi++) { ok = Cmap_MARKED (Ci [pi]) ; DEBUG (work++) ; } if (ok) { /* found it. kill node i and merge it into j */ PRINT2 (("found "ID" absorbed into "ID"\n", i, j)) ; Hash [i] = FLIP (j) ; Cnw [j] += Cnw [i] ; Cnw [i] = 0 ; ASSERT (ilast != i && ilast >= 0 && ilast < n) ; Next [ilast] = Next [i] ; /* delete i from bucket */ nodes_pruned++ ; DEBUG (goodwork += (ilen+1)) ; DEBUG (pruned = TRUE) ; } else { /* i and j are different */ ilast = i ; } } DEBUG (if (pruned) goodwork += jlen) ; } /* empty the hash bucket, restoring Cew */ Hhead [hash] = 1 ; } DEBUG (if (((work - goodwork) / (double) nz) > 0.20) PRINT0 (( "work %12g good %12g nz %12g (wasted work/nz: %6.2f )\n", work, goodwork, (double) nz, (work - goodwork) / ((double) nz)))) ; /* All hash buckets now empty. Cmap no longer needed as workspace. ] * Cew no longer needed as Hhead; Cew is now restored to all ones. ] * Part no longer needed as workspace for Next. ] */ } /* Edge weights are all one, node weights reflect node absorption */ DEBUG (for (p = 0 ; p < csize ; p++) ASSERT (Cew [p] == 1)) ; DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) cnt += Cnw [j]) ; ASSERT (cnt == total_weight) ; /* ---------------------------------------------------------------------- */ /* compress and partition the graph */ /* ---------------------------------------------------------------------- */ if (nodes_pruned == 0) { /* ------------------------------------------------------------------ */ /* no pruning done at all. Do not create the compressed graph */ /* ------------------------------------------------------------------ */ /* FUTURE WORK: could call CHACO, SCOTCH, ... here too */ csep = CHOLMOD(metis_bisector) (C, Cnw, Cew, Part, Common) ; } else if (nodes_pruned == n-1) { /* ------------------------------------------------------------------ */ /* only one node left. This is a dense graph */ /* ------------------------------------------------------------------ */ PRINT2 (("completely dense graph\n")) ; csep = total_weight ; for (j = 0 ; j < n ; j++) { Part [j] = 2 ; } } else { /* ------------------------------------------------------------------ */ /* compress the graph and partition the compressed graph */ /* ------------------------------------------------------------------ */ /* ------------------------------------------------------------------ */ /* create the map from the uncompressed graph to the compressed graph */ /* ------------------------------------------------------------------ */ /* Cmap [j] = k if node j is alive and the kth node of compressed graph. * The mapping is done monotonically (that is, k <= j) to simplify the * uncompression later on. Cmap [j] = EMPTY if node j is dead. */ for (j = 0 ; j < n ; j++) { Cmap [j] = EMPTY ; } k = 0 ; for (j = 0 ; j < n ; j++) { if (Cnw [j] > 0) { ASSERT (k <= j) ; Cmap [j] = k++ ; } } cn = k ; /* # of nodes in compressed graph */ PRINT2 (("compressed graph from "ID" to "ID" nodes\n", n, cn)) ; ASSERT (cn > 1 && cn == n - nodes_pruned) ; /* ------------------------------------------------------------------ */ /* create the compressed graph */ /* ------------------------------------------------------------------ */ k = 0 ; pdest = 0 ; for (j = 0 ; j < n ; j++) { if (Cnw [j] > 0) { /* node j in the full graph is node k in the compressed graph */ ASSERT (k <= j && Cmap [j] == k) ; p = Cp [j] ; pend = Cp [j+1] ; Cp [k] = pdest ; Cnw [k] = Cnw [j] ; for ( ; p < pend ; p++) { /* prune dead nodes, and remap to new node numbering */ i = Ci [p] ; ASSERT (i >= 0 && i < n && i != j) ; i = Cmap [i] ; ASSERT (i >= EMPTY && i < cn && i != k) ; if (i > EMPTY) { ASSERT (pdest <= p) ; Ci [pdest++] = i ; } } k++ ; } } Cp [cn] = pdest ; C->nrow = cn ; C->ncol = cn ; /* affects mem stats unless restored when C free'd */ #ifndef NDEBUG PRINT2 (("pruned graph ("ID"/"ID") nodes, ("ID"/"ID") edges\n", cn, n, pdest, nz)) ; PRINT2 (("compressed graph:\n")) ; for (cnt = 0, j = 0 ; j < cn ; j++) { PRINT2 ((""ID": ", j)) ; for (p = Cp [j] ; p < Cp [j+1] ; p++) { i = Ci [p] ; PRINT3 ((""ID" ", i)) ; ASSERT (i >= 0 && i < cn && i != j) ; } PRINT2 (("weight: "ID"\n", Cnw [j])) ; ASSERT (Cnw [j] > 0) ; cnt += Cnw [j] ; } ASSERT (cnt == total_weight) ; for (j = 0 ; j < n ; j++) PRINT2 (("Cmap ["ID"] = "ID"\n", j, Cmap[j])); ASSERT (k == cn) ; #endif /* ------------------------------------------------------------------ */ /* find the separator of the compressed graph */ /* ------------------------------------------------------------------ */ /* FUTURE WORK: could call CHACO, SCOTCH, ... here too */ csep = CHOLMOD(metis_bisector) (C, Cnw, Cew, Part, Common) ; if (csep < 0) { /* failed */ return (-1) ; } PRINT2 (("Part: ")) ; DEBUG (for (j = 0 ; j < cn ; j++) PRINT2 ((""ID" ", Part [j]))) ; PRINT2 (("\n")) ; /* Cp and Ci no longer needed */ /* ------------------------------------------------------------------ */ /* find the separator of the uncompressed graph */ /* ------------------------------------------------------------------ */ /* expand the separator to live nodes in the uncompressed graph */ for (j = n-1 ; j >= 0 ; j--) { /* do this in reverse order so that Cnw can be expanded in place */ k = Cmap [j] ; ASSERT (k >= EMPTY && k < n) ; if (k > EMPTY) { /* node k in compressed graph and is node j in full graph */ ASSERT (k <= j) ; ASSERT (Hash [j] >= EMPTY) ; Part [j] = Part [k] ; Cnw [j] = Cnw [k] ; } else { /* node j is a dead node */ Cnw [j] = 0 ; DEBUG (Part [j] = EMPTY) ; ASSERT (Hash [j] < EMPTY) ; } } /* find the components for the dead nodes */ for (i = 0 ; i < n ; i++) { if (Hash [i] < EMPTY) { /* node i has been absorbed into node j */ j = FLIP (Hash [i]) ; ASSERT (Part [i] == EMPTY && j >= 0 && j < n && Cnw [i] == 0) ; Part [i] = Part [j] ; } ASSERT (Part [i] >= 0 && Part [i] <= 2) ; } #ifndef NDEBUG PRINT2 (("Part: ")) ; for (cnt = 0, j = 0 ; j < n ; j++) { ASSERT (Part [j] != EMPTY) ; PRINT2 ((""ID" ", Part [j])) ; if (Part [j] == 2) cnt += Cnw [j] ; } PRINT2 (("\n")) ; PRINT2 (("csep "ID" "ID"\n", cnt, csep)) ; ASSERT (cnt == csep) ; for (cnt = 0, j = 0 ; j < n ; j++) cnt += Cnw [j] ; ASSERT (cnt == total_weight) ; #endif } /* ---------------------------------------------------------------------- */ /* return the separator (or -1 if error) */ /* ---------------------------------------------------------------------- */ PRINT2 (("Partition done, n "ID" csep "ID"\n", n, csep)) ; return (csep) ; } /* ========================================================================== */ /* === clear_flag =========================================================== */ /* ========================================================================== */ /* A node j has been removed from the graph if Flag [j] < EMPTY. * If Flag [j] >= EMPTY && Flag [j] < mark, then node j is alive but unmarked. * Flag [j] == mark means that node j is alive and marked. Incrementing mark * means that all nodes are either (still) dead, or live but unmarked. * * If Map is NULL, then on output, Common->mark < Common->Flag [i] for all i * from 0 to Common->nrow. This is the same output condition as * cholmod_clear_flag, except that this routine maintains the Flag [i] < EMPTY * condition as well, if that condition was true on input. * * If Map is non-NULL, then on output, Common->mark < Common->Flag [i] for all * i in the set Map [0..cn-1]. * * workspace: Flag (nrow) */ static UF_long clear_flag (Int *Map, Int cn, cholmod_common *Common) { Int nrow, i ; Int *Flag ; PRINT2 (("old mark %ld\n", Common->mark)) ; Common->mark++ ; PRINT2 (("new mark %ld\n", Common->mark)) ; if (Common->mark <= 0) { nrow = Common->nrow ; Flag = Common->Flag ; if (Map != NULL) { for (i = 0 ; i < cn ; i++) { /* if Flag [Map [i]] < EMPTY, leave it alone */ if (Flag [Map [i]] >= EMPTY) { Flag [Map [i]] = EMPTY ; } } /* now Flag [Map [i]] <= EMPTY for all i */ } else { for (i = 0 ; i < nrow ; i++) { /* if Flag [i] < EMPTY, leave it alone */ if (Flag [i] >= EMPTY) { Flag [i] = EMPTY ; } } /* now Flag [i] <= EMPTY for all i */ } Common->mark = 0 ; } return (Common->mark) ; } /* ========================================================================== */ /* === find_components ====================================================== */ /* ========================================================================== */ /* Find all connected components of the current subgraph C. The subgraph C * consists of the nodes of B that appear in the set Map [0..cn-1]. If Map * is NULL, then it is assumed to be the identity mapping * (Map [0..cn-1] = 0..cn-1). * * A node j does not appear in B if it has been ordered (Flag [j] < EMPTY, * which means that j has been ordered and is "deleted" from B). * * If the size of a component is large, it is placed on the component stack, * Cstack. Otherwise, its nodes are ordered and it is not placed on the Cstack. * * A component S is defined by a "representative node" (repnode for short) * called the snode, which is one of the nodes in the subgraph. Likewise, the * subgraph C is defined by its repnode, called cnode. * * If Part is not NULL on input, then Part [i] determines how the components * are placed on the stack. Components containing nodes i with Part [i] == 0 * are placed first, followed by components with Part [i] == 1. * * The first node placed in each of the two parts is flipped when placed in * the Cstack. This allows the components of the two parts to be found simply * by traversing the Cstack. * * workspace: Flag (nrow) */ static void find_components ( /* inputs, not modified on output */ cholmod_sparse *B, Int Map [ ], /* size n, only Map [0..cn-1] used */ Int cn, /* # of nodes in C */ Int cnode, /* root node of component C, or EMPTY if C is the * entire graph B */ Int Part [ ], /* size cn, optional */ /* input/output */ Int Bnz [ ], /* size n. Bnz [j] = # nonzeros in column j of B. * Reduce since B is pruned of dead nodes. */ Int CParent [ ], /* CParent [i] = j if component with repnode j is * the parent of the component with repnode i. * CParent [i] = EMPTY if the component with * repnode i is a root of the separator tree. * CParent [i] is -2 if i is not a repnode. */ Int Cstack [ ], /* component stack for nested dissection */ Int *top, /* Cstack [0..top] contains root nodes of the * the components currently in the stack */ /* workspace, undefined on input and output: */ Int Queue [ ], /* size n, for breadth-first search */ cholmod_common *Common ) { Int n, mark, cj, j, sj, sn, p, i, snode, pstart, pdest, pend, nd_components, part, first, save_mark ; Int *Bp, *Bi, *Flag ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ PRINT2 (("find components: cn %d\n", cn)) ; Flag = Common->Flag ; /* size n */ /* force initialization of Flag [Map [0..cn-1]] */ save_mark = Common->mark ; /* save the current mark */ Common->mark = EMPTY ; /* clear Flag; preserve Flag [Map [i]] if Flag [Map [i]] already < EMPTY */ /* this takes O(cn) time */ mark = clear_flag (Map, cn, Common) ; Bp = B->p ; Bi = B->i ; n = B->nrow ; ASSERT (cnode >= EMPTY && cnode < n) ; ASSERT (IMPLIES (cnode >= 0, Flag [cnode] < EMPTY)) ; /* get ordering parameters */ nd_components = Common->method [Common->current].nd_components ; /* ---------------------------------------------------------------------- */ /* find the connected components of C via a breadth-first search */ /* ---------------------------------------------------------------------- */ part = (Part == NULL) ? 0 : 1 ; /* examine each part (part 1 and then part 0) */ for (part = (Part == NULL) ? 0 : 1 ; part >= 0 ; part--) { /* first is TRUE for the first connected component in each part */ first = TRUE ; /* find all connected components in the current part */ for (cj = 0 ; cj < cn ; cj++) { /* get node snode, which is node cj of C. It might already be in * the separator of C (and thus ordered, with Flag [snode] < EMPTY) */ snode = (Map == NULL) ? (cj) : (Map [cj]) ; ASSERT (snode >= 0 && snode < n) ; if (Flag [snode] >= EMPTY && Flag [snode] < mark && ((Part == NULL) || Part [cj] == part)) { /* ---------------------------------------------------------- */ /* find new connected component S */ /* ---------------------------------------------------------- */ /* node snode is the repnode of a connected component S, the * parent of which is cnode, the repnode of C. If cnode is * EMPTY then C is the original graph B. */ PRINT2 (("----------:::snode "ID" cnode "ID"\n", snode, cnode)); ASSERT (CParent [snode] == -2) ; if (first || nd_components) { /* If this is the first node in this part, then it becomes * the repnode of all components in this part, and all * components in this part form a single node in the * separator tree. If nd_components is TRUE, then all * connected components form their own node in the * separator tree. */ CParent [snode] = cnode ; } /* place j in the queue and mark it */ Queue [0] = snode ; Flag [snode] = mark ; sn = 1 ; /* breadth-first traversal, starting at node j */ for (sj = 0 ; sj < sn ; sj++) { /* get node j from head of Queue and traverse its edges */ j = Queue [sj] ; PRINT2 ((" j: "ID"\n", j)) ; ASSERT (j >= 0 && j < n) ; ASSERT (Flag [j] == mark) ; pstart = Bp [j] ; pdest = pstart ; pend = pstart + Bnz [j] ; for (p = pstart ; p < pend ; p++) { i = Bi [p] ; if (i != j && Flag [i] >= EMPTY) { /* node is still in the graph */ Bi [pdest++] = i ; if (Flag [i] < mark) { /* node i is in this component S, and unflagged * (first time node i has been seen in this BFS) * place node i in the queue and mark it */ Queue [sn++] = i ; Flag [i] = mark ; } } } /* edges to dead nodes have been removed */ Bnz [j] = pdest - pstart ; } /* ---------------------------------------------------------- */ /* order S if it is small; place it on Cstack otherwise */ /* ---------------------------------------------------------- */ PRINT2 (("sn "ID"\n", sn)) ; /* place the new component on the Cstack. Flip the node if * is the first connected component of the current part, * or if all components are treated as their own node in * the separator tree. */ Cstack [++(*top)] = (first || nd_components) ? FLIP (snode) : snode ; first = FALSE ; } } } /* restore the flag (normally taking O(1) time except for Int overflow) */ Common->mark = save_mark++ ; clear_flag (NULL, 0, Common) ; DEBUG (for (i = 0 ; i < n ; i++) ASSERT (Flag [i] < Common->mark)) ; } /* ========================================================================== */ /* === cholmod_bisect ======================================================= */ /* ========================================================================== */ /* Finds a node bisector of A, A*A', A(:,f)*A(:,f)'. * * workspace: Flag (nrow), * Iwork (nrow if symmetric, max (nrow,ncol) if unsymmetric). * Allocates a temporary matrix B=A*A' or B=A, * and O(nnz(A)) temporary memory space. */ UF_long CHOLMOD(bisect) /* returns # of nodes in separator */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to bisect */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int compress, /* if TRUE, compress the graph first */ /* ---- output --- */ Int *Partition, /* size A->nrow. Node i is in the left graph if * Partition [i] = 0, the right graph if 1, and in the * separator if 2. */ /* --------------- */ cholmod_common *Common ) { Int *Bp, *Bi, *Hash, *Cmap, *Bnw, *Bew, *Iwork ; cholmod_sparse *B ; unsigned Int hash ; Int j, n, bnz, sepsize, p, pend ; size_t csize, s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_NULL (Partition, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* quick return */ /* ---------------------------------------------------------------------- */ n = A->nrow ; if (n == 0) { return (0) ; } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = n + MAX (n, A->ncol) */ s = CHOLMOD(add_size_t) (A->nrow, MAX (A->nrow, A->ncol), &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (EMPTY) ; } CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; Iwork = Common->Iwork ; Hash = Iwork ; /* size n, (i/l/l) */ Cmap = Iwork + n ; /* size n, (i/i/l) */ /* ---------------------------------------------------------------------- */ /* convert the matrix to adjacency list form */ /* ---------------------------------------------------------------------- */ /* The input graph to must be symmetric, with no diagonal entries * present. The columns need not be sorted. */ /* B = A, A*A', or A(:,f)*A(:,f)', upper and lower parts present */ if (A->stype) { /* Add the upper/lower part to a symmetric lower/upper matrix by * converting to unsymmetric mode */ /* workspace: Iwork (nrow) */ B = CHOLMOD(copy) (A, 0, -1, Common) ; } else { /* B = A*A' or A(:,f)*A(:,f)', no diagonal */ /* workspace: Flag (nrow), Iwork (max (nrow,ncol)) */ B = CHOLMOD(aat) (A, fset, fsize, -1, Common) ; } if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } Bp = B->p ; Bi = B->i ; bnz = Bp [n] ; ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ; /* B does not include the diagonal, and both upper and lower parts. * Common->anz includes the diagonal, and just the lower part of B */ Common->anz = bnz / 2 + ((double) n) ; /* Bew should be at least size n for the hash function to work well */ /* this cannot cause overflow, because the matrix is already created */ csize = MAX (((size_t) n) + 1, (size_t) bnz) ; /* create the graph using Flag as workspace for node weights [ */ Bnw = Common->Flag ; /* size n workspace */ /* compute hash for each node if compression requested */ if (compress) { for (j = 0 ; j < n ; j++) { hash = j ; pend = Bp [j+1] ; for (p = Bp [j] ; p < pend ; p++) { hash += Bi [p] ; ASSERT (Bi [p] != j) ; } /* finalize the hash key for node j */ hash %= csize ; Hash [j] = (Int) hash ; ASSERT (Hash [j] >= 0 && Hash [j] < csize) ; } } /* allocate edge weights */ Bew = CHOLMOD(malloc) (csize, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (csize, sizeof (Int), Bew, Common) ; return (EMPTY) ; } /* graph has unit node and edge weights */ for (j = 0 ; j < n ; j++) { Bnw [j] = 1 ; } for (s = 0 ; s < csize ; s++) { Bew [s] = 1 ; } /* ---------------------------------------------------------------------- */ /* compress and partition the graph */ /* ---------------------------------------------------------------------- */ sepsize = partition ( #ifndef NDEBUG csize, #endif compress, Hash, B, Bnw, Bew, Cmap, Partition, Common) ; /* contents of Bp, Bi, Bnw, and Bew no longer needed ] */ /* If partition fails, free the workspace below and return sepsize < 0 */ /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ B->ncol = n ; /* restore size for memory usage statistics */ CHOLMOD(free_sparse) (&B, Common) ; Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; CHOLMOD(free) (csize, sizeof (Int), Bew, Common) ; return (sepsize) ; } /* ========================================================================== */ /* === cholmod_nested_dissection ============================================ */ /* ========================================================================== */ /* This method uses a node bisector, applied recursively (but using a * non-recursive algorithm). Once the graph is partitioned, it calls a * constrained min degree code (CAMD or CSYMAMD for A+A', and CCOLAMD for A*A') * to order all the nodes in the graph - but obeying the constraints determined * by the separators. This routine is similar to METIS_NodeND, except for how * it treats the leaf nodes. METIS_NodeND orders the leaves of the separator * tree with MMD, ignoring the rest of the matrix when ordering a single leaf. * This routine orders the whole matrix with CSYMAMD or CCOLAMD, all at once, * when the graph partitioning is done. * * This function also returns a postorderd separator tree (CParent), and a * mapping of nodes in the graph to nodes in the separator tree (Cmember). * * workspace: Flag (nrow), Head (nrow+1), Iwork (4*nrow + (ncol if unsymmetric)) * Allocates a temporary matrix B=A*A' or B=A, * and O(nnz(A)) temporary memory space. * Allocates an additional 3*n*sizeof(Int) temporary workspace */ UF_long CHOLMOD(nested_dissection) /* returns # of components, or -1 if error */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ /* ---- output --- */ Int *Perm, /* size A->nrow, output permutation */ Int *CParent, /* size A->nrow. On output, CParent [c] is the parent * of component c, or EMPTY if c is a root, and where * c is in the range 0 to # of components minus 1 */ Int *Cmember, /* size A->nrow. Cmember [j] = c if node j of A is * in component c */ /* --------------- */ cholmod_common *Common ) { double prune_dense, nd_oksep ; Int *Bp, *Bi, *Bnz, *Cstack, *Imap, *Map, *Flag, *Head, *Next, *Bnw, *Iwork, *Ipost, *NewParent, *Hash, *Cmap, *Cp, *Ci, *Cew, *Cnw, *Part, *Post, *Work3n ; unsigned Int hash ; Int n, bnz, top, i, j, k, cnode, cdense, p, cj, cn, ci, cnz, mark, c, uncol, sepsize, parent, ncomponents, threshold, ndense, pstart, pdest, pend, nd_compress, nd_camd, csize, jnext, nd_small, total_weight, nchild, child = EMPTY ; cholmod_sparse *B, *C ; size_t s ; int ok = TRUE ; DEBUG (Int cnt) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_NULL (Perm, EMPTY) ; RETURN_IF_NULL (CParent, EMPTY) ; RETURN_IF_NULL (Cmember, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* quick return */ /* ---------------------------------------------------------------------- */ n = A->nrow ; if (n == 0) { return (1) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ /* get ordering parameters */ prune_dense = Common->method [Common->current].prune_dense ; nd_compress = Common->method [Common->current].nd_compress ; nd_oksep = Common->method [Common->current].nd_oksep ; nd_oksep = MAX (0, nd_oksep) ; nd_oksep = MIN (1, nd_oksep) ; nd_camd = Common->method [Common->current].nd_camd ; nd_small = Common->method [Common->current].nd_small ; nd_small = MAX (4, nd_small) ; PRINT0 (("nd_components %d nd_small %d nd_oksep %g\n", Common->method [Common->current].nd_components, nd_small, nd_oksep)) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 4*n + uncol */ uncol = (A->stype == 0) ? A->ncol : 0 ; s = CHOLMOD(mult_size_t) (n, 4, &ok) ; s = CHOLMOD(add_size_t) (s, uncol, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (EMPTY) ; } CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ Flag = Common->Flag ; /* size n */ Head = Common->Head ; /* size n+1, all equal to -1 */ Iwork = Common->Iwork ; Imap = Iwork ; /* size n, same as Queue in find_components */ Map = Iwork + n ; /* size n */ Bnz = Iwork + 2*((size_t) n) ; /* size n */ Hash = Iwork + 3*((size_t) n) ; /* size n */ Work3n = CHOLMOD(malloc) (n, 3*sizeof (Int), Common) ; Part = Work3n ; /* size n */ Bnw = Part + n ; /* size n */ Cnw = Bnw + n ; /* size n */ Cstack = Perm ; /* size n, use Perm as workspace for Cstack [ */ Cmap = Cmember ; /* size n, use Cmember as workspace [ */ if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } /* ---------------------------------------------------------------------- */ /* convert B to symmetric form with both upper/lower parts present */ /* ---------------------------------------------------------------------- */ /* B = A+A', A*A', or A(:,f)*A(:,f)', upper and lower parts present */ if (A->stype) { /* Add the upper/lower part to a symmetric lower/upper matrix by * converting to unsymmetric mode */ /* workspace: Iwork (nrow) */ B = CHOLMOD(copy) (A, 0, -1, Common) ; } else { /* B = A*A' or A(:,f)*A(:,f)', no diagonal */ /* workspace: Flag (nrow), Iwork (max (nrow,ncol)) */ B = CHOLMOD(aat) (A, fset, fsize, -1, Common) ; } if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ; return (EMPTY) ; } Bp = B->p ; Bi = B->i ; bnz = CHOLMOD(nnz) (B, Common) ; ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ; csize = MAX (n, bnz) ; ASSERT (CHOLMOD(dump_sparse) (B, "B for nd:", Common) >= 0) ; /* ---------------------------------------------------------------------- */ /* initializations */ /* ---------------------------------------------------------------------- */ /* all nodes start out unmarked and unordered (Type 4, see below) */ Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; ASSERT (Flag == Common->Flag) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; for (j = 0 ; j < n ; j++) { CParent [j] = -2 ; } /* prune dense nodes from B */ if (IS_NAN (prune_dense) || prune_dense < 0) { /* only remove completely dense nodes */ threshold = n-2 ; } else { /* remove nodes with degree more than threshold */ threshold = (Int) (MAX (16, prune_dense * sqrt ((double) (n)))) ; threshold = MIN (n, threshold) ; } ndense = 0 ; cnode = EMPTY ; cdense = EMPTY ; for (j = 0 ; j < n ; j++) { Bnz [j] = Bp [j+1] - Bp [j] ; if (Bnz [j] > threshold) { /* node j is dense, prune it from B */ PRINT2 (("j is dense %d\n", j)) ; ndense++ ; if (cnode == EMPTY) { /* first dense node found becomes root of this component, * which contains all of the dense nodes found here */ cdense = j ; cnode = j ; CParent [cnode] = EMPTY ; } Flag [j] = FLIP (cnode) ; } } B->packed = FALSE ; ASSERT (B->nz == NULL) ; if (ndense == n) { /* all nodes removed: Perm is identity, all nodes in component zero, * and the separator tree has just one node. */ PRINT2 (("all nodes are dense\n")) ; for (k = 0 ; k < n ; k++) { Perm [k] = k ; Cmember [k] = 0 ; } CParent [0] = EMPTY ; CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ; Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; return (1) ; } /* Cp and Ci are workspace to construct the subgraphs to partition */ C = CHOLMOD(allocate_sparse) (n, n, csize, FALSE, TRUE, 0, CHOLMOD_PATTERN, Common) ; Cew = CHOLMOD(malloc) (csize, sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&C, Common) ; CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ; CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ; Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; PRINT2 (("out of memory for C, etc\n")) ; return (EMPTY) ; } Cp = C->p ; Ci = C->i ; /* create initial unit node and edge weights */ for (j = 0 ; j < n ; j++) { Bnw [j] = 1 ; } for (p = 0 ; p < csize ; p++) { Cew [p] = 1 ; } /* push the initial connnected components of B onto the Cstack */ top = EMPTY ; /* Cstack is empty */ /* workspace: Flag (nrow), Iwork (nrow); use Imap as workspace for Queue [*/ find_components (B, NULL, n, cnode, NULL, Bnz, CParent, Cstack, &top, Imap, Common) ; /* done using Imap as workspace for Queue ] */ /* Nodes can now be of Type 0, 1, 2, or 4 (see definition below) */ /* ---------------------------------------------------------------------- */ /* while Cstack is not empty, do: */ /* ---------------------------------------------------------------------- */ while (top >= 0) { /* clear the Flag array, but do not modify negative entries in Flag */ mark = clear_flag (NULL, 0, Common) ; DEBUG (for (i = 0 ; i < n ; i++) Imap [i] = EMPTY) ; /* ------------------------------------------------------------------ */ /* get node(s) from the top of the Cstack */ /* ------------------------------------------------------------------ */ /* i is the repnode of its (unordered) connected component. Get * all repnodes for all connected components of a single part. If * each connected component is to be ordered separately (nd_components * is TRUE), then this while loop iterates just once. */ cnode = EMPTY ; cn = 0 ; while (cnode == EMPTY) { i = Cstack [top--] ; if (i < 0) { /* this is the last node in this component */ i = FLIP (i) ; cnode = i ; } ASSERT (i >= 0 && i < n && Flag [i] >= EMPTY) ; /* place i in the queue and mark it */ Map [cn] = i ; Flag [i] = mark ; Imap [i] = cn ; cn++ ; } ASSERT (cnode != EMPTY) ; /* During ordering, there are five kinds of nodes in the graph of B, * based on Flag [j] and CParent [j] for nodes j = 0 to n-1: * * Type 0: If cnode is a repnode of an unordered component, then * CParent [cnode] is in the range EMPTY to n-1 and * Flag [cnode] >= EMPTY. This is a "live" node. * * Type 1: If cnode is a repnode of an ordered separator component, * then Flag [cnode] < EMPTY and FLAG [cnode] = FLIP (cnode). * CParent [cnode] is in the range EMPTY to n-1. cnode is a root of * the separator tree if CParent [cnode] == EMPTY. This node is dead. * * Type 2: If node j isn't a repnode, has not been absorbed via * graph compression into another node, but is in an ordered separator * component, then cnode = FLIP (Flag [j]) gives the repnode of the * component that contains j and CParent [j] is -2. This node is dead. * Note that Flag [j] < EMPTY. * * Type 3: If node i has been absorbed via graph compression into some * other node j = FLIP (Flag [i]) where j is not a repnode. * CParent [j] is -2. Node i may or may not be in an ordered * component. This node is dead. Note that Flag [j] < EMPTY. * * Type 4: If node j is "live" (not in an ordered component, and not * absorbed into any other node), then Flag [j] >= EMPTY. * * Only "live" nodes (of type 0 or 4) are placed in a subgraph to be * partitioned. Node j is alive if Flag [j] >= EMPTY, and dead if * Flag [j] < EMPTY. */ /* ------------------------------------------------------------------ */ /* create the subgraph for this connected component C */ /* ------------------------------------------------------------------ */ /* Do a breadth-first search of the graph starting at cnode. * use Map [0..cn-1] for nodes in the component C [ * use Cnw and Cew for node and edge weights of the resulting subgraph [ * use Cp and Ci for the resulting subgraph [ * use Imap [i] for all nodes i in B that are in the component C [ */ cnz = 0 ; total_weight = 0 ; for (cj = 0 ; cj < cn ; cj++) { /* get node j from the head of the queue; it is node cj of C */ j = Map [cj] ; ASSERT (Flag [j] == mark) ; Cp [cj] = cnz ; Cnw [cj] = Bnw [j] ; ASSERT (Cnw [cj] >= 0) ; total_weight += Cnw [cj] ; pstart = Bp [j] ; pdest = pstart ; pend = pstart + Bnz [j] ; hash = cj ; for (p = pstart ; p < pend ; p++) { i = Bi [p] ; /* prune diagonal entries and dead edges from B */ if (i != j && Flag [i] >= EMPTY) { /* live node i is in the current component */ Bi [pdest++] = i ; if (Flag [i] != mark) { /* First time node i has been seen, it is a new node * of C. place node i in the queue and mark it */ Map [cn] = i ; Flag [i] = mark ; Imap [i] = cn ; cn++ ; } /* place the edge (cj,ci) in the adjacency list of cj */ ci = Imap [i] ; ASSERT (ci >= 0 && ci < cn && ci != cj && cnz < csize) ; Ci [cnz++] = ci ; hash += ci ; } } /* edges to dead nodes have been removed */ Bnz [j] = pdest - pstart ; /* finalize the hash key for column j */ hash %= csize ; Hash [cj] = (Int) hash ; ASSERT (Hash [cj] >= 0 && Hash [cj] < csize) ; } Cp [cn] = cnz ; C->nrow = cn ; C->ncol = cn ; /* affects mem stats unless restored when C free'd */ /* contents of Imap no longer needed ] */ #ifndef NDEBUG for (cj = 0 ; cj < cn ; cj++) { j = Map [cj] ; PRINT2 (("----------------------------C column cj: "ID" j: "ID"\n", cj, j)) ; ASSERT (j >= 0 && j < n) ; ASSERT (Flag [j] >= EMPTY) ; for (p = Cp [cj] ; p < Cp [cj+1] ; p++) { ci = Ci [p] ; i = Map [ci] ; PRINT3 (("ci: "ID" i: "ID"\n", ci, i)) ; ASSERT (ci != cj && ci >= 0 && ci < cn) ; ASSERT (i != j && i >= 0 && i < n) ; ASSERT (Flag [i] >= EMPTY) ; } } #endif PRINT0 (("consider cn %d nd_small %d ", cn, nd_small)) ; if (cn < nd_small) /* could be 'total_weight < nd_small' instead */ { /* place all nodes in the separator */ PRINT0 ((" too small\n")) ; sepsize = total_weight ; } else { /* Cp and Ci now contain the component, with cn nodes and cnz * nonzeros. The mapping of a node cj into node j the main graph * B is given by Map [cj] = j */ PRINT0 ((" cut\n")) ; /* -------------------------------------------------------------- */ /* compress and partition the graph C */ /* -------------------------------------------------------------- */ /* The edge weights Cew [0..csize-1] are all 1's on input to and * output from the partition routine. */ sepsize = partition ( #ifndef NDEBUG csize, #endif nd_compress, Hash, C, Cnw, Cew, Cmap, Part, Common) ; /* contents of Cp and Ci no longer needed ] */ if (sepsize < 0) { /* failed */ C->ncol = n ; /* restore size for memory usage statistics */ CHOLMOD(free_sparse) (&C, Common) ; CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ; CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ; Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; return (EMPTY) ; } /* -------------------------------------------------------------- */ /* compress B based on how C was compressed */ /* -------------------------------------------------------------- */ for (ci = 0 ; ci < cn ; ci++) { if (Hash [ci] < EMPTY) { /* ci is dead in C, having been absorbed into cj */ cj = FLIP (Hash [ci]) ; PRINT2 (("In C, "ID" absorbed into "ID" (wgt now "ID")\n", ci, cj, Cnw [cj])) ; /* i is dead in B, having been absorbed into j */ i = Map [ci] ; j = Map [cj] ; PRINT2 (("In B, "ID" (wgt "ID") => "ID" (wgt "ID")\n", i, Bnw [i], j, Bnw [j], Cnw [cj])) ; /* more than one node may be absorbed into j. This is * accounted for in Cnw [cj]. Assign it here rather * than += Bnw [i] */ Bnw [i] = 0 ; Bnw [j] = Cnw [cj] ; Flag [i] = FLIP (j) ; } } DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) cnt += Bnw [j]) ; ASSERT (cnt == n) ; } /* contents of Cnw [0..cn-1] no longer needed ] */ /* ------------------------------------------------------------------ */ /* order the separator, and stack the components when C is split */ /* ------------------------------------------------------------------ */ /* one more component has been found: either the separator of C, * or all of C */ ASSERT (sepsize >= 0 && sepsize <= total_weight) ; PRINT0 (("sepsize %d tot %d : %8.4f ", sepsize, total_weight, ((double) sepsize) / ((double) total_weight))) ; if (sepsize == total_weight || sepsize == 0 || sepsize > nd_oksep * total_weight) { /* Order the nodes in the component. The separator is too large, * or empty. Note that the partition routine cannot return a * sepsize of zero, but it can return a separator consisting of the * whole graph. The "sepsize == 0" test is kept, above, in case the * partition routine changes. In either case, this component * remains unsplit, and becomes a leaf of the separator tree. */ PRINT2 (("cnode %d sepsize zero or all of graph: "ID"\n", cnode, sepsize)) ; for (cj = 0 ; cj < cn ; cj++) { j = Map [cj] ; Flag [j] = FLIP (cnode) ; PRINT2 ((" node cj: "ID" j: "ID" ordered\n", cj, j)) ; } ASSERT (Flag [cnode] == FLIP (cnode)) ; ASSERT (cnode != EMPTY && Flag [cnode] < EMPTY) ; PRINT0 (("discarded\n")) ; } else { /* Order the nodes in the separator of C and find a new repnode * cnode that is in the separator of C. This requires the separator * to be non-empty. */ PRINT0 (("sepsize not tiny: "ID"\n", sepsize)) ; parent = CParent [cnode] ; ASSERT (parent >= EMPTY && parent < n) ; CParent [cnode] = -2 ; cnode = EMPTY ; for (cj = 0 ; cj < cn ; cj++) { j = Map [cj] ; if (Part [cj] == 2) { /* All nodes in the separator become part of a component * whose repnode is cnode */ PRINT2 (("node cj: "ID" j: "ID" ordered\n", cj, j)) ; if (cnode == EMPTY) { PRINT2(("------------new cnode: cj "ID" j "ID"\n", cj, j)) ; cnode = j ; } Flag [j] = FLIP (cnode) ; } else { PRINT2 ((" node cj: "ID" j: "ID" not ordered\n", cj, j)) ; } } ASSERT (cnode != EMPTY && Flag [cnode] < EMPTY) ; ASSERT (CParent [cnode] == -2) ; CParent [cnode] = parent ; /* find the connected components when C is split, and push * them on the Cstack. Use Imap as workspace for Queue. [ */ /* workspace: Flag (nrow) */ find_components (B, Map, cn, cnode, Part, Bnz, CParent, Cstack, &top, Imap, Common) ; /* done using Imap as workspace for Queue ] */ } /* contents of Map [0..cn-1] no longer needed ] */ } /* done using Cmember as workspace for Cmap ] */ /* done using Perm as workspace for Cstack ] */ /* ---------------------------------------------------------------------- */ /* place nodes removed via compression into their proper component */ /* ---------------------------------------------------------------------- */ /* At this point, all nodes are of Type 1, 2, or 3, as defined above. */ for (i = 0 ; i < n ; i++) { /* find the repnode cnode that contains node i */ j = FLIP (Flag [i]) ; PRINT2 (("\nfind component for "ID", in: "ID"\n", i, j)) ; ASSERT (j >= 0 && j < n) ; DEBUG (cnt = 0) ; while (CParent [j] == -2) { j = FLIP (Flag [j]) ; PRINT2 ((" walk up to "ID" ", j)) ; ASSERT (j >= 0 && j < n) ; PRINT2 ((" CParent "ID"\n", CParent [j])) ; ASSERT (cnt < n) ; DEBUG (cnt++) ; } cnode = j ; ASSERT (cnode >= 0 && cnode < n) ; ASSERT (CParent [cnode] >= EMPTY && CParent [cnode] < n) ; PRINT2 (("i "ID" is in component with cnode "ID"\n", i, cnode)) ; ASSERT (Flag [cnode] == FLIP (cnode)) ; /* Mark all nodes along the path from i to cnode as being in the * component whos repnode is cnode. Perform path compression. */ j = FLIP (Flag [i]) ; Flag [i] = FLIP (cnode) ; DEBUG (cnt = 0) ; while (CParent [j] == -2) { ASSERT (j >= 0 && j < n) ; jnext = FLIP (Flag [j]) ; PRINT2 ((" "ID" walk "ID" set cnode to "ID"\n", i, j, cnode)) ; ASSERT (cnt < n) ; DEBUG (cnt++) ; Flag [j] = FLIP (cnode) ; j = jnext ; } } /* At this point, all nodes fall into Types 1 or 2, as defined above. */ #ifndef NDEBUG for (j = 0 ; j < n ; j++) { PRINT2 (("j %d CParent %d ", j, CParent [j])) ; if (CParent [j] >= EMPTY && CParent [j] < n) { /* case 1: j is a repnode of a component */ cnode = j ; PRINT2 ((" a repnode\n")) ; } else { /* case 2: j is not a repnode of a component */ cnode = FLIP (Flag [j]) ; PRINT2 ((" repnode is %d\n", cnode)) ; ASSERT (cnode >= 0 && cnode < n) ; ASSERT (CParent [cnode] >= EMPTY && CParent [cnode] < n) ; } ASSERT (Flag [cnode] == FLIP (cnode)) ; /* case 3 no longer holds */ } #endif /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ C->ncol = n ; /* restore size for memory usage statistics */ CHOLMOD(free_sparse) (&C, Common) ; CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ; CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ; /* ---------------------------------------------------------------------- */ /* handle dense nodes */ /* ---------------------------------------------------------------------- */ /* The separator tree has nodes with either no children or two or more * children - with one exception. There may exist a single root node with * exactly one child, which holds the dense rows/columns of the matrix. * Delete this node if it exists. */ if (ndense > 0) { ASSERT (CParent [cdense] == EMPTY) ; /* cdense has no parent */ /* find the children of cdense */ nchild = 0 ; for (j = 0 ; j < n ; j++) { if (CParent [j] == cdense) { nchild++ ; child = j ; } } if (nchild == 1) { /* the cdense node has just one child; merge the two nodes */ PRINT1 (("root has one child\n")) ; CParent [cdense] = -2 ; /* cdense is deleted */ CParent [child] = EMPTY ; /* child becomes a root */ for (j = 0 ; j < n ; j++) { if (Flag [j] == FLIP (cdense)) { /* j is a dense node */ PRINT1 (("dense %d\n", j)) ; Flag [j] = FLIP (child) ; } } } } /* ---------------------------------------------------------------------- */ /* postorder the components */ /* ---------------------------------------------------------------------- */ DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) if (CParent [j] != -2) cnt++) ; /* use Cmember as workspace for Post [ */ Post = Cmember ; /* cholmod_postorder uses Head and Iwork [0..2n]. It does not use Flag, * which here holds the mapping of nodes to repnodes. It ignores all nodes * for which CParent [j] < -1, so it operates just on the repnodes. */ /* workspace: Head (n), Iwork (2*n) */ ncomponents = CHOLMOD(postorder) (CParent, n, NULL, Post, Common) ; ASSERT (cnt == ncomponents) ; /* use Iwork [0..n-1] as workspace for Ipost ( */ Ipost = Iwork ; DEBUG (for (j = 0 ; j < n ; j++) Ipost [j] = EMPTY) ; /* compute inverse postorder */ for (c = 0 ; c < ncomponents ; c++) { cnode = Post [c] ; ASSERT (cnode >= 0 && cnode < n) ; Ipost [cnode] = c ; ASSERT (Head [c] == EMPTY) ; } /* adjust the parent array */ /* Iwork [n..2n-1] used for NewParent [ */ NewParent = Iwork + n ; for (c = 0 ; c < ncomponents ; c++) { parent = CParent [Post [c]] ; NewParent [c] = (parent == EMPTY) ? EMPTY : (Ipost [parent]) ; } for (c = 0 ; c < ncomponents ; c++) { CParent [c] = NewParent [c] ; } ASSERT (CHOLMOD(dump_parent) (CParent, ncomponents, "CParent", Common)) ; /* Iwork [n..2n-1] no longer needed for NewParent ] */ /* Cmember no longer needed for Post ] */ #ifndef NDEBUG /* count the number of children of each node */ for (c = 0 ; c < ncomponents ; c++) { Cmember [c] = 0 ; } for (c = 0 ; c < ncomponents ; c++) { if (CParent [c] != EMPTY) Cmember [CParent [c]]++ ; } for (c = 0 ; c < ncomponents ; c++) { /* a node is either a leaf, or has 2 or more children */ ASSERT (Cmember [c] == 0 || Cmember [c] >= 2) ; } #endif /* ---------------------------------------------------------------------- */ /* place each node in its component */ /* ---------------------------------------------------------------------- */ for (j = 0 ; j < n ; j++) { /* node j is in the cth component, whose repnode is cnode */ cnode = FLIP (Flag [j]) ; PRINT2 (("j "ID" flag "ID" cnode "ID"\n", j, Flag [j], FLIP (Flag [j]))) ; ASSERT (cnode >= 0 && cnode < n) ; c = Ipost [cnode] ; ASSERT (c >= 0 && c < ncomponents) ; Cmember [j] = c ; } /* Flag no longer needed for the node-to-component mapping */ /* done using Iwork [0..n-1] as workspace for Ipost ) */ /* ---------------------------------------------------------------------- */ /* clear the Flag array */ /* ---------------------------------------------------------------------- */ Common->mark = EMPTY ; CHOLMOD_CLEAR_FLAG (Common) ; ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* find the permutation */ /* ---------------------------------------------------------------------- */ PRINT1 (("nd_camd: %d A->stype %d\n", nd_camd, A->stype)) ; if (nd_camd) { /* ------------------------------------------------------------------ */ /* apply camd, csymamd, or ccolamd using the Cmember constraints */ /* ------------------------------------------------------------------ */ if (A->stype != 0) { /* ordering A+A', so fset and fsize are ignored. * Add the upper/lower part to a symmetric lower/upper matrix by * converting to unsymmetric mode * workspace: Iwork (nrow) */ B = CHOLMOD(copy) (A, 0, -1, Common) ; if (Common->status < CHOLMOD_OK) { PRINT0 (("make symmetric failed\n")) ; return (EMPTY) ; } ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ; PRINT2 (("nested dissection (2)\n")) ; B->stype = -1 ; if (nd_camd == 2) { /* workspace: Head (nrow+1), Iwork (nrow) if symmetric-upper */ ok = CHOLMOD(csymamd) (B, Cmember, Perm, Common) ; } else { /* workspace: Head (nrow), Iwork (4*nrow) */ ok = CHOLMOD(camd) (B, NULL, 0, Cmember, Perm, Common) ; } CHOLMOD(free_sparse) (&B, Common) ; if (!ok) { /* failed */ PRINT0 (("camd/csymamd failed\n")) ; return (EMPTY) ; } } else { /* ordering A*A' or A(:,f)*A(:,f)' */ /* workspace: Iwork (nrow if no fset; MAX(nrow,ncol) if fset) */ if (!CHOLMOD(ccolamd) (A, fset, fsize, Cmember, Perm, Common)) { /* ccolamd failed */ PRINT2 (("ccolamd failed\n")) ; return (EMPTY) ; } } } else { /* ------------------------------------------------------------------ */ /* natural ordering of each component */ /* ------------------------------------------------------------------ */ /* use Iwork [0..n-1] for Next [ */ Next = Iwork ; /* ------------------------------------------------------------------ */ /* place the nodes in link lists, one list per component */ /* ------------------------------------------------------------------ */ /* do so in reverse order, to preserve original ordering */ for (j = n-1 ; j >= 0 ; j--) { /* node j is in the cth component */ c = Cmember [j] ; ASSERT (c >= 0 && c < ncomponents) ; /* place node j in link list for component c */ Next [j] = Head [c] ; Head [c] = j ; } /* ------------------------------------------------------------------ */ /* order each node in each component */ /* ------------------------------------------------------------------ */ k = 0 ; for (c = 0 ; c < ncomponents ; c++) { for (j = Head [c] ; j != EMPTY ; j = Next [j]) { Perm [k++] = j ; } Head [c] = EMPTY ; } ASSERT (k == n) ; /* done using Iwork [0..n-1] for Next ] */ } /* ---------------------------------------------------------------------- */ /* clear workspace and return number of components */ /* ---------------------------------------------------------------------- */ ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; return (ncomponents) ; } /* ========================================================================== */ /* === cholmod_collapse_septree ============================================= */ /* ========================================================================== */ /* cholmod_nested_dissection returns the separator tree that was used in the * constrained minimum degree algorithm. Parameter settings (nd_small, * nd_oksep, etc) that give a good fill-reducing ordering may give too fine of * a separator tree for other uses (parallelism, multi-level LPDASA, etc). This * function takes as input the separator tree computed by * cholmod_nested_dissection, and collapses selected subtrees into single * nodes. A subtree is collapsed if its root node (the separator) is large * compared to the total number of nodes in the subtree, or if the subtree is * small. Note that the separator tree may actually be a forest. * * nd_oksep and nd_small act just like the ordering parameters in Common. * Returns the new number of nodes in the separator tree. */ UF_long CHOLMOD(collapse_septree) ( /* ---- input ---- */ size_t n, /* # of nodes in the graph */ size_t ncomponents, /* # of nodes in the separator tree (must be <= n) */ double nd_oksep, /* collapse if #sep >= nd_oksep * #nodes in subtree */ size_t nd_small, /* collapse if #nodes in subtree < nd_small */ /* ---- in/out --- */ Int *CParent, /* size ncomponents; from cholmod_nested_dissection */ Int *Cmember, /* size n; from cholmod_nested_dissection */ /* --------------- */ cholmod_common *Common ) { Int *First, *Count, *Csubtree, *W, *Map ; Int c, j, k, nc, sepsize, total_weight, parent, nc_new, first ; int collapse = FALSE, ok = TRUE ; size_t s ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (CParent, EMPTY) ; RETURN_IF_NULL (Cmember, EMPTY) ; if (n < ncomponents) { ERROR (CHOLMOD_INVALID, "invalid separator tree") ; return (EMPTY) ; } Common->status = CHOLMOD_OK ; nc = ncomponents ; if (n <= 1 || ncomponents <= 1) { /* no change; tree is one node already */ return (nc) ; } nd_oksep = MAX (0, nd_oksep) ; nd_oksep = MIN (1, nd_oksep) ; nd_small = MAX (4, nd_small) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 3*ncomponents */ s = CHOLMOD(mult_size_t) (ncomponents, 3, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (EMPTY) ; } CHOLMOD(allocate_work) (0, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (EMPTY) ; } W = Common->Iwork ; Count = W ; W += ncomponents ; /* size ncomponents */ Csubtree = W ; W += ncomponents ; /* size ncomponents */ First = W ; W += ncomponents ; /* size ncomponents */ /* ---------------------------------------------------------------------- */ /* find the first descendant of each node of the separator tree */ /* ---------------------------------------------------------------------- */ for (c = 0 ; c < nc ; c++) { First [c] = EMPTY ; } for (k = 0 ; k < nc ; k++) { for (c = k ; c != EMPTY && First [c] == -1 ; c = CParent [c]) { ASSERT (c >= 0 && c < nc) ; First [c] = k ; } } /* ---------------------------------------------------------------------- */ /* find the number of nodes of the graph in each node of the tree */ /* ---------------------------------------------------------------------- */ for (c = 0 ; c < nc ; c++) { Count [c] = 0 ; } for (j = 0 ; j < (Int) n ; j++) { ASSERT (Cmember [j] >= 0 && Cmember [j] < nc) ; Count [Cmember [j]]++ ; } /* ---------------------------------------------------------------------- */ /* find the number of nodes in each subtree */ /* ---------------------------------------------------------------------- */ for (c = 0 ; c < nc ; c++) { /* each subtree includes its root */ Csubtree [c] = Count [c] ; PRINT1 ((ID" size "ID" parent "ID" first "ID"\n", c, Count [c], CParent [c], First [c])) ; } for (c = 0 ; c < nc ; c++) { /* add the subtree of the child, c, into the count of its parent */ parent = CParent [c] ; ASSERT (parent >= EMPTY && parent < nc) ; if (parent != EMPTY) { Csubtree [parent] += Csubtree [c] ; } } #ifndef NDEBUG /* the sum of the roots should be n */ j = 0 ; for (c = 0 ; c < nc ; c++) if (CParent [c] == EMPTY) j += Csubtree [c] ; ASSERT (j == (Int) n) ; #endif /* ---------------------------------------------------------------------- */ /* find subtrees to collapse */ /* ---------------------------------------------------------------------- */ /* consider all nodes in reverse post-order */ for (c = nc-1 ; c >= 0 ; c--) { /* consider the subtree rooted at node c */ sepsize = Count [c] ; total_weight = Csubtree [c] ; PRINT1 (("Node "ID" sepsize "ID" subtree "ID" ratio %g\n", c, sepsize, total_weight, ((double) sepsize)/((double) total_weight))) ; first = First [c] ; if (first < c && /* c must not be a leaf */ (sepsize > nd_oksep * total_weight || total_weight < (int) nd_small)) { /* this separator is too large, or the subtree is too small. * collapse the tree, by converting the entire subtree rooted at * c into a single node. The subtree consists of all nodes from * First[c] to the root c. Flag all nodes from First[c] to c-1 * as dead. */ collapse = TRUE ; for (k = first ; k < c ; k++) { CParent [k] = -2 ; PRINT1 ((" collapse node "ID"\n", k)) ; } /* continue at the next node, first-1 */ c = first ; } } PRINT1 (("collapse: %d\n", collapse)) ; /* ---------------------------------------------------------------------- */ /* compress the tree */ /* ---------------------------------------------------------------------- */ Map = Count ; /* Count no longer needed */ nc_new = nc ; if (collapse) { nc_new = 0 ; for (c = 0 ; c < nc ; c++) { Map [c] = nc_new ; if (CParent [c] >= EMPTY) { /* node c is alive, and becomes node Map[c] in the new tree. * Increment nc_new for the next node c. */ nc_new++ ; } } PRINT1 (("Collapse the tree from "ID" to "ID" nodes\n", nc, nc_new)) ; ASSERT (nc_new > 0) ; for (c = 0 ; c < nc ; c++) { parent = CParent [c] ; if (parent >= EMPTY) { /* node c is alive */ CParent [Map [c]] = (parent == EMPTY) ? EMPTY : Map [parent] ; } } for (j = 0 ; j < (Int) n ; j++) { PRINT1 (("j "ID" Cmember[j] "ID" Map[Cmember[j]] "ID"\n", j, Cmember [j], Map [Cmember [j]])) ; Cmember [j] = Map [Cmember [j]] ; } } /* ---------------------------------------------------------------------- */ /* return new size of separator tree */ /* ---------------------------------------------------------------------- */ return (nc_new) ; } #endif SuiteSparse/CHOLMOD/Partition/cholmod_ccolamd.c0000644001170100242450000001512510537777770020310 0ustar davisfac/* ========================================================================== */ /* === Partition/cholmod_ccolamd ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Partition Module. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Partition Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the CCOLAMD ordering routine. Finds a permutation * p such that the Cholesky factorization of PAA'P' is sparser than AA'. * The column etree is found and postordered, and the ccolamd ordering is then * combined with its postordering. A must be unsymmetric. * * workspace: Iwork (MAX (nrow,ncol)) * Allocates a copy of its input matrix, which is * then used as CCOLAMD's workspace. * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NPARTITION #include "cholmod_internal.h" #include "ccolamd.h" #include "cholmod_partition.h" #if (CCOLAMD_VERSION < CCOLAMD_VERSION_CODE (2,5)) #error "CCOLAMD v2.0 or later is required" #endif /* ========================================================================== */ /* === ccolamd_interface ==================================================== */ /* ========================================================================== */ /* Order with ccolamd */ static int ccolamd_interface ( cholmod_sparse *A, size_t alen, Int *Perm, Int *Cmember, Int *fset, Int fsize, cholmod_sparse *C, cholmod_common *Common ) { double knobs [CCOLAMD_KNOBS] ; Int *Cp = NULL ; Int ok, k, nrow, ncol, stats [CCOLAMD_STATS] ; nrow = A->nrow ; ncol = A->ncol ; /* ---------------------------------------------------------------------- */ /* copy (and transpose) the input matrix A into the ccolamd workspace */ /* ---------------------------------------------------------------------- */ /* C = A (:,f)', which also packs A if needed. */ /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset non-NULL) */ ok = CHOLMOD(transpose_unsym) (A, 0, NULL, fset, fsize, C, Common) ; /* ---------------------------------------------------------------------- */ /* order the matrix (destroys the contents of C->i and C->p) */ /* ---------------------------------------------------------------------- */ /* get parameters */ #ifdef LONG ccolamd_l_set_defaults (knobs) ; #else ccolamd_set_defaults (knobs) ; #endif if (Common->current < 0 || Common->current >= CHOLMOD_MAXMETHODS) { /* this is the CHOLMOD default, not the CCOLAMD default */ knobs [CCOLAMD_DENSE_ROW] = -1 ; } else { /* get the knobs from the Common parameters */ knobs [CCOLAMD_DENSE_COL] =Common->method[Common->current].prune_dense ; knobs [CCOLAMD_DENSE_ROW] =Common->method[Common->current].prune_dense2; knobs [CCOLAMD_AGGRESSIVE]=Common->method[Common->current].aggressive ; knobs [CCOLAMD_LU] =Common->method[Common->current].order_for_lu; } if (ok) { #ifdef LONG ccolamd_l (ncol, nrow, alen, C->i, C->p, knobs, stats, Cmember) ; #else ccolamd (ncol, nrow, alen, C->i, C->p, knobs, stats, Cmember) ; #endif ok = stats [CCOLAMD_STATUS] ; ok = (ok == CCOLAMD_OK || ok == CCOLAMD_OK_BUT_JUMBLED) ; /* permutation returned in C->p, if the ordering succeeded */ Cp = C->p ; for (k = 0 ; k < nrow ; k++) { Perm [k] = Cp [k] ; } } return (ok) ; } /* ========================================================================== */ /* === cholmod_ccolamd ====================================================== */ /* ========================================================================== */ /* Order AA' or A(:,f)*A(:,f)' using CCOLAMD. */ int CHOLMOD(ccolamd) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ Int *Cmember, /* size A->nrow. Cmember [i] = c if row i is in the * constraint set c. c must be >= 0. The # of * constraint sets is max (Cmember) + 1. If Cmember is * NULL, then it is interpretted as Cmember [i] = 0 for * all i */ /* ---- output --- */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { cholmod_sparse *C ; Int ok, nrow, ncol ; size_t alen ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; if (A->stype != 0) { ERROR (CHOLMOD_INVALID, "matrix must be unsymmetric") ; return (FALSE) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; ncol = A->ncol ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ #ifdef LONG alen = ccolamd_l_recommended (A->nzmax, ncol, nrow) ; #else alen = ccolamd_recommended (A->nzmax, ncol, nrow) ; #endif if (alen == 0) { ERROR (CHOLMOD_TOO_LARGE, "matrix invalid or too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (0, MAX (nrow,ncol), 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } C = CHOLMOD(allocate_sparse) (ncol, nrow, alen, TRUE, TRUE, 0, CHOLMOD_PATTERN, Common) ; /* ---------------------------------------------------------------------- */ /* order with ccolamd */ /* ---------------------------------------------------------------------- */ ok = ccolamd_interface (A, alen, Perm, Cmember, fset, fsize, C, Common) ; /* ---------------------------------------------------------------------- */ /* free the workspace and return result */ /* ---------------------------------------------------------------------- */ CHOLMOD(free_sparse) (&C, Common) ; return (ok) ; } #endif SuiteSparse/CHOLMOD/Partition/cholmod_camd.c0000644001170100242450000001727510605210247017573 0ustar davisfac/* ========================================================================== */ /* === Partition/cholmod_camd =============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Partition Module. Copyright (C) 2005-2006, Timothy A. Davis * The CHOLMOD/Partition Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the CAMD ordering routine. Orders A if the matrix is * symmetric. On output, Perm [k] = i if row/column i of A is the kth * row/column of P*A*P'. This corresponds to A(p,p) in MATLAB notation. * * If A is unsymmetric, cholmod_camd orders A*A'. On output, Perm [k] = i if * row/column i of A*A' is the kth row/column of P*A*A'*P'. This corresponds to * A(p,:)*A(p,:)' in MATLAB notation. If f is present, A(p,f)*A(p,f)' is * ordered. * * Computes the flop count for a subsequent LL' factorization, the number * of nonzeros in L, and the number of nonzeros in the matrix ordered (A, * A*A' or A(:,f)*A(:,f)'). * * workspace: Iwork (4*nrow). Head (nrow). * * Allocates a temporary copy of A+A' or A*A' (with * both upper and lower triangular parts) as input to CAMD. * Also allocates 3*(n+1) additional integer workspace (not in Common). * * Supports any xtype (pattern, real, complex, or zomplex) */ #ifndef NPARTITION #include "cholmod_internal.h" #include "camd.h" #include "cholmod_partition.h" #if (CAMD_VERSION < CAMD_VERSION_CODE (2,0)) #error "CAMD v2.0 or later is required" #endif /* ========================================================================== */ /* === cholmod_camd ========================================================= */ /* ========================================================================== */ int CHOLMOD(camd) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ Int *Cmember, /* size nrow. see cholmod_ccolamd.c for description.*/ /* ---- output ---- */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { double Info [CAMD_INFO], Control2 [CAMD_CONTROL], *Control ; Int *Cp, *Len, *Nv, *Head, *Elen, *Degree, *Wi, *Next, *BucketSet, *Work3n, *p ; cholmod_sparse *C ; Int j, n, cnz ; size_t s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; n = A->nrow ; /* s = 4*n */ s = CHOLMOD(mult_size_t) (n, 4, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; if (n == 0) { /* nothing to do */ Common->fl = 0 ; Common->lnz = 0 ; Common->anz = 0 ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* get workspace */ /* ---------------------------------------------------------------------- */ /* cholmod_analyze has allocated Cmember at Common->Iwork + 5*n+uncol, and * CParent at Common->Iwork + 4*n+uncol, where uncol is 0 if A is symmetric * or A->ncol otherwise. Thus, only the first 4n integers in Common->Iwork * can be used here. */ CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } p = Common->Iwork ; Degree = p ; p += n ; /* size n */ Elen = p ; p += n ; /* size n */ Len = p ; p += n ; /* size n */ Nv = p ; p += n ; /* size n */ Work3n = CHOLMOD(malloc) (n+1, 3*sizeof (Int), Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } p = Work3n ; Next = p ; p += n ; /* size n */ Wi = p ; p += (n+1) ; /* size n+1 */ BucketSet = p ; /* size n */ Head = Common->Head ; /* size n+1 */ /* ---------------------------------------------------------------------- */ /* construct the input matrix for CAMD */ /* ---------------------------------------------------------------------- */ if (A->stype == 0) { /* C = A*A' or A(:,f)*A(:,f)', add extra space of nnz(C)/2+n to C */ C = CHOLMOD(aat) (A, fset, fsize, -2, Common) ; } else { /* C = A+A', but use only the upper triangular part of A if A->stype = 1 * and only the lower part of A if A->stype = -1. Add extra space of * nnz(C)/2+n to C. */ C = CHOLMOD(copy) (A, 0, -2, Common) ; } if (Common->status < CHOLMOD_OK) { /* out of memory, fset invalid, or other error */ CHOLMOD(free) (n+1, 3*sizeof (Int), Work3n, Common) ; return (FALSE) ; } Cp = C->p ; for (j = 0 ; j < n ; j++) { Len [j] = Cp [j+1] - Cp [j] ; } /* C does not include the diagonal, and both upper and lower parts. * Common->anz includes the diagonal, and just the lower part of C */ cnz = Cp [n] ; Common->anz = cnz / 2 + n ; /* ---------------------------------------------------------------------- */ /* order C using CAMD */ /* ---------------------------------------------------------------------- */ /* get parameters */ if (Common->current < 0 || Common->current >= CHOLMOD_MAXMETHODS) { /* use CAMD defaults */ Control = NULL ; } else { Control = Control2 ; Control [CAMD_DENSE] = Common->method [Common->current].prune_dense ; Control [CAMD_AGGRESSIVE] = Common->method [Common->current].aggressive; } /* CAMD_2 does not use camd_malloc and camd_free, but set these pointers * just be safe. */ camd_malloc = Common->malloc_memory ; camd_free = Common->free_memory ; camd_calloc = Common->calloc_memory ; camd_realloc = Common->realloc_memory ; /* CAMD_2 doesn't print anything either, but future versions might, * so set the camd_printf pointer too. */ camd_printf = Common->print_function ; #ifdef LONG /* DEBUG (camd_l_debug_init ("cholmod_l_camd")) ; */ camd_l2 (n, C->p, C->i, Len, C->nzmax, cnz, Nv, Next, Perm, Head, Elen, Degree, Wi, Control, Info, Cmember, BucketSet) ; #else /* DEBUG (camd_debug_init ("cholmod_camd")) ; */ camd_2 (n, C->p, C->i, Len, C->nzmax, cnz, Nv, Next, Perm, Head, Elen, Degree, Wi, Control, Info, Cmember, BucketSet) ; #endif /* LL' flop count. Need to subtract n for LL' flop count. Note that this * is a slight upper bound which is often exact (see CAMD/Source/camd_2.c * for details). cholmod_analyze computes an exact flop count and * fill-in. */ Common->fl = Info [CAMD_NDIV] + 2 * Info [CAMD_NMULTSUBS_LDL] + n ; /* Info [CAMD_LNZ] excludes the diagonal */ Common->lnz = n + Info [CAMD_LNZ] ; /* ---------------------------------------------------------------------- */ /* free the CAMD workspace and clear the persistent workspace in Common */ /* ---------------------------------------------------------------------- */ ASSERT (IMPLIES (Common->status == CHOLMOD_OK, CHOLMOD(dump_perm) (Perm, n, n, "CAMD2 perm", Common))) ; CHOLMOD(free_sparse) (&C, Common) ; for (j = 0 ; j <= n ; j++) { Head [j] = EMPTY ; } CHOLMOD(free) (n+1, 3*sizeof (Int), Work3n, Common) ; return (TRUE) ; } #endif SuiteSparse/CHOLMOD/Partition/cholmod_csymamd.c0000644001170100242450000001123210537777772020340 0ustar davisfac/* ========================================================================== */ /* === Partition/cholmod_csymamd ============================================ */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Partition Module. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Partition Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the CSYMAMD ordering routine. Finds a permutation * p such that the Cholesky factorization of PAP' is sparser than A. * The column etree is found and postordered, and the CSYMAMD * ordering is then combined with its postordering. If A is unsymmetric, * A+A' is ordered (A must be square). * * workspace: Head (nrow+1) * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NPARTITION #include "cholmod_internal.h" #include "ccolamd.h" #include "cholmod_partition.h" #if (CCOLAMD_VERSION < CCOLAMD_VERSION_CODE (2,5)) #error "CCOLAMD v2.0 or later is required" #endif /* ========================================================================== */ /* === cholmod_csymamd ====================================================== */ /* ========================================================================== */ int CHOLMOD(csymamd) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ /* ---- output --- */ Int *Cmember, /* size nrow. see cholmod_ccolamd.c for description */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { double knobs [CCOLAMD_KNOBS] ; Int *perm, *Head ; Int ok, i, nrow, stats [CCOLAMD_STATS] ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; if (A->nrow != A->ncol || !(A->packed)) { ERROR (CHOLMOD_INVALID, "matrix must be square and packed") ; return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ nrow = A->nrow ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ CHOLMOD(allocate_work) (nrow, 0, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } /* ---------------------------------------------------------------------- */ /* order the matrix (does not affect A->p or A->i) */ /* ---------------------------------------------------------------------- */ perm = Common->Head ; /* size nrow+1 (i/l/l) */ /* get parameters */ #ifdef LONG ccolamd_l_set_defaults (knobs) ; #else ccolamd_set_defaults (knobs) ; #endif if (Common->current >= 0 && Common->current < CHOLMOD_MAXMETHODS) { /* get the knobs from the Common parameters */ knobs [CCOLAMD_DENSE_ROW] =Common->method[Common->current].prune_dense ; knobs [CCOLAMD_AGGRESSIVE]=Common->method[Common->current].aggressive ; } { #ifdef LONG csymamd_l (nrow, A->i, A->p, perm, knobs, stats, Common->calloc_memory, Common->free_memory, Cmember, A->stype) ; #else csymamd (nrow, A->i, A->p, perm, knobs, stats, Common->calloc_memory, Common->free_memory, Cmember, A->stype) ; #endif ok = stats [CCOLAMD_STATUS] ; } if (ok == CCOLAMD_ERROR_out_of_memory) { ERROR (CHOLMOD_OUT_OF_MEMORY, "out of memory") ; } ok = (ok == CCOLAMD_OK || ok == CCOLAMD_OK_BUT_JUMBLED) ; /* ---------------------------------------------------------------------- */ /* free the workspace and return result */ /* ---------------------------------------------------------------------- */ /* permutation returned in perm [0..n-1] */ for (i = 0 ; i < nrow ; i++) { Perm [i] = perm [i] ; } /* clear Head workspace (used for perm, in csymamd): */ Head = Common->Head ; for (i = 0 ; i <= nrow ; i++) { Head [i] = EMPTY ; } return (ok) ; } #endif SuiteSparse/CHOLMOD/Partition/License.txt0000644001170100242450000000212110540000304017106 0ustar davisfacCHOLMOD/Partition Module. Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis CHOLMOD is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse Note that this license is for the CHOLMOD/Partition module only. All CHOLMOD modules are licensed separately. -------------------------------------------------------------------------------- This Module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This Module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA SuiteSparse/CHOLMOD/Partition/cholmod_metis.c0000644001170100242450000006377610616661625020033 0ustar davisfac/* ========================================================================== */ /* === Partition/cholmod_metis ============================================== */ /* ========================================================================== */ /* ----------------------------------------------------------------------------- * CHOLMOD/Partition Module. * Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis * The CHOLMOD/Partition Module is licensed under Version 2.1 of the GNU * Lesser General Public License. See lesser.txt for a text of the license. * CHOLMOD is also available under other licenses; contact authors for details. * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* CHOLMOD interface to the METIS package (Version 4.0.1): * * cholmod_metis_bisector: * * Wrapper for METIS_NodeComputeSeparator. Finds a set of nodes that * partitions the graph into two parts. * * cholmod_metis: * * Wrapper for METIS_NodeND, METIS's own nested dissection algorithm. * Typically faster than cholmod_nested_dissection, mostly because it * uses minimum degree on just the leaves of the separator tree, rather * than the whole matrix. * * Note that METIS does not return an error if it runs out of memory. Instead, * it terminates the program. This interface attempts to avoid that problem * by preallocating space that should be large enough for any memory allocations * within METIS, and then freeing that space, just before the call to METIS. * While this is not guaranteed to work, it is very unlikely to fail. If you * encounter this problem, increase Common->metis_memory. If you don't mind * having your program terminated, set Common->metis_memory to zero (a value of * 2.0 is usually safe). Several other METIS workarounds are made in the * routines in this file. See the description of metis_memory_ok, just below, * for more details. * * FUTURE WORK: interfaces to other partitioners (CHACO, SCOTCH, JOSTLE, ... ) * * workspace: several size-nz and size-n temporary arrays. Uses no workspace * in Common. * * Supports any xtype (pattern, real, complex, or zomplex). */ #ifndef NPARTITION #include "cholmod_internal.h" #undef ASSERT #include "metis.h" /* METIS has its own ASSERT that it reveals to the user, so remove it here: */ #undef ASSERT /* and redefine it back again */ #ifndef NDEBUG #define ASSERT(expression) (assert (expression)) #else #define ASSERT(expression) #endif #include "cholmod_partition.h" #include "cholmod_cholesky.h" /* ========================================================================== */ /* === dumpgraph ============================================================ */ /* ========================================================================== */ /* For dumping the input graph to METIS_NodeND, to check with METIS's onmetis * and graphchk programs. For debugging only. To use, uncomment this #define: #define DUMP_GRAPH */ #ifdef DUMP_GRAPH #include /* After dumping the graph with this routine, run "onmetis metisgraph" */ static void dumpgraph (idxtype *Mp, idxtype *Mi, UF_long n, cholmod_common *Common) { UF_long i, j, p, nz ; FILE *f ; nz = Mp [n] ; printf ("Dumping METIS graph n %ld nz %ld\n", n, nz) ; /* DUMP_GRAPH */ f = fopen ("metisgraph", "w") ; if (f == NULL) { ERROR (-99, "cannot open metisgraph") ; return ; } fprintf (f, "%ld %ld\n", n, nz/2) ; /* DUMP_GRAPH */ for (j = 0 ; j < n ; j++) { for (p = Mp [j] ; p < Mp [j+1] ; p++) { i = Mi [p] ; fprintf (f, " %ld", i+1) ; /* DUMP_GRAPH */ } fprintf (f, "\n") ; /* DUMP_GRAPH */ } fclose (f) ; } #endif /* ========================================================================== */ /* === metis_memory_ok ====================================================== */ /* ========================================================================== */ /* METIS_NodeND and METIS_NodeComputeSeparator will terminate your program it * they run out of memory. In an attempt to workaround METIS' behavior, this * routine allocates a single block of memory of size equal to an observed * upper bound on METIS' memory usage. It then immediately deallocates the * block. If the allocation fails, METIS is not called. * * Median memory usage for a graph with n nodes and nz edges (counting each * edge twice, or both upper and lower triangular parts of a matrix) is * 4*nz + 40*n + 4096 integers. A "typical" upper bound is 10*nz + 50*n + 4096 * integers. Nearly all matrices tested fit within that upper bound, with the * exception two in the UF sparse matrix collection: Schenk_IBMNA/c-64 and * Gupta/gupta2. The latter exceeds the "upper bound" by a factor of just less * than 2. * * If you do not mind having your program terminated if it runs out of memory, * set Common->metis_memory to zero. Its default value is 2, which allows for * some memory fragmentation, and also accounts for the Gupta/gupta2 matrix. * * An alternative, if CHOLMOD is used in MATLAB, is to use a version of METIS * (4.0.2, perhaps) proposed to George Karypis. This version uses function * pointer for malloc and free. They can be set to mxMalloc and mxFree * (see sputil_config in MATLAB/sputil.c). On Linux, with gcc, you must also * compile CHOLMOD, METIS, AMD, COLAMD, and CCOLAMD with the -fexceptions * compiler flag. With this configuration, mxMalloc safely aborts the * mexFunction, frees all memory allocted by METIS, and safely returns to * MATLAB. You may then set Common->metis_memory = 0. */ #define GUESS(nz,n) (10 * (nz) + 50 * (n) + 4096) static int metis_memory_ok ( Int n, Int nz, cholmod_common *Common ) { double s ; void *p ; size_t metis_guard ; if (Common->metis_memory <= 0) { /* do not prevent METIS from running out of memory */ return (TRUE) ; } n = MAX (1, n) ; nz = MAX (0, nz) ; /* compute in double, to avoid integer overflow */ s = GUESS ((double) nz, (double) n) ; s *= Common->metis_memory ; if (s * sizeof (idxtype) >= ((double) Size_max)) { /* don't even attempt to malloc such a large block */ return (FALSE) ; } /* recompute in size_t */ metis_guard = GUESS ((size_t) nz, (size_t) n) ; metis_guard *= Common->metis_memory ; /* attempt to malloc the block */ p = CHOLMOD(malloc) (metis_guard, sizeof (idxtype), Common) ; if (p == NULL) { /* failure - return out-of-memory condition */ return (FALSE) ; } /* success - free the block */ CHOLMOD(free) (metis_guard, sizeof (idxtype), p, Common) ; return (TRUE) ; } /* ========================================================================== */ /* === cholmod_metis_bisector =============================================== */ /* ========================================================================== */ /* Finds a set of nodes that bisects the graph of A or AA' (direct interface * to METIS_NodeComputeSeparator). * * The input matrix A must be square, symmetric (with both upper and lower * parts present) and with no diagonal entries. These conditions are NOT * checked. */ UF_long CHOLMOD(metis_bisector) /* returns separator size */ ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to bisect */ Int *Anw, /* size A->nrow, node weights */ Int *Aew, /* size nz, edge weights */ /* ---- output --- */ Int *Partition, /* size A->nrow */ /* --------------- */ cholmod_common *Common ) { Int *Ap, *Ai ; idxtype *Mp, *Mi, *Mnw, *Mew, *Mpart ; Int n, nleft, nright, j, p, csep, total_weight, lightest, nz ; int Opt [8], nn, csp ; size_t n1 ; DEBUG (Int nsep) ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (EMPTY) ; RETURN_IF_NULL (A, EMPTY) ; RETURN_IF_NULL (Anw, EMPTY) ; RETURN_IF_NULL (Aew, EMPTY) ; RETURN_IF_NULL (Partition, EMPTY) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ; if (A->stype || A->nrow != A->ncol) { /* A must be square, with both upper and lower parts present */ ERROR (CHOLMOD_INVALID, "matrix must be square, symmetric," " and with both upper/lower parts present") ; return (EMPTY) ; } Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* quick return */ /* ---------------------------------------------------------------------- */ n = A->nrow ; if (n == 0) { return (0) ; } n1 = ((size_t) n) + 1 ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Ap = A->p ; Ai = A->i ; nz = Ap [n] ; /* ---------------------------------------------------------------------- */ /* METIS does not have a 64-bit integer version */ /* ---------------------------------------------------------------------- */ #ifdef LONG if (sizeof (Int) > sizeof (idxtype) && MAX (n,nz) > INT_MAX / sizeof (int)) { /* CHOLMOD's matrix is too large for METIS */ return (EMPTY) ; } #endif /* ---------------------------------------------------------------------- */ /* set default options */ /* ---------------------------------------------------------------------- */ Opt [0] = 0 ; /* use defaults */ Opt [1] = 3 ; /* matching type */ Opt [2] = 1 ; /* init. partitioning algo*/ Opt [3] = 2 ; /* refinement algorithm */ Opt [4] = 0 ; /* no debug */ Opt [5] = 0 ; /* unused */ Opt [6] = 0 ; /* unused */ Opt [7] = -1 ; /* random seed */ DEBUG (for (j = 0 ; j < n ; j++) ASSERT (Anw [j] > 0)) ; /* ---------------------------------------------------------------------- */ /* copy Int to METIS idxtype, if necessary */ /* ---------------------------------------------------------------------- */ DEBUG (for (j = 0 ; j < nz ; j++) ASSERT (Aew [j] > 0)) ; if (sizeof (Int) == sizeof (idxtype)) { /* this is the typical case */ Mi = (idxtype *) Ai ; Mew = (idxtype *) Aew ; Mp = (idxtype *) Ap ; Mnw = (idxtype *) Anw ; Mpart = (idxtype *) Partition ; } else { /* idxtype and Int differ; copy the graph into the METIS idxtype */ Mi = CHOLMOD(malloc) (nz, sizeof (idxtype), Common) ; Mew = CHOLMOD(malloc) (nz, sizeof (idxtype), Common) ; Mp = CHOLMOD(malloc) (n1, sizeof (idxtype), Common) ; Mnw = CHOLMOD(malloc) (n, sizeof (idxtype), Common) ; Mpart = CHOLMOD(malloc) (n, sizeof (idxtype), Common) ; if (Common->status < CHOLMOD_OK) { CHOLMOD(free) (nz, sizeof (idxtype), Mi, Common) ; CHOLMOD(free) (nz, sizeof (idxtype), Mew, Common) ; CHOLMOD(free) (n1, sizeof (idxtype), Mp, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mnw, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mpart, Common) ; return (EMPTY) ; } for (p = 0 ; p < nz ; p++) { Mi [p] = Ai [p] ; } for (p = 0 ; p < nz ; p++) { Mew [p] = Aew [p] ; } for (j = 0 ; j <= n ; j++) { Mp [j] = Ap [j] ; } for (j = 0 ; j < n ; j++) { Mnw [j] = Anw [j] ; } } /* ---------------------------------------------------------------------- */ /* METIS workaround: try to ensure METIS doesn't run out of memory */ /* ---------------------------------------------------------------------- */ if (!metis_memory_ok (n, nz, Common)) { /* METIS might ask for too much memory and thus terminate the program */ if (sizeof (Int) != sizeof (idxtype)) { CHOLMOD(free) (nz, sizeof (idxtype), Mi, Common) ; CHOLMOD(free) (nz, sizeof (idxtype), Mew, Common) ; CHOLMOD(free) (n1, sizeof (idxtype), Mp, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mnw, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mpart, Common) ; } return (EMPTY) ; } /* ---------------------------------------------------------------------- */ /* partition the graph */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG PRINT1 (("Metis graph, n = "ID"\n", n)) ; for (j = 0 ; j < n ; j++) { Int ppp ; PRINT2 (("M(:,"ID") node weight "ID"\n", j, (Int) Mnw [j])) ; ASSERT (Mnw [j] > 0) ; for (ppp = Mp [j] ; ppp < Mp [j+1] ; ppp++) { PRINT3 ((" "ID" : "ID"\n", (Int) Mi [ppp], (Int) Mew [ppp])) ; ASSERT (Mi [ppp] != j) ; ASSERT (Mew [ppp] > 0) ; } } #endif nn = n ; METIS_NodeComputeSeparator (&nn, Mp, Mi, Mnw, Mew, Opt, &csp, Mpart) ; n = nn ; csep = csp ; PRINT1 (("METIS csep "ID"\n", csep)) ; /* ---------------------------------------------------------------------- */ /* copy the results back from idxtype, if required */ /* ---------------------------------------------------------------------- */ if (sizeof (Int) != sizeof (idxtype)) { for (j = 0 ; j < n ; j++) { Partition [j] = Mpart [j] ; } CHOLMOD(free) (nz, sizeof (idxtype), Mi, Common) ; CHOLMOD(free) (nz, sizeof (idxtype), Mew, Common) ; CHOLMOD(free) (n1, sizeof (idxtype), Mp, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mnw, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mpart, Common) ; } /* ---------------------------------------------------------------------- */ /* ensure a reasonable separator */ /* ---------------------------------------------------------------------- */ /* METIS can return a valid separator with no nodes in (for example) the * left part. In this case, there really is no separator. CHOLMOD * prefers, in this case, for all nodes to be in the separator (and both * left and right parts to be empty). Also, if the graph is unconnected, * METIS can return a valid empty separator. CHOLMOD prefers at least one * node in the separator. Note that cholmod_nested_dissection only calls * this routine on connected components, but cholmod_bisect can call this * routine for any graph. */ if (csep == 0) { /* The separator is empty, select lightest node as separator. If * ties, select the highest numbered node. */ lightest = 0 ; for (j = 0 ; j < n ; j++) { if (Anw [j] <= Anw [lightest]) { lightest = j ; } } PRINT1 (("Force "ID" as sep\n", lightest)) ; Partition [lightest] = 2 ; csep = Anw [lightest] ; } /* determine the node weights in the left and right part of the graph */ nleft = 0 ; nright = 0 ; DEBUG (nsep = 0) ; for (j = 0 ; j < n ; j++) { PRINT1 (("Partition ["ID"] = "ID"\n", j, Partition [j])) ; if (Partition [j] == 0) { nleft += Anw [j] ; } else if (Partition [j] == 1) { nright += Anw [j] ; } #ifndef NDEBUG else { ASSERT (Partition [j] == 2) ; nsep += Anw [j] ; } #endif } ASSERT (csep == nsep) ; total_weight = nleft + nright + csep ; if (csep < total_weight) { /* The separator is less than the whole graph. Make sure the left and * right parts are either both empty or both non-empty. */ PRINT1 (("nleft "ID" nright "ID" csep "ID" tot "ID"\n", nleft, nright, csep, total_weight)) ; ASSERT (nleft + nright + csep == total_weight) ; ASSERT (nleft > 0 || nright > 0) ; if ((nleft == 0 && nright > 0) || (nleft > 0 && nright == 0)) { /* left or right is empty; put all nodes in the separator */ PRINT1 (("Force all in sep\n")) ; csep = total_weight ; for (j = 0 ; j < n ; j++) { Partition [j] = 2 ; } } } ASSERT (CHOLMOD(dump_partition) (n, Ap, Ai, Anw, Partition, csep, Common)) ; /* ---------------------------------------------------------------------- */ /* return the sum of the weights of nodes in the separator */ /* ---------------------------------------------------------------------- */ return (csep) ; } /* ========================================================================== */ /* === cholmod_metis ======================================================== */ /* ========================================================================== */ /* CHOLMOD wrapper for the METIS_NodeND ordering routine. Creates A+A', * A*A' or A(:,f)*A(:,f)' and then calls METIS_NodeND on the resulting graph. * This routine is comparable to cholmod_nested_dissection, except that it * calls METIS_NodeND directly, and it does not return the separator tree. * * workspace: Flag (nrow), Iwork (4*n+uncol) * Allocates a temporary matrix B=A*A' or B=A. */ int CHOLMOD(metis) ( /* ---- input ---- */ cholmod_sparse *A, /* matrix to order */ Int *fset, /* subset of 0:(A->ncol)-1 */ size_t fsize, /* size of fset */ int postorder, /* if TRUE, follow with etree or coletree postorder */ /* ---- output --- */ Int *Perm, /* size A->nrow, output permutation */ /* --------------- */ cholmod_common *Common ) { double d ; Int *Iperm, *Iwork, *Bp, *Bi ; idxtype *Mp, *Mi, *Mperm, *Miperm ; cholmod_sparse *B ; Int i, j, n, nz, p, identity, uncol ; int Opt [8], nn, zero = 0 ; size_t n1, s ; int ok = TRUE ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ RETURN_IF_NULL_COMMON (FALSE) ; RETURN_IF_NULL (A, FALSE) ; RETURN_IF_NULL (Perm, FALSE) ; RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, FALSE) ; Common->status = CHOLMOD_OK ; /* ---------------------------------------------------------------------- */ /* quick return */ /* ---------------------------------------------------------------------- */ n = A->nrow ; if (n == 0) { return (TRUE) ; } n1 = ((size_t) n) + 1 ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* s = 4*n + uncol */ uncol = (A->stype == 0) ? A->ncol : 0 ; s = CHOLMOD(mult_size_t) (n, 4, &ok) ; s = CHOLMOD(add_size_t) (s, uncol, &ok) ; if (!ok) { ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; return (FALSE) ; } CHOLMOD(allocate_work) (n, s, 0, Common) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; /* ---------------------------------------------------------------------- */ /* convert the matrix to adjacency list form */ /* ---------------------------------------------------------------------- */ /* The input graph for METIS must be symmetric, with both upper and lower * parts present, and with no diagonal entries. The columns need not be * sorted. * B = A+A', A*A', or A(:,f)*A(:,f)', upper and lower parts present */ if (A->stype) { /* Add the upper/lower part to a symmetric lower/upper matrix by * converting to unsymmetric mode */ /* workspace: Iwork (nrow) */ B = CHOLMOD(copy) (A, 0, -1, Common) ; } else { /* B = A*A' or A(:,f)*A(:,f)', no diagonal */ /* workspace: Flag (nrow), Iwork (max (nrow,ncol)) */ B = CHOLMOD(aat) (A, fset, fsize, -1, Common) ; } ASSERT (CHOLMOD(dump_sparse) (B, "B for NodeND", Common) >= 0) ; if (Common->status < CHOLMOD_OK) { return (FALSE) ; } ASSERT (B->nrow == A->nrow) ; /* ---------------------------------------------------------------------- */ /* get inputs */ /* ---------------------------------------------------------------------- */ Iwork = Common->Iwork ; Iperm = Iwork ; /* size n (i/i/l) */ Bp = B->p ; Bi = B->i ; nz = Bp [n] ; /* ---------------------------------------------------------------------- */ /* METIS does not have a UF_long integer version */ /* ---------------------------------------------------------------------- */ #ifdef LONG if (sizeof (Int) > sizeof (idxtype) && MAX (n,nz) > INT_MAX / sizeof (int)) { /* CHOLMOD's matrix is too large for METIS */ CHOLMOD(free_sparse) (&B, Common) ; return (FALSE) ; } #endif /* B does not include the diagonal, and both upper and lower parts. * Common->anz includes the diagonal, and just the lower part of B */ Common->anz = nz / 2 + n ; /* ---------------------------------------------------------------------- */ /* set control parameters for METIS_NodeND */ /* ---------------------------------------------------------------------- */ Opt [0] = 0 ; /* use defaults */ Opt [1] = 3 ; /* matching type */ Opt [2] = 1 ; /* init. partitioning algo*/ Opt [3] = 2 ; /* refinement algorithm */ Opt [4] = 0 ; /* no debug */ Opt [5] = 1 ; /* initial compression */ Opt [6] = 0 ; /* no dense node removal */ Opt [7] = 1 ; /* number of separators @ each step */ /* ---------------------------------------------------------------------- */ /* allocate the METIS input arrays, if needed */ /* ---------------------------------------------------------------------- */ if (sizeof (Int) == sizeof (idxtype)) { /* This is the typical case. */ Miperm = (idxtype *) Iperm ; Mperm = (idxtype *) Perm ; Mp = (idxtype *) Bp ; Mi = (idxtype *) Bi ; } else { /* allocate graph for METIS only if Int and idxtype differ */ Miperm = CHOLMOD(malloc) (n, sizeof (idxtype), Common) ; Mperm = CHOLMOD(malloc) (n, sizeof (idxtype), Common) ; Mp = CHOLMOD(malloc) (n1, sizeof (idxtype), Common) ; Mi = CHOLMOD(malloc) (nz, sizeof (idxtype), Common) ; if (Common->status < CHOLMOD_OK) { /* out of memory */ CHOLMOD(free_sparse) (&B, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Miperm, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mperm, Common) ; CHOLMOD(free) (n1, sizeof (idxtype), Mp, Common) ; CHOLMOD(free) (nz, sizeof (idxtype), Mi, Common) ; return (FALSE) ; } for (j = 0 ; j <= n ; j++) { Mp [j] = Bp [j] ; } for (p = 0 ; p < nz ; p++) { Mi [p] = Bi [p] ; } } /* ---------------------------------------------------------------------- */ /* METIS workarounds */ /* ---------------------------------------------------------------------- */ identity = FALSE ; if (nz == 0) { /* The matrix has no off-diagonal entries. METIS_NodeND fails in this * case, so avoid using it. The best permutation is identity anyway, * so this is an easy fix. */ identity = TRUE ; PRINT1 (("METIS:: no nz\n")) ; } else if (Common->metis_nswitch > 0) { /* METIS_NodeND in METIS 4.0.1 gives a seg fault with one matrix of * order n = 3005 and nz = 6,036,025, including the diagonal entries. * The workaround is to return the identity permutation instead of using * METIS for matrices of dimension 3000 or more and with density of 66% * or more - admittedly an uncertain fix, but such matrices are so dense * that any reasonable ordering will do, even identity (n^2 is only 50% * higher than nz in this case). CHOLMOD's nested dissection method * (cholmod_nested_dissection) has no problems with the same matrix, * even though it too uses METIS_NodeComputeSeparator. The matrix is * derived from LPnetlib/lpi_cplex1 in the UF sparse matrix collection. * If C is the lpi_cplex matrix (of order 3005-by-5224), A = (C*C')^2 * results in the seg fault. The seg fault also occurs in the stand- * alone onmetis program that comes with METIS. If a future version of * METIS fixes this problem, then set Common->metis_nswitch to zero. */ d = ((double) nz) / (((double) n) * ((double) n)) ; if (n > (Int) (Common->metis_nswitch) && d > Common->metis_dswitch) { identity = TRUE ; PRINT1 (("METIS:: nswitch/dswitch activated\n")) ; } } if (!identity && !metis_memory_ok (n, nz, Common)) { /* METIS might ask for too much memory and thus terminate the program */ identity = TRUE ; } /* ---------------------------------------------------------------------- */ /* find the permutation */ /* ---------------------------------------------------------------------- */ if (identity) { /* no need to do the postorder */ postorder = FALSE ; for (i = 0 ; i < n ; i++) { Mperm [i] = i ; } } else { #ifdef DUMP_GRAPH /* DUMP_GRAPH */ printf ("Calling METIS_NodeND n "ID" nz "ID"" "density %g\n", n, nz, ((double) nz) / (((double) n) * ((double) n))); dumpgraph (Mp, Mi, n, Common) ; #endif nn = n ; METIS_NodeND (&nn, Mp, Mi, &zero, Opt, Mperm, Miperm) ; n = nn ; PRINT0 (("METIS_NodeND done\n")) ; } /* ---------------------------------------------------------------------- */ /* free the METIS input arrays */ /* ---------------------------------------------------------------------- */ if (sizeof (Int) != sizeof (idxtype)) { for (i = 0 ; i < n ; i++) { Perm [i] = (Int) (Mperm [i]) ; } CHOLMOD(free) (n, sizeof (idxtype), Miperm, Common) ; CHOLMOD(free) (n, sizeof (idxtype), Mperm, Common) ; CHOLMOD(free) (n+1, sizeof (idxtype), Mp, Common) ; CHOLMOD(free) (nz, sizeof (idxtype), Mi, Common) ; } CHOLMOD(free_sparse) (&B, Common) ; /* ---------------------------------------------------------------------- */ /* etree or column-etree postordering, using the Cholesky Module */ /* ---------------------------------------------------------------------- */ if (postorder) { Int *Parent, *Post, *NewPerm ; Int k ; Parent = Iwork + 2*((size_t) n) + uncol ; /* size n = nrow */ Post = Parent + n ; /* size n */ /* workspace: Iwork (2*nrow+uncol), Flag (nrow), Head (nrow+1) */ CHOLMOD(analyze_ordering) (A, CHOLMOD_METIS, Perm, fset, fsize, Parent, Post, NULL, NULL, NULL, Common) ; if (Common->status == CHOLMOD_OK) { /* combine the METIS permutation with its postordering */ NewPerm = Parent ; /* use Parent as workspace */ for (k = 0 ; k < n ; k++) { NewPerm [k] = Perm [Post [k]] ; } for (k = 0 ; k < n ; k++) { Perm [k] = NewPerm [k] ; } } } ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; PRINT1 (("cholmod_metis done\n")) ; return (Common->status == CHOLMOD_OK) ; } #endif SuiteSparse/CHOLMOD/Partition/lesser.txt0000644001170100242450000006350010253404171017044 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/UFconfig/0000755001170100242450000000000010711722217013447 5ustar davisfacSuiteSparse/UFconfig/UFconfig.h0000644001170100242450000001014610712415671015326 0ustar davisfac/* ========================================================================== */ /* === UFconfig.h =========================================================== */ /* ========================================================================== */ /* Configuration file for SuiteSparse: a Suite of Sparse matrix packages * (AMD, COLAMD, CCOLAMD, CAMD, CHOLMOD, UMFPACK, CXSparse, and others). * * UFconfig.h provides the definition of the long integer. On most systems, * a C program can be compiled in LP64 mode, in which long's and pointers are * both 64-bits, and int's are 32-bits. Windows 64, however, uses the LLP64 * model, in which int's and long's are 32-bits, and long long's and pointers * are 64-bits. * * SuiteSparse packages that include long integer versions are * intended for the LP64 mode. However, as a workaround for Windows 64 * (and perhaps other systems), the long integer can be redefined. * * If _WIN64 is defined, then the __int64 type is used instead of long. * * The long integer can also be defined at compile time. For example, this * could be added to UFconfig.mk: * * CFLAGS = -O -D'UF_long=long long' -D'UF_long_max=9223372036854775801' \ * -D'UF_long_id="%lld"' * * This file defines UF_long as either long (on all but _WIN64) or * __int64 on Windows 64. The intent is that a UF_long is always a 64-bit * integer in a 64-bit code. ptrdiff_t might be a better choice than long; * it is always the same size as a pointer. * * This file also defines the SUITESPARSE_VERSION and related definitions. * * Copyright (c) 2007, University of Florida. No licensing restrictions * apply to this file or to the UFconfig directory. Author: Timothy A. Davis. */ #ifndef _UFCONFIG_H #define _UFCONFIG_H #ifdef __cplusplus extern "C" { #endif #include /* ========================================================================== */ /* === UF_long ============================================================== */ /* ========================================================================== */ #ifndef UF_long #ifdef _WIN64 #define UF_long __int64 #define UF_long_max _I64_MAX #define UF_long_id "%I64d" #else #define UF_long long #define UF_long_max LONG_MAX #define UF_long_id "%ld" #endif #endif /* ========================================================================== */ /* === SuiteSparse version ================================================== */ /* ========================================================================== */ /* SuiteSparse is not a package itself, but a collection of packages, some of * which must be used together (UMFPACK requires AMD, CHOLMOD requires AMD, * COLAMD, CAMD, and CCOLAMD, etc). A version number is provided here for the * collection itself. The versions of packages within each version of * SuiteSparse are meant to work together. Combining one packge from one * version of SuiteSparse, with another package from another version of * SuiteSparse, may or may not work. * * SuiteSparse Version 3.1.0 contains the following packages: * * AMD version 2.2.0 * CAMD version 2.2.0 * COLAMD version 2.7.1 * CCOLAMD version 2.7.1 * CHOLMOD version 1.6.0 * CSparse version 2.2.1 * CXSparse version 2.2.1 * KLU version 1.0.1 * BTF version 1.0.1 * LDL version 2.0.1 * UFconfig version number is the same as SuiteSparse * UMFPACK version 5.2.0 * RBio version 1.1.1 * UFcollection version 1.1.1 * LINFACTOR version 1.1.0 * MESHND version 1.1.0 * SSMULT version 1.1.0 * MATLAB_Tools no specific version number * * Other package dependencies: * BLAS required by CHOLMOD and UMFPACK * LAPACK required by CHOLMOD * METIS 4.0.1 required by CHOLMOD (optional) and KLU (optional) */ #define SUITESPARSE_DATE "Nov 1, 2007" #define SUITESPARSE_VER_CODE(main,sub) ((main) * 1000 + (sub)) #define SUITESPARSE_MAIN_VERSION 3 #define SUITESPARSE_SUB_VERSION 1 #define SUITESPARSE_SUBSUB_VERSION 0 #define SUITESPARSE_VERSION \ SUITESPARSE_VER_CODE(SUITESPARSE_MAIN_VERSION,SUITESPARSE_SUB_VERSION) #ifdef __cplusplus } #endif #endif SuiteSparse/UFconfig/README.txt0000644001170100242450000000307510711430676015157 0ustar davisfacUFconfig contains configuration settings for all many of the software packages that I develop or co-author. Note that older versions of some of these packages do not require UFconfig. Package Description ------- ----------- AMD approximate minimum degree ordering CAMD constrained AMD COLAMD column approximate minimum degree ordering CCOLAMD constrained approximate minimum degree ordering UMFPACK sparse LU factorization, with the BLAS CXSparse int/long/real/complex version of CSparse CHOLMOD sparse Cholesky factorization, update/downdate KLU sparse LU factorization, BLAS-free BTF permutation to block triangular form LDL concise sparse LDL' LPDASA LP Dual Active Set Algorithm UFconfig is not required by: CSparse a Concise Sparse matrix package RBio read/write files in Rutherford/Boeing format UFcollection tools for managing the UF Sparse Matrix Collection LINFACTOR simple m-file to show how to use LU and CHOL to solve Ax=b MESHND 2D and 3D mesh generation and nested dissection ordering MATLAB_Tools misc collection of m-files SSMULT sparse matrix times sparse matrix, for use in MATLAB In addition, the xerbla/ directory contains Fortan and C versions of the BLAS/LAPACK xerbla routine, which is called when an invalid input is passed to the BLAS or LAPACK. The xerbla provided here does not print any message, so the entire Fortran I/O library does not need to be linked into a C application. Most versions of the BLAS contain xerbla, but those from K. Goto do not. Use this if you need too. SuiteSparse/UFconfig/xerbla/0000755001170100242450000000000010711435720014724 5ustar davisfacSuiteSparse/UFconfig/xerbla/Makefile0000644001170100242450000000071610367441762016402 0ustar davisfac# Makefile for null-output xerbla default: ccode include ../UFconfig.mk ccode: libcerbla.a fortran: libxerbla.a all: libxerbla.a libcerbla.a # Fortran version: libxerbla.a: xerbla.f $(F77) $(F77FLAGS) -c xerbla.f $(AR) libxerbla.a xerbla.o - $(RM) xerbla.o # C version: libcerbla.a: xerbla.c xerbla.h $(CC) $(CFLAGS) -c xerbla.c $(AR) libcerbla.a xerbla.o - $(RM) xerbla.o distclean: purge purge: clean - $(RM) *.o *.a clean: - $(RM) $(CLEAN) SuiteSparse/UFconfig/xerbla/xerbla.c0000644001170100242450000000020710301441524016336 0ustar davisfac void xerbla_ (char *srname, int *info) { /* do nothing */ ; } void xerbla (char *srname, int *info) { /* do nothing */ ; } SuiteSparse/UFconfig/xerbla/xerbla.f0000644001170100242450000000236010130774511016350 0ustar davisfac SUBROUTINE XERBLA( SRNAME, INFO ) * * -- LAPACK auxiliary routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. CHARACTER*6 SRNAME INTEGER INFO * .. * * Purpose * ======= * * XERBLA is an error handler for the LAPACK routines. * It is called by an LAPACK routine if an input parameter has an * invalid value. A message is printed and execution stops. * * Installers may consider modifying the STOP statement in order to * call system-specific exception-handling facilities. * * Arguments * ========= * * SRNAME (input) CHARACTER*6 * The name of the routine which called XERBLA. * * INFO (input) INTEGER * The position of the invalid parameter in the parameter list * of the calling routine. * * ===================================================================== * * .. Executable Statements .. * ***** WRITE( *, FMT = 9999 )SRNAME, INFO * ***** STOP * ***** 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', ***** $ 'an illegal value' ) * * End of XERBLA * END SuiteSparse/UFconfig/xerbla/xerbla.h0000644001170100242450000000012210301441547016344 0ustar davisfacvoid xerbla_ (char *srname, int *info) ; void xerbla (char *srname, int *info) ; SuiteSparse/UFconfig/UFconfig.mk0000644001170100242450000002575510707647340015526 0ustar davisfac#=============================================================================== # UFconfig.mk: common configuration file for the SuiteSparse #=============================================================================== # This file contains all configuration settings for all packages authored or # co-authored by Tim Davis at the University of Florida: # # Package Version Description # ------- ------- ----------- # AMD 1.2 or later approximate minimum degree ordering # COLAMD 2.4 or later column approximate minimum degree ordering # CCOLAMD 1.0 or later constrained column approximate minimum degree ordering # CAMD any constrained approximate minimum degree ordering # UMFPACK 4.5 or later sparse LU factorization, with the BLAS # CHOLMOD any sparse Cholesky factorization, update/downdate # KLU 0.8 or later sparse LU factorization, BLAS-free # BTF 0.8 or later permutation to block triangular form # LDL 1.2 or later concise sparse LDL' # LPDASA any linear program solve (dual active set algorithm) # CXSparse any extended version of CSparse (int/long, real/complex) # # The UFconfig directory and the above packages should all appear in a single # directory, in order for the Makefile's within each package to find this file. # # To enable an option of the form "# OPTION = ...", edit this file and # delete the "#" in the first column of the option you wish to use. #------------------------------------------------------------------------------ # Generic configuration #------------------------------------------------------------------------------ # C compiler and compiler flags: These will normally not give you optimal # performance. You should select the optimization parameters that are best # for your system. On Linux, use "CFLAGS = -O3 -fexceptions" for example. CC = cc CFLAGS = -O # ranlib, and ar, for generating libraries RANLIB = ranlib AR = ar cr # delete and rename a file RM = rm -f MV = mv -f # Fortran compiler (not normally required) F77 = f77 F77FLAGS = -O F77LIB = # C and Fortran libraries LIB = -lm # For compiling MATLAB mexFunctions (MATLAB 7.5) MEX = mex -O -largeArrayDims -lmwlapack -lmwblas # For compiling MATLAB mexFunctions (MATLAB 7.3 and 7.4) # MEX = mex -O -largeArrayDims -lmwlapack # For MATLAB 7.2 or earlier, you must use one of these options: # MEX = mex -O -lmwlapack # MEX = mex -O # Which version of MAKE you are using (default is "make") # MAKE = make # MAKE = gmake #------------------------------------------------------------------------------ # BLAS and LAPACK configuration: #------------------------------------------------------------------------------ # UMFPACK and CHOLMOD both require the BLAS. CHOLMOD also requires LAPACK. # See Kazushige Goto's BLAS at http://www.cs.utexas.edu/users/flame/goto/ or # http://www.tacc.utexas.edu/~kgoto/ for the best BLAS to use with CHOLMOD. # LAPACK is at http://www.netlib.org/lapack/ . You can use the standard # Fortran LAPACK along with Goto's BLAS to obtain very good performance. # CHOLMOD gets a peak numeric factorization rate of 3.6 Gflops on a 3.2 GHz # Pentium 4 (512K cache, 4GB main memory) with the Goto BLAS, and 6 Gflops # on a 2.5Ghz dual-core AMD Opteron. # These settings will probably not work, since there is no fixed convention for # naming the BLAS and LAPACK library (*.a or *.so) files. # Using the Goto BLAS: # BLAS = -lgoto -lgfortran -lgfortranbegin # This is probably slow ... it might connect to the Standard Reference BLAS: BLAS = -lblas -lgfortran -lgfortranbegin LAPACK = -llapack # The BLAS might not contain xerbla, an error-handling routine for LAPACK and # the BLAS. Also, the standard xerbla requires the Fortran I/O library, and # stops the application program if an error occurs. A C version of xerbla # distributed with this software (UFconfig/xerbla/libcerbla.a) includes a # Fortran-callable xerbla routine that prints nothing and does not stop the # application program. This is optional. # XERBLA = ../../UFconfig/xerbla/libcerbla.a # If you wish to use the XERBLA in LAPACK and/or the BLAS instead, # use this option: XERBLA = # If you wish to use the Fortran UFconfig/xerbla/xerbla.f instead, use this: # XERBLA = ../../UFconfig/xerbla/libxerbla.a #------------------------------------------------------------------------------ # METIS, optionally used by CHOLMOD #------------------------------------------------------------------------------ # If you do not have METIS, or do not wish to use it in CHOLMOD, you must # compile CHOLMOD with the -DNPARTITION flag. You must also use the # "METIS =" option, below. # The path is relative to where it is used, in CHOLMOD/Lib, CHOLMOD/MATLAB, etc. # You may wish to use an absolute path. METIS is optional. Compile # CHOLMOD with -DNPARTITION if you do not wish to use METIS. METIS_PATH = ../../metis-4.0 METIS = ../../metis-4.0/libmetis.a # If you use CHOLMOD_CONFIG = -DNPARTITION then you must use the following # options: # METIS_PATH = # METIS = #------------------------------------------------------------------------------ # UMFPACK configuration: #------------------------------------------------------------------------------ # Configuration flags for UMFPACK. See UMFPACK/Source/umf_config.h for details. # # -DNBLAS do not use the BLAS. UMFPACK will be very slow. # -D'LONGBLAS=long' or -DLONGBLAS='long long' defines the integers used by # LAPACK and the BLAS (defaults to 'int') # -DNSUNPERF do not use the Sun Perf. Library (default is use it on Solaris) # -DNPOSIX do not use POSIX routines sysconf and times. # -DGETRUSAGE use getrusage # -DNO_TIMER do not use any timing routines # -DNRECIPROCAL do not multiply by the reciprocal # -DNO_DIVIDE_BY_ZERO do not divide by zero UMFPACK_CONFIG = #------------------------------------------------------------------------------ # CHOLMOD configuration #------------------------------------------------------------------------------ # CHOLMOD Library Modules, which appear in libcholmod.a: # Core requires: none # Check requires: Core # Cholesky requires: Core, AMD, COLAMD. optional: Partition, Supernodal # MatrixOps requires: Core # Modify requires: Core # Partition requires: Core, CCOLAMD, METIS. optional: Cholesky # Supernodal requires: Core, BLAS, LAPACK # # CHOLMOD test/demo Modules (all are GNU GPL, do not appear in libcholmod.a): # Tcov requires: Core, Check, Cholesky, MatrixOps, Modify, Supernodal # optional: Partition # Valgrind same as Tcov # Demo requires: Core, Check, Cholesky, MatrixOps, Supernodal # optional: Partition # # Configuration flags: # -DNCHECK do not include the Check module. License GNU LGPL # -DNCHOLESKY do not include the Cholesky module. License GNU LGPL # -DNPARTITION do not include the Partition module. License GNU LGPL # also do not include METIS. # -DNGPL do not include any GNU GPL Modules in the CHOLMOD library: # -DNMATRIXOPS do not include the MatrixOps module. License GNU GPL # -DNMODIFY do not include the Modify module. License GNU GPL # -DNSUPERNODAL do not include the Supernodal module. License GNU GPL # # -DNPRINT do not print anything. # -D'LONGBLAS=long' or -DLONGBLAS='long long' defines the integers used by # LAPACK and the BLAS (defaults to 'int') # -DNSUNPERF for Solaris only. If defined, do not use the Sun # Performance Library CHOLMOD_CONFIG = #------------------------------------------------------------------------------ # Linux #------------------------------------------------------------------------------ # Using default compilers: # CC = gcc CFLAGS = -O3 # alternatives: # CFLAGS = -g -fexceptions \ -Wall -W -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization -ansi # CFLAGS = -O3 -fexceptions \ -Wall -W -Werror -Wshadow -Wmissing-prototypes -Wstrict-prototypes \ -Wredundant-decls -Wnested-externs -Wdisabled-optimization -ansi # CFLAGS = -O3 -fexceptions -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE # CFLAGS = -O3 # consider: # -fforce-addr -fmove-all-movables -freduce-all-givs -ftsp-ordering # -frename-registers -ffast-math -funroll-loops # Using the Goto BLAS: # BLAS = -lgoto -lfrtbegin -lg2c $(XERBLA) -lpthread # Using Intel's icc and ifort compilers: # (does not work for mexFunctions unless you add a mexopts.sh file) # F77 = ifort # CC = icc # CFLAGS = -O3 -xN -vec_report=0 # CFLAGS = -g # old (broken): CFLAGS = -ansi -O3 -ip -tpp7 -xW -vec_report0 # 64bit: # F77FLAGS = -O -m64 # CFLAGS = -O3 -fexceptions -m64 # BLAS = -lgoto64 -lfrtbegin -lg2c -lpthread $(XERBLA) # LAPACK = -llapack64 # SUSE Linux 10.1, AMD Opteron, with GOTO Blas # F77 = gfortran # BLAS = -lgoto_opteron64 -lgfortran # SUSE Linux 10.1, Intel Pentium, with GOTO Blas # F77 = gfortran # BLAS = -lgoto -lgfortran #------------------------------------------------------------------------------ # Solaris #------------------------------------------------------------------------------ # 32-bit # CFLAGS = -KPIC -dalign -xc99=%none -Xc -xlibmieee -xO5 -xlibmil # 64-bit # CFLAGS = -KPIC -dalign -xc99=%none -Xc -xlibmieee -xO5 -xlibmil -xarch=v9 # BLAS = -xlic_lib=sunperf # LAPACK = #------------------------------------------------------------------------------ # Compaq Alpha #------------------------------------------------------------------------------ # 64-bit mode only # CFLAGS = -O2 -std1 # BLAS = -ldxml # LAPACK = #------------------------------------------------------------------------------ # Macintosh #------------------------------------------------------------------------------ # CC = gcc # CFLAGS = -O3 -fno-common -no-cpp-precomp -fexceptions # LIB = -lstdc++ # BLAS = -framework Accelerate # LAPACK = -framework Accelerate #------------------------------------------------------------------------------ # IBM RS 6000 #------------------------------------------------------------------------------ # BLAS = -lessl # LAPACK = # 32-bit mode: # CFLAGS = -O4 -qipa -qmaxmem=16384 -qproto # F77FLAGS = -O4 -qipa -qmaxmem=16384 # 64-bit mode: # CFLAGS = -O4 -qipa -qmaxmem=16384 -q64 -qproto # F77FLAGS = -O4 -qipa -qmaxmem=16384 -q64 # AR = ar -X64 #------------------------------------------------------------------------------ # SGI IRIX #------------------------------------------------------------------------------ # BLAS = -lscsl # LAPACK = # 32-bit mode # CFLAGS = -O # 64-bit mode (32 bit int's and 64-bit long's): # CFLAGS = -64 # F77FLAGS = -64 # SGI doesn't have ranlib # RANLIB = echo #------------------------------------------------------------------------------ # AMD Opteron (64 bit) #------------------------------------------------------------------------------ # BLAS = -lgoto_opteron64 -lg2c # LAPACK = -llapack_opteron64 # SUSE Linux 10.1, AMD Opteron # F77 = gfortran # BLAS = -lgoto_opteron64 -lgfortran # LAPACK = -llapack_opteron64 #------------------------------------------------------------------------------ # remove object files and profile output #------------------------------------------------------------------------------ CLEAN = *.o *.obj *.ln *.bb *.bbg *.da *.tcov *.gcov gmon.out *.bak *.d SuiteSparse/COLAMD/0000755001170100242450000000000010617111314012701 5ustar davisfacSuiteSparse/COLAMD/Doc/0000755001170100242450000000000010621174457013422 5ustar davisfacSuiteSparse/COLAMD/Doc/ChangeLog0000644001170100242450000001075110620614776015202 0ustar davisfacMay 31, 2007: version 2.7.0 * ported to 64-bit MATLAB * subdirectories added (Source/, Include/, Lib/, Doc/, MATLAB/, Demo/) Dec 12, 2006, version 2.5.2 * minor MATLAB cleanup. MATLAB functions renamed colamd2 and symamd2, so that they do not conflict with the built-in versions. Note that the MATLAB built-in functions colamd and symamd are identical to the colamd and symamd functions here. Aug 31, 2006: Version 2.5.1 * minor change to colamd.m and symamd.m, to use etree instead of sparsfun. Apr. 30, 2006: Version 2.5 * colamd_recommended modified, to do more careful integer overflow checking. It now returns size_t, not int. colamd_l_recommended also returns size_t. A zero is returned if an error occurs. A postive return value denotes success. In v2.4 and earlier, -1 was returned on error (an int or long). * long replaced with UF_long integer, which is long except on WIN64. Nov 15, 2005: * minor editting of comments; version number (2.4) unchanged. Changes from Version 2.3 to 2.4 (Aug 30, 2005) * Makefile now relies on ../UFconfig/UFconfig.mk * changed the dense row/col detection. The meaning of the knobs has thus changed. * added an option to turn off aggressive absorption. It was always on in versions 2.3 and earlier. * added a #define'd version number * added a function pointer (colamd_printf) for COLAMD's printing. * added a -DNPRINT option, to turn off printing at compile-time. * added a check for integer overflow in colamd_recommended * minor changes to allow for more simpler 100% test coverage * bug fix. If symamd v2.3 fails to allocate its copy of the input matrix, then it erroneously frees a calloc'd workspace twice. This bug has no effect on the MATLAB symamd mexFunction, since mxCalloc terminates the mexFunction if it fails to allocate memory. Similarly, UMFPACK is not affected because it does not use symamd. The bug has no effect on the colamd ordering routine in v2.3. Changes from Version 2.2 to 2.3 (Sept. 8, 2003) * removed the call to the MATLAB spparms ('spumoni') function. This can take a lot of time if you are ordering many small matrices. Only affects the MATLAB interface (colamdmex.c, symamdmex.c, colamdtestmex.c, and symamdtestmex.c). The usage of the optional 2nd argument to the colamd and symamd mexFunctions was changed accordingly. Changes from Version 2.1 to 2.2 (Sept. 23, 2002) * extensive testing routines added (colamd_test.m, colamdtestmex.c, and symamdtestmex.c), and the Makefile modified accordingly. * a few typos in the comments corrected * use of the MATLAB "flops" command removed from colamd_demo, and an m-file routine luflops.m added. * an explicit typecast from unsigned to int added, for COLAMD_C and COLAMD_R in colamd.h. * #include added to colamd_example.c Changes from Version 2.0 to 2.1 (May 4, 2001) * TRUE and FALSE are predefined on some systems, so they are defined here only if not already defined. * web site changed * UNIX Makefile modified, to handle the case if "." is not in your path. Changes from Version 1.0 to 2.0 (January 31, 2000) No bugs were found in version 1.1. These changes merely add new functionality. * added the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. * moved the output statistics, from A, to a separate output argument. The arguments changed for the C-callable routines. * added colamd_report and symamd_report. * added a C-callable symamd routine. Formerly, symamd was only available as a mexFunction from MATLAB. * added error-checking to symamd. Formerly, it assumed its input was error-free. * added the optional stats and knobs arguments to the symamd mexFunction * deleted colamd_help. A help message is still available from "help colamd" and "help symamd" in MATLAB. * deleted colamdtree.m and symamdtree.m. Now, colamd.m and symamd.m also do the elimination tree post-ordering. The Version 1.1 colamd and symamd mexFunctions, which do not do the post- ordering, are now visible as colamdmex and symamdmex from MATLAB. Essentialy, the post-ordering is now the default behavior of colamd.m and symamd.m, to match the behavior of colmmd and symmmd. The post-ordering is only available in the MATLAB interface, not the C-callable interface. * made a slight change to the dense row/column detection in symamd, to match the stated specifications. SuiteSparse/COLAMD/Doc/lesser.txt0000644001170100242450000006350010263213546015457 0ustar davisfac GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. , 1 April 1990 Ty Coon, President of Vice That's all there is to it! SuiteSparse/COLAMD/Lib/0000755001170100242450000000000010711435722013416 5ustar davisfacSuiteSparse/COLAMD/Lib/Makefile0000644001170100242450000000143710617104633015062 0ustar davisfac#------------------------------------------------------------------------------- # COLAMD Makefile #------------------------------------------------------------------------------- default: libcolamd.a include ../../UFconfig/UFconfig.mk I = -I../Include -I../../UFconfig INC = ../Include/colamd.h ../../UFconfig/UFconfig.h SRC = ../Source/colamd.c ../Source/colamd_global.c # creates libcolamd.a, a C-callable COLAMD library libcolamd.a: $(SRC) $(INC) $(CC) $(CFLAGS) $(I) -c ../Source/colamd_global.c $(CC) $(CFLAGS) $(I) -c ../Source/colamd.c $(CC) $(CFLAGS) $(I) -c ../Source/colamd.c -DDLONG -o colamd_l.o $(AR) libcolamd.a colamd.o colamd_l.o colamd_global.o ccode: libcolamd.a library: libcolamd.a clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) libcolamd.a SuiteSparse/COLAMD/Demo/0000755001170100242450000000000010711435722013574 5ustar davisfacSuiteSparse/COLAMD/Demo/colamd_l_example.c0000644001170100242450000001361110537764112017233 0ustar davisfac/* ========================================================================== */ /* === colamd and symamd example ============================================ */ /* ========================================================================== */ /* COLAMD / SYMAMD example colamd example of use, to order the columns of a 5-by-4 matrix with 11 nonzero entries in the following nonzero pattern, with default knobs. x 0 x 0 x 0 x x 0 x x 0 0 0 x x x x 0 0 symamd example of use, to order the rows and columns of a 5-by-5 matrix with 13 nonzero entries in the following nonzero pattern, with default knobs. x x 0 0 0 x x x x 0 0 x x 0 0 0 x 0 x x 0 0 0 x x (where x denotes a nonzero value). See http://www.cise.ufl.edu/research/sparse/colamd/ (the colamd.c file) for the routines this program calls, and for the License. */ /* ========================================================================== */ #include #include "colamd.h" #define A_NNZ 11 #define A_NROW 5 #define A_NCOL 4 #define ALEN 150 #define B_NNZ 4 #define B_N 5 /* define UF_long */ #include "UFconfig.h" int main (void) { /* ====================================================================== */ /* input matrix A definition */ /* ====================================================================== */ UF_long A [ALEN] = { 0, 1, 4, /* row indices of nonzeros in column 0 */ 2, 4, /* row indices of nonzeros in column 1 */ 0, 1, 2, 3, /* row indices of nonzeros in column 2 */ 1, 3} ; /* row indices of nonzeros in column 3 */ UF_long p [ ] = { 0, /* column 0 is in A [0..2] */ 3, /* column 1 is in A [3..4] */ 5, /* column 2 is in A [5..8] */ 9, /* column 3 is in A [9..10] */ A_NNZ} ; /* number of nonzeros in A */ /* ====================================================================== */ /* input matrix B definition */ /* ====================================================================== */ UF_long B [ ] = { /* Note: only strictly lower triangular part */ /* is included, since symamd ignores the */ /* diagonal and upper triangular part of B. */ 1, /* row indices of nonzeros in column 0 */ 2, 3, /* row indices of nonzeros in column 1 */ /* row indices of nonzeros in column 2 (none) */ 4 /* row indices of nonzeros in column 3 */ } ; /* row indices of nonzeros in column 4 (none) */ UF_long q [ ] = { 0, /* column 0 is in B [0] */ 1, /* column 1 is in B [1..2] */ 3, /* column 2 is empty */ 3, /* column 3 is in B [3] */ 4, /* column 4 is empty */ B_NNZ} ; /* number of nonzeros in strictly lower B */ /* ====================================================================== */ /* other variable definitions */ /* ====================================================================== */ UF_long perm [B_N+1] ; /* note the size is N+1 */ UF_long stats [COLAMD_STATS] ;/* for colamd and symamd output statistics */ UF_long row, col, pp, length, ok ; /* ====================================================================== */ /* dump the input matrix A */ /* ====================================================================== */ printf ("colamd %d-by-%d input matrix:\n", A_NROW, A_NCOL) ; for (col = 0 ; col < A_NCOL ; col++) { length = p [col+1] - p [col] ; printf ("Column %ld, with %ld entries:\n", col, length) ; for (pp = p [col] ; pp < p [col+1] ; pp++) { row = A [pp] ; printf (" row %ld\n", row) ; } } /* ====================================================================== */ /* order the matrix. Note that this destroys A and overwrites p */ /* ====================================================================== */ ok = colamd_l (A_NROW, A_NCOL, ALEN, A, p, (double *) NULL, stats) ; colamd_l_report (stats) ; if (!ok) { printf ("colamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the column ordering */ /* ====================================================================== */ printf ("colamd_l column ordering:\n") ; printf ("1st column: %ld\n", p [0]) ; printf ("2nd column: %ld\n", p [1]) ; printf ("3rd column: %ld\n", p [2]) ; printf ("4th column: %ld\n", p [3]) ; /* ====================================================================== */ /* dump the strictly lower triangular part of symmetric input matrix B */ /* ====================================================================== */ printf ("\n\nsymamd_l %d-by-%d input matrix:\n", B_N, B_N) ; printf ("Entries in strictly lower triangular part:\n") ; for (col = 0 ; col < B_N ; col++) { length = q [col+1] - q [col] ; printf ("Column %ld, with %ld entries:\n", col, length) ; for (pp = q [col] ; pp < q [col+1] ; pp++) { row = B [pp] ; printf (" row %ld\n", row) ; } } /* ====================================================================== */ /* order the matrix B. Note that this does not modify B or q. */ /* ====================================================================== */ ok = symamd_l (B_N, B, q, perm, (double *) NULL, stats, &calloc, &free) ; symamd_l_report (stats) ; if (!ok) { printf ("symamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the symmetric ordering */ /* ====================================================================== */ printf ("symamd_l column ordering:\n") ; printf ("1st row/column: %ld\n", perm [0]) ; printf ("2nd row/column: %ld\n", perm [1]) ; printf ("3rd row/column: %ld\n", perm [2]) ; printf ("4th row/column: %ld\n", perm [3]) ; printf ("5th row/column: %ld\n", perm [4]) ; exit (0) ; } SuiteSparse/COLAMD/Demo/Makefile0000644001170100242450000000253110617104724015235 0ustar davisfac#----------------------------------------------------------------------------- # compile the COLAMD demo #----------------------------------------------------------------------------- default: colamd_example colamd_l_example include ../../UFconfig/UFconfig.mk I = -I../Include -I../../UFconfig C = $(CC) $(CFLAGS) $(I) library: ( cd ../Lib ; $(MAKE) ) #------------------------------------------------------------------------------ # Create the demo program, run it, and compare the output #------------------------------------------------------------------------------ dist: colamd_example: colamd_example.c library $(C) -o colamd_example colamd_example.c ../Lib/libcolamd.a -lm - ./colamd_example > my_colamd_example.out - diff colamd_example.out my_colamd_example.out colamd_l_example: colamd_l_example.c library $(C) -o colamd_l_example colamd_l_example.c ../Lib/libcolamd.a -lm - ./colamd_l_example > my_colamd_l_example.out - diff colamd_example.out my_colamd_example.out #------------------------------------------------------------------------------ # Remove all but the files in the original distribution #------------------------------------------------------------------------------ clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) colamd_example colamd_l_example - $(RM) my_colamd_example.out my_colamd_l_example.out SuiteSparse/COLAMD/Demo/colamd_l_example.out0000644001170100242450000000213710711431226017610 0ustar davisfaccolamd 5-by-4 input matrix: Column 0, with 3 entries: row 0 row 1 row 4 Column 1, with 2 entries: row 2 row 4 Column 2, with 4 entries: row 0 row 1 row 2 row 3 Column 3, with 2 entries: row 1 row 3 colamd version 2.7, Nov 1, 2007: OK. colamd: number of dense or empty rows ignored: 0 colamd: number of dense or empty columns ignored: 0 colamd: number of garbage collections performed: 0 colamd_l column ordering: 1st column: 1 2nd column: 0 3rd column: 2 4th column: 3 symamd_l 5-by-5 input matrix: Entries in strictly lower triangular part: Column 0, with 1 entries: row 1 Column 1, with 2 entries: row 2 row 3 Column 2, with 0 entries: Column 3, with 1 entries: row 4 Column 4, with 0 entries: symamd version 2.7, Nov 1, 2007: OK. symamd: number of dense or empty rows ignored: 0 symamd: number of dense or empty columns ignored: 0 symamd: number of garbage collections performed: 0 symamd_l column ordering: 1st row/column: 0 2nd row/column: 2 3rd row/column: 1 4th row/column: 3 5th row/column: 4 SuiteSparse/COLAMD/Demo/colamd_example.out0000644001170100242450000000213110711431226017267 0ustar davisfaccolamd 5-by-4 input matrix: Column 0, with 3 entries: row 0 row 1 row 4 Column 1, with 2 entries: row 2 row 4 Column 2, with 4 entries: row 0 row 1 row 2 row 3 Column 3, with 2 entries: row 1 row 3 colamd version 2.7, Nov 1, 2007: OK. colamd: number of dense or empty rows ignored: 0 colamd: number of dense or empty columns ignored: 0 colamd: number of garbage collections performed: 0 colamd column ordering: 1st column: 1 2nd column: 0 3rd column: 2 4th column: 3 symamd 5-by-5 input matrix: Entries in strictly lower triangular part: Column 0, with 1 entries: row 1 Column 1, with 2 entries: row 2 row 3 Column 2, with 0 entries: Column 3, with 1 entries: row 4 Column 4, with 0 entries: symamd version 2.7, Nov 1, 2007: OK. symamd: number of dense or empty rows ignored: 0 symamd: number of dense or empty columns ignored: 0 symamd: number of garbage collections performed: 0 symamd column ordering: 1st row/column: 0 2nd row/column: 2 3rd row/column: 1 4th row/column: 3 5th row/column: 4 SuiteSparse/COLAMD/Demo/colamd_example.c0000644001170100242450000001344510537764057016735 0ustar davisfac/* ========================================================================== */ /* === colamd and symamd example ============================================ */ /* ========================================================================== */ /* COLAMD / SYMAMD example colamd example of use, to order the columns of a 5-by-4 matrix with 11 nonzero entries in the following nonzero pattern, with default knobs. x 0 x 0 x 0 x x 0 x x 0 0 0 x x x x 0 0 symamd example of use, to order the rows and columns of a 5-by-5 matrix with 13 nonzero entries in the following nonzero pattern, with default knobs. x x 0 0 0 x x x x 0 0 x x 0 0 0 x 0 x x 0 0 0 x x (where x denotes a nonzero value). See http://www.cise.ufl.edu/research/sparse/colamd/ (the colamd.c file) for the routines this program calls, and for the License. */ /* ========================================================================== */ #include #include "colamd.h" #define A_NNZ 11 #define A_NROW 5 #define A_NCOL 4 #define ALEN 150 #define B_NNZ 4 #define B_N 5 int main (void) { /* ====================================================================== */ /* input matrix A definition */ /* ====================================================================== */ int A [ALEN] = { 0, 1, 4, /* row indices of nonzeros in column 0 */ 2, 4, /* row indices of nonzeros in column 1 */ 0, 1, 2, 3, /* row indices of nonzeros in column 2 */ 1, 3} ; /* row indices of nonzeros in column 3 */ int p [ ] = { 0, /* column 0 is in A [0..2] */ 3, /* column 1 is in A [3..4] */ 5, /* column 2 is in A [5..8] */ 9, /* column 3 is in A [9..10] */ A_NNZ} ; /* number of nonzeros in A */ /* ====================================================================== */ /* input matrix B definition */ /* ====================================================================== */ int B [ ] = { /* Note: only strictly lower triangular part */ /* is included, since symamd ignores the */ /* diagonal and upper triangular part of B. */ 1, /* row indices of nonzeros in column 0 */ 2, 3, /* row indices of nonzeros in column 1 */ /* row indices of nonzeros in column 2 (none) */ 4 /* row indices of nonzeros in column 3 */ } ; /* row indices of nonzeros in column 4 (none) */ int q [ ] = { 0, /* column 0 is in B [0] */ 1, /* column 1 is in B [1..2] */ 3, /* column 2 is empty */ 3, /* column 3 is in B [3] */ 4, /* column 4 is empty */ B_NNZ} ; /* number of nonzeros in strictly lower B */ /* ====================================================================== */ /* other variable definitions */ /* ====================================================================== */ int perm [B_N+1] ; /* note the size is N+1 */ int stats [COLAMD_STATS] ; /* for colamd and symamd output statistics */ int row, col, pp, length, ok ; /* ====================================================================== */ /* dump the input matrix A */ /* ====================================================================== */ printf ("colamd %d-by-%d input matrix:\n", A_NROW, A_NCOL) ; for (col = 0 ; col < A_NCOL ; col++) { length = p [col+1] - p [col] ; printf ("Column %d, with %d entries:\n", col, length) ; for (pp = p [col] ; pp < p [col+1] ; pp++) { row = A [pp] ; printf (" row %d\n", row) ; } } /* ====================================================================== */ /* order the matrix. Note that this destroys A and overwrites p */ /* ====================================================================== */ ok = colamd (A_NROW, A_NCOL, ALEN, A, p, (double *) NULL, stats) ; colamd_report (stats) ; if (!ok) { printf ("colamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the column ordering */ /* ====================================================================== */ printf ("colamd column ordering:\n") ; printf ("1st column: %d\n", p [0]) ; printf ("2nd column: %d\n", p [1]) ; printf ("3rd column: %d\n", p [2]) ; printf ("4th column: %d\n", p [3]) ; /* ====================================================================== */ /* dump the strictly lower triangular part of symmetric input matrix B */ /* ====================================================================== */ printf ("\n\nsymamd %d-by-%d input matrix:\n", B_N, B_N) ; printf ("Entries in strictly lower triangular part:\n") ; for (col = 0 ; col < B_N ; col++) { length = q [col+1] - q [col] ; printf ("Column %d, with %d entries:\n", col, length) ; for (pp = q [col] ; pp < q [col+1] ; pp++) { row = B [pp] ; printf (" row %d\n", row) ; } } /* ====================================================================== */ /* order the matrix B. Note that this does not modify B or q. */ /* ====================================================================== */ ok = symamd (B_N, B, q, perm, (double *) NULL, stats, &calloc, &free) ; symamd_report (stats) ; if (!ok) { printf ("symamd error!\n") ; exit (1) ; } /* ====================================================================== */ /* print the symmetric ordering */ /* ====================================================================== */ printf ("symamd column ordering:\n") ; printf ("1st row/column: %d\n", perm [0]) ; printf ("2nd row/column: %d\n", perm [1]) ; printf ("3rd row/column: %d\n", perm [2]) ; printf ("4th row/column: %d\n", perm [3]) ; printf ("5th row/column: %d\n", perm [4]) ; exit (0) ; } SuiteSparse/COLAMD/Makefile0000644001170100242450000000223110617104476014352 0ustar davisfac#------------------------------------------------------------------------------ # COLAMD Makefile #------------------------------------------------------------------------------ default: demo include ../UFconfig/UFconfig.mk # Compile all C code, including the C-callable routine and the mexFunctions. # Do not the MATLAB interface. demo: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) # Compile all C code, including the C-callable routine and the mexFunctions. all: ( cd Lib ; $(MAKE) ) ( cd Demo ; $(MAKE) ) ( cd MATLAB ; $(MAKE) ) # compile just the C-callable libraries (not mexFunctions or Demos) library: ( cd Lib ; $(MAKE) ) # remove object files, but keep the compiled programs and library archives clean: ( cd Lib ; $(MAKE) clean ) ( cd Demo ; $(MAKE) clean ) ( cd MATLAB ; $(MAKE) clean ) # clean, and then remove compiled programs and library archives purge: ( cd Lib ; $(MAKE) purge ) ( cd Demo ; $(MAKE) purge ) ( cd MATLAB ; $(MAKE) purge ) distclean: purge # get ready for distribution dist: purge ( cd Demo ; $(MAKE) dist ) ccode: library lib: library # compile the MATLAB mexFunction mex: ( cd MATLAB ; $(MAKE) ) SuiteSparse/COLAMD/MATLAB/0000755001170100242450000000000010711653376013657 5ustar davisfacSuiteSparse/COLAMD/MATLAB/symamdtestmex.c0000644001170100242450000003123510616374617016735 0ustar davisfac/* ========================================================================== */ /* === symamdtest mexFunction =============================================== */ /* ========================================================================== */ /* SYMAMD test function This MATLAB mexFunction is for testing only. It is not meant for production use. See symamdmex.c instead. Usage: [ P, stats ] = symamdtest (A, knobs) ; See symamd.m for a description. knobs is required. knobs (1) dense row control knobs (2) spumoni knobs (3) for testing only. Controls how the input matrix is jumbled prior to calling symamd, to test its error handling capability. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Notice: Copyright (c) 1998-2007, Timothy A. Davis. All Rights Reserved. See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c file) for the License. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/symamdtestmex.c file. It requires the colamd.c and colamd.h files. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "colamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) ; /* ========================================================================== */ /* === symamd mexFunction =================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nlhs, /* number of left-hand sides */ mxArray *plhs [], /* left-hand side matrices */ int nrhs, /* number of right--hand sides */ const mxArray *prhs [] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *perm ; /* column ordering of M and ordering of A */ UF_long *A ; /* row indices of input matrix A */ UF_long *p ; /* column pointers of input matrix A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [COLAMD_KNOBS] ; /* colamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats2 [COLAMD_STATS] ; /* stats for symamd */ UF_long *cp, *cp_end, result, nnz, col, length ; UF_long *stats ; stats = stats2 ; colamd_printf = mexPrintf ; /* COLAMD printf routine */ /* === Check inputs ===================================================== */ if (nrhs < 1 || nrhs > 2 || nlhs < 0 || nlhs > 2) { mexErrMsgTxt ( "symamd: incorrect number of input and/or output arguments.") ; } if (nrhs != 2) { mexErrMsgTxt ("symamdtest: knobs are required") ; } /* for testing we require all 3 knobs */ if (mxGetNumberOfElements (prhs [1]) != 3) { mexErrMsgTxt ("symamdtest: must have all 3 knobs for testing") ; } /* === Get knobs ======================================================== */ colamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ if (nrhs == 2) { in_knobs = mxGetPr (prhs [1]) ; i = mxGetNumberOfElements (prhs [1]) ; if (i > 0) knobs [COLAMD_DENSE_ROW] = in_knobs [0] ; if (i > 1) spumoni = (UF_long) in_knobs [1] ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\nsymamd version %d.%d, %s:\n", COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE) ; if (knobs [COLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows/cols with > " "max(16,%g*sqrt(size(A,2))) entries removed\n", in_knobs [0], knobs [COLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, no dense rows removed\n", in_knobs [0]) ; } mexPrintf ("knobs(2): %g, statistics and knobs printed\n", in_knobs [1]) ; mexPrintf ("Testing %d\n", in_knobs [2]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) prhs [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("symamd: input matrix must be 2-dimensional.") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) prhs, "sparse") ; } /* === Allocate workspace for symamd ==================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; if (n_col != n_row) { mexErrMsgTxt ("symamd: matrix must be square.") ; } /* p = mxGetJc (Ainput) ; */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; if (spumoni > 0) { mexPrintf ("symamdtest: nnz %d\n", nnz) ; } /* A = mxGetIr (Ainput) ; */ A = (UF_long *) mxCalloc (nnz+1, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; perm = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; /* === Jumble matrix ======================================================== */ /* knobs [2] FOR TESTING ONLY: Specifies how to jumble matrix 0 : No jumbling 1 : (no errors) 2 : Make first pointer non-zero 3 : Make column pointers not non-decreasing 4 : (no errors) 5 : Make row indices not strictly increasing 6 : Make a row index greater or equal to n_row 7 : Set A = NULL 8 : Set p = NULL 9 : Repeat row index 10: make row indices not sorted 11: jumble columns massively (note this changes the pattern of the matrix A.) 12: Set stats = NULL 13: Make n_col less than zero */ /* jumble appropriately */ switch ((UF_long) in_knobs [2]) { case 0 : if (spumoni > 0) { mexPrintf ("symamdtest: no errors expected\n") ; } result = 1 ; /* no errors */ break ; case 1 : if (spumoni > 0) { mexPrintf ("symamdtest: no errors expected (1)\n") ; } result = 1 ; break ; case 2 : if (spumoni > 0) { mexPrintf ("symamdtest: p [0] nonzero\n") ; } result = 0 ; /* p [0] must be zero */ p [0] = 1 ; break ; case 3 : if (spumoni > 0) { mexPrintf ("symamdtest: negative length last column\n") ; } result = (n_col == 0) ; /* p must be monotonically inc. */ p [n_col] = p [0] ; break ; case 4 : if (spumoni > 0) { mexPrintf ("symamdtest: no errors expected (4)\n") ; } result = 1 ; break ; case 5 : if (spumoni > 0) { mexPrintf ("symamdtest: row index out of range (-1)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = -1 ; } else { if (spumoni > 0) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 6 : if (spumoni > 0) { mexPrintf ("symamdtest: row index out of range (ncol)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = n_col ; } else { if (spumoni > 0) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 7 : if (spumoni > 0) { mexPrintf ("symamdtest: A not present\n") ; } result = 0 ; /* A not present */ A = (UF_long *) NULL ; break ; case 8 : if (spumoni > 0) { mexPrintf ("symamdtest: p not present\n") ; } result = 0 ; /* p not present */ p = (UF_long *) NULL ; break ; case 9 : if (spumoni > 0) { mexPrintf ("symamdtest: duplicate row index\n") ; } result = 1 ; /* duplicate row index */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { A [p [col+1]-2] = A [p [col+1] - 1] ; if (spumoni > 0) { mexPrintf ("Made duplicate row %d in col %d\n", A [p [col+1] - 1], col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, col+2) ; } break ; case 10 : if (spumoni > 0) { mexPrintf ("symamdtest: unsorted column\n") ; } result = 1 ; /* jumbled columns */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { i = A[p [col]] ; A [p [col]] = A[p [col] + 1] ; A [p [col] + 1] = i ; if (spumoni > 0) { mexPrintf ("Unsorted column %d \n", col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, col+2) ; } break ; case 11 : if (spumoni > 0) { mexPrintf ("symamdtest: massive jumbling\n") ; } result = 1 ; /* massive jumbling, but no errors */ srand (1) ; for (i = 0 ; i < n_col ; i++) { cp = &A [p [i]] ; cp_end = &A [p [i+1]] ; while (cp < cp_end) { *cp++ = rand() % n_row ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, nnz, n_col) ; } break ; case 12 : if (spumoni > 0) { mexPrintf ("symamdtest: stats not present\n") ; } result = 0 ; /* stats not present */ stats = (UF_long *) NULL ; break ; case 13 : if (spumoni > 0) { mexPrintf ("symamdtest: ncol out of range\n") ; } result = 0 ; /* ncol out of range */ n_col = -1 ; break ; } /* === Order the rows and columns of A (does not destroy A) ============= */ if (!symamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree)) { /* return p = -1 if colamd failed */ plhs [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; out_perm [0] = -1 ; mxFree (p) ; mxFree (A) ; if (spumoni > 0 || result) { symamd_l_report (stats) ; } if (result) { mexErrMsgTxt ("symamd should have returned TRUE\n") ; } return ; /* mexErrMsgTxt ("symamd error!") ; */ } if (!result) { symamd_l_report (stats) ; mexErrMsgTxt ("symamd should have returned FALSE\n") ; } if (full) { mxDestroyArray (Ainput) ; } /* === Return the permutation vector ==================================== */ plhs [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; for (i = 0 ; i < n_col ; i++) { /* symamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = perm [i] + 1 ; } mxFree (perm) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni > 0 */ if (spumoni > 0) { symamd_l_report (stats) ; } if (nlhs == 2) { plhs [1] = mxCreateDoubleMatrix (1, COLAMD_STATS, mxREAL) ; out_stats = mxGetPr (plhs [1]) ; for (i = 0 ; i < COLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [COLAMD_INFO1] ++ ; out_stats [COLAMD_INFO2] ++ ; } } #ifdef MIN #undef MIN #endif #define MIN(a,b) (((a) < (b)) ? (a) : (b)) static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) { UF_long col, k, row ; mexPrintf ("dump matrix: nrow %d ncol %d Alen %d\n", n_row, n_col, Alen) ; if (!A) { mexPrintf ("A not present\n") ; return ; } if (!p) { mexPrintf ("p not present\n") ; return ; } for (col = 0 ; col < MIN (n_col, limit) ; col++) { mexPrintf ("column %d, p[col] %d, p [col+1] %d, length %d\n", col, p [col], p [col+1], p [col+1] - p [col]) ; for (k = p [col] ; k < p [col+1] ; k++) { row = A [k] ; mexPrintf (" %d", row) ; } mexPrintf ("\n") ; } } SuiteSparse/COLAMD/MATLAB/colamd_test.m0000644001170100242450000002670310707726301016335 0ustar davisfacfunction colamd_test %COLAMD_TEST test colamd2 and symamd2 % Example: % colamd_test % % COLAMD and SYMAMD testing function. Here we try to give colamd2 and symamd2 % every possible type of matrix and erroneous input that they may encounter. % We want either a valid permutation returned or we want them to fail % gracefully. % % You are prompted as to whether or not the colamd2 and symand routines and % the test mexFunctions are to be compiled. % % See also colamd2, symamd2 % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. help colamd_test fprintf ('Compiling colamd2, symamd2, and test mexFunctions.\n') ; colamd_make ; d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end cmd = sprintf ('mex -DDLONG -O %s -I../../UFconfig -I../Include ', d) ; src = '../Source/colamd.c ../Source/colamd_global.c' ; eval ([cmd 'colamdtestmex.c ' src]) ; eval ([cmd 'symamdtestmex.c ' src]) ; fprintf ('Done compiling.\n') ; fprintf ('\nThe following codes will be tested:\n') ; which colamd2 which symamd2 which colamd2mex which symamd2mex which colamdtestmex which symamdtestmex fprintf ('\nStarting the tests. Please be patient.\n') ; h = waitbar (0, 'COLAMD test') ; rand ('state', 0) ; randn ('state', 0) ; A = sprandn (500,500,0.4) ; p = colamd2 (A, [10 10 1]) ; check_perm (p, A) ; p = colamd2 (A, [2 7 1]) ; check_perm (p, A) ; p = symamd2 (A, [10 1]) ; check_perm (p, A) ; p = symamd2 (A, [7 1]) ; check_perm (p, A) ; p = symamd2 (A, [4 1]) ; check_perm (p, A) ; fprintf ('Null matrices') ; A = zeros (0,0) ; A = sparse (A) ; [p, stats] = colamd2 (A, [10 10 0]) ; %#ok check_perm (p, A) ; [p, stats] = symamd2 (A, [10 0]) ; %#ok check_perm (p, A) ; A = zeros (0, 100) ; A = sparse (A) ; [p, stats] = colamd2 (A, [10 10 0]) ; %#ok check_perm (p, A) ; A = zeros (100, 0) ; A = sparse (A) ; [p, stats] = colamd2 (A, [10 10 0]) ; check_perm (p, A) ; fprintf (' OK\n') ; fprintf ('Matrices with a few dense row/cols\n') ; for trial = 1:20 waitbar (trial/20, h, 'COLAMD: with dense rows/cols') ; % random square unsymmetric matrix A = rand_matrix (1000, 1000, 1, 10, 20) ; for tol = [0:.1:2 3:20 1e6] [p, stats] = colamd2 (A, [tol tol 0]) ; %#ok check_perm (p, A) ; B = A + A' ; [p, stats] = symamd2 (B, [tol 0]) ; %#ok check_perm (p, A) ; [p, stats] = colamd2 (A, [tol 1 0]) ; %#ok check_perm (p, A) ; [p, stats] = colamd2 (A, [1 tol 0]) ; %#ok check_perm (p, A) ; end end fprintf (' OK\n') ; fprintf ('General matrices\n') ; for trial = 1:400 waitbar (trial/400, h, 'COLAMD: general') ; % matrix of random mtype mtype = irand (3) ; A = rand_matrix (2000, 2000, mtype, 0, 0) ; p = colamd2 (A) ; check_perm (p, A) ; if (mtype == 3) p = symamd2 (A) ; check_perm (p, A) ; end end fprintf (' OK\n') ; fprintf ('Test error handling with invalid inputs\n') ; % Check different erroneous input. for trial = 1:30 waitbar (trial/30, h, 'COLAMD: error handling') ; A = rand_matrix (1000, 1000, 2, 0, 0) ; [m n] = size (A) ; for err = 1:13 p = Tcolamd (A, [n n 0 0 err]) ; if (p ~= -1) %#ok check_perm (p, A) ; end if (err == 1) % check different (valid) input args to colamd2 p = Acolamd (A) ; p2 = Acolamd (A, [10 10 0 0 0]) ; if (any (p ~= p2)) error ('colamd2: mismatch 1!') ; end [p2 stats] = Acolamd (A) ; %#ok if (any (p ~= p2)) error ('colamd2: mismatch 2!') ; end [p2 stats] = Acolamd (A, [10 10 0 0 0]) ; if (any (p ~= p2)) error ('colamd2: mismatch 3!') ; end end B = A'*A ; p = Tsymamd (B, [n 0 err]) ; if (p ~= -1) %#ok check_perm (p, A) ; end if (err == 1) % check different (valid) input args to symamd2 p = Asymamd (B) ; check_perm (p, A) ; p2 = Asymamd (B, [10 0 0]) ; if (any (p ~= p2)) error ('symamd2: mismatch 1!') ; end [p2 stats] = Asymamd (B) ; %#ok if (any (p ~= p2)) error ('symamd2: mismatch 2!') ; end [p2 stats] = Asymamd (B, [10 0 0]) ; %#ok if (any (p ~= p2)) error ('symamd2: mismatch 3!') ; end end end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty columns\n') ; for trial = 1:400 % some are square, some are rectangular n = 0 ; while (n < 5) A = rand_matrix (1000, 1000, irand (2), 0, 0) ; [m n] = size (A) ; end % Add 5 null columns at random locations. null_col = randperm (n) ; null_col = sort (null_col (1:5)) ; A (:, null_col) = 0 ; % Order the matrix and make sure that the null columns are ordered last. [p, stats] = colamd2 (A, [1e6 1e6 0]) ; check_perm (p, A) ; % if (stats (2) ~= 5) % stats (2) % error ('colamd2: wrong number of null columns') ; % end % find all null columns in A null_col = find (sum (spones (A), 1) == 0) ; nnull = length (null_col) ; %#ok if (any (null_col ~= p ((n-4):n))) error ('colamd2: Null cols are not ordered last in natural order') ; end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty rows and columns\n') ; for trial = 1:400 waitbar (trial/400, h, 'COLAMD: with empty rows/cols') ; % symmetric matrices n = 0 ; while (n < 5) A = rand_matrix (1000, 1000, 3, 0, 0) ; [m n] = size (A) ; end % Add 5 null columns and rows at random locations. null_col = randperm (n) ; null_col = sort (null_col (1:5)) ; A (:, null_col) = 0 ; A (null_col, :) = 0 ; % Order the matrix and make sure that the null rows/cols are ordered last. [p,stats] = symamd2 (A, [10 0]) ; check_perm (p, A) ; % find actual number of null rows and columns Alo = tril (A, -1) ; nnull = length (find (sum (Alo') == 0 & sum (Alo) == 0)) ; %#ok if (stats (2) ~= nnull | nnull < 5) %#ok error ('symamd2: wrong number of null columns') ; end if (any (null_col ~= p ((n-4):n))) error ('symamd2: Null cols are not ordered last in natural order') ; end end fprintf (' OK\n') ; fprintf ('Matrices with a few empty rows\n') ; % Test matrices with null rows inserted. for trial = 1:400 waitbar (trial/400, h, 'COLAMD: with null rows') ; m = 0 ; while (m < 5) A = rand_matrix (1000, 1000, 2, 0, 0) ; [m n] = size (A) ; %#ok end % Add 5 null rows at random locations. null_row = randperm (m) ; null_row = sort (null_row (1:5)) ; A (null_row, :) = 0 ; p = colamd2 (A, [10 10 0]) ; check_perm (p, A) ; if (stats (1) ~= 5) error ('colamd2: wrong number of null rows') ; end end fprintf (' OK\n') ; fprintf ('\ncolamd2 and symamd2: all tests passed\n\n') ; close (h) ; %------------------------------------------------------------------------------- function [p,stats] = Acolamd (S, knobs) % Acolamd: compare colamd2 and Tcolamd results if (nargin < 3) if (nargout == 1) [p] = colamd2 (S) ; [p1] = Tcolamd (S, [10 10 0 0 0]) ; else [p, stats] = colamd2 (S) ; [p1, stats1] = Tcolamd (S, [10 10 0 0 0]) ; %#ok end else if (nargout == 1) [p] = colamd2 (S, knobs (1:3)) ; [p1] = Tcolamd (S, knobs) ; else [p, stats] = colamd2 (S, knobs (1:3)) ; [p1, stats1] = Tcolamd (S, knobs) ; %#ok end end check_perm (p, S) ; check_perm (p1, S) ; if (any (p1 ~= p)) error ('Acolamd mismatch!') ; end %------------------------------------------------------------------------------- function [p,stats] = Asymamd (S, knobs) % Asymamd: compare symamd2 and Tsymamd results if (nargin < 3) if (nargout == 1) [p] = symamd2 (S) ; [p1] = Tsymamd (S, [10 0 0]) ; else [p, stats] = symamd2 (S) ; [p1, stats1] = Tsymamd (S, [10 0 0]) ; %#ok end else if (nargout == 1) [p] = symamd2 (S, knobs (1:2)) ; [p1] = Tsymamd (S, knobs) ; else [p, stats] = symamd2 (S, knobs (1:2)) ; [p1, stats1] = Tsymamd (S, knobs) ; %#ok end end if (any (p1 ~= p)) error ('Asymamd mismatch!') ; end %------------------------------------------------------------------------------- function check_perm (p, A) % check_perm: check for a valid permutation vector if (isempty (A) & isempty (p)) %#ok % empty permutation vectors of empty matrices are OK return end if (isempty (p)) error ('bad permutation: cannot be empty') ; end [m n] = size (A) ; [pm pn] = size (p) ; if (pn == 1) % force p to be a row vector p = p' ; [pm pn] = size (p) ; end if (n ~= pn) error ('bad permutation: wrong size') ; end if (pm ~= 1) ; % p must be a vector error ('bad permutation: not a vector') ; else if (any (sort (p) - (1:pn))) error ('bad permutation') ; end end %------------------------------------------------------------------------------- function i = irand (n) % irand: return a random integer between 1 and n i = min (n, 1 + floor (rand * n)) ; %------------------------------------------------------------------------------- function A = rand_matrix (nmax, mmax, mtype, drows, dcols) % rand_matrix: return a random sparse matrix % % A = rand_matrix (nmax, mmax, mtype, drows, dcols) % % A binary matrix of random size, at most nmax-by-mmax, with drows dense rows % and dcols dense columns. % % mtype 1: square unsymmetric (mmax is ignored) % mtype 2: rectangular % mtype 3: symmetric (mmax is ignored) n = irand (nmax) ; if (mtype ~= 2) % square m = n ; else m = irand (mmax) ; end A = sprand (m, n, 10 / max (m,n)) ; if (drows > 0) % add dense rows for k = 1:drows i = irand (m) ; nz = irand (n) ; p = randperm (n) ; p = p (1:nz) ; A (i,p) = 1 ; end end if (dcols > 0) % add dense cols for k = 1:dcols j = irand (n) ; nz = irand (m) ; p = randperm (m) ; p = p (1:nz) ; A (p,j) = 1 ; end end A = spones (A) ; % ensure that there are no empty columns d = find (full (sum (A)) == 0) ; %#ok A (m,d) = 1 ; %#ok % ensure that there are no empty rows d = find (full (sum (A,2)) == 0) ; %#ok A (d,n) = 1 ; %#ok if (mtype == 3) % symmetric A = A + A' + speye (n) ; end A = spones (A) ; %------------------------------------------------------------------------------- function [p,stats] = Tcolamd (S, knobs) % Tcolamd: run colamd2 in a testing mode if (nargout <= 1 & nargin == 1) %#ok p = colamdtestmex (S) ; elseif (nargout <= 1 & nargin == 2) %#ok p = colamdtestmex (S, knobs) ; elseif (nargout == 2 & nargin == 1) %#ok [p, stats] = colamdtestmex (S) ; elseif (nargout == 2 & nargin == 2) %#ok [p, stats] = colamdtestmex (S, knobs) ; else error ('colamd2: incorrect number of input and/or output arguments') ; end if (p (1) ~= -1) [ignore, q] = etree (S (:,p), 'col') ; p = p (q) ; check_perm (p, S) ; end %------------------------------------------------------------------------------- function [p, stats] = Tsymamd (S, knobs) % Tsymamd: run symamd2 in a testing mode if (nargout <= 1 & nargin == 1) %#ok p = symamdtestmex (S) ; elseif (nargout <= 1 & nargin == 2) %#ok p = symamdtestmex (S, knobs) ; elseif (nargout == 2 & nargin == 1) %#ok [p, stats] = symamdtestmex (S) ; elseif (nargout == 2 & nargin == 2) %#ok [p, stats] = symamdtestmex (S, knobs) ; else error ('symamd2: incorrect number of input and/or output arguments') ; end if (p (1) ~= -1) [ignore, q] = etree (S (p,p)) ; p = p (q) ; check_perm (p, S) ; end SuiteSparse/COLAMD/MATLAB/Makefile0000644001170100242450000000133210617240161015303 0ustar davisfac# COLAMD Makefile for MATLAB mexFunctions default: colamd2 symamd2 include ../../UFconfig/UFconfig.mk I = -I../../UFconfig -I../Include INC = ../Include/colamd.h ../../UFconfig/UFconfig.h SRC = ../Source/colamd.c ../Source/colamd_global.c MX = $(MEX) -DDLONG $(I) # Compiles the MATLAB-callable routines mex: colamd2 symamd2 symamd2: symamdmex.c $(INC) $(SRC) $(MX) -output symamd2mex symamdmex.c $(SRC) colamd2: colamdmex.c $(INC) $(SRC) $(MX) -output colamd2mex colamdmex.c $(SRC) # Compiles the extensive test code test: mex colamdtestmex.c symamdtestmex.c $(INC) $(SRC) $(MX) colamdtestmex.c $(SRC) $(MX) symamdtestmex.c $(SRC) clean: - $(RM) $(CLEAN) purge: distclean distclean: clean - $(RM) *.mex* *.dll SuiteSparse/COLAMD/MATLAB/colamdmex.c0000644001170100242450000001525310616370076015777 0ustar davisfac/* ========================================================================== */ /* === colamd mexFunction =================================================== */ /* ========================================================================== */ /* Usage: P = colamd2 (A) ; [ P, stats ] = colamd2 (A, knobs) ; see colamd.m for a description. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Notice: Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c file) for the License. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/colamdmex.c file. It requires the colamd.c and colamd.h files. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "colamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" /* ========================================================================== */ /* === colamd mexFunction =================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nlhs, /* number of left-hand sides */ mxArray *plhs [], /* left-hand side matrices */ int nrhs, /* number of right--hand sides */ const mxArray *prhs [] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *A ; /* colamd's copy of the matrix, and workspace */ UF_long *p ; /* colamd's copy of the column pointers */ UF_long Alen ; /* size of A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long nnz ; /* number of entries in A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [COLAMD_KNOBS] ; /* colamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats [COLAMD_STATS] ; /* stats for colamd */ colamd_printf = mexPrintf ; /* COLAMD printf routine */ /* === Check inputs ===================================================== */ if (nrhs < 1 || nrhs > 2 || nlhs < 0 || nlhs > 2) { mexErrMsgTxt ( "colamd: incorrect number of input and/or output arguments") ; } /* === Get knobs ======================================================== */ colamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ if (nrhs == 2) { in_knobs = mxGetPr (prhs [1]) ; i = mxGetNumberOfElements (prhs [1]) ; if (i > 0) knobs [COLAMD_DENSE_ROW] = in_knobs [0] ; if (i > 1) knobs [COLAMD_DENSE_COL] = in_knobs [1] ; if (i > 2) spumoni = (UF_long) (in_knobs [2] != 0) ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\ncolamd version %d.%d, %s:\n", COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE) ; if (knobs [COLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows with > max(16,%g*sqrt(size(A,2)))" " entries removed\n", in_knobs [0], knobs [COLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, only completely dense rows removed\n", in_knobs [0]) ; } if (knobs [COLAMD_DENSE_COL] >= 0) { mexPrintf ("knobs(2): %g, cols with > max(16,%g*sqrt(min(size(A)))" " entries removed\n", in_knobs [1], knobs [COLAMD_DENSE_COL]) ; } else { mexPrintf ("knobs(2): %g, only completely dense columns removed\n", in_knobs [1]) ; } mexPrintf ("knobs(3): %g, statistics and knobs printed\n", in_knobs [2]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) prhs [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("colamd: input matrix must be 2-dimensional") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) prhs, "sparse") ; } /* === Allocate workspace for colamd ==================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; /* get column pointer vector so we can find nnz */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; Alen = (UF_long) colamd_l_recommended (nnz, n_row, n_col) ; if (Alen == 0) { mexErrMsgTxt ("colamd: problem too large") ; } /* === Copy input matrix into workspace ================================= */ A = (UF_long *) mxCalloc (Alen, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; if (full) { mxDestroyArray (Ainput) ; } /* === Order the columns (destroys A) =================================== */ if (!colamd_l (n_row, n_col, Alen, A, p, knobs, stats)) { colamd_l_report (stats) ; mexErrMsgTxt ("colamd error!") ; } mxFree (A) ; /* === Return the permutation vector ==================================== */ plhs [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; for (i = 0 ; i < n_col ; i++) { /* colamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = p [i] + 1 ; } mxFree (p) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni is set */ if (spumoni) { colamd_l_report (stats) ; } if (nlhs == 2) { plhs [1] = mxCreateDoubleMatrix (1, COLAMD_STATS, mxREAL) ; out_stats = mxGetPr (plhs [1]) ; for (i = 0 ; i < COLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [COLAMD_INFO1] ++ ; out_stats [COLAMD_INFO2] ++ ; } } SuiteSparse/COLAMD/MATLAB/colamdtestmex.c0000644001170100242450000003370410616374454016704 0ustar davisfac/* ========================================================================== */ /* === colamdtest mexFunction =============================================== */ /* ========================================================================== */ /* COLAMD test function This MATLAB mexFunction is for testing only. It is not meant for production use. See colamdmex.c instead. Usage: [ P, stats ] = colamdtest (A, knobs) ; See colamd.m for a description. knobs is required. knobs (1) dense row control knobs (2) dense column control knobs (3) spumoni knobs (4) for testing only. Controls the workspace used by colamd. knobs (5) for testing only. Controls how the input matrix is jumbled prior to calling colamd, to test its error handling capability. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Notice: Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c file) for the License. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/colamdtestmex.c file. It requires the colamd.c and colamd.h files. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "colamd.h" #include "mex.h" #include "matrix.h" #include #include #include "UFconfig.h" static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) ; /* ========================================================================== */ /* === colamd mexFunction =================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nlhs, /* number of left-hand sides */ mxArray *plhs [], /* left-hand side matrices */ int nrhs, /* number of right--hand sides */ const mxArray *prhs [] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *A ; /* colamd's copy of the matrix, and workspace */ UF_long *p ; /* colamd's copy of the column pointers */ UF_long Alen ; /* size of A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long nnz ; /* number of entries in A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [COLAMD_KNOBS] ; /* colamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats2 [COLAMD_STATS] ; /* stats for colamd */ UF_long *cp, *cp_end, result, col, length ; UF_long *stats ; stats = stats2 ; colamd_printf = mexPrintf ; /* COLAMD printf routine */ /* === Check inputs ===================================================== */ if (nrhs < 1 || nrhs > 2 || nlhs < 0 || nlhs > 2) { mexErrMsgTxt ( "colamd: incorrect number of input and/or output arguments") ; } if (nrhs != 2) { mexErrMsgTxt ("colamdtest: knobs are required") ; } /* for testing we require all 5 knobs */ if (mxGetNumberOfElements (prhs [1]) != 5) { mexErrMsgTxt ("colamd: must have all 5 knobs for testing") ; } /* === Get knobs ======================================================== */ colamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ if (nrhs == 2) { in_knobs = mxGetPr (prhs [1]) ; i = mxGetNumberOfElements (prhs [1]) ; if (i > 0) knobs [COLAMD_DENSE_ROW] = in_knobs [0] ; if (i > 1) knobs [COLAMD_DENSE_COL] = in_knobs [1] ; if (i > 2) spumoni = (UF_long) in_knobs [2] ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\ncolamd version %d.%d, %s:\n", COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE) ; if (knobs [COLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows with > max(16,%g*sqrt(size(A,2)))" " entries removed\n", in_knobs [0], knobs [COLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, only completely dense rows removed\n", in_knobs [0]) ; } if (knobs [COLAMD_DENSE_COL] >= 0) { mexPrintf ("knobs(2): %g, cols with > max(16,%g*sqrt(min(size(A)))" " entries removed\n", in_knobs [1], knobs [COLAMD_DENSE_COL]) ; } else { mexPrintf ("knobs(2): %g, only completely dense columns removed\n", in_knobs [1]) ; } mexPrintf ("knobs(3): %g, statistics and knobs printed\n", in_knobs [2]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) prhs [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("colamd: input matrix must be 2-dimensional") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) prhs, "sparse") ; } /* === Allocate workspace for colamd ==================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; /* get column pointer vector so we can find nnz */ p = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (UF_long)) ; nnz = p [n_col] ; Alen = (UF_long) colamd_l_recommended (nnz, n_row, n_col) ; if (Alen == 0) { mexErrMsgTxt ("colamd: problem too large") ; } /* === Modify size of Alen if testing ======================================= */ /* knobs [3] amount of workspace given to colamd. < 0 : TIGHT memory > 0 : MIN + knob [3] - 1 == 0 : RECOMMENDED memory */ /* Here only for testing */ /* size of the Col and Row structures */ #define COLAMD_C(n_col) (((n_col) + 1) * 24 / sizeof (UF_long)) #define COLAMD_R(n_row) (((n_row) + 1) * 16 / sizeof (UF_long)) #ifdef MIN #undef MIN #endif #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define COLAMD_MIN_MEMORY(nnz,n_row,n_col) \ (2 * (nnz) + COLAMD_C (n_col) + COLAMD_R (n_row)) /* get knob [3], if negative */ if (in_knobs [3] < 0) { Alen = COLAMD_MIN_MEMORY (nnz, n_row, n_col) + n_col ; } else if (in_knobs [3] > 0) { Alen = COLAMD_MIN_MEMORY (nnz, n_row, n_col) + in_knobs [3] - 1 ; } /* otherwise, we use the recommended amount set above */ /* === Copy input matrix into workspace ================================= */ A = (UF_long *) mxCalloc (Alen, sizeof (UF_long)) ; (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (UF_long)) ; if (full) { mxDestroyArray (Ainput) ; } /* === Jumble matrix ======================================================== */ /* knobs [4] FOR TESTING ONLY: Specifies how to jumble matrix 0 : No jumbling 1 : Make n_row less than zero 2 : Make first pointer non-zero 3 : Make column pointers not non-decreasing 4 : Make a column pointer greater or equal to Alen 5 : Make row indices not strictly increasing 6 : Make a row index greater or equal to n_row 7 : Set A = NULL 8 : Set p = NULL 9 : Repeat row index 10: make row indices not sorted 11: jumble columns massively (note this changes the pattern of the matrix A.) 12: Set stats = NULL 13: Make n_col less than zero */ /* jumble appropriately */ switch ((UF_long) in_knobs [4]) { case 0 : if (spumoni > 0) { mexPrintf ("colamdtest: no errors expected\n") ; } result = 1 ; /* no errors */ break ; case 1 : if (spumoni > 0) { mexPrintf ("colamdtest: nrow out of range\n") ; } result = 0 ; /* nrow out of range */ n_row = -1 ; break ; case 2 : if (spumoni > 0) { mexPrintf ("colamdtest: p [0] nonzero\n") ; } result = 0 ; /* p [0] must be zero */ p [0] = 1 ; break ; case 3 : if (spumoni > 0) { mexPrintf ("colamdtest: negative length last column\n") ; } result = (n_col == 0) ; /* p must be monotonically inc. */ p [n_col] = p [0] ; break ; case 4 : if (spumoni > 0) { mexPrintf ("colamdtest: Alen too small\n") ; } result = 0 ; /* out of memory */ p [n_col] = Alen ; break ; case 5 : if (spumoni > 0) { mexPrintf ("colamdtest: row index out of range (-1)\n") ; } if (nnz > 0) /* row index out of range */ { result = 0 ; A [nnz-1] = -1 ; } else { if (spumoni > 0) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 6 : if (spumoni > 0) { mexPrintf ("colamdtest: row index out of range (n_row)\n") ; } if (nnz > 0) /* row index out of range */ { if (spumoni > 0) { mexPrintf ("Changing A[nnz-1] from %d to %d\n", A [nnz-1], n_row) ; } result = 0 ; A [nnz-1] = n_row ; } else { if (spumoni > 0) { mexPrintf ("Note: no row indices to put out of range\n") ; } result = 1 ; } break ; case 7 : if (spumoni > 0) { mexPrintf ("colamdtest: A not present\n") ; } result = 0 ; /* A not present */ A = (UF_long *) NULL ; break ; case 8 : if (spumoni > 0) { mexPrintf ("colamdtest: p not present\n") ; } result = 0 ; /* p not present */ p = (UF_long *) NULL ; break ; case 9 : if (spumoni > 0) { mexPrintf ("colamdtest: duplicate row index\n") ; } result = 1 ; /* duplicate row index */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { A [p [col]] = A [p [col] + 1] ; if (spumoni > 0) { mexPrintf ("Made duplicate row %d in col %d\n", A [p [col] + 1], col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, col+2) ; } break ; case 10 : if (spumoni > 0) { mexPrintf ("colamdtest: unsorted column\n") ; } result = 1 ; /* jumbled columns */ for (col = 0 ; col < n_col ; col++) { length = p [col+1] - p [col] ; if (length > 1) { i = A[p [col]] ; A [p [col]] = A[p [col] + 1] ; A [p [col] + 1] = i ; if (spumoni > 0) { mexPrintf ("Unsorted column %d \n", col) ; } break ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, col+2) ; } break ; case 11 : if (spumoni > 0) { mexPrintf ("colamdtest: massive jumbling\n") ; } result = 1 ; /* massive jumbling, but no errors */ srand (1) ; for (i = 0 ; i < n_col ; i++) { cp = &A [p [i]] ; cp_end = &A [p [i+1]] ; while (cp < cp_end) { *cp++ = rand() % n_row ; } } if (spumoni > 1) { dump_matrix (A, p, n_row, n_col, Alen, n_col) ; } break ; case 12 : if (spumoni > 0) { mexPrintf ("colamdtest: stats not present\n") ; } result = 0 ; /* stats not present */ stats = (UF_long *) NULL ; break ; case 13 : if (spumoni > 0) { mexPrintf ("colamdtest: ncol out of range\n") ; } result = 0 ; /* ncol out of range */ n_col = -1 ; break ; } /* === Order the columns (destroys A) =================================== */ if (!colamd_l (n_row, n_col, Alen, A, p, knobs, stats)) { /* return p = -1 if colamd failed */ plhs [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; out_perm [0] = -1 ; mxFree (p) ; mxFree (A) ; if (spumoni > 0 || result) { colamd_l_report (stats) ; } if (result) { mexErrMsgTxt ("colamd should have returned TRUE\n") ; } return ; /* mexErrMsgTxt ("colamd error!") ; */ } if (!result) { colamd_l_report (stats) ; mexErrMsgTxt ("colamd should have returned FALSE\n") ; } mxFree (A) ; /* === Return the permutation vector ==================================== */ plhs [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; for (i = 0 ; i < n_col ; i++) { /* colamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = p [i] + 1 ; } mxFree (p) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni > 0 */ if (spumoni > 0) { colamd_l_report (stats) ; } if (nlhs == 2) { plhs [1] = mxCreateDoubleMatrix (1, COLAMD_STATS, mxREAL) ; out_stats = mxGetPr (plhs [1]) ; for (i = 0 ; i < COLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [COLAMD_INFO1] ++ ; out_stats [COLAMD_INFO2] ++ ; } } static void dump_matrix ( UF_long A [ ], UF_long p [ ], UF_long n_row, UF_long n_col, UF_long Alen, UF_long limit ) { UF_long col, k, row ; mexPrintf ("dump matrix: nrow %d ncol %d Alen %d\n", n_row, n_col, Alen) ; for (col = 0 ; col < MIN (n_col, limit) ; col++) { mexPrintf ("column %d, p[col] %d, p [col+1] %d, length %d\n", col, p [col], p [col+1], p [col+1] - p [col]) ; for (k = p [col] ; k < p [col+1] ; k++) { row = A [k] ; mexPrintf (" %d", row) ; } mexPrintf ("\n") ; } } SuiteSparse/COLAMD/MATLAB/symamd2.m0000644001170100242450000001052610620670500015400 0ustar davisfacfunction [p, stats] = symamd2 (S, knobs) %SYMAMD Symmetric approximate minimum degree permutation. % P = SYMAMD2(S) for a symmetric positive definite matrix S, returns the % permutation vector p such that S(p,p) tends to have a sparser Cholesky % factor than S. Sometimes SYMAMD works well for symmetric indefinite % matrices too. The matrix S is assumed to be symmetric; only the % strictly lower triangular part is referenced. S must be square. % Note that p = amd(S) is much faster and generates comparable orderings. % The ordering is followed by an elimination tree post-ordering. % % Note that this function is source code for the built-in MATLAB symamd % function. It has been renamed here to symamd2 to avoid a filename clash. % symamd and symamd2 are identical. % % See also SYMAMD, AMD, COLAMD, COLAMD2. % % Example: % P = symamd2 (S) % [P, stats] = symamd2 (S, knobs) % % knobs is an optional one- to two-element input vector. If S is n-by-n, % then rows and columns with more than max(16,knobs(1)*sqrt(n)) entries are % removed prior to ordering, and ordered last in the output permutation P. % No rows/columns are removed if knobs(1)<0. If knobs(2) is nonzero, stats % and knobs are printed. The default is knobs = [10 0]. Note that knobs % differs from earlier versions of symamd. % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. % Acknowledgements: This work was supported by the National Science % Foundation, under grants DMS-9504974 and DMS-9803599. %------------------------------------------------------------------------------- % perform the symamd ordering: %------------------------------------------------------------------------------- if (nargout <= 1 & nargin == 1) %#ok p = symamd2mex (S) ; elseif (nargout <= 1 & nargin == 2) %#ok p = symamd2mex (S, knobs) ; elseif (nargout == 2 & nargin == 1) %#ok [p, stats] = symamd2mex (S) ; elseif (nargout == 2 & nargin == 2) %#ok [p, stats] = symamd2mex (S, knobs) ; else error('symamd: incorrect number of input and/or output arguments.') ; end %------------------------------------------------------------------------------- % symmetric elimination tree post-ordering: %------------------------------------------------------------------------------- [ignore, q] = etree (S (p,p)) ; p = p (q) ; % stats is an optional 20-element output vector that provides data about the % ordering and the validity of the input matrix S. Ordering statistics are % in stats (1:3). stats (1) = stats (2) is the number of dense or empty % rows and columns ignored by SYMAMD and stats (3) is the number of % garbage collections performed on the internal data structure used by % SYMAMD (roughly of size 8.4*nnz(tril(S,-1)) + 9*n integers). % % MATLAB built-in functions are intended to generate valid sparse matrices, % with no duplicate entries, with ascending row indices of the nonzeros % in each column, with a non-negative number of entries in each column (!) % and so on. If a matrix is invalid, then SYMAMD may or may not be able % to continue. If there are duplicate entries (a row index appears two or % more times in the same column) or if the row indices in a column are out % of order, then SYMAMD can correct these errors by ignoring the duplicate % entries and sorting each column of its internal copy of the matrix S (the % input matrix S is not repaired, however). If a matrix is invalid in other % ways then SYMAMD cannot continue, an error message is printed, and no % output arguments (P or stats) are returned. SYMAMD is thus a simple way % to check a sparse matrix to see if it's valid. % % stats (4:7) provide information if SYMAMD was able to continue. The % matrix is OK if stats (4) is zero, or 1 if invalid. stats (5) is the % rightmost column index that is unsorted or contains duplicate entries, % or zero if no such column exists. stats (6) is the last seen duplicate % or out-of-order row index in the column index given by stats (5), or zero % if no such row index exists. stats (7) is the number of duplicate or % out-of-order row indices. % % stats (8:20) is always zero in the current version of SYMAMD (reserved % for future use). SuiteSparse/COLAMD/MATLAB/Contents.m0000644001170100242450000000132010620367666015631 0ustar davisfac% COLAMD, column approximate minimum degree ordering % % Primary: % colamd2 - Column approximate minimum degree permutation. % symamd2 - SYMAMD Symmetric approximate minimum degree permutation. % % helper and test functions: % colamd_demo - demo for colamd, column approx minimum degree ordering algorithm % colamd_make - compiles COLAMD2 and SYMAMD2 for MATLAB % colamd_make - compiles and installs COLAMD2 and SYMAMD2 for MATLAB % colamd_test - test colamd2 and symamd2 % luflops - compute the flop count for sparse LU factorization % % Example: % p = colamd2 (A) % % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. SuiteSparse/COLAMD/MATLAB/colamd_install.m0000644001170100242450000000106610620367611017016 0ustar davisfacfunction colamd_install %COLAMD_MAKE to compile and install the colamd2 and symamd2 mexFunction. % Your current directory must be COLAMD/MATLAB for this function to work. % % Example: % colamd_install % % See also colamd2, symamd2. % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. colamd_make addpath (pwd) fprintf ('\nThe following path has been added. You may wish to add it\n') ; fprintf ('permanently, using the MATLAB pathtool command.\n') ; fprintf ('%s\n\n', pwd) ; colamd_demo SuiteSparse/COLAMD/MATLAB/colamd_demo.m0000644001170100242450000001514210620367601016273 0ustar davisfac%COLAMD_DEMO demo for colamd, column approx minimum degree ordering algorithm % % Example: % colamd_demo % % The following m-files and mexFunctions provide alternative sparse matrix % ordering methods for MATLAB. They are typically faster (sometimes much % faster) and typically provide better orderings than their MATLAB counterparts: % % colamd a replacement for colmmd. % % Typical usage: p = colamd (A) ; % % symamd a replacement for symmmd. Based on colamd. % % Typical usage: p = symamd (A) ; % % For a description of the methods used, see the colamd.c file. % % http://www.cise.ufl.edu/research/sparse/colamd/ % % See also colamd, symamd % Minor changes: in MATLAB 7, symmmd and colmmd are flagged as "obsolete". % This demo checks if they exist, so it should still work when they are removed. % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. %------------------------------------------------------------------------------- % Print the introduction, the help info, and compile the mexFunctions %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Colamd2/symamd2 demo.') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help colamd_demo ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Colamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help colamd2 ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Symamd help information:') ; fprintf (1, '\n-----------------------------------------------------------\n') ; help symamd2 ; %------------------------------------------------------------------------------- % Solving Ax=b %------------------------------------------------------------------------------- n = 100 ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Solving Ax=b for a small %d-by-%d random matrix:', n, n) ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, '\nNote: Random sparse matrices are AWFUL test cases.\n') ; fprintf (1, 'They''re just easy to generate in a demo.\n') ; % set up the system rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; A = sprandn (n, n, 5/n) + speye (n) ; b = (1:n)' ; fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colamd2:\n') ; q = colamd2 (A) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); try fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colmmd:\n') ; q = colmmd (A) ; I = speye (n) ; Q = I (:, q) ; [L,U,P] = lu (A*Q) ; fl = luflops (L, U) ; x = Q * (U \ (L \ (P * b))) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', ... norm (A*x-b)) ; catch fprintf (1, 'colmmd is obsolete; test skipped\n') ; end fprintf (1, '\n\nSolving via lu (PA = LU), without regard for sparsity:\n') ; [L,U,P] = lu (A) ; fl = luflops (L, U) ; x = U \ (L \ (P * b)) ; fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ; fprintf (1, 'residual: %e\n', norm (A*x-b)); %------------------------------------------------------------------------------- % Large demo for colamd2 %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for colamd2 (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; rand ('state', 0) ; randn ('state', 0) ; spparms ('default') ; n = 1000 ; fprintf (1, 'Generating a random %d-by-%d sparse matrix.\n', n, n) ; A = sprandn (n, n, 5/n) + speye (n) ; fprintf (1, '\n\nUnordered matrix:\n') ; lnz = symbfact (A, 'col') ; fprintf (1, 'nz in Cholesky factors of A''A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A''A: %d\n', sum (lnz.^2)) ; tic ; p = colamd2 (A) ; t = toc ; lnz = symbfact (A (:,p), 'col') ; fprintf (1, '\n\nColamd run time: %f\n', t) ; fprintf (1, 'colamd2 ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ; try tic ; p = colmmd (A) ; t = toc ; lnz = symbfact (A (:,p), 'col') ; fprintf (1, '\n\nColmmd run time: %f\n', t) ; fprintf (1, 'colmmd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', ... sum (lnz.^2)) ; catch fprintf (1, 'colmmd is obsolete; test skipped\n') ; end %------------------------------------------------------------------------------- % Large demo for symamd2 %------------------------------------------------------------------------------- fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Large demo for symamd2 (symbolic analysis only):') ; fprintf (1, '\n-----------------------------------------------------------\n') ; fprintf (1, 'Generating a random symmetric %d-by-%d sparse matrix.\n', n, n) ; A = A+A' ; fprintf (1, '\n\nUnordered matrix:\n') ; lnz = symbfact (A, 'sym') ; fprintf (1, 'nz in Cholesky factors of A: %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A: %d\n', sum (lnz.^2)) ; tic ; p = symamd2 (A) ; t = toc ; lnz = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\nSymamd run time: %f\n', t) ; fprintf (1, 'symamd2 ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; try tic ; p = symmmd (A) ; t = toc ; lnz = symbfact (A (p,p), 'sym') ; fprintf (1, '\n\nSymmmd run time: %f\n', t) ; fprintf (1, 'symmmd ordering quality: \n') ; fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ; fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ; catch fprintf (1, 'symmmd is obsolete\n') ; end SuiteSparse/COLAMD/MATLAB/colamd2.m0000644001170100242450000001052410620670472015353 0ustar davisfacfunction [p,stats] = colamd2 (S, knobs) %COLAMD2 Column approximate minimum degree permutation. % P = COLAMD2(S) returns the column approximate minimum degree permutation % vector for the sparse matrix S. For a non-symmetric matrix S, S(:,P) % tends to have sparser LU factors than S. The Cholesky factorization of % S(:,P)'*S(:,P) also tends to be sparser than that of S'*S. The ordering % is followed by a column elimination tree post-ordering. % % Note that this function is the source code for the built-in MATLAB colamd % function. It has been renamed here to colamd2 to avoid a filename clash. % colamd and colamd2 are identical. % % See also COLAMD, AMD, SYMAMD, SYMAMD2. % % Example: % P = colamd2 (S) % [P, stats] = colamd2 (S, knobs) % % knobs is an optional one- to three-element input vector. If S is m-by-n, % then rows with more than max(16,knobs(1)*sqrt(n)) entries are ignored. % Columns with more than max(16,knobs(2)*sqrt(min(m,n))) entries are % removed prior to ordering, and ordered last in the output permutation P. % Only completely dense rows or columns are removed if knobs(1) and knobs(2) % are < 0, respectively. If knobs(3) is nonzero, stats and knobs are % printed. The default is knobs = [10 10 0]. Note that knobs differs from % earlier versions of colamd. % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. % % Acknowledgements: This work was supported by the National Science % Foundation, under grants DMS-9504974 and DMS-9803599. %------------------------------------------------------------------------------- % Perform the colamd ordering: %------------------------------------------------------------------------------- if (nargout <= 1 & nargin == 1) %#ok p = colamd2mex (S) ; elseif (nargout <= 1 & nargin == 2) %#ok p = colamd2mex (S, knobs) ; elseif (nargout == 2 & nargin == 1) %#ok [p, stats] = colamd2mex (S) ; elseif (nargout == 2 & nargin == 2) %#ok [p, stats] = colamd2mex (S, knobs) ; else error ('colamd: incorrect number of input and/or output arguments') ; end %------------------------------------------------------------------------------- % column elimination tree post-ordering: %------------------------------------------------------------------------------- [ignore, q] = etree (S (:,p), 'col') ; p = p (q) ; % stats is an optional 20-element output vector that provides data about the % ordering and the validity of the input matrix S. Ordering statistics are % in stats (1:3). stats (1) and stats (2) are the number of dense or empty % rows and columns ignored by COLAMD and stats (3) is the number of % garbage collections performed on the internal data structure used by % COLAMD (roughly of size 2.2*nnz(S) + 4*m + 7*n integers). % % MATLAB built-in functions are intended to generate valid sparse matrices, % with no duplicate entries, with ascending row indices of the nonzeros % in each column, with a non-negative number of entries in each column (!) % and so on. If a matrix is invalid, then COLAMD may or may not be able % to continue. If there are duplicate entries (a row index appears two or % more times in the same column) or if the row indices in a column are out % of order, then COLAMD can correct these errors by ignoring the duplicate % entries and sorting each column of its internal copy of the matrix S (the % input matrix S is not repaired, however). If a matrix is invalid in other % ways then COLAMD cannot continue, an error message is printed, and no % output arguments (P or stats) are returned. COLAMD is thus a simple way % to check a sparse matrix to see if it's valid. % % stats (4:7) provide information if COLAMD was able to continue. The % matrix is OK if stats (4) is zero, or 1 if invalid. stats (5) is the % rightmost column index that is unsorted or contains duplicate entries, % or zero if no such column exists. stats (6) is the last seen duplicate % or out-of-order row index in the column index given by stats (5), or zero % if no such row index exists. stats (7) is the number of duplicate or % out-of-order row indices. % % stats (8:20) is always zero in the current version of COLAMD (reserved % for future use). SuiteSparse/COLAMD/MATLAB/symamdmex.c0000644001170100242450000001376110616374605016036 0ustar davisfac/* ========================================================================== */ /* === symamd mexFunction =================================================== */ /* ========================================================================== */ /* SYMAMD mexFunction Usage: P = symamd2 (A) ; [ P, stats ] = symamd2 (A, knobs) ; See symamd.m for a description. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Notice: Copyright (c) 1998-2007, Timothy A. Davis. All Rights Reserved. See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c file) for the License. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/symamdmex.c file. It requires the colamd.c and colamd.h files. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "colamd.h" #include "mex.h" #include "matrix.h" #include #include "UFconfig.h" /* ========================================================================== */ /* === symamd mexFunction =================================================== */ /* ========================================================================== */ void mexFunction ( /* === Parameters ======================================================= */ int nlhs, /* number of left-hand sides */ mxArray *plhs [], /* left-hand side matrices */ int nrhs, /* number of right--hand sides */ const mxArray *prhs [] /* right-hand side matrices */ ) { /* === Local variables ================================================== */ UF_long *perm ; /* column ordering of M and ordering of A */ UF_long *A ; /* row indices of input matrix A */ UF_long *p ; /* column pointers of input matrix A */ UF_long n_col ; /* number of columns of A */ UF_long n_row ; /* number of rows of A */ UF_long full ; /* TRUE if input matrix full, FALSE if sparse */ double knobs [COLAMD_KNOBS] ; /* colamd user-controllable parameters */ double *out_perm ; /* output permutation vector */ double *out_stats ; /* output stats vector */ double *in_knobs ; /* input knobs vector */ UF_long i ; /* loop counter */ mxArray *Ainput ; /* input matrix handle */ UF_long spumoni ; /* verbosity variable */ UF_long stats [COLAMD_STATS] ; /* stats for symamd */ colamd_printf = mexPrintf ; /* COLAMD printf routine */ /* === Check inputs ===================================================== */ if (nrhs < 1 || nrhs > 2 || nlhs < 0 || nlhs > 2) { mexErrMsgTxt ( "symamd: incorrect number of input and/or output arguments.") ; } /* === Get knobs ======================================================== */ colamd_l_set_defaults (knobs) ; spumoni = 0 ; /* check for user-passed knobs */ if (nrhs == 2) { in_knobs = mxGetPr (prhs [1]) ; i = mxGetNumberOfElements (prhs [1]) ; if (i > 0) knobs [COLAMD_DENSE_ROW] = in_knobs [0] ; if (i > 1) spumoni = (UF_long) (in_knobs [1] != 0) ; } /* print knob settings if spumoni is set */ if (spumoni) { mexPrintf ("\nsymamd version %d.%d, %s:\n", COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE) ; if (knobs [COLAMD_DENSE_ROW] >= 0) { mexPrintf ("knobs(1): %g, rows/cols with > " "max(16,%g*sqrt(size(A,2))) entries removed\n", in_knobs [0], knobs [COLAMD_DENSE_ROW]) ; } else { mexPrintf ("knobs(1): %g, no dense rows removed\n", in_knobs [0]) ; } mexPrintf ("knobs(2): %g, statistics and knobs printed\n", in_knobs [1]) ; } /* === If A is full, convert to a sparse matrix ========================= */ Ainput = (mxArray *) prhs [0] ; if (mxGetNumberOfDimensions (Ainput) != 2) { mexErrMsgTxt ("symamd: input matrix must be 2-dimensional.") ; } full = !mxIsSparse (Ainput) ; if (full) { mexCallMATLAB (1, &Ainput, 1, (mxArray **) prhs, "sparse") ; } /* === Allocate workspace for symamd ==================================== */ /* get size of matrix */ n_row = mxGetM (Ainput) ; n_col = mxGetN (Ainput) ; if (n_col != n_row) { mexErrMsgTxt ("symamd: matrix must be square.") ; } A = (UF_long *) mxGetIr (Ainput) ; p = (UF_long *) mxGetJc (Ainput) ; perm = (UF_long *) mxCalloc (n_col+1, sizeof (UF_long)) ; /* === Order the rows and columns of A (does not destroy A) ============= */ if (!symamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree)) { symamd_l_report (stats) ; mexErrMsgTxt ("symamd error!") ; } if (full) { mxDestroyArray (Ainput) ; } /* === Return the permutation vector ==================================== */ plhs [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ; out_perm = mxGetPr (plhs [0]) ; for (i = 0 ; i < n_col ; i++) { /* symamd is 0-based, but MATLAB expects this to be 1-based */ out_perm [i] = perm [i] + 1 ; } mxFree (perm) ; /* === Return the stats vector ========================================== */ /* print stats if spumoni is set */ if (spumoni) { symamd_l_report (stats) ; } if (nlhs == 2) { plhs [1] = mxCreateDoubleMatrix (1, COLAMD_STATS, mxREAL) ; out_stats = mxGetPr (plhs [1]) ; for (i = 0 ; i < COLAMD_STATS ; i++) { out_stats [i] = stats [i] ; } /* fix stats (5) and (6), for 1-based information on jumbled matrix. */ /* note that this correction doesn't occur if symamd returns FALSE */ out_stats [COLAMD_INFO1] ++ ; out_stats [COLAMD_INFO2] ++ ; } } SuiteSparse/COLAMD/MATLAB/luflops.m0000644001170100242450000000272410620367702015520 0ustar davisfacfunction fl = luflops (L, U) %LUFLOPS compute the flop count for sparse LU factorization % % Example: % fl = luflops (L,U) % % Given a sparse LU factorization (L and U), return the flop count required % by a conventional LU factorization algorithm to compute it. L and U can % be either sparse or full matrices. L must be lower triangular and U must % be upper triangular. Do not attempt to use this on the permuted L from % [L,U] = lu (A). Instead, use [L,U,P] = lu (A) or [L,U,P,Q] = lu (A). % % Note that there is a subtle undercount in this estimate. Suppose A is % completely dense, but during LU factorization exact cancellation occurs, % causing some of the entries in L and U to become identically zero. The % flop count returned by this routine is an undercount. There is a simple % way to fix this (L = spones (L) + spones (tril (A))), but the fix is partial. % It can also occur that some entry in L is a "symbolic" fill-in (zero in % A, but a fill-in entry and thus must be computed), but numerically % zero. The only way to get a reliable LU factorization would be to do a % purely symbolic factorization of A. This cannot be done with % symbfact (A, 'col'). % % See NA Digest, Vol 00, #50, Tuesday, Dec. 5, 2000 % % See also symbfact % Copyright 1998-2007, Timothy A. Davis Lnz = full (sum (spones (L))) - 1 ; % off diagonal nz in cols of L Unz = full (sum (spones (U')))' - 1 ; % off diagonal nz in rows of U fl = 2*Lnz*Unz + sum (Lnz) ; SuiteSparse/COLAMD/MATLAB/colamd_make.m0000644001170100242450000000142710620367650016271 0ustar davisfacfunction colamd_make %COLAMD_MAKE compiles COLAMD2 and SYMAMD2 for MATLAB % % Example: % colamd_make % % See also colamd, symamd % Copyright 1998-2007, Timothy A. Davis, and Stefan Larimore % Developed in collaboration with J. Gilbert and E. Ng. details = 0 ; % 1 if details of each command are to be printed d = '' ; if (~isempty (strfind (computer, '64'))) d = '-largeArrayDims' ; end src = '../Source/colamd.c ../Source/colamd_global.c' ; cmd = sprintf ('mex -DDLONG -O %s -I../../UFconfig -I../Include -output ', d) ; s = [cmd 'colamd2mex colamdmex.c ' src] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; s = [cmd 'symamd2mex symamdmex.c ' src] ; if (details) fprintf ('%s\n', s) ; end eval (s) ; fprintf ('COLAMD2 and SYMAMD2 successfully compiled.\n') ; SuiteSparse/COLAMD/Include/0000755001170100242450000000000010617102731014267 5ustar davisfacSuiteSparse/COLAMD/Include/colamd.h0000644001170100242450000002073110711427105015702 0ustar davisfac/* ========================================================================== */ /* === colamd/symamd prototypes and definitions ============================= */ /* ========================================================================== */ /* COLAMD / SYMAMD include file You must include this file (colamd.h) in any routine that uses colamd, symamd, or the related macros and definitions. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Notice: Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. Permission is hereby granted to use, copy, modify, and/or distribute this program, provided that the Copyright, this License, and the Availability of the original version is retained on all copies and made accessible to the end-user of any code or package that includes COLAMD or any modified version of COLAMD. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h file. It is required by the colamd.c, colamdmex.c, and symamdmex.c files, and by any C code that calls the routines whose prototypes are listed below, or that uses the colamd/symamd definitions listed below. */ #ifndef COLAMD_H #define COLAMD_H /* make it easy for C++ programs to include COLAMD */ #ifdef __cplusplus extern "C" { #endif /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include /* ========================================================================== */ /* === COLAMD version ======================================================= */ /* ========================================================================== */ /* COLAMD Version 2.4 and later will include the following definitions. * As an example, to test if the version you are using is 2.4 or later: * * #ifdef COLAMD_VERSION * if (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4)) ... * #endif * * This also works during compile-time: * * #if defined(COLAMD_VERSION) && (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4)) * printf ("This is version 2.4 or later\n") ; * #else * printf ("This is an early version\n") ; * #endif * * Versions 2.3 and earlier of COLAMD do not include a #define'd version number. */ #define COLAMD_DATE "Nov 1, 2007" #define COLAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) #define COLAMD_MAIN_VERSION 2 #define COLAMD_SUB_VERSION 7 #define COLAMD_SUBSUB_VERSION 1 #define COLAMD_VERSION \ COLAMD_VERSION_CODE(COLAMD_MAIN_VERSION,COLAMD_SUB_VERSION) /* ========================================================================== */ /* === Knob and statistics definitions ====================================== */ /* ========================================================================== */ /* size of the knobs [ ] array. Only knobs [0..1] are currently used. */ #define COLAMD_KNOBS 20 /* number of output statistics. Only stats [0..6] are currently used. */ #define COLAMD_STATS 20 /* knobs [0] and stats [0]: dense row knob and output statistic. */ #define COLAMD_DENSE_ROW 0 /* knobs [1] and stats [1]: dense column knob and output statistic. */ #define COLAMD_DENSE_COL 1 /* knobs [2]: aggressive absorption */ #define COLAMD_AGGRESSIVE 2 /* stats [2]: memory defragmentation count output statistic */ #define COLAMD_DEFRAG_COUNT 2 /* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */ #define COLAMD_STATUS 3 /* stats [4..6]: error info, or info on jumbled columns */ #define COLAMD_INFO1 4 #define COLAMD_INFO2 5 #define COLAMD_INFO3 6 /* error codes returned in stats [3]: */ #define COLAMD_OK (0) #define COLAMD_OK_BUT_JUMBLED (1) #define COLAMD_ERROR_A_not_present (-1) #define COLAMD_ERROR_p_not_present (-2) #define COLAMD_ERROR_nrow_negative (-3) #define COLAMD_ERROR_ncol_negative (-4) #define COLAMD_ERROR_nnz_negative (-5) #define COLAMD_ERROR_p0_nonzero (-6) #define COLAMD_ERROR_A_too_small (-7) #define COLAMD_ERROR_col_length_negative (-8) #define COLAMD_ERROR_row_index_out_of_bounds (-9) #define COLAMD_ERROR_out_of_memory (-10) #define COLAMD_ERROR_internal_error (-999) /* ========================================================================== */ /* === Prototypes of user-callable routines ================================= */ /* ========================================================================== */ /* define UF_long */ #include "UFconfig.h" size_t colamd_recommended /* returns recommended value of Alen, */ /* or 0 if input arguments are erroneous */ ( int nnz, /* nonzeros in A */ int n_row, /* number of rows in A */ int n_col /* number of columns in A */ ) ; size_t colamd_l_recommended /* returns recommended value of Alen, */ /* or 0 if input arguments are erroneous */ ( UF_long nnz, /* nonzeros in A */ UF_long n_row, /* number of rows in A */ UF_long n_col /* number of columns in A */ ) ; void colamd_set_defaults /* sets default parameters */ ( /* knobs argument is modified on output */ double knobs [COLAMD_KNOBS] /* parameter settings for colamd */ ) ; void colamd_l_set_defaults /* sets default parameters */ ( /* knobs argument is modified on output */ double knobs [COLAMD_KNOBS] /* parameter settings for colamd */ ) ; int colamd /* returns (1) if successful, (0) otherwise*/ ( /* A and p arguments are modified on output */ int n_row, /* number of rows in A */ int n_col, /* number of columns in A */ int Alen, /* size of the array A */ int A [], /* row indices of A, of size Alen */ int p [], /* column pointers of A, of size n_col+1 */ double knobs [COLAMD_KNOBS],/* parameter settings for colamd */ int stats [COLAMD_STATS] /* colamd output statistics and error codes */ ) ; UF_long colamd_l /* returns (1) if successful, (0) otherwise*/ ( /* A and p arguments are modified on output */ UF_long n_row, /* number of rows in A */ UF_long n_col, /* number of columns in A */ UF_long Alen, /* size of the array A */ UF_long A [], /* row indices of A, of size Alen */ UF_long p [], /* column pointers of A, of size n_col+1 */ double knobs [COLAMD_KNOBS],/* parameter settings for colamd */ UF_long stats [COLAMD_STATS]/* colamd output statistics and error codes */ ) ; int symamd /* return (1) if OK, (0) otherwise */ ( int n, /* number of rows and columns of A */ int A [], /* row indices of A */ int p [], /* column pointers of A */ int perm [], /* output permutation, size n_col+1 */ double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */ int stats [COLAMD_STATS], /* output statistics and error codes */ void * (*allocate) (size_t, size_t), /* pointer to calloc (ANSI C) or */ /* mxCalloc (for MATLAB mexFunction) */ void (*release) (void *) /* pointer to free (ANSI C) or */ /* mxFree (for MATLAB mexFunction) */ ) ; UF_long symamd_l /* return (1) if OK, (0) otherwise */ ( UF_long n, /* number of rows and columns of A */ UF_long A [], /* row indices of A */ UF_long p [], /* column pointers of A */ UF_long perm [], /* output permutation, size n_col+1 */ double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */ UF_long stats [COLAMD_STATS], /* output statistics and error codes */ void * (*allocate) (size_t, size_t), /* pointer to calloc (ANSI C) or */ /* mxCalloc (for MATLAB mexFunction) */ void (*release) (void *) /* pointer to free (ANSI C) or */ /* mxFree (for MATLAB mexFunction) */ ) ; void colamd_report ( int stats [COLAMD_STATS] ) ; void colamd_l_report ( UF_long stats [COLAMD_STATS] ) ; void symamd_report ( int stats [COLAMD_STATS] ) ; void symamd_l_report ( UF_long stats [COLAMD_STATS] ) ; #ifndef EXTERN #define EXTERN extern #endif EXTERN int (*colamd_printf) (const char *, ...) ; #ifdef __cplusplus } #endif #endif /* COLAMD_H */ SuiteSparse/COLAMD/Source/0000755001170100242450000000000010617104442014145 5ustar davisfacSuiteSparse/COLAMD/Source/colamd_global.c0000644001170100242450000000155710616374354017112 0ustar davisfac/* ========================================================================== */ /* === colamd_global.c ====================================================== */ /* ========================================================================== */ /* ---------------------------------------------------------------------------- * COLAMD, Copyright (C) 2007, Timothy A. Davis. * See License.txt for the Version 2.1 of the GNU Lesser General Public License * http://www.cise.ufl.edu/research/sparse * -------------------------------------------------------------------------- */ /* Global variables for COLAMD */ #ifndef NPRINT #ifdef MATLAB_MEX_FILE #include "mex.h" int (*colamd_printf) (const char *, ...) = mexPrintf ; #else #include int (*colamd_printf) (const char *, ...) = printf ; #endif #else int (*colamd_printf) (const char *, ...) = ((void *) 0) ; #endif SuiteSparse/COLAMD/Source/colamd.c0000644001170100242450000032304610616374311015563 0ustar davisfac/* ========================================================================== */ /* === colamd/symamd - a sparse matrix column ordering algorithm ============ */ /* ========================================================================== */ /* COLAMD / SYMAMD colamd: an approximate minimum degree column ordering algorithm, for LU factorization of symmetric or unsymmetric matrices, QR factorization, least squares, interior point methods for linear programming problems, and other related problems. symamd: an approximate minimum degree ordering algorithm for Cholesky factorization of symmetric matrices. Purpose: Colamd computes a permutation Q such that the Cholesky factorization of (AQ)'(AQ) has less fill-in and requires fewer floating point operations than A'A. This also provides a good ordering for sparse partial pivoting methods, P(AQ) = LU, where Q is computed prior to numerical factorization, and P is computed during numerical factorization via conventional partial pivoting with row interchanges. Colamd is the column ordering method used in SuperLU, part of the ScaLAPACK library. It is also available as built-in function in MATLAB Version 6, available from MathWorks, Inc. (http://www.mathworks.com). This routine can be used in place of colmmd in MATLAB. Symamd computes a permutation P of a symmetric matrix A such that the Cholesky factorization of PAP' has less fill-in and requires fewer floating point operations than A. Symamd constructs a matrix M such that M'M has the same nonzero pattern of A, and then orders the columns of M using colmmd. The column ordering of M is then returned as the row and column ordering P of A. Authors: The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis at cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Acknowledgements: This work was supported by the National Science Foundation, under grants DMS-9504974 and DMS-9803599. Copyright and License: Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. COLAMD is also available under alternate licenses, contact T. Davis for details. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Availability: The colamd/symamd library is available at http://www.cise.ufl.edu/research/sparse/colamd/ This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c file. It requires the colamd.h file. It is required by the colamdmex.c and symamdmex.c files, for the MATLAB interface to colamd and symamd. Appears as ACM Algorithm 836. See the ChangeLog file for changes since Version 1.0. References: T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 353-376, 2004. T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD, an approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380, 2004. */ /* ========================================================================== */ /* === Description of user-callable routines ================================ */ /* ========================================================================== */ /* COLAMD includes both int and UF_long versions of all its routines. The * description below is for the int version. For UF_long, all int arguments * become UF_long. UF_long is normally defined as long, except for WIN64. ---------------------------------------------------------------------------- colamd_recommended: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" size_t colamd_recommended (int nnz, int n_row, int n_col) ; size_t colamd_l_recommended (UF_long nnz, UF_long n_row, UF_long n_col) ; Purpose: Returns recommended value of Alen for use by colamd. Returns 0 if any input argument is negative. The use of this routine is optional. Not needed for symamd, which dynamically allocates its own memory. Note that in v2.4 and earlier, these routines returned int or long. They now return a value of type size_t. Arguments (all input arguments): int nnz ; Number of nonzeros in the matrix A. This must be the same value as p [n_col] in the call to colamd - otherwise you will get a wrong value of the recommended memory to use. int n_row ; Number of rows in the matrix A. int n_col ; Number of columns in the matrix A. ---------------------------------------------------------------------------- colamd_set_defaults: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" colamd_set_defaults (double knobs [COLAMD_KNOBS]) ; colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ; Purpose: Sets the default parameters. The use of this routine is optional. Arguments: double knobs [COLAMD_KNOBS] ; Output only. NOTE: the meaning of the dense row/col knobs has changed in v2.4 knobs [0] and knobs [1] control dense row and col detection: Colamd: rows with more than max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col)) entries are removed prior to ordering. Columns with more than max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col))) entries are removed prior to ordering, and placed last in the output column ordering. Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0]. Rows and columns with more than max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n)) entries are removed prior to ordering, and placed last in the output ordering. COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, respectively, in colamd.h. Default values of these two knobs are both 10. Currently, only knobs [0] and knobs [1] are used, but future versions may use more knobs. If so, they will be properly set to their defaults by the future version of colamd_set_defaults, so that the code that calls colamd will not need to change, assuming that you either use colamd_set_defaults, or pass a (double *) NULL pointer as the knobs array to colamd or symamd. knobs [2]: aggressive absorption knobs [COLAMD_AGGRESSIVE] controls whether or not to do aggressive absorption during the ordering. Default is TRUE. ---------------------------------------------------------------------------- colamd: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" int colamd (int n_row, int n_col, int Alen, int *A, int *p, double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ; UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen, UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS]) ; Purpose: Computes a column ordering (Q) of A such that P(AQ)=LU or (AQ)'AQ=LL' have less fill-in and require fewer floating point operations than factorizing the unpermuted matrix A or A'A, respectively. Returns: TRUE (1) if successful, FALSE (0) otherwise. Arguments: int n_row ; Input argument. Number of rows in the matrix A. Restriction: n_row >= 0. Colamd returns FALSE if n_row is negative. int n_col ; Input argument. Number of columns in the matrix A. Restriction: n_col >= 0. Colamd returns FALSE if n_col is negative. int Alen ; Input argument. Restriction (see note): Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col Colamd returns FALSE if these conditions are not met. Note: this restriction makes an modest assumption regarding the size of the two typedef's structures in colamd.h. We do, however, guarantee that Alen >= colamd_recommended (nnz, n_row, n_col) will be sufficient. Note: the macro version does not check for integer overflow, and thus is not recommended. Use the colamd_recommended routine instead. int A [Alen] ; Input argument, undefined on output. A is an integer array of size Alen. Alen must be at least as large as the bare minimum value given above, but this is very low, and can result in excessive run time. For best performance, we recommend that Alen be greater than or equal to colamd_recommended (nnz, n_row, n_col), which adds nnz/5 to the bare minimum value given above. On input, the row indices of the entries in column c of the matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a given column c need not be in ascending order, and duplicate row indices may be be present. However, colamd will work a little faster if both of these conditions are met (Colamd puts the matrix into this format, if it finds that the the conditions are not met). The matrix is 0-based. That is, rows are in the range 0 to n_row-1, and columns are in the range 0 to n_col-1. Colamd returns FALSE if any row index is out of range. The contents of A are modified during ordering, and are undefined on output. int p [n_col+1] ; Both input and output argument. p is an integer array of size n_col+1. On input, it holds the "pointers" for the column form of the matrix A. Column c of the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first entry, p [0], must be zero, and p [c] <= p [c+1] must hold for all c in the range 0 to n_col-1. The value p [n_col] is thus the total number of entries in the pattern of the matrix A. Colamd returns FALSE if these conditions are not met. On output, if colamd returns TRUE, the array p holds the column permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is the first column index in the new ordering, and p [n_col-1] is the last. That is, p [k] = j means that column j of A is the kth pivot column, in AQ, where k is in the range 0 to n_col-1 (p [0] = j means that column j of A is the first column in AQ). If colamd returns FALSE, then no permutation is returned, and p is undefined on output. double knobs [COLAMD_KNOBS] ; Input argument. See colamd_set_defaults for a description. int stats [COLAMD_STATS] ; Output argument. Statistics on the ordering, and error status. See colamd.h for related definitions. Colamd returns FALSE if stats is not present. stats [0]: number of dense or empty rows ignored. stats [1]: number of dense or empty columns ignored (and ordered last in the output permutation p) Note that a row can become "empty" if it contains only "dense" and/or "empty" columns, and similarly a column can become "empty" if it only contains "dense" and/or "empty" rows. stats [2]: number of garbage collections performed. This can be excessively high if Alen is close to the minimum required value. stats [3]: status code. < 0 is an error code. > 1 is a warning or notice. 0 OK. Each column of the input matrix contained row indices in increasing order, with no duplicates. 1 OK, but columns of input matrix were jumbled (unsorted columns or duplicate entries). Colamd had to do some extra work to sort the matrix first and remove duplicate entries, but it still was able to return a valid permutation (return value of colamd was TRUE). stats [4]: highest numbered column that is unsorted or has duplicate entries. stats [5]: last seen duplicate or unsorted row index. stats [6]: number of duplicate or unsorted row indices. -1 A is a null pointer -2 p is a null pointer -3 n_row is negative stats [4]: n_row -4 n_col is negative stats [4]: n_col -5 number of nonzeros in matrix is negative stats [4]: number of nonzeros, p [n_col] -6 p [0] is nonzero stats [4]: p [0] -7 A is too small stats [4]: required size stats [5]: actual size (Alen) -8 a column has a negative number of entries stats [4]: column with < 0 entries stats [5]: number of entries in col -9 a row index is out of bounds stats [4]: column with bad row index stats [5]: bad row index stats [6]: n_row, # of rows of matrx -10 (unused; see symamd.c) -999 (unused; see symamd.c) Future versions may return more statistics in the stats array. Example: See http://www.cise.ufl.edu/research/sparse/colamd/example.c for a complete example. To order the columns of a 5-by-4 matrix with 11 nonzero entries in the following nonzero pattern x 0 x 0 x 0 x x 0 x x 0 0 0 x x x x 0 0 with default knobs and no output statistics, do the following: #include "colamd.h" #define ALEN 100 int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ; int p [ ] = {0, 3, 5, 9, 11} ; int stats [COLAMD_STATS] ; colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ; The permutation is returned in the array p, and A is destroyed. ---------------------------------------------------------------------------- symamd: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" int symamd (int n, int *A, int *p, int *perm, double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS], void (*allocate) (size_t, size_t), void (*release) (void *)) ; UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm, double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS], void (*allocate) (size_t, size_t), void (*release) (void *)) ; Purpose: The symamd routine computes an ordering P of a symmetric sparse matrix A such that the Cholesky factorization PAP' = LL' remains sparse. It is based on a column ordering of a matrix M constructed so that the nonzero pattern of M'M is the same as A. The matrix A is assumed to be symmetric; only the strictly lower triangular part is accessed. You must pass your selected memory allocator (usually calloc/free or mxCalloc/mxFree) to symamd, for it to allocate memory for the temporary matrix M. Returns: TRUE (1) if successful, FALSE (0) otherwise. Arguments: int n ; Input argument. Number of rows and columns in the symmetrix matrix A. Restriction: n >= 0. Symamd returns FALSE if n is negative. int A [nnz] ; Input argument. A is an integer array of size nnz, where nnz = p [n]. The row indices of the entries in column c of the matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a given column c need not be in ascending order, and duplicate row indices may be present. However, symamd will run faster if the columns are in sorted order with no duplicate entries. The matrix is 0-based. That is, rows are in the range 0 to n-1, and columns are in the range 0 to n-1. Symamd returns FALSE if any row index is out of range. The contents of A are not modified. int p [n+1] ; Input argument. p is an integer array of size n+1. On input, it holds the "pointers" for the column form of the matrix A. Column c of the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first entry, p [0], must be zero, and p [c] <= p [c+1] must hold for all c in the range 0 to n-1. The value p [n] is thus the total number of entries in the pattern of the matrix A. Symamd returns FALSE if these conditions are not met. The contents of p are not modified. int perm [n+1] ; Output argument. On output, if symamd returns TRUE, the array perm holds the permutation P, where perm [0] is the first index in the new ordering, and perm [n-1] is the last. That is, perm [k] = j means that row and column j of A is the kth column in PAP', where k is in the range 0 to n-1 (perm [0] = j means that row and column j of A are the first row and column in PAP'). The array is used as a workspace during the ordering, which is why it must be of length n+1, not just n. double knobs [COLAMD_KNOBS] ; Input argument. See colamd_set_defaults for a description. int stats [COLAMD_STATS] ; Output argument. Statistics on the ordering, and error status. See colamd.h for related definitions. Symamd returns FALSE if stats is not present. stats [0]: number of dense or empty row and columns ignored (and ordered last in the output permutation perm). Note that a row/column can become "empty" if it contains only "dense" and/or "empty" columns/rows. stats [1]: (same as stats [0]) stats [2]: number of garbage collections performed. stats [3]: status code. < 0 is an error code. > 1 is a warning or notice. 0 OK. Each column of the input matrix contained row indices in increasing order, with no duplicates. 1 OK, but columns of input matrix were jumbled (unsorted columns or duplicate entries). Symamd had to do some extra work to sort the matrix first and remove duplicate entries, but it still was able to return a valid permutation (return value of symamd was TRUE). stats [4]: highest numbered column that is unsorted or has duplicate entries. stats [5]: last seen duplicate or unsorted row index. stats [6]: number of duplicate or unsorted row indices. -1 A is a null pointer -2 p is a null pointer -3 (unused, see colamd.c) -4 n is negative stats [4]: n -5 number of nonzeros in matrix is negative stats [4]: # of nonzeros (p [n]). -6 p [0] is nonzero stats [4]: p [0] -7 (unused) -8 a column has a negative number of entries stats [4]: column with < 0 entries stats [5]: number of entries in col -9 a row index is out of bounds stats [4]: column with bad row index stats [5]: bad row index stats [6]: n_row, # of rows of matrx -10 out of memory (unable to allocate temporary workspace for M or count arrays using the "allocate" routine passed into symamd). Future versions may return more statistics in the stats array. void * (*allocate) (size_t, size_t) A pointer to a function providing memory allocation. The allocated memory must be returned initialized to zero. For a C application, this argument should normally be a pointer to calloc. For a MATLAB mexFunction, the routine mxCalloc is passed instead. void (*release) (size_t, size_t) A pointer to a function that frees memory allocated by the memory allocation routine above. For a C application, this argument should normally be a pointer to free. For a MATLAB mexFunction, the routine mxFree is passed instead. ---------------------------------------------------------------------------- colamd_report: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" colamd_report (int stats [COLAMD_STATS]) ; colamd_l_report (UF_long stats [COLAMD_STATS]) ; Purpose: Prints the error status and statistics recorded in the stats array on the standard error output (for a standard C routine) or on the MATLAB output (for a mexFunction). Arguments: int stats [COLAMD_STATS] ; Input only. Statistics from colamd. ---------------------------------------------------------------------------- symamd_report: ---------------------------------------------------------------------------- C syntax: #include "colamd.h" symamd_report (int stats [COLAMD_STATS]) ; symamd_l_report (UF_long stats [COLAMD_STATS]) ; Purpose: Prints the error status and statistics recorded in the stats array on the standard error output (for a standard C routine) or on the MATLAB output (for a mexFunction). Arguments: int stats [COLAMD_STATS] ; Input only. Statistics from symamd. */ /* ========================================================================== */ /* === Scaffolding code definitions ======================================== */ /* ========================================================================== */ /* Ensure that debugging is turned off: */ #ifndef NDEBUG #define NDEBUG #endif /* turn on debugging by uncommenting the following line #undef NDEBUG */ /* Our "scaffolding code" philosophy: In our opinion, well-written library code should keep its "debugging" code, and just normally have it turned off by the compiler so as not to interfere with performance. This serves several purposes: (1) assertions act as comments to the reader, telling you what the code expects at that point. All assertions will always be true (unless there really is a bug, of course). (2) leaving in the scaffolding code assists anyone who would like to modify the code, or understand the algorithm (by reading the debugging output, one can get a glimpse into what the code is doing). (3) (gasp!) for actually finding bugs. This code has been heavily tested and "should" be fully functional and bug-free ... but you never know... The code will become outrageously slow when debugging is enabled. To control the level of debugging output, set an environment variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging, you should see the following message on the standard output: colamd: debug version, D = 1 (THIS WILL BE SLOW!) or a similar message for symamd. If you don't, then debugging has not been enabled. */ /* ========================================================================== */ /* === Include files ======================================================== */ /* ========================================================================== */ #include "colamd.h" #include #include #ifdef MATLAB_MEX_FILE #include "mex.h" #include "matrix.h" #endif /* MATLAB_MEX_FILE */ #if !defined (NPRINT) || !defined (NDEBUG) #include #endif #ifndef NULL #define NULL ((void *) 0) #endif /* ========================================================================== */ /* === int or UF_long ======================================================= */ /* ========================================================================== */ /* define UF_long */ #include "UFconfig.h" #ifdef DLONG #define Int UF_long #define ID UF_long_id #define Int_MAX UF_long_max #define COLAMD_recommended colamd_l_recommended #define COLAMD_set_defaults colamd_l_set_defaults #define COLAMD_MAIN colamd_l #define SYMAMD_MAIN symamd_l #define COLAMD_report colamd_l_report #define SYMAMD_report symamd_l_report #else #define Int int #define ID "%d" #define Int_MAX INT_MAX #define COLAMD_recommended colamd_recommended #define COLAMD_set_defaults colamd_set_defaults #define COLAMD_MAIN colamd #define SYMAMD_MAIN symamd #define COLAMD_report colamd_report #define SYMAMD_report symamd_report #endif /* ========================================================================== */ /* === Row and Column structures ============================================ */ /* ========================================================================== */ /* User code that makes use of the colamd/symamd routines need not directly */ /* reference these structures. They are used only for colamd_recommended. */ typedef struct Colamd_Col_struct { Int start ; /* index for A of first row in this column, or DEAD */ /* if column is dead */ Int length ; /* number of rows in this column */ union { Int thickness ; /* number of original columns represented by this */ /* col, if the column is alive */ Int parent ; /* parent in parent tree super-column structure, if */ /* the column is dead */ } shared1 ; union { Int score ; /* the score used to maintain heap, if col is alive */ Int order ; /* pivot ordering of this column, if col is dead */ } shared2 ; union { Int headhash ; /* head of a hash bucket, if col is at the head of */ /* a degree list */ Int hash ; /* hash value, if col is not in a degree list */ Int prev ; /* previous column in degree list, if col is in a */ /* degree list (but not at the head of a degree list) */ } shared3 ; union { Int degree_next ; /* next column, if col is in a degree list */ Int hash_next ; /* next column, if col is in a hash list */ } shared4 ; } Colamd_Col ; typedef struct Colamd_Row_struct { Int start ; /* index for A of first col in this row */ Int length ; /* number of principal columns in this row */ union { Int degree ; /* number of principal & non-principal columns in row */ Int p ; /* used as a row pointer in init_rows_cols () */ } shared1 ; union { Int mark ; /* for computing set differences and marking dead rows*/ Int first_column ;/* first column in row (used in garbage collection) */ } shared2 ; } Colamd_Row ; /* ========================================================================== */ /* === Definitions ========================================================== */ /* ========================================================================== */ /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */ #define PUBLIC #define PRIVATE static #define DENSE_DEGREE(alpha,n) \ ((Int) MAX (16.0, (alpha) * sqrt ((double) (n)))) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define ONES_COMPLEMENT(r) (-(r)-1) /* -------------------------------------------------------------------------- */ /* Change for version 2.1: define TRUE and FALSE only if not yet defined */ /* -------------------------------------------------------------------------- */ #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif /* -------------------------------------------------------------------------- */ #define EMPTY (-1) /* Row and column status */ #define ALIVE (0) #define DEAD (-1) /* Column status */ #define DEAD_PRINCIPAL (-1) #define DEAD_NON_PRINCIPAL (-2) /* Macros for row and column status update and checking. */ #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) #define COL_IS_DEAD(c) (Col [c].start < ALIVE) #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } /* ========================================================================== */ /* === Colamd reporting mechanism =========================================== */ /* ========================================================================== */ #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS) /* In MATLAB, matrices are 1-based to the user, but 0-based internally */ #define INDEX(i) ((i)+1) #else /* In C, matrices are 0-based and indices are reported as such in *_report */ #define INDEX(i) (i) #endif /* All output goes through the PRINTF macro. */ #define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; } /* ========================================================================== */ /* === Prototypes of PRIVATE routines ======================================= */ /* ========================================================================== */ PRIVATE Int init_rows_cols ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int p [], Int stats [COLAMD_STATS] ) ; PRIVATE void init_scoring ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int head [], double knobs [COLAMD_KNOBS], Int *p_n_row2, Int *p_n_col2, Int *p_max_deg ) ; PRIVATE Int find_ordering ( Int n_row, Int n_col, Int Alen, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int head [], Int n_col2, Int max_deg, Int pfree, Int aggressive ) ; PRIVATE void order_children ( Int n_col, Colamd_Col Col [], Int p [] ) ; PRIVATE void detect_super_cols ( #ifndef NDEBUG Int n_col, Colamd_Row Row [], #endif /* NDEBUG */ Colamd_Col Col [], Int A [], Int head [], Int row_start, Int row_length ) ; PRIVATE Int garbage_collection ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int *pfree ) ; PRIVATE Int clear_mark ( Int tag_mark, Int max_mark, Int n_row, Colamd_Row Row [] ) ; PRIVATE void print_report ( char *method, Int stats [COLAMD_STATS] ) ; /* ========================================================================== */ /* === Debugging prototypes and definitions ================================= */ /* ========================================================================== */ #ifndef NDEBUG #include /* colamd_debug is the *ONLY* global variable, and is only */ /* present when debugging */ PRIVATE Int colamd_debug = 0 ; /* debug print level */ #define DEBUG0(params) { PRINTF (params) ; } #define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; } #define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; } #define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; } #define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; } #ifdef MATLAB_MEX_FILE #define ASSERT(expression) (mxAssert ((expression), "")) #else #define ASSERT(expression) (assert (expression)) #endif /* MATLAB_MEX_FILE */ PRIVATE void colamd_get_debug /* gets the debug print level from getenv */ ( char *method ) ; PRIVATE void debug_deg_lists ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int head [], Int min_score, Int should, Int max_deg ) ; PRIVATE void debug_mark ( Int n_row, Colamd_Row Row [], Int tag_mark, Int max_mark ) ; PRIVATE void debug_matrix ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [] ) ; PRIVATE void debug_structures ( Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int n_col2 ) ; #else /* NDEBUG */ /* === No debugging ========================================================= */ #define DEBUG0(params) ; #define DEBUG1(params) ; #define DEBUG2(params) ; #define DEBUG3(params) ; #define DEBUG4(params) ; #define ASSERT(expression) #endif /* NDEBUG */ /* ========================================================================== */ /* === USER-CALLABLE ROUTINES: ============================================== */ /* ========================================================================== */ /* ========================================================================== */ /* === colamd_recommended =================================================== */ /* ========================================================================== */ /* The colamd_recommended routine returns the suggested size for Alen. This value has been determined to provide good balance between the number of garbage collections and the memory requirements for colamd. If any argument is negative, or if integer overflow occurs, a 0 is returned as an error condition. 2*nnz space is required for the row and column indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is required for the Col and Row arrays, respectively, which are internal to colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the minimal amount of "elbow room", and nnz/5 more space is recommended for run time efficiency. Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10. This function is not needed when using symamd. */ /* add two values of type size_t, and check for integer overflow */ static size_t t_add (size_t a, size_t b, int *ok) { (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ; return ((*ok) ? (a + b) : 0) ; } /* compute a*k where k is a small integer, and check for integer overflow */ static size_t t_mult (size_t a, size_t k, int *ok) { size_t i, s = 0 ; for (i = 0 ; i < k ; i++) { s = t_add (s, a, ok) ; } return (s) ; } /* size of the Col and Row structures */ #define COLAMD_C(n_col,ok) \ ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int))) #define COLAMD_R(n_row,ok) \ ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int))) PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */ ( /* === Parameters ======================================================= */ Int nnz, /* number of nonzeros in A */ Int n_row, /* number of rows in A */ Int n_col /* number of columns in A */ ) { size_t s, c, r ; int ok = TRUE ; if (nnz < 0 || n_row < 0 || n_col < 0) { return (0) ; } s = t_mult (nnz, 2, &ok) ; /* 2*nnz */ c = COLAMD_C (n_col, &ok) ; /* size of column structures */ r = COLAMD_R (n_row, &ok) ; /* size of row structures */ s = t_add (s, c, &ok) ; s = t_add (s, r, &ok) ; s = t_add (s, n_col, &ok) ; /* elbow room */ s = t_add (s, nnz/5, &ok) ; /* elbow room */ ok = ok && (s < Int_MAX) ; return (ok ? s : 0) ; } /* ========================================================================== */ /* === colamd_set_defaults ================================================== */ /* ========================================================================== */ /* The colamd_set_defaults routine sets the default values of the user- controllable parameters for colamd and symamd: Colamd: rows with more than max (16, knobs [0] * sqrt (n_col)) entries are removed prior to ordering. Columns with more than max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed prior to ordering, and placed last in the output column ordering. Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n)) entries are removed prior to ordering, and placed last in the output ordering. knobs [0] dense row control knobs [1] dense column control knobs [2] if nonzero, do aggresive absorption knobs [3..19] unused, but future versions might use this */ PUBLIC void COLAMD_set_defaults ( /* === Parameters ======================================================= */ double knobs [COLAMD_KNOBS] /* knob array */ ) { /* === Local variables ================================================== */ Int i ; if (!knobs) { return ; /* no knobs to initialize */ } for (i = 0 ; i < COLAMD_KNOBS ; i++) { knobs [i] = 0 ; } knobs [COLAMD_DENSE_ROW] = 10 ; knobs [COLAMD_DENSE_COL] = 10 ; knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/ } /* ========================================================================== */ /* === symamd =============================================================== */ /* ========================================================================== */ PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */ ( /* === Parameters ======================================================= */ Int n, /* number of rows and columns of A */ Int A [], /* row indices of A */ Int p [], /* column pointers of A */ Int perm [], /* output permutation, size n+1 */ double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */ Int stats [COLAMD_STATS], /* output statistics and error codes */ void * (*allocate) (size_t, size_t), /* pointer to calloc (ANSI C) or */ /* mxCalloc (for MATLAB mexFunction) */ void (*release) (void *) /* pointer to free (ANSI C) or */ /* mxFree (for MATLAB mexFunction) */ ) { /* === Local variables ================================================== */ Int *count ; /* length of each column of M, and col pointer*/ Int *mark ; /* mark array for finding duplicate entries */ Int *M ; /* row indices of matrix M */ size_t Mlen ; /* length of M */ Int n_row ; /* number of rows in M */ Int nnz ; /* number of entries in A */ Int i ; /* row index of A */ Int j ; /* column index of A */ Int k ; /* row index of M */ Int mnz ; /* number of nonzeros in M */ Int pp ; /* index into a column of A */ Int last_row ; /* last row seen in the current column */ Int length ; /* number of nonzeros in a column */ double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */ double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */ #ifndef NDEBUG colamd_get_debug ("symamd") ; #endif /* NDEBUG */ /* === Check the input arguments ======================================== */ if (!stats) { DEBUG0 (("symamd: stats not present\n")) ; return (FALSE) ; } for (i = 0 ; i < COLAMD_STATS ; i++) { stats [i] = 0 ; } stats [COLAMD_STATUS] = COLAMD_OK ; stats [COLAMD_INFO1] = -1 ; stats [COLAMD_INFO2] = -1 ; if (!A) { stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; DEBUG0 (("symamd: A not present\n")) ; return (FALSE) ; } if (!p) /* p is not present */ { stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; DEBUG0 (("symamd: p not present\n")) ; return (FALSE) ; } if (n < 0) /* n must be >= 0 */ { stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; stats [COLAMD_INFO1] = n ; DEBUG0 (("symamd: n negative %d\n", n)) ; return (FALSE) ; } nnz = p [n] ; if (nnz < 0) /* nnz must be >= 0 */ { stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; stats [COLAMD_INFO1] = nnz ; DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ; return (FALSE) ; } if (p [0] != 0) { stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; stats [COLAMD_INFO1] = p [0] ; DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ; return (FALSE) ; } /* === If no knobs, set default knobs =================================== */ if (!knobs) { COLAMD_set_defaults (default_knobs) ; knobs = default_knobs ; } /* === Allocate count and mark ========================================== */ count = (Int *) ((*allocate) (n+1, sizeof (Int))) ; if (!count) { stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ; return (FALSE) ; } mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ; if (!mark) { stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; (*release) ((void *) count) ; DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ; return (FALSE) ; } /* === Compute column counts of M, check if A is valid ================== */ stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ for (i = 0 ; i < n ; i++) { mark [i] = -1 ; } for (j = 0 ; j < n ; j++) { last_row = -1 ; length = p [j+1] - p [j] ; if (length < 0) { /* column pointers must be non-decreasing */ stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; stats [COLAMD_INFO1] = j ; stats [COLAMD_INFO2] = length ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ; return (FALSE) ; } for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; if (i < 0 || i >= n) { /* row index i, in column j, is out of bounds */ stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; stats [COLAMD_INFO1] = j ; stats [COLAMD_INFO2] = i ; stats [COLAMD_INFO3] = n ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ; return (FALSE) ; } if (i <= last_row || mark [i] == j) { /* row index is unsorted or repeated (or both), thus col */ /* is jumbled. This is a notice, not an error condition. */ stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; stats [COLAMD_INFO1] = j ; stats [COLAMD_INFO2] = i ; (stats [COLAMD_INFO3]) ++ ; DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ; } if (i > j && mark [i] != j) { /* row k of M will contain column indices i and j */ count [i]++ ; count [j]++ ; } /* mark the row as having been seen in this column */ mark [i] = j ; last_row = i ; } } /* v2.4: removed free(mark) */ /* === Compute column pointers of M ===================================== */ /* use output permutation, perm, for column pointers of M */ perm [0] = 0 ; for (j = 1 ; j <= n ; j++) { perm [j] = perm [j-1] + count [j-1] ; } for (j = 0 ; j < n ; j++) { count [j] = perm [j] ; } /* === Construct M ====================================================== */ mnz = perm [n] ; n_row = mnz / 2 ; Mlen = COLAMD_recommended (mnz, n_row, n) ; M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ; DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n", n_row, n, mnz, (double) Mlen)) ; if (!M) { stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; (*release) ((void *) count) ; (*release) ((void *) mark) ; DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ; return (FALSE) ; } k = 0 ; if (stats [COLAMD_STATUS] == COLAMD_OK) { /* Matrix is OK */ for (j = 0 ; j < n ; j++) { ASSERT (p [j+1] - p [j] >= 0) ; for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; ASSERT (i >= 0 && i < n) ; if (i > j) { /* row k of M contains column indices i and j */ M [count [i]++] = k ; M [count [j]++] = k ; k++ ; } } } } else { /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */ DEBUG0 (("symamd: Duplicates in A.\n")) ; for (i = 0 ; i < n ; i++) { mark [i] = -1 ; } for (j = 0 ; j < n ; j++) { ASSERT (p [j+1] - p [j] >= 0) ; for (pp = p [j] ; pp < p [j+1] ; pp++) { i = A [pp] ; ASSERT (i >= 0 && i < n) ; if (i > j && mark [i] != j) { /* row k of M contains column indices i and j */ M [count [i]++] = k ; M [count [j]++] = k ; k++ ; mark [i] = j ; } } } /* v2.4: free(mark) moved below */ } /* count and mark no longer needed */ (*release) ((void *) count) ; (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */ ASSERT (k == n_row) ; /* === Adjust the knobs for M =========================================== */ for (i = 0 ; i < COLAMD_KNOBS ; i++) { cknobs [i] = knobs [i] ; } /* there are no dense rows in M */ cknobs [COLAMD_DENSE_ROW] = -1 ; cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ; /* === Order the columns of M =========================================== */ /* v2.4: colamd cannot fail here, so the error check is removed */ (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ; /* Note that the output permutation is now in perm */ /* === get the statistics for symamd from colamd ======================== */ /* a dense column in colamd means a dense row and col in symamd */ stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ; /* === Free M =========================================================== */ (*release) ((void *) M) ; DEBUG0 (("symamd: done.\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === colamd =============================================================== */ /* ========================================================================== */ /* The colamd routine computes a column ordering Q of a sparse matrix A such that the LU factorization P(AQ) = LU remains sparse, where P is selected via partial pivoting. The routine can also be viewed as providing a permutation Q such that the Cholesky factorization (AQ)'(AQ) = LL' remains sparse. */ PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows in A */ Int n_col, /* number of columns in A */ Int Alen, /* length of A */ Int A [], /* row indices of A */ Int p [], /* pointers to columns in A */ double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */ Int stats [COLAMD_STATS] /* output statistics and error codes */ ) { /* === Local variables ================================================== */ Int i ; /* loop index */ Int nnz ; /* nonzeros in A */ size_t Row_size ; /* size of Row [], in integers */ size_t Col_size ; /* size of Col [], in integers */ size_t need ; /* minimum required length of A */ Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */ Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */ Int n_col2 ; /* number of non-dense, non-empty columns */ Int n_row2 ; /* number of non-dense, non-empty rows */ Int ngarbage ; /* number of garbage collections performed */ Int max_deg ; /* maximum row degree */ double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ Int aggressive ; /* do aggressive absorption */ int ok ; #ifndef NDEBUG colamd_get_debug ("colamd") ; #endif /* NDEBUG */ /* === Check the input arguments ======================================== */ if (!stats) { DEBUG0 (("colamd: stats not present\n")) ; return (FALSE) ; } for (i = 0 ; i < COLAMD_STATS ; i++) { stats [i] = 0 ; } stats [COLAMD_STATUS] = COLAMD_OK ; stats [COLAMD_INFO1] = -1 ; stats [COLAMD_INFO2] = -1 ; if (!A) /* A is not present */ { stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; DEBUG0 (("colamd: A not present\n")) ; return (FALSE) ; } if (!p) /* p is not present */ { stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; DEBUG0 (("colamd: p not present\n")) ; return (FALSE) ; } if (n_row < 0) /* n_row must be >= 0 */ { stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; stats [COLAMD_INFO1] = n_row ; DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; return (FALSE) ; } if (n_col < 0) /* n_col must be >= 0 */ { stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; stats [COLAMD_INFO1] = n_col ; DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; return (FALSE) ; } nnz = p [n_col] ; if (nnz < 0) /* nnz must be >= 0 */ { stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; stats [COLAMD_INFO1] = nnz ; DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; return (FALSE) ; } if (p [0] != 0) { stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; stats [COLAMD_INFO1] = p [0] ; DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; return (FALSE) ; } /* === If no knobs, set default knobs =================================== */ if (!knobs) { COLAMD_set_defaults (default_knobs) ; knobs = default_knobs ; } aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ; /* === Allocate the Row and Col arrays from array A ===================== */ ok = TRUE ; Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */ Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */ /* need = 2*nnz + n_col + Col_size + Row_size ; */ need = t_mult (nnz, 2, &ok) ; need = t_add (need, n_col, &ok) ; need = t_add (need, Col_size, &ok) ; need = t_add (need, Row_size, &ok) ; if (!ok || need > (size_t) Alen || need > Int_MAX) { /* not enough space in array A to perform the ordering */ stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; stats [COLAMD_INFO1] = need ; stats [COLAMD_INFO2] = Alen ; DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); return (FALSE) ; } Alen -= Col_size + Row_size ; Col = (Colamd_Col *) &A [Alen] ; Row = (Colamd_Row *) &A [Alen + Col_size] ; /* === Construct the row and column data structures ===================== */ if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) { /* input matrix is invalid */ DEBUG0 (("colamd: Matrix invalid\n")) ; return (FALSE) ; } /* === Initialize scores, kill dense rows/columns ======================= */ init_scoring (n_row, n_col, Row, Col, A, p, knobs, &n_row2, &n_col2, &max_deg) ; /* === Order the supercolumns =========================================== */ ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p, n_col2, max_deg, 2*nnz, aggressive) ; /* === Order the non-principal columns ================================== */ order_children (n_col, Col, p) ; /* === Return statistics in stats ======================================= */ stats [COLAMD_DENSE_ROW] = n_row - n_row2 ; stats [COLAMD_DENSE_COL] = n_col - n_col2 ; stats [COLAMD_DEFRAG_COUNT] = ngarbage ; DEBUG0 (("colamd: done.\n")) ; return (TRUE) ; } /* ========================================================================== */ /* === colamd_report ======================================================== */ /* ========================================================================== */ PUBLIC void COLAMD_report ( Int stats [COLAMD_STATS] ) { print_report ("colamd", stats) ; } /* ========================================================================== */ /* === symamd_report ======================================================== */ /* ========================================================================== */ PUBLIC void SYMAMD_report ( Int stats [COLAMD_STATS] ) { print_report ("symamd", stats) ; } /* ========================================================================== */ /* === NON-USER-CALLABLE ROUTINES: ========================================== */ /* ========================================================================== */ /* There are no user-callable routines beyond this point in the file */ /* ========================================================================== */ /* === init_rows_cols ======================================================= */ /* ========================================================================== */ /* Takes the column form of the matrix in A and creates the row form of the matrix. Also, row and column attributes are stored in the Col and Row structs. If the columns are un-sorted or contain duplicate row indices, this routine will also sort and remove duplicate row indices from the column form of the matrix. Returns FALSE if the matrix is invalid, TRUE otherwise. Not user-callable. */ PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* row indices of A, of size Alen */ Int p [], /* pointers to columns in A, of size n_col+1 */ Int stats [COLAMD_STATS] /* colamd statistics */ ) { /* === Local variables ================================================== */ Int col ; /* a column index */ Int row ; /* a row index */ Int *cp ; /* a column pointer */ Int *cp_end ; /* a pointer to the end of a column */ Int *rp ; /* a row pointer */ Int *rp_end ; /* a pointer to the end of a row */ Int last_row ; /* previous row */ /* === Initialize columns, and check column pointers ==================== */ for (col = 0 ; col < n_col ; col++) { Col [col].start = p [col] ; Col [col].length = p [col+1] - p [col] ; if (Col [col].length < 0) { /* column pointers must be non-decreasing */ stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = Col [col].length ; DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; return (FALSE) ; } Col [col].shared1.thickness = 1 ; Col [col].shared2.score = 0 ; Col [col].shared3.prev = EMPTY ; Col [col].shared4.degree_next = EMPTY ; } /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ /* === Scan columns, compute row degrees, and check row indices ========= */ stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ for (row = 0 ; row < n_row ; row++) { Row [row].length = 0 ; Row [row].shared2.mark = -1 ; } for (col = 0 ; col < n_col ; col++) { last_row = -1 ; cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { row = *cp++ ; /* make sure row indices within range */ if (row < 0 || row >= n_row) { stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = row ; stats [COLAMD_INFO3] = n_row ; DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; return (FALSE) ; } if (row <= last_row || Row [row].shared2.mark == col) { /* row index are unsorted or repeated (or both), thus col */ /* is jumbled. This is a notice, not an error condition. */ stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; stats [COLAMD_INFO1] = col ; stats [COLAMD_INFO2] = row ; (stats [COLAMD_INFO3]) ++ ; DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); } if (Row [row].shared2.mark != col) { Row [row].length++ ; } else { /* this is a repeated entry in the column, */ /* it will be removed */ Col [col].length-- ; } /* mark the row as having been seen in this column */ Row [row].shared2.mark = col ; last_row = row ; } } /* === Compute row pointers ============================================= */ /* row form of the matrix starts directly after the column */ /* form of matrix in A */ Row [0].start = p [n_col] ; Row [0].shared1.p = Row [0].start ; Row [0].shared2.mark = -1 ; for (row = 1 ; row < n_row ; row++) { Row [row].start = Row [row-1].start + Row [row-1].length ; Row [row].shared1.p = Row [row].start ; Row [row].shared2.mark = -1 ; } /* === Create row form ================================================== */ if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) { /* if cols jumbled, watch for repeated row indices */ for (col = 0 ; col < n_col ; col++) { cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { row = *cp++ ; if (Row [row].shared2.mark != col) { A [(Row [row].shared1.p)++] = col ; Row [row].shared2.mark = col ; } } } } else { /* if cols not jumbled, we don't need the mark (this is faster) */ for (col = 0 ; col < n_col ; col++) { cp = &A [p [col]] ; cp_end = &A [p [col+1]] ; while (cp < cp_end) { A [(Row [*cp++].shared1.p)++] = col ; } } } /* === Clear the row marks and set row degrees ========================== */ for (row = 0 ; row < n_row ; row++) { Row [row].shared2.mark = 0 ; Row [row].shared1.degree = Row [row].length ; } /* === See if we need to re-create columns ============================== */ if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) { DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; #ifndef NDEBUG /* make sure column lengths are correct */ for (col = 0 ; col < n_col ; col++) { p [col] = Col [col].length ; } for (row = 0 ; row < n_row ; row++) { rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { p [*rp++]-- ; } } for (col = 0 ; col < n_col ; col++) { ASSERT (p [col] == 0) ; } /* now p is all zero (different than when debugging is turned off) */ #endif /* NDEBUG */ /* === Compute col pointers ========================================= */ /* col form of the matrix starts at A [0]. */ /* Note, we may have a gap between the col form and the row */ /* form if there were duplicate entries, if so, it will be */ /* removed upon the first garbage collection */ Col [0].start = 0 ; p [0] = Col [0].start ; for (col = 1 ; col < n_col ; col++) { /* note that the lengths here are for pruned columns, i.e. */ /* no duplicate row indices will exist for these columns */ Col [col].start = Col [col-1].start + Col [col-1].length ; p [col] = Col [col].start ; } /* === Re-create col form =========================================== */ for (row = 0 ; row < n_row ; row++) { rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { A [(p [*rp++])++] = row ; } } } /* === Done. Matrix is not (or no longer) jumbled ====================== */ return (TRUE) ; } /* ========================================================================== */ /* === init_scoring ========================================================= */ /* ========================================================================== */ /* Kills dense or empty columns and rows, calculates an initial score for each column, and places all columns in the degree lists. Not user-callable. */ PRIVATE void init_scoring ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* column form and row form of A */ Int head [], /* of size n_col+1 */ double knobs [COLAMD_KNOBS],/* parameters */ Int *p_n_row2, /* number of non-dense, non-empty rows */ Int *p_n_col2, /* number of non-dense, non-empty columns */ Int *p_max_deg /* maximum row degree */ ) { /* === Local variables ================================================== */ Int c ; /* a column index */ Int r, row ; /* a row index */ Int *cp ; /* a column pointer */ Int deg ; /* degree of a row or column */ Int *cp_end ; /* a pointer to the end of a column */ Int *new_cp ; /* new column pointer */ Int col_length ; /* length of pruned column */ Int score ; /* current column score */ Int n_col2 ; /* number of non-dense, non-empty columns */ Int n_row2 ; /* number of non-dense, non-empty rows */ Int dense_row_count ; /* remove rows with more entries than this */ Int dense_col_count ; /* remove cols with more entries than this */ Int min_score ; /* smallest column score */ Int max_deg ; /* maximum row degree */ Int next_col ; /* Used to add to degree list.*/ #ifndef NDEBUG Int debug_count ; /* debug only. */ #endif /* NDEBUG */ /* === Extract knobs ==================================================== */ /* Note: if knobs contains a NaN, this is undefined: */ if (knobs [COLAMD_DENSE_ROW] < 0) { /* only remove completely dense rows */ dense_row_count = n_col-1 ; } else { dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ; } if (knobs [COLAMD_DENSE_COL] < 0) { /* only remove completely dense columns */ dense_col_count = n_row-1 ; } else { dense_col_count = DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ; } DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; max_deg = 0 ; n_col2 = n_col ; n_row2 = n_row ; /* === Kill empty columns =============================================== */ /* Put the empty columns at the end in their natural order, so that LU */ /* factorization can proceed as far as possible. */ for (c = n_col-1 ; c >= 0 ; c--) { deg = Col [c].length ; if (deg == 0) { /* this is a empty column, kill and order it last */ Col [c].shared2.order = --n_col2 ; KILL_PRINCIPAL_COL (c) ; } } DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; /* === Kill dense columns =============================================== */ /* Put the dense columns at the end, in their natural order */ for (c = n_col-1 ; c >= 0 ; c--) { /* skip any dead columns */ if (COL_IS_DEAD (c)) { continue ; } deg = Col [c].length ; if (deg > dense_col_count) { /* this is a dense column, kill and order it last */ Col [c].shared2.order = --n_col2 ; /* decrement the row degrees */ cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { Row [*cp++].shared1.degree-- ; } KILL_PRINCIPAL_COL (c) ; } } DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; /* === Kill dense and empty rows ======================================== */ for (r = 0 ; r < n_row ; r++) { deg = Row [r].shared1.degree ; ASSERT (deg >= 0 && deg <= n_col) ; if (deg > dense_row_count || deg == 0) { /* kill a dense or empty row */ KILL_ROW (r) ; --n_row2 ; } else { /* keep track of max degree of remaining rows */ max_deg = MAX (max_deg, deg) ; } } DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; /* === Compute initial column scores ==================================== */ /* At this point the row degrees are accurate. They reflect the number */ /* of "live" (non-dense) columns in each row. No empty rows exist. */ /* Some "live" columns may contain only dead rows, however. These are */ /* pruned in the code below. */ /* now find the initial matlab score for each column */ for (c = n_col-1 ; c >= 0 ; c--) { /* skip dead column */ if (COL_IS_DEAD (c)) { continue ; } score = 0 ; cp = &A [Col [c].start] ; new_cp = cp ; cp_end = cp + Col [c].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; /* skip if dead */ if (ROW_IS_DEAD (row)) { continue ; } /* compact the column */ *new_cp++ = row ; /* add row's external degree */ score += Row [row].shared1.degree - 1 ; /* guard against integer overflow */ score = MIN (score, n_col) ; } /* determine pruned column length */ col_length = (Int) (new_cp - &A [Col [c].start]) ; if (col_length == 0) { /* a newly-made null column (all rows in this col are "dense" */ /* and have already been killed) */ DEBUG2 (("Newly null killed: %d\n", c)) ; Col [c].shared2.order = --n_col2 ; KILL_PRINCIPAL_COL (c) ; } else { /* set column length and set score */ ASSERT (score >= 0) ; ASSERT (score <= n_col) ; Col [c].length = col_length ; Col [c].shared2.score = score ; } } DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", n_col-n_col2)) ; /* At this point, all empty rows and columns are dead. All live columns */ /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ /* yet). Rows may contain dead columns, but all live rows contain at */ /* least one live column. */ #ifndef NDEBUG debug_structures (n_row, n_col, Row, Col, A, n_col2) ; #endif /* NDEBUG */ /* === Initialize degree lists ========================================== */ #ifndef NDEBUG debug_count = 0 ; #endif /* NDEBUG */ /* clear the hash buckets */ for (c = 0 ; c <= n_col ; c++) { head [c] = EMPTY ; } min_score = n_col ; /* place in reverse order, so low column indices are at the front */ /* of the lists. This is to encourage natural tie-breaking */ for (c = n_col-1 ; c >= 0 ; c--) { /* only add principal columns to degree lists */ if (COL_IS_ALIVE (c)) { DEBUG4 (("place %d score %d minscore %d ncol %d\n", c, Col [c].shared2.score, min_score, n_col)) ; /* === Add columns score to DList =============================== */ score = Col [c].shared2.score ; ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (score >= 0) ; ASSERT (score <= n_col) ; ASSERT (head [score] >= EMPTY) ; /* now add this column to dList at proper score location */ next_col = head [score] ; Col [c].shared3.prev = EMPTY ; Col [c].shared4.degree_next = next_col ; /* if there already was a column with the same score, set its */ /* previous pointer to this new column */ if (next_col != EMPTY) { Col [next_col].shared3.prev = c ; } head [score] = c ; /* see if this score is less than current min */ min_score = MIN (min_score, score) ; #ifndef NDEBUG debug_count++ ; #endif /* NDEBUG */ } } #ifndef NDEBUG DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n", debug_count, n_col, n_col-debug_count)) ; ASSERT (debug_count == n_col2) ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ; #endif /* NDEBUG */ /* === Return number of remaining columns, and max row degree =========== */ *p_n_col2 = n_col2 ; *p_n_row2 = n_row2 ; *p_max_deg = max_deg ; } /* ========================================================================== */ /* === find_ordering ======================================================== */ /* ========================================================================== */ /* Order the principal columns of the supercolumn form of the matrix (no supercolumns on input). Uses a minimum approximate column minimum degree ordering method. Not user-callable. */ PRIVATE Int find_ordering /* return the number of garbage collections */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows of A */ Int n_col, /* number of columns of A */ Int Alen, /* size of A, 2*nnz + n_col or larger */ Colamd_Row Row [], /* of size n_row+1 */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* column form and row form of A */ Int head [], /* of size n_col+1 */ Int n_col2, /* Remaining columns to order */ Int max_deg, /* Maximum row degree */ Int pfree, /* index of first free slot (2*nnz on entry) */ Int aggressive ) { /* === Local variables ================================================== */ Int k ; /* current pivot ordering step */ Int pivot_col ; /* current pivot column */ Int *cp ; /* a column pointer */ Int *rp ; /* a row pointer */ Int pivot_row ; /* current pivot row */ Int *new_cp ; /* modified column pointer */ Int *new_rp ; /* modified row pointer */ Int pivot_row_start ; /* pointer to start of pivot row */ Int pivot_row_degree ; /* number of columns in pivot row */ Int pivot_row_length ; /* number of supercolumns in pivot row */ Int pivot_col_score ; /* score of pivot column */ Int needed_memory ; /* free space needed for pivot row */ Int *cp_end ; /* pointer to the end of a column */ Int *rp_end ; /* pointer to the end of a row */ Int row ; /* a row index */ Int col ; /* a column index */ Int max_score ; /* maximum possible score */ Int cur_score ; /* score of current column */ unsigned Int hash ; /* hash value for supernode detection */ Int head_column ; /* head of hash bucket */ Int first_col ; /* first column in hash bucket */ Int tag_mark ; /* marker value for mark array */ Int row_mark ; /* Row [row].shared2.mark */ Int set_difference ; /* set difference size of row with pivot row */ Int min_score ; /* smallest column score */ Int col_thickness ; /* "thickness" (no. of columns in a supercol) */ Int max_mark ; /* maximum value of tag_mark */ Int pivot_col_thickness ; /* number of columns represented by pivot col */ Int prev_col ; /* Used by Dlist operations. */ Int next_col ; /* Used by Dlist operations. */ Int ngarbage ; /* number of garbage collections performed */ #ifndef NDEBUG Int debug_d ; /* debug loop counter */ Int debug_step = 0 ; /* debug loop counter */ #endif /* NDEBUG */ /* === Initialization and clear mark ==================================== */ max_mark = INT_MAX - n_col ; /* INT_MAX defined in */ tag_mark = clear_mark (0, max_mark, n_row, Row) ; min_score = 0 ; ngarbage = 0 ; DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; /* === Order the columns ================================================ */ for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) { #ifndef NDEBUG if (debug_step % 100 == 0) { DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ; } else { DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ; } debug_step++ ; debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k, max_deg) ; debug_matrix (n_row, n_col, Row, Col, A) ; #endif /* NDEBUG */ /* === Select pivot column, and order it ============================ */ /* make sure degree list isn't empty */ ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (head [min_score] >= EMPTY) ; #ifndef NDEBUG for (debug_d = 0 ; debug_d < min_score ; debug_d++) { ASSERT (head [debug_d] == EMPTY) ; } #endif /* NDEBUG */ /* get pivot column from head of minimum degree list */ while (head [min_score] == EMPTY && min_score < n_col) { min_score++ ; } pivot_col = head [min_score] ; ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; next_col = Col [pivot_col].shared4.degree_next ; head [min_score] = next_col ; if (next_col != EMPTY) { Col [next_col].shared3.prev = EMPTY ; } ASSERT (COL_IS_ALIVE (pivot_col)) ; /* remember score for defrag check */ pivot_col_score = Col [pivot_col].shared2.score ; /* the pivot column is the kth column in the pivot order */ Col [pivot_col].shared2.order = k ; /* increment order count by column thickness */ pivot_col_thickness = Col [pivot_col].shared1.thickness ; k += pivot_col_thickness ; ASSERT (pivot_col_thickness > 0) ; DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ; /* === Garbage_collection, if necessary ============================= */ needed_memory = MIN (pivot_col_score, n_col - k) ; if (pfree + needed_memory >= Alen) { pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; ngarbage++ ; /* after garbage collection we will have enough */ ASSERT (pfree + needed_memory < Alen) ; /* garbage collection has wiped out the Row[].shared2.mark array */ tag_mark = clear_mark (0, max_mark, n_row, Row) ; #ifndef NDEBUG debug_matrix (n_row, n_col, Row, Col, A) ; #endif /* NDEBUG */ } /* === Compute pivot row pattern ==================================== */ /* get starting location for this new merged row */ pivot_row_start = pfree ; /* initialize new row counts to zero */ pivot_row_degree = 0 ; /* tag pivot column as having been visited so it isn't included */ /* in merged pivot row */ Col [pivot_col].shared1.thickness = -pivot_col_thickness ; /* pivot row is the union of all rows in the pivot column pattern */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ; /* skip if row is dead */ if (ROW_IS_ALIVE (row)) { rp = &A [Row [row].start] ; rp_end = rp + Row [row].length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; /* add the column, if alive and untagged */ col_thickness = Col [col].shared1.thickness ; if (col_thickness > 0 && COL_IS_ALIVE (col)) { /* tag column in pivot row */ Col [col].shared1.thickness = -col_thickness ; ASSERT (pfree < Alen) ; /* place column in pivot row */ A [pfree++] = col ; pivot_row_degree += col_thickness ; } } } } /* clear tag on pivot column */ Col [pivot_col].shared1.thickness = pivot_col_thickness ; max_deg = MAX (max_deg, pivot_row_degree) ; #ifndef NDEBUG DEBUG3 (("check2\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* NDEBUG */ /* === Kill all rows used to construct pivot row ==================== */ /* also kill pivot row, temporarily */ cp = &A [Col [pivot_col].start] ; cp_end = cp + Col [pivot_col].length ; while (cp < cp_end) { /* may be killing an already dead row */ row = *cp++ ; DEBUG3 (("Kill row in pivot col: %d\n", row)) ; KILL_ROW (row) ; } /* === Select a row index to use as the new pivot row =============== */ pivot_row_length = pfree - pivot_row_start ; if (pivot_row_length > 0) { /* pick the "pivot" row arbitrarily (first row in col) */ pivot_row = A [Col [pivot_col].start] ; DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; } else { /* there is no pivot row, since it is of zero length */ pivot_row = EMPTY ; ASSERT (pivot_row_length == 0) ; } ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; /* === Approximate degree computation =============================== */ /* Here begins the computation of the approximate degree. The column */ /* score is the sum of the pivot row "length", plus the size of the */ /* set differences of each row in the column minus the pattern of the */ /* pivot row itself. The column ("thickness") itself is also */ /* excluded from the column score (we thus use an approximate */ /* external degree). */ /* The time taken by the following code (compute set differences, and */ /* add them up) is proportional to the size of the data structure */ /* being scanned - that is, the sum of the sizes of each column in */ /* the pivot row. Thus, the amortized time to compute a column score */ /* is proportional to the size of that column (where size, in this */ /* context, is the column "length", or the number of row indices */ /* in that column). The number of row indices in a column is */ /* monotonically non-decreasing, from the length of the original */ /* column on input to colamd. */ /* === Compute set differences ====================================== */ DEBUG3 (("** Computing set differences phase. **\n")) ; /* pivot row is currently dead - it will be revived later. */ DEBUG3 (("Pivot row: ")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; DEBUG3 (("Col: %d\n", col)) ; /* clear tags used to construct pivot row pattern */ col_thickness = -Col [col].shared1.thickness ; ASSERT (col_thickness > 0) ; Col [col].shared1.thickness = col_thickness ; /* === Remove column from degree list =========================== */ cur_score = Col [col].shared2.score ; prev_col = Col [col].shared3.prev ; next_col = Col [col].shared4.degree_next ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (cur_score >= EMPTY) ; if (prev_col == EMPTY) { head [cur_score] = next_col ; } else { Col [prev_col].shared4.degree_next = next_col ; } if (next_col != EMPTY) { Col [next_col].shared3.prev = prev_col ; } /* === Scan the column ========================================== */ cp = &A [Col [col].start] ; cp_end = cp + Col [col].length ; while (cp < cp_end) { /* get a row */ row = *cp++ ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { continue ; } ASSERT (row != pivot_row) ; set_difference = row_mark - tag_mark ; /* check if the row has been seen yet */ if (set_difference < 0) { ASSERT (Row [row].shared1.degree <= max_deg) ; set_difference = Row [row].shared1.degree ; } /* subtract column thickness from this row's set difference */ set_difference -= col_thickness ; ASSERT (set_difference >= 0) ; /* absorb this row if the set difference becomes zero */ if (set_difference == 0 && aggressive) { DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; KILL_ROW (row) ; } else { /* save the new mark */ Row [row].shared2.mark = set_difference + tag_mark ; } } } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k-pivot_row_degree, max_deg) ; #endif /* NDEBUG */ /* === Add up set differences for each column ======================= */ DEBUG3 (("** Adding set differences phase. **\n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { /* get a column */ col = *rp++ ; ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; hash = 0 ; cur_score = 0 ; cp = &A [Col [col].start] ; /* compact the column */ new_cp = cp ; cp_end = cp + Col [col].length ; DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; while (cp < cp_end) { /* get a row */ row = *cp++ ; ASSERT(row >= 0 && row < n_row) ; row_mark = Row [row].shared2.mark ; /* skip if dead */ if (ROW_IS_MARKED_DEAD (row_mark)) { DEBUG4 ((" Row %d, dead\n", row)) ; continue ; } DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark)); ASSERT (row_mark >= tag_mark) ; /* compact the column */ *new_cp++ = row ; /* compute hash function */ hash += row ; /* add set difference */ cur_score += row_mark - tag_mark ; /* integer overflow... */ cur_score = MIN (cur_score, n_col) ; } /* recompute the column's length */ Col [col].length = (Int) (new_cp - &A [Col [col].start]) ; /* === Further mass elimination ================================= */ if (Col [col].length == 0) { DEBUG4 (("further mass elimination. Col: %d\n", col)) ; /* nothing left but the pivot row in this column */ KILL_PRINCIPAL_COL (col) ; pivot_row_degree -= Col [col].shared1.thickness ; ASSERT (pivot_row_degree >= 0) ; /* order it */ Col [col].shared2.order = k ; /* increment order count by column thickness */ k += Col [col].shared1.thickness ; } else { /* === Prepare for supercolumn detection ==================== */ DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; /* save score so far */ Col [col].shared2.score = cur_score ; /* add column to hash table, for supercolumn detection */ hash %= n_col + 1 ; DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; ASSERT (((Int) hash) <= n_col) ; head_column = head [hash] ; if (head_column > EMPTY) { /* degree list "hash" is non-empty, use prev (shared3) of */ /* first column in degree list as head of hash bucket */ first_col = Col [head_column].shared3.headhash ; Col [head_column].shared3.headhash = col ; } else { /* degree list "hash" is empty, use head as hash bucket */ first_col = - (head_column + 2) ; head [hash] = - (col + 2) ; } Col [col].shared4.hash_next = first_col ; /* save hash function in Col [col].shared3.hash */ Col [col].shared3.hash = (Int) hash ; ASSERT (COL_IS_ALIVE (col)) ; } } /* The approximate external column degree is now computed. */ /* === Supercolumn detection ======================================== */ DEBUG3 (("** Supercolumn detection phase. **\n")) ; detect_super_cols ( #ifndef NDEBUG n_col, Row, #endif /* NDEBUG */ Col, A, head, pivot_row_start, pivot_row_length) ; /* === Kill the pivotal column ====================================== */ KILL_PRINCIPAL_COL (pivot_col) ; /* === Clear mark =================================================== */ tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ; #ifndef NDEBUG DEBUG3 (("check3\n")) ; debug_mark (n_row, Row, tag_mark, max_mark) ; #endif /* NDEBUG */ /* === Finalize the new pivot row, and column scores ================ */ DEBUG3 (("** Finalize scores phase. **\n")) ; /* for each column in pivot row */ rp = &A [pivot_row_start] ; /* compact the pivot row */ new_rp = rp ; rp_end = rp + pivot_row_length ; while (rp < rp_end) { col = *rp++ ; /* skip dead columns */ if (COL_IS_DEAD (col)) { continue ; } *new_rp++ = col ; /* add new pivot row to column */ A [Col [col].start + (Col [col].length++)] = pivot_row ; /* retrieve score so far and add on pivot row's degree. */ /* (we wait until here for this in case the pivot */ /* row's degree was reduced due to mass elimination). */ cur_score = Col [col].shared2.score + pivot_row_degree ; /* calculate the max possible score as the number of */ /* external columns minus the 'k' value minus the */ /* columns thickness */ max_score = n_col - k - Col [col].shared1.thickness ; /* make the score the external degree of the union-of-rows */ cur_score -= Col [col].shared1.thickness ; /* make sure score is less or equal than the max score */ cur_score = MIN (cur_score, max_score) ; ASSERT (cur_score >= 0) ; /* store updated score */ Col [col].shared2.score = cur_score ; /* === Place column back in degree list ========================= */ ASSERT (min_score >= 0) ; ASSERT (min_score <= n_col) ; ASSERT (cur_score >= 0) ; ASSERT (cur_score <= n_col) ; ASSERT (head [cur_score] >= EMPTY) ; next_col = head [cur_score] ; Col [col].shared4.degree_next = next_col ; Col [col].shared3.prev = EMPTY ; if (next_col != EMPTY) { Col [next_col].shared3.prev = col ; } head [cur_score] = col ; /* see if this score is less than current min */ min_score = MIN (min_score, cur_score) ; } #ifndef NDEBUG debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2-k, max_deg) ; #endif /* NDEBUG */ /* === Resurrect the new pivot row ================================== */ if (pivot_row_degree > 0) { /* update pivot row length to reflect any cols that were killed */ /* during super-col detection and mass elimination */ Row [pivot_row].start = pivot_row_start ; Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ; ASSERT (Row [pivot_row].length > 0) ; Row [pivot_row].shared1.degree = pivot_row_degree ; Row [pivot_row].shared2.mark = 0 ; /* pivot row is no longer dead */ DEBUG1 (("Resurrect Pivot_row %d deg: %d\n", pivot_row, pivot_row_degree)) ; } } /* === All principal columns have now been ordered ====================== */ return (ngarbage) ; } /* ========================================================================== */ /* === order_children ======================================================= */ /* ========================================================================== */ /* The find_ordering routine has ordered all of the principal columns (the representatives of the supercolumns). The non-principal columns have not yet been ordered. This routine orders those columns by walking up the parent tree (a column is a child of the column which absorbed it). The final permutation vector is then placed in p [0 ... n_col-1], with p [0] being the first column, and p [n_col-1] being the last. It doesn't look like it at first glance, but be assured that this routine takes time linear in the number of columns. Although not immediately obvious, the time taken by this routine is O (n_col), that is, linear in the number of columns. Not user-callable. */ PRIVATE void order_children ( /* === Parameters ======================================================= */ Int n_col, /* number of columns of A */ Colamd_Col Col [], /* of size n_col+1 */ Int p [] /* p [0 ... n_col-1] is the column permutation*/ ) { /* === Local variables ================================================== */ Int i ; /* loop counter for all columns */ Int c ; /* column index */ Int parent ; /* index of column's parent */ Int order ; /* column's order */ /* === Order each non-principal column ================================== */ for (i = 0 ; i < n_col ; i++) { /* find an un-ordered non-principal column */ ASSERT (COL_IS_DEAD (i)) ; if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY) { parent = i ; /* once found, find its principal parent */ do { parent = Col [parent].shared1.parent ; } while (!COL_IS_DEAD_PRINCIPAL (parent)) ; /* now, order all un-ordered non-principal columns along path */ /* to this parent. collapse tree at the same time */ c = i ; /* get order of parent */ order = Col [parent].shared2.order ; do { ASSERT (Col [c].shared2.order == EMPTY) ; /* order this column */ Col [c].shared2.order = order++ ; /* collaps tree */ Col [c].shared1.parent = parent ; /* get immediate parent of this column */ c = Col [c].shared1.parent ; /* continue until we hit an ordered column. There are */ /* guarranteed not to be anymore unordered columns */ /* above an ordered column */ } while (Col [c].shared2.order == EMPTY) ; /* re-order the super_col parent to largest order for this group */ Col [parent].shared2.order = order ; } } /* === Generate the permutation ========================================= */ for (c = 0 ; c < n_col ; c++) { p [Col [c].shared2.order] = c ; } } /* ========================================================================== */ /* === detect_super_cols ==================================================== */ /* ========================================================================== */ /* Detects supercolumns by finding matches between columns in the hash buckets. Check amongst columns in the set A [row_start ... row_start + row_length-1]. The columns under consideration are currently *not* in the degree lists, and have already been placed in the hash buckets. The hash bucket for columns whose hash function is equal to h is stored as follows: if head [h] is >= 0, then head [h] contains a degree list, so: head [h] is the first column in degree bucket h. Col [head [h]].headhash gives the first column in hash bucket h. otherwise, the degree list is empty, and: -(head [h] + 2) is the first column in hash bucket h. For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous column" pointer. Col [c].shared3.hash is used instead as the hash number for that column. The value of Col [c].shared4.hash_next is the next column in the same hash bucket. Assuming no, or "few" hash collisions, the time taken by this routine is linear in the sum of the sizes (lengths) of each column whose score has just been computed in the approximate degree computation. Not user-callable. */ PRIVATE void detect_super_cols ( /* === Parameters ======================================================= */ #ifndef NDEBUG /* these two parameters are only needed when debugging is enabled: */ Int n_col, /* number of columns of A */ Colamd_Row Row [], /* of size n_row+1 */ #endif /* NDEBUG */ Colamd_Col Col [], /* of size n_col+1 */ Int A [], /* row indices of A */ Int head [], /* head of degree lists and hash buckets */ Int row_start, /* pointer to set of columns to check */ Int row_length /* number of columns to check */ ) { /* === Local variables ================================================== */ Int hash ; /* hash value for a column */ Int *rp ; /* pointer to a row */ Int c ; /* a column index */ Int super_c ; /* column index of the column to absorb into */ Int *cp1 ; /* column pointer for column super_c */ Int *cp2 ; /* column pointer for column c */ Int length ; /* length of column super_c */ Int prev_c ; /* column preceding c in hash bucket */ Int i ; /* loop counter */ Int *rp_end ; /* pointer to the end of the row */ Int col ; /* a column index in the row to check */ Int head_column ; /* first column in hash bucket or degree list */ Int first_col ; /* first column in hash bucket */ /* === Consider each column in the row ================================== */ rp = &A [row_start] ; rp_end = rp + row_length ; while (rp < rp_end) { col = *rp++ ; if (COL_IS_DEAD (col)) { continue ; } /* get hash number for this column */ hash = Col [col].shared3.hash ; ASSERT (hash <= n_col) ; /* === Get the first column in this hash bucket ===================== */ head_column = head [hash] ; if (head_column > EMPTY) { first_col = Col [head_column].shared3.headhash ; } else { first_col = - (head_column + 2) ; } /* === Consider each column in the hash bucket ====================== */ for (super_c = first_col ; super_c != EMPTY ; super_c = Col [super_c].shared4.hash_next) { ASSERT (COL_IS_ALIVE (super_c)) ; ASSERT (Col [super_c].shared3.hash == hash) ; length = Col [super_c].length ; /* prev_c is the column preceding column c in the hash bucket */ prev_c = super_c ; /* === Compare super_c with all columns after it ================ */ for (c = Col [super_c].shared4.hash_next ; c != EMPTY ; c = Col [c].shared4.hash_next) { ASSERT (c != super_c) ; ASSERT (COL_IS_ALIVE (c)) ; ASSERT (Col [c].shared3.hash == hash) ; /* not identical if lengths or scores are different */ if (Col [c].length != length || Col [c].shared2.score != Col [super_c].shared2.score) { prev_c = c ; continue ; } /* compare the two columns */ cp1 = &A [Col [super_c].start] ; cp2 = &A [Col [c].start] ; for (i = 0 ; i < length ; i++) { /* the columns are "clean" (no dead rows) */ ASSERT (ROW_IS_ALIVE (*cp1)) ; ASSERT (ROW_IS_ALIVE (*cp2)) ; /* row indices will same order for both supercols, */ /* no gather scatter nessasary */ if (*cp1++ != *cp2++) { break ; } } /* the two columns are different if the for-loop "broke" */ if (i != length) { prev_c = c ; continue ; } /* === Got it! two columns are identical =================== */ ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; Col [super_c].shared1.thickness += Col [c].shared1.thickness ; Col [c].shared1.parent = super_c ; KILL_NON_PRINCIPAL_COL (c) ; /* order c later, in order_children() */ Col [c].shared2.order = EMPTY ; /* remove c from hash bucket */ Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; } } /* === Empty this hash bucket ======================================= */ if (head_column > EMPTY) { /* corresponding degree list "hash" is not empty */ Col [head_column].shared3.headhash = EMPTY ; } else { /* corresponding degree list "hash" is empty */ head [hash] = EMPTY ; } } } /* ========================================================================== */ /* === garbage_collection =================================================== */ /* ========================================================================== */ /* Defragments and compacts columns and rows in the workspace A. Used when all avaliable memory has been used while performing row merging. Returns the index of the first free position in A, after garbage collection. The time taken by this routine is linear is the size of the array A, which is itself linear in the number of nonzeros in the input matrix. Not user-callable. */ PRIVATE Int garbage_collection /* returns the new value of pfree */ ( /* === Parameters ======================================================= */ Int n_row, /* number of rows */ Int n_col, /* number of columns */ Colamd_Row Row [], /* row info */ Colamd_Col Col [], /* column info */ Int A [], /* A [0 ... Alen-1] holds the matrix */ Int *pfree /* &A [0] ... pfree is in use */ ) { /* === Local variables ================================================== */ Int *psrc ; /* source pointer */ Int *pdest ; /* destination pointer */ Int j ; /* counter */ Int r ; /* a row index */ Int c ; /* a column index */ Int length ; /* length of a row or column */ #ifndef NDEBUG Int debug_rows ; DEBUG2 (("Defrag..\n")) ; for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ; debug_rows = 0 ; #endif /* NDEBUG */ /* === Defragment the columns =========================================== */ pdest = &A[0] ; for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { psrc = &A [Col [c].start] ; /* move and compact the column */ ASSERT (pdest <= psrc) ; Col [c].start = (Int) (pdest - &A [0]) ; length = Col [c].length ; for (j = 0 ; j < length ; j++) { r = *psrc++ ; if (ROW_IS_ALIVE (r)) { *pdest++ = r ; } } Col [c].length = (Int) (pdest - &A [Col [c].start]) ; } } /* === Prepare to defragment the rows =================================== */ for (r = 0 ; r < n_row ; r++) { if (ROW_IS_DEAD (r) || (Row [r].length == 0)) { /* This row is already dead, or is of zero length. Cannot compact * a row of zero length, so kill it. NOTE: in the current version, * there are no zero-length live rows. Kill the row (for the first * time, or again) just to be safe. */ KILL_ROW (r) ; } else { /* save first column index in Row [r].shared2.first_column */ psrc = &A [Row [r].start] ; Row [r].shared2.first_column = *psrc ; ASSERT (ROW_IS_ALIVE (r)) ; /* flag the start of the row with the one's complement of row */ *psrc = ONES_COMPLEMENT (r) ; #ifndef NDEBUG debug_rows++ ; #endif /* NDEBUG */ } } /* === Defragment the rows ============================================== */ psrc = pdest ; while (psrc < pfree) { /* find a negative number ... the start of a row */ if (*psrc++ < 0) { psrc-- ; /* get the row index */ r = ONES_COMPLEMENT (*psrc) ; ASSERT (r >= 0 && r < n_row) ; /* restore first column index */ *psrc = Row [r].shared2.first_column ; ASSERT (ROW_IS_ALIVE (r)) ; ASSERT (Row [r].length > 0) ; /* move and compact the row */ ASSERT (pdest <= psrc) ; Row [r].start = (Int) (pdest - &A [0]) ; length = Row [r].length ; for (j = 0 ; j < length ; j++) { c = *psrc++ ; if (COL_IS_ALIVE (c)) { *pdest++ = c ; } } Row [r].length = (Int) (pdest - &A [Row [r].start]) ; ASSERT (Row [r].length > 0) ; #ifndef NDEBUG debug_rows-- ; #endif /* NDEBUG */ } } /* ensure we found all the rows */ ASSERT (debug_rows == 0) ; /* === Return the new value of pfree ==================================== */ return ((Int) (pdest - &A [0])) ; } /* ========================================================================== */ /* === clear_mark =========================================================== */ /* ========================================================================== */ /* Clears the Row [].shared2.mark array, and returns the new tag_mark. Return value is the new tag_mark. Not user-callable. */ PRIVATE Int clear_mark /* return the new value for tag_mark */ ( /* === Parameters ======================================================= */ Int tag_mark, /* new value of tag_mark */ Int max_mark, /* max allowed value of tag_mark */ Int n_row, /* number of rows in A */ Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ ) { /* === Local variables ================================================== */ Int r ; if (tag_mark <= 0 || tag_mark >= max_mark) { for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { Row [r].shared2.mark = 0 ; } } tag_mark = 1 ; } return (tag_mark) ; } /* ========================================================================== */ /* === print_report ========================================================= */ /* ========================================================================== */ PRIVATE void print_report ( char *method, Int stats [COLAMD_STATS] ) { Int i1, i2, i3 ; PRINTF (("\n%s version %d.%d, %s: ", method, COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ; if (!stats) { PRINTF (("No statistics available.\n")) ; return ; } i1 = stats [COLAMD_INFO1] ; i2 = stats [COLAMD_INFO2] ; i3 = stats [COLAMD_INFO3] ; if (stats [COLAMD_STATUS] >= 0) { PRINTF (("OK. ")) ; } else { PRINTF (("ERROR. ")) ; } switch (stats [COLAMD_STATUS]) { case COLAMD_OK_BUT_JUMBLED: PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ; PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n", method, i3)) ; PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n", method, INDEX (i2))) ; PRINTF(("%s: last seen in column: %d", method, INDEX (i1))) ; /* no break - fall through to next case instead */ case COLAMD_OK: PRINTF(("\n")) ; PRINTF(("%s: number of dense or empty rows ignored: %d\n", method, stats [COLAMD_DENSE_ROW])) ; PRINTF(("%s: number of dense or empty columns ignored: %d\n", method, stats [COLAMD_DENSE_COL])) ; PRINTF(("%s: number of garbage collections performed: %d\n", method, stats [COLAMD_DEFRAG_COUNT])) ; break ; case COLAMD_ERROR_A_not_present: PRINTF(("Array A (row indices of matrix) not present.\n")) ; break ; case COLAMD_ERROR_p_not_present: PRINTF(("Array p (column pointers for matrix) not present.\n")) ; break ; case COLAMD_ERROR_nrow_negative: PRINTF(("Invalid number of rows (%d).\n", i1)) ; break ; case COLAMD_ERROR_ncol_negative: PRINTF(("Invalid number of columns (%d).\n", i1)) ; break ; case COLAMD_ERROR_nnz_negative: PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ; break ; case COLAMD_ERROR_p0_nonzero: PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1)); break ; case COLAMD_ERROR_A_too_small: PRINTF(("Array A too small.\n")) ; PRINTF((" Need Alen >= %d, but given only Alen = %d.\n", i1, i2)) ; break ; case COLAMD_ERROR_col_length_negative: PRINTF (("Column %d has a negative number of nonzero entries (%d).\n", INDEX (i1), i2)) ; break ; case COLAMD_ERROR_row_index_out_of_bounds: PRINTF (("Row index (row %d) out of bounds (%d to %d) in column %d.\n", INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ; break ; case COLAMD_ERROR_out_of_memory: PRINTF(("Out of memory.\n")) ; break ; /* v2.4: internal-error case deleted */ } } /* ========================================================================== */ /* === colamd debugging routines ============================================ */ /* ========================================================================== */ /* When debugging is disabled, the remainder of this file is ignored. */ #ifndef NDEBUG /* ========================================================================== */ /* === debug_structures ===================================================== */ /* ========================================================================== */ /* At this point, all empty rows and columns are dead. All live columns are "clean" (containing no dead rows) and simplicial (no supercolumns yet). Rows may contain dead columns, but all live rows contain at least one live column. */ PRIVATE void debug_structures ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [], Int n_col2 ) { /* === Local variables ================================================== */ Int i ; Int c ; Int *cp ; Int *cp_end ; Int len ; Int score ; Int r ; Int *rp ; Int *rp_end ; Int deg ; /* === Check A, Row, and Col ============================================ */ for (c = 0 ; c < n_col ; c++) { if (COL_IS_ALIVE (c)) { len = Col [c].length ; score = Col [c].shared2.score ; DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ; ASSERT (len > 0) ; ASSERT (score >= 0) ; ASSERT (Col [c].shared1.thickness == 1) ; cp = &A [Col [c].start] ; cp_end = cp + len ; while (cp < cp_end) { r = *cp++ ; ASSERT (ROW_IS_ALIVE (r)) ; } } else { i = Col [c].shared2.order ; ASSERT (i >= n_col2 && i < n_col) ; } } for (r = 0 ; r < n_row ; r++) { if (ROW_IS_ALIVE (r)) { i = 0 ; len = Row [r].length ; deg = Row [r].shared1.degree ; ASSERT (len > 0) ; ASSERT (deg > 0) ; rp = &A [Row [r].start] ; rp_end = rp + len ; while (rp < rp_end) { c = *rp++ ; if (COL_IS_ALIVE (c)) { i++ ; } } ASSERT (i > 0) ; } } } /* ========================================================================== */ /* === debug_deg_lists ====================================================== */ /* ========================================================================== */ /* Prints the contents of the degree lists. Counts the number of columns in the degree list and compares it to the total it should have. Also checks the row degrees. */ PRIVATE void debug_deg_lists ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int head [], Int min_score, Int should, Int max_deg ) { /* === Local variables ================================================== */ Int deg ; Int col ; Int have ; Int row ; /* === Check the degree lists =========================================== */ if (n_col > 10000 && colamd_debug <= 0) { return ; } have = 0 ; DEBUG4 (("Degree lists: %d\n", min_score)) ; for (deg = 0 ; deg <= n_col ; deg++) { col = head [deg] ; if (col == EMPTY) { continue ; } DEBUG4 (("%d:", deg)) ; while (col != EMPTY) { DEBUG4 ((" %d", col)) ; have += Col [col].shared1.thickness ; ASSERT (COL_IS_ALIVE (col)) ; col = Col [col].shared4.degree_next ; } DEBUG4 (("\n")) ; } DEBUG4 (("should %d have %d\n", should, have)) ; ASSERT (should == have) ; /* === Check the row degrees ============================================ */ if (n_row > 10000 && colamd_debug <= 0) { return ; } for (row = 0 ; row < n_row ; row++) { if (ROW_IS_ALIVE (row)) { ASSERT (Row [row].shared1.degree <= max_deg) ; } } } /* ========================================================================== */ /* === debug_mark =========================================================== */ /* ========================================================================== */ /* Ensures that the tag_mark is less that the maximum and also ensures that each entry in the mark array is less than the tag mark. */ PRIVATE void debug_mark ( /* === Parameters ======================================================= */ Int n_row, Colamd_Row Row [], Int tag_mark, Int max_mark ) { /* === Local variables ================================================== */ Int r ; /* === Check the Row marks ============================================== */ ASSERT (tag_mark > 0 && tag_mark <= max_mark) ; if (n_row > 10000 && colamd_debug <= 0) { return ; } for (r = 0 ; r < n_row ; r++) { ASSERT (Row [r].shared2.mark < tag_mark) ; } } /* ========================================================================== */ /* === debug_matrix ========================================================= */ /* ========================================================================== */ /* Prints out the contents of the columns and the rows. */ PRIVATE void debug_matrix ( /* === Parameters ======================================================= */ Int n_row, Int n_col, Colamd_Row Row [], Colamd_Col Col [], Int A [] ) { /* === Local variables ================================================== */ Int r ; Int c ; Int *rp ; Int *rp_end ; Int *cp ; Int *cp_end ; /* === Dump the rows and columns of the matrix ========================== */ if (colamd_debug < 3) { return ; } DEBUG3 (("DUMP MATRIX:\n")) ; for (r = 0 ; r < n_row ; r++) { DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ; if (ROW_IS_DEAD (r)) { continue ; } DEBUG3 (("start %d length %d degree %d\n", Row [r].start, Row [r].length, Row [r].shared1.degree)) ; rp = &A [Row [r].start] ; rp_end = rp + Row [r].length ; while (rp < rp_end) { c = *rp++ ; DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ; } } for (c = 0 ; c < n_col ; c++) { DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ; if (COL_IS_DEAD (c)) { continue ; } DEBUG3 (("start %d length %d shared1 %d shared2 %d\n", Col [c].start, Col [c].length, Col [c].shared1.thickness, Col [c].shared2.score)) ; cp = &A [Col [c].start] ; cp_end = cp + Col [c].length ; while (cp < cp_end) { r = *cp++ ; DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ; } } } PRIVATE void colamd_get_debug ( char *method ) { FILE *f ; colamd_debug = 0 ; /* no debug printing */ f = fopen ("debug", "r") ; if (f == (FILE *) NULL) { colamd_debug = 0 ; } else { fscanf (f, "%d", &colamd_debug) ; fclose (f) ; } DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n", method, colamd_debug)) ; } #endif /* NDEBUG */ SuiteSparse/COLAMD/README.txt0000644001170100242450000001236510617111160014405 0ustar davisfacThe COLAMD ordering method - Version 2.7 ------------------------------------------------------------------------------- The COLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. SYMAMD is a symmetric minimum degree ordering method based on COLAMD, available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses COLAMD to compute a column ordering of M. Colamd and symamd tend to be faster and generate better orderings than their MATLAB counterparts, colmmd and symmmd. To compile and test the colamd m-files and mexFunctions, just unpack the COLAMD/ directory from the COLAMD.tar.gz file, and run MATLAB from within that directory. Next, type colamd_test to compile and test colamd and symamd. This will work on any computer with MATLAB (Unix, PC, or Mac). Alternatively, type "make" (in Unix) to compile and run a simple example C code, without using MATLAB. To compile and install the colamd m-files and mexFunctions, just cd to COLAMD/MATLAB and type colamd_install in the MATLAB command window. A short demo will run. Optionally, type colamd_test to run an extensive tests. Type "make" in Unix in the COLAMD directory to compile the C-callable library and to run a short demo. If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to remove the "-largeArrayDims" option from the MEX command (or just use colamd_make.m inside MATLAB). Colamd is a built-in routine in MATLAB, available from The Mathworks, Inc. Under most cases, the compiled COLAMD from Versions 2.0 to the current version do not differ. Colamd Versions 2.2 and 2.3 differ only in their mexFunction interaces to MATLAB. v2.4 fixes a bug in the symamd routine in v2.3. The bug (in v2.3 and earlier) has no effect on the MATLAB symamd mexFunction. v2.5 adds additional checks for integer overflow, so that the "int" version can be safely used with 64-bit pointers. Refer to the ChangeLog for more details. To use colamd and symamd within an application written in C, all you need are colamd.c, colamd_global.c, and colamd.h, which are the C-callable colamd/symamd codes. See colamd.c for more information on how to call colamd from a C program. Requires UFconfig, in the ../UFconfig directory relative to this directory. Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c file) for the License. Related papers: T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 353-376, 2004. T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD, an approximate column minimum degree ordering algorithm, ACM Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380, 2004. "An approximate minimum degree column ordering algorithm", S. I. Larimore, MS Thesis, Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 1998. CISE Tech Report TR-98-016. Available at ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps via anonymous ftp. Approximate Deficiency for Ordering the Columns of a Matrix, J. L. Kern, Senior Thesis, Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 1999. Available at http://www.cise.ufl.edu/~davis/Kern/kern.ps Authors: Stefan I. Larimore and Timothy A. Davis, University of Florida, in collaboration with John Gilbert, Xerox PARC (now at UC Santa Barbara), and Esmong Ng, Lawrence Berkeley National Laboratory (much of this work he did while at Oak Ridge National Laboratory). COLAMD files: Demo simple demo Doc additional documentation (see colamd.c for more) Include include file Lib compiled C-callable library Makefile primary Unix Makefile MATLAB MATLAB functions README.txt this file Source C source code ./Demo: colamd_example.c simple example colamd_example.out output of colamd_example.c colamd_l_example.c simple example, long integers colamd_l_example.out output of colamd_l_example.c Makefile Makefile for C demos ./Doc: ChangeLog change log lesser.txt license ./Include: colamd.h include file ./Lib: Makefile Makefile for C-callable library ./MATLAB: colamd2.m MATLAB interface for colamd2 colamd_demo.m simple demo colamd_install.m compile and install colamd2 and symamd2 colamd_make.m compile colamd2 and symamd2 colamdmex.ca MATLAB mexFunction for colamd2 colamd_test.m extensive test colamdtestmex.c test function for colamd Contents.m contents of the MATLAB directory luflops.m test code Makefile Makefile for MATLAB functions symamd2.m MATLAB interface for symamd2 symamdmex.c MATLAB mexFunction for symamd2 symamdtestmex.c test function for symamd ./Source: colamd.c primary source code colamd_global.c globally defined function pointers (malloc, free, ...) SuiteSparse/LINFACTOR/0000755001170100242450000000000010711445626013276 5ustar davisfacSuiteSparse/LINFACTOR/lintests.m0000644001170100242450000000274610710677546015341 0ustar davisfacfunction lintests %LINTESTS test linfactor with many different kinds of systems. % Compares x=A\b, linfactor and (ack!) inv(A)*b. You should never, ever use % inv(A) to solve a linear system. % % Example % lintests % % See also lintest, linfactor, mldivide. % Copyright 2007, Timothy A. Davis rand ('state', 0) ; help linfactor for n = [100 1000 2000] fprintf ('\nn: %d (with all nonzero matrix A)\n', n) ; % dense LU A = rand (n) ; b = rand (n,1) ; lintest (A,b) ; % sparse LU A = sparse (A) ; lintest (A,b) ; % dense Cholesky A = A*A' + 10*eye(n) ; lintest (A,b) ; % sparse Cholesky A = sparse (A) ; lintest (A,b) ; end for n = [1000 2000 1e5] % note that UMFPACK is not particularly fast for tridiagonal matrices % (see "doc mldivide", which uses a specialized tridiagonal solver) fprintf ('\nn: %d (sparse tridiagonal matrix)\n', n) ; % sparse LU e = rand (n, 1) ; b = rand (n, 1) ; A = spdiags ([e 4*e e], -1:1, n, n) ; lintest (A,b) ; % sparse Cholesky e = ones (n, 1) ; A = spdiags ([e 4*e e], -1:1, n, n) ; lintest (A,b) ; end % sparse LU again fprintf ('\nwest0479:\n') ; load west0479 ; n = size (west0479, 1) ; b = rand (n, 1) ; lintest (west0479, b) ; % completely break inv(A) with a simple 2-by-2 matrix ... fprintf ('\nbreak inv(A) with a trivial 2-by-2 matrix:\n') ; s = warning ('off', 'MATLAB:singularMatrix') ; lintest (rand(2) * realmin/2, ones(2,1)) ; warning (s) ; SuiteSparse/LINFACTOR/Contents.m0000644001170100242450000000200010627014733015236 0ustar davisfac% LINFACTOR % % This simple MATLAB function shows you how to use LU or CHOL to factor a matrix % and then solve a linear system A*x=b. % % Files % linfactor - factorize a matrix, or use the factors to solve Ax=b. % lintests - test linfactor with many different kinds of systems. % lintest - test A*x=b, using linfactor, x=A\b, and (ack!) the explicit inv(A). % % Example: % F = linfactor (A) ; % factor A, returning an object F % x = linfactor (F,b) ; % solve Ax=b using F (the factorization of A) % lintests ; % test linfactor with various kinds of systems % Copyright 2007, Timothy A. Davis, University of Florida. % % License: this software is free for any use. No warranty included or implied. % You must agree to only one condition to use this software: you must be aware % that you have been told that using inv(A) is a horrible, awful, and absoluty % abysmal method for solving a linear system of equations. If you do not % agree to this condition, you must delete this software. SuiteSparse/LINFACTOR/linfactor.m0000644001170100242450000001450310711445626015440 0ustar davisfacfunction [result, t] = linfactor (arg1, arg2) %LINFACTOR factorize a matrix, or use the factors to solve Ax=b. % Uses LU or CHOL to factorize A, or uses a previously computed factorization to % solve a linear system. This function automatically selects an LU or Cholesky % factorization, depending on the matrix. A better method would be for you to % select it yourself. Note that mldivide uses a faster method for detecting % whether or not A is a candidate for sparse Cholesky factorization (see spsym % in the CHOLMOD package, for example). % % Example: % F = linfactor (A) ; % factorizes A into the object F % x = linfactor (F,b) ; % uses F to solve Ax=b % norm (A*x-b) % % A second output is the time taken by the method, ignoring the overhead of % determining which method to use. This makes for a fairer comparison between % methods, since normally the user will know if the matrix is supposed to be % symmetric positive definite or not, and whether or not the matrix is sparse. % Also, the overhead here is much higher than mldivide or spsym. % % This function has its limitations: % % (1) determining whether or not the matrix is symmetric via nnz(A-A') is slow. % mldivide (and spsym in CHOLMOD) do it much faster. % % (2) MATLAB really needs a sparse linsolve. See cs_lsolve, cs_ltsolve, and % cs_usolve in CSparse, for example. % % (3) this function really needs to be written as a mexFunction. % % (4) the full power of mldivide is not brought to bear. For example, UMFPACK % is not very fast for sparse tridiagonal matrices. It's about a factor of % four slower than a specialized tridiagonal solver as used in mldivide. % % (5) permuting a sparse vector or matrix is slower in MATLAB than it should be; % a built-in linfactor would reduce this overhead. % % (6) mldivide when using UMFPACK uses relaxed partial pivoting and then % iterative refinement. This leads to sparser LU factors, and typically % accurate results. linfactor uses sparse LU without iterative refinement. % % The primary purpose of this function is to answer The Perennially Asked % Question (or The PAQ for short (*)): "Why not use x=inv(A)*b to solve Ax=b? % How do I use LU or CHOL to solve Ax=b?" The full answer is below. The short % answer to The PAQ (*) is "PAQ=LU ... ;-) ... never EVER use inv(A) to solve % Ax=b." % % The secondary purpose of this function is to provide a prototype for some of % the functionality of a true MATLAB built-in linfactor function. % % Finally, the third purpose of this function is that you might find it actually % useful for production use, since its syntax is simpler than factorizing the % matrix yourself and then using the factors to solve the system. % % See also lu, chol, mldivide, linsolve, umfpack, cholmod. % % Oh, did I tell you never to use inv(A) to solve Ax=b? % % Requires MATLAB 7.3 (R2006b) or later. % Copyright 2007, Timothy A. Davis, University of Florida % VERSION 1.1.0, Nov 1, 2007 if (nargin < 1 | nargin > 2 | nargout > 2) %#ok error ('Usage: F=linfactor(A) or x=linfactor(F,b)') ; end if (nargin == 1) %--------------------------------------------------------------------------- % F = linfactor (A) ; %--------------------------------------------------------------------------- A = arg1 ; [m n] = size (A) ; if (m ~= n) error ('linfactor: A must be square') ; end if (issparse (A)) % try sparse Cholesky (CHOLMOD): L*L' = P*A*P' if (nnz (A-A') == 0 & all (diag (A) > 0)) %#ok try tic ; [L, g, PT] = chol (A, 'lower') ; t = toc ; if (g == 0) result.L = L ; result.LT = L' ; % takes more memory, but solve is faster result.P = PT' ; % ditto. Need a sparse linsolve here... result.PT = PT ; result.kind = 'sparse Cholesky: L*L'' = P*A*P''' ; result.code = 0 ; return end catch % matrix is symmetric, but not positive definite % (or we ran out of memory) end end % try sparse LU (UMFPACK, with row scaling): L*U = P*(R\A)*Q tic ; [L, U, P, Q, R] = lu (A) ; t = toc ; result.L = L ; result.U = U ; result.P = P ; result.Q = Q ; result.R = R ; result.kind = 'sparse LU: L*U = P*(R\A)*Q where R is diagonal' ; result.code = 1 ; else % try dense Cholesky (LAPACK): L*L' = A if (nnz (A-A') == 0 & all (diag (A) > 0)) %#ok try tic ; L = chol (A, 'lower') ; t = toc ; result.L = L ; result.kind = 'dense Cholesky: L*L'' = A' ; result.code = 2 ; return catch % matrix is symmetric, but not positive definite % (or we ran out of memory) end end % try dense LU (LAPACK): L*U = A(p,:) tic ; [L, U, p] = lu (A, 'vector') ; t = toc ; result.L = L ; result.U = U ; result.p = p ; result.kind = 'dense LU: L*U = A(p,:)' ; result.code = 3 ; end else %--------------------------------------------------------------------------- % x = linfactor (F,b) %--------------------------------------------------------------------------- F = arg1 ; b = arg2 ; if (F.code == 0) % sparse Cholesky: MATLAB could use a sparse linsolve here ... tic ; result = F.PT * (F.LT \ (F.L \ (F.P * b))) ; t = toc ; elseif (F.code == 1) % sparse LU: MATLAB could use a sparse linsolve here too ... tic ; result = F.Q * (F.U \ (F.L \ (F.P * (F.R \ b)))) ; t = toc ; elseif (F.code == 2) % dense Cholesky: result = F.L' \ (F.L \ b) ; lower.LT = true ; upper.LT = true ; upper.TRANSA = true ; tic ; result = linsolve (F.L, linsolve (F.L, b, lower), upper) ; t = toc ; elseif (F.code == 3) % dense LU: result = F.U \ (F.L \ b (F.p,:)) ; lower.LT = true ; upper.UT = true ; tic ; result = linsolve (F.U, linsolve (F.L, b (F.p,:), lower), upper) ; t = toc ; end end SuiteSparse/LINFACTOR/README.txt0000644001170100242450000000520210627050234014764 0ustar davisfacLINFACTOR factorize a matrix, or use the factors to solve Ax=b. Uses LU or CHOL to factorize A, or uses a previously computed factorization to solve a linear system. This function automatically selects an LU or Cholesky factorization, depending on the matrix. A better method would be for you to select it yourself. Note that mldivide uses a faster method for detecting whether or not A is a candidate for sparse Cholesky factorization (see spsym in the CHOLMOD package, for example). Example: F = linfactor (A) ; % factorizes A into the object F x = linfactor (F,b) ; % uses F to solve Ax=b norm (A*x-b) A second output is the time taken by the method, ignoring the overhead of determining which method to use. This makes for a fairer comparison between methods, since normally the user will know if the matrix is supposed to be symmetric positive definite or not, and whether or not the matrix is sparse. Also, the overhead here is much higher than mldivide or spsym. This function has its limitations: (1) determining whether or not the matrix is symmetric via nnz(A-A') is slow. mldivide (and spsym in CHOLMOD) do it much faster. (2) MATLAB really needs a sparse linsolve. See cs_lsolve, cs_ltsolve, and cs_usolve in CSparse, for example. (3) this function really needs to be written as a mexFunction. (4) the full power of mldivide is not brought to bear. For example, UMFPACK is not very fast for sparse tridiagonal matrices. It's about a factor of four slower than a specialized tridiagonal solver as used in mldivide. (5) permuting a sparse vector or matrix is slower in MATLAB than it should be; a built-in linfactor would reduce this overhead. (6) mldivide when using UMFPACK uses relaxed partial pivoting and then iterative refinement. This leads to sparser LU factors, and typically accurate results. linfactor uses sparse LU without iterative refinement. The primary purpose of this function is to answer The Perennially Asked Question (or The PAQ for short (*)): "Why not use x=inv(A)*b to solve Ax=b? How do I use LU or CHOL to solve Ax=b?" The full answer is below. The short answer to The PAQ (*) is "PAQ=LU ... ;-) ... never EVER use inv(A) to solve Ax=b." The secondary purpose of this function is to provide a prototype for some of the functionality of a true MATLAB built-in linfactor function. Finally, the third purpose of this function is that you might find it actually useful for production use, since its syntax is simpler than factorizing the matrix yourself and then using the factors to solve the system. See also lu, chol, mldivide, linsolve, umfpack, cholmod. Oh, did I tell you never to use inv(A) to solve Ax=b? SuiteSparse/LINFACTOR/lintest.m0000644001170100242450000001226110710136023015123 0ustar davisfacfunction lintest (A,b) %LINTEST test A*x=b, using linfactor, x=A\b, and (ack!) the explicit inv(A). % The results printed include the breakeven point, which is the number of % systems Ax=b that must be solved with the same A but different b for the % inv(A) method to be faster than linfactor. Using inv(A) is always % numerically dubious, and typically slower. However because of MATLAB's % interpretive overhead, linfactor can be slightly slower in its % forward/backsolves. A true linfactor mexFunction would probably be just as % fast as inv(A)*b when A is full. You should never ever use inv(A) to solve % a linear system. % % Example: % load west0479 % b = rand (size (west0479,1), 1) ; % lintest (west0479, b) ; % % See also linfactor, lintests, mldivide % Copyright 2007, Timothy A. Davis %------------------------------------------------------------------------------- % warmup, to make sure functions are loaded, for accurate timings %------------------------------------------------------------------------------- F = linfactor (1) ; x = linfactor (F, 1) ; %#ok F = linfactor (sparse (1)) ; x = linfactor (F, 1) ; %#ok F = linfactor (sparse (-1)) ; x = linfactor (F, 1) ; %#ok S = inv (1) ; x = S*1 ; %#ok S = inv (sparse (1)) ; x = S*1 ; %#ok S = inv (sparse (-1)) ; x = S*1 ; %#ok x = rand (2) \ rand (2,1) ; %#ok x = sparse (rand (2)) \ rand (2,1) ; %#ok clear x F S %------------------------------------------------------------------------------- % linfactor %------------------------------------------------------------------------------- % do this several times for accurate timings t1 = 0 ; trials = 0 ; while (t1 < 1) [F, t] = linfactor (A) ; % factorize A t1 = t1 + t ; trials = trials + 1 ; end t1 = t1 / trials ; % do this several times for accurate timings t2 = 0 ; trials = 0 ; while (t2 < 1) [x, t] = linfactor (F, b) ; % use the factors to solve Ax=b t2 = t2 + t ; trials = trials + 1 ; end t2 = t2 / trials ; resid = norm (A*x-b,1) / (norm (A,1) * norm (x,1) + norm (b,1)) ; fprintf ('%-16s factor time: %10.6f solve time: %10.6f resid: %8.2e\n', ... F.kind (1:(find(F.kind == ':', 1, 'first'))), t1, t2, resid) ; %------------------------------------------------------------------------------- % inv %------------------------------------------------------------------------------- % Try again using inv(A)*b. This is a really horrible way to solve Ax=b. I'm % doing it here precisely to show that it is typically slower, except when there % are a huge number of right-hand-sides to solve and A is small. inv(A) also % tends to be less accurate, but random matrices do not trigger that problem. % It fails hopelessly when A is large, sparse, and where max(diff(r)) is large % where [p,q,r,s] = dmperm(A). Never, ever use inv(A) to solve a linear system. % Oh, did I tell you never to use inv(A) to solve Ax=b? try % do this several times for accurate timings t3 = 0 ; trials = 0 ; while (t3 < 1) tic ; S = inv (A) ; %#ok t = toc ; t3 = t3 + t ; trials = trials + 1 ; end t3 = t3 / trials ; % do this several times for accurate timings t4 = 0 ; trials = 0 ; while (t4 < 1) tic ; x = S*b ; t = toc ; t4 = t4 + t ; trials = trials + 1 ; end t4 = t4 / trials ; resid = norm (A*x-b,1) / (norm (A,1) * norm (x,1) + norm (b,1)) ; fprintf ('%-16s factor time: %10.6f solve time: %10.6f resid: %8.2e\n', ... 'inv(A)', t3, t4, resid) ; % determine the breakeven point where using inv(A) is faster nrhs = max (1, ceil ((t3 - t1) / (t2 - t4))) ; if (t1 < t3 & t2 < t4) %#ok fprintf ('inv(A) breakeven: never\n') ; elseif (t3 < t1 & t4 < t2) %#ok fprintf ('inv(A) breakeven: > 0\n') ; elseif (t1 < t3 & t4 < t2) %#ok fprintf ('inv(A) breakeven: > %d\n', nrhs) ; else fprintf ('inv(A) breakeven: < %d\n', nrhs) ; end catch % inv(A) probably ran out of memory fprintf ('inv(A) failed\n') ; fprintf ('inv(A) breakeven: never\n') ; end %------------------------------------------------------------------------------- % backslash %------------------------------------------------------------------------------- % do this several times for accurate timings t0 = 0 ; trials = 0 ; while (t0 < 1) tic ; x = A\b ; % solve Ax=b t = toc ; t0 = t0 + t ; trials = trials + 1 ; end t0 = t0 / trials ; resid = norm (A*x-b,1) / (norm (A,1) * norm (x,1) + norm (b,1)) ; fprintf ('%-16s total time: %10.6f resid: %8.2e\n', ... 'x = A\b', t0, resid) ; fprintf ('\n') ; SuiteSparse/CXSparse_newfiles.tar.gz0000644001170100242450000214364610712165166016507 0ustar davisfact(G]s6_Ϳ5Y$۳ɦJL\M*I5b #[_ A-;]HnF6oYqv~zvzEog`yogxE !/uԛ/LB: ^q/ˀ⭱R!Tz5TJ5UE(@4PA!˂4KYi<> p$!JaIoA)-ݖϿafgIx'E*7/\j? N0 |ՎAs~N; -`)0lpQ॰V [+lᱰV~ [.l彰i;2iii+VH[8q m@ʁiA}[ =4<߭s+NqV^C/07t+ 3?d 4<7t}^{],ۦcINNNN[z:muu봕i @T U!FWxz<< x7Ȇqv[Ï8 [BI}Cnk_ovn)ցuE'%%iYUC$:ʰ@Β`%]Ia ;NX`4S:bh?bǙnItve`we $jWFu&%&:&>'>զ)Ugm?ؒ`%]ITm7 X}<0O񾄴;}moftٜDiG$Y)Ydscg~8oxK6:dscސE1V#fxy'd/֖$>^vx6C|.nlXΛ)cfzm ϋ|RoɆlc5tvJ7`wJldBuxBq$crc5 RTceOujպSUPZ3 R8gf0/[," JCU>ܡbe,/pq8lU-uҺw@yfS9bbݲ%sYWmRmþ T/lt3j) 4J,|-lK)n܍QV Abݿ.6~wlwv*DiG~{'pi@DImՇYq$<Ő6Ha8ޑaez,lotbBxp'0Py[+bx(qpO< ^xAbPp^.2cd;NY<'w`c'C$\>L| 3%(:& q`d9+!GtU芢Opr8N:Mf!!;l;=BOOe ?_WSe] X>&?mB.̸ Q 7i6ewRFYz S%cQ4a> ώo.>xr2+ 2‰ ..`N)WtӇTo=vCeuPA^8ƽ>DEF^l$2H&>^X m(J %Ÿ6ӋOHmeX816&ox+ !=쐼_^Eh^Zjݍ(2O'G;Chq[\A)SaФ4QQ?G `ݼ:*Lڧ w3aWXxm[=na:MUoH͸ahtt>K Y6uQȂiLSTǡ8[!j(o^MNj9+pó7J(>~oFyTٿUGzuǚk-hkK5^y+Rw%>լV%Z5 TKTؚ6$ϡ-KKL6SE, /{S0N$ 5Uk J͇ r碃@Q_Y]ƽL[jk=st[16w!}4Z'DS=#jNe.l?F+]?OPO0Oy]{]_ :Yom< !$y1Ӣm_JAV_@AcEƯ\97vN;.𲍟Eh1\͡Qv /YRCI6;QGXfsv:ޭ8 s0_hǥթQJ27]~e93+C8E&aؙVXti,..Of~M8)9$!?*W~U6A'8Z3}I~qM!Hl dp8A06"$g1UU=Hs;AJ [FTFί($yn5ˆE16J[]C1#bUB|Xۙa:yma_s3A͋lDїĎ*Ve`ۜB5++g"[|Dr%3rk- nkm`/?b$"k&i! -;5k#Ҍao챮0|ogԑy\1m{q}Ia}Kc#T+.|nL@c+brseGMF)f|e+k/{)l?o£ ௕vsEܽ"/ri§U)|)0'_PIy<(OD>K|jĿ9_Rȓ؊wEI}s%/([j$uym.JӖ~W[w_Ԛfg_4ۚ-]j'wJهe*j@ZPZ+`䮧OmPP Ti < D!E`P( ֖ 2rJ`my@hp`m%ڒ Jz_> 00c4\%`@ :G(׀K5l %F{"R^ %x wK=.\?(DZ A `G(GmJ E\3@(IMRyrH~7j# U@ >umdrdA`]0 >.g#(F&Y6 u@ # Ѷ7717UB5m L:*Q?SnQ+DD(Pbu9Rmz!mQ絳pݣZ)+`j*3qX\s`PP0#":Q kE.i$V?mDJDõQx[|_6Hvv0B,C_+ DB)FDjڈ8m(u6*R<S] j/6RwDKl+qD.fkIU|R4@,`1_*1ʁw!P]I z ,*Y$A; B Ed])VJ*r C 0Y3F3FhuUTcm#S ([~Mz:K@V`)r7tŖ00%Ӯ3ƸI%SەxrӲ2,>ϓ=xOC#V1#k@AI'6#3@(TiƹH&@p¡ɽ՛9ܽx_l:e@)@{PC6ׅ@ly&xEp8xM(u/@k<~'x2]aE:)Lx&x<>ܗzT< g <ʻ퐿g'@%t<$x8Q jjhVxiE;|@j]'l8 qƔ Ўu%,C]fq*õj*\UTpPAb Q;ٽZ TB`IZjD%H#)5PE݀O@ -V@ h! ZشJ zZ:!d7yX(NTE%QDxYhD+SE\N)כE!ӒF@%AeI#F Ts;ܟ;c5w__Ud֑(Sr}W#˞8/ER6-LRkPk7&e2Dn\ /BU/?}oN&:MGSzׇG=؝N:jh:q:OPڊmF@t壃۠_|ޏ}` Fk?zpt+PrŏZ;+~xo?? "?{_zK윮[3SZ%1ȹ+7iWPKC7t꿜|H$oO߯!DyFGoDѳW1[3LLqWIV#cX{}7_w}Vɣo[5ox]7uZ'ܪI9P9} WK3Yp$T^ l96h1h*ÅB<`bH1]K1hV"S|lf^s ^|nûH/a-)֊'o ݀5VqdtzsױY, ^GbΓW5΅x'yǿS,~%ߣfBV/Eh AY98.Q}'ep899c{oϷw`ŷ2#F Aɷģ<(տz@m_tWKX6< V.ɃY~@,.)ף7dנܔ_ԪR=\迦/dQI@ꗬW,X`\j'! 4ŘM)Mrt@Pw*+@؎?aJj!-DꙻYDc>2o8Mಃb6U{XuQLIxgt @>4_yBn4O!ݒ-wL$9>nAȥ0yмj^(^ς]ݲiGIOBŽn)ڨ,30m-[aigH%WIsJT!9܎o=-ݲ09A}5 2Q=BND;aNqc"a6ƍ0^cw"a\D&¸>͉0Mq}"al'¸9D7'¸1D7&؝c;Ƶ0nLqs"0nL;0Mqs"aܘD7'¸>0Mqc"݉0v&¸6ƍ0nLq}"a&qS#w5Bu_FiMЯi~M#k_F4B з}W#}W#jF74BF74BF4Buoh~]#_F4BF;_F74BMḩFFi~C#4BF4B5Яk~S#k_F[ojMoh w5Bj~M#}G#j~]#}F74BMЯk~]#k}W#Яi~C#_F+ W}i^4k p<_loS0;Hoȋ LxvC2󾿽%9ƢqD?E۷$sq9+óf׊Xa8ı@qG:InUt};$?Eh0Zy7&y׿;zrrt``i^Nfwws' ox6] atrq%ic$_$ @`-Q.5밷迼#vmʏ΢iob4XG9ҐT?}=ɸLfI(>{Rn^\,Ѯ(?>ϸw~<@K;`6)!'܁\m#9+Oʇm(o>G6V$@ecG`uZL`I9oUGѿrOA.`BLd\]O!9%9WtLO9k>.Ɵt,nSQ܏8ZQUӍB]gp:V<~ݎ0bXL!Q-VAJ*Z*޵1J_b{6m,zޭ%M]7#b}&ow+B 3F{OFWbje5}#{#(+ X||r~tك:)%訢=lȿWEsHQ*p :ׅKf2 gbidLK.OlNnę\~=']gaCBXo[ǦV~=.oս碌cV(_bSbfRFJ{HgWtnYnaRsB24822xQxGeڨ Ge)ePmboGgjmU/foէU!qV_ N^?%9t8qNH .KPz<{;鋋 -x$<"*8භ/?( b+,fe<șggxf8ntA/RM"#%EF E"Et5e|P^/6 Lt}">h^bB)p&BlHgD-K5r3,Bd@ @(_~{x.]ǻP.^w.(3{6W1b1\II56 "T7M㖪qKh؆,V%.rQpEa &YWkQb%=R_)Vj0W&1K p׍^#V\B^I'z{GsGlo{q8d:NdӮl.vIv|op}4!:FLUJef{ʳ 5:-EWC]n(魨OoCct/߃W6AXGxwF(ZJ#u91Fz @Pd_{*ق4]Tsr +|Ql  Yi#1?@./NQ,@" OrkY8`Q0R yRf4ZNp|fU]AE|H8Y]i74*Jn3|tNpo^Rp*V/ KrK/iԛȃSIo_˩8BF-D?IIit9 mMI] ߮el%R_B g+;zZ]t)w2"{[iPv;&,*kI.V< ݍUOyU.\-4EVsGuIqZ,$&Njq输}1hOlmm Aӥ: Zzo6qs&Y. O<ϛWcsK8oo݃z{_]j0kIowK0|1T2ګ72w핾VlC9Zww>ԫm/[wm?Badp~hF|4VsZ^gqk:UlZ=Wi6BzڤȻ̰I=blq^AZlRI9k[lL qY0jl0bjYqT ux/Ӵ_ںkWon=yr6V^6&Wsc0_p~ ݓx!pނ߾?y2.kz.nB1)#*!(BLqKX쭢 єtziCY"Z,]@|OÒC&b O-\JSP )ܫJF ;FNt{=7 b /?ݖü_&(JyG&{&ȰYc m֭H3KbL;2W[oۢjȊ}ec>a(}^D|ҿ6NJy  OͶY\gAp qgmB=ړ.S!Adz6pb=GOGއ=w4|'A0%cvV;!:ѧ&|88.z\FGCZ]e" å)dAZ[CxQ+ yhg}1rF×pFPfܝw9hr10* ˉ[+J{*_平:Mg G:s(?mP–#Xm9B-ӹεM,ڍH(G+as1љߠb"6_Fg`}X\L/zB VaY+#Ӛ3脮Zco:TH׬.M0GiN&&:/y'sOnU0&ԓY?] oX~js(4{l#3K'K7h/R.tnr:"&|H:eio)hDC;Jҩn_9e~9k69'qɩUΌݣ.hl*@ {*?9P^JJ'fK;^GZHǹb;YvP F<(ePhQmȚy MZ[h9GklotGtX ,&K\Y]x+"ԤQG_L2b0ydzSPF5zJԔ%99GF]flS`/P: :»9vWF7Rp. &IOkIJ2SJҭ P.߻&P3S0`Tu>^cGԺƽMz+6YSsNR+?z 4gzA<[ډpwqTO{帷|i yѭ{WJ] p:F /u[@mDIKojh&Ԏ"j5 ‘-a(u9@7R~rA?iWfJ?ozz]u :c#0g3sPAfev;M+pz^Ugx,P{Wgx-H:>3>m^58ߞMscyT7:CюVlD\u%M/@|%j4$Ơ(ԗvCl~bM(6׷t~b{ѝHW~oH٦M-U!؃8뵭F}m7H;{Ђ|tiX2f||p ]yo7H8N>K&TgwZc^+ ʢ1DL*WGYs>3ͣ]A8p ӛ 9 " Gv֚ZУ#bAMwKywn; :r)o\J6W!U:asW*{$y$S@ms6vcLW1 ?:͕'kxޠWKTj5>ٳJ:Hi6]ӹ9pbR:z&)5Cf5+|%~U%Fx;8L~&q!? %++ w k5DkM{ +[Ձ~+nS@V.5Ux0g 7 ͘Y~Mפ@cE2:۝sS|Vqb4͠dք̚ج̿feA@o};j!BkI*">Sbg8NW^߻Ϗ﾿/ k#qK^V T ]쌈qt7m1ݸwKbΑ2.LѪeW)W,~NH VH#&7&S}6v %: ],ݙS~w6lF~W/;#υ:(z]>Rk(If!߻770Kח޻MڽtY=6C` X\lIP,RFPXsFZK?վG\\Jr[p{aOQfY+߁o,Kˈ}N8 .a%܄^8)\;+\W?Tuˑ4-hK^Xsr% ~yy$+dsd&ub ݃3&&ơi$OM1$X`ɱ\ŝӉ?&qgc*c[ORXA;@cWo9?Wbcb~Fk?Z~,G`]P2N?ܸ`UӄHAcmRW6D/5g)YȌ{GעV|pG [H2Ct|`zz)F[@jѵ|>/ݜFi:bP]R塡^Az|qpp WfVu#},&y89ا+[Ƭ1=f.6X~t"@O滭:Ae(1Э|.N뼧Ak6>gπ5bL8V6k#`E:?׻U}_QY=q*Wqp(Fl^ŕ4Eݬ r؋k6 @41vmd&Դ2nPS r/3M4}:f~vDs]0 SGY" RKFF&uΏTeel֩c(#9nڽ#*/M a٪}NOG3U:Kjbμ K0ˏDRyq9cvMz3230͏TuY_%ŷ?&.k07#&Pk@f.qHh5TyM=J 0=V~L>وׂ ߤ6gzIm[ 'ae1`e&p~Gɉ3ۘw;vEp]Z\ <2e8-]N*dkTH.##g`euW{an[)Uc3ȽF3nH6d2iRvE(]k;9u!Xx!‚OG\V- 1?ƙE?o\//W?/Swa ypc+i. ?"vݣ7Zʼn? $o4uTlMG-:( w#u򿈝?ݜ]>БWT׼|[NjC{QI;{Lo7C|\2/pir%B|,f[LJ3|VZT1="7jeeSu.>,Ըkn?}%EwIs_[n\KoK. #[؊C |ReD_`nL ˝zp5.Ju?ݳMxW_szJ{Xnx Ykn_Y& ;\}84b}nmш 9ދh^ScA"^f/f/f/ӏz4{6{6{2 2m;;|wi7c(Taf$𴦻Ȕ5<.}WH*"nt^1ĕk!u(w42q cxjK ƭ#ڸrlcXs3z41L֫o֫dWzdZ>W9wMjm4r׷ox| 2?|߷NsG,dz8{N6nߨl^DH@RtԲ"\NM49C5F':Ffs? ;a;G.mA6t8{ߞp[=7l$N pgI%#\SU(֍n3"۔{|*J>mCaS6Fu$r*b"vj k݇kS8W^> ĕqWGHzIIrUwj3+O(q1zFۄX`25$`G]MxVvyC#ݰ[kCYRӱ:vj튦no+k6LNֳyvVrb*0Yr2U0ρ)h]1G'0w4UlU։|g!td7}ܪF~66p $֫wtq=;וH`V{q b J vO~~BQ$JnTd$i[[)brElm1oP[!!x^.(ڒ*.4\I"I%>>oޖB~F+X΍CΦGNǿ'߲3?fǼXcUdq9əX5w P.b~)Ϝ7y-6~ӹ4;g/#H qk9妱-Ƥɦ77By"xxRJ6r}m#vx{ NN[/$ID)x_ۗét W鋋qOr"\ucY$}9Gy_F`O4~w {3|^WIV.h uPnuG:>Ua##& Z+^70\S*|<{bPƷseh6U 8|C饍9>c%Pn ,ۻ/[Trڛc'>MuZLk]-+oۑ|㤶XDe qH/!t/gpxrѺ/r;xwGM&;UݼtKq[H@_hss Ok/Vbvv}[foN' GQuϭӼu(e:yX+JTu.zXd'9?JtJG&] 3+\k?);۰ 2}%t70k? $t wK3:UεKmוu]SrRF^y sgϓo&G^x ZD;jJ~|^Vqlkc|oխ_ӊr,Fw'j o:$*t[5\;tZ$(Ӎ|xwR=޷}o %MN`Hu/wfHf&Ͷ>Up=}\9RQBӄDĜ;xҀ mbk'sb+Wn[hVn]άOƵ+ZO9*qGVwML:͍DJy.aXwɺ`bkWti`Hs_`m43e}te7 Gtt_ߛ2  ( ![/3z5;Hqatd|٠׿C1=Y=tH¿:?A5bjUתP|V5q&9T9_L~ƆYĆ ښ; S&O{e4|}o,koiF @+2e9?+XISWϣi|1F_R1/ؾXE^?N_ ^>xl1;:raggȴ-h:Z /Ѱ ߾p!-ev$ Pt6\{p!P||D@=ZS-9z5dNfwx#pv0P>h>?ۇOu%H/;+/gXM,D߄ In$`nE{GRy_cTPxYOO:.?|zrb)du9U;r~M{w(/jEC85ï۷_ bbH"hгsՉnJex%nTlE"ՖlX=ʺϫ]Sgc=wG?jmo-xn4Se8 %U;l}p1v% ;lqM~3 "1%ָۻr$h[]h轋m,zޭ%M3LU=X ~Fv_6QUM$?TEџFawO.bxYp1 M~GwucIlKŸ%:.xʴ^AcR퇥5ڈNEuA_:xW5Xjm#?2axb6Hj F_rcKy!`ŷDB>o9IHf? 2R{8]$grrORԕ'fq2#eH/ض+5٠-erWAc:|yo-ײ;؍k(~tʬZv|oY&yZdM3YOv}B7In굀nki_n6ŕP1(9ZЙ=Tķ;z_{|'#ܼE_IapqL5yíH5e{/n&2|6_BIQtOу/-"/Ko?=b~bȟ_FXgW NEڑcKnkΧLXI1k y妙8װ]uDв6\9Y- |Bۄ'UiaЉ5U$Kt=>ׯkb,c+"%y`cN}[H{G{>[c׼\\MIx~35Hhͽ_/ M}j?bmVjj$A&5h'DXbx9{;'tz!X:u9N)3]2;&Ǽ-̈rz@uMK>jsgG?v)OZ jǚZPPp;^گ|Y'YeU6Ʊdz;[bq [dg'IWGt)Xgٛ0mzs5Yoy|Pk{Mҫ,3\⿛_W7mr1^;W{靓_kCՃxx)AXO7e y{Fj{>/WsSLl:\Z܏mo[TA½)W( cuhn6wUNg[u;S_M]??L_zoOuW>\O6⽶\]X ~oe'x'=/pn|-1]{;2.j@=sB{I'\^{7\ t@=]HrCOrq_~ /zY 5/q 61Qt 4"zS䱺Sjt憷9SO"{B+NjD wS)5/d1u$_HPD<{հ7ЦYrL AFyVeo"\ty–dsr* S.ٍjkg\s%]Iy'ǃߚϾqOkU8ա2e~6bAtB+K{9Dpĥlo-YR>K+X"rA$JWH8钵ےTW~ג^oF+P:T[pҵ%O #Z$]Cu + 8bjgzR7Jl6g\R0n<7#8颀 _g6gQ?z_|V= $2WOχȰ !F<׭jn1>m_[DkJ&Oř TӥG0TJoh^{!5ۤ6#'pDλiUڇ<-5G'{O;r/@9wS/ԖOnhZ!J2c-H9&x xGm mDpqUll 8 \I|Z>"^'u_ 8. q\^׼ ˕=N4x*]n5N|5NYgc\ϯؑH9Z5M[c*ļ,ތ{ /Oʿӑ&jN#2w}/&CrIŬCBVjUVˢ_y? #W_o?aZ` E_']5oycP ő:k֚ {t}q_!\W==R?inomeUQ)0[r7Z&❖ƍso^3tk֕ʛ72UFg/;;jႃ1~Vrp1%l_a&n`wq/\֣w;OD. =}f޲j\Qւ+#D:yGŜ9pcuOn\/~_]>ςpOX"Vf(/%rm [uk{}*[|Yo/pm-kl ~t`F+#DžvBe_W%)aoٹΩcgx8PdϢk-b< 9p]#eng?v=p9yY+&pz.ʩM+ ю l=Ӡ/Qڳs fLH!mof/1C,߹9l%Hwnx L(vINHx s oOAm#u|K`\7#>_ HtM(?f,!@CK&H6>YV~<(JB+ORK1WY΁r!glv>8BJɶ@I-o%&N_r}$u4.ixݭz'TuB0o/^^mHzH7G̽f>3go xsn⯨7pwO+x29]ſ_ NޝkCt :nAG{!0D1iwt `E J9N[N^szPL#0eK`/AQ29 ڹ.fnڣθ l9Df;Mt8!fMcH"X]Wv7 {^,lqC]-b$׌;̦C=KY'6^hm kw&GU)/ܙ-N˼}Vbz6x1ԊrcNt Mgx)(ݰ0&8z:vbAGcԖH+ۢ&6t7sF23?F|J%r@`*gAsoS+vQcpt-L+G*ycB1c'=32]Zc>Gց`S0M ʣ% ,{7דɦ ]Va zL"r fjd Ae-,kuh-Rɣev,x_v{9r1N?i/g>_Y]3lNf%TŋIO|l:'`Uv \| ¾YlDp2{nߣxԛD}MS@Scz"Q Bv:|>:▯*dd6i[c1WM}%]"Mkng5@+ WYtL*tܫ]Ug|ћLz/,EN"ؕER4,- [z!F"ֻL7U%vKVW0j;)/1q{-C({~[۲}EQx׵GUܮsۮ?;FHύ:a MOB.~K.$k9J֌qcj}"$oWF<78G7'n@_.WWj'yX 8}%`QHFU=\<1}ɻ ʰh5S݇3_x<>KHA%$\f_i/H/*nz9ȏd4h-W 9C؅Ts8m"T7//fBH!! r8pv37@,)χWg ?t? ǿ_;bô:SNf]CY,ԥ'"ub@N]4]AHHU#W{Ht?C+ڿ/tÿFܑ/bs6z6~XӝЦgN?kr0!;8tʟ& "Eip|6;}%39 Pl="|e2˜ȫE0"F;zOI&\0QT sXe 0{۟؉~Cu_GǸ #f*":z踪Z z_/P,-Kv8N_^ʞ * <}I$5!JLDo=9؁B>rĬH%'j֧}GE;NcCQ M5yo÷js-b)QO@qk)cOd༭yo:^?q^?7 FomO?Fb+<{svRG꽧~Wݾ^&nTPoЇ<32?SE\ӳz~tAmݜ-ޑ܅7H'v:1Z_xy0Iv3{:'0%(u +˻'6jkl`0.= 6}q!I{:\ EqE'w"w6:*{ X/GpH1\L6\"FȚݚ^k{ϱsC6HK]d7+tN*V͍yqi+,8yjqrd* *0LDŽaO`x-uldAfh-_+{4]izy.E&iv9ZE]ٓ? .7{'7W7݁PlVo?y7I v*Ţ7)!D0V^K_ip*_ɝBl: r5<`P怣hm'Da3F) /^_Pcvꍦ?o_U"nz).BռfumPDiDz8q7z_wݣӇ=xϷ8fGY(z*uc|unC޳0,}!G İ-1 #meБ=#&z~Bnr9U͊ysʐ>*qK)8P@nh֪;A$L1.3߀w[t t@|ҞS񛎾uK.8UmwBbg,ax73_w&N n/dMy)dXuث{#o{թYXbyn;"vꓭ'U bQ· *Ƌ'؍^KTE"M}ix=MKӤ4i=MK4y=MKSӔ4e=MKS01t4i/ 4&IiR_&ir_)iJ_|3әt>::μNg3әt>::μNg3ә 1 R^B`!WʜӮ'3!rvFMʢnh:UK"2tF͒v!L0O_[5?&$~ৎ5w>PWz'ޓ,ǣoA+sX׌Qvo<>DMzD5 aTY.zm:qIFLd6)S:Y_.6ɉ ^I\,7N m["ur1^ڭ:{&9E2wpen_MFIMF˔nyWX˺ykO rB:'9m.F5bJ'&^/\l| E nVe=`16˪֨aЭu5hNeѬL6p7`fǏ+#~kYs0x>^Lxv>&drhjϸo.pZO0 w0̓Wqx0? b5;_f>*o5Z@<+YmG7a\KZ?^^nJ펕`))B)[֝(OҡFp B}d"@0aKUIex;)̀!j{ N1M wNkx}ҝ> Em/ެ_]Ok3CM9?Ms5j7' oxNxvgx^5Zojwcd&ϧ2b}4s >$oj TjP;۠c'pڛ̃,ɇ&p:#jto;ю5T"V0-bՄܨ믭ϯ1h-H/{xڽAWQ_מ P}vXEszuvk w5oN_~okx:DLS;HnqH3Vw|OLD磚Sv'>&Y5ai>vŨ $zRnn,|fn\V8)+%0/o%)af ҀTi҃ {2=K*5a&@xg<~U#F_C 55UFO_7gJ|cV @l[PEP: Xh7*ц@V+ck?! m?JS]<PC"WGfKvNMNx/)*{ l $s&.gڬuTeXRer knncφM: 7abpt=A!j4rͫo8^5^@4iP ]ʦПUrVtњ[V盛]Cljc:$|9(=V`/-_*e|^ZאH8%!ۄ>`Sݬ5Xџ,nyP݋vܶW׫.G72&t릂h<[?\0L\o)KKx_. `mqKB;!͎ DA^4fLʄqsSmFo"ǖxI8z3iA6-t9c^xs_6rȍy1rsyo-6hAp1n] < `'*/E~c}%n'BKT R?B)j&iɡ˥ ^N1)xrY.jAd>X`85nQ>.(}A竨7}W Ox 'FjSpGwF), #H|`Ҩ{>WI`]=4뛖"٥%̾V1N( #f/~tyg ؕϰ Cr,kN5 rK'E.XL,i1ћPVg#VMFǪ94^2"}xFZ^\yȔٲx$XH(|wdDc7/hNQ'oB3q( 1[JV v%\DͩuΫ"ppї՘@h}9YɅ~#yV0XR |ʔoO'l*tPr)iBB2 6 SG84rI}|X):O{B1tlle FX h&u@ZfYNLdm2eao_-;!.Pd{(o!|2͌ &gkj-aWknC6uF[2H,nڃ]鎹DQ6s11BbUKC Ƃs[fz5;5l`[\&JSQD|uC@^6)&$/l~ZJ)8JQ+;mBs:K4W_s}ؿh'V@;ML1PtfTځX~F3@oE7{۾E+-oh_-?ʷ"{Խե6827'3YmAg/У#EY۾6dr`O9 3}!dt8{cH:޺k=o_.{#]|'VP;-#Ϧ=睹$*TnXpuxc t#pj]zױ{ϼ_` ,e2tW% XdaE"d`{$NOr!n5_%W'%/-zwyBGnT>jpTkz_?vv<[޻-d~Oܓg';dz;V3W):ݴFtŢWۜn[_F~=5 mX!;+m]㤣/)Xc^qcY{Urw8o_6.8]jpD!e}ãE |?ŠWj΃w~tWmu }P%=2 GB •,pE# <8[B#ry!UUzPɂa1h,j1Ћb4Ў@Ny"!.Wdn愹=2۽88^^ÇS%VPx{K\8nftԱW*+[s QSw#TvW,:tŢ[ 0ߞKYt#mf˲E-Ju5#Y噂n r%7׼?8 lo\Th`iWRR|}$0"ւ*.W`p4et *aZodaKT/[[t߀!N`^d]ʊYoְxgq'z{G->OTm(_F{͖4{hۙ8ؔ&ҡB%8]LCSd1;L/&C0z@^ ݟk2YN]h/'l|+g0k%9qZ!t)9MUr{hӍOus {gBh?\ߝKI*oԋ`"zxZ/O_z1$-<测o856.rc:"k%BkZO$*D (3 {\ 5΀;R {$wrgP;Wd\_/I/ny|pHVxhw拺ƚN+1@\:+OI,N U5q(K9Xl͡:vg`sn]D}^;ll P4ΨjX%7CAt<JEnc#2-/>' ʘa썶ksM[v-@ssvI<45| +Jvs_'.CI\zk<N? HuaW6}2/ s~[hwŰI0e)u_s U e ^zl#5z^.j[^~ Nqo:~5pUP v v߇m,k >k޿]MhܴGnJ,muH>8$]3{bw#sH bnTxVPIvI]ZMX'!wwUc}AvW«>BEҢG.mK*ir{F6M.wȌ0HFh "u{qF7~'~Njnzv[6̎#`a;V Cehu{~|˜TSE_nl@Q.GkWwe]C~ܷ}a{@`HχOON` \t/{2 K@pX7FMտrC _Es6,B鯐]Ar _no3bY-WOOuc͆g;,9SsXN'!9i;1Z}C^SK=qt گ?|$Q,*N1t c9 aˋ?5a~u_uǃ^'unc&{!lt:B߿w&&oߏN>_xg0K Ts#L\;FKi:[Fr'3 ~_C Dտn`>~+)uKDJjmKvM=:֓T?Zӹu RKT`]񿎘.swP:?dޝϵobMc UAq, ɨ,So}trycl:|DXz 8o:2hI›Ym8mKs} Q=!nҷ5^dYWw-#e p=on/GrN;#(%_FƗ|C:*z#~]4#߈zXYTޥ)7G.iiDE{_٠*"蕠in.֗!.|0e>HOt&كdt+7?O7I>X Bh ", 1fG/91CdbkS-sՍfژBmB_+t7@EI T$wO]8 iRStI H"$:֍J^}zZE,ٟ ZiQEїzb̿&Ƕ 6kֵ'4KOz)z}ip^\|smcZ;T.79JM@l6Dr8>i5#}Mvz*5[,|~e{b{16vC/ЀIGÁL\`l| +c[8_b>V#- kw;4l j {fװ೻ї!T;eh;2w>(c~͢cm@-Esa/{EO}m!M*u#&8Uڷ,b$?LpI E (l*qAfk~tߣ1w[dh'͑Xy`jŌ$ l[u!&W#~1ǮZ̅2]+ @~ ݈kaߙcJs0F ]7M7+aFN]bGT={KXvQux 1l{/6\,p@Fq-A4[ݩK*Q#TV@h FX $XI*P՗Pҙ5"0iE_`!N$\ :>6:B,w*(ݨ-gg+S闝.7ʡ'I^A 5G+cm z+ 7J2Yá5sϝ6PM?Te]։ap id1~AENl))1{MLl9O' I6S^SNNt44_V3X9ne.|+7YEk^:夦/~Rw˭An;e`f܁AL"~Lvp-Nz ܉bۉ[c ^$y; "yM*:*ܢJ߉n&z7>_f@Ir%:Y@z x!ށCQF]+ġFߟ-@Ս!-7 CG#V- S"+烾ͦXLxwgN+0Ws-<oTv_;h}lq׌1wV`gW, gHZ諷L`wdܚ9j.Lu3K-SiRǘx#k^A?n5 fBS絽Edܺke%3&+h_E]]S,j;CsA2_fZWY~r} bX ŏ,/0}RNH!UX_q.WWrTbIe?񇓴 +\acu`_膃)_\g9Xl|?]= }a?7Z{N7qQs^wо(kQ CŤ7ƫU#;z3[9^lI]&e5.TE2|jCcPi/~*WDJ|_<98#k^cΦW"Q?kEy#7W072oJ7@o\3C>8rr4M { hg?A8oyWުZyO`7պɪ@.8P`F ]weX>6qb Y=b[V+ɠ̽;m$ z_ pI T\ :mHî愩)K YXn(!)բ;a$ 2')#JJs]˱?Iߛ?,% b DZ\ }e_įI?:C{m:V|%R?FOr ʚg~{N݁DYoC ftE67Lmn,DtHյ/5,:W+zfQ[/.W9x7Bſ`*_Բk{'0j3ģ;N˹hs]4tKd@4}Q71~Ro 9]næƠ95ܙO81;O|:ipg_$׋6Dxf ѿQm sV6Dzs5jg׺zuѓWwoW .S2`v.}>bB^7uO 6pd%>:N ': .E'nYG/>&L]%뇂pVV,5]ndvhcއr 9kSeuT8iN`or5D';h{40*_1VL^IаH8#;$z|$NLGlh⣬{6]9D,6_s/n_C'<_-P#*v%v@?F70,XE-GݴZwlt\Qg?BAVacOI Iv%Рs2|w.(9p||-{@%E)6ٶEZ'.3~,a`~k\h 2uF XL.E6}|X8R׌q?S|O'6)+d;hgp'pQ{˥39-i7âLHjq_.jRhR7 fﺓ0kMF%S]e^ά* 1S֭34jmdbվZolN}ڵ6;;R:Oad̜٪G|25=C59s]ZJWȦ\05./(u6]2ζY׶u摘gMȃ=Ͷ4A8ցS7m0׷ue[-,p[~o S8l;w9bOX (ڗn'#p{>[@tM(>]LKt9>Ѩ5;^|S=Ry2| ]h'ggJb f+aZ䃺ڲ#3;< w9qUFb}u?)mnnmf-J^#4+E=&.ݓv0U5tϟS%7NQQo C}q?ɋ gMz`_qөIݹ3û͆2v??ǫpap1׋Xg1__L|+6[ؓ}IϠ:.%&V}J_I{+p6qB9ZD?lhY\ O;ULu_?˚v5*3u9Vg6\"?_u 鼨P't}Fz9~.5g׭oX Vr[r 15`iOT`U7$hEROOj>][(O~x^Pٯ.࡝?Y(lF_mɏX[rDDkFgK9m[X3Iq ?2kfϋ!Ez<<5V|O[?^׮AdaPS- (ZNMHOozDxR^%5Xn䝙A:p` urkI@ubtP~#M.ײ a/zt> @fӶ0:S'2lQǺ yUguY}_HgEj1uӟO|0O㇦KԤs*<8m ~ A=/ļ $'w;bwƳtU}9"u҃ ;USHo.Ջ-ΕV-a>bXXq"BaTXiӎ%=r18RX0( L.qFȣrEZD-a!6FEn$V#| *+H3K<5gBC<EGF P d8;؛X sd,\-frj !8hܡpJ|X)kѫqaԲh{*^N3IFaDQݑmľ(nfp`LA؏h7eb3Ni@>׍Q0aL^SN{`j(OkPg8-] t1xj8rԍg n3i?uTa|UKė@Hz~k2UJ{GZzњ]n9~P!ԡ,-VnC~JY`+K}nVZw{%BhgPO`l+d¯̗Kr6~j1tVѽ۟k/k`қhlw!?ƮKM}m6h/_%2H3\}fNQ0':!0|~(jja 7hx$h5ótq/kвrвmQp<.&Ofߕ3[fFc0˅-TA!tVs!=FRP[X_ps [k{B H~;ؾ%DDVZԾV-foآ?w%l\b)u4a "pbvǣsOt:s2^\çPpқަXSeA}{l N.nF5K*\Kiz[6q]e/{@웦Ҏ Ӊ^ƫ bl*`]`f8[_!`s{/>6\,0`#w3*wHg1wbesk ~!H)X:>6:*'z7vq?2s!, pKݔ=A`,AxCe&xΕPvY'u`,s$;Q#Tx?p 6r&|#P0d;3pB:8m˞bvSK;ʅI-KuJOǃF7ow01A&_: lGbiU2 ^ k玽;M*:(-DZzdDӁIjm^U0zۛruV+!Q*\6c"cCӡZAZvċ|[Hcv~_,G@n:C[n@'t޸V-:#<m6ڵdOĻ;{zHbsS.S (c4)z R'lGZȌz[+-#XE=`[ b*?Ef>`9I엫ΝoGB\;Rg)qE _}jNhۃ;?^ :) W]!Jq!0VP;y#Z_;Xiu4YXoo;Q"jϱu܊P:@qSTڮPO`U1Գ AJ^-i :l!ו&b)_LbpԿ@?,1Ř> J" p~]uBX5{9K% x]N~X՞.ō/,%䑢yDbtdpK"٫Ζ+SS۶QmղnS#|mC䖷Ch|ᗎ*| 8K?hҹe]zF,(S7c&O5{g:ۉ~S{P61)D<=zRsuȲ Nߔ|QbןCu'')Yscu&e.HC%cX/Hغ 3j E[5PUf82P=t ,*)R;"7E]&X` q给_8K_[RsJu6+:plm4Wjn ;Ew %e탫2H+goɷ`Rh(Y.1jGt!-Y xy_2X9w g\E_$t4|:]maGwo? eQݒΥvwG3@]he7z)q+m+C%2bf?آK;bPņ4RvA)ɆhGuy(aQ0lZ' wcȿ!@7#t"E?u)%#ۤ5"n4w"n-nȄv- ,Aԭ}PW3)ǿ@p+zwEz["{詩@ ] XeŹ9$v;ϻ3,J=육j2DQ[Kb&̣pM, fbpt +fiĂ  oi~zL f@ y2l^).T܁oN:faEWbH9&kFHɨw>Z|, N8P#]ɨXFIyˇNðV|JX>T8jmOUgAA+yҒa6W7x%D:;ne8;m$Glf:`9BN6@ l_bsH`EV3}qvMBW66jX/3 hCwԪik$1m.;~#Ay껱_\d)IW'xG v/7X<ٛ݅hpj2[kIi obL02Ĺ|u:6xAh Nʑ@X6'4ܚ 6\LFӡZ𱽘zi V3|)con9Zz.qp ߌfp*(gnZٝN{GI}eMZ6@TMaUw~]+/i//];bZIi{Ia٢W]`#h$ @. T[ \ǐ5&kŐ%@n!o8ſq,,cB?H'wW}iP{wOՏ)kK &^ft?">WACIq꘼UƑДňQ}/{n xF:PkeIp7|'tw A[aCh֪pS㽣`hOu[w[a@'nYH01_j!oqFr*&&TA Ml\\wzn<@bZCym}xãztcӀ:jjt@gH+'Zha5ah|hPi@k%hz~h|hDD`]45cNnqу=8X]>C_rcYݬ_=֞ĪlM1M# %3\5Nf9X9 %zE],/Vlv4Fkr0ãX7&/@{5~6vJFp|vJʘ ß/֍i:^x T12l<*CmWX3xKZ4LxK lz0.9ULQ=A_j6RN6lE03$t8]AL/م5%X~-;@Y<bћހ ~ekw0j-X\2w 0+Ƞwcmv]"2? ټO]kT:ZW׮AB&dӾf遼#n#QNgEXQNj.n+>?Ix!!~9E~cq0ʻ>|֩kx+pP+ ake ڄ!jn|)3jZftrؿXՎTJZ kyp_wp1\_.]p(nT*XPWU5g @kәꝧ,.AgjXkxlA935Ucj)WKT׷ʴww&P慕hz1<`m9 % =`hkj8(BpR 5C'i(J6k" W࿸o]<7YcRJBWȒ*xbAWI46/JK#~PY@ 4 DdfO$)EQ\<1~5]dERrM`"AXl:?gx;K?7*?S~R/L 3PK5-/cRAՏ8T]/?xȿ,Q?DDBW~?T]+qC yRy__pu.+5 KVT`7O;3=,єҿ"ԯJI //17sMLK*%S/XC\Kp%TʔQiN5կ_vs\V\ _WlWAT* L:CK+ӿDfKLBL+.°U_@t20ܩU櫘±KQn]^GHF_jP+l<:(- R7A܀B'Z/ l!(Chb)ih` *Ck Vhh¼Xo獮.(Eb5_iQSs+[W3s3ަM{sSWSC]izTC5o{T(d Zyj_: R+׿u PşC( G&&##@&(HTLΚ)~? $M?F_REYh?>̪RsTI$V\, *YQ4 E\VY 0ibR1N2.R. i\U=TYp:Ī8ǝ,ELe'ex0^yd^UdۥW%X,+30tX(O RP.Tm+ΞgIp?@)8EˆwC8㲨9(9jq"F2OB|NwC@Ҋr1OX*:'pҖ8qyUx(`QI&[ f(2PNY X*Cv$jDcmǀB c,ÑxAlp$./ 4ߑx%/W%}9Z08!c:O9w$^~$a'E"WB O9(Q?;YX$0/:$gB/aߑ~AU X>-ʊ2v JfDOd҃23|b8LT+;T/A˒:"q!&eGD> \yx+XWT&+R/S\@HS_tU @ ݾ4%f4uҜnZУYLVh8۠T2znf9= YI8kdSӲ-gd9-WyJuBZ)V+Z+1U Fk傓JHhHP$(2$) %@_e܎JnbUԎDVXT\X((*Ip%73Uټd:*XJ;L%2%rݏ%DM6hׂ5PbiP_qK=?J4DK/JDC#PbWQ"@@< %"5YԣP"R@@= %"՟vm(GD$@HvԣP^+C@Y}9ݽNZM+zt܌Ѽq,y;蹑 znf%= yL˖Ѳ)lJ2)-WyNB^Z%hTĴV+ Nk"rJhLP$( % fDBeLr54?`qZ]敷ЍmAxdH)kĴ=OFTSm,d6^V*T&*DM-01501[`Z LԄkt-0QE DCh燉|^h燉x-0GD xL(A0GDzLD0G\o@> &"XUv kQ@= )GI߳@y}ݽ2@nӣ1rp3NFм4ofYNύVVs3蹝Ǵl-[rN˦)A)"ڑ"P(Ά+}YLv/c4uD =:YJnѼ4oe͛YIvVs#鹕3zn朞yBˆ,!RzdZS R,tX~X9 Z&]R4kAxmH1}HP)Z!)Z!_'H<)(#"BH<)(#"PBH?)42RQHG E |"pY$Hn_eNRzt,y#+hJ7 ("䣀"rS2YL1}'%4unѣfYIVVѼ4o猞9Vs3O鹝glsZ-myEI"jh\pR *EFk"ZQZ(iZTV.cR~S S V"* OpًFeR׋2͹`E]&}kP#FQ$r'T|jq,!{h/a=C)+?T4 Z&]T4kxmP1}PP*Z!O &x~hxTQPG@E xTQPG@ES~T2TQPG@E N=T#Ut @A;8ݾ,!4unӣf%YEVӼ3sNύO&O.7S?/#/'"`-x@I@),F<"ʊ2 *N8+KF.0Bt;CFր"}"1$5ٽ&(7™0ҁ!cee(DƈGRKRP$ED"kB֚-f_ +hj,V4 ro-Ӓ~"OKi?KtKġ~ZBzCF?dlD2RSHF ~J2HhTґHG ~JJ)IT?$1m̆Ԍ% Uѽ"@ UVcfYr`< |&M]&n^~^G^OX"-.Ҁ/2Z y@E@e@U@q@VJS DɁݒ{\6;M~?Hl~HMv?Lv/uɌ8q4㔥#jvRE,2уD|ٞ3%+tY\*zxlhf!fI[sKi>-[!c2%c d$'D2RS] HG |J:HOII|"%)'t<8]ߌ% UzYȔBgU`%v˓i,0i<0"0q20* <8 ~ `"!EhDpxZ(j(ʰDU\r6]Af璎)ml{yb@jDfHnP쭱+,]-Tx%Wyry!MAٞ5#k&*qvÒ œd*P#@/80T9:fɓia,y4yvyyE XD`""B(h-P5RTETUVND Uib3:6|tWƉd{,ۂ<@PYJ^f)iR[f!<W AAMdZ e&8gxqoCƳ<M20縥'vֶOgz᧥c t臟^?-[$#?dlA)D:RSґHG ~JJ)IB?$4ݛ'n4t.% UQYzYȔB,0T9:O̒v˳y"0i20*0q80 " " "#EhDpQxQZj]HXvLcu)Eh{5ibUqj{uyf@n{e-NLv/t,(eOHYF`fJX@4S_g-ZKcg49')0yE-ӡ}ZBzѧCF?dlAD2 $d$'BD:RSґ@HG }JJ)IRІ>5$$De,,t' g!pI'(BUFVt/8@P =y`< [6/,IWiWā[/x@xI@i@Y@9)B" 2 ċeP#ma"8R(;gZ9.Ig Sx&"458<7[\p^J&T&!_kHj>r$;9iS;2k%] $sdbqN'40<ey3ItYOyE-ӡ}ZBzѧCF?dlA?E2RS@HF }J2HOIG}")))IO$>+UBMh$$>%!,x!g9q=y\<K:A 42^,@'Sz,,y`0l^X>Ӯ`[/(Ҁ)+, Re@U@1*ۀ$_ ̵cJFg~dj1߯S߫G3߯soiDe8OC(,ІJV7 60e֒eiV\{ڳVT<&cOh142 0}fM. $0c tG^я>-;d$'BD2RS@HG }J:HOII}"%)o* }"!)) I;dE9+ވЕ"t,^% TǁFedʓ40TyFu%/얗ͫq`,0 EEE?E`EEIТ 2V 385$}3NxN1[ݧR߯3߫GsQwj8 ޿-Z৥~f09 8,;%iYR;*+厵̡k0[s򘪔3Ŝ&8y`yA <OX`$<0мMh8tOKH/t#S@HF }J2HOIF}"))HO#>%%0HI }2UBDBRS ʀtV=eX K2AY9{'2iy<:/̒v˫q 4L" L" L" " "EhDpe'IODpIzgl{uAݧ2߯s+oqj=-~yѧ_ OCp,yU}"M0+j  } .NSi~ٚ3V&1Pg4yN/CKgx8 }&I/ $ L$" z2 KHL]煟OIF~"))HO$#?% t৤#?TiII~"%)U m IOIH2,#Bԫ;*t W!tI'`*rhdн,@< U^cfɫqa `&M]&n~GQOQXQD`"Th$'`3wPUUq_=T9ۯl~IMvʜ>-Bm~PQw3oׂ>zѧ%` OC<ǴL7yL`Y!|+ó /Y9U+O&1P4yA/C+g%, }&Nf^IIAˎ ɞ* RZOGѧ$#>d$'BD:RSұ]gHG }JJ)IDІ>$#=8HǴ7"n8p. $*@#eȔBE` 0Kح`-x$0i40,0q<0" <2 ~* 8 NDK^B(A^ra=";6W6Od&_NvPYj8wǟ|-ӡZ OKB?44l {8=`rF!2”YB0^:s1J<"'&d)d=8/U`ȓ$t m?I3'S/ ݤLGRO^)-R#SHF J2HOIF" UI:HOII"%)'ŸdH9qYd$*P#3y S^+z8, [ [$/)+-/ʀ()c1% B 6Y;!B3rr{ .j8 -ZC>?k ӒZ!bkq9s9&&&fMX# /!lϚfts<@1^=bI<.IlOIKB7)?h铲_go*HO$#?% d$c"̐t$'ґŸDJR3S%O$$?%!0sN;$* 5[܅:ٽBM_-?-ZC??l ҰZ"bkq &O{<0yBmb4/*׮!&OYkN78@1^Obz<.IldOIKB7?i񑲀Iy@~gowd$#?$ t#?$'RŸ* "!)) IFI:OhD< Ip< K:A"5 CU0z `" [,_ISiW[T_4˅>dcixIzg_S0?!@m~͜>~6a/6Z'%_ tǟ-!Z"OKE?4dl @!|xJ)y%fJmbb֌Ez$d2ŒxKx`ȓ$tI`$0~RNR&_i)G'M,_gii$cʐd$'ґŸD:RSRHI 6$$ <4p4/y"2*@"`*8=E`" [,_ISiWT[Ɓ̊qpKT0_s[;!|8'fwJav;>CmnP1doq7;Z'%%` t(ǟ-ӡZ*OKF?4tl@A|xF;yg%fFmbbL^J*Y ֒nrE8 P,a4NXcNĜĤ1?8S~C1ܪ;>JG̖- ?3S@ ̝0%Җ~52%c t酟-? [#'X> }a&J03a*-fƟySyȚdqXROJzĒ*0iLLb6MfɗoZ@Z$"(B,`B4Kb8Kr< i * 8M:y@HI 6$$2a %,p'a% Uѽ,"@ UQc]faH'/j6/I ; o0)|V|}r :槼C J |3q{gjgfKЂ? /,M -%x(dlӒ:OKiǟȓ@,Ӿ0N^%O8epj)W~ 9SҌnqNw8 ,)i'=`i,x.M\OIKC7-?h h%)e9E4IVTQVtYP9 h<$4L?$cB&+S_ؖG-!}Z2O^i؂>-б5y$'$!/' e$&Rb1KJ 0sfd9"&xf4si4 }fNZ^iYL $P2,e`dhpxV4AR%YEyPf9 iCPyHi@Y9(r$$>%!ɈI$S$ Ixt,TEjde"S tI!W55ṷ]{;pLZ1k%tOLNy PN S.!?% $৤!?S[~fN~/m~?,l ^YZgS`<6%OfKOK?-[CH/tl~i< IRfȓ4L-LZJJ>$x}Șut@Jc)+Oc˥Yis'}6}/L~c/dm ~i؂>2ѧ%c tE-я> [Ð'0>IFL2yFY'כ)c9 ҒnqEw8 ,e4SNXFS|: P>U*NzЧ >4$'RB,l >Y:賲Ƕ/dɝ31%ԖG-!}Z2O^iя> [c'>IA;L yAa&f- Ff |0L/3VTiL68et҄wfOsc˥ei*Y8 L,4y$0Y@Ya-2 B* 8 sPyHI@i@Y@!y@!WPP4(X!TS$XT4*=E\aK:AdRKeF>s0N:gJ>TN0{0 gTVw S!>%Ч$!>D$'B,m >Y9}6}2[}rS@ L35%̖G-!}Z2O^▎-я> [#'>IYw *` cGU{կw×0;z9c#;a#5jW߰Tjx´׆SFY YkeR9VH^SRfX%a{ Ck"]fk!+AekIUU#YdE-uU%cE+K㚦ajY.]z"Ⱦ{hw?ɝJ%ܴ>,s|(?ug s|&h5< sJ59ED*:"t!~zK:_3w,;? i_?p-cw2W:uch@.Gs| sgs[F]RFNHZV"\+0mdƵQsHZ&yoT =ckF*n HNzX5.\ UJPZRF6"NVȲ2VW!V1YFȬuvm%@d_7<)g}v)?]tp.{9>H6 ,n n5?VIK??]ASC."ϩ"O+Βv~c?O_?pEw2yx]e!?~n+qф"ׄ^aЧ<ҵ֟c_# : bU|Jӊ׆'L;q8eeVHޛ1%gzuҁlVqZHBxUTJVzV;Y kjcrd]oA M0iQkZ'haNЗe <-K%ӤL^;ECOo:9zGag|Zc?C "t ~N~??]GSI+ 37,+~Oi_?ge/rx-cW:uc?G3S3\3z S3xCS6ևG? afw{s|$!{N{ sJ59UD2:"t!U=]IeG{=mGgَW_=ǎp]Be!={B^sΞ-xL-r-L-:|) TxN\*K;[/Kd-1r&$iMIڛ±JJXZ'oH[`B&\ZBPRR;Y YKdAl,-MȲޔA3L2i mZgl40[D,ubobWq_ KF1Bx;f~\} ϩ ϟ!}N }>>]G@SHt s*ӕ);>OYw+}/@@pE/v;}n>]E@SGD.d1ѧ s*ӕ;>ϺW_>~I"w;}n>]H@SHD.$ϩ$OWgn9-igY}JEv;}nwt Ǖh'`vyoav;}o8}x8:exV  n'*qk8e 5TN-*ުR+@VqЖHnVJZҔFz*Y[#kjcrd]/HN=X͵_{&RI}g?BxDN3\f! e%g#s+X ϩ#H1ϩ#O s Ӆ9DJ;¥J:_3w,;? i_?p-cw2ևW:uch>ľGs| sGw4}3Q_ GZF'̰߰VY#3ndm$k!S^e[F:PU["=e҅[!} Y [KըUFVɚت[}q7߯˸a'w@eDޟ\ - U ?걄0n%9 3B.1 ŬDlD\$'9w$y,+SG?C:"t~N!~??]HSId:%7+~=#\S~ge 1C+~n:147bc oi ~Fn i >]ȸmTѧ+ 7c>uӧW_>Jn:߿W|F&25㌩,媐JҾ)ZIUVHj[`B&܌VBR:Y YOdA̾8\VejjA7=]\ђtc(w@TRߟ~s84L7=&.lD܉yy* s$OJ!VdjQFj>>]H@SHtą9DJFzҧw;•> ~"ܗ@M;>}2s!>}nz11{`MK&LefRrjsk"09+Fe]Ʉׂ3JIZIFJ⭃KLP+5ڌ4VIo,-%mŨ'eoOhzi~p=Xт:+%] @E]Bߟns84%{L'=`]d#wٙL\DBɴ$U\/K#V>]ȸeѧ s*ӕ;>ϺW_>඀i"w;}n>]I#;| p_~4|[>e  [>wt Ǎ 0'fLCO0sStveIDХ*(Ib$J%ZI-L*^>]H@SID$Ϻ#;}zhW,_>eG1C;}n<1ϭ#O{܈{UUy`VN,OYff ^pM~+ѫw<_UɄWSYFvui^c )&4% ia H m46H,gK5iyfu>wZ`19>^;*t;k| - }ԭ?7ƖN1Ed"S)D"d.FrTll-{^$*!=C\HSI$϶#9k״#\3,G+|!Oe [>!u :1t7c oi @ =lڿGoUM tʚ֌o`FV0e\$g YI5VMH7?plt6Ht] VһV{Vѷswt }ǍXX'_vxo`v;|i-l6'X:gk[^U|J&61\$i["i2)VH5VMI7UҀZ#-i=&\Ѭ.pv{G/DV2㥰}BxM;X"+Bh%6&lD4ϲ#\S}JEw2yx-czxyϭc@[;}~:F{l/~|70z9>ݟ(eO8ftZW[^հ޵Lx8c*KHҶLҾR8MH5VHGkNZX-'B~Ɠkό-+ܪ>#9,`9>^cuۄ]Bx)hyTs|N |&zMx<5?Dؒ)J!YeQ"S1"tdJs]:I2HI" +dR2"DIъJچ4w:i\2HӴ#3Y;|ʎpOiG+|/BmG1C:n[>!u sxOuߞޗ5kB/``Ρ^CM :gxUVWX|N&1\$i[!i߄NSRzo[uҀ -'T|=4xF}+9ޣ |W}KTs<",cOz==eEsjE֏5kƛL>婙IfFN!",Fd*]\AEI7$a!5#JNTTRHߐN ҹ4֧vN-+zGOi_=gevxG-cW:uc8^iOx˚5/k/h]16 < jz׎2-i,Z!Iۄ}SR8H5Vo6HꉴG1O*,y[m{A1=x w9lvep]>S?.!2@+BSD"4~l^ ބ)O-/0;4|J#BN <גHH&&$IyQR4bꤒF^:i2HZW&O l*w g;\;u -cw2yyϭc[;|~:~xԂ7~;^ z=~#? i+J]Ȅ3kB)IfpZ%XNʿ ?z" (w,Z)ϯg*^.tޙ?F_}m6+@}G[`w9-?CB[|N| = ރ 0(;.t"td$ṖLE I7$HH%e'ԭtR2HDZfһ'w֫Fz g?\s|+[>e  [>wt +쩂?޾`őgL,\bZ=3^eߺ1|mv:ǃAs|wsD=]DSEuEsʈuUUDUw)*F3Z*xd!&JVTR4HI'+T&:4ޣ4/Tq4{ 7_=|Y"w;znh (oO;Fߺoݣۃ`ww9l,?CBKsʈ೭|N|:ށ_č%>S4v 2I"BK&S%ϵIQnb$aFF:);p5Lz|THR%O vO6ҽW_>ˎp-cw2yyϭc[;|~:VTû^VWo_z~Fo=129;Zz 8cKVIҶFҾuR8mx~ӟ˖#l?;w=1 ~m_g=F_ݣۃqhcyW|>>]FSG}Es ^#t!cdZD/y*xelh]w)$-LkQ,b$ݤFR^:)4LJ_ i*FV>ۿ%|X&돕/B#s!>|B^sʧch5^]OxZ}YL7d =TZ<ܖ6V+X&xn󥱄kl$ e)^=W, ݌zp*|C[Wޠ{u9l+?CA?ksu9D9V)$BO>F6Nl?w>]HSIicZ"B"t!cdD}_;cK| D.R2K)D&"(*1⃡%<@9drR]Dbd⹖FE:I7$a5LF );RHJڏ6vPK[& ^L d 2#kUZ#2sB^sΞx%V=u-/p|/z~F$ZmslxM6W3wxZ#:ΘR'>y<=l=lTMe'`w=^{`o=VP[>]?9%D*"t|NI+ s*೬|N!|%qzKxȇ<-?Dؒ)w)Jd#BK%S% ϵt,2Hi" R4*TI᪑J6~@KZ& i&x 0%K[*YĬU:YFmun<1ϭ>?CFzZ[^o ~x~ %}=Bx t&zmDVܭjw8a:˸lu,]G艖p{7^3MAײ`ocmkoo=ʞ|wE^3`ϩ bOsʈu2uDJJ"!b)$bO=LMoo@2eZ ;w)FdJFJ:k$Y4tLV IyR4Hj%4 ia BZ x 0#kUYcX'ˠ DJ^!u sxgOc-[Fo_ _سǞOǛxxJ n#rnOWd{ 탗{'hs ׄo|`DKٺ߷;/]g|Ã==z==]CSD"@ϩ#XEsӕ9D+BSH.$t{l ~O+0;4|RL҈Ts$fnZHªW%EFN+)\m桃KY&- l&&ndFV!dABZ3Yk!Kyu񎞟x#N=/[޽l=tg#3yO*< ~ѫuwxz"\,i^yʤO87_3^_ {}ヽA֠{ۮ[>!>|>>]DSE.c #O+ s*V>>]H؄o?Ԅ|ӄA\[EVr$-L&<ךIh!BV)촑NJ_iHLM` 5%-،4qxFVdAֱBJZ Y*fj%x#V=MMM˗MKw6̂Ϛj@_WX|e#?Ր6[Zy:˖hw ҥ|ï&{~ _k~|Mƞ[=%={==]ESFsӕ9DYW==]Hhؔl?Ԕ|ӔA\Zl.;i5ҌZ In$aHk%EvR:H["2i?VH3!-P3҂&n 2bC5f–R!kqUW0P+0Obx˦KE/ug?GI OvrD>x'&OgMߟ.A7l ve;~;zz# =z skxEC;zn tzNzS=]FSG#@ϩ#BOWTg["B"t!c3iz3P3?#K|@eh";AdDLJ k,$Hj%)vRv:HZ"o4+fJZlVI Fu HMd!d YKj^+MԎi 3m4^67^zzF7Kxl_ۉ^>xȽ0 l6lou7:Hwɺwz`O-^|{#={sxeC;{nt{NQ\FSFĞ.#`ϩ#bO+ s*س{N!K.$zl*}UOe -.54RsJEVHk'E%RI[!ÄSH [5҂&n5efB*d-Jjd5- @'81 OpVg{YkLm[97O#|37_/9VF'K׹~ϵox1~߷s_ĞrD0`C;{nyxgϭb.c˔sʈe9uD::"t%{N%{!y ӅVM[#5Oco -bԄR3I ZL*k5,ZIi# R4HY&k if@kZ'-i5UfB*d)Jjd5,ǵvDKGZ8 &1lW/z|S =-= -O=u"eK3}~*}*F_g~JۂT`G\xznS7yxG-=ew22"tzNz==]GSG$@ϩ$ڰ1zN!zugzd>ᝑ%>`Sh"ߥ" ZLk$YtNVIyKh,B ׄ)ifX% ia AZpM׌WZ2R,DURV,6N:$-c iLCM1M5,~^vr_e8'tl<'_ؖT *oՊ(OMA<{};sK^D[m zhOxk`` DN\|*D&U"*xdNMIXK$-B΄))}3?c 4Vڲ#hZޟKg| Bj >_7>ص[O{*iEp|wAwH7[`Oh~D;u6? LwC}K\K5RbOᓫ aJSNhr=i*܏+ 7Tg4@r#@rvIcʹyw Q,g4s)e.IPKG=+5r2Jc 2XHf(eQVMb":t]du9ͬSjVukU𚑵U'k# WN־,O6^_C5޽;6Q">@fޏ!xy}qtMQsp`F} L>7#pga_WgGiOBI8].8 mv| +|x[p["x% 1ۭbގ#uk-dķߖ#{o|{H2[Tˉv iBuENE!ߺoomvJ %E|۽=uIME!5suILg1zlcz4/͛$2YHa(²XU&": ]4u9-S^ʺZɢ,;^ AIm&KׂVL|ΌfF&ȷ v`"Zfă DGKG, Nws4x <]2.CNE ' ˯h?=$ Vp["|% 1ۭbqܭdn1{h3\Ww "BuENE!຦ppKwx曊Bl)j_FR6v5ؼI&S/e@Qbj*R:j3hbE3PZXSaRZ5֭,ٺ,]_n& W+d*p Wi W;0QM~"]Q3iHZ.‚_7<}>XOaa w|ï,l[> WpEwK'b[hOǐpJH;Zռ!f@[͈p]NDSOH.(X w* E;"Bm+FHSRH.)z8%蛊Bn) _PʯJvv%i.͛2",{DY,*A&"e:f]º*jjeZɢ;e,_Exb5`n#82\D4V!fdFGÓsG-{z)nc ~_E+`ܭםq囏q?Ƶ/@u3n"% 142F Bn9b\!wkA!f[;j D;EPvANA!亠rr]QSQ)ܩ)ܾb;%srr]R}SQ?EFY:AnVK2\ 72,{XJeY,UtVM2XEjbUu-ʺZqƺvuE[w, [L:0Y'܆ib"ah&BKΚ1SZ1>BvwSii"*xmB,_؊ǾC[Kե} p_vx/eXt5>zW ,`w_qb[r?%Cȕ#rjC!g[r]P)(\AB w* !E;"ȝB+FD:eJ !%E;%ȝO*}R%GtzTYL/)Ls6odXHe(etV 2X5ibUTXwQeJu9SjýV;:XǷD lݱ.5Ԍ,a+F``2l;Lr3f\>n ,^E/"KbޚczOao/1jOXp#D!X3}0Y 0n;0OrNrqܭfnA{@4hE;"ȝBuANE!亢rr]SSS)%!NI!交rr]RSQW/4"]drR^"LsQ6obdꥲ2P:b4j*R jTYwQcJ+rXԎ{֭-o,Vغc.S5*[|"lÐ;0OLmr3f\;6~Eʴ~j"a‹zEXd2ltjlGOcߡV^|!6>G;^C|Mwf/@cl"b-bĸ!n%#՝ʸ[Έq=݊޹4b\12 w E;"ƝBuMa)dܼb;%"ƝBuIFZ~{,>B;dvR͊0DblޤƲG:@,5J̪I HVժ3u(migRX:huǔ]flPklr&vȸ I3yYԪIc M^E&/"a˰l;;wOq}:cÁ#s/xAhdǧY Y6!ܝun# !wKAqzĸB3CrƛA݂F"ȝBuANA!亠rr]QSQ5E;5[Vrr]RSR.)MkЯ}`P%Gdv)JE͊2ĘRټI#S/e XkfU HUVj3heEPY:%k-nmu|hunj]Vg:l51En C~y?+ax"U#k;pؑ&#7cGOcPyjTh27 :xCרX|N&| 1/bKv$];"2F)22bܺ'`vĸ24bC{[;E;"ƝBuANE!㺢`e/SQȸ)bܩ)d\Y1BƝBuINIHdC\#Fbˎ(,®TܬK*\7de2P3b-TX5TcUumhgJrX{֭MX7%[w[5[kbky͌Z~?Jyْ2/"{a *~ȭȪkdWpѫ#DZs<ܺC( /xA =:1ȄO$%dXlvEu(2-fDmX@qܭhh@[;(E;"ʝBuANEѺ\\QDSQH)ܩ)\]1BʝBuINIdS\# F KzWjf21ͥyA^,,VaʪIUVVXgκ֡,.guJ+ךnm:Y4u[[Ckbpl-oC껸 /SKdX22,4x!yL -&^E/Bí FŎ); z -T?>SlG0 %Xrҳn13eyD^3-,UXJPcդU6VYg%֡,.guJkMY6c*Y4u:[l&&Pߕgh1R/k]hq Wĵ/@ pG  nG]CvC.CлC($V]oߚHG,h_p#K=!L|B,&I,&bd$'bR3ܱmr:b\)w+Qh@[;(E;"ʝrr]QDSQH)ܩ)ܺb;%bk!`Tkk}@(Ò#+mf;k05yL^ ,X%heդUvV:Xgĺe֡.g:)f[[eY4u[jb_l m!]>ԆoS&^f]v;!\[/r/@@w  *z"-i{X9N5)zglB,6IfB,8IFRwB,ZIЄXlAȟ!|ܭhnI{`4\ab 2"̝BuENE!溦ssۊbbK f2wd[샮UK,^ig7;^ټi!S²Gebj*RjK3Xf P&˙Ni{U֭o,6غS[jf_3 ][5Qmv/BaDE Wm_r yG]N뱆ȾC$U3;^C#^ )(6!:{$s6ۋ$y3Fw2,6[IdXlY!O3(;nE#= (wKzCЀr庠` )SPH.()(\QTR+(w* )5E;5;V;))\̎ F%;kJ?eJYRMf530UؼWc٣e6Y%`dUeVVXg0aŔu(3嬲Ni Z[`&h֝0K B 7=쀎/BÉb nX6pE(W_`GSc@[ȼk4khxߐm;4.=]8!!~'6 AI JK(% aaKΤ'b,L5y+Ah[; qANA!亠rr]PSQ(ܩ(\AvVrr]R2;38m7]J(’#;&vjaz0UټʲG@,uJĪ2H+MXg0eŌu(Yc:6Xuɢ:FwA=gaSHw9N '^~/B`KlᎸ /@[;~:e̻F'vYAv<dFQ$fxb;\ل)M#̙ mN ;ۭLh2,}ɬ'blL&8P4-rAサlA#uANA!庠rr]PDSQH(ܩ(\NMM!#))\̎Fg[kuMWtʰM,ٕj!7ReyJ^,u,*2&+"MXU`ƺU֡.guJĺuͬ㷁!?3'mIQ sXd9B,tx!N &^v/Bw;/B௚v+n:)1-cd56v |?v's裷ig2]#܌N;9v |c\òOsЦ$Rr&50)d!8)d#`b,4ɍEݒ^{o9 8纠ss]PĹSPȹ.(ܩ(\WqTssˊrrKfǠ.m5G]L0(Œ#2;v*fU^jLsl޴βG@K,-JªɄU)j3bu(`&kkfݺ'LO7AxcmZ%[hKZ.-%-bbqk xi x@\[K]Ʈ.cE Ņx.an5E"@~"Y ʯNv :h:YIiZ &LiђJ5~&fšhC4 ζgx_OGd~N1YL,fbhf1YL,fbhf1·8^P4C;8oEp>l~i+@&o|w :~[9<=Bέ3g&cq4:cH:9c\X^;cœLTor'Mǩĺs1r*wp>[hKZ.-%-gkVtY"pvm!8/u8%g[Ɔ]fli^oK!TL~"k잵RQI2M'4)6bJ̌UZhNۏ jfP;!vۓMes1ȘEbh1YdL.Ebh1ZdL.N·9^P4 C;9oEr>~=oN +Bz/@x՗&;?Z h%'7vܿq,8CX28CLee`mhre` qrg-:ZW.?Gc2TuacvT]ZKZ.-d%-Xŵ켴EBv^"vvu!;/J..d%.6ԝ {9(p vmi^K!`LQ~"[=7*v*:X&Xd& MmSZ f̬bFK:m6h6i+\Psl?7&y֓0,.m11ng+:qECWt;}E` }7!hΧwt> ·:y+!hi6pX!W'ϙ2k,8oT1tˉ̤1˅d1vRʊ;dZث$wgP):# ;cEBv^"vviB*KZή-d-bgR ٹBv^bٰAČ7&T/▶= `L1~/{\AD'2+4LhR6b5Zi۠&~jMl!g̽>sߝc1zyt? Bg=bWtG;:#8C c#At>!hΧWt> P[AC_x/F- 7Vx/esY-8+9ycWߩTĜ<8C\X:8CǹL{ J{Ě14*5\u@GcdTaclT[ETY҂%P\ZKZή-d-bgR ٹBv^bٰČ;얶U `LD_n ·:^P4@C;:oEWEC_x/F ^96؇K7w';ۨ~TэLLE̙MD.d.]VS.W.wVf̮Ђw0ƶB`퍊hlJe=Ζcl<%KZ.-d%-bgk yՅQBvvq᫲K\)<;6.jsW)19u~ݳ%*e*:&,Li:ѤJS-lb|ʹq,\wvʟKT4yfR@ב ud1t` ]G_(Bzĸs;#\ѹ<l1t qEc,G;:| zGCOI|(hyٖ4bC#LoSQ+?9+s#uc0r912U16Ylfeh 2L'cl;'clWV'clW (_kȽ4֊TlQp2~VB''c%KZϮ--gR y{+تx6lS%[-*wKQ9C:?Ѡkݳe** DS f4ҤFS:-jZ3-E16[g}{xnnȱ+43d L&C3Id143~+peqD=;D qeg1v#ƝAv>!hΧWv>#;$ ykihPňhS;+NR߳c0~D?g&A2faSMg6r4{w4{%Rs4{1+J1c*Acd U:kƎ؞J[Q[vɒѳk yiٵE-x/JH..%.@ o(dƿkmј2,˵ ΄oJ'ьeUNhRZmHMjź`/&a%}VUu1Hh =R&C#e1Hh =R,~ĸ8#V#e#!;Fvĸ!hϧwx> nGqHi@[ԈQC_ qgUtqώSKN))}Tsgϙ\~.LLUf"\iJ*t2Ɔ~%*q2Ɩ~zu2Ʀ~EYp4~KcmM1v̖'c%tr2N`blt2ƞdEBx^"5WsE ŅʳaGxN9C,Ykݳ ΔoF'*k4ӤAS&Z 52[$l`オǎmve1]` mW&Cە ve1]` mWy1. 1]pGrĸ:ζc\wt> ·靝M#v>D yjhlv8lA:ɱ,RBocxx칐Tll&reMY^e% w0.Zs0>V1v ,cX:냎JIK [Iek19-bg.u;/J..d%.6ly| g 6`LDV嚰{6™QI2:M'4)k]3-i!)/i:߶Oq,/gq+/gq+/gq+/g]0Ь_3]pErD1;Dvs1tnG;:| zt()ꝝQ#v>T y!kl8'YENs~nV諌^ٳT\Lf3wy*<9K)^ Ƹ&㊝`~1a`{X.5‰ƨN0x10.5sb9=8c5]"vvu!;/J..d%.6|lˉ~}"' O$rM=QRI2MhRLS{QX ô1^ÕgzMЄe1`d -X&CIЀe1_d W&CI|epeg9"YWv"`zs1vG;;LNEx>$Tχ<u5˙mq3٭"gqHiiVsM.J.?S Ssc3;E P5bS;;F|(6bC/+8+٫"+yXjKkWs@+9{cߩTŒLfEX^hJ 4ZnӢ-%d >EX3t4Fb%;c{Ailqp0^B)c5-L-؃MA1Fh;xCgNYٞmYwYRNyPjL'qO ~Si#CȆe1ta #;Wع#;wy#@?d WKyI Y4lG;3•qeCk_Jg;<%rD 5SY#x>lχ, Dc2tٹ#;7ع#;wI~e,I;ulKSqcvFs?"y1VJ;F r粣D,GU#x>e ๞UwS;<F|h|a6v˕mq+ۭ+~t?C4oC;9 _B5,C6EiBcYUxjFtZ&ebDKVxKC QDzkN]Pk]P[eʹ[ӹ۞۹[ic\tq.&t+ȕmٖ+W)*brH'rkb\3nKR6QO>0ԴoCЃer1``X&C^!BrnDcrPÓpI9/I9m}@KS@q#~F8"W wt;H rGgQ"t#J·:|mMmtF|Hv8΍U+ ?8I1>eYhg/\~LBU,f(b4%JeyUxrNS Z(hIE+Ehe]H2:#sA+;csAMl}p2JW*'cl.L'czN؁M;'c8_:JVNƍ|Flkߥh!&z5{^`,ß=y,39ޥ@,c2L2F+Jo!:yB1` WRKyI %E$\wr4܏7tgR"`|DsA"v3ȝuGَ(;F| lΧwCۈmvF|HNw8lN^9ɱP(E>e8^>{Ka bQ6lJS4W'g4%BLM -Z/JBRi+F`5`U{ { je+1NS-1q2ƎrQqйSm}1>&z.w=Kxs_MЄe1`d -X&CIЀe1_d Wzy#@L2+E"v^vvI;/I;>;/M;#ƭϧts>b\(wx$g=v%COex>Oq|hm[ic[<ǃmU1+?9~*5.:^ "LBU,fT6є(U)dZ(RhТ^bHe]HmeiCT5d *]Vj:csAlv2lI87BɘQr2c-n)'crHf'* *b}+ܶ򢳌1~d\ Kh\KZd\Kh\Kگ eKOѐ]QKQ.)b%)`gs 蔎 Wxg;<#FrDó <uGQx>N6S;<F|h6C$qIdK%Gg}+"-x~翭^\~Q@*f46Ӕ(LS\ -ZnhT@.$2!*kicº$cDL2$cXM2+$clN2k$cO20$c# SEK%Qؖm%0nN2.1>,bwj.~?-CIЄe1`h,X&CIЀe1_hW&C~!BvvE;"v^vvI;/I;N%*|Ds9cY<϶D\ wxn;J!m6COq|hm[ic_%*J/ \.- 4\ٕ\~1@*ft6eДJxrJ).B E-Z/6 ɠLmʚژUh{Wek1vTZ9cwAlt2 d0p2vpj1+'L}>Jf{aTt2m e@ 3WiYi*P.G<#9Ljɹˈɹy@}yx0&C땑!BrvE9"r^rvI9/I9+s4B*BrD1GrG纃D wt;Jr_!mΧ:F|{GCmtF|H68.UQ ~7~JNn+PKgQLI4#$"4EijJkVxKCkBh'LB*jtbl--yZ[|Q p,ւ HUFŅCBM> 9ͲzgZ/r8o")b1>BYlzۺ< ?&#ߕ"p.!8?ECpvE8/E8]RsމQg;9# zDsA"rg;9%Xs:|H)m@·96"Cۀ9ƖxEEFE ESc9}6,`Wv*@U,̈́$6iJHay%<9EiBJM-Z/6M iL mʚ*mjk6(]%r:ccA+l w.Ƃ&U5ؓ(_9 \ a<ߙ=EXҭCwEwEJa,^i1;u1;$ch2\Rή(bgE)+y) %E$(rg;c1xnG;<$q9(<#Jχ<|H)m#x> yk!mWo\TQpliW-;<47v*@UfB2M)4%DX^ ON1RiH&DfօVBFV޵EB;]j/Xتd; %'c,h11tX-tQIU:ߙZrx5ȆmwFߤ0 Jvvc]F8)pE:]Q +S4DgWRKHZ"vvQ!;/U;ˮrezƸs;b܏(wv;HtsQ"v.Gi#v> 6bS;;F|h6zS6+ƶ7.F6(F76~߮k?tNUc0wv TDl"!JxnJ.։tZm2h*|ʹhaMHv2UT/k];]#tЕzezV\}M"\}2p.ƾ 8c_J˹RZYKp̽3 H{J 6bS;;F|h|[6+mo\*ۧ7+~p?sk/:;9 /) TE)l&DlҔcy%<9N E-7Mh@TXRL6DeMUmi{A Kt1`Y˞ ]sc噸ZGo |vI%3(fBͦM ,'t2hh妙W Du!5ʴ҆jYm"a.5,ӌ.V:d3p2΂5q2xTLe\lo^j}ό1]G_ҙGlNeN1Y&+(L!LlކK E~!BvvE;5\RKSϮ*%+gses?\y1kENGeY wx%g;|H)mχ<],m#x> yk!mlW:޸*:yGr?$x$|r0(&BMTXZ M45:LM Y啯JkBZi'FeK[k_LgFNtFq0`kbXdЦ1ޙb<ա;)WC`[2` ݠR ,#+P06o(" +%}Bt^"tvY!:/]:.s:c91t.G;:Al;J!mΧ:Fǧwt>6@m·%^tsνյI]OmpR0(fB*Mi4%hk -Z奯FVօV6DeMm̖i{B _g.l.q&LZb}gYH׷)_lWeY=,>$-$$w)$12&GdvQؕ!7;5i>*ԏβg_0ϓK 4gR y ٕEwF=:#Q;HvsQ"xnGi#x>E9χ<𼵍6ē7D9'u<7} /"EBUfBM4%dRikBMJ6օV6DcM2mVh{7)]j/XVg.l.@ *ZbS*?{OJL2+;Вɇdedd.dJB"Ji>ԏ{%'j Ϯ*%+gRK yiyk^"xG+<3Ql;H r綣D܏(<LPNix>χ<𼵍6ēv8L69 ~~"<`Io 4\ٕ\S@LHg)&WʓS MqZ(h*/}mhg]HmehC4TlBۻ)]$Rc|F=tAB^)d;gDiKzL2,Dcd2Um0)d6);)m )BϢJLј棳yL16I堓16J1<]YKZϮ-%.9Rs9\Ywx#FvDsA"xng;<%qD6Si#x>Žmχ]*GϢK.2(̈́ 6hJhfy<9UhBQ妕Nօ,Vf6DcMՄ6fS"a.5,tٳAϚ\3[Zb/#>Z}_ֶO Kcvybgňع;7EχٴM}'BߦJg1zlcz4͛1tI叓16J2%K yiE-/q<$"x^"x#qg;b\(wxn;H r籣pIGi#x> 6S;<F|h6COq,B6oGgXkG`Wv*@UfBM4%R4hh妍A%օ,Vf6DcMՔ6f3ޭE]j/X6W]6COq|hm[ic_6COq|hm[eCOq,F#o~t~~mۤ/*}R2G4zNtu23S[$!dM|]ї)c|DgJds0n͝1Ir;Ʋ;$*5e~Rs;\ٹ1<#ʝs9Yv!mΧ;F|{gCh[Cۀ;x&ntԳD/v7]|L*PeFSB++ɩZ(hYEkMh1e]Ȍ2!kicA{Mt-5e5{lG{A(1a` ]X&C Ѓe1`` X,B1:yڟ7bD"t^bohC:۴:}S0G v9u0`1;IcDc' cm3Nc쳔 ci;/u;#ʕTt9Q\v rggQ"v#J·;|H)"g庲m[ۈicc6Cχ<𼵍6vƓA8lA9giۨKE<\3>r*L*fSM ,'%iXfBxbu!kY XS6Y{/5^.CvRwxҡ`Іc.,/+4ayX -X^0VBt WkйbD"t^bshMCٳMN{BcvHf`/v1 X X x&`h1 8'㪘`Kk1 Ƹ'N1 ƸgM0ƍob(Wvg;;#FrD ;uGعQv>rH)m#v> yk!mlmqU r >9~m꞉=*OB^ TDl"N3BK+ifZ'&Li|XcM:d6h?r)c<DzyV(bh2:L,,bh2L,+pE8/M8#g;Ckf.Ɇmٷw9C ?u.ΐX1976`yXsfX-r,HX;cXq,ƶQyX-J>\ɹ1,Gr'gA"rg;9%"~D 6 9 6"S;9F|h6"CO3X3٨B3~X3|l~w-J^ TDml"A3K+if SZmffW5?&dvh?R0D~'5rc1_P W&C {eB1^P W&C weB1]P ]W+yi 5Eج6Z 3BjBB_¡"D/-;͍iP\07V0gV0 biUC1Wʍ bZwd?V3ƝpQ\w}GyQ+F|Jp!mͧwn>6m͇!Gx֪  Wrvc_JUfBMK4%,2&4MirJx[ B5VV3kqR}I3NrFlsG rnsG r#^'Cϕ"r^rvM9/FD.)"%)Va*l6ٝ B8CVzύ\,Ach*3$bl*s16ƪ˹"ܹ{4:s1*>b]U`bUs=ѹ :3ǎ’(:F|J!mΧwt>6@m· XlQ_5VO=j1n]~ Puf2M +,')Mq3Z(ViYEkmRB5VVbGw{nbh2:t9bYWr#<`E\ W+y) E4"r9Z{TGw% \L1~/{\w.Ɩ94p.ƖYX>:cKl2`nFR[8cYr.ƞSEXu2FWXw.>\Qw~JQ"tGi#t> 6BS;:F|h6BC OmkJvP%+~l~GuO ]{ѕT*%6dZaxn J6fW~MLP)-SgEOs;'>T ʤbhqf;#\<>@<·8༵^8؞jdw 5'tœqE1;0e6VlД0eye<9F :-7h+/Y)b(˯i}4\ MW&#ϕrer1t\vĸs=#\ɹ= 1b2\PDKP@ή("( gWkȹbD—d Z+h?-ʹ:9'*\T\$f!\t.fp.fy*u.f%~\\ݦd|Jcܹ;pAb& rG粣D,Gi#t> 6BS;:F|h|T6ʶ4v]㊟_+ަ;9 Wo `TD+l"LdҌ0cie<7 NhVZ4gnbd2L,v+1nWpG;8/?XpvA8/A8]QKSή)Br^hmCݡq,&t~A/7'v9SrgeB6MJ07׎J0VaJdVJ:%ر4܇sVl=p.&^ٺXDv!mDΧ9F|{'ChCۀ9&x~jSv{:"'tmc|vK-3hf”ͦM ,'u6hD˭fVt̽e3>D}CǕper1[`V&Cl#ƍJp]9&C"r^rvA9/A9]QDKS@ή)܁7Bt^hC;ݢ:s.& z9*\*V:X&J)7I0VIdVII]j4EU;c-dQq.F`"lus.ƦdbGi#t> 6BSܻišm·:om#t>=;۟w;~l~~J2C秃ާ[gL. Sl&lZ)aAS&Z(5r+e`&?]b2L,^+b2~ĸ8#Zb2]PKP.(%(gWR+yi\TH%$gW󒕘@n67wE18Cr'ʙ^n.잳PRI̕eBn4rIlbl#X21bl#XUc1,c1,u@bVUĎ5K2[[[#F|J!mds|{'CۈmrF|H= xlZc6{{8n |QLXeiuWƓ&5B) :lY~G̱ؠʋV^,6bA :\lhb>+/Yqi/4Y8/A8]PKPή((gWEZ"rvU!9_]VHKWm:zXb{YYoQXXD9+.?W:LȝS4)K]2Ÿ&JX}b1qXb'>:ŸO,KbL,KbM,ƋbN,bkzH)m#r> yk!mgmhllOa kl >4oorz.&MFE&L4#l<7kf^$cmYGyʷAH bh2zL,V+bh2L,6+HG84%(g y E`\RHKUD.+$gE u伄%ϖeEe͝eeO$r{F˕ʟY&Aө$%.HVeDwbl"X yk!mggllOajl>4lO0xf1.J.ߌ)`TEkl&ٴAS&W&g!S埢oer1[\ V&Cker1Z\ V&#ger1YWr>!h@KP@.("%( g+$EBt^"tv]!:/J.,D,1B==MڬЏз(p.&?5vϹRrN'1 %t*&e)4)JˬUb#XG ֿdI|K,,L[ᜋ% :c{4lw.Vmz{GCmtF|H;Ya[!SX[Ϗ%)Jn+SL`YMI^̽{Y~KڿÞ싋J"p#uَwp;Fqc<6S;8^·8/A8]PKP' yمl(!9ڄZz=L7w&- XLQ~"[=7*\T<$2dNФ,BS(-bJZxbl#X=FP2낎FPwcbl#(Vbh%NKL['fb;c5Mm#r> yk!mlg646!SWMSs~{=5ÍoT 65٬D^)Sinoe1[9Nζc\wrn;F@q'c{cd2Er>!镜OA| y EhZ"tvM!:/Q:]Y%DgҖX@RSSI)ΔF!OT6zϝ 7%I,eB)4Ф,JS-RiFtZe\m%\mEX/u2F6b;cAidiq.6`2\-4ֹۣu߹[q.Ʀqzh6BCϔhlJ0%/+~j?tn|{j Wr.S5f^GyRv?On T·Wp>!hKP.(ZRK yiUdEBr^"rvm!9_]\X@[VmVGwEQ9C?Q;=D+_ ",t*FTڥ)YX%ђL~DXs,6b:#Ai;cAdqq,6*X-TzXXڴq,Ʀq: 9cC**۟W+~h\L" so{q~Hylnaner1r[\V&Cjﻈ!wZ8 y 1n|(I| zC`I($%)"g yم伴EBr( ..$%.qF-==(brH'rKb\2*:EY&T*MhjN ZfhJ%/6~DicбJٱ`+s1V(bl#JbkVmb챦s1{8ƹeS۞W~h~ow)m 0|D.f@wL?DUC9#ler1Z\V&Chی!kƗ_d`m1RWH~HyGV&#jeb1rZXV&Cfo"nGkL*+3-g͇7oA#n3ƍEn>s!镛OA}>F$EBp^"pvU!8/Y8]ZK]Bpο(!8wtR=QrKa\ W_Nb,JT:M2hjK"Z"EiG*mbh+N ܓf68CAF9cA5Z:cAmlv*k:A8cHƱ *bjgng<h<3㟉`{g{8^3<{ф=9wQ|;[T\ P\ ٬P\P\J"92q+#5bԼ匨3-hDqCрOE|HzT4C]TKU.++fWbak"/u6/J..%.1yĶg~nW}&LOT "잋RQKX˄i:ARMmɴ@2*JK^6HML:m2hCDf'aB1\`&Ej21^&r21^s'{21^'cP 1d2q%~qBphBquFlBqMl+5᷌k?sxxь\?F4o"ICIűʄb2YL&F+db2ګL&F*ckAs>Bܡ4bм匠3-hqCOE5ީ4Cӈ]UHKVDͮ+%,fR@Avm!5/u5%fR?L TG9Q0>Uwblzr2QGc"p>@ P}t!_'(Cӕ؇m%#$Bi=(m;J҇JoaC>PzKtOg+JF(}j~CSi#^"vi!J/iJǒk QziPڵ(E(B(!J]\HK\-dOۘpe] drU~s &s`$tN 9Y0J7VɂQz,3kbɂQZXCuRs`ndqN҃-wɂQ:9Y0J d(mH\#l,a4e(1*:* @i(<gjJ9?n&7? m2]7<@_ceh2AZ괲uPz  J$@麣D(}6DC6D|FmҧJQ6@C]ZKZå(E(B^"vm!J/uJ/J..D%.z,B"\tm!~ƄR'C*?Q=*\NT$:(+Dia䜬sbn̜`%3k?ɊQZX+tNV҆sbnlypPV҃-TɊQ:E9Y1J [1pPVҍa26t&礬$}'is˛玺M&,k_9k'0mu8LW`zI`ڥE0=]ZKZӮ--iR a0"KK\..%.K-~8)C?Q;=D˙ʟ ,$ ôtR6 ӍaX tfI0L kbNʆaXCuV6Ӎ5v'e0=l3[ ôI0L'e08)AQi&l+A /4OSZ}n`elU" YɥӤߣe0srOT7mkaӺg*cu`A;JӇL-lӇLoiC3m#> `ӧLF00=\ZKZ.-%-ik az`Յ0=~Q"J..%.ik {Q9)C:?Ѡ眩pPI2!K''avR+3'a:wR'aX+tRnN`˃r0B\1L [4+ic r0L8*WӃar0 _9*C;=m3%JZ/|LT-B~<.Z\ye0zOXFW?Y Шm!b@Ӷ'3-dDmhA;J@5-lHӇMoiC3ʕm#> hNӧM4=]ZHKZD.-%-iѴk izhE/JH..%.iдkK?kQ2r3\pYY$fc+MXR:*7LӃr4Y:*7Lr4m9*7LӍ5Thz0Mg8*7L–;Gi0M7 D0MgF t'(<΃u-+TLV.de2a0:yqw?I*rXҧKF,E,B^"vi!K/iKk YzXՅ,-(!K]\K\K\K-QPf~"s6*\T$2!N%Ѥ,v)@2u2. ʸqLPg2nbq+DeԔ'(>A/3A/Tr7A/;A/1LP01IIL@x?л<P0'e 3AzLP03ee!FeYD#&g][ F 9ohTD& =y``5-lӇLg+L0=Nm>Ľ)mӇL/iL]ZKZӮ-Zk az`Յ0(!L]\f<2'eI_勖9)CH\pQs˄h:LEheVr0XpRkbNtf Y9#؝3i#kr0r礜1L:)g әa2ws8Hs<3^d|SaШn2v -&+c۽c}[!;b_[n?\.N? ?YkS h%'7v ШhMfO4#zfiyn37>3Cֈ!MF4ݏz hzQn4=m#> hNӧMF4E4B^"vi!M/i\[HK[DӮ-.iWҴ4B^"vqH+lV'}з/ZLQ~"[=7*\T<$2dNФ,BS(-bJZ+yGeXk?P2kP7eGe(Ɩge(-TP[4f;*cCsAԴ@el7QMV^ude7Y:MV}MNMȎM{M.7 ze6rʮQmMf4#zaiynvޏh5-lHӇMb4=JӇM4}{Sڀi#^"vi!M/iMhiMKZDӮ--iRѴ i4B^;&~ ) B8*Cm;nPKX2˄Rh:IYv1Z 2+k`Q[ JfMQ[ 갌,XcwT㨌-eQ[ jfK2@4$< H}_ΧݭzHӺD4mG;M$鶃4ݿ M#6kʶZnJvhJ\VtY4כ닖JwzTÞ<]XVuhJˤF0 aP6鑎`:Q0}hmӇw> `6%-iɥ0E0B^"vm!L/uL/J..%.1nJGO/295~•D/Nb),t*JMRiFˬtZeВDd~ kNQ 7e'el(-Q[ fh:)cD3Bs)ajs/Z/6fݪQ%zDtA";H@ `vjyue7=S.S㹢`t#'S{f .4#<7{iqǡl[ʿmӧNq6C]Z%-ik qzipڵ8E8B(!N%.1nF Ha!K•L/Nb Ei:IY*MhNˬ ZhKC m?"9+cD1P 4؝ 8+cDlsV6V upśO'NTƞj3DeVtQ"nG;M$鱃/HDyLj-Ze[-6Ũ/Wד颏d0NN=ȵnS {aЅMeWXRuVIF;e#>>b,}hm҇w> X6b%-XK YzIXڥ,E,B^"vm!K/uK/J YzK<[#ZUELD^nIK•B/B'(˄b4JIYMiAL-Vɴ!Bۏ(mbb:(cDi);(cDlypR.B堌]akIgm~VP^he6AzD X(K#ʝmv$bC5rklOF^\nrs'L?}\e0xsD.gvj؅CW6hBʲ&xLF62- Yw>`6C;L0}H iI`ڥ0E0B^"vm!L/mL]]5pE aŅ0%֭QNq29dD/dvϥPPI,2TNѤ,v@$2LU -y8DiML*mXCuVF&2XcwR&㤌M+ϴEs:l2B&*c_ݭ#J@}GhzQih: Mom#> Z{-w'F'o.wtV#%&{ #>u{aߩ]4tcS+͇XRu}VȴF;xcuCOm>Ľ)C]ZKZ.-%-ik az\]%iXZNGZ;uI_/_tNJ[ "TTbtKePMiRAS[-ɴ̤b%/Jm?RiF[tPe줌=5Qz <#K}d{}elb6A[MPƆj-elV%`鱣Drg鼃D,}h6bCؿ `;b 3-S$A=B. SSfo4%zgyyrDS|dZ(rBvFȨ COm>ĽvtJ!mKZ.-%-ik qzipڵȆ]]%ixZ H*nbpV&dzRa\ W_*X&Nө hjK"-VQZbqHGmbi+A&Ҕ5]k",.gDJY|;{iC;62{ac;;6U{ack;6xr;6{iCǺvhm[ۈicf=M1z¯./O x[Qe4w!Wߕ ЩMf4#`i5xnL3|Z'Ch 5;xJh N;8wt{SϞK qzIpڥ8E8B^ZȮ-.iW8B^W램IOlG}=70z)DB/(bTRI,eB4$ѤLS[ -ZfXhKCm?iA[&P56 Tyދctױׄe 6iڐMX^f#ڄe6aMXo-Q;Jӧw>x6mӇ_lɮ=㷗{'=q֩\FÅ]wc tbol&zgMX^ B e(-ah/hu1X++)輌|ϦK zIڥ@E@ڢ>/mP]] zK{.$=z_L29D_{. Wt:eLDI2MJ)4Eh2*48#61Mj U iʵ0}gve&Σo,wd5YMVbdelf6Y[MVj=del%COq8}hm[ic^؆˽1z/0bz[M. Wrvc_;>lDSbdW'Ci 6*-Kt@ ]Y]22Jiw>jKZ.-%-iٵ8E8B^"vu!N/J..%.1ڐ~ } '2~s•N/N$ i:II)BS[-3XђN ~4&B-.,ɨF5;x2Ju 뇎z+),-iO]Z%-ik yzxՅ<]QBvq!O/quDׅ҅~ׅ!!OT6zϝ 7$Jf MJQb@2FU:-yqhG3mbZh+\ Pxۘ'#Ɠp4zzD1<]O#ʝ8\W ^m26ikO<}H)m#> xzk!mוmܕѕ¬ ;"νm~ ]~ PGb312QhJ ay5xr)>*-hNvwZVS).䴌M輌췒촌ҒK zI B^"vm!P/mP]]%j8\w^$]پq]~]kiRNyP$Q%I2A(MJ1RiHe& ZhLۏ g&V1ZƆWmV@#u?܁z POZhZ+Gi#> 6S;PF@}h6z6ƶ^FvF^a6yx: &&፜LAU(l6ДjI]ױ]88Ax~k-T ;v7*VeJ VR\<9mE')nfl:-c"8.CǪX)輌 di[e2%#-jk hڵ@}E@B'J ..{{%.:!vv1er )ﮱgn ׄ*X&Nө mnNt5:+-?/ j؅Gf{oMǏa@v2@!'P5HBO޴6-cU(P% mQPGq:hu66 mn꧓1&_1Oje<[>]Ωv%QF:M ,'-t<1PөﴌJ#Ui{_ 2r*feV-N؛L]ZGZԮ--jQ ڞ(..#.IMIttO&߉19-K7dgnBkY&AөMmnJ'H3:z q.*uEGN h㴼0Pwz]ɀ{ z(@17P[ 1٦enj 퍒uQf@M:HuiA_m3~̺b^uի6M+zd nt߄)`TEkl$ѴAS&+iJS܌M允ZؤuZ^+ к Vj :/#'0;-cO0)lpZdB,e&GZԮ--jQ .O]\G\bv-;1erцZmžU*\kT 2MNmѤlJS iօN^?dXxKz:kH h㴬( Pk c|e+qɀ @(P% mQPGq7Pm~̀:H#dW@w}9y9 n݄t*SH`i-WƓӌӲb6ݜ5Nˊz*䴌=byqciEi{ ]_iP][G]FB'J ..#.1V$8_)߉%Іʞ5*\T6 2-NMiR6 ]4Nփ}w;%k)E1:-Ce@= /@== >P-DMl2v[5Dɀ @=(P% mQsPm~̀:H#adWu]<@}=s~ n*5QmFM SWFi0P (NˆIl+ zRV輌촌Ei ]cLx:-c69"vmuԣ.jWu}@B>k5nNb9_߉a%Bjv5̭SڠI- Mi:5I M.tJa:wc_2yZX[ٰltߗ@ܗ@^񴾏񴫂x i1y O囧$||deB+eV [;[lwX^r3pXƾvu>QRvq!Oq5jNbg~gh%74yw}f:]X&J`@]5yU6ڵ c;/<=< /<< iݗ@6xzr<-t}xx(<=bo!F+Di}d"ne4}E4=BO17M#i Qi MkAiZ(M% mFQڄMGqi:ht6WlA6w_AȰAv0~=g]v~=> ^qe7"8-d 2ay@<0N/6OicsY[$ -JVz贌,e쬌-Eᬌ=*]_ZltVmuYɘY{U%xL5&Ύ|L.Y!5̽PP{x?Vzbv|I 8-O}_yzAr} ʆqZ%]\G\..#.&KG]|ᴖ%Hp(8 N%$8p:Jt6t~t6mӯNisc?3z1`6ǐ=-i;-FpX6Ӄ òA^,# 4Mge(扳2vG欳2vG2tG*Yei#겳2vGY#NgelVBήqV&z=8}wagerІz=Pew+\5JXܴ|_x+ OxzK O/xZ %ţ vm!OmO]\G\SG]ZBO㛧kt QyA217O7J+DIx:Ht-HtOm~x:H=1bdc'@R*𴙉3o\i p2e<7-adM8nX&y2"vq!OqOMxZBO17O#|xd<=co^o5DIx:HEif<mAۄ_m3Ҧ~O'D a>"xkV}HiY O3tXRHZ9,cwD,;t6;ЙﰌEIrXz踌keua#eXz尌a#qel!*c elg:ebGIaY' >eatX 8B%a#3abã+A<Qrް\1O$i9O]\G\..#.i-oVf<}E<]COn17O#||d"vq!MqMhZ޴hh(4co!FB3DhZco7JBVBMGif4mFAۄ_m3Ҧ~O'D _vknCzCAڞ>?Q:#J!c餌rRΈY;)cgDl9)cgDI;#Bj2vFCgeX;+NND8)cgJ+'e [:3blwRΈ3pRVvmqRƦzrc$g=+};c5 ވ;0:߁9)KohK L/`ZOWL0Ic`ڵ0ݞ 9Laڵ0}E0B>Vt}s;.|1az L 0m卒( Li3&0`: A Lf0M=?11N{دGvUyh'el4xq@;maɺfT\zoO߀18+K&ohG8m+9NoVe_qE8BO][?8B>"vqNᴋ qpQQ>qz8B5Di{$8m%iyd8]CNGif8mA_m A#;~ƈzW88V݋4*d01tVQ&pel(f26Ft;,ccZIrXƈz踌dua#Vek26FltrXƈa#qel&c elؔ2딴#W" Px1,Ys{]\XиZ&o2dw3oVŃ vm!N][ k qG][G[B>"vq!NqNwd8}E8=CO^17Nkഅ(8m 8](N% mQNGqq:ht6v6 mjȏ]1_0/bל8!n%&PS:e(47/('6g/b~8,C_Y%uz贌|buY"Vck2EltrVƾY"qgec ge،2E씴Y ;f]sk\oӮ5bv$%иſ[|L.QސnZϼa \[Ӯ-ik yz>Arvm!OhkxZ]\G\..#.ΡWc|"4xxZCO㓧 OK tAyQ2!JAڌ Oi3~;nm3&"^LxxB/c| O囧$|xd<=COGif^Qof<Mx6 m@.;fofdcM,ۖJ:/=P eqRMQUSV6ٜ/bY"Ij2Eʡ2Elege*["/b˕2El-)[Ɲ/b/ )/bnY ߉ ǯ䂨:E"}`34=FčD ;4N O ݄!2DhCƞyu*T5 2a Ҵiڵ4}E4B>"vq!MqM;W3>|Ҵ4]C[M AizQ2^!JBAڌ߰QMGqi:ht6Wیvr<Y |쿮Mc17.^:@2@b)J3BUYfxllVƳm2߬džeX6+JVziʸ.oV}2^#6+f2^6+Uo2^;7+x2^7+cجb2&z={~OkRva۴ ZsD}"terI 53A[ʿĥ,tyڵrʯ 4ѤNS[ B>"vq!OqO yxu#.|1yz O囧 j)o%DIx:Ht6 mQof<Mx6 m',!la F*\2g2{RV<7^''uVg~+~8-CsVY%z踌`ua#elz尌a#q2ff/{ic`mXoہ<=< /<()Oybv-`' cpX&LUFBWe6NiR꠩N]t񴋋xڎ]\G\--OuO哧g+HxZCo7H|Q2!JAڌ Oi3~t6mӯ6 m',!la 1GvĔk-"n^me7jXCl,k Q;˪SNuiRNjt6>*AuV7b,;+coĦlpVވ.WWtֳ޺=6Es+ak܅6+c׶mzW NOpzK N%iWŃkԓD&;8N&o]2dw3k©PA2A;M'4)uE'*fjt qpŅ8}E8Q Q>qz8!F|.eA2%$8p:Jt6(7Nm3&_f8}de2&< cx5>=Z[eptjX+XNUf]4iRNVm|JGk YmCe+["7b˕2F< -cAԵugSz(m2[۬M6+c齅8< iݗ@'JzCW@B̮eQKY?[|L.QސjaϬBJFQ;4tҤES[N5:ͬjBqN[2>"^!'Nkb|B(8-o k 퍒tQf8Mp:HthA_m3~˲l`^F,s5`wn*LJE Dl0Q'Ks*jtBg[:g:+BmJ&)F8,coN׫z9ڒNepYmVnkgfe6y NGA8mxZpy8- G\u-JIDqʿSC9+K6vW=V*6*v::X&餋&*Mm5:AifB'U:a..#. 5Di1>RB%Dp 8(N% mQNGqM7Nm~p:Hҳd%\9q9xZX;:`I3.Vf5y҄ζVm|NGI+Y[6RS5b/;+ck^JSO}Ix?4U{ܯ6+c&m26[۬-6+c q< 2+DIqŅ8}%Vbܒq?38+KІThwgFNAQ']4TiRԶB' fVdFuZ8lcG\-sNuN[UK1qZBk tAqzQ2!JA Ni37(7N˯ Nf8]N0xvk%=ơN6uфʲl&x:MZ5:em&AmB֔Jj/,;*cg^N$|>@fkMC^bW+&Yb+IYb+lYb Yb+O]\G\t] u$W  iƞY;N_'D],Ti:ѤBSۄNtY:6hIˏ-ZLJQRBOkt QqA217N7J+DIp:Ht6$HtNm~p:HN^Q ޿\ |쿾EkuCwWxm3*N6uJ3Ks Vۢ)+Bh%jj.R F)еDu۟^x]7*c l2ۨ6*c{$m2Zۨ 6*c۷B>"vu!M'JJ..#.1ڑΌ~W+݂Q+GerI uY'N_+4LhRZmNt٠&h0nj1GeUTeUZM=Hhz(4= M䛦Ѵ(i3&4h:MAی Mf4-je.Jƨ^^;mƃN PU@Tc ͈&,hNItIl3)XV.vRS[iwsiovOp%HTF[elAۉmPƦdelA۬mPfmrm!KuK%ei\FHjcF뫍h%74xw'}ESA2Uhj[f6dE)-f8(c":(cpQvP`e K囥$ciAY(ɺ,%DIX:Ht6a mQof,MX6c mnW;s6r.Fmxrmr;,}q_){6bi|/*V`6*Ksumy&mm9oFG/uWV[鄄)v5326Κo{M#HhzzDk_iZ= iۗu26YۨѴk ihՅ4=()MvjDR;;/vY_|EL.ɻ3+ΨV LJMJ4m bN3[t)o 2*Š2*TeU+G囦 Ѵ k7JF$4h:Jt6(7Mm3&4jt67\;9vsw iU}a'i|+ &l0[Ks mymMm|BGVzeAHq/Y *cë6k哦GM3HhzyDӺ/4mFelQ[-Ѵk ihՅ4()MCR;.U/Ger -]lT8+T~:VY&Xd& 6E)fl;*c"8*cX)tT[e쨌 b˃2"+IVC)17M%$4h:Jt6(7Mm3&4jm/^~u bA6.vUOeʸep"+1 V`F3uVf4ۢ)m|wWRZ۱21.ƺ/Ư&el5G 3b$0KLoRƦf5:"vm!LmL]]DIaŅmݺNBR';,NM/&'er )ﮱgB3[heuN6hRڤmNS:duRPEXpR&U"椌 `YYw 26+F'elg&|t}d0BLGif0mA䫵W _:ٙ[<0}lVҸ޷hTV@umj<7ۢޔΓftBl3WV?ZYq׹v_`ŮnT1 td4=BgI+i 16hz2v#ۨ=͖K iHhڵ4}E4B>"vu!M%=Ņ4}%uQYqӷQ\!ݵžل gou 6h:٤Ii) fl9*/L¦26*GeltU+t,\W1<8+C2P9*cK4io{t6(mBAڌ4NC &4jt6\;c \^g϶.0: 6x+M`A3MVfS<ζ.tv:[QB~d}ZӜܴ/8*+|xd4=CWIc|Ӵ4QۈmTfdHhڥ4}E4B>"vm!MuMxDIiŅ4}%UIUzTP Y5al go 6i:٢IiJSیMGe4-l:*+ 2v*1GeU+ȷ+AL1L[% mFQڄMGqm6Mm~h:HU-+;Ceohlh4n7ބU&@" 6mҌhUٌfx/ttW6g[1B~g%˞"^yPZ8*Fhz(4= M$i Q>ibOި6*cB>"vi!MiM][HG]:B'JJ..#.-Hg>02 mȄv*{fkT8T~tmLEɔ&KmGe4-l9*Ʀa8*J2*2a˃2!*Ge&-؝MMGifQof4Mh6 mnWlP #; ]C<4}u9 # nU֘6`E3)Ks]<Ͷ&k]eIKuRnfr+{xd0=cO^o 5I`B/I b$0}E0B>"vi!LiL][zE0BO]\G\bl 5 i J Yݵƞ:&D[,Li:ܤS{2 4ۤ'&e<7)±IMʸmRƥp2.QQޤ &e"vm!LmLk a`Յ0ݞ()Lֺ iŽkB?kB_4L.Fk= *M*-:,X:9) ia,fNʂaz),+?NʂaX)tR6"(;)c/ilypTd2B夌dEII mQof0M`6 mׄ܄o\n-cۯ:1s2;}LFEl DS6hFҪexJHxLTb;r4C%$4(MkIIhzr4-!'MGif4}E4B>"vi!MiMhhڵ4}E4BO]\HG\j*u i*UU꼻=M*-*)D3 ӴtT `Qb^p8*WLƊ2Aaa JcQ k21Ŗ;Gel&Ɩ^GelVa2Qof4Mh6 m*;kUr&FxrAkC2dߨM84cc M.,:M&ckL_kN!eh0L7J#DI`zQ2^!JF`b/ޤ0LKt Li3>"vi!LiLյ0}E0B>"vu!L'J ..#.1nƎk~~8)K:ohN̋ gJ7c L K''avRnfN bSIa6V~+NQ.NQ[,P9)c741h:)cg*lwR.q1pTu5ht6W _kȑ}˭QU ep mOEj،C/l,ЄdUN@xZ:Jן3{!ed1K$aFXz( K7J$,mo7)wX:jt Ki3>"vi!KiKHXڵ,}E,B>"vu!K'J..d#.1nڏk~:}9(Koh.ʅ3&r,-$;fƒAcl8(wҋMVYXpP."9(cDi:*#D;(cDYdqP.fblsPƎjU렌jcࠌ D⠌=j6aWی_Ɂm[K{5= zT*b/l eDAHxRkqS; a鷕G|d4BѴ(4Qy`哦MGm~t6 mFGZD.-#-iui!MiM][HG]DӮ.DIiŅ4}%mP6AqmO}18*K&oh*}fc9*LYy@n,RQy`^l9*LƦ2vAaQ JcQ EQ b˃2tAc 2BMGeV[G\ &]]] kq^}Ͷis6Im1 ~|\1kQӳ[w/ҸS fIHx:zyk9a'I`G 3I`zQ2%i{$0Iyb7J5FmQ0M`:HK`Z]ZGZӮ--iQ aZ()LpxZIGdĵ?|L.Y!5Nô0'F2Iyb,)'&0ml:)cDV8 4VĜ VP ,V؝ Yc b9)cG뤌`ऌ"D⤌=6rT{AMvr@I-Ory>0}2[IFz S{%d ǟ]v70b0= L=Maz L%i Qaz0-!Jӯ)LLGm~t6 mGZB>"vi!LiL][G]Ӯ.i{8Ӻ->='n/~8)K7d ´0᜔QyA,RIya66͜ NQ+?NQ+NQ.NQ- [ bmltRƶluI[`QUcX㨌}2k;c} [>&׃󸞷ep{!L&JHxxIZ'ٓׯƱiQY!L7F'F ,)LkQޤ卒tP6W{ A Lqa:Jt6i="vi!LiL][G[Ӯ-.iW \()LҺ)5iJωSEI\b!'e0-䙝tc;)+A2IY1L/NʊaqR"l:)cDip8)cD9)cDY:+#D1V؝b8)cr礌=`K2va2FI8 a#Gel9*+=gYفJ-+~LW/-ݽƻJhb'l뽷g@TF0a$0= Lϟ)L7HӦ0m!7LoR6 $0 tP6WG A Lqa:J `H`ڥ0}E0B>"vm!LmLmՅ0-O]\G\h݌=&'}w_'exa]Ge0ݘpNʆazAtT6Ӌa6NQM3'el(My'el('el(B'el(2@–GehX[bltRuIUc0ᨌa2vk{_3zβ1l[6nX q՟0{ŽoW1(i|Ê0:0٤ dHXzHXz1^?1R7HүKߠ fiyd,dX6elү)K哥KGm~Fif,}E,B>"vi!KiK][vE,BO]\G\g 酝  a mPݤ y2n22M06(tڠr2N xlPl2ߠ e\~6("A ʸnTFEy2.I1BA/wA/Ace !lP6ڤܱ Ivr/<^^^p]YFwWxHn8k$~PZsF]ati #HHzLHz1֟)I䛤׫VJ$$](IY3~MI:(+mJ+F$mFQo 7IGif$}E$B>"vi!IiI͵$}E$BnO]\HG\bf݅tagu_u;/pL&TPcuNH҃ ,Dd$m,Kmdl(M3dl(Mydl(dl(Jc2?c2?-P9&cúآ阌16a0 }ZcX㜌+dׅ܅XQY{.I+!Vn|]T!A?' =~:|C$ އH@Z HO 7&Wү)H$F@:Ț+l A _iS Hk6 7HGif }E B>"vi!HiHh@ڵ }E BO]\G\bd++WWN꼻l0);F)ݵA1;-hɕPA9:)5ל}\pU:Ϯ'vHo{:79΁.n_}O6{gH0Nc/Q I;$C3%#Ț UMxͪ,1WAۤNΨwAϊ=Uici 4]Z#-X Ku+rmkXcu,WqϚO lq-;5-A=H-R6[}k%74yw}f D Vi:YIi :AlifNVS:Xhӊ"Je j+V+L<ӊc]&–&-_c60 5:v kir&ay7}po|,zΝZ6 UqvCap|O8yܞp>d{C|s`h)ڼl?18y '7JA֌_aSN&<_iSN哓'GmN1Ͽ89Jpr6#-drpri!'i'][G]ɮ.DI9Ņ|..Ľ#.`F珶9ZJ٨pV&tLF:MJ4m bN3S:Yؔw9R1'\;Ŗ9B1' [4;p9y0p 9_9wB81#Nn5}kst)CF{RA56 E֟RKHys0p -\6C?^3R~uHyA2R!HB덒r5#W،gP6#WڔkIAی )qI9Jr6##-"e:"Rvi!)i)][HG]Dʮ.$e}"#."ePk G` `r )ﮱgB3[heuN6hRڤmNS:du I"<0)VP" cldq -wrcKc<8Lʋcl$e!< )7dž)<ȫ CHpuH ߷ϫא9*K0WIF9l,Q&aH1#Hy )%# kB6%lFʯ))哔{LoR&&(mBAڌK IHH٥|EBR>"Rvm!)u)퉒񑺸]\HG\@ʮ-Dm1\!ݵžل gou 6h:٤Ii) fl9OL¦cĤXq +E1xbR6<8OH*IE1xbRlw  I8OHB9xBRnSBʂSwal?^}{Z.q`l¨o60ca_3V^o5IX( + kʯ)+e3V~MY(X9jr +iV^GZ.-d#-bek YhXٵ|E"DIYŅ|EBV>Vvm!+hE, Y5al go 6i:٢IiJSیMYYdu^+ `EAxaV^: / ¬,dq^[f^Yy1 p^¬,dF͏dx>l^ߕ(YqsW$ U6 Co&"sxp~faFaMpf4LXyccXBoV卒r5cWؔ+ҦVvmGr7F(a|ڐ U֨p֩6 d`)MJ3ŠYY4sVʍMyaŬ"Vvq!+q+C9[#0DhCViwgNAISNf,) l†Yy l+b†YXAu6 aVndq6ʃ-w†YyA0+aì,H r#lkLmt%5^QnQn"1 2< |3ogk8,nHGg?cq72T~uLPy7H$\(*Y3T~MQ9( $A|r6C7* 7*GiTf|EBT>"Tvi!*i*յ|EBTnO]\G\..D#.>6m(tg(%7hwgAIEєeK8)7'`<6ɺ9Oplgs0.bq) &aT7¾9/9/Tr9/һ9/1l0A`5Hb>pZ40?( O6 Cds$=C}u%LW0;p,6CX 1_3X7H5I`9fA _aSXfLeQ>a9h&(mA ]ZGZ.-#-em,]]² a`Ņ|g  [#p&4PmRlQM Lp ’IX0,76A`IX0,/V8ò"$,TgaAXaw ˃1N‚ayIX0,ò0 p ˍ6Lk(WgA $0t8N6C d0t8 \£$F[Gů \\z?8 06Ќj7H17Vər5cWؔ+kk +[+hr6a 7+GiVf|EBV>"Vvi!+i+k YhXٵ|EBVO]\G\..6*XnT5bT>™R : WAbVn,+fpŬؔwYYX)t.`˃pB \1+[4+fea pŬLl_\sq(mmj?fahYmfsG#gI7 v~qܲrSCd_T*06BsbVXgٙrHό/¦xŒUbO^fMx9Qڄ/i/]ZzEB^>"^vm!/u/%e,5FcgF?h%74yw}faa^  rcI00/6A&pülp8 c>Vg4VPg Vg,8 c>19 cϾ*luƞ}1 =* +dƶf9چa谶Y۴m^o_܆a97:;cxtrdpǯjT䜨VObWUq6ShJSb6W'4gΌ-¦Mhy0eZ哖-GmZ~r6 mFGZD.-#-eui!-i-][HG]Dˮ.DIiŅ|%ˣS[)jOF$:Gar -]lL8GiY : wHˍpǴi: c>(; c>Ylyp}blr}Uآ(jc Ou^uqyQ2\!7.7HIp~d[#73<9Qb uxDzoxjtat"+1&Uq YhFSbvW'4eY3\~pye3\0\1'.m3\&(mA ]ZzEB\>"\vm!.m.]]DIqŅ{^iy 1;Hm {$gar )ﮑgv,<0.7 `I,<0./6AecY,",d4d,,YƖ^+ՏɅLk 9x6,Q\o Wp ɗa'Hd' Ndįgףr 8Ǫ4n0&qV6f,&͹hOdm)MAٌ_iSZ3-GmZ~r6 mFGZ@BZ>"Zvi!-i-][HG]Dˮ.e{'!myL1&;JmL;$&GaruYxBZ&Ĵ : OH˃ĴXj; OLƦ0aSQ[IcQ[`Q[EQ[YZUa 0-ǹD/17]Kp aImd}( ,7J|òA$e r}cscbJ,uxW}nK 7> &"bv6sЌ9f4:OVm +(r,Ǚ A ,qa9Jr6e="Xvi!,i,][G[ˮ-.eW[(),py,j1=Lm 8 K5$0, yf'a1A2IxaX^,)ecI{$=$=d"$=d,"4WҲ"Xvm!,m,k a`Յܞ(),sy1 ;Jm,tw,%7Xw7 g$$$q0̄M86 $S{0 4$'&a<7 ±IM¸mƥp0.QQ$ &a<Ȯeȕ+/Z8(6 C؈k0(M6 ckؠl%eyd\CoZfMh6 mA75<(1_jo~e_;LIE T6hFj\fjtNgt.>עc)+Bh%ӨmBAoZ&kjBGZD.-#-eѲkhَ][HG]Dˮ.DIiŅ|%Sv;b GarI uAQX0-/&`Z6 O%06&06&06 06cEQUaa 8tY GMl]Q`m.ZFalQۂmbEِ%Fh9MAی -f]feg JN޿`On6-`Fww`LIEbUhF,aixnF3|u:O֠mM:gKiXƊZTh= 7-ߴkjBGZD.-#-eв][HG]Dˮ.DIiŅ|%˳RYIjof#f(L.鼡;3/&pŴllK'Gal'00Ŧ0cQ[UaQ[Նt\#rj0 ͯ6 C ؆k06 -6cc ؞l%a mQoVfMX6c m@7;hx6rlxl=AWap OE"Nc %4#VeixnN3| :O֤m-:ghŠ dZi=TVSWMfXSV>"Vvi!+i+HXٵ|EBV>"Vvu!+'J..d#.]kQ~178Koh.ʅ3&0! mt6~2q6~du6~bp8c*9cXA]zuV!PU rj0(ͯ6 C؆k06(-6 cc؞lDiZfmFAۄ_m3Ztg'JN6wnxZNwUI^JJ %l(WK3s kYkK]|kC iPYEAƊK YH X\ZGZʮ-d-beQ Yy=QRVvq!+q\cvvA\2yCwW3N _ 04A` Mdi Mؔw&~UXq&~R(>Xט[K9kp]{#Ddc| 1V囕 vaA mQڄ+GqY9hr6aWA~nv@9ȶ __/j&Wg0{ƕޘ Īl0W:KssMkyζet**~heEHdi=TVSuҺVw="Zvi-ۑѲK iHhٵ|EBZ>"Zvu!-%enw=99'so%7ƞY N/4 OKJGa'MGa'&0 01c^k%g K@aϴQiyߴ!FB|.TFaQ$h9Jr6(7-m3Z&fd Ndo׬uZ^CTn%*LEE\ jl0WKss-K"Zvm!-m-]]HDIOApq!-q]cNvڜɷGL "T8T~itLQ{b(=4s~Uؔw~#V>}ں~_4jh[+mMS@Z^!'-kMb|1FalµQ[yFh( -i3Z&h9MA쬰mB˯-isIs%8v=eomشwn|%LEE\ l0נ&Kss)ethMY3_YA+NZTUZhuBؑѲK iHhٵ|EBZ>"Zvuٸ剒Ҳ iK,sѓdn 0hCRhwE3KIK(eLNXR: c?16A_6Y_mp.mS-x׸A"mJAFalԽ5De1>Wj0(MFAiQ2Z!JBAڌ -i3Z~;Hm3Z&jr6JVvÊ_6bܯʳk8{U:5`I3b-V2Z_c*=IMGs7H(Ga|ڐTҨpҩ2 d (MJ1ڎį fį66eWǕJ]ץwklhQ"mJEFal -[U7 c۪j0t rAiyQ2Z!JBAڌ -i3[(7-m3Z&jr6wF6vÆ_kg'5z^w/Jz`Q`&̵hF,eixnjBV:۴9|C'+Bh%SPYMB Va4+tճ#-eѲku-%ex.OFOR3ٜ Q\"!3Kɠˤ(e(M'1Ԯ&0MVK:k_1"QxaGEQxawhQxaό yN(oՍ _|rd"Xvu!,'J ..#.1]^kŽR[~5  %avI 5]ePdReAe FөUhjJ'HmlɮOgYr1[epBagA"mJCa4\|r1Y +囕$c|zd!JAf6a mQoVfMX6c mn@5)o^ ۸&r!Q0nNz`Qb 2ZXZ)M4õy6t*hPeEHV2+Vi]FuFؠ+]LiV`'alRV\[G]ˮ.DIaŅ|%Kv=b 'arI uY&N_˄Zh:UIY+M]|Nw U$?FaDQmƮHFaдQ< Wr Q>iߴCGM AiY(-[~ mFQڄ-Gqi9hr6WیݪUəëÇzH=窡;i|O&".e *,6‰R 2 MZiRR[ve9&4Z ;l?FaEQ;mƾHFaѴQ;= r Q>iߴQRZvq!-qjbc5vjQ\2xCwwgV.QkXeB4jcI)l1ۺkU cםػg0v(}6 c7h0vF(6 ciu-哖GM3Hhy(ߴo-\3gyd,!JBAڌ -i3Z~r6mB˯-isaë3%V';;~;ܝ<ŗ")zT*6*l0ҌJyn]t9|[Ä!YXMAMZm5”4F+GalUb4; c2S8 c뵲()-vyuj:;Kmu|D(L.Ż W ZY&IvM8^CWiڰk0ؗ@Zڗ@ZVh%7 cg_i0vi?.|1iy -kMIVYboZ7JF5DIh9Hr6 mFQoZfMh6M` AΔXl;J#-w/Ҹ@*l F3B;K+幩f.:OTlSs7*+Bh%N롱je[5Œ4ؐ[9XilvFeҀ06M+0o+..z%kP5Yjk 18 KoHyw=s-T*TZ F2A?FB.CU?[ao$rx<%GAQ,oƖF1&al4;B,u,W b$l!:5$eAaQ2Xn!JA ,i3X~r6m]ثmA܃nMvLIvOr؍*a˷$q@w+iH0 66iF`i<7u WD6+tViƊuZlzhڢuٔVw3F8 O trƮ^I;q'avVc 'aV0;5ƚ(5Ws%2Z3WJ寍 8٭[0XYxAZ H ڗ@ZVh%7 c3h06F..#.bFG]D+De1iB5f囖 rAiQ2Z!JBAڌ -i3Z~r6;-,hmFA܃n-vZPEv/r؍~jy7 6ܸ{&RS,*p5:OfBo٠&j)f; /LVGiUQ{V`GaSV( 8 cϴbL}0Fr^wy-갱=Km8 K6T n̵Rjc˞?M}^{ >bZW@Z^Ou_i< Fh06#(-Ѳ ihyQѲ(l10Kв(ߴ\ -䛖%$h9JвƉMQomFAۄ_m3ZtKaPsXa7hr񜫖߬B:=R qR'M],Mp+tfNY:-6X I -ZT3Vò%IX1,IX1,t: c2$Ί1p&kBIXQrVj9#0PZ3Ƅ=k"ݿ K}ƭI0,} Q,}e}l˛&a"I{  a`yQ(_}%H`(߰ ,%$`9Jr6s~r6m˯,is eacgJ8lٵܯY#UpZI1 N6hFRVhyb6kt6hɊ-ZLi=4RS Ӳ(l `aZ^lv6eҀ0Lad,c$Ga˸ÆѳԌ4g|q&mV3=qWcxp'-PdoIX A,} Q,²=ARXIX e( a`Ņ|Eod|"Zn!'-㛖G QiyA2Z䛖퍒( -i3Z&h9MAی -f=贱3%a71ϻTwd_T*+l0MhFXeie<7 AM:l9k|曱, - dTV겣pô<(0-QIak06qGal'10v^IQ{ %-GF6 9 7OGaL;c{2f0dK +} dQ+ `e 7wQ+}dYٵmʮ-d-betq!+q+7m3V>"V!'+㛕g QYY +[ bFXYB+GiVffmAۄ_m3VtQɑ 61Rϫap$/{P0aif5Vsptآ͔Y3AcVR;fꡣpG"Zvq-#.er{s;.|1iy -kMIhy䛖卒r QZfMh9Hr-mZ~tu#%tv?30{ƕޘFE4aa 5YZM4mybJgӲ,< -7VZ: D˓eGiY(mWO*[;t; c?)(GaGIQxP (5B;)ͺlSGs47Q\xCʻk%ӲxDu_iEBZO][H?BZ>Z..#.er?.|1iYC-DU -K Mr QZfMh9Hr-m^m3Zt:Y:ٙl4ݲ5[IFzo `TDl N3K+if)'fl9 OLt; OLˍ!Giyz0<-/V'eck0^9 c?ilt>~2:(}d1p>~bo_(<qج9.f=Jmo8 K7d3o^ABXvq,$e9, a`Ņ|E< Q Q>aYcoXW QaY ,%$`9Jr6(7,m‚ ,ftu#%7a:PΕ>-nÍ[!7al0mЌxn 7cIxaX6gꇣu͜qOҦ UjJRS͜Q\b¸3o Ҳk iEBZ^O][H?ڦ<][HG[D..#.e|PFG]D|ҲJв(ߴ\ -䛖%$h9Jr6(D6mB˯-is :Uzְ#%Vrm̮f+myjh 66iBbYe<5X; +eaIX1,Ӊ$ANŠayr,e'al'–'al'tr6~2$mdeI1p6~U8 cAk'qFCHب70zo0NM¸M¸3F?\[..e²>ArXvm,msXvm!,m,]\G\f,u,[˫߰,!F5D` ߰<(,% mQp,mX~`9H;Щѣ(adv`JC}Zy wƭ[cl0mь0eie47 Ӳy(l†iy,ld(O ˎO*[#Qdk0e븣0100f;\}5jx)lKjaf~4gBQ]"IwGc<:n *thٵlOk iGۜ][HG[D..#.eѲ31.UBOZ㛖kr QiA2Z17-7JF+DIh9Hr5Hr-mZ~h9H[YaG [!gJX;O_TpFwWܸ5{L"da )3VqnnQϓxmsv0q, Fa\Z1V7 Q¸okFalFamkFaoFaL1SldY3;/FXFf՜a󶾯<<q]6&(5͜ aI\RyCvwtcPƤEq(˄"X òk aG][G[..#.es5uE,!',QayA2X17,7J$M`Y ,i3X~r6m˯,is:vҰ 9Ro6/WB!zUCw7x'0*-6l0XF8 eN‚ay$,N‚ay(,U&Cgad'e'al'NOz$mD$mja븓010&=gh'}5 $ mm u*װʎRJ?JGX(L.iλ;3I?0 tiٵmNˮ--eѲ i hyw:g|E\COZn17-#||dboZ7JF|Ӳi3Z&h9MAی -f謲#%V\A[~ݝ4>X'l `: WLBQbZn,+fpŴLgpŴl9 c?V4V F8 c?땣0ck0qGalWe=BE32f@a옶QmmFF]Q k(5k9k|D(L.鼡;3/*P*0:LBiVӵmNˮ--eѲhyq-;3Z>"Zn!'-㛖G QiyA2Z䛖퍒в% mFQڄ-Gqi9hr6Wی5vְ5r5s~;-6t=%݃4>YhFYAZ 2MGiyy(0-/6gecYJ֤z0l(md5Q ]_-lt6~uQՓٜa3m0v^, 6 c.[YjWsQ\2xCwwgV.Qg8e¬4fI9;MmNˮ--erq!-q-׷(d|ECOZ17-#|ӲA2Z䓖Q2Z% mFQڄ-Gqi9hr6Wیuvְurusi]$[aI_J`": wHBQcZn$;2QcZ^l9 wLt; c#?R4V V,F8 c#?땣06NGalW]ǷDzEm:F)~6}ʺ<< /()-Ҳyl:l`g_ Abp&LUF?,f4;M9hjI'tm!-m-Ѳ ihu#.|1iy -kMIhYK MFh( -i3Z&h9MAی -f vذ r ux &Sy9 ^qe7",d 2Yx@Z(<0-/6OecsQ, J֤z0d(D(*]_lt+qݹ]/icP;m>eہ<= /Om_B|mR 057HLR]c< n V:L4)礩= S4G[@Ņ|EBZ>"Zoihhy(boZ#e Q>iY$eAiQ2Zn!JBAڌ -i3Z~r6maثmFA܃&;m&;TbNN0[I{,"Zvq!-q-d|EBOZ㛖-e-!7-$|r{dC-GiZfmv\X6Wی -vڰ-v"[~;--UrSmqhY r#, - 2MGiG]'/ ^qe7&PE@H%$Mr&~2Y; c?Q6ۜ_3IJ0dV8\OsϸG{ alҴI[=|1ay ,GAlZmV\&alm2\[G[ˮ-.eW²>QRXvqf#.\/!LrZ+/7ވI\xCʻkW-Jq5 tZ&4עd)fdB -ZiFvZ uЂe]A-De+o %F`( ,i3X&`9 A a,iS'F~O8I6 Onxj}7+iH祰T6XJg $ -0eA[¦0𫕕'aX-12!+YWm_BlMS!'*5HP< Xe6c؇ks05GZʮ-D-BeQ Qٞ(..D#.[/!; 9Cm8K7dg^B[ʿY&AiMk^J'2:ʹɪBVZ81U)ʪ [cL *%C$P9Jr6C(7*mS‚ *fM!?1$2cd{Pwn\ @@Hg)fLVOe066alWw} aZ]*H"mJA&alW c|ò+&al}Ihmƶ&å|EBX>"Xvm!,u,TDIaŅ|v%YcG!G)ZN$L.1*K3J[ʿ:5X&Ii-Kij/D f*tjS^-iANZ uтJ-V`t|rd'aRp"R P:l,e҄ŲJhj:cZ4q}) '~gȮ?g}A"mJ?a5Dde1>KaYA;_mƮ&HX٥|EBV>"Vvm!+uS YY()+lj=ArƷFa|*%g^ : :kLXRhjkDN3tjS^;-:hI.Z UiAU#E -&tyktN;ogr6c(mAO8Aی +fMacGI3l[~Xʡ+-Jz/ TDl dE3Bܬe0𥉉6'a"Vvi!+i+][G[ӵ|EBVnO]\G\b,B]5Dj"k97B0נ­I_R h:iIBS[+ 4N':u¡UZh)B )ViaFlA*tEMSZ6aMX9Hr+mV~X9HΉEY"xӰ|5,ǻoa+_H^@@Q KsVᵱyri\ pui0$ 6 cMh0D( }6 csMiH 5 mGZ.-#-ekVyEBX>"Xvu!,'J ..#.qZJ]5#ԤR9 KokR֢/eN*4)F'v:tɪNy]pFZ MhAJ5Zح[cl҅]LiƖ^'aIV ,i3X~r6m˯,is9a0 xװTjx]i8]Ww0z?BEe!UXZU rU1+?$M{6 cM@h0!$͌6 cKWi06g$-F Q>a9Jr6#-eK aH BX>"Xvm!,u,%e8-KjrI\yCwwg^TTetLP餕&6AN:Yu)J -?Vh3*-HQN Y(6UhFҪܬ䘧\5לCpg0$6 c M؈h03$M6 CgM؞i065AoX&`H`٥|EҢsi,][G]ˮ.DIaŅ|%Nҩtvtt;s& ] gT~-tUX&h餍&v:I.:YUW -?&Y-IQA M"Vvu!+'J..d#.ZAm5d3d18K&oh*}fiA2AM'4)uI'.:TdUS -&XE-iAAMZm1flr^Eآ Jc 06+0tY+Aی +fs22i2Ȯ_ ʢy3 ^qe7&@"VaQ+XFv+u|O)V^*~FahVRX!H덒( ,%Mh0D( MMF6mAoX&`H`٥E<"Xvi!,i,][G]ˮ.e}ݮG\b,kdM9br&,ސ{f-T8*V:X&h餃&NںQLNV+tʛakY-6IQE )]$ݷI;Ɩ^'aJV'aV!'aV'a,is9a4Iv Oji&y3 VҸTZ@F[jrUXZX #SYyAV~ AV7J|alDAmƦ&(X9jr +i3V>҂ef]ZGZʮ-d-beQ Yٞ( ..d#.qZE}5d3^n0DyCF= N+_D,ttIRMmU:A4B' ViFˏuZlRhT[(nƖ'YYB =Jc0+-۬,Nf'aljr67NXd¯{h{X 7^ }&@"F!gɕdpCIX!+)+7HoOSV$ae{$A;m>DxMY(X9jr +ibi+]ZGZʮ-d-beQ -O]\G\b,J}5Dj?S7B9K6vW=V*6*v::X&餋&*Mm5:AifB'U:a٤-( 1ŠYA;^aJVaV0jFN4.Hω#&dϰ7zJϹ͵ණʞ2 p3W㫁,M xc$<b *ϒ ߨ9[lBfJQ>Q9hr6A 7*Gi+ f|EBT>"Tvi!*i*][G]dBT'J..D#.1ZFOP39_6B=6*v*::Y&JR:AL4J'5:a٢ДT3\ A *7P9FM`&V[Y1dM8cFAΉ%ad˰ǻOp)ן-Up㵒F`=f#ޞ9QۺI"GMµ@Vo# +7F'FIX}ڌoQ2V!Jʯ)+e3V~MYy(X9jrg6a mGZ.-d#-bek YhXٵE@]] YKkjBwFBA]"!3k뤃e*M'5Vhj bN3ktZS-6iE)-fnFEy0.I1BA/wA/Aca !lĨ6$\c Ivp-$ZZZV9z+p﯇nIx>VQE?2Toۋ#AeAQyr,!Hr5CW*ҦbOTfFF(mA ]ZGZ.-D#-Berm!*u*%Ee,WUiUrUƈ*%7hwgAIEQeM'+4)Mhj[fdAMZ8lcJ+QYpQvʍ-Qy9X0*/h: Fec s05a0 -֤1qfo05ŽB7 W/q;_)1Vatsm~?6!M% Z}pi H8yL8Y 'O7WɯZ)'$F89Țq+lAٌ_iSN哓 'ϨmAoN&8H8٥|EBN>"Nvm][G]ɮ.DI9Ņ|%˵R;Zij"jL.iλ;3ATc` MJ4 bN3tڤS-"\1' +qrc!bNdq[+dcKC06aѤ"qm29cE)*:W[VR>1<$}MKvBcR!ߟP?'<:zC$C$looP0($W[rdd@6lʯ)([3hr6 7(GiPf|EBP>"Pvi!(iڻ\[G[ʮ-.eWxBP>{ڨFmش7r-S0ϼpT~5:VX&tJMmtؠ&7ÌAYX)t n.N `˃cpB0([a4YM`&c05~'P^1jo?ecV﫰~ݵ1z5G|?o_פOrJe'Wm^Z}}Ýq;ĺX g]\ɸW7fktkR}׿ٕ׿{v̓q_qo]]nzu/&Jw*W[D{g/}ޫUyǹZP/isyUt*?m?E/!yy dk]>8x߮)o]ƒv/r]Yw_݁-̵ht .]ˉٿ_ MЂ Ϳsl++=N4>nFo1*ܯAר\}Fݹ\+ QߣGij~5>Hbu*xp~Yߵ;Ӷk쯽G"'_F]0_惭f=Db=@z|wq#BqYWnFB|P*_ct]4.(K\!t;1+IK4?ZZ_-],pU3/Q|1~Xo_`ipKac&H S0I&z LozrSU앲~Wpo!U ̶!6;uQ[ASyTߗ b֫7>3!'Fu~xDwCqu*r~u%>Wg֨qV_WWL_{T:ez]$Hʵߢ1OkW}'wgt U *?㟵pn쿔?z^9Y {Dj]kĽjʵ9 tkV!/vcޛ?է(J3d"?嶟 r׫W^naPGup=TcպU9~'.w͜s⺉M.Tsu~'F!J sغ+}O~=5W[,c4}(O݆nG׳z_rkTv?Tו5We^_(,?c^떜+?sd}MWW9c>A~ yVTv?S៝u_w{ZQ~ͼߨ]$;#Kvށmn~q߈FރbE@۵'hsNT{ns?u֛?ily{pMiz?GZzV-A:'tp~ʻwӿ[޷j_M}>7~ۮ#T,{C]q'ݿ_7>My*q\[ۥt^W]垟 i?s4#Q[mWsAmzM}"v_?[M"M d\U~~X.n^5φըʝ/<@hw,WfU_ iz~q ד^+Z.k~R֖ֿ+/ug~G3˘,]m`[W bk^ٯ{33^d>h4hj|65YS 65,;^;co"k?RmWEN[ WWԻ\ z5wynktwG͡{k`)@prs;dwC!% lN*U쯦;s~4]")A_%4NjoD*EsD[X֫H(y5t4lA*Bp[ٖ}ugYĖE޿4Eij~5s"*#s"[kV`vo5H? :2YS4_MGSW^a.ֆ~o辗gߍս;3!hk|5i[u=me~A7}Q[qi;;ER#+xc}ٟG.)/޵.Η>xkm5^JϿCז@Q+*vVVwFwGbo~jl}61#C^sι)7 ~ _-ۿ?̣׿wfNGCwbZY9Rv?2α̬O kOgwlj+[&il1j;c)ރ8 飲ݯ~4ӟ7?B1W_MR}~8z2> dz2'Փ~aSK>TO!yK8%ݲskʽ?_*:׷XV|D[m}NE&ڢm}M9VT[(߿\]} xn?M◥qwXvj;wxZ [oַwx];(~ʫC;<ݷwxW=f|ȶo]a0V-%k%;T(Z*Ͻeu֟S=9~ :YF]ϟaF_?z d?d׽t?C]z}u={TwL-^{YawSfg& $/ W<z=ЄNVOIm5r[:oK-?Tmz.+;];:#t?xOvپ4];aJqϤaW<֟IgIw`+eÿ(}E>wƿsO=8q3i&X>w>w&?sg2_){s-P\^n果eG[eTP= |ֽS',q-\}3ʡ/}twvje_szKv_xMʵj\ПZzYCJ{M]fi'd ']2w@yC/(iῦo㷨ĮZnDw„_4ylF[T.<&.H=Cc?*چKz-,5u߫ؒ(̴|: }DI[:07}ZCh߰;VF,sD9,g1;ekZ$/&(7Kj LhWvS/3{9&O7adGxj=Ce (,PEA}T^MTԳj_wZam Ytզ OR9+rix'=EFcf ce CEQ(dߋ)Z`5ՈiUc7)ߦi\'M)L VዢP~oXvMCNT[f_,ceK[6O|^1Jڜ 2: 3mcR1O11Ν>3i=3W+pi!0QmA{[6{6'!8Zl?{>Fį@ݫU1b[Э{C*>UڅCLfٮ $Fa}n o>Čԗig%,.>ˏ?/?]~{gR ~F8o z6q/x0V7ģjNQ#?jYSf{7@֞C9Z[6*G- \%'mxX-.t z46i(쥹k&@S9|1ݾVE6[lEdewm7Ke;vy\>mXiU¼G " BERrbt e2f[C34I3{o: zRN%fѳE"*1vg8sY0q[n z 2U`lW'=q99j"=^:Ǜ[HӢ 8V?,>*6{H_K" OD<@Ï/ُ tĂ }D9oIZm2u6J]%ye*1xNFtXʎk nVzQK_4P*7٭R\Ϗ!vjcΤ>~]0H1wYXpp 3Č@,?3zՖ=lN:Ih+T4MF3ai?R%dvlt,"%YV 9+sk\sEHT |niMy@/gzUg Z9XxMFG`y1r;f|H*1(0yxdzO%B3@\ɯ("U5u[|M#Փ(=N.YKfp>8Ҵ{@;xfoq,Mx4pLrñdlIH|-p $c &~CҠ)>Ve\@_fNTe/,Ki8Kyô{%}2-)6Ar?z*(9:j7|9:բVMW\n=K[y<Γre.|,gIp>a2:}u:G}uz}u" P3ƛCƛ7D[e\p<*fSC[/"ڮ4"zvk:_2?]"""~~3Evij. .Sj.׷b^/O1z8Ymo=/rVXcL=w7+YZ;TQDCz>NjdtD;eECfW䌏@:^8Epԫq}5'Ӯjc:ɀg(^a٫8j8^HhTE>TJoO`Yiuw*uDrpPiS)Z5٧>LBJ$Я2tGXw=:Dx@f`;bZFN A On^dBa<&dRF&ŘKOql tgMRsAP1&:vHKHɤsDS33!"o£l = 663mo .ia'6Ŭoc+s+i$NޮxX> roD#_ ZWghn9L\ieKH%('ZY +4ѕ (+N 㲞x%/ȱ #Mo@SxT}6]WLUk|TOOpP8eFBIz*Ҽ03ΙUQ.OcZbWʗوIa @||ퟶBuP/cia|q)(MSsAckz *1Etk]߰~ 1AZq8p,0:YEf4$`I"\z7m |ߪaԈaks\u*]}ЁX˨Fx )98p4@^L~9^aDzSu-0)P<8sb Ԁ.oCֳ|võO%rme(2VO bx[;ы>EPpD,OGWs{?R3z?\@Qa? m7=SL7NU>5} }ԳV6jѓAk@r4aY/p484aCɧqD:)~ ,+˒X6h ԇ`[t9% cQYj+:4Wۭh[ lӧkSmdR)J|1"LB|/ŢU+R~`Z/aTjRۉTAFA_4\ ~o7|[9j9ԢV5\Z=Vy ޔ\87%RdZ[@X~"h ^u";yWP%nXVuSPUC| *(E'hzӉ&ߛh&ߛ cDi͖7޳)Sȶv([6,sb.'ߙ;Iʈ'K$}$4`WΕ%ygm/4CyV u`=`u9w<ޱpYb8,*U^ı)6[ԏykk g{U1JVL33ϪJSLC1YWqk_mwdLIrUDK쥺t'Wwxhv32H+lUZ*-~|J*-tYWiw䳐7Yk p:jS= ,PxTR^/Qކ&^FKTj:~TKT R%*v .S*F%*BQF2Q2JCm(,]!'K.q ISV469 sykr$9afӾ${+` O8d~ r1Η\B__dz?ʆ J &j$Y#;6wl/) **+R cNͼy4;J{m벡0dFDjd+7Y끹93Z1ϊzX-8")h-U/lyHx G `zhC x8T/"?}s^{uꭝ-Pe*C=$VOU]}Xu)ɽ &Xw@JkP-æu=Ϸia],|'FvЎAc:k^Dx5$.aEKL$˴|3_Lɳ;萡fx>QOtƗ!g}ePks+5X-D 4Θ-#pK5]&Q)*EK#m $L>iS_j0rإP8{#}p4tr|7A#Qsoޚ'ts;47'ʶi%AN8f\vIwsb刴'ydz|_<٤ L)4iv9N{p9J1DշRUm: iTBC6+kg5aj& ٵ=`(1aaeؾCa۔)vUo:y5[07[@my`[r;7Ԣf8lF= Q nsdig喝)ɱ~ql鎣.꓆pk\RtOgYyTߦLB^ZԒEB"? M31M3e|,Kai4d&ͬbqk,$` Ԩưm<v\9o#FZ3N^YQؚW37ߧc4|wX9OX ]Jc}`UT2#aRK36=|VP6Tm$iK`^60\.Ja% +˟F'pô>0mL)pA8yNusgFeη)/-?E*#zVQįSjWLʼ@ y 1F鳻MIg!eB|23[6#4'ȫ$ۨTs$=+Z.q[vvn^~<(թ^@ IpƖĠ/I+~('ʉr6$/d\_Y{}8j d4I5y"k8nUYtx  e>1Vj^aZ?WjZWj}X,MuB-RyۄҨuL( ,O}5@T]ނm/6WY4>j3q4Ae)k027,)9˦~6jPjN,gHZg@?l楻[ *}niiD`;-(+:4M?d?$6!4;gEubA;|I1bE.K S08.^pi04 g_oi^b:e%Sg@PacEt+z-{LM͌jd=iʬX25:ˠWdI$OVHhjyRtoH(fm_IN]\PoS\[W h\&:[o9m\dcH /l=ϲ!%_qN^pe…\f6,vCͣCƃL?>%:v?{tP<&I7$W,ޠqG*|ԴֿbpZLpH2[\vJta.Gpw"lAr}!y;lLxUO:5`b7s{%uoQEَu} 4Cj]e=wYdhuOLfr( oZ(`BrK)ΰ$vXT/ V %؁YӺwouvʂSہG'`i {[P䂪U u~[o ^OWLh{<+6ϊ_ M"]Y"id@#IIҨ9|茻g0kETjG#p(\ή#WϩZ&/= _zVⵇ 佇k#9i>33N`C%`90zee5*l9UEH$^ckOe>3 WVqxOlhG !23hdO1|0z<«Ouuza^n`ed5\ϖzVV?O Da46]-CYYwoxTMxdY xq<,k.۳ӓwPGp4QHYUɰgI_"rtz7o1D{QU]@! ~r9 e{HeZ]<#AL6-y2KgٿXKC'@yFrh8sRy'4kb) @SO0\GȄMߒe-(0!oS9e;p7GLR~WMddnDO=vV} );˾ŭ2S 6;4ݔ(+ݜ^d=_qh(yb ߰0jdӒZH6Pc H{I<7Oi0:evuj`Oj&Y|ś64hoz"M5%USvꦚ'ͱr[ojdY4ӦLR6.6Lc/Z${SMŇM5J\Wi<-Zw]? pLC'▰jS@/ڳ\rQػj$Jw,=͒Yx;l.m8bC=u«7q@pQ?6ͬ5YIs*:4& XTSVLSULA1OTSńDr RLfhl17LGMLg  Je61)=,RzXH).RzXt&dsNɣi>u;kY?upO=T(oAe2TCzyZ,rA,VryZT~zgOmU!8CɮMZfUB#M@ڪ|)&NSڤg] nJԳ]4nY9'=b6nxV%ݳ,e3Q9 5.Mtzާm3!5 ka. "'h`9 J;۪N:fB[fs0P?8^w8{#%߲ɒK!i.mfȃn+A_t[J\WPpMÙ )]TIDJ-A<7ћzka9}S'pϓ-O+^aMMd"TɒY{|jmM5.CU7~oʩ6DNaɔ-SL!;۰|,i7HKT Ԇ*ɋĠnb.0teI,7Kf#wN~X"%֭FV4|8ݲ,%İz߿_ b=&AʽqQ妸fZq\ڝl3FPړ)v3TQ td!lmH)s(lI] t=f2{ڏzT'&t@܏g|C6gwmcKjG0=0l D4bQ?Y (%"묾RU|Rjvw`Nβdj'k(#XQX53hɌJ0]Dt&M(D| &])il+tU2艅|ctBW+@9ަ:Nocs@ X6$(tUv +,=YoWHVLY^Vq2 ]ji(겈KïEe=L5Tp sB=NTTaa[6Xw,HQIYGghb+=2#WL7Laq6qu~1xU/R:^OQ gAB$fdn8d S+yި>ȳ$@jxg6걈gӝk+ȗ6'o=$=V굇 佇굇Z\BFF se3 ,L'nNx&H Sm{E8/럪> H cOf+8r81,3uh5 Z:arNA[Tއ.ڋꭝXx8ϗIqbram2f=4X|/Q@3@ٍ豕XeІy|Ac͗{ D07E~4˓yRI'QB6A@SrZ]tl&~'BJ*q;YUKSc mUACɐM>j5jmDCoen9j99wMPɚ2c^pQqR,ewX=kh0D57n!akʔhPU{\Aof #xg#r*9R&(` v3 <"${ɭZ(U@, ?G\eQn>xy6Kus_NM(G:l86.MVƃ=ːyejȼ25h25l15MfЮMS֌EA_iʟ\ WNGS6frZۦފKwѨ'-FLFy'uNߔ[h{h L74q4h., )7PdLMOp)ߦLHD=Cʄo^0M>WLwL92TEƭL}ւcÌY sBZ܉Sݺ]| (seH3F(R+'TNʉ?('VNf$,&i03oDTec@ar-ᠴ̦NX?)e uA˔2ltږ2Dg=o1& g3Jl‘rw;@iSoJ:@mmuV8͡aVm?T T׋Stl«Ouu\Zũ^NVs8Ué3{hRE!4P.1)ga9ˡxz b07dCnC.Hg!͎BRqI0ȨITJ׮b4aSROfXIN]Jaf)`-AY)~Ɣ{1fc#9cSU9)G ELR,AxUS0cvrk]1MCgmH#WWXW(NcXʱγɓz&&aXAQ#~B?x:Oo"k]He/28y~ uz93b<Ƴ@*9'@WHU'/dK s#XM5U~=F3mXZ2Av dI#+M7H+{Udwy9LHAy{WX㍀yW5 Z(uVDc?,-4!>-Qs^릪YnRezy#nFYWL?4hΩ'٘6="7R4vIe&0M&;5`1w+-4I/n`mhnJ%N0% gզΡ?i9Dv}+3Ggw JK"O2Gkc%n`i[P[ab]`vX֣,my ]}gNp@V{U}6e +h|A(p~MB^]-0iVUEe3 6FZkz\.#P/GSkz|^&q:8UT|pij&wVWKMSOOa,2CK59dj0KhNko=aɶGҞ^2Q ]{aH);쎷6[8a'nc4ﻚ{22Iױ ] < WWWɄ0Mb+HVƆ#oR#:[l2h#gY?x˦P+hڌ(rj FA_[j{j@,7J5sMhrߦLLt\s.j$E@N2pIE*.}ey`YoXU!6tYQU!w>x^yU!{UݔoN&E;mɤuш.F(Ҧ1E;O9s-\-WC"4_N H˰}͌sGQ^jr(< &n#(T_?5lr,w6Eg  { n(Ywz 2@; jAYM#Ʈ{x;1Ob=ڣq2KJI ]nfAOcQG.Nݩxas9I΅˯ cHz)jwd!PP1ZUVeh[8GV@3cI_ێyȩG$l+iee>Y'K"l3ԔCPD#F őXatSbi(53qPzܠMVR-ii2.Oa599CȬY?}Ms 7|'WVvGuȚGl-X']l=#Db34[@OD$^Œ%]X<0L7Sb MhWuڍfQAxm/-}r>kmGS6 grZ4ܪjw.:$Nm4mG{-yo~+,'X\tՆgEdAC>"jNUS`P}0,w =C 64yʹ*jb(Cή [<_t ҦoͶ={Pw^/*̐&f9u-GNlbSwe D@ ɱ~rh~61~j0mL铩# @.&ytg>9ߦ4OLQbjCr9J;QE(*f7Pfo:2lÔ٦7.mJ@'Ti)3ń>`dlSEv̰(@1"G%h8Lڤ^"AoI,|}|@Y=Yw4̸QE=ͪ ȔlVGnTb: 5؍|>9l$ucgOOoRV@T΀PJ]QaZVj_sX~ևZRބ\g!*ּҨuPu&LE[@pP=r{DU^B6wh+p,qJlVoJpxq]2^}OY|J}3]6z>r/#W#Kiٔ4F֜U0RiWF%V +L1y (d4֨t͌C6[L5d RQPULHei}y&w6EP-d}3,x}Ex-E!B !ڍZt7&jC}D}樷шBU|g#w_E%FT=I4=kQ D8DUX_1Ԓr<#yRho@(fm_IN߰]XPoS\'UUD^'y:*P$[TܩCЅTj/*nmb ‡KT?YoWL6PY]V,OkY騌1ЬT -0/*DRAN]tRNѿ J%*¤X#;4whIoCuvA ȩsW`btAk (:E.N@@^ίuvuz1vBR_QF(jE&D1>]z8JǢQ'A"'Ip@#ͽ҈Z^{)f b49z^}=T=LGS3xa Z>j^#_ 80H$KJtzT07. ?c6(Ǒ"D\sp("5ѭ]Kb>}L$@}NVUE(G6zȰN"C%}w];pudUyrr[^wT939ògHH&NV#۠g[_:鰱}zfzeYYOŲQ"Nғ- ڼx9rӏuc6h)KV i,G.\dʹcc1weݨ}n|'<'_;J9^N< .`4tU![ID[["Ny솁 LxX3SNnCަ*@hjwdz>l-_za^WMD's*Մi%Q1vEl# 4Џl2B0U@h;aߴ)vѦLxiȃvKA?kʹ~3mLiGSVMJ4\pٞ*$(tăɣGVN'CW3>zyZqtN9| %^;]oOPH*&{Cf R!Ou B3,mJ(-gէ-e'2(SUi\"vϔoHhI]fLzweG2<,00a-;oڻ,b8cej[> Pe>?0L)fS[5wۍ85 ]H9MNEnaF2"oo;V@LrjSf6GF}L^3oT5SLA3oT5S穖n9Ȃq_jA#y<YMYv.,S 5hmBi(&aRJK>*RJKbޤLސo3wo<LrxJ#eȇͼBp@ !0W9zh`QU`0߉4AI(|ɤx-x[ %wRG8{4 ~XFbM{ۇ-*2uV=J n /p~ue[<M0$AB9JfTfOGPFuX6/ !xH/doԞR y_H um~ nG+gT1Un<ÆzQwLlA(#n=Oy7::4aCF& /2BA :A% N`b=Yr9o,FW-X-rf/(5 Do"IWݚ$&@|X_DG$ k|gԘaLT4ിw_cMBՌ Y=d 3)uxH,+4+ZWWQ/HPGMrʚd o=k&vzVBbf XOβ0 )ۙ7C~A4Ȼt˹@ibL8kŦUVr*/1TN̞td*vDv#mHqKt|2:^kLm|2/9~4hN-d;"hfj֏L RֹA7c,mLF,lÀa@N.HT4]O 䪎+Kz`ٿYKC - M[EՖ0iϢ> ųap5;LBO>']>5p&!~*\7t•r|);dBUس9xb E+sk_\E:iTjȽz+A_[fJLSe ؍J΄(M%UOZj9AޓkQ59}S%ew, Yo"M;ٵSuꮝ'KfoY-KUܔoN&E;mduшS@F,r2^S;h'M'|s-_G5XtqgD,uXFB:Y׭"[<Ð #0]-ɏP9m%\X=>YPvPI Jm&CgO29޲ w2{A"u}/>G37ZR-Kyknf̗nFF"`Gh^l<-k#FNу6omDڈ|>~&Rf~JTOT n.^M Tw 26?)?,R_H)-R~X|*ijސoMu+!W~.0+?;Lz hOk<h;W̳ӥiNGaK\NLo/MsϗK0O"A%}u~4VcסW=hq>lթ1eP8mÄA:퀷N|fE%4xM)0qmEP ;]3l1^: ^1ĠꖸOP }bé@֤!=k>nERAv4[fdR=#DS3U: Aj=GER[sZgㄑOfT3j ]@A/zb>&]+ e[c>8cON*`0 &tEU>FDkORv3Y}GD&.ZA'pRY=kGe6Tf(PA1S-c%-utz:q1ۆVj i>!1{&2iV ǯ4a7`.$hCuZB~fqF}Ȑ{5+~ÓVܧ ar9K#dИkDS &C$:Beَ" ?Lz@ Y7i&;yf G( )3RVgds_db*Ag3c*v% &:L:{b*[ί%NixTZ-t4& *D58ץ6.>/ h_3 l >a/ԡrav>@P6'o=$=➱ZZﵸà'* ~\ӗg5/}/͛'F =yx=ڦ<+yD`p!{*>M7KH :lmȒ`8wBVMrI]$dǎnڏŪ`2vc}AE]6s t'ng2pQ"Q6GiD 3ӴMz.l:% ])Y|= jD֡)wzJZQyx˳/-:# @F=t]TRZD-ߣY&'ΜZlDi+H$?r[<w9~&,ǡFL[D&> 1 ґ=|pk;FTݭ4q&C~F˚BU_[c(N͏v-smkK\[ 4MfЮjMգȓk/sO@ W@kMGC6UgbZTݦ wѭI8tNau+;}sg_<[-O+_bMCU"ENbɟ<+O'7thQ2i]!U/EE~oڢcPfAtT7ߖ|`A\lP,YKbnd9!s>c+, U/Ҵ;~? 烟)iWYDX}6iP"$c3`^bAM\b'7-OuH5Cı ꆨ m-2շquo>UY3O w<['ϖ?yLI\loWn@O@xB';`o~?)}Apuඍ4*&:w'l0 |yFS7ϖx|s3Q5z/CtPۥɐiac4w\i.HQ$(ЇQ~V<;V#9$25G?h%J[+VZLS'Y5\ɺUʬTj9iy֊5T2͝ d:BiqO#BkxPA.ԑ`yz^ʶPgmZi&8 V! 3ZT@u%p"PrzJUO^oDxޯv~XgŇVf/׉vt\6zɪcWkȴ=[ XXFؤ8|U!|n{qe$I%uDv>򰟷IpRnnx{r|W^kn05d{)M:EL#O#Kocb,#2p먥}.=i0oSVsxҸP(WǝK2o0xmkE=et1ۇ]v,U('bȾ'v4MkгUiDndO3]9'jog kk\;xUGjGQqWhd<=YGJVR49^Ja,k˥3}ƪnY ?Ȣp=U5e? k^" bP8pԓ ǖ8űQ"vkazH/I9&F`̻ Gݿk1{? Rf$7xs`(e-yrܖ|sUkF=O<'o ZS[߁WQD?oGC#k;fIC ȪhR;q֢|jjyj*4NQ/f+7 Ke˟,j" f 83S7`_UZ#v61|&,&{u7l n@nUadߒ(0ų+kZ?eөNmFptyP8@b*U>g>y<+Oʳ~3-jnr%(V:7}R4{yigɓ'U%6'?)'7U\իBd')>XVW Kn鷩'Т6dDE%X~oz~)Am)7_<|%7+wasjLr& U->[&7S=~QOp&IUl@0|. W;CŮlB5?<+,eNbû=cyp%"0[yj\ 鮎fE ޷AbhS[(:ZmQSU*8o#/'ӊt~\$UyR/%o5y^;۠Q2T ő7rDZsil>CJ6Rbd O0kw*k2eۮ\c,^@?He**e/5U:<~VPO2jVO?*jQF3Ҧe4>*#BMv)γi AsYj U^\g%Fx~.\sAK+2H+׹\ 9:m  /γo0:kR=Zٯ]˕zzm~_^fŧkSnG![!kSfrm iR*ѣvmVá٪WӊaC@_JΧjAqj2{(J\Ǩo1jzzF"o OQ{Rbѫ-.s-R4{5fxإ0yZ0uJzf/(ѹpڏxT6ي<ϰ$ހTH4xxtko4[9*jaUl=0`B*:B <-۫C QGep/=F4XTxNq,%,WbCLn)e9LF}|8&_QTEs}ͼSH:2҈!VU$n1ߕpޮ4{35y4a_7H6LY]X"(2!fDóK)9EHsg-T3fWWِYAۑiR)$ZW$kdfvr49۰b]@DU6lҹ6Ʈ{)(: E.N`U@^'Ͱvem*7Tk(9L R? P]f%M 2L7XoSVܦdu: G ~!PCPPX _zVCg!8\F>&|3Z`g'|zM(B;ڸ[)3Ev Cb#[Ė O~юwj+OHz91m3|kHbz= +9MP+.2̓Py;a~puժnsPrNTic|*H~Ak~V'z^qүnz9|S1gmߧ2FcXFS{-TO=,<O}%d˖kYl|ґYK*>&[+f5YU1T3tN`qٚ\@ e_!D3kΥ^ɆNRδx#ee>YKC'zA߻ P/*@Ao17+Z=;p}K2Մktb-Dnc0P(eZD;[ԂD(Uu'fKzo+Ik}ھWCc*vU/Et\0'W kyZoڦ~39-nUttkCpŃ։G=NߴQ|*g(O7lڷ"[gI_< KueeӤ\9\;fv!^&E%6]a~ #Ԃ_v>F<#u'AM%>FF0eiлJ-{FbEzF~^b/ ^܉F(PF$"zi-JM|kEԯ^pPѓ h ~~ [ѢlPXs?if J*JY\7\jGSV+2J *"Sp>5gMqaUO5ϰj ^f(WP *=ҹR`4}]Ys=p}MC$#dYln,yJ'խ<ҭ%4LD>X4\}7"LDMM>(Dle:Z^b\~^/TwB4$ k}gʟ1D!?iɴJ>2a[1WMgkP֨^5XSE`0@e]l]ٻqu 24m݃]e9dIj (͙RῆA@@R;0V'ٱYcM:R~TgHڎL>w@&NXaJ~\P䂪 U u~[o ^+A0&X6U¹-fۺZ,˷\5*$;6Vbz>\i &X6wP/N==kE杭i^zAkȗf= GDn!Uq`eٻwjbE\Z]~,2}(蟅muV3IVR>GtZQD;ޑtmƩ,'qK. Xr w9 i>)9˰N"C%}w];pudUG-]#m D[%G'yl璪z{==k,v9` 8sX:k,ZJ׀b$sb.._Ɨ`Tp9Z}ZMH\<774dBCmU᭏L8cÂI4jVsul9؋}=͔?}W Eu}h5N<yrXZ.E˕oigJLK8iߪIiQu C'ZOZk: Aޣ+a\u7Ox-Owh+"J^5TBN5TdZigJL-4oUQdMCvX6hj<:Ԧ꠯:[-߲U0y>9 }mN#MlCR#hVQ"hBd׸eʯk蛟ů UP{zdBH5SDžXTU5RſyD)a&oຒ¹[0,k(!(YGSܳ@YmeB7tkJvJI{^"/L񠯘:ף_s UtyFU?xo'H )%e%A}!ة҆NxӢ_EHKJ#M&PjՌmjMj. Г25}Z|^=C#?˚^GR_B~("]hY_ AY H_T:Bn$aψbߴkv=Hq$:|tCpHЌ?n A3t6vAmRSz_,{ChJȼ *Í2nl-:!A 2xnQR+L5CCMV4)+P !Wdb|AƮ (6 %."'o [Yg]c 0zbJ+'E]B+(f[ ix( Ӄhz>h R}t@+zd[}Kx<jK]B+<ϹK,|=, _zXAPwUnO# 2vil"2Mޙg/bCFd Ca{+fL|͕T8 WMS?\sKz`?Yn&r&n%ie۔<o BT?aπc,'zm/c@K{:d=Dei){(i̸Ird[ccL9|1ThUثF&(|*؊1(z>7vʢ~~3!-mQoiM]<mZN#xnu4igFN_if_,9ܳxU"2 RAZNRbI,=Kg @M-6dYҦLV]G.4ԒӦh7eؿ7[l9޳~Z`?8Ԣo™[Jr 5w9[ gf6;~t˯o~: ;@or?)}pvಏQ [c^6Lj?y7Ow<9\er(1T"OM# OADϨEkf-Lh FFaF{>F2^#ѷFoD4}k$HCȍQotFDy8j"oVGd#0(6'}Ai&a*U?W)*UB^ey2B-&uPuF>uhrۧ-^@ hv47w8_6>I='@ais?X(#O5kR3ґS_M<nBjf'J0 U*+-^jGiPwv!.wZ LrWC|=-P k`>}8DNL)h-d€Ez/0`>aEgP .^Э#@01 JLG= :EOy_􄮈BO( 旎N-l( Tao{`C ]0 Ldͨ5UG_DHFҔ f$.sІoBj">O}<ϕ I7#;p ֪3ZY`2j1<"Q4;^o\rlx.iHt.0&HE08vkzȕuIWrafb -[Y 9y] Ĺ>Ӽήma@m -kmqM0!mSvXY8 8i_C*QeU\L+2U,((d_i! Nv Ne8۰b]@~} 0JL=^qN޾Du[o)^f+R c@ڣPb4 YX%u ' FOt@ $lE#xRk ꥇm^zH _{kȗjqw=8tXFRQntvΔY'E+'mÁzП2֫zS?JHcfB]i5 2y:71<=DmhnڝK$ale3Lwm2y޴Yx2/)4lj+4+򨨷zu8Ayxt!L{MM Q&t:p7a7=;a34dvˮacLw:(414LIߣhrQo5J/UzuJ:bp7s1pbox5O)q5,]f:Mգȓk/jsO W `V=iQt+Cg2v胞ޓ4γfej.|LeJ,SaiWX*J^5TC"'j2o֕)uejʫm:dUE.JE+6{P&ߛ}hS<蛊 |S=ߔoܮ50y4Yisj ƱJFp ots~Ǐ+~:Xp\ףY$bf݌i$"$ᇑPZp[xݕXv-KMZ {G5M4+6uv&7 -Rw*{FʦȝD w SeÔ?ڎGejp@h [t.k-^xx 2o* m!.PSƔžQ˧')~2Law m@Fުb`\t )ռÈ~wn!g;LHz)EEuR*n7u})MVcסoJ՘I59v885)^xn5;UL0+N6,l'lZ0 $2%6 ׂi "N-ȳ tC#E[Xεl/S hxez76&rĔK1"+7 MSYWڡA@bI=I>t`ml؄ 6oÊv *W^a>1F{";0|Uy6eVa%:1vwhdLwl֎YBM ~092O>[ȧđZ+BvWhC> /=d=V Z} 4; MaNdF7į239r)!\^qX"VfZmϸ"!dn孄v<ÍeunxJ:3cy˵b. th$Ak W *9c^ǸcU[[:lUG-m,jD(f=3lp1l%U%RATݗш١(é`k@`gSCx(jny()#:>6)sLcJ_SXKeCFboE >2 Z|5j\-ZqDf]I=Q.'wzfmkj<&}'_4Dx؞WcN:JR<<)}x[N%2=q DhRQM%N_]M٤Cߖa|B2!RF[S-tG*2RWH))E!YW4( iBfgdr13jnCDZpҼ lZ4 zd|4K:#";uB1{RS_)߭ԑ]y^ԑ]h]R&< !V)-gZMZ~N/4~_^fŧkڎ"j5CYOצ˵):.I]$dǎ^˵ijצ ]VuV1Epbf`)HD<LN!E1i[m)m]*gΔg`'x.͖,86sZ9~jE)2[V]z0הs: Um-ʄeUdj4PxOcԎcn5ܩ` 9m*EJSDz_Iw[O\cOsnbTnqP$\*V:Z 2tN:3{CIFgp ڑc*{lE^&=7J1r#9ަ8S8Vΰʧ'X[go38 +\a隵5oE+YQ1KB 1TR:JT8]mI6Q9,36U*gXOHjbCi0O"B%}w^;puժ׃eєJ=*IB/#M\Ev7>z"Z M$gl: ʰP,?5Y= uVaN+]܇,އ/oXaedYX]rJM8QizrUH_29߫hUBN>nm.}c~1}bZ[P0v3>g22R<,Kd lZx*]@⎼b99 |n5xGƎ;;4ޢA#=k'?ch#|T]'ydz|_<Ʉ5:ahR8'4X]D&U`&r MCu+,~qХq8wLȵ{ nIj}ҳOzԔiM(JyZohlV%ZE^Icx>L=zϔX=9Ѣ~>Z9VЮZ{8 ^S\:hM˕Oe{`I,-*YA(]A/rϳhUP~2*(2i]"V&߫0!^5T4TMC[o{K|&0OgA(ɜ=K~)Gp׎,4O$sW>O~ԕ49q[Lӥ"—^[ab&q[Ħ& V<JUgYᴡ)C4b7Ѹ'e6O5^D|v3}!\Y%}T4xڮ& .&u`rdDo\[nڇxR'yPڠ[f3zNQW H/8R,xE.;yӅa &uxҘ߆qO58*_,?l,%QotHcoý> ETdT1y^a֒hn#ÐfqCo4U^ RՍ+PouQͷh$9zEUJ.6]48>YYt:lzjj)Zy_q@j&9ٓhN;AiuLE\sZWhZVh]aֳ7Y[%ܛ7pLN~2PO&T=j{DmzȳiGaC')z/"I]Dd~iz_F!ujZin,P hX.Mt ut-L8t:f"BD4e k3SY˹>c,!ՋPBU9k^:9t(R-p{g,"­k$Vi8./077OޢtCcEXK:5o}`ؑZ^#qN3[_]D.mRl"Sլ@HzupTyhNtQcrubJA_#(%? ҴH@>AifN*Yh7hjOU W+6J +@"q>5MrUO5jχ)^@W\+HޕuR&3OI~6nlF'G!.ʮf/J5{An.[ts9\:w(_ѾF/M>1SU7ב@("ےfغ*H*/"riڟ@{An9yQiD#-/o%=<k+nw0K&HgQAň\raD`@b-ad>"&I>YFaaP|Dû NtQɒ+y5/E=l LLdlnQ+L5C:yf;@mH.HYQl-* {/\P S u~[W ^#+1mD*@.#MGc8C#RIA ⒏Hw5*żlE]%fiO s#gg9P+(\{f᥇KJ0|aC-r}?D3E΍@3 ]EKI3T[O~ܰr~Wg=QJ̲Ǘe(.lC5H'4 j"YU9 _fuiZc2T":\[ڑVoo ^GOVu=NGV|W0Rxۅ GaȫQa<)nϙ6*gÉ~k+-LO#, q0 1\DyYxO”TDX5CI:"CQ 9܉,*LM<ʤTc wb: 3kLJt1tTޱX]N4z&]-^Cmtϲ/Ml\^p`»5^kumvXh|`EMw㥉|r  |YVxx'}4dR*MA5۾E1 is~E(YM7@GO"oJCp!ӭZrn5 |KlĮ%&eNUvfHV)zWzڿWCb)xѧ\$UM<yoX^[>~+\7n~ .EmJ.VNz5.z5FqpS*yVq雊k,e`w, \kD@{S%~o)E?e'|<=OiUCVL@4IkS%+EUS~ !m ?-_@U e3E9ZAŋ`kēa~iUdfI+zǮ}ov:&59^1"zMzMN[~}Zm03@O*25" Mi$x,GfKl>Tb#?,otb%'4Dy3\&qrCedos3AL:K 4mmp3͓=Wmz|֘߆ґTO5Hj<x[|Ӧ{2Ct@ 8_"Is%3p;%l&LҦSo hO,ENaȨkF>hFcF`1,_ÀѡF%1aa4֋al"i'D( XRaJϕJRvJ7!Ӭ7[lDیu(\ z߯}?TzEӼߝe~40YݩOatQ&Qԣ&1H)#NԎt07>P [[ e<N@fOd 9iu>C[jby&"4e{Vcq{oS!c,L<՚Q{,{Wd)oLMHUW!am4M.BT5a<"͞h8BwxL<Ʃr2hG"4ܦZ҂u#UԐD31:츬xeB7tkKvKG@{`"/3l}7A_`eoS\)msf+g\ѩWy?z{cCJ ;Lf1W5aPA:g +zʴb-k[OpJH2՚\^.gw{!tpcQû^ْ0DPE[}>nj¶%M3v i0fjxSn$X4Ƭ7A2K6ɏ^c\ޱYr.Lfv? 9ViOȪS+[DU5U?uI0LήG.dTQ8\98嬎boٞdw`LFΈ[T f$'G()ɺ eɪoЄt6zQeG )(6 %."'꠮[g8Y_^&؆Pa|UQE$VA騴YX#iq3ȈXRsY#ZA@!{X[_ta2 /= _{k ȗV=#{? ,T-0U>R#J}i:?Ϳt킇RPpv}HmKTHr;Jh՛ǀO,6wsl59y ͥFfR`w&ui:zMK?nX ]Vs&9ٜ8'x/)u*Uu# u6Q#tw4+U W'Y 8zBf Em !wg!'Yݳ%,SPQb" фB4phNJ~Cקt/\U4W9Fn+.(Č(H*CSOZ3>U!'}gCm'=Vr}XˉiVNI]/7ժޜb02j5k]xꜨm@uPff3&;4-Hd/+%V ޓ?9fԘZO]V:–8jBW|EJWs$c56\b' YShC\ʱ/Is>+ [8$r,4f)&aWW?HL0֦͗[8GZoҁmC6X#1˲km{E5fl;}@QBMdCupm4$Uxү<)ZUGM&]<m^vY _uz 95ybԢzn/#o9\z< FHӳ|).N!DTl5hBp"-KgYX&c$2IdӨBUm)9Sb:&$l^ $N8GC.}\{o_HCm|d_ĜMmpϳ[=}' cgf|^Foi*ѝmH%ӋpDZ[=}q#v0 .s'>$V++]P':@ VtYd7(bmﰭN`C] DN 3J}g =~scϷ1zk OC0} a@(3_7&M7otB#J::hax,kٻ9&^ o%Jo+!TBx̆Yz3]Eٴl:1 OD'pHtB΂%V:AiqM#k4G4GF:jn oڐoqOtY4&Pv˧5]n{Ru muV|'(q*VrUۉ=i'rO]u *cG=izM>x5T2G9&a,9v&0;Sn( g-#z0s5Cۋff,}Z!6viԼvz,cEkDKuYNqzs^#;9 ^i8›%y/ v,-̯ȫ(ɭ2an 9RX(gdtHchXOCxXnx7xY<+O ӐUWi'Ъ~z2i]tM.7]xyVPaiSPqW͵iLoCQX(G3ǘcX8bz37,ٞ\(OSS sYJzPZ II>BYj.R1U۠p*F]yM,Nϊ/ElhdEȾf:gEd|p}!W:.Uߝu֊UFE6cI"qi k5:rksmkt$z\O/k訹Q+urקp[˥'m)ڮiV-(p/Vr[!_m{GxH&ui-E4ZR gߖAwAe88؋9;ic,R ȣN\SN=jMn$Spy4ՂH2ԮfƧ˙Y3?5?Y^ ([^d3auTa9C4}-j% ͒( M R)ml4M|j`]8y#n`y3ss5c=9NSQHU!z>zMB ss~)Ltg@N:2{HFpeuJH*{l%^f׺oU}A0# 7[&86ΈG3~vF8^!Ec LfL#tx˔$6wxv aPh^w5UQh 5!Q}pu<LÝ4 }9< k\5V [0&4w)J soHEblkCWϜCCdeʁƬJƩ6ڇDvK|LS#&b-{\fe]RHf7}h~;Uޣvֆ+y$uViZMYiT#|Qq!E5=.2s# ʎ NJ(*"%Y#;:wtɁ+& 69(6 %.N?{k\ż1."P~I/QzٌJAw?lƏ*{stua;\ %CؓOBnOG *7 B\Ǩ]+pzn!:w ~Ji+ZI-]$C]J9,!%ĶtJo7%\Ks@wdr: s4K.-WkAg(r||A:Ryγerzm\u"|hā^Ig^l@PM2H[+U(&ShARrklC!D78A% |j(j_lYچNF<;ƙ?J\gPamxƘ^hehyu骹*(nc#cFXi&A&ˬ_eWMSKy'| _fiC.J1moVfi Z:!@,DG2B~4ʫ4\6[%xiJ&5\ 3+E/qmU'[TIƒU(~XOy5M_ k۸ /6.xgW2˃LWlCw9m!g>6sU紭%j>؜K`撩5sY3W˄2LɪW8Tb˖/*0@E> T&5r/n7P}& TXEm*iϛBYBX],Al}bYdz4f ]lP Ȩ~:=&(%3fw\{cWa7Wa0&+!˶=w:O*_ m9]肢'-qWʃo3ЍNKjXe#v):KFKU|$N&|%eH6[:)%OJ@@ɛq 0^K[p/~_%2S]FtVGy%n>z܉[QTxQb$E0P۲4F*״Ai^t4qkaQEMui4]9(Zi|Xo%DF޲ \JCj&{+ 90zg>CmI6!U:UH/H<(AL5-#_U+!ҷNCnz6Dxӫ!/)yC^RH_ zHI&i:84CE幫Px3,AM3^R2d94iEM 7 _QxFo(oQMZlkR'L\\3#s/⊵}ؙmٓsɐwƾKK${ɰey^ QX_K҂}ź~VK𽮗ruYyAV> jy&"L tb렾3,Pn&2)B' $rIvkO%"ϩ+GYĝ6w!Sܡ˝)4B6>3|3V'6/LϣdE~+\j`2(LA.gNIAR`! #u2s1bNXeQA^ń `3ҽ_iʝ2$Zdrai[g3]: lsLuXyۮa3 ݨٔɬNGq!yFZ,yS`7E'Q:t.cr96wʐ]ݛwV~-+Q9F-seW곖^ae{v]cymXV:4yFJpgU66I$Nf}ܜ=>bsq([&E{0 Ǜh<Zٞ8VsI~&o:o6M%u%妤xK>+ΓҀ {^[Ri&}#%rZU'n@c/sun@c6Ht06W㔢Q:JJ> fVZځzOWU@O5L+ӛ[orUMȋjrUZUMdr&hug95UEJTk T=5KƇfrU\uZ@}o[SчNU9W kw/*%S/WڃSƯF/Oqm Wq!#O?>Rqht.וKWГh9%`ifs&0sDNOmLGL 5J'wCJ 0@ԘkHk:QL!yAW Ǿ2b:?AD?OZ ݷL/=vzXn0o!g#:9v&&"c@/O }ƶ!X׆ g rC|9> \=Jo,D9RtvAխMb:?@]q+ǝ)Ԛ]ou@q1kOe;h3΃˕>R9mC sP^"MoeƒU&~YWcл0Vi9/}aeBK+Q$tN5s}j(/]uuĠ&OIwfRDUd*7)cnrIonƏ7+'l\zK/ۋ|l-l^ %O $]U;oƒ](~Z_-i=G& ,n*}/C tg,VN'=o4k'd \gZt0;-JpbRVPPҴ\T|ھK_>ӰvVVy%yry;+WKRTZW,S-]Frs031.5z>؝ `銩t" ߉dȪEhXD454QPz/bugBB}%uE64|1yҼب2t(񇍪{M \r[9>J<‹(SG0񛮼Oۘ$~˯щ sC[a0*jHV V-+_^@F P wnկ<)݌YveBR"Nʐφ3F J6^EJb8BrԒ !uF+̅V^b*ʐ}3unY:|rGe>E0ں4b?o*$SoYUoQEFG)ϡDR6UM"Abo%r7AmClg }ox~D ]yn4s̗IƄJr~t(P Wz-|D%{K_-|D0{$ G߆eVF:EOЕwҤ[v\vU 8GC*~PC}o?TPѶȸf#|+c9.t)v@i?r(u|J{]~yWFλ`HaaK[izJEp!µ ):rC|[=mzJՁx}ֳ"ġU>2VWrRNoh,] =gMN%)3 C_l{z)5m왗JWMVO!!oWg F nY+="}Qg:+ $(2kf#$6sKN}9h@}v\bIs~77R)KNW5)n7:fUgxa$g:Ji١as#=\k{0%L=%)#Sdz;#yODޛvUJN)+~TEC|QʮRRAPc?oBֻ\Q>J6alwp]XhUmۤf%CX/Qܲ]^s֤-eK]{MN tH׏3E&zz>4n;r;f9N:L\" 9O9 {;_I+Y3i$J5ii))-l^s)[omGAUTܔ\weu{x=k?|in>ޘ#&C$Er(n@s.QWsev/\ɍ6?$oRVQ^#cRTȧq5 ZCY.t|LZ7cz;-c 6U;sE/Mϋ0jILND>5,|4)S'VLnvL}(W|a`Lp)CGnRVþT\~Q*rveTCF}08Ѧw(:s4Ayr3!o$8ӫTjn΅w9 9Ut)aK "v%r8ZB"W1ʹÒ4iR?ġS_\ $H$#䘷GB e} ]9^ EiaT(>H3lcʸeNT> cZ LX/+ֵEYs.4R.W/Wy֛ MmVy*gqsw!1 i_it0ZΨf ܕ[Bä=MwIxް)NLI1 ] ڶO3 E"=AGWqnVntsІ,p e'CG),@IʮLPKC.cvd3[f%{֙cbLMtVf dM&rѩfUtq&ՙ^U ĽV~7+lOqڇ}oO03"^d*)IPzK uDa)&Ph xy|0=NMЗe2'9 ;_/0&!Z[=ZqY9QI2ݺ$AQoUh߄KYƜa1I,M6$֭ȋuo[. mBPV4q6rs4s1FUbTÃ]Vwm}C?lj.ýdnū9Lb)2|^Sau>S& ݋w"ENqsX'iE\--b9X'4/* gbw1܋NODr]az귲pPqO"tk[VVU['2͛$Y_CyivО+ڃjk{׿ˋN^wx?+6O6x]46're/;@oc=|Z}SW16ÐACln{[ۃn{pv,j |x<=L-:rh2A|ۡ ]6Pdw)ygv>+}.VR\Z׬l yb?5uCkY-d:8i)Ь M#c饬-{Lu:-#Xʪ~]tgt:&^'f= yUFzn%3c1Y;ڄO-PZPҒhš bHʚd K)KKtNJ3)eϋpGᮩWQ#?/1ꩃ$xU*. ^J]]X?c[XhU =ZYMVҸ poMWcF7ijX/XЧ˭onӏt(f ߴ`bLAw^ĸhvKuUwoM#'` 0JQ{ z^st n>F.tAX)ԡRRWeXm-nR[҆](rI0ݮ0҆䞻ܵ^RpKn}^IP^Z_k:kv~SK>HQ8-VGZfPKxD~MV#p *4_J*lZFsOIǂ+tq"dP6ﭐ\ݢѺGr8Rh]\Zї"G_ HP@AB u`~^\3&XKDgsU5cۿ򘽩7}oJ-ENS3$T"M"4{f=Y2 K.bJgY]ZXׂݏK//G>_+T_jUڏ|mFW~4IX7Mؕ6'V!:=ԝ(b,Y/΃1XxD6mx>e҅R(Y"[H. !Vh2Ɍ̼*Yar n<6iJ{|)l_Ӓh[kemWaOEVj. i&FGHA{%,̒d}H(!VU2S 1-RI}3Uo圛ų˪̄'cXV&_z%GsiBPw1~&S[(mD<kw}wư#,W{;c aj:~i@\ECuGDOzLW-ύtL]ILEU*{%}Y74#/FHC`H8άRW7RYn.vNٹaŚVmӴVS3P'7SMkYV.|Y7%,V&+Wo j*\ jiWP֭PVZ>Iy9 *j#]bYX(4"Y'o>LT.įRKZTV%=힫nBЍqHy̥b[jQ^؍~'M̻4nAuG6\cRV26tm5ՀKq\Wq\WqwD5`Y iуuf(ƩpW꫈\,M tgD7_Iۓ:}1ЍcTՁQZ3H,VbI$U"B=g6c6棗Í,,*jf.:5Z%go^7U4/T$ւZ[}r*PC?GsuTP"KXDDޝՐxkѫ9,kMw{MM[ 5d#MWs1xx='RY-vCvۡvIGSm-tp*L-Zbgy؍"WV3AFP7#IV#(2o=1~LcLɢ3g gF>8.%lfz4i:I`ƚ>r X+$|ʧEC:{Z1-Ő5"5Rӂb*%/Z<VL𽮘ruZ{ֳegxT?@7 ɖьl5B7+]"8 Pc\NL!紂\/G_ӣV1g9Lmu~tx !kR~*oEE)55Y/(9V+[t!~2s)˥aXX2mfC 1U'M]pP)nϰFA8jɫ֬8u1b~(auk|k;YsYK(&ڰ8430IT8ʵCN3h%w1Б$/*=n2kWK.H?4 CSF!y_.JQtžKZ=98LRAܜV"~_)祃YKU`+55/JUU矗 LpW=_U*qѿRV׿{S :E(QP$0-v]hCoH.\0^C7f7֑z9Rh];G_ Hീ/}- Ĩ}= SpR_]cKrd1,H5㼧]\ɺqN?&~cћƇaHYp*Gp̣HE:Q,˚/7y~ϪSs8!|WLתg(YlK,!{e2LOޤظ6]I'(~bBhý~af~axgޤk4q-ș3keGY f_*F&̒ʬZ%^potWi!0c΢857Q٥Ypr9GkjBz&y(299*bTHk.eOUO\`Aj.Jem,eZ*oV ɽa],7xgWRYoHa;L3uՙ5FL-NT.zZK5tL_ep+ rB& V.Ůѧ _df}ɪuɚu#5 &JǛa.v'aY>o֢Ib¬a?T.p/uIǜEc V=/MkHaUk(!.Xs.XWޤּJjzu߬*Z+[_tepG]e@=˵K4ū4ƛ4 t~/ɶCYa0|5<9`fj䵨6_C^~z1:&VJ:Ttef ^~4#nbX oY ک}F 3vj⡈qq>>8~SŒ|!izYmO/*lKM;?_EU/1Xn­@A~Fj]Eez:y BaTk w gA[lHH0/u~~7h>`ȭ%ey |" %$Y>Pdݑ~%D[E'Z':_zDW?pDAG6v(,6ӡ/PʹG>\-`F?@)ok7 5{Z+jH! `͈_+.k\zi?\(Ϫsmm+תwd-o!ikwXeRghImdY^s|䘆Qk M5L-}-\y4Ȩ%$d2qMI2u ?JOJy,$oE7Z3k)|HI;˵strZʛjUYO,E0 īZᬥW+n\js3/rIb^ہEe^J`ǚRSН[Y߁ F7t"Uv3M tasn-m=t~a 򸅴<47MXZ$1"-EetU,Yi!iCnKڋ'W@ȑp 5#o'Gg:Z sPD^-n@`f#IW.uhrẎVJ%]z?XM(CZ&]|a4P@uN6̬a}9֊wQ&Vѫ$ 㫞$ͬѧnԔϡ*R\*NSʩ(ɕZq.LÉ).Z5ЪѾ?GKa]UP2?(`GIՇ-Zh`[TAMlhB5Cz2@oY._$jα|xn }ǖsQ-_}-e/\Y>Τ_GVn^L0cɋ亿/yR>sn%N{+<;c^c&Ғ:CRѷ'CB喱 )vb+ξG1ʃIftn":r^o4yקogȽ}LtIbX:9`,M܉j4f38Y@RMAZ uM ڣA9N0yrw2i.+| dTt77,?S]mQSV^ItSk]bT$_e>hîUSYz enjJݸ$Hs'Tdw؆̦<Ʌ\&WԔ)iM:-7D&hc|Eһ= "miǽWup&v YK MH Sg{M/}veH/4t+Nh. "5vi#ƗҺ4 Ϧz1lo>YjUkWM6,^'|jLUe¯*}J'dΪCjW/+meS$ÓMe=--r6Ay1|q;×Jee" dҮ|YNW ˭OrN^Me ZsbFv+}JMh BYۭlIyqvK ƲOVg,UP=iϻJ^34[//l-j%+tgo)!.q-(oj.prIJtmAHcJ+ߤ7i\>2*r-k!@Ua1z/%wWqMWKQW1 dv)k<3"oEmLtRQP?}Mχe^mEV@FqEUw/%Ic4^*\O?*%_ϩJy:U*__{x'Uzh[GԻ p%vcN%}ZEz/^xoQed?ɪyRCꉶW4=Y:.,a5KUgY,fitҋYZo-%Ɇ,UuuFXF4l@DmDn9uM!eՅjrh ߯/~G _?ZG -<|`liX?ҷw߲sKj0cV_"*$}1>J6CV GKY{;h0rۥHh-zYZ5XQ6ע_WaiFIU YEC1[2*>(2J0L,>`m ngz IЮLFpZb4CSPL_ HiW1m4H{=Wb>PԼ( slJbʕ[4xܺ x+aC&6tz~:v)s4^)_S|9*Z佱@?5T :i|~zg]K)e3yP6>h}kt2i$'&lQC/yr/oop 󁛜;]2.f4=0YF. |vCGCqe_`z)iWr7mEU_N2 ,KlR:J( OiVzAOr˥ aź6h8%WqMQxJ8wlܨƵIK(ۧr9]\Ei_fش"g@_;`þٵ ΗMK}E8;*Qr(I L$rܴ۬zY֏QZlFwos"/+6,\qr҉0R$'Sy8kCѻeC6|f(y9(1Ӻ#+L\X|۾_Ċ"]Y5 2Ĉ%L."/TX]er@sr@ =ڪw3Ƃi&̦<ȅ'\.7V 4Iڊ頕lȏ(4I9Nޖc[И9Y>>Q˜L \Ʋ#g(e7v4RIr);OIrMg; o6Q4V0Ы;[I2>HN)0ic9K9MaXX=o}0Iyed3 !_Ŷ'Nh[?-j[y3%)>6,1ՆeذU.En}rYӺa K}&sڰ3:MݒHc}ލX5;̄ӈտƿnO^V&D %]=+֢)K]];7m}إGRPqo {PPn!*wּi{ч\YE(?HRi_-̧N_v?{ûÈ50WSQ*% 1ki\Z'6T2<˹ĵ`| ,ʒ.Wz q^$ދ䋺(6ԶS&2VADMϫpQrQ|0Φ|?S2[M_At1{& :}͏l0E)RSmՒ!&cN%=8?#1)ۙ52$3ERm5%ՁGOV b/V ns[.vy`vl;Ŋ7kBWٟz~Y&W+%X"TZV\}X\r?kb*;Vxi CoEY_Wb1޴EVK[DfQMiA VqLqkC9^RFLJ ӗBh dsgJU Rx }wn B ƽy4Gf{aӌoAcgɬt\6Ud[k]/fv5 9,P.ԀLgEK=/[] QglOUNZゆwXza=ǬzZ2 ']$5f^BfZV*$hFgӗ}=>{\VW*W-B!zU gʩ\&]K磒CDci`7sh@8Ckm/Zk"UDyF!9r(h~93X/IBҫJơIםWa6KN ;PQ.n\{-KjyZzV(F=!XeUZf5^s&Zb_G2 ~OVӬfҰ_R鉓iaաu IêiWɈCzDт{;ԯh%_75KٜIEYAurK[{ygg vc gxED_XIݓ2kSՌNEQf9hɝ>$NMj7,ѯ'^uU\g}M| (}ok|Fy(ðEi%T" 3\BCeё^봪%#fZ;7syM#k(cd{oQo҃yG(}ݿ:Ui6ݟO'CHQ#,ǧR&Эbvw:?6@ڪ~Yftj<7u|ֹ o j:f${jc!-S4HSQ (UG{}S˪`Mv牎*2 Tm-z0W:.ϜU8;} G RuGI:?H鬼5ڬ9)o+GYTrIA8Ex{ޟTzs63z3ܳٮz?O>Yj'ΔnH_%cx^`I^Nϻ+Bu5y0.&A8Ix{ޟFoN-4yچW{Xw-yyuUyRN$E>'.B-h2mƟ"aW ?=zMvqi*Z銎b=o]jTT5 M;+l(ZwחcT*_KbbV"²rqJvy"cNC:n:w|9ߛ6nOV:[m([2`tJCajb.w+墸}?[ܜS N%h2L. \ԭGAI:6on/4- ի%pY5U?X5\}oV&6cv;^룺i3aܜqt%vjM^k8.}?|+O_y|+O_y4~u6h} +7q6)Რ.&%\T٫d?SI k" ^VfE@|͛q%2 ׅY,V:5]oRtmּ]r|T"SSKMs_䝫v!oen/~I|3rkDpn)k$ փLg S3YB@\=Fgok͛x]/[Oqm_[|E2Jz ^ d?NM)d&'_鐑d{i3hUd Ջȅazj`3ɓ8S0¢Z]2F[Odw"maڅlF0Yy >W9Z\z[%/K p(0{DW!~ln7V^s+ګoϋIgIΪW"ED4@R( oO:K>`9۪_ QܟWe˫ڇI+EMolfsމut⽒ʄMF8c2(in%ZÙ@^u flFkɍ󳆪Wu`[Gca^a"tPmZjr®]TCL_Iژn>$:~Jź6vɠкwփ$4j/UҢ*wҬ]%yݲ4dXVØ<Ll~ߩ}Z|t#^;lHd*4,Ej%uT9܀^cn47z-=)*6qq&pjr 6OSV}J8MΚE=U9EY Phޔ@Z#(` $T8gixYE\=s`GjزU&,ݙE tF; knoiF"?LCvВהd2,Z^kyfEI)/7孒p-/JMye: EyCپ33êgn˾&2o' gSKG#0GjR~!/zA)_u j@>F/˞c`d!?h.5G{esctl|$ Hǡ䕪1~*tc^Nz!62/zO1|nZo`bIwJs)u_%f0is.صhn>sy^M`K5l3| ZVKrg6\614#ԣA3!<Ȏ!ˎ!}C.[5]UKD gPk؜J4v\j@;$JmR5h]ֽ;I k һ*n˞qX6M' UՆcaF롵`+7dKu8V歄][+bo6u61BT }#\FjpUW᪸bDߘ) ѣ*j:Ѥx"AhtQ;}7ֲ 紟egd-l宮wO7S9oL9g.[UU*m^a1E^UZ=  EhpQ;ᢄ[iy9;M6i},Oo+4{Uū2;īɎ vṮYcK t)m;PfMqAbAϜd@o{RREHJWS'xgMCH2Npm~+U.U**U>uHj\Fop|ٹ͑ɡo/VNNuƱYƒed.ގ:Ǧw絤ԻexLf.+ /U~#UUEoqEo+~9Tp+StF&/JV ) :m&Eoen ^ӲP)ZJ3Tzԗ.zMCS៣{U^:-UM`UYx=>%>QAlOϠV _Z7G@?IN"+/;TZƺ1Jޝ=`uT+/LtQhY1kf?dZY뫯vUI1\!#ߕ| ʲS*d OE;xViu<4Oֽ}~n+o|\|ʅaqj\KIf4-'.˩l麜%3i}M0/5|Y 3lu%+1(ee6 WK:u䛭0SK-ʵaa8C+oZx]֪Mkr_֩ysL>K9kۡd>F .I| #=x/L#\r%VQ[ s!wP*W;lw C5"|D|T J-CuM⅞zR1u_<*㣅_̖,_mcxf1d)tԜę*paro@Qw6w h17 41*kF];b̫lls* ᘠG^&;QSٯ+]`d%:}E;Z~Mڝr谔'EQ_^)^TmӂC B7%\J9 쌬hZϛ:ªW@ityoD֢p3ӣ{"dAxs4) ,ɝE1]@~YT]ksݯτE_:Os6nw ;=%-Hwj%-4-kKZu ]Jc[-A>i>yuKMpjF6{^Iۼ^چ>6oƶ\ytHJ_e[B>nܬCIۺʀW:kW^ mƒlY츓-ed^̳4Lus J[bC1g߁$Zwe:5 l:4l M7ue9:wq"ŦoNC-H.49?. E*.uJ_P޴.-82y$,ŅK֮Àe>ɑ&jވ=H'im4;+$pUUOچ!of٥Ρlf˷kr%ej&NG5꬛Ĥ"m=B/[sc9kcg0s: &Fqy9 =oW]nm]5t!z_nr]tUrgk|ΆssϺq{6r7[+~[mk?L8g <{Ѫpcq$<ϛQ%g腯UW zfFsZ=mëŝ wm% yzazqV/E~_Ã|:Pw?_K@TK6Z"7>#oVz1@HU HUz*U+% yL Yirc+|!lWx'V+픿G&2]6|3v t5: 'nG '*QV_KwTٶ֚[կe9N]Trm}7W9? . _WꞚ7ԃS ҝLՎvH,paE? d۩i[>']zUz3v֘/ʷ])ϩlThs SG~HRX;ݚ,D@vo'q*N9zSoF~qkAs|e̓dT yY:N E}bzŰEyݰ͜N+a om3?6͇ ]y*TClKw>7+dtKR&'x4uՆ[:gC!?|1=?U}s~Еa6y͟9lV˱>'3.JxXf"z[tVpY 7ӊuf/feXfe?X+ZziVѾY9/!u물+R3iܗ̢*SƏϮPSdPvR4lS[ =" /-&|7*4gZ<*$u|t.Of-WSVbPr3AҰBW`c%5V]/> *~#X \$Pzރ.Ee~U\8τTϩOZtO:I& h\Ooyւ(4Jy&W$ޫ* 7KġY)=t8њmzXrx+= ٝ_ҬݦҶvNVNZ.B %ᦸWWJV~cmtU]43z@2Y ԰;i͑ @#2󔥤=8^#U5漙a orOuBDzG)a/yPI)V:[dRH61YUlذqljY9ӰyG|iD%: @DR|Ey~5 vzZ-׸R{UvRfvKNܦLkj۲z3t>s*QzttQzZl4tfPWWi7~^Ótmi;g99'5۳.f[{ w3J;әgi:wQ2>Hk$ʭ/&/řp1ypQ˓px. O[a@jog]m +h}m^ZU!Pums: ?4Riw۟Wb7Rw]TJjC9u7ndgҦqbwD)kU>?\uFki>q0PSQ,骍%ǘ;$52{>U2 @ 5s$A0~̪"L:+|ZSoO͛s*^&<ċ((olM­PVͼoW57Mc$Z34.-wp?SӲeV At0;wеMn"}*92=Kkq5 S$΅:+"9$ks~eIBL3UVқ|o8Τ_LŤW O^ڗY$P&Id;H<5faw[`u//E k?/EBy]vζBnLl=d2#ؔyr:eVFUZΛP@޽EH}zIզGD\3U:ǒr֟AŔΐZRk8 u1-m gjuPMX*um%,2 !72hRpU "-Df e=)aҰ9Ģ? ̷t߼ѫUpUa) sED޺HNp':*M |N(;#|`MZϛ&҇I JH#9?{p 螕]vӮmW0o ?KieE14N T*0\pĺ"9y bE KiعL%z7~/^ulȿmЧ2yl/* &-ˇڲNdd8bdHJ7AE4/oL[KUshXw΢vZeuؠPGȀ|H,G&Kh`d%+tao_?zf6KS{]ftj36WԩSNmE9|IڳdyW"DW 5JׁSp6*9t@ogN äs Tz+L/qBa4PN>T`H5򙑬͆{ٌ19.eJ6m_, J^Z$f)-sLו0ʛ|-/ifJxe#`ݔ>1 -# x# K{B P3i!Z14I"ʬ3RДje=8O2}MQx;d/p|`qYaǻfx8C@gy՗sH7~i ^G S"m>d'=* 69u.4H425^FRiyCeC]fhZ tQ4XYicX=%ÓUr&Y@N}61%eW_UE_-38'[g0l/q^׋2ҍOakfrv 2Mh| A1 Ў [$E4~ݴHaS[a[_@| UqLt2l"aN㮍F2PuG6yOzdUg,nז҆fgzr될UK@6O(䶯rwbD_m|h\ECd)JZʼRKY" >m7Բlь2쌌ɮv:Z?s}4K ݞDѢj^E P(4WjL8M\h$Duo״ɼNb^lyM+h}^\9)%_$G^2<6:;i%ո78|vD |[Li=$eooPPOlΚ7k}:d Kp/A*~ʟ|s\>S%Zhr]֮-UsZ:k^KJ&drY֟Ve#!a"Ҽ/$Ap.XT%]6heZ q*^$>䋶(6*۩ugdLQ͹zph]ςq|og |gSߟSYe4VwAp,=L%tX:UvEI)S(M =༆GW9J?u7#Huɣ2E] |7f'c .Ř2uq4lqi!r;Y#]*dJ%SYpzeh}-]/7>~qqǍO7?7l\li;IjHmQvO:RұHJ"-; YhMA/ oZTU3åYRoRR57̻\ v ѧ5D0= @qz击Y5yWKYa ƖcN'Hϙ-B)Y5 Vr"7D!<sF@SN`P-dY}fذi0֕O0m~RlQ5QSN2ED^ELp{}xS)Ҁϩug S h?/WigD % =Ӌ;eq!œH+] ʰRXͭtROLj#OȮ:LmhGI2.D;k=M,tv;e o!Bi(L "eӹK'.7],$5+Cԡo5aɂBa&Hvz06ٵ^? UǣVYxz.ˡZ47SHKKMtv]|bhs6k[ z QU3h3΄67T*SAKtJۯ,ծڬ/JA/ZBU*3ᢂMR:Vɍ|hsJ>&bؾ664s[cӦ=>QTYN&XBoF"154/y/,-o}7Ke$7-p-.HMqE}Rܱ@ж;L"weF;Ff%uZ>*M1sKJ;3nQʽ= Rh(D#*N4Ƥ4Iz;mk<,VXvR1ON|kZ6,x߰gsh%З(}|jx]֐y zuv4v "Z};љ,K5Ŏƶeb9 v"E]љ\ERll֝ʤB,S>eL?Fт4mtq&dO)m =Be9M-R:@"gUeۭP֠LXeHKDhdX_7`OfQDʴݐ@ke eyӫ.3*cY7Y=qF*z0RR~}Oˌ_3{yr r4~S2j ;ǯEiIkYM{3IS^ WDOVft(?H է:< l8g8?L;#gg]v1uzs}4TN)nݿItU ㍭MjsyvEHfiwIp;-6tԭ;6؍-+i}^];)m ='9KWUa :vi[ҩhP<5z[9^"'/BwBJ0 *wV4TgK)B4x/Aj*U=>Lkq vÚ1ᅆ1s V|Twx0,ִtv r~@G6cNT^6M{]p_Šv_7"zE{\(\]яrpL};m+T\WI@#βgѴiÿ6iӆO `Y3S߬p 6l7&R"zaꋺ遒}Ԝ>cpt|k_{|kO_{puwvc?{=j{ORr*{xN&+aNmYE¬H_f~\٬ujR֩)~YZk9m:+:T-ߴ(5~(Q. ꊏ"ytu6Y&/P&aBU36B58Z0𹎮`D%[N9k/#rtpxX]EMRqjʈZꝑ!]ăzZb-ԎF*bi24ٜQ'b(lh@YAƦ:LGRr̍.1&QoIeVFe8yOzlCݥ{ˢ̜퓲 `KEsqE{my!BeMR"hz8mv \R\S-y@ogt^1{Ѥa v(y$VSn>ѦP8צzoiZ UyɮE9UP!m,2u4.$yzR_\ƕǷ}>W4g+H2spTDF27 ?xxs :2VJewJu7sV }W-!~/j oτS ASN=WK¡9t4ҧKx7zpЍi# |^JtY {hƼҼ7wjl$}$usb9 ̙M$\ pS`fkDȟ873? kɊ/rdLkB4&9_"ƕe}КHQY5W6'MИ4KD!J-rE-">c_akj?I=bu ,][xײ߯!HG2}"I=B=h##p^;M +0U+BRdTt 2KSI[:̬.])^63nJeʷU{mNt Ќ(7=Os.;4Gy5&G9e8hunqn)gW6fW^(ӛPQ/BJjkYq ŚxDz7m~+V.Vj.Vui L{qT/h+tq+p̭ bekeoO0-3Fں(y~3W5> m;xkQԂp+RF$/jV ) :u;Mʂ/4 5W,DVTEa&\ԼS|?GCu^J-յUp\ӽKrJ֛.HqXtLG_?oِcvxQdelO?Xd,[e볷7ҍY--Ubt-]fq!nAQ˂Vmr Gǣǹ/zs|s||/zECb>?ta6~ܬ?kZϛv8tYIe'.+V2֨d2|] 75Z,Y}]ZokRrmYe9!5kR9iTK{;K2L]I$Nv3c[~[ơo;]KZwXrW90Nɿm%IU/W"_Q7> ˼@έ4"kjBSYBCNЖSTMo/]% "[d練z5.XK|eW|WćBb&WDl gEjEIgb8,7R+_:c4+cZԦc &S/vƼ+!Xl^T(*߯, Tޡ(@šqve!>}E;YMڝr谔'EރD%z)SSZnc,wɖXes/Ov.S S҃I 5\vPRZ5z>* L=/Íj6zэϗ[ټp+k.[[ZI!z_ g8=L{Qպa:M0*F>-=1b!_Rz- {#[ [Z\t$FNm*}  ]ti;nwҥUઆuƿh kg4*a7 Nw5n$KcH:M{pKpr-{%[ŵʚh};ieWRūT֫TT\9t7 Bj>58L>^T]]]h_gk ,W)Žʔk$)ng'i~Ze#a#zG;=GBICs3V՗ak $ʙIo-Iu3ׅ4vrAT[QrLx‹;^+6 ^v}8oDY1hս9E:e{ղⲜ+O-ٹ<=;zA퉵YyopGy@$`zicLtU6AYsrVu12f/Ԭ=QK{tu]:YGH1]>+ۺshrŒ6 BCgHӷ;Q֌ѕ\$&B֢\~ 7 3L.RAkKd!zm_;f ,[?'Kukrεri(cylTJAQZu5 "wRr~UR_Ax;kY킆>`}S=N2#KmZ^i@yzЯAL+JawδrL+Xa{MδrV TL+.o6owZ9fNn}'Y=HyA7hࠛK4VƌmA7hࠛK4V48fՃࠛK4V&٤AۿO6z?Ղl ja7tdcD nxk6٪I6tO6V.۰jO6 ۰j'a?Q6tеlƊUl誡}hFon誡@6 ]5tt]X+1:3X+ {`F;ooЍQh:4ttSCn&ŌL7ooЍQj?j_1th(S̈#6 qF CC7FbFoc 1CC7F%0#7tЍ h1ZL kn\`Foo蚡qm ]3tcD3:ߕ~m5C7)oP1AC QԤKmj`o3%0tЍQqs?ճj蚡#Om3pߑ~~C KsN?Y5tЍsnhcoo躡C[5 nVWm ]7tclfܿZ=1U3~Z3]Vwm&3"ELH?h;UD4t11ʡIV`0f(ݿ36 Ќw&Cfr3V;17c];f\ݿ^A7m20t11YV-au?Ufb0ckflݿO* ]p | w&C!#_3Ufb4ckfxݿ 6 _oi!c3M斃L Ѳפc+0foE_3cոnb4cf]Ǐn5 eӭuC!C`7d8gm20t11v3߅~ ]Lp݌7o #a7]Ƀ=5ic4츃mHOͿBRhd~MEctv*1khXLyte%gSpE`MMO)-KOm;DCl Eٌu4ԆX?PBg@C0UJgDk ,jrfV Rnr04fY0YG\>9IwBFPĎ! 4l9drYw^Pq73֮Ζk7 nW#:l[ L71nΖ54HtRɱ& Xj~6;lA%QK/Z J~%:b1Xp;761D]:`ފ r~%:bL ~%:byB n;&&G],5C BL9MXjѱF,bx,5CXAR3Ȏ5OLB?`T>b|FiM¹ 3dΜ),nLyx1ܙY~rp =N ,BuQUG;V>N|qt #_`9E;#{s랉S݇4"X!tpԄHCB&9dsjWx[IsJ7-o2kQ>?R·q'sa&hO# G\?9p6(eq67eaNPlf7'g=9 d2ZIVmC=dLqf樫&`2!;; v~>F6;:j6Ł)99jtД %ٜ5:jv,qpʄ2QKS&T8dJ\:GX.&S;D8DeBC6'GNqʄC6'GNqʄlN5A@ uY G08TC2 䀃U&9dspD;uLҁh'P xDk9|$@8-mG8yqHvLkE&KpdIve'T& 3L.# 9F,[Z݉Yuu< m@8 fBCQ7GM@: Cm2RW_CFz͉"][^ ?zɪdBۅ݋Yό^L1Bۯ섃rz߯ %s^7pR=qZ8Ax''![3pbu d Tf3!Sǘ:,pQ~Bv~]eO;;jO0 Eٜ,5? ?l&~ef4MM( f3!S Mct~jrSl&9Yj~ rS~BLrdMM f3!R:fBC6'KomjO0 uYj^?f#<5{Bʃ6OkЄs}`4 gDki?u1rjy+kwCL |#1_`X`څ_׮*u#EmЩMp&U(&p՛dM:?q .tE ?C`MMp9fBC6'KVmjHA4g,5? ۘgMMpsX#s_yC_W?gtq ?wrWuFeraQu7ϋs_8 q^7jL(([~pSpQwpzH떁ow Cd&8d3|&t"3!K,5`ѯ\do4*9J&=[jP)$ǻCCM'$vOTůh.C6H޼Š*~䨳&t$/Wo^0_S699l Po5*]~BG&=[jBG)Egr>]"ASxF48<~M6E4Z7jgDKQ8a؉h-ќqޏn ȏۦ~F1уpu#DݨT%zoOrgg kan}bӋ&1gJK'NW3Ytap %ٜuwԄiQ&9dsrQGPI2|DWŬԼ#7.n*]*د%KEz5 9F;ӯ]j;`ĵv}}zjԄz]~0;;j0@gӻ&4PR M&8ds98j0@ eٜ,5g M&T8ds98j0@ lN.6`Ё&9Y5tɄC6'K&4PR M&9d-Qti45?X5@ Eٜ,uIKܹp;MoWavHdtڅ?tɒpHAH~_2CXʟ㕟PI;AR;Ffi¼ˑ_T96ed B2!R 4Lq.+=GGMH9dBC7NeqVVzզ&B2!QZ!PIw'@8g m9N]8|#nHV.p5otC: tpSqo_s*, +r:*Gvg\tDRqk-ON@;dBC6'KM j-A%-Z5m*n`IO`KFw~'bҳ&ؒCr l o6p'y-&=[j-9[ nk`Iϖ`Kx l Po5p'y-&=[j-9Ewۚ'bҳ&ؒCsl1Rlɡ;nN~PpR`B%"uRJ1:9 3!*d"Gy8bOHtu#E؝/~&DPхpg.GTJaG\>9I%G(d$U] -f!G3&XjB996ǻCCjYNh&npOv{_Lzi&D%'L^;^,5!ݡ!P@PH apT∋ BT9#y rH8B(K'*w ;̓` zpSnl -j@NvMX1` 䄎 n#IK`%5 nNGM`%u-WgG Jvid58j+$99 dL(q䨫&@2!JvɄ lN:j+$ٜuuVH&T9dsrQX r䨫&@2!JvɄ:X⨫&R@!s݌GvzuB @Z4!Q3UEUxɓGgx¤qAxL8Gf/{`ē`Iwa1`!B&š!:pNGGM84dB!{K'\:MvIqhȄ:-5aphhm3`;1hqK"G\4S Gn?t0] }* ϢK#.9Qnxە@ɺ\r;R8e"hp䨛&hPQ7GM2!Q7GM2!n 88dBC G5A ghӛ&hR2!IupȄlN;j&!99Lp䨻>2!QwGo88dBC6'G5A !lN;j&!j99 TLsK;jB"f؁ޣ0wCaDH/%K<78WCDEx"R0ӑ8T86e(![v& KpԄk!ظtB*{0 zd ͕65atxȄlNL5ԄJ! #أ뜉=yܜg¡hȍG p)rUۅpɒHb3*qԍa_qW~%wJlX́IsȄ lNDGM9DdB!.Q:iPR 4L9ds%:jB'!"j9Y5 uG,uIwhm3:Y%:jB'!"9Y5 %ٜ,uIIwȄ2lN$GM;DdBC6'K]&t"2!R tLrdKrCD&9Y5 5ٜ,uI IwȄ:'%CwЕ)1qJ/_W]"Gv7 ?C`"$,%;;$^\_r2)k )sm}ǐ'%XLdCCl ŔwC;NhkUGI.Y[Z@NjMc%[B&%'hq:N-̹d":G\U`&4RiqN?s^w QIJKT!>r'R۽C;%9:MJ"PQKMpx9ŝ9'bҋ&R"8^003WLzWJS^7^,59u\1R\)9f`Nq{WLzWJ쎷S>8^,5,D2!sWLzWJ7S)Q&RRrΙ\1` o60 tWJ*SܫWL:Xj+%s۱&bR\):j`Nq;WL:Xj+%Es۱&bR3FIPICh$ucGy9j\%H#wDv7Iv8 ǰq.5T ] 'gGAS3' 5! 7u]:aͨ'{ k!-!&99 1-mauL>c PO- n VNB :]\kD$)WtDQ^#*>z'N9> x0 %ٜ5:j+A$99jt^H&T8dsr L8dsr LrQ\)"rQ\)"PQ&RD2!LFGMpD!s Wv::jvsɄ"lN9jvsɄlN9j~A$99Lp䨛{lD2!Q7G8dBC6'G5apɄC6'vV9B#ldqgӻ&lS&2!SwV֦6QK8p䨻&XR&2!P HEh+GB*p:ȍG`q܍6_ ?!zFgT稫v+?ᒵ#ι{朑Ygtyz!B' Eٜ,5GM"2! CD&9ds5tȄ lN&tpd!8jB' Uٜ,5GM"2!RCpԄN!"j9Yj :DdBC&f!8jB'!">wD~<8jB'!"9YjIsȄlN&t"2! 4Lpd!:jB'!"ٜ,5DGM9DdBC6'V !УQ*!]kC, ~+6:Gv;(@KÐfw68.ux]0{ݔ-L 8c[v&!:J tL(qhɥR܄iGH6h tLpd!9jB%!ٜzwTr @璃H#ppB#+%Hկ̐Nf ݧ҅} /yYۉ:  π&,!8A,5AFi'hbҳ&h!9d cMLzM dǛ NĤgKMBq@pMLzM i~41R4Po58A-5Ax@p;MLzM 4 w Iϖ x441R4h ;NĤgKMbt@p b @L7HnǚI/ x4v b @,Hnǚ@I/Dp;9 3\.Q-UZy3OB DKC; ! u֘T PeQpV.q5oi98 Ȗ|Baхc(̈́@hȄN1R~EN{M y|!!Hfhu,1` @*w lNB,!7K!G\4 ppt`#r5otZ3!"_!w$WP(F" ?.;)7p',@c]2rLvw NJqɄ"lN5 %ٜ5:j+$9 xr|W8jɊd`K.K(!,8^ ;p'w]ɌpDZ)'r׼sX/kg[q8qZǀhC_L&9t8̴C6]:͸i1^ uK33wRIN菳,^J)pbvdC\ kp'ŽQؽϨQ7Rݙ8_X9Svuf֌5#fQ#y 6}C0{_s –+fB¶9Fa+&3! uL(qd19jBa!?9YjLPXwτ L19jBp!?0td9[XЦ#+75 !lN&3! uLsȴEԘ@a,!yPIO xAo2R%ٜuԄ0|a.![UU@2DT3zgG\aN=8d_9=$DT>q&{k7`&D(/qe#t+?'"=%sUJgaR ;( 8Yؽ1^' û 8Eؽ1]L' ûg 8Q/qx8^2=2], ƒ|&+AxɤKMx St,tL:XjKMg dR^”o68 'Pxwp6.ɣ6ń/aIKMx :^48 ?%RjNGMx)u-r0^ /evuv:8jKa499 &eL(q䨫&DO թr.6:j?٢7f_̬NP| Vp瓳u |Dk'gNP|o x i':`l# zH}8}K%$,S‘}83f*C#Kv NSMGV)n LF-c;1] }k?|RYd\[YfRN;yVv>5%'NsRNqzH3a˨h_N)LX͘(!τecy-DI3~ͽ!7OMF͏"ё63=wM#f$޷AENTz͉;&̶%Niߕ>DԷd}D5kQBW{^|0>>No^f<J\2m&% N/ĝUC_ q籊9fC(}L^?~[ex4겪 z*C;2WRFOlrAI.af8ǓJ߶e-JO l_F|1e6F:pLpv,m7&S=8ƟiM^9r83#cmH:3kI&F=Bދt~/^F 䓃@mV- Q1e#Gd\ !ޗ5)y"6YG6MB2hf}=Iyk+un}^qe4HOe V#=,W2n{ƥY j;nƥH mXs[ٻMX*Nfv(!w53t}@`vh*iǓ(i m@SQKiNNBwIᤐi`)hP>Wk@0F2UvbneZMư*r4D#p<ޮYM]ĥq!Yh&40x vqӱkrmFm۾;m ?I@c};}}Jb@cǼpDO;W9vqJ#.28 ƚ5gӂd$0[]aRUQUQtpr}9]|o&=r€4ζ= Ϲ_Xy6 pӠ@ޞZ,Μ1Sf:pS߹-Ӏ :_eC  lz ؄P$,Tˁ 1`PgJF?齗3s !16'@.^$a:#"&ԋT}a紺4`@tȕP!lir3*UJ`hUJo~çw;I72-!*O)HSǨyO魲=pLz3fj< [}w, [=d+lZ).KO@'ħ'<%{S[l@/,WpXΦ'a@YRPf.0{Q%^^"a ̢A^sܿ=]owgI yi 1\ՖNJ4qf d&5aH 4gmC.ͽ\]|id k-s3xA%G~3k;.e=82m0fBY^O#]PcC h2/=3ZQ<KaE(4S7M\O;rS\MC²΄Mӵ=lDƛUC^mTIHa܃FFzj It Z1^Z4`bv~)tx <Wy=M\#KH7e6PlLFɪvY[$z GYF% {{/j ZD̳κM, ?ee;4kIsW&İ`9+i9?J\OhF6ft+mNYٶ%O32L#QeQ׽Ŧ5aGD{1nњfߗ=6̅޼mVdcXl6.CKy8mP<^${nn?h4 зV&qLh꘡Mև|h*K,`Kyj91iƩ!Vh,:L`Y2C'`[ՂqKG;.<նϞ#"4ța4(.!5Ps,3P̈́Iםp4e|Ua©?67ۄ2)C5:l#r/@"Q;uMepo. A.H Q\C>-4MiK 3z}13Y[q7$P^"D 1-y[ň5HWsgi #}r q 1K_]&r?tg-Py7EŸT/(QMhn[)ѰhЦyVk!{A [\KבH2'vYnlC*#s4@0^ϝ/1^4#ol`u83#);5%yqr# v/Fj&`LZK&^;,v?{?!^n~. zK*}x`,Z_L8OryB/r9~vW65(ACŷB8PEB .'KEMgO0?qDă͟䳹abd 'V7v⹍7(DΠFA0C|w$V%6#y:Եf^ڝrԼ%7h94*v{ѾlD4D%j8)F^xSB֢l0묣^-\DPYs\;\{Y{Y;tceOkeFUU"EsWϔ,u|8n^M) 䙯'_[֝DŽ S!o5Ptvq;֤&5 aͰ XU8BӲX&-a|הdMgv6}|1dLw҆rs.K.o\ Ohth kardmYhڍGOÄ|.XY+vM^}й crAMz6LR5 U6P,oL-Lnj *G Es;w^\v&&>5")&4D yG2M1_>-H}fjKz+GqKmN0V|#t%8rF04j^ZMGsߧr RX|u`yӡCj`S Ww@^tڹ7niK9sENpEyzLAo_2KM)-]2ҟ1e}_ c}y۟ɻTuJ;?HƛP|JĎP}%HQ-672Q8ӸQ66oȻĿOǝmI}7. c,ji?(: xՐCLJ~.źɱ<47]fnQe2/v|:%IY(pC֯}\"$wތdp]s5S,ܕSNߙ>ϷJ7; kd}=>oS^UEQRxNecզ(\|}b႞kAb`wP5FFW uA &k@Ú8ȄYf3]J]FܕO2b§M$f.SrLג%/V0#8ߗ1L‹m/4S"Ƒq(_WY]1Le Is}j(>`3Фw 6/@Q,_)]Jff~K8x}LP#Kهm$ <} &9r8ͼ4iShcaNě)Slp/^#i/.so;?wf~K3{ `:}2\./1}l> Kv6uc^ɦ 6?\)W1%i.N\A8&.?/#i ]I!nis;LR D7#zĥ'(hs]䡙;2$K4Y?~1sK!Q}!*!:k3ӒQTMI2U!)A^);1EP?x}Rb{0Rd tӄSS~ ~w[urc^H?csE:pdțypm›WE\N\\93 .w[*6aM})GAfx6h-Β`#HhүisȂuX:pE~o #g1t$]Z4EֹF2׳ X3;]0a傥 ZliɳG 2Qݐwi)5& ; [0lvxV~ Dmo931 mmm.r`@] #~ ^68]u4j[kJ}&PJL^2ޤZesMLLBXC-?ybh̀'bU>Fr91h l|&@FϓP!TِvoLV:l>m| d\ +v1s!Ea.c. cKր{51꯴ݓʋ}g}gh!aYL>޺uSFHn2x}K#% >I5F3x{o'w}du %HңeA 10e7.S$iyyb.ǁ@>~l9[ A6ݓ+}kp8#q"݃,\y5bJŕ4*]g+wԱKD0/ 9,Eqm P;bYGGGTspXbk+M tyԐR>$}2+NP Q4 I,VeHYXmCV>2y O:iR'޽/8'r`.cx PN雒z*7Pn_%l+Zq"*_s7:̸ Vc}YW7nf)ܜ'Ԥ]s"<+ľzP8|`³3cUvBW`54d6@pMw8lj*lw#s49(d (9g̶1Q Gݜǽ#iu79Qޣ CScGLz+Dq34^z7e03YH?AF" 6/'̯+RA SVveq/d_c=ms-lJ8vV6 Gs/Xj94ʍ2D/PڕLhO9!DۊpisV3H,@Hg$E:jԻB FyE,m9p2{ֻOZP7+ O^/L9$+KZyn)u˛3B1 ypG^l|jA+1p.-7(5chʉ0%w$y9#:ԃi6$ w75\oB斠O;Kyj]&jb|P'77*EK$uS,.;:s)vs hfvBس鶘XwuY+EtAKÌb.HC\G\BOY>0軁BuĢO Ԑ<6PnQ0NPGSfL][px\A>*/)+-j:SgT!{E S?b" ¥s.3c9?k!teUvPTdX`O%PX:9LRy:>TL Sh#rislj{h`C]>(%&u;`b[ $p).WI71=>SWă<̚wT؟׏5CLm ݱPXf1Š arԁ,(d()RTJ7qn(Sfn Jvܭ O ۰x:4Äܑz3<hʕ1jgk;^֚$]7< R 0GRAd9_{jfc,sGzQ%NA, (zFqACMY;ɖ;܆l·;zP/1;ȱ0( ]Q`I t͜q.t0~8R ɜK]awp98#L0.*yr 5g}ydZRC̬EP~fm0^ףɇRMVT[68AREoLDݐ 'ʐN9]?dշ$-_;W}(plLlWx}Re[%N3&W Z l`W*qxOX}Gp2n&_ns+; O΄T0mF ft'8.5HR;wgadrZTDNL{& nNef w(xX[pڌ%eş)#K=ut[15G6(R*.MZjaGBpсPb,S)NFt`Fw+-,HmdSD["De[_Y vtCz ]aQu8f4L>̬jaOvܨ͟,ZfQBEL0ϰ˥?~|5P$Oia^+ow6g0(D dG/L}ST TA~BY>`3,VҤZџ}`,9.yP= Sί!ˠEQȫFV]):pz7ٞA.|0Mi#;N8xk ite:Rtk+*'*V@R.#R?ZQ%.24PB^̨h-P[,/3T=Y0ݾ`̠a)Fׇg 7=ZJޟXPkH4l)®Y"}*̗\&"0RQ' =0-3EKZX:HJHFTѱc)W?CNB{urا-܀А"Qiil?1޲b$  g|+K;{!Uxx w;גrMZUL@k\R<P)-K1NVE1,ekIK36qm)"O]|\tUȴhD{9ތBBk lwy _;ōlq=nD{e,bO#HQxtdn`D 6ϽcܜegVf_| Mo\ԎOXiR`yR3/<2:.5NP3:FsdηNԟ`X ,e!8hsDk*YP Gv:՜oq=.IȺ.id!0eBU2}P4ƩHr0,_KxY +¸ $d(Ƹۼ[x$˽v]Nä1gcdV-.ԌcuҺy&}^ƌZE44h7l)gJE9[vxW:`7()ĽT! 7$KFM841[Ou)c>*SBE|pn#M岍FqTc6wo蝡qfvS zvՠ~@t F߱G p |cFmЬ*u͢lᦟnKD=-sIGw8w<+ '3k;aɺ%Wj-0@*CB_w0clmYھ2QY%maWU[q\hw$TF=V;U1 8 N\km7nGsK/?{20V4\$щ*l!.@OzmH'yc˽n>W]1 Q4@Tfr4;m-KjBOQK.58+%=.O,l 5lV̢әP~36a_/7F-H,T)٭,TwCmthUPbO^cI`EU&_6"(^VLIUpuVCxY>N^ҧ('j%D TQ)7Z8"t|_r0yuoƃLڃԋuI0TLF61)X^;^=$[FRƆy 07=hY*äG+u6'\(EXLEIG >@)lFogӨuHJFTHӧ ‚>uCFKFkIDKڏ}Ww;mH(M|.X`jnAaWu"Wzӈr|L6)` G2uo[1fu{횔O<ﳽ 꺘sˊp+TR͛HnpBT5`nY9/tРZt~NaQRm*rc©(z_aLRiтM6qDԯc.a"uh%s1N&ؽ, R'k2vŞtgȒ(jV;+H9bH b,n ̧(YcJ}ӱE00o.Mֺt"h=L#MK*`ao燐H[^zR(JLRuK̬FchK eQtț!qrKAed(t]Դ4ǹܕ@Wy17񛰋QUQSEzK)Oec9m!?) mH1h `{mlPoen^%ܻj-(*,X}_nvw[JfeuBzr)@9lnVz˜ރ[u) <yaSֵ࿞JUfi$qp}dXvϚχnQE l]^Sݛ 7!GA G  -/lo OLAKpl^ Y+l{ټr5,6ݷleO.ȑ!QIȲ|hHG!՘[\*P:OSA 6.bkQ;})qxi0/G C0 AUm27($ʲf *~M/Ѭ*+6!*>9nJ&e=.Fr*9տm&'9BqeISoG0'mB6dzqu1]GdyE_2oSR{c\2^dZ0%眻bCd6tc'!/O 7#Є%j^v&'x#slpJ[݇ZB {+Es=cw xb"$J6F6!ՠKd:^@~B ]Կ*@TnnsoB׫Ű=>nfĬ ya_omUEGX?KW7jYW=:H Qjl[ӣXȾceja4]Z2obsw]lEφ9i*@z[:w=&̡EƝ#rV xG%Eoc2O^Jj|SyL2lud2%=AHZxBzЪ6"L zc\.js.8.zŬڥnU hɛ8 U-G3Em@F: vI/б^—6HY} ہ%Q>Y=+!:Cqbc`h2AˈP1Xz'ߧң gQdERFzK̓*??2owJ_oD}1RRYV fTq=c`]ueT*׍zlZUuL[c?b6RP=ڧTb.2ɢpRkؗF٩sg7{wh?:JV٣Ø#@~w)?e!,MNi)B95 6˟B&7. .ި}#kvnTT#F"R&׼<ţE\.Uvr7TY  I1dT ?b4yi&{r _0Y$2Feȯ]4XB;Q] JzmA8nyꩪɻd7Cj`2_@!ѧ8Q Yc4TMPI/;/|y\hI[W!0 E4C6؞ z3!L~[`5#S Bɰf](0G:f [o #6ϟm%no!}y (@"B:,p [4Wvi\T({-*/s9'a3t\a(!f^Fr7dB7L! bLU][\$quj6M/8T,1տqGc=@TfmCZBSډ!3lK+i[ڐ)-^8${D $8 ͚A\TQucq}V6ӤMߏbn Ě2 WފRɚ6RG Tz<~F;Hǯ[o-' >SG+  04pz==[. ܆(Onq@*һ1\c\V+(g E"]jEM=lU[bq~TxfC.-5,j:8)ƈњK})gCD"f V5[c"n` >H覀 12eƖp/A_O m"u_^Ozb:pNR_L.u.RR:0I_4Iћ;37lإ)V'BW_@%duwi@K@3XD(?P0r,mOS6Y{gwhTx坋}5EH4sMQ% B(!6Ċ>yA/nUwwUHfs=Y![[p?*ߺ'&5̈p`? 2-)bm5h. h`+\c>.Smeh…SeSX{`35)qxz;~*k۬q$a 7UոO0T*}L }*gX,S/y5/Bg<![#Y&L T{Wix0XHiQK[y (p*GAj W c蒙hrZ|ؔe1S'ە0b-W Ls\4hK~BՖ ؐeaW[&8 {B?n>fEN_R7Њ#ȘzI' ٣!=bأLjspaj(nL[8ә;}}ƛt@SgiXͩi~FiwQ+mdg=[9w0H,ֳ.SIߧF0EwJ~ٍ64vSO+ YkBrup&.ooKAљrp2ϼߖQ!.!Z 7&&ڹ Sof%Z ufƬ-`>9/֪=laڥ!T_\yvO i]1թo< $ѩ}T9fU)>Xk:3>fgu|+<.w:оg@>wl"]Y7#?q~0 u|d(Y;9 z_֛Umʱ$Ct*%Ow9 O?S7΃fX$M9lXHGSseNHSr @ʶǔ GDd-&ٗ}V˘Xվ׼L20y*nѰ阻7US4"̚ЋM3!WMKN\F ?/~~[yA<"6 zQ% 9anB ) <` )g5CvDB4|䖬"iݳ-ٲ?V@ZڏUU#=VG*Dn@9ְL` ƛ8RK0wm rjYtٵ^X僰oU1Ӧ v!O{Yf$` C.p6Y Ϻ'%.t5d]=a%ŻdwMPlTBٕjF]*U[2-bxGPX 1Q/0d]Hv™–橊vqy&6@z*2ކMz\S)uHk;0*SK?ÖtW\_M5mBƆj4ΰ0X[[,Q^ g3vɆC؎FVY!)NحcEWFf8Xޮar7܉7,\޸`#]n4ΔF]FrZ+ Y['4AtDB轧rÒqOAƸ$PF/qZqwPK0tEk b6}v z_|h#$F$'fRRUH+xKX+j@Q%̺ɮۛgT =#Y{t}g|_%9z{KOPޡir!{oѱr%$<^2G[<5^<28;]{:,-v>Rixq}8ŒS}6^nhmz̹7`Mc"ȴ0uQ1u7-wSܞeQ\ qp朹j\h >u^Xͧh 'J-Gѭ4Q -v*kE")7SG;%)G(71 -KnU6a?>qSR{ODdL-&PqUkIZX g㩧7ڀVQq %kZ}@3B 2iCMk Խ9 }-v[֥&R>Mi6Po,aѿTWgM򂃰Tu ޵V鲅쫗K!/0 ʰi$BDbuw6ڢkPהjxnT0+CTiT)=/!]XW} ;VJ(OR d~PR [F oD͉%>ѥ2WJq85ʎ~WJؙQ;V6Ǭ7ͽb4g(UwxA9P1wJF<[-BHi@ƒ =6IBя^0"#`` (]1ka)SzUFYś8aĀNTl~>p_hP/v!ca H7Biem 7 h"#h 2vҷϐ>Q02ǥޮfҳ.T6ؼmJUޘ{+ =x))cEO&ΝR= w6c9s%g [ġQE:^y 셨+oDCKI.\c˅ᩳl 5Ӛ=lmAK v_r-ӿl<4-fKeAyv{GaOʈi>zoZ&@K,$CnVOh4*M%>M'b[@qDXwM[ z¤zL/VwV߀͏ck=x2XeQC]R`7^)PLy4Kz}ކLXo_׺IUj4JKdu|\5Z=d#7F|3Vǯ7}t\zz~e'i pPlQGWdB_hN55{L%Jž}j$A  i,%w;= [򭷬#V6п0;2d5Qn?S@`F2SD0 Qh #X"z0lh3ZOeժ`{}dGVQ4Aw# &On޾f}Z hyĄF=օ A\9{[mׇpVTKMy+nT]M}4jJ }I bJWW:(U^ /IRۮ{Chk~-ZtB\ռJ1$Ձo_*]"5s߱(V%= G IJO ڀ˽@I!`g1.Q /WoFIU~Z0|+G+jvmyў)n}FGMPi0,YYwƹ.^Gta¿1ŤhYLևip,w(Ns ?3Q3ߨ+~د7uQ 8#(R?U(.g7rmW7z>UfɄDZ&ԏ٦Z&oW$gE&=Wz]G {3>ЧL$J1N,`gxE'8{os7{ %-a5{#EX%m|y>#lwU*]JAԎ)+[Q*J&5+[S1Je>"{ݽs\NJQpiT6q:&n &&TKIúMb3Vʼn[4эnǒ-єP94omm-"$P=$8!9 %<-aOIKg8һRRo{7JK֌oz7"3qqDըrCƊY,-r'fRC猖{.׹)lK'/h?E0Gu('xT;mͨ8j>p􇭱v۝C@!KP0J i[ S0G]*.>XF)[f%T@iF w$[cz:-\݌#{Ԡ2-$X)P·ma 1(]>L]y0J¡b2(8IruT&۟jAb&X>J$<{qnh?F]x%+mjfM֠2I- Pn _VT6OZQ +R "pBG֢;}^xwCM USfi?EUXsk(GiNf=8di*)cYNwctM q[5Y h*M=9?+oTd1BpjX[H7Zntg^l)M)bKߗ34֎mbZVugeG6XOwG]l;7Zl.1;DY1uX7g,2 J\Y:8B5X+]g_ZQ5>FAVez7"k5,vUdcFZQ\T*cvUU>K%zMm 3Zދ49eXȟ_a N8BVY9^i;m$3,MJi\ Vn5@ 7*eMNqIv<+1ٻTdEխR @@ 5Wb\۶u+7H>bw>"JQ[j&nv&o9]{Y JZ!p,#5* FN]. oO8BqmfgnA 1TJ PΨ6ˣ~hG`џaD4gtntVsLդy-ڠQQ7okԎGqbγEg:yImܥ3;?}0SX0Z\%W3MѦ_'p4zצ,ϯZ6iԲykQl5`P[;S,K| \UF#3x5 T#<9n R#t/6:=d֖c8gpܰ(}=E;=T rC!Ѫ884Q6vϛ?%^KY=[G[+OZG5^g5}Tt|9J˒Q }dSK+aysіTbT)0s޲YV!Rm8Γ7r7@ŀ\Jryg h[~wP tw(|ؔ$0zr$&-l P9bΙN ؄6. ~vɕF|pV00Of}##awjT%P!E*pP\*Q]%u=C1GFd~h)XуHeT잣Onzq&?뚲z#kc0# y^!o3ZA=Ylk7k?':Ok~ Dt!-&>h?0s Qrf\NwsS cpȍӤrdÕzhŎHJDXSKQDr)6X1R\g'7nYmcF1zlCzmZ%a/`n6H[㈀v LG# PWjĭ9 g h&NK,)w^NxL.&ɪXm(|6P].$VVcka\E-8 m#rq 'j`ad_H` pTu 2xw `4x!ǹ5/-&L@ګ_ iVZ}뷡TT lmE@9kPjP-) L'|8 I&OA.e48h #lg!``_e3:d!E39 HiHqM~̑>=f%ƋU/~?K$G9"h !}yÖ\ yh.=AUX-FBA>O#sqZ\ɼ^i pUxi7ARl4OTx3>Q;9>c=ƪuP:vcAxԠ+6,}cA|U[8V#阬F\߭n8, JwîV_Y+GƏX2;Y5GNuj;m C&8si͒+#%ȏ(߀66Ζ-%]2 yz+ !*XF$UBA*~۲4dMY~d@>wgjuK#D @YZZPTg8ƕ9 6ӡ'zV}.؍ඔb Ѣ [0Yc,G37j,p0`^v] ߄*p/cxK2?2pϤ e.*qkW5AЏ%l8ԑdv &{0͝za _+N`țaA"ouL/ c2t)) ntユƢt`BbC~|/@$:k>UK(z3,=Y]ylJ QNXGgVׂO ]L+H ?hj$=jQC YU7/չ'%7קwj:Kѳ<JFI bQ%r9i[^x*UԎ`dA6/Pn&aFw%ΣQIV[3Pnű_ \sj"Ѽ/l&>fc(H$FJ?}O1G'p% X[  Cap%24"6ɍFw_6SF)l8+j ?~f5llAJBysEsiƌPc]\>Z` + L}[$QEFGUvCn*r yfJhEwU=vYw 0H1ZJng6Br,$نW/"&* yT|urM8`u??ο]_-q''CؙR}#+A !0BGW5IUn =6^z9Y|!#h+B8F(|ObC`Mɾ)? s [m޴U>[ģPҴ:1a ΝBأF{nHf#+@+n' ;ӉjUt[B W7]t۰HO5;~oF(FHRqbS,{;^"EZigݟe4=Fjia` }rI$?MGT!ck˦FH08jbN)zzWܱX Z"< ?[.PaoACM.OzTY7g,/Mn aJ[9҇P-ZV(E'h r6zh;B2Nted/aY,-ƽfuG?&;R]Rv]S/ "cNPYKiGl 5<ڟ`̀ߩ5_פحv84LQi] =m,& #YY?bGK :\;qOFխن 4 AK3H[-6_G;S`w*-1džguOJ+#3G%|7)qBd<إ;[Zgqi\-%,6>-'N2$3La*K}HZP ;Dq)'~/+^&C6Iﭷv4?JԌ;\\+e Ax,LKyb\"[s[{SN# >wZXsXwIȰ.,WKRM2sE&}ǀU1ͿSxlE [<99tZ}\2cv?tS3C=uu:[kXgduלGp#@TQ(E#`Ң>Q ]Z(TB"Y + dhp6CH"=K*`jI+4$էz"*mC=qC; 3S= %k)ם,Ʀ թ:$l9/_D&9;?kOAVJ4٧ ZOfҳcSFa7^b%4iX-m"%4Fpc#hX8Dtt[,[qo&\.Ph\6jYoeuxZ;C-\nQQ#Q8{KG|\:# Aﻷ,ЫT)X0h*E,M~ dGUFĶX迀^OzPf8Ō;;\3b<,r[ۄ?DKq,-L,Z: #QzBb9۪+ )p(h7 CR9 Kڄ-*7ңvW#Uzq|nj^od|T6TJKh%ϝY,z_`IG#BX*G83GL}6@u 'MjiutuHu$V6:eP `+]ܩ.yDo3TO'ϛY-N2ò Pn*h(HAT2(eadШeeșԻ# "/4gL]`魇"LUI;E1MÃv D_Us4W0uJdH#8rzܙPlwujx B,Uw>k V\0-w1i.sd5s*o&J4쳋-`~]OZ6O+Y~D/6`G|$h'B/iu>| V[&|2qq۴dYaxelꤢ\E6aLO<-X1 . JԌh!@O&[t~\Xt_rhӾٵe 0a;q)0. O~-: `mYv2~LRqq<  Tӵ4=}[wK#j!wЂ4l-3؜ߧFN~U&o&,PiL&0`fpN9>6scF%l 9{!5--XA 8Org :RYpO)zqm*F +k O)*~z gY.T2EZ6 mʒS'mh=:zU@ѰXjS"7u#PړKqt )P /mD-z˓b)2L4@יuY;p12`OU[ u 3${S8?G~"R)0Ux=V&JEFzW8hK&tqԦBaJ^8=‚3&='W2h7%CTQ+. AMѪjtki-ZpVdHiC<#B!]|Xֺ5e ! S{+ ?Yes2v5 Z"ʍ*-8?' 5u)Xr)(*.bPD9U784 vynRk]SտL֗ޢɷHd& aR2+aTq`zIuMgUАL@ݼp:Bj4Pfú͇\r  *Suso ?ܭ_hP@BهVzjڱh% dpgm%j]Hp̨Dk)mX,[7,8F.YvhUU  .u}BX6/^OύykE+d}2#pp]=G|di(ܬF\zd),%Zb\\"g_w~~'X#d+~t0&VpT+Αz .R"0ӥ`z V)׻ t3b$Y r/BŜNcV: R^j*ߐh@MeΦ6#׌) wqm)aҒ? x ջ2$uZC"?~%BĄgk&ŏI`C# *0$+ ѻw~ݲy:fQ/·r/j*uP7ԡ6hQr RpagB=EXzX m5AҜU]$!Sqprq* /bղ|m'KgıkNgrY@dPԗY7)reݍەmjkvΡ nhHEw#=eXw꯼|@=k'?:/n%Y?ןT `tdA>:)j>Q3A2a,{א.zCFXz9d]Rz+SP>͒w:[TMjtgAAs&(7:0g򒏈SX_82^ R}re) |b)Yjdg٢RF"iFB3pUz4(Gd`ZBXa Dd/9DE㗸1nL;ItI= ^z? [,`RrMm]׋\vT6Z,IaJVwSo{Z``2#;#V !b-0$7WIUT@"cq--XWJsW0it@k+7!dU3k.ۥ ,]`,F+8TvH<(,K9c&r4zG*4|,ܜEYq%r>@MZtwN:*P AN)ӄVU^#p`% g|Td!8,oH՚^7gAm3o`J>ϝ܌SUgozkzWeSaJri{dzXd<3, yLRCTݽЌMHG*sama…|5Z_oM^wtlrMy$V .k6. V:w): 7*֗z8d{T*֦eZxZmd.sn0%h顲$5`,dԒLh˨+,<*m p;@+x)k0PN}m\]wEשDK|3—&L6XɡXEM|Vc+i$ST9,赡u#qOSxrT~xӪ 4%*N&0u޳[x'ᄧqvǒ}, !E̾̚-[~z8ǀh3E}fkUJ'ޔj0F0`(OZ1ERI0;a1~|҈Zȇ-h`aɭVC26]jh'PPjJΤI;0;7?ݤwzCF& , ېn 1~&sbReb ?Z@Z=rKdF6W#YXx<̻, ?4fX"U9x6uuO٫.SD7+E1}K"i'{ޅgu鲛*3wLĊwBd{DXq+u8/z g*\Q:=lpByNAAO:ul)-{%9RM{ǴzJ syK\ ϽI{MkEbYF(6{S<]@)a¥'Jv'Ê/60{ %5?8C>{4)$K``L]j$8Q$0Iem 8/Z ѻ #$ M~!GeZhOmd #bj5N.#XePT OcنH)U0/X8Z(ˬٟ#Y'+e * N~ɏ4_=R~T\%QGfr~~wkVݺ+5,%u~2z8x!HbµFIO'j:4HIr@0 D% }Ib6RZԧeF-MV]W?qA7 ՞KN`t%3G~4$T5*ߒ1:\yJhE94c077l͘{gh&{@Xi7E %E TY0N5!jnr.SUv<>eic!S6>`JZKnѭ/]`A5OzA]7x3Pnn2c6m2dnj+NJya2&{&b%2A;Ki$m>,@OIHbf92f\zQ3kWi [;_ZMM0j-7xoV9qBp!1PHh hMfY/&/G4YyA̽V{ǚ!4g"KUe3ȹJ?XnCKdcSu=75IiPeGo7t%.*W2#+F>KOO޳hɹnd1xDK~P1amFň۔ͩzǍvqgqߟ}@t3-v~s('PI&nBn]x<ŹBCVㄒ1j)-jpލw߇ RV8$c^Jw{1Qʬ"'Mz`X o,7m<pÇQBňĉ>)\Et$V-~AK êV-NNmQ;>餟KF7~9%Izftu"O%QUb&GvW=J_z$FK%9ʛ6fshaz+>@i ?W;G~*4UKwVMuKQ^^j͘&c+4 [`Mzaa? smBZL`"Ȱ@XP-"Uc]@)w7 U4kƊƾfcQ4MKQ &Mcӌo`k]9R/O@Nh% SSVF`F9wuKb!&}"H>5D eڬLG[jFP"֓\a60CaC>F#O_vȦ*3|xY!dhn뒁m*edL05:)®+4ɡ̷8l5F`.[ӗ6b-=DD-DAP2Wy &@#w. 8Z(\ΧʊT_sN-V_~ m~}&o,}tU?nYvX؍JzY>y.Hb)9ndNћwp3he-ך=N"{TJ"7`me˛?x0/uDm%:oYPXC2Y{]dzD8˂(dQ{xX2Ol1/S,R{$6#lK.eY)LOXݣ"TH.YpʒA6!rʢMFpͿ ТI4s[ÐirxH͜{~̌u v.EQe9Om[w_`DoK) #MϦ=2o+w};+( '~g#3{X7֕3ӻ5$᝝άrv%IEp}_NJٻ,l.n_v&?4{JNbb81i0l\lQ;v̖ƩLTA --@"Ne肗ΓGpؼ! ~U6yL7u7y (=Vyd#8yi]X_P_H͋F|v}=(Cz_ 曥.0%ĤO UQ0L0i㑪# _$X>^g;JS^#Fp E f,ɾéKYr{oݘxŵ ;3ZtްM~ZC#ߤvcuKQC9.9o\M0ph.$B)=E[n?GN=a}buScmc^DL }d52Π#gE/{tSJ5l;R#_<"}@чAU6w؝ԐjAaJ t݋iAzdHJՊIpRpћ~+Au\mMVYf$ŒG d,Zw?MJ -*= Cl~ h4ap70lzε$ W[Pde*|Ç͊Oё/a-6X/ج+ra*Zl]R&I ,Dᬹ>泦oS-bۨZ @A٪ԥۘR!FXMI`"'V$}ƙrPG+>Ք@-b826fK? d` q|Q27cCƍXvs%þ6r=+!v0CsۉchhؙK24VVˢqi:!}Ԓ:812q=MqN1#@ɑiq[hb4IC,%]:Xm9Rjvp[:hlTJGj~ {@%7[ld鄤PO@sK f9-Kp$dX16Kxa8I&4wWVAE\m_28܆<,XTXUHG7@Azk44nVj8-A%H/IscNGĈlBMkH%0c}QJYMg Yݢh 6IŠ߇`2oKVu V3d ·0HOviK<Œo)4̀A`u(QK] %Ԙ_&] ;Qx (oƟrhC@UvTh~ ,-Yf[HfG)} h,+N]A^OY࿔uYƽEJyT>6]/oQX Z?k Ad=\%+[)-Y 0FL;fNW,]g'?iTkh|F9V8P,5CJk:z+.ڣh Z8ӪoԌ!:a.%Mg0֌n9/-U%­ץEHus7^Ă7^@` )O$w%ިzr1Qwh+50a倂QCSEbI<"g{=zl#W_w]d.. )N7nMx3qHSk wiyRV3"hP]0K~K%-(mA&O嘽C}3bi}r>VX꓎ǧ,[WH YzcnKPxs:WGzO5/,7 wL^`\G/F\J 7ֲ[ϋe9H\8SF_&oDao2Sɂ#RC驖p ^_3 `aC^TbȁoM2M- EU{[j0$Œ-֬= p.YUhw*# ~z%m2jMwac80=}|ӥ9`. a&OPMzy–;=>߃C,_ȩFL~KF0˅xwg\_ka{,e7M}hYETNxLS E ;0೰/FmʒZʢQPx 6N)`[w9.0DS29,fHx(0APBU$4i,zo7m,|-5kG%_*v[vIe`41kb^[Yh ڃnn#1vp=7(l@pN q4[w`g0KJbY,[H[@#-(3V6 4iĪ&ݧhs;,dvXe(fR+nZem3$Mݺv(cFN#x}Ըij ̨arwb3:T'¤,Ќ/goUܩYTqȲ-Sc |evZ1(?akM}3C;Xmys Ls͙CտK># o]`n~ f2k9jyL`9&Ѓ#LF=24L=q7V' Q`j!7k}]!{X,a>3GtMsKdH'f  =_j} +4>gxzHoNк8;>Zq !Oa:x-\* -)=Y#Nf~lBYIc+)WT%IV(U /3j1 ,+ u&Gpxw%0 L)3dT%I˺qZIT@-Kjlu >H=Bq*L.[6t>nT|_7n7{cw7T?5 z=-ҢRE`–pfe&q-'GUVl.tfntFa%8Se3j-_^Q Z7øc '6J?5sSe7cUwKLߣAEYǰnv/1Qն49e1]fVxXkO;V\O†lw}h %0 ̭5դߠ3OI`lpu.sf .6o\ IHU(t@< srhէj9e[*9k{ I* fYs&{ E[X`?ܻ.?")472۴<. *̴&d5`p$Df)ӳw@5M|W>ezED{jE 2=.[DXdgQHxMBk.Q0y ʞ%QRVe}\Horh33;"m UhwֹR΃ z`b 7= kFkq[%]2ރq] ;OYIs&\vGX;O ;z+dܯKfaL/pR~9{r6 K/Nf#ܵj^v(136|M;ukwwvRQVٻ) Jgǣ&|]-oBka[~YH I@sx:Fz;V*k 9w6]5X& ?sU`=Y("V7 v^FYu~~eG[17=yTy?@aKx\>JѿT:`D{^łnJD+׌&(~60d "TU^[K9e%Z!VI5J|(~M ]pw9s]Djds !GU xZ46`4!{Vp@̭l+Q`Y ƕK%ާa640Cd\cէ*6YW {eB85w[vz`jncpT+ ͝ c@aXrqh8lZ` a5jrg9>i'^5r2$7q&L~aD%GjLI#sh0NSɚlՑ)Cy gI$g8*a"s@{8z2t.H%9XZ R,M t&u?(5B0˚Vib;jgcBV_Eu{FP4CI4X ϔqXG9?t~KM@>!JN5D] Y`efߟgG-*8>y4?GyjPPFDdK+4?vc}>OaXҶ{,mKve3Jp#XxEZ6#JG8GC0L [Ɣqkg)كK7A-"$Uzn)gIۀcqn.rtrp G0e)YkI+.Fe-sJ5϶۝9[GO07dƠGYm@2z+;F2 DtvJ< )7(PnңS][2mA Om<bq䤆bwdd@9n)3 n7: ͈2CHXV)s|{%X SHaK[yÖ@b ɓu0?Ā^X .<ɃkJ ǓRHI!/n ebJbd=vP| p}r_fF^]Mn@ίT]/˲{C#=KW`Y (n3A!+>یa,YU6K`CG[h&vg  TJUvB͈oBd0zx+}sNQ,Vw>Y҈Z2F-$s-$?TەY>5\ LK|XC_pd0YscA̅s1En6:=V s^l r=v2cX3}ܫwR2 l֢l} c z-ElQ:7@|kY5 R[d,,T[dp2g`l'7!=,{/K0=s,T<بn':T|9뇯g/KAlB8cݍa-Q4rlnKJF^ l[vg/,Ht)5sp`0a6}C!lLf#,3"!r tu۶\`[b DܡhNJʊz;g0$a 6ErQPF&mhd4PK'ˢBkبerMaۿ}}kLiFQKy.7h3E`%gb 3GRR6~StWoA 3)õE\6x} -6rX2BYITy&lh𩓋C g`9m^|Cԧa,ZyVwr9eCStciCTi8 q$і#ԑ3a껕\L12/TM\%\ZϷjFdBMVTfyIm|v؆us  Ծ1+ XgƂn aKj9T]nEXTzO&E`_aZ)B1MaKj􀍀uHq9:-Y:=Evr5 vn_N9 $֠!^9ΰD KD@8Z N!9Ǐ.J~Un~Jkغ/hSླݺ;ZR:ԳT޵tJcJ lԎ՗ңQڍV7% n#hZNʩ7RupJnʩԜg[l- OOCsuc!o=={;D=”Uc#U\wU*Kbo@{kYᔽųdЙ[U4,i4igKwUЎ X[2SKR}J.}ڎ*F:|6XoA=)Rt5.L^f p03yi)ºt  Gӓ)2d;sOJˈ)zf* .z+\n0!l] @gf7{ET (Ufr.6?d .1[>6-h=w\z [B]kKv֩rI.Tw ʼnڸ`z-ٲ ʔ F5CP&F'M|OwTENʟFd ha]ג:*UC;?u5'ɉ0B8M2KyRs˄tcEd)3""Ǿ8j1B*0Go/ˀRͣ@T.>>Q$%G EE FNI(X=΃."eJ51,랒U^\.ְ#Lc_rנ% (˭Aň٣mSWTůd_.)r,`ybIKPh#Ha7*'ғp!1?-l䃪`/ Ta+3+eʋ>aXݔdNh}YbDNg_eҀ^)[Uߦ¾-ϣywo`;>vwZ!(w DΙT;e]ny׻T寶AQ5l>H vf4|[ fowe[>m^MT4!QwE& }37g݂qstP Sq&Qo'4Z401ߡޯ낤7=T﫬K4}7y?Zu1;Cϻ knYpbe)fʃZ7).=b2u~jK>P()sXeQ)?f kTvuFR 4~ּĭ< $tϬ8>q0wsbR}ŔO-t<|?8-ma9r]%1tj |#vpn/pQ XT+F|Eow5]}hVO,l S0vmRrU[e4Їsi>G3-\{i;Z" sZ1tt1Nr9zF^?JoɺV`EURԇxa`eJ^ p_ Z_Hf@=-r,n;iW4sj !]tdJY Qf6@udYV[JʬpڐyEZeऒF.uYj̙eO2߫F@sL;5fP:tf~wM]%ӹ-(>wjз!d}Qh#}a.(~jpIE@1w,dwf47*Sǐd?j@|Mf`(EDt CNhޱ$}̠yHaQڻ,1{KWR' QBї )`ټ`.!>AD7*!vO>A !>ƓQc[_RH+ ɿg|Ǩ3^p@o}뉝*ʰA=uPj ?x0rkқkzѧ;y'1DRXnCήZ_VcaHn2,u܉9T 3Ln>(n,nrN+yFnJhI`ԋahYxR]a DlL,: Ņ*-sOqzIQtafJt22DźŌl. *me|41m-iyQ#ߥ8J{@s YtB7ĝ':Ғuh6Cmc7OРϔ>mW[2~J}6z|vPVM.l%-%f9/0lIҒJE%K On:5΂aFlxN,2MRS~#`o 7'-( .p\* yJD@اF-–%bDY!PW9M~J@~:K-[BnE(Ve_K00 Yq;k0JYKrSgP^kwI9k/w^N5ȋۅTMt[ "[#k&*0&݆ (aM c[Zk^xm)"dS}z,Hdcel+ EnjFGa'ԝ.>IJqti=E[hK}gAs"ڒT6Z{};վ؂djU.sQ|B`PK6/ƅQ^r@U*,&dDA;q՘@`5j|&c#JQ,RGQ}^\>#?~<%\AJ]Ңi \Ψ&řRGrq nmgRdsbS̡ڼQ;yvqzJ(!tS&•t,%9k dXY&pBa퓹J%bCMDqjJ` hD/I',-0oԳ\XbuZ"T%=tW,FM$iL4Smrg-?瓨ʿg#0"6BCZn^M bHXZlDtR>,b־rI1%Axv\s714x>U 771wU ,DE|L/pޫ}0[k63 gky+6Fw=:2U|%" )X¿GWLM |E \7ƥw߷R+,TN`82~kxն[Qw*}6u3pm[ؤw6u)dGh&!`XXQ> ғBf32[orVJRÖT/U0h,=4gf6E{fdp#zjl ȹ2ԩ5E fY=05/:a$ 4z 7 5]"aH XJ, MrVmP3`賾SOr9OQt4jcYIFNoH+D G]RuWH'ϲ|.Z*9_iyFE5)Axw,SNy. k]X@@@A iwb-3jlna ΂~*[696|4'C3?5?a?̨29G26Jዦ?+s;ȘJȴ((Š$/"Cr]i+ue>Jt?43uF--TfhgN>Ͳ-my)_3)ƆPed5. q&f~Ga'=t~_b.y^ iK$:!nbg.sC^;uڥ'A]s2j82&Gy7R[7\ h&rn!J \w Ld\P|m" Dޅ)y?|wuDjuD p$?ѭ[ds:@ԀSh7%Ӽ8ƅlk;/G7s$T͉L8jd5$#}FV84^t9umLՁKM'.R`6< +YS p,.=Rvf"k2d^rkM]=^{KEq%ˆUYX%C9W[5b/փH9c;\HT37o׺ե%wY׿ZCCKnbk7>.ŊP(BD_ܖ4zx67kEW~ނeֈS?[cYK?!gP/.qefmq%qNNZ߬KhQ,p׋F#RRKDAXgb e{ߠ){(8[a!_a,'3?O_g9g\pM Y db{}Yq98;S@;X̹|xr50Xh CQ%'&Ųmʯmh2RNnw]ŃskEnxPt%n,!KrKPf;I'gL! NY CoJds7ܴ!.Xt&vy(32wZh̫DE-5ys蜳> ]^$a r6qheBnFVPC0DؚY,&oڷh=,]-V<_[6@^r/"Q : he5Xt'LM;IJ nt^E~ aI1;[ zwA |7Sb姥MuDPcjK&tƞ枲Иdý7* y@mz@[F|Li|}Wj ˾uhJrHU:8rNQ-Fn.܇(h Wɴ} t. 9Uxo; R7)3'GBS* J {Ii4|lb Cj20`pcIO8ش_$(Gb_,[5S`$j M%acĻM4WS}тT䒧[~h&〸*G&7Ml| B3l190;> x?GSQ^*c>r~~|[B*/.wr )רUθMx9PzJw)UTN*k;LVHyN.f+tQlmH$;AUDpJݘ/|gjִZխϚZW\׭h!&]R=Qww](+Hϻk:^FFRk2,\z>C2qFdۓ7p?/ }dVAb>q7yJ?ɈC(>W~ÔRJ1W([XwH5BZ7(%:5aҥSV::eD-%-rZ2R`ѥF4D}&-!pxB4Ms;.ZOKXlvr"a\1q=։@ ی8/ɷEjtY(>R=-TGiqzXNR| xnTTVl ~/weIk3"E#tJVsײ|z%zpŐrRzbܸjC܂m4|2{T|3V} u  Ǫ֛,25xoj6*yBT0~5fg0psvf6N~^[3e&;Lbwҗtz v~)m1bz>yp BVKj( N1ޛUCkK,Wd%/J-ԍ47F| [4e&ռK*pSF"ܛڿFrHHGya禕J|s7R6AĊbJ9WP5WŚרxwYLSyya)ji3j%p:K-53PDӂhKi('kSK 3BEὐ,'`d8 Zq 2X^ľV9tiYS6YYˇV\l IfB0!QP'p{QF] G`q_ֈFo`M%hďA"mrl!? YVk6[N2YP{ʰ(jᒚ# =jd֜Dԫu-5@j6 7lIZqt*ڭfJmٸo♧ڄ,nUL^.H7++rfnHW8m#J5kTh4'>f(ও ?j&?\D.Rt^B)PMAҀ,OH̻$ !'"WU.79TK_Y2{NP9}6$OǙgEN@f ~g[xdx\Eg#k҂Ɂ_(*?V5k> [1T(eIl'G5>be v4Lfֳh(i]лq*{Pw9)D 4w Y+m#KfӅ!KSa(E@ML~f%Z;]ݭ&݅0H0XNѼAH@1u(aDX t!3, p>5]KV?.aaȻ,sԀ*񢃔ǚy5frޡO4о `yf'o,f#>8*)|tqܕPڸ'F$!ŭY-+aw5Ұ#*:is:WL:uCP*dՐ`f!nkS%pSVO戦rX[M,y)Qu!f)X&}y%=\rj`HK4"J3D͡h'\aAy嵃eNP8˚1EBr>EuRR#3̢Kr]JV e&`!ԒBDy.E"O"a@rK,E ./0 Pn[v-Pq A#"BBM*$X0ݡ ΤsPj` f)%^8/[>[=]͕~K [0n0 uY0zFDKԷ.GMVhXAG ,*" $IgIyW}h dov9XTvTyf >Gv+d-4%zݩ)զL=AٓXPH"y> 2TexBXe`Pk]`5dda1'FC# 4L)BM/:GAE?;φy3SC@3|U8x8Y>ZR꬛_i5Y:5LW W `돨 sw_2d=b4qZ{=\a!݄hL}+z*@f7O.&Ks[1 3wǜE21g?LJ6gs:lӅ*v>)7f3s߯r=vm6eTA-^)HUL'U\ ?a#"*3ӲY罊 %pړn4[rٸP*XZM!`Qtd;Ϧ<^톓u6nt&I|٤ un.1^U%*>R=х)w h$RT%`=R+$j2oÖTa㲀ht),s5ϸ3 Z BZuʌ-T] 囑箑Q>}z˩@FS! 5p '؟ u]F=L5iL;|\[Dg{Ns.Ka?ft[(Ca0EkD-I9SV0pʹ {YNEOQ°(sNE%M nԤ* 5ԫf [B8NYg#xYF@U0Ҹ+SSol_cq .'`݄l^XO#L,W!K.|i آ[1aw(Yu2ߧ0GU;"Z- A&j:H,YSH4̾ZBj1g9*j9n\`xpYt/ {wOXdڴ}Us41a Vt%nE qG8b'X9 xg_3{} .ĐLh3\jD4|\|buȅY&6}w*2);USoҰS @+1b-~i$6~22V?w2\GҌg)3  ?18y],wє#YdGSoQE Qt#'9r+PyQLu0I7Z-2L-|<9\Uyeuq Ɋaq=Z6-.Pu-ȶr*w}BXkCUU9.P1aVUduRbPOW'|uj, L+3z ޶hض{uC3*3<[݄ z,9ʖI:Iq?党4go~\q.6S3{FnԈ l) o{,Pe;J(k{FYm#>4NȺ*7WІsy^QisV%3 ,Sz+Ҳ;iHkO(|-՝d0vTp\[*#̩4osaRӺy~-s5d[:U74+w2C߼Z=$Q J-5gcI~(~g)LD`B}J.%?j^Z3iMH͗ % 'c2xr{cLwofp䒔WL03>rv' ױK 6YBRfKy74SLWo;C3V::өS”]Rqf_߳b\g1ct'o{Q•ӄzFHk #'^jxfDӆn%%O3+v1*1Yѕ?jI`f 5E"BΤ}z7FUV9"qӊ+ F?$]CYqY+ SU5+}(|(eS.b`g|҈(@lGثQÛ 4~pu+6f[Pcg8v)o8+oFU<!sBϟ1' j䎵 <oeq_·}h~_i4zǦݎv?)RimSvzMi2+gp;Y~֦Ї}e_mI;ҝ2^h@{EzU"=:x"=~{4VZC:.> JO,$'ӛK,j<Ŗp.`+R0fF5f>x dQnX~^z<cm Mu#Kf'۪uw=yUyb L /6]UECFe%39H0ycƙUEiȥb#v]-wl7,CJ+*{5T,N:֍\Q՝/#aʖK5U RAڸv 7@W^ݕW'&췛iX$\3ۄ~ ?ʬ ,BmV^S$ze _9R[:)sefLk$ڮ01<M;YnzҶdT]¤ 4$7-/X(C$נ}O wLWL.~!-\&=K|k8mm> EApkK|Lr̴^Q[2[#>'#jhƢyZ|&Wٟ L[8֊2Z7a0+7ui`Η5^]S$+5w=MWJI\'BY|!GaV }crstyU߼xNn716T @=:VA@H~ J =]8 } H2BK~L&ZКEKtc O0F!A!ɻA1Z߂>&VCB#WR079%ooiћ) >oCyA9BxOw{b ) YGT\RLD*lBK4oa^q6iHVaDmE췪n+J/׵medK?WH<o_IfaPYE":0+q`&Q[. lㆯJ}r6eڒ^7e !e )h7ѓ~DwzStbWY@fg!3{`>,rύ;9 : tR!`1x~.e>{{nKkV̻M{7/sNj7eLyVq*trv()`R, a(*+k-6`;Kf׃ Wqbƍ G{B_Rw?H'jLa[~;MѴIUIstnєMoq&6VU"$$\km!ߣjO+B0',G[&J_su]8-wŗB\zj6ay ><@ `>%m =@ ͎>!Owj'16|_5},{VN-Zvun&(B~zR^Ϳ? n=~q 3@|}CN];=`^Vq?7A{N5 p-zW UE*J>O218)icD,O+,aj:LB.06/OXBr(+n0VHI& y0"6*L 9C'1`,>{(I>|ť7홼ѝ_"O KN-g}`jdte3/8N; K#jgQ2'cxvM{=1J RO}$cL ak*ׂap+7X$ZnH@$agr84C,e}F97םGL*'h-|nH όQ1wIs? :OT\{y՟=! -}nHvoS>yڞȟM'0YEP[cr;bkg2"b7N]F꦳\gݕ6;9)қ@Ӑt)~1&!j=T8:o 4hilgMI/7%,ѧS4sTByHO;Bpo9wוqy ,k&]<ē.Qݩљ{z4ȣ3.%aXgjvgم[QŎO~LSSL=*C{]̺Oj&tќ˪ȄZl9h`Az]C;qwmߔ\]G! ۃVS>_;VΗ0J2+}*mz_޲ާڽou[ia>g4v}2`4c7r)@2n`B'u[ݝIR"Q(9AL\݄G?Q-EΠrkW(MC^\s]8ypӼrׁB˜f1mۓ32^`RD`6F|*5>BºgQ}0+А Զtm4<sf.|[rf.٦Yޤ\RS#`s+|N˰ n VٗRO(rq$As+Vn8bio0by~`&&3urgwV_+ƠV eSiUJk.B8^#r 9{ @t#q sgK.v'7k7!3ͪ%-bk7 $^e*n`GĽUuX, Q :5fSEe*tB񤗂oL" BPIL9Hl N.$0GѲ/|?2V.@gεO-ꋳdJC q A5n~36MgvWC=7@J ~BeH@l IcV,p6HDl$$6G8Tn2ۭ]Kr\%e9ju#6|gv4>JT#m)Zzˠ~ 18kS1iÈsu,c)"@Yn~? b8}N@@gq"$op>&,FCZ)HxE^c '>&B\t mAA5_U4píbXn.M?b7E;iÏ 2A} 3)E:>[FE2gH,yRcMU(_)-YU,A*at?f{F(fGU|nzw`xVJT%点P3T1\8 ::ȟS,#N~LEZ$72vNa^ذh;Tֻ >OkǼ0FZq}P¶SCS쟵S$orSZJB3{eZHeY&I]cmA+!%S %2X6kٜH lѹ fPভX-ƏaPm)|Y.ec{n[6ʳdƏ%԰Yj Z3썿\py"?W1/Z-qM^WFK\;~l@ ~1C9xxP+<) ?8*d/p;0ɀBv;ք į~  u^]ߡ\ }v\LDwcvٔmRk^v(cyס [Z%xc^{@zL#8˔qCp;"(KuDL;m(4?+os5|\Cj.\ Y~ʡdGEIn$s a%Ph`ՅH1?$ܑ#-"w!w,=I/$$pu*5[,c.`e.N@~|nte:wq$yC)r7VsSճ#F_ft(^lOʵϔ̆<S ˴\F*Ԩe>-;xA+l$I'8l2q] ҉A0;0xJjؽϧj r^[JHТH՟GL>ܺ)pƔKAU>I'|D0(y|9L蔏XGv\'Ѕ4n\V\NBѧiU#qKxTN\fuՊ)vє<CN09L7^>SWZdBwWF`II&5=}q,{eR>'&/Zouo7jf^+iƁ7ELzYɑ:k$~^M특wsy0)7Ulf1&½]V74XOJ`Il4L4d0>aG>`]P)jʆ^>$!ĵ$aT2B9<;+7 j{6gCy`bfyw}DtH\)Ӕ">lݔNG+Wc0%ӍPc3Z"%Zַ QySfr赑D4y=\lw8mKZ~ uֻ;<0bufv#>ؚizU>y$1|i -QE+YuʘfFhi=s@r6i GhAěX jLsw=uPkޗ\&MMhF>g՗e~+|RJpPr~m=vv% W ds'rc+0k\֓?\EUM^Kܾ+e.|,̝ŏ Dw/XUACɓUD3 )}/6$bZőp{A'sYς#U_݃X#l7ژ/oT nlOXʤI`ӽXnS0j\&1]eW-ABxhZ>˳][}Ɯq45ŋI3k7J36 n2/տ(jf8:OS{uAxpy.YJ%!h?|vN鮱xsjmz~٘Mfq)sA <)Y=9`|i#>]i;n`ڗ#: X/hYUՄ͐TA7SJW!no| 9BhSJ#!qL R)&omd~O_FOD:Ч~xN ǙRR]/3㛪a.Ew*u$rȲ؞8RǐA.1%Н%oVw:I3y/7bgM2E+{eJA|YLk=YdweSߕ^gNŗ$?eltJ0,oH!bY4u3X|Ri=zW2:^95H|[3>~6j鄘jkm{=2UxO5 \n7[DXPP$80';pϫ+Ը%5V䋵g ^.sY~@up ՍߪjԶ  |*FRU> ; _Z|ׯ^ksxfhql,ku [q۸LԜ&Sc&0t mXT<4$v7o%j;袬)n/em:V֔rI(}!Rs pdDmNOgSbD2`U[;)Uuqlrt[Ue>\nm֌w7yӡ!=iU\}4+|V@~+e=U8{DiAT1;. Q&z䖶ZF;] N݊$~ߞ#cjk%|>zI}LSpNJdW9R# I久 Q7pD7:_b,wN$ySg17+VxV|K` kwbV>*\(+M6{]\|RƴpcVr$[&櫖F`I.:6jo$s$ fVܗu&ym֧ jֳ+ IL&{@zso - oOgOO؟?'܏lHη߹6S4+|#;ܫqۑ31Zi4fٍ*PU݌S@=T!grWڅB^/}sҴDhtpG'%V>}f}{A=B@q["WD)ǦOSu-8ٟk%2;#F"w e &eY Xe$T6u\KzH\0$f `Gv$|yr`cF$?'&['ex"o!$݊-GkϨĹBo:$=U%ֵb& uKbxnHM`I7ص vD{%XsnY+R l"H1b=PT%ֹT(Fկ,EPEáE 4aq?k%4.$V:p VCIDd״?׆)lT)L%ɪǥ`RBl~KH ?@Zz%Q0X.V27=m2J)Fx?L'~fvΦ[-%r:.%NlMqs֩>vjsα<~<)u7^6Tbنo Ң\<⏶蘆ьÙul.؟'l@*9}7eʟo~A6óA4~vW{[8x.M"ŜQq9Y_3K8Tv%P.Z/e.]teR՘iCbhtPGQv7rb Sk?4xjo:]ٹ)Sݙ#9.AZ[\ 0{陏t50'%dw{d)Ł>[a /,  LΪXVr?S?/wMCSd|0:-R@gQ>) [3`YFax|eZ nt[vх 9k]=]nKuxѽޅ>Z Q[ʳg&HFmtyƦºRR x Ta3/FOR5J))'X;!L-@$ji:B3ֽw uϭS0GVX˹x'aC̟0ǖbweHc4Ǧp`03GxØuUNo|P}TxKUJ,1QMH'EG2B ¤Iy!,$@g DN8aN:όbMS&E_9-a5zI )%Fx^ R ݏq- \6a ,6c[8m2tGM2'Cp2XW\H\Aܤ\%W5**E 0'/ 3uEcn!^IyT(J/JUTܑPpI?HV@ qmO`|2PKՂzՙl|X[] Kxg-k ~ p8JXy֘wr:Pw,˩9=smxʲFӐj2iĞ|EZY/ ht!$?p v(^l#m:Gm]:CRMoJp3ykFB]I`sV-!)-g ׺1ENn@oLiΜĔ(%zW*1*W<,1e:e!&}l& xZie|>OXJp6l޺]qfHْKIQZ}Rs)n ӣc§{?j&em SѧMB&Fx&kƆjyG[rՆ MA2Dr{U x$IY?6|רME^+D)yi-$(a<|yZڠJ!MF#|ZaLXC`JVFXJlX^CG4:V5(a^CFوewVp`0!МCMkog wibiSt:+˄[q&k#DM-PCfB'NV" 9-ٓY^ ]-UYԜ|9N-gKfFڗ4kHiWTS`/F~`A'],ޝF$*%}i%[<|ZH=sφRfA5VJNd_ xkJCwѽDe=o"?W}0B cd{PƂeVjv4<>i5',P glϙ| `Rb‘؝R"Iym_,8iE.i[kP5I;#~eoxsUi=O-A fUE \6Q 4$h} .c I7? q}>?w狭yG'cɓ?FVKٓT d뽤VI'8ՙpgkF$$u5Ce|W@DJ>0fw&ikY6` I86OF9A}/ S8cNV%QI'}?.Vs4`dW=L떙1c^,l[Z+f:[,ZgGčfa(zKQe$z3; Na=Ν1Kw{5g>'5݁lf%qseԽiKg+IWM؈oix[[Òش$HXG<^&& .#ϵ/ϚSIVOJ#I%-kViX6=$FIT琮`geC01FĂPjlr1!_{o8VSQ E#y5WW$8(6݈@l=/x\QW vOR_\ppGɕ8KdR;q\RؔQJ1~ZƏHɣ8)cZbOԭ˯\?Ǵ7OđY[[O,7[>}]I=ہy `&=RW+|,3}O8+${+RET?"E7#$W B8=mMx~Ϲ࿙h"()'`qJX_ESc T⓪Ý QwYI{f쏭k,-c|_ض|O*&VPu?ОR^OA^OE5[Hy#,`~KLCb9~6#InMdK*oĔ z?^ljX3LlΪlVt@ X>%3?U(fɖuUi݂KћNbjv$\N ۊ~UBx#1kblkk*enڲ-l2yON7"MЩXցL0sy欑WXb /@Db-)$}n9޳d Ʈ`,OSǜXŸ+hq&FКQ X<ʼ\"`Gb M2[nam󲜻,f4${(q!ʹcmnDy?r-|W+ $lӣe<<í֯o=s}r^#1g}lds+a m#ԕsy[V% f^VѼ[etOW|S[w[&!5Xbސ욓;O)u-C\1ɇzVw1ׇ0"';P,9,9[en&[,FmX] uh0iQ+O1Ͱ烩k c1b6}WSvb-v}t2]tH)?hş].އ "6Uc&\+0a}cZKvBӮ #:ߴC^}I''&lAmҲo%)7aCS(vBx2iQ.-r)"'Ȱ1^WӋM\zJ\U*nyty4TP`y#G8E L?D9mA RpK9bʥ5W&w?XVÖ~]\ 1UY!eW.39h2#OԊ+k뻯$ӪK O2 ^~#qƗQv2| kO"ZiJ}E]IR'5)^Ӗr%Շ(I@rǚtY n@xGXu0! A >Fg` yy2_{.] ZO-.zpMLQ&98l@u^ Ӥ2v^ʼn#P$ӊn? D nܕbgv,D#I|E0xi^i>Rm|zI>]e1Vӛg3`?+ RVR^hO(uʚnB yQ^HY#u_\B[:mݐ@+LkOML=Ɂ^H e6b3rT߃sstC/H/0HsF'㘝c~m1OHΖ5o] 6Ө\cIϹ$;)NQ31gZQqdvVXMqTPB4ts&s6hw#@E5 y)}NҼ9kI*ԭCYq"-ykRe:a *,\*=*Ym|0uf/mppGWF#]GW{?~n `"@s9fKMR%lb幕 P 78xb7F)P撪NAߴpu?^H4csхߢ|q=ٝngO _GP:O̱]+z7@8r ŋ e{tM3;%Ky Q3gt4_P)7T!*khsq)c#ɢpi%TxHc^zM&pt(w7#FFTgC-F`we0y=~8ߌ%^ -2̈́L/U胠%~j˛?:+wnbcLg\ϖaCdRSlmΙt(u!}ug6n6B̸tO ꊱԖXkLI{Xg-8n/q+ $7i=&Ib-RSDl AqnN\3tsUl& 1[h!>'WC6!1.c#+8 ;|e-P]єNOQt{ښuoFkpuML6`mztنD}O4{)xǺ.w_MN=}.wD Ŝ<9vza:EoOAsM~8Q&WX F UW]ӹXުc \z[Fʴzc>G>=玏e̖P;߳J4e+3$"EഺAAͻ0%{H <>z '+Dchl/02n}%" P}5N&k[ͬt*C# '432~nDsMIM"ED4Z`d{٤|RXmH*Y,iBGty׼1bpLxfK#3gA%)䓜bͯ8Yd7JiS3|Rw#`7m -ZmXd2BQ`xKLwʛkbMKW~tM9|Y RsRnkⷆ&$e`G#@N tojjp)em{plI=P`+pnh2"_L{9-f =>NO}>YTd9*m0LhM^Z귮,neLJn[LJVo>k,Ɋ&ϴȊ1/c4&(\3LqcEͱTwՕY#MR"S1  0]G.%{6Nd%l#KSU9v${DdxZ#,P'^kStEAhT\ɗ\?b+riՄmrc~Mf)(]]Fj}m{bSquBk~qp o$3h3'AW}%Tz%0=c/ ioTsr)aS{CU>m ZfYj}-0d:_h{ )֝:: sNR bqc߸5oOiæM󿪵Ϣ7Uj5UH)gbbam3[t!e?]x#GRF?HqLq>ym$vF+Va 궓>k`&^ =fB\M>6P)co6k3;6x͢A}k ⨩0Qd6*ZfˎX'i` ^m̯3/HRxŀIc\rbuJkzp)GAS\un^ qY$Gp/Pc< ȉRoPZſ?a)s[.P&bVK3Lձ`6h|ٙ46\뛘 o_CbsT;fzjL(qfK\u胸r]1;Oh#p xhT32E2#Zqk7aY_ajƦȔ:;d} (tLTg@L-Uޟad_Hc,"ebVa,-Tƛў< KVԓ?vl,P"(&oxc-*O&%3BA͞GnyS+qELL'u'Hz8뱯AB,KPHk.%3MGOZ 3֠LO$[<S (r,5m7oV j+Mg!-w +8?A!,&-X^8&M Y{M>yَL'`–RZ/2|eې7æ5> 35T;LVoV,Cϼd65O-;k;fr&>ݛ35C"{fa="VaБf\(sED)00 -i+kSˎ:Fz0`Pz oބzi j~Kh;() "Vzǖ &î{pܺ;]';L ^v/]|C5=Biez#*:Cbނ܆ҡDG% 59΋6-2 4`U.$ِcG u]"G9uJjJs)>5@|oŒ-(7(o,H9H6I&nzu.aN/+qyD[4%`7&Z޳66:aήc( g9JE8Y[(Z4^m*Ley>tH1zP+\142-zjcMTNxlf )NE7af|p_7efSE,@[]Śt8*? LmT`0A'ُ8yon,pY*F!LX5n<4^Wڒt^÷Izigb{<>VG{5j[u$<_GasT.b:{0#-hiCZ-P-= 6ɼ%Kh\>5\CM@zMaS L= dsyQ [h0fdCi w^]#l.^][=597w>Xϻ@jYy8NO#.3:BQ8A'neVgued7j~o6#: g4WrϢ!Vw~ wLB]0#9=59K0u*$uD|[{䊏Y5OIj&Ty+^1I^ot|$xx OmTW4bw1|ar3(6 {+v(1vGYj^j"a' iu=ˎh,Ėyl<-]qyǤJxw+l0׶L1sM!LgYbm9Ww7խi$uAoߴ.`<ʚ?KE8"9$1n94֯U&ճ^S}ϧz+FvC+xr]NQӤ@^?bPUV3PӼ9-K.U+Eeb+b֚#cnb-7ItUaH1A!7YcrWl#̞YNݩ2U *&Ay^%=X<#D,vkҼ\\dzSu{jh,ZS=.ٛ2]OFcYH񳮃$71 9KѶ|d֣7Ke EbPmr-ವmzemy) <Ȣr܊dAz>3UȻL@qaNKs/MhL]+;(x?BZGؑ s@=`m2f*6wؙ˾B,037 ̍Lx,10NONk6< >?_jesyK-WOݤ2 1,xvdoE.?EPU%j .%jU\#߰yo&e]y8OKLB?M4YsRF q,²&\րEz jV2 ݬǶRq]"q)_3xiS+0[x$0jM݊.3@߄CIy^Wuw\ſ3 G6{ bC*Fq8-dLV%jcs}fu"zu*iFI,ɮ䊼rbl5uִ&lV.)J7GZhtud?_K⽇Yz d> B )Ssl Ar0YƢbjfB2ھ7 'kןGp%o롔Cm*Dr8uVkwGP[ qd{ZiI2[sLR)Sͦ9gnIA%/'R@&QzaC1i<#7/kJY|RHFYvjy'RSj fH՜'ޯr!~9LUEBj @nkS6Ig=hh*I/E36 u(|=xRYWerG_PMEa)YJ,|Pj? ɠ cِUv^wvk-m˷Ca' \V|gIpo-2)̳y+)սj:"#XFSzs>ϊ2+!> zellP꟬ m3@8XyHWD i83yrW88G _~uC^/g}`HYOo<\] ~nBGwJgevg91+#T5)r T*2T3W1ԫGZ`;ʏcI~m:𐓫Sb;dJ>L&5Wjg[{yiޚmd!˞1Ö45YIƲmC87r̚{_C')Hkȸez+Q, Wmbó-$ ghzcѵvHMP#&c/ H2fq^mI,&9}FZ7z8 U]q%'~Z] bBRhvL1*߈s[)@0׀5 dk$F ,_(# |tEE>kQm%~vXWpSڔ4K÷,ֱҧ0Z 1=.1=]Y{X3P>I3N/PVv:a? N|Ci]ޕd:C*^WM[ /K}h^f'Z3fIpn]%h:$ԥWJ|f~ߊb,ǚS+1Aq^+lk h7crGxd'; ꒧2 <^;'y:{P{"6v`sֆtt#{j|>)c0CS7Ό@xظ?p {U|-JX\)>UE9֌_yHGw`?&qyè^,qJ]VO5Z=hn+#%&HB4"=FX/;V)je0~g;=p+yX!ɥ\J M)bJJL9)g׮m¬~#|HQ&%OY0Mt'yɑ W]71 cC '1=qؘ{1ޱ# 8->raV0˭q=J"\! ' G6yG*|Gw A(plZlT2Ui/=hzrS NF3]azz.„J0*6p!aC,՟C2+u,3ڃHO:F(.בoԳ| fP{+89J*Cu%Aٝ(<&*i)_djNJ/ʌ񩬣4XQKXn-}bɮJuֶqk>Ŋ2]my荥6抲w=A8Th" 8H!`bmKOjڍ234;odC}r, ${}`x]%b{ظP̶)\2o{#KmڕNe:и` e@\l[~>'H_aIX&*̓+8Bpk,_?\!T1^̣+r_<wN7TPaRZI9ݲw-o8΢W5jrI?ΗG& #H.V +|=)j0aX:-*Anĝ}?*RKWr^n6]{ELrjkT+ccgh :&/[?$W3egi]U]AeX{wcP6ɷOaS1$1[&%w\g`{?` '">lX=eͮ:R ,jA>olde,UGٓZ(7{Bbc>1F bcrM*FL9/{0J\M?\x1h*bJ\urg,qx6wL`xpKĸkX0fnb{N)uQ7z U2'K%-ʘ]o4W@KV* =)T:BnY_:}:(d3 `͉Rq0[H=a3\|?}~26[>jή% "GTq|s2-,xՇRAjfs.e]e 涴bo-Qv<PScoe%7M K \a*ɀ`S"N>Qi!/l`D+K0m eKH"$_˜)^[\V<{8oB<)mD c %EIXe|II:r>8}C"Ct)\E\ 4JK݁4åu%C |k(!- HK~v'im,vRjnj4ɝ&ϮuwZ{p[u) &<֦jқZG}Rq\ 6ik~Pz}6K^#UU9@6A f&R/-MDs~Ɣ|11(_iAKޘf#'wL1Um_>:tv|eB `S/_1o\Yp `v;)t7umq%pEVؘRKˉ~8]q"T\EcׅEUxnGlZPm3Tj[{6{m 9 mm90 Tr+P(7o 3IbヮF3'tVT70o[,km=rR| v22TߝU^Zn<lj;&穗rxiPF0 W?x*V:q/iM3ea,^,˧( 46 U[9^jݱKECzW ;}gD#js_> lLWݍ:ًs&5',<ʚ&k fĪ;ߟ)x=dRs'|\p!'bE~jJ2;Xwsii#]Rf7ݖSHcY42(DF/D f|v%^4(QA?)㤒d<:% 6P$ 䲬TJ&;{kw\Й,F&>4R)קZ߳M+b[H\ ]*$[98M//_?އcvP|2liylU'yМg.r"e03=6.Aa0Qϧ7#xҷ)eZ7n }6RVf7\O]"@WW?YXfƚ6LZԎPG}!Oč\~0S|ɚq$~&r]ha&i.ZM>z$Aj4,@ mMhs/09($o 0aks)r_o-0tt!X] %1GT8)!)2Z=/SIkrbǒmt/1PԔꍳY)fPI=4(]9bL2Gc߇k)crZj᪩ɗo174 k-}W0dZG6)+aL V~_Ę̞EHM7i{ɽRj:5},ayR#-\Mp< "X%*יC݃;{=fwʻFܰ̈́;$I"EUTQ8>Y]b/9Y{|Q]oI{?Wa9u+>zC -7a".Z'Z<*%UѧӹRxft!_K:A7asC]ݧ [kӏ6.Ll!7X,[EU=;O"ű䊔pXF]60rb=o2d3ijGWGeCipP9#[$W% yEN"Nuxet5sm̅ym >^#*Z>$c%<Ki+qMc|.tnOΊ9wW H)?Mt@}Vb7ՁYX_L[\OwDXEssUΓNRoh7s L553$zvfpCr(wMJ0⪚a+Иߜl}yinWB}췋lNo&蛳vQe{,UR:xEJwWA/BV9V]D9?ߐwUK=\^(fX Q 6+a.a瀲` -\IH[؍F@ebSzr}/C:!06Bgiq8 Y Z!>;tŽ~ LܱN\KP[H3ؑlAO%@_^Y1Tu+ ?M#4d->',8cNiSd yXr`$]xj׃.̘¬l?^x++; ИlhmSTկ#%E.qj}m@|ghlfYFk- kױ%.ͧ0<ϭI̧z9^8yWԒ' ?*{Tտ÷*+cK(c.uR0pb+)5pPO:ryhbj)'}f@XMٙ/b?g!N#2> 8$Ic#Y؈HLYj"Mf[zS ldIHX_z:KiSa9'hfgX%#lj^ Y0!}*0ma!GP5(2L[n{૰b}pI#)p^XbV@\nM)iAgs+ (Zd:djwst[")%PU*{GBnJ3>aQY-?^'f UaDyGYQCl(!Q+`p\nuWWvpp4JϡǙԼNC98Pybf ~Uha={f>imH˜00xHvs]o{iimmp+uor> L݋ߦ =xRf# lR iZcsesParqplYR%`Ih).UkTa<%G@=\JA]mIj˲1qG9CL7\clh!}撪êNH@Ny5R h G@kǫG-N2WOP\$:}R]\RXj'vO݅# il֝UCK\ؔbYC e6y'go Ib.< JiJ7zIc2xWXne(]@93F%?OlYqs)eqgbؚV;Eܙuq{&WiP~{NVcf/dحZNxQ#FF1s^,BЛ$#1n_ 8%.٨qʳadRkѬ Lr*{$K[cG=(KIn͙Jn?gVO=21L}.FzmJE3'zi1QQDDf @b ܩeVzzs@'vP^vU*?X{< '?$jǪyfR|MOϔWY$ᆌϭ{?hK,VE5{ g 0#yH:!Th:f:jnqݷON=QXm(6 Խ.࿟t[`|^=x߮ rb@f#dO߿0oAPn(~ o>T;Ǧ1~.QOB}YқRB _شm)h:(Uk2Œ~⧅ߟmݭMH;  7"NhM46LZ}z .ߪlV~w}_`R>U}ޙ؃ϗ\3aVaSV~ MsngOV>IՏES7Ԫ^r#ک6l-\)ObjJQ+- b~M," j)$PцԍV'%Ɣ>Yc_iړh[T@_$Qkk(!)g ^p>[Ak>XJڈ@TxuDPv;$Z,;X}\ qּ2,Ϸ$ Y\gaɴx i4>h䍫5qUpUl Az@\E?הyy(̭-:cc"K.q|-q$ qejRA:d0:i#g;zAdMao09oO\f_H1~m.NcuLI|oNAՙ "z^9[v!c^7A ^|:ۄ1tLh;US˪/y?5]Rri5* t !)nOS<=B/(nB!#:cܔ &[՗"1e֣%U܁FvIt$24HY^䓺Kz ѓULpTbRm_rHpS|)~mf+AXq9gnOաTWfNV=^!o=Ӄ=’ļ27e]iuCt|ՈmW GbT|RuIaChʰg$=05} 4"l;3404 \7,fc45v ؕJ5(1sLD0UVU6L͵Z O៾ם^(N{ky'_8ya޴ztxSQHJjJWG=ғ"vW&e{2 R3>Yzv?szӕ|0z|A"Z^ -/XDȞ@ukiV)׏z->MʦjdTU#lxJڕ03n1W`I"cLU1wOŢRF{Y!p,A%f26sg)2p'tUo<, ZAcͮlwW$^{y`x xn!ב#ތmQS'9;=WrӱJxw`F~"N~bw?"{|iU]])(9OTzT˼&TK3ƣ?{P|w`%\ {Nk$>׭u=yj5~0L !쁴378Hu|U%1f*/EQo3a'\X;VR62B`%C?/YFHrfzIݾ$7G7a_T_/^N'U:A!FgEtDI%:1Wd[O]P#z6?{%ƙӞ[7 _Hϋ䱤cz2XM6>+z i4/(`}^ ^ Mo3Jɰ?3џLPMaF.:f[w=DSHQI8+hj^U0e˘-+꼾{tfdMs޾Zz/VD#m4'`ߠ|1@3/'n(f{'{4T,wGz ^Va28W'C!il`&%;_KI\)$`Dj^PۚV/d[n9LB/c}J{>K̚! ]K搲^%0sŖ)\$f)|툻(<&땤Cpan_$'$° 2V{B|x) c[֥ӻґ@gՄ\;R3qogL:Ϝ}JsJ`Y2 @=ǾC79>i@mD'W.4K`{N:8|d H'>q%O16 rk4L;W q׽M/*y]ur:oT0L{g?etZ7[Dc4וYg2Z& M 58N+-f~N"Uղ6Iz`z_D:Ű)I_K`*k}xS9mAȨlSιcAuJ\ s4POMAa 8tfm.uԃOU߾RmU$;|= u$Crg)B-{I eX8܅@'^I8=J>G'ykZ@BhYnE|-MZezιĊ6o=_iMk_쎚/9*=TOܾp<|3VsJ"mʴ_JI Y[Ő&an_Kݩµk׈-9{QQObO(>([]œ;XFuMv#WؤN>p8|`~H>`zYЌ9836#,6UO_cy67YƁ2d<|YS߰ߖ]VlՕ`;:hVp2;_"  ^ #,l,^ֺZH#Z_GqWE~oFt;?U6%6 hc/~l?/\^mx»?G8fV!eOȡu;ic; +P:* l5”>kﰡ^x楝C RH+o{iP#o=:eaؒk EjT*nTr9ҋy[lzGI%ӺK'J/qM1?&;Vΐm;?h21|Mw-m`nm3^8sqZb9ko*D[ ԟ7Жu qMnzA$l}ڽ+7;.s1lP# n?o<XܦB"4>mS u-_4TM] f]zϛwL^ظؕ A8V:c$҆+z(qK`7DnF6]RL*(Ө$Ш\[ sPIw&`"wn&8sg JЏe PD!exl#RW =6{boJM3 !@c~{5)S7e9upa 2" M#*RshtSZ}6"MK/|: B\f C[4|6gQz1<"N&e&N`uՖ>-}e tzԡ7T0AӃ3?ϏgSonHK+&887eؑh3Ÿb_O)Y'*^Io2üw-`P1 `l%Qܲ3>>~%֊ݢApŲMe꒳(#6\*IiWuVDH ͳfZ 0[Ą:] C=bC'PXGPa^Za{-)w_Vu|=k~WyoGK$qǰE'zCmckk&[߈oc"[T!k @8ނJ'JDK%w?3~ > x mF^gt92-"NC6c:.3(YYМszT~OlH,Ome A5>Rmմடƾڜ5w9'%vx+]Bt@s~c:c[uvt s-,n &A3pRjИ]427Lcs+ebl?e_`^KIF͕~ήOspt$6b8SGK+1:=TXYxx|,$"+ڄZ˄1XVy+z?J#A9S 򶟏9'Q Tt_ߖW]M4`+w1̙ޗe~TW,T ~zfK\= ϥ7;hyShk&i?cC2 y#'v,(wD(unNTr:Z)_ *bfyPv,܏Ӧ| zHs|UդT8BpXQx]Ip޺˧Յ&㥃wMy9 5-zl 3|gi7gE9ZoU#9|®>$apէu]W{"sEͧE_PT, H$zq}G՚:xrD({\|![V]tE\ z]u^}eSari>eѢ4@ â (gZP#eSzYyn'%WrKB1Y^#&zITDg@!Oi*j.4GDd9_cP|gS(^HLizyV4Yc% #O`{>nnz?WV'ZTmYHi.F$Ef3.CXO,s.ᥔ^, .6 0aC<{R Η ]QY> ד`-}x:5 hۤzU]1Ϸ]ZLUW&tB|M3JgP\1>+ҍo+3_KXKx.~l}'+uĪ^RkLTq* ͲEIiEjtn-L'x^ElU Xr7pD?-ʪ|qYy ṵRbgv^7*1] : 8Zv)ktFe6GvD}9??U}vzg B0ֱhVO{mT@*7m@-,Mq'w9f M:EiS}GJnܗV>z?SDxfҺq ygM/1TpolXP==Y7$[FP~:+E<,%dq'n{or&̬'*|lO>1?Ba91g;N'8*N7iTHVSsE%)un~뒶S틲GoBދ1uKkI͓\ue\MDNLPQ6+͘m$;&jHHI'? Wo6ӤMoN/-|&哝p*IvO*09IڐßVEZX-kYIUb=l܅Lt M3K1²rzr֓c30/ݩq-#5[RlLU\̽]䄆90TMb]=ݼq'' 6_z]&Fmm)q$gB39ՙd1*Khf)f{}-!a.b4赚~P)AeF8mҊnZR  0bnF Sձ <>6AQmYoyŚbdo=QTFtYOsBo> MF:Zr[DB Gb]ֻb贋2𭺟U_zS7WaB7w2'~/2L|Kҁ o,L" CU ~Il1ONwj[S+^d+׊ 0 iP/l)g1+{gʀ7갆˯=I6Kpcj썕Uw?s!&q$80MCa5#`m@oԔq8yz-1J 5"N#)0veejo0fÔ'ZܝƘvrCF{{`$81u<`y*Qk4 LyMX1zKϵ~'-*1-U9h![^/BDYmA#},/*(R"|mzKie|oY cX ÷b;~DeWo|-yh%ڸ&G?[g՝1nպ/}㯃 LTl1b-SIwciT{?$rI/GO*O7.:l!kqJ6e8)M絤<|(`QQ\p!DW搾(8™9S(b挧}y=Vœ*j>{)Żة%>ks.L=Lh3_ ڼe6'1z=EgpV5?@&`U)o(Yc*Mj J,=K V>)xgEu(%]0 5LS( WD+Gt1v]O*:nmQ;s8qmlI5P#Ub]c3s}Ղzϻe2.deΤJ⪎i^"48dz`B)CR$Oͮ=^[-3$6Ul@<?gt `Š}ҟ74 >Ue6$t ˝l28Urm|sq<yF6繡yM$ᄚkl*N]R @9?s0곑3;sq&]d~4,>4@y*;DV>5)e,J|JȲ{'%Kl{\Wˌ{1{|ve;pMh >v/[-Vg`ŭkڠIhB}ҙhft'0Fy[Ѭq7u@ϝ nʖW<Ay6)kkN.EW쎎ޯWYYrx0R ^t^c|Y 9|h(}*9JEʙuܣLA66]A 9`~?P?q"牙K.<M &̸;pﺏ3BXM: n,QJIFMgO } '8|r|ެ!K A;W2%~MX+;v=Own=;Sa,~iUHjϥ|.^{V:?wLhΟd|2Whx.gOplz󼙱g_١r5=='=1jZn?Qӭ1X͟S) q ',o0`;@&o+T;D/>rFEݮD^?'_u٤%S4 N/$ Rid=~bekX@ƦVyLIaص B9|q֤Q3G)g9yAEuF>h/w̋$ \*>g@ Pm}N#}YvekP2oP#d9?ى8ޗpZ?5٢&FĵP%OjǺ;r3 ZɊ&9{s)B<\ԐbOq9 ݔ~Wm8@+ԉ^@atTx-.oj[rٞLgpYi!qfgE\E^u c`;orbq*_ [MWe[w i>w:e}]/\ .0 mN{A8ʭȨ_;g|Ƙ}j}OuV%HZY32n Yk~gjej8WlA'?4]J@< l̝ {?3Kq^MƬo&C/4߰m3橾)f-'ROU*4P !ZbHcKѪfGB[ t&^1HT!N޽b}36%vD8Y7V-A Ԝ Nq1 Mb( ]HƝo1'G z=\uoc$V~CW4+Τ+K1MH*<_W/V~T")ӞIVA]k saO%{^/{[ꛋdjۇ\5u{={xveiwĕӤz=.9;&Amho c[M&JIYfȤ?2)1؟s[& 9'#?H9+o xFP> AgּBPz7cCPaI@ᷓV`eRJjx3G㍆-\ʷ>MW<}e$LiQ{ (KJ`_%t2~niiN7?o(O"cg%Ԋbk䔴0sFۅڢ4 > c$ߴЋu̯.Y"\T9 M=ԱYP$4t%϶JM+w/4Pz](]K^GL?*+]Sq3sf qxc4 Aڎ(2ślBGʽxlhM6H5Ln#".|&*ʂ$z^j淛m`~ӭ'x81D)3dc3UvGN.ov>lXu 6`Q$Xf^]G: 1fq,&hl+Tgʂ5 rppWVcSriͦqRE# l%hfnfݵN8a3\ߦ-ʾFNskY1 0nJMBcB jA3P.HaYC|QLXgs PwN-oXazz.NDt1{%]|u+$*_VafWӘ`oCklzs["M(EK:{s}㱥+},@)`Kq^]7NKƶ=Lm#7E o4Ov2nd6y照Qs=mwO;!H+ܰʚA{J{-rqFEρ-kg7ʪap])aO soߡHo)DrۋoaY{]r`Db12΍! aֆ{Q͒O!{UtuW iWLh ֐=O8}j"XN/ʈC\#Z(Eh0'- ߖ;Xdt.˨ RZEUnAUiB}n]tGbj364(1x~{:/>@!Iz0{'{%7?&Q1_[m(lsbcLĀ %{T6]0Dkj؄՜(ͲD5fG8$Jb|M$2=%Єa31."vK">a 3F^<5XjUR[\o3\wXNVr}A~T"h?؆Zo.7G~TeF_7rgb+@9[_]brD R Dz$J|5=&L la6ʲ_Z lFLoUs%<RVcJa`V]PЄ`(d}oOM)1-sw T|v(KjKg!Cϙڦz;c !5WE])nZ ¬[Zaڔߒ B+j h!cKM6qPyVZ>NQG$JnHSZ|P*mCqmш3:hst91vܜ4kXt3{^SZY&7m嘸 D6ìQ)mJVTh5Sj1n6%UF.j`vG򰘫f)) I!5/iRgQe{?;\ 7, kZrJdB<8no]Abm~Wݕ5 7at W B- 'X)7QSTtTjAъmҲ-Xj ;mt6sWD< BL26y!\eY{/`Eo>+:H ڌelDvV4VQ6Pv?=d(ý_eWOac1ndu/!A?{x3ѐA#.yrd Kv35 9?̕ᓥ=I7JeP HQ#o1Dey'J4߃ OT0pr/6gQt">6(X^Rj]~l/*f?@"atLQnh 9)\gu4,Sfޱ-`֞Ip+dpQأ#EI|gM$y/y^ÝqraR7L\޴[.{=]ăKZ 6;=MX Jt\|i2 ylϠHH#f 嬓-`Z^U"g3.Z;Թ_KAc;aPt?yT:.QB! L^1F>1*ԠcLЪ|ql9Tb䣟9Bo.bQFbPD^jWqF\+>I;ۤem䳱փ}cG4|.kUӀ]i_e% $:74QM34)0=3ҙ7}!RB(M nS7>X Ķ aktM.k墨af$,Lg >@xNkͲe70|k9$ ]tM/^FD>=11_< gKZSoQ 7xuKs_~F PvD%\I (<%<1or}׹}Ĵ GDJO>6}uVm 9 M'|xp)a%W?4U,agR%7aD˺zz3^;x"@bͦG&EIA x*h$ (h=֞@,pr}t/R/Xcs&-R{*anmPtprp$Tb9sW9 {y|,]K640+e|׈7V֎*)}(.d i\kL$0I|--?5mQPs?٤ڄV8D~0!EAIc- s#׬q|Hq˝Xj.A^2=VUaEvךq f !>l{W0;#jkGˈ2ɟC-eoOzXGBl05cʠoam~6Lwj6+Ԥ %9rxή,B؟뮔:׆Vo _iӢ畵fMϽ̿_)$!}VH@t39?䪪|O%ϬZc~c(?&v.g+&w[%Y2iWX\nak8*R~BJ>E5- 0</0|vP:^v6} W:3 JbPs-I zPh*1 =$g9R\Åި   8N7 =ع!|pNĦn8 kNZ 38ٌu"ϷmL3nZ蓲ʝ`DnhA<Mq~&2X0ZnּeEEL D 0؟-NjQ*b/BoeVM~W+L8:=fTr=6sOOU2+HӾda$IlgOf:djĪѤ;:tLa QJw<-8sZ S>E i/ϟ- Whs HwN ,nKH{MOG!uD}C* hxχ,7h> )z_Kon#_DDވ s0|% )>Ϡ>CrYpme9 4,g`Bh2I$*iiRQqpygsSЯ$ŵ@w+tI}b6*fBz O|~F&a<}%͙ᐪ=8, cU!6zܛF.ݵug9e:4^lҲ>85v1:$m91sD- vfMt<9;'%)v.-D37ϝZEU3Y索*'[ Ü!f0`· Wgv T\]9knIJ:D9C#P MxG )~7iO Yʉa/fFvfb}=`90V [ Uܗܲ7-5ِڤyҞD?ID,j̟2,;k5ZPʂ+2&@&k)eB'no<ڢw]?TޫDsm3uTvzM%Vt 'XͰ⭭&zJLߔ-Yr\B@o}R{$ě J G-ƾ[<&3ogk} |LL*r&>hƷy&Ǜ,e2?U^[QeZKt+ 0گfܴS/ND^10H Pi*OnTJE|H pשLjnU+GY'%TcbOnTϩ2އvl&wC{n.LG(OVP{/7u]jj8[CyUUGJƒd*\7!ھ׼[O^ONs;gl6Y(AؤߛG8z,MZ6`1!*e]mtvGnzFl o<=fO){ߝV<繗Wg]y{scqG;o}0O+\ `lm7{:MƩu+ԍIF!Et=^ҡMdU"ߍL>J8@WAڴ3ܤa_@ĉmM[r8_/E%k 'n {VjI7=E[7vkN0mP6(r!~v8z,Tw؆5HR\N# nl%nkRF,IS؟WM9VƆF)x8Mgtɴ.+or0ڟJS@$a#ʶrL@?p[QkfV%m=̒a"VZ̹t_o6 Vjx͏8[lyk qx< {CJ 2.O4G4bUf: !i&@`X%籦3R4Oj)>[ 9Pb&o#/y&\Ab~n*1pblӳ=i;E1d:Y1$0)M,ֳ5[ոaR,F ˲.pBh>N>a6݄=2)"\JG)Izք}M7ꎿ_kങ+p*@$f*|%Gw'1 EТ5B{JTypyĊ]s~MAe/kbzjuꟗ6Qmus)c:W+&dw pcX9}ؗҰIEԖQ;{a?;F{[K (O}iJ:ҏ;@qg%/BpI&߮VWC#uV÷DI>sfaMx~w%_ꭠҙ.A.ozFL75*V<%㠳í)aװ|GO,bAr~?]Ej gBkӒh[)ɚ@G˱7p`'C=ŕB.`V(ym{1.wR U,̹h͎MUtMNcxST72ʐ=-KN&йTPtkp?*HK<^g(r>ۏ3eP PҰ^5|1paiPȡNw Ax)ZE"԰#"q\ 6^<7^Kl!K>K*FmˌkI",iFH(s?Kq$=IgqA\ ˥n>^wt^a My:U.gx!*ձ4e˵~I+ 5{d=ڡ$P=Axz),tk'0 cYN_MfƻYYu G.Ub2tVj>74F,fJu"Xq]ֈ@S s%"Rp ɳ5i) c VAZEwcJ#2A Kt=BɜD1I=:Z{T%D vbl=s/n12nRN.ug5'T!Lؓ8 j\ܩ|O3 !w?mPn -qkQu-kSs bj>/5o?\*qpK~K~BI]^R%Wqr8L;oLŏ=dr9ɧ/`Q:Rg%?6++ϵ~Sљ "Ɣug܍BV\4t TwaHg}Vlz%gݗ&5mLfy?1Ɍcƴubf1|tCl\}Y;5t BɩrЍC8S/ Ʋ\ms sXND"͇M' ]xQ, /XUfq!Bl&@sWM.4:] q\| iD#H@:ddMIHͫfI*K8f%-*` GVy|{pmc>C9=~83%HF腸`* }%FJOJ[5q޾E wTj2aҜ_}ۡ .|sb.J̳fI`|qו\ C_%8aԜ`a?QDci o 8'kΞ\(P1f yZ\^ၐl -iܗr>XQp F9j\ctkӆJ<ղ (p7rʼ?`LEA.gN݁5O o[ڬ϶p@2 ZkonT2QW`ej62w]S'(kQRu䴾*BXI k<-j泷qDMԹ}9/_t0R@*S-g#g's~֞c3zl,Nʖ UQ De[%f|ߌ>SeUwx3+gJ'`jR?}AMB.xQhc?AK":iRE$,? y.5ھy#s4F!Xut{ײZ@CbTә3BAY>戽q=lp֡9V6CzGVId$a^kB؅ȝ(A /`5mf{+7+ !U"+1☚pbI5@rn " -V.Z#65ynwFit@S MLQNccA0Wђ 5> nɝ+hd5q 󩊻է^7ZEmT|#t eU_^e㻦eBNj`NP'xS0%JM N\֚|R "aճnfpsED/P@W7`kx_0z6|1B\.r$!+(\Tf.fWTGHt۳'KmݹUm%XQ+"aL,RW3XM{dl]]I)q][i5B= ?8`B`rOڍ͖ZO uS(W@Yԇ\gfl3.)OYLa-F?獌y umE[y[-M40X|V.Ḛt+R-ƥ;NK>X,Y(T_^MJZT|a={h:9m7Pe>r-SVp~&\wO9A">(xߛ)|@]xӓolr zrՏ-SY3U4zU=ۻt)WT2SoQcwƘO/3rɦW]r7 ZY(gt[m)$E]\4ԜY< u7[0$%uz7Q-{<1(b/Wo],Բ?ȇkg VTb|X˪|Ku_[GpYt/S`U-k,-9G fY;zԽ1O+^ :;\?=Q #\<Ƒk;kzu%{Tې.uXByLϪPsЂ-;ƀ{p5t1w-! Q@cl:<4BR >_+S<Ψ )*Nid՟ـgĚݏĬ?h`>/UmY@wԀ UγRҸjؘǙ`ZP!rsYF炽M/ Nlyl%]K)0֏%yiLPLTu{.|JFӨ.X2iqTJ[wy tXNYgL_KQKZ`]gI-L;J(_0a`|j1ESvPqiUjd~?U~JVK`i@x^*TiSĜk'?>Q:tC|!]Lݐn9{?yArTƌCvrnYCuGDvAC: ,ܴy? j֐ 7GKQbL7w'*~,ojY&^5 .Or 't(zհ}^" (i Q)=Nq)+!y4hhZyAFN##ƈ6>dDmFAxl@zMf,jaHL~9jZ%yE*1(Jq~ξ8,g1<ҲќM@{劁#[6{`aM$]k,2f{?(6τZ7AzBN-_·஽*g|KK?mX[- d4l pŖB)<'%MH;c9<^C啱K0H>rD{T, d$ 5G]sUQjQcA3(PmTq6VE"W Kn`Oybf] <ܗ;N9Oͼ4ZCFG7Ĉ}C|R<_B.&XiSdR|2|Pt4Ю2 @Ҿ ?jO]Y:<M9'c:B I<7RYM˭x-7b(߂+ښ;-2kn^l >eIjlTo]K̲wm?B] W]em|BW.,/wyDm_)8&l2Ƭ nO}9M"IϵxRK؄ZLm.MIf.%wv¨@rӈ<]X򸬅5)5LJB'#GLJuG0?>ݳ5dxPJ; UJ8RDLWPz SKRu陚Ŧ? N*Qg9g5D>讧{39;|Q뤉)9mry2;-D@HH?KT]l5;snsv/Tߺ՞¶hP%+R#5{-?LiRht1¦gs{gMq ' v/E)`;C Yet]9K@;Jŝ}I&-L#ؕL*4ХAMߵcoᔳ9oK|s6F-R-W:i{RCaC**k%Nm" &'s E&sN$df^TtN,%>aZRSbw;v'HQa]ۮe8{>۫s,^mzK1szH65l !`fbR R4sV>NMG;6p >>5ڧY2}ôPJcٌZC?ǜ>Ry`|wE<2 bJ^$Bdgʞ!oERf}oc:gLȮ *@.dT1Lqgx #VюH9^[3p-FvR/RavC=T]H i'~w;E\bn>~rc3"SQ|v*MyU<͹,TVO;\Fa q -u)c/W ;Y$M4YSy _RnqEGf/4o|Sg`{9_4[aOKٻ8LR1cSDYb+YmbgTĭZ=j3@ w yT'aZS`JB#'Gɞ y, SY=ՆtUT|$G7`';+]"UW9x ӫZ\{j8ALEEP^_Ө`cf :ih`)9@(DD*P)WO09u7Sex22-" kI}^XG￑Do'[3 C$4pb_˜ͯ,^ ͦfOjnT>jtu iNh2*>Dۘqz]StPk42ъ+5N@}f*K fZWSJƏ3kc׀EÄ_x]'+s+oF[{E~],{&K9a% PuAݹlAjh-PQp7/HO%rb+tF5.:އXnOPux(vW[Rh \=y`h9[ϫwl,jHp9dԇ?VNI'b%+Y]~-jG)4+ջ΂zYPݭs6bŮ6ބRٔ;=̀a1Fw`7IX0kWL/`ȗLj b j#;ܒ E!5eν MٟcvBjkvv~ ݔ.c=q.CM5t{YKfmj滜qMYCԔݧ. i?3gz;Bd*;,KwK[dp83ʮE*`G0#޺@{PnU>F x4IU5t.^F,*HC͉c=鍎.O9}գa(v8wm-7cgx_BʧrcvϿukOUs,BҼ%EjXKe@83?'62lҮ>"m.j $ HםUZ t eoYmP~ӞˆsS? g@#*U{lҮTA/AwjdN?ZϻoP |r~yY}FkqK>ߙvv&p6K>SY )IQ2+ű6dиjp.8슄T ILtqWȆkDPvO5.p)Sɦ5&ں(6930 OJg/Eh탁:%W^Q82'=T l\@`E.GZPuiK"^o,VMb'Cc N ?]}? Kn83I 9/ͼ`gƝk&)cPUKQ.'6D3ԽX*<\mqaLE,7y]cr bU .`mɨx۫^wb[tP Z%PBM}u(b.EgCr%Oss]</ Ru??=߻ {SP<}FdR3F秿oޛV5|n}d 6eL}HPp,#nFK,(I IbQJvTv!Y3_Y _d8٩~oIM {/X^yދ/H-ott(z".v nЌ+OU}dv+#|nl\¯39[Ӣx{^y(Qt/ |QXl6rÝ}]v?Wb%UWhVq7˪ 4 >W2Jě#3Sԙ5q{ ;m5Q#A'NF/V,KW*QS?Ft{t7)w{|$\EnC=M/XcxԞ-uOzٮ;YCu `Wg`FD#)J=vJ>7K"ŕɚad J.ω?CxQb1̯%,V{s`3hτ+z>'?]Sw+z|nJIo(.psMgZA@Zfδd=Ydv1OByY65>j3Sv"n$I\>{Tu\]#ҢE{խ5]VL38̎O_א]V7F_0j8y)X)\6a"wk汯4t''s4D[(Dw.15Q(j4Vf`^Pj؅a~w!^5R>Hu4 MQRN.w!nԉ\$g%D. mVPU.w0A Qxϟ;6'am5"ve

#)Nw4hI;{b{fPSĚDgtOԼ!T\p|WYRWgͭY;fmqy<ov+NMj+1k<,ohRNI`(8?*k%Ӕ?"i~[p:rtIFTݹ[oHZpGW]?n IS M[ࠚ>/38K\,t{C/1:`fӀiC۩'aa'a\"bY=i ;/OtCT`$<ifO5C{8\r G5IyCdB, C_źy‰p ,| "}^NXn#GsSj=x{3-Z`ƒ]nOR܊%18JYWlnG rbn(dPUvd"Lt@noqq!BꝾKgy߲cR !)Iy8_4 B1-׫KsZ24^=e=H.=K${ ^䎊?|FRw \NW;x|H%ɥsA>}%>wsQ/7#|83UKCxl⚎x;}ne"F]$Fؓ-. :^ol)6UtECim.Jyrb vrka'nk^~xWmސSm FN@:WNA]>weua^ĻMFn X(J*U- 4AŰAc\ khS=L@p.JyhOU'C_0VNlZe،2}m`dn76鲸ʓ$ _W[T .9r?AKfN) 6g1$P}URJČ !LL ML>9'FԊ58=IjKo[Q&`=wT!ς}7w}9}!1[q0]a}z*oN !,$ªvɩ>' RGf  s;6Qt ̒ުpɳGf9ͨp.Gܩ@vEO9L.wl _]phؾ sj>zԮ44pw}z:r:޹)gh8{[uأUEw?(:akď+=א*M;[KUƀ T9wK?gqw{1tq'a=Xyc62JNQm[^NNG,":iYjMs=`EQ'ͲBg)%D_ʞI8ԎZoe5 nB |VWF0ݎS&+& !#BL ~Px`M=T| ǻ# (+xej87׀:L:25ڛR{sZVrMUBSm i5f2z-ͨro7^KCvyϢڙqu'3%UQnM1iw+%m2t>cw.bZQKw7kqsܢstFO7by#ƻQJ'_ OYzS,ܯQܞu<.nӾ56Z"H fiAjiS.uF%^J Tv!مT .uԦ!޵8r:γހWOc&c5v ".#|hDmA# y7A\Gz>uCPE7F =~ZB$2CK9/0S #5}KW$UMve| Af*?hJNfHk̇N n:L*| X>^\IH!P6ڏV|ZG@ٱZJMН--Aʥ~s9>!QNbWQSIB-ޑ?Z,daE;vuˆC7)qU8j}#n N`24|C{68) W03&kb4ϲֺ8{ָejdAqk)e5r4=?k}1./kq5FN6H6%ɔI:=7vbx7 ̍:[1'wF3DO6 'zV'rn^ @'zV r=pIDq{Eg UG:IuM\-ս޷ Pί=as\J+\\ħ["gIiMu}! sGhyG m%CV یݧ\q3>U)M (ҲAX{v .hmEfcqmϱS4,h5_:8$0삲?*GԬmᣠRǧ^ Aj.jsw#5(U{yLYs5r8w:-IS]cz  M0u2cƘ33:>ύ\J%t#ZRa]kζ9?ݿ/܈qG>w7(cHN{L%P.m&Pl[9^@XϓjZ;׾ `4 ? 0"F*ߙEw6(|nKT}mB9}B߬?"\ds H7j46i m;RT'< $)+DyW7C0elk])Ο2B$`_J4z;3o̔G!-u@:4j<Ԙdƞ4HKHq)|ЊC*ֈF[z-Uكk?Tw"yDV7Gysm.v?0g;7-m^Fdx3}K6,$.(R/Y8vdj$4(O[9:1l> Ü6E\]SAI}Sg.? 5um'wґg۬>4˥a#/)XPh-=ī 8Wx4 yI!P7ww(wynM٢~=W,rZH3`BB4>Ę_*[=W^TQ]C=-bѩF A;mj͞UD:Kz+EHPjdt2yW+8l5Qҏ>wk#]RS '{F/O?WDvMIvg8éoi)CW<[q E0I]$eb| +WTM|4q|~6@/0q!GUݸ`(qط9ǬN=L.3r}D(wSx)." (4Z 4 -,QP Oa CN^7k\5di2F ԓA^ݯ/QoA!fծK6kODn<I--"i6!-]|_X 5c6B8$\yє7 Z>}/<B[8zLlĖ>focy8T,)^֐~1g7 6Wt *[lQ;SyՅ)tjw7itӰȦ:6D? !ԉ ٦R)!?|@)L>t(8ZN:> |oA;\Fvܚ΢\>2&69D͗ڤr\v_Ӕ@(XĈIYQ39kLI6}m.Nn;:JRM+(ߊ J.׽Ȼ^4uY׻/%λD~0GwTf䣑#u*ي'j.euq"w]`5ɓwc̟ Y-\%tPBE栽 &&׮y= ׮y 1婭woH>O_/^ZШf%곿Uu99Nh9rϘ|y1ַ6_;<{A掏aGqZql.0{s@W &QsTUWzlũ.*!_`rf0FWM11z]RreO HHD|YxhN5"1kR\Kj`mOkB(NKsZ;ThXGނg5 `DNh(Yt\#渧(y\w>B/^O}Fm>Щh~K` 'Ls>E[םA\S+`B&^ # J&#3g `I cb-j` 5_JS&CSLStHo@O%/ⓜϦP#yY~=cXEZFNZ (e`S#~C|:9;z(m\G '4e3Mޑe8 }Zb@ SY@ Tyi >K)e?h\ξfmnѣ8Lig-!HBI914AvE$CU[n9OWіG{c "=|O҂}R"Lg PFp> D "W/AwO]16bP<^=!ZB|%<6E:۴'Vg`~$+\}f+I%?`%T?v.Y?%RVu5O;,Ma&9ck[x*Uf,Vl|Kѭ#$Q'4'Ehs&j.urRh.|i^w+§i9-Zwݠ6?3Z+Ygzf#*hn93fܳjNӼڀ#L7+S~iʆtB>ZB5ӢVuʽ9˙c:ޠg̟i-<;g{%kS2U^sg׌xsn~](]o'tjRMu] HM߂@)]MȻ?ײ}],=5-R+Me|.h]wŵ)%w'8[5~"4jyXD!90wDrt?6 Y]GuI~!Y2T\w_vrĔdlՙ;^1i*Uj6VcƖ]ĔcֈWtTYC4^Zj怩!L|o/I*1C<'v!g4pD(L߀i"Ė)U[B\Igv!\H bvW϶\SV:,:Uƚ|8h~}l\*-Y 9#\%9xGYvmu>wH[0Gk@3)~RaH,J%1ĥyEڈ1O ϓJK}!.5yaR]bo^t`GrGEwfc₆W̕Qtjrn^5lӹ1NEfЙzUffIy&MǀJF@l49/vDFxl4'oDv2Q|.*;ӏu>U¡&juƁRvsآ %TH qnp[k:KMy23{{3[d ţ޼'>tQ) ;ӡ _+(-j*Em~nd0nD3_:}\E$CY>ӥޥY5X[Cv; (%ߊL슙ҮȤ}3jI;oiv7wF?Ja"_{V>ѝNH;ҍRVwWQNJT2A䒡BPgZPvdPl(%r['=-ĮuI\} ZoeAm#% M8E2 5:SUWBQs9b^9дj67W)' x'M%S J>G;L.0A H[ozG|-*<.irwZlxM f5 %~3 tS*r 05϶ 8 2Rhf: F{>j~f1cr3L Gdws/D'ݝb<G\L0KkuT X{ @7 Lgu%b/@hCǟXK<1$(ELM@] !z珳S$67 fuM&{rp57x!2aS2fΘCl7!⒭oJ*{\RݓϨx?e ٠L/6IXL$.>1FX$網FPpI.gƔvwNƷ< f82ͼ$sg#.w5d;#rĮOk[i(*&gi(j-LI:ux!#FlsuW18A,I dI,Ed6/u>Ax5n<_AO9|!3= Z(6[tq0n>Z#8]ڕEd<-P5ΡOF̴Yn2IEɩ3s4bf;1᫴$CsgL R<(th w;2~-Wfҹ^I; {9~:ZRQ J`mT"fDAS T9?ҪO5&ղNPa:5cBKX[ J%i}F*QCy€iM|%S"O%@͝e1y\z9LPA$tS+"{f3TerRqBc‚wJPI_c+p48ex7CӒOrT,YqNuXD[-cqY>^-O qO"hn7 GTQm'݆ltΪZqMf-eѽ5)C 2f,(ÔYw-=d/&jm> >(*umZjj\=SboQhf?\e7@cd>r WWf.kRVֱZcX]KfҰE Z4[jԒB舏o{sp@,`\=י@ γͽhqNct%.9%g?(eTRx=RL\Ӌ-`ЀFT}J)(뜥Zw,#"l5aSF>lhlѰ,Ԟ&9p3E]{ 1+1;tE$iy5>}JʄE%Y%(APrMiycOo(g<#㓴M{Eɦ KEFlZEb`/Uj_ϹҁYj4[#y/zL%v\ SUXrGI*fœOgr6Za䊴K & 5Yw?G/'`>:2z_m}IAϱlcMzj(iiWs{5jnI=RMNS}!M-)?UT1ew P}C>ݚATou.5:Oޥh;ӫE`T˃0jd٣IA༐G͐)sF|J4'k"c!x7KS%yoQ}K`">.^RJApӷ CyD-V\$j%u̓u?i7OфO'mU$7vzDQ:nbݴx>6GGM`BX2uK v(eV1z-{|Rah H\L;F2ԼLfH',yW!=DnT5ޛ׷R.sYx˓2mf䡠kT,h隦k Dߧs|c^; >];},ӑBk8FUGncT[|.dy5ťpO3HY(=*^a Lgȍu_sAH'AlQ@2|f.|9e6Gh(-1op?{xIZD\M%]Ns H?.fvu(۟4 ?yKNaWI)'œeҍDRhDHTrfr.Sqe;FR}:8/cjv7F7-IEPO\ xl,1U. ђjlҖ31m>:o??+T~?n9fѴZB ܰGk*:[.OLg?$eìsاFSZuk zpc;0|{k#6a5g. JuXX\Ji4s$fI]y؞]V{Z'oFlu;;1գHe|M4cA W3mPi\$>1{ ?4d%n>w.8</f|o&BA-9tke`Y <$sʨEe},IL4Nw.8O8 qWU|ZȊ R#@A$?s5}Pmz< MϖU,x T(6.:N77G:vs鶠 \khP1C:v2C>0S1!4Di#~jsS-Hjm@bVv@s'v-OS<6Y?@>٦i΋JR[ NPOXcdU=F|ܤӠs^؇.SN9Au˩ 2G0>` ˫ڪF;f-T5=\:Oɨ2ñ+A}˃yAaȨlm:WoH23ݤ6˫yJ6\|}Y.5Ґ7+f4D+D*&bZd. ᠰ|(0w,WgLwe8(%Dg$oRʫc~%S'BnW˙jT'`#K"SMZ^5W<23 >B( }ħs-,]l kTZ*% 3c}_33%h48d[{ޠmuV@M\-.殩mm2$wYwb۽_c_0\RȞH[?vNTUEl n87О%Y(ήxP USn.Zv+82BgQ GSOGb1M&Njo]s5Ĥ~ծ/ \!D$Z!?w-?I- j N FP - y^[,hbA,v/oȵ軙8' 2ntiЏI9RTZ5FV5'Kީ@MQd[.R"UN,舡dUbKH\JH,:]~n9ITZd/.2wԠ~yz+3ZKŏI}~^}--5foNn%ҠbSG Һξ(7o}P"[pӁ [\hU5HŪ JW5{]$Н.o]Qp* {TJ"+As悀XC0HN*vWFmW`i8PJ$ G⦂5`Gl4uU uf܂SDߔrg&vs3juf R-m6ǝ6%a3o yx}fdg#A0UiO5V$c&TQH=$oH;}ܠjFs#01SJ#g)^BC\ YʸwPfj&ze ]b9b2}CutL-7pRCg;ج%{x+ܗg^7ç i){9y2xggW|7]wPqdl%;@H|)X`uIj -\-K.u2QreGe4j_C2Q;Pՙ'EHmer<+tHB#GtkeְRt襷>.;q1'Rin 8scΝ-liL#}ؼ%{s(O2+)1eLbt6,va mw*۶-Hy)m(7"iyؘyD;ZS=w77F߼{[POzxUudύ]f?fO :M&EbAe_w yirt@q{<__IEG%AMJ=XD#\3jqL>CCt@w ~Q( ߋ{ԿǷS \LoIɣ޵I\T;A3 Q4 uv' ;Sɳ.{KԄQƃuh]$sI3uhCܣI/TjSWͻ%^W*OɳC=61yk6,5lP!6\BN3?RȪv=D>]1[@:]3cW8X2BO]B fSg*N pQ+׺Gg[+< Cf h-֍\mxmcUA؍JiJ{@ynAg-g04pZO D佘3e|]:f "S z<[r:'WD>FV?L S|Df40!VpPo)V1B' =&צ Gߙ\u),]SlskxqWE=hto*̻6mt>ׂ:<չ6YtW@>}Pqח%,Kn#At+2(=. (> Jv>>yܢ9^jfZ*SQ}ŝ]Z2Bn uRk1].r{;kmP3~ot UhQ94nǮU.!ਤN}f~ѥrx0򰉎mȇ(u7}~ZF+BXe$u*{ 0m>E<*!x@)oj)"Ԩ1}xIjSYQUTG~yO A5LѦWК.ԪXi-O%ԔZcfljjJ5L[E%{յ Ӛ+Ŕwfl{ ]Q|s9?KOh2J;`=I⑽GTٸ| k?ϵUu~H p.bX!xBb{-ڎvpC\E-Lƛ'ОI.Q"c KQ8.>vR.w(lv c6uw[D{_j1Z0l19:D*y{ԶX01tyvC:jYh 5nDn#H0d oCM>q,wwa:2LF sStǺ:w{_N =ݓD0f.ƹ d$xyx7o}d+y4WLuyo@z^U-e;9o1 )N;5kYf:ݒ8ķ:^cğI\JQ8x(.JV"_ICM>}PA>?иdԆ ڥ(U1np%wU uP}RD]]{}8 v?}sud!gb~O ôFoaEXJQ p`ٕ~+;U*vPGmoP6[ ~rhƪ4C'9NVvb7ӯ)]#b: m޵Jo (>|[avA],Hn4:"Xx*ܟvEgx9bD,EB|uOP;Z5'I0gP 8W.j/%sDMl~) -&jTcEljfP JފTa9.}7'fPN:m|Uuj| vS%5֘23"eg~*k*3ގc5@۳켑'g&󙥐7eti֙ 2-X[!̪ph?4W\xR5-S[>66G-Xգ&1ZS h Q+:`f] uV˳B tLMT7xSa$gMw8߈ǚ[M>'k|je;S }gNl.(gLL$t1u՟SOA)WZz AacDS*1p0:5 uBхTGFu:d뛶kfՒkHo|QIӻ̭nM! "/hT&|IT *IsnDo/:J i.d˥eWb@Rbwl0745u4AÊYk<{VF'ȸ5mY|swc1՜^L289&pdwLqLjC)3=2Þ'_s_b#G,26zOŞd"j.nϋ捑Bq<64gVBu.7%:dToov=fҡ,ecNnK1Ӽ*"xfuH *5ad+9_Z#UIFUS~gkgs ɇ}>ya{ i66FlUv옞L]8w4#PRkBZ~[) /XNT޿vnl䆇jC9^,'>ݽ3+܁~$jlb:: 9*_Yuwމq=~CѫJLil1.Ĥ0)̖&YRiVDq8=Vr߆^JTLZIG'ij7F\A;Ƈ1?V,[ToGE BɊumn1j:KԳPB%\xnjRY?D)?qA`Ȩͬi'jk>H<|rAgM!s /^]>%lJdJhS3h{Ch\ˋ|%T<)ynXl\)9݋Kr!;b:-ū6JׂJ(<`Oredg~=A0S,@II~{PA- A# s+HD\FǎD2 :\[G| ?MgwdlP?/9.rj9٥xW!wP6HΊbNN}uCh"E.{ud;ÅYoA&\6 JBu@cbFo&d\CoN./0r ߍV4;SZoQ ?ux- 2g'VߑP;"r?.n TkYxao@Sȩɟ#TPdyFƷڜǟ'³_T:F L+IW& al>vFP$Qk`{SfxCo!i}].n;. !&L'IEC*o rwF\A3jZ ZQ[ϓFKj<a5>H|/r?YF (efrpMTj5Li&~\{8ⓑzSj+mQjܙsp?Q@YA3*|U! pgS2.7ccxUcZf&W=]ޏ)J^x/xs $sEݥIo= tVC1BmKK mم9a{Qs6h}sLac;XԧmvjTn2wμ%>]jMUF71bBE<ݥ!=Gnc>ɬ4.SpBO 1.@9Ɩ,7iM<{A~,| E\X5ZSQQBDR􋚟qVw jj:[Hk߻6)tB0ϩ bwPW3jNDlXQp3v$ {#9X-J*7~Z6yHt[b\m\>NI^ҨJRv;v͆/ƝArQ~ ]!$tr^r3خ"<6! " 6TyMh8TYP6ήdQ{auOkq^MsśZߦhrb+EN6N r@<.e!cb8ƷBb-񹎝vWQ'\Vp`g2{:dgP}!ɊAu {SES;L%\3RtmU?uu+xWnoh3VBϯVp t}G06QonNm)bxU9[Ǟ! _4dE;ey8 C"d6^źz@$R`*!SXZ[2İވyBRɗ)牱Wr ⓶$$r0T0|FYbFSӁ4,QJcQe̠Gٟ %Z> 9ɠXEH?7̺ Ͻ!K|#g_2!qRy6A֐c$ W| I+Ҙ ֜=pqm<9(+ (0HN# k9(AR !?œX jjlU0J QUQH%D4ARCF~d %-Lu݀KaP-l[Hs귪Lۗ(^`'8aքJ\F6S>j#|jtgo9X;a5*u0z-Sy$zҳ#UTlU%S"f1x*Re? T~DEm`w4.)Xc9zANr4ב-d]+TA>UC-:XWC#:W kѦW]cqtG]`-91,c"WJQ݄Wtd$I!.2 /i9I:⿑z NPNH)ɶFL:^ H>5Sߦ ޡֶfM>ܷAt^<*FA#7TDо {L~ë1 jmDUl~]g]~AVA p6K5V۹obT31 ,W=-8PV jGΩPfEUz(DztbQc,s OM5S\ < 2`XB;mj\A%2DtSU$_"!I_Z(d#=T=Q>mHuĊ*u2Fj'U$V3]$,ݰP0 $b1}#NJ=+ڠ~쟋3N0<}XM!9ydYq=f1=;b01b\j-*55NKF>B@#Lٟ6&y; l\\y$]IrIbZt0]%lzoT#CLtNm"i(LPB)⥹`؄%Kgg1}P6WS?2x] `ޏSxs,0xj&!0h4-'[$P9slSjfQu'SHw5>oPP|Pgo@~oZfR U-.I}I#8AdxgT,L6+28dX: Π;]17$M,Q ,4Vhe~L=+=&,o|2I|P7 8$b1o}~pnݛi4V}^ӭCrmrGeFWl)$e˘bsg|1蹔5WH͘}<wJXR, X~ϵX@hhC^6nx\M|Tdo?#;s-h mtQ yx80#,0! 1'3WQ.ytmŗj;qid<1ߋv><>6OE`[hNq/e"SK驒z'Cn9B_+]S$.d^M5 (> gEmO/b4b=XyUJG$lRj6׭離8A?G>S0̬?tdFqطg~ _)3σ"dMl\\jI6iLLhLHw N.3ά_TMJnv[mz3olw֖WXRm?gyl7K̈́PaO Ք ۠( &VM_Fr6_->nAׁcEuPB$О[: V[Uep㍜cnl.p\r vrko0hx$iϝ l>nh !؟{ސsbdS7\o3zFCSRN1# >MzVU73[!.+a/.g (^RIּEYle=494ZJtŘ]4 5.9?EƊ^k͈R=VYk )V0uu( V}9h a:S& /xq;"[(3|n;ۈJrP%svmp)0 ť]D3s)qd=5SiݛnB wBj9v9oW 7HF\sd,{ )`pzu+Q)@5$7>3qhɅi,J,m$hK-hb.|&9x }0<kc2K͗cLE?7nȸcZ< j!1L7F$w\JWDh14KV 8E(ksP&{GA.^]tƛ+T>/K}j%2[QU2F >4SUS=>mLU Z+jՈ6Qܘr*Ogk88; FIG!Z Sp^ɯ:qW]=*^P%wZpG,i]T ԏRVjAÙ?mWoƷ1m~/fɟ$]e~ؐ쉦V*ڮ|-{=ղk8lv0:V?gWQ̊k<@t/&џ.=ie+ Vq%}RitOB9̣:iR=?t6mb+U?ru΃*sjr>G%,{U(I"W_(Eǃnɨ.}aGTUTWՀKhurc6FQuY.n]tTKgr9pT0ūB5;Q*5}s`!#2m@0cT{jߐ,m4(Tv6al6 Z|WZ971ХUOphkY6rik2UUӴ2?g O,%>2^`.)N>: 8dKfdx&Ls\EՔabVm.ѠF DLV|u[`\*OOoY7V,"7qYG3隿X4x*҂1CoF[ϡ(N6c "D}fW@]'zo2f͎ϋ JCV'B@?B;C*Y-Gv|܃Z s+;˓ĺ&|6 T$j`t9n͜$  odAg)MIꄜƤ^yJ8{_ TAn+x6O',sJlWev@vkO#kX|sZR bwҒ1h[i0? Qc?s(:kzi EbwW5SqN4ɶYҲ*(s2#4;HkK{I=ӚL7"AWM)=%gFj 3DPL4hwzJ 0[й<'xdrUӠOMFܶD@J ?S(M(RUo 4Gs{P `q>1ؽ&a.%Abb(X;ϵ vwhV:nj^zĎe ('xNK K R $ "k4z_;P^FXCoQz̾Kl xSFF~ e@B6/M[ OA&(\+9$ (KZڼz5Aڿ)ށ+|#It]cd 'tuk1 0%D]DA %7% gUz ~2c|{:`N!=]ĞJ|xl"oXp2iCnI#78Q|.decDWhfTs4Mx)WHBߌ9mGۧ4}áؑTjoOfꮈUyyۻ\aLS6ݧ5c~(";D>)I4ʬwZOaE?8Aq9g|Hp_dOPԆL$4r#jx==r>YM`[VЄX %3eJ&,/y-4(h#_vG,qjxU˧ SƞOWuCyF])Y\ g4D = Uc.ͣ%Rd\D#\a<- q`nJϫ2țJkoI~T)-x 2 㪍Uz鱗~jM4Hِn}u.MJMg*G|?Ղu3mZ~x}bO\SZSlr>g?5IE7_t g1Yًwt l̐r׸o3-,6\\*[bUj KZ#L.Go얧#poػ7IF1=6]HBHDzhT\3,7!x)|?<hSxX -ۡPn4>5|W}Q#=8k*e8N˵Av|]9rGW#93 K G>j) ׇa_03?}(&̙"u:(G.1"a7hƨ^:Esk.0I->@x!a+ ;2n2EԳQӉ6ZQxbȧFZacŘbگSl()1#BTiQKbqw(RgR}q>$O9E@x1 ^Jh]>cq-hH(m̤}"33=Ps*zk_w+D953Nu'݌'mRX!}j"vA9[Q晴QKQ灁|}jDo]ʦ@kf;uVR{}"_2x&)F>J[tU}v!CyF#RT~ֵ 40N+öj6jE Q){&VN#}QwwQd& QɖK(o,>h0s{+wU|@|(44ջ.chwo" T1vcSR#i'l!7ފ'BsE<"s,0ၲ*>H|ƋjhQSêw/b Hz˔6H'6Oj; QjT h&yK3>%S$`g~%^a^JG#G%ѵԒE&Ip +=(!{rwr6o)Vt'T4xL PS"{N%f݆={S ȍ;\QexT(Ɗ jzEks-2?BYg]=x}aC,1'3Lv+7b( ?H& *hdwaz\8"@&JAd&~6lr܊X\Sf\I`..޷sx/haw29ipg#oٙ2NٹoM50gZtOWnx >|? 9, ɣ[H~E_}[dE!)>]JސpkPQy]țһ[0jCYV"PƧJSM3+'/|Y%|ZZ*fyIKUmQǠBs 8 ڝHA ?Sw 1iɗq\WXB@5bQscT!tiSbЭPv3QFy 0:ْQ!XG@I!=UW ([_NW vؿG bȹ;Ph PfCxm{H~]K}61 hM6+ y4W59GHu^)P4„dݎ( PZ|7we꒼KxC)S1l$]4SŪ^tvTTdx@]GuŸPoۉI'Ȩ-uj?Kǖ\4%Au0Ƹ20OAz b7&5f"MWMFlGbhlNtL1Cm۫/Ք0cbTR{d&2>Qs4<{~~5E%j- 4UYIF0bgW}%6w1&ZmKxџ >|*x_6yv6=}/o9DumPA CsQ\PG5/UVZF=\]]k !St \9$2H"AE'D`౓xe,˶)XQE\}L eA: >+ k2ZuY<.?y&Cb#Գ%,+;uK+9v+ճkͥw{.?RAѝ:G_uLJ|ITKpqkCH4~˗2]ܲgy;MՕ"3J.QjQ^˔jx5Go T+9"l7 ݹR4ۄ-%N! ʮ<]OI07bnZ.G괟e>"= GTol (}2x#oq/aKX+YgA\~lCfyޔ ?N@ ;.$.HM*Bt$~snO)*M3?FgȈp3A ݪ9P4^2<&nsD4zʟBG.™*"4@2-'{N Oe\3ąn)`.pRQ;2ق>T,K5WL/(:lk1Ə\fM#RUW^dU(G|ňdQ,ʳ)G;s%j˅G3>bl">:Gv X/RW ̓J^9TurvO5nt&pE(UnςAUցVa@$.*y'r G:wW X"eW~TsD<.(q=?_EUNU@P8"c"ڨ hVϵF]RSq(G0K=) ߊΠ24*F$w)Ѝ:JV-Y|^KNtiĨn[G3LHNe.v}u 5a3LCX'xm/_,^KvqQp? FI%}܏aX<ۦ`yG#HÇw WK.JGwG)(ӎ*az<*I/κ̅UoerȨ[[ =j]>#ci6$%@تG\j: ?W,vET+P_E?mF`9P(d]4>um,$Ǣ䞡mpk_eh\vS>Wm7; ,*FuoWt(~z(j ɬYEp%"_imU9"w[+ѾEx;BoOeuݎ+vn'fb$121OکXV-Hgn^5 *{MVi>`e>{޷lFdYfhFyx:*aB_ѕG?RGՔDT 4;#8&ğ*-~SS3,4_uf3rg?;AzMifHqu9Qx.&,~[k|ć퇁)oGo:)'EWjU!9} ~\۪UshU~aQvŷKGo]3c:{'綌7KIg|̓ˠ(FؠAz@9gjWc3*fPݓΠfh6^܃suBߩ ZFhDкy+q0ejTe z#Sܳf~s.5ItA&ZZhO>ɶ1}GЁ׆ MlPG+HewP9E q$. GD#kAoŠi-P 7h.]̩t<0/6*́M VJ#3SkI:ޱo"֎V&,,9[<2NlB)#&PrH J샊Lߗo$nu>9zW(84@F\u]ӱ 4c>uAQuA\ђg!_+IiWK\kbH{PP-74aXtV] N{ׅsL:o%c 4oClv5m7"P`5q^0I{5} k'Aҗߎv҆tkDͲ+؝*ؗY%Y\c=qd+o1L[!ZPkH(h]5rὙ^T8 ɩƫQdd=J0B_sNO: I[OotEjH ZS. "fܰ8"X}Gf0YtQgmJ?cU(R9~qa~qf,8ՊQɭqj*ሽ_\`L#ߵc*̵H UFȩ7y3o52 vJ VJk|~2,  lgԨnuqr7*G XB;vkt/(wq3 ,@X1~@5aM)lksԂ]C,};լxFY Pmx&4:cJ{)J叾ܐ7w83<^]4n/cZi1Eܙ$AMRpx),\.GkmnH%woU 7JO?m99ކ($P~-w}26z<{I)3])'++at{T" 1b I~ʀވ`n7qql%jN| gDž33޽Q>AS\)H͕P0H} ZKpcOˊ@䲸ZZpAؼrˀM&vj_:a f&, D~WHn ɵcѶ7M]pYe C7pZKUn\cih4͘=XF/:Hjm>{}iYے)e/^WTwI_kssM#>=ɩS Ny7[+nн&+bFMxpyjN.=>(]Ӱ"*.H v0ifFЖI9c^j>}MMQb%< sz@Rwi6Ns>DhP}|y@@L>p޵K?8$8k9_DâNM2Kş |+z>%&Sa\ #aovoؽgyʺ|:K0Bgajd5CO?dvb%,G}Gw5~{>L2NM-qh"<1J=@ufy%tnڅ"mD<ԔAqhv)\锭D%(N\fq\NYl%T]ޢ xXqceY,%% 7 T%Ws"A샪'ճYuz6[( VQ#9{.QwoLy`Ŝ :5 mO咖e~kw t r~6gyp}՜J5uDN&z(SjL n.16ݚ%D.%w =, ay4w=b';e.I:nƥKu]1W",zo^ GLo9il{.S=أjs3Uw(+F(* wOۮ:)Z(6QPZZkr|tv|\[bwNd8ES*2riG}0}7iU)l[wroJ7^ՑZ턌XDLm]4q~MKs)~1/MB6X~) Z J9C8OHsՒA)+YH*<ԥAg"1kGPځVYME5͞$}HT iZqnEݎwyE[7tYzQ:(羢%؛M=`PsoBΊj.[qtG:Ӊz،"iq]`CF $Zkl^F3jU[E| Xq>yWTuTg3#DZ&0QR[˙s sĶ.ޜR,Ν CV. 6bq% x|Ay 8SWńaK΍S: FCp)};EPBق=(oHbjGFm .#h$\9dEw9`0uǐ9r ݫgIwn V~*^b5ўgEK,ӏ%} ?uI䅱8#fm4S@鿠.ϧܽG}Ό5,Xb(\+ҭ[>"$;뵛B!ExVY&ؾ,JiG,'o<|CEw&B9BCz_dsUNXd,a#-u6=bCu~BRwx+tJU.Jj5)CQ>-W?WfECH@}\sf?EQG!QpZ%iQ`@Q\0DL\Wb>{|HKSuO SoET2Y)Q:;6+_k}`0=u#D ed>dT`vux7$m/y߿ny}[ H4/7^y?u‡ rvi'!3}-d%zKxf~=زG6[QOQm&v(WT} ͒{X\S",h%VxMbOJǸ`X+ݦY`64uS~%6$RrsUY6!L}d{T$wT($wJ}d{T]ݞJpGU+ZAA*$'S?*>O|􊕬ή@g.)X&C ^ri:)oêv '.](<\>N٢AS_ bP^uʺ%ߞ4&t2_5r]]+ڢssrO:Zx|enU&%+&C%F2gcO\Y3NO]٠B̳V%)Z]%{;] eBK{`sA#TasHTFfq>ȟ+?* >G\ʫ#nMazkz7ͥT~XX)wYͻ}6Efi!5rW`tm iv1SCw})5AaW{R[jR{-f=j\uKE{) [Щ=-,-sdoj5Gss~i9ee(.-|\,]x܄cymP1騖Ya@ВS͑x"!}#4sz爧ډ6R1q7 򴯰3.ΟZQu ߥM;ދVA° ҸϷԾ3~6Al\Q3F jv_5m!4qj352B?'GlzH ݃FQ.ILE{dj؟@䙋WnU5b|i2✮otGs-y |P?X|q{5[c.`Q{E7党+"@<7G0h)֑Rc$'f*ۙ|Y w==f.dd81*QAs5:~̟ip^yNFJީx2O)t O]?:ty^",CK[-PpDE!5nI02T?q;w S ;a"AB%ݕ&:b i 2md2qKiM%wDtP$ovPs sx/ epG'fV.g}߿'l\&ͣaT͟Bϣ-WF[aӒX 6V4Q2^wT::{X78hJ?0M w#e9fM4ݙ;/]uU4<p P<+LUo6{?ʟYOL&z? {&$y(0n~=ϠIlR!KEc 2(مd`Ŵv߁P X|_[_3tT9f㑈E4ؙ8;y=ҝe^6vy;"]%ɟ G H!Z]CP1r)) ^i{:4>qHP mH} 繉sS29'kw.N5*YgM*l.95Y26(w߸\jYW%Ph0q4\6m(灖P`ppFqD趶Dٔےnf;rH. B]ʊPIW"7 caZSǛzx .w ?N.ͮ`"⩹an$֑otܛVg-[?[ Lz#*;O7p}׺3Q 9ițU~ sfH ZiX΁H$&5ac(gg%»a^qkOh+K M +a ]Y*r姢ݯń?AI|sXYXCnR3JWCSc﵌&f$̴ސ=u.l'?" v!07V߾0ju#$8"j x\hAGSowJ8ue>hq9˘sn%?6͝uϹ>$/mGo{ز;h͚BtxkZs@L3$jyX I[%&`7mʓLVd3FboF.rLϒbBh6RXIb k@u'?#BZ~eG{QӉ@M5FFC܉C{(b}*>LPA[JX#K,2lgٕ = j3,!\FV9O<> TҼ hLp qls%\ JQi˴slH]*FD*j`ZZ'hƄL鮵|YTQ6*izU`2_Պ[?Go0Jc-T?ktVC|t"tDmF=J[W9gxïĬc[ۣ0/cs6:c]7EgcJzjvW'>]_nL̦aA+q kȣƊp%Nu.ébenJX-ˈǠFaEab,q42A1;(EzF)r_fpAIU׻,F^c-!Su4O=xԁ}x*mS1Jrh3Cu% O*%cxls@Ȃ,Wm@K.b&CHռ6¨w]ֱ@$wP꜖?i6ĔPjO}+gTmK7;U'ҿKʁw9P^,PAtDf5(or~;5B%˩l1n}z:{#yYlF:κ6Q͌v"`?"*fڽ^*vQ~1)s`%sìtR[r}݀{# EL(XRښ4%l{FxԲr7q_4 vᇡX G'H|bϋ%>aub`trǸv0r;l]I B&&GaWr1Ybbr :\ĵUk{;=,Q 6+HN$&PŢ'/;`W+Q2whU4=  ~b'v6!Xn }6|ӴK֝~ކPo%\`fbD l1)ݧejJWߴ~Wİq6s-k l,0E@b{:]LO\6!| 5 Ǚ#s;>aVyewcŪ1>_b2wKvpp> \Ķn}W6 eHb{R]y_K uM}]]Zh,[}NQ 0w){+nYkvŋ Q#O yY **o03GKz7Aiw|sىTOr!1v̇UZyVZ<;KH1"czKgJ#RU_ܤz & 6&9 W`1hFJ`P(E ,J_"%45>H<kF3Zq|OgY}2F ܀ lX~=^>eɾXRYEќ,x  )^JY0Y ρkz,sV,Obyfj1.ɀOOc.: AxBȅP]P$o5ޕ=*;WTۮX-M"lji|Wgk梹|PtՒK}:˕8= >[A.ƙۯy]NOv2:&{SղFDq9G;atl_:!&K|Dh *.k ːgMsukn[!nPQjFڌ$USdzQUE'}SEyxjqWZy! E6d{z΂>xOmV\jDƼ4qO7Dl+!{@ϻx7.8LOM uM#K?KJ4Ή Wo38;}PA>*HMb `# LMc/g?| -cN|l9 lًMf5MXMB8\=0cZOjL3-'i%! ,ށ bݔhO:B؆C.ؗ}r(A@,pZ'>=O~u ݙb~jf=|{9 r Q{S O-|o1WhC+T p_>w& GQpʗ MhJzѝ:%A eO=?c@ԁ[SUNGh^U >(S5v*kqydk,DNc \;R[ L'<Ұ?C$%zPU؝y"ר‚txYPzE_-iH>MI|=++^u )'Hrސ (@og&A oA<#I>=Cy/G>J3$ =T?&NHXEKud_z\"s~=uM;-O)jߢ,~Uz5r% S@ w;E(ud8.* -DxտQŴ5 k~9]mdWkYK[znr7kP˷H\É$m7\ #>ξ0cbzum#ZzZUI\HKH7"5cY + 2\U2\U>Y s[deT37kJr%Rrƞl}?`F"]7yYbt;Y X&3t1S,~Oq[1FX0^U3 YhPO i|rd#qG  _8i<9Cb1V-<kkFQl\gР^bJ{+f4F;NnY\"e|D : ׌gߕgBڷ<?M犟h@ԏ]yel`c}k̉J7XedX_0LR I٠7$91GM֞7/_"|6V6YuKx'.Q#Pd P#>!4VH ))X`cЂV `hTĔGUz^|\^* 칐ZIHtATWL wj4jGt[5qc6KP \++hԶQD-6fpS4?Q,˂tdl d1L[2(F22e;+k4~/Y<n,̆#' I/&SaCܛ~GqF\f7kNh4ȲVk\ᄑFI󒟄<ӄ$N]9[I1)T sGx%Uci(IG@&a9eG<ۀ#'`Wγmc d^ *Kp2 9 .D>Q>AIpf Z`bZ͗ tK#sl9Q0_SzyDG&M}IDk$֏ι /_N#@N:] YBK/. e${ҖЕ4n?iK WK7 2Q+A2@Y)~DY9OY<;w.1xjN}5h ն5HIۭFAGkB,~~}P#SLui!u)OsQ eƥW.,slu-nm.I=G!0=&jKB_%0-xnF=\J=_DNg=|O|eaq{A6g!# vюwS>E9ԏldž?\J'y;e<V>&ԑ\PWbzuNIWjҧ!傴{)h ƒRUr䳫`Ih{1;İÌ(\-@7h4nRY|.|o,f3s cnXpZƞ*Ok..1}nQnA:O$6cjfEÚs&y)f Xco<]@Ƽw]Xt) +YHVvPh6Mck:2E/"X[1>i $GӞڼPjMͪ=Oiaֺ{>?@=@h4yOl`,4Ӻq0S#IBZAij(;g+T&٤XN #اQ 4Um\IS{PyۊBBļ}zM:$y6:Uy5HZfqrsi kTYg*gk/֥HDS%m#"HXِJ}Fkq(*>P@x~>{<,H?5uLlxKqwV<$sW24.hWSxDxڷT7 7tkcc0.gZ}Pw(| Ov1LCf'{%F1.aGD,K1]{3VFI o,i/{L/8H?&'{qݚ#M!jpfu5-i]?q4{U6uwC-ktr@n͕)jК$R/ f)Y(CSO }c"&~G !4]V35gg鈒82ЌpVCaUveLϊ{}dwM} Lw8nڟDrMgʍu-Ȳ(t+o7T1 z"f+` }<8&HJp>Ȥ9t}7V w1_^+Â}u|4ICb+"E ѥR)"ɞ$.Ev-f6E"=!9ϠnX)nE.!6"yh*렵?uMm^b&5g^qSBjox#US>W%FO>_qgTI%r֟tx2aP`D~eDڣLz ݿPd'o""U^ZϑvӇC qe'>+&UE|*BGXJ)o+ bS̘"v o;v"W )FOљ&nXhUO ŇL'@-q8K*V^92ݩu߃J >iz*JgE&wi|W-R|7{RPYu9[T]P >H4*Z`rW[VTF&ZٌzgL>鏸PN@޼3- {h=u0P `zZ^nMG*"|- bN-ղl8Gʱk\>r՝"=iGTMG>W_jvG5~j>x\}죏Eҋl .u?e.H>ȔrGlg=VTp@%LɬgYpm,!}YbR[% 6TFiTЁ2cFƵ9`@.h$3JA}i] RBaD3aԢHGqI3Cg{q!ma WIkOp>wi`ғ4`ƙP Y>Z=}^V/ r26Ji-P@&97ڕ Cxz,Z B-o-w~Jؠ(ߣ?ipоQ ,ĺ8M VKmj:8GU),O 97yiオ=(|a|űʦb`u]T_BlePuIYӎO!$"b'{,Kzl `bA'D:I5k,D|&joN)zvcU(^OD[?L2d ʠJPQ.6n5XҒY-vĒZJWkl$bӥ#O.Wh^L+V+1xTܨ#u],Go )y^yܷ\VJ+}"% p`Uwt]P+!ꖸZ7+tq 0aT\j@¡}zt0 BU'J@ʞQBI"Xe"| ޭ*b9*LK`0':R1`.U@sT]*3fb6-8.uWSwyꦹGO\r_qӈdIaKs`>GNɅ:SA#5%@|naP ZLy@*feYC5}XAVK7.F-'BLoX}]2̈)a=h^OTM_3p^f0@r:KXи(5'~ GrYZwVĹc= rV嬮"m| WAO\=Ӄ$~`yVo-\6{ $=[>4 Bu,>/YVE8_:faWpB'c ?| !{G$0\Ǚp0\hw -jO ^jo@}XO=G66THk -e3DZb6JOwLcHղ1⏱\/⠯dKi/`usxnP̜㛦k-6\87-<[W%|g}T ui }nSO >֢A gjB,{,ؗ5 <%QGol_7枋-eb r`y(ŨtEDQ?%Lƅ4[IaQ篅ol2 I>|)JoQbriBmov' &$IIL̫N֌ǔn7ټ<쩚=,BOhiVbK\@7FPOfWTgmP+XtFH_%*߂]|4b,Rs˓q ܳ|mB(A>3\md~OWBU8O%S TؘQ|^*S|<Xb:,[ILxb_[ r`NDl[ ,4Sk\J{w1 ~Uf(=qQ9F)TJV=‚9>%#Ҳ~yf\r7q) 71^uN@[wK[-=%}!{@…24x.O9Y!\f>XK&&DarU.stR3#1xa*~ ^l̑ZjPJL! ^snəYsOKD/4d2 `])'zJن6s5z޷i,2zcF[gZ1ϽA:ǹD6G1j0 u73o>-bc!LOΤi77%Jb~pP5kQm(X>qz2I`(G,Si>&);q֎MR3'U* ^()d:߲'H `,`< k6,\c,ҎUɛ~j8 +>B$20 o:͡^y$.a\B.67swnt"wKlR.rKjC*L}ΒXx8eT m\K=V #5Al:q~ h>ۼPX*|^XeŊ x.vGze)9 ʗ3 Z1.Z#%|U h`#yA;C$YMZm>;<ΠU^&hwX6>A"7ȁv Gp2G,GbOHc B rv.HOX{)_<^>( pbgjqx]d>XH ub-j1O]^7 /yJr7vv{ cf 0m^Ayƹ>)ӿD]Nj otct'4NXι) [ٚ.}O] 7k<1 :(2KaG=Cץ "Qӵpl$[N%46$YIv>gZ[cpg(UJup1#TL\'>Î'Mse$b=]9 `G9GPW}f]Q"aL`Qo>I%M=@+LG+4|> 1,^E=MfWOV-Y1^fJd:c8:{HM%ah!uA.jiNNirv).^ cF˞4an')UqE4=z28>`povgtϠ՗Ɋ86WԆsUQ9ط804kN?.8V1Vtf7mKhALnouu)P5' "EC˷O̞=ݺr]7y-|:Z|.M ZNX.bqVhcu' QiC/.5otA19;ІH!h{ 2x$hXuג'b֝˱CXrB >=] Ŕم( KJOT=䑻RK4\O5K)`7NZ48|/֩ul g}+r~N}KX9%=ɩo&hԶx샔1ǒstosTo@r$L> d[r@ς4״gG\ysrijl悢|uӀ\6Qucd/nRf6@Rҧa۵o a>Vَί=EK:WLi[S.7%MgDDY{TTSK{BΫms z;MHi=VG"B#F˰Z ә)i81 W#֯by $gL̀o)5Y}HhaڳԳ8ƩQ{HS:f0M^NM)ɃZ%&f?9S%߄Цf/^-&vk̤~4ܧY6 r&h"q'oj2J " nQu-z*Wݧ2Y1zi[l=9cAMU'[\k %<Ԯi&{'6jM>UObE~ ,/Jco٫s}:q0;u>+18U .w?i\Օq ]kPyl-kE=$Lk꠻~2У=U\Ɗ+U75[{X]XZZ+|1J>էL> B2v a~j8fWs[517WOXzWi2D'3[iqI=y[: RjoazSP?8mjixoc>RKxނ6ZsGS.S6 ý9-\U\l{0{ KsN` ̦NO_*\;7S~m3} C逦i;Ѓy#4‹o-*_猊7Ҵ} 1eO7+v}/-!~߆z|aSBaHlXj׏B+F蓮銦߆p= jY׍& DsߗGvFԈoT@-:Xך9dI31nlۧT2l=EMrMjhRO@yUf˚e&8ʓ:u< %]uMR}=׆5rEbm)YuixNx3,T-Vgg监cT81g}L'g"yǜAC|C>BKe?R[~52Z3P{\sLO<\&ٟ2TL4>D9oԦ˄r nd * ̈́W 2jW N@+nZ&MbO.|UM~GP0.k/w9?ԓK 1ɧ$x@_Z[Y--N@NNg-q +,1\4N+ʛ`wvGhMlXdRኯ;W]IvpxmU[q}OU>V3bäMg*ɉO =TZ)Cd2cW{B}eM+twڀ^CʓTc"](4٧KǪM>%_YALG+}xFӟb¶ YD&SϺC&+V;"I}ZvTQUWiNSOKڄ/a5hӵbkFrц6 8@v !{V$f57o-. U>w e*;K,8Ι{4~1 'I.Ih !oΞpSRykmH]5I-ӛےN7!{Ys锠U\kEvAKM ^CHr!݃pTI4Tni6 ʹNg#A]ҁ༪~`tNQHs~>֠#wVax `G@wQg3h}3 YkxRSk)NN~?ccݗ*DvюzT~OCw t@ [>{'Jm*qd6/ׂ0`%3LԮ4uXZRN7.:e0cڦN5 ƙ{M!B i$|@E.*cֱ`V!vPyJ`۶8_v< j^6ٺXKrJʣ A;W2.dԏ:;uh ՚3qu]leih?ΪRo"ѱzBI)fo̺g#ʎ+ +F{x1_7jњfiDT xr<Ŕ,""8S22w*O! >fF8Rr?&~V,1dt6AYsĠ~;SiռR\P-_Բ;U=V-3Ui;BtWg`JT-CcH9Us9Xà>eŹn-{ +]#K$5u9bi(4luh=E*D$ti#,#/ᰀᠠ0K!ILkD1pSU玅,KcKݝ!uLP65 ݒ3ɢ `oAUvh<$l ?ub( Ϫ|;xAqO70-gkb |P]Hwۃ1ܦ$O5Ru{r7b~O.GUE쌪\.$OEܰ81Gb_&Ɲ]-|06h(NqxHυSNĤ.JrWSiǮboX@OA,fX/yj9iTOvtX r:f8r- RVqw Yi>1mVjq6{%HqZ.C1u$vCѧ9̷˧vH>hXD0v[L޴K7͗ nl P( swJ-nmXS 1aϒSKnf`3+aUՕ6@e[h>rܴ߸>WW 2q'bP^jU= zSR `֞U=ib$[b/O$3ƺ zW2Uz\En6pg~iW9~C+% ҂o-^9jAmdk.>4\٣(~B%'E^Q?}Pw]^Ws_Ս4GqD~5|sWKS%{5XT%<͎#kr`_}/t@ 5_zpw$lݫ?@˫䵼Bp9?rLQ?ȫ!K{*x)c~bKJ> ؛FDiy^Unզ+r[^wfاMTvYRM *tꩩ4sF)yl*3w3EubшwS[x8<;䚪Yg.׊~cqNb+ߞeHToɴ0f&}9=$ Z|KA}\{ᆞ4[ ⑭Wo@gM̱m.oeaK :=)og(&شaf]6tE5bo48sMSL+b/y-mDII7(0>Q :T:ߠ\bF:F;]qz3H{̪䇲JM>zybAqg S(GG^ N\d &d۸bIDY"dZW*>]KqWF)]Bm*1$b 䟪Tfٟ#YPŮu$s<&K5s MG.My*֨*W\11C9)'GZ}7_2sdW1c0pٙ^u0+k[ HOH떔 {́!*Ɏs)no}j >Gr<BdÇD  0ҟ9eg{QbR{?8(Om17h!F>xii[bC{3ם_CևZDOfjRIh9:x(_Y a\P$ 6~g֌׿>߾vC$O!Q(>TH=)'6Q r!A3oI lC? 8 -aZj(yHT ׋r[.rW1,U%ukTf~Z/w8%Zպ cvJCB|"!cl]W9>\DZfPٹN3=Kɳ^y?7yV?f$d]R ̙[?áp82^޺)1v3;38d݌E=<1=,ZSzT8a;nrH Ǯd' obJzBfSQҽ3H8o6 SrOwmW^"1JpU2SRޓūn+4M*smf͵b-jTͽy4sң"̟~O؀ejQ-!Oݵ5[GO0٢{1UnMI&4S#急2l}QyRxȮqtM)XP\{[$웸L\?ty xitN^NnVeM.k>Om⎾_WVF?ͬ.f-r!.j]9Aǐ<$Z`-;* ]F )ε?{{.i%O\@rQ>#l"w{彉3OWi\G䵣F-8AJU-oH y:Iw stJ! D@L=;Ֆ-z(楡s̟]#ufb?,JoH brAcأr)Dhu=[EfN4?sߖ4ݝ! !|^X<;?w;4El (}lŠ+|߃,o* 샲*,S [;G RHAZY0,@YF uwEUwq@*5GیDg۵<7w\b0]:_W7L)X%S#A1?Ll$l(P"Ǖ􈁝 \2cQwKSIcUo\稬iD駈 -d7WK->HJMZ}/M[!gW5u $5nܕcS2'9\¦"TZsZ;'%ꇷ1'?n/SAK&Wn@52eQ}bf]$%iOqQN?-EC$8BJ=y=clG^gӽh]4N'݃T;mh? & ω%-ndij*ʀŸN?7jĸ l5>Ymh=l`Vf:<#]:{Tn1k|46dn冬'S[MO͞e%QS 8 @z\v^>}ҍ `{ruTF\dlt~ d`rtgJHxCzy{UuVZ.A]l/ks!@S6 VPgsf]1K)m=IezKyϖ֚O?_Z#e_DʹQHw'l9~g oq]%'lZ/Τ&BU5P㐭mt 7~}\]ű\{ww3ܢ\5Ov9hL5y-ZBfox&zjD'pxI*Fpx6jʇjkCfgך=3]:@s : 2 x{2-)Rxq谠u sr/&o@ ?p̦[zq#3rL2[l𒨸 mao\%w \_xbի.[Wx#]]Zr!B؃tSlD)bo*A5V}PvA\48K0J^A_\5XWeJWgTd}j2Wk: =щݗFe1֥(*J}yt%< }>\_la~uo!w4{IT,w0+B$VRfG}PrP\ )Bz{%@5=!M V浈:(q C;? +ꈧmk;Rx+f _wV[;C9no]|%UNms%PVN)3a-å}]{8IT^LI44^p{*pă7tI srTn(_uwӑ+BozFk1ououQ3C[ h(cG*R@W{> `!)gĂ\|+h]J(Վ+{հ r"|{0%\f_Jh3.V) %\u7"rquSn7ۦ "Ud.A WwE9 7滤:V*YbBZ}#Ρ`|`geC=ǂE$J#WZu6u}PsV% s,WYZ =˒ssE&E:hiZL $TLޚXwjݝn {]h@=af Ph}%*Wik=D'yε$S`O7]\K>+J N gҩY[~Cf9C|E/Ѻ8תQ/;o.IyDoӌU|̔\a7^51l$"PԌ%զRM;׺G%帜Yy MY{._uY7"5+>STIʐf R&B]>SYhn~t{35ӆE {=BT9H? c( ܹI (ɭ}omb6zpq4x30쳨8k\߂Wns`Q9L;Oޭ\u#-nFOw۶F(EyXzy RMb<;D[+rqM^ I>90'DdRbń\2NZuBEIxoӤTvd4xYlqY.3qcz r0x8AP0 j-CJhR//;͸5 JW̛MZxOifɈ:fzCZU? (kʡkpq1=X8jD[ޅgM'=jR#7c5Qm9eDFXgDv1Pno)<PʂA2{w>\9T2)YGfj09ESf%r19mPt'Zhv f[߃£\gZbs(Wtmf7/bŌ݄n6մ{ (=M{?# %*}g*用wFPd0zK9]k?9X6ۢ2N.7%8e67tQ:$QA%*hɦ͛g yz ìPFs|l㌧g'@xѺ$g~ b֛8/z̍=up r'>hV"y76;Ne6l۱gȟVI*f>8Kk`-Gak >U|N| Hhy_kt ⛬"ށ@jY[r8o)7\]a&1<~f4 0ݳ+<%kqeR?= 扭4Ȑ]{fZmP>},1OI̵GlJPbm^'6n]j1mF(-;MHH@&!{}C}dS_  1JjrX#?- ^:5mU?zu#I~1Es3\;*gIb*)Zv^PPBc)W/%w1Iwn> Iȧ5/j9UJ#%h$>mLΊZo8^T N>C~)yg?WLfPm}uSS/2&{;{஗n?&d&$Jkm3DޤƍA-LC'Bl~xw։??KmHO񺗺ќ\ۂ ',R\ 1pe>7XJ1Oל:gFE<2So;Fw&fR{+j\ ]%V9&bf zŊLz Aua7x,$Z:KfT7Aygq*flt5Vtd@BPNXcCkr *ݞĞcZ.)-E9ʉ)i>F;l%i2r6j~ ȬXZ\ @fjTSXu|Hovf2cIgÛi~ݟ[z*E~1P-a<՞)yQ&bn}^+"VXEyֈCN.KMo)B958G'm\rl?#y3@B*HMJk3= a@Dڈޘ4Cc5[0rN0V⒳y'GDlJi!KN҄`v.K Inm~[O W@ ԧUi!@W`VM'yEDXu{Gr3z]Y$x$ٯ+sɗ/ w8 ' )O"{?H<gDKR47P;%n?ăf:R:p:O^6"zՇ›K=bQ8rIKdϓu#JMȺÉfU+%)4٭Km qpM.-q@\c\f1tDR= ?F |4ɧFOxvUXҁ?T f[YRз:*{4 ,{A\>H+2l6~+1w*kʞ8?U;MG 8+ҍՖ>1'ܕ2jp}:+S Jq pXluhi`' s~z ˵E#N?[e~L\$ 5&qvNcwi$Ύ"Xn-Chn+B.',~J_žlr.(%2%yobĆUa&)5n=̕;*Kyٛ){Oi@8kAG>v6si}awC -8&}0 .iYƝ﹊M~,v:Mw*.!Z8'wEL>U V&+ 5v41/c:9 @԰V%`)cK1=/ hmNXE0s`Ƨ{lƧgmU58"sWWoEg{~!6w"+nVN\|&,BBxD6))]8]Vw4l%m( Y=QUI\}y6nʹ`]1 xʗzvmdۀ-޲jn+u4@+[rIjY56^5!@GSqrAh@;'`U(q)X#AtI!@nʂ򘮚?CBg;@)碦ҮKqVRFp Z7}l h~a hT3B1y|Dm+Pf*w>✒_x6*΃[!e:jm-#a _,A󺕸=aܣͶ4;DBaYY/*ly?K"1+RQ0 %R&JX_]PsնBh~o0V=`NѕKOK%~R Wv]b*?ь2KÞAO[KWc@@*tGH-~#UJա ـ$5^ @tsS4I#(ֳ0ۚJ~}6q|gF\Ä kǬz/lD^eqg!qv1|V[3}.8)06 .kkF9h~D,W|/GdV:4}s= mqA*T<9& Kr %PuM:'>1,HZj> ` >irUwTG& )ukۨFzn,ؓ7*w{9/Yju 4毋\~a_W| }/ٟ;smwjW5Dluų+̔ʧC ܦ:xQ!L{>Gmݖ`7QUm3G}=L`Ӽ[ Ncb8,>2WW#s0W_q4d0ivQ |^W2Y=mKeM3Κ m9zi߽׆Ai={u-W1b"%;26CJվ'_NKX)+~ :PmbDXízY8Fҷvqr0>L?6d?\xs65w;^qG4els̷{}t/r.IZW# >'4d\:DmnyAw뢂e ,[l_bs7-F\_ka@5٪Eߟ6&#>!5V >քl(~n6*iL߳xRx {pC|TA^Ģg-XH wg 5f |6kl fv۬Fؐ!3qTh];P]GncE-S qfXv)<}#XwP!e4b#\3`i1M.w(1r7FkX#=rީ#ve16#vyNOǴ'fMp!kKw4+v,et9KS*wFT1̏eۙcahg2!!*Va'~0HXҳQJ/!ai1$AY?rźŊϖ_Ya6u'ٜ?lbDX-V-Ċ0DcQBDr՞u1hW8 8-CwrFF)$Sv8s>YAتDV\t;Ky1k4 l.inZd QDB7a cB3 .OҠF}#+MFbZ RI}] m1҃9+3bjhތǰ{YSϐAb8]0WGBdV'aS K*[}orO1=S=9$ô\?TЦh#:I!0Pr:^[^I:0 ?gh0Ɨ-LV┃D -\Vi7oms8X*R|]*j4&sq.aZ)^eͮs6i>3"21~,34Q6G%mVx99*޽l +TUf9dOŰ2V&݊yc[MP mjU3|RsA,= jq4OA^)ԏn J%a=%Gvc~m=h\y[} rҥbX>n>gTU?ܞʢ"}=B1J=Ġ7Tw9< Ǩ[ǠO$K%$Im$!c]F:=_U\ Y0+Ƭhv;lt%`U2lԆ>y%.Xv/ߋ z 6389rzX9L 嫼A,v+\]+0PX&[ VPX6bw>NOvx6h6h:6YDg`scl/`Ý?ڶnO&XDǡZS~e#Tw@샊9`g=XJ>Ga%lyGDM1o-O:kH?PU߂ c J8Z-sbw>&zk65{w8Ѫo%謒֡6Ġ=c bN $)%A.1tp0b}-z1Ҕ)cmIgO"cv<[cyqNq{oPlY0/TP<ľ&fXKxOVC0GIgB%Ub&O_n8WVBwra{'E*j3R|>dLf-%FP0f+swLp_U`sRzˍd3UymJcDI6ɫsSK"g3su=Xl[CEr ֧i4A4NW+M O1~GӬSgs@יgL(7y$x:qkRLtP?U2 %eirj0gOT/l%0v 0Klv󾖉\ЄVϗq|TVbmlC,@ ha*vIW.)O;1lr1/Hp ƒ)Esj֖Id~63D1\> /dTȊ{h3T7 )=MPYyז#:bO"{q`ǂ 6{6WstU ?+b(lgf>XWwER ;10'cXҷppeW1ep*²OJMqUP~.ΒJ?WsH̅7ͷ:}"~PD~RCD:;%;ݲS>I?m 3BL{:!m`Ah~kAujO՞5Q= @bŘs% 8o`պ G:hvdA.-$*R:.xWA6ʭ %EBSs&4uYHT #%li]B|i:=g{.iUVw]7H9" 3dɡ<&% f~d|tk"_ueDT:C ԥ=ׁXuh[JӜb|b@_wzf0]c%9+YbߠDmsTwkA{Ǘ 9F-sbn+S8ZM~ n={'9b$&8\JW~fɊ6YÜN䲿 EaIo\Zh&yu3l fσy1+\}~B X?K^ҍ Eg?}ٽHio5=0?lk [bh0.UIu,(PwnP}QIF<͋&EnC`q[LǍP(ZoUBn3Dm8dk)F1&O[aEMȇ\u OʳU)ܟk4 _;7-]gwWg繹3YW&e՞\r{V8b4zcB"Z}Wp:5wEBCsA<?ə)kTݹ((N JDxfJZOH \%K,?.5*(fQeIeĆݓ|OΞ|HGgJUvl~e;R| .c p(ᥣ=r< Wdru~_ItYcӁ`;9 k2Yu^Ŀ)DDZcefk@DgW}Z.'+ mc%XTO* !nD\6jW|ݣ V jY=wnRdpf1L[ g0$hͥvS=YiOOi5ynXkS`7{e Mp{ )y;c͒uä ;-j=OӀj=BM4WJʏNi%SųO߻'caނgG{1GNa 7* \Ӌ5GeKʭ%u%sا(=NCMb8jJ%0U"YrGOp"  1P!)5}Hcg0CəҌMñf% A%xV\ۗsium_KpV5nyyT|Nip|e?gwϨ⮶ _ DA^eed9@Rc2ؚ=w8fTtZk3_S0?<}}-k1{>(n,X|rV!L $/iep Oursfw U'hzdm Uwzݧ@JT .uy f9D{3/, g;ױ O`?ױ|yUgקi r%WTjAc?0`Z4bm6;|Eгl|ijVmIgՁ'1Sp ^?&^Tw<&ɜ1.+d2bXg2ذua484:vtG!e[5P ^U֚gb c--mD/(lI]!/ۭ蕃[WRHo?P{W@(GS\' W cG0iCVT n]YR[WYf|\$ 8,nް7UlZy6_:[<8m4M'N-hG$aөaB)dӑ\P["]84ĵMVV7 a_lP u"%gfahύgo"i7l l uv1k}/#{$Yi̊,#`-Y$ -oMg-lO#l?ppg-XbfS9y =SjudjUڤ*!'~[NIsڴj>w(|?-nE%>Wgly&i̮kK$\N;[7yr'{M~-ӻ )u&zae ٜZۇ]`Qm+ٞ'ȗ"Pl~e(2x U?P.b~ x[N)efWWcǂ7&7ƫzTq]zꀀf7_wP3y?`aw]8pX+Y~,zCϝǧmZ*g1\5rg -Eu60@,{&}$lV^=l3Bܡ!{k5`#~)ɬvYiZQ@eRff$g߹x9#t euGN)sLVHdhBdq9nTΘh29L>erb9K$r?j G1hWg2hW<2VCςztx{bߪ^n Ks}Q^Hvܐ9Z a\P$e9M%gpW' `駔MG]O =*fH^=U]T#|6U=;w_}L.D( 7`By.Q<$^w6n<5}(A9[8SqtdR6$Um?]l M5EeODTkHo (!jY}%uRCtҵAS^ `YgϨ]) Ax`Wb=&146yclh"xW=B0;NP$|.-@g(1)$)Bg{l*qӸIX$BSR8P; r fw.W[7^!Ñ3v%ʮAꛠl"˛nՐHh'>5ƑT5/'j_`3^s5D#mPȷb ݕ]Iv@H t>/O0i.+cXQZj,N|jSO}싷Exvр|ҀqB&s%=|Y10oh2}Z`u WWqL(VscEW1WE~ߤ}u>}G}@GS-}0H7ܚT(쏪(E^"6ȝ)ZAeV@s]l2A|I0#br` \:C31~{Y,ޕ)(d9)yH0n4mbT<&KWĞc\XS%GTg>GIW5Y1WlI`Ew Ic8|Tr^w`{g4 _D ~'Q}a?ߕ7%bMdxP>+%~6>{\E]Ns噪K O7y0K @.L.3lt;BA1+gwrA`OPm|f\^T\才(GQ48/&+HtB @Lq?HʹgÚZ/C$7r+2!:Oq*>)Wb6 J}O/qьÁTxV z6;QnlZA>YA F5A7Ǿfa8?T0)αzȾ]ȾUA|*> -:u/+y `nlPO~WD;u+>)-^ (L}vX,>/w[W2_\.*G> lނ&u8BMoGXeP̱MjN 6W+m >ڎ s.G^4Xn22dW{>#_/OEԠ9xSŊSflcu9u+/-?dbc3nk``&hek~Cg߳.y_%&Ts ZI$U'Ab5;) vԨwu%@*#Mpf[9c6N1{]O{=qWla3ﱿu9JO>=)u e{NKqlF,Eʰ؟M[gISt"d}vf~VKjS=Onš1@e&yCyjT R QRUɕ˄vfIZAyl/9ҼTi:n&}8ou=ﰽ2<ߡ:/ρH3gɀ'wlw^_ܱ3Ct̬Eu-wj#+d߁֌QYk)D9ӴT-^rv|^T?k9W7)ZD#00:/cǤMiZZ#vn8 my A  sH eEϫO=PԽWO^_iOF}53l: ^^Qn(7WCU)Kyx컪kʥ3Y4y*>JaKGߖ暞1 ]ˆz2jtV Ǯ tcS\gɷĵ$7()CA8F'?*s@>(哏Q"}C{7OO+T^gh wݪq^^ܚKsP9Q{ )Ji:?BR )i4jd՞ЭST5 >|,CC9]XBI1j0OfiC!V`|Vsyx(V^>Оvۣkwj:: VXJWr,3ʄ,6'^i2{[iZ`L{"6SF e׊YwD ۰i ɜ%&c ooՉ74 U)eXfwcՃT?yu):VtD=4.H4lb]jbD^q7bP-sզ-a($sNSa4Ǚyˑ@-'>J/!Y\Q:H1Wȴ@maDv'x'i˝EO_$s:2ޚdҬ*A^]SAh0ME{nhZC$%4cSܗxB(we4|'rYƖ]) @Ŗx*?eLniͽvY2 XL8=RcIhk_Ja {V]iݑUpjmt7N`v,tW%$a0o8x8"Sp0(ac'{ - J0,,A g0?ʧ#?vĚx&nߗ2[/7XH&?U2pVT`Yd JчlYSH,*uH$ 㸘ѣ'ǏPF,Œ1aOV~xbYu-:rN eD1NOֱe^ Mcٟ hµgT`G\aLj3ְkqfDZϓ~X8lThfK=6G2L.p6o֋An>6@؃@T#\AF1Fr>8Z<nzzA}^g.jU6[&\~}Zb0rA +*uh j}^>Fm\3UX:xmzVX^7_|gL NTK5xI+Xc~;ݽ="qRZYՁHya(7bnZa~rFHtTOBSsb3Jk+p.q?b=Z~}Ez}=:, 72MlCsg+I@x5G5 ,TBx :+ͺ9a?ƳMRy; ae[Ӗ<񼇄Ì{w)`9:Ӝ򜝭R?3"Y5縺&2mN3z27_ځD G3ٿT  ?_֯b,DD#6=j+MXgvwbJZ8sfלtrtŢ){YLJ+j`GRqذMyM/U9\^{n +:֫ p`VfXnnɣt&EgL1E*S8N`}h"aܭ{4/Iax 93>Df( wOČXLM#CZT^x^tl)gr'Qw{01%S Hψdϑ3h& هe>L̓IO9CLR:g(?@U4M~6H̒uRRSzL&&;j3Ib̭[=B6],5FLlT1Ed}pX)Gh!d=;HÍ/U '"B􍅝|qU h;t :WԡP.$23 r(`2rrJߘ{]c9=)6= \MBn_)#qQ3+֘sԟ7XKVc-7WF.VÎMz1nJ9+>!~=헕]bsPɤdgCcNksۙf] Έ%DZsnS9)$+ ԡzNޮ7ΨZQw`7C[C+[g$T9ReKH i/J} ѽڨed7dDݭLg-dJ۰"tYeQ&PB?qI{|yÚ)+ m#(ub|L"Ȗ iP67@cKV.tyQoGp&s{[l{*%ő;?w}p fXnw!c t'SBLBWGP7Ş#?x3 W䨋0=9Ĕɓl0LٞAF8 n.p謙qrM'3!¬:JAܿ}<g ϷP|vBkdiz5AP1~n@MǪ)xoԑN.LRC'@k-\|zGۦRP{q> }դsj&shLQ/5o!b%Ӄ"wUZuɵ7'ە,FڰZ$Kf䅗0宝=wɭdQ];Uivjorq)'J>6->E#9Z/ڒYK૟0#&@'4<x`&滅{oeVŽg[*|zeJ9mG 7^E9O*M\ e8Ic]KnO-oL61+>9w_58ڛU~ X91n.#Nr mMc_Z r)jy۽,d۰Іp]G y3bo&r|gVduwu.P\Bޱ4'3kИ& LEl2usx"Յ- 3fᤕ'nbM/GI9-&؉3(9HJb=g<9Z ey#`~>^Yzty\ 1txNޜZR=Łrj;_ _eO\n.A\8o᪚]MV* )z-zi㞛dOȩn Y>炧aujɅ aw)AB+a-,Uo%B4;jshPAqʟv}8;SY >H[4e(հJ-_a2 Eȵ`ʸ]ۃǒgi}vјjj[]gXǧRgBADm%arYFnsYov YLڨ& u! eN_`7[ ҭbX\YN>too+EKAirm|=Y[FćBǕeNj; pxjHZI|<0==|Cyk9k;tV=9~½'K_=Ig /:3X\5V٥CZ{O/uAP6~f@CMkM;h^ly݆R<\U SĴ6w ,v\&ᆁ*COUӲ#8آ D$iʄj:K}jO `XFݵų77wՅ@>m +֪v>5vr1⑎[*Q6Imu:r @y\?J0|MngO /9%k_%y(3 q$$L2v^}o!~ h.,`$G).Xh{rr~\_5ͧ +] Ai1hܡ(ܕhWaZ^\23fM`oT]iQ;O'c3]c w[pyQY{2ͨW(Y PaLa.OBP!uiX8V7`-\\| Z:z7k@ysVt_`IbZ{qKwTK춘Г>7Uw1M8XJ.}mO/7'I)>mZsN9uO y:Ags'{HG-\7gq~B1->0KҴc6qIG>/a`ws9?Ggw61w-&%$ߋ(YS"TYŹpj?3ĥ?4r^OM{Ŵ<CR3rJ[Z)rBosBk&s6D)&n}KL1*)},1݋f9#ANfK1(/$(TA6͚^mqQ?m|!CW!0-A &i6)_E`:&ܳأ]tFÒ]P?-3"wM: v.ǰ뱸1 s%3S]a}VCEYSHyA({if߽ξ⣙x4,X/u-3e-ۍTg؉6]3Ug{P>x _-yQ :m[,#죝㹻Fõl% >Zh׾x^eUӥ!v_k"USQ,*=j]se]0Pt{?ʡ^w^WoΆHF=s@:X;LٟqՠDy>uAӏC4i|tQC`7Wm-ZyꟚ{\I ؋%50n#݊ .mJ[<,VݾƆ=d"Q=!Z쥐\-)^yEι\*i̱aA?>iƒ!X'aS4V~*4)66Ws_\sMjpC8VRr_,AܵT`( gX~ sVC};*ӷ4OI~i:7$/OUSuت%|,}SqMD=9"^%z؃( Aar:9NfŽ,Q id]U*;RtuCZ;t݃nU { 蛅a(_1̙3mxVt).iLQ]=VkcI,8Ɔ÷@^ӠCRF JliOy_[ksTkmll"ǒ_g>:7F y!"("Y-EДAcO-g*&CꎀK}9ӐGiSz,6$_н ^cMOV=16 /G'_R{W9K9뺖G4p cT]1d PiZK,=+0PM~eya~ X1?-KCBj^fVB͟>P>0+iiiZ-W1og`J. jG݅Κ5i'N?;6;7cӣ%5ԓ_i\F\F2)li|͆X=^3M1鲺=?Mm,snŒ7yXV|3%=P3{=!T@~x'#rD7(߅Pj`W,1i˹:}={J;;6' arW ߢijb`5ne+(L"-^o˵ji'rπ֬]@?[38w_÷Ǭ}H͢| 5@Q8(kt8y?K}?,VOwA՝%B.ݕ"y ˶,ž;eŠFF}J`m[1A٥^W^MT'FP'1EnT1ۃEoű}PDF[de.3 g+P+e-AkL)z?h10@c  >vaeÕ}~vu86(>י6wyVŴ Lyj(ZQ7fԓ(:Ӫ>EUmjwWT#$6hhnRDPk%芡^rEҧȮY qXgz-g+ }w`6_DT'U%M>PQz*AYpa{|MֹW!?$lU"=}tRFhd|\L>DJMW4C$"e88@=s%p'-`&c{f0wӺրwcS;A6d؈@`TcO3Dk1JZڹ癐VFoOg-cifPr}dCf/ |sOmY1E`z.iOq20,$%7hY'b$~b C`Je2$rN.p> | JVb4RM6U%c0'x#V,q` | Ъ+t*32JQx= L4@זL:t G XK}Y'eZ#Yb2d7&snT1 c32ڨɠRehH*g {m +k 6ݙCsA,$vBsڲ?uyC= :筼U~o`.'#t{~_ߒ">&{@L֐cۂ!ӧ6@9,>b0~`C[A] `!\,|-"WIgJ($檓^><})r@m⼙Z'm ;fĮ}vKvEyzo;ߪۘUݖJ =rbvBHPUMXNY$е>_&\nx֧i$ͽMQ)]Ycbjenu8jV8|Vŷ4~M=\_џ+} 2=ܚf[yǖ a|Vٍ[١ _VEW<L=R@ِU/`2G<'q >ǎ|4GaOk*H{#dSv1$qʜYt6d%īVe[F]|1N^J"yC<2cP3k9}'g,`~GRaf{gn!sK#tS3Cـi?ơ5s]n\͓Dܲ8p(w?`Tf23k?$OH{x@6h6.$D+qNkޱVW$Iwϵ=w/}Qp$gSuX F sMri@lx%|^Xi.TV%ڇ0: 2EI CNrڒKF(ͧ+ϝnݒ받yqz[~~@i~t%57 z~μ+]QY]F.l2|mFg\|"1c{2z0hIO1uwSczoJ(ip'19|D^ cMXG;GbȚ+f;mwI-;M(>j}+f5+jy{˓'J(#Rן/ΔعM j'^ΦGkaO |m8m5ٶ>l{Du0ApBh|Z#kA͑"#Cbdݒ1Xkv<-Ĩ/<l|o3MHMdFX?n~NB2&beG_5"MsH k )z.ۓdB܍[.C~Cx c1,fSXw9X}KvYCG$=~P']d9d[zrՖ17CL&Iz*,+zlBz1s*SmTT~y,1ŧ2'~&W[7qmJR.zݜ;SQƌ\ mΖeqFmjUhX+^7+ꃚGF.zAѓ=;YON㑟+m6(Xnr~]ϋvm,Uѣb 89cF{% dT4-^yF{ک ,96v!@MD9yuxcjF2_F\X¬.vpeuZLۘ5n˙DJ!OZ)l(yKcz;ISxͻ`ϕ;\ˑc\^*b䦞}Onz80n.3w2/R( w.d{ure hvƄMgTAJ!!SMQ$Ul:Z9%yjD;d7I դB??Wk8RE6}& [0дÌWZK9$RCbGv?a5]غ1{X9L,J\ZK/l–ʘ #3k 2:_C9Ή_k\fQ], t#K*2ƫzaf8U1< Z}P<ˇA`?&jw/6y׎66]۵ هb35LjkN$֯=C锤u+uaue9.~GH1Bw-&+/QU] +t ynڣ?WFv@+^/!_Bܥ[ Ѹ'=ݾp>lVe: 2Cjbv&OMj-,|7!^E =s5$eK2ခqn/㑫lTx;uj"S{}VO[>QL?w>+4pd[\s"l|m쩧A=!e͍#qvO;=9*): Wj+r3qy\E9x\%&CUP5LH](et%+~(Ug|{H}~>H0GzlӓF{έaGl8Θ*1tA 94k7mQVgFo00 DaQV|tA+ZUYxJEd SE=7 :q 6rqQ|SMϨFfl.PlA-3 ߰)WɡZQ'qҋgYLM>5G/2ݳEGKvk+uxW?8]Ȩ=9` Yk_{S|TѬ6garշS!T>:zp! =E]Ioȱk( [ss.x` MA!vi7>88zꭆu~A| 9ykpOCxoD5?KuYt):>P>/oU"n:XMnMz.ng8kz6 # DYaLq_}sTpPn+_ ФR,tRyspL$|;Qf l!||pvxyK()Uj1q 5*g&+s~BЩ8Jg:Pdo7tFh9ņ C_{Roj=A_]PV{4I]A+ʈmA[@1M!aT|QF;AW P awolZO֙pC\A:{}4uCX ]1HOٓjv>y&”Sӌ'w;b{[`)}1+!.Jv?kZ8übzo`C@:?y˸)\m!O@X]eTKd}fuO璚=bWw<[úmPgͩOa7<}a֢\bHwe{.s~_?O̳pO N݄$r1UwљGǟ>bCi})Ct\7 _v=M6)7\Ox r?)`{F[ QuՑ}jT:#BxG Xar1:bY,bna+} T}a{bEg! 5>4@]dMhqN5uㆢSsyPҲjpᆶ\RnX=S>#?>#ǡW蓑}goJ]5 Yẘ&gO $gPIU# 4_^/h}]u#)Fb2x1nȒ$8~Pn'ћ#l"\] ȴ5z91MkںlTi+P2r A"]aIw@8t>HwM.xt Cc3JEwpnpXC^Z';X,wgP. >~߮˂[}T&pԈFtp"!ǦUz%XJgvfUwv4'.}ZySw(lFz" NIf@ Z*t9aUle يs9o\C" rDUWL-5(^'\3;J]o۷j݌fCi[Q%\@;f*FN=izH0|lhrSA.1?st4JϗA1V9T PB|Ce^) pYSmUQUAV[}M=S7:CboAɖ|sn*gwj`|\«\CxQàB p>~V :?wov|[uMY}';ҩ&Ϥ̰^hDt~GG,Mjͤzb\}E0 mV,1fsU55#ijU)Gұ)D=+CQ?mF.>^u{)H/눽ndIn]VKS tz✝'jEh#%At廠(OVނadRZL0]\+Y昏Ps{a.ESt'IJuȕ'%@}iC͞G|-+i~c .4g׍7KP+aVz̚A$"5Mk܊-mVw@hCcokV8>5IĎ51cz<+3K9C{sb%^Uyzdg^<5&tJ'i 0X?FSPVȥ`gR4"},;] цDPeu4CSdʂcW3}. 迼̵?7Owr_0ŰXomnQ9nsU Sm'z.#i1,DA 1+1 -H !;pf:M5q``YI,PbśGBb6(z+b7ϛB[ak ўF6ڙ}5Q{OB{L6BB{xKɣr|_c`w#4{j|kD[.* {'Z6ݝbGC<= WvQZriYgB~\zs"24T5rXQ3Sܺڱ}5)6V#-匢> \âs ڼI^"]P[!$J\gt<=Ϙ:;<P7)%O}&D:1dy^"<-0KjVZf'Džo@;-7{tg y b9iϹņiq6ak쑫71n|1NpJۣ8H9:YDCR-C6#+r=g~Ol/ b]ߞ빽" n%9Na_%$4K9̝tV 1}vՐD+lPOd;DF`hYFn,5 a{Y){IgMEWV;4x, U#b%Q,%&hWZ?-fڃ>`2]\V1x|"FJ:2yd 9Mqf`T .z/Lu&fi57NO]sg+4 2]u@>e`}NW!br4wG)0H!-_(S@ѢVڛ/y6FTGFQ h}P]Z}OU@F܇~C~OV)^c^?ۯnEQGJ)zcwD6($==&H$wb`O[ J-L>8*$ZZ?a8ҪjtTQ]cs= xMHΔ؃DשKًRKI߬-Oqf]M@L}rHޢĮ5% bPMr䀚~b®.ҸI6]Qb̘Tsܤճfw݋֠t!Q ST4&1TLB#hw.+W5tڮQ.Y2e%8@c!}5}6 }y8N<$i/Xd^ǘIoD]d쌃E Ah-9BOY =ڸD- h u:fF@v7fmnfgȡrK1nTC˜^ hyDOӈxiFj.R+j_JV B #y(]> n%OtFPH-ROri.߹ztggZ.]ƫ3O#X,;Tcm詆9g\`%i2?jiG[q=&+Ch@Vgo=.VPX丞T ۣ|3b0?ʵ? 4!&׊W^R42&^L߼%lh^jy ifs5lLJrkumM{sp싘op0C*bi_GxF-}hRSO*6 Oh(4jvFujkq-C 9x|i&iϕOX-, F F!K[&3 /UNu̅4vd]p="eZ&A3eϵ2wo8' D`ŽW֨]P>;W?t5cׁSQU7놴2 {HJ$PbT<`=;Rt.2􄄱ݽ)֪LM4R]Xy*I?滊HCWH* o 5i@ȵ|@iC-Q.YŚZ )}Z+}fPƮqZ (j}Zf>y"z$?ڋ3<['O p.OBj/7ևl:7j=7ٖ a]yd4Y>OVIA|#& rX1Sh85¨L?u94|T_rILd c֟O,n߯%v E^bm8B Q{T͌^2l4 {5 #V\1@uyuzT!uKN}q(C=4-ԹX"'%l+W]ӛѺK<MҴ+fۼ,XHeI`Q V\K+QѥD$&e4 qm= mUjOqpMoV=Q 6G̬O຋G֚|*z# YAw{N suo}v5;hFx>W;wn^euipp^Z ~MM#%f&[?=V-oﴁL=p,X=/1cF䯂#䈯&_kLK8J:h'U} QБs9'[]sM:zSG Y|#sS9ep쏥SvA|%䣁z:۱jG 8[ѩ7I>=`sonΠ-m@oHInN/U[lWE,|i}/nf=-Z!+;(Sqpvkn*88io-xml.>A+UZatqNW)(a] ?agy`Ofa>*|)͵8(f犾iܞڙ4dTz8nq Nwr!kAUOC\MT'pK;b]#f hLո;ƙ?N<\Df&H:O@/{<ڍVۖ2(I׬\0|/d|Rr9~f]/$e%NYu4'_>YVUwȾbH!wu;ꭶ!Q1(aKfoE WWWi[;-Jےrz(}>=M$d'&sr\?W?rz\fő+L!)V_Z?oelH?Cs؄%r%lEm ^Nz{P)nv@ 6Ar~j>.(͎}~:ivCNEvJ9?I)K }_bm[d 7?mCj &k[0e7,2k\4O Խ }!R;A6٩x9}V]9Of'p$rK0M<I~*s|jGZCj. zCBW 8ztQ+oj=@.U>/({U#{̀zMЀ$$YzRKQ]Hr:l]6*LC|U o-n!{ԟ"w9^N3y]"ϲWӤаj!qB 8 )ex(؁bfahvĩ+4}s~uPJd>Ð6Ey> __sB622o|W;ϡ Muӛr TYVuLnfSc=,Oq(ٴ@AVݺm]`s/s`USZYXuϟ|0^!5ƴTq=j2D= n3j{O.x))̯I`/ʌo}Az.j>0rOBЉ9HM;6 =qc:q5CSBp `SxDerQ-M?b=C){U5aDQ'483}*Dڐ*1|8MC6jA.GHb)7VEloxj;iBܰb-+ 5P'8gi|!3Th؀s]r̋G[nZsvgtpxҧ<ݍbzW\Ѓgaeѧ8w*V+S0X6{PM>({:+}7T@۶ȭ?nh`Z  iRεή$w8Vcx3AO< w'ľ90ѶݴڰIO=8+{ S3+b2=UXV$ gL#t!ͽv#32* X5Uؠ[u~/i׾Q#E{Ncn*8(7qDW \M ۘnr.O̐k2Wf)*.-3=S7dPӬՆ a ?^,jmlq $Ée{FҾW6Y 1}$VD476պ tsA]&U,Ĕ6qOD>EP1bF1krpB9K-&DQc!ΧM$ ~o*w'J:K悶H9kU24"D?W'bI*o򤯫RKL /&p31}:^Rz܃3E׆6;BZ\܃tn=HO~xz((  cU6iMa0/tB2ꢿ`FNOER'*Y18%NAo Z{}G9M -Ymf_üD/䯨f c+h]nL#82QXΙ7QJ!ZCoߺ'd٫wݹT(Mi=,a6YYm [ 3'w{e'W/sQG  rM\=|Wo0 &c \}qH<]F\ f,fjÞLmz&Ct1S'[ՖAM.IV=C[\m\z4[=b:og" ֈ;*%Kw7tTw܏5{i#-DUUqpSG}`1I.yCLs`K*(P.{'SuOnuG V3|Ȱ8NiU8&{kfC]hP[Ͽ D[#"+钤cݹN֣$IJ=Ln,tUmnnk˖$USXFBߟ D"~(BSm($PHr+(X%@EJ_{J9r'/;{KOZp%P8 JomwKE, %u#T0ԇ|_=nKqƶԧbI#Uzڕ#xSSO摴)-痲?BA (?ws6V(ja`Ѭzt$q{sx5Jޖ{DvKrSOc]Of,HJY1əv¬W1@U`@bk' UWz#yEt xW0O HEED-ӧ`Ө[< 74q Wiִ)45$/ U4B;tF@+؎YEDuocj 8s3q$t[Pp{Zj|Р.f9۸[RJa'4WbXrM%"e_33@-7o{x}`+/-F'D1ʀcѵZ]9c]ڪ8 H$XGcK},VCY)%-Vt0duN |?\;+! Q!Cb/X JQB"ڸ]S;zn E`I(ޢg#C~ E+{v/qhP!'mDB&ז$J>|ߔغtܼVJKo#Q0,gzZ7`o2ǣV@|cfjӸ[ OGF63?*e@; Ջk|?T=V >@#Î᭼w:x.^pn,^<̻uoY~Ft "Np9 FxOJ# ؟i>pnѸi<ÂAEP{?|cݟ2CivE^Jg&͙Eo ^˰㸈v=KgDD֞U}0K@tm{hrh$5I|+`Q܍*k+SY9 z|wؐ ,ՀEГC^j,J, xU{ܺJW#uɗI Xxi%&Xg6R:NCynR#"e괤v'*OU8p@dj uYӦAwyly?n᣿9)lw#r~n.猪v5J;p;BہoZj!94:ia.U 9C 4]8PeM΢@t[A*jܧgf%uc(#S{9S>YꛛhQnMAA]kΆT[D8G#e9X4x}SѐEZvsyMuۼa+(mM>h pP$L8qS Q]F 3L/FYoѠ=O/(mgF bәv3< lImF Trᥧk8pp}.AQęAH@f8xxGڨxu˵j2@n*Cdjwoyra3==PSTS40_`E=sb1l[d*`apն*HSH#bSZEN.'vӁNRC7pbm!6GM]+ܚkӰ)Xw<r|ٮ.*ݡyaw]pSB%'P씘uXɈ'5.wK2D¾OHqy-VjҕnAƠʮPg'{ē .?!GW5  [-Ҕ$IDVW?R͖PZ<'_̐ $Ы@$Ы&QC,.+j,2&H-mgζ)G38dcKMOJrgAO :fXERcgʄ}4- Oa01mKJ\?3e>=Z.c?_g0 lS ZmfF'Puۨ8XHnQ Z}`RXlt.`ytH>Qz$k]m>;fkRx@~,Ϝ:FܢCғD[[5gբM j>`ԺўNz/ 3ȅ. 'S^=Un)vP, qV)mBݙsqEz3 `(3k>BY\WN+@eM 8*&_/l|ϕu)iwvZT/O\,PC.݆mG9*",zo&*{3 B7K)CwD}LWD^ DTJm߲w"Uq9 NefT,o`FjgUiWXç!5ʎM%|u(3nw19wP4&hwꡘ(n}ĝC1>N gGH`fF卛H'30Kt7B8N6zTۣWb`oӠ:;4 ->rxtrJ5OGyI#~lWڝ0fu:Aws k 7ϰgVx),Co_No~VRgg_XX#0WI#7#9NSw;r3TowBN|A|yg:J^1.MQ?$~fMz+fcgߪ7C='{&$mFzQ8]_ il^X\ u>2Yvj1[^"Ku~A6$Aj0'ϰ:K Ornj<;;3획 B^їz $o#@ޒz;N؀uIǩtL!yS [QZmlj0 \oWR)9w}x.n'f]f[n;^)k>/rhLp{R2{_mDE$!bL*#&ꕗPgY'yiQ72핳V:^WV~?bRC'Xʔ@t >V/MuzGkz3)F9EyO7$6ֻPԧcKnݶA<=ܩ)8~/ _)§5f#IBatn:# Auvx=1v=$irgFFkDd%._Mޓ~gGiODY3=8# %w٤e쟻zBr2zf+_χEWj=3.z3Ī'8l"ԡХ#?Cãp~CѵYB="]Kk#ˉ]v;@/tms']f+3@"  =d Q݃[GJyDC*BbOD-|a8 ӵ U ` nʿ {^rӈ)`3졠. l=l#>I`D2F`ƣX(R[7JoE,&OT;?ʚ[p E?c^[9HӮ FѮ1͑eG0{~L&Vg.H򀞦Pb_l_ܦc¬68.#"#z'tAg㬗v~ s?ֽxkyRiJ;qh'Y)To^:#6[XCZS)\(j廽cj>ƛKC)RZ)lcz[m9imhW'sZ,n 5Ku%IF7¾/ώ’*THIm&{9%(#Fo> zb+gr?S ZcG(T9DW+6`"si#xXM˨ͲCy =g2sN 8γO\`\5dGf0X5ncA EJbtS6qA2%{fǘCiO٢l7`\K[4l{)|\;w)qwk $ɤ1|}G% VC-"(*fT?!P 4e G{v,O) _Α.~)Bmix34͑U|mssd3?.Ϥx6αv_ӂjz^y,B`8{f{K ٳ⹋c)N$-܈. F"H!9\ owV$Dzn/a(;ɀ.PPXZe2oLPx\/VJY!^Ǜ,% H `|BGpA&+t߁cxsVpy4ߺ@iq{ *6_!_6qG7SL-+x4 hF3(K)22ɼ&:nI+2%St!b4ܽtaOdK'+۴ՌT'o OOC8<O&:|QDwèA'q/p2-m$drt&'8)7;(m X(3G6 if nґG][j Y"Ͳ!㓀O/;R=InJ5po(twqЭKXk4]G}T %5mDꙑTy OO0go F^OYAsOuA֋,|R?5ԬMKI5h ' r9RwFҁS2BSB)V( ^-ŋԭax@.Q VB7Ki݌@45dvo:EP|ϣ$yqܵ.oMVyOȎSqKdDy1Fe,%OĖO6A ' Ah]>Ht:x E r.>ȗ |0DB5hIK#כ;ş3OԐ_x8:C\Л mYn!2l q M;Ch%fW.TZS3#u'#$Cb Bf!Y}g5tӹ c@Yz eM^ ?wfMCkO, d8X1"OPkd{9O ',#>O-BW)R-x{gJ;'Q;e jC|60Bhٷ 6>;~p/fn~*]'PF!'ĹS=ap#;c olZ]JP, ⌕,`3q?W0ϵyaF-RXrx-ߘȔ0fLA8zeԁwb\h٢ (&)wҼ&@/DkrGh4mFxst$TAћ0y9Q;"x@#Dj&4wdN! 뀬?oNMԠuڊu+؄ͧxHS4Qlx'zȱ Fm }K#tb7phtIѨX3v6xBIS킧{P##9@0~)bńډg;XSGiA&9'O8h0gܵrÝ h>|YIcUrj\dp/{H_Fo{<̌QF\?[1ӡ}sS2H" &yur7 ,]Vd +N$<ϔq7~}PF B|%qV}`2l`u3<`W5FoSx{2򟾒iG~ޘ;]N]2 CҼ9>ޝզ3GԗًgһrOS}~2PF(˒Ź恙\.%|J:g? P .-i*.MxR\v9 uIcp+lռ&$/}_1ʞKܓKsNnVw>I쑿~3 +}/ Pid>`JszT%&ȃ9G1P焮:;[EZ<9ΐOUo4)O2}v^e>A2tA˾`BGjhP~?⨎E9gM K:@.Sp>~#1ǙXmZIu 1GhS殯}?-%W =Dsk4hJ0ҩf8C$8nj,+OrlO`TMg[G)^V] 7N2 4k8;hmTY%<%9 Ҫ_OI7o~ZN\A d J ]Ag)If\J0a0Z ~IfרO2 opr2 AL(X y`2!&qdeac[ 0H EW+~gC#V=2py CPWM2>~2gϘհJ\G'$_~JYIK0*+_BSK|D){I&֝Ojْ])2R )ΗO)Fb!9-̒~6?8`[ yT+ *s-sZa:`cd#/OŊIyw!K3M:;}4㛠U܎V [ezɆua5vwDcdU'vbNJG2|H~4yDptfUC!}F_-ڳM֕2,˥G/%jb`*YT0(f:3lZpAh蛻 t|7je㒊1+vY1+v Z"DV !y7\zN8U'(-k?t>ۣG!˻A6Hzݙ4qM /"8pu68.j|l{V ΞU|>;Xɓ%bX_I+4Rm깫 |a:W!kpAHji& ٘h6jgã5Ȫgk'J]AM'fF :1F%r\A 1ha͊A,O]J8ZJZis&J)| 5zzVD'P ͵5¶ˡhFJDߪ2̟e65'(&FQ;ri| ^NB QjOEmk݊a9AM, j\n˭5,gvk'F4*gj9-kX]UAh}JN|边F>]9 O@FH!4`s%>3u30EZ$+eM"ηR8u>xz<٣\Oo}^g׉B H0c@\$d 3Q1gFyd/:( #z {L=gv]f xni p+Qd1h2m{5V1h]U osYUzNI2TҘbTGSx>#n ӴSy>$؏5$!<͛r{}ҡ٥R|]WRRIQݒސ%-]|QDEXHL>ro:uZ#6 V][h^bT޿!dʟ'2ĝԪpLeiEuTy&9&1xȂtek4*eO`w'LBy{Ne8@0l87@lKXM;9C%IO#&ؕX۬Q ^IIX՞@P O5E_7BĈԒ(hgTvC*;*aj# I++=CKK$45U5|vIjD"z0v1 3Z0*'eو2f wYo<0LASUi)ѕç]]5Bf5Hcr&j<({eW~T 56xIR,UFO@Ө\=J2 NcNɣA.{\{)?DG0H/:{"0&!1=쑖4p;Tv*g4f'UVYƹLZ#Ϧ_0eY*;=LJ U] >4Ha7˯OrGrɎ@WYȇ~jOxh:1exX^@|l?0z5oۖ#_Y6<6V}|BVrA sq#ZG:gBG@w |3ݏH!jYp4g4! Ȝ!j%dn,ܡtfz:ze7lج[CqK K~%t=ס!,4}_#4cL|Lu|c@r+tSLboBKN7>hj C^Րkr3s=/d\)cU#1&GO.X+hGTiVBx1GHC1j(- uz!$XEUkH=nTzlX[Pc4"J0J3]I,q6jbג+`T8ϋ">.&vP>\ :]5Yg؄,רBenMW{Ȑ6H|Z |7IuXr/p?r%Ԓ`o$ZxXkLD+8`T;UC׸y|xA$*v#TqXʣTsNݗ( R|@S h΁#^u=|Ra~g B Bce}E| ׼W\樋Hїi8RA_q `--w^z|:P/X\ #\]@ ?@ }!<|AԻ{|Oܭu^kIDMS-INež=Dk0C*#H^Ww몠>] kR %~|}JTxl4}pb>.tWhsMYÀs(getr7>Yg0Wk/[OԗC ͭ`}\y,E!@爻~n)|꬘Vq[*wrFvu=4qۉtZsL۞;T?C>Sd]q&Bn2c=4T N NӋYUYSRӮrO'9RU4$NM#F;9KGjYǦ^b9U zdNR뿩G۰ƿ3'zۯѣx790'ɷ~#nXާ:O!F눴i[of#P|I>YkO:0MMv ˥1GMѵґu^%TWQx")ȁO-Em<wYfŇ`j,bT{ɒ0h>0h~ sZ|ydϠ?-tOբj295Tbu;`wj4#łE!O3hДEohE k=j`;!>7g:h徃yjk$UQ|h5IfĂYj{OѱcPxhS& >ԡ[G̿ :?T8 G|۬6jĶ2hBnsչs6KsHS(hZ;+w5Z Z֛=+Ewi.ʅ}&*phخ£A^jlB o3㽃\:%pNWGR>gUѴkw].k.DF@{={fW|ugLZ uĬ"Or:(])0M稧Ug#z#+z ghmbsHjs~&NAb8wƽIW`I03]AKC>KC 3G8̶rC!TA@ AZe !^/pk^"C= />K>LZ NuNg4Mɣ5>,#] v2 v6q '8%NL.ƻdG”ӑ*0~ĚFnjH@ɑZ)?n 6a݆ճ+ z\<: RJ<:dI2Jޘh}Fc:g9A߳h[0v۳QkQ.L+7e\lmPHdO7^x率UM0wo1} ~kA'뭾G{51F'r}1t>G&k9($Z|QuS& Vݛzx%ot37qM]]bHjgP ^9:ٸ|[e"ܨ\bkn;C9ၝ:K&6@gZ3B#L'EVV'>Gh7Uk VI| &: #XIZ{R nIK[ݓY?{v-98yG\&{%ni(%EYQ+zVlS4g .K I18JY١*.Еg*osǥqy]Po7tjgoGUpsR0K`&Hw\`@u ~at;S<6*6 28 zԅuNz*_s%<`N*AgrיoLHU҇ olE s.@n!|P"4CƊi+X>K9#"\w~:z5o o[>n5T:/;H7kBuPIvcZib36h#]B,rޭH[G |Q"ͤ:mc(llda(u5gLosu~'m]{1{)KJrF8kƭFuFz-VT~vI@qDx@t+ @ nM0(*1F *^٫n cP.|gȔV[+Jn2_icjeԢ̱w ,\1f!(fעc6Ut⸕/ό/t3L*WR2 jQmݥ NL* }o<*b qz V@e ։gHۼp@iY#볤K S3*.6Q~Lᚾc]Fܱ%'|0S^[G+Tw(:2혊Ϋw(;_ Ӓ?N3)IÎ![}$|wj3w|diC=I!SvY$Ev^ G}U;D{Vƣ+Õ ] G=^qOqWJY+=ESœ w@)BוêiUkcw[AAkb o8?r\L }@ (;R<ͤST[|{B*Ξ? (_ۥ@K$`W⪧hC['{guq/K&vTfi6?{@/.ZKzXm!o}v؈׵Lu#I&lH@08`F}>bd`GRp.}0]Ӫ[,# JpUtMB^.US*e_CsrMm?to|+Ca_u@6.}{́3ҊN_?m!=O/~jvSoٙuq##%uO!8;+`{O".va37Ct/z˼*z'fx\y4Ǔ JtC|(1ej me8}݈ _mO#nlͣ=I/Bu`9]ȓM1wEirg;5OB*j芆 sMP ŋO>H.cn?5S-uF:T|QwuK@.|7GZJpУܜoWY2nA$r.;AqB6Z ])9Kj!iLo]*y3 EhdUBDȼIxm#KA|$q)G Sx's NZӹP҄`hc 2\4EqY:PF1,;AܽR8ViR6GטxQlrCC\ dzr8o3`;e+636bfϻ%?4p|I¾g2CYkC-8r|]XHW »Pi0Jq_FUS2'6?վ!eWVoD)1 Ǥ|uJ7{'d~ś\cGIh lu=mV8FKM+&䕍4QלȒ! {hZgP@;& w2ޓ6Toiu,DIv_i :tɝ#Hޮоip>~BB}$x!9;f-Lsj[rJ-RS~)9;;i` ,7zjAvZK|F˪ڤ띝Rm@KNj[,BUw,ho)>R oIGj)vEOk7?Z r`pA'VV\:M[C f8EgCoEqRpL.*s-ش$Ufyk-9 [O Em5IQ9bN8ٷ~mK>rg HOK~t ? \N3HOgn __ȁ3&>)-eݍLƒ%_MYL' 1Xizs@rN]}u238-.&/|Rs͒:ǟlkk1@ Xִ Ϲ꒖u Yr$kX/gAŜ\0@¾J_-7_.=YPnˊ䘧Nn(f*n>;|:ժ?y^9?];MF}C?.CC?*줷jaaxzvn GvQ6+YijEԇ]Ts-U5dt|lמW.: e>vN+3*<%IF&%ŕj䎸ҟ[ݿqcZ laHaUi ? =Ө0F }N?7U;xa5YJ?scj%W;nH*;xz A۪S>3ۍ]rz1+~9 5mVWɳJFmB=0mJ({ȦkO./M쟫̤Bӂh= L-@iA~X~IO1vG{pJyZ#mnO=4|F8&.օЃА6^ghSoC-CFגNmsFG7=TVmԤNw:/|;kd.ۑMӆu0$pz䢡( S3/[^S^zLTd;4Zm]M3yٖEuk!r7^g貔ZY7 #*oMTP~Η<:7t%Kѷ㣿FĴ~7d3sX{D$~3>Kq͋Sg7Y) 6>Ji_4~Mm6_gD.cI_iWp}Nʭi_c"LF}:"xE*NaT8e%{?7좳%ͭhLuc{ \fJ_}TvX{r3RW6g^5{ߥԍ^xw2%we5w`Q-F.o驜T]wjww.C0 V=ήj'iڕߕ5[ﯗR(Րߴ߿GR|O_MsO(ނWYjI&0IPB -ȿh#XX ρ.SmQf PxNLi~>0K`*n4Ju q{ƨG1(3'i!3u3*EͯP&ˁ6h]*1T o8hTZ4D, *Ո)Ӝj15O-zjѰ^|1Gi$,Ωޜɥ_OksdUvnWBf$uA#^bءyCkD֌2 v\CmP-cos/~MAy[^ %ƌTDVo0fv\,9uߴyPZfH}M:RI~Y=˅{7_iufm2$"Y|1ѨST~b̑]YIiЎZPdK:gMN V_j,i-zE<)P6m) c0~Ƴ=xî:%&(dcE7&#9CԦwsάt+pgOu)!UhۓKjCj^.11"DwMHxc19ډ6pnC$fvVl-7:5ٛ?JhۑF)0[i>ԂLl:Vkj6}%~S|د~ ({ }Ɣ^뿢/g7i$bVHMRJquKoq9iJMe~ToʌSj6d uNu17{vGUC-,@M_W7?WWYأw B֥G+|[ծɑkYT]<1|ܽm+Nu`4wZj)`YwӄkuN>j݅ ɱP#k1R=k.*s7J-_J}*boD@/j3I\u<L:r= 4`p񕧨.ؿe.5d>2]EfbosōT |o\p+:v-< ՁU2;"f\$ys޶h|4m퉉yW 8P`Gi 0W=m{D6P^o7vDYޥ3AHT[ [srK3!P#6{A5t/.%ۑnq? g'J9?^V5&TNg.$)#/͏buO͵?u?l# 3q>&!|1 2$R hr^=cAWygv=\!z jMe~Du=k:ΐƔZPo!:U9R..Fly,ƣ5WSSa(>\,81rw5ʞ`sMo(gΩ ǹt:7FɝsvU})LFL-hQ澛q-K(3ϩ'jfqbHtHE%ybQDE_BrsO!hbf ٓ%4hClZr78MszPr=[>7F֌'mrSF%8BlwuR^hgz(椦f,I1}w O:h20jmouďYvR=Ydsvu >~ϡ(p0͠5|N ۥt#E8ZqB7W׆T6Q!{rqOjs-ANnO{宑$=U j *^~# ,ߡ"g ޛ{ 0ħ|m9 A4ҿ#MIjOiR*܅pF Xan>TmRfMbu:jɪFrEgՌʧNcE|,OShIV΁znOFYK3dJ[#j[.ߠef#ۓ^vYJ̈́];ApTY٧Pw D#< uPaWvO 3qY`5urt_-³f)pT[tZrC>1 {h/|چ;i)$ 5_~{u)7 /^|D8Gx"I)n(5^-.dFTWʶ_R'M\!"p^alUW Ⴡ&۬ʟޚO^"4~eWp;Y?` SP$ ^5#vm2^t7q֊+OY[(c_pM5 !o|R"|^g6EC <#'ڍM棌]>`4e7lf Bi!<4v|.U.}5j4?Z[6`HYgZZb84ͭ!5{M4՘37ٛw rKmt:}XNk܈Zp=;9Ct-k6$b]yy2Kw-Nh#~R\==Vlg=y!ȁ_ʭ1R'@R%!WeKq~gSodފ WG]L90z<]T;>vqf(iG{*5iۑvzdv <'>.*j^dՂ>\I.6Yr쓠uI&xU/ջ'Evyv&uV-4= nt}_z˰_d5} #|Ou'<ɰ;iD 7"32+y;z͵n\ZRD!?C)O$eFhck䛻p LQn"sӒB&o33{85x'`l4a4WP$KH9CUYΆFw(O^.i "-Cq|e>4uCjgh $3W罠`WG](71.D8[CL==|p %(p)/P니Mf Fw? W1Ӑ[#92_=\j>7@8_Go!xsfO[&v>,]f՞'Z$QˮiꜤLZrofztc2 H ${72m5rhڼg5q-%((03>t $`8GAT1}pD টNhoJbx~kNgk DSAu>5xg>~Z,ܞ*{EK֥r^V=ҝ>/ `/9{D@ J@B4!ؕ g( fgeBhtok bNoNoWf[6͌7}!gVxQ5+ zGb|`Ni4:ˑ%bH<#z$f b&2Ӯ}WFqet ű,'#vy^N@,=u<2ܹC9ǚ/Mr@2NJﳧ_skwKv=!{n7]h-5dJ u ߹y@}JmDd!D\j"F.&9|~A`N|eHl Qc|c\[5/HK6_kU\mM;D)s.'HTgFmcAp{V_D19)˥{fw\e#r#vO-S\ԩm@kWjS썄hf]^8b撕ڒՄJ 5̩ޗ3ghy,:C}stbJZ:1^ €vQN.e,k;JL,8/MT++w0Boxճ_6b AEjggCUr{Pq%׼|(__V_nG6gNZH53@+q>`\W d1x0إe/:~RlMpkӞ?B>zwDUڭ<Ϝi5Gߣ^"gL"`>|GTjx7O)&ܘHw\pTTѧȨ`&Ia)vU.|{M5Pvw'J~lZwQUռ?NP>TD)b$ FXS?[Q7۞AQc{N9S}Ƒ<:]XBN[@tk_ukUJ j @EyJ-xUqڭ"#{UCxG bԏ߰k\fNb5WdK%[TK@>7Mb}G͔*j{MiP*UjBW$g:|ق69Eo?WƔ‘Τiew{{4I͇|j!ŜpK9'Pb<5CIt':'nZvhq؋CY _~TZPh0RWW53tbW0 O=8)FFgwgXH/k#7d92tXbR?t2Š,=Ҽ݈I@d\M\&+G,'C[uZĚDL߀ 9bxڵ),Ifo?*n#OShyVB8%a]\Mg΢NvBtASo2'靊=D' C*9w\zR(,*PfJ)A2|aRT~#Z6NJt&ݍr n)O,Uidh7hGo'4O\;Rbdy^4Ztz֌,{(!݀JmRs̒8Mf= z5mG1zTΧb>9#(W-;p]/7rU{JɬPݴޥp3tN<oKKC>%lGFMx"q4J@sIS4T7-T{enJj-p4GPs_5I" KґrߠIbo QꢁC Ѕ-vkQ)QaӒ$yW^5*=#}Zo:P]̨)MV 򊍺lzX3tIqT7;_9 +tۢ^]2W$+Nh ] Bp&Z[VK,`Z k#y.~]J6:ŧvfWgA,R>]NZ5>Wa&LYUWP<֧tNb[ oƩv \M fJ5=άR=3'C-g fB8V˙MyF~5WOr;S ]2PƷzj%MtrJ޲eZ%hFeG{ aa'ņj̙IY]MFr 嬖@ZlGZr콴˗6ѬhbL(-5A #`Jhq30&Ik 3tARK>ِZXVXɣǭP$u('ObI,RЁ{jy콂dd)&7Q53*wK;%;L6)Jz{jhKˏMb1$1\A҈#plzgW.9}niGv4f1rI=3Xuuf' \Kmv|wH% \MR#CXrRlgd7V5z.mXHrFŤ~eaLC+I~_Y:R %䪼=#Fv)Io}>*xJ@U8*Υ\ȻMuS[#bIs|C9Ϋ. :|(_ī +hF V߬f>kuPFۗjzXm:VKq۴y=4{^G0 ʻ wmlVq&>pH@0wrV>|M~Ͻ: .fLST ']2]6=i |ݓO}'t*{?\ͣތ!ikbM@'y?Z'"\nzMKQvq9kPSq'K`tq+ ₀wҾV&]Am㸁Fc>Ӱ5J5CSrI`sEB%Ql-2u-=. g^^\W`!6WCj~k!k=0(9=-Nbȇ5vr)5٘|ɇL`fl aeଚ׃O*XnKQ8* fk1\[g9НS+v9{vfIyn)RUpإUnrksms]LnH|,JUўۆur' k:ty %p{LPǙ3@2^Tc+tCcNxӇl ̑^9~z3s<,HQP <`.5oVy4@_YxjLztַ*o3icᵄO(g9Y=^ \) sl?.샟8K!C=&.Zk@譧/kMЅ}2%ϖXPqNB98&x0&T[ DK/SK t㙈´;$t}\+FDA͗ay;SCY[Z3}SKb)-[9 . jT8*݁Hݯd7 gŠzX3{<?vxg©L+;Af3m>"dDyA##uI^\[sWQ騼hOkX5r >xcmyûת.g+)=͙l8iwA7r'şb-oOfgT)|~c/7|=oU7텚")Kį È>e~F :k ?Y=E%= 3R G(Cs!H̺nfg3Rs׀YOm_,w z0{C]g5x:s=;%(o90$%biKXj 5kB㪉nUi~6UW_J :*?,N8DZCGX'eHZR 9x:7ƭ= *>R%xL ߛSx PTcpқM㭀м @$T>\U]0, ˣo j| u %y*hs H ; d "L%?3%?!L>Y9R3y{%~5\?{xgxJx)@m23L2ڄܪuWndݻ͔;|zbcndlBɼ+V xi3wM81{+0uʛtkLɎQC?Sʇ6T>6=m9=eWSwz}dP\NɖM'Y/u#\7m"]5e@wԿY=j:F[zK9z!ws iT )sնŕX:&K5WQ]%a֞Jg'94bSSR|~cF|Ji~oDm${mUnl^%xnb+_ҜStR0x̢7grr餐;KNU??%NWRt%"łB ǿKu/CP #w׈Wm--za*l"T1J/kn?H:$#Z˶Ȱ/e1آ&RR-HȬPniPC-6$5׆Q&B##+5B@OK֯-bny擘+rM%ѵ8#O**f-CQ;C/Qy_Hy{ɏz˚IW d6Ă~euDxAeGye ͬ'suKZ<4( 56}e,8 "@ase*xgv]JLk(VoSn0D}ddPuWȻ#xK %hfN6JiD\v%Kq`^C訷d'uﮅ8 >(C<ЇLU2L2+0G} ~M{%M+5pGϱ'3n;0*]V*y[qYݣ.[pG\ؚ{Ma&|tD&doR >RPGw.1hxg_v(c]x o4p'"_Zb*z$}]n{Mނ{ ,U{cc anL,']u7 $#{ . );&1!~p,0) =FW2Js)t\HɛJL7(C"gI]kaxSݴ}6Se$g^6C|ޚ# ܮ7%F/$t׻uMdn6g_u׿Mӵ^2_[+:~iZ>5ʛj2ئrJb~va ػ cii>( L?(MzL,GG^cZ%Bt.'~ڎk߼_fd 6`^mCm5^'ղG  -HHkrI6bP$&yx%3PfXɀpv5No`$e}<1=+S86ֵV,=ǔ`>{LIOER@h9eyk,W~qt˰XܶlHF3aD8j>Co-`q1! å)V\ljU\`qVBQ"O jfn lj5kSG.lzI0&c&E ɶqq?-~fPtwJMBيW WO4r^Os#i0on,\݃~s'_5žU\LBΐ+Ҳ* Lݟ]2E%מE`>Y"K_!Gk/) U!$]<' <}l:sT֣}`_jȠtZf TCH;fm-1O5|l;ӕ&^i@hAXk5=X/Tǃ*:t m2ݕ%2}.c̝]rt?\V^z` ^f_bH#ώI èG%HQ/C#R&jDj5G M?/WSUUGiѨy*5ڈ2U2\0[4:b%td*BAKqaԝPW}>dx_EV<^WԗLN9>R&S =x{꧄ٯtvEjJN 5cXՙ|:Ξvge18} a[5x'3яk]Zgn]~fnLkPgz_B]!jtj~ 3ԕMvVCn h A,TNVuOq5][PZ+s?j\` ]cKyY6o9  *'u}fAS9~*G{u:gRe+Fe(zS(scq)AB7%j.[k@PZZ/Kk-io2ڰU{z0-uZ.ȝ拼w)']+:#̀˔iu}yw`y0ⓡxAUFOYk ZЌD9,3Q.Mea24o̽#65[;ۡ}Եa J Ґj* ꗨkJ{+.Cc`DFTS%09>vjT;Ī;u.'~FLZ3 ,Y`r'!O#'ixx%${)go;X}+TTL+ ˛ R_]?a;5R䏕ao]G{>XJN[on+cBK`ƬsrٳR+Xo0gZC1`~J`+S!?wƯq[o{mOhL 厤XM'?Hx 6ڶMXl9ǧvyd7sgɴirpѣi8 rgI []?u)Yu y ,Sfs k =^{)E &7Y}pv[ƕ%j(2 [wxY0d4MfiyCtCE:'fy(6 A. hOd50Y;.ljش)hm ihVt$ hM R2fs{j_6,Q2 ]@xgdÇRc~ϬX7\=~S:% :'C$֞Eώ $[IT/m /t yC5geadc+RjT>{5wy+:4?Y-stmFrR*jeX-h.Rr֒'ccKWAo-Z ;@]h[3zk]f x/9vAB)+>_J 5X1S[̜nV iڝ/ڬf9E|[#B33,sP9&At'ŋr<.5㲥ٟp4qfTqy/gK% `\c-u~Fk3U< tT+>ޚGV*c&ERfZ;,q7}ڪ?vSsA&f)zf>r>C[iCW> ^m%)xq_*S$jtWvqA,-/(J%Y3fY:rϠI"K cEbwZ΂9`dfCg_Ћ[*SE?<{-WPeT˛0M)F+sFoQN+j'pD96t9?un, ZNr!W"ܙ; u  2+iyKژe̵,XD)IF0{7F:w|^0\*Zp|SSv {,-|'P\KDʘwm3]G7ڨ1G` %TEN*93}i¯F~<=|MX9zz|=R=P*NA$ORuUaRZ 9lbe.m=wW;znt*pXKi9 }F,4^4/ (BW 7LsNDAIT/u,z/f_A!j.^9RE>Fx#5O+t: $8*$x9]m‹G ٦=oEm)`k u5V_\!_ѶIqa2_e yA"kNˣY<Y3W=8Y\X0gxJ.WbV-TJq Zğ>HnFK#!%asM\vN/=Ş+MjPpj5^r=^v(H񏾩Df2J12~ `Lsn#Y.A\) c^_if9+~CYH]{E~Vç\o{Mߚ}d,_ݦ7w$AoҦ}ix4#.VonciwA L vV܎v aݬbW`h[^߻ɍJ63vk'^K!zD&ICf) Ӎ0=p>I=I> mQxqq~MmX6}#?>x2!-m].9[UI,CR*~45J nY9-˖ .Z'voAYC1W!M!2Q)bq}\|s+SiyTZ. }3ho^ypwO* kc'iװwLhP'\pZ U/"0ꗙRBQZ /=*!.>8ZmuLTl7"i1aL <]Mkc%0%;U$KI |ktZK~j9xPJ2 g#Bk#b8j:,c=7ڼe=~J պp8kI^":kL2 uuQ~Qjy롣4]7úF'&0|  6AͲ'L\==}0Q?jvhFC<ڝGbS5LShLoaVi>n!Kٗ>c6AZpb@kIsD+e/lu#'ѷeshyݯo&foȍuF{C!#yM_W7?%9o56]%'`.R\DF݄kɍp6z߼^DMZl|ؖ ٤`i1s fi{g蔟*հl9B[zpKSXuS:Y{\mA\MU]M0XC̓+#/]eeַ{m@`G.)RZ͡F꬟+}!dAYYνgل4=>)>Ve1M ugqlhvoyOY7;;dlO-m"7j0J?73 i^>'/nB^AMJq/j}&6O0|k ږ9y'|8WoT0}dL`]ugb<^gE@ʉ3j1}a5c:bODX4Qtq㊅ײ+J2$Kz+Zo4vJe&6l%~ݕͲ8&hXAj Š6MPѰXn2\yH[;$|"99$ d񧟪/Yޞ ٭I+Eim)*8\F0Ӣ'j'R'2"S>m!32b6J֛!gE?F6`ڣH[ۉߜJ IXpѶ32$S&fNŏfv:ݘ Z?T)?\dg1 %hqrsjEŇN>Ϸ,Z:;ȗMo!jJϔjoF=&K¨?saxJɭjԟ{*h4 XO(yЕZ_iߒ=pGVwY Wv*%9W`B>||vǛ&Y.![8jA#8DI)DhWz}VHgRa4qW?ќ u6 Pi~tESа5 ^m. $w{ Du+QnmZboZ"is鯎0G;5|TGT:SF2ֱ UmCrv>C#i~c ,=ǎx{Un7gX.̻Ǩ4rۍpo XnuАR-Ys1vejyet?OteJIp a֏A Hϝlb~Py9_o+{'[ 3mvLf6Jw2CO+i0z?-wnrC]Ǐ-7,)X4&X/|<1sgVhg]`s DLQixzPqy~ӞUO_wbFxL<=4@@Cٰ Wg9z<;9}4Y\<-kn>EW7kYC( 9Q[M9$>\[9 -;imآ0v9%$ /0O6ճۻaBźҴ6pڼpK.<8T ͳ` ]ro B>A<YtTa9Ln>a |aZK{{+hڜ[@Syz+ l3JueB)PpV*WTtZEhK;׷S)ڛG3%XIVE7) #4ًk܅t} ΃k^^|bB2^ʣ4JO@^h:{GGA>B Nvj`JՔ戚ʐO qrI#,(3aTxLG~ z%}R3ô;59}}jNC":7U^/1(, U+[Ce ΍# ܟWɎM t(vFN"g<'YYhv#a~.~]RQ߽7t4ڍg8zDFuB\-T1stUmF{R!nIz`h0Xj{Bx !忲CM=szXE}qYZhz-׵̢ %A&JTQͼMyMhU<ӧƖiޕ>V^ndLRxG%ykj0lץC]FΑ'xo6v ũm24`v?|Bfj),BkBtw4`qEv"~1tZf9qI1=ݕ@&}p+>FY%OѶU6Fg4͢RL({{LɄ/nIy)Qdo=5Rf5m}]}" 㮑##^/AwKJ;m2ԫiNŢ:3u:b]0^w#Sj$"F'_v1+!~9@mv&N%\HJ]*{Ӊj9#CHL>nos-DlF4;͑^'V WUS wCKZ綧t5 GJGdY[sD\.[seSկ͛5^?/!.COe>K2:]F*kRTjI ?O,:S&G[9-?ߒ{Í7CCmfTɧlm`׋#\(} ㏫6EEe@Y"U_oR)C+)>Mŕe|dRIoZC$U_[L\b8iyb)#|fvfz>abBo쬔®匔!4yYLg(`UWR%JK,<"rOkF\=0zRKW%iICTQVyje8!Mfgŀzbl×?Zsҷ_7C[O.S@̮Ɯ Qv{Bf2_{'rV8i4 (Nu=Rn.`,[lOA5R, <JY#w#zN[xXȝWVw9a5zR a[夿=YIoEQ@N$)Ry>1S5}F%b,W@2J&Y[ 񢫴E 9<<0 TyNk%W 1( uFPGRoħfIF'u6h:ҿ<N68ŗsm8j >. l_ 4]` J*gY>*i}F/4o>)Q˜WX9G!y C{] ˆg9?+CLi` BF6s CB%2حppx.X`i mxsZ%7ݷZ (Go3$3CK%r&Uy5 #G vf$.Ԣ/R_`* S 7ed)%+zѨÁ+@LK-aZx}Јx;<=(܎.޻%@GԄ㬲I&Z\#A~KS5|J!%&bγXf姆R#+8s n^>m߹ko`vw*\|.^%[XKqg%ŦzcMs]2XD"Ʌ-i-3ѹyWX[5$MCwlyaC(s}v +R'H"8fj\]tȟOJ5i:'. (-y$+hvWTň^ M&7 `O}/N;)ۉKŇMwɺ8?7&qnJ5bOb{MZ|a*v%yXno~{١i~wy*S z>]_.#4[ zW%k_S;Ӂ2]ŷ"_?o oS{_<~u ?sKU/o=:Yqx++:M'}Z`zAq&qWM~S}]M\v-g#+FߙU hs.))Xv!r- G`073ͰS Sf4[SEKw|֌:rE$9LvtxH+"h|#OZ(| ?4 7 BƜH?WFʮOMJϤ2I57\<а}hl d`{˥k4Th Ka}$,629p|V}e|R<T獍`#ӲKZQ Uz5-vzȎ ©f63vFL~-}#ӧ,cܯn}gN!P/Eo$C#fyL. J!?&k9P\T b+/0yz3-qaԸ$%IKӟ|_Qx&^hZQ@<Wiz{Mj% mbz(JUgwD^#INN`ij~ŧ r}AI<քyG!'b3#}Ӣʲ*bR.wfЛ1g\LɐLZT#P*r-zq<5A1fh`zPu|5$<ϖ鑑Y,A W*4=Z}(f͡w)j2~cw|?r9Yq؆PLjKeOaϮ$A9cٺ-wǒo(rިs nί?x$>_!ɨ?Mijtx ^~*Ԣ!x9ӧ9Ai_?2yyS+1UZ9J\m`pmݫآT-Vw0R  9cQzQgFSy*x)~sLӅ3 pNE2voRj>[~X(E0Oa$VC,o/*0V'5.F"bGܯM2m:Qu1lR_,R A؃ihT;˟S#1i'V\`k'1FZXZ3AVϑmn`4Gj>V ٹʓ&e?5: O޼z1ZR> sS͎D?Uv?lCݛ[d^/(tHfWjZMQ: m{O=UHC I/X:b+yʞUNjo9d#f6/c)s1?Qݢ9ѰFUN_G 1іQȪ[NA_>pS(Oz$)SxCv³{XU2a=3"'+IȾYlW''c/'R@ >I _S7C>I? Jߏ$ )G4t'=q7O tHpy&zVWO%~%mZI&r:3&,f!z 7C'𤹳W</;xƵ Fƀ yx8Olӧ>I{yl+OݥrV|"nд4q+C]-ې}oy6ꈋ+^ _?wڜ;cahc/gi$l1G>A_OZh,E-nSS^x֋1B^m=q.OSr}=+aB6' M'mZM~(ɷZJj$h|ZS~6czovJṬޛFӎNV`I"J;S;rwL^XGc5&hƆ|s&:Y ?0IRD'] )H$Oyfծ0鏚F0@QO'=.o$zUx-'dpv%pzTs$h&т؋'CIXQm&ސ&jmTɇ<_)q8@uv⍢" #vd?Rȧ/jߌr;gnߟc'\\OO",{9K.U9>mŧƫɲ(Nf?5`hzSD$e) ӃGu#dL,u!cͶKwf)4O1COsWP5(͝ߗ\]kU avγuZe$|ZπcґT@I=Õ@y3WO\v{$=OZ6Wq'# #Z\M)y_&t^9w+?2Dܡ<Ƥ$BsOQ9`L_/<O=#qgep5o4&Yos~:-0r-Uб ==IYTv6D[Xakdw=8շ孎wX'IJ[} &>o5t"6r63Ҡb|*:Y\=PSS&hQև+rӏ%xJez?!TOW7. l6Y6}W𾀽*fV $Bp,J7 rSo Ɯh21M~1{x#D~9<2wP K;5L9MJ̙nY+T\V%)cm|-? b"u{S30}y6]m:\['n65sҊ B3>~*ʍH7EZucOT?Tjp/.uK6¢xXW[ppg? =]nW;ўEѓ3/ &juOFud|R-,P8N)a&giw|K1jO*.GʹheqtCv|]̼R4V7S?0 n Pn,纔:Q*S? 7 r:βZ 6zj1n#Yp.ϋ>9]F3%˛^+}:ᐻ-XMf+YJ 6 EO NhD-t  G_ >D4Zˈ-%468iM>I_#YeGI]#e}|[Ty$ I3 H[250.#r{5N02{Qc 3yII Fk`uW=3>a'0 W;f08>;ތʩGytr@ϣ$}_9TCp6t~3y}T.0Zk8ϑNz`lSjQT_{JŀBRFZ,ݷ0eJQb <7m$4Nr7-`a9S",hŕO=T zeg"= gAEqG(:3/Mj |/Jbpp#ir-f,pûZ߄DQ[F,0Nsx9%("|Jh&EJT'S#tqHijj; K#.G|.$C]4hMJ-2|x9yP/٧jtѹ;% iڦlUvAm=>TEOHbax%syq5%?E,!NRabxctYA~6tD%b7wv#i" nHlqo{Rj {:E k0(*ø-%@h$O p79'|ZL9_cw( /ȧ6H+7u_sjTeL@LnX:ތ>i(Qf!(LCkrx fH㥦'xk̮?JfC)H7% C\@SR#@}:*E V<:{tR=5e4𭕣3\, $+'A3H"gi,*Viirm"Mʅ->Ń AuP7ݩupƵJ& k]ϱiMD`.E~T9E bIUg3m}(}2OƎg꥙--1QZ,czZ,SE˨_{%q)ʴ f=6=dfQG>c{q5@n/$s滿/{*3h[`ex"o'3bp#٣ ֗ԡ{6{*='z}r4nW{H&Plo~ɝC:)>0 `sWoՈ^fkP >pgwVmEt?f5w/TDW%3AL5hNٻ*y=U>#>ȁU]Vw7=QoO-RZgs빪3m_.ѪO[~GmkT2@M*BW[3&;r0`J^y0iUa. ˢI*L`MU]wz%P4*с2-*| 4J4c>Xtz嚥;Ⱥ٠l4}-_⡂TJY Fոnl7ll!̾ɯ|8'操>u0課h@Mf@ԇEhiߵi t5uswV OX2eVh 9ptqh(\?KZqO;B]ήb=7CE];B)0Caz ʗLI_:0ׅPOq~3S쭆z_ :Qf PBU1h'gt=_dLY]_8Q$nslզ,1=IUb(s1BCK~ 0}'-&#UOs(&3c=dQ4 EU3P7r;3TqKums6U* `ɑFW4ȡQBi. eK]x=YkssQT8%Xy5DクQX*l|YMï"嵨[':zOxr)7>rHD.hp-q_[0a0M}5(\rYWoo;/ұcn0=tI=Sp>,p.^EeN4Wm{'n灺s{QU3Wqm5V]t8q~ӧ=|×ozjwUizǵ<1so<8)XGzmfN1ۺnk1 |\Zu5]SU纷Su_E=^`z\Q:RRSzpk*ԙk IV⸠~jՠk[ĩ7{ծJ՘UD_ |9=a wo˽$$< j4(Wǔ *JƽCT {la{ӫ`I$>\Spy=]_PM]ý9u.ɠ.fQ:`J9;MM~}N;Ek)%!u5By#y$XY>1SQpf4Ŕau3Ϡ{hjʊ=mT͛ 0kp_̋t@E G/ڥ9+L_Q^iUDH!W|+Ǽ{3' z-'Y|B^d_./>18~-Z7~l5ػ r+sH|ŀ˾yUaUϳGIݻJYzM'{w\5fe `Hzh'Sn}-+2:1~2s1Ng;8,X8Ee|Uejߗlฌ X`}>\PJHtgg]-gʹKڑǾ yJl+T=;8s;񹵥iuDi~tKv!,A>߯\}ænϨ,K~%zEyiD|*~<U9cG-}@zjF"5 ?8xkV:5&DcMvn1@L0iP c5mU!+B;FwNnGZDTNwjw|UյXrpWu!\/0vGW]X榈{Q}ZauZ˝tX,z4b:jhev<|n>h΀rvڗz:{f|\&wmczAXBoE |Wey\&Lf1c~K@|NDwb=x.P9_67G++:MpT n̻SX5{D<|n.JСD3l"Q:,P*fR瑡Xvo Ӌ_=T%f-w4 wپ_To4˦q*dR q~ajoG[[g0aN(E5i.-W.fBfFT̻ >2c1ڪƪL3q4}21! pj{^2yR ^&qcKnjttY,D|r\>nu_AI,jk"NcL֠R(y RstaxͮHiu\Ϥ4z [`Rf4Ƞ'˲WCU^GM_VkEzMMx|&f)Qc+'jڿgX-jucy׉)c:AB|x[9"xڿaF,P&>%=( Mg /覟[\ U΁ZV$TSFBόOVdȎire1QǞH,h Gm&OB8tIWԼXGΩQ3vEC`ODDO0ߪ3Ycˇ{?}̾W^WoJ(o1TTOcdX<ҍZnuZ:HWDk:r-JcVQ{Nv}O1`~$/mC!/-&Ty2 Cw?|MF3  Ճ?!6TCq!VI4GT:(qjaE:T&r&ƛ+ݺ:t1etz H^8ӑ~CyKlTĝP;_YuvZeoM-q80jo_CNIA쓰M&@gEUklKKFIOMKnh)}Y1H<዇:b;[^ju}Eq@ʙ9)VX~cNU]=zVKV8qakSN|!ҏT5\ZmXr k6߇p&~԰wb,БS-*a >^msf=_w?ݷDՎp`s55σjU>|_=︗]-v.5v/GyUYh]<7{ڛ/Znx|a [Mwo?0t-à0PRǕ\ Nz1ރzPKI-V747E'ٵRr_KhRRVKvb*jn9s@Ih.)ܷ<:}q- 簨ӛפ&EiblS׽[ɠAMx%UwYV] r׳Ց0\Caw>8˾9|@?+-GFiUH+;\:yxA/y~jjڧY5<ԕv.tg*{"<6O+`aT^eʭ?PcQ{XԎ;='͸5|7_HApuy6Exlc_ ꢂ׎'bփ-?xA`a9:x/yPêx0ǵ N?7TMQW NSqC. Vh1ɍqX30GRa~5թ#nџmm-6eC T>krXҚCJO>x{/Ԍ'9SԘ>`\zE*NUWJ8Eo?7]Q{6궺ENI7&,'$8mQ.z}>w #Pnb&"1 #/4(DU5C@-R[GJ3̇3,xBa{3$;CqEu!2\*1p%sqFVi_ɶBE|ly`orGx/;aVك%z<h͇UnPb~Ł3A}u _sD};w6RX|JB1Ҿ{%-jrnwRgr ;K'|BkZb / D9MC*|))w)*+-6S]?g'0M"" 0y18v]J8 uNk8C2!l,<;a?r%pYCE!_ӣKa@[O) ~œ[~PZEPxO6ˏqnoN6|w~t/N?߲is\S5i[a2k(?/~A0D ű&}(ɚMdyI3$+cM*XWi YkbQʿjֱ&V\~]ƪ맺p|%MM1θߘl~! ]x͵MަMUj=6E_ HCeYM/ kwM٦Хkݐ6_"HCWqXM/ YV+~xڼJAΦ7ߘ:m~ ]Kem6EReCձ6G_)HCgYMѯk鋬٦W еlı6_)HCײXMѯk٨{ͫIj?]cmYl~ ]cmq6ER k)F7_)HC2$Y[Mѯk-ɦW еl=籶d_)HCײu/Rl~ ]˰Zl~J)4t-*kZX75Rک7Gǵ$t*j"]T:t߽ ,FY[Ji=EЩkkmuˆ{3CI~չ  g]f ta߽)Tpx.,w.,7~}WV]Xwom#u߭]MNkWu߭M@j'*;kW'[{zԪMNTxZ{;֮^~7Uw]npR:1g%YFVvvMϩ HDcwkS/AZJPkڵn^ jnk߭ O Aj'*C kU~<2Vfg*C=Br,=Bd*DqkaɱZK$W4~u^ BLŨ5c-|m9^ L1X _c$H!3gY /F$H"SIjt0OcBE +T*Xhܐ{Y-2 c-6cAD +d-> (J/MmeQQ45(R -*M /t,4(4Ar#JSc9/ Uʑxو49~ "Y_H'@l* ^QՈ49~ "Y->T$kU8- ? lj3%R NΈ4:~jD"EH :R {4:~"EH@z*R Ɉ4 :~ħ"EH@~*R ^ň40:~f"EཇPH*R P0F}DA!@H5*0${F4Qd[iP"ըc0*C;QGQhT#,@H5*˜p$FDQd P"ը c1*C& J0aFePdBT(U%coFT(Iv %`24ɾbDV.?U'ف@.jT,${Y _ Fe2 F/$2DDVWQdP"Q*ÔY Jd5*C"P%K8CSWTD1zZ+ٵ@>b1Ř@ L1ëtR!C*c !y X2dɆ"Q#g*l #@2l/YEbT@b%{Hbp,F(v ]遘(NbTk%ȉby,F( _ I3* Eq:@U `XR3*@E,Q_5XMM! F:_Qu%YۈQZT/Q: /4izU$j_Qil 1H* F$ҤbTU@~FIӳ5Ĩ"QRJgoQEV1&MDbjT4=C@* ѻE&MNGV1zJgQEV1zJgQEV1zJgQEV1zJgQEV1zJgQEV1zJgQEV1zWJgQEV1zWJgQEV1z&M߿>F$i/ @5iM~N0"Y|w*M~|u$kW_#8D1#H* F/(J_5 ZTi[LA"Y|π*M/H$kPI"5V1zU4}Z>tH* F/_DJPZ; Ti틎dbaѪIӳĨ"E}pFIӳĨ"E}FIӇMБU@>ҤQbTU@>DҤRbTU@>$ҤSbTU@>dҤTbTU@>ҤUbTU@~D%u~ _ TD1ɤ~4;BbH5T 1* FPeH}%$FE2ɾ|n Q"Td_ QqF(~ i(8bU4WBb/qQ1_*CC^TFU/B!MgT@J(6q|tJ(FߕtՐ&{GH#I(VQ^ ިB!M|nT@ ʐ&{GH#Q1'*C!1HF( iw8"xB2oT@ ʐfT ިB!MG$xbOU4;Bb QFǪ"!!͵ܱHFapEd ~U$U3*M}% FZoT4J@* 1,4iU$jcXQi +1H* ư$ҤWbTU@aFI3Ĩ"QRJf`_ QEV1&Db jT4EGV1hӤ\wH*C8ҤWbTU@yҤWbTU@ҤWbTU@EҤWbTU@%ҤWbTU@eҤWbTU@ҤWbTU@a8D%u~ #UWJ(Fctk 1HwFt}d$eb +>K&db >&db >&db >&db &db &db ~5*MjI$kc@4i>V %U@AB&GFhcQPI3qb j.o(FyD)ZdD/Ti } 0K"E*M zIhcѿPI3`/b 2&4i> * #Jfca)Z(#Jf`Q"ŨUѐ&JHFQd_ Q"ըe1Td_ Q"ըc0*CJucFeH}%$FTbɨ i(jT@1!M%R 12ɾDQ1jT4WBbH5* Ƹ!EGQ1E!M%crFeH}%$FFĘQd_ Q"Q1`T4WBbjT@)!TL:cJFeH}%$FFĘQd_ Q"Q1bT4WBbjT@!",Ql& W3CD*Yh?fC!1fؤbOUA3(ŨB!MG%PB!MG$.F( iw8"q1* FPeH3Q?ŨB!MGSB!MG$.F( iw8"0љJ( iwĘe4-bOTŐ&{GHE2* FPeH#$"CnxB2<*xB2*xB2*xB2DgT8l6*CY[T$:jQdqD`iFeH#$ΨjT4w(9bTՐ&JH27* FPeH}%$F5&Q1_*C+!1pި/B!Me8oT@ʐ&JH2\7* FPeH}%$F7E2ɾ Q"TҬ}"E2ɾ ) Q"TҬm_TfP/jH}%$)sT: FPeH}%$uT: FPeH}%$U14* FPeH}%$UF~6* FPeH}%$i}T: FPeH}%$/B!MG$bU4WBb Q"T?ob0*LP%K!M: EfdQEN8)Fyx.j2%QAGV!c.4iFU$j2JfdQEV!c.ɨ4iFpZDB\QiҌ1H*d̥&N+UȘK5*M# FZFI3wĨ"Q1ݢUNft}{#I13*M#YM"I17*M#M"I1]0*M#M"I1]4*M# FIZQiҌ1H*dLJfdQEV!cbT4#{G@* UҤ;I$ ӭFI3wĨ"I1U^fd_ QEV!czgT44xZQiҌ+}ZQiҌ+1H*dLJfd_ H*dLJfd_ QEV!clT4#J@* ҤWbTUȘ&ȾdBQiҌ틎dB VM}%Q"E13*M}%Q"E17*M1EB 4iFp"HB Ѩ4iFUh2fHFI3Ĩ"E1C6*M}% F)ZQiҌ+)Z9"R:? h2pH%K)UL:hHOh(j1FgTA#(UbimPeHOssьH5* FU4nj7QGQ1nYt{*C} FTb)pPeHO(jT@2 iq%R Q&A!>Q@ǨeTdQ"ըӢUɐ&{GHY 192DVbLި iw(ըS0*C!1Jd5* ʐf4%Y 1%2DVbL٨ iw(ըS1*C!1Jd5* Tʐ&{GHY 1FeH#$FF(~(!MdT@ʐ&JH#bU4WBbE2ɾ㈤Ũ/B!MG$-F(~ i>XVE2ɾ㈤Ũ/B!MG$-F(~ i8"i1* FPeH3}QE(4WBb,2نQ1_*C+!1̨/B!MG$9bU4WBb Q"Td_ qD`iQ"Td_ qD3* FPeH$gT@ʐ&JH#Q1_*YMRrF)~db4IX iw8"ɛt@ j0hU O!MhNnEϨp~`T4;Bb gFeH#$IިpdT4;Bb QK%'^@F[&5B2,I=1~BD2ҕsI s%I,LRO.QLjtezteR#+S@eR#+we$u:7ՕIK%ܤFVW~''/^@Vsa]X{a]Mju倒zu:7וJK%ܤF^W('/^@^s]x{]Mj$v咒Z-s\B6]Jjq͹)5|.QH %*97oR;?ؕSJk/Hu~R#+˔^֑%FbW)'⯽#KIĮLTRO_{YGb].Q'5UI=e]Oj$v寒z":DHh%DHu~R#+Dk%¤FbW+'_.Q&5`I=$v0ؕK~/ KԅIĮ\YROĿ{].Lj$veϒz" HuaR#+^@b ]D]Hk^@b }]'D%b )jH:'uƸԖ]wu4Z5[%ĮѪ&%~=a$vV8-n #hj$vImuW]GU#%OjKH:-eR[wFbhHn0FFbw:-e0bѪ؝[YwFbdHιImuo]GU#;'%~a$vMV\Ԗ]wu4Y5sqR[wFbdHΥImu]GU#;'%~ b$vMV\Ԗ]wu4Y5ӗjBI Y5חj[ Į٦FbwM`}/@:uj$v/esnFU#;&%~}`$vV|Ԗ]7u4[5iR[w FblHImu+]GU#;_&%~׽`$vV|Ԗ]7u4[5뤶Į٪]X:XwFbbH.Imu?]GU#'%~ a$v-VBԖ]wuX5 qR[wFbbH.ImuO]GU#'%~Ma$v-VBԖ]wuX5 uR[wFbbDaԖ]ULj$XuD*Z'5{tz"hHOoLĮuR#0'1I㤞D*Z'5{Lz"hH1OoLĮuR#2'1I뤞D*Z'5{\'Dq0buR#ŪD7&bWuR#'7'1=I=UtH)LoLĮFbOqRO}c"v]'5{Jz":Swߘ]EIĞʤD*Nj$vq~Y9>I`Z-sr[Hy" K/Sj$vZ㜛72ؕK/L.QLj$vz" K/]9DˤFbWN/'0D2ؕK/L.QLj$vz" K/]9DˤFbWN/'0D2ؕӋ2%ݤFbWN/'0DH%D&bw]9DnR#+w_]Mj$vz" KԻIĮ^RO}a"vz7ؕK/L.Q&5{z" KԻI^I=%ݤFbWN0D7&b]9D~R#+'wߘ]Oj$vz"KIĮ`RO}c"vz?ؕLoL.Q'5rI=%FbWN0'1DH &D7&b]9ZLIĮ`Twߘ]>Lj$vz"KԇIĮ`RO}c"v0ؕLoL.Q&5rI=%äFbWN0'1D}H &D7&b]9DaR#+'j`&5rI90%~}a$v65_ܤֻU#śY8l4Z5_¤/ĮѪ'%~}a$vV4- #hj$vImw_]GU#LjKH:/uR[FbhH~Y'%~}a$vVb0&FbMjKH:;?- #hj$v¤/Įɪؽ0&Fb.MjKH:ݻ<- #hj$vʤ/Įɪؽ0&FbnԖ}u4Y5U{KH:{7-#hj$voĮ٪ؽ1fFb>NjKH:4-#hj$voĮ٪ؽ/1fFbNjKH:uR[~0b٪}X:X7FbbH>Imw]GU#'%~}c$v-VCԖ}uX5qR[7FbbH>Imw]GU#'%~}c$v-VCԖ}uX5jB^>'Ū8Vʔ >N}a"vSj$&"97oSI/ĉ/LĮuR#0'0I㤞D*Z'5{Lz" hH1O/LĮuR#2'0I뤞D*Z'5{\'D&bW:bi" :ؓw_]EIĞD*Nj$&D&bWuR#8'0=I=UtH)O/LĮFbOeRO}a"v]'5{z" ::'0]9wߘ]aH &D7&bhX&5rI=%IĮ`RO}c"veR#+'wߘ]aH &D7&bhX&5rI=%IĮ`RO}c"veR#+'wߘ]aH &Dy0baH FuD nR#+'wߘ]Mj$vz"K4IĮ`RO}c"v7ؕLoL.&5rI=%ܤFbWN0'1DH &D7&bhp]9VW/7Ljq-)5|D ~JĮ^RKrs&u]9D ~R#+w_]Oj$vz" K4IĮ^RO}a"v?ؕK/L.'5rzI=%FbWN/'0DH%D&bh]9^'0DCH%D&bh]9D aR#+w_]!Lj$vz" K4IĮ^RO}a"v0ؕK/L.&5rzI=%¤Fb_뤞D aR#뤞D aRZ->t]Gw1FFbԖCu4Z5{X¤oĮѪ'%}c$vV4-#hj$Im?t]GU#LjKH:=,uR[7FbhHaY'% Zl4Z5{pU;KH:=87-#hj$oĮɪ؃ 1&Fb.NjKH:=4-#hj$oĮɪ؃+1&FbZ-s\>!Y5~j[/Į٦FbM`}/@:uj$/esnFU#&%}a$vV|ԖCu4[5{iR[FblHIm?t_]GU#_&%}a$vV|ԖCu4[5{뤶/Į٪CX:XFbbH!Im?t_]GU#'%}a$v-VBԖCuX5{qR[FbbH!Im?t_]GU#'%}a$v-VBԖCuX5{uR[FbbDaԖCULj$XuD*Z'5{tz"hHOoLĮuR#0'1I㤞D*Z'5{Lz"hH1OoLĮuR#2'1I뤞D*Z'5{\'Dq0buR#ŪD7&bWuR#'7'1=I=UtH)LoLĮFbOqRO}c"v]'5{Jz":Swߘ]EIĞʤD*Nj$vq~Y9^'Fj:Fw_]qR#+ܼIIĮ^RO}a"veR#+w_]qH%D&bh\&5rzI=%IĮ^RO}a"veR#+w_]qH%D&bh\&5rzI=%IĮ^T/L.&5rzI=%ݤFbWN/'0DH%D&bht]9DnR#+w_]Mj$vz" K4IĮ^RO}a"vF7Kw_]Mj$N/.&5rQ]'1DH &D7&bh]9D~R#+'wߘ]Oj$vz"K4IĮ`RO}c"vF?ؕLoL.'5rI=%FbWN0'1DH &Du0bOj$vzDaR#+'wߘ]1Lj$vz"K4IĮ`RO}c"v0ؕLoL.&5rI=%äFbWN0'1DcH &D7&bh ]9VW/0Ljq-)5|\, #h&ܼM=.29`Ѫ&%}a$vV8- #hj$Im?v_]GU#%OjKH:=.eR[FbhHq0FFb:- #hj$vcu4Y5{tnR[FbdHIm?v_]GU#G&%}a$vMV]Ԗcu4Y5{tiR[FbdHIm?v_]GU#GW&%}a$vMV]Ԗcu4Y5{t뤶/Įɪأ_[7FblHѻIm?v]GU#G'%}c$vV}Ԗcu4[5{qR[7FblHѧIm?v]GU#G'%}c$vV}Ԗcu4[5{uR[7FblHѯVb1FbMjKH:Z=?-#hj$¤oĮŪc1Fb!MjKH:Z=<-#hj$ʤoĮŪأ8V=q,VeZ8VHq" hR#G7?9ιyNj$m!N}a"v=I=UNj$'D&bW:cw_]EFbyRO}a"v=I=UNj$X'D&bW::'0IĞNw_]EIĞܤD*Nj$'D&bWuR#0'0=I=UtH)M/LĮFbOyRO}a"v]'5{*z" :Sw_]EIĞI=UtH FuDMˤFbWN0'1D2ؕLoL.ѴLj$vz"K4-]9DMˤFbWN0'1D2ؕLoL.ѴLj$vz"K4-]9DMˤFbWN0'σMˤFbWN0D7&bhr]9DMnR#+'wߘ]Mj$vz"K4IĮ`RO}c"v&7ؕLoL.&5rI=%ܤFbWN0'1DH &Z"x8I`RecnMD&bhSj$vZ㜛7H%D&bh]9DM~R#+w_]Oj$vz" K4IĮ^RO}a"v&?ؕK/L.'5rzI=%FbWN/'0DHE:%¤FbWN/'0DSH%D&bh ]9DMaR#+w_])Lj$vz" K4IĮ^RO}a"v0ؕK/L.&5Z'D&bh }]'D&bh =)'jH:'uƸԖSu4Z5{ZğoĮѪ&%}c$vVĞ8-#hj$Im?u]GU#%OjKH:=-eR[O7FbhHi1FFbO:-e0bѪؓ[YO7FbdHɹIm?u]GU#''%}c$vMVĞ\ԖSu4Y5{rqR[O7FbdHɥIm?u]GU#''%}c$vMVĞ\ԖSu4Y5{jBI'Nɪ8VܒM%}a$v=ݤĮSggR#'M,ss 60- #h㤶ğ/Į{nO0a)"*RO}Q"VEBU&D*DZz"{(hY TE8D$TQ$L\RPIHʩv_RE 3I'>&"1*'RO}K"FEBT#D*DFJ=e%U P9z"C(r)Dw$SQ$<Rh3ESN!^'""")gRO}D"8EbSN Dl*?J=^ TL9}z" (r(Dp$SQ$.QغGĥHXʹuKESG2a-.SjqPп_\tg7˒a&Q룏 ׷u[Bɡl^ߜ\m6?9==^l a_/_k<ˎgpuɭZ?aϭ #=87sl6E.LZw/GcnXnNju0L~`k_z_u|獋0 5[6ې ~C. 7K3k5mK&RjMX[#̬uQ_tA`4DB\8|qYt!py5z>!p@rբ`uK_lwkEgo.]y<9 6mzg/~q|?qg _g;׺7'WgmN6./gZ!khd˳/ޜ]ˋ?˓&|嫛\.i<ͫw/7?{|N7/._oі78˖nnN7{rsW7W'G'Wgח/[-uoh⫯ynϯNl?y}f7ӓͻ7gG_l]nnۙhg?l[X2PfZ㣣~r!vxfsŞd^Õ؞]?i[8x9kqvնW7˶-lۀcכ˫p:~z\ '-ܴٝfm7ߴZsג/7-F38_}/[U;Ξl.N`C?gO?޴K}<]˺VV_]]mR ]'ߞi[i; trued>O6_C8;m=^=:n{KL [+wK5~sܻͯn^]^Yh~vO OzvNNvo^<ʤWӳSx_qt~}_Bš痗noyAW'><۫٣Vmܼ|yub?o+m" (W'M*M+߶4_:lNo_r[UٶIڑBpӳm˾]V DOZ%&(gX 5(؛wgv]9}o'%$ovyO>ܾ|W׭x^_RxrAKtTZ)LxIFImv9C<9Z]gq\6ͱWpZѣ䀘7o.R-l_`Oճ_?m^N^nZI+ۥ 4OMhgږwD; 7pJ-w&lgݯTTF ^B]Mȷ'M|ZogߎnVD/yzTQ mkGVЮ];AgoO*}vtiT>isӳ'jZZ7>S:L=x[Mk3ϗϟ}͗qw?m2nr57|p q$x0~ ͻb:t`-;;pޭ"5W@ >i% jFqDégshmw4vWtROk5TpZJ:|=jnTKU~u~ӈOԈ[_~[AM5R cHsWEdūs4'uO?ikSLj.`1_SLh/ͯ_ ~NZ H+Nv9N>z_}\0x >WMW/k8y~ /; +T>ތap{}Q(a"PIHz${F/+R <س)[ĨkֺnN^@¶|*U&iÈ]n9_L[Ϡeå_|s[nCF&=k4ՔAT'>et/+hH?VK58=D;3S򁪐n)>|l5${w'"wrGٮ9 O('P=UզM<(/x5Q*i[,lo9:o3qж@$UzȹV}S\\\*oGCWLX)ܾl $lY6}OQ)O/MrԒgJ:ԏ䄜\]U5mMv$;qS+qWRmi/WP G]6Ot?}Ϥ#=>"r;nQ=~Y.ql}B{peΐ: zK)|vWzţ#ytD4>y FGЧoFwǟ0//_>j# <Wp=vFU>gw/<}Tѵ?+mJϟQx}5V0o \%}˫3[%b3Q}#|KJ|[^Im+\gO!mWPiNo Ma5[;Om5Nk.iu)TbuA]ףWD&O!\sMD{Sb;]og#ep8?{]׏607T`︤46EcB-lsBL _>ghZj/~Gx1rzqނgVqߞ3wRXu+:+xd:}OmoHNם\ ц4}%w-y}15O+(/p)4n[Rׅ?\ѕH?ܞ\`;\sV*ڪXXb"+ ~/99/[8ޗ/wZ3pqqutZqVv{:'mϱqO+`ܾiG{F=:6*P+l^AKk@;I{͡ք0T-tw )-OT-ުO! A!wtN[{ zZ۶Aqo(/ |T}瞪V4= ȶd!z)TzޤLL&_}(+:ݝo9o4^`4Xū(B}O5?{u*{{<|(y0?&~\vq~N:t7tNwq.:7}=T'vсf@Ý~۶tO=n>j~l}v'\?L+ȯ/{0^  |ⴿŅoG$<ѝC!lbQ +<2jRvdptt>?9{{~'<߽<޿UgKŧb/l{R| 41yj}'t9 {w~-UC}҉{:D̦uGdsqc/W gOO7#I2ǃ*Lq78ś%vPʧܗ>o݌>Sidήް%lvOsI|z:ݘN2gJy$}XL/r~ԗG%<$ff1f/H@rt㋃6/(sgo]E::ky^x1 0LIOy& q#|hawFjY'J`}W-SpvJaאּcmvrq{w}~E{suzO0|qrdlR_ͻGq{ ?%ۘSzF;| )Zy#Td۱u(gk>}֩rB* Qz6 O3N+2}=T{,Sx{ /څԻVǣ\i^P>>/6B GȺptWyo+ü2֪ ۟m7gOvׂ \$ښ,n5h9N*zc?@p5 q8GbOޜޜݜ|2Dpִ+\y{;zu=b:W2\b' }OӎnVy>쭼Ac o,>ݵ- (!|y}yu&a6 =*Qځkrw>`͓V:MCmiHiC#WpuyqZ!{랂Y9"mcFwG+B)ͫ㣗޺`dj=/zDi!r|SFTPrX/5sKnOv7]K:6Zh\=:\\toR*=WNSI!y[^+nbRw?>pa߯N[;lѵ҃7TV zg\k+C^CyciyF6Go\s\eQy\\^$R'o/ti+=IZ*Cd@_,2O>B7ᦆ8,rEe3l7/Oh_q- Ӗ=lM|酭G;$ښ &4,6{k/R?\џ+]mS~}/n(=j8zwи3~=ln7|xj\7 ~y=?j|0eK(oލp$jmw~ shר=]Uv8>yqz*OίN3H21='SŎ S1ēqdcƜ.;ywNk 6c*I_M:ϼ_0`ޟOGN)>1̥V?C=gW72=0滛--u=a ٝQd{0#ɘHE-& ͇:}+?,,+ҁD=O,L;G;YCrz 6e|ۯz ua/6>0 %r[~ 38O4IӜ ˡx6t:O\_7-> ?yf`!׻W^'S:#cWs 9pIuPph_Z5AUGi\ (>6mVr|=PZZ)#dۥҏhg5yE(vBêV٦5zRIMp+7kx4C_N0O/qN"Qi~sya'WE5H仓ms$^Qπs74>o3Mvσ?";E}3#Q&Fqz;zk ç2 y\9qWȩ[q}Kq[ಌv7C7'4vMOMyfwgW+:׶ wg0ׯ=8'x||{}}/.sf;<|_l\ޛ -y/.W'^\j}{!C2z8 |6|sU__o7?/kUo\ޜ/_óy{; /Ыo\S|]Vm$J_Gg/lPj@#C+ǘG2ۡ=~թuy ؽg`W|yqvs]w'm߮F.na(f3|5 >Ru]vX~tK+*Mx_0'}_]ȗK-=vU0ߣ =`p'(C q7/-3:xEwqlG=YC}ܵv|m/D} xAUg8mz{7mJ||I+K$Vz7hP G/e? DvbU|x]/g=}ÏhGT41(|ydQa;Et +Vr!$ɐk70Fv~|YWgoh<`Wv&mZZKkȬQȮnhtA,w?z4`rZ;o!9 :#S=:9- y{ 4yorkG h+nG}C˫+y;!4' nxq! RtF ɐx|D_CKe 'ܭo;.$yҨSu/O99z kѓ^ ?CӽƀRcׇ9GHUʀ[EQ/9>n]/_ǯ\=eЈ\J _S]oohJ|z`.fRa&,ӳkį/z4 tf:7t>CF~Ş ./.^η2ݱ^0z${a?t PR:0[~IT?!t8`?~1'P}r.!S{=~e6B >ۼ'G{O=~|snxOAYUˣCpdy_/_=bmn|}sAyn_o)5!1IVG}1X1>ţ |nGlJ ?9 >d۫ç毰?_~j%x:zxNkg?{v_۹7q#ڿGߍӞ1=h9,+²|o[ⶳᅡ= 7hN<22'|ۡ] 7wL 5l|d ;N;O0)?*.X<?M{? 'O 3 ZToB%76U${T= 187&ŚUO6/l~9o<_Υ ˷F۽y65l{j߳Kj8/O?Ovm_AHc΄oh'%QGm~@G@xM۫/͛s}$H~[VU1~}Mq$-1.~D#M# c9yK.i!v|ovoZH bү/¹ 痯2rJ۟ ,";{GK.ūeM k r!'>MYs{RS;F%3G qlb/>ǭ܎7FN#J u4Ɠſ54ho-5:/ȾhP$@ 5op+ 7s [7߇ i-( 苨m&maF{l(`33Bsx͙{* ^4Zv9ËG hZZ NgC ޼W [M B39g4{23`/lsmXL'>e{ڲڏՖ_|(JKc1]8~CSypo/lӜϞ\8_1OdvD<؇N9o~eW\.P,n~|G}I.O߻V$>?џìE u{yu~q|b߱nGm~b7:zr=zw_~_<}y%'WAzkk䩚ùEnpuvz{qzrql4xӳ۰ӧon_A7\\|ZOo/=pǟ҇PGG1cAЇU)NvJQmնj[[Vmkmw##xA翤.Lpz~|Ƀ'4Z4).}O3qMYsf3F.K8X}/s7GFSKlm>la{}a;[>lM5ֶ۹}ؚakۇ>l}V۹}Nvj}a+ִۻִ[>laۇa;[>lU>lmִ۩}aڇa{}ؚa;۩}a;>lakۇa;;V۹}ؚakڇi}ִ[>la+vn}vjSV[i}m}تa;[>l۹}aڇakۇm}NV[>lۻִ۩}Nֶ۹}bon؏x?gmzaS>l#]O;ad/׿_g_#m_c)Í%|~ֺ]^o_<MLF*T~ IpdU½hʿIeۅv {^?t\7_LƊ)Nbw?N~펮"r}+,8>BOImn7טlv{/ߋ`n Wl?=1gy԰ {QT|{}4uޟ<=;RM>*L0|(ceLG1{t ۘm9[vC[֏7ٸy\uX=m_]gRٔ[Yd7][hw8lΙ߇ph¿k݇}n޻a:gړ#p3ie{O]zngwnK=Aݲ[ٿnnC='AᬦQȎtDKy`ؽ';Pߡ`w(|hC~Og:֑^>hs5鍷)vR揷klCl6&8AWnпG!|nIG>=)?y4=3{.#7 {lu :pm7mprgP)፻{oq/J^R@*i[q_m/Z ˨j7V7WWU;W~ݿݿݿݿݷݻݿݷݷڽݿQWW;[_>X_WWWWWWWWC}nʾf{^~(=T/zw/}"'xHW3w>'}~<&=RpHCg7㾪YG~{~.j]*-ox+3rT͢IޯwYvYvYvYvYvYv4>PewewewewϚeweweweweG,55=5>5`ͲpͲ{OͲOͲ{_Ͳj#Y6c)xE+dQpD0nEKqze/ۿ'CKGGon^}3ޠhlCk8;ޥǰ_0k{l1'A{PG[cl6+??oq ~C ٵs1vA~e_V&:{uvq}wV)f?ܞ_]aGUތi cqW~5o&i(m#M[|s Q 4i[dsv{f6 9\阏f|/\ng/nw4 6}_]N7ώ>iE'tď5g:!XWsx~z{i`E )B[iڕ_Ё\Q;'XřQ>~X|n%ĸ?w_~&;_~o~?m G͛vCC =?'yaon?}!SlcpP۶fS.>xCd#ۻqygoqY4--;%cm\S#>fwV071.nÈ91<=coa⬏bj]78= |Cڹ;.uO'ymυ!fgoH}WQm m ^_^<G |xsw?}BsǴ7z#_?jhiqC#/y")ǿ>}ǿ>}ǿ>}ǿ.SuiteSparse/MATLAB_Tools/0000755001170100242450000000000010712370165014071 5ustar davisfacSuiteSparse/MATLAB_Tools/shellgui/0000755001170100242450000000000010707670544015715 5ustar davisfacSuiteSparse/MATLAB_Tools/shellgui/shellgui.m0000644001170100242450000002660710707670052017714 0ustar davisfacfunction varargout = shellgui(varargin) %SHELLGUI GUI interface for seashell function % Timothy A. Davis, Chapman Hall / CRC Press, 7th edition. % Controls the parameters a, b, c, n, azimuth, and elevation, using % sliders. To the whole range of each parameter, click on the button to % the right of each slider. % % Example: % shellgui % % See also GUIDE, SEASHELL % Copyright 2006 Timothy A. Davis % Last Modified by GUIDE v2.5 29-Jul-2006 11:33:37 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @shellgui_OpeningFcn, ... 'gui_OutputFcn', @shellgui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before shellgui is made visible. function shellgui_OpeningFcn(hObject, eventdata, handles, varargin) %#ok % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to shellgui (see VARARGIN) % Choose default command line output for shellgui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes shellgui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = shellgui_OutputFcn(hObject, eventdata, handles) %#ok % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on slider movement. function slider1_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation a = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider1_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider2_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation b = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider2_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end global a b c n azimuth elevation a = -0.2 ; b = 0.5 ; c = 0.1 ; n = 2 ; azimuth = -150 ; elevation = 10 ; seashell ; % --- Executes on slider movement. function slider3_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation c = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider3_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider4_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation n = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider4_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider8_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation azimuth = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider8_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider9_Callback(hObject, eventdata, handles) %#ok % hObject handle to slider9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global a b c n azimuth elevation elevation = get (hObject, 'Value') ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes during object creation, after setting all properties. function slider9_CreateFcn(hObject, eventdata, handles) %#ok % hObject handle to slider9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation seashell (a, b, c, n, Inf, elevation) ; seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation for a2 = -1:.1:1 seashell (a2, b, c, n, azimuth, elevation) ; drawnow end seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation for b2 = -1:.1:1 seashell (a, b2, c, n, azimuth, elevation) ; drawnow end seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation for c2 = -1:.1:1 seashell (a, b, c2, n, azimuth, elevation) ; drawnow end seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation for n2 = 0:.5:8 seashell (a, b, c, n2, azimuth, elevation) ; drawnow end seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global a b c n azimuth elevation for el = -80:10:80 seashell (a, b, c, n, azimuth, el) ; drawnow end seashell (a, b, c, n, azimuth, elevation) ; % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) %#ok % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) web ('http://www.cise.ufl.edu/research/sparse/MATLAB') ; SuiteSparse/MATLAB_Tools/shellgui/Contents.m0000644001170100242450000000026110707670102017655 0ustar davisfac% SHELLGUI % % Files % shellgui - GUI interface for seashell function % seashell - draws a pretty Florida seashell, using a 3D parametric surface. % % Example % shellgui SuiteSparse/MATLAB_Tools/shellgui/shellgui.fig0000644001170100242450000172534710505224666020237 0ustar davisfacMATLAB 5.0 MAT-file, Platform: GLNX86, Created on: Sat Sep 23 08:33:58 2006 IM_xKd"Uf MEmb7132x* +.誫H V<'MRYHg|Ǘy"оV^quKס8qįC_n$4ͨiO,O⁴7n'{ Iԝp}Z_z>4<'Y~mA(Liʿz7sY;~kc+Jw%h+^lF/۱ޙGYOwqohؕ8;yiEoI{gqOY8l odNI#'ېS83ʣmiMѴw?$}noFYlpus}ŕϛި=OB}ц 6lr%P9G0`0>80` a[CB Dz- Ї?0?,` :8pCCoS@VTCB }M?X}K΁G_PϩQ>VP,? }D=>:X~@=8zzXG=t|z(p4ۜ7 < ^% %/< '<,e Y?IO~e֏~^ËAxyx aM4DM4DM#4Y3ߞ73_4z1o_6::z@'T_PzD/gTߨQzH%OT_T9TϩS'F>tF?T}zSU}~U=V=zZm1z\3]{bP?B 7㇄/QDg1xƿI~?(4~G'97ƏR3Uj-a?S?0~sR' _#՟SN1~hhROO־nkƿ9E:070G#tHXa"@V@ 1`0`(`€^Jd:TzUNw e|w=#|O-)3W/_4d~l~gk_ws7m,8{Yw|tv:ٙL8}bSLg}v/3}iWٙt>o3k;lΩ=pcqa=glGra<FXx|yIj\9s+V0G|'n,(_6yTn\#F7"G^WG<.W.̑3  '6=ΉM23M2~pbLz̮)@3( '}&fU>+-fW>,1fY>-5f[>.9f]>/=f_YOX7˳f=cyڬ,O7>G0..7o|ɍ@!tCĉFBBB2@ }5=0C]Jեv(!<#<]qചNOOϨϪϩϫ///Y}y53]ӿtM }o3ѿOycf|= G#čO̳}jyfYؾ0<3+,l_gxcy37̦xϞ#g ;\?n8h?{gǁ '8l?{ώ3Ư3qba~93|f.?g9rfe?;\ĉs̰TjZVſub░p#{lX'&n2v0pv_ٲaqLL2rqeaٳeneq}9g`/Y]lUZE&MD ?bM)"-1tvwvwdvf33< FL0QSc`4vPU. 2@<3߹瞙s)R%R½m.`xg > 41)X,b|6`0 ,;0 ,@@`;oQ|`805@>x |`X| X(@zð;~ 0`O`@!@{߅;߆7p2EgO#>v4c*;Li`< V)5-Dž/-iS,'ɝ ) g8qBDM$xA*ՍPk ȃ7֔go3;i&3_ww0n:s`͙vqOݱ{V)gĘ$cyq7;zV>g}i&c}|[#ɕ) V{ٱA syBRSJ/8aWK KK|ѵ62m#-Yީ!.YWlSg2KC*-<\ᢆr?+ȅn_dǑ\D<׭Rf. 7[oEq6\7oq\]\T6:u]q/u]xCXk^{R=upmTsmy@ep(9.UN!-jBj5;r)][Y/%ᅳoŒx!]+9\REc2Hr{v΍_3#=.z\u_?gA\6J-\LfڧؿoHo{lZX?FKmuԼ>|١¡jisF^U묡V{AR^F/ HFSrq؋SxNcHE>kK[wߥ7jqRg8z`Qֻ}QY 4U}חJHT(C'DL<3%SkޫnދDTB2d i}yo}{}緇u\-I֦\8:;8Z8XPYؚ;[S.f6KaU Q4sl ?VΦRb.nΖfm_{;bO6a%h{?1k>EQՔ/lne`/eK`-] u+kW{t(!u5uVttwRpt13uqf%G[Skvy7g3W ÿk(]CFIY俞UԌ֮l06.%XZb5p9mDнK0Q}=0}pd~ lBj'3o`Ϊ̯pgLW?Z]u n`+wI:|Vt߀MH'|}L]&3m%E2~sӏ&£yM/st%BUp+Z9 {ux %S/u۽X]u9Y|x# Cb{T?ڹ߈M<ߌmhdA$tk4 EEy<3 #FZddW1H'#洼=2rg _޸yP D$CLiF3igp_sֻՈ>hJ첓 ǙRfғJ$ MO=Rv TGd"k]vZ qW$d _9#0?I3*V%?]ȆcBb< y0/gͳve hs 6|)3x0NX"1}.۵&[ ks0o Om=v_oDz}`:Gh7)0klDI}aixf&Oy'^=|s o~LbBVݿ_ ',JASܧ2n bG*;x0)R)Pø˷jJp3kA3a8GXPv2ط[.0O}*W҅Tx2lMq<9/𦅀s؆~&:u׎ly^hћGQD5} .p]j\;: |c&ur[{YzƇfF(qL{kmqꇞεs}J~,4H.Y^ʅx/+ʼSduE%30sw‰vʻnol7CUp[[.KY4_x}n+>kԔ}: ;(Igo0WEf [-v4"32ʏ[GßH Ev됑+2"WߖUl ~ 2*GsohjwoFnF[Hb򙪺+Wub+S05.3Fʻ9 j*7; ]5"Pyѵo,rvfܠL|ms<ݹѶ"|_B_"k*_\ʆ={z6B~ulOiiϯY,(uC8XqæixXnPa8( }$#7 𙜪l_#a^P5}m5~5^"LJNINsmV3DW`0e?Ueb9b}' E"Ry짐tFvA6tzj{F>ܓڪ ab-V)JS2` -E0V`,N8Q|'isG8J)`Tx_)Ȟ/c)o$^fSKn.Oݯk#ExfgN+7JD`5y//?,hiKR'ԱZI$L(ebɃ_YP+$oOC 6O 5B7kZ9B_ȞEWJBjD\DfQ_^2_'!LW\AMrWDJ&Uz'ˣhnbRsz .xuA{C;+rٻv=ăϫx/`d*8UXLT 3q'KۭX_,U]@kNL^A.,k&z>!9'jҪAP%P}\.d a/c䕲0m8=bY^uOnc{]1q~ϔ>hL~ӊ_``Dֹ^p*ӻ?c<|vT[VnO-dV%]F^7B}}_ ")UG9i-?0PW?+UѸ 4n"tt)Gk?`=>8kQ{sdZջЈBv7#'iՉ&q"ŲrC {$؊VdO> ћ@F6#L~= zu"ul#ֈԲLC6Q(;&oh5Tpz%vǵ#yqZ#ml#eH%hbR(}6tEV1k]@|S!,"<"a}ת<ؾo]Tp>)'GEƕ=ƁGqp0m)ȇA-}'2!&dT7|,=ŁTxp%_>,#rQ֐!f,HND;# rHiZw#E{$#@Cѱv9}!eMxV/l~/7߆@q<~ؔ\I."if_^63ݽ:*L|8lX vQn#>|Q}) JK7GgF܃9Rp1k?]ᥐPPmyVK @{UHB  .S{v=ᵰ]_y.? M_sB=A^j*@w=;ה)'c`Nob;Xsf^7dE@!u^n>d^l&}}`5$zzРF=C/Xe/bIwS.;te|U JFp n!x*tZ^Qҟ si纉SK8AFWU엷\^TM4d#g[.6P/GlkUjxPz z%|E-,O{/or|dѺBb%"} D1ڔNB[]BdtJdt*~2WE`lq 2k8їzfW^ hdnhQmu[jy4Kjv7Uϛ D#vQś%ޒ2\)J,( $>A+y0NgЩ,<+&AnP)|0ئ}̫DzCS${ž-N-)tr]L zn4_)_+[!jqOY#BD5j#8͊c>WNF882Bk)~]VDpAx.V4D+F!j:j"7)לceS.}/mAy된:{Ír@N75D$Me}Qف'rߑЍ{8(BGxaJp:4OBk<|q$Dq&EqUsۦ} 4[}D764 Dž;֡}aCmgA|?*!rKǭplCu{2Pyck8X[4Mk[~aAus2MvO.wz̋auIOVL͆K_ |s$/;ke@MG`t$(3|,]S}P-?>\WO&f\எMqKXި<=hF)Xl{d*'y'RB[NZgZkmg 2VtQ.oﮒ?ֹ: ѵ$'X*.* sF @\S,_.G ڟo*jKC_`L%p5]g)֏σF8kot F5e&U}|r(v>*Z8_fX!"V ʹ_/xs[%\VhSЬh-8/em" _*UT0n*jXC9 f(|$Iœ ۀsN6Nʜ0;>Wc^X"ȷ3}n@rF/̨0F ]yA 5)sWRx!<g\Q{Hl^;@!±0DΗQuEηh㼬9wD qc9ì t5 ]9ЌhVSokԛI,Z) etIڑ?ؼRIh^ IYvR~YU~"0:׌2KF6l Y4Ǘϑh\-Խb? ÉhPxtA* *Ce!TґȈ̭x$iZ^ \B L RYM_aW{ GKs3@;S`)i~]P9.av?P찅Fiߏ=2 5y[ ڒT[KacK+a6 ω7\`Ĥ6OʂFڸti3Z/&g>1p){PXW6 R\p;9 nEs^RD Ȳ|$ E:M$W #Ҡx% b=@^ټ+e0IѠ0^;& G;h$3r,@?U祊L.C׊ hsB 8l[V }(?c|8Gid* x8ȥ\Uvgo'Zg~0 8en:pc2lwgw8?l?c]5Y + Ȩ:1"c"ZjMD4FH(bʃ[=Sspw#w˿9HX"-cxӌ dw45jѐ'EB2 +{?xl9s~ƬR)㞒ROekW'UD급Ix9(kXJVIJ\o_Ddn)}74;͙DS:|>7G| <"WD/.[z[ܭ9EFa\s!dw0y!Ʌyw[3pdՆ,x3)<[}9iwksA^4aŪQj9ƻ*dgٹӌMUπVϰ[Tw KEg%>ɠ-8pUόEl?w^ KR? ~{9zbY՘hxOxwa 3.5xۧCI[5IWr/ Օ]t@JL~na[KC,aAAt#`q3`a*ӡ8aMYõJ1Ȏ f`+{|miI=9pQ[ ;^yyÙ$Tr6CSmus)P$䤯{F~왒l=uI&b>3bI3A/B ~y&MAX8j _jq?} K8_DžR8x_Wp;_t|PQExVڂ x̒TMM)`fGLr+^JkV Y/|3S~e11뱼[Lp~dmf>/ZE %k5>tbvD{ تǭb"EPbBx\@o[7&-R 2uZ)Y ѡg@<=SH%W8^!!)UIW9bOPB9_pdnv6GK3IVؑ.^`Gn0o|DԎ;dKڟiMJۢM_X޹z')D£|\HIAGT:a=_7f$>  r1U}nr)2{L6j%jgd&fl&ӹ4J:̤@[-coˬ@f˪KNc!twlĂͶ~c.A~m{we?'] {!6yxMh)ZtfQVi~RQ2ҊgW-2T XڕxT dLcd Wg_w2֩m8-3};|7'8n*.} s ܔ./)B_9 m@.LK 9Cm4iVy++OecXKV? 2'_hc|.xlJu&LbP!Qr $ BU)j#mw7NU5չkLLJ.>.}ݫA0\FY;*%-PJx$׆^;qàifc'^U_ jh]7ѽ%:oغ͎ YKopzN{n m0nm WO͈w1Mn[U> `MNpo5fn.R?+F_5|:*z1~~b:W)%Rn+GͯRIၿҷȍ%=$(x1@H_/XSI|k!~Ց: _OctՂA:r1wg+ ,5 ,%Xy] ,a{GO {h=X7]PK4 KV NUԌ(jPKS_B<ԠGOY~b+ a,Լ{ӳ(5D% 6X:O?#fuMEڍoTp"8 j~z5Mfٶ,H/Z[߲G>(Y#tM,`X閮7-2`虸+*X,i8r&t| :JŸ#9]ۛg!08~\YoI\, 8}ܘq"8|ԭF>(Q'~Ӑ.(.b*G?ЈxF N-R"j &۬NP3QFo*~qI:@@.lX0¹F\ՠhNyq?hË4b)ױtgn>ilR^v ֕* Q:F4=wX .Ą֯ h?KNv!ϸkY'dCKvQG;lKpjL%S-,ь C:^-_ $ͧ2gwؒ=\J6H+cp_%\D4-x\pJƭsgdJEct*Ҕh4?p_t! :n۳aڞO6lz]͂LhG7y[S혠t0u۵JTpMFk50_5'/퍂\aЙskvw!>/lS(( i ; U`5Cub4]XBw I-~ӗm'>wٓ*ә 6z;`@g3(s=pj~H\BU Ifb!wPV'"OylKC!k<˲G=]9 漳%rp8yە3 nbfFZ:y^\}NZ n[6ŧ:]`L"XoW Aԫo(#<2brǸ)m!)vVq&<ֿzmUc:ysT7=E{K3@Bo=lC)fA؍bQ~8*y7);a쏇f̠&c1i$k [ߗƜ9Ia1,Bo="Yxr6nxSE&8fw5\etD2BceuO'|>z *h< +Rkk[~ҩ;R::^srӛє>uLU4m RF[TF!&vU 7)) }6R4eZᣝwTGcCo}ី#mMyA5oÑ(@׆uInҢ&}Ӗwt꘢tzuDTi2*OhퟱRF4ZV:ÎGO]?X|d~^T:wNnՃif0 x͗+{-.pR&ohB#;N ړ.PpaepNH+eNdt 9x?/~KW!gݬG^)X5~5sF썈{5}x߶m"`؎;ԶWv1ek*N8oG$%c-09r 97ٷ8ѮfيvO`l#WcY̅j}?Y7K=}wQc 畆]6WHLX9nX1JW^-!YQ3ww0Cșny"UAF~&"TK:;$]G\Vd'BSdHrjҧWr,tf#n+8W*bX1n;`b E(]~M?r2Љ()Hư"qku=aCnVU.rN8&l bpEvMAI3`AIUe& +,rZ_В$XZ=)Hw4:Ċf@D_ >j ~gPi~J׬;,/3'6C6p5d;=Xrc>ߨJÓ<|8\vyfo֬[ l|*ڲΩƕ/+1i:5Z}, (fΓ'8.8cQmY4\)51hm-8e*^mVwh9,K`c|.2Fe4i8R^r>.\S ,F'We-tNN[AjC9HtS&h{CEagS ۛiN½Ϳںq/λvc"f+`;'^]KGЗc/w?A;seԌuoM5۠7dD[BEA潲E.K;WFVTq N"ߞ_b"h⩾:+"ӓp'L}PvW0TW >Ջ=ja7C4KHs1vEi8*M~T4V nLǿ=ņiMר(g#: לHŏN`p;%uAr ARҢqiSpUbc/~}6xi2QWYޒ%/F\MGvigS͒ &n[/ԯ~_s8Y?4'<烅ExwOq2L!nw"bI1?)Jb$zxoh*cEŨM l9Ȓ3 s)1[[rP!Y01|4t\-/+@h(!#[9@È7^9 {+ !/xfƙ{ ebֵ'7")x,Ȱ osWF@b-d]P*x'=)&W0LDs﫾Tި?w;ћtk=Հ{+j1Tά+ vΪ-辷p6ڊ7cNmP31ڱsYevƚnhiO2/ÎVHTRki͈w 7s*~m6{K бuHBq-v2ԨDzRyψ+/@dwh̎L$N'!ZzGfhvd^/䐵z)ZqŃ]YDJ9򪨗7WBuUB2\4UK_vב҇[Nܭ'۸Jy=/t`1A=N |IX3dg8d(EFM"RdMl2KƱ98n ɈdR/ϛs=u?tv{0Ӵ/5!ա)\(9jd.t]0g|.,Gȵ1-s塇'\og҄#w\Ty0M^p%wWv8 ]PIs};K{@&EU(^?՛ߔ>c@e߫Dr:<@ mTpuRkr8ݓءOɐ +~98*e. 6((ZB!Ld 1Wn o^ކDGi5򈶂yi^S9VKtE-{+WP΃bom,iv,jO=T`ȁ"l^D,<tgHO-wpv|%m1*Zrs7s;}>G&H*hΟ!>nܐzXIBfU9LTa x@omd⡼O+>$p-\Ur;Luk)p^-ڞ3!mmOsǢ2! Lsb*B[g-d?A.4L`5~7YZWAHEKe=؜ +m v~{0uo |Sd\us7dRzF-o^s/P(WYSQQY̳WPhIF3,cp[F QS2Yoa#%}l2}& K|CY=i91¢95οJ&Ե-Q&d},Z#W4d"Aki-B"p[%!oW!6Z7S?>Ϙh@a烛Af䢲)GjA[&%H<^Sq+:E;TjE$ȵ5[2[Hfykѫ펃U`=⹨PUOD5ʊ}55g{ 2 GM{KGYQ!+yo|yܚ<"(]rْV ě} bMIjBI WGNp\VK*J 8e]HN:l4l=ӿoaAX,p0&"A^"H_(+EePݺ#%S[+\5<\1JN!LZQKIwL zvHzU_32(E);P([g Or}[wt(} c-!3/S+OUn;36Ogӕ㲝M򤒔_tv1NO2@bQ?%% 1t6z"g9E[jA%9oZ_-w3:|\dl9]`Ԉbq25 f_muJT--T eTPDߙ 򛌻Xfp%5+LL3u}0DtҋvB_q?qa!V tJmD>1 t*B4w.讨nǣ6G V# { ̭wlH#q{;y',gA.KQkIp" ko8P]7Oο̤p3큛~lR+e<t;WTb=`tn8O,n':A)Uu0|ua3M z$h끟w}6|AȄrxA btQR9P;Cȥ+K%]pxU匾(2ģ tPdҭΕ!A-<J|ԬG_,"":ꐷ (􍽤=ք8c5[sHfT%Y4ۄp|sFdQ٪sQ3P <&"TW誑l!2NWtA9jPP􈖯dhh\twʹgo*rS{LcdK>ET!d}m{Hu]K0`<#:; pydG;{WΪZe #l(2Ɂ7Fq947ݧ5RdNJ@[RH?;ɟ OOx!)0Y;& P_Nvpj!J﫯@E9Np LOL[ +M~ 3pŦa DFqQ5@8hNUtwD>lYS!\9ܡ(Cjsޖ,j ~`|Gm)] ~^^f .f($CӿP7,;9f|ހ\W f +;_ )m6JahVE\#e+tL:pÜEi\lsWV}J`jɘ (XȁR۔)C~-8Й,…r\>ocQ>UWcpKxXWTW~rT`9w Y9 V}rmW\O²ȃ.B[킔.O&nP^= )N=O %K{}0o - ^<j?|!܀dpգ=DM-TFO pT! vJ49PLiT.BoGM?وOWų4YggzC%_4[{thni@a!hY5ߺ<V钠wlW ̙Hu bܕ ݧ"س@sX&\edfʄ25NtX5eI(&p(Z$Wed .: 0EnʓPps[>MC'T;DEЫ5~ڥn]8emm9#SϕP# j7vewGT*C0g+n~⼉;_2.'xw 8L0y\ *#O/Ɗx- ?$iؘͩg¥Uѹb'sO^4dtGUٝerZG8*sL~(x@@|Ӿ %w~Y<dS?&uθu%Tۥp&6;~1dvҪ:gVwABLMkLǹ1Е_ shPө|P.R7NfNU7 (Ljmm`a8ҶuB&֮ʥ ttf`J&[7taOvh։.`y}ű Xe;;aÁ_p3;K]ve;P6qu;w[h'@@JDZ=M]ؿDVƕJAOdA7 ; mOBm_S(NvDUr7kx|&Ö' gJ#}hJ?*U޴V_M\EТ~=2ch8Հ Yk@sm 0teun}cѝCJ2I"J$'*E}5B! Y(9G@VE&Q3:qfLřr1&LYH7|1yL1go F魶(jd1<"CL!Ƨ'I$d2ٞxG1Р;ཏvSSZB OԃIt` d>A ۓR]!'gf`|ξt4_akbŽlm$2~@ S*n 0jߖ{2Ha^}Tv B&(tYF'ڧjɢvs=L1XPcEtwodq&4XSs~Aܱ'7"#BȰ8>sW.&B_fk*lt܌̂{Xѵo nbWbje$\ %&9'AL/j&^rÎG,E`Fx^`gفSWM{Pplg j',icf%'ّ;睛o/+gٟy%\*#tkuК$T?'mI}OɗkU* bӿnhv46|$H.6C ȈNH<_JOx_X?d [gf;a9ڢw3 _) }zj{,@KSaW^Гc[` N],i]u0'_ikiY]x`ez eՇS,s'^ks^ڲ{,İNf v=@>Kc-Famˑ0F@]ݘAD3D$]:t5CP:8~z.pԡtҬG ܛuu$侷e*5YIM!| ;鵈qǭ/,);SH ޑ%/J +r = %B,Bg쌙5 PO-!Յ\G,8D#H6m=I#N$A Z~+8b䅊TQ<\5$ RQ%ޝ j弌#)p5a~I%EHɰL%?kƉb E&5ϡrGSfybbB`Ϸazra 'V\7 TqzǞ/. "hw#tD(+[r T~mu<1LTT=020`娓+<#1}p@L-JcÆ3@>1 4_|\|1p9}53 Uv :TY[~pzOt ߧPHnh~;AuPd1`Y fL❰Pn, 1n>~ |J6zEyp\aظ-E5o<^l+xfXvlgjD``׮QpJ)~,tptܻ$x$4"1pڣ='uWkRxaBTg`U]"0KѴEf:.MqgoFj z*$Ck0UK~%"6F Cu=M͏}FqUX "=iWZs+@Wb5b^4J@_hҹˑxƅ%HmMdM7CL>ADj4"IGLGgQAD-g/E{XBGD4m,D̞Bǝ=*hP)$ǧeIe }_w7ۏ L5%󗺿7`0panqؕۏ3 Q3v/ 7Y-iu߆A+fٱ`خ%% g=0O[ٴI,}-ir>Kan|& W'&H^U7BNe0p&RČ)p =g2IBC  ' pڲf)ܒܢJAΪ)[j!owq$ApY˻/gۓjml@ݟe2 vW~&>+NR`ZeK KFDIM]֦b;4vxm;P6DuଚeK7۰JFAc0|l=<7V> %*zW~w0Ɯ'lᘭo_Q-:y鞉3wڤ" ذHٯX$tU 4_*Ph"bɩBӁ H4WJE,Jkх( Z[P"I բ5.5(V0oѴܪBdw4U2RH)T(Y%)%=l){+^{%4BIQƧߟ?s>QW}?ÿj1I5l (W ZC}FEaܙG_: ˀvJ{f+GDKÄn۠9WZf=Vh|!yd(e-:L;U|⑵6摈2F#Id>K2{Lu0%Ōח/M[f88)Y;䘄舫Dbsc-J<1cs+jx}N)Йd7 tUgaJ8#> (r Z; dN ľT) ZBV:ojWzDM]4 G&z ~U>r] CK7aCh@M lDۄm!r᱐BϼTLgSvzQ'+g &NŽc x]m,8GT=ȸYӹLF[]u.R0.8+9D,--)5;zP<<2Z] /Toʙqve(`ظ!z\MT/{2x?CG[g_]MFAO"W;j-ˁus&pA{܊~Q%'Ծ{6g\޽ϙy6mPϾ`N|Wj'щrJ~ڷ#^q= Mɨv6ݙkG9/-O[lIbw n]WnFZ+ (lHN7QwO>P7NF_^Q3T|+0nYUG`,D -d@W,ŷ(L)Әd] Rk#|ZQ׭vgX/? udSB|c*ஃ̇uy޿ N-TkI-k2dJbrIqf:UtM hQ.ܫb()Pɻn)9 "1|/ ӹ%<_%#g kuqv3GO>ޔ[x [0~Nl q ,hlu?g{F4sqt=-G<|%La"-Q! %#Y`\eQ d$$a/5Kԝz*[ďzJ %isl +?P :G58Ae2,% ]\1J(]^3ʭ^:|\Ygr -4staĐZp8ܡ~14ThC( :Ǯ*¶4 \<=kt-N*JUTN?gd3 c%-{y[MWn%#e ީ鍡 z]%EGRPL*(dT)Mtq5{H<~7RkaDwv|w^\!+7oyyY~2n  TԾ#%K)<GӏT)Dۚ*P͸<۶Vݷ*?5ռ+fG"߆^W1e'y!ԁҪ^+:O"?TI?~Ҟwuj1HtaK^]ێZbUpz8þ.+a5̇Fп[ duXf۷j6eoyTr,WMbO}̻,붐~*:M>־i<g4oIbd1tŌ'`e$8}B>4pʓn5KSʖ:4XYDEk(t0=$G:(pjbX51lp֪ 2).cfU['+1V.syPq3AɗrSmwJTt1MA΃gnҁv U404ِ1]tcd< +ƃp\/\(\%l24x.nL R׮fqghx >4p k!M`:`a,dg\7FO0T[ޑ4r, >_4:|ZUkOL(J+Sɪ| lnDgcY<}^(m⛰'c& ~;BGAV Rj4=W NZ5:OFyQƃd\֠7AmmsD,I N\=5eoA")'><ܥ0do +Ͷ҉4GAyvѿԪENTLP.G&!&ƜDCbRn7C6NU;NO#=sOsu@G; #=_;ҹ70czlR" V|hhsR{XZ|^\;-eUF#F\IP-jK߾}3Pwxl8uFAgloera7cg@N0^^< ۈϖ3 ֳ x1>~ꮡ+)ŕ]O=ZrA_H)jx38)5󾃍/x^(aO[pu*^tM;=;pK܀eD {p%G ~BUYtRmCDeB1xMjUQv-6*-ESqnבxCI֨E 7ӴO`ؓH}}}͝wΕnU?N9WDyJ@'s$|ޯ{;쎈bb~of2>JJ3?P{>7ZQ1=/zQFAgN}wwS|&++{&gIiZ7=|SmTX1$}CnE,gX`vofN|hJU|'9QAPL^PU s[n"Sj&vKwA ?(1.g(׾GDݜhCcXۑHJrV:܆2CfZbb%ˇuPoRrZ?ր_oCL:)([TC]2m/Bp1U,SԮ(#`o h8}|,8sz F#CLpwxbx% HS.ϷBK4Fs!Bڮ^$(EXd ]:z.H0|j9dVMJiPvwM-^ph7wP/rm#Q#N|)XJBć(ۗ0 qzng1v% cWyτV(ixI5 ߶mcࡄ<- 'JwQNP౵>fK&e[Pd&,թH0Ŋ蹗ԣ4o9MRRG3?_A+$!b /E~ {JR+loNV1룮bu{e~Y/\wL^B z-ϋ'`Z Ϟ`eJ=HKRjD'a]MuKZ4kk6LW+cձ3qjӱO:v*Xdw`f }ޘ4x56{&<`V)?\ r8V͜(,raB 6xv Oz2DbB<xlCEK1pj% &}ǫ@F́Y:=^ݥHCxmw%qdV (L?Y txoW_TyV+;2KɫG 't$q.Z9 b3Un)t,L&pN ەMcyR3}U{ 5s/&CDhb"AUQ\l0J2sC]PZZ: 7?q+ƤT|f5k>FØD+r_tf %Ο_ϖR̃X;L֗))v>(UXӯC^)"ISPKhJj~fOO34.C~sPo4ic_zu _3$1?5+3 _›gnIaV,~Mbx>m\ߔY埇yRY VQPL~ةbTr*@t{sNAWc sFv*jل遹ܚķe3#i8v=/i4`ݖDýһ(T@ntk>#|7׏τ~ iQl?\^~U-xt9>8e%xo]r)71 cpP7~\ْ#N!pKF 7iХDO1 ^/WZVlQvy%R5-S7_`d8d@4XoIo$vZ{<+5`/AYb=QHrp~:e/7_pUm1}t%֐<`"R>j pL>s;zB4f-g$)C ].kwӵ<1p[_`;ziR5-$_RiJf5 B OÒtx-TzJ6`Ѻ5jZ_; in'cs1Z #dYyaj \ȇ]g豐~.d¹?u-(9ɼrdYYn-fϔ"tjp 4(sa]ܥ|/lh)j>4Si%U7w2,~[Zfv >Xϭ0J\KFܨ;N +: `C$-cvOpZu,C3 2=AIkH8ܶ_ (c]Ιb$8{qf L~ܾ1 ͞+0LhV ݪw46t*OooʎE8&{u3!0Ӝ}G+wjA>XE r= ”14Pb >~UMy(hj.†28cK0J[5 pY꣒Fhs}+m=D pt~:i9M"ѺO58nfMFoPp,=26q~vTѫUîAsӏ *{;Qq6wo:m{vv7̸bD;c_>^WGABυ(jʛu۶xCգ+\ hW,rdo;!ɽ^\-w04=K)XuLﲝJuEZTU;Y r v{Q#:8}J^ף0  7z DW{ģgo◳(nS]t2,"oD69$+5X׺i""%De84.̢y>2@ii2QIzn99yvzxU6j]` z3}ĺ)z8Y0Hw;g)[bMpS6#=YBBz[I>;T_"hnSc'L¦r8C]>̩3>U dw8ivYՋ$egg2{nۍ}ۛ[^( !dVFI%~\s<^EߍD {7+_[#Ŭ%v0 zKy74쎺5 P8@G#gᐰ:K?o;n߃AaCWr]~*P<7ˇDH%XoV"Q &@ܿlZu˩Pu:xΊuT/\aTA) &ǫڈYhtY K#<\lÂcü`UdD, 6uIgߔ5aek^2ԙ3}>zC۱.6 8AW釄1 0FU@F+~QSw@3PLnk8g.<&WЊd Z휘JD]=5iW#ܒq_h9¹{)殘"Nl(G%;KP+,E^땡ҽex?"Ec3 shEbJC$W a='WKpѷn<I.a!\2vL% R]\v/7w67Z H'o7~-/H7X _̐q5q[ ]{-:3Q麗Fۍ\\RG:$׋BVw>_ .s?@ܞ2d6U^Rʩ2{ixz[2ʐ'CeS\jdVn+%I(&_)) F<|3v0j dbuz 6yxaW]"V<)+ Nat7ok4kQOK&ZNp DyKX( gkq`ì\9 ߤtADם 0ff &-JZF2UVP'ʵd0b- <0H'n7 9^!q2DKF~G봩BF,9ofc>@^g!7б^VGt}v[S5 ,ßs'dn0AFJ˵"GY>I9y)Wax  ?%@Mß{b~ȫ'p4b4 o;>z# у%Vr :UH?_Ah" Uq'-+.'$MfNdR{ W+@ák;xozƻSaT(5(aa4`A\ })- mEN,eERL, |Zj )y4C}UIKMp}9 *n [rEWeM.,!!k1$&'!d$Sq)$8#v"|ܒg)oꉒ{9J385 N-We qFk!E4(-Q  4e- xWW%X]2h)~Tu~"Zi ݅\lPU2 ]vP%iζO&"~JB>I7vΝoypK^2z ,5+ĕ~+ [ZcGBt;kp|1V*6O+c8E7ޗ /8d漬,_{; /NExjB{!VWك\d|99^Me 0%>bW #䭧Soщ8t@dʾ-AnF@9 lmn*ڊPCZ)ښ_`p#&rT HX%]"AtU($] E(F0p {|ž!XxrYzl?ዃ,|#5xfb@}W"7%F[FNL>55oZ$@8y"?5|=Js.`X$x ԃ֚Cn^ފ`8 ؐU[_AЪzhYgb~Oc$&26b,9$$#XMd UڠbܭhTm\|%p޴-c*3ux mP)E OaMCPЮ;0HÎ_]-۶~*y.>a2VQW*C`b!.k]fCX,+ ESi$|>-Q_&;!?=S<[qĤZOw6masH~~]oӯ2~Ra(5橈h$kQ͓·oEOLܩ(`q k-g ri|Dw8v}X3ֵ2}@<:אڌ8V@:cmM01s@6IPc_H'='lkUPeOl^7r5/ITaC {XحQrnJQ:=xt]51WФDWI{v̤NwԬ⣉pۿnIsw:/98.-F:ɰz8h ) 9LEGf_AIDz:8foT@Շ۬%Kgðϝorп5.˂ Ri^s2q;dN>w 2}Xᆱ;B0vd~x{='oO%5pC@c~fU1viB˳nRVg9_^]*ą yYb4uh?9p3gSUf2!FqA&Ik,Vr|Ry7%aV@KE.v雔Fa.y^|$<\erBO)% z'{5+pH_|?q˾jhbЍ 8L7mn~~)oDE[p:z敲}{M^ L._Kt9ju1Or9(r6Lsx2Æ2OFo8T)6KE3tt>D!{\ DܽȣM'qF=N;˟xpc}/4`v.1ê[7 [o¥i[f`} x8l?SzCm_2vН:_<.ry?))88EJ$ϚnzVünG@=υFgHN5x , sP)YPƤI=="6-il[EMP9Sktu}9~IVswL=.gOe"W-X(dMYnO_3,\}wahױtJ4gzo5*15P]?3u׸ u~NP!WHUʋb/Bfb.*^HLTrƷX|wK[w^'T MO@2}#u3(Lj5Y<'{) {a)ʲc ;\,K_'6,s|[)6qKR 9)U\amA49rMB9VYLؗcGcrtMWM(gWik̮ tspԳ)R^Nsutbz7϶y'YGRW،^0/&M\_Y2gqF/]O$*j^g_W&7)kXRQܺj%c@E 'eA'%՜W^?>_͍/dZLD&ŷ=q1whTg@ʶdї}Ii?GkTݧ!1la`">V宱ޠ7 J9 de@w^m:8L6?tņ7!/n92}=+'/)Y@1"+-}/v,IЂ=Mt[Sgsd0Յy &X+i5wWu4uǦJ6v% Ovx䉞U89 lޤ9-8jťv{zLX^6{L?`P#c+NalU[(2&vʿE`^U  ~@pLΖ`ߕ Ɠ)WP %ZC0k ^¹R h= )e2"\ !K|΄ 2;AEoUe 9W7S!ΙxRQ* zl Ҷޏ ^c:wT* ['ceh,[Vy uܘL3)\LRbaA .wg>\  - LͿ$82JqLf5 h+T|Ios&dldJ"mƇdX勨*OC;T4|)qhOwar2^kwM}}yAh3a~T-TDOm F՝b#ʲazM'Ĝ3錦j]Yשw!;TYlZ_BT}{<#zdkqXd 2}g_)22;=X5gR fR_%UU8 o&{}xR ϢYDB+kVdZnb B l&(2rwȈAS >+儅lJQSEچxY5X=&j9WOlz?X V3CA 3~,?)W`2tY?Zd _H'XRD|Փ : rq *[4[eAUC,ιT |&ImM2r[:u,8\@ZX$t HEefjYw?y}0MMMhw^;<[2 ^&[iaCbdk & ZǮr*O< PѦ`ƵNbpI 񘴰;?t< |f]?~H ^dp1ݘ 盼UYGðe,}B0v oYS>Z}Xk;w`3 V٣ܵ!snG3.V8zKOa9\qQX&SU~+SϮZ @s ߞ{Z#-/cs2hld"_?#̑9?񧺴?Aޒ 1^5YY5jIax(4 GwWH\`H_u'n(ryj$ucD,s, m~bMÕG@˻rktř*l%k*dҎhBǗe;kK3 V% ǸT?0VL=Uj`_ U_ȰE)dzKt~Yp@G6}QwF\ܜ]WYrYk.!8+湂]sY0XurbP9/0ߦTo*J:OK՝󊉰MJ^ xKI jz*'[ LdgQswx)<,Y}Eyh?f_u&zwZ 9cg3USz{х\k9طzyj9Up`vqnJsp=-ŏC)%8@X= yxg?YX(72Lezw" GHaO5gd50{π3/vy"7zQA#߄?"~Fo<"q FQqo( oSeFѮQvL$ߏ, y#2?Zc_N+鱭1(9Yl2k.0מ쀞Þ?Q*XOE2-uݾ"R/nJ7GDF!*i&BE%xn1"MپPW}ôJ "v0%^/4cqyeG^c %3^]{!X'kq=wkкMS)c>Έƀ?#?JL \.dy4+kB![%T"i""Qdߗc_Ƙ`,cZ͖$JJމ~s==罐N;l6:}$<:a}NTfֱtLK6ea6:z* _n#?FFq8v7F֣"l(+&% dRQHX훈NNzdHeg =J.)[I;w2M$hqZ tET/0bw>*T\wTAյ[L*x],] 3H,,n:q$ t|د^ˋzMQ1v1Ge46}ѷ=65YGODQoq8me`MTaJHG[3[*S&R3F͝A37RrAMhiIӈóA,UxVhJ_@.M.4_n{*h(7׽Pgz/Q7nfDh Rl;jM8kȐ@x3#l_51pcKf7Hmfᶘ3XFͲ_4>P¡NtC\81j:+= 7܄FxC2sW#K?vRiF l|2%/Ȫa7|!MfuS7d!Hw w56!-GmqO䐠D{RuW_ cwF wm8WΫ IF)ִ4Tm~A@j+J&vFdݑԓwgsqVQG8'+D eӦD8H9YZ/G?et NrnRU i|-%Srmopow-I0ճj].5g#uk=7߀bW4>TJ6VꦒGyT8JtZ]QZy55^^vE?va=|4?xТ>OU$Zx0 T;ؓWapJ8j bzdut[DWX9#Sx?£`H(>zHp}(.dFu]x"g %\A]vQqd:*CsH d~IU_8{5x^xe;N#(d 蒬M@M{%#M&|1Sфï MHWmSišTE WVue#  mh;QߟGysjp`:j˪T|VZ~7oL!z*.2?]:g|np`3k^&tp *C᰺T-) l݅ʉF9{<=ݜ םD9 0}syS%B.*m {ko\d`;A\`v0&ZN9Ϝ ݚӢ 73?xC !iW40{Z1{=aÞ]A?\qWs[ ko|v3/t\4v%ȊcIŜ἗}t?%9K7z*/?nA$baIjֿ֍줠JPX5a:r:u㝞I[,T̤H>*~Mpj톲 T}e?f}|(An_x euQ{*]Hhgҥ^?kϺ5Kǩ7x`FJB8AyMzB ?_דF`[cQ z/=i C_!p 5n'SVjNU ݵB5ZL\;Ty:|f]-uЖ$ƥRIt`pLI:hx5 HU*K/OWpNuzObiJBBrv"֛=PZ c\'e^\qެ]^&XK^>t8&qj.Tn@,>vFxıugjZד8"}?h כiBȽ 0@L J,xmD<0p+;a_Nqt- H]{0{M7  Q{B-4Y?|Rb#^dQݮd`pyu‰`@HP0M<~^4^q1y"?tH&tvb΁#ەTןCڎ0!3Z޾̖yRh-H=W~? iD)1;ߘ#ߏ~"x `!PTs bwWl>WW gk;+'V6$hk܇PQSaP0<*5 Lc=XN*[FҺ;1slR_z: E{6faCڍyݽ:ID_\*F^.5; ^1KK*sTL,W6T`StwĮW+CJ?I9+ҖrL}kKwֲnb)a )ScE2aKe.E< zfhR$dݺ_H<ѫaf vj<0Kksp PU |S&( qɞ^]ϴ*ߘ" djHX #eZy<:|=1&sloY;uihȐ"X6aoz퍸pef7[^މOtk!Z,,6rk{sh>MȪBXrc}Ws!t_z9D%2C sG"2 L+fIp֗"ʟ+C3y*69y#L(gjЀǻzOT r! ;/%/66c -hBANw6o ӲYkаքj~oBUjRz^$Hn+@[aKxxǞz O4%err<\ ?CxdXhhXH+=}dz=>Qdf 8u|ʍ"P`&0FbI&?}`'vF!Ľws &XQRj>Qe⍇i:"o]7 )WۡVhJ_w~LƉzNwRU;T9t%ɂ:?Ƈ41߲kZ5K1Iن2dnI(cO.kk84{ QŎV=@GϪ*bٺFdɇPLX[%η2q5{^o3[E wqZ2f G>Lߨ|y wYGahж}qSjuUr1,'l:ddCfM!0"CKR EB7C10r8x-W ͿRJWnOԃz(3>3Y9K^ܳ+iPrd}a=>5 X 1Gj:Dxlx,gU CMWC=vpl'w*wT{,b@9iFJ 컜 .CE[x2Mf^-eR.IP6֕t _)¥~j-<UW7OP5wT=ɵ<Xg73FcٌKfTkƲ0S CͨWO>z 1wۇ1S彲z4}2z. l;h\jW­|ʆwF'AxTXu*oJD>ˍ).Y1Z D'B;E,V]|ɓْf06];I ![z%%2SXF;v%+/tpUZT}Qmh]oޒ۬ƀގ} 3_46فy-{g 8#VKeo(j;9u^J{ Mie.0=w$7C(7eN9OJq䳭` o^ؐf1I Z|jˣ?-cav6٪_AiOp-ȄvDw'q_vչ\P=sp0`W$4=eoN,˸B?OMK@dkЃ﷩wk/?e1lq- -G찇Rq;ѿzTD'>nDs+1?[ ڱ/O)WLA %Aqw!5$eXC투d4 h—]aS{O2d܊8yCgY`R] eEqKEXJ3WgtWAm똏g8E86q^vnxN9DT{racԼXt/eE.[)]gCW~x8?hX~8/}3* %qz#$ꮌ5ͺ.Ah1q˽T qH6 84Uޖ"%8I|N)rF_<*)cTlO}?ԋLgՠU3@ٵKq"JG_$J&`ObUtzPѸoݫFm&R1cUhL)Bf 2\9o_`רCQhzQ2/VߗtVyc@}oޱ!Xwq|x {۱qPֲzN#AF޵r4I'']F`z:<' / R:kȄg[{Сw*;X '{ ,>=zv DL\!1lEľKyL0s40@Ϊb#e@KΈv7r*`VAO;e&΅usBmwd/n):F̂L}ezjRGpY|w) 'ymQ,3M *&:J7.c٢w("G/0&p™I>$mS%Eq1XҲGKN\z"/ MJ\[}3˖il63,A_OOm)Haf=55 o)%1}?l(r#aȢ\T O9)񨗠ƗwAڵ2:e#i*g(+*^+Q] tZ2֕b`V9P2WToOۑpN*yq8KAp Eye=Ty|E(T.[^۪A::~u {2` 쾢r (IKCU@I[~X+;Qya({]ߠxeeXɠԂ/.Zu$mӇDőgs+V{Y~k%=&Eh4~7 _+awv/ߡqH$ wu+-޵S>: 2%ϳbXP*yw5^ sq| ɸs|$`^јJ5{jɺ*΀%]>k`ƽ*h^ j, hZ抁WT.4+ڮ_ kV$V EX D(i.#Ez3t^B4"<xWA)zzU_m:&UBf06n\A:h?%OsmRMlL3I sc.(>:p o<|vF3hI,t~g*.e "(SXm$Od̷8CNja| ;2y.U["W oC+’Wy&CJ-τBBfqy ]¿=T@M\j0Ud7Px hS_T Vw`HyN|lsW3 +º6*'G3Ixoy㎷Bu1*V/ŀ=Kȸu}*TixWB@aᬏ/_o,Yh9ث$-a :CK+N&b -~7MGʛjP@FP7ׅ-|hSǶ,EvCE8T.1\7(7ul(Ġ溋u׈NjXҷHwm\> *p"waŰ;ss2H~<~ rk4jGr JN0'uDoB_s6_3l{~<.}Rvq2vQ;0 ۰ DMޞc]Mshz^(;"`fC.gkTo~}@.ÿ)%PwJTHYe8 g~nJIfk/^+ߝb ueq'(Qt&m%"T~KeYq_o,zxIƳoF3 <4<?i;墧lMCyدi).vEQn\"cJQj& m*KM~<|7Gk0{[d1*Z7 Q(hURg@e,G#-U_\?ߖ g`+T1 ˆSs6A/Jzvx,`3}uW 44c7–qXvDŽwatxZP7ނia!(R${57 *- όyajx%NpS P/,og@J6 WMִsH|'癔q!ln |=^9%'6\A UXaOWpC9xtHq+ГQݕUAھ]˖dI+5b0x;F~S\O?ή8 *=Qx NTNBS/l—΃^Cw>~z%=[cбuUʥ=L`ԺG;MK8S&G<.NԭC۶CGy(Mxᡪo&jLSdxvUU?ƞ6,lvw!P'=bW(nf*^4R_+)Û2Z=ā =G"!L<ͷ&35շߟƬsV6EY\]vSމכIHܚ7{zpG\y*قnHV䂫%bcy zn͎.mq:23Ѡ# j@KBߵw^a+kw/:?\v_-opw^0L;ZHqˇo_l2[/LF.P`4} |}.} i"$@ v o9>%\AfϜ;&YE/!,I]LT)dbۤ%sI0oϲG{{90빹ܛ V_Y`:bP%^q¡$&og#GrѠ|)x?ԍ2/l7ֆ ݅ Xvç䚨Hɯh-3WD'M~µω!xtZIn l,_[Ez4hl7%1qT-M)J}=FGpIcE#}q1_W-V`⠮$)ܽ9ٰiWw2t6xZVSHK%/+~|]RyK=-G/3+acb`5y\q:QS=GZѾ s4Ѝi%J8g>a"[͇,ѐBdo9XR2@hk뚝jdm5j<&f6|)bPTT+vw] 5IR2/#{k*Oƃ3Ar\!{99g3XZa.*,_C.FeMPl|r%l]6MnyЦL9jp;>Nc|8{:l00t2ma's÷tIk{<Z&Eb ٸ{r6vk{)wU#?VFetT;8)Pp*c+/Ȏ{{_V |H:t,˞}{_pեb!5gr W)!/H'%_Q׿YԀ_ `x63FiuN |n^K{̆qRhQe?T:tPI*FLTf%%_q@b(p:!~밓gf $ 83@J5FLH\TKߍfI9oOϊRޤ-U$h<i7ǟuh\O> ,|$` (~x:A +NC-/EԦQ QXٙ)R[S0r=%6/v Eu_ c߆(|̅ᏄAӶ?| Zznt͚Q!0GD < V/039&|hU6kƁKZ;0ZV[? 6.xZ?:)=Kۍ%"79s$\a\G-L<֤(OlZqx(1 +-g7wY0ߪ2ƾ5O"S }Xi>]jf$g_|wٴ]>juڔ6Ʉ Th[f[b%/hmpqw֩e6=FqG|XP=wgH6yKnNA.:l~hn%ͣ 7уJ{z'`^t) 6Tz>TD)w+E 1l#vЙ)A=DMʰԪhMZ~!7G}~|D)xumԍ}]:i=WCJ D80L:쌴ڱ9DA(e ^w BW (\lzՅ^Xrж%D UK+X ^DKdCk9PsnShqYU|اRd N`C/o+ 'L wV( N =aEk5yv Kĥ/":t5-S{᝟_lʹPwM Qz()e3gV|(7*AI@ _dj\bj 酞8@ro1|BGZ+UΗuȭL1=T LIffxx>sm຦ͺ wfcͤƝ]}b9#>ˤ+ML M+.uL'e(SOXbi*ik{ʙ#|1Z!_E=}0֥N_w"`Yܡڛ$( f zO@`4n7lfע7b^ 4,r 鯞~@@\RU+O }yl%`rі7:a Ը,6v ewt h2HqJm *<)(l@ϛr%,T%Cx؅sN'!iCƉme1uk]D0iwEF]&,u#J}b7C^-:dSUVjxxb&8Y(vpH`gqzvW Ƒhғ__Œ*u\䔤OI,:kMbS.9uؘ6Yf"Wem9}t"hh8W?~5\[Z *J \O}6ZpO?3woUOjWzWI8|Os:*S>ɇƁrbkrh>zfصL޻D ql &Pdkx̳:ŰA* Ah-?FNU€k WkD.m ;#.=) cBHZ=tO0A\aIk*e[#ŠS9Ś|;ҰX:l滾|@LyZ.Y3Nl8#(kse~f#cuS!3K1Uf22 junƣtQ1@IYX9]Frǜ8!*?!8ag' &{M s^:3!d* T&}xs9u,\7k+fX) %mgAèObf(Hϖ۾)Be?d8S\Έ5rUʇ-?P|XБە 1y,l_P AzCKM`\FL >7oΜF&Waה+}΢a>o}S|5Lhʖ$W~[9]sB}G6$M=Zg]ce(e?e;,Yhwܟ˄ѓ}S 86osϔ; wԽh½ȫѓ=L @)\zQMs.F/RwWO6 EhÇ8!؟U֔/%x]Ȥojp,tN?{{ gcû22êKxi[pW`vY Wq&9D{8_/*K<-bi[+भOjhs+{ⳎP*H%"kj5qK7, 8J\|Be ֝֍㉊]~uRу-$9ȱѺE`hǥ2$Qi^M$KwpqAhda.ڝ~48MUD ͩW(iK[4G9Ov7EIDgzտ x[D ˦1^2ql$+-ٿ`D)[7B(z7ϡ}7`El.U- JM´ҴEN?Zrs 8UY.$xjVk9+<*۷FBbK ӻHPq%a$(H'Dt8phqS Jb]b3Y"t4uү U@F%|m>|+zl({mV t4^'29,+ wESA/FbwWXd|]v\,5\ rگm*CY7+ʨoż h9Y!*.13q[Fcr?2x- ou"XٚU,/wlô+23P̩G~0wW|\՜ N/fthחrި!P WdZh x`ژcn6베ARbo|́žh;˓^HrL kn&J^˅-;b=I07(<^>p %k)6,5ÄΏ[82"`]vG N$RöՄu'coSE \=8 ; e-N7DԠߝ|f1lu e4+y=>S,?~NcgcM|K~qpWb#{NɹW -< 3]lj챿\LrZ.&E9_B7<=F,衦r+& zeUmS`β_f4I]*]2_!|q]WM>{7)WE{HSh]F A;(U]84' VmU#JhW Vf>qW3$,81Yқ%^n :d$\75t"Ay8 a#OIe'>z @;$\ljD;H|g >^~}d5l>}xN_S%[׷f'n"o=Y^ ˘ 7tE=8oh0?"N *gsφs$׿/"--^QܹĮpr C}w_~1ccՒ788%GNF`}ݳl ˟t׫\l>I.*N7|$1? Yl? N[.%J>,ܹ0i!7z5( Ũ6~x!a: ~C7/Na*B|РMhO5N0ؔcN5CC~P \6QͫWakp'ldA奄gl_$@/~:Ɇ'!I]B,yw`袼ҠGcī aU4 BOS҃wb huRnS6U> / MHƶh#5ܧ7ǽ*źku*թmb6Ueӑܘ*3W p$%" 8.nA7]oJѓ+q1@5.5ד:ܻ?rޘ0O'&P L$w,uk?.a@ dg:Ȋ7kdP?TQ Ήd!~rk6U @?a|YK7mAo˦Wwyq=nz%]v* u,-*ԍ[Y^Ȧ_j[mpeuluȁ#_< t}/ {I~ȸf"|sMBi=շ&a Wj 7;ꎽIN:Xw&Pe]H?+T(CDSN8ݯ\sB P1Lvذw"hyk/Z-qC߿E~ /CpȕqGwqr%4 U/9L㿖c ou ۮ4ј4J Kx=bms.ZᙈF. U}QB%>eW5By|[tfOn{"$ηQj.+%bj9 VYX*/LßwCwA̡4躬b><+c1Q7O!At"ߦyКkl1ES :&0,SJ"F>y.l `QqT)&.W+уŖ>]Xj<m-^ Y(lI+:/|@6$~WrCC•KͭBb(0FF2\#_9ĸ+Xj:$TB'-ÝxmEogivj m:jKCsshGM1)m%ak љ,0\ǥ)xZ!v_2Е6?2~RgԼkA!|1R)klJR48=-ÀokaPk#6.z6ul|)\89)./J Bk-cg= $L'_8 le>M`HS&XlN(è~ΥJۓ$V ?SǯW_qτ!n}ajNe7tklxUFnZ2yOl/ :Sx(tmfb2 &h&d!@dMn 2^^pѹw=f<]9pQd/K\ m(bx}㍇ZۼUۇmHEqACu& >gb:f)y0tOL[lq*c MPchcbZmWXkֽ ]8Y?'"{sgjBPBMuZ{cm^^7nɿaM6'eVƅdDZw,?UE^VWx\%~2K:8y5k x߼8Wq 8[\ 6ӳ2_pqJz<Q)'qnqJ-Z "H8UƔ=)?چyob% gqԉ*ZY2/l:&$K%{75?$DM74eܓꓶ{ߪҚb:.?z?غ: EQmZ[b fKsʽ,K-JseW#l*G:Y}(>U>?o\ߟa!+lĎD<jWA`kPbhrfSٕPF7ełx"iH5,B/<*Ek iIlՠBѰ|82M"1[ So㤇y|~ t$9guܶhA]\&dX̆폮ژp~E$BG %Cc ә\wuf Lx1Qs;}'<е5s ExK <uͯ ͦ%XkᕝTd\&pпK=qѽ Wb<ڡѹݍ@5PE\NΩ>>P;ǁ7aR\| >^TXF!VxԒiT8 <쒸#ld86ggǭSPͦZ[wW~Ÿ?t+& @nHlKL͌9EV?#@j}N6vWtdJ}'~̲RV@f咅LؒxoZ xƟ9 s&,wUXFlC$<X|'h\e>(~%2 dӒPpeII>dϽ^77>DRcu0 ế]+9O)ʃ܋GH_xBXUPi])P}fu#/p\>T, 9Bi9[m;6D5)XOjx@! {ѱRz|'սjJL4VT+1W/XZü߼NUA &HHtݦn56>slhaZ7VدMw[)Ky9[+*D@{I4ʞHz/ϻ}4J~T@ʦL8pz9K U_~k‪; <&7K}sHZGAhދ)b|p|0Rg%2A Fb;(ApHs)||GYOb>ZD=t\9t$v\@މ~4lEL(8b~F¯K=if}hdI-~z()5W}{wp/Z,Τ1l|^j6Jlg %<|;g>{m|ߑ&ݵ۴w5-9>j裇6e%;hᕷs U{VW{J&y8iW[_ƄW s4& k|8}U,ýi0Le}WH9H59_q@H‰~AGfhz!XQV"Z2zJ^Q p7lZH>:+~׽YχYYD-m&׍ su&ȔBMs0jw(qm# z$U8`)YNljwx>uVБʯTE8}M~5xq< /_4)Ӿn8L֬yk[ò陴X09Ϸ謯3T@݈K_rX`guP6|8ԅKyP]}JAJ#lNHOhɎ]UT G zv.CC=Ss (ZF6.3j!`㉇p!۾; *Sr8RèT }}L~LXwiR8;3>z"gǮ_]@ V|O,B,?]E-% GTm- ߐ!ű--Poɞ"]"% ' ou_-+dyr?3/ĎO F[Ƕȣ?JRy/m`@# \5Y );"H\<+lg ["Ryߡ^c唗i>ks\͇kvE>č Τ@8*AxHj[_նoŇ\PkE[φ瓏T0OG5bPJn:/8R~J>&$HE5igE0宧 umMB1ԥ[VI4D&//Ow=_^+IrdUH)B_fg9o5UEi+l tn JB")UsM]&҃sԂcp~Y d,,X%W.䒨kU13pT>60ԵبhcSxIV]9"cY?8rev3OWÖZHptLZyU[4CaSF*uh_ ];qevLf #u+ZRf?pGBAnf} V1n ̌瑀{ߩ5Mޱ$~u- N[×jgrQK(]6.whW°ڕ:lY n`27нtZ-|˷apN_ CVddM]?zeӦuAllOj`B.AIhAIm,j$rAGoh8W[zA4~?3orO2 3Pơ74Lmk_&+_>JϮ:A|󱩫U`,B^cF(BFl'|mNIsQ -^<9!|^ןc|^*C)<kJ 1tՇ޴!Z u ym}lepeHjEXOfQ*tWUFpzX$:֜mcjY[!8DDp?o|<9sNJ lm~>òVo__i.35i6.UJypRJ:v" L((.iy&{}ߔLV3E>IJr[tȡ6~#ylg)GYO*!rLS$DYC0[Cg|)o&$lCȌL'<4>sBՎ'X^~,;@W-˫#KQ=ռ l&U 1dfq{mNl;ѰKg[}Sċ8Cߦ+kRhr{JyFd4 2ͭ^# $ý›fMFW ;/ᢷE6f|qWW}u3ШicǤ͹P#jICԩ4aXLsy!*_X87Wʅ!Gov=tP kK3Al۷]lXp.˩vξŃunI''-\jouIs},?I{N^̇5ս^hmҾ5|HIW)AwF3`_Io\ l/Ldu7 8$ВU@tU6)pi wFm1O7_vV{%W$oMеJIs_>\Z C/\`^Lo;y: y\8p/q6m-ºEm; xjW8 f*u$A1' KԨp0.ПiyFY /apzt=%eCxd ) 3k$yVE@Rr(i9HU4XOF0&*UQN/#mD2jg2Mh)FhոM2XNLHKKN <0^~'n(]O2*^-KzOVI>[ %#h6([NQGqc>rH2$pwW }*NTcD5="WD9-u$I*'[&SV?~;-`,rc^t8wocBd6V*>8āTN1 BΡ<{'Ɔטw1o 0(\,LiɈME;$5HX^᯿%׭<F= CzB9AW3„.kZN9;Yw"qѧEyP~tP&5-~;gpV0MndS$v~Or&>ͮե5yiZ fُǔc=m*\Iֺwl7\({˘/<ې߅;CyɰD6VH4#5x蘸U*8g|Bl:Akُ'YX!\QDOV,Y:>{UEioDM*v 18\I?i2 OW~ݏTȵ JE$:zz;]əc錜&|jֶ ⾸ bf+@4֔[L@O:$Hxj/T MK`#ҞTW$XQ srI g9rI&o[1AlC]sC\г^2,3Zz lМgרۼd2G"{3pzqfc#LÙJ@08B8x[_$&&f(М3uҮDVoSxa4kC/WN-a#^vw]MVA>g.;.oՉ]5x \btLLFs7[m:I==xuR웯x?LU{ nIZb$B{{wH$d~Tw\rgy/]xTR Ej4d)o[,O@ٲONg ČQ}Í0Ay}ʅubP>.d.M#?lY08a.Q:WuWF>02=3lvzBSyi9`8 {ZHf;c 5\)Y$fw6^]g1ZΨ+ Sf^Z\{ ~feOC'߸K`>M'&s^_i;_[?F`!$\P79Hbj2#ÇD[Zcs Ed? #"4+!2+"I{}E2JE!(Z6*}>y{ݮ~=v.7Ε/~zeaSL>4lr-E=)]`X/ ĎKrJqGn~HՃ5CAxFoHPe28‰NRKKxh:+zze pi=uzx<,>w8Mu\^l rڛɩkxnacOM66:i((9jT}tބDZ7.Bs3 oWgX;n4~3H+i͞[sTxy=saHRͻeP yʍsx([=ւ0+'ΒS^}PzXD4-0aj.M 99-q="\"=)^T 53RJsDoG YBks+JΠh\_qqT},0+ĿVK-ћ_suYG'aشC.;U|iQtl3ßφѲc,\nK5`;߳Qn\ź~ s3t95#WF˛pŮ_c5l l~-g2q) ,T&iqt-dlܥ]Gu9n/TRMWܻ沋̬r Bn3 }\4qgoth r- L*C\5t F=;Lm?%TJ:qx#K.`p7 ^_N@7m{sjTF5lֈraդ'.e?O&o..4%Vpgk!d:S)U&LKVEz])@(b5l f%a{iTrTXɧ)Sg +7Y:o ^/[雏neru{֥Puc%`$Kζ&~mQdz=Yب]q%4sN([r<4`Ұ^.G'*Xomh2_k$;pE{Ɔ?em"{ 2R(oi/ 1*XDJܲ ޶y.m~Uv/q~gZÓUe4thvaUd?'ܰ.Ļnj@%a*)9묃Tؙ tH%ƀ=#z2L0y,8>td̹iV {5kX,.Ӄk4w2@a-}:+LΆ4Xq?]Œ U2>n&\ ҫAHs$9Æ3Ih|lXž; Guo'sBXRYj'#ᡧtZp夦F :5,̣`AqDkfYK 2IfbA: Oxý9-\[DIpuߖ"%kB5Kwor6{5pt`A&Zbeڹ ջ4R'x!*bd RFD_/k+PG՝Tƶd#&qnYAHx}W:LE6que~[_Ά EA%&MHN٢K'_m,PSOs:0wF{gITM)_[ۭI2h:Ɓ=\(Sebƅr7.6ll/=zХHwI0cy& ^}-K59M+ׁ Tvao*@wc+b2sʂ-/nÞsՍjgD{a%1zգ7㝏T/j1߳ുyH/ש;#JBɔwe,(qR3ؘ't6 =*KEIf"SDKt~Ou'MyHlxFt{$~' ZGt @Mjxi)0~ jіBܭwҡvv1:j3v޼#fĄiL?Ь΄L(]<„T 7~(wE^E@0 c)1gyidM[ ?4vU@wpڭmDH\UX% -Hƕ9#Wa{ 3yNx4l9 27ǮgUǦJQG_T1vTA_Ad|'Z?_LQ:z$W9ưS!6176 Fոiq̺(8b1̻t) K|G>Cz4Nř$tL;&{'~+wi_DjQy>([;gR3@X1->h8Gh`s P.~0kПQ g|j'LG(*gu£n|ߛ/af/#Wz(+ɁMB\hwE2;${o$r`uYl1]Gqϙ(AOe{9:HzRF'`]Pe"XdW@OQbp7WY.6\n1; WĮ#[ an涰2UpU+ukIXjv`^Mo{GÒ_SK/JOϱQv-=GsbCٲ<8R3 ]"'y8Б]6c\{U8r|,m:{xb!QUm&z4n=e+PsRRs v_V+^CzgT\m<$6[]ys ,;8@c&蹷WNʒn*A8uz(YpvwTf$'2]w3.L$RMoCD=4yRKG|go ){A޹\R ?&AŅ $-Y&̨nqfV 40[7Gh-bw! jDQF꾾sq8#/ D pܗ8 [;eAęeYE+go94l*ޡ\ Z̯.*dkN DXS': TgBҎB:j k*ab56so4IqP_t~js義m 4ȎZG6\8;.MīL(=Pۡ$4g-4В$Os+l^{X\+#Sj03A9M{mДw'Ac:V4 R/tۥb<,f-y >^ o[q K[5Q+ECJ@O :7gw{zȆN;ڍE1n.:,ɕCm5 t'Yq`Wd(R!+~8gOڷ+[r o_7hD85{uWFz)}j\k8Ghb_Ϲ+ !/_4Y+{ٲhpBC` u;^ QwP$ B]|۵$bDե S)ً>@ ~_Ak P9E=y8r .oU3KW벏+?Ȅӭ:92u<}]hl*"DudOݣp*4Wv=;_ kZ1\+?͑VNeuL_$; 'z8j t4 .=x:l˲S: n}e#d<4_{ ըg ڸ1d>SZ) Ż$bҐ,~'ueUpy91M)Crn-L߲j {o[޿uMڶ#v1}"RZ0!mP;5"ڂ&lXf ]L{8>^9){62";Ds_1Qbh+hx:tj *W΋ljo3*4F"qIPG\{/B03-|N>ތWZ Wc`w@%P.x9T^#RG//C{2*Ծs>wx ^;q >Bh%)vi}ެt6:*rР=YppӍki񡑙'3L<ԑ hT~j .[EJZ2=ISl|>Yб]sg(7X/q >PH5Ҧ/hk ^ˤUb31!IRjLowGrK+<R;ED'7 Rڅ ЮӺ^lh7#B)xU ,iD;Q)]gm}KR;9jS}L\L$@o g-Z9OSO,tov{ݴNBPZF"Dly0rLbX15 mG:ú o>q+z\wBe۳ zHݠ7W,_k{-[oyR#)Dy5UbЇ~7D8Ry 7ֵSgb񼟛\ _l_b@XE=@E w(gNM V1&HS/v?CVF'踤v8\B(.BՂZR~D+9>VGF8ڔ%.mG.@C=Knm̍s\?>6nX5uؿީ$Akk*NHIstWN(aPn:xG,rAŌ3͕w2ƣHTl'A:tV>̆G_6̵Mcl$+ces,8hl/a9xVaH[bt8lܣH!yp`DqWla6]کT=jU63a[͗1=/솔Xtj]C\ZvV J dıOJqiBsEy, bRM"64ܕ0t|BxUλ _})4.Q$Du|jR@{$l^/7/9!]$eA#0iE8:"gĕfi,e|Gh":>ᡇ5? Фi\)Z||~ַ ؝4fɮ//%wJTT L6>*aߺoC44(~>zЖ䣲 t|01/? >VGG|E: UٲkӢ#,Chxp솋uxZwagTe\'T 2'DhͫSzX+ś\w ^ "@ uEU :\3u՛vb *5PP%t4O]ګ02x1t#F,aEZբUdXDXlyO=VNC;^w$:O~ogϕd\xTJ$~a-GXe= eߺ]1aA\P sVu;vDuUKzodLR=C2RͺtrݯY@]o3rtqiYR#VAMgPo7鬊5SEY\1MB[UpGըBL9F]GHӉ9v IB2{ɧ$>.ϰ1|<;ݵa>aaűG7.;_x*Y[E+>xjErFwjSYޤٿڂgx]XIsdHzNĢ#8o*)_¶e`qFn"P& uzv'@M;rϐl큧|8Xb(-X4+HVcSJ"Do!}g7DGUXҡ>VlYWS ⸉21d w;|uv 0e9:ޚ|VZ㹐 xܲNA+ۦ#2#ͿI~X9i~/~>o ]ߩ~WS [.FFtK=Nwu^5֡]{gm[4foo?I*iP*dg  *Rf"DVQd%[WVF2-׸T8HT(*-J{<<;>oZN]TԘ,iƨFֻ+*x E;SgNAU}c)"Zbf&cٗ9wpGK-d?y v 6oRJˤ,h(zsu!~`Lj(۞ ֌spsX5dڳ,*Chpa!50߱i./Jρ:pY[,?IՁb_;ݤh*^ka * &$*x=cbUS"βCM ÿY',s@:EzwMDH `bs_lDQe]:*mIR%y#g!QrDIwh齭gS-3b:Q\h/ Y_ {f~ݹӀJu7`!5|8Oo[{,݀TO'(s.Ğ1C, p-.QJI'TWc*G 2 -mkA? },ikO넶 Ŧm-&l;JC)&"hVlm ]2>10My_@?wîK?/P IMsEnE1ę?n-U!#').Sy'% \2]{J'dxТ 镊}+dgK(<4VEo^T-UBHV3W'S;0jUw@ׅS1ۤke(N.AyEh4~w%ֹ1\f0&+!2 MH5',u4fs!IKB9b,0.2}1,ܦZcw/LE0i_ h;`R@Ԯ^'-*_lf9NfJ%H5$򳊵`ݞhp-4p;2j'Jya?W٬`inL??m aI6Δ y_Fr>\S >\rZ*a-(gbPu5d23|ʷoeluLHTO.V:Z 0M@PRz*p_ulAōՕ}b)kLyöD2_"cps\ԉ {K_/u%9:‘R%[&?PosxZbaԯW0(=9ߤ%!c'-90M !A ûFѢd7]do$8S{=br)U?l<ے $*iL2_k f@@Pc)ǔȏ;i0ۘZ!R1'XxCD|Lr=lLF:C`s:O׮Vuffo^X9Qۆu+ L l^_mKV`KrL}r{ʄ8s.uff1Kpe"tk1WGόvIڋk$L7a ALӕciMvDldewGv[pjd)}vO(Up>\2_>90kn@8ip.-+V}2e`x x^Ad: wN9]`X +j(::չ(ZkOLׂiΖ𞳒 XTz3,@yuO tg8I\ooQ~D%x˱̥# JeRIP^|sS<q|Ÿu]VpiW*Qٿ^{frTb7SGt8Vlז58ϥo%?ԡAŁz$%T^ұwy\.,6UU,mn|b~mCCxhʈA=-sӤ֠s4NUXGҩRy52{{+ 9tf b_7pqLìV<7_t`P<{a0ZRC+T2,^G[~A3GL8K^19?=be _%wG7auxTG7]$Aגz~$yBc.t&I },~̓^8sB%0,r̖Z/sdC6gSZdݹ#{?NށmA0 i#cƍ!U]$O}&>JLAnu>k*;hK˸KZYG{[ ;p~S_ɃiybKwR$)RݖJg.b\#2tn:Z9J;;J1o9?f/wEHۺBE+o&MtWfp>cEkܪ,$ m!{eCxT޵`# L.8&9 Po9,Ro1~pr"G>L $~\$)j(Y }?t+a;O0zkٕMO'6vyF[@RͤL 0 zmx 3 h.5 ~Q̕*)rO2L% T@tiwuI5"> nϬLm̫^CD$oU"^1K)T?wf|zy?*䦣Yh&"ʞ*?O5煶Bbl{deˮ W37){2(ﳰSއ# ?IGSygt4z;O&mJ3ktTf5*&gT=Z &\C3C{j^8s4tb$g#?=i9#mKR16՝+`$cū%Қ//=պ}GV' 3uYWsőPZk& 4)7c{;Eh$JvG ɐpAZ,{•;]LmmbRt\M¼WղYͥ% dgYl}';o.(W΂˰ SVsw3_cV3 zpR5Fzpat:dwƀܮpXruVdU 7h8BQ]o_LI30=DG XEz.@$"#_HrV6yFj|\ qJl 瞝qd+ '(f8wq\1.$ :4ctmQW1Exvl::} .DNAw>я|.q i}ܑ4o>Hs 8pjJb(@PK7{toMrZ&mZL _[݌;Ra-8ClɹxI `oh1PHBbIZR)g'u+@Z;*9uQ5IV潑ߍoTzlE]D4\aKxdE􏇏RqqW:T1^iY{*~D?.fjÉmE nyp 쓡dZ`n_zkd 6Ae=ei^,g} XsEndSd9H<(Bʄs7t Vouo*ꬉаQZF_M5Lo̚+Xiyt/p_'v,?]}5:F̸ףDӢʿ:;as~if`õq53i~h-rNt *Frdl  ;&|/BoІ*[.cQ!P}D:Ay@OaA_Pb&٫#U30rc(HuvQn47jfW+V_(H0|C@ddPM ?μI>.ysJ_L/Af=f[є v5͟@ Qt⣱h/[ DYn`Ь#4zͦVp" :>)#e86g15ٟvb4f Tʺq6xq.Voe"aHAN>2.*@0#z0W?-W * H7>1:# V??~ J+?+,o9 PW|;`t2 %o =+CCir+咃w2n[r+1S dZߘ_8~دGwqy![Pߺ^l|Y"8;HHYYKJw45cʭ4\Ȱ;]hu[\X ;5a#{w?1?<@ǶtׅR:"iёժHǪ$y(~}xbRj0f Y~c\kU[/ ϢTUdݣI}d4pA9\tK:tz?C֗๿< 迻_߈ᨊYϺ=eqU 6 5LHV Z<jq?DL:Ž39vw79lF7w@wT{{w\FR+7(/W4$x3rI ^Q"8eba{힉i1DJ\4GEB6wF0Xiauvf=k'΀ Rٔ~ ϩ>$ݎoJ,9[WL8QrΰR تK:&k:OD}8]9hj.W~ꔇĔ\"W|ߓtc_>)˜ AH^ n*@Mܙ(q9xU^KkH?턃>:S(:~'`uD,\}w> wz •t`|lr7$}-bM2U 8!JGwxD`Pzt4˚*,wȕe8rU.7tRO'gIf uy2*FW癮BC+]K`-sHC7!g{w p0^Y'mVϟ*EKYbv;X1:p>>?]xB2L[ PLu=jдwgZԜw.aāwPyƻRأ C>w q[È~[b ȱbԊco%AHzXٮDz:>9WLd|{5tcA*T/}ϫ (2[[-MV )z=66p])"E 0M!1`_ )8 8ef\<߶*ʗ/="EKL3A!VUy9€p$ӡak֘O]"42M} X8,"bv+5,ɺ^| n3 !QgRNWJ[Se*t5!Ţ8ۥP*R#<% /^ز,'I/9=z|w+X=7kzH针Zt;i5Q*mg E7#OF1 /b#(vgH碚QS>ely;Hj R.HCSdtXBnC8v_~|pZ;^L.*ÝsZIm ی2̨f(pq 1D{柢S@<egl>}-^Ѳ+^ͪeB?#hdC9 Rv]1&>˪1v ڲe ]!ygs} zOW?M:lM~d=4GÔv!bF'k|XZA7,+x|PYߖ X͛ )Xa*|H+*"&o#>E㳰_]0y_v0۴gdw4QRRRPF!RFu%YMBvdl=6n{* EVM2JRȨ>9??^u:k,&l*Qi)k^I_ņ)<@/Wm>$SX?$ģ]pF98%zhdS 95Ohd7س/.6;!g b_1vtq_$<) ǥ;v0|Ve''K{/*SXFr>FGvwTؕ愂ҙ>p1$KCrm Qq*-UlK3'gTN =&SE5*'\cM]Ʀ95m t뢂0<}QU\<\Kpxj;cp_I}R5-<OpPt>?G$HeAVHxܱ7'gb,DRrΕH SpnjJqO)@34 -"d<*\ϱY(GVl4b;O>P>[5{}4-gw)ӗEz~0ms^{>O`OyrX2MJY}؞,uZ&%s @rQ\T{J뛙wIYF\||_!Ш*7ȫ?VS0m1)`o;V=WS`d{%u+90bC;Q }t8UN|mSa@Y-.6ELm/ӧ1O3tƙRPdk*2"H.5TTx]NDoc29ht*&*Ä9>+AE-2rs85TT|%wUb^MX^~@^ոޮ|4ں$NNjc3(]ʖLF}Ktr}*^"w;at)TfRl|*/ /X(}'i5;3P]y؅_zbw/?&5`QM/aߣ cL3Mi8N$b/AXh2 K ZJ1T:d*g\JB=E'#۲[ΞR9jt! colA4LY&#`hcJVo[S• ώZwdGc|r`nuc kQ,e*ai.{pHf\_@Eim_r$ h_Ք2D\06=]~)ue:_5K6l2ͯ*Cd xVb93?,Uk}$[k\g"aUMp)\& ,ƳK>o}YB NATk/ƠP Cy%H}7DJP껃|QWfOۤiy?._fa=xi \vx#R#SCRSt8L'[!m#~n+}v@9&Ci)[A^{y9򸂄@& łݐʄX݋)Y-NfCQ$^_\SӇYڽ`R[ͪrK~2K$⧆"l4.m%`axH!>ج=]1K-Pk[ z5rH\x$PnG8}sccJf\ՈL~V%+Z[NR_Bͤbdͱ*/_fS׹W͌r\X"J΋}PcS! u~/K. Lw0wj:rG<_{_ƟwBQÙll#OǢā&XWz 5sGS3}z:V?)J3-rqѤeacAR Wȴ%e󝭝v;O)"fr{CY{,Z{;d%iiȳLN^Ž䛶,;FbRZT!7쉚l/#2yvCm<3:; ]kolBWɡDf3('F"glK~p.q#炭6]yPT3}d#vqԤa- ߮]@QfԶys?Gpes:IlppحA y2lO:xj&ê:Q//m%a&}}' S'`FOU' F:a 87k <{ZlH| tL](>Ũx rӿĞGE Ӧ-ן`k'*:Nr4^ӗU"H)#<ڻMFNnѸHf X@@jFϢ53:eLf LOݔSPK [3QJ" '5kkt798|08G`k9xpq4ݡ[zv°O:(:`b;cgLθ?d{EclafZ L0ׯw}gUc\ ˝{d.fJ#`Uz+VFqDWS\#l56o;`'~0ݳS jS,ݴFW3b8}&2%]XSXG fq3C"bC"AmPk2]hlx( ObsyY.w` = B%j{h<wh]4 /mVԵHF8*L,@b S,qNOMC~I.ݞ=?Ԅ+cOU!o0~*dw5gQeKR.trWk>ʂ~pBɸx)NVUl4gN.W^KDI*<|*VN3Kۂ:*v)94SZs>4۰E/U >9NAو G0gR#9\7HhwhHAiX; ',ѯ_˟^!qx4mWW\$)u? F[m}a?N)>S宛v\9p{`lp3h,{ H3vAaX[X+iNw0] sLvaiV@en}[smF/nvYJCڗL_dU1|Y W!2!Z-~l̬L7,x)&y7\JPsy_AS$F)ΨhƶxxlXKaNlq,E{m=dR.¡ʡ^bdvw~vJVBZ7&6<{*7yLekI֖|jkA(ݑ1J.[4[֜ -$bB.# (4,9_ԗǡkg%rF" 1SdSid3<$7o-O-(hD5K0|ylUybPqQ"T5 ebसA1q"z\LvGCW}!r(y.K8[%E|BOZQ lÏ3-?4\V:ǂ"XǞ*]k& w>|zS:])4Ҙ q^q۴}7DhL^5FߗOWdMǐY|HsW >xp;y' =4ƐXX0<~^% G^wT{TB9>tݖNGB XRz*B -cwEF $Nnp}4 q:FmH#߶A8UW" c0T  y #3&A,_2>V{F$/~1PMǩ2ڽXTÓwbW#w:'n~'xB"[Zc~p?M͂(h#PPr雊)ehtpd8"Pik~Y^.~]"Sq4Cک=>ݒ ߉TS&!|t]*ݗ d:'R!^U"- G!o*ђO-+#%7~x|a,S,zG24e#b~]lˋ{7s %T.)2/O'`igʐF=]sL..\)Cx0owU9V (1)Gw`7WRT5y,BW Hx' +98͒F!3ȯ"mlj4cP!z^±M޷-c^ި hXv@gdMVrZ}22!dz6Rkgb@)]823lCqrpiL&@sWaga@" r+,;io|&XK#yJȩښOw~EWaRŌE/r86<|ǩoG-;AC|6pv"s{cP? Y;, 뎇ÓF߲xmT\bxs`Q>: ׺lup=\n#g moxt!f4Փ4BU55 D]@笺Llk>%Lr$8=W=vM7er(2}پ%&5"h$]h ¥ea[yb, T )# !0=9 &+>ɶɻN#jo#;(̈́j7|fV~SD^}h;8xRw] G|)8_GֈXK`W`\?Ѫ7 AKU1Z'<+Ŋ$ב! <Wb!*4x' <0R])]K[ʝ[LBUue(cqJlђVxQTWtqn'N yhPGFڟKdkoYadE3/~/^ 0K!i4^'|W\DLQԛ]Yx}rCX 5\S7T"훭:3s䙫.V8[+ɡOC+ѧ^r,/CBNzaN͢9&Ghk>_>lϊEeJ;  ?Rҹ1iLKF"0N4DPG5`4jr-ݺ(n(vS0Lc 6Q!ٛww*d {W/V:bVir!+y3 kjRiTh|t~M[V!QU, Bz dwTCJҔwJiH;E;-^Oyg׻e4HDiТ2R9??9}?.yY,P;_^,NZǩd`%_'. O_[]Eg?V|0ZgUK圽p䰸i^> I1vGJ$Gu܅Yt&|iU?a$\ k 7 )oE?lHiS`(eJhl)%3a+sގ,hx#Ȇ.s༄|yH"4 gC~ C-R. 92i+g4(SJJ}h6 `Yks>B=#'LYwg/He0f)*⭨r9 Ԫ23P|f|b1EC, /q4l1>WJ l9dr7@cyod|AhE_BC־9w::~c`mBĥ*.Hy[&CnJWc jLS߿,^sǟWngPIJwjkC0U=T kOm5bv[.} ,k$MPbObP[|"L_OޛBl :h8d ١8>~(h| 7-.ᠴ*c̤NSVU;d|Q43RODBn6 ^%% COus%GoOO 26©OKx"** +݆Twg̀]̳+Q3{M.궶|(E ~.TNSTJ#ȎLc7 ?]`ʥǴ `({ܺH  @ jNw1D$AI&)=ڂ/+Tnkz>n$\AwǑԧ5?djN!pf5} rLn!襺ImA`t8^|QD\ϼG#fvlfNs9FaMN;3Y\-ӟuųtx p8jՎI?6)`BLl~ĄۗCę7&qV՘_uRќclzmGάC+9ZL`]SRݫ;t#VaүaMo:ZrC]ͻh.&^yxNK2_$",KIBY[fHj0Pz_ {|nX9{ 8yS#CÁ `N0 \́W~|شTg]ۚ !dҥ7Er#!87vps)JizɅR 2"G7&"8&cK!/^xL7)>|m>^MgDgY=x\]J f7 TȗXx34溦;6r!8_`?|gYs4?^a6$.w WGƸC K|kZʴ罇&> +(;t\!?^3H_xĤc>}(OvnɾLAi^ (t[߯Dŀո 0[3nE$– s $PJ ~,z,f a$6B̾$n9 /m-&E 9xs"\೸!uI>OvG{ x"V߅IuS:EZ04yN8fPFL@SnwIňhL/vD>}g,c^;sم0N/q~qDΑ 4bGŹ)+?y}dصr+$:v(QnOG":%(qSңxy7vЩɵUT86gPЇ \O EqqzDn0 㾓J74BN2g2O7eŐJ VHǴ[(;B#i]5h7-2S,Ys5> ֌IG1w[iTy#jrM4♔Om#+yLooɱz1vk]6(Bo|甎±Tztl8N: JPT,!G1Y4ޟef;_OR@Bl s-zT)Kf2K{^-"Fۭҩ:Ŏ{׭~^*LiEN'J`t˃Rh6t l+Wqqƒ62Y'n:Q$ܱw\Pҥ]% trj},(rۣ#i\KK{e2`N|r-?] %%M馄À7}B &^3l$[Z`|21BW-dFEwؕ]Ż`SSFWliኝ9XOYaOqYܠ|أ ޏU2˜O*Cn/VhyٺANY_$G1~<ʝx32߶|,["'r PVbuX[3AM=pAR_%̣OE^p_UDž4.<^}Mgё?z^+$lY?~s 2ŭO[+KO $K`^iBDHZs> -\F,QWڴux'uc}@rA[2*tT\s_ej@Ub{h8]l؈]6M؜,fz3N@f+y6u[ 5_jFݚpjdX=WXlDHHal@\zTܻR;O,__gA-Pv5w%9%mTU!v|$Q TmTrO$;Tr瑡P/^hp8lѦDx+t1(/-o\n1Za"׸/T#l2Ҡw^yC$z /HBC8qi@'o>&}CȐR-z/D@νC߀ Mmȕw}6UPʒW^ } 8c"qXwON&VDup4C ;/.}N*k7OtpQzw!ڎ=ĮNݪҚc4=hX=\ 't<.EH_Dpz Q*}MCZ͇4Z r-wQM5SW|"t}P\., c 궳7qˍVߥ0~gNm?S-gŎu.Vzĥ({U!K>Z^5>]=V?uV(-8^@OUn9DzPʞV*Kapgo"ܤWfU3m7|=ST[c/䦕@PZ]eFˑltrQ8ٝ|AEXI*p7yGp>O|°z+`ۀ;ˁK"s*GC3%pN6jC,'k"5̆拆A 9IlӸȲ!#npF }_4Sbó[6711N.h +;Q+qZɯ%1&֋Ap %$z{ljWoYtq^7DF |)7AH&m9$$o+8qrYThCþpPU&JW=O^u%MZ&]8B?  ##ܟEP0t-,2pkdƴ lфө[??S߆' 8v=Q8Nf`SB5bdj/5[;ռl/K4g$%yun_*Fvgk9J+ZGljҡh8:93ECbQ;0gG8ޡ4<:'8UwӰ|\?(fT`y>ϱT*%-v3,N7q!_IJs>n"_UVI@apu%x°J6o.]ҏըKðp7]F|bI]|>UjřVVs_ZkE+jng`N2ۊ)1δFb۵7n(>wg3= o5bkEX!fmrzhWHzZޑK^];65Ih\6Vη.=ouU'`fL?6 ZA$9[aI2$>3ʆc|q=DQ] ↇcIAKy ~`S"r T`^ OQ 3|QO-C4r 9fG޴@llh92Q!Xpʼ8(QǮ |ozJѲݝE`ؕQg;:W9'.]V}73W$LDC#sv{rozq[&rJ3S _:䊼?_tyb軾G Ǧv-+rE e^G1a /R81'ḯ|ݶ&P6Ǧ4Z s8ATrdp{J|˛V(t~ _i8r}W> =7{Εd3jJ&@NK̯L*}>-NBۭ#Gmc8H~'7C[{3\ pVÇn =1}~|X U|(D;>N/}^9ht|k|.==6V,_m[p}1W''d|A2 ;jSJs*Oy 6ܬfLO Ga| ieMpPƴ:l^:yao&1 .R8wt-nxĥ/߀3^pRJKTMѲ/nCOzm8ͻ1`s; v i:'kvT|t8[j)ǵ!鞍mX1R0vtޟmCZ}oE/J wzEV76yUBڛ?1~W#*rU[ X6'Ho<sjVNxn$ /[#|?KE ‘"%Zd. Ko7dwRI۹bݯSnyRa_4iڭСQutϥzd@զs K¾!ȏ!⦾l0;<#CmjE(mE 3[CF}'<4" 6թ1PF/9@hilḟWIF7R^Biϗ24Ep] HNSW* 6|VB|r*k%p@g=Z¾WD+lm -`_<`vq>“H UP?N}i7*,K+2DBQ'I T|o K;mD]ڝM>Y}$?r({9x8qs\aD<\qm 섵X@+E ;2IL^*<ij.}3Y7+n?j cII=QF39鿝 T'jwI+Xm2fPI;xbup(u.BcWa+/^HM2˃ą $x]l=jg Vu='cQH1!2 ޑKŚZ}JrHWbS)*9sbθ&q!M\<¥ϗעt:Ĥ@-/PnD*Ze!ݚg/|C {9:0%" _"L J'ocƣ@m%z|й|@cU/Y2Ũzu_Q!jU.Gݮ,$1auz ZuUN@I["agB+n(q1E.DŅ ymOX Sa\ƶ  EqWu'pja>R$T%@gh|Pa0T X7<[DV:K^u ~S OQY3#+l.zJ+ۗ@4DRgЀP{S u /V6gh480q2<@ihŚ^NW,fxlJo&`DS֟-Lb3E#^@HZрU vCKaA9XޯJLGU)ɻ8ukn=j xoz.ccc<:w  ,Y8C& TCVpJ|R9L5[Nj6k5lzC7JN8^uu7{:xb@$nz8gUOCf0{ D:]h$?f`9b ˥t=G:Azo.x ^ DwoB3~ܮ!? A8z~?GEtC\ZxLr %i6IvBڡx;`B;VVV]8Σ(^ez8=^j1ޡU Q6@hYem?h9wοka4O@; 8+|JG.\H'q"TQ9| ^>G:UW /RYEC6J됎#FҘUsNG7 Q%AzĿr((U1wHkhj^A6м\jqtݦR$!0CY>ӛ*@Usџztw%(g%M-D"$ t)c|"]5 % ,M!H%/zDdgf#'*q%^穟DI46`z& Q?OWu)bg:ҼS#Sy(1Q`N]'뭘dC 6<ɥT@a{V(sjڠ3RĿm y5KEV'_ČIS:ݱJ\Ub\їL#BO *TC񫙓35h~ ]}J=H'|W~3`Lb{.\r>Qtmk/愍b+(]J`LoǼQD8Н~c>3 Tx~wF1Vp|1z$ݦ#q~䄄WB[~rf.^UBz^M]·11߹LUuQ'oKI/W| 7xDY+#m}Ă>%g#WW.>q_7vB5%7q7uJ(uC֌LxS{x +Ҧz=`L({X4 [2n;.P>dRou(dV  Al-ogLU#y])hP*GOvy}&ڠ?VF)'\}\]Jk_*@$W69S1ol_G1??do@7c?m@OmD*llaFıհӀ {52õTz~F~F"ÜsE*KtkPࡈ:-FWҒ rP+P_  Q߀4R;#1y݌ JB1|_/rI?bk%D_n7[ |у! P eh󊁞Ei2·˓N M .qT택b*K w< I LB'-HKx</􋆪=vYakt芉 I.5/0>toV6Qd4Hc{)!tarnFg~DwcO:q3jQ|3#e5dx\yqݿgEc ݠ|]/LGֿVWFݍxP\H/ӛtxBR\oV>B3|:Wtc;.E0d@u p.^+zRUQEC_'x:a@3)hqeAtm80Ѧp@[\>|V+(xOçL TNg&4:?g_'WG&RQCɠnS 5v8d"kTt[5[4;!Hd/DNv}vdn[z[0aRX{!PFe遳^?l{Y*A60T{:ɏ> FPvVkqmq8XV+m=eSDе:owRLKr-+CVg!D)BDv)zJ5Ҽ ſe Z֎{:3iZb?bo@ܸcqk&&T%d߄_hBd. ʚcLShxﭺFtXEvS巬T)Gg .PyDZ[EQh'NbvӞ)a 鳑zM&m zJhބ7 25v+3na K၆~bVg^kj[ 4'M%2ܬPEIR좳gD 8ɯ>Cډ!4`gsM'R9ޅd|lT/,`[1L.NVxt;e>] ̈0C;2oc~Rח1J9 EZ$ƉO+#m&}v$rZ] sP&ma9RЬ9FTCD@o7lrCiÀX{T$>rT &A/OV{ Ccz:Ps% ÂäS%]J垭Z}TvYX/HC|aQ&Q׋78ui8H MwS`;ՠV/k Y b|8 Lp5[sd#ⷶ@2<wB[ijp1#`?MbԔT;mrYɻWtKؤxiS VUnH \ }лjrB ]:P =UKjFnKba* `MZjZMp ga%tDZG}ʛ:Zf$_BxZ}rF:f|?L-Gί!_, /reZ}EBeh2%t5}^QnGuhP^=jD:$!MhٌXcg7 <-HCa޷"o͈TufU?{y me6"/CFzty珗e2V|R;\=Gr:SyUhJYm E+=>W\Ɔ~˿DB[9uBeT*{cm4}G1. 7mf +IuRn1LM%۹+/֩!n*,IdzoLСړZزAf! h", Ku?) 4W:D*0 *LͧctR,$RVGl#AΚWഞs?af'SЃM_[=Ibv mF+8n wɜ=Ago&yl}dUs;g9|q9p"/O>ƂHψ4L)ĬS!yȄqN5#@IdRh-z ,Kj$pEb)4iߪZ{A\plЖNWO:8 ~#;/2qB_v1칏'qpY{DAImN\)]YyX/۝.|ƹLhh59忁6-~#)$'Ċ)c]ܷBAsB3IMra=Hu>52YP$k+I֪I Y}^0תNN*xv7vt61evЈny 3HSa犓+DȉB ɀ3yPir`^>|Zj1B%(-+m!iT7>MC BM-ڝ3Gb0l},^|)@MSh=kOGWՋRmtؾzI< 84ś4)w2s\sg 0 ҳ3<8\Y":+̄ƳL8O|a)tc~ 0U<y n$BV\,st W$T6!˫{3_G.1LIon n%/Oʴϋ,$n +-Z7d1Ib\ķ>pY L >8 A9N`Rs= Bha4f_SLhƽ\㋘,[|BhY7W|Juf/:+O}ajuU5 C[г긘82O1! wGݩj^?">>Pcy?PszenmЏSg7q`b8 Tn[ި5: ׻^-.Pԯt&T2.;B*J{G,{W˛T邏+qFXUߐ ԍ:-À67r!HDѝS"7^2{GFcӰkD8a6~ A͈=Sqkg #[-kE, YelC4&Li6[G$ފ.~kA2v(1q:;}:ùЀjkC +D+{k5HdrPRqDS*Q"R4•>EfdLĪLD pB&ѿwLCPH;2-~;krCԗcA.-}iB"i fǂ@5&d9~+y^h&" {Y٭<_+?`.el5A ngΧfH/ЄMNN)AK_ +~:&DFA{'f2؃E`dؖPܷ^:m/%r9Yi3@]imxsND(zǧAPG=! dBzg(nR(e@Ks9@y^>XX2 I"|u-B_%vvJ9WҜhx5Vai{ПK)8`&*?W Jt* fuꫀ2g2h4+\l,Q^s Xl8,4'eǽ3ƌ`);@I=C+i'x5mj8ﴭF]! }f7d ~ ̟z!L5b;yO#{ gg#^SRPhFV5-e_o_O ! }OzfHf'Z k=N`0\R(Y *q"[l'zQTgW8O%$ņs`.$!F{6`C=Z7s=?QY73, l4V28ro_ ZQ㏸+0vbb9x{[ZHi}P9^)-& A?ǕGoeQu\DWDNuqIE?+F09 YB|ۯi6U}cҦ_n:+lǩi<`1 '͈ny-A^' pn#p70ȹ\G mDXr)6~u+̴b\d3Q/Dlf듶o 2J})u$Fn  =SA"v5!TvPbϷNq.ĥ}*uiƄmV7ɿkId,o0&8z}A_GM5NOj-U6e!2t8mbr_ci)Xr0 DZh\;ogvPf+Q}U63*xFxK*vrxy"i3-!fT &޾$ 8T4W(yC&"mc\UAMRTT89RRġ}m-'rz+$edHB33ѵ+\k/&/f]ԗKa/g]zޢ-a2O*kݟȆ+-3~aq'ܠbA"\} zK1VUBaZLdrЪwMc,+A*GB!q=` :d9:*v(c'5[ M./oMw^9xT/_OUrT} |rYEädX+v|Z񇎈OǦ0G;QC ol I`r*^\|z\xۖy_`Ǒmn\(.Fߪ}0߉^;o a7sNk)+wvmvlLcnZ\+fW<^݈ kpU>E5m=e͕ ޲xdVؓdtVPv*"ksϩ %&#%:nqh i㽝M?,iDeNxK?)ʭqù> u~ѻ;Z놷E]>#mi71羆|zڥV$ }SՈj#UZqVh A1v;N{E#hnQs[9qay~tu1){XA> &?gO#7?H]L/6cZ  ݼ6tѺDR!:ۿьN.f2 ^t.ziհe/S+XX6Lƌ_-DTo kͶW?#U QJb2%`tF"] Hԟ` |8"[lo Щ"0ޛۛqgZsqo s.7w[2%@)HDC I2K)\+r{D#^@!aW $I0cr>7o+Y8S=&kv̥8_yufׄpR:n?E٦Wn6K3}~u앐 Nt:X M-fÜҙZX\t\xyv~FN(G ƃd!cJ4)6(;%e/ &Uń'0f<P!5j9-~`_$sy?tSANyzr,6WɢtR5="RD'Ml8t͎q G~붑+]/8o&2f=|9sa`۾:b^\]C9$V-UTrj+&nI?l'5AGdD"qUqP@F%cW0'x]_BOLȾcsIA\5ȏ(B]5\Q6_ Tozf8kXic;',/pv7.6l sFl<S\DS k2U?p9ە/Fr;qeK?$a늅ccg4mW U "EHlN"U"˶^nɁ &!~\fK #=wOzP\%K;_WC3I3vK&q#ˤ0ߨnVFl:NNyUM'z y3*6W|\޵W ݁|-tWU#O'nm߅A~QBZӗf2cH*=i%|4*bwrOi6[L(L'caIJ5cgO&҇G#I{\W|sbs@~} a8jk~IB/iT9 17mr^W>FӵX U+F/&8lS.W{D ѭ򚿞~/+w-{2b7LS Tϛ$ߘSgbY{E6I$Ag/gx%yb W}dF*qJOߝ C`o?^1ŮX(u&N&M\_%(t%jXkɭXfekՇck}]x/$l,nc,_/hȉDz˥'5)[Vh.^j J[C[ћP[ku%Hv/(EA228U69zk}4dnT5hx4z \*k޳.pf{Isqp&}Qi_xV=ӬS˿mR _M؍1@MH;+L >mՀcV؅YQ=ԇii5ħA8z ܐx6Ͳʃ=];i;%Ae?eysFfqPǁ.~ҁ:GM2혲༒/"BNͨ7^\Qs3VOWU_eoeZEB$d$-/; YI$Z;;'JjQJ2fisZbnSE<34IJ[MMA}]K!< fC7#A.We3H%Polk( 햳Zit ߎm#߬^n! ֫7.φ WiZzC[uC5QRVApv~ )uݰl\$y$b֯cRo|VG*GRjW?W<SqU{6Ґ5_݊W_whg$Yr/gՃNB؞kR.*Ne߲z|~I!ݴ==>Qؕ?6VIQ'W8rP8嘍ŗBbLOpK˱?kv<!P >{Z;kYd}z7i@P(iR^$fʾ$:-?7 3Q&49n{ kGDj N6.'X 7FcUdB5ߊDeT# s\gzDE/Q$ )DM_D3j]궻"S>f%d΃š<{㿆l=c[gbuދ|jΜ _Vm#k5/=jMdώr3=o%oU_Mv?ezdfj,%IGȨ?BEr|sUPeѱ]H ,:9.TW8o#.l6;4ҠU{άzz":ZaFmnx*cK9Sqv\lC!WDA<"L~ssE#8_@!Y"ۨ=xʺ.ٿhP.5b)P#lحLNERӽhɋO//FKZVepG`_&nW9`vH3}/@ŗai&<8e$+U23dqD}cYÚnTߕ .l 쵊g|Hti3\p͟|5TTqhOڝ B&KDu"JȰ>>"wɌF3s=! }hʕDlD~\i҉ ʍ{.8.݉aOJqЋ-TNtC ZhWPؗ8{2{}ŚԺF]AeWcS.X 1lq\mt Xn zq'K/kĕ_v69QhD ]\:b6$KvߎBۑsX;WFHmG+#yڱz~G o]/lET9fЭn7jB=|Ga1 z$>8/BrpXkc->{YjKQࢥηfsp*@>F`Pyuۢsl*qZ:bA1y:]TAʈhC'dU]aƘS5D^q92tj,5eI%Lbnbt~sȗSfm.udhj^M3$!_Ւ P 8kH!%C,'dE2hcTVڲv=݂NDv 9xI[{ 2~z'8i}>A\p"Am5|ۺKG( 5;S qQ^'zP12>dqI2\x3'}RIlÐh>ZFiHw|+h^:'dO<$?37:Z0t' w{d b`:}(s>?U$"g 5l^lmKyq̸xx>ƴ_{Irs |ڢOo#M( %~bQ1HKm!ΖXLoE|Uv.j;)2ēOMFn^H[,No'}ICt:(VH9vRV0Z"O<ԝV ck@3 LCõH8{T E7KϸGέG~ p2ҷOaω8O9H([eH(qC@ Bh0U*ﺎӰmŒ- iA uLyb,L"#[ ވ{iBa@ f |n6g/Sv IhG E|[֛Xu=nvV߆QZ1RW57a"gX.rX˳ ph.?Zt$Ɵ/KEdOX^o[b6`sC)*z$>6/"5!瑶.' ^b2h%vXI Q|n"7^6i5+%?.$0sȫ1udut:JRwuDG=wirtΠݰofꌵLrhȡZ-I6عDi:+Uǡ|sﺞZHc͛,"=2zs?j%b77Y Gvч$bHr/raq~YiQaG[`5 LwKSeyq@>\inrrH;vdjc~E]1w=!7-$_AWv^(ˆq,켵p& :4XA?@cupyDݚ;_cp2񭤭a8䭪?fv{b~#n(ksoQD՚:8s$dkFy䟫AX9f޼CWqG3b78 rDxZv?;onulC-)j0MN3`ץ~ NQr:sCKrh4-ˡ7ĢVf gWKG!9n8{|%,H~8p\i5¯'Ь|st>d"5 6άh<Ȫ)k[f\jyׁ\ᾱGjr+~]viA~.5A$lMjks,qb˩j"![ז^.AVU-xj)`T{F~H+@OZ3Yh-$KJՋ3e$`V դĜPOOAb w'$-v<,"dvq9doХ"LXD^yʓ:2h4k;2ǴJ㱵dx ȫ_]U涥Uw]i9]G:K}!d]^ ǐd"(0Me3sI@+-Qx_tzZޗ_BsA9WT/-F6ϫ^Pq TrDÂgxtȠ?bl#;a[ob 4V1eK~ʚɘ}d?+M-@[D:$2s%6+ėo+@to}c;G=Hn۪-Rl S_*ؼSfԚB*1J89V~aŸ Ze'(1(m3svCH_1+N3#:cDϘSj$Uv00S^4$&;e= _m,e{:B+"W4W53sfZUX.W #zbt^?zNwѷze6Ti[?<$ 7k2RH%R)Kfk2auSASeiʁ'<1OYs}"*4pm=T"} ɠhwa9-v!轵s޽m<'0QԲ-r#jG?eSPe]sl{ .ۭ7}*b^IM>@vlM:uׯyX SCjU^9p ~öW?EW剻<=kt`֌OKoEkUڠ^$밃g,&; ?&;VwB]CE>U@X}I;|jt-yZSҍ߿~?d2~bGfKܭ,bQ/+"1g/7`}quݚYkB:-_=F=?q ;eLޙFnû>r;m/i7 6-}!ƒYAp*3&Di2vVA$+bRP'n&{]w#2l~o6qaN~W҃~v rj-lmkqBwD{ scm?=z%Ѭ( بf 8!YKK°::*=&w)q( iy7 N v;LAn+A'%s3q5^g#3 ڇ C` agKεdG%fixtg ӑey=:n=_^HǗ;ks>\=&@M?<ěv+SÅT|.Q>FAsS^Qh^dzrdMxߗRiC -r_rG3^vKVK61# &Lh(\Uc"Wh:Zco>%'շ9|%P]ҙn&v)[WXHbfvl,!b&a;4}G(ԣ\lj&״:E |(WG>/#!O[XD?(a)jc;XT.vi9{V۹g0IxT9Zr79~$ d jdZ R;CvjZJVQ݋%||ܙ^:Lr'e)$ݷ?E.>l w&5Lf~tBVϮpOSg'=W| jfaMs\:ѱͣR{$ %bNܦejb^6z^@Sq, 1w ,<}{>b7ɧxb0XMf6dS(%0蜁5ZYJȖZHN׋4V_׿3j$7 [}0muz㮠F_E73ƈۯCPgoz1'a86p8ݑV{}\5?zohV8?np b0>2(k?NҊ2FX'd2`CL`Lp\cJ0rvmN³ٴBmS|ykD>Ѱ;>qM{7ӱ{9td z֥?4TP)@FyST(flP)=!7ڮ(U?7YFDӑ{Y !Q"Bwt̉ .ܪqL M~Lijhmd3$gsUk H$ \ Cj[[&Mfy4`%PɐiyB<%B!c"x3e98C9\4S*ѠLq}ܽ~Zzz={KZ ϛamgw\rj1 D{v8Cze-V=aGi69;"EP<姖K 뢁>l [A>_|_}RߝU?ONKd"(#L*9.vvYwI5oAl\ҸX'O`QLn拵w.Õ2KQ86!>^ǯGb ʛ|^\gZ*f.Fz{:V\xlr1? <C·훢pFi0W1a1~ 7dg֙a`q`p-54:Ts%>Sn|^>|z94]dx)|+Pc>'4ੲ H FvfSn*!}8Ou@eҢ*޷/_TZt{&X=gIx`O~fm,kM?Qv1()cd0-\#Q$vex- IU֐QqKjq^C7]K]գbї]D2896RІNZ۱w:@<> E ddQ;FF#R<(}`B akEڱ\s n%Rj%JfJ1s̴ַᑅ`*,h3{~Xx:dy5ێ- z)l Q1|n[|aP5Caٮ㳛c`w:n|p<~j-r3 `0j͒dGe[GgFMiP™>[ͻhzCut2;f&nfTxdP>}ԓgK ૫.!˱|?hk,gҘ'" i?,hpG!3Bl uS?ʍ>w$7$* gdi?v2{ 1WbyHIkm˂}q9P|~.XR9ܰΔI~gn|=ΛWQNkH`(A[a9_Z)2x'PŎV{SvCÝA<LӥU'5bo؃<ˆT$mg|^| o\;-טLDcmi, 7(7Ύۂ~tcYT&mW}fZ?o c09qn<.r1IvxU{]frӟ ]`&6Y}5 lcD<׽>`5>wV%ed.+ ~bϵ0qяEHpR]( b47,[ 㫨!R i&C8iyYo}?/6yIY{_M`UGTہE[K} b 5HktvSwŤ;>h$blΎSjP凉4HL{d'1]u#SD(SּV'KٶfR. vC{CG;᥋~r.xEUa,d2>k?-iPn<MGi{iO?.E0zvڬ|'~$H; ݧdR;m, Y߇Z[ jwXUIGS |:#vMSH%ȸK56ǽ_4Gc3HBd7nZibȑ\oT1(+^׎Ob'/ }fRjkg+<ģlԳibQgL2(o G׌}03vw&gn h*!;6BѓJp_}-+ 3wƝ @''~},S$#Zvxp7 97 9/Z s'÷/b/~!w, ;tGu C-Pɶ$)YpOqP,~=-cC,b=_b-bnAb*{Nc~8_| ?<;2]>Gv$㓂9s0v9_՜Hs߭2OL0?ͷ,fR}c9=Sq>/uWk 0 zNϼc!!@uʴžljC8Z8*FSc6Z,ڏr>AJj8UBh%&~PZ1BP@L}G YDlޒRrJf>hS*n-< L;eEXqX<}K2tupϾqfYV6×G~[ہ(>tـz?6Jjs@cۙ4Y{E5"LgTp)2 |~WMNwv=Ğ^n+I2'趄s͐9C !G .h-WyZ"w;DPqMYe3W&9SUՕ6nSDo[$UqsI0*vl؎J+=R7N}osrmʪ!ND ѧ47 s<`_d^yn$`PPށ &[=| [X lyKpp5h綵8 Dm" ˍ0~~\v7Lxx!i^Vv\| C b$}E >dmdtFgcDvKsG iҽFݍYQ(O>A?^ EԁΌc0;o]DR,:prDƮu?je qN,8`+Ryh VR=$m t*sOūz[ OI`:P{U3d7+,{cNr!'] tp{orQ o|S/T ׁf1%||L-.B{bC(o柆RqJ?J#i.8zt LF/R;h}3y.YBizݞ^e4MMSޘP*$|ctA2mANh2س(i< V:!: #e/cӇ> 0 >s1BR}g.LoxĘ/~ ;nXcxT f1*|+n+ft˕i;R5J.8([Ɠ$\Ar3IqGI2~a $쓡 /t*Sp/alʝ 5K1`N tϿNe]@fF/uUx5i5UKjћxs WQ.9zxNJEi4Gg9V1}=rcۆ&5ėh6afl l=yݤ(Iwb= {NYD#\|^v禢 ,$ +zQR͡ B1>jo;tVэْu {icvx.~٪Ԋ{ĶZd33kuZ0U(5SKª5BQʎДqKLC[5 qgqB9ZZEv@O|n! +Ne_2~0/J+d+Lat%m  7U`*Al6Jkzi1,0WzR?|?۷9A!dM C3A..VFX$}'ܷmn$+{v6w:0qǂg+T9ބ1|UE ٧hGvhxoJCi"`D&#uNPWh wy6_vkP R01B4h$Z'r[VS/58V> v48iz -=pt\JaE k*~+,TMNc_G|lfF@nQ 1(߯H-; ˝һc'z)LmW˅a G{G{ns͖EFdcZC]tʻo*,xFۯ6nū}/L,ok]GMVdt3`MƏL6U22vItqdyʤ7/pP87TDeD*MW[dl/AGA> QJ][|1|WlJjSH +&y/ov 5F1k"6t h_ ;p%;0fR+rӄ]ץ b@HL@E?7rp\ =Yx福nHR5B|Z3x zǩ ׍mnӃ;@ۊގN Mcy_SëX\pKTh}ɾν[*8V@oWd|H Ȕ8N7@Gܰ>`BlFLZt`_3̸>\ƏɠJ挛_ NBU 橳wj# Qy9 T5Cʳipw04fkxqåXa'|*e]_U,,FkC~tUuÖ1l~F=ȨŗGƍo%vaJ2^,MD=kՇjQd$kS ۟DeJKA>f޸ud& P뭹;[㘍A^/RP.8j*=m0izR8L/|׼ V9o~ή GUӍG˜Kgo43)ǀ8OUj x.> >e^@'y0ll"۾OX>$M5;m}!"3|̋Oa1 >4q={.nӍ֤MXnN0=) 4"tHC6q*piO,'fGKmS\;LFnL6SJ+q"lHyTv|&ޏ1zBIpdY\Ud. @ZRbL+_G6d|,#UU/Beu@ӀvIue茬 *cF!\~a!ThC?[K#8q't^lCчћoB*CF)h0TrC'_|GS3 +`{}^}kކo\~\DƵYs:t߶$ .we? B>W#oiJ|lqR`_ U.B"C)w6VRѲDpDoHF`9y^Ԝ.|Fkz>ⶄsYE{)59tS)Om4|`Ɵ'=bZ`~mz }*j9e0(g'd6`j=6w>h=dZy.][}A(VPFF=<BN(ıg^9hR-DcN7xbu̓H,: BQ]pxs -k^oe@tYxxvs)ixLMӥ}7 M=es_P rG C!v\PTZM$JfT"ikGePR? N|0HlO{1 -eP]ǔkգZoa\k(=V^;~[}3p] 2wACɠ%ݧHT{C.[SHKKیYB1-yZ~ڪQ*_Ə=N]Az[qajQyqn&&TV-_tc>x_|o`"KAFn92m$>lCmoJk]]th/yX~<-j̵x%LOZWo;*)MVY&W/xEx.$Ӯmh>1KyIWbpx~= T+Tسvy=tdJ<щ~m15]8 V2b}xۧ(8EwR(V~|fù?Ce$+ ;D[A+L0l(=pѩ,i;, G2-vg |^M  0ڇbDlԙ0#sf[⑈FIg)~}r8;>[$09aGxTGyd|eE tߺ> tϟvأlOuz+KLZ%+?Sϗ#U0L4&lZZ_bK U:2ZO*NooX=1_,Ja 5oA[M G]֏axq&O]֣flV̦`)u(wi=9c2ض}ኄY(_N - G00N:? >`ٌ#Srmd:\}=fp {hu0|󏮛-ʡ%WG:};w'⛘GUL`O!`ZexBArc7M%○tFqp͔}|#t1N bg\F*WwS{-eƟyQ@-<J=6nbH4 )^&2VDYi#!E(2D9 8tH?&3sKWع͇Οai  nY_AMfw(,uAK^[A٣#t k%Ox@/j; U潚X!?HyiVpw6<8Bw$AXڶDJ3HNɝ:\q{[+Dobv(.֜I[1 *f [`iW3:;ݴht.˾wq]зwv!%B34;iH{u¯o U:`]0fW;N 9>9Mѵtd9KY :\ 3ߵ(mNU\>).?]9TN7QU r?| _DO_-PzIxʺgO=#cA5:<`SӰJ пE.8Ϝ$#L Ka0{صw $ZSSu*Dd`W9QVaSUO:eB{sB nd2JMǣbǏ?wuz(KOAZ8Fa`f7u4=o!ákp!41ߌU_32)pc296 3<6x#Bx\w8:&e cIK mnv`-uDt( ~w: I֖Z D4U" N~-?MʖWjI3w4 M?PD?Lp0G'Qd6:0ꊱJҺxzlbg?jzhVRQ5)pTls$V?˘EdmCL.eZTmNw"¿'jN Sxj_%C#RHWS\?ov'a<Ϫ>\0?>%:͹]𾙏؞}VZc h蝐yyv:_aүm&442D0 V[K^ sZ~%H@5YBxT*m0Yo'2xV%KF%O&; gjRG^ (DB4T'.eHrW¬'o~OYYM΁:/1tjШM,Ev\-j/ܭI'tҭfC(5 zq;݁=\ͪIV駓|D\"OJ8r]"J:+ٿBƤ%~2s܎7vn~H: Wm3^-Z6|֍v A%~R-è=[TwC>7W9`7o9Fhw;a쏲ڟ 9;k~rN̚e:8l?3).E;mF' pLld2 W׭WBށxn@ !.[9&ٜ2S`l3Wݷ3a^˜GȖh$?ޙQ]B:o,J $/$b*Ν(W2>BF:Ppv9$\" SÕ Qh^|0ug߻bQrAۧfZv(<I3M@y]Cr:ݼmgŗZAljC# arr-p}5 %!@\ >wwyPm[fEkND&9zo*56~݆+Nt'qW^Df6*ik¿E6TBzժ΋R*uXԑy%tvDtyׅ0M`P j?$V󌷆6sqp gIґۯ u"pZ7 2\imW^ YztpY7TyA'F]6oOm@hO} RLTx&PXUZ܆AQf lu{kZ wK2/@xVR-{[n[ ?@Ա/AZbn?}q silՊǔ'2A}rW+ƱQҝ db=jVPcr:5HS;DE6j _$fաB$e(Ox1'W-2JSs$ؾuȐmta[GMFHOvo2tD:\xF9|d;6#cfmp17jv4,1V t}Q1x Ő3]gdLtYƈvWSmoB/J̊#;chq¹/4s7e_4`\i_Jx<( 43|SaCPX'|V[MN(CH~, A$`etk٤ 0:-@쵠`TK]t8ft6 .f|tlo2ةد(ap?RP#G !dLRfv͕|R!ڝ'-QZo2^PUA)K!aNf\Jp5ÛYQ>(WT7̌nK ,Μ b$֨mL€d)fN9lVqwi5p-Kߢcù# Ƹ.&Z" {jf`g%~#³ǵm!(%GdWM+H(v77%ѹ;"s$dzDBnY7_8ξӮ/2L5(!bu(mFl/ Ԫ_[}'I|Hhx[F$ƌJ"GvO&:vHMAˉxr˖h-B#-NTiڥ;pgT#$R hC@ݳm »Q~̏]v\p6>O' t XYXls g]9^uv`bI}T^4Sy$cB'"㐽huKm3^%`/2iŕA3N {)h05Mgp=XM]^>+UL z׌El$lpc]z}/^$BκT.d jKJR09(n?9JM}_F>Eja`uXAOcl-feS:{eY}+lpop,j;L/B{ZL$) F:7$xԩۙuaFo, *w:񿩙kH(Kyؑ)h,x1mͳ*/m#{ȩX#eL DJ9k6rq~V{Bkk=A75jTWB&T?Dw<I(DJQ[T왕Ul{^~_{ Q$ )*8<_CQOm;,\VÝKϸ@^.Fi ]ƄuND^.wߺhH-pWଆȚP/$5?J nxkvoi R,~r>r:HHT>L j.̑PdTݢ}rl"Q@&Jǯ*;2)QOszKvf_w c<ND8֫҈JgowIDpn'L<&'}p bTStE }{x1 >~2 ?\š*/b0;y: i̎E=)b PbE=x1Pr WYoh{̝҄naGXOa0 B78pe^Vt{»W[5'OMz!f/ {w!` .q1o8lW HO7n7M$b˩#DmU2.}^->dHMbMGko!C07ܴ^K(02t׺N@)NPÐ|Gc`)6!ך(&ʘ>o<=g)R"_W%F9@nGӥn5PD=8.ZeuBJ:<_~jMuPm մL&k;>= zPߏ.$. &'j?<]lZdffS&qd,,U(ã_]<řhL[17agk* :n%_|*v&ev}=^DOk&<`#M `-ye^ mq;~ 4\ϪDvhI}S{_:V*mp |^+,پh5RĭWCTyc L%f|nc R`PI%Ph^̽*hKJ$1Zsn)-y[3a:BQ([<X'$6@jӾ ^z)H}6c2o}~rZ`_)ڣ4[`5陪$쮽 iO4@Óy:m{[ 3Ȱwa2G3ZeJ Up DϵKc`==zyΜ~l=eÑUV]\G"`.>\Xk!vuw\**s'3,ǘyC7t٭f*PdJCZ%ܑL%]οHv *p392|ʲoOr.Ѫ0^:\Q3Y}mg2kx!c6H1+ H_[W7> c=ȧ#~3A#u*Єt̿E`GNv&pg e.ô/?XC Er!w_BN{;S)F|NuJs-c,D)5. o0Ic.HT7ȗmJ!49}^~Okc*wl׀z^7FF_Q-n*'Oa}`n#=v38踯թ=kdotIq";y\YԽW&\Z˜wKwo@os\(#O˯ Jã,drxPʗLaG]@$ܷ9}."DH@.j`SY vKjfxShJp@ (~#8O.YoGωŭ|fRcT Nu)& ̏|(:ĘSTYq۴KF^d*g6z8zr5V=X E#*38w10-'N̅51ZtXMU ;?Kz*̀,pdv?~&=Bٕs6<*j'"K |'3+vԸlN+t3Z!s Kճ -" 1pm쮽x\}$O$ELNJ߀np$$:`.5{8R0փM@M;.#pl,yŃ Uwk@rZK>8NZAKJS x^ 0>~gW) L:)MῒQmM2kc$ VĐ$p] c+k,hI/R!Ʊ(X=4(hQi)0d<5z&<@R$M1Jo9'QۚF!G|$mV`dşCDn v'4.GO&K(v2(֍C2Q )YY˙W wxwop ƧW5ێd)-1~}9a:g˗>OAQb#B|"2[+0ތ7>)QxH*# |fF&o*`b́.0|!$C>B3.}nV+M<ֶo 08Q <#߬fdij2^ SaTӭiK􈐷gXBS{5}٧s4'§&( <3qsE*ZLQqr&_ U/>0@&c[*l:?!a a[ȫm/9ghnD׃DnCkهj@ȷv|k\$uUޘAc\kncw38pOǴމ+ީ36R![z1ö\zϸ4>xsebظklU6]%#1_)έ-aG Mr<1O}XG U[evI߶ZRڗ |gz>~漕/pBjIh8T tXtObBH~e*܇M}P؉Nx֛zCnq \ô! ['JBo!GgbMA)jЂ i܋k"va[j]+p"%_?P-+m7l+ڣ.rmhx, (T2FU89)/ӉLRurIr, 0J1͉ fb ْLTbإ;BEeLtRO' $᪗84fȧD!}[ FյzV })g?t}0Xk]Ό:Y5Ȟ pS,J&\N[Njʷ;SDxt\|phcyRk@+i]=Vo:WΊ=B7M߬w㉨}'dGFq'ڱHet`ïoPLdB+q]jA3qF|%w-s*\;EۏD?)FҤBgτGv];1}:UBZ.*V-7^WT$f 6Z$1OLp"NBnyAhX$eNAoD[lQʳif}h!I+BPX:dO5xrY JQ@M)nW!\%-EQ:s࿾*Z-jE*j rQҜM.?<❍Өs΋#4hYԈgQwS՜MAFL>-I"K:OІ.5[p#yVӵ.oBtbR"/o?ŀlQb;P>]&;OHn=gR0d%1s:׭i@ã#K^lFIUKR!ivA1O%C෋)o2⊹FR7{bwX8 ]?kKjE@L+e~Dp|Vl|}{ C5[}_XqS`)ͷ_v.Iy:2Xցi{1?FN~ 쾫tvbި!Հ܀Ě~q `hΙ"yfBrjkZ i?T3P{:0i. /J0λܢnL)sf@/*205: ߏ=TA`XͳbEШucA<p *oZ^MMt(1>k w2oxO# ~BS3 @QBk疎^הl]],u&82M.;u_So5+7d`ߩrzh QK<60h)e CZzfV@ O[Z_!L]^%Ʃ\TmN7CK 1#_*O|T1 xd128"|='KǮ``<<lMS~*[8e#uW8!#m?KC2/GqG㔸Šphi%}їŠtقG gzR)?,Ĝdd;f2ܼJ2([w<xfZIIr^p5eTp?~&=lBrL߹[z:N&EOe;HdLNnA{R։C*$6>&&FHǔuJLqL[r'*P*\Z,4d! /naT?>OX&OauR 1c\<~~/'Qm!})QSӕĮ)bKgq+=;y.>,]*uT~w+?_'L8O+Z29A gO} `3}|!(>7;NIiڬPu$1op,`:](r׿( M;2UQ;6unQQ賈Xҿxmʼnp Ui/QJnu > g+o8PKsFCiȰWСP95t '%E}qUg9o2? wR( jS۠'A`<2aI] (j|3럱:Ա=f UzEAsJ#Lg  %4R DF̌h"${suñ9QR$"J(ϛow>ߛG]ְ}v#WjZ _ր{+p/`Ll.Z̮O7L[9o^BiuAbY„S[5eI)`1gSyoeD4a@ ,yG8Y5X^r >դID XLxaΖY͝, I\2OOKU]Vh~.[^731|m&s.w9#Y ig3*+*ߗq3g*w L+[*: wNF +a$c7׷M3P=kv8Z[e DBSxY'+*o&/+Y#xoW ī>go{xEw7(9Eu ˢ_~]\:|۝GNE掣=]ZѸ2g@*& eMr,J ĕfgcq-'3nRHFX]|pSH r:륡Oq4,sѸɨ.}~pU˙H 4wτ _'ŞptbK޶;"1kL~p .uE,ʸoY03  GjeF̉i*9 \Rv=  F}5٠i<8N3BS$ŰO\ 4Uޗä*_ݕ hխCB= qW&=ۿWfXCx}o_KhD{~z2F!ҥEZ#E_>f!r[k0W͕x&yT@nNaUɔ|<,ع7;g$-{ Zn8]ݖ N'Þx߶:^_~1ǸE)h*fgīt}1vOEs9p!jx;xVCƣkuF _ K. PFi@z1 > #&`o86*i:HU*U~$)Cxk`ܬĆU޻p,y:r1Lo5A󼞡t.YorƸMnermǥYSÊr-f+~ SΥU)ʈcQAp#Z(ZOCL>zJKtdH=QHܞy9#Q_aw'U=YQ\k*d_j"eWQYG*&cBz'TV8ӛ:ƍ6280fάL3{Wŗ>Ģ(ܧ֡S0'3el $3[ EW&fn֊&1q1n2DXL :Pt6=U]*hzb`?]I*m29O?Zzf:T(x?uq6_iď͆yXYˣFGZ͗/ĹӅ:#X̜2Dm:4 P?bt$To`ǓöH!n%`9^$W|i,]6rnŰH$ uWB8tͻJ}bnBE%sDͥJgj߁ _9tWѶ%OsϗyK-> "eu7/<_j{xX%޴'e!.ڣ XD|?q02CoOͱdY'9uq;.5pDRv^Y xNBw/Rq,u+iCU>DFU &u20rgSwTPc͉'ɨ Rzvh'MLۧ0)=9D\!mCg*Aqcwjۇc͎{ ]\r5"-=0wثS}zMV3&6p?_0܏wmC&zKb%M(<|y7"a~מXW v>{I!h2!’K2/NRp{##oIEj7~{K+Spx{3u9PƔ 6RޮZ$GN1Ԙ4)nvD&d#_l5G6}YAeEP9޺YVcrj0Ѓ Za~Uۊ{2@ zR|d@Ҟ%?3 @Ԗ~CŠA(R9x* .O5}-#-c\9tE5/;z=T7ݮG>du{2nopb%wb QgN[hܩo$tTu9m~]{iMLC"|h>{,0uӃaoxQRa7 v$d9(Sk*4П=S /Xx 7*uZqdk4VNJn@Բ2V=U*צ`|r 4eښJt o l8)pR~7wirh>~V{z5MRJ&⻛ k >@CIꌳx$ͳFJ4^(V[qo:|H\zi>arIHy!zSpcVX盄z,MSb O U2COPI$ ؓ6|PVB[*H]?Q󷢴uA<_ޕ@DhHLy~tTm(~Ų+ʃ$QP}%FE_z;CbC5v~a7}aLv=7\/WR0 ۃX>l ťgM 7O?<(n:B$_ FD{'$9.Nob<ި#$ח({5wqp3Q]k=ܳzP2RC~i< ;Bo^ǛoץCɾSmɚ~H2wbnͧګV]h`Ig˾`eo5|b$̻((Q?GcdmxFAmoTT %E\!csV63 6483jܕ.D B2P"BMS>p'9F@͡:HLjU"gi lse$tv^ ؑ9"C35xi:~?L!|[4he,&5M|2z`o@ȁUb?ϝP$|`RRfX c7uKatD8VkK.e8LRϤX%f%^MJyn%$Cx^l@wLiW"½Qtdg;(:[xtJ]TBs7zK"kI^JWmW̜- ^כ3{c'9 ]aןdo+#`$Zz!d!^^DYbP=YRo+Nb 4;%JiRٕXx;W׉'K!^܀4|m(%!S^KEUAcvKoh-j\Yɹ/?!@9ӼT}yF<ڰՖMC@0\=Jo{Peb7uDINu\N s20xoxm1Ӽ%$e7h?ةA,~ GVG;$_gM`wٳ18xw4 ojRaQJ\:a/^8_;HT#,V;[/0Ġ/͖q{1yy?D)rcW-źujg$TB&t\gzX 5K_fZkvS{9H/ ,mo66O^L;(J$g*0'&Eo*￿ Lu DDS^EoI dd TzÔ OD/AvHj͎B`?l272 3ռdh׊ɬ2zF?3si_ _ RnEr"03Zs4K^!ζL>!H3.MWkE*~}t@WO6X#DU_qF5f8}ȩw=#}t\\*+O?[hT[J1mz 3 O[D.CLU3%q<"љ^#?]/u"lv.sy[kJ֑+I0zB:T ڞ;4a)(y@p0? Қw a"(ZZƎMC4\eD}9k2 k`WMZ8 0⣉&ˍ5oqbOp&[ĺĘ,e^BF!FɏY8< z2qxnwqS&}]~Q cᾓd+2R6R*5 4<'^eP|,9F=oi=7VU!EzeS^ 4%7^OSg+P +fLp˥ tf)_mfEP% ,G=q+c1 ޒ+ԐlE:mZs{jn:AUi_p0V`uRraSn^͹?pMk|6;))e_{4)bMH e8lo|l8 (EvG!Ȱ: :"#yhKRcՄdeecB"Әg0ˬGdd!}{+k*eAtB4w{N~E-B k*:= z fW0z_HiFNF-O/.%kJKF~շO{y=;? F!uH=<:u¡^)$I op# 8*MX..Msx/|$yx^Hlb+ IDK|hx5\|k` fV{OdGE]+|\pyJ{?tp#vo-Vc#kRonJmL4i`po=^Q-ga2~*EJa2gt.GRr)xiB.H; WRpo)Ar^ygQav$zr$ft4(Ė 9x{Փoîr{"?P׻1-W^ba7,SD nTutBᢈؐ&z[k#^aSƚ7ޫd(i1 +yF'mI0Ǽ3 B35 `Ϲ\/Z([%A |v!gp "T^ 3V<"r<8lo}iPXO&#FzmPoW܂6 7}dҹf"&6ah}:րk1)okpSZ%ikex{^şC^^@Ξٸr0"Ez98L5cPZ$D鋄vDFX9 gC72zXH3j{ 7Yr3`dX.I-i>{߭P cd`>L@ * l .Ri z]cyLJ`˜w9,w5юjbVWT.3xJJ%[ sdm 4l0/({ata?w';B ayF>' W,8&#`zbKxKr,݊/10~X8P&$-tCk!I99*(àzAD\0R \[[ Uz,@Sf]sM=SIc!jqAL $Ef8kON&LPx[Fybĥn& YxrS} k%ePOoP=WSq@?ኳ*1%[&WN/J=RRwF;*pZkTϣ<9;x~!}5)KoL٦x=y&Q uAZ=JslCj̲'tWx,l+q20@*XwkN(NeZ7hi &84,M{_l1[#mh++qF65F٣#:ڀ͝ip c=~MP,,n8am_ Ƅ2$Mw!޳S'.hSƂ@o_U/8feB vֻdVj0x0NIosJ2o [HaA |=<,'rO]=RS㚷›0շYr iޓ L: i.G4"%-X47 ; Fw$/^&Ya֓:w5%>Et4|C#IP-~~ P>s(Z> -EAlRapL9|HgpsGU}WQ~g9׊m{ iE翾?J>!7ˮtZQ'c◞Ήi]>eËs!/)[FJpHDU2#>K)G*[ۤ} ?l lQcf5.{}CSDpXVa=ΕBHڗ(n7UR.(~$R.G{u|L=3atx:%œ/ VKDR`;I/3nEq=XΟ-n&spH{vy纭}-IxD9J#8;^lhEotRVOJ; bE zR"G6*ʷ {eZW4>؇I"7sMh2BprL 4')-65' $8>HMM^d==PlL3:" Ra.9zL$'@B|Pv2n>Gh)0%-2e4)fc_GwU!_[~uh7#W#5dJĂC)WC&2Usr{aX!nmXMWФq8Kq2O 4Db*1n39Qn169I|5xsO]׶[o\d (v(0[>WִЩIluD SXځ2_Vh+d,s6;uu53YE1?(zD|}h{TTeHI`I}_fA/-‹}|Y FjZOY%{E$ ccr h4Z}ŋ@1&ܿ.G~c8{u֤ , ٝ\ pyo-g v7,%,77MScB*w$ 4tatW?VG ҠBy<ϔgSanH2|iMq%}H#KII;PL0\|U/"@ooy>P)RR%Ou+_*Ϸ~:}%sw! 9CbdmcexŵVm m> jU ܫ6,B6y0޶>b%"}_}`顣b.יXϨ W폖!`zmō/>HR44D]MO.'Х-EDtͧ(&;#9BƷ;) Z1*@ ´ޙU#~C~+0Nn4hX0Ln U.TmgzEL݂!R<;BZ܅?o#_~Э4¡GН#Ti9 ؗ!E=31abz*+ƕ ̭<9|:;vSm!Ƿ*QHdoA4X7:OI`Tpәx. t|j- bA>}h,MJC_pw WH|0w;6GDVӿ v,scc3P? 2Sbw3Ǧ4tQSDxk2I$Fzµr?e<0 B3NMy尸i8Q^g%Pɠz1'i7TUwn=^WĹEOcVi9Êjwdrt)(8Qnf! e7w?WƗvQwZZ1T^7,@Keym+\ ǕU/yګn0+׭ >$~+ l%-Cϫe%VA:3K![0{bËxpsX͓Y$ $!ySX>xzH&.]SGRy@Q?-I,-nЬgӍ QVW II;\\9: ❡>OR!fܝ!3&,v k=1R h ݣ 5Iۡ{4\>!?SQg;3Af>#t\JК_^؍=|#9HYe E3z] VTHFp7". nz=V DWXh4LD-{>i6}HJ(l)Dߏ JIl5;Wb 8 ) *]UjdDC03-V9K 2핈nk;P%:}xFzn֨&:Bu5hPI@"u ̣to,.Vahtݙ_C$we%8Guވ_D)rg2q$x-nȅ؏mQo]#TY.JOwnd[wv}=ւALAHډ' >`oc:s`tBYtW'Z@tj~+nqB]#w:Wb/$v& .E E8Pkj_oo`,W8y2v099-U'Ozx2V?|WڻQG V]-y8C^9%2wBsU&q,LD5ZP\zPrE.hqf+dߩ$x@W ]mB4s%o཭=ض7J[ ;w4ց{XdxSF5!-vy3> j56=yS?X|~bnfJX<*^eɩX.fiGb:bʞ`Kū</89̝R0Eԑ#[ʸ sR6}QlYZǛWB+7_qEud~[@`ۯਡQ1Btr +iPuK 3mUARY+`1d2w+)zLg E 'IR  YY)#[ddf]{qm^fQJdDE$IT4~}yp `_Ujy]͸%1%+:b js/7C6.A&uT0[x dm|`Kr@=Chp9)ˈ6yTÔ$/m+=q348w r_^J23BDԐw٫-vq/q &|M,G'IpDd$df!&sh"&IDEߧL {xq)c~<s{ 1KӊB;v ۀ(Ch^"V2bN٘ s6o b@"^v Tzl U}\ʉu* ˝Q>aVz9^\{[xvRpws+V*" o龑^R_ܘP>QEmo 4%(3P'{v&pGqx2QoALPl y`jX3y5ɀyYwvTgw ϲ`Np6 `Cn/ku-Aqn5K͠v#-Ig榝|د\Tܝsc-i8{+?4&q/Q3>GQJP4V#k:nxw9yNJH8mуv!5)Ŭ?o?o?: nrg;9( fc߬~$b{~R"6rVp90QͰ6;E%dZx{'(Vk5(s~vXxpd*g$ΎID!!h0OIĢӝlWqx'D0 4i#Í8_;2 X}72펉Efqo>o_^ָG ͐ P$ I HP+TV1KpM Mؕ'U2X%(*eߘ,geNfDk)8="5zd]!ٝMdע)p`VUj]tS]#1x*(3@nwTxMɯ 7Q)^^x\XIibj. $Kkšݹ^dnh9O*]Y|q( 5K!1)-FI$#_LT5&E3>8ElV\@zn6Y ddSZj9|qy[vl6u*rbvOx!+g] %^SnC ~y…e!UoR9 TO'AÈ2eO: `$ |7<ِ ?dX@`t^T1윊}Y P_zkJ~N窵4 = , =X+)0ELL.^9Q ̒igq'.L+o~!A,zEӹr#Ob"AKoŃCZ)Kϥـ܅P8{\K4םkIemӼTow#,KPsJRdӍOT·>›&~W3sZoJOigJlrOypV:z/3P^wΪaxc:5˲D>t܉ħ^.a,b(q`\GM`W\gmct;|w L! ?-|ڵ!yzv5`_ ,/\(۽ zO{Ul0P,sCZ`^h_p4U 3 eӤ 5AqKDKy30V>OB#. t[#oQ9hz.|2/Z1K- Ԟ2ػUtX8Qv>pFK:o#<*abXXbR ؝R9dEzhCB I4k6Œw)ɵ\v&zwܶ'yd~h<# 3Db=iXq;tkEC`d g, cm{zS8S#$3g: py!1u'ۆrs()&9gGxIel}[k5AZ|9X{ɁBNL2ΰMb*gl"_*:"0nv=UjڠɚIcE?{`qpTzLp<&N0f*@x- lCw9Ka xgcQA໑s~_,ՕyW@H*{|  0Խ}˶ )ΑY?JCG@JDo_ "'U;x`DnK&:WBTWU\Rˀ2yG|D<|ijWamKQGjդT`LIđ:ҝA}21B 2NbUaΟox84d-;4'0&zkNja@Ta=Mw]C$¾?'7s6տ;@WZΧߐxıo^f"_)o.7[vץ=S*6;JU`NZ fﮂW0+=+[\l=ts9p1-.==r @MC$וԩA-j*\W~r$%~Qq-/CϿ3C]Gc298mh90@էѪS*8ƛҗs߷O֘Ѡw%Ϩ@pY^+S] [N'0@6l#;7ӏ|*E쫢عY)*.vHƠdnmTOΝ*)c}8z— v_&\-X09/LG~=?sˮ[8 y$O/ 4y-s!%,v*$WM}qJ_ҽ&ACD ;4O20c~*e3rp]C2Gq)6Z!^"Aϡ}RHh0=u24Q$W^ɪͪlTV9 Ȩ?./h3&[I$=nb|nGW~3o㤊h6"(}rϯĠeHqZF07HtX]9r7ry'܄vg烷Jlς*{bD.!4TIڈʩ9K%eIgDhWBUX{X HvѡvqMjnynѢd{ؤu%!ƴtXӼhZeԬJ}2Sl3~pA N4rȋaRB!rJmGS`||R8礏IOMH~S3騺ҶO5?F|!y JVŕbGf$R;h+[2?k汩Z)o. T2IO:ΚHGf3Ʒ[ͻBi4 +/(AG2*:4BcJIX"^Zf8tgQ>vڢ&t6\@kwOZmף|f`;h?/rm̆3VKhǚDxՙجIEA1;*FʳZ+2A|q^2B5i*%tV:?H6}vўכrPtoW@$ j~ ;Q֊4"p'&_"ҾWqiߟo}uu8q5lOu_>:v˯bt‰c$ԟp`"7ɼ* F ѧ>_Tiu$s4,/fx<وq˴hx`iqE6w-^Rk $7d,鯦GB¹.V2/vSf'?syisMxL C@kw-O˲[JLa^G<n 4HlS^MzWnz@%E׫\%pҰ۵S4gո^1)c+EJp)oH~sj(l嬅j 6Ӌ`T՛i\ c1v5}W5| : Kzg>n9R?KA~B³T~w揾߬Ro*kD*:IaVrW${>@GyFa)@%m-A*po7-C6STgJmb5M1GfF3J B^Tz\M^tda[>'13sQ K!ez4jL7s-&yY8m80[/%|$p01]nhٗDǞBic t9RFC_("*.3YU$6~O'hh@_b|H;g3e;^gKR3XZ .+ր;gcх cuޓ^겅 fP ,94\?>. ǿdE`L]^m-l[pՋU"?VB-Qqb1Xϥ!Vl6t~ޑ YOۗR`I6(X\uXdz{ /{"ϼw,`3*OE'"21 :AS܁ۨŘB2r[YVgoQWMbi8'YK%?+N0(C*>:0YUcycI9FcB9dYzRl_8]"^2EC[5:JPq i J1&aiF΂|$`.OrqԃD¯h]1 N+=18.>^ku2Nj\3õAb0WN$A2GrX D)SG9*._'ܰWM?]<kaxI~ QB`%ms_Usw̓鼉FB{B\gcs55MJob Ugir42xȄ>:gA -2!A(bϙiAi")8mYxY\gZ%-w9'H;{{תdGvM_&Ppx 8~ |ŭ⿿wG0k+hߴ?qc*;8^ )|cjuYk5G-$'jxb|zߗkqyE:nkQ$W 4Trkx#GA '#xJY~$?3D{r ejJUd4߯Uy XKe ~?RpZIK 6 ȳr%q홷##%?7g&4SwM@k=3 ޅ!<VRrAF3.%;Q ܪA!JDX"bh_!|XޥT9wgfҙ6jW*ӗXns`"\}Ji[䨄?GIxaゕD2,\D1_&-KWM%rSpQAl6UON'g"LDg 5$eT($ȈJ2e%2J(>㜻s(Q$E$3zc:$`U8mR*| \A+ eȸs`wkB6/ݚ@vRdSv%$#D\{xer$fYh-œT\+ZZnR1R]s1d฾ |rz֋ypW_Cg,Fc}NPW@(8/#$@]}l.x.s4-H6E{_)8hٌàr%x[ݭ")އ(vQA5WA|re%pK0O\":1KdXtV=;g_[:ɼMwVKϧDbn6$333{ZXz^eKo'?XՋ M37sOBC%쿬<N ;SG( zRKgx-G+.2]v,7YbXA7:&nfbHK`.r ظfWb}64w4`iX7;rB"'IR2\w-6ʌWjd!y>)C =]@coЧcZC-w*v'$G̓x?Ը](>Pޓqz-_- 9?e6GXi)D5Iȅ~U{ݗ`F1 `rw aQ oA\0;KYP}7? o Ypi)l 8y{}}]-a_ 90{/*+T&e YFxīo-)-]BF/`Y\rgfa$f&X@V3s}*TЏY?dvE8q]-y#fBˀlܜd%Aڷ^q @دWaȦt`]5Cp'Y9 [7v?7#Ȅ&_^t:=˛J0#1s: GAN_o l{N z.&BpXϥ!8qgv^9A{A" U=NLO30A÷|"> T(D&3=Hba/EM6Hc{8h.0}AO9"\ZZ>;3S8/l\vli6ٟ_Bڲs]g0at ^99&Vz6Ux3^oyrzw%;*LߒQt,h ~{e*>Ԧ@ < J-LI W>e_7wV rxGsIY'dCHfDĞ̓~r (J~fNݻ|E˶н v$\!AGnW1F9Z"D8m⏮Ԡe jhcS)<^Uz@  1 a=dsaaP ڱ?bx&1p]|6Lk3M*׉dS+Rx`z}*Zv<}fL̩ 6)fx^ ||4BP%.إ\ s5##lw^WGR븨dT7=Kº%w1|GCIэj!W:g~\ʈ>&H>9Yo-W&. \I%6oHY0{R!/ D@u~lY9TJX{,݆ okca:pL^Ā  hyk,~& U3ƘDnTMXnرI:]L„}mp|Wet2S`AQE/Yg< -ΫAHrF 4l.Yܯ@q5SNv Xejܵt0cRDEj+@&F̦V`NO*%])❲5=.t>d@˄X8tEmF: ?Q\*kz'F²8Ѵ6bjc`}6~җo*pgb߄E8ϯJK֮Ə/Q)GMViW̷8aʇ4#?T|~5.SJQ}oS Va?dM#@ q^,V( CР|p//:Ua Kr-vO+%@ ڈ ׀[ۇj]ީ7YNǿ+fPAe 9pxQnNuڏVChSJ)wxKlW *X^+JNbؿ}mo>|o?6[LW-;X,um Uަ0|1Ou mRFFw[GU9xі2X*uY輣(#˱@AJ=eU=XNAM9=xH*E[1q:mɔMWrcF~+~ꐌaໟS)|utv*m>/.+*QV^C$Pѓ %ABX}v)UQ~s\"_O~Y,O+=SVsåLfaPI 19qDzBB:J!oςDVT N<2Ŋ;g>(mes `Ÿ_Ԅ;ΟE/-(Ćm5nV7း|"6u)jם,/%1 M޹ Pʨk ɠ[j%dnmo,g|jRv4)V NO87g0mNR͚[X@q='bƌ qŶ!K֞Fwç*7m*v?^oЏWǰv'}4{-xo<#M*\ ޳k.3R\g$M^ wxu_?2 s6\`b}ˮFRkV'Uj뉘Uq{F] 04fHct\q 2C^Tvjp{$\^7n\=&NF@S]h'aл{v{hpy*%ɀ.ˑS3z,#9ʆtU\ȗ"e΃578kmE/ӅY^ n4é4$y<7Th'l "\|4 !gcغ1zOr-_UXY\6bFϬF^g "斡J~ҴR"0;.e`_׼Sy(xP=n{ *EbM`م,/O޻gOΊkQ[c:%:KQ7U*'-D)#L{5@$u"ع(zu&S kQa`dV?V/t*.;l[D}ȱ-ßC֔z9 5$^:K#.{ngalc` Z<<^Sx1D4q:{2ZHZޙ*HF#;-s.u(TeòO'׽cumXwA}.rr q4;1kUI ?]rԸOI!/a~ԅZtQQy }>{P@\sKNQc=贱p˞no)EaWrwX'u'>U@Áu L//X$턿E|88Ø*IcEvA&࿳ƴ\T.~|y}-ȏc6/N}5ٛ'ч!Cvz1D-.!P[9j rUtl'լu,AMDc8rWN{$=^}C*d]o<(NS L?BW8@%` ?Xpig9lh8@BJv<6P_34'k`##1įhǀ&Iv}t1ȹ}I3|U<j%aQ/o>  o8WlS Ԛ>>5Y eäSy4~1?|i;o%әvɹcNzHH Oٲ# 3J/ gs-ʲ&|[J9s.VDHƆg)t-t@靧Foc`gia&T*-/<)&Y esAfM;^W I2/@>r8w_QA&vCwn, c^yJ-r,)7.&}[k"-_ZB&>kw8S$/jp_ܗ8{&Nv`ГYc̓NϾWJ_"ž^Fm~u`_z^ރAEtP}zx'J͂x*O|!'xٰI^ 8́k:ѷS9p=Q-߇[[wį>z ~]5,P}=&?O(dsq oM^1Pb}Kjd4;=v: Hqty)ST&b'8eaqfCm6e-ݯ[ۥv Sྡ%4uJaPi[V-1?AssQiݴ;-y’x쒘8C3lyzK4ii7#fhmgcƃm0YC6 TwȔ':իo|0)Il7RԶ=('Q-q ~*&QfC(mDZ/\ >AD`'-=QRDTzp‹ +ۇys{Yp\c_Yz\2ʃ'U<f5 m "=zzx6M1Tf`{&2G40 :Tѿ@ G58ZT-‡!J`W[mU*Dw2} +%w~x*T$CrBR/.inF>Exhe=V%q6.BFcջ_<_^ e0ɊRoYD}å,I\v&Bdؘ)|lXl.3:FqYx˜5sAa5[1&~xG %ci82Spu!PsjF-@헡FQ7f ~aqbG΂nWҁ&H:d&[iK` ό4EQzl!.B4%HΨ3txgzm+GIy`kJ6'DQ+ w-LripMìzB$r =…7leX5j۟5_w"䰌 FY~PpS .L(4_\1K#_ᐚoܚ%L=f[U1 }%\L&_no)-YK@nyTm/;(gFYX$w3A14VU:-r]㕃)_n+w;b˰_w"Rы0%#Q{k5mVϡЋz.o ]6u }vfP&- ;8h{dtcwv5Ys0;yAԟڽ!l,$6uE?Ե1*s:=rqqDb/uAٱU6 F"Ug*E%_ 7)DHނLSl~d tzq^p x{~RԌSꩁu4*`>ط w*,NIÝPZga&kY '7so6$R9 \c.xؔraM^.@v? c~,`&įj gJX jIbZ &m;w{*-Vʹ M}>{{CQ9W63uMQE QBP9IE9 MD#1?=D יh`gw^qҗIe..l{]硆ys<]5X.#?= N_ar|¥ !ՇsVQH<> o %E2'PegFsD4]S\R qґ8٤Jc1FFQP5/ fIaׯ9cNCȰG-+lB/40٧^xK0 B*qŽp!Vȃj>8YӰPUϟu| 8`Er5 mg_oɆ:ZL? U~cf1Mp fhE>sERV,W t)WWl\S5 6&d.F\~ '>v κD(lOEEJr.gM wr3+y0oJ)hrPE% %zd2LY{a c!2&f ?LY Uۆ#C(*P) )%JT!ɘF*2O)JIE6ym֖z**B!ITHI['`y/D ͙]{gz9>m,[$ep1߽\t츓L\9R[Ʈ폣XýLnlݰcoP꒹Z_Jw6`FB<|Wӳ'9Q53:h]E֛9PP6-X))3٧o / .X**``]8M|'ʀkף\QW&ِn}ÁV,*V DHpjt="K"`F-M(:V*RvC- oߴtFY ;upcRT8^ː.oT /ѷqKp[-٪Ll}쌛O w+gxTU6rMヨEx,☺cx^uafT:U̔K>x {bIp3ݣ\I>eV뎑[><޾ǃ=˰x:ArȆ?Zҭ3^q8$Rs~]돬À>ٝ[&|ł :<9`_{ SJ'E 8V'k _pp|4ߨptpSƅ+a׆,:{- hJAr?JZ^ AYYB֚4<Ґx .v1иM h26o|/I; VȽEx m2h}gމ t /\2}z j*9eYd47x%߿WIvGG(U$&Zs_b}U \+-Oou ,ifb @/b=Lno#ESRTs'_Bmջd,[q]x_4j7rGP_ l3mR/Hž|:k֧U9Cphho'Ʊ`Z"#Y8.}{ 2DZiZl͈fԸx_\QqBvb\HBڠvrl|k 5T|zOz8+)-'Vળeh\)xMZG|/FZ>?Ejބb ŋnlcM=6yS&jPtx]ć9{nzo>-S]oDna':os)nP+ ,wͰqv@]R0QE+Ixgdݏ#0A0tStz>seKK8h󨌕FN-ج=+3bG8nozh]=mUΔe(}"6:S}.1=W/ljW~Ba<75' TxEc`r҈[P(Օ32ue#L)Pޟڣ-ђ5a=|8SJ*6V3@F5'\J] {;/N Ƕ^px$vgnJ# BPPر9\l [ ư@5oR~l.{pTwJw[DeR!|X\.~-kAvAs'$ ;__Y@Myi9AmSJ!Uv.*hRd㱮 X-((cr@'x(\X&rŎRi*F 3n_xAc$V,{9g%!AbR +-NcI.ہuy>V6|z5?(BL_lAGFYTTmjV(_ʿ4|u@U6vc>"&1()9htW*"b]IFl7L=;/E/)Ác+'=g58z~_n@/=WG#H%n' *XRʞ;ϔ*ZiQ"jz~t|`'Lbhͷ􏋜躩By2 L: ۨ2x#ԫK}(DYÕ" >Y1_eg3槡`kV$qL*{Tzb]WbVj'`SD.TҊ-+w*G:ePsy zo%DŽ'4XL]yĪč\nQg m;Bݹf=$,Yr]Q> C٧IM7JއcD@vi[.tSTOkr`g<>_\M&4}3BwӀlWeEG!WY2.&cګ k>΅ᙻK-9`) Lt y5U=q_._U ꋔtWwh}Hk;KQaAEYTi/?HPyro~{,KNdazHFXHxY~U`wKӻqlXg&aaqD[ `a,VKEK,"PrK@?E(ip--4'?>#:$0~8qCg I09-1~; N&rahi\tKdžheEjJ[F%Ҡwu)5HCV/iQ`..= Gj ba}EϽ!=ѭ#ϻpNS=<C 7*ƶ{ hp* xaKVfXQ֏l,m8{s~'PJ+ H[eM}޴vkP&P q\& :<)g@;N ַȵP|^y.47K!"QHB[I \<%_uCN]I6l?$$N1ut98΅_>>l73f'M*w5[g]josO۹Z$/=YܙHχy Nge_S!]kHx]s 8O5шF 衟ϓjiAl쾨cZf"߻>yW6gR7 88LՒ!^6!(Y9y//$vQ7C yWPwkwz8T뗇f>Yp-41>ld#mQ &/?Pz4ϪUwZ#Xb ]՗e25K0`]&7`/B<< ; ͯ8ӎ*Aq+/ƨOY4N_şСűkqLо>;^ TKX(w Kmg@Iu%QG~/hy^σc2!xpU64I)E0 i;.{,lCxds`Ys=6gfBKصn:|z]_z҂epXNcK&¾ORӃ">Mu2/ilI0>i& >ƟG>)=ּ*F2 /[tWq7PQ.%fЧ'sښD70m<}w7ghr)|fF71ui\ܺ;q_X+Y:Begxd:śݜKC7Jd3i.dPzy `gVFcXyjvPbQ$'TǦř@Ps^(_ " -Y 0qKcR/lךg.rr-τqO(7zի%<_*,H/}/k^}m}b$H$ :囸\0ѐ`hX N~C:dئZ8x@SJt>LƘτ @4$.P"JkMh譫KS?W8Bܠs^RT8Y˝Oiwjebi +[m8(fve_|M%POt 06lJëeP0FX^YWꑊ'$f ~x![IW-gv%,}wƒzU4nXܣrgfLo5Ӧ<<1[]<[ޚ1LD*wAš) JT? u 9h2 M),`Dc2x}",Fx[撶lMr@-#\kh#@Pl$9 2ڮ<'-`rINWha$yINO'!˒` ge~%-sfg]y'e6_vE[6 qtYլThؔ MF}`5kCQ7hA`ɞD'~zPOG#9⯔##Qc#r0wt F]fkc?<}++2 tT {k8Gxۮ<(6è8դ+x(U!J׽'(mE.mj|zvC)vT0෾Tv+A‹#d0ō u0e. V)rqN bJc*t8 QwK+٦Qv&=;DoԜH= Gߏ=RZg;RpW塹9(qKW\ywlṿa{XA&.q:X, r0vb=5m= Сm4 *Pkq</jwKeafi>K/nXD9ZC $PLME^yJ.Zs& [X%quw-F۳ݓ='S*ϼWGH7CgU%Ѡb]}UTǂpࡈT-V&j.~%ʠ~Z _2X LP~Ƌ V ,B΢ekhߛ.H²J*cH%aS^x0EO_O[ŘRJ*OB%0\f w9@c [iMs&nalᐂӊ*p 2gKE/pO\7zt^._И ~HrX87'4)?lB-*eDLaC:^P=S'mQWl9o:rM5ʫu\d`Zh) 7 {ƾKӣ\,DfcSL}H<~kg' g#yHћ90z&m>՝z. [/U\4HAn?fc3Z`=kt얒vk^bң6("vjedɯ9se)/DI]8I-H0G1{*$d 2ݪZ2]Mçّ/$>e]ƹtͼx >J~Yn;UQ3D( 2(7Qh1HM 嘊d0ҖM`p)Ȳ?` ( 4o_n+ĥeF^XN lXca%6MأWSan_]ϢxkH|dl77xCuV*E=I`sYS\4MIGjh. hoQmi- roOc.6.>BXf9&tyFұвr*Gz/QP֎e5/F]ͮ6ai ՙ]bfVm LYбRo$ ->~dgãDMEp/dKA|*Y+( d_h `0f_YА  Pt}o.>B|y.ؽ\ŅR'q2\16"yסl,t܊?ņ~r.> \$\2 V!i7 lwR!PV:@ 2 ;՗F"(4: ,$(F$?3uĭ-Fx^ݭ#)h"<ͽѠ12Jl2 ^G'F}T\Oٛr3Q^yޯQ`_N3z5pӇ/7c7k(rSf5r`A~,U{n? t>sLWXۮ+i S<&T r`(%Mf{z|QQK%HB _P[HicQ)I9yi>SC椳mr ʟ?_ݵ294n@|L>3RǴNTpbJʖ&<~mg'#osJ>mqu7pqgO*Ž=xOwL}%$P."pom_i)FYW*yHђ[8ː,*$A!=GPŊlAO$<ʘd[ ' Xr+ *%G- 4֫z3ޤh6nL%+xWC'ˎÿeR>LEPsanޫ0E^K3wr՛B]#SdxW @ 'i]lӬJORH! ǘdC,$P3TLk#s@ѸeCl W\,ws(ƍao􆫎SU(cL]RS3Ըw 2д-j F܈I\B'ؕ@3*fGlbg/{U俊G/ Lڦ5Fư-Oa=l5N,:0nY,eBԏX= C|bçǝ5)#`bxK[Ǎ 6fy#Y=e.8QFO{Z~Ug]ȠW>7Dɇ8:FwRnΉ)[|a !` \P/rf6dɎo p寔"KPm[gxqI Z]f>j`OjWb5mbtT]RuQ7XW t~mt7J7bT;{(MDK`)lG6zln|nvŘ84cSNG7ѿ bȾ%_[|`W1K?+()nORp^Cf4.8ݖb*NQ"A;vU؋$0>a[Fˆ5r_RMHWA2Tx׷+, BΨ4h0l Fr:-!)ab&}r;H/A#R{&(XsI?h xze ^2̂z-c9LM1tVa4X|.n \ K4K(K ȥHLk=ٚlDP_udó]h3$k.D{aʢsLpR*|MYoiCC5COsp,n3wfc^}Hx9|> l!}#0TPE }F߭ҋ@2ͯ_r=y!6a, :e̋5KûEѱh/Ś44xU/JF3~YG  c5K0tpy^.u^ߒE~F3 hKfnYq"dhM§/:Ù#3ɓ,^r-PxׅTF6ޜ_ШʄIW,P0}/:\džW'%38P>~;o s B'6 '6r!el ngE2w~1#!J]L`HϥC[č~*~rSe$DV̀ jao|<,q!f}a f`L|>k|[2a}L-9{gZf 5W~{c(i+ ?reeԻ{MmXIF{ahU#[4hNbg~ǑpϾs`p1X-ƭ{"_?¢JW1P_#]ߝ0L--L(m2,BXr롯^7'x0:Q-b=D7:bͼX95IU$GA).ԛZ ޷U␥T>\&~;S+!Fht.WwzYIFxfW+l_y]5h{&-NS{9`l8wwE4dO"tbPw3u_H -. Kt9ia,Pl*Č"@zi]^x| ސ̠j!E81_dg_)mU[_bǭk5w_'=c>wb&cbz٦Miл3{|2X zi O ́jYg L;2 Zw…1_0(d˂VP8~CC (ܣN#Z6_ 8hp0} /E8dl$LaADG(/:~kT(k@NY[v'MFҀ|]vX %5?{J$/uz3pA}CTEo=hoR*F-v5A+m?Gӱ~S[L,k *Svk R#&+K2b{JeEBRs'Iywvߴl0\,ދKJRu *c˻SIm$ Zر nC,p5L$1 O[R8$^@4MG/}p8ju^`NJ:0 6$$ %SL8cP;:a2gHϩ{'8I\*T)˄aBwAs->|cLI)/{aށT\-9=/"z8@)n靝?QF 8 ]:ѰcRsG:*K+|am,\r4M;8}^)Ou +{6W_ xww%YlFE5ltM"B.>MaC CmҜKxyw})eW9K#W`\n.mQt@<{d3גvϪyoX*dV-Rj64pZA3.Hזܝ(Xr*uw(O WibF7?K$'՞jfPw-)ݾ dIHqqK ϙxbYLԃF;NïfnQ')(l˦rujũd0ИM_ ˿)A4 +]Db`O~GRDpWdIdb8r R}Y5Q8} 1^90`,%LT5X*zX@lQnfCXz;'2~vrr  \WYL@a}f^nQ c!# xal F:Gcxy`ZnB.~*oy[@L*N1]?tE6D.l?6B۪)1 >nha"aߋ+LWs 58Redw MJVd#_Ojٽb]jO21գ(x^^%|ƞ2<Wq֊pe-1.V[AE5TiUN0c8l |w(8]z=_F[9)E+*Z 2 v:_re;+Bs>O)#EQ.Őtg# 1_~W%AKLͷs b{L!S >LߣgkTok̀,0=v>:>/hԋZ [ .[y2'$X+2;Q^nxC,hwS1bў*ۂzE) pX_WD:Svu4'🨁suە-AZX˶Y?-C 7CFJ@f<)Ӧ~6=70hM/BλIY7I^S\yo=t}a ޮԐ[:\Rp9n)* 9nJmm1mrۖd?DYP"EJ%EB*zf_YYK(.Ƭl"efg6>MOFT;~62'~= ccw9,]'l`bE7Ґ^Զ)W4 >^6$l.%=>'_)(4f)_/ub=>>CJ쥐@-?*-P L'J_)-W^ʷ`DNt1aR}X`ўBzĆyϾuS|)p(z΁'ה@R}֢Fʾ x]=J]n0e (\D<}EOoIfo :φ wr+ҳDk'`i?bĥ} XgAN&uM,c@T|:4[pNIT8%Y=o5(N#·G;.-KIl A새1 ٗ2HMbC]lQ=]%rm5ΫpHg?T3̀%[ ?+&>]u+*QRHׯ$XS& :TFUBj.zgڋ@_عҏ.!WG}qL>,n?Vo^΁%'ֵ-\߈eNm=w(p"yzSttx@ۅL9wD*;sL{2/۲ mBɌ:L.˾4v]w>Ʋw,PQڎ6a6 rb\&zXuf@@7n)#Q.GIg ][b Luo:?O~mY?p6|vCԒ؜n`|^8u_| (}كt>%Ĕ4/[L%=u縭6og{ &[1o/_T{AS׹hhiTP<koV7֠Mw*VpL7Fהa",fSQbO6nȁ5ϔ ` ]`g_3;P (;H[A;Ii|2bTx2=+~mnW^/F&ۤ1͂F c,?gF폺l]ta6ʽa-{*%0A\ЄF_i]3 <k@^ѥ_;< )"׋I{?DW3YE{E;rl1Ixjg4(? 9w|0K3-. zZD; ;5ˣuM.* lv/]LwlHp3}9:i[TO?y;iP1u_>F7Rߩ`s͋ WB_` ZX [nT7pQ% 7?9O/L^[|PX[)Eu-E:JuܬGřT]Lヘxyum>VH@GH@JvƋdlzV['}{HŁ"<EJJBZ^hT'-?;:\b`>dhuﻫ Sk10%SR3{'N/ӐȺ҈[7Sn/dHQdӏM&ڎX:r&%`CsYxMšp=z$PP?tMAGI4|i0JGgjL{!tV9ߦF3l?\ e}x5ݒg88xv޾ƕ5xZa*4ET }9|xz!s AFwt"0= G+,/ ,$~J`[42:~Ԩ‘| ~Q]=FDTjtΛ +;]{ǔRO]=]sg&HA)|Ν xyeׯz+vnwӕO5e3Fg(3ps]୅7~2(nq"o&OK-UقwVR> K%l 9ژo.W1}㞸bϑ(m¼B2v{.:fc?ޟɨFj)8FY6#4e \tV!5x%|ݯ=QEb"<T h)2ī2ƢsEjq5:$/UG4 д]%(R<8߷3RԟjkN]2r5޷tn=MD@VC9;P2T!Z|#4w"; [*KOk-tVƒS'7FETBR,hO d 2H &mdB;CLMcE\u9&:i7|Pl?w R`3 g>:h`qXT2c߹SȀwK3AFu LE5`goVF΀Q~` V<(R,9TI̮-Aӕ$:=0|2UB3.|8*i\w&oPo!N//ß̓P% NoXi"VN[jG@ {_/jeMrMj^4Uxyɼ5G^?e'^,P,G|G٘#l ٻ6"m}#rO2`,,-ws6xg˕aiO:n[GHCuX߿jkY9#kʰ2mg!~T\G$."=%GYj#/w_:kCBxt|7;a| ji7E2H|~⸗W~G^A}l+ Y*l(؜=!iŁ ~[\AoJxWeg5_;ۡ RégU@%CY"Drm剩=!/VW2'tAt ?#n9!aZpc֥' nIr̒b!nۓ\ Xl> brJ%DPGSx\?MxhJOk﷤(vVSeR;c2oA7Vb(C$\{gj4vvm$eR0&i] [mf T ~ V`:rL'(8Gm5~mү *K1_jP`}J6 窰i={xMѴr02%S1‘EXvd9蚋mcq-A}M O<t9oןɏOܮC0ӕD+U9@yR@u~ty!#$?kwƞ j\~}pD |i+h{G@ :ޚ C_mi:zPfSÀ3^[1Xg/Su9?)(5ip|WTQ;NPZӝI'i?!"/h,pѬ9KԸ[*X,f$=&^7xi6 g~֊boM*DG9e-䶘EĶa5NI‹knL} e}6nដ8pF\C\X&}ѹ#pKJ{qhjFrgiٌ1# ?-6a'zđOżgퟴb<'ġ{::^éGwx{*qc ??VUNm!;T7j}衷Iej̚ì﹥ePEf/d~P ]q%!sJ 0<2gMn`žy"8BeSsG.z0I\g??v%TcI=9b%ToڛtD>}eY [JO߸DӲ><#[EY7Sˀ0)U W Nj*tL?#9Hɀƅ$8vp| L39}:x Mեx[ mmn_Cz4+Yv%% ""PURplX ( wԝwSɃKnVayj?L?I(EPT*hEFvdgnsp ["EQJJHQ}}~z_?z<_h9I[lبywTѸ9x"H/6nۅ8ӓAdph*T{4w myೇĢQ2fd`m_^҇$olq/b8T##Trgdr2X1h̔F)P98EWcIkwT}1]S>,`Ox]Z,[KJ'`sƫqxXj6uXvfbFA: ֯bMo%2RM,FGPHD~~~`\.fntPSkl3Ɂ h[Аgޤ @y~VVk eU Z?lDT%kʟL}:G>t 1!bɐj8^6GX,v1Vzmz.vJdg5U{ @Clp!Hü`KQ?P)W.;@eSB TP~1kVwxe l0f4-vKk{"(f_|8 Sϸdk >.Z@QU s[y1OCQoڷX|}878Z3q}͏hI!nEX,G.cejadt`|CjFԬe8Yȗx zߴ)Gorm師KٕOe(hqӾ  J̌R_gt2.5OT'nP(Iǜdl1TOC_k+|(TM|*}5pw9A,툝wl Mfn!+zB.O2AmBn%`$z~ӡxY (GЁ*<̨=i 6qsoRe U?]2v =%042~[1 mS>:JΩ8*$vN-Uw$qQ37%x$2(v3L6۫?/7~RyAgOg kUfI_K5F̧35~E)~5)Mژja˗>v0PzK$f>+L18xr)b=Q-~g^?_n[%rnW Fײ\XKk>̊A̔$PJ#ײl SOףh]/;mAs`-ҫͩQ5\8Õ7'_C#I><旛P77lzH |>(H9Vnd6^_J̶a;%NE+z3ispa(=>"o4)D7~w#efouCid蝄Q(쯒!.? ME"<Dsf<J%p=`<ؽN)b)(xA k՜::םoLqP[a!n;%QgB1ޓ:o/Ň3H)8ɲ0=''Bp[2a'LA9A+97ҌbBS iuɂjoHrmhe8)kKaL+|u߮pU?^C>} $?ldig Y i.hw3q3 Lݹ%\n2Al 62ױܶmmtT#Gk^d 2,ϽW㘏zjIPs`ٗLOZ.б驲*\t6Kŝ rA9uㅌd;_M1d7 *Ν7-[ 2> rZB!xTv`ێn,R6)4TY>I-x=u"Իzk.&:aM7 8F |xy ebqxGUĺGF1hi5 N~yNj4M6 ſX3qeGČcv*M}ԟ|5/k (dT.򳽗C~xg>neu AV·?~=,eiw}/ %26}EީkmÉR h hww<X$WĬs⬇ў#ԧ0>l돆ǂCAiqW^)*65$'z,N4>犉^۟?$(K g3\ߟ3Vn\s$t<j^' @ke?cK>yryopәoF"T6 L , f@`(/V#A}UhXJ!;Ilp0^ WRBuʠ"HRWRϕ@}uOg*@EBwG=×t3 F\M =OTV9Nu}oh$>_p ;7-hƅD2Cנf4 ۼq!vT}-p=vR v#wkW%Ed; {37 p=PCSȘ> EPl=Ҏh} :Ƶ77`wNw4}Э^+e;s:qg J"5b*MNRs]}EE>ќH\GƉ#E,UGH D}stϕ,Xw^fͳ+WԊ`g/ \?հK#IxL:-u;#p6i>-ol&dlu jpxSEgT`KvfzHA|chxijNfF&p736L&xM8_3Mn sFvDr\ǧ۾yqA+E8ꜝK¡mٸSL;4IIʤȩnZe{}:ee÷D&}:^%gIPhiV""w%$LҠ: nyέQ 4b5[ud-:wMׁU8Bc=4OFߠkŰNӫUrk\mjf$*ΓYVǡfghVs_ҧ8>n#{ClkP;A[X/3 \+09se,S_vO83?|vvHE _nKZ"]p˾.v'`ikv N0 %c5Aϻw0f6]]d}o ,myi}Wڣ-}Y)UD2kÐLTkؒ jS2|fvK&^yFp@.m~X}l&3ϲHM1u2.4"J8[}6pFf^+Cx,]3Yw0|"ڇ4񷕙D0Qȅ_PkS'ht?meZK(g8!mkǭ"~K~8W)9hmRRhkRZ$]sGa[siŇ"o1UaOyLXXVd@5Xvn Y'֤Xgж.npBp96 =y8?{s% z;,Q_j zL$l ۢ*ʥkp …}S4 f-YCBKxJxWg^L|7&MF P2P~Νɷv qxېM:9I_uw:t!_*v-PPc% V{^߃ZNnz*<4UnGG q?AA`B:&IGmȼKk!A7fX8CKa-+o4lz;^ x N{]  F27^FݬjFu/McWB1؅'?TJUaaa'Ntg9&\]نz!Exّh%XT"z{)W]@;ޘun׼X2<0}ФjrWElPF2RYjLkr86%D0<,ZBwMRO[$0w0_5ơG[}ߧ՜Z6<7R)I#9P1.ƌN%c\d}n/X<$e($ Yb=0'KB<G+>bhaTɌ\t37[q[ë͜Un`>ϯ({Z,Fh݅5 |dxĦ?]7}) ?禼ȅ6|88v^^>}_,"p+_gVMH]``|O1 ̸(0MODdeCwnb9I!áFFnE`ɼ)s_I"9Q1^ f|ͺmV 27X2_@hhO dn$+8v>|ZgyzqD(n%^zڗ(}u\ L l"!ɢ9lF;#ntҫ˥xQֺΏSN& %'tp9MR*>x-?K$B}-$0d (*r* /ĕB=̼ 3z U1t2iva4Y"| d_Y٪S' 7;?.@n󱉉PS%R/!F 2L,ZCJ* @Ol `@eBvhF׀|Z5"zhCI=Cw>\MC5{RWHdhK}^Z ,^YЎ&(l{vÿ˯˄Q|k| u)wi'duk+ tx1FlTEkڑ7T? $'#Zhm pnQyvYrGAxhV/~(eN7EAE'voT<{o 2r 'Zo>Mz`%Q%M-f%1<Th;E 2zg {^'A]I{fzk};H9L5"8<ӑ50!Ljp*~}pQ3AlT8U%n y}qV@oGuFb-p|MrNF: ԣѕ~6K0ѱywom_k/Ԩ8g׫kJ/QQFQN?"c]!## %&d +~s /4F݌bDg]f\ݷN?5لtTnM;[AFIK{ d,sl@3Ӆuً;{5Zŭ0JN}\ZG\)ϟ"FTep_FGPj롡oE0<;tΒ랝ȅcIq%Ưa>^ E=!0;b2mP]o^V$ѻ OjaM=`oL,Ar /- O.@VX9ۧ[1'c>y} 9w%bVڕ7ɚ\cp3K>&U?6QE_yL0"Z?ʒ, yjA;4zEtSe} z#6N_TGvֽ 7`%OpZ?2ç÷*4=AԞk+pH;al-)>3|kzuљn vj VSx,,y߰l׫>1[IYW/~ǔvGfT -e| F߅99Ԑ3%4t":1*t ob>o\9dL[\ĭo'>΀YC^ țۈ E?H#۷|j,?W'"OUMtp3ţi >;sFZ^"ze:!Į?*Qt}Dd50we+EUN, 8e@M4'4hX)9FF픗2M&j;̾\3 >NQI=Hۄz -d3>ykVB_eUU5t*=Μy- RùC]:n2"ğ Wy,No;s@Mf3UZT^1qz12IœА*| |c3cj1$Gx+0`6ge2YySY>:BOzVeW@T.snIoT\)/epd@YQy4Lj)n=Gw0J/;].f]36VZ9h%.pFmD4՚kש/8 x C|dUe2 ,LC!|<;>> Q rRp苅L8Zs$Zt~KgfkFU }j}e]f v M(ۃAL9P'HQ:WI~k1[,<᫺#v:jt<; [([o>Gl3, / }1 MY81++d F6l^KB~>{3_OY0< J"Q|'~z(:-ijr 3QѝLH / v-%Aڗas?B =VWsNi<JIsǙ&u*oXC ^>Ut Nb-2x{·@j2̨ ;Rvup``eD+I}SQu[(M5;NFodz;>=BFQOFޤ̬d,c.=SiϜ:Q׻EjN-y K4V ѿe}$^1MşoA\SQޛ6"7.ʷŏZr f ܧI+ρDz&Νh1M:tհdy/vV2N1畟hZV-5l4v8迺j $vˆI%Q JŪn"Fo%\y^S5"IxmY2*E?CXYVVO^;}dl`Ssq( >$ { -Vsᩆ;1wR2RL?7s|cL_abT<w6r#ߑ zzv&#çOpCsE&FA=bXi"8|35EOr̶V.OuOkQѵo8_GJ5=:$0&Unx(ŜNhD 1bp#8#҈N{~hOq8kg"_U6Jh-,/Ku1=(AC%'CB7׌< TTiݫ5 pc~Z7;A񰢚 %dׄ"/imQwLƖ:*WqޗE'vTEǀjKc$zpWx' _akU.Xq:r$T:1-Wܑ'6=AC-^Pqٴq*X9ÂИoo:HLgsy"[,pv1wͽJ.G?R_ÙBȭ3}aۯ%syޭXdB"g}:L1}#1$MqU|yG n 0nf:3gn?s<.q홧v7IKP~e, tTpGWv@<^:!%D ~wbs%zП^.C嚟nJW5N&hc]' Ԕ:;T ?^[62q@yJ>DCS٤@QYT{-麸DajST:X>̀+wK8m3)-vT(mHM†4ط7pS)iv@5iz$UeU=,m(oa>i] Y#һD 4Pr|V|| Qo ?1ZR o}[ ;[>=Kc:9^߀޵J!LDR@8olm-RJ Z@$>!̇R\PL`6"2/_wIe.S)P|8pۡ q!!y/ۘq?u=+/SSLS` .Ve5TȠh!~+l~= 8_(t%r6qS- xI1Mp7b KGb {&v]ەpGFHͰF˦<`ee8~;; t >ly?4Y~$C÷:f/$AT`<X$@Fx6<nm(ٷ SkUš%|$V*Gi0+W`WDz LK:&Zлag|IU-{>εN)JmHj*I1oؼ,:-ho ~J>AS:4opZ:zZy=u $a/Z vKyҽښtfg7׌C ;/>^޿tx7*CFqXJp1 d qk ]%B4YM~\9tY^N6U S?;+M 3*( }X"w0rOӳ 8JYG_b!PqsP;BٰVL ~]x2sϧhm?gz@%S%yDu\.F;-ؽBd2owcYؤ{P?'6Rx5&?킋^nOV tӲE]. V>z` ˻cqeNM"t7Gɕ>0YXk͏EAwQ0eiR ݚqg}©.S/3eb!B9o!&Ӎ#ʨ8i2!:(ƾq۵7ejhNR79/ݖV*orԫ$ >1!_Zd 1h+?E^7 nB Z&H(N9Uڅi^3 uAL|mXp"E5Sn>|[_S4UNJ4(vr5W_AH[eG,+wG2Mߨч~~915zf֓,lo3>ּE5SWybхZh%Au=sG@2ʳȠ*? O¡"2ey mGM:AAw5\ى5 &;к5N;J+ImCkLV\M~ތ֧3X0YPA޿FDw2Ue@3r+({–\McEp3Bh,֔im¼"C3 f)2A&_J

&z@vqʁ@j g~z E[3œ_^֚zӇ!q$ DHI*Ɓy8C1Ւm }r*7A'Rh[k ^~]XhM tk{(zoъ#(2a+(0vGkݖ&{]Og.v^?pD$yǸ.*{KܷlLPEyb^wC_4=6k|7x<(A'x3̍~ gxrVy73m7#o 6xFo<&8~ n1}҉OO_O.>F-F Fa`-VJ͏UDpL(>u>>>gE,xf 6i>hʑIM{-6{; {Z=T[0pMJ>Lyƶj9ޓ/<,;(j;-R̤Yy+*G}14qG "le;ߍ?iKbP/168CKqu=@sEUZ)? />G8y?xcx8 WE젭~T.yO8doG5c.0t=!/oev u4n|b\# fa) Z<ll)?(ӟFC+'(+vM: ̶!ц?\^"e_(z̒f`)HJCCB܈TgRſ_L9Ut01cHeJaM81VMOiJEi%AS'@BM?ɘOLţmѶEK9E4dMލ4pAtp`= s%R?Zѓ_:G*/~[DQO =n10$`~r-TO 68TS\Lѽ)pPZg \G y#E@3ɾ}9OAc6rX:P k?d^A㼿jdW 4uY"Sc#kD65I}a]b~Ea-)?GQKsɨu`V!w^$t5G ֎O o IfWzU2?[)ƫl_:zWvdVpcm&r,eP}Q{b(*'`HGbJ8,5t%mDLyu yT ]$bmؔft<5E™c93Px&FYQ5cr0 M#7d;g='&faJ,~-Jwv=L5b aü4\gYMz xMĖ&9ީQC7\wa08nVJL) !a['/TgF4_)O>^zY(T61/nCMXRRՈ = z+G1\x{L噅 ƒXYS,#Ϳ4פ<,{>E_'($M(, nz^c.h 90?p,XS߰ 8~B6V_]3WWb]OY)}ӗ2p#u*{#{`MXjV]k[rתԡm._kҶ?%U eg@kHSb.t*U恊AHٰ,ƣ}8W1٢pz83tʣuK@0H<@[df J2ԍ:^"f '4Lw5Q eXS^Fӄ Ҿ4|9odwC Gvۓ9$i+曤P9 8`w | ^x{MGHXԧFV~0z/aw+(vr#uTjobP>RӋc.yIPfb",6\|l.JfMn nHܧNm;_boaugKBKP"5SI~CD꒔Nnjlm^92g⿾L\լL^w.d'4uL;Hb2 &c dި_pĔ偄3z,=B:~3JCj'`-]w\S$qqi(Lr%zjk+rŗ.4{e H%%C\(q4&/ \Ps#jR!VL(M0]n:^|5XT\c/U(܌,1賧xc Z3w dX?6pZ=:{ բINnyT^sFJ{.GCdڿ`Qg/ڤaװ%X{t3+~<L}ѥ0W|Ӡl04ay;L\7 asgT18o=,kugA`՚ruĭL;2*vvKt3S TI3_@m%N' IPyt|a(s˹h)ErRb1_W"ܼ٬e _seh>̉ ElĠ$Yf'A/J h;e:,be g]QxW?Nާ5OƟG#R]ӂX ?s!ՙ&/I8MbJLp]Mݱy2/ /Jp$C_-; ;گi4T+Y'߷#ϊXf0[;3oP}' [!4j8&}Ő=T-xrJZ;."ԇ4 Uo 4(;z.YUK`QvٱRrOhhx>~,jCNQl'1]WB>c\ڝc_c0k$޽p0e,ұ0rF#DQoњJA筕?"|` &KtN487 U s~7.]ˆٲ)"}>)9 ?: (_; B@ҐH:$|3 @ ao>_ ӄϼ~Ӻ+`hgw2ϻ?2EE_7ƩK8|۲*k?t0;{<kOF' uƩx#DŕԥQ4Hymwei2zsYe o2uCv;$a̤M“6QT(WJ0{0znI >F{np` "U O瀤-|_AK#TA6I قaX\b |ۛ + .0O4oG͑Gk:p$ë5w~r)Y#Y*GǥkNx2V=1ʕKlk#^_ob9j%&-1ˈhoWg_`c+MedQբ讱vbUwZ+%_(d.NFB?q5\u[[P`%LEDL Q9 V?#6%LiZF]s%s}k%ӱ\%ĉj_ bk QV&asI_Ur6 %luK;_LGMKՁp .rlXi|X;4޽cK9 .XxNBCp~9BImhut¹ 9'„Z-]oMY?G|Ȯ['v_õ%9Sh7nݳ==۾M2I-`{!sGhpSQ43j6ės|hZIC?8t|YcmNB TW$kwy#{ em{TIo9aLDҰ_Sa}nMmM,|;Ox4l p|IH |p=WyU(w ?V=FVs}4 g ob824f8sᖿ_m!6s>_+hp.$>/T|6. ,ǿ>3~64?<l&/~ xDžVHfj?]C~vx$Q,/ BI-^wÙxq^&G!tw_{wi:P*oa{ =]̀e\OH1$^R7堤+)U ǬR`mkd E~crDg<U!Ɏ(B钔DȖ{vm_U* eTȨ<=9~_O}Ck!ѝKge-<^@pFU5p(rB5Tهt﭂Žٕ84_|52p|iGM6bWy3OMՅʲ_ tg[;}0$n1k1o{*e 5evg^>xA5ӣэ%[XS,ۥR/uÿ gs2X/AY9=0$ԙQg!ujb,lk ,"KT%Q(pe6H52W#JD<3l׎'?pGbUۀPh3-ś) \d񥼜Gw5yCu}u\ _ԷL) wc< tٜdz@:LJۋ W;J {<16R[]K ͪpܗ+ƑXA3{nj{1%[KTʺz/ -&uX@7D7qu0!i<uzd;c[:56;a]konh f ID'IXԌr~*= ~p.6aSM6qcHUա -s`֧zQ$:0+`:ԇYPgZӱ+"Ϊ-.]0"(;U!ZMڹ1vZY]X،b tECѨ pLU]sij,H/Q׹ANIn7 {~ajZUkHDͺDkUl;/ 7`OsۂfA#>?'FE `FC'31ti \<ϘoYX٤'xO8f;8"(wB@3]DVhBDo*<80{puuGsbDUM?>$t7A|Lȡh >J|=w;b˷LjpgG H D"(mhԕVhU\^lsBv(|KF XtSkGpR==LZ6,b'LǛϤ-_H^4oΕ+.6f&LlqڲMfuA/O btLы@g< : <!Ұ~EQQa?YmP%|3lIz_$"2]؁3[@#,V|ު W~7ay#N#f Rbqe;2kȘ,C'ӌi%xP{oIxv jM=[FnIC8ۦ1$lY~ODs&^[W&FTZWH0z "kN%jP7(B:(q}VVbc`XT#9N@]")e gL3'k -ZaôS :Sdd<\G@T>d@jՅs/Z΂ᢂip2j wB 4pnw>n26< !M&5kTSGCF:~tݑ*6_:ZCP!].|ëQ>y?-.,~#֥1ak:Dybdy5cx ܱ> vD|X<*3 k~o'V sml1uvu̎pymzs ݷƼUgܿw!'>`__#6Y#HtqheDb6%%;vwo%`r3dKWѐ\CMTi$bm(iTC𦠈D"v͚Fd/h,gcq/)|d;J)}-Wΐ-V&Φ$H3KMV؎`8f \QE< K(i%A߇Dv6A= +'*OuIڣ܅sdX`Kk?  BuZC.O_-6֎8tWmU{0V W#.>e ۀľjpj+Ϲ;~7Hf^{56TcP;-%Pܼb FB@̶h(0$ hwP\RZ+!3g5ܗz~,F9>%2./aA.Oݹ}=t.b\les?f&`E}a*5PXy?{"\ˆø.g=Ua9mϢ{Mz?lu#-ކ.͙ԉkGv`|;1oE  ͨ}gFo#F1sr>XR%J܉2Ιò3C-pWB; UL \m2΃.pSdpp>ɋq3@IZ(d6aHCŵo:QWVc,qur B\\BF#H|m(;f/r)j{dԙF8 cx雃 k`.ԌN )jxXD #$`yS ^tZͅQDKJU`` XF%YTE ij) ˕k,6JF5+r.\驌Y^\w*BacJ hϭ<%h6IfU%#'JeuaMٖT)W'gwi,Y.{{9E3[ ٨L'7/- `剑Z)8ֵxԖѽs9KMmf=@lJ(6܋CO0U!jwmnS&Vǽ=/Y{".Hf[sgel <;<#Zn1]AEO.mƽBS &/W=[֋Z;#_7ܕ3u^IXԥC8:ijTEFInXP" o@ƑrΌӥ'^Uᮛ^K,bn^IB1p:;UF NЗ22aӃLFI7.Pt؉.s(?Z5`siAwMXnΡFAsmuMr5ÙG ⥲r)*,_}ikfaa?j]d ()qx8ݽC#Ibjߕ&[mplxۅR4 @#VzEjx%BcK٣87D~iT(!:JhF`usQ}L,f1F46xȜlgX$aIv>#UKDT.\i%vE97dVwr]i<VjbriAuhԱHѺ~'ڏ!X2`> CwžBoo&paaUeLsbPV@>?^Aʥ_[0ދ;j8/ٯq4)o׍'eB#uܾeڣ5֎wdo֝hE6qC͘$w}ǎ43 *T;^ P.Tcs7~b/c8dj82 6j-\7HP%SݟX jܖN:`0+79F7ݐF3 H:7U5Àu) fp(̛J85֝M@0.uw8?oKQUWwj]7w_yUBBHJA"{Mj6ɩ~z3^8E|KrҐ+:aJy؅Cp+0Z^Iz3yׅǹxB^MoXQs&npI ZT?h4#2Rx |)EHwsó~$݊0wf]l>%H$xxC3/.ttÓ>jLQ7Y! ;B)X9CV<1kUܟڡHRY%.Y g8rwڠ] =1G t 7E@*8=w="="Ag`؟@雷̧xX|p]uhMDG`>8!K~+F<~ =}mtȴ^b.uC</cπr<& z0'`b$,o-%DdٝSΎ~;U"1!/P2E;vsAâ# 88i=Judp12 j?(I]&^ .[BPt+V"xi\HO?DO[+@Ě:;4;m:04I1,+]}8הh/܇;+|{qQԃzw+wc:v,^iEﳧ ~7_n֍|o.b[&9Qnke=Pei|DYg)Nׅc⒇)) _9i"PЪTkfKF<[ >ߏD@աzs80iiVM0yRc5Dw8+()+!YIs"Dʦ(7=#{ss8-J%i>Dط;m34H,hLG.2.bD^ǟː.p^Ru%b2:O.Z-fVD#xkWjϵ$D˩ US"j;; Hbt:n]/, uhUW|(Ab/E"l1,GEɅVA" ߸2'VEr >_?Z~iDwC/k@C VxV_|]r0=%!YRX;w}f[V__.5*mpxS \׈R< mA${Tz -O=ʽ,& 8g"w4*Kzkx?gx(^b47tX:1[K;1-.a䨑R ӿ+$3jp"JS12y y06.4|{ve cj3%T8 [&™DT^Nz^}C|Oş6Јd t||- ;joQg;jq;S@L]N{)>S耳ŦA,kâ j{_+ЪP^6iAݢu`rD{UB"%Ϲw`(}rVZ~+ r% ]_|`ߕd<{-~*Q&ihec\lT6tUl)%8Iv4G?-Jk U8|jUijj86`{jz81_]K8t;$Oo_u)lsdMW S>NQrD&v᧺<14|/~2 PÌ\{#]^pteI>iu aݺE{T [D׼sG_h|fB"vvu)`ҷ񀻧G@{,h=Qk:8fCM[[D@~fxݣ 80$$`R $\0S6)<2Sp|]U*z, xr)XB2(<ʃON1QxvEP3uF۫] (y&Ml H2oĸ8`eӘ a#3ҲwyPP~,qqJX<n湸ݵ1]F:q2pJYewx. %K}wDŽi)P}=Z C+)х֙7)fctN3WDO-MۮU"37۷pZnwJp3AQ>`ͦ3`ܬz|59iVT7ODz#$[^m'3,A !Nl1HCvݏBX,6ץ¬Լ;TF6>?YU1G'{)Vbr=O;H4[i;em[_{ܴ;XsF2*>u!庀*J;S~ O-ّuƏYjvI1: #]چ̪J n<1WOϻs0o]!޲t̤J~@J t{rIa=z\?Ʈ^^"5ĺiy M/M`c5p|D zB_dҨߋgTDlQfazfytJp^*B7:=#|<5**)xgyQE#"%e5G+QdfG-\=}pB͕*Zz%;~|_<7 }o0TqHڍg^v?^t3zAJI4SS8KԢrG:uP~Oũ{Q`/OF k ůqXJk2xxtZr4lHFޙCf)I|e&ҿw'&MU%Rl20bğXڲ*Uo89k笀 ;3@sC(>jB3;]MÎeb'!Z|^yҿ;*}/n_Ir%N~(%Blj?>r}:H-}. }$R:ߔP퀼!5tX:zo^ IW#+~L?7[ >[^A=}]ÙRxyS(-Ob+F-T5ìz~-FJ1&׼L[`*3su^G61VsP'pq@np2$#U_܇jҦ9&Za]xU|{%,?' Ǯ^J17SNs)v ;WBnj~*(/exn/K s/ہƔ(3#yT+M]OTBfۓ 0-+Jxg^+3s x)乍u?w@G2#1x=൥ qR7;>Dߥ"Qet Tfʮ$D|ˑ!]VksW5@?k;Z¸HK 4"qtsEe͟ x飭n^\2Hqb k4nƕl!`'~qw!.07 C4r ;|#S Cd59 Lǃ闓AV3s_1(V3-CHc67&EuvF#d.M4ESCm%أbh7~ؑ`9NEM]QK:s@ҫ}&jS-zzTgn]j../±|r},QcܚUHR^܋R.:B`o./`p?͡BiO}b}ީR]W`|hkϧQ~6DVv UYaCsR`fo=&]-_],FP_.ܵT1 $!IlH% w%[$k͸Q"L^+.c1S^G8(Ar(1/ h.bHmekyb} V;#C\XXf2ܟ Yo8f.dНyEnxe,Pk)\ }zQDXIH?X󳞆$x;UH3 {_:VZf0:2;rdFy&a!a_p@[3op_uO@ h"tO\5kN?VہDP$&TYFpz*"{ x3qubK'm]n "zެv!|=~‰j3Xo-DVQ~q3To}KGVPb O N0\&v M|YcbیV-=}~T(Ԥ_of w;y?RHlqqK{yzAb7Z_t$'檙 ݦ% ,SI%#"g` ^yGSkVsB>"lQ3ߋ*4r`VUXbNhU9&1p]5398|n!#sH"{=ҁI%iujqh`T 3e]rym\ 8QnW%s}H_Ny!SaSc6Rf|+ߪ%ajYWS ւ{S"K6n4̬'3}EL#bgF9"B}DB?zdr8> DMf+Bo`gxbo`klݫO٥7*5U)7hl0>nLfWě s3aاZg GnǢ !X:\/)Hn途@$d3֞}p2yZhuV!b< ߸nKY;yd16/6T7BcKag3Sv/[Q}a0u@tY?<"Y|/NC~5a\|Ýarg3\¸IЙsAQ|/;gy-,!׏g=(vѻUW,gm(sj?3E?Kr1 `T`ٝ_!͛]p7.ߓɞ cgZ[ b "v8-cLcn]d:3exޠ}ߧʟsGU-#l9r҄q^w{O#GD&;yǢdU1seĮFX ; &WW5= 3m€;v j"ῼB]3wA0Tb/dƲӭ"h ޟġ$B1hc!U";O7R3 yBQ75|O'hv U3ңy1![J$ӛDm Hu2bZhw1<<5 Sv~& bzsaYBas)Rv$ :_hj0{h:0R=4n ) 2ZWU:=zիèm\6OzZ. C(uIH?u\s? ~ ve`c҅=9cO0qSy3β&+KzD15-^lj+R!s$vr "(?bE$`J>:(WFYo.+t7) )Ҽ/8wuh S8I|삎mH ^s>V`p.p < tBmyKZTdڔpS^Aj6?@A:0[9_ҫw aGMu%C }foM|u7 Fbg2SԕT}b4-7%2;Zƣg<%c䫵8VϪTgBƤUBZd,{zRYNy_{Zo~)Yڙʍ7$t>XD Y5Suqݹj j"72' Xͭ+ gM/Ƶh c~(3+D{sz2ӔE~ E_7 W~V .XGNJ=?ٻFBmr"m#b'ub<X8 )bOC_;@8Թ2e _:@lA°!56@ ⃬ lodn폶 Bo~j'ÑF6d:[N},9?F%V %`CrUg'mU>G]2cσ"N 3<Κ.Ӯ)/H 9yUӥ372({< ڗOafy>1No=3zR$dW <-%3EH{k{Y> 9 SBis#8T0JKw ͥC$c>|7Co`iw0|>egS,$ 4ǻ6\ztΦ?M%c6 "~*,@N<gdU2~g) tFA2$rkU6]<%G}]m}QI2>;EXL#pNB%ҐҫTDHff"{){!/.{*TD?<΁~ yB׹tt2^4΄/+VP^E(0=V8u3j6HV;:GWyɫ "eup9ut'9O8oי4p[1-7xbFؒRL".dffcS%aß=:xHeLf[ :裠NBzuOkyPXL>|s [S\%zs ;^r|>wcci|xS_\\W@>|AoCo cͪ˝snͦLׂ8SO,VNCM=Qj2rG`WXOdAog9p5L4h |+~n Fgqoxr{(*^{#;x8 un_%ιWchWiE U YPayzӥ\QI?a7O(ZK&A}[OlKDp; r`l|ꐯJ+ >y7CKPxܙykXJl>+xU| Y”t^JLu] oڷhrN2w=^ ~ԝO1B2̌ uK\qM{QӇ~ǀ4?+ce{~t+ԋuc1?mN+\flK~V:x)<ь^˲6B(.q?xϏ.K^=R_>uMu<(39\ZzQZoeZ@2quoʚv(=7j:ASzoF3!v:Ԅ`BtW[5vJ=5ar>L|W: a3*j1@E{2! ϷBE>kC,T)0iPy')4"l KȭҞI8]1=!&)xx',-xuȲG*DSHXXBg.<b ɾLE4 z1 :ohp1fM]2H?J(6u-k13+K*&ѡk|gkUbd2e} S*A "Xhf)+W.6˯1@X6yvRUHk4+ VHfS7pH7N1M8x|f*%‰EdxbBΎ{?Fp\yuɹ f^R4XofDmx=/15ve,{!ϖ}A(|3 [öDEfx*;v9߮'D~2gY2jNIxc'm{ƹ[ƾ/w31QH. >t2h_x ;:UP/Z~Zf9un)%wV]9G"`˵"<4>w6lx,yZf"=BEPZPk/ہ) tM Tj"JS,D!&Зf<*~@G}+քhy%`r' .BB;&ۏ5ڝw ͸I=LcM797OawK%/!Ǧ2Yp H #AϮTpJ8  FPkPG2 vn[{PƷ>iOD^&>q-Zs^WL(ë 'J-Ą0[Se@kNrV93yuWImɌ+}?(;'Z@k bLw2D-`d2\ %_m+._R ݖCA+8T~d0T~z4o|2OB߿9ZLqIpS{p1qνeRs~跍~8DfOmAlD*8p㧄_kp뙓viy4 VD֯YPKݣ!JCɏЉbS`*K-9I©DD<^W:.Wqr j3;JD]Q. {1S: O& h3OB^ Km1!7rk`'WmE Ks\{B|$;wm*F=5|ʫK)Dsl_S

u" ?7~pwa~97i]zC IxJ^$Kt<PH{ڣV7\f^5\!=KȪ2|XUԼ5rC'G8C^rDʼ:@TgݲN$= e%-\z- W}sUy_Y#7ahZh@8:bK^?|<qljA 6Ġ?6% yyXQwYts^4Sϼ2]FϱS.췱fnRUϩ'!4kJi ߥ =U(,T<{2bU:Ofx*_@I[M@-a4]hk/z!RX{"5BB~wMML` OdAژ> vig Z]oLQ6S Rxz'N /|ܖft ]n䷮ju|]jݡD I'7#7q~Jh^]ϢuCMw I^ZiŁe_';1v%5$iEe!j:L-3Y/P[zӤnʧW4|eco'zh4|pwAy7U* -)_"'S} X=@9;D{W5欞U@aKQQ__ݪkv#_ƙZL$5 G'%Q,;+,>dYg MCK~~b/י86a{NeNKq[H<`ߒf s4{_,0NG}ݡf.{?&^%m졉~3Ү7q:Ϸ. _߭FҤLU,+~AJGxqSE˟ GOmin앗 8nkEzP)=یƻ2n\:稊#5*.en QEѭޫ/M!Rt0㪝d|Bvpc% 3TS*h;FYnέ'ChþZV?DV ˋ.Ǿ*Qȶv"ډ c8CCs(Lp 7i>*4hoƃ ̶i@7ܱaӺ['qeJ+3)g>K S'M#ASiDK4*R=*TjǪR4Hݱ_eǹXA,7[6 +y&*&M[W,BUԋCy!`c? "] L `>}Py ҮCm18"n/sZAx382ؗ$ [[ګzkcm4{ܔ'lMqJ:wns\Bv%N?&EKY݉(`Aqq8_p2;4ŊVʡj5OlWXQPEzṵBaeXO4 ٝ{+jJదݶ*G|[HQ9I]_AO62N],be)Ld8.R{6dćp"yydוC~AzX6<-7?OZG}زtփs]vm 򀉎7v#GQI>: 1F#fXGǐ,jA]O}y}3s"G`b,Hz(?SOӅ$(u/jY_M:̛zv}aHA,kSh6b3?/`no,p|Ă5i.v,8Wx~gt8}vʜB8$(!;b<5}kCΗ^V϶dK 2G;u)qt=[(yuOUBWL`_C! 6swKi}!;#Dv)H&Uլx^qW_O~֪rDV/Sл@R"_>J3Od*B2? F1& đWk\x7n]A@.zD70BƬ&0]%Z> s!*Dp=իcCe`4lo1gnT5ŏa?(8 [z\/`)C }Xb7.J,u}C֤hwHGC>J>Pcr]Xa=Ogwo1Sq(d@WMwI ƞ}%Gt9$eBAAT/tj%q,%gcRy +S|ıYt25Y3[[W:T$$-ף_r:$'q - Om4P[]׀7Ri-n7 hO|j3ICvuc쥓C+D$oo~ZצgK0+ΰzB)u5+B/r}&Y;} ﱆy4~ E 4r<@:3WZ@U=#0:o*C(J  dHݝg!YTw<%֪}3K,] XP.UW!b)ٛnߺV:4$_0ߔ BW{EKEaݿ! Ÿ޸lϋqo]"(x11xqjРÍ]ܑFq0,ȱzSG s;TJ7S|꺺b`i*o) yEA*prP t},>~U0P]Lj#>r3oؓG2j! )4yKo: !_w6hj$2{f`[}}iaܯX˃=(<,t )GdLþ ]K-#]衲?{g2ex?߉DOD[!5OC.2oGe'MPL+H@&5ms~|^i  ıW)pB@.tñڦďHch ^{$tI!fA Iw*@9a! T"aSUf-vųuohuI=^m'dhB_yHA9oЭfÃΩ(RaS  #U@cQ,|%ɯ(-8L!,::ie.h 48xYk Bcyo3 z[ycQ6VB]'Zk升YwǠWЏ."@0-CH$te ^lB(LCQ~ C7*9jTKffq=ȇE^ L6n|H_ЕK `$(UtXKZ:RJ8 & >:bkP3L\<`^q'~ K3E56$ 2lF5=rs'ߕIB8 |c(Bvl*^kna(@I/8?5ʴ|!Cq<sٯDߙ?EQykC!SKHKX}H0MQe77!FN`eF ߾`2r#e"YmO>/ts?_UꃮW>uo7~C g vUڕ_DXp #@ґ%~i YjEUp% -س(`Q! 8k%#Jwm|GDh(y^"g^ avfыGHGgVNU{j -hn&X G:G=υMY5-DZ\lW:w9{9(ba`x:qzm4"O$;!Ny;e/E?Tb]xAl9.wr -gCJP< spyV5o~h8\zq np 1O\ uLj U^ƅ?.nbYɏ/թ|@>!P?+ dYNx7P&d$ۣf`߁ie͖PZASYL]})Xd}և?#ώh.d}q -t>Vf}='̀ځgy=xl^hy,C/y(tcACu|c _s{F:F93R3EL<IqR 8Z{\6d|.aBvn^ /̗| U+xnqn26:+q:2 %@5wȬ.|O vK˅+ SNY%(O2 򅖢`J=k,! 6ZP9ilNsg9խY6,w( 9д@RT DT g 5k:uCQИkgp Tdÿ^גWGSqq:]xa O'i3) yF^a VzKjPc]b;`Ֆ'W .+hzP1'O~ͧ լaTdA x-ND\9i* $]~oe?tonz- SVeptCB#GTRO^_z 7܉68뫝P su/zɿ}X!lA5 fj, LĎL5 {,P=ەUtYIޕx+.`щrlύ@H^ty~kxiݒY%'A4FO.5?W~;7fU 1 *&is5 p u{ xL|WN 9fjIFV-vs<) {[IǨ @9N1/Ku bƶ.={ R,jA{bjB yG[iX>(3V6*d1v= ȷO~_Gj7_H;j󣓫KGe*Υs`311C3*lЍtvo/<`P1wG}=AAׄhMK!`oXg==6~Y=p4 m >Z> VU;nYX`xqC$6 4`xbOlqBrR+>E{9J'T<\5Xd!]vhc#F >&k-v uGk:nd/4,H@%*`anME\%oO(2<3"*:UM7lEi:(]7)|cE g;H0dǹЄe^eNG֖/BkQ@oxaj"[#cUv"iaB^)msStyh3FI?zГ5ZGj ˧F!=xY3&=sʆg!yp 2(a*%}&1= \8R׵/HF50BXȰ@F Jk4ueb/zLb>dZraI|,Ӿ tpVNeB4yHt* }H#壑`&,)Z/^* y`o+K} W3Coސ̙LD^BB:N\5's\gxή`Q{~YWprbHnu_09gSwH T m7[?M3y˵?v L3GiJ8 ]YA:gQf@P=5tHzŷ) NQ*%_p skX-e ='׹1h,{9 2xd8S7lS9p~N8?)^(pi\@|/D&R&vXՊN2-l^HzA`~p|Ibݯl! S\`3\7GչaՆ`qӆ1o{¨ b')ڿ8VfS;~G]jl݂&p{*#ɯz\YμOUpBEyĿ((7Gd)e )IU¡ *dl\V 'D>#;;C,Z ȑѨUٞIjNiEzmiwDtN)޺Jd&"uV4_ ׊z Ep3Q> V_}?5шp-"V[-2;1F9V"%R/=]Q ;QI;:\FK2N菸k]`8REd =S\lA0Ey|+>,\+g @7'EHaS9Jl'bAΪk _ -H[bIԙRXS !-o"lQgט]#Rtlqw?a `ϖv&jZK:&NƁ9Sr`Dn'7%= 'Uy7_VnŨІ Y1 f?"c-\ţR?SݥXe1kQ{7{Mئ@,:j`%]?lD `N=Mrbotm(ˢs$1HA[y@a1_T75ዜ%P'8kb8;Z&/7K l$"آUU*1\PR3wB:|\i`Wd;yax͚*ffTkEg+E{.1[W"R؎8y]*h}#wN@^h>*޹8.Ї\,ss@i5;zsQ~.g$#򱼾>)H*)R=Vz_# 5a9ks‹C 3nq QxN=v & cWtx |4<1xG$͏cIFT+eyh?RIp ڴՠ둔 cMٶףR@ ڋ-HlxDɬn+hE Y[X&ޗ j9OgZZ[6{d+"vuЮa~Y%* nAfIzcN|#}R=* ETQ{"W+ӣ(s!:0֘iȤ$MQo hj:BBhF8=)fԋ`:!欚 h?Ib_y)Unb+g0_{`d{ ~|e%Z{F0zM `ЯOyEN6K \x0 %u9S&ЉD08wF,U8v++W),-L5}ǯXV/K&ahD`m u)aоx*Cк%P?uǧL幽 ޙa m\*;%(.>9Q]ȩuX+5pł`Wg&<Ep;&2:_pq% ,HG4+CRtEЕXApD xf] p7 =5ZߤoEXlA{J,?z6Qefp9B9C;u&3x7'C }pPfƆS'!_ûycbz Xvܹ{|Bf@C+ߌ=LzaF:otvwG~M\ţ|įSLqP~ $'*Dt VXZH>E0 xU|9@GtxcO0+,9`dB_WI&ːjatY֊·R.r9\lmyK5\J(94X"̫t3?xa9?L91"3. r5͵$0ХyZ ԋxÚf KmYqEBq[}"lww}bM*Lգ٠^Q<|ݙ.$,˛E0`naID}e֏͏`gYtJ!4XzL1iÂXʱ^ zOh`'}6&:>>>2 |G〯a"k:x{ ~;(71ÂaooALSrYh'9Z!D8ΒTn;aK F"{e{Kj y[Rbo?'"ٞg?4@վ#.6'z[Vۊ+,<;Ovdw45j )|RzW좲-3Ac{콮瑽RH"&E9??yq9z]Yt96ȷd\ ˇ !N3 zi A%+v­wE8cn4H3?.cO̕0x#r*.~*pɣI#V;KI:3$J;Z[kȆ&eiכ9R}k$GMF ]eA,W%X7цiM$YҔDf 95%H{=P cSA'?gHNgi$2&IAuG5DYD%((_NVo~H_3PnF#;hv7[bYOoT:tnʇ;|O.:FvuڍGcJs! WdvTV8u!ŝ7|AY8YijCJ3ޔ?pO`L]-X[uIi/1cUH j)o=r1ܻlkƧe`ou*^ܓLG'e-:pe~ʎGl5n>>Kq sV#uXwLzsaK.kLhsܼu76f84ؾ!()뀔~ Itˆ ޘ-aGQT}`qӾ_"T,9g")pk=Ú +{uvw#^Ȯ¦rCP.5,a)4(;m,I[ 1=^IC/R<&eϖbϙOfو\(%$ iq1rAQЗ:;>ɇ3}fA.$p8=3e-+U6 (Ksݥp}{kX? ey'w&v@dddyfݍŠ =8V.ԋYP^;h->܋&ǵݙ=z(8Ս,!m/h]L/{M;6*7݊W\?ROb at{ ֣դç %S=!W>>k9×`1ZH Ғ<ȎZTRrӲn)I2T{^P^^UO-{4U3tbvT{38%auplBO]o"7l3%@f^24,LR Fщg]A}}H5\#ani5U1ĽJ2>7򾌼q8@ p2m3ciMȈ5\aաyo{xɁt>њ4u@x#" ̒Wmw8pku6 "+lujSY.f돜CTEy`*^/٧ZycE~ڑmht(S20zn8ƇA[-CXmn@zK%;>a[~ ҉z]I]l rsr.G|Mj)RtvqV)cbW@zd򝽔- 7U&o:GÂaүp" Ec:y;ei &]1rO}Қ-M2ZEHSp5D$Jo5(eD9@ċbvI!GiA(Nx"yoI(kˋq QK^ X;:>f } %ͯKSR|*,.ux.u2_s`#;tk}˅#o":\gjtxGqc6fz_΂'v/`fوix]^ pLD@nXS#KAQ\/orJ- Y:7{|1q9c~J֘,tޫ_1ɢa"X켒hzNİV^C0MW: ]pڶ껰*4 Q`8"a*i1Jqk_utqNOG&m0"'v̄Y֣)19>wW4og火Y1!$_Ü^L8ZԵB?}5xŘSi|m  JgK\hD?_ ;6kxQVs9 IS (ؑ,?ovoqpC ;uG@>^X_1¹&\hlK= u`z) τgE7dOxK~풮N8>Hrt%6HKߖsߊ 3u0U7p]x(F*oHL.˕K!tlvېK=),P`_"k2sMT0"D[ ˜a'ޫZ5NǫVv[.V;qɅ} 9PuQsw W0` QƸݕTt\PMG3 NTD-Iৡ=uiO VEBgΫs;~هEaR`Qmdθ[;bhm%ٵk!Nӳ.V| =Dbs% ~>ݜ `3>iFt?snLu~Ha1 h=ww@W\L1K:ɨz\KFTSx'_\̄,~xlb. ܾH Khvr3]ZPr$۬xL!"'?n[߸!b}EϹpif7B]^ZaI* +whRgVQ"FizadPKV1?\Ol7DƋ"m^ZXAh[?,UW >ͼt((7"L9}KSqmYCdި"BhTPAx )liŤ򊺬/eG18.mkR%B3nH15IGjvT MRe¾HlL1#ldr?ah'UecvgٿYXUAo& THqäOޘa֋M ~m=@sG@Zvl`B?N}*m]e2x#BYs9UZD.n -iL`Qvx&Rg=$Ti{70Q 0lZFm*i`~0 cyG+DޓوԜ.>CY棒Auԩ|P\삲_҄&UOíZB8 Vvg իv" m5̇s˽uu4%Ǖ64Qٕ[p3 I(g&,Lfoԙai'|%NagmI3R4˾&j݌= /7b@=6Vׁ͂v!y5m.|{n~zmYe W3mQ>DyеO֩޶Nv=X>!N5>v&;V ׂU[ ;[>˻0^/Fl0zߏkuW%|\v/Z|g}1Yxڸ'֞J!'㒫Ӊ}˥y;*'k1Ɛ-',7?"&c?א B{VՓI7Of@zN1Ȫ qw?G'wXlB*}įtP.ObfoU|F${8w+':bbYguVH,X׀:fz0Qщa MɄN:F%}8W̚m$xUFƏ&2I Ixk!'\R67ωJ{?j(<$Q cHiM~AٽȞТ /lqiw* Fa盥Q<}KK|d.BS8"jVu2i89ck,^VK!v R-8(~DN{@gϊOs7;[%}xR8o]nV m g`?l рw?KG/v=BX7SeҊw7tkc>՚0xlL<Xqt j]8P ىM6? >w;vڻ<>(avTa%vn6q'1l9X}]R?PUK v 1]dZm8SQC[g4eFF3%9= "UL\>:ҙeo''^F6=W12uj_MxB XF֒>:Dbzٗ"He8s@={⾯dn|k nmTמw_ǐg˽@e][)fzY]CRmƹ?&D9;T}42SL>?H#3K9sdE HڥrW@4S:=`K$Bn?*^}DDc8\ڭ9y5 ??_JEۅ{^1H_boxWx5p֚͜x\;#wJwc3-{thtGLv̟y[Ӓg$agH=Cb`AWJp.>z:>; džldg8d"#ɦ'";!ʖMv21͍c J6{빮k'˥zG9*udpf-Vxv6RN#s0pՁ|gz$ŕ-J YЕ,뺎JqWDawoy\1<Ģ|%ܒJηw~TNA*jĹǺ^Հzr"mM{ iV}݊lǙ[$P]*g;eglJlGFbܥdgvě6"يTEdt RÜnFPwmDRrգ)u(9d&xM0g/;@ȥ)-Lr~G .73QYBƱbW]+.iKXwFRn;ҫG'CKebplLX%))Z](z@&Yu8l@}|<؜%@eߪo|HV{&e\88 al:e F4vc2䯴qa`{ˊOA,^-2e9|A] 2wXgk7qt7!qZ"d\G/(=h4!MR]tITK>IݱEhG^Agj}qBQ+ڏntqVm*]X΄6ќ\vTB8g=,[ץ_;ě[`~YS5#'^R'2TԒjǜ$<iT2].Ih._HۣWκA)'bk8W2։X0p"?| l@ 2{u^JH8Lɐ =w*Eբ]5DXV_[2Z }:,Cvow-"d ~+yN}LJ9>0To釔]2r*k&%|Z?.~ E,_?R~ [<.KsQ|N(ꆾ8 +fѮK',\ nͤ=['ރ"y΋ eAև pV\ 7rAFɾ)4J9\\wD é;UNѱ5~!lzDAT# eԌM $ZF!x%m4h& z;A mslE>õ ε{K5]{]}I &kUj#K^j4m W/"#ΑWPO\~g\gȏp}zVr'DSJpfǟX8`͒U2U,0|+ CQ*|As͟3&/\~ޗTǒX^sk`ՇBuN܏hf2ς/ٌ0p_1ŋ\f&庛 _tN>FO@d<- 1Q46eeNhrG~k΃2Q~pèh ~05TSi3˵P8HEz`e:Gvk=M©`?kO>)RZJS|%xHE%,]5+Ά mi Έ%:2>dWE殕/_,e%X|UVL/z[oG# Gz|H"Rٌ (wWZ1Ԋ36i[MyV4Y:֑(zyL6\&M(.~C#bTU5ʯP Z ~PV5I$DI OۀBdIBv6M&L#u͇PDpT> z̦1t pLmD^Qbx:h"GhQ>Ȳ=(Vrac`yoIVq3۹0U0Jl96* =O KJIq-}R†ç˦{/kΫZ2r{@&8L`E-ZO w-_-mཬFaQ1_XڒA2v!w63'G=ǟꭞBK =҃CÜPH|k-V¹_"#Cf?,|mX dnw*xACYUoTRS+ϙw%\V}Axr)88/M{PX* L= , K`J3^aA_ 0||N-ܩ/ q )VY{5lMzI@!\;Dz%0*]lY6 R_@ 4^`}l5Lc>7|Y>^QIE[`q$..1U2vJukDvkd)tVIyC?imł) f4̙ 4zs!]qQ^4*3ӽr ELl0LOb8/êk0Jo $A1K!TT}G dau@5w#Z;V S\OBr{ ȝ/^? Rz`1A^ N`0~SX>xIa;ݽPR? |ơ/ znȣuh0h"€g_.( /; z+&-V! 4pFP 3Oǟpfrx@g@RORpG/%[Z3rJ}=!|:q,'Rgm^SO P'q՛AWkPN|5C (hDڈv W)%MHc҉s&dXӄ^-UCބtjD2R8X>;R_MTAW~UhVC{q FQ?Sm+[.4]kktKl;G0۴+^^Mp7ҨKج3B4IPE?1+ZdzhX1dep,+5 R P~{?6M R64B c ohQ# e4&\׳Bs̩n In'f',!Q kOJ9C{m>Km'$wj+jNF:n:dƿ,k>7A'MqcptdwA8Օ0Я6HcMM)~&֋5<Dto@xMa0@QR^^'? D82=prh{xR2Y{;(vDղLo=" [|ED1㩺r@Ln4:n~ HvT xH64I5Zꆒ~r D؊9Dv``)rmeUb_s\gQz ؚ4jQ י:vpW- x 7 #i[Ӎ(ZW\#ŞOhDG)ϕ5"+oY4WЁ&zD"њ&D?⑒:DN9\KúsAPy<*y<]jDӈ-EQ_m)D(8 C.Ƅ! im'oVɵR_ W lmAȮL#3YN` u| rƁ5s 4$Nz^ֽ68"Cz8  4(Z#:+XٔsRBs> &F1@y: n]+ݺEq*~ Kxj2w,|TeF?^l)-ʙ$Ȍ,A m x,hO&yMFpF!zVHSXfWu ecwpdIq'ޘj2QÒXU*}&mu## u3Bս=@s(BSp"ۘAXIQshߍGen85v Q&x;A~<#p ?qjWŠ෶`r <"ApM0Ŵ22r~׃ < ߇q\"Tp2 k%`ynPX4f<l_kmYe{'%#BʽN9"dNLEwYJRy ey{=`,%tnujE'" R2"8x 4+t֣6Ϯ%Ŷ:TTzN !Rql_6Ҳzq+oz*l偋7hn2H/u؇t=}uՌ-iaX3?yxئ1ɕPKH_v0}rïS.oM"fYG=a>6Z.O^iP,)0 QyQшoɠQC?v;'R W| {dVIg8xE45Z#Ig#ޔL/9Tu ~}LL0W?|9]tZ)HX%F.-|tigdXD剌acYa_{ xt~wr#b[| a?nݴɤ3sEly:Pe%!n_#`+rIN, s%˫4xͩ 9HqL0D{ӽ7 Jׂx_|Y'/WUUtjFUp]JN r<Rnn!]rLH+^*MLMTWr0`aW+ŰD1rnoRvQ吺 cnqcQt$bfv׺{B]pUnl']E6()D-{{}Xơ£{58ȧSZ1>aU [:HtY&tpL ›$x,8 mqء}`G]X) y֦!0'E*ήZ 3J,?YOjtVSR5荽:dh"mAZ X*͎ԣjwTVqUZ## }:ԎNxtw1n>?vZۺxInOQsPM;9h ZC2IWȘ<_~/ HPE(]KHw"I3躵OaT]ݱ sL<0~<;*o$A$vl%¢xF .Ѭ?IۊBqpv) I)w҈zNP(pGYuDWoubIa'zD1C9jzb:?_HtCҘ8돑sbv1fM}C~hmt R⾬>`CP9[x?gGZA +=7u-Lp5: 󴫠/ód@P- sg-/6ipjeXxnuT>W؁I˸Q8orڷN9oJxF譆XW2ƽS[h*Z= oI#LC |Lbi=([́d̺nEJDZ#>xese$HzHjtiɶqVED\ɋ4 C} ϹWy(̺T,o۠ߞgcB+מ&/N2vͮ,YŽNz4e z\aGCm=h%akkKEٱBTHh+[PK.l%L1оThk[E̛b/d_IZ):d`'_slXR;KEbi/;t_)O W#%Ӭ*'g 3O]>Ќm?'*ԊqSѤ+#c'jf`߅NO[7Tݸ؍x8t{_Δȯ*mͷ.R_vaU_͹NT5x Kʟz[q"$dthŭM6d%eBԠeŽz8](|␁>oD׬0wu⌣+ ~MAElh,z3yE S󬃝6 {^ZH~V@Mdt;>A瑉).^:<p`G^FCe>J4gCKH0HgR)_ɐ}|:E\ I n^܅+̔2(+֨+]M !=?xxN<|`4P~$S_o\<:k=﷒:pF4%۽ؚэA\$ܢ6orMJFSXs1ŧ~4Eٶ;.@uOfB_ *{*# .Wh.PG6E_1#~Q' bC _KX\CaF]|k0sQ)x":`Y Ww &MkEm:->z6_ʹrQnȭawn =xeG)vdڨdcur skhsDMf+d[Ș 0m'KAZZF;,L?Ҡzžx*Ы(4 :RcTLo6Cռat ]%\2L$B5]듍eȞSyc!NjgMX_AYȞT<4FF6niBm`Gzl\s`vHЈ Z0!ևtWC'=)zy_Z<Ԑ]  ٥fio7\GBӛiN4zˑCmyAt ;wMx`V2M/.REzKRZmD:`@Dr~uޓBZzi!e>I9ٺG h\SvUk-c)`OR+P&e!L]OA-JJ7VY$Y Ŀ>ʥaK}CU1T2V*WG0YTp8(;ڭL5k) pniݓ_D94 ,q]j ⪷L5\^x}g/l$׋'zK s\P!TaGfP9|OA:xNϞJ"g$߽c3^;3XA'&K<>"⍢߇7hΩ{0 MHA/YZKj,.H'9} ?*O; EbP0y+~jE|AZ 5T9SMuJ ymHQ|t . gE@no+h4h_pWh/^Q8z5<1\&EvK糭aЂ# CwsX؄lMf\#Ejq^kp{& }bp5jJ6wYPQGӴj c:G5yzAh҉cl٨.!(p8$`Z? -gBɚSNϒ=;u<Ul2ƘRpY퇓y:n#lbJV"HP؁L+Ç Dž!XsI3R񳣻6=S%SrJi n xlM|J8?9uVApnp# HKA6d`-toeoXN%d lo%O6R@3/Djʢzd^$^ #KWU8TeLD #BcҽU`˳J%Sp^>Yjmw<8zH;mz]*(Gt_"asy)l!=YN]Y6X0G["a+ WDDŽ|]aQr_8ʿ*m$+ǥp9 uwI M^q_ptkmx+f %-ssR@i\Md;dnb5Ѡ~s]$&@ڮ$bEjt$I$mbG">)\ɻcु5Hp-zΓ＀\LY~8f+s [{PM8[ݞf1fk g(+D⛨Q;Iâk{/0+r`/{FƮ[;Xu*eCԏu'a]9C;ɨn[V-^pդF*є/gYfBOGo㵜BAٿ;(trr3 Ue/ϔZ*X;qZ78ٌzR2R # 8cG(NNA쵩4z<wHt wNixP$'s;hH/!SgDMnF15鸏?n**%TGqmM_L:tKH6_z:ɦ TH0*VF忯7ׇypabxnޙh[/ @reTs4=" 2wm!CO2$QdLu!ǙZZ z!tѡw:$ RmjnTwL 7Qz'ˁ[u)AqFm>4RUfCj e fC:P<@L"Q0\Pl%{A*3~)FouAn!>dn3*ckpLt-U-95C_ q JeV pDs 1gqF`g+׭m^߀zp-Q(7ău@K`'dQ" BmMz#)0<){  +i6$eeI7uF.̉Q`zMĪ82ܳ~1RmFC > nblléß*RQN,w6J'O-FQIJ%foG8)=y#jp<8x:|X蹇޺o;t;rPq_r:׵E;hHy`gJýyy64$[w0R*n9R޶b<9+͍*.֡=x9-2n)}#"JmRY&nY[M?+hC~ Lq/B/ϸMDd4XK ;l0#T&hhDiـ ;ԛUpD}3nN69bFLf*_jРk{Tjg?f~І8aM^w+L2eOG O{܌6XۙnĞՓjp* [%h[S %1RSɾo#2nqWXucal,W[LN! oĦ@4ZSW"ᵿDMa*i;*[T" ]9c![ *b+M,ma\Ӑ.>KI<]VHhs0vM!=w6QTa`e[ZJ<|s28k5a p+{/Q̇ylUCK6nd(#ˆKN!nghwL c(Wfgk~YGnQkxpǮҼ)h/ycoF9'2ȋ[.߽`u`6O M\|&x_#3L1b#x.7{>j^>ʰhj<| wgWKhn})psCǣ i`Ӳ`b:lIs dG*tXhHosW FRX 4~g_O B 1`s?1! &^$Z=kԗ^Ƈ;CQǂ<OBagsݘYX/ \;(lzhD%Nsw0.Zo %Nk|>:p!n낃ȣXMkt7q8j7^9}90kt-֑続aR !q*^EBO Kz4fzLO,%@YZf:q>'[ I5Pbf߻Z?(@cU'#{x+`P6 k9,觯1᳌`AX88 2|L?J GۜcOxhYAfP˲&$KɄ|1\Iz0d5^m n]1ucT${h<當̆W`RrV!SԀ&~Z;k|$,Z3novwFf5D)0FA{+}F~&p\/l#r|@ {xpJZ 9&-2T8"xO?&=o̜ _fO[dnlpq,@V-u*< JێB%IRDvs 8L*.J?猘9S>L.F|0vH tΛBE9jg\G q.ŶDH 7,"&zv{u^](=")TVaH{j׶d2zmq./+ ? *x{ɌYYE[h<."/.:Ґl8{VbZwYIL p`ÅmT|3ɉQ \u4U XftȋN'1J({á E<Y^-D+<X&|מּ59*[<15q>я5.Z!8|Z%axآ]=ji3}i#ts;5Tyfcs=iЈQƵN5bʰT#~MIn߽DJWʉckKhࠤR,z?dy4TT(Q"ڤ$̳2c2y5׽晫wE!*$!c9u8s~y)*lEX4q-YK#zbLLLǎP7zx= pQm6 } KK ի?p-N &Ewfb*ˮoq#t"((IGqۦ#4hR˷$_#dBpbeKQ;?vdOvH, 4Mh)0!YגpkUVѧ MD)fQp9[k$ =Q/=vt 4]Y ,jt4rX@8#w P:^ԏTbyoz/5둊28V"Q &@ܷlZu˩Pu&v{Ί5!.yaE $VsPd cqgPQ;+#r/}<' ;rƂg uqmXptx>(%"M31%$ut/ zԙ3}>zC ۱.6 v;BW# 0ZU@F+~QSз_w3PLnk8g.፼'WЊd4Z혘J@]=]5iW#Ғ,_i9µk)殘"Nl(G%:KP-,E_땡⽈ex?"Ec3 shEbNC;$W q='WKpѷn<I.Aa\:vT9 ./9PЗ!dY&>%"y޼q_|ܤs۵j<#tb,|1Cj .fOO!sL4tD^m7rq7jkrT_/ vZ]p)q vW!*2RJ͐C3ۼ*O yC~g+CBW#R{y܀Sz[mkla.+V+eX ~;!s I7> 6RX%5M=IK óH({v)j|m ΒC^=#6îQ]H 5EU"sD@ &WOB[TWlo<$1$Mf.$R{Ыd^ծxrs6]~f*\?g:GΝL"[)F J /%B ވE>wGJ,͐x*i.0GV݃maKʻq$D#84t-FsäD<}h5yFDw\<;r~Wj~~Q>n߽x]!r g+8=\ӱE anY>ECiHtHR ?JxH)(֖+e.~`r?Ύl+FHVB'u,eW)ݼ]dH? $dׯX)__G= FZ_gj$#R6r.2@a*k\0?Y\/O' [ߢѧ)@$-AaF@9 lmnʴ# PCZ)ښ p#&rT HX%^$ATUH $E`h ߍCK1dDXk -p,F}#5xgA}77%Dj/."L>55oZDє@8ya?5|]xמw90h:k câ{:[ 1; 6deǗQ#4Z:H,է"''Vaux^Rr߾ ؂'9 #jVG68@d_͂/:dG3Ko1y5?1pbkVdPI,ܐEqHF@bC% 7\'WGsd1jJӑ0=TH䎹 S_zNmK1fqpL-,H?BW"tY} _)ˏuUaO$G;ͼA>{zյ#q=1c!Fp[?CeXW*Uo5~)p9{AB\k]CN,+ ESi{}Z0 _ĀG'<@m[(]1=uHWFx&#kDj^a*}H„OK oLmm.Cew GϟZڮ.D{';lp~rj2UOsG톧T<$ll(/ 5ًts~Vp[6z(W>N\}ƑD=cY VY5Buuip6,Hգƿn`=yHE׳tP:Ѽl(P!e961d)lt3&)uY9_T`fלa<٧]:HLcxCY Z- Saphyݝk3|qhΗavG qaB^) w;G΄2=2lw֌_6Ck4>oxd9.DӖ.)M Z\:.pisTߤ o44*vQ%\Z{!}I$]e;_&e {Mi2^hޜXz2\nLW 7UCݮzGyzSыT483_4G[oj`"ui3^촧%l?a[66Z E`<ϣ83lJ|4 <72pnRlȗrf NuCE ,eOѦ' qF፤m=N;P\zV~aխ7T83px5Aȡ)O_)QLJ>y*G K3ܞ߷SˏWA^JT+RN E1}3KS Uʻa1VB.typկAp Hfs,=R0ӎI{\ShJsSFmkOAv֭SpRgL:׳ċyqP{Go!pĞ)fO3K1STrJx[B+hs@9VYLؗcaGcrtMWI(gVic̡ tyreqԃR^Nsut+nޭA0+ORWJ&'6YSqgB؜t]X< @BS^g_O:M@UoS'tװ-/ŦuJ Fo+' gA'%l+/kgAsc 'fL TxE1MGc{o(䭒/+#/b2)m9Ŵ$F=CkD<7ܶ770 *ۺU_'Mo3Ks Sw:G kO<O)mEY+P>f1XI1$8A}嬬r(Ur?֫N?ɦ~V3;ݍ}">oSJIKrP̰rK ~o0Z0硉{JuLL.,ƶ|q)}J.xZj~u݄cS!zE Ovx䉞9Mq.@58sټIsZpBv{zcLX^6ۻL?Pã+NadU[82&vʿE`^U X $T-@"3 'k#S@P %ZC0k ^R h= )e3"R !K΄ 3;AE0:@)`zI{L: vrs6N+l{vAּޏJ^Ο:wT* ['ceh(8#1ucgRIR;Sޝ8r!d''3i4(2eh'晔kIâvcĮpr|ab[]:\$@,M -V&(6Cۑ\L)=k qY+oY>!fŇCSadl{޸NB:/'^E ;xTl!Hf }~g4-߬ ơ.Kc'D Emr2ևx3:mn; [%RxIͺm`8W"Цά?-͎G1B F.LJ ;~S:++}yA1h;a~D-+gup|u')Ÿ{*~&%^~G:jW:Nd7D*-1|뱋8!R pl#{q56^O?pX\10.Aܫ b#̎SV9fT7If3Խ`@W'Q/H(r&O8yᑸ~doš?:_YYZKH3XueLMAhI Ls2bf~x&4v78//97w9a+[P[B]O=*!NVVS iMݏ):Hi PjmBOJA9t@D}J.GlRAd>1^! $|Ƣ6;,.;NS2\y6,j8۸jT*n&봭IfCq#bKg03Ñ H\@7qƲ ;ݥ@G kW28Jg*}'aQI$b?P'/vۮ M=NkGǏ á+0٤R'HwyöȤySmA iZ?ZGP؏ot{)Ws cO\{1'e- )m)j<I7dsIHuBo~QVk}u7n3ԶElIkHʎBD}Hyk|X,˻~"G7ڏ+*6clj .X_}!v姜C2=qƋl.=&_0q~s\sK{"[֔jq\I\>_qB_QwZ9zRč\nG3."VXzKO8`9|ұ+0X&SE~+QϭZ Bs[coϳLO19sC4`qYZ[ka/9?񧺴?Qcߒ 1^5YY5jIN[0`Jk#*|qjy.d$Wm'f7?TN@Dn ⍞;G h## F@a+a{H0 ;x}8}_+4)GH8ʛB; u_٣8 tXb`$fP!l':Zy1vKV ꪦ~5T}%}-T>6{ScS˂D+Ch3gcnh<ۨ9W l&(5M^ ,þcW=ST6swwMr=ڝf Tisܾwr<>OÙh(x?}H)"/oCw-dah0ѻP$B?%p昬)x?#ٻL1x~փ9CQM(g#ri40x30B}K7?=I@]c?Ѝl$ߏ,HGj)\P<c}H&w8w ]pMcvFLnw?dy4+kBIJhCHR(g+>ecXIliP]w~~?ssx+?s12'aW0ߏnK飙YPil>==DO'̎azUʹ<>SѨR1XXd+ Q%!F]G;Fh$p?JP\4ا?W`R .ׯ`ξP9 ,5W3^[eMLD)=j_QBw,!x Ru$hD\~O+ĉI `I[0 E-|pA ZZ,b_Z `g  _6 0CKF,7HmfѶ XBnjQ ϴա-nft~ѷϑイJF% 8_ y8o5w pƀ%ʤ$c٨C7uFj2.Jg|d`Dllt_\[,*,[8G+qEde/IƘ_] eMşl!i1r&tL^4Sp72Oz>tE:A|ƏHuV Yy=R<?$Es>;xv T l9%kOƍgݑCq?&I^'d殚ȯ0[>iWNvUW3K?‹6RxOQNU~0-{Ϙp G5Xi3:$|&3EBiݸy$ _k%ڛ2'S.i\ɛ-]5t\b513!$w)sܯ,[s<~1g}g[ܓ`/fh0"~2ҋ}+9;՘VLEкeHWiwP+j,:=IjP+VIME=y6hl}*8j4- Rg\Ľ\\iuѦ@Ù {ߴ,,epcŷ>׈? RLFABmc&46$C9|8$_EA_Oo,fQӑtjYSgk }o0W3 4ooyڱLGmn"fP5 } :RO]r|˛Hqnoȉrkw(8w4d08&iM\0sPjA,p/!z c2o|43"9@돈m!g۷06-6) "p02\[_~/v(Dc &qTxpek[|0&N2%>z5_ϕ\_'W6wW_˴:|%~^E2, G3 u3'-$,N|aR{+kd*%yJyi+ҁ\b)#@ܖ3+L,Wb#q+4slIz5\y$S-X4\X FԿ^Pm ]Թ}zh03_H+~|g } L(mi=6uwcĖcZP>N].N{kP\\|H7̝&`PKlV\(?unT80ӄR*c T=9?sdϿ얝o(8ʏ\_xܼB[?aNLȱPt0{<>Kr,&e^{Ǹ-a0ٷl=aNg9f{{g35ߐ"Up7:R VW;U/EӸI t^U "5r9n hl!Þ?L{!FqŅ":JC4G?\ +3J!5`HWʞD2e TaWgJAL'+=*ܕ0jJ[ O}ςFO)0o*76Px w Yᆱ*-Ax$^$ee`H t,X2(A3šrd|IY 9kZe'3Yhb%M\._l@$mt*klG=m.GGHWi;؈)? (8_Q6V%Эn0uw- fUN)«,+9sRr{(~g ]O~é=ȗ@ރamożM;>͸% nf }-`WJT=CMA=ZX>mYJ;^ 2 TN_EȆ7Ez-rӺˢb*x|x t.l}#(".΁氦 of㘳W}F+zݎWXqvH㉇哉/cv08^xojÝr*`m}.<4Dg5JSbƎH?~4AtǮy~" BFBs5.dl&];QX9~&/9<)CNYK1> QbffKKҐCk)ީ/yV]<0u֬8Q`ȷb򕉣`hDEbY~=x<,W=4Nzu)G] ~p]>IM*;[WÁUFf" Z lk(L/~ PF ߧʦQ2e Sa\,}]S~+WjgNW©sko!ȫH\ tzY unmKvЖ(u#F6r >XW :BH{A 8pgO7_OS)Ap_q<]I?LJE3QЯuɘv%A^ V%VSV/O_5:kŶKtQOw뽝Qiĺi]]8j #}?hN6"\^hĵLk>8-WP8zu^Uk㪵8o*UD5i8k\Ľ &ߛpKx{SB-4?rlBbmeR<$`pzyʁ"aЅKC1@O2I\A7^TV~)i>tXvt`Άc2)%s9w0'u5 `Rjg]"~%Z.i{HP$Ai {Ҡ\!<#EPs/aw9W.lvȭfCg3rwD*HƝן~}w7 {)$}b>8<`Rw&`Ĕ44uo5ۻs'tf&-ݥtL?'0 MhaXc-P)5I!#ׯ sX|Lo[*=G $ڗ69#lЙD,åo%xI]x %k$m|V,Uc8#Qdl e[qK_] WoqEzûHp>XV]d̂@zu1"V Ł%Bc#w&JAޑ Iּ\ !{dkbc7_@Cj%Ԁ:>ZY?L`u0$:(>sq=V:BjaŽ𞧊n^!o٫7aM:>;MC}VId%) =uzӠkل&sM(>,ebӄ%&jG`L}}mWڰs37ԡYZOwttqr)*QVoף`'s!ߧx EW|663}BC'AwlcK5̄Xs'Zge۳p_ %Arḁ"_(F3o[ .D'U%\ yn+Wuw)yi&\B:oN(B#Gdg Dž0A-)-"+B !${osg""44Nj~/|[iy2s5Scq<ZhB8|qυ2a9SO֏pm&a~ٳ+t''kjj($ۅe&`d8[#b+RP0%f˟4)L ftغ`tfK%vvh{JlxnMj 8B*ӝoAlغws E=~JG ʛ 3v+`f"N?!B HliKIۏ?e⽅39O$p䣍@ o!bKh(b='UVFX6u3X(\dsZ6nu J{N.EF8;'2 дA\?9Gd#C7 >8.U!`DCïkЍ糥j3(hSACQ/2;Txpm֌{GOxn!=#ʝb!zq\E*!ټjd$Jav >-U[݉[|qr*Ǽ*Ɉ*0:TfUAm;`{E894q,^v^dN9DUyry3j^+P /e`Pln%Yvo ipan"0<*㻇p gPkuqV:ʵRbp{ xY>elo*%8ARNyb9|_\Qg#Rõ 2vHogj"GywceF*>KTQ15ؗikWѸp߯F;W~-'cV+m*4$i!biu^0-Gl {ܾ 8 }eO}ؚżܻOloۯ ջ7hF%mN@W[NJS**M̲9`w~g\Tc2 ǒ38АÊƭ'88|ad/&7 J[tpP>*'WxUÛ_ 2dx@7G֫kMFlOMeW.$_޹e,Xɻ/Oef$;r4*ܚuwm[-S Ŋ͊ (2|l l;+t dAV,0&m9e6h)dEHz$]+40)KAC٪@%048k4 ZwRTH_c߲9!`1:ʢg&~k`wz7zY| hH%oQYy~Y‚\ze{u0 ßJ71xqQ6|dž&އq}9*Mq8) >7v 9laurWHL ɫ,3b pi0 I9Aɢd,kDDAc7K< J8sb*W:zO?מ#|4g`%X9|8 V慰I7Jzw[%I_c"X\ÑUMɰ}jŗ|!?!-]§+@eh ߯1ͭI4X-ْIۅ'yޔo)pȷ@5cv?Pp_m<ը_rErX7zAa߇J\_0GLKi&8o2_9`ցSVa˳Q2 gv+kP2q`8l#o4qRNJ17:!,W ?mڼ4:ŘE΃'J@E럒@9J^ˮݏ`Txd9 :5tì~Y &lTe6:1,CzdC̯[?@?'eyGj& yhF4nUz3s_T5Ul*?L"C[KFh>܉p6 ZnTȥF/: JN>]x NW\JB{du ŨЏ[lO/UbO}W,փ.{_W\O~fMmK{;XV^!o1krpn^.ڴ;~•N \TEiR^XS}OlbadY#&vh̊91Pw7(f1DfWJEE1JQ{^mckmwovGV-0Mj:xuCUW.4i$ w*:( [{'ɕ zJUY -‡Pn4,VjҠ %նvRr".6f&UtGIz!4]P: OZ6@HѰ72v7>3r~y5DlO0!T~+p#%" fv2ݖP9f,~|N|]A $/ͫ,\h3#[Jqر)#Gb"]9fUH.t7NeOYQ^HKGQ/!.yŔ@EKd0qSݜp7EKLfbF^U&ΟD\bБI·OMORO?ݬkpat7P̮:WR% bg4S%x 7硆ot.'\Ʒ9\rġX`}g0'w :O ɶ{Ȳ`Zg,ZRw wDA~矴)l( =5 h(,л|~L, 2$d@7Uϧ⍞RYI̕ *n"u-¥pxB>:'8H<3"aD3yWF LSI+GJ"ai%o5wniL* {:Ϻ 3x 7w>>S#g#58(l͊U\|Dosd%pQqÐQ fʚ>.vc\#^]&9- D}Wl)h@V=:;x%!+d~W FnP-":tmGZW~T&d g>$IP?wMۃgKsep>l<8+Q?G|ޟvt8eݮv~ܓm/SKVYC #>~}߾$SH_O*,wd?Z<3]^20&o֓g-@ g.j:Rׇ,KtrU&Y3̥([@ke2?'L눦ǀS|jV2լBKnr<|GiJGlj%\V)۪$#9>rps |BmH:؆ x`w?CR?$D>WBfo*Nڔ keA"*ķ&Oڜ1afbwL! c=ؐ-.% O5<8Ȗv^^+NcCœrO6}Gz+ ,6Є0xLKx Ӓ蠳4 ?J}?hy&s}VР7*W.2/>t'DE­k_ #o)u*j}$o? ?g ,32ge xcS i*,:='/FAmX|[{II2Q[EJӟ6&YYȐbYe_,^?\dqq^kz'5OvXrӣ=rOc#.0{::Wmvd|]ᲂ"RݧSKQk߲|\>BWv\ݙ舗SGmhYCTLJuLPϮy_!H~#R,y^[g?͉\NӌL8઎}tH?3&)6XűM`>`6j_Ą ky RLؾϓL`W*fx[ۺ=* qGK:y\K-, DKSDWCQQ}UzCVO94,V /%Bu/]_i _2dHKq;<>̜qYGdm9x_<OEBksQhj/b1uPn #I1J<Ӑb2=r:M5Z9{B$ w,8 C$g0~O,|םD ? -zA|96ηL8*p]*e,pSaHb}?uXO5;PnBRXUrxYf|Rpq\dÏR18߇Hx~ _9( yM3`CXR!$??^%`pC࠯F5!! h*VtRX[G S+ /y$raYK Wli6 'b~.X{uڍ}cj`.;)='›? KAe[.c9n7'l ylJ_E꣋u!@wa Khn9xfR4I.wäi3S:Z_Zek˔Nv[2, B˹4>hE@$X+]"~X0 cbG#vA3Y$ܾR!y"yϖy*EÖU6bP'1ě{>)kʻa%GJP|2PK"icUgo$RECEyO/_=#й3B78WvrA\ʃ\];PCs Wi$FV|*?Jj[RxDX7a[Y}Y|*t.zlFU0)aGNOUi= (΂%2\UB2 u9zt{i uܫ;<ڥ/ƑڴKQ1Eڙny|i]*?GJx<;2NbӞ.o]fG`[v;Nb%p0@XЃ\z1SȳtUCGf\P$T+ =T,BNaU&Jz9#o0B I?r,g_3K;WoWU\;[ toLzF}M :2$ V^UiR Rs!28=T|C@ǿN_@[8 _62ӄOMTD)(v6k_ 8kԚ̤;\pt~0zW,s mZZ0:ܫMl|3gq{m!I(ki>HC--R\^- Pa| g9( "eG{M'v#q6Z$>:.n.}ְ*C`uo\\<$>LVt>[&ƽ0EG9~[ /\~^ {c^$qa+pg7z<sW>Iz;c&j@Gʽtn&fE8׵9[K7Us|;h%4=8op*|2+`>ͦcu^u7rw&O†rq%b]U6ۿc<4zCG9U/IPa+FڛOHp70H !adR%Bs댍8FT6.&hc;aBD:n?U <rH\B1 =׬jH's0" 8mOw~>c'h|{B:1`;vK7U!&TW,vAM^8/yRw h/RHԹuB&d,jspAlj<zU@"{Խ7 pΤ̋ ?(y>b&hX]`qK|^^w<_̃6̞nZ n:cY R6,)Ye}l8\[-.v :Vxs$/7޾MAjg1>[](4nN@OCK/ 8!SIW[3P\ m&~du=cv%62"Z^×f3ɰĒ&Ά{e~UZxnX ,8oTY6éwIpJQo".< .~l=]߻Z:onX -:9upNZac b;YxleVg#.4ɩLdW3_E=|%-y~L=<@J+re|X1A 636_42?<)Sn[э %K3a5mvysAC9]Ֆ+bF !5ٶp~x<@Җ0(rwV .k̖\mu+ֱ;+tLAWަVwGa,j9hT!E1"Ms{I 8YY<.}[\ht8?.|L[ -G[ E~],c34{vW[gcpOek&6X:Z;a`R!|tW-?5>px#jB1`ӡ}:NʇIy{z)ؼJ l6zxp? ޞWĴ pp(6]w!J$/0OD[3Qx̦m(3VyS |cfӫ#zAvһą/ 2b"Xjհ ̝UVLԁұj`ݟUVepn|c0ĉ$FDWu]$ yƶI_kv|NUb#m2Ox 0|!/'}Tۚj ?㽬5>|oʬ $&5'ϩ}%EmFɦa E ] $.)"0J`UUgrԞZ1b<Ԕ2^>:?MB7"O} t`Iً$0f,|)ٸ.*5գc`Y'ږl Vq!#pr"_(87Q~%܋Hš[ق΄^^?1Ю%=7$~jmϒ(!['2W l+aq]% OnʌM:Nr>&_r_×b{zܠ`gq~g?sQ5%$*}jJѝ2)4wď}|)s!L>=R||-a"ƒI&)tM\W@5Ys7ᇆ7VBT?s@3X:6930N#*Ͽ<}mbQh;jv<ǷGcxg7:.NM *]On^66L0\7,^^uvr44]lw#`bg*?iF4zv__2 $R}&xLj2Sp7Iwa f~ tr~QylQdet7u*0zmy@;ԏ}} ~ G ss3ׯx|[5ifd$k vUZ*W5w6,m`bJaD2.L]!I؄u ) nhM<WO*6{HJ\GzN! ; y%aH@t78-RFiGGؘJ:&#+T2AyFX7WZ^ۨ=? \+͚t|mrEnya2ʂ;w?p5N'J<6@,Nlk RWT*p^Ȑ~N51 +"t0^Kaba~i_>\M<KHKMj/?Z&.hYOaCԃiF&SpT+/Լ[WCʞ#ϟ/4 (_z3+P=F)O pK|"8 Oϳb]sHqe|[aѹՑ<ɻXIo2 Z&(>!{] i>EПXG ?Mvҋl4"pfY(KeU#¤K~rIsIYbک"'[_jw J(ÑR#_n5r-m›_7Nowe)3'kq.a<+dnI tuB)h[9s% T g+Wր8AG!;Y`?/"1E\8_p9fUl !3Wm/(w'l0te<;~3([WdC%3Ԗ̓ \ԗ,+`CIL o90@YYCԾ2Z]3`} 86o?QS %ElV+%X}QEy4nwLR-~s^wwefl&'JrW$~7j_Nv'Ia@qU|ᪿLȴG|ܡݧu7 );˕@;} ʦna֌oi/ORg%t̴_U/nYgM'+iX>=w査XX0ETE/|SCXV jzr뤗Dnݿ:lPRm0SE7xE<6pݲd |oAqŸH>(ܕJCit >̿=,‡k$@C)߆i8US!B"Re(ʔ:+Q" 24*BB!yڦSQ2DB Eϻyެz{{~"02!LU/x̬ Z7R`*tޱIDž3<, >rCoCy„<7 le^ίxAP\kI-'p&oS\{nhFϝr,.mc[W>2|妘jQ+-^z+2^䯿= FEvDYfJ0&_' /HUĈu-1-eV!4؆;j`"w /dWsU%8ͷ>^E#ס1Df+@A<В |y sა<@q kT`̑_=ܬ]?à3yPg}OxStOԋa `޻UJ 8z~!C_SAV&\x mv,/Wxg XSڇWEx< $ ΋]ץ恾E_#|ҍ5z֕-8V#}=`..TɄQ;JxR9JAsxҫiPz8F/ ®۳*X#!u?,?trӓFCgEk>6z0O-O#DT->ZkLq>X˼ߓ,sаNyK<<8@=J+bk͗۰;);iچ46}qYM&Lb17<['`dZ,39f6kŠLm-_|fZ/66)@Ck#9`reh˟P,]b uN\zw,xY,m^h6pr͆W 5HHg(P)}56n] 5 ^uo7#Wi&Bpye/JZP"?.zy,~'n#堨抅3NܤCI~ِh~=Տ7i|V Ƥ2U4_|(:0 $wEOJ*EMtFۡW.3ei_{rW3l<א7d,ūG \Befh̲G sPq <<9#_Y' FPqMY>3.2Uc:L RQrr2&nr$۫ ڴ%@5S"(_ZXFޑ72M ZCъΖPiUW7lpDEħ磥zYTwŝaab- L|KF{W1)A; BXJNsG#`_2C,JSY_0>h̹6 W vMǿ7~(w$r:,K`H+ 4 . $nsm]1.|>Zy9wE(4h`r7:σER<5MiUAdg`L.DRUڻg2 >&ljڦX~2RπOGCkd݋|㟟fr,.3, $_ *cԵN箥%0g0[zU\v"<]Ar]+w4?GhLi~Ct\ْ@9/8;(̚~U_ _Bpj`/22a^<u;È?8$8\[HQáN\(d 5M*4w=Ukg*e]ni1nC'_D-X'Erh9?x8:',yyAuF`p{)~lX 3fk5]{68Ώx{ڋ|ˑ['C ֟H% .7 Ĉ~1{_I5n8v <$Ov;[ F&&"'E}cGp^Iq6:ts X,ܿ.Tȅ/[kꟽO1"p^blo/\" 'm%≍,Nز74lG1cTQrśG*o-Xxo\|(#~Em7WwĘw~zɣ?dKx"v:xJ~k@a $]LZzs~4K9;\ U/栦@,\$֩4!U*Ged FQ6|*ӲoesХ0Q!FۢQ S>LV7z ۧvu"8_n^' 1':H;ճM+lL/1|ø՞H> ¥[pT;d289NRUKymY.tوScĄM [>؝_#L1˟4 ٪Zn;- U17bTp  ~17F+Y3HGgC6s4!.d$j[ا)ZSha>gPENmI'ª|o+Bb,<ȿK`tdY.~;/b=LjG069 췴Б)qk\,Ts6%>HKƛ6oɶ}p>0[5&.(L$Íьgh;`':(4j UU)gc 3UqKn5@J\7]!?mRsy['^'(Xu,%k{nŞ7Gy|w_s gypSOpai6h^ ,2r.gҍw5;t:rGS,=<˂)pm2D@ҹnYA`T|9O܃cgY^[μ˔9aC*L'6+dw)MҪ_=DbI[)䚞p:QcHcx.!BZ7SAkrH>7'#~/-衩~+6xoTf[Xzm|^X?oXA|~LϼkppuY7NBnY %NAZ-{#p[b{R!fv8D-+iM2`,nsj`9 \yLP91I3oCI?ؾEF؂)VQk%ᘾ~/ $BД72; ;6L$dAhxbM:g4̹fJ]@!x=Wj7ʪD_@[^YFfE|72'&!'ϛ //x^sbm88{د]ϣ"J`dt0530CXۥ 54e!0+Wda`_rTˀQ .N5$`A핉WHզJ1F>w^ a7O @T ^3֓✱n̬- +$㟼`C}؈. rg}`е?Mf$w/HYprwz?K< G/1|(mhKLl3׽1٠nS*! 95]FY ʼnhdDO,y.'X$&:Dd-(FH@[ iKvXSd[eӮQ$_C)r + })Sb,8׺ڌF7AkK݊5c|kxO(<3{$4>O׺e=޴ 0Cɦ6(R.ft]ǭ((@}YɏWf"촵lE~ f4̣hfӣ5eV1ZIf^.=7W36Sx=0el33 Ӌ\+,{}6Q5z!CTmǮ!Xwv1FfH-96z8޾5E&.O_ig\ #)vмimy]/JR(ɉܠYT ^WBA\@vy~`A@6Ӱ/*}& {P";ew|{xv"#- 8qT d?Dž VB! JTHمBZ" >ER4DESot~I vYˆ+ӗ`-CF|.> L0+D!Rx;,dSNa0*,Z-#EѼX\/G攉ǫ'iYٳx*3Uh)pwa oƭ EcYҟ&hx8͗k73ic, ~A랛ji1ok  W4?EFc#..>~sʵIu`ɷl|Q&1\&Ęt*9!/*X-ߏT!;#O b5uf 3q&I`ް2L>%8I\zŔݥJ&(kdYx9-e\jYT32OKp*Iŋ*fbFzi)u.ˁaU+O0huvyi[7Gg໰͂jqPE9Pi;X#K0h|!Uh:ZK\gCX1.Qη,_l_,OX{QarAn^f 8x|x ǂZb^`aGϛ>&p[/6arA#˖4q2c ߛ6lxÄ щfwʿ6"[ߧ՚;PڰޖS:ĵ ?HKKH`c޿l~x(c&eYW}΂wwK4qyNy؞x"e8[N>4LG5i屟hkF@X8|Wp G4|^:0FǗb9'=1P,6| ,p-o!P&q0g8Q @UݮLG(].gu£Nwij.afo#Wz(' ŸHR;A$lU߳`c.Vf17Q,tٞ]T1DNޡKD̮'@k/1b4WBY-.\ىO>'ǭ#[ Ò5=meh98Zב!ajR(`u[0;eeY(g,X]s4W_.V;0-Ì#5B <.yЩwb Y]~|?8>e3G6sџ,> JD٦t4l:jnRJYbN՞Kk%1L0x募l[3Q2qb˿nޫ`4fߞ&o3y]48g)(٬ᾴDR׮S Τ.i8J V6OvkjI$Z:TDx34QZ!hTB΃2~G ]vocL5̸LR2e@@~jv}?"KAΣv uQ:zZ+FN)ī+(nr{H@xi,nӴ0cPmX(_GsMJgvL<04>kbl9RP"ē#$#fLE?pZsNR*T)-2,M1Q_5mu:תµFX4=%QXh-y  (|S@&948{ޢv3S4\t O֡y|4~#ՠ C xqԟvVk^{3(H6yD%Ah! P[U tvYV W JwUpvn.C˅W`5w@2^G:TgBv|! RF40a k=rwxn/#ŅoOgJT֑ =&bXIOx k`31 ;-U df 'PYTvJ'Mkf&( |ѹ2Dwh $YljBT8`w;8PJZ^G Xݣb{L c) tXu=v{z;ڍeEqng.:,ɕoC_ٸ'+̿<#c|n SytsWȟ- @0F϶8%U#9h֚߱ 3|g/G!QmYcF 3MlS BG1jCaxҬP_w1g PKs#ed.F q:u~44c6‰#=qpI0.dNNS PPиvy-To y55'޿qtlGߞ[cD\\aBڐOj6 TDuL f ]L{8|}q cwliLvb~1dX+ht*0Vlj_S*4F$q'e }ڇۗAZTB~oUTx34k+aǝ qj$ l$B] W 'n.O=1E\Xi[EϤw[ pe^*z7GaUTɸ|Yllw}K!zOϓI!^{]Nčwڐp{PP]{/L-JņtStm Tt~`ٺrz9}t6j&d~fJ =u(NDk$*nn'~ d>24/ű{YRMov|vh*Tr l3anl @߆o@LɅ/oÒ خ,efU=jxdѱ"1fi|W4_ gĄX0vRcAGţʀlZGqc+J\k8n0XgKݑ9HX& :˂F̶&eJdV2D)Föʽ40 g =a4wA\Mq*3wu AfJuL{EP,-.9]cZWQ/VC'٢}#qDw)3ҕhN(\!^T \"IԆ;G1,J7]}:YsYq66[p G&FsCgy.kUc!Gti-p/!Z\ڜ~qdZ!gC-d9TX2$LxtdZ \O\y#$)hS%,SWH"yɿ ^נ焺(g 1C,Jߊx-˄ -W8rBr*d/+| #z+!Vc!'*_G6mtȜM #?ϐA#4Q`]Da?gPA[,ڷz3SRjܖާȰte$.>-bDYv|#:U$A=(iy::" FK@Rl^f:nXu`, ƺ3qda4y_^#]**IbWgAK8&r뭭)ӵͱ_hؿ0 #\X1hvNߥ㋏"ё'䴾U,㚴HP^?8B]QFE5wU#5IL1K]Dx՛)}- C/W@ eye,:X#wÕ~>vb!:5PH%V7O]p2x>|v(\B rE+ɰJ3YQuƟX:XIt#1ɟv֡\)8U͂ ,0i( rςPYqLXq1RfœU6܏賮HaqZ:S̐R=c*!tV/~wUיh>ZŤ4V O{P7 ,‹S)g7w|emL,EӰ Q5>W>*[Nr1w0lrLG҆%FLte1 3(l4HPOmG9kX[pq|߱<\yx0_&(wqqE'v\<^tۀTA7lSB{;#tzdD}0,Ŭ#4G 'J 5:o B$Udl4(,TOIO˽BöN/;pb(%XܛPi#赦c?y0YU 8!=:n0׀ȱb)H&5IUB$&a+OK dg  %$!YEL"H($3d!r]k{ IM*/Je{<<;> y}ZNUGIdx<(-MFeذ4x}~!,[X4b^X\(pR ~k\A5Sh",5=Q%4䜺ٴZDďmߧvZGV\ eq3'' 1J#ES%Η`OµHΕr4J?Ɲ K!v*0QKŤz]* 2kA391E>+S!1`KK;/ cMXڪ']rpI"~BF^c67upC]{=l9stjƛ44iD Ȑazx$.+wJUO>rHbY*0&ʂo= +`e[M%T?7Y n"AU {E F~pno*aQrA%ЌfWnɅ(ֺg N i(ϕ? .URtr )fy6۫%th<wf"0ʯ䃍*18CݒueNM2ڬgŝqb yAx GD9AlRt{ EeW#ҕ|A\kdŴo{6֢ǥK}=Ϩ3;7K"UX".Va,g/OrA .˱Nʞy?'vnDD ._sA E6/;Uom\">1R&Y*Mu٩dP۲-HɄϖ 2+|>G6L;< dy.Xm Nn79y*Sp'ή(΀~").Wg^+E~'0OroVWd?sQ̉2 2̺L:Z|(}\٭"rRyyS7z)wo*$otR&~0OPiqHDH0͸Pk񍇫 _~I;es~9pXxО!f\M߯/c X wdePe=NrpS4l/eMt]l((W z?X+:R u p㹷J0[L~R_Rm Fz[HRg4[_) N+fvP"Ԕ YgCs,u$zG g6G+QI`sc 5%Ħ`RrWN\lU jl+Fi(r\ᩪ V _ jIVNҵcJ\5x?,I:v8b ]eOss_vbNZk5~a VũgWa;͓IW`OCVazrs>QOxRA¥v\#kټL<+!5ZkՋ^lo,ڬ?5 EW5_,h ƿKSSBt Lu  :9/#:"K-gր }9q:bIWlVVt_!}go ַ󳍓_p'_?\_~J !xpA2 Drρ{RdFDOPNۣG2%U;,8> ,nD4^;_3v`ã+mS ^HD\tձEwuN; צR9h29q=WXCJyI{$'[,0ٻ6pbAz̓gK+my]+X, #K1WF1&hP13>R~޴k:ժ "45HE¸~a 0U:ߥ*wb}v sX^2Ky}0j"~O˗K_Re\,.U&eC5CV *Al±"XHܶJ w{zPڍb l"ds5ɋmqx ;LkY ǜ[2P?^?\<ɶE xaOlTu\ҤT{0)#;E1!HOyvmm8e!b ux\FRL 7=wk_f)¢a- TSUբôk#5x`N5v/p V9kPq+gLCbĝGsQz{u-ubY5g bwwuHI&@{O?psƚB@~݇Иu8r ao#̽ަs$ 6_XӧB^9t0#'e@Ԑe&|RG,)FoH Wu.kwH y.ʂ.83D10(Yt%/Y&˭gPTshh1r7AjS6A3~+f!u6p9c:;:6kٸW]M2 w5ba.G|<-;Dō5 IuZ."'Y}ERfȿnk- ̅QycG?t!m6 ~(OFoTl<ࡕgoq(XҐįHtJё;qģ,}$y+&l`[qv`XgU?>RJ`};]4lv|6ȵƒuo=D[O8N xؘߦBp}d!xh$|U~/sξ"&~ŨU ν:i: e(;wu\>.[7tcxe^O[>ãyxqd6&=E6~H2&|3%f8EHhiخ{1kLnmN)ZÄy#AP{>h͵*+6SJ+>H(jJ&e'4w}8@Հۮsa>;kD:m~m[wup\$# OO7gax?@^XǑ, Yo8WUU̮D7o xq"&/H}oY #9/,h@>+Pvx 8B`EI}AtyyZ~&nb a@Nl_8?w(.NU $dm%1JbǨQV̉lNv\/fpIk8_Y(%j =NtWb؝G&TcE_0 FS7pOI1((Jg Rɨ〞sڙ,{?ū %_Γ92_WwB8h~ѵT\U8;Ԥc˜,a3꧀=ض,8Cy d߹ <$ Ph-R#B3'0x#[8ĸBjY# @2 *Nz,OFCV^usg'<7v{dj$?@Wؐ8}7`cF:vkw)Aj=\[p! Uı>@.+Q8y8aI=d=X{s.Q{3Фg'L+.  m$yf٨} Z65s״~9H^ )A-9(r=T[f.;Lk' -Ҧ3q9t]nzu'_~/!`yrG,.d{\걃/ڂͱN&Ր9h;}>"Q.~:e{ \$s?=z.$X?lKP˙|>ht!i+~y 2q$BvL\Jd2ϖjKJ90 춨.;..p_WRhN\x%Yޖ@ܱb̸U}=*D,5lig6TN9Jgf‰cdR Nse o/3܂9jfҗ5/ș5 -T?_-؟ Ǎ(h=|\!JysKёޅ4c0Jd؞SrFvEIpB wk6?s$|c?hFگr7G`@7o(k%|?n3RR-^Хzv٪k!cml;-`HEFoּN+c?1f3WB^-BxŅ,N>@wuCTM/A9x( ϢԄ#zՌwBnj?E'/gb~CZDtP!B}=Kj72Rp*NWs<4ģƄG0~{Ժp>rM]:0KrӮwip3eȽ8ؔݡkVki;]K}㳡e=>̠ c\7(P#9{$>\H*P+wuyfrӭ+QSM(c:а2I'r>a5Xu!5T/xC~ >7e @SN<+Fm%lx6^j!<Qv6P=mģ*ju&Gl'Ln>{ɷMd'ǠD$k~]!_1߬@ԢvK u7˘ƴ7Fs}׋*:q "ѤGZ$P,TC^t$W.?nոظCZ߿Yf6IwWy'QKAů LJTbs4hղ//R2^'\Bݪ(LFAlOz%/ Qo-zxm;sgҟ|Ns%b|_y2đ̧牏5Qr0Z*>Y_A3]x^opVW NƆ7HϬy/ (94ϢPC?v[M!ux?dw4QRRiIYJ"lIv+۞VH^((J!Q}9?{{9z= %þ׆DŨ R0L*J:Lq3•\{.e!S,s |(dKfav敦'2YGQ&9j2eݥa&áe)*~^龐yFgajJD{ӻLPű>ESvIwL~\d gK4iA9ӡS9 Sz@]/ːaua1!ė{2_I ΈxPtbUOYV$?y*Av{%>RBխ,k (To̗𖃋RX:s4//ho2<ϨW#>lTx'/cM*AP&i_#BQEl4^Y^$`P|6>g; /R;'*P4Gw5TU2kC9'x*`eKgZ;kDW}tѴzC^ ޿0рo4 (EmIn@~Cw5ױHeu*}ifDAZu-ԠEx5}̦"_ y:i_(z@o?cBl 7'ym0e}ڇ.TÐ)a{f$߮.R|^g!Oe|S2=y}DMwJ;% +=_H=0TfH FA\YOu`SƇ57^Et\ѻ#mdǐ?)Z]QP6o2.Y[a5d~*@1֕EYt/[c`#v^nz4bޱA WncK|# 􎶫oƫK)}QALҍg52b_P>g#Frw6IH|e0LZzr?R$ձB2+x^ xH*Έ)Ӥ؂ړ)xbz2kU$a6 ê}]zpS{jA&lU '呝m${B !TzYYi?D TݽeaiP U5{@:{*{2שּrNu2/Y9I,` w?$ٮ],q;dxM39[%> Fdć{R@f|gpxZ_kn ZEC8in8 ^ϴܥWs;0 |!9ߔ]ꂰE}]ʺ5x.;9գR=7%r{Ul{HOh׬7Po͊k*jR1?$denݚj1K]*a5P >d.A=/%mHSMݙZo 4Ԗf3M51h~phwd'bgdT˺y!(~I}od1Wo J˺3,: ,Ÿ!+{+rO#{_J[L ;{(לLںX"1bŲHO5W|.`waxr'nnvcK&lQ,cyHؾhְ4˹WP*.[)Bf?bkI;?<•梤0"_S(+6H5 W/XCPgN_ӡ!\_< ;`e$(kK23t:8Rb}atif1cޮu3C.Fwc&5_C:IE߬+|G"3\<5*(p"(a@I3t_s ;,V \m  g/t 8=v ~oKZ/zB0~7+9LlٽY%c7˻,2Ǟ'ǟ^%(y'4pNӷe&ػ*(sՄb&_?p;:)4.Ģ6?Q Z(t:s=$"酒0B8A]Om ka=<'g6 ‡uuP#]Y6e9T:?Hz~&۾ŀɫΫ I|ͭ%c(Ia00x1؞gDݨ48`BvZRE``}1v4(]uJA0b_9F]*m/b`$.,-ٓvg*u%u W93?)kZDDh?^0w=5l:Ӑ)H$c;x\XQ1 0/1DZqƖumJraȷyT-'\ڬÃ^hxR *L5bss*`.nǖK4tl>t\7;\L= wbpԢjK*M?A2rp۽Kˆe$+kl*2{b!NIDQ38Aj&j*{ƚ1AD?8FBI&2z7Qwiwpߍ3&b[rB48nk%RILyե=5$,D4 LJ-XrIA(˯L> f`0?$<=|Yd,E|jz>fia^(K_ww@mGoؾ -E>[t qCu_xxCBtw͌{C>MOPMsɐ# \@P+{U]ʠhǤ"l\ww2`gڬd23y1LaFh-/ ĭ*y  ߘb1Nf\Ѝ.Zrg+S+:#~#h{xqdGyd3W1 Rf(&/&+pS)^~x,awsϖ|o>\i5}"!A[j2y}Dz@o7GBԂ|K `vITVt.[&(FwaOd.ӿ Q śRY_YGC$uyR /=kr E4zqLkIj"51KG1I\dcɱ.B=fFyP4V*tL;Y}'7aºyzsɃ;b)3|䂒.TPo㈻Uhur}-=R(H2[X4'}Ga,ZT]14]^!Q˱$nRׄ1wykbza)r(2+ lmtqǣВcs=IP|xĺp<-9r }\194O5l}bAk^yX)OW&BUH":M0tlw aGMxc@&=)8 R_Wt"B[LKÖ[r|lp^-WvsRS~ʒ_4*2٪Kz!ͮb. fXm"66ܮŚޜ&.G)@̫J)S^׺V yXl=!fj5 BaQpsl4ذJH]!k") Լd֕eBxe6< CC!/a."3CJ{6HϲީNRm@k=Q ޶j#dʧk$x#.n ~O3=ِZr"8k>$@:Dhrӵ>8Pw^(B\9]R(&rКO'?uۖGjn1x+&`Z D ג" *Ygc!y\G"$'Wh^]2SM ՙT-!z1 r [ ?C~u?m̵jL-A"[ⷅxLvn _: E 0}5\K0:[Y5`x_[S`mwSϴz.K* rAYzٟfՓY7u Xu?Ht=$H|3>,m ; 6ԬX0soyZ0 k sErcp`%u{p٩D׌ޟc$9CSbD bjJ5z^]DN$F5k[yb R^ ˃qTܕzwQ[TbOg"fׯvXv vwF"jEX:Jd~]#=\Xn^[U*9KlЬ8#/igaj0 _9[M? s]?ٷ`;$}_3ic#2˦οp N^<%>O׷ަK`kwGTkQFgg5+p쨨Yx'QHLXlo3LKc{nåܷ.:Sn0ž)r :a|I)A R!ntI~) [h|ɂHU>q'[ATAMvs>&M??"uF(V%F&ZeGL,MM+Q~4dj5IW#`\ ߈ `IOW+Xy(fw5)+&}!x3*9(:79ɹD^Y_x2|/BMdr526FvQ`U_l:dZ$<57|TyFZ\JNժpzc:-Iǻ'$׷gjlBHVIxs[eJcX %buY\W,VާT|@^+?S+C}> }:Wc15 Uw 2/Z)9FCOtt-P2vїP8>M:ݐ`~Qz̔:"ZL>ÿסUZlt /B: P 4lt99͌yyo8ۯ5d>EM8U #]IK15qhic>zg;Q\:KJ"C?\±ur8 ܱ-Nn7Q&e J˰R"{?R⤺ t' ǔU}t(ΐo1OgBxG*SɎXͲ^̽;S ˬn@rY>RM?=SLse|*<{CvH~RDhrLO{713*Y g> PO_5p27sOF4 $~$\AqC*}0x&QG tPk!/&kwtb<\lA`}ՙ3Զ]:[᫩Pa dƎO'wj éw:3ƚ"0u ,iQYa]Ճ0vF8~C3ɋ?ʆס,&w`L`fHW`ekK(1-q6|Ny[ҖAd㖀5g,z/~\G Ttd_B ֧x]T CJq{zĻZ ,1gQIU5WRTx?LsTеPou4tZR;{m;Ԣ| _Ť}/oE^;fb, '}Eŕ8:&Jʈ]_KXY#\?]wLPβ8fjEE.p<-'d`9or*E"bjcqu9*ni<ϴQڝu:lx݀UYkџs ߘYRx6ߍifb\[ӌ*L/zh}Gb3@iB)M|ro#վЀӃӧ{tc~aQ _:Z{=y+D9|Y=U.qS@J(X;c8Hi,R&oKjb"xpΰ oG-b6r_\.0жfհirQ:9J߾CBl'#G LV4zƢ'VY|ET&/ nfp _2_e, L1YwyXMq7ߩug?5 >J;:јϰLc ϭҡ"t w ]x++'U|B䁅$eI'NYHMBfi0TlPc Ӡ4xn;iu,-ɡ[R:u$hJ{x?X?RڠdT8q pq Pѿ\L#I8gDƅ1[Ǫ`V0*~dMu4$ t4[}]Dc/7:QBx418q<7E$PŻN"5xCoK6I$!7_R O#vvFę☂J<'8Hp3~ӉITv"7C>S5*5qa#Pv:Sƒ-БgX[hpwEPmZ0%SboU0Պҟ1=l*{vح}#2'{̸ޣ $5&3K \P8q'3\ѱ$1F/C ;&`U@50s-Vcńx|vf_J]6j+a09^Ksv$3`u M<ZAqxDf15Ӹ3JA\ƙNs~ 6p \5WɋDK|}Yf|% 5Ư `UXqx?ɯ\xrvBYJ=2;∠3Q!\tIqCxG:!ok+[~Oar]lK fJsVZ`r&%R׬lƯ‹Ko |%a[[Vwih)LYl8@I9Z٤xd߫ bs `GHδv!м36|@ʗA pԟw7J'äa3˔p2o=il+ߒamw@sQ2O- Nۗ@Boo$h> ΞZl KK{9#ע=AjDJQV^A/ےz._ ^䘋pֳ Xj vtO/_׎n{V5529ƻ g*d7􋨨m@Bs \4\)Bӷ7aFh/s6a7rD aƺ䫻^4lVx[>tKJB;ʰ5S@]#Wrm2U._2gm[S-s`J]W&ۑQ^Dzn-YokMTZD#ls֌e7cۆiDݚlG'_w Lvڣq( fNaS%Vdq/ nFI(%zrd-fo7 bpՠȹ3!_zp)rkwL](B`1u&~ HD4z\Iql$ֿ=< N?g+ᭅR0ox*&Mp$g|y9^Jm)_bpM*a>|y~hZr޺z1;l䷰$Y:Lf44uK={z!<9u?hQ)J|iQx+v`!._XcE7B5 W_8 /?c S8Kp-xy:?mgFFt+5QAd5NOѐX)Y0 1-?y _%Sr^w|5VU;%$7EYR\nE*1ā\ZĬŏ/GPjnB2̸iOݱV-t۟Pur?&7ad._+ރEMb=RĹKNT\^D/EP9Y g?hwb:c:K;Q[K{OM^Sϟ7'Z1Rf>`}zzi XFZS@];7e5HhZ6Q79/?ŝKot&cF|F 0wYCҩTэwH4Hd6'x&7x rD'm ߗ 5 gKF!9*,=g1y]ɜ凟GKH5 7HqW4?^EY T𴶨vA Fq^,`br{Oo)e&ƪÂB tBUlOˀW_I?SqʔW:^u~Ү:Ψfh03!CGݑ>" ;~XU.vDHIb$ZЛQ8%(C±RTH>4mKu r9Ed~%sRJw'un*(l'ZC{3|v$B@[zt(5JFցJ( (u4< a ~*cCCQ N<{^nj="g]\Z:=pY$Nw+pae~a`(4ɤHǣYŻuG5OnK*we!cյ6$X^Y~43$3Yq*\P0KT7NRydӍzfŝ `,& pH4 _+65?o!,DE)#Lru֠mvմϓQ(9b9{{KQBKľ6\-?dk#~>OkKy>Ik==pyBHhVnkGŲň -J6B-8? 5;R|?vrZVx9|`}8D0EDub x/"׸(kEşBpvҧyzEgS08D'?`AI7,h<Ĭ uXэWP u1EnW &%6xJS%FqNɯ,88WU#ц"=7x6ekKm/4 N=CRb7v2Fxq6i'yۉ^W@ƳߥyI_8ZW( d0)q6SIeBҫ|6iWvgDx@fV;FW)jNp߼.W'n-?-Wl@3a- km&!fApL#7%Nwgv* l?t>B ՚wlrٸ`7pR pow .xhd_'x/ ;ARw}ru\iGO,^jX+;u0d]UJn|Z Dkb!6qa>'1[ZY+:w]X4}B`LGwo VR\ U,,TJϞ3BaƇpy'6tiA({@WЍHGVuH :D<\CNL (/w%듷1oQtyy :W6If_*ب9r#;CT+V24 FV.1]l%9|'b N>RSty[H P\f7&E F9U !l /y9d<8N-'@ׄh?a"Lԙ*0cf`*gɫ.oj '`z75 [oeX<ﴠLk I<~zdßSOGҁNHl  $"or _ͪ\-f"N}R{](3X _OMS_4zb}$T ~qhzÛ(B+0ÀZ%@aml7 8蕢h+m tt5(猃ߧ]8ppqPUCxmO&'f$x4Qux+:O"rMű {6%%S^`^yQ<.EYBOZRQvj6Bca@yS z+&Y643H O(GdPRE蜿>Tœ_@6B>hKb| $)F|Xt ReW+ӈSd*8ePj䌦)b6Zù"n_ sA# f;_%ULc=؞uOP+n1v"pkNa*PAb2xUO+` !mXvtvX'Ł8YT8wgEceJ)_CWwt$>ΏPq*W4zoW,#ı d Մ0927v*.n&A߇~mR28U_ .QG*H Q@>bq? #Wא.q6uB5%7q7uJ(uCLD8zx +Ҧz=`Lh~~X2 [rn;.P:b!7cN:\+krM; iP262rz[< dtH'P^*ܺXa \KlP۫lqH5F1 $\}\]3JџPk_+Zv2W>9SؾXc~}xހnŜWm@kDlmaHFıհӀ 5rõ4ʹz~FAf"K:/TVi+.֠Cu􏯸=¢%)4#jW.ZЫi~ť|oGCϕb6ZD% =}]l}p2$<C.na@.=K| nGz֯H8)7*hUVvҠ^D;0Y0Hn`:mD_#|K)^Cפ 8^9:oC'9V#5KOA+=L{WH.G x&)z Z=<U&z 5JRUS+WR(x丒б, LN( ZN.it/ώOݯL %JaQ ڏøɠP5vdjҕuSZ5[4;!Xd/E'qY[x`^ї!UghLakuϦirأVz<]snj $|آ=9x:T&Jq!{l3oQXxWֲvYNK|-݈[S74h!&trfG"sYTބcz܄D#zo55~47F,—zJMQz߳"RҦ03]ơFAc>%U^~;?q0H.?ɐ.mҤ"$鱈mD#[{ +WelB1˩dH}vGgBϞbt3Q|#\3~ #BWPoe]b92E>d O!r4"`]|y~YaGuhP^=jDA: $MhٌXcg>4 U<4-HCaby͈=OҌg]iB[Yi쬍Ac=XmY=A#9N|,RR$|_*GzQOΕ ?򯐐~.bP| ⑖:(8eX=E<̬ar=ٽ9Oʍ:Fɺ}`;w(5Ʋsพ~4 t+dVp/#~>H lV`τyJ9M l ;%4A!m"h5(aH8ir >:^¨/gعIT4 9x>}Vq,Xol#5ޗ N]b2'4qa-jƛI[!A{w5t_\{"&\o^'X^NS 14H82!} |xͨ|P~U(TZޯAc)%0jXM <䷫=^ j%Bo$ @xR 8 &=$`L`a%sG;p).?Rͧ|$‡k͂Zi=翖7Фo$CX10ek⠕vؚ\=xNXhI.pEvOs^M`ϿͰ<}υl͇O,To27y$ kդB}`"|o/SkU'։1醓tOb&,/{>4bQЌF=p5Rg칒J 5j9Ȃe2L@4 "z/أPQbV_,V,!.F<٧֊+}C!%yjQ"J cPo@.|>MW[Y3z=jWh byVp>Q܊ JmE9bxTw!zebތBÀMZOU^ˏ"Gén=ˏCڙ?DIB(=meT6>KG B^ 6#t>Ddj^>ry j}:K=kOGWՋSm! ؾzI<:4sʅt)w2s<{w 8ҳ2=8BY"*S*̈́sLO6|e)rc~ [4Ui0U<y n$B7V\,kt W$7 ë{3_G1J(9F7tg%r 2drA-xhÂ$\PEF.[_ta<c&CjDž}r\zha4fiHTy@Ǝ/rNluNaAnd鿹bWpT I,7a|A_ x W`́WŴ4 8pBǪb܇[ykAqα?e} ܬ8r%*3*Y m"R|P*1Y`1˚*(4 nK{sޱ1a=c-Y^HaB',Q*iwݣ,/ 0(qL)K>(żUvK/+~,wl~:_? 58Ǟa}pF. G=0xh0 _Gji@R3/hy v&>i-ZVFbaܓ5Z|x'\3*@݃,jiDwهec ed""~pQ>b3qzX,ȪП)wxj$ܿ;Vz>9Հ'֏}px=!|`*ilA}d{T^e!?TAm[){چxd[/q-HfЮ%<`kBg9w:PBw÷u(aheoLJ>ǡ6}* pecJ0S10ɓD_GNVVt3 XKoOtn!XtU^cg`*Ձ{.T\WR|Zo4.G" {yʻ٭|TP+?`U.ly5IngϧeHGiЄKIN)AK +~:&Dh #@z3 Y~=`C|!-%.ho6 = p9Yi5@]洂^6z<='SuVys`Vȋ#Ap2!u;(l3镹@\ ʺrL|s-,lF1u>:ouJ^ؖ;yJ( ߫2N,\3*4"6m~8f)DgAEWaVgJ+~N+FFR5Wξƾ9<= t=5fHkst`38N<6lqij5ʰ` 6]z7!`SD\/de YdR}`өxx{JG}33>J~EfLe싃~й!6Ds:I/lYRdg85d& T%4QDBe7!3{>c>ػTJS Iw]\9/u>caLB,0'g8O{7^+ud-Ŧ59LJm"],m$23,zҿ`ڧ)ܩ&O+UT* _V \V.%nZ.$|#;#GeУi4բT3؜xjoXe5a2M[a^çxmHʉ yU8g*.JB4wL&BUyP05g-b"CYuS{}ήO9ny(zJVWP4+9'֓y=vث W/ިOMU2vS|q)^J ,EހseQxz وiK#Dcs$$~)'NՔGR9m>z8MUIº4fW,|df5}UQۺ=t h. ;4dmxQˣ\4˔"dxD$ŇʊPPK7,} XڗM"Y[qzJN;F*ٙ/tzhz="sQ0qōΈӽXomHZ'mINPDn*۩ bٝ?XlS]6'+? J c˳Cך#Y\Ap-#XM)"gwPT5%zlY;8HؒQ?)])Z~|rVdg ʽ ƫY^MOxmՒ2[zcm}#y4>DL6J62'[ȑ\I_--2l!1iW6t ~FQ:H5?]ȡmuDR-$L+ZEw]af H÷6Ħ>JL?Elyϥu#sT0Tygq3\{D5'zx(l :zU=N`p\aKWCT,kQ7{<?t>7dC)_u4Kvi~Yx_=z'jd[=7)LWYt}ipzVp{2cw|<)M]Afxj+Xyw+Wni ]Yc,'tB#V2cû>kʞ*l9.IDkzC28k^$zsg t΍21IIRa{3,Ƥ- 7JXl; ꋥcy/5)^ODd:s**Jd02qʙ՚ D\pe,>"7&t+{-eUٗ=(`)U"Y 2v[za)h+y_8Rx ,-~;h,/Ʊ7VK)DT<'z)2(0znxtݟcE~ؒ_u$ؾ M&8%nE"/?t~>>t_C|9m@q7N>/`r|1uzpisH/vط,nn-ڇc[\8PYۋMV9-zazfڷo=}޻v/:PXڧqT;lҔk&NT:+EOK7dv5}0 7&}^UC*OwZirCdPݔM8EN'_iǑCf#bB'6d_σPuĤ {*/} FD}׈{?jg"M,;ߕe#ڴ^+oAkYH_aj滲< m_,gB󓷒2{xN$gaeT,)qVNߤ4V/H=3e-BA`̱}& %Rgu?+]4U6*Of'+sFqvΒ u76.N*?| F)ܑeL q}qph ,-퍴2[hX; I(<-)J¼[T3{?8j{Ē ୆c.d}JVBI>t5*Fݵ%0Pn\Fv ,5qGK0(v*+h&UbYgTl׽V|*e?{!ȰOA.ڵ\S?meedldK)@u*pZ]pXf4 uuQ?JF9K:0?>^/v s7Cf*|Bv/o fQ6pw\jżoHZs]떚w<&uE= * ֱֶ2X利qU:No EB{H{եwjq[}Y ܚBoاſ̬ $?zGγԐ[p'NW/5#< >5xѲDL:)9ɄN.H1]=%M3J! ^19fҾƿ$eʉfc4%tMt!?H QGHӖ;_>俸 Ompi\ ;O bWsDޞ .LèS) p&pn8dzD[.;[4o!?*ٟݓ[1gѶaESZbdg{MLRKA`N {Q(8p)NKH8dd 9ꖗas_$'O @~ [NhsڡN휇9֫bH:F LܒjX/Fpv7 92Q_-ʻX_jt)x䱹bޝ=2PYb= K>*_-yg>uI˅p X(BSN >47HC&},{YNo[U'HbU@}> [sK9cc$\W?,Dj$;>0ߢ|)z=ecӅ?bNcOL٩\@B -$6ÛA;pt$`߬qIvbxs;ޗ]~)b·Ɔ] =>|xm?;ӟÝ~@?8T%RVujkEwlsiCׯN䷿wm0:Xޅw~׷`UYS8_ cYAa,Wqyxh ގ,M %DǑS i YfqE!ɏ-#sG0dyֶõd{z/ ۚW3p_pf9O2ujqwt3S:YT7B'ASÂt ؊]N^HHytv ir8#3@l#g/{[Cl 1u%t^lMIGn 8QfI*jk0SV2BfTnqv'9Xhye='+Ǚk_xWOLt6>XseaQMVx\3 rB[2 s"G>>w:NY$^IeA?ڴ=a팅ߣ*,{ V\(4#WVBLI`U$ Y~VXd@V푾% O䵒 q/0Je[2!类:]{#r(V&mxI7Ľy̟@ŀ# Rw*.: -akTCN J)@&аrp%`L'7ßmdk!WS{|xυw*g 1'7gb7gG ,V6kᗜJpŔ\Wqƿ/ ikJRg;^Eo qnDd&6a&~\i,&kn1`psDq߄M'-.fʖj(UO7t/LMt!LT^i{r7ކF)QR&}Xj $gZ6m)jj7|9 5ډWJaXe]+dG݉~pc/Ϛ^c.v޴&:i□ )ADYKkY#eʭ'ҚYk Z47T^)Z [bqorO%2[H(j%c! r3ɋ?kΩ&ra5I&ӎLUڡL7qp\讀b߬)0Ø@vMQ,dnjR5 ^-BE祖s8㋫ C#j 4 vTFg*ZY…_UV@&w%,A2@Оl\ьxҮ~Q6ig,95Q]ṊN[ML*:)֑}07&h6fZU_.e⑮NNMknJ &}Z5W']RbCRH g`P7{o27rčjR1;%?ꟺ: Ϝm :,Za}ާAVV8}建EPqtwLv|gX^؛%bテuMT*U3K)**q@4?L"%B 8W|>X Ȟ65%8W|GY?@m}Iê.$UؓN +ౚͫv)%9XDq' 5qs{9PPvdOZ@2CPiyOK !Wl]?l?K%IRI(d5I(T6 /;dgo.\\u)dFђ! _|!_P67ksTW-f:VQ%ʜ K}m"QY7bqFM0eq2\Ā5X͘7iUCGlIs椤-:7= ˆ$hh?^g ZhcQa۟86{0}¦lxq* D+E|,!9ܖJ1,ϼj ޟ!ұU4^pNfY0ˬJUcGq!xa>t^d7qŽWat3{+s|TB⹂o˳Jm?Lp ֡qՃWk{^ G/Rƛ9CW,\qEY|O\ o=ujQ{nGHuA-G LT k̀TqQ֖,Tj0z 1iJPyЯk9w{to!698Kh0݄\ħۛF{vbu&LPqA-vp*8؊یɋoڐ O;pjGl䉫VXw'ٯOakƹO6sĹ%,rA7ukhЄ8NVþqcz=7 M5qދJHW+\i+`n3!Em $3.;[DdŒ%{ļv :17<ͯYM"CC_P"dUIdt5.5 !]K dmE?1a7RjIjb#j-ɻ'̡ OS%ln0Hk5A=),դFQ`_ympm9`l>;񌬔3it'W~u~UC&9]*J&Ozz;U{CूvD¿ֵZhp]zh|3Wa_|k2,E=MYLrb.pd[bUIY`Ly&ΆaИrb_(RWw`f'&egLՈKUˀTqLE|WW5mF+FjqTS^F^U~|\{Ljzu?]|Up~U_)SU58+[2!eԜkGԱSoIiƱ6`2N/(r) eMvc6>syʏJh;H2<{5A_%Cu'WϮ%I$)^}L t_K46;G/Ւ'.; WVEt 55Bҧ)[ѳk4Yyۤz,$4b-X]FAǯڑ8^`}J/{95֮)XwR4Aw8+s0fmmDFdzx_r}r CfΤ=&Kz~O_YEǁU}.sy lJt ɀiUTju)zz'?9rY՝g6:LL_10?${3;Qm(tlձC:kމto#OV/ld۪ ~gT4npy pKDVWGAb1?/YPT?CӋ0&<1PݧcsaOe% ׬Ti0;qt JBUok9aδ̒9} (N߽>;oD9uC^A/~]8׌{Hҫ_Z$iYXa10@;n2:-rնW|-5T K~ <.&V,/Wt2DiGk(Z{oV휾> %^nEI(Lx፮i0:xĻYm<ڿyGzv-}*eЂm]kk=rE _RyW7425ֱ?2_LjR8ݻҰ)7h`WK\rd>9:fGGǑZfJD񺉸<}3ct!1}9yy-oRNݺZEZ,pw1_|^ 6BֆM3Hlu|-"hVGsֳR#ǎKMqC2Z2-'RK $ )tT j+zW@%9j8aZN>y~^Bb*"FaФqw`xHJI4-$=)0pot3< fQ8dO~s* +C 1>|gT_ T 0ϥۤ)z$Sc}vAZ.vʮ?Gx+ES' ,_L'hȰWICyց\V|ݒG!V)=f3}oO;_7-M?$`a0Sdv(mR&kL|aQ}؂SŇsP4p Bw(G+*x,GG<_?w҄:rC-l\Kι|C> -NUxβ/1{S(n&`vAh=Gqb6 [\:$ |Ȅ:lz6 -rEm=^>O=Bfۆ]˾{y鸯6t/>fFJ˹g=9}*҇ 7jg('?9 ~VQHY?,n /tp)+~eO!JSx,-pcJDH. zوmE8zO%W+tl~?؆3LjM Qq#~>UϞ\^bJ_tƻ/J6F$[ St,%#iYHZWBf.֘ӡ_C ›{}v&E|ysddlT'%ߦO9)jZE*&LOŨh@P22K[+u6ų(5/ƒ~b]Sl'8.'8@Ҁ7 D%Z=2HƝ,zV dрuA |eRoW$W,qe=o#}{Z$,uEcc#v {k3)5 ΍RP(b: w*Jjέ=Mp|ܩ=02ؖB? ٻ/߭S?=]NG/,t:zUpE>lyeF8x٩Ld̄BeFP4=OMնJHAkѩȨёKMOpER%~ aSe8ڀ痢tyfo(/o\7mr;4/jpB^8UQn } ADݹhK%}tW:#L#o)<̖!qP].k:R0V8+ 75v0q}$/Y&cױd:dRV$}snMs^')Z>^*Ő<:n_QF!4⫑R.^핍D|&>7\ ulA) j쓟'iE}i6ZNŮYAt \1SU"':(+>@v!m8e&Y؀C)aW6!xUEvw.hYv~ov0c@ijll%oщY_@GӕZɔ0jG:6tww5NU'!-bpޝ*-mT~ v)fP|7'JtLvZ5=!dZZg*du\9 jJfa{p8st"jk^Ԛ۷ݵOS] rc>ՐTEn@]?Dh~Y1:\K˶j,H]uYu$7O*ai;|4n_Kqt+e@5"9}"DDdv+[N?f7 :njsqٶG)/sl"}ϹV)!sU"IIמ4ؓ>!NkWr$o28c\ũeeW/9l"^jIlco#kK&9{7r?B_:EC3nt[4-UPK26Dѐ)|?R G&# C\,2+HEC[. D iDE3mcm(nK =v\}rW'fMϯ}0#?E훨}ALjYޒ=RTkە bgʗ69j\+I&Zz7;{/dܔgY1ʱHL12Gv#[W,F7 [-( pLH 10svdf"$I-2 &s_uDb6Q::DD>$dґODWPa$ٹY!;ܲ! {\" σQQU3YRD8iSwBP A5I|HhY%"p >rm@ϻ#33[ivn~҄=xX[5jV*8ܯ&†VTiy6 ƪJD*P*}@Hx*\Rֺ]# ,o,XI+Nos8X$f8|8;Dмzr*Z BdX:QƟ%\3P:,ILpb&X:ILiULFg/=E-[^[?'cWYFyRb|M!gÉ́-B8 İɂ 9O3:"g%̝ l/^6UD.2~L[!?6YG<^v؂Qs3<.eqRk ڳ?<"mJ0矧EJnFg_%XMoCY/7RQWViO^;*o $8nƗIM>}/`;N+H/KXIZ8ALH@:[rX#8&!ٴ;:eDbjfS'Rg ^c؁PɈ;ĵ˅g̘8c֌ܳ{]{񎙼gY5%g/̟{Lџw !=qG@د]Q籸o#mx޺Dԛ眐OOŃ ݗབྷcjY#-5óf˭2y<{8t,PgJ(LR_ȣ*C/ JtAWaҿx8a]<@B5O C%pbGSjy鱴:z4Nm@:F OW}eW6h3nͼxZeB /V:Zyas_m8q9\΋O\;1[D'/.CvkG7Nnj6w.O=EƿH/_AeHڋ] "y.7O"V$G =yj/SdW?7/ Faݠg׆^%ᄃܭ}W4V֨A[|22(LMBbxa 63SOCW=)_gbIKSї`\[O62)M p$8|~70heFzd-Du5ecM9J{m J1Up~2iY)G3۰.Sq+?3aN`Up~Vq! Ԫ_LωjdE[ҥojvgCxpė^ e4k:\)"zn8/gcYmMʹћ߀ZrgMFl:hO/k”|X. NvjF1)тc*;˯gA3Ȃv" 퀛$E5*IAVuЦK}1'.?Ym{ զ6C"ypTo6o*]эEVribn(tp7kz2;AX88$`)nha0{, ˔3.J$|Ԝ1m2Dk0hh{~dQz8$y {aC;(X}fυjVT{17eNRy#gz1 Ջh2^>_!o& KE;{}pK/Hf[^+(xz1Q@OnaڹoB:rUhtXM CӦuir3`` 5Kv\`1碰zkcBP"rrO?W#ďgAڥY2eh {7U^gcrmlX% ҋkXYy6$sV<"L؞y"}wWκч#+MvUs,M' _\ &G?KVE\ʔA\&$^sSJlh8B9;q>#ٯP Hu!AN$8yc *kM"l}ޕ{o '!keZ)t; m?#ӡTng Vؾi3z,nY9=AH(sޙ\C,Y.k X8S| .'+vfA/Aϗ>J1hH2(Ts)Ɓ w+Pip%f.7 "5RoiXJm>CSSj̷,oNm 4>}u߻"LiLO-JSV޴ɼzL DB7`_ xu3^/&4;ahaO)*5CtQf4|U݂hV(V} mcֆÃgߵAp^];6Uw\Z7=+npltOB#o\m C)Q0M@5< R*wcyF7ZBZ  ~ӷS-nwZFvd, ?=hxPp*7D?xzxPq/b"WTįs gzT [momi"" B>/h4`)dYt>Qr3)?-W'*o=Hzsz }hnñx Gߴv2/DX'CcĂī&,(Y3L,h^^͆C+lXvZ&$;.=>q>eb7sjԙNϷn},R_n uЉ&(s~J(r"tVEyn.)/Ym7mCk_S }UnǴ=cH o3{ٛ2 }}-=/D{L[!xqu,.,>;'Ź;d Ԑx]'iZ 3giı%qùܳ=_H̒U գYw s{y> \/_uҧbJ1I}J~:PRrjEBJ??{ǖG{Vj5V֙W jp5ic^\ 2Ŋ-w|&sk14+Z7Zuu)"5˝yOmg-]ww҈ ~4ⱸ҉R&X6ljbOo͟=ZPeܡM,{0f+AYe\o=s?ڎ| j;jW뀟}E 8tb we00ݭazp76>[kaº1C̒Ylo+(=@ST|6|PKW$ᖽć$|/8ZB±mGbs/ZdK#R";)}O[8e`n${pc)/^S[ӓڋ7äuy@rf5:Q6X).۾Ls=4Wuf4"gҹQNSXtp)ɀCV MJc`K# .=Ys+>=g KuLƎ?L(Fo/ ^:s~,Ynkc~ Ele0dcP2H67/4l6wbj8ιj)z_p`;\_U&Ա/͆IMxXX3g[.\}S^RsxJ/u*@ZB+[=,.Y7,]J1=mW~$*R5C"*e47W[\9)UPXS7m VC3/B¤-^}ojp[K֮;V!?jaәVzCF^ 㺿V}/Yq}|*5np?TmorC#$ + !GԌ'{ǛƊՂuGЋ*y Wk`#? 1߭|Sw㗖%R; xOy'$׽Aj]8f❤wQT0:'ѽmLn07Idh͋fsùas}uOm^ՃLH=:}Cu@*V4Փ5I H `6}2/4L_4_HR a}oJGD3(HQ`v6lыm˚^]OeGиg&Y{ҨmW8(aAewvi4,9J_.t;Qm8oi_N!=e>,?@g#`:~e`LL^KTzFv}2<9 J,8oraх,F boa&j\QV:;2?;pA$ڙHP_{{8#8[Ɉ~RCO%C__n(3̹92F ,K=`٦ Bhx[a )GBXu? eBMTÊs'pyMnws'2S:hY1$JE㈮:y.OAYql##{ E6&;>ranE%ETsz;)@@_ٌLD*fҙS?d,ZHg`2W[T٨O_̛ =vlMEsTp`}sTn`\ަ><<}Z27f﫷gg^tB4R6B"vD"&RO)uup%ė,:E̩s5\f!DVeC.:Wq B':.q+-\b G|F \>"@vE}+4#BgD}N nU짷D9V pيjr Lv ױhihWxJr#nϟj@,Ce:j+8؉͗׫wauV\q])T|\W_4Nv} IMutwF׎xt/n{Z߃(Y) HʙYoD׻$8$;H0ׯxL1Nd/}k QWs) m.(b'`ރ[8LH:{JAa/N&T䵦{>"iF=^*nOnos1! 1Y4ؐU*JpFp]Kz$_:8Xn=y%"9B) |\t7Hćl[-L04ha,m8al˻,bX-t[7qg]{}6('ذ IJ?7GDe8Oq>:M6҇Eƿ>vsq ]Բ YD3R:aڧXF\`BrNK"e9޹'@8.Q]ď2!YzuA>a/`uCuWD#l)QQ$JE2RGTJIBBVBB2JJnn*AO" \|u>1j9 gV׋j}8;f8t߆lLe|'Xˌf%r$YqH)XWV٦L M&\5rM`bWFr_ ENkn/hps J"-N) ~b ʐ%,G+;@ Lw_>.*(~3hW bjM{}tv[U9WxRVyv5@z{cK\kJؼp/9`fX&6H{3.44c=ތ;f-IZ@\OghmyކAkëvwcu⺺[Bڲ^e{J2pC~*rn1RqƽThr8 \&h}[H [hPQ C*x:KG嚢]ێ#o7V1 F;PW~m&Du'1q/{k^X'ы?4Ddq/V5ݢ 3Aa߇\/%qMEڡ^-JlDn~i9D<04/+<02A`tpD&ewҏ{RgtXs]XAD G=Cػd`/03n&XaD[\Eq0dWm`cqCHU4GoKPiN UuGr}MavgX#H%= go/BItu(8}/kcDM 1s ~PLrZn_D~V|BDdQ19d^+(X Fv*,Q|'X2ٕHGj?J2S ]; +$ZĻDԖQLJIF8T]Hb:ѩxOO08P8-r5o@ocx2* jV&Y"cM*HF = 0a{d{fgJ ?9YaiQ>pN?VSј4cz1(VPK0ݪm6*fbކ2[_/[_@ gѤJX.oީ(_P稬(^'&#Zxލ`\r~Q<=R;5I 0-_~$u4`]&MX0ۄoVy3ě3MI3Ѝ;u[`PnAIOZv OOΗnmCeatVin}ʡp3(^4bQɠNI~cB[.HN׵gotbʵi8 %vV Gp, bU^aT4d1WmR4IYВvb)n֦' ؝@G\t\.۠̀Tؗ(?*,mc;DWM>ev#h: _Li&\\}Wȭ^ ({!Zf.!^Q.:q:.g$̆rQ4ٯ2]}e0v4zA5Cnx2wD_~Y;38yaWh# ѪfǗaκ&Cgk?!<پX &Icz⣀aK7.!>ؘ]W96^xϝ~l9owwG`̥jG~-y&1 (;A6eepԡiBVN./,!zowq*Nj$t!qaL}!FNLSĞ'z!KcӲA,^§uϳ\_2BuZvh ItltpuCڜ=g~ C>*uz?q[/b&AiE յ|kb:>/C#bBh#׍BUnk7YQwG+쨱r#RcMB9RjX݆*ݮuED?͚Y@^ q#eJ#㓺ədŝo{5҉fCAξ<7&D4mǓ^1KM]!iu:8'fFBͶD3+D /怒uyc . Ή(4|uu6/v )|>On:kt"=9ay'wOa)@Fpŧ: [zrљd{XH>:)e:zW Q"*0O}nbf\Z8geC%Zp IsXORGwz|TF5Kl}޿jM3>h™WNap1w3虍$4CbւKy-XpƩ4񪷋ڰ8!І9Iv3Loϫ?;vpEe6 /څb&9Z>x$'<_]߃ϴ iP *B>ҁ4l( Ұ6t;D6IYa:xK<;Xx5 6ogiWiLLVE01{)/6f csWލok;Iw/nLVC Jk~T>4~،Z -<q-#+9D+1[cc]ӊ?Mlm/ ¿Dy9 n6Y,8զ}px‚*ٷ,s1QigڔpBɥ!?b=gahů+)MClةφ\6Dt!w/תVhlWH(x262p /gd$Mp%їQWԾ*#rJVV$jONLkO%ć!b"򑡣Ԩ>^-^@b_ol)A}j^fYZN6$_qԎDRqrcr[,1QMbs$߃/xqpAMʝϽuΆp3߃!fH0P CO=31]f\fڻIx:$m.\'ڧC1m ?L6;eyؿ`!P>\sW#osɊ@P\XN1/ _\?V\KZ=xm7nP%$+@5-3`qr{Z5ƫA8|PWXU8E$:IRCHZ2jdʛ}ع#G`0V[WCv/—x`N-#7}\j z:(Tձ:ŤKj5qۺЮL|}Fl{=m?Wq /Ie)%oGPHö]>Xޝ"BTL3Fy&޵9Dkb),pOŪ)xcT"@e1IP}{fq<:HOo!֧1^^aDA~`‘>" E4xM6"udKonuZ*aw )v;F,HDiIl| :i*iV5*_wȩ\|Kt9?ש##%?I(HXՔ[QtQ VILD?2-`ՠ:<^=]IaΔ Pԫ׍×-ޮx4ۈͭgFw> N:gzZ 黚plwB1sen!(@3񏕒^ ̊}hdXk̭V926!p&JcdN=<9n<ׁzʻOؿf`'4|f=top7TwבG=8?=~AbOyDE{ #TH}7h$TdJQt(Nrc95t|=WaYO6kf8`.?^z=fbI8R;{snmP/Qhݠd#3|t]Rl҇.Իpx~0pPv)=yC@EsVe>ouI"w{.͂rAˬޗ\1^2>gCprc C_talϱM0  ajlLi\aĥyUhiѽG=Fॽ)M#7BАYo5 o=߀FsP>nƔFxRZ TcMูkas &Ռ9ɆfST8^Z@RDVV2q=Qcڿja8.>U֚|7 hRHIhܴ>/WtgEܥ.PJZƷKNS&9F?eV=kQ}e鷣 pbԈZS\I4Jƭ;E?~hqtkL8)kyAG#Cw nz@l*eO9K0!Ğ:8t֩YדY"ů|eUa/X;r R`Z>lqKuUMf?VĄ#쎫( ^uOa |@t Ԇiˮ Lk Em+w`!% ,S,5c!l|whtox5z=lo0rPb=j,c*Ɗ/ 6SPM/.1EՁx!u VE}NzNYp<7~a,#K=/^XK'MՐvJdԉg$}57,?wZ\̂{oj:]x|2ߏKfB1dܯҀf[*w$_y4ppíMXş2aЄMW~IqoԌZr%6}zO9+1}ry47k'Bx(2 跦K>:T} t$15kUAvtz+tCH6ĸ䋸v`QNw3oS.+}cC,lzV DnYىEb'.\s:풮1]P>x Q/T=ӻ]i f'[.w.q\7JfFd:!C=##;^wOJNgz2xl\gc`Շf1 >eK2˚sesDM8 ;gpVف'V8bcOuٰZFY̒~Ml?^7D "iR*H+?J9HiBnr п!^E'k5ɥ=beVuݶqȵOKؕOrMӒ9b͑Vt,89_ c~`B~vT0ZӜDΗgH Bƒ3 tjkIR`[{?Sh%nЙK~ vs&̔E!rgv3J{ [&' t+ Lgf P-+cߌjD\g{`i`?^K2%eb:$YP+ߟ3?Uw=ɅYN #~6 A+Κ{].DU\З_E`/v**WϱR6y rckK?cF{C/@<< 7Sy+`tmvFldUV[xKSps׶Rr-5(̞9X:uV-:zԁmh%Y'R-ڵɩ<(4Bxdz ҈L؄]a-Zڌ}_Hf3tѝ[`*;k?Ǵ``&(cNhy*֢m qw1dž6 zaj5]6tIl-W͆g1mev,io(-wˢ^p-]o: jU<ہ-6/ҋnE'0Xm'ۉ3<^~oK jtۉ.2_wvj7lq%]}n<,~Tw/׮{ԃ~%{M2ϥ\=w۔yGxKb:wCdKCO1& 7R(xU%UϾ>Tfq[ #JX>F_Ol 6>sect.ߣrt?FlJ/^s寪$!jW*RNu5,[*Uo=Ÿ^|D8KV__v{;9D{FMmk Z5< 8M #70*l|QmXa};pzr_XXֶyW"T`2`fT?[N z}D\k6.Xe龿ׅ͵.Q.|d$ڍsծ=RK`T鞹9eeU9Ћo/fרU"3@-wI&ϕL-fIL(Ggܳ,pۙ|eCo96k/bߩntyϿoQmiH}HW$ U*s]WGd1 *)3B. rzŋ[NDua.!R-ֿ,&;RZEda"dңfOZyo8GrȄ)s+s,ŠII_I-nQ/g_<Р9*E$MS=Y٢+쑲x"L_L~L1ĴD^|\V3R,T5\]L $•==&F0i2)%A] {FX/#r# 7d ;5ʡS({|>"dfr9J5WMv<%^a#R"T\]ͯKg; ܝ~NEVkUXoAlN9yR^ݢÇbk]JmN-)"}AhkzgսjcaPbKy8mh|AN4ϓ?8XՁ w__@ނ |!XCᶍ;q岡PNd~_AĄճm`!ɶ˹e](O|a<(`Ӎ'CbJ+zPKFzsݲ^ ^ѲtURb X=.}]-3lL:/h瘰2\`DWE,|~鵥+2Y&lz53ؘסTFĂ~^\yJSVt%XA86]J"pXKBZ15 wcPIqidɥrRHp?d_#k2Rv_H\DcϱbR3Hi9AjsfDOyyW.9u-vqaz6am{y4Xt[Iք9Xl}rVCəB1֭yx@}{װ׷%|\:|~۰oEN흫r) Z=`؈aީsH`_Ki 1ҝkƻBRZ}ha+}9ht^9h٤i* cn™s4^[lԆ'AΧ>o *ѱmbT:H1W~ۦ#tV2׎w6;8~z10{ FI)jcD5C¨ߞpIkŽeN vؾͨ vac iu1ڍyszmQZ''dxz 7}Q/R{1q\/k\naЋ><Kåﯛ1S;s?d "SY725B;m'=#6|Rհ~퇃yēh[y`lZy<&>,*YN=rM%ǹ σw,N 愶0%|ZȪ0'A#dop$ޖo# GdE{{7~N'}ߋ`BI[ / \MKOkbMݔ 7Wx-L=3R棻s.d sarEyp[?yvmVk(ttOc-e6}SȘR M w3Ѣ Ad{K Ԃc 8形nKv+dEx"UVH8XBdW\5'$jpѤZj ցYzO2H}i~nHkř`sfm=T9fWgJ5"Pˢ朚Z1xSqQ+NXt3hj"ɇo˦A=;:wo7>m@`;̻6rDM|ο!n܎kUt5b',,W퀙Pϼd=Tm8a}) ;?N~fvF>N(t[_:1Ҿ]-w}˱. +)Z׫n8- 2VvlBYx= )[/8qi^D?҇#{lÁ/c{Q(ᜱqL.{ͶDŽ۞u;6AS,8pAZV yݦ664?b#uX?GlE ;e5y"`iWEj/Y\EZn;$=s'HEѧC2&Ut]㎮zQN~TU*#onaKvz5HmEA Hy!|{yȧ1Ӓ`PaaM%l0HN}0 ٲ~G^şS]~|.{[< ܳA6u~ I CI. N8ʞ½%1݉Y [.ش%f'`~KKD~YBQ=~^}p33+}X. C/S'h2:afVb6m:osb5O%" ߠ,ll!* \uڕx9g%|wR-xĺ< I-jE q!^y߬:xws2k_^:ɦF=+ %()'&玓-8u|٥4,>g4hG>&:w~uJWP]geoU4^#VE:fr+=K~ۆyS6~~-kmnџ+n>uةUSZ ,yg}50}O=yvnmǧ=GSEl⭪"nzw!q< Ӎi;3vx+8)1$h=i*cğ=i ,z1ø)=0ҋ/WECwgBШutͷ>:D߱Lh5Ʉw~I]fZYqm+=Ɔ A< lV3ņDr][E=ޖ^C$EldDfk`bL9xx%ynGdߘ;q'JV|e'M*Q*kjnsG!(-1)'bu&KIe[u$p ɗ^M[>2^Kv{K]!+g1Y՚֤¸ѹMw IY?y+0 8 ƑW:k8c?ϣ.Kb;wlꗇ3}p%E!]S3-nk޿_a' ~(|7  >&JvOryFACn,*&` kx6^[;ؤ_ə@&NwϜl-w\"+s <%4 qi3oTVhgZM#t)=-|_PԄ!#!}0[ xp͍0䖿[x4ߖDhO/oF̡@6> m;Y/5;JíOA%4 mA׸$ɠ 9{O~ xr):9[v~̤T]BT/Qfi<ߎ0;0cYIV um&*TJ2w4^b UJyiz˪-x49V ݄Ca]Ⱦ"}s&Ovgv+ck7 /׍lݨ4)R-iL ?Wά5r}A_I/2_EJ}a%n)rab"01  aDDniV,>|-΂ч?YئlT&jcC̈~?Bo%?Wu[VK~1[CaU+; Qo$ɭxii$*bnW+cdz9@槒Jg)ksKvBT% pAk"JytDX b_kuCjnNJ+1 4S@Xٷΐ.XƋHj{<w 6h<>Vy0CS{^"t,8bN PԅA^gJ[g)NE6ri:,iAvK~T8AE?ykti@5|xq{:jkK61 @W4׍eD [ޤι˄⺘p ҸKjo+"2ˋ5aAN'l8rEņ'XqW\216zVZpe-n[}%pCgI#Eq"ʞ=́3;ؘdrSڿ8+SY|aķ1uhVk+G WȺk 2BIz}zȯэBY$>淿j$(T3,2 wa?jЕà=&Пk}략"m3-hVGW,ٗPmKt>j6uV*@<9Ws.7Y‘[y(IP%{f%Dq=Q(XnGKK@F&bq;(˸CrZ gS< }kپ54/Hgo2`e{xFA:- (p-ul>5~ h- AyJ T`.CY=If `bz,6u]*TJ0ޫ]g@w;(_D Qȉ jglMژ`|tF~v{ Nm" ZX 2ln`j\( 2a n?'Dᯀ0.EinΏszv.s#`n3[$] :TāfMGat~×<9DD3aE#~R'U,8%Չn]|ҁػz<̔]ţʱ8)-~V;/jP%- P Qb"tT6x.[?ׂ22FClz $.}\#يom@vԡ1#sI..R4#W!G٧ 2Z: R2+AshOx!b4!hlndXe"LbfWZ ·wP 2nw9׭SG.ɈA؇Ai51-:!%6OtAb4rxr9hoD <Ɂ%ݸ3q\؞rg//!|.~}~[_p|9/j`q=XxNxBOFxܓ:MWwF3x~_i{M!V%ߧJ8qOLz{->uvfiLNiêW^cc_|Zhz~`?ߎp9񊗝@Uܿnf2 Kt#|O82{vB9| 548}M1jL*j, 2nQ ,{L>젏SD{[. kNJ_htƘfҡ{`io: ]``bo]DŽӯ\cuLCvaXcgtTİEkMP g!on6r?ٰY/w'$_P\CZ0chnu~`I:=~Nxo466'9\`d47_\(o)QQ/HH(qҽ^Q&;IhUH?ցu@w%)ێLmU=׎HWӒ(#&] osCl[ahto6ф"؈ eJrQuKs3UDjtѤV 2N^@vE"-OL~J%/#s\DU> Ӗ1$7-g( {8Bģ ZKL=S.}?^?co'H k9xnc3L8 :>*C+U䁪фt_!K iە0)_ذ%g-x4%v\r-h>xj*4457Oہ͠Z;xBg t)\k۹qq,}^arL“ycaA1?X¦kV2v1<^ӎ̀!/=ܚܹl?\ٝиa+:bv@_]#@N=p^n4i!fԅHdѻN_=A{za}[An} k kv~>Uwnڀl0F.[}`"0;hM5d(evBxBNӃ(P$7_Ò|)=hڍQờGTس. *T[JAY~qp5t h%A'ڲ+\em9̀wvbuenpK%Lz v>ؗ!O'&lYPms_ynfæov׺³,'UOz >?#!Xkm<0 E^ |a8#>2tr`F;L8B̘K့9տrt(ο />ݟ ",߶$#5"r_L1$,tNj<%jI!gmVsph)ޖv]5E^fWհh.]H1E_lKDh\u io8ӂ&uz0ScMH/mQ+%&pdqXO SZ(([Z>ےTN`ݨ<\4{)C̹\EzW1m-@Z6TЇMφ9d#x~Q͉ W| QO~FOWĵɟl 2Zyzрycz]/"'@˗noZ#lF@'sX`Z$]s)LRp#eU] y_8W5u~Ԩ]zىRItFH[6iTw@=I&sii(Wg{^IL:aG]½+ܢ@dW?j'qsH HY3W v:xquo߬Nb^68@z+E~%BhspHOIRO]݀7Ҁ?=jy) ?^/jza{HS~34/Z1~v0?? Ogړzi8|7!FDL>nߋͶPm̪f8Q_(zQ ׉5IR!琅j7HTO}@9恝4P[Fe?tSCGt`Kmgz9㽕 PS9X&L]LtdiKxPFd<{tsLFn?)߅?"*t˗BpȈZ€q{kTyT&d%fA}eÄQ:|ComνZM9յn3fS_dEԶU{TK̇tpKlUgõ%E[|!j "=ѹ!ds"KW1'ۇ ]0HKjQ#ЖG~n _$qciFkz>A]l2`t|' ]Wݮl}6 D/`vuzT~Y w8=]ʏCLߨ؎T_"3wf1]|9M z.=<+QGZP3!h#863o+ (u=B" wпn옲F'lYDZ+NF/__bT#6'9h*{a,O9 '.uA.a[G8 ,HUĉ 8';W0)=ϊ̌oۼFjx*s}-oτb_@h]?|K<^ 4"xKao~B&Z9 V+Juۮay:>>Sٮ/r p;Ti^^ ŭ-PJa+ma` "0{O{! >& /OCfx'ן\$t2=vx0_rB&8lA'Xԯhw%(}sAb2Lί֏vtzجYq ~٢dCj%<mBon!0=.ǣ<"L'm7s_澀+lfMYN(xEԼʮI2e ߛ'܅ߘ|pzjcz!?6.(,-7\ ,QjӿJX}4MjܯzOjAL=)U7e"gGx~g4#AeV(­nkI[00YCĀܝXXT] r2' iڶR rrY<P>XeO:ۧc7iR257<1`z볣wn}yݰl+غB("$+IGkܒ>(O>-pӧ,7  ^Tq:|=ئռ)2: WG,m"  s l,{g o-/]Aݢy%ö`$;46O4k0:K\Oq*"+QkR`g`Lxq!ip vC5bf,PP+d\?(klS[gñ[6 ji!萾ec3fh20 [%a`Z@ZȈVFF@~kw]ޓ>濒vͿhš/aDOB]ڢ>!ckaVTuNdiH'ui7jJ#=Xpe<ގg~5UEbWn#L#>pQFDI"JJRqG()Hv)޲U^m [ E缿|__n,Xڊdt`' =մq٢.ܑ[GڶD֡K{$jQsKmC5 U!oT+A1w)2?)b4ϭ-r<3-0m<25F<{m4Fr*lBiHM o0 }>C!Xospgy3XIa fߟ׎d\ӹ@j^BЕrv, ~ ]R}v Tj߰[B:k!Rb<K5Al xA/݇6亝Tw'81PՊ{ ][황qDϵvE] ~\Mz!Tn[, qjkDNzJqrX+:낶ÙAD6+pyN}٘-$׭wTospM|24f(J/Ϣ/!z9 {"rZk—M ;EПcw2_)KC;>v(VfTX6H Ђ TdIk4hn~KM%q:˧C 'txD2?ʀ. blfkS1 -+`:ZcV/@픂ZqvߖQV8oy(+㬨OY|ca4Cф13O2s8DVD0MOpWY$q0IGe[,MBζ) ^?,{?w7Og;Ѫch-=o>(DBr*$F{tXڏ&xĮWxm Cۇ;ӱG$:Y|čl;68ڑ51)ߍ=ق56!>I53yG# :5uHS'[V_W#q׫P&uuQ}/l+C<[JŨQ.t[Ԯm:kZѫâרAk4!LguD,X?Lﯟyc0 ˔Lywyb0QՋbI蓵$h^̀a#iY@P*3q=g]Z!N3r.J\څVr<K0 |A5}ք:GAWCH6?5gL` ДY@NQt^;$Y1|Ť%ܰɱ)H̕B>܉s%>_ ?kz/%m$)->sw:;\Y'<.x[I*npu$m< R'Z}pXCs\^}:h;a*AE<2{EAa--c_b#A>:063Esb8oN~P@vF9Ek u,[Nݟ[Trt݋K姁ġCN4 WbT`/ 12wd΀JMV= WS_+d1&]_D51s(T^'ϷtO }IxGqG-vKhL\!/C1f L}(t1}Yz~v=\c?#I {xAp' gHw:tr۶"ԝ^9BDs~ (ε9yDD{yǵ/%m] x<gF/;k OY_ĢOuĒr\hOX}| _ٶj0߿;uBYyp+,=f?C_ņBXtQO[Aj-Jp2_v8kRR V=jarv(p9& *^19;duϷYgU)\zf)5%X dN·y8Ж{^t=J<}Y߾AȴUDxwbxJbE: y=M*]Toڷ. 3~ guCi[{sI^.Mizo[g=哃l?|7ОÚC>>6vAo ǎ$<|;$A'N ҡKXڧchϵfwDema+Yߜ6 Cwwn}AF>{;Sޝ'[粪\(`.ޡb}L|ȹ3V_2ӿ9 8F¢5TMPc/Ro*99|v](mCUv gGȺ5еD`%L!CI_(J -q:H "k񨥡Q6eOUX4fKAٌn|C5&6MC+f HE/L@+Ka(므FrȖsH`Cc笓kJ06 _͝,h`@oFS"yY+h47KsaM ]&(U /?U33ĒZ*ѶPG:4u M'wgKJ3?v;e*@B@;:$/ݩ#O2}0Xxy4DF{63+Ƈ}N&v"AZ:Cǃ^l{tlJ:!DnY9G2~wAިnÜY=+ ^x 9uO`݌E\5Y ?W-wIr\-v] 9A&ϒF3y NBĿ0m0<0p ^6֥CVoL `eL$X-z~(>TXnS9/[d#Di}Yn48lN :c]-vD3`<)#P0Iߵ1 9 iM3G To]4wBF@ˋۣ n0 vֶ+;ǀ[^e n"Aѻ$;R&gt#l9+vLWZgW`O&13~4&ܾ)uv?ag3U2cO/!2^y-Љh#9ԁX=k:IB(57D`=/qzЭ|<*xum({! XfP"A ➡$I hxJx؆HB_q"詍fu$UX }T6 6cz4/}ekJ2 _ՠ/}].[r5u#~X\+A>zrPh ڼ+OENNK@ 8.#+=mXʾ~X(k~ 9ˏ0ahpp?ߔYH)P.+Hb85t boRr'zDNL=(?Jv)|콳\ Z&(ڐrS;r.Ձ̝2zkk łVMe`G1ZUc^jx,k>g'0\_5"%/@+iW36<, P>+-pOPw 8s ͚OD?Q0 ]h &J,uYb_ `%k'qS`pO*? TΧ9W?Dy*qx t0T&R8,BG4Hq#uJIzԴa~}8)O1dm<ڳ0l0$y>ÎðeN; cV{@uz({PܬGЛvyTmǀ1s1D[0w!),Fo[~Ԥ3|VQoec)KR羴IxI06{q ^#uru!_5];v39\6@BW򝿭FB+#0"ʨD% DE z6f>\ iPﶟM}i yVé8QfѬin ҷ3дWoF1hA2{ڀD|Fq#eբ-krsil5 y$ 9W"[WӹQt_tP+,~!M>ҔkBAfVAO.hxe9 k;_$oTz0>|vC,T@BI3s4n&:؛h%WX;8Ԫzv5 ݮI 'gbu"XMN4ʽ%C:rVN8p{DF6;ZKw2F7 ^0̟ٴ^^܏^މ2BY?ћy%7) jHl6dp[å?%WYУ>O5޷>OhKZ9 y:sRe'--R!^5ĕ :UVFi>}ip_2;F۷!7UD8Wi:l[PfjklϜ܋ 0 <7Bsn憎aإb/6Wɢ !夲(ziXl=c ` d{ 1;#=Jeg=-oCGo`У&kpR ȐE0 Mwxy'aŀ?w:4>p։މ*@R$tE%O_Xն{,ff%_n2JA<:|!ywk*a8ÞX4fLN>u )#[_ M(_7 iEZ-l[P&s¤9,ԣ^՛uHV{zT-Jx-;7B^NW ϜZ!Uybza<"BkPh-QUwg2K}|n* ِIDƚ!U_#ѻiiU_ku- Ⱦ8Z+szAfѰ rw^I|uހFn7%J8Ϋۺ}l LՁb޾Q'O}KiUFsf5:oz'~v˜? p_=DS4A{ϼY0ճch#퐬zb #&+0Q(J?Bptw**A^`:ސ] [!E v 54NRR? %&t#fOtA1>W7t̩yzSe^?S>Lϓz/}Q "<l~>4HZsȐg?>k ˵*# [<7 {υ FS}O=@.V 1ׇ`o8y}'@k$]04Vz&64F#cʗ'AY)vi 2lowm'OxSف{n" IOHf{>Xn_IfY{Giu|qnuXEƳ1#‰A]WPD7Ǣj-|#=7dmB 74{+Mѷkѝ>)[}Ȭ_އW _[L%( f )@~\s9 uSpc{Jڧ)( ۝oh1!_Nn>F,G jGKC+;O4-4bo<*zyR@@T0%^e_J͂#WFY*_K``4ma\.Tu WB}Lʁՠ&ceصy{(pN?1z zl.e5#AľtOvl6biI5PB;,gտv\AΟ^7Y8|)x7K*! [peGWMץ.`$)0^]¼) Bi] ѧv_cDr gL=Oɧ= ߫6'ڰ]ZAPG~WLɠR% Rw}a@ HooV&A /S3$ 8]-> IO@Y2;tSb`*Pؤl&P3uI>Qq4r͚olpnZw}~jZ~^dc\ L?ǀ,ܰЉujR6,vL:fB[GKRh>otmĎQ(TJATѼO-0&u\8(j>;2$,\wnLЀ!}f LO@RIe=#9 Z:{L<_~Zz˻y\3L&!)Y"*lpyf P@Dn/EPۇ!V,."KO=y3 T_.Q m(;}jh&L?`p BZTEIrEV""IC&+{}s{gBȊz<'ܯ}}S%4^|V2ޭEb46ՠ詩Un)J=pGQJ>u-CzLMKѸ}jmM ilmNMvhvR"M7^4U&5♞Gn;ntYk0na[Ϻ[C{_=t3!@oj="[@;sN)孃I[GT,ث`&2E\C,LJJ ǕR20ܞg^WZxV@ٓ.7_f5CwoZ@Wu5<:L]n:œg5v\T@3KpÀ=~ ^/s^ vIh wS+lc mɁyQ+̑ql;T :ӓ>d-;~TX?m ;DWw%vj7[>==ͱoOE/*Wy@G>0-y,xyŽ c}8lPp;8ls 鞞0Hvt!CQO"x5tR|<"A[f( jBNȰ ÕpAv4 ;j,HpJ4MaA$y"  GdQ`7 r.y#z6fkב6D~<|i+i#U+G;fTliQC+kXt5,7& xktWy}ތ>W(nBv| z$Qb<=W\\ݚnQhZee_jTh0FF:c2Bӊ) OFZbт~I{zgK7fu`"N t ^ 2~C?&b|2dp|"ɗ«srrjTqen,)XO}[^ Rޔ3/#o^"~nM%x߫R|A5k 7_G.B9z9S#.JK6C+?BDvzbR ǺevѰ0]%{-ۋRe'[@OZ0J+Hym2`ڼì̥IW;INH$? 9_o] MuwգsOtv`Yoƒ;ϋLG~Cq# DHq<"P$8}69B_tH ׿H~NB*֟N'|U2:?۪dHt| D,]JL u]fT0{b ͿwKl1Me hE7]t0\ C't8܋<oH. X6\a=qPB;z')j0ݏr3Ʋ!ueA~v=> o|~?e&(..eBƺOL<;˯T>lwZb?4Ht?k޽Ԇd̾h|鋤Vtb 2G)kx7҂"6>! !?vo34{15C SSd6#'^M`GFTWܲW %9ݭCs<δ]DjTL*`[4Yl%Pe-KP{ief!z\yֆG(OWmrIEl,ța2)\v5NE;QYш.*yϽax#6viQ B7bSVBSR,(s9Ń\|) SQ"t,>v QR97=[CrBy(UU_}ʁ<z6*8(4Z ";?T:bdS:XnFs¥8˶ S[Aṛ> /`0E pBt `'[&r)|+;P: VB*xN'2)r4&n8B(UP<Ķugꅦs^f(<냮jQ0~ПT T] P,PGgV37[EPx G>Y%jD`Q⣹N7I>^Jyc@~6 _yS!- ?E|UOOe͏ P![ڗGTxKSv{oxH`޻4x%Dc/иs ͣa2=U[E 8s܉{3<{]bGq!ح,6T@!HqO8 w8m F`X/:mLk4տk".o%mmZ jSv8 @]"/D}mfZHt^3A#Av , d/Bթ-dah'G(:/c\\Cخ^咹;rƃvb$ L1hPu9Jn39Rt1Uӡ{@]v0>n(s0Z~eQ5M h/bf~1͒Wҗ3R0L maN35KOz/gnF&2iRce|o&h:UÂlL^>@Ze F /{*|I֟;!y  iYjAF-ro§~KkҊ7cdya# ©2DHR^6rLmD;Po@<{^SuZ뽮B *ɪB&SȯCA\C?>PLV^"_*V*Ff'^\p]d"5Ll"6qD5ޑ of?'\ȶ',^9%ܬf= X/wN4z6 07|kp,ǀ— _f W5/;?2R1rl`k,ZsJ,*.d8rjVh(kUr*q^]R ǿ檅lw@볏0.᥽ 84Z\Lg3R1xkЌ=dό-ڙo_8huN-ƻzG<, B, fA/u zWpU. R9.p?wuq+ةlT:^i2E&wFcaLn3ꃭ{P(z>'.yI39 o>)2RM`󫎭8m+'ĉpʭ3.t.RcuQN_LFa@,%4By0a2Do@;CF㝟.S@> 0Џ6Rp+)>'yThC|C0p[[0 NY:@~a…NLHxӌ_z,7fA9 ^ξ1Jˍy./qKģCJQ-h3nQ΍b%԰~e^~̎EG0h0C%B`hmͨ1]i#™4|ՀjG5lG%"[ jQa^;Ro|hS"Q(0:d D *3Jяk`ځ PWP,ߟ-RZ> %I!,ئQvck!> <+B<iӗZ1 0H_?€a$)"7#k38C1ol[c^1%s]X$N~Aûdj0(8{<B'.5̟hgЩE͵:d+Z=_qȿa!s}VVϯ^du++E%BI 2SDs>;FD[YPa?.&OJLAVd& #6WU($D*hy+]nVVF)}޷noUO8,@Q`553zَ&'xo:p VgBϾ)lPaσ~KEPl{mf1HE,<`(qVkwԃ$VsOOk@,Ry-R3Mj\ȱ'}9Qwx> R|gq0"ķ3q`Z]*epn^0`Y7 `kv <mWgt힫5`Ttou^ޝ)x.|28rKh(Qf+'{Dyb{lI.7tSY /i ~h Y@Q Xƺ7 x&;ӱ]ͶDp9>wk$%ۥ%ATtpT- swaȍv24TCx( mḹ5FU(MNA Y"4x~y ČHv.:m_XUL9ſƀz s8ݪ+chr džko{UA;(>E͆3ے!pzud _ 3v&h+s2-)SĄ& ,pPKw΄'R<% Y02ShD]st%?iys+Tz/C&>9ʷ(\+A;XRtbB+u5!r]JFvx*iMCB^֢>Eנ/UpJD+y~Ui(ǥ,K;JjZ3#Ic/Dk3fmm+lT.]8 Ejx)NG6SP$CxtY⋙ шo2czj:9^~䃬.4싱Gl?3caUzRVn;X^fĂR6Cɠ:$ lE&3!yeG(r$:}m-frXG)mR8H +rޱrPЮ.U $>\Uȷqo_5,W[ {ef:8L+CVFPOKndBy3uo€Ƕ< ]n-2QU,P_n>|o;j̷IxX$_elr?Z!D/ nBQ"'Ki6q~˜EXNV'Nշ $"n ėQ!=vW*G%ԋ{a>N CpE x{UE!sPiƾZxҨl5\tE>Y"|W}C ":G_"N9ǣwTl:T 2 dQ:wɑGfth<dXA =Pˀi QʾIGP{aw@ ,gJ)`W@kn͝n:6 0ϥzܼyr0|hK&@{9>q: lcm< gO.aQbB8׾Pj2)w7=H>mW垹EioTl-<:nӅfğgW_YmD zpy\bID5MUfCJMI:$mS#:@D#TJB%I!e$%ZTҒТHP(#ٻu89{sθΝQF*}h}|y˸_!ZMpng/e&K=Ў<9vy+77ܭ?#sE`:GGUZ d9G~7Bڋm'U9MhMd7{4#do -8?8⟼/+0|(5k9m+'0r8*Ld]O2!ro *cLG_:q>4[;fjԊf߷O߄~hw"ONLJ= 턉mftD7tA~w 0H1 z$zYHWacU˙ظQl~tB7v9wF8n̋<㳦UvAݭ!lR5I&wc5>۸)M,9#"RMqeh/h| <ۋ}߾ {EqέTc5u9_ڝ]xe9@})]Nf-{NԾX~~EbUsi~jzTL~]R;~3 IT1b|R;##G&sl6/Y0۲TĜ-ɱE馒Dϴ"PǸ*XefœBO'bK廄Ppo #)1[QkNܛUٽVt]X~=i ٯCFFKP$=b`3L<̺*33D]ŲtxĪ]dcbjH*1\pY&UOS9wT5߅x}? 3xx˳%>; g~Lp?`lWOٿ𣜋حXc~-^cgQמ^+zrjPϱSWAć<^YP Ǚv,v?dAnye=6L;'4`CxK#Vi6lFJRf3~؂ۡ.Q 84t) -`@Js-?罴10{m=Ґنq@6!D7UTm&&)kf"X4mU;?4uulGcv>!ޛ^4UemķLYun 9Hƞ݅㛫P?0u4[FBV٭ͳ6#X"_ʂy>6v'1ycl\67yW7W+>tѰKZ,Ļyen=06v#Ys`1NﰴpH XF0}/ԋ&3ד^?΋y(:c0yM1W-EF8g> udܕ0]XOpUb"vyl#kBVQ"fc [1$\bH!N5?& 7L 3D ~t$h-'5#<*3?]>w7w%X%|.~$Bn\;Чl7I{v6nD+PІy6ݜs +cOcfTt&ʩdӟa(ʎ:{vŃՎKi-_ w{ m*/b5v2b=Xy4;$\j5ˇyC/pÞsƗ4`"旖45(ӄIcwUN F\ԉp py c),71@+-b`l% 6{St2ޘ ͝}}6K{͐xAzޛLk4 3mGafH;Foi'73T7{,nR+uiQUԽN0;-mvl4sf9u{ku$f %bXl_Ă=Ubü/ 4Y{~`oHqlV붣H8+ߔ׍k'+>B/`]<ߑh>5C)|9Os9Pv0oą{[f U!6." oN2QR݋y_OvJ,!.sqwm^lGV,+t֫'$`d1z5yhs)1_00fЈKEU yB2RX|nc@R>9>6, P(K\?n*ӗ=h#wGQ9>s4"5y3dL^%'28~n[@',P 'mԂM֬Ka}m7]+MwΗZJW]yL?={̓ou,CRwx PwD$ uJG#B$k٫W"~t £pZulVԝ WckT<[a5^Ada!\!GyebPvޖN.у GK #[\ѡnv^ʡUgoN}̗W@vIZ 4EίJ̿"rP3 &+(j 㔿_kkΒ^iE+j}g:(X~М1գ?OGIu >6lt6Uyy-߄.M7lPoZւ-\AVR?®6ִu?~1@9vi;0쪲Gmx}"JgT& r\ћ.(f42bT;>^1xϾ\/Y]:k-»Yk@g H'}#Ӊ5wxSʞ.\y~5p{@_OI>ga$b; rl1^yqbcf ~)4͖t0$o)l7&/|ڍ[`io܃z5=zT{;d8 -xßwFG9PܬEgbTc.n{B6,qc/WwȦ^?+y([2"BDʦk|s#{aAK>Ē>?_(%K/VB/;o)&AU-/~$u2wRzt.ŷK3{-OS.r) 'S2Ą9X}Q3~shZ;#&bW>"t!3ȤMi]Y̏7L&KK;&&Y3>|M6M>$>[ί!1I!>jR|ͥn2=-iK*Oڀ; } DMo#T0"4}E 2LWXp\(MǞ#0?5LY6>o 3c6፤ eZqR~zWYEhm~O=JC]kIbӷZUzvލ?(ۚN>`nHN:\8+rb}FriOW)sJKܯBBU]TR?|o![ ?Y DB.Vrr5|Jv Hk`n&x$U kwI6".׶XVVmJd.iFDќf,_N8b2Ze믘55;h5 ̺ybMlsmo:j;چ?vNMۙ؝LQv߿e+fʵO;0. o{_Ym}{*w"oB:i %M'oN oże.]x=څMJ,_EK¹ċYH/j3l61ĆuHSQL n9ݐ2l SJ=,V*tA_3ڪ,뽜7#>Y8wtݜJ,h7_vzw/UB4Ji#>!iAxcta{m5<7|&#*gt Tn}xBbA7<0o˂Hϐ]\2cw7e$=!G&4UvK{MB+[~I!C{Ύ6ωߗn3bI֭~*GCqT_y~?q`מ*$)+0'syue"?Gh;[lA0}LgpH%Q3'CQ<)ݪ5TF 쌇wvGb"d- gz~ /kLiPL}q$9)YлNZ9X?Mt<0{)9Hv R85~EYt7 ϖi!Y?[XY@9M;4FhSZt54s+?%>H& DJc*j_=q 16c͑c50:WByM]/[a(&p֋RDZ 03۷yt+![WƼ O{i'jUP3ΎhhQ[Ц1-|itkՊ[+ hJ Nb zT֖6 |ZAhĺ IÖ66Yvީ;kQJَu˖Jl2v_>֎d f5,v/a2҉ΰ{bVŝXX^4K ORpcCb.R[3ޅG"X h`΢6 %GֲA7Vە lȧ,d,9'rY7 -pHFΛBos|=P86*ȼ4֦pAÛ,0+Sc-ŭ9ZV\d~8<' 7+Kfb Uzax7d{p/f̜E a _y3x z\gkDϿQac s{|"ÛO=x C-Iz~ۿ=6.ׯ@u {[a,L ӊk.LV/f7e2$>X kGV۷'c6Ub&a%3q`j~VY)ގnw7#^DjD.V퀚֬WM݁jʁNs8&=X^lI.8Ѓt芺8'(` 8#ki'c.WsUt.:5D#ŕ"!D$eITJD*)lJ|d=4T2_xq`([@(AI{\>a)!M+At$fS\!᤹?.w.h VhhƼ6xĆR%!ByCa@*NK|>= BacJ.֋{qSV pe zru,F~C% /X-U?OHNc h)*NQ{_+h*x*z W z!ДUӯFb+XԈ:vMvԠi0 -e­f진mN`WJ L"vurF!IQaֆCz?Pen|؎[:0dĬ9Ӊϙ&:c]Qۡ+ KtnFzOꁙ٠δ'"$ƂH2Zۇ"G(;\wNmc?>=s~ 3}UKH` _֯$?-u S>}YSP zҟ Md) "6U E? nU=N#)0eR!{ug3UJP$Ƭᥢge-O})Tp ZĻu3Ggo%I^sxsiXe"M&!k䦡F4:%S€ky֩ [bRޔ\9~\:&`xy,D?aLH>nc"9@'7U,Q+,u)bZ[ czߴ<) Zb%>Q|aN}ϭ7~%➟pɌ(!6c[LFunlU/"W]@x~{9GSDOx  Rvk>%Fm6/5WZDXi]xLV>]Ɗ"?LyHdUjEM\= O] LG/s6*|7&B[&HS8 ͡UUv]uO1q1$9*3{:U;쓇U6=Ǒ7>EyO1%L S_ !Bеh<{R7V]s;B_E~rS5Q:c58>pG=Aop8LU.럘oZ nk<ڈG2Rq¡`]O[ؾoB%>i͸Õc$ӂABU-y91C_J\>6l~mY;&#KRUSŚ;WCNth:Nv·wopn7Mfv`I^Y܇\J6HXMa?-5~^%I.X{暜IKHMj_D@,sn&|붒ANp$Ce"Wv5.Ĕ)iEAh+)Dތ JiIq%wM\rM!0;z*>`WD)S1Mڛԝ31˞yPp0Vgը^5va0-k]{h͛g>4>@aj:n_v{deq _(mπ<4,1нt5l6 `\/ <&Rz01 `&Y,IѰfAd~D1 eX跗$5PPYo po#FFyl(2*lG{{E ƻ_[Aa9}+V!ܙq(s)!waܝTB4E43*`%e>&Ro|Mt9(Qqȟ;D吞DCf׳|RP>cǨ`Kߗ`h~Y ðX Ǽ4"VΞqi82g!wmU6j/ЃYFB+=(+BBs/q!WQRV( #S ʱdsQ DUʋ|tQ%OU8gn7S+Ekar*M:|9k\/v"N7@GܝLEӧ, N"``~\*3Q&1[A&NH Bvg"_]hhfwx}mlG%iCht@)8ԁ@W:Ѫg'$ zu/ucӣUEYyx}= uD^K/ u[b^¿'Aʦk$|?^oO°gH=4'*[I_voe[XGϸQr~|L+?&/b@"A9=b<"ZT^:#u:S(hv̨A!6;1#ҌςT-FTd.8WORaߒk:<jU0Y<\Iß[L\y;Ґ9II;t\?JH~ظ E>ˀ *5lyc=#h臋i6֏AaR&nj-y {AҶ%6caay-ryTWBOq#Ll&-KF.:/L_Y;l٧nWRA];C,~,֑!,/8& ՇϚl-#Tuf xE ZKW2|ݜe# x 4H}0 rnMcwB{@xo0+BһtoM**eI)  r_nR&thC5wd)ZaTV-{ց_TU=5qz+2?oĨT&d\j}jĨJ]#5}z$TSm\ /'Ʊq,:$݆ca2J#ގUvOoXTJܼՉ,C`o}H= *O$wc%'zpxB3Ǽ?>MrQ>m Ccdl&֏(J­7Φ$b {7}4"a}ݗ{0wW|_g 1L&B .2[$ak>qN̛ B៩cNrk[(:$Xĝܓ$dߦRuۍC0eRt -pε!Ȉ|k}K-d}~69B?_BÈygc4 [ø`H3>n⫔h>Csaaʄz^ kXJG4_w:&cNyIJ7G3t.+0#3hC 5 A5+#ҁ4㰎 5MKuLZ^ MQ)&^s_Vzq-,֮cbv1UGph]q6.ʟ+P QHX8Wǿ2IF\]qyTS-rƲT!f"D1D]QDRވw}߂?aVȈ_p9*/(}~7=vUwG`yky| xs5cɜr7dtDLlԍSn|JL.㚅ߖ9kf`vbhf5MTGKS-sA3Nf]xŦӇ>z [f[V%Ñ6hy/|~u%++BW!Y|S;k'' sKˬ6*c6?ـ[ަ*C aވk}L5BPބ/Zb5#uf(+gJ/F~ ֊d`k+A^ݗjG֯KW+G;䛭WusUΦֽLrGq'u!;͂.?FoomFq^B>]ܢ[8巎yN^~ЇRLflGqvC /+'IP~LZv|.6&auشڶ}kOQtt[d&aKbL t4<=WP)~Z-ƒgd67R/O2[zo䀘1Cp[!1/[6S!ˊ k;SQAt`}0 snƯEIU4)cvxx).iP}4AV tЌ4̋غzSQO:zn8@[PksF_ͯ ]okL9gs#` +1-Mz9]L7ٵ̫˳Myg0 {-X#6$ݗظeg|!FH]lR>V[*,LKQψ,v?iĽk2rvF+r!#`fmd?o{ kSfN\Msk>oCfɖp9˿}h^xm DvsWW /%b>#%x"FLA*΂ݺ9x5MB?y7=GɚOf& !`:>[."J&|Q9Nwj={e7 !׏\Dí}YKgTc";@_ NlxSk]eGJbTWT9hUdUl7@6v^FsL(o'T2Є SȩQ\Ц4YNqI F+(k/ Nrz;<pLoGLѪvoO;巷yn@t(ooRjײhwa, k^3醒VwNyV,dzsWn`/n o,'/ݏRXY9=ef$;I*!:~mqtm py@vlhqAdKt+ ""p9+ QA~{[BR0py{ ?%(x_ ?-’D{ABc6=9K:T9Eű冕Taf;a(30> @X7eb,{jJCZqPq5 6jP-ԮIGu)E5jXK>:4~ڰϳW]d`g)w2v?89 #~i;#P__4C58<~~&Ηg0aam„GY/ƒphO,N6QR\* dѽeQ߮l[wb"ۣuo?7|-?"W#L.~ѫ|2V˧mR$| mEB!pwJ);9\FՕÿL3cJñ#d ˘#풚v2" bgx eJy YkI?"bNfSz0%]%Ⱦ lB`rV]4Z]໐.f/Y *(NSmZҔxrC cP(w0<Y<=pG_}s4t+L/|ff~t8pc\1ijQh;z?_3vh JFcG`ۺużLDX?4?~:G&Vy42Qu:̭e%/Ǣ,RX(;?~o]m[XvUK[6K"qIӑlp?zQ䋤P zo GΏIk ` gDZ%av,=ėuӓ)N~kb֝\$4 Hd8y$`Q.)wKnZ:*.׺eIԙr,ԈoJ΁^< 0H qpLMqRLw{&\-r_6p}+ <䙨~&Ur/-*l% ?] {/ , S "l3xVv'BuIZ 萣lhȰӍ[skW\hҎ#Mwc$ĩC%r&LPv݌IerOԎ=P孭 g2(!-s? Ď.XgGdN#(pg"81 4غ72Z좤BBxA:C4_N5=?/`c ܗ.}|+ѐRBc\^ay? ByO/9 tHP?[b;e/j,|58ުA+ #8aZ>LnD߽-9mYv ?nY;.҉{f8q3OV2:קoebulx`S'3za5 IZS5Άaw9ZVtشA&8`vvK.mƑh\II'kTmTSr&vFH';kln1r͍K7-Z9IJ6lAZ/a+<,iOWېfْvt7JkɞJxO~X҉I؞l.JvsVY"&n z`pEeWJ޻+EHV^~؇k7B?-E8hפD W% O@~fӓ1v<3*%0Ϳ9(GDF{D<[`)7&e,n0m f]LQF<>u 3]I$}4 <׋}$\(; b㇚6ddVE^2 b?1'l( RGptW HRa`%^d7ϚT4K"CzyI<kq7iasJ@#ΗmMWQtM+]C$]bPVkҽgD1yh食] ڌ.Ŀ/+ p=Lw1)9wZV,M{ݹu' : | mtc12sAVƁczns hޱ"}d5.@5sx3J̒u/FaՑP om|-9tb/M|d\m/߿i(R*6/o ]7!)+EtiG|ems5#ۏY3f 6c哹s\#14wiòwN Dk&"mE!,:&[I[!qW_0wLSTIf(긐vHw Oܘ$KKM cX>teNɝd2 ??ވwc(pQḦSɨHZ%T(P[♧Q=^s W&narh[6TGuP)gF?Rgi4mȌML_$͘G+N2+-OVN1Kuz}&x$8k:Vʄ8{Ug)g,h /c9eEu 7 䍱V:6ɆxO]61yņҝd :zG|VROspţSGſ}J]x'--+ͦ\ xF*gqA&Gxp%R -(C Ht찞/n]ܹ!i-%e{/v~+1kK1-EFT?5'-ԭq? ;-ɄHzA٨:*%e #jMB|Y M}t ^!ÏDMwvj+&=lʪ0ݧ`]beԠZ w;CyH=6X>{V\K^TfS/Y֍S&0pm`(A#:OȽ66kmU_Ў?[_{kNf;Н0a^Y:=N7G4ӫ ۶v;n8 )vfvJWL^VBhEB&ӽӌX֭}x7dmhRV_aQ? K_7S9P6][SuEQbV썺C8D."^%b=G Rb픂qkB~Dr?= ʚbq\[9Ufod-;T(=1LSc֫%RndhLڲ{& PTJAkBa 7?8/PW*_}Q-oϖ,T4q'>仐{6BN~NAI4+a9c:R.vD剆t\,ߖd6뾮c]P\x>rl7 Ћ4V1&cLtMdbKi˕i>*,+8xG{eXPx+!j(Rb'R͆9okAuipOO6p`xx/'/OU[ʸX޲+ÁA?VNɼR+=?IVרĜz6R?BOrcqhqcx>'y";a&s<6xsܸd!t;+?FzK,ec"<*A9a ͪURN~r4p$[:'`U7s~HP?w!T 0a" hDl|cۙl4T!:CZ7? YxI7R[g N_kFn2K߮pA1NgesMlag?&ɪxPPhA67ryyU>*l2g:R!vmJcu TaO2Jťh0p&oMÁooJ޳)zBMClD&:2 w?OGyYBb:u"d7jfg`Vy&MvױX۱W {002UMG(SLZ]L7N+YƟոBpIZJ̚`<V7۔>+k6dB޲ܶz{%yFi,Çw6088]N*"B9mN~#'k _@<ΉP@ZC; O}pj|ho\}ՏD9>A`+G `m*8Q?/UlKT*4gs uD^м?`<\ᗄvUz':oĿ!܇\aaᢒTݓuW S KQ^pZԢ`:̓T=K&D?`cHJְ!XgflNMkaT+w6njom V]Վb3.v5]VsNUp^S<?ۉW-Bލ ]6?ԅ}7PИ؍& +zҜ׃b\zF^Xƒe&>\sڇUsz yR?FsIq݄J#R4\*czcyiPB/y`%?QG/M|ʴ`O.j?`6W'['rFg8nH'bF[/->Uy=?DKqKeM oe 8S:Y2;Vħ*,6VC?gqh{ 4j[*J_C3:ͥsF,1ᒸv]n=ckUߚ!`a?oY;S6ҎÁV/JAs7HU~?u`eK%]eF˝k=.DByu> !/u۞)ytzEVNWz7Ɋa~}X8{aḠ1oOCr&~\`<,sנGMd,ķs$✳¨8I?&s-ZBN۟ѣD_ѿ&Y U[;Fa,)zcz<V $p{EU( ՛CwTNl͚ Ae^&ôX%7'$5?u:]8kѽmHDA˯) /*F{Th)Ρb&x$TlEVz}4T1[4|cwݶ*74R (rV!j3:%?S+N.et $U!e'42Ɛ2e"}wľ&-P4S1>Dc"ATb wf]XX ~xdvI=Dn}ܝqx.ǺN`cL;,mj,bJn['6 nU½o4SJoR9P@6\|f0 3uxNDoŘGyXʓzy~G_ޕ&χZܾ|jGʥm7͇ay(bg߱~E^ RNݒxxn(/8û3؛{-:ey5jQ9UnO ;>dFݕU(:%Z 9v˃qka-3ڧZ*gzb=UEP+6I:v96_ NGU:a0ߍ۝hVy<݉A~](~킦྽ȹ;/܍E*U=H o|[% {qSfBD/f}'*|EP>|YwW5>7Xcv*]ǟU$`Hq?^>p{NUCF(`UD Xet}cs"wn_:U!?bp~j?CW* "[.l9J%zI$TX}q,ydܸ!˂ oʪ_d<C9PNKݩ5d,;vY|%wG\(HiٸO Rp1*=ӔP* 6_*B0 3)Ioe47^=(CG=B{fi8]Vf:WYHi{6bFp(uګO3\w6;Io<)D?q_&$F?jebI%Ώpu>'BCL{Z~k}\yMkb= 6'h18%k^fq„Fa,\[vp|=Sl_t{M.WhƎ*ŵ+Vd.ZVIؒc~LߨuUPk{n>WwcC2e+^|]7| 'm$lT ܹBZ[xq?#g4@HTN#dFvm%9N׻&hXʻu5ccpگo-?D?㶩D*[dI%*K%E.Ie+(k RDQ)ZP$!oReɾcP B<|Οp:u<G4`yF_I˯а:CKOe(^⫝JG_n:]f`Z\)Ռj{Sۚ`"2w 3s~fmܤDuuNLĒW`fIZ&[ƙ-q5 če史lZj,d抻Y}d㡱D9^>B"(bZPK88Uf@q@ܷ+!v9(`ձ88A͌{JVpڵ,.{*ѹT6K_Z $˼xˈzC0җ,CŹKo|m>_+=JpGOXEa>nxRb-qlt$am&d> NF̆}pmhŧ>X-Csga]!Krۅ)0Kw}9v ^UΤ7IP~|3 6㼷Z=9sVW@6^D?υy X֝/c+SN j27^hAS#š^bתm0)>s ǖHֆxC|G;F}vnb愩Kv,,.ę=:@ZcNt$);tǟ 뺠un5ҍ.߄b=/&C{݃9K-I0)!-pދ8`^[:?ы|w#2b!㡵u׊d_oZJ%ҤYI/Ed)ѮB (X*[2%`K5_p'o؆ ?Zש2b?8@L(_ ַy'&9vN>_u^!>2هr%}$m>iRpB.'"hojH z̮ļW޲O9ucAZ3CETcky3jv-'L<8cMg ܻU_G^|a5oV#ܴ^7BuN)hӘ *2^)LQ|oH\iTh!PSSb4ضglfC!_hX=%EGԦ0/mtpS.O霥c<:][ɣ(6S7v1p7fĸr"k% e jbq c$"wd"~j&~Lܟ#O4Y-~`¯ȁXpBa[Ό V楾e52m;lHm{qإ όozبzۈYe='8y]Q0z*^jE`gE\jTx cY\t庀5;xKo(CB?PNX5Zg"3 {XÚVGj|c:0yW.mGzڛl>rZê/|z3ZJwsC/}}S}Ⱦ5SV⽅ؿ7-M' ǿz*TVrӴ^j zl2:§pk,F6gvM pɗ Ӧp:ӹҞ4 ˗Ml=s?d֌? [ S_?^C@^9T NKЦu1}0Ũj -8Oii+HX r⾟lN;$+;ՎO"UhcLJu@0_wv>N,?% ؝}W$zm;jz^߽Y27BHt#%ۇ=_yʸZyR컗Hݾ v3J{{xY]I/^- Ako6rOt8%j[20ZP67l,9C0jjL(̙z$?oV9"Y; rNQ5Q}SUv7f!L{ΈJmLpω ,]1lDm> XW.F&pal+cZ Y\̛uU<z|ܡ;gy#BQT}wkP"@z]{|rqm}2DfA^~pyZ"=:}8x-uB2>r\5;'3ӅP<ۮ#aJ>,AZخ1aخb! WUt+e_z8VaxfsdO4=b6I[O}sP75C&pz˲He,&Sk2rs{ܻBxhz¯ЮƮ-X7ZQFt(d笹2؊kKwa΅E"{fD>08p]›v]'3M_:@\pp'l}avBN&)ErПnc0; d<ܳOO6Mb$. wPYa(^|I= :p=MU+~SJUZ s ?xhJ$Rpzqvr0|7;ݍ SsO On *7А.9[ai8\eӰ5bߺo4,=T֥M> @0ʬ#7oo1:n^zɀj{+Hd`G ,?#cYKE|kNgծDO뻜r&B>r7f`SUXP;yu5~o2_{ߵ x\iȄ4M6yͤG~ :REgcq֥ŗ8莒/ClYx^[ݮYrH˥]ql]y/s1i6*G˲"ZBDw.zVÕu|l3CK4V;15>"\Dߖ:'ooֶUki~,8Mêo6S}JY{kOnWޚՇ >%DXFF!D H+CekcNz/Px0fJ5GJ"lik!B=ֈJbQ^O[c# 'nOT sg&,WԌ ƕCξJӀ|AB8WL4sue(##R-?݂*A*-H3+5\ nIVX3nGDnHowxV&WuR?ųkĺFk~Ȉy*lH5 DuSU{xuᴎGhVg'uC滜cݘ\Uڍ^^-oy1Ѓk9_žjl o̾`XAJj/ުuE^X~j9&RXM\H9B>1|*k C)x7c󂂌/_ D{rTZoeAr]:61CݟRV&Nm!R4U93w)F}h`~5!мr/+$"E>C=I1j-: eo(52EmYUA,mĎ0S|C. yk󅁑WL0V;2hD{rDL*,(eXudX8 v,,da f ,ؘ8z}!VO`Zˣ0 qXNqtؔCNq ĢO;[v290 q,58ƅ:E}'wr).F燛 >Cɶ%b{#ݟ0.y }N wZ@x3V .>؂2V<]k|ъ y3zL\WqδKm8;tm];.Iq"*=3틝;uivk*zҭ-;V鄤D:+ ϖ ӅܻA3mQߍkzPZJ zl: I"Ga^>0; íwu¯Y3tn(&<%CqZͥ`e(zS_ /fQ:g3K:^Ss|O ,yO0:oQAU_CuPQ.}vS[[*'#h0򂆂RBh-CG_C)R^*qtHўWq}!1C_╚V2w^1-@: \N6`:.gюWu`e% GQUϐ=De8Cuc"yIEV|xC9,(XFøcҡOb#*!N&jJl fvYZs0A"ns@OZie\њ[{?E; WL <{ROAsǿ_@I>n9Goc]lXڇ ׋=cr OdMcm+ \`_2h'+ ۸uT,]f>6ba㻛IE;@҄kK}xbbP;]?l^Ȁ@!Ve?"?ɉ-^t74a&> ք_ZWqhgXn!`FBdui z8Q [VMR`c;Je{[@ٷYB~ _\Ilłm_EOViu&th{Qm.uj 5X~9?veTS6u`zJ|g;=Z߁I /.U}vx'?ubaJz/_ׅ=1?л7u#"zlnh=:6̾wl G\L&8' 4ʅޜ2l\U܋d'D\p2%hONn!nF2<9 VP`(c jNFQ}XL5?O 0XaR"SdLC1d*B6g*`18/ː7z׉4ul 4*ҡMт#v799<:UXyHg@Ĩ=3&%-gм.U}Ml-,3< C59;~UͻAlŬb\. Uhz_G֩.~5͹ FQ\$ۛsz7j{z>v ᴍMK\5fGy.H6x[|/([,>-j)? )`DWA puY m"U}$ث-,*Ck2C ܊<\7e7a=b`&S{.Z+A g?8,'iXfJԆ^'Bֲ݉lFʵ}5z~6c]^5L%[ 0GMoEDN\)݂ڑ-wmb FZbĉ+HםmoL?֏Q"I*E R)=+#hHSdP"EF$MQF!˵({&%du/?q<vR ʦ; xڗ[C:a{Foδ|=FW>=5o5рFy&l6HrbV#K'Hx7gr6oqF|&|,%|0[5M06XIFIW5"2|Mڌ2RIPi8܌OQ.{zsV=hxxkzQ07J"sd4»tY*PQ*ϪZDvMq*| ۿMDkqȘfuD ÒEpGg3`QN5ԘzT%A2uiL^T 1O/9-"3]t:6~B`w{pZ2r I ц7v. ml,ئ F؈x ɁIЎ*9 !VL>ͿEboM\|ڿ9YГTq,!F[$V.kz@KVv^÷O.2yx@ƃy ˊ''t`(މg2nzFfaO|ȫȑ (@Xvjv{N 0ye^j \6O`CX1d?xm2X q^ vK _6# ͝3Dxv돡.=]99"rs'+X.As5",petu-ŨMzQ} >/ִvm*F%eMr*2V -^1UU먂IY*q-q8<C7V|2]^wljк+38"Q 8J@ŇZ= ]͌Tm:+)^^M xm=qGd9 s;֎T7`X $ٿ926\.kw6:<+&:iDŵw~sm`QiQt::Ai- cBNB3v/ӌ G*C4 ҆[)To76 zP.ޢ+=d,J@GA *ԯ PNC7)j+ ;q)ٖJ9it zCܤaG~4L,zDJ@CmjtHtv8ulGt'_WbWQ@w5ߝeiR|˘g!-`.ZĮSe;l׽&_cmQNPz[]f=^h+'H/)^s[YH\r\6x8l̆WNߗRGMtTkÞlLeJ^Ab3V\ó @5]'M '\]<Ɂ;EkXFKoυ,LEd\)0Z!B!4kr& 9xI dٶ^<W IÄl)G=GN )|xj-xe:ʇp'#MBPП]wc3^+Ip+#@c !Lqd658&DIՅsb46FbD,f&[$o穽Ub{ #$or&)94 `[kS fWPHͪEA{G-"E~s} ꠻i:Hd= cϼjD'+vSM4weQt0z:6XMm]82$+n؈>36}ģE9t&=lJJMXQ2s2d:Rj&8fx+v_VM5crs\kkOAG P l {KAox>KS䨸B:׀?(ݟQq:BME]|*;v'ZH9ԫ@ۄ[i8sBƛΒ4bΞܘkhP2unV#h<̔WvD2b=dĹSut䮰{jfT7.$չn|!^CWhhHBZs@@uUy~֍"X>}A| Vbj%I"0/-oDA-e+pp;h+F%7r6vdȂQgf5,rsOը j]?7ž y(涍ϫE~ZWhBJZ]cκg͹[TuCz_=xZKkp8%eB;jh@cueI|ZPHYWd$gW6S)*֨a`u+ou4NYhø&zrUUGiCh;7KƳp另zpN<_ьE?Z!J3 V3I@&d nImk_)?m3 'fCX0ΚJcAK燐?NF3Ο鋋hLjW|թ~j'?ݯE6z.Li9eBI>e8gl( msp;'rapHentvzxq!uI=fM~ \fM>S=tN`T%ҹ sWy`|/:JxCFK>|P9f&p^|\2JY&@VԿ S-?/s\Y)4vہ~׽MECp8sK?luQn<fn/o"!ʀzzTUVn;+k+^vNy.B_. kĬN Ab ӽrX1|?o>}Ɵij; ~_|aӏQ'j+SlRI- *~Y?YL%uP=<6{CvnIREq=,Rh]jz6[y}qD_"H8P؃{*[D(_\Ԉ9___׵oBΊ ͯ00Ceʂd]) "fvToux_ Ѻ5,))p.v` (2TS]l $wQQڞ}݉}To;*;zvȦu~}iz4Qt"<_e8 eޚ#hڥ CGUoׯz7wr(tvo伥zϰ'{>͐a@R:In@1zSzKN%~o5S7e;KØ() OR J\/Ba$bg>aqc=?d'CYP4P ЁH].{ʀe46ˆOҨćqm5oشopN%_Oq{ކ:pKQ+Q/zk~?ppR\[9Jz!r.lor'CGbkHǍaR,c:xU33%1YzĬ;hʮZz*m`рɝgFpnAk F$\r\urޕ!k;G#v5a%S@ͽOn'אm{dn cfޜ% Jc8#X\<I)q|{t X쑯fxw(5!p 8m;Wi̓ wzJHu[V%DYP+7 w*Pb B$sdҗǭg&7GPNށ<7CXn]1D58C;պ)_iǢWbl1=?/o`߁ߖX}֩ZذjƘ5?5K?Dt֡AenQ=$b\q=FZno@>~qQxNWTR z_pZR_'|#?$iJsO]=ЈG_ պFY:)SU`ff&jOm/oB?dJ/xIoq߾KU囑DJuiw͐cw3R%)۲w| ռ)P7ʻN|pVP(ؘ]_ YיWm"'8%q= qu8{'{[fiXr48) WO9o U>?]{N y->^sz/ҬYN!tߵ;t.\nA j7tJ2gyfG=߮FpY!kteﭬ%Dv|&dc}3[e[B07~ĥ88Ҁ& e|%~skO C.i,XzNk`!,H;FK07gN_om9ƥj*`U粯;Nrvܓ7xs`t7,wzޟvz6\IC.T[6q"`~ ɹзPo?)"LX } \u6aѴݫx e>}H|}|R'gyD4=|3,,}cS*Jw~m!@@S +wB/xsg!;r خb\[o;.BIǺ"m[Y /oDˉ.W3P_ u{bt')l,bdFEd7xGߨJ-eӺQĊ'Ck0eU%clvWUzQ[Ft}ױg5 1i0R|~?v$T7ؑyR^I& o1v L#AHm")<Ҡ$+iX %2Q"GZ({ $T*+}r_z^kG6d,9sY)I =⠄VE[10uބ /ǯQ3VΦyrO64&=w jTk-mm3hsRS%nj0=&WbMCf6ͧ4Di\{aVoE棇lׄұ<(:z*]_=ܳo O/HIg`1y՟>@]LR K&G/P;ďD&Jfd&v==8"#S'-qc)wq@a!jẌL^Ƅ;yUUF@SSr+U3c1ƓK&xv䲳𤣫"8HݘPK>s0%*:4:.J?bi(lyC ̖pq ֧<, -[_mC8dz$Wð&<~ț䁾s&ovy 9 Y %[4񱺰aoki Pb~fv?%ەS)g쿛|%RYngs!Z^^~TH-TǾE<rdu$n\gm(ќJ Gz+fgT4&#cLvܚ H p_h+.X)?QJ."-5KH0Đ5l)AѦ8#$hW\N 2NQ&IR|㥛T;cRt7LJ\\)dkU9քyv4Fٱ=q7<WlַƔZ 2g* |JWH]^I%AeD|2y#0CyK[.Rt܃cAZ .TԊŮZr? íreMO*4 OTtw=de3na͟6$[0MCFqsFruG|$eZ hxTM{ICmܠcye:gYE9ѹ.n~>?W4<yAO00=I;b-\V/2ENؽd?l{Ll1 ۚ~^L؛l8KV^7 L_T`,#+9pWxCoeWpiB6%Q 7Qb_qv6sα~v{loZfc=4 jt?^4΄Nl4,}Fiz0!zjEeG. n=os]'u*:7pǩIgR$g G,SA5pn:.GlQʵ|t#dAM>Kv;GXR> vzͥR6WΩa9/yjmB L:+Č 1}^سZ!twM$A"G捹k:*ta "H/AO2;@V OL21e^ o+C/qP;GyE+b$}Ž)D[\ NlNKPo֓"#B 3ةPl|!ur3)gKH-l__-b, ;/[ьU4Cu\ n9۷S&9-Гՙ^*zHipK"!cыn(sqO8m{ɸWq T- : JRieOmRLzV\h/CN|EIj,*L2-Ffh%:# +imN(K>z'xw`Hp,aueW:M sd?0tG:D%|_|M~`Jb3ZsG'"Os=@iqTf\QˀAHY9Wf3ZbƄ8:Kd6I-aB̈́v &\Kgd-"|/> KXP|cϞ37}aI}s~l6yGhmdcɊl:Rh(D٘Q7*bc3kybur@4cb&[pF4tdo?AՐwIptDL)#36.4r̟W'nSАŧXfW󿗵Bk[|ɻfRͥ&d>$0k}_N5iCý߷v$;u[8&|=KnsPrk$gW;p?)\KrVr0ߦԅ g _uÝ "gl%]SBq-8ÃcIaQm Օ5<\ƇE~t7_G><[,C{r:1>t>ٜ dd}7<&UOk0gKfNB^#c: єߥY,DMEL![]>ZD(tb;٪bJ#;Hw"$̋j:񧾙d5QGïbm 1;=\*&9b_{eσ 1 If-SZչqI.OZp.<9+v>g`2تO& Ok@CtHqfKqdms| n$?q/jY4?^/˝}R\.[#I_x*Eb៾hMe[ f ҋI]mGZOh'G_(XV|0)>=. ZY9`db*BByc>C=\NSiq̥m3?)[L U>s ~19/ѝ4o5Obm#坁֯^ԤaQfl-·<\<|UovÃvCIb_zoG[|~oǁEԄ|-џ|=CSr,`!r̊4d`y=NCNV<(sR!L z9OoǓ6.ZBdzϞ"B=N"m?.qRh+"EY"Lѳ"¾ҙ;p{g-1:YaPGXрo5_^0[X&1m ߾o+Udbq9TS܍66knyع,m( GCx'.f K+]'k! d: ďgpNӦ|:6;ޟtSߒ~/e9S~%bgV:8YĀɛxcN:111hJ79[?v2dvb}g@WbY?kI*ecLq\k3qRLlؓ9o nY:!KYx.nD/u!z5 ,L *@3KFv[aæ= 6 1ܪdb6lo6n3iOY90o*@T)OpP2cA7R~AkdVqT[D)U'-rۚ ~\|h%x!7e3=v>.yj4:yԄ_t%{կ pǵ"S~GX,`rjq9GnTD\(w^[iB딾־ђ'ğC$[!/U` kY ZVͫ3zAYF'\ثT B6=Qi<'[PTrJ 5(BJ+F_biE, y+$>p݁݃%Hv`n̑ ,&=N)XRT "zRɶ¨ᰝ>osR-7l-P8pRF3޹@BׂՒI?xBFDa2;>_dDW[SisS(lAFmcbS7dbWuH)eS1P7C+?6Prv͹bm(>z3 ;kͥ_ k7+J 7),h;L#6asr:d!z?h;t|s7)Nsn$/mWa#5w2`28pW]Q -R0třݮ?zLL1ng"he/#/e2qf7c^ ]v?2q0/s* C.IDž[gIou#7%-cjG),,~*\' {5PM{&wlz^\t>'Ox$dSsS!eyzv)ȁ39xC N[ 0*ߵǏYpq4g.&r?ErZ-g>L.Nnt[6EUҭϺ2~giaG)+ ;8.|>SLޛ +K,b2/j!Ĥa?노$⛙/@aX$–A3UT#c"F/Ɠ냬I=QhqFPW#P1FVyS"}g.cHV%p;~,8DfyI`;p&QA ۟UYw%3- տJSG6{-X+A)Gp&<׽`I 8PNp1 ES`{|AT;@t@林2Z /x"ZLi8U6$c"F -S2%QJBE%EEh$+Ù籁}$$|ujg][b$Z CC"ObP>H|-iv3,vKP5wnH0kry?It4O 6zϗBp:4\59MFPT(ś;>URx;>qK1?޶Evfy. /  "9$^_@F5ojS2gOjvBB9vT4vێשּׁؾvP{o@2oKHɱw̉ Ju iUj K: iQѫg̣C5޽ ~?uHNmh@3PfeR* g_!53]OJCgq>(-А]v$t؟1KϣAsԹܹ3Xf^ŷ_ela`j?~kN`KtjxY{ 5]NZDyL39DJߦwTRie/~_/ &u,wp!\G|EemDv¿AΠcBW*ȷ@2iמJggtFݚ';7k^`o]zOB؆&x-!T,Dl̜P-PAƉ"̸vuA]¿{"_C dNef3m$s^%W(ƫ'KԾ#T5 - 1rNѻ~W zXgNܟu¿6_¿@_>P`\z=D. ˳6C/yH&[K yIX/x6:㑹f c v\Iho 3˫;+ұv vn.OT|UՋ>/2=cJEpsU>ey*L̑~f]L4y|JeB]m[5^`~j2CgLucK+m WBTYȱ/meax~|ϨQ%cccƆr!6%Fӑŕl,c#fj Foϵy:9Hߐ_A0<Ֆd宰Ͼp. CsQYŅ̭ЭyhB+T 8v†iysNpֆçiy0ےu#g8t.a&n|K|nj~jH>>afm|[d$+9vy`&%o6=ޕ^[S-S%P6O-yd%BNԴaBOQe~;( ۑ^P!8Ҏ?޵zbn<NׁխYorS V?-87#> *m˩p,&4uKr:gm ̏ iPU?6++F6o> ;#zhȧ,A}tL*י o?T`GG$:RKjS@+ĩ tpޮ涃s ns~ٶQ{0}KFkו#j^5Ǜ6K9 Í=U2&^e1ȷld˺7{.fqSp [F2}X8Cgۭ~S7,dc+GJ,f?Ȑ~o7. Z\h/=vok>+EmBd\xOY<"4sjtp0K"p{ |"mGysWr&? I<͢|ʻǭel%;;t׾[%W~X&@nSY|:eL"PĶ"hgѝ2]{o4SCXkEu7rIJ[6u]zN9&ޜ"*U"qR512YO/ _)blJGf^Ò~aֻ⣪ vI-fF$qn8'A g[%xz炀~ >OTB)L ˩o!\y`KikVodw{֦vM۵J;3sY|Z"X~9XYn%b U SI[*bzj? !U ϱekpKnuӌPv;7w5pQ|ޯGkY9ѫ3aGI|P,M}D:+6-x}800R1!n|MJcB4lW "S6aҗVqn"9^%~wJ%_cG^!!lb\޳Fx12.%tL kƐPզJ0i৆*aۏ@07$3+{`ȡ^3F#r< )#lHQsqiq N:"^L&ni"'-'#y[ôgi$Ƌ9&b% OAʎ] bXT|".3=+#4N~OmupBاx5(9l-{V[8q̤WX'1i"n'󖧯꽹 R(:foH=Qvm}j+U+>$%_oM,)iFcڠU^NkL̥$td3=@Nw:%fK8R2v;\?fڱȰ .ԞiLJ9/|M:^Ёﵜ=ċ}79]dK J[gXΧB1ZODT|s͛B8`q> >\X8/'9'#zJD%IC ?6ق#bq,3ܿ/0䕔vDp:Wvsߝ$ |P'K+(Dx7kwjW04o&I R-&KShPIƿltkea7,< ҽuDM'ʧ_(o el\<^UN}.xP}E\v3'8PzLŦ沊;\V >1UbʪX;.$Eߢr*<|H}A}MxxFNf*C+8+h03EצK"Gjn| Xׅ,+np(OE@ w2{dh=˸ZL2} 7.DZP{y9B\?CB8u|EA[mEصY|]%sKr2_781ߺKĠ,`Q=oTʃ}/iIK)"JȒ 7UIW*oxڗ ܎p唥u D8k0@^GSqс{RppJ x-SN?Ѣw[ ͻh|#EC3)> ' ow`D"ZL71+:l#dOђvJZ:Z%oc:yyshJ5g6'/HG=M^f!qkVe 8c+L8H n|rDE}yτ˽t>bnqWenqsX<џ^g0]$Ĝ?w&OZk6v_`B6(TQ=cգr8}-;s tÁל ft΄W/q! m@"H^s&p-N2B:6g>>GKaq"eYb.Nis{$Xg._okǗʮ|vtFs*_~zum>ቶlM#YG 7 `o}18p"y}y+S Ș@v֮(X0!7p"u7?__]@w?dpia~hN!tD>p)KM.mO ^.nrsbD W)cHk 1Ê#>#%8`rVW'%l>K0oQsMRQ~缥8cU)k֤UH#^ {7yӂ?wB;׬Q[VTxLi#7vӱ i1ے ) 69o$P5KA:8w#./Dd4eh L#֏KH$EnHJhJ(iQGTFU"IQDzx<<{"DIT}/u]W~Nhg! &whQPzcI` n̪p9Mxh=ێ܁'eJۑiVz?qx_RQWv iſ;LmУqTM Rl*j"oU.Uo% hx#lCC*7S4{E߿Cëri*J^ygųxjqt<) 9ȫRhƥa?ISQ>sֹKw0ȸq<U2`GFHH5j0rێЉ)c'H^6/Ƣ&oY1qciMb\*r-Xua vv5ǤR"pyEF46.Ͽ}%nlwYaac6B儆il)$thyꨛ}A,.؜i92āoGSD$K.6o\x.VƅUU1A7??aO; +yp# ab}H\H+y_4{yDsG=m>*vܒ c|ظ= u$􅏍ETZUn`IcXʺ//j_Hf1SwL雴B16xݛuBhvMCO0H0 ]` [d!tcruEQY%_[ΊA#_EXYpj_K_ FMb(9(lc^-I9g}ފЖx[YܘY\:sD\9WK^ l.t#^Ә) 6 ?o]|3T]jh$tܜYMBÒd 2lAܢ5[Záxp_-iF VDIZ1Hӛ|]OS[2*> bڐ;`?%m;4LP/9]y'Jtfo0(1} D!; bv>Fp@xϓ;PoHϒǏX9<O:\ջ mhstN0^MgR&2\*\0'Q%~yP8XUQ"եYج7,l/hfai3ݳ0M7gciSl_I;]kKؘ^=ĚGqЕ4l N7wsT/2{쮕sC&Af_$,teZ۹8u%g53쀵c3ΊG<~:lV['ްAXy<̜?zyj|Al>/[#|47m(W|<Ӻ%#"iY\YW {k.˗\ @9KP m{}$LFOgI.BO/y꙯H9B2*_ۿ' H͂( z~7o';ɥ-Dx[M֊l7-ˀ9̷RJb$_[q]]m%Y68Э%6b 6+ K1ѷ;O=%0Q\%:}LEɞO?;ʠ=kIfD8֌녅T3 RN3 k]C£( xZѭނ5C-𔊷i R"xVђoţJ-ɘc}EfM<;ލE~ cټ Ck7@~X3E+),Jl\|{ֲv|v̽M Oٯ*v '&ytkW$=B' *,K9L z8*>v]PFEȿT aU#S[<3ʐ2K%,t^5iڳ{. dyɊdӃ EVQ\} <"lit l*Ӭ<ieo "Dxܬ* nR>LA 9:59|X+t%!vݽ(ɩ!lL Tj_w3]׃&3$h˲jB$߶Զb^q!4朸+Doy5BzV+UOxDYN“"8sa"tc6%|hڋ .8:O}؁.ܥLO "b~+W0~ʆ<*p=0c) _,*iC9\ݓg籙:hf4]բCwv\ótsl: "el{\ml{.Y.ff㈭ maڞ O;3 #?CDifOtFL4 e>zLػ u ~$زfLՏ,|T> g*^g_Xi{HVd6}Jo177T@OaV:6B%y~f=Y*_Et eҎ's?gy5is@dA$M \ɪ=F@jt w6s.[\{oA{wH%!z<>o9z=|y.@\b >!j,b瞦j!&;v S?{%~At=qKj!H-9׫ZJ}*. "Tfn"ybn"hٽኢɧ|^VjjJ1|c۠i{ZLĄNm3II ,wz p#5j ,|TW[Ԇ%꾍\7 "x`kj>ڄUMzʼf,׌rv8OOEzr$69_Dzc\fż>HyiKi"lJ}\>)6N!{fSb.qyj\Cx9bhnWNeD}r ~ɫ'F>Y(ɡD] W(jip3vXNAFL4hUpMU4Awiv3(8֌E_H UHtt Ǥ/40td{ X҂-8U^ժՊqK[q=VLZAAԖ06Qu(Fm:݆2D'Zeر[!qD'f@ARVev(rKlGJPsdܸ\O/ um*&&;SX Ì>^])<,P5> jɥWH{_r??AZ¡a΂Mӈ}gL4#[0+]j:mӡg/%tq1I` z.N2c@[@!b ho2PX]9R |v6'.M ^DiG3Kb;&=0yЄ ?|fat Ž,ݒBţoLtIfXgB6.z5w-m]俷lݾ p@-vlg<xӝ7sx#1Ӊ䍜Vq_][ercXxS9^t8f_({ d{u,͏#w'%^ R%@O&Ѝ$o+Dk6RX%h(:,ϸNcңA?&9g[f'I%?4|aI޹M2ZΟbTq)c.]b'K7'mV]R4ceafo z RUOIm@Lvy`iF'a#*,XFz61swc5a~7l3q̯>،+@1stnM1s' -nr{Ι~|;Jiy>^+6t(hŰOn+ oF6!tX24+INd0jCN-ջmpU< 3/$\o)ׯ}֬Q#:ǂoƧ bSiωYe8-4O ӃWS\zfA*NIEr#z^]%aEsi|lm͍4x^(!oѠ0-唾^'&nyʺoYԎŅkރFȏz=gmG`x'Yǵ@w:ġXWT5`Fβ u9ӈ쟑iF0:?5A<$ e..6!0+٦D?* JvĽPJH!IB)#IFvhX)$>܏qD Q:GO?=SŽ"߉\=I KOwtBk5I}ML9" puJ^vW̬>}F7$(f})'=8@Yr{wan/:k5OB|Y^.rS!ԧ0riS ccċZK%mFZ9p0eaߧ|h"bR/='";RiQSǿ0mro?E m& ] 52|7ڑjW92+Q`>y nP ;}܃堊TN Fu;h~O, "7wB(_XOQA2˻Di|xh0 x1<+xhC w=FБmW=GފF#:";\z1@'PYu~ud>Y>?,;.d`xĐ免-GVbBi]i& s5Y_,Qr߫ZGcYk;~BVH@f 6gcD cCzJ6j״a$OD48QyADb"r~jbScĘ QJ2F\?sn~S].|JUyYFn} tBzcl0|%4y1> |"îGt [7nRRvE2C/Y PwW%=Kk 0twM@}vўF l9އI7Kٳ6˧ Ҍ& j"PC~olA6WN $̴} c+=+Z_ٸBچδq=RJ gۑQ+13+m;pq mvAfHt;ݞ M4u~v.4Z_c폹](R㩴 yFՙۍ>ݐDOΡD|W/']ӽ0t/ dz{ag"F3<=cyvn}(Q".D#b1w">9 [;.?aߩ=V&8i^.L߅QH|ˤa mu$Ɉ#aqGًyWtnQr+ȢYȉ!nب]&㠽d|[u) J(y!PTDSaO7I3x> «RT{NQNiego'䀖] Rs&Ľpjo 㴡 :&RyxfmJ/ Ai_:Vϣ0bO~@kzk %_b`e# 4n#`r&.l|ZUqW(_ȭ.xP_(~rPG&08zJlÜN7^Gb#z5f%1"XG@l>VU{ ltZʬ7D]/5^ w ql?+ཀྵqb#NyVoD< V#mjml{~5!4ũ46f0xނ/oZPMhеyيZAxve1 nܷmk}2؎^T a6ݎɏ//1̚: qLmqwEUX>ԅ>'#77!݅bFj6JY6|"V9WvgφTҧ g'k^+McTuƌ| ;4roo]Y҇xV}NЖ ";_A:dTqCs5k{`kN]lKζGݺ${etHg% =!x@- -&$L|Q%XA2~j7m]%dz,2/KCR % n(X$vm.7il Pdt,w-;&,SrGȋ5AŪ{(B5J~ӠEl/a|jGұ%muK:Z*OatʥpX6,.8|8 '`m:dH=PԘ,R3/21s'LL=)Bdj5y֒/~Jf!袲> s'*pM?d7\F}΋ul,9@Ka#3y/z6TW6zv`էb=΋~0=\^pb*?9.$֮fONsQ}mú7h;:Zƭ <΃)G)8 %u _ տ3[Im(Ö3-z3hր'+n4 { HZ+jN'1&[ wӑў&ĞxTk}3;H6#rF:Ԃs#7iA͝8>ЅV7pYyW{_X;w=s'# VRŲ2Gʼnyc8߷J8rxǶT}\e48Y6(Hk_ =d8Ƞʇq@F!:}I Q-EG[ 谣D1KzZp1`}$k39ڲmR =blKM`B9LX< ab3UȘ ^͂ٻHL-攰` #ll{Fq+zi!@=.Q&JpNby?9Xkz&ZZ' w9XN!HW@][&]Pxv.Yx}uvN&Nboa߭}<(]+9oO< ,]‡Q7j' |51/aW!2;iQtu8@,74+_wm ŧC 0mjV)ܫ>i=k-L@>ӈF#9ŹMpH\i:b8i/ {0ֿO=ojS-h{ǫֵV+,`]AbM,ü&*n &3 Ġ[ЏT@Iܨ57ЁB[U;;y=&ߺ .ŠSBs`t]) J DBa1gr|Xnټ,7\5Rk敤⊏;^iUp!] ^bu‚Sq?J˖}æcuۙ 9DmVGa "B[K4HxtOA"œ+NyW)'2?FI()+a E2_ҾD@R2{>.2 $Rp [7s xߪ (PeǯZHg;sT0΋>(bb9l*VSOCK MKHLhez(tpStt_7ڔU+GR>(x BJҞ0 V}61O.&@}\'uPfF]&"NUv3VԑT&~mf@ /ۅN,|36{2=fwrS- ©_Xx:c1{ۢ2l>Rdl|> Gsp(D VG6{A 9P7s)R<"i.ػsӇ|.'ןzi5<>X-7cpԡnoZ1*Qi>vO}GiF- ,-'_xD+]~rrh:zJsse؆*fnkCN5|&ePu \vm&{3 u2LL.g p?4į쥻|&u҄XM4.taf+$JoA]gH Tc A!V,פ܊EZ !܆6̘xbَ`'nrrBKIf1@D~YQNdBKiwIPL%6१cvn)y1{CFPBj{ 7{m=%Ų\ 8sSCi>͇$}-y?qat(k''-΄GED/^' ?pVIE.0!ROw{$>,!Mk< {G&I͟ u—HnQ0P1ڥW~B!Z7|gD B@c*fĥQq{79Tbrm}:G]sjo#Ώf{3h0T3 Qzk{OQ_,{ûF52aC6NexDoacCFLjGD2+0l&^hY4*¬A9#63e!QBL "狲Mi(}c>l<,\>)AWK}eC)z,RUz9MiY.E C.(B$aB'iŽ\-"Pv}U|x 5?*w/NH\c|W|}.{~w&!Rĕ|P^)"Og${[ ϳ3h=oHpDn?+ض[j5Uwҫ!"`AvuQ- K֡?S:x8\X;U`'tdo]Ј6ZF\f݄n-/RXraӳ,.5NO b’8/2Glyؑ<:>h#x<|d(#b#VhN1 >d)ƶk|9σE}9<,9>zNtƇqlŋr>Rc*iV 6簋K{Y6D;za;{[!r36,No1߷hx5-*S_U%5ΏRpRFGʑшㇱbκbڀ{NR4`4gk=)#f{qа\}#~')ci}vL5oni(& `ڱ4Iڊ{QXsw&pAgKe܎M b+ڰyuW-?CĮl"F0@Ωu8M^߉_U*; 7}ND-O\y ܘOP}7<#<]!1;Vi)f6?!aѹ1$o E»K[8G4K=h~|EƊ3v6{QpAn :j N+(^Ys8!Tlf\:p;%WK䱾Acgzbx-Ѓ&ߜl(Hg#6sz˚P)J3gr1HEBΛ r:/r9`ωbK!.&, B v( 7|ce< w'<$8\b(<|`k*ff{H>" D" 8et{55*58`*^6/L+b ^g*tҿ rܮ/[v!Vm.KKkT-hZBRyN //+ES1?xSWȅ*e"\w;5 RJx[>"1x>WTSp(_I[+Y܎u0BCv&4;U^״j}?Bђ 00ڕ5[_eFzZhN&*<\ل\#KKmƉ1!4Yn`yn·%jye٦lP6/%뵹f,+2V9nMv6M)rmܦH7%>` N5;t[Wi*6PRTiCCqk Ϳ0o޲ tRƆ3tX:? |<-@wcʶ(rpj> ؝@s iP`!|&^:k˄ḾǍLxk&%[utYhҼZqs,KVUvc¾=r>hۃo_"NSd׎a oh>D|F~L _\BnQU%&JiϚr0t[brw ػ~KD .϶g|J~ ynWnGti'xY+eⰝrkmK>{j \ECYLvB0%'9>gD x ; KaL+*ݗk?ܒBHt<I'~!۬B[bLmJ+7qK!2h}R\aNT۾ dQ&K\*gDИvk[^0cQ:$QQtYШӅ<<;?]Cb?~4>Ѐk.?zh2Ԉ ~o廏5M+_] QK31LxQa挘dk+7?֥ ˧4 ߒ0'S֨=9(J>K$QDӾ'eG1Im B2]:1O? pKr- uF#|ͳF:< 2YW{81v_x kֿ]ꑋxKf|2?,Q54j1Tj?G0'n!S`ly\*s<7BUPKu*|BPqTIYj px),+Io2h-ҠyYւ}Cnk:*H9hWT:vGꊙ ^Kd@K>ϵq EVa ш _*=bޥi32aAsYc/X(HҔa_gaWJn ?kO {t;plbZ3z`'b7-ecSiGH,eCbXY'WccV>KG9/sZ027pJLQ.B;`Tȃ̅sԃ&‚lD]z[W?fR'-r@27M+ɔaxxo\\$w& lgVV"W΢ 6vՈӼ_bBjqZs0)YތTV\)c_Dzta&I@׮`B$9N#(!A׻IG4|F` :ȍ`(|!;ra^`}p fka/U[{_-Xϐicߢ[H% KibĹm`j:چw&GhǕkɳ81 &CfCu+iI> ˲D צN<8O ;\|LJwKMIqnׅ^7b. AZn$I/nyMBZҔafs#Tp,#$l2dyE 2ΝYZ6~wͅ]GE 9es2E~=8u`' meίR+¼/~y(/.]NK w PB-ۜCBԜjy:. rm:\431B=Ҟ66 &ו {` ؗ^~DTB`rve1qda?+dBOv< LNtI 1dƭE^<-h,|[8v7ܛt=`isaXAwqgHUw%r92܀@\@O'IOvw\ؔ{4UyLMNjyXG\1>Yŧ-bq}XVkv&}TSJ'o|xA4fҕN-3[hJӳw>9vUZ.Huԕ"^Jgpp6C>*!*DBh}-v[8X^[ T}/~p<\?jz&pf,xbT S?:5"}FCe,"xgIL~W}2u`8%D'MN,ne߅`]v9Ѝe^\ 8&)XN\]':<*_$l8QZ9YJFEb\0-Y]LƢKjnn)hz&cHUxoU \\_AI :ۧRRa BLwvSqQvi54 8iRJã'^NYB1/cIJgǏeZd}e H}[[C o=hӻĊ2AUx qJ1Mygs:}ϡ3(T-pAFI>p~rG]mlLd#w`І86\d]حl,6 ƈskν<3 @M9I' MuF6s1/Eky#\\HԬayHX*>D,D/ձ}ZGuGR7/3n*7E prβ_ͮL+Fn)>ƟHk`B3|^2x1cQIa%Y*-r_`W(( z kN ܼܾ6UVӇR0kKl1n4cRBp)\ > 솃+o?[S+äOU$ש6UPL jV {?6{k8AUOnyɯru8β^޵ZΫW٭zNU%FԄPtjprΛػh|o5K4~H#Un0<uqÞǚڸ+ CSGZpqř@j Ί_t9=t:RCW;33_2KfӨK]:VxŝB>t}1OiL<ńs}ML,Uu͂~=,c-{'6Xc9\ɇ}I]Y5@MD*.VrY.v[X>dsaqsۏe<-WbQ) _}">_#>8>J'CwѸ돦 _p+\K|ߔ'! ??K%Q+f!B)O'0,+~d$ }/0=r3,dܠvc J.]x B+iR]>Z2Ra(ok/͘[۷ےbU"GoH/N5+⦨&e ڻ36MKvW_*M5u1Y<ī"|;>%u53zR],&셰wI prJ Yp?tnk=͑~NMG\tDL47a_ nJT^'ݟ> iA [!Rƥ[a[7)W/]nl6H;^hGqUR׷vu"S]q0Cu~wz gZgf0{C¾ۉϮȴ"Ci=o7DZJP)L"E6R~ًg(}u? V SvUm=AǼЫ\Z v@ Q>Lfy׼pj:8e arh<4:rtL[@γʮ L \ʀ{ neMD%&hĈ;3rLȉ0q&I2FULa(Z "O0X|KE2upt=rV6~̩=F =\Zw5eScCb.{ r0m^w ͝qXnA.6ʈup&T;_\*I$-Rʣx1!60VS%üIU>,ji^yVa7o2e(6*?wz7߂,bo(w1`poT3 {Y^L)<X lE>W i1 !DCB4--M 6m)_l{ݫ"1j ߜyܓ@m{! 9goGe AGOƼWd6Dn.K=Ss)`[ZC ~kuA؀~AkPOa68K&?n#9 ߟ(B^:ح` ;cm!yҽv&(u|U"'y7$ F0~Zڲb1"LtjnxNSPqՌMҾbJ`Ŵ8Ou_CkƁӰ-Kc)13wV䟁F bD`džОzq`KdNv]kPrP u*$eTEWԋ, Uog|v| @*{M`ԱV*aYdTԵ ^\o50j؁:WCUQ`j4I5Њ4+5aO Z fN-w痷ro `ﯳgu:2~cg|7bB$|5uGw/{/n=YǜN;Y/rvLA!lzsxpܽ7sLWv짋_q;ʩ4.v[b4aplU:0{gg1Qug3 .'$G/*_]gcޘ?_KLtO>6x;'?ܪ7ljww3www}< _(aᤋLJ]~'3ƃnbn =_Wo@IJ H ,IVhv_S/w|.M$ XY# R8'Nb_⺥?tq rWߦjT˫vQl/>o"Ÿ@|kk,g(f<#3g/n^cxF 34^&Ժx6?+qxqFE^Gzu4u9.OVz5F6ϙYl؂{*qE؜e B[ ҍ[d6 [ HkboVႴi5IHd36%CX -sH# XjRfG Lp>B3<:gOJ7{- oec,T0( %:!#h n(y1 ϑWM턨\nk *lQP[hm<^$fR/T3OF`#8 ``J8l&[zA}#p$. swx= LŞG0?}_]Wswl8FaKe" ;bٿڟI'#[ ׳j/ۿ\΋<#8:sgs:/$qP捫TW^ܼ*ŝNTWwuշTW ʷTW$|Xt^ի[_3˿w7g2o|N4Mt2*<׹_'Ruν:=y=$:Kޙ`PGYd1' k{كtCzMe%Li]aUM=l@i6"ŏJQH$mhBXɁkG%*L[R%&H%&:vF$,5ָN]ǵPr;/V ؗPTp JuWEū"$$@ybΐg<Cdf0}QvcP*jsP??Q2Β#V~q%mqQ]Tɸ&&$ %%qn|]&OR}j X!nv-oϨ\5[~tOܕX!ۺQXNe վl:&q;lox?ߤne9!31^%aR ͋xL?wz UEqcFxck2Ve*t#YQ\+J RP4De}.sspQE#q1 Sb*\ ."Vs[.{^qqb33?]qQpbzô/otOGh)t=S2))`}|]Q􀯏)P:i?;Օ( hyN<8 lfl95tnσU]޿[xz|_uu'},9όgkAǒDVA/"T&M=dE/^JՋldq Ix/xԛ"xC < =۟!dtYp;Lwv> LN D q-n*15TjnAڪoGܿ4Z*c F9mhKx>|fe\n6v́NII0:i`~V{CzMz/\є.f :NG'C`\E0.=rT?gWhq{9{as)l$*!p{wg_acd``b P~AiqFRiII~X*L;1s1 Tljf._WRd9lXaD2*VsB?@ @ @YR̀Ή99I0~@~qfIf~\RPǂDĒD‰ -@ĢԢbD8e0 8#5''4SC0_''DݫkjB `/, a@0k&h;>{r#?O$#U<5 -L` -B :'$,1'3.l4 SuiteSparse/MATLAB_Tools/shellgui/seashell.m0000644001170100242450000000535410505230515017664 0ustar davisfacfunction seashell (a, b, c, n, azimuth, elevation, res) % SEASHELL draws a pretty Florida seashell, using a 3D parametric surface. % % Usage: % % seashell (a, b, c, n, azimuth, elevation, res) % seashell ('spin') ; % % All arguments are optional. The first four control the coefficients of % the parametric surface (u and v are the surface parameters): % % x = (a*(1-v/(2*pi)).*(1+cos(u)) + c) .* cos(n*v) ; % y = (a*(1-v/(2*pi)).*(1+cos(u)) + c) .* sin(n*v) ; % z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u) ; % % a,b: these determine how pointy or flat the shell is (informally...) % c: determines how much the shell overlaps with itself % n: the number of spirals in the shell % % azimuth, elevation: determines the viewing angle (see the 'view' function) % res: the mesh size (res-by-res). A larger number gives a smoother surface. % % If the azimuth is Inf, then the seashell view is spun dynamically. % Also try seashell ('spin') ; % % References: % T. Davis & K. Sigmon, MATLAB Primer, 7th edition, CRC Press, 2005, pp. 80. % von Seggern, CRC Standard Curves and Surfaces, 2nd edition, CRC Press, % 1993, pp. 306-307. % % Example: % seashell ; % draws the front cover of the MATLAB Primer % seashell (-0.5) ; % draws the back cover % seashell (a,b,c,n,az,el,res) ; % all options, defaults: % % a=-0.2, b=0.5, c=0.1, n=2, az=-150, el=10, res=128 % % for a = -1:.1:1 % seashell (a) ; % drawnow ; % end % for b = -1:.1:1 % seashell (-.2, b) ; % drawnow % end % % See also SHELLGUI, SURF, VIEW, LINSPACE, MESHGRID, SHADING, LIGHTING, % LIGHTANGLE, COLORMAP, AXIS, MATERIAL, SIN, COS, PI. % Copyright 2006, Tim Davis, University of Florida % use default input parameters, if not present if (nargin == 1 && ischar (a)) in = -1 ; else in = nargin ; end if (in < 1) a = -0.2 ; end if (in < 2) b = 0.5 ; end if (in < 3) c = 0.1 ; end if (in < 4) n = 2 ; end if (in < 5) azimuth = -150 ; end if (in < 6) elevation = 10 ; end if (in < 7) res = 128 ; end if (in == -1) azimuth = Inf ; end % sanity checks if (a == 0) a = 0.01 ; end if (n <= 0) n = 0.1 ; end % construct the res-by-res mesh t = linspace(0, 2*pi, res) ; [u,v] = meshgrid(t) ; % define the surface x = (a*(1-v/(2*pi)).*(1+cos(u)) + c) .* cos(n*v) ; y = (a*(1-v/(2*pi)).*(1+cos(u)) + c) .* sin(n*v) ; z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u) ; % plot the surface surf(x,y,z,y) shading interp axis off axis equal colormap(hsv(1024)) material shiny lighting gouraud lightangle(80, -40) lightangle(-90, 60) % fix the view, or spin the seashell if (isfinite (azimuth)) view([azimuth elevation]) else for az = -180:10:180 view ([az elevation]) drawnow end end SuiteSparse/MATLAB_Tools/gipper.m0000644001170100242450000001642410707667626015563 0ustar davisfacfunction files_out = gipper (directory, include, exclude, exclude_hidden) %GIPPER zip selected files and subdirectories (gipper = grep + zip) % % files = gipper (directory, include, exclude, exclude_hidden) ; % % Creates a zip file of all files and subdirectories in a directory. A file in % the directory or any of its subdirectories whose name matches any expression % in 'include' via regexp is added to the zip file. A file that matches any % expression in 'exclude' is not added. A subdirectory whose name or full % pathname matches any expression in 'exclude' is not searched. The name of % the zip file is the name of the directory, with '.zip' appended. % % 'include' and 'exclude' are either cells of strings, or just single strings. % % With no outputs, a list of files is printed and the user is prompted before % proceeding. Otherwise, the gipper proceeds without prompting and returns a % list of files that were added to the zip file. % % By default, all files and subdirectories of the directory are included, except % that hidden files and directories (those whose names start with a dot, '.') % are excluded. % % If any parameter is empty or not present, the defaults are used: % directory: defaults to the current directory % include: defaults to include all files and directories % exclude: defaults to exclude nothing, as modified by 'exclude_hidden' % exclude_hidden: 1 (exclude hidden files and directories) % % Empty directories or subdirectories are never included. % % Example: % % suppose 'X' is the name of the current directory. % % % include all files in X (except hidden files) in the zip file ../X.zip % gipper % % % create mytoolbox.zip archive of the 'X/mytoolbox' directory % gipper mytoolbox % % % only include *.m files in ../X.zip % gipper '' '\.m$' % % % create ../X.zip, but exclude compiled object and MEX files % gipper ('', '', { '\.o$' '\.obj$', ['\.' mexext '$'] }) % % % include everything, including hidden files, in ../X.zip % gipper ('', '', '', 0) % % % zip mytoolbox, except hidden files and the mytoolbox/old directory % gipper mytoolbox '' old % % % these are the same, except gipper also traverses subdirectories % gipper ('', { '\.m$', '\.*mat$' }) % zip ('../X', { '*.m', '*.mat' }) % % See also zip, regexp, unzip. % NOTE: if the directory name is empty or not present, and you hit control-C % while the gipper is running, your current directory will now be the parent. % You must install the gipper first, by placing it in your MATLAB path. % Copyright 2007, Timothy A. Davis, Univ. of Florida. Win one for the gipper. % Created May 2007, using MATLAB 7.4 (R2007a). Requires MATLAB 6.5 or later. % exclude hidden files and directories by default if (nargin < 4) exclude_hidden = 1 ; end % exclude nothing by default (as modified by exclude_hidden) if (nargin < 3) exclude = { } ; end exclude = cleanup (exclude) ; % append the hidden file and directory rule, if requested if (exclude_hidden) exclude = union (exclude, { '^\.', [ '\' filesep '\.' ] }) ; end % always exclude '.' and '..' files exclude = union (exclude, { '^\.$', '^\.\.$' }) ; % include all files by default if (nargin < 2 || isempty (include)) include = { '.' } ; end include = cleanup (include) ; % operate on the current directory, if not specified if (nargin < 1 || isempty (directory)) here = pwd ; directory = here ((find (here == filesep, 1, 'last') + 1) : end) ; % use try-catch so that if a failure occurs, we go back to current % directory. Unfortunately, this mechanism does not catch a control-C. gipper_found = 0 ; try % run the gipper in the parent cd ('..') ; % if gipper.m is not in the path, it will no longer exist gipper_found = ~isempty (which ('gipper')) ; if (gipper_found) if (nargout == 0) fprintf ('Note that if you terminate gipper with control-C, ') ; fprintf ('your\ndirectory be changed to the parent') ; fprintf (' (as in "cd ..").\n') ; gipper (directory, include, exclude, exclude_hidden) ; else files_out = gipper (directory, include, exclude,exclude_hidden); end end catch cd (here) ; rethrow (lasterror) ; end % go back to where we started cd (here) ; if (~gipper_found) fprintf ('To install the gipper, type "pathtool" and add\n') ; fprintf ('the directory in which it resides:\n') ; fprintf ('%s\n', which (mfilename)) ; error ('You must install the gipper first.') ; end return else if (nargout == 0) fprintf ('\ngipper: creating %s%s%s.zip\n', pwd, filesep, directory) ; end end % get the list of files to zip n = 0 ; files = { } ; for file = dir (directory)' [files, n] = finder (files, n, directory, file.name, include, exclude) ; end files = files (1:n)' ; % cannot create an empty zip file if (isempty (files)) warning ('gipper:nothing', 'nothing to zip; no zip file created') ; if (nargout > 0) files_out = files ; end return end % return the list of files, or confirm if (nargout == 0) % print the list of files and ask for confirmation first fprintf ('Creating a zip archive containing these files:\n\n') ; for k = 1:length(files) fprintf (' %s\n', files {k}) ; end fprintf ('\nCreating the zip archive: %s', directory) ; if (isempty (regexp (directory, '\.zip$', 'once'))) fprintf ('.zip') ; end fprintf ('\n') ; reply = input ('Proceed? (yes or no, default is yes): ', 's') ; if (~isempty (reply) && lower (reply (1)) == 'n') fprintf ('zip file not created\n') ; return end else % zip the files without asking files_out = files ; end % zip the files zip (directory, files) ; %------------------------------------------------------------------------------- function [files, n] = finder (files, n, prefix, name, include, exclude) % finder: return a list of files to zip % fullname includes the entire path to the file or directory fullname = [prefix filesep name] ; if (isdir (fullname)) % always traverse a subdirectory to look for files to include, unless the % directory name or fullname itself is explicitly excluded. if (~(grep (name, exclude) || grep (fullname, exclude))) % the directory is selected, recursively traverse it for file = dir (fullname)' [files, n] = finder (files, n, fullname, file.name, ... include, exclude) ; end end else % this is a file, apply the include/exclude rules to just the file name % itself not the fullname. if (grep (name, include) && ~grep (name, exclude)) % the file is selected for the archive. Use a dynamic-table approach % to speed up the dynamic growth of the table. n = n + 1 ; files {n} = fullname ; if (n == length (files)) files {2*n} = [ ] ; end end end %------------------------------------------------------------------------------- function match = grep (string, list) % grep: determine if a string matches an expression in a list match = 0 ; for expression = list if (~isempty (regexp (string, expression {1}, 'once'))) match = 1 ; return ; end end %------------------------------------------------------------------------------- function s = cleanup (s) % cleanup: ensure the input list is in the proper format s = s (:)' ; % make sure it is a row vector if (ischar (s)) s = { s } ; % if it is a string, convert it into a cell with one string end SuiteSparse/MATLAB_Tools/pagerankdemo.m0000644001170100242450000001423510707715111016707 0ustar davisfacfunction pagerankdemo (steps) % PAGERANKDEMO draw a 6-node web and compute its pagerank % % PAGERANKDEMO draws the 6-node "tiny web" in Section 2.11 of "Numerical % Computing with MATLAB", by Cleve Moler, SIAM, 2004. It then simulates the % computation of Google's PageRank algorithm, by randomly selecting links to % traverse. If a link is traversed, the edge and the target node are displayed % in red. If the "random surfer" jumps to an arbitrary page, the target node % is displayed in blue. The number of hits at each node, and the page rank % (in %) are displayed % on each node. Note that after a large number of % steps, the PageRanks (in percentages) converge to the values given in Section % 2.11 of Moler (alpha: .321, sigma: .2007, beta: .1705, delta: .1368, % gamma: .1066, rho: .0643). See http://www.mathworks.com/moler for more % details (the pagerank M-file, in particular). % % Note that this method is NOT how the PageRank is actually computed. Instead % the eigenvalue problem A*x=x is solved for x, where A is the Markov % transition matrix, A = p*G*D + e*z', where G is the binary matrix used here. % The method here is a simplistic random-hopping demonstration of the Markov % process, to motivate the A*x=x formulation of the problem. In this example, % A does control how the transitions are made, but the matrix A is not formed % explicitly. % % This demo only operates on a single graph. It is meant as a simple demo % only, suitable for in-class use. To compute the PageRanks for an arbitrary % graph, use pagerank.m, or the power method (repeat x=A*x until convergence, % where A is the Markov transition matrix of the web). % % Example: % pagerankdemo % pagerankdemo (1000) % run 1000 steps with no user input, then quit % % See also pagerank % % I suggest single-stepping a dozen times or so to see the link traversal in % process, and then type "1000". Hit control-C to quit. % % Copyright 2007, Tim Davis, University of Florida % Initial graph Graph = graphinit ; rand ('state', 0) ; n = size (Graph.G, 1) ; help pagerankdemo % initialize the page counts hits = zeros (1,n) ; oldwhere = 1 ; where = 1 ; hits (where) = 1 ; set (Graph.node (where), 'FaceColor', [0 0 1]) ; p = 0.85 ; % probability a link will be followed c = sum (Graph.G) ; % outgoing degree links = cell (1,n) ; for k = 1:n links {k} = find (Graph.G (:,k)) ; end follow_link = 0 ; if (nargin < 1) input ('hit enter to start at node alpha: ') ; end % write the stats to the figure set (Graph.nodelabel (where), 'string', ... sprintf ('%s %d (%3.1f%%)', Graph.nodes {where}, hits (where), ... 100 * hits (where) / sum (hits))) ; if (nargin < 1) input ('hit enter to take one step: ') ; steps = 1 ; end % repeat while (1) % clear the old color and old arrow set (Graph.node (where), 'FaceColor', [0 1 0]) ; if (follow_link) set (Graph.arrows (where,oldwhere), 'LineWidth', 2) ; set (Graph.arrows (where,oldwhere), 'Color', [0 0 0]) ; end % determine where to go to next oldwhere = where ; if (c (where) == 0 || rand > p) % no outgoing links, or ignore the links follow_link = 0 ; where = floor (n * rand + 1) ; set (Graph.node (where), 'FaceColor', [0 0 1]) ; else % move along the link follow_link = 1 ; where = links{where}(floor (c (where) * rand + 1)) ; set (Graph.node (where), 'FaceColor', [1 0 0]) ; set (Graph.arrows (where,oldwhere), 'LineWidth', 5) ; set (Graph.arrows (where,oldwhere), 'Color', [1 0 0]) ; end % increment the hit count hits (where) = hits (where) + 1 ; % write the stats to the figure for k = 1:n set (Graph.nodelabel (k), 'string', ... sprintf ('%s %d (%3.1f%%)', Graph.nodes {k}, hits (k), ... 100 * hits (k) / sum (hits))) ; end drawnow % go the next step steps = steps - 1 ; if (steps <= 0) if (nargin > 0) break ; end steps = input ... ('number of steps to make (default 1, control-C to quit): ') ; if (steps == 0) break ; end if (isempty (steps)) steps = 1 ; end end end %------------------------------------------------------------------------------- function Graph = graphinit % GRAPHINIT create the tiny-web example in Moler, section 2.11, and draw it. % Example % G = graphinit ; figure (1) clf nodes = { 'alpha', 'beta', 'gamma', 'delta', 'rho', 'sigma' } ; xy = [ 0 4 1 3 1 2 2 4 2 0 0 0 ] ; x = xy (:,1) ; y = xy (:,2) ; % scale x and y to be in the range 0.1 to 0.9 x = 0.8 * x / 2 + .1 ; y = 0.8 * y / 4 + .1 ; xy = [x y] ; xy_delta = [ .08 .04 0 -.03 -.02 -1 .04 0 0 -.05 .04 -1 -.03 0 -1 .03 0 0 ] ; xd = xy_delta (:,1) ; yd = xy_delta (:,2) ; tjust = xy_delta (:,3) ; G = [ 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 ] ; clf n = size (G,1) ; axes ('Position', [0 0 1 1], 'Visible', 'off') ; node = zeros (n,1) ; nodelabel = zeros (n,1) ; for k = 1:n node (k) = annotation ('ellipse', [x(k)-.025 y(k)-.025 .05 .05]) ; set (node (k), 'LineWidth', 2) ; set (node (k), 'FaceColor', [0 1 0]) ; nodelabel (k) = text (x (k) + xd (k), y (k) + yd (k), nodes {k}, ... 'Units', 'normalized', 'FontSize', 16) ; if (tjust (k) < 0) set (nodelabel (k), 'HorizontalAlignment', 'right') ; end end axis off % Yes, I realize that this is overkill; arrows should be sparse. % This example is not meant for large graphs. arrows = zeros (n,n) ; [i j] = find (G) ; for k = 1:length (i) % get the center of the two nodes figx = [x(j(k)) x(i(k))] ; figy = [y(j(k)) y(i(k))] ; % [figx figy] = dsxy2figxy (gca, axx, axy); % shorten the arrows by s units at each end s = 0.03 ; len = sqrt (diff (figx)^2 + diff (figy)^2) ; fy (1) = diff (figy) * (s/len) + figy(1) ; fy (2) = diff (figy) * (1-s/len) + figy(1) ; fx (1) = diff (figx) * (s/len) + figx(1) ; fx (2) = diff (figx) * (1-s/len) + figx(1) ; arrows (i(k),j(k)) = annotation ('arrow', fx, fy) ; set (arrows (i(k),j(k)), 'LineWidth', 2) ; set (arrows (i(k),j(k)), 'HeadLength', 20) ; set (arrows (i(k),j(k)), 'HeadWidth', 20) ; end Graph.G = G ; Graph.nodes = nodes ; Graph.node = node ; Graph.xy = xy ; Graph.xy_delta = xy_delta ; Graph.nodelabel = nodelabel ; Graph.arrows = arrows ; SuiteSparse/MATLAB_Tools/Contents.m0000644001170100242450000000141410707671462016054 0ustar davisfac% MATLAB_TOOLS: a collection of small tools for use in MATLAB % % Files % gipper - zip selected files and subdirectories (gipper = grep + zip) % hprintf - fprintf with hypertext links not highlighted in the command window. % pagerankdemo - draw a 6-node web and compute its pagerank % % Directories: % shellgui draw a pretty seashell % waitmex use a waitbar in a C mexFunction % % Examples: % gipper % add all files in current directory X to X.zip % hprintf (format, arg1, ...) % fprint with links not highlighted % pagerankdemo % run the pagerank demo % shellgui % draw a pretty seashell % waitmex % example mexFunction that creates a waitbar % % Copyright 2007, Tim Davis, University of Florida SuiteSparse/MATLAB_Tools/hprintf.m0000644001170100242450000000656110707666462015745 0ustar davisfacfunction count = hprintf (varargin) %HPRINTF fprintf with hypertext links not highlighted in the command window. % hprintf does this by replacing the string "href=" with "HREF=". If the file % descriptor is not present, the output defaults to the command window, just % like fprintf. Note that all browsers accept either href= or HREF=, so your % hypertext links will not be affected except within the MATLAB Command Window. % General usage is identical to fprintf: % % hprintf (format, arg1, arg2, ...) % hprintf (fid, format, arg1, arg2, ...) % count = hprintf ( ... same as above ... ) % % Example: % fprintf ('MathWorks\n') ; % fprintf ('%d\n', 42) ; % hprintf ('MathWorks\n') ; % hprintf ('%d\n', 42) ; % % For a discussion, see Kristin's blog and the comments there at % http://blogs.mathworks.com/desktop/2007/07/09 % (Kristin's blog). % % NOTE: the examples above are modified by "help hprintf" so that you cannot % see the HREF= text. To see the examples properly (without hypertext % highlighting) use: % % edit hprintf % % To try the examples above, use hprintf with no inputs (note that this usage % of hprintf also flags an error, to exactly mimic the fprintf behavior): % % hprintf % % Here is a slightly more complex example that has the advantage of being % printed properly by "help hprintf": % % % a string template with hypertext contents: % str = 'MathWorks\n' ; % % made into an active hypertext, which will be underlined when % % displayed in the command window: % hstr = strrep (str, 'AREF', 'href') ; % fprintf (hstr) ; % % displays: 'MathWorks' % hprintf (hstr) ; % % displays: 'MathWorks' % % See also fprintf, strrep, sprintf. % Copyright 2007, T. Davis, with thanks to 'us' (us at neurol dot unizh dot ch) % for suggestions. % Aug 25, 2007 if (nargin < 1) % try hprintf help hprintf fprintf ('\nhypertext highlighting with fprintf:\n\n') ; fprintf ('MathWorks\n') ; fprintf ('%d\n', 42) ; fprintf ('\nhypertext highlighting turned off with hprintf:\n\n') ; hprintf ('MathWorks\n') ; hprintf ('%d\n\n', 42) ; % flag an error, to mimic fprintf behavior error ('Not enough input arguments') ; elseif (nargout > 1) % mimic fprintf error ('Too many output arguments') ; else if (ischar (varargin {1})) % mimic fprintf ('hello world %d\n', 42), with no file ID cnt = fprintf (strrep (sprintf (varargin {:}), 'href=', 'HREF=')) ; else % mimic fprintf (fid, 'hello world %d\n', 42), with file ID given cnt = fprintf (varargin {1}, ... strrep (sprintf (varargin {2:end}), 'href=', 'HREF=')) ; end if (nargout > 0) % return the fprintf output count = cnt ; end end SuiteSparse/MATLAB_Tools/waitmex/0000755001170100242450000000000010711226761015550 5ustar davisfacSuiteSparse/MATLAB_Tools/waitmex/waitex.m0000644001170100242450000000202710711100134017211 0ustar davisfacfunction result = waitex %WAITEX same as the waitexample mexFunction, just in M instead of C. % The only purpose of this function is to serve as a precise description of % what the waitexample mexFunction does. % % Example: % waitex % draw a waitbar, make progress, and then close the waitbar % h = waitex ; % same as above, except leave the waitbar on the screen % % and return the handle h to the waitbar. % % See also waitbar, waitexample. % Copyright 2007, T. Davis x = 0 ; h = waitbar (0, 'Please wait...') ; for i = 0:100 if (i == 50) waitbar (i/100, h, 'over half way there') ; else waitbar (i/100, h) ; end % do some useless work for j = 0:1e5 x = useless (x) ; end end if (nargout > 0) % h is return to the caller, leave the waitbar on the screen result = h ; else % close the waitbar, and do not return the handle h close (h) ; end function x = useless (x) %USELESS do some useless work (x = useless (x) just increments x) x = x + 1 ; SuiteSparse/MATLAB_Tools/waitmex/README.txt0000644001170100242450000000177610707667027017272 0ustar davisfacWAITMEX provides a simple way of using a waitbar from within a C mexFunction. Files: README.txt this file waitexample.c a C mexFunction that uses the waitmex.c functions waitexample.m help for waitexample waitex.m a MATLAB m-file equivalent of waitexample.m waitmex.c four functions for accessing a waitbar in a mexFunction waitmex.h include file required for using waitmex.c waitmex.m compiles the waitexample mexFunction For more help, and to compile, install, and test the waitmex functions, type: waitmex in the MATLAB Command Window. For details on how to call the waitmex functions, see waitmex.c, and see the examples given in waitexample.c. These functions should be easily adaptable to any of the many replacements for waitbar posted on the MATLAB Central File Exchange, particularly if they use the same input and output arguments as the MATLAB waitbar. Copyright 2007, Tim Davis, University of Florida. http://www.cise.ufl.edu/~davis Aug 27, 2007 SuiteSparse/MATLAB_Tools/waitmex/waitexample.c0000644001170100242450000000224510707667101020241 0ustar davisfac#include "waitmex.h" /* The MATLAB equivalent of this function is give in waitex.m. Compile with: mex waitexample.c waitmex.c */ void useless (double *x) ; void useless (double *x) { (*x)++ ; } void mexFunction (int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ]) { int i, j ; double x = 0 ; waitbar *h ; /* just like h = waitbar (0, 'Please wait...') in MATLAB */ h = waitbar_create (0, "Please wait...") ; for (i = 0 ; i <= 100 ; i++) { if (i == 50) { /* just like waitbar (i/100, h, 'over half way there') in MATLAB */ waitbar_update (((double) i) / 100., h, "over half way there") ; } else { /* just like waitbar (i/100, h) in MATLAB */ waitbar_update (((double) i) / 100., h, NULL) ; } /* do some useless work */ for (j = 0 ; j <= 10000000 ; j++) useless (&x) ; } if (nargout > 0) { /* return the handle to the waitbar, if requested */ pargout [0] = waitbar_return (h) ; } else { /* just like close (h) in MATLAB */ waitbar_destroy (h) ; } } SuiteSparse/MATLAB_Tools/waitmex/waitexample.m0000644001170100242450000000071210663345160020247 0ustar davisfacfunction waitexample %WAITEXAMPLE a C mexFunction that serves as an example for waitmex. % % Example: % waitexample % draw a waitbar, make progress, and then close the waitbar % h = waitexample; % same as above, except leave the waitbar on the screen % % and return the handle h to the waitbar. % % See also waitbar, waitex. % Copyright 2007, T. Davis error ('waitexample mexFunction not found ... it must be compiled first') ; SuiteSparse/MATLAB_Tools/waitmex/waitmex.c0000644001170100242450000001176110663345770017410 0ustar davisfac/* -------------------------------------------------------------------------- */ /* waitmex functions */ /* -------------------------------------------------------------------------- */ /* This file includes the following functions for handling waitbars in MATLAB: waitbar_create: create a waitbar waitbar_update: update a waitbar waitbar_destroy: destroy a waitbar waitbar_return: return a waitbar in C MATLAB equivalent ---- ----------------- h = waitbar_create (x,msg) h = waitbar (x,msg) waitbar_update (x,h,NULL) waitbar (x,h) waitbar_update (x,h,msg) waitbar (x,h,msg) waitbar_destroy (h) close (h) waitbar_return (h) for returning h from a mexFunction Tim Davis, 2007, University of Florida. */ #include "waitmex.h" /* -------------------------------------------------------------------------- */ /* waitbar_create: create a waitbar */ /* -------------------------------------------------------------------------- */ /* Create a waitbar and return a point to the new waitbar. Example: * h = waitbar_create (x, "Please wait...") in C is just like * h = waitbar (x, 'Please wait') in MATLAB, where x is a fraction between * 0 and 1. */ waitbar *waitbar_create /* return a pointer to the new waitbar */ ( double fraction, /* fraction from 0 to 1 */ char *message /* message to display */ ) { int error ; waitbar *h ; h = mxMalloc (sizeof (waitbar)) ; h->fraction = mxCreateDoubleScalar (fraction) ; h->message = mxCreateString (message) ; /* h = waitbar (fraction, message) ; */ h->inputs [0] = h->fraction ; h->inputs [1] = h->message ; error = mexCallMATLAB (1, h->outputs, 2, h->inputs, "waitbar") ; if (error) { mexErrMsgTxt ("unable to create waitbar") ; } /* save the MATLAB handle h in the waitbar struct */ h->handle = h->outputs [0] ; return (h) ; } /* -------------------------------------------------------------------------- */ /* waitbar_update: update a waitbar */ /* -------------------------------------------------------------------------- */ /* Update the length of the bar in an existing waitbar. Example: * waitbar_update (x, h, NULL) in C is just like waitbar (x,h) in MATLAB, * where h is the handle to the existing waitbar. The message is not changed. * To change the message, use waitbar_update (x, h, "new message"), which is * just like waitbar (x, h, 'new message') in MATLAB. */ void waitbar_update ( double fraction, waitbar *h, char *message ) { int error ; if (h == NULL) return ; /* nothing to do */ (* mxGetPr (h->fraction)) = fraction ; /* update the fraction */ h->inputs [0] = h->fraction ; /* define the inputs x and h */ h->inputs [1] = h->handle ; if (message == NULL) { /* use the existing message; waitbar (x,h) in MATLAB */ error = mexCallMATLAB (0, h->outputs, 2, h->inputs, "waitbar") ; } else { /* define a new message; waitbar (x,h,message) in MATLAB */ mxDestroyArray (h->message) ; h->message = mxCreateString (message) ; h->inputs [2] = h->message ; error = mexCallMATLAB (0, h->outputs, 3, h->inputs, "waitbar") ; } if (error) { mexErrMsgTxt ("unable to update waitbar") ; } } /* -------------------------------------------------------------------------- */ /* waitbar_destroy: destroy a waitbar */ /* -------------------------------------------------------------------------- */ /* Destroys a waitbar; same as close(h) in MATLAB */ void waitbar_destroy ( waitbar *h ) { int error ; if (h == NULL) return ; /* nothing to do */ h->inputs [0] = h->handle ; mxDestroyArray (h->fraction) ; /* free the internal mxArrays */ mxDestroyArray (h->message) ; error = mexCallMATLAB (0, h->outputs, 1, h->inputs, "close") ; mxDestroyArray (h->handle) ; mxFree (h) ; if (error) { mexErrMsgTxt ("error closing waitbar") ; } } /* -------------------------------------------------------------------------- */ /* waitbar_return: return a waitbar handle to the caller */ /* -------------------------------------------------------------------------- */ /* This function frees the space used internally in a mexFunction for managing * the waitbar, and returns the mxArray handle to the caller. The waitbar still * exists in MATLAB. Example: pargout [0] = waitbar_return (h) to return the * MATLAB handle to the caller of your mexFunction. */ mxArray *waitbar_return ( waitbar *h ) { mxArray *handle ; if (h == NULL) return (NULL) ; /* nothing to do */ handle = h->handle ; /* get the MATLAB handle */ mxDestroyArray (h->fraction) ; /* free the internal mxArrays */ mxDestroyArray (h->message) ; mxFree (h) ; return (handle) ; /* return the MATLAB handle */ } SuiteSparse/MATLAB_Tools/waitmex/waitmex.h0000644001170100242450000000136210663345312017401 0ustar davisfac/* -------------------------------------------------------------------------- */ /* waitmex include file */ /* -------------------------------------------------------------------------- */ #ifndef _WAITMEX_H #define _WAITMEX_H #include "mex.h" typedef struct waitbar_struct { mxArray *inputs [3] ; /* waitbar inputs */ mxArray *outputs [2] ; /* waitbar outputs */ mxArray *handle ; /* handle from waitbar */ mxArray *fraction ; /* fraction from 0 to 1 (a scalar) */ mxArray *message ; /* waitbar message */ } waitbar ; waitbar *waitbar_create (double, char *) ; void waitbar_update (double, waitbar *, char *) ; void waitbar_destroy (waitbar *) ; mxArray *waitbar_return (waitbar *) ; #endif SuiteSparse/MATLAB_Tools/waitmex/waitmex.m0000644001170100242450000000206210663346112017403 0ustar davisfacfunction waitmex %WAITMEX a small library for using a waitbar within a C mexFunction. % This waitmex function compiles an example mexFunction, adds the current % directory to your MATLAB path, and runs two examples (one in C, one in M). % % in C MATLAB M-file equivalent % ---- ------------------------ % h = waitbar_create (x,msg) ; h = waitbar (x,msg) % waitbar_update (x,h,NULL) ; waitbar (x,h) % waitbar_update (x,h,msg) ; waitbar (x,h,msg) % waitbar_destroy (h) ; close (h) % waitbar_return (h) ; for returning h from a mexFunction % % Example: % waitmex % % % See also waitex, waitexample, waitbar, pathtool. % Copyright 2007, T. Davis help waitmex fprintf ('\ncompiling an example:\n') ; fprintf ('mex waitexample.c waitmex.c\n') ; mex waitexample.c waitmex.c addpath (pwd) ; fprintf ('\ntrying the example mexFunction:\n') ; fprintf ('waitexample\n') ; waitexample fprintf ('\ntrying the m-file equivalent of waitexample:\n') ; fprintf ('waitex\n') ; waitex SuiteSparse/MATLAB_Tools/getversion.m0000644001170100242450000000345710712357223016445 0ustar davisfacfunction v = getversion %GETVERSION return MATLAB version number as a double. % GETVERSION determines the MATLAB version, and returns it as a double. This % allows simple inequality comparisons to select code variants based on ranges % of MATLAB versions. % % As of MATLAB 7.5, the version numbers are listed below: % % MATLAB version getversion return value % ------------------------------- ----------------------- % 7.5.0.342 (R2007b) 7.5 % 7.4.0.287 (R2007a) 7.4 % 7.3.0.267 (R2006b) 7.3 % 7.2.0.232 (R2006a) 7.2 % 7.1.0.246 (R14) Service Pack 3 7.1 % 7.0.4.365 (R14) Service Pack 2 7.04 % 7.0.1.24704 (R14) Service Pack 1 7.01 % 6.5.2.202935 (R13) Service Pack 2 6.52 % 6.1.0.4865 (R12.1) 6.1 % ... % 5.3.1.something (R11.1) 5.31 % 3.2 whatever 3.2 % % Example: % % v = getversion ; % if (v >= 7.0) % this code is for MATLAB 7.x and later % elseif (v == 6.52) % this code is for MATLAB 6.5.2 % else % this code is for MATLAB versions prior to 6.5.2 % end % % This getversion function has been tested on versions 6.1 through 7.5, but it % should work in any MATLAB that has the functions version, sscanf, and length. % % See also version, ver, verLessThan. % Copyright 2007, Timothy A. Davis, Univ. of Florida % This function does not use ver, in the interest of speed and portability. % "version" is a built-in that is about 100 times faster than the ver m-file. % ver returns a struct, and structs do not exist in old versions of MATLAB. % All 3 functions used here (version, sscanf, and length) are built-in. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ; SuiteSparse/UFcollection/0000755001170100242450000000000010711673461014343 5ustar davisfacSuiteSparse/UFcollection/Doc/0000755001170100242450000000000010711430334015036 5ustar davisfacSuiteSparse/UFcollection/Doc/License.txt0000644001170100242450000000170110532557175017176 0ustar davisfacUFcollection toolbox. Version 1.0. Copyright (C) 2006, Timothy A. Davis UFcollection is also available under other licenses; contact authors for details. http://www.cise.ufl.edu/research/sparse -------------------------------------------------------------------------------- UFcollection is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. UFcollection is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. SuiteSparse/UFcollection/Doc/gpl.txt0000644001170100242450000004313310532556673016405 0ustar davisfac GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. SuiteSparse/UFcollection/Doc/ChangeLog0000644001170100242450000000071510711430332016611 0ustar davisfacNov 1, 2007, version 1.1.1 * added isND field to the index * minor change to web page creation May 31, 2007, version 1.1.0 * port to 64-bit MATLAB Dec 12, 2006, version 1.0.1 * very minor MATLAB cleanup Dec 2, 2006, version 1.0. * UFcollection Version 1.0 released. Used for substantial changes to the UF Sparse Matrix Collection. See the Change Log for that collection at http://www.cise.ufl.edu/research/sparse/mat/ChangeLog. SuiteSparse/UFcollection/UFlist.m0000644001170100242450000002316210677241002015724 0ustar davisfacfunction UFlist (what, group) %UFLIST create a web page index for the UF Sparse Matrix Collection % % Usage: UFlist (what) % % what: % 'group' sort by group, then filename % 'name' sort by name % 'dimension' sort by max row or col dimension % 'id' sort by id (default, if "what" is not present) % 'number of nonzeros' sort by number of nonzeros % 'type' sort by type, then dimension % 'symmetry' sort by symmetry. Rectangular matrices first, sorted by % min(nrow,ncol)-max(nrow,ncol), then numerical symmetry % 0 to just less than one. Then numerical symmetry = 1 % but not spd (sorted by dimension). Then spd sorted % by dimension. % % If two arguments are present, only that group is created. % In this case, "what" must be "group". % % Example: % % UFlist ('id') % UFlist ('group', 'HB') % % See also UFget, UFint. % Copyright 2006-2007, Timothy A. Davis index = UFget ; if (nargin < 1) what = 'id' ; end by_group = (nargin > 1) ; % create the primary directory [url topdir] = UFlocation ; matrices = [topdir 'matrices'] ; if (~exist (matrices, 'dir')) mkdir (matrices) ; end if (by_group) fprintf ('group: %s\n', group) ; loc = '../' ; if (~exist ([matrices filesep group], 'dir')) mkdir ([matrices filesep group]) ; end f = fopen ([matrices filesep group filesep 'index.html'], 'w') ; else fprintf ('list: %s\n', what) ; f = fopen ([matrices filesep 'list_by_' what '.html'], 'w') ; loc = '' ; end if (f < 0) error ('unable to create html file\n') ; end nmat = length (index.nrows) ; % add the header fprintf (f, ... '\n') ; fprintf (f, '\n') ; fprintf (f, '') ; if (by_group) fprintf (f, 'UF Sparse Matrix Collection - %s group', group) ; else fprintf (f, '<title>UF Sparse Matrix Collection - sorted by ') ; if (strcmp (what, 'nnz')) fprintf (f, 'number of nonzeros') ; else fprintf (f, '%s', what) ; end end fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, ... '

  • UF Sparse Matrix Collection
    \n', loc) ; if (by_group) fprintf (f, '

    UF Sparse Matrix Collection: %s group.

    \n', group) ; else fprintf (f, '

    UF Sparse Matrix Collection, sorted by %s.\n', what) ; fprintf (f, ' Click on a column header to sort by that column.

    \n') ; end % add link to mat//README.txt if (by_group) fprintf (f, '

  • ', group) ; fprintf (f, 'Click here for a description of the %s group.\n', group) ; end fprintf (f, '
  • ', loc) ; fprintf (f, 'Click here for a list of all matrix groups.\n') ; fprintf (f, '
  • ', loc) ; fprintf (f, 'Click here for a list of all matrices.\n') ; fprintf (f, '

    \n') ; % sort by filename [ignore, iname] = sort (lower (index.Name)) ; if (by_group) list = [ ] ; for i = 1:nmat if (strcmp (group, index.Group {i})) list = [list i] ; %#ok end end [ignore i] = sort (lower (index.Name (list))) ; list = list (i) ; if (isempty (list)) error ('empty group!') ; end elseif (strcmp (what, 'group')) % sort by filename, then stable sort by group [ignore, i] = sort (lower (index.Group (iname))) ; list = iname (i) ; elseif (strcmp (what, 'name')) % sort by filename only list = iname' ; elseif (strcmp (what, 'dimension')) % sort by filename, then stable sort by max dimension [ignore, i] = sort (max (index.nrows (iname), index.ncols (iname))) ; list = iname (i) ; elseif (strcmp (what, 'id')) list = 1:nmat ; elseif (strcmp (what, 'nnz')) % sort by filename, then stable sort by nnz [ignore, i] = sort (index.nnz (iname)) ; list = iname (i) ; elseif (strcmp (what, 'symmetry')) % 'symmetry' sort by symmetry. Rectangular matrices first, sorted by % min(nrow,ncol)-max(nrow,ncol), then numerical symmetry % 0 to just less than one. Then numerical symmetry = 1 % but not spd (sorted by dimension). Then spd sorted % by dimension. s1 = min (index.nrows, index.ncols) - max (index.nrows, index.ncols) ; s2 = index.numerical_symmetry ; s2 (find (s2) == -1) = 1 ; s3 = index.posdef ; s3 (find (s3) == -1) = 2 ; s4 = max (index.nrows, index.ncols) ; [ignore list] = sortrows ([s1' s2' s3' s4'], [1 2 3 4]) ; elseif (strcmp (what, 'type')) [ignore i1] = sort (max (index.nrows, index.ncols)) ; s = index.RBtype (i1,:) ; [ignore i2] = sortrows (s) ; list = i1 (i2) ; else error ('unknown list') ; end % ensure list is a row vector list = list (:)' ; % print the header fprintf (f, '\n') ; if (by_group) fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; else fprintf (f, '\n') ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; fprintf (f, '\n') ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; fprintf (f, '\n', loc) ; end for id = list group = index.Group {id} ; name = index.Name {id} ; nrows = index.nrows (id) ; ncols = index.ncols (id) ; nz = index.nnz (id) ; sym = index.numerical_symmetry (id) ; mtype = index.RBtype (id,:) ; s = index.posdef (id) ; if (s == 0) ss = '-' ; elseif (s == 1) ss = 'yes' ; else ss = '?' ; end fprintf (f, '\n') ; % thumbnail link to the matrix page fprintf (f, '\n') ; % group if (by_group) fprintf (f, '\n', name, name) ; else fprintf (f, '%s\n', group, name, name) ; end % id fprintf (f, '\n', id) ; % download links fprintf (f, '\n') ; % nrow fprintf (f, '\n', UFint (nrows)) ; % ncols fprintf (f, '\n', UFint (ncols)) ; % nz fprintf (f, '\n', UFint (nz)) ; % print the Rutherford/Boeing type mattype = '' ; if (mtype (1) == 'r') mattype = 'real' ; elseif (mtype (1) == 'c') mattype = 'complex' ; elseif (mtype (1) == 'i') mattype = 'integer' ; elseif (mtype (1) == 'p') mattype = 'binary' ; end if (mtype (2) == 'r') mattype = [mattype ' rectangular'] ; %#ok elseif (mtype (2) == 'u') mattype = [mattype ' unsymmetric'] ; %#ok elseif (mtype (2) == 's') mattype = [mattype ' symmetric'] ; %#ok elseif (mtype (2) == 'h') mattype = [mattype ' Hermitian'] ; %#ok elseif (mtype (2) == 'z') mattype = [mattype ' skew-symmetric'] ; %#ok end fprintf (f, '\n', mattype) ; % numerical symmetry (as a percentage) if (sym == -1) fprintf (f, '\n') ; elseif (sym == 1) fprintf (f, '\n') ; elseif (nrows ~= ncols) fprintf (f, '\n') ; else if (sym > 0 && sym < 0.01) fprintf (f, '\n', sym * 100) ; else fprintf (f, '\n', sym * 100) ; end end % positive definite? fprintf (f, '\n', ss) ; fprintf (f, '\n\n') ; end fprintf (f, '
    thumbnailGroup\n') ; fprintf (f, 'and Nameiddownload# rows# colsnonzerostypesymspd?thumbnailGroup\n', loc) ; fprintf (f, 'and Nameiddownload# rows# colsnonzerostypesymspd?
    \n') ; w = 'width="96" height="72"' ; if (by_group) fprintf (f, '%s/%s\n', name) ; else fprintf (f, '%s/%s\n', group, name) ; end fprintf (f, '%s/', group) ; else fprintf (f, '%s/', group, group); end % name if (by_group) fprintf (f, '%s%d\n') ; fprintf (f, 'MAT', loc, group, name) ; fprintf (f, ', MM', loc, group, name) ; fprintf (f, ', RB', loc, group, name) ; fprintf (f, '%s%s%s%s?yes-%5.2f%%%5.0f%%%s
    \n\n') ; fprintf (f, '

    Maintained by '); fprintf (f, 'Tim Davis, last updated %s.', date) ; fprintf (f, '
    Matrix pictures by cspy, a MATLAB', ... url) ; fprintf (f, ' function in the CSparse package.\n', ... url) ; fprintf (f, '
    See UFget to download directly', ... url) ; fprintf (f, ' into MATLAB.') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fclose (f) ; SuiteSparse/UFcollection/UFpage.m0000644001170100242450000004255710620400343015667 0ustar davisfacfunction UFpage (matrix, index, figures) %UFPAGE create web page for a matrix in UF Sparse Matrix Collection % % Usage: % UFpage (matrix, index, figures) % % matrix: id or name of matrix to create the web page for. % index: the UF index, from UFget. % figures: 1 if the figures are to be created, 0 otherwise % % Example: % % UFpage (267) % UFpage ('HB/west0479') % % See also UFget, cspy, UFgplot, UFint. % This function assumes that the mat/, MM/, and RB/ directories all reside in % the same parent directory, given by the download directory specified by % UFget_defaults. % Copyright 2006-2007, Timothy A. Davis %------------------------------------------------------------------------------- % get inputs %------------------------------------------------------------------------------- if (nargin < 2) index = UFget ; end if (nargin < 3) figures = 1 ; end %------------------------------------------------------------------------------- % get the Problem and its contents %------------------------------------------------------------------------------- Problem = UFget (matrix,index) ; disp (Problem) ; fullname = Problem.name ; s = strfind (fullname, '/') ; grp = fullname (1:s-1) ; name = fullname (s+1:end) ; id = Problem.id ; % create the primary directory [url topdir] = UFlocation ; matrices = [topdir 'matrices'] ; if (~exist (matrices, 'dir')) mkdir (matrices) ; end % create the group directory if (~exist ([matrices filesep grp], 'dir')) mkdir ([matrices filesep grp]) ; end % determine the full path of the problem fullpath = regexprep ([matrices filesep fullname], '[\/\\]', filesep) ; ptitle = Problem.title ; z = 0 ; if (isfield (Problem, 'Zeros')) z = nnz (Problem.Zeros) ; Problem = rmfield (Problem, 'Zeros') ; end nblocks = index.nblocks (id) ; ncc = index.ncc (id) ; has_b = isfield (Problem, 'b') ; has_x = isfield (Problem, 'x') ; has_aux = isfield (Problem, 'aux') ; if (has_b) b = Problem.b ; Problem = rmfield (Problem, 'b') ; if (iscell (b)) b = sprintf ('cell %d-by-%d\n', size (b)) ; elseif (issparse (b)) b = sprintf ('sparse %d-by-%d\n', size (b)) ; else b = sprintf ('full %d-by-%d\n', size (b)) ; end end if (has_x) x = Problem.x ; Problem = rmfield (Problem, 'x') ; if (iscell (x)) x = sprintf ('cell %d-by-%d\n', size (x)) ; elseif (issparse (x)) x = sprintf ('sparse %d-by-%d\n', size (x)) ; else x = sprintf ('full %d-by-%d\n', size (x)) ; end end nodename = [ ] ; if (has_aux) aux = Problem.aux ; Problem = rmfield (Problem, 'aux') ; auxfields = fields (aux) ; has_coord = isfield (aux, 'coord') ; has_nodename = isfield (aux, 'nodename') ; auxs = cell (1, length (auxfields)) ; for k = 1:length(auxfields) siz = size (aux.(auxfields{k})) ; if (iscell (aux.(auxfields{k}))) auxs {k} = sprintf ('cell %d-by-%d\n', siz) ; elseif (issparse (aux.(auxfields{k}))) auxs {k} = sprintf ('sparse %d-by-%d\n', siz) ; else auxs {k} = sprintf ('full %d-by-%d\n', siz) ; end end if (has_coord) xyz = aux.coord ; end if (has_nodename) nodename = aux.nodename ; end clear aux else has_coord = 0 ; end kind = Problem.kind ; if (isfield (Problem, 'notes')) notes = Problem.notes ; else notes = '' ; end au = Problem.author ; ed = Problem.ed ; da = Problem.date ; m = index.nrows (id) ; n = index.ncols (id) ; nz = index.nnz (id) ; nnzdiag = index.nnzdiag (id) ; if (strfind (kind, 'graph')) bipartite = ~isempty (strfind (kind, 'bipartite')) ; directed = ~isempty (regexp (kind, '\ 1) & (isempty (strfind (kind, 'graph'))) ; if (do_dmspy) try cs_dmspy (A, 128) ; title ('Dulmage-Mendelsohn permutation') ; catch fprintf ('dmspy failed\n') ; delete ([fullpath '_dmperm.png']) ; do_dmspy = 0 ; end print (gcf, '-dpng', '-r64', [fullpath '_dmperm.png']) ; end %--------------------------------------------------------------------------- % create the ccspy figure %--------------------------------------------------------------------------- do_scc = (ncc > 1) ; if (do_dmspy && m == n && nnzdiag == n) % don't do scc for a square matrix with zero-free diagonal do_scc = 0 ; end if (do_scc) try ccspy (A, bipartite, 128) ; if (bipartite) title ('connected components of the bipartite graph') ; else title ('strongly connected components of the graph') ; end print (gcf, '-dpng', '-r64', [fullpath '_scc.png']) ; catch fprintf ('ccspy failed\n') ; delete ([fullpath '_cc.png']) ; do_scc = 0 ; end end else %--------------------------------------------------------------------------- % the plots already exist - check the files %--------------------------------------------------------------------------- do_scc = exist ([fullpath '_scc.png'], 'file') ; do_dmspy = exist ([fullpath '_dmperm.png'], 'file') ; do_gplot = exist ([fullpath '_gplot.png'], 'file') ; end clear Problem %------------------------------------------------------------------------------- % create the web page for the matrix %------------------------------------------------------------------------------- f = fopen ([fullpath '.html'], 'w') ; if (f < 0) error ('unable to create matrix web page') ; end % add the header fprintf (f,'\n'); fprintf (f, '\n') ; fprintf (f, '%s sparse matrix\n', fullname) ; fprintf (f, '\n') ; % link to UF collection fprintf (f, '

  • UF Sparse Matrix Collection\n') ; % link to group fprintf (f, '
  • Matrix group: %s\n', grp) ; % add link to mat//README.txt fprintf (f, '
  • ', grp) ; fprintf (f, 'Click here for a description of the %s group.\n', grp) ; % link to all matrices fprintf (f, '
  • ') ; fprintf (f, 'Click here for a list of all matrices\n') ; % link to all groups fprintf (f, '
  • ') ; fprintf (f, 'Click here for a list of all matrix groups\n') ; % matrix name and description fprintf (f, '


  • Matrix: %s\n', fullname) ; fprintf (f, '
  • Description: %s\n', ptitle) ; % download link for MATLAB format fprintf (f, ... '
  • download as a MATLAB mat-file',... fullname) ; fsize (f, [topdir 'mat/' fullname '.mat']) ; fprintf (f, 'Use UFget(%d)', url, id) ; fprintf (f, ' or UFget(''%s'') in MATLAB.\n', fullname) ; % download link for Matrix Market format fprintf (f, ... '
  • download in Matrix Market format',... fullname) ; fsize (f, [topdir 'MM/' fullname '.tar.gz']) ; % download link for Rutherford/Boeing format fprintf (f, ... '
  • download in Rutherford/Boeing format',... fullname) ; fsize (f, [topdir 'RB/' fullname '.tar.gz']) ; %------------------------------------------------------------------------------- % link to images %------------------------------------------------------------------------------- fprintf (f, '

    %s\n', fullname, name) ; % dmspy, if it exists if (do_dmspy) fprintf (f, '

    dmperm of %s\n', ... fullname, name) ; end % ccspy, if it exists if (do_scc) fprintf (f, '

    scc of %s\n', ... fullname, name) ; end % gplot, if it exists if (do_gplot) fprintf (f, '

    ') ; fprintf (f, ... '%s graph\n', ... name, fullname, name) ; end %------------------------------------------------------------------------------- % table of matrix properties %------------------------------------------------------------------------------- fprintf (f, '

    \n') ; stat (f, 'Matrix properties', '%s', ' ') ; stat (f, 'number of rows', '%s', UFint (m)) ; stat (f, 'number of columns', '%s', UFint (n)) ; stat (f, 'nonzeros', '%s', UFint (nz)) ; srank = index.sprank (id) ; if (srank == min (m,n)) stat (f, 'structural full rank?', '%s', 'yes') ; else stat (f, 'structural full rank?', '%s', 'no') ; end stat (f, 'structural rank', '%s', UFint (srank)) ; stat (f, '# of blocks from dmperm', '%s', UFint (nblocks)) ; stat (f, '# strongly connected comp.', '%s', UFint (ncc)) ; if (srank == min (m,n)) stat (f, 'entries not in dmperm blocks', '%s', ... UFint (index.nzoff (id))) ; end stat (f, 'explicit zero entries', '%s', UFint (z)) ; s = index.pattern_symmetry (id) ; if (s == 1) stat (f, 'nonzero pattern symmetry', '%s', 'symmetric') ; else stat (f, 'nonzero pattern symmetry', '%8.0f%%', s*100) ; end s = index.numerical_symmetry (id) ; if (s == -1) stat (f, 'numeric value symmetry', '%s', 'unknown') ; elseif (s == 1) stat (f, 'numeric value symmetry', '%s', 'symmetric') ; else stat (f, 'numeric value symmetry', '%8.0f%%', s*100) ; end % print the Rutherford/Boeing type mtype = index.RBtype (id,:) ; ss = '-' ; if (mtype (1) == 'r') ss = 'real' ; elseif (mtype (1) == 'c') ss = 'complex' ; elseif (mtype (1) == 'i') ss = 'integer' ; elseif (mtype (1) == 'p') ss = 'binary' ; end stat (f, 'type', '%s', ss) ; ss = '-' ; if (mtype (2) == 'r') ss = 'rectangular' ; elseif (mtype (2) == 'u') ss = 'unsymmetric' ; elseif (mtype (2) == 's') ss = 'symmetric' ; elseif (mtype (2) == 'h') ss = 'Hermitian' ; elseif (mtype (2) == 'z') ss = 'skew-symmetric' ; end stat (f, 'structure', '%s', ss) ; if (index.cholcand (id) == 1) ss = 'yes' ; elseif (index.cholcand (id) == 0) ss = 'no' ; else ss = '?' ; end stat (f, 'Cholesky candidate?', '%s', ss) ; s = index.posdef (id) ; if (s == 0) ss = 'no' ; elseif (s == 1) ss = 'yes' ; else ss = 'unknown' ; end stat (f, 'positive definite?', '%s', ss) ; fprintf (f, '

    \n') ; %------------------------------------------------------------------------------- % problem author, ed, kind %------------------------------------------------------------------------------- fprintf (f, '

    \n') ; fprintf (f, '\n', au) ; fprintf (f, '\n', ed) ; fprintf (f, '\n', da) ; fprintf (f, '\n', kind); s = index.isND (id) ; if (s == 0) ss = 'no' ; else ss = 'yes' ; end fprintf (f, '\n', ss) ; fprintf (f, '
    author%s
    editor%s
    date%s
    kind%s
    2D/3D problem?%s

    \n') ; %------------------------------------------------------------------------------- % fields %------------------------------------------------------------------------------- if (has_b || has_x || has_aux) fprintf (f, '

    \n') ; stat (f, 'Additional fields', '%s', 'size and type') ; if (has_b) stat (f, 'b', '%s', b) ; end if (has_x) stat (f, 'x', '%s', x) ; end if (has_aux) for k = 1:length(auxfields) stat (f, auxfields{k}, '%s', char (auxs{k})) ; end end fprintf (f, '

    \n') ; end %------------------------------------------------------------------------------- % Notes %------------------------------------------------------------------------------- if (~isempty (notes)) fprintf (f, '

    Notes:

    \n') ;
        for k = 1:size(notes,1)
    	fprintf (f, '%s\n', notes (k,:)) ;
        end
        fprintf (f, '
    \n') ; end %------------------------------------------------------------------------------- % ordering statistics %------------------------------------------------------------------------------- fprintf (f, '

    \n') ; if (nblocks == 1 || index.nzoff (id) == -2) stat (f, ... 'Ordering statistics:', ... '%s', 'AMD', 'METIS') ; if (index.amd_lnz (id) > -2) stat (f, 'nnz(chol(P*(A+A''+s*I)*P''))', '%s', ... UFint (index.amd_lnz (id)), ... UFint (index.metis_lnz (id))) ; stat (f, 'Cholesky flop count', '%7.1e', ... index.amd_flops (id), ... index.metis_flops (id)) ; stat (f, 'nnz(L+U), no partial pivoting', '%s', ... UFint (2*index.amd_lnz (id) - min(m,n)), ... UFint (2*index.metis_lnz (id) - min(m,n))) ; end stat (f, 'nnz(V) for QR, upper bound nnz(L) for LU', '%s', ... UFint (index.amd_vnz (id)), ... UFint (index.metis_vnz (id))) ; stat (f, 'nnz(R) for QR, upper bound nnz(U) for LU', '%s', ... UFint (index.amd_rnz (id)), ... UFint (index.metis_rnz (id))) ; else stat (f, ... 'Ordering statistics:', ... '%s', 'AMD', 'METIS', 'DMPERM+') ; if (index.amd_lnz (id) > -2) stat (f, 'nnz(chol(P*(A+A''+s*I)*P''))', '%s', ... UFint (index.amd_lnz (id)), ... UFint (index.metis_lnz (id)), ... UFint (index.dmperm_lnz (id))) ; stat (f, 'Cholesky flop count', '%7.1e', ... index.amd_flops (id), ... index.metis_flops (id), ... index.dmperm_flops (id)) ; stat (f, 'nnz(L+U), no partial pivoting', '%s', ... UFint (2*index.amd_lnz (id) - min(m,n)), ... UFint (2*index.metis_lnz (id) - min(m,n)), ... UFint (index.dmperm_lnz (id) + index.dmperm_unz (id)-min(m,n))) ; end stat (f, 'nnz(V) for QR, upper bound nnz(L) for LU', '%s', ... UFint (index.amd_vnz (id)), ... UFint (index.metis_vnz (id)), ... UFint (index.dmperm_vnz (id))) ; stat (f, 'nnz(R) for QR, upper bound nnz(U) for LU', '%s', ... UFint (index.amd_rnz (id)), ... UFint (index.metis_rnz (id)), ... UFint (index.dmperm_rnz (id))) ; end fprintf (f, '

    \n') ; %------------------------------------------------------------------------------- % note regarding orderings %------------------------------------------------------------------------------- if (z > 0) fprintf (f, '

    Note that all matrix statistics (except nonzero'); fprintf (f, ' pattern symmetry) exclude the %d explicit zero entries.\n',z); fprintf (f, '\n') ; end %------------------------------------------------------------------------------- % etc ... %------------------------------------------------------------------------------- fprintf (f, '

    Maintained by '); fprintf (f, 'Tim Davis, last updated %s.', date) ; fprintf (f, '
    Matrix pictures by cspy, a ', url) ; fprintf (f, 'MATLAB function in the CSparse', url) ; fprintf (f, ' package.\n\n\n') ; fclose (f) ; %------------------------------------------------------------------------------- function fsize (f, filename) % fsize: print the filesize d = dir (regexprep (filename, '[\/\\]', filesep)) ; if (isempty (d)) fprintf ('\n') ; elseif (d.bytes < 1024) fprintf (f, ', file size: %4d bytes.\n', d.bytes) ; elseif (d.bytes > 2^20) fprintf (f, ', file size: %8.0f MB.\n', d.bytes / 2^20) ; else fprintf (f, ', file size: %8.0f KB.\n', d.bytes / 2^10) ; end %------------------------------------------------------------------------------- function stat (f, what, format, value1, value2, value3) % stat: print one row of a table s = val (format, value1) ; fprintf (f, '%s%s\n', what, s) ; if (nargin > 4) fprintf (f, '%s\n', val (format, value2)) ; end if (nargin > 5) fprintf (f, '%s\n', val (format, value3)) ; end fprintf (f, '\n') ; %------------------------------------------------------------------------------- function s = val (format, value) % val: print a value in a table if (~ischar (value) && value < 0) s = '-' ; else s = sprintf (format, value) ; end SuiteSparse/UFcollection/UFread.m0000644001170100242450000003243210711673330015666 0ustar davisfacfunction Problem = UFread (directory, tmp) %UFREAD read a Problem in Matrix Market or Rutherford/Boeing format % containing a set of files created by UFwrite, in either Matrix Market or % Rutherford/Boeing format. See UFwrite for a description of the Problem struct. % % Usage: Problem = UFread (directory) % % Example: % % load west0479 % clear Problem % Problem.name = 'HB/west0479' ; % Problem.title = '8 STAGE COLUMN SECTION, ALL SECTIONS RIGOROUS (CHEM.ENG.)'; % Problem.A = west0479 ; % Problem.id = 267 ; % the id number of west0479 in the UF collection % Problem.date = '1983' ; % Problem.author = 'A. Westerberg' ; % Problem.ed = 'I. Duff, R. Grimes, J. Lewis' % Problem.kind = 'chemical process simulation problem' ; % UFwrite (Problem, 'RB/', '') ; % Prob3 = UFread ('RB/HB/west0479') % isequal (Problem, Prob3) % % This part of the example requires CHOLMOD, for the mread function: % % UFwrite (Problem, 'MM/') ; % Prob2 = UFread ('MM/HB/west0479') % isequal (Problem, Prob2) % % You can also compare this Problem with the version in the UF Sparse Matrix % Collection, with UFget(267) or UFget('HB/west0479'). Note that this includes % the 22 explicit zero entries present in the west0479 Harwell/Boeing matrix, % but not included in the MATLAB west0479.mat demo matrix. Those entries are % present in the UF Sparse Matrix Collection. This example assumes your current % directory is the RBio directory, containing the west0479 problem in the % RBio/Test directory: % % Prob5 = UFget ('HB/west0479') % Prob6 = UFread ('Test/west0479') % isequal (Prob5, Prob6) % % The directory can be a compressed tar file of the form "name.tar.gz", in % which case the tarfile is uncompressed into a temporary directory, and % the temporary directory is deleted when done. The '.tar.gz' should not be % part of the directory argument. In this case, a 2nd input argument can be % provided: Problem = UFread (directory, tmp). The problem is extracted into % the tmp directory. If tmp is not present, the output of the tempdir function % is used instead. % % Note that UFget is much faster than UFread. UFread is useful if you are % short on disk space, and want to have just one copy of the collection that % can be read by MATLAB (via UFread) and a non-MATLAB program (the MM or RB % versions of the collection). % % See also UFwrite, mread, mwrite, RBread, RBread, UFget, untar, tempdir. % Optionally uses the CHOLMOD mread mexFunction, for reading Problems in % Matrix Market format. % Copyright 2006-2007, Timothy A. Davis, Univ. of Florida %------------------------------------------------------------------------------- % determine the Problem name from the directory name %------------------------------------------------------------------------------- directory = regexprep (directory, '[\/\\]', filesep) ; t = find (directory == filesep) ; if (isempty (t)) name = directory ; else name = directory (t(end)+1:end) ; end %------------------------------------------------------------------------------- % open the directory, or untar the tar.gz file %------------------------------------------------------------------------------- d = dir (directory) ; is_tar = 0 ; if (isempty (d)) % look for a .tar.gz file if (nargin < 2) tmpdir = [tempname '_UFread_' name] ; else tmpdir = [tmp filesep name] ; end try % try untaring the problem untar ([directory '.tar.gz'], tmpdir) ; catch % untar failed, make sure tmpdir is deleted try rmdir (tmpdir, 's') ; catch end error (['unable to read problem: ' directory]) ; end directory = [tmpdir filesep name] ; d = dir (directory) ; is_tar = 1 ; end %------------------------------------------------------------------------------- % read the problem %------------------------------------------------------------------------------- try %--------------------------------------------------------------------------- % get name, title, id, kind, date, author, editor, notes from master file %--------------------------------------------------------------------------- masterfile = [directory filesep name] ; [Problem notes RB] = get_header (masterfile) ; %--------------------------------------------------------------------------- % get the A and Zero matrices from the master file and add to the Problem %--------------------------------------------------------------------------- if (RB) % read in the primary Rutherford/Boeing file [Problem.A Zeros] = RBread ([masterfile '.rb']) ; else % read in the primary Matrix Market file. Get patterns as binary. [Problem.A Zeros] = mread ([masterfile '.mtx'], 1) ; end if (nnz (Zeros) > 0) Problem.Zeros = Zeros ; end % add the notes after A and Zeros if (~isempty (notes)) Problem.notes = notes ; end namelen = length (name) ; %--------------------------------------------------------------------------- % read b, x, aux (incl. any aux.cell sequences), stored as separate files %--------------------------------------------------------------------------- for k = 1:length(d) % get the next filename in the directory file = d(k).name ; fullfilename = [directory filesep file] ; if (length (file) < length (name) + 1) % unrecognized file; skip it continue elseif (strcmp (file, [name '.mtx'])) % skip the master file; already read in continue elseif (strcmp (file, [name '_b.mtx'])) % read in b as a Matrix Market file Problem.b = mtx_read (fullfilename, RB) ; elseif (strcmp (file, [name '_x.mtx'])) % read in x as a Matrix Market file Problem.x = mtx_read (fullfilename, RB) ; elseif (strcmp (file, [name '_b.rb'])) % read in b as a Rutherford/Boeing file Problem.b = RBread (fullfilename) ; elseif (strcmp (file, [name '_x.rb'])) % read in x as a Rutherford/Boeing file Problem.x = RBread (fullfilename) ; elseif (strcmp (file (1:length(name)+1), [name '_'])) % read in an aux component, in the form name_whatever.mtx thedot = find (file == '.', 1, 'last') ; ext = file (thedot:end) ; if (strcmp (ext, '.txt')) % get a txt file % first, determine the longest line in the file f = fopen (fullfilename) ; if (f < 0) error (['cannot open ' fullfilename]) ; end len = 0 ; nline = 0 ; while (1) s = fgetl (f) ; if (~ischar (s)) break end len = max (len, length (s)) ; nline = nline + 1 ; end fclose (f) ; % next, read in the file as a char array C = repmat (' ', nline, len) ; f = fopen (fullfilename) ; if (f < 0) error (['cannot open ' fullfilename]) ; end i = 0 ; while (1) s = fgetl (f) ; if (~ischar (s)) break end i = i + 1 ; len = length (s) ; if (len > 0) C (i, 1:len) = s ; end end fclose (f) ; elseif (strcmp (ext, '.mtx')) % read a full or sparse auxiliary matrix in the Matrix Market % form, or a full auxiliary matrix in the Rutherford/Boeing form. C = mtx_read (fullfilename, RB) ; elseif (strcmp (ext, '.rb')) % read in a sparse matrix, for a Rutherford/Boeing collection C = RBread (fullfilename) ; else % this file is not recognized - skip it. C = [ ] ; end % determine the name of the component and place it in the Problem if (~isempty (C)) % Determine if this is part of an aux.whatever cell sequence. % These filenames have the form name_whatever_#.mtx, where name % is the name of the Problem, and # is a number (1 or more % digts) greater than zero. If # = i, this becomes the % aux.whatever{i} matrix. suffix = file (namelen+2:thedot-1) ; t = find (suffix == '_', 1, 'last') ; what = suffix (1:t-1) ; i = str2num (suffix (t+1:end)) ; %#ok if (~isempty (i) && i > 0 && ~isempty (what)) % this is part of aux.whatever{i} cell array Problem.aux.(what) {i,1} = C ; elseif (~isempty (suffix)) % this is not a cell, simply an aux.whatever matrix Problem.aux.(suffix) = C ; end end end end %--------------------------------------------------------------------------- % delete the uncompressed version of the tar file %--------------------------------------------------------------------------- if (is_tar) rmdir (tmpdir, 's') ; end catch %--------------------------------------------------------------------------- % catch the error, delete the temp directory, and rethrow the error %--------------------------------------------------------------------------- try if (is_tar) rmdir (tmpdir, 's') ; end catch end rethrow (lasterror) ; end %------------------------------------------------------------------------------- % get_header: get the header of the master file (Group/name/name.txt or .mtx) %------------------------------------------------------------------------------- function [Problem, notes, RB] = get_header (masterfile) % Get the name, title, id, kind, date, author, editor and notes from the master % file. The name, title, and id are required. They appear as structured % comments in the Matrix Market file (masterfile.mtx) or in the text file for % a problem in Rutherford/Boeing format (masterfile.txt). RB is returned as % 1 if the problem is in Rutherford/Boeing format, 0 otherwise. % first assume it's in Matrix Market format f = fopen ([masterfile '.mtx'], 'r') ; if (f < 0) % oops, that failed. This must be a problem in Rutherford/Boeing format RB = 1 ; f = fopen ([masterfile '.txt'], 'r') ; if (f < 0) % oops again, this is not a valid problem in the UF Sparse collection error (['invalid problem: ' masterfile]) ; end else % we found the Matrix Market file RB = 0 ; end Problem = [ ] ; notes = [ ] ; while (1) % get the next line s = fgetl (f) ; if (~ischar (s) || length (s) < 3 || s (1) ~= '%') % end of file or end of leading comments ... no notes found fclose (f) ; [Problem notes] = valid_problem (Problem, [ ]) ; return ; end % remove the leading '% ' and get the first token s = s (3:end) ; [t r] = strtok (s) ; % parse the line if (strcmp (t, 'name:')) % get the Problem.name. It must be of the form Group/Name. Problem.name = strtrim (r) ; if (length (find (Problem.name == '/')) ~= 1) fclose (f) ; error (['invalid problem name ' Problem.name]) ; end elseif (s (1) == '[') % get the Problem.title k = find (s == ']', 1, 'last') ; if (isempty (k)) fclose (f) ; error ('invalid problem title') ; end Problem.title = s (2:k-1) ; elseif (strcmp (t, 'id:')) % get the Problem.id Problem.id = str2num (r) ; %#ok if (isempty (Problem.id) || Problem.id < 0) fclose (f) ; error ('invalid problem id') ; end elseif (strcmp (t, 'kind:')) % get the Problem.kind Problem.kind = strtrim (r) ; elseif (strcmp (t, 'date:')) % get the Problem.date Problem.date = strtrim (r) ; elseif (strcmp (t, 'author:')) % get the Problem.author Problem.author = strtrim (r) ; elseif (strcmp (t, 'ed:')) % get the Problem.ed Problem.ed = strtrim (r) ; elseif (strcmp (t, 'notes:')) % get the notes, which always appear last k = 0 ; notes = [ ] ; while (1) % get the next line s = fgetl (f) ; if (~ischar (s) || length (s) < 2 || ~strcmp (s (1:2), '% ')) % end of file or end of notes ... convert notes to char array fclose (f) ; [Problem notes] = valid_problem (Problem, notes) ; return ; end % add the line to the notes k = k + 1 ; notes {k} = s ; %#ok end end end %------------------------------------------------------------------------------- % valid_problem: determine if a problem is valid, and finalizes the notes %------------------------------------------------------------------------------- function [Problem, notes] = valid_problem (Problem, notes) % make sure the required fields (name, title, id, date, author, ed) are present. % Convert notes to char, and strip off the leading '% ', inserted when the notes % were printed in the Matrix Market file. if (~isfield (Problem, 'name') || ~isfield (Problem, 'title') || ... ~isfield (Problem, 'id') || ~isfield (Problem, 'date') || ... ~isfield (Problem, 'author') || ~isfield (Problem, 'ed') || ... ~isfield (Problem, 'kind')) error ('invalid Problem mfile') ; end if (~isempty (notes)) notes = char (notes) ; notes = notes (:, 3:end) ; end %------------------------------------------------------------------------------- % mtx_read: read a *.mtx file %------------------------------------------------------------------------------- % In the Rutherford/Boeing form, a *.mtx file is used only for full matrices, % using a tiny subset of the Matrix Market format. In the Matrix Market form, % the *.mtx is used for all b, x, and aux matrices (both full and sparse). function C = mtx_read (file, RB) if (~RB) % Get a Matrix Market file, using full Matrix Market features. C = mread (file, 1) ; else % mread is not installed. The RB format uses a tiny subset of the Matrix % Market format for full matrices: just the one header line, and no comment % or blank lines permitted. Allowable header lines are: % %%MatrixMarket matrix array real general % %%MatrixMarket matrix array complex general % This tiny subset can be read by UFfull_read. C = UFfull_read (file) ; end SuiteSparse/UFcollection/UFfull_write.c0000644001170100242450000001106410617476236017126 0ustar davisfac/* ========================================================================== */ /* === UFcollection/UFfull ================================================== */ /* ========================================================================== */ /* UFcollection: a MATLAB toolbox for managing the UF Sparse Matrix Collection. * Copyright (c) 2007, Timothy A. Davis, Univ. Florida. */ /* ========================================================================== */ /* UFfull_write (filename, X): write a full matrix to a file. A small subset of * the Matrix Market format is used. The first line is one of: * * %%MatrixMarket matrix real complex general * %%MatrixMarket matrix array complex general * * The 2nd line contains two numbers: m and n, where X is m-by-n. The next * m*n lines contain the numerical values (one per line if real, two per line * if complex, containing the real and imaginary parts). The values are * listed in column-major order. The resulting file can be read by any * Matrix Market reader, or by UFfull_read. No comments or blank lines are * used. */ #ifndef NLARGEFILE #include "io64.h" #endif #include "UFconfig.h" #include "mex.h" #include #define MAXLINE 1030 #define BIG 1e308 /* -------------------------------------------------------------------------- */ /* print_value */ /* -------------------------------------------------------------------------- */ static void print_value (FILE *f, double x, char *s) { double y ; int k, width ; /* change -inf to -BIG, and change +inf and nan to +BIG */ if (x != x || x >= BIG) { x = BIG ; } else if (x <= -BIG) { x = -BIG ; } /* convert to int and back again */ k = (int) x ; y = (double) k ; if (y == x) { /* x is a small integer */ fprintf (f, "%d", k) ; } else { /* x is not an integer, use the smallest width possible */ for (width = 6 ; width < 20 ; width++) { /* write the value to a string, read it back in, and check */ sprintf (s, "%.*g", width, x) ; sscanf (s, "%lg", &y) ; if (x == y) break ; } fprintf (f, "%s", s) ; } } /* -------------------------------------------------------------------------- */ /* UFfull */ /* -------------------------------------------------------------------------- */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { int iscomplex ; size_t nrow, ncol, i, j ; double *Ax, *Az ; char filename [MAXLINE], s [MAXLINE] ; FILE *f ; /* ---------------------------------------------------------------------- */ /* check inputs */ /* ---------------------------------------------------------------------- */ if (nargout > 0 || nargin != 2) { mexErrMsgTxt ("usage: UFfull (filename,A)") ; } if (mxIsSparse (pargin [1]) || !mxIsClass (pargin [1], "double")) { mexErrMsgTxt ("A must be full and double") ; } /* ---------------------------------------------------------------------- */ /* get filename and open the file */ /* ---------------------------------------------------------------------- */ if (!mxIsChar (pargin [0])) { mexErrMsgTxt ("first parameter must be a filename") ; } mxGetString (pargin [0], filename, MAXLINE) ; f = fopen (filename, "w") ; if (f == NULL) { mexErrMsgTxt ("error openning file") ; } /* ---------------------------------------------------------------------- */ /* get the matrix */ /* ---------------------------------------------------------------------- */ iscomplex = mxIsComplex (pargin [1]) ; nrow = mxGetM (pargin [1]) ; ncol = mxGetN (pargin [1]) ; Ax = mxGetPr (pargin [1]) ; Az = mxGetPi (pargin [1]) ; /* ---------------------------------------------------------------------- */ /* write the matrix */ /* ---------------------------------------------------------------------- */ if (iscomplex) { fprintf (f, "%%%%MatrixMarket matrix array complex general\n") ; } else { fprintf (f, "%%%%MatrixMarket matrix array real general\n") ; } fprintf (f, "%d %d\n", nrow, ncol) ; for (j = 0 ; j < ncol ; j++) { for (i = 0 ; i < nrow ; i++) { print_value (f, Ax [i + j*nrow], s) ; if (iscomplex) { fprintf (f, " ") ; print_value (f, Az [i + j*nrow], s) ; } fprintf (f, "\n") ; } } /* ---------------------------------------------------------------------- */ /* close the file */ /* ---------------------------------------------------------------------- */ fclose (f) ; } SuiteSparse/UFcollection/UFfull_write.m0000644001170100242450000000171010620400402017105 0ustar davisfacfunction UFfull_write (filename, A) %#ok %UFFULL_WRITE write a full matrix using a subset of Matrix Market format % Usage: % % UFfull_write (filename, A) % % A small subset of the Matrix Market format is used. The first line is one of: % % %%MatrixMarket matrix real complex general % %%MatrixMarket matrix array complex general % % The second line contains two numbers: m and n, where A is m-by-n. The next % m*n lines contain the numerical values (one per line if real, two per line % if complex, containing the real and imaginary parts). The values are listed % in column-major order. The resulting file can be read by any Matrix Market % reader, or by UFfull_read. No comments or blank lines are used. % % Example: % x = rand (8) % UFfull_write ('xfile', x) % y = UFfull_read ('xfile') % norm (x-y) % % See also mread, mwrite, RBwrite, RBread. % Copyright 2006-2007, Timothy A. Davis error ('UFfull_write mexFunction not found') ; SuiteSparse/UFcollection/dsxy2figxy.m0000644001170100242450000000443010620400104016617 0ustar davisfacfunction varargout = dsxy2figxy(varargin) %DSXY2FIGXY Transform point or position from axis to figure coords % Transforms [axx axy] or [xypos] from axes hAx (data) coords into coords % wrt GCF for placing annotation objects that use figure coords into data % space. The annotation objects this can be used for are % arrow, doublearrow, textarrow % ellipses (coordinates must be transformed to [x, y, width, height]) % Note that line, text, and rectangle anno objects already are placed % on a plot using axes coordinates and must be located within an axes. % Example to compute a position and apply to an annotation: % Example: % [axx axy] = ginput(2); % [figx figy] = getaxannopos(gca, axx, axy); % har = annotation('textarrow',figx,figy); % set(har,'String',['(' num2str(axx(2)) ',' num2str(axy(2)) ')']) % % See also annotation, plot, ginput. % Copyright 2006-2007, The MathWorks, Inc. Used by permission (see % http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/ % bquk5ia-4.html). %% Obtain arguments (only limited argument checking is performed). % Determine if axes handle is specified if length(varargin{1})== 1 && ishandle(varargin{1}) && ... strcmp(get(varargin{1},'type'),'axes') hAx = varargin{1}; varargin = varargin(2:end); else hAx = gca; end; % Parse either a position vector or two 2-D point tuples if length(varargin)==1 % Must be a 4-element POS vector pos = varargin{1}; else [x,y] = deal(varargin{:}); % Two tuples (start & end points) end %% Get limits axun = get(hAx,'Units'); set(hAx,'Units','normalized'); % Need normaized units to do the xform axpos = get(hAx,'Position'); axlim = axis(hAx); % Get the axis limits [xlim ylim (zlim)] axwidth = diff(axlim(1:2)); axheight = diff(axlim(3:4)); %% Transform data from figure space to data space if exist('x','var') % Transform a and return pair of points varargout{1} = (x-axlim(1))*axpos(3)/axwidth + axpos(1); varargout{2} = (y-axlim(3))*axpos(4)/axheight + axpos(2); else % Transform and return a position rectangle pos(1) = (pos(1)-axlim(1))/axwidth*axpos(3) + axpos(1); pos(2) = (pos(2)-axlim(3))/axheight*axpos(4) + axpos(2); pos(3) = pos(3)*axpos(3)/axwidth; pos(4) = pos(4)*axpos(4)/axheight; varargout{1} = pos; end %% Restore axes units set(hAx,'Units',axun) SuiteSparse/UFcollection/UFlists.m0000644001170100242450000000630310677241026016113 0ustar davisfacfunction UFlists %UFLISTS create the web pages for each matrix list (group, name, etc.) % Places the web pages in the matrices/ subdirectory of the current directory. % % Example: % UFlists % % See also UFget, UFlist % Copyright 2006-2007, Timothy A. Davis % create all the web pages for the lists UFlist ('group') ; UFlist ('name') ; UFlist ('id') ; UFlist ('dimension') ; UFlist ('nnz') ; UFlist ('symmetry') ; UFlist ('type') ; % do all the group pages, and the list of groups index = UFget ; nmat = length (index.nrows) ; [ignore, i] = sort (index.Group) ; g = index.Group (i) ; % create the primary directory [url topdir] = UFlocation ; matrices = [topdir 'matrices'] ; if (~exist (matrices, 'dir')) mkdir (matrices) ; end % create the groups.html file f = fopen ([matrices filesep 'groups.html'], 'w') ; if (f < 0) error ('unable to create groups.html file\n') ; end % add the header fprintf (f, ... '\n') ; fprintf (f, '\n') ; fprintf (f, 'UF Sparse Matrix Collection: group list') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '

  • UF Sparse Matrix Collection\n') ; fprintf (f, '

    List of matrix groups in the UF Sparse Matrix Collection:\n') ; fprintf (f, '

    \n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; fprintf (f, '\n') ; % find all the groups group = '' ; ngroup = 0 ; for i = 1:nmat if (strcmp (group, g {i})) continue end group = g {i} ; ngroup = ngroup + 1 ; groups {ngroup} = group ; %#ok end nmat = 0 ; for i = 1:ngroup group = groups {i} ; UFlist ('group', group) ; fprintf (f, '\n') ; % link to group fprintf (f, '\n', group, group) ; % number of matrices d = dir ([topdir 'mat' filesep group filesep '*.mat']) ; nmat_group = size (d,1) ; fprintf (f, '\n', nmat_group) ; nmat = nmat + nmat_group ; % link to README.txt file ("details") f2 = fopen ([topdir filesep 'mat' filesep group filesep 'README.txt'], 'r'); if (f2 < 0) error (['no README file for group: ' group]) ; else s = fgets (f2) ; fprintf (f, ... '\n', group) ; end % one-line description (first line of README.txt) fprintf (f, '\n', s) ; fclose (f2); fprintf (f, '\n') ; end fprintf (f, '
    Group# matricesdetailsdescription
    %s%ddetails%s
    \n') ; fprintf (f, '

    Total number of matrices in UF Sparse Matrix Collection:') ; fprintf (f, ' %d\n', nmat) ; fprintf (f, '

    Maintained by '); fprintf (f, 'Tim Davis, last updated %s.', date) ; fprintf (f, '
    Matrix pictures by cspy, a MATLAB', ... url) ; fprintf (f, ' function in the CSparse package.\n', ... url) ; fprintf (f, '\n') ; fprintf (f, '\n') ; fclose (f) ; SuiteSparse/UFcollection/UFcollection_install.m0000644001170100242450000000122610623063453020632 0ustar davisfacfunction UFcollection_install (nlargefile) %UFCOLLECTION_INSTALL install the UFcollection toolbox % % Example: % UFcollection_install % % See also UFget. % Copyright 2006-2007, Timothy A. Davis if (nargin < 1) % try with large-file I/O nlargefile = 0 ; end if (nlargefile) fprintf ('Trying to compile without large file support...\n') ; mex -I../UFconfig -DNLARGEFILE UFfull_write.c else try mex -I../UFconfig UFfull_write.c catch fprintf ('Trying to compile without large file support...\n') ; mex -I../UFconfig -DNLARGEFILE UFfull_write.c end end addpath (pwd) ; fprintf ('UFcollection toolbox successfully compiled.\n') ; SuiteSparse/UFcollection/Contents.m0000644001170100242450000000333010620400407016300 0ustar davisfac% UFcollection: software for managing the UF Sparse Matrix Collection % % To create the index: % % UFindex - create the index for the UF Sparse Matrix Collection % UFstats - compute matrix statistics for the UF Sparse Matrix Collection % % To create the web pages: % % UFallpages - create all web pages for the UF Sparse Matrix Collection % UFgplot - draw a plot of the graph of a sparse matrix % UFint - print an integer to a string, adding commas every 3 digits % UFlist - create a web page index for the UF Sparse Matrix Collection % UFlists - create the web pages for each matrix list (group, name, etc.) % UFlocation - URL and top-level directory of the UF Sparse Matrix Collection % UFpage - create web page for a matrix in UF Sparse Matrix Collection % UFpages - create web page for each matrix in UF Sparse Matrix Collection % dsxy2figxy - Transform point or position from axis to figure coords % % To create the Matrix Market and Rutherford/Boeing versions of the collection: % % UFexport - export to Matrix Market and Rutherford/Boeing formats % UFread - read a Problem in Matrix Market or Rutherford/Boeing format % UFwrite - write a Problem in Matrix Market or Rutherford/Boeing format % UFfull_read - read a full matrix using a subset of Matrix Market format % UFfull_write - write a full matrix using a subset of Matrix Market format % % Other: % % UFcollection_install - install the UFcollection toolbox % % Example: % UFindex % create index (UF_Index.mat) for use by UFget % UFallpages % create all web pages for the UF Sparse Matrix Collection % % Requires UFget, CSparse, CHOLMOD, AMD, COLAMD, METIS. % Copyright 2006-2007, Timothy A. Davis SuiteSparse/UFcollection/UFallpages.m0000644001170100242450000000067210620400326016534 0ustar davisfacfunction UFallpages (figures) %UFALLPAGES create all web pages for the UF Sparse Matrix Collection % with the exception of the top-level index.html file (which is created % manually). % % Example: % % UFallpages % UFallpages(0) % does not create figures (assumes they already exist) % % See also UFget, UFlists, UFpages. % Copyright 2006-2007, Timothy A. Davis if (nargin < 1) figures = 1 ; end UFlists ; UFpages (figures) ; SuiteSparse/UFcollection/UFstats.m0000644001170100242450000003725010623341426016114 0ustar davisfacfunction stats = UFstats (A, kind, nometis, Z) %UFSTATS compute matrix statistics for the UF Sparse Matrix Collection % Example: % stats = UFstats (A,kind,nometis,Z) % % A: a sparse matrix % kind: a string with the Problem.kind % nometis: if nonzero then metis(A,'col') is not used, nor is metis used in the % dmperm+ ordering. % Z: empty, or a sparse matrix the same size as A. Only used for psym and % nzero statistics, described below. % % Requires amd, cholmod, metis, RBio, and CSparse. Computes the following % statistics, returning them as fields in the stats struct: % % nrows number of rows % ncols number of columns % nnz number of entries in A % RBtype Rutherford/Boeing type % isBinary 1 if binary, 0 otherwise % isReal 1 if real, 0 if complex % cholcand 1 if a candidate for sparse Cholesky, 0 otherwise % nsym numeric symmetry (0 to 1, where 1=symmetric) % psym pattern symmetry (0 to 1, where 1=symmetric) % nnzdiag nnz (diag (A)) if A is square, 0 otherwise % nzero nnz (Z) % amd_lnz nnz(L) for chol(C(p,p)) where, C=A+A', p=amd(C) % amd_flops flop count for chol(C(p,p)) where, C=A+A', p=amd(C) % amd_vnz nnz in Householder vectors for qr(A(:,colamd(A))) % amd_rnz nnz in R for qr(A(:,colamd(A))) % metis_lnz nnz(L) for chol(C(p,p)) where, C=A+A', p=metis(C) % metis_flops flop count for chol(C(p,p)) where, C=A+A', p=metis(C) % metis_vnz nnz in Householder vectors for qr(A(:,metis(A,'col'))) % metis_rnz nnz in R for qr(A(:,metis(A,'col'))) % nblocks # of blocks from dmperm % sprank sprank(A) % nzoff # of entries not in diagonal blocks from dmperm % ncc # of strongly connected components % dmperm_lnz nnz(L), using dmperm plus amd or metis % dmperm_unz nnz(U), using dmperm plus amd or metis % dmperm_flops flop count with dperm plus % dmperm_vnz nnz in Householder vectors for dmperm plus % dmperm_rnz nnz in R for dmperm plus % posdef 1 if positive definite, 0 otherwise % isND 1 if a 2D/3D problem, 0 otherwise % % The *_lnz, *_unz, and *_flops statistics are not computed for rectangular % or structurally singular matrices. nzoff and the dmperm_* stats are not % computed for structurally singular matrices. If a statistic is not computed, % it is set to -2. If an attempt to compute the statistic was made but failed, % it is set to -1. % % See also UFget, UFindex, amd, metis, RBtype, cs_scc, cs_sqr, dmperm. % Copyright 2006-2007, Timothy A. Davis % Requires the SuiteSparse set of packages: CHOLMOD, AMD, COLAMD, RBio, CSparse; % and METIS. if (nargin < 3) nometis = 0 ; end %------------------------------------------------------------------------------- % ensure the matrix is sparse %------------------------------------------------------------------------------- if (~issparse (A)) A = sparse (A) ; end %------------------------------------------------------------------------------- % basic stats %------------------------------------------------------------------------------- tic ; [m n] = size (A) ; stats.nrows = m ; stats.ncols = n ; stats.nnz = nnz (A) ; stats.RBtype = RBtype (A) ; % Rutherford/Boeing type stats.isBinary = (stats.RBtype (1) == 'p') ; stats.isReal = (stats.RBtype (1) ~= 'c') ; fprintf ('RBtype: %s time: %g\n', stats.RBtype, toc) ; %------------------------------------------------------------------------------- % symmetry and Cholesky candidacy %------------------------------------------------------------------------------- % get the symmetry tic ; [s xmatched pmatched nzoffdiag nnzdiag] = spsym (A) ; stats.cholcand = (s >= 6) ; % check if Cholesky candidate if (m ~= n) stats.nsym = 0 ; stats.psym = 0 ; elseif (nzoffdiag > 0) stats.nsym = xmatched / nzoffdiag ; stats.psym = pmatched / nzoffdiag ; else stats.nsym = 1 ; stats.psym = 1 ; end fprintf ('cholcand: %d\n', stats.cholcand) ; fprintf ('nsym: %g psym: %g time: %g\n', stats.nsym, stats.psym, toc) ; tic ; stats.nnzdiag = nnzdiag ; if (nargin > 3) stats.nzero = nnz (Z) ; % recompute the pattern symmetry with Z included if (m == n) try AZ = A+Z ; if (nnz (AZ) ~= nnz (A) + nnz (Z)) error ('A and Z overlap!') end [s xmatched pmatched nzoffdiag] = spsym (AZ) ; clear AZ if (nzoffdiag > 0) stats.psym = pmatched / nzoffdiag ; else stats.psym = 1 ; end catch fprintf ('failed to compute symmetry of pattern of A+Z\n') ; end end else stats.nzero = 0 ; end fprintf ('nsym: %g psym: %g time: %g\n', stats.nsym, stats.psym, toc) ; tic ; %------------------------------------------------------------------------------- % intialize ordering statistics %------------------------------------------------------------------------------- % if square, Cholesky of C(p,p) where C=A+A', p = amd(C) stats.amd_lnz = -1 ; % nnz (chol (C)) stats.amd_flops = -1 ; % flop counts for chol (C) % if square or rectangular stats.amd_vnz = -1 ; % nnz (V), upper bound on L, for A(:,colamd(A)) stats.amd_rnz = -1 ; % nnz (R), upper bound on U, for A(:,colamd(A)) % if square, Cholesky of C(p,p) where C=A+A', p = metis(C) stats.metis_lnz = -1 ; % nnz (chol (C)) stats.metis_flops = -1 ; % flop counts for chol (C) % if square or rectangular stats.metis_vnz = -1 ; % nnz (V), upper bound on L, for A(:,metis(A)) stats.metis_rnz = -1 ; % nnz (R), upper bound on U, for A(:,metis(A)) % dmperm analysis stats.nblocks = -1 ; % # of blocks in block-triangular form stats.sprank = -1 ; % structural rank stats.nzoff = -1 ; % # of entries of A in off-diagonal blocks % cs_scc2 stats.ncc = -1 ; % # of strongly connected components % dmperm: best of amd/metis on each square block, best of colamd/metis % on rectangular blocks stats.dmperm_lnz = -1 ; % nnz (L), for square struct full rank matrices stats.dmperm_unz = -1 ; % nnz (U) + nzoff, for square struct full rank mat stats.dmperm_flops = -1 ; % Cholesky flop count of each square block stats.dmperm_vnz = -1 ; % nnz (V), upper bound on L stats.dmperm_rnz = -1 ; % nnz (R), upper bound on U stats.isND = -1 ; % 1 if 2D/3D problem, 0 otherwise d = max (m,n) ; % if the matrix has a symmetric nonzero pattern, nzoff will always be zero if (stats.psym == 1) stats.nzoff = 0 ; end %------------------------------------------------------------------------------- % determine if positive definite %------------------------------------------------------------------------------- if (~stats.cholcand) % not a candidate for Cholesky, so it cannot be positive definite stats.posdef = 0 ; else % try chol try [x, cstats] = cholmod2 (A, ones (stats.ncols,1)) ; rcond = cstats (1) ; fprintf ('rcond: %g\n', rcond) ; stats.posdef = (rcond > 0) ; catch % chol failed disp (lasterr) ; fprintf ('sparse Cholesky failed\n') ; stats.posdef = -1 ; end clear x cstats end fprintf ('posdef: %d time: %g\n', stats.posdef, toc) ; tic ; %------------------------------------------------------------------------------- % transpose A if m < n, for ordering methods %------------------------------------------------------------------------------- if (m < n) try A = A' ; % A is now tall and thin, or square catch disp (lasterr) ; fprintf ('transpose failed...\n') ; return ; end [m n] = size (A) ; end if (~isreal (A)) try A = spones (A) ; catch disp (lasterr) ; fprintf ('conversion from complex failed...\n') ; return ; end end fprintf ('computed A transpose if needed, time: %g\n', toc) ; tic ; %------------------------------------------------------------------------------- % order entire matrix with AMD and METIS, if square %------------------------------------------------------------------------------- if (m == n) tic ; try if (stats.RBtype (2) == 'u') C = A|A' ; else C = A ; end catch disp (lasterr) ; fprintf ('A+A'' failed\n') ; end fprintf ('computed A+A'', time: %g\n', toc) ; % order the whole matrix with AMD tic ; try p = amd (C) ; c = symbfact (C (p,p)) ; stats.amd_lnz = sum (c) ; stats.amd_flops = sum (c.^2) ; catch disp (lasterr) ; fprintf ('amd failed\n') ; end clear p c fprintf ('AMD lnz %d flops %g time: %g\n', ... stats.amd_lnz, stats.amd_flops, toc) ; % order the whole matrix with METIS tic ; try p = metis (C) ; c = symbfact (C (p,p)) ; stats.metis_lnz = sum (c) ; stats.metis_flops = sum (c.^2) ; catch disp (lasterr) ; fprintf ('metis failed\n') ; end clear p c C fprintf ('METIS lnz %d flops %g time: %g\n', ... stats.metis_lnz, stats.metis_flops, toc) ; else % not computed if rectangular stats.amd_lnz = -2 ; stats.amd_flops = -2 ; stats.metis_lnz = -2 ; stats.metis_flops = -2 ; end %------------------------------------------------------------------------------- % order entire matrix with COLAMD, for LU bounds %------------------------------------------------------------------------------- tic ; try % do not ignore any rows, and do not do etree postordering q = colamd2mex (A, [d 10]) ; [vnz,rnz] = cs_sqr (A (:,q)) ; stats.amd_rnz = rnz ; stats.amd_vnz = vnz ; catch disp (lasterr) ; fprintf ('colamd2 and cs_sqr failed\n') ; end clear q fprintf ('COLAMD rnz %d vnz %d time: %g\n', stats.amd_rnz, stats.amd_vnz, toc) ; tic ; %------------------------------------------------------------------------------- % order entire matrix with METIS, for LU bounds %------------------------------------------------------------------------------- if (~nometis) try q = metis (A, 'col') ; [vnz,rnz] = cs_sqr (A (:,q)) ; stats.metis_rnz = rnz ; stats.metis_vnz = vnz ; catch disp (lasterr) ; fprintf ('metis(A''*A) and cs_sqr failed\n') ; end end clear q fprintf ('METIS rnz %d vnz %d time: %g\n', ... stats.metis_rnz, stats.metis_vnz, toc) ; tic ; %------------------------------------------------------------------------------- % strongly connected components %------------------------------------------------------------------------------- try % find the # of strongly connected components of the graph of a square A, % or # of connected components of the bipartite graph of a rectangular A. % [p,q,r,s] = cs_scc2 (A) ; if (m == n) [p r] = cs_scc (A) ; else [p r] = cs_scc (spaugment (A)) ; end stats.ncc = length (r) - 1 ; clear p r catch disp (lasterr) ; fprintf ('cs_scc failed\n') ; end fprintf ('scc %d, time: %g\n', stats.ncc, toc) ; tic ; %------------------------------------------------------------------------------- % isND %------------------------------------------------------------------------------- s = 0 ; if (strfind (kind, 'structural')) s = 1 ; elseif (strfind (kind, 'fluid')) s = 1 ; elseif (strfind (kind, '2D')) s = 1 ; elseif (strfind (kind, 'reduction')) s = 1 ; elseif (strfind (kind, 'electromagnetics')) s = 1 ; elseif (strfind (kind, 'semiconductor')) s = 1 ; elseif (strfind (kind, 'thermal')) s = 1 ; elseif (strfind (kind, 'materials')) s = 1 ; elseif (strfind (kind, 'acoustics')) s = 1 ; elseif (strfind (kind, 'vision')) s = 1 ; elseif (strfind (kind, 'robotics')) s = 1 ; end stats.isND = s ; fprintf ('isND %d\n', stats.isND) ; %------------------------------------------------------------------------------- % Dulmage-Mendelsohn permutation, and order each block %------------------------------------------------------------------------------- try % find the Dulmage-Mendelsohn decomposition [p,q,r,s,cc,rr] = cs_dmperm (A) ; nblocks = length (r) - 1 ; stats.nblocks = nblocks ; stats.sprank = rr(4)-1 ; catch disp (lasterr) ; fprintf ('cs_dmperm failed\n') ; end fprintf ('sprank %d, time: %g\n', stats.sprank, toc) ; fprintf ('nblocks %d\n', stats.nblocks) ; tic ok_square = 1 ; ok_vnz = 1 ; try mm = diff (r) ; nn = diff (s) ; square = all (mm == nn) ; if (~square) % not computed if the matrix is rectangular stats.dmperm_lnz = -2 ; stats.dmperm_unz = -2 ; stats.dmperm_flops = -2 ; end if (stats.sprank < min (m,n)) % do not report DMPERM results for structurally singular matrices stats.nzoff = -2 ; stats.dmperm_lnz = -2 ; stats.dmperm_unz = -2 ; stats.dmperm_flops = -2 ; stats.dmperm_vnz = -2 ; stats.dmperm_rnz = -2 ; elseif (nblocks == n && m == n) % square triangular or diagonal C = A (p,q) ; clear p q r s stats.nzoff = nnz (triu (C, 1)) ; stats.dmperm_lnz = n ; stats.dmperm_unz = n + stats.nzoff ; stats.dmperm_flops = n ; stats.dmperm_vnz = n ; stats.dmperm_rnz = nnz (C) ; elseif (nblocks == 1 && m == n) % only one block of structural full rank, so don't redo analysis clear p q r s stats.nzoff = 0 ; if (stats.metis_lnz < 0 || stats.amd_lnz < stats.metis_lnz) stats.dmperm_lnz = stats.amd_lnz ; stats.dmperm_unz = stats.amd_lnz ; stats.dmperm_flops = stats.amd_flops ; else stats.dmperm_lnz = stats.metis_lnz ; stats.dmperm_unz = stats.metis_lnz ; stats.dmperm_flops = stats.metis_flops ; end if (stats.metis_vnz < 0 || stats.amd_rnz < stats.metis_rnz) stats.dmperm_vnz = stats.amd_vnz ; stats.dmperm_rnz = stats.amd_rnz ; else stats.dmperm_vnz = stats.metis_vnz ; stats.dmperm_rnz = stats.metis_rnz ; end else % analyze each block of the permuted matrix C = A (p,q) ; clear p q nzoff = nnz (C) ; lnz = 0 ; unz = 0 ; flops = 0 ; vnz = 0 ; rnz = 0 ; for k = 1:nblocks i1 = r (k) ; i2 = r (k+1) - 1 ; j1 = s (k) ; j2 = s (k+1) - 1 ; if (i2-i1 == 1 && j2-j1 == 1) % singleton case nzoff = nzoff - 1 ; unz = unz + 1 ; lnz = lnz + 1 ; flops = flops + 1 ; rnz = rnz + 1 ; vnz = vnz + 1 ; continue ; end % get the kth block S = C (i1:i2, j1:j2) ; [ms ns] = size (S) ; nzoff = nzoff - nnz (S) ; if (ok_square) try if (square) % all blocks are square, analyze a square block % best of amd and metis if (nometis) [pblock c] = analyze (S|S', 'sym', 1) ; else [pblock c] = analyze (S|S', 'sym', 3) ; end lnzblock = sum (c) ; unz = unz + lnzblock ; lnz = lnz + lnzblock ; flops = flops + sum (c.^2) ; clear c pblock end catch % ordering failed, but keep going to compute nzoff ok_square = 0 ; end end if (ok_vnz) try % analyze a rectangular block, or LU bounds for square block if (ms < ns) S = S' ; end % best of amd and metis try if (nometis) pblock = analyze (S, 'col', 1) ; else pblock = analyze (S, 'col', 3) ; end catch pblock = colamd2mex (S, [d 10]) ; end [vnz2,rnz2] = cs_sqr (S (:, pblock)) ; rnz = rnz + rnz2 ; vnz = vnz + vnz2 ; catch % ordering failed, but keep going to compute nzoff ok_vnz = 0 ; end end clear S pblock end stats.nzoff = nzoff ; if (ok_square) if (~square) stats.dmperm_unz = -2 ; stats.dmperm_lnz = -2 ; stats.dmperm_flops = -2 ; else stats.dmperm_lnz = lnz ; stats.dmperm_unz = unz + nzoff ; stats.dmperm_flops = flops ; end end if (ok_vnz) stats.dmperm_vnz = vnz ; stats.dmperm_rnz = rnz + nzoff ; end clear C r s end if (~ok_square) disp (lasterr) ; fprintf ('cs_dmperm (square: lnz, unz, flops) ordering failed\n') ; end if (~ok_vnz) disp (lasterr) ; fprintf ('cs_dmperm (LU bounds: vnz, rnz) ordering failed\n') ; end catch disp (lasterr) ; fprintf ('cs_dmperm ordering and nzoff failed\n') ; end fprintf ('dmperm stats done, time %g\n', toc) ; fprintf ('UFstats done\n') ; SuiteSparse/UFcollection/UFint.m0000644001170100242450000000170610620400333015533 0ustar davisfacfunction s = UFint (x) %UFINT print an integer to a string, adding commas every 3 digits % If negative, the result is the single character '-'. % % Example: % UFint (-2) % UFint (2^30) % % See also sprintf. % Copyright 2006-2007, Timothy A. Davis if (x < 0) s = '-' ; return end t = sprintf ('%d', fix (x)) ; len = length (t) ; if (len <= 3 || len > 12 || ~isempty (strfind (t, 'e'))) s = t ; elseif (len == 4) s = [ t(1) ',' t(2:4) ] ; elseif (len == 5) s = [ t(1:2) ',' t(3:5) ] ; elseif (len == 6) s = [ t(1:3) ',' t(4:6) ] ; elseif (len == 7) s = [ t(1) ',' t(2:4) ',' t(5:7) ] ; elseif (len == 8) s = [ t(1:2) ',' t(3:5) ',' t(6:8) ] ; elseif (len == 9) s = [ t(1:3) ',' t(4:6) ',' t(7:9) ] ; elseif (len == 10) s = [ t(1) ',' t(2:4) ',' t(5:7) ',' t(8:10) ] ; elseif (len == 11) s = [ t(1:2) ',' t(3:5) ',' t(6:8) ',' t(9:11) ] ; elseif (len == 12) s = [ t(1:3) ',' t(4:6) ',' t(7:9) ',' t(10:12) ] ; end SuiteSparse/UFcollection/UFlocation.m0000644001170100242450000000062710620400342016552 0ustar davisfacfunction [url, topdir] = UFlocation %UFLOCATION URL and top-level directory of the UF Sparse Matrix Collection % % Example: % [url, topdir] = UFlocation % % See also UFget. % Copyright 2006-2007, Timothy A. Davis params = UFget_defaults ; t = find (params.dir == filesep) ; topdir = regexprep (params.dir (1:t(end-1)), '[\/\\]', filesep) ; t = find (params.url == '/') ; url = params.url (1:t(end)) ; SuiteSparse/UFcollection/UFgplot.m0000644001170100242450000000640610620400331016066 0ustar davisfacfunction UFgplot (A, xyz, directed, nodename) %UFGPLOT draw a plot of the graph of a sparse matrix % Usage: % UFgplot (A, xyz, directed, nodename) % % A: a square sparse matrix of size n-by-n. % xyz: an n-by-2 or n-by-3 array of the XY or XYZ coordinates of each node. % directed: 1 if A is directed, 0 otherwise. 0 if not present. % nodename: a char array with n rows, or empty, containing the name of each % node. Not used if not present. % % Example: % % Problem = UFget ('Pajek/football') ; % UFgplot (Problem.A, Problem.aux.coord, 1, Problem.aux.nodename) ; % % See also gplot, UFget. % Copyright 2006-2007, Timothy A. Davis %------------------------------------------------------------------------------- % check inputs %------------------------------------------------------------------------------- [m n] = size (A) ; if (m ~= n) error ('A must be square') ; end if (nargin < 4) nodename = [ ] ; end if (nargin < 3) directed = 0 ; end %------------------------------------------------------------------------------- % determine if 2D or 3D %------------------------------------------------------------------------------- if (size (xyz, 2) == 2) %--------------------------------------------------------------------------- % no Z coordinates, draw a 2D graph %--------------------------------------------------------------------------- xy = xyz ; if (directed) ti = '2D directed graph' ; else ti = '2D undirected graph' ; end else %--------------------------------------------------------------------------- % a 3D graph; rotate for better viewing %--------------------------------------------------------------------------- dx = -45 ; dy = 45 ; dz = 45 ; a = dx * (2*pi/360) ; xrotation = [ 1 0 0 0 cos(a) sin(a) 0 -sin(a) cos(a) ] ; b = dy * (2*pi/360) ; yrotation = [ cos(b) 0 -sin(b) 0 1 0 sin(b) 0 cos(b) ] ; c = dz * (2*pi/360) ; zrotation = [ cos(c) sin(c) 0 -sin(c) cos(c) 0 0 0 1 ] ; r = xrotation * yrotation * zrotation ; xy = xyz * r ; xy = xy (:,1:2) ; if (directed) ti = '3D directed graph' ; else ti = '3D undirected graph' ; end end %------------------------------------------------------------------------------- % draw the graph %------------------------------------------------------------------------------- [X,Y] = gplot (A, xy) ; if (n < 100) msize = 12 ; else msize = 6 ; end if (n < 200) if (directed) plot (X, Y, 'mo', 'MarkerEdgeColor', 'k', ... 'MarkerFaceColor', [.49 1 .63], 'MarkerSize', msize) ; hold on axis equal axis off for k = 0:(length(X) / 3)-1 [x1 y1] = dsxy2figxy (gca, X (3*k+1), Y (3*k+1)) ; [x2 y2] = dsxy2figxy (gca, X (3*k+2), Y (3*k+2)) ; annotation ('arrow', [x1 x2], [y1 y2], 'Color', [1 0 1], ... 'HeadWidth', 4, 'HeadLength', 8) ; end else plot (X, Y, '-mo', 'MarkerEdgeColor', 'k', ... 'MarkerFaceColor', [.49 1 .63], 'MarkerSize', msize) ; hold on axis equal axis off end if (~isempty (nodename) && n < 100) for k = 1:n text (xy (k,1), xy (k,2), [' ' nodename(k,:)], ... 'Interpreter', 'none') ; end end else plot (X, Y, '-m.', 'MarkerEdgeColor', 'k') ; axis equal axis off end title (ti) ; hold off SuiteSparse/UFcollection/README.txt0000644001170100242450000001627510711427467016057 0ustar davisfacUFcollection, Version 1.1.1, Nov 1, 2007. UFcollection is a MATLAB toolbox for managing the UF Sparse Matrix Collection. If you are a MATLAB user of the collection, you would not normally need to use this toolbox. It contains code for creating the index for the collection (the UF_Index.mat file in the UFget package), for creating the web pages for the collection, and creating the Matrix Market and Rutherford/Boeing versions of the matrices. This code is posted here primarily so that users of the collection can see how the matrices and their statistics were generated. This software (UFread, specifically) also allows the user to keep a single copy of the collection for use both inside MATLAB and outside MATLAB. The MM/ and RB/ versions of the collection can be read into MATLAB via UFread, even without explicitly extracting the tar files. They can also be read by non-MATLAB programs. Since the whole collection is about 8GB in size (compressed, as of Dec 2006), this can save some space. UFread is much slower than UFget, however. -------------------------------------------------------------------------------- MATLAB help for the UFcollection toolbox: -------------------------------------------------------------------------------- UFcollection: software for managing the UF Sparse Matrix Collection To create the index: UFindex - create the index for the UF Sparse Matrix Collection UFstats - compute matrix statistics for the UF Sparse Matrix Collection To create the web pages: UFallpages - create all web pages for the UF Sparse Matrix Collection UFgplot - draw a plot of the graph of a sparse matrix UFint - print an integer to a string, adding commas every 3 digits UFlist - create a web page index for the UF Sparse Matrix Collection UFlists - create the web pages for each matrix list (group, name, etc.) UFlocation - URL and top-level directory of the UF Sparse Matrix Collection UFpage - create web page for a matrix in UF Sparse Matrix Collection UFpages - create web page for each matrix in UF Sparse Matrix Collection dsxy2figxy - Transform point or position from axis to figure coords To create the Matrix Market and Rutherford/Boeing versions of the collection: UFexport - export to Matrix Market and Rutherford/Boeing formats UFread - read a Problem in Matrix Market or Rutherford/Boeing format UFwrite - write a Problem in Matrix Market or Rutherford/Boeing format UFfull_read - read a full matrix using a subset of Matrix Market format UFfull_write - write a full matrix using a subset of Matrix Market format Example: UFindex % create index (UF_Index.mat) for use by UFget UFallpages % create all web pages for the UF Sparse Matrix Collection Requires UFget, CSparse, CHOLMOD, AMD, COLAMD, RBio, and METIS. Copyright 2007, Timothy A. Davis -------------------------------------------------------------------------------- Files: -------------------------------------------------------------------------------- Contents.m MATLAB help dsxy2figxy.m convert XY points for plot annotations Makefile Unix/Linux installation, or use UFcollection_install README.txt this file UFallpages.m create all web pages UFexport.m export to MM and RB UFcollection_install.m installation UFfull_read.m read a full matrix UFfull_write.c write a full matrix UFfull_write.m MATLAB help for UFfull_write UFgplot.m plot a graph UFindex.m create UF_Index.mat UFint.m print an integer UFlist.m create a web page index UFlists.m create all web page indices UFlocation.m URL and directory for the collection UFpage.m create a web page for a matrix UFpages.m create web pages for all matrices UFread.m read a Problem UFstats.m compute statistics about a matrix UFwrite.m write a Problem ./Doc: gpl.txt GNU GPL license License.txt -------------------------------------------------------------------------------- To add a matrix to the collection: -------------------------------------------------------------------------------- These instructions are for the maintainer of the collection (that is, just notes to myself), but they also indicate how the above software is used. Requires most of SuiteSparse (UFget, CHOLMOD, AMD, COLAMD, CSparse, RBio, and UFcollection), and METIS 4.0.1. 1) Get the matrix into MATLAB (method depending on how the matrix was submitted). Use load and sparse2, RBread, mread, or specialized code written just for that matrix. 2) Add the matrix to the end of UF_Listing.txt (a line in the form Group/Name). 3) Create a new directory /cise/research/sparse/public_html/mat/Group, where Group is the new matrix group. Add a README.txt file to this directory, the first line of which is a one-line summary that will appear in the top-level web page for the collection. Skip this step if adding a matrix to an existing group. 4) Create the Problem struct; type "help UFwrite" for details. Required fields: Problem.name full name of the matrix (Group/Name) Problem.title short descriptive title Problem.A the sparse matrix Problem.id integer corresponding to the line number in UF_Listing.txt Problem.date date the matrix was created, or added to the collection Problem.author matrix author Problem.ed matrix editor/collector Problem.kind a string. For a description, see: http://www.cise.ufl.edu/research/sparse/matrices/kind.html optional fields: Problem.Zeros binary pattern of explicit zero entries Problem.b right-hand-side Problem.x solution Problem.notes a char array Problem.aux auxiliary matrices (contents are problem dependent) Save to a MATLAB mat-file. In the mat directory, do: save (Problem.name, 'Problem', '-v7') ; 5) Compute matrix statistics and extend the UF_Index: UFindex (ids) where ids is a list of the new matrix id's. If updating UF_Index.mat, a copy must exist in the current directory for UFindex to find it. (At UF, do so in the 2sparse/Matrix directory, and copy the current UF_Index.mat there first). Copy the new UF_Index.mat file into /cise/research/sparse/public_html/mat. 6) Update the web pages: In the /cise/research/sparse/public_html directory, do: UFlists UFpages (1, ids) 7) Export the matrix in Matrix Market and Rutherford/Boeing formats. UFexport (ids) or UFexport (ids, 'check') then tar and compress the resulting MM/Group/Name and RB/Group/Name directories, one per Problem (if UFexport has not already done so). Copy the MM and RB matrices from the 2sparse/MM and /RB directories into the sparse/public_html directory. 8) Make the collection world-readable. In /cise/research/sparse/public_html do: chmod -R og+rX mat matrices MM RB 9) Optional: if a new group was added, manually edit the /cise/research/sparse/public_html/matrices/index.html file, adding a new thumbnail image to the Sample Gallery. If a new Problem.kind was introduced, describe it in the matrices/kind.html file. SuiteSparse/UFcollection/UFpages.m0000644001170100242450000000142610620400345016042 0ustar davisfacfunction UFpages (figures, list) %UFPAGES create web page for each matrix in UF Sparse Matrix Collection % Usage: UFpages (figures, list) % % figures: 1 if figures are to be created, 0 otherwise % list: list of matrix id's to process. All matrices in the collection are % processed if not present. % % Example: % % UFpages % create all the pages % UFpages (0) % create all the pages, but not the figures % UFpages (1,1:10) % create pages for just matrices 1 to 10 % UFpages (0,1:10) % ditto, but do not create the figures % % See also UFpage, UFget. % Copyright 2006-2007, Timothy A. Davis if (nargin < 1) figures = 1 ; end index = UFget ; if (nargin < 2) list = 1:length (index.nrows) ; end for i = list UFpage (i, index, figures) ; end SuiteSparse/UFcollection/UFexport.m0000644001170100242450000000437210621142302016264 0ustar davisfacfunction UFexport (list, check, tmp) %UFEXPORT export to Matrix Market and Rutherford/Boeing formats % % Example: % UFexport ; % export the entire collection % UFexport (list) ; % just export matrices whose id's are given in the list % UFexport (list, 'check') ; % also read them back in, to check % % If the list is empty, all matrices in the collection are exported. % A 3rd argument tmp changes the tmp directory for UFread. % % See also UFget, UFwrite, RBio, mwrite. % Copyright 2006-2007, Timothy A. Davis %------------------------------------------------------------------------------- % get the input arguments %------------------------------------------------------------------------------- index = UFget ; nmat = length (index.nrows) ; if (nargin < 1 || isempty (list)) list = 1:nmat ; end check = ((nargin > 1) && strcmp (check, 'check')) ; if (nargin < 3) tmp = '' ; end %------------------------------------------------------------------------------- % determine the top-level directory to use %------------------------------------------------------------------------------- [url topdir] = UFlocation ; %------------------------------------------------------------------------------- % export the matrices %------------------------------------------------------------------------------- for id = list % get the MATLAB version Problem = UFget (id, index) ; disp (Problem) ; % create the MM and RB versions UFwrite (Problem, [topdir 'MM'], 'MM', 'tar') ; UFwrite (Problem, [topdir 'RB'], 'RB', 'tar') ; % check the new MM and RB versions if (check) for format = { 'MM' , 'RB' } try if (isempty (tmp)) P2 = UFread ([topdir format{1} filesep Problem.name]) ; else P2 = UFread ([topdir format{1} filesep Problem.name], tmp) ; end catch % The Problem may be too large for two copies to be in the % MATLAB workspace at the same time. This is not an error, % but it means that the Problem cannot be checked. P2 = [ ] ; fprintf ('Unable to read %s/%s\n', format {1}, Problem.name) ; fprintf ('%s\n', lasterr) ; end if (~isempty (P2) && ~isequal (Problem, P2)) error ('%s version mismatch: %s\n', format {1}, Problem.name) ; end clear P2 end end end SuiteSparse/UFcollection/UFindex.m0000644001170100242450000003242110623341712016056 0ustar davisfacfunction UF_Index = UFindex (matrixlist) %UFINDEX create the index for the UF Sparse Matrix Collection % % UF_Index = UFindex (matrixlist) % % matrixlist: an integer list, in the range of 1 to the length of the % UF_Listing.txt file, containing a list of matrices for which to modify % the UF_Index entries. If matrixlist is not present, then the UF_Index % is created from scratch. % % UF_Index: a struct containing the index information, with the % following fields, assuming that there are n matrices in the collection: % % LastRevisionDate: a string with the date and time the index was updated. % DowloadTimeStamp: date and time the index was last downloaded. % % Group: an n-by-1 cell array. Group {i} is the group for matrix i. % Name: n-by-1 cell array. Name {i} is the name of matrix i. % % The following fields are n-by-1 vectors unless otherwise specified. % nrows(id) gives the number of rows of the matrix with id = Problem.id, % for example. % % nrows number of rows % ncols number of columns % nnz number of entries in A % RBtype Rutherford/Boeing type, an n-by-3 char array % isBinary 1 if binary, 0 otherwise % isReal 1 if real, 0 if complex % cholcand 1 if a candidate for sparse Cholesky, 0 otherwise % numerical_symmetry numeric symmetry (0 to 1, where 1=symmetric) % pattern_symmetry pattern symmetry (0 to 1, where 1=symmetric) % nnzdiag nnz (diag (A)) if A is square, 0 otherwise % nzero nnz (Problem.Zeros) % amd_lnz nnz(L) for chol(C(p,p)) where, C=A+A', p=amd(C) % amd_flops flop count for chol(C(p,p)) where, C=A+A', p=amd(C) % amd_vnz nnz in Householder vectors for qr(A(:,colamd(A))) % amd_rnz nnz in R for qr(A(:,colamd(A))) % metis_lnz nnz(L) for chol(C(p,p)) where, C=A+A', p=metis(C) % metis_flops flop count for chol(C(p,p)) where, C=A+A', p=metis(C) % metis_vnz nnz in Householder vectors for qr(A(:,metis(A,'col'))) % metis_rnz nnz in R for qr(A(:,metis(A,'col'))) % nblocks # of blocks from dmperm % sprank sprank(A) % nzoff # of entries not in diagonal blocks from dmperm % ncc # of strongly connected components % dmperm_lnz nnz(L), using dmperm plus amd or metis % dmperm_unz nnz(U), using dmperm plus amd or metis % dmperm_flops flop count with dperm plus % dmperm_vnz nnz in Householder vectors for dmperm plus % dmperm_rnz nnz in R for dmperm plus % posdef 1 if positive definite, 0 otherwise % isND 1 if a 2D/3D problem, 0 otherwise % % If the statistic is not computed, it is set to -2. Some statistics are not % computed for rectangular or structurally singular matrices, for example. % If an attempt to compute the statistic was made, but failed, it is set to -1. % % Example: % UFindex % UFindex (267:300) % % See also UFstats, amd, metis, RBtype, cs_scc, cs_sqr, cs_dmperm. % Copyright 2006-2007, Timothy A. Davis % Requires the SuiteSparse set of packages: CHOLMOD, AMD, COLAMD, RBio, CSparse; % and METIS. % 10/13/2001: Created by Erich Mirabal % 12/6/2001, 1/17/2003, 11/16/2006: modified by Tim Davis %------------------------------------------------------------------------------- % initialize an empty index %------------------------------------------------------------------------------- % load the filenames [url topdir] = UFlocation ; files = textread ([topdir 'mat' filesep 'UF_Listing.txt'], '%s') ; % if no input, assume we have to do the whole file list create_new = 0 ; if (nargin < 1) matrixlist = 1:length(files) ; create_new = 1 ; else % validate the input : range is limited by the files variable if (min (matrixlist) < 1) || (max (matrixlist) > length (files)) error ('%s: %s', mfilename, 'Invalid input parameter.') ; end end if (~create_new) % load the index from file fprintf ('Loading existing UF_Index.mat file\n') ; UF_Index = load ('UF_Index.mat') ; UF_Index = UF_Index.UF_Index ; end % revision tracking device UF_Index.LastRevisionDate = datestr (now) ; % the index structure needs a download date for version tracking UF_Index.DownloadTimeStamp = now ; % start the index from scratch if (create_new) fprintf ('Creating new UF_Index.mat file\n') ; nothing = -ones (1, length (files)) ; UF_Index.Group = cell (size (files)) ; UF_Index.Name = cell (size (files)) ; UF_Index.nrows = nothing ; UF_Index.ncols = nothing ; UF_Index.nnz = nothing ; UF_Index.nzero = nothing ; UF_Index.pattern_symmetry = nothing ; UF_Index.numerical_symmetry = nothing ; UF_Index.isBinary = nothing ; UF_Index.isReal = nothing ; % removed has_b, has_guess, has_x, has_Zeros, is_lp, has_coord, zdiag UF_Index.nnzdiag = nothing ; UF_Index.posdef = nothing ; UF_Index.amd_lnz = nothing ; UF_Index.amd_flops = nothing ; UF_Index.amd_vnz = nothing ; UF_Index.amd_rnz = nothing ; UF_Index.metis_lnz = nothing ; UF_Index.metis_flops = nothing ; UF_Index.metis_vnz = nothing ; UF_Index.metis_rnz = nothing ; UF_Index.nblocks = nothing ; UF_Index.sprank = nothing ; UF_Index.nzoff = nothing ; UF_Index.dmperm_lnz = nothing ; UF_Index.dmperm_unz = nothing ; UF_Index.dmperm_flops = nothing ; UF_Index.dmperm_vnz = nothing ; UF_Index.dmperm_rnz = nothing ; % added RBtype, cholcand, ncc UF_Index.RBtype = char (' '*ones (length (files),3)) ; UF_Index.cholcand = nothing ; UF_Index.ncc = nothing ; % added isND UF_Index.isND = nothing ; else % make sure we have the right length for the arrays if length (UF_Index.nrows) < max (matrixlist) len = max (matrixlist) - length (UF_Index.nrows) ; nothing = -ones (1, len) ; if (len > 0) % don't worry about the cell arrays, only append to numeric arrays UF_Index.nrows = [UF_Index.nrows nothing] ; UF_Index.ncols = [UF_Index.ncols nothing] ; UF_Index.nnz = [UF_Index.nnz nothing] ; UF_Index.nzero = [UF_Index.nzero nothing] ; UF_Index.pattern_symmetry = [UF_Index.pattern_symmetry nothing] ; UF_Index.numerical_symmetry = [UF_Index.numerical_symmetry nothing]; UF_Index.isBinary = [UF_Index.isBinary nothing] ; UF_Index.isReal = [UF_Index.isReal nothing] ; UF_Index.nnzdiag = [UF_Index.nnzdiag nothing] ; UF_Index.posdef = [UF_Index.posdef nothing] ; UF_Index.amd_lnz = [UF_Index.amd_lnz nothing] ; UF_Index.amd_flops = [UF_Index.amd_flops nothing] ; UF_Index.amd_vnz = [UF_Index.amd_vnz nothing] ; UF_Index.amd_rnz = [UF_Index.amd_rnz nothing] ; UF_Index.metis_lnz = [UF_Index.metis_lnz nothing] ; UF_Index.metis_flops= [UF_Index.metis_flops nothing] ; UF_Index.metis_vnz = [UF_Index.metis_vnz nothing] ; UF_Index.metis_rnz = [UF_Index.metis_rnz nothing] ; UF_Index.nblocks = [UF_Index.nblocks nothing] ; UF_Index.sprank = [UF_Index.sprank nothing] ; UF_Index.nzoff = [UF_Index.nzoff nothing] ; UF_Index.dmperm_lnz = [UF_Index.dmperm_lnz nothing] ; UF_Index.dmperm_unz = [UF_Index.dmperm_unz nothing] ; UF_Index.dmperm_flops= [UF_Index.dmperm_flops nothing] ; UF_Index.dmperm_vnz = [UF_Index.dmperm_vnz nothing] ; UF_Index.dmperm_rnz = [UF_Index.dmperm_rnz nothing] ; UF_Index.RBtype = [UF_Index.RBtype ; char (' '*ones (len,3))] ; UF_Index.cholcand = [UF_Index.cholcand nothing] ; UF_Index.ncc = [UF_Index.ncc nothing] ; UF_Index.isND = [UF_Index.isND nothing] ; end end end fprintf ('Will process %d files\n', length (matrixlist)) ; nmat = length (UF_Index.nrows) ; filesize = zeros (nmat,1) ; %------------------------------------------------------------------------------- % look through the directory listing, and sort matrixlist by size %------------------------------------------------------------------------------- for i = matrixlist % note that the matrix is not loaded in this for loop ffile = deblank (files {i}) ; % group is the first part of the string up to the character before % the last file separator gi = find (ffile == filesep) ; gi = gi (end) ; groupN = char (ffile (1:gi-1)) ; % name is the last section of the string after the last file separator matrixN = char (ffile (gi+1:end)) ; % get the directory info of the .mat file fileInfo = dir ([topdir 'mat' filesep ffile '.mat']) ; % set the file's data into the data arrays UF_Index.Name {i} = matrixN ; UF_Index.Group {i} = groupN ; if (length (fileInfo) > 0) %#ok filesize (i) = fileInfo.bytes ; else filesize (i) = 9999999999 ; end % fprintf ('%s / %s filesize %d\n', groupN, matrixN, fileInfo.bytes) ; end fprintf ('\n======================================================\n') ; fprintf ('Matrices will processed in the following order:\n') ; for i = matrixlist ffile = deblank (files {i}) ; fprintf ('Matrix %d: %s filesize %d\n', i, ffile, filesize (i)) ; if (filesize (i) == 9999999999) fprintf ('skip this file\n') ; continue ; end end %------------------------------------------------------------------------------- % load the matrices %------------------------------------------------------------------------------- % metis (A,'col') fails with a seg fault for these matrices: skip_metis = [850 858 1257 1258] ; % these matrices are known to be positive definite, and indefinite, % respectively, but sparse Cholesky fails (on a 4GB Penitum 4) on some of them: known_posdef = [ 939 1252 1267 1268 1423 1453 1455 ] ; known_indef = [ 1348:1368 1586 1411 ] ; % these matrices are known to be irreducible, but dmperm fails known_irreducible = 916 ; for k = 1:length (matrixlist) %--------------------------------------------------------------------------- % get the matrix %--------------------------------------------------------------------------- id = matrixlist (k) ; ffile = deblank (files {id}) ; fprintf ('\n============================== Matrix %d: %s\n', id, ffile) ; if (filesize (id) == 9999999999) fprintf ('skip this file\n') ; continue ; end load ([topdir 'mat' filesep ffile]) ; % display the Problem struct disp (Problem) ; %--------------------------------------------------------------------------- % get all stats %--------------------------------------------------------------------------- nometis = any (id == skip_metis) ; if (nometis) fprintf ('skip metis - will fail\n') ; end fprintf ('%s/%s\n', UF_Index.Group {id}, UF_Index.Name {id}) ; if (isfield (Problem, 'Zeros')) stats = UFstats (Problem.A, Problem.kind, nometis, Problem.Zeros) ; else stats = UFstats (Problem.A, Problem.kind, nometis) ; end %--------------------------------------------------------------------------- % fix special cases %--------------------------------------------------------------------------- if (stats.posdef == -1) if (any (id == known_posdef)) fprintf ('known posdef\n') ; stats.posdef = 1 ; elseif (any (id == known_indef)) fprintf ('known indef\n') ; stats.posdef = 0 ; end end if (any (id == known_irreducible) && stats.sprank < 0) % full sprank, and not reducible to block triangular form, % but the matrix is to big for dmperm fprintf ('known irreducible\n') ; stats.sprank = stats.nrows ; stats.nzoff = 0 ; stats.nblocks = 1 ; stats.ncc = 1 ; end % display the stats disp (stats) ; %--------------------------------------------------------------------------- % save the stats in the index %--------------------------------------------------------------------------- UF_Index.nrows (id) = stats.nrows ; UF_Index.ncols (id) = stats.ncols ; UF_Index.nnz (id) = stats.nnz ; UF_Index.nzero (id) = stats.nzero ; UF_Index.pattern_symmetry (id) = stats.psym ; UF_Index.numerical_symmetry (id) = stats.nsym ; UF_Index.isBinary (id) = stats.isBinary ; UF_Index.isReal (id) = stats.isReal ; UF_Index.nnzdiag (id) = stats.nnzdiag ; UF_Index.posdef (id) = stats.posdef ; UF_Index.amd_lnz (id) = stats.amd_lnz ; UF_Index.amd_flops (id) = stats.amd_flops ; UF_Index.amd_vnz (id) = stats.amd_vnz ; UF_Index.amd_rnz (id) = stats.amd_rnz ; UF_Index.metis_lnz (id) = stats.metis_lnz ; UF_Index.metis_flops (id) = stats.metis_flops ; UF_Index.metis_vnz (id) = stats.metis_vnz ; UF_Index.metis_rnz (id) = stats.metis_rnz ; UF_Index.nblocks (id) = stats.nblocks ; UF_Index.sprank (id) = stats.sprank ; UF_Index.nzoff (id) = stats.nzoff ; UF_Index.dmperm_lnz (id) = stats.dmperm_lnz ; UF_Index.dmperm_unz (id) = stats.dmperm_unz ; UF_Index.dmperm_flops (id) = stats.dmperm_flops ; UF_Index.dmperm_vnz (id) = stats.dmperm_vnz ; UF_Index.dmperm_rnz (id) = stats.dmperm_rnz ; UF_Index.RBtype (id,:) = stats.RBtype ; UF_Index.cholcand (id) = stats.cholcand ; UF_Index.ncc (id) = stats.ncc ; UF_Index.isND (id) = stats.isND ; %--------------------------------------------------------------------------- % clear the problem and save the index %--------------------------------------------------------------------------- clear Problem save UF_Index UF_Index % flush the diary if (strcmp (get (0, 'Diary'), 'on')) diary off diary on end end SuiteSparse/UFcollection/UFfull_read.m0000644001170100242450000000410210620400372016672 0ustar davisfacfunction A = UFfull_read (file) %UFFULL_READ read a full matrix using a subset of Matrix Market format % This function reads in a file generated by UFfull_write. It cannot read % arbitrary Matrix Market formatted files. See UFfull_write for a description % of the file format. % % Example: % x = rand (8) % UFfull_write ('xfile', x) % y = UFfull_read ('xfile') % norm (x-y) % % See also mread, mwrite, RBwrite, RBread. % Copyright 2006-2007, Timothy A. Davis % open the file f = fopen (file, 'r') ; if (f < 0) error (['cannot open: ' file]) ; end % ignore the header line - determine real/complex from # of entries in each row s = fgetl (f) ; %#ok % read in the # of rows and columns [siz count] = fscanf (f, '%d %d', 2) ; if (count ~= 2) error (['invalid file: ' file]) ; end m = siz (1) ; n = siz (2) ; % read in the rest of the matrix A = fscanf (f, '%g') ; % This is an unfortunate workaround. fscanf in C and MATLAB, and the read % statement in Fortran, cannot interpret the character strings 'Inf', '-Inf', % or 'NaN' as the appropriate value. Thus, a special huge value (1e308) is % used to represent these values (Inf and NaN both become 1e308). A sparse % matrix typically won't included any Inf's or NaN's, but auxiliary arrays can, % for some problems. For example, the bounds of an LP can be +Inf or -Inf; % lo(i) = -Inf means that there is no lower bound on the ith variable. % % The identical workaround is used in UFfull_write, mread, mwrite, RBread, and % RBwrite. 1e308 was chosen because it's close to the largest IEEE double % precision number of 1.7977e308, and because the string '1e308' is short, % leading to more compact files. Note that NaN's are treated as +Inf. A (A == 1e308) = Inf ; A (A == -1e308) = -Inf ; % reshape the matrix into its final form if (length (A) == m*n) % this is a real matrix A = reshape (A, m, n) ; elseif (length (A) == 2*m*n) % this is a complex matrix A = reshape (A (1:2:end), m, n) + reshape (A (2:2:end), m, n) * 1i ; else error (['invalid file: ' file]) ; end % close the file fclose (f) ; SuiteSparse/UFcollection/UFwrite.m0000644001170100242450000004253510620400365016105 0ustar davisfacfunction UFwrite (Problem, Master, arg3, arg4) %UFWRITE write a Problem in Matrix Market or Rutherford/Boeing format % containing a set of text files in either Matrix Market or Rutherford/Boeing % format. The Problem can be read from the files back into MATLAB via UFread. % See http://www.cise.ufl.edu/research/sparse/matrices for the UF Sparse % Matrix Collection home page. The Problem directory is optionally compressed % via tar and gzip. Arguments 3 and 4, below, are optional and can appear in % any order. % % UFwrite (Problem) % Matrix Market format, no tar, use current dir. % % The following usages write the Problem into the Master/Group/Name directory, % where Problem.name = 'Group/Name' is given in the Problem. % % UFwrite (Problem, Master) % Matrix Market, no tar % UFwrite (Problem, Master, 'MM') % ditto % UFwrite (Problem, Master, 'RB') % Rutherford/Boeing, no tar % UFwrite (Problem, Master, 'tar') % Matrix Market, with tar % UFwrite (Problem, Master, 'MM', 'tar') % ditto % UFwrite (Problem, Master, 'RB', 'tar') % Rutherford/Boeing, with tar % % Problem is a struct, in the UF Sparse Matrix format (see below). Master is % the top-level directory in which directory containing the problem will be % placed. Master defaults to the current working directory if not present (an % empty string also means the current directory will be used). % % The following fields are always present in a UF Sparse Matrix Problem: % % name the group directory and problem name (i.e. 'HB/arc130') % % title short descriptive title % % A an m-by-n sparse matrix, real or complex % % id an integer in the range of 1 to the # of problems in the % collection. Identical to the line number of % http://www.cise.ufl.edu/research/sparse/mat/UF_Listing.txt % containing the Problem.name. New matrices are always added at % the end of this list. % % date a string containing the date the matrix was created, or added % to the collection if the creating date is unknown (but is likely % close to the creation date); empty string otherwise. % % author a string containing the name of the author; the computational % scientist who created the matrix from his or her application. % Empty string, or "author unknown" if unknown. % % ed a string containing the name of the editor/collector; the person % who acquired the matrix from the author, for inclusion in this % (or other) sparse matrix / graph collections. % % kind a string (i.e. 'directed graph') describing the type of problem; % a list of words from a well-defined set (see the UF Sparse % Matrix Collection home page for a description, or % http://www.cise.ufl.edu/research/sparse/matrices/kind.html). % % A Problem struct may also have the following optional fields. % % Zeros pattern of explicit zero entries in A as a binary m-by-n matrix. % These entries are provided by the matrix submittor with zero % numerical value. MATLAB drops explicit zero entries from any % sparse matrix. These entries can be important to the problem, % if (for example) the matrix is first in a series of matrices % arising in a nonlinear solver (those entries will become nonzero % later). These entries are thus kept in the binary matrix Zeros. % % b right-hand-side, any size, real or complex, full or sparse % % x supposed solution to A*x=b, any size, real or complex, full or % sparse % % notes a character array with notes about the problem. % % aux a struct, containing auxiliary information. The contents of % this struct are problem dependent, but its fields must not % end with '_[0-9]*' where [0-9]* means zero or more digits, nor % can there be an aux.b or aux.x matrix (there can be aux.b % and aux.x cells). The aux struct must not include any structs, % just matrices and cell arrays of matrices. The matrices in aux % can be full or sparse, and real, complex, or char. % % ------------------------------------------------- % for Problems written in Rutherford/Boeing format: % ------------------------------------------------- % % The Problem.name (including the full 'Group/Name'), date, author, and editor % define the Rutherford/Boeing title (first line of the file), followed by a % '|' in the 72nd column, and then up to 8 characters of the key. If the key % is an empty string, the Problem.id is used as the key. The A and Zeros % matrices are merged and written to this file. The full name, title, id, % kind, date, author, editor, and notes are written to a file of the same name % as the primary file, but with a .txt extension. % % Additional Rutherford/Boeing files are created for b, x, and each sparse % matrix in aux. Full arrays are written using a tiny subset of the Matrix % Market format. The first line of the file is the header, either of: % % %%MatrixMarket array real general % %%MatrixMarket array complex general % % The 2nd row contains the # of rows and columns, and subsequent lines contain % one matrix entry each (two values if complex) listed in column-major order. % No comments or blank lines are permitted. The header is ignored when the % matrix is read back in by UFread; the real/complex case is determined by how % many entries appear on each line. You can of course read these files with % mread, the Matrix Market reader. The header is added only to make it easier % for functions *other* than UFread to read and understand the data (the file % can be read in by mread, for example, but mread is not required). Thus, a % complete Rutherord/Boeing directory can be read/written via UFread/UFwrite, % without requiring the installation of mread/mwrite (in CHOLMOD), or % mmread/mmread (M-file functions from NIST that read/write a Matrix Market % file). % % --------------------------------------------- % for Problems written in Matrix Market format: % --------------------------------------------- % % The name, title, A, id, Zeros, kind, date, author, editor, and notes fields of % the Problem are written to the primary Matrix Market file, with a .mtx % extension. Additional Matrix Market files are created for b (as name_b), % x (as name_x), and each sparse or full matrix in aux. % % ----------------- % for both formats: % ----------------- % % A matrix Problem.aux.whatever is written out as name_whatever.xxx, without % the 'aux' part. If Problem.aux.whatever is a char array, it is written as % the file name_whatever.txt, with one line per row of the char array (trailing % spaces in each line are not printed). If aux.whatever is a cell array, each % entry aux.whatever{i} is written as the file name_whatever_.xxx % (name_whatever_1.mtx, name_whatever_2.mtx, etc). All files are placed in the % single directory, given by the Problem.name (Group/Name, or 'HB/arc130' for % example). Each directory can only hold one MATLAB Problem struct of the UF % Sparse Matrix Collection. % % Example: % % Problem = UFget ('HB/arc130') % get the HB/arc130 MATLAB Problem % UFwrite (Problem) ; % write a MM version in current directory % UFwrite (Problem, 'MM') ; % write a MM version in MM/HB/arc130 % UFwrite (Problem, '', 'RB') ; % write a RB version in current directory % % See also mwrite, mread, RBwrite, RBread, UFread, UFget, tar % Optionally uses the CHOLMOD mwrite mexFunction, for writing Problems in % Matrix Market format. % Copyright 2006-2007, Timothy A. Davis, University of Florida. %------------------------------------------------------------------------------- % check inputs %------------------------------------------------------------------------------- if (nargin < 2) % place the result in the current directory Master = '' ; end if (nargin < 3) arg3 = '' ; end if (nargin < 4) arg4 = '' ; end arg3 = lower (arg3) ; arg4 = lower (arg4) ; do_tar = (strcmp (arg3, 'tar') | strcmp (arg4, 'tar')) ; RB = (strcmp (arg3, 'rb') | strcmp (arg4, 'rb')) ; Master = regexprep (Master, '[\/\\]', filesep) ; if (~isempty (Master) && Master (end) ~= filesep) Master = [Master filesep] ; end %------------------------------------------------------------------------------- % create the problem directory. Do not report any errors %------------------------------------------------------------------------------- t = find (Problem.name == '/') ; group = Problem.name (1:t-1) ; name = Problem.name (t+1:end) ; groupdir = [Master group] ; probdir = [groupdir filesep name] ; probname = [probdir filesep name] ; s = warning ('query', 'MATLAB:MKDIR:DirectoryExists') ; % get current state warning ('off', 'MATLAB:MKDIR:DirectoryExists') ; mkdir (groupdir) ; mkdir (probdir) ; warning (s) ; % restore state %------------------------------------------------------------------------------- % write the name, title, id, kind, date, author, ed, list of fields, and notes %------------------------------------------------------------------------------- cfile = [probname '.txt'] ; if (RB) prefix = '%' ; else prefix = '' ; end cf = fopen (cfile, 'w') ; print_header (cf, prefix, Problem.name) ; fprintf (cf, '%s [%s]\n', prefix, Problem.title) ; fprintf (cf, '%s id: %d\n', prefix, Problem.id) ; fprintf (cf, '%s date: %s\n', prefix, Problem.date) ; fprintf (cf, '%s author: %s\n', prefix, Problem.author) ; fprintf (cf, '%s ed: %s\n', prefix, Problem.ed) ; fprintf (cf, '%s fields:', prefix) ; s = fields (Problem) ; for k = 1:length(s) fprintf (cf, ' %s', s {k}) ; end fprintf (cf, '\n') ; if (isfield (Problem, 'aux')) aux = Problem.aux ; fprintf (cf, '%s aux:', prefix) ; auxfields = fields (aux) ; for k = 1:length(auxfields) fprintf (cf, ' %s', auxfields {k}) ; end fprintf (cf, '\n') ; else auxfields = { } ; end fprintf (cf, '%s kind: %s\n', prefix, Problem.kind) ; print_separator (cf, prefix) ; if (isfield (Problem, 'notes')) fprintf (cf, '%s notes:\n', prefix) ; for k = 1:size (Problem.notes,1) fprintf (cf, '%s %s\n', prefix, Problem.notes (k,:)) ; end print_separator (cf, prefix) ; end fclose(cf) ; %------------------------------------------------------------------------------- % write out the A and Z matrices to the RB or MM primary file %------------------------------------------------------------------------------- A = Problem.A ; [m n] = size (A) ; if (~issparse (A) || m == 0 || n == 0) error ('A must be sparse and non-empty') ; end if (isfield (Problem, 'Zeros')) Z = Problem.Zeros ; if (any (size (A) ~= size (Z)) || ~isreal (Z) || ~issparse (Z)) error ('Zeros must have same size as A, and be sparse and real') ; end else Z = [ ] ; end % use the Problem.id number as the RB key key = sprintf ('%d', Problem.id) ; if (RB) % write the files in Rutherford/Boeing form ptitle = [Problem.name '; ' Problem.date '; ' etal(Problem.author)] ; ptitle = [ptitle '; ed: ' etal(Problem.ed)] ; % note that b, g, and x are NOT written to the RB file RBwrite ([probname '.rb'], A, Z, ptitle, key) ; else % write the files in Matrix Market form mwrite ([probname '.mtx'], A, Z, cfile) ; delete (cfile) ; % the comments file has been included in the .mtx file. end %------------------------------------------------------------------------------- % write out the b and x matrices as separate files %------------------------------------------------------------------------------- if (isfield (Problem, 'b')) write_component (probname, Problem.name, 'b', Problem.b, cfile, ... prefix, RB, [key 'b']) ; end if (isfield (Problem, 'x')) write_component (probname, Problem.name, 'x', Problem.x, cfile, ... prefix, RB, [key 'x']) ; end %------------------------------------------------------------------------------- % write out each component of aux, each in a separate file %------------------------------------------------------------------------------- for k = 1:length(auxfields) what = auxfields {k} ; X = aux.(what) ; if (~iscell (X) && (strcmp (what, 'b') || strcmp (what, 'x'))) % aux.b or aux.x would get written out with the same filename as the % Problem.b and Problem.x matrices, and read back in by UFread as % Problem.b and Problem.x instead of aux.b and aux.x. error (['invalid aux component: ' what]) ; end if (regexp (what, '_[0-9]*\>')) % aux.whatever_42 would be written as the file name_whatever_42, which % would be intrepretted as aux.whatever{42} when read back in by UFread. error (['invalid aux component: ' what]) ; end if (iscell (X)) len = length (X) ; for i = 1:len % this problem includes a sequence of matrices in the new % format (kind = 'sequence', and Problem.id > 1377). write_component (probname, Problem.name, ... sprintf (fmt (i, len), what, i) , X{i}, cfile, ... prefix, RB, [key what(1) sprintf('%d', i)]) ; end else % This is a non-cell component of aux. For an LP problem, this might % be c, lo, or hi. For an Oberwolfach model reduction problem, this % might be M, C, or E. For a graph in the Pajek collection, it could % be a vector 'year', with the publication of each article in the graph. % The possibilities are endless, and problem dependent. Adding new % components to aux can be done without modifying UFread or UFwrite. write_component (probname, Problem.name, what, X, cfile, ... prefix, RB, [key what]) ; end end %------------------------------------------------------------------------------- % tar up the result, if requested %------------------------------------------------------------------------------- if (do_tar) try tar ([probdir '.tar.gz'], probdir) ; rmdir (probdir, 's') ; catch warning ('SuiteSparse:UFwrite', ... 'unable to create tar file; directly left uncompressed') ; end end %------------------------------------------------------------------------------- % fmt %------------------------------------------------------------------------------- function s = fmt (i, len) % fmt: determine the format to use for the name of component in a aux.cell array if (len < 10) s = '%s_%d' ; % x1 through x9 elseif (len < 100) if (i < 10) s = '%s_0%d' ; % x01 through x09 else s = '%s_%d' ; % x10 through x99 end else if (i < 10) s = '%s_00%d' ; % x001 through x009 elseif (i < 100) s = '%s_0%d' ; % x010 through x099 else s = '%s_%d' ; % x100 through x999 end end %------------------------------------------------------------------------------- % write_component %------------------------------------------------------------------------------- function write_component (probname, name, what, X, cfile, prefix, RB, key) % write_component: write out a single component of the Problem to a file if (isempty (X)) % empty matrices (one or more zero dimensions) are not supported error (['invalid component: ' what ' (cannot be empty)']) ; elseif (ischar (X)) % Write out a char array as a text file. Remove trailing spaces from the % strings. Keep the leading spaces; they might be significant. ff = fopen ([probname '_' what '.txt'], 'w') ; for i = 1:size (X,1) fprintf (ff, '%s\n', deblank (X (i,:))) ; end fclose (ff) ; elseif (RB) % write out a full or sparse matrix in Rutherford/Boeing format if (issparse (X)) % write out the component as a Rutherford/Boeing sparse matrix RBwrite ([probname '_' what '.rb'], X, [ ], [name '_' what], key) ; else % Write out a full matrix in column oriented form, % using a tiny subset of the Matrix Market format for full matrices. UFfull_write ([probname '_' what '.mtx'], X) ; end else % write out the component in Matrix Market format (full or sparse) cf = fopen (cfile, 'w') ; print_header (cf, prefix, name, what) ; print_separator (cf, prefix) ; fclose(cf) ; mwrite ([probname '_' what '.mtx'], X, cfile) ; delete (cfile) ; end %------------------------------------------------------------------------------- % print_separator %------------------------------------------------------------------------------- function print_separator (cf, prefix) % print_separator: print a separator line in the comment file fprintf (cf, '%s---------------------------------------', prefix) ; fprintf (cf, '----------------------------------------\n') ; %------------------------------------------------------------------------------- % print_header %------------------------------------------------------------------------------- function print_header (cf, prefix, name, what) % print_header: print the header to the comment file print_separator (cf, prefix) ; fprintf (cf, '%s UF Sparse Matrix Collection, Tim Davis\n', prefix) ; fprintf (cf, '%s http://www.cise.ufl.edu/research/sparse/matrices/%s\n', ... prefix, name) ; fprintf (cf, '%s name: %s', prefix, name) ; if (nargin > 3) fprintf (cf, ' : %s matrix', what) ; end fprintf (cf, '\n') ; %------------------------------------------------------------------------------- % etal %------------------------------------------------------------------------------- function s = etal(name) % etal: change a long list of authors to first author 'et al.' t = find (name == ',') ; if (length (t) > 1) s = [name(1:t(1)-1) ' et al.'] ; else s = name ; end